Outline	IV	A
Lecture 4:	1	2
	3	4
Image Transformations I: Continuous Fourier Transform	5	6
Continuous Fourier Transform	7	8
	9	10
	11	12
Contents	13	14
1. Motivation	15	16
2. Complex Numbers		18
	19	20
3. Prerequisites from Linear Algebra	21	22
4. Continuous Fourier Transform in 1-D	23	24
	25	26
5. Continuous Fourier Transform in 2-D	27	28
6. Properties	29	30
© 2020 – 2023 Joachim Weickert, Pascal Peter	31 33	+

Recently on IPCV ... • visible light: electromagnetic waves that illuminate objects • Human colour perception is based on three cone types. • They correspond to the three primary colours red, green, and blue. Their additive blend creates other colour impressions. • technical realisation: RGB colour space. • for printers and copiers: substractive CMY and CMYK colour spaces • HSV colour space: cylindrical representation, useful for illumination changes • YCbCr: separates luma from chroma information, useful later for compression

3 | 4

5

7 | 8

11 12

13 14

15 16

17 18

19 20

23 24

25 26

29 30

31 32

27 28

21 22

Image Processing and Computer Vision 2023

Lecture 4:

Image Transformations I: Continuous Fourier Transform

Contents

- 1. Motivation
- 2. Complex Numbers
- 3. Prerequisites from Linear Algebra
- 4. Continuous Fourier Transform in 1-D
- 5. Continuous Fourier Transform in 2-D
- 6. Properties
- © 2020 2023 Joachim Weickert, Pascal Peter

Motivation (1)

This lecture is the first of a series of four lectures that take you to a desert ride. At first glance, the desert looks dry and dusty, but you will see structures much clearer. Your math knowledge is your survival kit. Source: https://morocco-places.com.

NA I

2
 4

5 67 8

11 12

10

17 18

19 20

21 22

23 24

25 26

27 28

29|30

31 32

Motivation (2)

Motivation

- ◆ Transformations are useful for analysing the properties of images and processing them in an efficient way.
- For analysing audio signals, a decomposition into their frequencies is very natural.
- ◆ Similar things can be done with images, which can be seen as 2-D signals:
 - They can be decomposed into their frequency content in x- and y-direction.
 - useful for many things, e.g. filter design and fast convolution algorithms
- ◆ Fourier transform: Represents signals in terms of their frequencies.
 - It can be regarded as a change of basis.
 - Trigonometric basis functions represent different frequencies.
- To understand this, we first have to remember two concepts:
 - complex numbers for writing trigonometric functions more compactly
 - representations of vectors in orthonormal bases

Motivation (3)

Joseph Fourier (1768–1830) did not only discover the so-called Fourier transform, he also introduced the diffusion equation, made archeological discoveries in Egypt, and acted as a prefect in Grenoble. Source: http://de.wikipedia.org/wiki/Joseph_Fourier.

M I

3 45 6

7

13 14

15 16

17 18 19 20

21 22

23 24

25 26

27 28

29 30

31 32

	Outline	M	
		I I	Α
Lecture 4:		1	2
		3	4
Image Transformations	l:	5	6
Continuous Fourier Tra	nstorm	7	8
		9	10
		11	12
Contents		13	14
1. Motivation		15	16
		17	18
2. Complex Numbers		19	20
3. Prerequisites from Linear Algebra		21	22
4. Continuous Fourier Transform in :	1-D	23	24
		25	26
5. Continuous Fourier Transform in 2	2-D	27	28
6. Properties		29	30
		31	32
© 2020 – 2023 Joachim Weickert, I	Pascal Peter	33	-

Complex Numbers (1)

3

5

11

13

15 16

19|20

23

27 | 28

29 30

31

25 26

17 18

Complex Numbers

- ullet The set $\mathbb C$ of complex numbers extends the set $\mathbb R$ of real numbers. It allows to compute the square root of a negative number.
- ♦ A complex number $z = a + bi \in \mathbb{C}$ consists of two parts: a real part $\operatorname{Re}(z) := a \in \mathbb{R}$ and an imaginary part $\operatorname{Im}(z) := b \in \mathbb{R}$. The number i denotes the imaginary unit. It satisfies $i^2 = -1$.
- The *conjugate complex number* of z = a + bi is defined as $\bar{z} := a bi$.
- a+bi may also be identified with a vector $(a,b)^{\top} \in \mathbb{R}^2$. This is its so-called *Cartesian representation*.

