Dan Zhu

Holding times of Markov Processes

Definition

Definition
Properties of Poisso

The Transition Rate of Poisson Processes

ETC3430: Financial mathematics under uncertainty

Dan Zhu

Monash Business School Monash University, Australia

March 23, 2022

Outline

Dan Zhu

Holding times of Markov Processes

Definition
Properties of Poisson

The Transition Rate o Poisson Processes

Holding times of Markov Processes

Poisson Process

Definition
Properties of Poisson Process
The Transition Rate of Poisson Processes

Examples

Theorem

The holding time, τ^i , of a time homogeneous Markov jump process with transition rates $\mu_{i,j}$ given that its initial state is i, is an exponentially distributed random variable with $\lambda_i = -\mu_{i,i}$,

$$\mathbb{P}(\tau^i > t) = \mathbb{P}(T_1 > t | X_0 = i) = \exp^{-\lambda_i t}.$$

Further more

$$\mathbb{P}(X_{T_1}=j|X_0=i)=\frac{\mu_{i,j}}{\lambda_i}.$$

independent of T_1 .

Here λ_i is the total force out of state j.

Proof.

We have

$$\begin{split} &\mathbb{P}(T_1 > t | X_0 = i) \\ &= \prod_{j=0}^{n-1} \mathbb{P}(X_s > i, \frac{tj}{n} < s \le \frac{tj+t}{n} | X_{\frac{tj}{n}} = i) \text{ for all n} \\ &= \mathbb{P}(X_s > i, 0 < s \le \frac{t}{n} | X_0 = i)^n \text{ time-homogeneity} \\ &= \lim_{n \to \infty} (1 - \lambda_i \frac{t}{n} + o(\frac{t}{n}))^n = \exp^{-\lambda_i t} \end{split}$$

Hence
$$\tau^i \sim \textit{Exp}(\lambda_i)$$
.

Proof.

Probability jump is from i to j for $j \neq i$ is

$$\lim_{h\to 0} \mathbb{P}(X_{t+h} = j | X_t = i, X_{t+h} \neq i) = \lim_{h\to 0} \frac{\mathbb{P}(X_{t+h} = j X_t = i)}{\mathbb{P}(X_{t+h} \neq i | X_t = i)}$$

$$= \lim_{h\to 0} \frac{\mathbb{P}_{i,j}^{(h)}}{\sum_{k\neq i} \mathbb{P}_{i,k}^{(h)}}$$

$$= \frac{\mu_{i,j}}{\sum_{k\neq i} \mu_{i,k}}$$

Holding times of Markov Processes

FUISSUIT FIUC

Delinition

Process
The Transition Rate of

Definition (Counting Process)

A counting process in continuous time, $\{N_t, t \geq 0\}$, has jumps of size +1 only, and whose paths are constant in between two jumps, i.e.

$$N_t = \sum_{k=1}^{\infty} k \mathbb{I}_{[T_k, T_{k+1})}(t) = \sum_{k=1}^{\infty} \mathbb{I}_{[T_k, \infty)}(t)$$

where $(T_k)_{k\geq 1}$ is the increasing family of jump times such that $\lim_{k\to\infty} = +\infty$.

Notice, we can also recover the jump times from the counting process

$$T_k = \inf\{t \in \mathbb{R}_+ : N_t = k\}, k \geq 1.$$

Holding times of Markov Processes

Poisson Proce

Definition

Process
The Transition Rate of Poisson Processes
Examples

Definition

Process
The Transition Rate of Poisson Processes
Examples

Here, we briefly review some properties of the Poisson random variable that we have discussed in the previous chapters. Remember that a discrete random variable X is said to be a Poisson random variable with parameter λ , f its range is $R_X = \{0, 1, 2, 3, ...\}$, with

$$P_X(k) = \left\{ egin{array}{ll} rac{e^{-\mu}\mu^k}{k!} & ext{ for } k \in R_X \\ 0 & ext{ otherwise} \end{array}
ight.$$

