Intro: Coin Changing

Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, give change to customer using *fewest* number of coins.

Ex: 34¢.

Algorithm is "Greedy": One large coin better than two or more smaller ones

Cashier's algorithm. At each iteration, give the *largest* < coin valued ≤ the amount to be paid.

Ex: \$2.89.

Coin-Changing: Does Greedy Always Work?

Observation. Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.

■ Greedy: 100, 34, 1, 1, 1, 1, 1.

• Optimal: 70, 70.

Algorithm is "Greedy", but also short-sighted – attractive choice now may lead to dead ends later.

Correctness is key!

Outline & Goals

```
"Greedy Algorithms" what they are
```

Pros

intuitive often simple often fast

Cons

often incorrect!

Proof techniques
stay ahead
structural
exchange arguments

Proof Technique 1: "greedy stays ahead"

- Job j starts at s_j and finishes at f_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- What order?
- Does that give best answer?
- Why or why not?
- Does it help to be greedy about order?

Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

[Earliest start time] Consider jobs in ascending order of start time s_{j} .

[Earliest finish time] Consider jobs in ascending order of finish time f_j .

[Shortest interval] Consider jobs in ascending order of interval length $f_j - s_j$.

[Fewest conflicts] For each job, count the number of conflicting jobs c_j . Schedule in ascending order of conflicts c_j .

Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it's compatible with the ones already taken.

Implementation. O(n log n).

- Remember job j* that was added last to A.
- Job j is compatible with A if $s_j \ge f_{j*}$.

Interval Scheduling: Correctness

Theorem. Greedy algorithm is optimal.

Pf. ("greedy stays ahead")

Let i_1 , i_2 , ... i_k be jobs picked by greedy, j_1 , j_2 , ... j_m those in some optimal solution Show $f(i_r) \le f(j_r)$ by induction on r.

Basis: i_1 chosen to have min finish time, so $f(i_1) \le f(j_1)$

Ind: $f(i_r) \le f(j_r) \le s(j_{r+1})$, so j_{r+1} is among the candidates considered by greedy when it picked i_{r+1} , & it picks min finish, so $f(i_{r+1}) \le f(j_{r+1})$

Similarly, $k \ge m$, else j_{k+1} is among (nonempty) set of candidates for i_{k+1}

Proof Technique 2: "Structural"

Interval partitioning.

- Lecture j starts at s_j and finishes at f_j .
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.

Interval Partitioning as Interval Graph Coloring

Vertices = classes; edges = conflicting class pairs; different colors = different assigned rooms

Note: graph coloring is very hard in general, but graphs corresponding to interval intersections are a much

Interval partitioning.

- Lecture j starts at s_j and finishes at f_j .
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.

Interval Partitioning: A "Structural" Lower Bound on Optimal Solution

Def. The <u>depth</u> of a set of open intervals is the maximum number that contain any given time.

no collisions at ends

Key observation. Number of classrooms needed ≥ depth.

Ex: Depth of schedule below = 3 ⇒ schedule below is optimal.

a, b, c all contain 9:30

Q. Does there always exist a schedule equal to depth of intervals?

Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

```
Sort intervals by starting time so that s_1 \le s_2 \le \ldots \le s_n. d=0 — number of allocated classrooms

for j=1 to n {
   if (lect j is compatible with some classroom k, 1 \le k \le d)
      schedule lecture j in classroom k

else
   allocate a new classroom d+1
   schedule lecture j in classroom d+1
   d=d+1
```

Implementation? Run-time? Exercises

Interval Partitioning: Greedy Analysis

Theorem. Greedy algorithm is optimal.

Pf (exploit structural property).

- Let d = number of classrooms that the greedy algorithm allocates.
- Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all d-1 previously used classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_i .
- Thus, we have d lectures overlapping at time s_i , i.e. depth $\ge d$
- "Key observation" all schedules use ≥ depth classrooms, so
 d = depth and greedy is optimal