## Intervals, Transformations, and Slope Solution (version 1)

1. The function f is graphed below.



| Feature    | Where                   |
|------------|-------------------------|
| Positive   | $(-7, -3) \cup (3, 8)$  |
| Negative   | $(-8, -7) \cup (-3, 3)$ |
| Increasing | $(-8, -6) \cup (0, 6)$  |
| Decreasing | $(-6,0) \cup (6,8)$     |
| Domain     | (-8,8)                  |
| Range      | (-8,8)                  |

### Intervals, Transformations, and Slope Solution (version 1)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.









3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=32$  and  $x_2=95$ . Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 32 & 74 \\ 47 & 32 \\ 74 & 95 \\ 95 & 47 \\ \hline \end{array}$$

$$\frac{f(95) - f(32)}{95 - 32} = \frac{47 - 74}{95 - 32} = \frac{-27}{63}$$

The greatest common factor of -27 and 63 is 9. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-3}{7}$$

## Intervals, Transformations, and Slope Solution (version 2)

1. The function f is graphed below.



| Feature    | Where                    |
|------------|--------------------------|
| Positive   | $(-7, -4) \cup (-2, 7)$  |
| Negative   | $(-9, -7) \cup (-4, -2)$ |
| Increasing | $(-9, -5) \cup (-3, 6)$  |
| Decreasing | $(-5, -3) \cup (6, 7)$   |
| Domain     | (-9,7)                   |
| Range      | (-1,8)                   |

### Intervals, Transformations, and Slope Solution (version 2)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.









3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=94$  and  $x_2=98$ . Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 46 & 94 \\ 56 & 98 \\ 94 & 56 \\ 98 & 46 \\ \hline \end{array}$$

$$\frac{f(98) - f(94)}{98 - 94} = \frac{46 - 56}{98 - 94} = \frac{-10}{4}$$

The greatest common factor of -10 and 4 is 2. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-5}{2}$$

# Intervals, Transformations, and Slope Solution (version 3)

1. The function f is graphed below.



| Feature    | Where                   |
|------------|-------------------------|
| Positive   | $(-10, -7) \cup (0, 3)$ |
| Negative   | $(-7,0) \cup (3,7)$     |
| Increasing | $(-2,2) \cup (4,7)$     |
| Decreasing | $(-10, -2) \cup (2, 4)$ |
| Domain     | (-10,7)                 |
| Range      | (-10, 10)               |

### Intervals, Transformations, and Slope Solution (version 3)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.









3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=70$  and  $x_2=88$ . Express your answer as a reduced fraction.

$$\frac{f(88) - f(70)}{88 - 70} = \frac{99 - 18}{88 - 70} = \frac{81}{18}$$

The greatest common factor of 81 and 18 is 9. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{9}{2}$$

## Intervals, Transformations, and Slope Solution (version 4)

1. The function f is graphed below.



| Feature    | Where                     |
|------------|---------------------------|
| Positive   | $(-7, -5) \cup (-3, -2)$  |
| Negative   | $(-10, -7) \cup (-5, -3)$ |
| Increasing | $(-8, -6) \cup (-4, -2)$  |
| Decreasing | $(-10, -8) \cup (-6, -4)$ |
| Domain     | (-10, -2)                 |
| Range      | (-10, 10)                 |

### Intervals, Transformations, and Slope Solution (version 4)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.









3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=39$  and  $x_2=75$ . Express your answer as a reduced fraction.

$$\frac{f(75) - f(39)}{75 - 39} = \frac{58 - 16}{75 - 39} = \frac{42}{36}$$

The greatest common factor of 42 and 36 is 6. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{7}{6}$$

## Intervals, Transformations, and Slope Solution (version 5)

1. The function f is graphed below.



| Feature    | Where                     |
|------------|---------------------------|
| Positive   | $(-8, -5) \cup (-3, 3)$   |
| Negative   | $(-10, -8) \cup (-5, -3)$ |
| Increasing | $(-10, -6) \cup (-4, -2)$ |
| Decreasing | $(-6, -4) \cup (-2, 3)$   |
| Domain     | (-10,3)                   |
| Range      | (-9,9)                    |

### Intervals, Transformations, and Slope Solution (version 5)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.









3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=34$  and  $x_2=54$ . Express your answer as a reduced fraction.

$$\frac{f(54) - f(34)}{54 - 34} = \frac{62 - 97}{54 - 34} = \frac{-35}{20}$$

The greatest common factor of -35 and 20 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-7}{4}$$

