Esercizi TDI - Foglio 4

Davide Peccioli

10 maggio 2025

1 Esercizio 1

Prove that for any Polish space X and $x \in X$, the singleton $\{x\}$ is Π_1^0 -complete if and only if x is not isolated in X. Conclude that the set

$$C_1 = \{ x \in 2^{\omega} \mid \exists n \ (x(n) = 0) \}$$

from Proposition 2.1.31 of the notes is Σ_1^0 -complete.

1.1 Soluzione

Siccome X è uno spazio metrizzabile, allora $\{x\} \subseteq X$ è chiuso, e pertanto $\{x\} \in \Pi^0_1(X)$. Bisogna quindi dimostrare che $\{x\}$ è Π^0_1 -hard sse x è **non isolato** in X.

1.1.1 Implicazione " \Longrightarrow "

Sia $C \in \Pi_1^0(\omega^{\omega})$, e sia $f : \omega^{\omega} \to X$ continua tale che

$$f^{-1}(x) = C.$$

Si supponga per assurdo che x sia isolato. Allora $\{x\} \subseteq X$ è aperto, e quindi $C \subseteq \omega^{\omega}$ è aperto (retroimmagine continua di un aperto).

Per l'arbitrarietà di C, questo implica che ogni chiuso di ω^{ω} è un clopen. Inoltre, se $A \subseteq \omega^{\omega}$ è aperto, allora $\omega^{\omega} \setminus A$ è chiuso e quindi clopen, e pertanto A è un chiuso:

$$\boldsymbol{\Sigma}_1^0(\boldsymbol{\omega}^{\boldsymbol{\omega}}) = \boldsymbol{\Delta}_1^0(\boldsymbol{\omega}^{\boldsymbol{\omega}}) = \boldsymbol{\Pi}_1^0(\boldsymbol{\omega}^{\boldsymbol{\omega}}).$$

Questo contraddice il Theorem 2.1.17 delle note.

1.1.2 Implicazione " $\Leftarrow=$ "

Sia $x \in X$ un punto non isolato, ovvero x un punto di accumulazione di X, e sia $B \in \Pi_1^0(\omega^\omega)$.

Si fissi $d': X \to \mathbb{R}$ una metrica completa su X. Sia ora $y \in X \setminus \{x\}$, e sia d la metrica normalizzata:

$$d(i,j) \coloneqq \frac{d'(i,j)}{d'(x,y)}$$

Dunque esiste un punto $y \in X$ tale che d(x, y) = 1.

- Sia $\{U_n\}_{n\in\omega}$ una famiglia di aperti di X tali che
 - per ogni $n \in \omega$: $U_n \setminus \{x\} \neq \emptyset$;
 - l'intersezione $\bigcap_{n \in \omega} U_n = \{x\};$
 - diam $(U_n) \to 0$;
 - per ogni $n \in \omega$: $Cl(U_{n+1}) \subsetneq U_n$.

Tale famiglia esiste in virtù del fatto che x sia un <u>punto di accumulazione</u>. Infatti, poiché X è T1, allora ogni intorno di x ha una quantità infinita di punti, ed è sufficiente costruire gli intorni per induzione.

Sia $U_0 = B_d(x, 2^{-1})$. Si supponga di aver costruito U_n , e sia $\alpha \in U_n \setminus \{x\}$.

Detto $r := \min \{2^{-n-1}, d(x, \alpha)/2\} > 0$, sia $U'_n := B_d(x, r)$. Necessariamente $\alpha \notin U'_n \in U'_n \subseteq U_n$.

È quindi possibile porre $U_{n+1} := B_d(x, r/2)$:

$$Cl(U_{n+1}) = Cl(B_d(x, r/2)) \subseteq B_d^{cl}(x, r/2) \subseteq B_d(x, r) = U_n' \subsetneq U_n.$$

• Sia ora $\{V_n\}_{n\in\omega}$ una famiglia di aperti non vuoti di X tali che, per ogni $n\in\omega$

$$Cl(V_0) \subseteq X \setminus Cl(U_0), \qquad Cl(V_{n+1}) \subseteq U_n \setminus Cl(U_{n+1}).$$

