STA 108: Applied Statistical Methods: Regression Analysis

Course Material Summary

University of California at Davis

Last Edit Date: 12/07/2021

Disclaimer and Term of Use:

- 1. We do not guarantee the accuracy and completeness of the summary content. Some of the course material may not be included, and some of the content in the summary may not be correct. You should use this file properly and legally. We are not responsible for any results from using this file.
- 2. Although most of the content in this summary is originally written by the creator, there may be still some of the content that is adapted (derived) from the slides and codes from *Professor Xueheng Shi*. We use those as references and quotes in this file. Please <u>contact us</u> to delete this file if you think your rights have been violated.
- 3. This work is licensed under a <u>Creative Commons Attribution 4.0</u> International License.

STA 108 Math-related Summary

	Simple Linear Regression	Matrix Approach of Linear Regression
Model	$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i , i = 1, 2, 3,, n$	$Y = X\beta + \varepsilon$
	where we have n pairs of observations $(X_1, Y_1) \dots (X_n, Y_n)$	where $\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}_{n \times 1}$, $\mathbf{X} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1p} \\ 1 & X_{21} & X_{22} & \cdots & X_{2p} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{np} \end{bmatrix}_{n \times (1+p)}$, $\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{bmatrix}_{(1+p) \times 1}$, $\boldsymbol{\varepsilon} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}_{p \times 1}$ when we
		have n observations and p inputs in each observation.
Prerequisite	$\varepsilon_i \sim N(0, \sigma^2)$ independent and identically distributed (iid) 1) $\varepsilon_1,, \varepsilon_n$ are independent 2) $E(\varepsilon_i) = 0, i = 1, 2, 3,, n$	$\boldsymbol{\varepsilon} \sim N(0, \sigma^2 \boldsymbol{I})$ 1) $E(\boldsymbol{\varepsilon}) = 0$ 2) $Var(\boldsymbol{\varepsilon}) = \sigma^2 \boldsymbol{I}$
	3) $Var(\varepsilon_i) = \sigma^2, i = 1, 2, 3,, n$	*3) $\sigma^2 \mathbf{I} = \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{bmatrix}$
		The variance-covariance matrix tells the ε_i are independent and have constant variance σ^2 . All covariance terms are zero, only diagonal is σ^2 , which means they are uncorrelated. As a result, under normality, this indicating independence.
Distribution	$\varepsilon_i \sim N(0, \sigma^2), Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$	$\boldsymbol{\varepsilon} \sim N(0, \sigma^2 \boldsymbol{I}), \boldsymbol{Y} \sim N(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$
Expectation	$E(Y_i) = E(\beta_0 + \beta_1 X_i + \varepsilon_i)$	$E(Y) = E(X\beta + \varepsilon)$
and variance	$= E(\beta_0) + E(\beta_1 X_i) + E(\varepsilon_i)$	$=E(X\boldsymbol{\beta})+E(\boldsymbol{\varepsilon})$
of Y	$=\beta_0+\beta_1X_i+0$	$=X\beta+0$
	$= \boxed{\beta_0 + \beta_1 X_i}$	$=\overline{XB}$
	$Var(Y_i) = Var(\beta_0 + \beta_1 X_i + \varepsilon_i)$ $= Var(\beta_0) + Var(\beta_1 X_i) + Var(\varepsilon_i)$ $= 0 + 0 + \sigma^2$ $= \boxed{\sigma^2}$	If the means of $Y_1, Y_2,, Y_n$ are $\mu_1, \mu_2,, \mu_n$ then the mean of the random vector \mathbf{Y} is: $E(\mathbf{Y}) = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix}$
		$Var(Y) = Var(X\beta + \varepsilon)$ $= Var(Y\beta) + Var(\varepsilon)$
		$= Var(X\beta) + Var(\varepsilon)$ $= 0 + \sigma^2 I$
		$= 0 + o^{-1}$ $= \sigma^2 I $
		The variance-covariance matrix of the random vector Y is:

		$Var(\mathbf{Y}) = \begin{bmatrix} Var(Y_1) & Cov(Y_1, Y_2) & \cdots & Cov(Y_1, Y_n) \\ Cov(Y_2, Y_1) & Var(Y_2) & \cdots & Cov(Y_2, Y_n) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(Y_n, Y_1) & Cov(Y_n, Y_2) & \cdots & Var(Y_n) \end{bmatrix}$
S_{XX}, S_{YY}, S_{XY}	$S_{XX} = \sum (X_i - \bar{X})^2$ $S_{YY} = \sum (Y_i - \bar{Y})^2$ $S_{XY} = \sum (X_i - \bar{X})(Y_i - \bar{Y})$	$S_{XX=} \sum (X_i - \bar{X})^2 = \sum X_i^2 - n\bar{X}^2 = X^T X - n\bar{X}^2$ $S_{YY=} \sum (Y_i - \bar{Y})^2 = \sum Y_i^2 - n\bar{Y}^2 = Y^T Y - n\bar{Y}^2$ $*S_{XY} = \sum (X_i - \bar{X})(Y_i - \bar{Y}) = \sum X_i Y_i - n\bar{X}\bar{Y}$
Ordinary Least Square (OLS)	$Q(\beta_0, \beta_1) = \sum_{1 \le i \le n} (Y_i - \beta_0 - \beta_1 X_i)^2$ $\min_{\beta_0, \beta_1} \sum_{1 \le i \le n} (Y_i - \beta_0 - \beta_1 X_i)^2$	$Q(\boldsymbol{\beta}) = \min_{\boldsymbol{\beta}} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})$ $= \min_{\boldsymbol{\beta}} (\boldsymbol{Y}^T \boldsymbol{Y} - \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{Y} - \boldsymbol{Y}^T \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\beta}^T \boldsymbol{X}^T \boldsymbol{X}\boldsymbol{\beta})$
	$\begin{vmatrix} \frac{\partial Q}{\partial \beta_0} = \sum -2(Y_i - \beta_0 - \beta_1 X_i) = 0 \\ \sum (Y_i - \beta_0 - \beta_1 X_i) = 0 \end{vmatrix}$	$= \min_{\beta} (\mathbf{Y}^T \mathbf{Y} - 2\boldsymbol{\beta}^T \mathbf{X}^T \mathbf{Y} + \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\beta})$
	$\sum (I_i - \beta_0 - \beta_1 X_i) = 0$ $\sum Y_i - \sum \beta_0 - \beta_1 \sum X_i = 0$ $n\overline{Y} - n\beta_0 - n\beta_1 \overline{X} = 0$ $n\overline{Y} - n\beta_1 \overline{X} = n\beta_0$	$\begin{vmatrix} \frac{\partial Q}{\partial \boldsymbol{\beta}} = -2X^T Y + 2X^T X \boldsymbol{\beta} = 0 \\ X^T X \boldsymbol{\beta} = X^T Y \\ (X^T X)^{-1} X^T X \boldsymbol{\beta} = (X^T X)^{-1} X^T Y \end{vmatrix}$
	$\left[\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}\right]$	$\widehat{\beta} = (X^T X)^{-1} X^T Y$
	$\frac{\partial Q}{\partial \beta_1} = \sum -2X_i(Y_i - \beta_0 - \beta_1 X_i) = 0$ $\sum X_i(Y_i - \beta_0 - \beta_1 X_i) = 0$	$*X^{T}X = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ X_{1} & X_{2} & X_{3} & \cdots & X_{i} \end{bmatrix} \begin{bmatrix} 1 & X_{1} \\ 1 & X_{2} \\ \vdots & \vdots \\ 1 & X_{i} \end{bmatrix}$
	$\sum X_i Y_i - \beta_0 \sum X_i - \hat{\beta}_1 \sum X_i^2 = 0$ $\sum X_i Y_i - (\bar{Y} - \beta_1 \bar{X}) \sum X_i - \beta_1 \sum X_i^2 = 0$ $\sum X_i Y_i - \bar{Y} \sum X_i + \beta_1 \bar{X} \sum X_i - \beta_1 \sum X_i^2 = 0$	$= \begin{bmatrix} 1+1+\dots+1 & X_1+X_2+\dots+X_i \\ X_1+X_2+\dots+X_i & X_1^2+X_2^2+\dots+X_i^2 \end{bmatrix} = \begin{bmatrix} n & \sum X_i \\ \sum X_i & \sum X_i^2 \end{bmatrix}_{2\times 2}$
	$\hat{\beta}_1 = \frac{\sum X_i Y_i - n\bar{X}\bar{Y}}{\sum X_i^2 - nX_i} = \frac{\sum (X_i - \bar{X})Y_i}{\sum (X_i - \bar{X})^2} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$ $\hat{\beta}_1 = \frac{S_{XY}}{S_{XX}}$	$ \begin{aligned} **(X^{T}X)^{-1} &= \frac{1}{n\sum X_{i}^{2} - (\sum X_{i})^{2}} \begin{bmatrix} \sum X_{i}^{2} & -\sum X_{i} \\ -\sum X_{i} & n \end{bmatrix} = \frac{1}{n(\sum X_{i}^{2} - \frac{n^{2}\bar{X}^{2}}{n})} \begin{bmatrix} \sum X_{i}^{2} & -\sum X_{i} \\ -\sum X_{i} & n \end{bmatrix} \\ &= \frac{1}{n(\sum X_{i}^{2} - n\bar{X}^{2})} \begin{bmatrix} \sum X_{i}^{2} & -\sum X_{i} \\ -\sum X_{i} & n \end{bmatrix} = \frac{1}{n\sum (X_{i} - \bar{X})^{2}} \begin{bmatrix} \sum X_{i}^{2} & -\sum X_{i} \\ -\sum X_{i} & n \end{bmatrix} = \begin{bmatrix} \frac{\sum X_{i}^{2}}{n\sum (X_{i} - \bar{X})^{2}} & \frac{-\sum X_{i}}{n\sum (X_{i} - \bar{X})^{2}} \\ \frac{-\sum X_{i}}{n\sum (X_{i} - \bar{X})^{2}} & \frac{n}{n\sum (X_{i} - \bar{X})^{2}} \end{bmatrix} \end{aligned} $

		$= \begin{bmatrix} \frac{1}{n} + \frac{\bar{X}^2}{\sum (X_i - \bar{X})^2} & \frac{-\bar{X}}{\sum (X_i - \bar{X})^2} \\ \frac{-\bar{X}}{\sum (X_i - \bar{X})^2} & \frac{1}{\sum (X_i - \bar{X})^2} \end{bmatrix}_{2 \times 2}$
		$ ****\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{Y} = \begin{bmatrix} \frac{1}{n} + \frac{\bar{X}^2}{\sum(X_i - \bar{X})^2} & \frac{-\bar{X}}{\sum(X_i - \bar{X})^2} \\ \frac{-\bar{X}}{\sum(X_i - \bar{X})^2} & \frac{1}{\sum(X_i - \bar{X})^2} \end{bmatrix} \begin{bmatrix} \sum Y_i \\ \sum X_i Y_i \end{bmatrix} = \begin{bmatrix} \sum Y_i \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum(X_i - \bar{X})^2} \right) + \sum X_i Y_i \left(\frac{-\bar{X}}{\sum(X_i - \bar{X})^2} \right) \\ \sum Y_i \left(\frac{-\bar{X}}{\sum(X_i - \bar{X})^2} \right) + \sum X_i Y_i \left(\frac{1}{\sum(X_i - \bar{X})^2} \right) \end{bmatrix} $
		$\sum Y_i \left(\frac{-\bar{X}}{\sum (X_i - \bar{X})^2} \right) + \sum X_i Y_i \left(\frac{1}{\sum (X_i - \bar{X})^2} \right) = \frac{-n\bar{X}\bar{Y}}{\sum (X_i - \bar{X})^2} + \frac{\sum X_i Y_i}{\sum (X_i - \bar{X})^2} = \frac{\sum X_i Y_i - n\bar{X}\bar{Y}}{\sum (X_i - \bar{X})^2} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} = \frac{S_{XY}}{S_{XX}} = \hat{\beta}_1$
		$\sum Y_i \left(\frac{1}{n} + \frac{\bar{X}^2}{\sum (X_i - \bar{X})^2} \right) + \sum X_i Y_i \left(\frac{-\bar{X}}{\sum (X_i - \bar{X})^2} \right) = \frac{n\bar{Y}}{n} + \bar{X} \frac{n\bar{X}\bar{Y}}{\sum (X_i - \bar{X})^2} - \bar{X} \frac{\sum X_i Y_i}{\sum (X_i - \bar{X})^2} = \bar{Y} + \bar{X} \left(\frac{n\bar{X}\bar{Y}}{\sum (X_i - \bar{X})^2} - \frac{\sum X_i Y_i}{\sum (X_i - \bar{X})^2} \right)$
		$= \bar{Y} + \bar{X} \cdot (-1) \cdot \left(\frac{\sum X_i Y_i}{\sum (X_i - \bar{X})^2} - \frac{n\bar{X}\bar{Y}}{\sum (X_i - \bar{X})^2} \right) = \bar{Y} - \bar{X} \left(\frac{\sum X_i Y_i - n\bar{X}\bar{Y}}{\sum (X_i - \bar{X})^2} \right) = \bar{Y} - \bar{X} \hat{\beta}_1 = \hat{\beta}_0$
		$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y} = \begin{bmatrix} \overline{Y} - \overline{X} \hat{\beta}_1 \\ \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2} \end{bmatrix} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix}_{2 \times 1}$
		****Variance-covariance of $\hat{\beta}$
		We know that $Var(\widehat{\boldsymbol{\beta}}) = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\sigma^2$, and $(\boldsymbol{X}^T\boldsymbol{X})^{-1} = \begin{bmatrix} \frac{1}{n} + \frac{\bar{X}^2}{\sum(X_i - \bar{X})^2} & \frac{-\bar{X}}{\sum(X_i - \bar{X})^2} \\ \frac{-\bar{X}}{\sum(X_i - \bar{X})^2} & \frac{1}{\sum(X_i - \bar{X})^2} \end{bmatrix}$.
		As a result, variance-covariance of $\widehat{\boldsymbol{\beta}} = \begin{bmatrix} \frac{\sigma^2}{n} + \frac{\bar{X}^2 \sigma^2}{\sum (X_i - \bar{X})^2} & \frac{-\bar{X} \sigma^2}{\sum (X_i - \bar{X})^2} \\ -\frac{\bar{X} \sigma^2}{\sum (X_i - \bar{X})^2} & \frac{\sigma^2}{\sum (X_i - \bar{X})^2} \end{bmatrix}$
Maximum	Probability density function (pdf) in normal	Probability density function (pdf) for $Y \sim N(\mu, \Sigma)$ in matrix form:
Likelihood	distribution $N(0, \sigma^2)$:	
Estimation (MLE)	$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]$, where μ is the	$f_{Y}(y) = \left(\frac{1}{\sqrt{2\pi}}\right)^{n} (\det(\boldsymbol{\Sigma}))^{-\frac{1}{2}} \exp\left[-\frac{(Y-\mu)^{T}\boldsymbol{\Sigma}^{-1}(Y-\mu)}{2}\right], \text{ where } \boldsymbol{\mu} = \begin{bmatrix} \mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{n} \end{bmatrix}, \ \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{12} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix}. \ Y \in$
	•	

