LINEAR REGRESSION

Linear Regression

Is the Regression Model Significant?

- Modeling learning is not the end of the analysis
 - Check overall significance in regression models
 - Whether the regression model is overall significant for predicting a target
 - Check significance of regression coefficients
 - Whether the specific variable is significant for predicting a target

- In the case of simple linear regression, testing overall significance of the model is the same as testing significance of regression coefficients
 - Because only one explanatory variable is used

- □ Test for $\beta_j(j=0,1,2,\cdots,p)$
 - Hypothesis

$$H_0: \beta_j = 0$$

$$H_1: \beta_i \neq 0$$

Test statistic

$$t_{j} = \frac{\widehat{\beta}_{j}}{se(\widehat{\beta}_{j})}$$

- $se^{2}(\widehat{\boldsymbol{\beta}}) = MSE(\mathbf{X}^{T}\mathbf{X})^{-1} \rightarrow se^{2}(\widehat{\beta}_{j}) = [MSE(\mathbf{X}^{T}\mathbf{X})^{-1}]_{j,j}$
- Decision rule

If
$$|t_j| \le t \left(1 - \frac{\alpha}{2}; n - p - 1\right)$$
, conclude H_0
If $|t_j| > t \left(1 - \frac{\alpha}{2}; n - p - 1\right)$, conclude H_1

- $\Box se^2(\hat{\beta}_i)$
 - Ex) two input variables

$$(X^T X)^{-1} = \begin{bmatrix} x_{00} & \beta_1 & \beta_2 \\ x_{00} & & \\ & x_{11} & \\ & & x_{22} \end{bmatrix}$$

•
$$se^2(\hat{\beta}_0) = MSE \cdot x_{00} \rightarrow se(\hat{\beta}_0) = \sqrt{MSE \cdot x_{00}}$$

•
$$se^2(\hat{\beta}_1) = MSE \cdot x_{11} \rightarrow se(\hat{\beta}_1) = \sqrt{MSE \cdot x_{11}}$$

•
$$se^2(\hat{\beta}_2) = MSE \cdot x_{22} \rightarrow se(\hat{\beta}_2) = \sqrt{MSE \cdot x_{22}}$$

- □ Test statistics of t-test follows student's t distribution with n-p-1 degree of freedom
 - Probability density function of student's *t* distribution with different parameters(degree of freedom)

- □ If (area under density function from |t| to ∞) $\langle \frac{\alpha}{2} \rangle$
 - \rightarrow Reject null hypothesis $\rightarrow \beta_i$ is not zero
 - $f \alpha$ is significance value
 - significance level is usually set to 0.1, 0.05
 - The higher significance level, the higher probability to reject null hypothesis

- How to calculate area?
 - Don't worry. There is pre-calculated table!

Student t-Table

Alpha	0.250	0.200	0.150	0.100	0.050	0.025	0.010	0.005	0.0005
df									
1	1.000	1.376	1.963	3.078	6.314	12.706	31.821	63.656	636.578
2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.600
3	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	12.924
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	5.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.781
10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587
11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437
12	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	4.318
13	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	4.221
14	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	4.140
15	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	4.073
16	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	4.015
17	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.965
18	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.922
19	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.883
20	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.850

t value that area is 0.25 with 20 degree of freedom

- How to measure quantitatively performance of fitted models?
 - Calculate goodness-of-fit

- Statistical measures for goodness-of-fit
 - $R^2 (0 \le R^2 \le 1)$

P个器

R^2 is NOT All-around Player \rightarrow whited R^2

- Anscombe's quartet
 - The same linear regression line but are themselves very different.

- \square Adding more input variables to the regression model increases R^2 and never reduce it
 - Tend to add more input variables to the model

Is always right to add more variables?

