Optimal Spatial Resource Allocation in Cellular Networks

Book by **Emil Björnson** and Eduard Jorswieck Foundations and Trends in Communications and Information Theory, Vol. 9, No. 2-3, pp. 113-381, 2013

PDF: http://kth.diva-portal.org/smash/get/diva2:608533/FULLTEXT01 MATLAB code: https://github.com/emilbjornson/book-resource-allocation

Outline

- Introduction
 - Cellular networks, system model, performance measure
- Problem Formulation
 - Resource allocation: Multi-objective optimization problem
- Subjective Resource Allocation
 - Utility functions, different computational complexity
- Structural Insights
 - Beamforming parametrization

Section Introduction

Introduction

- Problem Formulation (vaguely):
 - Transfer information wirelessly to users
 - Divide radio resources among users (time, frequency, space)
- Downlink Coordinated Multi-Cell System
 - Many transmitting base stations (BSs)
 - Many receiving users
 - Multiple-input multiple-output (MIMO)
- Sharing a Frequency Band
 - All signals reach everyone!
- Limiting Factor
 - Inter-user interference

Introduction: Multi-Antenna Single-Cell Transmission

- Traditional Ways to Manage Interference
 - Avoid and suppress in time and frequency domain
 - Results in orthogonal single-cell access techniques: TDMA, OFDMA, etc.
- Multi-Antenna Transmission
 - Beamforming: Spatially directed signals
 - Adaptive control of interference
 - Serve multiple users: Space-division multiple access (SDMA), Multi-user MIMO

Main difference from

classical resource allocation!

Introduction: Designing Multi-Antenna Transmission

- Multi-Antenna Transmission
 - With channel knowledge: beamforming or precoding
 - Direct signal towards intended receiver some interference leaks!

Beamforming Design

Easy for one user

Difficult for multiple users, due to interference

Introduction: From Single-Cell to Multi-Cell

- Naïve Multi-Cell Extension
 - Divide BS into disjoint clusters
 - SDMA within each cluster
 - Avoid inter-cluster interference
 - Fractional frequency-reuse

- Coordinated Multi-Cell Transmission
 - SDMA in multi-cell: Cooperation between all BSs
 - Full frequency-reuse: Interference managed by beamforming
 - Many names: multi-cell processing, coordinated multi-point (CoMP), network MIMO, cell-free massive MIMO
- Almost as One Super-Cell
 - But: Different data knowledge, channel knowledge, power constraints!

Basic Multi-Cell Coordination Structure

- General Multi-Cell Coordination
 - Adjacent base stations coordinate interference
 - Some users served by multiple base stations

Dynamic Cooperation Clusters

- Inner Circle \mathcal{D}_k : Serve users with data
- Outer Circle C_k : Suppress interference
- Outside Circles:
 - Negligible impact
 Impractical to acquire information
 Difficult to coordinate decisions
- E. Björnson, N. Jaldén, M. Bengtsson, B. Ottersten, "Optimality Properties, Distributed Strategies, and Measurement-Based Evaluation of Coordinated Multicell OFDMA Transmission," IEEE Trans. on Signal Processing, 2011.

Example: Ideal Joint Transmission

All Base Stations Serve All Users Jointly = One Super Cell

Example: Wyner Model

- Abstraction: User receives signals from own and neighboring base stations
 - One or Two Dimensional Versions
 - Joint Transmission or Coordination between Cells

Example: Coordinated Beamforming

- One Base Station Serves Each User
- Interference Coordination Across Cells

Example: Heterogeneous Network

- Conventional macro BS overlaid by short-distance small BSs
 - Interference coordination and joint transmission between layers

Example: Cognitive Radio

- Secondary System Borrows Spectrum of Primary System
 - Underlay: Interference limits for primary users

Resource Allocation: First Definition

- Problem Formulation (imprecise):
 - Select beamforming to maximize "system utility"
 - Means: Allocate power to users and in spatial dimensions
 - Satisfy: Physical, regulatory & economic constraints
- Some Assumptions:
 - Linear transmission and reception
 - Perfect synchronization (whenever needed)
 - Flat-fading channels (e.g., a subcarrier in OFDM)
 - Perfect channel knowledge
 - Ideal transceiver hardware
 - Centralized optimization

-Relaxed in the book

Multi-Cell System Model

- *K_t* Transmitting BSs
- K_r Users: Channel vector $\mathbf{h}_k = [\mathbf{h}_{1k}^T \dots \mathbf{h}_{K_r}^T]^T$ to User k from all BSs
- N_j Antennas at jth BS (dimension of h_{jk})
- $N = \sum_{i} N_{i}$ Antennas in Total (dimension of \mathbf{h}_{k})

One System Model for All Multi-Cell Scenarios!

