Mathematics 551 Homework, February 28, 2020

As a talked about in class on Wednesday one way we could have motivated the definition of the curvature of a curve, c, at a point, P, on would have been to choose a coordinate system with the x-axis tangent to the curve at P and the y-axis orthogonal to the curve at P like this:

Then near P we can write the curve as the graph of a function y = f(x). Because c goes through P, which is the origin of this coordinate system, f(0) = 0 and c is tangent to the x-axis at P which implies f'(0) = 0. Then we can define the curvature of c at P to be f''(0). This agrees with our old definition as the formula for the curvature of a graph is

$$k(x) = \frac{f''(x)}{(1 + f'(x)^2)^{3/2}}$$

and using that f'(0) = 0 this gives $\kappa(0) = f''(0)$ at the origin.

For surfaces in \mathbb{R}^3 we can use the same idea. At a point, P of the surface choose coordinates so that the origin is at the point and x and y axis are tangent to the surface.

x-y plane of coordinate system, which is chosen to be tangent to the surface at P.

This time that the origin of the coordinate system is centered at P is and the x-y plane is tangent to the surface at P implies

$$f(0,0) = 0,$$
 $\frac{\partial f}{\partial x}(0,0) = 0,$ $\frac{\partial f}{\partial y}(0,0) = 0.$

We can still use the second derivative of f at P as a measure of the curvature at P, but this time the second derivative is not just a scalar, but is the symmetric matrix

$$\begin{bmatrix} f_{xx}(0,0) & f_{yx}(0,0) \\ f_{xy}(0,0) & f_{yy}(0,0) \end{bmatrix}.$$

This homework introduces some linear algebra/matrix theory that will be useful for us in understanding the facts about symmetric matrices we will be using. On \mathbb{R}^n (which for us will usually be n=2 or n=3 and for the discussion here I will use n=2) write vectors as columns

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$$

The transpose of \mathbf{x} is the row vector

$$\mathbf{x}^t = [x_1, x_2] \,.$$

Then the inner product of two vectors can be written as

$$\mathbf{x} \cdot \mathbf{y} = [x_1, x_2] \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = x_1 y_1 + x_2 y_2.$$

It is more convenient to use a different notation for the inner product:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}.$$

For a square matrix

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

the transpose is

$$M^t = \begin{bmatrix} a & c \\ b & d \end{bmatrix}.$$

For any matrix (or vector) doing the transpose twice is the same as doing nothing:

$$(M^t)^t = M \qquad (\mathbf{x}^t)^t = \mathbf{x}.$$

Also taking transposes reverses the order of multiplication:

$$(M\mathbf{x})^t = \mathbf{x}^t M^t \qquad (MN)^t = N^t M^t.$$

Putting this all together gives

Proposition 1. For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and any $n \times n$ matrix

$$\langle \mathbf{x}, M\mathbf{y} \rangle = \langle M^t \mathbf{x}, \mathbf{y} \rangle$$
 and $\langle M\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, M^t \mathbf{y} \rangle$.

Proof. Just compute

$$\langle \mathbf{x}, M\mathbf{y} \rangle = \mathbf{x}^t M\mathbf{y} = (M^t \mathbf{x})^t \mathbf{y} = \langle M^t \mathbf{x}, \mathbf{y} \rangle$$

and

$$\langle M\mathbf{x}, \mathbf{y} \rangle = (M\mathbf{x})^t \mathbf{y} = \mathbf{x} M_{\square}^t \mathbf{y} = \mathbf{x} (M^2 \mathbf{y}) = \langle \mathbf{x}, M^t \mathbf{y} \rangle.$$

That is taking the transpose of a matrix lets it jump over a comma in an inner product. A matrix, M, is **symmetric** if and only if $M^t = M$. In light of the last proposition this is the same as

$$\langle M\mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{x}, M\mathbf{y} \rangle.$$

Use a symmetric matrix can jump over commas without changing. While at first this dos not seem like much, we will see that it comes close to being a superpower.

Definition 2. A vector \mathbf{v} is an *eigenvector* with *eigenvalue* λ (where λ is a scalar) of the matrix M if and only if $\mathbf{v} \neq \mathbf{0}$ and

$$M\mathbf{v} = \lambda \mathbf{v}.$$

Here is the first of the powers of a symmetric matrix:

Proposition 3. Let \mathbf{v}_1 and \mathbf{v}_2 be eigenvectors of the symmetric matrix M with distinct eigenvalues. That is

$$M\mathbf{v}_1 = \lambda_1 \mathbf{v}_1 \qquad M\mathbf{v}_2 = \lambda_2 \mathbf{v}_1$$

with $\lambda_1 \neq \lambda_2$. Then \mathbf{v}_1 and \mathbf{v}_2 are orthogonal to each other.