Tali V_n esistono. Infatti, entrambi i seguenti insiemi sono aperti non vuoti

$$X \setminus \mathrm{Cl}(U_0), \qquad U_n \setminus \mathrm{Cl}(U_{n+1}) = U_n \cap (X \setminus \mathrm{Cl}(U_{n+1}))$$

e pertanto contengono una palla aperta $B_d(\alpha, \delta)$. È sufficiente considerare, quindi, l'insieme $B_d(\alpha, \delta/2) \ni \alpha$ poiché, come sopra:

$$\operatorname{Cl}\left(B_d(\alpha,\delta/2)\right)\subseteq B_d(\alpha,\delta)$$

• Per ogni $n\in\omega,$ sia $\left\{W_j^n\right\}_{j\in\omega}$ una famiglia di aperti non vuoti tale che, per ogni $j\in\omega$

$$Cl(W_j^n) \subseteq V_n, \qquad Cl(W_{j+1}^n) \subseteq W_j^n.$$

Tali W_j^n esistono. Infatti, siccome V_n è aperto non vuoto, allora esiste $\alpha \in V_n$ ed esiste $\delta \in (0,1)$ tale che

$$B_d(\alpha, \delta) \subseteq V_n$$

Come sopra, ponendo $W_j^n := B_d(\alpha, \delta \cdot 2^{-n-2})$ si ottengono gli aperti cercati. Ciascun $W_j^n \ni \alpha$.

• Siccome B è un chiuso di ω^{ω} , allora esiste un albero potato $T \subseteq \omega^{<\omega}$ tale che B = [T], i.e.

$$B = \left\{ \alpha \in \omega^{\omega} \mid \forall \, n \in \omega \, \left(\alpha \upharpoonright n \in T \right) \right\}$$

• Si costruisce un ω -schema $\{B_s \mid s \in \omega^{<\omega}\}$ su X:

 $- \sin B_{\emptyset} := X;$

- se $s \in T$, allora $B_s := U_{\mathrm{lh}(s)}$;

- se $s \notin T$, sia j_s il più grande indice tale che $s \upharpoonright j_s \in T$; si pone $B_s := W^{j_s}_{lh(s)}$.

• Questo definisce effettivamente uno schema tale che $Cl(B_{s \frown a}) \subseteq B_s$ e ciascun $B_s \neq \emptyset$: pertanto è indotta una funzione continua totale (per il Lemma 1.3.6)

$$F:\omega^{\omega}\to X$$

• Resta da mostrare che $F^{-1}(x) = B$. Questo per definizione garantisce che $\{x\}$ sia un Π_1^0 -hard. Per ogni $\beta \in B$,

$$F(\beta) \in \bigcap_{n \in \omega} B_{\beta \upharpoonright n}$$

dove $\beta \upharpoonright n \in T$. Quindi $B_{\beta \upharpoonright n} = U_n$. Quindi

$$F(\beta) \in \bigcap_{n \in \omega} U_n = \{x\}.$$

Viceversa, se $\beta \notin B$, allora esiste $n_0 \in \omega$ tale che $\beta \upharpoonright n_0 \notin T$ e pertanto

$$F(\beta) \in \bigcap_{n \in \omega} B_{\beta \upharpoonright n} \subseteq B_{\beta \upharpoonright n_0}$$

e per costruzione $x \notin B_{\beta \upharpoonright n_0}$.

1.1.3 Insieme C_1

Dal momento che $\Sigma_1^0 = \check{\Pi}_1^0$ segue che C_1 è Σ_1^0 -completo se e solo se $2^{\omega} \setminus C_1$ è Π_1^0 -completo.

Si ha che $x \in 2^{\omega} \setminus C_1$ se e solo se per ogni $n \in \omega$, $x(n) \neq 0$, ovvero x(n) = 1.

Pertanto $2^{\omega} \setminus C_1 = \{u\}$, dove

$$u: \omega \longrightarrow 2$$
$$n \longmapsto 1$$

Per la caratterizzazione di cui sopra, C_1 è Σ_1^0 -completo se e solo se u non è un punto isolato di 2^{ω} . Si consideri ora la successione $(x_n)_{n\in\omega}\subseteq 2^{\omega}$:

$$x_n(j) = \begin{cases} 1 & j < n \\ 0 & j \ge n \end{cases}$$

Si ha che $x_n \to u$, e pertanto u non è un punto isolato di 2^{ω} (per ogni intorno I di u esiste $N \in \omega$ tale che $x_N \in I \setminus \{u\}$).

