#### Multiple Sequence Alignments



Introduction

### The Questions

- What is a multiple sequence Alignment?
- What can it do for me?
- How Can I produce one of these?
- How Can I Use It?

# What is A Multiple Sequence Alignment?

# How Can I Use A Multiple Sequence Alignment?

```
chite
                                                wheat
                                                                         chite
                                                                                                                                                  unknown
                                                                                                                                                                          trybr
                                                                                                                                                                                                  wheat
 unknown
                       trybr
AKDDRIRYDNEMKSWEEQMAE
                       AEKDKERYKREM-----
                                                ANKLKGEYNKAIAAYNKGESA
                                                                         AATAKQNYIRALQEYERNGG-
                                                                                                                                                                          KKDSNAPKRAMTSFMFFSSDFRS----KHSDLS-IVEMSKAAGAAWKELGP
                                                                                                                                                                                                  --DPNKPKRAPSAFFVFMGEFREEFKQKNPKNKSVAAVGKAAGERWKSLSE
                                                                                                                                                                                                                          ---ADKPKRPLSAYMLWLNSARESIKRENPDFK-VTEVAKKGGELWRGLKD
                                                                                                                                                 ---KPKRPRSAYNIYVSESFQ----EAKDDS-AQGKLKLVNEAWKNLSP
                                                                                                                     ***
```

#### Extrapolation



| ExPASy Home page |
|------------------|
| Site Map         |
| Search ExPASy    |
| Contact us       |
| SWISS-PROT       |
|                  |

## NiceProt View of SWISS-PROT: P40623

[General] [Name and origin] [References] [Comments] [Cross-references] [Keywords] [Features] [Sequence] [Jools]

| General information about the entry                                                                                                                                                                                             | entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entry name                                                                                                                                                                                                                      | HMGB_CHITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Primary accession number                                                                                                                                                                                                        | P40623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Secondary accession number(s)                                                                                                                                                                                                   | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Entered in SWISS-PROT in                                                                                                                                                                                                        | Release 31, February 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sequence was last modified in                                                                                                                                                                                                   | Release 31, February 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Annotations were last modified in Release 32, November 1995                                                                                                                                                                     | Release 32, November 1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Name and origin of the protein                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Protein name                                                                                                                                                                                                                    | MOBILITY GROUP PROTEIN 1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Synonym(s)                                                                                                                                                                                                                      | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Gene name(s)                                                                                                                                                                                                                    | HMG1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| From                                                                                                                                                                                                                            | Chironomus tentans (Midge)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Taxonomy                                                                                                                                                                                                                        | Eukaryota, Metazoa, Arthropoda, Tracheata, Hexapoda, Insecta, Pterygota, Neoptera, Endopterygota, Diptera, Nems<br>Chironomoidea, Chironomidae, Chironominae, Chironomus.                                                                                                                                                                                                                                                                                                                    |
| References                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SEQUENCE FROM N. A.  TISKUE=EMBRYONIC EPITHELIUM;  MEDLINE, 92381031. [NCB] ExPASy, Israel Japan]  Wisniewski J. R., Schulze E.;  "Insect proteins bormologous to mammalian high mobility  J. Biol. Chem. 26717170-17177(1992). | SEQUENCE FROM N.A.  TISSUE=EMBRYONIC EPITHELIUM;  MEDLINE: 92381031. [ <u>NCB1, ExPASy. Israel. Japan]</u> Wisniewskid. I.R. Schulze E.;  "Insect protein homologous to mammalian high mobility group protein 1. Characterization and DNA-binding properties.";  J. Biol. Chem. 267:17170-17177(1992).                                                                                                                                                                                       |
| Comments                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| FUNCTION: FOUND IN CONDENSED G     SUBCELLULAR LOCATION: NUCLEAR     SIMILARITY: BELONGS TO THE HMGL     SIMILARITY: CONTAINS I HMG BOX.                                                                                        | FUNCTION: FOUND IN CONDENSED CHROMOMERES. BINDS PREFERENTIALLY TO AT-RICH DNA.  **SUBCELICILAR LOCATION**, NUCCLEAR  **SIMILARITY** ELDINGS TO THE HMG/HMG2 PROTEIN FAMILY.  **SIMILARITY** CONTAINS I HMG BOX.                                                                                                                                                                                                                                                                              |
| Copyright This SWISS-PROT entry is copyright Institute. There are no restrictions on entities requires a license agreement ()                                                                                                   | Copyright  This STATES PROT entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinform Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commendent requires a literate agreement (See Little //kwww.isb-sib.ch/smoon.ed/ or send on email to literate@isb-sib.ch). |
| Cross-references                                                                                                                                                                                                                | M03254: A A A 31713 1: - [FMBI / GenBent / DDBII [CoDingSequence]                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                 | O05783, 1HMA. [HSSP ENTRY / SWISS-3DIMAGE / PDB]                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                 | PF00505; HMG: box; 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PRODOM                                                                                                                                                                                                                          | [Domain structure / List of seq. sharing at least 1 domain]                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BLOCKS                                                                                                                                                                                                                          | P40623.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DOMO                                                                                                                                                                                                                            | P40623.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PROTOMAP                                                                                                                                                                                                                        | <u>P40623.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# How Can I Use A Multiple Sequence Alignment?

