

DMOS dual full bridge driver

Datasheet - production data

PowerDIP24 (20 + 2 + 2)

PowerSO36

SO24 (20 + 2 + 2)

Ordering numbers: L6206N (PowerDIP24) L6206PD (PowerSO36) L6206D (SO24)

Features

- Operating supply voltage from 8 to 52 V
- 5.6 A output peak current (2.8 A DC)
- R_{DS(ON)} 0.3 Ω typ. value at T_i = 25 °C
- Operating frequency up to 100 KHz
- Programmable high-side overcurrent detection and protection
- · Diagnostic output
- Paralleled operation
- Cross conduction protection
- Thermal shutdown
- Undervoltage lockout
- Integrated fast freewheeling diodes

Applications

- Bipolar stepper motor
- · Dual or quad DC motor

Description

The L6206 device is a DMOS dual full bridge designed for motor control applications, realized in BCD technology, which combines isolated DMOS power transistors with CMOS and bipolar circuits on the same chip. Available in PowerDIP24 (20 + 2 + 2), PowerSO36 and SO24 (20 + 2 + 2) packages, the L6206 device features thermal shutdown and a non-dissipative overcurrent detection on the high-side Power MOSFETs plus a diagnostic output that can be easily used to implement the overcurrent protection.

Contents L6206

Contents

1	Bloc	k diagram
2	Max	imum ratings
3	Pin o	connections
4	Elec	trical characteristics 8
5	Circ	uit description
	5.1	Power stages and charge pump
	5.2	Logic inputs
	5.3	Non-dissipative overcurrent detection and protection
	5.4	Thermal protection
6	Арр	lication information
	6.1	Paralleled operation
	6.2	Output current capability and IC power dissipation
	6.3	Thermal management
7	Pack	kage information
8	Revi	sion history

L6206 Block diagram

1 Block diagram

VBOOT CHARGE PUMP VCP PROGCLA OVER-CURRENT DETECTION OCDA OCD_A OUT1_A $\mathsf{OUT2}_\mathsf{A}$ THERMAL PROTECTION GATE LOGIC EN_A SENSEA IN2_A VOLTAGE REGULATOR BRIDGE A OCDB OVER-CURRENT DETECTION VS_B PROGCLB OUT1_B OUT2_B GATE LOGIC EN_B SENSEB IN2_B BRIDGE B D99IN1088AV1

Figure 1. Block diagram

Maximum ratings L6206

2 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Test conditions	Value	Unit
V_S	Supply voltage	$V_{SA} = V_{SB} = V_{S}$	60	V
V _{OD}	Differential voltage between VS _A , OUT1 _A , OUT2 _A , SENSE _A and VS _B , OUT1 _B , OUT2 _B , SENSE _B	$V_{SA} = V_{SB} = V_{S} = 60 \text{ V};$ $V_{SENSEA} = V_{SENSEB} = GND$	60	V
OCD_A,OCD_B	OCD pins voltage range		-0.3 to +10	V
PROGCL _A , PROGCL _B	PROGCL pins voltage range		-0.3 to +7	V
V _{BOOT}	Bootstrap peak voltage	$V_{SA} = V_{SB} = V_{S}$	V _S + 10	V
V _{IN} , V _{EN}	Input and enable voltage range		-0.3 to +7	V
V _{SENSEA,} V _{SENSEB}	Voltage range at pins SENSE _A and SENSE _B		-1 to +4	V
I _{S(peak)}	Pulsed supply current (for each V _S pin), internally limited by the overcurrent protection	$V_{SA} = V_{SB} = V_{S};$ $t_{PULSE} < 1 \text{ ms}$	7.1	А
I _S	RMS supply current (for each V _S pin)	$V_{SA} = V_{SB} = V_{S}$	2.8	Α
T _{stg} , T _{OP}	Storage and operating temperature range		-40 to 150	°C

