EVALUACIÓN DE LÓGICA (1º – GM / GII) — 31 - 03 - 2020

76 T					
	m	h	r	Ω	٠

Titulación: \Box GM — \Box GII

El test vale 30 puntos. Tiempo 30 minutos. Cada respuesta acertada suma 1 puntos y si es incorrecta resta 0,5 puntos. La nota mínima de test es 0 puntos. Para contestar una cuestión escribe el cuadro correspondiente sólamente una de las tres respuestas posibles: (a), (b), (c). Una respuesta tachada se entiende que está anulada.

1	6	11
2	7	12
3	8	13
4	9	14
5	10	15
16	21	26
17	22	27
18	23	28
19	24	29
20	25	30

Señalar la única respuesta correcta de las tres posibles (a), (b) y (c) de cada cuestión del siguiente test e indícala en el cuadro correspondiente de la tabla.

- 1. La cadena de símbolos $((p \lor q) \to (\neg q \to p))$ formada a partir del alfabeto $\{p,q\}$
 - (a) es una proposición bien formulada
 - (b) no es una proposición bien formulada
 - (c) no se puede saber
- 2. La cadena de símbolos (($(p \leftrightarrow q) \land p) \land \neg q$) formada a partir del alfabeto $\{p,q\}$
 - (a) no es una proposición bien formulada
 - (b) no se puede saber
 - (c) es una proposición bien formulada
- 3. Sabiendo que $\bar{v}(q \rightarrow \neg p) = 0$ se puede asegurar que:
 - (a) $v(p) = 1 \ y \ v(q) = 0$
 - (b) v(p) = 1 y v(q) = 1
 - (c) v(p) = 0
- 4. Dada la proposición $P=(p\to q)\to ((q\vee \neg r)\to \neg p)$ y una interpretación principal v tal que v(p)=v(q)=0, para que $\bar{v}(P)=1$, ¿cuánto tiene que valer v(r)?
 - (a) Cualquier valor
 - (b) v(r) = 1
 - (c) v(r) = 0
- 5. Dada la proposición $P = \neg(p \to r) \to (q \lor r)$ y una interpretación principal v tal que v(p) = v(q) = 0, para que $\bar{v}(P) = 1$, ¿cuánto tiene que valer v(r)?
 - (a) Cualquier valor
 - (b) v(r) = 1
 - (c) v(r) = 0

6.	La proposición $p \to \neg p$ es una:
	(a) contradicción
	(b) tautología
	(c) contingencia
7.	La proposición $(p \lor q) \leftrightarrow (\neg q \to p)$ es una:
	(a) tautología
	(b) contradicción
	(c) contingencia
8.	La proposición $(p \to (q \lor p)) \land (p \to \neg q)$ es una:
	(a) contradicción
	(b) contingencia
	(c) tautología
9.	Si P es una contradicción y Q es una proposición cualquiera, entonces
	$P \to Q$ es una:
	(a) contradicción
	(b) contingencia
	(c) tautología
10.	Si P y Q son contingencias, entonces $P \wedge Q$ es siempre:
	(a) consistente
	(b) falsable
	(c) una tautología

- 11. La proposición $p \to (q \to r)$ es equivalente a:
 - (a) $(p \to q) \to r$
 - (b) $\neg p \lor (r \lor \neg q)$
 - (c) Ninguna de las dos
- 12. La proposición $\neg((p \to q) \lor \neg(\neg p \lor q))$ es equivalente a:
 - (a) una tautología
 - (b) una contradicción
 - (c) $\neg (p \rightarrow q)$
- 13. Sean las proposiciones $P=p \leftrightarrow q, \ Q=\neg(p \wedge \neg q),$ se cumple:
 - (a) $P \models Q$
 - (b) $Q \models P$
 - (c) $P \equiv Q$
- 14. Sea la proposición $P = p \vee \neg p$, se cumple:
 - (a) P es una cláusula
 - (b) P es una cláusula estándar
 - (c) P está en forma normal conjuntiva
- 15. Sea la proposición $P = p \vee \neg p$, entonces se cumple:
 - (a) P es una conjunción de literales
 - (b) P es una cláusula estándar
 - (c) P está en forma normal disyuntiva

- 16. Sean la proposiciones $P=p \to (q \to r)$ y $Q=(p \to q) \to r$, entonces se cumple:
 - (a) P es equivalente a Q
 - (b) P modela a Q
 - (c) Q modela a P
- 17. Sean la proposiciones $P=p \to (q \to r)$ y $Q=(p \to q) \to r$, entonces se cumple:
 - (a) $P \wedge Q$ es consistente
 - (b) $P \wedge Q$ es una tautología
 - (c) $P \wedge Q$ es una contradicción
- 18. Sea A un álgebra de Boole y sean $x,y\in A$. Una de las propiedades de absorción asegura que:
 - (a) $x \lor (x \land y) = y$
 - (b) $x \wedge (x \vee y) = y$
 - (c) $x \lor (x \land y) = x$
- 19. Sea A un álgebra de Boole y sea $x \in A, x \neq 1$, entonces se cumple:
 - (a) $x \land \neg x = 1$
 - (b) $x \wedge \neg x = 0$
 - (c) $x \wedge \neg x = \neg (x \wedge x)$
- 20. Sea A un álgebra de Boole y sean $x,y\in A$, tales que $0\neq x\neq 1$, $x\wedge y=0,\, x\vee y=1$, entonces se cumple:
 - (a) $y = \neg x$
 - (b) y = 0
 - (c) y = 1

