

EMC TEST REPORT

(FULL COMPLIANCE)

Report Number: 102675709BOX-002 Project Number: G102675709

Report Issue Date: 11/21/2016

Model(s) Tested: WHITESTAR Signature Pro System

NGP680301 Containing Japan MIC and

US FCC compliant

Bluetooth Radio- 0100-5060 PCBA, REAR PANEL CONNECTOR, BT 2.0

Model(s) Partially Tested: None

Model(s) Not Tested but declared equivalent by the client: None

Standards: CFR47 FCC Part 15 Subpart C (15.247): 08/2016

RSS-247 Issue 1: 05/2015

Tested by:
Intertek Testing Services NA, Inc.
70 Codman Hill Road
Boxborough, MA 01719
USA

Client:
Abbott Medical Optics, Inc.

1700 E Saint Andrew PI Mail Station SA-2M
Santa Ana, CA 92705
USA

Report prepared by

Report reviewed by

Naga Suryadevara/EMC Engineer

Michael F. Murphy / Technical Team Leader, EMC

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Intertek

Report Number: 102675709BOX-002 Issued: 11/21/2016

Table of Contents

1	Introduction and Conclusion	
2	Test Summary	
3	Client Information	
4	Description of Equipment Under Test and Variant Models	5
5	System Setup and Method	7
6	Output Power and Human RF Exposure	8
7	20 dB and Occupied (99%) Bandwidth	30
8	Channel Separation	45
9	Number of Hopping Channels	49
10	Average Channel Occupancy Time	53
11	Out of Band and Band Edge Conducted Emissions	60
12	Transmitter Spurious Emissions	95
13	Receiver Spurious Emissions	102
14	Revision History	108

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test and Variant Models	
5	System Setup and Method	
6	Output Power and Human RF Exposure (CFR47 FCC Part 15 Subpart C (15.247): 08/2016 RSS-247 Issue 1: 05/2015 RSS-102 Issue 5: 03/2015)	Pass
7	Occupied (99%) and 20 dB Bandwidth (CFR47 FCC Part 15 Subpart C (15.247): 08/2016 RSS-247 Issue 1: 05/2015)	Pass
8	Channel Separation (CFR47 FCC Part 15 Subpart C (15.247): 08/2016 RSS-247 Issue 1: 05/2015)	Pass
9	Number of Hopping Channels (CFR47 FCC Part 15 Subpart C (15.247): 08/2016 RSS-247 Issue 1: 05/2015)	Pass
10	Average Channel Occupancy Time (CFR47 FCC Part 15 Subpart C (15.247): 08/2016 RSS-247 Issue 1: 05/2015	Pass
11	Out of Band Conducted Emissions (CFR47 FCC Part 15 Subpart C (15.247): 08/2016 RSS-247 Issue 1: 05/2015)	Pass
12	Out of Band Radiated Spurious Emissions (CFR47 FCC Part 15 Subpart C (15.247): 08/2016 RSS-247 Issue 1: 05/2015)	Pass
13	Transmitter Spurious Emissions (CFR47 FCC Part 15 Subpart C (15.247): 08/2016 RSS-247 Issue 1: 05/2015)	Pass

Non-Specific Radio Report Shell Rev. August 2015 Page 3 of 108 Company: Abbott Medical Optics, Inc. Model: WHITESTAR Signature Pro System NGP680301 Containing Japan MIC and US FCC compliant Bluetooth Radio- 0100-5060 PCBA, REAR PANEL CONNECTOR, BT

Intertek

Report Number: 102675709BOX-002 Issued: 11/21/2016

Radiated Emissions from Digital parts and Receiver

14 (CFR47 FCC Part 15 (15.109): 08/2016 ICES 003: 01/2016 and updated 06/2016) Pass

AC Mains Conducted Emissions

 $NA^{(1)}$

Revision History 15

(1) Not Applicable. The EUT does not have any direct connection to public power network. In normal use, EUT is installed inside the host unit and it is DC powered internally.

3 Client Information

This EUT was tested at the request of:

Client: Abbott Medical Optics, Inc.

1700 E Saint Andrew PI Mail Station SA-2M

Santa Ana, CA 92705

USA

Contact: Fred Lee Telephone: (714) 247-8578

Fax: None

Email: Fred.Lee@amo.abbott.com

4 Description of Equipment Under Test and Variant Models

Manufacturer: Abbott Medical Optics, Inc.

1700 E Saint Andrew PI Mail Station SA-2M

Santa Ana, CA 92705

USA

Equipment Under Test					
Description	Manufacturer	Model Number	Serial Number		
WHITESTAR Signature	Abbott Medical	0100-5060 revA	1631600002		
Pro System NGP680301	Optics, Inc.				
Containing Japan MIC and	-				
US FCC compliant					
Bluetooth Radio- 0100-					
5060 PCBA, REAR PANEL					
CONNECTOR, BT 2.0					

Receive Date:	08/22/2016
Received Condition:	Good
Type:	Production

Description of Equipment Under Test (provided by client)

The WHITESTAR Signature Advanced Control Pedal & Remote Control system consists of the Advanced Control Pedal (1RF module for a Foot Pedal control mounted in main system) and Remote Control Master 2.0 (2RF module for remote control of Monitor mounted in main system), Advanced Control Pedal Slave (3 RF module for a Foot Pedal control mounted outside of main system) and Remote Control Slave 2.0 (4RF module for remote control of Monitor mounted outside of main system).

The ¹RF module for a Foot Pedal control mounted in main system and ³RF module for a Foot Pedal control mounted outside of main system consists two National Semiconductor's LMX98XX series Bluetooth radios ICs (transceivers), operating in the 2.4 GHz frequency band. Only one transmitter can report the data to the host at any given time. This radio subsystem is used to communicate the footpedal control signal to the WHITESTAR Signature™ system for use in cataract surgery.

The ²RF module for remote control of Monitor mounted in main system and 4RF module for remote control of Monitor mounted outside of main system consists one National Semiconductor's LMX98XX series Bluetooth radios ICs (transceivers), operating in the 2.4 GHz frequency band. This radio subsystem is used to communicate the monitor control signal to the WHITESTAR Signature™ system for use in cataract surgery.

This report covers the ²RF module for remote control of Monitor mounted in main system and the 1RF module for a Foot Pedal control mounted in main system is covered in separate report #3184783MPK-001A.

³RF module for a Foot Pedal control mounted outside of main system and 4RF module for remote control of Monitor mounted outside of main system are already FCC and Industry Canada certified.

