Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/002996

International filing date: 24 February 2005 (24.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-052911

Filing date: 27 February 2004 (27.02.2004)

Date of receipt at the International Bureau: 21 April 2005 (21.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

28.02.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2004年 2月27日

出 願 番 号 Application Number:

特願2004-052911

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

番号
The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

JP2004-052911

出 願 人
Applicant(s):

日本ゼオン株式会社

特言 Coming Japan

特許庁長官 Commissioner, Japan Patent Office 2005年 4月 7日

【書類名】 特許願 2003-358 【整理番号】 【提出日】 平成16年 2月27日 特許庁長官殿 【あて先】 【国際特許分類】 COST 5/18 【発明者】 東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内 【住所又は居所】 【氏名】 開発 信和 【発明者】

東京都千代田区丸の内二丁目6番1号 日本ゼオン株式会社内 【住所又は居所】 【氏名】 窪田 伊三男 【特許出願人】

【識別番号】 000229117 【氏名又は名称】 日本ゼオン株式会社 【代表者】 古河 直純

【手数料の表示】 033684 【予納台帳番号】 【納付金額】 21,000円

【提出物件の目録】 特許請求の範囲 1 【物件名】 【物件名】 明細書 1 【物件名】 要約書 1

【書類名】特許請求の範囲

【請求項1】

アルコキシアルキル(メタ)アクリレート単量体単位 $70.1 \sim 99.8$ 重量%、メタクリロニトリル単量体単位 $0.1 \sim 9.9$ 重量%及びブテンジオン酸モノエステル単量体単位 $0.1 \sim 20$ 重量%とから成るアクリルゴム。

【請求項2】

ブテンジオン酸モノエステル単量体単位がブテンジオン酸モノシクロアルキルエステル単量体単位である請求項1記載のアクリルゴム。

【請求項3】

前記アルコキシアルキル(メタ)アクリレート単量体単位が、メトキシエチルアクリレート単量体単位及び/又はエトキシエチルアクリレート単量体単位である請求項1又は2記載のアクリルゴム。

【請求項4】

請求項 $1 \sim 3$ のいずれかに記載のアクリルゴム及び架橋剤を含有して成る架橋性アクリルゴム組成物。

【書類名】明細書

【発明の名称】アクリルゴム及び架橋性アクリルゴム組成物

【技術分野】

[0001]

本発明は、アクリルゴム、該アクリルゴム及び架橋剤を含有してなる架橋性アクリルゴム組成物に関し、さらに詳しくは、耐熱性、耐寒性及び耐燃料油性に優れる架橋性アクリルゴム組成物及び該組成物に好適なアクリルゴムに関する。

【背景技術】

[0002]

アクリルゴムは、耐熱性及び耐油性などに優れているため、自動車関連の分野等において、シール、ホース、チューブ及びベルト等の、オイル等と接触して使用されるゴム部品の材料として広く用いられている。アクリルゴムは、これらのゴム部品として使用できるように架橋させてゴム弾性を付与するが、そのために活性な架橋点を有する架橋性モノマーが通常 $1\sim5$ 重量%程度共重合されている。このような架橋性アクリルゴムには、優れた耐熱性及び耐寒性と共に、圧縮永久歪みが小さいことが求められているが、さらに耐燃料油性にも優れ、またスコーチ安定性もより優れたものが要望されるようになっている。

[0003]

アクリルゴムに共重合する前記架橋性モノマーの選択は、それに組み合わせて使用する架橋剤とともに架橋反応速度を決定し、貯蔵安定性、機械的特性、圧縮永久ひずみ及び耐熱性等に影響を与える。一般的には、2-クロロエチルビニルエーテル、ビニルクロロアセテートなどの塩素系モノマーや、アリルグリシジルエーテルなどのエポキシ系モノマーが架橋性モノマーとして使用されている。

[0004]