2 Esercizio 2

Prove that for any Polish space and $A \subseteq X$, if A is not open then it is Π_1^0 -hard. Conclude that a set A is truly closed (i.e. closed but not open) if and only if it is Π_1^0 -complete, and similarly for Σ_1^0 .

2.1 Soluzione

2.1.1 Non aperti sono Π_1^0 -hard

Sia A un insieme non aperto, e sia $C \subseteq \omega^{\omega}$ un chiuso fissato.

Sia dunque $a_0 \in A \setminus \text{Int}(A)$. In particolare, quindi $a_0 \in \text{Cl}(X \setminus A) = A \setminus \text{Int}(A)$.

Sia $x \in X$ un punto non isolato, ovvero x un punto di accumulazione di X, e sia $B \in \Pi_1^0(\omega^\omega)$.

Si fissi $d': X \to \mathbb{R}$ una metrica completa su X. Sia ora $y \in X \setminus A$, e sia d la metrica normalizzata:

$$d(i,j) \coloneqq \frac{d'(i,j)}{d'(a_0,y)}$$

Dunque esiste un punto $y \in X$ tale che $d(a_0, y) = 1$.

- Sia $\{U_n\}_{n\in\omega}$ una famiglia di aperti di X tali che
 - per ogni $n \in \omega$: $U_n \setminus \{x\} \neq \emptyset$;
 - l'intersezione $\bigcap_{n\in\omega} U_n = \{a_0\};$
 - diam $(U_n) \to 0$;
 - per ogni $n \in \omega$: $Cl(U_{n+1}) \subsetneq U_n$.

Tale famiglia esiste, come dimostrato nel punto precedente. In particolare, si prenda $U_0 = B_d(a_0, 1/2)$.

• Sia ora $\{V_n\}_{n\in\omega}$ una famiglia di chiusi non vuoti, con vanishing diameter, di X tali che, per ogni $n\in\omega$

$$Cl(V_0) \subset X \setminus Cl(U_0), \qquad Cl(V_{n+1}) \subset U_n \setminus Cl(U_{n+1}).$$

e tali che $V_n \cap A = \emptyset$. È sufficiente considerare V_n come un singoletto.

• Siccome C è un chiuso di ω^{ω} , allora esiste un albero potato $T \subseteq \omega^{<\omega}$ tale che C = [T], i.e.

$$C = \left\{ \alpha \in \omega^{\omega} \mid \forall n \in \omega \ (\alpha \upharpoonright n \in T) \right\}$$

- Si costruisce un ω -schema $\{B_s \mid s \in \omega^{<\omega}\}$ su X:
 - $\sin B_{\emptyset} := X;$
 - se $s \in T$, allora $B_s := U_{\mathrm{lh}(s)}$;
 - se $s \notin T$, sia j_s il più grande indice tale che $s \upharpoonright j_s \in T$; si pone $B_s := V_{j_s}$.
- Questo definisce effettivamente uno schema tale che $Cl(B_{s \cap a}) \subseteq B_s$ e ciascun $B_s \neq \emptyset$: pertanto è indotta una funzione continua totale (per il Lemma 1.3.6)

$$F:\omega^{\omega}\to X$$

• Resta da mostrare che $F^{-1}(A) = C$. Questo per definizione garantisce che A sia un Π_1^0 -hard. Per ogni $\beta \in C$,

$$F(\beta) \in \bigcap_{n \in \omega} B_{\beta \upharpoonright n}$$

dove $\beta \upharpoonright n \in T$. Quindi $B_{\beta \upharpoonright n} = U_n$. Quindi

$$F(\beta) \in \bigcap_{n \in \omega} U_n = \{a_0\} \subseteq A.$$

Viceversa, se $\beta \notin C$, allora esiste $n_0 \in \omega$ tale che $\beta \upharpoonright n_0 \notin T$ e pertanto

$$F(\beta) \in \bigcap_{n \in \omega} B_{\beta \upharpoonright n} \subseteq B_{\beta \upharpoonright n_0}$$

e per costruzione, siccome $B_{\beta \uparrow n_0}$ è contenuto in qualche V_m , $A \cap B_{\beta \uparrow n_0} = \emptyset$, e pertanto $F(\beta) \notin A$

2.1.2 Caratterizzazione dei chiusi ma non aperti

• Se A è chiuso ma non aperto, allora A è Π_1^0 -hard e inoltre $A \in \Pi_1^0$. Per definizione, quindi A è un Π_1^0 -completo.

