Сформулировать критерий квадрируемости плоской фигуры (в терминах ее границы).
Пусть дана некоторая плоская фигура D. Обозначим через $S = \sup S(m)$ и $S^* = \inf S(M)_*$ ($S - $ площади), где $m - $ всевозможные многоугольники, целиком содержащиеся s фигуре D, а $M - $ многоугольники, целиком содержащие s себе фигуру D. Тогда область D называют квадрируемой, если $S^* = S_* = S$, при этом $S - $ площадь фигуры. Пусть $D - $ плоская область. D квадрируема тогда и только тогда, когда еѐ граница имеет площадь нуль.
2. Задача о вычислении объема z-цилиндрического тела. Сформулировать определение двойного интеграла. ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~
• Пусть тело Q ограничено плоскостью Оху; графиком функции $z = f(x,y)$ ($x,y \in D \subseteq Oxy$); цилиндрической поверхностью, образующие которой параллельны оси Z и пересекают D . Разобъèм D на непересекающиеся участки Di , так чтобы $\bigcup Di = D$, $int\ Di \cap int\ Dj = \emptyset$. Внутри Di выберем точку Mi . Тогда объèм части $V_i \cong f(M_i) * S(D_i)$, а весь объèм $V(Q) = \sum_{i=1}^n \Delta V_i \cong \sum_{i=1}^n f(M_i) \Delta S_i$. Чем меньше ΔS_i , тем точнее формула — переходя K 0 получаем $V(Q) = \lim_{\max diam\ D_i \to 0} \sum f(M_i) \Delta S_i$
$\sum_{i} \frac{1}{\max diam} D_{i} \to 0 \sum_{i} \int_{i} (M_{i}) \Delta S_{i}$
• Пусть D – квадрируемая замкнутая плоская область. Двойным интегралом функции f по области D называется число $\iint_D f dx dy = \lim_{d(T) \to 0} \sum f(M_i) \Delta S_{i, \ \Gamma, \text{Де}} M_i \in D_i, \Delta S_i = S(D_i), \text{ a d}(T)$ – диаметр разбиения T области D.
3. Сформулировать свойства линейности и аддитивности двойного интеграла, сохранения двойным интегралом знака функции. ~~~
2° Линейность: $\iint_D (f1+f2)dxdy = \iint_D f1 dxdy + \iint_D f2 dxdy$; $\iint_D (cf)dxdy = c \iint_D f dxdy$.
3° Аддитивность: пусть $D=D1\cup D2$, int $D1\cap int\ D2=\emptyset$; $f(x,y)$ интегрируема в каждой из областей D1, D2. Тогда f интегрируема и в D, причем $\iint_D f\ dxdy=\iint_{D1} f\ dxdy+\iint_{D2} f\ dxdy$
4° Пусть $f(x, y) \ge 0$ в D и интегрируема в D. Тогда и $\iint_D f dx dy \ge 0$.
4. Сформулировать теоремы об оценке модуля двойного интеграла, об оценке двойного интеграла и следствие из нее, теорему о среднем значении для двойного интеграла.
Теорема об оценке модуля: Пусть f интегрируема в D. Тогда модуль этой функции f интегрируема в D, причем $\left \iint_D f dx dy\right \le \left \iint_D f dx dy\right $. Теорема об оценке интеграла: Пусть функции f и g интегрируемы в D, причем $m \le f(x,y) \le M$ и $g(x,y) \ge 0 \forall (x,y) \in D$. Тогда $m = g dx dy \le \int_D f g dx dy \le \int_D g dx dy$
<u>Следствие</u> теоремы об оценке: если f интегрируема в D и $m \le f(x,y) \le M$, то $m*S \le \iint_D f dx dy \le M*S$. <u>Теорема</u> о среднем значении: Пусть f непрерывна в D, а D – линейно связная квадрируемая область (т.е. любые 2 точки можно соединить кривой, лежащей в области). Тогда $\exists M_0 \in D$: $f(M_0) = \frac{1}{S} * \iint_D f dx dy$, $S = S(D)$.
5. Сформулировать теорему о вычислении двойного интеграла по прямоугольной области.
$\frac{\text{Теорема}}{c}: \text{Пусть существует прямоугольная область Dy такая, что} a \leq x \leq b \text{ и } c \leq y \leq d; \exists I = \iint_{\mathcal{D}_y} f(x,y) dx dy, \text{ и } \forall x \in [a,b] \ \exists F(x) = \int_c^d f(x,y) dy. \text{ Тогда интеграл } I = I_p = \int_a^b F(x) dx.$
6. Сформулировать определение y-правильной области и теорему о вычислении двойного интеграла по произвольной y-правильной области.
Область D на Оху называют у-правильной, если ее можно задать в виде $D: \begin{cases} a \leq x \leq b \\ \phi_1(x) \leq y \leq \phi_2(x) \end{cases}$ $\frac{\textbf{Теорема}}{\phi_1(x)}: \text{Пусть область D} - \text{у-правильная}, \exists \iint_D f dx dy = I \text{и} \forall x \in [a,b] \exists F(x) = \int_{\phi_1(x)}^{\phi_2(x)} f dy$. Тогда существует повторный интеграл $f_{\Pi} = \int_a^b dx \int_{\phi_1(x)}^{\phi_2(x)} f dy$, и $I=$ I_{Π} .
7. Сформулировать теорему о замене переменных в двойном интеграле.
$ \frac{\textbf{Теорема}}{\prod_{D_{xy}} f(x,y) \ dxdy} = \int_{D_{uv}} \int_{D_{uv}} f(x(u,v),y(u,v)) * J_{\Phi}(u,v) \ dudv $. Тогд
8. Приложения двойного интеграла: записать формулы для вычисления площади плоской фигуры, объема z-цилиндрического тела, массы пластины с использованием двойного интеграла.
Вычисление массы пластины D. Если плотность определяется как $f(x,y)$, то масса пластины $m=\iint_D f dx dy$.

Вычисление объема z-цилиндрического тела Q, ограниченного функцией z=f(x,y), плоскостью Оху и цилиндрической поверхностью,
образующие которой параллельны Оz и пересекают границу D: $V(Q) = \iint_D f(x,y) dx dy$
Вычисление площади плоской фигуры. Если фигура занимает область D, то еè площадь $S(D) = \iint_D \ 1 \ dx dy$
9. Сформулировать определение кубируемого тела и его объема. Сформулировать критерий кубируемости тела (в терминах границы). ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~~~ ~
Рассмотрим область $G \subseteq R^3$. Пусть q — множество многогранников, которые целиком содержатся в G , $V_* = \sup V(q)$, а Q — множество многогранников, целиком содержащих в себе G , $V^* = \inf V(Q)$. Область G называется кубируемой, если $V^* = V_* = V$, при этом V называют объèмом области G . Теорема: область $G \subseteq R^3$ кубируема тогда и только тогда, когда еè граница имеет объèм нуль.
<u>10.</u> Задача о вычислении массы тела. Сформулировать определение тройного интеграла.
• Пусть тело занимает область G, а f(x,y,z) – значение плотности материала тела в точке (xyz). Разобъем тело на непересекающиеся области
Gi и в каждой выберем точку Mi. Тогда масса части Gi $\Delta m_i = m(G_i) \cong f(M_i) * \Delta V(G_i) = f(M_i) dV$, а масса всего тела $m(G) = \sum \Delta m_i \cong \sum f(M_i) \Delta V_i$. Чем меньше ΔV_i , тем точнее формула: переходя к пределу имеем
$m(G) = \lim_{\max diam} \sum_{G_i \to 0} \sum_{i=1} f(M_i) \Delta V_i.$
• Тройным интегралом функции $f(x,y,z)$ по области G называют число $\iiint_G f(x,y,z) dx dy dz = \lim_{d(T)\to 0} \sum_{i=1}^n f(M_i) \Delta V_i$, где $d(T)$ диаметр разбиения T области G .
11. Сформулировать свойства линейности и аддитивности тройного интеграла, сохранения тройным интегралом знака функции.
<полностью аналогичны свойствам для двойного интеграла, $3.>$
12. Сформулировать теоремы об оценке модуля тройного интеграла, об оценке тройного интеграла и следствие из нее, обобщенную теорему о среднем значении для тройного интеграла.
<оценки аналогичны теоремам для двойного интеграла,4.>
<u>Теорема</u> обобщенная о среднем значении: пусть функция f непрерывна в G, а функция g — интегрируема и знакопостоянав G, а сама G является линейно связанной областью. Тогда $\exists M_0 \in G$: $\iiint_G f(xyz) * g(xyz) dxdydz = f(M_0) * \iiint_G g dxdydz$.
13. Сформулировать теорему о сведении тройного интеграла к повторному для z-правильной области. ~~~ ~~~ ~~~ ~~~ ~~~ ~~~
Область G называется z-правильной, если еè можно задать в виде $G: \{ (x,y) \in D_{xy} \} $
Область G называется z-правильной, если ее можно задать в виде $(z_1(xy)) \le z \le 2z(xy)$. Теорема: пусть $\exists \iiint_G f dx dy dz = I$; G задана в виде $*$; для каждой фиксированной точки $(xy) \in D_{xy} \exists F(xy) = \int_{z_1(xy)}^{z_2(xy)} f dz$. Тогда
Теорема : пусть \Box JJJ_G J $axay$ $az = 1$, G задана в виде $*$; для каждой фиксированной точки (x,y) \Box xy zy zy zy zy zy zy zy z
<u>14.</u> Сформулировать теорему о замене переменных в тройном интеграле.
,
$x=x(uvw)$ $G_{xyz}=\Phi(G_{uvw})$, где $\Phi: \begin{cases} y=y(uvw) \end{cases}$ $z=z\;uvw$ $z=z\;uvw$ $z=z\;uvw$
пиффисиалуема в G_{now} , акобиан $d_0 \neq 0$ в
Guvw; f – интегрируема в Gxyz. Тогда $\iiint_{G_{xyz}} f \ dxdydz = \iiint_{G_{uvw}} f \left(x(uvw), y(uvw), z(uvw)\right) * J_{\Phi}(uvw) \ dudvdw$.