Here are some useful facts that we have seen before:

- ightharpoonup its mean and variance are equal to λ
- the sum of independent Poissons is Poisson distributed with its parameter being the sum of the λ's

Poisson Process

Dan Zhu

Holding times of Markov Processes

Poisson Proce

Definition

Properties of Poisson Process The Transition Rate of Poisson Processes Examples

Definition

A time homogeneous Poisson Process is a counting process satisfies the following conditions

- 1. Independent increments, i.e. $N_{t_4} N_{t_3}$ is independent of $N_{t_2} N_{t_1}$ as long as $[t_1, t_2)$ and $[t_3, t_4)$ are disjoint time intervals in \mathbb{R}_+ .
- 2. Stationary increments, i.e. $N_{t+h} N_{s+h}$ has the same distribution as $N_t N_s$ for all h > 0 and $0 \le s \le t$.

Definition

Properties of Poisson Process The Transition Rate of Poisson Processes

Theorem

The increment of a time homogeneous Poisson process follows a Poission distribution that

$$N_t - N_s \sim Poisson(\lambda(t-s))$$
 with the intensity $\lambda = \lim_{h \to 0} \frac{1}{h} \mathbb{P}(N_t = 1)$.

Sum of independent Poisson Process

Dan 7hu

Properties of Poisson

Given Poisson random variables $N^a \sim Poisson(\lambda_a)$ and $N^a \sim Poisson(\lambda_a)$, their sum

$$N = N^a + N^b \sim Poisson(\lambda_a + \lambda_b).$$

¹ Hence, the natural extension of this result is that independent Poisson Processes is also a Poisson process with intensity equals the sum of the original intensities.

¹Verify it via MGF.

Theorem

Let $W_1 = T_1$, and $W_i = T_i - T_{i-1}$ for i = 2, 3, ... denote the sequence of weighting times of a Poisson process with intensity λ . This sequence $\{W_i\}$ are i.i.d exponential random variables with parameter λ .

Proof.

To show they are exponential, we have

$$\mathbb{P}(W_1 \leq t) = \mathbb{P}(N_t > 0) = 1 - \exp^{-\lambda t}$$

$$\mathbb{P}(W_i \le t) = 1 - \mathbb{P}(N_{T_{i-1}+t} - N_{T_{i-1}} = 0) = 1 - \mathbb{P}(N_t = 0) = 1 - \exp^{-\lambda t}$$

Process

Proof.

To show independence, we consider

$$\begin{split} & \mathbb{P}(W_i > s_i | W_1 = s_1, W_2 = s_1, W_{i-1} = s_{i-1}) \\ = & \mathbb{P}(N_{\sum_{j=1}^i s_j} = i - 1 | W_1 = s_1, W_2 = s_1, W_{i-1} = s_{i-1}) \\ = & \mathbb{P}(N_{\sum_{j=1}^i s_j} - N_{\sum_{j=1}^{i-1} s_j} = 0) \\ = & \exp^{-\lambda s_i} = \mathbb{P}(W_i > s_i). \end{split}$$

Dan Zhu

Holding times of Markov Processes

FUISSUIT FTUCE

Properties of Poisson

The Transition Rate of Poisson Processes

Question

Consider a two state Markov chain with $\mu_{1,1} = \mu_{2,2} = -\lambda$, find the transition matrix $\mathbb{P}(t)$.

This model has a very simple structure, assume $X_0 = 0$, $X_t = 0$ if and only if there is even number of transitions. Since the intensity of transition from 0 to 1 and 1 to 0 are the same, hence the time between each transition is $exp(\lambda)$. This implies a Poisson process of parameter λ .

