Curve Sketching

EXAMPLE 7 Sketch a graph of the function

$$f(x) = x^4 - 4x^3 + 10$$

using the following steps.

- (a) Identify where the extrema of f occur.
- (b) Find the intervals on which f is increasing and the intervals on which f is decreasing.
- (c) Find where the graph of f is concave up and where it is concave down.
- (d) Sketch the general shape of the graph for f.
- (e) Plot some specific points, such as local maximum and minimum points, points of inflection, and intercepts. Then sketch the curve.

Solution The function f is continuous since $f'(x) = 4x^3 - 12x^2$ exists. The domain of f is $(-\infty, \infty)$, and the domain of f' is also $(-\infty, \infty)$. Thus, the critical points of f occur only at the zeros of f'. Since

$$f'(x) = 4x^3 - 12x^2 = 4x^2(x-3),$$

the first derivative is zero at x = 0 and x = 3. We use these critical points to define intervals where f is increasing or decreasing.

Interval	x < 0	0 < x < 3	3 < x
Sign of f'	_	_	+
Behavior of f	decreasing	decreasing	increasing

- (a) Using the First Derivative Test for local extrema and the table above, we see that there is no extremum at x = 0 and a local minimum at x = 3.
- **(b)** Using the table above, we see that f is decreasing on $(-\infty, 0]$ and [0, 3], and increasing on $[3, \infty)$.
- (c) $f''(x) = 12x^2 24x = 12x(x 2)$ is zero at x = 0 and x = 2. We use these points to define intervals where f is concave up or concave down.

Interval	<i>x</i> < 0	0 < x < 2	2 < x
Sign of f''	+	_	+
Behavior of f	concave up	concave down	concave up

We see that f is concave up on the intervals $(-\infty, 0)$ and $(2, \infty)$, and concave down on (0, 2).

(d) Summarizing the information in the last two tables, we obtain the following.

3 < x

FIGURE 4.30 The graph of f(x) = $x^4 - 4x^3 + 10$ (Example 7).

Inflection point

3

(3, -17)

Local minimum

(2, -6)

-10

-5

-10-15

-20

(e) Plot the curve's intercepts (if possible) and the points where y' and y'' are zero. Indicate any local extreme values and inflection points. Use the general shape as a guide to sketch the curve. (Plot additional points as needed.) Figure 4.30 shows the graph of f.

The steps in Example 7 give a procedure for graphing the key features of a function.

Procedure for Graphing y = f(x)

- 1. Identify the domain of f and any symmetries the curve may have.
- 2. Find the derivatives y' and y''.
- 3. Find the critical points of f, if any, and identify the function's behavior at each one.
- 4. Find where the curve is increasing and where it is decreasing.
- 5. Find the points of inflection, if any occur, and determine the concavity of the curve.
- 6. Identify any asymptotes that may exist (see Section 2.6).
- 7. Plot key points, such as the intercepts and the points found in Steps 3-5, and sketch the curve together with any asymptotes that exist.

Sketch the graph of $f(x) = \frac{(x+1)^2}{1+x^2}$. **EXAMPLE 8**

Solution

- The domain of f is $(-\infty, \infty)$ and there are no symmetries about either axis or the origin (Section 1.1).
- 2. Find f' and f''.

$$f(x) = \frac{(x+1)^2}{1+x^2}$$

$$x-intercept at x = -1, y-intercept (y = 1) at x = 0$$

$$f'(x) = \frac{(1+x^2) \cdot 2(x+1) - (x+1)^2 \cdot 2x}{(1+x^2)^2}$$

$$= \frac{2(1-x^2)}{(1+x^2)^2}$$
Critical points: $x = -1, x = 1$

$$f''(x) = \frac{(1+x^2)^2 \cdot 2(-2x) - 2(1-x^2)[2(1+x^2) \cdot 2x]}{(1+x^2)^4}$$

