015936-2.ST25.txt SEQUENCE LISTING

<110>	SAHIN, ERINC TARALP, ALPAY SAYERS, SEHRA	
<120>	CIRCULAR RECOMBINANT PLASMID DNA CONSTRUCTS AND THEIR PROTEIN PRODUCTS, METHODS OF PREPARATION AND IMMOBILISATION OF PROTEIN ON SUPPORT	IS
<130>	U015936-2	
<140> <141>	10/550226 2005-09-20	
<150> <151>	PCT/TR2003/000019 2003-03-20	
<160>	12	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>	1 733 DNA Aequorea victoria	
<220> <221> <222> <223>	gene (17)(733) GFP gene	
<400> ggtacc	1 ggta gaaaaaatga gtaaaggaga agaacttttc actggagttg tcccaattct	60
tgttga	atta gatggtgatg ttaatgggca caaattttct gtcagtggag agggtgaagg	120
tgatgc	aaca tacggaaaac ttacccttaa atttatttgc actactggaa aactacctgt	180
tccatg	gcca acacttgtca ctactttctc ttatggtgtt caatgctttt cccgttatcc	240
ggatca	tatg aaacggcatg actttttcaa gagtgccatg cccgaaggtt atgtacagga	300
acgcac	tata tctttcaaag atgacgggaa ctacaagacg cgtgctgaag tcaagtttga	360
aggtga [.]	tacc cttgttaatc gtatcgagtt aaaaggtatt gattttaaag aagatggaaa	420
cattct	cgga cacaaactcg agtacaacta taactcacac aatgtataca tcacggcaga	480
caaaca	aaag aatggaatca aagctaactt caaaattcgc cacaacattg aagatggatc	540
cgttca	acta gcagaccatt atcaacaaaa tactccaatt ggcgatggcc ctgtcctttt	600
accaga	caac cattacctgt cgacacaatc tgccctttcg aaagatccca acgaaaagcg	660
tgacca	catg gtccttcttg agtttgtaac tgctgctggg attacacatg gcatggatga	720
gctcta	caaa taa	733

<213>	Art	ificial sequ	uence				
<220> <223>	Emp	ty PETM-11	plasmid				
<220> <221> <222> <223>	(1)	c_feature (6029) ty PETM-11 ¡	plasmid				
<400> atccgga	2 atat	agttcctcct	ttcagcaaaa	aacccctcaa	gacccgttta	gaggccccaa	60
ggggtta	atgc	tagttattgc	tcagcggtgg	cagcagccaa	ctcagcttcc	tttcgggctt	120
tgttag	cagc	cggatctcag	tggtggtggt	ggtggtgctc	gagtgcggcc	gcaagcttgt	180
cgacgga	agct	cgaattcgga	tccggtacca	ctagttagag	accaagacac	gccttgtgac	240
tgtcctg	gcag	ctttattctc	ttgatgctgg	tgctggaata	gccctcatca	ctgccgaggc	300
tctgcat	tgct	gccccgctcg	tcagagtcgc	tcacactgct	gctgctccag	tccagatcac	360
ctgtgag	gata	gtccgtgctc	tccacgtcaa	cgtcgatttc	ttccctgtcg	gagtcggagc	420
gctccga	agga	gacggtggag	ccgatgctgt	ccatccggat	cctctcaatg	cccagcttct	480
ccagcto	gcct	cttcaggtgt	cgctgctctc	gctgaagctg	gtcgatttgg	tgaacggctt	540
ttctgtd	caca	atcttcaagt	ttctttatgt	gcaatttggc	ttttgttaat	aaactcaacg	600
tagtgtg	gtcg	acttgattcg	ggtcccagtg	gcaccagccc	cttcaacttc	tccaggcaca	660
agcgaag	gatg	agcccgtcta	ttcttctcca	tttcattgtg	agttgatctg	ctactgctgt	720
tattctt	ttt	ggatttgttc	ctccgtttta	aggcatctct	gtccttgttt	ttgtatggta	780
acatgga	aggc	ataaccatgt	tcagcttctc	tctcccgccg	ctccagatag	tcggccgcct	840
ccagcag	gcat	ctggatgttc	atccgaaccg	ccgccgccat	ggcgccctga	aaataaagat	900
tctcagt	tagt	ggggatgtcg	taatcgctca	tggggtgatg	gtgatggtga	tgtttcatgg	960
tatatct	cct	tcttaaagtt	aaatcaaaat	tatttctaga	ggggaattgt	tatccgctca	1020
caattco	cct	atagtgagtc	gtattaattt	cgcgggatcg	agatctcgat	cctctacgcc	1080
ggacgca	atcg	tggccggcat	caccggcgcc	acaggtgcgg	ttgctggcgc	ctatatcgcc	1140
gacatca	accg	atggggaaga	tcgggctcgc	cacttcgggc	tcatgagcgc	ttgtttcggc	1200
gtgggta	atgg	tggcaggccc	cgtggccggg	ggactgttgg	gcgccatctc	cttgcatgca	1260
ccattco	ttg	cggcggcggt	gctcaacggc	ctcaacctac	tactgggctg	cttcctaatg	1320
caggagt	cgc	ataagggaga	gcgtcgagat	cccggacacc	atcgaatggc	gcaaaacctt	1380
tcgcggt	atg	gcatgatagc	gcccggaaga	gagtcaattc	agggtggtga	atgtgaaacc	1440
agtaacg	jtta	tacgatgtcg	cagagtatgc	cggtgtctct	tatcagaccg	tttcccgcgt	1500