Viceversa, se A è un chiuso Π_1^0 -hard, si supponga per assurdo che sia aperto. Allora, per ogni $B \in \Pi_1^0(\omega^\omega)$ esiste una funzione continua $F : \omega^\omega \to X$ tale che $F^{-1}(A) = B$, ovvero $B \in \Sigma_1^0$. Si avrebbe quindi che ogni chiuso di ω^ω sia un clopen. Come argomentato nell'esercizio precedente, questo genera un assurdo.

• L'insieme A è aperto ma non chiuso se e solo se $X \setminus A$ è chiuso ma non aperto, se e solo se $X \setminus A$ è Π_1^0 -completo per il punto precedente.

Per il Lemma 2.1.23, $X \setminus A$ è Π_1^0 -completo se e solo se A è $\check{\Pi}_1^0$ -completo, ma (per l'Example 2.1.10)

$$\check{\boldsymbol{\Pi}}_1^0 = \boldsymbol{\Sigma}_1^0$$

e pertanto A è aperto ma non chiuso se e solo se A è Σ_1^0 -completo.

3 Esercizio 3

Prove that the sets

$$C_0 = c_0 \cap [0, 1]^{\omega} = \{ (x_n)_{n \in \omega} \in [0, 1]^{\omega} \mid x_n \to 0 \}$$

$$C = \{ (x_n)_{n \in \omega} \in [0, 1]^{\omega} \mid (x_n)_{n \in \omega} \text{ converges} \}$$

are both Π_3^0 -complete.

Hint. For the hardness part, compare these sets with the Π_3^0 -complete set C_3 from Exercise 2.1.27 in the notes.

3.1 Soluzione

3.1.1 C_0 e C sono degli insiemi Π_0^3 .

a. Insieme C_0 .

Si ha che $(x_j)_{j\in\omega}\in C_0$ se e solo se $(x_j)_{j\in\omega}\in [0,1]^\omega$ e:

$$\forall \varepsilon \in \mathbb{Q}^+ \ \exists N \in \mathbb{N} \ \forall n > N \ (|x_n| \le \varepsilon)$$

ovvero, se $U_{n,\varepsilon} := \{(x_j)_{j \in \omega} \in [0,1]^{\omega} : |x_n| \le \varepsilon\}$, allora

$$C_0 = \bigcap_{\varepsilon \in \mathbb{Q}^+} \bigcup_{N \in \mathbb{N}} \bigcap_{n > N} U_{n,\varepsilon}.$$

Quindi, dette $\pi_m : [0,1]^{\omega} \to [0,1]$ le *m*-esime proiezioni (continue per definizione di topologia prodotto):

$$U_{n,\varepsilon} = \pi_n^{-1} \left([-\varepsilon, \varepsilon] \right)$$

e pertanto $U_{n,\varepsilon}$ è chiuso. Per il Lemma 2.1.5:

$$\bigcap_{n>N} U_{n,\varepsilon} \in \mathbf{\Pi}_1^0$$

$$\bigcup_{N\in\mathbb{N}} \bigcap_{n>N} U_{n,\varepsilon} \in \mathbf{\Sigma}_2^0$$

$$C_0 = \bigcap_{\varepsilon\in\mathbb{Q}^+} \bigcup_{N\in\mathbb{N}} \bigcap_{n>N} U_{n,\varepsilon} \in \mathbf{\Pi}_3^0.$$

e si ottiene che $C_0 \in \mathbf{\Pi}_3^0 ([0,1]^{\omega})$.

b. Insieme C.

Si ha che $(x_j)_{j\in\omega}\in C$ se e solo se $(x_j)_{j\in\omega}\in [0,1]^\omega$ e

$$\forall \varepsilon \in \mathbb{Q}^+ \ \exists N \in \mathbb{N} \ \forall n, m > N \ (|x_n - x_m| \le \varepsilon)$$

ovvero, se $V_{m,n}^{\varepsilon} \coloneqq \{(x_j)_{j \in \omega} \in [0,1]^{\omega} : |x_n - x_m| \le \varepsilon\}$, allora

$$C = \bigcap_{\varepsilon \in \mathbb{Q}^+} \bigcup_{N \in \mathbb{N}} \bigcap_{n,m > N} V_{n,m}^\varepsilon.$$

Poiché la funzione $(\pi_n - \pi_m) : [0,1]^{\omega} \to \mathbb{R}$ è continua, allora

$$V_{n,m}^{\varepsilon} \coloneqq (\pi_n - \pi_m)^{-1} ([-\varepsilon, \varepsilon])$$

e quindi $V_{n,m}^{\varepsilon}$ è chiuso. Per il Lemma 2.1.5:

$$\bigcap_{n,m>N} V_{n,m}^{\varepsilon} \in \Pi_{1}^{0}$$

$$\bigcup_{N \in \mathbb{N}} \bigcap_{n,m>N} V_{n,m}^{\varepsilon} \in \Sigma_{2}^{0}$$

$$C = \bigcap_{\varepsilon \in \mathbb{Q}^{+}} \bigcup_{N \in \mathbb{N}} \bigcap_{n,m>N} V_{n,m}^{\varepsilon} \in \Pi_{3}^{0}$$

e si ottiene che $C \in \Pi_3^0([0,1]^{\omega})$.

3.1.2 Hardness

È noto (Esercizio 2.1.27) che l'insieme $C_3 := \{x \in \omega^{\omega} \mid \lim_{n \to \infty} x(n) = \infty\}$ sia Π_3^0 -hard. Pertanto si cercano delle funzioni continue

$$\omega^{\omega} \xrightarrow{F} [0,1]^{\omega} \xrightarrow{G} [0,1]^{\omega}$$

tali che

$$F^{-1}(C_0) = C_3, \qquad G^{-1}(C) = C_0.$$

Questo, per mezzo del Lemma 2.1.23, garantisce che C_0 , C siano insiemi Π_3^0 -hard (e quindi, per il punto precedente, completi).

Le due funzioni si definiscono come segue:

$$F: \omega^{\omega} \longrightarrow [0,1]^{\omega}$$

$$(x_j)_{j \in \omega} \longmapsto (\phi(x_j))_{j \in \omega}$$

$$\phi: \mathbb{N} \longrightarrow [0,1]$$

$$m \longmapsto \begin{cases} 1/m & m \neq 0 \\ 1 & m = 0. \end{cases}$$

$$G: [0,1]^{\omega} \longrightarrow [0,1]^{\omega}$$
 dove
$$y_j \coloneqq \begin{cases} 0 & j \text{ dispari} \\ x_{j/2} & j \text{ pari.} \end{cases}$$

a. F è continua.

La funzione F è continua poiché lo è su ciascuna componente (in quanto \mathbb{N} ha la topologia discreta).

b. G è continua.

La funzione F è continua poiché lo è su ciascuna componente:

- ullet la componente j-esima di G, con j dispari, è data dalla funzione costante nulla, continua;
- la componente j-esima di G, con j pari, è data dalla funzione proiezione $\pi_{j/2}:[0,1]^{\omega} \to [0,1]$, continua per definizione di topologia prodotto.

c. $F^{-1}(C_0) = C_3$.

Si dimostra che $\alpha \in C_3$ sse $F(\alpha) \in C_0$.

- Se $\alpha = (x_j)_{j \in \omega} \in C_3$ allora esiste $N \in \mathbb{N}$ tale che, per ogni j > N si ha $x_j \neq 1$. Pertanto, per ogni j > N, $\phi(x_j) = 1/x_j$ e, siccome $x_j \to \infty$, $\phi(x_j) \to 0$. Quindi $F(\alpha) \in C_0$.
- Viceversa, sia $\alpha = (x_j)_{j \in \omega} \notin C_3$. Si supponga per assurdo che $(y_j)_{j \in \omega} = F(\alpha) \in C_0$.

