

Tecnología Digital V: Diseño de algoritmos

Licenciatura en Tecnología Digital Primer Semestre 2025

Guía de ejercicios 1: Teoría de grafos

- 1. Recordemos que un grafo bipartito es un grafo G = (V, E) cuyos vértices pueden particionarse en $V = V_1 \cup V_2$ de modo tal que toda arista de G conecta un vértice de V_2 .
 - a) ¿Existe un grafo bipartito con un vértice de grado 5 y cinco vértices de grado 1?
 - b) ¿Existe un grafo bipartito con más de un vértice y tal que su complemento también sea bipartito?
 - c) ¿Existe un grafo bipartito con 6 o más vértices y tal que exista exactamente un camino entre todo par de sus vértices?
 - d) ¿Existe un grafo bipartito tal que todos sus vértices tengan grado 3?
 - e) ¿Existe un grafo bipartito tal que todos sus vértices excepto uno de ellos tengan grado 3?
- 2. Demostrar que todo grafo con dos o más vértices tiene al menos dos vértices del mismo grado. Pista: prestar atención a la secuencia ordenada de los grados de los vértices.
- 3. Handshaking Lemma. Sea G=(V,E) un grafo con m aristas (|E|=m), y recordemos que d(i)=|N(i)| representa el grado del vértice $i\in V$. Demostrar que

$$\sum_{i \in V} d(i) = 2m.$$

- 4. Recordemos que un conjunto independiente de un grafo G=(V,E) es un subconjunto de vértices $I\subseteq V$ tal que $ij\not\in E$ para todo $i,j\in I$. Denotamos por $\alpha(G)$ al tamaño del mayor conjunto independiente de G.
 - a) ¿Existe algún grafo conexo con 5 vértices tal que $\alpha(G) = 4$?
 - b) ¿Existe algún grafo conexo con 5 vértices tal que $\alpha(G) = 5$?
 - c) ¿Existe algún grafo con $\alpha(G) = 1$?
- 5. Recordemos que una clique de un grafo G=(V,E) es un subconjunto de vértices $I\subseteq V$ tal que $ij\in E$ para todo $i,j\in I$, $i\neq j$. Denotamos por $\omega(G)$ al tamaño de la mayor clique de G.
 - a) ¿Existe algún grafo tal que $\alpha(G) + \omega(G) = n$?.
 - b) ¿Existe algún grafo conexo tal que $\alpha(G) + \omega(G) = n$?.
 - c) Sea $\delta(G) := \min_{i \in V} d(i)$ el grado mínimo de G. ¿Es cierto que $\omega(G) \geq \delta(G)$?
 - d) Sea $\Delta(G) := \max_{i \in V} d(i)$ el grado máximo de G. ¿Es cierto que $\omega(G) \geq \Delta(G)$?
- 6. Recordemos que un *coloreo* de un grafo es una asignación de colores a sus vértices de modo tal que todo par de vértices vecinos reciba colores distintos. Denotamos por $\chi(G)$ al menor número de colores necesarios para obtener un coloreo de G=(V,E).
 - a) ¿Es cierto que $\chi(G) \geq \delta(G)$?
 - b) ¿Es cierto que $\chi(G) \geq \Delta(G)$?
 - c) ¿Es cierto que $\chi(G) \geq \omega(G)$?

- d) ¿Existe algún grafo G tal que $\chi(G)=\omega(G)$?
- e) [Opcional] Mostrar que existe un grafo G con $\chi(G) \geq \omega(G) + 2$.
- 7. Un subconjunto de vértices $D \subseteq V$ de un grafo G = (V, E) es un conjunto dominante si todo vértice $i \in V \setminus D$ tiene al menos un vecino en D. Denotamos por $\gamma(G)$ al tamaño del menor conjunto dominante de G.
 - a) Mostrar un grafo $G \operatorname{con} \gamma(G) = 1$.
 - b) Mostrar un grafo G con $\gamma(G) = 3$.
 - c) Denotamos por K_n al grafo completo con n vértices. ¿Cuánto vale $\gamma(K_n)$?
 - d) ¿Es cierto que $\gamma(G) \geq \Delta(G)$? ¿Es cierto que $\gamma(G) \leq \Delta(G)$?
 - e) ¿Cuál es el conjunto dominante de mayor tamaño de un grafo?
 - f) ¿Existe un grafo G con un vértice i tal que todo conjunto dominante de G incluya al vértice i?
- 8. Un *ciclo* es un camino que comienza y termina en un mismo vértice. Demostrar que si todos los vértices de un grafo tienen grado dos o más, entonces el grafo tiene un ciclo.
- 9. Un árbol es un grafo conexo sin ciclos.
 - a) Demostrar que todo árbol tiene al menos dos vértices de grado 1.
 - b) Demostrar que todo árbol de n vértices tiene exactamente n-1 aristas.
 - c) Demostrar por medio de reducción al absurdo que si G es un árbol e i y j son dos vértices de G, entonces existe exactamente un camino en G entre i y j.
- 10. Sean P y Q dos caminos distintos de un grafo G que unen un vértice v con otro w. Demostrar en forma directa que G tiene un ciclo cuyas aristas pertenecen a P o Q. Pista: denotar $P=v_0,\ldots,v_p$ y $Q=w_0,\ldots,w_q$ con $v_0=w_0=v$ y $v_p=w_q=w$. Definir explícitamente cuáles son los subcaminos de P y Q cuya unión forman un ciclo.
- 11. Sea G=(V,E). Demostrar que G o su complemento \bar{G} es conexo.
- 12. Demostrar que un grafo es bipartito si y sólo si no tiene circuitos simples (i.e., caminos que empiezan y terminan en el mismo vértice y no repiten vértices salvo el primero) de longitud impar.
- 13. Demostrar que si dos grafos son isomorfos, entonces
 - tienen el mismo número de vértices,
 - tienen el mismo número de aristas,
 - para todo k, $0 \le k \le n-1$, tienen el mismo número de vértices de grado k,
 - tienen el mismo número de componentes conexas,
 - para todo k, $1 \le k \le n-1$, tienen el mismo número de caminos simples de longitud k.