Лекции по введению в топлогию

Лектор: Миллионщиков Д.В. Автор конспекта: Ваня Коренев*

2 курс. Осенний семестр 2024,г. 8 сентября 2024 г.

*tg: @gallehus

Содержание

1 Лекция 1 3

1 Лекция 1

Повторение определений из мат. анализа: окрестность точки, открытое множество, замкнутое множество, непрерывная функция, компакт, связность, метрическое пространство. Так же было отмечено, что топлогию можно задать через систему окрестностей.

Замечание 1.1. $\rho(x,y) = |x-y|$ - метрика, при $x,y \in \mathbb{R}^1$.

Определение 1.2. Пара (X, ρ) называется метрическим пространство, если $\rho: X \times X \leftarrow \mathbb{R}_{\geq 0}$ удовлетворяет аксиомам метрики.

Теорема 1.3. $(\mathbb{R}^1, \rho = |x - y|)$ является метрическим пространством.

Определение 1.4. Топологическое пространство (X, τ) , где τ - совокупность подмножеств - тополгия, удовлетво-яряющие следующим свойствам

- 1. $\emptyset \in \tau$
- $2. X \in \tau$
- 3. $\bigcap_{i=1}^k U_k \in \tau$
- 4. $\bigcup U_k \in \tau$

Пример 1.5. 1. антидискретная(тривиальная) топология $\tau = \{\emptyset, X\}$

- 2. дискретная топология $\tau = 2^X$
- 3. $X=\{1,2\}$, способы задания топологии: $au_1=\{X,\emptyset,\{1\}\}$, $au_1=\{X,\emptyset,\{2\}\}$

Определение 1.6. Пусть X - метрическое пространство. Открытый шар $O_r(x_0) = \{x \in X \mid \rho(x,x_0) < r\}$

Определение 1.7. Пусть X - метрическое пространство. $U \subset X$ - открыто, если $\forall x \in U \exists$ окрестность точ-ки(=открытый шар, содержащий x) x, содержащаяся в U.

Определение 1.8. $B \ X \ npous вольном топологическом пространстве <math>U \subset X \ является \ замкнутым, если дополнение <math>\kappa$ нему открыто.

Пример 1.9. Топология Зарисского определяется в \mathbb{C}^1 , можно обобщить до \mathbb{C}^n . - что-то из алгебраическое геометии.

Замкнутое множество - это конечное множество точек.

Задача 1.10. Доказать, что это топология.

Определение 1.11. База топологии $\beta \subset \tau \subset 2^X$ - любое открытое подмножество $U \in \tau$ можно выразить в виде определения элементов из базы β , т.е. $U = \bigcap_{\alpha \in A} B_{\alpha}$, где B_{α} является элементом базы.

База топологии необходима для уменьшения количестав задаваемых открытых множеств для определения топологии

Следующее утверждение не дописано.

Лемма 1.12 (Достаточное условие на базу топологии). $\beta \subset 2^x$ - набор подмножеств. Если выполняются следующие условия

- 1. $\forall x \in X \exists B_x \in \beta \text{ makee, umo } x \in B_x.$
- 2. $\forall B_1, B_2 \in \beta \Rightarrow (x \in B_1 \cap B_2 \Rightarrow \exists B_3 \in \beta : B_3 \subset B_1 \cup B_2)$

mo β является базой топлогии.

Доказательство. Вводим всевозможные $U_{\alpha} = \bigcup_{\gamma} B_{\gamma}^{\alpha}$. Проверим все свойства из опредления топологии. Добавим в топологию \emptyset, X для выполнения первый 2-ух свойств.

Задача 1.13. Повторить доказательство для базы метрического пространства.

Можно еще уменьшить количество задаваемых элементов.

Определение 1.14. π называется предбазов топологии, если $\pi \subset \beta \subset \tau \subset 2^X$ и каждое U представляется в виде объединения конечного пересечения элементов = множество всех подмножеств предбазы.

Замечание 1.15. Любое множество задает предбазу.

Следующее утверждение не дописано.

```
Пример 1.16. Пусть X=1,2,3,4,5. \pi=\{\{1,2,3\},\{2,3,4\},\{3,4,5\}\} - предбаза. \beta=\{\{1,2,3\},\{2,3,4\},\{3,4,5\},\{2,3\},\{3,4\},\{3\},\{1,2,3,4\},\{2,3,4,5\},\{umo-mo\},\emptyset\} \tau=\{\ldots,\ldots\} Причем \pi\subset\beta\subset\tau\subset2^X
```

Определение 1.17. $f: X \to Y$ - непрерывная функция, если для каждого открытого $U \subset Y$ выполняется $f^{-1}(U)$ - открыто в X.