MTL122 - Real and complex analysis Assignment-5

Department of Mathematics Indian Institute of Technology Delhi

Question 1

Let (X; d) be a metric space and Y, Z be subsets of X such that $Y \subset Z \subset \overline{Y}$. If Y is connected then Z is connected.

Question 1

Let (X; d) be a metric space and Y, Z be subsets of X such that $Y \subset Z \subset \overline{Y}$. If Y is connected then Z is connected.

Proof

Recall

If the sets C and D form a separation of X, and if Y is a connected subspace of X, then Y lies entirely within either C or D.

 Since C and D form a separation of X, the sets C and D are open in X.

Question 1

Let (X; d) be a metric space and Y, Z be subsets of X such that $Y \subset Z \subset \overline{Y}$. If Y is connected then Z is connected.

Proof

Recall

- Since C and D form a separation of X, the sets C and D are open in X.
- Consequently the sets $C \cap Y$ and $D \cap Y$ are open in Y.

Question 1

Let (X; d) be a metric space and Y, Z be subsets of X such that $Y \subset Z \subset \overline{Y}$. If Y is connected then Z is connected.

Proof

Recall

- Since C and D form a separation of X, the sets C and D are open in X.
- Consequently the sets $C \cap Y$ and $D \cap Y$ are open in Y.
- Since C and D are disjoint, so $C \cap Y$ and $D \cap Y$ are also disjoint.

Question 1

Let (X; d) be a metric space and Y, Z be subsets of X such that $Y \subset Z \subset \overline{Y}$. If Y is connected then Z is connected.

Proof

Recall

- Since C and D form a separation of X, the sets C and D are open in X.
- Consequently the sets $C \cap Y$ and $D \cap Y$ are open in Y.
- Since C and D are disjoint, so $C \cap Y$ and $D \cap Y$ are also disjoint.
- Also, $(C \cap Y) \cup (D \cap Y) = (C \cup D) \cap Y = X \cap Y = Y$.

Question 1

Let (X; d) be a metric space and Y, Z be subsets of X such that $Y \subset Z \subset \overline{Y}$. If Y is connected then Z is connected.

Proof

Recall

- Since C and D form a separation of X, the sets C and D are open in X.
- Consequently the sets $C \cap Y$ and $D \cap Y$ are open in Y.
- Since C and D are disjoint, so $C \cap Y$ and $D \cap Y$ are also disjoint.
- Also, $(C \cap Y) \cup (D \cap Y) = (C \cup D) \cap Y = X \cap Y = Y$. Thus the pair $\{(C \cap Y), (D \cap Y)\}$ constitute a valid separation for Y.

Question 1

Let (X; d) be a metric space and Y, Z be subsets of X such that $Y \subset Z \subset \overline{Y}$. If Y is connected then Z is connected.

Proof

Recall

- Since C and D form a separation of X, the sets C and D are open in X.
- Consequently the sets $C \cap Y$ and $D \cap Y$ are open in Y.
- Since C and D are disjoint, so $C \cap Y$ and $D \cap Y$ are also disjoint.
- Also, $(C \cap Y) \cup (D \cap Y) = (C \cup D) \cap Y = X \cap Y = Y$. Thus the pair $\{(C \cap Y), (D \cap Y)\}$ constitute a valid separation for Y.

• Since Y is connected, one of them must be empty and therefore, the other one must contain the entire set Y.

- Since Y is connected, one of them must be empty and therefore, the other one must contain the entire set Y.
- Hence, Y has to lie completely inside either C or D.

- Since Y is connected, one of them must be empty and therefore, the other one must contain the entire set Y.
- Hence, Y has to lie completely inside either C or D.
- Our aim is to show, Z is connected.

- Since Y is connected, one of them must be empty and therefore, the other one must contain the entire set Y.
- Hence, Y has to lie completely inside either C or D.
- Our aim is to show, Z is connected.
- To the contrary suppose that Z is not connected(there is a separation),

- Since Y is connected, one of them must be empty and therefore, the other one must contain the entire set Y.
- Hence, Y has to lie completely inside either C or D.
- Our aim is to show, Z is connected.
- To the contrary suppose that Z is not connected(there is a separation), then there exist two open set C and D such that

$$Z = C \cup D, \overline{C} \cap D = \emptyset, \overline{D} \cap C = \emptyset, C \neq \emptyset, D \neq \emptyset.$$

- Since Y is connected, one of them must be empty and therefore, the other one must contain the entire set Y.
- Hence, Y has to lie completely inside either C or D.
- Our aim is to show, Z is connected.
- To the contrary suppose that Z is not connected(there is a separation), then there exist two open set C and D such that

$$Z = C \cup D, \overline{C} \cap D = \emptyset, \overline{D} \cap C = \emptyset, C \neq \emptyset, D \neq \emptyset.$$

 Since Y is connected and Y is subset of Z thus Y is either contained in C or D.

- Since Y is connected, one of them must be empty and therefore, the other one must contain the entire set Y.
- Hence, Y has to lie completely inside either C or D.
- Our aim is to show, Z is connected.
- To the contrary suppose that Z is not connected(there is a separation), then there exist two open set C and D such that

$$Z = C \cup D, \overline{C} \cap D = \emptyset, \overline{D} \cap C = \emptyset, C \neq \emptyset, D \neq \emptyset.$$

- Since Y is connected and Y is subset of Z thus Y is either contained in C or D.
- WLOG $Y \subset D$, then $\overline{Y} \subset \overline{D}$.

- Since Y is connected, one of them must be empty and therefore, the other one must contain the entire set Y.
- Hence, Y has to lie completely inside either C or D.
- Our aim is to show, Z is connected.
- To the contrary suppose that Z is not connected(there is a separation), then there exist two open set C and D such that

$$Z = C \cup D, \overline{C} \cap D = \emptyset, \overline{D} \cap C = \emptyset, C \neq \emptyset, D \neq \emptyset.$$

- Since Y is connected and Y is subset of Z thus Y is either contained in C or D.
- WLOG $Y \subset D$, then $\overline{Y} \subset \overline{D}$.
- Hence $Z \subset \overline{D}$, then $C = \emptyset$. Which is a contradiction, therefore Z is connected.

Question 2

Any product of path connected spaces is path connected.

Question 2

Any product of path connected spaces is path connected.

Solution: Let $X = \prod_{i \in I} X_i$ where $X_i's$ are path connected spaces.

Question 2

Any product of path connected spaces is path connected.

Question 2

Any product of path connected spaces is path connected.

Solution: Let $X = \prod_{i \in I} X_i$ where $X_i's$ are path connected spaces. We will only consider I as a finite set but it is true for any I. If cardinality of I is infinite the proof is not in scope.

• Let $x = (x_i)_{i \in I}$ and $y = (y_i)_{i \in I}$ be two points in X

Question 2

Any product of path connected spaces is path connected.

- Let $x = (x_i)_{i \in I}$ and $y = (y_i)_{i \in I}$ be two points in X
- We know there exists continuous functions $f_i:[0,1]\to X_i$ where $f(0)=x_i$ and $f(1)=y_i$

Question 2

Any product of path connected spaces is path connected.

- Let $x = (x_i)_{i \in I}$ and $y = (y_i)_{i \in I}$ be two points in X
- We know there exists continuous functions $f_i : [0,1] \to X_i$ where $f(0) = x_i$ and $f(1) = y_i$
- Now construct a function $f:[0,1] \to X$ such that $f(z)=(f_i(z))_{i\in I}$. Now f is continuous. (Why?)

