

Monday 1/8/21

Section 16.2-16.3 : Line Integrals

IDEA: $f: \mathbb{R}^n \rightarrow \mathbb{R}$ a function C a curve in \mathbb{R}^n . Understand how f "holds up" along the curve.

Picture:

- ① Approximate the curve piecewise linearly
- ② "Unravel" approximation to an interval
- ③ Approximate buildup w/ rectangles having height $f(r(\text{left endpoint}))$ and width $|r(\text{left endpoint}) - r(\text{right endpoint})|$
- ④ Limit these approximations by refining the segments

Definition: The line integral of f along curve C parameterized by $\vec{r}(t)$ on $[a, b]$ is:

$$\int_C f ds = \int_{t=a}^b f(\vec{r}(t)) |\vec{r}'(t)| dt$$

NB: ① "ds" evokes the idea of arc length...

② if $f=1$, then $\int_C 1 ds = \int_{t=a}^b |\vec{r}'(t)| dt = \text{arc length of } C$

Example: Compute $\int_C f ds$ for $f(x, y) = x^2 + y^2 - xy$ and C the upper hemisphere of the unit circle with positive orientation.

$$\begin{aligned} \text{Sol: } \int_C f ds &= \int_{t=0}^{\pi} f(\cos(t), \sin(t)) |\vec{r}'(t)| dt & \vec{r}(t) = (\cos(t), \sin(t)) & (\text{because unit circle}) \\ & 0 \leq t \leq \pi \quad (\text{upper hemisphere}) & |\vec{r}'(t)| = \sqrt{\sin^2(t) + \cos^2(t)} = 1 & \vec{r}'(t) = (-\sin(t), \cos(t)) \\ & \int_{t=0}^{\pi} (1 - \cos(t)\sin(t)) \cdot 1 dt = \left(\frac{u + \cos(u)}{du = -\sin(u) du} \right) \rightarrow \left[t + \frac{1}{2} \cos^2(t) \right]_{t=0}^{\pi} = (\pi + \frac{1}{2}(-1)^2) - (0 + \frac{1}{2}(1)^2) = \pi \end{aligned}$$

Definition: For a curve C parameterized by $\vec{r}(t)$ on $[a, b]$ and x_k a variable of f , we define

$$\int_C f dx_k = \int_{t=a}^b f(\vec{r}(t)) \cdot x'_k(t) dt \quad \text{where } x'_k(t) \text{ is the derivative of the } k^{\text{th}} \text{ term of } \vec{r}(t)$$

\uparrow $\int_C f dx_k = 0$ because all change is in the x_2 direction.

Example: Compute $\int_C y^2 dx + \int_C x dy$ for C the line segment oriented from $(-7, 1)$ to $(5, 9)$

Note: A line segment from A to B we can always parameterize as $\vec{r}(t) = (1-t)A + tB$ for $0 \leq t \leq 1$

Picture:

$$\begin{aligned} \text{Sol: } \vec{r}(t) &= (1-t)(-7, 1) + t(5, 9) = (-7+4t, 1+8t) \text{ on } [0, 1] & \vec{r}'(t) = (12, 8) \\ \int_C y^2 dx + \int_C x dy &= \int_{t=0}^1 (1+8t)^2 \cdot 12 dt + \int_{t=0}^1 (-7+4t)^2 \cdot 8 dt = \int_{t=0}^1 ((116t+64t^2) + 8(12t-7)) dt \\ &= 4 \int_{t=0}^1 (3+48t+192t^2+24t-14) dt = 4 \int_{t=0}^1 (-11t+36t^2+64t^3) dt = 4 \left[-11t + 12t^2 + 16t^4 \right]_{t=0}^1 = 4(-11+36+64-0) = 352 \end{aligned}$$

Definition: The line integral of vector field \vec{v} along curve C parameterized by $\vec{r}(t)$ on $[a, b]$ is

$$\int_C \vec{v} \cdot d\vec{r} = \int_{t=a}^b \vec{v}(\vec{r}(t)) \cdot \vec{r}'(t) dt \quad (= \int_C \vec{v} \cdot \vec{T} ds \text{ where } \vec{T}(t) \text{ is unit tangent vector to } \vec{r}(t) \text{ i.e. } \vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|})$$

