Atom and Nucleus

α – Scattering experiment and Rutherford's atomic model :

- Radioactive source $_{83}$ Bi²¹⁴ emitts, α particles of energy 5.5 MeV, incident on a thin gold foil of thickness 2.1×10^{-7} m. Scattered α - particles observed on circular scintillation screen of ZnS. [zinc sulphide]
- 10^5 α particles scattered at <15°, 0.1% Scattered at ~150°, about only 1 out of 10^4 α – particle was scattered at 180°.
- Path of scattered α particle can be determined with the help of Coloumb's law and Newton's second law. Repulsive force acting between α – particle and gold nucleus is $F = \frac{1}{4\pi \in \alpha} \frac{(2e)(79e)}{2e}$.

The magnitude and direction of the force on α – particle continuously changes as it approaches the nucleus.

- The perpendicular distance of the initial velocity vector of the α particle from the centre of the nucleus is known as the **impact parameter** (b).
- For head on collision b = 0.
- The minimum distance of the α particle from the centre of the nucleus (for b=0) is known as the distance of closest approach.
- Radius of nucleus is about 10^{-15} m.
- If 't' is thickness of foil and 'N' are No. of scattered α particles then, $\frac{N}{r}$ = constant, $\frac{N_1}{t_1} = \frac{N_2}{t_2}.$

According to Rutherford, orbit of an electron is not circular but spiral and motion of an electron ends inside the nucleus. In this case the atom cannot remain stable. Thus Rutherford's atomic model failed to explain the stability of atom.

- (1) An α – Particle of 10 MeV is moving for a head on collision. What will be the distance of closest approach from the nucleus of atomic number Z = 60?
 - (A) 1.44×10^{-14} m

- (B) 2.88×10^{-14} m (C) 0.53×10^{-14} m (D) 1.728×10^{-14} m
- (2) An α – particle with some energy is moving for head on collision with nucleus of Z = 85, if the distance of closest approach is 1.85×10^{-14} m, find the energy of α – particle.
 - (A) 23.13 MeV
- (B) 13.2 MeV
- (C) 10 MeV
- (D) 20 MeV

(3)	Distance of closest approach of an	α – particle with	energy 27	MeV is	1.10 ×	10 ⁻¹⁴ m.	Find
	atomic no of an atom ?						

(A) 100

(B) 103

(C) 105

(D) 90

If thickness of foil in α – scattering experiment increases from 2×10^{-7} m to 2.5×10^{-6} m, (4)Find the increased number of scattered α – particles ?

(A) about 12 times

(B) 100 times

(C) remains constant

(D) 10 times

(5)If number of scattered α - particles increased by 40%, what is the percentage change in thickness of foil?

(A) 40 %

(B) 80 %

(C) 10 %

(D) 20 %

(6) If thickness of foil is t_1 , number of scattered α – particles are 8500 and thickness of foil is t_2 , No. of scattered α – particles are 27,500 then,

(A) $t_1 = 3.2 t_2$ (B) $t_2 = 3.2 t_1$ (C) $t_2 = 1.6 t_1$ (D) $t_2 = t_1$

Ans.: 1 (D), 2 (B), 3 (B), 4 (A), 5 (A), 6 (B)

Bohr's atomic model and energy levels of H-atom

Hypothesis-1: Electron can revolve only in those orbits in which its orbital angular momentum is an integral multiple of $\frac{h}{2\pi}$. These orbits are known as **stationary** or **stable** orbits. In such orbit electron does not radiate energy. $\frac{h}{2\pi} = \hbar$ and $h = \text{Plank's constant} = 6.625 \times 10^{-34} \text{ Js}$.

Hypothesis-2: When electron transit from higher energy (E_i) orbit to lower energy (E_k) orbit. It radiates photon of frequency f. Similarly when electron absorbs a photon of frequency f, it makes transition from lower energy state (E_k) to higher energy state (E_i) . $E_i - E_k = hf$.

$$l = mvr = \frac{nh}{2\pi} = n\hbar$$

$$E_i - E_k = hf = \frac{hc}{\lambda}$$

Radius of an orbit is,

$$r = \frac{n^2 h^2 \in_0}{\pi \,\mathrm{mZ}e^2}$$

where, n = principle quantum no.

$$r \propto \frac{n^2}{Z}$$

 ϵ_0 = permittivity of vaccum

m = mass of an electron,

Z = atomic number

For H – atom $r \propto n^2$.

• Kinetic energy for electron,

$$K = \frac{1}{2} mv^2 = \frac{1}{8\pi \epsilon_0} \frac{Ze^2}{r}$$

Potential energy, $U = \frac{-1}{4\pi \in_0} \frac{(Ze)(e)}{r}$

$$=\frac{-1}{4\pi\,\epsilon_0}\,\,\frac{Ze^2}{r}$$

Total energy (E) = K + U

$$E = \frac{-1}{8\pi \in_0} \frac{Ze^2}{r}$$

$$E = -K = \frac{U}{2}$$

• by substituting value of r, $E = E_n = \frac{-me^4Z^2}{8 \in_0^2 h^2 n^2}$, by substituting value of m, e, e, h

$$E_n = \frac{-13.6 Z^2}{n^2} eV$$
, $E_n \alpha \frac{-Z^2}{n^2}$

For H - atom Z=1
$$\Rightarrow$$
 E_n = $\frac{-13.6}{n^2}$ eV E_n $\propto -\frac{1}{n^2}$.

Energy levels of H – atom:

• Transition of an electron from orbit with quantum number n_i and energy E_i to orbit with quantum number n_k and energy E_k , $E_i - E_k = hf$

$$\therefore f = \frac{me^4}{8 \epsilon_0^2 h^3} \left(\frac{1}{n_k^2} - \frac{1}{n_i^2} \right)$$

$$\therefore \frac{1}{\lambda} = \frac{\mathrm{m}e^4}{8 \in_0^2 C h^3} \left(\frac{1}{n_k^2} - \frac{1}{n_i^2} \right)$$

$$\therefore \frac{1}{\lambda} = R \left(\frac{1}{n_k^2} - \frac{1}{n_i^2} \right)$$

જયાં $\frac{\text{m}e^4}{8 \in_0^2 c h^3} = R = \text{Rydberg constant} = 10973700 \text{ m}^{-1}.$

• Rydberg constant for an atom,

$$R_{atom} = \frac{R_{\infty}}{1 + \frac{m}{M_{atom}}}$$

 $R_{\infty} = 10973700 \text{ m}^{-1}$, m = mass of an electron, M = mass of nucleus of atom.

• Frequency of electron in a orbit with principle quantum number 'n' for hydrogen atom,

$$f = \frac{\text{m}e^4}{4 \in_0^2 h^3 n^3}, \quad \text{angular frequency} \quad \omega = \frac{\pi \text{m}e^4}{2 \in_0^2 h^3 n^3}$$

$$f = \frac{2Rc}{n^3} \qquad \qquad \omega \propto \frac{1}{n^3}$$

$$\frac{1}{\lambda} = \frac{2R}{n^3}$$
 (Periodic time) $T \propto n^3$

$$f \propto n^{-3}, \quad \lambda \propto n^3$$

• If electron transit form n = 3 to n = 2 and n = 2 to n = 1

$$hf_{31} = hf_{32} + hf_{21}$$

$$f_{31} = f_{32} + f_{21}$$

$$\therefore \ \frac{1}{\lambda_{31}} = \frac{1}{\lambda_{32}} + \frac{1}{\lambda_{21}}$$

Success of the Bohr model:

	Stability	and	energy	of H	[vdrogen-	-like	atoms	can	he	calculated.	
•	Stability	aria		01 11	1,410,5011	1111	acomis	Cull	\sim	care aracea.	,

- Atomic spectra of Hydrogenic atoms (e.g. He⁺, Li⁺², Be⁺³) can be explain.
- It is useful for the confirmation of some principles, for the invention of "heavy hydrogen" or "deuterium".

Limitations:

- The orbits of an electron need not to be circular.
- There is an odd combination of classical and quantum mechanics.
- Unable to explain the relative intensities of the spectral lines.
- Fine structure of spectral lines can not be explained.
- Unable to explain the arrangement of electrons in atoms.

1	(7)	The notice of anguerics in Fountly and third avoited state for Hydrogen stars is	
l	//	7) The ratio of energies in Fourth and third excited state for Hydrogen atom is	
٠,	. ,	, ,	

- (A) 4:5
- (B) 16:25
- (C) 25:16
- (D) 1:1

(8) Momentum of photon of red light with frequency
$$400 \times 10^{12}$$
 Hz is ______.

$$(c = 3 \times 10^8 \text{ ms}^{-1})$$

(A) Zero

(B) $8.8 \times 10^{-28} \text{ kgms}^{-1}$

(C) $11.65 \times 10^{-6} \text{ MeV C}^{-1}$

(D) insufficient information

- (A) 380.9 pm
- (B) 390.8 pm
- (C) 930.8 pm
- (D) 830.9 pm
- (10)Linear speed of an electron in Hydrogen atom for ground state (first orbit) is ______.
 - (A) $\frac{c}{2}$
- (B) $\frac{c}{11}$ (C) $\frac{c}{137}$
- (D) $\frac{c}{274}$
- (11)When electron transit from n = 5 to n = 1 in Hydrogen atom. Find the speed of emitted photon.
 - (A) 10^{-4} ms^{-1}
- (B) $2 \times 10^{-2} \text{ ms}^{-1}$ (C) 4 ms^{-1}
- (D) $8 \times 10^2 \text{ ms}^{-1}$
- (12)If R, v, T and E are radius of orbit, speed of electron, periodic time of revolution and total energy of an electron respectively. Which option is not directly proportional to quantum number 'n'.
 - (A) vR
- (B) RE
- (C) $\frac{v}{E}$
- (D) $\frac{T}{P}$

(13)	Total energy of an electron in first excited state for Hydrogen atom is -3.4 eV. What is kinetic energy of this electron?					
	(A) 0	(B) 3.4 eV	(C) −3.4 eV	(D) 6.8 eV		
(14)	Angular momentum o	of an electron in Hydro	gen atom for ground sta	ate is L ₁ and for fourth		
	excited state is L ₄ the	en $L_4 - L_1 = $				
	(A) 5L ₁	(B) $3L_1$	(C) 2L ₁	(D) 4L ₁		
(15)	Energy of photon in Hy	ydrogen atom is 12.1 eV,	its angular momentum is			
	(A) $1.05 \times 10^{-34} \text{ Js}$	(B) $2.11 \times 10^{-34} \text{ Js}$	(C) $3.16 \times 10^{-34} \text{ Js}$	(D) $4.22 \times 10^{-34} \text{ Js}$		
(16)	Kinetic energy of an $n = 2$ for He^{+2} is		atom is 13.6 eV, Total e	energy of an electron for		
	(A) 13.6 eV	(B) 3.4 eV	(C) -13.6 eV	(D) -3.4 eV		
(17)	Find the ratio of orbital	I periodic time for an ele	ctron in $n = 1$ and $n = 2$.			
	(A) 1:2	(B) 2:1	(C) 1:4	(D) 1:8		
(18)	Ratio of orbital area f is	for an electron in first e	excited state and ground	state in Hydrogen atom		
	(A) 2:1	(B) 4:1	(C) 8:1	(D) 16:1		
(19)	Energy of an electron is	in ground state for $H - a$	Atom is (R = Rydberg's co	onstant)		
	(A) $-\frac{Rh}{c}$	(B) $\frac{-1}{Rhc}$	(C) –Rhc	(D) $\frac{hc}{R}$		
(20)	Radius of first orbit in Hydrogen atom is $0.528\mathrm{\mathring{A}}$, radius of second orbit is					
	(A) 4.752 Å	(B) 2.112 Å	(C) 0.071 Å	(D) 0.142 Å		
(21)	Find the speed of photo	on during transition $n = 5$	to $n = 1$ in Hydrogen at	om.		
	(A) 4.718 ms^{-1}	(B) 7.418 ms^{-1}	(C) 4.178 ms^{-1}	(D) 7.148 ms^{-1}		
(22)	If principle quantum nu	n > 4 is not possib	ole, then number of possib	ole elements are		
	(A) 4	(B) 32	(C) 60	(D) 64		
(23)	For energy levels A, B	For energy levels A, B and C, $E_A < E_B < E_C$. λ_1 , λ_2 and λ_3 are wave lengths for A, B, and				
	C. Which option is true	e for a transistion in Figure	re.			
	λ_1	λ_3	(A) $\lambda_3 = \lambda_1 + \lambda_2$ ($B) \lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$		
	λ_2	B A		(D) $\lambda_1 + \lambda_2 + \lambda_3 = 0$		