## Intervals, Transformations, and Slope Solution (version 6)

1. The function f is graphed below.



| Feature    | Where                    |
|------------|--------------------------|
| Positive   | $(-9, -7) \cup (-4, 3)$  |
| Negative   | $(-7, -4) \cup (3, 5)$   |
| Increasing | $(-9, -8) \cup (-6, -3)$ |
| Decreasing | $(-8, -6) \cup (-3, 5)$  |
| Domain     | (-9,5)                   |
| Range      | (-6,6)                   |

### Intervals, Transformations, and Slope Solution (version 6)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.









3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=13$  and  $x_2=29$ . Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 13 & 44 \\ 29 & 30 \\ 30 & 13 \\ 44 & 29 \\ \hline \end{array}$$

$$\frac{f(29) - f(13)}{29 - 13} = \frac{30 - 44}{29 - 13} = \frac{-14}{16}$$

The greatest common factor of -14 and 16 is 2. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-7}{8}$$

# Intervals, Transformations, and Slope Solution (version 7)

1. The function f is graphed below.



| Feature    | Where                     |
|------------|---------------------------|
| Positive   | $(-8, -6) \cup (-4, 2)$   |
| Negative   | $(-10, -8) \cup (-6, -4)$ |
| Increasing | $(-10, -7) \cup (-5, -1)$ |
| Decreasing | $(-7, -5) \cup (-1, 2)$   |
| Domain     | (-10,2)                   |
| Range      | (-6,9)                    |

### Intervals, Transformations, and Slope Solution (version 7)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.









3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=66$  and  $x_2=81$ . Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 2 & 66 \\ 23 & 81 \\ 66 & 23 \\ 81 & 2 \\ \\ \end{array}$$

$$\frac{f(81) - f(66)}{81 - 66} = \frac{2 - 23}{81 - 66} = \frac{-21}{15}$$

The greatest common factor of -21 and 15 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-7}{5}$$

# Intervals, Transformations, and Slope Solution (version 8)

1. The function f is graphed below.



| Feature    | Where                  |
|------------|------------------------|
| Positive   | $(-6,0) \cup (4,7)$    |
| Negative   | $(0,4) \cup (7,9)$     |
| Increasing | $(-6, -5) \cup (3, 5)$ |
| Decreasing | $(-5,3) \cup (5,9)$    |
| Domain     | (-6,9)                 |
| Range      | (-6, 10)               |

### Intervals, Transformations, and Slope Solution (version 8)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.









3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=47$  and  $x_2=87$ . Express your answer as a reduced fraction.

$$\frac{f(87) - f(47)}{87 - 47} = \frac{78 - 73}{87 - 47} = \frac{5}{40}$$

The greatest common factor of 5 and 40 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{1}{8}$$

### Intervals, Transformations, and Slope Solution (version 9)

1. The function f is graphed below.



| Feature    | Where                  |
|------------|------------------------|
| Positive   | $(-9, -2) \cup (3, 5)$ |
| Negative   | $(-2,3) \cup (5,8)$    |
| Increasing | $(2,4) \cup (6,8)$     |
| Decreasing | $(-9,2) \cup (4,6)$    |
| Domain     | (-9,8)                 |
| Range      | (-4,7)                 |

### Intervals, Transformations, and Slope Solution (version 9)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.









3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=23$  and  $x_2=65$ . Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 23 & 61 \\ 55 & 23 \\ 61 & 65 \\ 65 & 55 \\ \hline \end{array}$$

$$\frac{f(65) - f(23)}{65 - 23} = \frac{55 - 61}{65 - 23} = \frac{-6}{42}$$

The greatest common factor of -6 and 42 is 6. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-1}{7}$$

### Intervals, Transformations, and Slope Solution (version 10)

1. The function f is graphed below.



| Feature    | Where                   |
|------------|-------------------------|
| Positive   | $(-5, -2) \cup (0, 2)$  |
| Negative   | $(-2,0) \cup (2,3)$     |
| Increasing | $(-5, -3) \cup (-1, 1)$ |
| Decreasing | $(-3,-1) \cup (1,3)$    |
| Domain     | (-5,3)                  |
| Range      | (-9,9)                  |

### Intervals, Transformations, and Slope Solution (version 10)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.









3. Let function g be defined by the table below. Use the formula  $\frac{g(x_2)-g(x_1)}{x_2-x_1}$  to find the average rate of change between  $x_1=27$  and  $x_2=57$ . Express your answer as a reduced fraction.

$$\frac{f(57) - f(27)}{57 - 27} = \frac{35 - 17}{57 - 27} = \frac{18}{30}$$

The greatest common factor of 18 and 30 is 6. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{3}{5}$$