

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 953 639 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 03.11.1999 Bulletin 1999/44

(21) Application number: 98107925.4

(22) Date of filing: 30.04.1998

(51) Int. Cl.⁶: **C12N 15/13**, C07K 16/40, C07K 16/46, C12N 15/62, C12N 15/85, C12N 5/10, C07K 19/00, A61K 47/48,

A61K 51/10, A61K 39/395, G01N 33/577, G01N 33/574

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

Designated Extension States
AL LT LV MK RO SI

(71) Applicant:

Boehringer Ingelheim International GmbH
55216 Ingelheim (DE)

(72) Inventors:

 Park, John Edward 88400 Biberach/Riss (DE) Garin-Chesa, Pilar 88400 Biberach/Riss (DE)

 Bamberger, Uwe 88416 Ochsenhausen (DE)

Leger, Olivier
 74100 Annemasse (FR)

 Saldanha, Jose Enfield Middlesex, EN1 1TE (GB)

Rettig, Wolfgang J.
 88400 Biberach a.d. Riss (DE)

Remarks:

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

(54) FAPalpha-specific antibody with improved producibility

(57) Recombinant antibody proteins are provided that specifically bind fibroblast activation protein alpha (FAPα) and comprise framework modifications resulting in the improved producibility in host cells. The invention also relates to the use of said antibodies for diagnostic and therapeutic purposes and methods of producing said antibodies.

ATTORNEY DOCKET NUMBER: 11183-003-999 SERIAL NUMBER: 10/524,134

REFERENCE: B12

BEST AVAILABLE COP

Description

10

Field of the invention

[0001] The present invention relates to antibody proteins that specifically bind fibroblast activation protein alpha (FAPα). The invention also relates to the use of said antibodies for diagnostic and therapeutic purposes and methods of producing said antibodies.

Background of the invention

[0002] The invasive growth of epithelial cancers is associated with a number of characteristic cellular and molecular changes in the supporting stroma. A highly consistent molecular trait of the reactive stroma of many types of epithelial cancer is induction of the fibroblast activation protein alpha (from now on referred to as FAP), a cell surface molecule of reactive stromal fibroblasts originally identified with monoclonal antibody F19 (Garin-Chesa P., Old L. J. and Rettig W. J. (1990) Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. *Proc. Natl. Acad. Sci.* 87: 7235). Since the FAP antigen is selectively expressed in the stroma of a range of epithelial carcinomas, independent of location and histological type, a FAP-targeting concept has been developed for imaging, diagnosis and treatment of epithilial cancers and certain other conditions. For this purpose a monoclonal antibody termed F19 that specifically binds to FAP was developed and described in US Patent 5,059,523, which is hereby incorporated by reference in its entirety.

[0003] One serious problem that arises when using non-human antibodies for applications in vivo in humans is that they quickly raise a human anti-non-human response which reduces the efficacy of the antibody in patients and impairs continued administration. Humanisation of non-human antibodies is commonly achieved in one of two ways: (1) by constructing non-human/human chimeric antibodies, wherein the non-human variable regions are joined to human constant regions (Boulianne G. L., Hozumi N. and Shulman, M. J. (1984) Production of functional chimaeric mouse/human antibody Nature 312: 643) or (2) by grafting the complementarity determining regions (CDRs) from the non-human variable regions to human variable regions and then joining these "reshaped human" variable regions to human constant regions (Riechmann L., Clark M., Waldmann H. and Winter G. (1988) Reshaping human antibodies for therapy. Nature 332: 323). Chimeric antibodies, although significantly better than mouse antibodies, can still elicit an anti-mouse response in humans (LoBuglio A. F., Wheeler R. H., Trang J., Haynes A., Rogers K., Harvey E. B., Sun L., Ghrayeb J. and Khazaeli M. B. (1989) Mouse/human chimeric monoclonal antibody in man: Kinetics and immune response. Proc. Natl. Acad. Sci. 86: 4220). CDR-grafted or reshaped human antibodies contain little or no protein sequences that can be identified as being derived from mouse antibodies. Although an antibody humanised by CDR-grafting may still be able to elicit some immune reactions, such as an anti-allotype or an anti-idiotypic response, as seen even with natural human antibodies, the CDR-grafted antibody will be significantly less immunogenic than a mouse antibody thus enabling a more prolonged treatment of patients.

[0004] Another serious limitation relating to the commercial use of antibodies for diagnosis, imaging and therapy is their producibility in large amounts. In many instances recombinant expression of native, chimeric and/or CDR-grafted antibodies in cell culture systems is poor. Factors contributing to poor producibility may include the choice of leader sequences and the choice of host cells for production as well as improper folding and reduced secretion. Improper folding can lead to poor assembly of heavy and light chains or a transport incompetent conformation that forbids secretion of one or both chains. It is generally accepted, that the L-chain confers the ability of secretion of the assembled protein. In some instances multiple or even single substitutions can result in the increased producability of antibodies.

[0:005] Because of the clinical importance of specific immunological targeting *in vitro* and *in vivo* of specific disease-related antigens for diagnosis and therapy in humans, there is a growing need for antibodies that combine the features of antigen specificity, low imunogenicity and high producibility.

[0006] Therefore, the problem underlying the present invention was to provide antibody proteins that combine the properties of specific binding to FAP, low immunogenicity in humans, and high producibility in recombinant systems.

50 Disclosure of the invention

[0007] The technical problem is solved by the embodiments characterized in the claims.

[0008] The present invention provides new antibody proteins having the complementary determining regions of the monoclonal antibody F19 (ATCC Accession No. HB 8269), said new antibody proteins specifically binding to fibroblast activation protein (FAP), characterised in that they have framework modifications resulting in the improved producability in host cells as compared to a chimeric antibody having the variable regions of F19 and foreign constant regions.

[0009] As used herein, an "antibody protein" is a protein with the antigen binding specificity of a monoclonal antibody.

[0010] "Complementarity determining regions of a monoclonal antibody" are understood to be those amino acid

sequences involved in specific antigen binding according to Kabat (Kabat E. A., Wu T. T., Perry H. M., Gottesman K. S. and Foeller C. (1991) Sequences of Proteins of Immunological Interest (5th Edn). NIH Publication No. 91-3242. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, MD.) in connection with Chothia and Lesk (Chothia and Lesk, J. Mol. Biol., 196:901-917 (1987)).

[0011] As used herein, the term "framework modifications" refers to the exchange, deletion or addition of single or multiple amino acids in the variable regions surrounding the individual complementarity determining regions. Framework modifications may have an impact on the immunogenicity, producibility or binding specificity of an antibody protein.

[0012] "Fibroblast activation protein (FAP)", also designated fibroblast activation protein alpha (FAP α), is a membrane-bound glycoprotein belonging to the serine protease gene family (WO 97/34927). No shed or secreted form of FAP is known.

[0013] FAP can be characterized by its binding to the monoclonal antibody F19 (F19 is obtainable from the hybridoma cell line with the accession No. HB 8269 deposited at the ATCC).

[0014] The term "fibroblast activation protein specific binding" of an antibody protein is defined herein by its ability to specifically recognise and stably bind FAP-expressing human cells. The binding specificity of the proteins of the invention can be determined by standard methods for the evaluation of binding specificity such as described in an exemplary fashion in example 6, 8 and example 12.

[0015] The term "chimeric antibody" refers to an antibody protein having the light and heavy chain variable regions as described in figures 17 and 18 and foreign constant regions. "Foreign constant regions" as defined herein are constant regions which are different from the constant regions of F19. For comparing an antibody protein of the invention to a chimeric antibody it is to be understood that such a chimeric antibody must contain the same constant regions as said antibody protein. For the purpose of demonstration and comparison alone the human constant heavy and light chains as described in Figures 19 to 22 are used in an exemplary fashion.

[0016] To provide the antibody proteins of the present invention, the nucleic acid sequences of the heavy and light chain genes of the murine antibody designated F19 were determined from RNA extracted from F19 hybridoma cells (ATCC Accession No. HB 8269).

[0017] In one embodiment the present invention relates to antibody proteins having the complementary determining regions of the monoclonal antibody F19 (ATCC Accession No. HB 8269), said new antibody proteins specifically binding to fibroblast activation protein (FAP), characterized in that they have framework modifications resulting in the improved producability in host cells as compared to a chimeric antibody having the variable regions of F19 and foreign constant regions, wherein said antibody protein is derived from the murine antibody designated F19 (ATCC Accession No. HB 8269).

[0018] To generate humanised FAP-specific antibody proteins a chimeric antibody was constructed, having variable regions of the light and heavy chains of F19 and human light and heavy constant regions, respectively. The construction and production of chimeric mouse/human antibodies is well known (Boulianne et al. (1984), referenced above) and demonstrated in an exemplary fashion in examples 1 and 2.

[0019] Therefore, in a further embodiment the invention relates to antibody proteins according to the invention, characterised in that they have a variable light chain region and a variable heavy chain region, each joined to a human constant region.

[0020] In particular, the variable region of the light chain was joined to a human kappa constant region and the variable region of the heavy chain was joined to a human gamma-1 constant region. Other human constant regions for humanising light and heavy chains are also available to the expert. A human kappa and a human gamma-1 constant regions were used for demonstrating the invention in an exemplary fashion only.

[0021] Therefore, in one particular embodiment the antibody proteins of the invention contain a human kappa constant region.

[0022] Also, in another particular embodiment the antibody proteins of the invention contain a human gamma-1 constant region.

[0023] One particular "chimeric F19 antibody" protein (cF19) consists of the light and heavy chain variable and constant regions described in Figures 17 to 22. cF19 demonstrates specific binding and high avidity to the FAP antigen. As demonstrated in example 2, the expression of cF19 in COS cells is poor, ranging from about 10 to 60 ng/ml, which is at least 10 fold less than most antibodies.

[0024] In an attempt to increase expression levels of cF19, the leader sequence of the F19 V_L region was changed by substitution of Proline to Leucine at position -9.

[0025] This single change in amino acid in the leader sequence resulted in at least doubling the amount of chimeric antibody produced in COS cells. For the expression of this particular chimeric antibody in COS cells the following mutated leader sequence of the light chain: MDSQAQVLMLLLLWVSGTCG, and the following leader sequence of the heavy chain: MGWSWVFLFLLSGTAGVLS were used.

[0026] According to the invention the term "improved producibility" in host cells refers to the substantial improvement of expression levels and/or purified antibody yields when compared with the expression levels and/or antibody yields of

[0027] While the mutation of the leader sequence only lead to the doubling of the expression yield of the chimeric F19 antibody, a substantial improvement as defined herein refers to an improvement in expression level and/or purification yield of at least a factor of 10.

[0028] In a preferred embodiment, the invention refers to antibody proteins, characterised in that their expression levels in crude media samples as determined by ELISA and/or purified antibody yields exceed the expression levels and/or purification yields of the chimeric antibodies without framework modifications by at least a factor of 10.

[0029] In more preferred embodiment, the invention refers to antibody proteins, characterised in that their expression levels in crude media samples as determined by ELISA and/or purified antibody yields exceed the expression levels and/or purification yields of the chimeric antibodies without framework modifications by at least a factor of 20.

[0030] In a most preferred embodiment, antibody proteins, characterised in that their expression levels in crude media samples as determined by ELISA and/or purified antibody yields exceed the expression levels and/or purification yields of the chimeric antibodies without framework modifications by at least a factor of 100.

[0031] Improved producability of the recombinant antibody proteins of the invention can be demonstrated for eucaryotic cells in general as shown for COS (cells derived from the kidney of an African green monkey) and CHO (Chinese hamster ovary derived cells) eucaryotic cells (see examples 5 and 11). In a further embodiment, the present invention relates to recombinant antibody proteins characterised in that they display improved producability in eucaryotic cells.

[0032] In a preferred embodiment the present invention relates to antibody proteins, wherein said eucaryotic cell is a chinese hamster ovary cell (CHO cell).

[0033] It was unexpectably found that certain framework modifications of the light chain variable regions determine the improved producibility of the antibody proteins of the invention. Three versions of reshaped light chain variable regions, designated version A, B, and C, as described in Figures 1 to 6, were prepared.

[0034] Light chain variable region versions A, B, and C demonstrate substantially improved producibility in CHO cells (see example 11). While light chain variable region versions A and C differ from light chain variable region version B by only two common amino acid residues they display an even further substantial improvement in producibility. There is at least another 10 fold difference in antibody secretion levels between the human reshaped F19 light chain version B and versions A or C. Reshaped human F19 light chain version A and B only differ in their amino acid sequences by two residues at positions 36 (Tyr to Phe mutation) and 87 (Tyr to Asp mutation) (nomenclature according to Kabat). This negative effect on the secretory capability of antibodies containing the light chain variable region version B could have been indirect if the Tyr to Asp and Tyr to Phe mutations, considered individually or together, merely caused improper folding of the protein. But this is unlikely to be the case since antigen binding assays show that immunoglobulins containing F19 light chain version B have similar avidities to those paired with F19 light chain version A or C, suggesting that they were not grossly misfolded.

[0035] Residue 87 in reshaped human F19 light chain version B seems particularly responsible for the reduction of secretion when compared to versions A and C.

[0036] In a preferred embodiment, the present invention relates to antibody proteins according to the invention, wherein the amino acid in Kabat position 87 of the light chain region is not asparagine.

[0037] In a more preferred embodiment, the invention relates to antibody proteins according to the invention, wherein the amino acid in Kabat position 87 of the light chain region is selected from aromatic or aliphatic amino acids.

[0038] In a most preferred embodiment, the present invention relates to antibody proteins according to the invention, wherein the aromatic amino acid in Kabat position 87 of the light chain region is a tyrosine or phenylalanine.

[0039] In a further embodiment, the present invention also pertains to antibody proteins according to the invention, wherein the aminoacid in Kabat position 36 of the light chain region is selected from aromatic amino acids.

[0040] In a particular embodiment the invention relates to the specific antibody proteins that may be prepared from the individually disclosed reshaped variable regions of the light and heavy chains.

[0041] Especially light chain variable region versions A and C are particularly suitable to practice the invention because of their exceptionally high producability, while retaining full FAP-binding specificity and achieving low immunogenicity. This holds especially true when compared to the chimeric antibody having the variable regions of F19 and the same constant regions but also when compared to light chain version B.

[0042] Therefore, in one embodiment the present invention relates to antibody proteins that contain the variable region of the light chain as set torth in SEQ ID NO: 2. In a further embodiment the invention also relates to antibody proteins, characterised in that the variable region of the light chain is encoded by a nucleotide sequence as set forth in SEQ ID NO: 1

SEQ ID NO: 1.

[0043] In one embodiment the present invention relates to antibody proteins that contain the variable region of the light chain as set forth in SEQ ID NO: 6.

[0044] In a further embodiment the invention also relates to antibody proteins characterised in that the variable region

of the light chain is encoded by a nucleotide sequence as set forth in SEQ ID NO: 5.

[0045] The present invention also discloses several different variable regions of the heavy chain that work particularly well with the variable regions of the light chain versions A and C in terms of improved producability.

[00:46] In one embodiment the invention relates to antibody proteins containing a variable region of the heavy chain as set forth in any one of SEQ ID NOs: 8, 10, 12, 14.

[0047] In another embodiment the invention relates to antibody proteins characterised in that the variable region of the heavy chain is encoded by a nucleotide sequence as set forth in any one of SEQ ID NOs: 7, 9, 11, 13.

[0048] In a very particular embodiment the invention relates to antibody proteins containing the variable region of the light chain as set forth in SEQ ID NO: 2 and the variable region of the heavy chain as set forth in SEQ ID NOs: 12.

[0049] In a further particular embodiment the invention relates to antibody proteins characterised in that the variable region of the light chain is encoded by a nucleotide sequence as set forth in SEQ ID NO: 1 and the variable region of the heavy chain is encoded by a nucleotide sequence as set forth in SEQ ID NO: 11.

[0050] In a further particular embodiment the invention relates to antibody proteins containing the variable region of the light chain as set forth in SEQ ID NO: 2 and the variable region of the heavy chain as set forth in SEQ ID NOs: 8.

[0051] In a further particular embodiment the invention relates to antibody proteins characterised in that the variable region of the light chain is encoded by a nucleotide sequence as set forth in SEQ ID NO: 1 and the variable region of the heavy chain is encoded by a nucleotide sequence as set forth in SEQ ID NO: 7.

[0052] In a further aspect, the present invention relates to nucleic acid molecules containing the coding information for the antibody proteins according to the invention as disclosed above. Preferably, a nucleic acid molecule according to the present invention is a nucleic acid molecule containing a nucleotide sequence selected from SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, or 15.

[0053] A further aspect of the present invention is a recombinant DNA vector containing the nucleotide sequence of any one of the above-mentioned nucleic acids, especially when said nucleotide sequence is operationally linked to an expression control sequence as in expression vectors. Preferred is a recombinant DNA vector, said vector being an expression vector.

[0054] A further aspect of the present invention is a host cell carrying a vector as described, especially an expression vector. Such a host cell can be a procaryotic or eucaryotic cell. Preferably, such a host cell is a eucaryotic cell, a yeast cell, or a mammalian cell. More preferably, said host cell is an CHO (Chinese hamster ovary) cell or a COS cell.

[0055] Accordingly, a still further aspect of the present invention is a method of producing antibody proteins according to the invention. Such a method comprises the steps of:

- (a) cultivating a host cell as described above under conditions where said antibody protein is expressed by said host cell, and
- (b) isolating said antibody protein.

[0056] Mammalian host cells, preferably CHO or COS cells are preferred. Host cells for producing the antibody proteins of the invention may be transfected with a single vector containing the expression units for both, the light and the heavy chain. In one particular embodiment the method of producing antibody proteins according to the invention pertains to host cells, wherein said host cells are cotransfected with two plasmids carrying the expression units for the light and heavy chains respectively.

[0057] The antibody proteins of the invention provide a highly specific tool for targeting therapeutic agents to the FAP antigen. Therefore, in a further aspect, the invention relates to antibody proteins according to the invention, wherein said antibody protein is conjugated to a therapeutic agent. Of the many therapeutic agents known in the art, therapeutic agents selected from the group consisting of radioisotopes, toxins, toxoids, inflammatogenic agents, enzymes, antisense molecules, peptides, cytokines, and chemotherapeutic agents are preferred.

[0058] Among the radioisotopes gamma, beta and alpha-emitting radioisotypes may be used as a therapeutic agent. β -emitting radioisotopes are preferred as therapeutic radioisotopes. ¹⁸⁶Rhenium, ¹⁸⁸Rhenium, ¹³¹Iodine and ⁹⁰Yttrium have been proven to be particularly useful β -emitting isotopes to achieve localized irradiation and destruction of malignant tumor cells. Therefore, radioisotopes selected from the group consisting of ¹⁸⁶Rhenium, ¹⁸⁸Rhenium, ¹³¹Iodine and ⁹⁰Yttrium are particularly preferred as therapeutic agents conjugated to the antibody proteins of the invention.

[0059] A further aspect of the present invention pertains to antibody proteins according to the invention, characterised in that they are labeled. Such an FAP-specific labeled antibody allows for the localisation and/or detection of the FAP antigen in vitro and/or in vivo. A label is defined as a marker that may be directly or indirectly detectable. An indirect marker is defined as a marker that cannot be detected by itself but needs a further directly detectable marker specific for the indirect marker. Preferred labels for practicing the invention are detectable markers. From the large variety of detectable markers, a detectable marker selected from the group consisting of enzymes, dyes, radioisotopes, and biotin is most preferred.

[0030] A further aspect of the present invention relates to antibody proteins according to the invention, characterised

5

[0031] One aspect of the present invention relates to pharmaceutical compositions containing an antibody protein according to the present invention as described above and a pharmaceutically acceptable carrier useful for treating tumors, wherein said tumors are associated with activated stromal fibroblasts. There are two possible effector principles for an anti-tumor stroma immunotherapy that may act synergistically: (a) An unmodified (unconjugated, 'naked') anti-body according to the invention may induce immune destruction or inflammatory reactions in the tumor stroma while (b) an antibody conjugated to a therapeutic agent, such as for example, a radioisotope or other toxic substance, may achieve localized irradiation and destruction of the malignant tumor cells.

[0052] One further embodiment are pharmaceutical compositions containing an antibody protein according to the invention conjugated to a therapeutic agent as described above and a pharmaceutically acceptable carrier useful for treating tumors, wherein said tumors are associated with activated stromal fibroblasts. Another embodiment pertains to pharmaceutical compositions containing an antibody protein according to the present invention conjugated to an imageable agent as described above and a pharmaceutically acceptable carrier useful for imaging the presence of activated stromal fibroblasts in a healing wound, inflamed skin or a tumor, in a human patient. A most preferred embodiment relates to the pharmaceutical compositions mentioned above, wherein said tumors are tumors selected from the cancer group consisting of colorectal cancers, non-small cell lung cancers, breast cancers, head and neck cancer, ovarian cancers, lung cancers, invasive bladder cancers, pancreatic cancers and cancers metastatic of the brain.

[0053] In an animal or human body, it can proove advantageous to apply the pharmaceutical compositions as described above via an intravenous or other route, e.g. systemically, locally or topically to the tissue or organ of interest, depending on the type and origin of the disease or problem treated, e.g. a tumor. For example, a systemic mode of action is desired when different organs or organ systems are in need of treatment as in e.g. systemic autoimmune diseases, or allergies, or transplantations of foreign organs or tissues, or tumors that are diffuse or difficult to localise. A local mode of action would be considered when only local manifestations of neoplastic or immunologic action are expected, such as, for example local tumors.

[0054] The antibody proteins of the present invention may be applied by different routes of application known to the expert, notably intravenous injection or direkt injektion into target tissues. For systemic application, the intravenous, intravascular, intramuscular, intraarterial, intraperitoneal, oral, or intrathecal route are preferred.

[0085] A more local application can be effected subcutaneously, intracutaneously, intracardially, intralebally, intramedullarly, intrapulmonarily or directly in or near the tissue to be treated (connective-, bone-, muscle-, nerve-, epithilial tissue). Depending on the desired duration and effectiveness of the treatment, pharmaceutical antibody compositions may be administered once or several times, also intermittently, for instance on a daily basis for several days, weeks or months and in different dosages.

[0036] For preparing suitable antibody preparations for the applications described above, the expert may use known injectable, physiologically acceptable sterile solutions. For preparing a ready-to-use solution for parenteral injection or infusion, aqueous isotonic solutions, such as e.g. saline or corresponding plasmaprotein solutions are readily available. The pharmaceutical compositions may be present as lyophylisates or dry preparations, which can be reconstituted with a known injectable solution directly before use under sterile conditions, e.g. as a kit of parts. The final preparation of the antibody compositions of the present invention are prepared for injection, infusion or perfusion by mixing purified antibodies according to the invention with a sterile physiologically acceptable solution, that may be supplemented with known carrier substances or/and additives (e.g. serum albumine, dextrose, sodium bisulfite, EDTA).

[0057] The amount of the antibody applied depends on the nature of the disease.

[0038] Furthermore, one aspect of the present invention relates to the use of the antibody proteins according to the invention for the treatment of cancer. In a preferred embodiment the present invention relates to the use of antibody proteins according to the invention conjugated to a therapeutic agent as described above for the treatment of cancer. In another preferred embodiment the present invention relates to the use of antibody proteins according to the invention conjugated to an imageable agent for imaging activated stromal fibroblasts. In a further preferred embodiment the present invention relates to the use of labeled antibody proteins according to the invention for detecting the presence of activated stromal fibroblasts in a sample.

[0059] One aspect of the invention relates to a method of treating tumors, wherein the tumor is associated with activated stromal fibroblasts capable of specifically forming a complex with antibody proteins according to the invention, present as naked/unmodified antibodies, modified antibody proteins, such as e.g. fusion proteins, or antibody proteins conjugated to a therapeutic agent, which comprises contacting the tumor with an effective amount of said antibodies. In a preferred embodiment the present invention relates to a method of treating tumors as mentioned above, wherein the tumor is a tumor having cancer cells selected from the cancer group consisting of colorectal cancers, non-small cell lung cancers, breast cancers, head and neck cancer, ovarian cancers, lung cancers, invasive bladder cancers, pancreatic cancers and metastatic cancers of the brain. The method of treating tumors as described above my be effected in

in vitro or in vivo.

5

20

30

40

45

55

[0070] A further aspect of the invention relates to a method of detecting the presence of activated stromal fibroblasts in wound healing, inflammation or in tumors, characterised in that

- (a) a sample, possibly containing activated stromal fibroblasts, is contacted with an antibody protein according to the invention under conditions suitable for the formation of a complex between said antibody and antigen,
- (b) detecting the presence of said complex, thereby detecting the presence of activated stromal fibroblasts in wound healing, inflammation or a tumor.
- [0071] In a preferred embodiment, the present invention relates to a method of detecting the presence of activated stromal fibroblasts in a tumor, wherein the tumor is a tumor having cancer cells selected from the cancer group consisting of colorectal cancers, non-small cell lung cancers, breast cancers, head and neck cancer, ovarian cancers, lung cancers, bladder cancers, pancreatic cancers and metastatic cancers of the brain. Most preferred antibody proteins of the invention are those which are characterised in that they are labeled as mentioned above.
 - [0072] A further aspect of the invention relates to a method of imaging the presence of activated stromal fibroblasts in a healing wound, inflamed skin or a tumor, in a human patient, characterised in that
 - (a) an antibody protein according to the present invention conjugated to an imageable agent is administered to a human patient under conditions suitable for the formation of an antibody-antigen complex,
 - (b) imaging any complex formed in this manner,
 - (c) thereby imaging the presence of activated stromal fibroblasts in a human patient.

[0073] In a preferred embodiment the present invention relates to a method of imaging the presence of activated stromal fibroblasts as described above in tumors, wherein the tumor is a tumor having cancer cells selected from the cancer group consisting of colorectal cancers, non-small cell lung cancers, breast cancers, head and neck cancer, ovarian cancers, lung cancers, bladder cancers, pancreatic cancers and metastatic cancers of the brain.

[0074] In a further aspect the present invention relates to a method of detecting tumor-stroma, characterised in that

- (a) a suitable sample is contacted with an antibody protein according to the present invention, under conditions suitable for the formation of an antibody-antigen complex,
- (b) detecting the presence of any complex so formed.
- (c) relating the presence of said complex to the presence of tumor-stroma.

[0075] Antibody proteins for practicing the invention are preferably labelled with a detectable marker.

[0076] In a further aspect the present invention relates to a method of imaging tumor-stroma in a human patient, which comprises

- (a) adminstering to the patient an antibody according to the invention conjugated to an imageable agent as described above under conditions suitable for the formation of an antibody-antigen complex,
- (b) imaging any complex so formed, and thereby imaging the presence of tumor-stroma in a human patient.

Figure legends

[0077]

- Fig. 1. DNA sequence of F19 human reshaped light chain variable region version A (hF19L_A) SEQ ID NO:1.
- Fig. 2. Amino acid sequence of F19 human reshaped light chain variable region version A (hF19L_A) SEQ ID NO: 2.
- Fig. 3. DNA sequence of F19 human reshaped light chain variable region version B (hF19L_B) SEQ ID NO: 3. Nucleotides differing from version A are underlined and in bold type.
 - **Fig. 4.** Amino acid sequence of F19 human reshaped light chain variable region version B (hF19L_B) SEQ ID NO: 4. Amino acids differing from version A are underlined and in bold type.
 - **Fig. 5.** DNA sequence of F19 human reshaped light chain variable region version C (hF19 L_C) SEQ ID NO:5. Nucleotides differing from version A are underlined and in bold type.

- Fig. 6. Amino acid sequence of F19 human reshaped light chain variable region version C (hF19L_C) SEQ ID NO: 6. Amino acids differing from version A are underlined and in bold type.
- Fig. 7. DNA sequence of F19 human reshaped variable region heavy chain version A (hF19HA) SEQ ID NO: 7.
- Fig. 8. Amino acid sequence of F19 human reshaped heavy chain variable region version A (hF19H_A) SEQ ID NO: 8
- Fig. 9. DNA sequence of F19 human reshaped heavy chain variable region version B (hF19H_B) SEQ ID NO: 9. Nucleotides differing from version A are underlined and in bold type.
 - **Fig. 10.** Amino acid sequence of F19 human reshaped heavy chain variable region version B (hF19H_B) SEQ ID NO: 10. Amino acids differing from version A are underlined and in bold type.
- Fig. 11. DNA sequence of F19 human reshaped heavy chain variable region version C (hF19H_C) SEQ ID NO: 11.
 Nucleotides differing from version A are underlined and in bold type.
 - **Fig. 12.** Amino acid sequence of F19 human reshaped heavy chain variable region version C (hF19H $_C$) SEQ ID NO: 12. Amino acids differing from version A are underlined and in bold type.
 - Fig. 13. DNA sequence of F19 human reshaped heavy chain variable region version D (hF19 H_D) SEQ ID NO: 13. Nucleotides differing from version A are underlined and in bold type.
 - Fig. 14. Amino acid sequence of F19 human reshaped heavy chain variable region version D (hF19H $_D$) SEQ ID NO: 14. Amino acids differing from version A are underlined and in bold type.
 - **Fig. 15.** DNA sequence of F19 human reshaped heavy chain variable region version E (hF19 $H_{\rm E}$) SEQ ID NO: 15. Nucleotides differing from version A are underlined and in bold type.
- Fig. 16. Amino acid sequence of F19 human reshaped heavy chain variable region version E (hF19H_E) SEQ ID NO: 16. Amino acids differing from version A are underlined and in bold type
 - Fig. 17. Amino acid sequence of F19 chimeric light chain variable region (chF19LC) SEQ ID NO: 17.
- Fig. 18. Amino acid sequence of F19 chimeric heavy chain variable region (chF19HC) SEQ ID NO: 18.
 - Fig. 19. DNA sequence of human kappa light constant chain SEQ ID NO: 19.
 - Fig. 20. Amino acid sequence of human light constant chain SEQ ID NO: 20.
 - Fig. 21. DNA sequence of human heavy constant chain SEQ ID NO: 21.
 - Fig. 22. Amino acid sequence of human heavy constant chain SEQ ID NO: 22.
- 45 Fig. 23. Mammalian cell expression vectors used to produce chimeric and reshaped human antibodies with human kappa light chains and human gamma-1 heavy chains.
 - A. Light chain expression vector: pKN100

5

10

20

25

40

- B. Heavy chain expression vector: pG1D105
- Fig 24. DNA and amino acid sequences of mouse F19 light chain variable region as modified for use in the construction of chimeric F19 light chain. Restriction sites are indicated by bold letters. The Kozak sequence, CDR's 1 to 3 and the splice donor site are underlined.
- Fig 25. DNA and amino acid sequences of mouse F19 heavy chain variable region as modified for use in the construction of chimeric F19 heavy chain. Restriction sites are indicated by bold letters. The Kozak sequence and the splice donor site are underlined.

Flg. 26. DNA sequence of F19 chimeric antibody cloned into pKN100 mammalian expression vector. Restriction sites are indicated by bold letters and underlined. CDR's 1 to 3 and the splice donor site are underlined. This is the DNA sequence of the mouse F19 light chain inside the pKN100 eukaryotic expression vector. This vector has a cDNA version of the human kappa constant region gene (allotype Km(3)) terminated by a strong artificial termination sequence. In addition, the Neo selection gene is also terminated by this artificial sequence and is also in the same orientation as the kappa light chain expression cassette.

The essential components of the pKN100 eukaryotic expression vector are:

```
1-6
                       = EcoRI site
        7 - 1571
                       = HCMVi promoter/enhancer
10
        583 - 587
                       = TATAA box
        610
                       = Start of transcription
        728 - 736
                       = Splice donor site
        731
                       = Beginning of intron
15
        1557
                       = End of intron
        1544 - 1558
                       = Splice acceptor site
         1590 - 1598
                       = Kozak sequence
        1599 - 1658
                       = peptide leader sequence
        1659 - 1997
                       = mouse F19 light chain
20
        1996 - 2004
                       = splice donor site
        2011 - 2657
                       = cDNA copy of human Kappa constant region (Km(3)) gene
        2664 - 2880
                       = Artificial spaC2 termination sequence
        2887 - 7845
                       = This is the pSV2neo vector DNA fragment comprising of the Amp-resistance gene (in the oppo-
                       site orientation), the CoIEI and SV40 origins of replication and the Neo-resistance gene (in the
25
                       same orientation as the HCMVi-KCT cassette)
        7852 - 8068
                       = Artificial spaC2 termination signal
```

This sequence ends immediately upstream of the EcoRI site (position 1-6) at the beginning of the sequence. As a vector this DNA sequence would be circular.

Fig. 27. DNA sequence of F19 chimeric antibody cloned into pg1d105 mammalian expression vector. Restriction sites are indicated by bold letters and underlined. CDR's 1 to 3 and the splice donor site are underlined. This is the DNA sequence of the eukaryotic expression vector pG1D105 containing the mouse F19 heavy chain variable region. This vector contains a cDNA version of the human gamma-1 constant region (allotype G1m^{Non-a}).

The essential components of the construct are:

	1 - 2501	n PP222 hand convene including Association activities and the second convene at the seco
	1 * 250 1	= pBR322 based sequence including Ampicillin resistance gene and ColEI origin plus the SV40 origin and the stimulant SV40 parks are stated as a simple of SV40
	2522 2222	gin and the crippled SV40 early promoter
	2502 - 3226	= dhfr gene
40	3233 - 4073	= SV40 poly A sequence etc.
	4074 - 4079	= ligated BamHI and BgIII site (BstYI)
	4080 - 4302	= SPA site plus C2 termination signal
	4303 - 5867	= HCMVi promoter
	5879 - 5885	= unique HindIII restriction site for cloning of immunoglobulin variable genes
45	5886 - 5894	= Kozak sequence
	5895 - 5951	= signal peptide
	5952 - 6323	= mouse F19 heavy chain
	6323 - 6330	= splice donor site
	6331 - 6336	= unique BamHI restriction site for cloning of immunoglobulin variable genes
50	6337 - 7388	= cDNA copy of human gamma-1 constant regions preceded by a 62 bp intron
	7389 - 7709	= Arnie termination sequence

The human gamma-1 constant region used in this construct has a G1m^{Non-a} allotype which is defined by a Glutamic acid (E) residue at position 356 (according to Eu numbering) and a Methionine (M) residue at position 358 (according to Eu numbering). These two residues are underlined in the sequence above.

Fig. 28. PCR-based method for the construction of human reshaped F19 light chain. This figure provides a schematic overview of the strategy of construction. The dotted lines indicate a complementary sequence of at least 21

55

5

30

bases between the primers.

Fig. 29. Nucleotide and deduced amino acid sequences of reshaped human F19 light chain variable regions version A, B and C. Nucleotide and deduced amino acid sequences are aligned and compared with that of version A, dashes indicate nucleotide identity, dots indicate amino acid identity with this sequence. Amino acids are numbered according to Kabat et al. (1991). The locations of CDRs are indicated in boxes.

Fig. 30. DNA sequence of F19 L_A (human reshaped light chain version A) cloned into pKN100 mammalian expression vector. Restriction sites are indicated by bold letters and underlined. CDR's 1 to 3 and the splice donor site are underlined. This is the DNA sequence of the reshaped F19 light chain version A cloned into pKN100 eukaryotic expression vector. This vector has a cDNA version of the human kappa constant region gene (allotype Km(3)) terminated by a strong artificial termination sequence. In addition, the Neo selection gene is also terminated by this artificial sequence and is also in the same orientation as the kappa light chain expression cassette.

The components of the vector are:

15

20

25

30

35

10

5

```
7 - 1571 = HCMVi promoter/enhancer

583 - 587 = TATAA box.

610 = Start of transcription.
```

728 - 736 = Splice donor site. 731 = Beginning of intron.

1557 = End of intron. 1544 - 1558 = Splice acceptor site.

1590 - 1598 = Kozak sequence 1599 - 1658 = peptide leader sequence

1659 - 1997 = reshaped F19 light chain version A

1659 - 1997 = resnaped r 19 light Glain Version A

1996 - 2004 = splice donor site

2011 - 2657 = cDNA copy of human kappa constant region (Km(3)) gene.

2664 - 2880 = Artificial spaC2 termination sequence.

2887 - 7845 = This is the pSV2neo vector DNA fragment comprising of the Amp-resistance gene (in the oppo-

site orientation), the CoIEI and SV40 origins of replication and the Neo-resistance gene (in the

same orientation as the HCMVi-KCT cassette).

7852 - 8068 = Artificial spaC2 termination signal.

This sequence ends immediately upstream of the EcoRI site (position 1-6) at the beginning of the sequence below. As a vector this DNA sequence would be circular.

Fig. 31. PCR-based method for the construction of human reshaped F19 heavy chain. This figure provides a schematic overview of the strategy of construction. The dotted lines indicate a complementary sequence of at least 21 bases between the primers.

40

Fig. 32. Nucleotide and deduced amino acid sequences of reshaped human F19 heavy chain variable region versions a to e. Nucleotide and deduced amino acid sequences are aligned and compared with that of version A, dashes indicate nucleotide identity, dots indicate amino acid identity with this sequence. Amino acids are numbered according to Kabat et al. (1991). The location of CDRs is indicated by boxes.

45

50

55

Fig. 33. DNA sequence of F19Ha (human reshaped heavy chain version a) cloned into pg1d105 mammalian expression vector. Restriction sites are indicated by bold letters and underlined. CDR's 1 to 3 and the splice donor site are underlined. This is the DNA sequence of the eukaryotic expression vector pG1D105 containing the reshaped version A of F19 heavy chain variable region. This vector contains a cDNA version of the human gamma-1 constant region (allotype G1m^{Non-a}).

The essential components of the construct are:

1 - 2501 = pBR322 based sequence including Ampicillin resistance gene and ColEI origin plus the SV40 origin and the crippled SV40 early promoter

2502 - 3226 = dhfr gene

3233 - 4073 = SV40 poly A sequence etc.

4080 - 4302 = SPA site plus C2 termination signal

4303 - 5867 = HCMVi promoter/enhancer

5879 - 5885	= unique HindIII restriction site for cloning of immunoglobulin variable genes
5886 - 5894	= Kozak sequence
5895 - 5951	= signal peptide
5952 - 6323	= reshaped F19 heavy chain version A
6323 - 6330	= splice donor site
6331 - 6336	= unique BamHI restriction site for cloning of immunoglobulin variable genes
6337 - 7388	= cDNA copy of human gamma-1 constant regions preceded by a 62 bp intron
7389 - 7709	= Arnie termination sequence

The human gamma-1 constant region used in this construct has a G1m^{Non-a} allotype which is defined by a Glutamic acid (E) residue at position 356 (according to Eu numbering) and a Methionine (M) residue at position 358 (according to Eu numbering). These two residues are underlined in the sequence above.

Fig. 34. Heavy (panel A) and light (panel B) chains RNA splicing events taking place during antibody F19 expression in mammalian cells - schematic overview.

- A. Heavy chain RNA splicing
- B. Kappa light chain RNA splicing

Fig. 35. Concentration dependence of LAHC supernatant binding to CD8-FAP.

Fig. 36. Binding of biotinylated L_AH_C to human FAP.

Fig. 37. CD8-FAP carries the F19 epitope as detected with cF19.

Examples

5

10

15

20

25

30

Example 1: Construction of mouse - human chimeric genes

[0078] The chimeric F19 (cF19) antibody was designed to have the mouse F19 V_L and V_H regions linked to human kappa and gamma-1 constant regions, respectively. PCR primers were used to modify the 5'- and 3'- sequences flanking the cDNA sequences coding for the mouse F19 V_L and V_H regions (Table 1). PCR primers specific for F19 light chain V-region were designed. These adapted mouse F19 variable regions were then subcloned into mammalian cell expression vectors already containing the human kappa (pKN100 vector) or gamma-1 (pG1D105 vector) constant regions (Figure 23).

[0079] These vectors employ the human cytomegalovirus (HCMV) promoter/enhancer to efficiently transcribe the light and heavy chains. The vectors also contain the SV40 origin of replication to permit efficient DNA replication and subsequent protein expression in cos cells. The expression vectors were designed to have the variable regions inserted as HindIII-BamHI DNA fragments. PCR primers were designed to introduce these restrictions sites at the 5'- (HindIII) and 3'- (BamHI) ends of the cDNAs coding for the V-regions. In addition the PCR primers were designed to introduce the Kozak sequence (GCCGCCACC) at the 5'-ends of both the light and heavy chain cDNAs to allow efficient translation (Kozak M.: At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. *J. Mol. Biol.* (1987) 196: 947), and to introduce splice donor sites at the 3'-ends of both the light and heavy chain cDNAs for the variable regions to be spliced to the constant regions. The PCR primers used in the construction of the chimeric F19 light and heavy chains are shown in Table 1. The DNA and amino acid sequences of the mouse F19 V_L and V_H regions as adapted for use in the construction of chimeric F19 light and heavy chains are shown in Figures 24 and 25. The DNA sequences of mouse F19 light and heavy chains cloned into the eukaryotic expression vectors pKN100 and pG1D105, respectively, are shown in Figures 26 and 27.

50

TABLE 1:	PCR primers for the	construction of	chimeric	F19 antibody.
----------	---------------------	-----------------	----------	---------------

A. Light chain variable region

5

10

15

20

25

35

40

45

- 1. Primer for the construction of the 5'-end (37mer)
- 5' CAGA **AAGCTT** <u>GCCGCCACC</u> ATG GAT TCA CAG GCC CAG 3'

 Hindlii <u>Kozak sequence</u> M D S Q A Q
- 2. Primer for the construction of the 3'-end (35mer)
- 5' CCGA **GGATCC** <u>ACTCACG TT</u>T CAG CTC CAG CTT GGT 3'
 - BamHI Splice donor site
- B. Heavy chain variable region
- 1. Primer for the construction of the 5'-end (37mer)
- 5' CAGA **AAGCTT** <u>GCCGCCACC</u> ATG GGA TGG AGC TGG GTC 3'

 HindIII Kozak sequence M G W S W V
 - 2. Primer for the construction of the 3'-end (35mer)
 - 5' CCGA GGATCC ACTCACC TGA GGA GAC GGT GAC TGA 3'

 BamHI Splice donor site

Example 2: Expression and binding activity of chimeric F19 antibody

[0080] The two plasmid DNAs coding for the chimeric F19 light and heavy chains (see example 1) were co-transfected into cos cells to look for transient expression of chimeric F19 antibody as described below. After 72 h incubation, the medium was collected, centrifuged to remove cellular debris, and analysed by ELISA for the production of a human IgG1-like antibody. The cos cell supernatant containing the chimeric F19 antibody was analysed for its ability to bind to HT 1080 cells (see example 13) expressing the FAP antigen on their surface.

Transfection of cos cells using electroporation

[0081] The mammalian expression vectors pg1d105 and pKN100 containing the chimeric or reshaped human heavy and light chains versions, respectively, were tested in cos cells to look for transient expression of F19 antibodies. Cos

7 cells were passaged routinely in DMEM (Gibco BRL cat. #41966) containing penicillin (50 IU/ml), streptomycin (50 μ g/ml), L-glutamine and 10% heat-inactivated gamma globulin-free foetal calf serum (FCS, Harlan Sera-Lab cat. # D0001). The DNA was introduced into the cos cells by electroporation using the Gene Pulsar apparatus (BioRad). DNA (10 μ g of each vector) was added to a 0.8ml aliquot of 1×10^7 cells/ml in Phosphate-buffered saline (PBS, Ca²⁺ and Mg²⁺ free). A pulse was delivered at 1,900 volts, 25μ F capacitance. After a 10 min recovery period at ambient temperature the electroporated cells were added to 8 ml of DMEM containing 5% FCS. After 72h incubation at 37°C, the medium was collected, centrifuged to remove cellular debris, and stored under sterile conditions at 4°C for short periods of time, or at -20°C for longer periods.

ELISA method for measuring assembled IgG1/kappa antibody concentrations in cos cell supernatants

[0082] Samples of antibodies produced in transfected cos cells were assayed by ELISA to determine how much reshaped human antibody had been produced. For the detection of human antibody, plates were coated with goat antihuman IgG (Fc₇ fragment specific) antibody (Jackson ImmunoResearch Laboratories Inc., #109-005-098). The samples from cos cells were serially diluted and added to each well. After incubation for 1h at 37°C and washing, horseradish peroxidase conjugated goat anti-human kappa light chain (Sigma, A-7164) was added. After incubation for 30 mins at 37°C and washing, K-blue substrate (mixer of 3,3',5,5' tetramethylbenzidine and hydrogen peroxide, Bionostics Limited, #KB175) was added. After standing at room temperature for 30 mins, the reaction was stopped using Red Stop solution (Bionostics Limited, #RS20) and the optical density read on a microplate reader at 650 nm. Purified human IgG1/Kappa antibody (Sigma, I-3889) of known concentration was used as a standard.

[0083] The expression of chimeric F19 antibody in COS cells was poor (Table 2), between 10 and 60 ng/ml which is at least 10 fold less than most antibodies.

[0084] In an attempt to increase expression levels of the chimeric F19 antibody, the leader sequence of F19 V_L region was changed by substitution of Leucine to Proline at position -9. This single change in amino acid in the leader sequence resulted in at least doubling the amount of chimeric antibody produced in COS cells.

[0085] The test results show that chimeric F19 binds specifically and with the expected avidity to the FAP target.

TABLE 2

Chimeric F19 antibody concentrations in COS cell supernatants (These are the results of three independent transfections)			
Transfe	ected Antibody components	Human γ1/K	
Heavy chain	Kappa light chain	[in µg/ml]	
cF19	cF19 (F19 leader sequence)	0.060	
cF19	cF19 (mutated leader sequence)	0.212	
cF19	cF19 (F19 leader sequence)	0.056	
cF19	cF19 (mutated leader sequence)	0.108	
cF19	cF19 (F19 leader sequence)	0.011	
cF19	cF19 (mutated leader sequence)	0.087	

Example 3: Construction of the reshaped human F19 light chain versions a to c (La-Lb)

[0086] The construction of the first version of reshaped human F19 V_Lregion (La) was carried out using overlapping PCR fragments in a method similar to that described by Daugherty B. L., DeMartino J. A., Law M. F., Kawka D. W., Singer I. I. and Mark G. E. (1991) Polymerase chain reaction facilitates the cloning, CDR-grafting, and rapid expression of a murine monodonal antibody directed against the CD18 component of leukocyte integrins. *Nucl.* Acids Res. 19: 2471. Ten oligonucleotides were synthesised that consisted of five primer pairs, APCR1-vla1, vla2-vla3, vla4-vla5, vla6-vla7, and vla8-APCR4 (Table 3 and Figure 28). There was an overlapping sequence of at least 21 bases between adjacent pairs (Figure 28). APCR1 and APCR4 hybridised to the flanking pUC19 vector sequences. The mutagenic primers were designed such that their 5' end immediately followed the wobble position of a codon. This strategy was used to counteract the gratuitous addition of one nucleotide to the 3' end of the strand complementary to the mutagenic primer by the DNA polymerase during PCR (Sharrocks A. D. and Shaw P. E. (1992) Improved primer design for PCR-based, site-directed mutagenesis. *Nucl. Acids Res.* 20: 1147). The appropriate primer pairs (0.2µM of each) were combined

30

35

40

with 10ng of version "b" of reshaped human L25V_L region cDNA, and 1 unit of AmpliTaq (Perkin Elmer Cetus) DNA polymerase in 50μl of PCR buffer containing 10mM Tris-HCl (pH8.3), 50mM KCl, 200μM dNTPs, and 1.5mM MgCl₂. This was overlaid with mineral oil and PCR was performed for 25 cycles, each cycle consisting of a denaturation step at 94°C for 1 min, a primer annealing step at 55°C for 1 min, and an extension step at 72°C for 2 mins. This was followed by a single cycle consisting of a further elongation step at 72°C for 10 mins followed by cooling to 4°C. The ramp time between the primer-annealing and extension steps was 2.5 mins. The PCR products of the five reactions (A, B, C, D and E) were then purified by gel electrophoresis followed by DNA elution using Wizard PCR preps (Promega). PCR products A, B, C, D, and E were assembled by their complementarity to one another. In the second set of PCR reactions, PCR products B and C, and D and E, (50ng of each) were added to 50µl PCR reactions (as described above) each containing 1 unit of AmpliTaq (Perkin Elmer Cetus) DNA polymerase. The reactions were cycled for 20 cycles as described above with the exception that the annealing temperature was raised to 60°C. In the third set of PCR reactions, PCR products F and G were PCR-amplified using 1 µl of each prior PCR reaction and the appropriate pair of PCR primers (vla2-vla5 or vla6-APCR4). The PCR reactions contained 1 unit of AmpliTaq DNA polymerase in 50 μl PCR reaction (as described above) and were amplified for 25 cycles as in the first stage. In the fourth set of PCR reactions, the PCR product H was PCR-amplified using 1 µl of each prior PCR reaction and the vla2-APCR4 pair of PCR primers. Finally, PCR products A and H were assembled by their own complementarity in a two step-PCR reaction similar to that described above using RSP and UP as the terminal primers. The fully assembled fragment representing the entire reshaped human F19 V_I region including a leader sequence was digested with HindIII and BamHI and cloned into pUC19 for sequencing. A clone having the correct DNA sequence was designated reshF19La (Figure 29) and was then subcloned into the eukaryotic expression vector pKN100. The DNA sequence of reshF19La cloned into pKN100 is shown in Figure 30.

