Übungsblatt 8

Abgabetermin: 14.06.2017, 17:00 Uhr.

Aufgabe 1 $(2+2+1 = 5 \ Punkte)$

Sei (V, γ) ein unitärer Raum.

- a) Sei f ein normaler Operator auf (V, γ) mit $f^4 = f^3$. Zeigen Sie: f ist selbstadjungiert und $f^2 = f$.
- b) Sei f ein normaler Operator auf (V, γ) . Zeigen Sie: Es existiert ein Polynom $p(X) \in \mathbb{C}[X]$ so dass $f^{ad} = p(f)$ gilt.
- c) Sei f ein linearer, diagonalisierbarer Endomorphismus von V. Zeigen Sie: Es existiert ein Skalarprodukt γ' auf V so dass f ein normaler Operator auf dem unitären Raum (V, γ') ist.

Aufgabe 2 $(2+2 = 4 \ Punkte)$

Sei $n \in \mathbb{N}$.

- a) Sei $A \in U(n)$ eine obere Dreiecksmatrix. Zeigen Sie: A ist eine Diagonalmatrix.
- b) Sei $(A^{(k)})_{k\in\mathbb{N}}$ eine Folge von unitären $n\times n$ Matrizen, so dass der komponentenweise Grenzwert $A^{(\infty)} = (\lim_{k\to\infty} A^{(k)}_{i,j})_{1\leq i,j\leq n}$ existiert. Zeigen Sie: $A^{(\infty)} \in U(n)$.

(Hinweis: Sie dürfen die üblichen Eigenschaften stetiger Abbildungen ohne Beweis benutzen, z.B. dass die Verknüpfung stetiger Funktionen wieder stetig ist.)

Aufgabe 3 $(2+1+1 = 4 \ Punkte)$

Sei R ein kommutativer Ring, $R[X] = \{\sum_{i=0}^n a_i X^i | n \in \mathbb{N}_0, a_i \in R\}$ der Polynomring über R und grad : $R[X] \to \mathbb{N}_0 \cup \{-\infty\}$ die Gradabbildung, definiert durch grad $(0) = -\infty$ und grad $(f) = \max\{i | a_i \neq 0\}$ für $f = \sum_{i=0}^n a_i X^i \neq 0$.

- a) Zeigen Sie: Es gilt $\operatorname{grad}(f+g) \leq \operatorname{max}(\operatorname{grad}(f),\operatorname{grad}(g))$ und, falls R nullteilerfrei ist, so gilt $\operatorname{grad}(f \cdot g) = \operatorname{grad}(f) + \operatorname{grad}(g)$. Folgern Sie, dass R[X] nullteilerfrei ist, falls R nullteilerfrei ist.
- b) Sei R nullteilerfrei, dann gilt $R[X]^* = R^*$.
- c) Sei $t \in R$. Zeigen Sie: Die Menge $P_r = \{f \in R[X] | f(t) = r\}$ ist ein Ideal genau dann, wenn r = 0. Die Menge $G_n = \operatorname{grad}^{-1}(n)$ ist ein Ideal genau dann wenn $n = -\infty$.

Aufgabe 4 (2+2+2* = 4 Punkte)

Wir betrachten $R = \{x + y\sqrt{-3} | x, y \in \mathbb{Z}\}$ als Teilmenge von \mathbb{C} , wobei wir $\sqrt{-3}$ als $i \cdot \sqrt{3} \in \mathbb{C}$ auffassen.

- a) Zeigen Sie, dass R mit der von $\mathbb C$ vererbten Multiplikation und Addition einen kommutativen Ring bildet.
- b) Zeigen Sie: 4 und $2 \cdot (1 + \sqrt{-3})$ besitzen keinen größten gemeinsamen Teiler in R.
- c) (2 Bonuspunkte) Zeigen Sie: In dem Quotientenring $S=\mathbb{Q}[X_1,X_2,X_3,X_4]/(X_1X_2-X_3X_4)$ besitzen die Elemente X_1X_2 und X_1X_3 keinen größten gemeinsamen Teiler. (Sie müssen nicht nachprüfen, dass S ein Integritätsring ist.)