架橋性モノマーとして、マレイン酸やフマル酸などのブテンジオン酸のモノエステル、 具体的にはブテンジオン酸のモノブチルエステルも検討されており、その中でも、0.1 ~10重量%のフマル酸モノ低級アルキルエステルを共重合したアクリルゴムに、芳香族 ジアミン架橋剤及びグアニジン化合物架橋助剤を含有してなるアクリルゴム組成物の架橋 物が、耐熱性及び耐寒性等に優れることが報告されている(特許文献1)。しかし、これ らのアクリルゴム組成物は、特にスコーチ安定性が不十分であった。

[0005]

また、アルコキシアルキルアクリレートと $10\sim15$ 重量%のアクリロニトリルと必要量の架橋性モノマーとを共重合させたアクリルゴム組成物を自動車燃料用ホースとして用いると、耐サワーガソリン性、耐アミン性等を保持しつつ、燃料不透過性を向上できることが報告されている(特許文献 2)。しかし、この組成物は、耐寒性及び耐熱性が低下する問題があった。

さらに、メタクリロニトリルに由来する特定の構造単位を含むカルボキシル基含有アクリルゴムに対して、特定の架橋剤と特定のアミン化合物を配合してなる組成物が、金属面に粘着せず、加工時にスコーチが起こらないこと、また、得られた架橋物が、耐熱性、耐寒性、耐劣化油性に優れることが報告されている(特許文献3)。しかし、この組成物は、耐寒性及び耐燃料油性が不十分である。

[0006]

【特許文献1】特開平11-92614号公報

【特許文献2】特開2001-146540号公報

【特許文献3】特開2003-342437号公報

【発明の開示】

【発明が解決しようとする課題】

[0007]

本発明の目的は、得られる架橋物が耐熱性、耐寒性及び耐燃料油性のバランスに優れ、 さらにスコーチ安定性にも優れる架橋性アクリルゴム組成物を提供することにある。

【課題を解決するための手段】

[0008]

本発明者らは、前記目的を達成すべく鋭意研究を進めた結果、アルコキシアルキル (メタ) アクリレート単位及びメタクリロニトリル単位を特定量含有し、さらにブテンジオン酸モノアルキルエステルを架橋性モノマーとして特定量共重合して得られる新規なアクリルゴムが、架橋剤を配合して行う加工時にスコーチが起こらず、また、架橋物が耐熱性、耐寒性及び耐燃料油性に優れることを見出し、この知見に基づいて本発明を完成するに至った。

[0009]

かくして本発明によれば、以下の1~ の発明が提供される。

- 1. アルコキシアルキル (メタ) アクリレート単量体単位 $70.1 \sim 99.8$ 重量%、メタクリロニトリル単量体単位 $0.1 \sim 9.9$ 重量%及びブテンジオン酸モノエステル単量体単位 $0.1 \sim 20$ 重量%とから成るアクリルゴム。
- 2. ブテンジオン酸モノエステル単量体単位がブテンジオン酸モノシクロアルキルエステル単量体単位である前記1記載のアクリルゴム。
- 3. 前記アルコキシアルキル(メタ)アクリレート単量体単位が、メトキシエチルアクリレート単量体単位及び/又はエトキシエチルアクリレート単量体単位である前記1又は2記載のアクリルゴム。
- 4. 前記 $1 \sim 3$ のいずれかに記載のアクリルゴム及び架橋剤を含有して成る架橋性アクリルゴム組成物。

【発明の効果】

[0010]

本発明によれば、架橋剤を配合して加工する際に、スコーチ安定性に優れるアクリルゴム組成物が提供される。さらに、このアクリルゴム組成物を架橋することにより、耐熱性、耐寒性及び耐燃料油性に優れた架橋物が提供される。したがって、これらの特性を活かして、成形後に架橋して使用するシール、ホース、防振材、チューブ、ベルト、ブーツなどのゴム部品の材料として広い範囲で好適に使用できる。

【発明を実施するための最良の形態】

[0011]

