$10_{100} \ (K10a_{104})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -15u^{13} + 70u^{12} + \dots + 2b - 42, \ 49u^{13} - 224u^{12} + \dots + 4a + 132,$$

$$u^{14} - 6u^{13} + 11u^{12} - 3u^{11} - u^{10} - 22u^9 + 13u^8 + 32u^7 - 3u^6 - 28u^5 - 30u^4 + 36u^3 + 7u^2 - 2u - 4 \rangle$$

$$I_2^u = \langle -1945u^5a^3 + 869u^5a^2 + \dots - 1055a - 6821, \ -u^5a^3 + 2u^5a^2 + \dots - 14a + 22,$$

$$u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1 \rangle$$

$$I_3^u = \langle -u^4 + 2u^2 + b, \ u^5 - 3u^3 + u^2 + a + 2u - 1, \ u^6 - u^5 - 3u^4 + 3u^3 + u^2 - u + 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 44 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -15u^{13} + 70u^{12} + \dots + 2b - 42, \ 49u^{13} - 224u^{12} + \dots + 4a + 132, \ u^{14} - 6u^{13} + \dots - 2u - 4 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -\frac{49}{4}u^{13} + 56u^{12} + \dots - \frac{151}{4}u - 33 \\ \frac{15}{2}u^{13} - 35u^{12} + \dots + \frac{53}{2}u + 21 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{7}{2}u^{13} + \frac{33}{2}u^{12} + \dots - \frac{21}{2}u - \frac{21}{2} \\ \frac{3}{2}u^{13} - 7u^{12} + \dots + \frac{13}{2}u + 4 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{19}{4}u^{13} + 21u^{12} + \dots - \frac{45}{4}u - 12 \\ \frac{15}{2}u^{13} - 35u^{12} + \dots + \frac{53}{2}u + 21 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2u^{13} - \frac{17}{2}u^{12} + \dots + 4u + \frac{7}{2} \\ -\frac{5}{2}u^{13} + 12u^{12} + \dots - \frac{19}{2}u - 8 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -\frac{3}{4}u^{13} + 5u^{12} + \dots - \frac{21}{4}u - 4 \\ -\frac{3}{2}u^{13} + 6u^{12} + \dots - \frac{3}{2}u - 3 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-14u^{13} + 62u^{12} - 57u^{11} - 45u^{10} - 63u^9 + 216u^8 + 154u^7 - 197u^6 - 287u^5 - 60u^4 + 344u^3 + 46u^2 - 26u - 34$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_{10}	$u^{14} - u^{13} + \dots - 3u + 1$
c_2, c_8, c_9	$u^{14} - 6u^{13} + \dots - 2u - 4$
c_3, c_5	$u^{14} + u^{13} + \dots + 5u - 1$
c_7	$u^{14} + 14u^{13} + \dots - 288u - 64$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_{10}	$y^{14} - 13y^{13} + \dots - 3y + 1$
c_2, c_8, c_9	$y^{14} - 14y^{13} + \dots - 60y + 16$
c_3, c_5	$y^{14} + 7y^{13} + \dots - 59y + 1$
c ₇	$y^{14} + 2y^{13} + \dots - 41984y + 4096$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.04049		
a = 0.567340	0.339162	13.0620
b = -1.20452		
u = -0.748785 + 0.823629I		
a = 0.412890 - 0.456902I	6.90977 - 8.77559I	9.73876 + 7.09449I
b = 0.679306 + 1.137690I		
u = -0.748785 - 0.823629I		
a = 0.412890 + 0.456902I	6.90977 + 8.77559I	9.73876 - 7.09449I
b = 0.679306 - 1.137690I		
u = -0.493094 + 1.098780I		
a = -0.387144 - 0.128784I	5.88215 + 2.52726I	13.28929 - 3.43101I
b = 0.098682 - 0.905560I		
u = -0.493094 - 1.098780I		
a = -0.387144 + 0.128784I	5.88215 - 2.52726I	13.28929 + 3.43101I
b = 0.098682 + 0.905560I		
u = 0.622591		
a = 0.542539	0.865875	12.3760
b = 0.127481		
u = 1.45633 + 0.05562I		
a = 0.38364 - 1.65172I	4.42897 + 2.24150I	6.33861 - 3.08717I
b = -0.429494 + 1.051770I		
u = 1.45633 - 0.05562I		
a = 0.38364 + 1.65172I	4.42897 - 2.24150I	6.33861 + 3.08717I
b = -0.429494 - 1.051770I		
u = -0.303715 + 0.334799I		
a = 0.003671 + 1.353790I	-1.31044 - 0.99980I	-2.51765 + 3.01751I
b = -0.729605 - 0.382323I		
u = -0.303715 - 0.334799I		
a = 0.003671 - 1.353790I	-1.31044 + 0.99980I	-2.51765 - 3.01751I
b = -0.729605 + 0.382323I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.62071 + 0.25886I		
a = -0.06147 + 1.67177I	14.7349 + 12.8109I	11.37066 - 6.14968I
b = 1.02771 - 1.53408I		
u = 1.62071 - 0.25886I		
a = -0.06147 - 1.67177I	14.7349 - 12.8109I	11.37066 + 6.14968I
b = 1.02771 + 1.53408I		
u = 1.67750 + 0.35344I		
a = -0.156526 - 0.920785I	13.16540 + 3.07431I	13.56108 - 2.64554I
b = -0.608077 + 1.061740I		
u = 1.67750 - 0.35344I		
a = -0.156526 + 0.920785I	13.16540 - 3.07431I	13.56108 + 2.64554I
b = -0.608077 - 1.061740I		

