Introduction to Motion Control

ROCHESTER MAKERSPACE 2021

Class Objectives

- 1. Become familiar common types of motors
- 2. Focus on motors typically used by hobbyists
- 3. Understand how to control motors
- 4. Understand cautions when using motors with microcontrollers/microcomputers
- 5. Provide projects to demonstrate motor control on Raspberry Pi and Arduino
- 6. Provide examples of typical motor applications
- 7. Provide list of resources for learning more

Class notes and code

- ▶ All the class notes and code can be downloaded from GitHub:
 - https://github.com/RochesterMakerSpace/MotionControlClass
- ▶ Pull down the green "Code" button and select "Download ZIP"

Types of Common Electric Motors

- ► There are two main motor classifications, ac and dc, with three application areas, constant speed, variable speed and position (or torque) control.
- AC Motors

AC motors are typically associated with industrial applications and will not be address further in this class.

DC Motors

Although large DC motor are common in industrial application smaller DC motor are favored by the hobbyist and include:

- ▶ DC Brushed Motors simple, cost effective, lightweight and easy to control. Excellent torque at low speed but produce electrical noise. Used as drives for hobby vehicles.
- ▶ DC Brushless Motors -- mechanically simpler than brushed motors but require more complex controllers and gearboxes and can be found in multicoptors and drones.
- Servo Motors good for projects needing precise control of angular or linear position such as robots.
- Stepper Motors move in discrete, precise steps and are found in CNC machines and 3D printers.

Brushed DC Motor Description

► Components:

- Stator: Generates a stationary magnetic field that surrounds the rotor
- ▶ Rotor (armature): Made up of one or more windings. Produce a magnetic field when energized
- Brushes: As the motor turns, carbon brushes slide over the commutator, coming in contact with different segments of the commutator
- ► Commutator: Segments are attached to different rotor windings, generating a dynamic magnetic field inside the motor.

Brushed DC Motor Example

- ▶ DC Gearbox Motor "TT Motor" 200 RPM 3 to 6 VDC
 - ▶ Operating Voltage Range: 3~7.5V
 - Rated Voltage: 6V
 - Max No-load Current (3V): 140 mA
 - Max No-load Current (6V): 170 mA
 - ▶ No-load Speed (3V): 90 rpm
 - ▶ No-load Speed (6V): 160 rpm
 - ► Max Output Torque: 0.8 kgf cm
 - ► Max Stall Current: 2.8 A
- Pololu Micro Metal Gearmotor
 - See spec sheet

Brushed DC Direction Control: H-Bridge

- ► An H-Bridge circuit contains four switches with the motor at the center forming an H-like arrangement.
- Closing two particular switches at the same time reverses the polarity of the voltage applied to the motor. This causes change in spinning direction of the motor.
- The control circuit prevents closing both switches on the same side of the H-Bridge, thus preventing a short from Vcc to GND.

H-Bridge with PWM Control

Rochester MakerSpace 2021

Brushed DC Speed Control: PWM

Brushed DC Motor Drivers

Model	L298N	TB6612	DRV8833	DRV8871
Current	2A	1.2A	1.5A	2A
Peak Current	3A	3.3A	2A	3.6A
Operating Voltage	3.2 – 40 V	4.5 – 15 V	2.7 – 10.8 V	6.5 – 45 V
Efficiency	40-70%	91-95%	70-90%	
Total MCU pins	6	6	4	2
PWM Pins	2	2	2/4	2
Number of motor outputs	2	2	2	1
Technology	Bipolar	MOSFET	MOSFET	MOSFET
Approximate cost	\$2.50	\$5.00	\$5.00	\$7.50

Rochester MakerSpace 2021

Servo Motor Description

- Components:
 - Motor
 - ▶ Potentiometer: Shaft position
 - ▶ Gear Assembly: Reduce RPM to increase torque
 - ► Controlling circuit: Feedback
 - ▶ Input signal: PWM pulse width
- ► An error signal is generated between the potentiometer and the input signal. The error signal causes the motor shaft to turn, changing the voltage on the potentiometer, thus reducing the error until the motor stops when the error is 0.

