Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction

J.Zhang, Y. Zheng, D. Qi

David Albert

Korea Advanced Institute of Science and Technology

November 28, 2019

- Introduction
- 2 Formulation of the problem and definitions
- 3 ST-ResNet Model Details
- Experiment
- Conclusion

- Introduction
- Pormulation of the problem and definitions
- ST-ResNet Model Details

David Albert (KAIST) ST-ResNet AI-608 3/24

Introduction - Main Goal

Main Goal

Predicting crowd flows in a city.

Why?

- To be able to manage traffic.
- Lack of safety when massive crowds of people streamed into a strip region.
 - ightarrow Stampede at Shanghai New Year's celebration kills 36

Figure 1: Massive crowds of people in Paris during World Cup (2018)

Proposed method

Deep-learning-based approach to collectively forecast the inflow and outflow of crowds in each and every region of a city.

→ method called *ST-ResNet* (Spatio-Temporal Residual Networks)

Figure 2: Inflow and outflow

Figure 3: Measurement of flows

Proposed method

Deep-learning-based approach to collectively forecast the inflow and outflow of crowds in each and every region of a city.

- → method called *ST-ResNet* (Spatio-Temporal Residual Networks)
 - What is include?
 - Number of pedestrian
 - Number of car
 - Number of people traveling on public transportation systems (e.g. metro, bus)

David Albert (KAIST) ST-ResNet AI-608 6/24

Proposed method

Deep-learning-based approach to collectively forecast the inflow and outflow of crowds in each and every region of a city.

- → method called *ST-ResNet* (Spatio-Temporal Residual Networks)
 - What is include?
 - Number of pedestrian
 - Number of car
 - Number of people traveling on public transportation systems (e.g. metro, bus)
 - How to get the necessary data ?
 - Mobile phone signals (for pedestrians)
 - GPS trajectories (for vehicles)
 - Thus, we can obtain a set of trajectories \mathbb{P} where each trajectory $Tr \in \mathbb{P}$, $Tr = (g_1, g_2, ..., g_k)$ with $g_k \in \mathbb{R}^2$ is a list of coordinates (longitude and latitude).

David Albert (KAIST) ST-ResNet Al-608 6/ 24

Introduction - Difficulties

1. Spatial dependencies

Inflow of a region is affected by outflows of nearby regions.

- After an event occured in a specific place, the inflow of nearby regions will increase.

2. Temporal dependencies

The flow of crowds in a region is affected by more or less recent time intervals.

- Traffic congestion at 8 AM will affect that of 9 AM.
- Traffic conditions during morning rush hours may be similar on consecutive workday.

3. External influence

Some external factors may change the flow of crowds.

- Weather, events, etc.

David Albert (KAIST) ST-ResNet AI-608 7/ 24

- Introduction
- Pormulation of the problem and definitions
- 3 ST-ResNet Model Details
- Experiment
- Conclusion

Partition the city

Many ways to partition a city. In this method, the city is partitioned into an $I \times J$ grid map based on longitude and latitude.

Figure 4: Regions in Beijing

Definition (Inflow & Outflow)

For a cell (i,j) that lies at the i^{th} row and j^{th} column of the grid, the inflow and outflow of the crowds at the time interval t are defined as:

$$x_t^{in,i,j} = \sum_{\mathit{Tr} \in \mathbb{P}} \left| \left\{ k > 1 | g_{k-1} \notin (i,j) \land g_k \in (i,j) \right\} \right|$$

$$x_{t}^{out,i,j} = \sum_{\mathit{Tr} \in \mathbb{P}} |\{k \geq 1 | g_{k} \in (i,j) \land g_{k+1} \notin (i,j)\}|$$

where

- ullet P: a collection of trajectories at the t^{th} time interval
- $\mathit{Tr}: g_1 \to g_2 \to ... \to g_{|\mathit{Tr}|}:$ a specific trajectory in $\mathbb P$
- g_k : the geospatial coordinate (i.e. longitude and latitude)
- |.| : the cardinal

Thus, at the t^{th} time interval, inflow and outflow in all the city can be denoted as a tensor $\mathbf{X}_t \in \mathbb{R}^{2 \times I \times J}$ where $(\mathbf{X}_t)_{0,i,j} = x_t^{in,i,j}$ and $(\mathbf{X}_t)_{1,i,j} = x_t^{out,i,j}$.

