

Software Engineering

5. Formale Spezifikation Teil 1: Sequentielle Systeme

Ruth Breu

Übersicht

- 5.1 Grundbegriffe
- 5.2 Spezifikation sequentieller Systeme
 - 5.2.1 Hoare-Kalkül
 - 5.2.2 OCL Object Constraint Language
- 5.3 Spezifikation nebenläufiger Systeme
 - 5.3.1 Semaphore
 - 5.3.2 Aktionsstrukturen
 - 5.3.5 Petrinetze
 - 3.3.4 Agenten

5.1 Grundbegriffe

Gründe der Definition einer Semantik

- Tiefgehendes Verständnis der Sprachkonstrukte gewinnen
- Beweis von allgemeinen Eigenschaften von Programmen Beispiel: Was bedeutet Nicht-Terminierung, Nicht-Determinismus?
- Gemeinsame Basis für Programmierung und Spezifikation

Semantik sequentieller Systeme

Die semantische Funktion beschreibt die Zustandsänderung, die die Ausführung eines Programms hervorruft

Beispiel

prog
$$\equiv$$
 int x, y, z;
 $z = x$;
 $x = y$;
 $y = z$;
Zustand (Beispiel): $\sigma_0 = [x \rightarrow 3, y \rightarrow 5, z \rightarrow 2]$
 $\sigma_0[x] = 3$ ("die Belegung der Variable x in Zustand σ ist 3")

Semantische Funktion:

I[prog]: STATE
$$\rightarrow$$
 STATE

I[prog] $(\sigma) = \sigma [x \rightarrow \sigma[y], y \rightarrow \sigma[x], z \rightarrow \sigma[x]]$

"der Wert der Variable x ist im neuen Zustand der Wert der Variable y im alten Zustand"

Beispiel:

I[prog] ([
$$x \rightarrow 3, y \rightarrow 5, z \rightarrow 2$$
]) = = [$x \rightarrow 5, y \rightarrow 3, z \rightarrow 3$]

Zustand eines objektorientierten Programms

Spezifikation

 Eine Spezifikation beschreibt die Eigenschaften eines Systems, sie ist ein Modell des Systems

Modellbegriff

- Pragmatisches Modell
 - Ziel: Kommunikation vereinfachen, Anforderungen dokumentieren
- Konstruktives Modell ("Model Engineering")
 - Ziel: Ausführbarkeit, Generierung von Code
- Formales Modell ("Formale Spezifikation")
 - Ziel: Formaler bzw. automatisierter Beweis von Systemeigenschaften

Übersicht Formale Spezifikationstechniken

Spezifikationstechniken für sequentielle Systeme (Beispiele)

Hoare-Logik – Spezifikation von Zuständen (-> 5.2.1) Z – Spezifikation von Vor-/Nachbedingungen, Invarianten OCL – ausführbare Spezifikationen (-> 5.2.2)

Spezifikationstechniken für verteilte Systeme (Beispiele)

Petrinetze – graphikorientiert (-> 5.3.3)

Statecharts – graphikorientiert (-> Kapitel 6)

Temporale Logik

Prozessalgebren – logikorientiert (-> 5.3.4)

Zusammenhang Spezifikation/Semantik/ Programm

Einsatz formaler Techniken

- Formale Spezifikationstechniken werden in der Praxis meist in sicherheitskritischen Bereichen angewandt
- Sicherheit = Safety oder Security
 - Safety = Schutz vor gefährlichen Fehlern technischer Systeme
 - Security = Schutz vor zielgerichteten Angriffen von innen und außen
- Beispiele:
 - Korrektheitsbeweise für Stellwerksteuerungen
 - Korrektheitsbeweise für Security Protokolle, z.B. zur Authentifizierung in verteilten Systemen

5.2 Spezifikation Sequentieller Systeme

- 5.2.1 Hoare-Kalkül
- 5.2.2 OCL Object Constraint Language

5.2.1 Hoare-Kalkül

Was berechnet das folgende Programm?

```
int i = 7; int j = 4;
int p = 1;
int k = 0;
while (k < j) {
    p *= i;
    k++;
}</pre>
```

- Das Programm berechnet in p die j-fache Potenz von i
- Genauer: Am Ende des Programms gilt:

$$p = i^{j}$$

Wie kann man das überprüfen?