Question 2

Any product of path connected spaces is path connected.

- Let $x = (x_i)_{i \in I}$ and $y = (y_i)_{i \in I}$ be two points in X
- We know there exists continuous functions $f_i:[0,1]\to X_i$ where $f(0)=x_i$ and $f(1)=y_i$
- Now construct a function $f:[0,1] \to X$ such that $f(z)=(f_i(z))_{i\in I}$. Now f is continuous. (Why?)
- Hence X is path connected.

Question 3

Prove that if A and B are connected subsets of \mathbb{R} then $A \cap B$ is a connected subset of \mathbb{R} . Find two connected subsets A and B of \mathbb{R}^2 such that $A \cap B$ is not connected.

Question 3

Prove that if A and B are connected subsets of \mathbb{R} then $A \cap B$ is a connected subset of \mathbb{R} . Find two connected subsets A and B of \mathbb{R}^2 such that $A \cap B$ is not connected.

Solution: Thm: A subset Y of \mathbb{R} is connected iff Y is an interval or a singleton.

• Suppose $Y \subset \mathbb{R}$ is connected but not an interval.

Question 3

Prove that if A and B are connected subsets of \mathbb{R} then $A \cap B$ is a connected subset of \mathbb{R} . Find two connected subsets A and B of \mathbb{R}^2 such that $A \cap B$ is not connected.

Solution: Thm: A subset Y of \mathbb{R} is connected iff Y is an interval or a singleton.

- Suppose $Y \subset \mathbb{R}$ is connected but not an interval.
- If Y is a singleton we are done. Suppose Y is not a singleton. Thus $\exists \ a,b \in Y \ \text{and} \ z \in \mathbb{R} \setminus Y \ \text{such that} \ a < z < y.$

Question 3

Prove that if A and B are connected subsets of \mathbb{R} then $A \cap B$ is a connected subset of \mathbb{R} . Find two connected subsets A and B of \mathbb{R}^2 such that $A \cap B$ is not connected.

Solution: Thm: A subset Y of \mathbb{R} is connected iff Y is an interval or a singleton.

- Suppose $Y \subset \mathbb{R}$ is connected but not an interval.
- If Y is a singleton we are done. Suppose Y is not a singleton. Thus $\exists \ a, b \in Y \ \text{and} \ z \in \mathbb{R} \setminus Y \ \text{such that} \ a < z < y.$
- Thus we can write $Y = (Y \cap (-\infty, z)) \cup (Y \cap (z, \infty))$

Question 3

Prove that if A and B are connected subsets of \mathbb{R} then $A \cap B$ is a connected subset of \mathbb{R} . Find two connected subsets A and B of \mathbb{R}^2 such that $A \cap B$ is not connected.

Solution: Thm: A subset Y of \mathbb{R} is connected iff Y is an interval or a singleton.

- Suppose $Y \subset \mathbb{R}$ is connected but not an interval.
- If Y is a singleton we are done. Suppose Y is not a singleton. Thus $\exists \ a, b \in Y \ \text{and} \ z \in \mathbb{R} \setminus Y \ \text{such that} \ a < z < y.$
- Thus we can write $Y = (Y \cap (-\infty, z)) \cup (Y \cap (z, \infty))$
- Now this is a contradiction to the fact that Y is connected (Why?)

• If Y is a singleton then it is clear that it is connected.

- If Y is a singleton then it is clear that it is connected.
- Suppose Y is an interval but not connected.

- If Y is a singleton then it is clear that it is connected.
- Suppose Y is an interval but not connected.
- Then $Y = A \cup B$, where $A, B \subseteq Y$ are open in $Y, A, B \neq \phi$ and $A \cap B = \phi$.

- If Y is a singleton then it is clear that it is connected.
- Suppose *Y* is an interval but not connected.
- Then $Y = A \cup B$, where $A, B \subseteq Y$ are open in $Y, A, B \neq \phi$ and $A \cap B = \phi$.
- Let $a \in A$ and $b \in B$ and WLOG consider a < b

- If Y is a singleton then it is clear that it is connected.
- Suppose *Y* is an interval but not connected.
- Then $Y = A \cup B$, where $A, B \subseteq Y$ are open in $Y, A, B \neq \phi$ and $A \cap B = \phi$.
- Let $a \in A$ and $b \in B$ and WLOG consider a < b
- Let $z = \sup\{x \in \mathbb{R} : [a, x) \cap Y \subseteq A\}$

- If Y is a singleton then it is clear that it is connected.
- Suppose *Y* is an interval but not connected.
- Then $Y = A \cup B$, where $A, B \subseteq Y$ are open in $Y, A, B \neq \phi$ and $A \cap B = \phi$.
- Let $a \in A$ and $b \in B$ and WLOG consider a < b
- Let $z = \sup\{x \in \mathbb{R} : [a, x) \cap Y \subseteq A\}$
- Then z < b as A and B are disjoint. Now since A and B are open sets in Y we have $z \in A.(Why?)$

- If Y is a singleton then it is clear that it is connected.
- Suppose *Y* is an interval but not connected.
- Then $Y = A \cup B$, where $A, B \subseteq Y$ are open in $Y, A, B \neq \phi$ and $A \cap B = \phi$.
- Let $a \in A$ and $b \in B$ and WLOG consider a < b
- Let $z = \sup\{x \in \mathbb{R} : [a, x) \cap Y \subseteq A\}$
- Then z < b as A and B are disjoint. Now since A and B are open sets in Y we have $z \in A.(Why?)$
- Since A is open in Y, we have the existence of r > 0 such that $(z r, z + r) \cap Y \subseteq A$ which means $[a, z + r) \cap Y \subseteq A$ which is a contradiction.

- If Y is a singleton then it is clear that it is connected.
- Suppose *Y* is an interval but not connected.
- Then $Y = A \cup B$, where $A, B \subseteq Y$ are open in $Y, A, B \neq \phi$ and $A \cap B = \phi$.
- Let $a \in A$ and $b \in B$ and WLOG consider a < b
- Let $z = \sup\{x \in \mathbb{R} : [a, x) \cap Y \subseteq A\}$
- Then z < b as A and B are disjoint. Now since A and B are open sets in Y we have $z \in A.(Why?)$
- Since A is open in Y, we have the existence of r > 0 such that $(z r, z + r) \cap Y \subseteq A$ which means $[a, z + r) \cap Y \subseteq A$ which is a contradiction.
- Hence Y is connected

Question 3 Contd...

- If Y is a singleton then it is clear that it is connected.
- Suppose *Y* is an interval but not connected.
- Then $Y = A \cup B$, where $A, B \subseteq Y$ are open in $Y, A, B \neq \phi$ and $A \cap B = \phi$.
- Let $a \in A$ and $b \in B$ and WLOG consider a < b
- Let $z = \sup\{x \in \mathbb{R} : [a, x) \cap Y \subseteq A\}$
- Then z < b as A and B are disjoint. Now since A and B are open sets in Y we have $z \in A.(Why?)$
- Since A is open in Y, we have the existence of r > 0 such that $(z r, z + r) \cap Y \subseteq A$ which means $[a, z + r) \cap Y \subseteq A$ which is a contradiction.
- Hence Y is connected
- Now suppose A and B are intervals then $A \cap B$ is an interval or ϕ which is connected. Similar reasoning when A or B or both are singletons. Hence Proved

Question 3 contd

• Let $A = \{(x, y) : x^2 + y^2 = 1, x, y \in \mathbb{R}\}$ and $B = \{(x, 0) : x \in \mathbb{R}\}$. A and B are connected (Why?)

