Line Fitting & SVD

Computer Vision Lab

http://www.cab.u-szeged.hu/~kato/

Problem

- Given a set of points P₁, P₂,..., P_N in the plain
- Fit a straight line such that
 - Sum of squared distances of the points from the line is minimized (*geometric error*) $c + n_x x + n_y y = 0$, $n_x^2 + n_y^2 = 1$
 - Line represented by equations:
 - (n_x,n_y) is the unit normal to the line
 - When P is not on the line, then |r| is its distance from it.
 - → Constrained Least Squares problem: $c + n_v x + n_v y = r$
 - Minimize
 - subject to and $n_{y}^{2} + n_{y}^{2} = 1$

Solution

- N may be large → A has many rows
 - Compute QR decomposition (Q orthogonal, R upper triangular) of A to reduce the problem to solving a small system
 - Since the norm is invariant to orthogonal transformations (i.e. $||Q^Tr||=||r||$), we can proceed as follows:

$$\mathbf{A} = \mathbf{Q}\mathbf{R} \Rightarrow \mathbf{Q}^{\mathsf{T}}\mathbf{A}\mathbf{x} = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ 0 & R_{22} & R_{23} \\ 0 & 0 & R_{33} \\ 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} c \\ n_x \\ n_y \end{bmatrix} = \mathbf{Q}^{\mathsf{T}}\mathbf{r} \quad \text{and} \quad n_x^2 + n_y^2 = 1$$

Solution

 Since the nonlinear constraint only involves 2 unknowns, we have to solve

$$\begin{bmatrix} R_{22} & R_{23} \\ 0 & R_{33} \end{bmatrix} \begin{bmatrix} n_x \\ n_y \end{bmatrix} \approx 0, \text{ subject to } \mathbf{n}_x^2 + \mathbf{n}_y^2 = \mathbf{1}$$

- This is a classical Constrained LSE (CLSE) problem: ||Bx||=min, subject to ||x||=1.
 - The min. value is the smallest singular value of B
 - The solution is the *corresponding singular vector*
 - \rightarrow (n_v,n_v) is obtained by SVD of B
 - → c is then obtained by back substitution

SVD: definition

Singular Value Decomposition:

Any mxn matrix can be written as the product of three matrices

Singular values of are fully determined by A

■ D is diagonal: dij =0 if $i\neq j$; dii = σ_i (i=1,2,...,n)

 $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_N \geq 0$

Both U and V are not unique

Columns of each are mutual orthogonal vectors

Slides adopted from

CS 395/495-26: Spring 2004 **IBMR: Singular Value Decomposition** (SVD Review)

Jack Tumblin jet@cs.northwestern.edu

Matrix Multiply: A Change-of-Axes

- Matrix Multiply: Ax = b
 - x and b are column vectors
 - A has m rows, n columns

Matrix Multiply: A Change-of-Axes

- Matrix Multiply: Ax = b
 - x and b are column vectors
 - A has m rows, n columns

- Matrix multiply is just a set of dot-products; it 'changes coordinates' for vector x, makes b.
 - Rows of A = $A_1, A_2, A_3, ...$ = new coordinate axes
 - -Ax = a dot product for each new axis

How Does Matrix 'stretch space'?

- Sphere of all unit-length x → ellipsoid of b
- Output ellipsoid's axes are always perpendicular (true for any ellipsoid)

THUS we can make __, unit-length axes...

SVD finds: 'Output' Vectors U, and...

- Sphere of all unit-length x → ellipsoid of b
- Output ellipsoid's axes form orthonormal basis vectors U_i:
- Basis vectors U_i are columns of U matrix

SVD finds: ...'Input' Vectors V, and...

- For each U_i, make a matching V_i that:
 - Transforms to U_i (with scaling s_i): s_i (A V_i) = U_i
 - Forms an orthonormal basis of input space

SVD finds: ... 'Scale' factors S.

- We have Unit-length Output U_i, vectors,
- Each from a Unit-length Input V_i vector, so
- So we need 'scale factor' (singular values) s_i
 to link input to output: s_i (A V_i) = U_i

SVD Review: What is it?