本発明のアクリルゴムは、アルコキシアルキルアクリレート単量体単位又はアルコキシアルキルメタクリレート単量体単位(以降、アルコキシアルキル(メタ)アクリレート単量体と略記する。) $70.1\sim99.8$ 重量%、メタクリロニトリル単量体単位 $0.1\sim9.9$ 重量%及びブテンジオン酸モノエステル単量体単位 $0.1\sim20$ 重量%とから成る

$[0\ 0\ 1\ 2\]$

アルコキシアルキル (メタ) アクリレート単量体としては、炭素数 2~8のアルコキシアルキルアルコールと (メタ) アクリル酸とのエステル化合物が好ましく、具体的には、(メタ) アクリル酸メトキシメチル、(メタ) アクリル酸エトキシメチル、(メタ) アクリル酸 2-エトキシエチル、(メタ) アクリル酸 2-ブトキシエチル、(メタ) アクリル酸 2-ブトキシエチル、(メタ) アクリル酸 3-メトキシプロピル、(メタ) アクリル酸 4-メトキシブチルなどが挙げられる。これらの中でも特に、(メタ) アクリル酸 2-エトキシエチル、(メタ) アクリル酸 2-メトキシエチルが好ましい。

[0013]

本発明のアクリルゴム中の、アルコキシアルキル(メタ)アクリレート単量体単位の含有量は、好ましくは80~95重量%、より好ましくは85~95重量%である。アクリルゴム中のアルコキシアルキル(メタ)アクリレート単量体単位の含有量が少なすぎると、架橋物の耐寒性及び耐燃料油性が低下する場合がある。

[0014]

本発明のアクリルゴム中の、メタクリロニトリル単量体単位の含有量は、好ましくは5~9.9重量%、より好ましくは5~8重量%である。アクリルゴム中のメタクリロニト

3/

リル単量体単位の含有量が多すぎると、架橋物の耐熱性及び耐寒性が低下する場合があり、少なすぎると架橋物の耐燃料油性が低下する場合がある。

[0015]

ブテンジオン酸モノエステル単量体は、ブテンジオン酸、すなわちフマル酸又はマレイン酸の一つのカルボキシル基と、アルコールとを反応させて得られるようなモノエステル構造を有する化合物である。

本発明においては、ブテンジオン酸モノエステル単量体が、脂環構造を有するブテンジオン酸モノエステル単量体であるのが好ましい。脂環構造は、炭素数3~20、好ましくは4~10であり、飽和環でも不飽和環でもよく、単環でも多環でもよい。具体的には、モノシクロアルカン構造、モノシクロアルケン構造、ノルボルナン環構造、ノルボルネン環構造などが挙げられ、これらの組み合わせでもよい。脂環構造を有するアルコールとしては、シクロアルキルアルコール、シクロアルケニルアルコール及び主鎖の一部や側鎖に上記脂環構造を有するアルコールのいずれでもよいが、本発明においては、シクロアルキルアルコールが好ましく、シクロアルキルアルコールがより好ましい。すなわち、ブテンジオン酸モノエステル単量体単位は、ブテンジオン酸モノシクロアルキルエステル単量体単位であるのが最も好ましい。

[0016]

脂環構造を有するブテンジオン酸モノエステル単量体の具体例としては、フマル酸モノシクロペンチル、フマル酸モノシクロヘキシル、フマル酸モノシクロヘプチル、フマル酸モノメチルシクロヘキシル、フマル酸モノー3,5-ジメチルシクロヘキシル、フマル酸モノー3,5-ジメチルシクロヘキシル、フマル酸モノー3,5-ジメチルシクロヘキシル、フマル酸モノー3,5-ジメチルシクロアルキルエステル単量体;フマル酸モノシクロペンテニル、フマル酸モノシクロアルキセニル、フマル酸モノシクロヘプテニル、フマル酸モノシクロペンタジエニルなどのフマル酸モノシクロアルケニルエステル単量体;マレイン酸モノシクロペンチル、マレイン酸モノシクロヘキシル、マレイン酸モノシクロヘキシル、マレイン酸モノシクロペンタジェル、マレイン酸モノー3,5-ジメチルシクロヘキシル、マレイン酸モノジシクロペンタニル、マレイン酸モノイソボニなどのマレイン酸モノシクロアルキルエステル単量体;マレイン酸モノイソボニなどのマレイン酸モノシクロアルキルエステル単量体;マレイン酸モノシクロヘプテニル、マレイン酸モノシクロヘカジエニルなどのマレイン酸モノシクロアルケニルエステル単量体;などが挙げられる。これらの中でも、フマル酸モノシクロヘキシルやマレイン酸モノシクロヘキシルが好ましい。