	Equipment Under Test Power Configuration				
Rated Voltage Rated Current			Rated Frequency	Number of Phases	
	5V/12V/24V	100mA/200mA	N/A	N/A	

Operating modes of the EUT:

	No.	o. Descriptions of EUT Exercising	
Γ	1	Transmit mode with Frequency hopping enabled.	
	2	Transmit mode with Frequency hopping disabled.	
	3	Receive mode	

Software used by the EUT:

I	Vo.	Descriptions of EUT Exercising	
	1	Tera Term Version 4.82	1

Radio/Receiver Characteristics		
Frequency Band(s)	2402 – 2480 MHz	
Modulation Type(s)	GFSK (FHSS)	
Maximum Output Power	Tx -1: 0.20137242499 mW	
	Tx -2: 0.1297179271 mW	
	Tx -1 + Tx -2: 0.33109 mW	
Test Channels	Low Channel – 2402 MHz	
	Mid Channel – 2441 MHz	
	High Channel – 2480 MHz	
Occupied Bandwidth	Tx-1: 952 kHz	
	Tx-2: 956 kHz	
Frequency Hopper: Number of Hopping	Tx-1: 79	
Channels	Tx-2: 79	
Frequency Hopper: Channel Occupancy	Tx-1: 0.354 sec	
Time	Tx-2: 0.379 sec	
Frequency Hopper: Max interval between		
two instances of use of the same channel	N/A	
MIMO Information (# of Transmit and		
Receive antenna ports)	2	
Equipment Type	Standalone	
ETSI LBT/Adaptivity	N/A	
ETSI Adaptivity Type	N/A	
ETSI Temperature Category (I, II, III)	N/A	
ETSI Receiver Category (1, 2, 3)	N/A	
Antenna Type and Gain	Omnidirectional Dipole, 2.2 dBi,	

Variant Models:

The following variant models were not tested as part of this evaluation, but have been identified by the manufacturer as being electrically identical models, depopulated models, or with reasonable similarity to the model(s) tested. Intertek does not make any claims of compliance for samples or variants which were not tested.

None

5 System Setup and Method

	Cables				
ID	Description	Length (m)	Shielding	Ferrites	Termination
1	USB to Serial Cable	1	None	None	Laptop

Support Equipment					
Description Manufacturer Model Number Serial Number					
Laptop HP		EliteBook 840	53G537057N		

5.1 Method:

Configuration as required by FCC CFR47 Part 15 Subpart C (15.247): 08/2016, RSS-247 Issue 1: 05/2015 RSS-102 Issue 5: 03/2015 and ANSI C63.1: 2013.

5.2 EUT Block Diagram:

6 Output Power and Human RF Exposure

6.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C (15.247), RSS 247 and RSS 102.

TEST SITE: EMC Lab - Intertek Lake Forest CA

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 380, and 440 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
001001'	Barometer/Humidity Control	Omega	iBTHX-W	0440775	04/22/2016	04/22/2017
000690'	Spectrum Analyzer, 9 KHz - 40 GHz	Rohde & Schwarz	FSP40	100027	01/11/2016	01/11/2017
CBLHF20						
12-5M-1'	5m 9kHz-40GHz Coaxial Cable - SET 1	Huber & Suhner	SF102	252676001	02/09/2016	02/09/2017

Software Utilized:

Name	Manufacturer	Version
None		

6.3 Results:

The sample tested was found to Comply. For systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, the maximum peak output power is 1 watt (30 dBm), for all other systems 0.125 W (21 dBm). The GUI board has 79 hopping channels.

Frequency	Data Rate	Tx-1 Output Power in dBm	Tx-2 Output Power in dBm	Tx-1 Output Power in mW	Tx-2 Output Power in mW
2402	DH5	-6.91	-9.12	0.20370420777	0.12246161993
2402	DH3	-6.96	-8.87	0.20137242499	0.1297179271
2402	DH1	-6.95	-8.97	0.20183663637	0.12676518659
2441	DH5	-11.23	-13.05	0.075335556373	0.04954501908
2441	DH3	-11.18	-13.07	0.076207901003	0.049317380395
2441	DH1	-11.21	-12.88	0.075683289502	0.051522864458
2480	DH5	-10.09	-11.89	0.097948998541	0.064714261575
2480	DH3	-9.99	-11.74	0.10023052381	0.066988460942
2480	DH1	-9.91	-11.73	0.10209394837	0.067142885293

Frequency	Data Rate	Total Output Power (Tx-1 + Tx-2) in mW	Limit
2402	DH5	0.326166	1 W
2402	DH3	0.33109	1 W
2402	DH1	0.328602	1 W
2441	DH5	0.124881	1 W
2441	DH3	0.125525	1 W
2441	DH1	0.127206	1 W
2480	DH5	0.162663	1 W
2480	DH3	0.167219	1 W

Non-Specific Radio Report Shell Rev. August 2015

Intertek

Report Number: 102675709BOX-002 Issued: 11/21/2016

Note:

- (1) The EUT's antenna has less than 6 dBi gain.
- (2) As per KDB 662911: For conducted testing of emissions from transmitters with multiple outputs in the same band.. The FCC's emission limits apply to the total of emissions from all outputs of the transmitter or of composite system transmitters. Thus, emission measurements from the transmitter outputs are summed before comparing measured emissions to the emission limit.

6.4 Setup Photographs:

6.5 Plots/Data:

TX-1 Low Channel 2402 MHz, Data rate DH5, O/P Power = -6.91 dBm

TX-1 Low Channel 2402 MHz, Data rate DH3, O/P Power = -6.96 dBm

TX-1 Low Channel 2402 MHz, Data rate DH1, O/P Power = -6.95 dBm

TX-1 Mid Channel 2441 MHz, Data rate DH5, O/P Power = -11.23 dBm

TX-1 Mid Channel 2441 MHz, Data rate DH3, O/P Power = -11.18 dBm

TX-1 Mid Channel 2441 MHz, Data rate DH1, O/P Power = -11.21 dBm

1 MHz/

Span 10 MHz

Center 2.441 GHz

TX-1 High Channel 2480 MHz, Data rate DH5, O/P Power = -10.09 dBm

TX-1 High Channel 2480 MHz, Data rate DH3, O/P Power = -9.99 dBm

TX-1 High Channel 2480 MHz, Data rate DH1, O/P Power = -9.91 dBm

TX-2 Low Channel 2402 MHz, Data rate DH5, O/P Power = -9.12 dBm

TX-2 Low Channel 2402 MHz, Data rate DH3, O/P Power = -8.87 dBm

Center 2.402 GHz 1 MHz/ Span 10 MHz

TX-2 Low Channel 2402 MHz, Data rate DH1, O/P Power = -8.97 dBm

TX-2 Mid Channel 2441 MHz, Data rate DH5, O/P Power = -13.05 dBm

TX-2 Mid Channel 2441 MHz, Data rate DH3, O/P Power = -13.05 dBm

TX-2 Mid Channel 2441 MHz, Data rate DH1, O/P Power = -12.88 dBm

TX-2 High Channel 2480 MHz, Data rate DH5, O/P Power = -11.89 dBm

TX-2 High Channel 2480 MHz, Data rate DH3, O/P Power = -11.74 dBm

TX-2 High Channel 2480 MHz, Data rate DH1, O/P Power = -11.73 dBm

Intertek

Report Number: 102675709BOX-002 Issued: 11/21/2016

Human RF Exposure

N·5

Maximum measured output power is 0.33109 mW @ 2402 MHz

FCC SAR Exemption per KDB 447498

a) For 100 MHz to 6 GHz and test separation distances ≤ 50 mm, the 1-g and 10-g SAR test exclusion thresholds are determined by the following:

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR, and ≤ 7.5 for 10-g extremity SAR, 30 where

f_(GHz) is the RF channel transmit frequency in GHz

= (0.33109/5)*(sqrt(2.402))

= 1.54983< 3.0 (below the limit SAR Exempt per FCC)

RSS 102 SAR Exemption

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance^{4,5}

Frequency	Exemption Limits (mW)				
(MHz)	At separation distance of ≤5 mm	At separation distance of 10 mm	At separation distance of 15 mm	At separation distance of 20 mm	At separation distance of 25 mm
≤300	71 mW	101 mW	132 mW	162 mW	193 mW
450	52 mW	70 mW	88 mW	106 mW	123 mW
835	17 mW	30 mW	42 mW	55 mW	67 mW
1900	7 mW	10 mW	18 mW	34 mW	60 mW
2450	4 mW	7 mW	15 mW	30 mW	52 mW
3500	2 mW	6 mW	16 mW	32 mW	55 mW
5800	1 mW	6 mW	15 mW	27 mW	41 mW

The exemption limits in Table 1 are based on measurements and simulations of half-wave dipole antennas at separation distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.

The measured maximum output power "0.33109 mW" is less than the limit @ 5mm seperation distance (4 mW) specified in the above table, hence the device is SAR exempt.

Intertek

Report Number: 102675709BOX-002 Issued: 11/21/2016

Test Personnel: Naga Suryadevara N 5 Test Date: 08/24/2016

Supervising/Reviewing Engineer:

(Where Applicable) N/A

FCC Part 15 Subpart C
Product Standard: (15.247) and RSS-247

12 VDC (System input 120

Input Voltage: VAC 60 Hz)

Pretest Verification: Yes Relative Humidity: 44 %

Atmospheric Pressure: 1003 mbars

Ambient Temperature: 22 °C

Limit Applied: See test report section 6.3

Deviations, Additions, or Exclusions: None

7 20 dB and Occupied (99%) Bandwidth

7.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C (15.247) and RSS 247.

TEST SITE: EMC Lab - Intertek Lake Forest CA

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 380, and 440 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
001001'	Barometer/Humidity Control	Omega	iBTHX-W	0440775	04/22/2016	04/22/2017
000690'	Spectrum Analyzer, 9 KHz - 40 GHz	Rohde & Schwarz	FSP40	100027	01/11/2016	01/11/2017
CBLHF20						
12-5M-1'	5m 9kHz-40GHz Coaxial Cable - SET 1	Huber & Suhner	SF102	252676001	02/09/2016	02/09/2017

Software Utilized:

Nam	е	Manufacturer	Version
None	е		

7.3 Results:

The sample tested was found to Comply.

Frequency	Data Rate	Occupied Bandwidth Tx-1	20 dB Bandwidth Tx-1
2402	DH5	936 kHz	816 kHz
2441	DH3	936 kHz	824 kHz
2480	DH1	952 kHz	908 kHz

Frequency	Data Rate	Occupied Bandwidth Tx-2	20 dB Bandwidth Tx-2
2402	DH3	932 kHz	824 kHz
2441	DH1	944 kHz	756 kHz
2480	DH1	956 kHz	812 kHz

7.4 Setup Photographs:

7.5 Plots/Data:

TX-1 Low Channel 2402 MHz, Data rate DH5, Occupied Bandwidth 936.00 kHz

TX-1 Low Channel 2402 MHz, Data rate DH5, 20dB Bandwidth 816.00 kHz

200 kHz/

Span 2 MHz

Center 2.401836 GHz

TX-1 Mid Channel 2441 MHz, Data rate DH3, Occupied Bandwidth 936.00 kHz

TX-1 Mid Channel 2441 MHz, Data rate DH3, 20dB Bandwidth 824.00 kHz

TX-1 High Channel 2480 MHz, Data rate DH1, Occupied Bandwidth 952.00 kHz

TX-1 High Channel 2480 MHz, Data rate DH5, 20dB Bandwidth 908.00 kHz

200 kHz/

Span 2 MHz

-80

-90

Center 2.479832 GHz

TX-2 Low Channel 2402 MHz, Data rate DH3, Occupied Bandwidth 932.00 kHz

TX-2 Low Channel 2402 MHz, Data rate DH3, 20 dB Bandwidth 824.00 kHz

TX-2 Mid Channel 2441 MHz, Data rate DH1, Occupied Bandwidth 944.00 kHz

TX-2 Mid Channel 2441 MHz, Data rate DH1, 20dB Bandwidth 756.00 kHz

TX-2 High Channel 2480 MHz, Data rate DH1, Occupied Bandwidth 956.00 kHz

TX-2 High Channel 2480 MHz, Data rate DH5, 20dB Bandwidth 812.00 kHz

Intertek

Report Number: 102675709BOX-002 Issued: 11/21/2016

Test Personnel: Naga Suryadevara N 5 Test Date: 08/24/2016

Supervising/Reviewing Engineer:

(Where Applicable) N/A

Pretest Verification: Yes

FCC Part 15 Subpart C
Product Standard: (15.247) and RSS-247

12 VDC (System input 120

Input Voltage: VAC 60 Hz)

Ambient Temperature: 22 °C

Relative Humidity: 44 %

Atmospheric Pressure: 1003 mbars

Limit Applied: See test report section 7.3

Deviations, Additions, or Exclusions: None

8 Channel Separation

8.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C (15.247) and RSS 247.

