Štruktúra a architektúra OS

Architektúra OS

OS tvoria komponenty:

- zavádzač (BOOTSTRAP) zaisťuje zavedenie OS do OP a inicializáciu systému
- jadro OS (KERNEL) poskytuje služby ostatným súčastiam SW pre ovládanie prostriedkov systému
- procesor príkazov (MONITOR) podpora prepínania aplikácií, nazývaný tiež interpret riadiaceho jazyka alebo monitor systému
- **služobné programy (UTILITIES)** štandardné aplikačné programy pre rutinné úlohy

- **Jadro** OS musí obsahovať služby pre ovládanie prostriedkov počítača a to na úrovni HW aj SW. Štruktúru jadra možno charakterizovať nasledovne:
- správa technických prostriedkov
 - správa procesora
 - správa operačnej pamäte
 - správa periférií

- správa virtuálnych prostriedkov
 - správa virtuálnych procesorov (simulácia inštrukcií, ktoré nie sú realizované fyzickými procesormi, prípadne simulácia iného procesora
 - správa virtuálnej pamäti (simulácia pamäti s inou veľkosťou alebo štruktúrou než má fyzická pamäť)
 - správa virtuálnych zariadení (simulovanie existencie vonkajších pamätí, adresovaných menom súboru, simulácia grafického prostredia s oknami napriek tomu, že zobrazovacia jednotka vie len rozsvietiť jednotlivé body (pixely) na tienidle)

Moduly OS

- OS je zložitý systém, ktorý je rozdelený na menšie časti komponenty.
- Väčšina moderných operačných systémov pozostáva z nasledujúcich komponentov:
 - správa procesov
 - správa operačnej pamäte
 - správa diskovej pamäte
 - správa vstupov/výstupov
 - správa súborov
 - interpret príkazového riadku

Správa procesov

Proces je program (kód), ktorý sa vykonáva .Procesy majú požiadavky na zdroje systému (čas CPU, op. pamäť, súbory, V/V zariadenia), tieto požiadavky môže oznámiť pri svojom vytvorení alebo neskôr a môže im byť vyhovené hneď (pri vytvorení) alebo priebežne neskôr. Okrem procesov spustených používateľom beží v modernom OS niekoľko obslužných systémových procesov.

OS by mal umožniť:

- vytváranie a ukončenie procesov
- pozastavenie a reaktiváciu procesov
- synchronizáciu procesov vrátane riešenia vzájomného zablokovanie
- komunikáciu medzi procesmi

Správa pamäte

Operačná pamäť je kľúčovým prvkom systému. Vykonávaný(é) proces(y) musí mať svoj kód a dáta (presnejšie: *práve* vykonávaný úsek kódu a práve používané dáta) v operačnej pamäti, ale práve iné úseky kódy a dát môžu byť odsunuté do sekundárnej pamäti. Okrem toho novovytvárané procesy čakajú na natiahnutie do pamäti a OS im musí prideliť priestor (alebo odmietnuť ich vytvorenie), bežiace procesy môžu požiadať o ďalšiu pamäť (operátor new v Pascale a C++).

OS zabezpečí:

- prehľad o obsadenosti úsekov pamäti
- pridelenie pamäti novým procesom, príp. výber procesu na spustenie s uvážením jeho pamäťových požiadaviek
- pridelenie (a vracanie!) pamäti procesom (procesmi)

Zdiel'anie času (time slicing)

opatrenie, aby aktívny proces nepracoval príliš dlho bez zavolania systémovej služby => každý proces beží len určitý čas. Pri striedaní procesov sa môže dodržiavať:

- systém statickej priority nemenná pridelená priorita;
- systém dynamickej priority ak proces bežal dlho tak sa mu zníži priorita, alebo sa mu zvýši priorita ak málo času vyčerpal.

Správa diskovej pamäte

Hlavnou úlohou počítačového systému je vykonávať programy. Tieto programy a ich dáta sú počas vykonávania v OP. Pretože sa tieto údaje v OP nemôžu uložiť trvale musí systém poskytovať na uloženie sekundárnu pamäť. táto sekundárna (disková) pamäť sa používa na trvalé uloženie údajov a programov.