Brushless DC Motor (BLDC) Description

- Brushless DC motor control is not quite as simple as the regular brushed type. Brushless motors require a controller that can sense the proper time to reverse the voltage to the coils.
- ▶ Some motors have built-in hall-effect sensors that can detect the orientation of the rotor. Controllers for this type of motor require sensor inputs to read these hall sensors.
- Other 'sensorless' motor controllers sense the back EMF in the motor coils themselves to detect the rotor position. Most ESC (Electronic Speed Controls) for brushless RC motors use this technique.
- Brushless motors designed for autonomous and remote control aircraft and vehicles typically require a separate controller. These are typically of the sensorless type and use standard servo type pulsed signals for speed control.
- ▶ Applications include RC controlled planes and drones.

Brushless DC Motor (BLDC) Description

Servo/BLDC Control

Stepper Motor Description

Advantages

- ▶ Steppers don't require a sensor to detect the motor position since the motor moves by simply counting steps.
- ▶ Although the motor does need a controller it doesn't need complex calculation or tuning to work properly.
- With micro stepping high positional accuracy can be achieved.
- ▶ Good torque at low speed and great for holding position.

Disadvantages

- ► Can miss steps if torque load is too high.
- Always drain maximum current.
- ▶ Low torque and noisy at high speeds.

Rochester MakerSpace 2021

Bipolar Stepper Motor Example

- ► TPP-47-002
 - ▶ NEMA 17
 - ▶ Step Angle: 1.8 degree (200 steps/rev)
 - ► Holding Torque: 33Ncm(47oz.in)
 - ▶ Rated Current/phase: 1.2 A
 - ▶ Phase Resistance: 2.4 ohms
 - ▶ Inductance: 4.7 mH
 - ► Application: 3D Printer

Stepper Motor Windings

Source: https://www.electronicshub.org/stepper-motor-control-using-arduino/

Rochester MakerSpace 2021

Bipolar Full Step Sequence

Bipolar Step	Q2-Q3	Q1-Q4	Q6-Q7	Q5-Q8
1	ON	OFF	ON	OFF
2	OFF	ON	ON	OFF
3	OFF	ON	OFF	ON
4	ON	OFF	OFF	ON
1	ON	OFF	ON	OFF

Unipolar Stepper Motor Example

- ≥ 28BYJ-48
 - ▶ 5V Nominal Voltage
 - Number of Phases: 4
 - ▶ 64:1 (63.68395:1) gearing
 - ► Full Step Sequence:
 - ▶ 2048 (2038) steps per revolution
 - ▶ 11.25°/64 (63.68395) Stride Angle
 - ► Half Step Sequence:
 - ▶ 4096 (4076) steps per revolution
 - ▶ 5.625°/64 (63.68395) Stride Angle
 - ▶ Pull in torque: 300 gf.cm
 - ► Insulated Power: 600VAC/1mA/1s
 - Coil: Unipolar 5 lead coil
- More Info: https://lastminuteengineers.com/28byj48-steppermotor-arduino-tutorial/#gear-reduction-ratio

Unipolar Full Step Sequence

					1
Unipolar Step	Q1	Q2	03	Q4	
1	ΠN	OFF	ΠN	OFF	8
2	OFF			OFF	2
3	OFF		□FF	ΠN	
4	ΠN	OFF	□FF	<u> </u>	
1	ПΝ	OFF	Z	OFF	

Stepper Motor – Full Step Sequence

Source: https://www.electronicshub.org/stepper-motor-control-using-arduino/

Stepper Motor – Half Step Sequence

Source: https://www.electronicshub.org/stepper-motor-control-using-arduino/

Rochester MakerSpace 2021

Stepper Motor Drivers

Model	DRV8825	A4988	TMC2208	ULN2003
Туре	Bipolar	Bipolar	Bipolar	Unipolar
Max Current per coil	2.2 A	2.0 A	2.0 A	600 mA
Continuous current per coil	1.5 A	1.0 A	1.2 A	
Max step resolution	1/32	1/16	1/256	N/A
Logic range	2.5 – 5.25 V	3 – 5.5 V	3 – 5 V	5 V
Supply Voltage Range	8.2 – 45 V	8 – 35 V	5.5 – 36 V	50 V
Interface	Step/Dir	Step/Dir	Step/Dir	Channels
Approximate cost	\$9.00	\$2.00	\$15.00	\$1.50

