Probabilistic Deep Learning für univariate Zeitreihen

Christoph Hofer

Ziel: Präzise Punktschätzung 24 h im Voraus für μ_h (Erwartungswert) und σ_h (Standardabweichung) der Lufttemperaturverteilung (T_h) in Konstanz in 24 Stunden.

Annahme: $T_h | h \sim \mathcal{N}(\mu_h, \sigma_h^2)$ Loss: Negative log likelihood

Gütekriterium: RMSE

Daten: Stündliche Temperaturmessungen zwischen

1 Uhr am 31.8.23 und 24 Uhr am 23.02.25 (13009 Messugen)

 $\pm 2 \cdot \hat{\sigma}$

Verwendete Architekturen:

- ffcNN
- 1D convolution NN mit delation
- tabPFN (Transformer NN)

Benchmark:

- Naive Prognose $\hat{T}_t = T_{t-24}$
- Randomforest (500 Bäume)
- Mittelwelwert $\hat{T}_t = \frac{1}{48} \sum_{z=t-48}^{t-1} T_z$

Learning rate = 10^{-4}

Wahl der Anzahl Epochen mit EarlyStopping()

Resultate für Testdaten:

Methode / Gütekriterim	RMSE (°C)	Coverage Probability
Naive	3.0	_
RF	3.1	_
Mittelwert Lag(-1) - Lag(-48)	3.2	nicht gerechnet
ffcNN	2.9	$0.43 (\hat{\mu} \pm 2 \cdot \hat{\sigma})$
1D Convolution	3.1	$0.49 \; (\hat{\mu} \pm 2 \cdot \hat{\sigma})$
tabPFN	3.3	$0.27 (q_{0.9} - q_{0.1})$

Prognosebeispiel 1DConv:

Fazit (nicht abschliessend):

- predictive power von Lufttemperaturen mit Lag < -1 sehr gering
- DP Methoden für die Lufttemperatur (univariat) nur gering im Vorteil
- RMSE der DP Prognosen stimmen mit Werten aus der Literatur¹ überein
- Optimierungsbedarf für die Auswahl von Training-, Valdierung- und Testset
- Coverage Probability unbrauchbar (wird σ unterschätz aufgrund der Autokorrelation?)

Next Steps: ffcNN und 1D Convolution besser verstehen, Modellerweiterung mit Zeitreihen die Prognosekraft für T besitzen, evlt. Meteokarten (multimodale Modelle)