A complex number in Cartesian and polar form (see later). Later on we will need that $\cos\phi=\frac{a}{r}$. Author: M. Mainberger.

3

5 6

7 8

9 10

12 11

13 14

15 16

17|18

19|20

21 22

23 24

27 28

29 30

31 32

33

25 26

Addition and subtraction of complex numbers is done componentwise:

$$(a+bi) + (c+di) = (a+c) + (b+d)i,$$

 $(a+bi) - (c+di) = (a-c) + (b-d)i.$

Multiplication uses $i^2 = -1$:

$$(a+bi) \cdot (c+di) = ac + adi + bci + \frac{bdi^2}{2}$$

= $(ac - bd) + (ad + bc)i$.

Division expands the fraction by the complex conjugate of the denominator:

$$\frac{a+bi}{c+di} = \frac{(a+bi)\cdot(c-di)}{(c+di)\cdot(c-di)} = \frac{ac+bd}{c^2+d^2} + \frac{bc-ad}{c^2+d^2}i.$$

The norm (modulus, magnitude) of a complex number z = a + ib is given by

$$|z| := \sqrt{z\overline{z}} = \sqrt{(a+bi)(a-bi)} = \sqrt{a^2-b^2i^2} = \sqrt{a^2+b^2}.$$

It coincides with the Euclidean norm of the vector $(a,b)^{\top}$ in Cartesian form. Note that $\sqrt{zz} = \sqrt{a^2 + 2abi - b^2}$ would not give the desired result $\sqrt{a^2 + b^2}$.

Complex Numbers (3)

With the power series representations

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \qquad \cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}, \qquad \sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

one obtains the very important Euler's formula

$$e^{i\phi} = \cos\phi + i\sin\phi$$
.

Euler's formula implies that $e^{i\phi}$ lies on the unit circle,

$$|e^{i\phi}| \; = \; \sqrt{\cos^2\phi + \sin^2\phi} \; = \; 1 \qquad \forall \, \phi \, ,$$

and is 2π -periodic:

$$e^{i(\phi+2k\pi)} = e^{i\phi} \quad \forall k \in \mathbb{Z}.$$

lacktriangle Writing down Euler's formula for ϕ and $-\phi$ and remembering that $\sin(-\phi) = -\sin\phi$ and $\cos(-\phi) = \cos\phi$ yields two useful results:

$$\cos\phi \ = \ \frac{e^{i\phi}+e^{-i\phi}}{2} \,, \qquad \sin\phi \ = \ \frac{e^{i\phi}-e^{-i\phi}}{2i} \,. \label{eq:phi}$$

13 14

15|16

17 18

19|20

21 22

23 24

25 26

27 28

29 30

31 32

Complex Numbers (4)

lacktriangle One can express any nonzero complex number $\,z=a+bi\,$ in its $\it polar\ form$ $\,z\,=\,r\,e^{i\phi}$

with radius $r:=|z|=\sqrt{a^2+b^2}$ and $\underset{}{\textit{argument}}$ (angle between z and real axis) $\phi:=\arg(z)\,:=\,\left\{ \begin{array}{cc} \arccos\left(\frac{a}{r}\right) & \text{if } b\geq 0,\\ -\arccos\left(\frac{a}{r}\right) & \text{if } b<0. \end{array} \right.$

This representation gives a polar angle $\phi \in (-\pi, \pi]$. (Note that the \arccos function always yields values in $[0, \pi]$.)

