Chapitre 2 Langages algébriques et BNF (définitions)

2.1 Introduction

- 2.2 Définitions d'ensembles comme plus petit point fixe
- 2.3 Introduction aux langages algébriques et aux BNF

2.1 Introduction 1/2

Comment suivre ce cours?

Cours théorique avec beaucoup de concepts

- Examen final sur capacité à appliquer la théorie, mais pas sur capacité à prolonger ou même à restituer la théorie.
- Ceci dit, comprendre finement la théorie aide à l'appliquer.
- ▶ De plus, "mathématiser la programmation" aide à faire du code plus robuste, plus efficace, plus évolutif, etc.
- ▶ Beaucoup de théorie & d'exos ⇒ ça avance vite...

Prise de note

- Seul les exos marqués d'un † sont à savoir refaire pour l'examen.
- Sur les autres exos :
 Il est inutile de recopier les démonstrations (qui vont à toute vitesse...)
 - Il est préférable de chercher à les comprendre (en posant des questions en cas de doute).

2.1 Introduction 2/24

Idée du chapitre

Exo 2.1[†] Soit V un vocabulaire fini. Soient $A, B \subseteq V^*$. Quel est le plus petit ensemble $X \subseteq V^*$ tel que $X = A.X \cup B$?

- \Rightarrow On cherche conditions gales sur f pour définir langage L comme "plus petit ensemble X qui vérifie X = f(X)"
 - pénéraliser le lemme d'Arden (et les expressions régulières).
 - une notion de "définition récursive d'ensemble".
 - ▶ sous certaines conditions, L = limite de suite infinie \emptyset , $f(\emptyset)$, $f(f(\emptyset))$, ..., $f^{i}(\emptyset)$, ...
 - permet de démontrer des propriétés par récurrence sur i.
 - limite éventuellement calculable.

2.1 Introduction 3/24

Préliminaires sur la relation d'inclusion entre ensembles

Exo 2.2[†] Dessiner diagramme de Hasse de $\mathcal{P}(\{1,2,3,4\})$ obtenu en reliant tte partie X aux Y minimaux tq $X \subseteq Y$.

Exo 2.3 Soit *E* un ensemble. Soient $X, Y \subseteq E$ quelconques.

- ▶ Montrer que \subseteq est une relation d'ordre sur $\mathcal{P}(E)$.
- ► Est-elle totale? (a-t-on $X \subseteq Y$ ou $Y \subseteq X$?)
- Sur un ordre (partiel) \leq , on définit la notion de borne sup : $\sup(A, B)$ est le plus petit X tq $A \leq X$ et $B \leq X$.
 - À quoi cela correspond sur un ordre total? Et, sur \subseteq ? (Attention, dans cas général, borne sup pas toujours définie).
- idem pour borne inf.

NB : ordre avec bornes inf/sup = treillis (anglais : lattice).

2.1 Introduction 4/24

Chapitre 2 Langages algébriques et BNF (définitions)

- 2.1 Introduction
- 2.2 Définitions d'ensembles comme plus petit point fixe
- 2.3 Introduction aux langages algébriques et aux BNF

Introduction à la notion de +petit point fixe

Defs Soit E un ensemble et f application de $\mathcal{P}(E) \to \mathcal{P}(E)$. Un point fixe de f est un $X \subseteq E$ tq X = f(X). Un plus petit point fixe est un point fixe X tq tout point fixe Y vérifie aussi $X \subseteq Y$ (i.e. unique point fixe minimal).

Exo 2.4 Soit $\mathcal{V} \stackrel{def}{=} \{a, b\}$. Pour chacune des équations suivantes, quel est le +petit $X \subseteq \mathcal{V}^*$ qui la vérifie?

- $X = \{a\}.X \cup \{b\}$
 - ...
- $X = \{a\}.X \cup X$
- ...
- $X = \{a\}.X.\{b\} \cup \{\epsilon\}?$

•••

Exo 2.5 \hat{M} question avec $X \subseteq \mathbb{N}$ pour $X = \{u+2 \mid u \in X\} \cup \{0\}$

Inexistence ou non-unicité des points fixes minimaux

Soit *E* ensemble avec au moins deux éléments *a* et *b* distincts.