[0087] The second version of reshaped human F19 V_Lregion (Lb) was constructed using the same scheme as that described for La but where vla4 and vla7 primers were substituted by vlb4 and vlb7 respectively (Table 3). The DNA sequence of Lb is shown in Figure 29.

[0088] The third version of reshaped human F19 V_Lregion (Lc) was constructed using the QuikChange[™] site-directed mutagenesis kit from Stratagene. The QuikChange site-directed mutagenesis method was performed according to the manufacturer's instructions, using reshF19La in pKN100 vector as double stranded DNA template. The mutagenic oligonucleotide primers F19Lc-sense and F19Lc-antisense (Table 3) for use in this protocol were designed according to the manufacturers instructions. Briefly, both the mutagenic primers contained the desired point mutation (codon TTT at Kabat residue position 49 (Phe) changed to TAT coding for Tyr) and annealed to the same sequence on opposite strands of La in pKN100 vector. The point mutation was verified by DNA sequencing the entire V_L region. The DNA sequence of Lc is shown in Figure 29. To eliminate the possibility that random mutations occurred in the pKN100 during the PCR reaction, the V_L region was cut out of the pKN100 vector as an HindIII/BamHI fragment and re-subcloned into an unmodified pKN100 vector cut with the same two restriction enzymes beforehand.

35

40

45

50

55

TABLE 3: PCR primers for the construction of reshaped human F19 light chain variable regions

1. Primers for the synthesis of version "a"

F19vla1 (36 mer):

5

10

15

20

25

30

.

35

40

45

50

55

5' GTCATCACAATGTCTCCGGAGGAACCTGGAACCCAG 3'

F19vla2 (29 mer):

5' CTCCGGAGACATTGTGATGACCCAATCTC 3'

F19vla3 (45 mer):

5' GAATATAAAAGGCTCTGACTGGACTTGCAGTTGATGGTGGCCCTC 3'

	F19vla4 (72 mer):
	5' CAGTCAGAGCCTTTTATATTCTAGAAATCAAAAGAACTACTTGGCCTGGTAT
5	CAGCAGAAACCAGGACAGCC 3'
	F19vla5 (44 mer):
10	5' ACCCCAGATTCCCTAGTGCTAGCCCAAAAGATGAGGAGTTTGGG 3'
	F19vla6 (67 mer):
15	5' TAGCACTAGGGAATCTGGGGTACCTGATAGGTTCAGTGGCAGTGGGTTTG
	GGACAGACTTCACCCTC 3'
20	F19vla7 (53 mer):
	5' GTCCCTTGTCCGAACGTGAGCGGATAGCTAAAATATTGCTGACAGTAA
	TAAAC 3'
25	
	F19vla8 (33 mer):
	5' GCTCACGTTCGGACAAGGGACCAAGGTGGAAAT 3'
30	
	2. Primers for the synthesis of version "b"
35	F19vlb4 (72 mer):
	5' CAGTCAGAGCCTTTTATATTCTAGAAATCAAAAGAACTACTTGGCCTGG
	TTCCAGCAGAAACCAGGACAGCC 3'
40	
	F19vlb7 (57 mer):
	5' GTCCCTTGTCCGAACGTGAGCGGATAGCTAAAATATTGCTGACAGTCATA
45	AACTGCC 3'
	3. Primers for the synthesis of version "c"
50	F19Lc-sense (34 mer):
	5' CCCAAACTCCTCATCTATTGGGCTAGCACTAGGG 3'

F19Lc-antisense (34 mer):

5' CCCTAGTGCTAGCCCAATAGATGAGGAGTTTGGG 3'

4. Primers hybridizing to the flanking PUC19 vector sequences

APCR1 (17 mer, sense primer):

5' TACGCAAACCGCCTCTC 3'

APCR4 (18 mer, anti-sense primer):

5' GAGTGCACCATATGCGGT 3'

RSP (-24) (16 mer, sense primer):

5' AACAGCTATGACCATG 3'

UP (-40) (17 mer, anti-sense primer): 5' GTTTTCCCAGTCACGAC 3'

20

25

5

10

Example 4: Construction of the reshaped human F19 heavy chain versions a to e (Ha-He)

Version "a" of reshaped human F19 V_H regions (Ha) was constructed using the same PCR methods as described for the construction of version "a" of reshaped human F19 V_L region (La) (Figure 31). The template DNA was version "a" of reshaped human 226 V_H (Léger O. J. P., Yednock T. A., Tanner L., Horner H. C., Hines D. K., Keen S., Saldanha J., Jones T., Fritz L. C. and Bendig M. M. (1997). Humanization of a mouse antibody against human alpha-4 integrin: a potential therapeutic for the treatment of multiple sclerosis. Hum. Antibod. 8: 3). Six PCR primers were designed and synthesized for the construction of version "a" of reshaped human F19 V_H region (Table 4). PCR products A, B, C, and D were obtained using APCR1-Vha1, Vha2-Vha3, Vha4-Vha5 and Vha6-APCR4 as PCR primer pairs, respectively. The PCR conditions were essentially as described for the construction of reshaped human F19 V₁ region. A clone having the correct DNA sequence was designated reshF19Ha (Figure 32) and was then subcloned into the eukaryotic expression vector pG1D105. The DNA sequence of reshF19Ha cloned into pG1D105 is shown in Figure 33. The third version of reshaped human F19 V_H region (Hc) was constructed using the same scheme as that described for Ha but where Vha4 primer was substituted by Vhc4 (Table 4). The DNA sequence of Hc is shown in Figure 32. The second (Hb) and fourth (Hd) version of reshaped human F19 V_H region were constructed based on the PCRmutagenesis methods of Kamman et al. (Kamman M., Laufs J., Schell J. and Gronenborn B. (1989) Rapid insertional mutagenesis of DNA by polymerase chain reaction (PCR). Nucl. Acids Res. 17: 5404). For Hb and Hd, a mutagenic primer F19VHbd6 (Tyr-91 to Phe-91, Table 4) was used paired with APCR4 in PCR reactions with Ha and Hc as the template DNA, respectively. The PCR products VHb and VHd were restriction enzyme digested with Pstl and BamHI and subcloned into reshF19Ha and reshF19Hc, respectively, previously digested with the same two restriction enzymes. The DNA sequences of Hb and Hd are shown in Figure 32.

[0091] Version e of reshaped human F19 V_H region (He) was constructed based on the PCR-mutagenesis methods of Kamman et al. (1989) already mentioned above:

[0092] For reshF19He mutagenic primer F19MscIHe (Table 5) was used paired with primer F19V_HHindIII (Table 5) in PCR reactions with Hc cloned in pg1d105 mammalian expression vector as the template DNA. The appropriate primer pairs (0.2μM of each) were combined with 10ng of cDNA of version "a" of reshaped human 226 V_H region in 100μl of PCR buffer containing 10mM KCl, 10mM (NH₄)₂SO₄, 20mM Tris-HCl (pH 8.8) 2mM MgSO₄, 0.1% Triton X-100 and 200μM dNTPs. Reaction mixtures were overlaid with mineral oil and kept at 94°C for 5 mins. Then 1 unit of Deep Vent DNA polymerase (New England Biolabs) was added ("Hot Start" PCR; Chou Q., Russell M., Birch D., Raymond J. and Bloch W. (1992) Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number amplifications. Nucl. Acids Res. 20: 1717) and PCR was performed for 25 cycles on a TRIO-Thermoblock Thermal Cycler (Biometra, Göttingen, Germany). Each cycle consisting of a denaturation step at 94°C for 1 min, a primer annealing step at 70°C for 1 min, and an extension step at 72°C for 2 mins. This was followed by a single cycle consisting of a further elongation step at 72°C for 10 mitts followed by cooling at 4°C. The PCR products were then extracted and purified from a TAE 1.4% standard agarose gel using a QlAquick™ gel extraction kit, following the protocol supplied by the manufacturer

(QIAGEN Ltd., UK). The PCR product V_{He} was then restriction enzyme digested with MscI and HindIII and ligated into reshF19Hc cloned in pg1d105 previously digested with the same two restriction enzymes. The MscI restriction recognition site is unique to all the reshaped human F19 V_{H} region versions and is not present in the pg1d105 expression vector. The HindIII restriction recognition site is a unique site in pg1d105 for clotting of V_{H} immunoglobulin genes.

[0093] Electroporation-competent XL-1 Blue E. coli cells were transformed with 1 μl of the ligated DNA and plated on agarose plates containing Ampicillin. Colonies were then screened for the presence and correct size of inserts by direct PCR on colonies (Güssow D. and Clackson T. (1989) Direct clone characterization from plaques and colonies by the polymerase chain reaction. *Nucl. Acids Res.* 17: 4000) with primers HCMi and Hucγ1 hybridising to the flanking pg1d105 vector sequences (Table 5). DNA from positive colonies was prepared using a Plasmid Midi kit, following the protocol supplied by the manufacturer (QIAGEN Ltd., UK). DNA sequencing was performed by the dideoxy chain termination method (Sanger F., Nicklen S. and Coulson A. (1977) DNA sequencing with chain-terminating inhibitors. *Proc. natn. Acad. Sci. U. S. A.* 74: 5463) directly from circular vector DNA using conventional heat denaturation (Andersen A., Pettersson A. and Kieldsen T. (1992) A fast and simple technique for sequencing plasmid DNA with sequenase using heat denaturation. *Biotechniques* 13: 678) and Sequenase 2.0 (USB, Cleveland, OH). The DNA sequences of reshF19He is shown in Figure 32.

TABLE 4: PCR primers for the construction of reshaped human F19 heavy chain variable regions versions a to d.

1. Primers for the synthesis of version "a"

F19vha1 (47mer):

20

25

30

35

40

45

50

55

5' GTGTATTCAGTGAAGGTGTATCTACTAGTTTTACAGCTGACTTTCAC 3'

F19vha2 (53 mer):

5' TAGTAGATACACCTTCACTGAATACACCATACACTGGGTTAGACAGG CCCCTG 3'

	F19vha3 (71 mer):	
	5' CCCTTGAACTTCTGGTTGTAGTT	TAGGAATACCATTGTTAGGATTAATACC
5	TCCTATCCACTCCAGCCTTTG 3'	
	F19vha4 (71 mer):	
10	5' TAACTACAACCAGAAGTTCAAGG	GCCGGGCCACCTTGACCGTAGGCAA
	GTCTGCCAGCACCGCCTACATGC	3'
15	F19vha5 (63 mer):	
	5' GCATGGCCCTCGTCGTAACCATA	AGGCGATTCTTCTTCTGGCGCAGTAGT
20	AGACTGCAGTGTCC 3'	·
	F19vha6 (48 mer):	
	5' CTATGGTTACGACGAGGGCCAT	GCTATGGACTACTGGGGTCAAGGAAC 3
25		
	2. Primers for the synthesis of version	<u>"c"</u>
30	F19vhc4 (71 mer):	
	5' TAACTACAACCAGAAGTTCAAGG	GCCGGGTCACCATCACCGTAGACA
	CCTCTGCCAGCACCGCCTACATG	GG 3'
35		
	3. Primers for the synthesis of version	"b" and "d"
40	F19vhbd6 (27 mer):	
	5' GGACACTGCAGTCTACTTCTGCC	SCCAG 3'
45		•
	4. Primers hybridizing to the flanking l	PUC19 vector sequences
50	APCR1 (17 mer, sense primer):	5' TACGCAAACCGCCTCTC 3'
	APCR4 (18 mer, anti-sense primer):	
55·		

TABLE 5: PCR primer for the construction of reshaped human F19 heavy chain variable regions version e

1. Primer for the synthesis of version "e"

F19MscIHe (65 mer, anti-sense):

5

10

15

20

25

30

40

45

50

55

5' CCTT<u>TGGCCA</u>GGGGCCTGTCTAACCCAGTGTATGGTGTATTCAGTGAAGGTG Mscl

TATCCACTAGTTTCCACTAGTTT 3'

2. Primers hybridizing to the flanking pg1d105 mammalian expression vector sequences

HCMi (28 mer, sense): 5' GTCACCGTCCTTGACACGCGTCTCGGGA 3'

Hucy1 (17 mer, anti-sense): 5' TTGGAGGAGGGTGCCAG 3'

Example 5: Reshaped human F19 antibody concentrations in COS cells supernatants

[0094] COS cells were transfected with one pair of a series of reshaped human F19 antibody constructs and the human antibody concentration was measured using the IgG1/Kappa ELISA as described in example 2.

TABLE 6

Reshaped human F19 antibody concentrations in COS cell supernatants				
	Antibody compo- nents	Human γ1/K		
Heavy chain	Kappa light chain	concentration [µg/ml]		
Ha	La	2.50		
На	Lb	0.18		
Hb	La	1.25		
Hb	Lb	0.10		
Hd	La	1.15		
Hd	Lb	0.18		
Ha	La	1.50		
Ha	Lc	1.56		

TABLE 6 (continued)

Reshaped human F19 antibody concentrations in COS cell supernatants				
	Antibody compo- nents	Human γ1/K		
Heavy chain Kappa light chain		concentration [μg/ml]		
Нс	La	1.47		
Hc	Lc	1.97		
cF19	La	1.54		
cF19	Lb	0.07		
cF19	Lc	2.14		

TABLE 7

Reshaped human F19 antibody concentrations in COS cell supernatants				
	Antibody compo- nents	Human y1/K .		
Heavy chain Kappa light chain		concentration [µg/ml]		
На	La	2.00		
Ha	Lc	2.50		
Нс	La	2.90		
Hc	Lc	3.00		
He	La	2.80		
He	Lc	3.50		

RNA splicing events required for the expression of immunoglobulin genes in mammalian cells

[0095] Both mammalian expression vectors pKN100 and pg1d105 have an intron between the variable and the constant regions which is removed during the process of gene expression to give rise to an messenger RNA. The splicing event which consists of a DNA recombination between the heavy or light chain splice donor sites and the immunoglobulin splice acceptor site is described in Figure 34.

Example 6: Flow cytometric analysis of the binding of cF19 and LAHC to FAP-expressing human cells

[0096] The ability of L_AH_C to bind to both recombinant and endogenously expressed FAP on cell surface was tested. [0097] The example was conducted to determine the binding of L_AH_C to cellular FAP. Both naturally FAP expressing MF-SH human tumour cells and FAP-transfected human tumour cell lines were used as cellular targets. L_AH_C was studied in cytofluorometric assays evaluating direct binding to target cells as well as by the inhibitory effect on the binding of either murine F19 or chimeric cF19 anti-FAP antibodies.

[0098] Antibodies and cell lines used were F19 (murine monoclonal anti-human FAP antibody, IgG1 subclass), mIgG (murine immunoglobulin, IgG class), cF19 (chimeric monoclonal anti-human FAP antibody, IgG1 subclass), LAHC (reshaped monoclonal anti-human FAP antibody, IgG1 subclass), hIgG1 (human immunoglobulin, IgG1 subclass), MF-SH (human malignant fibrous histiocytoma cell line), HT-1080 (human fibrosarcoma cell line), HT-1080FAP clone 33 (HT-1080 cell line transfected with cDNA encoding human FAP)

10

20

30

35

Direct binding of LAHC to FAP on the surface of human tumour cell lines

10

15

40

45

50

55

[0099] 5x10⁵ cells of the tumour cell line under investigation were incubated with the indicated concentration of test or control antibody in a total volume of 0.2 ml phosphate-buffered saline (PBS) supplemented with 1% bovine serum albumin (BSA) for 30 min on ice.

[0100] Subsequently, cells were washed twice with 2 ml of PBS, resuspended in 0.2 ml of PBS supplemented with 1% BSA, the appropriate anti-Ig-antibody as secondary reagent (either a 1:20 dilution of goat anti-mouse Ig FITC-labeled [Dianova] or a 1:20 dilution of mouse anti-human IgG FITC-labeled [Dianova]) and incubated for another 30 min on ice

[0101] Cells were again washed twice with 2 ml of PBS, resuspended in a total volume of 0.5 ml of PBS supplemented with 1% paraformaldehyde (PFA) and kept on ice. Single cell fluorescence was determined cytofluorometrically by analysing the cellular green fluorescence in the 488nm light of an EPICS XL (Coulter).

Inhibitory effect of LAHC on binding of biotinylated cF19 to FAP on the surface of human cell lines

[0102] 5x10⁵ cells of the tumour cell line under investigation were incubated with the indicated concentration of the biotin-labelled antibody in a total volume of 0.2 ml PBS supplemented with 1% BSA and the simultaneously added unlabelled test or control antibody for 30 min on ice. Subsequently, cells were washed twice with 2 ml of PBS, resuspended in 0.2 ml of PBS supplemented with 1% BSA, 1:40 diluted streptavidin-FITC (Dianova) as secondary reagent and incubated for another 30 min on ice.

[0103] Alternatively, cells were incubated with the indicated concentrations of murine F19 and cell-bound antibody detected via 1:20 diluted goat anti-mouse Ig labelled with FITC by comparable incubation steps.

[0104] In each case, cells were finally washed twice with 2 ml of PBS, resuspended in a total volume of 0.5 ml PBS supplemented with 1% PFA and kept on ice. Single cell fluorescence was determined cytofluorometrically by analysing the cellular green fluorescence in the 488nm light of an EPICS XL (Coulter).

[0105] Both, cF19 and L_AH_C bind in a concentration dependent manner specifically to to FAP-transfected HT-1080FAP clone33 human tumour cells (Table 8). No binding toFAP-negative HT-1080 cells was detectable (Table 9). Both cF19 and L_AH_C bound in a concentration dependent manner to human MF-SH cells endogenously expressing FAP (Table 10).

[0106] Biotinylated cF19 in a concentration dependent manner bound to human HT-1080FAP clone 33 (Table 11). No binding was detectable to FAP-negative HT-1080 cells (Table 12).

[0107] Binding of biotinylated cF19 to HT-1080FAP clone 33 cells was inhibited by both unlabelled cF19 and unlabelled LAHC (Table 13).

[0108] Chimeric anti-human FAP monoclonal antibody cF19 as well as reshaped human anti-human FAP monoclonal antibody L_AH_C (example 10) were shown to bind directly to FAP expressed on human cell lines either endogenously expressing this protein or transfected with cDNA encoding for it. This binding was shown to be concentration dependent. Binding of biotinylated cF19 could be inhibited by both unlabelled cF19 and unlabelled L_AH_C.

[0109] Using cytofluorometric technology, direct binding as well as inhibition of specifically binding ragents showed specificity of chimeric cF19 and reshaped L_AH_C human monoclonal antibodies to cell surface expressed FAP.

Table 8

Binding of anti-FAP antibodies to HT-1080FAP clone 33 cells			
Concentration of anti- body	•		
[ng/mL]	hlgG1	cF19	LAHC
500.0	0.12	6.65	2.76
100.0	0.12	1.63	0.66
20.0	0.12	0.43	0.22
4.0	0.12	0.17	0.15
0.8	0.12	0.14	0.13

Table 9

Binding of anti-FAP antibodies to non-transfected HT-1080 cells Concentration of anti-Mean fluorescence intensity body [ng/mL] hlgG1 cF19 LAHC 500.0 0.11 0.11 0.12 100.0 0.11 0.11 0.11 20.0 0.11 0.11 0.12 4.0 0.11 0.11 0.12 0.8 0.11 0.11 0.11

Table 10

Binding of anti-FAP antibodies to MF-SH cells				
Concentration of anti- body			escence intensity	
[ng/mL]	hlgG1	cF19	L _A H _C	
4.0	0.6	3.6	2.8	
2.0	n.d.	3.3	2.5	
1.0	n.d.	2.4	1.9	
0.5	n.d.	1.8	1.3	

n.d.: not done

Table 11

Binding of biotinylated cF19 antibody to HT-1080FAP clone 33 cells				
Concentration of anti- body Mean fluorescence intensity				
[ng/ml]	Biotinylated hlgG1 Biotinylated cF19			
5,000.0	0.2	36.5		
1,000.0	0.2	18.1		
200.0	0.2	4.5		
40.0	0.2	1.3		
8.0	0.2	0.5		
1.6	0.3	0.3		

5

10

15

20

25

30

35

40

45

50

Table 12

Binding of biotinylated cF19 antibody to non-transfected HT- 1080 cells			
Concentration of anti- body	Mean fluorescence intensity		
[ng/ml]	Biotinylated hlgG1	Biotinylated cF19	
5,000.0	0.1	0.1	
1,000.0	0.1	0.1	
200.0	0.1	0.1	
40.0	0.1	0.1	
8.0	0.1	0.1	
1.6	0.1	0.1	

Table 13

	Concentration of com- petitor antibody	Mean fluorescence cor centration
Competitor antibody	[µg/mL]	
no	0.00	11.2
· hlgG1	1.00	9.0
hlgG1	3.16	11.3
hlgG1	10.00	9.8
hlgG1	31.66	10.3
cF19	1.00	7.5
cF19	3.16	4.8
cF19	10.00	1.3
cF19	31.66	1.2
L _A H _C	1.00	8.0
L _A H _C	3.16	5.5
LAHC	10.00	2.9
L _A H _C	31.66	1.7

Example 7: In vitro immune effector functions of monoclonal antibody LAHC

[0110] This experiment was conducted to determine the potential of the monoclonal antibody (mab) L_AH_C with specificity for fibroblast activation antigen (FAP) to lyse FAP-expressing targets in the presence of human complement or human mononuclear leukocytes, respectively.

[0111] In particular, the ability of L_AH_C to mediate cytotoxic effects against HT-1080FAP clone 33 cells, which expressed human FAP on the surface, was studied. Cytotoxicity was determined in vitro using the following approach: ⁵¹Cr-labelled target cells were incubated in the presence of L_AH_C with human serum as source of complement or human MNC (peripheral blood mononuclear cells) as effectors. Release of ⁵¹Cr war measured as measure of target-cell lysis.

[0112] Antibodies and cell lines used were L_AH_C (reshaped human anti-human FAP IgG1 antibody), hIgG1 (human IgG1 isotype control), 3S193 (murine monoclonal anti-Lewis^y IgG3 antibody), mIgG (murine IgG control), HT-1080 (human fibrosarcoma), HT-1080FAP clone 33, (HT1080 transfected with cDNA encoding human FAP), MCF-7 (human breast adenocarcinoma cell line).

Complement-mediated lysis of target cells by LAHC

10

[0113] Tumour cells were radiolabelled by incubation in RPMI1640 medium with 100 μ l ⁵¹Cr (NEN) at 37° C for one hour. Subsequently, cells were washed twice in ⁵¹Cr-free medium and resuspended at a concentration of 2x10⁵ cells per mL.

[0114] Human serum as source of complement was freshly prepared from blood of different volunteers. Blood was taken by puncturing the arm vein, remained at room temperature for one hour to allow clotting to occur, and was kept at 4° C over night. Serum was seperated by centrifugation and taken off from the sediment.

[0115] The antibody under study was diluted from the stock solution to the appropriate concentration in RPMI1640 cell culture medium.

[0116] $1x10^4$ radiolabelled tumour cells of the indicated cell line were incubated in the presence of different concentrations of test or control antibody and 25% of the human serum used as source of complement for 2 h at 37° C in a 95% air and 5% CO_2 incubator. Incubation was performed in U-shaped 96-well plates in a total volume of 200 μ l RPMI1640 and done in triplicate. After the incubation period, plates were centrifugated, 100μ l of the supernatant were taken off and radioactivity was determined in a gamma-counter. Total number of incorporated radioactivity was determined by measuring 10^4 target cells. Spontaneous release was defined as activity released from the target cells in the absence of both antibody and complement during the described incubation period.

[activity sample] – [activity spontaneous release]

specific lysis (in %) = ______ x 100

[maximum activity] – [activity spontaneous release]

Antibody-dependent cellular cytotoxicity (ADCC) of LAHC

[0118] Tumour cells were radiolabelled by incubation in RPMI1640 medium with 100 µl ⁵¹Cr at 37°C for one hour. Subsequently, cells were washed twice in ⁵¹Cr-free medium and resuspended at a concentration of 2x10⁵ cells per mL. [0119] MNC (peripheral blood mononuclear cells) were prepared from peripheral blood taken by puncturing the arm vein of different healthy human volunteers. Clotting was prevented by the addition of 20% citrate buffer. MNC from 4 mL of this blood preparation were purified by centrifugation (30 min at 400 G and room temperature) on 3 mL of lymphocyte preparation medium (Boehringer Mannheim, Germany). MNC (peripheral blood mononuclear cells) were taken off from the gradient, washed three times and diluted with RPMI1640 to the appropriate concentration. Lymphocyte activated killer (LAK) cells were derived from MNC (peripheral blood mononuclear cells) by incubation for 5 days at 37° C in an 95% air and 5% CO₂ incubator at an initial density of 1.3x10⁶ cells per mL in the presence of 100U recombinant human Interleukin-2 (IL-2). The antibody under study was diluted from the stock solution to the appropriate concentration in RPMI1640 cell culture medium.

[0120] 1×10^4 radiolabelled tumour cells of the indicated cell line were incubated for 5 h at 37°C and 5%CO₂ in the presence of different concentrations of test or control antibody and MNC (peripheral blood mononuclear cells) in a number necessary to reach the indicated effector:target cell ratio. Incubation was performed in U-shaped 96-well plates in a total volume of 200 μ l RPMI1640 and done in duplicate.

[0121] After the incubation period, plates were centrifugated, 100 µl of the supernatant were taken off and radioactivity was determined in a gamma-counter. Total number of incorporated radioactivity was determined by measuring 10⁴

target cells. Spontaneous release was defined as activity released from the target cells in the absence of both antibody and effector cells during the described incubation period.

[0122] Specific lysis was calculated as follows:

	[activity sample] - [activity spontaneous release]	
specific lysis (in %)=		x 100
	[maximum activity] - [activity spontaneous release]	

5 Antibody mediated complement lysis of tumour cells

[0123] No complement mediated lysis above control was seen in HT-1080FAP clone 33 cells with L_AH_C up to a concentration of 50 µg/mL (Table 14, Table 15a)

[0124] Lytic activity of human serum used as source of complement was shown by lysis of MCF-7 human breast carcinoma cells in the presence of 12.5 μ g/mL 3S193, a murine monoclonal anti-Lewis^y antibody with known complement activating ability (Table 15b)

Antibody mediated cellular lysis of tumour cells

[0125] In the presence of L_AH_C in a concentration of up to 10 μg/mL, no lysis of HT-1080FAP clone 33 above isotype control was detectable in ADCC mediated by human MNC (peripheral blood mononuclear cells, Table 16) or human LAK cells (lymphokine activated killer cell) (Table 17) at an effector:target ratio of 50:1:

[0126] In appropriate in vitro assays with either human complement or with human MNC (peripheral blood mononuclear cells) as effector mechanisms, human anti-FAP monoclonal antibody L_AH_C revealed no relevant cytotoxic effect above controls on FAP expressing tumor cell line HT-1080FAP clone 33.

[0127] In vitro, L_AH_C is unable to mediate cytotoxicity effected by human complement or human MNC (peripheral blood mononuclear cells) on a cell line positive for FAP, the antigen recognized by this antibody.

35

5

10

40

45

50

Table 14

	lysis (in %) of HT-1080F/ argets mediated by L _A H	
Source of human serum:	HT-1080 clone	33:
concentration of anti- body	hlgG1 isotype control	L _A H _C
A 50 μg/mL	5	4
A 10 μg/mL	5	3
B 50 μg/mL	7	5
B 10 μg/mL	6	5
0 μg/mL	0	0
Incubation: 2 hours at 37°	°C, 25% serum from huma	an volunteers A

or B, respectively, as source of complement.

Table 15a

tumor cell targets	nt lysis (in %) of HT-10 mediated by human a onal antibody L _A H _C	
ource of human seri	ım: HT1080	clone
concentration of an	i- hlgG1	
A 10.00 μg/ml	2	
A 2.50 μg/mi	2	
A 0.60 μg/ml	1	
A O 45 -/		

() ()

Specific complement lysis (in %) of HT-1080FAP clone 33 tumor cell targets mediated by human anti-FAP monoclonal antibody L _A H _C			
Source of human serum:	HT1080d	done 33:	
concentration of anti- body	hlgG1	L _A H _C	
A 10.00 μg/ml	2	1	
A 2.50 μg/mi	2	2	
A 0.60 μg/ml	1	1	
A 0.15 μg/ml	1 .	2	
A 0.00 μg/ml	2	2	
B 10.00 μg/ml	2	2	
B 2.50 μg/mi	2	2	
B 0.60 μg/ml	2	2	
B 0.15 μg/ml	2	2	
B 0.00 μg/ml	2	2	
C 10.00 μg/ml	2	2	
C 2.50 μg/ml	1	1	
C 0.60 μg/ml	1	1	
C 0.15 μg/ml	2	1	
C 0.00 µg/ml	3	3	
Incubation: 2 hours at 37	°C, 25% serum fro	m human volun-	

teers A, B or C, respectively, as source of complement.

Table 15b

Specific complement ly targets mediated by m antii		
Source of human serum:	МС	F-7:
concentration of anti- body	mlgG	3S193
A 10.00 μg/ml	0	21
A 2.50 μg/ml	1	21
A 0.60 μg/ml	0	21
A 0.15 μg/ml	1	18
A 0.00 μg/ml	0	0
B 10.00 μg/ml	1	13
B 2.50 μg/ml	0	17

Table 15b (continued)

Specific complement by targets mediated by m antil	sis (in %) of MCF urine anti-Lewis ⁾ pody 3S193	7 tumour cell monoclonal
Source of human serum:	MCI	-7:
concentration of anti- body	mlgG	3S193
B 0.60 μg/ml	1	18
B 0.15 μg/ml	1	15
B 0.00 μg/ml	0	0
С 10.00 µg/ml	1	22
C 2.50 µg/ml	0	23
C 0.60 μg/ml	1	26
C 0.15 μg/mi	1	20
C 0.00 µg/mi	1	1
Incubation: 2 hours at 37°	C, 25% serum fro	om human volun-

Incubation: 2 hours at 37° C, 25% serum from human volunteers A, B or C, as source of complement.

Table 16

	Table 16			
ADCC (antibody-dependa %) of HT-1080FAP clone 3 blood mononuc	nt cellular cytotoxic 3 target cells by hu clear cells) mediated	man MNC (peripheral		
HT-1080FAP clone 33:				
Concentration of anti- body:	HT-1080FA	AP clone 33:		
[in μg/mL]	higG1 L _A H _C			
10.000	2	2		
2.500	2	2		
0.625	2	2		
0.156	3	3		
0.000	3	3		
Incubation: 5 hours at 37°C ration of 50:1.	c, 10 ⁴ target cells an	d an effector:target cell		

Table 17

acuvated Kille	r cells) mediated b	y L _A H _C .
Concentration of anti- body:	HT-1080FA	P clone 33:
[in μg/mL]	hlgG1	L _A H _C
10.000	12	14
2.500	14	17
0.625	14	21
0.156	15	21
0.000	14	14

Example 8: Immunohistochemical analysis of monoclonal antibody L_AH_C binding to normal and neoplastic human tissues

25 [0128] This experiment was performed to determine the binding characteristics of the humanized mAb L_AH_C to normal and neoplastic human tissues.

[0129] The following antibodies were used: L_AH_C, cF19, and the negative control hu lgG1 were directly biotinylated according to methods of the state of the art and used at concentrations of 2.5 to 0.25 mg/ ml in 2% BSA/PBS (bovine serum albumin in phosphate-buffered saline). Murine mAb F19 was used as tissue culture supernatant of the F19 hybridoma, at dilutions of 1:5 to 1:10 in 2% BSA/PBS.

[0130] The following reagents were used for immunochemical assays: Streptavidin peroxidase complex (Vector Labs., Burlingame, CA, USA), Avidin-biotin peroxidase complex (Vector Labs.), Biotinylated horse anti-mouse (Vector Labs.), DAB (diaminobenzidine, Sigma Chemical Co. St. Louis, MO, USA), Harrris' hematoxylin.

[0131] Fresh frozen tissue samples examined included the following: Normal colon, breast, lung, stomach, pancreas, skin, larynx, urinary bladder, smooth and skeletal muscle.

[0132] Among the tumors tested were carcinomas from breast, colon, lung, esophagus, uterus, ovary, pancreas, stomach, and head and neck.

[0133] An indirect immunoperoxidase method was carried out according to state of the art methods (Garin-Chesa P, Old LJ, Rettig WJ: Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acd Sci USA 1990; 87:7235-7239) on five micrometer thickness fresh frozen sections.

[0134] DAB was used as a substrate for the final reaction product. The sections were counterstained with Harris' hematoxylin and examined for antigen expression.

LAHC expression in normal human tissues

[0135] The normal tissues tested were negative for L_AH_C expression, except for the normal pancreas in which a subset of positive endocrine cells in the islets of Langerhans (A cells) were identified with L_AH_C , cF19 and F19. (Table 18). No immunoreactivity was observed with the hu IgG1 (human immunoglobulin IgG1 subclass) used as a negative control.

LAHC expression in tumors

[0136] In the tumor samples, L_AH_C , cF19 and F19 showed an indistinguishable pattern of expression in the tumor stromal fibroblasts. A strong and homogeneous expression was found in the majority of the cases examined, especially in the cancer samples derived from breast, colon, lung, pancreas and in the squamous cell carcinomas (SQCC) of the head and neck tested (Table 19). No immunoreactivity was observed with the hu lgG1 used as negative control.

[0137] L_AH_C , cF19 and F19 showed immunoreactivity with the tumor stromal fibroblasts in the epithelial cancer samples tested. No L_AH_C or F19 immuno-reactivity was seen with either the fibrocytes of the normal organ mesenchyme or

50

5

10

15

the parenchymal cells of normal adult organs. The only exception was a subset of endocrine cells in the pancreatic islets, presumably glucagon-producing A cells, which react with the anti-FAP antibodies.

[0138] Immunohistochemical analysis of L_AH_C in normal human tissues and FAP-expressing human carcinomas showed indistinguishable patterns of binding for L_AH_C , cF19 and murine mAb F19.

Table 18

	Immunore	eactivity of mAb	s L _A H _C , cF19 and I	F19 with normal	human tissues		
	Tissue type		L _A H _C	cF19	F19		
Breast		-Duct epitheli	-Duct epithelium		•	•	
		-Myoepithelia	l cells	-	•	-	
Colon		-Glandular ep	oithelium	-	-	•	
		-Smooth mus	cle	-	-	•	
Lung		-Bronchial ep	ithelium	-	-	-	
		-Alveolar epit	-Alveolar epithelium		•	-	
Sto	mach	-Glandu	lar epithelium	-	•	•	
	-Smoo		n muscle	-	-	-	
	Urinary blade	der	-Urothelium	-	•	•	
			-Smooth muscle	-	-	•	
Par	ncreas	-Exocrir	ne acini	-	•	•	
		-Endocr	rine islet cells	+ subset only	+subset only	+ subset only	
	Larynx -Sc	quamous epitheli	ium	•	•	•	
	Lymph no	de -Lymphocytes	;		-	•	
	Skeletal muscle-		Skeletal muscle-		-	-	-
	Connectiv	e tissue		•	•	-	
Skin		-Keratinocytes		-	•	-	
		-Sweat glands	.		-	-	

Table 19

Tumor type	No.	L _A H _C	cF19	F19
Breast cancers (infiltrating ductal type)	7	7 Positive	7 Positive	7 Positive
Colon cancers (adenocarcinomas)	7	7 Positive	7 Positive	7 Positive
Lung carcinomas (adenocarcinoma (2) large cell type (2) squamous type (4)	8	7 Positive 1 Negative	7 Positive 1 Negative	7 Positive 1 Negative
Esophageal cancers (squamous type)	1	1 Positive	1 Positive	1 Positive
Endometrial cancers (adenocarcinoma)	1	1 Negative	1 Negative	1 Negative
Gestric cancers (adenocarcinoma)	2	2 Negative	2 Negative	2 Negative
Ovarian cancers (serous denocarcinoma)	2	1 Positive	1 Positive	1 Positive
		1 Negative	1 Negative	1 Negative

Table 19 (continued)

Immunoreactivity of mAbs L _A H _C , cF19 and F19 with human tumor samples									
Tumor type	No.	L _A H _C	cF19	F19					
Pancreatic cancers (adenocarcinomas)	2	2 Positive	2 Positive	2 Positive					
Head and neck cancers (squamous cell type)	4	4 Positive	4 Positive	4 Positive					

Abbreviations: No, number of cases from different patients studied; positive, number of cases showing antigen expression in the tumor stroma; negative, number of casestested that lacked detectable antigen expression.

Example 9: Species specificity of LAHC binding in tissue sections

[0139] This experiment was conducted to assess the reactivity of L_AH_C with tissues from mouse, rat, rabbit and cynomolgus monkeys by immunohistochemical methods.

[0140] Also used in these tests were cF19 and hulgG1 as negative controls. The reagents used for immunohistochemistry were Streptavidin peroxidase complex (Vector Labs., Burlingame, CA, USA), DAB (Sigma Chemical Co., St. Louis, MO, USA) and Harris' hematoxylin.

[0141] The following fresh frozen tissue samples from mouse, rat, rabbit and cynomolgus were tested: Brain, liver, lung, kidney, stomach, pancreas, intestine, thymus, skin, muscle, heart, spleen, ovary, uterus and testes. As positive control, sections from normal human pancreas and a breast carcinoma sample were includded in every assay.

<u>Immunohistochemistry</u>

5

25

40

45

50

55

[0142] An indirect immunoperoxidase method was carried out as described in the state of the art (Garin-Chesa P, Old LJ, Rettig WJ: Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA 1990; 87:7235-7239) on five micrometer thickness fresh frozen sections. The antibodies L_AH_C , cF19 and hu lgG1 (at 1 μ g/ml) were biotinylated according to the state of the art and were detected with streptavidin peroxidase complex. DAB was used as a substrate for the final reaction product. The sections were counterstained with Harris' hematoxylin and examined for antigen expression.

[0143] The normal tissues tested did not react with either LAHC or cF19 in the experiments (Table 1).

[0144] The normal human pancreas used as positive control showed L_AH_C and cF19 binding in a subset of endocrine cells in the islets of Langerhans as previously described for F19. In addition, binding of L_AH_C and cF19 was seen in the tumor stromal fibroblasts in the breast carcinoma sample.

[0145] Immunohistochemical analysis of normal tissues from mouse, rat, rabbit and cynomolgus failed to detect any binding of either L_AH_C or cF19, in the experiments performed.

Table 20

				1able 20					
5	Binding of $L_{A}H_{C}$ to tissue sections of non-human species, as determined by immunohistochemistry.								
	Organ / Tissue typ			Mouse	Rat	Rabbit	Cynomolgus		
10	Brain -Cere		ebral cortex	•	-	-			
			-Cerebellum		-	-	-	-	
	Liver		-Hepatocytes		-	-	•	•	
	·		-Portal triad		-	-	-	-	
15	Lung		-Bronchi		-	•	•	•	
			-Alveoli			•	-	•	
	Kidney		-Glor	-Glomeruli		•	-	•	
20	-Tub		ular epithelium	-	-	-	•		
	Stomach		-Glandular epithelium						
			-Smooth muscle	•	-	-	•		
	Pancreas			-Exocrine acini	-	•	•	•	
25			-Endocrine islets	-	-	-	-		
	Intestine		-Glandular epithelium	-	-	-	-		
	ii.			-Smooth muscle	-	-	-	-	
30	Thymus -Lymphocytes			•	•	•	-		
	Skin	-Keratinocytes			-	-	-	-	
			-Swea	-	-	-	•		
	-Hair follicles			-	<u> </u>	-	-		
35	Skeletal muscle			-	-	-	-		
	Heart				-	<u> </u>	-	· .	
	Spleen -Lymphocytes				·	•	-		
40	Ovary -Folli		icular epithelium	-	-	-			
	-Stro		oma	-	-				
	Uterus -Myd		ometrium	-	-	-	•		
	-Cer		vix uteri	•	-	•	•		
45	Testis -Tubular epithelium			nt	nt	nt	•		
		Connective tissue			-	-			

nt, not tested

50 Example 10: Construction of cell lines producing chimeric and reshaped anti-FAP monoclonal antibodies

[0146] The objective of this experiment was to demonstrate stable cell lines according to the invention expressing L_AH_C, L_AH_A, L_BH_B, L_BH_D, and cF19 in CHO DG44 cells. Stable cell lines transfected with humanized or chimeric F19 antibodies were produced and their identity was confirmed by PCR amplification of heavy and light variable regions using genomic DANN derived from each transfectant as template.

[0147] CHO DG44 cells maintained under serum-free conditions in SFM-II medium. Lipofectin and SFM-II serum-free medium were obtained from Gibco/BRL. Geneticin and all restriction enzymes were obtained from Boehringer Mannheim. Pfu polymerase was obtained from Stratagene.

[0148] DNA for transfections was purified from E. coli cells using QiaFilter Maxi Cartridges (Qiagen) as directed by the manufacturer. All DNA preparations were examined by restriction enzyme digestion. Sequences of L_AH_C variable regions in their respective vectors were confirmed using an ABI PRISM 310 Sequencer.

[0149] Further information regarding the vectors and DNA sequences employed is available in the prior examples.

Transfection of CHO DG44 cells

[0150] Cells in logarithmic growth were plated into 6 well plates containing 1 mL fresh SFM-II medium. Plasmids encoding heavy and light chains of humanized or chimeric F19 verions were cotransfected into CHO DG44 cells using liposomal transfection. Liposomes were prepared using 6 µl Lipofectin reagent and 0.5 µg of each vector (one for the desired heavy chain and one for the light) as described for LipofectAMINE transfections except that SFM-II medium was used to dilute all reagents. Twenty-four hours later, cells were diluted 1:10 into SFM-II medium containing 300 µg/mL Geneticin. After the initial phase of cell killing was over (10-14 days), the concentration of Geneticin was reduced to 200 mg/mL and methotrexate was added to a final concentration of 5 nM. Methotrexate concentrations were increased after 10-14 days to a final concentration of 20 nM.

PCR Amplification of transfectant DNA

[0151] 10⁷ CHO DG44 cells were centrifuged in an Eppendorf microcentrifuge briefly at full speed, washed once with PBS, and pelleted once again. Genomic DNA was prepared by ethanol precipitation after SDS lysis and Proteinase K treatment of the cell pellets.

[0152] A mixture containing one of the following primer pairs, dNTPs, buffer, and Pfu polymerase was used to amplify either the heavy or light chain variable region using genomic DNA as template. The resulting PCR products were digested with the appropriate restriction enzyme and analyzed by agarose gel electrophoresis to confirm their identity.

Light chain primer set:

[0153]

5'-GAG ACA TTG TGA CCC AAT CTC C - 3'

PKN 1690

5'- GAC AGT CAT AAA CTG CCA CAT CTT C - 3'

PKN.1930.R

Heavy chain primer set:

35

40

25

30

5

[0154]

5'-TTG ACA CGC GTC TCG GGA AGC TT - 3'

PG 5863

5'- GGC GCA GAG GAT CCA CTC ACC T - 3'

PG 6332.R

[0155] The undigested heavy chain PCR product has a predicted size of 469 bp while the light chain PCR product has a predicted size of 286 bp. Verification of identity was determined by restriction enzyme digest with BstEII (heavy chain) or NIaIV (light chain).

[0156] CHO cell lines were transfected with L_AH_C, L_AH_A, L_BH_B, L_BH_D, as well as cF19. Geneticin-resistant cells were obtained and these cells were further selected for resistance to methotrexate. PCR amplification of the light and heavy chain DNA produced the expected bands and confirmed the identity of L_AH_C, L_AH_A and L_BH_D transfectants. The L_AH_C full length heavy chain PCR product was subcloned and resequenced in its entirety.

[0157] The cells described were maintained under serum-free conditions at all times and were not treated with animal-derived products such as trypsin.

[0158] Producer cell lines transfected with expressing monoclonal L_AH_C , L_AH_A , L_BH_B , L_BH_D and cF19 antibodies were produced. Their identities were confirmed using PCR amplification of both their heavy and light chain variable regions. The DNA sequence of the heavy chain variable region PCR products for L_AH_C -transfected cells was confirmed.

55 Example 11:Expression of antibody proteins in Chinese hamster ovary DG 44 cells and their purification

[0159] The objective of this experiment was to express and purify of L_AH_C , L_BH_B , and L_BH_D mAbs to enable their characterization. Other goals included the establishment of a quantitative ELISA to permit measurement of anti-

body concentrations in both crude media samples as well as purified lg samples and determination of relative expression levels of various humanized F19 constructs using this assay.

[0160] Serum-free CHO DG44 cells and USP-grade methotrexate were obtained from the Biotechnical Production Unit of the Dr. Karl Thomae GmbH, Biberach, Germany; both products are also commercially available. Cells were maintained under serum-free conditions at all times. SFM-II serum-free medium was obtained from Gibco/BRL.

[0161] Protein A agarose was from Pierce Chemical (Indianapolis, IN, USA). Human IgG1 standards (Cat. No. I 3889), p-Nitrophenyl phosphate tablets (N 2640), bovine serum albumin (BSA) (A 7906), and goat anti-human kappa chain specific alkaline phosphatase-conjugated antibody (A 3813) were obtained from Sigma Chemical (St. Louis, MO, USA). Goat anti-human gamma-chain specific alkaline phosphatase-conjugated antibody was obtained from Jackson Immunoresearch Laboratories (through Stratech Scientific). Tris-buffered saline (TBS) consisted of 150 mM NaCl, 50 mM Tris, pH 7.5.

Cell culture conditions for antibody expression

[0162] Cells were cultured and L_AH_C-producing cells were maintained in T-175 flasks in SFM-II serum-free medium without agitation. The medium contained 200 μg/mL Geneticin and 20 nM methotrexate without antibiotics. Cells were passaged by dilution, were not adherent, and grew in small clusters. When the cells reached stationary phase, the medium was collected and centrifuged to remove cells and frozen at -20°C until needed.

20 Purification of LAHC

[0163] All purification steps were carried out at 4° C. A C10/10 column (Pharmacia Fine Chemicals) was packed with Protein A agarose (3 mL bed volume). The column was washed with TBS and preeluted once with 0.1 M Na citrate, pH 3.0 to insure that no loosely bound material remained on the column. The column was then immediately reequilibrated with TBS and stored at 4°C. Spent culture supernatants were thawed and centrifuged at 10,000 xg for 30 minutes prior to Protein A chromatography to remove debris and diluted with an equal volume of TBS. This material was loaded onto the Protein A column at 0.5 mL/min using a P-1 peristaltic pump (Pharmacia) and washed with TBS until the absorbance at 280 nm was undetectable. Elution of the anibody was initiated with 0.1 M Na citrate pH 3.0 at approximately 0.2 mL/min. The elution was monitored at 280 nm and one mL fractions of the eluted material were collected into tubes containing sufficient Tris base pH 9 to neutralize the citrate buffer. Protein-containing fractions were pooled and concentrated using an Amicon filtration apparatus with a YM-30 filter and dialyzed against PBS. The column was immediately regenerated with TBS. Protein dye-binding assays were performed with the BioRad (Hercules, California) protein determination kit, according to the manufacturer's instructions, using bovine serum albumin as a standard.

35 Human IgG (gamma immunoglobulin) ELISA

[0164] ELISA plates were coated overnight with 100 μ L of goat anti-human gamma-chain specific alkaline phosphatase-conjugated antibody at 0.4 mg/mL in coating buffer at 4°C. Coating antibody was removed and plates were blocked with 2% BSA in PBS for 2 hours. All subsequent steps were performed at 37°C. Blocking buffer was replaced with antibody samples or human IgG1 standard diluted in dilution buffer, serially diluted in a 200mL volume, and incubated for one hour. Negative controls included dilution buffer and/or culture medium of nontransfected cells. Wells were washed and 100 μ L of goat anti-human kappa chain specific alkaline phosphatase-conjugated antibody diluted 1:5000 was added and incubated for one hour. Wells were washed and 100 μ L reaction buffer was added and incubated for 30 minutes. The reaction was stopped by addition of 1 M NaOH and absorbance read at 405 nm in an ELISA plate reader. Results were analyzed by four-parameter iterative curve fitting.

[0165] Amino acid analysis was performed according to methods available in the state of the art.

[0166] Monoclonal antibody L_AH_C was produced and purified to homogeneity using Protein A affinity chromatography. ELISA assays using human IgG1 as standard indicated L_AH_C recoveries exceeding 70%. The purity of the material was estimated to be >90% by SDS-polyacrylamide gel electrophoresis. Representative expression data and typical purifica-

50 tion yields are shown in Table 21.

