Homework Exercise: Current-Limiting Circuit Breaker

Purpose of the exercise is to write a Matlab script to evaluate arc energy W_a , Joule integral I^2t and actual (limited) current peak in interruption of a resistive and inductive AC circuit by a limiting circuit breaker.

Supply voltage is:

$$e = E\cos(\omega t + \psi), \ \frac{E}{\sqrt{2}} = 400V, \ f = 50Hz.$$

Plot the total current " i_{tot} ", as distorted by the arc voltage, assuming worst-case asymmetrical prospective current, in the case current is interrupted by a limiting breaker.

Determine arc energy, peak value of current and Joule integral. **Assume that no arc reignitions occur.**

Repeat calculations for different values of short circuit prospective currents $I_{\text{cc-pr}}$ (consider values from 1 to 100kA RMS): plot I^2t , arc energy and peak current value as a function of the prospective RMS current. Always consider R and L so that *Power factor* = 0.2.

Data for the limiting breaker:

Contact separation at $\bar{t} = 0.5 \, ms$

Arc voltage: choose one of the two possibilities below:

- a) constant value $e_a = 350V$
- b) linearly increasing arc voltage:

- for
$$0.5 \, ms \le t \le t_e$$
: $e_a = k_2 \cdot t$, with $k_2 = 250 \, V / ms$ and $t_e = 1.8 \, ms$

- for $t_e \le t \le t_f$: e_a maintains a constant value

 t_f = instant of arc extinction

Optional:

ELECTRICAL SWITCHING DEVICES – 2020-2021 - HOMEWORK

Plot charts to compare values of I^2t , arc energy and peak current with those obtained with a non-limiting breaker, which interrupts current at first zero crossing.