CHAPITRE OS8 – DOCUMENTS Propagation d'un signal

FIGURE 1 : Émission, transmission et réception d'un son

Nature des signaux	Grandeurs physiques associées	
Mécaniques	Position, vitesse, accélération	
Acoustiques	Surpression, déformation, vitesse	
Électromagnétiques	Champ électrique, champ magnétique	
Électriques	Courant électrique, tension électrique	
Optiques	Intensité lumineuse	
Thermodynamiques	Température, pression	

FIGURE 2 : Nature des signaux et grandeurs physiques associées

FIGURE 3: Propagation d'une onde sonore dans l'air:

signaux fournis par deux micros, situés côte à côte (à gauche) ou distants (à droite)

t₂ - t₁ est le retard de M₂ sur M₁.

FIGURE 4 : Propagation d'une onde le long de la corde

FIGURE 5 : Propagation d'une onde à la surface de l'eau

FIGURE 6 : Propagation d'une onde unidimensionnelle modélisée par une fonction de deux variables : abscisse et temps

FIGURE 8 : Onde mécanique sur la corde : onde transversale

Type d'onde	Milieu de propagation	Perturbation	Nature de l'onde
Onde sonore (acoustique)			
Onde élastique			
Onde électromagnétique			

FIGURE 9 : Exemples d'ondes et milieux de propagation associés

FIGURE 10 : Onde se propageant dans le sens positif de l'axe (*Ox*) en deux abscisses différentes

FIGURE 11 : Onde se propageant dans le sens positif de l'axe (*Ox*) en deux instants différents

Exercice d'application 1

Un haut-parleur, placé à l'abscisse x=0, émet une onde acoustique. Un auditeur se trouve à l'abscisse x, et un mur à l'abscisse L, avec L>x. L'onde se réfléchit sur le mur. Elle se propage à la vitesse c. Deux ondes arrivent sur l'auditeur. Déterminer les deux retards temporels.

FIGURE 12 : Double périodicité de l'onde progressive harmonique

FIGURE 13 : Exemples de fréquences d'ondes mécaniques

FIGURE 14 : Exemples de fréquences d'ondes électromagnétiques

Exercice d'application 2 : étude de l'onde sonore expérimentale

On considère les tensions délivrées par deux microphones, un fixe au point O et l'autre mobile au point M, captant une onde progressive sinusoïdale émise par un haut-parleur.

Lorsque les deux microphones sont placés en O, on observe la figure ci-contre.

Les deux figures ci-dessous représentent les tensions

délivrées par le premier microphone en O (CH1) et le second microphone (CH2), situé en deux points d'abscisses différentes : abscisse x_1 inconnue pour la figure de gauche et $x_2 = 21$ cm pour la figure de droite.

- 1. Quelle est la fréquence f de l'onde ?
- 2. Déterminer à partir des oscillogrammes la longueur d'onde λ de l'onde sonore et en déduire sa vitesse de propagation c.
- 3. Déterminer l'abscisse x_1 .

Exercice d'application 3

Soit un axe (Ox) sur lequel sont placés un point B, d'abscisse $x_B = d > 0$ et un point M d'abscisse 0 < x < d. Pour chacun des quatre cas, exprimer le signal s(x,t) pour un signal émis quelconque, puis lorsqu'il s'écrit $f(t) = A\cos(\omega t)$.

- a) Onde connue en *O* se propageant dans le sens des *x* croissants
- b) Onde connue en O se propageant dans le sens des x décroissants
- c) Onde connue en *B* se propageant dans le sens des *x* croissants
- d) Onde connue en B se propageant dans le sens des x décroissants