

# CEREAL CHEMISTRY

Index 1924-1933, Inclusive

Volumes I-X



AMERICAN ASSOCIATION OF CEREAL CHEMISTS  
Box 161, BENJAMIN FRANKLIN STATION  
WASHINGTON, D. C.

1934

## **AMERICAN ASSOCIATION OF CEREAL CHEMISTS OFFICERS, 1934**

*President*, Mrs. Mary M. Brooke, Purity Bakeries Corporation, 844 Rush Street, Chicago, Ill.

*Vice-President*, Washington Platt, The Borden Company, N. Franklin Street, Syracuse, N. Y.

*Secretary-Treasurer*, M. D. Mize, 833 Omaha Grain Exchange, Omaha, Nebr.

*Additional Members of the Executive Committee*, H. D. Liggitt, The Hungarian Flour Mills, Denver, Colo., R. C. Sherwood, General Mills, Inc., 2010 East Hennepin Avenue, Minneapolis, Minn., and L. D. Whiting, Ballard & Ballard Co., Louisville, Ky.

---

### **INFORMATION FOR SUBSCRIBERS AND CONTRIBUTORS**

CEREAL CHEMISTRY is issued bi-monthly. Each volume will contain approximately 600 pages. Subscriptions are taken by the volume or by the year.

Fifty reprints without covers will be furnished without cost to authors of articles. Covers and additional reprints when desired may be had at the scheduled cost. A table showing cost, with an order slip, is sent with proof.

Manuscripts should be typewritten and carefully revised before submission and should be sent to CEREAL CHEMISTRY, Box 161, Benjamin Franklin Station, Washington, D. C.

Subscription Price: United States and Canada, \$5.00 a volume net, postpaid; all other countries, \$5.50 net, postpaid.

Claim for copies lost in the mails will not be allowed unless received within thirty days (domestic) of the date of issue; sixty days (foreign). Claimants must state that the publication was not delivered at their recorded address. Notice of change of address must be forwarded at least one week in advance of issue; otherwise publishers will not be responsible for loss.

## FOREWORD

In May, of this year, the Executive Committee of the Association authorized the compilation and printing of a general index to volumes I to X inclusive, of *CEREAL CHEMISTRY*. The present editorial staff was requested to arrange for the publication of such an index. This has been done.

The task of compiling the decennial index has not been an easy one. The multiplicity of subjects which have been presented and discussed in the first ten volumes of *CEREAL CHEMISTRY*, is truly amazing; so much so, that the preliminary estimates made with respect to the number of pages which would be necessary to print the compiled index have been far exceeded. As a result, even though every effort has been made to include under some heading or other the main subject matter contained in the ten volumes, certain subjects, when they are discussed by the various authors in only a general way, have not been catalogued. However, it is believed that no great sacrifice in the general utility of the index has been made by following such a procedure.

One, well versed in the subject of *CEREAL CHEMISTRY*, while paging through the index, remarked, "Those unacquainted with the general subject of cereal chemistry can easily and quickly acquire a reading knowledge of the subject by a judicious selection of the subject matter cited. To the research worker, mere reading of the subject index is provocative of innumerable investigational thoughts."

D. A. COLEMAN

Copyright, 1934  
By  
**THE AMERICAN ASSOCIATION OF  
CEREAL CHEMISTS**

# CEREAL CHEMISTRY

Volumes 1-10

1924-1933

## NAME INDEX

### A

- Abbott, Roscoe C.** See M. J. Blish, 4, 129  
**Adler, Howard and G. E. Barber.** Determination of the neutralizing value of monocalcium phosphate, 2, 380  
**Aitken, T. R.** Automatic proofing device for bread doughs, 7, 331  
**Alcock, W. W. and N. J. Ediger.** Influence of flour moisture on the Pekar test, 6, 410  
**Alexander, George L.** Calcium acid phosphate as an improver for soft wheat biscuit flour, 2, 270; effect of mixing time on standard cake baking test, 7, 374; definite mixing time compared to definite specific gravity for creaming sugar and shortening in cake tests, 8, 254; value of the viscosity test for determining some of the properties of cake and pastry flours, 9, 169; bleaching Michigan soft winter wheat cake flour by the Brabender electric bleacher, 10, 623  
**Alsberg, Carl L.** Starch in flour, 4, 485; see D. B. Dill, 1, 222; O. S. Rask, 1, 7; Book review; The chemistry of wheat flour (Bailey), 2, 398  
**Alsberg, Carl L. and E. P. Griffing.** Effect of fine grinding upon flour, 2, 325; the heat coagulation of gluten, 4, 411  
**Alsberg, Carl L. and O. S. Rask.** Gelatinization by heat of wheat and maize starch, 1, 107  
**Amos, A. J.** See D. W. Kent-Jones, 5, 45; C. W. Herd, 7, 251  
**Astelford, G. R.** See M. J. Blish, 9, 378

### B

- Bailey, Clyde H.** Report on collaborative ash determinations, 1, 189; what progress are we making as cereal chemists? 4, 275; statistical analysis of certain of the collaborative baking tests, 6, 216; metal models for the calibration of loaf volume measuring devices, 7, 346; new type fermentation cabinet, 7, 321; the standard experi-

mental baking test (committee report for 1930), 7, 348; the standard experimental baking test (committee report for 1931), 8, 63, 265; see R. A. Barackman, 4, 400; A. F. Bracken, 5, 128; W. E. Brownlee, 7, 487; A. Cairns, 5, 79; J. A. Dunn, 5, 395; C. G. Ferrari, 6, 218, 374, 457; 9, 491; C. C. Fifield, 6, 530; (Miss) Emily Grewe, 4, 230, 261; H. K. Hayes, 6, 85; Julius Hendel, 1, 320; A. H. Johnson, 1, 327; 2, 95; L. P. Karacsnyi, 7, 571; 8, 44; M. C. Markley, 8, 29, 300; 9, 591; 10, 521, 545; Aksel G. Olsen, 2, 68; J. W. Read, 10, 99; J. L. St. John, 6, 51, 140; R. C. Sherwood, 3, 107, 163; 5, 437; Oscar Skovholt, 8, 374; 9, 523; 10, 446; (Miss) E. L. Stephens, 5, 256; (Miss) K. A. Tissue, 8, 217; A. E. Treloar, 9, 121; H. O. Triebold, 9, 50, 91; Herbert Vogel, 4, 136; H. K. Wilson, 10, 619; Book reviews: Practical milling, (Dedrick), 1, 275; Romance of holes in bread, (Russel), 1, 276; Modern cereal chemistry, (Kent-Jones), 2, 52; Methods of analysis, A. O. A. C. second edition (revised), 2, 264; International trade in wheat and flour, (LeClerc), 2, 399; Processes of flour manufacture, (Amos), (revised) 3, 199; Modern cereal chemistry, (Kent-Jones), second edition (revised) 5, 78; Comprehensive survey of starch chemistry, (Walton), 5, 331; Enzyme actions and properties, (Waldschmidt-Leitz), 6, 152; Enzymatische technologie der garungsindustrien, (Hesse), 6, 372; Collection of papers on wheat flour and bread, (Snyder), 7, 192; Brotgetreide und Brot, (Newmann), with Barbara Bailey, third edition 7, 419; Die Theorie der praktischen Brot und Mehlbereitung, fifth edition, (Gunther et al) (revised), 8, 94; Colloid aspects of food, chemistry and technology, (Clayton), 9, 172; Outlines of biometric analysis, Part I, (Treloar), 10, 642

- Bailey, Clyde H. and E. G. Bayfield. Water imbibition of frosted wheat, 7, 108
- Bailey, Clyde H. and A. H. Johnson. Studies on wheat flour grades, IV; changes in hydrogen-ion concentration and electrolytic resistance of water extracts of natural and chlorine treated flour in storage, 1, 183; carbon dioxide diffusion rates of wheat flour doughs as a measure of fermentation period, 1, 293
- Bailey, Clyde H. and (Miss) Amy M. LeVesconte. Physical tests of flour quality with Chopin Extensimeter, 1, 38
- Bailey, Clyde H. and M. C. Markley. Correlations between commercial and laboratory milling tests, 10, 515; scoring crumb grain, 10, 545
- Bailey, Clyde H. and R. C. Sherwood. Relation of crude protein content of flour to loaf volume, 3, 393
- Bailey, Clyde H., C. C. Fifield and R. C. Sherwood. Comparison of the proposed A. A. C. C. baking test and the commercial loaf test, 5, 287
- Bailey, Lorin H. Methods of analysis (committee report for 1924), 1, 183; comments on proposed baking test, 4, 303; indicators for ammonia titrations, 6, 454; apparatus for measuring compressibility of baked products, 7, 340; methods of incorporating ingredients for standard cake baking test, 7, 383; incorporation of ingredients in cake batters, 8, 255; use of certain constituents in bread making with particular reference to the problem of staling, 9, 65; cake baking method for testing soft wheat flours, 9, 407; testing rye flours (committee report for 1933), 10, 468; cake baking method for testing soft wheat flours, 10, 627; see R. Hertwig, 1, 82; 2, 38
- Baker, John C., H. K. Parker, and F. B. Freese. Measurement of color in flour and bread by means of Maxwell discs, 10, 437
- Ball, Charles D. Jr. Study of wheat oil, 3, 19
- Barackman, Rufus A. Cake scoring methods, 7, 365; 8, 253; 9, 409; chemical leavening agents, their characteristics in doughs, 8, 423
- Barackman, Rufus A. and C. H. Bailey. Role of phosphates in bread making, 4, 400
- Barber, George E. See H. Adler, 2, 380
- Bartz, J. Paul. See H. J. Smith, 9, 393
- Bayfield, Edward G. Soft winter wheat improvement program for Ohio, 9, 322; whole wheat meal viscosity test for detecting certain types of poor milling wheat, 9, 473; viscosity test for soft winter wheat flours, 10, 494; see C. H. Bailey, 7, 108
- Bayfield, Edward G. and V. Shipley. Soft winter wheat studies. I. Suitability of the A. A. C. C. basic baking procedure for the determination of strength, 10, 140
- Bennion, Edmund B. Study of the aluerone cells of cereals, 1, 183; effect of germination on the aluerone layer, 1, 179
- Bergsteinnson, H. N. See W. F. Geddes, 10, 555
- Binnington, D. S. See W. F. Geddes, 5, 215
- Blish, Morris J. Cereal chemistry of today, 1, 1; the individuality of glutenin, 2, 127; the problem of standardizing the experimental baking test, 3, 216; a rational basis for the standardization of the experimental baking test, 4, 149; standardization of the experimental baking test (committee report for 1927), 4, 299; standard experimental baking test, 5, 158; standardization of the experimental baking test (committee report for 1928), 5, 277; reporting system for the standard experimental baking test; 5, 289; 6, 253; methods of analysis (committee report for 1929), 6, 423; gluten and non-gluten proteins, 7, 421; see P. P. Merritt, 8, 267; 9, 175; R. M. Sandstedt, 10, 359, 605
- Blish, Morris J. and B. D. Hites. Rapid and simple carbid method for estimating moisture in flour, 7, 99
- Blish, Morris J. and R. C. Hughes. Effects of varying sugar concentrations in bread dough on fermentation by-products and fermentation tolerance, 9, 331
- Blish, Morris J. and A. J. Pinckney. Identity of gluten proteins from various wheat flours, 1, 309
- Blish, Morris J. and R. M. Sandstedt. Glutenin—a simple method for its preparation and direct quantitative determination, 2, 57; viscosity studies with Nebraska wheat flours, 2, 191; an improved method for the preparation of wheat gliadin, 3, 144; factors affecting the interpretation of the experimental baking test, 4, 291; concerning the nature of the protein extracted from wheat flour by hot alcohol, 6, 494; improved method for the estimation of flour diastatic value, 10, 189
- Blish, Morris J., R. C. Abbott and H. Platenius. The quantitative estimation of glutenin in wheat flour, 4, 129

- Blish, Morris J., R. M. Sandstedt and G. R.** Astleford. Sugars, diastatic activity and gassing power in flour, 9, 378
- Blish, Morris J., R. M. Sandstedt and H. Platenius.** Correlation between diastatic power of flour and crust color in the test loaf and its significance, 6, 121
- Bohn, Ralph M.** See C. B. Morison 5, 295
- Bohn, Ralph T. and F. D. Machon.** A. A. C. C. standard baking test as applied to whole wheat flours, 10, 533
- Bohn, Ralph T. and R. J. Martz.** Rapid method for the colorimetric determination of hydrogen-ion concentration of crackers, 3, 183
- Bowen, J. W.** Method for quick ashing of flour, 9, 158
- Brabender, C. Willy.** The Farinograph for predicting the most suitable types of American export wheats and flours for mixing with European soft wheats and flours, 9, 617
- Bracken, A. F. and C. H. Bailey.** Effect of delayed harvesting on quality of wheat, 5, 128
- Brendel, G. L.** Oxygen-acetate method of ash determination in flour, 3, 222
- Briggs, Charles H.** Superior new wheat for western agriculture, 3, 343
- Brockington, S. F.** See R. K. Larmour, 8, 233; 10, 593, 599
- Brooke, Clinton, L.** Acidity method with special reference to the acidity limits imposed by the Greek government, 6, 521; Book review: Bestimmung der Wasserstoffionenkonzentration von Flüssigkeiten (Mislowitzer), 5, 486
- Brooke, Clinton L. and R. C. Sherwood.** How the experimental baking test has developed, 5, 366
- Brooke, (Mrs.) Mary M.** Methods of testing cake and biscuit flours (committee report for 1928), 5, 301; (committee report for 1929), 6, 312; (committee report for 1930), 7, 364; (committee report for 1931), 8, 252; (committee report for 1932), 9, 406; (committee report for 1933), 10, 622
- Brown, (Miss) Pearl.** Testing soft wheat flours for use in cookies, 9, 420
- Brownlee, W. Elliot and C. H. Bailey.** Proteolysis in bread doughs, 7, 487
- Bunzell, Herbert H. and (Miss) Marion Forbes.** Method for determining ropiness in bread, 7, 465
- Bunzell, Herbert H. and (Miss) Marjorie Kenyon.** On rope control, 9, 161
- C
- Cairns, Andrew and C. H. Bailey.** Study of the proteoclastic activity of flour, 5, 79
- Child (Miss) Alice M.** See (Miss) E. L.
- Stephens, 5, 256; (Miss) Emily Grewe, 7, 245**
- Child, (Miss) Alice M. and D. I. Purdy.** Method for a graphic record of texture, volume and contour of cakes, 3, 57
- Child, (Miss) Elizabeth.** See Jan Micka, 5, 208
- Chittick, J. Raymond and F. L. Dunlap.** Production of experimental test biscuits and their volume measurement, 2, 87
- Chittick, J. Raymond, F. L. Dunlap and G. D. Richards.** A. O. A. C. gasometric method for determining carbon dioxide in baking powder, 7, 473
- Chopin, Marcel.** Determination of baking value of wheat by measure of specific energy of deformation of dough, 4, 1
- Christie, Alfred.** See D. A. Coleman, 2, 391; 3, 84; 3, 188
- Clark, Rowland, J.** Bread troubles in the light of hydrogen-ion concentration, 1, 161; greetings to the A. A. C. C., 2, 261; address of the President, 3, 282; 4, 327; yeast testing, 6, 259; loaf volume as produced by different flours under prolonged fermentation, 6, 338
- Cline, (Miss) Jessie A.** See (Miss) E. M. Davis, 3, 411
- Coe, Mayne R. and J. A. LeClerc.** Photochemical action, a cause of rancidity, 9, 519
- Coleman, David A.** Methods of analysis, (committee report for 1926), 3, 254; (committee report for 1927), 4, 311; (committee report for 1928), 5, 269; moisture determinations in wheat with respect to quick methods, 8, 315; standard experimental baking test, (committee report for 1932), 9, 404; see Ray Weaver, 10, 612, 617; Book reviews: Methods of analysis of A. O. A. C., third edition, 9, 89; Mikrophotographischer atlas der zerealien, (Strilecius), 9, 639; Bulletin reviews: 9, 33, 64, 160, 330, 377, 448; 10, 98, 382
- Coleman, David A. and Alfred Christie.** Some observations on making ash determinations, 2, 391; rapid method for determining the gasoline color value of flour and wheat, 3, 84; gasoline color value of several classes of wheat, 3, 188
- Coleman, David A. and H. B. Dixon.** Rapid moisture testing oven for cereal chemistry laboratories, 3, 419
- Coleman, David A. and H. C. Fellows.** Hygroscopic moisture of cereal grains and flaxseed exposed to atmospheres of different relative humidities, 2, 275
- Coleman, David A., H. C. Fellows and H. B. Dixon.** Study of the methods for making protein tests on wheat, 2, 132

- Collatz, Ferdinand A.** Significance of acidity in flour with reference to flour specifications, 6, 515; foreign flour specifications, 7, 397; methods for analyzing chemical leavening agents, 10, 501; Book review: *Technologie der herstellung, teilung und formung des weizenteiges*, (Deutsch-Renner), 7, 98
- Collatz, Ferdinand A. and O. C. Racke.** Effects of diastase and malt extract in doughs, 2, 213
- Cook, William H. and J. G. Malloch.** Yeast testing, 7, 133; see J. G. Malloch, 7, 307
- Croze, (Miss) Alice B.** See C. G. Ferrari, 9, 491
- Cunningham, N. T.** Cooking cereal porridges, 8, 403
- Cutler, Garnet H. and W. W. Worzella.** Wheat-meal fermentation time test for estimating qualities of small plant bread samples, 10, 250
- D**
- Davidson, Jehiel.** Manganese in cereals and cereal mill products, 6, 128
- Davidson, Jehiel and J. H. Shollenberger.** Effect of sodium nitrate applied at different stages of growth of wheat on the baking quality of the flour, 3, 137
- Davis, Claude F.** Wheat protein test digestion studies, 7, 518; studies on the magnesium-acetate-alcohol quick ash procedure, 9, 431
- Davis, Claude F. and M. Wise.** Precipitation of mercury in the Kjeldahl method, 8, 349; a five-year summary of monthly check sample reports of the Pioneer section A. A. C. C., 10, 203; selenium as a Kjeldahl catalyst in the cereal laboratory, 10, 488
- Davis, (Misses) Eva M. and Jessie A. Cline.** Making light bread from Missouri soft wheat flour, 3, 411
- Dean, (Miss) M.** See (Miss) I. T. Noble, 10, 243
- de Jong, H. L. Bungenberg and W. J. Klaar.** Contribution to the knowledge of colloid-chemistry of gluten, 6, 373; 7, 222; 7, 587; 8, 439
- DeLeeuw, F. J. G.** See F. Visser't Hooft, 5, 851
- Denham, H. J. and G. W. Scott-Blair.** Rapid electrometric method for the measurement of the hydron concentration of flour-water suspensions, 3, 158; Correction, 3, 427; estimation of amino acids and proteolytic activity in wheat and flour, 4, 58; see G. W. Scott-Blair, 4, 63
- Denham, H. J., G. W. Scott-Blair, and G. Watts.** Notes on the use of Ostwald viscometers for flour suspensions, 4, 206
- Denham, H. J., G. Watts and G. W. Scott-Blair.** Note on the measurement of viscosity in flour suspensions, 5, 330
- Denton, (Misses) Minna C., Berliah Gordon and Ruth Sperry.** Tenderness in pastries made from flours of varying strengths, 10, 156
- DeVaney, (Miss) Grace M.** See (Miss) H. E. Munsell, 10, 287
- Dill, David B.** The composition of crude gluten, 2, 1
- Dill, David B. and C. L. Alsberg.** Some critical considerations of the gluten washing problem, 1, 222
- Dixon, Harry B.** See D. A. Coleman, 2, 132; 3, 419
- Dunlap, Frederick L.** The problem of test bakes with a discussion of certain of their chemical and physical aspects, 3, 201; some observations on nutrition, 9, 289; see J. R. Chittick, 2, 87; 7, 473
- Dunn, J. Avery.** Plasticity—its possibilities in cereal research, 3, 351; soft wheat flours for other than cake making, 7, 372; some observations on family flour, 8, 262; testing biscuit and cracker flour, 10, 628; Book review: *Bread baking* (Joffe), 4, 435; *Cereo*—Proceedings of the first international conference on flour and bread manufacture, 7, 193
- Dunn, J. Avery and C. H. Bailey.** Factors influencing checking in biscuits, 5, 395
- Duoens, Stener.** See C. G. Harrel, 10, 452
- Durham, Roy K.** Effect of hydrogen peroxide on relative viscosity measurements of wheat and flour suspensions, 2, 297; President's address, 9, 402; definition of moisture bases for laboratory reports, (committee report for 1933), 10, 465
- Dysterheft, George.** See E. P. Harding, 4, 47
- E**
- Earlenbaugh, Lawrence.** Effect of monocalcium phosphate upon the viscosity of flour in water suspensions, 3, 102
- Ediger, N. J.** See A. W. Alcock, 6, 410
- Egloff, Gustav.** Science as affecting industry, 10, 457
- Elion, E.** Simple volumetric method for measuring gas production during dough fermentation, 10, 245
- Elion, L.** Separation of diastatic activity from strength in baking tests, 9, 86
- Elmer, Roma.** See P. F. Sharp, 1, 83
- Engledow, F. L.** An aid in the determination of flour strength, 5, 1
- Epstein, Albert K. and B. R. Harris.** Detection of small amounts of naphthalene in flour, 3, 60

## F

- Fairbrother, Thomas H. Influence of environment on the moisture content of flour and wheat, 6, 379
- Fellows, Harold C. See D. A. Coleman, 2, 132, 275
- Fenton, Frederick C. and C. O. Swanson. Qualities of combined wheats as affected by type of bin, moisture and temperature conditions, 7, 428
- Ferrari, Charles G. Spectrophotometric determination of the carotinoid pigment content of wheat flour, 10, 277; Book reviews: Handbook for bakers (Gerhard), 3, 63; Treatise on baking (Wihlfart), 5, 162; Mehlchemischer Lehrkursus, second edition, (Schmorf), 8, 242
- Ferrari, Charles G. and C. H. Bailey. Carotinoid pigments of flour, 6, 218; determination of carotin in flour, 6, 347; effect of storage and of various bleaching agents on the carotin concentration of flour, 6, 457
- Ferrari, Charles G., (Miss) Alice B. Croze and C. H. Bailey. Mercury vapor lamp for accelerating the bleaching action of dibenzoyl peroxide, 9, 491
- Fifield, Colburn C. Mechanical method for determining water absorption of bread doughs, 10, 547; see C. H. Bailey, 5, 287
- Fifield, Colburn, C., and C. H. Bailey. March of acidity in stored flour, 6, 530
- Fifield, Colburn C. and Ray Weaver. Hand molding versus machine molding of bread doughs, 7, 358
- Fine, Morris S. Cereals and mineral metabolism, 7, 456. See Aksel Olsen, 1, 215
- Fisher, E. A. Research Association of British flour millers, 2, 165; study of the rate of drying of wheat flour, starch and gluten, 4, 184; see P. Halton, 5, 445; 6, 97; 9, 1, 34
- Fisher, E. A. and P. Halton. Study of "rope" in bread, 5, 192; relation of hydrogen-ion concentration and buffer value to the baking quality of flour, 6, 18, 97, 504; note on weight of a thousand kernels, 8, 418
- Fisher, V. E. Dough temperature and the standard cake making test, 7, 367
- Fitz, L. A. Formulae and method of procedure for experimental baking tests, 1, 251; (committee report for 1925), 2, 232; (committee report for 1926), 3, 252
- Flohil, John T. Methods of analysis, (committee report for 1930), 7, 380; (committee report for 1931), 8, 306; volumetric copper reduction method for sugar determinations, 10, 471;

Book reviews: Milling studies (Miller) 5, 234; Development of the flour-milling industry (Kuhlman), 6, 372; Analytical detection of the bleaching of wheat flour (Jørgensen), 6, 84

Forbes, (Miss) Marion. See H. H. Bunzell, 7, 465

Frank, E. N. Effect of metal in mixing bread doughs, 9, 636

Fraser, C. W. and William L. Haley. Factors influencing the rate of absorption of water by wheat, 9, 45

Frederiksen, Ditlew M. Book review: Wheat, (Swanson and Armstrong), 7, 311

Freeman, Monroe E. and R. A. Gortner. The gums of the cereal grains, 9, 506

Freese, F. B. See J. C. Baker, 10, 437

Freilich, Jacob. Molding tests with motor-driven laboratory dough sheeter, 10, 585

Frey, Charles N. See Quick Landis, 10, 330, 588

## G

Geddes, William F. Standardization of laboratory baking tests; (committee report for 1932), 10, 531; see R. K. Larmour, 10, 601; C. A. Winkler, 8, 455

Geddes, William F. and D. S. Binnington. Volume measuring device for small loaves, 5, 215

Geddes, William F. and C. H. Goulden. Peptization by inorganic salt solutions as a means of predicting loaf volume, 7, 527; utility of mechanical moulding in experimental baking, 8, 293

Geddes, William F. and R. K. Larmour. Some aspects of the bromate baking test, 10, 30

Geddes, William F. and L. D. Sibbitt. Variability in experimental baking. IV. Influence of mixing, sheeting rolls, pan shape and dough size, 10, 560

Geddes, William F. and C. A. Winkler. Utility of Tag-Heppenstall moisture meter for determining moisture in ground wheat, 8, 409

Geddes, William F., H. N. Bergsteinsson and S. T. Hadley. Variability in experimental baking. III. Influence of experimental milling in evaluating wheat strength, 10, 555

Gericke William F. Quality of bread from wheats supplied with nitrogen at different stages of growth, 4, 73; variation of protein quality in wheat grown in aqueous culture media, 10, 347

Gookins, Edward. Calculation of absorption to any moisture basis, 1, 305

Gordon, (Miss) Beulah. See (Miss) Minna C. Denton, 10, 156

- Gortner, Ross A.** Viscosity a measure of gluten quality, 1, 75; the hydration capacity of starch, 10, 298; see M. E. Freeman, 9, 506; W. F. Hoffman, 4, 221; T. A. Pascoe, 7, 195; P. F. Sharp, 1, 29; W. B. Sinclair, 10, 171. Book review: Introduction to agriculture biochemistry (Dutcher and Haley), 9, 171
- Gortner, Ross A., W. F. Hoffman and W. B. Sinclair.** Peptization of wheat flour proteins by inorganic salt solutions, 6, 1
- Gottschalk, Paul G.** See H. Kuehl, 6, 512
- Goulden, Cyril H.** Application of variance analysis to experiments in cereal chemistry, 9, 239; see W. F. Geddes, 7, 527; 8, 293
- Gray, Mathew A.** Address of President, 7, 416
- Greaves, J. E. and C. T. Hirst.** Phosphorus of grains, 6, 115
- Green, Jesse.** See A. H. Johnson, 7, 117; 8, 134
- Grewe, (Miss) Emily.** Effect of dry skim-milk on baking quality of various flours, 5, 242; volume displacement of salt-sugar solutions, 5, 470; effect of variation in ingredients on color of chocolate cake, 7, 59; moisture content of flour and heat of imbibition developed during the mixing of bread doughs, 8, 162; variations in weight of a given volume of different flours. I. Normal variations, 9, 311; II. The result of the use of different wheats, 9, 531; III. Causes for variations, 9, 628; see G. E. Holm, 7, 49; E. O. Whittier, 6, 153
- Grewe, (Miss) Emily and C. H. Bailey.** The concentration of glutenin and other proteins in various types of wheat flour, 4, 230; relation of hydrogen-ion concentration of dough to baking properties, 4, 261
- Grewe, (Misses) Emily and Alice M. Child.** Effect of acid potassium tartrate as an ingredient in angel cake, 7, 245
- Grewe, (Miss) Emily and G. E. Holm.** Effect of variation in the method of manufacture on the baking quality of dry skimmilk, 5, 461
- Grewe, (Miss) Emily, W. K. Marshall and C. G. Harrel.** Method of measuring color in bread, 6, 60
- Griffing, E. P.** See C. L. Alsberg, 2, 325; 4, 411
- Gunderson, Frank L.** Vitamin D; antirachitic activation of foods by irradiation with ultra-violet light, 7, 449
- Gunderson, Millard F.** Book review: Microbiology of starch and sugars, (Thaysen and Galloway), 7, 595
- Gustafson, Carl B.** Simple method for determining ash content of the flour in self-rising and phosphated flours, 8, 475; acid and iodine numbers of the oil from soft red winter wheat, 9, 595
- Gustafson, Carl B. and E. H. Parfitt.** Effect of bacteria on the development of rancidity in soft wheat flour, 10, 233
- H**
- Haas, L. W.** Interpretation of baking tests, 4, 389
- Hadley, S. T.** See W. F. Geddes, 10, 555
- Haley, William L.** See C. W. Fraser, 9, 45
- Hall, H.** Comparative study of the non-gluten constituents of soft and hard wheat flours, 7, 270
- Halliday, (Miss) Evelyn G.** See (Miss) I. T. Noble, 8, 165; 10, 243
- Halton, P. and E. A. Fisher.** Determination of hydrogen-ion concentration of flour-water mixtures, 5, 445; determination of hydrogen-ion concentration of dough; relation of hydrogen-ion concentration to flour grade, 9, 1; significance of hydrogen-ion concentration in panary fermentation, 9, 34; see E. A. Fisher, 5, 192; 6, 18, 97, 504; 8, 418
- Hanson, W. H.** Effects of the amount and kind of bleach used on flour in relation to its aging, 9, 358
- Harding, E. P. and George Dysterhelt.** Determination of Fe, Ca, Mg P, ash and protein in hard spring wheat, and in the flour streams representing the largest volume of flour produced in its commercial milling, 4, 47
- Harrel, C. G.** Some variable factors of bread production, 3, 1; an automatic proof box, 4, 278; gravimetric penetrometer for measuring stiffness or toughness of doughs, 4, 283; value of hydrogen-ion concentration and buffer value determination in testing and use of flours, 4, 428; calibrations of loaf volume boxes, 5, 220; cause of variations in collaborative reports, 5, 296; photographs for publication, 6, 248; standard experimental baking test, (committee report for 1929), 6, 249; descriptive analysis of the 1929 collaborative baking tests, 6, 274; fellowship fund of the A. A. C. C., 6, 310; points for consideration in baking tests, 6, 414; photography as applied to cereal chemistry, 7, 313; message of the President, 8, 347; see (Miss) Emily Grewe, 6, 60
- Harrel, C. G. and Stener Duoos.** Economical muffle furnace operation, 10, 452
- Harrel, C. G. and J. H. Lanning.** Relation of quantity of sodium sulphate to time

- of digestion in protein determinations, 6, 72; ovens, 6, 286
- Harris, B. R.** See Albert K. Epstein, 3, 60
- Harris, J. Arthur.** See A. E. Treloar, 5, 333
- Harris, Rae H.** Crude protein content and loaf volume compared by two methods of baking, 7, 557; peptization of wheat flour proteins and loaf volume, 8, 47; peptization of commercially milled flours and baking strength, 8, 113; peptization of wheat proteins and baking strength, 8, 190; comparison of the utility of flour protein extractions in distilled water and in inorganic salt solutions, 8, 496; relation between total protein, peptizable protein and loaf volume as obtained by successive increments of potassium bromate, 9, 147
- Hart, Victor M.** See R. S. Herman, 4, 157
- Hashitani, Yoshitaka and T. Sako.** Vitamin B content of bread, 9, 107
- Hatch, Miles.** See J. L. St. John, 8, 207
- Hayes, H. K.** The breeding of improved varieties of spring wheat, 6, 483
- Hayes, H. K., F. R. Immer and C. H. Bailey.** Correlation studies with diverse strains of spring and winter wheats with particular reference to inheritance of quality, 6, 85
- Heald, William L.** Practical method of photographing bread, 6, 69; relation of potassium bromate to other optional tests in the standard experimental baking test, 6, 264; calibration of loaf measuring apparatus, 6, 308; Swanson-mixer and its application to the standard baking test, 7, 322; some factors which affect gas production during dough fermentation, 9, 603
- Hendel, Julius and C. H. Bailey.** Quality of gluten of flour mill streams as determined by the viscosity of water suspensions, 1, 320
- Heon, A. A.** Semi-automatic measuring apparatus for solutions, 2, 112
- Herd, C. W.** Observations on the estimation of the neutralizing value of acid calcium phosphate, 4, 347; estimation of the fat content of flour and milling stocks, 4, 370; methods of examining flour. I. Effects of heat on flour proteins, 8, 1; II. Effects of heat on flour enzymes, 8, 145; see D. W. Kent-Jones, 6, 33
- Herd, C. W. and A. J. Amos.** Fat; its estimation in wheaten products, 7, 251
- Herman, Ralph S.** Varying characteristics of three types of wheat grown under the influence of identical environment, 3, 244; value of experimental milling test, 4, 270; varying characteristics of three types of wheat grown under the influence of identical environment, 4, 436
- Herman, Ralph S. and V. M. Hart.** Some factors influencing the experimental baking test, 4, 157
- Herman, Ralph S. and A. R. Sasse.** Characteristics of the 1923 hard winter wheat crop, 1, 26
- Hermano, A. J. and O. S. Rask.** Consideration of certain reactions of starches with special reference to enzyme hydrolysis, 3, 361
- Herrington, B. L.** See Paul F. Sharp, 4, 249; A. H. Johnson, 5, 14, 105; 6, 182
- Hertwig, Raymond.** Summary A. O. A. C. activities 1924, on methods for the analysis of cereal foods, 2, 46; collaboration with the A. O. A. C., 4, 474; increasing ashing capacity of laboratory electric furnaces, 7, 556; toasted wheat-germ as a possible table cereal, 8, 266; toasted wheat-germ self-rising flour, 8, 229
- Hertwig, Raymond and L. H. Bailey.** Glycerol as an aid in ashing flour, 1, 82; comments on glycerol as an aid in ashing flour, 2, 38
- Hertwig, Raymond and J. S. Hicks.** Note on the gasometric determination of carbon dioxide by the Chittick method, 5, 482; determination of degree of acidity of flours by colorimetric spot-tests, 6, 162
- Hicks, J. S.** See Raymond Hertwig, 5, 482; 6, 162
- Hirst, C. T.** See J. E. Greaves, 6, 115
- Hites, B. D.** See M. J. Blish, 7, 99
- Hoffman, Walter F.** Book review: Colloid symposium monograph, 2, 172
- Hoffman, Walter F. and Ross A. Gortner.** The preparation and analysis of the various proteins of wheat flour with special reference to the globulin, albumin and proteose fractions, 4, 221; see R. A. Gortner, 6, 1
- Holm, George, and (Miss) Emily Grewe.** Buffer intensities of water extracts and suspensions of various flours at different hydrogen-ion concentrations, 7, 49; see (Miss) Emily Grewe, 5, 461
- Holmes, Arthur D. and Francis Tripp.** Influence of the composition of yellow corn on the effectiveness of a rachitogenic ration, 10, 313
- Howe, (Miss) Marjorie.** See (Miss) Betty Sullivan, 6, 396
- Huber, L. X.** See T. R. James, 4, 449; 5, 181
- Hughes, R. C.** See M. J. Blish, 9, 331

## I

- Immer, Forrest R.** See H. K. Hayes, 6, 85

**J**

- James, T. R.** Gluten washing machine, 6, 244
- James, T. R. and L. X. Huber.** Yeast fermentation in flour-water-suspensions, 5, 181; study of the physical properties of washing gluten, 4, 449
- James, T. R. and J. W. Montzheimer.** Pacific Northwest cereal chemists' problems, 7, 591
- Javillier, M.** Should flour be artificially matured and decolorized, 3, 359
- Johnson, Arnold H.** Identification and estimation of the organic acids produced during bread dough and cracker dough fermentation, 2, 345; factors influencing the viscosity of flour-water-suspensions. I. Effects of temperature, degree of hydration and method of manipulation, 4, 87; report of the first international conference on flour and bread manufacture, 4, 495; studies of the effect on their bread-making properties of extracting flours with ether, 5, 169; effect of water suspensions, 8, 39; see C. H. Bailey, 1, 133, 293; W. O. Whitcomb, 5, 117; 7, 162
- Johnson, Arnold H. and C. H. Bailey.** Physico-chemical study of cracker dough fermentation, 1, 327; gluten of flour and gas retention of wheat flour doughs, 2, 95
- Johnson, Arnold H. and Jesse Green.** The effect of yeast fermentation on the viscosity of flour-water suspensions, 7, 117; acids responsible for increase in flour acidity during storage, 8, 134
- Johnson, Arnold and B. L. Herrington.** Factors influencing the viscosity of flour-water suspensions II. Effect of hydrogen-ion concentration during extraction or digestion period, 5, 14; III. Effect of small quantities of carbon dioxide in water used for extraction of the electrolytes, 5, 105
- Johnson, Arnold H. and S. G. Scott.** The relation between the fusibility of flour ash and its mineral constituents, 5, 56
- Johnson, Arnold H. and W. O. Whitcomb.** Effect on bread-making qualities of ether extracted flours; gas retaining powers of flours from ether extracted flours, 8, 392
- Johnson, Arnold H., B. L. Herrington and S. G. Scott.** The use of the viscometric method for measuring the proteoclastic activities of flours, 6, 182
- Jones, D. Breese.** New factor for converting the percentage of nitrogen in wheat into that of protein, 3, 194
- Jones, D. Breese and Russell Wilson.** The dicarboxylic amino acid fraction in gliadin, 5, 473
- Jørgensen, Holger.** Use of chromate

solutions as comparison-standards for the determination of "gasoline color values," 4, 468; separation of "gassing power" from strength in baking tests, 8, 361