Exo 2.6 Quels sont les ensembles
$$X \subseteq E$$
 tq $X = E \setminus X$?

••

Exo 2.7 Quels sont les ensembles minimaux $X \subseteq E$ tq $X = \begin{cases} \{b\} & \text{si } b \in X \\ \{a\} & \text{sinon} \end{cases}$

. . .

Solution pour éliminer ces contre-exemples

Garantir que "agrandir" le membre gauche de l'équation implique "agrandir" le membre droit de l'équation.

donc, se restreindre aux équations "X = f(X)" avec f croissante, c-à-d. $X \subset Y \Rightarrow f(X) \subset f(Y)$.

Théorème du point fixe de Knaster-Tarksi (1928)

Énoncé Si f application *croissante* de $\mathcal{P}(E) \to \mathcal{P}(E)$, alors f admet un +petit point fixe : $\bigcap \{X \in \mathcal{P}(E) \mid f(X) \subseteq X\}$.

Catalogue de fonctions croissantes

- ▶ pour A fixé, fonctions $X \mapsto X \cup A$ et $X \mapsto X \cap A$ croissantes.
- ▶ sur V^* , $X \mapsto X.A$ et $X \mapsto A.X$ et $X \mapsto X^*$ croissantes.
- composée de fonctions croissantes est croissante.

Exemple : caractère croissant des membres droits de l'exo 2.4, en décomposant la vérification à l'aide des "briques" ci-dessus.

Avec ce thm, +petit point fixe "connu" mais pas "calculable". **Idée**: f croissante, donc $\emptyset \subseteq f(\emptyset) \subseteq f(f(\emptyset)) \subseteq \dots$ La suite des $(f^i(\emptyset))_{i \in \mathbb{N}}$ est croissante. Et, s'il existe i tq $f^i(\emptyset) = f^{i+1}(\emptyset)$, alors point fixe atteint!

Vers le calcul des +petits points fixes

Exo 2.8[†] Soit $f: X \mapsto \{a\}.X.\{b\} \cup \{\epsilon\}$ (pour $X \subseteq \{a,b\}^*$).

Que vaut $f^i(\emptyset)$ pour $i \in \mathbb{N}$? ...

Que vaut $\bigcup_{i\in\mathbb{N}} f^i(\emptyset)$? ...

Notation Pour $(A_i)_{i\in\mathbb{N}}$ suite sur $\mathcal{P}(E)$, $\lim_{i\to+\infty} A_i \stackrel{def}{=} \bigcup_{i\in\mathbb{N}} A_i$.

Exo 2.9 Soit f application *croissante* de $\mathcal{P}(E) \to \mathcal{P}(E)$. Montrer que :

- 1. pour tout i, $f^{i}(\emptyset) \subseteq f^{i+1}(\emptyset)$. En déduire, $\bigcup_{i \in [0,n]} f^{i}(\emptyset) = f^{n}(\emptyset)$.
- 2. tout point fixe de f contient $\lim_{i\to+\infty} f^i(\emptyset)$.
- 3. pour tout i, si $f^{i}(\emptyset)$ pas point-fixe, alors son cardinal $\geq i$.
- 4. si E est fini de cardinal n, alors $\lim_{i\to+\infty}f^i(\emptyset)=f^n(\emptyset)$ est un point fixe de f!

Quand $\lim_{i\to+\infty} f^i(\emptyset)$ n'est pas un point fixe...

On se place sur $E \stackrel{def}{=} \{a, b\}^*$. On pose

$$f(X) \stackrel{\text{def}}{=} \begin{cases} \{a\}.X \cup \{\epsilon\} & \text{si } X \text{ partie finie de } \{a\}^* \\ \{a\}^* \cup \{b\} & \text{sinon} \end{cases}$$

On a les propriétés suivantes (aisément vérifiables) :

- f croissante
- ▶ pour tout $i \in \mathbb{N}$, $f^i(\emptyset) = \{a^n \mid n \in \mathbb{N} \text{ et } n < i\}$
- $\blacktriangleright \lim_{i\to+\infty} f^i(\emptyset) = \{a\}^*$
- ► $f(\lim_{i\to +\infty} f^i(\emptyset)) = \{a\}^* \cup \{b\}$ ⇒ c'est lui le +petit point fixe!