The polar form is convenient for multiplications,

$$z_1 z_2 = |z_1| |z_2| e^{i(\phi_1 + \phi_2)},$$

and for raising a complex number to some power p:

$$z^p = |z|^p e^{ip\phi}.$$

In polar form, the complex conjugate of $z=r\,e^{i\phi}$ is given by $\bar{z}=r\,e^{-i\phi}$.

Outline

Lecture 4:

Image Transformations I: Continuous Fourier Transform

Contents

- 1. Motivation
- 2. Complex Numbers
- 3. Prerequisites from Linear Algebra
- 4. Continuous Fourier Transform in 1-D
- 5. Continuous Fourier Transform in 2-D
- 6. Properties
- © 2020 2023 Joachim Weickert, Pascal Peter

VI Ι Δ

A

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19|20

21 22

23 24

25 26

27 28

29 30

31 32

33

M I

2

3 | 4

5 6

7 8

9 | 10 11 | 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Prerequisites from Linear Algebra (1)

Prerequisites from Linear Algebra

A vector $f \in \mathbb{R}^2$ can be represented in an arbitrary orthonormal (orthogonal with norm 1) basis $\{b_1, b_2\}$ of \mathbb{R}^2 by the formula $f = \langle f, b_1 \rangle b_1 + \langle f, b_2 \rangle b_2$. This insight can be generalised. It will be very useful for us in this and the next three lectures. Author: P. Peter.

Prerequisites from Linear Algebra (2)

ullet Expressing a vector $m{f} \in \mathbb{R}^N$ in an orthonormal basis $\{m{b_1},...,m{b_N}\}$ of \mathbb{R}^N gives

$$f = \sum_{k=1}^{N} \langle f, b_k \rangle b_k$$

where $\langle .,. \rangle$ denotes the *Euclidean inner product (euklidisches Skalarprodukt):*

$$\langle \boldsymbol{f}, \boldsymbol{g} \rangle \ := \ \sum_{j=1}^N f_j \, g_j.$$

The coefficient $\langle f, b_k \rangle$ quantifies the projection of f onto the basis vector b_k : It tells us how much of the vector b_k is contained in f.

lacktriangle For a complex-valued vector $m{f} \in \mathbb{C}^N$, one must use the $m{Hermitian\ inner\ product}$

$$\langle oldsymbol{f}, oldsymbol{g}
angle \ := \ \sum_{j=1}^N f_j \, ar{oldsymbol{g_j}}$$

where $ar g_j$ is the complex conjugate of g_j . Complex conjugation allows to define the norm of m f via $|m f|:=\sqrt{\langle m f, m f
angle}$.

LVL	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	

3

5

7

9

11

13 14

17 18

21

15 16

19 20

23 24

25 26

28

30

31 | 32

Prerequisites from Linear Algebra (3)

- An N-dimensional vector $\mathbf{f} \in \mathbb{R}^N$ has N components $\{f_j \mid j=1,...,N\}$. A function $f: \mathbb{R} \to \mathbb{R}$ has infinitely many values $\{f(x) \mid x \in \mathbb{R}\}$. In this sense it can be interpreted as an "infinite-dimensional vector".
- Representing $f: \mathbb{R} \to \mathbb{R}$ with an infinite set of orthonormal basis functions $\{b_u \,|\, u \in \mathbb{R}\}$ yields

$$f = \int_{\mathbb{R}} \langle f, b_u \rangle \, b_u \, du$$

with the inner product

$$\langle f, g \rangle := \int_{\mathbb{R}} f(x) g(x) dx.$$

The coefficient $\langle f, b_u \rangle$ quantifies the projection of f onto the basis function b_u . It measures how much of the function b_u is contained in f.

lacktriangle For complex-valued functions $f:\mathbb{R} o \mathbb{C}$ one uses the inner product

$$\langle f, g \rangle := \int_{\mathbb{R}} f(x) \, \overline{g}(x) \, dx.$$

Note again the complex conjugation.

