Notes on Optimal Transport ENSAE 3A

Gabriel Romon

Last updated: Thursday 7th February, 2019 at 09:12

1 Introduction

These are notes I gathered from a seminar session given by Shuangjian Zhang at ENSAE and from lectures given by Marco Cuturi at MLSS 2019 in South Africa.

Likelihood maximization is an instance of generative modeling: given data points $x_1, \ldots, x_N \in \mathbb{R}^d$ and a family of densities $(f_\theta)_{\theta \in \Theta}$, we look for the f_θ that matches the most the empirical data distribution defined as $\nu_{\text{data}} := \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$. This is done by maximizing the log-likelihood $\frac{1}{N} \sum_{i=1}^N \log f_\theta(x_i)$. This quantity exists only if $f_\theta(x_i) > 0$ for all i, which forces the densities to have the whole of \mathbb{R}^d as support. Likelihood maximization can be given a geometric interpretation: if one overlooks that ν_{data} and f_θ are not absolutely continuous with respect to the same measure (the former is discrete), minimizing the Kullback-Leibler divergence between the two writes as $\underset{\theta \in \Theta}{\operatorname{argmin}}_{\theta \in \Theta} \operatorname{KL}(\nu_{\text{data}}||f_\theta) = \underset{\theta \in \Theta}{\operatorname{argmin}}_{\theta \in \Theta} E_{X \sim \nu_{\text{data}}}[\log(f_{\text{data}}(X)) - \log(f_{\theta}(X))]$

$$= \operatorname{argmin}_{\theta \in \Theta} - E_{X \sim \nu_{\text{data}}} \log(f_{\theta}(X))$$
$$= \operatorname{argmax}_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \log f_{\theta}(x_i)$$

A weakness of likelihood maximization is its poor scalability to high-dimensional settings, which are commonplace. For instance, a 100×100 image with 3 color channels lives in $\mathbb{R}^{30.000}$. Instead of working directly in the data space \mathbb{R}^d , we may rather consider a latent space $(\mathbb{R}^p, \mathcal{B}(\mathbb{R}^p), \mu)$ with $p \ll d$, and measurable functions $g_{\theta} : \mathbb{R}^p \to \mathbb{R}^d$ (e.g deconvolution networks). We define the pushforward measure $g_{\theta\sharp}\mu$ by $\forall B \in \mathcal{B}(\mathbb{R}^d), g_{\theta\sharp}\mu(B) := \mu(g_{\theta} \in B)$ and we look for θ such that $g_{\theta\sharp}\mu$ matches ν_{data} . This requires setting a metric on the space of probability measures, and fortunately, many exist: Hellinger, Kantorovitch, MMD, Wasserstein... Some of these metrics arise from the theory of optimal transport.

2 Optimal transport

2.1 Monge problem and its Kantorovitch relaxation

Let μ and ν be probability measures on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ and $c: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}_+$ a cost function. Monge's optimal transportation problem is the following:

$$\inf_{\substack{T \text{ measurable} \\ T_t \mu = \nu}} \int c(x, T(x)) d\mu(x) \tag{MP}$$

In words, T is a transportation mapping that assigns to each x exactly one location T(x), implying that the mass at x cannot be split to several locations. $T_{\sharp}\mu = \nu$ is the transportation constraint, and the objective $\int c(x,T(x))d\mu(x)$ measures the total transportation cost.

The Kantorovitch relaxation allows for mass splitting by considering couplings. A probability measure P on $\mathbb{R}^d \times \mathbb{R}^d$ is said to be a coupling of (μ, ν) if for any $A, B \in \mathcal{B}(\mathbb{R}^d), P(A \times \mathbb{R}^d) = \mu(A)$ and $P(\mathbb{R}^d \times B) = \nu(B)$. Let $\Pi(\mu, \nu)$ denote the set of such couplings. $\Pi(\mu, \nu)$ is clearly non-empty since it contains the product measure $\mu \otimes \nu$.

Kantorovitch's optimal transportation problem is the following:

$$\inf_{P \in \Pi(u,\nu)} \int \int c(x,y)dP(x,y)$$
 (KP-primal)

It is important to note that (KP-primal) provides a lower bound for (MP). Indeed, if T verifies $T_{\sharp}\mu = \nu$ and we let $P = (\mathrm{Id},T)_{\sharp}\mu$, it is easy to check that P is a coupling. A theorem of integration with respect to pushforward measures yields $\int \int c(x,y)dP(x,y) = \int c \circ (\mathrm{Id},T)(x)d\mu(x) = \int c(x,T(x))d\mu(x)$, hence the claim.