ggtgaaccag	gccagccacg	tttctgcgaa	aacgcgggaa	aaagtggaag	cggcgatggc	1560
ggagctgaat	tacattccca	accgcgtggc	acaacaactg	gcgggcaaac	agtcgttgct	1620
gattggcgtt	gccacctcca	gtctggccct	gcacgcgccg	tcgcaaattg	tcgcggcgat	1680
taaatctcgc	gccgatcaac	tgggtgccag	cgtggtggtg	tcgatggtag	aacgaagcgg	1740
cgtcgaagcc	tgtaaagcgg	cggtgcacaa	tcttctcgcg	caacgcgtca	gtgggctgat	1800
cattaactat	ccgctggatg	accaggatgc	cattgctgtg	gaagctgcct	gcactaatgt	1860
tccggcgtta	tttcttgatg	tctctgacca	gacacccatc	aacagtatta	ttttctccca	1920
tgaagacggt	acgcgactgg	gcgtggagca	tctggtcgca	ttgggtcacc	agcaaatcgc	1980
gctgttagcg	ggcccattaa	gttctgtctc	ggcgcgtctg	cgtctggctg	gctggcataa	2040
atatctcact	cgcaatcaaa	ttcagccgat	agcggaacgg	gaaggcgact	ggagtgccat	2100
gtccggtttt	caacaaacca	tgcaaatgct	gaatgagggc	atcgttccca	ctgcgatgct	2160
ggttgccaac	gatcagatgg	cgctgggcgc	aatgcgcgcc	attaccgagt	ccgggctgcg	2220
cgttggtgcg	gatatctcgg	tagtgggata	cgacgatacc	gaagacagct	catgttatat	2280
cccgccgtta	accaccatca	aacaggattt	tcgcctgctg	gggcaaacca	gcgtggaccg	2340
cttgctgcaa	ctctctcagg	gccaggcggt	gaagggcaat	cagctgttgc	ccgtctcact	2400
ggtgaaaaga	aaaaccaccc	tggcgcccaa	tacgcaaacc	gcctctcccc	gcgcgttggc	2460
cgattcatta	atgcagctgg	cacgacaggt	ttcccgactg	gaaagcgggc	agtgagcgca	2520
acgcaattaa	tgtaagttag	ctcactcatt	aggcaccggg	atctcgaccg	atgcccttga	2580
gagccttcaa	cccagtcagc	tccttccggt	gggcgcgggg	catgactatc	gtcgccgcac	2640
ttatgactgt	cttctttatc	atgcaactcg	taggacaggt	gccggcagcg	ctctgggtca	2700
ttttcggcga	ggaccgcttt	cgctggagcg	cgacgatgat	cggcctgtcg	cttgcggtat	2760
tcggaatctt	gcacgccctc	gctcaagcct	tcgtcactgg	tcccgccacc	aaacgtttcg	2820
gcgagaagca	ggccattatc	gccggcatgg	cggccccacg	ggtgcgcatg	atcgtgctcc	2880
tgtcgttgag	gacccggcta	ggctggcggg	gttgccttac	tggttagcag	aatgaatcac	2940
cgatacgcga	gcgaacgtga	agcgactgct	gctgcaaaac	gtctgcgacc	tgagcaacaa	3000
catgaatggt	cttcggtttc	cgtgtttcgt	aaagtctgga	aacgcggaag	tcagcgccct	3060
gcaccattat	gttccggatc	tgcatcgcag	gatgctgctg	gctaccctgt	ggaacaccta	3120
catctgtatt	aacgaagcgc	tggcattgac	cctgagtgat	ttttctctgg	tcccgccgca	3180
tccataccgc	cagttgttta	ccctcacaac	gttccagtaa	ccgggcatgt	tcatcatcag	3240
taacccgtat	cgtgagcatc	ctctctcgtt	tcatcggtat	cattaccccc	atgaacagaa	3300
atcccctta	cacggaggca	tcagtgacca	aacaggaaaa	aaccgccctt	aacatggccc	3360
gctttatcag	aagccagaca	ttaacgcttc	tggagaaact Page	caacgagctg 3	gacgcggatg	3420

aacaggcaga	catctgtgaa	tcgcttcacg	accacgctga	tgagctttac	cgcagctgcc	3480
tcgcgcgttt	cggtgatgac	ggtgaaaacc	tctgacacat	gcagctcccg	gagacggtca	3540
cagcttgtct	gtaagcggat	gccgggagca	gacaagcccg	tcagggcgcg	tcagcgggtg	3600
ttggcgggtg	tcggggcgca	gccatgaccc	agtcacgtag	cgatagcgga	gtgtatactg	3660
gcttaactat	gcggcatcag	agcagattgt	actgagagtg	caccatatat	gcggtgtgaa	3720
ataccgcaca	gatgcgtaag	gagaaaatac	cgcatcaggc	gctcttccgc	ttcctcgctc	3780
actgactcgc	tgcgctcggt	cgttcggctg	cggcgagcgg	tatcagctca	ctcaaaggcg	3840
gtaatacggt	tatccacaga	atcaggggat	aacgcaggaa	agaacatgtg	agcaaaaggc	3900
cagcaaaagg	ccaggaaccg	taaaaaggcc	gcgttgctgg	cgtttttcca	taggctccgc	3960
cccctgacg	agcatcacaa	aaatcgacgc	tcaagtcaga	ggtggcgaaa	cccgacagga	4020
ctataaagat	accaggcgtt	tcccctgga	agctccctcg	tgcgctctcc	tgttccgacc	4080
ctgccgctta	ccggatacct	gtccgccttt	ctcccttcgg	gaagcgtggc	gctttctcat	4140
agctcacgct	gtaggtatct	cagttcggtg	taggtcgttc	gctccaagct	gggctgtgtg	4200
cacgaacccc	ccgttcagcc	cgaccgctgc	gccttatccg	gtaactatcg	tcttgagtcc	4260
aacccggtaa	gacacgactt	atcgccactg	gcagcagcca	ctggtaacag	gattagcaga	4320
gcgaggtatg	taggcggtgc	tacagagttc	ttgaagtggt	ggcctaacta	cggctacact	4380
agaaggacag	tatttggtat	ctgcgctctg	ctgaagccag	ttaccttcgg	aaaaagagtt	4440
ggtagctctt	gatccggcaa	acaaaccacc	gctggtagcg	gtggttttt	tgtttgcaag	4500
cagcagatta	cgcgcagaaa	aaaaggatct	caagaagatc	ctttgatctt	ttctacgggg	4560
tctgacgctc	agtggaacga	aaactcacgt	taagggattt	tggtcatgaa	caataaaact	4620
gtctgcttac	ataaacagta	atacaagggg	tgttatgagc	catattcaac	gggaaacgtc	4680
ttgctctagg	ccgcgattaa	attccaacat	ggatgctgat	ttatatgggt	ataaatgggc	4740
tcgcgataat	gtcgggcaat	caggtgcgac	aatctatcga	ttgtatggga	agcccgatgc	4800
gccagagttg	tttctgaaac	atggcaaagg	tagcgttgcc	aatgatgtta	cagatgagat	4860
ggtcagacta	aactggctga	cggaatttat	gcctcttccg	accatcaagc	attttatccg	4920
tactcctgat	gatgcatggt	tactcaccac	tgcgatcccc	gggaaaacag	cattccaggt	4980
attagaagaa	tatcctgatt	caggtgaaaa	tattgttgat	gcgctggcag	tgttcctgcg	5040
ccggttgcat	tcgattcctg	tttgtaattg	tccttttaac	agcgatcgcg	tatttcgtct	5100
cgctcaggcg	caatcacgaa	tgaataacgg	tttggttgat	gcgagtgatt	ttgatgacga	5160
gcgtaatggc	tggcctgttg	aacaagtctg	gaaagaaatg	cataaacttt	tgccattctc	5220
accggattca	gtcgtcactc	atggtgattt	ctcacttgat	aaccttattt	ttgacgaggg	5280

