Домашня Робота з Рівнянь Математичної Фізики #2

Захаров Дмитро

5 жовтня, 2024

Зміст

1	Домашня Робота			
	1.1	Номер 2.1 (4)	2	
	1.2	Номер 2.5	4	
	1.3	Номер 2.6.	8	

1 Домашня Робота

1.1 Номер 2.1 (4).

Умова Задачі 1.1. Методом електростатичних зображень побудувати функцію Гріна оператора Лапласа для задачі Діріхле в області чверті кулі:

$$\Omega = \{ \mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3 : ||\mathbf{x}|| < R, x_2 > 0, x_3 > 0 \}.$$

Розв'язання. Отже, спочатку намалюємо малюнок. Наша ціль — "віддзеркалювати" довільну точку $\mathbf{x} \in \Omega$ відносно площин $x_2 = 0$, $x_3 = 0$, а також поверхні кулі, допоки в нас не вийде "симетрії" (по суті, три складові, що утворюють границю $\partial\Omega$). Отримаємо Рисунок 1.

Рис. 1: Малюнок до задачі 2.1 (4). **Червоним** зображено позитивні заряди, **синім** — негативні. **Помаранчевим** позначено границі області Ω .

Отже, тепер давайте аналітично зрозуміємо, що відбулось. Нехай ми маємо деяку точку $\mathbf{x}=(x_1,x_2,x_3)\in\Omega$. Тоді, ми можемо знайти 3 відображення цієї точки відносно площин $x_2=0$, $x_3=0$ та поверхні кулі $\|\mathbf{x}\|=R$. Ці відображення будуть мати координати:

$$\mathbf{x}_{1} = (x_{1}, -x_{2}, x_{3}),$$

$$\mathbf{x}_{2} = (x_{1}, x_{2}, -x_{3}),$$

$$\mathbf{x}_{3} = \frac{R^{2}}{\|\mathbf{x}\|^{2}} \cdot \mathbf{x} = \left(\frac{R^{2}x_{1}}{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}, \frac{R^{2}x_{2}}{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}, \frac{R^{2}x_{3}}{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}\right).$$

Далі, щоб компенсувати точки \mathbf{x}_1 та \mathbf{x}_2 , нам потрібно ще одна точка:

$$\mathbf{x}_4 = (x_1, -x_2, -x_3)$$

Таким чином, точки $(\mathbf{x}_1, \dots, \mathbf{x}_4)$ утворили квадрат. Далі точку \mathbf{x}_3 ми можемо так само віддзеркалити відносно площин $x_2 = 0$, $x_3 = 0$. Отримаємо:

$$\mathbf{x}_{5} = \left(\frac{R^{2}x_{1}}{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}, -\frac{R^{2}x_{2}}{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}, \frac{R^{2}x_{3}}{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}\right),$$

$$\mathbf{x}_{6} = \left(\frac{R^{2}x_{1}}{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}, \frac{R^{2}x_{2}}{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}, -\frac{R^{2}x_{3}}{x_{1}^{2} + x_{2}^{2} + x_{3}^{2}}\right),$$

Далі, можна або відобразити \mathbf{x}_5 відносно площини $x_3=0$ або \mathbf{x}_6 відносно площини $x_2=0$. Так чи інакше, сьома і остання точка:

$$\mathbf{x}_7 = \left(\frac{R^2 x_1}{x_1^2 + x_2^2 + x_3^2}, -\frac{R^2 x_2}{x_1^2 + x_2^2 + x_3^2}, -\frac{R^2 x_3}{x_1^2 + x_2^2 + x_3^2}\right).$$

Також, не забудемо виписати знаки зарядів. Нехай $q_j \in \{-1,1\}$ — заряд точки \mathbf{x}_j . Отже, маємо:

$$q_1 = -1$$
, $q_2 = -1$, $q_3 = -1$, $q_4 = 1$, $q_5 = 1$, $q_6 = 1$, $q_7 = -1$.

Також, ми дещо оминули важливе питання: чому нам не потрібно далі відображати точки, скажімо, \mathbf{x}_1 , \mathbf{x}_2 та \mathbf{x}_3 відносно поверхні кулі? Це тому що таке відображення дасть точки \mathbf{x}_5 , \mathbf{x}_6 та \mathbf{x}_7 , відповідно. Дійсно, розглянемо, наприклад, точку \mathbf{x}_1 . Її відображення відносно поверхні кулі буде мати координати:

$$\mathbf{x}_1' = \frac{R^2}{\|\mathbf{x}_1\|} \cdot \mathbf{x}_1 = \left(\frac{R^2 x_1}{x_1^2 + x_2^2 + x_3^2}, -\frac{R^2 x_2}{x_1^2 + x_2^2 + x_3^2}, \frac{R^2 x_3}{x_1^2 + x_2^2 + x_3^2}\right) = \mathbf{x}_5.$$

Аналогічно для \mathbf{x}_2 та \mathbf{x}_3 . Таким чином, ми отримаємо точки \mathbf{x}_5 , \mathbf{x}_6 та \mathbf{x}_7 ще раз. Отже, ми можемо зупинитися на цьому кроці. Запишемо остаточну функцію Гріна:

$$G(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{4\pi \|\mathbf{x} - \boldsymbol{\xi}\|} - \frac{1}{4\pi \|\mathbf{x}_1 - \boldsymbol{\xi}\|} - \frac{1}{4\pi \|\mathbf{x}_2 - \boldsymbol{\xi}\|} + \frac{1}{4\pi \|\mathbf{x}_4 - \boldsymbol{\xi}\|} - \frac{R}{4\pi \|\mathbf{x}\| \|\mathbf{x}_3 - \boldsymbol{\xi}\|} + \frac{R}{4\pi \|\mathbf{x}\| \|\mathbf{x}_5 - \boldsymbol{\xi}\|} + \frac{R}{4\pi \|\mathbf{x}\| \|\mathbf{x}_6 - \boldsymbol{\xi}\|} - \frac{R}{4\pi \|\mathbf{x}\| \|\mathbf{x}_7 - \boldsymbol{\xi}\|}$$

1.2 Номер 2.5.

