HOMEWORK 9

SAI SIVAKUMAR

Given $L \in \mathbb{R}$ and $f: [0, \infty) \to \mathbb{R}$, the function f has limit L at infinity, written,

$$\lim_{x \to \infty} f(x) = L,$$

if for every $\epsilon > 0$ there is a C > 0 such that if x > C, then $|f(x) - L| < \epsilon$.

Prove if $f:[0,\infty)\to\mathbb{R}$ is continuous, $L\in\mathbb{R}$ and has limit L at infinity, then f is uniformly continuous.

I worked with Jude Flynn, Nicholas Kapsos, Elaine Danielson, and Silas Rickards to come up with the idea for the proof.

Proof. Let $f:[0,\infty)\to\mathbb{R}$ be continuous with limit $L\in\mathbb{R}$ at infinity as given.

Given $\varepsilon > 0$, because f has limit L at infinity, there exists C > 0 such that if z > C, then $|f(z) - L| < \varepsilon/2$.

The function f is continuous on $[0, \infty)$, and so f is continuous on the nonempty compact interval [0, C+1]. Hence f is uniformly continuous on [0, C+1]. Therefore when $x, y \in [0, C+1]$, we can choose $0 < \delta < 1$ such that if $|x - y| < \delta$, then $|f(x) - f(y)| < \varepsilon$.

When x, y are not both in [0, C+1] (with $x, y \in [0, \infty)$) and $|x-y| < \delta$, it follows that both x, y > C since $\delta < 1$ (without loss of generality, if $x \notin [0, C+1]$, then C+1 < x, which implies $C+1-\delta < y$). Thus the only other scenario which remains is to consider when x, y > C. When x, y > C,

$$|f(x) - f(y)| = |f(x) - L + L - f(y)|$$

$$\leq |f(x) - L| + |L - f(y)|$$

$$< \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Note that in this case we did not use the hypothesis that $|x-y| < \delta$. Hence f is uniformly continuous on $[C, \infty)$. Thus f is uniformly continuous on [0, C+1] and $[C, \infty)$.

It follows that given $\varepsilon > 0$, there exists $\delta > 0$ such that for any $x, y \in [0, \infty)$, if $|x - y| < \delta$, then $|f(x) - f(y)| < \varepsilon$ (in particular the choice of $\delta > 0$ is the one made in the first case). Hence f is uniformly continuous on $[0, \infty)$.