mean for Y, σ^2 is the variance of Y. $-\infty < Y < \infty$.

Likelihood function:

$$L(\beta_0, \beta_1, \sigma^2 | (Y_i, X_i)) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{\varepsilon_i^2}{2\sigma^2}\right],$$

where $\varepsilon_i \sim N(0, \sigma^2)$ independent and identically distributed.

$$L(\beta_0, \beta_1, \sigma^2 | (Y_i, X_i)) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{\varepsilon_i^2}{2\sigma^2}\right]$$
$$= \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(Y_i - \beta_0 - \beta_1 X_i)^2}{2\sigma^2}\right]$$

We use the log-likelihood function, which is easier: $l(\beta_0, \beta_1, \sigma^2 | (Y_i, X_i))$

$$= \log \left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(Y_i - \beta_0 - \beta_1 X_i)^2}{2\sigma^2} \right] \right)$$

$$= \log \left(\left(\frac{1}{\sqrt{2\pi}} \right)^n (\sigma^2)^{-\frac{n}{2}} \exp \left[-\frac{1}{2\sigma^2} \sum (Y_i - \beta_0 - \frac{1}{2\sigma^2} \sum (Y_i - \beta_0)^{-\frac{n}{2}} \right] \right)$$

$$\beta_1 X_i)^2 \bigg] \bigg)$$

$$= \log\left(\left(\frac{1}{\sqrt{2\pi}}\right)^n\right) - \frac{n}{2}\log(\sigma^2) - \frac{1}{2\sigma^2}\sum(Y_i - \beta_0 - \beta_1 X_i)^2$$

$$\frac{\partial l}{\partial \beta_0} = 0 - 0 - \frac{1}{2\sigma^2} \sum -2(Y_i - \beta_0 - \beta_1 X_i) = 0$$

$$\sum (Y_i - \beta_0 - \beta_1 X_i) = 0$$

$$\sum Y_i - \sum \beta_0 - \beta_1 \sum X_i = 0$$

$$n\bar{Y} - n\beta_0 - n\beta_1 \bar{X} = 0$$

$$n\bar{Y} - n\beta_1 \bar{X} = n\beta_0$$

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$

 R^p

We know that $\mu = X\beta$, $\Sigma = \sigma^2 I$:

$$f_{\mathbf{Y}}(\mathbf{y}) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \left(\det(\mathbf{\Sigma})\right)^{-\frac{1}{2}} \exp\left[-\frac{(\mathbf{Y}-\boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{Y}-\boldsymbol{\mu})}{2}\right]$$

$$= \left(\frac{1}{\sqrt{2\pi}}\right)^n \left(\det(\sigma^2 I)\right)^{-\frac{1}{2}} \exp\left[-\frac{(Y - X\beta)^T (\sigma^2 I)^{-1} (Y - X\beta)}{2}\right]$$

$$= \left(\frac{1}{\sqrt{2\pi}}\right)^n \left(\det(\sigma^2 \mathbf{I})\right)^{-\frac{1}{2}} \exp\left[-\frac{(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})}{2\sigma^2}\right]$$

We can see that
$$\det(\sigma^2 \mathbf{I}) = \det \begin{bmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \sigma^2 \end{bmatrix} = (\sigma^2)^n, \ (\sigma^2 \mathbf{I})^{-1} = \begin{bmatrix} \frac{1}{\sigma^2} & 0 & \cdots & 0 \\ 0 & \frac{1}{\sigma^2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \frac{1}{\sigma^2} \end{bmatrix} = \frac{1}{\sigma^2} \mathbf{I}.$$

Likelihood function:

$$L(\boldsymbol{\beta}, \sigma^2 | (\boldsymbol{Y}, \boldsymbol{X})) = \left(\frac{1}{\sqrt{2\pi}}\right)^n (\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{(\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})}{2\sigma^2}\right], \text{ where the model error is } \boldsymbol{\varepsilon} \sim N(0, \sigma^2 \boldsymbol{I}).$$