Formulation of Crowd Flows Problem

Thus, at the t^{th} time interval, inflow and outflow in all the city can be denoted as a tensor $\mathbf{X}_t \in \mathbb{R}^{2 \times I \times J}$ where $(\mathbf{X}_t)_{0,i,j} = x_t^{in,i,j}$ and $(\mathbf{X}_t)_{1,i,j} = x_t^{out,i,j}$.

Converting Trajectories into Video-like Data

Figure 5: Processing data

David Albert (KAIST) ST-ResNet AI-608 11/24

Deep Residual Learning

Definition (Deep residual network)

Convolution neural networks whose structure is composed of residual units:

$$\boldsymbol{\mathsf{X}}^{(l+1)} = \boldsymbol{\mathsf{X}}^{(l)} + \mathcal{F}(\boldsymbol{\mathsf{X}}^{(l)})$$

where $\mathbf{X}^{(l)}$ and $\mathbf{X}^{(l+1)}$ are the input and output af the l^{th} residual unit.

Such networks can be trained even with more than 100 layers.

Figure 6: Residual Unit

- Introduction
- 2 Formulation of the problem and definitions
- 3 ST-ResNet Model Details
- Experiment
- Conclusion

ST-ResNet - Model Details

- Recall the objective:
 - Find a function f which predict X_n given $(X_{n-1}, X_{n-2}, ..., X_0) = H_t$
 - we will use neural networks to approximate f
 - learn $f_{\theta}: \mathbb{R}^{2n \times I \times J} \to \mathbb{R}^{2 \times I \times J}$

Figure 7: Objective

- Recall the difficulties :
 - temporal dependencies
 - spatial dependencies
 - external influences

We will build our model f_{θ} to cope with these difficulties.

David Albert (KAIST) ST-ResNet AI-608 14/24

1. Temporal dependencies difficulty

Dealing with the temporal dependencies difficulty

ST-ResNet summarize the temporal properties of crowds flows into three categories:

- Temporal closeness $\mathbf{X}_c \to \text{function of } \left[\mathbf{X}_{t-l_c}, \mathbf{X}_{t-(l_c-1)}, ..., \mathbf{X}_{t-1}\right]$
- $\bullet \ \ \mathsf{Temporal} \ \mathsf{period} \ \mathsf{X}_{p} \to \mathsf{function} \ \mathsf{of} \ \left[\mathsf{X}_{t-l_{p},p}, \mathsf{X}_{t-(l_{p}-1),p}, ..., \mathsf{X}_{t-p} \right]$
- ullet Temporal **trend X** $_q$ o function of $\left[\mathbf{X}_{t-l_q,q}, \mathbf{X}_{t-(l_q-1),q}, ..., \mathbf{X}_{t-q}
 ight]$

Use three networks to model these properties and dynamically aggregates the three outputs (as shown on the figure).

David Albert (KAIST) ST-ResNet Al-608 15/24

2. Spatial dependencies difficulty

Dealing with the spatial dependencies difficulty

ST-ResNet employs convolution-based residual networks to model nearby and distant spatial dependencies between any two regions of the city.

- Need very large citywide dependencies (each node in output depends on all nodes in input)
- For 32 × 32 grid and 3 × 3 kernel convolution → at least 15 layers
- Use residual networks to this end (with 26 layers in practice)

Figure 8: Convolutional and residual units

David Albert (KAIST) ST-ResNet Al-608 16/24

3. External influences difficulty

Dealing with the external influences difficulty

Adding a fourth component: the *external influence* component. This component is approximate by a simple two-fully-connected neural network where inputs are some features manually extracted from external datasets.