Proof. We need to show the inner product of the two vectors is zero: $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$. The proof does use anything other than the definitions and the comma hopping power of M.

$$\lambda_{1}\langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle = \langle \lambda_{1}\mathbf{v}_{1}, \mathbf{v}_{2} \rangle$$

$$= \langle M\mathbf{v}_{1}, \mathbf{v}_{2} \rangle \qquad (as \ \lambda_{1}\mathbf{v}_{1} = M\mathbf{v}_{1})$$

$$= \langle \mathbf{v}_{1}, M\mathbf{v}_{2} \rangle \qquad (by \text{ comma hopping power})$$

$$= \langle \mathbf{v}_{1}, \lambda_{1}\mathbf{v}_{1} \rangle \qquad (as \ M\mathbf{v}_{2} = \lambda_{2}\mathbf{v}_{2})$$

$$= \lambda_{2}\langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle.$$

This can be rearranged to given

$$(\lambda_1 - \lambda_2)\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0.$$

Since $\lambda_1 \neq \lambda_2$, this implies $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = 0$.

The following is a special case of a more general result in linear algebra.

Proposition 4. Let M be a 2×2 matrix. Then there is a nonzero vector \mathbf{v} such that $M\mathbf{v} = \mathbf{0}$ if and only if $\det(M) = 0$.

Proof. Let

$$M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}.$$

Then $M\mathbf{v} = \mathbf{0}$ if and only if

$$M\mathbf{v} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

First assume $M\mathbf{v} = 0$ with $\mathbf{v} \neq \mathbf{0}$. This implies

$$ax + by = 0$$
$$cx + dy = 0$$

If $x \neq 0$ then multiply the first equation by d, and subtract b times the second equation (this is so that the y terms cancel) to get

$$(ad - bc)x = 0$$

which implies det M=(ad-bc)=0. If x=0, then $y\neq 0$ (as $\mathbf{v}\neq \mathbf{0}$), then multiply the second equation by a and subtract c times the first equation to get

$$(ad - bc)y = 0$$

so that also in this case $\det M = ad - bc = 0$.

Conversely assume $\det M = ad - bc = 0$. If M = 0 is the matrix of all zeros, then $M\mathbf{v} = 0$ for all nonzero vectors \mathbf{v} . So assume that M has at least one nonzero element. Note

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} -b \\ a \end{bmatrix} = \begin{bmatrix} -ab + ab \\ -cb + da \end{bmatrix} = \begin{bmatrix} 0 \\ ad - bc \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

and

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d \\ -c \end{bmatrix} = \begin{bmatrix} ad - bc \\ cd - dc \end{bmatrix} = \begin{bmatrix} ad - bc \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

and as not all of the entries of M are zero at least one of the vectors

$$\begin{bmatrix} -b \\ a \end{bmatrix}$$
, or $\begin{bmatrix} d \\ -c \end{bmatrix}$

is not the zero vector and thus there is a nonzero vector \mathbf{v} with $M\mathbf{v} = \mathbf{0}$. \square

Proposition 5. Let M be a 2×2 matrix. Then λ is an eigenvalue of M if and only if $det(M - \lambda I) = 0$ (where I is the identity matrix $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$).

Proof. Note for a nonzero vector \mathbf{v}

$$M\mathbf{v} = \lambda \mathbf{v} \iff M\mathbf{v} = \lambda I\mathbf{v}$$
 (as $I\mathbf{v} = \mathbf{v}$)
 $\iff M\mathbf{v} - \lambda I\mathbf{v} = \mathbf{0}$
 $\iff (M - \lambda I)\mathbf{v} = \mathbf{0}$.

And by Proposition 4 there is a nonzero vector \mathbf{v} with $(M - \lambda I)\mathbf{v} = 0$ if and only if $\det(M - \lambda I) = 0$.

The following is true for symmetric matrices of arbitrary size, but the proof requires more work.

Proposition 6. If M is a 2×2 symmetric matrix, then all the solutions to $det(M - \lambda I) = 0$ are real numbers.

