ENM 5310: Data-driven Modeling and Probabilistic Scientific Computing

Lecture #11: Multi-layer perceptrons

Feed-forward neural networks

Pros:

- Adaptive features/basis functions (parametric)
- Flexible non-linear regression models that can approximate any function.
- Scalability to high dimensions.

Cons:

- · The likelihood function is no longer a convex function of the model parameters.
- Over-fitting in data-scarce scenarios.
- Results are hard to interpret.

Feed-forward neural networks

Universal approximation theorem

Theorem 1. Let σ be any continuous discriminatory function. Then finite sums of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j^T x + \theta_j)$$
 (2)

are dense in $C(I_n)$. In other words, given any $f \in C(I_n)$ and $\varepsilon > 0$, there is a sum, G(x), of the above form, for which

$$|G(x) - f(x)| < \varepsilon$$
 for all $x \in I_n$.

One input, one hidden, one output layer

Visualizing the hidden layer

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Topology and Classification

Consider a two dimensional dataset with two classes $A, B \subset \mathbb{R}^2$:

$$A = \{x | d(x, 0) < 1/3\}$$

$$B = \{x | 2/3 < d(x, 0) < 1\}$$

Claim: It is impossible for a neural network to classify this dataset without having a layer that has 3 or more hidden units, regardless

A is red, B is blue

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Activation functions

Name +	Plot +	Equation +	Derivative (with respect to x) +	Range +	Order of continuity +	Monotonic +	Derivative \$	Approximates identity near the origin
Identity		f(x)=x	f'(x)=1	$(-\infty,\infty)$	C^{∞}	Yes	Yes	Yes
Binary step		$f(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$f'(x) = egin{cases} 0 & ext{for } x eq 0 \ ? & ext{for } x = 0 \end{cases}$	{0,1}	C^{-1}	Yes	No	No
Logistic (a.k.a. Soft step)		$f(x)=rac{1}{1+e^{-x}}$	$f^{\prime}(x)=f(x)(1-f(x))$	(0,1)	C^{∞}	Yes	No	No
TanH		$f(x)= anh(x)=rac{2}{1+e^{-2x}}-1$	$f^{\prime}(x)=1-f(x)^{2}$	(-1,1)	C^{∞}	Yes	No	Yes
ArcTan		$f(x)= an^{-1}(x)$	$f'(x)=rac{1}{x^2+1}$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$	C^{∞}	Yes	No	Yes
Softsign [7][8]		$f(x) = rac{x}{1+ x }$	$f'(x)=\frac{1}{(1+ x)^2}$	(-1,1)	C^1	Yes	No	Yes
Inverse square root unit (ISRU) ^[9]		$f(x) = rac{x}{\sqrt{1+lpha x^2}}$	$f'(x) = \left(rac{1}{\sqrt{1+lpha x^2}} ight)^3$	$\left(-\frac{1}{\sqrt{\alpha}}, \frac{1}{\sqrt{\alpha}}\right)$	C^{∞}	Yes	No	Yes
Rectified linear unit (ReLU) ^[10]		$f(x) = egin{cases} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$[0,\infty)$	C^0	Yes	Yes	No
Leaky rectified linear unit (Leaky ReLU) ^[11]		$f(x) = egin{cases} 0.01x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(x) = egin{cases} 0.01 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\infty,\infty)$	C^0	Yes	Yes	No
Parameteric rectified linear unit (PReLU) ^[12]		$f(lpha,x) = egin{cases} lpha x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(lpha,x) = egin{cases} lpha & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\infty,\infty)$	C^0	Yes iff $lpha \geq 0$	Yes	Yes iff $lpha=1$

Modern SGD variants

http://ruder.io/optimizinggradient-descent/

https://distill.pub/2017/momentum/

http://louistiao.me/notes/
visualizing-and-animatingoptimization-algorithms-withmatplotlib/

*animation credit: Alec Redford

Back-propagation

Forward pass

Backward pass

$$y_{l} = f(z_{l})$$

$$z_{l} = \sum_{k \in H2} w_{kl} y_{k}$$

$$y_{k} = f(z_{k})$$

$$z_{k} = \sum_{j \in H1} w_{jk} y_{j}$$

$$j \in H1$$

$$\frac{\partial y_{k}}{\partial z_{k}} = \frac{\sum_{j \in U} w_{jk}}{\partial y_{k}} \frac{\partial y_{k}}{\partial z_{k}}$$

$$y_{j} = f(z_{j})$$

$$z_{j} = \sum_{i \in Input} w_{ij} x_{i}$$

$$\frac{\partial E}{\partial y_k} = \sum_{l \in \text{out}} w_{kl} \frac{\partial E}{\partial z_l}$$

$$\frac{\partial E}{\partial z_k} = \frac{\partial E}{\partial y_k} \frac{\partial y_k}{\partial z_k}$$

$$\frac{\partial E}{\partial y_j} = \sum_{k \in H2} w_{jk} \frac{\partial E}{\partial z_k}$$
$$\frac{\partial E}{\partial z_j} = \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial z_k}$$