wheat chite mouse trybr trybr wheat chite mouse AEKDKERYKREM-----ANKLKGEYNKAIAAYNKGESA AATAKQNYIRALQEYERNGG-KKDSNAPKRAMTSFMFFSSDFRS----KHSDLS-IVEMSKAAGAAWKELGP AKDDRIRYDNEMKSWEEQMAE ----KPKRPRSAYNIYVSESFQ----EAKDDS-AQGKLKLVNEAWKNLSP --DPNKPKRAPSAFFVFMGEFREEFKQKNPKNKSVAAVGKAAGERWKSLSE ---ADKPKRPLSAYMLWLNSARESIKRENPDFK-VTEVAKKGGELWRGLKD \* \*\*\*

#### Extrapolation

**Prosite Patterns** 

Match?

Unkown Signature

Match?

SwissProt

DOMAIN

ASP/GLU-RICH (ACIDIC).

SEVIEWER logo

FT table viewer

equence information cength: 110 AA

Molecular weight 12150 Da

CRC64: B3491735713333C4 [This is a checksum on the sequence]

ONVIRALQEY ERNGGGGDDK GKKRKGAAPK KGAGKKSKKG AHSDDDGDSE

P40623 in FASTA format

MADKPKRPLS AYMLULNSAR ESIKRENPDF KVTEVAKKGG ELURGLKDKS EUEAKAATAK

SWISS-2DPAGE

P40623. GET REGION ON 2D PAGE

# How Can I Use A Multiple Sequence Alignment?

chite trybr wheat chite mouse trybr wheat AEKDKERYKREM----AATAKQNYIRALQEYERNGG-KKDSNAPKRAMTSFMFFSSDFRS----KHSDLS-IVEMSKAAGAAWKELGP AKDDRIRYDNEMKSWEEQMAE ANKLKGEYNKAIAAYNKGESA --DPNKPKRAPSAFFVFMGEFREEFKQKNPKNKSVAAVGKAAGERWKSLSE --ADKPKRPLSAYMLWLNSARESIKRENPDFK-VTEVAKKGGELWRGLKD ---KPKRPRSAYNIYVSESFQ----EAKDDS-IQGKLKLVNEAWKNLSP \* \*\*\* L? K>R

#### Extrapolation

#### **Prosite Patterns**

**Prosite Profiles** 



-More Sensitive-More Specific

# How Can I Use A Multiple Sequence Alignment?

chite trybr wheat chite mouse trybr wheat mouse KKDSNAPKRAMTSEMFFSSDFRS----KHSDLS-IVEMSKAAGAAWKELGP AEKDKERYKREM----ANKLKGEYNKAIAAYNKGESA AATAKQNYIRALQEYERNGG-AKDDRIRYDNEMKSWEEQMAE --DPNKPKRAPSAFFVFMGEFREEFKQKNPKNKSVAAVGKAAGERWKSLSE ---ADKPKRPLSAYMLWLNSARESIKRENPDFK-VTEVAKKGGELWRGLKD ----KPKRPRSAYNIYVSESFQ----EAKDDS-AQGKLKLVNEAWKNLSP \* \*\*\*

#### Extrapolation

#### Motifs/Patterns

Phylogeny

**Profiles** 



-Evolution -Paralogy/Orthology

### How Can I Use A Multiple Sequence Alignment?

```
chite
                                             trybr
                                                                       wheat
                                                                                              chite
                                                                                                                                                                        mouse
                                                                                                                                                                                              trybr
                                                                                                                                                                                                                       wheat
                                                                                             AATAKQNYIRALQEYERNGG-
                                               AEKDKERYKREM----
                                                                     ANKLKGEYNKAIAAYNKGESA
                                                                                                                                                                                               KKDSNAPKRAMTSFMFFSSDFRS----KHSDLS-IVEMSKAAGAAWKELGP
                       AKDDRIRYDNEMKSWEEQMAE
                                                                                                                                                                                                                        -DPNKPKRAPSAFFVFMGEFREEFKQKNPKNKSVAAVGKAAGERWKSLSE
                                                                                                                                                                                                                                               --ADKPKRPLSAYMLWLNSARESIKRENPDFK-VTEVAKKGGELWRGLKD
                                                                                                                                                                     ----KPKRPRSAYNIYVSESFQ----EAKDDS-AQGKLKLVNEAWKNLSP
*
                                                                                                                                           ***
```