Table 21

Expression data and purification yields FAP antibody proteins in CHO cells Antibody Expression levels in Purified antibody yields Yield improvement [puricrude media samples fied antibody] (ELISA) HCLA 7 - 10 mg/L ~ 5 - 7 mg/L 500 - 700 HALA 5 - 7 mg/mL ~ 3 - 4 mg/L 300 - 400 H_BL_B 0.5 - 1 mg/mL ~ 0.2 - 0.5 mg/L 20 - 50 0.8 - 1.5 mg/mL H_DL_B ~ 0.3 - 0.8 mg/L 30 - 60 Chimeric F19 ~ 0.02 mg/mL < 0.01 mg/L

Representative expression data for each of the anti-FAP antibodies produced in this study are shown. Recoveries after Protein A agarose affinity chromatography were based on protein dye-binding measurements of the purified Ig using BSA as a standard.

Example 12: Binding of monoclonal antibody LAHC to isolated recombinant human FAP

[0167] The objective of this study was to characterize binding of LAHC to isolated recombinant human FAP.

5 CD8-FAP ELISA

5

10

15

20

[0168] ELISA plates were coated overnight with 100 μL of mouse anti-rat antibody (Sigma Chemical R0761) at 1:2000 in coating buffer at 4 °C. Coating antibody was removed and plates were blocked with 2% BSA in PBS for one hour. All subsequent steps were performed at room temperature. Blocking buffer was replaced with 100 mL of 1 μg/mL rat anti-CD8 antibody (Pharmingen 01041D) and incubated for one hour. Plates were washed and 100 μL CD8-FAP culture supernatant (1:2 in PBS) was added and allowed to bind for one hour. Plates were washed and antibody samples were added (two-fold serial dilutions) in a 100 μL volume and incubated for one hour. Negative controls included human IgG and/or culture medium of nontransfected cells. Wells were washed and 100 μl of horse radish peroxidase (HRP) conjugated mouse anti-human IgG1 antibody (Zymed 05-3320) diluted 1:500 in dilution buffer were added and incubated for one hour. Wells were washed and 100 μL HRP substrate, (azino-bis (3-ethylbenzthiazoline 6-sulfonic) acid, Sigma Chemical A9941), were added and incubated for 60 minutes. The reaction was stopped by addition of 1 M NaOH and absorbance read at 405/490 nm in an ELISA plate reader. Results were analyzed by four parameter curve iterative curve fitting.

[0169] Alternatively, plates were coated directly with cF19. FAP (recombinant human FAP) was allowed to bind to these plates as above and biotinylated L_AH_C (~1 μg/mL) was then added. Antibody binding was detected with HRP-streptavidin conjugate as above.

Solubilization of membrane-bound human FAP

45 [0170] FAP-expressing 293FAP I/2 cells or control 293 cells were washed with PBS and Iysed with 1% Triton X-114 in Tris-buffered saline. Nuclei and debris were removed by centrifugation at 10,000 xg. The supernatant was phase-partitioned (Estreicher A, Wohlend A, Belin D, Scheuning WD Vasalli JD. Characterization of the cellular binding site for the urokinase-type plasminogen activator. J Biol Chem 1989; 264:1180-1189) to enrich membrane proteins. The detergent phase was collected and diluted in buffer containing 1% Empigen BB (Calbiochem) to prevent reaggregation of the Triton X-114.

[0171] This material was subjected to Concanavalin A agarose chromatography (Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Ozer HL, Schwab, M, Albino AP, Old LJ. Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res 1993; 53:3327-3335).

Biotinylation of LAHC

[0172] L_AH_C (1-2 mg) was dialyzed against 50mM bicarbonate buffer and biotinylated with a ten-fold molar excess of

sulfosuccinimidyl-6-biotinamido hexanoate (NHS-LC biotin, Pierce Chemical, Rockford, Illinois, USA) for 2 hours at room temperature. Unreacted product was removed by repeated microdialysis in a microconcentrator.

Transient transfections

5

25

[0173] COS-7 cells (American Type Tissue Culture Collection, reference number CRL 1651) were cotransfected by electroporation with the heavy and light chain vectors encoding L_AH_C.

[0174] Anti-CD8 monoclonal antibody was immobilized onto microtiter plates. CD8-FAP from medium of insect cells infected with CD8-FAP baculovirus was allowed to bind to these plates. Spent medium from COS-7 cell cultures transiently transfected with two separate vectors encoding L_AH_C was serially diluted and added to the wells containing the immobilized CD8-FAP. L_AH_C bound to isolated immobilized CD8-FAP protein (Figure 35). Culture supernatants from mock-transfected COS-7 cells failed to demonstrate binding.

[0175] Recombinant membrane-bound FAP from detergent extracts of 293FAP I/2 cells or control extracts was serially diluted and immobilized via chimeric F19 monoclonal antibody bound to microtiter plates. Biotinylated L_AH_C bound recombinant human FAP immobilized with cF19 (Figure 36) in a concentration-dependent manner.

[0176] L_AH_C recognized isolated immobilized recombinant human FAP carrying the epitope for murine F19. L_AH_C bound to both CD8-FAP produced in insect cells, as well as FAP protein produced in 293FAP 1/2 cells.

[0177] Culture supernatants from COS7 cells transfected with either heavy and light chain vectors encoding L_AH_C or without DNA (Control) were collected three days posttransfection. CD8-FAP was immobilized via an anti-CD8 antibody as described in the text. Serial dilutions of the COS7 supernatants were allowed to bind to the immobilized CD8-FAP and subsequently detected with an HRP-conjugated anti-human IgG1 antibody.

[0178] Detergent extracts of FAP-expressing 293FAP I/2 cells or control 293 cells were serially diluted and added to cF19-coated microtiter plates. Biotinylated L_AH_C was added and binding of biotinylated L_AH_C was detected with HRP-conjugated streptavidin.

Example 13: Characterization of HT-1080 fibrosarcoma cells and 293 human embryonic kidney cells transfected with cDNA for human FAP

[0179] Fibroblast activation protein (FAP) is a cell-surface, membrane-bound protein which carries the F19 epitope and is expressed on tumor stromal fibroblasts. Cell lines expressing recombinant FAP protein and matched controls lacking FAP were generated for the characterization of anti-FAP monoclonal antibodies.

[0180] Cells used were HT-1080 cells (reference number CCL 121) and 293 human embryonic kidney cells (reference number CRL 1573) were obtained from the American Type Culture Collection (Maryland, USA). Transfectam was obtained from Promega. Geneticin and all restriction enzymes were obtained from Boehringer Mannheim. DNA for transfections was purified from E. coli cells using QiaFilter Maxi Cartridges (Qiagen) as directed by the manufacturer. All DNA preparations were examined by restriction enzyme digestion. Vector sequences were confirmed using an ABI PRISM 310 Sequencer.

[0181] Further information regarding the vectors and DNA sequences employed has been described in Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, Old LJ, Rettig WJ. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci USA 1992; 89:10832-10836. The FAP cDNA sequence has been deposited in Genbank (accession number HS09287).

Cell culture and immunoassays

[0182] HT-1080 cells were transfected with 1 mg DNA using Transfectam according to the maufacturer's instructions. Human embryonic kidney 293 cells were transfected by calcium phosphate transfection (Brann MR; Buckley NJ; Jones SVP; Bonner TI.

[0183] Expression of cloned muscarinic receptor in A9 L cells. Mol Pharmacol 1987; 32:450-455) with 10 mg DNA. Twenty-four hours later, cells were diluted 1:10 into fresh medium containing 200 mg/mL Geneticin. Colonies were picked and examined by immunofluorescence for FAP expression as described in Rettig WJ; Garin-Chesa P; Beresford HR; Oettgen HF; Melamed MR; Old LJ. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells. Proc Natl Acad Sci USA 1988; 85:3110-3114.

[0184] Immunoprecipitations with cF19 were performed with metabolically labelled cells as described in Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Ozer HL, Schwab, M, Albino AP, Old LJ. Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res 1993; 53:3327-3335.

[0185] HT-1080 and 293 cells were tested for FAP antigen expression in immunofluorescence assays with anti-FAP

antibodies and were found to be antigen-negative. Transfection of these cells with FAP.38 vector resulted in the generation of Geneticin-resistant colonies. Isolated colonies were picked and analyzed by immunofluorescence for FAP expression. Two cell clones were identified, designated HT-1080FAP clone 33 and 293FAP I/2, which express cell surface-bound FAP protein, as recognized by cF19 antibody. Staining of nonpermeabilized HT-1080FAP clone 33 cells and 293FAP I/2 with cF19 antibody confirmed the cell surface localization of the FAP protein.

[0186] Immunoprecipitation of radiolabelled FAP protein with cF19 from extracts of ³⁵S-methionine labelled HT-1080FAP clone 33 cells or 293FAP I/2 cells resulted in the appearance of a 93 kilodalton band after autoradiography. This band is absent in immunoprecipitates of parental HT-1080 or 293 cell extracts.

[0187] Two stably transfected cell lines, HT-1080FAP clone 33 and 293FAP I/2, express FAP on the cell surface as determined in immunological assays with anti-FAP mAbs. Neither parental HT-1080 cells nor parental 293 cells express detectable levels of FAP.

Example 14: Generation and characterization of CD8-FAP fusion protein

[0188] A soluble form of human FAP (fibroblast activation protein) in the form of a CD8-FAP fusion protein was produced in insect cells for the characterization of L_AH_C containing the binding site for anti-FAP mAbs. Murine CD8 was chosen to permit secretion of the protein and to provide an additional epitope tag.

[0189] The cDNA encoding the extracellular domain of CD8, consisting of the first 189 amino acids of murine CD8, was linked to that of the extracellular domain of FAP (amino acids 27 to 760), essentially as described by Lane, et al. (Lane P, Brocker T, Hubele S, Padovan E, Lazavecchia A, McConnell. Soluble CD40 ligand can replace the normal T cell-derived CD40 ligand signal to B cells in T cell-dependent activation. J Exp Med 1993, 177:1209-1213) using standard PCR protocols. The authenticity of all clones was verified by DNA sequencing. The resulting DNA was inserted into the pVL1393 vector (Invitrogen) and transfection of Sf9 cells (Invitrogen) with this vector and amplification of the resulting recombinant baculovirus were performed as described (Baculovirus Expression Vectors. A Laboratory Manual. O'Reilly DR, Miller LK, Luckow VA, (Eds.), Oxford University Press: New York, 1994). The spent medium of High Five™ cells (Invitrogen) infected with recombinant CD8-FAP baculovirus for four days was collected and cleared by ultracen-

trifugation.

[0190] The CD8-FAP ELISA (enzyme-linked immunosorbent assay) has been described above (Example 12).

[0191] Insect cell cultures infected with CD8-FAP virus secreted a fusion protein into the medium which carries the F19 epitope and is recognized by an anti-FAP antibody (Figure 1). Neither the cell culture medium alone nor medium from insect cells infected with CD8-CD40L fusion protein bound anti-FAP antibody.

2 [0192] Soluble CD8-FAP protein carrying the F19 epitope was secreted into the medium of infected insected cell cultures. Culture supernatant from cells infected with a control construct did not contain antigen bearing the F19 epitope.
[0193] A soluble form of FAP, CD8-FAP, was produced in insect cells and CD8-FAP was shown to carry the epitope recognized by cF19.

[0194] Supernatants from insect cells infected with recombinant baculovirus encoding either CD8-FAP or CD8-CD40L fusion protein were collected four days postinfection. Cell culture medium without cells was used as an additional control (medium). Serial dilutions of these materials were added to anti-CD8 antibody-coated microtiter plates and allowed to bind. cF19 (1 mg/mL) was subsequently added and allowed to bind.

[0195] Bound cF19 was detected with horseradish peroxidase-conjugated anti-human antibody.

37

45

50

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:	
10	(i) APPLICANT: (A) NAME: Boehringer Ingelheim International GmbH (B) STREET: Rheinstrasse (C) CITY: Ingelheim am Rhein (E) COUNTRY: Germany (F) POSTAL CODE (ZIP): 55216 (G) TELEPHONE: ++49-6132-772770 (H) TELEFAX: ++49-6132-774377	
	(ii) TITLE OF INVENTION: FAP alpha-specific antibody with improved producibility	
15	(iii) NUMBER OF SEQUENCES: 101	
	(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: Patentin Release #1.0, Version #1.30 (EPO)	
20	(2) INFORMATION FOR SEQ ID NO: 1:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 339 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
	•	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	GACATTGTGA TGACCCAATC TCCAGACTCT TTGGCTGTGT CTCTAGGGGA GAGGGCCACC	6
	ATCAACTGCA AGTCCAGTCA GAGCCTTTTA TATTCTAGAA ATCAAAAGAA CTACTTGGCC	2
35	TGGTATCAGC AGAAACCAGG ACAGCCACCC AAACTCCTCA TCTTTTGGGC TAGCACTAGG	8
	GAATCTGGGG TACCTGATAG GTTCAGTGGC AGTGGGTTTG GGACAGACTT CACCCTCACC	24
	ATTAGCAGCC TGCAGGCTGA AGATGTGGCA GTTTATTACT GTCAGCAATA TTTTAGCTAT	30
40	CCGCTCACGT TCGGACAAGG GACCAAGGTG GAAATAAAA	33
	(2) INFORMATION FOR SEQ ID NO: 2:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 113 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
	Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly 1 5 10 15	

38

	GI u	Arg A	20	Ile .	Asn C	s Lys	Ser 25	Ser	Gln	Ser	Leu	Leu 30	Tyr	Ser	
5	Arg	Asn G	Sln Lys S5	Asn '	Tyr Le	u Ala 40	Trp	Tyr	Gln	Gln	Lys 45	Pro	Gly	Gln	
	Pro	Pro L 50	ys Leu	Leu :	Ile Ph 59		Ala	Ser	Thr	Arg 60	Glu	Ser	Gly	Val	
10	Pro 65	Asp A	Arg Phe	Ser	Gly Se 70	r Gly	Phe	Gly	Thr 75	Asp	Phe	Thr	Leu	Thr 80	
	Ile	Ser S	er Leu	Gln 8	Ala G	u Asp	Val	Ala 90	Val	Тух	Tyr	Сув	Gln 95	Gln	
	Тут	Phe S	Ser Tyr 100	Pro :	Leu Tì	r Phe	Gly 105	Gln	Gly	Thr	Lys	Val 110	Glu	Ile	
15	Lys														
	(2) INFO	RMATIO	IN FOR S	SEQ I	D NO:	3:									
20	(i)	(Ā) (B) (C)	INCE CHI LENGTH: TYPE: I STRANDI TOPOLOX	: 339 Tucle: EDNES:	base ic aci S: dou	pairs d									
25	(ii)	MOLEC	ULB TY	PE: c	AMO										
	423	anarm													
			INCE DES			_								_	
30	GACATTGTY														60
or out	TGGTTCCAC														120
	GAATCTGG														240
35	ATTAGCAG														300
-	CCGCTCAC														339
	(2) INFO	RMATIO	N FOR S	SEQ II	D NO:	4:									
10	(i)	(A) (B) (C)	INCE CHI LENGTH: TYPE: 8 STRANDI TOPOLOG	: 113 Emino EDNES:	amino acid S: sir	acid	B				ę.				
	(ii)	WOLEC	ULE TY	E: p	eptide										
15															
	(xi)	SEQUE	NCE DES	CRIP	TION:	SEQ I	D NO	: 4:							
50	Asp 1	Ile V	al Met	Thr (Gln Se	r Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly	
	Glu	Arg A	la Thr 20	Ile	Asn Cy	s Lys	Ser 25	Ser	Gln	Ser	Leu	Leu 30	Tyr	Ser	

	Arg Asn Gln Lys Asn Tyr Leu Ala Trp Phe Gln Gin Lys Pro Gly Gin 35 40 45	
5	Pro Pro Lys Leu Leu Ile Phe Trp Ala Ser Thr Arg Glu Ser Gly Val	
	Pro Asp Arg Phe Ser Gly Ser Gly Phe Gly Thr Asp Phe Thr Leu Thr 65 70 75 80	
10	Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Asp Cys Gln Gln 85 90 95	
10	Tyr Phe Ser Tyr Pro Leu Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105 110	
	Lys	
15	(2) INFORMATION FOR SEQ ID NO: 5:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 339 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5: GACATTGTGA TGACCCAATC TCCAGACTCT TTGGCTGTGT CTCTAGGGGA GAGGGCCACC	61
	CACATIOTOR TORCCOMIC TOCHANDIOT TECHNOLOGY	.2(
		.8
30	GAATCTGGGG TACCTGATAG GTTCAGTGGC AGTGGGTTTG GGACAGACTT CACCCTCACC	41
	ATTAGCAGCC TGCAGGCTGA AGATGTGGCA GTTTATTACT GTCAGCAATA TTTTAGCTAT	80
	CCGCTCACGT TCGGACAAGG GACCAAGGTG GAAATAAAA	33
35	(2) INFORMATION FOR SEQ ID NO: 6:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 113 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: peptide	
_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
45	Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala Val Ser Leu Gly 1 5 10	
	Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser 20 25 30	
50	Arg Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45	
	Pro Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val	
55	•	

	50 55 60	
	Pro Asp Arg Phe Ser Gly Ser Gly Phe Gly Thr Asp Phe Thr Leu Thr	
5	65 70 75 80	
	Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr Tyr Cys Gln Gln 85 90 95	
	Tyr Phe Ser Tyr Pro Leu Thr Phe Gly Gln Gly Thr Lys Val Glu Ile 100 105 110	
10	Lys	
	(2) INFORMATION FOR SEO ID NO: 7:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 372 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	CAGGTGCAAC TAGTGCAGTC CGGCGCCGAA GTGAAGAAAC CCGGTGCTTC CGTGAAAGTC	60
25		120
23		180
		240
		300
30 🖫		360
E.	ACCGTCTCCT CA	372
	(2) INFORMATION FOR SEQ ID NO: 8:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 124 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: peptide	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
45	Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 10 15	
	Ser Val Lys Val Ser Cys Lys Thr Ser Arg Tyr Thr Phe Thr Glu Tyr 20 25 30	
50	Thr Ile His Trp Val Arg Gln Ala Pro Gly Gln Arg Leu Glu Trp Ile 35 40 45	
	Gly Gly Ile Asn Pro Asn Asn Gly Ile Pro Asn Tyr Asn Gln Lys Phe 50 60	

41

	Lys Gly Arg Ala Thr Leu Thr Val Gly Lys Ser Ala Ser Thr Ala Tyr 65 70 80	
5	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95	
	Ala Arg Arg Ile Ala Tyr Gly Tyr Asp Glu Gly His Ala Met Asp 100 105 110	
10	Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120	
,,	(2) INFORMATION FOR SEQ ID NO: 9:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 372 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
20		
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	CAGGTGCAAC TAGTGCAGTC CGGCGCCGAA GTGAAGAAAC CCGGTGCTTC CGTGAAAGTC	60
	AGCTGTAAAA CTAGTAGATA CACCTTCACT GAATACACCA TACACTGGGT TAGACAGGCC	120
25	CCTGGCCAAA GGCTGGAGTG GATAGGAGGT ATTAATCCTA ACAATGGTAT TCCTAACTAC	180
	AACCAGAAGT TCAAGGGCCG GGCCACCTTG ACCGTAGGCA AGTCTGCCAG CACCGCCTAC	240
	ATGGAACTGT CCAGCCTGCG CTCCGAGGAC ACTGCAGTCT ACTTCTGCGC CAGAAGAAGA	300
	ATCGCCTATG GTTACGACGA GGGCCATGCT ATGGACTACT GGGGTCAAGG AACCCTTGTC	360
30	ACCGTCTCCT CA	372
	(2) INFORMATION FOR SEQ ID NO: 10:	
<i>35</i>	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 124 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
40		
	() OPENDAGE DECONTRATON, CON IN NO. 10.	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
	Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15	
45	Ser Val Lys Val Ser Cys Lys Thr Ser Arg Tyr Thr Phe Thr Glu Tyr 20 25 30	
	Thr Ile His Trp Val Arg Gln Ala Pro Gly Gln Arg Leu Glu Trp Ile 35 40 45	
50 ,	Gly Gly Ile Asn Pro Asn Asn Gly Ile Pro Asn Tyr Asn Gln Lys Phe 50 60	
	Lys Gly Arg Ala Thr Leu Thr Val Gly Lys Ser Ala Ser Thr Ala Tyr 65 70 80	

	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95														
5	Ala Arg Arg Ile Ala Tyr Gly Tyr Asp Glu Gly His Ala Met Asp 100 105 110														
	Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120														
	(2) INFORMATION FOR SEQ ID NO: 11:														
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 372 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear														
15	(ii) MOLECULE TYPE: CDNA														
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:														
20	CAGGTGCAAC TAGTGCAGTC CGGCGCCGAA GTGAAGAAC CCGGTGCTTC CGTGAAAGTC	60													
	AGCTGTAAAA CTAGTAGATA CACCTTCACT GAATACACCA TACACTGGGT TAGACAGGCC	120													
	CCTGGCCAAA GGCTGGAGTG GATAGGAGGT ATTAATCCTA ACAATGGTAT TCCTAACTAC	180													
25	AACCAGAAGT TCAAGGGCCG GGTCACCATC ACCGTAGACA CCTCTGCCAG CACCGCCTAC	240													
	ATGGAACTGT CCAGCCTGCG CTCCGAGGAC ACTGCAGTCT ACTACTGCGC CAGAAGAAGA	300													
	ATCGCCTATG GTTACGACGA GGGCCATGCT ATGGACTACT GGGGTCAAGG AACCCTTGTC	360													
	ACCGTCTCCT CA	372													
30	(2) INFORMATION FOR SEQ ID NO: 12:														
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 124 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear														
35	(ii) MOLECULE TYPE: peptide														
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:														
	Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 10 15														
	Ser Val Lys Val Ser Cys Lys Thr Ser Arg Tyr Thr Phe Thr Glu Tyr 20 25 30														
45	Thr Ile His Trp Val Arg Gln Ala Pro Gly Gln Arg Leu Glu Trp Ile 35 40 45														
	Gly Gly Ile Asn Pro Asn Asn Gly Ile Pro Asn Tyr Asn Gln Lys Phe 50 55 60														
50	Lys Gly Arg Val Thr Ile Thr Val Asp Thr Ser Ala Ser Thr Ala Tyr 65 70 75 80														
	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys														

5	Ala Arg Arg Ile Ala Tyr Gly Tyr Asp Glu Gly His Ala Met Asp 100 105 110 Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120	
10	(2) INFORMATION FOR SEQ ID NO: 13: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 372 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13: CAGGTGCAAC TAGTGCAGTC CGGCGCCGAA GTGAAGAAAC CCGGTGCTTC CGTGAAAGTC	60
20	AGCTGTAAAA CTAGTAGATA CACCTTCACT GAATACACCA TACACTGGGT TAGACAGGCC	120
		180
		240
		300
25		360
		372
	(2) INFORMATION FOR SEQ ID NO: 14:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 124 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: peptide	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
40	Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15	
	Ser Val Lys Val Ser Cys Lys Thr Ser Arg Tyr Thr Phe Thr Glu Tyr 20 25 30	
45	Thr Ile His Trp Val Arg Gln Ala Pro Gly Gln Arg Leu Glu Trp Ile 35 40 45	
	Gly Gly Ile Asn Pro Asn Asn Gly Ile Pro Asn Tyr Asn Gln Lys Phe 50 55 60	
50	Lys Gly Arg Val Thr Ile Thr Val Asp Thr Ser Ala Ser Thr Ala Tyr 65 70 75 80	
	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95	

	100 105 GIU GIY HIS ALE MET ASP	
5	Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser	
	(2) INFORMATION FOR SEQ ID NO: 15:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 372 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: CDNA	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	CAGGTGCAAC TAGTGCAGTC CGGCGCCGAA GTGAAGAAC CCGGTGCTTC CGTGAAAGTC	60
20	AGCTGTAAAA CTAGTGGATA CACCTTCACT GAATACACCA TACACTGGGT TAGACAGGCC	120
20	CCTGGCCAAA GGCTGGAGTG GATAGGAGGT ATTAATCCTA ACAATGGTAT TCCTAACTAC	180
	AACCAGAAGT TCAAGGGCCG GGTCACCATC ACCGTAGACA CCTCTGCCAG CACCGCCTAC	240
	ATGGAACTGT CCAGCCTGCG CTCCGAGGAC ACTGCAGTCT ACTACTGCGC CAGAAGAAGA	300
25	ATCGCCTATG GTTACGACGA GGGCCATGCT ATGGACTACT GGGGTCAAGG AACCCTTGTC	360
	ACCGTCTCCT CA	372
	(2) INFORMATION FOR SEQ ID NO: 16:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 124 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: peptide	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
4 0	Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 10 15	
	Ser Val Lys Val Ser Cys Lys Thr Ser Gly Tyr Thr Phe Thr Glu Tyr 20 25 30	
	Thr Ile His Trp Val Arg Gln Ala Pro Gly Gln Arg Leu Glu Trp Ile 35 40 45	
45	Gly Gly Ile Asn Pro Asn Asn Gly Ile Pro Asn Tyr Asn Gln Lys Phe 50 55 60	
	Lys Gly Arg Val Thr Ile Thr Val Asp Thr Ser Ala Ser Thr Ala Tyr 65 70 75 80	
50	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95	
	Ala Arg Arg Arg Ile Ala Tyr Gly Tyr Asp Glu Gly His Ala Met Asp 100 105 110	

Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

5	(2)	INFOR	MATI	ON F	OR S	RQ I	D NO	: 17	:								
		(i)	(A) (B) (C)	LEN TYP STR	GTH: B: a ANDE	220 mino DNES	BRIS ami aci S: s inea	no a d ingl	cids								
10		(ii)	MOLE	CULE	TYP	B: p	epti	de									
		(xi)	SBQU	BNCE	DES	CRIP	TION	: SE	Q II	NO:	17:						
15		Asp 1	Ile	Val	Met	Ser 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ala	Val	Ser	Val 15	Gly
		Glu	Lys	Va1	Thr 20	Met	Ser	Сув	Lys	Ser 25	Ser	Gln	Ser	Leu	Leu 30	Tyr	Ser
20		Arg	Asn	Gln 35	Lys	Asn	Tyr	Leu	Ala 40	Trp	Phe	Gln	Gln	Lys 45	Pro	Gly	Gln
			50				Ile	55					60				
25		65					Gly 70					/5					80
						85	Ala				90					95	
30					100		Leu			105					110		
				115			Ala		120					125			
			130				Gly	135					140				
35		145					150					155					Leu 160
						165					170					175	
40					180	1				185					190		Tyr
		Glu	Lys	His 195		Val	Тут	Ala	200	Glu	Val	Thr	His	Gln 205	Gly	Leu	Ser
45		Ser	Pro 210		Thr	Lys	Ser	215	Asn	Arg	Gly	Glu	220))			
	(2)	INFO	RMAT	ION	FOR	SBQ	ID N	iO: 1	8:								
		(i)	(Ā) LE	NGT	1: 45	TERI 3 an	nino		ls							
50							ISS: line		gle								

(ii) MOLECULE TYPE: peptide

	(xi)	SEQ	DENCI	E DES	SCRI	PTIO	N: SI	BQ II	000	: 18	:					
5	Val 1	Gln	Leu	Gln	Gln 5	Ser	Gly	Pro	Glu	Leu 10	Val	Lys	Pro	Gly	Ala 15	Ser
	Val	Lys	Met	Ser 20	Сув	Lys	Thr	Ser	Arg 25	Tyr	Thr	Phe	Thr	Glu 30	Tyr	Thr
10	Ile	His	Trp 35	Val	Arg	Gln	Ser	His 40	Gly	Lys	Ser	Leu	Glu 45	Trp	Ile	Gly
	Gly	Ile 50	Asn	Pro	Asn	Asn	Gly 55	Ile	Pro	Asn	Tyr	Asn 60	Gln	Lys	Phe	Lys
	Gly 65	Arg	Ala	Thr	Leu	Thr 70	Val	Gly	Lys	Ser	Ser 75	Ser	Thr	Ala	Tyr	Met 80
15	Glu	Leu	Arg	Ser	Leu 85	Thr	Ser	Glu	Asp	Ser 90	Ala	Val	Tyr	Phe	Суя 95	Ala
	Arg	Arg	Arg	Ile 100	Ala	Тут	Gly	Tyr	Asp 105	Glu	Gly	His	Ala	Met 110	Asp	Tyr
20	Trp	Gly	Gln 115	Gly	Thr	Ser	Val	Thr 120	Val	Ser	Ser	Ala	Ser 125	Thr	Lys	Gly
	Pro	Ser 130	Val	Phe	Pro	Leu	Ala 135	Pro	Ser	Ser	Lys	Ser 140	Thr	Ser	Gly	Gly
25	Thr 145	Ala	Ala	Leu	Gly	Сув 150	Leu	Val	Lys	Asp	Tyr 155	Phe	Pro	Glu	Pro	Val 160
	Thr	Val	Ser	Trp	Asn 165	Ser	Gly	Ala	Leu	Thr 170	Ser	Gly	Val	His	Thr 175	Phe
30	Pro	Ala	Val	Leu 180	Gln	Ser	Ser	Gly	Leu 185	Tyr	Ser	Leu	Ser	Ser 190	Val	Va1
	Thr	Val	Pro 195	Ser	Ser	Ser	Leu	Gly 200	Thr	Gln	Thr	Tyr	11e 205	Сув	Asn	Val
35	Asn	His 210	Lys	Pro	Ser	Asn	Thr 215	Lys	Val	Asp	Lys	Lys 220	Val	Glu	Pro	Lys
	Ser 225	Сув	Asp	Lys	Thr	His 230	Thr	Сув	Pro	Pro	Сув 235	Pro	Ala	Pro	Glu	Leu 240
40	Leu	Gly	Gly	Pro	Ser 245	Val	Phe	Leu	Phe	Pro 250	Pro	Lys	Pro	Lys	Asp 255	Thr
	Leu	Met	Ile	Ser 260	Arg	Thr	Pro	Glu	Val 265	Thr	Сув	Val	Val	Val 270	Ąsp	Val
45	Ser	His	Glu 275	Asp	Pro	Glu	Val	Lys 280	Phe	Asn	Trp	Tyr	Val 285	qaA	Gly	Val
45	Glu	Val 290	His	Asn	Ala	Lys	Thr 295	Lys	Pro	Arg	Glu	Glu 300	Gln	Tyr	Asn	Ser
	Thr 305	Tyr	Arg	Val	Val	Ser 310	Val	Leu	Thr	Val	Leu 315	His	Gln	qaA	Trp	Leu 320
50	Asn	Gly	Lys	Glu	Tyr 325	Lys	Сув	Lys	Val	Ser 330	Asn	Lys	Ala	Leu	Pro 335	Ala
	Pro	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly	Gln	Pro	Arg	Glu	Pro

	Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln 355 360 365	
5	Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala 370 375 380	
	Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr 385 390 395 400	
10	Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu 405 410 415	
	Thr Val Asp Lys Ser Arg Trp Gin Gln Gly Asn Val Phe Ser Cys Ser 420 425 430	
15	Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser 435 440 445	
	Leu Ser Pro Gly Lys 450	
	(2) INFORMATION FOR SEQ ID NO: 19:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 321 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: CDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
00		60
30		.20
	TGGAAGGTGG ATAACGCCCT CCAATCGGGT AACTCCCAGG AGAGTGTCAC AGAGCAGGAC	180
	AGCAAGGACA GCACCTACAG CCTCAGCAGC ACCCTGACGC TGAGCAAAGC AGACTACGAG	240
35	AAACACARAG TCTACGCCTG CGAAGTCACC CATCAGGGCC TGAGCTCGCC CGTCACAAAG	300
	AGCTTCAACA GGGGAGAGTG T	321
	(2) INFORMATION FOR SEQ ID NO: 20:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 107 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: peptide .	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
50	Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu 1 5 10 15	
	Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe 20 25 30	
55		

	Tyr	Pro	Arg 35	Glu .	Ala	Lys	Val	Gln 40	Trp	Lys	Val	Asp	Asn 45	Ala	Leu	Gln	
5	Ser	Gly 50	Asn	Ser	Gln	Glu	Ser 55	Val	Thr	Glu	Gln	Asp 60	Ser	Lya	qaA	Ser	
	Thr 65	Туг	Ser	Leu	Ser	Ser 70	Thr	Leu	Thr	Leu	Ser 75	Lув	Ala	Двр	Tyr	Glu 80	
10	Lув	His	ŗĀB		Tyr 85	Ala	Сув	Glu	Val	Thr 90	Hig	Gln	Gly	Leu	Ser 95	Ser	
	Pro	Val '		Lув 100	Ser	Phe	Asn	Arg	Gly 105	Glu	Сув						
	(2) INFOR	ITAM	on f	OR S	EQ I	D NC	: 21	.:									
15	(i)	(B) (C)	LEN TYP STR	CHA GTH: E: n ANDE OLOG	990 ucle DNBS	bas ic s S: d	e pa cid loubl	irs									
20	(ii)	MOLE	COLR	TYP	B: c	DNA											
		-								02.0							
		SEQU						_								_	
25	GCCTCCACC																60
	TGGAACTCA																120 180
	GGACTCTAC																240
30	TACATCTGO																300
2	AAATCTTGT	G AC	AAAA	CTCA	CAC	ATGC	CCA	CCGT	GCCC	AG C	ACCI	GAAC	T CC	TGGG	GGGZ		360
	CCGTCAGTC	T TC	CTCT	TCCC	ccc	AAA.	ccc	AAGG	ACAC	:cc 1	CATG	ATCI	× cc	GGAC	:0001	•	420
35	GAGGTCACA	T GC	GTGG	TGGT	GGA	CGTG	AGC	CACG	AAGA	cc c	TGAG	GTCA	A GI	TCAA	CTGC	;	480
	TACGTGGAC	G GC	GTGG	aggt	GCA	TAAT	GCC	AAGA	CAAA	GC C	CCGG	GAGG	A GC	AGTA	CAAC	:	540
	AGCACGTAC	C GG	GTGG	TCAG	CGT	CCTC	ACC	GTCC	TGCA	CC F	GGAC	TGGC	T GA	ATGG	CAAC	;	600
	GAGTACAAG	T GC	aagg	TCTC	CAA	CAAA	GCC	CTCC	CAGC	cc c	CATO	GAGA	A A	CCAT	crcc	:	660
40	AAAGCCAAA	vg gg	CAGC	CCCG	AGA	ACCA	CAG	GTGT	ACAC	CC 1	GCCC	CCAT	rc cc	GGGA	GGAG	;	720
	ATGACCAAG	A AC	CAGG	TCAG	CCT	GACC	TGC	CTGG	TCAA	AG C	CTTC	TATO	C CZ	GCGA	CATO	:	780
	GCCGTGGAG	T GG	GAGA	GCAA	TGG	GCAG	CCG	GAGA	ACAA	CT A	CAAG	ACCA	C GC	CTCC	CGTC	1	840
45	CTGGACTCC	G AC	GGCT	CCTT	CTI	CCTC	TAC	AGCA	AGCT	CA (CGTG	GACA	A GA	GCAG	GTGG	;	900
	CAGCAGGGG	a ac	GTCT	TCTC	ATG	CTCC	GTG	ATGC	ATGA	GG C	TCTG	CACA	A CC	ACTA	CAC	;	960
	CAGAAGAGC	C TC	TCCC	TGTC	TCC	GGGT	'AAA										990
50	(2) INFOR	SEQU	ENCB LEN		RACT	ERIS ami	TICS	:	ı								

(C) STRANDEDNESS: single (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

	(xi) SE	QUENC	E DES	CRIP	TION	: SE	Q ID	NO:	22.:						
10	Ala Se 1	r Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Ser	Ser 15	Lys
	Ser Th	r Ser	Gly 20	Gly	Thr	Ala	Ala	Leu 25	Gly	Сув	Leu	Val	30 Tàb	QaA	Tyr
15	Phe Pr	o Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
	Gly Va 50		Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
	Leu Se 65	r Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Gln	Thr 80
20	Tyr Il	е Сув	Asn	Val 85	Asn	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Авр 95	Lys
	Lys Va	1 Glu	Pro 100	Lys	Ser	Сув	Asp	Lys 105	Thr	His	Thr	Сув	Pro 110	Pro	Сув
25	Pro Al	a Pro 115		Leu	Leu	Gly	Gly 120	Pro	Ser	Val	Pḥe	Leu 125	Phe	Pro	Pro
	Lys P:		Asp	Thr	Leu	Met 135	Ile	Ser	Arg	Thr	Pro 140	Glu	Val	Thr	Сув
30	Val Va 145	l Val	Авр	Val	Ser 150	His	Glu	Asp	Pro	Glu 155	Val	Lys	Phe	Asn	Trp 160
	Tyr Va	l Asp	Gly	Val 165	Glu	Val	His	Asn	Ala 170	Lys	Thr	Lys	Pro	Arg 175	Glu
	Glu G	n Tyr	Asn 180		Thr	Tyr	Arg	Val 185	Val	Ser	Val	Leu	Thr 190	Val	Leu
35	His G	n Asp 199		Leu	Asn	Gly	Lys 200	Glu	Тут	Lys	Сув	Lys 205	Val	Ser	Asn
	Lys A	a Let 10	Pro	Ala	Pro	Ile 215		Lys	Thr	Ile	Ser 220	Lys	Ala	Lys	Gly
40	Gln P: 225	ro Arg	g Glu	Pro	Gln 230	Val	Tyr	Thr	Leu	Pro 235	Pro	Ser	Arg	Glu	Glu 240
	Met T	nr Lyı	a Asn	Gln 245	Val	Ser	Leu	Thr	Сув 250	Leu	Val	Lys	Gly	Phe 255	Tyr
45	Pro S	er Ası	260	Ala	Val	Glu	тхр	Glu 265	Ser	Asn	Gly	Gln	270	Glu	Asn
	Asn T	yr Ly: 27		Thr	Pro	Pro	Va]	Leu	Asp	Ser	Asp	Gly 285	r Sei	Phe	Phe
50	Leu T	yr Se: 90	r Lys	s Lev	Thr	Val 295		Lys	Ser	Arg	300	Glr	Glr	ı Gly	Asn
	Val P 305	he Se	г Сув	s Ser	Val		Hie	Glu	a Ala	1 Leu 319	Hie	ası	Hi:	з Тут	Thr 320

	Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 330	
5	(2) INFORMATION FOR SEQ ID NO: 23:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 427 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: DNA (genomic)	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
	AAGCTTGCCG CCACCATGGA TTCACAGGCC CAGGTTCTTA TGTTACTGCC GCTATGGGTA	60
	TCTGGTACCT GTGGGGACAT TGTGATGTCA CAGTCTCCAT CCTCCCTAGC TGTGTCAGTT	120
•	GGAGAGAAGG TTACTATGAG CTGCAAGTCC AGTCAGAGCC TTTTATATAG TCGTAATCAA	180
20	AAGAACTACT TGGCCTGGTT CCAGCAGAAG CCAGGGCAGT CTCCTAAACT GCTGATTTTC	240
	TGGGCATCCA CTAGGGAATC TGGGGTCCCT GATCGCTTCA CAGGCAGTGG ATTTGGGACG	300
	GATTTCAATC TCACCATCAG CAGTGTGCAG GCTGAGGACC TGGCAGTTTA TGACTGTCAG	360
25	CAATATTITA GCTATCCGCT CACGTTCGGT GCTGGGACCA AGCTGGAGCT GAAACGTGAG	420
	TGGATCC	427
	(2) INFORMATION FOR SEQ ID NO: 24:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 133 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
<i>35</i>		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:	
40	Met Asp Ser Gln Ala Gln Val Leu Met Leu Leu Pro Leu Trp Val Ser 1 5 10 15	
40	Gly Thr Cys Gly Asp Ile Val Met Ser Gln Ser Pro Ser Ser Leu Ala 20 25 30	
	Val Ser Val Gly Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser 35 40 45	
45	Leu Leu Tyr Ser Arg Asn Gln Lys Asn Tyr Leu Ala Trp Phe Gln Gln 50 60	
	Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile Phe Trp Ala Ser Thr Arg 65 70 75 80	
50	Glu Ser Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Phe Gly Thr Asp 85 90 95	
	Phe Asn Leu Thr Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr 100 105 110	

Asp Cys Gln Gln Tyr Phe Ser Tyr Pro Leu Thr Phe Gly Ala Gly Thr 115 120 125

5	Lys Leu Glu Leu Lys 130	
	(2) INFORMATION FOR SEQ ID NO: 25:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 457 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
	AAGCTTGCCG CCACCATGGG ATGGAGCTGG GTCTTTCTCT TTCTCCTGTC AGGAACTGCA 6	0
	GGTGTCCTCT CTGAGGTCCA GCTGCAACAG TCTGGACCTG AGCTGGTGAA GCCTGGGGCT 12	0:
20	TCAGTAAAGA TGTCCTGCAA GACTTCTAGA TACACATTCA CTGAATACAC CATACACTGG 18	
	GTGAGACAGA GCCATGGAA GAGCCTTGAG TGGATTGGAG GTATTAATCC TAACAATGGT 24	
	ATTCCTARCT ACARCAGAR GTTCARGGGC AGGGCCACAT TGACTGTAGG CARGTCCTCC 30	
	AGCACCGCCT ACATGGAGCT CCGCAGCCTG ACATCTGAGG ATTCTGCGGT CTATTTCTGT 36	
25	GCAAGAAGAA GAATCGCCTA TGGTTACGAC GAGGGCCATG CTATGGACTA CTGGGGTCAA 42	
	GONDANIA GARLOCCIA IOUITAGAS GABOUGIS GINIONIA GARAGO	
	CONTESTAND TONGETTE CONTRACTOR SOURCE	•
30	(2) INFORMATION FOR SEQ ID NO: 26:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 143 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: peptide	
•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
40	Met Gly Trp Ser Trp Val Phe Leu Phe Leu Ser Gly Thr Ala Gly	
70	1 5 10 15	
	Val Leu Ser Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys 20 25 30	
45	Pro Gly Ala Ser Val Lys Met Ser Cys Lys Thr Ser Arg Tyr Thr Phe 35 40 45	
	Thr Glu Tyr Thr Ile His Trp Val Arg Gln Ser His Gly Lys Ser Leu 50 55 60	
50	Glu Trp Ile Gly Gly Ile Asn Pro Asn Asn Gly Ile Pro Asn Tyr Asn 65 70 75 80	
	Gln Lys Phe Lys Gly Arg Ala Thr Leu Thr Val Gly Lys Ser Ser Ser 85 90 95	

Thr Ala Tyr Met Glu Leu Arg Ser Leu Thr Ser Glu Asp Ser Ala Val 100 105 110

5	Tyr Phe Cys Ala Arg Arg Ile Ala Tyr Gly Tyr Asp Glu Gly His 115 120 125	
	Ala Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser 130 135 140	
	(2) INFORMATION FOR SEQ ID NO: 27:	
10	(1) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 8068 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
		60
20		
		20
		80
25		40
		00
•	ATGGCCCGCC TGGCATTATG CCCAGTACAT GACCTTATGG GACTTTCCTA CTTGGCAGTA 3	60
	CATCTACGTA TTAGTCATCG CTATTACCAT GGTGATGCGG TTTTGGCAGT ACATCAATGG 4	20
30	GCGTGGATAG CGGTTTGACT CACGGGGATT TCCAAGTCTC CACCCCATTG ACGTCAATGG 4	80
	GAGTTTGTTT TGGCACCAAA ATCAACGGGA CTTTCCAAAA TGTCGTAACA ACTCCGCCCC 5	40
	ATTGACGCAA ATGGGCGGTA GGCGTGTACG GTGGGAGGTC TATATAAGCA GAGCTCGTTT 6	00
05	AGTGAACCGT CAGATCGCCT GGAGACGCCA TCCACGCTGT TTTGACCTCC ATAGAAGACA 6	60
35	CCGGGACCGA TCCAGCCTCC GCGGCCGGGA ACGGTGCATT GGAACGCGGA TTCCCCGTGC 7	20
	CAAGAGTGAC GTAAGTACCG CCTATAGAGT CTATAGGCCC ACCCCCTTGG CTTCTTATGC 7	80
	ATGCTATACT GTTTTTGGCT TGGGGTCTAT ACACCCCCGC TTCCTCATGT TATAGGTGAT 8	40
40	GGTATAGCTT AGCCTATAGG TGTGGGTTAT TGACCATTAT TGACCACTCC CCTATTGGTG 9	00
	ACGATACTIT CCATTACTAA TCCATAACAT GGCTCTTTGC CACAACTCTC TTTATTGGCT 9	60
	ATATGCCAAT ACACTGTCCT TCAGAGACTG ACACGGACTC TGTATTTTTA CAGGATGGGG 10	20
		80
45		40
		00
50		60
		20
	GCTCGGGGAG CGGCTTGCA CCGCTGACGC ATTTGGAAGA CTTAAGGCAG CGGCAGAAGA 13	80

	AGATGCAGGC	AGCTGAGTTG	TTGTGTTCTG	ATAAGAGTCA	GAGGTAACTC	CCGTTGCGGT	1440
	GCTGTTAACG	GTGGAGGGCA	GTGTAGTCTG	AGCAGTACTC	GTTGCTGCCG	CGCGCGCCAC	1500
5	CAGACATAAT	AGCTGACAGA	CTAACAGACT	GTTCCTTTCC	ATGGGTCTTT	TCTGCAGTCA	1560
	CCGTCCTTGA	CACGCGTCTC	GGGAAGCTTG	CCGCCACCAT	GGATTCACAG	GCCCAGGTTC	1620
	TTATGTTACT	GCCGCTATGG	GTATCTGGTA	CCTGTGGGGA	CATTGTGATG	TCACAGTCTC	1680
10	CATCCTCCCT	AGCTGTGTCA	GTTGGAGAGA	AGGTTACTAT	GAGCTGCAAG	TCCAGTCAGA	1740
	GCCTTTTATA	TTCTAGAAAT	CAAAAGAACT	ACTTGGCCTG	GTTCCAGCAG	AAGCCAGGGC	1800
	AGTCTCCTAA	ACTGCTGATT	TTCTGGGCAT	CCACTAGGGA	ATCTGGGGTC	CCTGATCGCT	1860
	TCACAGGCAG	TGGATTTGGG	ACGGATTTCA	ATCTCACCAT	CAGCAGTGTG	CAGGCTGAGG	1920
15	ACCIGGCAGT	TTATGACTGT	CAGCAATATT	TTAGCTATCC	GCTCACGTTC	GGTGCTGGGA	1980
	CCAAGCTGGA	GCTGAAACGT	GAGTGGATCC	ATCTGGGATA	AGCATGCTGT	TTTCTGTCTG	2040
	TCCCTAACAT	GCCCTGTGAT	TATGCGCAAA	CAACACACCC	AAGGGCAGAA	CTTTGTTACT	2100
20	TAAACACCAT	CCTGTTTGCT	TCTTTCCTCA	GGAACTGTGG	CTGCACCATC	TGTCTTCATC	2160
	TTCCCGCCAT	CTGATGAGCA	GTTGAAATCT	GGAACTGCCT	CIGITGIGIG	CCTGCTGAAT	2220
	AACTTCTATC	CCAGAGAGGC	CAAAGTACAG	TGGAAGGTGG	ATAACGCCCT	CCAATCGGGT	2280
25	AACTCCCAGG	AGAGTGTCAC	AGAGCAGGAC	AGCAAGGACA	GCACCTACAG	CCTCAGCAGC	2340
25	ACCCTGACGC	TGAGCAAAGC	AGACTACGAG	AAACACAAAG	TCTACGCCTG	CGAAGTCACC	2400
	CATCAGGGCC	TGAGCTCGCC	CGTCACAAAG	AGCTTCAACA	GGGGAGAGTG	TTAGAGGGAG	2460
	AAGTGCCCCC	ACCTGCTCCT	CAGTTCCAGC	CTGACCCCCT	CCCATCCTTT	GGCCTCTGAC	2520
30	CCTTTTTCCA	CAGGGGACCT	ACCCCTATTG	CGGTCCTCCA	GCTCATCTTT	CACCTCACCC	2580
	CCCTCCTCCT	CCTTGGCTTT	AATTATGCTA	ATGTTGGAGG	AGAATGAATA	AATAAAGTGA	2640
	ATCTITGCAC	CTGTGGTGGA	тстаатаааа	GATATTTATT	TICATIAGAI	ATGTGTGTTG	2700
35	GTTTTTTGTG	TGCAGTGCCT	CTATCTGGAG	GCCAGGTAGG	GCTGGCCTTG	GGGGAGGGG	2760
	AGGCCAGAAT	GACTCCAAGA	GCTACAGGAA	GGCAGGTCAG	AGACCCCACT	GGACAAACAG	2820
	TGGCTGGACT	CTGCACCATA	ACACACAATC	AACAGGGGAG	TGAGCTGGAI	ATTTGCTAGC	2880
	GAATTCTTGA	AGACGAAAGG	GCCTCGTGAT	ACGCCTATTT	TTATAGGTT	ATGTCATGAT	2940
40	AATAATGGTT	TCTTAGACGT	CAGGTGGCAC	TTTTCGGGGA	AATGTGCGCC	GAACCCCTAT	3000
	TTGTTTATT	TTCTAAATAC	ATTCAAATAT	GTATCCGCTC	ATGAGACAA	AACCCTGATA	3060
	AATGCTTCA	TAATATTGA	AAAGGAAGAG	TATGAGTATT	CAACATTTC	C GTGTCGCCCT	3120
45	TATTCCCTT	TITGCGGCA	TTTGCCTTCC	TGTTTTGCT	CACCCAGAA	A CGCTGGTGAA	3180
	AGTAAAAGAT	GCTGAAGAT	AGTTGGGTG	ACGAGTGGGT	TACATCGAA	C TGGATCTCAA	3240
	CAGCGGTAAC	ATCCTTGAG	A GTTTTCGCCC	CGAAGAACGT	TTTCCAATG	A TGAGCACTTT	3300
50	TAAAGTTCT	CTATGTGGC	G CGGTATTATC	CCGTGTTGAC	GCCGGGCAA	G AGCAACTCGG	3360
50	TCGCCGCAT	CACTATICT	C AGAATGACT	GGTTGAGTA	TCACCAGTC	A CAGAAAAGCA	3420
	TCTTACGGA	r ggcatgaca	G TAAGAGAAT	r ATGCAGTGC	GCCATAACC	A TGAGTGATAA	3480

