## Systèmes d'exploitation, 2ème année Introduction générale

Yves STADLER

Université Paul Verlaine - Metz

13 septembre 2012



#### Yves Stadler

- A.T.E.R. IUT de Metz et doctorant au LITA;
- Bureau B3.8;
- yves.stadler@univ-lorraine.fr;
- github.com/mvy/TC-INFO-ASR4-UPVM-YS.

1/19

Agenda

#### Plan du module

- Gestion des processus
- Synchronisation et concurrence;
- Communications;
- Gestion de la mémoire :
- Système de gestion des fichiers.

2/19

# Présentation générale d'un système d'exploitation

#### Définition

Extension logicielle du matériel dans le but d'offrir un service suffisant aux utilisateurs.

#### Objectif

- Masquer la complexité à l'utilisateur;
- Faciliter l'accès aux ressources.

#### Types de systèmes d'exploitations

- Mono-utilisateur, multi-utilisateurs.
- Mono-tâche, multi-tâches.
- Mode d'exploitation différé, interactif, temps partagé;
- Mode temps réel, système embarqués;

# Présentation générale d'un système d'exploitation

# Présentation générale d'un système d'exploitation

#### Organisation d'un système d'exploitation

- Chaque système est basé sur un noyau (kernel);
- Le noyau comprend deux parties : indépendante du matériel, dépendante du matériel ;

### Partie dépendante

- Gestion des interruptions;
- Gestion mémoire;
- Gestion des entrées sorties (E/S; IO).

5/19

# Présentation générale d'un système d'exploitation

#### Modèle en couche

• Le système peut se présenter comme un ensemble de couches.

SE KERNEL HARDWARE

#### Partie indépendante

- Ordonnanceur-distributeur;
- Gestion des processus;
- Paginiation, va-et-vient;
- Sous-système de fichiers;
- Gestion des entrées sorties (partie "haute").

6/19

# Présentation générale d'un système d'exploitation

#### Modèle en couche

- Le noyau ou *kernel* constitue une interface entre le matériel et les programmes
- Il est lui même divisé en couches
- Il est irremplaçable par l'utilisateur
- Monolithique, micro-noyaux ou hybrides

| FILES        |     |     |
|--------------|-----|-----|
| INPUT/OUTPUT |     |     |
| MEMORY       |     |     |
| INT          | P/V | ORD |
| HARDWARE     |     |     |

7/19

# Présentation générale d'un système d'exploitation

#### Allocation de ressources

- Rôle central du kernel dans l'exécution des travaux :
  - représentation et gestion des processus;
  - gestion des interruptions;
  - gestion des entrées, sorties.



FIGURE : Exemple de modèle d'allocation de l'UC

9/19

# Présentation générale d'un système d'exploitation



FIGURE : Allocation de l'UC pour les systèmes multi-tâches

## Présentation générale d'un système d'exploitation



FIGURE : Allocation de l'UC pour les systèmes mono-tâche

10/19

## Rappel sur d'architecture

## L'espace de travail

- L'espace de travail est l'ensemble des données en mémoire nécessaires à l'exécution du processus.
- Le code : en langage ASM, liste des instruction pour le processeurs (Pointeur : Compteur Ordinal)
- La pile (stack) : mémoire prévue pour les appels de fonctions. Last In First Out.
- Les données statiques.
- Le tas (heap): mémoire réservée pour l'allocation dynamique. Pas d'ordre particulier d'allocation. Données dynamiques.



## Anticipation sur les processus

#### L'espace de travail

- Données privées du processus. Seule la zone u du processus en cours est manipulable. (struct user <sys/user.h>). Son adresse se trouve dans le mot état.
  - pointeur sur la structure de processus de la table des processus.
  - uid réel et effectif
  - compteurs des temps (users et system) consommés
  - masque de signaux
  - terminal de contrôle du processus si celui-ci existe.
  - dernière erreur rencontrée pendant un appel système.
  - valeur de retour du dernier appel système.
  - Entrées sorties (structures associées aux entrées-sorties)
  - "." et "/" (le répertoire courant et la racine courante (c.f. chroot())
  - La table des descripteurs (fichiers ouverts)
  - Limites de la taille des fichiers de la mémoire utilisable
  - Umask (masque de création de fichiers)

13/19

### Mécanisme de contrôle

#### Mécanismes

- Les interruptions;
- Les appels systèmes ;
- Les signaux horloge;
- Les primitives de synchronisation.

### Les interruptions

- Événement suffisamment important pour nécessiter une interruption du système.
- Rapide, immédiat.
- Générée aléatoirement par un périphérique ou par l'UC;
- Peut être générée par le système en interne, on parle alors de détournemente.

## Anticipation sur les processus

#### Contexte

- Son état
- Son mot d'état : en particulier (La valeur des registres actifs ; Le compteur ordinal )
- Les valeurs des variables globales statiques ou dynamiques
- Son entrée dans la table des processus
- Sa zone u
- Les piles user et system
- Les zones de code et de données.

#### Contexte

 Lorsqu'un nouveau processus va être exécuté, il y a commutation du mot d'état et changement de contexte. Ces changements sont dictés par l'ordonnanceur.

14/19

### Mécanisme de contrôle

#### Rôle des interruptions

- Imposer les changements d'état de l'UC;
- Commutation de contexte, générée par une cause extérieur à l'instruction en cours.

#### Conditions d'interruption

- L'UC doit être en mode interruptible;
- L'interruption doit être prioritaire aux autres interruptions;

### Mécanisme de contrôle

### Mécanisme de contrôle

#### Appel au superviseur - Définition

• Instruction qui a pour effet de provoquer une commutation de contexte du processeur.

#### Appel au superviseur - Rôle

- Permettre l'appel depuis un programme d'une procédure du système nécessitant des droits étendus.
- Masquage interruption, allocation de mémoire . . .

17/19

### Mécanisme de contrôle

### Primitives de synchronisation

- Nécessaires à l'asynchronisme ;
- Nécessaire à la protection mutuelle;
- Plus que de simples appels de procédures.

### Exemple de l'exclusion mutuelle

- Deux processus A et B veulent mettre à jour le compte en banque d'Alice
- $C_{Alice} = C_{Alice} + Montant_a$  et  $C_{Alice} = C_{Alice} + Montant_b$
- Quel est le résultat final?

### Signaux d'horloge

- Composant physique du système;
- Essentiel car il rythme le système;
- Génère des interruptions horloges.

#### Signaux d'horloge

- Affectation du temps dans le mot horloge
- Pendant l'activation du processus, le mot horloge est décrémenté de 1 à chaque signal;
- Quand le mot vaut 0, un signal d'interruption est généré et le superviseur prend une décision.

18/19