

A traiter:

- les exercices avec un astérisque * pour M. Brossard, T. Donard, N. Dréau, S. Massé, T.Morvan; A. Paradis, L. Vom Kothen K. Le Caillec, L. Soudant, Grégoire Legay, Elouen Guidollet. Quenton Moreau;
- les exercices avec deux astérisques ** pour T. Donard , S. Massé, T. Morvan., A Paradis, M. Brossard, G. Legay ;
- les exercices sans astérisque pour le reste de la classe.

Exercice 1 — Soient u_1, u_2, \ldots, u_p des endomorphismes d'un \mathbf{K} espace vectoriel \mathbf{E} de dimension finie non nul n. On suppose qu'ils sont tous diagonalisable et qu'ils commutent deux à deux. Montrer qu'il existe une base \mathcal{B} de \mathbf{E} telle que les matrices de u_1, u_2, \ldots, u_p dans \mathcal{B} de soient diagonales. On dit que u_1, u_2, \ldots, u_p sont codiagonalisables.

Exercice 2* — Soient u_1, u_2, \ldots, u_p des endomorphismes d'un \mathbf{C} espace vectoriel de dimension finie non nul n. On suppose qu'ils commutent deux à deux. Montrer qu'il existe une base \mathcal{B} de \mathbf{E} telle que les matrices de u_1, u_2, \ldots, u_p dans \mathcal{B} de soient triangulaires supérieures. On dit que u_1, u_2, \ldots, u_p sont *cotrigonalisables*.

Exercice 3 — Soit Soit A un élément de $\mathcal{M}_n(\mathbf{K})$ diagonalisable. Nous noterons $\lambda_1, \lambda_2, \ldots, \lambda_p$ ses p valeurs propres deux à deux distinctes et de multiplicité respectives m_1, m_2, \ldots, m_p . Montrer que l'ensemble des éléments de $\mathcal{M}_n(\mathbf{K})$ qui commutent avec A est un espace vectoriel dont on déterminera la dimension.

Exercice 4 — Déterminer les solutions définies sur ${\bf R}$, à valeurs réelles du système différentiel suivant :

$$\begin{cases} \frac{d^2x}{dt^2} + 3\frac{dy}{dt} - 4x + 6y = 0, \\ \frac{d^2y}{dt^2} + \frac{dx}{dt} - 2x + 4y = 0. \end{cases}$$

Exercice 5 — Soient A et A' et B des éléments de $\mathcal{M}_n(\mathbf{R})$ et M la matrice élément de $\mathcal{M}_{2n}(\mathbf{R})$, $\begin{pmatrix} A & B \\ 0_n & A' \end{pmatrix}$. Montrer que si M est diagonalisable alors A et A' le sont.

Exercice 6 — Déterminer les éléments A de $\mathcal{M}_n(\mathbf{R})$ tels que la matrice B suivante soit diagonalisable. $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$

Exercices 7 — ENDOMORPHISMES SEMI-SIMPLES — Soit u un endomorphisme de \mathbf{E} , espace vectoriel de dimension finie $n \geq 1$ sur un corps \mathbf{K} . On dit que u est semi-simple si tout sous-espace de \mathbf{E} stable par u admet un supplémentaire stable par u.

- 1. \star Dans cette question on suppose que $\mathbf{K} = \mathbf{C}$. Montrer que u est semi-simple si et seulement si il est diagonalisable.
- 2. $\star \star$ Le corps **K** est de nouveau quelconque. On note μ le polynôme minimal de u. Montrer que u est semi-simple si et seulement si il y a dans la décomposition de μ en produit d'irréductibles que des facteurs ayant une puissance égale à 1.

Exercice 8 —

1. Donner une condition nécessaire portant sur la parité de l'élément n de \mathbb{N}^* , pour qu'il existe une matrice M élément de $\mathcal{M}_n(\mathbf{R})$ qui vérifie :

$$M^2 + 2M + 5I_n = 0_n.$$

2. Cette condition est-elle suffisante?

Exercice 9 ** — Soit u un endomorphisme d'un \mathbb{C} -espace vectoriel \mathbb{E} de dimension finie n, non nulle. Soit $Q \in \mathbb{C}[x]$. On suppose que Q(u) est diagonalisable et que Q'(u) est inversible. Montrer que u est diagonalisable.

Exercice 10 Soit M un élément de $\mathcal{M}_n(\mathbf{C})$.

- 1. On suppose que pour tout entier m strictement positif, $Tr(M^m) = 0$. Montrer que M est nilpotente.
- 2. On suppose que $\text{Tr}(M^m) \underset{m \to +\infty}{\to} 0$. Montrer que les valeurs propres de M sont toutes de module inférieur strictement à 1.

