

Figure 1: Numerical prediction with low propagule $g_0 = 75$, low synchrony $\rho = 0.25$, and weak omnivory $\theta = 0.25$. Heatmaps of FCL are expressed as a function of ecosystem size (river length, L) and complexity (branching rate, λ_b), with rows and columns displaying different combinations of resource supply (r_0) , disturbance regime $(\mu^{(0)})$, predation effect $(\mu^{(c)})$, and prey effect $(\mu^{(p)})$. Each cell represents the average FCL of five food webs. Additional parameter values are: habitat density h = 2.5, dispersal capability $\delta_0 = 0.5$, and scaling exponent $\psi_1 = \psi_2 = 0.5$.

Figure 2: Numerical prediction with high propagule $g_0 = 150$, low synchrony $\rho = 0.25$, and weak omnivory $\theta = 0.25$. Heatmaps of FCL are expressed as a function of ecosystem size (river length, L) and complexity (branching rate, λ_b), with rows and columns displaying different combinations of resource supply (r_0) , disturbance regime $(\mu^{(0)})$, predation effect $(\mu^{(c)})$, and prey effect $(\mu^{(p)})$. Each cell represents the average FCL of five food webs. Additional parameter values are: habitat density h = 2.5, dispersal capability $\delta_0 = 0.5$, and scaling exponent $\psi_1 = \psi_2 = 0.5$.

Figure 3: Numerical prediction with low propagule $g_0 = 75$, high synchrony $\rho = 0.5$, and weak omnivory $\theta = 0.25$. Heatmaps of FCL are expressed as a function of ecosystem size (river length, L) and complexity (branching rate, λ_b), with rows and columns displaying different combinations of resource supply (r_0) , disturbance regime $(\mu^{(0)})$, predation effect $(\mu^{(c)})$, and prey effect $(\mu^{(p)})$. Each cell represents the average FCL of five food webs. Additional parameter values are: habitat density h = 2.5, dispersal capability $\delta_0 = 0.5$, and scaling exponent $\psi_1 = \psi_2 = 0.5$.

Figure 4: Numerical prediction with high propagule $g_0 = 150$, high synchrony $\rho = 0.5$, and weak omnivory $\theta = 0.25$. Heatmaps of FCL are expressed as a function of ecosystem size (river length, L) and complexity (branching rate, λ_b), with rows and columns displaying different combinations of resource supply (r_0) , disturbance regime $(\mu^{(0)})$, predation effect $(\mu^{(c)})$, and prey effect $(\mu^{(p)})$. Each cell represents the average FCL of five food webs. Additional parameter values are: habitat density h = 2.5, dispersal capability $\delta_0 = 0.5$, and scaling exponent $\psi_1 = \psi_2 = 0.5$.

Figure 5: Numerical prediction with low propagule $g_0 = 75$, low synchrony $\rho = 0.25$, and strong omnivory $\theta = 0.5$. Heatmaps of FCL are expressed as a function of ecosystem size (river length, L) and complexity (branching rate, λ_b), with rows and columns displaying different combinations of resource supply (r_0) , disturbance regime $(\mu^{(0)})$, predation effect $(\mu^{(c)})$, and prey effect $(\mu^{(p)})$. Each cell represents the average FCL of five food webs. Additional parameter values are: habitat density h = 2.5, dispersal capability $\delta_0 = 0.5$, and scaling exponent $\psi_1 = \psi_2 = 0.5$.

Figure 6: Numerical prediction with high propagule $g_0 = 150$, low synchrony $\rho = 0.25$, and strong omnivory $\theta = 0.5$. Heatmaps of FCL are expressed as a function of ecosystem size (river length, L) and complexity (branching rate, λ_b), with rows and columns displaying different combinations of resource supply (r_0) , disturbance regime $(\mu^{(0)})$, predation effect $(\mu^{(c)})$, and prey effect $(\mu^{(p)})$. Each cell represents the average FCL of five food webs. Additional parameter values are: habitat density h = 2.5, dispersal capability $\delta_0 = 0.5$, and scaling exponent $\psi_1 = \psi_2 = 0.5$.

Figure 7: Numerical prediction with low propagule $g_0 = 75$, high synchrony $\rho = 0.5$, and strong omnivory $\theta = 0.5$. Heatmaps of FCL are expressed as a function of ecosystem size (river length, L) and complexity (branching rate, λ_b), with rows and columns displaying different combinations of resource supply (r_0) , disturbance regime $(\mu^{(0)})$, predation effect $(\mu^{(c)})$, and prey effect $(\mu^{(p)})$. Each cell represents the average FCL of five food webs. Additional parameter values are: habitat density h = 2.5, dispersal capability $\delta_0 = 0.5$, and scaling exponent $\psi_1 = \psi_2 = 0.5$.

Figure 8: Numerical prediction with high propagule $g_0 = 150$, high synchrony $\rho = 0.5$, and strong omnivory $\theta = 0.5$. Heatmaps of FCL are expressed as a function of ecosystem size (river length, L) and complexity (branching rate, λ_b), with rows and columns displaying different combinations of resource supply (r_0) , disturbance regime $(\mu^{(0)})$, predation effect $(\mu^{(c)})$, and prey effect $(\mu^{(p)})$. Each cell represents the average FCL of five food webs. Additional parameter values are: habitat density h = 2.5, dispersal capability $\delta_0 = 0.5$, and scaling exponent $\psi_1 = \psi_2 = 0.5$.