This listing of claims will replace all prior versions, and listings, of claims in the

application:

In the Claims:

(CURRENTLY AMENDED) A composition comprising a pharmaceutically acceptable formulation of formula 1

$$R_{5}$$
 R_{6}
 R_{7}
 R_{7}
 R_{7}

Formula 1

wherein R₂ to R₂, and Y₄ R₃ is C₁-C₁₀ alkyl; R₄ to R₇ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -SO₂T, -CO₂T, -OH, -(CH₂)_aSO₂T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -(CHa),CONH(CHa),SOaT, -(CHa),NHCO(CHa),SOaT, -(CHa),NHCONH(CHa),SOaT, -(CH2)aNHCSNH(CH2)hSO3T, -(CH2)aOCONH(CH2)hSO3T, -(CH2)aPO3HT, -(CH2)aPO3T2, -(CHo)aOPOaHT, -(CHo)aOPOaTo, -(CHo)aNHPOaHT, -(CHo)aNHPOaTo, -(CHo)aCOo(CHo)aPOaHT, -(CH₂)_aCO₂(CH₂)_bPO₃T₂, -(CH₂)_aOCO(CH₂)_bPO₃HT, -(CH₂)_aOCO(CH₂)_bPO₃T₂, -(CHa)aCONH(CHa)hPOaHT. -(CHa)aCONH(CHa)hPOaTo. -(CHa)aNHCO(CHa)hPOaHT. -(CH₂)_aNHCO(CH₂)_bPO₃T₂, -(CH₂)_aNHCONH(CH₂)_bPO₃T₇, -(CH₂)_aNHCONH(CH₂)_bPO₃T₂, -(CH₀)₀NHCSNH(CH₀)₀PO₂HT, -(CH₀)₀NHCSNH(CH₀)₀PO₂T₀, -(CH₀)₀OCONH(CH₀)₀PO₂HT. [[and]] -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -CH₂(CH₂-O-CH₂)_a-CH₂-OH, -(CH₂)_d-CO₂T, -CH₂-(CH₂-O-CH₂)_e-CH₂-CO₂T, -(CH₂)_rNH₂, -CH₂-(CH₂-O-CH₂)_e-CH₂-NH₂, -(CH₂)_h-N(R_a)-(CH₂)_i-CO₂T, and -(CH₂)₁-N(R_b)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T; Y₁ is independently selected from the group consisting of C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, C1-C10 aminoalkyl, hydrophilic peptides, arylpolysulfonates, C1-C10 aryl, -(CH₂)₃SO₃T, -(CH₂)₃OSO₃T, -(CH₂)₃NHSO₃T, -(CH₂)₃CO₂(CH₂)₅SO₃T, -(CH₂)₃OCO(CH₂)₅SO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCO(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH2)aNHCSNH(CH2)bSO3T, -(CH2)aOCONH(CH2)bSO3T, -(CH2)aPO3HT, -(CH2)aPO3T2, -(CH₂)₃OPO₃HT, -(CH₂)₃OPO₃T₂, -(CH₂)₃NHPO₃HT, -(CH₂)₃NHPO₃T₂, -(CH₂)₃CO₂(CH₂)₃PO₃HT, -(CH₂)₂CO₂(CH₂)₃PO₃T₂, -(CH₂)₂OCO(CH₂)₃PO₃HT, -(CH₂)₂OCO(CH₂)₃PO₃T₂,

-(CH₂)_CONH(CH₃)_PO₃HT, -(CH₃)_CONH(CH₃)_PO₃Tz, -(CH₃)_NHCO(CH₃)_PO₃HT, (CH₃)_NHCO(CH₃)_PO₃Tz, -(CH₃)_NHCONH(CH₃)_PO₃TT, -(CH₃)_NHCONH(CH₃)_PO₃Tz,
-(CH₃)_NHCSNH(CH₃)_PO₃Tz, -(CH₃)_NHCSNH(CH₃)_PO₃Tz, -(CH₃)_CONH(CH₃)_PO₃TT,
-(CH₃)_COONH(CH₃)_PO₃Tz, -CH₃(CH₃-O-CH₃)_CH₃-CH₃-CO₃T, -(CH₃)_CO₃T, -(CH₃)_CO₃T,
-(CH₃)_NH₃-(CH₃)_CH₃-(CH₃)_CH₃-(CH₃)_CH₃-(CH₃)_CO₃T,
-(CH₃)_NH₃-(CH₃)_CH₃-(CH