- (24)Electron transit from fourth orbit to first excited state in Hydrogen atom, Find the frequency of radiation. $\left(R = 10^7 \text{ m}^{-1}\right)$
- (A) $\frac{3}{16} \times 10^5 \text{ Hz}$ (B) $\frac{3}{16} \times 10^{15} \text{ Hz}$ (C) $\frac{9}{16} \times 10^{15} \text{ Hz}$ (D) $\frac{3}{4} \times 10^{15} \text{ Hz}$
- (25)Total energy of an electron in excited state of H – atom is –3.4 eV. calculate the De-broglie wavelength.

- (A) 6.6×10^{-10} m (B) 6.6×10^{-11} m (C) 6.6×10^{-9} m (D) 6.6×10^{-12} m
- (26)Orbital angular momentum quantum number l = 7, What is orbital angular momentum?
 - (A) $\frac{7h}{2\pi}$

- (B) $\frac{42h}{2\pi}$ (C) $\sqrt{7} \frac{h}{2\pi}$ (D) $\sqrt{56} \frac{h}{2\pi}$

Ans.: 7 (C), 8 (B), 9 (A), 10 (C), 11 (C), 12 (B), 13 (B), 14 (D), 15 (B), 16 (C), 17 (D), 18 (D), 19 (C), 20 (B), 21 (C), 22 (C), 23 (B), 24 (C), 25 (A), 26 (D)

Hydrogen spectrum:

When Hydrogen electrically discharged at low pressure, atom excited and emits radiation of certain wavelengths. The group of these radiations is called Hydrogen spectrum.

Different series

Lyman series:
$$\frac{1}{\lambda} = R \left(\frac{1}{1^2} - \frac{1}{n^2} \right)$$

where
$$n = 2, 3, 4 ...$$

$$n = 2 \rightarrow H_{\alpha}$$
 or L_{α} line

$$n = 3 \rightarrow H_{\beta}$$
 or L_{β} line

$$n = 4 \rightarrow H_{\gamma}$$
 or L_{γ} line

- In Lyman series for maximum wavelength n = 2 and minimum wavelength $n = \infty$.
- It is seen in ultraviolet region.
- Balmar series: $\frac{1}{\lambda} = R \left(\frac{1}{2^2} \frac{1}{n^2} \right)$

where
$$n = 3, 4, 5, 6 ...$$

$$n = 3 \rightarrow H_{\alpha}$$
 for maximum wavelength $\rightarrow n = 3$
 $n = 4 \rightarrow H_{\beta}$ for minimum wavelength $\rightarrow n = \infty$

It is seen in visible region.

• Paschen series $\frac{1}{\lambda} = R \left(\frac{1}{3^2} - \frac{1}{n^2} \right)$

Where $n = 4, 5, 6, 7 \dots$

- $\bullet \qquad n=4 \, \to \, H_\alpha \,, \ n=5 \, \to \, H_\beta \,, \ldots .$
- for maximum $\lambda \to n = 4$, for minimum $\lambda \to n = \infty$
- In near infrared region.
- Brackett series $\frac{1}{\lambda} = R \left(\frac{1}{4^2} \frac{1}{n^2} \right)$

where n = 5, 6, 7, 8 ...

- $\bullet \qquad n=5 \, \to \, H_\alpha, \ n=6 \, \to \, H_\beta \, , \ldots.$
- for $\lambda_{\text{max}} \to n = 5$, for $\lambda_{\text{min}} \to n = \infty$
- In infrared region.
- Pfund series: $\frac{1}{\lambda} = R\left(\frac{1}{5^2} \frac{1}{n^2}\right)$

where n = 6, 7, 8 ...

- $n = 6 \rightarrow H_{\alpha}, n = 7 \rightarrow H_{\beta}, \dots$
- for $\lambda_{\text{max}} \to n = 6$, for $\lambda_{\text{min}} \to n = \infty$ In far infrared region
- When electron transits in lower orbit from n^{th} orbit no. of emitted spectrat lines = $\frac{n(n-1)}{2}$.
- Emitted wavelength for any atonic spectra, $\frac{1}{\lambda} = R Z^2 \left(\frac{1}{n_{k^2}} \frac{1}{n_{i^2}} \right)$.
- (27) Hydrogen $(_1H^1)$, deuterium $(_1H^2)$, ionized helium $(_2He^4)^+$ and ionized lithium $(_3Li^6)^{++}$ are given. Their wavelengths are $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ respectively compare their wavelengths for a transistion of an electron from n = 2 to n = 1.

(A)
$$\lambda_1 = 2\lambda_2 = 3\lambda_3 = 4\lambda_4$$

(B)
$$4\lambda_1 = 2\lambda_2 = 2\lambda_3 = \lambda_4$$

(C)
$$\lambda_1 = 2\lambda_2 = 2\lambda_3 = \lambda_4$$

(D)
$$\lambda_1 = \lambda_2 = 4\lambda_3 = 9\lambda_4$$

- (28) Calculate the number of emitted spectral lines, when hydrogen atom having principle quantum number = 4 moves from ground state to specific excited state.
 - (A) 3
- (B) 5
- (C) 6
- (D) 2

(29)Find the ratio of minimum and maximum wavelength for H-spectra.

(A) 81.86

(B) 86.81

(C) 0.012

(D) 0.12

(30)Find the ratio of maximum and minimum wavelength for Brackett series.

(A) 3.6

(B) 0.36

(C) 78.2

(D) 2.78

Maximum wave number in infrared series is $\underline{\hspace{1cm}}$ m⁻¹. (31)

(A) 12.18×10^5

(B) 12.18×10^{10} (C) 18.12×10^5

(D) 8204

(32)Find the ratio of λ of α – line, for Balmer and Lyman series.

(A) 27:5

(B) 5:27

(C) 1:4

(D) 20:27

Wavelength of first line for Balmar series _____ (33)

(A) $6563 \stackrel{\circ}{A}$

(B) 6365 Å (C) 6563 m

(D) 6563 cm

 f_1 and f_2 are frequency of last and first line of Lyman series. f_3 is frequency of last line of (34)Balmar series then,

(A) $f_1 - f_2 = f_3$ (B) $f_2 - f_1 = f_3$ (C) $f_3 = \frac{1}{2} (f_1 + f_2)$ (D) $f_1 + f_2 = f_3$

Minimum wavelength of Lyman series is 912 $\stackrel{\circ}{A}$, then maximum wavelength is ______ $\stackrel{\circ}{A}$. (35)

(A) 1216 A

(B) 1824 Å

(C) 2434 A

(D) 3648 A

Ans.: 27 (D), 28 (C), 29 (C), 30 (D), 31 (A), 32 (A), 33 (A), 34 (A), 35 (A)

Excitation and Ionization energy and potential

Electron revolving in a stationary orbit absorbs specific energy and jumps to an orbit of higher energy, absorbed energy is called excitation energy and corresponding potential is called excitatoion potential.

energy (eV) = potential (V)

 $n = 1 \rightarrow n = 2$ required energy = -3.39 - (-13.6) = 10.21 eV

 $n = 1 \rightarrow n = 3$ required energy = -1.51 - (-13.6) = 12.09 eV

• The minimum energy required to remove an electron from an atom (to send is it $n = \infty$) is called ionization energy and corresponding potantial is called ionization potential. Ionization energy (eV) = Ionization patential (V).

- $n = 1 \to n = \infty$ required energy = 0 (-13.6) = 13.6 eV
- $n = 2 \rightarrow n = \infty \quad 0 (-3.39) = 3.39 \text{ eV}$

Emission and absorption spectra

- During the transition of an electron from higher energy (E_i) orbit to lower energy (E_k) orbit, the emitted radiation is called emission spectrum $E_i E_k = hf$.
- Intensity of such a spectral lines increases as atomic density increases and it decreases as temperature increases.
- Wavelength of spectraline depends on atomic number.
- Radiation of continuous wavelength is incident on atomic gas to send electron from lower energy orbit to higher energy orbit. In incident radiation certain wavelength absorbs, these appear as dark lines in the spectrum, such a spectrum is known as "absorption spectrum".
- For example, radiation emitted by the lower layer of photosphere in the Sun, certain wavelength are absorbed hence dark lines are observed. These lines are called fraun hoffer lines.
- X-ray: Discovered by Rontgen. wavelength between 0.001 to 1 nm.
 - ullet X-ray emitted when there is a collision between electron and anode of Cu, Tungston and M_o . Electrons accelerated with $20-40~{\rm kV}$.
 - Relative intensity

- All the wavelengths (frequencies) emitted in X ray radiation causes continuous spectrum.
- During the head on collision of electron with anode, radiation of minimum wavelength and maximum frequency emitted.

$$\lambda_{\min} = \frac{hc}{eV}$$
 where V = potential required to accelerate the electron.

• Characteristic X – ray spectrum :

- Incident electrons penetrate deep into the atoms of the anode and knock out the electron from the atom, from the inner shells, which creates vacancies. The electron from outer shells experience transition to these vacancies and fill them. The radiation of definite frequencies are emitted during such transition.
- The radiation is called K_{α} , if it is emitted when electron of K shell (n=1) is thrown out and the vacancy is filled by the electron from L shell (n=2). Similarly K_{β} during the transition from n=3 to n=1, L_{α} during the transition from n=3 to n=2. The X ray spectrum formed by such lines is called the **chracteristic spectrum.**
- Due to screening of the charge of the nucleus $Z \rightarrow Z-1$.