We use the log-likelihood function, which is easier:

$$l(\boldsymbol{\beta}, \sigma^2 | (\boldsymbol{Y}, \boldsymbol{X})) = \log \left(\left(\frac{1}{\sqrt{2\pi}} \right)^n \left(\det(\sigma^2 \boldsymbol{I}) \right)^{-\frac{1}{2}} \exp \left[-\frac{(\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta})^T (\boldsymbol{Y} - \boldsymbol{X} \boldsymbol{\beta})}{2\sigma^2} \right] \right)$$

$$= \log \left(\left(\frac{1}{\sqrt{2\pi}} \right)^n \right) - \frac{n}{2} \log(\sigma^2) - \frac{(Y - X\beta)^T (Y - X\beta)}{2\sigma^2}$$

$$\frac{\partial l}{\partial \mathbf{B}} = 0 - 0 - \frac{1}{2\sigma^2} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} = 0$$

$$X^T X \beta = X^T Y$$

$$(X^TX)^{-1}X^TX\beta = (X^TX)^{-1}X^TY$$

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

$$\frac{\partial l}{\partial \sigma^2} = 0 - \frac{n}{2} \cdot \frac{1}{\sigma^2} - \frac{1}{2} \cdot \frac{(-1)}{(\sigma^2)^2} \cdot (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = 0$$

$$\begin{split} \frac{\partial l}{\partial \beta_1} &= 0 - 0 - \frac{1}{2\sigma^2} \sum -2X_i (Y_i - \beta_0 - \beta_1 X_i) = 0 \\ \sum X_i (Y_i - \beta_0 - \beta_1 X_i) &= 0 \\ \sum X_i Y_i - \beta_0 \sum X_i - \hat{\beta}_1 \sum X_i^2 &= 0 \\ \sum X_i Y_i - (\bar{Y} - \beta_1 \bar{X}) \sum X_i - \beta_1 \sum X_i^2 &= 0 \\ \sum X_i Y_i - \bar{Y} \sum X_i + \beta_1 \bar{X} \sum X_i - \beta_1 \sum X_i^2 &= 0 \\ \hat{\beta}_1 &= \frac{\sum X_i Y_i - n\bar{X}\bar{Y}}{\sum X_i^2 - nX_i} = \frac{\sum (X_i - \bar{X})Y_i}{\sum (X_i - \bar{X})^2} = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2} \\ \hat{\beta}_1 &= \frac{S_{XY}}{S_{XX}} \end{split}$$

$$\begin{aligned} \frac{\partial l}{\partial \sigma^2} &= 0 - \frac{\partial}{\partial \sigma^2} \left[\frac{1}{2} \log(\sigma^2) \right] - \frac{\partial}{\partial \sigma^2} \left[\frac{1}{2\sigma^2} \sum -2X_i (Y_i - \beta_0 - \beta_1 X_i)^2 \right] \\ &= -\frac{n}{2} \cdot \frac{1}{\sigma^2} - \frac{(-1)}{2(\sigma^2)^2} \sum (Y_i - \beta_0 - \beta_1 X_i)^2 \\ &= -\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum (Y_i - \beta_0 - \beta_1 X_i)^2 \end{aligned}$$

$$-\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{1}{2} \cdot \frac{1}{\sigma^2} \cdot (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = 0$$

$$-\frac{n}{2} \cdot \frac{1}{\sigma^2} + \frac{1}{2} \cdot \frac{1}{(\sigma^2)^2} \cdot (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) = 0$$

$$\frac{n}{\sigma^2} = \frac{1}{(\sigma^2)^2} \cdot (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$\sigma^2 = \frac{1}{n} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$\widehat{\sigma}^2 = \frac{1}{n} (\mathbf{Y} - \mathbf{X}\widehat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\widehat{\boldsymbol{\beta}})$$

Interpret $\hat{\beta}$

 $\hat{\beta}_1$: For one-unit increase in X, the Y will increase/decrease by $|\hat{\beta}_1|$ on average. $\hat{\beta}_0$: When X equals to zero, Y equals to $\hat{\beta}_0$.

Expectation of β (show unbiases)

 $E(\hat{\beta}_1) = E\left(\frac{\sum (X_i - \bar{X})Y_i}{\sum (X_i - \bar{X})^2}\right)$ $= \frac{\sum (X_i - \bar{X})}{\sum (X_i - \bar{X})^2} E(Y_i)$ $= \frac{\sum (X_i - \bar{X})}{\sum (X_i - \bar{X})^2} (\beta_0 + \beta_1 X_i)$ $= \frac{\sum (X_i - \bar{X})}{\sum (X_i - \bar{X})^2} \beta_0 + \beta_1 \frac{\sum (X_i - \bar{X})X_i}{\sum (X_i - \bar{X})^2}$ $= 0 + \beta_1$

$$E(\widehat{\beta}) = E((X^T X)^{-1} X^T Y)$$

$$= (X^T X)^{-1} X^T E(Y)$$

$$= (X^T X)^{-1} X^T X \beta$$

$$= I \beta$$

$$= [\beta]$$
If $W = AY$, then $E(W) = AE(Y)$

	$=\overline{eta_1}$	
	$E(\hat{\beta}_0) = E(\bar{Y} - \hat{\beta}_1 \bar{X})$ $= E(\bar{Y}) - E(\hat{\beta}_1 \bar{X})$ $= E\left(\frac{1}{n}\sum Y_i\right) - \bar{X}E(\hat{\beta}_1)$ $= \frac{1}{n}\sum E(Y_i) - \beta_1 \bar{X}$ $= \frac{1}{n}\sum E(\beta_0 + \beta_1 X_i) - \beta_1 \bar{X}$ $= \frac{1}{n}(\sum \beta_0 + \beta_1 \sum X_i) - \beta_1 \bar{X}$ $= \frac{1}{n}(n\beta_0 + n\beta_1 \bar{X}) - \beta_1 \bar{X}$ $= \beta_0 + \beta_1 \bar{X} - \beta_1 \bar{X}$	
	$=\overline{\left[eta_{0} ight]}$	
Variance of β	Let $c = \sum (X_i - \bar{X})^2$, $c_i = X_i - \bar{X}$ $Var(\hat{\beta}_1) = Var(\frac{\sum (X_i - \bar{X})Y_i}{\sum (X_i - \bar{X})^2})$	$Var(\widehat{\boldsymbol{\beta}}) = Var((\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y})$ $= (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T Var(\boldsymbol{Y}) ((\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T)^T$ $= (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \sigma^2 \boldsymbol{I}$
	$= \frac{1}{c^2} Var(\sum c_i Y_i)$	$= \boxed{(X^T X)^{-1} \sigma^2}$
	$= \frac{1}{c^2} \sum c_i^2 Var(Y_i)$	## If $W = AY$, then $Var(W) = AVar(Y)A^T$
	$=\frac{\sum c_i^2}{C^2} Var(Y_i)$	
	$=\frac{\sum (X_i - \bar{X})^2}{[\sum (X_i - \bar{X})^2]^2}\sigma^2$	
	$=\frac{\sigma^2}{\sum (X_i - \bar{X})^2}$	
	$= \frac{\sigma^2}{s_{XX}}$	