Table 2. Recommended operating conditions

Symbol	Parameter	Test conditions	Min.	Max.	Unit
V _S	Supply voltage	$V_{SA} = V_{SB} = V_{S}$	8	52	V
V _{OD}	Differential voltage between VS _A , OUT1 _A , OUT2 _A , SENSE _A and VS _B , OUT1 _B , OUT2 _B , SENSE _B	V _{SA} = V _{SB} = V _S ; V _{SENSEA} = V _{SENSEB}		52	V
V _{SENSEA} , V _{SENSEB}	Voltage range at pins SENSE _A and SENSE _B	(pulsed t _W < t _{rr}) (DC)	-6 -1	6 1	V
I _{OUT}	RMS output current			2.8	Α
T _j	Operating junction temperature		-25	+125	°C
f _{sw}	Switching frequency			100	KHz

L6206 Maximum ratings

Table 3. Thermal data

Symbol	Description	PowerDIP24	SO24	PowerSO36	Unit
R _{th-j-pins}	Maximum thermal resistance junction pins	18	14	-	°C/W
R _{th-j-case}	Maximum thermal resistance junction case	-	-	1	°C/W
R _{th-j-amb1}	Maximum thermal resistance junction ambient ⁽¹⁾	43	51	-	°C/W
R _{th-j-amb1}	Maximum thermal resistance junction ambient ⁽²⁾	-	-	35	°C/W
R _{th-j-amb1}	Maximum thermal resistance junction ambient ⁽³⁾	-	-	15	°C/W
R _{th-j-amb2}	Maximum thermal resistance junction ambient ⁽⁴⁾	58	77	62	°C/W

- 1. Mounted on a multilayer FR4 PCB with a dissipating copper surface on the bottom side of 6 cm² (with a thickness of 35 μm).
- 2. Mounted on a multilayer FR4 PCB with a dissipating copper surface on the top side of 6 cm² (with a thickness of 35 μm).
- 3. Mounted on a multilayer FR4 PCB with a dissipating copper surface on the top side of 6 cm 2 (with a thickness of 35 μ m), 16 via holes and a ground layer.
- 4. Mounted on a multilayer FR4 PCB without any heatsinking surface on the board.

L6206 Pin connections

3 **Pin connections**

Figure 2. Pin connections (top view)

1. The slug is internally connected to pins 1, 18, 19 and 36 (GND pins).

Table 4. Pin description

Pac	kage			
SO24/ PowerDIP24	PowerSO36 Name		Туре	Function
Pin no.	Pin no.			
1	10	IN1 _A	Logic input	Bridge A logic input 1.
2	11	IN2 _A	Logic input	Bridge A logic input 2.
3	12	SENSE _A	Power supply	Bridge A source pin. This pin must be connected to power ground directly or through a sensing power resistor.
4	13	OCD _A	Open drain output	Bridge A overcurrent detection and thermal protection pin. An internal open drain transistor pulls to GND when overcurrent on bridge A is detected or in case of thermal protection.
5	15	OUT1 _A	Power output	Bridge A output 1.
6, 7, 18, 19	1, 18, 19, 36	GND	GND	Signal ground terminals. In PowerDIP and SO packages, these pins are also used for heat dissipation toward the PCB.
8	22	OUT1 _B	Power output	Bridge B output 1.

L6206 Pin connections

Table 4. Pin description (continued)