$$= \frac{4x(x^2-3)}{(1+x^2)^3}$$
After some algebra

- 3. Behavior at critical points. The critical points occur only at $x = \pm 1$ where f'(x) = 0(Step 2) since f' exists everywhere over the domain of f. At x = -1, f''(-1) = 1 > 0 yielding a relative minimum by the Second Derivative Test. At x = 1, f''(1) = -1 < 0 yielding a relative maximum by the Second Derivative
- **4.** Increasing and decreasing. We see that on the interval $(-\infty, -1)$ the derivative f'(x) < 0, and the curve is decreasing. On the interval (-1, 1), f'(x) > 0 and the curve is increasing; it is decreasing on $(1, \infty)$ where f'(x) < 0 again.
 - Inflection points. Notice that the denominator of the second derivative (Step 2) is always positive. The second derivative f'' is zero when $x = -\sqrt{3}$, 0, and $\sqrt{3}$. The second derivative changes sign at each of these points: negative on $(-\infty, -\sqrt{3})$, positive on $(-\sqrt{3}, 0)$, negative on $(0, \sqrt{3})$, and positive again on $(\sqrt{3}, \infty)$. Thus each point is a point of inflection. The curve is concave down on the interval $(-\infty, -\sqrt{3})$, concave up on $(-\sqrt{3}, 0)$, concave down on $(0, \sqrt{3})$, and concave up again on $(\sqrt{3}, \infty)$.
 - Asymptotes. Expanding the numerator of f(x) and then dividing both numerator and denominator by x^2 gives

$$f(x) = \frac{(x+1)^2}{1+x^2} = \frac{x^2+2x+1}{1+x^2}$$
 Expanding numerator
$$= \frac{1+(2/x)+(1/x^2)}{(1/x^2)+1}.$$
 Dividing by x^2

We see that $f(x) \to 1^+$ as $x \to \infty$ and that $f(x) \to 1^-$ as $x \to -\infty$. Thus, the line v = 1 is a horizontal asymptote.

Since f decreases on $(-\infty, -1)$ and then increases on (-1, 1), we know that f(-1) = 0 is a local minimum. Although f decreases on $(1, \infty)$, it never crosses the horizontal asymptote y = 1 on that interval (it approaches the asymptote from above). So the graph never becomes negative, and f(-1) = 0 is an absolute minimum as well. Likewise, f(1) = 2 is an absolute maximum because the graph never crosses the asymptote y = 1 on the interval $(-\infty, -1)$, approaching it from below. Therefore, there are no vertical asymptotes (the range of f is $0 \le v \le 2$).

The graph of f is sketched in Figure 4.31. Notice how the graph is concave down as it approaches the horizontal asymptote y = 1 as $x \to -\infty$, and concave up in its approach to v = 1 as $x \to \infty$.

The graph of $y = \frac{(x+1)^2}{1+x^2}$ (Example 8).

Solution

Sketch the graph of $f(x) = \frac{x^2 + 4}{2x}$. **EXAMPLE 9**

- The domain of f is all nonzero real numbers. There are no intercepts because neither x nor f(x) can be zero. Since f(-x) = -f(x), we note that f is an odd function, so the graph of f is symmetric about the origin.
- We calculate the derivatives of the function, but first rewrite it in order to simplify our computations:

$$f(x) = \frac{x^2 + 4}{2x} = \frac{x}{2} + \frac{2}{x}$$
 Function simplified for differentiation

$$f'(x) = \frac{1}{2} - \frac{2}{x^2} = \frac{x^2 - 4}{2x^2}$$
 Combine fractions to solve easily $f'(x) = 0$.

