IN THE CLAIMS

Please amend the claims as follows.

- 1 Claims 1-4 (canceled).
- 1 5. (New) A method for forming a pathway from a sub-intimal space of a blood
- 2 vessel into a true lumen of the blood vessel, comprising:
- positioning a catheter system within the sub-intimal space at a position proximate
- 4 to a target entry site into the vessel true lumen, the catheter system including at least one
- 5 lumen in communication with at least one port in a distal region of the catheter system,
- 6 the catheter system further including an internal incising element that is translatable
- 7 across a portion of the port;
- 8 determining a radial position of the true lumen with respect to the port at the
- 9 target entry site from a position in the sub-intimal plane using an imaging device of the
- 10 catheter system; and
- forming an incision in tissue separating the sub-intimal space from the true lumen
- 12 using the incising element, the incision having separate and distinct end points and
- forming a pathway between the sub-intimal space and the true lumen, wherein the tissue
- 14 remains external to the port subsequent to forming the incision.
- 1 6. (New) The method of claim 5, wherein the imaging device is a rotational imaging
- 2 device.
- 1 7. (New) The method of claim 5, wherein the imaging device is an ultrasonic
- 2 device.
- 1 8. (New) The method of claim 5, wherein the imaging device is an optical
- 2 coherence tomography (OCT) device.

- 1 9. (New) The method of claim 5, wherein the incising element is integral to the
- 2 imaging device.
- 1 10. (New) The method of claim 5, wherein the incising element is separate from and
- 2 arranged concentrically outside the imaging device.
- 1 11. (New) The method of claim 5, wherein determining the radial position includes
- 2 use of an imaging device that is a fixed integral part of a body of the catheter system.
- 1 12. (New) The method of claim 5, wherein determining the radial position includes
- 2 use of a fluoroscopic marker on the catheter system.
- 1 13. (New) The method of claim 12, wherein the fluoroscopic marker is located on a
- 2 body of the catheter system.
- 1 14. (New) The method of claim 12, wherein the fluoroscopic marker is located on
- 2 one or more working elements of the catheter system.
- 1 15. (New) The method of claim 5, further comprising evacuating fluid from the sub-
- 2 intimal space and securing the tissue separating the sub-intimal space from the true lumen
- 3 at the port by applying vacuum to the catheter lumen.
- 1 16. (New) The method of claim 15, further comprising invaginating the tissue
- 2 separating the sub-intimal space from the true lumen into the port and into a distal
- 3 interior region of the catheter system upon application of the vacuum.
- 1 17. (New) The method of claim 5, further comprising advancing a working element
- 2 into the true lumen through the incision.
- 1 18. (New) The method of claim 17, wherein the working element includes at least
- 2 one of a guide wire and a cannula.

1	19. (New) A method for forming a pathway from a sub-intimal space of a blood
2	vessel into a true lumen of the blood vessel, comprising:
3	positioning a catheter system within the sub-intimal space at a position proximate
4	to a target entry site into the vessel true lumen, the catheter system including at least one
5	lumen in communication with at least one port in a distal region of the catheter system,
6	the catheter system further including an internal incising element that is translatable
7	across a portion of the port; and
8	forming an incision in tissue separating the sub-intimal space from the true lumen
9	using the incising element, the incision having separate and distinct end points and
10	forming a pathway between the sub-intimal space and the true lumen, wherein the tissue
11	remains external to the port subsequent to forming the incision.
1	20. (New) A method for forming a pathway from a sub-intimal space of a blood
2	vessel into a true lumen of the blood vessel, comprising:
3	positioning a catheter system within the sub-intimal space at a position proximate
4	to a target entry site into the vessel true lumen, the catheter system including at least one
· 5	lumen in communication with at least one port in a distal region of the catheter system,
6	the catheter system further including an internal excising element that is translatable
7	across a portion of the port;
8	determining a radial position of the true lumen with respect to the port at the
9	target entry site from a position in the sub-intimal plane using an imaging device of the
10	catheter system;
11	advancing the internal excising element along a portion of the port; and
12	excising an area of tissue separating the sub-intimal space from the true lumen
13	using the excising element, the excised area of tissue generating a pathway from the sub-
14	intimal space to the true lumen.
1	21. (New) A method for forming a pathway from a sub-intimal space of a blood
2	vessel into a true lumen of the blood vessel, comprising:
3	positioning a catheter system within the sub-intimal space at a position proximate

