Problem L. Path Graph?

Time limit 2000 ms **Mem limit** 1048576 kB

Problem Statement

You are given a simple undirected graph with N vertices and M edges. The vertices are numbered $1,2,\ldots,N$, and the edges are numbered $1,2,\ldots,M$. Edge i ($i=1,2,\ldots,M$) connects vertices u_i and v_i .

Determine if this graph is a path graph.

- ▶ What is a simple undirected graph?
- ▶ What is a path graph?

Constraints

- $2 \leq N \leq 2 imes 10^5$
- $0 \le M \le 2 \times 10^5$
- $1 \le u_i, v_i \le N (i = 1, 2, ..., M)$
- All values in the input are integers.
- The graph given in the input is simple.

Input

The input is given from Standard Input in the following format:

Output

Print Yes if the given graph is a path graph; print No otherwise.

Sample 1

Input	Output
4 3	Yes
1 3	
4 2	
3 2	

Illustrated below is the given graph, which is a path graph.

Sample 2

Input	Output
2 0	No

Illustrated below is the given graph, which is not a path graph.

Sample 3

Input	Output	
5 5	No	
1 2		
2 3		
3 4		
4 5		
5 1		

Illustrated below is the given graph, which is not a path graph.

