Politechnika Wrocławska Wydział Budownictwa Lądowego i Wodnego Zakład Budownictwa Ogólnego

Projekt domu jednorodzinnego

Wykonał:

Piotr Kopka

SPIS TREŚCI

1. DANE OGÓLNE

- 1.1. Przeznaczenie i program użytkowy obiektu
- 1.2. Usytuowanie budynku
- 1.3. Typ budynku
- 1.4. Podstawa wykonania projektu

2. DANE SZCZEGÓŁOWE

- 2.1. Warunki wodno- gruntowe
- 2.2. Fundamenty
- 2.3. Izolacja pozioma i pionowa ścian i podłóg
- 2.4 Ściany zewnętrzne
- 2.5. Ściany wewnętrzne
- 2.6. Stropy
- 2.7. Dach
- 2.8. Kominy
- 2.9. Schody
- 2.10. Nadproża okienne i drzwiowe
- 2.11. Podłogi i posadzki
- 2.12. Drzwi i okna
- 2.13. Rynny i rury spustowe, obróbki blacharskie
- 2.14. Tynki zewnętrzne lub okładziny elewacyjne
- 2.15. Tynki lub okładziny wewnętrzne
- 2.16. Roboty malarskie

3. WYPOSAŻNIE BUDYNKU

- 3.1. Ogrzewanie
- 3.2. Wentylacja
- 3.3. Instalacja gazowa
- 3.4. Instalacja wodno- kanalizacyjna
- 3.5. Instalacja elektryczna

1. DANE OGÓLNE

Opis techniczny został sporządzony zgodnie z Rozporządzeniem Ministra Infrastruktury z dnia 3 lipca 2003 r. w sprawie szczegółowego zakresu i formy projektu budowlanego i zawiera opis projektu według kolejności określonej w rozporządzeniu.

1.1. Przeznaczenie i program użytkowy obiektu

Przedmiotowy budynek jest domem jednorodzinnym, przeznaczonym dla czteroosobowej rodziny.

Na parterze zaprojektowano pomieszczenia dla wspólnego użytkowania rodziny: wiatrołap, schody, kuchnię, pokój dzienny, spiżarnię, łazienkę z WC oraz gabinet.

Na poddaszu zaprojektowano sypialnię dla rodziców, po jednym pokoju dla dwojga dzieci oraz łazienkę z WC.

W piwnicy zaprojektowano następujące pomieszczenia: garaż dla jednego samochodu, kotłownię, pralnię, pomieszczenie gospodarcze oraz salę bilardową.

Zestawienie powierzchni budynku, obliczonych zgodnie z PN ISO 9836:1997, przedstawiono w tabeli 5.1

Kondygnacja	Powierzchnia całkowita [m²]	Powierzchnia użytkowa [m²]
piwnica	72,5	72,5
parter	76,64	76,64
poddasz	76,06	64,01
razem	225,2	213,15

Tabela 5.1 Zestawienie powierzchni budynku

1.2. Usytuowanie budynku

Budynek został zaprojektowany na osiedlu przy ulicy Szkolnej 24 w Bolesławcu. Nr działki budowlanej: 51/1. Wymiary działki: 22,33 x 20,17 m, powierzchnia: 450 m². Do budynku możliwe jest podłączenie instalacji wodnej, kanalizacyjnej, gazowej oraz elektrycznej. Elewacja frontowa została zaprojektowana zgodnie z przednią linią zabudowy 10m od granicy działki.

1.3. Typ budynku

Projektowany dom jest budynkiem wolnostojącym, dwukondygnacyjnym, w całości podpiwniczonym, z garażem, wykonanym w technologii tradycyjnej, przykrytym dachem dwuspadowym. Jest to budynek o układzie konstrukcyjnym podłużnym. Konstrukcję budynku stanowią ściany nośne zewnętrzne i wewnętrzne. Ściany zewnętrzne są jednowarstwowe, murowane. Obiekt został posadowiony na ławach fundamentowych.

1.4. Podstawa wykonania projektu

Projekt został wykonany na podstawie Umowy Zlecenia nr I/506/5325 z inwestorem Janem Kowalskim, zgodnie z założeniami miejscowego planu zagospodarowania terenu.

2. DANE SZCZEGÓŁOWE

2.1. Warunki wodno- gruntowe

Projektowany obiekt zlokalizowano w strefie o głębokości przemarzania gruntu 0,8 m

Fundamenty posadowiono na poziomie -3,15 m. Poziom parteru +0,00 m, terenu: -1,31 m. Ławy fundamentowe zagłębiono 1,84 m poniżej poziomu terenu. Budynek znajduje się na ternie płaskim.

2.2. Fundamenty

W budynku zaprojektowano ławy fundamentowe o wysokości 0,4 m z betonu C20/25. Szczegółowe wymiary fundamentów zamieszczono na rysunku 3.

2.3. Izolacja pozioma i pionowa ścian i podłóg

W budynku zaprojektowano następujące izolacje wodochronne:

- -Izolacje przeciwwilgociowe poziome: izolacja na ławach fundamentowych, izolacja pozioma ścian fundamentowych oraz izolacja posadzki piwnicy- warstwa papy podkładowej zgrzewalnej.
- -Izolacje przeciwwilgociowe pionowe: warstwa masy bitumicznej Dysperbit- izolacja została zaprojektowana do wysokości 10 cm ponad poziom terenu, łączy się z izolacją poziomą ściany fundamentowej.

2.4. Ściany zewnętrzne

Ściany zewnętrzne budynku zaprojektowano jako jednowarstwowe z bloczków Ytong Energo+ o grubości 365 mm łączone na pióro i wpust. Przyjęto następujący układ warstw:

- tynk cementowo- wapienny 15 mm
- bloczki Ytong Energo+ 365 mm
- izolacja przeciwwilgociowa z użyciem Dysperbitu (tylko dla ścian fundamentowych)
- folia kubełkowa (tylko dla ścian fundamentowych)
- tynk zewnętrzny (tylko dla ścian piwnicy i poddasza)

2.5. Ściany wewnętrzne

Ściany konstrukcyjne wewnętrzne zaprojektowano z bloczków Ytong o grubości 240 mm, natomiast ścianki działowe z bloczków Ytong o grubości 115 mm.

2.6. Stropy

W budynku zaprojektowano strop gęstożebrowy typu Teriva I o rozstawie osiowym belek 600 mm. Rysunki konstrukcyjne stropów na piwnicą i parterem pokazano na rysunkach 10 i 11. Wysokość pustaka przyjęto 210 mm, a warstwy nadbetonu 30 mm, zatem grubość konstrukcyjna stropu 240

mm. Długość belek przyjęto od 4200 do 6600 mm w module co 300 mm. Szerokość oparcia belek na ścianach przyjęto min. 80 mm. W stropie zaprojektowano żebra podwójne pod ściankami działowymi oraz żebra rozdzielcze. W miejscach gdzie niemożliwe jest rozłożenie belek i pustaków zaprojektowano płyty żelbetowe monolityczne o grubości 120 mm.

2.7. Dach

W budynku zaprojektowano dach dwuspadowy o konstrukcji jętkowej z drewna sosnowego klasy C18. Nachylenie połaci dachowych wynosi 45°. Rzut więźby dachowej pokazano na rysunku 7. Zaprojektowano następujące wymiary elementów więźby dachowej: murłata 140 x 140 mm, krokwie 80 x 200 mm, jętki 80 x 200 mm, łaty pod pokrycie dachowe 50 x 50 mm, kontrłaty 80 x 25 mm. Pokrycie dachu zaprojektowano z dachówki karpiówki. Ocieplenie dachu zaprojektowano z wełny mineralnej o grubości 200 mm, układanej pomiędzy krokwiami. Połączenia elementów drewnianych zaprojektowano z blach perforowanych, gwoździ, śrub i wkrętów. Murłatę należy odizolować od ścianki kolankowej za pomocą foli PE lub papy podkładowej.

2.8. Kominy

W budynku zaprojektowano dwa kominy z bloczków Ytong. W kominach tych przewidziano kanały wentylacyjne 140 x 140 mm oraz kanał spalinowy 140 x 140 mm z wkładem ze stali kwasoodpornej. Pod kominami zaprojektowano ławy fundamentowe. Wyloty z kanału spalinowego przewidziano wyprowadzić pionowo do góry. Wyloty kanałów wentylacyjnych zaprojektowano w bocznych ścianach kominów.

2.9. Schody

Wewnątrz budynku zaprojektowano schody żelbetowe monolityczne dwubiegowe, piwniczne o wymiarach 104 x 200 x 230 mm, nadziemne o wymiarach 104 x 180 x 270 mm. Do wykonania schodów przewidziano beton klasy C20/25. Wykończenie stopni zaprojektowano w schodach piwnicznych z pytek ceramicznych, a w nadziemnych z drewna. Schody zewnętrzne zaprojektowano jako żelbetowe z betonu klasy C20/25. Wjazd do garażu zaprojektowano z kostki brukowej z odwodnieniem liniowym przy bramie wjazdowej, a ścianki z betonu o grubości 100 mm. Nachylenie podjazdu wynosi 25%

2.10. Nadproża okienne i drzwiowe

W budynku zaprojektowano nadproża okienne i drzwiowe z systemowych belek nadprożowych Ytong YN oraz Ytong U po jednej belce na otwór.

2.11. Podłogi i posadzki

W łazienkach, kuchni, korytarzach i w piwnicy zaprojektowano płytki ceramiczne. W pozostałych pomieszczeniach (pokoju dziennym, pokoju i sypialniach) przewidziano podłogę z desek dębowych.

2.12. Drzwi i okna

W budynku zaprojektowano stolarkę drzwiową i okienną o typowych wymiarach drewnianą lub z PVC. Drzwi zewnętrzne powinno się zabezpieczyć przed włamaniem. W budynku przewidziano bramę garażową metalową o szerokości 2500 mm i wysokości 2000 mm.

2.13. Rynny i rury spustowe

Jako odprowadzenie wody z połaci dachowych zaprojektowano rynny o średnicy 150 mm i rury spustowe o średnicy 120 mm mocowane do krokwi i mury za pomocą haków i obejm z PVC. Należy

wykonać obróbki blacharskie zabezpieczające przed wodą i uszkodzeniami mechanicznymi przerwania ciągłości izolacji wodnej przy kominach, okapach i oknach połaciowych.

2.14. Tynki zewnętrzne lub okładziny wewnętrzne

Elewację budynku zaprojektowano według rozwiązania posiadającego aktualną Aprobatę Techniczną. Wszelkie elementy drewniane należy zabezpieczyć środkami do impregnacji drewna.

2.15. Tynki lub okładziny wewnętrzne

Tynki wewnętrzne zaprojektowano jako cementowo- wapienne grubości 15 mm. Sufity na poddaszu zaprojektowano z płyt gipsowo- kartonowych o grubości 12,5 mm (ogniotrwałych) na stelażu. W miejscach połączeń płyt należy wykonać gładź gipsową z elastyczną siatką zbrojeniową. W łazience na poddaszu przewidziano płyty gipsowo- kartonowe o wysokiej odporności na wilgoć.

2.16. Roboty malarskie

Ściany wewnętrzne zaprojektowano pokryć farbą akrylową lub emulsyjną. W pomieszczeniach wilgotnych należy zastosować farbę chroniącą przed pleśnią i grzybem. Elementy konstrukcji drewnianej należy zabezpieczyć przed owadami, grzybami i wilgocią odpowiednimi środkami.

3. WYPOSAŻENIE DOMU

3.1 Ogrzewanie

Zaprojektowano ogrzewanie z własnej kotłowni wraz z instalacją centralnego ogrzewania. Źródłem ciepła przewidziano kocioł gazowy dla potrzeb centralnego ogrzewania i ciepłej wody.

3.2. Wentylacja

W budynku zaprojektowano wentylację grawitacyjną w: kuchni, łazienkach, kotłowni, garażu, pralni za pomocą przewodów wentylacyjnych 140 x 140 mm, wyprowadzonych osobno z każdego wymienionego pomieszczenia i umieszczonych w dwóch kominach. W pomieszczeniach wilgotnych (łazienki, pralnia) należy zastosować drzwi z otworami.

3.3. Instalacja gazowa

Zaprojektowano wykonanie instalacji gazowej od przyłącza do kotła umieszczonego w piwnicy. Gazomierz będzie umieszczony w skrzynce przed budynkiem.

3.4. Instalacja wodno- kanalizacyjna

Zaprojektowano zaopatrzenie budynku w wodę z miejskiej sieci wodociągowej. Zainstalowanie wodomierza przewidziano w kotłowni.

3.5. Instalacja elektryczna

Budynek zostanie zaopatrzony w energię elektryczną poprzez doprowadzenie do niego linii kablowej znajdującej się w ulicy. Tablicę główną przewidziano w wiatrołapie, z której zaplanowano zasilać dalsze obwody.

Obliczenia murów z bloczków Ytong (beton komórkowy)

Obliczenia filara w ścianie zewnętrznej F1:

Ściana zewnętrzna wykonana z bloczków Ytong Energo+ PP2/0,3 S+GT 365 mm na zaprawie do cienkich spoin.

Dane z katalogu producenta:

- masa bloczka 365 mm: 21 kg
- zużycie na 1 m² muru: 8,33 szt.
- ciężar własny muru: 21 * 8,33 = 174,9 kg/m² = 1,75 kN/m²

Wytrzymałość charakterystyczna muru na ściskanie:

K = 0,75 dla betonu komórkowego na zaprawie do cienkich spoin

f_b = 2 MPa z katalogu producenta

$$f_k = 0.8 * K * f_b^{0.85} = 0.8 * 0.75 * 2^{0.85} = 1.08 MPa$$

Wytrzymałość obliczeniowa muru:

γ_M = 2,2 dla klasy robót B, elementów kategorii I, zaprawy przepisanej

$$f_d = \frac{f_k}{v_M} = \frac{1,08}{2,2} = 0,49 MPa$$

Dane geometryczne:

- wymiary filara: 0,365 m x 2,075 m
- grubość muru: t = 0,365 m
- szerokość pasma, z którego przekazywane jest obciążenie na filar: d = 3,275 m
- wysokość ściany w świetle stropów: h = 2,39 m

Zestawienie obciążeń na filar:

Ciężar ścian:

- ciężar własny muru: 1,75 * 1,35 = 2,36 kN/m²
- ciężar tynku cementowo- wapiennego: 0,015 * 18,5 * 1,35 = 0,37 kN/m²
- ciężar tynku zewnętrznego: 0,01 * 12 * 1,35 = 0,16 kN/m²
- ciężar własny ściany wynosi:

$$q_s = 2,36 + 0,37 + 0,16 = 2,89 \text{ kN/m}^2$$

Powierzchnia obciążenia stolarką okienną w piwnicy:

$$A_{obc,1} = 0.6 * 0.6 + 0.6 * 0.6 = 0.72 \text{ m}^2$$

Powierzchnia obciążającego muru (piwnica) skorygowana o powierzchnię stolarki okiennej:

$$A_{obc,2} = (2,39 + 0,24) * 3,275 - A_{obc,1} = 7,89 \text{ m}^2$$

Powierzchnia obciążenia stolarką okienną i drzwiową na parterze:

$$A_{obc.3} = 1.2 * 0.75 + 2.2 * 0.6 = 2.22 \text{ m}^2$$

Powierzchnia obciążającego muru (parter) skorygowana o powierzchnię stolarki okiennej i drzwiowej:

$$A_{obc,4} = (2,67 + 0,24) * 3,275 - A_{obc,3} = 7,31 \text{ m}^2$$

Powierzchnia obciążającego muru (poddasze):

$$A_{obc.5} = (0.85 + 0.24) * 3.275 = 3.57 m^2$$

Siły skupione od ciężaru ścian:

$$N_2 = A_{obc.5} * q_s = 3,57 * 2,89 = 10,32 kN$$

$$N_3 = A_{obc,4} * q_s + A_{obc,3} * q = 7,31 * 2,89 + 2,22 * 0,4 = 22,01 kN$$

$$N_4 = A_{obc,2} * q_s + A_{obc,1} * q = 7.89 * 2.89 + 0.72 * 0.4 = 23.09 kN$$

Obciążenie z dachu:

Stanowi je reakcja z krokwi, która wynosi 12,532 kN. Rozstaw 0,91 m.

$$N_1 = \frac{12,532}{0.91} * 3,275 = 45,10 \ kN$$

W obliczeniach przyjęto ciężar wieńca taki sam jak ciężar muru.

Przyjęto ciężar stolarki okiennej i drzwiowej q = 0,4 kN/m²

Sprawdzenie nośności:

$$\rho_n = \rho_2 = 0.75 \text{ z normy}$$

h = 2,39 m wysokość kondygnacji w świetle

$$h_{ef} = \rho_n * h = 0.75 * 2.39 = 1.79 m$$

$$t_{ef} = t = 0,365 \text{ m}$$

Przekrój 1:

Obciążenie obliczeniowe:

$$N_{1d} = N_1 + N_2 + N_3 = 45,10 + 10,32 + 22,01 = 77,43 \text{ kN}$$

Mimośród:

$$e_1 = \frac{M_{1d}}{N_{1d}} + e_{he} + e_{init} \ge 0.05t$$

 $\frac{M_{1d}}{N_{1d}}$ = 0 ze względu na brak obciążenia stropem

$$e_{he} = 0$$

$$e_{init} = \frac{h_{ef}}{450} = \frac{1,79}{450} = 0,004 \text{ m}$$

$$e_1 = 0 + 0 + 0.004 = 0.004m < 0.05t = 0.05 * 0.365 = 0.018 m$$

$$e_1 = 0.018 \text{ m}$$

Współczynnik redukcyjny:

$$\phi_{\rm I} = 1 - \frac{2e_1}{t} = 1 - \frac{2 \cdot 0,018}{0.365} = 0,90$$

Nośność filara:

$$N_{Rd} = \phi * t * f_d = 0.90 \cdot 0.365 \cdot 0.49 = 0.161 \, MN = 161 \, kN$$

 $N_{Ed} = N_{1d} = 77.43 \, kN$

$$77,43 \, kN < 161 \, kN$$

$$N_{Ed} \leq N_{Rd}$$

Warunek stanu granicznego nośności w przekroju 1 został spełniony.

Przekrój 2:

Obciążenie obliczeniowe:

$$N_{2d} = N_1 + N_2 + N_3 + N_4 = 45,10 + 10,32 + 22,01 + 23,09 = 100,52 \text{ kN}$$

Mimośród:

$$e_2 = \frac{M_{2d}}{N_{2d}} + e_{he} + e_{init} \ge 0.05t$$

$$\frac{M_{2d}}{N_{2d}}$$
 = 0 ze względu na brak obciążenia stropem

$$e_{he} = 0$$

$$e_{init} = \frac{h_{ef}}{450} = \frac{1,79}{450} = 0,004 \text{ m}$$

$$e_2 = 0 + 0 + 0.004 = 0.004m < 0.05t = 0.05 * 0.365 = 0.018 m$$

$$e_2 = 0,018 \text{ m}$$

Współczynnik redukcyjny:

$$\phi_2 = 1 - \frac{2e_2}{t} = 1 - \frac{2 \cdot 0,018}{0.365} = 0,90$$

Nośność filara:

$$N_{Rd} = \phi \cdot t \cdot f_d = 0.90 \cdot 0.365 \cdot 0.49 = 0.161 \, MN = 161 \, kN$$
 $N_{Ed} = N_{2d} = 100.52 \, kN$

$$100,52 \, kN < 161 \, kN$$

$$N_{Ed} \leq N_{Rd}$$

Warunek stanu granicznego nośności w przekroju 2 został spełniony.