Paci	Package		-	
SO24/ PowerDIP24	SO24/ PowerDIP24 PowerSO36		Туре	Function
Pin no.	Pin no.			
9	24	OCD _B	Open drain output	Bridge B overcurrent detection and thermal protection pin. An internal open drain transistor pulls to GND when overcurrent on bridge B is detected or in case of thermal protection.
10	25	SENSE _B	Power supply	Bridge B source pin. This pin must be connected to power ground directly or through a sensing power resistor.
11	26	IN1 _B	Logic input	Bridge B input 1
12	27	IN2 _B	Logic input	Bridge B input 2
13	28	PROGCLB	R pin	Bridge B overcurrent level programming. A resistor connected between this pin and ground sets the programmable current limiting value for the bridge B. By connecting this pin to ground the maximum current is set. This pin cannot be left non-connected.
14	29	EN _B	Logic input	Bridge B Enable. LOW logic level switches OFF all Power MOSFETs of Bridge B. If not used, it has to be connected to +5 V.
15	30	VBOOT	Supply voltage	Bootstrap voltage needed for driving the upper Power MOSFETs of both bridge A and bridge B.
16	32	OUT2 _B	Power output	Bridge B output 2.
17	33	VS _B	Power supply	Bridge B power supply voltage. It must be connected to the supply voltage together with pin VS _A .
20	4	VS _A	Power supply	Bridge A power supply voltage. It must be connected to the supply voltage together with pin VS _B .
21	5	OUT2 _A	Power output	Bridge A output 2.
22	7	VCP	Output	Charge pump oscillator output.
23	8	EN _A	Logic input	Bridge A enable. LOW logic level switches OFF all Power MOSFETs of bridge A. If not used, it has to be connected to +5 V.
24	9	PROGCLA	R pin	Bridge A overcurrent level programming. A resistor connected between this pin and ground sets the programmable current limiting value for the bridge A. By connecting this pin to ground the maximum current is set. This pin cannot be left non-connected.

Electrical characteristics L6206

4 Electrical characteristics

Table 5. Electrical characteristics (T_{amb} = 25 °C, V_{s} = 48 V, unless otherwise specified)

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
V _{Sth(ON)}	Turn-on threshold		6.6	7	7.4	V
V _{Sth(OFF)}	Turn-off threshold		5.6	6	6.4	V
I _S	Quiescent supply current	All bridges OFF; $T_j = -25 \text{ °C to } 125 \text{ °C}^{(1)}$		5	10	mA
T _{j(OFF)} Thermal shutdown temperature				165		°C
Output DN	MOS transistors		•			
	His basid as ital ON assistance	T _j = 25 °C		0.34	0.4	W
Б	High-side switch ON resistance	T _j = 125 °C ⁽¹⁾		0.53	0.59	W
$R_{DS(ON)}$	Low side switch ON resistance	T _j = 25 °C		0.28	0.34	W
	Low-side switch ON resistance	$T_j = 125 ^{\circ}C^{(1)}$		0.47	0.53	W
	Lockago gurrent	EN = low; OUT = V _S			2	mA
I _{DSS}	Leakage current	EN = low; OUT = GND	-0.15			mA
Source dr	ain diodes					
V _{SD}	Forward ON voltage	I _{SD} = 2.8 A, EN = low		1.15	1.3	V
t _{rr}	Reverse recovery time	I _f = 2.8 A		300		ns
t _{fr}	Forward recovery time			200		ns
Logic inpu	ut		•			•
V _{IL}	Low level logic input voltage		-0.3		0.8	V
V _{IH}	High level logic input voltage		2		7	V
I _{IL}	Low level logic input current	GND logic input voltage	-10			μA
I _{IH}	High level logic input current	7 V logic input voltage			10	μΑ
V _{th(ON)}	Turn-on input threshold			1.8	2.0	V
$V_{th(OFF)}$	Turn-off input threshold		0.8	1.3		V
V _{th(HYS)}	Input threshold hysteresis		0.25	0.5		V
Switching	characteristics					
t _{D(on)EN}	Enable to out turn ON delay time ⁽²⁾	I _{LOAD} = 2.8 A, resistive load	100	250	400	ns
t _{D(on)IN}	Input to out turn ON delay time	I _{LOAD} = 2.8 A, resistive load (deadtime included)		1.6		μs
t _{RISE}	Output rise time ⁽²⁾	I _{LOAD} = 2.8 A, resistive load	40		250	ns
t _{D(off)EN}	Enable to out turn OFF delay time ⁽²⁾	I _{LOAD} = 2.8 A, resistive load	300	550	800	ns
t _{D(off)IN}	Input to out turn OFF delay time	I _{LOAD} = 2.8 A, resistive load		600		ns
t _{FALL}	Output fall time ⁽²⁾	I _{LOAD} = 2.8 A, resistive load	40		250	ns

