NOM: GAUSS Note: 10/10

Prénom: Carl Friedrich

Exercice 1 (2 points). Déterminer les valeurs de x pour lesquelles $|2x-3| \le 1$.

$$|2x-3| \le 1 \iff -1 \le 2x-3 \le 1 \iff 2=-1+3 \le 2x \le 1+3=4 \iff 1 \le x \le 2$$

Exercice 2 (3 points). Résoudre dans R l'inéquation $x^3 + 2x^2 - 5x - 6 > 0$.

Soit $P(x) = x^3 + 2x^2 - 5x - 6$. Puisque P(-1) = 0, on peut factoriser P(x) par x + 1. La factorisation s'écrit $P(x) = (x + 1)(ax^2 + bx + c)$. De manière évidente, a = 1, c = -6 et $P(x) = (x + 1)(x^2 + bx - 6)$. Pour déterminer b, comparons les termes en x: pour P, c'est -5x et dans le développement de $(x + 1)(x^2 + bx - 6)$ c'est (b - 6)x. D'où b = 1 et $P(x) = (x + 1)(x^2 + x - 6)$.

Cherchons les racines de $x^2 + x - 6$. On a $\Delta = 1 - 4 \times (-6) = 25$; $x^2 + x - 6$ possède deux racines : (-1 - 5)/2 = -3 et (-1 + 5)/2 = 2.

Finalement, P possède trois racines réelles, -3, -1 et 2, et P(x) = (x+3)(x+1)(x-2).

En remarquant que P change de signe dès qu'on passe une racine et que $\lim_{x\to+\infty} P(x) = +\infty$ ou en faisant un tableau de signes, on obtient

$${x: P(x) > 0} =]-3, -1[\cup]2, +\infty[.$$

Exercice 3 (5 points : 1+2+2).

1. Trouver a et b tels que, pour tout entier $k \ge 1$, $\frac{1}{k(k+1)} = \frac{a}{k} + \frac{b}{k+1}$.

On a, en réduisant au même dénominateur, pour tout $k \geq 1$,

$$\frac{a}{k} + \frac{b}{k+1} = \frac{a(k+1) + bk}{k(k+1)} = \frac{(a+b)k + a}{k(k+1)}.$$

Par identification, a + b = 0 et a = 1 c'est à dire a = 1 et b = -1:

$$\forall k \in \mathbf{N}^*, \quad \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}.$$

2. Soit $n \in \mathbb{N}^*$. Exprimer, en fonction de n, $S_n = \sum_{k=1}^n \frac{1}{k(k+1)}$.

Soit $n \in \mathbf{N}^*$.

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+1} = \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) - \left(\frac{1}{2} + \dots + \frac{1}{n} + \frac{1}{n+1}\right)$$
$$= 1 - \frac{1}{n+1} = \frac{n}{n+1}.$$

Pour ne pas utiliser de points de suspension :

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+1} = \sum_{k=1}^n \frac{1}{k} - \sum_{p=2}^{n+1} \frac{1}{p} = \sum_{k=1}^n \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k} = 1 - \frac{1}{n+1} = \frac{n}{n+1}.$$

3. On suppose que, pour tout entier k, $1 \le u_k \le 2^k$. Soit $n \in \mathbb{N}^*$. Donner, en fonction de n, un encadrement de $G_n = \sum_{k=0}^n u_k$.

Soit $n \in \mathbf{N}^*$. On a

$$\sum_{k=0}^{n} 1 \le \sum_{k=0}^{n} u_k \le \sum_{k=0}^{n} 2^k,$$

soit encore, utilisant la formule donnant la somme des termes d'une suite géométrique,

$$n+1 \le \sum_{k=0}^{n} u_k \le 2^{n+1} - 1.$$

On peut aussi utiliser la majoration (moins précise)

$$\sum_{k=0}^{n} 2^k \le \sum_{k=0}^{n} 2^n = (n+1)2^n.$$