Adjusted
$$R^2$$

$$R^2_{adj} = 1 - \frac{\frac{SSE}{n-p-1}}{\frac{SST}{n-1}} = 1 - \left(\frac{n-1}{n-p-1}\right)(1-R^2)$$
Depend on the number of input variables

- $lue{}$ Penalty on the number of input variable by n-p-1
- lacktriangle Adjusted R^2 may actually become smaller when another input variable is introduced into the model

Performance metrics

- Functions to measure regression performance
 - Mean squared error

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$$

Mean absolute error

$$MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$

- Median absolute error
 - robust to outliers

$$MedAE = median(|y_1 - \hat{y}_1|, ..., |y_n - \hat{y}_n|)$$

Do you remember main assumptions of linear regression?

Main Assumption of Linear Regression

Linear regression analysis makes several key assumptions

加起是的比小的

- Linear relationship
 - Check relationships between input variables and a responsive variable

Relationships between Input Variables

If some of input variables are highly correlated, regression coefficients are unstable

	1	2	3	4	5	6	7	8	9	10
x_1	98	120	140	195	181	128	107	106	88	77
x_2	24	35	36	51	45	30	29	24	22	19
x_3	21	11	31	42	57	82	67	13	55	36

Correlation matrix
$$corr = \begin{bmatrix} 1.00 & 0.98 & 0.17 \\ 0.98 & 1.00 & 0.11 \\ 0.17 & 0.11 & 1.00 \end{bmatrix}$$

• x_1 and x_2 are highly correlated

***** Covariance

□ Variance of a random variable X is the expected value of the squared deviation from the mean($\mu = \mathbb{E}[X]$)

$$Var(X) = \mathbb{E}[(X - \mu)^2]$$

Sample variance is calculated by

$$s_x^2 = \frac{\sum_{i=1}^n (x - \bar{x})^2}{(n-1)}$$

 Covariance is a measure of how much two random variables change together

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Variance is the covariance of a random variable with itself

$$Var(X) = Cov(X, X)$$

Sample covariance is calculated by

$$q_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_j - \bar{y})}{n-1}$$

***** Correlation

- Any statistical relationship, whether causal or not, between two random variables or bivariate data
 - Pearson's correlation coefficient
 - The most popular correlation

$$\rho_{X,Y} = corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Sample correlation coefficient

$$r_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_x s_y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{(\sum_{i=1}^{n} (x_i - \bar{x})^2)(\sum_{i=1}^{n} (y_i - \bar{y})^2)}}$$

Relationships between Input Variables

Two difference cases

	1	2	3	4	5	6	7	8	9	10
y_1	295	310	404	567	574	532	442	283	366	285
y_2	282	311	402	581	573	523	446	277	374	274

- Output values of two cases are quite similar
- \blacksquare Regression coefficient for y_1 and y_2

Case 1:
$$[\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3] = [2.16 \quad 0.14 \quad 2.88]$$

Case 2: $[\hat{\beta}_1, \hat{\beta}_2, \hat{\beta}_3] = [1.73 \quad 2.18 \quad 2.97]$

■ Because x_1 and x_2 are highly correlated, explained variance by x_2 is also explained by $x_1 o$ Coefficient of x_2 is quite unstable

Why This Situation Happens

$$\widehat{\boldsymbol{\beta}} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y$$

- $\ \ \, \Box$ To estimate regression coefficients, inverse matrix of $\mathbf{X}^T\mathbf{X}$ should be calculated
- Ill-conditioned matrices
 - If a small change in the coefficient matrix results in a large change in the solution, the coefficient matrix is called ill-conditioned

$$\begin{cases} x + y = 2 \\ x + 1.001y = 2 \end{cases} \text{ and } \begin{cases} x + y = 2 \\ x + 1.001y = 2.001 \end{cases}$$

- Left: x = 2, y = 0
- Right: x = 1, y = 1

$$\begin{bmatrix} 1 & 1 \\ 1 & 1.001 \end{bmatrix}$$
 is ill-conditioned

Variance Inflation Factor

 Variance inflation factor(VIF) quantifies the severity of multicollinearity in a least square method

[Multicollinearity] 1- 24 242 white

A Phenomenon in which two or more input variables in a multiple regression model are highly correlated

