PHY654

Machine learning (ML) in particle physics

Swagata Mukherjee • IIT Kanpur 9th September 2024

Useful links

https://playground.tensorflow.org/

Uproot https://github.com/scikit-hep/uproot3

A convolution operation converts all the pixels in its receptive field into a single value.

If you apply a convolution to an image, generally you will be decreasing the image size and bringing all the information in the receptive field together into a single pixel.

Filter for horizontal edge detector

1	1	1	
0	0	0	
-1	-1	-1	

Instead of hand-picking these numbers, they can be treated as parameters that can be learned.

Padding

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

2 problems

- Convolution shrink the image. So convolution can be done only a few times.
- Pixels at corners are used less.
 - May be we are not utilizing corner information enough.

Solution? \rightarrow Before using convolution, pad the image.

p=padding amount, If p=1 then 6x6 image becomes 8x8.

After convolution with 3x3 filter, the output is 6x6

You can pad with values=0

6x6 image

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

6x6 image with 1 layer of zero padding

Valid and same convolution

Valid \rightarrow no padding Same \rightarrow Output size same as input size

Strided convolution

What we discussed is stride = 1

If we move the filter by 2 units, then stride = 2

 $n \times n \text{ image}$ $f \times f \text{ filter}$

padding p

stride s

Output

$$\left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n+2p-f}{s} + 1 \right\rfloor$$

Convolutions on RGB image

These 2 numbers should be equal. This is the number of channels (or depth).

27 numbers in filter.

Multiply element wise with input image's 3x3x3 top-left corner area and add up these 27 values. That's the value of top-left cell in output.

Multiple filters

One layer of CNN

One layer of CNN

Notation for layer l

 $f^{[l]} = \text{filter size}$

 $p^{[l]} = padding$

 $s^{[l]} = \text{stride}$

 $n_c^{[l]} = \text{number of filters}$

Output: $n_H^{[l]} \times n_W^{[l]} \times n_c^{[l]}$

 $n_{H/W}^{[l]} = \frac{n_{H/W}^{[l-1]} + 2p^{[l]} - f^{[l]}}{2^{[l]}} - 1$

Each filter is $f^{[l]} \times f^{[l]} \times n_c^{[l-1]}$

15

Input: $n_H^{[l-1]} \times n_W^{[l-1]} \times n_c^{[l-1]}$

Types of layers in a realistic CNN

- Convolution (conv)
- Pooling (pool)
- Fully connected (FC)

Pooling

Two hyperparameters f and s, but **no parameters to learn**.

A typical CNN example

18