Abstract Algebra

OUTLINE

- Basic Terms/Definitions
 - Binary operation
 - Commutativity/Associativity
- Groups and related concepts
 - Groupoid
 - Semigroup / commutative semigroup / subsemigroup
 - Identity element
 - Monoid / submonoid
 - Inverse element
 - Group / abelian group
 - Some finite groups
- Cyclic Groups

Slide 1

Abstract Algebra

- BINARY OPERATION on a set A a function f that maps each and every ordered pair $(a,b) \in A \times A$ to an element of A.
 - That is
- NOTATION: binary operations \Rightarrow element assigned to $(a,b) \Rightarrow$ In other words.
- Examples:
 - Binary operations defined on R :

Slide 2

Abstract Algebra

Examples:

Let $A = Z^+$

- Define a*b = min(a,b). Examples:
- Define **a*b** = **a** Examples:
- Define **a*b** = **max(a,b)** + **1** Examples:

Slide 3

Abstract Algebra

Remarks:

The binary operation * (on the set A) should be defined in such a way so that the following are satisfied:

- is assigned to the each ordered pair (a,b) $\in A \times A$
- the element assigned to (a,b) must be an element of A. In other words, $a*b \in A$ or _____

Slide 4

Abstract Algebra

- A set A is said to be closed under the operation * if it has the following property:
 - if a and b are elements of the set A, then ______

Examples:

Determine if the given functions are binary operations defined over the given set A:

- Let A = Q, and a*b = a/b
- Let $A = Q^+$, and $\mathbf{a} * \mathbf{b} = \mathbf{a} / \mathbf{b}$
- Let $A = Z^{\oplus}$, and a*b = a-b
- Let A = Z, and a*b = c such that c < a and c < b
- Let A = set of matrices, and * = matrix addition.

Slide 5

Abstract Algebra

Remarks:

If $A = \{a_1, a_2, \dots, a_n\}$ is a *finite set*, we can define a binary operation on A thru means of a table, as follows:

Abstract Algebra

• Example:

Multiplication table: where a*b=a·b on Z+::

×	1	2	3	4	5	•••
1	1	2	3	4	5	
2	2	4	6	8	10	
3	3	6	9	12	15	
4	4	8	12	16	20	
5	5	10	15	20	25	
:	:	:	:	:	:	

Slide 7

Abstract Algebra

• Example:

<u>Truth table</u> for $a*b = a \land b$ on $A=\{T, F\}$ is

т F

Example:

0 1 2

Construct the table for $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a} \cdot \mathbf{b}|$ on $\mathbf{A} = \{0,1,2\}$

1

Slide 8

Abstract Algebra

• Example:

Suppose we define * on the set $A=\{a,b,c\}$ as follows

	а	b	C
а	а	С	а
b	b	С	a
C	C	а	h

Using the table above, compute for the following:

- b*c
- (a*c)*b
- a*(b*c)

Slide 9

Abstract Algebra

Properties of Binary Operations

- A binary operation on a set A is commutative if _____ for all elements a and b in A.
- A binary operation on a set A is associative
 - for all elements a and b in A.

Examples:

Determine whether each of the following binary operations are commutative and/or associative.

- ◆ Define a*b = a b on A = Z
- ◆ Define a*b = min(a,b)

Slide 10

Abstract Algebra

• Examples:

Determine whether each of the following binary operations are commutative and/or associative.

- ◆ Define a*b = a
- ◆ Define a*b = min(a,b) + 1
- Define $\mathbf{a} * \mathbf{b} = |\mathbf{a} \mathbf{b}| \text{ for } A = \{0,1,2\}$

Abstract Algebra

• Examples:

Determine whether each of the following binary operations are commutative and/or associative.

• a*b as defined by the table on the set A = {a,b,c}:

	а	b	C
a	a	C	a
b	b	С	a
•	_	а	h

The binary operation * on the set A is commutative iff its corresponding table is _ in the table.

Groupoids, etc.

- GROUPOID (G,*)
 - Nonempty set G together with binary operation * defined on G

Examples:

Are the following groupoids or not?

- (Z⁺,*) where a*b = min(a,b)
- ◆ (Z⁺,-) (ordinary subtraction)
- (Q+,/) (ordinary division)
- ◆ (A,*) where A = {0,1,2} and a*b = |a-b|

Slide 13

Groupoids, etc.

