Lab 2: Support Vector Machines

Tianxiao Zhao Feiyang Liu

Feb 23, 2017

Support Vector Machines

- Goal: Find the best hyperplane which has the largest separation margin
- Problem: Sometimes NOT linearly separable
- Solution: Construct a hyperplane in a higher dimensional space

- Lead to new problems: Huge computational load
- Solution: Define kernel function as dot products in the original space

Soft Margin - Adding Slack

Pros

- Classifier more robust: anti-noise
- Lower dimensionality
- Smaller variance

Cons

- Results in classification errors
- Bigger bias

Kernel Functions

- Linear
- Polynomial
- Radial Basis Function

Different Data Points using linear kernel

- Support vectors moves ---> Boundary moves
- Non-linear-separability points ---> No solution for linear kernel
- Linear-separability points ---> might have a solution using this algorithm

Polynomial Kernel using different p's

P increase ---> Higher dimensionalities ---> Smaller bias & Bigger variance

RBF Kernel using different theta

theta increase ---> Boundary smoother ---> Bigger bias & Smaller variance

Performance compare between 3 different Kernels

Polynomial kernel with p=4 Radial kernel with theta=:

- Linear kernel: No solution due to non-linear-separability
- But polynomial kernel & RBF kernel have solutions

Slack Implementation using different C's (Linear)

- C increase ---> Slack decrease ---> Less margin ---> Less error but less robust
- Too much slack ---> unable to classify points (all data points are thought as outliers)

Slack Implementation using different C's (Poly)

- C increase ---> Slack decrease ---> Less margin ---> Less error but less robust
- Too much slack ---> unable to classify points (all data points are thought as outliers)

Slack Implementation using different C's (RBF)

- C increase ---> Slack decrease ---> Less margin ---> Less error but less robust
- Too much slack ---> unable to classify points (all data points are thought as outliers)

Conclusion about Slack

- More Slack ---> More Margin & More Robust ---> Bigger Bias But Smaller Variance
 ---> Avoid going for a more complex model
- Vice versa