Table 5. Electrical characteristics (T_{amb} = 25 °C, V_s = 48 V, unless otherwise specified) (continued)

· amb =						
Symbol	Parameter	Parameter Test conditions		Тур.	Max.	Unit
t _{dt}	Deadtime protection		0.5	1		μs
f _{CP}	Charge pump frequency	rge pump frequency -25 °C < T _j < 125 °C		0.6	1	MHz
Overcurrent detection						
I _{s over}	Input supply overcurrent detection threshold	$ \begin{array}{l} -25~^{\circ}\text{C} < \text{T}_{j} < 125~^{\circ}\text{C}; \text{R}_{\text{CL}} = 39~\text{k}\Omega \\ -25~^{\circ}\text{C} < \text{T}_{j} < 125~^{\circ}\text{C}; \text{R}_{\text{CL}} = 5~\text{k}\Omega \\ -25~^{\circ}\text{C} < \text{T}_{j} < 125~^{\circ}\text{C}; \text{R}_{\text{CL}} = \text{GND} \end{array} $	-10% -10% -30%	4.42	+10% +10% +30%	A A A
R _{OPDR}	Open drain ON resistance	I = 4 mA		40	60	W
t _{OCD(ON)}	OCD turn-on delay time ⁽³⁾	I = 4 mA; C _{EN} < 100 pF		200		ns
t _{OCD(OFF)}	OCD turn-off delay time ⁽³⁾	I = 4 mA; C _{EN} < 100 pF		100		ns

- 1. Tested at 25 $^{\circ}\text{C}$ in a restricted range and guaranteed by characterization.
- 2. See Figure 3: Switching characteristic definition.
- 3. See Figure 4: Overcurrent detection timing definition.

Figure 3. Switching characteristic definition

Electrical characteristics L6206

Figure 4. Overcurrent detection timing definition

L6206 Circuit description

5 Circuit description

5.1 Power stages and charge pump

D2

The L6206 device integrates two independent power MOS full bridges. Each power MOS has an $R_{ds(ON)}$ = 0.3 Ω (typical value at 25 °C), with intrinsic fast freewheeling diode. Cross conduction protection is achieved using a deadtime (t_d = 1 μ s typical) between the switch off and switch on of two power MOS in one leg of a bridge.

Using N-channel power MOS for the upper transistors in the bridge requires a gate drive voltage above the power supply voltage. The bootstrapped (V_{BOOT}) supply is obtained through an internal oscillator and few external components to realize a charge pump circuit as shown in *Figure 5*. The oscillator output (VCP) is a square wave at 600 kHz (typical) with 10 V amplitude. Recommended values/part numbers for the charge pump circuit are shown in *Table 6*.

Component	Value
C _{BOOT}	220 nF
C _P	10 nF
R _P	100 Ω
D1	1N4148

Table 6. Charge pump external components values

1N4148

Circuit description L6206

5.2 Logic inputs

Pins IN1_A, IN2_A, IN1_B, IN2_B, EN_A and EN_B are TTL/CMOS compatible logic inputs. The internal structure is shown in *Figure* 6. Typical value for turn-on and turn-off thresholds are respectively $V_{th(ON)} = 1.8 \text{ V}$ and $V_{th(OFF)} = 1.3 \text{ V}$.

Pins EN_A and EN_B are commonly used to implement overcurrent and thermal protection by connecting them respectively to the outputs OCD_A and OCD_B , which are open drain outputs. If that type of connection is chosen, some care needs to be taken in driving these pins. Two configurations are shown in *Figure 7* and *Figure 8*. If driven by an open drain (collector) structure, a pull-up resistor R_{EN} and a capacitor C_{EN} are connected as shown in *Figure 7*. If the driver is a standard push-pull structure, the resistor R_{EN} and the capacitor C_{EN} are connected as shown in *Figure 8*. The resistor R_{EN} should be chosen in the range from 2.2 k Ω to 180 K Ω . Recommended values for R_{EN} and C_{EN} are respectively 100 K Ω and 5.6 nF. More information on selecting the values is found in *Section 5.3: Non-dissipative overcurrent detection and protection*.