Rochester MakerSpace 2021

Integrated Stepper Motor Driver

- ▶ gShield v5
 - **▶** ~ \$50
 - Arduino Uno Shield
 - ▶ 3x TI DRV8818 Stepper Drivers
 - ▶ Runs grbl firmware
 - https://github.com/gnea/grbl
 - ► Application: CNC Router

Integrated Stepper Motor Driver

- ► RAMPS 1.4
 - ~ \$20 including DRV8825 Motor Drivers
 - Arduino Mega Shield
 - Different drivers may be used
 - Runs Marlin firmware
 - https://marlinfw.org/
 - ► Application: 3D printer

Project IDE

- Arduino IDE
 - Programming -> Arduino IDE
 - Arduino UNO or Arduino UNO clone
 - ► Tools -> Board -> Arduino UNO
 - ► Arduino Leonardo or Arduino Leonardo clone (Velleman white board)
 - ▶ Tools -> Board -> Arduino Leonardo
- Raspberry Pi IDE
 - Programming -> Geany

Project – Brushed DC Motor

- Driver: L298N
- Raspberry Pi Wiring
 - ▶ IN1 to GPIO26
 - ▶ IN2 to GPIO19
 - ▶ IN3 to GPIO20
 - ▶ IN4 to GPIO16
 - ► ENA to GPIO6
 - ▶ ENB to GPIO12
- Set power supply output to 7.4 V.
- Open MotionControlClass/BrushedDC/key_brushedDc.py using the Geany IDE.
- Run key_brushedDc.py.
- Put cursor focus in terminal window that pops up.
- Arrow keys to move motors.
- 's' key to slow the motor, 'f' key to speed up the motor.
- Enter key to stop.
- 'q' or ctrl-c to terminate program.
- Consider how to control the speed of the motors.

Rochester MakerSpace 2021

fritzing

Project – Servo Motor

- Use mechanical crane
- Raspberry Pi Wiring:
 - Servo Pan: GPIO18
 - ▶ Servo Tilt: GPIO17
- Set power supply output to 5V
- Open MotionControlClass/ServoMotor/key_Serv oMotor.py using the Geany IDE
- Run key_ServoMotor.py
- Put cursor focus in terminal window that pops up.
- Arrow keys to move motors.
- Enter key to stop
- 'q' to terminate program

Project – Brushless DC Motor

- Driver: ESC
- Guide: https://howtomechatronics.com/tutorials/arduino/arduinobrushless-motor-control-tutorial-esc-bldc/
- Arduino Wiring:
 - Speed control: Pin 9 (White)
 - Pot Wiper: A0 (Green)
- Set power supply output to 12V but do not enable the power supply
- Open MotionControlClass/BldcMotor/BldcMotor.ino using the Arduino IDE
- Upload the sketch
- Turn pot full clockwise
- ► Enable the power supply
- The motor speed is controlled with the pot. If the pot is full on (counter clockwise) on then the motor will not start and must be calibrated (see Guide).

Project – Unipolar Stepper Motor

- ▶ Driver: ULN2003
- Guide: https://www.makerguides.com/28byj-48-stepper-motor-arduinotutorial/
- Arduino Wiring
 - ▶ IN1 to Pin 11
 - IN2 to Pin 10
 - ▶ IN3 to Pin 9
 - ▶ IN4 to Pin 8
- Set power supply output to 5V
- Onen

MotionControlClass/UnipolarStepper/BasicUnipolarStepper/BasicUnipolar Stepper.ino using the Arduino IDE

- Upload the sketch
- ► The motor will rotate 1 revolution, reverse and rotate 1 revolution in the opposite direction and repeat forever.
- Try changing the motor speed and/or the number of revolutions
- ▶ Observe in the Serial Monitor when the motor changes direction

Rochester MakerSpace 2021

fritzing

Project: Unipolar with ATTiny

- Driver: ULN2003
- Plug in 28BYJ-48 motor with red wire nearest C3/C4
- Power board with USB-C power block
- ► The motor will rotate in the clockwise direction looking at the shaft side of the motor.