- Testen = Stichproben nehmen
- Assert-Statement zur Laufzeit (nächste Folie) = Prüfungen zur Laufzeit
- Mathematischer Beweis?

Zusicherungen (Assertions) in Java - Beispiel

```
int i = 7; int j = 4;
int p = 1;
int k = 0;
while (k < j) {
    p *= i;
    k++;
}
assert k == j && p == Math.pow(i,k);</pre>
```


Assertions in Java

- Mit Zusicherungen kann man zur Laufzeit überprüfen, ob an einer Stelle des Programms eine Eigenschaft (d.h. ein Boolescher Ausdruck) gültig ist.
- Die Zusicherung (Überprüfung) einer Bedingung erfolgt mit assert <boolean expression>;

Bedeutung:

- Hat der Ausdruck den Wert true, wird das Programm fortgesetzt
- Hat der Ausdruck den Wert false, wird ein Fehler vom Typ AssertionError geworfen
- Optional kann eine Fehlermeldung angegeben werden assert <boolean expression>: <String expression>;

Beweis von Zusicherungen

- Die Gültigkeit von Zusicherungen kann man mit dem Hoare-Kalkül beweisen.
- Informell nennt man ein Programm korrekt bzgl. seiner Vor- und Nachbedingung, wenn die Nachbedingung nach jeder Ausführung des Programms gilt, unter der Voraussetzung, dass vor Ausführung des Programms die Vorbedingung gegolten hat.

C.A.R. Hoare, *1934
Erfinder von Quicksort,
Hoare-Logik (1969),
Strukturierte Programmierung

Statements im Hoare-Kalkül

 Der Hoare-Kalkül verwendet eine imperative Kernsprache mit folgender BNF:

```
<statement> ::= <assign> | <sequ> | <cond> | <while>
<assign> ::= <var> = <exp>
<sequ> ::= <statement> ; <statement>
<cond> ::= if <bexp> then <statement> else <statement> fi
<while> ::= while <bexp> do <statement> od
```


Hoare-Formel

- Bedeutung von Hoare-Formeln bestimmt durch die Begriffe
 - totale Korrektheit und
 - partielle Korrektheit

Partielle Korrektheit

 $\{P\}$ S $\{Q\}$

ist gültig, wenn S partiell korrekt bzgl. Vorbedingung P und Nachbedingung Q ist, d.h. wenn folgendes gilt:

Wenn P im Anfangszustand von S gilt und wenn S terminiert, dann gilt Q nach Ausführung von S.

Totale Korrektheit

 $\{P\}$ S $\{Q\}$

ist gültig, wenn S total korrekt bzgl. Vorbedingung P und Nachbedingung Q ist, d.h. wenn folgendes gilt:

Wenn P im Anfangszustand von S gilt, dann terminiert S und gilt Q nach Ausführung von S.

- Totale Korrektheit = Partielle Korrektheit + Terminierung
- Für eine Anweisung S ohne Iteration stimmen totale und partielle Korrektheit überein.

Beispiele

Totale und partielle Korrektheit

```
{true} if (y>0) then x=y else x=-y fi \{x == |y|\} \{x>=0\} if (y>0) then x=y else x=-y fi \{x>=0\} \{x>1\} x=x+1; y=x \{x>2 & y>2\} \{x>=0\} while (x!=0) do x=x-1 od \{x==0\}
```

Partielle Korrektheit, aber nicht totale Korrektheit

```
\{true\}\ while (x!=0)\ do x=x-1\ od \{x==0\}
```


Nicht-Terminierung

Die Hoare-Formel

```
\{x>0\} while (x>0) do x=x+1 od \{false\}
```

ist partiell korrekt, aber nicht total korrekt.

- Allgemein: die Gültigkeit von {P} s {false} drückt
 Nichtterminierung aus, d.h.
 - {P} s {false} partiell korrekt ⇒
 S terminiert nicht für alle Anfangszustände, die P erfüllen.

