

PAJ 1976 to 1993

Record 1 of 1

JAPANESE PATENT OFFICE

(11) Publication Number: JP 03228210 A

(43) Date of publication: 19911009

(51) int. CI : G11B005-31 🖼 🖾 (ICS) G11B005-127

(71) Applicant: **FUJITSU LTD** (72) Inventor:

TODA JUNZO

(21) Application Information: 19900201 JP 02-24239

PRODUCTION OF PERPENDICULAR MAGNETIC THIN-FILM HEAD

(57) Abstract:

PURPOSE: To shorten the process for production by making common use of a plating underlying film provided to form a main magnetic pole connecting layer on a 3rd interlayer insulating layer as a mask for plasma etching.

CONSTITUTION: After the main magnetic pole connecting layer 22 is formed by a mask plating method via the plating underlying film 21 in the central part of a coil, the plating underlying film 21 is patterned to prescribed patterns and the parts facing a recording medium of the interlayer insulating layers 2 to 4 are selectively removed with the plating underlying film pattern 23 as a mask. An inorg. insulating layer 24 is formed on the interlayer insulating layer 4 including the substrate surfa ce in these removed parts and the main magnetic pole connecting layer 22 and the main magnetic pole connecting layer 22 is polished and flattened together with the inorg, insulating layer 24 in such a manner that the connecting layer remains by as much a s the prescribed thickness. A main magnetic pole 26 is so formed on the flattened main magnetic pole connecting layer 22 and inorg. insulating layer 24 that the front end part thereof is exposed on a medium-facing surface 28. The process for production is shortened in this

CD-Volume: MIJP024GPAJ JP 03228210 A1 001

Copyright:

PAJ Result

End Session

®日本国特許庁(JP)

⑩特許出願公開

⑩ 公 開 特 許 公 報 (A) 平3-228210

39Int.Cl. 5

識別記号

庁内整理番号

⑬公開 平成3年(1991)10月9日

G 11 B 5/31 5/127 A B

7326-5D 6789-5D

審査請求 未請求 請求項の数 1 (全5頁)

劉発明の名称 垂直磁気薄膜ヘッドの製造方法

②特 願 平2-24239

順三

20出 願 平2(1990)2月1日

加発·明者 戸田

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

内

⑪出 願 人 富士通株式会社

神奈川県川崎市中原区上小田中1015番地

個代 理 人 弁理士 井桁 貞一

明細書

1. 発明の名称

垂直磁気薄膜ヘッドの製造方法

2. 特許請求の範囲

磁性基板(1)上に層間絶縁層(2.3.4)で被 復された薄膜コイル(5)を形成後、抜薄膜コイル (5)上の層間絶縁層(4)表面からコイル中心部に 露出する前記基板面にわたってめっき下地膜(21) を形成する工程と、

接コイル中心部にめっき下地膜(21)を介してマスクめっき法により主磁循接続層(22)を形成した後、該めっき下地膜(21)を所定パターンにパターニングし、該めっき下地膜パターン(23)をマスクにして前記層間絶縁層(2.3,4)の記録媒体と対向する側の部分を選択的に除去する工程と、

その除去部分の基板面を含む層間絶縁層(4)及び主磁極接続層(22)上に無機絶縁層(24)を形成し、該主磁極接続層(22)を所定膜厚分残すように前記無機絶縁層(24)と共に研磨して平坦化する工程と、

該平坦化した主磁極接続層(22)と無機絶縁層(24) 上に主磁極(26)を、その先端部が媒体対向面(28) に露出するように形成する工程とを含むことを特 後とする垂直磁気運験へっドの製造方法。

3. 発明の詳細な説明

(概 要)

垂直磁化記録方式の磁気ディスク装置、成いは磁気テープ装置等に用いられる垂直磁気薄膜へッドの製造方法に関し、

第一層間絶縁層及び環膜コイルを被覆した第二、 第三層間絶縁層の媒体対向面側の不要部分を選択 的に除去するためのエッチング用マスクの配設方 法を改良して、段差に起因するエッチング用マス クの途切れ欠陥の発生を解消し、エッチング不良 を防止することを目的とし、

磁性基板上に層間絶縁層で被覆された薄膜コイルを形成後、該薄膜コイル上の層間絶縁層裏面からコイル中心部に露出する前記基板面にわたってめっき下地膜を形成する工程と、該コイル中心部

(産業上の利用分野)

本発明は垂直磁化記録方式の磁気ディスク装置、 或いは磁気テープ装置等に用いられる垂直磁気薄 膜ヘッドの製造方法に関するものである。

近年、コンピュータシステムの外部記憶装置と して広く用いられている例えば磁気ディスク装置 等においては大容量化に伴い高性能な磁気へッド

次に第2図(D)に示すように該A ℓ ±0 ± 膜 7 を所定パターンにパターニングし、このA ℓ ±0 ± 膜 パターン 8 をマスクにして前記第一層間絶縁層 2 及び多層薄膜コイル 5 を被覆する第二、第三層間絶縁層 3、4 の媒体対向面側の不要部分を0±ガスを用いたプラズマエッチング法によって選択的に除去する。

