Physique des marchés, TP3.1

Jeu de la minorité avec nombre variable d'agents

Le modèle le plus simple est défini de la façon suivante

- N_s spéculateurs possèdent chacun une stratégie $a_i^{\mu} \in \{-1, +1\}, i = 1, \dots, N_s, \mu = 1, \dots, P$.

 On ajoute de la prévisibilité à la main, en supposant que N_p autres agents utilisent leur stratégie à chaque pas de temps. De façon équivalent on peut considérer un contribution des producteurs constante pour un état μ donné, que l'on dénote Ω^{μ} . On peut tirer Ω^{μ} à partir d'une distribution $\mathcal{N}(0,N_p)$
- La stratégie du speculateur i est testée en temps réel et sa performance cumulée est assignée à un

$$U_i(t+1) = U_i(t) - a_i^{\mu(t)} A(t) - \varepsilon, \tag{1}$$

où $A(t) = \Omega^{\mu(t)} + \sum_{i=1}^{N_s} n_i(t) a_i^{\mu(t)}, n_i = \Theta[U_i(t)]$ contrôle la participation de l'agent i au jeu, Θ est la fonction d'Heaviside, et ε est la performance minimale attendue de la stratégie pour que l'agent i la considère comme suffisamment performante et l'utilise.

— La dynamique de μ peut être considérée ou comme totalement aléatoire ou comme un encodage des derniers M signes de A(t); dans ce cas, sa dynamique est donnée par

$$\mu_{t+1} = (2\mu_t) \text{ MOD } 2^M + \theta[A(t)]$$

On vous demande de

- 1. programmer efficacement ce modèle dans le langage de votre choix (numpy, numba, cupy, tensorflow,
- 2. vérifier que l'amplitude de A(t) explose au cours du temps si le nombre de spéculateurs est suffisamment grand, à P et N_p fixes, en traçant A(t) en fonction de t;
- 3. mesurer les fluctuations $\sigma^2 = \langle A^2 \rangle$ et la prévisibilité $H_0 = \sum_{\mu} \langle A | \mu \rangle^2 / P$. Tracer σ^2 / P et H_0 / P en fonction de $n_s = N_s/P$ en fixant P et en faisant varier N_s (10-15 points suffisent). La moyenne est prise sur plusieurs réalisations du jeu pour chaque jeu de paramètres;
- 4. vérifier que $H_0 = 0$ n'est pas possible si $\varepsilon > 0$;
- 5. prendre $a_{i,\mu} \sim P(a)$ où P(a) est telle que E(a) = 0 et $E(a^2) = 1$. Voyez-vous des différences perceptibles?

Indications:

- 1. On notera que l'équation (1) peut être écrite sous forme vectorielle. En particulier, $a_i^{\mu} \equiv a_{i,\mu}$, une matrice d'éléments aléatoires -1 et +1.
- 2. L'état stationnaire du système est atteint après environ $200P/\varepsilon$. Effectuer les moyennes sur les $200P/\varepsilon$ itérations suivantes.
- 3. Moyenner les mesurables sur au moins 100 réalisations de $200P/\varepsilon$ chacune.
- 4. Il est toujours difficile d'explorer l'espace des paramètres. Étudier le cas $\varepsilon = 0.01 \ P \in [10,20]$ et $n_p = N_p / P = 1$