**K**

- Karacsonyi, L. P.** Staling and hydrogen-ion concentration, 5, 477; quick viscosimetric method for measuring the staleness of bread, 6, 241
- Karacsonyi, L. P. and C. H. Bailey.** Relation of the overgrinding of flour to dough fermentation, 7, 571; overgrinding of flour and keeping quality of bread, 8, 44
- Kent-Jones, D. W.** Some aspects of the effect of heat upon flour, 5, 235
- Kent-Jones, D. W. and A. J. Amos.** Refractive indices of aqueous and alcoholic extracts of flour, 5, 45
- Kent-Jones, D. W. and C. W. Herd.** Flour color tests, 6, 33
- Kenyon, (Miss) Marjorie.** See H. H. Bunzell, 9, 161
- Kezer, Alvin.** Effect of time of irrigation on production of crude protein in wheat, 3, 340
- Kirby, G. W.** See A. Schultz, 10, 149
- Klaar, W. J.** See H. L. Bungenberg de Jong, 6, 373; 7, 222, 587; 8, 439
- Klopstein, E. O.** Determination of ash by the direct weight method, 7, 189
- Kozmin, (Mrs.) Natalie.** Biochemical characteristics of dough and bread from sprouted grain, 10, 420
- Kratz, Philip D.** See W. Platt, 10, 73
- Kraybill, Henry R.** Effect of plant nutrition on the composition of wheat, 9, 71
- Kress, Charles B.** Gluten quality, 1, 247; science in experimental baking, 2, 228; granulation of flour and its relation to baking quality, 6, 202; water tolerance of soft wheat flours for cake baking, 7, 376; sugar-flour percentages in cake testing formula, 8, 260; pie flour tests, 9, 411
- Kroeker, E. H.** See C. O. Swanson, 9, 10, 137
- Kuehl, H. and P. G. Gottschalk.** Comparing protein determinations in grain with the quick method, 6, 512

**L**

- Landis, Quick and C. N. Frey.** Meaning of some terms used in cereal chemistry, 10, 330; diastatic supplements for the A. A. C. C. baking test, 10, 588; see A. S. Schultz, 9, 305
- Lanning, J. H.** See C. G. Harrel, 6, 72, 286
- Larmour, Ralph K.** Single figure estimate of baking scores, 6, 164; relation between protein content and quality of

- wheat as shown by different baking methods, 7, 35; wheat protein and baking quality of the 1929 Saskatchewan spring wheat crop, 8, 179; see W. F. Geddes, 10, 30; A. E. Treloar, 8, 95
- Larmour, Ralph K. and S. F. Brockington.** Some relationships between sugar, diastatic malt extract and potassium bromate in the baking formula, 10, 593; effect of ammonium phosphate on loaf volume, 10, 599
- Larmour, Ralph K., W. F. Geddes and A. G. O. Whiteside.** Comparison of various baking formulas used in testing wheat quality for the plant breeder, 10, 601
- Larmour, Ralph K., F. D. Machon and S. F. Brockington.** Fermentation and proofing cabinet giving low temperature variability, 8, 233
- Lawellin, S. J.** Book review: The structure and composition of foods, I. (Winton), 9, 329
- LeClerc, Joseph A.** Report on cereal products A. O. A. C., 6, 78; report of the 1930 meeting of the A. O. A. C., 8, 89; report of the cereal section of the A. O. A. C. for 1931, 9, 83; report of the cereal section of the A. O. A. C. for 1932, 10, 160; Comparative composition of brown and polished rice—losses in material due to polishing, 9, 600; macaroni products, 10, 383; see M. R. Coe, 9, 519; Book review: Das Getreidekorn (Hoffmann and Mohs), 9, 173
- Leighton, Alan.** Book review: pH and its practical application (LaMotte et al.), 10, 97
- LeVesconte (Miss) Amy M.** See C. H. Bailey, 1, 38
- Lewis, John P. and W. O. Whitcomb.** Influence of size and shape of pan on the baking test, 5, 146; see W. O. Whitcomb, 3, 232
- Liddel, L. Urner.** Hygroscopy in flour ash and a discussion of direct ash weighing, 6, 134
- Logue, Paul and (Miss) Elizabeth McKim.** Stability of leavening agents in self-rising flour, 8, 24
- Logue, Paul and (Miss) Irene T. Ranker.** Leavening agents for self-rising flour, 3, 335
- Lyons, Robert E.** Method for precise measurement of the volume of test biscuits, 4, 481
- M**
- Machon, F. D.** See R. K. Larmour, 8, 233; R. T. Bohn, 10, 533
- MacMillan, John H. Jr.** Federal spring wheat grades—discussion of their shortcomings and suggested remedies, 1, 65
- Malloch, J. G.** Modifications of Rumsey's method for the determination of diastatic activity in flour, 6, 175; see W. H. Cook, 7, 133
- Malloch, J. G. and W. H. Cook.** Volume-measuring apparatus for small loaves, 7, 307
- Mangels, Charles E.** Report of the referee on cereal foods of the A. O. A. C., 1, 27; effect of storage on baking quality of common and durum wheats, 1, 168; collaborative report on moisture determinations 1, 190; methods of analysis, (committee report for 1925), 2, 235; effect of climate and other factors on the protein content of North Dakota wheat, 2, 238; relation of protein content to baking quality of flour from hard red spring and durum wheats, 3, 150; factors affecting the diastatic activity of wheat flour, 3, 316; preharvest factors which affect wheat quality, 4, 376; relation of water absorbing capacity of flour to protein content, baking quality and loaf volume, 5, 75; address of the President, 6, 334; methods of analysis, (committee report for 1932), 9, 429; regional and seasonal variations in pigmentation of durum wheats, 9, 485; methods of analysis, (committee report for 1933), 10, 470; see A. W. Walde, 7, 480; Book review: Milling and baking quality of world wheats (Coleman), 8, 92
- Mangels, Charles E. and T. Sanderson.** Correlation of the protein content of hard red spring wheat with physical characteristics and baking quality, 2, 107; correlation of test weight per bushel of hard red spring wheat with flour yield and other factors of quality, 2, 365
- Mangels, Charles E. and T. E. Stoa.** Effect of stage of maturity on composition and baking quality of Marquis wheat, 5, 335; evaluating new wheat varieties by use of the baking test, 8, 381
- Markley, Max C.** Certain effects of varying the hydrogen-ion concentration of the tempering water upon the wheat proteins, 7, 154; see C. H. Bailey, 10, 515, 546; H. K. Wilson, 10, 619
- Markley, Max C. and C. H. Bailey.** March of acidity in stored flour II, 8, 29; supplementary procedure with the basic baking test for use with low diastatic flours, 8, 300; automatic method for measuring gas production and expansion in doughs; 9, 591; relative baking qualities of commercially and experimentally milled flours, 10, 521

- Marshall, Walter K.** See (Miss) Emily Grewe, 6, 60
- Martin, Donald J.** Book review: Agricultural Russia and the wheat problem, (Timoshenko), 10, 169.
- Martin, William McK. and W. O. Whitcomb.** Physical and chemical properties of ether soluble constituents of wheat flour in relation to baking quality, 9, 275
- Martz, R. J.** See Ralph T. Bohn, 3, 183
- McIntosh, C. B.** Effect of pan size and shape upon standard cake baking test, 7, 377
- McKim, (Miss) Elizabeth.** See Paul Logue, 8, 24
- Merritt, Paul P.** Report of the A. A. C. C. research fellow, 8, 64
- Merritt, Paul P. and M. J. Blish.** Activities of the A. A. C. C. research fellow, 8, 267
- Merritt, Paul P., M. J. Blish and R. M. Sandstedt.** Report of the activities of the A. A. C. C. baking research fellowship, 9, 175
- Messman, Henry C.** Metallic selenium as a catalyst in Kjeldahl digestions, 9, 357
- Meyer, Alfred W.** Conversion tables for calculating the absorption of flour to a 13.5% moisture basis, 2, 42; conversion tables for calculating the absorption of flour to a 15% moisture basis, 4, 68; chemical analysis of some important baking ingredients, 8, 482
- Meyer, W. C.** Ashing methods, 8, 312
- Micka, Jan.** Contribution to the determination of flour ash, 4, 461
- Micka, Jan and (Miss) Elizabeth Child.** Some factors influencing the absorption in experimental baking, 5, 208
- Micka, Jan and Karel Vrana.** Standardizing the granulation test for flour, 7, 280
- Miner, Carl O.** Problems of the non-flour cereal chemist, 5, 70
- Moen, G.** Effect of individual molding upon the bread produced by the standard experimental baking test, 6, 280; baking characteristics of various types of wheat as reflected by different baking procedures, 7, 351
- Mohs, K.** The size of the pores in baked bread, 1, 149
- Montzheimer, J. W.** Methods for testing cake flour, 8, 510; see T. R. James, 7, 591
- Morgan, Ralph W.** Practical application of the viscosimeter to the mill, 1, 288
- Morison, C. Brewster.** Report on preamble of revised constitution of the A. A. C. C., 1, 209; effect of water containing free chlorine in bread making, 1, 267; residual sugar content of bread, 2, 314; review of recent work on the determination of moisture in flour, 3, 323; comments on the proposed A. A. C. C. baking test, 4, 309; composition of bread, 8, 415; non-survival of red mold *Monilia Sitophila* at baking temperatures, 10, 462; Book review: Outlines of biochemistry (Gortner), 6, 541
- Morison, C. Brewster, R. M. Bohn and W. Siedhoff.** Internal characteristics of test loaves, 5, 295
- Munsell, (Misses) Hazel E. and Grace M. DeVaney.** Vitamin B and G content of wheat germ, rice polishings, cotton-seed flour, and fermented rye grain residue, 10, 287
- N**
- Near, (Miss) Cleo.** See (Miss) Betty Sullivan, 5, 163
- Nicoli, (Miss) Laura.** See (Miss) Sybil Woodruff, 8, 243
- Noble, (Misses) Isabel T. and E. G. Halliday.** Measurement of carbon dioxide evolved in and lost from simplified muffin batters, 8, 165
- Noble, (Misses) Isabel T., M. Dean, M. Wing, and E. G. Halliday.** *In vitro* digestion of the starch of long and short cooked cereals, 10, 243
- O**
- Olsen, Aksel G. and C. H. Bailey.** Study of the proteoses of bread yeast, 2, 68
- Olsen, Aksel G. and M. S. Fine.** Influence of temperature on optimum hydrogen-ion concentration for the diastatic activity of malt, 1, 215
- Olsen, Leslie R.** Address of the President, 5, 310
- P**
- Pap, Lewis.** Hygroscopicity of wheat, 8, 200
- Parfitt, E. H.** See C. B. Gustafson, 10, 233
- Parker, H. K.** See J. C. Baker, 10, 437
- Pascoe, Truman A., R. A. Gortner, and R. C. Sherwood.** Some comparisons between commercially and experimentally milled flours, 7, 195
- Patterson, P. M.** The cake flour laboratory, 1, 159
- Pearson, John T.** See A. R. Sasse, 7, 79
- Pecaud, Millie T.** French school of milling, 1, 317
- Pelshenke, Paul.** Short method for the determination of gluten quality of wheat, 10, 90
- Pickney, A. J.** See M. J. Blish, 1, 309
- Platenius, H.** See M. J. Blish, 4, 129, 6, 121
- Platt, Washington.** Staling of bread, 7, 1; higher versus lower mathematics in interpreting baking quality, 10, 213; definition of technical terms, (committee report for 1933), 10, 463

- Platt, Washington and P. D. Kratz.** Measuring and recording some characteristics of test sponge cakes, 10, 73  
**Potts, Ralph B.** Use of oxygen to accelerate determinations of ash, 8, 232  
**Price, E. B.** The work of the bakery engineer in relation to that of the flour mill chemist, 4, 470  
**Prudy, (Miss) Daisy I.** See (Miss) Alice M. Child, 3, 57

**R**

- Racke, O. C.** See F. A. Collatz, 2, 213  
**Ranker, (Miss) Irene T.** See Paul Logue, 3, 335  
**Rask, Olaf S.** See C. L. Alsberg, 1, 107, A. J. Hermano, 3, 361  
**Rask, Olaf S. and C. L. Alsberg.** Viscometric study of wheat starches, 1, 7  
**Read, J. W. and C. H. Bailey.** Certain effects of ultra-violet irradiation on chemical and nutritive properties of baked products, 10, 99  
**Rich, C. E.** Selenium oxychloride as a catalyst in the determination of nitrogen by the Kjeldahl method, 9, 118; viscosity, total protein content, ash content and baking strength of experimentally and commercially milled flours from Western Canadian hard red spring wheats, 9, 535; relationship between ash content and peptizability of wheat flour proteins in Canadian hard spring wheats, 10, 222  
**Richards, G. D.** See J. R. Chittick, 7, 473  
**Rogers, Charles F.** Comparison of the official method of ashing plant tissues and products with the Hertwig-Bailey method, 3, 226  
**Rudy, W. J.** See H. O. Triebold, 10, 263

**S**

- Sako, Tsunenaka.** See Y. Hashitani; 9, 107  
**Sanderson, Thomas.** See C. E. Mangels, 2, 107, 365  
**Sandstedt, Rudolph M.** Selenium as a catalyst in Kjeldahl digestion with natural gas heat, 9, 156; see M. J. Blish, 2, 57, 191; 3, 144; 4, 291; 6, 121, 494; 9, 378; 10, 189; see P. P. Merritt, 9, 175  
**Sandstedt, Rudolph M. and M. J. Blish.** New characterization of the gluten proteins, 10, 359; experiments with the short-method in laboratory baking test, 10, 605  
**Sasse, A. R.** See R. S. Herman, 1, 26  
**Sasse, A. R. and J. T. Pearson.** Value of the viscosimeter in a commercial flour mill, 7, 79  
**Schaal, A. A.** Tests for pie flours, 10, 621  
**Schreiner, (Miss) Olive M.** See P. F. Sharp, 3, 90

- Schulerud, A.** Determination of acidity in flours, 9, 128; march of acidity in stored flours and some critical remarks of the methods used to determine flour acidity, 10, 129  
**Schultz, Alfred S. and G. W. Kirby.** Biological method for the determination of different sugars in starch degradation products, 10, 149  
**Schultz, Alfred S. and Quick Landis.** Hydrolysis of starch in bread by flour and malt amylase, 9, 305  
**Scott, Samuel G.** See A. H. Johnson, 5, 56; 6, 182  
**Scott-Blair, G. W.** See H. J. Denham, 3, 158, 427; 4, 58, 206; 5, 330  
**Scott-Blair, G. W., G. Watts and H. J. Denham.** Effect of concentration on viscosity of flour suspensions, 4, 63  
**Sharp, Paul F.** The change in hydrogen-ion concentration of wheat and mill products with age, 1, 117; the amino nitrogen content of the immature wheat kernel and the effect of freezing, 2, 12; plasticity of simple flour in water suspensions, 3, 40. The composition of wheat and mill products from frozen and non-frozen wheat harvested at various stages of maturity, 3, 402; density of wheat as influenced by freezing, stage of development and moisture content, 4, 14; see W. O. Whitcomb, 3, 301  
**Sharp, Paul F. and Roma Elmer.** Proteolytic enzymes of flour. Autodigestion of flour milled from frozen and non-frozen wheat harvested at various stages of maturity, 1, 83  
**Sharp, Paul F. and R. A. Gortner.** Effect of yeast fermentation on imbibitional properties of glutenin, 1, 29  
**Sharp, Paul F. and B. L. Herrington.** Note on the extraction of proteins from wheat flour, 4, 249  
**Sharp, Paul F. and (Miss) Olive M. Schreiner.** Effect of yeast fermentation on the proteins of flour, 3, 90  
**Sherwood, Reginald C.** Surveying the new wheat crop; 4, 395; testing dough thermometers, 6, 301; dough thermometers, 7, 362; testing new wheat varieties, 8, 168; see C. H. Bailey, 3, 393; 5, 287; C. L. Brooke, 5, 366; T. A. Pascoe, 7, 195; A. E. Treloar, 9, 121  
**Sherwood, Reginald C. and C. H. Bailey.** Control of diastatic activity in wheat flour. I. Production of diastatic flour and effect of large dosages, 3, 107; II. Experiments with wheat flour milled on a commercial scale, 3, 163; observations of baking tests, 4, 305; correlation of ash content of wheat and flour, 5, 437  
**Shipley, V.** See E. G. Bayfield, 10, 140

- Shollenberger, Joseph H.** See J. David-  
son, 3, 137
- Shuey, G. A.** Collaborative study of  
moisture methods, 2, 318
- Sibbitt, L. D.** See W. F. Geddes, 10, 560
- Siedhoff, William.** See E. E. Werner, 6,  
196
- Sinclair, Walton B. and R. A. Gortner.**  
Physico-chemical studies on proteins.  
Peptization of gliadin by solutions of  
inorganic salts, 10, 171; see R. A.  
Gortner, 6, 1
- Skovholt, Oscar and C. H. Bailey.** Rela-  
tion of quality in dry skimmilk to  
baking strength, 8, 374; effect of  
temperature and of the inclusion of dry  
skimmilk upon the properties of doughs  
as measured with the Farinograph, 9,  
523; influence of humidity and carbon  
dioxide upon the development of  
molds on bread, 10, 446
- Smith, Edward E.** Viscosity and baking  
quality, 2, 177; viscosity and the  
standard cake test, 7, 374; 8, 262;  
hydrogen-ion concentration with spe-  
cial reference to the effect of flour  
bleach upon cake tests, 9, 424
- Smith, H. J. and J. Paul Bartz.** Heating  
of feed grains, 9, 393
- Sorg, L. V.** Rugged type of calomel  
electrode vessel, 6, 344; adaptability  
of the quinhydrone electrode to cereal  
work, 7, 143
- Spaulding, J. L.** Determination of ash by  
direct weighing, 7, 88; quick ash de-  
termination by magnesium acetate-  
alcohol method, 7, 93
- Sperry, (Miss) Ruth.** See (Miss) M. C.  
Denton, 10, 156
- Spielman, Marvin A.** Sitosterol esters in  
wheat flour oil, 10, 239
- Stateler, E. S.** Review of patents and  
applications thereof involving irra-  
diated cereal products, 8, 433; Book  
review: Law of patents for chemists,  
(Rossman) 9, 328
- Stephens, (Miss) Eva L., (Miss) Alice M.  
Child and C. H. Bailey.** Some applica-  
tions of spectrophotometric methods  
to baking problems, 5, 256
- Stienbarger, (Miss) Mabel C.** Compar-  
ative cooking qualities of domestic  
milled rices, 9, 317
- St. John, J. L.** Plasticity of flour-water  
suspensions, 6, 400
- St. John, J. L. and C. H. Bailey.** Effect of  
dry skimmilk on the fermentation and  
hydrogen-ion concentration of doughs,  
6, 61; the effect of dry skimmilk upon  
the water absorption of doughs and  
the plasticity of flour suspensions, 6,  
140
- St. John, J. L. and Miles Hatch.** Fer-  
mentation period of Northwest and  
Pacific Northwest flours as indicated  
by carbon dioxide production and  
dough expansion, 8, 207
- Stoa, Theodore E.** See C. E. Mangels,  
5, 385; 8, 381
- Sullivan, (Miss) Betty.** Inorganic constit-  
uents of wheat and flour, 10, 503
- Sullivan (Misses) Betty and Marjorie  
Howe.** Minerals of wheat. I. Sul-  
phur and chlorine, 6, 396
- Sullivan (Misses) Betty and Cleo Near.**  
Lipoïd phosphorus of wheat and its  
distribution, 5, 163
- Swanson, Charles O.** Factors which  
influence the quantity of protein in  
wheat, 1, 279; a theory of colloid  
behavior in dough, 2, 265; the me-  
chanical method of modification of  
dough, 5, 375; evaluating the quality  
of wheat varieties by co-operative  
tests, 7, 66; see F. C. Fenton, 7, 428
- Swanson, Charles O. and E. H. Kroeker.**  
Testing wheat varieties for milling and  
baking quality, 9, 10; some factors in  
fermentation tolerance 9, 137
- Swanson, Charles O. and E. B. Working.**  
Mechanical modification of dough to  
make it possible to bake bread with  
only the fermentation in the pan, 3,  
65; testing the quality of flour by the  
recording dough mixer, 10, 1
- Swarthout, A. V.** An analysis of the retail  
prices of bread in seven cities of the  
United States, 1, 151
- T**
- Tague, E. L.** The solubility of gliadin, 2,  
117, the gluten quality of flour and its  
iso-electric point, 2, 202
- Talbott, Philip.** See Ray Weaver, 10, 612,  
617
- Talbott, Philip and Ray Weaver.** Ap-  
paratus for convenient and accurate  
delivery of solutions used in experimen-  
tal baking tests, 10, 367
- Teller, George L.** Non-protein nitrogen  
compounds in cereals and their relation  
to the nitrogen factor for protein in  
cereals and bread, 9, 261
- Teller, George L. and W. Kedzie Teller.**  
Study of proteins of wheat bran, 9, 560
- Teller, W. Kedzie.** See G. L. Teller, 9, 560
- Tissue, (Miss) Kathryn A. and C. H.  
Bailey.** Proteolytic enzymes of malt  
preparations, 8, 217
- Towner, A. A.** Covered fermentation  
bowls, 6, 303
- Track, (Miss) Laura K.** Tentative for-  
mula for testing cake flour, 10, 632
- Treloar, Alan E.** Statistical study of  
collaborative protein determinations,  
6, 429; statistical analysis of cereal  
chemistry data, 7, 391; biometric  
analysis of cereal chemical data;

- variation, 8, 69; distribution of errors for the determination of protein, moisture and ash in flour, 9, 449; statistics in the service of cereal chemistry, 9, 573; evaluation of systematic and random errors in protein, moisture and ash determinations, 10, 477; Book review: Methods of statistics (Tippett), 9, 638
- Treloar, Alan E. and J. Arthur Harris.** Criteria of the validity of analytical methods used by cereal chemists, 5, 333
- Treloar, Alan E. and R. K. Larmour.** Variability of loaf volume in experimental baking, 8, 95
- Treloar, Alan E., R. C. Sherwood and C. H. Bailey.** Some relationships involving crumb texture and color, 9, 121
- Triebold, Howard O.** Rancidity, 8, 518
- Triebold, Howard O. and C. H. Bailey.** Chemical study of rancidity. I. Autoxidation of shortenings and crackers, 9, 50; II. Factors influencing the keeping quality of shortenings and crackers, 9, 91
- Triebold, Howard O., R. E. Webb and W. J. Rudy.** Chemical study of rancidity. III. Some recent developments in the study of oxidative rancidity of special interest to the cereal industry, 10, 263
- Tripp, Francis.** See A. D. Holmes, 10, 313
- Turley, H. E.** Counting yeast cells in dough, 1, 261
- V
- Van Der Lee, G.** The viscosity of flour suspensions, 5, 10, 484
- Visser't Hooft, F. and F. J. G. De Leeuw.** A critical study of some methods used in flour colorimetry, 5, 351
- Vogel, Herbert and C. H. Bailey.** A study of durum wheat, 4, 136
- Vrana, Karel.** See Jan Micka, 7, 280
- W
- Walde, A. W. and C. E. Mangels.** Variation in properties of acetone extracts of common and durum wheat flours, 7, 480
- Walter, H. G.** Tests for biscuit and self-rising flours, 10, 635
- Walters, F. M.** New aids in the ashing of flour, 7, 83
- Warren, M. R.** Reports on collaborative protein determinations, 1, 184; 2, 240
- Watts, G.** See H. J. Denham, 5, 330; G. W. Scott-Blair, 4, 63, 206
- Weaver, Harry E.** Hydrogen-ions and their application to mill control, 2, 209; the possibilities of research, 5, 64
- Weaver, Ray.** See C. C. Fifield, 7, 358; Philip Talbott, 10, 367
- Weaver, Ray, Philip Talbott and D. A. Coleman.** Variability in experimental baking. I. Mechanical mixing studies, 10, 612; II. Yeast variability, 10, 617
- Webb, R. E.** See H. O. Triebold, 10, 263
- Werner, E. E.** The baking test, 2, 310
- Werner, E. E. and William Siedhoff.** A technological method for the study of yeast, 6, 196
- Whitcomb, William O.** Study of methods of determining the loaf volume of bread, 2, 305; labor saving devices for the commercial protein testing laboratory, 6, 215; see A. H. Johnson, 8, 392; J. P. Lewis, 5, 146; W. McK. Martin, 9, 275
- Whitcomb, William O. and A. H. Johnson.** Effect of severe weathering on certain properties of wheat, 5, 117; 7, 162
- Whitcomb, William O. and J. P. Lewis.** The commercial protein test on wheat and some of its problems, 3, 232
- Whitcomb, William O. and P. F. Sharp.** Milling and baking tests of frozen and non-frozen wheat harvested at various stages of maturity, 3, 301
- Whiteside, A. G. O.** See R. K. Larmour, 10, 601
- Whiting, Lawrence D.** Comments on the principles of the proposed A. A. C. C. baking test, 4, 310; soft wheat flours, 5, 299; baking pans, 6, 304; tests for biscuits and self-rising flours, 9, 414; address of President, 10, 370
- Whittier, E. O. and (Miss) Emily Grewe.** Hydrogen-ion determination in flour and bakery products, 6, 153
- Wilhoit, Albert D.** Value of the laboratory report to the flour buyer, 4, 492
- Wilkins, Herbert L.** Sundry means of hastening the protein determination, 7, 168
- Wilson, H. K., M. C. Markley and C. H. Bailey.** Wheat meal fermentation time test, 10, 619
- Wilson, Russell.** See D. B. Jones, 5, 473
- Wing, (Miss) M.** See (Miss) I. T. Noble, 10, 243
- Winkler, C. A. and W. F. Geddes.** Heat of hydration of wheat flour and certain starches including wheat, rice and potato, 8, 455; see W. F. Geddes, 8, 409
- Wise, M.** See C. F. Davis, 8, 349; 10, 203, 488
- Wood, J. C.** Report on collaborative ash determinations, 2, 246
- Woodruff, (Misses) Sybil and Laura Nicoli.** Starch gels, 8, 243
- Working, Earl B.** Lipoids a factor influencing gluten quality, 1, 153; some

oxidizing effects of flour bleaching, 5, 431; the action of phosphatides in bread doughs, 5, 223; fermentation tolerance, 6, 506; see C. O. Swanson, 3, 65; 10, 1

**Worzella, W. W.** See G. H. Cutler, 10, 250

**Z**

**Ziegler, E.** Book reviews: *Mehlchemie* (Mohs) second edition, 6, 248; *Mehlchemie* (Mohs), third edition, 9, 174; *Alcoholic fermentation* (Harden) fourth edition, 9, 174

## SUBJECT INDEX

### A

**Absorption Spectra**, pure carotene solutions compared with extracts of flour and bran, 6, 233

#### Acetic Acid

occurrence in yeast fermented bread doughs and cracker sponges, 2, 362  
occurrence in yeast fermented flour water-suspensions, 2, 356  
solvent for gliadin, 2, 127

**Acetone**, dehydration of doughs with, 7, 493

**Acetone Extract of Flour**, chemical and physical properties of, 7, 483

#### Acetone Extracted Flour

baking quality of, 1, 483  
gluten quality of, 7, 483

#### Acetone Gliadin-Sols

viscosity of  
effect of acidity on, 7, 590; 8, 439  
effect of concentration of KCl on, 8, 448  
effect of valence of ions on, 8, 439

#### Acid Calcium Phosphate (mono)

effect on  
baking quality of flour, 3, 102  
bleached flours, 2, 375  
control of rope in bread, 5, 201; 7, 471  
extensibility of bread doughs, 1, 60  
viscosity of flour-water-suspensions, 3, 102

neutralization value of, method of determining, 2, 382; 4, 347

use of as a flour improver, 2, 370, 379

#### Acid Hydrolysis Method

for fat estimation, 7, 255

#### Acid Numbers Fat

barley, 3, 22  
oats, 3, 23  
rye, 3, 24  
shortenings, 8, 518; 9, 50, 91, 519  
wheat, 7, 428  
wheat bran, 3, 21  
wheat flour, 3, 21, 27; 7, 251; 8, 134; 9, 275  
wheat-germ, 3, 21, 27

**Acid Potassium Phthalate**, solutions of, as standards in making protein determinations, 1, 160

**Acid Potassium Tartrate**, effect of, as an ingredient of angel cake, 7, 245

#### Acid Strength of Flour, 2, 205

#### Acidity

*acid calcium phosphate (mono)*

comparison of electrometric and colorimetric methods for determining, 4, 366

comparison of hot and cold titration procedure on accuracy of determination, 4, 355

indicators for use in determining, 4, 355  
bread, pH of, 3, 307; 4, 268; 5, 477; 6, 19, 104; 9, 116, 163

*bread crumbs*, effect of age on, 5, 478  
*bread doughs*

development of due to fermentation, 2, 358; 8, 13; 9, 35, 341

effect of granulation of flour on the development of during fermentation, 6, 214

increase of due to

carbon dioxide, 2, 358  
organic acids, 2, 360  
phytase-phytin, 2, 359

increase of, and improvement in quality of bread made from sprouted wheat flour, 10, 428

relation to quality bread production, 3, 3, 11; 6, 18, 97, 504; 9, 1, 34

volatile and non-volatile acids in, 9, 346

#### crackers

relation to keeping quality, 9, 102

#### cracker sponges

increase of, due to

carbon dioxide, 2, 357  
organic acids, 2, 357  
phytase-phytin, 2, 357

*dicalcium phosphate*, neutralizing value of, 2, 384

#### flour (wheat)

acids responsible for the increase of, during storage 8, 134; 9, 133; 10, 137

alcoholic (67%) method for determining, 9, 134; 10, 131

colorimetric spot test for determining, 6, 162

comparison of A. O. A. C. and Greek method for determination of, 6, 519, 532; 7, 398; 8, 35, 140; 10, 134

control of in diastatic activity determinations, 6, 175; 9, 386; 10, 191

development of during extraction by A. O. A. C. method, 8, 38; 10, 135

effect of additions of germinated wheat flour on, 3, 132

effect of, on accuracy of maltose determinations, 9, 383; 10, 191

extraction with ethyl ether and the development of flour acidity, 1, 137; 8, 135

fresh-suspension method for determining, 9, 129; 10, 130

**Acidity, flour (wheat)—cont.**

Greek government limits for, 6, 521  
 increase of, due to bleaching, 1, 188, 185; 2, 211, 212; 3, 204, 205; 9, 376, 425; 10, 624  
 increase of, due to chlorine treatment, 1, 183, 185; 2, 111, 212; 3, 204, 205; 9, 376, 425; 10, 624  
 increase of during storage as affected by grade of flour, character of wheat and temperature of storage, 1, 124, 134, 137; 6, 532; 8, 26, 35, 135; 10, 129  
 methods for determining, 1, 120, 356, 360; 2, 215, 340; 3, 131, 158, 174, 183, 282, 408, 427; 4, 58, 321, 423; 5, 134, 445; 6, 18, 97, 153, 162, 515, 521, 530; 7, 49, 119, 143, 204, 397; 8, 29, 134; 9, 6, 34, 128, 338; 10, 129  
 milled from frozen wheat, 3, 408  
 pH of various grades, 1, 133; 2, 211; 4, 263; 6, 18, 97; 8, 135; 9, 6, 34; 10, 624  
 rate of change during storage, 1, 117; 6, 532  
 rate of development of, during storage in relation to ash content, 8, 37, 135; 9, 131; 10, 131  
 roll of fatty acids in determining, 1, 137; 8, 135; 9, 133; 10, 136  
 roll of phosphates in, 9, 7, 131; 10, 135  
 self-rising, changes in, during storage at different moisture levels, 8, 26  
 significance in foreign specifications for, 6, 515  
 value of A. O. A. C. method for determining, 10, 129  
**flour water-suspensions**  
 effect of yeast fermentation, 2, 82; 2, 347  
 role of  
   carbon dioxide, 2, 346  
   organic acids, 2, 348  
   phytase-phytin, 2, 347  
**mill feeds**  
 normal versus frosted wheats, change in, during storage as affected by temperature, 1, 126  
**wheat**  
 development of, due to unfavorable storage conditions, 7, 438  
 effect of, delayed harvesting on, 5, 135  
**wheat (ground versus unground)**  
 change in during storage as affected by quality of wheat and temperature of storage, 1, 122  
**wheat-germ, 10, 64**

**Acids**

addition of to dough to improve the quality of bread made from sprouted wheat, 10, 429  
 effect on pH and color of angel cake, 7, 248

**Acids (amino)**

content of in normal and immature wheat, effect of freezing on, 1, 18, 19, 22, 24, 25; 2, 12; 5, 392; 7, 113  
 determination of, in wheat and flour, 4, 58  
 dicarboxylic in wheat gliadin, 5, 478  
 presence of in cereal grains, 9, 511

**Acids***organic*

acetic acid, 2, 362  
 development of during bread and cracker dough fermentation, 2, 345  
 lactic acid, 2, 362

*standard*

as used in cereal laboratories for protein determinations, 2, 138  
 effect on accuracy of protein determinations, 1, 184; 2, 160; 6, 436  
 potassium acid phthalate as a, 1, 160  
 preparation of for use in protein determinations, 3, 255  
 use of to control Rape in bread, 5, 194, 200; 9, 163

**Agene**

flour bleaching with, effect on bread properties, gluten quality, H-ion concentration, and carotene content, 2, 212; 4, 453; 5, 431; 6, 468; 8, 510; 9, 558, 491; 10, 623

