Analiza i modelowanie wpływu czynników leksykalnych na popularność prac naukowych

JULIAN SIENKIEWICZ

Wydział Fizyki Politechniki Warszawskiej

Zjazd Fizyków Polskich, Wrocław, 11 września 2017

MOTYWACJA

- Powszechnie uznaje się, że liczba cytowań zebranych przez artykuł może być traktowana jako miara uwagi (lub popularność) uzyskanej w środowisku naukowym.
- Istotnym jest więc zbadanie jak właściwości tekstu publikacji naukowych wiążą się z rozpowszechnianiem wyników naukowych w postaci liczby uzyskanych cytowań
- Wreszcie: odniesienie się do wyników otrzymanych przez Letchforda i in. (R Soc Open Sci 2, 150266) sugerujących, iż istnieje ujemna korelacja pomiędzy długością tytułu oraz liczbą cytowań (tzn. im krótszy tytuł, tym więcej cytowań).

Papers with shorter titles get more citations

Intriguing correlation mined from 140,000 papers.

Boer Deng 26 August 2015 Rights & Permissions

NATURE | NEWS

To William Shakespeare, brevity was the soul of wit. For scientists, it may be even more valuable, as conciseness seems to correlate with how frequently a research paper is cited.

Adrian Lecthford and his colleagues at the University of Wenvick in Coventry, UK, analysed the titles of 140,000 of the most highly cited peer-reviewed papers published between 2007 and 2013 as listed on Scopus, a research-paper database. They compared the lengths of the papers' titles with the number of times each paper was cited by other peer-reviewed papers— a statistic sometimes used as a nutile measure of imnortance.

As they report in Royal Society Open Science 1, "journals which publish papers with shorter titles receive more citations per paper".

Szczególowe cele

GŁÓWNE CZYNNIKI

Ilościowe zbadanie jak poszczególne **cechy tekstu** publikacji naukowych, takie jak

- długość tekstu,
- złożoność tekstu,
- emocje w tekście

są związane z liczbą cytowań.

W ten sposób mam zamiar zidentifikować **kluczowe czynniki** wpływające na popularność naukową.

Szczególowe cele

GŁÓWNE CZYNNIKI

Ilościowe zbadanie jak poszczególne **cechy tekstu** publikacji naukowych, takie jak

- długość tekstu,
- złożoność tekstu,
- emocje w tekście

są związane z liczbą cytowań.

W ten sposób mam zamiar zidentifikować **kluczowe czynniki** wpływające na popularność naukową.

RÓŻNICE W CYTOWANIU

Wskazanie **różnic** w sposobie cytowania **najpoczytniejszych** oraz **typowych** publikacji. W tym celu zostanie użyte podejście **regresji kwantylowej**.

DANE

Portal Web of Science

WSTĘPNA OBRÓBKA DANYCH

Prace określone jako artykuły, opublikowane w okresie **1995—2004**, spełniające następujące dwa warunki:

- czasopisma nieprzerwanie aktywne w ww. okresie (np. eliminacja czasopism PLOS)
- w podanym okresie czasopismo musiało opublikować co najmniej 1.000 artykułów (np. eliminacja Rev Mod Phys)

DANE

Portal Web of Science

WSTĘPNA OBRÓBKA DANYCH

Prace określone jako artykuły, opublikowane w okresie **1995—2004**, spełniające następujące dwa warunki:

- czasopisma nieprzerwanie aktywne w ww. okresie (np. eliminacja czasopism PLOS)
- w podanym okresie czasopismo musiało opublikować co najmniej 1.000 artykułów (np. eliminacja Rev Mod Phys)

ZBIÓR DANYCH

- o ponad 4.300.000 artykułów z ok. 1.500 różnych czasopism,
- dane dotyczące tytułu, liczby autorów, zawartości streszczenia oraz dyscypliny naukowej,
- liczba cytowań na dzień 31 grudnia 2014

UŻYTE ZMIENNE

cecha	tytuł	streszczenie
długość	liczba znaków	liczba słów
złożoność	_	indeks czytelności FOG F
	wskaźnik <i>z</i>	wskaźnik <i>z</i>
	C Herdana	C Herdana
emocje	walencja	walencja
	pobudzenie	pobudzenie
liczba autorów		

- 1 indeks FOG: $F = \left(\frac{\#slow}{\#zdan} + 100 \frac{\#slow}{\#slow} \frac{zlozonych}{\#slow}\right)$
- 2 miara C Herdana: $C = \frac{\log N}{\log M} \left[\begin{array}{c} M \text{dlugosc tekstu} \\ N \text{liczba unikalnych slow} \end{array} \right]$
- **3** wskaźnik *z*: $z_{M,N} = \frac{N-\mu(M)}{\sigma(M)}$
- Walencja emocjonalny znak (ładunek) tekstu (dodatni 9, obojętny 5, ujemny 1)
- 6 Pobudzenie poziom reakcji emocjonalnej (niski 1, średni 5, wysoki 9)

REGRESJA KWANTYLOWA (QUANTILE REGRESSION - QR)

ZAŁOŻENIE

Znaleźć współczynniki α i β prostej

$$Y = \alpha(\tau) + \beta(\tau)X,$$

która dzieli zbiór tak, aby ułamek τ punktów leżało poniżej linii a $(1-\tau)$ poniżej.

