CACHE OPTIMIZATION FOR THE MODERN WEB

Jenny Lam

Sandy Irani (chair)

Michael Dillencourt

Michael T. Goodrich

Scaling Memcache at Facebook, NFGKLLMPPSSTTV, NSDI 2013

minimize number of cache misses

total cost of cache misses

minimize number of cache misses

Least Recently Used (LRU)

GreedyDual-Size (GDS)

GDS ---- CAMP

generalized managed memory caching caching

2-level cache — multi-level cache

GDS → CAMP

generalized managed memory caching caching

2-level cache — multi-level cache

 $cost(GDS) \le k cost(OPT)$

approximation parameter

trace generated by BG, a social networking benchmark 4 million requests

i.i.d. with 70% of requests to 20% of items

GDS ---- CAMP

generalized managed memory caching caching

2-level cache — multi-level cache

THE GENERALIZED CACHING PROBLEM

variable size and cost

GOAL

minimize total cost of cache misses

SUBJECT TO

total size of items in cache cannot exceed the cache size

THE MANAGED MEMORY CACHING PROBLEM

variable size and cost

the cache

every item must fit in a contiguous segment of memory

CACHE REPLACEMENT
MEMORY ALLOCATION

FIFO queue

CAMP-MALLOC

is competitive if memory augmented

GDS ---- CAMP

generalized managed memory caching caching

2-level cache — multi-level cache

HOW TO MINIMIZE EXPECTED SERVICE TIME?

MULTIPLE KNAPSACK PROBLEM

minimize total cost of assignment subject to capacity constraints

SUBSET ASSIGNMENT PROBLEM

cache configuration

 $\text{maximize } \sum_{p,S} \text{benefit}(p,S) \, x(p,S)$

$$\sum_{S} x(p, S) = 1$$

 $\sum_{p,S} \operatorname{price}(p,S) x(p,S) \leq \operatorname{budget}$

$$x = 0, 1$$

subset assignment

$$\text{minimize } \sum_{p,S} \cot(p,S) \, x(p,S)$$

$$\sum_{S} x(p, S) = \operatorname{size}(p)$$

$$\sum_{p,S\ni b} x(p,S) \le \operatorname{capacity}(b)$$

$$x(p, S) = 0$$
, size (p)

CACHE CONFIGURATION

SUBSET ASSIGNMENT

HAVE $d \ll n$

sol to LP relaxation has few fractional assignments

GOAL solve LP relaxation in f(d) poly(n)

1. cycle canceling algorithm

2. simplex algorithm

MIN COST FLOW

1. cycle canceling algorithm

"cycle" in subset assignment problem

such that
$$\sum_{i} \alpha_{i} \overline{S_{i}} T_{i} = \vec{0}$$

cost difference (negative)
$$\sum_{i} \alpha_{i} \left(cost(p_{i}, T_{i}) - cost(p_{i}, S_{i}) \right)$$

2. simplex algorithm

basic feasible solution

BASIC FEASIBLE ASSIGNMENT

< 2d fractional assignments

bound granularity of vars

$$x(p,S) = \frac{k}{l}$$

time

 $O(\exp(d(d+1)\operatorname{poly}(d) \ n\log(n)\log(nC)\log(S)))$

