SUMMER-2014

UNIT 1

Q1. a) Obtain PDNF of
$$\neg (P \lor Q) \leftrightarrows (P \land Q)$$
. (5)

b) Explain with example: i. Tautology ii. Contradiction

iii. Equivalent formulas (8)

Q2. a) Obtain PDNF of
$$(\neg P \rightarrow R) \land (Q \leftrightarrows P)$$
. (5)

b) Show the following implications without using truth tables:

i)
$$(\neg P \land (\neg Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$$

ii) $(P \lor Q) \to C \Leftrightarrow (P \to C) \land (Q \to C)$
UNIT 2 (8)

Q3. a) Show that,

(x)
$$(P(x) \to Q(x)) \land (x) (Q(x) \to R(x)) \Rightarrow (x) (P(x) \to R(x))$$
 (7)

- **b)** Explain the following with example: i. Universal Quantifier
- ii. Existential Quantifier iii. Free and bound variables.

(6)

- **Q4. a)** Show that, $(G \vee H)$ is a valid conclusion for $(B \wedge C)$, $(B \Leftrightarrow C) \rightarrow (H \vee G)$.
- **b)** Demonstrate that R is a valid inference from the premises $P \rightarrow Q$, $Q \rightarrow R$ and P. (6)

UNIT 3

Q5. a) Prove that,

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ by using Venn diagram and formal proof. (6)

b) Let the compatibility relation on a set $\{x_1, x_2, ..., x_6\}$ is given by the matrix

X 2	1				
X 3	1	1			
X 4	0	0	1		
X 5	0	0	1	1	
X 6	1	0	1	0	1
,	X 1	X 2	X 3	X 4	X 5

Draw the graph and find the maximal compatibility blocks of the relation. (7)

Q6. a) Given the relation matrices M_R and M_S find $M_{R \circ S}$, M_R , M_g , $M_{R \tilde{\circ} S}$ Show that $M_{R \tilde{\circ} S} = M_{\tilde{S} \circ \tilde{R}}$ (7)

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \quad \mathbf{M}_{S} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- **b)** Define the terms with example:
 - i. Equal set ii. Power set
 - iii. Relative complement iv. Absolute complement.

(6)

UNIT 4

Q7. a) For function x'y'z' + x'yz' + xy'z give:

i.Circuit Diagram representation. ii.Truth Table representation. iii. K-map representation. (7)

- **b)** Find out left coset of H in $(Z_4, +_4)$, where H = {[0], [2]} (6)
- **Q8. a)** Consider an arithmetic expression (A + B)*(C D). Convert it into postfix form and prefix form. (7)
- **b)** Define the terms:
 - i. Group ii. Semi Group
 - iii. Monoid iv. Ring. (6)

UNIT 5

Q9. a) Obtain the sum of product canonical form for the following Boolean expression: $(x_1 * x_2) \oplus x_4$ Assume that this expression contains four variables x_1, x_2, x_3 , and x_4 .

(8)

b) Find the complement of every element of the lattice S_n , D> for n = 75. (6)

Q10. a) Obtain minimal expression using K-map (7)

i. $f(a. b. c. d) = \Sigma(0, 2, 6, 7, 8, 9, 13, 15)$

ii. $f(a, b, c, d) = \Sigma(0, 2, 8, 10)$

b) Define: i. Lattice Homomorphism.

ii. Sub lattice

iii.

Latice

(6)

UNIT 6

- **Q11. a)** What do you mean by isomorphic diagraph? Show that following diagraphs are isomorphic, (7)
- **b)** Show that in a complete binary tree the total number of edges is given by $2(n_t 1)$, where n_t is the number of terminal nodes. (7)
- **Q12. a)** Traverse the following with three techniques: inorder, preorder and post order. (7)

b) Give the Warshall's algorithm for path with example. (7)