The dual of (KP-primal) is defined as follows:

$$\sup_{\substack{\varphi \in L_1(\mu) \\ \psi \in L_1(\nu) \\ \forall (x,y), \ \varphi(x) + \psi(y) \le c(x,y)}} \int \varphi d\mu + \int \psi d\nu \tag{KP-dual}$$

Theorem 2.1. If c is lower semi-continuous, then (KP-primal) and (KP-dual) share the same optimal value. Moreover, the infimum in (KP-primal) is attained.

Proof. We give a partial proof of the first part of the theorem. Let $\varphi \oplus \psi : (x,y) \mapsto \varphi(x) + \psi(y)$ and

$$\iota_{\Pi}(P) := \sup_{\substack{\varphi \in L_1(\mu) \\ \psi \in L_1(\nu)}} \int \varphi d\mu + \int \psi d\nu - \int \varphi \oplus \psi dP$$

Let $P \in \Pi(\mu, \nu)$. If we let π_1 and π_2 denote the projections respectively on the first and last d coordinates, then $\int \varphi \oplus \psi dP = \int \varphi \circ \pi_1 dP + \int \psi \circ \pi_2 dP$. For $\varphi = 1_A$,

$$\int \varphi \circ \pi_1 dP = \int 1_{\pi_1^{-1}(A)} dP = P(\pi_1^{-1}(A)) = P(A \times \mathbb{R}^d) = \mu(A)$$

Therefore $\int \varphi d\mu + \int \psi d\nu - \int \varphi \oplus \psi dP = 0$ when φ and ψ are indicators, and a standard limit argument shows that it remains 0 for arbitrary integrable φ and ψ . Thus $\iota_{\Pi}(P) = 0$ when P is a coupling.

If $P \notin \Pi(\mu, \nu)$, WLOG there exists some $A \in \mathcal{B}(\mathbb{R}^d)$ such that $P(A \times \mathbb{R}^d) \neq \mu(A)$. If $P(A \times \mathbb{R}^d) < \mu(A)$, consider $\varphi = \lambda 1_A$ with $\lambda > 0$ and $\psi = 0$. Then

$$\int \varphi d\mu + \int \psi d\nu - \int \varphi \oplus \psi dP = \lambda(\mu(A) - P(A \times \mathbb{R}^d)) \xrightarrow[\lambda \to \infty]{} \infty$$

Hence $\iota_{\Pi}(P) = \infty$. The other case is similar.

If we let \mathcal{M}^+ denote the set of positive measures on $\mathbb{R}^d \times \mathbb{R}^d$, then (KP-primal) turns into

$$\inf_{P \in \mathcal{M}^{+}} \int \int c \, dP + \iota_{\Pi}(P) = \inf_{P \in \mathcal{M}^{+}} \sup_{\substack{\varphi \in L_{1}(\mu) \\ \psi \in L_{1}(\nu)}} \int c \, dP + \int \varphi d\mu + \int \psi d\nu - \int \varphi \oplus \psi dP$$

$$= \inf_{P \in \mathcal{M}^{+}} \sup_{\substack{\varphi \in L_{1}(\mu) \\ \psi \in L_{1}(\nu)}} \int c - \varphi \oplus \psi \, dP + \int \varphi d\mu + \int \psi d\nu$$

$$= \sup_{\substack{\varphi \in L_{1}(\mu) \\ \psi \in L_{1}(\nu)}} \inf_{P \in \mathcal{M}^{+}} \left[\int c - \varphi \oplus \psi \, dP \right] + \int \varphi d\mu + \int \psi d\nu$$

Switching the inf and the sup is the technical hurdle of the proof. In [1] Villani provides a rigorous justification that is quite involved.

Next, $\inf_{P\in\mathcal{M}^+}\int c-\varphi\oplus\psi\ dP$ can be rewritten more simply. If $c-\varphi\oplus\psi\geq 0$, 0 is a lower bound for the integral, and it is attained for P=0. Hence $c-\varphi\oplus\psi\geq 0 \implies \inf_{P\in\mathcal{M}^+}\int c-\varphi\oplus\psi\ dP=0$. Otherwise, if there exists (x_0,y_0) such that $c(x_0,y_0)-\varphi\oplus\psi(x_0,y_0)<0$, consider $P=\lambda\delta_{(x_0,y_0)}$ and let $\lambda\to\infty$ to get $\inf_{P\in\mathcal{M}^+}\int c-\varphi\oplus\psi\ dP=-\infty$. Thus (KP-primal) can be written as

$$\sup_{\begin{subarray}{c} \varphi \in L_1(\mu) \\ \psi \in L_1(\nu) \\ \varphi \oplus \psi \leq c \end{subarray}} \int \varphi d\mu + \int \psi d\nu$$

which is exactly (KP-dual).