015936-2.ST25.txt 5340 qaaattaata qqttqtattg atgttggacg agtcggaatc gcagaccgat accaggatct tgccatccta tggaactgcc tcggtgagtt ttctccttca ttacagaaac ggctttttca 5400 5460 aaaatatggt attgataatc ctgatatgaa taaattgcag tttcatttga tgctcgatga 5520 qtttttctaa qaattaattc atgagcggat acatatttga atgtatttag aaaaataaac 5580 aaataggggt tccgcgcaca tttccccgaa aagtgccacc tgaaattgta aacgttaata 5640 ttttgttaaa attcgcgtta aatttttgtt aaatcagctc attttttaac caataggccg 5700 aaatcggcaa aatcccttat aaatcaaaag aatagaccga gatagggttg agtgttgttc 5760 cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa 5820 ccgtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt tttttggggt 5880 cgaggtgccg taaagcacta aatcggaacc ctaaagggag cccccgattt agagcttgac 5940 ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta 6000 gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac cacacccgcc gcgcttaatg 6029 cgccgctaca gggcgcgtcc cattcgcca <210> 3 5369 DNA Artificial sequence <220> <223> Intermediate pETM-adp plasmid, on way to pETM-GFP-Imm construct <400> 60 catcaccatc accatcaccc catgagcgat tacgacatcc ccactactga gaatctttat 120 tttcagggcg ccatgggagg cacggtaccg gatccgaatt cgagctccgt cgacaagctt 180 gcggccgcac tcgagcacca ccaccaccac cactgagatc cggctgctaa caaagcccga 240 aaggaagctg agttggctgc tgccaccgct gagcaataac tagcataacc ccttggggcc 300 tctaaacggg tcttgagggg ttttttgctg aaaggaggaa ctatatccgg attggcgaat 360 gggacgcgcc ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga 420 ccgctacact tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg 480 ccacgttcgc cggctttccc cgtcaagctc taaatcgggg gctcccttta gggttccgat ttagtgcttt acggcacctc gaccccaaaa aacttgatta gggtgatggt tcacgtagtg 540 600 qqccatcqcc ctqataqacq qtttttcqcc ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact ggaacaacac tcaaccctat ctcggtctat tcttttgatt 660 720 tataagggat tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat

ttaacgcgaa ttttaacaaa atattaacgt ttacaatttc aggtggcact tttcggggaa

atgtgcgcgg aacccctatt tgtttatttt tctaaataca ttcaaatatg tatccgctca

Page 5

780

840

tgaattaatt	cttagaaaaa	ctcatcgagc	atcaaatgaa	actgcaattt	attcatatca	900
ggattatcaa	taccatattt	ttgaaaaagc	cgtttctgta	atgaaggaga	aaactcaccg	960
aggcagttcc	ataggatggc	aagatcctgg	tatcggtctg	cgattccgac	tcgtccaaca	1020
tcaatacaac	ctattaattt	cccctcgtca	aaaataaggt	tatcaagtga	gaaatcacca	1080
tgagtgacga	ctgaatccgg	tgagaatggc	aaaagtttat	gcatttcttt	ccagacttgt	1140
tcaacaggcc	agccattacg	ctcgtcatca	aaatcactcg	catcaaccaa	accgttattc	1200
attcgtgatt	gcgcctgagc	gagacgaaat	acgcgatcgc	tgttaaaagg	acaattacaa	1260
acaggaatcg	aatgcaaccg	gcgcaggaac	actgccagcg	catcaacaat	attttcacct	1320
gaatcaggat	attcttctaa	tacctggaat	gctgttttcc	cggggatcgc	agtggtgagt	1380
aaccatgcat	catcaggagt	acggataaaa	tgcttgatgg	tcggaagagg	cataaattcc	1440
gtcagccagt	ttagtctgac	catctcatct	gtaacatcat	tggcaacgct	acctttgcca	1500
tgtttcagaa	acaactctgg	cgcatcgggc	ttcccataca	atcgatagat	tgtcgcacct	1560
gattgcccga	cattatcgcg	agcccattta	tacccatata	aatcagcatc	catgttggaa	1620
tttaatcgcg	gcctagagca	agacgtttcc	cgttgaatat	ggctcataac	accccttgta	1680
ttactgttta	tgtaagcaga	cagttttatt	gttcatgacc	aaaatccctt	aacgtgagtt	1740
ttcgttccac	tgagcgtcag	accccgtaga	aaagatcaaa	ggatcttctt	gagatccttt	1800
ttttctgcgc	gtaatctgct	gcttgcaaac	aaaaaacca	ccgctaccag	cggtggtttg	1860
tttgccggat	caagagctac	caactctttt	tccgaaggta	actggcttca	gcagagcgca	1920
gataccaaat	actgtccttc	tagtgtagcc	gtagttaggc	caccacttca	agaactctgt	1980
agcaccgcct	acatacctcg	ctctgctaat	cctgttacca	gtggctgctg	ccagtggcga	2040
taagtcgtgt	cttaccgggt	tggactcaag	acgatagtta	ccggataagg	cgcagcggtc	2100
gggctgaacg	gggggttcgt	gcacacagcc	cagcttggag	cgaacgacct	acaccgaact	2160
gagataccta	cagcgtgagc	tatgagaaag	cgccacgctt	cccgaaggga	gaaaggcgga	2220
caggtatccg	gtaagcggca	gggtcggaac	aggagagcgc	acgagggagc	ttccaggggg	2280
aaacgcctgg	tatctttata	gtcctgtcgg	gtttcgccac	ctctgacttg	agcgtcgatt	2340
tttgtgatgc	tcgtcagggg	ggcggagcct	atggaaaaac	gccagcaacg	cggccttttt	2400
acggttcctg	gccttttgct	ggccttttgc	tcacatgttc	tttcctgcgt	tatcccctga	2460
ttctgtggat	aaccgtatta	ccgcctttga	gtgagctgat	accgctcgcc	gcagccgaac	2520
gaccgagcgc	agcgagtcag	tgagcgagga	agcggaagag	cgcctgatgc	ggtattttct	2580
ccttacgcat	ctgtgcggta	tttcacaccg	catatatggt	gcactctcag	tacaatctgc	2640
tctgatgccg	catagttaag	ccagtataca	ctccgctatc	gctacgtgac	tgggtcatgg	2700

