Homework 3

ALICE SCHIRINÀ

4 giugno 2018

Consideriamo un sistema di molecole monoatomiche che interagiscono tramite il potenziale

$$U(r) = A \frac{\sigma e^{-r/\sigma}}{r}$$

quando $r < r_c$ e U(r) = 0 per $r > r_c$. Scegliamo il lato della scatola cubica L/σ in maniera tale che sia $\rho\sigma^3 = 0.5$ e utilizziamo unità ridotte, cioè

Unità ridotte
$$r^* = r/\sigma$$

$$t^* = t/\sigma \sqrt{A/m}$$

$$v^* = v\sqrt{m/A}$$

$$E^* = E/A$$

$$p^* = p\sigma^3/A$$

$$T^* = k_B T/A$$

Configurazione iniziale

Generiamo una configurazione in cui le molecole sono distribuite casualmente nella scatola di lato L/σ e con velocità anch'esse casuali per cui usiamo il comando RNG(-0.5, 0.5). In particolare, vogliamo che sia $\sum v^* = 0$. In generale, questo non accade per cui definiamo la quantità

$$P^* = \sum_{i=0}^N v_i^*$$

e ridefiniamo velocità ed energia cinetica come segue

$$v_i^{*'} = v_i^* - \frac{P^*}{N}$$

$$K^* = \sum_i \frac{1}{2} (v_i^{*'})^2$$

e infine scaliamo le velocità

$$\hat{v}_i^* = \alpha v_i^{*\prime}$$

dove

$$\alpha = \sqrt{\frac{0.8N}{K^*}}$$

In questo modo otteniamo particelle disposte casualmente nella scatola con velocità tali che la somma totale sia nulla e con energia cinetica per particella $K^* = 0.8$.

Con questa configurazione eseguiamo una simulazione utilizzando lo schema di Verlet per le velocità con passo temporale $\Delta t^* = 0.002$ e fermandoci a $t^* = 1$. Infine, scaliamo ancora una volta le velocità in maniera tale che $K^*/N = 1$. Questa è la nostra configurazione iniziale.

Partendo dalla stessa configurazione eseguiamo sei simulazioni ciascuna delle quali con passo tempo diverso

run	Δt
1	0.001
2	0.003
3	0.009
4	0.027
5	0.081
6	0.243

e arrestandoci a $t^*=25$. Mostriamo di seguito gli andamenti dell'energia cinetica per molecola, K^*/N , per le varie simulazioni. Come possiamo osservare dal grafico, l'energia nella simulazione con $\Delta t=0.243$ risulta essere instabile per cui eseguiamo la nostra analisi su tutte le simulazioni eccetto questa.

Divergenza della traiettoria