Misra-Gries Summary: Finding Heavy Hitters in Data Stream

COMPCSI 753: Algorithms for Massive Data

Instructor: Ninh Pham

University of Auckland

Basic definitions

- Let U be a universe of size n, i.e. $U = \{1, 2, 3, \dots, n\}$
- Cash register model stream:
 - Sequence of \mathbf{m} elements $\mathbf{a_1}, \ldots, \mathbf{a_m}$ where $\mathbf{a_i} \in \mathbf{U}$
 - ullet Elements of ${f U}$ may or may not occur once or several times in the stream
- Finding heavy hitters in data stream (today's lecture):
 - Given a stream, finding frequent items.

Frequent items

- Each element of data stream is a tuple.
- Given a stream of \mathbf{m} elements $\mathbf{a_1}, \ldots, \mathbf{a_m}$ where $\mathbf{a_i} \in \mathbf{U}$, finding the most/top- \mathbf{k} frequent items.
- Example:
 - $\{\underline{1}, 2, \underline{1}, 3, 4, 5\} \rightarrow \mathbf{f} = \{\underline{2}, 1, 1, 1, 1\}$
 - $\{\underline{1}, \underline{2}, \underline{1}, 3, \underline{1}, \underline{2}, 4, 5, \underline{2}, 3\} \rightarrow \mathbf{f} = \{\underline{3}, \underline{3}, 2, 1, 1\}$

Applications

Networking:

• Tracking the most popular source, destinations, or source-destination pairs (those with the highest amount of traffic).

• Web analytics:

• Tracking the most popular queries to a search engine, or the most popular pieces of content in a large content host.

• Facts:

- Typical frequency distribution are highly skewed.
- Top 10% elements have 90% of total occurrences (active rating users, most rated movies in Netflix).

Skewed distribution

 Rating distribution for Netflix (solid line) and Movielens (dashed line) datasets.

 Items are ordered according to popularity (most popular at the bottom).

Exact solution

- Create a counter for each distinct element on its first occurrence.
- When processing an element, increase its counter.
- Example:
 - Stream: {1, 2, 3, 1, 4, 2, 1, 4, 2}
- Problem:
 - Maintain **n** counters.
 - We can only maintain $k \le n$ counters.

Sampling solution

- Reservoir sampling:
 - Reservoir sampling of size k to maintain k elements so far and the size of stream m.
 - Estimate frequency based on the reservoir summary.
 - Note that frequency distribution are highly skewed. What occurs if some elements have frequency $\gg m/k$?
- Example:
 - Stream: {2, 2, 2, 4, 3, 4, 1, 1, 1, 1, 1, 1}
 - Reservoir sampling with k = 3

- Process an element **a**:
 - If we already have a counter for **a**, increment it.
 - Else, if there is no counter for **a**, but fewer **k** counters, create a counter for **a** initialized to 1.
 - Else, decrease all counters by 1. Remove 0 counters (key step).
- Example: {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}, **n**=6, **k**=3, **m**=11. {1}

1

- Process an element **a**:
 - If we already have a counter for **a**, increment it.
 - Else, if there is no counter for **a**, but fewer **k** counters, create a counter for **a** initialized to 1.
 - Else, decrease all counters by 1. Remove 0 counters (key step).
- Example: {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}, **n**=6, **k**=3, **m**=11. {1, 2}
 - 1 2

- Process an element **a**:
 - If we already have a counter for **a**, increment it.
 - Else, if there is no counter for **a**, but fewer **k** counters, create a counter for **a** initialized to **1**.
 - Else, decrease all counters by 1. Remove 0 counters (key step).
- Example: {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}, **n**=6, **k**=3, **m**=11. {1, 2, 3}
 - 1 2 3

- Process an element **a**:
 - If we already have a counter for **a**, increment it.
 - Else, if there is no counter for **a**, but fewer **k** counters, create a counter for **a** initialized to 1.
 - Else, decrease all counters by 1. Remove 0 counters (key step).
- Example: {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}, **n**=6, **k**=3, **m**=11. {1, 2, 3, 1}
 - 1 2 3

- Process an element **a**:
 - If we already have a counter for **a**, increment it.
 - Else, if there is no counter for **a**, but fewer **k** counters, create a counter for **a** initialized to 1.
 - Else, decrease all counters by 1. Remove 0 counters (key step).
- Example: {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}, **n**=6, **k**=3, **m**=11. {1, 2, 3, 1, 4}
 - 1