**Aging of Cake**, methods for determining, 10, 80**Aging of Flour**

natural and bromate response to, 10, 46  
 relation of bleaching agent to speed of, 9, 358

relation of H-ion concentration to, 1, 117, 133; 5, 177; 9, 376

**Air**, effect of excluding on development of rancidity in oil-bearing foods, 9, 521**Albumin**, flour

method for the determination of, 1, 86; 2, 402; 4, 221, 233, 249

preparation and analysis of, 4, 224

**Alcohol**

bread doughs, quantity in, 9, 331

effect on gas retention of wheat and rye flour doughs, 2, 101, 103

influence on the relative viscosity of negative gliadin solutions, 7, 239

nature of proteins extracted by hot, 6, 494

solubility of flour acids in, 9, 132; 10, 129

**Aleurone Cells of Cereals**

barley, chemical composition of, 1, 141

crystalline form, 1, 147

effect of germination on, 1, 179

food reservoir during seed germination, 1, 182

wheat, chemical composition of, 1, 144

**Alsop Process**, bleaching of flour with and increase of pH, 2, 211**Amino Acids**

cereal gums, 9, 511

dicarboxylic in gliadin, 5, 473

- Amino Nitrogen**  
content of in flours milled from wheats at various stages of maturity, 1, 86; 2, 13; 3, 402; 5, 125, 139, 392  
determination of in wheat and flour extracts, 1, 86; 2, 13; 3, 126, 168, 402; 4, 58; 5, 85, 125, 139; 6, 187; 7, 155, 489; 8, 13, 153  
sprouted wheat flours, 3, 126, 169; 5, 91; 10, 426
- Ammonium Phosphate (mono)**  
effect on loaf volume, 10, 599, 603  
effect on pH and gas production during fermentation, 9, 38
- Ammonium Salts**, detection of in baking ingredients, 8, 483
- Analytical Data**, study of variance in, 5, 333; 6, 429; 7, 391; 8, 69, 95; 9, 239, 449, 573; 10, 477
- Analytical Methods**  
baking ingredients, 8, 483  
criteria of the validity of, 5, 333; 6, 429; 7, 391; 8, 69, 95; 9, 239, 449, 573; 10, 477  
fat in flour mill stocks, 7, 251  
feeding stuffs, see report of 1927-28 committee on Methods of Analysis, 5, 274  
wheat flour proteins, 1, 86, 309; 2, 1, 13, 57, 72, 117, 127, 132, 202; 3, 94, 126, 144, 170, 232, 403; 4, 129, 221, 230, 249; 5, 79, 125, 139; 6, 2, 72; 7, 168, 190, 421, 494, 502, 518; 8, 13; 9, 118, 156, 261, 357, 560; 10, 359, 488
- Angel Cake**  
change of color and grain in due to use of acid potassium tartrate and other acids, 7, 246, 248  
effect of age of egg white on pH and color of, 7, 248
- Antioxygenic Catalysts**, and the auto-oxidation of fats, 8, 529
- Antioxidents**, relation to the development of rancidity in fats, 10, 272
- Antirachitic Activation**  
chemical nature and determination of, 7, 451  
foods by irradiation with ultra-violet light, 7, 449
- Antirachitic Potency, Soda Crackers**, influence of dough fermentation and baking on, 10, 124
- Apparatus**  
automatic device for proofing bread doughs, 4, 278; 7, 331  
baking pans for experimental baking tests, 1, 255; 2, 231, 234; 4, 159; 6, 304; 9, 206; 10, 560  
Brabender electric bleacher for flour, 10, 622  
Brown-Duvel for determining the moisture in whole wheat, accuracy of, 8, 325  
calomel electrode vessel, 6, 344  
carriages for holding Kjeldahl flasks in the protein determination, 6, 215; 7, 169
- Chopin Extensimeter for studying the extensibility of bread doughs, 1, 41; 4, 1; 6, 144
- colorimeters, Kent-Jones and Dubosq, comparison of, 6, 35
- constant temperature room, 9, 394
- Dielectrometer for determining the moisture content of wheat, accuracy of, 8, 324
- dough thermometers for the standard experimental baking test, 6, 302; 7, 362
- electrical, for determining the moisture content of wheat, comparison of accuracies of, 8, 315
- Farinograph, description of, 9, 617
- fermentation bowls for use in the standard experimental baking test, 6, 303; 10, 205
- German (DK) Schnell Wasserbestimmer for determining moisture in whole wheat, 8, 317
- gluten washing machine, 4, 450; 6, 244
- Lloyd extractor, 3, 27
- measurement of carbon dioxide production in flour-water-suspensions, 5, 182
- mercury-vapor lamp for flour irradiation studies, 9, 491
- metal models for calibration of loaf volume measuring devices, 7, 346
- new type fermentation cabinet, 7, 341
- new type fermentation and proofing cabinet, 8, 233
- Ostwald viscosimeter, 4, 206; 5, 462; 6, 241; 8, 376; 9, 528
- ovens for the standard experimental baking tests, 6, 286; 8, 278
- quinhydrone electrode for cereal work, 3, 158; 5, 448; 6, 153; 7, 143; 9, 2
- recording dough mixer (Swanson-Working), 10, 15
- recording wattmeter for flour quality tests, 10, 9
- rubber balloons for calibration of loaf volume measuring devices, 5, 220; 6, 308
- Sheely viscosimeter, 2, 179
- shelf for increasing capacity of muffle furnaces, 7, 556
- spectrophotometer, description and operation of, 5, 256; 6, 225
- S-rolls for punching and molding doughs, 9, 194; 10, 560, 585
- Stormer viscosimeter, 1, 110; 3, 365
- sundry, to hasten protein determinations in wheat, 6, 215; 7, 168
- Tag-Heppenstall moisture meter for determining moisture in whole and ground wheat, 8, 331, 409

**Apparatus—cont.**

Thomson loaf-molder, use for molding doughs in the standard experimental baking test, 8, 274, 293; 9, 184

**Apparatus for**  
cross-sectioning test cakes, 10, 83  
delivery of solutions in baking tests, 10, 368  
determining  
carotenoid pigments of wheat flour, 3, 84; 4, 144; 5, 351; 6, 33, 218, 346; 9, 491; 10, 277  
catalase activity in bread, 7, 468  
flour strength, 5, 4  
gasoline color value of wheat and flour, 3, 86, 87; 5, 351; 6, 33  
gluten quality, 1, 249  
moisture in flour by the carbide method, 7, 100  
plasticity of flour-water suspensions, 3, 47; 6, 145  
sugars in starch degradation products, 10, 150  
tenderness in pastries, 10, 157  
irradiating crackers and shortenings, 10, 107  
making oxidation studies on shortenings, 9, 52  
measuring  
bread and flour color, 6, 60; 10, 438  
compressibility of baked products, 7, 19, 341; 10, 80  
electric power consumed during dough mixing, 6, 141; 9, 23  
flour granulation, 7, 280  
gas production and expansion in bread doughs, 1, 295, 300; 6, 52; 8, 364; 9, 592; 10, 247  
gas production in bread doughs, 1, 295; 6, 52; 8, 364; 9, 389, 592, 604; 10, 247  
small loaves, 5, 215; 7, 307  
solutions in the Kjeldahl method, 2, 114; 6, 215; 7, 168  
toughness of sponge cake, 10, 83  
volume of test biscuits, 2, 89

micro-determination of ammonia with aeration, 7, 259

mixing doughs, Hobart, Hobart-Swanson or Swanson-Working, results of comparative tests with, 3, 66; 7, 322; 8, 268, 270; 9, 178; 10, 575, 612

moisture determinations in cereal laboratories (traveling oven), 3, 420

molding experimental doughs, 7, 358; 8, 293; 9, 194; 10, 561, 585

photographing bread, 6, 70

punching experimental doughs, 9, 190; 10, 561, 585

studying  
checking of biscuits, 5, 429  
rate of reaction of chemical leavening agents, 8, 425  
yeast fermentation in flour-water suspensions, 5, 182

testing yeast, 7, 134

wheat meal fermentation-time-test, 10, 91, 92, 253

**Aqueous Culture Media**, effect of nitrogenous fertilizers on bread making quality of wheat, 10, 347**Ash**, elemental analysis of from wheat, flour, bran or bread, 4, 47; 5, 60; 6, 398; 10, 505**Ash Content**

bread, 8, 415

flour

and buffer intensity, 7, 57

correlation with ash content of wheat, 5, 437

cracker use, 1, 338

depression of viscosity of flour-water suspensions by, 9, 551

effect of weathering of wheat on, 5, 117; 7, 162

fusibility of and mineral constituents, 3, 395; 4, 461; 5, 58

hygroscopic nature of, 6, 134

influence on peptizability of flour protein, 10, 226

milled from frozen and non-frozen wheat harvested at various stages of maturity, 3, 406

various degrees of granulation, 6, 208

**wheat**, correlation with ash of flour, 5, 437

yellow corn meal, variability in, 10, 318

**Ash Determinations****Bailey-Hertwig procedure**, 1, 82, 190; 2, 38, 247, 395; 3, 226, 267; 4, 317, 462

comparison with A. O. A. C. method, 1, 82, 190; 2, 247, 395; 3, 226, 267

factors influencing accuracy of

size and shape of crucible, 2, 39, 395

size of sample, 2, 396

temperature of incineration, 2, 397

time of incineration, 2, 41, 249, 396

**flour**

aids in, 7, 83

alundum procedure, results of trials with, 3, 272; 4, 464

calcium acetate procedure, results of trials with, 3, 272; 4, 466

calcium acetate-oxygen procedure, results of trials with, 3, 222

direct weighing procedure, results of trials with, 4, 466; 6, 134; 7, 88, 190, 388; 8, 312

distribution of errors in making, 9, 460

factors influencing accuracy, 2, 391

effect of

method on, 2, 38, 246, 391; 3, 226, 267; 4, 466

oven explosions on accuracy, 2,

393

oven temperature on accuracy, 2, 394; 4, 462; 5, 60

type of crucible on, 4, 464

influence of temperature control of muffle in making, 3, 270

**Ash Determinations, flour—cont.**

- magnesium acetate-alcohol procedure,  
results of trials with, 7, 93, 96;  
9, 431  
original, incorporated into phosphated  
and self-rising flours, 8, 475  
permissible error of single determina-  
tion, 9, 471  
rapid method for, using nitric acid, 9,  
158  
shelf for increasing oven capacity while  
making, 7, 556  
statistical study of variability in, 5,  
333; 7, 391; 10, 209, 477  
use of oxygen to hasten, 8, 232, 314  
*mill feeds*, collaborative trials with, 5, 275
- Association of Official Agriculture Chem-  
ists**, nature of, 4, 474
- Atmospheric Conditions** and the heating of  
feed grains, 9, 393

**B****Bacterial Content**

- flour and development of rancidity, 10,  
235  
wheat, 10, 235

- Bailey Electrode**, comparison with quin-  
hydron electrode, 6, 156, 157  
**Bailey-Hertwig Method**, flour ash, com-  
parative trials with, 1, 82, 190; 2, 38,  
247, 395; 3, 226, 267; 4, 317, 462

**Baked Products**

- influence of ultra-violet irradiation upon  
nutritive values of, 10, 99  
methods for determining the pH of, 6, 153  
**Bakery Engineers**, relation to work of the  
flour mill chemist, 4, 470
- Baking Formulae** (bread flours)  
basic A. A. C. C., 5, 158  
comparative value of diastatic malt and/  
or sugar and bromate in the, 10, 593  
for making hard sweet biscuits, 5, 428  
for production of wafers in studying  
pastry flour quality, 10, 156  
for testing

- rye flours, 10, 469  
soft wheat flours, 10, 141  
whole wheat flours, 10, 535  
sundry for bread flours, 1, 60, 251, 268,  
345, 395; 2, 181, 216, 228, 233; 3, 1,  
70, 93, 130, 246, 303, 395; 4, 157,  
237, 450; 5, 150, 158, 209, 225, 233,  
245, 277; 6, 53, 102, 249, 339, 397;  
7, 351; 8, 361; 10, 560, 588, 593, 599,  
601

- used in commercial cracker doughs, 1, 345  
variability in experimental, 1, 251

- Baking Ingredients**, chemical analysis of,  
8, 483

- Baking Ovens**, critical study of, 6, 286; 8,  
278; 9, 221, 226

**Baking Pans**

- for the standard experimental baking  
test, 5, 161; 6, 251, 304; 9, 206; 10,  
579

- greasing of, effect on bread properties, 3,  
2; 8, 66

- influence on variability in experimental  
baking tests, 1, 255; 2, 231, 234; 4,  
159; 6, 304; 9, 206; 10, 560

**Baking Powder**

- determination of  
carbon dioxide in, results of collabora-  
tive tests, by the A. O. A. C.  
gasometric procedure, 7, 477  
carbon dioxide in, by the Chittick  
method, 5, 482

**Baking Powder Residues**

- H-ion concentration of and residual CO<sub>2</sub>,  
2, 385

**Baking Procedure**

- biscuit flours*  
experimental tests for evaluating, 2,  
90; 3, 336; 9, 414  
studies with hard sweet biscuits, 5, 428

*bread flours*

- basic A. A. C. C. method for evaluat-  
ing, 3, 216; 4, 149, 291, 299, 436;  
5, 168, 277, 289; 6, 121, 249, 263,  
414; 7, 322, 348; 8, 47, 64, 95, 113,  
179, 190, 267, 293, 381, 496, 512;  
9, 147, 175, 279, 336; 10, 30, 141,  
353, 367, 531, 547, 555, 560, 585,  
593, 601, 612, 617

- blend formulae, effectiveness in rela-  
tion to protein range of test sam-  
ples, 7, 39; 8, 187

- bromate additions without sugar, 10, 593  
bromate supplement to the A. A. C. C.

- basic method, 4, 295; 5, 161; 6,  
251, 264; 7, 35, 354, 535, 562; 8,  
47, 64, 113, 179, 190, 387, 496; 9,  
20, 147, 216, 369; 10, 30, 141, 353,  
593, 601

- choice of for the plant breeder, 9, 14;  
10, 601

- comparison of mechanical modification  
of dough and response to bromate,  
9, 16

- comparison of with total protein pep-  
tized and loaf volume, 8, 61  
diastatic supplements to the A. A. C. C.

- basic method, 8, 300; 10, 588  
effect of mixing time on loaf volume

- using Hobart mixer modified by  
Swanson, 7, 325

- evaluating spring wheat flours, 1, 168;  
3, 150, 244; 4, 436; 5, 385; 7, 35;

- 8, 168, 381; 9, 538; 10, 593, 601

- iodate supplements to the A. A. C. C.  
basic formula, 10, 541, 611

- malt-bromate blend formula for esti-  
mated flour quality, 10, 602, 603

- malt-bromate-phosphate formula for  
estimating flour quality, 10, 599,  
602, 603

- mechanical modification of bread  
doughs to replace conventional  
fermentation, 3, 65; 5, 375; 9, 22;  
10, 1

- Baking Procedure, bread flours—cont.**
- selection of for experimental baking tests, 2, 310; 4, 149; 8, 361; 9, 14; 10, 601
  - short-method with elimination of sugar and shortening of fermentation period as replacement for basic A. A. C. C. method, 9, 213; 10, 603, 605
  - sponge and dough method for determining flour quality, 3, 6; 9, 362
  - study of factors influencing fermentation tolerance, 9, 138
  - sundry for bread flours, 1, 160, 261, 268, 345, 395; 2, 181, 216, 233, 310, 315; 3, 1, 65, 130, 201, 216, 244, 252, 303, 395, 412; 4, 68, 157, 291, 299, 389, 423, 441, 450; 5, 146, 158, 208, 225, 245, 277, 375, 463; 6, 102, 121, 141, 164, 249, 340, 415, 506; 7, 66, 322, 331, 351, 358, 557; 8, 63, 207, 265, 361, 393, 510; 9, 10, 34, 65, 137, 175, 331, 359; 10, 130, 515, 531, 533, 545, 555, 560, 585, 593, 599, 601, 605, 612
  - use of wattmeter in the, 9, 22
  - variability in, 1, 25
  - cake flours**
    - commercial formulae, 1, 160; 10, 74, 632
    - comparison of commercial and laboratory methods for testing, 10, 76
    - experimentally milled, 10, 628
    - standard experimental cake test, 6, 312; 7, 364; 8, 252; 9, 407; 10, 627, 632
    - tests for different types of, 8, 510  - cracker flours**
    - application of the Werner method (2, 310) to the evaluation of, 2, 310; 10, 628
    - influence on antirachitic properties of shortenings used in, 10, 124
    - physico-chemical studies taken place during the, 1, 327  - pastry flours, 10, 157**
  - rye flours, 10, 468**
  - soft wheat flours, 4, 310; 5, 299; 10, 141**
  - whole wheat flours, 10, 535**
- Baking Quality**
- relation of
    - flour granulation to, 6, 202
    - H-ion concentration to, 1, 161; 3, 1, 204; 6, 18, 97; 9, 34, 338, 358
    - wheat flour
      - and protein content of flour, 2, 110; 3, 153; 8, 61, 113, 170, 496
      - and water absorption of doughs, 3, 74
      - as determined by the Chopin Extensimeter, 1, 61; 4, 1, 138; 6, 144
      - clear grades (spring and durum), effect of storage on, 6, 540
      - collaborative tests on, hard red winter wheat varieties, 3, 247, 248, 249; 5, 378; 7, 66; 9, 26
      - commercially milled, study of effect of germinated wheat flours on, 3, 174
      - compared by mechanical and conventional means, 5, 376; 7, 66
      - comparison of commercially versus experimentally milled flours, 10, 521
      - differences in, due to variations in gluten quality, 4, 449
      - doughs treated with alkali to modify hydrogen-ion concentration, 4, 268
      - durum wheat flours, 4, 141
      - effect of
        - absorption of nitrate salts by wheat on, 10, 353, 354, 355
        - added diastase on, 2, 222, 224
        - age due to storage on, 1, 175
        - alcohol extraction on, 1, 102
        - bleaching agents on, 4, 453; 5, 432
        - calcium acid phosphate on, 4, 408
        - delayed harvest of wheat on, 5, 142      - different baking procedure on the characteristics of various types of wheat, 7, 85, 354, 535, 562
      - fertilization of wheat with sodium nitrate on, 3, 137
      - large dosages of germinated wheat on, 3, 130
      - lecithin on, 1, 158
      - method of manufacture of dry skim-milk on, 5, 461; 8, 374
      - over-grinding on, 2, 340
      - phosphatide on, 1, 158
      - varying quantities of calcium acid phosphate on, 3, 104
      - wheat weathering on, 5, 121
      - frozen and non-frozen wheat flours harvested and milled at various stages of maturity, 3, 301
      - higher versus lower mathematics in relation to, 10, 213
      - influence of heat treatment of flours on their, 8, 19
      - milled from wheat stored for extended periods, 1, 171, 172, 174, 175
      - milled from wheat supplied with nitrogen at various stages of growth, 4, 76
      - natural versus ether-extracted flours, 8, 393
      - physical chemical properties of ether soluble constituents of wheat flour in relation to, 9, 275
      - relation between peptizability of flour protein and, 7, 219, 527; 8, 47, 113, 190, 496; 9, 147; 10, 38
      - relation of hydrogen-ion concentration of dough to, 4, 261
      - relation of hydrogen-ion concentration and buffer value to, 6, 18
      - relation of, to protein content of wheat and/or flour, 1, 320, 338; 2, 107, 177, 191; 3, 137, 150, 244, 393; 4, 230; 5, 75, 140, 385; 6, 85; 7, 35, 209, 527, 557; 8, 47, 113, 190, 496; 9, 121, 147, 540; 10, 30, 144, 255, 347, 515, 521, 536, 619

- Baking Quality, wheat flour—cont.**
- relation to flour granulation, 6, 202, 211
  - self-rising biscuits, effect of storage of flour at different moisture levels on, 8, 26
  - single figure estimate of, 6, 164
  - some factors influencing, 3, 1
  - utility of extracting flour proteins with distilled water versus the use of inorganic salt solutions for determining, 8, 496
  - viscosity of flour-water suspensions as an indicator of, 1, 323, 338, 341; 2, 177, 195; 3, 171; 4, 147, 240; 5, 121, 171; 9, 481; 10, 39
  - wheat milled at various stages of maturity, 5, 389
  - wheat varieties, results of cooperative tests to determine, 5, 378; 7, 66; 9, 26
- Baking Scores**
- flours containing additions of germinated wheat, 3, 174
  - single figure estimate of, 6, 164
  - use of evaluating whole wheat flours, 10, 536
  - validity of, 10, 214
- Baking Strength**
- and proteolysis in doughs, 5, 101
  - Garnet wheat, 8, 540
  - relation of diastatic activity to, 3, 107; 4, 291; 6, 121; 7, 351; 8, 300, 361; 9, 378; 10, 420, 601
- Baking Temperatures**
- bread, 9, 116
  - within layer, loaf and sponge cakes, 7, 279
- Baking Test**
- A. A. C. C. standard experimental for bread*
  - adaptation of the basic A. A. C. C. procedure for evaluating, soft wheat flours, 5, 299; whole wheat flours, 10, 533
  - advisability of fixed type of test. See report of the 1926-27 committee on standardization of, 4, 299
  - apparatus for dispensing solutions in the, 10, 367
  - calibration of loaf measuring boxes for, 5, 220; 6, 308; 7, 346
  - collaborative trials with the, 6, 274
  - comparison with the commercial type of test procedure, 5, 287
  - conditions causing inconsistent results in, 8, 282
  - correlation of diastatic activity of flour with crust color of loaf in, 6, 121; 7, 357
  - critical study of ovens for use in the, 6, 286; 8, 278
  - criticism of, 4, 303, 305, 309, 310; 8, 368
  - dough thermometers for use in the, 6, 301; 7, 362
  - effect of pan greasing on loaf volume in, 8, 66
  - effect of water absorption on loaf volume, 8, 66
  - evaluating new wheat varieties by the, 8, 381
  - factors influencing the accuracy of baking pans, size, shape, and composition, 6, 304; 8, 102; 9, 206; 10, 579
  - dough mixing apparatus, 9, 178; 10, 560, 612
  - dough molding and punching devices, 9, 179, 184, 223; 10, 560, 585
  - fermentation bowls, size, shape and handling of, 9, 205
  - modifications of baking test formula, 9, 213, 225
  - moulding of dough, hand versus machine, 7, 358; 8, 293; 9, 184, 223
  - oven temperatures effect of top heat, 9, 221, 226
  - punching of doughs, hand versus machine, 9, 191, 223; 10, 560, 585
  - salt effects, 9, 224, 603
  - water absorption of dough, 9, 202
  - yeast handling, 9, 220; 10, 617
  - final report of the A. A. C. C. research Fellow on the standard, 9, 175
  - hand versus machine molding in the, 6, 260; 7, 358; 8, 65, 274, 293; 9, 184; 10, 560, 585
  - history of development of, 5, 366
  - internal characteristics of test loaves resulting from, 5, 295; 6, 253
  - molding procedure, 6, 260
  - value of rolling-pin method, 9, 190
  - new type fermentation and/or proofing cabinet for, 7, 341; 8, 233
  - official status of the Hobart-Swanson mixer in the, 8, 268; 9, 404; 10, 531
  - possible causes for variations in the collaborative test with the, 5, 296
  - preliminary report of the A. A. C. C. Fellow on the development of the, 8, 64
  - problem of standardizing the, 3, 216
  - progress reports of the 1931-32 committee on the standardization of the, 8, 63, 267
  - report form for, 6, 258
  - reporting system for the standard, 5, 289; 6, 253
  - role of diastatic activity in the, 4, 291; 6, 121; 7, 357; 8, 300, 361; 9, 137, 228, 331, 378; 10, 558, 593, 599, 601
  - see reports of the committee on the standard, 2, 232; 3, 252; 4, 299; 5, 158; 6, 249; 7, 348; 8, 265; 9, 404; 10, 531
  - significance of the standards now used in the interpretation of the, 8, 382

- Baking Test, A. A. C. C. standard experimental for bread—cont.**
- standard procedure for the basic A. A. C. C. 5, 158; 6, 249
  - statistical analysis of collaborative tests with the, 6, 286
  - studies with dough mixing apparatus for
    - Fleischman mixer, 8, 65
    - Hobart mixer
      - with paddle arm, 8, 271
      - with two hooks, 9, 178; 10, 575, 612
    - Hobart-Swanson mixer (first model), 8, 269
    - Hobart-Swanson mixer (official model), 8, 270; 9, 178; 10, 575, 612
    - Swanson-Working mixer, 3, 65; 7, 323, 366  - use of supplementary procedures with the, 2, 310; 4, 157, 290; 5, 160; 6, 264; 7, 35, 322, 354, 535, 562; 8, 47, 115, 190, 300, 496; 9, 216, 227, 228, 230; 10, 30, 588, 601, 605
  - utility of mechanical molding in the standard, 7, 358; 8, 65, 274, 293; 9, 184; 10, 560, 585
  - utility of Swanson dough-mixer in the, 7, 322
  - value of, as a measure of breadmaking quality of wheat, 9, 13
  - value of short fermentation procedure, 10, 605
  - variability in, effect of
    - baking pans, 9, 206; 10, 579
    - dividing after mixing versus dividing after fermentation on, 10, 575, 616
    - dough size on, 10, 580, 612
    - experimental milling on, 10, 555
    - mixing procedure on, 10, 574, 613
    - sheeting (S-rolls) on, 10, 561, 585
    - yeast handling and variability, 1, 261; 4, 173; 6, 259; 7, 133; 9, 220; 10, 617  - volume measuring apparatus for small loaves for use with the, 5, 216; 7, 307.
- A. A. C. C. standard for cake flours**
- comparison of
    - creaming procedures for, 8, 254
    - methods of procedure for, 8, 511  - effect of
    - batter temperatures on the, 7, 367
    - manner of incorporating ingredients in cake batters on the, 7, 368; 8, 255
    - \*mixing time on the, 7, 374
    - size and shape of pan upon the, 7, 377  - proposed A. A. C. C. procedure, 9, 408; 10, 627
  - relation of sugar-flour ratios in the formula to the, 8, 260
- score card for use in the, 8, 253
- see reports of the committee on the testing of cake and biscuit flours, 5, 301; 6, 312; 7, 364; 8, 252; 9, 406; 10, 622
- viscosity of acidulated flour-water suspension and the, 7, 374; 8, 262; 9, 169, 425; 10, 622
- biscuit flours**
- methods for testing, see reports of committee on methods of testing cake and biscuit flours, 9, 414; 10, 635
- rye flours**
- tentative A. A. C. C. procedure, 10, 468
- self-rising flours**
- effect of water and kneading on, 3, 338
  - method of preparation and volume measurement 2, 87; 10, 635
  - proportions of leavening agents for, 3, 338
- Baking Tests**
- general, bread flours*
  - automatic proofing device for use in, 7, 331
  - choice of, for evaluating wheat varieties, 9, 14
  - comparison of the quality of commercially versus experimentally milled flours by, 7, 209; 10, 521
  - description of Werner baking procedure, 2, 310
  - discussion of certain of their physical and chemical aspects, 3, 201
  - effect of size and shape of pan on, 5, 146
  - evaluating the quality of wheat varieties by cooperative, 3, 244; 4, 436; 6, 483; 7, 66; 8, 174, 381; 9, 10; 10, 1
  - factors effecting
    - variability in size and shape of fermenting jars, baking pans, type of water, punching schedule, severity of punching, different mixing time and speed, placement of dough crease, use of varying amounts of non-diastatic and high diastatic malt extracts, powdered milk, mineral salts, shortening, cane sugar, cerelose, yeast, salt and pan greasing, the degree of freshness of yeast, the type of yeast, the fermentation period, the proofing period and oven temperatures on the, 4, 157  - importance of fermentation time in, 2, 229
  - interpretation of, 4, 389
  - need for the standardization of, 1, 251; 2, 310; 4, 149
  - on flour from mill streams, 7, 210
  - points for consideration in developing a standard, 6, 414

- Baking Tests, general, bread flours**—*cont.*  
 relation of prolonged fermentation time to loaf volume in, 6, 338; 8, 381  
 results with  
   Blackhull wheat, 9, 15  
   Durum wheats, 3, 150; 4, 136  
   hard red winter wheat varieties, 3, 244; 4, 436; 7, 66; 8, 381; 9, 10; 10, 1  
   Kanred wheat, 9, 15  
   Marquillo wheat, 8, 174  
   Marquis wheat, 1, 168; 3, 150; 5, 75, 385; 8, 174, 381  
   soft red winter wheat varieties, 9, 473; 10, 140  
   spring wheat varieties, 1, 168; 2, 107, 365; 3, 150; 5, 75, 385; 6, 483; 8, 174, 179, 381; 10, 601  
   super hard wheat, 9, 15  
   Tenmarq wheat, 9, 15  
 reversal of punching times in with flour of low initial pH, 3, 214  
 science in, 2, 228  
 separation of gassing power (diastatic activity) from strength in, 6, 121; 8, 361; 9, 378  
 single figure estimate of, 6, 164  
 some factors influencing water absorption in the, 5, 208  
 usefulness of, for studying yeast variability, 6, 196; 10, 617  
 value of, in wheat crop surveys, 4, 395  
 variability in, effect of  
   formulas and methods of procedure, 1, 251; 5, 296  
   personal equation, 3, 202  
   punching doughs, 4, 157  
   with flours of various degrees of granulation, 2, 340; 6, 208; 7, 571; 8, 51  
   with natural versus artificially matured flours, 3, 214; 9, 358; 10, 48, 50
- Baking Time**  
 effect on  
   moisture gradient in hard sweet biscuits, 5, 412  
   swelling of biscuit crumb, 5, 417
- Baking Value**, malt preparations of various proteolytic activities, 8, 221
- Barley**  
 aleurone cells of, chemical composition, 1, 141  
 hygroscopic moisture of, 2, 283  
 manganese content of, 6, 128  
 phosphorus content of, 6, 118
- Benzoyl Peroxide**, flour bleaching studies with, 2, 212; 5, 432; 6, 472; 8, 510; 9, 358, 491; 10, 623
- Beta Chlorine** (See Bleaching; also Chlorine)
- Biometric Analysis**, cereal chemistry data, 8, 69; 9, 239
- Biscuits**  
 baking tests for, 2, 90; 3, 336; 9, 414  
 hygroscopicity of, effect on checking, 5, 425
- moisture gradients in, 5, 408  
 score card for, 10, 636  
 shape of and rate of equalization of moisture gradient, 5, 410  
 shrinkage and expansion in, effect of relative humidity on, 5, 427
- Blackhull Wheat**, milling and baking properties, 3, 245, 247; 4, 439, 441; 5, 376; 9, 15; 10, 1
- Bleaching**  
*flour*  
 discussion of propriety of, 3, 359  
 effect of Agene treatment on  
   baking quality, 4, 453; 5, 431; 8, 510; 9, 358, 424; 10, 623  
   carotene content of flour, 6, 468  
   pH of flour, 1, 59, 133; 2, 212; 3, 204; 9, 358, 424; 10, 623  
 effect of chlorine treatment on  
   baking quality of flour, 3, 204; 4, 454; 5, 432; 8, 510; 9, 27, 358, 424; 10, 624  
   carotene content, 6, 464  
   extensibility of bread doughs, 1, 59  
   pH of flour, 1, 133; 2, 211; 3, 204; 9, 358, 424; 10, 624  
 effect of hydrogen-chloride on loaf volume and gluten quality, 4, 457  
 effect of Novadel on  
   baking quality of flour, 5, 432; 8, 510; 9, 358; 10, 623  
   carotene content of flour, 6, 472; 9, 491  
   pH of flour, 2, 212; 9, 358; 10, 623  
 effect of treatment with Beta-chlorine on  
   bread properties, gluten quality, pH or carotene content, 1, 59, 133; 2, 211; 3, 204; 4, 454; 5, 432; 6, 464; 8, 510; 9, 27, 358, 424; 10, 48, 50, 624  
 resistance of the flour of certain wheat varieties to, 9, 26  
 some oxidizing effects of, 5, 431
- Bone Ash**, composition of, measure of antirachitic potency, 10, 105
- Book of Methods of A. A. C. C.** 4, 326
- Brabender Electric Bleacher**, use in treating cake flours, 10, 624, 625
- Bran**  
 chemical constants of oil of, 3, 21  
 effect of in flour on the accuracy of spectrophotometric measurements of color, 6, 364  
 free fat in, 7, 268  
 lipid content of, 7, 268  
 magnesium, calcium, phosphorus, chlorine and sulphur content of, 6, 398  
 mineral analysis of ash of, 6, 398  
 nitrogen conversion factor for determining protein in, 9, 571  
 studies of the proteins of, 9, 570  
 refractive index of fat of, effect of oven drying on, 7, 254
- Bran Powder**, effect on viscosity flour-water-suspensions, 9, 554

**Bread**

- acidity of, 3, 307; 5, 477; 6, 25, 29, 105; 9, 116  
     agents for retarding the staling of, 9, 65  
     ash content of, 8, 415  
     ash, mineral analysis of, 6, 398; 10, 505, 507  
     calcium content, 6, 398; 10, 505, 507  
     calibration of devices for measuring volume of, 7, 346  
     chemical composition of, 8, 415  
     chlorine content of, 6, 398; 10, 505  
     color, apparatus for determining, 6, 60; 10, 437  
     color, effect of additions of germinated wheat flour on, 3, 130  
     color score of, and test weight per bushel of wheat, 2, 367  
     crude fat content of, 8, 415  
     crude protein content of, 8, 415  
     crumb of  
         effect of additions of germinated wheat flour on, 3, 130  
         improvement in with development of H-ion concentration in doughs, 6, 114  
         moisture content of, 10, 449  
     crumb, color of, compared to color of flour (Munsell system), 6, 67  
     crust  
         color of and diastatic activity of flour, 6, 121  
         moisture content of, 10, 449  
     determination of fat in by the acid hydrolysis method, 7, 263  
     determination of H-ion concentration of, 5, 477; 6, 25, 105, 153  
     effect of age on the compressibility of the crumb of, 7, 1, 24; 10, 73  
     effect of flour bleaching on the characteristics of, 3, 204; 9, 357; 10, 48, 50  
     flavor in, relation to H-ion concentration content, 6, 32, 114  
     from Missouri soft wheat flour, 3, 411  
     grain scores, photographic records and standards for, 1, 149; 6, 253  
     hydrogen concentration, 3, 307; 5, 477; 6, 25, 29, 105; 9, 116  
     effect of initial pH and length of fermentation on final pH and buffer value of, 6, 25, 29  
     increase in water soluble extract of when made from sprouted wheat flours, 10, 420  
     inorganic constituents of, 6, 398; 10, 505  
     keeping quality of, effect of over-grinding of flour on, 8, 44  
     lack of quality in due to absence of sugar at proofing time in doughs, 9, 145  
     magnesium content of, 6, 398; 10, 505, 507  
     measurement of color in, 6, 60; 10, 437  
     method for determining Rope in, 7, 465; 9, 161  
     methods for the determination of volume of, 2, 305  
     moisture content of, 8, 415  
         influence of sugar content on, 2, 317  
         made from sprouted wheat flours, 10, 425  
     nitrogen conversion factor for determining protein in, 9, 271  
     nitrogen-free extract of, 8, 415  
     nutritive value of, improvement in, by use of brewers' yeast, 9, 117  
     phosphorus content of, 6, 398; 10, 505, 506  
     photographing, practical methods of, 6, 69; 7, 313  
     potassium content of, 6, 398; 10, 505, 506  
     quality of, from mechanically modified doughs with only pan proof, 3, 71  
     quality of from over-fermented doughs, 9, 145  
     rare elements in, 10, 505  
     rate of moisture loss in as an index of staleness, 7, 18  
     reference models for texture scores in, 6, 255  
     residual sugar content of, 2, 314  
     segregation of color in, 10, 445  
     small loafes, apparatus for measuring, 7, 307  
     some variable factors of production, effect of absorption, panning, pan greasing, mixing time, mixing speed, temperature of finished dough on bread properties, 3, 1  
     staling of  
         constituents to delay, 9, 65  
         effect of heat on, 7, 8  
         relation to H-ion concentration to, 5, 477  
         viscosimetric method for measuring, 6, 241  
     study of Rope in, 5, 192; 7, 465; 9, 161  
     sulphur content of, 6, 399; 10, 505, 508  
     total solids in, 8, 415  
     type loafes of for the experimental baking test, 5, 289  
     vapor pressure of, as an index of staleness in, 7, 17  
     vitamin B content of, 9, 107

**Bread Crumb**

compressibility of as a measure of staleness, 7, 19, 340; 10, 73

hygroscopicity of, 10, 449

scoring of, 10, 545

swelling of a measure of inherent staleness in bread, 6, 421; 7, 12

tensile strength of, as an index of staleness in bread, 7, 19

**Bread Crust**, hygroscopicity of, 10, 449**Bread Doughs**

acceleration of enzyme activity in by additions of malt, 4, 429

acetone dehydrated, peptization of, 7, 495

acid development in,

    effect of various salts on, 3, 13; 9, 38

- Bread Doughs—cont.**
- importance of, 3, 16
  - acidity of, changes in during fermentation, 3, 16; 8, 12, 155; 9, 35, 341
  - acidity of, increase in due to carbon dioxide and organic acids, 2, 350, 360; 9, 344
  - action of phosphatides in, 1, 153; 5, 223; 10, 64, 65
  - alcohol content, determination of, 9, 337, 343
  - as a colloid system, 2, 267
  - automatic devices for measuring the expansion of, 9, 591; 10, 247
  - automatic proofing device for, 7, 331
  - carbon dioxide production and fermentation time in relation between, 8, 207; 9, 34
  - colloid behavior of, 2, 265
  - dehydration with acetone, 7, 493
  - determination of
    - carbon dioxide in, 1, 295; 6, 52; 8, 364; 9, 389, 592, 604; 10, 247
    - H-ion concentration in, 1, 359; 5, 445; 6, 24, 153; 7, 143; 9, 338
    - total acidity in, 9, 343
  - volatile and non-volatile acids in, 9, 346
  - yeast cells in, 1, 261
  - effect of
    - added proteases to, 7, 498
    - additions of phosphatides and lecithin to on loaf volume, 1, 158; 5, 226
    - dry skimmilk on power consumed during mixing of, 6, 141
    - dry skimmilk on properties of, 9, 533
    - freezing on baking quality of, 3, 303
    - H-ion concentration on the quality of, 1, 161; 3, 1, 204; 6, 18, 97; 9, 34, 338
    - metals during mixing on baking properties of, 9, 636
    - phosphate (mono) on gas ( $\text{CO}_2$ ) development and retention in, 4, 404
    - temperature on the plasticity of, 9, 523
    - varying sugar concentration on the fermentation by-products of, 9, 337
  - expansion of, apparatus for measuring, 1, 295, 301; 6, 53; 8, 361; 9, 591; 10, 245
  - extensibility of
    - as affected by varying percentages of dry skimmilk and determined by Chopin Extensimeter, 6, 144
    - by Chopin apparatus and loaf volume, 4, 239
    - relation to H-ion concentration, 1, 62
  - fermentation of
    - importance in making quality bread, 3, 5
    - made from overground flour, 2, 340; 6, 202; 7, 571
  - fermentation tolerance studies with, 8, 207; 9, 140, 331
  - freezing of, to inhibit enzyme activity, 7, 488
  - gas production in
    - as influenced by H-ion concentration, 6, 99; 9, 34
  - effect of overgrinding of flour on, 7, 579
  - gas retaining powers of ether-extracted flours, 8, 395
  - gas retention in
    - and gluten content of flour, 2, 95
    - apparatus for measuring, 1, 295, 301; 6, 53; 8, 361; 10, 245
    - effect of overground flour, 7, 579
    - factors governing, 6, 506
    - gluten formation in, 2, 269
  - heat of imbibition of, effect of moisture content of flour on, 8, 163
  - hydrogen concentration of
    - development during fermentation, 3, 113; 6, 25, 29; 8, 12, 155; 9, 34, 341
    - influence of different grades of flour on, 9, 1
  - effect of
    - carbon dioxide on, 2, 359
    - dry skimmilk on, 6, 51
    - initial pH and length of fermentation on final pH of, 6, 25, 29
  - relation to the baking properties of, 4, 261
  - increase of maltose in due to addition of germinated wheat, 3, 173
  - influence of mechanical treatment, addition of acids, oxidizing agents and salt on the development of, 4, 423
  - mechanical modification of, some commercial aspects of, 3, 81; 5, 375
  - mechanical modification of with pan proof, effect on bread quality, 3, 71
  - method of panning, effect on bread properties, 3, 2
  - mixing time of, effect on bread properties, 3, 3
  - molding of, a source of error in the standard experimental baking test, 6, 260; 7, 358; 8, 103, 293; 9, 184, 223; 10, 560, 585
  - organic acids in, identification of, 2, 351
  - over-fermented, use of sugar in dough to produce quality bread, 9, 145
  - penetrometer for determining the stiffness of, 4, 283
  - plastic properties of as determined in the Chopin Extensimeter, 4, 6
  - plasticity of, effect of certain factors on, 9, 523
  - protein fractions in, after various periods of fermentation, 3, 97
  - proteolysis in, 7, 487
  - punching of
    - effect on bread properties, 3, 4
    - effect on gas production, 9, 39
    - effect on H-ion concentration, 9, 39, 341
  - quality of, discussion of factors affecting, 2, 273
  - slackening of due to malt enzymes, 4, 427

