Ghép cặp trên đồ thị hai phần

Trần Vĩnh Đức

HUST

Ngày 14 tháng 3 năm 2018

Ghép cặp trên đồ thị hai phần

- ► Eric Lehman, F Thomson Leighton & Albert R Meyer, Mathematics for Computer Science, 2013 (Miễn phí)
- ► Albert R Meyer's slides

Tìm bạn nhảy

- Tối thứ bảy, hội sinh viên tổ chức tiệc.
- ► Có 300 sinh viên tham gia.
- Họ không quen hết nhau!
- Trong 6 người luôn có ba người đôi một quen nhau hoặc ba người đôi một lạ nhau!

Tìm bạn nhảy

- Tối thứ bảy, hội sinh viên tổ chức tiệc.
- ► Có 300 sinh viên tham gia.
- ► Ho không quen hết nhau!
- Nhưng mỗi cô gái quen đúng 50 chàng trai, và mỗi chàng trai quen đúng 50 cô gái!
- Liệu mọi sinh viên có thể nhảy đồng thời sao cho hai người nhảy cùng nhau phải biết nhau?

Nội dung

Ghép cặp Nam & Nữ

Định lý Hal

Làm thế nào để tìm ghép cặp cực đại

Hãy tìm cách *ghép cặp* mỗi cô gái với chỉ một chàng trai phù hợp.

Hình: Một ghép cặp

Giả sử không có cạnh này.

Giả sử không có cạnh này.

Không đủ số Nam

Có 3 cô gái nhưng chỉ có 2 chàng trai phù hợp.

Không tồn tại cặp ghép cho Nữ

$$|S| = 3 > 2 = |E(S)|$$

Tắc nghẽn

Tắc nghẽn

lacktriangle Tắc nghẽn là một tập Nữ S không có đủ số Nam phù hợp.

$$E(S) ::= \{ \text{chàng trai } w \mid \\ w \text{ kề với ít nhất một cô cái trong } S \}$$

ightharpoonup Tập S là tắc nghẽn

Bổ đề (Tắc nghẽn)

Nếu tồn tại tắc nghẽn, vậy không tồn tại cặp ghép.

Định lý (Hall)

Ngược lại, nếu không có tắc nghẽn, vậy có tồn tại cặp ghép.

Bài tập

Tại sao đồ thị dưới đây không có cặp ghép nào phủ tập V_1 ?

Nội dung

Ghép cặp Nam & Nữ

Định lý Hall

Làm thế nào để tìm ghép cặp cực đại

Đồ thị hai phần ${\cal H}$

Ghép cặp hai phía

Định nghĩa

Một cặp ghép là một hàm đơn ánh

$$m: L(H) \longrightarrow R(H)$$

thoả mãn: Nếu m(g) = b thì $\{g, b\}$ là một cạnh của H.

Định lý (Hall)

Nếu với mọi tập $S\subseteq L(H)$ ta đều có

$$|S| \le |E(S)|$$

vậy có tồn tại một cặp ghép.

Chứng minh định lý Hall

Bổ đề

Giả sử không có tắc nghẽn. Hơn nữa, nếu S là một tập những cô gái thoả mãn |S|=|E(S)|. Vậy không có tắc nghẽn giữa \overline{S} và $\overline{E(S)}.$

Vậy $S \cup T$ là một tắc nghĩn. \ref{X}

Chứng minh định lý Hall

- Chứng minh bằng quy nạp mạnh theo số Nữ.
- Nếu chỉ có 1 Nữ. Định lý hiển nhiên đúng.
- Với số Nữ nhiều hơn 1. Ta xét hai trường hợp.

Trường hợp 1

- lacktriangle Có một tập con những cô gái S mà |S|=|E(S)|.
- Vậy theo bổ đề trước, không có tắc nghẽn trong cả hai đồ thị hai phần

$$(S, E(S)) \qquad {\rm v\grave{a}} \qquad (\overline{S}, \overline{E(S)})$$

► Theo quy nạp, ta có thể ghép cặp hai đồ thị này riêng biệt. ✓.

Trường hợp 2

 $\blacktriangleright\,$ Nếu với mọi tập không rỗng những cô gái S ta đều có

- Chọn lấy một cô gái g. Cô ấy phải hợp với một chàng trai b nào đó. Tai sao?
- Ghép cặp g với b.
- ▶ Loại bỏ g và b.
- ► Ta vẫn không có tắc nghẽn đối với các cô gái và chàng trai còn lại. Tại sao?
- Theo quy nạp, ta có thể ghép cặp cho những người còn lại.

Kiểm tra tắc nghẽn?

Mênh đề

Nếu mỗi cô gái đều thích $\geq d$ chàng trai, và mỗi chàng trai đều thích $\leq d$ cô gái, vậy không có tắc nghẽn.

Chứng minh.

Xét tập các cô gái S và e là số cạnh liên thuộc với S. Ta có

$$\begin{split} e &= \sum_{g \in S} \deg(g) \geq \sum_{g \in S} d = d \cdot |S| \\ e &\leq \sum_{b \in E(S)} \deg(b) \leq \sum_{b \in E(S)} d = d \cdot |E(S)| \end{split}$$

Vậy ta có

$$d \cdot |S| \le e \le d \cdot |E(S)|.$$

Vậy

$$|S| \le |E(S)|.$$

Tìm bạn nhảy

- Tối thứ bảy, hội sinh viên tổ chức tiệc.
- ► Có 300 sinh viên tham gia.
- Họ không quen hết nhau!
- Nhưng mỗi cô gái quen đúng 50 chàng trai, và mỗi chàng trai quen đúng 50 cô gái!
- Liệu mọi sinh viên có thể nhảy đồng thời sao cho hai người nhảy cùng nhau phải biết nhau?

Nội dung

Ghép cặp Nam & Nũ

Định lý Hal

Làm thế nào để tìm ghép cặp cực đại?

Đường tăng

Định nghĩa

Xét đồ thị hai phần G và M là một ghép cặp trong G. Ta nói rằng đường đi P là một **đường tăng** (cho M) nếu:

- P bắt đầu và kết thúc ở hai đỉnh u,v nào đó chưa được ghép cặp; và
- lacktriangle Các cạnh trong P luân phiên thuộc M và không thuộc M.

Tính chất của đường tăng

- Đường tăng P chứa một số lẻ cạnh.
- Số cạnh không thuộc M lớn hơn 1 so với số cạnh trong M.

Tăng kích thước ghép cặp dùng đường tăng

Hình: Nếu tìm được một đường tăng P, ta có thể xóa các cạnh trong M và thay bằng các cạnh P không thuộc M.

Chiến lược tìm ghép cặp cực đại

- 1. Bắt đầu với một ghép cặp M bất kỳ (có thể chỉ dùng 1 cạnh).
- 2. Tìm một đường tăng cho M.
- 3. Nếu tìm thấy một đường tăng, xây dựng một ghép cặp tốt hơn M^\prime .
- 4. Nếu không tìm thấy đường tăng nào, thì $\emph{dừng}$; M là ghép cặp cực đại.

Tại sao chiến lược này đúng?

Định lý

Nếu ghép cặp M trong đồ thị hai phần G không phải ghép cặp cực đại, thì G chứa một đường tăng cho M.

Chứng minh

- Xét M* là một ghép cặp cực đại;
- đặt F là tập mọi cạnh thuộc M hoặc M*, nhưng không thuộc cả hai.
- Tập cạnh F và các đỉnh tạo thành đồ thị với các đỉnh chỉ có bậc 1 hoặc 2. Tại sao?
- Vậy mỗi thành phần liên thông của đồ thị chỉ là đường đi hoặc chu trình;
- và trong mỗi đường đi hoặc chu trình này, các cạnh thuộc M luân phiên với các cạnh không thuộc M.

Chứng minh (tiếp)

- Vậy thì, trong các chu trình, số cạnh thuộc M bằng với số cạnh không thuộc M.
- Vì $|M^*|>|M|$, phải có ít nhất một thành phần liên thông là đường đi,
- và đây chính là đường tăng.

Bài tập

Hãy tìm ghép cặp cực đại cho cho đồ thị hai phần sau và chứng minh nó là ghép cặp cực đại.

