Mathematical Logic and Computability

Fall 2023

Semantics of First-order Logic

September 15, 2023 Yunpyo An

Source of this exercise sheet is Mathematical Logic by Heinz-Dieter Ebbinghaus et al.

1. For S-structures $\mathcal{A} = (A, \mathfrak{a})$ and $\mathcal{B} = (B, \mathfrak{b})$ let $\mathcal{A} \times \mathcal{B}$, the direct product of \mathcal{A} and \mathcal{B} , be the S-structure with domain

$$A \times B := \{(a, b) | a \in A, b \in B\}$$

which is determined by the following conditions for n-ary R in S and $(a_1, b_1), \ldots, (a_n, b_n) \in A \times B$

$$R^{\mathcal{A}\times\mathcal{B}}(a_1,b_1)\dots(a_n,b_n)$$
 iff $R^{\mathcal{A}}(a_1,\dots,a_n)$ and $R^{\mathcal{B}}(b_1,\dots,b_n)$

for *n*-ary f in S and $(a_1, b_1), \ldots, (a_n, b_n) \in A \times B$

$$f^{\mathcal{A}\times\mathcal{B}}((a_1,b_1)\dots(a_n,b_n))=(f^{\mathcal{A}}(a_1,\dots,a_n),f^{\mathcal{B}}(b_1,\dots,b_n))$$

for $c \in C$ and $(a, b) \in S$

$$c^{\mathcal{A} \times \mathcal{B}} = (c^{\mathcal{A}}, c^{\mathcal{B}})$$

Question: Show following statements

- (a) If the S_{ar} -structures \mathcal{A} and \mathcal{B} are groups, then $\mathcal{A} \times \mathcal{B}$ is also a group.
- (b) If the S_{ar} -structures \mathcal{A} and \mathcal{B} are fields, then $\mathcal{A} \times \mathcal{B}$ is not a field.
- 2. Let I be a nonempty set. For every $i \in I$, let A_i be an S-structure. We write $\prod_{i \in I} A_i$ for the direct product of the structures A_i , that is, the S-structure A with domain

$$\prod_{i \in I} A_i := \{g | g : I \to \bigcup_{i \in I} A_i, \text{ and for all } i \in I : g(i) \in A_i\}$$

which is determined by the following conditions. (where for $g \in \prod_{i \in I} A_i$ we also write $\langle g(i)|i \in I \rangle$) For n-ary $R \in S$ and $g_1, \ldots, g_n \in \prod_{i \in I} A_i$,

$$R^{\mathcal{A}}g_1 \dots g_n$$
 iff $\forall i \in I : R^{\mathcal{A}_i}g_1(i) \dots g_n(i)$

for *n*-ary $f \in S$ and $g_1, \ldots, g_n \in \prod_{i \in I} A_i$,

$$f^{\mathcal{A}}(g_1 \dots g_n) = \langle f^{\mathcal{A}_i} g_1(i) \dots g_n(i) | i \in I \rangle$$

and for $c^{\mathcal{A}} := \langle c^{\mathcal{A}_i} | i \in I \rangle$.

Question: If t is an S-term with var $\subseteq \{v_0, \ldots, v_{n-1}\}$ and if $g_0, \ldots, g_{n-1} \in \prod_{i \in I} A_i$, then the following holds:

$$t^{\mathcal{A}}[g_0, \dots, g_{n-1}] = \langle t^{\mathcal{A}_i}[g_0(i), \dots, g_{n-1}(i)] | i \in I \rangle$$

3. Formulas which are derivable in the following calculus are called *Horn formulas*

$$\frac{\overline{(\neg \varphi_1 \vee \ldots \vee \neg \varphi_n \vee \varphi)}}{\neg \varphi_0 \vee \ldots \vee \neg \varphi_n} \text{ if } n \in \mathbb{N} \text{ and } \varphi_1, \ldots, \varphi_n, \varphi \text{ are atomic formulas}$$

$$\frac{\overline{\varphi}, \psi}{(\varphi \wedge \psi)} \quad \frac{\varphi}{\forall x \varphi} \quad \frac{\varphi}{\exists x \varphi}$$

Horn formulas without free variables are called *Horn sentences*.

Question: If φ is a Horn sentence and if \mathcal{A}_i is a model of φ for $i \in I$, then $\prod_{i \in I} \mathcal{A}_i \models \varphi$. *Note*: If formula φ is derived from only terms it called *atomic formula*.

