

CS 553 CRYPTOGRAPHY

Lecture 2
Historical Ciphers (contd.)

Instructor
Dr. Dhiman Saha

A Taxonomy of Basic Cryptosystems

Timeline of Crypto before Computers

Cryptographic Time Periods

1500 BC – 100 AD
800 - 1400
1000 - 1500
1450 - 1600
1600 - 1850
1580 - 1950
1920 - 1950
1943 – present
1976 – present

- $\triangleright \mathcal{P}$ is a finite set of possible *plaintexts*
- $ightharpoonup \mathcal{C}$ is a finite set of possible *ciphertexts*
- \triangleright K the *keyspace*, is a finite set of possible keys
- ▶ For each $K \in \mathcal{K}$, there is an encryption rule $e_K \in \mathcal{E}$ and a corresponding decryption rule $d_K \in \mathcal{D}$.
- ▶ Each $e_{\mathcal{K}}: \mathcal{P} \to \mathcal{C}$ and $d_{\mathcal{K}}: \mathcal{C} \to \mathcal{P}$ such that $d_{\mathcal{K}}(e_{\mathcal{K}}(x)) = x$ for every plaintext element $x \in \mathcal{P}$.

- $\triangleright \mathcal{P}$ is a finite set of possible *plaintexts*
- $ightharpoonup \mathcal{C}$ is a finite set of possible *ciphertexts*
- \triangleright K the *keyspace*, is a finite set of possible keys
- ▶ For each $K \in \mathcal{K}$, there is an encryption rule $e_K \in \mathcal{E}$ and a corresponding decryption rule $d_K \in \mathcal{D}$.
- ▶ Each $e_K : \mathcal{P} \to \mathcal{C}$ and $d_K : \mathcal{C} \to \mathcal{P}$ such that $d_K(e_K(x)) = x$ for every plaintext element $x \in \mathcal{P}$.

- $\triangleright \mathcal{P}$ is a finite set of possible *plaintexts*
- $ightharpoonup \mathcal{C}$ is a finite set of possible *ciphertexts*
- \triangleright \mathcal{K} the *keyspace*, is a finite set of possible keys
- ▶ For each $K \in \mathcal{K}$, there is an encryption rule $e_K \in \mathcal{E}$ and a corresponding decryption rule $d_K \in \mathcal{D}$.
- ▶ Each $e_{\mathcal{K}}: \mathcal{P} \to \mathcal{C}$ and $d_{\mathcal{K}}: \mathcal{C} \to \mathcal{P}$ such that $d_{\mathcal{K}}(e_{\mathcal{K}}(x)) = x$ for every plaintext element $x \in \mathcal{P}$.

- $\triangleright \mathcal{P}$ is a finite set of possible *plaintexts*
- $ightharpoonup \mathcal{C}$ is a finite set of possible *ciphertexts*
- \blacktriangleright K the *keyspace*, is a finite set of possible keys
- ▶ For each $K \in \mathcal{K}$, there is an encryption rule $e_K \in \mathcal{E}$ and a corresponding decryption rule $d_K \in \mathcal{D}$.
- ▶ Each $e_K : \mathcal{P} \to \mathcal{C}$ and $d_K : \mathcal{C} \to \mathcal{P}$ such that $d_K(e_K(x)) = x$ for every plaintext element $x \in \mathcal{P}$.

- \triangleright \mathcal{P} is a finite set of possible *plaintexts*
- $ightharpoonup \mathcal{C}$ is a finite set of possible *ciphertexts*
- \blacktriangleright K the *keyspace*, is a finite set of possible keys
- ▶ For each $K \in \mathcal{K}$, there is an encryption rule $e_K \in \mathcal{E}$ and a corresponding decryption rule $d_K \in \mathcal{D}$.
- ▶ Each $e_K : \mathcal{P} \to \mathcal{C}$ and $d_K : \mathcal{C} \to \mathcal{P}$ such that $d_K(e_K(x)) = x$ for every plaintext element $x \in \mathcal{P}$.