Przekrój m:

Obciążenie obliczeniowe:

$$N_{md} = N_1 + N_2 + N_3 + 0.5 * N_4 = 45.10 + 10.32 + 22.01 + 0.5 * 23.09 = 88.98 kN$$

Mimośród:

$$e_{mk} = e_m + e_k \ge 0.05t$$

$$e_m = \frac{M_{md}}{N_{md}} + e_{hm} + e_{init}$$

$$\frac{M_{\rm md}}{N_{\rm md}}$$
 = 0 ze względu na brak obciążenia stropem

$$e_{hm} = 0$$

$$e_{init} = \frac{h_{ef}}{450} = \frac{1,79}{450} = 0,004 \text{ m}$$

$$e_m = 0 + 0 + 0,004 = 0,004m$$

$$e_k = 0.002 * \varphi_{00} * \frac{h_{ef}}{t_{ef}} * \sqrt{t * e_m}$$

 $arphi_{00}=$ 0,5 dla betonu komórkowego

$$e_k = 0.002 * 0.5 * \frac{1.79}{0.365} \sqrt{0.365 * 0.004} = 0.00019 m$$

$$e_{mk} = e_m + e_k = 0.004 + 0.00019 = 0.0042 \text{ m} < 0.05t = 0.05 * 0.365 = 0.018 \text{ m}$$
 $e_{mk} = 0.018 \text{ m}$

Współczynnik redukcyjny:

$$\phi_{\rm m} = 1 - \frac{2e_{\rm mk}}{t} = 1 - \frac{2 \cdot 0,018}{0.365} = 0,90$$

Nośność filara:

Noshose mara.
$$N_{Rd} = \phi \cdot t \cdot f_d = 0.90 \cdot 0.365 \cdot 0.49 = 0.161 \, MN = 161 \, kN$$

$$N_{Ed} = N_{md} = 88.98 \, kN$$

$$88.98 \, kN < 161 \, kN$$

$$N_{Ed} \leq N_{Rd}$$

 $N_{Ed} \leq N_{Rd}$ Warunek stanu granicznego nośności w przekroju m został spełniony.

Obliczenia ściany wewnętrznej F2

Ściana wewnętrzna wykonana z bloczków Ytong PP4/0,6 S+GT240 mm na zaprawie do cienkich spoin.

Dane z katalogu producenta:

- masa bloczka 240 mm: 23 kg
- zużycie na 1 m² muru: 8,33 szt.
- ciężar własny muru: $23 * 8,33 = 191,59 \text{ kg/m}^2 = 1,92 \text{kN/m}^2$

Wytrzymałość charakterystyczna muru na ściskanie:

K = 0,75 dla betonu komórkowego na zaprawie do cienkich spoin

f_b = 4 MPa z katalogu producenta

$$f_k = K * f_b^{0.85} = 0.75 * 4^{0.85} = 2.44 \text{ MPa}$$

Wytrzymałość obliczeniowa muru:

γ_M = 2,2 dla klasy robót B, elementów kategorii I, zaprawy przepisanej

$$f_d = \frac{f_k}{v_M} = \frac{2,44}{2.2} = 1,11 MPa$$

Dane geometryczne:

- wymiary: 0,24 m x 1 m
- grubość muru: t = 0,24 m
- szerokość pasma, z którego przekazywane jest obciążenie na mur: d = 1 m
- wysokość ściany w świetle stropów: h = 2,39 m
- rozpiętość stropu w świetle ścian: I_{s1} = 6,38 m, I_{s2} = 3,98 m

Rzut z góry:

Przekrój:

Zestawienie obciążeń na mur:

Ciężar ścian:

- ciężar własny muru: 1,92 * 1,35 = 2,59 kN/m²

- ciężar tynku cementowo- wapiennego: 2 * 0,015 * 18,5 * 1,35 = 0,75 kN/m 2

- ciężar własny ściany wynosi:

$$q_s = 2,59 + 0,75 = 3,34 \text{ kN/m}^2$$

Powierzchnia obciążającego muru (piwnica):

$$A_{obc1} = (2,39 + 0,24) \cdot 1,00 = 2,63 m^2$$

Powierzchnia obciążającego muru (parter):

$$A_{obc2} = (2,67 + 0,24) \cdot 1,00 = 2,91 \, m^2$$

Siły skupione od ciężaru ścian:

$$N_5 = q_s * A_{obc2} = 3.34 * 2.91 = 9.72 kN$$

$$N_6 = q_s * A_{obc1} = 3,34 * 2,63 = 8,78 kN$$

Obciążenie od stropów:

Obciążenie	Wartość charakterystyczna [kN/m²]	γf	Wartość obliczeniowa [kN/m²]
Panele 10 mm 10 mm * 0,08	0,080	1,35	0,108
Gładź cementowa 45 mm 0,045 * 21	0,945	1,35	1,276
Styropian 50 mm 0,05 * 0,45	0,023	1,35	0,031
Strop Teriva I	2,680	1,35	3,618
Tynk cementowo- wapienny 15 mm 0,015 * 19	0,285	1,35	0,385
Obciążenie zmienne użytkowe	1,500	1,5	2,250
Razem obciążenia	5,513		7,668

- obciążenie od stropu: 7,668 kN/m²

- powierzchnia obciążenia stropu:

 $A_{obc3} = 1.0 * 3.19 = 3.19 m^2$

$$A_{obc4}$$
 = 1,0 * 1,99 = 1,99 m²

- reakcje od stropu:

$$N_1 = N_3 = 7,668 * 3,19 = 24,46 \text{ kN}$$

$$N_2 = N_4 = 7,668 * 1,99 = 15,26 \text{ kN}$$

Sprawdzenie nośności:

$$\rho_{\rm n} = \rho_{\rm 2} = 0.75 \text{ z normy}$$

h = 2,39 m wysokość kondygnacji w świetle

$$h_{ef} = \rho_n * h = 0.75 * 2.39 = 1.79 m$$

$$t_{ef} = t = 0.24 \text{ m}$$

Przekrój 1:

Obciążenie obliczeniowe:

$$N_{1d} = N_1 + N_2 + N_3 + N_4 + N_5 = 24,46 + 15,26 + 24,46 + 15,26 + 9,72 = 89,16 \text{ kN}$$

$$e_1 = \frac{M_{1d}}{N_{1d}} + e_{init} \ge 0.05t$$

$$\begin{split} e_{init} &= \frac{h_{ef}}{450} = \frac{1,79}{450} = 0,004 \; m \\ M_{1d} &= \frac{\frac{n_6 E I_6}{h_6}}{\frac{n_6 E I_6}{h_6} + \frac{n_3 E I_3}{h_5} + \frac{n_3 E I_3}{l_3} + \frac{n_4 E I_4}{l_4}} \left[\frac{w_4 l_4^2}{4(n_4 - 1)} - \frac{w_3 l_3^2}{4(n_3 - 1)} \right] \eta \\ \eta &= 1 - \frac{k_m}{4} \end{split}$$

$$\eta = 1 - \frac{k_m}{4}$$

$$k_{m} = \frac{\frac{n_{4}EI4}{l_{4}} + \frac{n_{3}EI3}{l_{3}}}{\frac{n_{5}EI_{5}}{l_{5}} + \frac{n_{6}EI_{6}}{l_{6}}} \le 2,0$$

$$I = \frac{b \cdot h^3}{12} = \frac{1 \cdot 0.24^3}{12} = 0.0012 \ m^4$$

$$EI = 2440 * 0,0012 = 2,93 * 10^3 Nm^2$$

$$h_5 = 2,67 \text{ m}$$

$$h_6 = 2,39 \text{ m}$$

$$I_4 = 3,98 \text{ m}$$

$$I_3 = 6,38 \text{ m}$$

$$w_4 = w_3 = 7,668 \text{ kN/m}^2*1\text{m} = 7,668 \text{ kN/m}$$

$$k_{m} = \frac{\frac{4*2,93}{3,98} + \frac{4*2,93}{6,38}}{\frac{4*2,93}{2,67} + \frac{4*2,93}{2,39}} = 0,51 \le 2,0$$

$$\eta = 1 - \frac{0.51}{4} = 0.87$$

$$\eta = 1 - \frac{0.51}{4} = 0.87$$

$$M_{1d} = \frac{\frac{4 \times 2.93}{2.39}}{\frac{4 \times 2.93}{2.39} + \frac{4 \times 2.93}{6.38} + \frac{4 \times 2.93}{6.38} + \frac{4 \times 2.93}{3.98}} \left[\frac{7.668 \times 6.38^2}{4(4-1)} - \frac{7.668 \times 3.98^2}{4(4-1)} \right] \times 0.87 = 4.82 \text{ kNm}$$

$$e_1 = \frac{4,82}{89.16} + 0,004 = 0,058 \ge 0,05t = 0,05 * 0,240 = 0,012$$

Współczynnik redukcyjny:

$$\phi_1 = 1 - \frac{2e_1}{t} = 1 - \frac{2 \cdot 0,058}{0,24} = 0,52$$

Nośność filara:

$$N_{Rd} = \phi \cdot t \cdot f_d = 0.52 \cdot 0.24 \cdot 1.11 = 0.139 \, MN = 139 \, kN$$

$$N_{Ed} = N_{1d} = 89,16 \ kN$$

$$89.16 \, kN < 139 \, kN$$

$$N_{Ed} \leq N_{Rd}$$

Warunek stanu granicznego nośności w przekroju 1 został spełniony.