Pb de "discontinuitê" en l'infini!

Continuité (de Scott) & Point fixe de Kleene

Def Soient E_1 , E_2 ensembles et f application de $\mathcal{P}(E_1) \to \mathcal{P}(E_2)$, f est *continue* (au sens de Scott) ssi pour toute suite de $(A_i)_{i \in \mathbb{N}}$ de $\mathcal{P}(E_1)$ tq $\forall i, A_i \subseteq A_{i+1}$, on a $f(\lim_{i \to +\infty} A_i) = \lim_{i \to +\infty} f(A_i)$.

Exo 2.10 Montrer que :

- Une fonction continue est croissante.
- ► Toutes fonctions croissantes en exemple sur la diapo du thm "Knaster-Tarski" sont en fait continues.
- La composée de 2 fonctions continues est continue.

Thm de Kleene (1938) Si f application continue de $\mathcal{P}(E) \to \mathcal{P}(E)$, alors le +petit point fixe est $\lim_{i \to +\infty} f^i(\emptyset)$.

Application aux langages du TP

Soit
$$\mathbb{N}_1 \stackrel{\text{def}}{=} \mathbb{N} \setminus \{0\}$$
 et soit $V \stackrel{\text{def}}{=} \{-, \&, |, >, \mathsf{t}, \mathsf{f}\} \cup \mathbb{N}_1$.

Exo 2.11[†] Définir par plus petit point fixe, l'ensemble des mots de V^* qui correspondent à la notation *préfixe* d'une formule propositionnelle (cf. syntaxe du TP). On doit trouver un f tq le langage recherché est $\lim_{h\to +\infty} f^h(\emptyset)$.

Exo 2.12 Calculer $f(\emptyset)$ et $f^2(\emptyset)$. Exprimer " $f^h(\emptyset)$ " en fonction de la structure d'AST du TP.

Exo 2.13[†] Définir par plus petit point fixe, l'ensemble des mots de $(V \cup \{(,)\})^*$ qui correspondent à la notation *infixe* d'une formule propositionnelle (cf. syntaxe du TP).

Une technique centrale pour calculer image d'un pt fixe!

Lemme de commutation Si pour $k \in \{1, 2\}$, f_k applications de $\mathcal{P}(E_k) \to \mathcal{P}(E_k)$, et g application *continue* de $\mathcal{P}(E_1) \to \mathcal{P}(E_2)$ avec $g(\emptyset) = \emptyset$ et $g \circ f_1 = f_2 \circ g$, alors

$$g(\lim_{i\to+\infty}f_1^i(\emptyset))=\lim_{i\to+\infty}f_2^i(\emptyset)$$

Exo 2.14[†]

Soient $A, B \subseteq V^*$, $f_1(X) \stackrel{def}{=} A.X \cup \{\epsilon\}$ et $f_2(Y) \stackrel{def}{=} A.Y \cup B$ Par définition $A^* = \lim_{i \to +\infty} f_1^i(\emptyset)$.

En appliquant le lemme de commutation, redémontrer $A^*.B = \lim_{i \to +\infty} f_2^i(\emptyset)$ (lemme d'Arden).

Applications typiques du lemme de commutation

Pour f_1 et g fixés avec E_1 infini et E_2 de cardinal fini n. Pour calculer $g(\lim_{i\to+\infty} f_1^i(\emptyset))$ sans calculer $\lim_{i\to+\infty} f_1^i(\emptyset)$

- 1. On trouve f_2 en exprimant $g(f_1(X))$ à partir de g(X) sous la forme $g(f_1(X)) = f_2(g(X))$.
- 2. On se ramène au calcul de $\lim_{i\to+\infty} f_2^i(\emptyset) = f_2^n(\emptyset)$.

NB un tel f_2 n'existe pas forcément! Auquel cas, méthode inapplicable.

Généralisation/application aux systèmes d'équations

Idée : système d'équations codée comme une unique équation.