Question 3 contd

- Let $A = \{(x, y) : x^2 + y^2 = 1, x, y \in \mathbb{R}\}$ and $B = \{(x, 0) : x \in \mathbb{R}\}$. A and B are connected (Why?)
- Now $A \cap B = \{(1,0)\} \cup \{(-1,0)\}$ which is not connected.

Question 4

Let $f: X \to Y$ be a function from a connected metric space (X, d) to a metric space (Y, d_{disc}) with the discrete metric. Show that f is continuous if and only if it is constant.

Question 4

Let $f: X \to Y$ be a function from a connected metric space (X, d) to a metric space (Y, d_{disc}) with the discrete metric. Show that f is continuous if and only if it is constant.

Proof

• Suppose $f: X \to Y$ is a continuous function.

Question 4

Let $f: X \to Y$ be a function from a connected metric space (X, d) to a metric space (Y, d_{disc}) with the discrete metric. Show that f is continuous if and only if it is constant.

- Suppose $f: X \to Y$ is a continuous function.
- Given X is connected, then f(X) is connected subset of Y.

Question 4

Let $f: X \to Y$ be a function from a connected metric space (X, d) to a metric space (Y, d_{disc}) with the discrete metric. Show that f is continuous if and only if it is constant.

- Suppose $f: X \to Y$ is a continuous function.
- Given X is connected, then f(X) is connected subset of Y.
- Here Y is a metric space with discrete metric. We know in discrete metric space the connected subsets are singleton sets only.

Question 4

Let $f: X \to Y$ be a function from a connected metric space (X, d) to a metric space (Y, d_{disc}) with the discrete metric. Show that f is continuous if and only if it is constant.

- Suppose $f: X \to Y$ is a continuous function.
- Given X is connected, then f(X) is connected subset of Y.
- Here Y is a metric space with discrete metric. We know in discrete metric space the connected subsets are singleton sets only. Hence f(X) is singleton subset of Y. Therefore f is a constant function.

Question 4

Let $f: X \to Y$ be a function from a connected metric space (X, d) to a metric space (Y, d_{disc}) with the discrete metric. Show that f is continuous if and only if it is constant.

- Suppose $f: X \to Y$ is a continuous function.
- Given X is connected, then f(X) is connected subset of Y.
- Here Y is a metric space with discrete metric. We know in discrete metric space the connected subsets are singleton sets only. Hence f(X) is singleton subset of Y. Therefore f is a constant function.
- Conversly assume f is a constant function, i.e., f(x) = c then for any open set U in Y,

Question 4

Let $f: X \to Y$ be a function from a connected metric space (X, d) to a metric space (Y, d_{disc}) with the discrete metric. Show that f is continuous if and only if it is constant.

- Suppose $f: X \to Y$ is a continuous function.
- Given X is connected, then f(X) is connected subset of Y.
- Here Y is a metric space with discrete metric. We know in discrete metric space the connected subsets are singleton sets only. Hence f(X) is singleton subset of Y. Therefore f is a constant function.
- Conversly assume f is a constant function, i.e., f(x) = c then for any open set U in Y,

$$f^{-1}(U) = \begin{cases} \emptyset & \text{if } c \notin U, \\ X & \text{if } c \in U, \end{cases}$$

Question 4

Let $f: X \to Y$ be a function from a connected metric space (X, d) to a metric space (Y, d_{disc}) with the discrete metric. Show that f is continuous if and only if it is constant.

- Suppose $f: X \to Y$ is a continuous function.
- Given X is connected, then f(X) is connected subset of Y.
- Here Y is a metric space with discrete metric. We know in discrete metric space the connected subsets are singleton sets only. Hence f(X) is singleton subset of Y. Therefore f is a constant function.
- Conversly assume f is a constant function, i.e., f(x) = c then for any open set U in Y,

$$f^{-1}(U) = \begin{cases} \emptyset & \text{if } c \notin U, \\ X & \text{if } c \in U, \end{cases}$$

Question 4

Let $f: X \to Y$ be a function from a connected metric space (X, d) to a metric space (Y, d_{disc}) with the discrete metric. Show that f is continuous if and only if it is constant.

Proof

- Suppose $f: X \to Y$ is a continuous function.
- Given X is connected, then f(X) is connected subset of Y.
- Here Y is a metric space with discrete metric. We know in discrete metric space the connected subsets are singleton sets only. Hence f(X) is singleton subset of Y. Therefore f is a constant function.
- Conversly assume f is a constant function, i.e., f(x) = c then for any open set U in Y,

$$f^{-1}(U) = \begin{cases} \emptyset & \text{if } c \notin U, \\ X & \text{if } c \in U, \end{cases}$$

<u>open in X. Hence f is continuous.</u>

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣 9

Question 4

Let $f: X \to Y$ be a function from a connected metric space (X, d) to a metric space (Y, d_{disc}) with the discrete metric. Show that f is continuous if and only if it is constant.

Proof

- Suppose $f: X \to Y$ is a continuous function.
- Given X is connected, then f(X) is connected subset of Y.
- Here Y is a metric space with discrete metric. We know in discrete metric space the connected subsets are singleton sets only. Hence f(X) is singleton subset of Y. Therefore f is a constant function.
- Conversly assume f is a constant function, i.e., f(x) = c then for any open set U in Y,

$$f^{-1}(U) = \begin{cases} \emptyset & \text{if } c \notin U, \\ X & \text{if } c \in U, \end{cases}$$

open in X. Hence f is continuous.

←□ → ←□ → ← □ → ← □ → ← □ → ←

Question 5

Let $f : \mathbb{R} \to \mathbb{R}$ be a function. For any $a \in \mathbb{R}$; let $f_a : \mathbb{R} \to \mathbb{R}$ be the shifted function $f_a(x) := f(x - a)$:

- (a) Show that f is continuous if and only if whenever $(a_n)_{n=0}^{\infty}$ is a sequence of real numbers which converges to 0, f_{a_n} converge pointwise to f.
- (b) Show that f is uniformly continuous if and only if whenever $(a_n)_{n=0}^{\infty}$ is a sequence of real numbers which converges to 0, f_{a_n} converge uniformly to f.

Question 5

Let $f : \mathbb{R} \to \mathbb{R}$ be a function. For any $a \in \mathbb{R}$; let $f_a : \mathbb{R} \to \mathbb{R}$ be the shifted function $f_a(x) := f(x - a)$:

- (a) Show that f is continuous if and only if whenever $(a_n)_{n=0}^{\infty}$ is a sequence of real numbers which converges to 0, f_{a_n} converge pointwise to f.
- (b) Show that f is uniformly continuous if and only if whenever $(a_n)_{n=0}^{\infty}$ is a sequence of real numbers which converges to 0, f_{a_n} converge uniformly to f.

