

North South University Department of Electrical & Computer Engineering

LAB REPORT

Course Code: EEE211
Course Title: Digital Electronics
Section: 01
Experiment Number: 07
Experiment Name: Introuction to Multiplexers & Decoders

Experiment Date: 21.12.2020

Submitted To: Fatema Zahra

Date of Submission: 27.12.2020

Course Instructor: Fahimul Haque

4	В	C	F (Theoretical)	Data Inpuls	F (Practical)
0	0	0	1	1 1	1
0	0	1	1	10 - 1	1
0	1	O	٥	11 2 0	0
O	1	1	0	1, = 0	0
1	٥	0	0	12 = C	0
1	0	1	1	1220	1
1	1	0	8	13 = 0	8
1	1	1	3	13 = C	1

figure: implementing Boulean function using 4!1 MUX. for F (A, B, C) = E(0, 1, 5,7).

A	В	c.	D.	F (Theoretical)	Data Inpuds	F (Practical)
0	0	0	0	0	10 = G D	0
0	0	0	J	1	10= D	1
0	0	1	0	1	1, = p'	1
6	0	1	1	0	1,= 0'	0
5	1	0	0	1	12 = 1	1
5	1	0	1	1	10=1	1
14	1	1		0	13=0	0
)	1	0.50	0	0		0
0	1	1	1		14=0	0
	0	0	0	0	14-0	
	0	0	1	O		0
	0	1	0	1	14= D'	1
	0	1	1	0		0
1	1	0	0	1	15 = 1	1
+	1	6	1	01		3
+	1	1	0	0	16=0	0
	1	1	1	0	-6	0

figure: 9 mplementing F(A,B,C,D) = &(1,2,4,5,10,12,13) using 8x1 MUX.

Quention . Amwer :

Active high device we those device which mends high signal to the output for a particular selected inputs.

On the other hand, active dow devices sends the low signal to output for a selected imputs.

Jon example, In a decoder 3 to 8 line decoder, for 001 input only 9, becomes high for active high device while other output pins are low. And, in a active low device for the name inputs 9, becomes low and all other pins becomes high.

Discussions

Due to pandemic we are can't attend practical dab session. But, we are using software simulation for Through this lab we understand the use of MUX & decoder more letter. It helped us to relate our theosetical knowledge with the practical ones.

Emperiment Names Introduction do multiplexero & decoders.

Objectiven:

- Understand the concept of multiplizing in the condext of digital circuit.

-dearn about the internal logic of digital

- Implement digital logic functions. using Mux.

- Observe & smalyze the operations of the 3 to the 8 line decoder.

Theory!

Muldiplemen is a device that selects between several imput signals & forward the selected imput signal to a single subject line.

A binary decoder in a combinational clogic circuit that converes lineary imformation from the no coded inputs to a maximum of 2n unique outputs.

Apparatos:

- . Trainer board.
- · NOT gates. 3 impert AND gates, 2 OR input OR gates.
- · Decoder.
- · MUX.

Figure: F(A,B,C)-E(0,1,5,7) iplementation.
using ux1 MXX.

Figure: Implementing F(A,B,C,D) = \(\) \(

