# Graph: Bunch et nodes connected via edges.





Tree:

Tree:

Tree:

Tree:

N-1 Edge

Ly Nnodes in a Tree => N-1 Edges.





# Classification of Graphs



Directed



> Weighted



→ lyclic



4) A B

> Unweighted.



→ Alyclic



Unweighted Directed Acyclic graph.

Instagram Pollows B

# Undirected Graph

# of Nodes (N), # of Edges (E)

N=10, E=10

u v

2\_\_\_\_\_3

4 ---- 7

g — 9

2 ----7

7 ----8

10 \_\_\_\_\_1

4 ----

5---8

2 — 6

(0 ---- 9

u[], v[) u[i]—v[i]



In the problem statement:

- → Undirected us directed
- -> Unmeigloted Vs meigloted
- -> Cyclic vs acyclic?

## # directed Graph

# ey Nodes (N), # ey Edges (E)

N = 10, E = 10

uv

2 3

4 7

9

2 7

7 8

10 1

4 6

5 8

2 6

10 9



u-V

-> Undirected.

| N    | E     |
|------|-------|
| 2 51 | 11 th |
| 7    | 4     |
| ર    | 5     |
| 3    | 2     |
| 4    | 3     |
| 2    | 4     |
| 3    | 5     |
| 1    | 2     |

 $N \text{ nodes} \Rightarrow \text{mat[N+1][N+1]}$ 

TC: O(E)

SC: 0(N2)

 $\rightarrow N = 1000 | SC: 10^6 \Rightarrow lot of space wastage.$ 

|            |                            |                           | -      |
|------------|----------------------------|---------------------------|--------|
|            | Unmeighted                 | Weighted.                 |        |
| Undirected | m[u][v] = 1<br>m[v][u] = 1 | m[u](v) = w $m(v)(u) = w$ | [w +o) |
| Directed   | m[u][v] = 1                | m[u][v] = w               |        |

## # Adjacency List

## Undirected

| <i>N</i>      | E    |      |
|---------------|------|------|
| 251           | 十二 4 | —w   |
| $\mathcal{T}$ | 4    | 3 21 |
| ર             | 5    |      |
| 3             | 2    |      |
| 4             | 3    |      |
| 2             | 4    |      |
| 3             | 5    |      |
| 1             | 2    |      |

list (int) g[6];

() array of list of int of size=6.



glij >> list og int

TC: O(E) Undirected => # of Entries = 2E SC: O(E) = directed => # of Entries = E \* Undirected Weighted Graph

|     | list          | ( Pair   | (int. | int >> g[N+1];                            |
|-----|---------------|----------|-------|-------------------------------------------|
| NEG | u             | <b>\</b> | W     | $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ |
| •   | 1             | 2        | 10    | 0                                         |
|     | 2             | 4        | 6     | 1 7 {2,103, {5,83                         |
|     | 3             | 5        | 4     | 2 -> {1,103,44,63                         |
|     | $\mathcal{T}$ | 2        | 8     | 3 -> (5,43                                |
|     |               |          | \     | 4 -> 12,63                                |
|     |               |          |       | 5 83,43,41,83                             |

|            | Vnueighted              | Weighted.           |
|------------|-------------------------|---------------------|
| Undirected | g[u]·add(v) g[v]·add(u) | g [u] ·add ({u, w3) |
| Directed   | g[u]·add(v)             | g [u]·add (fv, w3)  |

8: Given an undirected graph, a source node & a destination node. Check if destination node can be visited from source node.



 $\mathbb{S}: \mathcal{T}$ ,  $\mathbb{D}: \mathcal{E}$ 

| N=6, E | - 7      |
|--------|----------|
| U      | <b>\</b> |
| 1      | 2_       |
| 1      | 4        |
| 2      | Ч        |
| 2      | 3        |
| 3      | 2        |
| 5      | 6        |
| Ч      | 5        |

→ Adjacency List list (int > g[7]

| O |                |                       |
|---|----------------|-----------------------|
| 1 | _              | → 2,4                 |
| 2 | _              | → 1,4,3               |
| 3 | -              | - 2,5 g[4](0)         |
| 4 | g(પ <u>્</u> ય | $ 2,5 \qquad g[4](0)$ |
| 2 | -              | · 3,6,4               |
| 6 | _              | → 5                   |

S = 1

· delete from front

⇒ Queue

bool Vis[N+1] = { false}

Vis[7]: 0 1 2 3 4 5 6 T T T T T T

+ Breadth first Search

 $\Rightarrow$ 

X X X X X X

Vis[7]: 2 3 4 5 6 T T T T T T T T

> return vis[dest] >T



```
bfs(N, E, U[], V[], src, dest) {
pool
      list (int > g[N+1];
      for(i= 0; i(E; i++) (
                                     TC: O(E)
            g[u[i]] · add [v[i]); | Sc: O(E)
        Queue (int > 9;
        9. leguene (src)
        (£4) = [1+N] 2iv 100d
         Vis[src] = true;
         int level(N+1); level(src) = 0
         int parent[N+1]; parent[sxc] =-1;
         while (q.size()>0) {
             int cu = q. frout();
              q. dequeue ();
              1/ Iterate over Adj. list of cu.
              for (i = 0; i < g (m) · size(); i++) {
                   int cv = gluz[i];
                   if ( vis ( cv) = = false) {
                        Vis[CV] = +xue;
                        q.enque(cv);
                        level[Ev] = level[cu] + 1;
                         Rarent (CV) = Ch;
      return vis [dest];
ટ્ર
```

$$TC: O(E) \mid SC: O(E+N) \stackrel{E>>N}{\longrightarrow} o(E)$$

Ex:



level

## level = Min fath in terms # of Edges.

=> BFS algo also gives us the shortest poth from Brc to deat in Unweighted graph.

int level[N+1]; level[88c] = 0

الي الي



S: 10, D=2

int Parcet (12)= × 3 6 9 11 7 8 10 7 10 -1 5

to 7 9 8 8 3 H 8 4 2

dest = 2, Src = 10

8:10, D: 11.

- 1) fill the garent[]
- 2 list (int > fath;

while 
$$(d! = 8rc)$$
?

 $d = 8rc$ )?

 $d = parent(d)$ ;

