Math 285 Midterm 3 Practice Exam Solution

- 1. (5 points) Find a solution to $y^{(4)} + y'' = 24t$.
 - **A.** $y = 4t^3 + 1$
 - B. $y = 6t^3 + 5t^2$
 - C. $y = 4t^2 + t$
 - D. $y = 4t^3 + t^2$
 - E. None of these

Solution: The characteristic equation is $\lambda^4 + \lambda^2 = \lambda^2(\lambda^2 + 1) = 0$. Thus, the roots are $\lambda = 0, i, -i$ and fundamental solutions to the homogeneous equation are $1, t, \cos t, \sin t$. By the method of undetermined coefficients, a particular solution is $Y = t^2(At + B)$. Since $Y^{(4)} + Y'' = 6At + 2B = 24t$, we have A = 4 and B = 0. Therefore, $Y = 4t^3$ is a particular solution.

- 2. (5 points) Find the smallest number λ such that $y'' + \lambda y = 0$ with $y'(0) = y'(\pi) = 0$ has a nontrivial solution.
 - A. 1
 - B. 0
 - C. $\frac{1}{2}$
 - D. π^2
 - E. None of these

Solution: If $\lambda = -\mu^2 < 0$, then $y(t) = c_1 e^{\mu t} + c_2 e^{-\mu t}$. By the boundary conditions, we get $c_1 = c_2 = 0$. Thus, if $\lambda < 0$, there is no nontrivial solution. If $\lambda = 0$, then y(t) = 1 is a solution. Thus 0 is the smallest number.

3. (5 points) Suppose that a function f(t) which is periodic of period 2π has the Fourier series

$$f(t) = \sum_{m=1}^{\infty} \frac{(-1)^m}{m^2 + 3m} \cos mt.$$

Evaluate the integral

$$\int_{-\pi}^{\pi} f(t) \cos 6t \, dt.$$

- A. $\frac{1}{54}$
- B. $\frac{1}{27}$ C. $\frac{\pi}{54}$
- D. $\frac{\pi}{27}$
- E. None of these

Solution: This follows from the fact that

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos mt \, dt = \frac{(-1)^m}{m^2 + 3m}.$$

4. (5 points) Consider the function f(t) defined on \mathbb{R} such that $f(t) = f(t+2\pi)$ and

$$f(t) = \begin{cases} 3, & -\pi \le t < 0, \\ e^{\pi^2}, & t = 0, \\ -1, & 0 < t < \pi. \end{cases}$$

Let S(t) be the Fourier series of f(t). What is S(0)?

- A. e^{π^2}
- B. 2
- C. 0
- **D.** 1
- E. None of these

Solution: This follows from the fact that f(0-)=3, f(0+)=-1, and

$$S(x) = \frac{1}{2}(f(x-) + f(x+)).$$

5. (5 points) Let f(t) be a function on [0,2] given by f(t)=2t. Find the Fourier sine series for f(t) of period 4.

A.
$$\sum_{m=1}^{\infty} a_m \sin\left(\frac{m\pi}{2}t\right) \text{ where } a_m = \frac{1}{2} \int_0^2 t \sin\left(\frac{m\pi}{2}t\right) dt.$$

B.
$$\sum_{m=1}^{\infty} a_m \sin\left(\frac{m\pi}{2}t\right) \text{ where } a_m = \frac{1}{2} \int_0^2 t \sin\left(\frac{m\pi}{2}t\right) dt.$$

C.
$$\sum_{m=1}^{\infty} a_m \sin\left(\frac{m\pi}{4}t\right) \text{ where } a_m = \int_0^2 t \sin\left(\frac{m\pi}{4}t\right) dt.$$

D.
$$\sum_{m=1}^{\infty} a_m \sin\left(\frac{m\pi}{2}t\right)$$
 where $a_m = 2\int_0^2 t \sin\left(\frac{m\pi}{2}t\right) dt$.

E.
$$\sum_{m=1}^{\infty} a_m \sin\left(\frac{m\pi}{4}t\right) \text{ where } a_m = \int_{-2}^{2} t \sin\left(\frac{m\pi}{4}t\right) dt.$$

Solution: In this case, L=2. The Fourier sine series of f is

$$S(x) = \sum_{m=1}^{\infty} a_m \sin\left(\frac{m\pi}{2}t\right)$$

where

$$a_m = \frac{2}{L} \int_0^L f(t) \sin\left(\frac{m\pi}{2}t\right) dt = 2 \int_0^2 t \sin\left(\frac{m\pi}{2}t\right) dt.$$

- 6. (5 points) Let f and g be functions defined on \mathbb{R} . Which one of the followings is NOT correct?
 - A. If f is even, then f' is odd.
 - B. The function $\sin 3t + \cos 2t$ is periodic with period 2π .
 - C. If f is even and g is odd, then f(x) + g(x) is even.
 - D. If f is even and g is odd, then $\int_{-4}^{4} f(x)g(x) dx = 0$.
 - E. If f is periodic with period 4 and f(x) = x for 0 < x < 2, then f(x) = x 4 for 4 < x < 6.