	CACTGCGGCC	AACTTACTTC	TGACAACGAT	CGGAGGACCG	AAGGAGCTAA	CCGCTTTTT	3540
	GCACAACATG	GGGGATCATG	TAACTCGCCT	TGATCGTTGG	GAACCGGAGC	TGAATGAAGC	3600
5	CATACCAAAC	GACGAGCGTG	ACACCACGAT	GCCTGCAGCA	ATGGCAACAA	CGTTGCGCAA	3660
	ACTATTAACT	GGCGAACTAC	TTACTCTAGC	TTCCCGGCAA	CAATTAATAG	ACTGGATGGA	3720
	GGCGGATAAA	GTTGCAGGAC	CACTTCTGCG	CTCGGCCCTT	CCGGCTGGCT	GGTTTATTGC	3780
10	TGATAAATCT	GGAGCCGGTG	AGCGTGGGTC	TCGCGGTATC	ATTGCAGCAC	TGGGGCCAGA	3840
	TGGTAAGCCC	TCCCGTATCG	TAGTTATCTA	CACGACGGGG	AGTCAGGCAA	CTATGGATGA	3900
	ACGAAATAGA	CAGATCGCTG	AGATAGGTGC	CTCACTGATT	AAGCATTGGT	aactgtcaga	3960
	CCAAGTTTAC	TCATATATAC	TTTAGATTGA	TTTAAAACTT	CATTTTTAAT	TTAAAAGGAT	4020
15	CTAGGTGAAG	ATCCTTTTTG	ATAATCTCAT	GACCAAAATC	CCTTAACGTG	AGTTTTCGTT	4080
	CCACTGAGCG	TCAGACCCCG	TAGAAAAGAT	CAAAGGATCT	TCTTGAGATC	СТТТТТТСТ	4140
	GCGCGTAATC	TGCTGCTTGC	AAACAAAAA	ACCACCGCTA	CCAGCGGTGG	TTTGTTTGCC	4200
20	GGATCAAGAG	CTACCAACTC	TTTTTCCGAA	GGTAACTGGC	TTCAGCAGAG	CGCAGATACC	4260
	AAATACTGTC	CITCTAGTGT	AGCCGTAGTT	AGGCCACCAC	TTCAAGAACT	CTGTAGCACC	4320
	GCCTACATAC	CTCGCTCTGC	TAATCCTGTT	ACCAGTGGCT	GCTGCCAGTG	GCGATAAGTC	4380
25	GTGTCTTACC	GGGTTGGACT	CAAGACGATA	GTTACCGGAT	AAGGCGCAGC	GGTCGGGCTG	4440
25	AACGGGGGGT	TCGTGCACAC	AGCCCAGCTT	GGAGCGAACG	ACCTACACCG	AACTGAGATA	4500
	CCTACAGCGT	GAGCTATGAG	AAAGCGCCAC	GCTTCCCGAA	GGGAGAAAGG	CGGACAGGTA	4560
	TCCGGTAAGC	GGCAGGGTCG	GAACAGGAGA	GCGCACGAGG	GAGCTTCCAG	GGGGAAACGC	4620
30-	CTGGTATCTT	TATAGTCCTG	TCGGGTTTCG	CCACCTCTGA	CTTGAGCGTC	GATTTTTGTG	4680
42	ATGCTCGTCA	GGGGGGGGA	GCCTATGGAA	AAACGCCAGC	AACGCGGCCT	TTTTACGGTT	4740
	CCTGGCCTTT	TGCTGGCCTT	TTGCTCACAT	GTTCTTTCCT	GCGTTATCCC	CTGATTCTGT	4800
35	GGATAACCGT	ATTACCGCCT	TTGAGTGAGC	TGATACCGCT	CGCCGCAGCC	GAACGACCGA	4860
	GCGCAGCGAG	TCAGTGAGCG	AGGAAGCGGA	AGAGCGCCTG	ATGCGGTATT	TTCTCCTTAC	4920
	GCATCTGTGC	GGTATTTCAC	ACCGCATATG	GTGCACTCTC	AGTACAATCT	GCTCTGATGC	4980
	CGCATAGTTA	AGCCAGTATA	CACTCCGCTA	TCGCTACGTG	ACTGGGTCAT	GGCTGCGCCC	5040
40	CGACACCCGC	CAACACCCGC	TGACGCGCCC	TGACGGGCTT	GTCTGCTCCC	GGCATCCGCT	5100
	TACAGACAAG	CTGTGACCGT	CTCCGGGAGC	TGCATGTGTC	AGAGGTTTTC	ACCGTCATCA	5160
	CCGAAACGCG	CGAGGCAGCT	GTGGAATGTG	TGTCAGTTAG	GGTGTGGAAA	GTCCCCAGGC	5220
45	TCCCCAGCAG	GCAGAAGTAT	GCAAAGCATG	CATCTCAATT	AGTCAGCAAC	CAGGCTCCCC	5280
	AGCAGGCAGA	AGTATGCAAA	GCATGCATCT	CAATTAGTCA	GCAACCATAG	TCCCGCCCCT	5340
	AACTCCGCCC	ATCCCGCCCC	TAACTCCGCC	CAGTTCCGCC	CATTCTCCGC	CCCATGGCTG	5400
50	ACTAATTTT	TTTATTTATG	CAGAGGCCGA	GGCCGCCTCG	GCCTCTGAGC	TATTCCAGAA	5460
-	GTAGTGAGGA	GGCTTTTTTG	GAGGCCTAGG	CTTTTGCAAA	AAGCTAGCTT	CACGCTGCCG	5520
	CAAGCACTCA	GGGCGCAAGG	GCTGCTAAAG	GAAGCGGAAC	ACGTAGAAAG	CCAGTCCGCA	5580

	GAAACGGTGC	TGACCCCGGA	TGAATGTCAG	CTACTGGGCT	ATCTGGACAA	GGGAAAACGC	5640
	AAGCGCAAAG	AGAAAGCAGG	TAGCTTGCAG	TGGGCTTACA	TGGCGATAGC	TAGACTGGGC	5700
5	GGTTTTTATGG	ACAGCAAGCG	AACCGGAATT	GCCAGCTGGG	GCGCCCTCTG	GTAAGGTTGG	5760
	GAAGCCCTGC	AAAGTAAACT	GGATGGCTTT	CTTGCCGCCA	AGGATCTGAT	GGCGCAGGGG	5820
	ATCAAGATCT	GATCAAGAGA	CAGGATGAGG	ATCGTTTCGC	ATGATTGAAC	AAGATGGATT	5880
10	GCACGCAGGT	TCTCCGGCCG	CTTGGGTGGA	GAGGCTATTC	GGCTATGACT	GGGCACAACA	5940
	GACAATCGGC	TGCTCTGATG	CCGCCGTGTT	CCGGCTGTCA	GCGCAGGGGC	GCCCGGTTCT	6000
	TTTTGTCAAG	ACCGACCTGT	CCGGTGCCCT	GAATGAACTG	CAGGACGAGG	CAGCGCGGCT	6060
	ATCGTGGCTG	GCCACGACGG	GCGTTCCTTG	CGCAGCTGTG	CTCGACGTTG	TCACTGAAGC	6120
15	GGGAAGGGAC	TGGCTGCTAT	TGGGCGAAGT	GCCGGGGCAG	GATCTCCTGT	CATCTCACCT	6180
	TGCTCCTGCC	GAGAAAGTAT	CCATCATGGC	TGATGCAATG	CGGCGGCTGC	ATACGCTTGA	6240
	TCCGGCTACC	TGCCCATTCG	ACCACCAAGC	GAAACATCGC	ATCGAGCGAG	CACGTACTCG	6300
20	GATGGAAGCC	GGTCTTGTCG	ATCAGGATGA	TCTGGACGAA	GAGCATCAGG	GGCTCGCGCC	6360
	AGCCGAACTG	TTCGCCAGGC	TCAAGGCGCG	CATGCCCGAC	GGCGAGGATC	TCGTCGTGAC	6420
	CCATGGCGAT	GCCTGCTTGC	CGAATATCAT	GGTGGAAAAT	GGCCGCTTTT	CTGGATTCAT	6480
05	CGACTGTGGC	CGGCTGGGTG	TGGCGGACCG	CTATCAGGAC	ATAGCGTTGG	CTACCCGTGA	6540
25	TATTGCTGAA	GAGCTTGGCG	GCGAATGGGC	TGACCGCTTC	CTCGTGCTTT	ACGGTATCGC	6600
	CGCTCCCGAT	TCGCAGCGCA	TCGCCTTCTA	TCGCCTTCTT	GACGAGTTCT	TCTGAGCGGG	6660
	ACTCTGGGGT	TCGAAATGAC	CGACCAAGCG	ACGCCCAACC	TGCCATCACG	AGATTTCGAT	6720
30	TCCACCGCCG	CCTTCTATGA	AAGGTTGGGC	TTCGGAATCG	TTTTCCGGGA	CGCCGGCTGG	6780
	ATGATCCTCC	AGCGCGGGGA	TCTCATGCTG	GAGTTCTTCG	CCCACCCCGG	GCTCGATCCC	6840
	CTCGCGAGTT	GGTTCAGCTG	CTGCCTGAGG	CTGGACGACC	TCGCGGAGTT	CTACCGGCAG	6900
35	TGCAAATCCG	TCGGCATCCA	GGAAACCAGO	AGCGGCTATC	CGCGCATCC	TGCCCCCGAA	6960
	CTGCAGGAGT	GGGGAGGCAC	GATGGCCGCT	TTGGTCCCGG	ATCTTTGTG/	AGGAACCTTA	7020
	CTTCTGTGGT	GTGACATAAT	TGGACAAACT	ACCTACAGAG	ATTTAAAGCT	CTAAGGTAAA	7080
	TATAAAATTT	TTAAGTGTAT	AATGTGTTAJ	ACTACTGATI	CTAATIGIT	GTGTATTTTA	7140
40	GATTCCAACC	TATGGAACTG	ATGAATGGG	A GCAGTGGTGG	AATGCCTTT	A ATGAGGAAAA	7200
	CCTGTTTTGC	TCAGAAGAAA	TGCCATCTA	TGATGATGA	GCTACTGCT	G ACTCTCAACA	7260
	TTCTACTCCT	CCAAAAAAGA	AGAGAAAGG	r agaagaccc	AAGGACTTT	CTTCAGAATT	7320
45	GCTAAGTTTI	TTGAGTCATC	CTGTGTTTA	G TAATAGAAC	CTTGCTTGC	T TTGCTATTTA	7380
	CACCACAAAG	GAAAAAGCTC	CACTGCTAT	A CAAGAAAAT	r atggaaaa	r attetgtaac	7440
	CTTTATAAGT	AGGCATAAC	GTTATAATC	A TAACATACT	TITITETT	A CTCCACACAG	7500
	GCATAGAGTO	TCTGCTATT	ATAACTATG	C TCAAAAATT	G TGTACCTTT	A GCTTTTTAAT	7560
50	TTGTAAAGGG	GTTAATAAG	APTETTATA	T GTATAGTGC	C TTGACTAGA	G ATCATAATCA	7620
	GCCATACCAC	ATTTGTAGAC	GTTTTACTT	G CTTTAAAAA	A CCTCCCACA	C CTCCCCCTGA	7680

	ACCTGAAA	CA T	AAAT	rgaa:	r GC	AATT	TTG	TIG	TAAC	TT (TTT	TTG	A GO	TTAT	TAA'	i	7740
	GTTACAAA	TA AJ	AGCA	ATAG(TA	CACAI	LATT	TCAC	'AAA'	L AAT	AGCAT	777	T TO	CACTO	CATT	•	7800
i	CTAGTTGTC	3G T	rigi	CAA	A CT	CATC	ATG	TATO	TTAT	CA 1	GTC	GGAT	C T	LATA	AAGA		7860
	TATTTATT	TT C	ATTA	ATA:	r GT	STGT	GGT	TTT	TGT	etg (AGT	CCT	T AT	CTGG	AGGC	:	7920
	CAGGTAGG	GC TO	GCC	rtgg	G GG	AGGGG	GAG	GCCI	AGAA?	CA (TCC	LAGAC	C T	CAGO	LAAGO	;	7980
o	CAGGTCAG	AG AC	ccc	ACTG	a ac	AAACI	GTG	GCT	GACT	CT (CAC	LATA	AC AC	ACA	TCAF		8040
	CAGGGGAG	rg ac	CTG	'AAAE	TT	CTAC	3C										8068
	(2) INFO	RMAT:	ION 1	POR S	SEQ :	ID NO): 28	3:									
5	(i)	(B)	LEI TYI	E CHU NGTH: PE: & RANDI POLO	239 mine ZDNE	ent act SS: E	ino a id sing!	acida	3								
	(ii)	MOLE	COL	TY!	PB: 1	pepti	ide										
o o																	
	(xi)	SEQU	JENCI	DES	CRI	PTION	i: SI	Q II	NO:	28:	:						
	Asp 1	Ser	Gln	Ala	Gln 5	Val	Leu	Met	Leu	Leu 10	Pro	Leu	Trp	Val	Ser 15	Gly	
5	Thr	Сув	Gly	Asp 20	Ile	Val	Met	Ser	Gln 25	Ser	Pro	Ser	Ser	Leu 30	Ala	Val	
	Ser	Val	Gly 35	Glu	Lys	Val	Thr	Met 40	Ser	Сув	Lys	Ser	Ser 45	Gln	Ser	Leu	
0	Leu	Tyr 50	Ser	Arg	Asn	Gln	L ув 55	Asn	Tyr	Leu	Ala	Trp 60	Phe	Gln	Gln	Lys	
4	Pro 65	Gly	Gln	Ser	Pro	Lys 70	Leu	Leu	Ile	Phe	Trp 75	Ala	Ser	Thr	Arg	Glu 80	
5		Gly			85					90	_				95		
		Leu		100					105					110			
o	Сув	Gln	Gln 115	Tyr	Phe	Ser	Tyr	Pro 120	Leu	Thr	Phe	Gly	Ala 125	Gly	Thr	Lys	
·	Leu	Glu 130	Leu	Lys	Arg	Thr	Val 135	Ala	Ala	Pro	Ser	Val 140	Phe	Ile	Phe	Pro	
	Pro 145	Ser	Asp	Glu	Gln	Leu 150	Lys	Ser	Gly	Thr	Ala 155	Ser	Val	Val	Сув	Leu 160	
5	Leu	Asn	Asn	Phe	Tyr 165	Pro	Arg	Glu	Ala	Lys 170	Val	Gln	Trp	Lys	Val 175	Asp	
		Ala		180					185					190			
o		Lys	195					200					205				
	Ala	Asp 210	Tyr	Glu	Lys	His	Lув 215	Val	Tyr	Ala	Cys	G1u 220	Val	Thr	His	Gln	

Gly Leu Ser Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 225 230 235

(2) INFORMATION FOR SEQ ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7731 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

(XI) 3E	SOBUCE DESC		g 10 110. 11	•		
TTGAAGACGA	AAGGGCCTCG	TGATACGCCT	ATTTTTATAG	GTTAATGTCA	TGATAATAAT	60
GGTTTCTTAG	ACGTCAGGTG	GCACTTTTCG	GGGAAATGTG	CGCGGAACCC	CTATTTGTTT	120
ATTTTTCTAA	ATACATTCAA	ATATGTATCC	GCTCATGAGA	CAATAACCCT	GATAAATGCT	180
TCAATAATAT	TGAAAAAGGA	agagtatgag	TATTCAACAT	TTCCGTGTCG	CCCTTATTCC	240
CTTTTTTGCG	GCATTTTGCC	TTCCTGTTTT	TGCTCACCCA	GAAACGCTGG	TGAAAGTAAA	300
AGATGCTGAA	GATCAGTTGG	GTGCACGAGT	GGGTTACATC	GAACTGGATC	TCAACAGCGG	360
TAAGATCCTT	GAGAGTTTTC	GCCCCGAAGA	ACGTTTTCCA	ATGATGAGCA	CTTTTAAAGT	420
TCTGCTATGT	GGCGCGGTAT	TATCCCGTGT	TGACGCCGGG	CAAGAGCAAC	TCGGTCGCCG	480
CATACACTAT	TCTCAGAATG	ACTTGGTTGA	GTACTCACCA	GTCACAGAAA	AGCATCTTAC	540
GGATGGCATG	ACAGTAAGAG	AATTATGCAG	TGCTGCCATA	ACCATGAGTG	ATAACACTGC	600
GGCCAACTTA	CTTCTGACAA	CGATCGGAGG	ACCGAAGGAG	CTAACCGCTT	TTTTGCACAA	660
CATGGGGGAT	CATGTAACTC	GCCTTGATCG	TIGGGAACCG	GAGCTGAATG	AAGCCATACC	720
AAACGACGAG	CGTGACACCA	CGATGCCTGC	AGCAATGGCA	ACAACGTTGC	GCAAACTATT	780
AACTGGCGAA	CTACTTACTC	TAGCTTCCCG	GCAACAATTA	ATAGACTGGA	TGGAGGCGGA	840
TAAAGTTGCA	GGACCACTTC	TGCGCTCGGC	CCTTCCGGCT	GGCTGGTTTA	TTGCTGATAA	900
ATCTGGAGCC	GGTGAGCGTG	GGTCTCGCGG	TATCATTGCA	GCACTGGGGC	CAGATGGTAA	960
GCCCTCCCGT	ATCGTAGTTA	TCTACACGAC	GGGGAGTCAG	GCAACTATGG	ATGAACGAAA	1020
TAGACAGATC	GCTGAGATAG	GTGCCTCACT	GATTAAGCAT	TGGTAACTGT	CAGACCAAGT	1080
TTACTCATAT	ATACTTTAGA	TTGATTTAAA	ACTICATITI	TAATTTAAAT	GGATCTAGGT	1140
GAAGATCCTT	TTTGATAATC	TCATGACCAA	AATCCCTTAA	CGTGAGTTT	CGTTCCACTG	1200
AGCGTCAGAC	CCCGTAGAAA	AGATCAAAGG	ATCTTCTTGA	GATCCTTTT	TTCTGCGCGT	1260
AATCTGCTGC	TTGCAAACAA	AAAAACCACC	GCTACCAGC	GTGGTTTGTT	TGCCGGATCA	1320
AGAGCTACCA	ACTCTTTTC	CGAAGGTAAC	TGGCTTCAG	AGAGCGCAGI	TACCAAATAC	1380
TGTCCTTCTA	GTGTAGCCGT	AGTTAGGCCA	CCACTTCAAC	AACTCTGTA	CACCGCCTAC	1440
					AGTCGTGTCT	1500
TACCGGGTTG	GACTCAAGAC	GATAGTTACC	GGATAAGGC	G CAGCGGTCG	GCTGAACGGG	1560

	GGGTTCGTGC	ACACAGCCCA	GCTTGGAGCG	AACGACCTAC	ACCGAACTGA	GATACCTACA	1620
_	GCGTGAGCTA	TGAGAAAGCG	CCACGCTTCC	CGAAGGGAGA	AAGGCGGACA	GGTATCCGGT	1680
5	AAGCGGCAGG	GTCGGAACAG	GAGAGCGCAC	GAGGGAGCTT	CCAGGGGGAA	ACGCCTGGTA	1740
	TCTTTATAGT	CCTGTCGGGT	TTCGCCACCT	CTGACTTGAG	CGTCGATTTT	TGTGATGCTC	1800
	GTCAGGGGGG	CGGAGCCTAT	GGAAAAACGC	CAGCAACGCG	GCCTTTTTAC	GGTTCCTGGC	1860
10	CTTTTGCTGG	CCTTTTGCTC	ACATGTTCTT	TCCTGCGTTA	TCCCCTGATT	CTGTGGATAA	1920
	CCGTATTACC	GCCTTTGAGT	GAGCTGATAC	CGCTCGCCGC	AGCCGAACGA	CCGAGCGCAG	1980
	CGAGTCAGTG	AGCGAGGAAG	CGGAAGAGCG	CCTGATGCGG	TATTTTCTCC	TTACGCATCT	2040
15	GTGCGGTATT	TCACACCGCA	TATGGTGCAC	TCTCAGTACA	ATCTGCTCTG	ATGCCGCATA	2100
15	GTTAAGCCAG	TATACACTCC	GCTATCGCTA	CGTGACTGGG	TCATGGCTGC	GCCCGACAC	2160
	CCGCCAACAC	CCGCTGACGC	GCCCTGACGG	GCTTGTCTGC	TCCCGGCATC	CGCTTACAGA	2220
	CAAGCTGTGA	CCGTCTCCGG	GAGCTGCATG	TGTCAGAGGT	TTTCACCGTC	ATCACCGAAA	2280
20	CGCGCGAGGC	AGCATGCATC	TCAATTAGTC	AGCAACCATA	GTCCCGCCCC	TAACTCCGCC	2340
	CATCCCGCCC	CTAACTCCGC	CCAGTTCCGC	CCATTCTCCG	CCCCATGGCT	GACTAATTTT	2400
	TTTTATTTAT	GCAGAGGCCG	AGGCCGCCTC	GGCCTCTGAG	CTATTCCAGA	AGTAGTGAGG	2460
25	AGGCTTTTTT	GGAGGCCTAG	GCTTTTGCAA	AAAGCTAGCT	TACAGCTCAG	GGCTGCGATT	2520
	TCGCGCCAAA	CTTGACGGCA	ATCCTAGCGT	GAAGGCTGGT	AGGATTTTAT	CCCCGCTGCC	2580
	ATCATGGTTC	GACCATTGAA	CTGCATCGTC	GCCGTGTCCC	AAAATATGGG	GATTGGCAAG	2640
	AACGGAGACC	TACCCTGGCC	TCCGCTCAGG	AACGAGTTCA	AGTACTTCCA	AAGAATGACC	2700
30 _{:,}	ACAACCTCTT	CAGTGGAAGG	TAAACAGAAT	CTGGTGATTA	TGGGTAGGAA	AACCTGGTTC	2760
, ,	TCCATTCCTG	AGAAGAATCG	ACCTTTAAAG	GACAGAATTA	ATATAGTTCT	CAGTAGAGAA	2820
	CTCAAAGAAC	CACCACGAGG	AGCTCATTTT	CTTGCCAAAA	GTTTGGATGA	TGCCTTAAGA	2880
35	CTTATTGAAC	AACCGGAATT	GGCAAGTAAA	GTAGACATGG	TTTGGATAGT	CGGAGGCAGT	2940
	TCTGTTTACC	AGGAAGCCAT	GAATCAACCA	GGCCACCTCA	GACTCTTTGT	GACAAGGATC	3000
	ATGCAGGAAT	TTGAAAGTGA	CACGTTTTTC	CCAGAAATTG	ATTTGGGGAA	ATATAAACTT	3060
	CTCCCAGAAT	ACCCAGGCGT	CCTCTCTGAG	GTCCAGGAGG	AAAAAGGCAT	CAAGTATAAG	3120
40	TTTGAAGTCT	ACGAGAAGAA	AGACTAACAG	GAAGATGCTT	TCAAGTTCTC	TGCTCCCCTC	3180
	CTAAAGCTAT	GCATTTTTAT	AAGACCATGG	GACTTTTGCT	GGCTTTAGAT	CTTTGTGAAG	3240
	GAACCTTACT	TCTGTGGTGT	GACATAATTG	GACAAACTAC	CTACAGAGAT	TTAAAGCTCT	3300
45	AAGGTAAATA	TETTTAAAAT	AAGTGTATAA	TGTGTTAAAC	TACTGATTCT	AATTGTTTGT	3360
	GTATTTTAGA	TTCCAACCTA	TGGAACTGAT	GAATGGGAGC	AGTGGTGGAA	TGCCTTTAAT	3420
	GAGGAAAACC	TGTTTTGCTC	agaagaaatg	CCATCTAGTG	ATGATGAGGC	TACTGCTGAC	3480
F0	TCTCAACATT	CTACTCCTCC	aaaaaagaag	agaaaggtag	AAGACCCCAA	GGACTTTCCT	3540
50	TCAGAATTGC	TAAGTTTTTT	GAGTCATGCT	GTGTTTAGTA	ATAGAACTCT	TGCTTGCTTT	3600
	GCTATTTACA	CCACAAAGGA	AAAAGCTGCA	CTGCTATACA	AGAAAATTAT	GGAAAAATAT	3660

59

	TCTGTAACCT TTATAAGTAG GCATAACAGT TATAATCATA ACATACTGTT TT	TTCTTACT	3720
	CCACACAGGC ATAGAGTGTC TGCTATTAAT AACTATGCTC AAAAATTGTG TA	CCTTTAGC	3780
5	TITTTAATIT GTAAAGGGT TAATAAGGAA TATTTGATGT ATAGTGCCTT GA	CTAGAGAT	3840
	CATAATCAGC CATACCACAT TIGTAGAGGT TITACTIGCT TIAAAAAACC TO	CCACACCT	3900
	CCCCCTGAAC CTGAAACATA AAATGAATGC AATTGTTGTT GTTAACTTGT TT	ATTGCAGC	3960
10	TTATAATGGT TACAAATAAA GCAATAGCAT CACAAATTTC ACAAATAAAG CA	TTTTTTC	4020
10	ACTGCATTCT AGTTGTGGTT TGTCCAAACT CATCAATGTA TCTTATCATG TC	TGGATCTA	4080
	ATAAAAGATA TITATITTCA TTAGATATGT GTGTTGGTTT TTTGTGTGCA GT	GCCTCTAT	4140
	CTGGAGGCCA GGTAGGGCTG GCCTTGGGGG AGGGGGAGGC CAGAATGACT CC	AAGAGCTA	4200
15	CAGGARGGCA GGTCAGAGAC CCCACTGGAC AAACAGTGGC TGGACTCTGC AC	CATARCAC	4260
	ACANTCANCA GGGGAGTGAG CTGGANATTT GCTAGCGANT TCCAGCACAC TG	GCGGCCGT;	4320
	TACTAGTTAT TAATAGTAAT CAATTACGGG GTCATTAGTT CATAGCCCAT AT	PATGGAGTT	4380
20	CCGCGTTACA TAACTTACGG TAAATGGCCC GCCTGGCTGA CCGCCCAACG AC	CCCCGCCC	4440
	ATTGACGTCA ATAATGACGT ATGTTCCCAT AGTAACGCCA ATAGGGACTT TO	CATTGACG	4500
	TCAATGGGTG GAGTATTTAC GGTAAACTGC CCACTTGGCA GTACATCAAG TO	TATCATAT	4560
	GCCAAGTACG CCCCCTATTG ACGTCAATGA CGGTAAATGG CCCGCCTGGC A	ITATGCCCA	4620
25	GTACATGACC TTATGGGACT TTCCTACTTG GCAGTACATC TACGTATTAG TO	CATCGCTAT	4680
	TACCATGGTG ATGCGGTTTT GGCAGTACAT CAATGGGCGT GGATAGCGGT T	TGACTCACG	4740
	GGGATITCCA AGTCTCCACC CCATTGACGT CAATGGGAGT TTGTTTTGGC A	CCAAAATCA	4800
30	ACGGGACTIT CCAAAATGTC GTAACAACTC CGCCCCATTG ACGCAAATGG G	CGGTAGGCG	4860
	TGTACGGTGG GAGGTCTATA TAAGCAGAGC TCGTTTAGTG AACCGTCAGA T	CGCCTGGAG	4920
	ACGCCATCCA CGCTGTTTTG ACCTCCATAG AAGACACCGG GACCGATCCA G	CCTCCGCGG	4980
	CCGGGAACGG TGCATTGGAA CGCGGATTCC CCGTGCCAAG AGTGACGTAA G	TACCGCCTA	5040
35	TAGAGTCTAT AGGCCCACCC CCTTGGCTTC TTATGCATGC TATACTGTTT T	TGGCTTGGG	5100
	GTCTATACAC CCCCGCTTCC TCATGTTATA GGTGATGGTA TAGCTTAGCC T	ATAGGTGTG	5160
	GGTTATIGAC CATTATIGAC CACTCCCCTA TIGGTGACGA TACTITCCAT I	ACTAATCCA	5220
40	TAACATGGCT CTTTGCCACA ACTCTCTTTA TTGGCTATAT GCCAATACAC T	GTCCTTCAG	5280
	AGACTGACAC GGACTCTGTA TTTTTACAGG ATGGGGTCTC ATTTATTATT T	ACAAATTCA	5340
	CATATACAAC ACCACCGTCC CCAGTGCCCG CAGTTTTTAT TAAACATAAC	TGGGATCTC	5400
	CACGCGAATC TCGGGTACGT GTTCCGGACA TGGGCTCTTC TCCGGTAGCG	CGGAGCTTC	5460
45	TACATCCGAG CCCTGCTCCC ATGCCTCCAG CGACTCATGG TCGCTCGGCA C	CTCCTTGCT	5520
	CCTAACAGTG GAGGCCAGAC TTAGGCACAG CACGATGCCC ACCACCACCA	STGTGCCGCA	5580
	CAAGGCCGTG GCGGTAGGGT ATGTGTCTGA AAATGAGCTC GGGGAGCGGG	CITGCACCGC	5640
50	TGACGCATTT GGAAGACTTA AGGCAGCGGC AGAAGAAGAT GCAGGCAGCT (GAGTTGTTGT	5700
	GTTCTGATAA GAGTCAGAGG TAACTCCCGT TGCGGTGCTG TTAACGGTGG	AGGGCAGTGT	5760

	AGTCTGAGCA	GTACTCGTTG	CTGCCGCGCG	CGCCACCAGA	CATAATAGCT	GACAGACTAA	5820
	CAGACTGTTC	CTTTCCATGG	GTCTTTTCTG	CAGTCACCGT	CCTTGACACG	CGTCTCGGGA	5880
5	AGCTTGCCGC	CACCATGGGA	TGGAGCTGGG	TCTTTCTCTT	TCTCCTGTCA	GGAACTGCAG	5940
	GTGTCCTCTC	TGAGGTCCAG	CTGCAACAGT	CTGGACCTGA	GCTGGTGAAG	CCTGGGGCTT	6000
	CAGTAAAGAT	GTCCTGCAAG	ACTTCTAGAT	ACACATTCAC	TGAATACACC	ATACACTGGG	6060
10	TGAGACAGAG	CCATGGAAAG	AGCCTTGAGT	GGATTGGAGG	TATTAATCCT	AACAATGGTA	6120
	TTCCTAACTA	CAACCAGAAG	TTCAAGGGCA	GGGCCACATT	GACTGTAGGC	AAGTCCTCCA	6180
	GCACCGCCTA	CATGGAGCTC	CGCAGCCTGA	CATCTGAGGA	TTCTGCGGTC	TATTTCTGTG	6240
45	CAAGAAGAAG	AATCGCCTAT	GGTTACGACG	AGGGCCATGC	TATGGACTAC	TGGGGTCAAG	6300
15	GAACCTCAGT	CACCGTCTCC	TCAGGTGAGT	GGATCCTCTG	CGCCTGGGCC	CAGCTCTGTC	6360
	CCACACCGCG	GTCACATGGC	ACCACCTCTC	TTGCAGCCTC	CACCAAGGGC	CCATCGGTCT	6420
	TCCCCCTGGC	ACCCTCCTCC	AAGAGCACCT	CTGGGGGCAC	AGCGGCCCTG	GGCTGCCTGG	6480
20	TCAAGGACTA	CTTCCCCGAA	CCGGTGACGG	TGTCGTGGAA	CTCAGGCGCC	CTGACCAGCG	6540
	GCGTGCACAC	CTTCCCGGCT	GTCCTACAGT	CCTCAGGACT	CTACTCCCTC	AGCAGCGTGG	6600
	TGACCGTGCC	CTCCAGCAGC	TTGGGCACCC	AGACCTACAT	CTGCAACGTG	AATCACAAGC	6660
25	CCAGCAACAC	CAAGGTGGAC	AAGAAAGTTG	AGCCCAAATC	TTGTGACAAA	ACTCACACAT	6720
	GCCCACCGTG	CCCAGCACCT	GAACTCCTGG	GGGGACCGTC	AGTCTTCCTC	TTCCCCCCAA	6780
	AACCCAAGGA	CACCCTCATG	ATCTCCCGGA	CCCCTGAGGT	CACATGCGTG	GTGGTGGACG	6840
	TGAGCCACGA	AGACCCTGAG	GTCAAGTTCA	ACTGGTACGT	GGACGGCGTG	GAGGTGCATA	6900
30	ATGCCAAGAC	AAAGCCGCGG	GAGGAGCAGT	ACAACAGCAC	GTACCGGGTG	GTCAGCGTCC	6960
*	TCACCGTCCT	GCACCAGGAC	TGGCTGAATG	GCAAGGAGTA	CAAGTGCAAG	GTCTCCAACA	7020
	AAGCCCTCCC	AGCCCCCATC	GAGAAAACCA	TCTCCAAAGC	CAAAGGGCAG	CCCCGAGAAC	7080
35	CACAGGTGTA	CACCCTGCCC	CCATCCCGGG	AGGAGATGAC	CAAGAACCAG	GTCAGCCTGA	7140
	CCTGCCTGGT	CAAAGGCTTC	TATCCCAGCG	ACATCGCCGT	GGAGTGGGAG	AGCAATGGGC	7200
	AGCCGGAGAA	CAACTACAAG	ACCACGCCTC	CCGTGCTGGA	CTCCGACGGC	TCCTTCTTCC	7260
40	TCTACAGCAA	GCTCACCGTG	GACAAGAGCA	GGTGGCAGCA	GGGGAACGTC	TTCTCATGCT	7320
	CCGTGATGCA	TGAGGCTCTG	CACAACCACT	ACACGCAGAA	GAGCCTCTCC	CTGTCTCCGG	7380
	GTAAATGAGT	GCGACGGCCG	GCAAGCCCCG	CTCCCCGGGC	TCTCGCGGTC	GCACGAGGAT	7440
	GCTTGGCACG	TACCCCCTGT	ACATACTTCC	CGGGCGCCCA	GCATGGAAAT	AAAGCACCGG	7500
45	ATCTAATAAA	AGATATTTAT	TTTCATTAGA	TATGTGTGTT	GGTTTTTTGT	GTGCAGTGCC	7560
	TCTATCTGGA	GGCCAGGTAG	GGCTGGCCTT	GGGGGAGGGG	GAGGCCAGAA	TGACTCCAAG	7620
	AGCTACAGGA	AGGCAGGTCA	GAGACCCCAC	TGGACAAACA	GTGGCTGGAC	TCTGCACCAT	7680
50	AACACACAAT	CAACAGGGGA	GTGAGCTGGA	AATTTGCTAG	CGAATTAATT	С	7731
	/2) INFORM	TTON ROD OF	70 TD NO. 30	١.			

(2) INFORMATION FOR SEQ ID NO: 30:

(i) SEQUENCE CHARACTERISTICS:

55

5	(A) LENGTH: 472 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear
(ii)	MOLECULE TYPE: peptide

0																
-	Met 1	Gly	Trp	Ser	Trp 5	Val	Phe	Leu	Phe	Leu 10	Leu	Ser	G1y	Thr	Ala 15	Gly
	Val	Leu	Ser	Glu 20	Va.1	Gln	Leu	Gln	Gln 25	Ser	Gly	Pro	Glu	Leu 30	Val	Lys
15	Pro	Gly	Ala 35	Ser	Val	Lys	Met	Ser 40	Сув	Lys	Thr	Ser	Arg 45	Тух	Thr	Phe
	Thr	Glu 50	Tyr	Thr	Ile	His	Trp 55	Val	Arg	Gln	Ser	His 60	Gly	Lys	Ser	Leu
20	Glu 65	Trp	Ile	Gly	Gly	Ile 70	Asn	Pro	Asn	Asn	Gly 75	Ile	Pro	Asn	Tyr	Asn 80
	Gln	Lув	Phe	Lув	Gly 85	Arg	Ala	Thr	Leu	Thr 90	Val	Gly	Lув	Ser	Ser 95	Ser
25	Thr	Ala	туг	Met 100	Glu	Leu	Arg	Ser	Leu 105	Thr	Ser	Glu	qaA	Ser 110	Ala	Val
	Tyr	Phe	Сув 115	Ala	Arg	Arg	Arg	11e 120	Ala	Tyr	Gly	Tyr	Авр 125	Glu	Gly	His
	Ala	Met 130	Asp	Tyr	Trp	Gly	Gln 135	Gly	Thr	Ser	Val	Thr 140	Val	Ser	Ser	Ser
30	Thr 145	Lys	Gly	Pro	Ser	Val 150	Phe	Pro	Leu	Ala	Pro 155	Ser	Ser	Lys	Ser	Thr 160
	Ser	Gly	Gly	Thr	Ala 165	Ala	Leu	Gly	Сув	Leu 170	Val	Lys	qaA	Tyr	Phe 175	Pro
35	Glu	Pro	Val	Thr 180	Val	Ser	Trp	Asn	Ser 185	Gly	Ala	Leu	Thr	Ser 190	Gly	Val
	His	Thr	Phe 195	Pro	Ala	Val	Leu	Gln 200		Ser	Gly	Leu	Tyr 205	Ser	Leu	Ser
4 0	Ser	Val 210		Thr	Val	Pro	Ser 215		Ser	Leu	Gly	Thr 220	Gln	Thr	Tyr	Ile
	Сув 225		Val	Asn	His	Lys 230		Ser	Asn	Thr	Lys 235	Val	Asp	Lys	Lys	Val 240
	Glu	Pro	Lye	Ser	Сув 245	Asp	Lys	Thr	His	Thr 250	Сув	Pro	Pro	Сув	255	Ala
45	Pro	Glu	Leu	Leu 260	Gly	G1y	Pro	Ser	Val 265	Phe	Leu	Phe	Pro	270	Lys	Pro
	Lys	Asp	Thr 275	Leu	Met	Ile	: Ser	280	Thr	Pro	Glu	Val	Th: 285	Сув	Val	. Val
50	Val	Asr 290		Ser	His	Glu	A81 295		Glu	Va]	Lys	Phe 300	Asn	Tr	Туз	Val
	Agr	Gly	/ Val	Glu	. Val	Hie	. Авт	ı Ala	LVE	The	Lys	Pro	Arc	g Glu	ı Glı	ı Glı

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

	305					310					315					320	
5	Tyr	Asn	Ser	Thr	Tyr 325	Arg	Val	Val	Ser	Val 330	Leu	Thr	Val	Leu	His 335	Gln	
	qaA	Trp	Leu	Asn 340	Gly	Lys	Glu	тух	L ув 345	Сув	Lys	Val	Ser	дал 350	Lys	Ala	
10	Leu	Pro	Ala 355	Pro	Ile	Glu	Lys	Thr 360	Ile	Ser	Lys	Ala	Lys 365	Gly	Gln	Pro	
,,		Glu 370					375					380					
	385	Asn				390					395					400	
15		Ile			405					410					415		
		Thr		420					425					430			
20			435					440					445				
		Cys 450					455		Leu	His	Asn	His 460	Tyr	Thr	Gln	Lys	
25	465	Leu	ser	Leu	ser	470	Gly	Lys									
	(2) INFO	ITAMS	ON F	OR S	BQ 1	D NO): 3	l:									
<i>30</i>	(i)	(B) (C)	LEN TYP STE	GTH: B: r LANDE	339 ucle	TERIS bas cic s cic s cic s cic s	se pa acid doub!	airs									
	(ii)	MOLE	CULE	TYE	?B: 0	:DNA										•	
35	(xi)	SEQU	BNCE	DES	CRIE	TIO	1: SI	Q II	NO:	: 31:	:						
	GACATTGTC	A TG	ACCC	TAA.	TCC	AGA	TCT	TTG	CTG1	CT (TCT	AGGGG	EA GI	AGGGG	CAC	:	60
	ATCAACTG	A AG	TCCA	GTC#	GAG	CCT	ATT	TATT	CTAC	L AAE	ATCA	AAAG	AA C	PACT	rggc	:	120
40	TGGTATCAC	EC AG	AAAC	CAGG	AC#	(GCC)	CCC	AAA	TCCI	rca 1	CTT	rtgg(C T	AGCA	TAG	;	180
	GAATCTGGC	G TA	CCTG	ATAG	GTT	CAG?	rggc	AGTY	GGT	rrg (GAC	AGACT	ET C	ACCC	rcac(2	240
	ATTAGCAGO	CC TG	CAGG	CTGA	AGA	TGT	GCA.	GTT	CATT	ACT (TCA	GCAA:	CA T	ITTA(GCTA!	r	300
45	CCGCTCACO								LAAT	AA							335
	(2) INFOR	ITAM	ON F	OR S	EQ 1	D NO): 32	2:									
50	(i)	(B) (C)	LEN TYP STR	GTH: E: 8 ANDE	mino DNES	TERIS ami aci SS: 8	ino a id sing!	acida	3								
	(ii)	MOLE	CULE	TYP	E: p	epti	ide										

	(xi)	SBQ	JENCE	DES	CRIP	TION	: SE	Q ID	NO:	32:						
5 ·	Asp 1	Ile	Val		Thr 5	Gln :	Ser	Pro .	дая	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly
-	Glu	Arg	Ala	Thr 20	Ile	Asn (Сув	Lys	Ser 25	Ser	Gln	Ser	Leu	Leu 30	Tyr	Ser
	Arg	Asn	Gln 35	Lys	Asn	Tyr	Leu	Ala 40	Trp	Tyr	Gln	Gln	Lys 45	Pro	Gly	Gln
10	Pro	Pro 50	Lys	Leu	Leu		Phe 55	Trp	Ala	Ser	Thr	Arg 60	Glu	Ser	Gly	Val
	Pro 65	Asp	Arg	Phe	Ser	Gly 70	Ser	Gly	Phe	Gly	Thr 75	Asp	Phe	Thr	Leu	Thr 80
15	110	e Ser	Ser	Leu	Gln 85	Ala	Glu	qaA	Val	Ala 90	Val	Tyr	Tyr	Сув	Gln 95	Gln
	ту	r Phe	Ser	Tyr 100	Pro	Leu	Thr	Phe	Gly 105	Gln	Gly	Thr	Lув	Val 110	Glu	Ile
20	Ly	3														
	(2) INF	ORMAT	NOI	FOR S	SEQ :	ID NO): 33):								
25	(i	(B	URNC) LE) TY) ST) TO	ngth Pe: 4 Rand	: 11: amin BDNE	3 ami 3 aci 38: £	ino a id sing:	cid	3							
	(ii) MOI														
30																
) SEC														
	1				5	Gln	Ser	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly
35	G1															
				20					25					30		Ser
	Aı	g Ası	n Glr 35	20 Lys	Asn	Tyr	Leu	Ala 40	25 Tr) Phe	Glr	Glr	Lys 45	Pro	Gly	Gln
40	A3 P1	g Ası 70 Pro 50	n Glr 35 o Lys	20 Lys Leu	Asn Leu	Tyr Ile	Leu Phe 55	Ala 40 Trp	Trp	Phe Sei	Glr Thr	Glr Arg	Lys 45 Glu	Pro	Gl ₃	Gln Val
40	A3 P1	eg Asi co Pro 50	n Glr 35 o Lys	20 Lys Leu	Asn Leu	Tyr Ile	Leu Phe 55	Ala 40 Trp	Trp	Phe Sei	Glr Thr	Glr Arg	Lys 45 Glu	Pro	Gl ₃	Gln
	Pi Pi 6:	rg Asi ro Pro 50 ro Asi	n Glr 35 b Lyr	20 n Lys s Leu g Phe	Leu Sei	Tyr Ile Gly 70	Phe 55	Ala 40 Trp	25 Trp Ala	Phe Ser e Gly	Gln Thi Thi 75	Glr Arç 60 Ası	Lye 45 g Glu	30 Pro Sex	Gl ₃ Gl ₃	Gln Val
40 45	да Р: 6: I	ro Pro 50 ro As i	n Glr 35 Lyr P Ary	20 n Lys s Leu g Phe	Leu Ser Glr 85	Tyr Ile Gly 70	Phe 55 Ser	Ala 40 Trp Gly	25 Trp Ala Pho Vai	Phe Ser Gly Hali 90	Gln Thi Thi 75	Glr Glr 60 Ası	Lys 45 Glu Phe Asp	30 Pro Sex Thi	Gly	Val
	Pr Pr 6: I	ro Pro 50 ro As i	n Glr 35 Lyr P Ary	20 Leug Phe Leur Leur Tyn	Leu Ser Glr 85	Tyr Ile Gly 70	Phe 55 Ser	Ala 40 Trp Gly	25 Tri Ala Pho Vai	Phe Ser Gly Hali 90	Gln Thi Thi 75	Glr Glr 60 Ası	Lys 45 Glu Phe Asp	30 Pro Sex Thi Cyi	Gly	Val Thr 80
	Pr Pr 6: I	rg Asi FO Pro 50 FO Asi ile Se yr Ph	n Glr 35 b Lys p Arg r Se:	20 n Lys s Leu g Phe r Leu r Tyn 100	Leu Ser Glr 85	Tyr Ile Gly 70 I Ala	Phe 55 Ser Glu	Ala 40 Trp Gly Asp	25 Tri Ala Pho Vai	Phe Ser Gly Hali 90	Gln Thi Thi 75	Glr Glr 60 Ası	Lys 45 Glu Phe Asp	30 Pro Sex Thi Cyi	Gly	Val Thr 80
45	P: P: 6: 1	rg Asi FO Pro 50 FO Asi ile Se yr Ph	o Lyse Arg	20 n Lys s Leu g Phe r Leu r Tyn 100 FOR	Asm Leu Ser Ser 85 Pro	Tyr Ile Gly 70 Ala Leu ID N	Phe 55 Ser Glu Thr	Ala 40 Trp Gly Asp Phe	25 Tri Ala Pho Vai	Phe Ser Gly Hali 90	Gln Thi Thi 75	Glr Glr 60 Ası	Lys 45 Glu Phe Asp	30 Pro Ser Thi Cyi	Gly	Val Thr 80

5	(ii)	(B) (C)	TYP STR TOP	E: a ANDE OLOG	mino DNES Y:	ami aci 3S: e linea	.d singl ir		3								
10	(xi)	SEQU	ence	DES	CRI	TION	i: SI	3Q II	O NO:	: 34:	:						
	Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly	
	Glu	Arg .	Ala	Thr 20	Ile	Asn	Сув	Lys	Ser 25	Ser	Gln	Ser	Leu	Leu 30	Tyr	Ser	
15	Arg	Asn	Gln 35	Lys	Asn	Tyr	Leu	Ala 40	Trp	Tyr	Gln	Gln	Lув 45	Pro	Gly	Gln	
	Pro	Pro 50	Lys	Leu	Leu	Ile	Tyr 55	Trp	Ala	Ser	Thr	Arg 60	Glu	Ser	Gly	Val	
20	Pro 65	Asp .	Arg	Phe	Ser	Gly 70	Ser	Gly	Phe	Gly	Thr 75	Asp	Phe	Thr	Leu	Thr 80	
	Ile	Ser	Ser	Leu	Gln 85	Ala	Glu	Asp	Val	Ala 90	Val	Tyr	Tyr	Сув	Gln 95	Gln	
25	Tyr	Phe		Tyr 100	Pro	Leu	Thr	Phe	Gly 105	Gln	Gly	Thr	Lys	Val 110	Glu	Ile	
	Lys																
	(2) INFO	ITAMS	ON F	OR S	BQ 1	D NC): 35	5:									
30	(i)	(B) (C)	LEN TYP STR	GTH: E: n ANDE	806 Lucle DNES	TERIS	se p cid loub]	aire	3								
35	(ii)	MOLE	CULE	TYP	R: I	ONA (geno	omic)									
	(xi)	SEQU	BNCE	DES	CRI	YTION	: SE	Q II	NO:	35:	:						
40	GAATTCCAC	C AC	ACTG	GCGG	ccc	TTAC	TAG	CATT	raat ^e	rag 1)TAA1	CAATT	CO AT	GGGT	CAT	?	60
••	AGTTCATAC																120
	CTGACCGCC																180
45	GCCAATAGO																300
- 5	ATGGCCCGG																360
	CATCTACG	TA TT	AGTO	ATCG	CTI	ATTAC	CAT	GGT	SATGO	GG 1	TTI	GCA(T AC	CATC	AATGO	3	420
50	GCGTGGAT	G CG	GIII	GACT	CAC	CGGGC	TTA	TCC	AGTO	TC C	CACC	CAT	OA DT	CGTC	AATGO	;	480
<i>5</i> 0	GAGTTTGT	T TG	GCAC	CAAA	ATC	AACC	GGA	CTT	CCA	AAA 1	GTC	STAAC	CA AC	CTCC	ccc	:	540
	ATTGACGC	TA AF	GGGC	GGTA	GG	GIGI	racg	GTG	GAGO	erc 1	[ATA]	raag(CA GI	AGCT	GIT	ŗ	600

