数字逻辑 Digital Logic Circuit

丁贤庆

ahhfdxq@163.com

Home work (P350)

- 1、本周有实验。地点:电气实验楼505房间
 - 2、期末考试,第六章有30分左右的考题。
- ┏3、本次的作业
 - 6.5.8
 - **6.5.9**
 - **6.5.13**

第二次实验时间

地点: 电气楼505房间

物联网2班:下周二上午10:10----11:50

物联网1班:本周日晚上19:00----20:40

计科1班: 下周一晚上19: 00----20:40

计科2班: 下周一上午8: 00----9:40

计科3班: 下周二晚上19: 00----20:40

计科4班: 下周三下午16: 00----17:40

计科5班: 下周三晚上19: 00----20:40

例题:已知时钟CP和输入X、Y,输出Q的波形,请写出Qn+1表达式

在时钟CP下降沿处,真值表如下:

X	Y	Q^n	Q^{n+1}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

第6章 时序逻辑电路 Sequential Logic Circuit

Outputs Depend Not Only on its Current Inputs, But also on the Past Sequence of Inputs.

(任一时刻的输出不仅取决与当时的输入,还取决于过去的输入序列)

Character of Circuit: Have Feedback Circuit, Have Memory Device

(电路特点:有反馈回路、有记忆元件)

6. 时序逻辑电路

- 6.1 时序逻辑电路的基本概念
- 6.2 同步 时序逻辑电路的分析
- 6.3 同步 时序逻辑电路的设计
- 6.4 异步 时序逻辑电路的分析
- 6.5 若干典型的时序逻辑电路
- 6.6 简单的时序可编程逻辑器件GAL
- 6.7 用Verilog描述时序逻辑电路

6.1 时序逻辑电路的基本概念

- 6.1.1 时序逻辑电路的基本结构与分类
 - 1. 时序电路的基本结构

结构特征:

- *电路由组合电路和存储电路组成。
- *电路存在反馈。

输出方程: $Q = f_I(I, S)$

表达输出信号与输入信号、状态变量的关系式

激励方程: $E = f_2(I, S)$

表达了激励信号与输入信号、状态变量的关系式

状态方程: $S^{n+1} = f_3(E, S^n)$

表达存储电路从现态到次态的转换关系式

2、时序电路包含同步时序电路与异步时序电路

时序电路

同步:存储电路里所有触发器有一个统一的时钟源, 它们的状态在同一时刻更新。

异步: 没有统一的时钟脉冲或没有时钟脉冲,电路的状态更新不是同时发生的。

3. 时序电路分为米利型和穆尔型时序电路

米利型电路

电路的输出是输入变量A及触发器输出 Q_1 、 Q_0 的函数,这类时序电路亦称为米利型电路

电路输出仅仅取决于各触发器的状态,而不受电路当时的输入信号影响或没有输入变量,这类电路称为穆尔型电路。

6.2 时序逻辑电路的分析(先上6.2节)

6.2.1 分析同步时序逻辑电路的一般步骤

6.2.2 同步时序逻辑电路分析举例

6.2.1 分析同步时序逻辑电路的一般步骤:

- 1.了解电路的组成:
- 电路的输入、输出信号、触发器的类型等
- 2. 根据给定的时序电路图,写出下列各逻辑方程式:
- (1)输出方程;
- (2)各触发器的激励方程;
- (3) 状态方程: 将每个触发器的驱动方程代入其特性方程得状态方程.
- 3.列出状态转换表或画出状态图和波形图;
- 4.确定电路的逻辑功能.