- $\triangleright \mathcal{P}$ is a finite set of possible *plaintexts*
- ightharpoonup C is a finite set of possible *ciphertexts*
- \blacktriangleright K the *keyspace*, is a finite set of possible keys
- ▶ For each $K \in \mathcal{K}$, there is an encryption rule $e_K \in \mathcal{E}$ and a corresponding decryption rule $d_K \in \mathcal{D}$.
- ▶ Each $e_{\mathcal{K}}: \mathcal{P} \to \mathcal{C}$ and $d_{\mathcal{K}}: \mathcal{C} \to \mathcal{P}$ such that $d_{\mathcal{K}}(e_{\mathcal{K}}(x)) = x$ for every plaintext element $x \in \mathcal{P}$.

- ► Each encryption function should be injective. Why?
- ► What is the nature of every encryption function if $\mathcal{P} = \mathcal{C}$?
- ▶ It is possible that $|\mathcal{C}| > |\mathcal{P}|$?
- \triangleright d_K is definitely deterministic but what about e_K : Deterministic/Probabilistic?
- ► Notion of efficiency & security?

- ► Each encryption function should be *injective*. Why?
- ▶ What is the nature of every encryption function if P = C?
- ▶ It is possible that $|\mathcal{C}| > |\mathcal{P}|$?
- ▶ d_K is definitely deterministic but what about e_K : Deterministic/Probabilistic?
- ► Notion of efficiency & security?

- ► Each encryption function should be *injective*. Why?
- ▶ What is the nature of every encryption function if P = C?
- ▶ It is possible that $|\mathcal{C}| > |\mathcal{P}|$?
- ▶ d_K is definitely deterministic but what about e_K : Deterministic/Probabilistic?
- ► Notion of efficiency & security?

- ► Each encryption function should be *injective*. Why?
- ▶ What is the nature of every encryption function if P = C?
- ▶ It is possible that $|\mathcal{C}| > |\mathcal{P}|$?
- ▶ d_K is definitely deterministic but what about e_K :
 Deterministic/Probabilistic?
- ► Notion of efficiency & security?

- ► Each encryption function should be *injective*. Why?
- ▶ What is the nature of every encryption function if P = C?
- ▶ It is possible that $|\mathcal{C}| > |\mathcal{P}|$?
- ▶ d_K is definitely deterministic but what about e_K :
 Deterministic/Probabilistic?
- ► Notion of efficiency & security?

e.g. Deterministic Encryption

- ► Notion of Semantic Security and Randomized Encryption
- ► Captures the intuition that ciphertexts *shouldn't leak any information about plaintexts* as long as the key is secret.
- ► The indistinguishability game

► To be studied in detail in lecture on block ciphers

Math Recap

Algebraic Structures: Groups, Rings

Definition 2.1.1. An Abelian group < G, + > consists of a set G and an operation defined on its elements, here denoted by '+':

$$+: G \times G \to G: (a,b) \mapsto a+b.$$
 (2.1)

In order to qualify as an Abelian group, the operation has to fulfill the following conditions:

closed:
$$\forall a, b \in G : a + b \in G$$
 (2.2)

associative:
$$\forall a, b, c \in G : (a+b) + c = a + (b+c)$$
 (2.3)

commutative:
$$\forall a, b \in G : a + b = b + a$$
 (2.4)

neutral element:
$$\exists \mathbf{0} \in G, \forall a \in G : a + \mathbf{0} = a$$
 (2.5)

inverse elements:
$$\forall a \in G, \exists b \in G : a + b = \mathbf{0}$$
 (2.6)

Example

The set of integers with the operation 'addition': $\langle \mathbb{Z}, + \rangle$

Definition 2.1.2. A ring $\langle R, +, \cdot \rangle$ consists of a set R with two operations defined on its elements, here denoted by '+' and '·'. In order to qualify as a ring, the operations have to fulfill the following conditions:

- 1. The structure $\langle R, + \rangle$ is an Abelian group.
- 2. The operation ''' is closed, and associative over R. There is a neutral element for ''' in R.
- 3. The two operations '+' and ':' are related by the law of distributivity:

$$\forall \ a, b, c \in R: \ (a+b) \cdot c = (a \cdot c) + (b \cdot c). \tag{2.7}$$

The neutral element for '·' is usually denoted by 1. A ring $< R, +, \cdot >$ is called a *commutative ring* if the operation '·' is commutative.