[0017]

本発明のアクリルゴム中の、ブテンジオン酸モノエステル単量体単位の含有量は、好ましくは $0.5 \sim 10$ 重量%、より好ましくは $1 \sim 5$ 重量%である。ブテンジオン酸モノエステル単量体単位の量が少なすぎると架橋物の架橋密度が十分でなく良好な機械的特性が得られず、逆に多すぎると架橋物の伸びが低下する場合や圧縮永久歪みが増大する場合がある。

[0018]

本発明のアクリルゴムは、カルボキシル基含有量が、ゴム100グラム当たり、好ましくは $5\times10^{-4}\sim4\times10^{-1}$ 当量、より好ましくは $2\times10^{-3}\sim2\times10^{-1}$ 当量、特に好ましくは $4\times10^{-3}\sim1\times10^{-1}$ 当量である。アクリルゴム中のカルボキシル基含有量が少なすぎると架橋が十分に進行しないため架橋物の形状維持ができない場合があり、逆に多すぎると架橋物が硬くなってゴム弾性を失う場合がある。

[0019]

本発明のアクリルゴムは、アルコキシアルキル(メタ)アクリレート単量体、メタクリロニトリル単量体及びブテンジオン酸モノエステル単量体に、必要に応じて用いられるこれらの単量体と共重合可能な単量体を含んでなる単量体混合物をラジカル重合することにより得ることができる。重合反応の形態としては、乳化重合法、懸濁重合法、塊状重合法及び溶液重合法のいずれも用いることができるが、重合反応の制御の容易性等から、従来

公知のアクリルゴムの製造法として一般的に用いられている常圧下での乳化重合法による のが好ましい。

[0020]

乳化重合法による重合の場合には、通常の方法を用いればよく、重合開始剤、重合停止 剤、乳化剤等は一般的に用いられる従来公知のものを使用できる。

[0021]

本発明のアクリルゴムのムーニー粘度(ML_{1+4} 、100°C)は、好ましくは10~80、より好ましくは20~70、特に好ましくは30~70である。ムーニー粘度が小さすぎると成形加工性や架橋物の機械的強度が劣る場合があり、大きすぎると成形加工性が劣る場合がある。本発明のアクリルゴムは、架橋剤を配合して架橋性アクリルゴム組成物とし、架橋反応により架橋物にして種々のゴム部品に使用することができる。

[0022]

本発明の架橋性アクリルゴム組成物は、上記アクリルゴム及び架橋剤を含有してなるものである。本発明の架橋性アクリルゴム組成物に用いる架橋剤は、アクリルゴムの架橋剤として一般的に用いられている化合物であればいずれでもよいが、ブテンジオン酸モノエステル単量体単位のカルボキシル基等と比較的容易に架橋構造を形成し得るものとしてアミン化合物が好ましく、多価アミン化合物が最も好ましい。

[0023]

このようなアミン化合物として、具体的には脂肪族多価アミン架橋剤、芳香族多価アミン架橋剤などが挙げられ、グアニジン化合物のように非共役の窒素 - 炭素二重結合を有するものは含まれない。

[0024]