Figure 6. Logic inputs internal structure

Figure 7. ENA and ENB pins open collector driving

Figure 8. EN_{A} and EN_{B} pins push-pull driving

L6206 Circuit description

	Inputs	Outputs		
EN	IN1	IN1 IN2 OUT		OUT2
L	X ⁽¹⁾	X ⁽¹⁾	High Z ⁽²⁾	High Z ⁽²⁾
Н	L	L	GND	GND
Н	Н	L	Vs	GND
Н	L	Н	GND	Vs
Н	Н	Н	Vs	Vs

Table 7. Truth table

- 1. X = don't care.
- 2. High Z = high impedance output.

5.3 Non-dissipative overcurrent detection and protection

In addition to the PWM current control, an overcurrent detection circuit (OCD) is integrated. This circuit can be used to provide protection against a short-circuit to ground or between two phases of the bridge as well as a roughly regulation of the load current. With this internal overcurrent detection, the external current sense resistor normally used and its associated power dissipation are eliminated. *Figure 9* shows a simplified schematic of the overcurrent detection circuit for the bridge A. Bridge B is provided of an analogous circuit.

To implement the overcurrent detection, a sensing element that delivers a small but precise fraction of the output current is implemented with each high-side power MOS. Since this current is a small fraction of the output current there is very little additional power dissipation. This current is compared with an internal reference current I_{REF} . When the output current reaches the detection threshold I_{SOVER} the OCD comparator signals a fault condition. When a fault condition is detected, an internal open drain MOS with a pull down capability of 4 mA connected to OCD pin is turned on. *Figure 10* shows the OCD operation.

This signal can be used to regulate the output current simply by connecting the OCD pin to EN pin and adding an external R-C as shown in *Figure 9*. The off time before recovering normal operation can be easily programmed by means of the accurate thresholds of the logic inputs.

 I_{REF} and, therefore, the output current detection threshold are selectable by R_{CL} value, following the equations:

 $-I_{SOVER}$ = 5.6 A ± 30% at -25 °C < T_i < 125 °C if R_{CL} = 0 Ω (PROGCL connected to GND)

$$-I_{SOVER} = \ \frac{22100}{R_{CL}} \ \pm 10\% \quad at \ -25 \ ^{\circ}C < T_{j} < 125 \ ^{\circ}C \quad if \ 5 \ K\Omega < R_{CL} < 40 \ k\Omega$$

Figure 11 shows the output current protection threshold versus R_{CL} value in the range 5 kΩ to 40 kΩ.

The disable time $t_{DISABLE}$ before recovering normal operation can be easily programmed by means of the accurate thresholds of the logic inputs. It is affected whether by C_{EN} and R_{EN} values and its magnitude is reported in *Figure 12*. The delay time t_{DELAY} before turning off the bridge when an overcurrent has been detected depends only by C_{EN} value. Its magnitude is reported in *Figure 13*.

Circuit description L6206

 C_{EN} is also used for providing immunity to pin EN against fast transient noises. Therefore the value of C_{EN} should be chosen as big as possible according to the maximum tolerable delay time and the R_{EN} value should be chosen according to the desired disable time.

The resistor R_{EN} should be chosen in the range from 2.2 K Ω to 180 K Ω . Recommended values for R_{EN} and C_{EN} are respectively 100 K Ω and 5.6 nF that allow obtaining 200 μ s disable time.

Figure 9. Overcurrent protection simplified schematic

L6206 Circuit description

Figure 10. Overcurrent protection waveforms

Circuit description L6206

Figure 12. $t_{DISABLE}$ versus C_{EN} and R_{EN} (V_{DD} = 5 V)

5.4 Thermal protection

In addition to the overcurrent detection, the L6206 device integrates a thermal protection for preventing the device destruction in case of junction overtemperature. It works sensing the die temperature by means of a sensible element integrated in the die. The device switchesoff when the junction temperature reaches 165 °C (typ. value) with 15 °C hysteresis (typ. value).