Example

The set of integers with the operation 'addition' and 'multiplication': $<\mathbb{Z},+,\cdot>$

▶ What about \mathbb{Z}_m ?

 \mathbb{Z}_m is the set of integers $\{0,1,2,\cdots,m-1\}$ in which we can add, subtract, multiply, and **sometimes** divide.

- ► **Sometimes** divide. Why?
- ▶ Recall, ring, by definition is not required to have multiplicative inverse for all elements,
- lt exists only for some, say $a \in \mathbb{Z}_m$
- ► Then

$$\exists a^{-1} \in \mathbb{Z}_m : a \cdot a^{-1} \equiv 1 \mod m$$

 \mathbb{Z}_m is the set of integers $\{0,1,2,\cdots,m-1\}$ in which we can add, subtract, multiply, and **sometimes** divide.

- ► **Sometimes** divide. Why?
- ▶ Recall, ring, by definition is not required to have multiplicative inverse for all elements,
- lt exists only for some, say $a \in \mathbb{Z}_m$
- ► Then

$$\exists a^{-1} \in \mathbb{Z}_m : a \cdot a^{-1} \equiv 1 \mod m$$

 \mathbb{Z}_m is the set of integers $\{0,1,2,\cdots,m-1\}$ in which we can add, subtract, multiply, and **sometimes** divide.

- ► **Sometimes** divide. Why?
- ► Recall, ring, by definition is not required to have multiplicative inverse for all elements,
- lt exists only for some, say $a \in \mathbb{Z}_m$
- ► Then

$$\exists a^{-1} \in \mathbb{Z}_m : a \cdot a^{-1} \equiv 1 \mod m$$

 \mathbb{Z}_m is the set of integers $\{0,1,2,\cdots,m-1\}$ in which we can add, subtract, multiply, and **sometimes** divide.

- ► **Sometimes** divide. Why?
- ► Recall, ring, by definition is not required to have multiplicative inverse for all elements,
- ▶ It exists only for some, say $a \in \mathbb{Z}_m$
- ► Then

$$\exists a^{-1} \in \mathbb{Z}_m : a \cdot a^{-1} \equiv 1 \mod m$$

 \mathbb{Z}_m is the set of integers $\{0,1,2,\cdots,m-1\}$ in which we can add, subtract, multiply, and **sometimes** divide.

- ► **Sometimes** divide. Why?
- ► Recall, ring, by definition is not required to have multiplicative inverse for all elements,
- ▶ It exists only for some, say $a \in \mathbb{Z}_m$
- ► Then

$$\exists a^{-1} \in \mathbb{Z}_m : a \cdot a^{-1} \equiv 1 \mod m$$

 \mathbb{Z}_m is the set of integers $\{0,1,2,\cdots,m-1\}$ in which we can add, subtract, multiply, and **sometimes** divide.

- ► **Sometimes** divide. Why?
- Recall, ring, by definition is not required to have multiplicative inverse for all elements,
- ▶ It exists only for some, say $a \in \mathbb{Z}_m$
- ► Then

$$\exists a^{-1} \in \mathbb{Z}_m : a \cdot a^{-1} \equiv 1 \mod m$$

To invert or not to invert

- ▶ Elements relatively prime to *m* are invertible
- ► How to find?
- ► Hint: Greatest Common Divisor gcd

Verify
$$\rightarrow$$
 $gcd(a, m) = 1$

Theorem

An element $a \in \mathbb{Z}_m$ is invertible if and only if gcd(a, m) = 1

- ▶ Check if 15,14 are invertible in \mathbb{Z}_{26} .
- ▶ If $a \in \mathbb{Z}_m$ is invertible, how find a^{-1}
- ► Euclidean GCD Algorithm

Affine Cipher

Further Generalization of Shift Cipher

► Recall Shift Cipher

Encryption

$$e(x) = (x+k) \mod 26$$

Decryption

$$d(x) = (x - k) \mod 26$$

Definition (Affine Cipher)

Let $x, y, a, b \in \mathbb{Z}_{26}$

Encryption: $e_K(x) = y \equiv a \cdot x + b \mod 26$

Decryption: $d_K(y) = x \equiv a^{-1} \cdot (y - b) \mod 26$

with the key: K=(a,b) which has the restriction: gcd(a,26)=1

► "Affine" ?