	$Var(\hat{\beta}_0) = Var(\bar{Y} - \hat{\beta}_1 \bar{X})$ $= Var(\bar{Y}) + Var(\hat{\beta}_1 \bar{X})$ $= Var(\frac{1}{n} \sum Y_i) + \bar{X}^2 Var(\hat{\beta}_1)$ $= \frac{1}{n^2} \sum Var(Y_i) + \bar{X}^2 \frac{\sigma^2}{S_{XX}}$ $= \frac{1}{n^2} n\sigma^2 + \bar{X}^2 \frac{\sigma^2}{S_{XX}}$ $= \frac{1}{n} \sigma^2 + \bar{X}^2 \frac{\sigma^2}{S_{XX}}$	
	$= \boxed{\sigma^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{S_{XX}}\right)}$	
Fitted Model	$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$, $i = 1, 2, 3,, n$	$\widehat{Y} = X\widehat{\beta} = X(X^TX)^{-1}X^TY = HY$
	$\hat{\varepsilon}_i = Y_i - \hat{Y}_i = Y_i - (\hat{\beta}_0 + \hat{\beta}_1 X_i) , i = 1, 2, 3,, n$	$\hat{\boldsymbol{\varepsilon}} = \boldsymbol{Y} - \boldsymbol{X}\hat{\boldsymbol{\beta}} = \boldsymbol{Y} - \boldsymbol{X}(\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{Y} = (\boldsymbol{I} - \boldsymbol{H})\boldsymbol{Y} , \ \hat{\boldsymbol{\beta}} \sim N(\boldsymbol{\beta}, (\boldsymbol{X}^T\boldsymbol{X})^{-1}\sigma^2)$
Properties of	1) $E(\hat{\varepsilon}_i) = E(Y_i - \hat{Y}_i)$	1) $E(\hat{\boldsymbol{\varepsilon}}) = E(Y - X\hat{\boldsymbol{\beta}})$
Ê	$= E(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i)$	$=E(Y)-E(X\widehat{\beta})$
	$= E(Y_i) - E(\hat{\beta}_0) - E(\hat{\beta}_1 X_i)$	$= E(Y) - X(X^TX)^{-1}X^TE(Y)$
	$=\beta_0+\beta_1X_i-\beta_0-\beta_1X_i$	$= X\boldsymbol{\beta} - X(X^TX)^{-1}X^TX\boldsymbol{\beta}$
	= 0	$=X\beta-X\beta$
	2) $Var(\hat{\varepsilon}_i) = Var(Y_i - \hat{Y}_i)$	=0
	$= Var(Y_i + \hat{\beta}_0 + \hat{\beta}_1 X_i)$	2) $Var(\hat{\boldsymbol{\varepsilon}}) = Var(\boldsymbol{Y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}})$
	$= Var(Y_i) + Var(\hat{\beta}_0) + Var(\hat{\beta}_1 X_i)$	$= Var(Y) - Var(X\widehat{\beta})$
	$= \sigma^2 + \sigma^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{S_{XX}} \right) + \frac{\sigma^2}{S_{XX}} Var(X_i)$	$= \sigma^2 \mathbf{I} - \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T V ar(\mathbf{Y}) (\mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T)^T$ = $\sigma^2 \mathbf{I} - \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \sigma^2 \mathbf{I}$
	$=\sigma^2 + \frac{\sigma^2}{n} + \frac{\bar{X}^2 \sigma^2}{S_{XX}} + 0$	$= \sigma^2 I - X(X^T X)^{-1} X^T \sigma^2 I$ = $(I - H)\sigma^2$
	$=\sigma^2\left(1+\frac{1}{n}+\frac{\bar{X}^2}{S_{XX}}\right)$	*3) The hat matrix $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ is symmetric and idempotent. Symmetric: $\dim(\mathbf{H}) = n \times n$, which is a square matrix, and:
	3) $\sum \hat{\varepsilon}_i = \sum (Y_i - \hat{Y}_i)$	$H^T = (X(X^TX)^{-1}X^T)^T$
	$=\sum Y_i - \sum \hat{Y_i}$	$= (X^T)^T ((X^T X)^{-1})^T X^T$
	$= \sum (\beta_0 + \beta_1 X_i + \varepsilon_i) - \sum (\hat{\beta}_0 + \hat{\beta}_1 X_i)$	$= X(X^TX)^{-1}X^T$
	$= \sum \beta_0 + \beta_1 \sum X_i + \sum \varepsilon_i - \sum \hat{\beta}_0 - \hat{\beta}_1 \sum X_i$	=H

$= n\beta_0 + n\beta_1 \bar{X} + 0 - n\hat{\beta}_0 + n\hat{\beta}_1 \bar{X}$
$= n\beta_0 + n\beta_1 \bar{X} - n\bar{Y} - n\hat{\beta}_1 \bar{X} + n\hat{\beta}_1 \bar{X}$
$= n\beta_0 + n\beta_1 \bar{X} - n\bar{Y}$
= $n(\beta_0 + \beta_1 \bar{X} - \bar{Y})$ ## (\bar{X}, \bar{Y}) is on the line
$= n(\bar{Y} - \bar{Y})$
= 0
4) $\sum \hat{\varepsilon}_i^2 \le \sum (Y_i - \mu_0 - \mu_1 X_i)^2$ for all real nu
up and up Fitted line is based on OLS thus

4) $\sum \hat{\varepsilon}_i^2 \leq \sum (Y_i - \mu_0 - \mu_1 X_i)^2$ for all real numbers μ_0 and μ_1 . Fitted line is based on OLS, thus always has the smallest error than other lines.

5)
$$\sum X_i \hat{\varepsilon}_i = 0$$

6)
$$\sum \hat{Y}_i \hat{\varepsilon}_i = 0$$

7) The fitted regression line passes through the point of averages (\bar{X}, \bar{Y}) .