TEST SITE: EMC Lab - Intertek Lake Forest CA

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 380, and 440 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

8.2 Test Equipment Used:

	<u> </u>					
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
001001'	Barometer/Humidity Control	Omega	iBTHX-W	0440775	04/22/2016	04/22/2017
000690'	Spectrum Analyzer, 9 KHz - 40 GHz	Rohde & Schwarz	FSP40	100027	01/11/2016	01/11/2017
CBLHF20						
12-5M-1'	5m 9kHz-40GHz Coaxial Cable - SET 1	Huber & Suhner	SF102	252676001	02/09/2016	02/09/2017

Software Utilized:

Name	Manufacturer	Version
None		

8.3 Results:

The sample tested was found to Comply. Systems shall have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20-dB bandwidth of the hopping channel, whichever is greater.

The measured channel frequency separation is 1.002 MHz for both Tx-1 and Tx-2.

8.4 Setup Photographs:

8.5 Plots/Data:

Tx-2 Channel Frequency Separation

Test Personnel: Naga Suryadevara N 5

Supervising/Reviewing Engineer: (Where Applicable)

Product Standard: 12 VDC (System input 120 VAC 60 Hz)

Pretest Verification: Yes

Naga Suryadevara N 5

Test Date: 08/24/2016

Limit Applied: See test report section 8.3

Ambient Temperature: 22 °C

Relative Humidity: 44 %

Atmospheric Pressure: 1003 mbars

Deviations, Additions, or Exclusions: None

9 Number of Hopping Channels

9.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C (15.247) and RSS 247.

TEST SITE: EMC Lab - Intertek Lake Forest CA

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 380, and 440 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
001001'	Barometer/Humidity Control	Omega	iBTHX-W	0440775	04/22/2016	04/22/2017
000690'	Spectrum Analyzer, 9 KHz - 40 GHz	Rohde & Schwarz	FSP40	100027	01/11/2016	01/11/2017
CBLHF20						
12-5M-1'	5m 9kHz-40GHz Coaxial Cable - SET 1	Huber & Suhner	SF102	252676001	02/09/2016	02/09/2017

Software Utilized:

Name	Manufacturer	Version
None		

9.3 Results:

The sample tested was found to Comply. Systems operating in the 2400-2483.5 MHz band shall use at least 15 hopping channels.

Tx-1 and Tx-2 have 79 hopping channels.

9.4 Setup Photographs:

9.5 Plots/Data:

Tx-1 Number of Hopping Channels

*RBW 300 kHz *VBW 1 MHz

Non-Specific Radio Report Shell Rev. August 2015 Page 51 of 108 Company: Abbott Medical Optics, Inc. Model: WHITESTAR Signature Pro System NGP680301 Containing Japan MIC and US FCC compliant Bluetooth Radio- 0100-5060 PCBA, REAR PANEL CONNECTOR, BT 2.0

Tx-2 Number of Hopping Channels

*RBW 300 kHz *VBW 1 MHz

Test Personnel: Naga Suryadevara N 5 08/24/2016 Test Date: Supervising/Reviewing Engineer: (Where Applicable) FCC Part 15 Subpart C Product Standard: (15.247) and RSS-247 Limit Applied: See test report section 9.3 12 VDC (System input 120 Input Voltage: VAC 60 Hz) Ambient Temperature: 22 °C Pretest Verification: Yes Relative Humidity: 44 % Atmospheric Pressure: 1003 mbars

Deviations, Additions, or Exclusions: None

10 Average Channel Occupancy Time

10.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C (15.247) and RSS 247.

TEST SITE: EMC Lab - Intertek Lake Forest CA

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 380, and 440 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
001001'	Barometer/Humidity Control	Omega	iBTHX-W	0440775	04/22/2016	04/22/2017
000690'	Spectrum Analyzer, 9 KHz - 40 GHz	Rohde & Schwarz	FSP40	100027	01/11/2016	01/11/2017
CBLHF20						
12-5M-1'	5m 9kHz-40GHz Coaxial Cable - SET 1	Huber & Suhner	SF102	252676001	02/09/2016	02/09/2017

Software Utilized:

Name	Manufacturer	Version
None		

10.3 Results:

The sample tested was found to Comply. For systems operating in the 2400-2483.5 MHz band, the average time of occupancy on any channel shall not be greater than 0.4 second within a period of 0.4 second multiplied by the number of hopping channels employed

Since the radio employs 79 channels, Occupancy time was calculated during the period of 0.4 * 79 = 31.6 sec.

Tx-1 Occupancy Time (see plots in section 10.5) = 0.00236 * 15 *10 = 0.354 sec

Tx-2 Occupancy Time (see plots in section 10.5) = 0.00292 * 13 * 10 = 0.379 sec

10.4 Setup Photographs:

10.5 Plots/Data:

Tx-1 Channel Occupancy Time

Tx-1 Channel Occupancy Time

316 ms/

Center 2.439997 GHz

Tx-2 Channel Occupancy Time

Tx-2 Channel Occupancy Time

RBW 300 kHz

Center 2.44 GHz

316 ms/

Intertek

Report Number: 102675709BOX-002 Issued: 11/21/2016

Test Personnel: Naga Suryadevara N 5 Test Date: 08/24/2016

Supervising/Reviewing Engineer:

(Where Applicable) N/A

Pretest Verification: Yes

FCC Part 15 Subpart C
Product Standard: (15.247) and RSS-247

12 VDC (System input 120

Input Voltage: VAC 60 Hz)

Relative Humidity: 44 %

Atmospheric Pressure: 1003 mbars

Ambient Temperature: 22 °C

Limit Applied: See test report section 10.3

Deviations, Additions, or Exclusions: None

11 Out of Band and Band Edge Conducted Emissions

11.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C (15.247) and RSS 247.

TEST SITE: EMC Lab - Intertek Lake Forest CA

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 380, and 440 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
001001'	Barometer/Humidity Control	Omega	iBTHX-W	0440775	04/22/2016	04/22/2017
000690'	Spectrum Analyzer, 9 KHz - 40 GHz	Rohde & Schwarz	FSP40	100027	01/11/2016	01/11/2017
CBLHF20						
12-5M-1'	5m 9kHz-40GHz Coaxial Cable - SET 1	Huber & Suhner	SF102	252676001	02/09/2016	02/09/2017

Software Utilized:

Name	Manufacturer	Version
None		

11.3 Results:

The sample tested was found to Comply. In any 100 kHz bandwidth outside the EUT pass-band, the RF power shall be at least 20 dB below that of the maximum in-band 100 kHz emission.

All emissions measured were 20 dB below fundamental as indicated in the plots in sections 11.5.