2.2 c-transforms

The constraint in (KP-dual) rewrites as $\forall x, y \in \mathbb{R}^d$, $\psi(y) \leq c(x, y) - \varphi(x)$ or equivalently $\forall y, \ \psi(y) \leq \inf_x [c(x, y) - \varphi(x)]$. This motivates the definition of the c-transform of φ as

$$\varphi^c(y) := \inf_x c(x, y) - \varphi(x)$$

and the the c-transform of ψ as

$$\psi^{c}(x) := \inf_{y} c(x, y) - \psi(y)$$

However, φ^c and ψ^c may not be integrable without additional hypotheses on c, so we assume as in Exercise 2.36 of [1] that there exist $c_X \in L_1(\mu)$ and $c_Y \in L_1(\nu)$ such that $\forall x, y \in \mathbb{R}^d, c(x, y) \leq c_X(x) + c_Y(y)$. With this assumption it is easily checked that φ^c is ν -integrable and the pair (φ, φ^c) increases the objective function. The same argument applies to $(\varphi^{cc}, \varphi^c)$, so (KP-dual) rewrites as

$$\sup_{\varphi \in L_1(\mu)} \int \varphi d\mu + \int \varphi^c d\nu \tag{KP-dual 2}$$

and

$$\sup_{\varphi \in L_1(\mu)} \int \varphi^{cc} d\mu + \int \varphi^c d\nu \tag{KP-dual 3}$$

It is important to note that $\varphi^{ccc} = \varphi^c$.

Proof. Note that $\varphi \leq \varphi^{cc}$. Indeed for $x, y \in \mathbb{R}^d$,

$$\varphi^{c}(y) \leq c(x, y) - \varphi(x)$$

$$\implies \varphi(x) \leq c(x, y) - \varphi^{c}(y) \quad \forall y$$

$$\implies \varphi(x) \leq \inf_{y} c(x, y) - \varphi^{c}(y)$$

$$\implies \varphi(x) \leq \varphi^{cc}(x)$$

Next, for $x, y \in \mathbb{R}^d$,

$$\varphi^{ccc}(y) \le c(x,y) - \varphi^{cc}(x)$$

$$\implies \varphi^{ccc}(y) \le c(x,y) - \varphi(x) \quad \forall x$$

$$\implies \varphi^{ccc}(y) \le \inf_{x} c(x,y) - \varphi(x)$$

$$\implies \varphi^{ccc}(y) \le \varphi^{c}(y)$$

and

$$\varphi^{cc}(x) \le c(x,y) - \varphi^{c}(y)$$

$$\implies \varphi^{c}(y) \le c(x,y) - \varphi^{cc}(x) \quad \forall x$$

$$\implies \varphi^{c}(y) \le \inf_{x} c(x,y) - \varphi^{cc}(x)$$

$$\implies \varphi^{c}(y) \le \varphi^{ccc}(y)$$

Besides, φ is said to be c-concave if $\varphi^{cc} = \varphi$. In [1], Villani states that (KP-dual) is solved by a pair (φ, φ^c) where φ is c-concave. As a result, (KP-dual) may be also rewritten as

$$\sup_{\begin{subarray}{c} \varphi \in L_1(\mu) \\ \varphi \ c{\rm -concave} \end{subarray}} \int \varphi d\mu + \int \varphi^c d\nu \tag{KP-dual 4}$$

The following result provides conditions under which the gap between Monge problem and its relaxation is 0.

Theorem 2.2. Let $\|\cdot\|$ a norm on \mathbb{R}^d and $h:\mathbb{R}^d\to\mathbb{R}$ a strictly convex and superlinear function (meaning that $\frac{h(z)}{\|z\|}\xrightarrow{\|z\|\to\infty}\infty$ and Assumption (H2) of [2] holds). Let $c:(x,y)\mapsto h(x-y)$ and assume that μ is absolutely continuous with respect to Lebesgue measure. Then there is a unique solution to (KP-primal) and it has the form $(\mathrm{Id},T)_{\sharp}\mu$ where T is uniquely defined μ -almost everywhere by

$$\begin{cases} T_{\sharp}\mu = \nu \\ \exists \varphi \ c - \text{concave} \ / T = \operatorname{Id} - \nabla h^* \circ \nabla \varphi \end{cases}$$

Remark 1.

