我的第一个 IATEX 文档

我喜欢满天繁星.

目录

1	plzover			
	1.1	导数	1	
	1.2	解三角形	1	
2 我喜欢满天繁星.		2		
	2.1	导数	2	
	2.2	数列	2	
	2.3	解析几何	3	
	2.4	创新题	3	

1 plzover

1.1 导数

- 1. 已知函数 $f(x) = e^x + a \sin\left(x + \frac{\pi}{4}\right) a^2(x+1)$.
 - (a) $g(x) = f(x) a \sin\left(x + \frac{\pi}{4}\right)$, 试讨论 g(x) 的单调性.
 - (b) $f(x) \ge 0$ 对 $\forall x \in (-1, +\infty)$ 均成立, 求 a 的取值范围.
- 2. 已知函数 $f(x) = e^{x-a} a \ln x + 1$, $a \in (-1,0)$. 证明: 存在唯一的 x_0 使得 $f(x_0) = 0$, 且 x_0 随 a 递减.
- 3. 已知函数 $f(x) = x^a \ln x, a \in \mathbb{R}$.
 - (a) 讨论 f(x) 的单调性.
 - (b) 当 $x \ge 1$, $a \ge 1$ 时, 证明: $f(x) \ge x^{a-1}(x-1) \ \text{以及} \ f(x) \ge -\frac{1}{2}(x-1)(x-3)[1+a(x-1)].$
 - (c) 当 $a \ge 1$, 证明: $\frac{n(n-1)}{2} \le \sum_{i=1}^{n} i^a \ln i \le \frac{[a(n-1) + (n-2)]}{(a+1)^2} n^{a+1} + \frac{1}{(a+1)^2}, i \in \mathbb{N}_+.$
- 4. 已知函数 $f(x) = \ln x 3ax^2 + 2$.
 - (a) f(x) 有两个零点, 求 a 的取值范围.
 - (b) 若函数 f(x) 有两个不同的零点 $x_1, x_2, (x_1 < x_2)$, 证明: $x_1 + x_2 > \sqrt{\frac{2}{3a}}$.

1.2 解三角形

1. 在 $\triangle ABC$ 中, $\overrightarrow{CP} = \frac{\sqrt{10}}{2}\overrightarrow{CA} + \overrightarrow{CB}$, $\cos \angle ACB = \frac{\sqrt{10}}{10}$, $|CP| = \sqrt{3}$, 求 a + 2b 的最大值.

2 我喜欢满天繁星.

2.1 导数

- 1. 已知函数 $f(x) = ax + \frac{b}{x} |\ln x|$ 有两个极值点 x_1, x_2 . 证明:
 - (a) |b-a| < 1.
 - (b) $f(x_1) = f(x_2)$ 是 a = b 的充分必要条件.
- 2. 已知函数 $f(x) = (x-1)^2 e^x$, 方程 f(x) = a 有三个根 x_1, x_2, x_3 $(x_1 < x_2 < x_3)$, 证明:
 - (a) $x_2 + x_3 < 2$.
 - (b) $\stackrel{\text{def}}{=} 0 < a < 1 \text{ pt}, |x_2 x_3| < 2\sqrt{a}.$
- 3. 己知函数 $f(x) = e^{ax} + a^2x^2 + bx$.
 - (a) 若函数 $g(x) = f(x) a^2x^2$ 有两个不同的零点, 求 $\frac{b}{a}$ 的取值范围.
 - (b) 设 x_0 是函数 f(x) 的极值点, 证明 $f(x_0) \leq 1 a^2 x_0^2$.
- 4. 己知函数 $f(x) = (1 \ln x) x^m$, $g(x) = (1 x) n^x$, (m, n > 0).
 - (a) 证明: f(x) 和 g(x) 都一定有零点.
 - (b) 记 f(x) 和 g(x) 的最大值分别为 M,N. 当 $M \geqslant 2 \ln 2$ 时, 若 $M \geqslant N$, 求 n 的取值范围.

2.2 数列

- 1. 在数列 $\{a_n\}$ 中, $na_{n+1} = (n+1)^2 a_n$, $a_1 = 1$.
 - (a) 求数列 $\{a_n\}$ 的通项公式.
 - (b) 求数列 $\{a_n\}$ 的前 n 项和 S_n .

- 2. 在数列 $\{a_n\}$ 中, 若 $S_{n+1} = (n+2)S_n + n + 1$, $S_2 = 5$, 求数列 $\{a_n\}$ 的通项公式.
- 3. 在数列 $\{a_n\}$ 中, 若 $(\sqrt{S_{n+1}} \sqrt{S_n})(\sqrt{n+1} \sqrt{n}) = 1$, $a_1 = 1$. 证明: 数列 $\{a_n\}$ 为常数列.
- 4. 在数列 $\{a_n\}$ 中, 若 $\frac{S_n}{n^2} + n = \frac{a_n}{n^2} + \frac{1}{n}$.
 - (a) 求 $\{a_n\}$ 的通项公式.
 - (b) 令 $b_n = \frac{1}{a_n}$, 数列 $\{b_n\}$ 前 n 项和为 T_n , 证明: $-\frac{1}{3} < T_n \leqslant -\frac{1}{6}$.

2.3 解析几何

- 1. 已知椭圆 $\Gamma: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0)$,过左顶点 A 的直线 l_1 交椭圆 Γ 于点 M (异于点 A),过坐标原点 O 的直线 l_2 交椭圆 Γ 于点 N,直线 l_1 与直线 l_2 交于点 P, $\overrightarrow{MN} = \lambda \overrightarrow{OM} \ (\lambda \neq 0)$, $\overrightarrow{OM} \cdot \overrightarrow{ON} \in (-4,1)$.
 - (a) 求椭圆 Γ 的方程.
 - (b) 是否存在定点 F_1, F_2 , 使得 $|PF_1| |PF_2|$ 为定值. 若存在, 请求出 F_1, F_2 的坐标; 若不存在, 请说明理由.
- 2. 已知椭圆 $\Gamma: \frac{x^2}{4} + y^2 = 1$, 点 P(m,n) 在圆 $M: x^2 + (y+3)^2 = 1$ 上, PA, PB 是椭圆 Γ 的两条切线, A, B 是切点.
 - (a) 证明: 直线 AB 的方程为 mx + 4ny = 4.
 - (b) 求 *S*△*PAB* 的取值范围.

2.4 创新题

- 1. 己知点 $A(e^x, x)$, 点 $B(x, \ln x)$, 点 $C(\ln x, x)$.
 - (a) 请探究 A, B, C 三点能否共线. 如能, 请说明理由; 如不能, 也请说明理由.
 - (b) 证明: $S_{\triangle ABC} > 1$.
 - (c) 证明: $\sqrt{2}|AB| \ge |AC|$.