**Bread Doughs—cont.**

speed of mixing and bread properties, 3, 4  
temperature of and bread properties, 3,  
18  
viscosity of, mechanics of, 2, 271  
volatile and non-volatile acids in, 9, 346  
water absorption of, 10, 522, 144  
and additions of preheated dry skim-milk, 8, 380  
and power consumed during mixing, 6, 142  
as influenced by dry skimmilk, 6, 140  
commercially versus laboratory milled flours, 10, 522  
mechanical method for determining, 10, 21, 547

**Bread Improvers**

methods for the analysis of, 8, 483

**Bread Making**

effect of  
flour granulation on, 2, 340; 6, 202; 7,  
571; 8, 44  
sprouted wheat flour on, 3, 107, 163;  
8, 300; 10, 427  
improvement of break and shred, and color of crumb by use of dried skim-milk, 5, 251  
improvement of by acidulation of sprouted wheat flour doughs, 10, 429  
increase in by use of dry skimmilk, 4, 466  
influence of  
acid development of dough on, 4, 424  
chlorine in tap-water on, 1, 267  
fertilizer salts on, 1, 284; 3, 137; 4, 73;  
10, 353  
mechanical, chemical and enzymatic dough development, hand versus machine mixing on, 4, 429  
oxidizing agents on, 4, 425  
size and shape of pan on, 5, 153  
role of phosphates in, 4, 400

**Bread Scores**

and fermentation times of spring wheat flours, 2, 183  
and viscosity of leached and unleached acidulated flour-water suspensions, 2, 188

**Bread Yeast**

study of protease of, 2, 68

**Breakfast Cereals**

possibilities of mildly toasted wheat-germ as a, 8, 226

**Brewers' Yeast**, source of vitamins B and G, 9, 108; 10, 295**British Flour Millers**, research program, 2, 165**Bromate**, detection of, in baking ingredients, 8, 489**Bromate Differential Test**

use in evaluating wheat flours, 2, 310; 4,  
295, 425; 5, 161; 6, 264; 7, 35, 68,  
355, 527, 557; 8, 47, 113, 179, 190,  
387, 496; 9, 16, 147, 201, 217, 218;  
10, 30, 144, 540, 593, 599, 601

**Bromate Response**

and natural aging of flour, 10, 48  
and protein content of wheats or flour, 7, 35, 527, 557; 8, 47, 113, 179, 190,  
496; 9, 16, 147; 10, 30, 144, 599, 601  
and successive increments of bromate, 6,  
265; 10, 47

effect of

heated wheat-germ on, 10, 64

wheat germ on, 10, 64

fundamental nature of, 10, 62

influence of diastatic malt on, 10, 598

influence of sugar on, 10, 597

of chemically bleached flours on, 10, 48

of frosted wheat flours, 10, 41

of various grades of flour, 10, 51, 56, 57

reaction of whole wheat flours to, 10, 538

relation of damaged wheat flours to, 10,  
39, 41, 45

relation of heat treated flours to, 10, 38

relation of sprouted wheat flours to, 10,  
45

**Bromine Value**, fat of flour mill stocks, 7,  
252**Brown-Duvel Moisture Tester**

accuracy of, compared with the 130° C.  
air-oven method, 8, 325

use of thermometer guards with, 3, 280

**Buckwheat**, hygroscopic moisture of, 2, 283**Buffer Action**

dry skimmilk, 6, 58

flour, comparison of methods for deter-mining, 5, 458

**Buffer Capacity**, relation to ash content of various grades of flour, 7, 57**Buffer Intensity**

variation with flour grade, 7, 57

water extract and suspensions of various flours at different H-ion concentra-tions, 7, 49

**Buffer Value**

*bread*

effect of development of Rope on, 5,  
197

*flour*

relation to good bread production, 3, 11

relation to hydrogen-ion concentration  
and baking quality, 6, 18, 97, 504

value of in determining utility of, 4, 423

**C****Cake**

age, method for determining, 10, 78

baking pans for, 7, 377

change in elasticity of with age, 10, 87

keeping qualities of, 10, 85

measurement of

compressibility of, 10, 80

toughness of, 10, 83

volume of, 10, 76

methods of scoring, 7, 365; 8, 253; 9, 409;

10, 633, 634

temperatures attained in baking, 7, 279

- Cake Batters**  
loss of CO<sub>2</sub> from, 8, 165, 423  
time, compared with specific gravity, to develop optimum creaming conditions for, 8, 254
- Cake Flour**  
basic A. A. C. C. test formula for, 10, 627  
characteristics of suitable, 1, 159; 9, 169  
effect of bleaching on the acidity of, in relation to quality, 9, 422, 425; 10, 623  
importance of fineness of division of, 1, 161; 8, 517; 9, 169  
methods of testing, 1, 159; 8, 510; 9, 424; 10, 623, 632  
see reports of committees on methods of testing cake and biscuit flours, 5, 301; 6, 312; 7, 368; 8, 255; 9, 407; 10, 627, 633  
study of the non-gluten constituents of, 7, 270  
use of viscosity tests to evaluate, 1, 159; 7, 354; 8, 510; 9, 169, 424; 10, 494, 623
- Cake Prints**, value of, 3, 58
- Calcium**, determination of in flour, 4, 49
- Calcium Acid Phosphate (mono)**  
comparison of electrometric and colorimetric methods for determining acidity of, 4, 366  
effect on  
alcoholic fermentation, 4, 407  
baking quality of flour, 4, 408  
control of Rope in bread, 5, 201  
gas production in bread doughs, 4, 407  
viscosity of flour-water suspensions, 3, 102  
yeast reproduction, 4, 407  
effective acidity in, 4, 349  
improver for soft wheat biscuit flours, 2, 370, 379  
neutralization value of, method of determining, 2, 380  
use of, for the control of Rope in bread, 7, 471  
use with bleached flours, 2, 375
- Calcium Content**  
mill stream flours, 4, 51  
wheat, flour, bran and bread, 6, 398; 10, 505
- Calcium Nitrate**, absorption of, by wheat, effect on protein content and bread quality, 10, 353, 354
- Calcium Sulphate**, effect on extensibility of bread doughs, 1, 60
- Calibration**, loaf volume boxes, 5, 220; 6, 308; 7, 346
- Calomel Electrode**, rugged type, 6, 344
- Cane Sugar**, effect on pH and gas production in bread doughs during fermentation, 9, 38, 331
- Carbon Dioxide**  
an index of yeast starvation, 8, 365  
baking powders, self-rising flours, gasometric procedure for determining, 5, 482  
determination of in baking powders by the A. O. A. C. gasometric method, 7, 473  
development of in bread doughs, 1, 293, 364, 392; 2, 95, 331; 3, 166; 6, 51, 98, 213, 504; 7, 138; 8, 207, 361; 9, 34, 344, 604; 10, 58, 245, 421, 601  
effect of  
diastatic malt and/or potassium bromate on production of, 10, 597  
extraction water on viscosity of acidulated flour-water suspensions, 5, 105  
phosphates on development of and retention in bread doughs, 4, 404  
sugar and/or potassium bromate production of, 10, 597  
evolution of in muffin batters, 8, 165, 423  
increase of acidity in flour-water suspensions containing yeast due to, 2, 347  
influence on development of molds in bread, 10, 446  
losses from baking powders during mixing of muffin batters, 8, 165, 427  
losses from bread doughs containing additions of germinated wheat flour, 3, 167  
losses from bread doughs, method of measurement of, 1, 294, 299  
losses from cracker doughs during fermentation, 1, 392  
method for measuring during bread dough fermentation, 1, 293, 300; 5, 181; 6, 51; 8, 361; 9, 591; 10, 245, 421  
presence in bread dough and effect on pH and titratable acidity, 1, 362  
presence in cracker sponges and effect on pH and titratable acidity, 1, 357  
production of in doughs made from sprouted wheat flour, 3, 167; 10, 422  
quantitative measurement of in muffin batters, 8, 165, 423  
rate of loss in fermenting doughs, normal versus overground flours, 2, 331  
relation between production of and fermentation time of Pacific Northwest flours, 8, 207  
relation of to bromate response in bread doughs, 10, 60, 61  
residual and pH of baking powder residues, 2, 386  
storage of crackers in, to maintain quality, 9, 100
- Carbon Tetrachloride**, use in method for determining ash content of original flour in self-rising flours, 8, 475
- Carotene**  
determination of in flour, 6, 347, 457; 9, 491; 10, 277  
isolation of in pure form, 6, 230  
physical-chemical properties of, 6, 232  
quantitative determination of, 6, 227

- Carotene Content**
- commercially milled flours, 6, 362, 366, 368, 370
  - experimentally milled flours, 10, 604
  - flour, effect of storage and bleaching agents on, 6, 218, 457; 9, 491
- Catalase**
- activity of
    - as an index of extent of germination of wheat, 3, 181
    - determination of, as an index of Rope in bread, 7, 467
    - effect of heat on flour suspensions on, 8, 152
    - effect of hydrogen peroxide concentration on, 9, 162
    - method of determination of in wheat, 3, 118
    - relation between amount of catalase containing material and, 9, 167
    - relation between H-ion concentration of medium and, 9, 163
    - relation of time and temperature to, 9, 168
- Catalysts**
- anti-oxygenic in relation to rancidity development of fat, 10, 272
  - importance of in the Kjeldahl determination for protein, 2, 143; 6, 72; 7, 518; 8, 349
  - metallic selenium in the Kjeldahl method, 9, 156, 357; 10, 488
  - selenium oxychloride in the Kjeldahl method, 9, 118
- Cereal Chemistry**
- discussion of present day problems in, 1, 1
  - possibilities of research in, 5, 64
- Cereal Chemistry Data**
- application of the variance analysis to, 9, 239
  - biometric analysis of
    - deviation from type, 8, 73
    - mean as a measure of type, 8, 71
    - probable error concept, 8, 81
    - significance of statistical constants, 8, 85
- Cereal Chemists**
- progress made by, 4, 275
- Cereal Gums**, analysis and significance of, 9, 506
- Cereal Porridges**, method of determining optimum cooking quantity of, 8, 408
- Cereals**
- irradiated, review of patents involving, 8, 433
  - long and short cooked, *In Vitro* digestion of starch in, 10, 243
  - manganese content of and diastatic activity of their malts, 6, 131
- Cereals and Mineral Metabolism**, 7, 456
- Checking of Biscuits**
- factors influencing
    - baking time, invert sugar, mixing time, protein content of flour, relative humidity and shortening, 5, 395
- Chemical Analysis**
- baking ingredients
    - ammonium salts, 8, 483
    - bromate, 8, 489
    - chlorates, 8, 489
    - chlorides, 8, 484
    - iodates, 2, 490
    - iron compounds, 8, 494
    - nitrates, 8, 491
    - perchlorates, 8, 492
    - peroxides, 8, 491
    - persulphates, 8, 493
    - phosphates, 8, 487
    - sulphates, 8, 488
  - wheat, value of for determining quality, 9, 13
- Chemical Constants**, wheat oil, 3, 27; 4, 375; 7, 251; 9, 275, 595
- Chemical Leavening Agents**, characteristic action in doughs, 8, 423
- Chittick Method**, determination of carbon dioxide in baking powder, self-rising flour, etc., 5, 482
- Chlorates**, detection of in baking ingredients, 8, 489
- Chlorine**
- effect of in tap water on
    - bread quality, 1, 267
    - gas production, 1, 271
  - effect on specific conductivity of flour-water extracts, 1, 133, 136
  - flour bleaching with, effect on
    - bread properties, gluten quality, pH and carotene content, 1, 59, 133, 135; 2, 211; 3, 204; 4, 454; 5, 432; 6, 464; 8, 510; 9, 27, 358, 424; 10, 624
    - gluten quality, bread, and/or cake making properties, 3, 204; 4, 454; 5, 432; 8, 510; 9, 27, 358, 424; 10, 624
    - H-ion concentration of flour, 1, 133, 135; 2, 212; 3, 204; 9, 358, 424; 10, 624
- Chlorine Content**, wheat, flour, bran and bread, 6, 399
- Chocolate**, effect of different brands on color of chocolate cake, 7, 61
- Chocolate Cake**, effect of variation of ingredients on color of, 7, 59
- Chopin Extensimeter**
- description of and principles of operation, 1, 40, 51
  - for measurement of extensibility of bread doughs, 1, 38; 2, 102; 4, 138
    - containing dry skimmilk, 6, 144
    - cracker doughs, 1, 383
    - durum flour doughs, 4, 138
  - use of in determining baking value of wheat, 4, 1
  - value of, for indicating baking quality of flours, 1, 61
- Climatic Conditions**
- effect on
    - diastatic activity of wheat flour, 3, 318

- Climatic Conditions, effect on—cont.**  
 milling and baking properties of Black-hull, Kanred, and Kharkof wheats, 3, 244  
 pigmentation of durum wheats, 9, 489  
 quality of wheat, 4, 382
- Cold Water Extract**  
 normal versus overground flour, 2, 329  
 sprouted wheat dough and/or bread, 10, 420
- Colloid Behavior in Dough, 2, 265**
- Colloid Chemistry of Gluten (1, 2, 3, 4),** 6, 373; 7, 222, 587; 8, 439
- Colloid, Lyophilic, cereal gums as, 9, 514**
- Color**  
 angel food cake, effect of acid ingredients and age of egg white on, 7, 248, 249  
 bread, methods for determining, 6, 60; 10, 437  
 chocolate cake, effect of variation of ingredients on, 7, 59  
 determination of in durum semolinas, 4, 143  
 filters, effect on the development of rancidity in foods and feeds, 9, 520  
 flour  
     drying time of wet slick and percentage of, 10, 441  
     effect of bleaching on, 5, 432; 6, 457; 9, 491; 10, 277, 437  
     methods for determining, 3, 84; 5, 551; 6, 33, 227, 347, 457; 9, 491; 10, 277, 437  
     relation to air and oven drying of and intensity of, 10, 422  
     relation to flour ash, 10, 443  
 wheat, method for determining intensity of gasoline extracts, 3, 84
- Combine-Harvested-Wheat**, effect of post-harvest handling on quality of, 7, 428
- Commercial Milling**, comparison with laboratory milling tests, 10, 515
- Common Wheats**, gasoline color values of, 3, 190
- Composition of**  
 bread, 8, 415  
 rice, brown and polished, 9, 601  
 wheat  
     effect of  
         climate on, 1, 279; 2, 288; 3, 244, 316, 436; 4, 376; 9, 74, 485  
         fertilizers on, 3, 187; 4, 78; 9, 76, 78; 10, 347  
         plant nutrition on, 4, 73; 9, 73; 10, 347
- Compressibility of Baked Products**  
 bread, effect of dough formula and temperature on the, 7, 24  
 methods of determination, 7, 19, 340  
 sponge cakes, apparatus for determining, 10, 81
- Conference, International on flour and bread manufacture, 4, 346**
- Constitution of A. A. C. C., Preamble for, 1, 209; 5, 321**
- Constant (b)**  
 glutenin quality factor for wheat flours, effect of method of preparation of flour water suspension on size of, 4, 119  
 method of determination, 1, 75  
 values for  
     cracker flours, 1, 338  
     durum flours, 4, 137  
     germinated wheat flours, 3, 171  
     mill-stream flours, 1, 323  
     various classes of flours, 4, 240
- Conversion Factor**  
 nitrogen content of  
     bran into protein content, 3, 196; 9, 261  
     bread into protein content, 9, 261  
     flour into protein content, 3, 196  
     wheat into protein content, 3, 197; 9, 261
- Cookies**  
 effect of flour bleaching on the quality of, 9, 422  
 effect of color of molasses on appearance of, 5, 264  
 influence of pH and sodium bicarbonate on color of, 5, 261  
 influence of time and temperature of baking upon properties of, 5, 266  
 spectrophotometric analysis of, 5, 257
- Cookie Flours**, tests for evaluating, see report of committee, 9, 420; 10, 624
- Cookies, Sugar**, comparison between commercial and laboratory tests with, 10, 630
- Cooking Qualities**  
 cereal porridges, 8, 403  
 rice, 9, 317
- Copper**, efficiency as a catalyst in protein determinations, 2, 145; 6, 75
- Cooperative Relations with A. O. A. C.**, value of, 4, 477
- Corn**  
 ash content of, 10, 318, 320  
 cracked, conditions conducive to the spoilage of, 9, 398  
 hygroscopic moisture of, 2, 282  
 manganese content of, 6, 130  
 phosphorous content of, 6, 115  
 protein content of, 10, 322
- Corn Ash**  
 calcium content of, 10, 319, 320, 322  
 calcium-phosphorous ratio in, 10, 318, 319, 320  
 phosphorous content of, 10, 318, 319, 320
- Corn-Meal**, fineness of division of, 10, 315, 316
- Cottonseed Flour**, source of vitamin B and G, 10, 294
- Crackers**  
 auto-oxidation of, 9, 50  
 colorimetric method for determining pH of, 3, 183  
 comparison between commercial and laboratory tests on, 10, 630  
 irradiation tests on, 10, 107

**Crackers—cont.**

keeping quality and  
active oxygen content of lard, 10, 268  
fat-aldehyde value of lard, 10, 268  
free acidity of lard, 10, 268  
length of induction period of lard, 10,  
267  
smoking temperatures of lard, 10, 268  
storage conditions, effect of  
atmospheres of  $\text{CO}_2$ , 9, 100  
H-ion concentration, 9, 102  
moisture content, 9, 101  
reheating, 9, 101  
relation of the inductive period of the  
shortening to, 9, 63  
relative humidity, 9, 101  
temperature of baking, 9, 102

**Cracker Doughs**

dispersion of flour proteins during fer-  
mentation, 1, 377  
extensibility of as measured by Chopin  
Extensimeter, 1, 383  
H-ion concentration of during fermenta-  
tion and after neutralization with  
sodium carbonate, 1, 349  
losses in, due to fermentation, 1, 391  
physico-chemical study of the fermenta-  
tion of, 1, 327  
proteolysis in, during fermentation, 1,  
371

**Cracker Flours**

chemical composition of  
ash and protein content, 1, 338, 339  
gluten quality of (viscosity), 1, 338,  
339  
grades of, and utilization of, 1, 338;  
10, 629

**Crackers, Soda**

browning of, 1, 403  
H-ion concentration of, after baking, 1,  
352, 353  
H-ion concentration of, before and after  
storage, 1, 332  
rancidity development in, during storage,  
1, 332  
residue sodium bicarbonate in, 1, 332  
type of shortening used in, 1, 332

**Cracker Sponges**

increase of acidity in, due to  $\text{CO}_2$ , organic

acids, and phytase, 2, 357

**Criteria of the Validity of Analytical**

**Methods**

differences in the consistency of analyt-  
ical results obtained by different  
methods, 5, 343

significance of differences in analytical  
yields, 5, 334

**Crop Rotations**, effect on protein content  
of wheat, 4, 385**Crude Fiber**, bread, 8, 415**Crumb Color**

bread

made from commercial versus labora-  
tory milled flours, 10, 527

measurement of by

Maxwell discs, 10, 437

Munsell system, 6, 67

relation to

ash content and diastatic activity of  
flour, 9, 126  
loaf volume, 9, 123  
protein in flour, 9, 123  
texture of crumb, 9, 124

**Crumb Grain**, bread, scoring of, 10, 545**Crumb Texture**

bread

and loaf volume, 9, 122.

made from weathered wheat flours, 5,  
121

relation to crumb, color, and protein  
content of flour, 9, 124

some relationships involving, 9, 124

**Crust Color**, measurement of by Munsell  
procedure, 6, 65**D****Definitions**, spectrophotography, 6, 222**Definitions, (Tentative) Cereal Chemistry****Terms**

relating to bread

grain, 10, 337, 338.

loaf volume, 10, 337, 338

texture, 10, 337, 338.

relating to colloidal properties of dough  
development, 10, 341  
resistance, 10, 343  
response, 10, 333, 340.  
stability, 10, 336, 344  
strength, 10, 336, 343  
tolerance, 10, 342

relating to other baking phenomena

dough volume, 10, 340, 464

dough volume, maximum, 10, 340, 464

fermentation rate, 10, 339, 464

gassing power, 10, 340, 464

limiting (saccharogenic) activity, 10,  
339, 464

Lintner diastatic (saccharogenic) activ-  
ity, 10, 338

potential sugar level, 10, 339, 464

proof (sugar) level, 10, 340

residual (sugar) level, 10, 340, 464

Rumsey diastatic (saccharogenic) ac-  
tivity, 10, 339, 464

sugar level, 10, 339, 464

**Delayed Harvesting**, effect on wheat qual-  
ity, 5, 128**Density**, salt sugar solutions, 5, 471**Density of Wheat**

factors influencing

effect of

delayed harvesting on, 5, 131

freezing on, 4, 20

method of determination, 4, 18, 130

method of drying on, 4, 28, 39

moisture content at time of harvest  
on, 4, 16, 20, 21

- Density of Wheat**, factors influencing, effect of—*cont.*  
 severe weathering on, 7, 165  
 stage of maturity on, 4, 16, 20, 21  
 texture of kernel on, 4, 38
- Dextrose**, biological method for estimating, 10, 151
- Diastatic Activity**  
 and  
   additions of alkalies to doughs, 4, 265, 268  
   carbon dioxide production in bread doughs, 10, 604  
   color of crust, measurement by the Munsell system, 6, 66  
   crust color, correlations between, 6, 121  
   H-ion concentration, 1, 215; 4, 263  
   loaf volume, 4, 246  
   size of starch granules, 4, 243.  
   starch susceptibility, 3, 321  
 commercially versus experimentally milled flours, 7, 206  
 control of, and effect of large dosages, 3, 107  
 determination on ground wheats, 5, 137  
 effect of  
   climate and rainfall on wheat on, 3, 318  
   delayed harvesting on, 5, 137  
   fertilizers applied to wheat on, 3, 320  
   sodium citrate on, 6, 176  
   soil fertility and cropping system on, 3, 319  
   temperature and time of exposure as influenced by moisture content on, 8, 158  
 ether extracted flours, 5, 177; 8, 394  
 flour  
   and gassing power, 9, 391  
   experimentally milled, 3, 123; 5, 137  
   milled from wheat of various stages of maturity, 5, 290  
   milled on a commercial scale, 3, 166  
 flour mill streams (pH constant), 7, 208  
 influence of  
   additions of germinated wheat flour on, 3, 166  
   age of flour on, 3, 176  
   irrigation of the wheat on, 3, 154  
   wheat variety on, 3, 317  
 inhibition of in flour-water suspensions by dry skimmilk, 8, 379  
 malt preparations after removal of proteases, 8, 220  
 methods of determining, 2, 232; 3, 119, 165; 4, 262; 6, 122, 175; 7, 203; 9, 378; 10, 192.  
 effect of time of extraction on value of blank and correction for volume of flour, 6, 177, 179.  
 modification of Rumsey's method, 6, 175  
 relation of  
   manganese content to, 6, 128
- overgrinding of flour to, 2, 330; 6, 202; 7, 573, 579
- rainfall to wheat to, 3, 154
- relative inhibiting powers of different reagents on, 3, 371
- role of  
   in determination of flour strength, 4, 242  
   in the standard experimental baking test, 7, 357
- separation from  
   strength in the baking test, 8, 361  
   strength in the experimental baking test note on, 9, 86
- variation in, 4, 242
- whole wheat flour, importance of, 10, 543
- Diastatic Malt**
- additions of, to bread doughs and shortening of fermentation time, 8, 224, 225
- effect of additions of, to flours of average baking strength, 2, 221, 223, 224
- influence of temperature on optimum H-ion concentration for activity of, 1, 217, 218
- influence on  
   bromate response, 10, 598  
   sugar response, 10, 596
- Dibenzoyl Peroxide**
- bleaching properties of, 6, 472  
 as influenced by mercury vapor lamp, 9, 491
- Dicalcium Phosphate**, neutralizing value of, 2, 384
- Dicarboxylic Acid**, amino acid fraction in gliadin, 5, 473
- Digestibility of Cereal Starches**, influence of time of cooking on, 10, 248
- DK (Schnellwasserbestimmer)**
- dielectric apparatus for determining moisture content of wheat, accuracy of, comparison with the 130° C. air oven method and other moisture testing procedures, 8, 317
- Dough Ball Test**, wheat quality, indicator, 10, 92, 250, 619
- Dough Break**, effect on fermentation tolerance of bread doughs, 9, 141.
- Dough Extensibility**  
 as measured by Chopin Extensimeter  
 effect of  
   chlorine bleaching on, 1, 58  
   fermentation on, 1, 59  
   flour improvers on, 1, 59  
   flour-starch mixtures on, 1, 57  
   flour-water ratios on, 1, 56  
   mechanical treatment of dough on, 1, 54  
   variations in H-ion concentration on, 1, 58
- Dough Fermentation**, by-products of, 9, 341
- Doughs from Sprouted Wheat Flour**, characteristics of, 10, 423
- Dough Mixing**, influence of procedure on variability in experimental baking, 10, 574

- Dough Size**, influence on variability in experimental baking, 10, 580
- Dough Suspensions**
- effect of prolonged fermentation on the viscosity of, 1, 385
  - viscosity studies with, to determine proteolytic activity, 1, 31, 346, 385; 7, 508
- Dough Thermometers**, specifications for, 6, 302; 7, 362
- Dry Skimmilk**
- effect of forewarming on the viscosity of reconstituted dry skimmilk and baking quality of flour, 5, 462, 463; 8, 374, 376
  - method of manufacture on baking quality of, 5, 461
  - effect on baking quality of various flours, 5, 242
  - buffer action of dough, 6, 58
  - fermentation time and pH of doughs, 6, 51
  - H-ion concentration of dough, 6, 57
  - loaf volume, 9, 230
  - plasticity of flour suspensions, 6, 140
  - power consumption of dough containing, while mixing, 6, 143
  - properties of dough as measured by the Farinograph, 9, 523
  - water absorption of doughs, 6, 140
- Drying**
- effect of on density of wheat, 4, 28, 39
  - refractive index of flour fat, 4, 371, 374
  - solubility of gliadin, 2, 120
  - rate of in flour, starch and crude powdered gluten, 4, 197, 198
- Durum Wheat**
- absence of sterols in flours of, 7, 486
  - gasoline color values for, 3, 189
  - pigmentation of, effect of regional and seasonal conditions on, 9, 485
  - relation of protein content of flour to baking quality of, 3, 155
  - viscosity of the starches from, 1, 20
- E**
- Electrical Conductivity**
- flour-water suspensions
- effect of chlorine bleaching on, 1, 133, 136
  - decantates from flour-water suspensions on, 4, 121
  - frozen and non-frozen wheat and/or flour extracts on, 3, 408
  - preheating water-suspensions of dry skimmilk on, 8, 380
  - yeast fermentation on, 2, 77
- wheat, a measure of moisture content, 8, 315, 409
- Electrode**
- Bailey, comparison with quinhydrone electrode, 6, 156
- calomel, rugged type, 6, 334
- quinhydrone, use in cereal chemistry studies, 3, 158, 160; 5, 446; 6, 156, 157; 7, 143, 147; 9, 2
- roll type in Tag-Heppenstall moisture tester for grain, 8, 315
- Embryo (wheat)**
- ash content of, 5, 164
  - ether extract of, 3, 28; 5, 164; 6, 251
  - lipoid content of, 5, 164; 6, 251
  - nitrogen content of, 5, 164
  - phosphorus content of, 5, 164
  - physical chemical properties of, 5, 164
  - study of the oil in, 3, 28
- Enzymes**
- amylase in flour and malt, 9, 305
  - bread doughs, acceleration of by acids, 4, 428
  - diastase, action on raw or ungelatinized starches, 3, 370, 374
  - diastatic, effect on baking quality of flour, 2, 213; 3, 107, 154, 163, 318; 4, 243, 293, 427; 5, 135; 6, 121, 196; 7, 206, 351; 8, 224, 300, 361; 9, 228, 386, 611; 10, 60, 422, 533, 588, 593, 604, 607
  - flour, effect of heat on, 8, 145
  - inactivation of in bread doughs by freezing, 7, 488
  - panase, action on raw starches, 3, 379
  - proteolytic, effect of addition of to bread doughs, 7, 498
  - proteolytic effect on dispersion of flour proteins during cracker dough fermentation, 1, 371
  - estimation of in wheat and flour, (See under proteolytic acitivity methods for determining.)
  - flour protein of frozen and non-frozen wheats, 1, 99
  - imbibitional properties of glutenin, 1, 33
  - in bread yeast, 2, 68
  - of malt preparations, effect of flour strength, 8, 224
- Erratum to Articles by**
- Blish, Sandstedt and Astelford, (10, 392) 10, 639
- Davis and Wise, (10, 210) 10, 502
- de Jong and Klaar, (7, 587) 8, 178
- Fisher and Halton, (6, 97) 6, 504
- Jørgensen, (8, 369, 370) 8, 532
- Karacsonyi, (6, 243) 6, 346
- LeClerc, (10, 162) 10, 262
- LeClerc, (10, 383) 10, 643
- Merritt, Blish and Sandstedt, (10, 192) 10, 639
- St. John and Bailey, (6, 146, 147) 6, 244
- Sullivan and Near, (5, 167) 5, 436
- Swanson and Kroeker, (10, 22) 10, 330
- Treloar, (8, 82, 86) 8, 178

**Erratum to Articles by—cont.**

Treloar, (6, 436) 7, 97

Van der Lee, (5, 10) 5, 332

Working, (5, 230) 5, 332

**Epithelial Cells**, effect of delayed harvest of wheat on, 5, 138**Esters**, in wheat flour oil, 3, 19; 7, 480; 10, 240, 241**Ether Extract**

flour mill stocks, study of methods for determining, 4, 370; 5, 163; 7, 251

wheat embryo, chemical and physical constants of, 3, 27

wheat flour, chemical and physical constants of, 3, 27; 9, 275

**Ether Extracted Flour**

breadmaking characteristics of, 5, 169; 8, 392; 9, 275

diastatic activity of, 8, 394

extensibility of doughs made with, 5, 171

gas retaining ability of, comparison with natural flours, 8, 395

viscosity of flour-water suspensions of, 5, 171

water absorption of, 5, 171; 8, 394

**Expansimeter Readings**, on diastatically active flours, 3, 190**Experimental Baking Tests**, see under baking tests, A. A. C. C. standard experimental**Experimental Milling Test**

influence on variability of experimental baking tests, 10, 555

limitations of, 9, 11

relation to commercial milling, 10, 515

value of in wheat crop surveys, 4, 400

**Extractable Polysaccharides**, a measure of staleness in bread, 7, 10**F****Factors**

conversion for determining protein content of,

bran, 3, 196; 9, 261

bread, 9, 201

flour, 3, 196; 9, 261

wheat, 3, 197

effecting density of wheat other than kernel size, 4, 44.

preharvest, affecting quality of wheat, 4, 376

resisting acid formation in doughs, 3, 11

**Farina**

chemical composition of, 10, 397

moisture content of, 10, 396

National Macaroni Manufacturers' Association's definitions for, 10, 393

United States definitions for, 10, 339

United States standards for, 10, 393

**Farinograph**

description of and results of studies with, 9, 617

use of for flour and wheat blending, 9, 617

use of to determine the effect of dry skim-milk in bread doughs, 9, 523

**Farinograph Values**, comparison with gluten content quality time tests, 10, 93**Fat**

acidity of, extracted by ether from different grades of flour exposed to extended periods of storage, 8, 135, 139, 140, 141

auto-oxidation of and anti-oxigenic catalysts, 8, 529

bread, 8, 415

development of rancidity in, 8, 518; 9, 50, 91, 519; 10, 123, 263

determination of in flour mill stocks after drying, comparison with moisture basis practice, 4, 375

by acid hydrolysis method, 7, 263

a measure of total fat content, 7, 269 correlation between amount extracted and refractive index of, 4, 371

critical study of methods, 4, 370; 7, 251

effect of solvents and drying on the quantity and quality contents of, 7, 253

purity of extract by different procedures, 7, 257

flour, some physical and chemical properties of ether extracted, 3, 27; 7, 251; 9, 279

influence of on the gas retaining powers of ether extracted flour, 8, 399

wheat, acid and iodine numbers of, 9, 597

wheat-germ, physico-chemical study of, 3, 27

**Fatty Acids**, role in determining acidity of flour, 9, 133; 10, 137**Feed Grains**, proper storage of, 7, 134, 428; 9, 393**Feeding Stuffs**, collaborative studies on the analysis of, 5, 275**Fellowship fund**, A. A. C. C., contributors to, 6, 310; 7, 403**Fermentation***bread doughs*

and gluten content of flour, 2, 95 changes of acidity in during, 3, 13; 6, 25, 29, 98; 8, 12, 155; 9, 1, 34, 341

effect on flour proteins, 3, 90

modification of dough texture due to yeast, 3, 79

*by yeast*

changes in the physical properties of flour due to, 2, 77

effect on the viscosity of flour-water suspensions, 7, 117

cracker doughs, physio-chemical study of, 1, 327

effect of overgrinding flours on rate of, 2, 331; 6, 202; 7, 571

importance of in successful bread production, 3, 5

organic acids produced in cracker sponges and bread doughs due to, 2, 357, 360

**Fermentation, Alcoholic**

effect of

- Fermentation, Alcoholic, effect of—cont.**  
 calcium acid phosphate on, 4, 405  
 sugar on, 9, 331
- Fermentation Cabinet**, new type of low temperature variability, 7, 341; 8, 233
- Fermentation Periods**, methods for determining optimum, 1, 294, 299; 5, 181; 6, 51; 8, 207, 361; 9, 591, 611; 10, 245
- Fermentation Process (Cracker)**, influence on antirachitic properties of shortenings, 10, 124
- Fermentation Rate**  
 doughs containing dry skimmilk, 5, 242; 6, 55  
 effect of  
   dough break on, 9, 137  
   flour grade on, 5, 184; 6, 97; 9, 34  
   potassium bromate on, 10, 60  
 influence of H-ion concentration on, 6, 32, 97; 8, 12, 155; 9, 1, 34, 331  
 relation of sugar content of dough to, 8, 361; 9, 38, 142, 331, 611
- Fermentation Time**  
 comparison of, natural versus ether extracted flours, 8, 398  
 effect of  
   Beta Chlora on, 3, 205  
   germinated wheat flour on, 3, 130  
   on loaf volume, 6, 338  
 elimination of by mechanical modification of doughs, 3, 65  
 increase of in flour by use of dried skim-milk, 5, 246, 465  
 influence of flour granulation on, 2, 340; 6, 212; 7, 571  
 Pacific Northwest flours relation of CO<sub>2</sub> production to, 8, 207  
 reduction in of bread doughs containing diastatic malt of various strengths, 8, 224  
 relation of pH to, with varying sugar concentrations, 9, 38, 341  
 soft wheat flours, 5, 300; 10, 140
- Fermentation Tolerance**  
 basis for judgment of, 9, 332  
 discussion of, 4, 292; 6, 506; 10, 55  
 effect of  
   additions of lactic acid to dough, 9, 144  
   remixing dough, 9, 139  
   repeated punching of doughs, 9, 141  
   supplementing sugar supply of dough, 9, 142  
   use of dough breaks, 9, 141  
   varying sugar concentration in doughs on, 9, 349  
 factors influencing, 9, 137.  
 mechanical modification of dough as an indirect index of, 5, 384
- Ferric Compounds**, detection of in baking ingredients, 8, 494
- Flavor in Bread**, relation of H-ion concentration to, 6, 32, 97
- Flaxseed**, hygroscopic moisture of, 2, 284
- Flour**  
 acetone extracts of, physical and chemical properties of, 7, 480  
     acid and basic strength of, 2, 205  
     acidity  
       alcohol method for determining, value of, 6, 530; 9, 132; 10, 130  
       colorimetric spot-test for, 6, 162  
       comparison of  
         alcoholic and water extracts using phenolphthalein and curcuma as indicators, 6, 526  
       A. O. A. C. and Greek methods for determining, 6, 520; 7, 398  
       conversion factor, Greek acidity method to A. O. A. C. method values, 6, 534  
       determined by various methods before and after extraction with ethyl ether, 8, 140, 141, 394  
       development of  
         in fine and coarsely granulated material, 6, 214  
       in storage, 1, 117; 6, 530; 10, 131, 134  
       fresh suspension method for determining, 10, 130  
       Greek method for determining, 6, 530  
       H-ion concentration of  
         methods for determining, 1, 120; 2, 215; 3, 131, 158, 174, 183, 282; 4, 321, 423; 5, 134, 445; 6, 18, 97, 153, 162; 7, 49, 119, 143, 204; 9, 6, 34, 338  
       increase of, due to bleaching, 1, 133, 135, 211, 212; 9, 376; 10, 623  
       increase of, with age in various grades of, 1, 134, 137; 8, 35, 137, 139; 9, 376  
       limits for  
         American grades of flour calculated as lactic acid, 6, 527  
         by Greek alcoholic extraction procedure, 6, 527  
         for various types of flours, 6, 527  
       nature of the acids responsible for, 8, 134  
       role of  
         fatty acids in determining, 1, 137; 8, 134; 10, 137, 138  
         phosphates in determining, 10, 135, 136  
       significance of in foreign specifications, 6, 615  
       total, titratable methods for determining, 1, 356, 360; 2, 346; 3, 131, 174, 408; 5, 134; 6, 515, 521, 530; 7, 397; 8, 29, 134; 9, 128; 10, 129  
       value of A. O. A. C. method for determining, 10, 136
- acids**  
 alcohol soluble, 9, 132; 10, 131  
 ether soluble, nature of, 8, 144; 9, 133, 10, 132  
 age of  
     and bromate response, 10, 46  
     effect on plasticity of, 6, 406