Proof 5(a)

Suppose that f is continuous,

Question 5

Let $f : \mathbb{R} \to \mathbb{R}$ be a function. For any $a \in \mathbb{R}$; let $f_a : \mathbb{R} \to \mathbb{R}$ be the shifted function $f_a(x) := f(x - a)$:

- (a) Show that f is continuous if and only if whenever $(a_n)_{n=0}^{\infty}$ is a sequence of real numbers which converges to 0, f_{a_n} converge pointwise to f.
- (b) Show that f is uniformly continuous if and only if whenever $(a_n)_{n=0}^{\infty}$ is a sequence of real numbers which converges to 0, f_{a_n} converge uniformly to f.

Proof 5(a)

• Suppose that f is continuous, thus for each $\epsilon > 0$, there exist $\delta(x_0, \epsilon) > 0$ such that

Question 5

Let $f : \mathbb{R} \to \mathbb{R}$ be a function. For any $a \in \mathbb{R}$; let $f_a : \mathbb{R} \to \mathbb{R}$ be the shifted function $f_a(x) := f(x - a)$:

- (a) Show that f is continuous if and only if whenever $(a_n)_{n=0}^{\infty}$ is a sequence of real numbers which converges to 0, f_{a_n} converge pointwise to f.
- (b) Show that f is uniformly continuous if and only if whenever $(a_n)_{n=0}^{\infty}$ is a sequence of real numbers which converges to 0, f_{a_n} converge uniformly to f.

Proof 5(a)

• Suppose that f is continuous, thus for each $\epsilon > 0$, there exist $\delta(x_0, \epsilon) > 0$ such that

$$|x-x_0|<\delta(x_0,\epsilon)\implies |f(x)-f(x_0)|<\epsilon.$$

Question 5

Let $f : \mathbb{R} \to \mathbb{R}$ be a function. For any $a \in \mathbb{R}$; let $f_a : \mathbb{R} \to \mathbb{R}$ be the shifted function $f_a(x) := f(x - a)$:

- (a) Show that f is continuous if and only if whenever $(a_n)_{n=0}^{\infty}$ is a sequence of real numbers which converges to 0, f_{a_n} converge pointwise to f.
- (b) Show that f is uniformly continuous if and only if whenever $(a_n)_{n=0}^{\infty}$ is a sequence of real numbers which converges to 0, f_{a_n} converge uniformly to f.

Proof 5(a)

• Suppose that f is continuous, thus for each $\epsilon > 0$, there exist $\delta(x_0, \epsilon) > 0$ such that

$$|x-x_0|<\delta(x_0,\epsilon)\implies |f(x)-f(x_0)|<\epsilon.$$

• Given $a_n \to 0$,

• Given $a_n \to 0$, then by definition of convergent sequence, for given $\delta(x_0, \epsilon) > 0$ there exist $n_0 \in \mathbb{N}$ such that

• Given $a_n \to 0$, then by definition of convergent sequence, for given $\delta(x_0, \epsilon) > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|a_n - 0| < \delta(x_0, \epsilon)$$

for all $n \ge n_0$.

• Given $a_n \to 0$, then by definition of convergent sequence, for given $\delta(x_0, \epsilon) > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|a_n - 0| < \delta(x_0, \epsilon)$$

for all $n \geq n_0$.

• Now for all $n \ge n_0$,

• Given $a_n \to 0$, then by definition of convergent sequence, for given $\delta(x_0, \epsilon) > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|a_n-0|<\delta(x_0,\epsilon)$$

for all $n \ge n_0$.

• Now for all $n \ge n_0$, then

$$|x_0-a_n-x_0|=|a_n|<\delta(x_0,\epsilon).$$

• Given $a_n \to 0$, then by definition of convergent sequence, for given $\delta(x_0, \epsilon) > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|a_n-0|<\delta(x_0,\epsilon)$$

for all $n \geq n_0$.

• Now for all $n \ge n_0$, then

$$|x_0-a_n-x_0|=|a_n|<\delta(x_0,\epsilon).$$

• This implies for all $n \ge n_0$,

• Given $a_n \to 0$, then by definition of convergent sequence, for given $\delta(x_0, \epsilon) > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|a_n-0|<\delta(x_0,\epsilon)$$

for all $n \geq n_0$.

• Now for all $n \ge n_0$, then

$$|x_0-a_n-x_0|=|a_n|<\delta(x_0,\epsilon).$$

• This implies for all $n \ge n_0$,

$$|f_{a_n}(x_0) - f(x_0)| = |f(x_0 - a_n) - f(x_0)|$$

 $< \epsilon$

• Given $a_n \to 0$, then by definition of convergent sequence, for given $\delta(x_0, \epsilon) > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|a_n - 0| < \delta(x_0, \epsilon)$$

for all $n \ge n_0$.

• Now for all $n \ge n_0$, then

$$|x_0-a_n-x_0|=|a_n|<\delta(x_0,\epsilon).$$

• This implies for all $n \ge n_0$,

$$|f_{a_n}(x_0) - f(x_0)| = |f(x_0 - a_n) - f(x_0)|$$

 $< \epsilon$

• Thus $f_{a_n}(x_0)$ converges to $f(x_0)$ as $n \to \infty$.

• Given $a_n \to 0$, then by definition of convergent sequence, for given $\delta(x_0, \epsilon) > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|a_n - 0| < \delta(x_0, \epsilon)$$

for all $n \ge n_0$.

• Now for all $n \ge n_0$, then

$$|x_0-a_n-x_0|=|a_n|<\delta(x_0,\epsilon).$$

• This implies for all $n \ge n_0$,

$$|f_{a_n}(x_0) - f(x_0)| = |f(x_0 - a_n) - f(x_0)|$$

 $< \epsilon$

• Thus $f_{a_n}(x_0)$ converges to $f(x_0)$ as $n \to \infty$. Now we can show it converges pointwise for any $x \in \mathbb{R}$.

• Given $a_n \to 0$, then by definition of convergent sequence, for given $\delta(x_0, \epsilon) > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|a_n - 0| < \delta(x_0, \epsilon)$$

for all $n \ge n_0$.

• Now for all $n \ge n_0$, then

$$|x_0-a_n-x_0|=|a_n|<\delta(x_0,\epsilon).$$

• This implies for all $n \ge n_0$,

$$|f_{a_n}(x_0) - f(x_0)| = |f(x_0 - a_n) - f(x_0)|$$

 $< \epsilon$

• Thus $f_{a_n}(x_0)$ converges to $f(x_0)$ as $n \to \infty$. Now we can show it converges pointwise for any $x \in \mathbb{R}$.

• Now we will prove the converse part,

• Now we will prove the converse part, i.e., f is continuous at $a \in \mathbb{R}$.

- Now we will prove the converse part, i.e., f is continuous at $a \in \mathbb{R}$.
- Let z_n be a sequence in $\mathbb R$ such that $z_n \to a$.

- Now we will prove the converse part, i.e., f is continuous at $a \in \mathbb{R}$.
- Let z_n be a sequence in $\mathbb R$ such that $z_n \to a$. We need to show that $f(z_n) \to f(a)$ as $n \to \infty$.

- Now we will prove the converse part, i.e., f is continuous at $a \in \mathbb{R}$.
- Let z_n be a sequence in $\mathbb R$ such that $z_n \to a$. We need to show that $f(z_n) \to f(a)$ as $n \to \infty$.
- As $z_n \to a$ then $z_n a \to 0$ as $n \to \infty$.