Energy
$$E_n = -\frac{me^4 (Z-1)^2}{8 \epsilon_0^2 n^2 h^2}$$

$$=-\frac{13.6 (Z-1)^2}{n^2} eV$$

• For K_{α} radiation: $E_L - E_K = hf_{K_{\alpha}}$

$$\therefore hf_{k_{\alpha}} = 13.6 (Z-1)^2 \left(\frac{1}{1^2} - \frac{1}{2^2}\right) \times 1.6 \times 10^{-19} \text{ J}$$

$$\therefore f_{k_{\alpha}} = \frac{13.6 \times 1.6 \times 10^{-19}}{6.62 \times 10^{-34}} \left(\frac{3}{4}\right) (Z-1)^2$$

$$\therefore \quad \sqrt{f} = \sqrt{\frac{13.6 \times 1.6 \times 10^{-19} \times 3}{6.62 \times 10^{-34} \times 4}} \quad (Z-1)$$

$$\therefore \quad \sqrt{f} = C (Z-1)$$

$$\therefore \sqrt{f} = CZ - C$$
 equation of straigth line.

where
$$C = 4.965 \times 10^7 \ Hz^{\frac{1}{2}}$$

 $\sqrt{f} \rightarrow Z$ graph is straight lines and its slope is C.

Moseley's expt. work:

- Moseley suggested that the elements should be arranged with respect to their atomic numbers, which establish the relation between chemical properties and position of elements in the periodic table.
- Missing positions in periodic table filled up with appropriate elements.
- Rare earth (Lanthanide) elements, elements coming after Uranium, are arranged properly.
- Information regarding to charge of nucleus can be obtained with the help of K_{α} radiation.

Other useful information:

- $\lambda \le 4 \, A$ radiation, whose penetration is high, called hard X ray.
- $\lambda > 4$ A radiction, whose penetration is low, called soft X ray.
- Only 1 % energy of incident electron converts in energy of X ray 99 % energy, waste in form of Heat. So, arrangement of cooling is required in coolidge tube.
- If f is a fraction of kinetic energy of an electron, converts in X ray then wavelength of emitted X ray is, $\lambda = \frac{hc}{f eV_0}$.
- K_{α} $(L \to K)$ radiation : $E_L E_K = hf_{K_{\alpha}}$
- K_{β} $(M \to K)$ radiation : $E_M E_K = hf_{K_{\beta}}$
- $(M \to L)$ radiation : $E_M E_L = hf_{L_\alpha}$
- (36) Excitation energy in third orbit for Hydrogen atom is _____eV.
 - (A) 1.51 eV
- (B) 3.4 eV
- (C) 0.66 eV
- (D) 0.85 eV

(37)	Energy required to send then its atomic number		d orbit to third orbit is 47	7.22 eV for a given atom,
	(A) 1	(B) 3	(C) 4	(D) 5
(38)	Excitation potential of I	Helium atom in second or	bit is	
	(A) 7.55 V	(B) 21.7 V	(C) 13.2 V	(D) 10.21 V
(39)	For an atom excitation	n potential in first is 'V'	volt, its ionization pote	ential is volt.
	(A) $\frac{1}{4}$	(B) $\frac{3}{4}$	(C) $\frac{4}{3}$	(D) $\frac{5}{4}$
(40)	Energy required to rem	ove an electron from firs	t excited state in Li++ is	eV.
	(A) 122.4	(B) 30.6	(C) 13.6	(D) 3.4
(41)	If accelerating potentia	1 in X – ray tube increase	es,	
	(A) Intensity of X – ra	y increases.	(B) minimum wavelen	ngth of X – ray increases.
	(C) minimum wavelen	gth of X – ray decreases.	(D) Intensity of $X - ra$	ay decreases.
(42)	Wavelength of X – ray	photon is 3.3 Å, its corre	esponding energy is	.
	(A) 7.5 keV	(B) 3.8 keV	(C) 5.5 MeV	(D) 3.7 MeV
(43)	Minimum wavelength i	n X – ray tube of potentia	al 4 MV isA.	
	(A) 1	(B) 0.0062	(C) 0.0031	(D) 10 ⁻⁵
(44)	Changing of position o of	f molecules and proper p	lace of molecules can be	e explained with the help
	(A) Moseley's law	(B) Mendeleev's law	(C) Crompton effect	(D) Hund's law
(45)	Wavelength K_{α} X-Ray	is $0.76 \stackrel{\circ}{A}$, then find the a	atomic number of elemen	nt of anode.
	(A) 20	(B) 60	(C) 41	(D) 80
(46)	In two different emissi	on of $ K_{\! lpha} $ radiation atom	nic number of target nuc	leus are 65 and 81. Find
	the ratio of their wavele	engths.		
	(A) $\frac{1}{4}$	(B) $\frac{1}{16}$	(C) $\frac{2}{\sqrt{5}}$	(D) $\frac{25}{16}$
(47)	If accelerating potentia	l in X – ray tube increase	es, speed of X – ray	
	(A) Increases	(B) Decreases	(C) Does not change	(D) nothing can be said

- (48)Operating voltage in X – ray tube is 66 kV, in continuous spectrum of X – ray ___
 - (A) 0.01 nm and 0.02 nm wavelengths remains present.
 - (B) Both the above wavelengths are absent.
 - (C) 0.01 nm wavelength would be present and 0.02 nm wavelength would be absent.
 - (D) 0.01 nm wavelength would be absent and 0.02 nm wavelength would be present.
- (49)Maximum radiated frequency in X-ray tube is 'f' and operating voltage is 'V' volt. If operating voltage becomes $\frac{V}{2}$, find maximum radiated frequency.
 - (A) $\frac{f}{2}$
- (B) f
- (C) 2f
- (D) 4f
- Wavelength of K_{α} radiation from Z=41 is λ , wavelength of K_{α} radiation from Z=21(50)
 - (A) 4λ
- (B) $\frac{\lambda}{4}$ (C) 3.08 λ (D) 0.26 λ
- (51)Electron beam of 80 keV energy is incident on Tungston in X – ray tube. If energy of an electron in K – shell of Tungston is –72.5 keV then _____
 - (A) Presence of continuous spectrum with minimum wavelength 0.155 A is observed.
 - (B) Continuous spectrum of all the wavelengths is observed.
 - (C) Characteristic spectrum of X ray of tungston is observed.
 - (D) Continuous spectrum of minimum wavelength $0.155\,\mathrm{A}^\circ$ and characteristic spectrum of X – ray is observed.
- (52)Gragh of Intensity of X – ray \rightarrow wavelength in Coolidge tube is as shown in Figure. λ_c = minimum wavelength and λ_K = wavelength of K_α . If Accelerating potential increases then ______.

- (A) λ_c Increases
- (B) λ_{K} decreases
- (C) $\lambda_{K} \lambda_{c}$ Increases(D) λ_{c} , λ_{K} decreases but $\lambda_{K} \lambda_{c}$ remain constant.
- (53)Ionization energy of H-atom is 13.6 eV. H-atom in the ground state is excited with the help of radiation of 12.1 eV energy. Number of radiated spectral lines are ______.
 - (A) One
- (B) Two
- (C) Three
- (D) Four

- (54) Wavelength of K_{α} radiation in H-atom during the emission of X-ray is 0.32 $\overset{\circ}{A}$, then wavelength of K_{β} radiation is ______.
 - (A) 0.21 Å
- (B) 0.27 Å
- (C) 0.34 Å
- (D) 0.40 Å
- (55) If Z is atomic number of element, Frequency of characteristic spectrum of X- ray is directly proportional to ______.
 - $(A) Z^2$
- (B) $(Z-1)^2$
- (C) Z
- (D) $\frac{1}{Z}$

Ans.: 36 (C), 37 (D), 38 (A), 39 (C), 40 (B), 41 (C), 42 (B), 43 (C), 44 (A), 45 (C), 46 (D), 47 (C), 48 (D), 49 (A), 50 (A), 51 (D), 52 (C), 53 (C), 54 (B), 55 (B)

Atomic mass and the constitution of Nucleus:

- The entire mass and entire positive charge are concentrated at the central region, known as nucleus, includes protons and neutrons.
- Proton and neutron are is also called nucleon.
- Atomic number (Z) = number of protons (P)
- Atomic mass number (A) = [P + n]
- neutron number (N) = A Z
- Symbol for element ${}_ZX^A$ or ${}_Z^AX$
- The 12^{th} (twelfth) part of the mass of unexcited ${}_6C^{12}$ atom is called 1 *amu*.

$$1u = 1 \ amu = 1.66 \times 10^{-27} \ \text{kg}$$

- mass spectrometer is used to measured mass of an atoms accurately.
- **Isotops** having same chemical properties but different mass, same number of protons but different number of neutrons.
- For example in case of *Cl*, the proportion of 34.98 *u* is 75.4 % and 36.98 *u* is 24.6 %. Hence the mass of *Cl* atom is obtained from its weighted average.

mass of Cl Atom =
$$\frac{75.4 \times 34.98 + 24.6 \times 36.98}{100}$$
$$= 35.47 u$$

- The nuclei for which the neutron number (N = A Z) is same are called **isotones**.
- For nuclei Z, A, N are same but radio active properties are different called **isomers**.
- For nuclei atomic mass number (A) are same, called **isobars**.

- e.g. of isotops : $_{92}U^{235}$, $_{92}U^{238}$
- e.g. of isotops : $_{36}$ Kr 86 , $_{37}$ Rb 87
- e.g. of isobars : $_{82}Pb^{214}$, $_{83}Bi^{214}$
- $_{35}Br^{80}$ having a pair of isomers.

Naclear forces, nuclear radius and stability of nucleus

- P–P, P–n, n–n strong nuclear force.
- It is also called quark-quark force because P and n are made up of quarks.
- Types of quarks : up, down, charm, strange, top, bottom.
- Nuclear forces depends on orientation of spin.
- Average radius of nucleus is given by $R = R_0 A^{\frac{1}{3}}$ where $R_0 = 1.1 \text{ fm}$
- Density of nucleus is about $2.3 \times 10^{17} \text{ kgm}^{-3}$, $10^{14} \text{ times than density of water.}$
- As atomic number increases, coloumbian force increases multiplyingly, to balance it number of neutron increases so that strong nuclear force icreased.

For e.g.
$${}_{6}C^{12}$$
 P = 6, n = 6 but in ${}_{92}U^{235}$ P = 92, n = 143

It is essential condition for the stability of nucleus.