- Flour, age of—cont.**  
 development of acidity with, 1, 117; 8, 29, 137, 139; 9, 376; 10, 130  
 relation to fermentation time, 8, 212  
 speed of, aging in relation to bleaching agents, 9, 358  
 albumin preparation and analysis of, 4, 224  
 alcohol treatment of and lowered baking quality, 5, 174  
 alcoholic extraction with 70%  $C_2H_5OH$  and refractive index of extract, 5, 49  
 alcoholic extraction with 67%  $C_2H_5OH$  as determinant of flour acidity, 9, 128; 10, 130  
 amino acid content, effect of maturity of wheat on, 2, 12; 3, 402; 4, 392  
**ash**  
 determination of  
   by direct weighing procedure, 8, 312  
   effect of temperature on, 5, 60  
   methods of procedure, 1, 82, 190; 2, 38, 247, 395; 3, 226, 267; 4, 317, 462; 5, 56; 6, 134; 7, 83; 8, 232, 312; 9, 158, 431  
 use of oxygen to hasten, 8, 232  
 value of, 2, 228  
 fusibility of and mineral constituents of, 5, 56  
 glycerol as an aid in determining, 1, 82, 190; 2, 38, 246, 395; 3, 226, 267; 4, 317, 462  
 hygroscopy of, 6, 134  
 influence of  
   maturity of wheat plant on, 1, 91  
   on peptization of flour proteins, 10, 226  
 magnesium acetate method for determining, 9, 431  
 mineral analysis of, 6, 398  
 mineral constituents of and fusibility of, 5, 59  
 new aids in the determination of, 7, 83  
 potassium and phosphorus content of and fusibility, 5, 59  
 rapid method for determining, 9, 158  
**ash content**  
 and methyl alcohol color values, 3, 363  
 and proteolysis of flour-water suspensions, 5, 97  
 commercially versus laboratory milled, 10, 516, 517  
 correlation with acidity as determined by A. O. A. C. method, 8, 37  
 correlation with ash content of wheat, 5, 437  
 ether extracted, 5, 171  
 milled from weathered wheat, 5, 120; 7, 165  
 variance in analysis for, 10, 209  
**baking quality of**  
 and H-ion concentration, 1, 161; 3, 1, 201; 4, 261, 423; 6, 18, 51, 97, 504; 9, 1, 34, 388, 388, 424; 10, 613.  
 and peptization of proteins, 7, 219, 527; 8, 47, 113, 190, 496; 9, 147; 10, 30  
 as influenced by stage of maturity of wheat, 5, 389  
 effect of  
   bleaching on, 3, 201; 4, 453; 5, 432; 8, 510; 9, 358; 424; 10, 49, 623  
   dry skimmilk on, 5, 242; 6, 51, 140; 8, 374; 9, 230, 527  
    $NaNO_2$  applied to wheat on, 3, 137; 4, 73; 10, 347  
   overgrinding on, 2, 340; 6, 202; 7, 571; 8, 44  
   weathering of wheat on, 5, 117; 7, 162  
 milled from different wheat varieties, 3, 244; 4, 436; 6, 483; 7, 66; 8, 174, 381; 9, 10; 10, 1  
 milled from frozen and non-frozen wheat harvested at various stages of maturity, 3, 301, 402  
 relation of H-ion concentration and buffer value to, 3, 1; 6, 18  
 various grades of, 4, 423; 8, 137, 394; 9, 6  
**basic strength of**, 2, 205  
**biscuit**, tests for the quality of, see reports of the subcommittees on tests for biscuit and self-rising flours, 9, 414; 10, 635  
**bleaching of**  
 chemical changes incident to, 9, 374  
 desirability of, 3, 359  
 effect of, on baking strength, carotene content, H-ion concentration and gluten quality, 1, 59, 133; 2, 211; 3, 204; 4, 453; 5, 432; 6, 362, 460; 8, 510; 9, 27, 358, 424, 491; 10, 49, 623  
 some oxidizing effects, 5, 431  
 buffer intensities of at different H-ion concentrations, 7, 49  
 buffer value of and period of good bread production, 3, 10  
 buffering action of, 5, 458  
**cake**  
 basic A. A. C. C. formula and procedure for testing, 9, 407; 10, 627  
 characteristics of commercial, 1, 169; 10, 623  
 see reports of committee on development of method for testing cake flours, 5, 301; 6, 312; 7, 364; 8, 252; 9, 406; 10, 622  
 value of viscosity test for predicting certain properties of, 7, 374; 8, 262; 9, 169, 424; 10, 494.  
**calcium content of**, 6, 398; 10, 505, 507  
**carotene content of**  
 determination of, 6, 227, 347; 9, 493; 10, 277  
 effect of storage and bleaching on, 6, 218, 457  
 experimentally milled, 10, 604

**Flour—cont.**

- changes in physical properties of due to yeast fermentation, 2, 77
- chemical composition of*  
influence of granulation on, 6, 208  
stage of maturity of wheat on, 5, 390  
weathered wheat on, 5, 117; 7, 162
- chlorine content of, 6, 398; 10, 505, 508
- color*  
colorimetric procedure for determining, 3, 84; 5, 351; 6, 33
- critical study of methods for determining*, 5, 351
- effect of granulation on, 6, 208
- factors determining, 6, 218
- Maxwell discs for determining, 10, 437
- methods for determining the gasoline soluble pigments of, 3, 84; 5, 351; 6, 33, 227; 9, 491; 10, 277
- methyl alcohol values, 5, 360
- milled from durum wheats, 4, 123
- Munsell system for determining, 6, 60
- segregation of, 10, 441, 442
- spectrophotometric method for determining, 4, 144; 6, 227
- cookie*  
commercially and experimentally milled, comparisons between, 7, 195; 10, 515, 521
- tests for evaluating, 5, 395; 9, 420; 10, 624
- cracker*, chemical characteristics of, 1, 338
- detection of naphthalene in, 3, 60
- diastase free*, method of preparation, 6, 177
- diastatic*  
biochemistry of, 10, 420
- character of bread resulting from the use of, 3, 190, 173; 8, 303; 10, 423
- from sprouted wheat, 3, 107, 163; 4, 241; 8, 300; 10, 420
- production of on commercial scale, 3, 163
- diastatic acidity of*  
and the experimental baking test, 4, 292; 6, 121; 8, 300, 361; 9, 387, 611; 10, 60, 533, 588, 602, 607
- correlation with crust color, 6, 121
- effect of fine grinding on, 2, 325; 6, 202; 7, 573
- methods of determining, 2, 232; 3, 119; 4, 263; 6, 122, 175; 7, 203; 9, 378; 10, 192
- relation of gassing power of flour, 3, 167; 6, 51; 8, 361; 9, 391, 611
- drying of*  
and discoloration, cause of change 4, 375
- effect on ether extracts of, 4, 372
- enzymes of*, effect of heat on, 8, 145
- enzymic activity of*, effect of heat in the presence of moisture on, 8, 157
- ether extracted*  
bread making characteristics of, 5, 169; 8, 392; 9, 275
- extensibility of doughs made from, 5, 171
- H-ion concentration of, 1, 137; 5, 177; 8, 184
- loaf volume of bread from, 5, 171; 8, 392; 9, 275
- quality of bread from, 5, 171; 8, 392; 9, 275
- various grades, baking quality of, 5, 177
- ether soluble constituents* of, some physical and chemical properties, 3, 27; 7, 251; 9, 285
- family*, some observations on the use of, 8, 262
- fat*  
acidity of, extracted from flours of different grades exposed to extended periods of storage, 8, 135, 139, 140
- determination of by different procedure, 3, 19; 4, 370; 5, 169; 7, 251; 9, 275
- influence on the gas retaining power of ether extracted flour, 8, 399
- refractive index of effect of oven drying on, 7, 254
- sitosterol ester in, 3, 34; 7, 480; 10, 240
- some chemical and physical constants of, 3, 27; 4, 370; 7, 251; 9, 275
- fatty acid content of*, and flour acidity, 9, 133; 10, 131
- fermentation time*  
and dough expansion of Pacific Northwest flours, 8, 208
- determination of, Pacific Northwest flours, 8, 207
- free fat in*, 7, 268
- from different classes of wheat, reaction to dry skimmilk, 5, 463
- from sprouted wheat, aging of, and change in acidity, 3, 175
- gasoline color value of*  
chromate standards for, 4, 468
- critical study of methods for determining, 5, 351
- effect of type of colorimeter, 6, 35
- values for various flours, 3, 193; 4, 468
- gassing power of*  
1, 293; 2, 95; 5, 181; 6, 18, 53, 504; 8, 208, 211, 361; 9, 388, 611; 10, 58, 422, 604
- and refractive index of water extracts, 5, 48
- globulin*, method for the preparation and analysis of 4, 223
- gluten*  
chemical analysis of, 2, 1
- depression by hydration capacity of due to yeast fermentation, 2, 77
- heat of coagulation of, 4, 411
- gluten content*  
correlation with baking strength, 2, 96
- ether extracted flours, 5, 171; 9, 281

- Flour—cont.**
- gluten quality of*
    - and isoelectric point, 2, 202
    - effect of
      - chemical maturing agents on, 4, 451
      - fine grinding on, 2, 325
      - heat treatment of flour on, 4, 451
    - variability of, 1, 323
    - due to grade and variety of wheat, 4, 451
    - in mill streams, 1, 323
  - glutenin, quantitative estimation of, 2, 57; 4, 129*
  - glutenin content of, various grades, 4, 235*
  - grades of*
    - effect of, on properties of bread, 3, 10
    - H-ion concentration of various, 1, 133; 4, 263; 8, 137, 394; 9, 6
    - methyl alcohol extract as a grade determinant, 6, 46
  - granulation of*
    - and cake value, 8, 517; 9, 169
    - relation to chemical composition and baking quality, 2, 340; 6, 202; 7, 571
    - standard procedure for determining, 7, 280
  - heat of hydration of*, factor influencing, 8, 458
  - heat of imbibition of*
    - and size of starch granules, 4, 244
    - effect of moisture on development of, during dough mixing, 8, 162
  - heat treatment of*
    - and baking quality, 10, 39
    - and gas retaining powers of doughs, 10, 39
    - and peptization of flour proteins, 10, 39
    - and viscosity of acidulated flour-water suspensions, 10, 39
    - effect on
      - gluten quality and bread making properties, 4, 453
      - solubility of flour proteins, 8, 18
    - some aspects of, 5, 235
  - hydration of*, in water-suspensions, effect of temperature on, 4, 104
  - H-ion concentration of*
    - and buffer value, relationship between, 4, 430; 5, 458; 7, 49
    - and gas production, 9, 34
    - and loaf volume, 1, 161; 3, 1, 205
    - change with age of flour, 1, 117, 133; 8, 137, 139, 141, 394; 9, 376
    - effect of
      - Agene on, 2, 212; 8, 510; 9, 376, 422; 425; 10, 623
      - Alsop process on, 2, 211
      - Beta Chlora or chlorine on, 1, 133; 2, 211; 8, 510; 9, 376, 422, 424; 10, 48, 623
      - grade of flour on, 1, 117, 133; 4, 261; 8, 137; 9, 6
      - effect on baking tests, 1, 161; 3, 205;
  - milled from*
    - frozen wheat, 3, 301, 402
    - immature wheat, 1, 91
    - sprouted wheat, 1, 132
    - weathered wheat, 5, 121
  - relation to baking quality, 1, 161; 4, 261; 6, 18, 97, 504; 8, 510; 9, 376; 10, 48, 623*
  - value of in testing flours, 4, 423*
  - hygroscopic moisture content of, 4, 184*
  - imbibitional powers, effect of heat treatment on, 8, 6*
  - inorganic constituents of, 4, 47; 6, 398; 10, 503, 505*
  - leavening agents for self-rising, 3, 335; 4, 374; 8, 24, 423*
  - lipoid content of, 2, 5; 5, 163; 7, 268; 10, 66*
  - loaf volume of and*
    - crude protein of flour and/or wheat; see protein content of flour and loaf volume
    - plasticity of flour-water suspensions, 6, 408
  - low diastatic, procedure for testing quality of, 8, 300*
  - low grade*
    - effect of water on pH of, 9, 7
    - hydrolysable constituent in and pH determinations, 9, 9
  - magnesium content of, 6, 398; 10, 505, 507*
  - maltose content of, 9, 384*
  - methyl alcohol values of and ash content, 5, 363*
  - milled from Minnesota and Pacific coast wheat, gas retaining properties of, 8, 208, 211*
  - moisture content of*
    - collaborative study of methods for determining, 1, 190; 2, 236, 318; 4, 311
    - effect on heat of imbibition developed during mixing of bread doughs, 8, 163
    - influence of
      - environment on storage of, 6, 379
      - relative humidity of atmosphere, 6, 388
    - losses and regains during storage, 6, 386
    - methods for determining, 1, 191; 2, 47, 236, 318; 3, 277, 323, 419; 4, 311; 7, 99; 10, 211, 465, 477
  - rapid method (carbide) for estimating, 7, 99*
  - relation to Pekar color test, 6, 410*
  - review of literature regarding the determination of, 3, 323*
  - variance in the analysis for, 10, 208, 482*
  - Munsell system for measuring color of, 6, 60*

- Flour—cont.**
- natural versus ether extracted, gas retaining properties of, 8, 395
  - non-gluten constituents of*
    - critical study of, 7, 270
    - swelling powers of, comparison between hard and soft flours, 7, 278
  - non-gluten protein content of*, 7, 421
  - overground*
    - acid swelling of gluten from, 2, 338
    - ash content of gluten washed from, 2, 337
    - cold water extract of, normal versus overground, 2, 329
    - diastatic activity of, 2, 330; 7, 577
    - effect of, on keeping quality of bread, 8, 44
    - effect on quantity and quality of washed gluten in, 2, 331
    - fermentation rate of, 2, 331
    - injury to baking quality of, 2, 340
    - preparation of, 7, 577
    - relation to fermentation properties of, 7, 571
  - oxidizing agents*
    - methods for their detection and identification, 8, 489
    - use in bread production, 3, 1; 4, 157, 295; 5, 481; 10, 30
  - pastry*, viscosity tests for predicting certain properties of, 8, 262; 9, 169, 424; 10, 494, 623
  - phosphated*
    - baking quality of, 3, 104
    - determination of the ash content of the original flour in, 8, 479
    - keeping quality of, 2, 374
    - optimum storage conditions for, 2, 374
  - phosphatide content of*, 9, 22
  - phosphorus content of*
    - 4, 47; 5, 56; 6, 398; 9, 135; 10, 131, 505, 506
    - and acidity, 9, 7, 131; 10, 131
    - effect on fusibility of flour ash, 5, 63
  - physical changes in, due to yeast, 2, 77
  - plasticity of water-suspension of, 3, 351
  - potassium content of, 4, 47; 5, 56; 6, 398; 10, 505, 506
  - properties of, after extracting with acetone, 7, 483
  - protein*
    - effect of
      - heat on, 8, 1; 10, 30
      - H-ion concentration on the dispersion of, 1, 377
      - yeast fermentation on, 3, 90
    - extraction and determination of, 4, 249
    - importance of moisture in relation to the effect of heat on, 8, 17
    - influence of increasing pH on properties of, 2, 81
    - iso-electric ranges and effect of temperature on, 5, 36.
    - nature of extracted, by hot alcohol, 6, 494
    - non-peptized portion and loaf volume, 8, 129; 9, 153
    - peptization studies with, 6, 1; 7, 215, 490, 527; 8, 15, 47, 113, 190, 496; 9, 152; 10, 222
    - relation of to water absorption, baking quality and loaf weight, 5, 75
    - protein content of, and*
      - gas retention, 2, 95
      - loaf volume, 1, 320; 2, 177, 191, 207; 3, 137, 150, 244, 393; 4, 230; 5, 75, 140, 385; 6, 85; 7, 35, 209, 527, 557; 8, 47, 113, 190, 496; 9, 121, 147, 535; 10, 30, 144, 255, 347, 515, 521, 536, 619
      - comparison of durum and spring wheat flours, 3, 153, 156; 4, 136
      - effect of successive increments of potassium bromate, 9, 150; 10, 49
    - percentage of dry gluten, 1, 242
    - variability in the composition of, 7, 426
    - variance in the analysis for, 10, 210, 481
    - viscosity of leached and unleached acidulated flour-water-suspensions 2, 195
      - effect of ash on, 9, 551
    - protein content of, milled from*
      - durum wheat
      - frozen and non-frozen wheats of various stages of maturity, 3, 301, 402
      - weathered wheat, 5, 117; 7, 162
      - wheat at various stages of maturity, 5, 390
    - proteolytic activity of, milled from*
      - various classes and varieties of wheat, 5, 176
      - weathered wheat, 5, 79
    - viscometric procedure for determining, 4, 112; 6, 182
    - protoeose*, preparation and analysis of, 4, 225
    - quality*
      - determination of by recording dough mixer, 10, 26
      - determined by Chopin Extensimeter, 1, 38
      - gluten swelling test for, 10, 93
    - rare element content of, 10, 505, 509
    - rate of drying, study of, 4, 184
    - reducing sugars in, 9, 385
    - refractive indices of aqueous and alcoholic extracts of, 5, 45
    - relation of additions of various grades of dry skimmilk to the baking strength of, 8, 374
    - report, value of to flour buyer, 4, 492
    - response of various grades of to changes in acidity, 6, 531
    - sampling of*
      - collaboration studies with, 4, 322
      - sampling of, 3, 280
    - selection of tests to determine the baking quality of, 8, 361

**Flour—cont.*****self-rising***

- additions of wheat-germ to as a cereal preparation, 8, 229
- change of pH of by storing at different moisture levels, 8, 26
- determination of the ash content in the original flour of, 8, 477
- optimum moisture content for the storage of, 8, 28
- stability of leavening in, 8, 24
- spoilage**, acidity limits for, 6, 527
- starch**
  - discussion of, 4, 485
  - researches with respect to enzyme hydrolysis, 3, 361
  - size of granules in, 4, 244
  - sizing tests, commercial lots, 6, 204
  - sodium content of, 10, 505, 508
  - soft wheat, effect of bacterial count on development of rancidity in, 10, 233
  - specific heat of, 8, 456
  - specifications for; significance of acidity in, 5, 515, 521
  - viscosity studies with, 1, 7; 3, 361; 10, 298
- storage**
  - and increase of acidity in, 1, 117, 133; 6, 530; 8, 29, 134, 376; 10, 129
  - effect of temperature on, 1, 117
  - effect of on baking quality,
    - milled from common wheats, 1, 177
    - milled from durum wheats, 1, 177
  - influence on H-ion concentration on, 1, 117, 133; 8, 134; 9, 376
- streams, various ash content of, 4, 50, 51, 52
- sucrose content of, 9, 385
- sugar content, wheat harvested at various stages of maturity, 5, 390
- sulphur content, 6, 398; 10, 505, 508
- United States standards for, amendment to, 3, 300
- strength**
  - and chemical configuration of glutenin, 1, 316
  - and tenderness of pastries, 10, 159
  - apparatus to aid in the determination of, 5, 1
  - malt-bromate-phosphate formula for estimating, 10, 593
  - study of baking methods for determining, 8, 361
- water absorption**
  - and bread properties, 3, 2
  - calculation to a uniform moisture bases, 1, 305
  - effect of over-grinding on, 2, 339
  - some factors influencing, 5, 208
  - tables for converting to a 13.5% basis, 2, 42
- water imbibing powers of non-gluten constituents of hard versus soft flours, 7, 278

water soluble extract of and refractive index, 5, 47

weight variations of given volume of, as affected by methods of handling, 9, 311

different classes of flours, 9, 531

millling, blending, storage conditions, 9, 628

**whole wheat**, methods for testing, 10, 533

**yields**

commercial versus laboratory milled wheats, 10, 516, 517

relation of test weight per bushel to, 2, 366; 10, 576

**Flour Improvers**

effect on bread dough or flour

Agene, 2, 212; 4, 453; 5, 431; 6, 468; 8, 510; 9, 358, 491; 10, 623

ammonium phosphate, 9, 38; 10, 593, 599

Arkady, 3, 247; 4, 441; 9, 611

calcium acid phosphate, 2, 370; 3, 104; 5, 201; 4, 363, 400

chlorine, 1, 59; 2, 211; 3, 204; 4, 454; 5, 432; 6, 464; 8, 510; 9, 27, 358, 422, 424; 10, 624

diastatic malt, 1, 29, 215; 2, 213; 3, 374; 4, 165, 429; 8, 217, 361; 9, 38, 305, 603; 10, 588, 595, 601

dibenzoyl peroxide, 9, 491

heat treated flours, 8, 19

malt flour (sprouted wheat flour) 1, 29; 3, 107, 172; 8, 300; 9, 422

Novadel, 2, 212; 5, 432; 10, 624

potassium bromate, 2, 310; 4, 295, 425; 5, 161, 281; 6, 264; 7, 35, 68, 355, 527, 557; 8, 47, 133, 179, 190, 387, 496; 9, 16, 147, 201, 217, 218; 10, 30, 144, 540, 593, 599, 601

potassium iodate, 9, 218; 10, 540, 605

sodium chlorate, 5, 432

various 3, 5; 4, 168

methods for the analysis of, 8, 485

**Flour Oil**, sitosterol esters in, 3, 30; 7, 480; 10, 240

**Flour Specifications**, see report of 1929-30 committee on methods of analysis, 7, 397

**Flour-Water Extracts**

methods for determining the pH of, 1, 120; 2, 215; 3, 131, 158, 174, 183, 282, 427; 4, 321, 423; 5, 134, 445; 6, 18, 97, 153, 162; 7, 49, 119, 143, 204; 9, 6, 34, 338

methods for determining total titratable acidity of, 1, 358, 360; 2, 346; 3, 131, 174, 408; 4, 58; 5, 134; 6, 515, 521, 530; 7, 397; 8, 29, 134; 9, 128; 10, 129

**Flour-Water Suspensions**

effect of CO<sub>2</sub> and organic acids in increasing the acidity of due to yeast fermentation, 2, 346, 348

plastic flow data for various flour concentrations, 3, 53

plasticity of, 3, 40; 6, 400

as influenced by dry skimmilk, 6, 140

**Flour-Water Suspensions—cont.**

role of phytase in increasing the acidity of, 2, 347  
 viscosity of  
 1, 29, 74, 155, 320, 341; 2, 68, 177, 191, 297; 3, 102; 4, 63, 87, 137, 206, 240; 5, 14, 105, 171, 330, 484; 6, 182; 7, 79, 117, 374; 8, 39, 262; 9, 169, 374, 424, 473, 535; 10, 38, 494, 623  
 a measure of proteolytic activity, 2, 72; 3, 90; 4, 112; 5, 82, 97; 6, 182  
 acidulation with lactic acid versus acidity due to yeast fermentation, 2, 81  
 and gluten quality of flour mill streams, 1, 320  
 and loaf volume, 1, 320, 338; 2, 177, 191; 3, 102; 4, 140; 5, 171; 9, 546  
 comparison with Extensimeter readings (Chopin), 4, 136, 240  
 constant "b" and loaf volume, 1, 320, 338; 2, 177; 4, 240; 9, 546  
 constant "b" an index of gluten quality, 1, 75  
 criticism of the work of Scott-Blair et al., (4, 63), 5, 10  
 depression of due to ash content, 9, 551  
 effect of  
     flour concentration on, 4, 63  
     H-ion concentration on, 1, 75  
     hydrogen peroxide on, 2, 297  
     yeast fermentation on, 1, 29; 2, 68, 77; 7, 117  
 increase of due to extraction with halide solutions as compared with distilled water, 8, 43  
 influence of mono-calcium phosphate on, 3, 102  
 procedure for determining, 1, 75, 155, 290; 2, 68, 177, 191, 206, 297; 4, 63, 87; 5, 14, 105, 330, 484; 6, 182, 7, 79, 117, 374; 8, 39, 262; 9, 169, 427, 473, 535; 10, 494  
 yeast fermentation in, effect of various factors on  $\text{CO}_2$  production, 5, 181  
**Formulae**, for calculating water absorption to uniform basis, 1, 305  
**Free Fat**, amount in flour, bran and wheat germ, ether extraction a direct measure of, 7, 268  
**Free Fatty Acids**  
 development of during storage of wheat, 7, 428  
 development of in plain and self rising flours due to bacteria, 10, 233  
 flour, effect on acidity, 1, 137; 8, 134; 9, 133; 10, 129  
 shortenings and keeping quality, 9, 50, 91, 519; 10, 123  
**Freezing**  
 effect on  
     amino nitrogen of immature wheat, 2, 31

density of wheat, 4, 14, 44  
 nitrogen fractions of immature wheat plant, 2, 36  
**Frosted Wheat**, water imbibition of, 7, 108  
**Frozen Wheat**  
 acidity of water extracts of flour from, 3, 408  
 ash content of flour milled from, 3, 406  
 composition of when harvested at various stages of maturity, 3, 402  
 effect on proteolytic activity of flour milled from, 1, 99  
 electrical conductivity of water extracts of flour milled from, 3, 408  
 milling studies with, 3, 301

**G**

**Garnet Wheat**, experimental baking tests with, 9, 540  
**Gas Production**  
 bread doughs  
     apparatus for measuring, 1, 295, 301; 5, 181; 6, 53; 8, 361; 9, 389, 591, 603; 10, 245  
     effect of  
         chlorine in tap water on, 1, 271  
         dry skim milk on the rate of in bread doughs, 6, 55  
         germinated wheat flours, 3, 167; 8, 300; 10, 420  
         phosphates on, 4, 404  
     factors influencing, 9, 1, 34, 331, 603  
     absorption, 9, 610  
     ammonium phosphate, 9, 38  
     diastatic activity, 9, 391  
     H-ion concentration, 9, 35  
     malt extract, 9, 611  
     punching, 9, 39  
     salt, 9, 608  
     sugar, 9, 38, 609  
     temperature, 9, 613  
     yeast, 9, 607  
         yeast foods, 9, 610  
     influence of increasing starch content of flour on, 2, 100  
     influence of potassium bromate on, 10, 58  
     methods for the determination of, 1, 295, 301; 5, 181; 6, 53; 8, 361; 9, 603; 10, 245  
     rate of in fine versus coarsely granulated flours, 6, 213  
     rye doughs, high rate of in, 2, 103  
**Gas Retention**  
 bread doughs  
     apparatus for measuring, 1, 295, 301; 6, 53; 8, 361; 9, 591; 10, 245  
     containing additions of germinated wheat flours, 3, 167  
     effect of phosphates on, 4, 404  
     impairment of by treatment with alcohol, 2, 102  
     influence of potassium bromate on, 10, 58

- Gas Retention**, bread doughs—*cont.*  
 Minnesota versus Pacific Coast flours, 8, 208, 211  
 natural versus ether extracted flours, 8, 395  
 reduction of gluten content and, 2, 98  
 relation to gluten content of flour, 2, 95  
 rye doughs, inferior quality of in, 2, 104
- Gasoline**, efficiency of in extracting carotin from milled products, 6, 362; 9, 491; 10, 277
- Gasoline Color-Extracts**  
 mill streams, comparison of per cent transmittancy and concentration of carotin, 6, 369  
 wheat varieties, comparison of per cent transmitting and concentration of carotin, 6, 367
- Gasoline Color-Value**  
 and protein content of durum wheat flours, 3, 192  
 and ash content of straight grade durum flour, 3, 193  
 common and durum wheats, 3, 188, 190  
 method of determining wheat or flour, 3, 84; 4, 468; 6, 36
- Gassing Power of Flour**  
 methods for determining, 1, 295, 301; 5, 181; 6, 53; 8, 361; 9, 389, 591, 603; 10, 425  
 relation to diastatic activity, 3, 167; 8, 300, 361; 9, 157, 391, 392, 603; 10, 245, 422, 533, 588, 593, 604, 607
- Gelatinization of Starches (Wheat)**  
 by chemicals, 10, 305  
 by heat, 10, 301, 306  
 effect of time and temperature of heating on, 1, 111; 8, 248; 10, 301, 306  
 other botanical sources, 10, 299, 304
- Germination**  
 effect of on the aleurone layer of wheat and barley, 1, 179  
 wheat  
   effect of weathering on, 5, 120  
   effect on the diastatic activity of, 3, 107, 163; 8, 300; 10, 422
- Gliadin**,  
 analysis of various preparations of, 10, 177  
 colloidal chemistry of, 7, 222  
 dicarboxylic amino fraction in, 4, 473  
 distribution of in flour milled from wheats in various stages of maturity, 5, 391  
 factors influencing the solubility of, 2, 117  
 effect of dry versus moist material, 2, 120  
 effect of pH of solutions, 2, 122  
 influence of  
   amount of solute, 2, 120  
   method of preparation, 2, 119  
   nature and concentration of acid or alkali, 2, 118, 124  
   time, 2, 121
- fractional analysis of, 10, 181  
 method for the determination of, 4, 222  
 methods of preparation, 10, 174  
 improved method for the preparation of, 3, 144  
 peptization of by inorganic salts, 10, 171  
 percentage of in various grades and class of flours, 4, 235  
 solubility of in  
   acids, 2, 117  
   alkalies, 2, 123  
   methyl alcohol, 2, 124  
   neutral salts, 2, 125  
 specific rotation of, 1, 134
- Gliadin-Sols**, viscosity of in acetone, 7, 587
- Globulin, Flour**  
 percentage of in, 2, 227  
 preparation and analysis, 4, 223
- Gluten**  
 colloid chemistry of, (1, 2, 3, 4) 6, 373; 7, 222, 587; 8, 439
- Gluten (crude)**  
 carbohydrate material in, 2, 5, 8  
 character of in mechanically modified doughs, 3, 75  
 chemical composition of, 1, 224; 2, 1, 8  
 dispersion of, by various wash waters, 1, 241  
 effect of  
   no yeast fermentation on quantity and quality of, 1, 36  
   weathering of wheat on percentage in flour, 5, 122  
   yeast fermentation on quantity and quality of, 1, 36  
 extraction with hot alcohol, 6, 497  
 factors influencing the determination of in flour, 1, 222  
 pH of sodium phosphate buffer solutions, 1, 233  
 prolonged washing of with boiled, distilled or tap water, 1, 229  
 varying the concentration of salts in the wash water on the determination of, 1, 230  
 washing with 1/10 per cent  $\text{CaCl}_2$  solution, 1, 233  
 washing with 1/10 per cent  $\text{NaCl}$  solution, heat of coagulation of, 4, 411  
 flour  
   modification of by mechanical treatment, 3, 80  
 formation in dough, 2, 269  
   relation to fermentation time tests, 10, 93  
 hydration capacity of, in heat treated flours, 10, 39  
 lipid in, 2, 8, 9  
 machine for testing, 4, 450  
 moisture content of, as influenced by H-ion concentration and kind of wash water, 1, 238  
 overground flours, hydration capacity of, 2, 339

- Gluten (crude)—cont.**
- percentage of in flours of various degrees of granulation, 6, 208
  - protein content of, washed from different flours with various wash waters, 1, 241
  - rate of drying, study of, 4, 184
  - rate of drying of, similar to that of other materials, 4, 198
  - reduction in and gas retaining power of dough, 2, 98
  - relation of total protein of flour to dry gluten and to gluten proteins, 1, 242
- Gluten Proteins**
- alteration of during fermentation, 7, 515
  - determination of iso-electric point of, 2, 203
  - discussion of methods for determining in flour, 7, 421
  - distribution of in flour milled from wheats of various stages of maturity, 5, 391
  - gliadin
    - improved method of preparation, 3, 144
    - solubility of, 2, 117
    - specific rotation of, 1, 314
  - glutenin
    - individuality of, 2, 127
    - method for the direct determination of, 2, 61; 4, 129
    - racemization, rates of, 1, 315
    - new characterization of, 10, 359
  - wheat flour, identity of, 1, 309
- Gluten Quality**
- and fermentation-time test-numbers, 10, 92
  - as determined by constant "b" derived from flour-water viscosity data, 1, 78, 328
  - cracker flours, significance of constant "b", 1, 338
  - effect of climatic conditions on, 2, 290
  - flour mill streams, viscosity a measure of, 1, 323
  - in flours of various granulations, 6, 209
  - influence of lipoids on, 1, 154
  - of international wheats, 10, 94
  - variations in due to different factors, 4, 449
  - weathered wheat flours compared with normal wheat flours, 5, 123
- Gluten Testing Machine, 1, 249; 4, 450**
- Gluten Washing, critical consideration of, 1, 222**
- Gluten Washing Machine, 6, 244**
- Gluten Washing Test, value of, 2, 228**
- Glutenin**
- collaborative reports on the determination of, 4, 320
  - comparison of methods for the determination of, 2, 61; 4, 129; 8, 14
  - distribution of in flours milled from wheats of various stages of maturity, 5, 391
- effect of malt flour, malt extract and yeast on the imbibition of flour glutenin after fermentation, 1, 27, 34
- extraction with hot alcohol, 6, 499
- individuality of, 2, 127
- method of preparation for direct quantitative determination, 2, 57; 4, 129
- non-fractionization of, 2, 130
- non-removal of from flour suspensions extracted with sodium or potassium halides, 8, 43
- percentage of, in various grades and classes of flour, 4, 235
- quantitative indirect methods for the determination of, 1, 87; 4, 222
- racemization of, 1, 312
- relationship between ratio of percentage of glutenin times constant "b" and loaf volume, 4, 241
- specific rotation of, 1, 313
- Glutenin-Gliadin Ratio, heat-treated glutens, 4, 420**
- Glutenin Quality, constant "b" derived from viscosity of acidulated durum flours, 4, 137, 240**
- Glycerol, use in flour ash determinations, 1, 82, 190; 2, 38, 247, 395; 3, 226, 267; 4, 317, 462**
- Grades for Grain (United States), spring wheat, shortcomings of, and remedies for, 1, 65**
- Grain of Crumb**
- bread from commercial versus experimentally milled flours, 10, 529
  - correlation with crumb color, loaf volume, protein content, 9, 121
  - loaves from weathered wheat flours, 5, 121
  - models illustrating, for use in reporting system A. A. C. C. standard experimental baking test, 6, 255
  - photographic records of, 1, 149
- Granulation**
- corn-meal, 10, 316
  - degree of in commercial flours, 6, 204
  - flour
    - effect on diastatic activity of 2, 330; 7, 191, 571
    - effect on fermentation time, gas retention and production, 7, 579, 581
    - relation to baking quality, 2, 340; 6, 202
  - whole wheat flour, importance of, 10, 543
- Granulation Test for Flour, suggested standard procedure for, 7, 304**
- Greek Acidity Method**
- comparison with A. O. A. C. method on spring and durum clear flours subjected to various periods and temperatures of storage, 6, 536; 7, 398; 8, 29, 140, 141; 9, 128; 10, 129
- Gums of Cereals, 9, 505**
- chemical analysis of, 9, 509

