Project 1 - COVID Vaccination Rates

Vaccine Data Wrangling

With the vaccine data, we were only studying country-level rates so I first got rid of any rows containing provincial data as well as unusable countries that do not have any population data. I then tidied the data and put the dates and number of vaccinations into two separate columns instead of having them spread out over 467 columns. After tidying the data, I then deleted irrelevant columns. Since we only care about the days since the first vaccination of each country, I filtered out dates where 0 vaccinations took place. Finally, I calculated and added a column for the vaccination rate of each country as well as a column that tracks the days since the first vaccination.

Before:

#	/ a ▼	Filter C	ols: « 〈	1-50 > %											Q		
_	UID ‡	iso2 ‡	iso3 ‡	code3 ‡	FIPS	Admin2	Province_State	Country_Region		Long_ ‡	Combined_Key ÷	Population	2020- [‡] 12-12	2020- 12-13	2020- [‡] 12-14	2020- [‡] 12-15	2020- 12-16
1.								Afghanistan	33.9391		Afghanistan	38928341					
2								Albania		20.1683	Albania	2877800					
3								Algeria	28.0339	1.6596	Algeria	43851043					
4			AND					Andorra	42.5063	1.5218	Andorra	77265					
5			AGO					Angola		17.8739	Angola	32866268					
6								Antigua and Barbuda	17.0608	-61.7964	Antigua and Barbuda	97928					
7			ARG					Argentina	-38.4161	-63.6167	Argentina	45195777					
8								Armenia									
9								Australia	-25.0000	133.0000	Australia	25459700					
10								Austria	47.5162	14.5501	Austria	9006400					
11								Azerbaijan	40.1431	47.5769	Azerbaijan	10139175					
12			BHS					Bahamas	25.0259	-78.0359	Bahamas	393248					
13			BHR					Bahrain	26.0275	50.5500	Bahrain	1701583					
14	50	BD	BGD	50				Bangladesh	23.6850	90.3563	Bangladesh	164689383					

After:

Hospital Beds Data Wrangling

The hospital beds data did not need much wrangling. The bed data of the most recent year was all that was necessary in this data set. The actual year column was not necessary so I went ahead and dropped that column too.

```
# BEDS DATA
# Most recent year appears first, keep the first bed value per country using summarize()
# Year column is not needed
beds <- beds %>% group_by(Country) %>% summarize(Beds=first(`Hospital beds (per 10 000 population)`)) %>% view()
```

Before:

•	¢ Country	‡ Year	Hospital \$\frac{\frac{1}{2}}{2}\$ beds (per 10 000 population)
1	Afghanistan	2017	3.9
2	Afghanistan	2016	5.0
3	Afghanistan	2015	5.0
4	Afghanistan	2014	5.0
5	Afghanistan	2013	5.3
6	Afghanistan	2012	5.3
7	Afghanistan	2011	4.4
8	Afghanistan	2010	4.3
9	Afghanistan	2009	4.2
10	Afghanistan	2008	4.2
11	Afghanistan	2007	4.2
12	Afghanistan	2006	4.2
13	Afghanistan	2005	4.2

After:

•	Country ‡	Beds ‡
1	Afghanistan	3.9
2	Albania	28.9
3	Algeria	19.0
4	Angola	8.0
5	Antigua and Barbuda	28.9
6	Argentina	49.9
7	Armenia	41.6
8	Australia	38.4
9	Austria	72.7
10	Azerbaijan	48.2
11	Bahamas	29.6
12	Bahrain	17.4
13	Bangladesh	7.9
14	Barbados	59.7
15	Belarus	108.3

Demographics Data Wrangling

To tidy the demographics data, I gave each series code their own column and gave them their corresponding YR2015 data. The series name and country codes were unnecessary so those columns were dropped.

```
# DEMOGRAPHICS DATA
# Tidy data
demo <- demo %>% pivot_wider(-'Series Name', names_from = 'Series Code', values_from = YR2015) %>% view()
# Add male and female data together
demo <- demo %>% mutate(SP.POP.0014.IN=SP.POP.0014.MA.IN+SP.POP.0014.FE.IN) %>% mutate(SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.POP.80UP=SP.P
```

Before:

•	Country Name	Country [‡] Code	\$ Series Name	\$ Series Code	YR2015 [‡]
1	Afghanistan	AFG	Life expectancy at birth, total (years)	SP.DYN.LE00.IN	6.337700e+01
2	Afghanistan	AFG	Urban population	SP.URB.TOTL	8.535606e+06
3	Afghanistan	AFG	Population, total	SP.POP.TOTL	3.441360e+07
4	Afghanistan	AFG	Population ages 80 and above, female	SP.POP.80UP.FE	4.831900e+04
5	Afghanistan	AFG	Population ages 80 and above, male	SP.POP.80UP.MA	3.723300e+04
6	Afghanistan	AFG	Population ages 15-64, male	SP.POP.1564.MA.IN	9.386355e+06
7	Afghanistan	AFG	Population ages 15-64, female	SP.POP.1564.FE.IN	8.730445e+06
8	Afghanistan	AFG	Population ages 0-14, male	SP.POP.0014.MA.IN	7.905639e+06
9	Afghanistan	AFG	Population ages 0-14, female	SP.POP.0014.FE.IN	7.538168e+06
10	Afghanistan	AFG	Mortality rate, adult, female (per 1,000 female adults)	SP.DYN.AMRT.FE	2.067460e+02
11	Afghanistan	AFG	Mortality rate, adult, male (per 1,000 male adults)	SP.DYN.AMRT.MA	2.487240e+02
12	Afghanistan	AFG	Population, female	SP.POP.TOTL.FE.IN	1.672744e+07
13	Afghanistan	AFG	Population, male	SP.POP.TOTL.MA.IN	1.768617e+07
14	Afghanistan	AFG	Population ages 65 and above, female	SP.POP.65UP.FE.IN	4.588240e+05
15	Afghanistan	AFG	Population ages 65 and above male	SP.POP.65UP.MA.IN	3.941720e+05

After:

Uniforming country names

Uniforming the country names of the hospital beds and demographics data to match the vaccine data is important so there are not multiple entries for the same country.

```
# UNIFORMING COUNTRY NAMES TO MATCH VACCINE DATA
beds >> beds >> mutate(Country = replace(Country, Country = "Iran (Islamic Republic of)", "Iran"))
beds >> beds >> mutate(Country = replace(Country, Country = "Republic of Korea", "South Korea"))
beds >> beds >> mutate(Country = replace(Country, Country == "United Kingdom of Great Britain and Northern Ireland", "United Kingdom"))
beds >> beds >> mutate(Country = replace(Country, Country == "Bolivia (Plurinational State of)", "Bolivia"))
beds >> beds >> mutate(Country = replace(Country, Country == "Lao People's Democratic Republic of," "Laos"))
beds >> beds >> mutate(Country = replace(Country, Country == "Venezuela (Bolivarian Republic of)", "venezuela"))
beds >> beds >> mutate(Country = replace(Country, Country == "Republic of Moldova", "Moldova"))
beds >> beds >> mutate(Country = replace(Country, Country == "United States of America", "US"))
beds >> beds >> mutate(Country = replace(Country, Country == "Viet Nam", "Vietnam"))

demo <> demo >> mutate(Country Name' = replace(Country, Name', 'Country Name' == "Korea, Rep.", "South Korea"))
demo <> demo >> mutate(Country Name' = replace(Country, Name', 'Country Name' == "Tran, Islamic Rep.", "Iran"))
demo <> demo >> mutate(Country Name' = replace(Country, Name', 'Country Name' == "St. Vincent and the Grenadines", "Saint Vincent and the Grenadines")
demo <> demo >> mutate(Country Name' = replace(Country Name', 'Country Name' == "St. Vincent and the Grenadines", "Saint Vincent and the Grenadines")
demo <> demo >> mutate(Country Name' = replace(Country Name', 'Country Name' == "St. Vincent and the Grenadines")
demo <> demo >> mutate(Country Name' = replace(Country Name', 'Country Name' == "St. Vincent and the Grenadines")
demo <> demo >> mutate(Country Name' = replace(Country Name', 'Country Name' == "St. Vincent and the Grenadines")
demo <> demo >> mutate(Country Name' = replace(Country Name', 'Country Name' == "Gabanas, The', 'Babanas"))
demo <> demo >> mutate(Country Name' = replace(Country Name', 'Country Name' == "
```

Join/merge data sets

Using inner join, I merged the data of all three sets in respect to country.

```
# Perform inner joins to merge tables
join <- beds %>% inner_join(vax, by=c(Country="Country_Region")) %>% inner_join(demo, by=c(Country="Country Name")) %>% view()
# Rearrange column order to match example
final <- join[,c(1,5,4,3,6,2,7,8)]
```

•	Country ‡	Vaccination_Rate ‡	Vaccinations ‡	Population ‡	Days_Since_First_Vaccination	‡	Beds ‡	SP.DYN.LE00.IN [‡]	SP.URB.TOTL ‡
1	Afghanistan	0.0002106434	8200	38928341			3.9	63.377	8535606
2	Afghanistan	0.0002106434	8200	38928341		2	3.9	63.377	8535606
3	Afghanistan	0.0002106434	8200	38928341		3	3.9	63.377	8535606
4	Afghanistan	0.0002106434	8200	38928341		4	3.9	63.377	8535606
5	Afghanistan	0.0002106434	8200	38928341		5	3.9	63.377	8535606
6	Afghanistan	0.0002106434	8200	38928341		6	3.9	63.377	8535606
7	Afghanistan	0.0002106434	8200	38928341		7	3.9	63.377	8535606
8	Afghanistan	0.0002106434	8200	38928341		8	3.9	63.377	8535606
9	Afghanistan	0.0002106434	8200	38928341		9	3.9	63.377	8535606
10	Afghanistan	0.0002106434	8200	38928341	1	10	3.9	63.377	8535606
11	Afghanistan	0.0002106434	8200	38928341	1	11	3.9	63.377	8535606
12	Afghanistan	0.0002106434	8200	38928341	1	12	3.9	63.377	8535606
13	Afghanistan	0.0002106434	8200	38928341	1	13	3.9	63.377	8535606
14	Afghanistan	0.0002106434	8200	38928341	1	14	3.9	63.377	8535606
15	Afghanistan	0.0002106434	8200	38928341	1	15	3.9	63.377	8535606

Linear modeling and plots

```
# PLOTS AND LINEAR MODELS
# scatterplot of only the most recent vaccination rate for every country and the number of days since first vaccination forplot <- final %% group_by(country) %% summarize(Days_Since_First_Vaccination-max(Days_Since_First_Vaccination), Vaccination_Rate-last(Vaccination_Rate) scatter <- ggplot(data=forplot) + geom_point(mapping=aes(x-Days_Since_First_Vaccination, y=Vaccination_Rate))

m1 <- lm(data = final, Vaccination_Rate ~ Days_Since_First_Vaccination) summary(m1) # R-squared: 0.6125

m2 <- lm(data = final, Vaccination_Rate ~ Days_Since_First_Vaccination + Beds) summary(m2) # R-squared: 0.6341

m3 <- lm(data = final, Vaccination_Rate ~ Days_Since_First_Vaccination + SP.DYN. LEOO.IN)

summary(m3) # R-squared: 0.6331

m4 <- lm(data = final, Vaccination_Rate ~ Days_Since_First_Vaccination + SP.DRB. TOTL) summary(m4) # R-squared: 0.6331

m5 <- lm(data = final, Vaccination_Rate ~ Days_Since_First_Vaccination + SP.DRB. TOTL + SP.DYN. LEOO.IN)

summary(m5) # R-squared: 0.7478|

# organize 5 models and corresponding R2 values into data frame df <- data.frame(Model-c("M1", "W2", "M3", "M4", "M5"), R2-c(summary(m1)$r.squared, summary(m2)$adj.r.squared, summary(m3)$adj.r.squared, summary(m3)$adj.r.squ
```

Dependent variable - Vaccination rate

Model 1 (m1) - Days since first vaccination as predictor

Model 2 (m2) - Days since first vaccination + hospital beds as predictor

Model 3 (m3) - Days since first vaccination + Life expectancy at birth as predictor

Model 4 (m4) - Days since first vaccination + Urban population as predictor

Model 5 (m5) - Days since first vaccination + Urban population + life expectancy at birth as predictor

Days since first vaccination v.s. Vaccination rate

Model v.s. R2 values

Conclusion

As seen in the bar plot, it is clear the models that contain the 'life expectancy at birth' (SP.DYN.LE00.IN) predictor are the most accurate. This is implied by their R2 values which are closer to 1 than the models not containing SP.DYN.LE00.IN as a predictor. I believe this is the case because countries that have a higher life expectancy are usually more developed. Vaccines and other medical necessities are a lot more accessible in developed countries compared to underdeveloped countries. This would obviously have an effect on the life expectancy at birth which is why it is the most accurate in predicting the vaccination rate per country.