1 Definitions and Notations

1.1 Structure and Interpretation

Definition 1.1. An S-structure is a pair $\mathcal{A} = (A, \mathfrak{a})$ with the following properties:

- A is a non-empty set, called the domain or universe of \mathcal{I}
- \bullet a is a function that assigns from symbols to following:
 - for every n-ary relation symbol R in S, $\mathfrak{a}(R)$ is an n-ary relation on A
 - for every n-ary function symbol f in S, $\mathfrak{a}(f)$ is an n-ary function on A
 - for every constant c in S, $\mathfrak{a}(c)$ is an element of A

Definition 1.2. An assignment in S-structure \mathcal{A} is a function $\beta : \{v_n | n \in \mathbb{N}\} \to A$ from the set of variables into the domain A.

Definition 1.3. An S-interpretation \mathcal{I} is a pair (\mathcal{A}, β) , where \mathcal{A} is an S-structure and β is an assignment in \mathcal{A} .

1.2 Satisfication Relation

Definition 1.4. We define $\mathcal{I}(\varphi)$ by induction on terms

- For a variable x let $\mathcal{I}(x) = \beta(x)$
- For a constant $c \in S$ let $\mathcal{I}(c) = c^{\mathcal{A}}$
- For n-ary function symbol $f \in S$ and terms t_1, \ldots, t_n let $\mathcal{I}(f(t_1, \ldots, t_n)) = f^{\mathcal{A}}(\mathcal{I}(t_1), \cdots, \mathcal{I}(t_n))$

Definition 1.5. For all interpretations $\mathcal{I} = (\mathcal{A}, \beta)$ we define following interpretations

- $\mathcal{I} \models (t_1 \equiv t_2)$ iff. $\mathcal{I}(t_1) = \mathcal{I}(t_2)$
- $\mathcal{I} \models (Rt_1 \dots t_n) \text{ iff. } R^{\mathcal{A}}(\mathcal{I}(t_1), \dots, \mathcal{I}(t_n))$
- $\mathcal{I} \models (\neg \varphi)$ iff. not $\mathcal{I} \models \varphi$
- $\mathcal{I} \models (\varphi \land \psi)$ iff. $\mathcal{I} \models \varphi$ and $\mathcal{I} \models \psi$
- $\mathcal{I} \models (\varphi \lor \psi)$ iff. $\mathcal{I} \models \varphi$ or $\mathcal{I} \models \psi$
- $\mathcal{I} \models (\varphi \rightarrow \psi)$ iff. $\mathcal{I} \models \varphi$ implies $\mathcal{I} \models \psi$
- $\mathcal{I} \models (\varphi \leftrightarrow \psi)$ iff. $\mathcal{I} \models \varphi$ iff. $\mathcal{I} \models \psi$
- $\mathcal{I} \models (\forall x \varphi)$ iff. for all $a \in A$, $\mathcal{I} \frac{a}{x} \models \varphi$
- $\mathcal{I} \models (\exists x \varphi)$ iff. there exists $a \in A$, $\mathcal{I}^{\underline{a}}_{\underline{x}} \models \varphi$

1.3 Consequence Relation

Definition 1.6. Let Φ be a set of S-formulas and φ be an S-formula. We say that φ is a consequence of Φ (written $\Phi \models \varphi$) iff. for every S-interpretation \mathcal{I} if $\mathcal{I} \models \psi$ for all $\psi \in \Phi$, then $\mathcal{I} \models \varphi$.

Definition 1.7. A formula φ is valid (written $\models \varphi$) iff. $\emptyset \models \varphi$.

Definition 1.8. A formula φ is *satisfiable* (written $Sat\varphi$) if and only if there is interpretation which is a model of φ . A set of formula Φ is *satisfiable* if and only if there is interpretation which is a model of Φ .

Lemma 1. For all Φ and φ ,

$$\Phi \models \varphi \quad \textit{iff.} \quad \textit{not Sat}\Phi \cup \{\neg \varphi\}$$

Definition 1.9. Two interpretation \mathcal{I}_1 and \mathcal{I}_2 agree on $k \in S$ on x if $k^{\mathcal{A}_1} = k^{\mathcal{A}_2}$ or $\beta_1(x) = \beta_2(x)$.

Lemma 2. Let's $\mathcal{I}_1 = (\mathcal{A}_1, \beta)$ be an S_1 -interpretation and $\mathcal{I}_2 = (\mathcal{A}_2, \beta)$ be an S_2 -interpretation. both with the same domain $A_1 = A_2$. Put $S := S_1 \cap S_2$.