Outline

Lecture 4:

Image Transformations I: Continuous Fourier Transform

Contents

- 1. Motivation
- 2. Complex Numbers
- 3. Prerequisites from Linear Algebra
- 4. Continuous Fourier Transform in 1-D
- 5. Continuous Fourier Transform in 2-D
- 6. Properties
- © 2020 2023 Joachim Weickert, Pascal Peter

M	
	A

5

7

11

13 14

15 16

17 18

19|20

23 24

27 28

29|30

31 | 32

33

21 | 22

25 26

10

3 4

5 6

7 89 10

11 12

13 14

15 16

17|18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Continuous Fourier Transform in 1-D (1)

Continuous Fourier Transform in 1-D

Goals

- decompose a signal into its frequency components
- compute convolutions in a highly efficient way
- have an ideal tool for analysing and designing linear shift-invariant filters (later)

Basic Intuition

lacktriangle express a 1-D signal $f: \mathbb{R} o \mathbb{R}$ in a specific basis $\{b_u \mid u \in \mathbb{R}\}$:

$$f = \int_{\mathbb{R}} \langle f, b_u \rangle \, b_u \, du$$

- choose basis functions $\{b_u \mid u \in \mathbb{R}\}$ such that they represent all frequencies u
- lacktriangle coefficient $\langle f, b_u \rangle$ measures the content of the frequency u within f

Continuous Fourier Transform in 1-D (2)

How to Choose the Basis Functions

ullet To represent a function f in terms of its frequencies, a natural idea would be to use trigonometric functions of cosine and sine type:

$$c_u(x) = \cos(2\pi ux),$$

$$s_u(x) = \sin(2\pi ux),$$

where u denotes the frequency (number of oscillations within x-interval [0,1]).

• Since we are lazy, we combine $c_u(x)$ and $s_u(x)$ with Euler's formula: We use them as real and imaginary part of the complex-valued function

$$b_u(x) = c_u(x) + i s_u(x) = e^{2\pi i u x}.$$

This creates our set $\{b_u \mid u \in \mathbb{R}\}$ of basis functions.

5

7 8

9 10

11 12

13 14

15 16

17 18

19|20

21 | 22

23 24

25 | 26

27 28

29 30

31 32

33

3

5 6

7 8

9 10

12 1113 14

15|16

17|18

19|20

22 21

23 24

25 26

27 28

29 30

Continuous Fourier Transform in 1-D (3)

The Fourier Transform

- The Fourier transform yields the coefficient $\hat{f}(u) := \langle f, b_u \rangle$ for each frequency u. This coefficient measures the contribution of a frequency u to the signal f.
- lacktriangle The Fourier transform (FT) of a 1-D function $f: \mathbb{R} \to \mathbb{R}$ is defined as

$$\hat{f}(u) := \mathcal{F}[f](u) := \langle f, b_u \rangle = \int_{-\infty}^{\infty} f(x) e^{-i2\pi ux} dx.$$

- Note that the minus sign comes from the complex conjugation of $b_u(x) = e^{2\pi i u x}$.
- $\{\hat{f}(u) \mid u \in \mathbb{R}\}$ is the desired representation of the function $\{f(x) \mid x \in \mathbb{R}\}$ in the frequency domain (Fourier domain).

Continuous Fourier Transform in 1-D (4)

Remarks on the Complex-Valuedness

The Fourier transform is complex-valued:

- $\operatorname{Re}(\hat{f}(u))$ measures the contribution of the function $c_u(x) = \cos(2\pi ux)$ to f(x). It vanishes for odd signals f(x) (f(x) = -f(-x)), since cosine is even.
- $\operatorname{Im}(\hat{f}(u))$ measures the contribution of the function $s_u(x) = \sin(2\pi ux)$ to f(x). It vanishes for even signals f(x), i.e. f(x) = f(-x), since the sine is odd.