Multi-Cell System Model: Dynamic Cooperation Clusters (2)

- How are D_k and C_k Defined?
 - This is User *k*
 - Beamforming: $D_k v_k$ *Data* only from $BS_{1:}$

$$\mathbf{D}_k = egin{bmatrix} \mathbf{I}_{N_1} & & & \ & \mathbf{0}_{N_2} & & \ & & \mathbf{0}_{N_3} & \ & & \mathbf{0}_{N_4} \end{bmatrix}$$

- Effective channel: $\mathbf{C}_k^H \mathbf{h}_k$ All BSs *coordinate* interference:

$$\mathbf{C}_k = egin{bmatrix} \mathbf{I}_{N_1} & & & \ & \mathbf{I}_{N_2} & & \ & & \mathbf{I}_{N_3} & \ & & & \mathbf{I}_{N_4} \end{bmatrix}$$

Example: Coordinated Beamforming

Multi-Cell System Model: Power Constraints

- Need for Power Constraints
 - Limit radiated power according to regulations
 - Protect dynamic range of amplifiers
 - Manage cost of energy expenditure
 - Control interference to certain users

All at the same time

L General Power Constraints:

Multi-Cell System Model: Power Constraints (2)

• Recall:

$$\sum_{l=1}^{K_r} \mathbf{v}_k^H \mathbf{Q}_{lk} \mathbf{v}_k \le q_l$$

• Example 1, Total Power Constraint: L=1: $\mathbf{Q}_{1k}=\mathbf{I}_N$

$$L = 1$$
: $\mathbf{Q}_{1k} = \mathbf{I}_N$
 $q_1 = \text{Maximal total power}$

• Example 2, Per-Antenna Constraints:

$$L = N$$
: $\mathbf{Q}_{1k} = \operatorname{diag}(1, 0, \dots, 0), \dots, \mathbf{Q}_{Nk} = \operatorname{diag}(0, \dots, 0, 1)$
 $q_l = \mathbf{Maximal\ power\ at\ } l$ th antenna

Introduction: How to Measure User Performance?

- Mean Square Error (MSE)
 - Difference: transmitted and received signal
 - Easy to Analyze
 - Far from the User Perspective?
- Bit/Symbol Error Ratio (BER/SER)
 - Probability of error (for a given data rate)
 - Intuitive interpretation
 - Complicated & ignores channel coding
- Information Rate
 - Bits per "channel use"
 - Mutual information: perfect and long coding
 - Anyway closest to reality?

All improve with the SINR:

Signal

Interference + Noise

Introduction: Generic Measure User Performance

- Generic Model
 - Any function of signal-to-interference-and-noise ratio (SINR):

$$g_k(\text{SINR}_k) = g_k \left(\frac{|\mathbf{h}_k^H \mathbf{C}_k \mathbf{D}_k \mathbf{v}_k|^2}{\sigma_k^2 + \sum_{i \neq k} |\mathbf{h}_k^H \mathbf{C}_k \mathbf{D}_i \mathbf{v}_i|^2} \right) \quad \text{for User } k$$

- Increasing and continuous function
- For simplicity: $g_k(0) = 0$
- Example:
 - Information rate: $g_k(SINR_k) = \log_2(1 + SINR_k)$
- Complicated Function
 - Depends on all beamforming vectors $\mathbf{v}_1,...,\mathbf{v}_{K_r}$

Problem Formulation

Problem Formulation

General Formulation of Resource Allocation:

maximize
$$\{g_1(\text{SINR}_1), \dots, g_{K_r}(\text{SINR}_{K_r})\}$$

subject to $\sum_{k=1}^{K_r} \mathbf{v}_k^H \mathbf{Q}_{lk} \mathbf{v}_k \leq q_l \quad \forall l.$

- Multi-Objective Optimization Problem
 - Generally impossible to maximize for all users!
 - Must divide power and cause inter-user interference

Performance Region

- Definition: Achievable Performance Region ${\cal R}$
 - Contains all feasible combinations $\{g_1(\mathrm{SINR}_1),\ldots,g_{K_r}(\mathrm{SINR}_{K_r})\}$
 - Feasible = Achieved by some $\{\mathbf{v}_1, ..., \mathbf{v}_{K_r}\}$ under power constraints

Care about user 2 g_2 **Pareto Boundary** Balance Cannot improve between for any user Part of interest: users without degrading Pareto boundary for other users Two-User Care about Performance user 1 Region g_1

Other Names

Rate Region Capacity Region MSE Region, etc.