Hoare-Kalkül

- Der Hoare-Kalkül dient zum (konstruktiven) Beweisen von partieller und totaler Korrektheit
- Idee: Leite rückwärts schreitend ausgehend von der gewünschten Nachbedingung die Vorbedingung ab
- Der Kalkül besteht aus einem Axiom und Ableitungsregeln
 - Axiom = ohne Voraussetzungen anzuwendende Regel (hier: für alle Zuweisungen anzuwendende Regel)
 - Ableitungsregel

Die Formel unten ist gültig, wenn die beiden Formeln oben bewiesen wurden

Hoare-Regel Zuweisung

Zuweisungsaxiom

$$\{P[exp/x]\} x = exp \{P\}$$
Ersetze x in P durch exp

Beispiel

$$\{max-5 == 35\}$$
 $max = max - 5 \{max==35\}$

Hoare-Regel Abschwächung

Abschwächungsregel

$$\frac{\text{P1} \Rightarrow \text{P,} \{\text{P}\} \text{ S } \{\text{Q}\}, \text{ Q} \Rightarrow \text{Q1}}{\{\text{P1}\} \text{ S } \{\text{Q1}\}}$$

Beispiel

Implikation ist gültig

Anwendung des Zuweisungsaxioms

Implikation ist gültig

$$n==3 \Rightarrow 2n>=6$$
, $\{2n>=6\}$ $n=2*n$ $\{n>=6\}$, $n>=6 \Rightarrow n>0$

$${n==3} n=2*n {n>0}$$

Obere Zeile gilt, deshalb gilt auch untere Zeile

Kurze Schreibweise

$$\frac{\{2n>=6\} \ n=2*n \ \{n>=6\}}{\{n==3\} \ n=2*n \ \{n>0\}}$$

Weitere Hoare-Regeln

Fallunterscheidung

Sequentielle Komposition

Beispiel

Anwendung des Zuweisungsaxioms

"Beweisbaum", Beweis wird von unten nach oben entwickelt Blätter des Baums: Anwendung des Zuweisungsaxioms

Hoare-Regeln Iteration

Partielle Korrektheit

I = "Invariante"

Totale Korrektheit

{b & I} S {I}
{b & I & t==z} S {t\Rightarrow t >=0
{I} while b do S od {!b & I}

t – ein Integer-Ausdruck für die Terminierung der while-Schleife

z – eine logische Variable, die nicht in I, b, S oder t vorkommt, also durch

S nicht verändert wird

Beispiel – Partielle Korrektheit

Wir führen den Beweis mit folgender Invariante I durch: {n<=Z+1}

Beispiel – Totale Korrektheit

$$\{n+1<=Z+1\}$$
 $n=n+1$ $\{n<=Z+1\}$

$$\{n<=Z$$
 & $n<=$ $Z+1\}$ $n=n+1$ $\{n<=Z+1\}$
(*) Terminierung

$$\{n <= Z+1\}$$
 while $n <= Z$ do $n=n+1$ od $\{n <= Z+1 \& !(n <= Z)\}$ $\{n <= Z\}$ while $n <= Z$ do $n=n+1$ od $\{n=Z+1\}$

(*) Terminierung: Sei t = Z+1-n

Beweisskizzen

- Kompakte Darstellung für Beweise mit dem Hoare-Kalkül
- Eine Beweisskizze für partielle/totale Korrektheit ist ein mit Zusicherungen ergänztes Programm
- Annotationen:

```
{P} while b do {b & P} S {P} od {!b & P} 

{P} if b then {b&P} S1 {Q} 

else {!b&P} S2 {Q} fi 

{Q} 

{P} \Rightarrow {P1} S {Q1} \Rightarrow {Q} wobei P \Rightarrow P1 und Q1 \Rightarrow Q
```


Beispiel

Anwendung: Der Vertragsgedanke

- Die Spezifikation des Interfaces I stellt einen Vertrag zwischen C und S dar
 - C kann darauf vertrauen, dass die spezifizierten Eigenschaften eingehalten werden
 - S kann eine beliebige Implementierung bereitstellen, die die Spezifikation erfüllt