- 2. (CURRENTLY AMENDED) The composition of claim 1 wherein R₀-to-R₂, and ¥₁, <u>B₁ to B₇, are independently selected from the group consisting of +H, C1-C5 alkoxyl, C1-C5 polyalkoxyalkyl, C1-C10 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, mono- and disaccharden, nitro, hydrophillic peptides, arylpolysulfonates, C1-C5 alkyl, C1-C10 aryl, -SO₃T, -CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aSO₃T, -(CH₂)_aSO₃T, -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aCO(C(H₂)_bSO₃T, -CH₂(CH₂-C-CH₂)_a-CH₂-C</u>
- 3. (CURRENTLY AMENDED) The composition of claim [[2]] 1 wherein R3 is C1 alkyl; each [[R3,]] of R4, R5, R6 and R7 is H[[,]]; R5+6-SO₂T, Y1 is +(CH₂)₂SO₂T -CH₂-(CH₂-O-CH₂)₃-CH₂-CO₂T; W1 is -C(CH₃)₅: e is 1; and T is a negative charge.

(PREVIUOSLY PRESENTED)
 A method for performing a diagnostic procedure which comprises administering to an individual an effective amount of a composition comprising formula

$$R_6$$
 R_7
 N_1
 N_1
 N_2
 N_3
 N_4
 N_4
 N_5

Formula 1

wherein R₃ to R₇, and Y₁ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C6-C10 alkyl, C1-C10 aryl, -SO₂T, -CO₂T, -OH, -(CH₂)₂SO₂T, -(CH₂)₂OSO₂T, -(CH₂)₃NHSO₂T. -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCO(CH₂)_bSO₂T, -(CH₂)_aNHCONH(CH₂)_bSO₂T, -(CH₂)_aNHCSNH(CH₂)_bSO₂T. -(CH₂)_aOCONH(CH₂)_bSO₃T, -(CH₂)_aPO₃HT, -(CH₂)_aPO₃T₂, -(CH₂)_aOPO₃HT, -(CH₂)_aOPO₃T₂, -(CHa)aNHPOaHT, -(CHa)aNHPOaTa, -(CHa)aCOa(CHa)aPOaHT, -(CHa)aCOa(CHa)aPOaTa, -(CH₂)₈OCO(CH₂)_bPO₃HT, -(CH₂)₈OCO(CH₂)_bPO₃T₂, -(CH₂)₈CONH(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃T₂, -(CH2)aNHCONH(CH2)bPO3HT, -(CH2)aNHCONH(CH2)bPO3T2, -(CH2)aNHCSNH(CH2)bPO3HT, -(CH₂)_aNHCSNH(CH₂)_bPO₃T₂, -(CH₂)_aOCONH(CH₂)_bPO₃HT, and -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -CHo(CHo-O-CHo)a-CHo-OH, -(CHo)a-COoT, -CHo-(CHo-O-CHo)a-CHo-COoT, -(CHo)a-NHo, -CHo-(CHo-O-CHo),-CHo-NHo, -(CHo),-N(Ra)-(CHo);-COoT, and -(CHo);-N(Rb)-CHo-(CHo-O-CHo),-CHo-CO₂T; W₁ is selected from the group consisting of -CR₂R₄, -O-, and -NR₆; a, b, d, f, h, i, and j independently vary from 1-10; c, e, g, and k independently vary from 1-100; Ra, Rb, Rc, and Rd are defined in the same manner as Y₁; T is either H or a negative charge.