• Mass - energy :
$$1 u = 1.66 \times 10^{-27} \text{ kg}$$
; $1 \text{ eV} = 1.6 \times 10^{-19} \text{ J}$

 $1 u = 931.48 \text{ MeV} \rightarrow \text{mass-energy equivalency}$

$$E = mc^{2}$$

$$= (1 u) (3 \times 10^{8} \text{ ms}^{-1})^{2}$$

$$= \frac{(1.66 \times 10^{-27}) (9 \times 10^{16})}{1.6 \times 10^{-19}} = 931.48 \times 10^{6}$$

$$= 931.48 \text{ MeV}$$

Binding energy of nucleus

Mass of the nucleus is always less than the total mass of its constituents in the free state. This decrease in the mass is called **mass defect**,

$$M < Zm_p + Nm_n$$

$$\Delta m = Zm_p + Nm_n - M$$

- The energy equivalent to mass defect is called **binding energy** of nucleus. $E_b = (\Delta m) c^2$.
- When it is divided with number of nucleons, we get average **binding energy per nucleon** $E_{bn} = \left(\frac{E_b}{A}\right)$, this energy is actually measurement of stability of the nucleus.
- ullet E_{bn} is an average energy per nucleon to release all the constituent particles from the nucleus.
- Average binding energy per nucleon (E_{bn}) is measurement of stability of the nucleus.
- In case of deutron, ${}_{1}\mathrm{H}^{2}$ its mass is 2.0141 u and sum of the mass of proton and neutron in free state is 2.0165 u. $\Delta m = 2.0165 2.0141 = 0.0024 u$, the energy equivalent to this mass defect is $= 0.0024 \times 931.48 = 2.24$ MeV. Which is called binding energy.
- Hence, binding energy of ₁H² is 2.24 MeV.
- Thus to liberate proton and neutron from $_1H^2$, 2.24 MeV energy has to be supplied to it from outside. Conversely if one proton and one neutron coalease 2.24 MeV energy is emitted out.
- For ${}_{1}H^{2}$ $E_{bn} = \frac{2.24}{2} = 1.12 \frac{MeV}{necleon}$. E_{bn} $G_{a} = \frac{F_{e}}{2}$ $G_{b} = \frac{2.24}{2} = 1.12 \frac{MeV}{necleon}$.
- E_{bn} is maximum $\left(\approx 8.8 \ \frac{\text{MeV}}{\textit{nucleon}}\right)$ for the nucleus of (Fe) $\left[A = 56\right]$.
- E_{bn} is small for A < 30 and A > 170.
- For 30 < A < 170 E_{bn} is almost constant. These nuclei are the most stable. It is due to the saturation property of the nuclear forces.
- When heavy nucleus (A > 170) gets divided in two lighter nuclei, energy released, this process is called **nuclear fission**.
- Two lighter nuclei (A < 10) are fused to form a heavier nucleus and energy is produced, this process is called **nuclear fusion**.

	The energy to be s	upplied to separate a nuc	cleon from a nucleus is ca	alled separation energy.		
	Mass defect per nu	cleon is called packing	fraction (f).			
	$f = \frac{\Delta m}{A} \implies E_{bn}$	$= f c^2 \text{ or } f \times 931.48 - \frac{1}{1}$	MeV necleon			
(56)			leus, the force acting be and neutron is F ₃ then, _	etween two proton is F ₁ ,		
	(A) $F_1 < F_2 < F_3$	(B) $F_2 < F_1 < F_3$	(C) $F_1 < F_2 = F_3$	(D) $F_1 = F_2 < F_3$		
(57)	10 ⁴⁰ deuterons are pre	sent in a star initially. Er	nergy released according t	o reaction given below:		
	$_{1}\mathrm{H}^{2}+_{1}\mathrm{H}^{2}\rightarrow$	$_{1}\text{H}^{3} + p \text{ and } _{1}\text{H}^{2} + _{1}\text{H}$	$I^3 \rightarrow {}_2\mathrm{He}^4 + n$			
	If emitted power is 10	0 ¹⁶ W. The time to destro	by quantity of deuteron is	·		
	(A) 10^6 s	(B) 10^8 s	(C) 10^{12} s	(D) 10^{16} s		
	$m\left({}_{1}H^{2}\right) = 2.014 u,$	m(P) = 1.007 u, m(n)	= $1.008 u$, $m(_2He^4) = 4$	4.001 <i>u</i> ·		
(58)	Reaction of nuclear	fission, $_{92}U^{236} \rightarrow X^{11}$	$^{7} + Y^{117} + n + n$. For Y	X and Y $E_{bn} = 8.5 \text{ MeV}$		
	and $E_{bn} = 7.6 \text{ MeV}$	for U^{236} then produced	energy MeV.			
	(A) 2000 MeV	(B) 200 MeV	(C) 20 MeV	(D) 2 MeV		
(59)	Packing fraction $(f) = \underline{\hspace{1cm}}$.					
	(A) $\frac{A}{M-A}$	(B) $\frac{A-M}{A}$	(C) $\frac{M}{M-A}$	(D) $\frac{M-A}{A}$		
(60)	If $u = 1$ amu and A = atomic mass number If mass of an atom is Au then A =					
	(A) 1	(B) 12	(C) 16	(D) between 1 to 110		
(61)	Mass in the proton is	completely converted in	energy, then energy is	MeV.		
	(A) 9310	(B) 931	(C) 10078	(D) 100		
(62)	A and B are Isotops, then	, B and C are Isobars.	d_{A} , d_{B} and d_{C} are the	densities of their nuclei		
	(A) $d_A > d_B > d_C$	(B) $d_A < d_B < d_C$	(C) $d_A = d_B = d_C$	(D) $d_A = d_B < d_C$		
(63)	The energy required to	o separate a nucleon from	m a nucleus is called			
	(A) Binding energy p	er nucleon	(B) Binding energy			
	(C) Reaction energy		(D) Separation energy	ý		

Calculate the released energy Q in nuclear fusion. $_1H^2 + _1H^2 \rightarrow _2He^4 + Q$				
$m\left({}_{1}H^{2}\right) = 2.014$	$1u, m(_2He^4) = 4.0024$	ŀ u.		
(A) 12 MeV	(B) 6 MeV	(C) 24 MeV	(D) 48 MeV	
If velocity of light bed	comes $\frac{2}{3}$, the energy re	eleases in nuclear fission	n decreases in multiple	
of				
(A) $\frac{2}{3}$	(B) $\frac{4}{9}$	(C) $\frac{5}{9}$	(D) $\sqrt{\frac{5}{9}}$	
Mass of two isotops o	f Boron $_5B^{10}$ and $_5B^{11}$	are $10.01294 \ u$ and 1	1.00931 u respectively.	
Mass of an atom of Bor	ron is 10.811 <i>u</i> . Find the	proportion of these two is	sotops.	
(A) 30 %, 70 %	(B) 40.12 %, 59.88 %	(C) 72.05 %, 27.95 %	(D) 19.90 %, 80.10 %	
Mass defect in nuclear	fission is 0.03 %. Energy	released in fission of 1 l	kg mass is	
(A) $2.7 \times 10^{13} \text{ J}$	(B) $27 \times 10^{14} \text{ J}$	(C) $0.27 \times 10^{-13} \text{ J}$	(D) none of these	
In a nuclear reaction give	ven below, $_{Z}X^{A} = $			
$_7 \text{N}^{14} + _2 \text{He}^4 \rightarrow$	$_{Z}X^{A} + _{1}H^{1}$			
(A) $_{7}N^{16}$	(B) ₇ N ¹⁷	(C) 8O ₁₆	(D) ₈ O ¹⁷	
For $_{8}O^{16}$, $E_{bn} = $	MeV. $m_p = 1.0$	$007825 \ amu, m_N = 1.00$	08665 <i>amu</i> . $M(_8O^{16})$	
$= 15.9949 \ amu$.				
(A) 7.973	(B) 79.73	(C) 0.79	(D) none of these	
Find the number of elec	tron, proton and neutron	in 12 g, ₆ C ¹² .		
(A) 6×10^{23} (each)		(B) 12×10^{23} (each)		
(C) 18×10^{23} (each)		(D) 36×10^{23} (each)		
Mass-defect for the nuc	eleus with $Z = 2$ and $A =$	4 is 0.04 <i>u</i> . Calculate the	e binding per nucleon.	
(A) 931 MeV	(B) 93.1 MeV	(C) 9.31 MeV	(D) 0.04 MeV	
	_	724 MeV in a nuclear rea	ction, then these number	
(A) One	(B) Two	(C) Three	(D) Four	
	m $\binom{1}{1}$ H ² = 2.014 (A) 12 MeV If velocity of light bed of (A) $\frac{2}{3}$ Mass of two isotops of Mass of an atom of Bord (A) 30 %, 70 % Mass defect in nuclear (A) 2.7×10^{13} J In a nuclear reaction given $\binom{1}{7}$ N ¹⁶ For $\binom{1}{8}$ O ¹⁶ , $\binom{1}{8}$ E _{bn} = = 15.9949 amu. (A) 7.973 Find the number of election (A) 6×10^{23} (each) (C) 18×10^{23} (each) Mass-defect for the nuclear (A) 931 MeV Energy produced due to of protons =	$m \left({}_{1}H^{2} \right) = 2.0141 u, m \left({}_{2}He^{4} \right) = 4.0024 d$ $(A) 12 \text{MeV} \qquad (B) 6 \text{MeV}$ If velocity of light becomes $\frac{2}{3}$, the energy resof	$m\binom{1}{1}H^{2} = 2.0141 u, \ m\binom{2}{1}He^{4} = 4.0024 u.$ (A) 12 MeV (B) 6 MeV (C) 24 MeV If velocity of light becomes $\frac{2}{3}$, the energy releases in nuclear fission of (A) $\frac{2}{3}$ (B) $\frac{4}{9}$ (C) $\frac{5}{9}$ Mass of two isotops of Boron ${}_{5}B^{10}$ and ${}_{5}B^{11}$ are 10.01294 u and 1 Mass of an atom of Boron is 10.811 u . Find the proportion of these two is (A) 30 %, 70 % (B) 40.12 %, 59.88 % (C) 72.05 %, 27.95 % Mass defect in nuclear fission is 0.03 %. Energy released in fission of 1 It (A) $2.7 \times 10^{13} \ J$ (B) $27 \times 10^{14} \ J$ (C) $0.27 \times 10^{-13} \ J$ In a nuclear reaction given below, $_{Z}X^{A} = \frac{1}{2} X^{A} + _{1}H^{1}$ (A) $_{7}N^{16}$ (B) $_{7}N^{17}$ (C) $_{8}O^{16}$ For $_{8}O^{16}$, $E_{bn} = \frac{1}{2} MeV$. $m_{p} = 1.007825 \ amu$, $m_{N} = 1.00 \times 10^{12} MeV$. $m_{p} = 1.007825 \ amu$, $m_{p} = 1.007825 \ amu$. (A) 7.973 (B) 79.73 (C) 0.79 Find the number of electron, proton and neutron in 12 g, $_{6}C^{12}$. (A) $_{6} \times 10^{23}$ (each) (B) $_{12} \times 10^{23}$ (each) (C) $_{18} \times 10^{23}$ (each) (D) $_{36} \times 10^{23}$ (each) (D) $_{36} \times 10^{23}$ (each) Mass-defect for the nucleus with $Z = 2$ and $A = 4$ is 0.04 u . Calculate the (A) 931 MeV (B) 93.1 MeV (C) 9.31 MeV Energy produced due to destruction of proton is 3724 MeV in a nuclear rea of protons =	

(73)	Atomic mass num	ber of Helium and sulph	ner are 4 and 32 respective	vely. The radius of Sulphur
	nucleus is	times the radius of He	lium nucleus.	
	(A) 2	(B) 4	(C) 8	(D) 12
(74)			nergies of ${}_{1}H^{2}$, ${}_{1}H^{3}$ e reaction = N	and $_2\text{He}^4$ are a , b and MeV .
	(A) $a+b-c$	(B) $c+a-b$	(C) $c-a-b$	(D) $a+b+c$
(75)	E_{bn} for the nucle released =		is 5.60 MeV and 7.06	MeV respectively. Energy
	$_3 \text{Li}^7 + p \rightarrow 2 _2 \text{l}$	He^4		
	(A) 19.6	(B) 17.3	(C) 8.6	(D) 2.4
(76)	Energy releases in	a given fusion =	·	
	$_{1}H^{2} + _{1}H^{2}$	$\rightarrow {}_{1}\text{H}^{3} + {}_{1}\text{H}^{1}$		
	(A) 1 erg	(B) 1 eV	(C) 4 MeV	(D) 4 keV
(77)		n each fission of U^{235} rate of fission. (number o		ower in nuclear reactor is
	(A) 5×10^{16}	(B) 10^{17}	(C) 1.6×10^{13}	(D) 10 ¹⁹
Ans.				9), 64 (C), 65 (C), 66 (D), 1), 75 (B), 76 (C), 77 (A)
Natura •	al Radio activity Becquerel four	nd that radiations of cer	tain specific properties	are emitted naturally from

- Becquerel found that radiations of certain specific properties are emitted naturally from Uranium, this phenomenon is called natural radio activity. Those radiations were initially known as Becquerel rays.
- Madam curie separated two new elements from the ore of Uranium called pitch blende. They were named Polonium and Radium, their activities are several times that of Uranium.
- The emission of radioactive radiations is spontaneous, instantaneous and continuous. It is not affected by temperature, pressure, electric field and magnetic field.
- One can not stop the emission of radioactive radiations or can not change the rate of emission.
- Heavy element emits radioactive radiation to become stable from unstability.
- α particle is a nucleus of $_2$ He⁴ with 2-proton and 2 neutron. Charge is +2 e.