Soit un système d'équations donné par fonction $f: \mathcal{P}(E_1) \times \ldots \times \mathcal{P}(E_n) \ \to \ \mathcal{P}(E_1) \times \ldots \times \mathcal{P}(E_n)$ Comme $\mathcal{P}(E_1) \times \ldots \times \mathcal{P}(E_n) \simeq \mathcal{P}(\{1\} \times E_1 \cup \ldots \cup \{n\} \times E_n)$ on peut appliquer la théorie des +-petits points fixes à f

Pour
$$(X_1, \ldots, X_n)$$
 et (Y_1, \ldots, Y_n) de $\mathcal{P}(E_1) \times \ldots \times \mathcal{P}(E_n)$ on a " $(X_1, \ldots, X_n) \subseteq (Y_1, \ldots, Y_n)$ " ssi pr tt $i, X_i \subseteq Y_i$ et " $(X_1, \ldots, X_n) \cup (Y_1, \ldots, Y_n)$ " $= (X_1 \cup Y_1, \ldots, X_n \cup Y_n)$

Exo 2.15[†] Soit le système suivant sur $\{a,b\}^* \times \{a,b\}^*$, $X_1 = \{b\} \cup X_2.X_2 \quad X_2 = \{a\}.X_1$ Calculer $f^4(\emptyset,\emptyset)$.

Chapitre 2 Langages algébriques et BNF (définitions)

- 2.1 Introduction
- 2.2 Définitions d'ensembles comme plus petit point fixe
- 2.3 Introduction aux langages algébriques et aux BNF

Système d'équations algébriques sur V^*

Def Soit V ensemble dénombrable. Un système d'équations algébriques sur V^* est un ensemble d'équations (avec $(X_k)_{k \in [1,n]}$ suite de variables 2 à 2 distinctes)

 $X_1 = f_1(X_1,\ldots,X_n)$

$$X_n = f_n(X_1, \ldots, X_n)$$

où chaque $f_k(X_1, \dots, X_n)$ est une expression constituée uniquement à partkr des varkables X_k et des "opérateurs" ensemblistes :

▶
$$\{\epsilon\}$$
 union \cup

Thm Soit

2.3 Introduction aux langages algébriques et aux BNF

 $f \stackrel{\text{def}}{=} (X_1, \ldots X_n) \mapsto (f_1(X_1, \ldots, X_n), \ldots, f_n(X_1, \ldots, X_n)).$ On a f continue (avec $\lim_{i\to+\infty} f^i(\vec{\emptyset})$ comme +petit point fixe).

Langages algébriques

Définition Un langage L_1 est algébrique sur V^* ssi il existe $(L_k)_{i \in 2...n}$ tel que (L_1, \ldots, L_n) est +petit point-fixe d'un système d'équations algébriques sur V^* .

Exo 2.16[†] Montrer que les langages définis dans le TP (Prop, Nnf en notations préfixes ou infixes) sont algébriques.

Les BNF "Backus-Naur Form" (années 1960)

BNF=notation pour définir des langages algébriques (inventée pour syntaxe du 1er langage de prog structurée ALGOL).

Par ex, sur l'alphabet $V \stackrel{\text{def}}{=} \{0, 1, -, (,)\}$, la BNF

définit E comme langage algébrique associé au système

$$E = L \cup E.\{-\}.E \cup \{(\}.E.\{)\}$$

$$L = \{0\} \cup \{1\} \cup L.L$$

Terminologie

- Les éléments de V s'appellent aussi "symboles terminaux".
- Les "variables" s'appellent aussi "symboles non-terminaux".
- ▶ Membre gauche de la 1ère équation s'appelle aussi "axiome".
- ▶ Membre droit d'une équation = union "d'alternatives".

Mini-exemples de langages algébriques non-réguliers

Exo 2.17[†] Pour $V \stackrel{def}{=} \{a, b, c\}$, donner une BNF pour chacun des langages suivants (dans chaque cas, justifier en calculant $f^n(\emptyset)$ où f est la fonction du point-fixe).

- 1. $\{a^nb^n \mid n \in \mathbb{N}\}$
- $2. \{a^n b^p \mid n \ge p \ge 0\}$
- 3. $\{a^nb^p \mid n \neq p\}$
- 4. $\{a^n b^p \mid 2p \ge n \ge p\}$
- 5. $\{a^n b^p c^q \mid n+p=q\}$
- 6. $\{w \in \{a,b\}^* | w = \overline{w}\}$ où \overline{w} est le renversé de w.

