Strategické hry

Zadání

1. Strategická hra dvou hráčů je dána tabulkou:

	$ au_1$	$ au_2$	$ au_3$	$ au_4$
σ_1	2;0	3; 3	-3;1	0;1
σ_2	0;5	1; -1	2; 1	-1;2
σ_3	4; 1	-1;0	2;4	1;3

Nalezněte všechna Nashova equilibria této hry.

2. Je dána maticová hra s maticí hry

$$A = \begin{pmatrix} 2 & 3 & 2 & 2 \\ -1 & 5 & 2 & 0 \\ 3 & 1 & -2 & 3 \end{pmatrix}.$$

- (a) Nalezněte horní a dolní cenu hry.
- (b) Existují optimální strategie prvního a druhého hráče? Pokud ano, tak je všechny nalezněte.
- (c) Nalezněte všechna Nashova equilibria.
- 3. Je dána maticová hra s maticí hry

$$A = \begin{pmatrix} 3 & 4 & 1 \\ 4 & 3 & 5 \end{pmatrix}.$$

- (a) Existuje Nashovo equilibrium této hry?
- (b) Uvažme smíšené rozšíření $\Gamma(A)$ zadané maticové hry. Pomocí dvojice vzájemně duálních úloh lineárního programování nalezněte optimální strategii prvního hráče, druhého hráče a cenu hry $\Gamma(A)$.
- 4. Je dána maticová hra s maticí hry

$$A = \begin{pmatrix} 2 & 3 & 1 \\ 1 & 1 & 3 \end{pmatrix}.$$

- (a) Existuje Nashovo equilibrium této hry?
- (b) Uvažme smíšené rozšíření $\Gamma(A)$ zadané maticové hry. Pomocí dvojice vzájemně duálních úloh lineárního programování nalezněte optimální strategii prvního hráče, druhého hráče a cenu hry $\Gamma(A)$.
- 5. Je dáno smíšené rozšíření $\Gamma(A)$ maticové hry (jedná se o klasickou hru "Kámen, nůžky, papír") s maticí hry

$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$

Pomocí dvojice vzájemně duálních úloh lineárního programování nalezněte optimální strategii prvního hráče, druhého hráče a cenu hry $\Gamma(A)$.

Výsledky

- 1. Nashova equilibria jsou (σ_1, τ_2) a (σ_3, τ_3) .
- 2. Označme strategii prvního hráče odpovídající i-tému řádku matice A symbolem σ_i a strategii druhého hráče odpovídající j-tému sloupci matice A symbolem τ_i .
 - (a) $\underline{v} = \overline{v} = 2$.
 - (b) Jediná optimální strategie prvního hráče je σ_1 . Jediná optimální strategie druhého hráče je τ_3 .
 - (c) Existuje jediné Nashovo equilibrium, a to (σ_1, τ_3) .
- 3. (a) Ne.
 - (b) Optimální strategie prvního hráče je $\frac{1}{5}(2,3)^T$. Optimální strategie druhého hráče je $\frac{1}{5}(0,4,1)^T$. Cena hry je $v=\frac{17}{5}$.
- 4. (a) Ne.
 - (b) Optimální strategie prvního hráče je $\left(\frac{2}{3},\frac{1}{3}\right)^T$. Optimální strategie druhého hráče je $\left(\frac{2}{3},0,\frac{1}{3}\right)^T$. Cena hry je $v=\frac{5}{3}$.
- 5. Vektor $\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)^T$ je optimální strategie prvního a také druhého hráče. Cena hry je v=0.