NLNP Praktikum 4

Robin Baudisch, Merlin Kopfmann, Maximilian Neudert

Inhaltsverzeichnis

A1		2
A2		3
	a)	3
	b)	8

A1

```
AIC (Linear):
AIC (n=100)
[1] 297.6641
AIC (n=20)
[1] 61.74052
AIC (Polynomial):
AIC (n=100)
[1] 290.4355
AIC (n=20)
[1] 62.19022
Quadratischer Vorhersagefehler (Linear):
Quadratischer Vorhersagefehler (n=100)
[1] 1.139113
Quadratischer Vorhersagefehler (n=20)
[1] 0.9740106
Quadratischer Vorhersagefehler (Polynomial):
Quadratischer Vorhersagefehler (n=100)
[1] 1.049011
Quadratischer Vorhersagefehler (n=20)
[1] 0.9853232
```

Der durchschnittliche AIC im Falle n=20 ist für das lineare Modell mit AIC=61.74 kleiner als im polynomialen Modell mit AIC=62.19. Im Falle n=100 ist das polynomiale Modell laut dem AIC besser (AIC=290.44) als das lineare Modell (AIC=297.66). Dies stimmt mit den Ergebnissen der geschätzten quadratischen Vorhersagefehlern überein. Bei n=20 ist das lineare Modell leicht besser, im Falle n=100 produziert das polynomiale Modell die genaueren Vorhersagen.

A2

a)


```
model_list <- list(model1, model2, model3, model4, model5, model6, model7, model8,
    model9)

for (model in 1:length(model_list)) {
    p <- length(model_list[[model]]$coefficients)
    results[model, 1] <- length(model_list[[model]]$coefficients)
    results[model, 2] <- train_error(n_var, model_list[[model]])
    results[model, 3] <- opt_term(n_var, p, model_list[[model]])
    results[model, 4] <- test_error_exp(results[model, 3], results[model, 2])
    results[model, 5] <- AIC(model_list[[model]])
}</pre>
```

	N_Param	Trainingsfehler	${\tt Optimismusterm}$	Erwarteter_Testfehler
model1	2	146.17611	6.027881	152.20399
model2	2	72.08576	2.972609	75.05837
model3	2	262.83293	10.838471	273.67140
model4	2	285.74478	11.783290	297.52807
model5	3	53.80040	3.327860	57.12826
model6	3	62.76835	3.882578	66.65093
model7	3	64.29518	3.977021	68.27220
model8	4	50.66315	4.178404	54.84155
model9	5	50.59325	5.215799	55.80905
	AIC			
model1	772.6235	5		
model2	703.3419)		
model3	830.1208	3		
model4	838.3117	7		
model5	676.6695	5		
model6	691.7781	L		
model7	694.1334	1		
model8	672.7814	1		
model9	674.6461	L		

- Länge der Ausbildung scheint den größten Einfluss auf die abhängige Variable zu haben, da dass Modell 4 das beste Modell mit nur einer unabhängigen Variable ist.
- Modell 5 bietet aufbauend auf der Variablen Länge der Ausbildung die höchste Genaugkeit, durch Hinzunahme der Variable Einkommen. Frauenanteil (Modell 7) und Berufsklasse (Modell 6) sind dagegen laut AIC schlechtere Modelle.
- Weitere Hinzunahme der unabhängigen Variablen Berufsklasse und Frauenanteil führt zu keiner Verbesserung der Modellgüte.
- Modell 5 scheint das robusteste Modell zu sein, in dem nur signifikante unabhängige Variablen vorkommen. Das Risiko für Overfitting ist klein.

b)

Um AIC-Werte miteinander vergleichen zu können, müssen die Modelle auf den gleichen Daten trainiert werden.