II.
$$I_2^u = \langle -1945u^5a^3 + 869u^5a^2 + \dots - 1055a - 6821, \ -u^5a^3 + 2u^5a^2 + \dots - 14a + 22, \ u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1 \rangle$$

(i) Arc colorings

$$\begin{aligned} a_2 &= \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_8 &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_9 &= \begin{pmatrix} 1 \\ -u^2 \end{pmatrix} \\ a_3 &= \begin{pmatrix} u \\ -u^3 + u \end{pmatrix} \\ a_6 &= \begin{pmatrix} 0.413566a^3u^5 - 0.184776a^2u^5 + \dots + 0.224325a + 1.45035 \end{pmatrix} \\ a_4 &= \begin{pmatrix} -0.321072a^3u^5 - 0.0750585a^2u^5 + \dots - 0.0584733a - 1.19796 \\ 0.0450776a^3u^5 - 0.0967468a^2u^5 + \dots + 0.253243a + 0.104614 \end{pmatrix} \\ a_{10} &= \begin{pmatrix} -u^2 + 1 \\ u^4 - 2u^2 \end{pmatrix} \\ a_5 &= \begin{pmatrix} 0.413566a^3u^5 - 0.184776a^2u^5 + \dots + 1.22432a + 1.45035 \\ 0.413566a^3u^5 - 0.184776a^2u^5 + \dots + 0.224325a + 1.45035 \end{pmatrix} \\ a_1 &= \begin{pmatrix} 0.503934a^3u^5 - 0.657027a^2u^5 + \dots - 0.0274293a + 2.75441 \\ 0.182862a^3u^5 - 0.732086a^2u^5 + \dots - 0.0859026a + 1.55645 \end{pmatrix} \\ a_7 &= \begin{pmatrix} 0.309802a^3u^5 - 0.150755a^2u^5 + \dots + 1.24516a + 1.17181 \\ -0.0450776a^3u^5 + 0.0967468a^2u^5 + \dots - 0.253243a + 0.895386 \end{pmatrix} \end{aligned}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $\frac{848}{4703}u^5a^3 \frac{1820}{4703}u^5a^2 + \dots + \frac{4764}{4703}a + \frac{48998}{4703}$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_{10}	$u^{24} + u^{23} + \dots - 8u + 1$
c_2, c_8, c_9	$ (u^6 + u^5 - 3u^4 - 2u^3 + 2u^2 - u - 1)^4 $
c_3, c_5	$u^{24} - 7u^{23} + \dots - 372u + 73$
c ₇	$(u^2 - u + 1)^{12}$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_{10}	$y^{24} - 21y^{23} + \dots + 72y + 1$
c_2, c_8, c_9	$(y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1)^4$
c_3, c_5	$y^{24} + 11y^{23} + \dots + 52000y + 5329$
c ₇	$(y^2 + y + 1)^{12}$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.493180 + 0.575288I		
a = 1.067300 - 0.316742I	1.97456 - 0.05747I	6.57572 - 0.22068I
b = -0.073003 - 0.780422I		
u = 0.493180 + 0.575288I		
a = -0.584086 - 0.249616I	1.97456 + 4.00229I	6.57572 - 7.14888I
b = -0.678417 + 1.238260I		
u = 0.493180 + 0.575288I		
a = 0.513478 + 1.284170I	1.97456 + 4.00229I	6.57572 - 7.14888I
b = 0.629282 - 0.637832I		
u = 0.493180 + 0.575288I		