ctgcgccccg acacccgcca a	cacccgctg	acgcgccctg	acgggcttgt	ctgctcccgg	2760
catccgctta cagacaagct g	gtgaccgtct	ccgggagctg	catgtgtcag	aggttttcac	2820
cgtcatcacc gaaacgcgcg a	aggcagctgc	ggtaaagctc	atcagcgtgg	tcgtgaagcg	2880
attcacagat gtctgcctgt t	catccgcgt	ccagctcgtt	gagtttctcc	agaagcgtta	2940
atgtctggct tctgataaag c	gggccatgt	taagggcggt	tttttcctgt	ttggtcactg	3000
atgcctccgt gtaaggggga t	ttctgttca	tgggggtaat	gataccgatg	aaacgagaga	3060
ggatgctcac gatacgggtt a	ctgatgatg	aacatgcccg	gttactggaa	cgttgtgagg	3120
gtaaacaact ggcggtatgg a	tgcggcggg	accagagaaa	aatcactcag	ggtcaatgcc	3180
agcgcttcgt taatacagat g	gtaggtgttc	cacagggtag	ccagcagcat	cctgcgatgc	3240
agatccggaa cataatggtg c	agggcgctg	acttccgcgt	ttccagactt	tacgaaacac	3300
ggaaaccgaa gaccattcat g	ttgttgctc	aggtcgcaga	cgttttgcag	cagcagtcgc	3360
ttcacgttcg ctcgcgtatc g	gtgattcat	tctgctaacc	agtaaggcaa	cccgccagc	3420
ctagccgggt cctcaacgac a	iggagcacga	tcatgcgcac	ccgtggggcc	gccatgccgg	3480
cgataatggc ctgcttctcg c	cgaaacgtt	tggtggcggg	accagtgacg	aaggcttgag	3540
cgagggcgtg caagattccg a	ataccgcaa	gcgacaggcc	gatcatcgtc	gcgctccagc	3600
gaaagcggtc ctcgccgaaa a	itgacccaga	gcgctgccgg	cacctgtcct	acgagttgca	3660
tgataaagaa gacagtcata a	igtgcggcga	cgatagtcat	gccccgcgcc	caccggaagg	3720
agctgactgg gttgaaggct c	tcaagggca	tcggtcgaga	tcccggtgcc	taatgagtga	3780
gctaacttac attaattgcg t	tgcgctcac	tgcccgcttt	ccagtcggga	aacctgtcgt	3840
gccagctgca ttaatgaatc g	gccaacgcg	cggggagagg	cggtttgcgt	attgggcgcc	3900
agggtggttt ttctttcac c	agtgagacg	ggcaacagct	gattgccctt	caccgcctgg	3960
ccctgagaga gttgcagcaa g	cggtccacg	ctggtttgcc	ccagcaggcg	aaaatcctgt	4020
ttgatggtgg ttaacggcgg g	atataacat	gagctgtctt	cggtatcgtc	gtatcccact	4080
accgagatat ccgcaccaac g	cgcagcccg	gactcggtaa	tggcgcgcat	tgcgcccagc	4140
gccatctgat cgttggcaac c	agcatcgca	gtgggaacga	tgccctcatt	cagcatttgc	4200
atggtttgtt gaaaaccgga c	atggcactc	cagtcgcctt	cccgttccgc	tatcggctga	4260
atttgattgc gagtgagata t	ttatgccag	ccagccagac	gcagacgcgc	cgagacagaa	4320
cttaatgggc ccgctaacag c	gcgatttgc	tggtgaccca	atgcgaccag	atgctccacg	4380
cccagtcgcg taccgtcttc a	tgggagaaa	ataatactgt	tgatgggtgt	ctggtcagag	4440
acatcaagaa ataacgccgg a	acattagtg	caggcagctt	ccacagcaat	ggcatcctgg	4500
tcatccagcg gatagttaat g	atcagccca	ctgacgcgtt	gcgcgagaag	attgtgcacc	4560
gccgctttac aggcttcgac g	ccgcttcgt	tctaccatcg Page	acaccaccac 7	gctggcaccc	4620

4680

agttgatcgg cgcgagattt aatcgccgcg acaatttgcg acggcgcgtg cagggccaga

ctggaggtgg caacgccaat cagcaacgac tgtttgcccg ccagttgttg tgccacgcgg	4740
ttgggaatgt aattcagctc cgccatcgcc gcttccactt tttcccgcgt tttcgcagaa	4800
acgtggctgg cctggttcac cacgcgggaa acggtctgat aagagacacc ggcatactct	4860
gcgacatcgt ataacgttac tggtttcaca ttcaccaccc tgaattgact ctcttccggg	4920
cgctatcatg ccataccgcg aaaggttttg cgccattcga tggtgtccgg gatctcgacg	4980
ctctccctta tgcgactcct gcattaggaa gcagcccagt agtaggttga ggccgttgag	5040
caccgccgcc gcaaggaatg gtgcatgcaa ggagatggcg cccaacagtc ccccggccac	5100
ggggcctgcc accataccca cgccgaaaca agcgctcatg agcccgaagt ggcgagcccg	5160
atcttcccca tcggtgatgt cggcgatata ggcgccagca accgcacctg tggcgccggt	5220
gatgccggcc acgatgcgtc cggcgtagag gatcgagatc tcgatcccgc gaaattaata	5280
cgactcacta taggggaatt gtgagcggat aacaattccc ctctagaaat aattttgatt	5340
taactttaag aaggagatat accatgaaa	5369
<210> 4 <211> 3337 <212> DNA <213> Artificial sequence	
<220> <223> pGFPuv plasmid coding for GFP from Aequorea victoria	
<pre><223> pGFPuv plasmid coding for GFP from Aequorea victoria <220> <221> CDS <222> (286)(1014)</pre>	60
<pre><223> pGFPuv plasmid coding for GFP from Aequorea victoria <220> <221> CDS <222> (286)(1014) <223> pGFPuv plasmid coding for GFP from Aequorea victoria <400> 4</pre>	60 120
<220> <221> CDS <222> (286)(1014) <223> pGFPuv plasmid coding for GFP from Aequorea victoria <400> 4 agcgcccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc	
<pre><223> pGFPuv plasmid coding for GFP from Aequorea victoria <220> <221> CDS <222> (286)(1014) <223> pGFPuv plasmid coding for GFP from Aequorea victoria <400> 4 agcgcccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc</pre>	120
<220> <221> CDS <222> (286)(1014) <223> pGFPuv plasmid coding for GFP from Aequorea victoria <400> 4 agcgcccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa	120 180
<pre><223> pGFPuv plasmid coding for GFP from Aequorea victoria <220> <221> CDS <222> (286)(1014) <223> pGFPuv plasmid coding for GFP from Aequorea victoria <400> 4 agcgcccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc acgacaggtt tcccgactgg aaagcggca gtgagcgcaa cgcaattaat gtgagttagc tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagcttg catgcctgca ggtcgactct agaggatccc cgggtaccgg tagaa aaa atg agt aaa Lys Met Ser Lys</pre>	120 180 240

