14.2 - Limits and Continuity in Higher Dimensions

Limits for Functions of Two Variables

Definition:

Suppose that every open circular disk centered at (x_0, y_0) contains a point in the domain of f other than (x_0, y_0) itself.

$$\lim_{(x,y) o(x_0,y_0)}f(x,y)=L$$

if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all (x, y) in the domain of f,

$$|d(x,y)-L|<\epsilon ext{ whenever } 0<\sqrt{rt(x-x_0)^2+(y-y_0)^2}<\delta$$

THEOREM 1-Properties of Limits of Functions of Two Variables

The following rules hold if L, M, and k are real numbers and

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L \quad \text{and} \quad \lim_{(x,y)\to(x_0,y_0)} g(x,y) = M.$$

1. Sum Rule:
$$\lim_{(x,y)\to(x_0,y_0)} [f(x,y) + g(x,y)] = L + M$$

2. Difference Rule:
$$\lim_{(x,y)\to(x_0,y_0)} [f(x,y)-g(x,y)] = L-M$$

3. Constant Multiple Rule:
$$\lim_{(x,y)\to(x_0,y_0)} kf(x,y) = kL$$
 (any number k)

4. Product Rule:
$$\lim_{(x,y)\to(x_0,y_0)} [f(x,y)\cdot g(x,y)] = L\cdot M$$

5. Quotient Rule:
$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)}{g(x,y)} = \frac{L}{M}, \qquad M \neq 0$$

6. Power Rule:
$$\lim_{(x,y)\to(x_0,y_0)} [f(x,y)]^n = L^n, n \text{ a positive integer}$$

7. Root Rule:
$$\lim_{(x,y)\to(x_0,y_0)} \sqrt[n]{f(x,y)} = \sqrt[n]{L} = L^{1/n},$$

n a positive integer, and if n is even, we assume that L > 0.

8. Composition Rule: If
$$h(z)$$
 is continuous at $z = L$, then

$$\lim_{(x,y)\to(x_0,y_0)} h(f(x,y)) = h(L).$$

Continuity

Definition:

A function f(x, y) is continuous at the point (x_0, y_0) if

- 1. f is defined at (x_0, y_0)
- 2. $\lim_{x,y) o (x_0,y_0)} f(x,y)$ exists, and
- 3. $\lim_{x,y) o (x_0,y_0)} f(x,y) = f(x_0,y_0)$

A function is continuous if it is continuous at every point in its domain.

If f is continuous at (x_0,y_0) and g is a single-variable function continuous at $f(x_0,y_0)$, then the composition $h=g\circ f$ defined by h(x,y)=g(f(x,y)) is also continuous at (x_0,y_0) .

EVT

Extreme Value Theorem holds on higher dimension functions if the domain is closed and bounded.