Solution:

- A. If f is even, then f(x) = f(-x). Taking the derivative of both sides, we get f'(x) = -f'(-x), which means f' is odd.
- B. Let $h(t) = \sin 3t + \cos 2t$, then $h(t + 2\pi) = \sin(3t + 6\pi) + \cos(2t + 4\pi) = \sin 3t + \cos 2t = h(t)$.
- C. If f = 1 and g = x, then f is even and g is odd but f(x) + g(x) is not even nor odd.
- D. If f is even and g is odd, then f(x)g(x) is odd and so $\int_{-4}^{4} f(x)g(x) dx = 0$.

- E. If 4 < x < 6, then 0 < x 4 < 2. Since f is periodic with period 4, we have f(x) = f(x 4) = x 4 for 4 < x < 6.
- 7. (5 points) Find a pair of ordinary differential equations from the partial differential equation $xu_{xx} + u_t = 0$ using the method of separation of variables.

A.
$$X''(x) + \lambda X(x) = 0$$
 and $T'(t) + \lambda x T(t) = 0$

B.
$$xX''(x) + \lambda X(x) = 0$$
 and $T'(t) - \lambda T(t) = 0$

C.
$$X''(x) + \lambda x X(x) = 0$$
 and $\lambda T'(t) - T(t) = 0$

D.
$$X''(x) - \lambda x X(x) = 0$$
 and $T'(t) - \lambda T(t) = 0$

E. None of these

Solution: Let u(x,t) = X(x)T(t), then $xu_{xx} + u_t = 0$ can be written as

$$x\frac{X''}{X} = -\frac{T'}{T} = -\lambda.$$

Thus, $xX''(x) + \lambda X(x) = 0$ and $T'(t) - \lambda T(t) = 0$.

8. (5 points) Consider the heat conduction problem

$$5u_{xx} = u_t, \quad 0 < x < 3,$$

 $u(0,t) = u(3,t) = 0, \quad u(x,0) = f(x)$

for some function f defined on [0,3]. Which one of the followings is correct?

- A. If $f(x) = \sin \pi x$, then the solution is $u(x,t) = e^{-5\pi^2 t} \sin \pi x$.
- B. If u(x,t) and v(x,t) are solutions, then u(x,t) + v(x,t) is also a solution.
- C. The thermal diffusivity is 3.
- D. The solution is

$$u(x,t) = \sum_{m=1}^{\infty} C_m e^{-\frac{5m^2\pi^2}{3}t} \sin\left(\frac{m\pi}{3}x\right)$$

for some C_m .

E. None of these.

Solution: Note that the solution is

$$u(x,t) = \sum_{m=1}^{\infty} C_m e^{-\frac{5m^2\pi^2}{9}t} \sin\left(\frac{m\pi}{3}x\right)$$

where

$$C_m = \frac{2}{3} \int_0^3 f(x) \sin\left(\frac{m\pi}{3}x\right) dx.$$

A. If $f(x) = \sin \pi x$, then

$$C_m = \frac{2}{3} \int_0^3 \sin \pi x \sin \left(\frac{m\pi}{3}x\right) dx = \frac{1}{3} \int_{-3}^3 \sin \pi x \sin \left(\frac{m\pi}{3}x\right) dx$$
$$= \begin{cases} 1, & m = 3, \\ 0, & m \neq 3. \end{cases}$$

- B. If u(x,t) and v(x,t) are solutions and f(x)=1, then $u(x,0)+v(x,0)=2\neq f(x)$.
- C. The thermal diffusivity is 5.
- D. The solution is

$$u(x,t) = \sum_{m=1}^{\infty} C_m e^{-\frac{5m^2\pi^2}{9}t} \sin\left(\frac{m\pi}{3}x\right)$$

for some C_m .

9. (5 points) What is the steady state solution v(x) for the following problem?

$$5u_{xx} = u_t,$$
 $0 < x < 6, t \ge 0,$
 $u(0,t) = 10,$ $u(6,t) = 2.$

A.
$$v(x) = \frac{5}{2}x - 1$$

B.
$$v(x) = 0$$

C.
$$v(x) = x + 5$$

D.
$$v(x) = x - 10$$

E.
$$v(x) = 10 - \frac{4}{3}x$$

Solution: The steady state solution v(x) satisfies

$$v_{xx} = 0,$$
 $v(0) = 10,$ $v(6) = 2.$

Thus, $v(x) = c_1 x + c_2$ and the boundary conditions yield $c_1 = -\frac{4}{3}$ and $c_2 = 10$.