LMND.P116

to a target entry site into the vessel true lumen, the catheter system including at least one

8

9

10

11

12

- lumen in communication with at least one port in a distal region of the catheter system,
 the catheter system further including an internal excising element that is translatable
 across a portion of the port;
- advancing the internal excising element along a portion of the port; and
 excising an area of tissue separating the sub-intimal space from the true lumen
 using the excising element, the excised area of tissue generating a pathway from the subintimal space to the true lumen.
- 22. (New) A method for establishing a pathway through a chronic total occlusion of a blood vessel, the pathway connecting a first region of a true lumen of the blood vessel which is proximal to the occlusion to a second region of the true lumen of the blood vessel distal to the occlusion via an extra-luminal pathway within the vessel, comprising:

 forming a track longitudinally from the first region of the true lumen through the occlusion and into a sub-intimal space distal to the occlusion;
 - positioning a catheter system within the sub-intimal space using the track, the catheter system including at least one lumen in communication with at least one port in a distal region of the catheter system, the catheter system further including an internal incising element that is translatable across a portion of the port;
 - determining a radial position of the true lumen with respect to the port using an imaging device of the catheter system; and
- forming an incision in tissue separating the sub-intimal space from the true lumen using the incising element, the incision having separate and distinct end points and forming a pathway between the sub-intimal space and the true lumen, wherein the tissue remains external to the port subsequent to forming the incision.
 - 1 23. (New) A method for establishing a pathway through a chronic total occlusion of a
- 2 blood vessel, the pathway connecting a first region of a true lumen of the blood vessel
- 3 which is proximal to the occlusion to a second region of the true lumen distal to the
- 4 occlusion via an extra-luminal pathway within the vessel, comprising:
- forming a track longitudinally from the first region of the true lumen through the occlusion and into a sub-intimal space distal to the occlusion;

device.

1	positioning a catheter system within the sub-nithinal space using the track, the
8	catheter system including at least one lumen in communication with at least one port in a
9	distal region of the catheter system;
10	determining a radial position of the true lumen with respect to the port using an
11	imaging device of the catheter system;
12	applying a vacuum through the catheter lumen and the port, evacuating fluid from
13	the sub-intimal space and bringing the sub-intimal tissue into intimate contact with the
14	port; and
15	advancing a working element through the port and through the tissue separating
16	the sub-intimal space and the second region of the true lumen and generating a pathway
17	from the sub-intimal space to the second region of the true lumen.
1	24. (New) A catheter system for use in forming a pathway between a sub-intimal
2	space of a blood vessel and a true lumen of the blood vessel, comprising:
3	a catheter body including a proximal end, a distal end, and at least one lumen
4	configured to track over a guide wire to a location in vasculature;
5	a distal endpiece coupled to the distal end of the catheter body, the endpiece
6	including at least one port in communication with the lumen;
7	an imaging device for use in aligning a radial position of at least one of the
.8	catheter body and the endpiece in the sub-intimal space relative to the true lumen; and
9	an incising element translatable across a portion of the port and configured to
10	form an incision in tissue separating the sub-intimal space from the true lumen, the
11	incision having separate and distinct end points and forming a pathway between the sub-
12	intimal space and the true lumen, wherein the tissue remains external to the port
13	subsequent to forming the incision.
1.	25. (New) The system of claim 24, wherein the imaging device is a rotational device

26. (New) The system of claim 24, wherein the imaging device is an ultrasonic

- 1 27. (New) The system of claim 24, wherein the imaging device is an optical
- 2 coherence tomography (OCT) device.
- 1 28. (New) The system of claim 24, wherein the cutting element is separate from and
- 2 arranged externally concentric to the imaging device.
- 1 29. (New) The system of claim 24, wherein the incising element is affixed to the
- 2 imaging device.
- 1 30. (New) The system of claim 24, wherein the imaging device is a phased-array
- 2 device located on the catheter body and in registration with the port.
- 1 31. (New) The system of claim 24, wherein the imaging device is a phased-array
- 2 device located on the distal endpiece and in registration with the port.
- 1 32. (New) The system of claim 24, wherein the catheter endpiece includes one or
- 2 more fluoroscopic areas for use in the aligning.
- 1 33. (New) The system of claim 24, wherein the lumen of the catheter body is
- 2 configured to translate a vacuum from the proximal end to the distal end and to the port.
- 1 34. (New) The system of claim 33, wherein the port is configured so that tissue
- 2 separating the sub-intimal space from the true lumen becomes invaginated into the port
- 3 upon application of the vacuum.
- 1 35. (New) The system of claim 24, wherein the at least one port further includes a
- 2 distal port at a distal end of the endpiece, the distal port in communication with the lumen
- 3 for use in tracking over a guide wire.
- 1 36. (New) A catheter system for use in forming a pathway between a sub-intimal
- 2 space of a blood vessel and a true lumen of the blood vessel, comprising:

3	a catheter body including a proximal end, a distal end, and at least one lumen
4	configured to track over a guide wire to a location in vasculature;
5	a distal endpiece coupled to the distal end of the catheter body, the endpiece
6	including at least one port in communication with the lumen; and
7	an incising element translatable across a portion of the port and configured to
8	form an incision in tissue separating the sub-intimal space from the true lumen, the
9	incision having separate and distinct end points and forming a pathway between the sub-
10	intimal space and the true lumen, wherein the tissue remains external to the port
11	subsequent to forming the incision.
1	37. (New) A catheter for use in forming a pathway between an intravascular
2	dissection track advanced through a vascular total occlusion to an extra-luminal space
3	distal to the occlusion and a true lumen of a blood vessel, comprising:
4	a catheter body including a proximal end, a distal end, and at least one catheter
5	lumen configured to track over a guide wire to a target vascular location, the catheter
6	lumen configured to translate vacuum from the proximal end to the distal end;
7	a distal termination coupled to the distal end of the catheter body, the distal
8	termination including at least one port in communication with the lumen, the port
9	configured to receive the vacuum via the catheter lumen;
10	imaging means configured to determine a radial position of the catheter in the
11	extra-luminal space with respect to a location of the true lumen and to align the port to
12	the true lumen; and
13	an incising element translatable across a portion of the port and configured to
14	incise a flap in tissue separating the extra-luminal space from the vessel true lumen to
15	form the pathway between the extra-luminal space and the vessel true lumen at a location
16	distal to the occlusion.

(New) A catheter system for use in forming a pathway between a sub-intimal 1 38.

space of a blood vessel and a true lumen of the blood vessel, comprising:

- a catheter body including a proximal end, a distal end, and at least one lumen configured to track over a guide wire to a location in vasculature, the catheter lumen configured to translate vacuum from the proximal end to the distal end;
- a distal endpiece coupled to the distal end of the catheter body, the endpiece including at least one port in communication with the lumen; and
- an incising element translatable across a portion of the port and configured to form an incision in tissue separating the sub-intimal space from the true lumen, the
- 10 incision having separate and distinct end points and forming a pathway between the sub-
- intimal space and the true lumen, wherein the tissue remains external to the port
- 12 subsequent to forming the incision.

408-236-6641

- 1 39. (New) A catheter system for use in forming a pathway between a sub-intimal space of a blood vessel and a true lumen of the blood vessel, comprising:
- a catheter body including a proximal end, a distal end, and at least one lumen configured to track over a guide wire to a location in vasculature;
- a distal endpiece coupled to the distal end of the catheter body, the endpiece including at least one port in communication with the lumen; and
- an excising element translatable across a portion of the port and configured to
 excise tissue separating the sub-intimal space from the true lumen to form a pathway
 between the sub-intimal space and the true lumen.
- 1 40. (New) The system of claim 39, further comprising an imaging device for use in
- 2 aligning a radial position of at least one of the catheter body and the endpiece in the sub-
- 3 intimal space relative to the true lumen.
- 1 41. (New) The system of claim 39, wherein the catheter lumen is configured to
- 2 translate vacuum from the proximal end to the port.
- 1 42. (New) A device for use in forming a pathway from a sub-intimal space of a blood
- 2 vessel into a true lumen of the blood vessel, comprising:

3	means for positioning a catheter system within the sub-intimal space at a position
4	proximate to a target entry site into the vessel true lumen, the catheter system including at
5	least one lumen in communication with at least one port in a distal region of the catheter
6	system, the catheter system further including an internal incising element that is
7	translatable across a portion of the port; and
·8	means for forming an incision in tissue separating the sub-intimal space from the
9	true lumen using the incising element, the incision having separate and distinct end points
10	and forming a pathway between the sub-intimal space and the true lumen, wherein the
11	tissue remains external to the port subsequent to forming the incision.