

CSDS 600: Deep Generative Models

Normalizing Flow Models (2)

Yu Yin (yu.yin@case.edu)

Case Western Reserve University

Recap:

• Transform simple to complex distributions via sequence of invertible transformations

- Learning via maximum likelihood over the dataset
- What we need?
 - Prior $\pi(z)$ easy to sample
 - Invertible transformations
 - Determinants of Jacobian Efficient to compute

Designing invertible transformations

- A flow of transformations
 - Coupling layer
 - NICE
 - Real NVP
 - Glow
- Autoregressive models as flow models
 - MAF
 - IAF

NICE Real NVP

det(J)

$$= \frac{\partial(x_{d+1})}{\partial(z_{d+1})} \frac{\partial(x_{d+2})}{\partial(z_{d+2})} \dots \frac{\partial(x_{D})}{\partial(z_{D})}$$
$$= \beta_{d+1} \beta_{d+2} \dots \beta_{D}$$

Coupling Layer - Stacking

NICE: Nonlinear Independent Components Estimation

- Additive coupling layers
 - Partition the variables z into two disjoint subsets

$$-x_{1:d} = z_{1:d}$$

$$-x_{d+1:n} = z_{d+1:n} + H(z_{1:d})$$

- Additive coupling layers are composed together (with arbitrary partitions of variables in each layer)
- Final layer of NICE applies a rescaling transformation

NICE

Rescaling layers

• Forward:

 $x_i = \beta_i z_i$, where $s_i > 0$ is the scaling factor for the i-th dimension.

• Inverse:

$$z_i = \frac{x_i}{\beta_i}$$

• Jacobian:

$$J = diag(\beta)$$

Samples generated via NICE

(a) Model trained on MNIST

(b) Model trained on TFD

Samples generated via NICE

(c) Model trained on SVHN

(d) Model trained on CIFAR-10

Real NVP: Real Non-Volume Preserving

- Coupling layers
 - Partition the variables z into two disjoint subsets

$$-x_{1:d} = z_{1:d}$$

$$-x_{d+1:n} = z_{d+1:n} \odot F(z_{1:d}) + H(z_{1:d})$$

- Non-volume preserving transformation in general since determinant can be less than or greater than 1
- Coupling layers are composed together (with arbitrary partitions of variables in each layer)

Samples generated via Real NVP

Glow: Generative Flow with Invertible 1×1 Convolutions

Glow

1x1 Convolution

W can shuffle the channels.

If W is invertible, it will be easy to compute W⁻¹

3	=	0	0	1	1
1		1	0	0	2
2		0	1	0	3

Glow

1x1 Convolution

$$x = f(z) = Wz$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & w_{12} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}$$

$$J = \begin{bmatrix} \partial x_1/\partial z_1 & \partial x_1/\partial z_2 & \partial x_1/\partial z_3 \\ \partial x_2/\partial z_1 & \partial x_2/\partial z_2 & \partial x_2/\partial z_3 \\ \partial x_3/\partial z_1 & \partial x_3/\partial z_2 & \partial x_3/\partial z_3 \end{bmatrix}$$

$$= \begin{bmatrix} w_{11} & w_{12} & w_{12} \\ w_{21} & w_{22} & w_{23} \\ w_{31} & w_{32} & w_{33} \end{bmatrix} = W$$

Glow

- (*det*(*W*))^{*d*d*}
- If W is 3*3, computing det(W) is easy.

Samples generated via Glow

Samples generated via Glow

Figure 5: Linear interpolation in latent space between real images

Autoregressive models as flow models

- Consider a Gaussian autoregressive model:
 - $p(x) = \prod_{i=1}^{D} p(x_i|x_{< i})$
 - Such that $p(x_i|x_{< i}) = N(\mu_i(x_1, ..., x_{i-1}), \exp(\alpha_i(x_1, ..., x_{i-1}))^2)$, μ_i , α_i are neural networks.
- Sampler for this model:
 - Sample $z_i \sim N(0,1)$
 - Let $x_i = \exp(\alpha_i) z_i + \mu_i < --$ look like coupling layer
- Flow interpretation: transform ${\bf z}$ to ${\bf x}$ via invertible transformation (parameterized by μ_i , α_i)

Masked Autoregressive Flow (MAF)

- Forward: (z to x)
 - $x_i = z_i \exp(\alpha_i) + \mu_i$
 - Compute α_{i+1} , μ_{i+1}
- Sampling is sequential and slow (like autoregressive)

MAF

Transformed distribution

Base distribution

- Inverse (x to z)
 - $z_i = (x_i \mu_i) \exp(-\alpha_i)$
 - can be done in parallel.

 Jacobian is lower diagonal; hence determinant can be computed efficiently

Inverse Autoregressive Flow (IAF)

- Forward: (z to x)
 - $x_i = z_i \exp(\alpha_i) + \mu_i$
 - parallel

IAF is inverse of MAF

Transformed distribution

Base distribution

$$egin{bmatrix} z_1 & z_2 & \cdots & z_{i-1} & z_i & \cdots & z_n \ & z_i = (x_i - \mu_i) \cdot \exp(-lpha_i) \,\, orall \, i \in \{1 \dots n\} \ \end{pmatrix}$$

- Forward: (z to x)
 - $x_i = z_i \exp(\alpha_i) + \mu_i$
 - parallel
- Inverse (x to z)
 - $z_i = (x_i \mu_i) \exp(-\alpha_i)$
 - compute α_i , μ_i
 - sequential

IAF vs. MAF

- Computational tradeoffs
 - MAF: Fast likelihood evaluation, slow sampling
 - IAF: Fast sampling, slow likelihood evaluation
- MAF more suited for training based on MLE, density estimation
- IAF more suited for real-time generation

Thank You

• Questions?

• Email: yu.yin@case.edu

Reference slides

- https://lilianweng.github.io/posts/2018-10-13-flow-models/
- Hao Dong. Deep Generative Models
- Hung-yi Li. Flow-based Generative Model