Example: Compute $\int_C \vec{v} \cdot d\vec{r}$ for $\vec{v} = \langle xy, yz, xz \rangle$ and C is the curve parameterized by $\vec{r}(t) = \langle t, t^2, t^3 \rangle$ on $[0, 1]$

$$\begin{aligned} \text{Sol: } \int_C \vec{v} \cdot d\vec{r} &= \int_{t=0}^1 \vec{v}(\vec{r}(t)) \cdot \vec{r}'(t) dt & \vec{r}'(t) = \langle 1, 2t, 3t^2 \rangle & \vec{v}(\vec{r}(t)) = \langle t, t^2, t^3 \rangle = \langle t^3, t^5, t^6 \rangle \\ & \int_{t=0}^1 \langle t^3, t^5, t^6 \rangle \cdot \langle 1, 2t, 3t^2 \rangle dt = \int_{t=0}^1 (t^3 + 2t^7 + 3t^8) dt = \left[\frac{1}{4}t^4 + \frac{2}{8}t^8 + 0 \right]_{t=0}^1 = \frac{662}{7} \end{aligned}$$

From Physics: The work done moving a particle along curve C through force field \vec{F} is $\int_C \vec{F} \cdot d\vec{r}$

Example (to do at home): Compute the work done by particle moving along the unit circle counter-clockwise for the quarter-circle through the force field $\vec{F} = \langle x^2, -xy \rangle$

NB: In example 2: $\int_C y^2 dx + \int_C x dy$ is often abbreviated $\int_C y^2 dx + x dy$. In fact, for any curve C we write $\int_C P dx + Q dy$ to abbreviate $\int_C P dx + \int_C Q dy$

Question: Noting that these are 1-variable integrals "twisted up" in \mathbb{R}^n , Is there an analogue of the FUNDAMENTAL THEOREM OF CALCULUS for use with line integrals?

Bad News: For an integral line $\int_C f ds$, there's no reasonable notion of an antiderivative for $f: \mathbb{R}^n \rightarrow \mathbb{R}$...

Good News: When \vec{v} is a conservative vector field, the potential function acts like an antiderivative!

Prop (Fundamental Theorem of Line Integrals [FTL]): Let $f: \mathbb{R}^n \rightarrow \mathbb{R}$ have cts partial derivatives and suppose C is a smooth curve in \mathbb{R}^n parameterized by $\vec{r}(t)$ on $[a, b]$. Then:

$$\int_C \nabla f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a))$$

Proof: We compute $\int_C \nabla f \cdot d\vec{r} = \int_{t=a}^b \nabla f(\vec{r}(t)) \cdot \vec{r}'(t) dt$ def of line integral $= \int_{t=a}^b \frac{d}{dt} [f(\vec{r}(t))] dt$ multivariable chain rule $\stackrel{\text{FTC}}{=} \left[f(\vec{r}(t)) \right]_{t=a}^b = f(\vec{r}(b)) - f(\vec{r}(a))$

Example: Compute $\int_C \vec{V} \cdot d\vec{r}$ for $\vec{V} = \langle (1+xy)e^{xy}, x^2e^{xy} \rangle$ on $\vec{r}(t) = \langle \cos(t), 2\sin(t) \rangle$ for $0 \leq t \leq \pi/2$

Sol: First, verify that \vec{V} is conservative: $\frac{\partial}{\partial y} [(1+xy)e^{xy}] = (1+xy)e^{xy}x + (1+x)e^{xy} = e^{xy}(2x+x^2y+1)$

$$\frac{\partial}{\partial x} [x^2e^{xy}] = 2xe^{xy} + x^2(ye^{xy}) = e^{xy}(2x+x^2y) \quad \text{Since the two are equivalent } \vec{V} \text{ is conservative}$$

$$f(x,y) = \int \frac{\partial f}{\partial y} dy = \int x^2e^{xy} dy = xe^{xy} + C(x) \quad \therefore (1+xy)e^{xy} = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} [xe^{xy} + C(x)] = e^{xy} + xy + C'(x) = (1+xy)e^{xy} + C'(x)$$

$$\therefore C'(x) = 0 \text{ yields } C(x) = D_{\text{constant}}$$

\therefore We have potential function $f(x,y) = xe^{xy} + D$ choose $D=0$

$$\int_C \nabla f \cdot d\vec{r} = f(\vec{r}(\pi/2)) - f(\vec{r}(0)) \leftarrow \text{evaluate at home}$$