架橋剤の配合量は、アクリルゴム 100 重量部に対し、0.05~20 重量部、好ましくは 0.1~10 重量部、より好ましくは 0.2~7 重量部、特に好ましくは 0.3~5 重量部である。架橋剤の配合量が少なすぎると架橋が十分に行われないため架橋物の形状維持が困難になり、多すぎると架橋物が硬くなりすぎ、架橋ゴムとしての弾性などが損なわれる。

[0025]

本発明の架橋性アクリルゴム組成物においては、さらに架橋促進剤を配合して上記架橋剤に組み合わせて用いてもよい。架橋促進剤も限定はないが、前記多価アミン架橋剤と組み合わせて用いることができる架橋促進剤としては、水中、25℃での塩基解離定数が $10^{-12}\sim10^6$ であるものが好ましく、例えばグアニジン化合物、イミダゾール化合物、第四級オニウム塩、第三級ホスフィン化合物、弱酸のアルカリ金属塩などが挙げられる。グアニジン化合物としては、1, 3 - 4 - - 4

[0026]

架橋促進剤の使用量は、アクリルゴム100重量部あたり、好ましくは0.1~20重 量部、より好ましくは0.2~15重量部、特に好ましくは0.3~10重量部である。 架橋促進剤が多すぎると、架橋時に架橋速度が早くなりすぎたり、架橋物表面への架橋促 進剤のブルームが生じたり、架橋物が硬くなりすぎたりする場合がある。架橋促進剤が少 なすぎると、架橋物の引張強さが著しく低下したり、熱負荷後の伸び変化または引張強さ 変化が大きすぎたりする場合がある。

[0027]

本発明の架橋性ゴム組成物には、特にモノアミン化合物を配合することにより、架橋前 のロール加工やバンバリー加工において、組成物が金属に粘着しにくくなり加工性が改善 される。

このようなモノアミン化合物としては、芳香族モノアミン化合物及び脂肪族モノアミン 化合物が挙げられる。これらはそれぞれ、第一級アミン化合物、第二級アミン化合物、第 三級アミン化合物のいずれでもよい。本発明においては、これらのモノアミン化合物を、 単独で用いることも2種以上組み合わせて用いることもできるが、単独で用いる場合には 、モノ一級アミン化合物が好ましく、2種以上を組み合わせて用いる場合には、脂肪族モ ノ二級アミン化合物と脂肪族モノ三級アミン化合物とを組み合わせて用いるのが好ましい

[0028]

アクリルゴム100重量部に対する上記モノアミン化合物の配合量は、合計0.05~ 20重量部、好ましくは0.1~10重量部である。特に、モノ一級アミンを単独で使用 する場合には、好ましくは $0.1 \sim 10$ 重量部、より好ましくは $0.2 \sim 5$ 重量部であり 、脂肪族モノ二級アミンと脂肪族モノ三級アミンを組み合わせて用いる場合には、合計量 が好ましくは0.2~10重量部、より好ましくは0.5~7重量部である。モノアミン 化合物の配合量が少なすぎるとアクリルゴム組成物の金属への粘着が大きくなって加工性 に劣り、多すぎると架橋物表面にモノアミン化合物がブルーミングしたり、架橋物の強度 が著しく低下したり、圧縮永久ひずみが大きくなったりする場合がある。

[0029]

本発明の架橋性のアクリルゴム組成物には、必要に応じて、補強材、充填剤、老化防止 剤、光安定剤、可塑剤、滑剤、粘着剤、潤滑剤、難燃剤、防黴剤、帯電防止剤、着色剤な どの添加剤を含有させてもよい。

[0030]

また、アクリルゴム組成物には、必要に応じて、アクリルゴム以外のゴム、エラストマ ー、樹脂などをさらに配合してもよい。例えば、天然ゴム、本発明のアクリルゴム以外の 組成のアクリルゴム、ポリブタジエンゴム、ポリイソプレンゴム、スチレンーブタジエン ゴム、アクリロニトリルーブタジエンゴムなどのゴム;オレフィン系エラストマー、スチ レン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、ポリア ミド系エラストマー、ポリウレタン系エラストマー、ポリシロキサン系エラストマーなど のエラストマー;ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリアクリル系樹脂、ポ リフェニレンエーテル系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミ ド樹脂などの樹脂;などを配合することができる。