#### Extrapolation

#### Motifs/Patterns

#### **Profiles**

#### Phylogeny

Struc. Prediction

75% Accurate. Structure Prediction: PhD For secondary

#### but is not yet as good. Threading: is improving

### How Can I Use A Multiple Sequence Alignment?

```
chite
                                            trybr
                                                                         wheat
                                                                                               chite
                                                                                                                                                                          mouse
                                                                                                                                                                                                  trybr
                                                                                                                                                                                                                           wheat
                                                                                                                                                                                                   KKDSNAPKRAMTSFMFFSSDFRS----KHSDLS-IVEMSKAAGAAWKELGP
                                              AEKDKERYKREM-----
                                                                       ANKLKGEYNKAIAAYNKGESA
                                                                                               AATAKQNYIRALQEYERNGG-
                      AKDDRIRYDNEMKSWEEQMAE
                                                                                                                                                                                                                             --DPNKPKRAPSAFFVFMGEFREEFKQKNPKNKSVAAVGKAAGERWKSLSE
                                                                                                                                                                                                                                                      ---ADKPKRPLSAYMLWLNSARESIKRENPDFK-VTEVAKKGGELWRGLKD
                                                                                                                                                                         ----KPKRPRSAYNIYVSESFQ----EAKDDS-AQGKLKLVNEAWKNLSP
. *
                                                                                                                                              ***
```

#### Extrapolation

#### Motifs/Patterns

#### **Profiles**

are not always perfect... Sequence Alignment methods **Automatic Multiple** 

#### Phylogeny

#### Struc. Prediction

#### Caution!

# Why Is It Difficult To Compute A multiple Sequence Alignment?



### COMPUTATION

What is THE good Alignment?

# Why Is It Difficult To Compute A multiple Sequence Alignment

#### BIOLOGY

#### COMPUTATION



# What Do I Need To Know To Make A good Multiple Sequence Alignment?

- •How Do Sequences Evolve?
- •How Does The Computer Align The Sequences?
- •How Can I Choose My Sequences?
- •What is The Best Program?
- •How Can I Use My Alignment?

# An Alignment is a STORY ADKPKRPLSAYMIMIN ADKPKRPLSAYMIMIN ADKPKRPLSAYMIMIN ADKPKRPLSAYMIMIN ADKPKRPLSAYMIMIN ADKPKRPKPRESAYMIMIN ADKPKRPKPRESAYMIMIN



### **Convergent Evolution**

Chen et al, 97, PNAS, 94, 3811-16

AFGP with (ThrAlaAla)n Similar To Trypsynogen



AFGP with (ThrAlaAla)n NOT Similar to Trypsinogen

## Structures and Mutations...



## Residues et Mutations...

All Residues are Equal, But some More Than



Accurate Matrices are Data Driven Rather Than Knowledge Driven.

