SPAN Image Analytics Stage One Update

Ryan P. Cabeen March 31, 2021

Analytics Pipeline Overview

Analytics Pipeline Overview

Preprocessing Step: Data Wrangling

ADC_map/0001.dcm
ADC_map/0002.dcm
[...]
T2star_map_10ms/0001.dcm
T2star_map_10ms/0002.dcm
[...]
T2_map_65ms/0001.dcm
T2_map_65ms/0002.dcm
[...]
RARE_anatomy/0001.dcm
RARE_anatomy/0002.dcm
[...]

(note: DICOM names shortened for clarity)

ADC_map_851969.json
ADC_map_851969.nii.gz
RARE_anatomy_589825.json
RARE_anatomy_589825.nii.gz
T2_map_15ms_655361.json
T2_map_15ms_655361.nii.gz
[...]
T2star_map_5ms_1048577.json
T2star_map_5ms_1048577.nii.gz
[...]

(some sites use a different FOV within a single session)

(we harmonize the data to remove these differences)

adc.nii.gz
adc.txt
rare.nii.gz
t2.nii.gz
t2.txt
t2star.nii.gz

Preprocessing Step: Quality Assessment

Foreground (FG) and Background (BG)

name	value
fg_mean	3.8290756070771788
fg_std	3.6273226197529964
bg_mean	0.38494717974999465
bg_std	0.25308983839709687
snr	9.9470156128017
cnr	9.422909974580861
svnvr	205.41064734152235

SNR= μ_{FG} / μ_{BG} CNR= σ_{FG} / μ_{BG} SVNVR= $\sigma_{FG} / \sigma_{BG}$

Preprocessing Step: Denoising

Approach: Non-local means denoising with local noise estimation, applied to each component scan

Parameter Estimation

Brain Extraction with a Traditional Approach

Problem:

Our first brain extraction algorithm works well, but with a 5% error rate, due to blurring at skull-brain boundary causing "leaking", irrespective of site/time

Problem:

Our first brain extraction algorithm works well, but with a 5% error rate, due to blurring at skull-brain boundary causing "leaking", irrespective of site/time

Solution:

Use a U-net deep learning algorithm:

- select the 300 best example results
- balanced by site and timepoint,
- use them to train, validate, and test
- collect and test failure cases

<u>Results:</u> Neural network approach accurately reproduces previous approach with 96% accuracy and **fixes all failed cases**

Atlas registration

Alias registration

Native Space

Atlas

Normalized

Approach: Perform rigid registration to the atlas to preserve morphometry, standardize head pose, and provide limits on lesion and ventricle (shown on right)

Midline Ventricle Limit

Lesion Limit

Parameter Harmonization Across Sites

Challenge: There are some systematic inter-site differences in parameter maps

Approach: Use a statistical harmonization procedure to uniformly scale the image to standardize normal appearing tissue

Results: We can use common thresholds for lesion (T2 < 0.775) and CSF (ADC > 1.65)

Lesion and CSF Segmentation

Midline shift quantification

Approach:

- Select a thin coronal section of ventricles based on atlas
- Compute centroid and extremal left-right points of brain
- Measure absolute and relative measures of brain shift
- Segment left and right hemisphere atrophy (assuming a parabolic surface)

Analytics and Report Generation

Summary metrics:

- Image quality
- Lesion, CSF, and tissue* volume
- Total brain volume (sum of above)
- Mid-line shift indexes
- Per-hemisphere tissue* volumes
- Others are possible...

Visualizations:

- Mosaic plots of images
- Overlays of segmentations
- 3D models

^{*}by "tissue" we mean non-infarcted tissue that is normal-appearing

Summarizing the entire dataset

- 1309 scans uploaded to IDA
- 779 early timepoint, 530 late
- 13 failed due to incomplete data
- 25 failed due to motion

site	variable	num	mean	sd	min	max	cv
AG	volume_lesion	104	27.45	33.14	0.00	140.39	1.21
JH	volume_lesion	137	10.86	15.66	0.00	89.85	1.44
MG	volume_lesion	138	44.21	27.68	0.00	130.40	0.63
UI	volume_lesion	162	20.05	20.15	0.00	93.31	1.00
UT	volume_lesion	103	47.58	39.10	0.00	147.51	0.82
YL	volume_lesion	128	32.92	27.34	0.00	132.32	0.83

timepoint

early late

site	timepoint	variable	num	mean	sd	min	max	cv
AG	early	midline_shift_index	104	0.11	0.13	-0.10	0.43	1.21
AG	late	midline_shift_index	84	-0.16	0.11	-0.49	-0.01	-0.71
JH	early	midline_shift_index	137	0.09	0.09	-0.33	0.40	1.01
JH	late	midline_shift_index	89	-0.07	0.08	-0.29	0.08	-1.07
MG	early	midline_shift_index	138	0.19	0.12	-0.05	0.42	0.61
MG	late	midline_shift_index	106	-0.18	0.11	-0.43	0.22	-0.63
UI	early	midline_shift_index	162	0.14	0.11	-0.31	0.68	0.80
UI	late	midline_shift_index	97	-0.16	0.11	-0.45	0.07	-0.67
UT	early	midline_shift_index	103	0.17	0.16	-0.10	0.50	0.94
UT	late	midline_shift_index	73	-0.19	0.12	-0.43	0.01	-0.65
YL	early	midline_shift_index	128	0.19	0.15	-0.24	0.48	0.80
YL	late	midline_shift_index	75	-0.14	0.12	-0.41	0.06	-0.82

timepoint	variable	num	mean	sd	min	max	cv
early	midline_shift_index	772	0.15	0.13	-0.33	0.68	0.89
late	$midline_shift_index$	524	-0.15	0.11	-0.49	0.22	-0.76