Поиск подстроки в строке

Постановка задачи

Строкой будем называть упорядоченный набор символов некоторого алфавита.

На вход поступают пары (S,P), где S - строка (string), P - образец (pattern).

Необходимо найти все или какую-то пару (i,j) : S[i...j] == P.

Тривиальный алгоритм

```
def Search(S, P):
    for i from 0 to |S| - |P|: # 0(S - P)
    if S[i...i + |P| - 1] == P: # 0(P)
        yield i
```

Время работы O(P(S-P)).

На практике работает неплохо, так как, как правило, |P| << |S| и неравенство подстрок можно определить по первым символам (не обязательно смотреть на все символы P).

Но в худшем случае (Ppprox S/2) время $\Theta(S^2)$.

Опр. Префикс строки S - подстрока вида S[0...i]. Собственный префикс - префикс не совпадающий со всей строкой S.

Опр. Суффикс строки S - подстрока вида S[i...n-1]. Собственный суффикс - суффикс не совпадающий со всей строкой S.

Далее полагаем, что все префиксы и суффиксы собственные (если не указано иное).

Опр. Префикс-функция строки S в позиции i :

 $\pi(S,i)=$ длина наибольшего префикса строки S, который совпадает с суффиксом префикса S длины i+1.

Опр. Префикс-функция строки S в позиции i :

 $\pi(S,i)=$ длина наибольшего префикса строки S, который совпадает с суффиксом префикса S длины i+1.

То есть

$$\pi(S,0) = 0 \ \pi(S,i) = \max\{0 \le k \le i : S[0...k-1] == S[i-k+1...i]\}$$

Далее для краткости будем опускать аргумент S, полагая, что он фиксирован.

abacaba
$$\pi(S,5)=2$$

Пример

Наивное построение префикс-функции

```
def PrefixFunction(S):
    p = [0,...,0]
    for i from 1 to |S| - 1: # 0(S)
        for k from i downto 1: # 0(S)
        if S[0...k-1] == S[i-k+1...i]: # 0(S)
        p[i] = k
        break
    return p
```

$O(S^3)$

Будем последовательно строить значения $\pi(0)$, $\pi(1)$, $\pi(2)$, ...

ullet Как связаны значения $\pi(i)$ и $\pi(i-1)$?

Будем последовательно строить значения $\pi(0)$, $\pi(1)$, $\pi(2)$, ...

- $\pi(i) \le \pi(i-1) + 1$
- ullet В каком случае $\pi(i)=\pi(i-1)+1$?

Будем последовательно строить значения $\pi(0)$, $\pi(1)$, $\pi(2)$, ...

- $\pi(i) \leq \pi(i-1) + 1$
- ullet Если $S[i] == S[\pi(i-1)]$, то $\pi(i) = \pi(i-1) + 1$.
- Иначе нужно проверить следующий по величине подходящий префикс. Чему равна его длина?

Будем последовательно строить значения $\pi(0)$, $\pi(1)$, $\pi(2)$, ...

- $\pi(i) \le \pi(i-1) + 1$
- ullet Если $S[i] == S[\pi(i-1)]$, то $\pi(i) = \pi(i-1) + 1$.
- Иначе нужно проверить следующий по величине подходящий префикс. Его длина $k_1=\pi(\pi(i-1)-1).$
- ullet Если не подходит и он ($S[i]
 eq S[k_1]$), то переходим к $k_2 = \pi (k_1 1)$, и так далее.

Построение префикс-функции: TLDR

• Перебираем потенциально подходящие размеры префикса строки S в порядке убывания, пока не найдем совпадение по следующему символу:

$$egin{aligned} k_0 &= \pi(i-1) \ k_1 &= \pi(k_0-1) \ k_2 &= \pi(k_1-1) \ ... \end{aligned}$$

- ullet Если нашли k' : S[i] == S[k'], то $\pi(i) = k'+1$.
- Иначе $\pi(i)=0$.

```
def PrefixFunction(S):
    p = [0,...,0]
    for i from 1 to |S| - 1:
        k = p[i - 1]
        while S[i] != S[k] and k > 0:
        k = p[k - 1]
        if S[i] == S[k]:
        p[i] = k + 1
    return p
```

Цикл в цикле $\Rightarrow O(S^2)$. Или нет?..

```
def PrefixFunction(S):
    p = [0, ..., 0]
    for i from 1 to |S| - 1:
        k = p[i - 1]
        while S[i] != S[k] and k > 0:
              k = p[k - 1] # 2
        if S[i] == S[k]:
             p[i] = k + 1 # 1
    return p
```

- На каждой итерации очередное значение $\pi(i)$ либо увеличивается на 1 (#1), либо уменьшается (#2).
- Общее количество уменьшений (while) \leq Общее число увеличений на 1.
- ullet Число итераций for =S-1, значит число итераций while $\leq S-1$
- Общее время построения $\Theta(S)$.

Алгоритм Кнута-Морриса-Пратта

Алгоритм Кнута-Морриса-Пратта

Дана строка S и образец P. Найти все вхождения P в S.

- 1. Пусть S' = P + # + S
- 2. Строим префикс-функцию для строки S'.
- 3. Ответом будут все i: $\pi(S', i + |P| + 1) == |P|$

$$T(S,P) = \Theta(S+P)$$

 $M(S,P) = \Theta(S+P)$

Алгоритм Кнута-Морриса-Пратта: улучшение

Дана строка S и образец P. Найти все вхождения P в S.

