МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5 по дисциплине «Искусственные нейронные сети»

Тема: «Распознавание объектов на фотографиях"

Студентка гр. 7381	Кревчик А.Б.
Преподаватель	 Жукова Н.А.

Санкт-Петербург

Цель работы.

Распознавание объектов на фотографиях (Object Recognition in Photographs) CIFAR-10 (классификация небольших изображений по десяти классам: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль и грузовик).

Постановка задачи.

- Ознакомиться со сверточными нейронными сетями
- Изучить построение модели в Keras в функциональном виде
- Изучить работу слоя разреживания (Dropout)

Требования.

- 1. Построить и обучить сверточную нейронную сеть
- 2. Исследовать работу сеть без слоя Dropout
- 3. Исследовать работу сети при разных размерах ядра свертки

Ход работы.

С помощью предложенного кода была построена и обучена нейронная сеть.

В целях скорейшего изучения работы сети было решено уменьшить количество эпох до 15.

Рисунок 1 - График точности и потерь нейронной сети при 15 эпохах

Уберем слой Dropout и оценим работу сети.

Рисунок 2 - График точности и потерь нейронной сети при 15 эпохах без слоя Dropout

Можно заметить падение точности и увеличение ошибки на тестовых данных, а вот на тренировочных точность стремится к 1, а потери - к 0. Это говорит нам о переобучении модели. Так как у нас задействованы все нейроны, сеть полагается не на "единое мнение", а на отдельные нейроны. Таким образом, она запомнила ответы к тренировочным данным, но не выявила никакой закономерности среди них и не смогла справиться с тестовыми.

Посмотрим что будет, если изменить размер ядра свертки.

Рисунок 3 - График точности и потерь при размере ядра 5*5

Можно сделать вывод, что с увеличением размера ядра свертки падает точность и возрастают потери. Это связано с тем, что проходясь ядром большего размера, мы уловили меньше отличительных признаков объекта, которые легко выявить ядром меньшего размера.

Выводы.

Таким образом, была изучена задача распознавания объектов на фотографии. Установлено, что слой разрежения позволяет избежать переобучения сети.