M I

1 2

2 4

5 6

7 8

9 | 10

11|12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30 31 32

33

M I

2

3 4

5 67 8

9 10

11 12

13 14 15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30 31 32

Continuous Fourier Transform in 1-D (5)

The Polar Form and Fourier Spectra

- The polar form of $\hat{f}(u)$ gives useful insights.
- The magnitude $|\hat{f}(u)|$ is called *Fourier spectrum (Fourierspektrum)*. It expresses the total importance of the frequency u within the signal f.
- The angle $\phi(u) = \arg(\hat{f}(u))$ is called the *phase angle (Phasenwinkel)*. It characterises the phase shift relative to a cosine function:
 - $\phi(u) = 0$ corresponds to the pure cosine function $c_u(x) = \cos(2\pi ux)$.
 - $\phi(u) = \frac{\pi}{2}$ corresponds to the pure sine function $s_u(x) = \sin(2\pi ux)$.
 - An arbitrary angle $\phi(u)$ corresponds to the function $t_{u,\phi}(x) = \cos(2\pi ux \phi)$.
- Often one is only interested in the Fourier spectrum $|\hat{f}(u)|$. Also the so-called *power spectrum (Powerspektrum)* $|\hat{f}(u)|^2$ is popular.

Continuous Fourier Transform in 1-D (5)

The Inverse Fourier Transform

- The goal of the inverse Fourier transform is to synthesise the signal f from its Fourier coefficients $\hat{f}(u) = \langle f, b_u \rangle$.
- lacktriangle Thus, we have to use the formula $f=\int\limits_{\mathbb{R}}\langle f,b_u\rangle\,b_u\,du$ with $b_u=e^{2\pi i u x}$.
- The *inverse 1-D Fourier transform* of $\hat{f}(u)$ is defined as

$$f(x) = \mathcal{F}^{-1}[\hat{f}](x) := \int_{-\infty}^{\infty} \hat{f}(u) e^{i2\pi ux} du.$$

Note that there is no minus sign here.

5 7 8 9 10 12 1113 14 15 16 17 18 19|20 21 22 23 24 25 26 27 28 29 30 31 | 32 33

M I

1 | 2

3 | 4

5 6

7 8

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Continuous Fourier Transform in 1-D (6)

Example: Fourier Transform of a Box Function

A box function. Author: M. Mainberger.

Continuous Fourier Transform in 1-D (7)

• For $u \neq 0$, the Fourier transform of this box function is given by

$$\begin{split} \hat{f}(u) &= \int_{-\infty}^{\infty} f(x) \, e^{-i2\pi u x} \, dx = \int_{-R}^{R} A \, e^{-i2\pi u x} \, dx \\ &= A \left[\frac{-1}{i2\pi u} e^{-i2\pi u x} \right]_{-R}^{R} \\ &= \frac{-A}{i2\pi u} \left(e^{-i2\pi u R} - e^{i2\pi u R} \right) = \frac{A}{i2\pi u} \left(e^{i2\pi u R} - e^{-i2\pi u R} \right) \\ &= \frac{A}{i2\pi u} \, 2i \, \sin(2\pi u R) = \frac{A}{\pi u} \, \sin(2\pi u R) \, . \end{split}$$

• For u = 0, we directly get

$$\hat{f}(0) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi 0x} dx = A [x]_{-R}^{R} = 2RA.$$

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

M I ≝ ∧

1 2

3 4

5 6

0 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29|30

31 32

Continuous Fourier Transform in 1-D (8)

- Note that $\hat{f}(u)$ is real-valued, since f(x) is an even function.
- For $u \neq 0$, the Fourier spectrum is given by

$$\left|\hat{f}(u)\right| = \left|\frac{A}{\pi u}\right| \left|\sin(2\pi uR)\right| = 2RA \left|\frac{\sin(2\pi uR)}{2\pi uR}\right|$$

- Furthermore we have $|\hat{f}(0)| = 2RA$.
- With the so-called sinc function

$$\operatorname{sinc}(x) := \begin{cases} \frac{\sin(x)}{x} & x \neq 0, \\ 1 & x = 0. \end{cases}$$

we obtain

$$|\hat{f}(u)| = 2RA |\operatorname{sinc}(2\pi uR)|$$

- ♦ The sinc function satisfies $\operatorname{sinc}(0) = 1$ and $\operatorname{sinc}(k\pi) = 0$ for $k \in \mathbb{Z} \setminus \{0\}$.
- lacktriangle Thus, $\left|\hat{f}(u)\right|$ satisfies $\left|\hat{f}(0)\right|=2RA$ and $\left|\hat{f}(\frac{k}{2R})\right|=0$ with $k\in\mathbb{Z}\setminus\{0\}.$

Continuous Fourier Transform in 1-D (9)

Fourier spectrum $|\hat{f}(u)|$ of the box function. Author: M. Mainberger.