Proof. As M is symmetric it is of the form

$$M = \begin{bmatrix} a & b \\ b & c \end{bmatrix}.$$

Then the equation we are interested in is

$$\det(M - \lambda I) = \det\left(\begin{bmatrix} a - \lambda & b \\ b & c - \lambda \end{bmatrix}\right)$$
$$= (a - \lambda)(b - \lambda) - b^2$$
$$= \lambda^2 - (a + c)\lambda + ac - b^2$$
$$= 0.$$

Problem 1. Show that the solutions to this equation are

$$\lambda = \frac{(a+c) \pm \sqrt{(a-c)^2 + 4b^2}}{2}$$

As $(a-c)^2 + 4b^2 \ge 0$ the square root $\sqrt{(a-c)^2 + 4b^2}$ is a real number and so the roots are real.

Theorem 7 (Principle Axis Theorem). Let M be a 2×2 symmetric matrix. Then there are orthonormal vectors \mathbf{u}_1 and \mathbf{u}_2 (that is each has length 1 and they are orthogonal to each other) and real numbers λ_1 and λ_2 so that

$$M\mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$
 and $M\mathbf{u}_2 = \lambda_2 \mathbf{u}_2$.

Problem 2. Prove this. *Hint:* Let λ_1 and λ_2 be the solutions to $\det(M - \lambda I) = 0$. By Proposition 6 these are real numbers. First assume that $\lambda_1 \neq \lambda_2$. By Proposition 5 there are nonzero vectors \mathbf{v}_1 and \mathbf{v}_2 with

$$M\mathbf{v}_1 = \lambda_1 \mathbf{v}_1$$
 and $M\mathbf{v}_2 = \lambda_2 \mathbf{v}_2$.

Use Proposition 3 to show

$$\mathbf{u}_1 = \frac{1}{\|\mathbf{v}_1\|} \mathbf{v}_1$$
 and $\mathbf{u}_2 = \frac{1}{\|\mathbf{v}_2\|} \mathbf{v}_2$

do the trick.

If $\lambda_1 = \lambda_2$ let $\lambda = \lambda_1$ and show that $M = \lambda I$ and therefore any pair of orthonormal vectors \mathbf{v}_1 and \mathbf{v}_2 will do the trick (note if $\lambda_1 = \lambda_2$, then by the formula of Problem 1 $(a-c)^2 + b^2 = 0$).

For any θ let

$$P(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

be the rotation by θ .

Problem 3. Show

$$P(\alpha)P(\beta) = P(\alpha + \beta).$$

It very easy to find the inverse of a rotation:

Proposition 8. Let $P = P(\theta)$ be a rotation. Then

$$P^t P = I$$

and thus the transpose, P^t , is the inverse of P.

Theorem 9. Let M be a symmetric matrix and let \mathbf{e}_1 and \mathbf{e}_2 be the standard basis of \mathbb{R}^2 . Let \mathbf{u}_1 and \mathbf{u}_2 orthogonal basis of \mathbb{R}^2 given by Theorem 7. Let $P = P(\theta)$ be a rotation so that

$$P\mathbf{e}_1 = \mathbf{u}_1, \qquad P\mathbf{e}_2 = \mathbf{u}_2$$

and let

$$N = P^t M P = P^{-1} M P.$$

Then

$$N\mathbf{e}_1 = \lambda_1\mathbf{e}_1, \qquad N\mathbf{e}_2 = \lambda\mathbf{e}_2.$$

(In linear algebra terminology this shows that M is similar to a diagonal matrix and shows that the matrix of N in the standard basis is the diagonal matrix $\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$).

Problem 5. Prove this.

Recall that the trace of a matrix is the sum of the diagonal entries, that is

$$\operatorname{tr}\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a + d.$$

Proposition 10. Let A and B are square matrices then

$$tr(AB) = tr(BA)$$
 and $det(AB) = det(BA)$.

This implies that if $N = P^{-1}MP$, then

$$\operatorname{tr}(N) = \operatorname{tr}(M) \qquad and \qquad \det(N) = \det(M).$$

Proof. We will assume that tr(AB) = tr(BA) and det(AB) = det(BA) are know results. Then

$$\operatorname{tr}(N) = \operatorname{tr}(P^{-1}MP) = \operatorname{tr}((P^{-1}M)P) = \operatorname{tr}(P(P^{-1}M)) = \operatorname{tr}(IM) = \operatorname{tr}(M).$$
 A similar calculation shows $\operatorname{det}(N) = \operatorname{det}(M)$.

Problem 6. Let M be a 2×2 matrix. Show that the eigenvalues of M are the roots of the equation

$$\lambda^2 - \operatorname{tr}(M)\lambda + \det(M) = 0.$$