	AGTGAACCGT CAGATCGCCT GGAGACGCCA TCCACGCTGT TTTGACCTCC ATAGAAGACA	660
	CCGGGACCGA TCCAGCCTCC GCGGCCGGGA ACGGTGCATT GGAACGCGGA TTCCCCGTGC	720
5	CAAGAGTGAC GTAAGTACCG CCTATAGAGT CTATAGGCCC ACCCCCTTGG CTTCTTATGC	780
	ATGCTATACT GTTTTTGGCT TGGGGTCTAT ACACCCCCGC TTCCTCATGT TATAGGTGAT	840
	GGTATAGCTT AGCCTATAGG TGTGGGTTAT TGACCATTAT TGACCACTCC CCTATTGGTG	900
10	ACGATACTIT CCATTACTAA TCCATAACAT GGCTCTTTGC CACAACTCTC TTTATTGGCT	960
	ATATGCCAAT ACACTGTCCT TCAGAGACTG ACACGGACTC TGTATTTTTA CAGGATGGGG	1020
	TCTCATTTAT TATTTACAAA TTCACATATA CAACACCACC GTCCCCAGTG CCCGCAGTTT	1080
	TTATTARACA TAACGTGGGA TCTCCACGCG AATCTCGGGT ACGTGTTCCG GACATGGGCT	1140
15	CTTCTCCGGT AGCGGCGGAG CTTCTACATC CGAGCCCTGC TCCCATGCCT CCAGCGACTC	1200
	ATGGTCGCTC GGCAGCTCCT TGCTCCTAAC AGTGGAGGCC AGACTTAGGC ACAGCACGAT	1260
	GCCCACCACC ACCAGTGTGC CGCACAAGGC CGTGGCGGTA GGGTATGTGT CTGAAAATGA	1320
20	GCTCGGGGAG CGGGCTTGCA CCGCTGACGC ATTTGGAAGA CTTAAGGCAG CGGCAGAAGA	1380
	AGATGCAGGC AGCTGAGTTG TTGTGTTCTG ATAAGAGTCA GAGGTAACTC CCGTTGCGGT	1440
	GCTGTTAACG GTGGAGGGCA GTGTAGTCTG AGCAGTACTC GTTGCTGCCG CGCGCGCCAC	1500
	CAGACATAAT AGCTGACAGA CTAACAGACT GTTCCTTTCC ATGGGTCTTT TCTGCAGTCA	1560
25	CCGTCCTTGA CACGCGTCTC GGGAAGCTTG CCGCCACCAT GGAGACAGAC ACACTCCTGC	1620
	TATGGGTGCT GCTGCTCTGG GTTCCAGGTT CCTCCGGAGA CATTGTGATG ACCCAATCTC	1680
	CAGACTCTTT GGCTGTGTCT CTAGGGGAGA GGGCCACCAT CAACTGCAAG TCCAGTCAGA	1740
30	GCCTTTTATA TTCTAGAAAT CAAAAGAACT ACTTGGCCTG GTATCAGCAG AAACCAGGAC	1800
	AGCCACCCAA ACTCCTCATC TTTTGGGCTA GCACTAGGGA ATCTGGGGTA CCTGATAGGT	1860
	TCAGTGGCAG TGGGTTTGGG ACAGACTTCA CCCTCACCAT TAGCAGCCTG CAGGCTGAAG	1920
	ATGTGGCAGT TTATTACTGT CAGCAATATT TTAGCTATCC GCTCACGTTC GGACAAGGGA	1980
35	CCAAGGTGGA AATAAAACGT GAGTGGATCC ATCTGGGATA AGCATGCTGT TTTCTGTCTG	2040
	TCCCTAACAT GCCCTGTGAT TATGCGCAAA CAACACACCC AAGGGCAGAA CTTTGTTACT	2100
	TARACACCAT COTGITTGOT TOTTTCCTCA GGAACTGTGG CTGCACCATC TGTCTTCATC	2160
40	TTCCCGCCAT CTGATGAGCA GTTGAAATCT GGAACTGCCT CTGTTGTGTG CCTGCTGAAT	2220
	AACTTCTATC CCAGAGAGGC CAAAGTACAG TGGAAGGTGG ATAACGCCCT CCAATCGGGT	2280
	AACTCCCAGG AGAGTGTCAC AGAGCAGGAC AGCAAGGACA GCACCTACAG CCTCAGCAGC	2340
45	ACCCTGACGC TGAGCAAAGC AGACTACGAG AAACACAAAG TCTACGCCTG CGAAGTCACC	2400
45	CATCAGGGCC TGAGCTCGCC CGTCACAAAG AGCTTCAACA GGGGAGAGTG TTAGAGGGAG	2460
	AAGTGCCCCC ACCTGCTCCT CAGTTCCAGC CTGACCCCCT CCCATCCTTT GGCCTCTGAC	2520
	CCTTTTCCA CAGGGGACCT ACCCCTATTG CGGTCCTCCA GCTCATCTTT CACCTCACCC	2580
50	CCCTCCTCCT CCTTGGCTTT AATTATGCTA ATGTTGGAGG AGAATGAATA AATAAAGTGA	2640
	ATCTFTGCAC CIGTGGTGGA TCTAATAAAA GATATTTATT TTCATTAGAT ATGTGTGTTG	2700

	GTTTTTTGTG	TGCAGTGCCT	CTATCTGGAG	GCCAGGTAGG	GCTGGCCTTG	GGGGAGGGG	2760
	AGGCCAGAAT	GACTCCAAGA	GCTACAGGAA	GGCAGGTCAG	AGACCCCACT	GGACAAACAG	2820
5	TGGCTGGACT	CTGCACCATA	ACACACAATC	AACAGGGGAG	TGAGCTGGAA	ATTTGCTAGC	2880
	GAATTCTTGA	AGACGAAAGG	GCCTCGTGAT	ACGCCTATTT	TTATAGGTTA	ATGTCATGAT	2940
	AATAATGGTT	TCTTAGACGT	CAGGTGGCAC	TTTTCGGGGA	AATGTGCGCG	GAACCCCTAT	3000
10	TTGTTTATTT	TTCTAAATAC	ATTCAAATAT	GTATCCGCTC	ATGAGACAAT	AACCCTGATA	3060
	AATGCTTCAA	TAATATTGAA	AAAGGAAGAG	TATGAGTATT	CAACATITCC	GTGTCGCCCT	3120
	TATTCCCTTT	TTTGCGGCAT	TTTGCCTTCC	TGTTTTTGCT	CACCCAGAAA	CGCTGGTGAA	3180
	AGTAAAAGAT	GCTGAAGATC	AGTTGGGTGC	ACGAGTGGGT	TACATCGAAC	TGGATCTCAA	3240
15	CAGCGGTAAG	ATCCTTGAGA	GITTTCGCCC	CGAAGAACGT	TTTCCAATGA	TGAGCACTTT	3300
	TAAAGTTCTG	CTATGTGGCG	CGGTATTATC	CCGTGTTGAC	GCCGGGCAAG	AGCAACTCGG	3360
•	TCGCCGCATA	CACTATTCTC	AGAATGACTT	GGTTGAGTAC	TCACCAGTCA	CAGAAAAGCA	3420
20	TCTTACGGAT	GGCATGACAG	TAAGAGAATT	ATGCAGTGCT	GCCATAACCA	TGAGTGATAA	3480
	CACTGCGGCC	AACTTACTTC	TGACAACGAT	CGGAGGACCG	AAGGAGCTAA	CCGCTTTTTT	3540
	GCACAACATG	GGGGATCATG	TAACTCGCCT	TGATCGTTGG	GAACCGGAGC	TGAATGAAGC	3600
05	CATACCAAAC	GACGAGCGTG	ACACCACGAT	GCCTGCAGCA	ATGGCAACAA	CGTTGCGCAA	3660
25	ACTATTAACT	GGCGAACTAC	TTACTCTAGC	TTCCCGGCAA	CAATTAATAG	ACTGGATGGA	3720
	GGCGGATAAA	GTTGCAGGAC	CACTTCTGCG	CTCGGCCCTT	CCGGCTGGCT	GGTTTATTGC	3780
	TGATAAATCT	GGAGCCGGTG	AGCGTGGGTC	TCGCGGTATC	ATTGCAGCAC	TGGGGCCAGA	3840
30	TGGTAAGCCC	TCCCGTATCG	TAGTTATCTA	CACGACGGGG	AGTCAGGCAA	CTATGGATGA	3900
	ACGAAATAGA	CAGATCGCTG	AGATAGGTGC	CTCACTGATT	AAGCATTGGT	AACTGTCAGA	3960
	CCAAGTTTAC	TCATATATAC	TTTAGATTGA	TTTAAAACTT	CATTTTTAAT	TTAAAAGGAT	4020
35	CTAGGTGAAG	ATCCTTTTTG	ATAATCTCAT	GACCAAAATC	CCTTAACGTG	AGTTTTCGTT	4080
	CCACTGAGCG	TCAGACCCCG	TAGAAAAGAT	CAAAGGATCT	TCTTGAGATC	CITTTTTTCT	4140
	GCGCGTAATC	TGCTGCTTGC	AAACAAAAAA	ACCACCGCTA	CCAGCGGTGG	TTTGTTTGCC	4200
	GGATCAAGAG	CTACCAACTC	TTTTTCCGAA	GGTAACTGGC	TTCAGCAGAG	CGCAGATACC	4260
40	AAATACTGTC	CTTCTAGTGT	AGCCGTAGTT	AGGCCACCAC	TTCAAGAACT	CTGTAGCACC	4320
	GCCTACATAC	CTCGCTCTGC	TAATCCTGTT	ACCAGTGGCT	GCTGCCAGTG	GCGATAAGTC	4380
	GIGTCITACC	GGGTTGGACT	CAAGACGATA	GTTACCGGAT	AAGGCGCAGC	GCTCGGGCTG	4440
45	AACGGGGGGT	TCGTGCACAC	AGCCCAGCTT	GGAGCGAACG	ACCTACACCG	AACTGAGATA	4500
	CCTACAGCGT	GAGCTATGAG	AAAGCGCCAC	GCTTCCCGAA	GGGAGAAAGG	CGGACAGGTA	4560
	TCCGGTAAGC	GGCAGGGTCG	GAACAGGAGA	GCGCACGAGG	GAGCTTCCAG	GGGGAAACGC	4620
50	CTGGTATCTT	TATAGTCCTG	TCGGGTTTCG	CCACCTCTGA	CTTGAGCGTC	GATTTTTGTG	4680
50	ATGCTCGTCA	GGGGGGCGGA	GCCTATGGAA	AAACGCCAGC	AACGCGGCCT	TTTTACGGTT	4740
	CCTGGCCTTT	TGCTGGCCTT	TTGCTCACAT	GTTCTTTCCT	GCGTTATCCC	CTGATTCTGT	4800

	GGATAACCGT ATTACCGC	CT TIGAGTGAGC TG	ATACCECT CECCEC	AGCC GAACGACCGA	4860
	GCGCAGCGAG TCAGTGAG	CG AGGAAGCGGA AG	EAGCGCCTG ATGCGC	STATT TTCTCCTTAC	4920
5	GCATCTGTGC GGTATTTC	AC ACCGCATATG GT	GCACTCTC AGTAC	NATCT GCTCTGATGC	4980
	CGCATAGTTA AGCCAGTA	TA CACTCCGCTA TO	GCTACGTG ACTGG	FTCAT GGCTGCGCCC	5040
	CGACACCCGC CAACACCC	GC TGACGCGCCC TG	EACGGGCTT GTCTG	TCCC GGCATCCGCT	5100
10	TACAGACAAG CTGTGACC	GT CTCCGGGAGC TG	CATGTGTC AGAGG	TTTTC ACCGTCATCA	5160
,,	CCGAAACGCG CGAGGCAG	CT GTGGAATGTG TG	etcagttag ggtgtv	GAAA GTCCCCAGGC	5220
	TCCCCAGCAG GCAGAAGT	AT GCAAAGCATG CA	ATCTCAATT AGTCA	GCAAC CAGGCTCCCC	5280
	AGCAGGCAGA AGTATGC	AA GCATGCATCT CA	AATTAGTCA GCAAC	CATAG TCCCGCCCCT	5340
15	AACTCCGCCC ATCCCGCC	CC TAACTCCGCC CA	AGTICCGCC CATIC	CCGC CCCATGGCTG	5400
	ACTABITIT TITATIL	TG CAGAGGCCGA GO	GCCGCCTCG GCCTC	IGAGC TATTCCAGAA	5460
	GTAGTGAGGA GGCTTTT	TG GAGGCCTAGG CT	ITTTGCAAA AAGCT	AGCTT CACGCTGCCG	5520
20	CAAGCACTCA GGGCGCAI	GG GCTGCTAAAG GJ	AAGCGGAAC ACGTA	GAAAG CCAGTCCGCA	5580
	GAAACGGTGC TGACCCCC	GA TGAATGTCAG C	TACTGGGCT ATCTG	GACAA GGGAAAACGC	5640
	AAGCGCAAAG AGAAAGC	GG TAGCTTGCAG TO	GGGCTTACA TGGCG	ATAGC TAGACTGGGC	5700
25	GGTTTTATGG ACAGCAAG	CG AACCGGAATT G	CCAGCTGGG GCGCC	CTCTG GTAAGGTTGG	5760
25	GAAGCCCTGC AAAGTAA	CT GGATGGCTTT C	TTGCCGCCA AGGAT	CTGAT GGCGCAGGGG	5820
	ATCAAGATCT GATCAAG	GA CAGGATGAGG A	TCGTTTCGC ATGAT	TGAAC AAGATGGATT	5880
	GCACGCAGGT TCTCCGG	CG CTTGGGTGGA G	AGGCTATIC GGCTA	TGACT GGGCACAACA	5940
30	GACAATCGGC TGCTCTG	ATG CCGCCGTGTT C	CGGCTGTCA GCGCA	EGGGC GCCCGGTTCT	6000
	TTTTGTCAAG ACCGACC	OT CCGGTGCCCT G	AATGAACTG CAGGA	CGAGG CAGCGCGGCT	6060
	ATCGTGGCTG GCCACGA	CGG GCGTTCCTTG C	GCAGCTGTG CTCGA	CGTTG TCACTGAAGC	6120
35	GGGAAGGGAC TGGCTGC	PAT TGGGCGAAGT G	CCGGGGCAG GATCI	CCTGT CATCTCACCT	6180
	TGCTCCTGCC GAGAAAG	TAT CCATCATGGC T	GATGCAATG CGGCG	GCTGC ATACGCTTGA	6240
	TCCGGCTACC TGCCCAT	rcg accaccaage g	AAACATCGC ATCG	AGCGAG CACGTACTCG	6300
	GATGGAAGCC GGTCTTG	rcg atcaggatga t	CTGGACGAA GAGCI	ATCAGG GGCTCGCGCC	6360
40	AGCCGAACTG TTCGCCA	GGC TCAAGGCGCG C	CATGCCCGAC GGCGA	AGGATC TCGTCGTGAC	6420
	CCATGGCGAT GCCTGCT	rgc cgaatatcat g	GTGGAAAAT GGCCC	SCTITT CTGGATTCAT	6480
	CGACTGTGGC CGGCTGG	TG TGGCGGACCG	TATCAGGAC ATAG	CGTTGG CTACCCGTGA	6540
45	TATTGCTGAA GAGCTTG	GCG GCGAATGGGC I	rgaccgcttc ctcg	TGCTTT ACGGTATCGC	6600
	CGCTCCCGAT TCGCAGC	GCA TCGCCTTCTA T	CGCCTTCTT GACG	AGTICT TCTGAGCGGG	6660
	ACTCTGGGGT TCGAAAT	GAC CGACCAAGCG A	ACGCCCAACC TGCC	ATCACG AGATTTCGAT	6720
50	TCCACCGCCG CCTTCTF	TGA AAGGTTGGGC 1	TTCGGAATCG TTTT	CCGGGA CGCCGGCTGG	6780
	ATGATCCTCC AGCGCGC	GGA TCTCATGCTG (GAGTTCTTCG CCCA	CCCCGG GCTCGATCCC	6840
	CTCGCGAGTT GGTTCAC	CTG CTGCCTGAGG (CTGGACGACC TCGC	GGAGTT CTACCGGCAG	6900

	TGCAAATCCG TCGGCATCCA GGAAACCAGC AGCGGCTATC CGCGCATCCA TGCCCCCGAA	6960
	CTGCAGGAGT GGGGAGGCAC GATGGCCGCT TTGGTCCCGG ATCTTTGTGA AGGAACCTTA	7020
5	CTTCTGTGGT GTGACATAAT TGGACAAACT ACCTACAGAG ATTTAAAGCT CTAAGGTAAA	7080
	TATAAAATTT TTAAGTGTAT AATGTGTTAA ACTACTGATT CTAATTGTTT GTGTATTTTA	7140
	GATTCCAACC TATGGAACTG ATGAATGGGA GCAGTGGTGG AATGCCTTTA ATGAGGAAAA	7200
10	CCTGTTTTGC TCAGAAGAAA TGCCATCTAG TGATGATGAG GCTACTGCTG ACTCTCAACA	7260
	TTCTACTCCT CCAAAAAAGA AGAGAAAGGT AGAAGACCCC AAGGACTTTC CTTCAGAATT	7320
	GCTAAGTTTT TTGAGTCATG CTGTGTTTAG TAATAGAACT CTTGCTTGCT TTGCTATTTA	7380
15	CACCACAAAG GAAAAAGCTG CACTGCTATA CAAGAAAATT ATGGAAAAAT ATTCTGTAAC	7440
15	CTTTATAAGT AGGCATAACA GTTATAATCA TAACATACTG TTTTTTCTTA CTCCACACAG	7500
	GCATAGAGTG TCTGCTATTA ATAACTATGC TCAAAAATTG TGTACCTTTA GCTTTTTAAT	7560
	TTGTAAAGGG GTTAATAAGG AATATTTGAT GTATAGTGCC TTGACTAGAG ATCATAATCA	7620
20	GCCATACCAC ATTTGTAGAG GTTTTACTTG CTTTAAAAAA CCTCCCACAC CTCCCCCTGA	7680
	ACCTGAAACA TAAAATGAAT GCAATTGTTG TTGTTAACTT GTTTATTGCA GCTTATAATG	7740
	GTTACAAATA AAGCAATAGC ATCACAAATT TCACAAATAA AGCATTTTTT TCACTGCATT	7800
25	CTAGTTGTGG TTTGTCCAAA CTCATCAATG TATCTTATCA TGTCTGGATC TAATAAAAGA	7860
	TATTTATTIT CATTAGATAT GTGTGTTGGT TTTTTGTGTG CAGTGCCTCT ATCTGGAGGC	7920
	CAGGTAGGGC TGGCCTTGGG GGAGGGGGAG GCCAGAATGA CTCCAAGAGC TACAGGAAGG	7980
	CAGGTCAGAG ACCCCACTGG ACAAACAGTG GCTGGACTCT GCACCATAAC ACACAATCAA	8040
30 _.	CAGGGGAGTG AGCTGGAAAT TTGCTAGC	8068
£	(2) INFORMATION FOR SEQ ID NO: 36:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 234 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: protein	

(ii) MOLECULE TYPE: protein

40

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro 1 5 10 15

Gly Ser Ser Gly Asp Ile Val Met Thr Gln Ser Pro Asp Ser Leu Ala 20 25 30

Val Ser Leu Gly Glu Arg Ala Thr Ile Asn Cys Lys Ser Ser Gln Ser 35 40 45

Leu Leu Tyr Ser Arg Asn Gln Lys Asn Tyr Leu Ala Trp Tyr Gln Gln 50 60

Lys Pro Gly Gln Pro Pro Lys Leu Leu Ile Phe Trp Ala Ser Thr Arg 65 70 70 80

55

	Glu Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Gly Phe Gly Inr Asp 85 90 95	
5	Phe Thr Leu Thr Ile Ser Ser Leu Gln Ala Glu Asp Val Ala Val Tyr 100 105 110	
	Tyr Cys Gln Gln Tyr Phe Ser Tyr Pro Leu Thr Phe Gly Gln Gly Thr 115 120 125	
10	Lys Val Glu Ile Lys Arg Val Phe Ile Phe Pro Pro Ser Asp Glu Gln 130 135 140	
	Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr 145 150 155 160	
15	Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser 165 170 175	
15	Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr 180 185 190	
	Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys 195 200 205	
20	His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro 210 215 220	
	Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 225 230	
25	(2) INFORMATION FOR SEQ ID NO: 37:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 372 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
35		60
	AGCTGTAAAA CTAGTAGATA CACCTTCACT GAATACACCA TACACTGGGT TAGACAGGCC	20
	CCTGGCCAAA GGCTGGAGTG GATAGGAGGT ATTAATCCTA ACAATGGTAT TCCTAACTAC	.80
40		40
	WIGOWETAL CEMPCIACO CICCOMPAN MAINTAN MAINTANA MAINTANA	300
	ATCGCCTATG GTTACGACGA GGGCCATGCT ATGGACTACT GGGGTCAAGG AACCCTTGTC	360
45	ACCGTCTCCT CA	372
	(2) INFORMATION FOR SEQ ID NO: 38:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 124 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	

		(xi)	SEQ	JENCI	E DES	SCRI	PTIO	7: SI	BQ II	D NO	: 38	:					
5		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lув	Lув	Pro	Gly 15	Ala
		Ser	Val	Lys	Val 20	Ser	Сув	Lys	Thr	Ser 25	Arg	Tyr	Thr	Phe	Thr 30	Glu	туг
10		Thr	Ile	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Arg	Leu 45	Glu	Trp	Ile
10		Gly	Gly 50	Ile	Asn	Pro	Asn	Asn 55	Gly	Ile	Pro	Asn	Tyr 60	Asn	Gln	Lys	Phe
		Lys 65	Gly	Arg	Ala	Thr	Leu 70	Thr	Val	Gly	Lys	Ser 75	Ala	Ser	Thr	Ala	Тут 80
15		Met	G1u	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Сує
		Ala	Arg	Arg	Arg 100	Ile	Ala	Tyr	Gly	Tyr 105	Asp	Glu	Gly	His	Ala 110	Met	Asr
20		Tyr	Trp	Gly 115	Gln	Gly	Thr	Leu	Val 120	Thr	Val	Ser	Ser				
	(2)	INFO	RMAT	I MOI	FOR S	SEQ :	ID NO): 39	∍:								
25		(i)	(A) (B) (C)	LEI TYI	NGTH: PB: & RANDI	: 124 amino BONES	TERIS Lami Dac: SS: d lines	ino a id sing]	cide	3							
		(ii)	MOLI	COL	TYI	PB: 1	pept	ide									
30																	
		(xi)	SEQU	JENCI	B DES	SCRI	PTIO	1: SI	EQ II	ON C	: 39	:					
35		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
		Ser	Val	Lys	Val 20	Ser	Сув	Lув	Thr	Ser 25	Arg	Tyr	Thr	Phe	Thr 30	Glu	Туз
40		Thr	Ile	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Arg	Leu 45	Glu	Trp	Ile
40		Gly	Gly 50	Ile	Asn	Pro	Asn	Aฮก 55	Gly	Ile	Pro	Asn	Tyr 60	Asn	Gln	Lys	Phe
		L ув 65	Gly	Arg	Ala	Thr	Leu 70	Thr	Val	Gly	Lys	Ser 75	Ala	Ser	Thr	Ala	Ту: 80
45		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Дар 90	Thr	Ala	Val	Tyr	Phe 95	Суя
		Ala	Arg	Arg	Arg 100	Ile	Ala	Tyr	Gly	Tyr 105	Asp	Glu	Gly	His	Ala 110	Met	Asj
50		Tvr	Tro	Glv	Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser				
30		-,-		115		_			120								

5	(i)	(A) (B) (C)	NCB CH LENGTH TYPE: STRAND TOPOLO	: 124 Bmino BDNES	ami aci S: 8	no a d ingl	cids								
	(ii)	MOLEC	ULE TY	PE: p	epti	đe									
10	(xi)	SEQUE	NCE DE	SCRIP	TION	: SE	Q ID	NO:	40:						
	Gln 1	Val G	ln Leu	Val 5	Gln	Ser	Gly		Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
	Ser	Val I	ys Val 20	Ser	Сув	Lys	Thr	Ser 25	Arg	Tyr	Thr	Phe	Thr 30	Glu	Тут
15	Thr		lis Trp S	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Arg	Leu 45	Glu	Тгр	Ile
	Gly	Gly I 50	le Asn	Pro	Asn	Asn 55	Gly	Ile	Pro	Asn	Tyr 60	Asn	Gln	Lys	Phe
20	Lys 65	Gly A	Arg Val	Thr	Ile 70	Thr	Val	Авр	Thr	Ser 75	Ala	Ser	Thr	Ala	Tyr 80
	Met	Glu I	Leu Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Сув
25	Ala	Arg A	Arg Arg		Ala	Tyr	Gly	Tyr 105	Asp	Glu	Gly	His	Ala 110	Met	Двр
	Tyr		Gly Glr 115	Gly	Thr	Leu	Val 120	Thr	Val	Ser	Ser				
•	(2) INFO	RMATIC	on for	SEQ	ID N	0: 4:	1:								
30	(i)	(A) (B) (C)	ENCE CI LENGTI TYPE: STRANI TOPOLA	i: 12 amin DEDNE	4 am o ac SS:	ino a id sing:	acid	5							
35	(ii)	MOLE	CULE T	YPB:	pept	ide									
	(xi)	SEQU	ENCE D	ESCRI	PTIO	N: S	EQ I	D NO	: 41	:					
40	Gln 1	Val	Gln Le	u Val	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ala
	Ser	Val	Lys Va 20		: Сув	Lys	Thr	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Glu	Tyr
45	The		His Tr 35	p Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Arg	Leu 45	Glu	Ттр	Ile
	Gly	Gly 50	Ile As	n Pro	ABR	Asn 55	Gly	Ile	Pro	Asn	Ty:	Asn	Gln	Lys	Phe
50	Lys 65	Gly	Arg Va	l Thi	70	Thr	Val	Asp	Thr	Ser 75	Ala	Ser	Thr	Ala	80
50	Met	Glu	Leu Se	r Sei 85	r Leu	a Arg	Ser	Glu	90 90	Thr	Ala	val	Туг	95	сув

Ala Arg Arg Arg Ile Ala Tyr Gly Tyr Asp Glu Gly His Ala Met Asp 100 105 110

Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser

- (2) INFORMATION FOR SEQ ID NO: 42:

 - (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7731 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

15

20

25

30

35

40

45

5

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

60	TGATAATAAT	GTTAATGTCA	DATTTTTTAG	TGATACGCCT	AAGGGCCTCG	TTGAAGACGA
120	CTATTTGTTT	CGCGGAACCC	GGGAAATGTG	GCACTITTCG	ACGTCAGGTG	GGTTTCTTAG
180	GATAAATGCT	CAATAACCCT	GCTCATGAGA	ATATGTATCC	ATACATTCAA	ATTITTCTAA
240	CCCTTATTCC	TTCCGTGTCG	TATTCAACAT	AGAGTATGAG	TGAAAAAGGA	TCAATAATAT
300	TGAAAGTAAA	GAAACGCTGG	TGCTCACCCA	TICCIGITIT	GCATTTTGCC	CTTTTTTGCG
360.	TCAACAGCGG	GAACTGGATC	GGGTTACATC	GTGCACGAGT	GATCAGTTGG	agatgctgaa
420	CTTTTAAAGT	ATGATGAGCA	ACGTTTTCCA	GCCCCGAAGA	GAGAGTTTTC	TAAGATCCTT
480	TCGGTCGCCG	CAAGAGCAAC	TGACGCCGGG	TATCCCGTGT	GGCGCGGTAT	TCTGCTATGT
540	AGCATCTTAC	GTCACAGAAA	GTACTCACCA	ACTIGGTTGA	TCTCAGAATG	CATACACTAT
600	ATAACACTGC	ACCATGAGTG	TGCTGCCATA	AATTATGCAG	ACAGTAAGAG	GGATGGCATG
660	TTTTGCACAA	CTAACCGCTT	ACCGAAGGAG	CGATCGGAGG	CTTCTGACAA	GGCCAACTTA
720	AAGCCATACC	GAGCTGAATG	TTGGGAACCG	GCCTTGATCG	CATGTAACTC	CATGGGGGAT
780	GCAAACTATT	ACAACGTTGC	AGCAATGGCA	CGATGCCTGC	CGTGACACCA	AAACGACGAG
840	TGGAGGCGGA	ATAGACTGGA	GCAACAATTA	TAGCTTCCCG	CTACTTACTC	AACTGGCGAA
900	TTGCTGATAA	GGCTGGTTTA	CCTTCCGGCT	TGCGCTCGGC	GGACCACTTC	TAAAGTTGCA
960	CAGATGGTAA	GCACTGGGGC	TATCATTGCA	GGTCTCGCGG	GGTGAGCGTG	ATCTGGAGCC
1020	ATGAACGAAA	GCAACTATGG	GGGGAGTCAG	TCTACACGAC	ATCGTAGTTA	GCCCTCCCGT
1080	CAGACCAAGT	TGGTAACTGT	GATTAAGCAT	GTGCCTCACT	GCTGAGATAG	TAGACAGATC
1140	GGATCTAGGT	AAAATTTAAA	ACTTCATTTT	TTGATTTAAA	ATACTTTAGA	TTACTCATAT
1200	CGTTCCACTG	CGTGAGTTTT	AATCCCTTAA	TCATGACCAA	TTTGATAATC	GAAGATCCTT
1260	TTCTGCGCGT	GATCCTTTTT	ATCTTCTTGA	AGATCAAAGG	CCCGTAGAAA	AGCGTCAGAC
1320	TGCCGGATCA	GTGGTTTGTT	GCTACCAGCG	AAAAACCACC	TTGCAAACAA	AATCTGCTGC
1380	TACCAAATAC	AGAGCGCAGA	TGGCTTCAGC	CGAAGGTAAC	ACTCTTTTTC	AGAGCTACCA
1440	CACCGCCTAC	AACTCTGTAG	CCACTTCAAG	AGTTAGGCCA	GTGTAGCCGT	TGTCCTTCTA
1500	AGTCGTGTCT	AGTGGCGATA	GGCTGCTGCC	TGTTACCAGT	CTGCTAATCC	ATACCTCGCT

55

	TACCGGGTTG	GACTCAAGAC	GATAGTTACC	GGATAAGGCG	CAGCGGTCGG	GCTGAACGGG	1560
	GGGTTCGTGC	ACACAGCCCA	GCTTGGAGCG	AACGACCTAC	ACCGAACTGA	GATACCTACA	1620
5	GCGTGAGCTA	TGAGAAAGCG	CCACGCTTCC	CGAAGGGAGA	AAGGCGGACA	GGTATCCGGT.	1680
	AAGCGGCAGG	GTCGGAACAG	GAGAGCGCAC	GAGGGAGCTT	CCAGGGGGAA	ACGCCTGGTA	1740
	TCTTTATAGT	CCTGTCGGGT	TTCGCCACCT	CTGACTTGAG	CGTCGATTTT	TGTGATGCTC	1800
10	GTCAGGGGGG	CGGAGCCTAT	GGAAAAACGC	CAGCAACGCG	GCCTTTTTAC	GGTTCCTGGC	1860
	CTITTGCTGG	CCTTTTGCTC	ACATGTTCTT	TCCTGCGTTA	TCCCCTGATT	CTGTGGATAA	1920
	CCGTATTACC	GCCTTTGAGT	GAGCTGATAC	CGCTCGCCGC	AGCCGAACGA	CCGAGCGCAG	1980
	CGAGTCAGTG	AGCGAGGAAG	CGGAAGAGCG	CCTGATGCGG	TATTTTCTCC	TTACGCATCT	2040
15	GTGCGGTATT	TCACACCGCA	TATGGTGCAC	TCTCAGTACA	ATCTGCTCTG	ATGCCGCATA	2100
	GTTAAGCCAG	TATACACTCC	GCTATCGCTA	CGTGACTGGG	TCATGGCTGC	GCCCCGACAC	2160
	CCGCCAACAC	CCGCTGACGC	GCCCTGACGG	GCTTGTCTGC	TCCCGGCATC	CGCTTACAGA	2220
20	CAAGCTGTGA	CCGTCTCCGG	GAGCTGCATG	TGTCAGAGGT	TTTCACCGTC	ATCACCGAAA	2280
	CGCGCGAGGC	AGCATGCATC	TCAATTAGTC	AGCAACCATA	GTCCCGCCCC	TAACTCCGCC	2340
	CATCCCGCCC	CTAACTCCGC	CCAGTTCCGC	CCATTCTCCG	CCCCATGGCT	GACTAATTIT	2400
	TTTTATTTAT	GCAGAGGCCG	AGGCCGCCTC	GGCCTCTGAG	CTATTCCAGA	AGTAGTGAGG	2460
25	AGGCTTTTTT	GGAGGCCTAG	GCTTTTGCAA	AAAGCTAGCT	TACAGCTCAG	GGCTGCGATT	2520
	TCGCGCCAAA	CTTGACGGCA	ATCCTAGCGT	GAAGGCTGGT	AGGATTTTAT	ACGCCTGGTA TGTGATGCTC GGTTCCTGGC CTGTGGATAA CCGAGCGCAG TTACGCATCT ATGCCGCATA GCCCCGACAC CGCTTACAGA ATCACCGAAA TAACTCCGCC GACTAGTGATT CCCCGCTGCC GATTGGCAAG AACCTGGTTC CAGTAGAGAA TGCCTTAAGA CGGAGGCAGT GACAAGGATC CTTTAAGA CTGGTCC ATATAAACTT CAAGTATAAG TGCTCCCCTC CTTTGTGAAG TTAAAGCTCT ATTAAAGCTCT ATTAAAGCTCT ATTAAAGCTCT TTAAAGCTCT TTAAAGCTCT TTAAAGCTCT TTAAAGCTCT TTAAAGCTCT TTAAAGCTCT TGCCCTTTAATT	2580
	ATCATGGTTC	GACCATTGAA	CTGCATCGTC	GCCGTGTCCC	AAAATATGGG	GATTGGCAAG	2640
30	AACGGAGACC	TACCCTGGCC	TCCGCTCAGG	AACGAGTTCA	AGTACTTCCA	AAGAATGACC	2700
	ACAACCTCTT	CAGTGGAAGG	TAAACAGAAT	CIGGIGATIA	TGGGTAGGAA	AACCTGGTTC	2760
	TCCATTCCTG	AGAAGAATCG	ACCITTAAAG	GACAGAATTA	ATATAGTTCT	CAGTAGAGAA	2820
	CTCAAAGAAC	CACCACGAGG	AGCTCATTTI	CTTGCCAAAA	GITTGGATGA	TGCCTTAAGA	2880
35	CTTATTGAAC	AACCGGAATT	GGCAAGTAA	GTAGACATGG	TTTGGATAGT	CGGAGGCAGT	2940
	TCTGTTTACC	AGGAAGCCAT	GAATCAACC	GGCCACCTCA	GACTCTTTGT	GACAAGGATC	3000
	ATGCAGGAAT	TTGAAAGTG	CACGTTTTTC	CCAGAAATTG	ATTIGGGGA	ATATAAACTT	3060
40	CTCCCAGAAT	ACCCAGGCG	CCTCTCTGAC	GTCCAGGAGG	AAAAAGGCAT	r caagtataag	3120
						TGCTCCCCTC	3180
	CTAAAGCTAT	GCATTITTA	AAGACCATGO	GACTITIGC	GGCTTTAGA	r ctitgtgaag	3240
45	GAACCITAC	r TCTGTGGTG	GACATAATT	GACAAACTA	CTACAGAGA	TTAAAGCTCT	3300
40	AAGGTAAATI	TAAAATTT	AAGTGTATA	A TGTGTTAAA	TACTGATTC	T AATTGTTTGT	3360
	GTATTITAG	A TTCCAACCT	A TGGAACTGA	r gaatgggag	CAGTGGTGGA	A TGCCTTTAAT	3420
	GAGGAAAAC	C TGTTTTGCT	C AGAAGAAAT	G CCATCTAGT	G ATGATGAGG	C TACTGCTGAC	3480
50	TCTCAACAT	r ctactcctc	C AAAAAAGAA	G AGAAAGGTA	3 AAGACCCCA	A GGACTTTCCT	3540
	TCAGAATTG	C TAAGTITTT	r gagtcatgc	r grgtftagt	A ATAGAACTC	T TGCTTGCTTT	3600

	GCTATTTACA	CCACAAAGGA	AAAAGCTGCA	CTGCTATACA	AGAAAATTAT	GGAAAAATAT	3660
	TCTGTAACCT	TTATAAGTAG	GCATAACAGT	TATAATCATA	ACATACTGTT	TTTTCTTACT	3720
5	CCACACAGGC	ATAGAGTGTC	TGCTATTAAT	AACTATGCTC	AAAAATTGTG	TACCTTTAGC	3780
	TTTTTAATTT	GTAAAGGGGT	TAATAAGGAA	TATTTGATGT	ATAGTGCCTT	GACTAGAGAT	3840
•	CATAATCAGC	CATACCACAT	TTGTAGAGGT	TTTACTTGCT	TTAAAAAACC	TCCCACACCT	3900
10	CCCCTGAAC	CTGAAACATA	AAATGAATGC	AATTGTTGTT	GTTAACTTGT	TTATTGCAGC	3960
	TTATAATGGT	TACAAATAAA	GCAATAGCAT	CACAAATTTC	ACAAATAAAG	CATTTTTTC	4020
	ACTGCATTCT	AGTTGTGGTT	TGTCCAAACT	CATCAATGTA	TCTTATCATG	TCTGGATCTA	4080
	ATAAAAGATA	TITATTITCA	TTAGATATGT	GTGTTGGTTT	TTTGTGTGCA	GTGCCTCTAT	4140
15	CTGGAGGCCA	GGTAGGGCTG	GCCTTGGGGG	AGGGGGAGGC	CAGAATGACT	CCAAGAGCTA	4200
	CAGGAAGGCA	GGTCAGAGAC	CCCACTGGAC	AAACAGTGGC	TGGACTCTGC	ACCATAACAC	4260
	ACAATCAACA	GGGGAGTGAG	CTGGAAATTT	GCTAGCGAAT	TCCAGCACAC	TGGCGGCCGT	4320
20	TACTAGTTAT	TAATAGTAAT	CAATTACGGG	GTCATTAGTT	CATAGCCCAT	ATATGGAGTT	4380
	CCGCGTTACA	TAACTTACGG	TAAATGGCCC	GCCTGGCTGA	CCGCCCAACG	ACCCCCGCCC	4440
	ATTGACGTCA	ATAATGACGT	ATGTTCCCAT	AGTAACGCCA	ATAGGGACTT	TCCATTGACG	4500
05	TCAATGGGTG	GAGTATTTAC	GGTAAACTGC	CCACTTGGCA	GTACATCAAG	TGTATCATAT	4560
25	GCCAAGTACG	CCCCCTATTG	ACGTCAATGA	CGGTAAATGG	CCCGCCTGGC	ATTATGCCCA	4620
	GTACATGACC	TTATGGGACT	TTCCTACTTG	GCAGTACATC	TACGTATTAG	TCATCGCTAT	4680
	TACCATGGTG	ATGCGGTTTT	GGCAGTACAT	CAATGGGCGT	GGATAGCGGT	TTGACTCACG	4740
30	GGGATTTCCA	AGTCTCCACC	CCATTGACGT	CAATGGGAGT	TTGTTTTGGC	ACCAAAATCA	4800
£	ACGGGACTTT	CCAAAATGTC	GTAACAACTC	CGCCCCATTG	ACGCAAATGG	GCGGTAGGCG	4860
	TGTACGGTGG	GAGGTCTATA	TAAGCAGAGC	TCGTTTAGTG	AACCGTCAGA	TCGCCTGGAG	4920
35	ACGCCATCCA	CGCTGTTTTG	ACCTCCATAG	AAGACACCGG	GACCGATCCA	GCCTCCGCGG	4980
	CCGGGAACGG	TGCATTGGAA	CGCGGATTCC	CCGTGCCAAG	AGTGACGTAA	GTACCGCCTA	5040
	TAGAGTCTAT	AGGCCCACCC	CCTTGGCTTC	TTATGCATGC	TATACTGTTT	TTGGCTTGGG	5100
	GTCTATACAC	CCCCGCTTCC	TCATGTTATA	GGTGATGGTA	TAGCTTAGCC	TATAGGTGTG	5160
40	GGTTATTGAC	CATTATTGAC	CACTCCCCTA	TTGGTGACGA	TACTITCCAT	TACTAATCCA	5220
	TAACATGGCT	CTTTGCCACA	ACTCTCTTTA	TTGGCTATAT	GCCAATACAC	TGTCCTTCAG	5280
	AGACTGACAC	GGACTCTGTA	TTTTTACAGG	ATGGGGTCTC	ATTTATTATT	TACAAATTCA	5340
45	CATATACAAC	ACCACCGTCC	CCAGTGCCCG	CAGITTITAT	TAAACATAAC	GTGGGATCTC	5400
	CACGCGAATC	TCGGGTACGT	GTTCCGGACA	TGGGCTCTTC	TCCGGTAGCG	GCGGAGCTTC	5460
	TACATCCGAG	CCCTGCTCCC	ATGCCTCCAG	CGACTCATGG	TCGCTCGGCA	GCTCCTTGCT	5520
60	CCTAACAGTG	GAGGCCAGAC	TTAGGCACAG	CACGATGCCC	ACCACCACCA	GTGTGCCGCA	5580
50	CAAGGCCGTG	GCGGTAGGGT	ATGTGTCTGA	AAATGAGCTC	GGGGAGCGGG	CTTGCACCGC	5640
	TGACGCATTT	GGAAGACTTA	AGGCAGCGGC	AGAAGAAGAT	GCAGGCAGCT	GAGTTGTTGT	5700

	GTTCTGATAA	GAGTCAGAGG	TAACTCCCGT	TGCGGTGCTG	TTAACGGTGG	AGGGCAGTGT	5760
	AGTCTGAGCA	GTACTCGTTG	CTGCCGCGCG	CGCCACCAGA	CATAATAGCT	GACAGACTAA	5820
5	CAGACTGTTC	CITTCCATGG	GTCTTTTCTG	CAGTCACCGT	CCTTGACACG	CGTCTCGGGA	5880
	AGCTTGCCGC	CACCATGGAC	TGGACCTGGC	GCGTGTTTTG	CCTGCTCGCC	GTGGCTCCTG	5940
	GGGCCCACAG	CCAGGTGCAA	CTGGTGCAGT	CCGGCGCCGA	agtgaagaaa	CCCGGTGCTT	6000
10	CCGTGAAAGT	CAGCTGTAAA	ACTAGTAGAT	ACACCTTCAC	TGAATACACC	ATACACTGGG	6060
,,	TTAGACAGGC	CCCTGGCCAA	AGGCTGGAGT	GGATAGGAGG	TATTAATCCT	AACAATGGTA	6120
	TTCCTAACTA	CAACCAGAAG	TTCAAGGGCC	GGGCCACCTT	GACCGTAGGC	AAGTCTGCCA	6180
	GCACCGCCTA	CATGGAACTG	TCCAGCCTGC	GCTCCGAGGA	CACTGCAGTC	TACTACTGCG	6240
15	CCAGAAGAAG	AATCGCCTAT	GGTTACGACG	AGGGCCATGC	TATGGACTAC	TGGGGTCAAG	6300
	GAACCCTIGT	CACCGTCTCC	TCAGGTGAGT	GGATCCTCTG	CGCCTGGGCC	CAGCTCTGTC	6360
	CCACACCGCG	GTCACATGGC	ACCACCTCTC	TTGCAGCCTC	CACCAAGGGC	CCATCGGTCT	6420
20	TCCCCCTGGC	ACCCTCCTCC	AAGAGCACCT	CTGGGGGCAC	AGCGGCCCTG	GGCTGCCTGG	6480
	TCAAGGACTA	CTTCCCCGAA	CCGGTGACGG	TGTÇGTGGAA	CTCAGGCGCC	CTGACCAGCG	6540
	GCGTGCACAC	CITCCCGGCT	GTCCTACAGI	CCTCAGGACT	CTACTCCCTC	AGCAGCGTGG	6600
	TGACCGTGCC	CTCCAGCAGC	TTGGGCACCC	AGACCTACAT	CIGCAACGIG	AATCACAAGC	6660
25	CCAGCAACAC	CAAGGTGGAC	AAGAAAGTTO	AGCCCAAATC	TTGTGACAAA	ACTCACACAT	6720
	GCCCACCGTG	CCCAGCACCT	GAACTCCTGC	GGGGACCGTC	AGTCTTCCTC	TTCCCCCCAA	6780
	AACCCAAGGI	CACCCTCATO	ATCTCCCGG	CCCCTGAGGT	CACATGCGTG	GTGGTGGACG	6840
30	TGAGCCACG	AGACCCTGAG	GTCAAGTTC	A ACTGGTACGI	GGACGGCGTC	GAGGTGCATA	6900
	ATGCCAAGAG	AAAGCCGCGC	GAGGAGCAG	r acaacagcag	GTACCGGGTC	GTCAGCGTCC	6960
	TCACCGTCCT	C GCACCAGGAC	TGGCTGAAT	GCAAGGAGT	CAAGTGCAAC	GTCTCCAACA	7020
35	AAGCCCTCCC	C AGCCCCCATC	GAGAAAACC	A TCTCCAAAGO	CAAAGGGCA	CCCCGAGAAC	7080
	CACAGGTGT	A CACCCTGCC	CCATCCCGG	AGGAGATGA	CAAGAACCA	GTCAGCCTGA	7140
	CCTGCCTGG	r caaaggctr	C TATCCCAGC	G ACATCGCCG	r ggagtggga	G AGCAATGGGC	7200
•	AGCCGGAGA	A CAACTACAA	G ACCACGCCT	C CCGTGCTGG	A CTCCGACGG	C TCCTTCTTCC	7260
40	TCTACAGCA	A GCTCACCGT	g gacaagagc	A GGTGGCAGC	A GGGGAACGT	C TTCTCATGCT	7320
	CCGTGATGC	A TGAGGCTCT	G CACAACCAC	T ACACGCAGA	A GAGCCTCTC	C CTGTCTCCGG	7380
	GTAAATGAG	T GCGACGGCC	G GCAAGCCCC	G CTCCCCGGG	C TCTCGCGGT	C GCACGAGGAT	7440
45	GCTTGGCAC	G TACCCCCTG	T ACATACITO	c ceeececc	a gcatggaaa	T AAAGCACCGG	7500
	ATCTAATAA	a agatattta	T TTTCATTAG	A TATGTGTGT	T GGTTTTTG	T GTGCAGTGCC	7560
	TCTATCTGG	A GGCCAGGTA	G GGCTGGCCT	T GGGGGAGGG	G GAGGCCAGA	A TGACTCCAAG	7620
50	AGCTACAGG	A AGGCAGGTC	A GAGACCCCA	C TGGACAAAC	A GTGGCTGGA	C TCTGCACCAT	7680
50	AACACACAA	T CAACAGGGG	A GTGAGCTGG	A AATTIGCTA	G CGAATTAAT	T C	7731
	(2) INFOR	MATION FOR	SEQ ID NO:	43:			

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 472 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

	(ii)	MOLI	SCOTI	B TY	PB: 1	prote	ein									
10	(xi)	gaz	Jenci	B DE	SCRI	PTIO	N: SI	3Q II	D NO	: 43	:					
	Met 1	Asp	Trp	Thr	Trp 5	Arg	Val	Phe	Сув	Leu 10	Leu	Ala	Val	Ala	Pro 15	Gly
15	Ala	His	Ser	Gln 20	Val	Gln	Leu	Val	Gln 25	Ser	Gly	Ala	Glu	Val 30	Lys	Lys
	Pro	Gly	Ala 35	Ser	Val	Lys	Val	Ser 40	Сув	Lys	Thr	Ser	Arg 45	Тут	Thr	Phe
	Thr	G1u 50	Tyr	Thr	Ile	His	Trp 55	Val	Arg	Gln	Ala	Pro 60	Gly	Gln	Arg	Leu
	Glu 65	Trp	Ile	Gly	Gly	Ile 70	Asn	Pro	Asn	Asn	Gly 75	Ile	Pro	Asn	Tyr	Asr 80
	Gln	Lys	Phe	Lys	Gly 85	Arg	Ala	Thr	Leu	Thr 90	Val	Gly	Lys	Ser	Ala 95	Ser
25	Thr	Ala	Tyr	Met 100	Glu	Leu	Ser	Ser	Leu 105	Arg	Ser	Glu	Asp	Thr 110	Ala	Va]
	Tyr	Tyr	Сув 115	Ala	Arg	Arg	Arg	Ile 120	Ala	Tyr	Gly	Tyr	Asp 125	Glu	Gly	Hie
30	Ala	Met 130	Asp	Tyr	Trp	Gly	Gln 135	Gly	Thr	Leu	Val	Thr 140	Val	Ser	Ser	Ser
· ;;	Thr 145	Lys	Gly	Pro	Ser	Val 150	Phe	Pro	Leu	Ala	Pro 155	Ser	Ser	Lув	Ser	Th:
35	Ser	Gly	Gly	Thr	Ala 165	Ala	Leu	Gly	Сув	Leu 170	Val	Lys	Asp	Тут	Phe 175	Pro
	Glu	Pro	Val	Thr 180	Val	Ser	Trp	Asn	Ser 185	Gly	Ala	Leu	Thr	Ser 190	Gly	Va]
40	His	Thr	Phe 195	Pro	Ala	Val	Leu	Gln 200	Ser	Ser	Gly	Leu	Tyr 205	Ser	Leu	Sei
	Ser	Val 210	Val	Thr	Val	Pro	Ser 215	Ser	Ser	Leu	Gly	Thr 220	Gln	Thr	Tyr	Ile
	Сув 225	Asn	Val	Asn	His	Lys 230	Pro	Ser	Asn	Thr	Lys 235	Val	Asp	Lys	Lys	Va]
15	Glu	Pro	Lys	Ser	Сув 245	Asp	Lys	Thr	His	Thr 250	Сув	Pro	Pro	Сув	Pro 255	Ala
	Pro	Glu	Leu	Leu 260	Gly	Gly	Pro	Ser	Val 265	Phe	Leu	Phe	Pro	Pro 270	Lys	Pro
50			275					280					285		Val	
	Val	Asp 290	Val	Ser	His	Glu	As p 295	Pro	Glu	Val	Lys	Phe 300	Asn	Trp	Tyx	Va.