• Almost the nucleus for which Z > 83 emits α – particles.

$$_{Z}X^{A} \rightarrow _{Z-2}Y^{A-4} + _{2}He^{4} (\alpha)$$

e.g.,
$$g_2 U^{238} \rightarrow g_0 Th^{234} + {}_2 He^4 (\alpha)$$

- The disintegrating nucleus is called the **parent nucleus** and newly formed nucleus is called the **daughter nucleus**.
- In the emission of α particle, atomic number decreases by 2 and atomic mass number decreases by 4.
- β particle: β particles are electrons emitted from nucleus. Their velocity depends on the nuclide emitting them. In other reaction of β decay positrons are also emitted.
- $\overline{e} = \overline{\beta}$ and $e^+ = \beta^+$.
- When a neutron converts into proton and electron is produced in the nucleus which can not live in a nucleus so emits as β^-

$$n \rightarrow p + \overline{e} + \overline{v}$$
 (anti neutrino)

$$_{Z}X^{A} \rightarrow _{Z+1}Y^{A} + \overline{e}(\overline{\beta}) + \overline{v}$$

Atomic number increases by one and Atomic mass number does not change.

• When a proton converts in to a neutron positron, is emitted as β^+ . Atomic number decreases by one and atomic mass number does not change.

$$p \rightarrow n + e^+ + v$$
 (neutrino)

$$_{Z}X^{A} \rightarrow _{Z-1}Y^{A} + e^{+} \left(\beta^{+} \right) + \upsilon$$

- γ rays: They are electromagnetic waves.
- Photon of γ rays emitted during the transition of nucleus from higher energy state to lower energy state, wavelength $\lambda = \frac{hc}{E}$.
- When nucleus emits α and β particles it is in a excited state, according to need, by emitting photon of γ ray comes to a stable state.
- e.g., Due to emission of $\beta^ _{27}\text{Co}^{60}$ converts into $_{28}\text{Ni}^{60}$, during this emits γ -rays of 1.17 MeV and 1.33 MeV step by step.

• All these raido active radiations affect the photographic plate, produce fluorescence.

	α	β	γ
Relative ionizing power:	10000	100	1
Relative penetration power:	1	100	10000

• Energy value in α – emission

$$Q = K_{\alpha} \left(\frac{A}{A-4} \right)$$
 Where, k_{α} = kinetic energy of α , A = atomic mass number

Nuclear Reactions

• By bombarding suitable particles of suitable energy on a stable element, transformed into another element is called **artificial nuclear reaction.** Energy gain or loss is denoted as Q – value.

$$A + a \rightarrow B + b + Q$$

$${}_{7}N^{14} + \alpha \left({}_{2}He^{4}\right) \rightarrow {}_{8}O^{17} + {}_{1}H^{1} + Q$$

 $A \rightarrow Target nucleus \rightarrow {}_{7}N^{14}$

$$a \rightarrow \text{projectile particle} \rightarrow \alpha \left(_2 \text{He}^4\right)$$

$$B \rightarrow \text{product nucleus} \rightarrow {}_{8}O^{17}$$

 $b \to \text{product (emitted) particle } \to {}_{1}\text{H}^{1}$

$$Q = \left[\mathbf{m}_{A} + \mathbf{m}_{a} - \mathbf{m}_{B} - \mathbf{m}_{b} \right] c^{2}$$

Q > 0 exoergic reaction, Q < 0 endoergic reaction

- In nuclear reaction momentum, electric charge and energy each one is conserved.
- \bullet Q value of reaction = energy equivalent to decrease in mass in the reaction = increase in the kinetic energy.

Nuclear Fission:

Neutron is good projectile because it is charge less and does not have to face the coloumb repulsive forces.

 Disintegration of nucleus in which enormous energy is produced. This process was named nuclear fission.

e.g.,
$$g_2 U^{235} + {}_0 n^1 \rightarrow g_2 U^{236} \rightarrow {}_{51} Sb^{133} + {}_{41} Nb^{99} + 4 {}_0 n^1 + Q$$

 $g_2 U^{235} + {}_0 n^1 \rightarrow g_2 U^{236} \rightarrow {}_{56} Ba^{144} + {}_{36} Kr^{89} + 3 {}_0 n^1 + Q$
 $g_2 U^{235} + {}_0 n^1 \rightarrow g_2 U^{236} \rightarrow {}_{54} Xe^{140} + {}_{38} Sr^{94} + 2 {}_0 n^1 + Q$

- Fission fragments having Z values between 36 to 56 and A values between 90 to 95. They converts into stable nuclei with emission of β^- and γ .
- Energy of incident neutron is about 2 MeV.
- Energy produced is about 200 MeV.

Nuclear chain reaction and Nuclear reactor

With the help of neutrons produced nuclear fission, more nuclei is accomplished. So, we get more energy and more neutrons. A series of such processes is called **nuclear chain reaction**. If such a process is properly controlled, then energy can be obtained continuously at steady rate. **Nuclear reactor** is the illustration of this.

Difficulties encountered in nuclear reactor and their removal:

- To stop neutrons from escaping reflecting surfaces, moderators like water, heavy water, Graphite and Beryllium are used.
- In a chain reaction enormous heat energy is produced and the temperature is likely to become 10⁶ K. Hence coolants like water, liquid sodium are used.
- The ratio of number of neutrons produced at any stage to the number of neutrons incident is called **multiplication factor** (**K**). It is a measure of the growth of number of neutrons. If K = 1 the reactor is said to be critical. If K > 1 is said to be super critical in such a condition explosion can take place, if K < 1 said to be subcritical, the process slows down and eventually stops.
- In order to control the value of K, rods of Boron and Cadmium are kept, called control rods.

Reactor: As a fuel 3 % $_{92}U^{235}$ and remaining $_{92}U^{238}$.

$$_{93} \mathrm{Np}^{239} \rightarrow _{94} \mathrm{Pu}^{239} + _{-1} e^{0} + \overline{\mathrm{v}}$$

Plutonium is intense radio active and fissionable by slow neutron.

- In Pressurised Water Reactor normal water is used as moderator and also as coolent.
- Water is pushed into the core of the reactor at temperacure 600 K and 150 atm pressure, generated steam operates the turbine, which produces electric power.

Thermonuclear Fusion in Sun and other Stars:

- The sun emitting energy at the rate of $3.8 \times 10^{26} \text{ Js}^{-1}$.
- When two proper light nuclei are fused at a very high temperature to form a heavy nucleus, enormous energy is produced, such process is called **thermonuclear fusion**.

• Proton - Proton cycle :

$$_{1}H^{1} + _{1}H^{1} \rightarrow _{1}H^{2} + _{-1}e^{0} + \upsilon + 0.42 \text{ MeV}$$
 $_{+1}e^{0} + _{-1}e^{0} \rightarrow 2\gamma + 1.02 \text{ MeV}$
 $_{1}H^{2} + _{1}H^{1} \rightarrow _{2}He^{3} + \gamma + 5.49 \text{ MeV}$
 $_{2}He^{3} + _{2}He^{3} \rightarrow _{2}He^{4} + _{1}H^{1} + _{1}H^{1} + 12.86 \text{ MeV}$

- First three reaction ocur twice.
- Total produced energy = $2 \times 0.42 + 2 \times 1.02 + 2 \times 5.49 + 12.86 = 26.7 \text{ MeV}$.
- (78) What is produced in a consecutive step in a given reaction?

$$_{Z}X^{A} \rightarrow _{Z+1}Y^{A} \rightarrow _{Z-1}T^{A-4} \rightarrow _{Z-1}T^{A-4}$$
(A) $_{\alpha},_{\beta},_{\gamma}$ (B) $_{\beta},_{\alpha},_{\gamma}$ (C) $_{\gamma},_{\alpha},_{\beta}$ (D) $_{\alpha},_{\gamma},_{\beta}$

- (79) Find the number of α and β particles in the conversion $_{92}X^{235} \rightarrow _{88}Y^{219}$.
 - (A) 4, 4 (B) 5, 5 (C) 6, 6 (D) 4, 8
- (80) If P_{α} , P_{β} , P_{γ} are penetrating power of α , β , γ then ______.

(81)
$$\alpha$$
 and β particles are emitted from the ends A and B respectively in a wire,

(A) $P_{\alpha} = P_{\beta} = P_{\gamma}$ (B) $P_{\alpha} > P_{\beta} > P_{\gamma}$ (C) $P_{\alpha} < P_{\beta} < P_{\gamma}$ (D) $P_{\alpha} = P_{\beta} < P_{\gamma}$

(A) Electric current flows from A to B

then _____.

- (B) Electric current flows from B to A
- (C) Electric current is not produced.
- (D) Electric current flows toward the mid-pt. from every side.
- (82) During the radio active emission of element having atomic number 90 and atomic mass number 232, final product is $_{82}$ Pb 208 . Find the emitted number of α and β particles.