The fitted regression line is $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$, we plug (\bar{X}, \bar{Y}) into the fitted line and get:

 $\overline{Y} = \hat{\beta}_0 + \hat{\beta}_1 \overline{X}$, notice that $\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$, let's substitute $\hat{\beta}_0$, and we will get:

$$\bar{Y} = \bar{Y} - \hat{\beta}_1 \bar{X} + \hat{\beta}_1 \bar{X}
\bar{Y} = \bar{Y}$$

Idempotent:
$$HH = X(X^TX)^{-1}X^TX(X^TX)^{-1}X^T$$

= $X(X^TX)^{-1}X^T$
= H

**4) The matrix (I - H) is also symmetric and idempotent

Symmetric: $\dim(I - H) = n \times n$, which is a square matrix, and:

$$(I - H)^{T} = (I - X(X^{T}X)^{-1}X^{T})^{T}$$

$$= I^{T} - (X(X^{T}X)^{-1}X^{T})^{T}$$

$$= I - (X^{T})^{T}((X^{T}X)^{-1})^{T}X^{T}$$

$$= I - X(X^{T}X)^{-1}X^{T}$$

$$= I - H$$

Idempotent: $(I - H)(I - H) = I^2 - IH - HI + H^2$ = I - H - H + H= I - H

***5)
$$(I - H)H = IH - HH = H - H^2 = H - H = 0$$

 $H(I - H) = HI - HH = H - H^2 = H - H = 0$

****6)
$$\hat{\varepsilon} = Y - X\hat{\beta}$$

= $Y - X(X^TX)^{-1}X^TY$
= $(I - H)Y$

 $\hat{\boldsymbol{\varepsilon}} \perp \widehat{\boldsymbol{Y}} \Leftrightarrow \hat{\boldsymbol{\varepsilon}} \cdot \widehat{\boldsymbol{Y}} = 0$ since $\widehat{\boldsymbol{Y}}$ is the projection of \boldsymbol{Y} then $\hat{\boldsymbol{\varepsilon}} = \boldsymbol{Y} - \widehat{\boldsymbol{Y}}$, which should be perpendicular to $\widehat{\boldsymbol{Y}}$.

$$\hat{\boldsymbol{\varepsilon}} \cdot \hat{\boldsymbol{Y}} = \hat{\boldsymbol{\varepsilon}}^T \hat{\boldsymbol{Y}} = \boldsymbol{Y}^T (\boldsymbol{I} - \boldsymbol{H}) \hat{\boldsymbol{Y}} = \boldsymbol{Y}^T (\boldsymbol{I} - \boldsymbol{H}) \boldsymbol{H} \boldsymbol{Y} = \boldsymbol{Y}^T \boldsymbol{I} \boldsymbol{H} \boldsymbol{Y} - \boldsymbol{Y}^T \boldsymbol{H} \boldsymbol{H} \boldsymbol{Y} = \boldsymbol{Y}^T \boldsymbol{H} \boldsymbol{Y} - \boldsymbol{Y}^T \boldsymbol{H} \boldsymbol{Y} = \boldsymbol{0}$$

 $\hat{\boldsymbol{\varepsilon}} \perp \boldsymbol{X} \iff \hat{\boldsymbol{\varepsilon}} \cdot \boldsymbol{X} = 0$ since $\hat{\boldsymbol{Y}}$ is the projection of \boldsymbol{Y} onto the column space of \boldsymbol{X} and $\hat{\boldsymbol{\varepsilon}} \perp \hat{\boldsymbol{Y}}$, so $\hat{\boldsymbol{\varepsilon}} \perp \boldsymbol{X}$.

$$\hat{\boldsymbol{\varepsilon}} \cdot \boldsymbol{X} = \hat{\boldsymbol{\varepsilon}}^T \boldsymbol{X} = \boldsymbol{Y}^T (\boldsymbol{I} - \boldsymbol{H}) \boldsymbol{X} = \boldsymbol{Y}^T \boldsymbol{I} \boldsymbol{X} - \boldsymbol{Y}^T \boldsymbol{H} \boldsymbol{X} = \boldsymbol{Y}^T \boldsymbol{X} - \boldsymbol{Y}^T \boldsymbol{X} (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{X} = \boldsymbol{Y}^T \boldsymbol{X} - \boldsymbol{Y}^T \boldsymbol{X} = \boldsymbol{0}$$

Estimators of Var and SD (Replace σ^2 with MSE)

$$s^{2}(\hat{\beta}_{1}) = \frac{MSE}{S_{XX}}$$

$$s(\hat{\beta}_{1}) = \sqrt{\frac{MSE}{S_{XX}}}$$

$$s^{2}(\hat{\beta}_{0}) = MSE\left(\frac{1}{n} + \frac{\bar{X}^{2}}{S_{XX}}\right)$$

$$s(\hat{\beta}_{0}) = \sqrt{MSE\left(\frac{1}{n} + \frac{\bar{X}^{2}}{S_{XX}}\right)}$$

$$s^2(\widehat{\boldsymbol{\beta}}) = (\boldsymbol{X}^T \boldsymbol{X})^{-1} MSE$$

$$s(\widehat{\boldsymbol{\beta}}) = \sqrt{(\boldsymbol{X}^T\boldsymbol{X})^{-1}MSE}$$

If
$$s^2(\hat{\beta}) = (X^T X)^{-1} MSE = \begin{bmatrix} \frac{MSE}{n} + \frac{\bar{X}^2 MSE}{\sum (X_i - \bar{X})^2} & \frac{-\bar{X}MSE}{\sum (X_i - \bar{X})^2} \\ \frac{-\bar{X}MSE}{\sum (X_i - \bar{X})^2} & \frac{MSE}{\sum (X_i - \bar{X})^2} \end{bmatrix}$$
, then $s^2(\hat{\beta}_0) = \frac{MSE}{n} + \frac{\bar{X}^2 MSE}{\sum (X_i - \bar{X})^2}$, $s^2(\hat{\beta}_1) = \frac{MSE}{n} + \frac{\bar{X}^2 MSE}{n} + \frac{\bar{X}^2$

$$\frac{MSE}{\sum (X_i - \bar{X})^2}, \ s(\hat{\beta}_0, \hat{\beta}_1) = \frac{-\bar{X}MSE}{\sum (X_i - \bar{X})^2}$$