[0031]

本発明の架橋性アクリルゴム組成物の調製にあたっては、ロール混合、バンバリー混合 、スクリュー混合、溶液混合などの適宜の混合方法が採用できる。配合順序は特に限定さ れないが、熱で反応や分解しにくい成分を充分に混合した後、熱で反応しやすい成分ある いは分解しやすい成分として、例えば架橋剤などを、反応や分解が起こらない温度で短時 間に混合すればよい。

[0032]

架橋性アクリルゴム組成物の成形方法は、特に限定されない。圧縮成形、射出成形、ト ランスファー成形あるいは押出成形など、いずれの方法を用いることも可能である。また 、架橋方法は、架橋物の形状などに応じて選択すればよく、成形と架橋を同時に行う方法 、成形後に架橋を行う方法のいずれでもよい。

[0033]

本発明の架橋性アクリルゴム組成物は、加熱することにより架橋物とすることができる 。加熱温度は、好ましくは130~220℃以上、より好ましくは140℃~200℃で あり、架橋時間は好ましくは30秒~5時間である。加熱方法としては、プレス加熱、蒸 気加熱、オーブン加熱、熱風加熱などのゴムの架橋に用いられる方法を適宜選択すればよ い。また、一度架橋した後に、架橋物の内部まで確実に架橋させるために、後架橋を行っ てもよい。後架橋は、加熱方法、架橋温度、形状などにより異なるが、好ましくは1~4 8時間行う。加熱方法、加熱温度は適宜選択すればよい。

[0034]

本発明の架橋性アクリルゴム組成物は、加工時のスコーチ安定性に優れ、かつ架橋後の 耐熱性及び圧縮永久ひずみ特性に優れる。したがって、該アクリルゴム組成物を架橋して なる架橋物は、これらの特性を活かして、シール、ホース、防振材、チューブ、ベルト、 ブーツなどのゴム部品の材料として広い範囲で好適に使用できる。

【実施例】

[0035]

以下に実施例、比較例を挙げて、本発明を具体的に説明する。これらの例中の〔部〕及 び〔%〕は、特に断わりのない限り重量基準である。ただし本発明は、これらの実施例の みに限定されるものではない。尚、アクリルゴム及びその架橋物は、以下の方法により評 価した。

[0036]

ムーニー粘度

JIS K6300の未架橋ゴム物理試験法のムーニー粘度試験に従って、測定温度1 00℃におけるアクリルゴムのムーニー粘度ML1+4を測定した。

[0037]

スコーチ安定性

ムーニースコーチ時間(t5)を、JIS K6300に従って125℃で測定した。 ムーニースコーチ時間 t 5の値が大きいほど、スコーチ安定性に優れる。

[0038]

耐寒性(ゲーマンねじり試験におけるTi。)

アクリルゴム組成物を、プレス成形により、170℃で20分間加熱して厚さ2mmの シートを作製し、170℃に4時間放置して、二次架橋した後、40mm×30mmの長 方形に打ち抜き、これを試験片としてJIS K 6261の低温ねじり試験に準じて、 此モジュラスRMが10になる温度(ゲーマン T_{10})を測定した。

[0039]

耐燃料油性(燃料油中浸漬試験における体積変化率)

ゲーマン試験用の試験片と同様にシートを作製し、二次加硫した後、50mm×20m mの長方形に打ち抜き、これを試験片としてJIS K6258に準じて、40℃の試験 用燃料油(2.2.4ートリメチルペンタン/トルエン=40/60)中に70時間浸漬し、 体積変化率を測定した。

[0040]

耐熱性(熱負荷後の架橋物物性化量)

架橋性アクリルゴム組成物を170℃、20分間のプレスによって成形、架橋し、15 cm×15cm×2mmの試験片を作製し、さらに後架橋のために170℃に4時間放置 して作成したシートを所定の形状に打ち抜いた試験片を用いて以下の測定を行った。

