Data Processing for [

Kylie A. Bem

Northeastern Uni Khoury College of Compu

Wrangling c

https://visit.figure-eight.com/rs/416-ZBE-142/images/Crov

Wrangling c

Learning go

- Types of data
- Structuring data for dat
- Data wrangling and dat
- Summarizing data

TYPES OF [

Data comes in ma

- Structured data is highled easy to query, transform
- Semi-structured data h
 organization but require
- Unstructured data is un requires significant tidying

Unstructured

- Text, video, images, etc.
- Vast majority of data in abundant on the interne
- Requires significant pro useable for data analysis

Semi-structure

- Structured text, JSON, I
- Follows a structure (e.g requires transformation
- Structured elements of purpose besides data and
- Required amount of pro

Structured of

- Tables in a database or
- High level of organization
- May follow a schema (b
- Easy to query, transforn

Tabular da

- Most common kind of s
- Follows a "table" format
 - Rows and columns
 - Values in cells
- Tables in a RDBMS
- Data frames in R, Pytho

STRUCTURIN

Data mode

- A data model is a concept organize elements of data
- A data model is analogous in computer programming

Common data

- Relational data
- Key-value pairs
- Graphics and networks
- Arrays and matrices
- Tree structures

Common data

- Relational data
- Key-value pairs
- Graphics and networks
- Arrays and matrices
- Tree structures

Goals of structur

- Make the data easier to
- Ideal structure may diffe the desired computatio
 - Exploratory analysis "tidy" to
 - Machine learning arrays and
- May need to transform
 different data models

"Tidy" dat

- Each variable forms a co
- Each observation forms
- Each value is a cell
 - Stricter: Each type of observation

Hadley Wickham. "Tidy Data." Journal of S

Useful definit

- A dataset is a collection o
- An observational unit is a on which values are meas
- A variable is a quantity, quantity, quantity
 that is measured
- An observation is a set of made under similar condition.

Tidy data

country	year	cases	population		
Afghanstan	1300	45	18:57071		
Afghanistan	2000	2666	20! 95360		
Brazil	1999	37737	172006362		
Brazil	2000	80488	174904898		
China	1999	212258	1272915272		
Chin	2 0	21 66	1280 28583		
variables					

Why tidy da

- Easy to query, transforn
- Consistent format allow
 a variety of tools (e.g., c
- Relationship to RDBMS
 - Concept of "tidy" data mirrors but framed in language of statis

"Messy" da

- "Messy" data frequently
- Storage and/or comput
 - Messy form may be more com
 - Matrices/arrays preferable for s
- Ease of data entry
 - Data entry by hand
 - Recording instrument
- "Tidy" form not easily e

Common symptoms o

- Column headers are values
- Multiple variables are store
- Variables are stored in both
- A single observation is stor

Is it tidy?

```
## # tibble: 12 x 4
##
     country year type
     <chr> <int> <chr>
##
## 1 fghanistan 1999 cases
## 2 fghanistan 1999 popul
## 3 fghanistan 2000 cases
## 4 fghanistan 2000 popul
## 5 Brazil
               1999 cases
## 6 Brazil
                1999 popul
               2000 cases
## 7 Brazil
## 8 Brazil
               2000 popul
## 9 China
                1999 cases
## 10 China
                1999 popul
## 11 China
               2000 cases
               2000 popul
## 12 China
```

Is it tidy? —

```
## # tibble: 12 x 4
##
     country year type
##
     <chr> <int> <chr>
## 1 fghanistan 1999 cases
## 2 fghanistan 1999 popul
## 3 fghanistan 2000 cases
   4 fghanistan 2000 popul
##
## 5 Brazil
               1999 cases
## 6 Brazil
                1999 popul
               2000 cases
## 7 Brazil
## 8 Brazil
               2000 popul
   9 China
               1999 cases
##
## 10 China
                1999 popul
## 11 China
               2000 cases
               2000 popul
## 12 China
```

"cases" and "population" should

Is it tidy?