- Now we will prove the converse part, i.e., f is continuous at $a \in \mathbb{R}$.
- Let z_n be a sequence in $\mathbb R$ such that $z_n \to a$. We need to show that $f(z_n) \to f(a)$ as $n \to \infty$.
- As $z_n \to a$ then $z_n a \to 0$ as $n \to \infty$. By asumption, $f_{z_n a}(x)$ converges to f(x) pointwise as $n \to \infty$.

- Now we will prove the converse part, i.e., f is continuous at $a \in \mathbb{R}$.
- Let z_n be a sequence in $\mathbb R$ such that $z_n \to a$. We need to show that $f(z_n) \to f(a)$ as $n \to \infty$.
- As $z_n \to a$ then $z_n a \to 0$ as $n \to \infty$. By asumption, $f_{z_n a}(x)$ converges to f(x) pointwise as $n \to \infty$.
- In particular, $f_{z_n-a}(a)$ converges to f(a) pointwise as $n \to \infty$.

- Now we will prove the converse part, i.e., f is continuous at $a \in \mathbb{R}$.
- Let z_n be a sequence in $\mathbb R$ such that $z_n \to a$. We need to show that $f(z_n) \to f(a)$ as $n \to \infty$.
- As $z_n \to a$ then $z_n a \to 0$ as $n \to \infty$. By asumption, $f_{z_n a}(x)$ converges to f(x) pointwise as $n \to \infty$.
- In particular, $f_{z_n-a}(a)$ converges to f(a) pointwise as $n \to \infty$. So $f(z_n) \to f(a)$ as $n \to \infty$.

- Now we will prove the converse part, i.e., f is continuous at $a \in \mathbb{R}$.
- Let z_n be a sequence in $\mathbb R$ such that $z_n \to a$. We need to show that $f(z_n) \to f(a)$ as $n \to \infty$.
- As $z_n \to a$ then $z_n a \to 0$ as $n \to \infty$. By asumption, $f_{z_n a}(x)$ converges to f(x) pointwise as $n \to \infty$.
- In particular, $f_{z_n-a}(a)$ converges to f(a) pointwise as $n \to \infty$. So $f(z_n) \to f(a)$ as $n \to \infty$.

Proof 5(b)

• Suppose that f is uniformly continuous, thus there exist $\delta(\epsilon>0)$ such that

- Now we will prove the converse part, i.e., f is continuous at $a \in \mathbb{R}$.
- Let z_n be a sequence in $\mathbb R$ such that $z_n \to a$. We need to show that $f(z_n) \to f(a)$ as $n \to \infty$.
- As $z_n \to a$ then $z_n a \to 0$ as $n \to \infty$. By asumption, $f_{z_n a}(x)$ converges to f(x) pointwise as $n \to \infty$.
- In particular, $f_{z_n-a}(a)$ converges to f(a) pointwise as $n \to \infty$. So $f(z_n) \to f(a)$ as $n \to \infty$.

Proof 5(b)

• Suppose that f is uniformly continuous, thus there exist $\delta(\epsilon > 0)$ such that

$$|x-y| < \delta(\epsilon) \implies |f(x)-f(y)| < \epsilon.$$

- Now we will prove the converse part, i.e., f is continuous at $a \in \mathbb{R}$.
- Let z_n be a sequence in $\mathbb R$ such that $z_n \to a$. We need to show that $f(z_n) \to f(a)$ as $n \to \infty$.
- As $z_n \to a$ then $z_n a \to 0$ as $n \to \infty$. By asumption, $f_{z_n a}(x)$ converges to f(x) pointwise as $n \to \infty$.
- In particular, $f_{z_n-a}(a)$ converges to f(a) pointwise as $n \to \infty$. So $f(z_n) \to f(a)$ as $n \to \infty$.

Proof 5(b)

• Suppose that f is uniformly continuous, thus there exist $\delta(\epsilon>0)$ such that

$$|x-y| < \delta(\epsilon) \implies |f(x)-f(y)| < \epsilon.$$

• Given $a_n \to 0$, then by definition of convergent sequence,

- Now we will prove the converse part, i.e., f is continuous at $a \in \mathbb{R}$.
- Let z_n be a sequence in $\mathbb R$ such that $z_n \to a$. We need to show that $f(z_n) \to f(a)$ as $n \to \infty$.
- As $z_n \to a$ then $z_n a \to 0$ as $n \to \infty$. By assumption, $f_{z_n a}(x)$ converges to f(x) pointwise as $n \to \infty$.
- In particular, $f_{z_n-a}(a)$ converges to f(a) pointwise as $n \to \infty$. So $f(z_n) \to f(a)$ as $n \to \infty$.

Proof 5(b)

• Suppose that f is uniformly continuous, thus there exist $\delta(\epsilon>0)$ such that

$$|x-y|<\delta(\epsilon)\implies |f(x)-f(y)|<\epsilon.$$

• Given $a_n \to 0$, then by definition of convergent sequence, for given $\delta(\epsilon) > 0$ there exist $n_0 \in \mathbb{N}$ such that

- Now we will prove the converse part, i.e., f is continuous at $a \in \mathbb{R}$.
- Let z_n be a sequence in $\mathbb R$ such that $z_n \to a$. We need to show that $f(z_n) \to f(a)$ as $n \to \infty$.
- As $z_n \to a$ then $z_n a \to 0$ as $n \to \infty$. By asumption, $f_{z_n a}(x)$ converges to f(x) pointwise as $n \to \infty$.
- In particular, $f_{z_n-a}(a)$ converges to f(a) pointwise as $n \to \infty$. So $f(z_n) \to f(a)$ as $n \to \infty$.

Proof 5(b)

• Suppose that f is uniformly continuous, thus there exist $\delta(\epsilon > 0)$ such that

$$|x-y|<\delta(\epsilon)\implies |f(x)-f(y)|<\epsilon.$$

• Given $a_n \to 0$, then by definition of convergent sequence, for given $\delta(\epsilon) > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|a_n-0|<\delta(\epsilon)$$

TOT all $n \geq n_0$. (Maths Dept., IIT Delhi)

- Now we will prove the converse part, i.e., f is continuous at $a \in \mathbb{R}$.
- Let z_n be a sequence in $\mathbb R$ such that $z_n \to a$. We need to show that $f(z_n) \to f(a)$ as $n \to \infty$.
- As $z_n \to a$ then $z_n a \to 0$ as $n \to \infty$. By asumption, $f_{z_n a}(x)$ converges to f(x) pointwise as $n \to \infty$.
- In particular, $f_{z_n-a}(a)$ converges to f(a) pointwise as $n \to \infty$. So $f(z_n) \to f(a)$ as $n \to \infty$.

Proof 5(b)

• Suppose that f is uniformly continuous, thus there exist $\delta(\epsilon > 0)$ such that

$$|x-y| < \delta(\epsilon) \implies |f(x)-f(y)| < \epsilon.$$

• Given $a_n \to 0$, then by definition of convergent sequence, for given $\delta(\epsilon) > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|a_n-0|<\delta(\epsilon)$$

TOT all $n \geq n_0$. (Maths Dept., IIT Delhi)

• Now for all $n \ge n_0$, then

$$|x-a_n-x|=|a_n|<\delta(\epsilon).$$

• Now for all $n \ge n_0$, then

$$|x-a_n-x|=|a_n|<\delta(\epsilon).$$

$$|f_{a_n}(x) - f(x)| = |f(x_0 - a_n) - f(x_0)|$$

 $< \epsilon$

• Now for all $n \ge n_0$, then

$$|x-a_n-x|=|a_n|<\delta(\epsilon).$$

• This implies, for all $n \ge n_0$,

$$|f_{a_n}(x) - f(x)| = |f(x_0 - a_n) - f(x_0)|$$

 $< \epsilon$

• Thus $f_{a_n}(x)$ converges to f(x) as $n \to \infty$ uniformly.