**Gums of Cereals—cont.**

- barley gum, 9, 509
- durum gum, 9, 513
- rye gum, 9, 514
- wheat gum, 4, 228; 9, 511

**H**

**Halides Solutions**, effect on viscosity of flour-water suspensions, 8, 39

**Hand Versus Machine Molding**, effect on loaf volume in the standard experimental baking test, 7, 358; 8, 67, 274, 298; 9, 184, 238; 10, 560, 585

**Hard Winter Wheat**, crop characteristics (1923), 1, 26

**Heat**

effect of on

- coagulation of wheat gluten, 4, 411
- flour enzymes, 8, 145
- flour proteins, 8, 1
- the activity of phosphatase, protease and catalase in flour-water suspensions, 8, 147, 149, 152
- improvement of quality of dry skimmilk by pre-heating, 8, 380

**Heat of Hydration**

and specific heat of wheat starch, 8, 464  
starches—potato, rice, and wheat, 8, 468  
wheat flour, 8, 458

effect of granulation on, 8, 465

influence of

- moisture content on, 8, 459
- protein content on, 8, 459
- quality of protein on, 8, 460

practical bakery significance of, 8, 472

**Heat of Imbibition**

effect on temperature of bread doughs, 8, 164

wheat flour, 4, 244

**Heat Treated Flours**

response to bromate, 10, 39

some aspects of, 5, 235

**Heat Treatment of Flour**, effect on gluten quality, and baking properties, 4, 453; 8, 19; 10, 39

**Heat Source**, protein determinations, use of sodium sulphate to supplement, 2, 143; 6, 78; 7, 518

**Heating of Feed Grains**, 9, 363

**Histograms**, illustrating distribution of frequency in cereal chemistry data, 8, 76

**History**, commercial protein testing, 3, 232

**History of the Experimental Baking Test**, 5, 366

**Humidity**

influence upon

checking of biscuits, 5, 425

development of molds in bread, 10, 446

hygroscopic moisture in cereal grains, flour and flaxseed, 2, 275; 6, 379; 8, 200

**Hydration Capacity**

bread doughs, effect of dry skimmilk on, 6, 142

flour, effect of

$H_2O_2$  on, 2, 304

yeast on, 2, 79

gluten, effect of overgrinding of flours on, 2, 339

glutenin, increase of, by yeast in leached suspensions, 3, 99

starches

influence of

concentration of chemical in the cold, on, 10, 309

continued heat on, 10, 309

variability with

botanical source, 10, 300

method of gelatinization, 10, 306, 309

variety of wheat, 10, 30

wheat gluten, effect of heat on, 4, 414

wheat gums, 9, 515

wheat meal, effect of  $H_2O_2$  on, 2, 304

428

**Hydrogen Peroxide**

effect on hydration capacity of flour and/or wheat proteins, 2, 304

relation between concentration of and catalase activity, 9, 162

**Hydrogenated Shortening**

development of rancidity in with ultra violet irradiation, 10, 122

vitamin D content of, 10, 116

**H-Ion Concentration**

adaptability of quinhydrone electrode to the determination of, 5, 448; 6, 153; 7, 143

*angel cake*, influence of acid potassium tartrate, 7, 245

**bakery products**

as determined by the flour-water suspension procedure, 6, 153

as determined by the "ball" method, 6, 153

*baking powder residues*, relation to residual  $CO_2$ , 2, 386

*biscuits*, colorimetric tests on made with self-rising flour, 3, 338

*bread*, 4, 268; 5, 196, 477; 6, 19, 25, 105, 117; 9, 116, 163

after additions of alkali to bread doughs, 4, 268

effect on the development of Rope, 5, 196; 9, 163

effect on vitamin B content of, 9, 115

pH on fresh and stale wheat and rye bread, 5, 480, 481

relation to staling, 5, 477

**bread doughs**

after additions of alkali, 4, 268

and baking properties, 3, 9; 4, 261

and bread flavor, 6, 32, 117

- H-Ion Concentration, bread doughs—cont.**
- and viscosity of dough suspensions, 3, 9
  - development of during fermentation in, 3, 9; 6, 25, 98; 8, 12, 155, 207; 9, 35, 341
  - effect of
    - dry skimmilk on, 6, 51
    - potassium acid phosphate on, 9, 6
    - punching on, 3, 4; 9, 39, 341
  - effect on
    - bread quality, 3, 9; 6, 18, 97; 9, 34, 116, 341; 10, 420
    - extensibility of, 1, 68
    - gas production during fermentation, 3, 9; 6, 24, 98; 8, 12, 155, 207; 9, 35, 341
    - properties of, 6, 32, 114; 9, 34, 341
  - influence of additions of malt-extract and/or sucrose and/or ammonium phosphate on, 9, 38
  - knowledge of as an aid to the solution of bake-shop troubles, 1, 161
  - method of determination, comparison of values using dough versus flour-water suspensions and the quinhydrone electrode, 9, 9
  - titratable acidity of suspensions of, 1, 359
- cake flours, 9, 425; 10, 623**
- chocolate cake, effect on color of, 7, 64**
- cookies**
- effect of
    - on the color of, 5, 261
    - temperature of baking on the, 5, 267
- crackers**
- before and after storage, 1, 332
  - colorimetric method for determining, 3, 183
  - comparison of electrometric with colorimetric procedure for determining, 3, 184
  - intensity of due to baking, 1, 352, 353
  - methods for determining, 1, 330; 3, 183; 6, 153
  - relation to the keeping qualities of 9, 102
- cracker sponges**
- during fermentation and after neutralization with sodium bicarbonate, 1, 349
  - effect of
    - during extraction upon viscosity of flour-water suspensions, 5, 16
    - on dispersion of flour proteins during cracker dough fermentation as a result of proteolysis, 1, 371, 377
    - as a result of acidity, 1, 381
    - on the viscosity of gliadin-sols, 7, 232; 8, 439
  - optimum for, 1, 403
  - relationship between that of sponge and baked cracker, 1, 352
- flour**
- after extended storage before and after extraction with ethyl ether, 5, 177; 8, 187, 189, 141
  - and bread quality, 1, 161; 4, 261, 423; 6, 32, 97
  - and buffer values, variations in during fermentation, 6, 27
  - application to mill control, 2, 209
  - buffer intensities of at different, 7, 49
  - change in ether-extracted flours during storage, 1, 187
  - chlorine bleached, increase of pH in with age and dosage, 1, 184, 185; 3, 201; 9, 376
  - collaborative studies with quinhydrone electrode, 6, 159
  - comparison of electrometric (quinhydrone electrode) and colorimetric methods on various grades of flour and scones, 5, 447
  - comparison of results on various flour using gold electrode and quinhydrone electrode, 5, 450
  - determination of
    - electro metric procedure, 3, 158; 4, 321; 5, 447; 6, 153
    - see report of committee on methods of analysis, 4, 321. See also under acidity, flour, and flour, H-ion concentration of
  - effect of
    - bleaching agents on
      - Agene, 2, 212; 8, 510; 9, 376; 10, 623
      - Alsop process, 2, 212; 10, 623
      - Chlorine, 1, 183; 2, 211; 8, 510; 9, 376, 424; 10, 48, 623
      - Novadel, 2, 212
    - flour concentration on, 5, 453; 9, 6
    - heat treatment on, 8, 8
    - maturity of wheat on, 1, 91; 3, 402
    - phosphate additions to flour on, 9, 7
    - time of extraction on, 5, 547; 9, 7
  - effect on, 3, 205
    - baking tests, 3, 205; 4, 268; 6, 18, 97; 9, 34, 376, 422, 425; 10, 623
    - diastatic activity, 4, 263
  - importance of in bread making, 1, 161; 3, 1, 205; 4, 261, 423; 6, 32, 114; 8, 12, 155; 9, 1, 34
  - influence of
    - increasing pH on properties of flour proteins, 2, 81
    - method of clarification on, 5, 451
  - intestinal, as a measure of vitamin D, 10, 105
  - low grade of, effect of moisture on, 9, 7
  - milled weathered wheat from, 5, 121
  - optimum for
    - activity of diastatic malt, influence of temperature, 1, 217
    - gliadin solubility, 2, 122
    - precipitation of glutenin, 2, 64

- H-Ion Concentration, flour**—*cont.*  
 rate of change  
     sound versus immature flours, 1, 124,  
     125  
     with age and flour grade, 1, 137; 9,  
     376  
 relation of, to catalase activity, 9, 163  
 relation to  
     buffer value and to baking quality of  
     flour, 4, 423; 6, 18, 97  
     diastatic activity in sprouted wheat  
     flour doughs, 10, 427  
     extensibility of dough, 1, 62  
     flour grade, 1, 117, 133; 4, 261; 8,  
     137; 9, 6  
     loaf volume and fermentation time of  
     Pacific Northwest flours to, 8,  
     208  
 residual of neutralized mixtures of  
     acid calcium phosphate and sodium  
     bicarbonate and baking  
     values, 4, 362, 364  
 significance of, in panary fermenta-  
     tion, 9, 34  
**self-rising flour**  
 change in stored at various moisture  
 levels, 8, 26  
 skimmilk, effect of preheating dry  
 skimmilk on, 8, 378  
 starch pastes, 1, 23  
 tempering water and modification of  
 wheat proteins, 7, 154  
**wheat**  
 effect of  
     delayed harvest on, 5, 135  
     on protein content, 2, 210  
 rate of change, of ground versus un-  
 ground 1, 122, 123  
**wheat-germ**, 10, 64  
**Hygroscopic Moisture**  
 barley, 2, 283  
 biscuits, 5, 425  
 biscuits, relation of proportion of total  
 sugar as invert to, 5, 476  
 bread crumb, 10, 449  
 bread crust, 10, 449  
 buckwheat, 2, 283  
 corn, 2, 282  
 flaxseed, 2, 284  
 flour, 6, 397  
 flour ash, 6, 134  
 oats, 2, 283  
 rice, 2, 283  
 rye, 2, 282  
 wheat, 2, 279, 397; 8, 200
- I
- Immature Wheat**, effect of freezing on the proteolytic activity of, 1, 99  
**Index, Cereal Chemistry**, 1, 411; 2, 400; 3, 428; 4, 501; 5, 487; 6, 541; 7, 596; 8, 533; 9, 640; 10, 644  
**Indicators for Ammonia Titrations**, 6, 454
- Induction Period**  
 length of and rate of absorption of com-  
     mercial shortenings, 9, 55  
     oxygen absorption of shortenings, 9, 52  
**Inheritance of Quality in Wheats**, 6, 85  
**Invert Sugar**, effect on checking in biscuits  
     and hygroscopicity, 5, 425  
**Iodates**  
 detection of in baking ingredients, 8, 491  
 use as oxidizing agents in the experimental  
     baking test, 9, 218; 10, 218, 541  
**Iodine Number**  
 barley oil, 3, 22  
 oats oil, 3, 23  
 rye oil, 3, 24  
 shortenings, 9, 97  
 wheat, 7, 428; 9, 595  
 wheat bran, 3, 21; 7, 251  
 wheat flour, 3, 21, 27; 7, 251; 9, 385  
 wheat germ, 3, 21, 27; 7, 251
- Iron**  
 content of, in flour mill streams, 4, 51  
 determination of in flour, 4, 48
- Irradiated Cereal Products**, review of  
 patents affecting, 8, 433
- Irradiated Ergosterol**, chemistry of, 10, 102
- Irradiated Shortenings**  
 potency of, 10, 112  
 used in soda crackers, 10, 124
- Irradiated Soda Crackers**, potency of, 10,  
 114
- Irradiation of Foods**, and Antirachitic  
 activation, 7, 499
- Iso-Electric Point**, and gluten quality in  
 flour, 2, 202
- Iso-Electric Range For Proteins**, 5, 36
- J
- Jørgensen's Buffer Solutions**, standard for  
 gasoline color value determinations, 4,  
 468; 5, 358
- K
- Kanred Wheat**, milling and baking proper-  
 ties of, 3, 245, 247; 4, 439, 441; 5, 376;  
 9, 15
- Keeping Quality**  
 bread, effect of overgrinding of flour on,  
     8, 44  
 crackers  
     factors influencing, 9, 91  
     influence of type and quality of short-  
     ening, 10, 270  
     oxidation studies on shortenings in re-  
     lation to, 9, 57  
 phosphated flours, 2, 374  
 shortenings  
     oxidation studies in relation to the, 9,  
     57  
     factors influencing 9, 91  
 sponge cakes, 10, 85
- Kernel Texture**  
 and density of wheat, 4, 38

**Kernel Texture—cont.**

and protein content of wheat, 2, 108, 152  
correlation with loaf volume, wheat of diverse natures, 6, 94  
correlation with wheat meal fermentation time test, 10, 255  
effect of  
    delayed harvest of wheat on, 5, 142  
    severe weathering on, 5, 119; 7, 165  
relation between and viscosity of hydrogen peroxide treated flour-water suspensions, 2, 304  
use in selecting wheats for breeding purposes, 6, 94

**Kernel Weight**, procedure for the determination of, 8, 418**Kharkof Wheat**, milling and baking properties of, 3, 245, 247; 4, 439, 441**Kjeldahl Method**, study of the use of mercury precipitants in the, 8, 349**L****Lactic Acid**

effect on quality of over-fermented doughs, 9, 145  
occurrence in bread doughs and cracker sponges, 2, 362  
use in short-time doughs, 3, 74

**Lactose**, effect on color of bread crust when supplied by dry skimmilk, 5, 249**Lard**

development of rancidity in with ultraviolet irradiation, 10, 122  
influence on water absorption of flour, 5, 211  
rancidity studies with, 8, 519; 9, 50, 91; 10, 99, 263  
vitamin D content of, 10, 116

**Leavening Agents**

characteristic action of in doughs, 8, 423  
self-rising flours, 3, 335  
stability of, 8, 24

**Lecithin**

effect of  
    on baking quality of flour, 1, 158; 5, 226  
    on viscosity flour-water suspensions, 1, 156

**Light, Monochromatic**, effect on the development of rancidity in feeds and foodstuffs, 9, 520**Line Test**, for determining antirachitic potency, 10, 104**Lintner Diastatic Power**, method of determination, 10, 476**Lintner Value**, inaccurate measure of diastatic converting powers of dough, 2, 227**Lipoids**

a factor influencing gluten quality, 1, 154; 5, 223; 10, 64, 65  
effect on viscosity of flour-water suspensions, 1, 156  
methods for determinating in flour mill stocks, 7, 255

proposed A. O. A. C. method of determination of in flour, 2, 50

**Lipoid Content**

bran, 5, 164  
bread, 5, 164; 6, 398  
flour, 2, 9; 5, 164  
gluten (crude), 2, 5, 8  
wheat, 5, 164; 6, 398  
wheat-germ, 5, 164; 10, 64, 65

**Lipoid Phosphorus**

wheat, extraction of by ether, comparison of distribution in embryo, endosperm and pericarp of grain, 5, 163, 166  
wheat-germ, 10, 64

**Loaf Molding**

effect upon character of bread produced by the standard experimental baking test, 6, 260  
importance of in experimental baking, 7, 358; 8, 95, 274, 293; 9, 184; 10, 560, 585

**Loaf Volume**

and  
    crumb texture scores, 9, 123, 124  
    kernel texture of wheat, 6, 93  
    test weight per bushel of wheat, 2, 367  
as influenced by  
    fermentation tolerance of doughs, 10, 55

    glutenin content of flour, 4, 238  
commercially versus laboratory milled flours, 10, 523, 525  
comparison with fermentation-time-tests, 10, 93, 255, 619

correlation with dough extensibility (Chopin Extensimeter) measurements, 4, 1, 141  
decrease of with high protein flours, 3, 400

device for measuring small loaves, 5, 215  
effect of

    acid accelerating yeast foods on, 3, 17  
    Agene treatment of flour on, 4, 457  
    chlorine treatment of flour on, 4, 454  
    dough acidity on, 3, 9; 6, 25, 98; 8, 205; 9, 35, 341

    flour bleaching on, 9, 358  
    long fermentation on, 6, 338  
    salt concentration of dough on, 9, 224  
    shortening and powdered milk in doughs, 9, 230

size and shape of baking pan on, 5, 151  
size of flour particle on, 6, 214

successive increments of potassium bromate on, 9, 150  
weathered wheat flours on, 5, 121  
effect of additions of

    ammonium phosphate on, 10, 599  
    diastatic malt and/or potassium bromate on, 10, 597  
heat treated wheat-germ to doughs on, 10, 60

    lecithin to bread doughs on, 1, 158; 5, 226  
Novadel on, 9, 362

- Loaf-Volume**, effect of additions of—*cont.*  
 phosphatides to bread doughs on, 1,  
 158; 5, 226  
 sprouted wheat flour on, 3, 130, 173;  
 8, 300; 9, 229; 10, 420  
 sugar and/or potassium bromate on, 10,  
 597  
 wheat-germ to doughs on, 10, 64
- influence of**  
 diastatic activity of flour on, 2, 22;  
 3, 107, 163; 4, 242, 246; 6, 121; 7,  
 195; 8, 300, 361; 9, 187; 10, 593,  
 601
- H-ion concentration of flour on, see  
 H-ion concentration effect on loaf  
 volume
- measuring apparatus, calibration of, 5,  
 220; 6, 308
- regression of, on protein content of wheat  
 using the basic and bromated baking  
 procedure, 8, 182, 186
- relation between and  
 bromate response of spring wheats, 7,  
 35, 527; 8, 47, 113, 179, 190, 496;  
 9, 152; 10, 30
- bromate response of soft wheats, 10,  
 147
- crumb characters, 9, 122
- grade of wheat from which flour was  
 milled, 7, 533
- peptizability of frosted wheat flours, 7,  
 539
- viscosity of starch pastes, 1, 25
- relation to  
 fermentation time and percentage of  
 sugar in dough, 9, 347; 10, 137  
 peptization of flour proteins, 7, 215,  
 627; 8, 47, 113, 190, 496; 9, 152;  
 10, 222
- percentage of flour ash, 2, 97; 9, 535
- protein content of flour. See flour,  
 protein content of and loaf  
 volume
- protein content of durum wheat flours,  
 3, 156; 4, 136
- protein content of wheat. See flour  
 protein.
- sugar supply of dough, 8, 361; 9, 228,  
 331, 611
- viscosity of flour-water suspensions.  
 See viscosity, flour-water suspen-  
 sions.
- water absorption of flour, 5, 76
- yeast starvation, 8, 361
- study of methods for determining, 2, 305
- variability of in the experimental baking  
 test, 7, 358; 8, 66, 267, 293; 9, 175;  
 10, 560, 612
- correlation studies on, 8, 104
- effect of certain modifications of the  
 basic A. A. C. C. formula on, 8, 103
- effect of dough temperatures on, 8, 105
- errors due to  
 different operators, 8, 98
- type and shape of baking pan, 8, 102
- magnitude of molding error relating to,  
 8, 100
- significant minimum difference in  
 loaf volume between single loaves  
 baked from different flours, 8, 112
- variation of with fermentation time, an  
 index of baking quality, 8, 308
- Lytrophic Series**
- halides and viscosities of acidulated flour-  
 water suspensions, 8, 41
- peptization of flour proteins, 6, 1
- M**
- Macaroni Products**  
 chemical composition of, 10, 413  
 commercial characteristics of, 10, 412  
 consumption in the United States, 10, 385  
 exports from the United States, 10, 385  
 food value of, 10, 413  
 imports in the United States, 10, 384  
 manufacturing costs, 10, 387  
 manufacturing processes, 10, 398  
 materials used in manufacture of, 10, 398  
 moisture in relation to storage of, 10, 414  
 National Macaroni Manufacturers' Asso-  
 ciation's specifications for, 10, 411  
 preparation of, for marketing, 10, 410  
 prepared types of in United States, 10,  
 386
- processing of, from materials other than  
 wheat types, 10, 397; 10, 414
- United States definitions for, 10, 397
- United States standards for, 10, 397
- use of artificial coloring matter in the  
 manufacture of, 10, 419
- Magnesium**  
 content of in flour mill streams, 4, 51  
 content of in flour, bran and bread, 4, 51;  
 6, 398; 10, 505, 506  
 determination of in flour, 4, 49; 6, 397;  
 10, 507
- Magnesium-Acetate-Alcohol-Method**, for  
 ashing flours, 9, 431
- Malt Amylase** and hydrolysis of starch in  
 bread, 9, 305
- Malt Diastase**, resistance of wheat starch to,  
 3, 374
- Malt, Diastatic**, influence on optimum H-  
 ion concentration for activity of, 1, 217,  
 218
- Malt Extract** (diastatic), and the production  
 of sugars in bread doughs, 2, 215
- Malt Extract**  
 effect of, during fermentation on imbibitional  
 properties of glutenin, 1, 34  
 effect on color, texture of crumb and  
 volume of loaf, 2, 226  
 effect on pH and gas production in bread  
 doughs during fermentation, 9, 38  
 influence on enzymatic activities of bread  
 doughs, 4, 429
- Malt Flour**, effect of during fermentation on  
 imbibitional properties of glutenin, 1, 34

**Malt Preparations**

diastatic activity of after removal of proteases, 8, 220  
proteolytic enzymes of, 8, 217  
proteolytic activity of, in high and medium diastatic preparations, 8, 220

**Maltose**, increase of in flour by additions of germinated wheat flour, 3, 123

**Manganese Content**

bread, 10, 505  
breakfast foods, 6, 132  
cereals, 6, 130; 10, 505  
cereals and ash content, 6, 130  
cereals and protein content, 6, 130  
mill products, 6, 132; 10, 505

**Marquis Wheat**, results of milling and baking tests on, 1, 168; 3, 150; 5, 75, 385; 8, 173, 381; 10, 25, 601

**Maturity of Wheat**, effect on composition and baking quality, 5, 385

**Maxwell Discs**, for measurement of color in bread, 10, 437

**Measurement of Physical Properties of Doughs**, apparatus for, 1, 38, 249; 3, 65; 4, 1, 450; 5, 1, 375; 6, 244; 9, 10; 10, 1, 617

**Measuring Device**

for determining loaf-volume, 2, 305; 5, 215

for solutions, automatic, 10, 367

for solutions, semi-automatic, 2, 112

**Mechanical Molding**, place in the experimental baking test, 8, 67, 274, 293

**Mercury Precipitates**, color of in the Kjeldahl method as an index of completeness of precipitation, 8, 360

**Mercury Vapor Lamp**, for accelerating bleaching action of dibenzoyl peroxide, 9, 491

**Mesoin Proteins**, 10, 363

**Metals**, effect of removal from dough mixers on bread characteristics, 9, 636

**Methods**

acid hydrolysis procedure for determining fat in flour and bread, comparison of amounts extracted, 7, 263

aids in the ashing of flour, 7, 83

ammonia titrations, indicators for, 6, 454

an oven operated at 130° C, use as a standard for comparing the accuracy of various rapid moisture testing devices and procedures, 8, 316

analysis of

albumin, globulin, and proteose in flour, 4, 221

baking ingredients and yeast foods, 8, 483

variance, cereal chemistry data, 9, 239, 449

A. O. A. C. gasometric method for the determination of CO<sub>2</sub> in baking powder, 7, 473

aqueous solution procedure for controlling plant growth, 10, 347

**baking**

development of experimental, 5, 366  
for determining the quality of hard winter wheat flours, 7, 66; 9, 10;

10, 1

rye flour, 10, 468

soft wheat flours, 10, 140

spring wheat flours, 8, 381; 10, 30, 593, 601

whole-wheat flours, 10, 533

mechanical modification of dough with pan proof only, 3, 65  
procedure for making test biscuits, 2, 90; 9, 414; 10, 635

See reports of committees on the standard experimental baking test of the A. A. C. C., 2, 232; 3, 352; 4, 299; 5, 277; 6, 249; 7, 348; 8, 63, 265; 9, 404; 10, 531

short fermentation procedure, substitute for standard A. A. C. C. procedure, 9, 218; 10, 603, 605

standard experimental test of the A. A. C. C., 5, 158

testing cake flours, 10, 627, 632

see also reports of committees on the standardization of biscuit and cake flours, 5, 30; 6, 312; 7, 364; 8, 252; 9, 406; 10, 622

calculation of rate of drying curves, 4, 188

calibration of loaf volume measuring devices, 5, 221; 6, 308; 7, 346

chemical

for baking ingredients, 8, 482

for measuring proteolytic activity in flour-water suspensions, 5, 83

colorimetric, for determining

H-ion concentration

of crackers, 3, 185

of flour-water suspensions, 5, 445

spot-test, 6, 162

comparison of

A. A. C. C. method compared with Bailey-Hertwig procedure for flour ash, 3, 226

A. O. A. C. method compared with Greek acidity methods on various grades of flours stored for extended periods of time, 6, 530; 8, 37

copper and mercury as catalysts in protein determinations, 2, 145; 6, 75; 8, 849; 10, 488

counting yeast cells in dough, 1, 266

criteria of the validity of analytical, 5, 333

critical study of, for determining flour color, 5, 351

crossing as a method of wheat improvement, 6, 487

detection of naphthalene in flour, 3, 62

determination of

acidity in flour. See acidity flour

acidity (total) minus carbon dioxide in bread doughs, 9, 341

- Methods, determination of—cont.**
- acidity of the fat of mill products, 7, 251; 8, 134
  - action of chemical leavening agents in doughs, 8, 423
  - alcohol in dough, 9, 337
  - amino acids and proteolytic activity in wheat and flour, 4, 58
  - ash in flour
    - calcium acetate procedure, 4, 466
    - direct weighing procedure, 6, 134
    - glycerol alcohol method. See Bailey-Hertwig
    - original flour in self-rising and phosphated flours, 8, 476
    - see reports of the methods of analysis committees; also *flour ash*, methods of determining baking value of wheat by use of Chopin Extensimeter, 4, 4
  - biological changes, dough and bread from sprouted wheat flour, 10, 420
  - bleaching effect of dibenzoyl peroxide as influenced by irradiation, 9, 493
  - cake volume, 10, 76
  - carbohydrates in fermented bread doughs, 10, 421, 424
  - carbon dioxide produced and lost in simple muffin batters, 8, 165
  - carotene in wheat flour, 6, 227, 347; 9, 493; 10, 277
  - catalase activity, index Rope infection of bread, 9, 161
  - catalase activity of wheat, 8, 118
  - color in baked products by use of the spectrophotometer, 5, 256
  - color in bread, 6, 60; 10, 437
  - color in flour extracts, 3, 84; 5, 531; 6, 33, 218, 437; 9, 491; 10, 277
  - compressibility of the crumb of bread, 7, 19
  - cooking qualities of cereal porridges, 8, 402
  - density and volume of wheat, 5, 130
  - diastatic activity of flour, 2, 232; 3, 119; 4, 263; 6, 122, 175; 7, 203; 9, 378; 10, 192
  - diastatic activity (Lintner value) in flour, 10, 476
  - diastatic activity in flour, modification of Rumsey's method, 6, 175
  - digestibility of starches, 10, 248
  - distribution of proteins in wheat bran, 9, 564
  - dough expansion, CO<sub>2</sub> losses and available CO<sub>2</sub> for oven expansion in cake batters, 8, 424
  - effect of heat on coagulation of gluten, 4, 412
  - extensibility of bread doughs, 1, 38; 4, 1
  - fat in milling stocks, 4, 370; 7, 251
  - acid hydrolysis method, 7, 255
  - alcohol hydrolysis method, 7, 256
  - alkaline hydrolysis method, 7, 255
  - Fe, Ca, Mg, P<sub>o</sub>, in flour, 4, 48
  - fermentation rates, sprouted wheat flour doughs, 10, 421
  - flour granulation, 7, 304
  - flour strength, 5, 3
  - gas production during dough fermentation, 2, 295, 300; 5, 181; 6, 51; 8, 361; 9, 388, 591, 603; 10, 245
  - gasoline color values of flour, 4, 468; 5, 351; 6, 33; 10, 277
  - gasoline color value of flour and wheat, 3, 84
  - gelatinized starch in cereal porridges, 8, 404
  - gluten in flour by washing, 1, 231
  - gluten quality
    - by dough-ball method, 10, 90, 250, 619
    - by gluten testing device, 1, 249
    - glutenin
      - comparison of methods
      - direct methods, 2, 57; 4, 129
      - indirect methods, 1, 87; 4, 222
      - see report of methods of analysis committee, 4, 321
    - heat of hydration of wheat flour, 8, 458
  - H-ion concentration
    - and buffer action of flour, 4, 423; 5, 458; 7, 49
    - by use of quinhydrone electrode, 6, 153; 9, 4
    - of bread, 5, 480; 6, 153
    - of dough, 9, 4, 338
  - hygroscopic moisture in cereal grains, flaxseed, 2, 275
  - wheat, 6, 379; 8, 201
  - influence of relative humidity on the moisture content of wheat and flour, 6, 381
  - iso-electric point of flour gluten, 2, 203
  - keeping quality of cakes, 10, 85
  - loaf volume in bread, 2, 305
  - maltose in flour, 9, 381
  - millling and baking properties of frozen and non-frozen wheat at various stages of maturity, 3, 302
  - moisture in flour, 1, 190; 2, 236, 318; 3, 323, 419; 7, 99
  - neutralizing value of mono calcium phosphate, 2, 389; 4, 437
  - peptization of flour proteins by inorganic salt solutions, 6, 2; 7, 530; 8, 50
  - pH of cracker meal, effect of concentration of meal on, 1, 330
  - phosphorus in ether-extract of flour mill stocks, 7, 260

**Methods, determination of—cont.**

- physical and chemical constants of the fat of flour, 3, 27; 9, 285  
 wheat embryo, 3, 29
- plasticity in flour-water suspensions, 3, 49; 6, 145
- power consumed in mixing doughs, 6, 141
- proofing time in dough by automatic means, 7, 331
- protein  
 role of sodium sulphate in, 6, 72  
 selenium as a catalyst, 9, 156, 357; 10, 488  
 selenium oxychloride as a catalyst, 9, 118  
 study of sources of error in, 2, 132  
 protein fractions, wheat flour, 1, 87; 4, 233, 253
- proteolysis in bread doughs, 7, 489
- proteolytic activity of wheat or flour, 8, 151
- proteolytic enzymes in flour and malt extracts, 8, 218
- quality of biscuit and self-rising flours, 9, 414; 10, 635
- quality of pie flours, 9, 411
- rancidity in fats, 8, 518; 9, 50, 91
- rate of drying of flour, starch and crude gluten, 4, 185
- rate of water absorption of wheat, 9, 45
- reducing sugars in flour, 3, 122; 9, 331
- refractive index of methyl alcohol extracts of wheat flour, 5, 53
- Rope in bread, 5, 192; 7, 465; 9, 161
- sitosterol esters, wheat flour oil, 3, 30; 7, 480; 10, 240
- sodium bicarbonate necessary for neutralization of acidity of cracker dough sponges, 1, 354
- specific heat of wheat flour, 8, 456
- staleness of bread, 5, 477; 7, 10, 73; 9, 66
- sugars in flour (Schoorl Method), 10, 475
- sugars (biological) in starch degradation products, 10, 151
- susceptibility of crackers to oxidative rancidity, 10, 266
- susceptibility of fats to oxidative rancidity, 10, 265
- swelling power and compressibility of bread crumb, 7, 10
- tenderness in pastries, 10, 157
- viscosity of dough-suspensions, 1, 31  
 effect of  $H_2O_2$  on, 2, 297
- flour-water-suspensions leached and acidulated and proteolytic activity, 5, 97; 6, 82; 8, 9
- flour-water-suspensions leached and acidulated constant "b," 1, 74, 320, 341; 2, 177, 191; 4, 63, 87, 138; 5, 10, 16, 105, 330; 6, 182; 8, 39; 9, 535
- flour-water suspensions unleached but acidulated, 1, 155, 290; 2, 177, 191; 7, 374; 9, 169, 535; 10, 494
- starch pastes, 1, 14, 110; 3, 365; 10, 298
- wheat-meal-water suspensions unleached but acidulated, 1, 288; 2, 297; 4, 138; 9, 473
- vitamin B, 9, 107; 10, 289
- vitamin D, 10, 104, 109, 111
- vitamin G, 10, 289
- volatile and non-volatile acidity in dough, 9, 346
- volume of bread, 2, 305
- volume of test biscuits, 2, 88; 4, 481
- water absorption in bread doughs by mechanical means, 10, 21, 547
- water soluble extract of flour, 3, 329; 5, 46
- weight per 1000 kernels, 8, 418
- direct procedure for the determination of glutenin, 2, 61; 4, 129
- dough-sheeter S-rolls replacement for hand molding and punching, 9, 194; 10, 560, 585
- electrometric for determining the moisture content of wheat, 8, 315  
 wheat-meal, 8, 409
- electrometric for determining the H-ion concentration of flour-water suspensions, 3, 168; 5, 447; 6, 153
- estimation of neutralizing value of calcium acid phosphate, 2, 380; 4, 368
- evaluation of new wheat varieties, 5, 373; 7, 66; 8, 168, 300, 381; 9, 10; 10, 1, 610
- examination of flour, 8, 2, 141
- experimental baking procedure for the separation of diastatic activity from flour strength, 6, 121; 8, 363; 9, 378
- flour sampling, 3, 280; 4, 322
- for study of proteolysis in flour preparations, 2, 72
- for studying the vitamin B content of bread, 9, 109
- freezing of bread doughs to inhibit enzyme activity, 7, 488
- gasometric (carbide) for determining moisture in flour, 7, 101
- graphic, for recording contour, texture and volume of cake, 3, 57
- Greek, for determining acidity in flour, 6, 530
- Gunning, for determining protein in wheat, effect of catalysts and heat of digestion, 2, 132; 6, 72; 7, 522
- Hausman procedure for nitrogen distribution in proteins, 7, 507