(A)
$$\alpha = 3$$
, $\beta = 3$ (B) $\alpha = 6$, $\beta = 4$ (C) $\alpha = 6$, $\beta = 0$ (D) $\alpha = 1$, $\beta = 6$

- (83) Nuclear reaction: ${}_{5}B^{10} + {}_{2}He^{4} \rightarrow {}_{7}N^{13} +$ (C) electron (D) α
- (84) ${}_{6}C^{12}$ absorps neutron and emits β -particle. Find the final product.
 - (A) $_{7}N^{14}$ (B) $_{5}B^{13}$ (C) $_{7}N^{13}$ (D) $_{6}C^{13}$

(85)	Arrange the ionizing po	ower of α , β and γ in d	lescending order.	
	(Α) γ, α, β	(Β) γ, β, α	(C) α, β, γ	(D) β, γ, α
(86)	Energy produced in nurate of fission.	nclear fission is 200 MeV	V. If output power of rea	actor is 5W then find the
	(A) $1.56 \times 10^{-10} \text{ s}^{-1}$		(B) $1.56 \times 10^{11} \text{ s}^{-1}$	
	(C) $1.56 \times 10^{-16} \text{ s}^{-1}$		(D) $1.56 \times 10^{-17} \text{ s}^{-1}$	
(87)	α – particle is emitted	by nucleus $_{Z}X^{A}$. Final	nucleus emits β^+ . Then	n find the atomic number
	and atomic mass numb	er of final nucleus.		
	(A) $Z-3, A-4$	(B) $Z-1, A-4$	(C) $Z-2, A-4$	(D) $Z, A-2$
(88)	Three α – particles an	nd one β -particle are e	emitted by $_{86}R_n^{236}$, the	on for product nucleus X
				
	(A) $Z = 83$, $A = 224$		(B) $Z = 84, A = 218$	
	(C) $Z = 84, A = 220$		(D) $Z = 82, A = 223$	
(89)	Calculate the release	energy in reaction, 88	$Ra^{226} \rightarrow {}_{86}Ra^{222} + {}_{2}$	He ⁴ . Kinetic energy of
	α – particle is 4.78 M	eV . Parent element is sta	able.	
	(A) 8 MeV	(B) 4.78 MeV	(C) 4.87 MeV	(D) none of these
(90)	Energy emitted from a	star is $2.7 \times 10^{36} \text{ Js}^{-1}$.	Find the decrement in it	s mass.
	(A) $3 \times 10^{18} \text{ kg s}^{-1}$	(B) $3 \times 10^{19} \text{ kg s}^{-1}$	(C) $3 \times 10^{20} \text{ kg s}^{-1}$	(D) $3 \times 10^{21} \text{ kg s}^{-1}$
(91)	Series of emitted	particles from the n	nucleus $(Z = 92)$ is	$\alpha, \alpha, \beta^-, \beta^-, \alpha, \alpha, \alpha, \alpha,$
	$\beta^-, \beta^-, \alpha, \beta^+, \beta^+, \alpha$.	Then Z of final nucleus =	=,	
	(A) 78	(B) 82	(C) 74	(D) 76
(92)	$_1\text{H}^2 + _1\text{H}^3 \rightarrow _2\text{He}^4$	+ n, potential energy	due to repulsive force	between two nucleus in
	nuclear fusion is 7.7 reaction be possible?	$\times 10^{-14}$ J. How much	temperature should be	given to the gas so this
	(A) 10^5 K	(B) 10^3 K	(C) 10^9 K	(D) 10^7 K
(93)	What this reaction sugg	gest ?		
	$4_1 H^1 \rightarrow {}_2 He^4$	$+ 2_{+1}e^0 + 26 \text{ MeV}.$		
	(A) β – decay	(B) γ – decay	(C) Fusion	(D) Fission
		400		

- (94) α particles are emitted from stable radio active element having atomic mass mumber 208. Energy of emitted α – particles is E. Find the energy of disintegration.
 - (A) $\frac{52}{51}$ E
- (B) $\frac{51}{52}$ E
- (C) 52 E
- (D) E

Ans.: 78 (B), 79 (A), 80 (C), 81 (A), 82 (B), 83 (B), 84 (C), 85 (C), 86 (B), 87 (A), 88 (A), 89 (C), 90 (B), 91 (A), 92 (C), 93 (C), 94 (A)

Radio active constant and Activity

- In a specimen of radio active material, if the number of undisintegrated nuclei of an element at time t is N and there after if ΔN nuclei disintegrate in time interval Δt , then $\lim_{\Delta t \to 0} \frac{\Delta N}{\Delta t} = \frac{dN}{dt}$ is called the **rate of disintegration** or **the decay rate** or **activity** (I) of that element at time t. Activity means the number of nuclei decaying per unit time.
- The decay rate is proportional to the number of undisintegrated nuclei at that time. $\frac{dN}{dt} \propto -N$

$$\therefore \boxed{I = \frac{dN}{dt} = -\lambda N}$$
 (negative sign indicates that as time passes N decreases.)

 λ = Radioactive constant = decay constant, unit = s⁻¹) its value depends on the type of disintegrating element. For different unstable isotops of the same element, the values of λ are different.

- $\lambda \rightarrow \text{large} \rightarrow I \rightarrow \text{more} \rightarrow \text{shortlived elements}$.
 - $\lambda \to \text{small} \to I \to \text{less} \to \text{longlived elements}.$
- \bullet λ is independent of temperature pressure, electric field and magnetic field.
- For the nucleus of a given element $\lambda \left(\lambda = \frac{-dN}{Ndt}\right)$ shows the probability of disintegration per unit time.

Units of Activity

- 1 disintegration oceur in one second, then activity of body is called 1 Becquerel.
 1 Bq = 1 disintegration / sec.
- If 3.7 × 10¹⁰ disintegration per second take place, the activity of a substance called 1 curie (Ci).
 1 Ci = 3.7 × 10¹⁰ disintegration / sec.
 1 Ci = 3.7 × 10¹⁰ Bq.

Exponential law of Radio active Disintegration

$$\frac{dN}{dt} = -\lambda N \Rightarrow \frac{dN}{N} = -\lambda dt$$

$$\int_{N_0}^{N} \frac{dN}{N} = -\lambda \int_{0}^{t} dt \qquad \left[\begin{array}{c} t = 0 \to N = N_0 \\ t = t \to N = N \end{array} \right]$$

$$\therefore \left[\ln N \right]_{N_0}^N = -\lambda \left[t \right]_0^t$$

$$\therefore \ln N - \ln N_0 = -\lambda t$$

$$\therefore \ln\left(\frac{N}{N_0}\right) = -\lambda t$$

$$\therefore \quad \frac{N}{N_0} = e^{-\lambda t} \implies N = N_0 e^{-\lambda t}$$

Similarly, $I = I_0 e^{-\lambda t}$ and $M = M_0 e^{-\lambda t}$ $M_0 = Initial mass$, M = mass after disintegration.

As time passes, the number of nuclei and activity decreases exponentially. This curve is called **decay curve.** For $I \to t$ and $M \to t$ similar graph is obtained.

Half life:

• The time interval in which the number of nuclei of radioactive element becomes half of its value at the beginning, is called **half life** of that element $\left(\frac{\tau_{\frac{1}{2}}}{2}\right)$.

$$N = N_0 e^{-\lambda t}, \ t = \frac{\tau_1}{2} \ \text{and} \ N = \frac{N_0}{2}$$

$$\frac{N_0}{2} = N_0 e^{-\lambda \tau_{\frac{1}{2}}} \implies 2^{-1} = e^{-\lambda \tau_{\frac{1}{2}}} \implies 2 = e^{\lambda \tau_{\frac{1}{2}}}$$

$$\therefore ln 2 = \lambda \tau_{\frac{1}{2}} \Rightarrow \tau_{\frac{1}{2}} = \frac{ln 2}{\lambda} = \frac{0.693}{\lambda}$$

• Half life of different radio active elements are from 10^{-7} s to 10^{10} Yr.

Where
$$n = \frac{t}{\tau_{\frac{1}{2}}} = \frac{\text{given time}}{\text{Half life}}$$

Time	undecayed part	Decayed part
t = 0	100 %	0 %
$t = \frac{\tau_1}{2}$	50 %	50 %
$t = \frac{2\tau_{\frac{1}{2}}}{2}$	 25 % 	75 %
$t = \frac{3\tau_{\frac{1}{2}}}{2}$	12.5 %	87.5 %
$t = \frac{4\tau_{\frac{1}{2}}}{2}$	6.25 %	93.75 %

Mean life (τ)

The time interval during which the number of nuclei of a radioactive element becomes e^{th} part of its original, is called **Mean** or **average life** (τ) of that element. (e = 2.718)

•
$$N = N_0 e^{-\lambda t}$$
, $t = \tau$ and $N = \frac{N_0}{e}$, $\frac{N_0}{e} = N_0 e^{-\lambda \tau} \implies e^{-1} = e^{-\lambda \tau}$
 $\Rightarrow \lambda \tau = 1 \implies \tau = \frac{1}{\lambda}$

other informations :
$$- \quad \tau_{\frac{1}{2}} = 0.693 \; \tau$$

$$- \quad \tau = \tau_{\frac{1}{2}} \times 1.44$$

•	For the emission o	f α and β, total $\lambda_t =$	λ_{α} + λ_{β}	
	$\therefore \frac{1}{\tau_{(t)}} = \frac{1}{\tau_{\alpha}} + \frac{1}{\tau_{\alpha}}$	$\frac{1}{\tau_{\beta}}$ Similarly, $\frac{1}{\tau_{\frac{1}{2}(t)}}$	$=\frac{1}{\tau_{\frac{1}{2}(\alpha)}}+\frac{1}{\tau_{\frac{1}{2}(\beta)}}$	
(95)	Half life of At ²¹⁵ is original is	$100 \mu s$, The time in	which activity of its spe	ecimen becomes $\frac{1}{16}$ th of its
	(A) 400 μs	(B) 6.3 μs	(C) 40 µs	(D) 300 μs
(96)	Activity of Radio act life (τ) then		is R_1 and at time t_2 is	R_2 . $(t_2 > t_1)$. If the mean
	(A) $R_1 t_1 = R_2 t_2$		(B) $\frac{R_1 - R_2}{t_2 - t_1} = \cos \theta$	onstant
	(C) $R_2 = R_1 \exp\left(\frac{t_1}{t_1}\right)$	$\left(\frac{-t_2}{\tau}\right)$	(D) $R_2 = R_1 \exp\left(\frac{1}{2}\right)$	$\left(\frac{t_1}{\tau t_2}\right)$
(97)	Quantity of Radon is 1	6 g and its half life is 3	.8 days. Find the disintegr	ration of Radon in 19 days?
	(A) 5 g	(B) 0.5 g	(C) 15.5 g	(D) none of these
(98)	Half-life of radio activ	ve element is 30 days. I	Find the time to disintetra	ate its $\frac{3}{4}$ th mass.
	(A) 15 days	(B) 45 days	(C) 30 days	(D) 60 days
(99)	Find the half life of ra	dio active element who	ose activity becomes $\frac{1}{16}$ ^{tl}	¹ of original in 30 years.
	(A) 90 years	(B) 120 years	(C) 15 years	(D) 7.5 years
(100)	Find the decay consta	nt of an element in Que	e: 99.	
	(A) 0.0924 Yr^{-1}	(B) 9.24 Yr ⁻¹	(C) 924 Yr^{-1}	(D) 0.0688 Yr^{-1}
(101)	-	oms in radio active eler	_	Their half lives are 1 hr and
	(A) 4:2	(B) 1:1	(C) 1:2	(D) 8:1
(102)	Find the number of di	sintegration per second	in 2.3 g, ₉₀ Th ²³⁰ whose	e half life = 2.4×10^{11} s.

