

Common Laplace Transforms

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}(s)$
1	$\frac{1}{s}$, $s > 0$
t^n	$\frac{n!}{s^{n+1}}, s > 0$
e^{at}	$\frac{1}{s-a}$, $s>a$
$t^n e^{at}$, $n = positive integer$	$\frac{n!}{(s-a)^{n+1}}, s > a$
$\sin(at)$	$\frac{a}{s^2 + a^2}$
$\cos(at)$	$\frac{s}{s^2 + a^2}$
$e^{at}\sin(bt)$	$\frac{b}{(s-a)^2 + b^2}, s > a$
$e^{at}\cos(bt)$	$\frac{s-a}{(s-a)^2+b^2}, s>a$
$h_c(t)$	$\frac{e^{-cs}}{s}, s > 0$
$h_c(t)f(t-c)$	$e^{-cs}F(s)$
$\delta(t-c)$	e^{-cs}
$\delta(t-c)f(t)$	$f(c)e^{-cs}$
$e^{ct}f(t)$	F(s-c)
f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
y'	$s\mathcal{L}{y} - y(0)$
y''	$s^2 \mathcal{L}\{y\} - sy(0) - y'(0)$