The forward pass

$$F = A_{\ell}W_{\ell} + b_{\ell}, \qquad F \in \mathbb{R}^{n \times p_{\ell+1}}, \qquad A_{\ell} \in \mathbb{R}^{n \times p_{\ell}}, \qquad W_{\ell} \in \mathbb{R}^{p_{\ell} \times p_{\ell+1}}, \qquad b_{\ell} \in \mathbb{R}^{1 \times p_{\ell+1}},$$

$$A_{\ell} = \tanh(H_{\ell}), \qquad A_{\ell} \in \mathbb{R}^{n \times p_{\ell}}, \qquad H_{\ell} \in \mathbb{R}^{n \times p_{\ell}},$$

$$H_{\ell} = A_{\ell-1}W_{\ell-1} + b_{\ell-1}, \qquad H_{\ell} \in \mathbb{R}^{n \times p_{\ell}}, \qquad A_{\ell-1} \in \mathbb{R}^{n \times p_{\ell-1}}, \qquad W_{\ell-1} \in \mathbb{R}^{p_{\ell-1} \times p_{\ell}}, \qquad b_{\ell-1} \in \mathbb{R}^{1 \times p_{\ell}},$$

$$A_{\ell-1} = \tanh(H_{\ell-1}), \qquad A_{\ell-1} \in \mathbb{R}^{n \times p_{\ell-1}}, \qquad H_{\ell-1} \in \mathbb{R}^{n \times p_{\ell-1}},$$

$$H_{\ell-1} = A_{\ell-2}W_{\ell-2} + b_{\ell-2}, \qquad H_{\ell-1} \in \mathbb{R}^{n \times p_{\ell-1}}, \qquad A_{\ell-2} \in \mathbb{R}^{n \times p_{\ell-2}},$$

$$A_{\ell-2} = \tanh(H_{\ell-2}), \qquad A_{\ell-2} \in \mathbb{R}^{n \times p_{\ell-2}}, \qquad H_{\ell-2} \in \mathbb{R}^{n \times p_{\ell-2}},$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$H_2 = A_1W_1 + b_1, \qquad H_2 \in \mathbb{R}^{n \times p_2}, \qquad A_1 \in \mathbb{R}^{n \times p_1}, \qquad W_1 \in \mathbb{R}^{p_1 \times p_2}, \qquad b_1 \in \mathbb{R}^{1 \times p_2},$$

$$A_1 = \tanh(H_1), \qquad A_1 \in \mathbb{R}^{n \times p_1}, \qquad H_1 \in \mathbb{R}^{n \times p_1},$$

$$H_1 = XW_0 + b_0, \qquad H_1 \in \mathbb{R}^{n \times p_1}, \qquad X \in \mathbb{R}^{n \times p_0}, \qquad W_0 \in \mathbb{R}^{p_0 \times p_1}, \qquad b_0 \in \mathbb{R}^{1 \times p_1},$$

The backward pass

$$\mathcal{L} := \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{p_{\ell+1}} (F_{i,j} - Y_{i,j})^2 \longrightarrow \nabla_{\theta} \mathcal{L}(\theta)$$

$$G_{\ell} = F - Y \in \mathbb{R}^{n \times p_{\ell+1}}, \qquad \frac{\partial \mathcal{L}}{\partial W_{\ell}} = A_{\ell}^{T} G_{\ell} \in \mathbb{R}^{p_{\ell} \times p_{\ell+1}}, \qquad \frac{\partial \mathcal{L}}{\partial b_{\ell}} = \mathbb{1}^{T} G_{\ell} \in \mathbb{R}^{1 \times p_{\ell+1}},$$

$$G_{\ell-1} = (1 - A_{\ell} \odot A_{\ell}) \odot (G_{\ell} W_{\ell}^{T}) \in \mathbb{R}^{n \times p_{\ell}}, \qquad \frac{\partial \mathcal{L}}{\partial W_{\ell-1}} = A_{\ell-1}^{T} G_{\ell-1} \in \mathbb{R}^{p_{\ell-1} \times p_{\ell}}, \qquad \frac{\partial \mathcal{L}}{\partial b_{\ell-1}} = \mathbb{1}^{T} G_{\ell-1} \in \mathbb{R}^{1 \times p_{\ell}},$$