Performance Region (2)

Can the region have any shape?

Performance Region (3)

Some Possible Shapes

User-Coupling

Weak: Convex Strong: Concave

Scheduling

Time-sharing for strongly coupled users

Select multiple points Hard: Unknown region

Performance Region (4)

- Which Pareto Optimal Point to Choose?
 - Tradeoff: Aggregate Performance vs. Fairness

No Objective Answer

Utopia point outside of region

Only subjective answers exist!

Section

Subjective Resource Allocation

Subjective Approach

- System Designer Selects Utility Function $f: \mathcal{R} \to \mathbb{R}$
 - Describes subjective preference
 - Increasing and continuous function

• Examples:

 $f(\mathbf{g}) = \sum_{k} g_k$ Sum performance:

Proportional fairness: $f(\mathbf{g}) = \prod_k g_k$

Harmonic mean: $f(\mathbf{g}) = K_r (\sum_k g_k^{-1})^{-1}$ Max-min fairness: $f(\mathbf{g}) = \min_k g_k$

Put different weights to move between extremes

Aggregate Performance

> User **Fairness**

Known as *A Priori* Approach

Select utility function before optimization

Subjective Approach (2)

Utility Function gives Single-Objective Optimization Problem:

$$\underset{\mathbf{v}_{1},...,\mathbf{v}_{K_{r}}}{\text{maximize}} f(\mathbf{g}) \quad \text{subject to} \quad \sum_{k=1}^{K_{r}} \mathbf{v}_{k}^{H} \mathbf{Q}_{lk} \mathbf{v}_{k} \leq q_{l} \quad \forall l.$$

- This is the Starting Point of Many Researchers
 - Although the selection of f is $\$ Inherently subjective $\$ Affects the solvability
 - Should always have a motivation in mind!

Pragmatic Approach

Try to Select Utility Function to Enable Efficient Optimization

Complexity of Single-Objective Optimization Problems

- Classes of Optimization Problems
 - Different scaling with number of parameters and constraints

- Main Classes
 - Convex: Polynomial time solution
 - Monotonic: Exponential time solution ← Approximations needed

Practically solvable

Classification of Resource Allocation Problems

- Classification of Three Important Problems
 - The "Easy" problem
 - Weighted max-min fairness
 - Weighted sum performance
- We will see: These have Different Complexities

Complexity Example 1: The "Easy" Problem

- Given Any Point $(\tilde{g}_1, ..., \tilde{g}_{K_r})$
 - Find beamforming $\mathbf{v}_1, \dots, \mathbf{v}_{K_r}$ that attains this point
 - Minimize the total power
- Convex Problem
 - Second-order cone or semi-definite program
 - Global solution in polynomial time use CVX, Yalmip
 - Alternative: Fixed-point iterations (uplink-downlink duality)

Total Power Constraints

- M. Bengtsson, B. Ottersten, "Optimal Downlink Beamforming Using Semidefinite Optimization," Proc. Allerton, 1999.
- A. Wiesel, Y. Eldar, and S. Shamai, "Linear precoding via conic optimization for fixed MIMO receivers," IEEE Trans. on Signal Processing, 2006.

Per-Antenna Constraints

• W. Yu and T. Lan, "Transmitter optimization for the multi-antenna downlink with per-antenna power constraints," IEEE Trans. on Signal Processing, 2007.

General Constraints

E. Björnson, G. Zheng, M. Bengtsson, B. Ottersten, "Robust Monotonic Optimization Framework for Multicell MISO Systems," IEEE Trans. on Signal Processing, 2012.

