Exercises 3 Logic Design

Computer Organization and Components / Datorteknik och komponenter (IS1500), 9 hp (not part of IS1200, but can be used for review)

KTH Royal Institute of Technology

Friday 18th December, 2020

Suggested Solutions

Gates and Boolean Algebra

1.

AND
$$A = \begin{bmatrix} A & B & Y \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 1 & 1 & 1 \end{bmatrix}$$
 OR $A = \begin{bmatrix} A & B & Y \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix}$

1

2. (a) The truth table is

A	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

(b) The boolean algebra expression is: $\overline{\overline{A} \ \overline{B}}$.

- (c) By applying De Morgan's Theorem, we get $\overline{\overline{A+B}}$, which with the law of involution can be reduced to A+B.
- 3. (a) The truth table is

Α	В	С	Y_1	Y_2
0	0	0	1	0
0	0	1	1	1
0	1	0	0	Z
0	1	1	0	Z
1	0	0	0	Z
1	0	1	0	Z
1	1	0	1	0
1	1	1	1	1

- (b) The tristate buffer passes through the input data if the enable signal is true, else the output signal is said to be *floating*. This is indicated in the truth table with character Z. When a signal is floating, it means that the signal has high impedance, that is, giving similar behavior as if the wire was disconnected.
- 4. (a) $\overline{S} \overline{A} B + \overline{S} A B + S A \overline{B} + S A B$

By commutativity, change the order in the first two terms

$$\overline{S} B \overline{A} + \overline{S} B A + S A \overline{B} + S A B$$

By using the law of distributivity, we can break out the terms

$$\overline{S}B(\overline{A}+A) + SA(\overline{B}+B)$$

Not that we can do this since we can interpret $\overline{S}\ B$ as one symbol. Using the dual theorem for complements we get

2

$$\overline{S} B \cdot 1 + S A \cdot 1$$

Finally, using identity, we get

$$\overline{S} B + S A$$

(b) A possible circuit is as follows

Multiplexers, Decoders, and Adders

5. (a) A 2:1 multiplexer looks as follows

(b) A truth table can be written as follows. Note how the symbol? for "don't care" means that it does not matter if this value is 1 or 0: it gives the same output anyway.

S	Α	В	Υ
0	?	0	0
0	?	1	1
1	0	?	0
1	1	?	1
-	_	•	_

(c) A possible circuit is as follows

- (d) It is exactly the same circuit! Note also how the truth table in exercise 4 compares with the one above.
- 6. (a) A 3:8 decoder looks as follows

(b) Truth table

A1	A0	<i>Y3</i>	Y2	Y1	Y0	
0	0	0 0 0 1	0	0	1	
0	1	0	0	1	0	
1	0	0	1	0	0	
1	1	1	0	0	0	

Note that only one output signal is true at the same time.

(c) For the expression X:Y (for instance X=2 and Y=4 in a 2:4 decoder), symbol X means the number of input bits, and Y the number of output bits. Note also the relationship $Y=2^X$.

3

(d) A possible solution:

7. The following multiplexor shows that the output data signal has a 8-bit bus width. As a consequence, the input data bus width must also be 8-bit. Hence, we only need to specify one of the signals, either the input or the output.

8. The following circuit implements a 6-bit ripple-carry adder. Multiplication by 3 is done by shifting the input to the left by 2, and then subtracting the input value.

9. One possible solution for a 4-bit equality comparator.

Latches, Flip-Flops, Registers, and Register Files

10. An SR latch can be described with the following truth table.

S	R	Q	Q
0	0	Q _{pre} 0	\overline{Q}_{pre}
0	1	o [′]	1
1	0	1	0
1	1	0	0

11. (a)

(b) A D Flip-Flop is edge triggered and not level-triggered, as in the case of the D latch. The SR latch does not have a data input, as both D Flip-Flops and D latches have.

(c)

- 12. (a) At the start, $Y_1 = 0 \times 3$ and $Y_2 = 0 \times 5$, that is, the initial values of the registers. Note that each of the registers hold a 8-bit value. After the first rising edge, the registers read the value that is available on the left hand side. R1 then receives value 0×8 because it receives the sum of value Y_2 and $A = 0 \times 3$. R2 just receives the value from Y_1 . Hence, after the first rising edge $Y_1 = 0 \times 8$ and $Y_2 = 0 \times 3$. After the second clock cycle, we have $Y_1 = 0 \times 6$ and $Y_2 = 0 \times 8$, and after the third $Y_1 = 0 \times 8$ and $Y_2 = 0 \times 6$.
 - (b) In this exercise, it is important to notice that the XOR gate works as an inverter, since B=255 means that all bits are set to one. Convince yourself that XORing with value one inverts a signal. Since the carry in signal to the adder is 1, the circuit will perform a subtraction of value 2 in each iteration. At start, $Y_1=0\times10$ and $Y_2=0\times8$. After the first rising edge $Y_1=0\times6$ and $Y_2=0\times10$. After the second clock cycle, we have $Y_1=0\times E$ and $Y_2=0\times6$, and after the third $Y_1=0\times4$ and $Y_2=0\times E$.
- 13. (a) A register is a memory that is updated at a clock edge. A register also has a memory, and it is also updated at a clock edge. However, a register file is a simple addressable memory, where you specify an address for where you should read and write data. A register has no address, and the whole register is updated at the clock edge. Both a register file and a register can either be triggered on the raising or falling edge.
 - (b) The register file has two read ports and one write port.
 - (c) Each data item is 16 bits large and the register file can address $2^4 = 16$ data items. Hence, the total number of bits that can be stored in this register file is 16*16 = 256 bits.
 - (d) $RD_1 = 0 \times 22$ and $RD_2 = 0 \times e7$. The new known state is $\{0 \times 3 \mapsto 0 \times 53, 0 \times a \mapsto 0 \times 22, 0 \times 9 \mapsto 0 \times e7\}$