577

6 Application information

A typical application using the L6206 device is shown in *Figure 14*. Typical component values for the application are shown in *Table 8*. A high quality ceramic capacitor in the range of 100 to 200 nF should be placed between the power pins (VS_A and VS_B) and ground near the L6206 device to improve the high frequency filtering on the power supply and reduce high frequency transients generated by the switching. The capacitors connected from the EN_A/OCD_A and EN_B/OCD_B nodes to ground set the shutdown time for the bridge A and bridge B respectively when an overcurrent is detected (see Section 5.3: Non-dissipative overcurrent detection and protection on page 13). The two current sources (SENSE_A and SENSE_B) should be connected to power ground with a trace length as short as possible in the layout. To increase noise immunity, unused logic pins are best connected to 5 V (high logic level) or GND (low logic level) (see *Table 4: Pin description on page 6*). It is recommended to keep power ground and signal ground separated on the PCB.

Table 8. Component values for typical application

Component	Value	Component	Value					
C ₁	100 μF	D ₁	1N4148					
C ₂	100 nF	D ₂	1N4148					
C _{BOOT}	220 nF	R _{CLA}	5 ΚΩ					
C _P	10 nF	R _{CLB}	5 ΚΩ					
C _{ENA}	5.6 nF	R _{ENA}	100 kΩ					
C _{ENB}	5.6 nF	R _{ENB}	100 kΩ					
C _{REF}	68 nF	R _P	100 Ω					

Figure 14. Typical application

6.1 Paralleled operation

The outputs of the L6206 device can be paralleled to increase the output current capability or reduce the power dissipation in the device at a given current level. It must be noted, however, that the internal wire bond connections from the die to the power or sense pins of the package must carry current in both of the associated half-bridges. When the two halves of one full bridge (for example OUT1_A and OUT2_A) are connected in parallel, the peak current rating is not increased since the total current must still flow through one bond wire on the power supply or sense pin. In addition the overcurrent detection senses the sum of the current in the upper devices of each bridge (A or B) so connecting the two halves of one bridge in parallel does not increase the overcurrent detection threshold.

For most applications the recommended configuration is half-bridge 1 of bridge A paralleled with the half-bridge 1 of the bridge B, and the same for the half-bridges 2 as shown in *Figure 15*. The current in the two devices connected in parallel will share very well since the R_{DS(ON)} of the devices on the same die is well matched.

When connected in this configuration the overcurrent detection circuit, which senses the current in each bridge (A and B), will sense the current in upper devices connected in parallel independently and the sense circuit with the lowest threshold will trip first. With the enables connected in parallel, the first detection of an overcurrent in either upper DMOS device will turn of both bridges. Assuming that the two DMOS devices share the current equally, the resulting overcurrent detection threshold will be twice the minimum threshold set by the resistors R_{CLA} or R_{CLB} in *Figure 15*. It is recommended to use $R_{CLA} = R_{CLB}$.

In this configuration the resulting bridge has the following characteristics:

- Equivalent device: full bridge
- $R_{DS(ON)}$ 0.15 Ω typ. value at T_J = 25 °C
- 5.6 A max. RMS load current
- 11.2 A max. OCD threshold

Figure 15. Parallel connection for higher current

To operate the device in parallel and maintain a lower overcurrent threshold, half-bridge 1 and the half-bridge 2 of the bridge A can be connected in parallel and the same done for the bridge B as shown in *Figure 16*. In this configuration, the peak current for each half-bridge is still limited by the bond wires for the supply and sense pins so the dissipation in the device will be reduced, but the peak current rating is not increased.

When connected in this configuration the overcurrent detection circuit, senses the sum of the current in upper devices connected in parallel. With the enables connected in parallel, an overcurrent will turn of both bridges. Since the circuit senses the total current in the upper devices, the overcurrent threshold is equal to the threshold set the resistor R_{CLA} or R_{CLB} in *Figure 16.* R_{CLA} sets the threshold when outputs $OUT1_A$ and $OUT2_A$ are high and resistor R_{CLB} sets the threshold when outputs $OUT1_B$ and $OUT2_B$ are high. It is recommended to use $R_{CLA} = R_{CLB}$.