015936-2.ST25.txt	
gat gca aca tac gga aaa ctt acc ctt aaa ttt att tgc act asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr 40 45 50	act gga 441 Thr Gly
aaa cta cct gtt cca tgg cca aca ctt gtc act act ttc tct cys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe Ser	
gtt caa tgc ttt tcc cgt tat ccg gat cat atg aaa cgg cat (Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Arg His 70 75 80	gac ttt 537 Asp Phe
ttc aag agt gcc atg ccc gaa ggt tat gta cag gaa cgc act a Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr : 85 90 95	ata tct 585 Ile Ser 100
ttc aaa gat gac ggg aac tac aag acg cgt gct gaa gtc aag Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys ! 105 110	ttt gaa 633 Phe Glu 115
ggt gat acc ctt gtt aat cgt atc gag tta aaa ggt att gat gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp 120 125 130	ttt aaa 681 Phe Lys
gaa gat gga aac att ctc gga cac aaa ctc gag tac aac tat a Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr 135 140 145	aac tca 729 Asn Ser
cac aat gta tac atc acg gca gac aaa caa aag aat gga atc a His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly Ile 150 155 160	aaa gct 777 Lys Ala
aac ttc aaa att cgc cac aac att gaa gat gga tcc gtt caa d Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln 1 165 170 175	cta gca 825 Leu Ala 180
gac cat tat caa caa aat act cca att ggc gat ggc cct gtc (Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val 185	ctt tta 873 Leu Leu 195
cca gac aac cat tac ctg tcg aca caa tct gcc ctt tcg aaa g Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys 200 205 210	gat ccc 921 Asp Pro
aac gaa aag cgt gac cac atg gtc ctt ctt gag ttt gta act g Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr 215 220 225	gct gct 969 Ala Ala
ggg att aca cat ggc atg gat gag ctc tac aaa taa tga att c Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys Ile I 230 235 240	
actgagcgcc ggtcgctacc attaccaact tgtctggtgt caaaaataat a	ggcctacta 1074
gtcggccgta cgggcccttt cgtctcgcgc gtttcggtga tgacggtgaa a	acctctgac 1134
acatgcagct cccggagacg gtcacagctt gtctgtaagc ggatgccggg ag	gcagacaag 1194
cccgtcaggg cgcgtcagcg ggtgttggcg ggtgtcgggg ctggcttaac ta	atgcggcat 1254
cagagcagat tgtactgaga gtgcaccata tgcggtgtga aataccgcac ag	gatgcgtaa 1314
ggagaaaata ccgcatcagg cggccttaag ggcctcgtga tacgcctatt t Page 9	ttataggtt 1374

aatgtcatga taataatggt	ttcttagacg	tcaggtggca	cttttcgggg	aaatgtgcgc	1434
ggaaccccta tttgtttatt	tttctaaata	cattcaaata	tgtatccgct	catgagacaa	1494
taaccctgat aaatgcttca	ataatattga	aaaaggaaga	gtatgagtat	tcaacatttc	1554
cgtgtcgccc ttattccctt	ttttgcggca	ttttgccttc	ctgtttttgc	tcacccagaa	1614
acgctggtga aagtaaaaga	tgctgaagat	cagttgggtg	cacgagtggg	ttacatcgaa	1674
ctggatctca acagcggtaa	gatccttgag	agttttcgcc	ccgaagaacg	ttttccaatg	1734
atgagcactt ttaaagttct	gctatgtggc	gcggtattat	cccgtattga	cgccgggcaa	1794
gagcaactcg gtcgccgcat	acactattct	cagaatgact	tggttgagta	ctcaccagtc	1854
acagaaaagc atcttacgga	tggcatgaca	gtaagagaat	tatgcagtgc	tgccataacc	1914
atgagtgata acactgcggc	caacttactt	ctgacaacga	tcggaggacc	gaaggagcta	1974
accgcttttt tgcacaacat	gggggatcat	gtaactcgcc	ttgatcgttg	ggaaccggag	2034
ctgaatgaag ccataccaaa	cgacgagcgt	gacaccacga	tgcctgtagc	aatggcaaca	2094
acgttgcgca aactattaac	tggcgaacta	cttactctag	cttcccggca	acaattaata	2154
gactggatgg aggcggataa	agttgcagga	ccacttctgc	gctcggccct	tccggctggc	2214
tggtttattg ctgataaatc	tggagccggt	gagcgtgggt	ctcgcggtat	cattgcagca	2274
ctggggccag atggtaagcc	ctcccgtatc	gtagttatct	acacgacggg	gagtcaggca	2334
actatggatg aacgaaatag	acagatcgct	gagataggtg	cctcactgat	taagcattgg	2394
taactgtcag accaagttta	ctcatatata	ctttagattg	atttaaaact	tcatttttaa	2454
tttaaaagga tctaggtgaa	gatccttttt	gataatctca	tgaccaaaat	cccttaacgt	2514
gagttttcgt tccactgagc	gtcagacccc	gtagaaaaga	tcaaaggatc	ttcttgagat	2574
ccttttttc tgcgcgtaat	ctgctgcttg	caaacaaaaa	aaccaccgct	accagcggtg	2634
gtttgtttgc cggatcaaga	gctaccaact	ctttttccga	aggtaactgg	cttcagcaga	2694
gcgcagatac caaatactgt	ccttctagtg	tagccgtagt	taggccacca	cttcaagaac	2754
tctgtagcac cgcctacata	cctcgctctg	ctaatcctgt	taccagtggc	tgctgccagt	2814
ggcgataagt cgtgtcttac	cgggttggac	tcaagacgat	agttaccgga	taaggcgcag	2874
cggtcgggct gaacgggggg	ttcgtgcaca	cagcccagct	tggagcgaac	gacctacacc	2934
gaactgagat acctacagcg	tgagctatga	gaaagcgcca	cgcttcccga	agggagaaag	2994
gcggacaggt atccggtaag	cggcagggtc	ggaacaggag	agcgcacgag	ggagcttcca	3054
gggggaaacg cctggtatct	ttatagtcct	gtcgggtttc	gccacctctg	acttgagcgt	3114
cgatttttgt gatgctcgtc	aggggggcgg	agcctatgga	aaaacgccag	caacgcggcc	3174
tttttacggt tcctggcctt	ttgctggcct	tttgctcaca	tgttctttcc	tgcgttatcc	3234