- Let t be an S-term. If \mathcal{I}_1 and \mathcal{I}_2 agree on the S-symbols occurring in t and on the variables occurring in t, then $\mathcal{I}_1(t) = \mathcal{I}_2(t)$.
- Let φ be an S-formula. If \mathcal{I}_1 and \mathcal{I}_2 agree on the S-symbols and the variables occurring free in φ , then $(\mathcal{I}_1 \models \varphi \text{ iff. } \mathcal{I}_2 \models \varphi)$.

1.4 Lemmas in Satisfication Relation

Definition 1.10. Let \mathcal{A} and \mathcal{B} be S-Structures

- A map $\pi: A \to B$ is called an *isomorphism* of \mathcal{A} onto \mathcal{B} $(\pi: \mathcal{A} \simeq \mathcal{B})$ iff
 - $-\pi$ is a bijection of A onto B.
 - For n-ary $R \in S$ and $a_1, \ldots, a_n \in A$,

$$R^{\mathcal{A}}(a_1,\ldots,a_n)$$
 iff $R^{\mathcal{B}}(\pi(a_1),\ldots,\pi(a_n))$

- For n-ary $f \in S$ and $a_1, \ldots, a_n \in A$,

$$\pi(f^{\mathcal{A}}(a_1,\ldots,a_n)) = f^{\mathcal{B}}(\pi(a_1),\ldots,\pi(a_n))$$

- For $c \in S$,

$$pi(c^{\mathcal{A}}) = c^{\mathcal{B}}$$

• Structure \mathcal{A} and \mathcal{B} are said to be isomorphic $(\mathcal{A} \simeq \mathcal{B})$ iff. there is an isomorphism $\pi : \mathcal{A} \simeq \mathcal{B}$.

Lemma 3. For isomorphic S-structures A and B and every S-sentence φ ,

$$\mathcal{A} \models \varphi$$
 iff. $\mathcal{B} \models \varphi$

Corollary 1. If $\pi : A \simeq \mathcal{B}$, then for $\varphi \in L_n^S$ and $a_0, \ldots, a_{n-1} \in A$,

$$\mathcal{A} \models \varphi[a_0, \dots, a_{n-1}]$$
 iff. $\mathcal{B} \models \varphi[\pi(a_0), \dots, \pi(a_{n-1})]$

Definition 1.11. Let \mathcal{A} and \mathcal{B} be S-structures. Then \mathcal{A} is called a substructure of \mathcal{B} ($\mathcal{A} \subseteq \mathcal{B}$) iff.

- \bullet $A \subseteq B$
- - for n-ary $R \in S$, $R^{\mathcal{A}} = R^{\mathcal{B}} \cap A^n$ - for n-ary $f \in S$, $f^{\mathcal{A}}$ is the restriction of $f^{\mathcal{B}}$ to A^n - for $c \in S$, $c^{\mathcal{A}} = c^{\mathcal{B}}$

Lemma 4. Let \mathcal{A} and \mathcal{B} be S-structures with $\mathcal{A} \subseteq \mathcal{B}$ and let $\beta : \{v_n | n \in \mathbb{N}\} \to A$ be an assignment in \mathcal{A} . Then the following holds for every S-term t

$$(\mathcal{A}, \beta)(t) = (\mathcal{B}, \beta)(t)$$

and for every quantifier-free S-formula φ :

$$(\mathcal{A}, \beta) \models \varphi \quad iff. \quad (\mathcal{B}, \beta) \models \varphi$$

Definition 1.12. The formulas which are derivable by means of the following calculus are called *universal formulas*.

$$\begin{array}{l} -\operatorname{if}\varphi \text{ is quantifier-free} \\ \frac{\varphi,\psi}{(\varphi\star\psi)}\operatorname{for}\star\in\{\wedge,\vee\} \\ \frac{\varphi}{\forall x\varphi} \end{array}$$

Lemma 5. Let \mathcal{A} and \mathcal{B} be S-structures with $\mathcal{A} \subseteq \mathcal{B}$ and let $\varphi \in L_n^S$ be a universal. Then the following holds for all $a_0, \ldots, a_{n-1} \in A$:

If
$$\mathcal{B} \models \varphi[a_0, \dots, a_{n-1}], then \mathcal{A} \models \varphi[a_0, \dots, a_{n-1}]$$

Corollary 2. If $A \subseteq B$, then the following holds for every universal sentence φ :

If
$$\mathcal{B} \models \varphi$$
, then $\mathcal{A} \models \varphi$