Так как $\pi(S',i) \leq |P|$, достаточно хранить $\pi(P,\cdot)$ и текущее значение $\pi(S',i).$

- 1. Пусть S' = P + # + S (можно не хранить явно!).
- 2. Строим префикс-функцию для строки P.
- 3. orall i если $\pi(S',i+|P|+1) == |P|$, то добавляем i в ответ.

$$T(S,P) = \Theta(S+P)$$

 $M(S,P) = \Theta(P)$

z-функция

z-функция

Опр. z-функция строки S в позиции i :

z(S,i)= длина наибольшего префикса суффикса длины |S|-i строки S, который совпадает с префиксом S.

$$z(S,0):=0$$
 (иногда $|S|$) $z(S,i):=\max\{k\geq 0: S[0...k-1]==S[i...i+k-1]\}$

abacabc
$$z(S, 4) = 2$$

Пример

Наивное построение z-функции

```
def ZFunction(S):
    z = [0,...,0]
    for i from 1 to |S| - 1:  # 0(S)
        for k from 1 to |S| - i:  # 0(S)
        if S[k - 1] != S[i + k - 1]:
        z[i] = k - 1
        break
    return z
```

$O(S^2)$

Эффективное построение z-функции

Будем последовательно строить значения z(0), z(1), z(2), ...

- Назовем z-блоком пару (i,j): z(i) = j-i.
- ullet Пусть right самая правая граница j среди всех построенных z-блоков.
- ullet Также left левая граница соответствующая right.
- ullet Если i < right, то $z(i) \geq \min(z[i-left], right-i).$ Далее уточняем перебором.
- ullet Иначе ($i \geq right$) придется считать z[i] честно.

Эффективное построение z-функции

```
def ZFunction(S):
  z = [0, \ldots, 0]
  left = right = 0
  for i from 1 to |S| - 1:
    if i < right:</pre>
      z[i] = \min(z[i - left], right - i)
    while i + z[i] < |S| and S[z[i]] == S[i + z[i]]:
      ++z[i];
    if (right < i + z[i]):
      left = i
      right = i + z[i]
  return z;
```

Цикл в цикле $\Rightarrow O(S^2)$. Или нет?..

Эффективное построение z-функции

```
def ZFunction(S):
  z = [0, \ldots, 0]
  left = right = 0
  for i from 1 to |S| - 1:
    if i < right:</pre>
      z[i] = \min(z[i - left], right - i)
    while i + z[i] < |S| and S[z[i]] == S[i + z[i]]:
      ++z[i];
    if (right < i + z[i]):
      left = i
      right = i + z[i]
  return z;
```

На каждой итерации либо находим ответ за O(1), либо вычисляем значение перебором. Во втором случае двигается right. А сдвинуться right может не более чем S раз. $\Rightarrow \Theta(S)$

Алгоритм Кнута-Морриса-Пратта

По аналогии в алгоритме КМП можно использовать z-функцию вместо префикс-функции.

z- π -S преобразования

Задача

Ранее рассмотрели построение префикс- и z-функций по строке S.

Теперь зададимся вопросом, как перейти от одной функции к другой и как восстановить строку по заданным префикс- и z-функциям.

$z o\pi$ преобразование

Дана z-функция, построить префикс-функцию.

ullet Если z(i)>0, то можем обновить значения $1\leq \Delta \leq z(i)$, $\pi(i+\Delta-1)=\Delta$

$z o\pi$ преобразование

Дана z-функция z, построить префикс-функцию π .

- ullet Если z(i)>0, то можем обновить значения $1\leq \Delta \leq z(i)$, $\pi(i+\Delta-1)=\Delta$ (по убыванию Δ)
- Но! Если на каком-то шаге уже $\pi(i+\Delta-1)>0$, то процесс обновления нужно остановить, так как, он был выставлен при рассмотрении z(i'):i'< i и значение $\pi(i+\Delta-1)$ не увеличится.

$z o\pi$ преобразование

```
def z2p(z):
    p = [0,...,0]
    for i from 0 to |z| - 1:
        for delta from z[i] - 1 to 0:
            if p[i + delta] > 0:
                break
        p[i + delta] = delta + 1
    return p
```

Так как каждое значение π выставляется ровно один раз, сложность равна O(|z|)

Дана префикс-функция π , построить строку S.

Ясно, что таких S много. Легко реализовать тривиальный алгоритм построения какой-то из возможных строк (при достаточно большом алфавите).

Поставим задачу поиска лексикографически наименьшей строки, удовлетворяющей π .

Будем последовательно строить значения S[i].

ullet Что делать, если $\pi(i)>0$?

Будем последовательно строить значения S[i].

- ullet Если $\pi(i)>0$, то выбора нет: $S[i]=S[\pi(i)-1].$
- Если $\pi(i)=0$, найти лексикографически наименьший допустимый символ.

А какие символы допустимы?

Будем последовательно строить значения S[i].

- ullet Если $\pi(i)>0$, то выбора нет: $S[i]=S[\pi(i)-1].$
- Если $\pi(i)=0$, найти лексикографически наименьший допустимый символ.

Допустимый символ - тот, который не продолжает ни один из π -блоков.

То есть недопустимые: $S[\pi(i-1)], S[\pi(\pi(i-1)-1)]$, ...

```
def p2S(p):
  S = ""
 S[0] = 'a'
  for i from 1 to |p| - 1:
    if p[i] > 0:
      S[i] = S[p(i) - 1]
    else:
      ban = \{\}
      k = p(i-1)
      while k > 0:
        ban.add(s[k])
        k = p(k - 1)
      for symbol from 'b' to 'z': # почему начинаем с 'b'?
        if symbol not in ban:
          S[i] = symbol
          break
  return S
```

Как и построение префикс-функции работает за $O(|\pi|)$.