V súvislosti so správou diskovej pamäti, OS zabezpečuje nasledovné činnosti:

- správa voľného diskového priestoru
- prideľovanie diskového priestoru
- plánovanie diskových operácií

Správa V/V

Úlohou OS je poskytnúť jednotný prístup k V/V zariadeniam bez ohľadu na to, ako sú hardwarovo riešené. V/V systém pozostáva zo:

- systému bufrovania (vyrovnávacia pamäť počítača) a cachovania (Cache pamäť je rýchla pamäť, ktorá slúži ako vyrovnávacia pamäť medzi rýchlym procesorom a pomalou hlavnou pamäťou. Z technického hľadiska je to statická pamäť. Jej efektívnosť je okrem rýchlosti prístupu daná malým rozsahom a odlišnou správou uložených údajov. Z hľadiska programátora je táto pamäť neprístupná (nemožno ju adresovať). O jej obsahu rozhoduje hardware..)
- štandardného rozhrania k ovládačom zariadení
- ovládačov pre jednotlivé HW zariadenia

Správa súborov

- Počítače môžu ukladať informácie na niekoľko rôznych typov fyzických médií (mag. disk, optický disk ..).
- Každé z týchto médií má svoje charakteristiky a fyzickú organizáciu a sú riadené špeciálnymi zariadeniami.
- OS poskytuje jednotný logický pohľad na periférne pamäťové zariadenia.
- Pracuje s logickou jednotkou **súbor**.
- OS mapuje súbory na fyzické médiá a riadi prístup k nim.
- Súbor = množina príbuzných informácií, ktoré sú definované tvorcom súboru.
- Súbory sú obyčajne organizované v adresároch.

Interpret príkazového jazyka

- Interpreter príkazového jazyka poskytuje rozhranie medzi používateľom a výpočtovým systémom. Interpreter sa spustí automaticky po prihlásení sa používateľa do systému. jeho funkcia je jednoduchá – prečítať príkaz a vykonať ho.
- Moderné OS poskytujú grafické rozhranie.
- Práca pomocou takéhoto interpretera nevyžaduje znalosť jednotlivých príkazov OS a ich parametrov.
- Jednotlivé funkcie používateľ vyberá pomocou ikon, ktoré reprezentujú programy, súbory alebo systémové funkcie.

Štruktúra OS

- Typická štruktúra operačných systémov je hierarchická (Dekompozícia veľkého problému na niekoľko menších umožňuje zvládnuť riešenie zložitého operačného systému)
- Každá úroveň rieši konzistentnú podmnožinu funkcií, kde nižšia vrstva ponúka vyššej vrstve primitívne funkcie (služby) a pritom nižšia vrstva nemôže požadovať vykonanie služieb vyššej vrstvy
- Rozhranie medzi vrstvami musí byť presne definované, čo umožní modifikovať každú vrstvu vo vnútri, bez ovplyvnenia ostatnej vrstvy.

Vrstvová štruktúra OS

Štruktúra OS

- Vrstvy sú rozdelené tak, že každá využíva služby nižších vrstiev.
- Vrstva pozostáva z dátových štruktúr a množiny rutín, ktoré môžu byť volané z vyšších vrstiev.
- Pri vrstvenej štruktúre operačného systému sa jednotlivé vrstvy správajú objektovo.
- Pod sebou majú vrstvu, ktorá pre ne pracuje ako virtuálny počítač s implementovanými určitými funkciami.
- (Čím je virtuálny počítač umiestnený v hierarchii virtuálnych počítačov vyššie, tým komplikovanejšie funkcie môže vykonávať.)

Súbory a adresáre

- *Súbory (file)* sú prirodzenou štrukturáciou dát uložených v PC systéme. Súbor je logická jednotka dát, abstrahovaná od fyzického spôsobu uloženia—správa súborov teda tvorí (koncepčne) vrstvu nad správou sek. pamäti.
- Adresár (directory) hierarchické členenie súborov do skupín podľa vlastníka, obsahu, určenia, ... (používatelia majú voľnosť v spôsobe hierarchizácie).

Atribúty súboru

Sú to vlastnosti—metadáta väčšinou uložené mimo tela (obsahu) súboru, typicky v adresári.

názov - Každý OS má svoje pravidlá a konvencie na ich tvorbu.

Тур

Umiestnenie - Fyzické umiestnenie na disku, dôležité pre OS, menej pre používateľa.

Veľkosť - Je dôležité, že sa nepočíta, ale ukladá.

Ochrana - Špecifikuje práva prístupu k súboru (kto čo smie).

časové údaje - Napr. dátum vytvorenia a poslednej modifikácie.

Vlastník - Väčšinou tvorca (ak nedelegoval vlastníctvo). Viažu sa k nemu zvláštne prístupové práva.

Súbory a adresáre

OS zabezpečí:

- vytváranie a mazanie súborov a adresárov
- d'al'šie prirodzené operácie (čítanie, zmena obsahu, ..., zmena vlastností)
- mapovanie na sek. pamäť ("100. až 200. riadok je uložený v 23236. sektore disku")
- zálohovanie súborov

Koniec