• Now for all $n \ge n_0$, then

$$|x-a_n-x|=|a_n|<\delta(\epsilon).$$

$$|f_{a_n}(x) - f(x)| = |f(x_0 - a_n) - f(x_0)|$$

 $< \epsilon$

- Thus $f_{a_n}(x)$ converges to f(x) as $n \to \infty$ uniformly.
- ullet Conversly, let f_{a_n} converges to f uniformy on $\mathbb R$ as $n \to \infty$,

• Now for all $n \ge n_0$, then

$$|x-a_n-x|=|a_n|<\delta(\epsilon).$$

$$|f_{a_n}(x) - f(x)| = |f(x_0 - a_n) - f(x_0)|$$

 $< \epsilon$

- Thus $f_{a_n}(x)$ converges to f(x) as $n \to \infty$ uniformly.
- Conversly, let f_{a_n} converges to f uniformy on $\mathbb R$ as $n \to \infty$, where the sequence a_n converges to 0 as $n \to \infty$.

• Now for all $n \ge n_0$, then

$$|x-a_n-x|=|a_n|<\delta(\epsilon).$$

$$|f_{a_n}(x) - f(x)| = |f(x_0 - a_n) - f(x_0)|$$

 $< \epsilon$

- Thus $f_{a_n}(x)$ converges to f(x) as $n \to \infty$ uniformly.
- Conversly, let f_{a_n} converges to f uniformy on $\mathbb R$ as $n \to \infty$, where the sequence a_n converges to 0 as $n \to \infty$. We need to show f is uniformly continous on $\mathbb R$.

• Now for all $n \ge n_0$, then

$$|x-a_n-x|=|a_n|<\delta(\epsilon).$$

$$|f_{a_n}(x) - f(x)| = |f(x_0 - a_n) - f(x_0)|$$

 $< \epsilon$

- Thus $f_{a_n}(x)$ converges to f(x) as $n \to \infty$ uniformly.
- Conversly, let f_{a_n} converges to f uniformy on $\mathbb R$ as $n \to \infty$, where the sequence a_n converges to 0 as $n \to \infty$. We need to show f is uniformly continous on $\mathbb R$.
- Let x_n and y_n be two real sequence such that $x_n y_n$ converges to zero. We need to show $\{f(x_n) f(y_n)\}$ converges to zero.

• Now for all $n \ge n_0$, then

$$|x-a_n-x|=|a_n|<\delta(\epsilon).$$

$$|f_{a_n}(x) - f(x)| = |f(x_0 - a_n) - f(x_0)|$$

 $< \epsilon$

- Thus $f_{a_n}(x)$ converges to f(x) as $n \to \infty$ uniformly.
- Conversly, let f_{a_n} converges to f uniformy on $\mathbb R$ as $n \to \infty$, where the sequence a_n converges to 0 as $n \to \infty$. We need to show f is uniformly continous on $\mathbb R$.
- Let x_n and y_n be two real sequence such that $x_n y_n$ converges to zero. We need to show $\{f(x_n) f(y_n)\}$ converges to zero.

$$f(x_n) - f(y_n) = f(x_n) - f(y_n - x_n + x_n)$$

$$f(x_n) - f(y_n) = f(x_n) - f(y_n - x_n + x_n)$$

= $f(x_n) - f(-a_n + x_n)$

$$f(x_n) - f(y_n) = f(x_n) - f(y_n - x_n + x_n)$$

= $f(x_n) - f(-a_n + x_n)$
= $f(x_n) - f(x_n - a_n)$

$$f(x_n) - f(y_n) = f(x_n) - f(y_n - x_n + x_n)$$

$$= f(x_n) - f(-a_n + x_n)$$

$$= f(x_n) - f(x_n - a_n)$$

$$= f(x_n) - f_{a_n}(x_n).$$

• Let us assume $a_n = x_n - y_n$. Now

$$f(x_n) - f(y_n) = f(x_n) - f(y_n - x_n + x_n)$$

$$= f(x_n) - f(-a_n + x_n)$$

$$= f(x_n) - f(x_n - a_n)$$

$$= f(x_n) - f_{a_n}(x_n).$$

• Since f_{a_n} converges to f uniformly.

• Let us assume $a_n = x_n - y_n$. Now

$$f(x_n) - f(y_n) = f(x_n) - f(y_n - x_n + x_n)$$

$$= f(x_n) - f(-a_n + x_n)$$

$$= f(x_n) - f(x_n - a_n)$$

$$= f(x_n) - f_{a_n}(x_n).$$

• Since f_{a_n} converges to f uniformly. Thus for each $\epsilon > 0$ there exist $n_0 \in \mathbb{N}$ such that

• Let us assume $a_n = x_n - y_n$. Now

$$f(x_n) - f(y_n) = f(x_n) - f(y_n - x_n + x_n)$$

$$= f(x_n) - f(-a_n + x_n)$$

$$= f(x_n) - f(x_n - a_n)$$

$$= f(x_n) - f_{a_n}(x_n).$$

• Since f_{a_n} converges to f uniformly. Thus for each $\epsilon > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|f_{a_n}(x) - f(x)| < \epsilon, \forall n \ge n_0, \forall x \in \mathbb{R}.$$

• Let us assume $a_n = x_n - y_n$. Now

$$f(x_n) - f(y_n) = f(x_n) - f(y_n - x_n + x_n)$$

$$= f(x_n) - f(-a_n + x_n)$$

$$= f(x_n) - f(x_n - a_n)$$

$$= f(x_n) - f_{a_n}(x_n).$$

• Since f_{a_n} converges to f uniformly. Thus for each $\epsilon > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|f_{a_n}(x) - f(x)| < \epsilon, \forall n \ge n_0, \forall x \in \mathbb{R}.$$

• Then for all $n \ge n_0$, we have $|f_{a_n}(x_n) - f(x_n)| < \epsilon$.

• Let us assume $a_n = x_n - y_n$. Now

$$f(x_n) - f(y_n) = f(x_n) - f(y_n - x_n + x_n)$$

$$= f(x_n) - f(-a_n + x_n)$$

$$= f(x_n) - f(x_n - a_n)$$

$$= f(x_n) - f_{a_n}(x_n).$$

• Since f_{a_n} converges to f uniformly. Thus for each $\epsilon > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|f_{a_n}(x) - f(x)| < \epsilon, \forall n \ge n_0, \forall x \in \mathbb{R}.$$

• Then for all $n \ge n_0$, we have $|f_{a_n}(x_n) - f(x_n)| < \epsilon$. Form the above equation, for all $n \ge n_0$, $|f(x_n) - f(y_n)| < \epsilon$.

