42729 - Cálculo II - SE

Teste 1

Data: 4 de novembro de 2022

Duração 90 minutos

Nome:

Curso: _____

NMec:

 N^0 folhas extra:

Questão	Cotação	Classificação
1	10	
2	5	
3	5	
Total:	20	

- Desligue o telemóvel.
- Não é permitido o uso de qualquer material eletrónico.
- Na questão 1 escreva V ou F consoante a afirmação é verdadeira ou falsa e justifique a sua resposta de modo sucinto: apenas uma frase. A resposta só é válida se for justificada.
- Nas restantes questões mostre os seus cálculos mas faça-o de modo claro e sucinto.

Transformadas de Laplace fundamentais

1.
$$\mathcal{L}\{e^{at}\}(s) = \frac{1}{s-a}, \ s > a, a \in \mathbb{R}$$

2.
$$\mathcal{L}\{\cos(at)\}(s) = \frac{s}{s^2 + a^2}, \ s > 0, a \in \mathbb{R}$$

3.
$$\mathcal{L}\{\text{sen}(at)\}(s) = \frac{a}{s^2 + a^2}, \ s > 0, a \in \mathbb{R}$$

4.
$$\mathcal{L}\{t^n\}(s) = \frac{n!}{s^{n+1}}, \ s > 0, n \in \mathbb{N}_0$$

5.
$$\mathcal{L}\{\cosh(at)\}(s) = \mathcal{L}\{\frac{e^{at} + e^{-at}}{2}\}(s) = \frac{s}{s^2 - a^2}, \ s > |a|, a \in \mathbb{R}$$

6.
$$\mathcal{L}\{\operatorname{senh}(at)\}(s) = \mathcal{L}\{\frac{e^{at} - e^{-at}}{2}\}(s) = \frac{a}{s^2 - a^2}, \ s > |a|, a \in \mathbb{R}$$

(10 val.)	a su	ocal próprio escreva V ou F consoante a afirmação é verdadeira ou falsa e justifique a resposta usando <u>apenas uma frase</u> (se precisar fazer cálculos use uma folha de unho).
	(a)	A equação diferencial $(y')^5 + xy'' = 0$ é uma EDO de ordem 5.
	(b)	A equação $x^2 dy = (x^2 + xy + y^2) dx$ é de variáveis separáveis.
	(c)	A relação (curva) $y(x)=x^2$ é uma solução (explícita) da equação diferencial $\frac{dy}{dx}+y=x(x+2).$
	(d)	A família de funções $y = \frac{e^x}{C - x}, \ C \in \mathbb{R}$, é a solução geral da EDO:
		$y' - y = -e^x y^2.$
	(e)	O problema $y''+y=0, y(0)=1, \ y(\frac{\pi}{2})=5$
		é um problema de valor inicial.
	(f)	Sabendo que toda a solução da equação diferencial $x^2y - 2xy' + 2y = 0$ pode ser escrita na forma $y = C_1x + C_2x^2$, a solução do problema
		$x^2y - 2xy' + 2y = 0$, $y(2) = 0$, $y(3) = 4$
		$é y(x) = \frac{4}{3}(x^2 - 2x).$

(g)	A equação diferencial $xy' + (1+x)y = x^3$ é uma EDO linear de primeirordem. Um fator integrante é $\mu(x) = e^{x^2+x}$.
(h)	A transformada de Laplace de uma função $f:[0,+\infty[\to \mathbb{R}$ é
	$\mathcal{L}{f}(s) = \int_0^{+\infty} f(t) e^{st} dt.$
(i)	A transformada de Laplace inversa de $G(s) = \frac{5s}{s^2 - 2s - 24}$ é $f(t) = 2e^{4t} + 3e^{-6t}$
(j)	Se $\mathcal{L}{f(t)}(s) = \frac{2}{(s-1)^3}$ então $\mathcal{L}{f(2t)} = \frac{8}{(s-1)^3}$.

Nas questões seguintes mostre todos os seus cálculos para ter cotações parciais.

- (5 val.) 2. Considere a equação diferencial de Bernoulli $-4y' + \frac{3}{x}y = y^5$, com x > 0.
 - (a) Encontre a solução geral desta equação.
 - (b) Qual é a solução particular que satisfaz y(4)=1? E a solução particular que satisfaz y(4)=-1? Indique o intervalo para x onde estas soluções particulares são definidas.
- (5 val.) 3. Considere a equação diferencial y'' + 4y' + 4y = 4x.

 Calcule a solução geral desta equação. Diga explicitamente qual é o método que usa.