Prof. Mendes' Top 10 Graph Theory Things

Theorems

10. Hall's theorem

Let G be bipartite with independent set X. There is a matching for G that saturates X if and only if $|S| \le |N(S)|$ for all $S \subseteq X$.

10. Hall's theorem

Let G be bipartite with independent set X. There is a matching for G that saturates X if and only if $|S| \le |N(S)|$ for all $S \subseteq X$.

9. Brooks' theorem

If $G \neq K_n, C_{2n+1}$, then $\chi(G) \leq$ (the maximum degree in G).

10. Hall's theorem

Let G be bipartite with independent set X. There is a matching for G that saturates X if and only if $|S| \le |N(S)|$ for all $S \subseteq X$.

9. Brooks' theorem

If $G \neq K_n, C_{2n+1}$, then $\chi(G) \leq$ (the maximum degree in G).

8. Hoffman and Wilf's bounds

The chromatic number satisfies $1 - \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} \le \chi(G) \le \lambda_{\text{max}} + 1$.

7. Tutte's layout

If v_1, \ldots, v_k form a face in a planar G, then Tutte layout with v_1, \ldots, v_k as vertices of a polygon gives a planar embedding.

7. Tutte's layout

If v_1, \ldots, v_k form a face in a planar G, then Tutte layout with v_1, \ldots, v_k as vertices of a polygon gives a planar embedding.

6. Kuratowski's theorem

The graph G is not planar if and only if K_5 or $K_{3,3}$ can be found inside G by contracting edges and removing edges/vertices.

7. Tutte's layout

If v_1, \ldots, v_k form a face in a planar G, then Tutte layout with v_1, \ldots, v_k as vertices of a polygon gives a planar embedding.

6. Kuratowski's theorem

The graph G is not planar if and only if K_5 or $K_{3,3}$ can be found inside G by contracting edges and removing edges/vertices.

5. The four color theorem

If G is planar, then $\chi(G) \leq 4$.

4. Menger's theorems and Max Flow/Min Cut

The maximum value for a flow from *u* to *v* in a network is equal to the minimum weight *u*, *v* disconnecting set.

4. Menger's theorems and Max Flow/Min Cut

The maximum value for a flow from u to v in a network is equal to the minimum weight u, v disconnecting set.

3. Kirchhoff's matrix tree theorem

If $0, \mu_2, \dots, \mu_n$ are the eigenvalues for L(G), then the number of spanning trees for G is $\mu_2 \cdots \mu_n/n$.

4. Menger's theorems and Max Flow/Min Cut

The maximum value for a flow from u to v in a network is equal to the minimum weight u, v disconnecting set.

3. Kirchhoff's matrix tree theorem

If $0, \mu_2, \dots, \mu_n$ are the eigenvalues for L(G), then the number of spanning trees for G is $\mu_2 \cdots \mu_n/n$.

2. Cayley's formula

There are n^{n-2} labeled trees on n vertices.

1. Euler's equation

If G is planar, then V - E + F = 2.

Graphs

10. The Pappus graph

A smallest 3-regular graph with crossing number 5.

9. The Hoffman-Singleton graph

The largest graph with diameter 2 and smallest cycle size 5.

8. The Möbius-Kantor graph

The smallest 3-regular graph with crossing number 4.

7. The Grötzsch graph

The smallest triangle free graph with chromatic number 4.

6. The Paley 13 graph

Vertices in \mathbb{F}_{13} and edges $\{a,b\}$ when a-b is a square in \mathbb{F}_{13} .

5. The Herschel graph

The smallest non-Hamiltonian graph of a convex polyhedron.

4. The Dodecahedron graph

The platonic solid graph with faces of maximum size.

3. The complete graph K_5

The smallest non-planar graph.

2. The cube Q_5

Hamiltonian cycles are Gray codes.

1. The Petersen graph

The smallest non-Hamiltonian graph such that G - v is Hamiltonian for any vertex v.

Open Problems

10. What are optimal strategies for the hider in the "hide and seek" game on a weighted K_n ?

An example hider strategy: Hide at vertex 2, 3, 4, 5 with probabilities 0.484, 0.227, 0.226, 0.061.

9. Does a 57-regular, diameter 2, smallest cycle 5 graph exist?

An example would have 3250 vertices.

8. What is the crossing number for K_n ?

The conjectured crossing number is $\frac{1}{4} \lfloor \frac{n}{2} \rfloor \lfloor \frac{n-1}{2} \rfloor \lfloor \frac{n-2}{2} \rfloor \lfloor \frac{n-3}{2} \rfloor$.

The largest known crossing number for K_n is K_{10} with 60.

7. No 4-regular graph has exactly one Hamiltonian cycle.

6. A 3-regular and bridgeless graph has 6 perfect matchings such that each edge is contained in exactly two matchings.

5. If *T* is a tree and L(T) is the line graph of *T*, can we identify *T* from the sequence $|T|, |L(T)|, |L(L(T))|, \dots$?

gives 7, 6, 9, 21, 84, . . .

gives $7, 6, 7, 12, 33, \dots$

4. Do any three longest paths in a connected graph share a common vertex?

3. What is the smallest R needed so that every graph with R vertices either has a K_5 subgraph or a K_5^c subgraph?

Current bounds give $43 \le R \le 48$.

2. Can G be reconstructed from the multiset $\{G - v : \text{vertex } v\}$?

The above multiset of graphs is $\{W_5 - v\}$.

1. The Traveling salesman problem

Can a polynomial time algorithm produce a Hamiltonian cycle of minimum weight in a weighted K_n ? Is P = NP?

An optimal path for TSP for US cities with pop. \geq 500 in 1998:

