О лабах

С. Нормализация метаязыка

Доказательство на метаязыке:

$$\Gamma_1 \vdash \alpha_1 \\
\Gamma_2 \vdash \alpha_2 \\
\dots \\
\Gamma_n \vdash \alpha_n$$

Требуется перестроить его в доказательство в гильбертовском стиле:

$$\Gamma_n \vdash \alpha_n \\
\alpha'_1 \\
\dots \\
\alpha'_k \\
\alpha_n$$

Общая идея перестроения

Возможные типы переходов:

- 1. Аксиома $\Gamma \vdash \alpha$ формула α корректен в итоговом доказательстве без изменений.
- 2. Modus Ponens

$$\Gamma \vdash \alpha_1
\Gamma \vdash \alpha_1 \to \alpha_2
\Gamma \vdash \alpha_2$$

Переход остаётся корректен также без изменений, главное — следить за совпадением списка Γ (с учётом возможных перестановок).

3. Дедукция

$$\Gamma, \gamma_1, \gamma_2 \vdash \alpha_1 \to \alpha_2 \to \beta
\Gamma, \gamma_2, \alpha_2 \vdash \gamma_1 \to \alpha_1 \to \beta$$

Данный переход представляет главный интерес.

Посмотрим внимательней

Вспомним теорему о дедукции с конструктивным доказательством:

$$\Gamma, \alpha \vdash \beta$$
 эквивалентно $\Gamma \vdash \alpha \rightarrow \beta$

Делается это путём перестроения всего вывода (помните, гипотезы изменяются, потому теорема затронет формулы вывода и при переносе α влево).

Пример
$$(\Gamma, \gamma_1, \gamma_2 \vdash \alpha_1 \to \alpha_2 \to \beta \Rightarrow \Gamma, \gamma_2, \alpha_2 \vdash \gamma_1 \to \alpha_1 \to \beta)$$

Пусть дан вывод \mathcal{B}_1 , показывающий $\Gamma, \gamma_1, \gamma_2 \vdash \alpha_1 \to \alpha_2 \to \beta$.

- 1. По \mathcal{B}_1 построим $\mathcal{B}_2 : \Gamma, \gamma_1, \gamma_2, \alpha_1 \vdash \alpha_2 \rightarrow \beta$
- 2. По \mathcal{B}_2 построим $\mathcal{B}_3: \Gamma, \gamma_1, \gamma_2, \alpha_1, \alpha_2 \vdash \beta$
- 3. По \mathcal{B}_3 построим $\mathcal{B}_4: \Gamma, \gamma_1, \gamma_2, \alpha_2 \vdash \alpha_1 \rightarrow \beta$
- 4. По \mathcal{B}_4 построим $\mathcal{B}_5: \Gamma, \gamma_2, \alpha_2 \vdash \gamma_1 \rightarrow \alpha_1 \rightarrow \beta$

Если не думать об оптимизации, то каждый шаг предпологает построение копии всего вывода с изменениями.

Идеи об ускорении вывода

- Хранить доказательство в виде дерева.
- Применение дедукционного перехода может быть сделано как особый узел в дереве доказательства.
- При перестроении преобразовывать дерево лениво:
 - идти вверх по дереву, от итоговой формулы;
 - игнорировать неиспользуемые узлы;
 - суммировать преобразования при возможности (нейтрализовать встречные дедукции — аккуратно! преобразования не коммутируют; накапливать последовательные и т.п.).
- Не требуется идеальное решение достаточно прохождения тестов жюри.

Е. Свобода для подстановки

Задача хорошо решается через последовательное применение унификации несколько раз.

Выражение в алгебраических термах:

$$\theta ::= f_k(\theta_1, \ldots, \theta_n) \mid x_i$$

В нашем случае f_k — это и логические и предметные символы. Переменные — предметные переменные.

Например, если $(\forall x.\varphi) \to \psi$ есть 11 аксиома, то

$$\pi = \mathcal{U}[\varphi, \psi]$$

существует и либо тривиально, либо содержит единственную замену — для переменной x.

Эквивалентные преобразования системы уравнений

Теорема

Пусть $\mathcal{E} = \{\sigma_1 = \tau_1, \sigma_2 = \tau_2, \dots, \sigma_k = \tau_k\}$ — система уравнений в алгебраических термах. Тогда каждое из следующих преобразований оставляет множество решений системы неизменным:

- 1. убрать уравнение вида $\sigma_t = \sigma_t$ из системы;
- 2. заменить уравнение вида $f(\theta_1, \dots, \theta_j) = f(\theta_1', \dots, \theta_j')$ на семейство уравнений $\theta_1 = \theta_1'; \dots; \theta_j = \theta_j';$
- 3. сделать подстановку при наличии уравнения вида $x = f(\theta_1, \dots, \theta_j)$: заменить все остальные вхождения x в систему на $f(\theta_1, \dots, \theta_j)$;
- 4. поменять выражения в уравнении местами: $\sigma_t = x_j$ на $x_j = \sigma_t$.

Решение системы уравнений

Теорема

Преобразования системы уравнений (при исключении преобразований, ведущих к повторению системы) за конечное время приведут:

- 1. либо к системе вида $x_i = \sigma_i$, причём каждая из переменных x_i входит в систему ровно один раз;
- 2. либо к несовместной системе: такой, в которую входит уравнение вида

$$x_i = \ldots x_i \ldots$$

Здесь переменная х_і входит слева и справа от знака равенства, причём справа входит нетривиально.

После применения преобразований по системе можно будет построить требуемую подстановку.

Оптимизации

В принципе, не обязательно делать унификацию как указано выше. Но нужно трезво понимать, что вы делаете — иначе отладка будет сложна :)

О. Ординальный калькулятор

В задаче будем применять определение сложения, умножения и умножения через $\underline{sup}(X) = \bigcup X$. За переосмысление решения для определения операций с лекции — доп. баллы.

Определение

Канторовой нормальной формой назовём выражение вида

$$\omega^{\beta_1} \cdot a_1 + \omega^{\beta_2} \cdot a_2 + \cdots + \omega^{\beta_n} \cdot a_n$$

причём
$$\beta_1 > \beta_2 > \cdots > \beta_n \geq 0$$
 и $a_i \in \mathbb{N}, a_i > 0$.

Теорема

Для любого ординала $\alpha < \varepsilon_0$ существует единственная КНФ, равная ему.

Некоторые свойства операций

Теорема

Для операций над ординалами выполнены следующие свойства:

- 1. $\alpha \cdot (\zeta_1 + \zeta_2) = \alpha \cdot \zeta_1 + \alpha \cdot \zeta_2$ (левая дистрибутивность)
- $2. \ \alpha \cdot 0 = 0$
- 3. $\alpha^{\beta_1} \cdot \alpha^{\beta_2} = \alpha^{\beta_1 + \beta_2}$
- 4. $(\alpha^{\beta})^{\gamma} = \alpha^{(\beta \cdot \gamma)}$
- 5. $\alpha^0 = 1$

Доказательство.

Трансфинитная индукция по структуре

Сложение КНФ

Заметим, что

$$\omega^{\beta_1} \cdot a_1 + \omega^{\beta_2} \cdot a_2 = \begin{cases} \omega^{\beta_1} \cdot a_1 + \omega^{\beta_2} \cdot a_2, & \beta_1 > \beta_2 \\ \omega^{\beta_1} \cdot (a_1 + a_2), & \beta_1 = \beta_2 \\ \omega^{\beta_2} \cdot a_2, & \beta_1 < \beta_2 \end{cases}$$

Имея это свойство, можно вычислить сложение двух КНФ так, чтобы результатом также была некоторая КНФ.

Умножение КНФ

Заметим, что при $\xi > 0$

$$(\omega^{\beta_1} \cdot a_1 + \cdots + \omega^{\beta_n} \cdot a_n) \cdot \omega^{\xi} = \omega^{\beta_1 + \xi}$$

 V также, если $x \in \mathbb{N}, x > 0$, то

$$(\omega^{\beta_1} \cdot a_1 + \omega^{\beta_2} \cdot a_2 + \cdots + \omega^{\beta_n} \cdot a_n) \cdot x = \omega^{\beta_1} \cdot (a_1 \cdot x) + \omega^{\beta_2} \cdot a_2 \cdot \cdots + \omega^{\beta_n} \cdot a_n$$

Возведение в степень

Если γ — предельный, то

$$(\omega^{\beta_1} \cdot a_1 + \omega^{\beta_2} \cdot a_2 + \cdots + \omega^{\beta_n} \cdot a_n)^{\gamma} = (\omega^{\beta_1})^{\gamma}$$

Идея решения задачи

С помощью определённых операций сложения, умножения и возведения в степень для канторовых нормальных форм возможно перевести любое ординальное выражение, использующее только ω , числа и операции сложения, умножения и возведения в степень, в КНФ, после чего эти КНФ сравнить.