Sum Square	$SSTO = S_{YY} = \sum (Y_i - \bar{Y})^2$	$SSTO = \sum (Y_i - \overline{Y})^2 = \sum Y_i^2 + n\overline{Y}^2 = Y^T Y - n\overline{Y}^2$
and Mean Square	$SSE = \sum \hat{\varepsilon}_i^2 = \sum (Y_i - \hat{Y}_i)^2$	$SSE = \sum (Y_i - \hat{Y}_i)^2 = (Y - \hat{Y})^T (Y - \hat{Y}) = (Y - X\hat{\beta})^T (Y - X\hat{\beta}) = Y^T Y - \hat{\beta}^T X^T Y$
	$SSR = \sum (\hat{Y}_i - \overline{Y})^2 \text{ (SSTO = SSE + SSR)}$	$SSR = \sum (\hat{Y}_i - \bar{Y})^2 = SSTO - SSE = \hat{\beta}^T X^T Y - n\bar{Y}^2 (SSTO = SSE + SSR)$
	$MSE = \frac{SSE}{df(SSE)} = \frac{SSE}{n-2}$ (unbiased estimator of σ^2)	$MSE = \frac{SSE}{df(SSE)} = \frac{SSE}{n-p}$ (unbiased estimator of σ^2)
	$MSR = \frac{SSR}{df(SSR)} = SSR$	$MSR = \frac{SSR}{df(SSR)}$
	$MSTO = \frac{SSTO}{df(SSTO)} = \frac{SSTO}{n-1}$	$MSTO = \frac{SSTO}{df(SSTO)}$
	$E(SSE) = (n-2)\sigma^2$	$E(SSE) = (n - p) \sigma^2$
	$E(MSE) = \sigma^2$	$E(MSE) = \frac{E(SSE)}{n-n} = \sigma^2$
	$E(MSR) = \sigma^2 + \beta_1^2 \sum_{i=1}^{2} (X_i - \bar{X})^2$	n p
Central Limit	If the data are non-normal, we need the sample size n	≥ 30 to make inference.
Theorem	If the data are normal, no requirement on sample size.	
Hypothesis	1) $H_0: \beta = c$, $H_1: \beta \neq c$, $\alpha = 0.05$ (two-sided)	
Testing	Step 1: Compute the t-statistic: $t^* = \frac{\widehat{\beta} - c}{s(\widehat{\beta})}$.	
	Step 2: Rejection Region rule:	
	Reject H_0 if $ t^* > t(1 - \frac{\alpha}{2}; n - 2)$.	
	Step 3: Make conclusion, whether reject H_0 .	
	2) $H_0: \beta = c, H_1: \beta > c, \alpha = 0.05$ (one-sided)	
	Step 1: Compute the t-statistic: $t^* = \frac{\hat{\beta} - c}{s(\hat{\beta})}$.	
	Step 2: Rejection Region rule:	
	Reject H_0 if $t^* > t(1-\alpha; n-2)$.	
	Step 3: Make conclusion, whether reject H_0 .	
	3) $H_0: \beta = c, H_1: \beta < c, \alpha = 0.05$ (one-sided)	
	Step 1: Compute the t-statistic: $t^* = \frac{\widehat{\beta} - c}{s(\widehat{\beta})}$.	
	Step 2: Rejection Region rule:	

	Reject H_0 if $t^* < -t(1-\alpha; n-2)$.
	Step 3: Make conclusion, whether reject H_0 .
	## When p-value $< \alpha$, we can reject H_0 .
	## When calculating p-value for two-sided test, we should double the value we got from the table.
P-value	P-value is the probability you observe the test statistic and more extreme than test statistic under the null hypothesis H_0 .
F-test	How to test whether two models differ or not? Use F-test. Comparing the MSE from these two models by using F-test.
	1) t-distribution
	t-distribution with df=v defined as the distribution of random variable T:
	$T = \frac{Z}{\sqrt{\frac{V}{v}}}$, where Z is a standard normal with mean 0 and variance 1; V has c chi-squared distribution with df=v; Z and V are independent. Since $\hat{\beta}$
	$(X^TX)^{-1}X^TY$, and it is a linear combination of Y , so $\widehat{\beta} \sim N(\beta, \sigma^2(X^TX)^{-1})$. For a single $\widehat{\beta}_i$, $i = 1,, p$, $\widehat{\beta}_i = N(\beta_i, \sigma^2(X^TX)_{ii}^{-1})$
	Then the Z-score (standardization) is $\sqrt{\frac{\hat{p}_i - p_i}{\sqrt{\sigma^2 (X^T X)_{ii}}^{-1}}} \sim N(0,1), i = 1,, p \text{ (or } p+1 \text{ if you include the intercept)}$
	*2) Chi-square distribution
	$\frac{Y^{T}(I-H)Y}{\sigma^{2}} \sim X^{2}(df = n-p) \text{ , where } n-p = trace(I-H). \text{ Let } V = \frac{Y^{T}(I-H)Y}{\sigma^{2}}.$
	Now we can get $T = \frac{Z}{\sqrt{\frac{V}{v}}} = \frac{\frac{\hat{\beta}_i - \beta_i}{\sqrt{\sigma^2 (X^T X)_{ii}}^{-1}}}{\sqrt{\frac{Y^T (I - H)Y}{\sigma^2 (n - p)}}} = \frac{\frac{\hat{\beta}_i - \beta_i}{\sqrt{(X^T X)_{ii}}^{-1}}}{\sqrt{\frac{Y^T (I - H)Y}{(n - p)}}} = \frac{\hat{\beta}_i - \beta_i}{\sqrt{MSE(X^T X)_{ii}}^{-1}} \sim t(df = n - p), i = 1,, p.$
	3) F-distribution with df_1 and df_2 degrees of freedom is the distribution of
	$F = \frac{\frac{S_1}{d_1}}{\frac{S_2}{d_2}} = \frac{\frac{Y^T(I-H_1)Y}{\sigma^2(n-m)}}{\frac{Y^T(I-H_2)Y}{\sigma^2(n-p)}} = \frac{\frac{Y^T(I-H_1)Y}{(n-m)}}{\frac{Y^T(I-H_2)Y}{(n-p)}} = \frac{MSE_1}{MSE_2} \sim F(df_1 = n - m, df_2 = n - p) $ (when two models are independent)
Confidence	A $(1-\alpha)100\%$ confidence interval for β_1 :
Interval (CI)	$\left[\hat{\beta}_1 \pm t \left(1 - \frac{\alpha}{2}; n - 2\right) s(\hat{\beta}_1)\right]$
	A $(1-\alpha)100\%$ confidence interval for β_0 :
	$\left \widehat{\beta}_0 \pm t \left(1 - \frac{\alpha}{2}; n - 2 \right) s(\widehat{\beta}_0) \right $
	Interpretation: We are $(1 - \alpha)100\%$ confident that the true value of $\hat{\beta}_0/\hat{\beta}_1$ is between xx and xx.