次に第2図(C)に示すように前記A ℓ ₂0₂膜パターン8を除去した後、該除去部分の基板面を含む第三層間絶縁層 4 及び主磁極接続層 6 上の全面にスパッタリング法等によりA ℓ ₂0₃からなる 30 μ m 程度の厚い額厚の無線絶縁層 9 を被著し、前記主磁機接続層 6 を含む無機絶縁層 9 を第三層間絶縁層 4 上に例えば 10 μ m 程度の膜厚が残存するように図中の A − A ′ で示す一点鎖線の位置まで平坦に研磨仕上げ加工を行う。

その後、第2図(は)に示すようにその平坦面にNi-Fe、または Co-2rなどからなる主磁極10を、その 先端部10a は後述する媒体対向面12に露出するよ うに、また後端部10b は前記主磁極接続層6と接 が要求されており、この要求を満足させるものと して高密度記録が可能な垂直磁気薄膜ヘッドが提 塞され、注目されている。

このような垂直磁気薄膜ヘッドとしては、安定 した製造工程により歩習りよく製造する方法が要 望されている。

〔従来の技術〕

従来の垂直磁気 解 i - Zn フェライト等からななる i W i - Zn フェライト等からなる i W i - Zn フェライト等からなる i W i - Zn フェライト等かる i W i - Zn フェライト等かる i W i - Zn フェライト等かる i W i - Zn で i W i - Zn で

統するように例えばスパッタリング法とフォトリソグラフィ工程により形成した後、これら主磁極10及び無機絶縁層9上の全面にAlz0mからなる絶縁保護層11を被着形成する。

引き続き前記主磁極先端部10aの不要長さ部分を図中Bで示す一点鎮線の位置で該絶縁保護庫11、無機絶縁層9及びその直下の磁性基板1と共に切除し、その切除面を媒体対向面12とするヘッドスライダ形状に研磨仕上げ加工を行うことにより第2図(e)で示すヘッド構造としている。

〔発明が解決しようとする課題〕

ところで、上記したような従来の垂直磁気環膜へッドの製造において、前記磁性基板 1 上に設けた第一層間絶縁層 2 及び多層薄膜コイル 5 を被覆した第二、第三層間絶縁層 3 、4 の媒体対向側の不要部分をプラズマエッチング法により第三層間絶縁層 4 上に設けた主磁極接続層 6 上に、0.3 μ = 程度の膜厚のプラズマエッチング用のマスク

を形成する $A L_{z} O_{z}$ 膜 T をスパッタリング法等により被者した際に、第 3 図 (a) に示すように該主磁極接続層 6 の経端の角部分やその側面と第三層間絶縁層 4 の上面とで構成する内角部分等の段差部分に前記 $A L_{z} O_{z}$ 膜 T が一様に被者し難いという所謂、ステップカバレージ $(Step\ Coverage)$ が膨く、しかもその $A L_{z} O_{z}$ 膜 T が段差部分で途切れるといった欠点がある。

このため、かかるA ℓ ± 0 3 膜 7 をエッチング用マスクにパターニングしたA ℓ ± 0 3 膜パクーン 8 を介して前記第一層間絶縁層 2 及び多層薄膜コイル 5 を被覆する第二、第三層間絶縁層 3 . 4 の媒体対向面側の不要部分を0 ± ガスを用いたプラズマエッチングにより除去すると、第 3 図(Δ)で示すように前記A ℓ ± 0 3 膜 7 の段差部分で途切れた個所からその直下の第三層間絶縁層 4 及び第二層間絶縁層 3 等の一部が溝穴状13にエッチングされるというエッチング不良が発生する問題があった。

本発明は上記した従来の問題点に鑑み、第一層 間絶縁層及び多層薄膜コイルを被覆した第二、第

ように前記無機絶縁層と共に研磨して平坦化する 工程と、該平坦化した主磁極接続層と無機絶縁層 上に主磁極を、その先端部が媒体対向面に露出す るように形成する工程とを行って構成する。

(作用)

本発明では、薄膜コイルを被覆した層間絶縁層上に、主磁極接続層をマスクめっき法により形成するために設けためっき下地膜をプラより、譲てング用のマスクとして利用することにより、譲せのステップカバレージ、即ち、改差被覆性の不良発生の問題が解消し、エッチング不良が防止されると共に、前記めっき下地膜を主磁極接続層の形成と、プラズマエッチング用のマスクとに兼用しているため製造工程も短縮することができる。

(実施例)

以下図面を用いて本発明の実施例について詳細 に説明する。

第1図(a)~(e)は本発明に係る垂直磁気薄膜へッ

三層間絶縁層の媒体対向面側の不要部分を選択的 に除去するためのエッチング用マスクの配設方法 を改良して、段差に起因するエッチング用マスク の途切れ欠陥の発生を解消し、エッチング不良を 防止した新規な垂直磁気薄膜ヘッドの製造方法を 提供することを目的とするものである。