3337

<210> 5 <211> 239 <212> PRT <213> Artificial sequence	
<220> <223> Synthetic Construct	
<400> 5	
Lys Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Lo 1 10 15	eu
Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser G 20 25 30	ly
Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe I 35 40 45	1e
Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Th	ır
Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Ly 65 70 75	
Arg His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln G	lu
Arg Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala G 100 105 110	lu
Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys G 115 120 125	ly
Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Ty 130 140	/r
Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys As 145 150 155 16	s n 60
Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Se 165 170 175	er
Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp G 180 185 190	ly

015936-2.ST25.txt Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 195 200 205 Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 235 235 <210> <211> 6069 <212> DNA <213> Artificial sequence <220> <223> pETM-GFP-Imm plasmid containing Hisx6 tag, flexible joint as frame adapter, and A. victoria GFP gene <220> <221> <222> CDS (1)...(876)<223> pETM-GFP-Imm plasmid containing Hisx6 tag, flexible joint as frame adapter, and A. victoria GFP gene <400> 48 atg aaa cat cac cat cac cat cac ccc atg agc gat tac gac atc ccc Met Lys His His His His His Pro Met Ser Asp Tyr Asp Ile Pro 96 act act gag aat ctt tat ttt cag ggc gcc atg gga ggc acg gta ccg Thr Thr Glu Asn Leu Tyr Phe Gln Gly Ala Met Gly Gly Thr Val Pro gta gaa aaa atg agt aaa gga gaa ctt ttc act gga gtt gtc cca 144 Val Glu Lys Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro 35 40 45 att ctt gtt gaa tta gat ggt gat gtt aat ggg cac aaa ttt tct gtc Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val 50 60 192 agt gga gag ggt gaa ggt gat gca aca tac gga aaa ctt acc ctt aaa Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys 65 70 75 80 240 ttt att tgc act act gga aaa cta cct gtt cca tgg cca aca ctt gtc Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val 288 act act ttc tct tat ggt gtt caa tgc ttt tcc cgt tat ccg gat cat Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His **336** . 105 100 atg aaa cgg cat gac ttt ttc aag agt gcc atg ccc gaa ggt tat gta Met Lys Arg His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val 115 120 125 384

	_	L5936-2.ST25.txt		
cag gaa cgc act ata tc Gln Glu Arg Thr Ile Se 130	t ttc aaa gat r Phe Lys Asp 135	gac ggg aac ta Asp Gly Asn Ty 140	c aag acg cgt r Lys Thr Arg	432
gct gaa gtc aag ttt ga Ala Glu Val Lys Phe Gl 145 15	u Gly Asp Thr	ctt gtt aat cg Leu Val Asn Ar 155	t atc gag tta g Ile Glu Leu 160	480
aaa ggt att gat ttt aa Lys Gly Ile Asp Phe Ly 165	a gaa gat gga s Glu Asp Gly	aac att ctc gg Asn Ile Leu Gl 170	a cac aaa ctc y His Lys Leu 175	528
gag tac aac tat aac tc Glu Tyr Asn Tyr Asn Se 180				576
aag aat gga atc aaa gc Lys Asn Gly Ile Lys Al 195			ı Ile Ğlu Asp	624
gga tcc gtt caa cta gc Gly Ser Val Gln Leu Al 210	a gac cat tat a Asp His Tyr 215	caa caa aat ac Gln Gln Asn Th 220	t cca att ggc r Pro Ile Gly	672
gat ggc cct gtc ctt tt Asp Gly Pro Val Leu Le 225 23	u Pro Āsp Asn	cat tac ctg tcg His Tyr Leu Se 235	g aca caa tct r Thr Gln Ser 240	720
gcc ctt tcg aaa gat cc Ala Leu Ser Lys Asp Pr 245				768
gag ttt gta act gct gc Glu Phe Val Thr Ala Al 260	t ggg att aca a Gly Ile Thr 265	cat ggc atg ga His Gly Met As	t gag ctc cgt o Glu Leu Arg 270	816
cga caa gct tgc ggc cg Arg Gln Ala Cys Gly Ar 275			Pro Leu Arg	864
tcc ggc tgc taa caaagc Ser Gly Cys 290	ccga aaggaagc	tg agttggctgc t	gccaccgct	916
gagcaataac tagcataacc	ccttggggcc tc	taaacggg tcttga	ggg ttttttgctg	976
aaaggaggaa ctatatccgg	attggcgaat gg	gacgcgcc ctgtag	ggc gcattaagcg	1036
cggcgggtgt ggtggttacg	cgcagcgtga cc	gctacact tgccage	gcc ctagcgcccg	1096
ctcctttcgc tttcttccct	tcctttctcg cc	acgttcgc cggctt	ccc cgtcaagctc	1156
taaatcgggg gctcccttta	gggttccgat tt	agtgcttt acggca	ctc gaccccaaaa	1216
aacttgatta gggtgatggt	tcacgtagtg gg	ccatcgcc ctgata	gacg gtttttcgcc	1276
ctttgacgtt ggagtccacg	ttctttaata gt	ggactctt gttcca	act ggaacaacac	1336
tcaaccctat ctcggtctat	tcttttgatt ta	taagggat tttgcc	gatt tcggcctatt	1396
ggttaaaaaa tgagctgatt	taacaaaaat tt	aacgcgaa ttttaa	aaa atattaacgt	1456
ttacaatttc aggtggcact	tttcggggaa at	gtgcgcgg aacccc Page 13	catt tgtttatttt	1516