55

	Авр 305	Gly	Val	Glu	Val	His 310	Asn	Ala	Lys	Thr	115 315	Pro	Arg	Glu	Glu	Gln 320	
5	Tyr	Asn	Ser	Thr	Tyr 325	Arg	Val	Val	Ser	Val 330	Leu	Thr	Val	Leu	His 335	Gln	
	Asp	Trp	Leu	Asn 340	Gly	Lys	Glu	Tyr	Lys 345	Сув	Lys	Val	Ser	Asn 350	Lys	Ala	
10	Leu	Pro	Ala 355	Pro	Ile	Glu	Lys	Thr 360	Ile	Ser	Lys	Ala	Lys 365	Gly	Gln	Pro	
	Arg	Glu 370	Pro	Gln	Val	Tyr	Thr 375	Leu	Pro	Pro	Ser	Arg 380	Glu	Glu	Met	Thr	
	Lys 385	Asn	Gln	Val	Ser	Leu 390	Thr	Сув	Leu	Val	Lyв 395	Gly	Phe	Tyr	Pro	Ser 400	
15	Дар	Ile	Ala	Val	Glu 405	Trp	Glu	Ser	Asn	Gly 410		Pro	Glu	Asn	Asn 415	Tyr	
	Lys	Thr	Thr	Pro 420	Pro	Val	Leu	Asp	Ser 425	Asp	Gly	Ser	Phe	Phe 430	Leu	Tyr	
20	Sex	Lys	Leu 435	Thr	Val	Asp	Lys	Ser 440	Arg	Trp	Gln	Gln	Gly 445	naA	Val	Phe	
	Ser	Cys 450		Val	Met	His	Glu 455	Ala	Leu	His	Asn	His 460	Tyr	Thr	Gln	Lys	
25	Ser 465	Leu	Ser	Leu	Ser	Pro 470	Gly	Lys	*								
	(2) INFO	RMAT	TON	FOR	SBQ	ID N	0: 4	4 :									
30	(i)	(E	UENC) LE) TY !) SI)) TO	ngth PB: Rand	: 25 nucl EDNE	bas eic SS:	e pa acid doub	irs									
	(ii)	IOM	BCUI	E TY	PB:	DNA	(gen	omic	:)								
35	(xi) SEQ	ONBUÇ	E DE	SCRI	PTIC	ent: S	EQ I	D NO): 4 4	i:						
	ACCGTCT	CCT	LAGGT	GAGT	G GA	TCC											25
	(2) INF	ORMAT	MOIT	FOR	SEQ	ID N	iO: 4	5:									
40	(i	(1	QUENCA) LE 3) TO C) SO D) TO	ingth (PE : [rani	i: 14	bas leic 388:	e pa acio doub	irs 1									
45	(ii) MO	LECUI	LE T	(PB:	DNA	(ger	nomi	c)								
50	•) SE	-	CE DI	SSCR:	IPTI() : MC	SRQ :	ID N	0: 4	5:						14
	CCTCTCI			200	055	TP -	WO.										
	(2) INF	UKMA	T.TON	FUR	2KQ	נ מד	WU: -	* O :									

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
	CCTCTCTTGC AGCC	14
	(2) INFORMATION FOR SEQ ID NO: 47:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: peptide	
20		
	(
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
25	Thr Val Ser Ser	
	(2) INFORMATION FOR SEQ ID NO: 48:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
	Ser Thr Lys Gly 1	
40	(2) INFORMATION FOR SEQ ID NO: 49:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
50	ACCGTCTCCT CAGCCTCCAC CAAGGGC	27
	(2) INFORMATION FOR SEQ ID NO: 50:	

79

DESCRIPTION OF THE PROPERTY OF

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
	Thr Val Ser Ser Thr Lys Gly 1 5	
	(2) INFORMATION FOR SEQ ID NO: 51:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:	
25	ACCGTCTCCT CAGCCTCCAC CAAGGGC	27
	(2) INFORMATION FOR SEQ ID NO: 52:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
35		
33	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:	
	Thr Val Ser Ser Ala Ser Thr Lys Gly	
40	(2) INFORMATION FOR SEQ ID NO: 53:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
4 5	(ii) MOLECULE TYPE: DNA (genomic)	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
-	GAAATAAAAC GTGAGTGGAT CC	22
	(2) INFORMATION FOR SEQ ID NO: 54:	

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	
	CTTCTTTCCT CAGGAACTGT GGCTGCA	27
	(2) INFORMATION FOR SEQ ID NO: 55:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: peptide	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
25	Thr Val Ala Ala	
	(2) INFORMATION FOR SEQ ID NO: 56:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:	
	GAAATAAAAC GAACTGTGGC TGCA	24
	(2) INFORMATION FOR SEQ ID NO: 57:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: peptide	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
50	Glu Ile Lys Thr Val Ala Ala 1 5	
	(2) INFORMATION FOR SEQ ID NO: 58:	

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic)	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:	
	GAAATAAAAC GAACTGTGGC TGCA	24
	(2) INFORMATION FOR SEQ ID NO: 59:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	•
	(ii) MOLECULE TYPE: peptide	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
25	Glu Ile Lys Arg Thr Val Ala Ala 1 5	
	(2) INFORMATION FOR SEQ ID NO: 60:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
	Met Asp Ser Gln Ala Gln Val Leu Met Leu Leu Leu Trp Val Ser 1 5 10	
40	Gly Thr Cys Gly	
	(2) INFORMATION FOR SEQ ID NO: 61:	
4 5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
	Met Gly Trp Ser Trp Val Phe Leu Phe Leu Leu Ser Gly Thr Ala Gl	Y
55		

	1	5	10	15
5	V	al Leu Ser		
	(2) IN	FORMATION FOR SEQ ID NO: 6	2:	
10	(:	i) SEQUENCE CHARACTERISTIC (A) LENGTH: 9 base pai (B) TYPE: nucleic acid (C) STRANDEDNESS: doub (D) TOPOLOGY: linear	rs	
	(i:	i) MOLECULE TYPE: DNA (gen	omic)	•
15	(x:	i) SEQUENCE DESCRIPTION: S	EQ ID NO: 62:	
	GCCGCC	rcc		9
	(2) IN	FORMATION FOR SEQ ID NO: 6	3:	
20	(:	i) SEQUENCE CHARACTERISTIC (A) LENGTH: 37 base pa (B) TYPE: nucleic acid (C) STRANDEDNESS: doub (D) TOPOLOGY: linear	irs	
25	(i :	i) MOLECULE TYPE: other nu (A) DESCRIPTION: /de		
20	(x :) SEQUENCE DESCRIPTION: S	EQ ID NO: 63:	
30	CAGAAA	CTT GCCGCCACCA TGGATTCACA	GGCCCAG	31
	(2) IN	PORMATION FOR SEQ ID NO: 6	4:	
35	(:	(A) LENGTH: 6 amino ac (B) TYPE: amino acid (C) STRANDEDNESS: sing (D) TOPOLOGY: linear	ids	
	(i:) MOLECULE TYPE: peptide		
40				
40	(x :	i) SEQUENCE DESCRIPTION: S	EO ID NO: 64:	
		et Asp Ser Gln Ala Gln	- L 	
	1	5		
45	(2) IN	FORMATION FOR SEQ ID NO: 6	5:	
50	(:	i) SEQUENCE CHARACTERISTIC (A) LENGTH: 35 base pa (B) TYPE: nucleic acid (C) STRANDEDNESS: sing (D) TOPOLOGY: linear	irs	
	(i :	i) MOLECULE TYPE: other nu (A) DESCRIPTION: /de		

	(XI) SEGURNCE DESCRIPTION: SEG ID NO: 62:	
	CCGAGGATCC ACTCACGTTT CAGCTCCAGC TTGGT	35
5	(2) INFORMATION FOR SEQ ID NO: 66:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:	
	CAGAAAGCTT GCCGCCACCA TGGGATGGAG CTGGGTC	37
	(2) INFORMATION FOR SEQ ID NO: 67:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:	
30	Met Gly Trp Ser Trp Val	
	(2) INFORMATION FOR SEQ ID NO: 68:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 35 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid</pre>	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:	
	CCGAGGATCC ACTCACCTGA GGAGACGGTG ACTGA	35
45	(2) INFORMATION FOR SEQ ID NO: 69:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"</pre>	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:	
	GTCATCACAA TGTCTCCGGA GGAACCTGGA ACCCAG	36
5	(2) INFORMATION FOR SEQ ID NO: 70:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:	
	CTCCGGAGAC ATTGTGATGA CCCAATCTC	29
20	(2) INFORMATION FOR SEQ ID NO: 71:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"</pre>	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:	
	CTCCGGAGAC ATTGTGATGA CCCAATCTC	29
	(2) INFORMATION FOR SEQ ID NO: 72:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 72 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40 .	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:	
45	CAGTCAGAGC CTTTTATATT CTAGAAATCA AAAGAACTAC TTGGCCTGGT ATCAGCAGAA	60
	ACCAGGACAG CC	72
	(2) INFORMATION FOR SEQ ID NO: 73:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

(D) TOPOLOGY: linear

5	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
10 .	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73: ACCCCAGATT CCCTAGTGCT AGCCCAAAAG ATGAGGAGTT TGGG	44
	(2) INFORMATION FOR SEQ ID NO: 74:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 67 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:	
	TAGCACTAGG GAATCTGGGG TACCTGATAG GTTCAGTGGC AGTGGGTTTG GGACAGACTT	60
	CACCCTC	67
25	(2) INFORMATION FOR SEQ ID NO: 75:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 53 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"</pre>	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:	
	GTCCCTTGTC CGAACGTGAG CGGATAGCTA AAATATTGCT GACAGTAATA AAC	53
	(2) INFORMATION FOR SEQ ID NO: 76:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
45	<pre>(ii) MOLECULE TYPE: other nucleic acid</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:	
50	GCTCACGTTC GGACAAGGGA CCAAGGTGGA AAT	33
	(2) INFORMATION FOR SEQ ID NO: 77:	

86

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 72 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
	CAGTCAGAGC CTTTTATATT CTAGAAATCA AAAGAACTAC TTGGCCTGGT TCCAGCAGAA	60
	ACCAGGACAG CC	72
15	(2) INFORMATION FOR SEQ ID NO: 78:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 57 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:	
	GTCCCTTGTC CGAACGTGAG CGGATAGCTA AAATATTGCT GACAGTCATA AACTGCC	57
	(2) INFORMATION FOR SEQ ID NO: 79:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
35	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"</pre>	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:	
40	CCCAAACTCC TCATCTATTG GGCTAGCACT AGGG	34
	(2) INFORMATION FOR SEQ ID NO: 80:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:	

(A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:		CCCTAGTGCT AGCCCAATAG ATGAGGAGTT TGGG	34
(i) SEQUENCE CHARACTERISTICS: (a) LENGTH: 17 base pairs (b) TYPE: nucleic acid (c) STRANDEDNESS: single (d) TOPOLOGY: linear (ii) NOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81: TACGCAAACC GCCTCTC (2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDENDESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (C) STRANDEDNESS: single (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83: AACAGCTATG ACCATG (2) INFORMATION FOR SEQ ID NO: 84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (I) NOLECULE TYPE: other nucleic acid	_	(2) INFORMATION FOR SEQ ID NO: 81:	
(A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81: TAGGCARACC GCCTCTC	5	(A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
TAGGGAAACC GCCTCTC (2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82: (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDMESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (II) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83: AACAGCTATG ACCATG (2) INFORMATION FOR SEQ ID NO: 84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	10	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
(2) INFORMATION FOR SEQ ID NO: 82: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82: (xi) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83: AACAGCTATG ACCATG (2) INFORMATION FOR SEQ ID NO: 84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (C) STRANDESNESS: single (D) TOPOLOGY: linear	15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:	
(i) SEQUENCE CHARACTERISTICS: (A) LENTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82: GAGTGCACCA TATGCGGT 18 (2) INFORMATION FOR SEQ ID NO: 83: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83: AACAGCTATG ACCATG 16 (2) INFORMATION FOR SEQ ID NO: 84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		TACGCAAACC GCCTCTC	17
(i) ENEMFH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82: (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83: (2) INFORMATION FOR SEQ ID NO: 83: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83: AACAGCTATG ACCATG (2) INFORMATION FOR SEQ ID NO: 84: (i) SEQUENCE DESCRIPTION: SEQ ID NO: 84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		(2) INFORMATION FOR SEQ ID NO: 82:	
(A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82: GAGTGCACCA TATGCGGT 18 (2) INFORMATION FOR SEQ ID NO: 83: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83: AACAGCTATG ACCATG 16 (2) INFORMATION FOR SEQ ID NO: 84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid	20	(A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
GAGTGCACCA TATGCGGT (2) INFORMATION FOR SEQ ID NO: 83: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83: AACAGCTATG ACCATG (2) INFORMATION FOR SEQ ID NO: 84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid	25	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
(2) INFORMATION FOR SEQ ID NO: 83: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (ii) SEQUENCE DESCRIPTION: SEQ ID NO: 83: AACAGCTATG ACCATG (2) INFORMATION FOR SEQ ID NO: 84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:	
(2) INFORMATION FOR SEQ ID NO: 83: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83: AACAGCTATG ACCATG (2) INFORMATION FOR SEQ ID NO: 84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDENNESS: single (D) TOPOLOGY: linear		GAGTGCACCA TATGCGGT	18
(A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83: AACAGCTATG ACCATG (2) INFORMATION FOR SEQ ID NO: 84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid	30	(2) INFORMATION FOR SEQ ID NO: 83:	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83: AACAGCTATG ACCATG (2) INFORMATION FOR SEQ ID NO: 84: (i) SEQUENCE CHARACTERISTICS:	35 .	(A) LENGTH: 16 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid	
AACAGCTATG ACCATG (2) INFORMATION FOR SEQ ID NO: 84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	40		
(2) INFORMATION FOR SEQ ID NO: 84: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:	•
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear		AACAGCTATG ACCATG	16
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	45	(2) INFORMATION FOR SEQ ID NO: 84:	
(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	43	(A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
	50	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:	
	GTTTTCCCAG TCACGAC	17
5	(2) INFORMATION FOR SEQ ID NO: 85:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 47 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:	
	GTGTATTCAG TGAAGGTGTA TCTACTAGTT TTACAGCTGA CTTTCAC	47
	(2) INFORMATION FOR SEQ ID NO: 86:	
20	(i) SEQUENCE CHARACTBRISTICS: (A) LENGTH: 53 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	<pre>(ii) MOLECULE TYPE: other nucleic acid</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:	
30	TAGTAGATAC ACCTTCACTG AATACACCAT ACACTGGGTT AGACAGGCCC CTG	53
	(2) INFORMATION FOR SEQ ID NO: 87:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:	
	CCCTTGAACT TCTGGTTGTA GTTAGGAATA CCATTGTTAG GATTAATACC TCCTATCCAC	60
45	TCCAGCCTTT G	71
	(2) INFORMATION FOR SEQ ID NO: 88: (i) SEQUENCE CHARACTERISTICS:	
50	(A) LENGTH: 71 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	

89

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:	
	TAACTACAAC CAGAAGTTCA AGGGCCGGGC CACCTTGACC GTAGGCAAGT CTGCCAGCAC	60
5	CGCCTACATG G	71
	(2) INFORMATION FOR SEQ ID NO: 89:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 63 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
15	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:	
20	GCATGGCCCT CGTCGTAACC ATAGGCGATT CTTCTTCTGG CGCAGTAGTA GACTGCAGTG	60
	TCC	63
	(2) INFORMATION FOR SEQ ID NO: 90:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 48 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:	
35	CTATGGTTAC GACGAGGCC ATGCTATGGA CTACTGGGGT CAAGGAAC	48
	(2) INFORMATION FOR SEQ ID NO: 91:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 71 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid</pre>	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	
	TAACTACAAC CAGAAGTTCA AGGGCCGGGT CACCATCACC GTAGACACCT CTGCCAGCAC	60
50	CGCCTACATG G	71
	(2) INFORMATION FOR SEQ ID NO: 92:	

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
10		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:	
	GGACACTGCA GTCTACTTCT GCGCCAG	27
	(2) INFORMATION FOR SEQ ID NO: 93:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:	
25	TACGCAAACC GCCTCTC	17
	(2) INFORMATION FOR SEQ ID NO: 94:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
40	GAGTGCACCA TATGCGGT	18
	(2) INFORMATION FOR SEQ ID NO: 95:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 76 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"</pre>	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:	
	CCITTGGCCA GGGGCCTGTC TAACCCAGTG TATGGTGTAT TCAGTGAAGG TGCTATCCAC	6

91

21.22.00.0

	TAGTTTCCAC TAGTTT	76
5	(2) INFORMATION FOR SEQ ID NO: 96:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:	
	GTCACCGTCC TTGACACGCG TCTCGGGA	28
	(2) INFORMATION FOR SEQ ID NO: 97:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:	
30	TTGGAGGAGG GTGCCAG	17
	(2) INFORMATION FOR SEQ ID NO: 98:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"</pre>	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:	
45	GAGACATIGT GACCCAATCT CC	22
45	(2) INFORMATION FOR SEQ ID NO: 99:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:	
5	GACAGTCATA AACTGCCACA TCTTC	25
3	(2) INFORMATION FOR SEQ ID NO: 100:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:	
	TTGACACGCG TCTCGGGAAG CTT	23
20	(2) INFORMATION FOR SEQ ID NO: 101:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
,	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "PRIMER"	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:	
	CCCCCA CACCA AMOCA CMCCA CM	2
35		. 2
40	Claims	
45	1. An antibody protein having the complementary determining regions of the monoclonal antibody F19 Accession No. HB 8269), said antibody protein specifically binding to fibroblast activation protein, character that it has framework modifications resulting in the improved producibility in host cells as compared to a clantibody having the variable regions of F19 and foreign constant regions.	ized in
	An antibody protein characterised in that it has a variable light chain region and a variable heavy chain according to claim 1, each joined to a human constant region.	region
50	3. The antibody protein of claim 2, wherein said human constant region of the light chain is a human kapp stant region.	a con-
S.F.	4. The antibody protein of claim 2, wherein said human constant region of the heavy chain is a human ga constant region.	mma-1
55	5. An antibody protein according to any one of claims 1 to 4, characterised in that its expression levels in media samples as determined by ELISA and/or purified antibody yields exceed the expression levels and/or cation yields of the chimeric antibodies without framework modifications by at least a factor of 10.	crude r purifi-

- 6. An antibody protein according to any one of claims 1 to 4, characterised in that its expression levels in crude media samples as determined by ELISA and/or purified antibody yields exceed the expression levels and/or purification yields of the chimeric antibodies without framework modifications by at least a factor of 20.
- 7. An antibody protein according to any one of claims 1 to 4, characterised in that its expression levels in crude media samples as determined by ELISA and/or purified antibody yields exceed the expression levels and/or purification yields of the chimeric antibodies without framework modifications by at least a factor of 100.

5

10

15

25

30

35

40

50

- 8. An antibody protein according to any one of claims 1 to 7, characterised in that it displays improved producibility in eucaryotic cells.
- 9. The antibody protein according to claim 8 wherein said eucaryotic cell is a chinese hamster ovary cell (CHO cell).
- 10. An antibody protein according to any one of claims 1 to 9, wherein the amino acid in Kabat position 87 of the light chain region is not asparagine.
- 11. The antibody protein of claim 10, wherein the amino acid in Kabat position 87 of the light chain region is selected from aromatic or aliphatic amino acids.
- 12. The antibody protein of claim 11, wherein said aromatic amino acid in Kabat position 87 of the light chain region is a tyrosine or phenylalanine.
 - 13. The antibody protein according to any one of claims 1 to 12, wherein the amino acid in Kabat position 36 of the light chain region is selected from aromatic amino acids.
 - 14. An antibody protein according to any one of claims 1 to 13 that contains the variable region of the light chain as set forth in SEQ ID NO: 2.
 - 15. An antibody protein of claim 14 characterised in that the variable region of the light chain is encoded by a nucleotide sequence as set forth in SEQ ID NO: 1.
 - 16. An antibody protein according to any one of claims 1 to 13 that contains the variable region of the light chain as set forth in SEQ ID NO: 6.
 - 17. An antibody protein of claim 16 characterised in that the variable region of the light chain is encoded by a nucleotide sequence as set forth in SEQ ID NO: 5.
 - 18. An antibody protein according to any one of claims 1 to 17 containing a variable region of the heavy chain as set forth in any one of SEQ ID NOs: 8, 10, 12, 14.
 - 19. An antibody protein according to claim 18 characterised in that the variable region of the heavy chain is encoded by a nucleotide sequence as set forth in SEQ ID NOs: 7, 9, 11, 13.
- 20. An antibody protein according to any one of claims 1 to 14 containing the variable region of the light chain as
 set forth in SEQ ID NO: 2 and the variable region of the heavy chain as set forth in SEQ ID NOs: 12.
 - 21. The antibody protein of claim 20 characterised in that the variable region of the the light chain is encoded by a nucleotide sequence as set forth in SEQ ID NO: 1 and the variable region of the heavy chain is encoded by a nucleotide sequence as set forth in SEQ ID NO: 11.
 - 23. An antibody protein according to any one of claims 1 to 13 containing the variable region of the light chain as set forth in SEQ ID NO: 2 and the variable region of the heavy chain as set forth in SEQ ID NOs: 8.
 - 24. The antibody protein of claim 23 characterised in that the variable region of the the light chain is encoded by a nucleotide sequence as set forth in SEQ ID NO: 1 and the variable region of the heavy chain is encoded by a nucleotide sequence as set forth in SEQ ID NO: 7.
 - 25. A nucleotide sequence encoding an antibody protein according to any one of claims 1 to 24.

- 26. A recombinant DNA vector that contains a nucleotide sequence of claim 25.
- 27. The recombinant DNA vector of claim 26, said vector being an expression vector.
- 5 28. A host cell carrying a vector according to claims 26 or 27.
 - 29. The host cell of claim 28, wherein said host cell is a eucaryotic cell.
 - 30. The host cell of claim 29, wherein said eucaryotic host cell is a mammalian cell.
 - 31. The host cell of claim 30, wherein said host cell is a CHO or a COS cell.
 - 32. A method of producing antibody proteins according to any one of claims 1 to 24, said method comprising the steps of:

(a) cultivating a host cell according to any one of claims 23 to 26 under conditions where said antibody protein is expressed by said host cell, and

(b) isolating said antibody protein.

10

15

30

T.

35

- 33. The method of claim 32, wherein said host cell is a mammalian cell, preferably a CHO or COS cell.
 - 34. The method of claim 32 or 33, wherein said host cell is cotransfected with two plasmids carrying the expression units for light and heavy chains respectively.
- 35. An antibody protein according to any one of claims 1 to 24, wherein said antibody protein is conjugated to a therapeutic agent.
 - 36. The antibody protein of claim 35, wherein said therapeutic agent is a therapeutic agent selected from the group consisting of radioisotopes, toxins, toxoids, inflammatory agents and chemotherapeutic agents.
 - 37. The antibody protein of claim 36, wherein said radioisotopes are β-emitting radioisotopes.
 - **38.** The antibody protein of claim 37, wherein said radioisotopes are selected from the group consisting of ¹⁸⁶Rhenium, ¹⁸⁸Rhenium, ¹³¹lodine and ⁹⁰Yttrium.
 - 39. An antibody protein according to any one of claims 1 to 24, characterised in that it is labeled.
 - 40. The antibody protein of claim 39, wherein said label is a detectable marker.
- 40 41. The antibody protein of claim 40, wherein the detectable marker is a detectable marker selected from the group consisting of enzymes, dyes, radioisotopes, and biotin.
 - 42. An antibody protein according to any one of claims 1 to 24 conjugated to an imageable agent.
- 45. The antibody protein of claim 42, wherein the imageable agent is a radioisotope.
 - 44. The antibody protein of claim 43, wherein said radioisotopes are gamma-emitting radioisotopes??.
 - 45. The antibody protein of claim 44, wherein said radioisotopes is ¹²⁵l.
 - **46.** A pharmaceutical composition containing an antibody protein according to any one of claims 1 to 24 and a pharmaceutically acceptable carrier useful for treating tumors, wherein said tumors are associated with activated stromal fibroblasts.
- 47. A pharmaceutical composition containing an antibody protein according to any one of claims 35 to 38 and a pharmaceutically acceptable carrier useful for treating tumors, wherein said tumors are associated with activated stromal fibroblasts.

- **48.** A pharmaceutical composition containing an antibody protein according to any one of claims 42 to 45 and a pharmaceutically acceptable carrier useful for imaging the presence of activated stromal fibroblasts in a healing wound, inflamed skin or a tumor, in a human patient.
- 49. The pharmaceutical composition of claims 46 to 48, wherein said tumors are tumors selected from the cancer group consisting of colorectal cancers, non-small cell lung cancers, breast cancers, head and neck cancer, ovarian cancers, lung cancers, bladder cancers, pancreatic cancers and metastatic cancers of the brain.
 - 50. Use of an antibody protein according to anyone of claims 1 to 24 for the treatment of cancer.
 - 51. Use of an antibody protein according to anyone of claims 35 to 38 for the treatment of cancer.
 - **52.** Use of an antibody protein according to anyone of claims 42 to 45 for imaging activated activated stromal fibroblasts.
 - 53. Use of an antibody protein according to anyone of claims 39 to 41 for detecting the presence of activated stromal fibroblasts in a sample.
- 54. A method of treating tumors, wherein the tumor is associated with activated stromal fibroblasts capable of specifically forming a complex with antibody proteins according to any one of claims 1 to 24 or 35 to 38, which comprises contacting the tumor with an amount of said antibody proteins effective to treat the tumor.
 - 55. The method of claim 54, wherein the tumor is a tumor having cancer cells selected from the cancer group consisting of colorectal cancers, non-small cell lung cancers, breast cancers, head and neck cancer, ovarian cancers, lung cancers, bladder cancers, pancreatic cancers and metastatic cancers of the brain.
 - 56. The method of claim 54, wherein the contacting is effected in vitro.

5

10

15

25

30

35

45

50

- 57. The method of claim 54, wherein the contacting is effected in vivo.
- 58. A method of detecting the presence of activated stromal fibroblasts in wound healing, inflammation or a tumor, characterised in that
 - (a) a sample, possibly containing activated stromal fibroblasts, is contacted with an antibody protein according to any one of claims 1 to 24 or 39 to 41 under conditions suitable for the formation of a complex between said antibody and antigen,
 - (b) detecting the presence of said complex, thereby detecting the presence of activated stromal fibroblasts in wound healing, inflammation or a tumor.
- 59. The method of claim 58, wherein the tumor is a tumor having cancer cells selected from the cancer group consisting of colorectal cancers, non-small cell lung cancers, breast cancers, head and neck cancer, ovarian cancers, lung cancers, bladder cancers, pancreatic cancers and metastatic cancers of the brain.
 - 60. The method of claim 58 or 59, wherein the antibody protein is a protein according to any one of claims 39 to 41.
 - 61. A method of imaging the presence of activated stromal fibroblasts in a healing wound, inflamed skin or a tumor, in a human patient, characterised in that
 - (a) an antibody protein according to any one of claims 1 to 24 conjugated to an imageable agent is administered to a human patient under conditions suitable for the formation of an antibody-antigen complex,
 - (b) imaging any complex formed in this manner,
 - (c) thereby imaging the presence of activated stromal fibroblasts in a human patient.
 - 62. The method of claim 61, wherein the tumor is a tumor having cancer cells selected from the cancer group consisting of colorectal cancers, non-small cell lung cancers, breast cancers, head and neck cancer, ovarian cancers, lung cancers, bladder cancers, pancreatic cancers and metastatic cancers of the brain.
 - 63. A method of detecting tumor-stroma, characterised in that

- (a) a suitable sample is contacted with an antibody protein according to any one of claims 1 to 24, under conditions suitable for the formation of an antibody-antigen complex,
- (b) detecting the presence of any complex so formed,

5

10

15

20

25

30

35

40

45

50

55

- (c) relating the presence of said complex to the presence of tumor-stroma.
- 64. The method of claim 62, wherein said antibody is labelled with a detectable marker.
- 65. A method of imaging tumor-stroma in a human patient, which comprises
 - (a) adminstering to the patient an antibody protein according to any one of claims 42 to 45, under conditions suitable for the formation of an antibody-antigen complex,
 - (b) imaging any complex so formed, and thereby imaging the presence of tumor-stroma in a human patient.

Fig. 1

1	11	21	31	41
GACATTGTGA	TGACCCAATC	TCCAGACTCT	TTGGCTGTGT	CTCTAGGGGA
51	61	71	81	91
GAGGGCCACC	ATCAACTGCA	AGTCCAGTCA	GAGCCTTTTA	TATTCTAGAA
101	111	121	131	141
ATCAAAAGAA	CTACTTGGCC	TGGTATCAGC	AGAAACCAGG	ACAGCCACCC
151	161	171	181	191
AAACTCCTCA	TCTTTTGGGC	TAGCACTAGG	GAATCTGGGG	TACCTGATAG
201	211	221	231	241
GTTCAGTGGC	AGTGGGTTTG	GGACAGACTT	CACCCTCACC	ATTAGCAGCC
251	261	271	281	291
TGCAGGCTGA	AGATGTGGCA	GTTTATTACT	GTCAGCAATA	TTTTAGCTAT
301	311	321	331 339	
CCGCTCACGT	TCGGACAAGG	GACCAAGGTG	GAAATAAAA	

Fig. 2

1	11	21	31	41
DIVMTQSPDS	LAVSLGERAT	INCKSSQSLL	YSRNQKNYLA	WYQQKPGQPP
51	61	71	81	91
KLLIFWASTR	ESGVPDRFSG	SGFGTDFTLT	ISSLQAEDVA	VYYCQQYFSY
101	111			
PLTFGQGTKV	EIK			

1	11	21	31	41
GACATTGTGA	TGACCCAATC	TCCAGACTCT	TTGGCTGTGT	CTCTAGGGGA
51	61	71	81	91
GAGGGCCACC	ATCAACTGCA	AGTCCAGTCA	GAGCCTTTTA	TATTCTAGAA
101	111	121	131	141
ATCAAAAGAA	CTACTTGGCC	TGGT TC CAGC	AGAAACCAGG	ACAGCCACCC
151	161	171	181	191
AAACTCCTCA	TCTTTTGGGC	TAGCACTAGG	GAATCTGGGG	TACCTGATAG
201	211	221	231	241
GTTCAGTGGC	AGTGGGTTTG	GGACAGACTT	CACCCTCACC	ATTAGCAGCC
251	261	271	281	291
TGCAGGCTGA	AGATGTGGCA	GTTTATGACT	GTCAACAATA	TTTTAGCTAT
301	311	321	331 339	
CCGCTCACGT	TCGGACAAGG	GACCAAGGTG	GAAATAAAA	

Fig. 4

1	11	21	31	41
DIVMTQSPDS	LAVSLGERAT	INCKSSQSLL	YSRNOKNYLA	WFQQKPGQPP
51	61	71	81	91
KLLIFWASTR	ESGVPDRFSG	SGFGTDFTLT	ISSLQAEDVA	VYDCQQYFSY
101	111			
PLTFGQGTKV	EIK			

Fig. 5

1	11	21	31	41
GACATTGTGA	TGACCCAATC	TCCAGACTCT	TTGGCTGTGT	CTCTAGGGGA
51	61	71	81	91
GAGGGCCACC	ATCAACTGCA	AGTCCAGTCA	GAGCCTTTTA	TATTCTAGAA
101	111	121	131	141
ATCAAAAGAA	CTACTTGGCC	TGGTATCAGC	AGAAACCAGG	ACAGCCACCC
151	161	171	181	191
AAACTCCTCA	TCTATTGGGC	TAGCACTAGG	GAATCTGGGG	TACCTGATAG
201	211	221	231	241
GTTCAGTGGC	AGTGGGTTTG	GGACAGACTT	CACCCTCACC	ATTAGCAGCC
251	261	271	.281	291
TGCAGGCTGA	AGATGTGGCA	GTTTATTACT	GTCAGCAATA	TTTTAGCTAT
301	311	321	331 339	
CCGCTCACGT	TCGGACAAGG	GACCAAGGTG	GAAATAAAA	

1	11	21	31	41
DIVMTQSPDS	LAVSLGERAT	INCKSSQSLL	YSRNQKNYLA	WYQQKPGQPP
51	61	71	81	91
KLLIYWASTR	ESGVPDRFSG	SGFGTDFTLT	ISSLQAEDVA	VYYCQQYFSY
101	111		_	
PLTFGQGTKV	EIK			

Fig. 7

1			•	
CAGGTGCAAC 51	TAGTGCAGTC	CGGCGCCGAA	GTGAAGAAAC	CCGGTGCTTC
	AGCTGTAAAA	CTAGTAGATA	CACCTTCACT	GAATACACCA
	TAGACAGGCC	CCTGGCCAAA	GGCTGGAGTG	GATAGGAGGT
	ACAATGGTAT	TCCTAACTAC	AACCAGAAGT	TCAAGGGCCG
-	ACCGTAGGCA	AGTCTGCCAG	CACCGCCTAC	ATGGAACTGT
	CTCCGAGGAC	ACTGCAGTCT	ACTACTGCGC	CAGAAGAAGA
	GTTACGACGA	GGGCCATGCT	ATGGACTACT	GGGGTCAAGG
AACCCTTGTC	ACCGTCTCCT	CA		

Fig. 8

1	11	21	31	41
QVQLVQSGAE	VKKPGASVKV	SCKTSRYTFT	EYTIHWVRQA	PGQRLEWIGG
51		71	81	91
INPNNGIPNY	NOKFKGRATL	TVGKSASTAY	MELSSLRSED	TAVYYCARRR
101	111	121-124		
IAYGYDEGHA	MDYWGQGTLV	TVSS		

1				
	TAGTGCAGTC	CGGCGCCGAA	GTGAAGAAAC	CCGGTGCTTC
51			63 66mm63 6m	C22022C2CC2
	AGCTGTAAAA	CTAGTAGATA	CACCTTCACT	GAATACACCA
101	mn cn cn cccc	CCTCCCAAA	ここで中でごみご中で	CATACCACCT
151	TAGACAGGCC	CCIGGCCAAA	GGCTGGAGTG	GATAGGAGGT
	асаа т сстат	ͲϹϹͲϪϪϹͲϪϹ	AACCAGAAGT	TCAAGGGCCG
201	ACANIGGIAI	ICCIANCIAC	AACCAGAAGI	10111000000
	ACCGTAGGCA	AGTCTGCCAG	CACCGCCTAC	ATGGAACTGT
251				
CCAGCCTGCG	CTCCGAGGAC	ACTGCAGTCT	ACT T CTGCGC	CAGAAGAAGA
301			_	
ATCGCCTATG	GTTACGACGA	GGGCCATGCT	ATGGACTACT	GGGGTCAAGG
351		372		
AACCCTTGTC	ACCGTCTCCT	CA		•

Fig. 10

1	11	21	31	41
QVQLVQSGAE	VKKPGASVKV	SCKTSRYTFT	EYTIHWVRQA	PGQRLEWIGG
51	61	71	81	91
INPNNGIPNY	NOKFKGRATL	TVGKSASTAY	MELSSLRSED	TAVYFCARRR
101	111	121-124		_
IAYGYDEGHA	MDYWGQGTLV	TVSS		

Fig. 11

1				
CAGGTGCAAC 51	TAGTGCAGTC	CGGCGCCGAA	GTGAAGAAAC	CCGGTGCTTC
	AGCTGTAAAA	CTAGTAGATA	CACCTTCACT	GAATACACCA
TACACTGGGT	TAGACAGGCC	CCTGGCCAAA	GGCTGGAGTG	GATAGGAGGT
ATTAATCCTA 201	ACAATGGTAT	TCCTAACTAC	AACCAGAAGT	TCAAGGCCG
GGTCACCATC 251	ACCGTAG <u>A</u> CA	CCTCTGCCAG	CACCGCCTAC	ATGGAACTGT
•	CTCCGAGGAC	ACTGCAGTCT	ACTACTGCGC	CAGAAGAAGA
ATCGCCTATG	GTTACGACGA	GGGCCATGCT	ATGGACTACT	GGGGTCAAGG
	ACCGTCTCCT			

1	11	21	31	41
QVQLVQSGAE	VKKPGASVKV	SCKTSRYTFT	EYTIHWVRQA	PGQRLEWIGG
51	61	71	81	91
INPNNGIPNY	NQKFKGRVTI	TVDTSASTAY	MELSSLRSED	TAVYYCARRR
101	111	121-124		
IAYGYDEGHA	MDYWGQGTLV	TVSS		

Fig. 13

1				
	TAGTGCAGTC	CGGCGCCGAA	GTGAAGAAAC	CCGGTGCTTC
51				
CGTGAAAGTC	AGCTGTAAAA	CTAGTAGATA	CACCTTCACT	GAATACACCA
101				
TACACTGGGT	TAGACAGGCC	CCTGGCCAAA	GGCTGGAGTG	GATAGGAGGT
151				
ATTAATCCTA	ACAATGGTAT	TCCTAACTAC	AACCAGAAGT	TCAAGGGCCG
201				
GGTCACCATC	ACCGTAGACA	CCTCTGCCAG	CACCGCCTAC	ATGGAACTGT
$25\overline{1}$	_			
CCAGCCTGCG	CTCCGAGGAC	ACTGCAGTCT	ACTTCTGCGC	CAGAAGAAGA
301			_	
ATCGCCTATG	GTTACGACGA	GGGCCATGCT	ATGGACTACT	GGGGTCAAGG
351		372		
AACCCTTGTC	ACCGTCTCCT	CA		

Fig. 14

1	11	21	31	41
OVOLVOSGAE	VKKPGASVKV	SCKTSRYTFT	EYTIHWVRQA	PGQRLEWIGG
51	61	71	81	91
INPNNGIPNY	NOKFKGRVTI	TVDTSASTAY	MELSSLRSED	TAVYFCARRR
101	111	121-124		_
IAYGYDEGHA	MDYWGQGTLV	TVSS		

1				
CAGGTGCAAC	TAGTGCAGTC	CGGCGCCGAA	GTGAAGAAAC	CCGGTGCTTC
-	AGCTGTAAAA	CTAGT G GATA	CACCTTCACT	GAATACACCA
	TAGACAGGCC	CCTGGCCAAA	GGCTGGAGTG	GATAGGAGGT
	ACAATGGTAT	TCCTAACTAC	AACCAGAAGT	TCAAGGGCCG
	accgtag <u>a</u> ca	CC TCTGCCAG	CACCGCCTAC	ATGGAACTGT
	CTCCGAGGAC	ACTGCAGTCT	ACTACTGCGC	CAGAAGAAGA
502	GTTACGACGA	GGGCCATGCT	ATGGACTACT	GGGGTCAAGG
J-2	ACCGTCTCCT			

Fig. 16

1	11	21	31	41
QVQLVQSGAE	VKKPGASVKV	SCKTSGYTFT	EYTIHWVRQA	PGQRLEWIGG
51	61	71	81	91
INPNNGIPNY	NOKFKGRVTI	TVDTSASTAY	MELSSLRSED	TAVYYCARRR
101	111	$12\overline{1} - 124$		
IAYGYDEGHA	MDYWGQGTLV	TVSS		

Fig. 17

1				
DIVMSQSPSS 51	LAVSVGEKVT	MSCKSSQSLL	YSRNQKNYLA	WFQQKPGQSP
KLLIFWASTR 101	ESGVPDRFTG	SGFGTDFNLT	ISSVQAEDLA	VYDCQQYFSY
PLTFGAGTKL 151	ELKRTVAAPS	VFIFPPSDEQ	LKSGTASVVC	LLNNFYPREA
KVQWKVDNAL 201	QSGNSQESVT	EQDSKDSTYS	LSSTLTLSKA	DYEKHKVYAC
EVTHQGLSSP	VTKSFNRGEC			

Fig. 18

<u>.</u>...

