UE Einführung in Numerical Computing Übungsblatt 5

Rechenbeispiele

41. Gegeben sind die Stützstellen

$$x_0 = 2$$
 $y_0 = 3$
 $x_1 = 7$ $y_1 = 2$
 $x_2 = 10$ $y_2 = 4$

- (a) Bestimme das Interpolationspolynom M in der monomialen Basis.
- (b) Bestimme die Lagrange-Polynome l_j und das Lagrange-Interpolationspolynom P.
- (c) Erstelle eine Grafik für M und P mit den entsprechenden Stützstellen.
- (d) Bestimme die Werte an den Stellen x = 3, 5 und 8 für M und für P.

42. Gegeben sind die Stützstellen

$$x_0 = -1$$
 $y_0 = 0$
 $x_1 = 1$ $y_1 = 2$
 $x_2 = 2$ $y_2 = 4$

- (a) Bestimme das Newton-Interpolationspolynom.
- (b) Erstelle dazu eine Grafik.
- (c) Berechne die Werte des Newton-Interpolationspolynoms an der Stelle x=0.

43. Gegeben sind die Stützstellen

$$x_0 = -1$$
 $y_0 = 0$
 $x_1 = 1$ $y_1 = 2$
 $x_2 = 2$ $y_2 = 4$

- (a) Bestimme mit dem Schema der dividierten Differenzen die Koeffizienten für das Newton-Interpolationspolynom.
- (b) Füge eine weitere Stützstelle $x_3 = 3$ $y_3 = 2$ hinzu und bestimme das neue Polynom.
- (c) Berechne die Werte an der Stelle x=0 jeweils für die Newton-Interpolationspolynome aus Beispiel (a) und (b).
- (d) Erstelle zu obigen Beispielen Grafiken.

44. Gegeben ist die Funktion

$$f(x) = \log(x) - \frac{x-1}{x}$$

Bestimme für die folgenden Mengen von Stützstellen durch Interpolation den Funktionswert an der Stelle x=5,25 und vergleiche jeweils dieses Ergebnis mit dem exakten Wert. Erstelle dazu auch grafische Darstellungen!

- (a) $x_0 = 4$, $y_0 = f(x_0)$ $x_1 = 8$, $y_1 = f(x_1)$
- (b) $x_0 = 4$, $y_0 = f(x_0)$ $x_1 = 8$, $y_1 = f(x_1)$ $x_2 = 10$, $y_2 = f(x_2)$
- (c) $x_0 = 2$, $y_0 = f(x_0)$ $x_1 = 4$, $y_1 = f(x_1)$ $x_2 = 8$, $y_2 = f(x_2)$
- 45. Wieviele Multiplikationen werden benötigt, um den Wert des Polynoms p(t) vom Grad n-1 an einer gegebenen Stelle t zu bestimmen, wenn das Polynom dargestellt wird in
 - (a) monomialer Basis?
 - (b) Lagrange-Basis?
 - (c) Newton-Basis?
- 46. Bestimme die Werte von a, b, c, d, und e derart, dass die folgende Funktion ein kubischer Spline ist.

$$f(x) = \begin{cases} a(x-2)^2 + b(x-1)^3 & x \in (-\infty, 1] \\ c(x-2)^2 & x \in [1, 3] \\ d(x-2)^2 + e(x-3)^3 & x \in [3, \infty) \end{cases}$$

Zusätzlich soll gelten, dass

$$f(1) = 1$$
 $f'''(0) = 6$ $f'''(4) = 6$

Zeichne die erhaltene Funktion!

47. Welche Eigenschaften eines natürlichen kubischen Splines besitzt die folgende Funktion und welche nicht?

$$f(x) = \begin{cases} (x+1) + (x+1)^3 & x \in (-1,0] \\ 4 + (x-1) + (x-1)^3 & x \in (0,1] \end{cases}$$

Zeichne die erhalten Funktion f!

Programmierbeispiele

48. Ein Experiment ergab folgende Daten:

Interpolieren Sie die Daten mit einem Polynom vom Grad 5 und erstellen Sie eine grafische Darstellung im gegebenen Bereich $t \in [0, 9]$ mit einer Methode Ihrer Wahl.

49. Ein Experiment ergab folgende Daten:

Bestimmen Sie einen kubischen Spline, der die gegebenen Daten interpoliert und erstellen Sie eine grafische Darstellung im gegebenen Bereich $t \in [0, 9]$.

50. Folgende Datenpunkte sind gegeben:

Eine Interpolation dieser Datenpunkte sollte eine Approximation der Wurzelfunktion ergeben.

- (a) Bestimmen Sie ein Polynom vom Grad 8, das diese 9 Datenpunkte interpoliert.
- (b) Erstellen Sie eine grafische Darstellung des erhaltenen Polynoms und der vom System erstellen Wurzelwerte (sqrt) im Bereich [0, 64].
- (c) Erstellen Sie eine grafische Darstellung des erhaltenen Polynoms und der vom System erstellen Wurzelwerte (sqrt) im Bereich [0, 1] und vergleichen Sie die Werte.