Spezifikation von Interfaces

 Die Methoden des Interfaces werden mit Vor- und Nachbedingungen verknüpft

pre m post

Falls vor Aufruf von m die Vorbedingung erfüllt ist, gilt nach Ausführung von m die Nachbedingung

- Für das Einhalten der Vorbedingung ist der Aufrufer verantwortlich (z.B. durch Einhalten einer bestimmten Reihenfolge der Methoden)
- Für das Einhalten der Nachbedingung ist der Aufgerufene durch korrekte Implementierung verantwortlich
- Robuste Komponenten stoßen eine Fehlerbehandlung an, wenn Vor- und Nachbedingungen nicht eingehalten werden!

Beschreibungsformen für Vor- und Nachbedingungen

- Formal
 - durch logische Formeln
 - Durch Boolesche Ausdrücke in der Programmiersprache (vgl. assert-Statements in Java)
- Informell durch Text
- In Klassendiagrammen durch OCL-Ausdrücke (vgl. Kapitel 5.2.2)

5.2.2 OCL - Object Constraint Language

- Kontext: Klassendiagramme und die Objektstrukturen, die durch sie beschrieben werden
- Klassendiagramme allein beschreiben nur die prinzipielle Struktur von Objektzuständen
- Oft sollen Eigenschaften von Objektstrukturen detailliert beschrieben werden:
 - Einschränkung der Objektzustände (Attributwerte)
 - Beispiel: Die Dauer eines Flugs ist kürzer als 24 Stunden
 - Beschreibung von Abhängigkeiten zwischen Attributen/Assoziationen
 - Beispiel: Ein Angestellter ist nur mit den Flügen einer einzigen Fluggesellschaft verbunden
- Zusätzlich sollen die Eigenschaften von Operationen unabhängig von der Implementierung beschrieben werden
 - In welchem Zustand kann die Operation ausgeführt werden?
 - Welchen Effekt hat die Ausführung der Operation auf die Objektzustände?

Beschreibung von Objekteigenschaften

- Informeller Text
- graphisch als Teil der Klassendiagramme
- Formal und ausführbar durch OCL-Ausdrücke
 - OCL-Ausdrücke "navigieren" durch Objektstrukturen und beschreiben damit Eigenschaften oder Anfragen über Objektstrukturen
 - Vor- und Nachbedingungen von Operationen
 - Invarianten

Invarianten

- Eine Invariante beschreibt eine Eigenschaft, die die Objekte des Systems
 - nach ihrer Kreierung und
 - nach der Ausführung jeder (öffentlichen) Methode erfüllen.
- Eine lokale Invariante hängt vom Zustand eines einzigen Objekts ab
- Eine globale Invariante hängt vom Zustand mehrerer Objekte ab

Lokale und globale Invarianten - Beispiele

globale Invariante

Graphische Repräsentation von Invarianten -Beispiele

bidirektionale Assoziation

Xor-Assoziation

OCL-Ausdrücke

- OCL-Ausdrücke
 - beziehen sich auf ein gegebenes Klassendiagramm
 - sind statisch, d.h. verändern den Zustand der Objekte nicht
 - sind getypt: jeder OCL-Ausdruck besitzt einen Typ
- OCL-Typen:
 - Grunddatentypen (z.B. Boolean, Integer)
 - Klassen (z.B. Kunde, Person, ...)
 - Collection-Typen (z.B. Set, Bag, Sequence)
- Im folgenden wird ein grober Überblick über OCL gegeben

Klassendiagramm - Beispiel

Die Beispiele in diesem Kapitel sind dem Buch H. Störrle: "UML2 für Studenten" entnommen

OCL-Ausdrücke - Beispiele

Navigation

- Navigation entlang von
 - Attributen
 - Assoziationen

Kunde

name: String

arbeitgeber: Firma

Firma

adresse: String

Beispiele Navigation entlang von Attributen:

jim.name -- Typ String jim.arbeitger - Typ Firma

jim.arbeitgeber.adresse — Typ String

Beispiel Navigation entlang von Assoziationen

mein_konto.inhaber jim.konto Typ Kunde

Typ Set(Konto) (Mengen von Konto-Objekten)

