

Global Structure-from-Motion Revisited (GLOMAP)

Linfei Pan¹

Dániel Baráth¹ ¹ETH Zurich Marc Pollefeys^{1,2} ²Microsoft

Johannes L Schönberger²

Overview

Goal: Efficiency + Robustness

- Replacing translation averaging by global positioning
- Open-source software for Global SfM pipeline
- **Drop-in replacement** for COLMAP mapper
- On par or superior performance compared with COLMAP

Pitfalls of Previous Global SfM: Translation Averaging

- Challenges: forward / sideway motion, uncalibrated cameras
- Error in relative pose estimation can be amplified by translation averaging
- Estimation of relative translation is error-prone
- The reconstruction can only be determined uniquely if the view-graph is subject to parallelrigidity

Pipeline Input Images

Global Positioning

Random Initialization

Valid Reconstruction

Properties

- Bilinear form: converges quickly from random initialization
- **Bounded error**: for optimal d_{ik} , each error term $\in [0, 1]$ is robust to outliers

Why more robust

- More constraints lead to smaller variances
- Applicable when intrinsics are not accurate
- Constraints are not degenerate in case of colinear motion

Experiments

• LaMAR LIN: large scale, > 36k images, > 250 m

• ~90% recall at 1m, ~5.5h (GLOMAP) vs ~50% recall at 1m, > 7 days (COLMAP)

Experiment Summary

References

[1] Zhuang et al., "Baseline Desensitizing in Translation Averaging", CVPR 2018

- [2] Moulon et al., "Global fusion of relative motions for robust, accurate and scalable structure from motion", ICCV 2013
- [3] Sweeney, "Theia Multiview Geometry Library: Tutorial & Reference"
- [4] Schönberger and Frahm, "Structure-from-Motion Revisited", CVPR 2016