Process

$$P_{00}(t) = P(X(t) = 0 | X(0) = 0)$$

$$= P(\text{an even number of arrivals in } [0, t])$$

$$= \sum_{n=0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{2n}}{(2n)!}$$

$$= e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda t)^{2n}}{(2n)!}$$

$$= e^{-\lambda t} \left[\frac{e^{\lambda t} + e^{-\lambda t}}{2} \right] = \frac{1}{2} + \frac{1}{2} e^{-2\lambda t}.$$

Recall that

$$\sinh(x) = \frac{e^x - e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!},$$

$$\cosh(x) = \frac{e^x + e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}.$$

4 D F 4 D F 4 D F 4 D F

$$\mathbb{P}(X_{t+h}=i+1|X_t=i)=\lambda h+o(h)$$

$$\mathbb{P}(X_{t+h}=i|X_t=i)=1-\lambda h+o(h).$$

Consider $\mathbb{S} = \{0, 1, 2, 3,\}$, we have

$$\mathbb{P}_{i,j}^{(h)} = \begin{cases} 1 - \lambda h + o(h) & \text{if } j = i \\ \lambda h + o(h) & \text{if } j = i + 1 \\ 0 & \text{otherwise} \end{cases}$$

and

$$\mu_{i,j} = \begin{cases} -\lambda & \text{if } j = i \\ \lambda & \text{if } j = i + 1 \\ 0 & \text{otherwise} \end{cases}$$

Holding times of Markov Processes

Definition

Properties of Poisson

The Transition Rate of Poisson Processes Examples

Dan 7hu

Examples

Example

The number of customers arriving at a grocery store can be modeled by a Poisson process with intensity $\lambda = 10$ customers per hour. Find the probability that there are 2 customers between 10:00 and 10:20. Find the probability that there are 3 customers between 10:00 and 10:20 and 7 customers between 10:20 and 11.

 \approx 0.2.

 $P(X=2) = \frac{e^{-\frac{10}{3}} \left(\frac{10}{3}\right)^2}{2!}$

Then, we have two non-overlapping intervals,

$$P\left(3 \text{ arrivals in } I_1 \text{ and } 7 \text{ arrivals in } I_2\right)$$

$$=P\left(3 \text{ arrivals in } I_1\right) \cdot P\left(7 \text{ arrivals in } I_2\right)$$

$$=\frac{e^{-\frac{10}{3}} \left(\frac{10}{3}\right)^3}{3!} \cdot \frac{e^{-\frac{20}{3}} \left(\frac{20}{3}\right)^7}{7!}$$

$$\approx 0.0325$$

Dan Zhu

Example

Let N_t be a Poisson process with intensity $\lambda = 2$, and let $X_1, X_2, ...$ be the corresponding interarrival times.

- Find the probability that the first arrival occurs after t > 0.5
- 2. Given that we have had no arrivals before t = 1, find $\mathbb{P}(X_1 > 3)$
- Given that the third arrival occurred at time t = 2, find the probability that the fourth arrival occurs after t = 4.
- 4. I start watching the process at time t = 10. Let T be the time of the first arrival that I see. In other words, T is the first arrival after t = 10. Find $\mathbb{E}[T]$ and var(T)

Holding times of Markov Processes

Poisson Proces

Definition

Properties of Poisson

Process

The Transition Ra Poisson Processi Examples

Holding times of Markov Processes

2.

$$P(X_1 > 3 | X_1 > 1) = P(X_1 > 2)$$
 (memoryless property)
= $e^{-2 \times 2} \approx 0.0183$

Definition
Properties of Poisson
Process
The Transition Rate of
Poisson Processes
Examples

3. $X_4 \sim Exp(2)$,

$$P(X_4 > 2|X_1 + X_2 + X_3 = 2) = P(X_4 > 2)$$
 (independence of the X_i 's)
= $e^{-2 \times 2} \approx 0.0183$

ロトスタンスランスラン

4. When I start watching the process at time t = 10, I will see a Poisson process. Thus, the time of the first arrival from t = 10 is Exp(2). In other words, we can write T = 10 + X with $X \sim Exp(2)$. Thus, $\mathbb{E}[T] = 10.5$ and Var(T) = 0.25.