先ず、常態物性として、JIS K6253の硬さ試験に従って硬さを測定する。次い で、 JIS K6257に従い、175℃の環境下で336時間の空気加熱老化を行い、

[0041]

実施例1

温度計、攪拌装置、窒素導入管及び減圧装置を備えた重合反応器に、水200部、ラウリル硫酸ナトリウム3部、アクリル酸メトキシエチル93部、メタクリロニトリル5部及びフマル酸モノシクロヘキシル2部を仕込み、減圧による脱気および窒素置換をくり返して酸素を十分除去した後、ナトリウムホルムアルデヒドスルホキシレート0.002部およびクメンハイドロパーオキシド0.005部を加えて常圧、常温下で乳化重合反応を開始させ、重合転化率が95%に達するまで反応を継続した。得られた乳化重合液を塩化カルシウム水溶液で凝固させ、水洗、乾燥してアクリルゴムAを得た。

[0042]

上記反応で得られたアクリルゴムA(アクリル酸メトキシエチル単位含有量93%、メタクリロニトリル単位含有量5%、フマル酸モノシクロヘキシル単位含有量2%、ムーニー粘度45(ML1+4、100℃))100部、カーボンブラック(ASTM D1765による分類;N550)60部、ステアリン酸(カーボンブラックの分散剤、軟化剤)2部および4,4'ービス(α , α -ジメチルベンジル)ジフェニルアミン(老化防止剤)2部を50℃にてバンバリーで混練し、その後、ヘキサメチレンジアミンカーバメイト(脂肪族ジアミン架橋剤)0.5部、ジーoートリルグアニジン(架橋促進剤)2部を加えて、40℃にてオープンロールで混練して、架橋性アクリルゴム組成物を調製した。

[0043]

実施例2

アクリル酸メトキシエチル53部、アクリル酸エトキシエチル40部、メタクリロニトリル5部、フマル酸モノシクロヘキシル2部を用いた以外は、実施例1のアクリルゴムAの製造と同様の操作でアクリルゴムBを得た。そして、アクリルゴムBを用いたこと以外は実施例1と同様に架橋性アクリルゴム組成物を調整した。

[0044]

実施例3

アクリル酸メトキシエチル95部、メタクリロニトリル3部、フマル酸モノシクロヘキシル2部を用いた以外は、実施例1のアクリルゴムAの製造と同様の操作でアクリルゴムCを得た。そして、アクリルゴムCを用いたこと以外は実施例1と同様に架橋性アクリルゴム組成物を調整した。

[0045]

実施例4

アクリル酸メトキシエチル95部、メタクリロニトリル3部、フマル酸モノノルマルブチル2部を用いた以外は、実施例1のアクリルゴムAの製造と同様の操作でアクリルゴムDを得た。そして、アクリルゴムDを用いたこと以外は実施例1と同様に架橋性アクリルゴム組成物を調整した。

[0046]

これらの架橋性アクリルゴム組成物を用いて、前記方法によりムーニースコーチ時間を 測定した。さらにこの架橋性アクリルゴム組成物を、上記記載の条件によりプレス、架橋 、後架橋して作成した試験片を用いて、架橋物の耐寒性、耐燃料油性及び耐熱性を評価し た。結果を表1に示す。

[0047]

比較例1

アクリル酸メトキシエチル98部及びフマル酸モノシクロヘキシル2部を用い、メタクリロニトチルを用いなかったこと以外は、実施例1のアクリルゴムAの製造と同様の操作でアクリルゴムEを得た。

[0048]

比較例2

アクリル酸メトキシエチル93部及びフマル酸モノシクロヘキシル2部を用い、さらに メタクリロニトリルに代えてアクリロニトリル5部を用いたこと以外は、実施例1のアク リルゴムAの製造と同様の操作でアクリルゴムFを得た。

[0049]