• Let us assume $a_n = x_n - y_n$. Now

$$f(x_n) - f(y_n) = f(x_n) - f(y_n - x_n + x_n)$$

$$= f(x_n) - f(-a_n + x_n)$$

$$= f(x_n) - f(x_n - a_n)$$

$$= f(x_n) - f_{a_n}(x_n).$$

• Since f_{a_n} converges to f uniformly. Thus for each $\epsilon > 0$ there exist $n_0 \in \mathbb{N}$ such that

$$|f_{a_n}(x) - f(x)| < \epsilon, \forall n \ge n_0, \forall x \in \mathbb{R}.$$

• Then for all $n \ge n_0$, we have $|f_{a_n}(x_n) - f(x_n)| < \epsilon$. Form the above equation, for all $n \ge n_0$, $|f(x_n) - f(y_n)| < \epsilon$.

Question 6

Show that the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2}$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of x.

Question 6

Show that the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2}$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of x.

Proof

•

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2} = \sum_{n=1}^{\infty} (-1)^n \frac{x^2}{n^2} + \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}.$$

Question 6

Show that the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2}$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of x.

Proof

•

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2} = \sum_{n=1}^{\infty} (-1)^n \frac{x^2}{n^2} + \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}.$$

• We know the second series in RHS of the above series is always convergent and first part convergent uniformly on any bounded subset of \mathbb{R} .

Question 6

Show that the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2}$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of x.

Proof

•

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2} = \sum_{n=1}^{\infty} (-1)^n \frac{x^2}{n^2} + \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}.$$

- We know the second series in RHS of the above series is always convergent and first part convergent uniformly on any bounded subset of \mathbb{R} .
- If we take modulus then the second part of the series always divergent.

Question 6

Show that the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2}$$

converges uniformly in every bounded interval, but does not converge absolutely for any value of x.

Proof

•

$$\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2} = \sum_{n=1}^{\infty} (-1)^n \frac{x^2}{n^2} + \sum_{n=1}^{\infty} (-1)^n \frac{1}{n}.$$

- We know the second series in RHS of the above series is always convergent and first part convergent uniformly on any bounded subset of \mathbb{R} .
- If we take modulus then the second part of the series always divergent.

Question 7

Give an example of a sequence of discontinuous functions f_k converging uniformly to a limit function f that is continuous.

Question 7

Give an example of a sequence of discontinuous functions f_k converging uniformly to a limit function f that is continuous.

Proof

Take

$$f_n(x) := \begin{cases} 0 & x \leq 0, \\ \frac{1}{n} & 0 < x. \end{cases}$$

Question 7

Give an example of a sequence of discontinuous functions f_k converging uniformly to a limit function f that is continuous.

Proof

Take

$$f_n(x) := \begin{cases} 0 & x \leq 0, \\ \frac{1}{n} & 0 < x. \end{cases}$$

• Clearly $\lim_{n\to\infty} f_n(x) = f(x) \equiv 0$.

Question 7

Give an example of a sequence of discontinuous functions f_k converging uniformly to a limit function f that is continuous.

Proof

Take

$$f_n(x) := \begin{cases} 0 & x \leq 0, \\ \frac{1}{n} & 0 < x. \end{cases}$$

• Clearly $\lim_{n\to\infty} f_n(x) = f(x) \equiv 0$. Now we will prove that it converges uniformly.

Question 7

Give an example of a sequence of discontinuous functions f_k converging uniformly to a limit function f that is continuous.

Proof

Take

$$f_n(x) := \begin{cases} 0 & x \leq 0, \\ \frac{1}{n} & 0 < x. \end{cases}$$

- Clearly $\lim_{n\to\infty} f_n(x) = f(x) \equiv 0$. Now we will prove that it converges uniformly.
- If $x \le 0$ then $|f_n(x) f(x)| = 0 < \epsilon$ for all $n \ge 1$.

Question 7

Give an example of a sequence of discontinuous functions f_k converging uniformly to a limit function f that is continuous.

Proof

Take

$$f_n(x) := \begin{cases} 0 & x \leq 0, \\ \frac{1}{n} & 0 < x. \end{cases}$$

- Clearly $\lim_{n\to\infty} f_n(x) = f(x) \equiv 0$. Now we will prove that it converges uniformly.
- If $x \le 0$ then $|f_n(x) f(x)| = 0 < \epsilon$ for all $n \ge 1$.
- If x > 0 then by archimedean property there exists a $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \epsilon$, it follows that $|f_n(x) f(x)| = \frac{1}{n} < \epsilon$ for all $n \ge n_0$.

Question 7

Give an example of a sequence of discontinuous functions f_k converging uniformly to a limit function f that is continuous.

Proof

Take

$$f_n(x) := \begin{cases} 0 & x \leq 0, \\ \frac{1}{n} & 0 < x. \end{cases}$$

- Clearly $\lim_{n\to\infty} f_n(x) = f(x) \equiv 0$. Now we will prove that it converges uniformly.
- If $x \le 0$ then $|f_n(x) f(x)| = 0 < \epsilon$ for all $n \ge 1$.
- If x > 0 then by archimedean property there exists a $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \epsilon$, it follows that $|f_n(x) f(x)| = \frac{1}{n} < \epsilon$ for all $n \ge n_0$.
- Thus $N = \max\{n_0, 1\} = n_0$ will work for all $x \in \mathbb{R}$,

Question 7

Give an example of a sequence of discontinuous functions f_k converging uniformly to a limit function f that is continuous.

Proof

Take

$$f_n(x) := \begin{cases} 0 & x \leq 0, \\ \frac{1}{n} & 0 < x. \end{cases}$$

- Clearly $\lim_{n\to\infty} f_n(x) = f(x) \equiv 0$. Now we will prove that it converges uniformly.
- If $x \le 0$ then $|f_n(x) f(x)| = 0 < \epsilon$ for all $n \ge 1$.
- If x > 0 then by archimedean property there exists a $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \epsilon$, it follows that $|f_n(x) f(x)| = \frac{1}{n} < \epsilon$ for all $n \ge n_0$.
- Thus $N = \max\{n_0, 1\} = n_0$ will work for all $x \in \mathbb{R}$, hence it converges uniformly.

Question 7

Give an example of a sequence of discontinuous functions f_k converging uniformly to a limit function f that is continuous.

Proof

Take

$$f_n(x) := \begin{cases} 0 & x \leq 0, \\ \frac{1}{n} & 0 < x. \end{cases}$$

- Clearly $\lim_{n\to\infty} f_n(x) = f(x) \equiv 0$. Now we will prove that it converges uniformly.
- If $x \le 0$ then $|f_n(x) f(x)| = 0 < \epsilon$ for all $n \ge 1$.
- If x > 0 then by archimedean property there exists a $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \epsilon$, it follows that $|f_n(x) f(x)| = \frac{1}{n} < \epsilon$ for all $n \ge n_0$.
- Thus $N = \max\{n_0, 1\} = n_0$ will work for all $x \in \mathbb{R}$, hence it converges uniformly.

Question 8

Suppose $\sum\limits_{k=1}^{\infty}g_k$ converges uniformly to a function g on $\mathbb R$ and suppose

that $h: \mathbb{R} \to \mathbb{R}$ is a bounded function on \mathbb{R} . Prove that $\sum_{k=1}^{\infty} hg_k$ converges uniformly to hg.

Question 8

Suppose $\sum\limits_{k=1}^{\infty}g_k$ converges uniformly to a function g on $\mathbb R$ and suppose

that $h: \mathbb{R} \to \mathbb{R}$ is a bounded function on \mathbb{R} . Prove that $\sum_{k=1}^{\infty} hg_k$ converges uniformly to hg.