- SEMIGROUP (S,*)
 - Nonempty set S together with an _ defined on the set S.
- COMMUTATIVE SEMIGROUP (S,*)
 - Semigroup (S,*) where * is a _

Examples:

Are the following (commutative) semigroups or not?

- (Z,+)
- (Z⁺,*) where a*b = a(Z,-)

Slide 14

Groupoids, etc.

SUBSEMIGROUP of a semigroup (S,*)

• (T,*) if T is closed under * given that $T \subset S$

Remarks:

- Note that associativity holds for any subset of a semigroup so that the subsemigroup (T.*) is
- Also, (S,*) is a subsemigroup of itself.

Examples:

Consider the semigroup $(\mathbf{Z},*)$ where $\mathbf{a}*\mathbf{b} = |\mathbf{a} - \mathbf{b}|$. Are the following subsemigroups of (Z,*)?

- (T,*) where T = {0, 1, 2}
- (**T**,*) where **T** = **Z**
- **(T,*)** where **T** = **Z**[⊕]

Slide 15

Groupoids, etc.

• IDENTITY ELEMENT e

■ Element **e** in a semigroup if ______ for all elements $a \in A$.

Examples:

What is the identity element of each of the following semigroups?

- (Z. +)
- (Z⁺, +)
- (A, *) on A = {a, b, c} where * is defined by the table

	а	b	C
a	С	a	b
b	a	b	С
C	b	С	a

Slide 16

Slide 18

Groupoids, etc.

• Examples:

What is the identity element of (Q, *) where $a*b = -(a \cdot b)$? Solution:

Groupoids, etc.

• **Theorem.** If a semigroup (S,*) has an identity element, that element is unique. Proof:

Groupoids, etc.

- MONOID (M,*)
 - A semigroup (M,*) that _____

Examples:

Are the following semigroups also monoids?

- (Z, +)
- (Z⁺, +)
- (A, *) on A = {a, b, c} where * is defined by the table

	а	b	C
а	С	a	b
b	a	b	С
C	b	C	a

Slide 19

Groupoids, etc.

- SUBMONOID of a monoid (M,*)
 - (T,*) where $T \subseteq M$ and $T \neq \emptyset$ and such that
 - T is closed under the operation *
 - _____ is also in T

Examples:

Are the following submonoids of (Z,+)?

- **(T,*)** where $\bar{T} = \{0, 1, 2\}$
- (T,*) where T = Z+
- (T,*) where T = Z[⊕]

Slide 20

Groupoids, etc.

• INVERSE ELEMENT of element a

■ Element a' in a monoid if ______ for every element a ∈ M.

Examples:

What are the inverse elements in each of the following monoids?

- **■** (Q[⊕], +)
- (Z, +)
- (A, *) on A = {a, b, c} where * is defined by the table

	а	b	C
а	С	a	b
b	a	b	C
C	h	C	а

Slide 21

Groupoids, etc.

• Examples:

What is the inverse element of (Q, *) where $a*b = -(a \cdot b)$? Solution:

Slide 22

Groupoids, etc.

- GROUP (G,*)
 - A monoid (G,*) with identity element e that also _____
 for each element a in G.
- ABELIAN GROUP (G,*)
 - A group (G,*) where * is also _____

Examples:

Are the following monoids also (abelian) groups?

- (Z, +)
- **■** (**Z**[⊕], +)
- **(Z, ·)** (ordinary multiplication)

Groupoids, etc.

- SUBGROUP of a group (G,*)
 - (H,*) where $H \subseteq G$ and $H \neq \emptyset$ and such that
 - H is closed under the binary operation *
 - Identity element e in G is also in H
 - If for every element a in H, there exists _______ also in H

Examples:

- Is (Q+,·) a subgroup of the group (R+,·)?
- Is (**Z**,+) a subgroup of the group (**Q**,+)?
- Is (Z⁺,·) a subgroup of the group (R⁺,·)?

Groupoids, etc.

- Let (H,*) be a subgroup of (G,*) with identity element e.
- If H=G then (H,*) is an _ Otherwise (H,*) is a **proper subgroup**.
- If H={e} then (H,*) is known as the **trivial subgroup** of (G.*). Otherwise, (H,*) is a _____

Examples:

- Is (Q⁺,·) a proper subgroup of the group (R⁺,·)?
- What is the trivial subgroup of (R+,-)?

Slide 25

Groupoids, etc.