Przekrój 2:

Obciążenie obliczeniowe:

$$N_{2d} = N_1 + N_2 + N_3 + N_4 + N_5 + N_6 = 24,46 + 15,26 + 24,46 + 15,26 + 9,72 + 8,78 = 97,94 \text{ kN}$$

Mimośród:

$$e_2 = \frac{M_{2d}}{N_{2d}} + e_{init} \ge 0.05t$$

$$e_{init} = \frac{h_{ef}}{450} = \frac{1,79}{450} = 0,004 \text{ m}$$

$$M_{\rm 2d} = M_{\rm 1d} = 4.82 \, kNm$$

$$\begin{split} e_{init} &= \frac{h_{ef}}{450} = \frac{1,79}{450} = 0,004 \ m \\ M_{2d} &= M_{1d} = 4,82 \ kNm \\ e_2 &= \frac{4,82}{97,94} + 0,004 = 0,053 \ge 0,05t = 0,05 * 0,240 = 0,012 \ m \end{split}$$

Współczynnik redukcyjny:

$$\phi_2 = 1 - \frac{2e_2}{t} = 1 - \frac{2 \cdot 0.053}{0.24} = 0.56$$

Nośność filara:

$$N_{Rd} = \phi \cdot t \cdot f_d = 0.56 \cdot 0.24 \cdot 1.11 = 0.149 \, MN = 149 \, kN$$

$$N_{Ed} = N_{2d} = 97,94 \, kN$$

$$97.94 \, kN < 149 \, kN$$

$$N_{Ed} \leq N_{Rd}$$

Warunek stanu granicznego nośności w przekroju 2 został spełniony.

Przekrój m:

Obciążenie obliczeniowe:

$$N_{\text{md}} = N_1 + N_2 + N_3 + N_4 + N_5 + 0.5 * N_6 = 24.46 + 15.26 + 24.46 + 15.26 + 9.72 + 0.5 * 8.78 = 93.55 \text{ kN}$$

Mimośród:

$$e_{mk} = e_m + e_k \ge 0.05t$$

$$e_m = \frac{M_{md}}{N_{md}} + e_{init}$$

$$M_{md} = M_{1d} = 4.82 \ kNm$$

$$e_{init} = \frac{h_{ef}}{450} = \frac{1,79}{450} = 0,004 m$$

$$e_m = \frac{M_{md}}{N_{md}} + e_{init} = \frac{4,82}{93,55} + 0,004 = 0,056 m$$

$$e_k = 0.002 * \varphi_{00} * \frac{h_{ef}}{t_{ef}} * \sqrt{t * e_m}$$

 $arphi_{00}=$ 0,5 dla betonu komórkowego

$$e_k = 0.002 * 0.5 * \frac{1.79}{0.240} \sqrt{0.240 * 0.056} = 0.00086 m$$

 $e_{mk} = e_m + e_k = 0.056 + 0.00086 = 0.057 \,\mathrm{m} \ge 0.05t = 0.05*0.240 = 0.012 \,m$ Współczynnik redukcyjny:

$$\phi_{\rm m} = 1 - \frac{2e_{\rm mk}}{t} = 1 - \frac{2 \cdot 0,057}{0,240} = 0,53$$

Nośność filara:

$$N_{Rd} = \phi \cdot t \cdot f_d = 0.53 \cdot 0.240 \cdot 1.11 = 0.141 \, MN = 141 \, kN$$

 $N_{Ed} = N_{md} = 93.55 \, kN$

$$93,55 \, kN < 141 \, kN$$

$$N_{Ed} \leq N_{Rd}$$

Warunek stanu granicznego nośności w przekroju m został spełniony.

Obliczenia belek stropowych

Belka stropowa B1

Dane:

- Strop typu: Teriva I

- Wysokość konstrukcyjna stropu: 240 mm

- Długość belki w świetle ścian L_s = 6380 mm

Zestawienie obciążeń na strop Teriva I z ciężarem własnym:

Obciążenie	Wartość charakterystyczna [kN/m²]	γ f	Wartość obliczeniowa [kN/m²]
	Obciążenia stałe		
Panele 10 mm 10 mm * 0,08	0,080	1,35	0,108
Gładź cementowa 45 mm 0,045 * 21	0,945	1,35	1,276
Styropian 50 mm 0,05 * 0,45	0,023	1,35	0,031
Strop Teriva I	2,680	1,35	3,618
Tynk cementowo- wapienny 15 mm 0,015 * 19	0,285	1,35	0,385
Razem obciążenia stałe	4,013		5,418
Obciążenie zmienne użytkowe	1,500	1,5	2,250
Obciążenie ścianką działową równoległą	0,250	1,35	0,338

Wartość obliczeniowa obciążenia przypadająca na belkę B1:

$$(5,418 + 2,250) * 0,5 * 0,6 + (5,418 + 2,250) * 0,5 * 0,12 + 0,338 * 0,5 = 2,929 \ kN/m$$

$$I_{eff}$$
 = 1,05 * I_{s} = 1,05 * 6380 = 6700 mm

Schemat statyczny:

Wykres momentów zginających [kNm]:

Sprawdzenie stanu granicznego:

 $M_{max} = 16,435 \text{ kNm}$

M_{dop} = 28,87 kNm z katalogu producenta

16,435 kNm < 28,87 kNm

 $M_{\text{max}} < M_{\text{dop}}$

Warunek stanu granicznego został spełniony.

Belka stropowa B2

Dane:

- Strop typu: Teriva I

- Wysokość konstrukcyjna stropu: 240 mm

- Długość belki w świetle ścian L_s = 3980 mm

Zestawienie obciążeń na strop Teriva I z ciężarem własnym:

Obciążenie	Wartość charakterystyczna [kN/m²]	γ f	Wartość obliczeniowa [kN/m²]
	Obciążenia stałe		
Panele 10 mm 10 mm * 0,08	0,080	1,35	0,108
Gładź cementowa 45 mm 0,045 * 21	0,945	1,35	1,276
Styropian 50 mm 0,05 * 0,45	0,023	1,35	0,031
Strop Teriva I	2,680	1,35	3,618
Tynk cementowo- wapienny 15 mm 0,015 * 19	0,285	1,35	0,385
Razem obciążenia stałe	4,013		5,418
Obciążenie zmienne użytkowe	1,500	1,5	2,250

Wartość obliczeniowa obciążenia przypadająca na belkę B1:

$$(5,418 + 2,250) * 0,6 = 4,601 \, kN/m$$

Schemat statyczny:

Wykres momentów zginających [kNm]:

Sprawdzenie stanu granicznego:

 $M_{max} = 10,049 \text{ kNm}$

 M_{dop} = 11,49 kNm z katalogu producenta

10,049 kNm < 11,49 kNm

 $M_{\text{max}} < M_{\text{dop}}$

Warunek stanu granicznego został spełniony.

Obliczenia nadproża N1

Dane:

- Rodzaj nadproża: prefabrykowane Ytong YN-175/36,5
- Długość nadproża w świetle: I_s = 1200 mm
- Długość efektywna nadproża: $l_{\rm eff}$ = 1,05 * $l_{\rm s}$ = 1,05 * 1200 = 1260 mm

Widok fragmentu rzutu z nadprożem:

Widok fragmentu elewacji z nadprożem:

Przekrój pionowy

Zestawienie obciążeń dla nadproża:

Obciążenie	Wartość charakterystyczna [kN/m²]	γf	Wartość obliczeniowa [kN/m²]
Tynk cementowo- wapienny 15 mm 0,015 m * 19 kN/m ³	0,285	1,35	0,385
Mur z bloczków Ytong 365 mm 0,365 m * 3 kN/m³	1,095	1,35	1,478
Tynk zewnętrzny 10 mm 0,01 * 12	0,120	1,35	0,162
Razem	6,893		9,531
Wieniec żelbetowy 0,24 m* 0,24 m * 25 kN/m ³	1,440 [kN/m]	1,35	1,944 [kN/m]
Ciężar nadproża 1,410 kN / 1,740 m	0,810 [kN/m]	1,35	1,094 [kN/m]

Powierzchnia obciążenia dla nadproża wynosi:

$$A_{obc} = 0,687 \text{ m}^2$$

Obciążenie przypadające od muru: $N_1 = (0.385 + 1.478 + 0.162) * 0.687 = 1.391 kN$

q_s = 1,944 kN/m ciężar wieńca

$$q'_s = q_s * \frac{l_1}{l_{eff}} = 1,944 * \frac{0,971}{1,260} = 1,498 \, kN/m$$

Obciążenie zastępcze od ciężaru muru:

$$q_{zast1} = \frac{N_1}{l_{eff}} = \frac{1{,}391}{1.260} = 1{,}104\frac{kN}{m}$$

 $q_{nadproża} = 1,094 \text{ kN/m}$

Całkowite obciążenie zastępcze przypadające na nadproże:

$$q_{zast} = q_{zast1} + q_s' + q_{\text{nadproża}} = 1,104 + 1,498 + 1,094 = 3,696 \, kN/m$$

Schemat statyczny:

Wykres momentów zginających [kNm]:

Sprawdzenie stanu granicznego:

 $M_{max} = 0,733 \text{ kNm}$

M_{dop} = 5,24 kNm z katalogu producenta

0,733 kNm < 5,24 kNm

 $M_{\text{max}} < M_{\text{dop}}$

Warunek stanu granicznego został spełniony.

Obliczenia więźby dachowej

Dane:

- konstrukcja więźby: jętkowa

- rozstaw krokwi: 865mm - 980mm

- nachylenie połaci dachu: 45°

- pokrycie dachu: dachówka karpiówka

- rozstaw łat: 160mm

- lokalizacja budynku: Bolesławiec

- wysokość: 118 m n.p.m.

