PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ Escuela de Posgrado

ANÁLISIS REAL 1

Hoja de ejercicios No 5 2020-2

- 1. Analice la verdad o falsedad de la siguiente proposición: "Sean $U\subset\mathbb{R}^2$ abierto y conexo y $f:U\to\mathbb{R}$ tal que $\frac{\partial f}{\partial y}=0$ en todo U entonces f no depende de y".
- 2. Sea $f:I\to\mathbb{R}^3$ un camino tal que $f\in C^3[a,b]$, $\|f'(s)\|=1$ y $k(s)\neq 0$. Si $\tau(s)=0$ demuestre que la curva es plana.
- 3. Sea $f: I \to \mathbb{R}^3$ un camino tal que $f \in C^3[a,b]$, ||f'(s)|| = 1 y $k(s) \neq 0$. Si, para todo $s \in I$, la recta normal $L = \{f(s) + tf''(s); t \in \mathbb{R}\}$ pasa por el origen, demueste que la curva es plana.
- 4. Si $f:U\to\mathbb{R}$, definida en un abierto $U\subset\mathbb{R}^n$. tiene un valor máximo en un punto $a\in U$, demuestre que cualquier derivada parcial de f en a, cuando ella existe, debe ser cero.
- 5. Sean $U\subset\mathbb{R}^2$, abierto y conexo y $f:U\to\mathbb{R}$ una función tal que $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0$ en todo U, demuestre que f es constante en U

San Miguel, 28 de setiembre del 2020