$$G_{\ell-2} = (1 - A_{\ell-1} \odot A_{\ell-1}) \odot (G_{\ell-1} W_{\ell-1}^{T}) \in \mathbb{R}^{n \times p_{\ell-1}}, \qquad \frac{\partial \mathcal{L}}{\partial W_{\ell-2}} = A_{\ell-2}^{T} G_{\ell-2} \in \mathbb{R}^{p_{\ell-2} \times p_{\ell-1}}, \qquad \frac{\partial \mathcal{L}}{\partial b_{\ell-2}} = \mathbb{1}^{T} G_{\ell-2} \in \mathbb{R}^{1 \times p_{\ell-1}},$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$G_{1} = (1 - A_{2} \odot A_{2}) \odot (G_{2} W_{2}^{T}) \in \mathbb{R}^{n \times p_{2}}, \qquad \frac{\partial \mathcal{L}}{\partial W_{\ell}} = A_{1}^{T} G_{1} \in \mathbb{R}^{p_{1} \times p_{2}}, \qquad \frac{\partial \mathcal{L}}{\partial b_{1}} = \mathbb{1}^{T} G_{1} \in \mathbb{R}^{1 \times p_{2}},$$

$$G_{0} = (1 - A_{1} \odot A_{1}) \odot (G_{1} W_{1}^{T}) \in \mathbb{R}^{n \times p_{1}}, \qquad \frac{\partial \mathcal{L}}{\partial W_{0}} = X^{T} G_{0} \in \mathbb{R}^{p_{0} \times p_{1}}, \qquad \frac{\partial \mathcal{L}}{\partial b_{0}} = \mathbb{1}^{T} G_{0} \in \mathbb{R}^{1 \times p_{1}}.$$

Backpropagation

$$G_{\ell} = F - Y \in \mathbb{R}^{n \times p_{\ell+1}}, \qquad \frac{\partial \mathcal{L}}{\partial W_{\ell}} = A_{\ell}^T G_{\ell} \in \mathbb{R}^{p_{\ell} \times p_{\ell+1}}, \qquad \frac{\partial \mathcal{L}}{\partial b_{\ell}} = \mathbb{1}^T G_{\ell} \in \mathbb{R}^{1 \times p_{\ell+1}},$$

$$G_{\ell-1} = (1 - A_{\ell} \odot A_{\ell}) \odot (G_{\ell} W_{\ell}^T) \in \mathbb{R}^{n \times p_{\ell}}, \qquad \frac{\partial \mathcal{L}}{\partial W_{\ell-1}} = A_{\ell-1}^T G_{\ell-1} \in \mathbb{R}^{p_{\ell-1} \times p_{\ell}}, \qquad \frac{\partial \mathcal{L}}{\partial b_{\ell-1}} = \mathbb{1}^T G_{\ell-1} \in \mathbb{R}^{1 \times p_{\ell+1}},$$

$$G_{\ell-2} = (1 - A_{\ell-1} \odot A_{\ell-1}) \odot (G_{\ell-1} W_{\ell-1}^T) \in \mathbb{R}^{n \times p_{\ell-1}}, \qquad \frac{\partial \mathcal{L}}{\partial W_{\ell-2}} = A_{\ell-2}^T G_{\ell-2} \in \mathbb{R}^{p_{\ell-2} \times p_{\ell-1}}, \qquad \frac{\partial \mathcal{L}}{\partial b_{\ell-2}} = \mathbb{1}^T G_{\ell-2} \in \mathbb{R}^{1 \times p_{\ell+1}},$$

$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

$$G_1 = (1 - A_2 \odot A_2) \odot (G_2 W_2^T) \in \mathbb{R}^{n \times p_2}, \qquad \frac{\partial \mathcal{L}}{\partial W_1} = A_1^T G_1 \in \mathbb{R}^{p_1 \times p_2}, \qquad \frac{\partial \mathcal{L}}{\partial b_1} = \mathbb{1}^T G_1 \in \mathbb{R}^{1 \times p_2},$$

$$G_0 = (1 - A_1 \odot A_1) \odot (G_1 W_1^T) \in \mathbb{R}^{n \times p_1}, \qquad \frac{\partial \mathcal{L}}{\partial W_0} = X^T G_0 \in \mathbb{R}^{p_0 \times p_1}, \qquad \frac{\partial \mathcal{L}}{\partial b_0} = \mathbb{1}^T G_0 \in \mathbb{R}^{1 \times p_1}.$$

https://maziarraissi.github.io/teaching/3_backpropagation/

Modular implementation

