CSE 417 HW 8 Q1&2

Yang Zhang, 1030416, zhy9036@uw.edu

Problem 1

- (a) MaxCut can be testified in Polynomial time:
 Suppose given 2 sets of vertices **g1**, **g2** (which are no overlapping with each other), integer **k**, and a set of edges **e**. Then only need to spend **O(n)** time to loop over **e**, then counts the number of edges that have vertices both in **g1** and **g2**. Therefore MaxCut is in **NP**.
- (b) Algorithm for MaxCut:

```
globle k
func max cut(subset, index i, vertexes v, edges e):
     if i < len(v)
          subset.append(v[i])
          verify(subset, e)
          max cut(subset, i+1, v, e)
          subset.remove(v[i])
          verify(subset, e)
          max cut(subset, i+1, v, e)
     endif
endfunc
func verify(subset, edge):
     count = 0
     for e in edge:
          if subset only contains one vertex in e
               count++
          endif
     endfor
     if count >= k
          return subset
     endif
endfunc
```

Proof:

Since the above algorithm contains all the cases that can divide a graph into 2 parts, and verify every single case. Therefore, the algorithm is correct.

Running Time Analyze:

Each level of recursion reduce the size by 1 and there are n level of recursion. Therefore, the total time is n*(n-1)*(n-2)*...*1, which is $O(n^n)$

Problem 2

$$(x1 \lor x2 \lor x4) \land (x1 \lor \sim x2 \lor x3) \land (x2 \lor \sim x3 \lor \sim x4)$$

(a) shown as figure below:

(b) x1 = x2 = x3 = False, x4 = True

The indSet = $\{\sim x2, \sim x3, x4\}$

x1 doesn't show in the independent set, therefore x1 can be either True or False.

- 1) x1 = x2 = x3 = False, x4 = True
- 2) x1 = x4 = True, x2 = x3 = False

Both assignments satisfies the Boolean expression.

CSE 417 HW 8 Q3&4

Yang Zhang, 1030416, zhy9036@uw.edu

Problem 3

$$(x1 \lor x2 \lor x4) \land (x1 \lor \sim x2 \lor x3) \land (x2 \lor \sim x3 \lor \sim x4)$$
 (a) shown as table below:

	Variables				Clauses		
	x1 x	2 x3	x4	(x1 V x2 V x4)	(x1 V ~x2 V x3)	(x2 V ~x3 V ~x4)	
w1 (x1)	1 0	0	0	1	1	0	
w2 (~x1)	1 0	0	0	0	0	0	
w3 (x2)	1	1 0	0	1	0	1	
w4 (~x2)	1	1 0	0	0	1	0	
w5 (x3)		1	0	0	1	0	
w6 (~x3)		1	0	0	0	1	
w7(x4)			1	1	0	0	
w8(~x4)			1	0	0	1	
W9				1	0	0	
W10				1	0	0	
W11					1	0	
w12					1	0	
w13						1	
w14						1	
C	1	1 1	1	3	3	3	

(b) $x1 = True \rightarrow 1000 \ 110 \ (w1)$ $x2 = False \rightarrow 0100 \ 010 \ (w4)$ $x3 = False \rightarrow 0010 \ 001 \ (w5)$ $x4 = True \rightarrow 0001 \ 100 \ (w7)$

add above = 1111221 < 1111333, so the subset must contains slacks

There are four subsets:

Set1: {w1, w4, w5, w7, w9, w11, w13, w14} Set2: {w1, w4, w5, w7, w10, w11, w13, w14} Set3: {w1, w4, w5, w7, w9, w12, w13, w14} Set4: {w1, w4, w5, w7, w10, w12, w13, w14}

There is only one assignment:

x2 = x3 = Falsex1 = x4 = True

And it satisfy Boolean expression

Problem 4

- (a) Yes, because interval-scheduling problem is in NP and any problem in NP can be reduced to Vertex Cover.
- (b) Unknown, because it would resolve the question of whether P = NP

CSE 417 HW 8 Q5

Yang Zhang, 1030416, zhy9036@uw.edu

Problem 5

(a) This argument is **false.** The reason is that the argument only proofed that

$P \leq_p NP$

However, proofing P = NP also need to proof $NP \leq_p P$

- (b) This argument is **false.** The reason is that the transformation can be done in the length of ${\bf v}$ NOT IN u. Since KNAP is NP-complete, the length of ${\bf v}$ is also not in polynomial
- (c)