

## E(rasmus) Mundus on Innovative Microwave Electronics and Optics Master



## **Exam:** Basics of active and nonlinear electronics (SEM Mixer)

January 8, 2020

The following nonlinear device NL is used to design a SEM up-converter where the LO voltage signal  $V_1$  is applied to the input while the IF voltage signal  $V_2$  is applied to the output so that the output current  $I_{\text{OUT}}$  is generated with all its frequency components.



The nonlinear operation of this device (NL) is expressed by the following equation that gives the output current  $I_{OUT}$  as a function of input and output control voltages  $V_1$  and  $V_2$ :

$$lout = p V_1^3 - q V_2 + r V_1 V_2$$
 (eq1) where p, q and r are constants

The SEM cold-FET mixer is shown below and the main frequencies are  $f_{LO}$  = 9 GHz and  $f_{IF}$  = 0.5 GHz



The two control voltages  $V_1$  and  $V_2$  are:

- LO voltage:  $V_1 = V_{LO} \cos(\omega_{LO}t)$  (eq2)
- o IF voltage:  $V_2 = V_{IF} \cos(\omega_{IF} t)$  (eq3)
- 1) Using equations 1 to 3, express the output current  $I_{OUT}$  as a function of signal magnitudes ( $V_{LO}$ ,  $V_{IF}$ ), nonlinearity constants (p, q, r) and mixing frequencies. The following notations can be used for mixing frequencies:  $\omega_{RF} = (\omega_{LO} + \omega_{IF})$ ;  $\omega_{IM} = (\omega_{LO} \omega_{IF})$
- 2) The high-pass filter is designed to reject frequencies lower than 5GHz while the low-pass frequency is designed to cut frequencies greater than 5GHz. Therefore, what are the mixing frequencies at the RF output port?
- 3) Determine the expression of the voltage conversion gain  $G_{\text{CV}}$ .
- 4) If the LO port is assumed to be matched to RLO,
  - a) express the LO-to-RF isolation in dB
  - b) what is the LO-to-IF isolation?
  - c) express the equivalent impedance Z<sub>IN</sub> seen by the IF generator @  $\omega_{\text{IF}}$  at the IF input port
  - d) express the required value of R<sub>IF</sub> to match the IF input port?