**Methods—cont.**

- Hertwig-Bailey, for determining flour ash, 1, 82; 2, 38  
 hydrolysis of starch in bread by flour and malt amylase, 9, 309  
 influence of shaking time on gasoline color values, 5, 355  
 influence of sodium sulphate as a catalyst in protein determination, 6, 72  
 isolation of aleurone cells in cereals, 1, 140  
**Kjeldahl**  
 apparatus for use with, 6, 215; 7, 168  
 for protein determinations in wheat, effect of catalysts and heat of digestion, 2, 132; 7, 522  
 sources of error, in determining protein content of wheat, 2, 132  
 use of selenium and its compounds as catalysts in the, 9, 118, 156, 357; 10, 488  
 "line test" for determination of antarachitic activation, 7, 452  
**magnesium acetate-alcohol** procedure for rapid ashing of flour, 7, 93; 9, 431  
 means of hastening protein determinations in wheat, 2, 132; 7, 168  
 measuring the compressibility of baked products, 7, 19, 340; 10, 73  
 mechanical method of dough modification, 5, 375  
 micro determination of nitrogen in fat of mill stocks, 7, 258  
 modified A. A. C. C. procedure for the determination of protein in wheat, 7, 177  
 moving wheat to retain keeping qualities, 7, 438  
 nitric acid method for ashing flour, 9, 158  
 observations on the precipitation of mercury in the Kjeldahl method, 8, 349  
 oxidation studies on shortenings, 8, 518; 9, 51, 91; 10, 263  
 oxygen procedure for determining flour ash, 8, 232  
 oxygen-acetate procedure for determination of flour ash, 3, 222  
 perchloric acid method for the determination of wheat protein, 1, 186  
 photographic records regarding grain and texture in cake, 10, 79  
 photographing of bread, 6, 69  
 precision for determining measurement of test biscuits, 4, 482  
 preliminary report of the research fellow on methods of procedure in the standard experimental baking test, 8, 64  
 preparation of  
   diastase free flour, 6, 177  
   gliadin, 7, 224; 10, 174  
   phosphatase, 8, 147  
   wheat starches, 1, 12  
 protein determinations, study of factors influencing accuracy, 1, 186; 2, 132, 235; 3, 194, 232, 254; 4, 313; 5, 269; 6, 72, 429, 454, 512; 7, 168, 380, 391, 518; 8, 307, 349; 9, 26, 570; 10, 211, 477, 488  
 rapid determination of crude protein; method of Lundin and Ellburg, 6, 512  
 rapid electrical for determining the moisture content of wheat, 8, 315  
 recording dough-mixer for estimating flour quality, 10, 21  
 removal of protease from malt preparations, 8, 219  
 scoring cake, 7, 365; 8, 253  
 selection for varietal improvement in wheat breeding, 6, 487  
 separation of gums from cereals, 9, 506  
 Sørensen's formol titration for measurement of proteolysis, 8, 219  
 spectroscopic for studying mineral content of ash, 10, 511  
 standardization of the flour granulation test, 7, 280  
 standardization of Stormer viscosimeter, 3, 365  
 static oxidation procedure for fats and crackers, 9, 53, 55  
 statistical analysis of cereal chemistry data, 10, 477  
 study of  
   starch gels, 8, 244  
   the susceptibility of fats to autoxidation, 8, 527; 9, 50, 91; 10, 263  
   yeast fermentation in flour-water suspensions, 5, 181  
 technological, for study of yeast, 6, 196  
 testing cake flour, 8, 511  
 testing yeast for quality and condition, 7, 136  
 use of oxygen to hasten the incineration of flour ash, 8, 232, 314  
 use of safranine to remove proteolytic enzymes from wheat flour and malt extracts, 8, 219  
 variability in the determination of the percent transmittances of flour extracts, 6, 365  
 viscosimetric procedure  
   for evaluating the quality of dry skim-milk, 8, 380  
   for measurement of staling in bread, 6, 241; 8, 45  
 viscosity flour-water suspensions. See methods, determination of viscosity of flour-water suspension.  
 Wastenay and Borsook's for the fractional analysis of incomplete protein hydrolysates, 7, 512  
 water imbibing capacity of wheat as a measure of damage due to premature freezing, 7, 115  
**Methods of Analysis**, see reports of the committees on methods of analysis, 1, 183; 2, 235; 3, 254; 4, 311; 5, 269; 6, 423; 7, 380; 8, 306; 9, 429; 10, 470

- Methyl Alcohol**  
 for determination of glutenin, 2, 61; 4, 129  
 for extraction of flour pigments, 5, 360  
 use as an extractive to determine flour grade, 6, 46
- Milk**  
 acidity of, effect on color in cake, 7, 61  
 chemical composition of, 5, 242
- Milk Solids**, influence of on hygroscopicity of bread, 10, 449
- Mill Control**  
 application of  
   H-ions to, 2, 209  
   the viscosimeter to, 7, 79
- Mill Chemist**, work of the bakery engineer in relation to, 4, 470
- Mill Feeds**  
 storage of changes in pH of, as influenced by temperature, 1, 126  
 uniform moisture basis for, 3, 278
- Mill Products**, composition of from frozen and non-frozen wheat harvested at various stages of maturity, 3, 402
- Mill Stream Flours**  
 ash content of, 4, 47  
 peptization of and baking strength, 7, 195; 8, 127
- Milling, French School of**, description of, 1, 317
- Milling Properties**  
 comparative, of Blackhull, Kanred, Kharkof and Turkey wheat, 3, 244, 245; 4, 439  
 frozen and non-frozen wheat harvested at various stages of maturity, 3, 301
- Milling Quality**, commercial versus laboratory milling tests, 10, 515
- Milling Stock**, determination of fat in, 4, 370
- Milling Tests**, comparison of Marquis and Marquillo wheat varieties, 8, 173, 174
- Milling Yields**  
 commercially versus experimentally milled flours, 7, 205; 10, 515  
 wheat containing admixtures of germinated wheat, 3, 165
- Mineral Metabolism and cereals**, 7, 456
- Minerals of Wheat**, 6, 396; 10, 503
- Mineral Ratios**, flour mill streams, 4, 54
- Minutes Annual Meeting of A. A. C. C.**, 1, 203; 2, 252; 3, 289; 4, 333; 5, 314; 6, 320; 7, 400; 8, 335; 9, 438; 10, 372
- Mixed Feeds**, conditions conducive to spoilage in storage, 9, 399
- Mixing Cake Batters**, effect on experimental cake test, 7, 368
- Models**, reference for scoring internal loaf characteristics, 6, 255
- Moisture Basis for**  
 laboratory reports, 10, 465  
 mill feeds, 3, 288
- Moisture Content**  
*bread*  
 evaporation from fresh bread as an index of staleness, 7, 18
- influence of sugar content on, 2, 317  
 various types of, 8, 415
- biscuits**  
 effect of relative humidity of atmosphere on equilibrium of, 5, 409  
 relation of length of baking time and humidity of curing chamber on, 5, 414
- cereal foods**, relation between excessive amount and spoilage, 9, 521
- crackers**, relation to keeping quality, 9, 101
- seed grains and heating of**, 9, 395
- flour**  
 effect of relative humidity on, 6, 379  
 effect on  
   heat of hydration of, 8, 162, 455  
   heat of imbibition developed during mixing, 8, 162  
   sifting operations, 7, 298  
   the Pekar color test, 6, 410  
 importance of, with respect to the effect of heat on enzymic activities in flour, 8, 157  
 proteins in flour, 8, 17  
 influence on the aging of, 10, 66  
 losses in storage while in cotton sacks, 6, 379  
 rapid carbide method for estimating, 7, 99
- studies of methods for determining, 1, 190; 2, 236, 318; 3, 323, 419; 7, 99
- variance in the analysis for, 10, 205, 482
- self-rising flour and  
   deterioration of soda, 8, 25  
   rate of premature decomposition, 8, 27
- glutens from various flours**, 1, 238
- hygroscopic**  
 cereal grains and flaxseed, 2, 275; 6, 379; 8, 200
- flour ash, 6, 134
- wheat, 8, 203
- macaroni**, effect of relative humidity conditions on storage of, 10, 414
- noodles**, effect of relative humidity conditions on the storage of, 10, 643
- wheat**  
 effect on the development of rancidity in, 7, 438
- electrical devices for determining, 8, 315, 409
- influence on  
   keeping quality of, 7, 428  
   relative humidity of, 6, 379
- studies comparing the accuracy of the Brown-Duvel moisture tester, the German DK apparatus, the Tag-Heppenstall moisture meter and the Dielectrometer with the 130° C. air oven method for determining, 8, 315
- Moisture Determinations**  
*flour*  
 distribution of errors in, 9, 458

- Moisture Determinations, flour—cont.**  
 permissible error of simple determination, 9, 471  
 recommended official method for, 3, 277  
 review of recent investigations in, 3, 323  
**mill stocks (flour feeds (wheat)), 4, 311**  
 see reports of methods of analysis committees of A. A. C. C., 1, 190; 2, 236; 3, 276; 4, 311; 7, 384  
**wheat**  
 care in preparation of samples for, 8, 307  
 comparison of moisture results; Brown-Duvel method versus 130° C. air oven method, 4, 326  
 oven for use in making, 3, 419  
 quick methods for the determination of, 8, 315  
 results of collaborative trials, 2, 157; 4, 312; 7, 384  
 statistical study of variability in making, 7, 391  
**Molasses**, effect of color of on appearance of cookies, 5, 264  
**Molding Dough**  
 effect upon bread, 6, 260  
 hand versus machine molding effect on the experimental test loaf, 7, 358; 8, 95, 274, 293; 9, 184; 10, 560, 585  
**Molds in Bread**  
 influence of carbon dioxide and relative humidity upon the development of, 10, 446  
 non-survival of (*Monilia Sitophila* group) at baking temperatures, 10, 462  
**Molecular Configuration**  
 gliadin, 1, 316  
 glutenin, 1, 316  
**Monocalcium Phosphate**  
 a flour improver, 2, 370, 379  
 determination of neutralizing value of, 2, 380; 4, 347  
 direct titration method, 2, 382  
 hydrogen-ion method, 2, 383  
 indirect titration, 2, 388  
 effect on  
   baking quality of plain flours, 3, 104  
   control of Rope in bread, 5, 201  
   viscosity of acidulated and leached flour-water suspensions, 3, 102  
 role of in bread making, 4, 400  
 use of for the control of Rope in bread, 7, 471  
 use with bleached flours, 2, 375  
**Muffin Batters**, determination of CO<sub>2</sub> evolved and lost in, 8, 165  
**Muffle Furnace**  
 increasing the capacity of by use of an asbestos shelf, 7, 556  
 observation of at low cost by special wiring, 10, 452  
**Munsell System**, measurement of color in bread, 6, 60
- N**
- Naphthalene**, detection in flour, 3, 60  
**Neutralizing Value of Mono Calcium Phosphate**  
 determination of, 2, 380  
   by direct titration, 2, 382; 4, 347  
   by the hydrogen-ion method, 2, 383  
   by indirect titration, 2, 388  
   effect of varying dilution, boiling time, quantity of indicator on the, 4, 347  
**Nitrates** detection of in baking ingredients, 8, 491  
**Nitric Acid**, use in rapid oxidation of flour ash, 9, 159  
**Nitrogen**  
 micro-determination of, in ether extract of flour mill stocks, 7, 258  
 non-protein  
   distribution of in flours milled from wheats of various stages of maturity, 2, 29; 5, 392  
   in cereals, 9, 262  
   relation to the nitrogen factor for protein in cereals and bread, 9, 261  
 solubility of in flour suspensions, comparison of effect of dilute lactic acid, and acidity caused by yeast fermentation, 2, 81  
**Nitrogen Content**  
 barley, disappearance of during germination, 1, 182  
 crude gluten per cent of total flour nitrogen, 1, 242  
 fat of flour, bran and wheat germ, 7, 265  
 wheat, disappearance of during germination, 1, 182  
**Nitrogen Distribution**  
 by Van Slyke method of the separation of proteins from wheat flour, 4, 227  
 for crude protein in  
   bran, 9, 571  
   bread, 9, 271  
   wheat, 9, 571  
 immature and/or frozen wheat, effect of methods of storage and drying on, 2, 29, 31  
 in fatty extracts of cereal products, 7, 268  
**Nitrogen Fractions**, flours containing additions of germinated wheat flours, 3, 169  
**Nitrogen Trichloride**, flour bleaching with, effect on carotin content, 6, 408; 9, 458  
**Nitrogenous Fertilizers**  
 effect on the  
   bread making properties of wheat, 2, 288; 3, 137; 4, 73; 9, 76; 10, 347  
   composition of wheat, 2, 288; 3, 137; 9, 76  
**Nitrogen Free Extract**, bread, 8, 415  
**Non-Gluten Constituents**, hard and soft wheat flours, 7, 270  
**Noodles**  
 chemical composition of, 10, 419  
 consumption of in United States, 10, 417  
 keeping qualities of, 10, 643  
 materials used in manufacture of, 10, 418

- Noodles**—*cont.*  
 process of manufacture, 10, 418  
 production of in the United States, 10, 417
- United States**  
 definitions for, 10, 417  
 standards for, 10, 417
- use of artificial coloring matter in manufacture of, 10, 419
- Novadel**  
 bleaching flour with effect on  
   baking quality, 5, 432; 10, 623  
   carotene content, 6, 457  
   pH, 2, 112; 9, 378; 10, 623
- Nutrition**, observations on, 9, 289
- O**
- Oats**  
 conditions conducive to the spoilage of, 9, 397  
 hygroscopic moisture of, 2, 283  
 manganese content, 6, 180  
 phosphorus content, 6, 115  
 physical and chemical constants of oil of, 3, 28
- Oil Content**, wheat embryo, chemical and physical constants for, 3, 21, 27
- Organic Acids**  
 development of during bread and cracker dough fermentation, estimation and identification of, 2, 351, 352  
 in bread doughs, increase of acidity due to, 2, 360  
 role of in the development of acidity in flour-water suspensions fermented with yeast, 2, 348
- Osborne, T. B.** Obituary notice, 6, 151
- Ovens**  
 for moisture testing, 4, 419  
 for standard experimental baking test, 6, 286
- Overgrinding of Flour**  
 and dough fermentation, 7, 571  
 effect on baking quality, 2, 325
- Oxidizing Agents**, use in flour and bread production, 4, 295
- Oxidizing Effect of Flour Bleaching**, 5, 431; 10, 68
- Oxygen**  
 an aid to the ashing of flour, 8, 232, 314  
 use in flour ash determinations, 2, 224
- Oxygen-Acetate Method of**, determining flour ash, 3, 222
- P**
- Pacific Northwest**, cereal chemistry problems peculiar to, 7, 591
- Pacific Northwest Flours**  
 carbon dioxide production in, as an index of their fermentation time, 8, 208  
 comparison with Minnesota flours as to baking strength, 8, 211  
 fermentation times for, 8, 207
- Package Goods, Flour**, loss of weight due to changes in relation to humidity of the atmosphere, 6, 381
- Pan Greasing**  
 effect on  
   bread quality, 3, 2  
   loaf volume in the standard experimental baking test, 8, 66
- Panary Fermentation**, significance of pH in, 9, 34
- Panase**, relative resistance of cooked starches to, 3, 379
- Pans**  
 for cake baking, 7, 377  
 for standard experimental baking test, 5, 158; 6, 304; 8, 64; 9, 206, 236; 10, 579  
 variable factor in bread production, 3, 1
- Panning**, effect of methods of on bread properties, 3, 2
- Pastry Flour**  
 studies with Michigan soft wheat flours, 10, 623  
 viscosity test for predicting certain properties of, 9, 169  
 wafer test for evaluating, 10, 156
- Patents**, review and application of, involving irradiated cereal products, 8, 433
- Pekar Color Test**, relation of moisture to, 6, 410
- Penetrometer Gravimetric**, for measuring stiffness or toughness in doughs, 4, 283
- Peptization of Proteins**  
 flour compared to freshly mixed dough, 7, 490  
 flour mill streams, 7, 215  
 frosted wheat flours, 7, 539  
 gliadin preparations, 10, 180  
 influence of  
   ash content of flour on, 10, 226  
   heat treatment of flour on, 10, 38  
 methods for determining peptization, 6, 3; 7, 531; 8, 50  
 relation to  
   baking strength, 8, 113  
   grade of flour, 8, 113, 496  
   loaf volume, 7, 219, 527; 8, 47, 113, 190, 496; 9, 147; 10, 38  
 wheat flour doughs fermented varying lengths of time, 7, 492  
 wheat flour doughs after dehydration with acetone, 7, 495  
 wheat flour by inorganic salt solutions, 6, 1; 7, 215, 527; 8, 15, 47, 113, 190, 496; 9, 147; 10, 38, 226  
 wheat-germ, 10, 64
- Perchlorates**, detection of in baking ingredients, 8, 402
- Peroxides**, detection of in baking ingredients, 8, 491
- Persulphates**, detection of in baking ingredients, 8, 493
- Phase Relations in Colloids**, 2, 267

- Phosphatase**, study of the effect of heat on in flour-water suspensions, 8, 148
- Phosphate Buffer Mixtures**, as standards for gasoline color value determinations, 4, 469
- Phosphated Flours**, determination of the ash in the original flour of, 8, 479
- Phosphates**  
bread doughs, effect on gas development and retention, 4, 404  
detection of in baking ingredients, 8, 487  
effect on pH flour-water suspensions, 9, 7  
role in bread making, 1, 60; 2, 370; 3, 104; 4, 363, 400; 5, 201  
role in determining acidity of flour, 9, 7, 133; 10, 135, 186
- Phosphatides**  
action in bread doughs, 5, 223  
destruction of in flour, 10, 67  
effect of on flour gluten, 1, 155
- Phosphorus**  
determination of in flour, 4, 49; 6, 398; 10, 503  
distribution of in fatty extracts of cereal products, 7, 268  
lipoid, distribution in wheat, 5, 164
- Phosphorus Content**  
acetone extracts of flour, 7, 483  
barley, oats, wheat, 6, 115  
ether extract of flour mill stocks, 7, 263, 265  
flour, bran and bread, 5, 164; 6, 115, 398  
flour, form present and influence on fusibility of ash, 5, 63  
various flour mill streams, 4, 51, 52
- Phosphorus Fertilizers**, effect on the composition of wheat, 9, 78
- Photochemical Action**, a cause of rancidity, 9, 519
- Photographs**, preparation for publication, 6, 246
- Photography**, application to cereal work, 7, 313
- Physical Constants**, wheat oil, 3, 27; 4, 370; 7, 251; 9, 275
- Phytase**  
effect on development of acidity of cracker-sponges, 2, 362  
role of in increasing acidity of flour-water suspensions, 2, 348
- Pie Flours**, tests for determining quality of, 9, 411; 10, 621
- Plant Breeding**, methods for use in determining wheat quality for, 5, 7; 6, 85; 9, 10; 10, 1, 601
- Plant Growth**, aqueous solution procedure for controlling, 10, 347
- Plastic Flow**, theory of, 3, 356
- Plastic Materials**, apparatus to measure the properties of, 1, 40
- Plasticity**  
bread doughs  
variations in as influenced by extended mixing, 9, 526
- salt, 9, 526  
skimmilk, 9, 527  
temperature, 9, 525  
water absorption, 9, 524  
effect of dry skimmilk on, 6, 140  
flour-water suspensions, 3, 40  
relation to bread quality, 6, 408  
possibilities of in cereal research, 3, 351  
yeast fermented dough suspensions, 3, 100
- Pores in Bread**, photographic records of, 1, 149
- Potash Fertilizers**, effect on the composition of wheat, 9, 78
- Potassium Bromate**  
effect of additions of successive amounts on loaf volume, 9, 150  
influence on CO<sub>2</sub> produced in bread doughs, 10, 60, 61, 597, 602  
influence on gas retention of doughs, 10, 60, 61  
influence on rate of gas production in doughs, 10, 60, 61  
relation to experimental baking test, 6, 264  
use in determining flour strength, 10, 30, 593, 601
- Potassium Iodate**  
effect on whole wheat flour doughs, 10, 541  
use of  
in place of potassium bromate in differential baking tests, 9, 218  
in short fermentation baking procedure, 10, 611
- Potassium Nitrate**, absorption of by wheat, effect on protein content and bread quality, 10, 353, 355
- Potassium Sulphide**, amount necessary to precipitate the mercury in the Kjeldahl determination, 8, 357
- Potato Starch**, heat of hydration, 8, 468
- Power Consumption**, during dough mixing apparatus for determining, 6, 141
- President's Address (A. A. C. C.)** 2, 261; 3, 282; 4, 327; 5, 310; 6, 334; 7, 416; 8, 347; 9, 402; 10, 370
- Proofing Box, Automatic Type**, for bread doughs, 4, 278
- Proofing Cabinet**, new type with low temperature variability, 8, 233
- Proofing Device**, automatic, for bread doughs, 7, 331
- Proofing Period**, variation of with pan size, 5, 157
- Proofing Time**  
effect of germinated wheat flour on, 3, 180  
influence of additions of dry skimmilk on, 5, 251
- Proteases**  
in bread, yeast, study of, 2, 68  
removal of from malt preparations, 8, 219

**Proteases—cont.**

separation of from flour and yeast, 5, 101  
study of the effect of heat on, in flour suspension, 8, 149

**Protein Cleavage Products**, wheat and/or flour, 1, 86, 376; 2, 13, 80; 3, 126, 169, 402; 4, 58, 221, 249; 5, 83, 125, 139; 6, 185; 7, 155, 425, 489; 8, 13; 9, 260

**Protein Dispersion Agents**, 10, 359

**Protein Fractions**, ratios in wheat flours, 4, 221, 235, 253

**Proteins***bread doughs*

analytical methods for determining cleavage of, 7, 503  
fermented peptization of by various solutions, 7, 490

*flour*

and loaf volume. See flour protein and loaf volume

distribution of in flour milled from wheat of various stages of maturity, 3, 404; 5, 391

## effect of

heat on, 8, 1

yeast fermentation on, 3, 90

extraction and determination of in wheat flour, 1, 87, 309; 2, 57, 117; 4, 221, 233, 249; 5, 83; 6, 1; 7, 527; 8, 50; 9, 261, 560; 10, 171, 222

milled from frozen and non-frozen wheat, mature and immature, protein fractions in

amino acids, 1, 94

gliadin, 1, 94

glutenin, 1, 94

potassium sulphate soluble, 1, 94

*gliadin*, peptization of by inorganic salt solutions, 10, 171

gluten and non-gluten of wheat flour, 7, 421

gluten, new characterization of, 10, 359 in wheat bran, 9, 570

nature of extracted by hot alcohol, 6, 494

nitrogen distribution of in by Van Slyke method, 4, 227

## peptization of

and baking strength, 7, 195, 527; 8, 47, 113, 190, 496; 9, 154

by inorganic salt solutions, studies with, 6, 1; 7, 195, 527; 8, 15, 47, 113, 190, 496; 9, 154; 10, 171, 222

in relation to ash content, 10, 359

relative value of, compared with total protein and water soluble protein for predicting bread quality, 9, 154

*salt soluble* (5%  $K_2SO_4$ ) in various grades and classes of flour, 4, 235

variance in the analysis for, 10, 210, 484

**Protein Content***aleurone cells of*

barley, 1, 141

wheat, 1, 144

*bread*, 8, 415

*corn*, 10, 322

conversion factors for, in cereals and bread, 3, 194; 9, 271, 571

cracker flours, 1, 338

dry gluten, effect of composition of wash water and method of washing on, 1, 225, 233

durum wheat flours, 1, 168; 4, 137

effect on water absorption, 5, 75

*flour* and

crumb color, 9, 121

crumb texture, 9, 123

viscosity flour-water suspensions, 1, 320, 341; 2, 177, 191; 4, 138; 9, 425, 540; 10, 623

*flour*

milled from wheat of various stages of maturity, 3, 301; 5, 390

mill-streams of, 1, 320; 4, 51

quality of as effected by additions of germinated wheat flour, 3, 182

reaction to successive increments of potassium bromate, 9, 150

regression of viscosity on, 9, 543

## relation to

checking of biscuits, 4, 422

degree of granulation, 6, 208

loaf volume. See flour protein and loaf volume

*wheat* and

baking quality as determined by various baking methods, 1, 168; 2, 107, 199; 3, 150, 393; 5, 75, 6, 85; 7, 85; 8, 179, 190, 496; 10, 30, 144

fermentation time test, 10, 255, 619

H-ion concentration, 2, 210

kernel texture, 2, 108, 152; 6, 93

loaf volume as reported by various workers. See flour protein and loaf volume

test weight per bushel, 10, 141

*wheat*

changes in during germination of kernel, 3, 123

correlation with loaf volume, wheats of diverse nature, 6, 94

## effect of

climate on, 1, 280; 2, 288; 4, 376

fertilization with sodium nitrate on, 3, 142

irrigation on, 1, 281

rainfall on, 2, 293

rate of ripening on, 1, 280

seed, variety and other factors on, 4, 376

stage of maturity on, 5, 388

time of irrigation on, 3, 340

various nitrogenous fertilizers on, 10, 353

varying the H-ion concentration of

tempering water on, 7, 154

weathering on, 5, 120; 7, 162

- Protein Content, wheat—cont.**
- importance of available soil nitrogen on, 1, 281; 3, 137; 4, 73; 10, 347
  - increase of with crop rotation, 2, 295
  - influence of
    - amount of water absorbed during tempering, 9, 45
    - crop rotation on, 1, 284
    - variety on, 1, 280
  - relation of
    - length of growing season to, 2, 291
    - seed bed preparation to, 1, 285
    - wheat quality and baking tests, 7, 35
    - yield to, 1, 281, 284
  - supplied with nitrogen at various stages of growth, 4, 76
  - variability of in replicate portion of same sample, 5, 272
- Protein Determinations (wheat or flour)**
- conclusions regarding the validity of recommended procedure for, 5, 349
  - indicators for, 6, 454
  - recommended A. A. C. C. official method, 3, 262
  - relation of quantity of sodium sulphate to time of digestion in, 6, 72
  - relation of moisture content of samples to accuracy of, 3, 235
  - standardization of test solutions, 3, 255
  - statistical study of collaborative tests, 6, 429
- flour**
- collaborative studies with. See reports of committee on methods of analysis, 1, 184; 2, 240; 3, 254; 4, 313; 5, 269; 6, 423; 7, 384; 8, 306; 9, 429; 10, 470
  - distribution of errors in, 9, 456
  - permissible error of single analysis, 9, 471
- wheat**
- care in the preparation of samples for, 8, 307
  - commercial aspects and development of commercial testing service, 3, 232
  - factors influencing accuracy of digestion procedure
    - acid
      - for digestion, 2, 140
    - losses during digestion due to heat of burners and to oxidation
    - catalytic agents, 2, 145; 6, 72; 7, 518; 8, 349; 9, 118, 156, 357; 10, 488
    - fineness of division, 2, 151
    - method, 2, 148; 7, 518
    - moisture content of sample, 2, 155
    - size of sample digested, 2, 146
    - size of sample ground, 2, 151
    - type of kernel, 2, 152
    - time of digestion, 2, 148; 7, 518
  - distillation procedure
    - mercury precipitants, 2, 159; 8, 349
    - receiving acids, 2, 158
    - standard solutions, 2, 160
- interpretation of, 3, 238
- labor saving devices for use in making, 6, 215; 7, 168
- means of hastening, 7, 168
- quick method of Lundin and Ellburg for, 6, 512
- relation of smut content of wheat to the accuracy of, 3, 236, 242, 243
- sampling studies, 3, 234, 241, 259
- see report of committees on methods of analysis, 1, 186; 2, 235; 3, 254; 4, 313; 5, 269; 6, 429, 454; 7, 380, 391; 8, 307
- statistical study of variability, 7, 391
- study of the perchloric acid procedure, 1, 186
- value of to wheat breeder during segregating generations, 6, 194
- Protein Quality**
- effect of nitrogen fertilizers on, 10, 347
  - mechanical method of dough modification as an indicator of, 5, 385
- Protein Surveys**
- comparison of survey data with post harvest marketing figures, 4, 399
- Proteolytic Activity**
- bread doughs, viscometric procedure for determining, 1, 32; 7, 508
  - cracker doughs, result of fermentation, 1, 371
- flour-water suspensions**
- and baking strength of flour, 5, 101
  - chemical methods of determination, 1, 86, 376; 2, 13, 80; 3, 94, 126, 169, 402; 4, 58, 221, 233, 249; 5, 83, 125, 139; 6, 185; 7, 155, 489; 8, 13, 151
- effect of**
- ash content of flour on, 5, 97
  - class and variety of wheat on, 5, 92, 93
  - delayed harvest of wheat on, 5, 140
  - weathering of wheat on, 5, 125
- viscometric procedure for measuring in flour, 4, 112; 5, 97; 6, 182
- flour milled from frozen and non-frozen wheat at various stages of maturity, 1, 83
- flour milled from sprouted wheat, 3, 127, 470; 5, 91
- flour streams from the same wheat, 5, 89
- malts, medium and high diastatic activity, 8, 220
- Proteose, flour, preparation and analysis of, 4, 225**
- Proteose Content, wheat flour, 4, 228**
- Punching of Doughs**
- effect on
    - fermentation tolerance, 9, 141, 341
    - gas production, 9, 40, 344
    - H-ion concentration, 9, 42, 341
  - influence on properties of bread, 3, 4
  - procedure for A. A. C. C. standard experimental baking test, 9, 235

**Punching Times**, reversal of schedule with flours of low pH, 3, 214

**Q****Quinhydrone Electrode**

adaptability to cereal work, 3, 158, 160; 6, 153; 7, 143; 9, 2

agreement with hydrogen electrode, 7, 147; 9, 2

comparison with Bailey electrode on bakery products, 6, 156, 157

effect of

additions of water to cake crumb on accuracy of pH measurement with, 6, 158

pressure on the efficiency of the, 7, 149

water soluble protein on the efficiency of, 7, 152

saturation time and drift of potential when using, 7, 148

use in electrometric determination of pH on

bakery products, 6, 153

doughs, 9, 2

flour-water suspensions, 5, 446

**R****Racemization**, of glutenin, 1, 315**Racemized Proteins**, as protein derivatives, 2, 131**Rachitogenic Rations**

fineness of division of, 10, 317

mineral analysis of, 10, 313, 314

**Rainfall**, effect on protein content of wheat, 4, 382**Rancidity**

cereal foods, development of, in, with excessive moisture, 9, 521

chemical study of, 8, 518; 9, 50, 91, 519

crackers

development of while in storage, 1, 332; 9, 91

increase of with ultra-violet irradiation, 10, 122, 123

effect of metal containers on the development of, 9, 521

flour, plain, influence of bacteria on development of, 10, 233

flour, self-rising, influence of bacteria on development of

iodine number of fat as an index of, 9, 97

iodine number of wheat oil as an index of, 9, 599

means of retarding, 9, 522

oxidative

factors influencing and tests for, 8, 523, 528; 9, 50, 91, 519; 10, 263

susceptibility of

crackers to, 10, 266

fats to, 10, 265

individual

fats of same type to, 10, 265

types of fat to, 10, 264

theories regarding the development of, 8, 518

**Rancidity Development**, induction period of in irradiated crackers, 10, 119

**Random Errors of Analysis**, determination of ash, moisture and protein in flour, 9, 455

**Rare Earth Metals**, use of as aid in the ashing of flour, 7, 86

**Ratios**

gliadin-glutenin in heat treated gluten, 4, 420

glutenin, constant "b" and loaf volume in wheat flours, 4, 241

**Reaction of Mono Calcium Phosphate**, and sodium bicarbonate, 8, 27

**Reducing Sugars**, in flour, 9, 384

**Refractive Indices**

aqueous and alcoholic flour extracts and flour grade, 5, 45

gliadin in 70% ethyl alcohol solutions, 4, 49

flour fat, 3, 27; 4, 371, 375; 7, 251; 9, 285

effect of drying on, 4, 371

flour mill stocks, effect of solvents and oven drying on, 7, 252, 253

nature of change in on drying, 4, 375

methyl alcohol extracts of wheat flour, 5, 53

70% ethyl alcohol extracts wheat flour, changes in, and gliadin content, 5, 52

water extracts of flour after continued heating, 5, 49

wheat embryo oil, 3, 21, 27

**Regional Conditions**, effect on pigmentation of durum wheat, 9, 488

**Registration**, annual meeting of A. A. C. C., 1, 211; 2, 259; 3, 298; 4, 343; 5, 376; 6, 380; 7, 413; 8, 345; 9, 446; 10, 380

**Relative Humidity**

atmospheric and moisture content of ash, 6, 134

cereals, 2, 275; 6, 397; 8, 200

flaxseed, 2, 275

flour, 6, 397

hard sweet biscuits, 5, 412

effect of on sifting of flour, 7, 287

**Report**

first international bread congress, 4, 495

laboratory, value of to flour buyer, 4, 492

**Reports**

activities of A. A. C. C. research Fellow, 8, 64; 9, 175

cereal section of A. O. A. C. for

1923, 1, 27

1924, 2, 46

1928, 6, 78

1930, 8, 89

1931, 9, 83

1932, 10, 160

**Editor-in-chief of Cereal Chemistry for**

1928-29, 6, 325

1929-30, 7, 409

1932, 9, 439

1933, 10, 374

**Managing Editor Cereal Chemistry for**

1924-25, 2, 254

**Reports—cont.**

- 1925-26, 3, 294  
 1926-27, 4, 336  
 1927-28, 5, 318  
 1928-29, 6, 324  
 1929-30, 7, 409  
 1930-31, 8, 175  
 1932, 9, 440  
 1933, 10, 374  
**Secretary-Treasurer A. A. C. C. for**  
 1924, 1, 207  
 1924-25, 2, 253  
 1925-26, 3, 291  
 1926-27, 4, 334  
 1927-28, 5, 316  
 1928-29, 6, 325  
 1929-30, 7, 405  
 1930-31, 8, 175  
 1932, 9, 325  
 1933, 10, 167  
**Reports of Committees of A. A. C. C.**  
 auditing committee for  
 1926-27, 4, 339  
 1930-31, 8, 341  
 1931-32, 9, 443  
 1932-33, 10, 169  
 committee on definition of moisture basis for laboratory reports for, 1932-33, 10, 465  
 technical terms, 1932-33, 10, 463  
 committee on employment for  
 1930-31, 8, 340  
 1931-32, 9, 441  
 1932-33, 10, 375  
 committee on membership for  
 1930-31, 8, 339  
 1931-32, 9, 442  
 1932-33, 10, 375  
 committees on methods of analysis for  
 1923-24, 1, 183  
 1924-25, 2, 235  
 1925-26, 3, 254  
 1926-27, 4, 311  
 1927-28, 5, 269  
 1928-29, 6, 423  
 1929-30, 7, 380  
 1930-31, 8, 306  
 1931-32, 9, 429  
 1932-33, 10, 470  
 committee on methods of testing biscuit and self-rising flour for, 1932-33, 10, 635  
 committee on methods of testing cake and biscuit flours for  
 1927-28, 5, 301  
 1928-29, 6, 312  
 1929-30, 7, 364  
 1930-31, 8, 252  
 1931-32, 9, 406  
 1932-33, 10, 622  
 committee on methods of testing pie flours for  
 1932, 9, 411  
 1933, 10, 621

- committee on methods of testing rye flours for, 1932-33, 10, 468  
 committee on Osborne Medal  
 1928-29, 6, 323  
 1930-31, 8, 339  
 1931-32, 9, 438  
 1932-33, 10, 376  
 committee on publicity for  
 1927-28, 5, 318  
 1928-29, 6, 323  
 1929-30, 7, 405  
 1930-31, 8, 340  
 1932-33, 10, 376  
 committee on resolutions for  
 1926-27, 4, 339  
 1927-28, 5, 319  
 1928-29, 6, 329  
 1929-30, 7, 408  
 1930-31, 8, 341  
 1931-32, 9, 442  
 1932-33, 10, 377  
 committee on the standard experimental baking test for  
 1924-25, 2, 232  
 1925-26, 3, 252  
 1926-27, 4, 299  
 1927-28, 5, 277  
 1928-29, 6, 249  
 1929-30, 7, 348  
 1930-31, 8, 306  
 1931-32, 9, 404  
 1932-33, 10, 531  
 committee on the viscosity test for soft wheat flours  
 1932-33, 10, 494  
 executive committee of A. A. C. C. for  
 1927-28, 5, 315  
 1928-29, 6, 321  
 1929-30, 7, 402  
 1930-31, 8, 338  
 1931-32, 9, 440  
 1932-33, 10, 374  
 history committee for  
 1928-29, 6, 323  
 1929-30, 7, 405  
 1930-31, 8, 340  
 1931-32, 9, 441  
 1932-33, 10, 376  
 question committee for  
 1927-28, 5, 318  
 1929-30, 7, 408  
**Research Fellow A. A. C. C., report of activities, 8, 64, 267; 9, 175**  
**Residual CO<sub>2</sub>, as indicator of undecomposed soda in baking powders, 2, 389**  
**Rice**  
 chemical composition of  
 brown rice, 9, 600  
 glutinous rice, 9, 601  
 polished rice, 9, 601  
 rough rice, 9, 600  
 cooking quality of, 9, 317  
 hygroscopic moisture of, 2, 283