a = -0.136040 - 0.139388I	1.97456 - 0.05747I	6.57572 - 0.22068I
b = 0.617558 + 0.522759I		
u = 0.493180 - 0.575288I		
a = 1.067300 + 0.316742I	1.97456 + 0.05747I	6.57572 + 0.22068I
b = -0.073003 + 0.780422I		
u = 0.493180 - 0.575288I		
a = -0.584086 + 0.249616I	1.97456 - 4.00229I	6.57572 + 7.14888I
b = -0.678417 - 1.238260I		
u = 0.493180 - 0.575288I		
a = 0.513478 - 1.284170I	1.97456 - 4.00229I	6.57572 + 7.14888I
b = 0.629282 + 0.637832I		
u = 0.493180 - 0.575288I		
a = -0.136040 + 0.139388I	1.97456 + 0.05747I	6.57572 + 0.22068I
b = 0.617558 - 0.522759I		
u = -0.483672		
a = 1.44157 + 0.74757I	5.67365 - 2.02988I	15.4168 + 3.4641I
b = 1.09154 - 1.08035I		
u = -0.483672		
a = 1.44157 - 0.74757I	5.67365 + 2.02988I	15.4168 - 3.4641I
b = 1.09154 + 1.08035I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.483672		
a = -2.95401 + 1.87206I	5.67365 - 2.02988I	15.4168 + 3.4641I
b = -0.006188 - 0.799526I		
u = -0.483672		
a = -2.95401 - 1.87206I	5.67365 + 2.02988I	15.4168 - 3.4641I
b = -0.006188 + 0.799526I		
u = -1.52087 + 0.16310I		
a = 0.299570 - 1.150850I	8.63038 - 2.56224I	10.58114 - 0.25928I
b = 0.618593 + 0.988703I		
u = -1.52087 + 0.16310I		
a = -0.601099 + 1.113320I	8.63038 - 2.56224I	10.58114 - 0.25928I
b = 0.554158 - 1.044580I		
u = -1.52087 + 0.16310I		
a = -0.07073 - 1.79722I	8.63038 - 6.62201I	10.58114 + 6.66892I
b = 0.427101 + 0.945943I		
u = -1.52087 + 0.16310I		
a = 0.18899 + 2.07712I	8.63038 - 6.62201I	10.58114 + 6.66892I
b = -1.06187 - 1.93363I		
u = -1.52087 - 0.16310I		
a = 0.299570 + 1.150850I	8.63038 + 2.56224I	10.58114 + 0.25928I
b = 0.618593 - 0.988703I		
u = -1.52087 - 0.16310I		
a = -0.601099 - 1.113320I	8.63038 + 2.56224I	10.58114 + 0.25928I
b = 0.554158 + 1.044580I		
u = -1.52087 - 0.16310I		
a = -0.07073 + 1.79722I	8.63038 + 6.62201I	10.58114 - 6.66892I
b = 0.427101 - 0.945943I		
u = -1.52087 - 0.16310I		
a = 0.18899 - 2.07712I	8.63038 + 6.62201I	10.58114 - 6.66892I
b = -1.06187 + 1.93363I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.53904		
a = -0.49479 + 1.36564I	12.59490 - 2.02988I	14.2695 + 3.4641I
b = -0.628935 - 0.898287I		
u = 1.53904		
a = -0.49479 - 1.36564I	12.59490 + 2.02988I	14.2695 - 3.4641I
b = -0.628935 + 0.898287I		
u = 1.53904		
a = -1.17015 + 1.51812I	12.59490 - 2.02988I	14.2695 + 3.4641I
b = 2.01019 - 1.49411I		
u = 1.53904		
a = -1.17015 - 1.51812I	12.59490 + 2.02988I	14.2695 - 3.4641I
b = 2.01019 + 1.49411I		

