Nom:....

Le sujet est constitué d'un exercice et d'un QCM. Pour le QCM, il est demandé de cocher toutes les propositions de réponse correctes à une question, sachant qu'il peut y en avoir zéro, une ou plusieurs par question. Il est demandé de remplir le QCM directement sur votre feuille et de le rendre avec votre copie. Pensez à mettre votre nom sur le sujet! Un barême est donné à titre indicatif.

1 Exercice (15 points)

Soit $\alpha > 0$ un réel strictement positif qu'on suppose non entier $(\alpha \notin \mathbb{Z})$. On définit $f_{\alpha} : \mathbb{R} \to \mathbb{R}$ la fonction 2π -périodique telle que pour tout $t \in [-\pi, \pi]$, on a

$$f_{\alpha}(t) = \cos(\alpha t)$$

La fonction étant prolongée ailleurs par périodicité.

- 1. Dessiner le graphe de la fonction f_{α} entre -2π et 2π (pour le dessin, on prendra $\alpha = \frac{1}{2}$ comme valeur du paramètre). Quelle est la régularité de la fonction f_{α} ?
- 2. Calculer les coefficients de Fourier de f_{α} .
- 3. Etudier la convergence de la série de Fourier de f_{α} . En déduire que

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{\alpha^2 - n^2} = \frac{1}{2\alpha} \left(\frac{\pi}{\sin \alpha \pi} - \frac{1}{\alpha} \right)$$

4. En déduire que

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{4n^2 - 1} = \frac{\pi - 2}{4}$$

et

$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{9n^2 - 1} = \frac{2\sqrt{3}\pi - 9}{18}$$

Indication : On pourra considérer la relation précédente pour $\alpha = \frac{1}{2}$ et $\alpha = \frac{1}{3}$.

5. Montrer que

$$\cot \alpha \pi = \frac{1}{\pi} \left(\frac{1}{\alpha} + \sum_{n=1}^{+\infty} \frac{2\alpha}{\alpha^2 - n^2} \right) = \frac{1}{\alpha \pi} + \sum_{n=1}^{+\infty} \left(\frac{1}{\alpha \pi + n \pi} + \frac{1}{\alpha \pi - n \pi} \right)$$

où cot = $\frac{\cos}{\sin}$. En déduire que pour tout $x \in \mathbb{R}$ qui n'est pas un multiple entier de π , on a

$$\cot x = \lim_{N \to +\infty} \sum_{n=-N}^{N} \frac{1}{x - n\pi}$$

6. Montrer que

$$\sum_{n=1}^{+\infty} \frac{1}{(\alpha^2 - n^2)^2} = \frac{\pi^2}{4\alpha^2 \sin^2 \alpha \pi} + \frac{\pi}{4\alpha^3} \cot \alpha \pi - \frac{1}{2\alpha^4}$$

En déduire que

$$\sum_{n=1}^{+\infty} \frac{1}{(4n^2 - 1)^2} = \frac{\pi^2 - 8}{16}$$

 et

$$\sum_{n=1}^{+\infty} \frac{1}{(9n^2 - 1)^2} = \frac{\pi^2}{27} + \frac{\pi}{12\sqrt{3}} - \frac{1}{2}$$

2 QCM (6 points)

Questions	Réponses
Que vaut	
$\cos(13287942405394\pi)$?	
	□ −1
	\square $-\frac{1}{2}$
Quel est l'argument de	$\Box \frac{4\pi}{3}$
$1 + e^{i\frac{8\pi}{3}}?$	\Box $-\frac{4\pi}{3}$
	$\Box \frac{\pi}{3}$
	\Box $-\frac{\pi}{3}$
Si $f: \mathbb{R} \to \mathbb{C}$ est	\square pour tout $n \in \mathbb{Z}$, $c_{2n}(f) = c_n(g)$
2π -périodique et que $g(x) = f(2x)$, alors	\square pour tout $n \in \mathbb{Z}$, $c_n(f) = c_{2n}(g)$
	\square g est π -périodique
	$\square g$ est 4π -périodique
Si $f: \mathbb{R} \to \mathbb{C}$ est 2π -périodique, alors pour tout $n \in \mathbb{Z}$	$\square c_n(\overline{f}) = c_{-n}(f)$
	$\Box c_n(\overline{f}) = \overline{c_{-n}(f)}$ $\Box c_n(-f) = c_{-n}(f)$
	$\Box c_n(-f) = c_{-n}(f)$
	$\Box c_n\left(\frac{1}{f}\right) = \frac{1}{c_n(f)}$
Si $f(t) = \sin(2t)$ pour	\square pour tout $n \in \mathbb{N}$, $a_n(f) = 0$.
tout $t \in \mathbb{R}$, alors	\square pour tout $n \in \mathbb{N}^*$, $b_n(f) = 0$.
	\square pour tout $n \in \mathbb{N} \setminus \{2\}$, $a_n(f) = 0$.
	\square pour tout $n \in \mathbb{N}^* \setminus \{2\}, b_n(f) = 0.$
Si $g(t) = \cos^3 t$ pour	$\square \ a_0(g) = \frac{1}{8}$
tout $t \in \mathbb{R}$, alors	$\square \ a_1(g) = \frac{3}{8}$
	$\square \ a_2(g) = \frac{3}{8}$
	$\square \ a_3(g) = \frac{1}{8}$