记忆: 常用的触发器

1. 维持阻塞触发器

在CP脉冲的上升沿到来瞬间 使触发器的状态(Q的值)才发生变化:

$$Q^{n+1} = D$$

2.下降沿触发的 JK 触发器

在CP脉冲的下降沿到来瞬间使触发器的状态(Q的值)才发生变化:

$$Q^{n+1} = J\overline{Q^{n}} + \overline{K}Q^{n}$$

6.2.2 同步时序逻辑电路分析举例

例1 试分析如图所示时序电路的逻辑功能。

解: (1)了解电路组成。

电路是由两个T触发器组成的同步时序电路。

6.2.2 同步时序逻辑电路分析举例

例1 试分析如图所示时序电路的逻辑功能。

(2) 根据电路列出三个方程组

输出方程组: $Y=AQ_1Q_0$

激励方程组:

$$T_0 = A$$

$$T_1 = AQ_0$$

将激励方程组代入T触发器 的特性方程得状态方程组

$$Q^{n+1} = T \oplus Q^n = TQ^n + \overline{T}Q^n$$

$$Q_0^{n+1} = A \oplus Q_0^n$$

$$Q_1^{n+1} = (AQ_0^n) \oplus Q_1^n$$

$Q_0^{n+1} = A \oplus Q_0^n$

$$Y = A Q_1 Q_0$$

$$Q_1^{n+1} = (AQ_0^n) \oplus Q_1^n$$

$Q_1^nQ_0^n$	$Q_1^{n+1}Q_0^{n-1}$	⁺¹ / Y
	A=0	A=1
0 0	00/0	01/0
0 1	01/0	10/0
10	10/0	11/0
11	11/0	00/1

状态转换真值表

Q_1^n	Q_0^n	A	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

(4) 画出状态图,找出闭合回路

$Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1}/Y$	
21 20	A=0	A=1
0 0	00/0	01/0
0 1	01/0	10/0
10	10/0	11/0
11	11/0	00/1

(5) 画出时序图

$Q_1^n Q_0^n$	$Q_1^{n+1}Q_0^{n+1}/Y$		
21 20	A=0	A=1	
0 0	00/0	01/0	
0 1	01/0	10/0	
10	10/0	11/0	
11	11/0	00/1	

观察状态图和时序图可知,电路是一个由信号A控制的可控二进制计数器。当A=0时停止计数,电路状态保持不变;当A=1时,在CP上升沿到来后电路状态值加1,一旦计数到11状态,Y输出1,且电路状态将在下一个CP上升沿回到00。输出信号Y的下降沿可用于触发进位操作,模4加一计数器。

例2 试分析如图所示时序电路的逻辑功能。

解: 1.了解电路组成。

电路是由两个JK触发器组成的莫尔型同步时序电路。

2. 写出下列各逻辑方程式:

激励方程

$$J_1 = K_1 = 1$$

$$J_2 = K_2 = X \oplus Q_1$$

输出方程

$$Y=Q_2Q_1$$

状态转换真值表

Q_2^n	Q_1^n	X	Q_2^{n+1}	Q_1^{n+1}	Y
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

将激励方程代入JK触发器的特性方程得状态方程

$$Q_2^{n+1} = X \oplus Q_1^n \oplus Q_2^n$$

3.列出其状态转换表,画出状态转换图和波形图

$$Q_1^{n+1} = \overline{Q_1^n}$$

$$Q_1^{n+1} = Q_1^n \qquad Q_2^{n+1} = X \oplus Q_1^n \oplus Q_2^n$$

$$Y=Q_2Q_1$$

状态转换表

$\mathbf{Q}_2^{n+1}\mathbf{Q}_1^{n+1} / Y$		
X=0	X=1	
0 1/0	1 1/0	
1 0/0	0 0/0	
1 1/0	0 1/0	
0 0 / 1	1 0/1	
	X=0 0 1/0 1 0/0 1 1/0	

状态转换真值表

					-
Q_2^{i}	Q_1^n	X	Q_2^{n+1}	Q_1^{n+1}	Y
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

$\mathbf{Q}_2^n \mathbf{Q}_1^n$	$\mathbf{Q}_2^{n+1}\mathbf{Q}_1^{n+1}/Y$		
$\mathbf{Q}_{2}\mathbf{Q}_{1}$	X=0	X=1	
0 0 =	0 1/0	1 1/0	
0.1	1 0/0	0 0/0	
10	1 1/0	0 1/0	
1.1	0 0 / 1	1 0/1	

状态图

根据状态转换表, 画出波形图。

状态转换图

电路进行减1计数。

4. 确定电路的逻辑功能.