Project: Unipolar with ATTiny

This ATTiny code snippet demonstrates how to half-step sequence the ULN2003 driver. This function is called in a forever loop that includes a delay:

```
// ----- Event loop ----- //
while (1) {
    _delay_us( StepDelay_us );
    decrMotor();
}
```

```
static inline void decrMotor( void ){
 switch( MotorState ) { //prior to decrement
 case 7: //1001->X___->0001
   clear_bit( S1_PORT, S1 );
   break;
 case 6: //0001-> ^ ->0011
   set bit( S3 PORT, S3 );
   break;
 case 5: //0011-> X->0010
   clear_bit( S4_PORT, S4 );
   break;
 case 4: //0010-> ^ ->0110
   set bit( S2 PORT, S2 );
 case 3: //0110-> X ->0100
   clear bit( S3 PORT, S3 );
   break;
 case 2: //0100->^ ->1100
   set bit( S1 PORT, S1 );
 case 1: //1100->_X__->1000
   clear bit( S2 PORT, S2 );
   break;
 case 0: //1000-> ^->1001
   set bit( S4 PORT, S4 );
   MotorState = 8;
   break:
 } MotorState--;
```

Project – Bipolar Stepper Motor

- Driver: DRV8825 or A4988
- ▶ Guide: https://www.makerguides.com/drv8825-stepper-motor-driver-arduino-tutorial/
- Arduino Wiring (from 9 pin block labeled S-V-G / EN-STEP-DIR):
 - ► EN (Enable impulse): jumper to GND (done: black wire)
 - ▶ DIR: Arduino Pin 2 (orange wire)
 - STEP: Arduino Pin 3 (yellow wire)
 - ▶ 5V INPUT: Arduino 5V and GND (red-V and brown-G wires)
- Set power supply output to 12V but do not enable the power supply
- If necessary, adjust current limit according to Guide: $V_{ref} = I_{max} / 2$ for DRV8825 or $V_{ref} = I_{max} * 8 * R_s$ for A4988 ($R_s = 0.1$ ohm for demo driver)
- Open MotionControlClass/BipolarStepper/BasicBipolarStepper/BasicBipolarStepper.ino using the Arduino IDE
- Upload the sketch
- Enable the power supply output
- The motor will move slowly one revolution (full step mode), a little faster in reverse direction and then quite fast in both directions for 5 revolutions and then repeat.
- Try changing subdivision control: Disable power supply, change DIP switch, Enable power supply. Consider how to improve the program by using variables to control the speed and number of revolutions.

Note:

This module need two sets of power supply. Steping motor voltage: 12-24V. Logic power supply voltage: 5V

There is a port in control terminal, En is enable impulse (Active Low). Step is step impulse input. Dir is direction impulse.

Project – Bipolar Stepper Motor

- Acceleration library example
- Driver: DRV8825 or A4988
- ► Guide: https://www.makerguides.com/drv8825-stepper-motor-driver-arduino-tutorial/
- Arduino Wiring (from 9 pin block labeled S-V-G / EN-STEP-DIR):
 - ► EN (Enable impulse): jumper to GND (done: black wire)
 - ▶ DIIR: Arduino Pin 3 (orange wire)
 - ▶ STEP: Arduino Pin 2 (yellow wire)
 - 5V INPUT: Arduino 5V and GND (red-V and brown-G wires)
- Set power supply output to 12V but do not enable the power supply
- ▶ If necessary, adjust current limit according to Guide: V_{ref} = I_{max} / 2 for DRV8825 or V_{ref} = I_{max} * 8 * R_s for A4988 (R_s = 0.1 ohm for demo driver)
- Open MotionControlClass/BipolarStepper/BasicBipolarStepper/AccelBipolarStepper.ino using the Arduino IDE
- Upload the sketch
- Enable the power supply output
- ▶ The motor will rotate 600 steps (3 revolutions in full step mode) but accelerate up to speed and decelerate when stopping.
- Try changing the number of total steps, max speed and acceleration: Disable power supply, make change and upload new sketch and enable power supply.