1				
	VKPGASVKMS	CKTSRYTFTE	YTIHWVRQSH	GKSLEWIGGI
NPNNGIPNYN 101	QKFKGRATLT	VGKSSSTAYM	ELRSLTSEDS	AVYFCARRRI
AYGYDEGHAM 151	DYWGQGTSVT	VSSASTKGPS	VFPLAPSSKS	TSGGTAALGC
LVKDYFPEPV 201	TVSWNSGALT	SGVHTFPAVL	QSSGLYSLSS	VVTVPSSSLG
TQTYICNVNH 251	KPSNTKVDKK	VEPKSCDKTH	TCPPCPAPEL	LGGPSVFLFP
PKPKDTLMIS 301	RTPEVTCVVV	DVSHEDPEVK	FNWYVDGVEV	HNAKTKPREE
QYNSTYRVVS 351	VLTVLHQDWL	NGKEYKCKVS	NKALPAPIEK	TISKAKGQPR
EPQVYTLPPS 401	REEMTKNQVS	LTCLVKGFYP	SDIAVEWESN	GQPENNYKTT
PPVLDSDGSF 451 PGK	FLYSKLTVDK	SRWQQGNVFS	CSVMHEALHN	HYTQKSLSLS

Fig. 19

340	350	360	370	380
CGTACTGTGG	CTGCACCATC	TGTCTTCATC	TTCCCGCCAT	CTGATGAGCA
390	400	410	420	430
GTTGAAATCT	GGAACTGCCT	CTGTTGTGTG	CCTGCTGAAT	AACTTCTATC
440	450	460	470	480
CCAGAGAGGC	CAAAGTACAG	TGGAAGGTGG	ATAACGCCCT	CCAATCGGGT
490	500	510	520	530
AACTCCCAGG	AGAGTGTCAC	AGAGCAGGAC	AGCAAGGACA	GCACCTACAG
540	550	560	570	580
CCTCAGCAGC	ACCCTGACGC	TGAGCAAAGC	AGACTACGAG	AAACACAAAG
590	600	610	620	630
TCTACGCCTG	CGAAGTCACC	CATCAGGGCC	TGAGCTCGCC	CGTCACAAAG
640	650	660		
AGCTTCAACA	GGGGAGAGTG'	T		

114	124	134	144	154
RTVAAPSVFI	FPPSDEQLKS	GTASVVCLLN	NFYPREAKVQ	WKVDNALQSG
164	174	184	194	204
NSOESVTEQD	SKDSTYSLSS	TLTLSKADYE	KHKVYACEVT	HQGLSSPVTK
214-220				
SFNRGEC				

		,		
373				
GCCTCCACCA 423	AGGGCCCATC	GGTCTTCCCC	CTGGCACCCT	CCTCCAAGAG
CACCTCTGGG	GGCACAGCGG	CCCTGGGCTG	CCTGGTCAAG	GACTACTTCC
CCGAACCGGT 523	GACGGTGTCG	TGGAACTCAG	GCGCCCTGAC	CAGCGGCGTG
	CGGCTGTCCT	ACAGTCCTCA	GGACTCTACT	CCCTCAGCAG
	GTGCCCTCCA	GCAGCTTGGG	CACCCAGACC	TACATCTGCA
	CAAGCCCAGC	AACACCAAGG	TGGACAAGAA	AGTTGAGCCC
	ACAAAACTCA	CACATGCCCA	CCGTGCCCAG	CACCTGAACT
	CCGTCAGTCT	TCCTCTTCCC	CCCAAAACCC	AAGGACACCC
	CCGGACCCCT	GAGGTCACAT	GCGTGGTGGT	GGACGTGAGC
_	CTGAGGTCAA	GTTCAACTGG	TACGTGGACG	GCGTGGAGGT
• . •	AAGACAAAGC	CGCGGGAGGA	GCAGTACAAC	AGCACGTACC
	CGTCCTCACC	GTCCTGCACC	AGGACTGGCT	GAATGGCAAG
	GCAAGGTCTC	CAACAAAGCC	CTCCCAGCCC	CCATCGAGAA
	AAAGCCAAAG	GGCAGCCCCG	AGAACCACAG	GTGTACACCC
	CCGGGAGGAG	ATGACCAAGA	ACCAGGTCAG	CCTGACCTGC
	GCTTCTATCC	CAGCGACATC	GCCGTGGAGT	GGGAGAGCAA
	GAGAACAACT	ACAAGACCAC	GCCTCCCGTG	CTGGACTCCG
	CTTCCTCTAC	AGCAAGCTCA	CCGTGGACAA	GAGCAGGTGG
	ACGTCTTCTC	ATGCTCCGTG	ATGCATGAGG 1362	CTCTGCACAA
	CAGAAGAGCC	TCTCCCTGTC	TCCGGGTAAA	

