

First-Order Logic: Theory and Practice

Christoph Benzmüller

Freie Universität Berlin

Block Lecture, WS 2012, October 1-12, 2012

Sidetrack: Hornlogic

HORNLOGIK: Motivation & Überblick

Syntax Aussagenlogik:
$$s, t ::= P \mid \neg s \mid s \lor t \mid s \land t \mid s \Rightarrow t \mid \bot \mid \top \mid s \land t \mid s \Rightarrow t \mid \bot \mid \top$$

AUSSAGENLOGIK: Syntax und Semantik

Syntax der Aussagenlogik (AL)

$$s,t ::= P \mid \neg s \mid s \lor t \mid s \land t \mid s \Rightarrow t \mid \bot \mid \top \mid s \land t \mid s \Rightarrow t \mid \bot \mid \top$$

Semantik

-
$$I(\neg s), I(s)$$
 folgt

 Interpretationsfunktion 	$I:AL\longrightarrow \{T,F\}$
- atomare Aussagen P :	wähle $I(P) \in \{T, F\}$
$-I(\neg s), I(s \lor t), I(s \land t), I(s \Rightarrow t)$), $I(\bot)$, $I(\top)$ festgelegt wie

$\vee t$, $I(s \wedge$	<i>L</i>), <i>I</i> (3 -	$\rightarrow \iota$), i	$(\perp), \prime(\perp)$) res	tgelegt	wie

S	t	$\neg s$	$s \lor t$	$s \wedge t$	$s \Rightarrow t$	\downarrow	\top
Т	Т	F	T	T	T	P	T
T	F	F	T	F	F	F	T
F	T	T	T	F	T	F	T
F	F	T	F	F	F	F	T
					$\neg s \lor t$		

definiert als

HORNLOGIK: Hornklauseln

Definition Hornklausel:

(alternative Sichtweise)

Es gibt drei Typen von Hornklauseln (Beispiele)

$$C \qquad \qquad Fakt: 'C \ gilt' \qquad C \Leftarrow \top$$

$$A \lor \neg B \lor \neg D \qquad Regel: 'A \ gilt \ falls \ B \ und \ D \ gelten' \qquad A \Leftarrow B \land D$$

$$\neg B \lor \neg D \qquad Ziel: 'Gelten \ B \ und \ D?' \qquad \bot \Leftarrow B \land D$$

$$A \lor C \lor \neg B \lor \neg D \qquad A \lor C \Leftarrow B \land D$$

$$A \lor D \lor \neg B \lor \neg D \qquad A \lor D \not \Leftrightarrow B \land D$$

HORNLOGIK: (als Mengen)

Definition Hornformel:

Hornformel = Konjunktionen von Hornklauseln $k \geq 1 \begin{cases} (P^1 \vee \neg Q_1^1 \vee \ldots \vee \neg Q_n^1) \\ \wedge (P^2 \vee \neg Q_1^2 \vee \ldots \vee \neg Q_n^2) \\ \cdots \\ \wedge (P^k \vee \neg Q_1^k \vee \ldots \vee \neg Q_n^k) \\ \end{cases} \\ k \geq 1 \begin{cases} P^1, \neg Q_1^1, \ldots, \neg Q_n^1 \\ \wedge \{P^2, \neg Q_1^2, \ldots, \neg Q_n^2\} \\ \cdots \\ \wedge \{P^k, \neg Q_1^k, \ldots, \neg Q_n^k\} \\ \end{cases} \\ \begin{cases} P^1, \neg Q_1^1, \ldots, \neg Q_n^k \\ \end{pmatrix} \\ \begin{cases} P^1, \neg Q_1^1, \ldots, \neg Q_n^k \\ \end{pmatrix} \\ \begin{cases} P^2, \neg Q_1^2, \ldots, \neg Q_n^2 \\ \end{pmatrix} \end{cases} \\ \begin{cases} P^2, \neg Q_1^2, \ldots, \neg Q_n^2 \\ \end{cases} \\ \end{cases}$ Einst-Order Logic: Theory and Practice

Propositionale HORNLOGIK: Resolution

Definition Resolution:

$$\frac{\{\neg P, N_1, \dots, N_n\} \qquad \{P, M_1, \dots, M_m\}}{\{N_1, \dots, N_n, M_1, \dots, M_m\}}$$
komplementär

Beispiele und (generelle) Beobachtungen:

HORNLOGIK: Algorithmus der SLD-Resolution

Algorithmus: SLD-Resolution

- while Ziel $\neq \emptyset$ do
- wähle Literal L und komplementäre
 - Regel/Fakt K
- if kein K then backtrack/'No'

done

return 'Yes';

- S Selektion (& Backtracking)
- L Linear -
- D Definite Klauseln
 (haben genau ein pos. Literal

 → in jedem Schritt beteiligt)

 $D, \neg B$

 $\{\neg A \neg A, \neg D\}$ $\{A, \neg B, \neg D\}$

{**D**}

HORNLOGIK: Es gibt noch viel zu sagen!

- ► Hornlogik-Fragment der Prädikatenlogik
 - ▶ andere Algorithmen: Markierungsalgorithmus, Gentzenkalkül,
 - Vollständigkeit & Korrektheit der Verfahren
 - Komplexität der Verfahren
- ► Hornlogik-Fragment der Prädikatenlogik erster Stufe

 - PROLOG
 - **.** . . .
- Hornlogik-Fragment der Logik höherer Stufe
 - **.** . . .
 - λ-PROLOG
 - **.** . . .