Remark:

• While the box function f(x) has finite extent in the spatial domain, its Fourier transform $\hat{f}(u)$ has infinite extent in the frequency domain.

M I

1

2 4

5 6

7 8

9 | 10

11 | 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

33

M I

1 2

3 | 4

5 6

7 8

9 10 11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 26

25 26

27 28

29 30

31 32

Outline	1	M	
	Į.	<u></u>	A
Lecture 4:		1	2
		3	4
Image Transformations I: Continuous Fourier Transform	į	5	6
Continuous Fourier Transform		7	8
	9	9	10
	1	1	12
Contents	1	13	14
1. Motivation	1	ا5	16
2. Complex Numbers	1	17	18
2. Complex Numbers	1	19	20
3. Prerequisites from Linear Algebra	2	21	22
4. Continuous Fourier Transform in 1-D	2	23	24
	2	25	26
5. Continuous Fourier Transform in 2-D	2	27	28
6. Properties	2	29	30
○ 2020 - 2022 I - I' - W.' I - I - D - I - D - I	3	31	32
© 2020 – 2023 Joachim Weickert, Pascal Peter	3	33	

Continuous Fourier Transform in 2-D (1)

Continuous Fourier Transform in 2-D

Definition

lacktriangle The Fourier transform (FT) of a 2-D function f(x,y) is defined as

$$\hat{f}(u,v) := \mathcal{F}[f](u,v) := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-i2\pi(ux+vy)} dx dy$$

3

5

13 14

15 16

17 18

19 20

21 22

23 24

where \boldsymbol{u} and \boldsymbol{v} are the frequencies in $\boldsymbol{x}\text{-}$ and $\boldsymbol{y}\text{-}$ direction.

◆ The *inverse 2-D Fourier transform* is given by

$$f(x,y) = \mathcal{F}^{-1}[\hat{f}](x,y) := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{f}(u,v) e^{i2\pi(ux+vy)} du dv.$$

Continuous Fourier Transform in 2-D (2)

Don't Fear High Dimensions!

- In higher dimensions the definition proceeds in the same way.
- Because of

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-i2\pi(ux+vy)} dx dy$$
$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(x,y) e^{-i2\pi ux} dx \right) e^{-i2\pi vy} dy$$

it follows that the Fourier transform is separable:

- First compute the Fourier transform in x-direction. Then apply the Fourier transform in *y*-direction to this result.
- ullet An m-dimensional Fourier transform is computed via a sequence of mone-dimensional transforms.
- This is computationally very nice and greatly reduces the workload.

Continuous Fourier Transform in 2-D (3)

Fourier spectra of some 2-D functions. Author: N. Khan.

15 16

19|20

27 28

29 30 31 32

15 16

19 20

23 24

Continuous Fourier Transform in 2-D (4)

Further 2-D Fourier spectra. Author: N. Khan.

Outline

Lecture 4:

Image Transformations I: Continuous Fourier Transform

Contents

- 1. Motivation
- 2. Complex Numbers
- 3. Prerequisites from Linear Algebra
- 4. Continuous Fourier Transform in 1-D
- 5. Continuous Fourier Transform in 2-D
- 6. Properties
- © 2020 2023 Joachim Weickert, Pascal Peter

N. S.	Α
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24 26
25	26
27	28
29	30
15 17 19 21 23 25 27 29 31 33	32
33	
M	

S		
	A	
1	2	
3	4	
5	6	
7	8	
9	10	
11	12	
13	14	
15	16	
17	18	
19	20	
21	22	
23	24	
25 27	26	
27	28	
29	30	
31	32	

Properties of the Continuous Fourier Transform (1)