$$I_3^u = \langle -u^4 + 2u^2 + b, \ u^5 - 3u^3 + u^2 + a + 2u - 1, \ u^6 - u^5 - 3u^4 + 3u^3 + u^2 - u + 1
angle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} + 3u^{3} - u^{2} - 2u + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{5} - 3u^{3} + 2u \\ -u^{3} + 2u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{5} + u^{4} + 3u^{3} - 3u^{2} - 2u + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} - u^{4} - 4u^{3} + 3u^{2} + 3u - 1 \\ u^{5} - 3u^{3} + u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{5} + u^{4} + 3u^{3} - 3u^{2} - 2u + 2 \\ -u^{5} + u^{4} + 3u^{3} - 3u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^5 + 2u^4 + 8u^3 4u^2 + 3u + 7$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$u^6 - u^5 - 3u^4 + 3u^3 + 3u^2 - 3u - 1$
c_2	$u^6 + u^5 - 3u^4 - 3u^3 + u^2 + u + 1$
c_3,c_5	$u^6 + u^5 + u^4 + u^3 - u^2 - u - 1$
c_4, c_{10}	$u^6 + u^5 - 3u^4 - 3u^3 + 3u^2 + 3u - 1$
c ₇	$u^6 - u^5 + u^4 + u^3 - u^2 + u - 1$
c_8, c_9	$u^6 - u^5 - 3u^4 + 3u^3 + u^2 - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_{10}	$y^6 - 7y^5 + 21y^4 - 35y^3 + 33y^2 - 15y + 1$
c_2, c_8, c_9	$y^6 - 7y^5 + 17y^4 - 15y^3 + y^2 + y + 1$
c_3, c_5	$y^6 + y^5 - 3y^4 - 3y^3 + y^2 + y + 1$
<i>C</i> ₇	$y^6 + y^5 + y^4 - 3y^3 - 3y^2 + y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.847445		
a = 0.587994	-0.285060	-0.503990
b = -0.920568		
u = 0.251489 + 0.528716I		
a = 0.07352 - 1.42421I	4.59420 - 1.63935I	6.79257 + 0.07886I
b = 0.408651 - 0.646904I		
u = 0.251489 - 0.528716I		
a = 0.07352 + 1.42421I	4.59420 + 1.63935I	6.79257 - 0.07886I
b = 0.408651 + 0.646904I		
u = 1.46321 + 0.18726I		
a = -0.71355 - 1.48541I	9.23208 + 4.33255I	12.59516 - 4.05038I
b = -0.077247 + 1.212100I		
u = 1.46321 - 0.18726I		
a = -0.71355 + 1.48541I	9.23208 - 4.33255I	12.59516 + 4.05038I
b = -0.077247 - 1.212100I		
u = -1.58196		
a = -0.307931	12.1109	12.7290
b = 1.25776		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1, c_6	$ (u^{6} - u^{5} - 3u^{4} + 3u^{3} + 3u^{2} - 3u - 1)(u^{14} - u^{13} + \dots - 3u + 1) $ $ \cdot (u^{24} + u^{23} + \dots - 8u + 1) $	
c_2	$ (u^{6} + u^{5} - 3u^{4} - 3u^{3} + u^{2} + u + 1)(u^{6} + u^{5} - 3u^{4} - 2u^{3} + 2u^{2} - u - u) $ $ \cdot (u^{14} - 6u^{13} + \dots - 2u - 4) $	- 1) ⁴
c_3, c_5	$(u^{6} + u^{5} + u^{4} + u^{3} - u^{2} - u - 1)(u^{14} + u^{13} + \dots + 5u - 1)$ $\cdot (u^{24} - 7u^{23} + \dots - 372u + 73)$	
c_4, c_{10}	$(u^{6} + u^{5} - 3u^{4} - 3u^{3} + 3u^{2} + 3u - 1)(u^{14} - u^{13} + \dots - 3u + 1)$ $\cdot (u^{24} + u^{23} + \dots - 8u + 1)$	
c_7	$(u^{2} - u + 1)^{12}(u^{6} - u^{5} + u^{4} + u^{3} - u^{2} + u - 1)$ $\cdot (u^{14} + 14u^{13} + \dots - 288u - 64)$	
c_{8}, c_{9}	$(u^{6} - u^{5} - 3u^{4} + 3u^{3} + u^{2} - u + 1)(u^{6} + u^{5} - 3u^{4} - 2u^{3} + 2u^{2} - u - u)$ $\cdot (u^{14} - 6u^{13} + \dots - 2u - 4)$	- 1) ⁴

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_{10}	$(y^{6} - 7y^{5} + \dots - 15y + 1)(y^{14} - 13y^{13} + \dots - 3y + 1)$ $\cdot (y^{24} - 21y^{23} + \dots + 72y + 1)$
c_2,c_8,c_9	$(y^6 - 7y^5 + 17y^4 - 16y^3 + 6y^2 - 5y + 1)^4$ $\cdot (y^6 - 7y^5 + \dots + y + 1)(y^{14} - 14y^{13} + \dots - 60y + 16)$
c_3, c_5	$(y^6 + y^5 - 3y^4 - 3y^3 + y^2 + y + 1)(y^{14} + 7y^{13} + \dots - 59y + 1)$ $\cdot (y^{24} + 11y^{23} + \dots + 52000y + 5329)$
c_7	$(y^{2} + y + 1)^{12}(y^{6} + y^{5} + y^{4} - 3y^{3} - 3y^{2} + y + 1)$ $\cdot (y^{14} + 2y^{13} + \dots - 41984y + 4096)$