$$A = b.h$$

$$A = x.h$$

$$2 \times = x.h$$

$$2^{x} = x.h$$

$$2 \times = x.h$$

$$2 = x.h$$

Solowas ju: $\overline{AF} = X$ $A(ABEF) = X^2$ A(BUDE) = 2X

retargle inteirs

25/08

a) Ache o perinetos do rotungo ACDF

b) Ache a á cen do retaingulo ACDF a) Porimetro é 4x + 4b) Acea i $x^2 + 2x = x(x+2)$

Perimetro: a soma do
comprimento de todos os lodos
Perimetro e a
Reri metro
metro medida do
entorno modida medida do

- Numero racionais l'éfechats en celação a ll é fechats em \bigcirc -3+(-3)=-6 \in \mathbb{Z} (__ 3-4--167 $(-4) \cdot (-4) = 16 \in \mathbb{Z}$ + 4-2 KIN $\times \frac{-1}{-24} = \frac{1}{24} \notin \mathbb{Z}$

mE Q oxistom P92 m= q $Q = \{n : para algum p \in \mathbb{Z}, q \in \mathbb{Z} \mid n = \frac{q}{q}\}$ Lo Q do quociente

IL C Q entra Q é fechedo en relação a soma $A = \mathbb{Z} \cup \{0,5\} = \{-2,-1,0,0,5,1,2,...\}$ $Z \subseteq A$ D'é fechado en relajon à Lodos às operações. $(-\sqrt{2},\sqrt{2}-2)$ Varnos mostrer que $\sqrt{2}$ & Q Radiciosa) Agrecimento: Nova existe um menor número racional >0 $\begin{cases} 3 & 4 & \frac{1}{2} \\ 1 & 1 \end{cases}$

Prova por contradição: Supor un appuros cheje re contradição sondri o innazo o spingo.

Suponha que oxiste $P \in \mathbb{Q}$, P > 0, P > 0, P = 1 menor que todos os racionais positivos.

Mas $f \in \mathbb{Q}$ e f < P, o que é una contradição. Logo, não oxiste menham racional positivo que é una o positivo que é una o positivo que é una o positivo.