

planetmath.org

Math for the people, by the people.

conditional independence

Canonical name ConditionalIndependence

Date of creation 2013-03-22 16:25:09 Last modified on 2013-03-22 16:25:09

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 4

Author CWoo (3771) Entry type Definition Classification msc 60A05

Defines conditionally independent

Let (Ω, \mathcal{F}, P) be a probability space.

Conditional Independence Given an Event

Given an event $C \in \mathcal{F}$:

1. Two events A and B in \mathcal{F} are said to be *conditionally independent* given C if we have the following equality of conditional probabilities:

$$P(A \cap B|C) = P(A|C)P(B|C).$$

- 2. Two sub sigma algebras \mathcal{F}_1 , \mathcal{F}_2 of \mathcal{F} are conditionally independent given C if any two events $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$ are conditionally independent given C.
- 3. Two real random variables $X, Y : \Omega \to \mathbb{R}$ are conditionally independent given event C if \mathcal{F}_X and \mathcal{F}_Y , the sub http://planetmath.org/MathcalFMeasurableFunctio algebras generated by X and Y are conditionally independent given C.

Conditional Independence Given a Sigma Algebra

Given a sub sigma algebra \mathcal{G} of \mathcal{F} :

1. Two events A and B in \mathcal{F} are said to be *conditionally independent given* \mathcal{G} if we have the following equality of http://planetmath.org/ProbabilityConditioningOrprobabilities (as random variables):

$$P(A \cap B|\mathcal{G}) = P(A|\mathcal{G})P(B|\mathcal{G}).$$

- 2. Two sub sigma algebras \mathcal{F}_1 , \mathcal{F}_2 of \mathcal{F} are conditionally independent given \mathcal{G} if any two events $A \in \mathcal{F}_1$ and $B \in \mathcal{F}_2$ are conditionally independent given \mathcal{G} .
- 3. Two real random variables $X, Y : \Omega \to \mathbb{R}$ are conditionally independent given event \mathcal{G} if \mathcal{F}_X and \mathcal{F}_Y , the sub sigma algebras generated by X and Y are conditionally independent given \mathcal{G} .
- 4. Finally, we can define conditional idependence given a random variable, say $Z: \Omega \to \mathbb{R}$ in each of the above three items by setting $\mathcal{G} = \mathcal{F}_Z$.