Link layer, LANs: outline

- 5. I introduction, services 5.5 link virtualization:
- 5.2 error detection, correction
- 5.3 multiple access protocols
- **5.4** LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANS

- 5.5 link virtualization: MPLS
- 5.6 data center networking
- 5.7 a day in the life of a web request

Multiple access links, protocols

two types of "links":

- point-to-point
 - PPP for dial-up access
 - point-to-point link between Ethernet switch, host
- broadcast (shared wire or medium)
 - old-fashioned Ethernet
 - upstream HFC
 - 802.11 wireless LAN

shared wire (e.g., cabled Ethernet)

shared RF (e.g., 802.11 WiFi)

shared RF (satellite)

humans at a cocktail party (shared air, acoustical)

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference
 - collision if node receives two or more signals at the same time

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

analogy to human protocols

An ideal multiple access protocol (MAC)

given: broadcast channel of rate R bps desired features of the protocol:

- I. when one node wants to transmit, it can send at rate R.
- 2. when M nodes want to transmit, each can send at average rate R/M
- 3. fully decentralized:
 - no special node to coordinate transmissions
 - no synchronization of clocks, slots
- 4. simple

Ideal performance:

- I. No idle time (when there is traffic waiting)
- 2. No wasted time (collisions)
- 3. No access delay

MAC protocols: taxonomy

three broad classes:

- channel partitioning
 - divide channel into smaller "pieces" (time slots, frequency, code)
 - allocate piece to node for exclusive use
- random access
 - channel not divided, allow collisions
 - "recover" from collisions
- "taking turns"
 - nodes take turns, but nodes with more to send can take longer turns

Channel partitioning MAC protocols: TDMA

TDMA: time division multiple access

- access to channel in "rounds"
- each station gets fixed length slot (length = pkt trans time) in each round
- unused slots go idle
- example: 6-station LAN, 1,3,4 have pkt, slots 2,5,6 idle

Channel partitioning MAC protocols: FDMA

FDMA: frequency division multiple access

- channel spectrum divided into frequency bands
- each station assigned fixed frequency band
- unused transmission time in frequency bands go idle
- example: 6-station LAN, 1,3,4 have pkt, frequency bands 2,5,6 idle

Channel Partitioning MAC protocols: CDMA

CDMA: code division multiple access

- each station is assigned a different code
- each station uses its code to encode data bits
- stations can transmit simultaneously
- ❖ orthogonal codes → stations can transmit simultaneously

widely used in wireless

Channel Partitioning

- Pros
 - No collisions
 - Perfectly fair
- Cons
 - Reserved resources (slots, frequencies) can remain idle even if there is traffic waiting
 - Use fraction of the bandwidth
 - Startup delay (for TDMA)
 - Some traffic may get denied access, although there are idle resources
 - A-priori coordination between nodes needed

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no coordination among nodes (distributed)
- ❖ two or more transmitting nodes → "collision"
- random access MAC protocol specifies:
 - how each node detects collisions
 - how each node recovers from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - slotted ALOHA, "pure" ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Aloha

Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit I frame)
- nodes start to transmit only slot beginning
- nodes are synchronized
- if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - if collision: node retransmits frame in each subsequent slot with prob. p until success

Slotted ALOHA

Pros:

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons:

- ❖ Collisions → wasting slots
- idle slots → wasting slots
- clock synchronization
- nodes may be able to detect collision in less than time to transmit packet

Slotted ALOHA: input/output

Input:

- ❖ N=1,...: #nodes with many frames to send
- each node transmits in slot with probability p in [0,1]

Output:

- Throughput/efficiency:
 - = long-termfraction of successful slots
 - = prob. for one given slot lead to a successful transmission

* Total offered load: Np

Slotted ALOHA: low load regime

node 1 1 1

Input:

Low N: #nodes with many frames to send

Or

- each node transmits in slot with low prob. p
- Total offered load: Np
 - is low

Output:

- Throughput = offered load
 - low
 - No collisions
 - Almost all packets get through
 - But may be idle slots

Slotted ALOHA: congestion regime

Input:

High N: # nodes with many frames to send

Or

- each node transmits in slot with high prob. p
- * Total offered load: Np
 - is high

Output:

- low throughput
 - More (re)transmissions than slots
 - Collisions
 - Almost no packets get through

Slotted ALOHA: analysis

efficiency: long-run fraction of successful slots (assume many nodes, all with many frames to send)

- suppose: N nodes with many frames to send, each transmits in slot with probability p
- * prob that a given node has success in a slot = $p(1-p)^{N-1}$
- * Efficiency E(p,N) = prob thatany node has a success = $Np(1-p)^{N-1}$

- max efficiency: p*=I/N maximizes Np(I-p)^{N-I}
 - take derivative dE/dp=0
- for many nodes, take limit of Np*(I-p*)^{N-I} as N goes to infinity, gives:

max efficiency = 1/e = .36

at best: channel used for useful transmissions 36% of time!

Another 36% are empty and ~28% go to collisions

Pure (unslotted) ALOHA

- unslotted Aloha: simpler, no synchronization
- when frame first arrives
 - transmit immediately
- If the message collides, try sending "later"
 - Wait a random time ~= transmit in the next time frame w.p. p
- Q: is collision probability higher than in slotted Aloha?
 - A: frame sent at t_0 collides with other frames sent in $[t_0-1,t_0+1]$

Pure ALOHA efficiency

Assume that the prob. of a node transmitting at any given frame time is p.

P(success by given node) = P(node transmits) ·

P(no other node transmits in $[t_0-I,t_0]$ · P(no other node transmits in $[t_0-I,t_0]$

=
$$p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$$

= $p \cdot (1-p)^{2(N-1)}$

... choosing optimum $p^*=1/(2N-1)$ and then letting $N \longrightarrow \infty$ = 1/(2e) = 0.18

Even worse than slotted Aloha! This is the price for being distributed (no clock sync).

A different type of analysis for Aloha

- Finite and infinite population analysis
- http://en.wikipedia.org/wiki/ALOHAnet

Aloha and Slotted Aloha efficiency

Last time: Random access protocols

- when node has packet to send
 - transmit at full channel data rate R.
 - no coordination among nodes (distributed)
- ❖ two or more transmitting nodes → "collision"
- random access MAC protocol specifies:
 - how each node detects collisions
 - how each node recovers from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
 - ALOHA family: slotted ALOHA, "pure" ALOHA
 - CSMA family: CSMA, CSMA/CD, CSMA/CA

Higher Throughput

Fig. 3-5. Comparison of the channel utilization versus load for various random access protocols.

CSMA (carrier sense multiple access)

CSMA: listen before transmit:

if channel sensed idle: transmit entire frame

- if channel sensed busy, defer transmission
- human analogy: dont interrupt others!

- One would hope that CS eliminate collisions. It doesn't!
 - Because of protocol (other users synchronization)
 - Because of physics (sensing is not instantaneous)

CSMA: Carrier Sensing and Persistence

(1-) Persistent: defer transmission until channel becomes idle

P-Persistent: once the channel becomes idle, transmit with prob. p; or defer until next slot

(0-) Non-Persistent: defer transmission, sense again after a random time

Choice of p: throughput vs delay

CSMA collisions

- Sensing is not instantaneous: propagation delay means two nodes may not hear each other's transmission
- collision: entire packet transmission time wasted
 - distance & propagation delay play role in in determining collision probability

CSMA/CD (with collision detection)

CSMA/CD: carrier sensing, deferral as in CSMA

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection:
 - easy in wired LANs: measure signal strengths, compare transmitted, received signals
 - difficult in wireless LANs: received signal strength overwhelmed by local transmission strength
- human analogy: the polite conversationalist

CSMA/CD (collision detection)

CSMA collisions with/without CD

You are sure you "seized" the channel after 2d_{prop}

Ethernet CSMA/CD algorithm

- I. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!

- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}. NIC waits K·512 bit times, returns to Step 2
 - longer backoff interval with more collisions

CSMA/CD Algorithm

CSMA/CD principles

- CSMA: I-/p-/non- persistent
- CD
- Retransmission after exponential backoff:
 - Why random: to avoid synchronization
 - Why exponential: ~ TCP's multiplicative decrease
 - Why adjust after every collision: p essentially adapts to N
- Minimum frame=contention slot=512bits
 - = worst case RTT (for I0Mbps, length 2500m)

[Analysis of CSMA/CD]

- Cycles of: successful transmission, idle and contention
- Contention slot: 5>=2*(prop.delay)

Successful Tx time (in a cycle)

Channel efficiency=

Duration of a cycle

- Because analysis of exp. backoff is difficult
 - Ch.4, Problem 20's Simplification: k stations, each transmitting with prob. p in each slot [this looks like slotted Aloha]

CSMA/CD efficiency

- \star T_{prop} = max prop delay between 2 nodes in LAN
- \star t_{trans} = time to transmit max-size frame
- Result of analysis:

$$efficiency = \frac{1}{1 + 5t_{prop}/t_{trans}}$$

- efficiency goes to I
 - as t_{prop} goes to 0
 - as t_{trans} goes to infinity
- better performance than ALOHA
- * and simple, cheap, decentralized!

WiFi(802.11) vs. Ethernet (802.3)

- Both CSMA-based
- Collision detection: possible in Ethernet not on WiFi
- Collision avoidance in WiFi:
 - "transmit after you seize the channel"
 - Seize the channel through sensing in Ethernet
 - Seize the channel through RTS/CTS in WiFi
 - http://en.wikipedia.org/wiki/
 Carrier sense multiple access with collision avoidance

Complete the Diagram:

- The signal travels I unit distance in I unit time
- Frame=2*14=28 units
- Minislit=frame=28 units
- A wants to send a frame at time =0
- C wants to send a frame at time =7
- Assume instantaneous CD
- Protocol: CSMA/CD, Ipersistent, with exponential backoff
- Random numbers in [0,1] chosen by each station are given:
 - A: 0.45, 0.11, 0.71
 - C: 0.83, 0.41, 0.25

A picks 1st slot for retransmission (i.e., at time 17+0=17)

C picks 2nd slot for retransmission (i.e., at time 10+28=38)

[Example (final SII \rightarrow HW5)]

True or False: can these transmissions be generated by:

- Aloha? Slotted Aloha?
- CSMA? CSMA/CD? With exponential backoff?

[Example (final \$12 \rightarrow HW5)]

- 3. (20 Points) Random Access. Consider a slotted Aloha system, where the time slot equals the fixed duration of each packet. Assume that there are 4 stations A,B,C,D sharing the medium.
 - (a) Stations A,B,C,D receive one packet each from higher layers at times 1.3, 1.5, 2.6, 5.7 respectively. Show which transmissions take place when, according to the Slotted Aloha Protocol; describe all transmissions until all four packets have been successful. If needed, each station has access to the following sequence of random numbers, provided by a random number generator and drawn uniformly between 0 and 1:
 - Station A draws numbers: 0.31, 0.27, 0.78, 0.9, 0.9, 0.11, 0.22....
 - Station B draws numbers: 0.45, 0.28, 0.11, 0.83, 0.37, 0.22, 0.91....
 - Station C draws numbers: 0.1, 0.2, 0.3, 0.4, 0.5,
 - Station D draws numbers: 0.36, 0.77, 0.9, 0.1, 0.1, 0.1, 0.1, 0.83.....
 - (b) In slotted aloha, a station transmits in each time slot with a given probability. What probabilities would you assign to each of the four stations so as to:
 - i. maximize the efficiency of the protocol?
 - ii. maximize fairness among the four stations?
 - (c) Will the efficiency increase or decrease if we modify slotted aloha as follows:
 - i. Get rid of slots and allow stations to transmit immediately?
 - ii. Implement carrier sensing?
 - iii. Implement collision detection?
 - iv. Implement collision avoidance?

Summary of MAC protocols

- channel partitioning, by time, frequency or code
 - Time Division, Frequency Division
- random access (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- taking turns
 - Passing a token: FDDI, token ring
 - polling from central site: e.g. bluetooth
- Practical protocols mix and match these ideas
 - [E.g. protocols for cable internet access in 5.3.4]