- strefa wiatrowa: I

- strefa śniegowa: I

- drewno: sosnowe C22 $\rho=$ 4,1 $\frac{kN}{m^3}$

- kategoria terenu: III

Wszystkie obliczenia statyczne zostały wykonane przy pomocy programu Autodesk Robot Structural Analysis Professional 2015

Obliczenia łaty:

Przyjęto łaty z drewna sosnowego C22 o wymiarach 50 x 50 mm o polu przekroju poprzecznego 0,0025 m^2

Obciążenia stałe:

obciążenie	wartość	współczynnik	Wartość obliczeniowa
	charakterystyczna		
	[kN/m]		[kN/m]
ciężar własny:	0,010	1,35	0,014
$0,0025 \text{ m}^2 * 4,1 \frac{\text{kN}}{\text{m}^3}$			
ciężar pokrycia: waga 1	0,092	1,35	0,124
dachówki karpiówki: 1,6			
kg, zapotrzebowanie na			
1 m ² : 36 sztuk, rozstaw			
łat: 0,16m			
0.016 kN * $36\frac{1}{m^2}$			
* 0,16 <i>m</i>			
Suma	0,102		0,138

Obciążenia zmienne:

Obciążenie śniegiem:

 $s = \mu_i C_e C_t s_k$

Wartość charakterystyczna obciążenia śniegiem gruntu w strefie 1:

$$s_k \text{= 0,007A- 1,4}$$
 , $s_k \text{\ge 0,70} \, \frac{\mathrm{kN}}{\mathrm{m}^2}$

A= 118 m n.pm.

$$s_k$$
= 0,007* 118- 1,4 ≤ 0,70 zatem s_k = 0,70 $\frac{kN}{m^2}$

Współczynnik ekspozycji:

C_e= 1,0 teren normalny

Współczynnik termiczny:

 $C_t = 1,0$

Współczynnik kształtu dachu:

 μ_i = 0,8(60-45)/30= 0,4 kąt spadku dachu 45°

Wartość charakterystyczna obciążenia śniegiem;

$$s = 0.4*1.0*1.0*0.70 \frac{kN}{m^2} = 0.28 \frac{kN}{m^2}$$

Wartość obliczeniowa obciążenia śniegiem:

$$s_d = s^* \gamma_F = 0.28 \frac{kN}{m^2} * 1.5 = 0.42 \frac{kN}{m^2}$$

Obciążenie wiatrem:

Podstawowa bazowa prędkość wiatru: $v_{b,0} = 22 \frac{m}{s}$ strefa 1, wysokość n.p.m. <300m

Podstawowe bazowe ciśnienie prędkości wiatru: $q_{b,0} = 0.3 \frac{kN}{m^2}$ strefa 1, wysokość n.p.m. <300m

c_{season} = 1,0 współczynnik sezonowy

c_{dir} = 1,0 współczynnik kierunkowy

Bazowa prędkość wiatru: $v_b = c_{dir} * c_{season} * v_{b,0} = 1,0 * 1,0 * 22 = 22 \frac{m}{s}$

 $\rho = 1.25 \frac{\text{kg}}{\text{m}^3}$ gęstość powietrza

Bazowe ciśnienie prędkości wiatru: $q_b = \frac{1}{2} * \rho * v_b^2 = \frac{1}{2} * 1,25 * 22^2 = 302,5 Pa = 0,303 kPa$

Współczynnik ekspozycji $c_e(z) = 1.9 * \left(\frac{z}{10}\right)^{0.26} = 1.9 * \left(\frac{9.6}{10}\right)^{0.26} = 1.88 \text{ KT III oraz } z = 9.6 \text{m}$

Wartość szczytowego ciśnienia prędkości wiatru: $q_p(z) = c_e(z) * q_b = 1,88 * 0,303 = 0,570$ kPa dla wysokości z= 9,6 m

Ciśnienie wiatru na powierzchnie zewnętrzne:

Maksymalna wartość współczynnika ciśnienia zewnętrznego to $c_{pe,10}$ = +0,7 dla kąta α = 45°

Ciśnienie wiatru na powierzchnie zewnętrzne: $w_e = q_p * c_{pe} = 0,570 * 0,7 = 0,399 \text{ kPa}$

Wartość obliczeniowa obciążenia wiatrem: w_{ed} = w_e * γ_Q = 0,399 * 1,5 = 0,599 kPa

Obciążenie charakterystyczne skupione: Q_k= 1,0 kN ciężar człowieka

Obciążenie charakterystyczne skupione obliczeniowe: $Q_d = Q_k * \gamma_Q = 1,0 * 1,5 = 1,5 \text{ kN}$

Długość przesła leff= 980mm

Składowe obciążeń:

Obciążenia stałe:

$$g \perp = g \cdot \cos \alpha$$

$$g^{\parallel} = g \cdot \sin \alpha$$

Obciążenie śniegiem:

$$s \perp = s \cdot \cos^2 \alpha$$

$$s^{\parallel} = s \cdot \sin \alpha \cdot \cos \alpha$$

Obciążenie wiatrem:

$$w_e \perp = w_e$$

$$w_e^{II} = 0$$

Obciążenie siłą skupioną:

$$Q_k \perp = Q_k \cdot \cos \alpha$$

$$Q_k^{\ II} = Q_k \cdot \sin \alpha$$

Dla
$$\alpha$$
 = 45° sin α = cos α = 0,707

Zestawienie obciążeń:

Obciążenie	Wartość Współczynnik		Wartość	
	charakterystyczna	obciążenia γ _G (γ _Q)	obliczeniowa	
	[kN/m]		[kN/m]	
g- ciężar własny łaty i pokrycia	0,102	1,35	0,138	
s- śnieg $0.28 \frac{kN}{m^2} * 0.16 m$	0,045	1,5	0,068	
$w_{e^{-}}$ wiatr $0,399 \frac{kN}{m^2} * 0,16m$	0,064	1,5	0,096	
Suma	0,211		0,302	
Q _k - siła skupiona	1 [kN]	1,5	1,5 [kN]	

	Wartości składowe	Wartości składowe prostopadłe		Wartości składowe równoległe	
	obciążenia	obciążenia			
	Charakterystyczne	Obliczeniowe	Charakterystyczne Obliczeniowe		
	[kN/m]	[kN/m]	[kN/m]	[kN/m]	
g	0,072	0,098	0,072	0,098	
S	0,032	0,048	0,032	0,048	
We	0,045	0,068	0	0	
Suma	0,149	0,214	0,104	0,146	
Q_k	0,707	1,061	0,707	1,061	

Przyjęto dwa warianty obciążeń:

- 1. Wariant I ciężar własny łaty i pokrycia, siła skupiona
- 2. Wariant II ciężar własny łaty i pokrycia, śnieg, wiatr

 $I_{eff} = 0.980 m$

0,432 l_{eff} = 0,423m

Wariant I:

1) Wartości składowe prostopadłe obciążenia – schemat statyczny:

Wykres momentów zginających M_y [kNm]:

2) Wartości składowe równoległe obciążenia – schemat statyczny:

Wykres momentów zginających M_z [kNm]:

Sprawdzenie stanu granicznego nośności ULS:

Wskaźniki wytrzymałościowe łaty 50mm x 50mm

$$W_y = \frac{b * h^2}{6} = \frac{0.05 * 0.05^2}{6} = 20.83 * 10^{-6} \text{ m}^3$$

$$W_z = \frac{h * b^2}{6} = \frac{0.05 * 0.05^2}{6} = 20.83 * 10^{-6} \text{ m}^3$$

Naprężenia obliczeniowe od zginania w stosunku do osi głównych:

$$\sigma_{\text{m,y,d}} \! = \! \; \frac{M_y}{W_y} \! = \! \frac{0,\!222}{20,\!83*10^{-6}} \! = 10658 \; \text{kPa} = 10,\!658 \; \text{Mpa}$$

$$\sigma_{\text{m,z,d}}\text{=}~\frac{M_z}{W_z} = \frac{0,222}{20,83*10^{-6}} = 10658 \text{ kPa} = 10,658 \text{ Mpa}$$

Wytrzymałość charakterystyczna drewna klasy C22 na zginanie:

$$f_{m,y,k} = 22 MPa$$

Częściowy współczynnik bezpieczeństwa dla drewna: γ_M= 1,3

$$k_{\text{mod}} = 1,1$$

Wytrzymałość obliczeniowa drewna na zginanie: $f_{m,y,d} = f_{m,z,d} = \frac{k_{mod} * f_{m,y,k}}{\gamma_M} = \frac{1,1*22}{1,3} = 18,62 \text{ MPa}$

Ze względu na wymiary elementu mniejsze niż 150 mm uwzględniono zwiększoną wytrzymałość:

$$k_h = (\frac{150}{h})^{0.2} = (\frac{150}{50})^{0.2} = 1.25 < 1.3$$

$$f_{m,y,d} = f_{m,y,d} * k_h = 18,62 * 1,25 = 23,28 \text{ MPa} = f_{m,z,d}$$

współczynnik korekcyjny dla przekrojów prostokątnych: k_m= 0,7

$$k_m * \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} = 0.7 * \frac{10,658}{23,28} + \frac{10,658}{23,28} = 0.78 < 1.0$$

$$\frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m * \frac{\sigma_{m,z,d}}{f_{m,z,d}} = \frac{10,658}{23,28} + 0.7 * \frac{10,658}{23,28} = 0.78 < 1.0$$

Warunek stanu granicznego nośności dla łaty został spełniony.

Sprawdzenie stanu granicznego użytkowalności SLS:

Graniczna wartość ugięcia deskowania dachowego:

$$U_{\text{net,fin}} = \frac{l_{\text{eff}}}{150} = \frac{980}{150} = 6,53 \text{ mm}$$

Wykres ugięć belki w kierunku prostopadłym i równoległym [cm]:

Obliczenie ugięcia wypadkowego belki:

$$u_x = u_y = 0.329 \text{ cm} = 3.29 \text{ mm}$$

$$u_{fin} = \sqrt{2 * 3,29^2} = 4,65 \text{ mm}$$

 $4,65 \text{ mm} < 6,53 \text{ mm czyli } u_{\text{fin}} < u_{\text{net,fin}}$

Warunek stanu granicznego użytkowalności dla łaty został spełniony.