Allora, definitivamente, $y_j = 1/x_j$ (e in particolare $x_j \neq 0 \neq y_j$), poiché altrimenti non si avrebbe convergenza a 0. In particolare, $x_j = 1/y_j$, definitivamente:

$$\lim_{j \to \infty} x_j = \lim_{j \to \infty} \frac{1}{y_j} = \infty$$

poiché $y_j \to 0$. Quindi $(x_j)_{j \in \omega} \in C_3$. Assurdo.

Si ottiene perciò che $F(\alpha) \notin C_0$.

d. $G^{-1}(C) = C_0$.

Si dimostra che $\alpha \in C_0$ sse $G(\alpha) \in C$.

- Se $\alpha = (x_j)_{j \in \omega} \in C_0$ allora la successione $\beta = (y_j)_{j \in \omega} := G(\alpha)$ converge a 0, e pertanto converge: $G(\alpha) \in C$.
- Viceversa, se $\alpha = (x_j)_{j \in \omega} \notin C_0$, allora la successione $\beta = (y_j)_{j \in \omega} \coloneqq G(\alpha)$ non converge, in quanto presenta due sottosuccessioni $((y_{2j+1})_{j \in \omega} \in (y_{2j})_{j \in \omega})$ con caratteri diversi: $G(\alpha) \notin C$.

4 Esercizio 4

Prove that for any 0 the set

$$\ell^p \cap [0,1]^{\omega} = \left\{ (x_n)_{n \in \omega} \in [0,1]^{\omega} \mid ||x||_p = \left(\sum_{n=0}^{\infty} |x_n|^p \right)^{1/p} < \infty \right\}$$

is Σ_2^0 -complete.

Hint. Recall that a series of positive terms converges if and only if the sequence of partial sums is bounded from above. For the hardness part, compare this set with the Σ_2^0 -complete set Q_2 from the notes.

4.1 Soluzione

4.1.1 Insieme Σ_2^0

Sia $x = (x_j)_{j \in \omega} \in [0, 1]^{\omega}$.

Si ha che $(x_j)_{j\in\omega}\in\ell^p\cap[0,1]^\omega$ se e solo se

$$||x||_p = \left(\sum_{n=0}^{\infty} |x_n|^p\right)^{1/p} < \infty$$

se e solo se

$$(\|x\|_p)^p = \sum_{n=0}^{\infty} |x_n|^p < \infty$$

se e solo se, sfruttando l'hint,

$$\exists L \in \mathbb{Q}^+ \ \forall N \in \mathbb{N} \ \left(\sum_{n=0}^N |x_n|^p\right) \le L$$

Sia dunque

$$G_N^p: [0,1]^\omega \longrightarrow \mathbb{R}$$

 $(x_j)_{j \in \omega} \longmapsto \sum_{n=0}^N |x_n|^p$

Questa è una mappa continua, poiché composizione di mappe continue (proiezioni, continue per la definizione di topologia prodotto, e somma finita ed elevamento a potenza) e pertanto il seguente è un insieme chiuso:

$$V_L^N := \left\{ (x_j)_{j \in \omega} \in [0, 1]^{\omega} \mid \left(\sum_{n=0}^N |x_n|^p \right) \le L \right\} = (G_N^p)^{-1} \left([0, L] \right).$$

In definitiva

$$\begin{split} V_L^N \in \Pi_1^0 \\ \bigcap_{N \in \mathbb{N}} V_L^N \in \Pi_1^0 \\ \ell^p \cap [0,1]^\omega = \bigcup_{L \in \mathbb{Q}} \bigcap_{N \in \mathbb{N}} V_L^N \in \Sigma_2^0. \end{split}$$

4.1.2 Insieme Σ_2^0 -hard

È noto che l'insieme

$$Q_2 := \left\{ x \in 2^{\omega} \mid \exists n \in \mathbb{N} \ \forall k \ge n \ \left(x(k) = 0 \right) \right\}$$

sia Σ_2^0 -hard.

Si vuole quindi trovare una funzione continua

$$F: 2^{\omega} \longrightarrow [0,1]^{\omega}$$

tale che $F^{-1}\left(\ell^p\cap[0,1]^\omega\right)=Q_2$. Questo, per il Lemma 2.1.23, garantisce che $\ell^p\cap[0,1]^\omega$ sia Σ_2^0 -hard, e quindi Σ_2^0 -completo.