电路功能: 模4可逆计数器

Y可理解为进位或借位端。

例3 分析下图所示的同步时序电路。

1. 根据电路列出逻辑方程组:

输出方程组 激励方程组 $D_0 = \overline{Q}_1^n \overline{Q}_0^n$ $Z_0 = Q_0$ $Z_1 = Q_1$ $Z_2 = Q_2$ $D_1 = Q_1^n$ $D_2 = Q_1^n$

Z0算输入还是输出? 由于Q0是输出, 所以Z0只能是输出!

目标是状态转换表

将激励方程代入D触发器的特性方程得状态方程

$$Q^{n+1} = D$$

状态表

得状态方程

$$Q_0^{n+1} = D_0 = \overline{Q}_1^n \overline{Q}_0^n$$
 $Q_1^{n+1} = D_1 = Q_0^n$
 $Q_2^{n+1} = D_2 = Q_1^n$

2.列出其状态表

$Q_2^n Q_1^{n1} Q_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$
0 0 0	001
001	010
010	100
011	110
100	001
101	010
110	100
111	110

3. 画出状态图

状态表

4	
$Q_2^n Q_1^{n1} Q_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$
000	001
001	010
010	100
011	110
100	001
101	010
110	100
111	110
111	110

3. 画出状态图

状态表

$Q_2^n Q_1^{n1} Q_0^n$	$Q_2^{n+1}Q_1^{n+1}Q_0^{n+1}$
000	0 0 1
001	010
010	100
011	110
100	001
101	010
110	100
111	110

该电路具有自启动能力,就是从任何一个状态出发,经过若干个脉冲后,都能进入有效循环圈里去。就是具有自启动能力。

有效循环圈:如果该电路送入了1000个脉冲,你会发现至少有998个脉冲,电路状态是在闭合循环圈里运行,这个闭合循环圈就是有效循环圈。

5、逻辑功能分析(找闭合回路)

由状态图可见,电路的有效状态是三位循环码。 从时序图可看出,电路正常工作时,各触发器的Q端轮流出现一个宽度为一个CP周期脉冲信号,循环周期为 $3T_{CP}$ 。电路的功能为脉冲分配器或节拍脉冲产生器。

6.1.2 时序逻辑电路功能的表达

1. 分析下面电路的逻辑功能

目标是状态转换表

状态转换真值表

6.1.2 时序逻辑电路功能的表达

1. 分析下面电路的逻辑功能

输出方程

$$X = \overline{Q}_1 Q_0$$

$$Y = (Q_0 + Q_1) \overline{A}$$

激励方程组

$$D_0 = (Q_0 + Q_1)A$$

$$D_1 = \overline{Q_0}A$$

状态方程组

$$Q^{n+1} = D$$

$$Q_0^{n+1} = (Q_0^n + Q_1^n)A$$

$$Q_1^{n+1} = \overline{Q_0^n}A$$

2. 根据方程组列出状态转换真值表

输出方程

$$X = \overline{Q}_1 Q_0$$

$$Y = (Q_0 + Q_1) \overline{A}$$

状态方程组

$$Q_1^{n+1} = \overline{Q_0^n} A$$

$$Q_0^{n+1} = (Q_0^n + Q_1^n) A$$

状态转换真值表

Q_1^n	Q_0^n	A	Q_1^{n+1}	Q_0^{n+1}	X	Y
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	1	1
0	1	1	0	1	1	0
1	0	0	0	0	0	1
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	1	0	1	0	0