Botgammon

Joueur artificiel de backgammon

04L

Marc-Étienne Déry Dominick Latreille François Bilodeau Philippe Pépos-Petitclerc

Introduction

Jeu à somme nulle

Jeu de hasard + stratégie

Jeu à deux joueurs

Règlements du backgammon

Positions possibles sur le plateau de jeu

$$(1) C(n,m) = \frac{n!}{m!(n-m)!}$$

Permutations de n pions dans un ensemble de m pions

(2)
$$D(n,m) = C(n+m-1,m)$$

Combinaisons de m pions d'une couleur sur n flèches

(3)
$$\sum_{m=0}^{15} C(24, m) \times D(m+2, 15-m) \times D(26-m, 15)$$

24 flèches15 pions26 endroits possibles

= 18 528 584 051 601 162 496

$$\approx 1.85 \times 10^{19}$$

Complexité temporelle

Minimax:

Expectiminimax:

 $O(b^m)$

 $O(b^m n^m)$

b: facteur de branchement

m: profondeur maximale

b: facteur de branchement

m: profondeur maximale

n: nombre de roulements

de dés distincts

Complexité temporelle

O (b^mn^m)

Au backgammon:

- n = 21
- b ~ 20 mais peut aller jusqu'à 4000 pour des doubles

Environnement

- Entièrement observable
- Stochastique

- Séquentiel
- Statique

- Discret
- Multi-agent

Techniques possibles

- Expectiminimax
 - Élegage alpha-beta

- Réseaux de neurones
 - Besoin de long temps d'apprentissage

Expectiminimax

 Adapté pour les jeux à somme nulle avec élement de hasard

 Offre de bons résultats rapidement sans à avoir à entrainer un IA

Expectiminimax

Noeud Min, Max et Chance

Alterne entre Min/Max et Chance

 Noeud chance prend la valeur de la probabilité

Rappel

Élagage alpha-beta

Profondeur itérative

Implémentation

 Communication avec GNUbg version ligne de commande

On roule les dés

- Énumération de la liste des coups possibles pour cette combinaison de dés
 - Beaucoup de cas possibles à vérifier!

Implémentation

Expectiminimax

- Heuristique
 - Franklin
 - Simple

Démonstration

Résultats

Heuristique	Élagage alpha-bêta?	Pourcentage de victoire	Nombres de parties	Profondeur	Temps moyen des coups
Aucune	-	0.5 %	1000	-	< 1 ms
Heuristique Franklin	Oui	30 %	1000	1	2 ms
Heuristique Franklin	Non	27.8%	1000	1	2.5 ms
Heuristique Simple	Oui	38.8 %	1000	1	2 ms
Heuristique Simple	Non	39.1 %	1000	1	2 ms

Résultats

Heuristique	Élagage alpha-bêta?	Pourcentage de victoire	Nombres de parties	Profondeur	Temps moyen des coups
Heuristique Franklin	Oui	30%	10	2	3.1 s
Heuristique Franklin	Non	0%	10	2	1.7 s
Heuristique Simple	Oui	40%	10	2	1.18 s
Heuristique Simple	Non	0%	10	2	2.1 S
Heuristique Simple	Oui	30%	10	Profondeur Itérative	1 S
Heuristique Simple	Non	0%	10	Profondeur Itérative	1 S

Conclusion

Interprétation des résultats

Piste de solutions

Eval(leaf) = constant1 * utility(leaf) + constant2

Améliorations possibles

Simulation de Monte-Carlo

Construction d'une BD

Meilleur heuristique

Élagage des noeuds chance