Dimensionality Reduction

Steve Avsec

Illinois Institute of Technology

April 22, 2024

Overview

1 Locality-Sensitive Hashing

2 Differential Privacy

A "distance" function has to have the following properties:

• $d(x, y) \ge 0$.

A "distance" function has to have the following properties:

- $d(x, y) \ge 0$.
- $d(x,y) = 0 \Leftrightarrow x = y$.

A "distance" function has to have the following properties:

- $d(x, y) \ge 0$.
- $d(x,y) = 0 \Leftrightarrow x = y$.
- d(x, y) = d(y, x).

A "distance" function has to have the following properties:

- $d(x, y) \ge 0$.
- $d(x, y) = 0 \Leftrightarrow x = y$.
- d(x, y) = d(y, x).
- $d(x,z) \le d(x,y) + d(y,z)$.

• Jaccard distance on sets:

$$d(A,B)=1-\frac{|A\cap B|}{|A\cup B|}$$

Jaccard distance on sets:

$$d(A,B)=1-\frac{|A\cap B|}{|A\cup B|}$$

Hamming distance on vectors:

$$d(\mathbf{x},\mathbf{y}) = |\{j : x_j \neq y_j\}|$$

Jaccard distance on sets:

$$d(A,B)=1-\frac{|A\cap B|}{|A\cup B|}$$

Hamming distance on vectors:

$$d(\mathbf{x},\mathbf{y})=|\{j:x_j\neq y_j\}|$$

Euclidean distance:

$$d(\mathbf{x},\mathbf{y}) = \sum_{j=1}^{N} |x_j - y_j|^2$$

Jaccard distance on sets:

$$d(A,B)=1-\frac{|A\cap B|}{|A\cup B|}$$

Hamming distance on vectors:

$$d(\mathbf{x},\mathbf{y})=|\{j:x_j\neq y_j\}|$$

Euclidean distance:

$$d(\mathbf{x},\mathbf{y}) = \sum_{j=1}^{N} |x_j - y_j|^2$$

 Edit distance on strings (also equal to the longest common subsequence).

Locality-Sensitive Functions

A family of functions **F** is said to be (d_1, d_2, p_1, p_2) -sensitive with respect to some distance if for every function $f \in \mathbf{F}$

- $d(x, y) \le d_1$ implies that f(x) = f(y) with probability at least p_1 .
- $d(x, y) \ge d_2$ implies that f(x) = f(y) with probability at most p_2 .

Locality-Sensitive Functions

A family of functions **F** is said to be (d_1, d_2, p_1, p_2) -sensitive with respect to some distance if for every function $f \in \mathbf{F}$

- $d(x, y) \le d_1$ implies that f(x) = f(y) with probability at least p_1 .
- $d(x, y) \ge d_2$ implies that f(x) = f(y) with probability at most p_2 .

Example: Minhash and Jaccard distance is $(d_1, d_2, 1 - d_1, 1 - d_2)$ -sensitive for $0 \le d_1 < d_2 \le 1$.

Locality-Sensitive Functions

A family of functions **F** is said to be (d_1, d_2, p_1, p_2) -sensitive with respect to some distance if for every function $f \in \mathbf{F}$

- $d(x, y) \le d_1$ implies that f(x) = f(y) with probability at least p_1 .
- $d(x, y) \ge d_2$ implies that f(x) = f(y) with probability at most p_2 .

Example: Minhash and Jaccard distance is $(d_1, d_2, 1 - d_1, 1 - d_2)$ -sensitive for $0 \le d_1 < d_2 \le 1$.

For Hamming distance, the coordinate functions $f_i(\mathbf{x}) = x_i$ are $(d_1, d_2, 1 - \frac{d_1}{N}, 1 - \frac{d_2}{N})$ -sensitive since the probability of agreement for a single f_i is exactly $1 - \frac{d(x,y)}{N}$.

Definition

A randomized algorithm \mathcal{A} which takes a database as input is said to provide (ε, δ) -differential privacy if for datasets D_1 and D_2 that differ on a single element and all subsets $S \subseteq range(\mathcal{A})$:

$$P(A(D_1) \in S) \leq e^{\varepsilon} P(A(D_2) \in S) + \delta$$

Big Idea

Using distances like the Hamming distance and other distances that are similar plus some ideas from locality-sensitive hashing, one can create queries that compute

- Sums
- Counts
- Averages
- Mins and maxes

that provide differential privacy.