Solution:

• Let $S_n(x)$ be the partial sum of $\sum_{k=1}^{\infty} g_k(x)$.

Question 8

Suppose $\sum\limits_{k=1}^{\infty}g_k$ converges uniformly to a function g on $\mathbb R$ and suppose

that $h: \mathbb{R} \to \mathbb{R}$ is a bounded function on \mathbb{R} . Prove that $\sum_{k=1}^{n} hg_k$ converges uniformly to hg.

- Let $S_n(x)$ be the partial sum of $\sum_{k=1}^{\infty} g_k(x)$.
- Since series is converging uniformly to a function g on \mathbb{R} . Thus S_n uniformly converges to g.

Question 8

Suppose $\sum\limits_{k=1}^{\infty}g_k$ converges uniformly to a function g on $\mathbb R$ and suppose

that $h: \mathbb{R} \to \mathbb{R}$ is a bounded function on \mathbb{R} . Prove that $\sum_{k=1}^{\infty} hg_k$ converges uniformly to hg.

- Let $S_n(x)$ be the partial sum of $\sum_{k=1}^{\infty} g_k(x)$.
- Since series is converging uniformly to a function g on \mathbb{R} . Thus S_n uniformly converges to g.
- Since h is bounded function on \mathbb{R} . Thus |h(x)| < M for all $x \in \mathbb{R}$.

Question 8

Suppose $\sum\limits_{k=1}^{\infty}g_k$ converges uniformly to a function g on $\mathbb R$ and suppose

that $h: \mathbb{R} \to \mathbb{R}$ is a bounded function on \mathbb{R} . Prove that $\sum_{k=1}^{n} hg_k$ converges uniformly to hg.

- Let $S_n(x)$ be the partial sum of $\sum_{k=1}^{\infty} g_k(x)$.
- Since series is converging uniformly to a function g on \mathbb{R} . Thus S_n uniformly converges to g.
- Since h is bounded function on \mathbb{R} . Thus |h(x)| < M for all $x \in \mathbb{R}$.
- Let $\epsilon > 0$ be given, then $\frac{\epsilon}{M} > 0$.

Question 8

Suppose $\sum\limits_{k=1}^{\infty}g_k$ converges uniformly to a function g on $\mathbb R$ and suppose

that $h: \mathbb{R} \to \mathbb{R}$ is a bounded function on \mathbb{R} . Prove that $\sum_{k=1}^{\infty} hg_k$ converges uniformly to hg.

- Let $S_n(x)$ be the partial sum of $\sum_{k=1}^{\infty} g_k(x)$.
- Since series is converging uniformly to a function g on \mathbb{R} . Thus S_n uniformly converges to g.
- Since h is bounded function on \mathbb{R} . Thus |h(x)| < M for all $x \in \mathbb{R}$.
- Let $\epsilon > 0$ be given, then $\frac{\epsilon}{M} > 0$. Since S_n uniformly converges to g, thus there exist $n_0 \in \mathbb{N}$ such that

Question 8

Suppose $\sum\limits_{k=1}^\infty g_k$ converges uniformly to a function g on $\mathbb R$ and suppose

that $h: \mathbb{R} \to \mathbb{R}$ is a bounded function on \mathbb{R} . Prove that $\sum_{k=1}^{\infty} hg_k$ converges uniformly to hg.

- Let $S_n(x)$ be the partial sum of $\sum_{k=1}^{\infty} g_k(x)$.
- Since series is converging uniformly to a function g on \mathbb{R} . Thus S_n uniformly converges to g.
- Since h is bounded function on \mathbb{R} . Thus |h(x)| < M for all $x \in \mathbb{R}$.
- Let $\epsilon > 0$ be given, then $\frac{\epsilon}{M} > 0$. Since S_n uniformly converges to g, thus there exist $n_0 \in \mathbb{N}$ such that

$$|S_n(x)-g(x)|<rac{\epsilon}{M}, \quad \forall x\in\mathbb{R}, n>n_0.$$

Question 8

Suppose $\sum\limits_{k=1}^\infty g_k$ converges uniformly to a function g on $\mathbb R$ and suppose

that $h: \mathbb{R} \to \mathbb{R}$ is a bounded function on \mathbb{R} . Prove that $\sum_{k=1}^{\infty} hg_k$ converges uniformly to hg.

- Let $S_n(x)$ be the partial sum of $\sum_{k=1}^{\infty} g_k(x)$.
- Since series is converging uniformly to a function g on \mathbb{R} . Thus S_n uniformly converges to g.
- Since h is bounded function on \mathbb{R} . Thus |h(x)| < M for all $x \in \mathbb{R}$.
- Let $\epsilon > 0$ be given, then $\frac{\epsilon}{M} > 0$. Since S_n uniformly converges to g, thus there exist $n_0 \in \mathbb{N}$ such that

$$|S_n(x)-g(x)|<rac{\epsilon}{M}, \quad \forall x\in\mathbb{R}, n>n_0.$$

• Let T_n be the partial sum of $\sum_{k=1}^{\infty} hg_k$.

- Let T_n be the partial sum of $\sum_{k=1}^{\infty} hg_k$.
- Clearly $T_n(x) = h(x)S_n(x)$.

- Let T_n be the partial sum of $\sum_{k=1}^{\infty} hg_k$.
- Clearly $T_n(x) = h(x)S_n(x)$. Now consider

- Let T_n be the partial sum of $\sum_{k=1}^{\infty} hg_k$.
- Clearly $T_n(x) = h(x)S_n(x)$. Now consider

$$|T_n(x) - h(x)g(x)| = |h(x)S_n(x) - h(x)g(x)|$$

- Let T_n be the partial sum of $\sum_{k=1}^{\infty} hg_k$.
- Clearly $T_n(x) = h(x)S_n(x)$. Now consider

$$|T_n(x) - h(x)g(x)| = |h(x)S_n(x) - h(x)g(x)|$$

= $|h(x)||S_n(x) - g(x)|$

- Let T_n be the partial sum of $\sum_{k=1}^{\infty} hg_k$.
- Clearly $T_n(x) = h(x)S_n(x)$. Now consider

$$|T_n(x) - h(x)g(x)| = |h(x)S_n(x) - h(x)g(x)|$$

$$= |h(x)||S_n(x) - g(x)|$$

$$< M \cdot \frac{\epsilon}{M}$$

- Let T_n be the partial sum of $\sum_{k=1}^{\infty} hg_k$.
- Clearly $T_n(x) = h(x)S_n(x)$. Now consider

$$|T_n(x) - h(x)g(x)| = |h(x)S_n(x) - h(x)g(x)|$$

$$= |h(x)||S_n(x) - g(x)|$$

$$< M \cdot \frac{\epsilon}{M}$$

$$= \epsilon.$$

for all $x \in R$ and $n > n_0$.

- Let T_n be the partial sum of $\sum_{k=1}^{\infty} hg_k$.
- Clearly $T_n(x) = h(x)S_n(x)$. Now consider

$$|T_n(x) - h(x)g(x)| = |h(x)S_n(x) - h(x)g(x)|$$

$$= |h(x)||S_n(x) - g(x)|$$

$$< M \cdot \frac{\epsilon}{M}$$

$$= \epsilon.$$

for all $x \in R$ and $n > n_0$.

• Hence $\sum_{k=1}^{\infty} hg_k$ converges uniformly to hg.