A PARTICULAR STOCHASTIC DIFFERENTIAL EQUATION

DAVID LI

1. Introduction

Consider the stochastic process,

$$X(t+dt) = \begin{cases} X(t) + dW(t) & (X(t) < \beta) \\ \alpha & (X(t) = \beta), \end{cases}$$
 (1)

where $\alpha, \beta \in \mathbb{R}$ and $\alpha < \beta$, with initial conditions $X(0) = X_0$, and the stochastic process dW(t) is defined

$$dW(t) = \xi(t)\sqrt{dt},\tag{2}$$

where $\xi(t)$ is sampled sampled from a normal distribution with mean $\mu = 0$ and variance $\sigma^2 = 1$. We hope to find discrete stochastic processes X_n which converge strongly with (1). A candidate SDE for equation (1) would be

$$dX = -(\beta - \alpha)\delta[X(t) - \beta]dt + dW(t), \tag{3}$$

where $\delta(x)$ is the Dirac delta function. Let us become familiar with the equation and demonstrate its close association to (1). Suppose $X(\tau) = \beta$ and t > 0, then at the limit $t \to \tau$,

$$X(\tau) + \lim_{t \to \tau} \int_{\tau}^{t} dX = \beta - (\beta - \alpha) \lim_{t \to \tau} \int_{\tau}^{t} \delta(X(s) - \beta) ds + \lim_{t \to \tau} W(t - \tau)$$
$$= \alpha + \lim_{t \to \tau} W(t - \tau)$$
$$= \alpha.$$

provided that $\beta \notin \{X(s) : \tau < s \le t\}^1$. Recall the Itō-Doeblin formula,

$$d\phi(X) = \phi'(X)(a(X,t)dt + b(X,t)dW) + \frac{1}{2}\phi''(X)b(X,t)^2dt,$$
(4)

has a stochastic generator,

$$\mathcal{L}\phi(x) = \left(a(x)\frac{d}{dx} + \frac{1}{2}b^2(x)\frac{d^2}{dx^2}\right)\phi(x).$$

Therefore, the stochastic generator for (3) is

$$\mathcal{L}\phi(x) = \left((\alpha - \beta)\delta(x - \beta)\frac{d}{dx} + \frac{1}{2}\frac{d^2}{dx^2} \right)\phi(x). \tag{5}$$

Let $\phi(x) = x$, then the expectation

$$\mathbb{E}[dX] = \mathbb{E}[(\alpha - \beta)\delta(X - \beta)]dt$$
$$= (\alpha - \beta) \int_{-\infty}^{\beta} \delta(X - \beta)dXdt$$
$$= (\alpha - \beta)dt.$$

¹The justification only works for $t > \tau$. What about $t \le \tau$?

2 DAVID LI

Integrating X with respect to t^2 yields $\mathbb{E}[X(t)] = (\alpha - \beta)t$.

2. Euler Maruyama Methods

The Euler-Maruyama method is a first-order numerical approximation to most SDEs, but may not be completely accurate in this case. Nevertheless, it is useful in giving a rough intuition of what our process would look like, and expectations should also be reasonably close, too.

Let h > 0 be our timestep of choice and $h\nu = t$. The first scheme is as follows,

$$X_{k+1} = \begin{cases} X_k + \xi_k \sqrt{h} & (X_k < \beta), \\ \alpha & (X_k \ge \beta), \end{cases}$$
 (6)

where $\xi_k = \xi(kh)$.

 $^{^2}$ This is probably illegal.