BrainHack 2019

#Dementia_Forecast_Group

Understanding the data!!

- 1737 patients
- 12741 instances (longitudinal study)
- 1906 features
- Goal:
 - Diagnosis
 - o ADAS-13
 - Ventricles volume/intracranial volume

RID 💌	PTID	¥	VISCODE -	SITE	D1	▼ D2	¥	COLPROT	ORIGPR
2	011_S_	0002	bl	1	1	1	1	ADNI1	ADNI1
3	011_S_	0003	bl	1	1	1	0	ADNI1	ADNI1
3	011_S_	0003	m06	1	1	1	0	ADNI1	ADNI1
3	011_S_	0003	m12	1	1	1	0	ADNI1	ADNI1
3	011_S_	0003	m24	1	1	1	0	ADNI1	ADNI1
4	022_S_	0004	bl	2	2	1	0	ADNI1	ADNI1
4	022_S_	0004	m06	2	2	1	0	ADNI1	ADNI1
4	022_S_	0004	m12	2	2	1	0	ADNI1	ADNI1
4	022_S_	0004	m18	2	2	1	0	ADNI1	ADNI1
4	022_S_	0004	m36	2	2	1	0	ADNI1	ADNI1
5	011 S	0005	bl	1	1	1	0	ADNI1	ADNI1

Group	Var	description				
Demo	AGE	Age at BASELINE, not current age				
Demo	PTGENDER	Sex				
Genotype	APOE4	AFOE4 minor allele load				
	STNNNCV_*	Regional Volume				
sMRI	STNNNSA_*	Regional surface area				
SIVINI	STNNNTA_*	Regional thickness average				
	STNNNSD_*	Regional thickness standard deviation				
	UCBERKELEYAV1451	Regional PET measures of abnormal Tau				
PET	*UCBERKELEYAV45*	Regional PET measures of abnormal Abeta				
	BAIPETNMRC	Regional PET measures of glucose metabolism				
	FDG / PIB / AV45	Average relative PET measures				
	FA_*	Regional fractional anisotropy				
DTI	MD_*	Regional mean diffusivity				
5 11	AD_*	Regional axial diffusivity				
	RD_*	Regional radial diffusivity				
	ABETA_*	CSF Amyloid Beta				
CSF	TAU_*	CSF Tau				
	PTAU_*	CSF phospho-Tau				

Data handling

- Training data: up to April, 2010
- **Test data:** from April 2010, onwards
- Missing values: e.g. for structural MRI:
 - Total = 442 features
 - 19 features not available (unavailable for all patients)
 - 225 incomplete features (available only for some patients)

Dimensionality reduction

UMAP

Training a Neural Net

Trying to predict the Umap embeddings using a neural network on the test set

Trying out classifying the diagnosis

- Using only CSF features with FFNN: overall diagnosis accuracy 57%
- Using the template SVM file provided by challenge organizers:
 - Be careful of dropping the feature to classify!
 - Code not optimized
 - Recommend writing one's own code

Example of variable distribution

Predictions with and without age extrapolation

• Classification: random forest

Regression: SVR

```
AGE
ADAS13
Ventricles
ICV_bl
ST44CV_UCSFFSL_02_01_16_UCSFFSL51ALL_08_01_16
ST105CV_UCSFFSL_02_01_16_UCSFFSL51ALL_08_01_16
ST121TS_UCSFFSL_02_01_16_UCSFFSL51ALL_08_01_16
ABETA_UPENNBIOMK9_04_19_17
TAU_UPENNBIOMK9_04_19_17
PTAU_UPENNBIOMK9_04_19_17
CURRENTAGE
Ventricles_ICV
```

with

(9240,) Evaluate predictions Diagnosis: mAUC = 0.679BAC = 0.621ADAS: MAE = 10.859WES = 9.190CPA = 0.449VENTS: MAE = 8.109e-03WES = 8.023e-03CPA = 0.500

without

```
mAUC = 0.665
BAC = 0.624
ADAS:
MAF = 8.171
WES = 8.217
CPA = 0.431
VENTS:
MAE = 7.058e-03
WES = 6.898e-03
CPA = 0.500
```

Trying out XGBOOST

Explore hyperparameter optimization with boosting