(課題を解決するための手段)

本発明は上記した目的を連成するため、磁性基板上に層間絶縁層で被覆された薄膜コイルらの層間絶縁層表面でかり、弦印膜コイルのの層間絶縁層表面である。ないのでは、ないのではないでは、ないのでは、ないのではないでは、ないではないのでは、ないのではないでは、ないのでは、ないでは、ないではないでは、ないでは、ないでは、ないでは、ないではないではないでは、ないではないではないではないではないではないでは、ないではないでは、ないではないではない

ドの製造方法の一実施例を工程順に示す要部断面 図である。

先ず第1図(a)に示すように、Ni-Zn, Nn-Znフェライト等からなる磁性基板 1 上に熱硬化性樹脂等からなる第一層間絶縁層 2 を介して第二、第三層間絶縁層 3 4 で被覆された渦巻状等の多層薄膜コイル 5 を積層形成した後、該第三層間絶縁層 4 上から該多層薄膜コイル 5 の中心部に露出する場では0.3μeの膜厚の Ni-Fe等からなる導電性のの対してスパッタリング法等によって、例えば0.3μeの膜厚の Ni-Fe等からなる事では21を被着し、更に該めっき下地膜21を被着し、更に該めっき下地膜21を被着し、可中心部にマスクらっき法により Ni-Feからなる厚い膜厚の主磁径接続層 22を形成する。

・次に第1図(b)に示すように前記めっき下地膜21を所定パターンにパターニングした後、このめっき下地膜パターン23をマスクにして前記第一層間絶縁層2及び第二、第三層間絶縁層3、4の媒体対向面側の不要部分を0xがスを用いたプラズマエッチング法により選択的に除去する。

次に第1図(c)に示すように前記第三層間絶縁層4上に露出するめっき下地膜パターン23をエッチング除去した後、該除去部分の基板1面を含む第三層間絶縁層4及び主磁極接続層22上の全面にスパッタリング法等により30μm程度の厚い膜厚のA2π0mからなる無機絶縁層24を被着し、その無機絶縁層24及び主磁極接続層22を、前記第三層間絶縁層4上に例えば10μmの膜厚が残存するように図中のC-C'で示す一点額線の位置まで平坦に研磨仕上げ加工を行う。

しかる後、第1図(d)に示すように研磨仕上げ加工後の平坦面25にNi-Fe、またはCo-Zrなどからなる主磁極26を、その先端部26a は後述する媒体対向面28に露出するように、また後端部26b は前記主磁極接続層22と接続するように例えばスパッタリング法とフォトリソグラフィ工程により形成した後、これら主磁極26及び無機絶縁層24上の全面にAl,0,からなる絶縁保護層27を被着形成する。

引き続き前記主磁極先端部26aの不要長さ部分 を図中Dで示す一点鎖線の位置で該絶縁保護層27、

また、薄膜コイルも多層に限定されるものでは なく、単層の場合にも適用可能である。

(発明の効果)

4. 図面の簡単な説明

第1図(a)~(e)は本発明に係る垂直磁気薄膜へッドの製造方法の一実施例を工程順に示す要部断面図、

無機地線層24及びその直下の磁性基板1と共に切除し、その切除面を媒体対向面28とするヘッドスライダ形状に研削仕上げ加工を行って第1図(e)で示すヘッド構造に完成させる。

このような製造方法においては、前記第一層間 能縁層 2 及び第二、第三層間絶縁層 3 . 4 の媒体 対向面側の不要部分を0xガスを用いたプラズマエ ッチング法により選択的に除去するためのマスク として、主磁極接続層 22を形成する前記第三層間 絶縁層 4 上のめっき下地膜 21を利用しているため、 エッチングマスクが従来の如き段差被覆不良とな るという問題が完全に解消され、製造歩留りが向 上する。

なお、以上の実施例ではNi-Zn、Mn-Znフェライト等からなる磁性基板を用いた場合の例について説明したが、本発明はこの例に限定されるものではなく、例えば Ni-Fe等からなる磁性ヨーク層が形成されたA & ±03・TiC 等からなる非磁性基板を用いた垂直磁気薄膜ヘッドの製造にも適用できることはいうまでもなく、同様の効果が得られる。

第2図(a)~(e)は従来の垂直磁気薄膜ヘッドの製造方法を工程順に説明するための要部 断面図、

第3図(a)、(b)は従来の垂直磁気薄膜ヘッドの製造上の問題点を説明するための要部断面図である。

第1図(10)~(16)において、

1 は磁性基板、 2 は第一層間絶縁層、 3 は第二層間絶縁層、 4 は第三層間絶縁層、 5 は多層確膜コイル、 21 はめっき下地膜、 22 は主磁極接続層、 23 はめっき下地膜パ ターン、 24 は無機絶縁層、 25 は平坦面、 26 は主磁極、 27 は絶縁保護層、 28 は媒体 対向面をそれぞれ示す。

代理人 弁理士 井 桁 貞

從和學直接所學展へ小。製造上。例是使E被明有學術創作团 第 3 因