Neural Machine Translation with Attention

Neural Machine Translation (NMT)

Encoder RNN produces an encoding of the source sentence.

Note: This diagram shows **test time** behavior: decoder output is fed in ••••• as next step's input

Greedy Decoding

 We saw how to generate (or "decode") the target sentence by taking argmax on each step of the decoder

- This is greedy decoding (take most probable word on each step)
- Problems with this method?

Problems with Greedy Decoding

- Greedy decoding has no way to undo decisions!
 - <u>Input</u>: *il a m'entarté* (he hit me with a pie)
 - → he ____
 - \rightarrow he hit ____
 - \rightarrow he hit a ____ (whoops! no going back now...)

How to fix this?

Beam Search Decoding

Beam size = k = 2. Blue numbers =
$$score(y_1, \dots, y_t) = \sum_{i=1}^t log P_{LM}(y_i|y_1, \dots, y_{i-1}, x)$$

Sequence-to-Sequence: the Bottleneck Problem

Attention

Attention provides a solution to the bottleneck problem.

 Core idea: on each step of the decoder, use direct connection to the encoder to focus on a particular part of the source sequence

 First we will show via diagram (no equations), then we will show with equations

Decoder RNN

Decoder RNN

Attention: In Equation

- We have encoder hidden states $h_1, \ldots, h_N \in \mathbb{R}^h$
- On timestep t, we have decoder hidden state $s_t \in \mathbb{R}^h$
- We get the attention scores e^t for this step:

$$oldsymbol{e}^t = [oldsymbol{s}_t^Toldsymbol{h}_1, \dots, oldsymbol{s}_t^Toldsymbol{h}_N] \in \mathbb{R}^N$$

• We take softmax to get the attention distribution α^t for this step (this is a probability distribution and sums to 1)

$$\alpha^t = \operatorname{softmax}(\boldsymbol{e}^t) \in \mathbb{R}^N$$

• We use $lpha^t$ to take a weighted sum of the encoder hidden states to get the attention output $m{a}_t$

$$\boldsymbol{a}_t = \sum_{i=1}^N \alpha_i^t \boldsymbol{h}_i \in \mathbb{R}^h$$

• Finally we concatenate the attention output $m{a}_t$ with the decoder hidden state s_t and proceed as in the non-attention seq2seq model

$$[oldsymbol{a}_t;oldsymbol{s}_t]\in\mathbb{R}^{2h}$$

Attention is Great

- Attention significantly improves NMT performance
 - It's very useful to allow decoder to focus on certain parts of the source
- Attention solves the bottleneck problem
 - Attention allows decoder to look directly at source; bypass bottleneck
- Attention helps with vanishing gradient problem
 - Provides shortcut to faraway states
- Attention provides some interpretability
 - By inspecting attention distribution, we can see what the decoder was focusing on
 - We get (soft) alignment for free!
 - This is cool because we never explicitly trained an alignment system
 - The network just learned alignment by itself

Attention is All You Need(NIPS 2017, Google)

Add & Norm
Feed
Forward

Add & Norm

Multi-Head

Attention

Add & Norm

Masked

Multi-Head

Attention

Output Embedding

Outputs (shifted right)

 $N \times$

Positional

Encoding

 $N \times$

Positional

Encoding

Add & Norm

Feed

Forward

Add & Norm

Multi-Head

Attention

Input

Embedding

Inputs

Seq2Seq vs Transformer

3 Types of Attention

Encoder-Decoder Attention

Encoder Self-Attention

MaskedDecoder Self-Attention

Query, Key, Value

Encoder-Decoder of Transformer

Encoder

Self Attention

Self Attention

Self Attention

Matrix Calculation of Self-Attention

Multi-head Attention

1) This is our input sentence*

2) We embed each word*

3) Split into 8 heads. We multiply X or R with weight matrices 4) Calculate attention using the resulting Q/K/V matrices

5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Thinking Machines

W₁Q

 $\mathbf{W}_0^{\mathbf{Q}}$

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Multi-head Attention

Self-Attention of Transformer

Scaled Dot-Product Attention

Positional Encoding

A real example of positional encoding with a toy embedding size of 4

Positional Encoding

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\rm model}})$$

Skip Connection & Layer Norm

Decoder

Transformer

encoder self attention

- 1. Multi-head Attention
- 2. Query=Key=Value

decoder self attention

- 1. Masked Multi-head Attention
- 2. Query=Key=Value

encoder-decoder attention

- 1. Multi-head Attention
- 2. Encoder Self attention=Key=Value
- 3. Decoder Self attention=Query