Практика №5 по курсу «Дискретная математика» «Биномиальные коэффициенты. Числа Каталана. Перестановки»

Группы ФТ-203

Комбинаторика (грубое определение) — наука, занимающаяся изучением количественных характеристик дискретных объектов с определёнными свойствами (подсчёт количества, определение существования, и т.п.)

Рассмотрим простой объект — множество кортежей $S_{n,k} = \{(a_1, a_2, \dots, a_k) \mid a_i \in \{1, 2, \dots, n\}\}$. Так как каждый элемент независимо может принять одно из n значений, а всего элементов k, то мощность множества определяется формулой $|S_{n,k}| = n^k$.

Многие комбинаторные задачи могут быть очень сильно упрощены, если построить некоторую биекцию/изоморфизм из пространства изучаемых объектов, в пространство альтернативных объектов, где заранее могут быть известны дополнительные факты о структуре множества объектов. Попробуем применить данный приём на паре практических задач, путем построения биекции исходного множества на $S_{n,k}$ для некоторых n, k:

Вопрос 1. Вычислите количество подмножеств n-элементного множества.

Задание 2. Композицией числа n назовём последовательность положительных чисел a_1, a_2, \ldots, a_k таких, что $\sum a_i = n$. Вычислите количество различных композиций числа n. Композиции числа 3: (1,1,1),(1,2),(2,1),(3); обратите внимание на то, что **порядок слагаемых важен**.

Задание 3. Пусть задана пара натуральных чисел n и k кортеж (S_1, S_2, \ldots, S_k) состоящих из множеств $S_i \subseteq \{1, 2, \dots, n\}.$

- 1. Посчитайте число кортежей без каких-либо ограничений;
- 2. Посчитайте число кортежей таких, что $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_k$;
- 3. Посчитайте число кортежей таких, что $S_i \cap S_j = \emptyset$ для $i \neq j$;
- 4. Посчитайте число кортежей таких, что $S_1 \cap S_2 \cap \cdots \cap S_k = \emptyset$;

Из лекций вы знаете о существовании более сложных объектов — например множество k-элементных подмножеств *п*-элементного множества. Количество таких подмножеств определяется биномиальным коэффициентом $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Вопрос 4. Докажите равенство для n > 0: $2\binom{2n-1}{k} = \binom{2n}{k}$.

Вопрос 5. Сколько существует кортежей из множеств (S_1, S_2, \dots, S_k) (как в задании 3) таких, что $S_i \neq S_j$ для $i \neq j$?

Вспомним факт о количестве путей на сетке и решим с помощью него пару несложных задач:

Задание 6. Сколько существует путей из клетки (1,1) в клетку (n,m), если можно передвигаться только на положительное число клеток вверх или вправо? Сколько будет путей, если на поле есть одно препятствие в клетке $(x, y), 1 < x < n \land 1 < y < m$?

Название «Биномиальный коэффициент» соответвует ещё одному альтернативному определению значений данной последовательности, как коэффициент при мономе $x^k y^{n-k}$ в разложении бинома $(x+y)^n$. Такая интерпретация позволяет заметно упростить решение некоторых задач:

Вопрос 7. Докажите равенство для
$$n > 0$$
: $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.

Вопрос 8. Докажите равенство:
$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$$
.

Рассмотрим смежный к сочетаниям (k-элемнтные подмножества) объект — сочетания с повторениями. Определим множество $R_{n,k} = \{S \mid S$ — мультимножество над $\{1,2,\ldots,n\}$ из k элементов $\}$. Тогда число сочетаний $\binom{n}{k}$ определяется как размер множества $R_{n,k}$.

Задание 9. Выведите формулу для $\binom{\overline{n}}{k}$ через биномиальные коэффициенты.

Ещё одним «вездесущим» объектов в комбинаторике являются числа Каталана: $C_n = \frac{1}{n+1} \binom{2n}{n}$. Существуют сотни различных комбинаторных интерпретаций для чисел Каталана, одна из которых рассматривалась на лекции:

Замечание 10. Число верхних путей из (0,0) в (n,n) на целочисленной решётке равно C_n .

Задание 11. Вычислите количество последовательностей из натуральных чисел $1 \le a_1 \le a_2 \le \cdots \le a_n$ таких, что $a_i \le i$.

Задания для самостоятельного решения

Задание 1. Пусть $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$ — разложение числа n в произведение степеней простых попарно различных чисел. Используя значения данные в выжарении n (т.е. p_i, α_i, k, n) выразите следующие величины:

- 1. Число всех натуральных делителей числа n;
- 2. Число всех делителей, не делящихся на квадрат никакого натурального числа x > 1;
- 3. Сумму делителей числа n.

Задание 2. Докажите, равенство для
$$n > 0$$
: $\sum_{k=0}^{n} \binom{x+k}{k} = \binom{x+n+1}{n}$.

Задание 3. Сколькими способами можно расставить n нулей и k единиц так, чтобы никакие две единицы не стояли рядом?

Задание 4. Пусть L — множество ломаных на плоскости, обладающих следующими свойствами:

- 1. Ломаная не выходит за пределы первого квадранта;
- 2. Каждый сегмент имеет угловой коэффициент 1 или -1;
- 3. Все точки излома имеют целые координаты;

Найдите мощность множества L.

Бонусная задача:

Задание 5. Вычислите количество бинарных матриц $m \times n$ таких, что в каждой строке и в каждом столбце находится нечетное число единиц.