"Linux 生物信息基础"课程 小组集体练习、讨论、交流

总结报告

组: 4 次: 4 组长: 陈奕晗 执笔: 陈奕晗

- 1. 时间: 2021年4月15日, 15:00~17:00
- 2. 地点: 王克桢 348
- 3. 人员: 陈奕晗、邹济平、朱瑾煜、高培翔
- 4. 方式:线下讨论
- 5. 主题:
 - 1) BLAST 数据库相似性搜索
 - 2) 本小组综合课题选题方向
- 6. 内容
 - 6.1 BLAST 数据库相似性搜索
 - 6.1.1 NCBI BLAST
 - (1) 搜索方式:

blastp 蛋白一蛋白

blastn 核酸一核酸

blastx 核酸一蛋白

tblastn 蛋白一核酸

tblastx 编码核酸—编码核酸

(2) 例题

1. 以人血红蛋白 alpha 亚基(HBA_HUMAN)为检测序列,用 BlastP 搜索 Swiss-Prot 数据库中 12 个珠蛋白

参数设置:

目标序列: P69905

选择搜索的数据库: UniProtKB/Swiss-Prot(swissprot)

选择搜索物种: human(taxid:9606)

program selection (Algorithm): blastp (protein-protein BLAST)

Max target sequences: 100

word size: 2 (wordsize 越小, 灵敏度越高)

Matrix: PAM250 (PAM250 的灵敏度比 BLOSUM62 等其他选项都高)

Compositional adjustments: Composition-based statistics

搜索结果

点击 Multiple alignment 可调用多序列比对程序

2. 以人血红蛋白 alpha 亚基(HBA_HUMAN)为检测序列,用 PSI-Blast 搜索 Swiss-Prot 数据库,找出人珠蛋白家族成员脑红蛋白(Neuroglobin)。

第一次搜索

二次迭代搜索找到脑红蛋白 Neuroglobin

PSI-blast 为一种序列相似性搜索算法,可多次迭代得到更多结果

- 3. 以人血红蛋白 alpha 亚基(HBA_HUMAN)为检测序列,搜索 Swiss-Prot 数据库,找出灵长目动物(Primates)中所有 alpha 珠蛋白、找出黑猩猩(Chimpanzee)中所有珠蛋白、找出与 HBA_HUMAN 相同位点高于 95% (Identity>95%)的序列。
 - 1. 灵长目所有 alpha 珠蛋白:

2. 黑猩猩珠蛋白:

更改 Organism 为 chimpanzee

结果:

3.Identity>95%的序列

在 Filter Results 中的 Percent Identity 更改为"95 to "筛选出一个序列。

Filter Results

Organism only top 20 w	ill appear	exclude
chimpanzee (taxid:95	98)	
+ Add organism		
Percent Identity	E value	Query Coverage
95 to	to	to
PSI-BLAST incl.		
threshold		
0.005		Filter Reset

结果:

6.1.2 linux 上的 BLAST 使用

1. .ncbirc

cp /rd1/home/public/blast/.ncbirc . (在根目录下建立文件.ncbirc 进行数据库配置) .ncbirc 文件内容:

Specifies the path where BLAST databases are installed

[BLAST]

BLASTDB=/rd1/home/blastdb

2.blastp 命令行使用

表格方式输出的一些参数

指定 E 值过滤假阳性 (默认为 10,可选用 0.1 等更小的值) -evalue

-outfmt 6 只输出条目构成的表格,不显示详细比对情况 -outfmt

-outfmt 7 输出表格加一些表头信息

-word size 设置种子序列字长

-matrix 设置积分矩(如 PAM250)

3. 迭代 PSI-BLAST

迭代PSI-BLAST

构建序列谱计分矩阵时校正参数选择

- 1. 基于组分统计校正(Composition-based statistics, NAR 20:2994-3005) 2. 基于序列特征校正(Conditioned on sequence properties, Bioinformatics, 21:902-911)
- 3: 非条件校正 (Composition-based score adjustment, unconditionally, Bioinformatics, 21:902-911) 默认: 2

- -num_iterations 设置迭代次数
- -comp_based_stats 矫正参数

结果:

b4a@bbt:~\$											
	BLAST\$ cd input										
	BLAST/input\$ blastp -query										
	BLAST/input\$ psiblast -que		MAN.FAS	STA -db	sp_humar	-evalue	e 0.1 -ou	tfmt 6 \			
	tions 2 -comp_based_stats										
A_HUMAN	sp P69905 HBA_HUMAN	100.000		0	Θ	1	142	1	142	1.13e-101	28
A_HUMAN	sp P09105 HBAT_HUMAN	61.972		54	0	1	142		142	3.73e-59	17
A_HUMAN	sp P02008 HBAZ_HUMAN		142	57	0	1	142		142	2.04e-56	17
A_HUMAN	sp Q6B0K9 HBM_HUMAN		141	77	Θ	2	142		141	5.07e-40	1
A_HUMAN	sp P68871 HBB_HUMAN		145	76	2	3	141	4	146	1.96e-33	1
A_HUMAN	sp P02042 HBD_HUMAN		145	74			141		146	5.58e-33	1
A_HUMAN	sp P69891 HBG1_HUMAN		141	73			141	8	146	3.18e-32	1
A_HUMAN	sp P69892 HBG2_HUMAN		141	73		7	141	8	146	4.50e-32	1
A_HUMAN	sp P02100 HBE_HUMAN		141	77			141	8	146	7.57e-28	1
A_HUMAN	sp Q8WWM9 CYGB_HUMAN	28.859	149	97	2	3	142	19	167	6.14e-16	7
A_HUMAN	sp P02144 MYG_HUMAN		148	103		1	142		148	3.21e-09	5
A_HUMAN	sp P69905 HBA_HUMAN	100.000		Θ	Θ		142		142	9.46e-69	2
A_HUMAN	sp P02008 HBAZ_HUMAN		142	57	Θ	1	142		142	7.76e-68	2
A_HUMAN	sp P09105 HBAT_HUMAN		142	54	Θ	1	142	1	142	6.07e-65	1
A_HUMAN	sp P68871 HBB_HUMAN		145	76	2	3	141	4	146	2.04e-64	1
A_HUMAN	sp P02042 HBD_HUMAN	42.069	145	76			141		146	2.90e-64	
A_HUMAN	sp P69892 HBG2_HUMAN	39.583	144	79		4	141	5	146	1.37e-62	1
A_HUMAN	sp P69891 HBG1_HUMAN	39.583	144	79	2	4	141		146	1.95e-62	1
A_HUMAN	sp Q6B0K9 HBM_HUMAN	45.390	141	77	Θ		142		141	9.25e-62	1
A_HUMAN	sp P02100 HBE_HUMAN	36.806	144	83		4	141	5	146	1.12e-61	1
A_HUMAN	sp P02144 MYG_HUMAN	26.351	148	103			142		148	5.14e-57	1
A_HUMAN	sp Q8WWM9 CYGB_HUMAN	28.859	149	97	2		142	19	167	3.70e-55	1
A HUMAN	sp Q9NPG2 NGB HUMAN	22.535	142	99	3		138	5	145	3.94e-11	5

最后一行即为第二次搜索得到序列

- 4.从 fasta 文件建立可用于检索的数据库文件(包括索引),得到一个自定义搜索库 makeblastdb -dbtype<nucl/prot> -in input_file [-input_type fasta] -out dbname
- 6.2 本小组综合课题选题方向

目前倾向于做植物开花关键调控因子的分子演化。

- 7. 问题:无
- 8. 建议: