Lecture 4 Model Order Selection

EE-UY 4563/EL-GY 9123: INTRODUCTION TO MACHINE LEARNING PROF. SUNDEEP RANGAN (WITH MODIFICATION BY YAO WANG)

Learning Objectives

- □ Compute the model order for a given model class
- □ Visually identify overfitting and underfitting of a model in a scatterplot
- ☐ Determine if there is under-modeling for a given true function and model class
- □ Compute the bias and variance for linear models (advanced)
- ☐ Perform cross-validation for selecting an optimal order
- ☐ Use cross-validation for feature selection

Outline

- Motivating Example: What polynomial degree should a model use?
 - ■Bias and variance
 - ☐ Bias and variance for linear models (Advanced)
 - ☐ Cross-validation
 - ☐ Feature selection

Polynomial Fitting

- ☐ Last lecture: polynomial regression
- ☐ Given data (x_i, y_i) , i = 1, ..., N
- ☐ Learn a polynomial relationship:

$$y = \beta_0 + \beta_1 x + \dots + \beta_d x^d + \epsilon$$

- \circ *d* = degree of polynomial. Called model order
- \circ $\boldsymbol{\beta} = (\beta_0, \cdots, \beta_d)$ = coefficient vector
- \square Given d, can find β via least squares
- \square How do we select d from data?
- ☐ This problem is called model order selection.

Demo on Github

Demo on github: https://github.com/sdrangan/introml/blob/master/unit04 model sel/demo1 polyfit.ipynb

where d is the polynomial degree. We first generate synthetic data for this model.

Example Question

- ☐ You are given some data.
- Want to fit a model: $y \approx f(x)$
- ☐ Decide to use a polynomial:

$$f(x) = \beta_0 + \beta_1 x + \dots + \beta_d x^d$$

- \square What model order d should we use?
- ☐Thoughts?

Synthetic Data

- ☐ Previous example is synthetic data
- $\square x_i$: 40 samples uniform in [-1,1]

$$\Box y = f(x) + \epsilon,$$

- $f(x) = \beta_0 + \beta_1 x + \dots + \beta_d x^d$ = "true relation"
- d = 3, $\epsilon \sim N(0, \sigma^2)$
- Synthetic data useful for analysis
 - Know "ground truth"
 - Can measure performance of various estimators


```
# Import useful polynomial library
import numpy.polynomial.polynomial as poly

# True model parameters
beta = np.array([1,0.5,0,2]) # coefficients
wstd = 0.2 # noise
dtrue = len(beta)-1 # true poly degree

# Independent data
nsamp = 40
xdat = np.random.uniform(-1,1,nsamp)

# Polynomial
y0 = poly.polyval(xdat,beta)
ydat = y0 + np.random.normal(0,wstd,nsamp)
```

Fitting with True Model Order

- □Suppose true polynomial order, d=3, is known
- ☐ Use linear regression
 - numpy.polynomial package
- ☐Get very good fit


```
d = 3
beta_hat = poly.polyfit(xdat,ydat,d)

# Plot true and estimated function

xp = np.linspace(-1,1,100)
yp = poly.polyval(xp,beta)
yp_hat = poly.polyval(xp,beta_hat)
plt.xlim(-1,1)
plt.ylim(-1,3)
plt.plot(xp,yp,'r-',linewidth=2)
plt.plot(xp,yp_hat,'g-',linewidth=2)

# Plot data
plt.scatter(xdat,ydat)
plt.legend(['True (dtrue=3)', 'Est (d=3)', 'Data'], loc='upper left')
plt.grid()
plt.xlabel('x')
plt.ylabel('y')
```


But, True Model Order not Known

□Suppose we guess the wrong model order?

d=1 "Underfitting"

d=10 "Overfitting"

How Can You Tell from Data?

- ☐ Is there a way to tell what is the correct model order to use?
- \square Must use the data. Do not have access to the true d?
- ■What happens if we guess:
 - ∘ *d* too big?
 - \circ d too small?

Using RSS on Training Data?

- ☐Simple (but bad) idea:
 - For each model order, d, find estimate $\hat{\beta}$
 - Compute predicted values on training data

$$\hat{y}_i = \widehat{\boldsymbol{\beta}}^T \boldsymbol{x}_i$$

Compute RSS

$$RSS(d) = \sum_{i} (y_i - \hat{y}_i)^2$$

- \circ Find d with lowest RSS
- ☐This doesn't work
 - RSS(d) is always decreasing (Question: Why?)
 - \circ Minimizing RSS(d) will pick d as large as possible
 - Leads to overfitting
- ■What went wrong?
- ☐ How do we do better?

Outline

☐ Motivating Example: What polynomial degree should a model use?

- ☐ Bias and variance for linear models (Advanced)
- ☐ Cross-validation
- ☐ Feature selection

Model Class

- ☐ Consider general estimation problem
 - Given data (x_i, y_i) want to learn a functional relation: $y \approx \hat{y} = f(x)$
- Model class: The set of possible estimates:

$$\hat{y} = f(x, \beta)$$

- \circ Set is parametrized by $oldsymbol{eta}$
- ☐ Many possible examples:
 - Linear model: $\hat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$
 - \circ Polynomial model: $\hat{y} = \beta_0 + \beta_1 x + \dots + \beta_k x^k$
 - Nonlinear: $\hat{y} = \beta_0 + \beta_1 e^{-\beta_2 x} + \beta_3 e^{-\beta_4 x}$
 - 0

Model Class and True Function

■Analysis set-up:

- Learning algorithm assumes a model class: $\hat{y} = f(x, \beta)$
- \circ But, data has true relation: $y=f_0(x)+\epsilon$, $\epsilon{\sim}N(0,\sigma_\epsilon^2)$

■Will quantify three key effects:

- Irreducible error
- Under-modeling
- Over-fitting

Output Mean Squared Error

- ☐ To evaluate prediction error suppose we are given:
 - \circ A parameter estimate $\widehat{m{eta}}$ (computed from the learning algorithm for a fixed training set)
 - A test point x_{test}
 - Test point is generally different from training samples.
- \square Predicted value: $\hat{y} = f(x_{test}, \hat{\beta})$
- \square Actual value: $y = f_0(x_{test}) + \epsilon$
- lacktriangle Define output mean squared error given $\hat{m{\beta}}$:

$$MSE_{y}(\boldsymbol{x}_{test}, \widehat{\boldsymbol{\beta}}) \coloneqq E[y - \widehat{y}]^{2}$$

 $^{\circ}\,$ Expectation is over noise $oldsymbol{\epsilon}$ on the test sample.

Irreducible Error

☐ Rewrite output MSE:

$$MSE_{y}(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}}) \coloneqq E[y - \widehat{y}]^{2} = E[f_{0}(\mathbf{x}_{test}) + \epsilon - f(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}})]^{2}$$

 \square Since noise on test sample is independent of $\widehat{\pmb{\beta}}$ and x_{test} :

$$MSE_{y}(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}}) \coloneqq \left[f_{0}(\mathbf{x}_{test}) - f(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}})\right]^{2} + \mathbb{E}(\epsilon^{2}) = \left[f_{0}(\mathbf{x}_{test}) - f(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}})\right]^{2} + \sigma_{\epsilon}^{2}$$

- ullet Define irreducible error: σ_{ϵ}^2
 - Lower bound on $\mathit{MSE}_{\mathcal{Y}}(x_{test},\widehat{\pmb{\beta}}) \geq \sigma_{\epsilon}^2$
 - Fundamental limit on ability to predict y
 - \circ Occurs since y is influenced by other factors than x

Under-Modeling

Definition: A true function $f_0(x)$ is in the model class $\hat{y} = f(x, \beta)$ if:

$$f_0(x) = f(x, \boldsymbol{\beta}_0)$$
 for all x

for some parameter β_0 .

 \circ $oldsymbol{eta}_0$ called the true parameter

 \square Under-modeling: When $f_0(x)$ is not in the model class

Sample Question

- ☐ For each pair, state if the true function is in the model class or not
 - That is, is there under-modeling or not?
 - If true function is in the model class, state the true parameter

■Examples:

- True function: $f_0(x) = 2 + 3x$ Model class: $f(x, \beta) = \beta_0 + \beta_1 x + \beta_2 x^2$
- True function: $f_0(x) = 2 + 3x + 4x^2$ Model class: $f(x, \beta) = \beta_0 + \beta_1 x$
- True function: $f_0(x) = \sin(2\pi(5)x + 7)$ Model class: $f(x,\beta) = \beta_0 \sin(2\pi(5)x) + \beta_1 \cos(2\pi(5)x)$
- True function: $f_0(x) = \sin(2\pi(8)x + 7)$ Model class: $f(x,\beta) = \beta_0 \sin(2\pi(5)x) + \beta_1 \cos(2\pi(5)x)$
- Solutions in class