Exercice 11 —

- 1. A quelle condition une matrice de permutation d'ordre $n \geq 2$ est-elle diagonalisable dans \mathbf{R} .
- 2. \star Soient un entier $n \geq 2$ et σ un élément de S_n groupe symétrique d'ordre n. Déterminer les polynômes minimal et caractéristique de P_{σ} dans $\mathcal{M}_n(\mathbf{C})$.

Exercice 12

- 1. Soit M un élément de $M_n(\mathbf{R})$. On note μ sont polynôme minimal et $\mu_{\mathbf{C}}$ sont polynôme minimal lorsqu'on considère M comme comme un élément de $\mathcal{M}_n(\mathbf{C})$. Montrer que $\mu = \mu_{\mathbf{C}}$.
- 2. ** Soit M un élément de $M_n(\mathbf{Q})$. On note $\mu_{\mathbf{Q}}$ son polynôme minimal et $\mu_{\mathbf{R}}$ son polynôme minimal lorsqu'on considère M comme comme un élément de $\mathcal{M}_n(\mathbf{R})$. Montrer que $\mu_{\mathbf{Q}} = \mu_{\mathbf{R}}$.

Exercice 13*

- 1. Montrer que l'ensemble des matrices nilpotentes éléments de $\mathcal{M}_n(\mathbf{C})$ est un fermé. Montrer que 0_n est adhérent à la classe de similitude d'un élément M de $\mathcal{M}_n(\mathbf{C})$ si et seulement si M est nilpotent.
- 2. Soit M un élément de $\mathcal{M}_n(\mathbf{C})$. Montrer que M est diagonalisable si et seulement si sa classe de similitude est fermée.

Exercice 14 ** — Théorème de Biberbach réel (Dieudonné) — Soit f la somme d'une série entière $\sum_{n\geq 1} a_n z^n$, de rayon de convergence R supérieur ou égal à 1 de la variable complexe z, On suppose que tous les coefficients de la série entière sont réels, que $a_1 = 1$ et que la restriction de f à $D_o(0,1)$ est injective.

- 1. Soit z_0 un élément de $D_o(0,1)$, $f(z_0)$ est réel si et seulement si z_0 est réel. En déduire que si $\text{Im}(z_0) \geq 0$ alors $\text{Im}(f(z_0)) \geq 0$.
- 2. C
calculer pour tout élément de]0,1[et tout entier $n\geq 0,$

$$\int_0^{\pi} \operatorname{Im}(f(re^{i\theta})\sin(n\theta) d\theta.$$

- 3. Déduire de ce qui précède que pour tout $n \in \mathbb{N}$, $|a_n| \leq n$. Indication: on pour montrer que $|\sin(n\theta)| \leq n|\sin(\theta)|$, pour tout $n \in \mathbb{N}$ et tout réel θ .
- 4. La majoration est-elle optimale?

Indications pour le DM n°9

Exercice 1 — Raisonner par récurence sur n. Si l'un des endomorphismes, disons u_1 n'est pas une homothétie on applique l'hypothèse de récurrence à chacun de ses espaces propres et aux endomorphismes induits par les u_i sur cet espace. (voir aussi exercices sur le chapitre)

Exercice 2 — On raisonne comme pour 1 par récurrence. L'hérédité ce fait en supposant que par exemple u_1 n'est pas une homothétie. On montre alors en regardant un sous-espace propre de ${}^{t}u_1$ et en utilisant l'hypothèse de récurrence que les ${}^{t}u_i$ ont un vecteur propre commun et on en déduit un hyperplan stable pour les u_i On désigne ici par ${}^{t}f$ l'endomorphisme qui à comme matrice dans une base \mathcal{B} la transposée de la matrice de f dans \mathcal{B} . Une autrte preuve est proposée dans les exercices sur le chapitre.

Exercice 3 — La stabilité des espaces propres de A par M est une condition nécessaire et trivialement suffisante pour que M et A commutent.

Exercice 6 — Si B est digonalisable alors on dispose d'un polynôme P annulateur simplement scindé et après calcul $P(A) = 0_n$, $AP'(A) = 0_n$, donc A est diagonalisable et son spectre est inclus dans l'ensemble des racines de XP'(X), donc est réduit à 0! La réciproque est alors sans intérêt.

Exercice 8 —

Le polynôme X^2+2X+5 est annulateur. Donc M est diagonalisable et comme M est réelle, son spectre est constitué de deux racines non réelles conjuguées et Donc n est paire.

Pour la réciproque pensez à des matrices digonales par blocs avec pour blocs des similitudes ou des matrices compagnons de taille 2.