Exemple de renversé : $\overline{a \ a \ b \ a} = a \ b \ a \ a$.

 $\ensuremath{\mathsf{NB}}$: un mot égal à son renversé s'appelle un $\ensuremath{\mathsf{\textit{palindrome}}}.$

Exemples de palindromes : "a b a" et "a b b a".

Autres exos sur les BNF

Exo 2.18^{\dagger} Donner une BNF sur $\{0,1\}$ qui définit le langage des mots ayant un nombre pair de 0 et un nombre impair de 1.

Exo 2.19 Montrer que tout langage régulier peut être défini par une BNF. Que représente alors $f^n(\emptyset)$? Réciproquement, à quelles conditions (suffisantes), une BNF définit-elle un langage régulier?

Exo 2.20 Définir la syntaxe des BNF comme un langage algébrique sur un alphabet formés de deux sous-ensembles disjoints : V (pour les symboles) et $\{::=,|, \setminus n\}$. On autorisera l'alternative vide pour représenter ϵ . Par convention, les non-terminaux sont les symboles qui apparaissent en tant que membre gauche d'une équation.

Exemple d'algo : décider $\epsilon \in L$ avec L algébrique

On se ramène au calcul de $\mathcal{E}(L) \stackrel{def}{=} L \cap \{\epsilon\}$.

On définit $g(X_1, ..., X_n) \stackrel{def}{=} (\mathcal{E}(X_1), ..., \mathcal{E}(X_n))$ en bijection avec fct de $\mathcal{P}([1, n] \times V^*) \to \mathcal{P}([1, n] \times \{\epsilon\})$ pour appliquer le **lemme de commutation**.

Système à résoudre obtenu en transformant chaque équation " $X_k := e_k$ " de la BNF de L en équation " $\mathcal{E}(X_k) = \mathcal{E}(e_k)$ " où " $\mathcal{E}(X_k)$ " est vue comme une variable et " $\mathcal{E}(e_k)$ " calculé récursivement sur syntaxe de e_k pour s'exprimer en fonction de $\mathcal{E}(X_1), \ldots, \mathcal{E}(X_n)$:

$$\triangleright$$
 $\mathcal{E}(\epsilon) = \{\epsilon\}$ et pour tout terminal a , $\mathcal{E}(a) = \emptyset$

$$\triangleright \mathcal{E}(\alpha.\beta) = \mathcal{E}(\alpha) \cap \mathcal{E}(\beta)$$

$$\mathcal{E}(\alpha.\beta) \equiv \mathcal{E}(\alpha) \cap \mathcal{E}(\beta)$$

$$\triangleright \ \mathcal{E}(\alpha \mid \beta) = \mathcal{E}(\alpha) \cup \mathcal{E}(\beta)$$

Calcul du +ptit pt fixe sur $E = [1, n] \times \{\epsilon\}$ ou par éliminations successives en exploitant la propriété suivante :

la +petite solution de $X = (X \cap \alpha) \cup \beta$ vérifie aussi $X = \beta$

2.3 Introduction aux langages algébriques et aux BNF

Illustrations de cet algo

Exo 2.21[†] Appliquer cette méthode sur la BNF

```
S ::= A B C
```

C ::= C c B A |
$$\epsilon$$

Exo 2.22[†] Idem en remplaçant l'équation de B ci-dessus par

Une idée de la suite du cours

Problématique Soit L est un langage algébrique sur V^* .

- 1. Comment définir $T \in L \to D$ (pour un D donné)? Problème : $T(1.|.2.\&.3) = T(1.|.(2.\&.3)) \neq T((1.|.2).\&.3)$
- 2. Algorithme efficace pour étant donné un mot $w \in V^*$, déterminer si $w \in L$, et si oui retourner T(w)?

Plan du cours :

- d'abord le cas où L est 1 notation préfixe (sans pb de parenthèsage).
 - NB : notation préfixe = AST.
- ensuite, cas des autres langages algébriques.