11.4 Setup Photographs:

11.5 Plots/Data:

Tx-1 Low Channel 2402 MHz (DH5), In Band Emissions

Tx-1 Low Channel 2402 MHz (DH5), Out of band Emissions 30 MHz - 2.4 GHz

Tx-1 Low Channel 2402 MHz (DH5), Out of band Emissions 2.4835 GHz - 10 GHz

Tx-1 Low Channel 2402 MHz (DH5), Out of band Emissions 10 GHz - 25 GHz

Tx-1 Mid Channel 2441 MHz (DH3), In Band Emissions

Tx-1 Mid Channel 2441 MHz (DH3), Out of Band Emissions 30 MHz - 2.4 GHz

Tx-1 Mid Channel 2441 MHz (DH3), Out of Band Emissions 2.4835 GHz - 10 GHz

Tx-1 Mid Channel 2441 MHz (DH3), Out of Band Emissions 10 GHz - 25 GHz

Tx-1 High Channel 2480 MHz (DH1), In Band Emissions

Tx-1 High Channel 2480 MHz (DH1), Out of Band Emissions 30 MHz - 2.4 GHz

Tx-1 High Channel 2480 MHz (DH1), Out of Band Emissions 2.4 GHz - 10 GHz

Tx-1 High Channel 2480 MHz (DH1), Out of Band Emissions 10 GHz - 25 GHz

Tx -1, Emissions on Low Band Edge Fixed (DH5)

Tx -1, Emissions on Low Band Edge Hopping

Tx -1, Emissions on High Band Edge Fixed (DH1)

Tx -1, Emissions on High Band Edge Hopping

Start 2.475 GHz

2.5 MHz/

Stop 2.5 GHz

Tx-2 Low Channel 2402 MHz (DH3), In Band Emissions

Tx-2 Low Channel 2402 MHz (DH3), Out of band Emissions 30 MHz - 2.4 GHz

Tx-2 Low Channel 2402 MHz (DH3), Out of band Emissions 2.4835 GHz - 10 GHz

Tx-2 Low Channel 2402 MHz (DH3), Out of band Emissions 10 GHz - 25 GHz

Tx-2 Mid Channel 2441 MHz (DH1), In Band Emissions

Tx-2 Mid Channel 2441 MHz (DH1), Out of Band Emissions 30 MHz - 2.4 GHz

Tx-2 Mid Channel 2441 MHz (DH1), Out of Band Emissions 2.4835 GHz - 10 GHz

Page 84 of 108 Non-Specific Radio Report Shell Rev. August 2015 Company: Abbott Medical Optics, Inc. Model: WHITESTAR Signature Pro System NGP680301 Containing Japan MIC and US FCC compliant Bluetooth Radio- 0100-5060 PCBA, REAR PANEL CONNECTOR, BT 2.0

Tx-2 Mid Channel 2441 MHz (DH1), Out of Band Emissions 10 GHz - 25 GHz

Tx-2 High Channel 2480 MHz (DH1), In Band Emissions

Tx-2 High Channel 2480 MHz (DH1), Out of Band Emissions 30 MHz - 2.4 GHz

Tx-2 High Channel 2480 MHz (DH1), Out of Band Emissions 2.4835 GHz - 10 GHz

Tx-2 High Channel 2480 MHz (DH1), Out of Band Emissions 10 GHz - 25 GHz

Tx -2, Emissions on Low Band Edge Fixed (DH3)

Tx -2, Emissions on Low Band Edge Hopping

Tx -2, Emissions on High Band Edge Fixed (DH1)

Tx -2, Emissions on High Band Edge Hopping

Intertek

Report Number: 102675709BOX-002 Issued: 11/21/2016

Test Personnel: Naga Suryadevara N 5 Test Date: 08/24/2016

Supervising/Reviewing Engineer:

(Where Applicable) N/A

FCC Part 15 Subpart C
Product Standard: (15.247) and RSS-247

12 VDC (System input 120

Input Voltage: VAC 60 Hz)

Ambient Temperature: 22 °C

Pretest Verification: Yes Relative Humidity: 44 %

Atmospheric Pressure: 1003 mbars

Limit Applied: See test report section 11.3

Deviations, Additions, or Exclusions: None

12 Transmitter Spurious Emissions

12.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C (15.247) and RSS 247.

TEST SITE: 3m Semi-Anechoic Chamber at Intertek Lake Forest CA

Radiated emission measurements are performed in a 3 meter Semi-Anechoic Chamber. The chamber is a shielded enclosure used to control and maintain a predictable EMI environment within the test region. A lining of RF absorbing material (Absorber) and other anechoic materials are installed over all interior wall and ceiling surfaces as to completely shroud exposed metallic components and disrupt reflective properties. The ground plane is an exposed RF reflective surface. The turntable is flush mounted, 2 meters in diameter, and remotely controlled. The antenna mast can be positioned at 3 meters away from the turntable. The antenna mast is remote controlled and can lower/raise an antenna between 1 – 4 meters. The antenna mast can also rotate between horizontal and vertical polarizations.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.5 dB	6.3 dB
Radiated Emissions, 3m	1-18 GHz	4.7 dB	5.2 dB
Radiated Emissions, 1m	18-40 GHz	4.5 dB	-

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 \text{ dB}_{\mu}V$ AF = 7.4 dB/m

CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μV NF = Net Reading in $dB\mu V$

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \, dB_{\mu}V \, / \, 20)} = 39.8 \, \mu V/m$

12.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
001001'	Barometer/Humidity Control	Omega	iBTHX-W	0440775	04/22/2016	04/22/2017
001093'	Double Ridge Guide Horn Antenna	A.H. Systems Inc.	SAS-571	1513	02/12/2016	02/12/2017
000880'	Horn Antenna, 10-40 GHZ	ETS Lindgren	3116C	00153521	11/09/2015	11/09/2016
001517'	RF Cable 30Mhz - 18Ghz	Rohde & Schwarz	TSPR-B7	101528	07/01/2016	07/01/2017
001518'	RF Cable 30Mhz - 18Ghz	Rohde & Schwarz	TSPR-B7	101529	07/01/2016	07/01/2017
000690'	Spectrum Analyzer, 9 KHz - 40 GHz	Rohde & Schwarz	FSP40	100027	01/11/2016	01/11/2017
001147'	Bilog Antenna	TESEQ Gmbh	CBL 6112D	32852	10/28/2015	10/28/2016
			AMF-6D-			
001135'	Amplifier	Miteq	00501800-24-	1685147	04/15/2016	04/15/2017
001140'	EMI Test Receiver	Rohde & Schwarz	ESCI7	100825	02/22/2016	02/22/2017
001568'	Preamplifier 10 KHz - 1 GHz	Rohde & Schwarz	TS-PR1	102061	12/02/2015	12/02/2016
CBLHF20						
12-5M-1'	5m 9kHz-40GHz Coaxial Cable - SET 1	Huber & Suhner	SF102	252676001	02/09/2016	02/09/2017

Software Utilized:

Name	Manufacturer	Version
None		

12.3 Results:

The sample tested was found to Comply.

