Satz von Avogadro:

In gleichen Volumina verschiedener Gase sind immer gleich viele Gasteilchen (Moleküle oder isolierte Atome) enthalten, wenn Druck und Temperatur gleich sind.

Molares Volumen V_m:

1 mol eines <u>Gases</u> nimmt bei Normalbedingungen (0°C, 1013 hPa) das Volumen von 22,4 Liter ein.

$$V_{\rm m} = \frac{V}{n} = 22,4 \frac{l}{mol}$$

Bei Raumtemperatur (20°C) beträgt das molare Volumen 24 $\frac{l}{mol}$.

Zum Vergleich: die molare Masse M bezieht sich auf die Masse von 1mol eines Stoffes:

$$\mathbf{M} = \frac{m}{n} \left[\frac{g}{mol} \right]$$

Aufgabe:

1. Welches Volumen nehmen 0,75 mol Stickstoff (N₂) ein?

Geg:
$$n(N_2) = 0.75 \text{ mol}$$
 $V_m = 22.4 \frac{l}{mol}$

Ges: $V(N_2)$
 $V_m = \frac{V}{n} \leftrightarrow V = V_m \cdot n$
 $V(N_2) = 22.4 \frac{l}{mol} \cdot 0.75 \text{ mol} = 16.8 \text{ l}$

- 2. Welches Volumen nimmt 0,5 g Wasserstoff (H₂) ein?
- a. Umrechnen von g in mol:

Geg: m(H₂) = 0,5 g M(H₂) =
$$2 \frac{g}{mol}$$

Ges: n (H₂)
n = $\frac{m}{M}$ n (H₂) = $\frac{0.5 g}{2g/mol}$ = 0,25 mol

b. Berechnung von V mithilfe von Vm

Geg:
$$n(H_2) = 0.75 \text{ mol}$$
 $V_m = 22.4 \frac{l}{mol}$

Ges: $V(H_2)$
 $V_m = \frac{V}{n} \leftrightarrow V = V_m \cdot n$
 $V(H_2) = 22.4 \frac{l}{mol} \cdot 0.25 \text{ mol} = 5.6 \text{ l}$