Complexity Example 2: Max-Min Fairness

• How to Classify Weighted Max-Min Fairness?

$$\underset{\mathbf{v}_{1},...,\mathbf{v}_{K_{r}}}{\text{maximize}} f(\mathbf{g}) = \min_{k} w_{k} g_{k} \quad \text{subject to} \quad \sum_{k=1}^{K_{r}} \mathbf{v}_{k}^{H} \mathbf{Q}_{lk} \mathbf{v}_{k} \leq q_{l} \quad \forall l.$$

- Property: Solution makes $w_k g_k$ the same for all k

Complexity Example 2: Max-Min Fairness (2)

- Simple Line-Search: Bisection
 - Iteratively Solving Convex Problems (i.e., quasi-convex)

- 1. Find start interval
- 2. Solve the "easy" problem at midpoint
- 3. If feasible:

Remove lower half

Else: Remove upper half

4. Iterate

Subproblem: Convex optimization

Line-search: Linear convergence

One dimension (independent of #users)

Complexity Example 2: Max-Min Fairness (3)

- Classification of Weighted Max-Min Fairness:
 - **Quasi-convex problem** (belongs to convex class)
 - Polynomial complexity in #users, #antennas, #constraints
 - Might be feasible complexity in practice

Early work

• T.-L. Tung and K. Yao, "Optimal downlink power-control design methodology for a mobile radio DS-CDMA system," in IEEE Workshop SIPS, 2002.

Main references

- M. Mohseni, R. Zhang, and J. Cioffi, "Optimized transmission for fading multiple-access and broadcast channels with multiple antennas," IEEE Journal on Sel. Areas in Communications, 2006.
- A. Wiesel, Y. Eldar, and S. Shamai, "Linear precoding via conic optimization for fixed MIMO receivers," IEEE Trans. on Signal Processing, 2006.

Channel uncertainty

• E. Björnson, G. Zheng, M. Bengtsson, B. Ottersten, "Robust Monotonic Optimization Framework for Multicell MISO Systems," IEEE Trans. on Signal Processing, 2012.

Complexity Example 3: Weighted Sum Performance

How to Classify Weighted Sum Performance?

$$\underset{\mathbf{v}_{1},...,\mathbf{v}_{K_{r}}}{\text{maximize}} \ f(\mathbf{g}) = \sum_{k=1}^{K_{r}} w_{k} g_{k} \quad \text{subject to} \quad \sum_{k=1}^{K_{r}} \mathbf{v}_{k}^{H} \mathbf{Q}_{lk} \mathbf{v}_{k} \leq q_{l} \quad \forall l.$$

- Geometrically: $w_1g_1 + w_2g_2 = \text{opt-value}$ is a line

Complexity Example 3: Weighted Sum Performance (2)

- Classification of Weighted Sum Performance:
 - Non-convex problem
 - Power constraints: Convex
 - Utility: Monotonic increasing/decreasing in beamforming vectors
 - Therefore: Monotonic problem
- Can There Be a Magic Algorithm?
 - No, provably NP-hard (Non-deterministic Polynomial-time hard)
 - Exponential complexity but in which parameters?
 (#users, #antennas, #constraints)

- Z.-Q. Luo and S. Zhang, "Dynamic spectrum management: Complexity and duality," *IEEE Journal of Sel. Topics in Signal Processing*, 2008.
- Y.-F. Liu, Y.-H. Dai, and Z.-Q. Luo, "Coordinated beamforming for MISO interference channel: Complexity analysis and efficient algorithms," IEEE Trans. on Signal Processing, 2011.

Complexity Example 3: Weighted Sum Performance (3)

- Are Monotonic Problems Impossible to Solve?
 - No, not for small problems!
- Monotonic Optimization Algorithms
 - $f_{\min} \leq f_{\text{opt}} \leq f_{\max}$ - Improve Lower/upper bounds on optimum:
 - Continue until $f_{
 m max} f_{
 m min} < arepsilon$
 - Subproblem: Essentially weighted max-min fairness problem

Monotonic optimization

- H. Tuy, "Monotonic optimization: Problems and solution approaches," SIAM Journal of Optimization, 2000.
- Early works
 L. Qian, Y. Zhang, and J. Huang, "MAPEL: Achieving global optimality for a non-convex wireless power control problem," IEEE Trans. on Wireless Commun., 2009.
 E. Jorswieck, E. Larsson, "Monotonic Optimization Framework for the MISO Interference Channel," IEEE Trans. on Communications, 2010.
- Polyblock algorithm
- W. Utschick and J. Brehmer, "Monotonic optimization framework for coordinated beamforming in multicell networks," IEEE Trans. on Signal Processing, 2012.
- E. Björnson, G. Zheng, M. Bengtsson, B. Ottersten, "Robust Monotonic Optimization Framework for Multicell MISO Systems," IEEE Trans. on Signal Processing, 2012.