12.4 Setup Photographs:

Non-Specific Radio Report Shell Rev. August 2015

Company: Abbott Medical Optics, Inc. Model: WHITESTAR Signature Pro System NGP680301 Containing Japan MIC and US FCC compliant Bluetooth Radio- 0100-5060 PCBA, REAR PANEL CONNECTOR, BT 2.0

12.5 Plots/Data:

Both the transmitters set to transmit mode, 30 MHz - 1 GHz

Transmitter Spurious Emissions

Company: Abbott Medical Optics Inc. Antenna & Cables: LF Bands: LF

Model #: RPC Board Antenna: BilogAntenna1147Horizontal[10-28-2015].txt BilogAntenna1147Horizontal[10-28-2015].txt

Serial #: 1631600002 Cable(s): 1517 and 1518.bd NONE.

Engineers: Naga Suryadevara Location: 3 m chamber Barometer: 1001 Filter: NONE

Project #: G102675709 Date(s): 08/24/16

Standard: FCC Part 15 Subpart C Temp/Humidity/Pressure: 26.2/50/990

Receiver: R&S ESCI7 02/22/2017 Limit Distance (m): 3
PreAmp: DATA 001568.txt Test Distance (m): 3

PreAmp Used? (Y or N): Y Voltage/Frequency: As specified below Frequency Range: 30 MHz - 1 GHz

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

	Ant.			Antenna	Cable	Pre-amp	Distance					
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth	
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC
QP	V	58.390	56.74	12.06	0.43	30.69	0.00	24.55	40.00	-1.45	120/300 kHz	4
QP	Н	58.390	39.98	12.06	0.43	30.69	0.00	21.79	40.00	-18.21	120/300 kHz	
QP	V	144.070	44.51	16.80	0.82	29.88	0.00	32.26	43.50	-11.24	120/300 kHz	
QP	Н	144.070	39.51	16.80	0.82	29.88	0.00	27.26	43.50	-16.24	120/300 kHz	
QP	V	291.670	46.90	18.90	1.22	29.63	0.00	37.40	46.00	-8.60	120/300 kHz	
QP	Н	291.670	41.52	18.90	1.22	29.63	0.00	32.02	46.00	-13.98	120/300 kHz	
QP	V	443.800	33.48	22.48	1.53	29.82	0.00	27.67	46.00	-18.33	120/300 kHz	
QP	Н	443.800	31.87	22.48	1.53	29.82	0.00	26.06	46.00	-19.94	120/300 kHz	
QP	V	974.000	39.93	27.10	2.32	29.32	0.00	40.03	54.00	-13.97	120/300 kHz	RB
QP	Н	974.000	41.43	27.10	2.32	29.32	0.00	41.53	54.00	-12.47	120/300 kHz	RB

Both the transmitters set to transmit mode, 1 GHz - 25 GHz

Intertek

Transmitter Spurious Emissions

Company: Abbott Optical Inc Antenna & Cables: HF Bands: HF Model #: RPC Board Antenna: 1093H.txt 1093V.txt

Serial #: 1631600002 Cable(s): 001517.txt

Engineers: Naga Suryadevara Location: 3m Chamber Barometer: 1001 Filter: REA004

Project #: G102675709 Date(s): 08/25/16

Standard: FCC Part 15 Subpart C Temp/Humidity/Pressure: 24/48/1003

Receiver: R&S ESCI7 02/22/2017 Limit Distance (m): 3
PreAmp: Preamp 1135.txt Test Distance (m): 3

PreAmp Used? (Y or N): Y Voltage/Frequency: As specified below Frequency Range: 1-25 GHz

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Peak: PK_Quasi-Peak: QP_Average: AVG_RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW												
	Ant.			Antenna	Cable	Pre-amp	Distance				REA004	
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth	
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC
	Tx1 and Tx2= 2402 MHz											1
PK	V	2397.310	44.98	28.06	-2.02	0.00	0.00	71.02	74.00	-2.98	1/3 MHz	1
AVG	V	2397.310	25.12	28.06	-2.02	0.00	0.00	51.16	54.00	-2.84	1/3 MHz	1
PK	V	4804.000	78.58	32.93	-3.11	43.41	0.00	64.99	74.00	-9.01	1/3 MHz	RB
AVG	V	4804.000	62.21	32.93	-3.11	43.41	0.00	48.62	54.00	-5.38	1/3 MHz	RB
PK	Н	7206.000	68.21	36.50	-3.40	43.35	0.00	57.95	74.00	-16.05	1/3 MHz	
AVG	Н	7206.000	59.17	36.50	-3.40	43.35	0.00	48.91	54.00	-5.09	1/3 MHz	
PK	V	9608.000	61.31	38.36	-4.47	43.63	0.00	51.57	74.00	-22.43	1/3 MHz]
AVG	V	9608.000	47.21	38.36	-4.47	43.63	0.00	37.47	54.00	-16.53	1/3 MHz]
PK	V	12010.000	59.19	40.23	-4.58	45.34	0.00	49.49	74.00	-24.51	1/3 MHz	RB
AVG	V	12010.000	50.55	40.23	-4.58	45.34	0.00	40.85	54.00	-13.15	1/3 MHz	RB
PK	Н	14412.000	52.12	41.03	-5.47	43.74	0.00	43.94	74.00	-30.06	1/3 MHz	
AVG	Н	14412.000	46.98	41.03	-5.47	43.74	0.00	38.80	54.00	-15.20	1/3 MHz]
			No e	missions de	etected abo	ve this frequ	ency					1
				Tx1 ar	nd Tx2 = 24	41 MHz						1
PK	V	4882.000	72.19	33.10	-3.14	43.33	0.00	58.82	74.00	-15.19	1/3 MHz	RB
AVG	V	4882.000	60.18	33.10	-3.14	43.33	0.00	46.81	54.00	-7.20	1/3 MHz	RB
PK	V	7323.000	64.22	36.86	-3.48	42.99	0.00	54.60	74.00	-19.40	1/3 MHz	RВ
AVG	V	7323.000	58.37	36.86	-3.48	42.99	0.00	48.75	54.00	-5.25	1/3 MHz	RB
PK	Н	9764.000	53.19	38.50	-4.51	43.73	0.00	43.44	74.00	-30.56	1/3 MHz	1
AVG	Н	9764.000	49.17	38.50	-4.51	43.73	0.00	39.42	54.00	-14.58	1/3 MHz	1
PK	V	12205.000	50.79	39.75	-4.63	45.48	0.00	40.42	74.00	-33.58	1/3 MHz	RB
AVG	V	12205.000	42.54	39.75	-4.63	45.48	0.00	32.17	54.00	-21.83	1/3 MHz	RB
PK	V	14646.000	46.24	41.76	-5.54	43.67	0.00	38.78	74.00	-35.22	1/3 MHz	1
AVG	V	14646.000	39.86	41.76	-5.54	43.67	0.00	32.40	54.00	-21.60	1/3 MHz	1
			No e	missions de	etected abo	ve this frequ	ency					1
				T	X = 2480 M	Hz						1
PK	V	2483.500	46.32	28.34	-2.06	0.00	0.00	72.59	74.00	-1.41	1/3 MHz	RB
AVG	V	2483.500	25.18	28.34	-2.06	0.00	0.00	51.45	54.00	-2.55	1/3 MHz	RB
PK	V	4960.000	74.47	33.20	-3.17	43.32	0.00	61.18	74.00	-12.82	1/3 MHz	RB
AVG	V	4960.000	61.39	33.20	-3.17	43.32	0.00	48.10	54.00	-5.90	1/3 MHz	RB
PK	V	7440.000	66.24	36.83	-3.56	42.70	0.00	56.81	74.00	-17.19	1/3 MHz	RB
AVG	V	7440.000	58.87	36.83	-3.56	42.70	0.00	49.44	54.00	-4.56	1/3 MHz	RB
PK	Н	9920.000	62.18	38.66	-4.54	43.76	0.00	52.54	74.00	-21.46	1/3 MHz	1
AVG	Н	9920.000	54.46	38.66	-4.54	43.76	0.00	44.82	54.00	-9.18	1/3 MHz	1
PK	Н	12400.000	56.62	39.97	-4.74	45.31	0.00	46.54	74.00	-27.46	1/3 MHz	RB
AVG	H	12400.000	48.65	39.97	-4.74	45.31	0.00	38.57	54.00	-15.43	1/3 MHz	RB
	<u> </u>											
			No e	emissions de	etected abo	ve this frequ	ency]

