ANÁLISIS DE FUNCIONES DE VARIABLE COMPLEJA CURSO 2020-2021

HOJA 2

1. Estudia la convergencia de las series:

a)
$$\sum_{n=1}^{\infty} \frac{e^{\frac{\pi i}{n}}}{\sqrt{n}}$$

b)
$$\sum_{n=1}^{\infty} \frac{n \sin ir}{3^n}$$

a)
$$\sum_{n=1}^{\infty} \frac{e^{\frac{\pi i}{n}}}{\sqrt{n}}$$
 b) $\sum_{n=1}^{\infty} \frac{n \sin in}{3^n}$ c) $\sum_{n=1}^{\infty} \frac{\sinh i\sqrt{n}}{\sin in}$ d) $\sum_{n=1}^{\infty} \frac{n}{\operatorname{tg} i\pi n}$

$$d) \sum_{n=1}^{\infty} \frac{n}{\operatorname{tg} i \pi n}$$

2. Demuestra que si la serie $\sum c_n$ converge y $|\arg c_n| \leqslant \alpha < \frac{\pi}{2}$, entonces la serie converge absolutamente.

3. Supongamos que las series $\sum c_n$ y $\sum c_n^2$ convergen. Demuestra que si Re $c_n \geqslant 0$, entonces la serie $\sum |c_n|^2$ también converge.

4. Estudia la convergencia uniforme de las series:

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \frac{z^n}{1+z^n}$$

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \frac{z^n}{1+z^n}$$
 b) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \frac{z^n}{1+z^n}$ c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{z+n}$

$$c) \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{z+n}$$

d)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \left(z^n + \frac{1}{z^n} \right)$$
 e) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n + |z^2|}$ f) $\sum_{n=1}^{\infty} \frac{e^{-nz}}{2^n + 3^n}$.

e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+|z^2|}$$

$$f) \quad \sum_{n=1}^{\infty} \frac{e^{-nz}}{2^n + 3^n}$$

5. Determina el radio de convergencia de las siguientes series de potencias:

a)
$$\sum_{n=1}^{\infty} (\log n)^2 z^n$$

$$b) \sum_{n=0}^{\infty} n! z^n$$

c)
$$\sum_{n=0}^{\infty} \frac{n^2}{4^n + 3n} (z-3)^n$$

d)
$$\sum_{n=0}^{\infty} \frac{(n!)^3}{(3n)!} z^n$$

e)
$$\sum_{n=0}^{\infty} 2^n (z-2i)^n$$

d)
$$\sum_{n=0}^{\infty} \frac{(n!)^3}{(3n)!} z^n$$
 e) $\sum_{n=0}^{\infty} 2^n (z-2i)^n$ f) $\sum_{n=0}^{\infty} \frac{z^n}{\operatorname{sen}^n (1+in)}$

g)
$$\sum_{n=0}^{\infty} \frac{n^n}{1+2^n n^n} z^n$$
 h) $\sum_{n=0}^{\infty} \frac{n}{9} z^{2n}$

$$h) \quad \sum_{n=0}^{\infty} \frac{n}{9} z^{2n}$$

i)
$$\sum_{n=0}^{\infty} (2 + (-1)^n)^n z^n$$
.

6. El radio de convergencia de la serie $\sum_{n=0}^{\infty} c_n z^n$ es igual a R (0 < R < ∞). Determina el radio de convergencia de las siguientes series:

a)
$$\sum_{n=0}^{\infty} n^k c_n z^n$$

a)
$$\sum_{n=0}^{\infty} n^k c_n z^n$$
 b) $\sum_{n=0}^{\infty} (2^n - 1) c_n z^n$ c) $\sum_{n=0}^{\infty} c_n^k z^n$ d) $\sum_{n=0}^{\infty} n^n c_n z^n$,

c)
$$\sum_{n=0}^{\infty} c_n^k z^n$$

$$d) \sum_{n=0}^{\infty} n^n c_n z^n$$

donde k es un entero positivo

7. Suma las siguientes series:

a)
$$\sum_{n=0}^{\infty} r^n \sin nx$$
, $r > 0$; b) $\sum_{n=0}^{\infty} (-1)^n z^{3n}$; c) $\sum_{n=0}^{\infty} \binom{n}{3} z^n$ d) $\sum_{n=0}^{\infty} \frac{3n^2 + 2}{(n+2)!} z^n$.

b)
$$\sum_{n=0}^{\infty} (-1)^n z^{3n}$$

c)
$$\sum_{n=0}^{\infty} \binom{n}{3} z^n$$

d)
$$\sum_{n=0}^{\infty} \frac{3n^2 + 2}{(n+2)!} z^n$$

8. Demuestra que la serie de potencias $\sum_{n=1}^{\infty} z^n/n$ converge en todo punto de la circunferencia unidad, excepto en z = 1.

9. a) Aplica el teorema de Abel para demostrar la igualdad $\log 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$

b) Da un ejemplo de una serie $\sum a_n$ que no converja y tal que $\sum a_n z^n$ tenga radio de convergencia 1 y lím $_{r\to 1^-} \sum_{n\geqslant 0} a_n r^n$ exista.

10. Demuestra las siguientes igualdades:

a)
$$\sum_{n=1}^{\infty} \frac{\cos n\theta}{n} = -\ln\left|2\sin\frac{\theta}{2}\right|, \ (0<|\theta|\leqslant\pi);$$
 b)
$$\sum_{n=1}^{\infty} \frac{\sin n\theta}{n} = \frac{\pi-\theta}{2}, \ (0<\theta<2\pi);$$

c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\cos n\theta}{n} = -\ln\left(2\cos\frac{\theta}{2}\right), \ (0 < \theta < \pi); \ d) \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin n\theta}{n} = \frac{\theta}{2}, \ (-\pi < \theta < \pi).$$