BRB algorithm

Complexity Example 3: Weighted Sum Performance (4)

Branch-Reduce-Bound (BRB) Algorithm

- Global convergence
- Accuracy ε>0 in finitely many iterations
- Exponential complexity only in #users (K_r)
- Polynomial complexity in other parameters (#antennas, #constraints)

Summary: Complexity of Resource Allocation Problems

- Recall: All Utility Functions are Subjective
 - Pragmatic approach: Select to enable efficient optimization
- Good Choice: Any Problem with Polynomial Complexity
 - Example: Weighted max-min fairness
 - Use weights to adapt to other system needs
- Bad Choice: Weighted Sum Performance
 - Generally NP-hard: Exponential complexity (in #users)
 - Should be avoided Sometimes needed (virtual queuing techniques)

Summary: Complexity of Resource Allocation Problems (2)

- Complexity Analysis for Any Dynamic Cooperation Clusters
 - Same optimization algorithms!
 - Extra characteristics can sometimes simplify
 - Multi-antenna transmission: Higher complexity, higher performance

Ideal Joint Transmission

Coordinated Beamforming

Underlay Cognitive Radio

Section Structural Insights

Parametrization of Optimal Beamforming

- K_rN Complex Optimization Variables: Beamforming vectors $\mathbf{v}_1, ..., \mathbf{v}_{K_r}$
 - Can be reduced to K_r positive parameters (for L=1)
- Any Resource Allocation Problem Solved by

$$\mathbf{v}_{k}^{\star} = \sqrt{p_{k}} \underbrace{\left(\mathbf{I}_{N} + \sum_{i=1}^{K_{r}} \frac{\lambda_{i}}{\sigma^{2}} \mathbf{h}_{i} \mathbf{h}_{i}^{H}\right)^{-1} \mathbf{h}_{k}}_{\text{= beamforming power}}$$

$$= \tilde{\mathbf{v}}_{k}^{\star} = \text{beamforming direction}$$

$$(C_k = D_k = I_N \text{ for brevity})$$

Parametrization of Optimal Beamforming (2)

Geometric Interpretation:

Tradeoff

- Maximize signal vs. minimize interference
- Selfishness vs. altruism
- Hard to find optimal tradeoff
- $K_r = 2$: Simple special case

- Heuristic Parameter Selection
 - Known to work remarkably well
 - Many Examples (since 1995): Transmit Wiener filter, Regularized Zeroforcing, Signal-to-leakage beamforming, Virtual SINR beamforming, etc.
- E. Björnson, M. Bengtsson, B. Ottersten, "Optimal Multiuser Transmit Beamforming: A Difficult Problem with a Simple Solution Structure," IEEE Signal Processing Magazine, 2014.

Summary

Summary

- Multi-Cell Multi-Antenna Resource Allocation
 - Divide power between users and spatial directions
 - Solve a multi-objective optimization problem
 - Pareto boundary: Set of efficient solutions
- Subjective Utility Function
 - Selection has a fundamental impact on solvability
 - Multi-antenna transmission: More possibilities higher complexity
 - Pragmatic approach: Select to enable efficient optimization
 - Polynomial complexity: Weighted max-min fairness
 - Not solvable in practice: Weighted sum performance

Parametrization of Optimal Beamforming

Main Reference: Our Book

- Thorough Resource Allocation Framework
 - More parametrizations and structural insights
 - Guidelines for scheduling and forming clusters
 - MATLAB code distributed for algorithms

- Other Convex Problems and Optimization Algorithms:

	General	Zero Forcing	Single Antenna
Sum Performance	NP-hard	Convex	NP-hard
Max-Min Fairness	Quasi-Convex	Quasi-Convex	Quasi-Convex
"Easy" Problem	Convex	Convex	Linear
Proportional Fairness	NP-hard	Convex	Convex
Harmonic Mean	NP-hard	Convex	Convex

- Further Extensions:
 - Imperfect channel knowledge, distributed optimization
 - Multi-cast, Multi-carrier, Multi-antenna users, etc.