• Considerando che $2 = \{0, 1\} \subseteq [0, 1]$, si può definire F come l'inclusione, ovvero

$$F: 2^{\omega} \longrightarrow [0, 1]^{\omega}$$
$$(x_j)_{j \in \omega} \longmapsto (x_j)_{j \in \omega}$$

- Questa è una funzione continua, poiché è continua su ciascuna componente (infatti {0,1} ha la topologia di sottospazio rispetto a [0,1], e per definizione quindi l'inclusione è continua).
- Inoltre, $F^{-1}\left(\ell^p\cap[0,1]^\omega\right)=Q_2$. In particolare, si dimostra che $\alpha\in Q_2$ sse $F(\alpha)\in\ell^p\cap[0,1]^\omega$

- Sia $\alpha = (x_j)_{j \in \omega} \in Q_2$. Allora esiste $N \in \mathbb{N}$ tale che $x_j = 0$ per ogni j > N, e pertanto

$$\left(\sum_{j=0}^{\infty}|x_j|^p\right)^{1/p} = \left(\sum_{j=0}^{N}|x_j|^p\right)^{1/p} < \infty$$

Pertanto $F(\alpha) \in \ell^p \cap [0,1]^{\omega}$.

- Sia $\alpha = (x_j)_{j \in \omega} \notin Q_2$. Allora per ogni $n \in \mathbb{N}$ esiste $k_n \ge n$ tale che $x_{k_n} = 1$. Pertanto, per ogni $n \in \mathbb{N}$, esiste un numero infinito di indici j tali che $x_j = 1$, e dunque $\lim_{j \to \infty} x_j \ne 0$ e dunque la serie

$$\sum_{j=0}^{\infty} |x_j|^p$$

diverge. Pertanto $F(\alpha) \notin \ell^p \cap [0,1]^{\omega}$.

5 Esercizio 5

Show that the collection of all sequences $(x_n)_{n\in\omega}\in[0,1]^{\omega}$ having an irrational accumulation point is analytic.

5.1 Soluzione

Sia $A_{[0,1]\setminus\mathbb{Q}}$ l'insieme di tutti gli $(x_j)_{j\in\omega}\in[0,1]^\omega$ con un punto di accumulazione irrazionale.

Si ricorda che $p \in [0,1]$ è un punto di accumulazione per $(x_i)_{i \in \omega}$, per definizione, se:

$$\forall \varepsilon > 0 \ \forall N \in \mathbb{N} \ \exists n > N \ (x_n \in (p - \varepsilon, p + \varepsilon)).$$

In particolare, $p \in [0,1]$ è un punto di accumulazione per $(x_i)_{i \in \omega}$ se e solo se:

$$\forall \varepsilon \in \mathbb{Q}^+ \ \forall N \in \mathbb{N} \ \exists n > N \ (x_n \in (p - \varepsilon, p + \varepsilon)).$$

Per il Remark 3.1.10, quindi, siccome $[0,1] \setminus \mathbb{Q}$ è uno spazio polacco, $A_{[0,1] \setminus \mathbb{Q}}$ è un insieme analitico, in quanto definito dalla seguente formula:

$$\exists p \in [0,1] \setminus \mathbb{Q} \ \forall \varepsilon \in \mathbb{Q}^+ \ \forall N \in \mathbb{N} \ \exists n > N \ (x_n \in (p-\varepsilon, p+\varepsilon))$$

composta unicamente (tranne che per il primo esistenziale), da quantificazioni numerabili, e da una formula atomica: $x_n \in (p - \varepsilon, p + \varepsilon)$, che definisce un boreliano di $([0,1] \setminus \mathbb{Q}) \times [0,1]^{\omega}$, in quanto, data la funzione continua

$$F_n: ([0,1] \setminus \mathbb{Q}) \times [0,1]^{\omega} \longrightarrow \mathbb{R}$$

 $(p,(x_i)_{i \in \omega}) \longmapsto x_n - p$

si ha che

$$\left\{ \left(p, (x_j)_{j \in \omega} \right) \in \left([0, 1] \setminus \mathbb{Q} \right) \times [0, 1]^{\omega} \mid x_n \in (p - \varepsilon, p + \varepsilon) \right\} = F_n^{-1} \left[(-\varepsilon, \varepsilon) \right]$$

è un aperto.