- → In this situation the coefficient estimates of the multiple regression may change erratically in response to small changes in the model or the data
- Variance of estimated coefficients for j th input variable

$$var(\widehat{\beta}_j) = se^2(\widehat{\beta}_j) = [MSE(\mathbf{X}^T\mathbf{X})^{-1}]_{j,j} = \frac{MSE}{(n-1)se^2(x_j)} \frac{1}{1 - R_j^2}$$

 R_j^2 is the R^2 for the regression of the x_j on the other input variables

$$\sqrt{1 - R_j^2}$$

Variance Inflation Factor

- Calculate VIF
 - $lue{\Box}$ Step 1) Apply least square method to regression problem that i-th input variable is regressed by the remained input variables

$$x_i = \alpha_1 x_1 + \dots + \alpha_{i-1} x_{i-1} + \alpha_{i+1} x_{i+1} + \dots + \alpha_p x_p + \alpha_0 + \epsilon$$

- Step 2) Calculate R^2 for above regression problem and set the value as R_i^2
- Step 3) Calculate VIF from R_i^2

$$VIF = \frac{1}{1 - R_i^2}$$

- \square A rule of thumb is that if VIF $(\widehat{\beta}_i)$ >10 then multicollinearity is high
 - \blacksquare In this case, do not use x_i as explanatory variable to estimate output

- Normality
 - Errors should follow normal distribution
 - Calculate errors (residuals) and check normality

$$e_i = y_i - \hat{y}_i$$

Histogram

Histogram

- Q-Q plot
 - A probability plot, which is a graphical method for comparing two probability distributions by plotting their quantiles against each other
 - Quantiles are cutpoints dividing a set of observations into equal sized groups
 - = q-Quantiles are values that partition a finite set of values into q subsets of (nearly) equal sizes
 - Median is 2-quartile, 0.5 quantile and 50 percentile

- □ Homoscedasticity Heteoscedasticity
 - Check whether all random variables in the sequence or vector have the same finite variance

Residual plot

Interpretation & Prediction

- If the fitted regression model is appropriate and significant you can use the model for future use
 - Linear regression models have strength in interpretation
 - Each coefficient explain relationship between each explanatory variable and the target variable
 - Based on the fitted model, predict the target on test samples

Overall Process for Linear Regression

Feature Scaling

Predict consumption of petrol

Linear model by least square method

$$y = -34.8x_1 - 0.0666x_2 - 0.002x_3 + 1336x_4 + 377.3$$

Petrol Tax(\$)	Average Income (\$)	Paved Highways (miles)	Proportion of population with driver's license	Consumption of petrol (M of gallons)
9	3571	1976	0.525	541
9	4092	1250	0.572	524
9	3865	1586	0.58	561
7.5	4870	2351	0.529	414
				<i></i>

How about changing scale of variable?

Feature Scaling

 Change unit of paved highways from mile to cm 1mile=160934.4cm

Petrol Tax(\$)	Average Income (\$)	Paved Highways (cm)	Proportion of population with driver's license	Consumption of petrol (M of gallons)
9	3571	31683974.4	0.525	541
9	4092	20043000	0.572	524
9	3865	25430558.4	0.58	561
7.5	4870	37696874.4	0.529	414
•••	•••	•••	•••	•••

■ Linear regression on new data
$$y = -34.8x_1 - 0.0666x_2 - 1.5 \times 10^{-7}x_3 + 1336x_4 + 377.3$$

0 2109 X

Feature Scaling

- Scale change only affects on the changed variable
 - Coefficients of other variables are not changed
 - If variable x is replaced with ax, coefficient of x, β by linear regression is changed to β/a
 - If scale of certain variable is too large, coefficient of the variable might be too small
 - → It is better to change scale

Variable Transformation

- Linear regression algorithm is quite simple, but it can be extended using transformation
 - $\mathbf{x} \to x^2$
 - $x \rightarrow \log x$