Invariante - Beispiel

```
context Passagier inv:
    status = #Adler
    implies mk.statusmeilen >= 10000
and status = #Albatros
    implies mk.statusmeilen >= 100000
and mk.statusmeilen < 10000
implies status = #Schwalbe</pre>
```

<<enumeration>> Status

'Schwalbe'

´Adler´

'Albatros'

Beispiele OCL-Ausdrücke

p.buchung->exists(datum = HEUTE)

-- Filtern aller heutigen Buchungen eines Passagiers p

- -- Boolescher Ausdruck mit Existenzquantor: gibt es eine heute durchgeführte Buchung des Passagiers p?
- -- Analog dazu prüft der Operator forall, ob eine Bedingung für alle Instanzen einer Menge gilt

Beispiel – Spezifikation von Vor-/Nachbedingungen


```
context Passagier :: meilenGutschreiben(b:Buchung)
```

-- Spezifikation der Vor- und Nachbedingung der Methode meilenGutschreiben in Klasse Passagier

```
pre:     mk<>oclIsUndefined
-- Passagier hat ein Meilenkonto
```

-- der Wert von fm nach Ausführung der Methode ist gleich dem Wert vor Ausführung der Methode (fm@pre) addiert mit den Meilen der Buchung b

Hoare-Kalkül vs OCL

- Gemeinsamkeit: in beiden Ansätzen werden Eigenschaften über Systemzuständen durch Prädikate beschrieben, in Form von Vorund Nachbedingungen und Invarianten
- Unterschiede:
 - Hoare-Kalkül:
 - Nicht ausführbar
 - Unendlich viele Zustände (int x kann unendlich viele Werte annehmen)
 - Mathematischer Korrektheitsbeweis
 - OCL:
 - Ausführbare Spezifikation
 - Endliche viele Zustände (ein OCL-Ausdruck bezieht sich auf einen Systemzustand mit endlich vielen Objekten)
 - Check der Spezifikation für gegebene Instanz des Klassendiagramms (wie assert-Statement in Java), kein Korrektheitsbeweis

Operationen – lokaler und globaler Effekt

• Idee von Objektorientierung: Eine Operation verändert die lokalen Daten (d.h. die Attribute)

Aber: Eine Operation kann Operationen anderer Objekte aufrufen

- Insgesamt betrachtet kann eine Operation somit die Zustände vieler Objekte ändern
 - = globaler Effekt
- In der Vor- und Nachbedingung wird der globale Effekt einer Operation beschrieben

Bewertung - Invarianten

- Invarianten sind ein wichtiges Instrumentarium zur Dokumentation von Objekteigenschaften
 - Modellierung fachlicher Regeln im fachlichen Klassendiagramm
 - Modellierung von Abhängigkeiten und Einschränkungen im technischen Klassendiagramm
- Invarianten in realen Beispielen führen zu komplexen OCL-Ausdrücken -> in vielen Fällen genügt die textuelle Beschreibung von Invarianten.

Bewertung – Vor- und Nachbedingungen

- Mit Vor- und Nachbedingungen kann der Effekt einer Operation unabhängig von der Implementierung beschrieben werden.
- Verwendung in der Dokumentation zur Spezifikation von Schnittstellen
- Dem praktischen Einsatz von formal beschriebenen Vor- und Nachbedingungen sind Grenzen gesetzt.
- Auch die textuelle Beschreibung von Vor-und Nachbedingungen bringt großen Nutzen.

Textuelle Beschreibung einer Methode

Vorbedingung:

 Welche Bedingungen werden an die Parameter bzw. an den Zustand des aufgerufenen Objekts (d.h. den Zustand der Attribute) gestellt?

Nachbedingung:

- Welchen Effekt hat die Ausführung der Methode?
- Welcher Rückgabewert wird zurückgegeben?
- Wann werden Exceptions geworfen?