Wariant II:

1) Wartości składowe prostopadłe obciążenia – schemat statyczny:

Wykres momentów zginających M_y [kNm]:

2) Wartości składowe równoległe obciążenia – schemat statyczny:

Wykres momentów zginających M_z [kNm]:

Maksymalne momenty zginające w wariancie II są znacznie mniejsze, niż w wariancie I. Nie trzeba zatem sprawdzać stanów granicznych ULS i SLS dla wariantu II.

Ostatecznie przyjęto łatę o wymiarach 50 mm x 50 mm.

Obliczenia krokwi:

Przyjęto do obliczeń krokwie o wymiarach 80 mm x 200 mm o polu przekroju poprzecznego $A = 0.016 \text{ m}^2$ oraz jętki o wymiarach 80 mm x 200 mm o polu przekroju poprzecznego $A = 0.016 \text{ m}^2$. Przyjęto ocieplenie połaci dachowych wełną mineralną grubości 200 mm. Założono, że na jętkach będzie wykonany strop ocieplony, a przestrzeń nad jętką będzie dostępna przez wyłaz rewizyjny.

Schemat statyczny wiązara dachowego jętkowego:

Przyjęto:

obciążenie użytkowe q_k = 0,4 $\frac{kN}{m^2}$

rozstaw krokwi 980 mm

wykonanie z drewna sosnowego C22 $\rho=$ 4,1 $\frac{kN}{m^3}$

Z poprzednich obliczeń:

$$q_p(z) = 0.570 \text{ kPa}$$

$$s = 0,28 \frac{kN}{m^2}$$

Zestawienie obciążeń:

Obciażonio	Wartość	Współczynnik	Wartość
Obciążenie			obliczeniowa
	charakterystyczna	obciążenia γ _G (γ _Q)	
A4 Cining land deals its	[kN/m]		[kN/m]
A1. Ciężar własny dachu i kr			1
Ciężar łaty	0,061	1,35	0,082
$0.010 \frac{\text{kN}}{\text{m}} * \frac{1}{0.16\text{m}}$			
* 0,98 <i>m</i>	0.564	4.25	0.764
Ciężar własny dachówki	0,564	1,35	0,761
$0,016$ kN * $36\frac{1}{m^2}$ * $0,98m$			
Ciężar własny krokwi	0,066	1,35	0,089
$0.016 \text{m}^2 * 4.1 \frac{\text{kN}}{\text{m}^3}$			
Razem	g _k = 0,691		g _d = 0,932
A2. Ciężar własny dachu i kr	okwi pod jętką		
Ciężar łaty	0,061	1,35	0,082
$0.010 \frac{\text{kN}}{\text{m}} * \frac{1}{0.16\text{m}}$			
$\frac{0,010}{m} * \frac{0,16m}{0,16m}$			
* 0,98 <i>m</i>			
Ciężar własny dachówki	0,564	1,35	0,761
0.016 kN * $36\frac{1}{m^2}$ * 0.98 m			
Ciężar ocieplenie wełną	0,196	1,35	0,264
mineralną			
0,2m * 1 ^{kN} / _{m³} * 0,98m			
Ciężar własny krokwi	0,066	1,35	0,089
$0,016\text{m}^2*4,1\frac{\text{kN}}{\text{m}^3}$			
Ciężar własny rusztu	0,059	1,35	0,080
drewnianego			
(6 cm x 12 cm co 0,5 m)			
$\frac{0.06 * 0.12}{0.5} * 4.1 \frac{\text{kN}}{\text{m}^3}$			
Ciężar płyt gipsowo-	0,147	1,35	0,198
kartonowych na ruszcie			
0,0125 m * 12 $\frac{kN}{m^3}$ * 0,98 m			

Razem	g' _k = 1,093		g' _d = 1,474		
B. Śnieg w przeliczeniu na p	ołać				
B1. Jedna połać obciążona bardziej niż druga					
S1					
Połać lewa	0,137	1,5	0,206		
$0.5 * 0.28 \frac{kN}{m^2} * 0.98 m$					
Połać prawa	0,274	1,5	0,411		
$0.28 \frac{\text{kN}}{\text{m}^2} * 0.98 \text{m}$	3,27	_,_	3,		
S2					
Połać lewa	0,274	1,5	0,411		
$0.28 \frac{\text{kN}}{\text{m}^2} * 0.98 \text{m}$					
Połać prawa	0,137	1,5	0,206		
$0.5 * 0.28 \frac{kN}{m^2} * 0.98 m$	0,137	1,3	0,200		
B2. Obie połacie obciążone	tak samo				
S3	0,274	1,5	0,411		
$0.28 \frac{\text{kN}}{\text{m}^2} * 0.98 \text{m}$					
A3. Ciężar własny stropu oc	ieplonego				
Ciężar jętki	0,066	1,35	0,089		
$0,016\text{m}^2*4,1\frac{\text{kN}}{\text{m}^3}$					
Ciężar desek nad jętką	0,050	1,35	0,068		
(50% powierzchni)					
$0.025 \text{m} * 0.5 \text{m} * 4.1 \frac{\text{kN}}{\text{m}^3} *$					
0,98m					
Ciężar ocieplenie wełną	0,196	1,35	0,264		
mineralną	,	,	,		
0,2m * 1 kN/m ³ * 0,98m					
Ciężar własny rusztu	0,059	1,35	0,080		
drewnianego					
(6 cm x 12 cm co 0,5 m)					
$\frac{0,06*0,12}{0,5}*4,1\frac{kN}{m^3}$					
•					
Ciężar płyt gipsowo-	0,147	1,35	0,198		
kartonowych na ruszcie					
0,0125 m * 12 $\frac{\text{kN}}{\text{m}^3}$ * 0,98 m					
Razem	g _{k1} = 0,518		$g_{d1} = 0,699$		
C. Obciążenie użytkowe na j	ętce	T	I		
$g_2 = 0.4 \frac{kN}{m^2} * 0.98 m$	g _{k2} = 0,392	1,5	$g_{d2} = 0,588$		

Współczynniki ciśnienia i wartości charakterystyczne obciążenia wiatrem budynku:

Kierunek wiatru $\phi = 90^{\circ}$

	Pole dla kierunku wiatru φ = 90°				
	F	G	Н	I	
C _{pe,10}	-1,1	-1,4	-0,9	-0,5	
$w_{e,10} = q_p(z) * C_{pe,10}$ $\left[\frac{kN}{m^2}\right]$	-0,627	-0,798	-0,513	-0,285	
Ci	0,2	0,2	0,2	0,2	
$w_i = q_p(z) * C_i$ $\left[\frac{kN}{m^2}\right]$	0,114	0,114	0,114	0,114	
$W_{\text{net,10}}\left[\frac{kN}{m^2}\right]$	-0,741	-0,912	-0,627	-0,399	

Kierunek wiatru φ = 0°

	Pole dla kierunku wiatru φ = 0°				
	F	G	Н	1	J
C _{pe,10}	0	0	0	0	0
	0	0	0	-0,2	-0,3
	0,7	0,7	0,6	0	0
	0,7	0,7	0,6	-0,2	-0,3
$W_{e,10} = q_p(z) * C_{pe,10}$	0	0	0	0	0
$\left[\frac{kN}{m^2}\right]$	0	0	0	-0,114	-0,171
^L m ²	0,399	0,399	0,342	0	0
	0,399	0,399	0,342	-0,114	-0,171
Ci	0,2	0,2	0,2	0,2	0,2
	-0,3	-0,3	-0,3	-0,3	-0,3
$w_i = q_p(z) * C_i$	0,114	0,114	0,114	0,114	0,114
$\left[\frac{kN}{m^2}\right]$	-0,171	-0,171	-0,171	-0,171	-0,171
Wnet,10	-0,114	-0,114	-0,114	-0,114	-0,114
$\left[\frac{kN}{m^2}\right]$	-0,114	-0,114	-0,114	-0,228	-0,285
^L m ²	0,285	0,285	0,228	-0,114	-0,114
	0,285	0,285	0,228	-0,228	-0,285
	0,171	0,171	0,171	0,171	0,171
	0,171	0,171	0,171	0,057	0
	0,228	0,228	0,513	0,171	0,171
	0,228	0,228	0,513	0,057	0

Zestawienie obciążeń od wiatru:

D. Wartości charakterystyczne obciążenia wiatrem dla danych pól [kN/m] w _{net,10} * 0,98m						
	F G H I J					
W1 -0,112 -0,112 -0,112 -0,112 -0,112						
W2	-0,112	-0,112	-0,112	-0,223	-0,279	

W3	0,279	0,279	0,223	-0,112	-0,112
W4	0,279	0,279	0,223	-0,223	-0,279
W5	0,168	0,168	0,168	0,168	0,168
W6	0,168	0,168	0,168	0,056	0
W7	0,223	0,223	0,503	0,168	0,168
W8	0,223	0,223	0,503	0,056	0
W9	-0,726	-0,894	-0,614	-0,391	

Możliwe kombinacje obciążeń:

Obciążenia wiodące stałe i od wiatru, obciążenia towarzyszące śniegiem i użytkowe					
Nr	Obciążenie stałe	Obciążenie	Obciążenie	Obciążenie	
kombinacji	G	wiatrem	śniegiem	użytkowe	
		W	S	Q	
	1,35	1,5	1,5 * 0,5	1,5 * 0	
1	1,35 * G	1,5 * W1	1,5 * 0,5 * S1	1,5 * 0 * Q	
2	1,35 * G	1,5 * W1	1,5 * 0,5 * S2	1,5 * 0 * Q	
3	1,35 * G	1,5 * W1	1,5 * 0,5 * S3	1,5 * 0 * Q	
4	1,35 * G	1,5 * W2	1,5 * 0,5 * S1	1,5 * 0 * Q	
5	1,35 * G	1,5 * W2	1,5 * 0,5 * S2	1,5 * 0 * Q	
6	1,35 * G	1,5 * W2	1,5 * 0,5 * S3	1,5 * 0 * Q	
7	1,35 * G	1,5 * W3	1,5 * 0,5 * S1	1,5 * 0 * Q	
8	1,35 * G	1,5 * W3	1,5 * 0,5 * S2	1,5 * 0 * Q	
9	1,35 * G	1,5 * W3	1,5 * 0,5 * S3	1,5 * 0 * Q	
10	1,35 * G	1,5 * W4	1,5 * 0,5 * S1	1,5 * 0 * Q	
11	1,35 * G	1,5 * W4	1,5 * 0,5 * S2	1,5 * 0 * Q	
12	1,35 * G	1,5 * W4	1,5 * 0,5 * S3	1,5 * 0 * Q	
13	1,35 * G	1,5 * W5	1,5 * 0,5 * S1	1,5 * 0 * Q	
14	1,35 * G	1,5 * W5	1,5 * 0,5 * S2	1,5 * 0 * Q	
15	1,35 * G	1,5 * W5	1,5 * 0,5 * S3	1,5 * 0 * Q	
16	1,35 * G	1,5 * W6	1,5 * 0,5 * S1	1,5 * 0 * Q	
17	1,35 * G	1,5 * W6	1,5 * 0,5 * S2	1,5 * 0 * Q	
18	1,35 * G	1,5 * W6	1,5 * 0,5 * S3	1,5 * 0 * Q	
19	1,35 * G	1,5 * W7	1,5 * 0,5 * S1	1,5 * 0 * Q	
20	1,35 * G	1,5 * W7	1,5 * 0,5 * S2	1,5 * 0 * Q	
21	1,35 * G	1,5 * W7	1,5 * 0,5 * S3	1,5 * 0 * Q	
22	1,35 * G	1,5 * W8	1,5 * 0,5 * S1	1,5 * 0 * Q	
23	1,35 * G	1,5 * W8	1,5 * 0,5 * S2	1,5 * 0 * Q	
24	1,35 * G	1,5 * W8	1,5 * 0,5 * S3	1,5 * 0 * Q	
25	1,35 * G	1,5 * W9	1,5 * 0,5 * S1	1,5 * 0 * Q	
26	1,35 * G	1,5 * W9	1,5 * 0,5 * S2	1,5 * 0 * Q	
27	1,35 * G	1,5 * W9	1,5 * 0,5 * S3	1,5 * 0 * Q	
Obciążenia v	wiodące stałe i od ś	niegu, obciążenia tow	arzyszące wiatrem i u	żytkowe	
Nr	Obciążenie stałe	Obciążenie	Obciążenie	Obciążenie	
kombinacji	G	śniegiem	wiatrem	użytkowe	
		S	W	Q	

	ı		T	
	1,35	1,5	1,5 * 0,6	1,5 * 0
28	1,35 * G	1,5 * S1	1,5 * 0,6 * W1	1,5 * 0 * Q
29	1,35 * G	1,5 * S2	1,5 * 0,6 * W1	1,5 * 0 * Q
30	1,35 * G	1,5 * S3	1,5 * 0,6 * W1	1,5 * 0 * Q
31	1,35 * G	1,5 * S1	1,5 * 0,6 * W2	1,5 * 0 * Q
32	1,35 * G	1,5 * S2	1,5 * 0,6 * W2	1,5 * 0 * Q
33	1,35 * G	1,5 * S3	1,5 * 0,6 * W2	1,5 * 0 * Q
34	1,35 * G	1,5 * S1	1,5 * 0,6 * W3	1,5 * 0 * Q
35	1,35 * G	1,5 * S2	1,5 * 0,6 * W3	1,5 * 0 * Q
36	1,35 * G	1,5 * S3	1,5 * 0,6 * W3	1,5 * 0 * Q
37	1,35 * G	1,5 * S1	1,5 * 0,6 * W4	1,5 * 0 * Q
38	1,35 * G	1,5 * S2	1,5 * 0,6 * W4	1,5 * 0 * Q
39	1,35 * G	1,5 * S3	1,5 * 0,6 * W4	1,5 * 0 * Q
40	1,35 * G	1,5 * S1	1,5 * 0,6 * W5	1,5 * 0 * Q
41	1,35 * G	1,5 * S2	1,5 * 0,6 * W5	1,5 * 0 * Q
42	1,35 * G	1,5 * S3	1,5 * 0,6 * W5	1,5 * 0 * Q
43	1,35 * G	1,5 * S1	1,5 * 0,6 * W6	1,5 * 0 * Q
44	1,35 * G	1,5 * S2	1,5 * 0,6 * W6	1,5 * 0 * Q
45	1,35 * G	1,5 * S3	1,5 * 0,6 * W6	1,5 * 0 * Q
46	1,35 * G	1,5 * S1	1,5 * 0,6 * W7	1,5 * 0 * Q
47	1,35 * G	1,5 * S2	1,5 * 0,6 * W7	1,5 * 0 * Q
48	1,35 * G	1,5 * S3	1,5 * 0,6 * W7	1,5 * 0 * Q
49	1,35 * G	1,5 * S1	1,5 * 0,6 * W8	1,5 * 0 * Q
50	1,35 * G	1,5 * S2	1,5 * 0,6 * W8	1,5 * 0 * Q
51	1,35 * G	1,5 * S3	1,5 * 0,6 * W8	1,5 * 0 * Q
52	1,35 * G	1,5 * S1	1,5 * 0,6 * W9	1,5 * 0 * Q
53	1,35 * G	1,5 * S2	1,5 * 0,6 * W9	1,5 * 0 * Q
54	1,35 * G	1,5 * S3	1,5 * 0,6 * W9	1,5 * 0 * Q
			arzyszące od śniegu i	
Nr	Obciążenie stałe	Obciążenie	Obciążenie	Obciążenie
kombinacji	G	użytkowe	śniegiem	wiatrem
_		Q	S	W
	1,35	1,5	1,5 * 0,5	1,5 * 0,6
55	1,35 * G	1,5 * Q	1,5 * 0,5 * S1	1,5 * 0,6 * W1
56	1,35 * G	1,5 * Q	1,5 * 0,5 * S2	1,5 * 0,6 * W1
57	1,35 * G	1,5 * Q	1,5 * 0,5 * S3	1,5 * 0,6 * W1
58	1,35 * G	1,5 * Q	1,5 * 0,5 * S1	1,5 * 0,6 * W2
59	1,35 * G	1,5 * Q	1,5 * 0,5 * S2	1,5 * 0,6 * W2
60	1,35 * G	1,5 * Q	1,5 * 0,5 * S3	1,5 * 0,6 * W2
61	1,35 * G	1,5 * Q	1,5 * 0,5 * S1	1,5 * 0,6 * W3
62	1,35 * G	1,5 * Q	1,5 * 0,5 * S2	1,5 * 0,6 * W3
63	1,35 * G	1,5 * Q	1,5 * 0,5 * S3	1,5 * 0,6 * W3
64	1,35 * G	1,5 * Q	1,5 * 0,5 * S1	1,5 * 0,6 * W4
65	1,35 * G	1,5 * Q	1,5 * 0,5 * S2	1,5 * 0,6 * W4
66	1,35 * G	1,5 * Q	1,5 * 0,5 * S3	1,5 * 0,6 * W4
67	1,35 * G	1,5 * Q	1,5 * 0,5 * S1	1,5 * 0,6 * W5
	,	1 /	,,	, , -,

68	1,35 * G	1,5 * Q	1,5 * 0,5 * S2	1,5 * 0,6 * W5	
69	1,35 * G	1,5 * Q	1,5 * 0,5 * S3	1,5 * 0,6 * W5	
70	1,35 * G	1,5 * Q	1,5 * 0,5 * S1	1,5 * 0,6 * W6	
71	1,35 * G	1,5 * Q	1,5 * 0,5 * S2	1,5 * 0,6 * W6	
72	1,35 * G	1,5 * Q	1,5 * 0,5 * S3	1,5 * 0,6 * W6	
73	1,35 * G	1,5 * Q	1,5 * 0,5 * S1	1,5 * 0,6 * W7	
74	1,35 * G	1,5 * Q	1,5 * 0,5 * S2	1,5 * 0,6 * W7	
75	1,35 * G	1,5 * Q	1,5 * 0,5 * S3	1,5 * 0,6 * W7	
76	1,35 * G	1,5 * Q	1,5 * 0,5 * S1	1,5 * 0,6 * W8	
77	1,35 * G	1,5 * Q	1,5 * 0,5 * S2	1,5 * 0,6 * W8	
78	1,35 * G	1,5 * Q	1,5 * 0,5 * S3	1,5 * 0,6 * W8	
79	1,35 * G	1,5 * Q	1,5 * 0,5 * S1	1,5 * 0,6 * W9	
80	1,35 * G	1,5 * Q	1,5 * 0,5 * S2	1,5 * 0,6 * W9	
81	1,35 * G	1,5 * Q	1,5 * 0,5 * S3	1,5 * 0,6 * W9	
Obciążenie i	minimalne stałe, ob	ciążenie maksymalne	od wiatru		
Nr	Obciążenie stałe		Obciążenie wiatrem		
kombinacji	G		W		
	1,0		1,5		
82	1,0 * G		1,5 * W1		
83	1,0 * G		1,5 * W2		
84	1,0 * G		1,5 * W3		
85	1,0 * G		1,5 * W4		
86	1,0 * G		1,5 * W5		
87	1,0 * G		1,5 * W6		
88	1,0 * G		1,5 * W7		
89	1,0 * G		1,5 * W8		
90	1,0 * G		1,5 * W9		

Do obliczeń wybrano kombinację z wiodącym obciążeniem równomiernym śniegiem oraz towarzyszącym wiatrem. Jest to kombinacja nr 48.