5. (PREVIOUSLY PRESENTED)

The method for performing the diagnostic or therapeutic procedure of claim 4 which comprises administering to an individual an effective amount of the composition wherein R₃ to R₇, and Y₁ are independently selected from the group consisting of C1-C5 alkoxyl, C1-C5 polyalkoxyalkyl, C1-C10 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, mononid disaccharides, nitro, hydrophilic peptides, arylpolysulfonates, C1-C10 aryl, -SO₃T, -CO₂T, -OH₃, CSO₃T, -(CH₃)₃CO₃(

-(CH₂)₀CO(CH₂)₀SO₃T, -CH₂(CH₂-O CH₂)₀-CH₂-OH, -(CH₂)₀-CO₂T, -CH₂-(CH₂-O CH₂)₀-CH₂-CO₂T, -(CH₂)₀-NH₂-CO₂T, -(CH₂)₀-NH₂-CO₂T, -(CH₂)₀-NH₂-CO₂T, -(CH₂)₀-CO₂T, (N₁-Selected from the group consisting of -CR₂R₀, -O-, and -NR₀; a, b, d, f, h, l, and j independently vary from 1-5; c, e, g, and k independently vary from 1-20; R₃, R₆, R₇, R₈ and R₄ are defined in the same manner as Y₁, T is a negative charge.

- 6. (PREVIOUSLY PRESENTED) The method for performing the diagnostic or therapeutic procedure of claim 5 which comprises administering to an individual an effective amount of the composition wherein each R₃, R₄, R₆ and R₇ is H, R₅ is SO₃T, Y₁ is -(CH₂)₃SO₃T; W₁ is -C(CH₃)₂;
 T is a negative charge.
- 7. (ORIGINAL) The method of claim 4 wherein said procedure utilizes light of wavelength in the region of 350-1300 nm.
- (ORIGINAL) The method of claim 4 wherein said diagnostic procedure comprises monitoring a blood clearance profile by fluorescence wherein light of wavelength in the region of 350 to 1300 nm is utilized.
- (ORIGINAL) The method of claim 4 wherein said diagnostic procedure comprises monitoring a blood clearance profile by absorption wherein light of wavelength in the region of 350 to 1300 nm is utilized.
- (ORIGINAL) The method of claim 4 wherein said procedure is for physiological function monitoring.
- 11. (ORIGINAL) The method of claim 10 wherein the diagnostic procedure is for renal function monitoring.
- 12. (ORIGINAL) The method of claim 10 wherein the diagnostic procedure is for cardiac function monitoring.
- 13. (ORIGINAL) The method of claim 10 wherein the diagnostic procedure is for kidney function monitoring.
- 14. (ORIGINAL) The method of claim 10 wherein the diagnostic procedure is for determining organ perfusion in vivo.

15. (PREVIOUSLY PRESENTED) A composition comprising a pharmaceutically acceptable formulation of formula 1

$$R_6$$
 R_7
 N_1
 R_3

Formula 1

wherein R₃ to R₇, and Y₁ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C1-C10 alkyl, C1-C10 aryl, -SO₃T, -CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T. -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCO(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH₂)_aNHCSNH(CH₂)_bSO₃T, -(CH₀)₀OCONH(CH₀)₀SO₂T, -(CH₀)₀PO₃HT, -(CH₀)₀PO₂T₀, -(CH₀)₀OPO₃HT, -(CH₀)₀OPO₃T₀, -(CH₂)_aNHPO₃HT, -(CH₂)_aNHPO₃T₂, -(CH₂)_aCO₂(CH₂)_bPO₃HT, -(CH₂)_aCO₂(CH₂)_bPO₃T₂, -(CH₂)_aOCO(CH₂)_bPO₃HT, -(CH₂)_aOCO(CH₂)_bPO₃T₂, -(CH₂)_aCONH(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃T₂, -(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCSNH(CH₂)_bPO₃HT, -(CH₂)_aNHCSNH(CH₂)_bPO₃T₂, -(CH₂)_aOCONH(CH₂)_bPO₃HT, and -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -CHo(CHo-O-CHo),-CHo-OH, -(CHo),-COoT, -CHo-(CHo-O-CHo),-CHo-COoT, -(CHo),-NHo, -CHo-(CH₂-O-CH₂)_n-CH₂-NH₂, -(CH₂)_n-N(R_n)-(CH₂)_i-CO₂T, and -(CH₂)_i-N(R_n)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T: W₁ is selected from the group consisting of -CR₂R₄, -O₋, -NR₂, and -S₋; a, b, d, f, h, i, and i independently vary from 1-10; c, e, g, and k independently vary from 1-100; Ra, Rb, Re, and Rd are defined in the same manner as Y₁: T is either H or a negative charge; with the proviso that when W₁ is -S-, R₃-R₇ are not -H or C1-C10 alkyl; and Y₁ is not -H.