	## By default, $\alpha = 0.05$						
Estimation of	1) When $X = X_h$, we plug it into the fitted line:	1) When $X = X_h = c$, we let $X_h = \begin{bmatrix} 1 \\ c \end{bmatrix}$ and plug its transpose X_h^T into the fitted line:					
Mean	$\hat{Y}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h$	When $X = X_h = c$, we let $X_h = \begin{bmatrix} c \end{bmatrix}$ and plug its transpose X_h into the integral.					
Response at	2) Now we should get $s(\hat{Y}_h)$:	$\hat{Y}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h = X_h^T \hat{\beta}$					
$X = X_h$ (CI)	$s^{2}(\hat{Y}_{h}) = \left[\frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{S_{XX}}\right] MSE \implies s(\hat{Y}_{h}) =$	2) Now we should get $s(\hat{Y}_h)$:					
		$\boxed{s^2(\hat{Y}_h) = X_h^T s^2(\hat{\beta}) X_h = X_h^T (X^T X)^{-1} M S E X_h} \implies s(\hat{Y}_h) = \sqrt{s^2(\hat{Y}_h)}$					
	$\sqrt{s^2(\hat{Y}_h)}$	3) A $(1-\alpha)100\%$ confidence interval for the mean response at X_h is given by:					
	3) A $(1 - \alpha)100\%$ confidence interval for the mean response at X_h is given by:	$\widehat{Y}_h \pm t(1 - \frac{\alpha}{2}; n - 2)s(\widehat{Y}_h)$					
	$\widehat{Y}_h \pm t(1 - \frac{\alpha}{2}; n - 2)s(\widehat{Y}_h)$	Interpretation: We are $(1 - \alpha)100\%$ confident that the mean value of Y when $X = X_h$ is between xx and xx.					
	Interpretation: We are $(1 - \alpha)100\%$ confident that	## By default, $\alpha = 0.05$					
	the mean value of Y when $X = X_h$ is between xx						
	and xx.						
	## By default, $\alpha = 0.05$						
Prediction	1) When $X = X_h$, we plug it into the fitted line:	1) When $X = X_h = c$, we let $X_h = \begin{bmatrix} 1 \\ c \end{bmatrix}$ and plug its transpose X_h^T into the fitted line:					
Interval (PI)	$\hat{Y}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h$	-6-					
	2) Now we should get $s(\hat{Y}_n)$:	$\hat{Y}_h = \hat{\beta}_0 + \hat{\beta}_1 X_h = X_h^T \hat{\beta}$					
	$s^{2}(pred) = \left[1 + \frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{S_{XX}}\right] MSE$	2) Now we should get $s(\hat{Y}_h)$:					
		$s^{2}(pred) = MSE + s^{2}(\widehat{Y}_{h}) = MSE + X_{h}^{T}s^{2}(\widehat{\beta})X_{h} = MSE + X_{h}^{T}(X^{T}X)^{-1}MSEX_{h}$					
	$= MSE + s^2(\hat{Y}_h)$	$\Rightarrow s(pred) = \sqrt{s^2(pred)}$					
	$ => s^2(pred) = \sqrt{s^2(pred)}$	3) A $(1-\alpha)100\%$ confidence interval for the mean response at X_h is given by:					
	3) A $(1-\alpha)100\%$ confidence interval for the						
	mean response at X_h is given by:	$\left[\widehat{Y}_h \pm t(1-\frac{\alpha}{2};n-2)s(pred)\right]$					
	$\widehat{Y}_h \pm t(1 - \frac{\alpha}{2}; n - 2)s(pred)$	Interpretation: We are $(1 - \alpha)100\%$ confident that the predicted value of Y when $X = X_h$ is between xx and xx.					
	Interpretation: We are $(1 - \alpha)100\%$ confident that	## By default, $\alpha = 0.05$					
	the predicted value of Y when $X = X_h$ is between						
	xx and xx.						
	## By default, $\alpha = 0.05$						
Confidence	A $(1-\alpha)100\%$ confidence band for the regression	line is given by $\hat{Y}_h \pm Ws(\hat{Y}_h)$, where $W = \sqrt{2F(1-\alpha;2;n-2)}$. (F-distribution)					

Band						
ANOVA	For simple linea	ar regress	sion:			
		df	Sum of square	Mean square	F ratio	P-value
	Regression	1	SSR	MSR	$\frac{MSR}{MSE}$ or $(t^*)^2$	XXX
	Error	n	SSE	MSE		
	Total	n+1	SSTO	MSTO		
Coefficient of Determination	$1) R^2 = \frac{SSR}{SSTO} =$	$=1-\frac{SS}{SST}$	<u>E</u> 'O			
	2) Interpretation	n: We can	n say $R^2\%$ of the va	ariability in Y car	be explained by	X.
	$3) R_{adj}^2 = \frac{MS}{MST}$	$\frac{R}{r_O} = 1 -$	MSE MSTO			
	4) R^2 is at leas	st as large	e as R_{adi}^2 .			
	$5) \ 0 \le R^2 \le 1$	Č				
	$6) r^2 = [corr($	$[X,Y)]^2$				
	7) R^2 is unit fr	ee (does	not depend on X or	Y)		
	8) $R^2 = 1$ mea	ans perfe	ct linear association	between X and	$Y(R^2 = 1 \Leftrightarrow SSE =$	$=0\Leftrightarrow \sum (Y_i -$
	9) $R^2 = 0$ mea	ans no lir	near association bet	ween X and Y. Ho	owever, a nonlinea	ır association
MSE is an unbiased	$SSE = \sum (Y_i - Y_i)^{-1}$	$(\hat{Y}_i)^2 = (1)^2$	$(\mathbf{Y} - \widehat{\mathbf{Y}})^T (\mathbf{Y} - \widehat{\mathbf{Y}})$			
estimator for	$\widehat{Y} = X\widehat{\beta} = X(X)$	$(TX)^{-1}X$	$^{T}Y = HY$			
σ^2	Plug $\widehat{Y} = HY$ is	into SSE	:			
	SSE = (Y - HY)	$(Y)^T (Y -$	HY)			
	= [(I - H)]		, -			
	$=Y^T(I-I)$	$H)^T(I -$	H) Y ## (I-H) is id	empotent		W1 CO
	$= Y^T (I - I)$	H)Y			## Expected	
	Get the expectat				Let Y be an	
	E(SSE) = E(Y')	•			$E(\mathbf{Y}) = \mu,$	
		,	$^{2}I] + (X\beta)^{T}(I - H)$, , ,	symmetric m	
	$=\sigma^2 tr$	r(I-H)	$+ \boldsymbol{\beta}^T X^T I X \boldsymbol{\beta} - \boldsymbol{\beta}^T$	$X^T H X \beta$	$E(\mathbf{Y}^T \mathbf{A} \mathbf{Y}) =$	$tr(\mathbf{A}\mathbf{Z}) + \mu$

$$= \sigma^2 (tr(I) - tr(H)) + \beta^T X^T X \beta - \beta^T X^T X (X^T X)^{-1} X^T X \beta$$

$$= \sigma^2 (n - p) + \beta^T X^T X \beta - \beta^T X^T X \beta$$

$$= \sigma^2 (n - p)$$
We know $MSE = \frac{SSE}{n - p}$, so $E(MSE) = \frac{E(SSE)}{n - p} = \frac{\sigma^2 (n - p)}{n - p} = \sigma^2$. As a result, we know that MSE is an unbiased estimator of σ^2 .

NOTICE:

- 1. Do not guarantee 100% correctness of this document.
- 2. Texts in red mean the correctness of the content is uncertain.
- 3. *, **, ***, ... mean something additional.
- 4. Texts begin with ## and in green mean notation.