- Process an element **a**:
 - If we already have a counter for **a**, increment it.
 - Else, if there is no counter for **a**, but fewer **k** counters, create a counter for **a** initialized to 1.
 - Else, decrease all counters by 1. Remove 0 counters (key step).
- Example: {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}, **n**=6, **k**=3, **m**=11. {1, 2, 3, 1, 4, 2}
 - 1 🛞 🕉

- Process an element **a**:
 - If we already have a counter for **a**, increment it.
 - Else, if there is no counter for **a**, but fewer **k** counters, create a counter for **a** initialized to 1.
 - Else, decrease all counters by 1. Remove 0 counters (key step).
- Example: {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}, **n**=6, **k**=3, **m**=11. {1, 2, 3, 1, 4, 2, 1}
 - 1 🛞 🕉 2

- Process an element **a**:
 - If we already have a counter for **a**, increment it.
 - Else, if there is no counter for **a**, but fewer **k** counters, create a counter for **a** initialized to 1.
 - Else, decrease all counters by 1. Remove 0 counters (key step).
- Example: {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}, **n**=6, **k**=3, **m**=11. {1, 2, 3, 1, 4, 2, 1, 4}
 - 1 ② ③ 2 4

- Process an element **a**:
 - If we already have a counter for **a**, increment it.
 - Else, if there is no counter for **a**, but fewer **k** counters, create a counter for **a** initialized to **1**.
 - Else, decrease all counters by 1. Remove 0 counters (key step).
- Example: {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}, **n**=6, **k**=3, **m**=11. {1, 2, 3, 1, 4, 2, 1, 4, 5}
 - 1 🛞 🕉 🕲

- Process an element **a**:
 - If we already have a counter for **a**, increment it.
 - Else, if there is no counter for **a**, but fewer **k** counters, create a counter for **a** initialized to **1**.
 - Else, decrease all counters by 1. Remove 0 counters (key step).
- Example: {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}, **n**=6, **k**=3, **m**=11. {1, 2, 3, 1, 4, 2, 1, 4, 5, 2}
 - 1 ② ③ ② ② 2

- Process an element **a**:
 - If we already have a counter for **a**, increment it.
 - Else, if there is no counter for **a**, but fewer **k** counters, create a counter for **a** initialized to 1.
 - Else, decrease all counters by 1. Remove 0 counters (key step).
- Example: {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}, **n**=6, **k**=3, **m**=11. {1, 2, 3, 1, 4, 2, 1, 4, 5, 2, 6}
 - 1 ② ③ ② ④ 2 6

- Process an element **a**:
 - If we already have a counter for **a**, increment it.
 - Else, if there is no counter for **a**, but fewer **k** counters, create a counter for **a** initialized to 1.
 - Else, decrease all counters by 1. Remove 0 counters (key step).
- Query: How many times the element **a** occurred?
 - If we have a counter for **a**, return its value.
 - Else, return **0**.
- Observation: We always under-estimate the frequency!

Why it works?

- Question:
 - How many decrements to a particular **a** can we have?
 - How many decrement step can we have?
- Answer:
 - The number of elements in stream: **m**.
 - The number of elements in the summary: m'.
 - Given \mathbf{a} does not occur in the summary, one decrement step takes out \mathbf{k} items and not count \mathbf{a} . That is $\mathbf{k} + \mathbf{1}$ "uncounted" occurrences.
 - There is at most (m m') / (k + 1) decrement steps.
- Estimate is smaller than exact count by at most $\frac{m-m'}{k+1}$

Why it works?

- Estimate is smaller than exact count by at most $\frac{m-m'}{k+1}$.
 - We can find the most frequent items if their frequencies $> \frac{m m'}{k + 1}$.
 - We get good estimate for a if its frequency $>> \frac{m-m'}{k+1}$.
- Error bound:
 - Inversely proportional to k. Hence larger k gives better accuracy.
 - Can be computed by knowing k and m, and tracking m.

Why it works?

• Misra Gries works because typical frequency distributions have few very popular elements "Zipf law".

YouTube views per video through 2014.

Homework

- Implement the Misra-Gries algorithm on the dataset from Assignment 1:
 - Description: Each line (doc ID, word ID, freq.) as a stream tuple.
 - Query: What are the most and top-10 frequent word ID have been used?