16. (PREVIOUSLY PRESENTED) A method for performing a diagnostic procedure which comprises administering to an individual an effective amount of formula 1

$$R_6$$
 N_1
 R_7
 N_1
 N_1
 N_1

Formula 1

wherein R₃ to R₇, and Y₁ are independently selected from the group consisting of -H, C1-C10 alkoxyl, C1-C10 polyalkoxyalkyl, C1-C20 polyhydroxyalkyl, C5-C20 polyhydroxyaryl, saccharides, amino, C1-C10 aminoalkyl, cyano, nitro, halogen, hydrophilic peptides, arylpolysulfonates, C6-C10 alkyl, C1-C10 aryl, -SO₃T, -CO₂T, -OH, -(CH₂)_aSO₃T, -(CH₂)_aOSO₃T, -(CH₂)_aNHSO₃T. -(CH₂)_aCO₂(CH₂)_bSO₃T, -(CH₂)_aOCO(CH₂)_bSO₃T, -(CH₂)_aCONH(CH₂)_bSO₃T, -(CH₂)_aNHCO(CH₂)_bSO₃T, -(CH₂)_aNHCONH(CH₂)_bSO₃T, -(CH₂)_aNHCSNH(CH₂)_bSO₃T, -(CH₀)₀OCONH(CH₀)₀SO₂T, -(CH₀)₀PO₃HT, -(CH₀)₀PO₂T₀, -(CH₀)₀OPO₃HT, -(CH₀)₀OPO₃T₀, -(CH₂)_aNHPO₃HT, -(CH₂)_aNHPO₃T₂, -(CH₂)_aCO₂(CH₂)_bPO₃HT, -(CH₂)_aCO₂(CH₂)_bPO₃T₂, -(CH₂)_aOCO(CH₂)_bPO₃HT, -(CH₂)_aOCO(CH₂)_bPO₃T₂, -(CH₂)_aCONH(CH₂)_bPO₃HT, -(CH₂)_aCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCO(CH₂)_bPO₃HT, -(CH₂)_aNHCO(CH₂)_bPO₃T₂, -(CH₂)_aNHCONH(CH₂)_bPO₃HT, -(CH₂)_aNHCONH(CH₂)_bPO₃T₂, -(CH₂)_aNHCSNH(CH₂)_bPO₃HT, -(CH₂)_aNHCSNH(CH₂)_bPO₃T₂, -(CH₂)_aOCONH(CH₂)_bPO₃HT, and -(CH₂)_aOCONH(CH₂)_bPO₃T₂, -CHo(CHo-O-CHo),-CHo-OH, -(CHo),-COoT, -CHo-(CHo-O-CHo),-CHo-COoT, -(CHo),-NHo, -CHo-(CH₂-O-CH₂)_n-CH₂-NH₂, -(CH₂)_n-N(R_n)-(CH₂)_i-CO₂T, and -(CH₂)_i-N(R_n)-CH₂-(CH₂-O-CH₂)_k-CH₂-CO₂T: W₁ is selected from the group consisting of -CR₂R₄, -O₋, -NR₂, and -S₋; a, b, d, f, h, i, and i independently vary from 1-10; c, e, g, and k independently vary from 1-100; Ra, Rb, Re, and Rd are defined in the same manner as Y₁: T is either H or a negative charge; with the proviso that when W₁ is -S-, R₃-R₇ are not -H or C1-C10 alkyl; and Y₁ is not -H.