Under-Modeling and Irreducible Error

- ■Suppose that:
 - There is no under-modeling: $f_0(x) = f(x, \beta_0)$ for some "true" parameter β_0 ; and
 - \circ Estimator selects the true parameter $\widehat{m{eta}} = m{eta}_0$
- ☐Then, output error is:

$$MSE_{y}(x_{test}, \widehat{\boldsymbol{\beta}}) \coloneqq \left[f_{0}(x_{test}) - f(x_{test}, \widehat{\boldsymbol{\beta}})\right]^{2} + \sigma_{\epsilon}^{2} = \sigma_{\epsilon}^{2}$$

- □Conclusion: If there is no undermodeling and we can estimate the true parameter:
 - We can get output error = irreducible error
 - \circ We can achieve the same error as if we knew the true function $f_0(x)$

Bias of an Estimator

- \square Suppose training data (x_i, y_i) is generated as follows:
 - Fix data input points x_i , i = 1, ..., N (Treat as non-random)
 - \circ Generate data output points $y_i = f_0(x_i) + \epsilon_i$ with random i.i.d. noise ϵ_i with some distribution
- lacktriangle Then estimate $\widehat{oldsymbol{eta}}$ is a random vector
 - \circ Depends on the noise ϵ_i in the training data
- ullet Definition: The bias at a test point x_{test} is:

$$Bias(x_{test}) := f_0(x_{test}) - E[f(x_{test}, \widehat{\beta})]$$

- Measures the difference between:
 - True function $f_0(x_{test})$
 - \circ Expected value of estimated $f(x_{test},\widehat{m{eta}})$, averaged over the noise in the training data

Bias: Noise-Free Case

- \square Suppose true relation has no noise: $y = f_0(x)$
 - Will handle noise later
- \square Get training data: $(x_i, y_i), i = 1, ..., n$
- ☐ Fit model parameter from least-squares:

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} (y_i - f(\boldsymbol{x}_i, \boldsymbol{\beta}))^2 = \arg\min_{\boldsymbol{\beta}} \sum_{i=1}^{n} (f_0(\boldsymbol{x}_i) - f(\boldsymbol{x}_i, \boldsymbol{\beta}))^2$$

- Minimizing training error finds best least squares fit of the true functions in the model class
- □Conclusions: If
 - \circ There is no under-modeling: $f_0(x_i) = f(x_i, oldsymbol{eta}_0)$ for some true parameter $oldsymbol{eta}_0$
 - Minimization for $\widehat{\beta}$ is unique

Then
$$\widehat{\beta} = \beta_0$$
 and $\operatorname{Bias}(x_{test}) = 0$ for all x_{test} :

- No bias when there is no under-modeling and no noise
- ■Will show later that for linear models, there is no bias even when there is no noise

Bias Visualized

MSE of an Estimator

- □ Data model: $y = f_0(x) + \epsilon, \epsilon \sim N(0, \sigma_{\epsilon}^2)$
- ☐Get training data: (x_i, y_i) , i = 1, ..., n
- \square Fit parameter $\widehat{\beta}$ from data (e.g. via least squares)
 - \circ $\widehat{m{eta}}$ will be random. Depends on particular noise realization for the selected training samples.
- \square Take a new test point x_{test}
- □ Define two mean square errors:
 - Output MSE: $\mathrm{MSE}_y(x_{test}) \coloneqq E\big[y f\big(x_{test}, \widehat{\pmb{\beta}}\big)\big]$: Error on the predicted value
 - Function MSE: $MSE_f(x_{test}) \coloneqq E[f_0(x_{test}) f(x_{test}, \widehat{\beta})]$: Error on the underlying function
- □ Expectation is over both:
 - \circ Noise in the training data : $y_i = f_0(x_i) + \epsilon_i$
 - Noise on the test sample: $y = f_0(x_{test}) + \epsilon$

MSE and the and Irreducible Error

☐ From previous slide:

- Output MSE: $MSE_y(x_{test}) \coloneqq E[y f(x_{test}, \widehat{\beta})]$: Error on the predicted value
- Function MSE: $\mathrm{MSE}_f(x_{test}) \coloneqq E\big[f_0(x_{test}) f\big(x_{test},\widehat{\pmb{\beta}}\big)\big]$: Error on the underlying function
- $\Box \text{Theorem: MSE}_{y}(x_{test}) = \text{MSE}_{f}(x_{test}) + \epsilon^{2}$
 - \circ Recall ϵ^2 is the irreducible error

☐ Proof: Similar to before:

- We know $y = f_0(x_{test}) + \epsilon$
- $MSE_{y}(\boldsymbol{x}_{test}) = E[y f(\boldsymbol{x}_{test}, \widehat{\boldsymbol{\beta}})]^{2} = E[f_{0}(\boldsymbol{x}_{test}) + \epsilon f(\boldsymbol{x}_{test}, \widehat{\boldsymbol{\beta}})]^{2}$
- \circ But, ϵ is independent of $f_0(x_{test})$ and $fig(x_{test},\widehat{oldsymbol{eta}}ig)$
- $^{\circ} \text{ Therefore } \mathit{MSE}_y(\pmb{x}_{test}) = \mathit{E}\big[f_0(\pmb{x}_{test}) f\big(\pmb{x}_{test}, \widehat{\pmb{\beta}}\big)\big]^2 + \mathit{E}(\epsilon^2) = \mathit{MSE}_f(\pmb{x}_{test}) + \sigma_\epsilon^2$

Bias and Variance

- ☐ We will show that function MSE can be related to two key quantities
- $\Box \text{Bias: } Bias(x_{test}) := f_0(x_{test}) E[f(x_{test}, \widehat{\beta})]$
 - How much the average value of the estimate differs from the true function
- \square Variance: $Var(x_{test}) \coloneqq E\left[f(x_{test}, \widehat{\beta}) E[f(x_{test}, \widehat{\beta})]\right]^2$
 - How much the estimate varies around its average
- ☐ Bias and variance are (conceptually) measured as follows:
 - \circ Get many independent training data sets, each with same size N and input values x_i
 - \circ Each dataset has different output values y_i because of independent noise in the training data
 - Obtain $\widehat{\pmb{\beta}}$ for each training data set
 - $\,^\circ\,$ Bias and variances are computed over the different sets
- ☐Of course, in reality, we have only one training dataset
- ☐ But, bias and variance are used to study theoretical averages over different experiments

Bias and Variance Illustrated

- ☐Polynomial ex
- Mean and std dev of estimated functions
- □100 trials
- Solid line: mean estimate among all trials
- ☐ Error bars: 1 STD

Bias-Variance Formula

■ Recall definitions:

- Function MSE: $MSE_f(x_{test}) := E[f_0(x_{test}) f(x_{test}, \hat{\beta})]$:
- Bias: $Bias(x_{test}) := f_0(x_{test}) E[f(x_{test}, \widehat{\beta})]$
- Variance: $Var(x_{test}) \coloneqq E\left[f(x_{test}, \widehat{\beta}) E[f(x_{test}, \widehat{\beta})]\right]^2$
- \square Bias-Variance formula : $MSE_f(x_{test}) = Bias(x_{test})^2 + Var(x_{test})$
 - Will be proved below
- ☐ Bias-Variance tradeoff:
- ☐ Bias due to under-modeling
 - Reduced with high model order
- □ Variance is due to noise in training data and number of parameters to estimate
 - Increases with higher model order

Bias-Variance Tradeoff

☐Bias:

- Due to under-modeling
- Reduced with high model order

□ Variance:

- Increases with noise in training data
- Increase with high model order
- □Optimal model order depends on:
 - Amount of samples available
 - Underlying complexity of the relation

Bias-Variance Formula Proof

```
\square Define \bar{f}(x_{test}) = E[f(x_{test}, \hat{\beta})] = average value of estimated function
```

$$\square \mathsf{MSE}_f(\boldsymbol{x}_{test}) = E[f_0(\boldsymbol{x}_{test}) - f(\boldsymbol{x}_{test}, \widehat{\boldsymbol{\beta}})]^2 = E[f_0(\boldsymbol{x}_{test}) - \bar{f}(\boldsymbol{x}_{test}) + \bar{f}(\boldsymbol{x}_{test}) - f(\boldsymbol{x}_{test}, \widehat{\boldsymbol{\beta}})]^2$$

□ Three components: $MSE_f(x_{test}) = M_1 + M_2 - 2M_3$

•
$$M_1 = E[f_0(x_{test}) - \bar{f}(x_{test})]^2 = [f_0(x_{test}) - \bar{f}(x_{test})]^2 = Bias(x_{test})$$

$$M_2 = E[f(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}}) - \bar{f}(\mathbf{x}_{test})]^2 = Var(\mathbf{x}_{test})$$

$$M_3 = E[(f_0(\boldsymbol{x}_{test}) - \bar{f}(\boldsymbol{x}_{test}))(f(\boldsymbol{x}_{test}, \widehat{\boldsymbol{\beta}}) - \bar{f}(\boldsymbol{x}_{test}))]$$

$$= (f_0(\boldsymbol{x}_{test}) - \bar{f}(\boldsymbol{x}_{test}))E[f(\boldsymbol{x}_{test}, \widehat{\boldsymbol{\beta}}) - \bar{f}(\boldsymbol{x}_{test})]$$

$$= (f_0(\boldsymbol{x}_{test}) - \bar{f}(\boldsymbol{x}_{test}))(\bar{f}(\boldsymbol{x}_{test}) - \bar{f}(\boldsymbol{x}_{test})) = 0$$

Outline

- ☐ Motivating Example: What polynomial degree should a model use?
- ■Bias and variance
- Bias and variance for linear models (Advanced)
 - ☐ Cross-validation
 - ☐ Feature selection

This Section is Advanced

- ☐ This section requires more advanced probability and linear algebra
- ☐ Means and variances of random vectors
- ☐ Undergraduates: Skip to final slide for final conclusions
- ☐ Graduate students: We will cover this
 - You should review your multi-variable probability and linear algebra

Linear Models

□ Consider linear model in general transformed feature space:

$$\hat{y} = f(x, \beta) = \phi(x)^T \beta = \beta_1 \phi_1(x) + \dots + \beta_p \phi_p(x)$$

- See previous lecture
- \square Assume true data relation is: $y = f_0(x) + \epsilon$, $E(\epsilon) = 0$, $E(\epsilon^2) = \sigma^2$
- When there is no under-modeling: $f_0(x) = f(x, \beta^0) = \phi(x)^T \beta^0$
 - $\beta^0 = (\beta^0_0, \cdots, \beta^0_k)$ True parameter
- \square Get data $(x_i, y_i), i = 1, ..., N$
- $\Box \text{Least squares fit } \hat{\beta} = (A^T A)^{-1} A^T y$

$$A = \begin{bmatrix} \phi_1(x_1) & \cdots & \phi_p(x_1) \\ \vdots & \vdots & \vdots \\ \phi_1(x_N) & \cdots & \phi_p(x_N) \end{bmatrix}$$

Minimum Number of Samples

- \square LS estimate requires A^TA is invertible.
- □Linear algebra fact: Since $A \in \mathbb{R}^{N \times p}$, we need $\mathbb{R}ank(A) \ge p$
 - Otherwise solution is not unique
- □Since Rank(A) ≤ min(N, p) we need N ≥ p.
- Recall:
 - \circ N = number of data samples
 - poly = number of parameters
- \square Conclusion: Number of samples \ge number of parameters
- ☐ This places a basic limit on the model complexity that you can use

Random Vectors Review

- ☐ To analyze bias and variance in linear models, we need to review random vectors
- \square Random vectors: $\mathbf{x} = (x_1, ..., x_d)^T$: Each component x_j is a random variable
- ☐ Mean: The vector of means of the components

$$\mu = Ex = (Ex_1, ..., Ex_d)^T = (\mu_1, ..., \mu_d)^T$$

- $\Box \text{Covariance components: } \text{Cov}\big(x_i, x_j\big) = E\big[(x_i \mu_i)\big(x_j \mu_j\big)\big]$
- \square Variance matrix ($d \times d$):

$$\operatorname{Var}(\boldsymbol{x}) \coloneqq E[(\boldsymbol{x} - \boldsymbol{\mu})(\boldsymbol{x} - \boldsymbol{\mu})^T] = \begin{bmatrix} \operatorname{Cov}(x_1, x_1) & \cdots & \operatorname{Cov}(x_1, x_d) \\ \vdots & \vdots & \vdots \\ \operatorname{Cov}(x_d, x_1) & \cdots & \operatorname{Cov}(x_d, x_d) \end{bmatrix}$$

Linear Transforms of Random Vectors

- \square A linear transform is a map: y = Ax + b
- $\square A \in \mathbb{R}^{M \times N}$ maps input $x \in \mathbb{R}^N$ to $Ax \in \mathbb{R}^M$
- ☐ Mean and variance matrix under linear map given by
 - Mean: E(y) = AE(x) + b
 - Variance: $Var(y) = AVar(x)A^T$

Bias With No Under-Modeling

- □ Suppose that there is no undermodeling: $f_0(x) = \phi(x)^T \beta^0$
- □ Then each training sample output is: $y_i = \phi(x_i)^T \beta^0 + \epsilon_i$
- □Hence: true data vector $y = Aβ^0 + ε$
- ☐ Parameter estimate is:

$$\hat{\beta} = (A^T A)^{-1} A^T y = (A^T A)^{-1} A^T (A \beta^0 + \epsilon) = \beta^0 + (A^T A)^{-1} A^T \epsilon$$

- \square Since $E\epsilon=0$, $E\hat{\beta}=\beta^0$. Average of parameter estimate matches true parameter
- $\Box Ef(x_{test}, \hat{\beta}) = \phi(x_{test})^T E\hat{\beta} = \phi(x_{test})^T \beta^0 = f_0(x_{test})$
- □Therefore $Bias(x_{test}) := f_0(x_{test}) Ef(x_{test}, \hat{β}) = 0$
- □Conclusion: When the model is linear and there is no under-modeling, there is no bias

Variance of the Parameters in Linear Models

 \square Since ϵ_i are independent for different samples with $E\epsilon_i=0$, $E\epsilon_i^2=\sigma^2$

$$Cov(\epsilon_i, \epsilon_j) = \begin{cases} 0 & i \neq j \\ \sigma^2 & i = j \end{cases}$$

- □ Therefore variance matrix is: $Var(ε) = σ^2I$
- $\Box \text{From last slide: } \hat{\beta} = \beta^0 + (A^T A)^{-1} A^T \epsilon.$
- \square Applying variance formula of a linear transformation of ϵ

$$E\left((\hat{\beta} - \beta^{0})(\hat{\beta} - \beta^{0})^{T}\right) = (A^{T}A)^{-1}A^{T}Var(\epsilon)A(A^{T}A)^{-1}$$
$$= \sigma^{2}(A^{T}A)^{-1}A^{T}A(A^{T}A)^{-1} = \sigma^{2}(A^{T}A)^{-1}$$

Variance in Linear Estimate

To compute variance use trick: Suppose a and z are vectors, a is non-random, z is random:

$$E|\mathbf{a}^T\mathbf{z}|^2 = E(\mathbf{a}^T\mathbf{z}\mathbf{z}^T\mathbf{a}) = \mathbf{a}^TE(\mathbf{z}\mathbf{z}^T)\mathbf{a}$$

- $\Box \text{From earlier: } Ef(x_{test}, \widehat{\boldsymbol{\beta}}) = \phi(x_{test})^T E\widehat{\boldsymbol{\beta}} = \phi(x_{test})^T \boldsymbol{\beta}^0$
- ☐ Therefore variance of linear model:

$$Var(\mathbf{x}_{test}) = E[f(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}}) - Ef(\mathbf{x}_{test}, \widehat{\boldsymbol{\beta}})]^{2} = E[\phi(\mathbf{x}_{test})^{T}(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})]^{2}$$

$$= \phi(\mathbf{x}_{test})^{T} E[(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})(\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})^{T}] \phi(\mathbf{x}_{test})$$

$$= \sigma^{2} \phi(\mathbf{x}_{test})^{T} (\mathbf{A}^{T} \mathbf{A})^{-1} \phi(\mathbf{x}_{test})$$

- ☐ Above calculation is for the case of no under-modeling
- ☐ But, similar calculation shows variance expression is the same when there is under-modeling

Case with Equal Test & Training Distributions

- ■Suppose that test point is distributed identically to training data
 - Training data inputs x_i , i = 1, ..., N
 - $x_{test} = x_i$ with probability $\frac{1}{N}$
- \square Since rows of A are $\phi(x_i)^T$: $A^TA = \sum_{i=1}^N \phi(x_i)\phi(x_i)^T$
- □ Now use trick: For random vectors $\boldsymbol{u}, \boldsymbol{v}$: $E(\boldsymbol{u}^T \boldsymbol{v}) = Tr E(\boldsymbol{v} \boldsymbol{u}^T)$
 - $Tr(A) = \sum_{i} A_{ii} = \text{sum of diagonals}$
- \square Therefore, variance averaged over x_{test} is:

$$E Var(\mathbf{x}_{test}) = \sigma^2 E[\phi(\mathbf{x}_{test})^T (\mathbf{A}^T \mathbf{A})^{-1} \phi(\mathbf{x}_{test})] = \sigma^2 Tr\{E[\phi(\mathbf{x}_{test}) \phi(\mathbf{x}_{test})^T] (\mathbf{A}^T \mathbf{A})^{-1}\}$$

$$= \frac{\sigma^2}{N} Tr \left\{ \sum_{i} \phi(\mathbf{x}_i) \phi(\mathbf{x}_i)^T (\mathbf{A}^T \mathbf{A})^{-1} \right\} = \frac{\sigma^2}{N} Tr \left\{ (\mathbf{A}^T \mathbf{A}) (\mathbf{A}^T \mathbf{A})^{-1} \right\} = \frac{\sigma^2}{N} Tr \left\{ I_p \right\} = \frac{\sigma^2 p}{N}$$

Case with Equal Test & Training Distributions

- \square Assumption on previous slide: Test point x_{test} is randomly selected from training data
- ☐ Then, average variance is given by

$$E \, Var(\mathbf{x}_{test}) = \frac{\sigma^2 p}{N}$$

- \square Increases with number of parameters p
 - Shows that increasing model complexity increases variance error
- \square Decreases with number of samples N
- ☐ What if test data point is distributed differently from training data?
 - Then variance may be much larger $\frac{\sigma^2 p}{N}$
 - If test data is not like training data, we are extending model to regions not seen in training data
 - Often leads to high error

Summary of Results for Linear Models

- \square Suppose model is linear with N = num samples, p = num parameters
- \square Result 1: When N < p, linear estimate is not unique
 - Need at least as many samples as parameters
- \square Now assume that $N \ge p$ and parameter estimate is unique
- ☐ Result 2: When there is no under-modeling, estimate is unbiased

$$E[f(x_{test},\widehat{\boldsymbol{\beta}})] = f_0(x_{test},).$$

☐ Result 3: If test point drawn from same distribution as training data:

$$Var = \frac{p}{n}\sigma_{\epsilon}^2$$

Variance increases linearly with number of parameters and inversely with number of samples

Outline

- ☐ Motivating Example: What polynomial degree should a model use?
- ■Bias and variance
- ☐ Bias and variance for linear models (Advanced)
- Cross-validation
 - ☐ Feature selection

Cross Validation

- □ Concept: Need to fit on test data independent of training data
- ☐ Divide data into two sets:
 - \circ N_{train} training samples, N_{test} test samples
- \square For each model order, p, learn parameters $\hat{\beta}$ from training samples
- ☐ Measure RSS on test samples.

$$RSS_{test}(p) = \sum_{i \in test} (\widehat{y}_i - y_i)^2$$

 \square Select model order p that minimizes $RSS_{test}(p)$

Polynomial Example: Training Test Split

■ Example: Split data into 20 samples for training, 20 for test


```
# Number of samples for training and test
ntr = nsamp // 2
nts = nsamp - ntr

# Training
xtr = xdat[:ntr]
ytr = ydat[:ntr]

# Test
xts = xdat[ntr:]
yts = ydat[ntr:]
```


Finding the Model Order

☐ Estimated optimal model order = 3

RSS test minimized at d=3RSS training always decreases

```
dtest = np.array(range(0,10))
RSStest = []
RSStr = []
for d in dtest:
    # Fit data
    beta hat = poly.polyfit(xtr,ytr,d)
    # Measure RSS on training data
    # This is not necessary, but we do it just to show the training error
    yhat = poly.polyval(xtr,beta hat)
    RSSd = np.mean((yhat-ytr)**2)
    RSStr.append(RSSd)
    # Measure RSS on test data
    yhat = poly.polyval(xts,beta hat)
    RSSd = np.mean((yhat-yts)**2)
    RSStest.append(RSSd)
plt.plot(dtest,RSStr,'bo-')
plt.plot(dtest,RSStest,'go-')
plt.xlabel('Model order')
plt.ylabel('RSS')
plt.grid()
plt.ylim(0,1)
plt.legend(['Training', 'Test'], loc='upper right')
```

Problems with Simple Train/Test Split

- ☐ Test error could vary significantly depending on samples selected
- ☐Only use limited number of samples for training
- ☐ Problems particularly bad for data with limited number of samples

K-Fold Cross Validation

$\square K$ -fold cross validation

- Divide data into K parts
- Use K-1 parts for training. Use remaining for test.
- Average over the K test choices
- \circ More accurate, but requires K fits of parameters
- Typical choice: K=5 or 10
- Average MSE over K folds estimates the total MSE
- (=Bias^2+Variance+irreducible error)

☐ Leave one out cross validation (LOOCV)

- Take K = N so one sample is left out.
- Most accurate, but requires N model fittings
- Necessary when N is small.

From

http://blog.goldenhelix.com/goldenadmin/cross-validation-for-genomic-prediction-in-svs/

Polynomial Example

☐ Use sklearn Kfold object

Loop

- Outer loop: Over K folds
- Inner loop: Over D model orders
- Measure test error in each fold and order
- Averaging test errors from K folds for each model order
- Find the model order with the minimal average test errors
- Can be time-consuming

```
# Create a k-fold object
nfold = 20
kf = sklearn.model selection.KFold(n splits=nfold,shuffle=True)
# Model orders to be tested
dtest = np.arange(0,10)
nd = len(dtest)
# Loop over the folds
RSSts = np.zeros((nd,nfold))
for isplit, Ind in enumerate(kf.split(xdat)):
   # Get the training data in the split
   Itr, Its = Ind
   xtr = xdat[Itr]
   ytr = ydat[Itr]
   xts = xdat[Its]
   yts = ydat[Its]
   for it, d in enumerate(dtest):
        # Fit data on training data
       beta_hat = poly.polyfit(xtr,ytr,d)
        # Measure RSS on test data
       yhat = poly.polyval(xts,beta hat)
       RSSts[it,isplit] = np.mean((yhat-yts)**2)
```


