Sistemas de Gerenciamento de Versão

Thiago Rafael Becker

Dezembro de 2001

Resumo

Introdução

Os sistemas de gerenciamento de versão (source control management, SCM) são ferramentas largamente utilizadas em desenvolvimento de software e operações para controlar as mudanças em código fonte e configurações do sistema.

Estrutura e operação dos SCM

Um SCM gerencia estados de objetos. O conteúdo destes objetos é uma sequancia de dados pertencentes ao alfabeto $\Sigma_{\perp} = \Sigma \cup \bot$. Todos os estados de um objeto são definidos pelo conjuto gerado pelo fecho de Kleene sobre o alfabeto Σ_{\perp} , $\Sigma_{\perp}^{\star} = \langle \Sigma_{\perp}, \circ, \varepsilon \rangle$. \bot é um elemento especial que indica indefinição das funções parciais sobre o conjunto Σ_{\perp}^{\star} .

Além de dados, um SCM gerencia metadados, como nomes apontados para objetos. A modificação de metadados não modifica o conteúdo de um estado, apenas o objeto para o qual o metadado aponta.

O conjunto de estados, transições e metadados são conhecidas como repositório.

O processo normal de uso de um SCM genérico envolve algumas operações básicas:

- commit: a partir das modificações feitas pelo usuário e do estado apontado pelo metadado HEAD, cria um novo estado e move o metadado HEAD para o novo estado. Pode também mover outros metadados para o novo objeto. Sem modificações, esta operação se comporta como NOP.
- branch nome estado: cria um novo metadado nome apontando para estado, movendo o metadado
 HEAD para estado. Essencialmente, esta operação cria uma linha de desnvolvimento paralela a linha de
 desenvolvimento de origem. Novos commitnesta linha de desenvolvimento são aplicados independentes
 da linha original.
- merge estado-base estado-branch: para que esta operação tenha efeito, uma operação de branch deve ter ocorrido anteriormente a partir de ancestral-comum, e commits devem ter sido feitos neste branch. A operação de merge cira um novo estado a partir de estado-base aplicando as modificações de diff:ancestral-comum-estado-branch. Esta operação pode gerar um conflito (indefinição) que deve ser resolvido manualmente pelo usuário.
- tag nome estado: Esta operação cria um metadado nome apontando para estado. É muitas vezes semelhante à operação branch, e em alguns SCM ambas são a mesma operação. Uma tagespecial é a tagHEAD, que aponta o estado cujo objeto está recebendo modificações.

Adição e remoção de caracteres

Dois funcionais são definidos sobre Σ_{\perp}^{\star} : adição de caracter e remoção de caracter. A adição de caracter

$$\bigoplus_{k}^{c} : \Sigma_{\perp}^{\star} \to \Sigma_{\perp}^{\star}, \bigoplus_{k}^{c}(\bot) = \bot \tag{1}$$

insere o caracter c na posição k, e desloca todos os caracteres a direita de k uma posição à direita. A remoção de caractere

$$\Theta_k^c : \Sigma_{\perp}^{\star} \to \Sigma_{\perp}^{\star}, \Theta_k^c(\bot) = \bot \tag{2}$$

remove o caracter c da posição k, e move todos os caracteres à sua direita uma poisção para a esquerda. Além disso, a identidade $id: \Sigma_{\perp}^{\star} \to \Sigma_{\perp}^{\star}$ é definida.

As funções geradas pelos funcionais $\bigoplus_k^c \in \bigoplus_k^c (\{ger \bigoplus_k^c\}, \{ger \bigoplus_k^c\})$ formam um grupo de transformação $T_{\Sigma_{\perp}^{\star}} = \langle \{ger \bigoplus_k^c\} \cup \{ger \bigoplus_k^c\}, \circ, id \rangle$. Para provarmos as propriedades do grupo, definimos o mapeamento $\Sigma_{\perp}^{\star} \to \mathbb{N} \cup \{\bot\}$

$$\Gamma = \{ \bot_{\Sigma_{\perp}} \mapsto \bot_{\mathbb{N} \cup \bot}, \varepsilon_{\Sigma_{\perp}} \mapsto 0_{\mathbb{N} \cup \bot}, c_{\Sigma} \mapsto n_{\mathbb{N}} \}$$
(3)

tal que o mapeamento é uma bijeção. O mapeamento das operações \oplus_k^c é

$$\Gamma(\bigoplus_{k}^{c}(\sigma)) = \Gamma(\sigma)p_{k}^{\Gamma(c)}, p_{k} \in \mathbb{P}$$
(4)

 $e \ominus_k^c \acute{e}$

$$\Gamma(\ominus_k^c(\sigma)) = \Gamma(\sigma) p_k^{-\Gamma(c)}, p_k \in \mathbb{P}, \tag{5}$$

e caso exista n>0 tal que $\Gamma(\ominus_k^c(\sigma))p_k^{-n}\in\mathbb{N}$, então $\ominus_k^c(\sigma)=\bot$. Além disso, se $\Gamma(\ominus_k^c(\sigma))\notin\mathbb{N}$, então $\ominus_k^c(\sigma)=\bot$.

O mapeamento de $\Gamma(\sigma)$, $\sigma \in \Sigma_{\perp}^{\star}$ é tal que

$$\Gamma(\sigma) = \prod_{i>1} p_i^{\Gamma(\sigma_i)}, p_i \in \mathbb{P}, \sigma_i \in \Sigma_{\perp}^{\star}$$
(6)

Com isso é possível verificar que $\Gamma(\oplus_k^c)$ e $\Gamma(\ominus_k^c)$ formam um grupo de transformação sobre $\mathbb{N} \cup \{\bot\}$, provando a existencia de $T_{\Sigma_1^*}$.

Representação como grafo

Existe um funtor F que permite representar a categoria livremente gerada de $T_{\Sigma_{\perp}^{\star}}$ como um grafo, tal que

$$F(\Sigma_{\perp}^{\star}) = \sigma_1, \sigma_1 \subset \Sigma_{\perp}^{\star} \tag{7}$$

$$F(\{ger \oplus_{k}^{c}\} \cup \{ger \ominus_{k}^{c}\} \cup \{id\}) = f : \sigma \to \sigma\prime, \sigma, \sigma\prime \in \Sigma_{\perp}^{\star}$$

$$\tag{8}$$

em que σ_1 é um conjunto unário. F constrói a estrutura do repositório, e é inversível. Para completar o conceito de um repositório, precisamos definir as operações executadas nele, que é o tema da próxima seção.

O grafo que representa um dado repositório é um subgrafo Repo do grafo direto reflexivo

$$\langle F\Sigma_{\perp}^{\star}, F(\{ger \oplus_{k}^{c}\} \cup \{ger \ominus_{k}^{c}\} \cup \{id\}) \rangle,$$

e é fácil verificar as propriedades compositiva e associativa das setas $F(\{ger \oplus_k^c\} \cup \{ger \ominus_k^c\} \cup \{id\})$. Desta forma, a categoria Repo

$$\langle F(\Sigma_{\perp}^{\star}), F(\{ger \oplus_{k}^{c}\} \cup \{ger \ominus_{k}^{c}\} \cup \{id\}), \delta_{0}, \delta_{1}, id, \circ \rangle$$

é a categoria livremente gerada pelo grafo Repo.

Operações sobre Repo

Na seção , definimos intuitivamente as operações *commit*, *branch*, *mergee tag*. Nesta seção, vamos definir estas operações como homofuntores sobre Repo.