Xilinx Spartan 3E Starter Kit Tutorial

Hardware Description Languages - EE 310
Ahmet Can Mert
Sabanci University

Software & Hardware

- For Lab Assignments, you will use Xilinx ISE Design Tool to make design.
- You will implement your designs on Xilinx Spartan-3E
 Starter Kits. A Xilinx Spartan XC3S500E FG320 FPGA with speed grade 4 is placed on this board.
- During a design process, you will
 - 1. make your design on Xilinx ISE Design Tool
 - 2. simulate your design on ISim Simulator
 - 3. export your design to FPGA
 - 1. and 2. are already explained on Xilinx_ISE_Tutorial.pdf.
 In this tutorial, we will cover FPGA implementation.

Spartan-3E Starter Kit

 Spartan-3E Starter Kit is an board which has a Xilinx Spartan 3E FPGA and different types of I/Os

Spartan-3E Starter Kit

 The board is powered with an external adaptor and it is turned on/off with a switch. The board can be programmed via USB connection.

Spartan-3E Starter Kit

• I/O Ports:

- In order to run your design on FPGA, you need to define the hardware connections for your I/Os.
- The definitions are made on *.ucf file

- Select *Implementation* on Design panel
- Right-click on *.sch file and select New Source

- Select Implementation
 Constraints File as
 source type
- Give a name to file
- Click on Next button

Click on Finish button

- There are different I/O ports and constraints we need to define in *.ucf file:
 - Clock source (on-board)
 - Clock period
 - Reset button
 - Push Buttons
 - Switches
 - LEDs
 - LCD Display
 - VGA Port

Syntax:

```
NET "SIGNAL_NAME" LOC = "FPGAPinLocation" | PROPERTIES;
```

- SIGNAL NAME: Name of input/output port
 - If it is a single bit register/wire:

```
- e.g. input start; → NET "start" LOC = "...
```

If it is a bit of multi-bir register/wire:

```
- e.g. input data[3:0]; \rightarrow NET "data<0>" LOC = "...
```

- FPGAPinLocation: Pin Location of the port on FPGA
 - Specific code for each FPGA and port
- PROPERTIES: Different properties/constraints for different ports

- Clock source (on-board) in *.ucf file:
 - Syntax:

```
NET "CLK_NAME_IN_YOUR_DESIGN" LOC = "C9" | IOSTANDARD = LVCMOS33 ;
```

– Example:

```
NET "clk" LOC = "C9" | IOSTANDARD = LVCMOS33 ;
```

- Clock period in *.ucf file:
 - Syntax:

```
NET "CLK_NAME_IN_YOUR_DESIGN" PERIOD = PERIOD HIGH DUTY_CYCLE%;
```

Example: (50 MHz clock with 50% duty cycle)

```
NET "clk" PERIOD = 20.0ns HIGH 50%;
```

- Push button in *.ucf file:
 - Syntax:

```
NET "SIGNAL_NAME_IN_YOUR_DESIGN" LOC = "FPGA_Pin_Location" | IOSTANDARD = LVTTL | PULLDOWN ;
```

– Example:

```
NET "BTNO" LOC = "V4" | IOSTANDARD = LVTTL | PULLDOWN ;
```

Pin Locations

BTN West	D18
BTN North	V4
BTN East	H13
BTN South *	K17

^{*}Push button location K17 is used for Reset button

debouncer module

- It is used to avoid that a single push on a button doesn't appear like multiple pushes
 - For this course, we will use it for filtering the button inputs
- It is available under Resources → Lab Material → Modules
 - debouncer.v

- Switches in *.ucf file:
 - Syntax:

```
NET "SIGNAL_NAME_IN_YOUR_DESIGN" LOC ="FPGA_Pin_Location" | IOSTANDARD = LVTTL | PULLUP ;
```

– Example:

```
NET "SW<0>" LOC = "L13" | IOSTANDARD = LVTTL | PULLUP ;
```

Pin Locations

SW3	N17
SW2	H18
SW1	L14
SW0	L13

- LEDs in *.ucf file:
 - Syntax:

```
NET "SIGNAL_NAME_IN_DESIGN" LOC = "FPGA_Pin_Location" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;
```

- Example:

```
NET "LED<0>" LOC = "F12" | IOSTANDARD = LVTTL | SLEW = SLOW | DRIVE = 8;
```

Pin Locations

LED7	F9
LED6	E9
LED5	D11
LED4	C11
LED3	F11
LED2	E11
LED1	E12
LED0	F12

- LCD Display in *.ucf file:
 - LCD Display on the board has 4 data and 3 control input signals
 - These ports are directly connected to the FPGA ports
 - Pin Locations

Data_Out<0>	R15
Data_Out<1>	R16
Data_Out<2>	P17
Data_Out<3>	M15
LCD_Control<0>	M18
LCD_Control<1>	L18
LCD_Control<2>	L17

- LCD Display in *.ucf file:
 - Syntax:

```
NET "SIGNAL" LOC = "PIN" | IOSTANDARD = LVCMOS33 | DRIVE = 4 | SLEW = SLOW;

— Example:
```

																																N ·	
				_																													

Data_Out<0>	R15
Data_Out<1>	R16
Data_Out<2>	P17
Data_Out<3>	M15
LCD_Control<0>	M18
LCD_Control<1>	L18
LCD_Control<2>	L17

LCDI module

- Since LCD Display on the board has a complex control protocol, we provide you a very simplified LCD interface
 - For this course, we will use it for displaying characters on LCDI
- It is available under Resources → Lab Material → Modules
 - LCDI.v
- It takes characters you want to display as input, generates necessary control signals and sends these signals to the LCD Display on the board

• LCDI module

```
LCDI d0(clk, First_line, Second_line, Data_Out, LCD_Control);
```

- Input: 128-bit data for the first line
 - Each character is represented with 8 bits. Most-significant 8 bits of the input represents left-most digit.
- Input: 128-bit data for the second line
 - Each character is represented with 8 bits. Most-significant 8 bits of the input represents left-most digit.
- Output: 7-bit data (you do not care this, this is for LCD on board.)
- Operation: It displays 32 (16 on the first line + 16 on the second line) characters on the display according to digit table

20

- LCDI module
 - Digit table
 - Example:
 - D \rightarrow 8'b01000100

• LCDI module

Each character is represented with 8 bits according to digit table. Most-significant 8 bits of the line input represents left-most digit. Least-significant 8-bits of the line input represents right-most digit.

 After you write *.ucf file, follow steps 16) – 25) of Xilinx_ISE_Tutorial.pdf