Polynomial Example CV Results

- ☐ For each model order d
 - Compute mean test RSS over K folds
 - Compute standard error (SE) of test RSS
 - \circ SE=STD of mean RSS=RSS std/ $\sqrt{K-1}$
 - (expectation over different realizations of data in each fold)
- ☐ Simple model selection
 - Select d with lowest mean test RSS
- ☐ For this example
 - Estimate model order = 3

```
RSS_mean = np.mean(RSSts,axis=1)
RSS_std = np.std(RSSts,axis=1) / np.sqrt(nfold-1)
plt.errorbar(dtest, RSS_mean, yerr=RSS_std, fmt='-')
plt.ylim(0,1)
plt.xlabel('Model order')
plt.ylabel('Test RSS')
plt.grid()
```


One Standard Error Rule

- ☐ Previous slide: Select d to minimize mse_mean[d]
- □ Problem: Often over-predicts model order
- ☐ One standard deviation rule
 - Use simplest model within one SE of minimum
- ☐ Detailed procedure:
 - Find d0 to minimize mse_mean[d]
 - o Set mse_tgt = mse_mean[d0] + mse_std[d0]
 - Find minimal dopt s.t. mse_mean[dopt] <= mse_tgt</p>

Outline

- ☐ Motivating Example: What polynomial degree should a model use?
- ■Bias and variance
- ☐ Bias and variance for linear models (Advanced)
- ☐ Cross-validation
- Feature selection

Feature Selection as Model Selection

- \square In many problems, we have a large number of features x_1, \dots, x_p
 - But only a small number of features are likely relevant
- ☐ Fit of linear model on all features may be impossible
 - Too many parameters
- □ Feature selection problem: Select a subset $S \subseteq \{1, ..., p\}$ of $k \ll p$ features
- \square Can fit a linear model for each subset S using linear regression
- \square Model order is k = number of features to use
- ☐ Higher feature number leads to low bias but higher variance!

Exhaustive Search for Feature Selection

- \square Given potential features x_1, \dots, x_p
- \square Problem: Select subset S of features with $|S| \leq k$
- ☐ Simple exhaustive search:
 - Divide data into training test
 - ∘ For each subset $|S| \le k$:
 - \circ Fit a model with features in S
 - Measure test error RSS(S)
 - \circ Select subset S with minimum test RSS(S)

Feature Selection based on Correlation

- □ Exhaustive search may be infeasible when the raw feature dimension is large!
 - There are $\binom{p}{k}$ subsets with size k
- ■Suboptimal approach:
 - For each candidate feature order $k \le p$, choose k features with the highest correlation coefficients with the target
 - Use cross validation to determine the RSS mean and variance for this subset
 - Select the feature subset with minimal RSS mean or using the one standard error rule.
- □ Is using correlation with target a good idea?
 - Two features that are correlated could both be highly correlated with the target
 - Hence, they may provide redundant information and ideally only one of them should be used.

Greedy Feature Selection

☐ Forward-Stepwise Selection

- Select one feature from all features that provides the lowest RSS with cross validation
- Select one new feature from all remaining features, so that previously chosen features plus the new feature provides the lowest RSS
- Repeat until the maximum feature number is reached, or when the RSS starts to increase

■ Backward-Stepwise

- First use all features and find the RSS (using cross validation)
- Remove one feature and find the new RSS. Go through all possible features to remove.
- Find the one that leads to the least RSS increase. Remove this feature.
- Repeat the above, remove one from the remaining features, to find the next most important feature.
- ☐ Except exhaustive search, can all lead to suboptimal solution
- ■We will discuss the method of LASSO in the next lecture for feature selection.

Comparison of Feature selection Methods

Figure from [Hastie2008]: Hastie, Tibshirani, Friedman, The elements of statistical learning.

For more on this subject, see Sec. 3.3

FIGURE 3.6. Comparison of four subset-selection techniques on a simulated linear regression problem $Y = X^T \beta + \varepsilon$. There are N = 300 observations on p = 31 standard Gaussian variables, with pairwise correlations all equal to 0.85. For 10 of the variables, the coefficients are drawn at random from a N(0,0.4) distribution; the rest are zero. The noise $\varepsilon \sim N(0,6.25)$, resulting in a signal-to-noise ratio of 0.64. Results are averaged over 50 simulations. Shown is the mean-squared error of the estimated coefficient $\hat{\beta}(k)$ at each step from the true β .

Lab: Neural ECoG Data

Time