比較例3

アクリル酸メトキシエチル83部、アクリロニトリル15部及びフマル酸モノシクロへ キシル2部を用いた以外は、実施例1のアクリルゴムAの製造と同様の操作でアクリルゴ ムGを得た。

[0050]

比較例 4

アクリル酸メトキシエチル63部、アクリル酸エチル30部、メタクリロニトリル5部 及びフマル酸モノシクロヘキシル2部を用いた以外は、実施例1のアクリルゴムAの製造 と同様の操作でアクリルゴムHを得た。

[0051]

上記反応で得られたアクリルゴムE~Hを用い、実施例1と同様に架橋性アクリルゴム 組成物を調整し、実施例1~4同様に各物性を評価した。結果を表1に示す。

[0052]

	実施例1	実施例2	実施例3	実施例4	比較例1	比較例2	比較例3	比較例4
アクリルゴム構成単位含有量(重量%)								
アクリル酸メトキシエチル	93	53	92	95	86	93	83	63
アクリル酸エトキシエチル	ı	40	-	1	1	1	1	1
アクリル酸エチル	ſ	1	ı	1	1	1	1	30
メタクリロニトリル	2	5	3	3	t	1	15	5
アクリロニトリル	1	1	1	1	1	5	1	,
フマル酸モノシクロヘキシル	2	2	2	ı	2	2	2	2
フマル酸モ/n-ブチル	ı	1	1	2	ı	1	1	ı
アクリルゴムムーニー粘度(ML ₁₊₄ 100°C)	47.5	45.3	44.1	44.3	38.4	43.2	43.7	44.7
スコーチ安定性								
ムーニースコーチ (t5) (min)	3.9	3.8	3.5	2.0	2.4	3.5	3.7	4.6
耐寒性								
ゲーマンねじり試験によるT ₁₀ (°C)	-25	-28	-29	-29	-32	-27	-20	-18.0
耐燃料油性								
体積変化率 (%)	20	30	30	30	35	27.7	24.2	20
熱負荷後の架橋物物性変化量								
硬さ変化(Point)	20	25	29	29	35	46	30	28

[0053]

表1から明らかなように、メタクリロニトリル単位を含有しないアクリルゴム(比較例1)は、架橋性アクリルゴム組成物とした場合に耐燃料油性に劣り、また、メタクリロニトリル単位をアクリロニトリル単位に変更した場合(比較例2)は、耐熱性に劣る。また、メタクリロニトリル単位が本発明規定の10部以上に含むアクリルゴム(比較例3)は、架橋性アクリルゴム組成物とした場合に耐寒性が著しく低下する。さらに、アルコキシ

アルキルアクリレートが本発明規定量に満たない場合(比較例 4)は、耐寒性、耐燃料油性のバランスに劣る。

[0054]

これらに対し、本発明のアクリルゴム及びアクリルゴム組成物は、スコーチ安定性に優れ、架橋物の耐寒性、耐熱性及び耐燃料油性のバランスに優れている(実施例1~4)。

【書類名】要約書

【要約】

【課題】 スコーチの安定性に優れる架橋性アクリルゴム組成物、及び該架橋性アクリルゴム組成物を架橋して得られる、耐熱性、耐寒性及び耐燃料油性に優れるアクリルゴム架橋物を提供すること。

【解決手段】 アルコキシアルキル(メタ)アクリレート単量体単位 $70.1\sim99.8$ 重量%、メタクリロニトリル単量体単位 $0.1\sim9.9$ 重量%及びブテンジオン酸モノエステル単量体単位 $0.1\sim20$ 重量%とから成るアクリルゴム及びこれに架橋剤を含有してなる架橋性アクリルゴム組成物。

【選択図】 なし

特願2004-052911

出 願 人 履 歴 情 報

識別番号

[000229117]

変更年月日
 変更理由]

1990年 8月22日

更理由] 新規登録 住 所 東京都千

東京都千代田区丸の内2丁目6番1号

氏 名 日本ゼオン株式会社