Properties of the Continuous Fourier Transform

Linearity

Let f and g be functions and $a, b \in \mathbb{R}$. Then the Fourier transform satisfies the *superposition principle*:

$$\mathcal{F}[af + bg] = a\mathcal{F}[f] + b\mathcal{F}[g].$$

♦ Similarity Theorem

$$\mathcal{F}[f(ax,by)](u,v) \ = \ \frac{1}{|ab|} \mathcal{F}[f] \left(\frac{u}{a}, \frac{v}{b} \right) \qquad \forall \, a,b \in \mathbb{R} \setminus \{0\}.$$

Elongation in the spatial domain gives shortening in the Fourier domain: Both domains are reciprocal.

Properties of the Continuous Fourier Transform (2)

Differentiation

$$\mathcal{F}\left[\frac{\partial^{n+m} f}{\partial x^n \partial y^m}\right](u,v) = (i2\pi u)^n (i2\pi v)^m \mathcal{F}[f](u,v).$$

Differentiation gives multiplication with the frequency in the Fourier domain. Thus, high frequent components (e.g. noise) are amplified!

♦ Shift Theorem

$$\mathcal{F}[f(x-x_0, y-y_0)](u, v) = e^{-i2\pi(ux_0+vy_0)} \mathcal{F}[f](u, v)$$

Shift in the spatial domain rotates the phase angle in the Fourier domain. The Fourier *spectrum*, however, is not affected, since $\left|e^{-i2\pi(ux_0+vy_0)}\right|=1$. Thus, the Fourier spectrum is shift-invariant.

Rotation Invariance

If the image is rotated, its FT is rotated by the same angle.

Μ I ∰ A

1 2

1 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25 2627 28

29 30

31 32

33

M I

2

3 4

5 6

7 | 8

13 14

15 16

17 18

19 20

21 22

23 24

25 26

27 28

29 30

31 32

Properties of the Continuous Fourier Transform (3)

Rotation invariance of the Fourier transform. (a) **Top left:** Original image. (b) **Top right:** Its Fourier spectrum. (c) **Bottom left:** Rotated image. (d) **Bottom right:** Its Fourier spectrum. Authors: R. C. Gonzalez, R. E. Woods.

Properties of the Continuous Fourier Transform (4)

Convolution Theorem

The convolution of two functions f(x,y) and g(x,y) is given by (cf. Lecture 2)

$$(f * g)(x,y) := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x-x',y-y') g(x',y') dx' dy'.$$

It will be fundamental for all shift-invariant linear filters (Lecture 11). Take e.g.

$$g(x,y) \ := \ \left\{ \begin{array}{ll} \frac{1}{\pi r^2} & \quad \text{for } x^2 + y^2 \leq r^2 \text{,} \\ 0 & \quad \text{else.} \end{array} \right.$$

Then f * g smoothes the image f by averaging all grey values within a neighbourhood of radius r. Computing this integral is expensive if r is large.

However, convolution is easily computed as multiplication in the Fourier domain:

$$\mathcal{F}[f * g] = \mathcal{F}[f] \cdot \mathcal{F}[g]$$

Afterwards the results must be transformed back to the spatial domain.

		A
	1	2
	3	4
	5	6
	5 7	8
	9	10
	11	12
	13	14
	15	16
	17	18
	19	20
	21	22
	23	24
	25	26
	27 29 31	28
er	29	30
C.	31	32
	33	
	M	

N	1
	A

1 2

5 6

3

7 8

9 10

11 12

13 14

15 | 16 17 | 18

19 20

21 22

22 24

23 24

25 26

27 28

29 30

31 32

Properties of the Continuous Fourier Transform (5)

♦ Fourier Transform of the Product of Two Functions

Multiplication of two functions in the spatial domain becomes convolution in the Fourier domain:

5

7 8

9 10

11|12

13 14

15 16

17 18

19|20

21 22

23 24

25 26

27 28

29 30

31 32

33

3

5 | 6

7 | 8

13 14

15|16

17|18

19|20

23 24

25 26

27 28

29 30

31 | 32

21

10

11|12

$$\mathcal{F}[f \cdot g] = \mathcal{F}[f] * \mathcal{F}[g].$$

This is the reciprocal convolution theorem.

