ASSIGNMENT 2

By Silas Jeppe Christensen

Due date: 08:30, 19th October 2017

- 1. Which language does the regular expression ϵ represent? It represent the language $\{\epsilon\}$
- 2. Which language does the regular expression \emptyset represent? It represent the the empty language $\{\} = \emptyset$
- 3. Which language does the regular expression a represent? It represent the the language $\{a\}$, respectively, where a is an element of Σ .
- 4. Is it always true that $R + \epsilon$, where R is a regular expression, represents the same language as R? If yes, explain. If not, give a counterexample Yes, becasue the resulting "new language" created by Union; $R \cup \epsilon$ still contains the same strings as in the previous "R".
- 5. For each of the following languages L, state whether or not L is regular. Prove your answer:

(a)
$$\{a^i b^j : i, j \text{ and } i + j = 5\}$$

Figure 1:

This exercise is a regular language, because if it's possible to draw a Finite Automata, the language is recognizable. Which means that the language is a regular language.

(b) $\{a^i b^j : i, j \text{ and } i - j = 5\}$

This exercise will be proven by Pumping Lemma.

By
$$a^i b^j \to i - j = 5 \leftrightarrow$$

By assuming k + l = i, we can use xyz like this:

 $a^k a^l b^j$ where:

 $x = a^k$

 $y = a^l$

 $z = a^j$

Then by pumping y 3 times: " $3 \times y = 3y$ "

Now we can tell that $k+l-j+2l \neq k+l-j$.

This exercise does not contain a regular language.

(c) $\{a^ib^j: i, j \text{ and } |i-j| \cong 0 \text{ mod } 5\}$ I.e count a's (mod 5), then count b's (mod 5) and accepts iff the two counts are equal By assumtion:

i = 5 * k + l

j = 5 * m + l

 $i - l\%5 = 0 \land j - l\%5 = 0$

|i-j|%5 = 0 for every $0 \le l \le 5$

 $a^t a^v b^j \to t + v = i$

 $x = a^t$

 $y = a^v$

 $z = b^j$

Then by pumping y 3 times $(3 \times y = 3y)$, we end out with the function looking like:

$$(t+v-j)\%5 = 0 \neq (t+3v-j)\%5 = 0.$$

By using pumping lemma, this exercise does not contain a regular language. For some expamples this will still end as a regular language, but will fail most of the time.

(d) $\{w \in \{Y, N\}^* \ w \text{ contains at least two Y's and at most two N's }$ Regular like exercise 5a, since its possible to make a FA for this language.

Figure 2:

(e) $\{w \in \{a,b\}^* \ w$ contains exactly two more b's than a's} L is a infinite language and if we assume that L is regular, we'll try to apply the pumping lemma.

We'll end up with: $w = a^m b^{m+2}$. Then we can write down the xyz:

 $xyz = a^k a^l b^{m+2}$ where k + l = m and:

 $x = a^k$

 $y = a^l$

 $z = b^{m+2}$

Now, by using the pumping lemma, we can tell if the language is regular or not. Because pumping lemma states that $xy^iz\in L$, even if i=0. This leaves us with $xz\in L$. But for this language, that's is not the case, since $xz=a^{k-l}b^{m+2}\notin L$, k+l=m and $k-l\neq m$. In this case L is not regular, since $xz\notin L$.

- (f) $\{w \in \{a,b\}^*$ the number of occurrences of the substring ab is equal to the number of occurrences of the substring ba.
- (g) $\{w \in \{(,)\}^*$ the parentheses are balances $\}$
- (h) $\{ww^R \in \{a,b\}^{\star}\}$
- 6. Can you use the Pumping Lemma for regular languages to show that a language is regular? If yes, explain why. If no, explain why not.

Yes. This is from the Michel Sipser book: "Our technique for proving nonregularity stems from a theorem about regular languages, traditionally called the pumping lemma. This theorem states that all regular languages have a special property. If we can show that a language does not have this property, we are guaranteed that it is not regular."

7. Let $\Sigma = \{a, b\}$. Consider the following grammars.

- (a) $S \to aS|Sb|\epsilon$
 - i. a, b, ϵ , ab, aaa
 - ii. ba, baa, bab, baaa, baba
 - iii. $a^{\star}b^{\star}$
 - iv. L is in this exercise regular since we can write down a regular expression.
- (b) $S \to aSa|bSb|a|b$
 - i. a, aa, aba, aabaa, bababab
 - ii. abaa, aaba, bbab, aaab, ab
 - iii. $w \in (a, b)^* \mid w$ is symmetric.
 - iv. L is in this exercise not regular, this can be proven by applying Pumping Lemma.
- (c) $S \to aS|bS|\epsilon$
 - i. a, b, $\epsilon,$ ab, aaa
 - ii. ∅
 - iii. $w \in (a, b)^* \mid w$ is anything

DFA:

Figure 3:

- iv. L is in this exercise regular since it takes every possible string and can be proven by a FA.
- (d) $S \to aS|aSbS|\epsilon$
 - i. a, ab, aab, aaba, aaabaa
 - ii. b, ba bab, abba, bb
 - iii. $w \in (a,b)^* \mid w$ contains either a equal amount of a's and b's or always more a's than b's.
 - iv. L is in this exercise not regular, this can be proven by applying Pumping Lemma.

For each language defined by the grammars, do the following:

- (a) List five strings that are in L.
- (b) List five strings that are not in L.
- (c) Describe L concisely. You can use regular expressions, set theoretic expressions, etc.
- (d) Indicate whether or not L is regular. Prove your answer.
- 8. Consider the following grammar $G: S \to 0S1|SS|10$.

Show a parse tree produced by G for each of the following strings:

(a) 010110

Figure 4:

(b) 00101101

Figure 5: