Basic Computer Organization

Recitation 2

CENG 232 METU

Volkan Atalay

2020

(during COVID-19 lockdown)

S ₂ S ₁ S ₀	Register
0 0 0	X
0 0 1	AR
0 1 0	PC
0 1 1	DR
1 0 0	AC
1 0 1	IR
1 1 0	TR
1 1 1	Memory

Figure 5.4 Basic computer registers connected to a common bus.

5.4 The following register transfers are to be executed in the system of Figure 5.4. For each transfer, specify: 1) the binary value that must be applied to bus select inputs S_2 , S_1 , and S_0 ; 2) the register whose LD control must be active (if any); 3) a memory read or write operation (if needed); and 4) the operation in the adder and logic circuit (if any).

- a. AR <- PC
- b. $IR \leftarrow M[AR]$
- c. $M[AR] \leftarrow TR$
- d. AC <-DR, DR <- AC (done simultaneously)

S ₂	S ₁	S ₀	LD of	Memory	Adder
			register		

S ₂ S	S ₁ S ₀	Register
0	0 0	X
0	0 1	AR
0	1 0	PC
0	1 1	DR
1	0 0	AC
1	0 1	IR
1	1 0	TR
1	1 1	Memory

- a AR <- PC
- **b** IR <- M[AR]
- **c** M[AR] <- TR
- **d** AC <-DR,
 - DR <- AC

5-5. Explain why each of the following microoperations cannot be executed during a single clock pulse in the system shown in Fig. 5-4. Specify a sequence of microoperations that will perform the operation.

a. IR <- M[PC]

b. AC <- AC+ TR

c. DR <- DR + AC (AC does not change)

5-6 Consider the instruction formats of the basic computer shown in Fig. 5-5 and the list of instructions given in Table 5-2. For each of the following 16 bit instructions, give the equivalent four digit hexadecimal code and explain in your own words what it is that the instruction is going to perform.

a. 0001 0000 0010 0100

b. 1011 0001 0010 0100

c. 0111 0000 0010 0000

Figure 5-5 Basic computer instruction formats.

0001 0000 0010 0100

TABLE 5-2 Basic Computer Instructions

Hexadecimal code		imal code	
Symbol	I = 0	<i>I</i> = 1	Description
AND	0xxx	8xxx	AND memory word to AC
ADD	1xxx	9xxx	Add memory word to AC
LDA	2xxx	Axxx	Load memory word to AC
STA	3xxx	Bxxx	Store content of AC in memory
BUN	4xxx	Cxxx	Branch unconditionally
BSA	5xxx	Dxxx	Branch and save return address
ISZ	6xxx	Exxx	Increment and skip if zero
CLA	78	300	Clear AC
CLE	74	-00	Clear E
CMA	72	.00	Complement AC
CME	71	.00	Complement E
CIR	70	080	Circulate right AC and E
CIL	70	140	Circulate left AC and E
INC	70	20	Increment AC
SPA	70	10	Skip next instruction if AC positive
SNA	70	800	Skip next instruction if AC negative
SZA	70	04	Skip next instruction if AC zero
SZE	70	002	Skip next instruction if E is 0
HLT	7001		Halt computer
INP	F800		Input character to AC
OUT	F400		Output character from AC
SKI	F	200	Skip on input flag
SKO	F100		Skip on output flag
ION	F080		Interrupt on
IOF	F040		Interrupt off

Figure 5-5 Basic computer instruction formats.

1011 0001 0010 0100

TABLE 5-2 Basic Computer Instructions

Hexadecimal code		imal code	
Symbol	I = 0	<i>I</i> = 1	Description
AND	0xxx	8xxx	AND memory word to AC
ADD	1xxx	9xxx	Add memory word to AC
LDA	2xxx	Axxx	Load memory word to AC
STA	3xxx	Bxxx	Store content of AC in memory
BUN	4xxx	Cxxx	Branch unconditionally
BSA	5xxx	Dxxx	Branch and save return address
ISZ	6xxx	Exxx	Increment and skip if zero
CLA	7800		Clear AC
CLE	74	00	Clear E
CMA	72	.00	Complement AC
CME	71	00	Complement E
CIR	70	80	Circulate right AC and E
CIL	70 40		Circulate left AC and E
INC	7020		Increment AC
SPA	7010		Skip next instruction if AC positive
SNA	7008		Skip next instruction if AC negative
SZA	70	04	Skip next instruction if AC zero
SZE	70	02	Skip next instruction if E is 0
HLT	7001		Halt computer
INP	F800		Input character to AC
OUT	F400		Output character from AC
SKI	F200		Skip on input flag
SKO	F100		Skip on output flag
ION	F080		Interrupt on
IOF	F040		Interrupt off

Figure 5-5 Basic computer instruction formats.

0111 0000 0010 0000

TABLE 5-2 Basic Computer Instructions

Hexadecimal code		imal code	
Symbol	I = 0	<i>I</i> = 1	Description
AND	0xxx	8xxx	AND memory word to AC
ADD	1xxx	9xxx	Add memory word to AC
LDA	2xxx	Axxx	Load memory word to AC
STA	3xxx	Bxxx	Store content of AC in memory
BUN	4xxx	Cxxx	Branch unconditionally
BSA	5xxx	Dxxx	Branch and save return address
ISZ	6xxx	Exxx	Increment and skip if zero
CLA	78	00	Clear AC
CLE	74	00	Clear E
CMA	72	00	Complement AC
CME	71	00	Complement E
CIR	70	80	Circulate right AC and E
CIL	70	40	Circulate left AC and E
INC	7020		Increment AC
SPA	7010		Skip next instruction if AC positive
SNA	70	08	Skip next instruction if AC negative
SZA	70	04	Skip next instruction if AC zero
SZE	70	02	Skip next instruction if E is 0
HLT	7001		Halt computer
INP	F800		Input character to AC
OUT	F400		Output character from AC
SKI	F200		Skip on input flag
SKO	F100		Skip on output flag
ION	F080		Interrupt on
IOF	F040		Interrupt off

5-7. What are the two instructions needed in the basic computer in order to set the E flip-flop to 1?