Is it tidy? —

"rate" column encodes two variables

Is it tidy?

tibble: 3 x 3

Is it tidy? —

```
## country `1999``
## * <chr>
## 1 fghanistan 745
## 2 Brazil 37737
## 3 China 212258 2

## # country `199
## * <chr>
## * <chr>
## 1 fghanistan 199870
## 2 Brazil 1720063
## 3 China 12729152
```

tibble: 3 x 3

observations in multiple tables; co

Is it tidy?

Is it tidy? —

Tidying da

- Pre-requisite step to an
- Makes additional data c
- Reshape the dataset int
 - "Wider" more columns
 - "Longer" more rows
- Process improperly coc

Going "wide

- Single observations (country-year) scat
- Values of "key" column should be varia

country	year	key	value	
Afghanistan	1999	cases	745	
Afghanistan	1999	population	19987071	
Afghanistan	2000	cases	2666	
Afghanistan	2000	population	20595360	
Brazil	1999	cases	37737	
Brazil	1999	population	172006362	
Brazil	2000	cases	80488	
Brazil	2000	population	174504898	
China	1999	cases	212258	
China	1999	population	1272915272	
China	2000	cases	213766	
China	2000	population	1280428583	
table2				

Going "long

- Single variable ("cases") spread acros
- Column names are values (1999 and

country	year	cases	С
Afghanistan	1999	745	←
Afghanistan	2000	2666	Bra
Brazil	1999	37737	Ch
Brazil	2000	80488	
China	1999	2122581	
China	2000	2137661	

Process improperly-co

- Single column ("rate") encodes two var
- Strings used to represent quantitative (r

country	year	rate
Afghanistan	1999	745 / 19987071
Afghanistan	2000	2666 / 20595360
Brazil	1999	37737 / 172006362
Brazil	2000	80488 / 174504898
China	1999	212258 / 1272915272
China	2000	213766 / 1280428583

table3

Summary: "tidy

- Easy to query, transforn
- Frames database norma in language of statistical

DATA CLEA

Wrangling c

- Post-structuring, additional
 is often necessary on restriction
- Consistency
 - Dates and strings often need to
 - Label levels of categorical varia
- Missing data
 - Check for patterns of missing of
 - To impute or not to impute

Never trust a spr

Source: "Gene name errors are now widespread in the scientific literature", Ziemann

Economist.com

Strings

- Trim/pad white space
- Normalization and pund
 - Singular vs plural, verb forms, e
- Capitalization/case-foldi
 - Proper vs common nouns
- Special characters and e

Dates and ti

- Consistent input formation
 - MM/DD/YY vs DD-MM-YYYY
- Convert to appropriate
- Consider time zones
- Be careful of your assur
 - Leap years vs leap seconds, oh
 - Use a good library!!!

Missing da

- Why is the data missing
- What to do about it

Types of missir

Unit non-response

- Entire rows of data are missing
- Usually not directly observed in
- Very dangerous sampling bi

• Item non-response

- Missing values/cells in a column
- Can be directly inspected in th

Patterns of miss

- Missing Completely at Rand
 - Missing data are non-systematic and
- Missing at Random (MAR)
 - Missing data are independent of their missingness are related to features of
- Missing Not at Random (M)
 - Missing data are dependent on their

Patterns of missing da

- Missing Completely at Rand
 - Data missing, randomly
- Missing at Random (MAR)
 - Data from earlier years more likely to
- Missing Not at Random (M)
 - Data values near zero more likely to

Methods of imput

Do nothing

- Easiest
- Adequate for some visualizatio
- Not always possible or approp
- Mean/median/mode im
 - Easy
 - Distorts data underestimate
 - Appropriate for MCAR and M.

Methods of imput

- Zero/constant imputation
 - Easy
 - Introduces bias to the data
 - Can be appropriate for certain
- Algorithmic/model-base
 - Difficult
 - Can be more accurate and less
 - Many methods to choose from

Missing data: final

- Look for patterns of missir
 - Understand why data is missing
- How does the missingness
 - Does it introduce bias?
- Do you need to impute th
 - How does it impact the analysis if y
- Always report what you d

DATATRANSFOF SUMMARIZA

Key tasks

- Select columns of interest
- Filter/subset data based o
- Order/rank rows based o
- Transform data and create
- Group and aggregate sum

DPLYF