1章のストーリー

さやかは清原にデータから数値を予測する回帰手法について教える

回帰(1章)

また、ある商品を購入するかしないか つまり Yes と No など出力がカテゴリである 場合を「**識別問題**」といいます

回帰問題のデータ

	間取り	駅歩	築年	家賃
	2DK	15	6	48000
	1LDK	2	2	60000
1	2LDK	20	25	50000

識別問題のデータ

年齢	性別	時刻	購入
35	男	16	Yes
24	男	9	Yes
22	女	21	No

回帰と識別の2つですね

- ・回帰とは
 - 教師あり学習のひとつ
 - •特徴の集合から<u>数値</u>を予測する

p.11 3コマ目

単純な回帰問題

イベント当日の最高気温と参加者数の関係

 x_1

やや複雑な回帰問題

イベント当日の最高気温・降水確率と参加者数の関係

線形回帰

•問題の定義

•入力 x から出力 $\hat{c}(x)$ を求める回帰式を1次式に限定

$$\hat{c}(m{x}) = \sum_{i=0}^d w_i x_i = w_0 + w_1 x_1 + \dots + w_d x_d$$
 $d:$ 特徴の次元数 $x_0:$ 1に固定

• 学習データに対してなるべく誤差の少ない直線(あるいは平面)の係数 w を求める

最小二乗法による解法

•推定の基準:誤差の二乗和 E を最小化

$$E(oldsymbol{w}) = \sum_{i=1}^{N} (y_i - \hat{c}(oldsymbol{x}_i))^2$$
 $N: 全データ数$
 $y_i: 正解$

$$= (oldsymbol{y} - oldsymbol{X} oldsymbol{w})^T (oldsymbol{y} - oldsymbol{X} oldsymbol{w}) \quad oldsymbol{X}: 学習データを並べた行列}{oldsymbol{y}: 正解を並べたベクトル}$$
 $oldsymbol{w}: 係数を並べたベクトル$

•Eが最小となるのは w で偏微分したものが0と なるとき

$$\boldsymbol{X}^{T}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) = 0$$

$$\Leftrightarrow \boldsymbol{w} = (\boldsymbol{X}^{T}\boldsymbol{X})^{-1}\boldsymbol{X}^{T}\boldsymbol{y}$$

w が行列の計算 のみで求まる

最小二乗法による解法

誤差 E は二次関数

正則化

- •過学習
 - 最小二乗法は係数が線形であれば高次式でも適用可
 - 特徴の次数を上げたり、特徴の次元数を増やしたり すると、複雑な回帰式で解を近似することになる

学習データだけに 当てはまる不自然な 回帰式が求まって しまう

正則化

- ・過学習への対処
 - ・ 過学習した回帰式とは
 - ⇒ 入力が少し動いただけで出力が大きく動く
 - \Rightarrow 回帰式の係数 w が大きい
 - 正則化

誤差が多少増えることと 引き換えにwを小さくする

p.23 3コマ目

Ridge回帰

- \bullet 係数wの2乗を正則化項として誤差の式に加える
 - •全体的に係数が小さくなり、極端な値の変動がなく

なる

正解に合わせて こちらを小さく しようとすると…

係数が 大きくなる

$$E(\boldsymbol{w}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) + \alpha \boldsymbol{w}^T \boldsymbol{w}$$

係数の値を 小さくしす ぎると... 正解から大きく

離れてしまう

α:誤差と正則化項の

Lasso回帰

- •係数 w の絶対値を正則化項として誤差の式に加える
 - •値が0となる係数が多くなり、出力に影響を与えている特徴を絞り込むことができる

$$E(\boldsymbol{w}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}) + \alpha \sum_{j=1}^{a} |w_j|$$

回帰式の具体例

- •Bostonデータ
 - 犯罪発生率、部屋数、立地など13の条件から不動産 価格を推定

線形回帰	Ridge		Lasso	
CRIM : -0.11 ZN : 0.05 INDUS : 0.02 CHAS : 2.69 NOX : -17.80 RM : 3.80 AGE : 0.00 DIS : -1.48 RAD : 0.31 TAX : -0.01 PTRATIO: -0.95 B : 0.01 LSTAT : -0.53	CRIM : ZN : INDUS : CHAS : NOX : RM : AGE : DIS : RAD : TAX : PTRATIO : B : LSTAT :	-0.10 0.05 -0.04 1.95 -2.37 3.70 -0.01 -1.25 0.28 -0.01 -0.80 0.01 -0.56	CRIM : ZN : INDUS : CHAS : NOX : RM : AGE : DIS : RAD : TAX : PTRATIO: B : LSTAT :	-0.02 0.04 -0.00 0.00 -0.00 0.04 -0.07 0.17 -0.01 -0.56 0.01 -0.82
ПОТИТU.JJ			потит :	-0.02

回帰の実用化事例

- NEC
 - 日配品(主に冷蔵が必要なもの)の需要予測
 - https://jpn.nec.com/ai/solution/value.html
 - 健診結果予測シミュレーション
 - https://wisdom.nec.com/ja/technology/2018031501/index.html
- 心疾患リスクスコアの推定 [Ganz et al. 16]
 - ・血液中の1130種類のタンパク質から心疾患に関連する9種のタンパク質を特定

prognostic index

- = $16.61 1.55 \times ANGPT2 + 1.22 \times GDF8/11 2.12 \times C$ 7 + $2.64 \times SERPINF2 - 0.57 \times CCL18 - 1.02 \times ANGPTL4$
- $-1.43 \times SERPINA3 0.72 \times MMP12 0.59 \times TNN13$