KORZYŚCI PODEJŚCIA

- możemy rozpatrywać różne przedziały zmiennej Y,
- logarytm p-ego kwantyla jest równy p-emu kwantylowi zlogarytmowanej zmiennej Y

REGRESJA KWANTYLOWA (QUANTILE REGRESSION - QR)

ZAŁOŻENIE

Znaleźć współczynniki α i β prostej

$$Y = \alpha(\tau) + \beta(\tau)X,$$

która dzieli zbiór tak, aby ułamek τ punktów leżało poniżej linii a $(1 - \tau)$ poniżej.

KORZYŚCI PODEJŚCIA

- możemy rozpatrywać różne przedziały zmiennej Y,
- logarytm p-ego kwantyla jest równy p-emu kwantylowi zlogarytmowanej zmiennej Y

WYNIKI QR

- duży rozrzut punktów nie można rozróżnić, czy relacja pomiędzy X oraz Y jest rosnąca czy malejąca,
- wartość współczynnika korelacji Pearsona r wynosi: $r=0.02\pm0.01$ dla długości tytułu (Science) oraz $r=-0.21\pm0.03$ dla walencji (Nature Genetics),
- jednoznaczna sugestia, iż analiza nie może opierać się na wykorzystaniu liniowych narzędzi, bazujących na założeniu homoskedastyczności (jednakowe odchyłki dla różnych wartości X).

WYNIKI - QR

WYNIKI - PORÓWNANIE CZYNNIKÓW

- Wpływ poszczególnych czynników jest dość słaby $|\beta|$ < 0.5 ($\beta = \ln 2$ oznacza, że liczba cytowań Y podwaja się przy przesunięciu X o jedno odch. stand.).
- Najsilniejszymi czynnikami są (i) liczba słów w streszczeniu, (ii) liczba autorów, oraz (iii) wskaźnik z w streszczeniu (ponad 75% of czasopism — czyli całe "skrzynia" znajduje się powyżej zera).
- Czynniki streszczenia są bardziej widoczne niż te dotyczące tytułu.

WYNIKI - RÓŻNICA POMIĘDZY TYPOWYMI ORAZ NAJLEPSZYMI

cecha	czynnik	$\beta_{\text{top}} > \beta_{\text{half}}$	$\beta_{\text{top}} < \beta_{\text{half}}$	$\beta_{\text{top}} \neq \beta_{\text{half}}$
długość	liczba znaków (tytuł)	2.6%	44.4%	47.0%
	liczba słów (streszczenie)	8.3%	29.4%	36.7%
			średnia	41.9%
złożoność	C Herdana (tytuł)	18.7%	8.5%	27.2%
	C Herdana (streszczenie)	34.9%	6.5%	41.4%
	wskaźnik <i>z</i> (tytuł)	8.3%	16.7%	25.0%
	wskaźnik z (streszczenie)	24.6%	7.7%	32.3%
	indeks FOG (streszczenie)	26.4%	8.0%	34.4%
			średnia	32.0%
emocje	pobudzenie (tytuł)	11.0%	13.5%	24.5%
	pobudzenie (streszczenie)	15.7%	13.7%	29.4%
	walencja (tytuł)	16.1%	11.3%	27.4%
	walencja (streszczenie)	29.2%	5.7%	34.9%
			średnia	29.1%
	liczba autorów	4.0%	39.6%	43.6%
			ogólna średnia	33.7%

WYNIKI - PORÓWNANIE CZASOPISM (ZNAKI W TYTULE)

Wyznaczając $\exp(\beta \Delta X)$ można łatwo porównać siły czynników — w ten sposób bezpośrednio mierzymy ile średnio cytowań zyskuje się (lub traci) przesuwając się o ΔX odchylenia standardowego na zmiennej X):

- dla czasopisma $Lancet~\beta_{half}=0.33,$ więc zwiększając liczbę znaków o 1 odch. stand. daje prawie 40% zysku w cytowaniach
- podobna operacja dla *Nature* $\beta_{half} = 0.038$ co odpowiada ok. 4% zyskowi.

WYNIKI - PORÓWNANIE CZASOPISM (WALENCJA W STRESZCZENIU)

Zróznicowanie wśród czasopism daje się częściowo wytłumaczyć poprzez przynależność do odrębnych dyscyplin naukowych, np. dla medycyny klinicznej wszystkie wartości współczynnika β są poniżej zera, podczas gdy dla nauk fizycznych większość jest dodatnia.

DALSZE BADANIA

- Jakie zależność istnieją pomiędzy różnymi miarami działania (tj. czytaniem, pobraniem dokumentu etc)?
- 2 Jak odrębne części strktury dokumentu (tytuł, streszczenie etc) wpływają na działanie?
- Świetny "poligon doświadczalny": baza PLOS (pełny tekst).

PRZYKŁADOWE WYNIKI

PRZYKŁADOWE WYNIKI

PODSUMOWANIE

- Badanie zależności pomiędzy właściwościami tekstu publikacji naukowych oraz liczbą cytowan, którą otrzymują,
- Główne wnioski: korelacje są nieliniowe i w różny sposób ujawniają się w przypadku najlepiej cytowanych i typowych prac,
- W przypadku większości czasopism krótkie tytuły są dodatnio skorelowane z liczbą cytowań jedynie dla najpoczytniejszych prac,
- Morelecje są widoczone dla większości badanych czynników lecz efekt zwykle jest dość **słaby** ($|\beta| < 0.5$),
- duży rozrzut wśród czasopism.

szczegóły oraz niektóre dane: R Soc Open Sci 3, 160140 (2016)

PODZIĘKOWANIA

Eduardo G. Altmann

@ Max Planck Institute for the Physics of Complex Systems, Dresden, Germany (obecnie Univ. Sydney, Australia)