For graders only:	Question	1(a)	1(b)	2(a)	2(b)	2(c)	3(a)	3(b)	3(c)	Total
	Marks									

MIDTERM II (CA2)

MH1812 - Discrete Mathematics

April 2024 TIME A			ΓIME ALLC	LLOWED: 50 minutes		
Name:						
Matric. no.:		Γutor group:				

INSTRUCTIONS TO CANDIDATES

- 1. DO NOT TURN OVER PAPER UNTIL INSTRUCTED.
- 2. This midterm paper contains **THREE** (3) questions.
- 3. Answer **ALL** questions. The marks for each question are indicated at the beginning of each question.
- 4. Read the question carefully to see how to write your answers.
- 5. Clearly indicate your answers. Unclear or ambiguous answers will receive **zero marks**.
- 6. For questions that require you to **circle** to indicate your answer, the choice that you circle will be interpreted as your answer.
- 7. This IS NOT an OPEN BOOK exam.
- 8. Calculators are allowed.

QUESTION 1. (10 marks)

(a) Consider the recurrence relation $a_n = 13a_{n-1} - 42a_{n-2}$ for $n \ge 2$, with initial conditions $a_0 = 2$, $a_1 = 11$.

- (i) $[1 \text{ mark}] a_7 = \boxed{16265}$
- (ii) [4 marks] We can write $a_n = us_1^n + vs_2^n$ where $s_1 > s_2$. Complete the table:

u	v	s_1	s_2		
-1	3	7	6		

First, s_1 and s_2 are roots of the equation: $x^2 - 13x + 42 = (x - 6)(x - 7) = 0$. Hence, $s_1 = 7$ and $s_2 = 6$. Furthermore, $a_n = us_1^n + vs_2^n$. Plug in the initial conditions: $a_0 = 2 = u + v$ and $a_1 = 11 = 7u + 6v$. It follows that u = -1 and v = 3.

[mark distribution: 1 mark for each correct number. Maximum 3.5 marks if $s_1 < s_2$. E.g., award 3.5 marks for solutions with u and v swapped and s_1 and s_2 swapped.]

(b) Use induction to show that, for each $n \in \mathbb{N} - \{0\}$,

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}.$$

Denote the above predicate by P(n).

- (i) [2 marks] Base case. Show that P(1) is true: The LHS of P(1) is $1^3 = 1$. The RHS of P(1) is $1^2(1+1)^2/4 = 1$.
- (ii) [3 marks] Inductive step. Show that $P(k) \to P(k+1)$: Assume P(k), i.e., $1^3 + 2^3 + 3^3 + \dots + k^3 = \frac{k^2(k+1)^2}{4}$. Now we start with the LHS of P(k+1):

$$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = (1^{3} + 2^{3} + 3^{3} + \dots + k^{3}) + (k+1)^{3}$$
$$= \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3},$$

using P(k). It remains to show that $\frac{k^2(k+1)^2}{4} + (k+1)^3$ is equal to the RHS of P(k+1). We have

$$\frac{k^2(k+1)^2}{4} + (k+1)^3 = \frac{k^2(k+1)^2 + 4(k+1)^2(k+1)}{4}$$

$$= \frac{(k+1)^2(k^2 + 4k + 4)}{4}$$

$$= \frac{(k+1)^2(k+2)^2}{4}$$

$$= \text{RHS of } P(k+1).$$

– Blank Page For Rough Work –

QUESTION 2.	(9 marks)
In this question no justification is required your answer, not an expression.	For each part, give an explicit number as
(a) Find the number of	

- (ii) [1 mark] elements in the power set of $\{a, b, c, d, e, f\}$: 64 $2^{6} = 64$
- (iii) [1 mark] subsets of {1,2,3,4} that have cardinality at most 2:
- $\binom{4}{0} + \binom{4}{1} + \binom{4}{2} = 11$

[1/2 a mark for 10 (assuming the empty set was missed).]

- (b) Consider all ternary strings of length 6. E.g., 012102.
 - (i) [1 mark] How many are there in total? $\boxed{729}$ $3^6 = 729$

 - (iii) [1 mark] How many begin with a '1' or a '2'? 3⁵ + 3⁵ = 286
- (c) Consider all distinguishable permutations of the digits of 123213.
 - (i) [1 mark] How many are divisible by 3? 90

All permutations are divisible by 3 (the sum of their digits is a multiple of 3) $\frac{6!}{2!2!2!} = 90$

[This question has been made a bonus question. You still get the mark if you answered it correctly. But the maximum score of the test is now 28, instead of 29.]

- (ii) [1 mark] How many are odd? 60 $90 \frac{5!}{2!2!1!} = 60$
- (iii) [1 mark] How many are less than 200000? $\boxed{ 30 }$ $\frac{5!}{2!2!1!} = 30$

– Blank Page For Rough Work –

QUESTION 3.	(10 marks)
-------------	------------

For this question, recall that P(A) denotes the power set of the set A.

(a) Let A, B, and C be sets. Determine the truth value of the following statements. (Circle "T" or "F" to indicate your answer.)

(i) [1 mark] If
$$A \subseteq B$$
 and $B \subseteq C$ then $A \in P(C)$.

(ii) [1 mark] If
$$A \cap B = C$$
 then $C \in P(A) \cap P(B)$.

(iii) [1 mark] If
$$A \subseteq B \cup C$$
 then $A \in P(B) \cup P(C)$.

No justification is required.

(b) Consider the sets

$$A = \{a, b\}, B = \{b, c\}, \text{ and } C = \{a, c\}.$$

Write out the elements of each of the following sets.

(i)
$$[2 \text{ marks}] ((A \cup B) - C) \cup (A \cap B)$$
:

(ii) [2 marks]
$$P(B \cup C) \cap P(A \cap B)$$
: \emptyset , $\{b\}$ [mark distribution: for 2 marks, must write $\{b\}$, note that b is not an element of $P(B \cup C) \cap P(A \cap B)$.]

No justification is required.

(c) [3 marks] Let A, B, and C be sets. Show that $(A - B) \times C \subseteq (A \times C) - (B \times C)$: Let $x \in (A - B) \times C$. Then $x = (x_1, x_2)$ where $x_1 \in A - B$ and $x_2 \in C$. Hence, $x_1 \in A$ and $x_1 \notin B$. Which implies, $x \in A \times C$ and $x \notin B \times C$. Therefore $x \in (A \times C) - (B \times C)$. – Blank Page For Rough Work –