125 ASTKGPSVFP 175	LAPSSKSTSG	GTAALGCLVK	DYFPEPVTVS	WNSGALTSGV
225	GLYSLSSVVT			
KSCDKTHTCP 275	PCPAPELLGG	PSVFLFPPKP	KDTLMISRTP	EVTCVVVDVS
	YVDGVEVHNA	KTKPREEQYN	STYRVVSVLT	VLHQDWLNGK
~~~	LPAPIEKTIS	KAKGQPREPQ	VYTLPPSREE	MTKNQVSLTC
	AVEWESNGQP	ENNYKTTPPV 454	LDSDGSFFLY	SKLTVDKSRW
OOGNVFSCSV	MHEALHNHYT	QKSLSLSPGK		

Fig. 23A



Fig. 23B





# Fig. 25

TTC						-+-													
	Ko	zak	se	que	nce M	G	W	s	W	v	F	L	F	L	L	s	G	T	A
																	CCT	GGG	GC!
			-			•			•				•			•	GGA	CCC	CGI
G	V	L	s	E	v	Q	L	Q	Q	s	G	P	E	L	V	K	P	G	A
		_	-		-								_					_	_
s	v	K	М	s	С	ĸ	Ŧ	s	R	Y	T	F	T	E	Y	T DR	<u>I</u>	<u>H</u>	W
GTG	AGA	CAG.	AGC	CAT	GGA	AAG	AGC	CTT	GAG	TGG.	TTA	GGA	GGT.	ATT.	TAA	CCT	AAC	TAA	GG:
			-			-			-				•			-			
v	R	Q	s	Н	G	ĸ	s	L	E	W	I	G	G	I	N	P	N	N	_ <u>G</u>
3 mm	~~m	3 3 C	m » ~	220	c » c	220	mma	n n c	~~~	200	caa	202						•	
			+			-+-			+				+			-+-			
				_															
1_	P_	N	<u> </u>	N	Q	K	F	K	<u> </u>	R	A	Т	L	Т	V	G	K	S	S
																			_
s	T	A	Y	M	E	L	R	s	L	T	s	E	ā	s	A	v	Y	F	С
				ATC	GCC	TAT	'GG'I	'TAC	GAC	GAG	GGC	CAT	GCT	ATG	GAC	TAC	TGG	GGI	CA
			-	TAG	CGG	•			CTG			GTA	•	TAC	CTG	ATC	ACC	CCA	GT'
CGT																			
		R	R	I	A	Y	G	CI	D DR 3	E	G	H	A	M	D	<u>Y</u>	W	G	Q
	GGTGACTAAACTAAACCACTTAAACTAAACCACTTAAACCACCTTAAACCACC	GGTGTCCCACAGG  G V  ICAGTA AGTCAT  S V  GTGAGA  CACTCT  V R  ATTCCT  TAAGGA  I P  AGCACC  TCGTGG  S T	Kozak  GTGTCCTC  CCACAGGAG  G V L  ICAGTAAAG  AGTCATTTC  S V K  GTGAGACAG  CACTCTGTC  V R Q  ATTCCTAAC  TAAGGATTG  I P N  AGCACCGCC  TCGTGGCGG  S T A	Kozak see  GGTGTCCTCTCT  CCACAGGAGAGA  G V L S  ICAGTAAAGATG  AGTCATTTCTAC  S V K M  GTGAGACAGAGC  CACTCTGTCTCG  V R Q S  ATTCCTAACTAC  TAAGGATTGATG  I P N Y  AGCACCGCCTAC  TCGTGGCGGATG  S T A Y	Kozak seque  GGTGTCCTCTCTGAG  GCACAGGAGAGACTC  GVLSE  ICAGTAAAGATGTCC  AGTCATTTCTACAGG  SVKMS  GTGAGACAGAGCCAT  CACTCTGTCTCGGTA  VRQSH  ATTCCTAACTACAAC  TAAGGATTGATGTTA  IPNYN  AGCACCGCCTACATG  TCGTGGCGGATGTAC  STAYM	Kozak sequence  M  GGTGTCCTCTCTGAGGTC  CCACAGGAGAGACTCCAG  G V L S E V  ICAGTAAAGATGTCCTGC  AGTCATTTCTACAGGACG  S V K M S C  GTGAGACAGAGCCATGGA  CACTCTGTCTCGGTACCT  V R Q S H G  ATTCCTAACTACAACCAG  TAAGGATTGATGTTAGTC  I P N Y N Q  AGCACCGCCTACATGGAG  TCGTGGCGGATGTACCTC  S T A Y M E	Kozak sequence  M G  GGTGTCCTCTCTGAGGTCCAG  CCACAGGAGAGACTCCAGGTC  G V L S E V Q  ICAGTAAAGATGTCCTGCAAG  AGTCATTTCTACAGGACGTTC  S V K M S C K  GTGAGACAGAGCCATGGAAAG  CACTCTGTCTCGGTACCTTTC  V R Q S H G K  ATTCCTAACTACAACCAGAAG  TAAGGATTGATGTTAGTCTTC  I P N Y N Q K  AGCACCGCCTACATGGAGCTC  S T A Y M E L	Kozak sequence  M G W  GGTGTCCTCTCTGAGGTCCAGCTG  CCACAGGAGAGACTCCAGGTCGAC  G V L S E V Q L  ICAGTAAAGATGTCCTGCAAGACT  AGTCATTTCTACAGGACGTTCTGA  S V K M S C K T  GTGAGACAGAGCCATGGAAAGAGC  CACTCTGTCTCGGTACCTTTCTCG  V R Q S H G K S  ATTCCTAACTACAACCAGAAGTTC  TAAGGATTGATGTTAGTCTTCAAG  I P N Y N Q K F  AGCACCGCCTACATGGAGCTCCGC  TCGTGGCGGATGTACCTCGAGGCG  S T A Y M E L R	KOZAK SEQUENCE  M G W S  GGTGTCCTCTCTGAGGTCCAGCTGCAA  CCACAGGAGAGACTCCAGGTCGACGTT  G V L S E V Q L Q  ICAGTAAAGATGTCCTGCAAGACTTCT  AGTCATTTCTACAGGACGTTCTGAAGA  S V K M S C K T S  GTGAGACAGAGCCATGGAAAGAGCCTT  CACTCTGTCTCGGTACCTTTCTCGGAA  V R Q S H G K S L  ATTCCTAACTACAACCAGAAGTTCAAGT  TAAGGATTGATGTTAGTCTTCAAGTTC  I P N Y N Q K F K  AGCACCGCCTACATGGAGCCTCGAGGCGTCG  S T A Y M E L R S	KOZAK SEQUENCE  M G W S W  GGTGTCCTCTCTGAGGTCCAGCTGCAACAG  CCACAGGAGAGACTCCAGGTCGACGTTGTC  G V L S E V Q L Q Q  ICAGTAAAGATGTCCTGCAAGACTTCTAGA  AGTCATTTCTACAGGACGTTCTGAAGATCT  S V K M S C K T S R  GTGAGACAGAGCCATGGAAAGACCTTGAG  CACTCTGTCTCGGTACCTTTCTCGGAACTC  V R Q S H G K S L E  ATTCCTAACTACAACCAGAAGTTCAAGGGC  TAAGGATTGATGTTAGTCTTCAAGTTCCCG  I P N Y N Q K F K G  AGCACCGCCTACATGGAGCTCCGCAGCCTG  TCGTGGCGGATGTACCTCGAGGCGTCGGAC  S T A Y M E L R S L	KOZAK SEQUENCE  M G W S W V  GGTGTCCTCTCTGAGGTCCAGCTGCAACAGTCT  CCACAGGAGAGACTCCAGGTCGACGTTGTCAGA  G V L S E V Q L Q Q S  ICAGTAAAGATGTCCTGCAAGACTTCTAGATAC  AGTCATTTCTACAGGACGTTCTGAAGATCTATG  S V K M S C K T S R Y  GTGAGACAGAGCCATGGAAAGAGCCTTGAGTGG  CACTCTGTCTCGGTACCTTTCTCGGAACTCACC  V R Q S H G K S L E W  ATTCCTAACTACAACCAGAAGTTCAAGGGCAGG  TAAGGATTGATGTTAGTCTTCAAGTTCCCGTCC  I P N Y N Q K F K G R  AGCACCGCCTACATGGAGCTCCGCAGCCTGACA  TCGTGGCGGATGTACCTCGAGGCGTCGGACTGT  S T A Y M E L R S L T	KOZAK SEQUENCE  M G W S W V F  GGTGTCCTCTCTGAGGTCCAGCTGCAACAGTCTGGACCT CCACAGGAGAGACTCCAGGTCGACGTTGTCAGACCT G V L S E V Q L Q Q S G  TCAGTAAAGATGTCCTGCAAGACTTCTAGATACACA  AGTCATTTCTACAGGACGTTCTGAAGATCTATGTGT S V K M S C K T S R Y T  GTGAGACAGAGCCATGGAAAGAGCCTTGAGTGGATT  CACTCTGTCTCGGTACCTTTCTCGGAACTCACCTAA  V R Q S H G K S L E W I  ATTCCTAACTACAACCAGAAGTTCAAGGGCAGGGCC  TAAGGATTGATGTTAGTCTTCAAGTTCCCGTCCCG	KOZAK SEQUENCE  M G W S W V F L  GTGTCCTCTCTGAGGTCCAGCTGCAACAGTCTGGACCTG CCACAGGAGAGACTCCAGGTCGACGTTGTCAGACCTGGA G V L S E V Q L Q Q S G P  ICAGTAAAGATGTCCTGCAAGACTTCTAGATACACATTC AGTCATTTCTACAGGACGTTCTGAAGATCTATGTGTAAG S V K M S C K T S R Y T F  GTGAGACAGAGCCATGGAAAGACCTTGAGTGGATTGGA CACTCTGTCTCGGTACCTTTCTCGGAACTCACCTAACCT V R Q S H G K S L E W I G  ATTCCTAACTACAACCAGAAGTTCAAGGGCAGGGCCACA TAAGGATTGATGTTAGTCTTCAAGTTCCCGTCCCG	KOZAK SEQUENCE  M G W S W V F L F  GGTGTCCTCTCTGAGGTCCAGCTGCAACAGTCTGGACCTGAGG  CCACAGGAGAGACTCCAGGTCGACGTTGTCAGACCTGGACTC  G V L S E V Q L Q Q S G P E  ICAGTAAAGATGTCCTGCAAGACTTCTAGATACACATTCACT  AGTCATTTCTACAGGACGTTCTGAAGATCTATGTGTAAGTGA  S V K M S C K T S R Y T F T  GTGAGACAGAGCCATGGAAAGAGCCTTGAGTGGATTGGAGGT  CACTCTGTCTCGGTACCTTCTCTGGAACTCACCTAACCTCCA  V R Q S H G K S L E W I G G  ATTCCTAACTACAACCAGAAGTTCAAGTTCCCGTCCCG	KOZAK SEQUENCE  M G W S W V F L F L  GGTGTCCTCTCTGAGGTCCAGCTGCAACAGTCTGGACCTGAGCTG  CCACAGGAGAGACTCCAGGTCGACGTTGTCAGACCTGACCTGACCTGACCTGAGACACAGGAGAGACTCCAGGTCGACCTGAGACTCAGACAGA	KOZAK SEQUENCE  M G W S W V F L F L L  GETGTCCTCTCTGAGGTCCAGCTGCAACAGTCTGGACCTGAGCTGGTG  CCACAGGAGAGACTCCAGGTCGACGTTGTCAGACCTGACCTCACCAC  G V L S E V Q L Q Q S G P E L V  ICAGTAAAGATGTCCTGCAAGACTTCTAGATACACATTCACTGAATAC  AGTCATTTCTACAGGACGTTCTGAAGATCTATGTGTAAGTGACTTATG  S V K M S C K T S R Y T F T E Y  CCACTCTGTCTCGGTACCTTTCTCGGAACTCACCTCATAATTAAT	KOZAK SEQUENCE  M G W S W V F L F L L S  GGTGTCCTCTCTGAGGTCCAGCTGCAACAGTCTGGACCTGAGCTGGTGAAG  CCACAGGAGAGACTCCAGGTCGACGTTGTCAGACCTGGACTCGACCACTTC  G V L S E V Q L Q Q S G P E L V K  TCAGTAAAGATGTCCTGCAAGACTTCTAGATACACATTCACTGAATACACC  AGTCATTTCTACAGGACGTTCTGAAGATCTATGTGTAAGTGACTTATGTGG  S V K M S C K T S R Y T F T E Y T  CDR  GTGAGACAGAGCCATGGAAAGACCTTGAGTGGATTGGAGGTATTAATCCT  +	KOZAK SEQUENCE  M G W S W V F L F L L S G  GGTGTCCTCTGAGGTCCAGCTGCAACAGTCTGGACCTGAGCTGGTGAAGCCT  CCACAGGAGAGACTCCAGGTCGACGTTGTCAGACCTGAGCTGGACCACTTCGGA  G V L S E V Q L Q Q S G P E L V K P  TCAGTAAAGATGTCCTGCAAGACTTCTAGATACACATTCACTGAATACACCATA  AGTCATTTCTACAGGACGTTCTGAAGATCTATGTGTAAGTGACTTATGTGGTAT  S V K M S C K T S R Y T F T E Y T I  CDR 1  GTGAGACAGAGCCATGGAAAGACCTTGAGTGGATTGGAGGTATTAATCCTAAC  CACTCTGTCTCGGTACCTTTCTCGGAACTCACCTAACCTCCATAATTAGGATTG  V R Q S H G K S L E W I G G I N P N  CDR 2  ATTCCTAACTACAACCAGAAGTTCAAGGGCAGGGCCACATTGACTGTAGGCAAG  TAAGGATTGATGTTAGTCTTCAAGTTCCCGTCCCG	G W S W V F L F L L S G T  GGTGTCCTCTCTGAGGTCCAGCTGCAACAGTCTGGACCTGAGCTGGTGAAGCCTGGGC  CCACAGGAGAGACTCCAGGTCGACGTTGTCAGACCTGGACCACTTCGGACCCC  G V L S E V Q L Q Q S G P E L V K P G  ICAGTAAAGATGTCCTGCAAGACTTCTAGATACACCATTCACTGAATACACCATACACC  AGTCATTTCTACAGGACGTTCTGAAGATCTATGTGTAAGTGACTTATGTGGTATGTG  S V K M S C K T S R Y T F T E Y T I H  CDR 1  GTGAGACAGAGCCATGGAAAGAGCCTTGAGTGGATTGAGGGTATTAATCCTAACAAT  CACTCTGTCTCGGTACCTTCTCGGAACTCACCTAACCTCCATAATTAGGATTGTTA  V R Q S H G K S L E W I G G I N P N N  CDR 2  ATTCCTAACTACAACCAGAAGTTCAAGGGCAGGGCCACATTGACTGTAGGCAAGTCC  TAAGGATTGATGTTAGTCTTCAAGTTCCCGTCCCG

			Spe I		
1	gaattccagc	acactggcgg	ccgttACTAG	<b>T</b> TATTAATAG	TAATCAATTA
51	CGGGGTCATT	AGTTCATAGC	CCATATATGG	AGTTCCGCGT	TACATAACTT
101	ACGGTAAATG	GCCCGCCTGG	CTGACCGCCC	AACGACCCCC	GCCCATTGAC
151	GTCAATAATG	ACGTATGTTC	CCATAGTAAC	GCCAATAGGG	ACTTTCCATT
201	GACGTCAATG	GGTGGAGTAT	TTACGGTAAA	CTGCCCACTT	GGCAGTACAT
251	CAAGTGTATC	ATATGCCAAG	TACGCCCCCT	ATTGACGTCA	ATGACGGTAA
301	ATGGCCCGCC	TGGCATTATG SnaB I	CCCAGTACAT	GACCTTATGG	GACTTTCCTA
351	CTTGGCAGTA	CATC <b>TACGTA</b>	TTAGTCATCG	CTATTACCAT	GGTGATGCGG
401	TTTTGGCAGT	ACATCAATGG	GCGTGGATAG	CGGTTTGACT	CACGGGGATT
451	TCCAAGTCTC	CACCCCATTG	ACGTCAATGG	GAGTTTGTTT	TGGCACCAAA
501	ATCAACGGGA	CTTTCCAAAA	TGTCGTAACA	ACTCCGCCCC	ATTGACGCAA
551	ATGGGCGGTA	GGCGTGTACG	GTGGGAGGTC	TATATAAGCA	GAGCTCGTTT
601	AGTGAACCGT	CAGATCGCCT		TCCACGCTGT	TTTGACCTCC
651	ATAGAAGACA	CCGGGACCGA	_		ACGGTGCATT
701	GGAACGCGGA	TTCCCCGTGC	CAAGAGTGAC	GTAAGTACCG	CCTATAGAGT
751	CTATAGGCCC	ACCCCTTGG	CTTCTTATGC	ATGCTATACT	GTTTTTGGCT
801	TGGGGTCTAT	ACACCCCCGC	TTCCTCATGT	TATAGGTGAI	GGTATAGCTT
851	AGCCTATAGG	TGTGGGTTAT	TGACCATTAT	TGACCACTCC	CCTATTGGTG
901	ACGATACTTT	CCATTACTAA	TCCATAACAT	GGCTCTTTGC	CACAACTCTC
951	TTTATTGGCT	ATATGCCAA1	ACACTGTCCT	TCAGAGACTO	ACACGGACTC
1001	TGTATTTTA	CAGGATGGG	TCTCATTTAT	TATTTACAA!	A TTCACATATA
1051	CAACACCACC	GTCCCCAGTC			A TAACGTGGGA
1101	TCTCCACGC	AATCTCGGGT		DE I GACATGGGC	T CTTCTCCGGT
1151	AGCGGCGGAG	CTTCTACATO	CGAGCCCTG	TCCCATGCC	CCAGCGACTO
1201	ATGGTCGCT	GGCAGCTCC	TGCTCCTAA	C AGTGGAGGC	C AGACTTAGGO
1251	<u>አርአርርአርርአ</u> ባ	י כככבאכבאכ	- <b>ACCAGTGTG</b>	r cccacaacci	r cereccest

1301	GGGTATGTGT	CTGAAAATGA Afl II	GCTCggggag	cgggcttgca	ccgctgacgc
1351	atttggaaga		cggcagaaga	agatgcaggc	agctgagttg
1401	ttgtgttctg	ataagagtca	gaggtaactc	ccgttgcggt	gctgttaacg
1451	gtggagggca	gtgtagtctg	agcagtactc	gttgctgccg	cgcgcgccac
1501	cagacataat	agctgacaga	ctaacagact Mlu I	gttcctttcc Hind III	
1551	tctgcagtca	ccgtccttga		ggg <b>aagctt</b> G	CCGCCACCAT M
1601	GGATTCACAG D S Q	GCCCAGGTTC A Q V	TTATGTTACT L M L L	GCCGCTATGG P L W	GTATCT <u>GGTA</u> V S G
1651	CCTGTGGGGA T C G D	CATTGTGATG I V M	TCACAGTCTC S Q S	CATCCTCCCT P S S L	AGCTGTGTCA A V S
1701	GTTGGAGAGA V G E XbaI	AGGTTACTAT K V T M	GAGCTGCAAG S C <u>K</u>	TCCAGTCAGA S S Q CDR 1	GCCTTTTATA S L L Y
1751		CAAAAGAACT Q K N	ACTTGGCCTG Y L A W	GTTCCAGCAG F Q Q	AAGCCAGGGC K P G
1801	AGTCTCCTAA Q S P K	ACTGCTGATT L L I	TTCTGGGCAT F <u>W A</u>	CCACTAGGGA S T R E CDR 2	ATCTGGGGTC S G V
1851	CCTGATCGCT P D R	TCACAGGCAG F T G S	TGGATTTGGG G F G	ACGGATTTCA T D F	ATCTCACCAT N L T I
1901	CAGCAGTGTG S S V	CAGGCTGAGG Q A E	ACCTGGCAGT D L A V	TTATGACTGT Y D C	CAGCAATATT  Q Q Y
1951	TTAGCTATCC  F S Y P  CDR  Bamh I	<u>L</u> <u>T</u> F	GGTGCTGGGA G A G	CCAAGCTGGA T K L E	GCTGAAACGT L K R
2001		ATCTGGGATA	AGCATGCTGT	TTTCTGTCTG	TCCCTAACAT
2051	GCCCTGTGAT	TATGCGCAAA	CAACACACCC	AAGGGCAGAA	CTTTGTTACT
2101	TAAACACCAT	CCTGTTTGCT	TCTTTCCTCA	GGAACTGTGG T V	
2151				GTTGAAATCT L K S	GGAACTGCCT
2201		CCTGCTGAAT	AACTTCTATC	CCAGAGAGGC P R E A	CAAAGTACAG
2251	TGGAAGGTGG	ATAACGCCCT	CCAATCGGGT	AACTCCCAGG N S Q	AGAGTGTCAC
2301	AGAGCAGGAC	AGCAAGGACA	GCACCTACAG	CCTCAGCAGC L S S	ACCCTGACGC

2351	TGAGCAAAGC L S K A	AGACTACGAG D Y E		TCTACGCCTG V Y A C	
2401	CATCAGGGCC	TGAGCTCGCC		AGCTTCAACA	
2451		AAGTGCCCCC			
2501	CCCATCCTTT	GGCCTCTGAC	CCTTTTTCCA	CAGGGGACCT	ACCCCTATTG
2551	CGGTCCTCCA	GCTCATCTTT	CACCTCACCC	CCCTCCTCCT	CCTTGGCTTT
2601	AATTATGCTA	ATGTTGGAGG	AGAATGAATA	AATAAAGTGA	ATCTTTGCAC
2651	CTGTGGTGGA	TCTAATAAAA	GATATTTATT	TTCATTAGAT	ATGTGTGTTG
2701	GTTTTTTG <b>T</b> G	TGCAGTGCCT	CTATCTGGAG	GCCAGGTAGG	GCTGGCCTTG
2751	GGGGAGGGGG	AGGCCAGAAT	GACTCCAAGA	GCTACAGGAA	GGCAGGTCAG
2801	AGACCCCACT	GGACAAACAG	TGGCTGGACT	CTGCACCATA	ACACACAATC
2851	AACAGGGGAG	TGAGCTGGAA	ATTTGCTAGC	GAATTCTTGA	AGACGAAAGG
2901	GCCTCGTGAT	ACGCCTATTT	TTATAGGTTA	ATGTCATGAT	AATAATGGTT
2951	TCTTAGACGT	CAGGTGGCAC	TTTTCGGGGA	AATGTGCGCG	GAACCCCTAT
3001	TTGTTTATTT	TTCTAAATAC	ATTCAAATAT	GTATCCGCTC	ATGAGACAAT
3051	AACCCTGATA	AATGCTTCAA	TAATATTGAA	AAAGGAAGAG	TATGAGTATT
3101	CAACATTTCC	GTGTCGCCCT	TATTCCCTTT	TTTGCGGCAT	TTTGCCTTCC
3151	TGTTTTTGCT	CACCCAGAAA	CGCTGGTGAA	AGTAAAAGAT	GCTGAAGATC
3201	AGTTGGGTGC	ACGAGTGGGT	TACATCGAAC	TGGATCTCAA	CAGCGGTAAG
3251	ATCCTTGAGA	GTTTTCGCCC	CGAAGAACGT	TTTCCAATGA	TGAGCACTTT
3301	TAAAGTTCTG	CTATGTGGCG	CGGTATTATC	: CCGTGTTGAC	GCCGGGCAAG
3351	AGCAACTCGG	TCGCCGCATA	CACTATTCTC	AGAATGACTI	GGTTGAGTAC
3401	TCACCAGTCA	CAGAAAAGCA	TCTTACGGAT	GGCATGACAG	TAAGAGAATT
3451	ATGCAGTGCT	_	TGAGTGATA	A CACTGCGGCC	AACTTACTTC
3501		_	AAGGAGCTA	A CCGCTTTTT	GCACAACATG
3551	GGGGATCATO	TAACTCGCCI	TGATCGTTGC	GAACCGGAG	TGAATGAAGC
3601	CATACCAAAC	GACGAGCGTG	ACACCACGAT	GCCTGCAGC	A ATGGCAACAA

3651	CGTTGCGCAA	ACTATTAACT	GGCGAACTAC	TTACTCTAGC	TTCCCGGCAA
3701	CAATTAATAG	ACTGGATGGA	GGCGGATAAA	GTTGCAGGAC	CACTTCTGCG
3751	CTCGGCCCTT	CCGGCTGGCT	GGTTTATTGC	TGATAAATCT	GGAGCCGGTG
3801	AGCGTGGGTC	TCGCGGTATC	ATTGCAGCAC	TGGGGCCAGA	TGGTAAGCCC
3851	TCCCGTATCG	TAGTTATCTA	CACGACGGGG	AGTCAGGCAA	CTATGGATGA
3901	ACGAAATAGA	CAGATCGCTG	AGATAGGTGC	CTCACTGATT	AAGCATTGGT
3951	AACTGTCAGA	CCAAGTTTAC	TCATATATAC	TTTAGATTGA	TTTAAAACTT
4001	CATTTTTAAT	TTAAAAGGAT	CTAGGTGAAG	ATCCTTTTTG	ATAATCTCAT
4051	GACCAAAATC	CCTTAACGTG	AGTTTTCGTT	CCACTGAGCG	TCAGACCCCG
4101	TAGAAAAGAT	CAAAGGATCT	TCTTGAGATC	CTTTTTTCT	GCGCGTAATC
4151	TGCTGCTTGC	AAACAAAAA	ACCACCGCTA	CCAGCGGTGG	TTTGTTTGCC
4201	GGATCAAGAG	CTACCAACTC	TTTTTCCGAA	GGTAACTGGC	TTCAGCAGAG
4251	CGCAGATACC	AAATACTGTC	CTTCTAGTGT	AGCCGTAGTT	AGGCCACCAC
4301	TTCAAGAACT	CTGTAGCACC	GCCTACATAC	CTCGCTCTGC	TAATCCTGTT
4351	ACCAGTGGCT	GCTGCCAGTG	GCGATAAGTC	GTGTCTTACC	GGGTTGGACT
4401	CAAGACGATA	GTTACCGGAT	AAGGCGCAGC	GGTCGGGCTG	AACGGGGGGT
4451	TCGTGCACAC	AGCCCAGCTT	GGAGCGAACG	ACCTACACCG	AACTGAGATA
4501	CCTACAGCGT	GAGCTATGAG	AAAGCGCCAC	GCTTCCCGAA	GGGAGAAAGG
4551	CGGACAGGTA	TCCGGTAAGC	GGCAGGGTCG	GAACAGGAGA	GCGCACGAGG
4601	GAGCTTCCAG	GGGGAAACGC	CTGGTATCTT	TATAGTCCTG	TCGGGTTTCG
4651	CCACCTCTGA	CTTGAGCGTC	GATTTTTGTG	ATGCTCGTCA	GGGGGGCGGA
4701	GCCTATGGAA	AAACGCCAGC BspL		TTTTACGGTT	CCTGGCCTTT
4751	TGCTGGCCTT			GCGTTATCCC	CTGATTCTGT
4801	GGATAACCGT	ATTACCGCCT	TTGAGTGAGC	TGATACCGCT	CGCCGCAGCC
4851	GAACGACCGA	GCGCAGCGAG	TCAGTGAGCG	AGGAAGCGGA	AGAGCGCCTG
4901	ATGCGGTATT	TTCTCCTTAC	GCATCTGTGC	GGTATTTCAC	ACCGCATATG

					Bst1107I
4951	GTGCACTCTC	AGTACAATCT	GCTCTGATGC	CGCATAGTTA	
5001	<b>C</b> ACTCCGCTA	TCGCTACGTG	ACTGGGTCAT	GGCTGCGCCC	CGACACCCGC
5051	CAACACCCGC	TGACGCGCCC	TGACGGGCTT	GTCTGCTCCC	GGCATCCGCT
5101	TACAGACAAG	CTGTGACCGT	CTCCGGGAGC	TGCATGTGTC	AGAGGTTTTC
5151	ACCGTCATCA	CCGAAACGCG	CGAGGCAGCT	GTGGAATGTG	TGTCAGTTAG
5201	GGTGTGGAAA	GTCCCCAGGC	TCCCCAGCAG	GCAGAAGTAT	GCAAAGCATG
5251	CATCTCAATT	AGTCAGCAAC	CAGGCTCCCC	AGCAGGCAGA	AGTATGCAAA
5301	GCATGCATCT	CAATTAGTCA	GCAACCATAG	TCCCGCCCCT	AACTCCGCCC
5351	ATCCCGCCCC	TAACTCCGCC	CAGTTCCGCC	CATTCTCCGC Sfi	
5401	ACTAATTTTT	TTTATTTATG		GGCCGCCTCG Stu I/Avr I	
5451	TATTCCAGAA	GTAGTGAGGA		GAGGCCTAGG	
5501	AAGCTAGCTT	CACGCTGCCG	CAAGCACTCA	GGGCGCAAGG	GCTGCTAAAG
5551	GAAGCGGAAC	ACGTAGAAAG	CCAGTCCGCA	GAAACGGTGC	TGACCCCGGA
5601	TGAATGTCAG	CTACTGGGCT	ATCTGGACAA	GGGAAAACGC	AAGCGCAAAG
5651	AGAAAGCAGG	TAGCTTGCAG	TGGGCTTACA	TGGCGATAGC	TAGACTGGGC
5701	GGTTTTATGG	ACAGCAAGCG	AACCGGAATT	GCCAGCTGGG	GCGCCCTCTG
5751	GTAAGGTTGG	GAAGCCCTGC		GGATGGCTTT	CTTGCCGCCA
5801	AGGATCTGAT	GGCGCAGGGG		•	CAGGATGAGG
5851	ATCGTTTCGC	ATGATTGAAC	AAGATGGATI	GCACGCAGGT	TCTCCGGCCG
5901	CTTGGGTGGA	GAGGCTATTC	GGCTATGACT	GGGCACAACA	GACAATCGGC
5951	TGCTCTGATO	CCGCCGTGTT	CCGGCTGTC	A GCGCAGGGGC	GCCCGGTTCT
6001	TTTTGTCAA		CCGGTGCCC1	GAATGAACTO	CAGGACGAGG
6051	CAGCGCGGCT	_		GCGTTCCTTC	GCGCAGCTGTG
6101	CTCGACGTTC	G TCACTGAAGO	GGGAAGGGA	TGGCTGCTA	TGGGCGAAGT
6151	GCCGGGGCA	G GATCTCCTG	CATCTCACC	TGCTCCTGC	C GAGAAAGTAT
6201	CCATCATGG	C TGATGCAAT	G CGGCGGCTG	C ATACGCTTG	A TCCGGCTACC

6251	TGCCCATTCG	ACCACCAAGC	GAAACATCGC	ATCGAGCGAG	CACGTACTCG
6301	GATGGAAGCC	GGTCTTGTCG	ATCAGGATGA	TCTGGACGAA	GAGCATCAGG
6351	GGCTCGCGCC	AGCCGAACTG	TTCGCCAGGC	TCAAGGCGCG	CATGCCCGAC
6401	GGCGAGGATC	TCGTCGTGAC	CCATGGCGAT	GCCTGCTTGC	CGAATATCAT
6451	GGTGGAAAAT Rsr II	GGCCGCTTTT	CTGGATTCAT	CGACTGTGGC	CGGCTGGGTG
6501		CTATCAGGAC	ATAGCGTTGG	CTACCCGTGA	TATTGCTGAA
6551	GAGCTTGGCG	GCGAATGGGC	TGACCGCTTC	CTCGTGCTTT	ACGGTATCGC
6601	CGCTCCCGAT		TCGCCTTCTA	TCGCCTTCTT	GACGAGTTCT
6651	TCTGAGCGGG		•	CGACCAAGCG	ACGCCCAACC
6701	TGCCATCACG	AGATTTCGAT	TCCACCGCCG	CCTTCTATGA	AAGGTTGGGC
6751	TTCGGAATCG	TTTTCCGGGA	CGCCGGCTGG Sma	ATGATCCTCC	AGCGCGGGGA Nru I
6801	TCTCATGCTG	GAGTTCTTCG		_GCTCGATCCC	
6851	GGTTCAGCTG	CTGCCTGAGG	CTGGACGACC	TCGCGGAGTT	CTACCGGCAG
6901	TGCAAATCCG	TCGGCATCCA	GGAAACCAGC	AGCGGCTATC	CGCGCATCCA
6951	TGCCCCCGAA	CTGCAGGAGT	GGGGAGGCAC	GATGGCCGCT	TTGGTCCCGG
7001	ATCTTTGTGA	AGGAACCTTA	CTTCTGTGGT	GTGACATAAT	TGGACAAACT
7051	ACCTACAGAG	ATTTAAAGCT	CTAAGGTAAA	TATAAAATTT	TTAAGTGTAT
7101	AATGTGTTAA	ACTACTGATT	CTAATTGTTT	GTGTATTTTA	GATTCCAACC
7151	TATGGAACTG	ATGAATGGGA	GCAGTGGTGG	AATGCCTTTA	ATGAGGAAAA
7201	CCTGTTTTGC	TCAGAAGAAA	TGCCATCTAG	TGATGATGAG	GCTACTGCTG
7251	ACTCTCAACA	TTCTACTCCT	CCAAAAAAAGA	AGAGAAAGGT	AGAAGACCCC
7301	AAGGACTTTC	CTTCAGAATT	GCTAAGTTTT	TTGAGTCATG	CTGTGTTTAG
7351	TAATAGAACT	CTTGCTTGCT	TTGCTATTTA	CACCACAAAG	GAAAAAGCTG
7401	CACTGCTATA	CAAGAAAATT	ATGGAAAAAT	ATTCTGTAAC	CTTTATAAGT
7451	AGGCATAACA	GTTATAATCA	TAACATACTG	TTTTTTCTTA	CTCCACACAC
7501	GCATAGAGTG	TCTGCTATTA	ATAACTATGC	TCAAAAATTG	TGTACCTTTA

## Fig. 26 /7

7551	GCTTTTTAAT	TTGTAAAGGG	GTTAATAAGG	AATATTTGAT	GTATAGTGCC
7601	TTGACTAGAG	ATCATAATCA	GCCATACCAC	ATTTGTAGAG	GTTTTACTTG
7651	CTTTAAAAAA Mun I	CCTCCCACAC	CTCCCCTGA	ACCTGAAACA	TAAAATGAAT
7701		TTGTTAACTT	GTTTATTGCA	GCTTATAATG	GTTACAAATA
7751	AAGCAATAGC	ATCACAAATT	TCACAAATAA	AGCATTTTT	TCACTGCATT
7801	CTAGTTGTGG	TTTGTCCAAA	CTCATCAATG	TATCTTATCA	TGTCTGGATC
7851	TAATAAAAGA	TATTTATTTT	CATTAGATAT	GTGTGTTGGT	TTTTTGTGTG
7901	CAGTGCCTCT	ATCTGGAGGC	CAGGTAGGGC	TGGCCTTGGG	GGAGGGGGAG
7951	GCCAGAATGA	CTCCAAGAGC	TACAGGAAGG	CAGGTCAGAG	ACCCCACTGG
8001	ACAAACAGTG	GCTGGACTCT	GCACCATAAC	ACACAATCAA	CAGGGGAGTG
8051	AGCTGGAAAT	TTGCTAGC			

# Fig. 27/1

1	TTGAAGACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAAT
61	GGTTTCTTAGACGTCAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTT
121	ATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCT
181	TCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCC
241	CTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAA
301	AGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGG
361	TAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGT
421	TCTGCTATGTGGCGCGGTATTATCCCGTGTTGACGCCGGGCAAGAGCAACTCGGTCGCCG
481	CATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTTAC
541	GGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGC
601	GGCCAACTTACTTCTGACAACGATCGGAGGAGCCGAAGGAGCTAACCGCTTTTTTGCACAA
661	CATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAA
721	Fsp I AAACGACGAGCGTGACACCACGATGCCTGCAGCAATGGCAACAACGT <u>TGCGCA</u> AACTAT
781	AACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGA

# Fig. 27 /2

841	${\tt TAAAGTTGCAGGACCACTTCTGCGCTCGGCCTGGCTGGCT$
901	${\tt ATCTGGAGCCGGTGAGCGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAA}$
961	${\tt GCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAA}$
1021	TAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGT
1081	${\tt TTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTAAATTTAAAAGGATCTAGGT$
1141	GAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTG
1201	${\tt AGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGT}$
1261	${\tt AATCTGCTGCTACCAAAAAAAAAAACCACCGCTACCAGCGGTGGTTTGTTT$
1321	AGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATAC
1381	TGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTAC
1441	ATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCCAGTGGCGATAAGTCGTGTCT
1501	TACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGG
1561	GGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACA
1621	GCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGT
1681	AAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTA
1741	TCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTC
1801	GTCAGGGGGGGGGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGC BspLU11I
1861	•
1921	CCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAG
1981	CGAGTCAGTGAGCGAGGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCT
2041	GTGCGGTATTTCACACCGCATATGGTGCACTCTCAGTACAATCTGCTCTGATGCCGCATA Bst1107 I
2101	GTTAAGCCA <u>GTATAC</u> ACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACAC
2161	CCGCCAACACCCGCTGACGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGA
2221	CAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAAA
2281	CGCGCGAGGCAGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCTAACTCCGCC
2341	CATCCCGCCCTAACTCCGCCCAGTTCCGCCCCATGGCTGACTAATTTT
2401	Sfi I  TTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGG
2461	Stu I/Avr II AGGCTTTTTTGG <b>AGGCCTAGG</b> CTTTTGCAAAAAGCTAGCTTACAGCTCAGGGCTGCGATT

## Fig. 27 /3

2521	TCGCGCCAAACTTGACGGCAATCCTAGCGTGAAGGCTGGTAGGATTTTATCCCCGCTGCC
2581	ATCATGGTTCGACCATTGAACTGCATCGTCGCCGTGTCCCAAAATATGGGGATTGGCAAG
2641	AACGGAGACCTACCCTGGCCTCCGCTCAGGAACGAGTTCAAGTACTTCCAAAGAATGACC
2701	${\tt ACAACCTCTTCAGTGGAAGGTAAACAGAATCTGGTGATTATGGGTAGGAAAACCTGGTTC}$
2761	TCCATTCCTGAGAAGAATCGACCTTTAAAGGACAGAATTAATATATTCTCAGTAGAGAA
2821	CTCAAAGAACCACCACGAGGAGCTCATTTTCTTGCCAAAAGTTTGGATGATGCCTTAAGA
2881	$\tt CTTATTGAACAACCGGAATTGGCAAGTAAAGTAGACATGGTTTGGATAGTCGGAGGCAGT$
2941	TCTGTTTACCAGGAAGCCATGAATCAACCAGGCCACCTCAGACTCTTTGTGACAAGGATC
3001	ATGCAGGAATTTGAAAGTGACACGTTTTTCCCAGAAATTGATTTGGGGAAATATAAACTT
3061	CTCCCAGAATACCCAGGCGTCCTCTCTGAGGTCCAGGAGGAAAAAGGCATCAAGTATAAG
3121	TTTGAAGTCTACGAGAAGAAGACTAACAGGAAGATGCTTTCAAGTTCTCTGCTCCCCTC Bgl II
3181	CTAAAGCTATGCATTTTATAAGACCATGGGACTTTTGCTGGCTTT <u>AGATCT</u> TTGTGAAG
3241	GAACCTTACTTCTGTGGTGTGACATAATTGGACAAACTACCTAC
3301	AAGGTAAATATAAAATTTTTAAGTGTATAATGTGTTAAACTACTGATTCTAATTGTTTGT
3361	GTATTTTAGATTCCAACCTATGGAACTGATGAATGGGAGCAGTGGTGGAATGCCTTTAAT
3421	GAGGAAAACCTGTTTTGCTCAGAAGAAATGCCATCTAGTGATGATGAGGCTACTGCTGAC
3481	TCTCAACATTCTACTCCTCCAAAAAAGAAGAGAAAGGTAGAAGACCCCAAGGACTTTCCT
3541	TCAGAATTGCTAAGTTTTTTGAGTCATGCTGTTTTAGTAATAGAACTCTTGCTTT
3601	GCTATTTACACCACAAAGGAAAAAGCTGCACTGCTATACAAGAAAATTATGGAAAAATAT
3661	TCTGTAACCTTTATAAGTAGGCATAACAGTTATAATCATAACATACTGTTTTTTCTTACT
3721	CCACACAGGCATAGAGTGTCTGCTATTAATAACTATGCTCAAAAATTGTGTACCTTTAGC
3781	TTTTTAATTTGTAAAGGGGTTAATAAGGAATATTTGATGTATAGTGCCTTGACTAGA <mark>GAT</mark> BsaB I
3841	CATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAACCTCCCACACCT Mun I
3901	CCCCCTGAACCTGAAACATAAAATGAATGCAATTGTTGTTGTTAACTTGTTTATTGCAGC
3961	TTATAATGGTTACAAATAAAGCAATAGCATCACAAATTTCACAAATAAAGCATTTTTTT
4021	ACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCTA
4081	ATAAAAGATATTTATTTTCATTAGATATGTGTGTTGGTTTTTTTGTGTGCAGTGCCTCTA
414	1 CTGGAGGCCAGGTAGGGCTGGCCTTGGGGGGGGGGGGGG
420	CAGGAAGGCAGGTCAGAGACCCCACTGGACAAACAGTGGCTGGACTCTGCACCATAACA

Fig. 2	
4261	EcoR I  ACAATCAACAGGGGAGTGAGCTGGAAATTTGCTAGCGAATTCcagcacactggcggccgt
4321	Spe I t <u>ACTAGT</u> TATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTT
4381	CCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCGCCC
4441	ATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACG
4501	TCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATAT
4561	GCCAAGTACGCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCA SnaB I
4621	GTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATCTAGTATTAGTCATCGCTAT
4681	TACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACG
4741	GGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTT
4801	ACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCG
4861	TGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAG
4921	ACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGG
4981	CCGGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTA
5041	TAGAGTCTATAGGCCCACCCCTTGGCTTCTTATGCATGCTATACTGTTTTTTGGCTTGGG Bpu11021
5101	GTCTATACACCCCGCTTCCTCATGTTATAGGTGATGGTATAGCTTAGCCTATAGGTGTC
5161	Xcm I GGTTATTGACCATTATTGACCACTCCCCTATTGGTGACGATACTTTCCATTACTAATCCA
5221	TAACATGGCTCTTTGCCACAACTCTCTTTATTGGCTATATGCCAATACACTGTCCTTCAC
5281	AGACTGACACGGACTCTGTATTTTTACAGGATGGGGTCTCATTTATTATTATTACAAATTCA
5341	CATATACAACACCACCGTCCCCAGTGCCCGCAGTTTTTATTAAACATAACGTGGGATCTC BspE I
5401	CACGCGAATCTCGGGTACGTGT <u>TCCGGA</u> CATGGGCTCTTCTCCGGTAGCGGCGGAGCTTC
5461	TACATCCGAGCCCTGCTCCCATGCCTCCAGCGACTCATGGTCGCTCGGCAGCTCCTTGCT
5521	CCTAACAGTGGAGGCCAGACTTAGGCACAGCACGATGCCCACCACCACCAGTGTGCCGCA
5581	CAAGGCCGTGGCGGTAGGGTATGTGTCTGAAAATGAGCTCggggagcgggcttgcaccg
5641	tgacgcatttggaagacttaaggcagcggcagaagaagatgcagg <u>cagctg</u> agttgttg
5701	gttctgataagagtcagaggtaactcccgttgcggtgctgttaacggtggagggcagtg
5761	agtctgagcagtactcgttgctgccgcgcgcgccaccagacataatagctgacagacta
	Mlu I cagactgttcctttccatgggtcttttctgcagtcaccgtccttgac <u>ACGCGT</u> CTCGGG
	ind III  AGCTTGCCGCCACCATGGGATGGAGCTGGGTCTTTCTCTTTTCTCCTGTCAGGAACTGCA
	MGWSWVFLFLLSGTA

119

...

## Fig. 27 /5

								II)												
5941	GTGT	cc	rcT	CTG	AGG	TCC	AGO	TGC	:AA	CAGI	CTC	GAG	CTC	AGG	CTGG	TGF	AGC	CTC	GGG	CTT
	G 1							L		0	s	G	P	Ē	L	v	K			A
			u		-	•	¥		(ba	-	_	•	_		_			Ī	)ra	III
6001	~> ~			m ~ m			30				מא מים	י אים	ו אחוו	\ CT(	יית תב <u>י</u>	יארי		_		
6001																				
	s 1	7	.K	M	S	С	K	T	S	R	Y	Т	F	T	$\underline{\underline{E}}$	Y			<u>H</u>	W
																CDI	₹ 1			
6061	TCA	745	ADA	GCC	מית:	GAP	AG	AGCC	TTT	GAG	rgg	TTA	GGA	GT.	ATT	TAP	CTA	AAC	TAA	GTA
0001		J1101																		
		_	_	_		_	**	_	-		547	т.	_	_	т	21	D	N	R7	G
	V	3	Õ	S	H			S		E				G		N				
6121	TTC	CTA.	ACT	ACA								GCC.								
	I.	P.	N	Y	N	Q	K	F	K	G	R	A	T	L	T	V	G	K	S	S
	***************************************			DR	2															
6181	GCA	cce	ССТ	ACA	TGO	SAGO	CTC	CGC	AGC	CTG.	ACA'	TCT	GAG	GAT	TCT	GCG	STC:	TAT	TTC	TGTG
0101			A		M		L			L		S		D	s		ν	Y	F	С
	5	ı.	A	1	M	E	ш	K	5	-	•	-		_	_		•	•	_	-
												~~~	~~~	~~~	7 m C	~ » ~	ים אות	n	ccm	CDDC
6241																				
	A	R	R_	R	I	A	Y	G	<u>Y</u> _	D	E	G	H	<u>A</u>	M	_D_	<u>Y</u>	W	G	Q
						C	DR	3			Ba	mΗ	I							
6301	CAD	רכזיי	CAC	יירו	CCC	TTC	rcc	TCA	GGT	GAG	TGG	ATC	CTC	TGC	GCC'	TGG	GCC	CAG	CTC	TGTC
0301				v		V					-									
	G	1	٥	٧	1	٧	ي	3												
											~~~			maa	300	n n ~		~~ n	TCC	ርጥርጥ
6361	CCA	CAC	CGC	CGG'	CAC	CAT	GGC	ACC.	ACC	TCT	CTT	GCA	GCC					CCM	.100	GICI
														S	T	K	G	P	S	V
6421	TCC	CCC	TGC	SCA	CCC'	TCC'	TCC	AAG	AGC	ACC	TCT	'GGG	GGC	ACA	GCG	GCC	CTG	GGC	TGC	CTGG
	F		L	A	P	s	s			T	S				Α		L	G	C	L
	•	-	_		-	_	_	Age	т	_										
C 4 0 3	mar	n ~~	· > <	n 2 C	nm~	~~~	~ 7 2	ccc	- 	יאכר	·cmc	ጥርር	TO CO	יע ע	מייחי	ccc	GCC	CTG	ACC	AGCG
6481				L'AC	TTC		GW	P	<u> </u>	ACC.		1100	11 GC	77	100	G		L	Т	21000
	V	K	D	Y	F.	Р	E	Đ	٧	1	٧	5	W	N	3	G	v	11	_	3
6541	GCG	TGC	CAC	ACC'	TTC	CCG	GCI	'GTC	CTF	CAC	TCC	CTCF	\GGP	CTC	TAC	TCC	CTC	AGC	AGC	GT <b>GG</b>
	G	V	H	T	F	P	Α	V	L	Q	S	S	G	L	Y	S	$\mathbf{L}$	S	S	V
	BstE	T1	r																	
				~~~	mcc	NGC	N.C.C	ישיים:	ccc	ישרכ	ירשמ	בארנ	ግጥ አ	: አጥረ	TGC	:AAC	GTG	raa:	CAC	CAAGC
9901								L		,,,,cc		m	Y	// T	~	N	v	N	Н	K
	V	T	V	P	S	S	S	T	G	T	Q	1	1	Τ.	C	1.4	٧	14	11	IV.
6661	CCF	\GC2	AAC.	ACC	AAG	GTG	GAC	CAAC	AA.	\GT?	rgac	SCC	CAA	ATC:	rtgi	'GAC				CACAT
	P	S	N	T	K	V	D	K	K	V	E	P	K	Ş	C	D	K	T	Н	T
6721	GCC	CAC	CCG	TGC	CCA	GCA	CCT	rgaa	CTC	ССТО	GGG	GGG	ACC	STC	AGTO	TTC	CTC	TT	ccc	CCCAA
0/21								E							v		L	F	P	P
	C	F	F	C	E	А	_	ت		u	•	٠	-		•	-	_	-	-	_
												_~~		~~m	~	m ~ /	m-	- Cm	~~m/	
6781	. AAC	CCC	AAG	GAC	ACC	CTC	ATO	SATC	CTC	CCG	GAC	CCC.	rga	- - -	JACI	4TGC	JGTO	GT	11 جاد	GGACG
		K	P	K	D	T	L	M	I	S	R	Ţ	·P	Ε	V	Т	С	V	V	V D
6841	TG/	AGC	CAC	GAA	GAC	CCI	GA	GTC	CAA	GTT	CAA	CTG	GTA	CGT	GGA	CGG	CGT	GA	GGT	GCATA
50.1	17	S	н	F	n	P	F	v	K	F	N	W	Y	v	D	G	V	E	V	H
	•	_	**		U	•		•	••	-	••	••	-	•	_	_	•	_		
			.					~~~	~~~	C C P	مر س) <i>ب</i>	ת תים	~ » ~	~ 7 ~	י ע שיי	~~~	3Cm/	-رس	ር አ ር	ССТСС
6901	AT'	JCC.	AAG	ACA	MAG	-000	افات د -)Aنت _	AUC -	GCA!	GIA	CHA.	CAG -	UHC 	O L'AI	افاتات	77 77	** T	ono o	CGTCC
	N	Α	K	T	K	P	R	Е	E	Q	Y	N	S	T	Y	К	٧	٧	5	V
6961	LTC	ACC	GTC	CTC	CAC	CAC	GA	CTG	GCT	GAA	TGG	CAA	GGA	GTA	CAA	GTG	CAA	GGT	CTC	CAACA
		_		-																M

Fig. 27 /6

021	AA	GCC	CTC	CAC	GCC(CCCF	ATC	GAG!	AAA	ACC	ATC'	TCC	AAA	GCC?	AAA	GGG	CAGO	ccc	CGA	SAAC
	K	A	L	P	A	P	I	E	K	T	I	S	K	A	K	G	Q	P	R	E
081																	CAGO	STC	AGC	CTGA
	P	Q	V	Y	T	L	P	P	S	R	E	E	M	T	K	N	Q	V	S	L
141	CC'	TGC	CTG	STC	AAA	GC1	TC:	TAT	CCC	AGC	GAC	ATC	GCC	STG	GAG'	rgg	GAG!	AGC	AAT	GGC
	T	С	L	V	K	G	F	Y	P	S	D	I	A	V	E	W	E	S	N	G
201	AG	CCG	GAG!	AACI	AAC:	rac <i>i</i>	\AG	ACC2	ACG	CCT	ccc	GTG	CTG	GAC'	rcc	GAC	GGC.	rcc:	rTC:	TTCC
	Q	P	E	N	N	Y	K	T	T	P	P	V	L	D	s	D	G	S	F	F
7261	TC'	TAC.	AGC!	AAG (CTC	ACC	STG	GAC	AAG	AGC	AGG	TGG	CAG	CAG	GGG.	AAC	GTC:	rTC'	rca'	rgct
	L	Y	S	K	L	T	V	D	K	S	R	W	Q	Q	G	N	V	F	S	С
7321	CC	GTG.	ATG	CATO	GAG	CTC	CTG	CAC	AAC	CAC'	TAC	ACG	CAG	AAG	AGC	CTC'	rcc	CTG:	rcT(CCGG
	S	V	M	Н	E		JOM L		N	H	Y	T	Q	K	S	L	S	L	S	P
7381	GT.	AAA K	TGA(G T G(CGA	CG <u>G</u> C	CG	<u>GC</u> A	AGC	CCC	GCT	CCC	CGG	GCT	CTC	GCG	GTC	SCA	CGA	GGAT
7441	GC'	TTG	GCA	CGT	ACC	CCCI	rgt	ACA'	TAC'	TTC	CCG	GGC	GCC	CAG	CAT	GGA	AAT	AAA	GCA	CCGG
7501	AT	CTA	ATA	AAA	SAT	ATTI	rat'	TTT	CAT'	TAG	ATA	TGT	GTG'	TTG	GTT'	TTT'	TGT	GTG(CAG'	rgcc
7561	TC	TAT	CTG	GAG	GCC	AGGT	rag	GGC'	TGG	CCT	TGG	GGG.	AGG	GGG	AGG	CCA	GAA!	rga(CTC	CAAG
7621	AG	CTA	CAG	GAAC	GGC:	AGG"	rca	GAG.	ACC	CCA	CTG	GAC	AAA	CAG'	rgg	CTG	GAC'	rct	GCA	CCAT
7681	AA	CAC	ACA	ATC	AAC	AGG	GGA	GTG.	AGC	TGG	aaa	ttt	gct	agc	gaa	tta	att	c 7	731	

Fig. 28:

Fig. 29 /1

λ	1 D GAC		V CTC																R G AGG	19
••					· .		•												.,	
B																				
С	- - -					. <u> </u>	· 	· 	· 	·										
	20			_					A			D		F	28				32	
A	ACC		N										S	R	N					
•														AUSA.				neu.		
В																				
С						<i></i> -										<u></u> -			 -	
	33			•															 51	
_			W							_									A	
A	TTG																		GCT	
R			. 				•				•	•	•					· 	•	
~										•			•							
C																				
_	52		c	DR2															70	
			R	E	s	G	v	P	D	R	F	s	G	\$	G	F	G	T		
A	AGC	ACT	AGG	GAA	TCT	I GGG	GTA	CCT	GAT	AGG	TTC	AGT	GGC	AGT	GGG	TTT	GGG	ACA	GAC	
В	•	٠	·		•					•	•	•	•	•	•	•	•	•	•	
Ь			•			•												-		
С						i														
A	71 F TTC		L CTC																	
	•	•			•												D			
В																	-	-		
С																	<u></u> -			
ı	89		<u>y</u>	F	CD	R3	Đ	T.			c		c	Tr.	v	v	P	•	107	
	CAG																			
1				•						1.		. 0,0								
	A																			
C I	•	•	•	•	•	•	•	•	•	! -	•	•	•	•	•	•	•	•	•	
١ ب										1										

Fig. 30 /1

Spe I

1 gaattccagc acactggcgg ccgttACTAG TATTAATAG TAATCAATTA 51 CGGGGTCATT AGTTCATAGC CCATATATGG AGTTCCGCGT TACATAACTT 101 ACGGTAAATG GCCCGCCTGG CTGACCGCCC AACGACCCCC GCCCATTGAC 151 GTCAATAATG ACGTATGTTC CCATAGTAAC GCCAATAGGG ACTTTCCATT 201 GACGTCAATG GGTGGAGTAT TTACGGTAAA CTGCCCACTT GGCAGTACAT 251 CAAGTGTATC ATATGCCAAG TACGCCCCCT ATTGACGTCA ATGACGGTAA 301 ATGGCCCGCC TGGCATTATG CCCAGTACAT GACCTTATGG GACTTTCCTA SnaB I 351 CTTGGCAGTA CATCTACGTA TTAGTCATCG CTATTACCAT GGTGATGCGG 401 TTTTGGCAGT ACATCAATGG GCGTGGATAG CGGTTTGACT CACGGGGATT 451 TCCAAGTCTC CACCCCATTG ACGTCAATGG GAGTTTGTTT TGGCACCAAA 501 ATCAACGGGA CTTTCCAAAA TGTCGTAACA ACTCCGCCCC ATTGACGCAA 551 ATGGGCGGTA GGCGTGTACG GTGGGAGGTC TATATAAGCA GAGCTCGTTT 601 AGTGAACCGT CAGATCGCCT GGAGACGCCA TCCACGCTGT TTTGACCTCC Sac II 651 ATAGAAGACA CCGGGACCGA TCCAGCCT<u>CC GCGG</u>CCGGGA ACGGTGCATT 701 GGAACGCGGA TTCCCCGTGC CAAGAGTGAC GTAAGTACCG CCTATAGAGT 751 CTATAGGCCC ACCCCCTTGG CTTCTTATGC ATGCTATACT GTTTTTGGCT 801 TGGGGTCTAT ACACCCCGC TTCCTCATGT TATAGGTGAT GGTATAGCTT 851 AGCCTATAGG TGTGGGTTAT TGACCATTAT TGACCACTCC CCTATTGGTG 901 ACGATACTTT CCATTACTAA TCCATAACAT GGCTCTTTGC CACAACTCTC 951 TITATTGGCT ATATGCCAAT ACACTGTCCT TCAGAGACTG ACACGGACTC 1001 TGTATTITTA CAGGATGGGG TCTCATTTAT TATTTACAAA TTCACATATA 1051 CAACACCACC GTCCCCAGTG CCCGCAGTTT TTATTAAACA TAACGTGGGA (BspE I) 1101 TCTCCACGCG AATCTCGGGT ACGTGTTCCG GACATGGGCT CTTCTCCGGT 1151 AGCGGCGGAG CTTCTACATC CGAGCCCTGC TCCCATGCCT CCAGCGACTC 1201 ATGGTCGCTC GGCAGCTCCT TGCTCCTAAC AGTGGAGGCC AGACTTAGGC

Fig.	30	12
3.		

- 1251 ACAGCACGAT GCCCACCACC ACCAGTGTGC CGCACAAGGC CGTGGCGGTA
- 1301 GGGTATGTGT CTGAAAATGA GCTCggggag cgggcttgca ccgctgacgc
 Afi II
- 1351 atttggaaga cttaaggcag cggcagaaga agatgcaggc agctgagttg
- 1401 ttgtgttctg ataagagtca gaggtaactc ccgttgcggt gctgttaacg
- 1451 gtggagggca gtgtagtctg agcagtactc gttgctgccg cgcgccac
- 1501 cagacataat agctgacaga ctaacagact gttcctttcc atgggtcttt
 Mlu I Hind III
- 1551 tctgcagtca ccgtccttga cacqcgtctc gggaagettG CCGCCACCAT
- 1601 GGAGACAGAC ACACTCCTGC TATGGGTGCT GCTGCTCTGG GTTCCAGGTT E T D T L L W V L L W V P G (BspE I)
- 1651 CCTCCGGAGA CATTGTGATG ACCCAATCTC CAGACTCTTT GGCTGTGTCT S S G D I V M T Q S P D S L A V S
- 1701 CTAGGGGAGA GGGCCACCAT CAACTGCAAG TCCAGTCAGA GCCTTTTATA

 L G E R A T I N C K S S Q S L L Y

 Xbal CDR 1
- 1751 T<u>TCTAGA</u>AAT CAAAAGAACT ACTTGGCCTG GTATCAGCAG AAACCAGGAC <u>S R N Q K N Y L A</u> W Y Q Q K P G

<u>Kpnl</u>

- 1801 AGCCACCCAA ACTCCTCATC TTTTGGGCTA GCACTAGGGA ATCTGG<u>GGTA</u> Q P P K L L I F <u>W A S T R E S</u> G V CDR 2
- 1851 <u>CC</u>TGATAGGT TCAGTGGCAG TGGGTTTGGG ACAGACTTCA CCCTCACCAT PDRFSGSGFGTDFTLTI
- 1901 TAGCAGCCTG CAGGCTGAAG ATGTGGCAGT TTATTACTGT CAGCAATATT
 S S L Q A E D V A V Y Y C Q Q Y
- 1951 TTAGCTATCC GCTCACGTTC GGACAAGGGA CCAAGGTGGA AATAA<u>AACGT</u>

 F S Y P L T F G Q G T K V E I K R

 CDR 3
- BamH I
- 2001 GAGTagatcc ATCTGGGATA AGCATGCTGT TTTCTGTCTG TCCCTAACAT
- 2051 GCCCTGTGAT TATGCGCAAA CAACACACCC AAGGGCAGAA CTTTGTTACT
- 2101 TAAACACCAT CCTGTT<u>T</u>GCT TCTTTCCT<u>CA GG</u>AACTGTGG CTGCACCATC T V A A P S
- 2151 TGTCTTCATC TTCCCGCCAT CTGATGAGCA GTTGAAATCT GGAACTGCCT V F I F P S D E Q L K S G T A
- 2201 CTGTTGTGT CCTGCTGAAT AACTTCTATC CCAGAGAGGC CAAAGTACAG S V V C L L N N F Y P R E A K V Q
- 2251 TGGAAGGTGG ATAACGCCCT CCAATCGGGT AACTCCCAGG AGAGTGTCAC W K V D N A L Q S G N S Q E S V T
- 2301 AGAGCAGGAC AGCAAGGACA GCACCTACAG CCTCAGCAGC ACCCTGACGC

...

Fig. 30/3

EQDSKDSTYSLSSTLT 2351 TGAGCAAAGC AGACTACGAG AAACACAAAG TCTACGCCTG CGAAGTCACC LSKA DYE KHK VYAC EVT 2401 CATCAGGGCC TGAGCTCGCC CGTCACAAAG AGCTTCAACA GGGGAGAGTG HQG LSSP VTK SFN RGEC 2451 TTAGAGGGAG AAGTGCCCCC ACCTGCTCCT CAGTTCCAGC CTGACCCCCT Psp5 II 2501 CCCATCCTTT GGCCTCTGAC CCTTTTTCCA CAGGGGACCT ACCCCTATTG 2551 CGGTCCTCCA GCTCATCTTT CACCTCACCC CCCTCCTCCT CCTTGGCTTT 2601 AATTATGCTA ATGTTGGAGG AGAATGAATA AATAAAGTGA ATCTTTGCAC 2651 CTGTGGTGGA TCTAATAAAA GATATTTATT TTCATTAGAT ATGTGTGTTG 2701 GTTTTTGTG TGCAGTGCCT CTATCTGGAG GCCAGGTAGG GCTGGCCTTG 2751 GGGGAGGGG AGGCCAGAAT GACTCCAAGA GCTACAGGAA GGCAGGTCAG 2801 AGACCCCACT GGACAAACAG TGGCTGGACT CTGCACCATA ACACACAATC 2851 AACAGGGGAG TGAGCTGGAA ATTTGCTAGC GAATTCTTGA AGACGAAAGG 2901 GCCTCGTGAT ACGCCTATTT TTATAGGTTA ATGTCATGAT AATAATGGTT 2951 TCTTAGACGT CAGGTGGCAC TTTTCGGGGA AATGTGCGCG GAACCCCTAT 3001 TTGTTTATTT TTCTAAATAC ATTCAAATAT GTATCCGCTC ATGAGACAAT 3051 AACCCTGATA AATGCTTCAA TAATATTGAA AAAGGAAGAG TATGAGTATT 3101 CAACATTTCC GTGTCGCCCT TATTCCCTTT TTTGCGGCAT TTTGCCTTCC 3151 TGTTTTTGCT CACCCAGAAA CGCTGGTGAA AGTAAAAGAT GCTGAAGATC 3201 AGTTGGGTGC ACGAGTGGGT TACATCGAAC TGGATCTCAA CAGCGGTAAG 3251 ATCCTTGAGA GTTTTCGCCC CGAAGAACGT TTTCCAATGA TGAGCACTTT 3301 TAAAGTTCTG CTATGTGGCG CGGTATTATC CCGTGTTGAC GCCGGGCAAG 3351 AGCAACTCGG TCGCCGCATA CACTATTCTC AGAATGACTT GGTTGAGTAC 3401 TCACCAGTCA CAGAAAAGCA TCTTACGGAT GGCATGACAG TAAGAGAATT 3451 ATGCAGTGCT GCCATAACCA TGAGTGATAA CACTGCGGCC AACTTACTTC Pvu I 3501 TGACAACGAT CGGAGGACCG AAGGAGCTAA CCGCTTTTTT GCACAACATG 3551 GGGGATCATG TAACTCGCCT TGATCGTTGG GAACCGGAGC TGAATGAAGC

Fig. 30 /4

3601	CATACCAAAC GACGAGCGTG ACACCACGAT GCCTGCAGCA ATGGCAACAA
3651	CGTTGCGCAA ACTATTAACT GGCGAACTAC TTACTCTAGC TTCCCGGCAA
3701	CAATTAATAG ACTGGATGGA GGCGGATAAA GTTGCAGGAC CACTTCTGCG
3751	CTCGGCCCTT CCGGCTGGCT GGTTTATTGC TGATAAATCT GGAGCCGGTG
3801	AGCGTGGGTC TCGCGGTATC ATTGCAGCAC TGGGGCCAGA TGGTAAGCCC
3851	TCCCGTATCG TAGTTATCTA CACGACGGGG AGTCAGGCAA CTATGGATGA
3901	ACGAAATAGA CAGATCGCTG AGATAGGTGC CTCACTGATT AAGCATTGGT
3951	AACTGTCAGA CCAAGTTTAC TCATATATAC TTTAGATTGA TTTAAAACTT
4001	CATTTTTAAT TTAAAAGGAT CTAGGTGAAG ATCCTTTTTG ATAATCTCAT
4051	GACCAAAATC CCTTAACGTG AGTTTTCGTT CCACTGAGCG TCAGACCCCG
4101	TAGAAAAGAT CAAAGGATCT TCTTGAGATC CTTTTTTTCT GCGCGTAATC
4151	TGCTGCTTGC AAACAAAAAA ACCACCGCTA CCAGCGGTGG TTTGTTTGCC
4201	GGATCAAGAG CTACCAACTC TTTTTCCGAA GGTAACTGGC TTCAGCAGAG
4251	CGCAGATACC AAATACTGTC CTTCTAGTGT AGCCGTAGTT AGGCCACCAC
4301	TTCAAGAACT CTGTAGCACC GCCTACATAC CTCGCTCTGC TAATCCTGTT
4351	ACCAGTGGCT GCTGCCAGTG GCGATAAGTC GTGTCTTACC GGGTTGGACT
4401	CAAGACGATA GTTACCGGAT AAGGCGCAGC GGTCGGGCTG AACGGGGGGT
4451	TCGTGCACAC AGCCCAGCTT GGAGCGAACG ACCTACACCG AACTGAGATA
4501	CCTACAGCGT GAGCTATGAG AAAGCGCCAC GCTTCCCGAA GGGAGAAAGG
4551	CGGACAGGTA TCCGGTAAGC GGCAGGGTCG GAACAGGAGA GCGCACGAGG
4601	GAGCTTCCAG GGGGAAACGC CTGGTATCTT TATAGTCCTG TCGGGTTTCG
4651	CCACCTCTGA CTTGAGCGTC GATTTTTGTG ATGCTCGTCA GGGGGGCGGA
47 01	GCCTATGGAA AAACGCCAGC AACGCGGCCT TTTTACGGTT CCTGGCCTTT
4751	BspLU11I TGCTGGCCTT TTGCTCACAT GTTCTTTCCT GCGTTATCCC CTGATTCTGT
4801	GGATAACCGT ATTACCGCCT TTGAGTGAGC TGATACCGCT CGCCGCAGCC

... :;.

Fig. 30 /5

4851	GAACGACCGA GCGCAGCGAG TCAGTGAGCG AGGAAGCGGA AGAGCGCCTG
4901	ATGCGGTATT TTCTCCTTAC GCATCTGTGC GGTATTTCAC ACCGCATATG Bst1107I
4951	GTGCACTCTC AGTACAATCT GCTCTGATGC CGCATAGTTA AGCCAGTATA
5001	CACTCCGCTA TCGCTACGTG ACTGGGTCAT GGCTGCGCCC CGACACCCGC
5051	CAACACCCGC TGACGCGCCC TGACGGGCTT GTCTGCTCCC GGCATCCGCT
5101	TACAGACAAG CTGTGACCGT CTCCGGGAGC TGCATGTGTC AGAGGTTTTC
5151	ACCGTCATCA CCGAAACGCG CGAGGCAGCT GTGGAATGTG TGTCAGTTAG
5201	GGTGTGGAAA GTCCCCAGGC TCCCCAGCAG GCAGAAGTAT GCAAAGCATG
5251	CATCTCAATT AGTCAGCAAC CAGGCTCCCC AGCAGGCAGA AGTATGCAAA
5301	GCATGCATCT CAATTAGTCA GCAACCATAG TCCCGCCCCT AACTCCGCCC
5351	ATCCCGCCC TAACTCCGCC CAGTTCCGCC CATTCTCCGC CCCATGGCTG
5401	ACTAATTTTT TITATTTATG CAGAGGCCGA GGCCGCCTCG GCCTCTGAGC Stu I/Avr II
5451	TATTCCAGAA GTAGTGAGGA GGCTTTTTTG GAGGCCTAGG CTTTTGCAAA
5501	AAGCTAGCTT CACGCTGCCG CAAGCACTCA GGGCGCAAGG GCTGCTAAAG
5551	GAAGCGGAAC ACGTAGAAAG CCAGTCCGCA GAAACGGTGC TGACCCCGGA
5601	TGAATGTCAG CTACTGGGCT ATCTGGACAA GGGAAAACGC AAGCGCAAAG
5651	AGAAAGCAGG TAGCTTGCAG TGGGCTTACA TGGCGATAGC TAGACTGGGC
5701	GGTTTTATGG ACAGCAAGCG AACCGGAATT GCCAGCTGGG GCGCCCTCTG
5751	GTAAGGTTGG GAAGCCCTGC AAAGTAAACT GGATGGCTTT CTTGCCGCCA Bgl II/Bcl I
5801	
5851	ATCGTTTCGC ATGATTGAAC AAGATGGATT GCACGCAGGT TCTCCGGCCG
5901	CTTGGGTGGA GAGGCTATTC GGCTATGACT GGGCACAACA GACAATCGGC
595	TGCTCTGATG CCGCCGTGTT CCGGCTGTCA GCGCAGGGGC GCCCGGTTCT
600	TTTTGTCAAG ACCGACCTGT CCGGTGCCCT GAATGAACTG CAGGACGAGG
605	Msc I 1 CAGCGCGGCT ATCGTGGC <u>TG GCCA</u> CGACGG GCGTTCCTTG CGCAGCTGTG

Fig. 30 /6

6101	CTCGACGTTG TCACTGAAGC GGGAAGGGAC TGGCTGCTAT TGGGCGAAGT
6151	GCCGGGGCAG GATCTCCTGT CATCTCACCT TGCTCCTGCC GAGAAAGTAT
6201	CCATCATGGC TGATGCAATG CGGCGGCTGC ATACGCTTGA TCCGGCTACC
6251	TGCCCATTCG ACCACCAAGC GAAACATCGC ATCGAGCGAG CACGTACTCG
6301	GATGGAAGCC GGTCTTGTCG ATCAGGATGA TCTGGACGAA GAGCATCAGG
6351	GGCTCGCGCC AGCCGAACTG TTCGCCAGGC TCAAGGCGCG CATGCCCGAC
6401	GGCGAGGATC TCGTCGTGAC CCATGGCGAT GCCTGCTTGC CGAATATCAT
6451	GGTGGAAAAT GGCCGCTTTT CTGGATTCAT CGACTGTGGC CGGCTGGGTG
6501	TGGCGGACCG CTATCAGGAC ATAGCGTTGG CTACCCGTGA TATTGCTGAA
6551	GAGCTTGGCG GCGAATGGGC TGACCGCTTC CTCGTGCTTT ACGGTATCGC
6601	CGCTCCCGAT TCGCAGCGCA TCGCCTTCTA TCGCCTTCTT GACGAGTTCT Nsp V
6651	
6701	TGCCATCACG AGATTTCGAT TCCACCGCCG CCTTCTATGA AAGGTTGGGC
6751	TTCGGAATCG TTTTCCGGGA CGCCGGCTGG ATGATCCTCC AGCGCGGGGA Sma I Nru I
6801	TCTCATGCTG GAGTTCTTCG CCCAC <u>CCCGG G</u> CTCGATCCC C <u>TCGCGA</u> GTT
6851	GGTTCAGCTG CTGCCTGAGG CTGGACGACC TCGCGGAGTT CTACCGGCAG
6901	TGCAAATCCG TCGGCATCCA GGAAACCAGC AGCGGCTATC CGCGCATCCA
6951	TGCCCCGAA CTGCAGGAGT GGGGAGGCAC GATGGCCGCT TTGGTCCCGG
7001	ATCTITGTGA AGGAACCTTA CTTCTGTGGT GTGACATAAT TGGACAAACT
7051	ACCTACAGAG ATTTAAAGCT CTAAGGTAAA TATAAAATTT TTAAGTGTAT
7101	AATGTGTTAA ACTACTGATT CTAATTGTTT GTGTATTTTA GATTCCAACC
7151	TATGGAACTG ATGAATGGGA GCAGTGGTGG AATGCCTTTA ATGAGGAAAA
7201	CCTGTTTTGC TCAGAAGAAA TGCCATCTAG TGATGATGAG GCTACTGCTG
7251	ACTCTCAACA TTCTACTCCT CCAAAAAAGA AGAGAAAGGT AGAAGACCCC
7301	AAGGACTITC CTTCAGAATT GCTAAGTTTT TTGAGTCATG CTGTGTTTAG

Fig. 30 /7

7351 TAATAGAACT CTTGCTTGCT TTGCTATTTA CACCACAAAG GAAAAAGCTG 7401 CACTGCTATA CAAGAAAATT ATGGAAAAAT ATTCTGTAAC CTTTATAAGT 7451 AGGCATAACA GTTATAATCA TAACATACTG TTTTTTCTTA CTCCACACAG 7501 GCATAGAGTG TCTGCTATTA ATAACTATGC TCAAAAATTG TGTACCTTTA 7551 GCTTTTAAT TTGTAAAGGG GTTAATAAGG AATATTTGAT GTATAGTGCC 7601 TTGACTAGAG ATCATAATCA GCCATACCAC ATTTGTAGAG GTTTTACTTG 7651 CTTTAAAAAA CCTCCCACAC CTCCCCCTGA ACCTGAAACA TAAAATGAAT Mun I 7701 GCAATTGTTG TTGTTAACTT GTTTATTGCA GCTTATAATG GTTACAAATA 7751 AAGCAATAGC ATCACAAATT TCACAAATAA AGCATTTTTT TCACTGCATT 7801 CTAGTTGTGG TTTGTCCAAA CTCATCAATG TATCTTATCA TGTCTGGATC 7851 TAATAAAAGA TATTTATTTT CATTAGATAT GTGTGTTGGT TTTTTGTGTG 7901 CAGTGCCTCT ATCTGGAGGC CAGGTAGGGC TGGCCTTGGG GGAGGGGGAG 7951 GCCAGAATGA CTCCAAGAGC TACAGGAAGG CAGGTCAGAG ACCCCACTGG 8001 ACAAACAGTG GCTGGACTCT GCACCATAAC ACACAATCAA CAGGGGAGTG 8051 AGCTGGAAAT TTGCTAGC

Fig. 31

Fig. 32/1

	1									10					_	_	_		19
	Q	V	Q	L	V	Q	S	G	A	e gaa	V CTC	K	K	P CCC .	G CCT	A CCT '	S דרכ י	V GTG	
Α.	CAG.	GIG.	·	CIM.	GIG.	·		•	•	·		,			•	•	•••	•	•
В																			
С	•	·	•		•	•	•		·		•	•		· 	· 		•	· - <i></i>	
C									•	•	•		•						
D																			
P					•		•	•	·		·					· 			
_																			
	20				_		_		_	_	30			CDR1	 -	 .	73.7	17	38
A	CTC	S	C	K	T	5 хст	R	TAC	T ACC	F TTC	T ACT	I E	TAC	ACC	ATA	CACI	TGG	GTT	AGA
^		AGC .								•					•	. 1	•		
В												i				1			
	•	•	•	•	•	•	•	•	•	•				•			•	•	•
С												•		 ·					
D	·	•									<u></u> -						- - -		
_							G					i .			•	. 1	٠.	•	•
E							G					I							
	39										49			52	A	53			56
	Q	A	P	G	Q	R	L	E	W	I	G	l G	I	N	P	N	N	G	I
A	CAG	GCC	CCT	GGC	CAA	AGG	CTG	GAG	TGG	ATA	GGA	GGT	ATT	AAT	CCT	AAC	AAT	GGT	AIT
В		·										\ 							
_									•			i .	•	•	•	•	•	•	•
С												!							
D	•	•	•		•	•		•		•	•	1	•			· 	·		
U												i.							
E																			
	57			CD	R2									70					75
	P	N	Y	N	Q	K	F	K	G	1 R	A	T	L	T	v	G	K	5	A
A	CCT	AAC		AAC	CAG	AAG	TI	AAG	GGG	icee	GCC	ACC	TTG	ACC	GTA	GGC	AAG	TCI	. ecc
В	•	•	•			•		•		1 .	• •	·	· 	·					·
	•	•					_			i .	ν		I			D	T		
С										-1	-T-		- A-C	:		-A-	-cc		
_	•	•	•	•	•	•	•	•	•	į .	V	•	I		•	D - 8 -	T -CC		
D																			
E			·	. <u></u> .			·	·		-1	-r-		- A-C	:		-A-	-cc		-
										- ·									
	76						82	A	В	С	83								91
_	S	T	A	Y	M	E	L	s	S	L	R	S	E	D	T	A	V	Y	Y TAC
Α	AGC	ACC	: GC(TAC	: ATC	5 GA	CTO			C CT(ACT			TA.	C TAC F
В		- -	·		- · ·		<u>-</u> -				- -	<u>-</u> .		- -					T-
_			•	•			•	•	•	•	•	•							
С				- :						<u> </u>		·	:	·			•		. F.
D		·	- -			<u>-</u> -			<u>-</u>							- -			T-
																	•		•

Fig. 32/2

	92					CDI	<u> </u>		100	A	В	С	D	I	J	K	101		103
	С	A	R	R	R	I	A	Y	G	Y	D	E	G	Ħ	A	M	D	T (W
A	TGC	GCC	AGA) AGA	AGA	ATC	GCC	TAT	GGT	TAC	GAC	GAG	GGC	CAT	GCT	ATG	GAC	TAC	TGG
																		. 1	
В				•														1	
				۱.		•		•				-						. 1	
С				۱														1	
	•			. 1	•	•		•					•					. 1	
D																		1	
																		. 1	
E				t														1	

	104								:	113
	G	Q	G	T	L	v	T	v	S	S
A	GGT	CAA	GGA	ACC	CTT	GTC	ACC	GTC	TCC	TCA
P			•	<u>.</u>	·	•	•	·		
D										
С										
_		•	•	•	•	•	•	•	•	•
U										
E										·

Fig. 33 /1

841	TAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCT
901	${\tt ATCTGGAGCCGGTGAGCGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAA}$
961 (GCCCTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAA
1021	${\tt TAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGT}$
1081	${\tt TTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGT$
1141	${\tt GAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTG}$
1201	${\tt AGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGT}$
1261	AATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTT
1321	AGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATAC
1381	TGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTAC
1441	ATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCCTGC
1501	TACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGG
1561	GGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACA
1621	GCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGT
1681	AAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTA
1741	TCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTC
1801	
1861	BspLU11I CTTTTGCTGGCCTTTTGCTC <u>ACATGT</u> TCTTTCCTGCGTTATCCCCTGATTCTGTGGATAA
1921	CCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAG
1981	CGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCTGATGCGGTATTTTCTCCTTACGCATCT
2041	
2101	Bst1107 I L GTTAAGCCA <u>GTATAC</u> ACTCCGCTATCGCTACGTGACTGGGTCATGGCTGCGCCCCGACAC
216	CCGCCAACACCCGCTGACGCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGA
222	CAAGCTGTGACCGTCTCCGGGAGCTGCATGTGTCAGAGGTTTTCACCGTCATCACCGAA
228	1 CGCGCGAGGCAGCATGCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCC
234	1 CATCCCGCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTT
240	Sfi I 1 TTTTATTTATGCAGAGGCCGA <mark>GGCC</mark> GCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGC
246	Stu I/Avr II 1 AGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTAGCT

2521	${\tt TCGCGCCAAACTTGACGGCAATCCTAGCGTGAAGGCTGGTAGGATTTTATCCCCGCTGCC}$
2581	${\tt ATCATGGTTCGACCATTGAACTGCATCGTCGCCGTGTCCCAAAATATGGGGATTGGCAAG}$
2641	AACGGAGACCTACCCTGGCCTCCGCTCAGGAACGAGTTCAAGTACTTCCAAAGAATGACC
2701	${\tt ACAACCTCTTCAGTGGAAGGTAAACAGAATCTGGTGATTATGGGTAGGAAAACCTGGTTC}$
2761	TCCATTCCTGAGAAGAATCGACCTTTAAAGGACAGAATTAATATAGTTCTCAGTAGAGAA
2821	${\tt CTCAAAGAACCACCACGAGGAGCTCATTTCTTGCCAAAAGTTTGGATGATGCCTTAAGA}$
2881	$\tt CTTATTGAACAACCGGAATTGGCAAGTAAAGTAGACATGGTTTGGATAGTCGGAGGCAGT$
2941	${\tt TCTGTTTACCAGGAAGCCATGAATCAACCAGGCCACCTCAGACTCTTTGTGACAAGGATC}$
3001	ATGCAGGAATTTGAAAGTGACACGTTTTTCCCAGAAATTGATTTGGGGAAATATAAACTT
3061	${\tt CTCCCAGAATACCCAGGCGTCCTCTCTGAGGTCCAGGAGAAAAAGGCATCAAGTATAAG}$
3121	TTTGAAGTCTACGAGAAGAAGACTAACAGGAAGATGCTTTCAAGTTCTCTGCTCCCCTC
3181	Bgl II CTAAAGCTATGCATTTTATAAGACCATGGGACTTTTGCTGGCTTTAGATCTTTGTGAAG
3241	${\tt GAACCTTACTTCTGTGGTGTGACATAATTGGACAAACTACCTAC$
3301	AAGGTAAATATAAAATTTTTAAGTGTATAATGTGTTAAACTACTGATTCTAATTGTTTGT
3361	GTATTTTAGATTCCAACCTATGGAACTGATGAATGGGAGCAGTGGTGGAATGCCTTTAAT
3421	GAGGAAAACCTGTTTTGCTCAGAAGAAATGCCATCTAGTGATGATGAGGCTACTGCTGAC
3481	TCTCAACATTCTACTCCTCCAAAAAAGAAGAAGAAAGGTAGAAGACCCCAAGGACTTTCCT
3541	TCAGAATTGCTAAGTTTTTTGAGTCATGCTGTTTTAGTAATAGAACTCTTGCTTT
3601	GCTATTTACACCACAAAGGAAAAAGCTGCACTGCTATACAAGAAAATTATGGAAAAATAT
3661	TCTGTAACCTTTATAAGTAGGCATAACAGTTATAATCATAACATACTGTTTTTTTT
3721	CCACACAGGCATAGAGTGTCTGCTATTAATAACTATGCTCAAAAATTGTGTACCTTTAGC
3781	TTTTTAATTTGTAAAGGGGTTAATAAGGAATATTTGATGTATAGTGCCTTGACTAGA GAT BsaB I
3841	CATAATCAGCCATACCACATTTGTAGAGGTTTTACTTGCTTTAAAAAAACCTCCCACACCT
3901	Mun I CCCCCTGAACCTGAAACATAAAATGAATG <mark>CAATTC</mark> TTGTTGTTAACTTGTTTATTGCAGC
3961	TTATAATGGTTACAAATAAAGCAATAGCATCACAAATTCACAAATAAAGCATTTTTTTC
4021	ACTGCATTCTAGTTGTGGTTTGTCCAAACTCATCAATGTATCTTATCATGTCTGGATCTA
4081	ATAAAAGATATTTATTTTCATTAGATATGTGTGTTTTTTTT
4141	CTGGAGGCCAGGTAGGGCTGGCCTTGGGGGGGGGGGGGG

4201	CAGGAAGGCAGGTCAGAGACCCCACTGGACAAACAGTGGCTGGACTCTGCACCATAACAC ECOR I
4261	ACAATCAACAGGGGAGTGAGCTGGAAATTTGCTAGCGAATTCcagcacactggcggccgt (Spe I)
4321	t <u>ACTAGT</u> TATTAATAGTAATCAATTACGGGGTCATTAGTTCATAGCCCATATATGGAGTT
4381	CCGCGTTACATAACTTACGGTAAATGGCCCGCCTGGCTGACCGCCCAACGACCCCCCCC
4441	ATTGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACG
4501	TCAATGGGTGGAGTATTTACGGTAAACTGCCCACTTGGCAGTACATCAAGTGTATCATAT
4561	GCCAAGTACGCCCCTATTGACGTCAATGACGGTAAATGGCCCGCCTGGCATTATGCCCA SnaB I
4621	GTACATGACCTTATGGGACTTTCCTACTTGGCAGTACATC <u>TACGTA</u> TTAGTCATCGCTAT
4681	TACCATGGTGATGCGGTTTTGGCAGTACATCAATGGGCGTGGATAGCGGTTTGACTCACG
4741	GGGATTTCCAAGTCTCCACCCCATTGACGTCAATGGGAGTTTGTTT
4801	ACGGGACTTTCCAAAATGTCGTAACAACTCCGCCCCATTGACGCAAATGGGCGGTAGGCG
4861	TGTACGGTGGGAGGTCTATATAAGCAGAGCTCGTTTAGTGAACCGTCAGATCGCCTGGAG
4921	ACGCCATCCACGCTGTTTTGACCTCCATAGAAGACACCGGGACCGATCCAGCCTCCGCGG
4981	CCGGGAACGGTGCATTGGAACGCGGATTCCCCGTGCCAAGAGTGACGTAAGTACCGCCTA
5041	TAGAGTCTATAGGCCCACCCCCTTGGCTTCTTATGCATGC
5101	GTCTATACACCCCGCTTCCTCATGTTATAGGTGATGGTATAGCTATAGCTGTG Xcm I
5161	GGTTATTGACCATTATTGACCACTCCCCTATTGGTGACGATACTTTCCATTACTAATCCA
5221	TAACATGCCTCTTTGCCACAACTCTCTTTATTGGCTATATGCCAATACACTGTCCTTCAG
5281	
5341	BspE I
5401	
	TACATCCGAGCCCTGCTCCCATGCCTCCAGCGACTCATGGTCGCTCGGCAGCTCCTTGCT
	CCTAACAGTGGAGGCCAGACTTAGGCACAGCACGATGCCCACCACCACCAGTGTGCCGCA
	CAAGGCCGTGGCGGTAGGGTATGTGTCTGAAAATGAGCTCgggggagcgggcttgcaccgc (Pvu II)
	. tgacgcatttggaagacttaaggcagcggcagaagaagatgcagg <u>cagctg</u> agttgttgt
	gttctgataagagtcagaggtaactcccgttgcggtgctgttaacggtggagggcagtgt
	agtotgagoagtactogttgotgoogogogogocaccagacataatagotgacagactaa Mlu I
5821	cagactgttcctttccatgggtcttttctgcagtcaccgtccttgacACGCGTCTCGGGA

_																				
ні	nd	II	т																	
			_		7 CC	n.m.c.	77.0	maai		ncc/	~~~	cmc	mmmi	m <i>c</i> ~	ama.	-m		-m	- CM/	-cmc
5881	AGG	<u>, 1 1</u> (3 CC(درا با و	MCC.															
						M	D	W	T	W	R	V	F	C	L	L	A	V	A	P
E 0 4 1	~~					cma.	~~~		~=~		.	~~~								
5941																				
	G	A	н					L			S	G	Α	E	V	K	K	P	G	A
								(Spe												
6001	CCC													ACT	GAA'	TAC.	ACC	ATA	CAC'	TGGG
	S	V	K	V	S	С	K	T	S	R	Y	T	F	T	<u>E_</u>	Y	T	I	<u>H</u>	W
					1	Msc	I									C	DR	1		
6061	TT	AGA(CAG	GCC	CCT	GGC	<u>CA</u> A	AGG	CTG	GAG'	rgg	ATA	GGA	GGT	ATT.	AAT	CCT	AAC	TAA	GGTA
	V	R	Q	A	P	G	Q	R	L	E	W	I	G	G	I	N	P	N	N	G
6121	TTC	CT	AAC'	TAC	AAC	CAG	AAG	TTC	AAG	GGC	CGG	GCC	ACC	TTG	ACC	GTA	GGC	AAG'	rct	GCCA
								F					T	L		v		ĸ	s	A
				CDR											-					
6181	GC	ACC			_	GAA	CTG	TCC	AGC	CTG	CGC	TCC	GAG	GAC	АСТ	GCA	GTC'	TAC	rac'	TGCG
	S		A			E	L	s	s	L	R	s	E	D	T	A	v	Y	Y	c
	_	_		_		_	_	_	_	_		_	_	_	-		•	•	_	Ĭ.
6241	CCZ	AGA	AGA	AGA	ATC	GCC	гат	GGT	TAC	GAC	GAG	GGC	САТ	GCT	'ΑͲG	GAC	TAC'	rggi	GGT	CAAG
	A	_	R					G					Н					W	G	0
	••	• •					DR					mH						••	•	¥
6301	GA	٥٥٥	~ጥጥ/	ርጥር:	a cc				CCT/	C N C			_	ጥረረ	ccc	TCC	ccc	~ <i>n c</i> (حسح	ጥርጥር
0301	G					V			301	JAG	1 00	MIC	<u></u>	160	.GCC	100	GCC.	CAG		IGIC
	G	1	ш	٧	1	٧	٦													
6361	CC	מרם		רכבי	דר <i>א</i>	יייבי		ACC.	אררי	יירייי	СФТ	יכרא	CCC	ጥረረ	ישככ	77	ccc	רר אי	TCG	כיוירייי
0301	CC	CA	CCG.	CGG	CA	CAI	360	ACC	ncc	101		GCA	IGCC	s	T	AAG K	G	P	S	V
														3	1	r	G	r	3	٧
6421	TC		ст С(CCA	~~~	ጥርር	rcc	776	אכר	N CC	тсч	ccc	ccc	ת <i>ה</i>	ccc		CTC	ccc	TCC	CTCC
0421		P		A	P				S	T	S					GCC A		G		L
	-	•	ы	A	Ľ	5	_	Age	-	1	٥	G	G	1	A	A	п	G	C	11
6481	TC	A A C	כאכי	יי <i>ס</i> מיי	Trunc					NCC.	CTC	·mcc	ישרר	ת ת	ייייריא	~~~		CTC	N C C	N C C C
0401	V		D.	Y	F			P				S	W V	AAC N	S	G G	GCC A	L L	ACC T	AGCG S
	٧	K	U	1	E	E	E	r	V	T	٧	3	N	N	٥	G	А	ш	1	5
65 41	CC	-m <i>-</i> -	~ 7 ~	300	mm~	~~~	~~~	CMC.	~m »	~ 7 ~	maa	.m.c. »		ama	·m » ~	maa	ama	300	200	cmaa
6541																				
		v E I	H	T	E	P	A	V	ц	Q	5	5	· G	L	Y	S	L	S	S	V
_			_	000	maa	200		mm~	~~~		~ .									
6601	_																			
	V	T	V	P	S	S	S	L	G	T	Q	T	Y	I	С	N	V	N	Н	K
6661																				
	Р	S	N	T	K	V	D	K	K	V	E	P	K	S	С	D	K	T	Н	T
		·																		
6721																				
	С	P	P	С	P	Α	P	E	L	L	G	G	₽	S	٧	F	L	F	P	P
6781																				
	K	P	K	D	T	L	M	Ι	S	R	T	P	Ε	V	T	С	V	V	V	D
_																				
6841																				
	V	S	H	E	D	P	E	V	K	F	N	W	Y	V	D	G	V	E	V	H
6901																				
	N	Α	K	T	K	P	R	E	E	Q	Y	N	S	T	Y	R	V	V	S	V

Fig. 3	3 /5	•																		
6961	TC: L	ACC(GTC(V	CTG(L	CAC(H				CTG L		GGC G		gagʻ E	TAC Y		TGC. C			TCC S	AACA N
7021		GCC A	CTC L	CCA(GCC A	CCC P	ATC I	GAG: E	AAA K	ACC T	ATC I	TCC S	AAA K	GCC A	AAA K	.GGG G	CAG Q	CCC P	CGA R	GAAC E
7081	CA P	CAG Q	GTG V	TAC. Y	ACC T	CTG(L		CCA' P			GAG <u>E</u>	gag E	ATG M	ACC T	AAG K	AAC N	CAG Q	GTC. V	AGC S	CTGA L
7141	CC T	TGC C	CTG L	GTC V	AAA K	GGC' G	TTC' F	TAT Y		AGC S	GAC D	ATC I	GCC A	GTG V	GAG E	TGG W	GAG E	AGC S	AAT N	GGGC G
7201	AG Q	CCG P	gag E	AAC N		TAC Y	AAG K	ACC T	ACG T	CCI P			CTG L	G A C D		GAC D	GGC G	TCC S	TTC F	TTCC F
7261	TC L	TAC Y	AGC S	AAG K		ACC T	GTG V			SAGC S			CAG Q	CAC Q		AAC N	GTC V	TTC F	TCA S	TGCT C
7321	CC S	GTG V	ATG M	CAT H	GAG E	A	CTG L goM	H	AAC N	CCAC H	TAC Y	T T	CAG Q	AAC K	AGC S	CTC L	TCC S	CTG L	TCT S	CCGG P
7381	G	K	*			CGG	CCG	GCA												
																				CCGG
																				CAAG
7621	AC	CTF	CAC	GA <i>I</i>	\GGC	AGG	TCA	GAG	AC	CCC	ACTO	GGA (CAAI	ACA	3TG	GCT	GGAC	CTCI	rgci	ACCAI
7681	. A.	CAC	CACA	AATO	CAAC	CAGO	GGA	GTG	SAG	CTG	Gaa	att	tgct	age	:ga	atta	aati	c T	7731	L
Fig.	34 /	A																		
2! o	. d T	gei						INT	ΓRC	N								5' ei	nd o	f CH1
ACC T	GT	CT		T <i>CA</i>	<i>G::</i>	GTO	GAG	TGG site <u>l</u>	GAT Barr	ICC HI	-(N)	48-0	CCT of the splice of the splic	CTC	TT(cept		G::		0	
_TC(· A(~C #	AG	GG	£															

ACC GTC TCC TCA G::::CC TCC ACC AAG GGC
T V S S S T K G

ACC GTC TCC TCA GCC TCC ACC AAG GGC
T V S S A S T K G

S T K G

Fig. 34 B

INTRON

-ACT GTG GCT GCA T V A A

IJ

GAA ATA AAA C::::GA ACT GTG GCT GCA E I K T V A A

IJ

GAA ATA AAA CGA ACT GTG GCT GCA E I K R T V A A

Fig. 35

Fig. 36

Fig. 37

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent ConventionEP 98 10 7925 shall be considered, for the purposes of subsequent proceedings, as the European search report

ategory	Citation of document with	indication, where appropriate,	Relevant	CLASSIFICATION OF THE
	of relevant pas	sages	to claim	APPLICATION (Int.Cl.6)
1	WELT ET AL.: "Ant	ibody targeting in	1-65	C12N15/13
	metastatic colon c	ancer: a phase I study		C07K16/40
	of monoclonal anti	body F19 against a		C07K16/46
	cell-surface prote	in of reactive tumor	ļ	C12N15/62
	stromal fibroblast	s"	ĺ	C12N15/85
	JOURNAL OF CLINICA	L ONCOLOGY.	1	C12N5/10
	vol. 12, no. 6, Ju	ne 1994, pages	ł	C07K19/00
	1193-1203, XP00208	3696		A61K47/48
	* abstract *			A61K51/10
	* page 1193, colum	n 1, line 1 - page 1194,		A61K39/395
	column 2, line 4 *			G01N33/577
	* page 1202, column	1 2. paragraph 2 *		G01N33/574
				30111337374
·	WO 93 05804 A (SLO		1-65	
	CANCER) 1 April 199	93		
	* abstract; claims	1-23 *	1 .	
İ	IIC E 602 761 A (001	INSTRUCTOR LITTLE TOTAL TOTAL		
	00 0 073 /01 A (SCI	NEIDER WILLIAM PET	1-65	
1	AL) 2 December 1997	1	1	
ļ	* abstract *			
1	* examples 3-9 *			TECHNICAL FIELDS SEARCHED (Int.Cl.6)
- 1	* column 2, 11ne 30	5 - column 3, line 59 *		
ŀ		-/	1	C07K
-		,		
NCO	MPLETE SEARCH			
		application, or one or more of its claims, doe		
ot comor	y with the EPC to such an extent that out, or can only be carried out partial	a magningful coatch was the state of the sa-	es/do cannot	
	arched completely:	lly, for these claims.		
laims se	arched incompletely;			
laims no	t searched :			
	r the limitation of the search:			
see	sheet C			
	Place of search	Date of completion of the search		Examiner
	MUNICH	21 December 1998	Mul	ler-Thomalla, K
C	TEGORY OF CITED DOCUMENTS	T : theory or principl		
-		E . earlier patent do-	cument, but publis	shed on, or
			TD.	
X : partic Y : partic	cularly relevant if taken alone cularly relevant if combined with anot	after the filing da her D document cited i	n the application	
X : partid Y : partid docu	cuainy relevant if taken alone cularly relevant if combined with anol ment of the same category nological background	ther D document cited in	n the application or other reasons	

141

EPO FORM 1563 63.82 (P04C67)

PARTIAL EUROPEAN SEARCH REPORT

Application Number

EP 98 10 7925

	DOCUMENTS CONSIDERED TO BE RELEVANT	CLASSIFICATION OF THE APPLICATION (Int.CI.6)	
ategory	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
Y	STUDNICKA G M ET AL: "Human-engineered monoclonal antibodies retain full specific binding activity by preserving non- CDR complementarity-modulating residues." PROTEIN ENGINEERING, (1994 JUN) 7 (6) 805-14. JOURNAL CODE: PR1. ISSN: 0269-2139., XP000447301 ENGLAND: United Kingdom * page 805, column 1, line 1 - page 806, column 2, paragraph 1 * * page 808, column 2, paragraph 1 * * page 813, column 2, paragraph 1 *	1-65	·
Y •	WRIGHT A ET AL: "Genetically engineered antibodies: progress and prospects." CRITICAL REVIEWS IN IMMUNOLOGY, (1992) 12 (3-4) 125-68. REF: 252 JOURNAL CODE: AF1. ISSN: 1040-8401., XP000616488 United States * page 139, column 2, paragraph 3 - page 141, column 1, paragraph 3 * * * page 157, column 2, paragraph 3 - page	1-65	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
А	158, column 1, paragraph 1 * WO 94 05690 A (SMITHKLINE BEECHAM CORP ;US ARMY (US): GROSS MITCHELL STUART (US);) 17 March 1994 + claim 5: figure 3 *	14-17	

INCOMPLETE SEARCH SHEET C

Application Number EP 98 10 7925

Although claims 50-52,54,55,57,61,62,65 are directed to a method of treatment of the human/animal body and/or a diagnostic method practised on the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.