Cálculo Numérico (521230)

Test 2 – Tema 4

Fecha: 15-May-02; 18:00-19:00. Duración: 45 minutos

Nombre y apellidos	
Matrícula	
Especialidad o carrera	

1. Sean

$$\mathbf{A} = \begin{bmatrix} 2 & -\frac{1}{2} & 0 & \cdots & \cdots & 0 & -\frac{1}{2} \\ -\frac{1}{2} & 2 & -\frac{1}{2} & 0 & \cdots & \cdots & 0 \\ 0 & -\frac{1}{2} & 2 & -\frac{1}{2} & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & -\frac{1}{2} & 2 & -\frac{1}{2} & 0 \\ 0 & \cdots & \cdots & 0 & -\frac{1}{2} & 2 & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \cdots & \cdots & 0 & -\frac{1}{2} & 2 \end{bmatrix} \in \mathbb{R}^{n \times n} \quad \mathbf{y} \quad \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ \vdots \\ \vdots \\ \vdots \\ n \end{bmatrix} \in \mathbb{R}^{n}.$$

Haga un programa MATLAB que genere la matriz anterior para n=20 como matriz sparse y que resuelva mediante el **método del gradiente conjugado** el sistema $\mathbf{A}\mathbf{x}=\mathbf{b}$. Indique el nombre del archivo donde ha guardado el programa en el diskette y los valores obtenidos de las componentes x_1 y x_n de la solución:

Archivo	
x_1	
x_n	

[10 PTS.]

2. Cuando el valor de una acción en la Bolsa tiene una subida fuerte y sostenida, bajo ciertas condiciones del mercado, al cabo de un tiempo típicamente sufre una baja. Este fenómeno suele modelarse mediante una expresión de la forma

$$V(t) = V_0 + at - bt^2,$$

donde V(t) es el valor de la acción en el día $t,\ V_0$ es un valor de referencia, y a y b parámetros desconocidos.

La siguiente tabla da los valores de una acción en alza durante 5 días consecutivos:

Días	1	2	3	4	5
Valores	229.30	290.05	351.20	403.25	437.90

Determine los valores de los parámetros del modelo, el valor máximo $V_{\rm max}$ que alcanzarán esas acciones y el día $t_{\rm max}$ en el que conviene venderlas.

Indique el nombre del archivo donde ha guardado el programa en el diskette y los resultados obtenidos:

Archivo	
V_0	
a	
b	
$V_{ m max}$	
$t_{ m max}$	

[15 PTS.]

3. (a) Haga un programa MATLAB que dibuje una curva suave que pase por los siguientes puntos:

x	2.0	1.5	1.0	0.5	0.0	0.5	1.0	1.5	2.0
y	0.0	0.2	0.7	1.0	0.0	-1.0	-0.7	-0.2	0.0

Indique el nombre del archivo donde ha guardado el programa en el diskette:

Archivo	
711011110	

(b) Indique si cada una de las siguientes afirmaciones es verdadera o falsa:

Afirmación	Verdadera	Falsa
Para graficar una curva es mejor usar interpolación por splines que interpolación polinomial, pues así se evita el riesgo de oscilaciones de esta última.		
Una curva suave no puede dibujarse con splines porque las funciones splines tienen derivadas terceras discontinuas.		
No es posible usar splines para interpolar esta tabla, porque el primer y el último punto coinciden.		

[10 PTS.]