$$f''(x) = \frac{4}{x^3}$$
 Exists throughout the entire domain of f

- 3. The critical points occur at $x = \pm 2$ where f'(x) = 0. Since f''(-2) < 0 and f''(2) > 0, we see from the Second Derivative Test that a relative maximum occurs at x = -2 with f(-2) = -2, and a relative minimum occurs at x = 2 with f(2) = 2.
- **4.** On the interval $(-\infty, -2)$ the derivative f' is positive because $x^2 4 > 0$ so the graph is increasing; on the interval (-2, 0) the derivative is negative and the graph is decreasing. Similarly, the graph is decreasing on the interval (0, 2) and increasing on $(2, \infty)$.
- 5. There are no points of inflection because f''(x) < 0 whenever x < 0, f''(x) > 0 whenever x > 0, and f'' exists everywhere and is never zero throughout the domain of f. The graph is concave down on the interval $(-\infty, 0)$ and concave up on the interval $(0, \infty)$.
- **6.** From the rewritten formula for f(x), we see that

$$\lim_{x\to 0^+}\left(\frac{x}{2}+\frac{2}{x}\right)=+\infty\quad\text{and}\quad \lim_{x\to 0^-}\left(\frac{x}{2}+\frac{2}{x}\right)=-\infty,$$

so the y-axis is a vertical asymptote. Also, as $x \to \infty$ or as $x \to -\infty$, the graph of f(x) approaches the line y = x/2. Thus y = x/2 is an oblique asymptote.

7. The graph of f is sketched in Figure 4.32.

FIGURE 4.32 The graph of $y = \frac{x^2 + 4}{2x}$ (Example 9).

EXAMPLE 10 Sketch the graph of $f(x) = e^{2/x}$.

Solution The domain of f is $(-\infty, 0) \cup (0, \infty)$ and there are no symmetries about either axis or the origin. The derivatives of f are

$$f'(x) = e^{2/x} \left(-\frac{2}{x^2} \right) = -\frac{2e^{2/x}}{x^2}$$

and

$$f''(x) = \frac{x^2 (2e^{2/x})(-2/x^2) - 2e^{2/x}(2x)}{x^4} = \frac{4e^{2/x}(1+x)}{x^4}.$$

Both derivatives exist everywhere over the domain of f. Moreover, since $e^{2/x}$ and x^2 are both positive for all $x \neq 0$, we see that f' < 0 everywhere over the domain and the graph is everywhere decreasing. Examining the second derivative, we see that f''(x) = 0 at x = -1. Since $e^{2/x} > 0$ and $x^4 > 0$, we have f'' < 0 for x < -1 and f'' > 0 for $x > -1, x \neq 0$. Therefore, the point $(-1, e^{-2})$ is a point of inflection. The curve is concave down on the interval $(-\infty, -1)$ and concave up over $(-1, 0) \cup (0, \infty)$.

From Example 7, Section 2.6, we see that $\lim_{x\to 0^-} f(x) = 0$. As $x\to 0^+$, we see that $2/x\to\infty$, so $\lim_{x\to 0^+} f(x) = \infty$ and the *y*-axis is a vertical asymptote. Also, as $x\to -\infty$, $2/x\to 0^-$ and so $\lim_{x\to -\infty} f(x) = e^0 = 1$. Therefore, y=1 is a horizontal asymptote. There are no absolute extrema since f never takes on the value 0. The graph of f is sketched in Figure 4.33.

FIGURE 4.33 The graph of $y = e^{2/x}$ has a point of inflection at $(-1, e^{-2})$. The line y = 1 is a horizontal asymptote and x = 0 is a vertical asymptote (Example 10).

Graphical Behavior of Functions from Derivatives

As we saw in Examples 7–10, we can learn much about a twice-differentiable function y = f(x) by examining its first derivative. We can find where the function's graph rises and falls and where any local extrema are located. We can differentiate y' to learn how the graph bends as it passes over the intervals of rise and fall. We can determine the shape of the function's graph. Information we cannot get from the derivative is how to place the graph in the xy-plane. But, as we discovered in Section 4.2, the only additional information we need to position the graph is the value of f at one point. Information about the asymptotes is found using limits (Section 2.6). The following

figure summarizes how the derivative and second derivative affect the shape of a graph.