Non-Specific Radio Report Shell Rev. August 2015 Page 100 of 108 Company: Abbott Medical Optics, Inc. Model: WHITESTAR Signature Pro System NGP680301 Containing Japan MIC and US FCC compliant Bluetooth Radio- 0100-5060 PCBA, REAR PANEL CONNECTOR, BT

Intertek

Report Number: 102675709BOX-002 Issued: 11/21/2016

Test Date: 08/24/2016 Test Personnel: Naga Suryadevara N 5 08/25/2016

Supervising/Reviewing

Engineer:

(Where Applicable)

FCC Part 15 Subpart C Product Standard: (15.247) and RSS-247

12 VDC (System input 120

Input Voltage: VAC 60 Hz)

Pretest Verification w/

Ambient Signals or

BB Source: Yes

Ambient Temperature: 26.2, 24 °C

Relative Humidity: 50, 48 %

Atmospheric Pressure: 990, 1003 mbars

Limit Applied: As specified

Deviations, Additions, or Exclusions: None

13 Receiver Spurious Emissions

13.1 Method

Tests are performed in accordance with FCC Part 15.209 and ICES 003.

TEST SITE: 3m Semi-Anechoic Chamber at Intertek Lake Forest CA

Radiated emission measurements are performed in a 3 meter Semi-Anechoic Chamber. The chamber is a shielded enclosure used to control and maintain a predictable EMI environment within the test region. A lining of RF absorbing material (Absorber) and other anechoic materials are installed over all interior wall and ceiling surfaces as to completely shroud exposed metallic components and disrupt reflective properties. The ground plane is an exposed RF reflective surface. The turntable is flush mounted, 2 meters in diameter, and remotely controlled. The antenna mast can be positioned at 3 meters away from the turntable. The antenna mast is remote controlled and can lower/raise an antenna between 1 – 4 meters. The antenna mast can also rotate between horizontal and vertical polarizations.

Measurement Uncertainty

Measurement	Frequency Range	Expanded Uncertainty (k=2)	Ucispr
Radiated Emissions, 10m	30-1000 MHz	4.5 dB	6.3 dB
Radiated Emissions, 3m	1-18 GHz	4.7 dB	5.2 dB
Radiated Emissions, 1m	18-40 GHz	4.5 dB	-

As shown in the table above our radiated emissions $U_{\it lab}$ is less than the corresponding $U_{\it CISPR}$ reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where $FS = Field Strength in dB_{\mu}V/m$

RA = Receiver Amplitude (including preamplifier) in $dB\mu V$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

 $RA = 52.0 \text{ dB}_{\mu}V$ AF = 7.4 dB/m

CF = 1.6 dB AG = 29.0 dB $FS = 32 dB\mu V/m$

To convert from $dB\mu V$ to μV or mV the following was used:

UF =
$$10^{(NF/20)}$$
 where UF = Net Reading in μV
NF = Net Reading in $dB\mu V$

Example:

FS = RA + AF + CF - AG =
$$52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

UF = $10^{(32 \, dB_{\mu}V \, / \, 20)} = 39.8 \, \mu V/m$

13.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
001001'	Barometer/Humidity Control	Omega	iBTHX-W	0440775	04/22/2016	04/22/2017
001093'	Double Ridge Guide Horn Antenna	A.H. Systems Inc.	SAS-571	1513	02/12/2016	02/12/2017
000880'	Horn Antenna, 10-40 GHZ	ETS Lindgren	3116C	00153521	11/09/2015	11/09/2016
001517'	RF Cable 30Mhz - 18Ghz	Rohde & Schwarz	TSPR-B7	101528	07/01/2016	07/01/2017
001518'	RF Cable 30Mhz - 18Ghz	Rohde & Schwarz	TSPR-B7	101529	07/01/2016	07/01/2017
000690'	Spectrum Analyzer, 9 KHz - 40 GHz	Rohde & Schwarz	FSP40	100027	01/11/2016	01/11/2017
001147'	Bilog Antenna	TESEQ Gmbh	CBL 6112D	32852	10/28/2015	10/28/2016
			AMF-6D-			
001135'	Amplifier	Miteq	00501800-24-	1685147	04/15/2016	04/15/2017
001140'	EMI Test Receiver	Rohde & Schwarz	ESCI7	100825	02/22/2016	02/22/2017
001568'	Preamplifier 10 KHz - 1 GHz	Rohde & Schwarz	TS-PR1	102061	12/02/2015	12/02/2016
CBLHF20						
12-5M-1'	5m 9kHz-40GHz Coaxial Cable - SET 1	Huber & Suhner	SF102	252676001	02/09/2016	02/09/2017

Software Utilized:

Name	Manufacturer	Version
None		

13.3 Results:

The sample tested was found to Comply.