tctaaataca	ttcaaatatg	tatccgctca	tgaattaatt	cttagaaaaa	ctcatcgagc	1576
atcaaatgaa	actgcaattt	attcatatca	ggattatcaa	taccatattt	ttgaaaaagc	1636
cgtttctgta	atgaaggaga	aaactcaccg	aggcagttcc	ataggatggc	aagatcctgg	1696
tatcggtctg	cgattccgac	tcgtccaaca	tcaatacaac	ctattaattt	cccctcgtca	1756
aaaataaggt	tatcaagtga	gaaatcacca	tgagtgacga	ctgaatccgg	tgagaatggc	1816
aaaagtttat	gcatttcttt	ccagacttgt	tcaacaggcc	agccattacg	ctcgtcatca	1876
aaatcactcg	catcaaccaa	accgttattc	attcgtgatt	gcgcctgagc	gagacgaaat	1936
acgcgatcgc	tgttaaaagg	acaattacaa	acaggaatcg	aatgcaaccg	gcgcaggaac	1996
actgccagcg	catcaacaat	attttcacct	gaatcaggat	attcttctaa	tacctggaat	2056
gctgttttcc	cggggatcgc	agtggtgagt	aaccatgcat	catcaggagt	acggataaaa	2116
tgcttgatgg	tcggaagagg	cataaattcc	gtcagccagt	ttagtctgac	catctcatct	2176
gtaacatcat	tggcaacgct	acctttgcca	tgtttcagaa	acaactctgg	cgcatcgggc	2236
ttcccataca	atcgatagat	tgtcgcacct	gattgcccga	cattatcgcg	agcccattta	2296
tacccatata	aatcagcatc	catgttggaa	tttaatcgcg	gcctagagca	agacgtttcc	2356
cgttgaatat	ggctcataac	accccttgta	ttactgttta	tgtaagcaga	cagttttatt	2416
gttcatgacc	aaaatccctt	aacgtgagtt	ttcgttccac	tgagcgtcag	accccgtaga	2476
aaagatcaaa	ggatcttctt	gagatccttt	ttttctgcgc	gtaatctgct	gcttgcaaac	2536
aaaaaaacca	ccgctaccag	cggtggtttg	tttgccggat	caagagctac	caactctttt	2596
tccgaaggta	actggcttca	gcagagcgca	gataccaaat	actgtccttc	tagtgtagcc	2656
gtagttaggc	caccacttca	agaactctgt	agcaccgcct	acatacctcg	ctctgctaat	2716
cctgttacca	gtggctgctg	ccagtggcga	taagtcgtgt	cttaccgggt	tggactcaag	2776
acgatagtta	ccggataagg	cgcagcggtc	gggctgaacg	gggggttcgt	gcacacagcc	2836
cagcttggag	cgaacgacct	acaccgaact	gagataccta	cagcgtgagc	tatgagaaag	2896
cgccacgctt	cccgaaggga	gaaaggcgga	caggtatccg	gtaagcggca	gggtcggaac	2956
aggagagcgc	acgagggagc	ttccaggggg	aaacgcctgg	tatctttata	gtcctgtcgg	3016
gtttcgccac	ctctgacttg	agcgtcgatt	tttgtgatgc	tcgtcagggg	ggcggagcct	3076
atggaaaaac	gccagcaacg	cggccttttt	acggttcctg	gccttttgct	ggccttttgc	3136
tcacatgttc	tttcctgcgt	tatcccctga	ttctgtggat	aaccgtatta	ccgcctttga	3196
gtgagctgat	accgctcgcc	gcagccgaac	gaccgagcgc	agcgagtcag	tgagcgagga	3256
agcggaagag	cgcctgatgc	ggtattttct	ccttacgcat	ctgtgcggta	tttcacaccg	3316
catatatggt	gcactctcag	tacaatctgc	tctgatgccg	catagttaag	ccagtataca	3376

ctccgctatc	gctacgtgac	tgggtcatgg	ctgcgccccg	acacccgcca	acacccgctg	3436
acgcgccctg	acgggcttgt	ctgctcccgg	catccgctta	cagacaagct	gtgaccgtct	3496
ccgggagctg	catgtgtcag	aggttttcac	cgtcatcacc	gaaacgcgcg	aggcagctgc	3556
ggtaaagctc	atcagcgtgg	tcgtgaagcg	attcacagat	gtctgcctgt	tcatccgcgt	3616
ccagctcgtt	gagtttctcc	agaagcgtta	atgtctggct	tctgataaag	cgggccatgt	3676
taagggcggt	tttttcctgt	ttggtcactg	atgcctccgt	gtaaggggga	tttctgttca	3736
tgggggtaat	gataccgatg	aaacgagaga	ggatgctcac	gatacgggtt	actgatgatg	3796
aacatgcccg	gttactggaa	cgttgtgagg	gtaaacaact	ggcggtatgg	atgcggcggg	3856
accagagaaa	aatcactcag	ggtcaatgcc	agcgcttcgt	taatacagat	gtaggtgttc	3916
cacagggtag	ccagcagcat	cctgcgatgc	agatccggaa	cataatggtg	cagggcgctg	3976
acttccgcgt	ttccagactt	tacgaaacac	ggaaaccgaa	gaccattcat	gttgttgctc	4036
aggtcgcaga	cgttttgcag	cagcagtcgc	ttcacgttcg	ctcgcgtatc	ggtgattcat	4096
tctgctaacc	agtaaggcaa	cccgccagc	ctagccgggt	cctcaacgac	aggagcacga	4156
tcatgcgcac	ccgtggggcc	gccatgccgg	cgataatggc	ctgcttctcg	ccgaaacgtt	4216
tggtggcggg	accagtgacg	aaggcttgag	cgagggcgtg	caagattccg	aataccgcaa	4276
gcgacaggcc	gatcatcgtc	gcgctccagc	gaaagcggtc	ctcgccgaaa	atgacccaga	4336
gcgctgccgg	cacctgtcct	acgagttgca	tgataaagaa	gacagtcata	agtgcggcga	4396
cgatagtcat	gccccgcgcc	caccggaagg	agctgactgg	gttgaaggct	ctcaagggca	4456
tcggtcgaga	tcccggtgcc	taatgagtga	gctaacttac	attaattgcg	ttgcgctcac	4516
tgcccgcttt	ccagtcggga	aacctgtcgt	gccagctgca	ttaatgaatc	ggccaacgcg	4576
cggggagagg	cggtttgcgt	attgggcgcc	agggtggttt	ttcttttcac	cagtgagacg	4636
ggcaacagct	gattgccctt	caccgcctgg	ccctgagaga	gttgcagcaa	gcggtccacg	4696
ctggtttgcc	ccagcaggcg	aaaatcctgt	ttgatggtgg	ttaacggcgg	gatataacat	4756
gagctgtctt	cggtatcgtc	gtatcccact	accgagatat	ccgcaccaac	gcgcagcccg	4816
gactcggtaa	tggcgcgcat	tgcgcccagc	gccatctgat	cgttggcaac	cagcatcgca	4876
gtgggaacga	tgccctcatt	cagcatttgc	atggtttgtt	gaaaaccgga	catggcactc	4936
cagtcgcctt	cccgttccgc	tatcggctga	atttgattgc	gagtgagata	tttatgccag	4996
ccagccagac	gcagacgcgc	cgagacagaa	cttaatgggc	ccgctaacag	cgcgatttgc	5056
tggtgaccca	atgcgaccag	atgctccacg	cccagtcgcg	taccgtcttc	atgggagaaa	5116
ataatactgt	tgatgggtgt	ctggtcagag	acatcaagaa	ataacgccgg	aacattagtg	5176
caggcagctt	ccacagcaat	ggcatcctgg	tcatccagcg	gatagttaat	gatcagccca	5236
ctgacgcgtt	gcgcgagaag	attgtgcacc	gccgctttac Page	aggcttcgac 15	gccgcttcgt	5296