Computationally this is not advantageous.

However, it will help us to understand sampling (more details in Lecture 5).

♦ Fourier Transform of a Gaussian

gives a Gaussian-like function with reciprocal variance. In 2D:

$$f(x,y) := \frac{1}{2\pi\sigma^2} \exp\left(\frac{-(x^2+y^2)}{2\sigma^2}\right) \implies \hat{f}(u,v) = \exp\left(\frac{-(2\pi)^2(u^2+v^2)}{2\sigma^{-2}}\right).$$

However, the Gaussian is not the only function that is invariant under the FT:

Properties of the Continuous Fourier Transform (6)

Fourier Transform of a Delta Comb

A (continuous) delta pulse δ is a model for an infinitely sharp peak (think e.g. of a Gaussian with standard deviation $\sigma \to 0$). It is centred in 0, and its area (integral) is 1:

$$\int_{-\infty}^{\infty} \delta(x) \, dx = 1.$$

The integral of a function f times a delta pulse δ evaluates f in 0,

$$\int_{-\infty}^{\infty} f(x) \, \delta(x) \, dx = f(0),$$

while a shifted delta pulse $\delta(.-x_0)$ yields $f(x_0)$:

$$\int_{-\infty}^{\infty} f(x) \, \delta(\underbrace{x - x_0}_{x'}) \, dx = \int_{-\infty}^{\infty} f(x' + x_0) \, \delta(x') \, dx' = f(x_0).$$

Properties of the Continuous Fourier Transform (7)

Consider an infinitely extended comb of delta pulses with peak distance λ . Then its FT is a delta comb with reciprocal peak distance $1/\lambda$:

$$g(x) = \sum_{k=-\infty}^{\infty} \delta(x - k\lambda) \implies \hat{g}(u) = \sum_{k=-\infty}^{\infty} \delta\left(u - \frac{k}{\lambda}\right).$$

This formula is important for the sampling a continuous signal f: Sampling f means computing the product of f with a delta comb g.

5 7 8 9 10 11 12 13 14 15 16 17 18 19|20 21 22 23 24 26 25 27 28 29 30 31 32 33

3

Summary

Summary

- ◆ The continuous Fourier transform analyses the frequency content of images.
- ◆ It is complex-valued, linear, separable, and invariant under rotations.
- ◆ Spatial and Fourier domain are reciprocal w.r.t. localisation and orientation.
- Spatial shifts become phase shifts.
 The Fourier spectrum remains unchanged.
- Differentiation becomes multiplication with the frequency.
- ◆ Convolution in one domain becomes multiplication in the other.
- The Fourier transform maps
 - box functions to sinc functions.
 - Gaussians to Gaussians with reciprocal variance,
 - delta combs to delta combs with reciprocal distance.

S	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	20

References

References

- ◆ R. C. Gonzalez, R. E. Woods: *Digital Image Processing*. Prentice Hall, Upper Saddle River, International Edition, 2017.

 (a good textbook with in-depth introduction to the FT)
- ◆ H. Süße, E. Rodner: *Bildverarbeitung und Objekterkennung*. Springer, Wiesbaden, 2014. (German book with broad coverage of basis transforms for image processing)
- ◆ T. Butz: Fourier Transformation for Pedestrians. Springer, Cham, 2015. (for those who wish to learn just a little bit more, but fear the full story)
- ◆ R. Bracewell: The Fourier Transform and its Applications. McGraw-Hill, New York, 1986. (the classical reference when you want to learn the full story about the FT)

IVI	
	A
1	2
3	4
5	6
7	8
9	10
11	12
13	14
15	16
17	18
19	20
21	22
23	24
25	26
27	28
29	30
31	32
33	