- h^* denotes the Legendre transform of h. Since φ is c-concave, it is locally Lipschitz (see Proposition 2.43 in [1]) hence differentiable almost-everywhere (Rademacher's theorem), so its gradient makes sense.
- \bullet We proved earlier that (KP-primal) provides a lower bound for (MP). Given the form of the solution, it is clear that T solves (MP) and that (MP) and (KP-dual) share the same optimal value
- Any $h: z \mapsto ||z||_p^p$ with p > 1 satisfies the conditions of the theorem.
- With $h: z \mapsto \frac{1}{2} \|z\|_2^2$, $T(x) = x \nabla \varphi(x) = \nabla(\frac{1}{2} \|\cdot\|_2^2 \varphi)$. In this case, $h \in \mathcal{C}^{1,1}_{loc}(\mathbb{R}^d)$, hence φ is semi-concave (Proposition 2.43 in [1]) and under condition (iii) of Lemma 2.42 in [1], $\frac{1}{2} \|\cdot\|_2^2 \varphi$ is convex, and we have therefore recovered Brenier's theorem.

2.3 Wasserstein distances

The Wasserstein distance creates a metric on the space of probability measures from a metric on the data space. Instead of \mathbb{R}^d , let us consider a separable complete metric space (X, D) with the cost function $c(x, y) = D(x, y)^p$ where $p \ge 1$:

$$W_p(\mu,\nu) := \left(\inf_{P \in \Pi(\mu,\nu)} \int \int D(x,y)^p dP(x,y)\right)^{1/p}$$

It is shown in [1] that W_p is a metric on the space $\mathcal{W}_p(X)$ of probability measures with finite moments of order p, i.e. such that there exists x_0 with $\int D(x_0, x)^p d\mu(x) < \infty$. Note that $\mathcal{W}_p(X)$ is the set of all probability measures when D is bounded (which happens when X is bounded for example).

The choice of p is of much importance in practice. While p=2 is easier to deal with computationally, p=1 yields special properties.

Proposition 2.1. If c is a metric D, then φ is c-concave iff $\operatorname{Lip} \varphi \leq 1$. Moreover, $\operatorname{Lip} \varphi \leq 1 \implies \varphi^c = -\varphi$.

Proof. \Longrightarrow Let us prove the following lemma: if $f,g:X\to\mathbb{R}$ are bounded below, then $|\inf f-\inf g|\leq \sup|f-g|$. Indeed for any $x\in X$, $\inf f-\sup|f-g|\leq f(x)-|f(x)-g(x)|\leq g(x)$, hence $\inf g\geq \inf f-\sup|f-g|$ and $\inf f-\inf g\leq \sup|f-g|$. Switching f with g finishes the proof.

Since φ is c-concave, $\varphi^{cc} = \varphi$, hence

$$\begin{split} |\varphi(x) - \varphi(y)| &= |\inf_{z} [D(x, z) - \varphi^c(z)] - \inf_{z} [D(y, z) - \varphi^c(z)]| \\ &\leq \sup_{z} |D(x, z) - D(y, z)| \\ &\leq D(x, y) \end{split}$$

 \iff If Lip $\varphi \leq 1$, for all $x, y \in X$,

$$\varphi(y) - \varphi(x) \le D(x, y)$$

$$\implies \varphi(y) \le D(x, y) + \varphi(x) \quad \forall x$$

$$\implies \varphi(y) \le \inf_{x} D(x, y) + \varphi(x)$$

$$\implies (-\varphi)^{c}(y) \ge \varphi(y)$$

Next, note that $(-\varphi)^c(y) \le D(y,y) + \varphi(y) = \varphi(y)$, hence $(-\varphi)^c = \varphi$ and φ is c-concave. Moreover,

$$\begin{split} \varphi(z) - \varphi(x) &\leq D(z, x) \\ \Longrightarrow -\varphi(x) &\leq D(z, x) - \varphi(z) \quad \forall z \\ \Longrightarrow -\varphi(x) &\leq \inf_z D(z, x) - \varphi(z) \\ \Longrightarrow -\varphi(x) &\leq \varphi^c(x) \end{split}$$

Finally, $\varphi^c(x) \leq D(x,x) - \varphi(x) = -\varphi(x)$, hence $\varphi^c = -\varphi$.

This result relates W_1 to integral probability metrics since (KP-Dual 4) turns into

$$W_1(\mu,\nu) = \sup_{\varphi \text{ 1-Lip}} \int \varphi d\mu - \int \varphi d\nu$$

References

- [1] Cédric Villani. Topics in optimal transportation. Number 58. American Mathematical Soc., 2003.
- [2] Wilfrid Gangbo and Robert J McCann. The geometry of optimal transportation. Acta Mathematica, 177(2):113-161, 1996.