• Examples:

Consider the group structure $\mathbf{Z}_{4} = (A,*)$ where $A = \{0, 1, 2, 3\}$ and * is defined as follows:

	0	1	2	3
0	0	1	2	3
1 2 3	1	2	3	0
2	1 2 3	3	0	0 1 2
3	3	0	1	2

- ◆ Give an improper subgroup of Z₄.
- ◆ Give a trivial subgroup of Z₄.
- ◆ Give a (nontrivial) proper subgroup of Z₄.

Slide 26

Groupoids, etc.

FINITE GROUPS

If (G,*) is a finite group, then the **order of G**, denoted by **|G|** is the ______.

Examples:

- The group (A,*) where A={e}, e being the identity element, is a group of order one(1).
- How would you fill in the table of each of the following finite groups (G,*)? (where e is the identity element)
 - Finite group of order one(1) where G = {e}
 - Finite group of order two(2) where G = {e, a}
 - Finite group of order three(3) where G = {e, a, b}

Slide 27

Groupoids, etc.

SUMMARY

Binary	Assoc	е	a'
V			
~	✓		
✓	V	V	
✓	✓	~	~
	Binary	V V	V V V

Slide 28

Cyclic Groups

POWER of an element a

Given group (S,*) with identity element e and $n \in Z$

- The powers of element a are defined as:
 - \bullet a⁰ = e
 - $a^1 = a$ and $a^{-1} = a'$
 - $a^n = a^{n-1}*a$ for n ≥ 2 and _____ for n ≤ -2
- NOTE: Also, a⁻ⁿ = (a⁻¹)ⁿ
- Essentially: **a**ⁿ = _**a*****a*****a*** ... ***a**_

$$a^{-n} = a^{-1}*a^{-1}*a^{-1}* \dots *a^{-1}$$
n terms

Slide 29

Cyclic Groups

• Example:

Consider the group (Q^+, \cdot) . Note that

- Example:

Consider the group (Z,+). Note that

Cyclic Groups

• Example:

Consider the group ($\{1, 2\}, *$) where * is defined as

Note that

•

What is 14?

•

Slide 31

Cyclic Groups

• Example:

Consider the group $(\{1, 2\}, *)$ where * is defined as

Note that

•

What is 1⁻³?

Slide 32

Cyclic Groups

• Example:

- Consider the group $(Q^+, *)$ where a*b = 2ab.
 - a⁰ =
 - $\mathbf{a^1} =$ and $\mathbf{a^{-1}} =$
 - ◆ What is 1⁴?

◆ What is 1⁻³?

Slide 33

Cyclic Groups

THEOREM

Given group (G,*) and $a \in G$

- **■** (H,*) where **H** = {**a**ⁿ | **n** ∈ **Z**} is
 - a subgroup of (G,*)
 - the smallest subgroup of G _____

Example:

Consider the group (Z,+). Find the elements of the sets below:

- \bullet H₁ = {2ⁿ| n ∈ Z}
- ♦ $H_2 = \{5^n | n \in Z\}$
- ♦ $H_3 = \{10^n | n \in Z\}$

Slide 34

Cyclic Groups

• Example:

Consider the group structure $Z_4 = (A,*)$ where $A = \{0, 1, 2, 3\}$ and * is defined as follows:

	0	1	2	3
0	0	1	2	3
1 2 3	1	1 2 3	3	0
2	1 2 3	3	0	1 2
3	3	0	1	2

Find the elements of the sets below:

- $H_1 = \{0^n | n \in Z\}$
- $H_2 = \{2^n | n \in Z\}$

Cyclic Groups

CYCLIC SUBGROUP of (G,*) generated by a ∈ G

<a> =

Examples:

- Recall (Z,+). We had previously defined the cyclic subgroups
 - <2> = $(H_1,+)$ where $H_1 = \{2^n | n \in Z\}$
 - <5> = $(H_2,+)$ where $H_2 = \{5^n | n \in Z\}$
 - <10> = $(H_3,+)$ where $H_3 = \{10^n | n \in Z\}$
- Recall Z₄. We had previously defined the cyclic subgroups
 - <0> = $(H_1,+)$ where $H_1 = \{0^n | n \in Z\}$
 - <2> = $(H_2,+)$ where $H_2 = \{2^n | n \in Z\}$

Cyclic Groups

CYCLIC GROUPS

a generates **G** and **a** is a generator for **G**

if <a $> = _$

• (G,*) is a **cyclic group** if \exists a \in G which generates G.

- Examples:Are the following cyclic groups? If so, what element(s) generates the group?

 - Z₄(Z,+)