Schemat statyczny:

Wykresy sił przekrojowych:

Momenty zginające M [kNm]

Siły tnące V [kN]

Siły osiowe N [kN]

Reakcje w podporach

Wymiarowanie krokwi

Sprawdzenie stanu granicznego nośności ULS

Maksymalny moment zginający i odpowiadająca mu siła osiowa wynoszą:

M = 1,852 kNm

N = 10,424 kN

Przyjęto przekrój krokwi 80 mm x 200 mm, dla którego:

$$A = b * h = 0.08 * 0.2 = 0.016 m^{2}$$

$$W_y = \frac{b * h^2}{6} = \frac{0.08 * 0.2^2}{6} = 0.000533 \ m^3$$

Naprężenia obliczeniowe ściskające wzdłuż włókien

$$\sigma_{c,o,d} = \frac{N}{A} = \frac{10,424}{0,016} = 651,5 \text{ kPA} = 0,652 \text{ MPa}$$

Naprężenia obliczeniowe zginające względem osi głównych

$$\sigma_{m,y,d} = \frac{M}{W_v} = \frac{1,852}{0,000533} = 3475 \text{ kPA} = 3,475 \text{ MPa}$$

$$\sigma_{m,z,d} = 0$$

Dla drewna klasy C22 wytrzymałość na zginanie $f_{m,y,k}$ = 22 MPa, wytrzymałość na ściskanie $f_{c,o,k}$ = 20 MPa.

Częściowy współczynnik bezpieczeństwa dla drewna: γ_M= 1,3

k_m = 0,7 dla przekroju prostokątnego

Współczynnik modyfikacyjny dla decydującego obciążenia śniegiem k_{mod} = 0,9

Wytrzymałość obliczeniowa:

$$f_{m,y,d} = \frac{k_{mod} * f_{m,y,k}}{\gamma_M} = \frac{0.9 * 22}{1.3} = 15,23 \text{ MPa}$$

$$f_{c,0,d} = \frac{k_{\text{mod}} * f_{c,0,k}}{\gamma_M} = \frac{0.9 * 20}{1.3} = 13,85 \text{ MPa}$$

Element jest najbardziej obciążony, gdy występuje zginanie ze ściskaniem osiowym, zatem musi spełniać nierówność:

$$\begin{split} &(\frac{\sigma_{c,o,d}}{f_{c,o,d}})^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1 \\ &(\frac{0,652}{13,85})^2 + \frac{3,475}{15,23} + 0,7 \cdot 0 = 0,23 \leq 1 \end{split}$$

Warunek stanu granicznego nośności dla krokwi został spełniony.

Sprawdzenie stanu granicznego użytkowalności SLS

Graniczne przemieszczenie dla konstrukcji ze stropem otynkowanym (na jętkach strop z płyt gipsowo- kartonowych)

$$u_{net,fin} = \frac{l_{eff}}{300} = \frac{5800}{300} = 19,33 \text{ mm}$$

Wykresy ugięć [cm]

Obciążenie ciężarem własnym

Obciążenie śniegiem

Obciążenie wiatrem

Obciążenie użytkowe

Maksymalne ugięcie wynosi 0,282 cm

 $u_{net} = 0.282 \text{ cm} = 2.82 \text{ mm}$

2,82 mm < 19,33 mm

 $u_{\text{net}} < u_{\text{net,fin}}$

Warunek stanu granicznego użytkowalności dla krokwi został spełniony.

Ostatecznie przyjęto krokwie o wymiarach przekroju poprzecznego 80 mm x 200 mm.

Obliczenia jętki

Sprawdzenie stanu granicznego nośności ULS

Maksymalny moment zginający i odpowiadająca mu siła osiowa wynoszą:

M = 1,058 kNm

N = 8,149 kN

Przyjęto przekrój jętki 80 mm x 200 mm, dla którego:

$$A = b * h = 0.08 * 0.2 = 0.016 m^{2}$$

$$W_y = \frac{b * h^2}{6} = \frac{0.08 * 0.2^2}{6} = 0.000533 \ m^3$$

Naprężenia obliczeniowe ściskające wzdłuż włókien

$$\sigma_{c,o,d} = \frac{N}{A} = \frac{8,149}{0,016} = 509,31 \text{ kPA} = 0,509 \text{ MPa}$$

Naprężenia obliczeniowe zginające względem osi głównych

$$\sigma_{m,y,d} = \frac{M}{W_{\nu}} = \frac{1,058}{0,000533} = 1985 \text{ kPA} = 1,985 \text{ MPa}$$

$$\sigma_{m.z.d} = 0$$

Dla drewna klasy C22 wytrzymałość na zginanie $f_{m,y,k}$ = 22 MPa, wytrzymałość na ściskanie $f_{c,o,k}$ = 20 MPa.

Częściowy współczynnik bezpieczeństwa dla drewna: γ_M= 1,3

k_m = 0,7 dla przekroju prostokątnego

Współczynnik modyfikacyjny dla decydującego obciążenia użytkowego k_{mod} = 0,8

Wytrzymałość obliczeniowa:

$$f_{m,y,d} = \frac{k_{mod} * f_{m,y,k}}{v_M} = \frac{0.8 * 22}{1.3} = 13,54 \text{ MPa}$$

$$f_{c,0,d} = \frac{k_{\text{mod}} * f_{c,0,k}}{\gamma_M} = \frac{0.8 * 20}{1.3} = 12.31 \text{ MPa}$$

Element jest najbardziej obciążony, gdy występuje zginanie ze ściskaniem osiowym, zatem musi spełniać nierówność:

$$\begin{split} &(\frac{\sigma_{c,o,d}}{f_{c,o,d}})^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \cdot \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1 \\ &(\frac{0,509}{12.31})^2 + \frac{1,985}{13.54} + 0.7 \cdot 0 = 0.15 \leq 1 \end{split}$$

Warunek stanu granicznego nośności dla jętki został spełniony.

Sprawdzenie stanu granicznego użytkowalności SLS

Graniczne przemieszczenie dla konstrukcji ze stropem otynkowanym (strop z płyt gipsowo-kartonowych)

$$u_{net,fin} = \frac{l_{eff}}{300} = \frac{3500}{300} = 11,67 \text{ mm}$$

Maksymalne ugięcie wynosi 0,3 cm

$$u_{net} = 0.3 \text{ cm} = 3 \text{ mm}$$

 $u_{\text{net}} < u_{\text{net,fin}}$

Warunek stanu granicznego użytkowalności dla jętki został spełniony.

Ostatecznie przyjęto jętkę o wymiarach przekroju poprzecznego 80 mm x 200mm.

Obliczenia murłatu

Przyjęto murłat z drewna klasy C22 o wymiarach 140 mm x 140 mm o polu przekroju poprzecznego A = 0,0196 m². Założono, że zostanie przymocowany bezpośrednio do wieńca żelbetowego śrubami co 1,5 m.

Maksymalna wartość reakcji poziomej od wiązarów wynosi H = 9,437 kN.

Obciążenia pionowe są przekazywane bezpośrednio na wieniec dlatego zostały pominięte.

Schemat statyczny

Wykres momentów zginających M [kNm]

Sprawdzenie stanu granicznego nośności ULS

Maksymalny moment zginający wynosi

M = 2,747 kNm

Wskaźnik wytrzymałości murłaty

$$W_z = \frac{b * h^2}{6} = \frac{0.14 * 0.14^2}{6} = 0.000457 \ m^3$$

Naprężenia obliczeniowe zginające względem osi głównych

$$\sigma_{m,v,d} = 0$$

$$\sigma_{\text{m,z,d}} = \frac{M}{W_z} = \frac{2,747}{0,000457} = 6011 \text{ kPA} = 6,011 \text{ MPa}$$

Dla drewna klasy C22 wytrzymałość na zginanie $f_{m,y,k}$ = 22 MPa, wytrzymałość na ściskanie $f_{c,o,k}$ = 20 MPa.

Częściowy współczynnik bezpieczeństwa dla drewna: γ_M= 1,3

k_m = 0,7 dla przekroju prostokątnego

Współczynnik modyfikacyjny dla decydującego obciążenia stałego k_{mod} = 0,6

Wytrzymałość obliczeniowa:

$$f_{m,y,d} = f_{m,z,d} = \frac{k_{\text{mod}} * f_{m,y,k}}{\gamma_M} = \frac{0.6 * 22}{1.3} = 10.15 \text{ MPa}$$

Ze względu na wymiary elementu mniejsze niż 150 mm uwzględniono zwiększoną wytrzymałość:

$$k_h = \left(\frac{150}{h}\right)^{0.2} = \left(\frac{150}{140}\right)^{0.2} = 1.01 < 1.3$$

$$f_{m,v,d} = f_{m,z,d} * k_h = 10.15 * 1.01 = 10.25 \text{ MPa} = f_{m,z,d}$$

Murłat jest elementem zginanym, zatem należy skorzystać ze wzoru:

$$k_m * \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1$$

$$0.7 * 0 + \frac{6,011}{10.25} = 0.59 \le 1$$

Warunek stanu granicznego nośności dla murłatu został spełniony.

Sprawdzenie stanu granicznego użytowalności SLS

Graniczna wartość ugięcia:

$$u_{\text{net,fin}} = \frac{1}{200} = \frac{1500}{200} = 7.5 \text{ mm}$$

Wykres ugięć [cm]:

Maksymalne ugięcie wynosi 0,05 cm

 $u_{net} = 0.05 \text{ cm} = 0.5 \text{ mm}$

0,5 mm < 7,5 mm

 $u_{\text{net}} < u_{\text{net,fin}}$

Warunek stanu granicznego użytkowalności dla murłatu został spełniony.

Ostatecznie przyjęto murłat o wymiarach przekroju poprzecznego 140 mm x 140 mm.