**OmpR, Cter Domain** 

### **Substitution Matrices...**

| <        | -< | 5  | $\neg$  | S        | P        | П | 3  | $\overline{\times}$ | _  | П  | I        | G   | П   | <u>ص</u> | 0  | $\Box$ | Z                  | R  | ]> |                             |
|----------|----|----|---------|----------|----------|---|----|---------------------|----|----|----------|-----|-----|----------|----|--------|--------------------|----|----|-----------------------------|
| 0        | Ψ  | 6  | ㅂ       | $\vdash$ | $\vdash$ | 4 | -  | 그                   | -2 | -1 | ᆣ        | ㅁ   | 0   | 0        | -2 | 0      | $\overline{\circ}$ | -2 | N  | ⊳                           |
| 2        | 4  | N  | -1      | 0        | 0        | 4 | 0  | ω                   | Ψ  | -2 | N        | Ψ   | - 1 |          | 4  |        | 0                  | 0  |    | R                           |
| 2        | -2 | 4  | 0       | 一        | -1       | 4 | -2 | Н                   | Ψ  | -2 | N        | 0   | 一   | 一        | 4  | N      | N                  |    |    | N D C                       |
| 2        | 4  | -7 | 0       | 0        | _        | 9 | ώ  | 0                   | 4  | -2 | $\vdash$ | i i | ω   | N        | 5  | 4      |                    |    |    | $\Box$                      |
| 2        | 0  | φ  | -2      | 0        | ώ        | 4 | 4  | 4                   | 9  | -2 | ώ        | Ψ   | 4   | -5       | 4  |        |                    |    |    |                             |
| 2        | 4  | 5  |         |          | 0        | 5 |    | Н                   | 2  | -2 | ω        |     | N   | 4        |    |        |                    |    |    | Q                           |
| 2        | 4  | -7 | 0       | 0        |          | 4 | 2  | 0                   | ώ  | -2 | <u> </u> | 0   | 4   |          |    |        |                    |    |    | П                           |
| <u> </u> | Ϋ́ | -7 | 0       |          | ᆣ        | 4 | ώ  | 2                   | 4  | ώ  | 2        | U   |     |          |    |        |                    |    |    | 0                           |
| 2        | 0  | ώ  | -       | -        | 0        | 2 | 2  | 0                   | 2  | -2 | σ        |     |     |          |    |        |                    |    |    | I                           |
| 4        | -1 | 4  | 0       | -        | 2        |   | Ν  | 2                   | N  | G  |          |     |     |          |    |        |                    |    |    | I                           |
| N        | ᆣ  | 7  | 2       | Ψ        | ώ        | N | 4  | Ψ                   | 0  |    |          |     |     |          |    |        |                    |    |    |                             |
| 2        | 4  | ώ  | 0       | 0        | ᆣ        | 4 | 0  | G                   |    |    |          |     |     |          |    |        |                    |    |    | $\overline{X}$              |
| 2        | 2  | 4  | -1      | 2        | 2        | 0 | 0  |                     |    |    |          |     |     |          |    |        |                    |    |    | $\leq$                      |
| <u> </u> | 7  | 0  | -2      | ώ        | 5        | 9 |    |                     |    |    |          |     |     |          |    |        |                    |    |    | Π                           |
| 느        | 4  | 9  | 0       |          | 0        |   |    |                     |    |    |          |     |     |          |    |        |                    |    |    | P<br>—                      |
| <u> </u> | ώ  | 2  | <u></u> | ω        |          |   |    |                     |    |    |          |     |     |          |    |        |                    |    |    | <u>S</u>                    |
| 0        | ώ  | Ϋ́ | ω       |          |          |   |    |                     |    |    |          |     |     |          |    |        |                    |    |    | _                           |
| 9        | 0  | 17 |         |          |          |   |    |                     |    |    |          |     |     |          |    |        |                    |    |    | 5                           |
| 2        | 10 |    |         |          |          |   |    |                     |    |    |          |     |     |          |    |        |                    |    |    | E G H I L K M F P S T W Y V |
| 4        |    |    |         |          |          |   |    |                     |    |    |          |     |     |          |    |        |                    |    |    | <                           |
|          |    |    |         |          |          |   |    |                     |    |    |          |     |     |          |    |        |                    |    |    |                             |

### **Different Flavors:**

•Pam: 250, 350 •Blosum: 45, 62

# What is the Best Substitution Matrix?

# Mutations Rates Depend on Families...

| Family          | S   | NS  |
|-----------------|-----|-----|
| Histone3        | 6.4 | 0   |
| Insulin         | 4.0 | 0.1 |
| Interleukin I   | 4.6 | 1.4 |
| α-Globin        | 5.1 | 0.6 |
| Apolipoprot. Al | 4.5 | 1.6 |
| Interferon G    | 8.6 | 2.8 |
|                 |     |     |

Rates in Substitutions/site/Billion Years as measured on Mouse Vs Human (0.08 Billion years)

# Choosing The Right Matrix may be Tricky...

- •GONNET 250> BLOSUM62>PAM 250.
- •But This will depend on:
- The Family.The Program Used and Its Tunning.
- •Insertions, Deletions?



# HOW CAN I ALIGN TWO SEQUENCES





 $\Big\| egin{array}{c} ext{Dynamic Programming (Needlman and Wu} \ \Big\| \ \Big\| ext{Supplementary} \Big\|$ 

Match=1 MisMatch=-1 Gap=-1

FAST



<u>A</u>-2

0





# HOW CAN I ALIGN MANY SEQUENCES

### 7 Globins =>1000 years



### **Existing Methods**

### 1-Carillo and Lipman:



- -MSA, DCA.
- -Few Small Closely Related Sequence.
- -Do Well When They Can Run.

### 2-Segment Based:



- -DIALIGN, MACAW.
- -May Align Too Few Residues

#### 3-Iterative:



- -HMMs, HMMER, SAM.
- -Slow, Sometimes Innacutrate-Good Profile Generators
- 4-Progressive:
- -ClustalW, Pileup, Multalign... -Fast and Sensitive

## **Progressive Alignment**

Feng and Dolittle, 1980; Taylor 1981



- -Depends on the CHOICE of the sequences.
- -Depends on the ORDER of the sequences (Tree).
- -Depends on the PARAMETERS:
- Substitution Matrix.
- Penalties (Gop, Gep).
- Sequence Weight.
- Tree making Algorithm.

### **Progressive Alignment**

## Weighting Within ClustalW



### **Position Specific GOP**