- 21. Sea Γ un conjunto de proposiciones, $P \in \mathcal{P}$ y supongamos que $\Gamma \models P$. Entonces se cumple:
 - (a) $\Gamma \cup \{\neg P\}$ es un conjunto contradictorio
 - (b) $\Gamma \cup \{\neg P\}$ es un conjunto contradictorio si y sólo si se cumple la condición adicional de que las proposiciones de Γ sean cláusulas
 - (c) $\Gamma \cup \{\neg P\}$ es un conjunto contradictorio si y sólo si se cumple la condición adicional de que las proposiciones de Γ sean cláusulas estándar
- 22. Sea $\mathcal{P}(\mathcal{A})$ el conjunto de todas las proposiciones con alfabeto $\mathcal{A} \neq \emptyset$, $P \in \mathcal{P}(\mathcal{A})$. Entonces se cumple:
 - (a) $\mathcal{P}(\mathcal{A})$ no es un conjunto contradictorio
 - (b) $P \models \mathcal{P}(\mathcal{A})$
 - (c) $\mathcal{P}(\mathcal{A}) \models P$
- 23. Sea $\Gamma \subset \Gamma' \subset \mathcal{P}(\mathcal{A})$. Entonces se cumple:
 - (a) Si Γ' es contradictorio, entonces Γ es contradictorio
 - (b) Si Γ es contradictorio, entonces Γ' es contradictorio
 - (c) Si Γ es contradictorio si y sólo si $\Gamma' \setminus \Gamma$ es contradictorio
- 24. Sea $\Gamma = \{P_1, \dots, P_n\}, n > 1$. Entonces se cumple:
 - (a) Γ es contradictorio si y sólo si $P_1 \vee \cdots \vee P_n$ es una contradicción
 - (b) Γ es contradictorio si y sólo si $P_1 \vee \cdots \vee P_n$ es una tautología
 - (c) Γ es contradictorio si y sólo si $P_1 \wedge \cdots \wedge P_n$ es una contradicción
- 25. En cualquier álgebra de proposiciones se cumple que:
 - (a) un esquema de inferencia es una regla de inferencia
 - (b) toda regla de inferencia es un esquema de inferencia
 - (c) algunas reglas de inferencia no son esquemas de inferencia

- 26. Sea Γ un conjunto de proposiciones. Entonces se cumple:
 - (a) Si Γ es un conjunto nulo, entonces es contradictorio
 - (b) Si Γ es un conjunto nulo y $P \in \Gamma$, entonces $\neg P \in \Gamma$
 - (c) Si Γ es un conjunto contradictorio, entonces es un conjunto nulo
- 27. Sea Γ un conjunto finito no vacío de tautologías generadas por un alfabeto finito no vacío \mathcal{A} . Entonces se cumple:
 - (a) Γ es equivalente a un conjunto no vacío de cláusulas estándar
 - (b) Las proposiciones de Γ son cláusulas
 - (c) $\neg \Gamma = {\neg P | P \in \Gamma}$ es equivalente a un conjunto de cláusulas
- 28. Sea Γ un conjunto finito no vacío de cláusulas generadas por un alfabeto finito no vacío \mathcal{A} . Entonces se cumple:
 - (a) Si todos los literales de cada cláusula son positivos, entonces Γ es contradictorio
 - (b) Si todos los literales de cada cláusula son negativos, entonces Γ es contradictorio
 - (c) Si Γ es contradictorio, entonces existe una cláusula con un literal positivo y existe otra cláusula con un literal negativo
- 29. Sea Γ un conjunto finito no vacío de cláusulas generadas por un alfabeto finito no vacío \mathcal{A} . Entonces se cumple:
 - (a) Si Γ es contradictorio, cada interpretación es un contramodelo de alguna cláusula de Γ
 - (b) Si Γ es contradictorio, entonces cada átomo interviene en el mismo número de literales positivos que negativos
 - (c) Si Γ es contradictorio, entonces el número total de literales positivos de las cláusulas de Γ es igual que el número total de literales negativos de las cláusulas de Γ
- 30. Sea $\Gamma = \{p \to q, p, \neg q\}$ y sea P una proposición. Entonces se cumple:
 - (a) $\Gamma \cup \{P\}$ no es contradictorio
 - (b) $\Gamma \cup \{\neg P\}$ no es contradictorio
 - (c) $\Gamma \models P$

EVALUACIÓN DE LÓGICA (1º – GM / GII) — 01 - 04 - 2020

Nombre:

Titulación:

GM —
GII

Problemas (Cada problema vale 30 puntos. Tiempo 50 minutos)

Problema 1. Utilizar el método de resolución para validar el siguiente esquema de inferencia.

$$P3 \land P2 \land P1 \land Q2 \land Q1$$

$$P2 \land P1 \rightarrow A$$

$$P2 \land Q1 \rightarrow A$$

$$P3 \land A \rightarrow B$$

$$A \land Q2 \rightarrow T1$$

$$P1 \land Q1 \rightarrow H$$

$$T1 \land H \rightarrow T2$$

$$T1 \land T2 \land B$$

- Problema 2. Considerar las proposiciones $P=p \land \neg q,\ Q=\neg p \land q$ y el alfabeto $\mathcal{A}=\{p,q,r\}.$
 - a) Dar la forma normal conjuntiva de $P \vee Q$ respecto a \mathcal{A} .
 - b) Dar la forma normal disyuntiva de $P \vee Q$ respecto a \mathcal{A} .
 - c) Encontrar dos proposiciones X,Y tales que X tenga dos modelos, Y tenga dos modelos, $X \land (P \lor Q), Y \land (P \lor Q), X \land Y$ sean contradiciones y $X \lor Y \lor P \lor Q$ sea una taulotología.

	Indicar las respuestas del problema 2 en la siguientes filas:
a) FNC:	
b) FND:	
c) X	
Y	