Intuitionistic modal logic

Philippe Balbiani and Çiğdem Gencer

Logic, Interaction, Language and Computation Toulouse Institute of Computer Science Research CNRS-INPT-UT3, Toulouse, France

Institut de Recherche en Informatique de Toulouse

Intuitionistic modal logics Outline

- Intermediate logics
- Modal logics
- Combining logics
- Two peculiar intuitionistic modal logics
- A minimal setting

Combining logics Outline

- Combining modal logics
- Combining intuitionistic connectives and classical connectives
- Combining intuitionistic connectives and modal connectives

- When can we say that a modal logic is a combination of others?
- ▶ Given a family \mathbb{L} of modal logics and a combination method C, do certain properties of the component logics $\mathbb{L} \in \mathbb{L}$ transfer to their combination $C(\mathbb{L})$?

Most of the combination methods are such that

- ► C is defined only on finite families **L** of modal logics
- $ightharpoonup C(\mathbb{L})$ is a modal logic itself
- ▶ $C(\mathbb{L})$ is an extension of each component logic $\mathbb{L} \in \mathbb{L}$

Transfer of axiomatization/completeness

- does the combination of recursively axiomatizable (finitely axiomatizable) modal logics remain recursively axiomatizable (finitely axiomatizable)?
- does the combination of Kripke-complete modal logics remain Kripke-complete?

Transfer of decidability/complexity

- does the combination of decidable modal logics remain decidable and if so, what is the change in the complexity?
- does the combination of finitely approximable modal logics remain finitely approximable?

Fusion of modal logics

The fusion $L_1 \otimes L_2$ of L_1 formulated with \square_1 and L_2 formulated with \square_2 is

▶ the least normal modal logic formulated with \Box_1 and \Box_2 and containing \textbf{L}_1 and \textbf{L}_2

Examples

- ightharpoonup $K_{\square_1}\otimes K_{\square_2}$
- ightharpoonup $K_{\Box_1}\otimes S5_{\Box_2}$
- S5_{□1} ⊗ S5_{□2}

Transfer results

Theorem

If L_1 and L_2 are consistent then $L_1 \otimes L_2$ is a conservative extension of L_1 and L_2 .

Theorem

If \mathbf{L}_1 and \mathbf{L}_2 are characterized by classes \mathcal{C}_1 and \mathcal{C}_2 of frames then $\mathbf{L}_1 \otimes \mathbf{L}_2$ is characterized by the class of frames of the form (W, R_1, R_2) where (W, R_1) is in \mathcal{C}_1 and (W, R_2) is in \mathcal{C}_2 .

Theorem

If L_1 and L_2 have the finite model property then $L_1 \otimes L_2$ has the finite model property.

Theorem

If L_1 and L_2 are decidable then $L_1 \otimes L_2$ is decidable.

Combining logics: combining modal logics Complexity of fusions

Theorem

If L_1 and L_2 are in $\{K, KT, K4, S4, KD45, S5\}$ then $L_1 \otimes L_2$ is **PSPACE**-complete.

Product of frames

The product frame
$$\mathcal{F}_1 \times \mathcal{F}_2$$
 of the frames $\mathcal{F}_1 = (W_1, R_1)$ and $\mathcal{F}_2 = (W_2, R_2)$ is

- ▶ the frame (W, S_1, S_2) where $W = W_1 \times W_2$ and for all $u_1, v_1 \in W_1$ and for all $u_2, v_2 \in W_2$
 - $(u_1, u_2)S_1(v_1, v_2)$ if and only if $u_1R_1v_1$ and $u_2 = v_2$
 - $(u_1, u_2)S_2(v_1, v_2)$ if and only if $u_1 = v_1$ and $u_2R_2v_2$

Examples

- Time and knowledge
- Time and space

Product classes

For all classes C_1 , C_2 of frames, let

Product of frames

Proposition

For all frames $\mathcal{F}_1 = (W_1, R_1)$ and $\mathcal{F}_2 = (W_2, R_2)$, the product frame $\mathcal{F}_1 \times \mathcal{F}_2 = (W, S_1, S_2)$ is such that

- $S_2 \circ S_1 \subseteq S_1 \circ S_2$
- $S_1^{-1} \circ S_2 \subseteq S_2 \circ S_1^{-1}$

Product of frames

Proposition

For all frames $\mathcal{F}_1=(W_1,R_1)$, $\mathcal{F}_1'=(W_1',R_1')$, $\mathcal{F}_2=(W_2,R_2)$, $\mathcal{F}_2'=(W_2',R_2')$,

- ▶ If \mathcal{F}_1' is a bounded morphic image of \mathcal{F}_1 and \mathcal{F}_2' is a bounded morphic image of \mathcal{F}_2 then $\mathcal{F}_1' \times \mathcal{F}_2'$ is a bounded morphic image of $\mathcal{F}_1 \times \mathcal{F}_2$
- ▶ If \mathcal{F}_1' is a generated subframe of \mathcal{F}_1 and \mathcal{F}_2' is a generated subframe of \mathcal{F}_2 then $\mathcal{F}_1' \times \mathcal{F}_2'$ is a generated subframe of $\mathcal{F}_1 \times \mathcal{F}_2$

Product of modal logics

The product logic $L_1 \times L_2$ of a Kripke-complete modal logic L_1 formulated with \square_1 and a Kripke-complete modal logic L_2 formulated with \square_2 is

▶ the modal logic $\mathbf{Log}(\{\mathcal{F}_1 \times \mathcal{F}_2 : \mathcal{F}_1 \models \mathbf{L}_1 \& \mathcal{F}_2 \models \mathbf{L}_2\})$ formulated with \square_1 and \square_2

Examples

- ightharpoonup $m K_{\Box_1} imes
 m K_{\Box_2}$
- ightharpoonup $K_{\square_1} imes S5_{\square_2}$
- **S**5_{□1} × **S**5_{□2}

Notes about products

There exists classes C_1 , C'_1 , C_2 , C'_2 of frames such that

- ▶ $\mathsf{Log}(\mathcal{C}_1) = \mathsf{Log}(\mathcal{C}_1')$
- ▶ $Log(C_2) = Log(C'_2)$
- ▶ $Log(C_1 \times C_2) \neq Log(C'_1 \times C'_2)$

Combining logics: combining modal logics Properties of products

Proposition

For all consistent Kripke-complete modal logics \boldsymbol{L}_1 , \boldsymbol{L}_2 ,

- ightharpoonup $L_1 \otimes L_2 \subseteq L_1 \times L_2$
- ▶ $L_1 \times L_2$ is a conservative extension of L_1 and L_2

Properties of products

Proposition

For all consistent Kripke-complete modal logics \mathbf{L}_1 , \mathbf{L}_2 , if $\mathbf{Fr}(\mathbf{L}_1)$ and $\mathbf{Fr}(\mathbf{L}_2)$ are first-order definable then $\mathbf{L}_1 \times \mathbf{L}_2$ is determined by the class of its countable product frames

Axiomatizing products

Definition

For all consistent Kripke-complete modal logics \mathbf{L}_1 , \mathbf{L}_2 , let $[\mathbf{L}_1, \mathbf{L}_2]$ be the least modal logic formulated with \square_1 and \square_2 and containing

- ▶ **L**₁
- **► L**₂

Axiomatizing products

Proposition

For all consistent Kripke-complete modal logics L_1 , L_2 ,

$$\textbf{L}_1 \otimes \textbf{L}_2 \subseteq [\textbf{L}_1, \textbf{L}_2] \subseteq \textbf{L}_1 \times \textbf{L}_2$$

Axiomatizing products

Horn sentences

A Horn sentence is a universal first-order sentence of the form

where $\varphi(x, y, \mathbf{z})$ is positive

Examples of Horn sentences

- $\forall x \ \forall y \ \forall z \ (R(x,z) \ \& \ R(z,y) \ \to \ R(x,y))$
- $\forall x \ \forall y \ \forall z \ (R(z,x) \ \& \ R(z,y) \ \to \ R(x,y))$

Axiomatizing products

Horn modal formulas

A Horn modal formula is a modal formula corresponding to a Horn sentence

Examples of Horn modal formulas

- ▶ $\Box p \rightarrow \Box \Box p$ vs. $\forall x \ \forall y \ \forall z \ (R(x,z) \& R(z,y) \rightarrow R(x,y))$
- ▶ $p \to \Box \Diamond p$ vs. $\forall x \ \forall y \ (R(y,x) \to R(x,y))$

Axiomatizing products

Horn-axiomatizable modal logics

A Horn-axiomatizable modal logic is a modal logic axiomatizable by Horn modal formulas and variable-free formulas

Examples of Horn-axiomatizable modal logics

- ▶ **K**4 axiomatizable by $\Box p \rightarrow \Box \Box p$
- ▶ **K**5 axiomatizable by $\Diamond p \rightarrow \Box \Diamond p$
- ▶ **KB** axiomatizable by $p \to \Box \Diamond p$
- ▶ **S**4, **S**5, . . .

Axiomatizing products

Proposition

For all consistent Kripke-complete modal logics L_1 , L_2 , if L_1 and L_2 are Horn-axiomatizable then $[L_1,L_2]=L_1\times L_2$

Combining logics:

combining intuitionistic connectives and classical connectives

The approach of Fariñas del Cerro and Herzig (1996)

Intuitionistic syntax

- ▶ Atomic formulas: $p \in AF$
- ▶ Formulas: $\phi \in Fma_i(AF)$

$$\phi ::= p \mid \bot_i \mid \top_i \mid (\phi_1 \vee_i \phi_2) \mid (\phi_1 \wedge_i \phi_2) \mid (\phi_1 \rightarrow_i \phi_2)$$

Classical syntax

- ▶ Atomic formulas: $p \in AF$
- ▶ Formulas: $\phi \in Fma_c(AF)$

$$\phi ::= p \mid \bot_c \mid \top_c \mid (\phi_1 \lor_c \phi_2) \mid (\phi_1 \land_c \phi_2) \mid (\phi_1 \rightarrow_c \phi_2)$$

The approach of Fariñas del Cerro and Herzig (1996)

Combining intuitionistic syntax and classical syntax

- ▶ Atomic formulas: $p \in AF$
- ▶ Formulas: $\phi \in Fma_{i,c}(AF)$

$$\phi ::= p \mid \bot \mid \top \mid (\phi_1 \lor \phi_2) \mid (\phi_1 \land \phi_2) \mid (\phi_1 \to_i \phi_2) \mid (\phi_1 \to_c \phi_2)$$

Abbreviations

- $\neg_i \phi ::= (\phi \rightarrow_i \bot)$
- $\neg c \phi ::= (\phi \rightarrow_c \bot)$

The approach of Fariñas del Cerro and Herzig (1996)

Semantics

As expected

- ▶ Frames: (S, \leq) where $S \neq \emptyset$ and \leq partial order on S
- ▶ Models: (S, \leq, V) where V intuitionistic valuation on S
- Truth conditions:
 - $ightharpoonup \mathcal{M} \models_s p \text{ iff } s \in V(p)$
 - $\triangleright \mathcal{M} \not\models_s \bot$
 - $\triangleright \mathcal{M} \models_{\varsigma} \top$
 - $\blacktriangleright \mathcal{M} \models_{s} \phi \lor \psi \text{ iff } \mathcal{M} \models_{s} \phi \text{ or } \mathcal{M} \models_{s} \psi$
 - $\blacktriangleright \mathcal{M} \models_{s} \phi \land \psi \text{ iff } \mathcal{M} \models_{s} \phi \text{ and } \mathcal{M} \models_{s} \psi$
 - ▶ $\mathcal{M} \models_s \phi \to_i \psi$ iff for all $t \in S$, if $s \le t$ then $\mathcal{M} \not\models_t \phi$ or $\mathcal{M} \models_t \psi$
 - $\mathcal{M} \models_s \phi \to_c \psi$ iff $\mathcal{M} \not\models_s \phi$ or $\mathcal{M} \models_s \psi$

The approach of Fariñas del Cerro and Herzig (1996)

Exercise

Let $\mathcal{M} = (S, \leq, V)$ be a model and $s \in S$.

Show that $\mathcal{M}\models_s \neg_i \phi$ iff for all $t \in S$, if $s \leq t$ then $\mathcal{M} \not\models_t \phi$.

Show that $\mathcal{M} \models_s \neg_c \phi$ iff $\mathcal{M} \not\models_s \phi$.

The approach of Fariñas del Cerro and Herzig (1996)

Exercise

Find a formula ϕ , a model \mathcal{M} and s,t in \mathcal{M} such that

- \triangleright $s \leq t$
- $\triangleright \mathcal{M} \models_{s} \phi$
- $ightharpoonup \mathcal{M} \not\models_t \phi$

Exercise

Show that although $p \to_i (q \to_i p)$ is valid, $\neg_c p \to_i (q \to_i \neg_c p)$ is not valid

Exercise

Show that the rule of uniform substitution does not preserve validity

The approach of Fariñas del Cerro and Herzig (1996)

As a result

We cannot get an axiomatization of the set of all valid formulas by simply putting together

- an axiomatization of IPL
- an axiomatization of CPL

The approach of Fariñas del Cerro and Herzig (1996)

Persistent formulas

A formula is persistent if every occurrence of \rightarrow_c is in the scope of an occurrence of \rightarrow_i

Examples

- ▶ $p \rightarrow_i (q \rightarrow_c p)$ is persistent
- ▶ $p \rightarrow_c (q \rightarrow_i p)$ is not persistent

Lemma

For all persistent formulas ϕ , for all models \mathcal{M} and for all s,t in \mathcal{M} .

• if s < t and $\mathcal{M} \models_s \phi$ then $\mathcal{M} \models_t \phi$

The approach of Fariñas del Cerro and Herzig (1996)

Axiomatization

- all theorems of CPL
- $(\phi \to_i (\psi \to_c \chi)) \to_c ((\phi \to_i \psi) \to_c (\phi \to_i \chi))$
- $\rightarrow \phi \rightarrow_i \phi$
- $(\phi \to_i \psi) \to_c (\phi \to_c \psi)$
- $\phi \rightarrow_c (\psi \rightarrow_i \phi)$ when ϕ is persistent
- $\qquad \qquad \frac{\phi \ \phi \rightarrow_i \psi}{\psi}$

The approach of Fariñas del Cerro and Herzig (1996)

Proposition

For all formulas ϕ , the following conditions are equivalent:

- $ightharpoonup \phi$ is a theorem of the above axiomatization,
- lacktriangledown ϕ is valid in the class of all frames.

Proposition

The unrestricted acceptance of one of the following axioms would make the above axiomatization collapse into **CPL**

- $\bullet \phi \rightarrow_i (\psi \rightarrow_i \phi),$
- $\bullet \phi \rightarrow_{c} (\psi \rightarrow_{i} \phi).$

Introduction

Syntax of intermediate logics

$$\phi ::= p \mid \bot \mid \top \mid (\phi_1 \vee \phi_2) \mid (\phi_1 \wedge \phi_2) \mid (\phi_1 \rightarrow \phi_2)$$

Introduction

Syntax of modal logics

$$\phi ::= p \mid \bot \mid \top \mid (\phi_1 \lor \phi_2) \mid (\phi_1 \land \phi_2) \mid (\phi_1 \to \phi_2) \mid \Box \phi \mid \Diamond \phi$$

Introduction

Syntax of intuitionistic modal logics

$$\phi ::= p \mid \bot \mid \top \mid (\phi_1 \lor \phi_2) \mid (\phi_1 \land \phi_2) \mid (\phi_1 \to \phi_2) \mid \Box \phi \mid \Diamond \phi$$

Introduction

Brouwer-Heyting-Kolmogorov reading

The intended meaning of the intuitionistic connectives is given in terms of proofs and constructions

▶ A proof of $\phi \to \psi$ is a construction which, given a proof of ϕ , produces a proof of ψ

Introduction

Alethic readings of \square and \lozenge

- $\blacktriangleright \Box \phi$: It is necessarily true that ϕ

Deontic readings of \square and \lozenge

- $\blacktriangleright \Box \phi$: It ought to be that ϕ
- $\blacktriangleright \lozenge \phi$: It is permitted that ϕ

Introduction

What about the intended meaning of the modal connectives?

- A proof of $\Box \phi$ is . . .
- A proof of $\Diamond \phi$ is . . .

Introduction

Kripke semantics of intermediate logics

• $\phi \to \psi$ is true at world s when for every subsequent possible world t, in particular s itself, ϕ is true at t only if ψ is true at t

Introduction

Kripke semantics of modal logics

- ▶ $\Box \phi$ is true at world s when for every accessible possible world t, ϕ is true at t
- $\Diamond \phi$ is true at world s when for some accessible possible world t, ϕ is true at t

Introduction

What about the Kripke semantics of intuitionistic modal logics?

- $ightharpoonup \Box \phi$ is true at world s when ...
- $\blacktriangleright \lozenge \phi$ is true at world s when ...

Expected properties of an intuitionistic modal logic IML

Property P_1 : closure with respect to modus ponens and substitution

IML is closed with respect to the following inference rules:

modus ponens
$$\frac{\phi \quad \phi \rightarrow \psi}{\psi}$$

substitution $\frac{\phi}{\sigma(\phi)}$, where σ is a substitution

Expected properties of an intuitionistic modal logic IML

Property **P**₂: conservativity

IML is a conservative extension of IPL

▶ For all $\{\Box, \Diamond\}$ -free formulas ϕ , ϕ is in **IML** if and only if ϕ is in **IPL**

Expected properties of an intuitionistic modal logic IML

Property P₃: adding Pierce's law or excluded middle

The addition of one of the following formulas to **IML** yields a standard classical modal logic

- $P \lor (p \to \bot)$
- ightharpoonup
 eg
 abla
 eg
 abla
- $((p \to q) \to p) \to p$

Expected properties of an intuitionistic modal logic IML

Property P₄: disjunction property

For all formulas ϕ , ψ ,

• if $\phi \lor \psi$ is in **IML** then ϕ is in **IML** or ψ is in **IML**

Expected properties of an intuitionistic modal logic IML

- Property P_5 : independence of \square and \lozenge
- \square and \lozenge are not interdefinable in **IML**, i.e.
 - ▶ there is no \Box -free formula ϕ such that $\Box p \leftrightarrow \phi$ is in **IML**
 - ▶ there is no \lozenge -free formula ϕ such that $\lozenge p \leftrightarrow \phi$ is in **IML**

Expected properties of an intuitionistic modal logic IML

Property P₆: heredity of truth

For all formulas ϕ , for all models \mathcal{M} and for all s, t in \mathcal{M} ,

▶ If $s \le t$ and $\mathcal{M} \models_s \phi$ then $\mathcal{M} \models_t \phi$

Early approaches to intuitionistic modal logic

Fitch (1948)

First-order intuitionistic version of the modal logic **KT** with the Barcan formula

- ► Hilbert-style axiomatization
- ► Gentzen-style sequent calculus formulation

Early approaches to intuitionistic modal logic

Prior (1957)
Propositional intuitionistic version MIPQ of the modal logic **\$**5

Bull (1965, 1966)

- ► Algebraic semantics of **MIPQ** in terms of Heyting algebras with additional structure
- ► Finite model property of MIPQ
- ▶ Faithfulness of a translation into first-order intuitionistic logic

Early approaches to intuitionistic modal logic

Prawitz (1965)

Intuitionistic analogues of the modal logics S4 and S5

- Natural deduction systems
- Normalization theorem for the ◊-free fragment of the intuitionistic analogue of the modal logic S4

Early approaches to intuitionistic modal logic

Ono (1977)

Intuitionistic analogues of the modal logics \$4 and \$5

- Algebraic semantics
- Kripke-style semantics
- Finite model property

Font (1986)

► Classification of the combinations of ¬ and □ in the Intuitionistic analogues of the modal logic S4

Early approaches to intuitionistic modal logic

Fischer Servi (1977, 1978, 1984)

Determination of the correct intuitionistic analogues of classical modal logics

- The intuitionistic analogue of \$5 determined by a Gödel-like translation into a classical bimodal logic is none other than Prior's MIPQ
- Algebraic and Kripke semantics of some intuitionistic modal logics
- Axiomatizations of some intuitionistic modal logics

Early approaches to intuitionistic modal logic

Ewald (1986)

Models for intuitionistic temporal logics based on Kripke's models of first-order intuitionistic logic

- Axiomatizations of some intuitionistic temporal logics corresponding to various conditions on the temporal ordering
- Finite model property

Early approaches to intuitionistic modal logic

Other approaches

- ► Gabbay (1975)
- ▶ Božić and Došen (1984)
- ► Sotirov (1984)
- ▶ Wijesekera (1990)

Various applications in Computer Science of intuitionistic modal logic

Stirling (1987)

► An intuitionistic modal logic is used to capture a bisimulation preorder on diverging processes

Nerode and Wijesekera (1990)

An intuitionistic version of dynamic logic is used to build a logic on top of transition systems between partial states

Pitts (1990)

 An intuitionistic modal logic is used to reason about functional programs with side-effects

Two peculiar intuitionistic modal logics

Artemov and Protopopescu (2016)

▶ IEL: Intuitionistic Epistemic Logic

Fairtlough and Mendler (1997)

▶ **PLL**: Propositional Lax Logic

- Artemov, S., Protopopescu, T.: Intuitionistic Epistemic Logic. The Review of Symbolic Logic 9 (2016) 266–298.
- Božić, M., Došen, K.: Models for normal intuitionistic modal logics. Studia Logica 43 (1984) 217–245.
- ▶ Bull, R.: A modal extension of intuitionistic logic. Notre Dame Journal of Formal Logic VI (1965) 142–146.
- ▶ Bull, R.: MIPC as the formalisation of an intuitionistic concept of modality. Journal of Symbolic Logic 31 (1966) 609–616.
- Ewald, W.: Intuitionistic tense and modal logic. The Journal of Symbolic Logic 51 (1986) 166–179.
- ► Fairtlough, M., Mendler, M.: Propositional Lax Logic. Information and Computation **137** (1997) 1–33.

- Fariñas del Cerro, L., Herzig, A.: Combining classical and intuitionistic logic. Or: intuitionistic implication as a conditional. In: Frontiers of Combining Systems. Springer (1996) 93–102.
- ► Fischer Servi, G.: On modal logic with an intuitionistic base. Studia Logica **36** (1977) 141–149.
- ► Fischer Servi, G.: Semantics for a class of intuitionistic modal calculi. Bulletin of the Section of Logic **7** (1978) 26–29.
- Fischer Servi, G.: Axiomatizations for some intuitionistic modal logics. Rendiconti del Seminario Matematico Università e Politecnico di Torino 42 (1984) 179–194.
- ► Fitch, F.: Intuitionistic modal logic with quantifiers. Portugaliae Mathematica **7** (1948) 113–118.
- Font, J.: Modality and possibility in some intuitionistic modal logics. Notre Dame Journal of Formal Logic **27** (1986) 533–546.

- Gabbay, D.: Decidability results in non-classical logics. Part I.
 Annals of Mathematical Logic 8 (1975) 237–295.
- Gabbay, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-Dimensional Modal Logics: Theory and Applications. Elsevier (2003).
- ▶ Gabbay, D., Shehtman, V.: Products of modal logics, part 1. Logic Journal of the IGPL 6 (1998) 73–146.
- ▶ Gabbay, D., Shehtman, V.: Products of modal logics. Part 2: relativized quantifiers in classical logic. Logic Journal of the IGPL 8 (2000) 165–210.
- Kracht, M., Wolter, F.: Properties of independently axiomatizable bimodal logics. Journal of Symbolic Logic 56 (1991) 1469–1485.
- Kurucz, A.: Combining modal logics. In: Handbook of Modal Logic. Elsevier (2007) 869–924.

- Ono, H.: On some intuitionistic modal logics. Publications of the Research Institute for Mathematical Sciences 13 (1977) 687–722.
- Prawitz, D.: Natural Deduction A Proof Theoretical Study.
 Almqvist and Wiksell (1965).
- Prior, A.: Time and Modality. Oxford University Press (1957).
- Simpson, A.: The Proof Theory and Semantics of Intuitionistic Modal Logic. Doctoral thesis at the University of Edinburgh (1994).
- Sotirov, V.: Modal theories with intuitionistic logic. In Mathematical Logic. Publishing House of the Bulgarian Academy of Sciences (1984) 139–171.
- Wijesekera, D.: Constructive modal logics I. Annals of Pure and Applied Logic 50 (1990) 271–301.

Contact

- philippe.balbiani@irit.fr
- cigdem.gencer@irit.fr