(D) 10^9

(A) 6×10^{21}

(103)	Half life of radio active	isotop is 10 min. At a g	given moment number of	radio active nucleus are
		s after 5 min =		0
	(A) $\frac{10^8}{2}$	(B) 10^4	(C) $\sqrt{2} \times 10^7$	(D) $\frac{10^8}{\sqrt{2}}$
(104)	Half life of Pa ²¹⁸ is 3 mi	n and mass of specimen is	s 16 g. How much mass is	remaining after 15 min.
	(A) 3.2 g	(B) 2.0 g	(C) 1.6 g	(D) 0.5 g
(105)	Half life of radio activ	re element is 5 min	% of element re	emains undecayed after
	25 min.			
	(A) 25 %	(B) 75 %	(C) 6.25 %	(D) 3.125 %
(106)	Activity of recenty boug	ght bottle of radio active	Tritium is 3 %, "seven y	ears old" labelled on the
	bottle, then is was made	e before how many years	s ? (Half life = 12.5 Yr)	
	(A) before 220 years	(B) before 420 years	(C) before 63 years	(D) before 70 years
(107)	Half life of radio active	element is 10 years, then	n its average life is	·
	(A) 14.4 yr	(B) 20 yr	(C) 15 yr	(D) 28.8 yr
(108)	Activity of radio active	sample at time t_1 is I_1	and at time t_2 is I_2 . If the	he half life of sample is
	$\frac{\tau_1}{2}$, the number of unde	cayed nucleus in $t_2 - t_1$	time is directly proportio $I_1 - I_2$	nal to
	(A) $I_1 t_2 - I_2 t_1$	(B) $I_1 - I_2$	(C) $\frac{I_1 - I_2}{\frac{\tau_1}{2}}$	(D) $(I_2 - I_1) \tau_{\frac{1}{2}}$
(109)			e to decay from 20% to	_
	(A) 20 min	(B) 40 min	(C) 25 min	(D) 30 min
(110)	Half lives of radio activ	we element for α and β	decay are 8 year and 24	year respectively. After
	12 year, its activity is ho	ow much percentage of it	s original activity?	
	(A) 50	(B) 12.5	(C) 25	(D) 6.25
(111)	There are 4×10^{16} nuc	cleus in a radio active sa	ample. Half life of elem	ent is 10 days. Find the
	number of decayed nucl	leus in 30 days.		
	(A) 0.5×10^{16}	(B) 2×10^{16}	(C) 3.5×10^{16}	(D) 1×10^{16}
(112)	Mass of radio active sar	mple at $t = 0$ is 10 g. Aft	ter two mean life mass of	f sample is
	(A) 1.36 g	(B) 2.50 g	(C) 3.70 g	(D) 6.30 g
(113)	Half life of Radium is 1	600 year. Mass of sample	le is 100 g. The time for	which its mass becomes
	25 g is year	s.		
	(A) 6400	(B) 2400	(C) 3200	(D) 4800

- (114) After decayed two radio active nucleus P and Q becomes stable element R. At t = 0, the number of nucleus in P and Q are $4 N_0$ and N_0 respectively. Half lives of P and Q are 1 min and 2 min respectively. When stable element R formed, number of nucleus in P and Q are equal. Then number of nucleus in stable element R is ______.
 - (A) $2 N_0$
- (B) $3 N_0$
- (C) $\frac{3N_0}{2}$
- (D) $\frac{9N_0}{2}$
- (115) Half life of radio active isotop X is 50 year, after decayed it converts into stable element Y. If the proportion of X and Y is 1:15, approximate life of rock is _____.
 - (A) 100 year
- (B) 150 year
- (C) 200 year
- (D) 250 year
- (116) Sample of Cu decayed upto $\frac{7}{8}$ in 15 min and converts in Zn, its Half life is ______.
 - (A) 10 min
- (B) 15 min
- (C) 5 min
- (D) 7.5 min
- (117) A radio active element X decayed into new element Y. If creation rate of element Y is R then the graph of $R \to t$ would be.

- (118) Undecayed part of radio active sample in half time of half life is ______.
 - $(A) \ \frac{1}{\sqrt{2}}$
- (B) $\frac{1}{2}$
- (C) $\frac{3}{4}$
- (D) $\frac{\sqrt{2}-1}{\sqrt{2}}$

Ans.: 95 (A), 96 (C), 97 (C), 98 (D), 99 (D), 100 (A), 101 (B), 102 (C), 103 (D), 104 (D), 105 (D), 106 (D), 107 (A), 108 (D), 109 (B), 110 (C), 111 (C), 112 (A), 113 (C), 114 (D), 115 (C), 116 (C), 117 (C), 118 (A)

Assertion - Reason type Question :

Instruction	Dood	assertion and	lroocon	oorofully	coloot	nronor	antian	from	aivon	holow
Insuluction .	Neau	assertion and	i i cason	carefully.	Select	nionei	ODUNION	II VIII	211611	Deluw.

- (a) Both assertion and reason are true and reason explains the assertion.
- (b) Both assertion and reason are true but reason does not explain the assertion.
- (c) Assertion is true but reason is false.
- (d) Assertion is false and reason is true.

(119)	Assertion	:	$_{Z}X^{A}$	undergoes two	α – decay, two	β – decays	and two	γ – decays	and	the
			daught	ter product is $Z-2$	$_{2}X^{A-8}$.					

Reason : In α – decay the mass number decreases by 4 and atomic number decreases by 2. In β – decay the mass number remain unchanged, but atomic number increases by 1 only.

- (A) (a) (B) (b) (C) (c) (D) (d)
- (120) **Assertion**: All nuclei are not of same size.

Reason: Size depends on atomic mass.

- (A) (a) (B) (b) (C) (c) (D) (d)
- (121) Assertion: X rays are used for studying the structure of crystals.
 Reason: The difference between the atoms of crystal is of the order of wavelength of X ray.
 - (A) (a) (B) (b) (C) (c) (D) (d)
- (122) **Assertion**: If half life and mean life of radio active element are $\frac{\tau_1}{2}$ and τ $\left(\frac{\tau_1}{2} < \tau\right)$

Reason : Mean life = $\frac{1}{\text{decay constant}}$

- (A) (a) (B) (b) (C) (c) (D) (d)
- (123) Assertion: Isobars are the nuclei having same mass number A but different atomic number Z.
 Reason: Neutrons and Protons are present inside nucleus.
 - (A) (a) (B) (b) (C) (c) (D) (d)
- (124) **Assertion**: The ionisation potential of Hydrogen is 13.6 eV, the ionised potential of double ionised lithium is 122.4 eV.

Reason: Energy in nth state of Hydrogen atom is $E_n = \frac{13.6}{n^2}$ eV.

- (A) (a) (B) (b) (C) (c) (D) (d)
- (125) Assertion: Radio active nuclei emit β^- particle.

Reason: Electrons exist inside the nucleus.

(A) (a) (B) (b) (C) (c) (D) (d)

	Assertion	: If the ha		active substance	is 40 days,	then 25 % substance decays in				
	Reason	$: N = N_0$	$\left(\frac{1}{2}\right)^n$ Where	$n = \frac{t}{\tau_{\frac{1}{2}}}.$						
	(A) (a)		(B) (b)	(C)	(c)	(D) (d)				
(127)	Assertion	: Balmar	series lies in th	e visible region o	of electro ma	gnetic spectrum.				
	Reason	$\frac{1}{\lambda} = R \left(\right.$	$\left(\frac{1}{2^2} - \frac{1}{n^2}\right) \text{ WI}$	here, $n = 3, 4, 5$.						
	(A) (a)		(B) (b)	(C)	(c)	(D) (d)				
(128)	Assertion			_	a half life	of 30 days. Its disintegretion				
			is 0.0231 day							
		: Decay co		inversly as half-li		(n) (n				
(120)	(A) (a)	<u>.</u>	(B) (b)	(C)	(c)	(D) (d)				
(129)		-	is released in n			4 4 4 11 1				
	Reason		arent nucleus.	the fission fragr	nents is large	er than the total binding energy				
	(A) (a)		(B) (b)	(C)	(c)	(D) (d)				
(130)	Assertion	: Heavy v	vater is preferr	ed over ordinary	water as a r	noderator in reactors.				
	Reason	: Heavy w	vater, used for	slowing down the	e neutrons, h	as lesser absorption probability				
		of neutro	ons than ordina	•						
	(A) (a)		(B) (b)	(C)	(c)	(D) (d)				
Ans.		, 120 (B), , 129 (A),		2 (B), 123 (B),	124 (B),	125 (C), 126 (D), 127 (A),				
Comp	rehension [Гуре Quest	ions:							
Passa	Passage:									
	_			A single electron orbits arounds a stationary nucleus of charge $+ Ze$, Where Z is a constant and e is the magnitude of the charge. It requires 47.2 eV to excite the electron from the second orbit						
	A single e e is the ma	agnitude of t	the charge. It r	requires 47.2 eV 1	to excite the	electron from the second orbit				
	A single e e is the material to the third	agnitude of t d orbit. (The	the charge. It r e ionization en	requires 47.2 eV theregy of Hydroge	to excite the n atom = 13	electron from the second orbit 6.6 eV. radius = 5.3×10^{-11} m.				
(131)	A single e e is the material to the third $c = 3 \times 10$	agnitude of the distribution of the distribut	the charge. It reconstruction is initially in the charge of the charge. It reconstructs the charge of the charge of the charge. It reconstructs the charge of the charge. It reconstructs the charge of the charge of the charge. It reconstructs the charge of the charge	requires 47.2 eV theregy of Hydroge	to excite the n atom = 13	electron from the second orbit				
(131)	A single e e is the material to the third c = 3×10 The value	agnitude of to do orbit. (The 8 ms ⁻¹ , h = of Z is =	the charge. It reconstruction in the ionization en $6.6 \times 10^{-34} \text{ Js}$	requires 47.2 eV theregy of Hydroge () Based on the all	to excite the n atom = 13 bove facts, as	electron from the second orbit 6.6 eV . radius = $5.3 \times 10^{-11} \text{ m}$, answer the following questions:				
	A single e e is the material to the third c = 3×10 The value (A) 1	agnitude of the distribution of the distribution of the distribution of Z is $=$	the charge. It recionization en $6.6 \times 10^{-34} \text{ Js}$ (B) 2	requires 47.2 eV to ergy of Hydroge) Based on the ab (C)	to excite the n atom = 13 bove facts, and	electron from the second orbit 6.6 eV . radius = $5.3 \times 10^{-11} \text{ m}$, nswer the following questions: (D) 5				
(131) (132)	A single e e is the mato the third $c = 3 \times 10$ The value (A) 1 The energy	agnitude of to d orbit. (The $^8 \text{ ms}^{-1}$, h = of Z is = y required to	the charge. It recionization en $6.6 \times 10^{-34} \text{ Js}$ (B) 2	requires 47.2 eV to ergy of Hydroge) Based on the ab (C)	to excite the n atom = 13 bove facts, and	electron from the second orbit 6.6 eV . radius = $5.3 \times 10^{-11} \text{ m}$, answer the following questions:				
	A single e e is the material to the third c = 3 × 10. The value (A) 1. The energy is =	agnitude of to do orbit. (The 8 ms $^{-1}$, h = of Z is = y required to eV.	the charge. It recionization en 6.6×10^{-34} Js (B) 2 excite the ele	requires 47.2 eV to error of Hydroge (C) ectron from the se	to excite the n atom = 13 bove facts, and 3 econd excited	electron from the second orbit 6.6 eV . radius = $5.3 \times 10^{-11} \text{ m}$, nswer the following questions: (D) 5 d state to the third excited state				
(132)	A single e e is the material to the third c = 3 × 10. The value (A) 1. The energy is =	agnitude of the distribution of the distributi	the charge. It recionization en 6.6×10^{-34} Js (B) 2 excite the ele (B) 14.53 e	requires 47.2 eV to error of Hydroge (C) Extraction from the sector of	to excite the n atom = 13 bove facts, and 3 econd excited 16.53 eV	electron from the second orbit 6.6 eV . radius = $5.3 \times 10^{-11} \text{ m}$, nswer the following questions: (D) 5 d state to the third excited state (D) 18.53 eV				
	A single e e is the material to the third c = 3 × 10. The value (A) 1. The energy is =	agnitude of to d orbit. (The 8 ms ⁻¹ , h = of Z is = y required to eV. eV	the charge. It recionization en 6.6×10^{-34} Js (B) 2 excite the ele (B) 14.53 e	requires 47.2 eV to error of Hydroge (C) Extraction from the sector of	to excite the n atom = 13 bove facts, and 3 econd excited 16.53 eV	electron from the second orbit 6.6 eV . radius = $5.3 \times 10^{-11} \text{ m}$, nswer the following questions: (D) 5 d state to the third excited state				
(132)	A single e e is the mate to the third $c = 3 \times 10$. The value (A) 1. The energy is =	agnitude of to d orbit. (The 8 ms ⁻¹ , h = of Z is = y required to eV. eV y required to eV.	the charge. It recionization en 6.6×10^{-34} Js (B) 2 excite the element (B) 14.53 excite the el	requires 47.2 eV to error from the section from the first from the	to excite the n atom = 13 bove facts, and 3 econd excited 16.53 eV first excited s	electron from the second orbit 6.6 eV . radius = $5.3 \times 10^{-11} \text{ m}$, nswer the following questions: (D) 5 d state to the third excited state (D) 18.53 eV				
(132)	A single e e is the mate to the third $c = 3 \times 10$. The value (A) 1. The energy is =	agnitude of the distribution of the distributi	the charge. It recionization en 6.6×10^{-34} Js (B) 2 excite the element (B) 14.53 excite the element (B) 16.53 excite the el	equires 47.2 eV to error of Hydroge (C) extron from the section from the file (C) extron from the file (C) extron from the file (C)	to excite the n atom = 13 bove facts, and 3 econd excited 16.53 eV first excited s	electron from the second orbit 6.6 eV . radius = $5.3 \times 10^{-11} \text{ m}$, nswer the following questions: (D) 5 d state to the third excited state (D) 18.53 eV tate to the second excited state				
(132) (133)	A single e e is the mate to the third $c = 3 \times 10$. The value (A) 1. The energy is =	agnitude of to do orbit. (The standard manner of the standard manner	the charge. It recionization en 6.6 × 10 ⁻³⁴ Js (B) 2 excite the electric (B) 14.53 excite the electric (B) 16.53 excite th	equires 47.2 eV to error of Hydroge (C) extron from the section from the file (C) extron from the file (C) extron from the file (C)	to excite the n atom = 13 bove facts, and 3 econd excited 16.53 eV first excited so 255 eV diation requirements.	electron from the second orbit 3.6 eV. radius = 5.3 × 10 ⁻¹¹ m, nswer the following questions: (D) 5 d state to the third excited state (D) 18.53 eV tate to the second excited state (D) none of these				