In this configuration, the resulting bridge has the following characteristics:

- Equivalent device: full bridge
- $R_{DS(ON)}$ 0.15 Ω typ. value at T_J = 25 °C
- 2.8 A max. RMS load current
- 5.6 A max. OCD threshold

Figure 16. Parallel connection with lower overcurrent threshold

It is also possible to parallel the four half-bridges to obtain a simple half-bridge as shown in *Figure 17*. In this configuration the overcurrent threshold is equal to twice the minimum threshold set by the resistors R_{CLA} or R_{CLB} in *Figure 17*. It is recommended to use $R_{CLA} = R_{CLB}$.

The resulting half-bridge has the following characteristics:

- Equivalent device: half-bridge
- $R_{DS(ON)}$ 0.075. Ω typ. value at T_J = 25 °C
- 5.6 A max. RMS load current
- 11.2 A max. OCD threshold

6.2 Output current capability and IC power dissipation

In *Figure 18* and *Figure 19* are shown the approximate relation between the output current and the IC power dissipation using PWM current control driving two loads, for two different driving types:

- One full bridge ON at a time (Figure 18) in which only one load at a time is energized.
- Two full bridges ON at the same time (*Figure 19*) in which two loads at the same time are energized.

For a given output current and driving type the power dissipated by the IC can be easily evaluated, in order to establish which package should be used and how large must be the on-board copper dissipating area to guarantee a safe operating junction temperature (125 °C maximum).

Figure 18. IC power dissipation versus output current with one full bridge ON at a time

Figure 19. IC power dissipation versus output current with two full bridges ON at the same time

57

22/31 DocID7617 Rev 2

6.3 Thermal management

In most applications the power dissipation in the IC is the main factor that sets the maximum current that can be delivered by the device in a safe operating condition. Therefore, it has to be taken into account very carefully. Besides the available space on the PCB, the right package should be chosen considering the power dissipation. Heatsinking can be achieved using copper on the PCB with proper area and thickness. *Figure 21*, *22* and *23* show the junction to ambient thermal resistance values for the PowerSO36, PowerDIP24 and SO24 packages.

For instance, using a PowerSO package with a copper slug soldered on a 1.5 mm copper thickness FR4 board with a 6 cm 2 dissipating footprint (copper thickness of 35 μ m), the R_{th j-amb} is about 35 °C/W. *Figure 20* shows mounting methods for this package. Using a multilayer board with vias to a ground plane, thermal impedance can be reduced down to 15 °C/W.

Slug soldered to PCB with to PCB with dissipating area plus ground layer contacted through via holes

Figure 20. Mounting the PowerSO package

Figure 21. PowerSO36 junction ambient thermal resistance versus on-board copper area

Figure 22. PowerDIP24 junction ambient thermal resistance versus on-board copper area

Figure 23. SO24 junction ambient thermal resistance versus on-board copper area

24/31 DocID7617 Rev 2

Figure 24. Typical quiescent current vs. supply Figure 25. Typical high-side R_{DS(ON)} vs. supply voltage

Figure 26. Normalized typical quiescent current vs. switching frequency

Figure 27. Normalized $R_{DS(ON)}$ vs.junction temperature (typical value)

Figure 28. Typical low-side $R_{DS(ON)}$ vs. supply voltage

Figure 29. Typical drain-source diode forward ON characteristic

Package information L6206

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Figure 30. PowerSO36 package outline

L6206 Package information

Table 9. PowerSO36 package mechanical data

	Dimensions					
Symbol	mm			inch		
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α			3.60			0.141
a1	0.10		0.30	0.004		0.012
a2			3.30			0.130
а3	0		0.10	0		0.004
b	0.22		0.38	0.008		0.015
С	0.23		0.32	0.009		0.012
D ⁽¹⁾	15.80		16.00	0.622		0.630
D1	9.40		9.80	0.370		0.385
E	13.90		14.50	0.547		0.570
е		0.65			0.0256	
e3		11.05			0.435	
E1 ⁽¹⁾	10.90		11.10	0.429		0.437
E2			2.90			0.114
E3	5.80		6.20	0.228		0.244
E4	2.90		3.20	0.114		0.126
G	0		0.10	0		0.004
Н	15.50		15.90	0.610		0.626
h			1.10			0.043
L	0.80		1.10	0.031		0.043
N		•	10° (max.)	•	
S	8° (max.)					

