EJEMPLOS

Página 92

Cálculo de Límites numérica o gráficamente

7/92 Para la función **g** cuya gráfica se muestra, establezca el valor de cada una de las cantidades siguientes si existe. Si no, explique porqué

$$\operatorname{a.}\lim_{x\to\,0^-}g(t)=\operatorname{-1}\operatorname{b.}\lim_{x\to\,0^+}g(t)=2\qquad\operatorname{c.}\lim_{x\to\,0}g(t)\not\equiv$$

d.
$$\lim_{x \to 2^{-}} g(t = 2)$$
 e. $\lim_{x \to 2^{+}} g(t) = 0$ f. $\lim_{x \to 2} g(t) \not\equiv$

g.
$$g(2) = 1$$
 h. $\lim_{x \to 4} g(t) = 3$

Para la función **g** cuya gráfica se muestra, establezca el valor de cada una de las cantidades siguientes si existe. Si no, explique porqué

a.
$$\lim_{x \to -7} f(x) = -\infty$$
 b. $\lim_{x \to -3} f(x) = +\infty$

c.
$$\lim_{x \to 0} f(x) = +\infty$$
 d. $\lim_{x \to 6} f(x) \not\equiv$

21/92 Conjeture el valor de cada uno de los límites siguientes (si existen) evaluando la función dada en los números propuestos

$$\lim_{t \to 0} \frac{e^{5t} - 1}{t} = 5$$

t	-0.5	-0.1	-0.01	-0.001	0	0.001	0.01	0.1	0.5
f(t)	1.8358	3.9347	4.8771	4.9875		5.0125	5.1271	6.4872	22.3650

Trace la gráfica de la función y utilícela para determinar los valores de \boldsymbol{a} para los cuales $\lim_{x \to a} f(x)$ existe

12.
$$f(x) = \begin{cases} 1 + \sin x & \text{si } x < 0 \\ \cos x & \text{si } 0 \le x \le \pi \\ \sin x & \text{si } x > \pi \end{cases}$$

$$\lim_{x \to a} f(x) \text{ existe } \forall \mathbf{R} - \{\mathbf{\pi}\}\$$

- **29.** (a) Por medio de la gráfica de la función $f(x) = (\cos 2x \cos x)/x^2$ y un acercamiento al punto donde la gráfica interseca el eje y, calcule el valor de $\lim_{x\to 0} f(x)$.
 - (b) Verifique su respuesta del inciso (a) mediante la evaluación de f(x) para valores de x que tiendan a 0.