Figure 9: Effect of holidays and weather on Office Area of Beijing

Figure 10: External component

David Albert (KAIST) ST-ResNet Al-608 17/24

Figure 11: ST-ResNet Architecture

David Albert (KAIST) ST-ResNet Al-608 18/24

- Introduction
- 2 Formulation of the problem and definitions
- 3 ST-ResNet Model Details
- Experiment
- Conclusion

Experiment

Experiments are made on two differents datasets:

- TaxiBJ Taxicab GPS trajectories
 - Time interval: 30minGrid map size: (32, 32)
 - Number of taxi: 34000+
 - Available time interval: 22459
 - External influence data: holidays, weather, temperature, wind speed

- BikeNYC Bike trajectories
 - Time interval : 60min
 - Grid map size : (16,8)
 - Number of bikes: 6800+
 - Available time interval: 4392
 - External influence data : holidays

Figure 12: Multi-step ahead prediction on TaxiBJ dataset

David Albert (KAIST) ST-ResNet AI-608 20/24

Experiment

Table 6

Comparisons with baselines on TaxiBJ and BikeNYC. Results of ARIMA. SARIMA, VAR and DeepST on BikeNYC are taken from [3]. For RNN-based models and ST-ResNet variants, we run each of them 10 times and show "mean ± standard deviation".

Model	RMSE	
	TaxiBY	BikeNYC
НА	57.69	21.578
ARIMA	22.78	10.07
SARIMA	26.88	10.56
VAR	22.88	9.92
ST-ANN	19.57	7.58
DeepST	18.18	7.43
RNN-3	26.68 ± 3.41	9.01 ± 0.50
RNN-6	30.03 ± 1.60	8.61 ± 0.42
RNN-12	45.51 ± 2.01	12.41 ± 0.84
RNN-24	51.12 ± 1.99	12.53 ± 0.14
RNN-48	43.42 ± 1.20	12.76 ± 0.18
RNN-336	39.61 ± 0.77	10.74 ± 0.35
LSTM-3	26.81 ± 2.80	8.67 ± 0.33
LSTM-6	26.07 ± 1.87	9.56 ± 0.64
LSTM-12	27.59 ± 3.69	9.90 ± 0.67
LSTM-24	25.69 ± 2.25	11.34 ± 0.44
LSTM-48	27.80 ± 2.87	12.36 ± 0.87
LSTM-336	40.68 ± 1.08	10.54 ± 0.13
GRU-3	22.97 ± 1.11	8.76 ± 0.37
GRU-6	23.64 ± 1.14	8.57 ± 0.22
GRU-12	27.40 ± 3.72	9.68 ± 0.51
GRU-24	27.01 ± 1.58	12.27 ± 0.77
GRU-48	28.56 ± 3.71	12.71 ± 0.93
GRU-336	40.27 ± 2.30	10.76 ± 0.33
ST-ResNet	17.17 ± 0.21 (12 residual units)	6.32 ± 0.13 (4 residual units
ST-ResNet-noExt	17.26 ± 0.38 (12 residual units)	\
ST-ResNet-AVG1	19.07 ± 0.30 (12 residual units)	6.44 ± 0.19 (4 residual units
ST-ResNet-AVG2	18.04 ± 0.15 (12 residual units)	5.99 ± 0.09 (4 residual units

Figure 13: Results for TaxiBJ dataset (left) and BikeNYC dataset (right)

David Albert (KAIST) ST-ResNet Al-608 21/24

Figure 14: Web interface of the UrbanFlow

David Albert (KAIST) ST-ResNet AI-608 22/24

- Introduction
- 2 Formulation of the problem and definitions
- 3 ST-ResNet Model Details
- Experiment
- Conclusion

- Forecast the flow of crowds collectively in each and every region of a city
- Performances beyond at least 6 baseline methods
- Future works :
 - Model to predict with irregular regions
 - Consider other types of flows
 - ightarrow bus, phone signals data, metro card swiping data
- Since, other methods have been developed to improve citywide crowd flows prediction
 - MVGCC
 - ST-DCCNAL (overcome ST-ResNet)

David Albert (KAIST) ST-ResNet AI-608 24/24