- Finish: SVD(A) = USV^T
 - add 'missing' U_i or V_i, define these s_i=0.
 - Singular matrix S: diagonals are s_i: 'v-to-u scale factors'
 - Matrix **U**, Matrix **V** have columns **U**, and **V**_i

 $A = USV^T$

'Find Input & Output Axes, Linked by Scale'

'Let SVDs Explain it All for You'

- cool! U and V are Orthonormal! $U^{-1} = U^{T}$. $V^{-1} = V^{T}$
- Rank(A)? == # of non-zero singular values s_i
- 'ill conditioned'? Some s, are nearly zero
- 'Invert' a non-square matrix A? Amazing! $A=USV^{T}$: $A VS^{-1}U^{T} = I$: pseudo-inverse:

 $A = USV^T$

'Find Input & Output Axes, Linked by Scale'

'Solve for the Null Space' Ax=0

- Easy! x is the V_i axis that doesn't affect the output ($s_i = 0$)
- are <u>all</u> s_i nonzero? then the only answer is x=0.
- Null 'space' because V_i is a DIMENSION--- x = Vi * a
- More than 1 zero-valued s_i? null space >1 dimension ... $x = aV_{i1} + bV_{i2} + ...$

 $A = USV^T$

'Find Input & Output Axes, Linked by Scale'

SVD: properties

- Condition number : degree of singularity of A
 - A is ill-conditioned if 1/C is comparable to the arithmetic precision of your machine; almost singular
- 2. Rank of a square matrix A
 - Rank (A) = number of nonzero singular values
- 3. Inverse of a square Matrix
 - If A is nonsingular
 - In general, the pseudo-inverse of A
- $\mathbf{A}^+ = \mathbf{V}\mathbf{D}_0^{-1}\mathbf{U}^T$

 $\mathbf{A}^{-1} = \mathbf{V}\mathbf{D}^{-1}\mathbf{U}^T$

- 4. Eigenvalues and Eigenvectors
 - Eigenvalues of both A^TA and AA^T are σ_i^2 ($\sigma_i > 0$)
 - The columns of U are the eigenvectors of AA^T (mxm)
 - The columns of V are the eigenvectors of A^TA (nxn)

 $C = \sigma_1 / \sigma_n$

SVD: Application 1

Least Square

- Ax = b
- Solve a system of m equations for n unknowns x(m >= n)
- A is a mxn matrix of the coefficients
- b (≠0) is the m-D vector of the data
- Solution:

$$\mathbf{A}^{T}\mathbf{A}\mathbf{x} = \mathbf{A}^{T}\mathbf{b}$$

$$\mathbf{x} = (\mathbf{A}^{T}\mathbf{A})^{+}\mathbf{A}^{T}\mathbf{b}$$
Pseudo-inverse

- How to solve: compute the pseudo-inverse of A^TA by SVD
 - (A^TA)⁺ is more likely to coincide with (A^TA)⁻¹ given m > n
 - Always a good idea to look at the condition number of A^TA

SVD: Application 2

- Homogeneous System
 - m equations for n unknowns x(m >= n-1)

- Rank (A) = n-1 (by looking at the SVD of A)
- A non-trivial solution (up to a arbitrary scale) by SVD:
- Simply proportional to the eigenvector corresponding to the only zero eigenvalue of A^TA (nxn matrix)
- Note:
 - All the other eigenvalues are positive because Rank (A)=n-1
 - In practice, the eigenvector (i.e. v_n) corresponding to the minimum eigenvalue of A^TA , i.e. σ_n^2

SVD: Application 3

- Problem Statements
 - Numerical estimate of a matrix A whose entries are not independent
 - Errors introduced by noise alter the estimate to Â
- Enforcing Constraints by SVD
 - Take orthogonal matrix A as an example
 - Find the closest matrix to Â, which satisfies the constraints exactly
 - SVD of Â
 - Observation: D = I (all the singular values are 1) if A is orthogonal
 - Solution: changing the singular values to those expected $\mathbf{A} = \mathbf{U} \mathbf{I} \mathbf{V}^T$

Homework

- Detect edges on the calibrating target image (use Canny edge detector from XITE)
- Fit straight lines to the edge points
 - Use your prior knowledge about the calibration pattern