Московский авиационный институт (национальный исследовательский университет)

Факультет информационных технологий и прикладной математики Кафедра вычислительной математики и программирования

Лабораторная работа №1 по курсу «Искусственный интеллект»

Студент: Я. А. Графчикова

Группа: М8О-408Б

Постановка задачи

Познакомиться с платформой Azure Machine Learning, реализовав полный цикл разработки решения задачи машинного обучения, использовав три различных алгоритма, реализованные на этой платформе.

Описание

В данной лабораторной работе я работала с датасетом – история акций компании NASDAQ Composite.

Было использовано 3 алгоритма – Decision Forest Regression, Linear Regression, Two-class Logistic Regression.

Decision Forest Regresssion

Оценка модели леса решений для задачи регрессии.

Результаты:

Linear Regression

Линейная регрессия исследует зависимость одной переменной от нескольких других переменных с линейной функцией зависимости. Для этого в данной модели используется метод наименьших квадратов.

▲ Linear Regression

Результаты:

Акции алгоритм 1 > Evaluate Model > Evaluation resu

Metrics

Mean Absolute Error	9.71516
Root Mean Squared Error	14.357516
Relative Absolute Error	0.00717
Relative Squared Error	0.000073
Coefficient of	0.999927

▲ Error Histogram

График зависимости полученных значений от ожидаемых:

В целом, результаты довольно точны, однако присутствует небольшое количество значительных отклонений.

Two-class Logistic Regression

Логистическая регрессия используется для прогнозирования вероятности возникновения некоторого события путём подгонки данных к логистической кривой, тем самым подходит для классификации данного датасета.

Результаты:

Классификация прибылей акций > Evaluate Model > Evaluation results

True Positive	False Negative	Accuracy	Precision	Threshold	$\overline{}$	AUC
491	68	0.582	0.577	0.5		0.612
False Positive	True Negative	Recall	F1 Score			
360	105	0.878	0.696			

Выводы.

Выполнив лабораторную работу, я ознакомилась с Microsoft Azure Machine Learning Studio. Различные алгоритмы машинного обучения очень удобно запускать в облаке. Также при работе получаются наглядные модели.