	first orbit have respective	ve values given by.					
	(A) 340 eV, -340 eV	$V_{\rm v} - 680 \text{ eV}, 1.05 \times 10^{-34}$	⁴ Js				
	(B) $340 \text{ eV}, -680 \text{ eV}, -340 \text{ eV}, 1.05 \times 10^{-34} \text{ Js}$						
	(C) $680 \text{ eV}, -340 \text{ eV}, -680 \text{ eV}, 2.05 \times 10^{-34} \text{ Js}$						
	(D) 680 eV, -1360 e	$V, -680 \text{ eV}, 2.05 \times 10^{-4}$	³⁴ Js				
(136)	The radius of the first Bohr's orbit is $=$						
	(A) 0.53 Å	(B) 0.106 Å	(C) 5.3 Å	(D) 1.06 Å			
Passag	ge : For identical Hydrog	gen gas has some atoms	in the lowest energy leve	el A and some in a upper			
	photon of energy 2.7 energies. Some of the	eV. Subsequently, the attempt emitted photons have a	transition to a higher entoms emit radiation of on energy of 2.7 eV, somes, answer the following quantum states.	nly six different photon e have more energy and			
(137)	The principle quantum i	number of the initially ex	cited level B is	_·			
	(A) 2	(B) 4	(C) 6	(D) 8			
(138)	The ionization energy f	or the gas atom is	eV.				
	(A) 14.4 eV	(B) 13.6 eV	(C) 3.4 eV	(D) 1.51 eV			
(139)	The emitted photons w minimum energy values		(in eV). The photons emi	itted have maximum and			
	(A) $e = 1.35 \text{ eV}$ and	E = 13.5 eV	(B) $e = 0.7 \text{ eV}$ and I	$\Xi = 1.35 \text{ eV}$			
	(C) $e = 0.7 \text{ eV}$ and F	E = 13.5 eV	(D) none of these				
Passag	ge:						
	Nuclei of a radio active	e element A are being p	roduced at a constant rat	te α . The element has a			
	decay constant λ . At ti	me $t = 0$, there are N_0 ,	nuclei of the element. At	time t, number of nuclei			
	of A is N . Also for α	$=2N_0\lambda$, the number of	of nuclei of A after one	half life is $\frac{N_1}{2}$ and the			
	limiting value of N as t	$\rightarrow \infty$ is N_{∞} . Based on	the above facts, answer th	e following questions:			
(140)	N as a function of t is g	viven by,					
	(A) $N = N_0 + \frac{\alpha}{\lambda} \left(1 - \frac{\alpha}{\lambda} \right)$	$e^{-\lambda t}$	(B) $N = N_0 e^{-\lambda t}$				

(135) The kinetic energy, potential energy, total energy and angular momentum of the electron in the

(C) $N = N_0 - \frac{\alpha}{\lambda} \left(1 - e^{-\lambda t} \right)$

(D) $N = \frac{1}{\lambda} \left[\alpha - (\alpha - \lambda N_0) e^{-\lambda t} \right]$

(141) The value of $\frac{N_1}{2}$ in terms of N_0 is = _____

(A)
$$N_{\frac{1}{2}} = \frac{N_0}{2}$$

(B)
$$N_{\frac{1}{2}} = \frac{3N_0}{2}$$

(C)
$$N_{\frac{1}{2}} = \frac{3N_0}{4}$$

(A)
$$N_{\frac{1}{2}} = \frac{N_0}{2}$$
 (B) $N_{\frac{1}{2}} = \frac{3N_0}{2}$ (C) $N_{\frac{1}{2}} = \frac{3N_0}{4}$ (D) $N_{\frac{1}{2}} = \frac{3N_0}{8}$

(142) The value of N_{∞} in terms of N_0 is = _____

(A)
$$N_{\infty} = 3N_0$$
 (B) $N_{\infty} \to 0$ (C) $N_{\infty} = N_0$

(B)
$$N_{\infty} \rightarrow 0$$

(C)
$$N_{\infty} = N_0$$

(D)
$$N_{\infty} = 2N_0$$

Passage: In the Bohr model of the Hydrogen atom, the electron revolves in a circular orbit of radius $r_0 = 0.53 \, A$ around the nucleus. Based on the above facts, answer the following question.

The velocity of electron is nearly $_$ ms⁻¹.

(A)
$$2.2 \times 10^6$$

(B)
$$2.6 \times 10^6$$

(A)
$$2.2 \times 10^6$$
 (B) 2.6×10^6 (C) 2.8×10^6 (D) 2.9×10^6

(D)
$$2.9 \times 10^6$$

(144) The velocity of electron is n times the velocity of light. The value of n is = ______.

(A)
$$\frac{1}{81}$$

(B)
$$\frac{1}{101}$$

(C)
$$\frac{1}{137}$$

(D)
$$\frac{1}{337}$$

The electric potential energy in _____ eV. (145)

$$(A) -13.6$$

$$(C) -36$$

The kinetic energy in eV is _____. (146)

$$(C) -36$$

$$(B) -54$$

The total energy in eV is _____. (147)

$$(B) -13.6$$

Ans.: 131 (D), 132 (C), 133 (A), 134 (B), 135 (B), 136 (B), 137 (B), 138 (A), 139 (C), 140 (D), 141 (B), 142 (D), 143 (A), 144 (C), 145 (B), 146 (A), 147 (B)

Match the columns:

Match the column-1 with column-2:

	column-1		column-2
(a)	In this reaction mass of product is less	(p)	α – decay
	than the mass of reactants.		
(b)	Energy per nucleon Increases.	(q)	β – decay
(c)	Conservation of atomic mass number.	(r)	Nuclear Fission
(d)	Conservation of charge.	(s)	Nuclear Fusion

(A)
$$(a) \rightarrow (p, q, r, s), (b) \rightarrow (p, q), (c) \rightarrow (r, s), (d) \rightarrow (p, q, r, s)$$

(B)
$$(a) \to (q), (b) \to (r), (c) \to (p), (d) \to (s)$$

(C)
$$(a) \rightarrow (s), (b) \rightarrow (r), (c) \rightarrow (q), (d) \rightarrow (p)$$

(D)
$$(a) \rightarrow (p), (b) \rightarrow (s), (c) \rightarrow (q), (d) \rightarrow (r)$$

(149)

	column-1	column-2		
(a)	Nuclear - Fusion	(p)	Some matter converts into energy	
(b)	Nuclear - Fission	(q)	Generally, possible for the nucleus with less atomic number	
(c)	β – decay	(r)	Generally, possible for the nucleus with high atomic number	
(<i>d</i>)	Endo thermic reaction	(s)	Possible due to weak nuclear force	

(A)
$$(a) \rightarrow (p, r), (b) \rightarrow (q, r), (c) \rightarrow (p, q, s), (d) \rightarrow (r, s)$$

(B)
$$(a) \to (q, s), (b) \to (p, s), (c) \to (q, r, s), (d) \to (p, q, r, s)$$

(C)
$$(a) \rightarrow (s), (b) \rightarrow (s, p), (c) \rightarrow (p, q, r, s), (d) \rightarrow (r)$$

(D)
$$(a) \rightarrow (p,q), (b) \rightarrow (p,r), (c) \rightarrow (p,s), (d) \rightarrow (p,q,r)$$

(150)

	column-1		column-2
(a)	Transition between two energy levels of an atom.	(p)	Characteristics of X-ray
(b)	emission of electron from the matter.	(q)	Photo-electric effect
(c)	Moseley's law.	(r)	Hydrogen spectrum
(<i>d</i>)	Conversion of energy of photon in to energy of an	(s)	β – decay
	electron		

(A)
$$(a) \to (p, r), (b) \to (p, q, s), (c) \to (p), (d) \to (q)$$

(B)
$$(a) \to (p), (b) \to (s), (c) \to (r), (d) \to (q, s)$$

(C)
$$(a) \to (p, q, r, s), (b) \to (s), (c) \to (p), (d) \to (s)$$

(D)
$$(a) \to (s, r), (b) \to (r), (c) \to (s, p), (d) \to (q, r)$$

Ans.: 148 (A), 149 (D), 150 (A)