Pattern Recognition ex1

1. X₁ dataset:

Error rate: all of them are equivalent

X1: Error Rate of Bayesian = 0.016000

X1: Error Rate of Euclidean = 0.016000

X1: Error Rate of Mahalanobis = 0.016000

2. X₂ dataset:

Error rate: Bayesian has the same rate as Mahalanobis, while Euclidean is higher.

X2: Error Rate of Bayesian = 0.008000

X2: Error Rate of Euclidean = 0.018000

X2: Error Rate of Mahalanobis = 0.008000

3. X₃ dataset:

Error rate: all of them are equivalent

>> ex1_3

X3: Error Rate of Bayesian = 0.077000

X3: Error Rate of Euclidean = 0.077000

X3: Error Rate of Mahalanobis = 0.077000

4. X₄ dataset:

Error rate: Bayesian has the same rate as Mahalanobis, while Euclidean is higher.

>> ex1_4

X4: Error Rate of Bayesian = 0.082000

X4: Error Rate of Euclidean = 0.132000

X4: Error Rate of Mahalanobis = 0.082000

5. X₅ dataset:

X₅' dataset: data imbalance is obvious since red is the majority.

Error rate:

```
>> exl_5
X5: Error Rate of Bayesian = 0.079000
X5_prime: Error Rate of Bayesian = 0.030000
X5: Error Rate of Euclidean = 0.079000
X5_prime: Error Rate of Euclidean = 0.053000
```

Conclusion:

On X_5 dataset, since the probability of three classes are the same, Bayesian and Euclidean classifier have equivalent error rate. Nevertheless, the three labels are not equiprobable in X_5 ', Euclidean classifier should perform worse.

6. KNN

X₃ dataset:

Z dataset:

Error rate:

>> ex1_6

X3: Error Rate of KNN(k=1) = 0.122000
X3: Error Rate of KNN(k=11) = 0.089000

Plot:

Conclusion:

KNN collects k sample points from the training set which have the smallest distance with the current testing instance, and vote with these k classes to decide the final prediction.

We can see from the figure that k=1 model handle the margin area badly, while k=11 model smoothly drew the boundaries. The error rate also shows the same consequence.