tctaccatcg	acaccaccac	gctggcaccc	agttgatcgg	cgcgagattt	aatcgccgcg	5356
acaatttgcg	acggcgcgtg	cagggccaga	ctggaggtgg	caacgccaat	cagcaacgac	5416
tgtttgcccg	ccagttgttg	tgccacgcgg	ttgggaatgt	aattcagctc	cgccatcgcc	5476
gcttccactt	tttcccgcgt	tttcgcagaa	acgtggctgg	cctggttcac	cacgcgggaa	5536
acggtctgat	aagagacacc	ggcatactct	gcgacatcgt	ataacgttac	tggtttcaca	5596
ttcaccaccc	tgaattgact	ctcttccggg	cgctatcatg	ccataccgcg	aaaggttttg	5656
cgccattcga	tggtgtccgg	gatctcgacg	ctctccctta	tgcgactcct	gcattaggaa	5716
gcagcccagt	agtaggttga	ggccgttgag	caccgccgcc	gcaaggaatg	gtgcatgcaa	5776
ggagatggcg	cccaacagtc	ccccggccac	ggggcctgcc	accataccca	cgccgaaaca	5836
agcgctcatg	agcccgaagt	ggcgagcccg	atcttcccca	tcggtgatgt	cggcgatata	5896
ggcgccagca	accgcacctg	tggcgccggt	gatgccggcc	acgatgcgtc	cggcgtagag	5956
gatcgagatc	tcgatcccgc	gaaattaata	cgactcacta	taggggaatt	gtgagcggat	6016
aacaattccc	ctctagaaat	aattttgatt	taactttaag	aaggagatat	acc	6069

<210> 7 <211> 291 <212> PRT

<213> Artificial sequence

<220>

<223> Synthetic Construct

<400> 7

Met Lys His His His His His Pro Met Ser Asp Tyr Asp Ile Pro 1 5 10 15

Thr Thr Glu Asn Leu Tyr Phe Gln Gly Ala Met Gly Gly Thr Val Pro 20 25 30

Val Glu Lys Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro 35 40 45

Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val 50 55 60

Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys 70 75 80

Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val 85 90 95

Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Page 16 Met Lys Arg His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val 115 120 125

Gln Glu Arg Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg 130 135 140

Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu 145 150 155 160

Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu 165 170 175

Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln 180 185 190

Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp 195 200 205

Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly 210 215 220

Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser 225 230 235 240

Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu 245 250 255

Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Arg 260 265 270

Arg Gln Ala Cys Gly Arg Thr Arg Ala Pro Pro Pro Pro Leu Arg 275 280 285

Ser Gly Cys 290

<210> 8 <211> 17

<212> DNA

<213> Artificial sequence

<220>
<223> Frame adapter used for prevention of frameshift mutation as a result of plasmid modification

<220>

```
<221>
      misc_feature
<222>
      (1)..(17)
<223> Frame adapter used for prevention of frameshift mutation as a
       result of plasmid modification
<400>
                                                                       17
catgggaggc acggtac
<210>
<211>
      5
<212> PRT
<213> Artificial sequence
<220>
       Peptide design based on size and flexibility to act as a linker
<223>
       between the tag and GFP protein segments
<220>
<221>
       MISC_FEATURE
       Peptide design based on size and flexibility to act as a linker
       between the tag and GFP protein segments
<400>
Met Gly Gly Thr Val
<210>
      10
<211>
      6
<212>
      PRT
<213> Artificial sequence
<220>
      Peptide design based on charge and shape to bind the
<223>
       expressed protein to a suitably interactive surface
<220>
<221>
      MISC_FEATURE
       Peptide design based on charge and shape to bind the
<223>
       expressed protein to a suitably interactive surface
<400>
      10
His His His His His
<210>
       11
<211>
      238
<212>
      PRT
<213> Aequorea victora
<220>
<221>
      MISC_FEATURE
      Green fluorescent peptide coded by pGFPuv plasmid, permitting
<223>
                                      Page 18
```

015936-2.ST25.txt easy visualisation and quantification based on fluorescence

properties <400> 11 Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15 Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 20 25 30 Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys
35 40 45 Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60 Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Arg 65 70 75 80 His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95 Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 100 105 110 Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125 Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140 Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly 145 150 155 160 Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175 Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190 Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 195 200 205

Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys 235 230 Page 19

Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 210 215 220

<210> 12 <211> 291 <212> PRT <213> Artificial sequence <220> Completed peptide based on Hisx6 tag, short physically flexible linker and green fluorescent protein coded by pETM-GFP-Imm to impart fluorescence properties, allowing easy immobilisation with <223> retention of bioactivity, visualisation and quantification <220> <221> MISC_FEATURE Completed peptide based on Hisx6 tag, short physically flexible <223> linker and green fluorescent protein coded by pETM-GFP-Imm to impart fluorescence properties, allowing easy immobilisation with retention of bioactivity, visualisation and quantification <400> Met Lys His His His His His Pro Met Ser Asp Tyr Asp Ile Pro Thr Thr Glu Asn Leu Tyr Phe Gln Gly Ala Met Gly Gly Thr Val Pro 20 25 30 Val Glu Lys Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro
35 40 45 Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys 65 70 75 80 Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val 85 90 95 Thr Thr Phe Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His 100 105 110 Met Lys Arg His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val 115 120 125 Gln Glu Arg Thr Ile Ser Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg 130

Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu

O15936-2.ST25.txt
Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu
165 170 175

Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln 180 185 190

Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp 200 205

Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly 210 220

Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser 235 230 235

Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu 245 250 255

Glu Phe Val Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Arg 260 265 270

Arg Gln Ala Cys Gly Arg Thr Arg Ala Pro Pro Pro Pro Leu Arg 275 280 285

Ser Gly Cys 290