^{1. &}quot;D" and "E1" do not include mold flash or protrusions.

⁻ Mold flash or protrusions shall not exceed 0.15 mm (0.006 inch).

⁻ Critical dimensions are "a3", "E" and "G".

Package information L6206

D e1 SDIP24L

Figure 31. PowerDIP24 package outline

Table 10. PowerDIP24 package mechanical data

	Dimensions						
Symbol	mm			inch			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			4.320			0.170	
A1	0.380			0.015			
A2		3.300			0.130		
В	0.410	0.460	0.510	0.016	0.018	0.020	
B1	1.400	1.520	1.650	0.055	0.060	0.065	
С	0.200	0.250	0.300	0.008	0.010	0.012	
D	31.62	31.75	31.88	1.245	1.250	1.255	
Е	7.620		8.260	0.300		0.325	
е		2.54			0.100		
E1	6.350	6.600	6.860	0.250	0.260	0.270	
e1		7.620			0.300		
L	3.180		3.430	0.125		0.135	
М	0° min., 15° max.						

L6206 Package information

Figure 32. SO24 package outline

Table 11. SO24 package mechanical data

	Dimensions						
Symbol		mm			inch		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
Α	2.35		2.65	0.093		0.104	
A1	0.10		0.30	0.004		0.012	
В	0.33		0.51	0.013		0.020	
С	0.23		0.32	0.009		0.013	
D ⁽¹⁾	15.20		15.60	0.598		0.614	
E	7.40		7.60	0.291		0.299	
е		1.27			0.050		
Н	10.0		10.65	0.394		0.419	
h	0.25		0.75	0.010		0.030	
L	0.40		1.27	0.016		0.050	
k	0° (min.), 8° (max.)						
ddd			0.10			0.004	

 [&]quot;D" dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side.

Revision history L6206

8 Revision history

Table 12. Document revision history

Date	Revision	Changes
03-Sep-2003	1	Initial release.
24-Feb-2014	2	Updated Section: Description on page 1 (removed "MultiPower-" from "MultiPower-BCD technology"). Added Contents on page 2. Updated Section 1: Block diagram (added section title, numbered and moved Figure 1: Block diagram from page 1 to page 3). Added title to Section 2: Maximum ratings on page 4, added numbers and titles from Table 1: Absolute maximum ratings to Table 3: Thermal data. Added title to Section 3: Pin connections on page 6, added number and title to Figure 2: Pin connections (top view), renumbered note 1 below Figure 2, added title to Table 4: Pin description. Added title to Section 4: Electrical characteristics on page 8, added title and number to Table 5, renumbered notes 1 to 3 below Table 5. Renumbered Figure 3 and Figure 4. Added section numbers to Section 5: Circuit description on page 11, Section 5.1 to Section 5.2. Renumbered Table 6 and Table 7, added header to Table 6. Renumbered Figure 5 to Figure 13. Added section numbers to Section 6: Application information on page 17, Section 6.1 to Section 6.3. Renumbered Table 8, added header to Table 8. Renumbered Table 8, added header to Table 8. Renumbered Figure 14 to Figure 29. Updated Section 7: Package information on page 26 (added main title and ECOPACK text. Added titles from Table 9: PowerSO36 package mechanical data to Table 11: SO24 package mechanical data and from Figure 30: PowerSO36 package mechanical data and from Figure 30: PowerSO36 package outline to Figure 32: SO24 package outline, reversed order of named tables and figures. Removed 3D figures of packages, replaced 0.200 by 0.020 inch of max. B value in Table 11. Added Section 8: Revision history and Table 12. Minor modifications throughout document.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID7617 Rev 2 31/31