13.4 Setup Photographs:

Non-Specific Radio Report Shell Rev. August 2015

Company: Abbott Medical Optics, Inc. Model: WHITESTAR Signature Pro System NGP680301 Containing Japan MIC and US FCC compliant Bluetooth Radio- 0100-5060 PCBA, REAR PANEL CONNECTOR, BT 2.0

13.5 Plots/Data:

Device Operating in Receive mode, 30 MHz - 1 GHz

Radiated Emissions

Company: Abbott Medical Optics Inc. Antenna & Cables: LF Bands: LF

Model #: RPC Board Antenna: BilogAntenna1147Horizontal(10-28-2015).txt BilogAntenna1147Horizontal(10-28-2015).txt

Serial #: 1631600002 Cable(s): 1517 and 1518.bt NONE.

Engineers: Naga Suryadevara Location: 3 m chamber Barometer: 1001 Filter: NONE

Project #: G102675709 Date(s): 08/24/16

Standard: FCC Part 15 Subpart C 15.209 Temp/Humidity/Pressure: 26.2/50/990

Receiver: R&S ESCI7 02/22/2017 Limit Distance (m): 3
PreAmp: DATA 001568.txt Test Distance (m): 3

PreAmp Used? (Y or N): Y Voltage/Frequency: 12 VDC Frequency Range: 30 MHz - 1 GHz

Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)
Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

Ant. Antenna Cable Pre-amp Distance Pol. I imit Detector Frequency Reading Factor Factor Factor Net Margin Bandwidth Loss (V/H) MHz dB(uV) dB(1/m) dB dΒ dΒ dB(uV/m) dB(uV/m) dΒ FCC Type QP 58.390 56.74 12.06 0.43 30.69 0.00 24.55 40.00 -1.45 120/300 kHz QP Η 58.390 39.98 12.06 0.43 30.69 0.00 21.79 40.00 -18.21 120/300 kHz

QP ٧ 144.070 44.51 16.80 0.82 29.88 0.00 32.26 43.50 -11.24 120/300 kHz QP Н 144.070 39.51 16.80 0.82 29.88 0.00 27.26 43.50 -16.24 120/300 kHz QP ٧ 291.670 46.90 18.90 1.22 29.63 0.00 37.40 46.00 -8.60 120/300 kHz QP Н 291.670 41.52 18.90 1.22 29.63 0.00 32.02 46.00 -13.98 120/300 kHz QP ٧ 443.800 33.48 22.48 29.82 0.00 27.67 46.00 -18.33 1.53 120/300 kHz QP Н 443.800 31.87 22.48 1.53 29.82 0.00 26.06 46.00 -19.94 120/300 kHz QP 974.000 39.93 27.10 29.32 40.03 54.00 -13.97 120/300 kHz Н 974.000 41.43 27.10 2.32 29.32 41.53 54.00 QP 0.00 -12.47 120/300 kHz RB

Device Operating in Receive mode, 1 GHz - 25 GHz

Intertek

Radiated Emissions

Company: Abbott Medical Antenna & Cables: Bands: HF Model #: RPC Board Antenna: 1093H.txt 1093V.txt Serial #: 1631600002 Cable(s): 001517.txt NONE. Engineers: Naga Suryadevara Location: 3 m chamber Barometer: 1001 Filter: None

Project #: G102675709 Date(s): 08/24/16

Standard: FCC Part 15 Subpart C 15.209 Temp/Humidity/Pressure: 24/48/1003

Receiver: R&S ESCI7 02/22/2017 Limit Distance (m): 3 PreAmp: preamp1135.txt Test Distance (m): 3

PreAmp Used? (Y or N): Υ Voltage/Frequency: As specified below Frequency Range: 1-25 GHz Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB) Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW

	Ant.			Antenna	Cable	Pre-amp	Distance				REA004	1
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth	
Type	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC
				R	eceive mod	le						1
PK	V	1236.580	68.32	24.64	-1.40	45.15	0.00	46.40	74.00	-27.60	1/3 MHz	RB
AVG	V	1236.580	55.19	24.64	-1.40	45.15	0.00	33.27	54.00	-20.73	1/3 MHz	RB
PK	V	2485.980	60.15	28.35	-2.06	44.64	0.00	41.80	74.00	-32.20	1/3 MHz	RB
AVG	V	2485.980	55.19	28.35	-2.06	44.64	0.00	36.84	54.00	-17.16	1/3 MHz	RB
PK	V	3120.360	56.28	30.61	-2.34	43.83	0.00	40.71	74.00	-33.29	1/3 MHz]
AVG	V	3120.360	48.17	30.61	-2.34	43.83	0.00	32.60	54.00	-21.40	1/3 MHz]
PK	Ι	7320.280	49.45	36.86	-3.48	43.00	0.00	39.84	74.00	-34.16	1/3 MHz	RB
AVG	Ι	7320.280	42.12	36.86	-3.48	43.00	0.00	32.51	54.00	-21.49	1/3 MHz	RB
PK	Н	12236.320	51.17	39.85	-4.65	45.49	0.00	40.89	74.00	-33.11	1/3 MHz	RB
AVG	H	12236.320	39.08	39.85	-4.65	45.49	0.00	28.80	54.00	-25.20	1/3 MHz	RB

Test Date: 08/24/2016 Test Personnel: Naga Suryadevara № 5 08/25/2016

Supervising/Reviewing Engineer:

(Where Applicable)

FCC Part 15 (15.209) and

Product Standard: **ICES 003**

12 VDC (System input 120

Input Voltage: VAC 60 Hz)

Pretest Verification w/ Ambient Signals or

> BB Source: Yes

Ambient Temperature: 26.2, 24 °C

Limit Applied: FCC 15.109 Class B

Relative Humidity: 50, 48 %

Atmospheric Pressure: 990, 1003 mbars

Deviations, Additions, or Exclusions: None

Intertek

Report Number: 102675709BOX-002 Issued: 11/21/2016

14 Revision History

Revision	Date	Report Number	Prepared	Reviewed	Notes
Level			Ву	Ву	
0	09/07/2016	102675709BOX-002	N.5	MFM 💯	Original Issue
1	10/04/2016	102675709BOX-002	N.5	MFM 💯	Updated model name
2	11/11/2016	102675709BOX-002	N.5	MFM 💯	Updated antenna gain
					,RF exposure
					calculation and added
					measurement
					uncertainty value for
					18-40 GHz.
3	11/21/2016	102675709BOX-002	N.5	MFM #	Added SAR
					Exemption Calculation