- Rice**—*cont.*  
 loss of constituents of due to polishing, 9, 601  
 manganese content of, 6, 130  
**Rice Milling**, material and mineral losses in, 9, 601  
**Rice Polishings**, source of vitamin B and G, 10, 293  
**Rice Starch**, heat of hydration, 8, 468  
**Rickets**, occurrence in infant population, 7, 454  
**"Rope" in Bread**  
 conditions for development of, 5, 192  
 determination of in, 7, 461; 9, 161  
 development of and pH and buffer value of bread, 5, 196  
**Rumsey's Method for Determination**, of diastatic activity of flour, modification of, 6, 175  
**Rye**  
 hygroscopic moisture of, 2, 282  
 manganese content of, 6, 130  
 physical and chemical constants of the oil of, 3, 24  
**Rye Flours**, tentative baking tests for evaluating (committee report), 10, 468  
**Rye Flour Doughs**, retention of gas in, 2, 103  
**Rye Residues, Dried**, source of vitamins B and D, 10, 295
- S**
- Safranine**, a means of removing proteolytic enzymes from wheat flour and malt extract, 8, 219
- Salt**  
 effect on  
 color of chocolate cake, 7, 63  
 gas production in bread doughs, 9, 608  
 loaf volume, 9, 224  
 plasticity of bread doughs, 9, 526  
 water absorption of flour, 5, 210
- Salt Solutions**, peptization of wheat flour proteins by, 6, 1
- Sampling Flour**, tentative method for, 3, 280
- Sampling Wheat**  
 recommended method for making protein determinations, 3, 262  
 studies on in relation to accuracy of protein determination, 3, 235, 241, 242
- Schoorl Method**, sugar determination, 10, 475
- Science as Affecting Industry**, 10, 457
- Score Card**  
 for biscuits, 3, 337  
 for cake, 3, 57; 7, 366; 9, 409
- Scouring** effect on amount of water absorbed by wheat during tempering, 9, 47
- Seed**, protein content of and quality of wheat, 4, 377
- Selenium**, catalyst in the Kjeldahl determination, 9, 156, 357; 10, 488
- Selenium Oxychloride**, catalyst in the Kjeldahl determination, 9, 118
- Self-Rising Biscuits**, pH of as result of premature reaction with soda, 8, 27
- Self-Rising Flours**  
 determination of  
 ash in the original flour of, 8, 477  
 carbon dioxide in by the Chittick Method, 5, 482  
 development of  
 bacteria in, 10, 233  
 rancidity in, 10, 233  
 experimental baking tests for, 3, 335; 9, 416  
 gasometric tests for, 9, 417  
 leavening agents for, 3, 335  
 stability of the leavening in, 8, 24  
 use of wheat germ in, 8, 229
- Semolina**  
 chemical composition of, 10, 397  
 color of, milled from durum wheats, 4, 143  
 grades of, 10, 395  
 moisture content of, commercial lots, 10, 397
- National Macaroni Manufacturers' Association's definitions for, 10, 393  
 process of manufacture, 10, 394  
 United States definitions for, 10, 393  
 United States standards for, 10, 393
- Short Fermentation Procedure**, substitute for standard A. A. C. C. baking procedure, 9, 213; 10, 603, 605
- Shortenings**  
 autoxidation of, 8, 519; 9, 50, 91; 10, 263  
 effect on  
 checking and water absorption in biscuits, 5, 426  
 loaf volume, 9, 230  
 induction period and rate of oxygen absorption of commercial preparations used in cracker manufacture, 9, 56, 58  
 irradiation tests with, 10, 107  
 keeping qualities of  
 effect of storage conditions on, 9, 91  
 air supply, 9, 93  
 temperature, 9, 93  
 relation of chemical characteristics to, 9, 94  
 free fatty acid content, 9, 96  
 iodine number, 9, 97  
 smoking temperature, 9, 97  
 quantity used in soda cracker manufacture, 1, 332
- type used in soda crackers, 1, 332
- Shortometer**, for determining tenderness in pastries, 10, 156
- Sieve Cleaners**, use in flour granulation tests, 7, 301
- Single Figure Estimate of Baking Quality**, 6, 164  
 validity of, 10, 213

- Sitosterol Esters**, in wheat oil, 3, 480; 10, 240
- Skimmilk, Dry**  
effect of  
forewarming on the viscosity of reconstituted skimmilk and baking quality of flour, 5, 462, 463
- method manufacture on baking quality of, 5, 461
- effect on  
baking quality of various flours, 5, 242  
the fermentation and H-ion concentration of doughs, 6, 51  
water absorption of doughs and plasticity of flour suspensions, 6, 140
- relation of quality of to baking strength of, 8, 374
- Smoking Temperature**, shortenings and keeping quality, 9, 97
- Smut in Wheat**, influence on accuracy of protein determinations, 3, 236, 242, 243
- Soap**, effect on flour gluten, 1, 155
- Soda**, deterioration of in self-rising flour of varying moisture contents, 8, 25
- Soda Crackers, Irradiated**, antirachitic potency of, 10, 124
- Sodium Bicarbonate**  
conversion of during cracker baking, 1, 403
- effect on  
color of chocolate cake, 7, 62  
color of cookies, 5, 261  
H-ion concentration of cake, 7, 62
- influence of an excess or deficiency of in cracker doughs, 1, 403
- Sodium Chlorate**, some oxidizing effects of, 5, 432
- Sodium Nitrate**  
absorption of by wheat and effect on protein content and bread quality, 10, 353, 354
- effect on protein content of wheat when applied at different stages of growth, 3, 142; 4, 76
- fertilization of wheat with and baking quality of flour milled therefrom, 3, 137
- Sodium Phosphate Buffer Solutions**, use of in the determination of washed gluten, 1, 233
- Sodium Sulphate**, relation of quantity to time of digestion in protein determinations, 6, 73
- Sodium Thiosulphate**, amount necessary to precipitate the mercury in the Kjeldhal nitrogen determination, 2, 159; 8, 353
- Soft Wheat Biscuit Flours**, calcium acid phosphate as an improver of, 2, 370
- Soft Wheat Flours**  
adaptation of the A. A. C. C. standard experimental baking test to the evaluation of, 5, 299, 10, 140
- development of rancidity in, 10, 233
- making light bread from, 4, 411
- study of gelatinization of non-gluten constituents of, 7, 270
- use other than for cake making, 7, 372
- viscosity tests for evaluating, 9, 169; 10, 494
- Soft Winter Wheat**, program for Ohio, 9, 322
- Soil Fertility**  
application of nitrogen to wheat at different stages of growth and relation to bread quality thereof, 3, 137; 4, 73; 10, 347
- effect of  
additions of sodium nitrate to wheat on manganese content 6, 129  
to baking quality of flour, 3, 142; 4, 73; 10, 347
- crop rotation on protein content of wheat, 1, 279; 2, 288; 4, 385; 9, 71
- effect on  
millling and baking properties of Blackhull, Kanred and Kharkof wheat, 3, 244; 4, 436
- pigmentation of durum wheats, 9, 486
- test weight per bushel of wheat, 4, 384
- the composition of wheat, 9, 71
- influence on phosphorus content of barley, oats and wheat, 6, 116
- Solids**, bread, 8, 415
- Specific Conductivity**, water extracts of chlorine treated flours with age and dosage, increase of, 1, 133, 136
- Specific Energy**, of deformation of dough and baking quality, 4, 1
- Specific Gravity**, sugar-shortening in cake batters as optimum creaming condition, 8, 254
- Specific Gravity Sponge Cake Batters**, commercial versus laboratory tests, 10, 75
- Specific Heat and Heat of Hydration**, of wheat starch, 8, 468
- Specific Rotations**  
gliadin, 1, 313  
glutenin, 1, 315
- Specific Transmissive Index**, determination of for carotin in absolute alcohol or petroleum ether, 6, 229
- Spectrophotometric Methods**  
application to baking problems, 5, 256
- determination of carotinoid pigments of flour, 6, 218; 6, 347; 10, 278
- Spectrophotometry**, definitions and nomenclature of, 6, 222
- Sponge Cakes**, apparatus for determining age, 10, 81
- Spot Test, Colorimetric** determination of flour acidity, 6, 162
- Spring Wheats**, viscosity of starch pastes from, 1, 20
- Sprouted Wheat Flour**, effect on loaf volume, 3, 123, 173; 8, 300; 9, 229; 10, 420
- S-Rolls**  
for punching and molding experimental doughs, 9, 194; 10, 561, 585

- S-Rolls—cont.**
- influence on variability of experimental baking, 9, 194; 10, 561, 585
  - value in reducing variability in experimental baking, 10, 569
- Staleness of Bread**, viscosimetric method for measuring, 6, 241
- Staling of Bread**
- development of acidity in 5, 477
  - effect of temperature on, 7, 8
  - quantitative measurement of inherent (method of Katz), 7, 10, 340; 10, 73
  - reversibility of with heat, 7, 9
  - search for underlying causes, 7, 15
  - use of constituents to retard, 9, 65
    - calcium peroxide, 9, 69
    - carbon dioxide, 9, 69
    - dairy products, 9, 68
    - dextrinized starch, 9, 67
    - elevated temperatures, 9, 70
    - invert sugar, 9, 68
    - low temperatures, 9, 69
    - malt extract, 9, 68
    - potato flour, 9, 68
    - protective colloids, 9, 69
    - sour dough, 9, 68
- Standard Acids**
- inaccuracies in, a source of error in protein determinations, 2, 160
  - preparation of for use in the protein determination, 3, 255
- Standard Experimental Baking Test**, see reports of the committees on the standardization of the experimental baking test
- Standard Solutions**
- carotene pigments for use with transmittancy procedure for determination of carotenoid pigments in flour, 6, 218, 346
  - gasoline color value determinations in wheat or flour, 5, 358, 359; 6, 36
  - potassium chromate, cobalt nitrate standards for Kent-Jones flour color method, 6, 36
  - preparation of
    - for determination of gasoline color values of wheat flour, 4, 468
    - for protein testing, 3, 255
- Starches (wheat)**
- amylolytic susceptibility of, 3, 391
- Starches**
- comparative viscosities of, 1, 17; 3, 369
  - consideration of certain reactions of, with reference to enzyme hydrolysis, 3, 361
  - dextrinization of in bread from sprouted wheat flour, 10, 425
  - digestibility of in long and short-cooked cereals, 10, 244
  - effect on gas retention of dough, 2, 99
  - factors (3) responsible for the individuality of, 3, 392
  - flour, discussion of, 4, 485
  - gelatinization by heat
  - corn, 1, 111
  - wheat, 1, 111
- gelatinization of
- in cake compared to bread, 7, 273
  - in cooked cereals, porridges, effect of fineness of division on, 8, 404, 407
- gelatinization temperatures of various kinds of, 8, 246
- hydration capacity of cold gelatinized, 10, 302
- hydration capacity of heat gelatinized, 10, 300, 301, 303
- hydrolysis of in bread by flour and malt amylase, 9, 305
- influence of growing season on viscosity of, 1, 23
- moisture and nitrogen content of, 3, 364
- preparation and purification of, 1, 12; 3, 364
- rate of drying, study of, 4, 184
- resistance of raw and gelatinized starch to malt diastase when exposed in quantity to limited quantity of the enzyme, 3, 370
- resistance of raw starch to malt diastase when exposed to excess of enzyme, 3, 374
- susceptibility of to malt diastase, 3, 320
- variation in amyloytic susceptibility of, 3, 391
- Starches, Various Sources**
- amyloytic susceptibility of
    - granulation and qualitative factors influencing, 3, 391
    - relationship in raw versus gelatinized conditions, 3, 391
    - relation of to origin of enzymes and substrates, 3, 391
    - variability of
      - with botanical source, 3, 391
      - with viscosity of starch pastes, 3, 391
  - heat of hydration of, 8, 468
  - hydration capacity of, 10, 300
- Starch Degradation Products**, methods of determination, 10, 150
- Starch Gels**
- effect of
    - sucrose on, 9, 250
    - temperature on the translucency of, 8, 247
- Starch Granules, (wheat flour)**
- effect of delayed harvest of wheat on character of, 5, 138
  - heat of imbibition of, 4, 244
  - size of and diastatic activity, 4, 243
- Statistics**, organization of in cereal chemistry, 9, 573
- Sterols, Wheat Flour**, solubility in acetone, 7, 486
- Storage of Crackers**, and the development of acidity and rancidity, 1, 332
- Storage of Flour**
- changes in H-ion concentration of, flours from normal versus frosted immature wheat, influence of temperature, 1, 124

- Storage of Flour—cont.**  
 effect on carotene concentration, 6, 457  
 increase of pH with age, 1, 133  
 rate of change of acidity, 6, 530
- Storage of Wheat**  
 change in H-ion concentration of normal versus frosted grain as affected by temperature and grinding, 1, 122, 123  
 effect on baking quality of flours, 1, 171, 172, 174, 175  
 effect of type of bin, moisture content and temperature conditions on the 7, 428
- Sucrose**  
 biological method for estimating, 10, 151  
 effect on starch gels, 8, 250
- Sugars**  
 biological determination of, 10, 150  
 bread doughs  
   effect of on pH and carbon dioxide production, 9, 38, 341  
   effect of on fermentation tolerance, 9, 142, 331  
 influence on water absorption of flour, 5, 211  
 lack of during proofing period and bread quality, 9, 145  
 maltose content, 9, 379  
 residual in bread, 2, 314  
 sucrose content, 9, 385  
 supply of and loaf volume, 9, 228, 349
- Sugar Determination**, copper reduction volumetric method for, 10, 472
- Sugar Requirements**, A. A. C. C. baking test, 10, 589
- Sugar-Salt Solutions**, volume displacement measurements for, 5, 470
- Sulphates**, detection of in baking ingredients, 8, 488
- Sulphur Content**, wheat, flour, bran and bread, 6, 399
- Super-Centrifuge Method**, for water absorption in bread doughs, 10, 21
- Superhard Wheat**, experimental baking tests with, 9, 15
- Surveys**, post-harvest for wheat, value of, 4, 395
- Swanson Mixer**, efficiency of for mixing doughs, 7, 330
- Systematic Errors of Analysis**, determination of ash, moisture and protein in flour, 9, 468
- T**
- Tables**  
 conversion of water absorption to 13.5% moisture basis, 2, 42  
 conversion of water absorption of flour to a 15% moisture basis, 4, 68  
 volume replacement for salt-sugar solutions, 5, 471
- Tag-Heppenstall Moisture-Meter**  
 accuracy of on ground wheat, comparison with vacuum oven results, description of apparatus, 8, 409
- accuracy of on whole wheat, comparison with 130° C. air oven results, description of apparatus, 8, 331
- Tartaric Acid**, effect of on development of Rope in bread, 5, 200
- Tartrate**, acid potassium as an ingredient of angel cake, 7, 245
- Temperature**  
 and storage of  
   feed grains, 9, 395  
   mill stocks, 1, 117  
 atmospheric, effect on keeping quality of wheat of varying moisture content, 7, 428  
 baking, effect on  
   color of cookies, 5, 266  
   on vitamin B, 9, 115  
 bread doughs, effect on  
   bread properties, 3, 18  
   heat of imbibition as modified by flour moisture content on the, 8, 164  
 creaming and doughing for experimental baking test, 7, 367
- effect of  
   elevated on flour enzymes, 8, 145  
   on alkalinity of cookies, 5, 267  
   on baking quality of flour in storage, 1, 177  
 on extraction of flour pigments, 5, 363  
 on length of digestion periods for protein determinations, 7, 519  
 on preheating of dry-skimmilk and baking quality, 4, 469
- effect on  
   coagulation of wheat flour proteins, 4, 411  
   development of acidity in flour, 6, 536  
   gelatinization of corn and wheat starches, 1, 111  
   hydration of flour suspensions, 4, 104  
   loaf volume in the experimental baking test, 8, 105  
   peptization of wheat flour proteins, 8, 53  
   plastic properties of doughs as measured by the Farinograph, 9, 523  
   proofing time of dry skimmilk doughs, 5, 254  
   rate of water absorption by wheat during tempering, 9, 48  
   relative humidity and sifting of flour, 7, 287  
   storage of combine-harvester thrashed wheat, 4, 428  
   translucency of starch gels, 8, 247  
   viscosity of flour-water suspensions, 4, 87; 5, 43  
 importance of on digestion of wheat samples for protein determinations, 2, 143  
 influence on optimum H-ion concentration of diastatic activity of malt, 1, 217, 218
- interior of bread, 9, 116  
 interior of cakes, 7, 279

- Temperature—cont.**  
 standardization of heating units for in the protein determination, 3, 266
- Temperature, Climatic**, effect on wheat quality, 4, 333
- Temperature Coefficients**, use with Ostwald viscosimeter, 4, 215
- Tempering Wheat**  
 effect of H-ion concentration of water upon wheat proteins, 7, 154  
 factors influencing water absorption of, 9, 45
- Tenderness in Pastries**, apparatus for determining, 10, 157
- Tenmarq Wheat**, experimental baking tests with, 7, 66; 9, 15
- Tensile Strength of Sponge Cakes**, apparatus for measuring, 10, 81
- Test Biscuits**, method of precise measurement, 4, 481
- Test Weight per Bushel of Wheat**  
 and  
 color score of bread, 2, 367  
 flour yield, 2, 366  
 loaf volume, 2, 367  
 protein content of wheat, 2, 107; 10, 147  
 water absorption of flour, 2, 369  
 effect of  
 climate, soil fertility and other factors of wheat on, 4, 380, 384  
 delayed harvest of wheat on, 5, 142  
 severe weathering on, 7, 165  
 influence of ash content of flour on, 4, 439  
 relation of flour yield to, commercial milling versus laboratory milling, 10, 516, 517
- Testing Wheats for Milling**, and baking quality, 3, 244; 4, 270, 157, 356; 7, 66; 8, 168, 381; 9, 10; 10, 140
- Texture of Bread**, reference models for scoring, 6, 255
- Texture of Cakes**, a graphic record of, 3, 57
- Texture of Crumb**, bread, from commercial versus experimentally milled flour, 10, 528
- Thermometers for Dough**, testing 6, 301; 7, 304
- Total Fermentable Sugar**, biological method for estimating, 10, 151
- Transmittancy Measurement of Gasoline Extracts**, precautions to observe and effect of changing ratio of sample to solvent on, 6, 356
- Turkey Wheat**, milling and baking properties of, 4, 439, 441; 5, 376
- U**
- Ultra-Violet Light**, hastening effect on development of rancidity, 9, 522
- Ultra-Violet Light and Irradiation of Foods**, 7, 449
- Ultra-Violet Irradiation**  
 effect on  
 auto-oxidation of fats, 10, 123
- the chemical and nutritive properties of baked products, 10, 99
- Ultra-Violet Radiation**  
 carotene content, 6, 479  
 flour bleaching with, effect on means of detecting heat treated flours by, 8, 16
- V**
- Variance Analysis**, 9, 239  
 application of, 9, 252  
 control of error, 9, 245  
 degrees of freedom, 9, 241  
 method of, 9, 247  
 the test for, 9, 253
- Viscosimeters**, use in flour-water suspension viscosity measurements  
 MacMichael, 1, 75. See under viscosity of flour-water suspensions  
 Ostwald, 4, 206  
 Sheely, 2, 179  
 Wallace and Tiernan, 1, 385; 9, 537; 10, 38
- Viscosimeter, Ostwald**  
 use for determining  
 staleness of bread, 6, 241  
 viscosity of skimmilk, 5, 462; 8, 376; 9, 528  
 viscosity of starch pastes, 1, 9; 10, 299
- Viscosimeter, Stormer**, use for studying viscosity of starch pastes, 1, 9; 3, 365
- Viscosity**  
 acetone solutions of gliadin, 7, 587  
 acid-gliadin sols, lytrophic influence at different pH, 8, 441  
 acidulated cracker sponge suspensions, 1, 386  
 bread dough, discussion of, 2, 271  
 bread-water suspensions as a measure of staleness, 6, 241  
 corn starch effect of concentration and temperature on, 1, 111  
 dough-water suspensions  
 a measure of proteolysis in bread doughs, 7, 508  
 effect of  
 H-ion concentration on, 3, 9  
 malt extract, malt flour and yeast on, 1, 32, 34  
 dry skimmilk, 5, 462; 8, 376; 9, 528  
 flour auramine suspensions a measure of proteolytic activity, 8, 9  
 flour-water suspensions  
 effect of, different strains of yeast on, 2, 79  
 effect of, extraction with potassium and sodium halides on, 8, 41  
 heat treated flours  
 effect of acidulation of suspension with lactic and hydrochloric acids to various pH on, 8, 9  
 studies with suspensions in one ten thousandths auramine solutions, 8, 8

- gluten solutions in various solvents, 6, 378  
 gums of wheat, 9, 515  
 negative gliadin solution, effect of alcohol on, 7, 239  
 relative viscosity of a positive gliadin sol in varying alcohol concentrations, 7, 228  
 starches 1, 20, 111; 3, 368; 7, 279; 10, 300, 301, 303, 304, 305, 306  
 relation between swelling powers, water imbibition and viscosity, 7, 279  
 wheat meal water suspensions  
 comparison of viscosity of acidulated versus non-acidulated suspensions, 9, 481  
 unleached and acidulated application to mill control, 1, 290; 9, 473  
 unleached, effect of acidity on, 1, 288; 2, 297, 302; 9, 481  
 unleached but acidulated, effect of hydrogen peroxide on, 2, 301  
 unleached and acidulated, test for determining milling qualities of wheats, 9, 473  
 wheat starch 1, 20, 111; 3, 368; 7, 279; 10, 301, 302, 304, 306  
 effect of concentration and temperature on, 1, 111  
**Viscosity Determinations**, value of to a mill control laboratory, 1, 288; 7, 79; 9, 169  
**Viscosity Leached and Acidulated**  
 flour-water suspensions  
 comparison of constant "b" with single flour concentration values, 2, 191  
 comparison with baking quality of various grades of flour, 2, 178  
 loaf volume figures, 2, 191; 10, 39  
 constant "b"  
   a measure of gluten quality, 1, 73, 320, 341; 2, 177, 191; 4, 63, 87, 138  
   and baking quality of flour mill streams, 1, 323  
 criticism of Sharp-Gortner formula, 5, 10  
 effect of  
   concentration of flour on, 1, 75, 342; 4, 63  
   germinated wheat flours on constant "b", 3, 171  
   granulation on, 6, 208  
   H-ion concentration and temperature of extraction on, 5, 16  
   mono-calcium phosphate on, 3, 102  
   small quantities of CO<sub>2</sub> in extraction water on, 5, 105  
   yeast fermentation on, 7, 117  
   for cracker flours, 1, 338, 341  
 for durum wheat flours, comparison of with common wheat flours, 4, 147  
 for various grades and classes of wheat flour, 4, 240  
 leached versus unleached but acidulated  
 comparison of procedures, 2, 188, 191  
 factors influencing, 4, 89, 102  
   degree of hydration, 4, 119  
   effect of temperature, 4, 104  
   method of manipulation, 4, 119  
   relation of proteolytic activity, 4, 113  
 method for determining proteolytic activity, 5, 97; 6, 182  
 note on (reply to Denham et al., 5, 330), 5, 484  
 note on (reply to Van der Lee, 5, 10), 5, 330  
 optimum pH of wash water for, 5, 43  
 studies on heat treated flours, 10, 39  
 studies with  
   ether extracted flours, 5, 171  
   flours from weathered wheats, 5, 124  
   Nebraska wheat flours, 2, 191  
**Viscosity, Unleached but Acidulated**  
 flour-water suspensions  
 constant "b" for flours milled for different grades of wheat, 9, 546  
 correlation between viscosity and protein content of mill streams, 9, 550  
 effect of  
   egg albumin, 1, 156  
   flour bleaching, 9, 374  
   gumacacia, 1, 157  
   H-ion concentration and temperature of extraction on, 5, 32  
   hydrogen peroxide, 2, 297  
   lecithin, 1, 156  
   soap, 1, 156  
   wheat phosphatide, 1, 156  
   wheat oil, 1, 156  
   yeast fermentation on, 2, 77  
 factors influencing the viscosity of different flour grades, 9, 547  
 relation to loaf volume, 2, 188, 191; 9, 540  
 studies with Nebraska wheat flours, 2, 191  
 suggested procedure for, 10, 499  
 value of for determining properties of cake and pastry flours, 9, 169, 424  
**Vitamin**  
 "A" content in yellow corn, 10, 324, 325  
 "B"  
   content in  
     bread, 9, 107  
     brewers yeast, 10, 295  
     cottonseed flour, 10, 294  
     dried rye fermentation residues, 10, 295  
     rice polishings, 10, 293  
     wheat germ, 10, 290  
     whole wheat meal, 10, 292

- Vitamin, "B"—cont.**  
     effect of baking temperatures on, 9,  
         115  
     effect of H-ion concentration of bread  
         on, 9, 115
- "D"  
     and irradiation, 7, 449  
     chemistry of, 10, 102  
     content in  
         hydrogenated shortenings, 10, 116  
         lard, 10, 116  
     measurement of  
         bone ash tests, 10, 111  
         composition of blood, 10, 105  
         intentional pH, 10, 105  
         time test, 10, 112  
         X-ray, 10, 109  
     relation to mineral metabolism in  
         cereals, 7, 456
- "G"  
     content in  
         brewers yeast, 10, 295  
         cotton-seed flour, 10, 294  
         dried rye fermentation residues, 10,  
             295  
         rice polishings, 10, 293  
         wheat germ, 10, 290  
         whole wheat meal, 10, 292
- Volume Displacement**, of salt sugar solu-  
     tions, 5, 470
- Volume of Bread**  
     calibration of apparatus for measuring, 5,  
         220; 6, 308; 7, 346  
     devices for measuring small loaves, 5, 215;  
         7, 307
- Volume of Cake**, a graphic record of, 3, 57
- W**
- Washed Gluten**  
     study of the chemical properties of, 1,  
         224; 2, 1  
     study of physical properties of, 4, 449  
     tests of in aged flours from germinated  
         wheats, 3, 177
- Water Absorption**  
     dough, effect of dry skimmilk on, 6, 140  
     flour  
         and  
             baking quality, 3, 74  
             loaf volume, 5, 76  
             test weight per bushel of wheat, 2,  
                 368  
             weight of loaf, 5, 77  
         calculation to a uniform basis, 1, 305  
         effect of  
             additions of dry skimmilk on, 8, 380  
             germinated wheat flour on, 3, 130  
             granulation of flour on, 6, 208  
             overgrinding flour on, 2, 340  
         effect on  
             bread properties, 3, 2  
             loaf volume in the experimental  
                 baking test, 8, 66  
             ether extracted, 5, 171, 177; 8, 394
- factors influencing in experimental  
         baking, 5, 208  
     fallacy of converting to a uniform  
         moisture basis, 5, 214  
     importance of in the experimental bak-  
         ing test, method of determination,  
         2, 229  
     influence of  
         lard, salt, sugar and yeast on, 5, 211  
         minimum and maximum on finished  
         loaf, 5, 212  
     mechanical method for determining,  
         10, 21, 547  
     milled from frosted wheats, 3, 304  
     milled from soft winter wheats, 5, 299;  
         7, 376; 10, 144  
     relation to  
         experimental baking test, 6, 264  
         protein content, 5, 75  
     table for converting to 13.5% moisture  
         basis, 2, 42; 15% basis, 4, 68  
     whole wheat doughs, 10, 541
- wheat**  
     factors influencing, 9, 45  
         kernel size, 9, 47  
         temperature, 9, 46, 48  
         time of immersion, 9, 46, 48  
         scouring, 9, 47  
         wheat variety, 9, 46  
     frosted, 7, 108
- Water Imbibition**, hard versus soft wheat  
     flours, 7, 279
- Water Soluble Extract**  
     carbohydrates in bread and doughs from  
         sprouted wheat flours, 10, 426  
     decrease in with acidulation of flour  
         doughs from sprouted wheat, 10, 430  
     in bread from sprouted wheat flour, 10,  
         426  
     nitrogenous, in bread from sprouted  
         wheat, 10, 426
- Watt-Meter**  
     flour quality curves with, 10, 22  
     use of in testing wheat varieties, 8, 22
- Weathering of Wheat**, grain grade, germina-  
     tion protein content, gluten quality,  
     yield of flour, proteolytic activity  
     kernel texture, ash content and other  
     properties of wheat and flour milled  
     therefrom as affected by, 5, 117, 7, 162
- Weight Per Thousand Kernels**, note on  
     method of determining, 8, 418
- Weight of Loaf**, and water absorption of  
     flour, 5, 76
- Werner Method**  
     application to testing cracker flours, 10,  
         631  
     experimental baking procedure, 2, 310
- Wheat**  
     acidity of, effect of delayed harvesting on,  
         5, 135  
     ash, mineral analysis of, 6, 398, 10, 505  
     ash content of, correlation with ash con-  
         tent of flour, 4, 51; 5, 437

**Wheat—cont.**

- baking quality of as influenced by stage of maturity, 5, 385  
 baking value of, Chopin Extensimeter for determining, 4, 1  
 bleached, character of, 4, 44  
 bran, nitrogen and protein content of, 3, 196  
 breeding of improved spring varieties, 6, 483; 8, 168, 381  
 calcium content of, 4, 47; 6, 398; 10, 505, 507  
 characteristics of good milling, 9, 11  
 chlorine content, 6, 398; 10, 506, 518  
 color, method for determining gasoline soluble pigments, 3, 84  
 composition of as influenced by stage of maturity, 5, 385  
 density of, as influenced by freezing stage of development and moisture content, 4, 14  
 density of constituent parts of, 4, 16  
 development of the kernel of, 9, 71  
 effect of  
     delayed harvesting on quality of, 5, 128  
     severe weathering on certain properties of, 5, 117  
     weathering on ash and protein content, 5, 120; 7, 162  
 embryo  
     development of rancidity in oil of, 3, 37  
     nitrogen and protein content of, 3, 196  
     oil content, and physical and chemical constants of, 3, 27, 28  
 endosperm, nitrogen and protein content of, 3, 195  
 exchange of moisture in mixed and moistened grain, 6, 390  
 factor affecting the successful storage of, 7, 428  
 fat, acid and iodine numbers of, 9, 597  
 frosted, water of imbibition of, 7, 108  
 frozen, milling and baking tests on, 3, 301  
 gasoline color value of  
     common wheats, 3, 190  
     durum wheats, 3, 188  
 germinated, catalase activity of changes in protein content of, 3, 118; 3, 123  
 germination of as influenced by storage conditions, 7, 439  
 hygroscopic moisture of, 2, 279; 6, 379; 9, 203  
 immature  
     amino nitrogen in, 2, 18, 19  
     effect of, freezing on development of amino acids, 2, 31  
     nitrogen distribution in, influence of methods of storage and drying on, 2, 21  
 influence of  
     environment on milling and baking characteristics, 3, 244  
     sodium nitrate on baking quality of flour milled from, 3, 142; 10, 347  
     unfavorable storage conditions or grade factors, 7, 439  
     kernel size and rate and amount of water absorption, 9, 47  
     kernel texture  
         effect of severe weathering on, 5, 120; 7, 165  
         relation to  
             density of, 4, 38  
             protein content of, 2, 108, 152; 4, 15  
     length of germinated period and diastatic activity, 3, 128  
     lipoid phosphorus content in, distribution of, 5, 164; 6, 398  
     magnesium content of, 4, 47; 6, 398; 10, 505, 507  
     manganese content of, 6, 130  
     millling quality of, method for determining poor types, 9, 473  
     mineral content of ash of, 6, 396  
     moisture content of  
         and density, 4, 26  
         and keeping quality, 7, 438  
         electrical methods for the determination of, 8, 315, 409  
         influence of environment on, 6, 379  
     new factor for converting N to protein content, 3, 194  
     new variety for western agriculture, 3, 343  
     nitrogen compounds in, forms and characteristics of, 9, 561  
     phosphorus content, 4, 47; 6, 115, 398; 10, 505, 506  
     potassium content of, 10, 505, 508  
     protein, relation of to peptization and baking strength, 6, 1; 7, 527; 8, 47, 113, 119, 496; 9, 147  
 protein content of  
     factors which influence, 1, 279  
     methods for determining, 2, 132, 240; 3, 254; 4, 313; 5, 269; 6, 72, 429, 454; 7, 380, 391, 518; 8, 349; 9, 118, 156, 357; 10, 488  
     relation to baking quality, 1, 247, 320; 2, 111, 177, 191; 3, 150, 393; 4, 136, 230; 7, 35, 527, 557; 8, 179, 190, 386, 496; 9, 157, 481, 535; 10, 80  
 protein content of and  
     percentage of dark hard and vitreous kernels, 2, 108, 152; 4, 15  
     quality as shown by different baking methods, 7, 35  
     test weight per bushel, 2, 107  
 protein content of, effect of  
     climate, crop rotation, seed and variety on, 4, 376  
     H-ion concentration of tempering water on, 7, 154  
     severe weathering on, 5, 120; 7, 165  
 rare elements in, 10, 505, 509  
 sodium content of, 10, 505, 508  
 sprouted, effect on diastatic activity and

**Wheat—cont.**

baking properties of low diastatic flours, 4, 267; 8, 300  
 starch, heat of hydration of, 8, 468  
 storage of  
     changes of pH in, 1, 126  
     influence of age on baking quality, 1, 171, 172, 174, 175  
     influence of type and construction of bin in relation to keeping quality of, 7, 432  
 studies with reference to inheritance of quality in, 6, 85  
 sulphur content, 10, 505, 508  
 test weight per bushel of  
     and density of kernel, 3, 306  
     and protein content, 2, 107  
     as influenced by severe weathering, 5, 117; 7, 165  
 water absorption of, factors influencing rate of, 3, 301; 7, 108; 9, 45  
**Wheat Drying**, effect on flour quality, 10, 40  
**Wheat Flour**  
 carotenoid pigments of, 6, 347, 457; 10, 277  
 sitosterol esters in oil of, 3, 37; 7, 485; 10, 240  
**Wheat Germ**  
 acidity of, titratable, 10, 64  
 analysis of, 10, 64  
 degree of hydration of, as determined by viscometric technic, 9, 515  
 fat, refractive index of, 3, 21; 7, 254  
 free fat in, 7, 268  
 H-ion content of, 10, 64  
 increase of lipoids with age of, 10, 67  
 lipoid content of, 7, 268  
 lipoid phosphorus content of, 10, 64  
 peptizability of protein in, 10, 64  
 sources of vitamins B and G, 10, 290  
 toasted, as a table cereal, 8, 226  
 use in self-rising flours, 8, 229  
**Wheat Gum**  
 acid hydrolysis of, reducing sugar formation rate, 9, 512  
**Wheat Meal**  
 fermentation time test, 10, 90, 250, 618  
 correlation with  
     Farinograph values, 10, 93  
     gluten swelling power (Berliner), 10, 93  
     kernel texture, 10, 255  
     loaf volume, 10, 93, 255, 619  
     percentage of dry gluten, 10, 93  
     quality of international wheats, 10, 95  
     utility for small plant breeding samples, 10, 256  
 viscosity of acidulated unleached water suspensions of, 1, 288; 2, 301; 9, 473  
     effect of hydrogen peroxide on, 2, 301  
**Wheat Oil**  
 chemical and physical constants of, 3, 27  
 effect on viscosity flour in water suspensions, 1, 166  
 in aleurone cells of wheat, 1, 147

**Wheat Quality**

effect of climate, protein content of seed, variety and other factors on, 1, 279; 2, 288; 3, 137, 150, 244; 4, 73, 376, 436; 9, 71; 10, 347

method of determination, 10, 253, 619

**Wheat Surveys**, value of post-harvest, 4, 400

**Wheat Varieties**

baking quality of, as determined by mechanical means, 5, 376; 9, 10, 617; 10, 1

baking tests for evaluating, 10, 144

evaluating the baking qualities of, by cooperative baking tests, 7, 66; 9, 10  
 gluten quality of, 4, 451

methods for testing new, 7, 66; 8, 168, 381; 9, 10

milling and baking properties of, 1, 168; 3, 150, 244; 4, 436; 5, 385; 7, 35, 66; 8, 168, 381; 9, 10; 10, 147, 601

rate of water absorption by, 9, 48

**Wheat, Winter**, viscosity of starch pastes from, 1, 20

**Whole-Wheat Flour**

determination of diastatic activity in, 10, 201

response to potassium bromate, 10, 540

source of vitamins B and G, 10, 292

**Y****Yeast**

aging effect on doughs, 3, 16

different strains of, their influence upon the viscosity of flour-water suspensions, 2, 79

effect of

    during fermentation on colloidal properties of glutenin, 1, 34

    temperature of storage on gassing properties of, 3, 13; 7, 137

effect on the physical properties of flour as the result of fermentation, 2, 77  
 influence on water absorption of flour, 5, 211

relation of amount of, to rate of acid production in doughs, 3, 17

reproduction of, effect of calcium acid phosphate on, 4, 408

starvation of, method of detecting, 8, 361

study of proteases of, 2, 68

technological study of, 6, 196

**Yeast Cells**, method of counting in doughs, 1, 261

**Yeast Fermentation**

effect of flour grade, salt, oxidizing agents, chemicals, acidity and alkalinity of flour-water suspensions on, 5, 181

effect on

    flour proteins, 3, 90

    the viscosity of acidulated flour-water suspensions, 7, 117, 124

    the viscosity of buffered flour-water suspensions, 7, 124

**Yeast Foods**

effect of acid accelerating, on loaf volume,

3, 17

effect on bread properties, 3, 5

methods for the analysis of, 6, 259; 8,

485

**Yeast Testing, 6, 259**

methods for, 1, 261; 6, 196, 259; 7, 183;

10, 617

studies on, variability in yeast due to  
brand and condition of storage, 7,  
137; 10, 617

**Yellow Corn, vitamin A content, 10, 324,**  
325**Yellow Cornmeal**

fineness of division of, 10, 315

influence of composition on effectiveness  
of rachitogenic ratios, 10, 313