Умова Задачі 1.2. Розв'язати задачу для рівняння Лапласа $\Delta u = 0$ для області

$$\Omega = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 < 0, x_2 < 0\}$$

з граничними умовами

$$u\Big|_{x_1=0} = \sin 3x_2 \sin x_3, \quad u\Big|_{x_2=0} = 0.$$

Розв'язання. Для початку скористаємося методом електростатичних зображень для побудуви функції Гріна $G(\mathbf{x}, \boldsymbol{\xi})$. Розглянемо малюнок нижче.

Рис. 2: Малюнок до задачі 2.5. Червоним зображено позитивні заряди, синім — негативні. Малюнок у площині Ox_1x_2 .

Тут маємо чотири точки:

$$\mathbf{x} = (x_1, x_2, x_3),$$
 знак +, $\mathbf{x}_1 = (x_1, -x_2, x_3),$ знак -, $\mathbf{x}_2 = (-x_1, x_2, x_3),$ знак -, $\mathbf{x}_3 = (-x_1, -x_2, x_3),$ знак +.

В такому разі функція Гріна матиме вигляд:

$$G(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{4\pi \|\mathbf{x} - \boldsymbol{\xi}\|} - \frac{1}{4\pi \|\mathbf{x}_1 - \boldsymbol{\xi}\|} - \frac{1}{4\pi \|\mathbf{x}_2 - \boldsymbol{\xi}\|} + \frac{1}{4\pi \|\mathbf{x}_3 - \boldsymbol{\xi}\|}.$$

На жаль, цей вираз доведеться розписати:

$$G(\mathbf{x}, \boldsymbol{\xi}) = \frac{1}{4\pi\sqrt{(x_1 - \xi_1)^2 + (x_2 - \xi_2)^2 + (x_3 - \xi_3)^2}} - \frac{1}{4\pi\sqrt{(x_1 - \xi_1)^2 + (x_2 + \xi_2)^2 + (x_3 - \xi_3)^2}} - \frac{1}{4\pi\sqrt{(x_1 + \xi_1)^2 + (x_2 - \xi_2)^2 + (x_3 - \xi_3)^2}} + \frac{1}{4\pi\sqrt{(x_1 + \xi_1)^2 + (x_2 + \xi_2)^2 + (x_3 - \xi_3)^2}}.$$

Далі скористаємось формулою репрезентації Гріна:

$$u(\mathbf{x}) = \iint_{\Omega} G(\mathbf{x}, \boldsymbol{\xi}) f(\boldsymbol{\xi}) d\boldsymbol{\xi} - \int_{\partial \Omega} \frac{\partial G(\mathbf{x}, \boldsymbol{\xi})}{\partial \boldsymbol{\nu}} \phi(\boldsymbol{\xi}) dS_{\boldsymbol{\xi}}$$

В нашому випадку $f(\pmb{\xi})\equiv 0$, тому життя стало легше вдвічі. Також одразу помітимо, що в нас поверхня $\partial\Omega$ складається з двох частин: $x_1=0$ та $x_2=0$. Таким чином, ми можемо розбити інтеграл на два, позначивши першу частину як Ω_1 , а другу як Ω_2 :

$$u(\mathbf{x}) = -\int_{\Omega_1} \frac{\partial G(\mathbf{x}, \boldsymbol{\xi})}{\partial \boldsymbol{\nu}_1} \phi_1(\boldsymbol{\xi}) dS_{\boldsymbol{\xi}} - \int_{\Omega_2} \frac{\partial G(\mathbf{x}, \boldsymbol{\xi})}{\partial \boldsymbol{\nu}_2} \phi_2(\boldsymbol{\xi}) dS_{\boldsymbol{\xi}}.$$

Проте, за умовою $\phi_2(\xi) \equiv 0$, тому залишається лише:

$$u(\mathbf{x}) = -\int_{\Omega_1} \frac{\partial G(\mathbf{x}, \boldsymbol{\xi})}{\partial \nu_1} \phi_1(\boldsymbol{\xi}) dS_{\xi}, \text{ ge } \phi_1(\boldsymbol{\xi}) = \sin 3\xi_2 \sin \xi_3, \ \nu_1 = (1, 0, 0).$$

Залишається не дуже приємний етап: нам потрібно порахувати $(\partial G(\mathbf{x}, \boldsymbol{\xi})/\partial \boldsymbol{\nu})\big|_{\xi_1=0}$. Отже маємо наступну часткову похідну:

$$\frac{\partial G(\mathbf{x}, \boldsymbol{\xi})}{\partial \boldsymbol{\nu}} = \frac{\partial G(\mathbf{x}, \boldsymbol{\xi})}{\partial \xi_{1}} = \frac{x_{1} - \xi_{1}}{4\pi \left((x_{1} - \xi_{1})^{2} + (x_{2} - \xi_{2})^{2} + (x_{3} - \xi_{3})^{2} \right)^{3/2}} - \frac{x_{1} - \xi_{1}}{4\pi \left((x_{1} - \xi_{1})^{2} + (x_{2} + \xi_{2})^{2} + (x_{3} - \xi_{3})^{2} \right)^{3/2}} + \frac{x_{1} + \xi_{1}}{4\pi \left((x_{1} + \xi_{1})^{2} + (x_{2} - \xi_{2})^{2} + (x_{3} - \xi_{3})^{2} \right)^{3/2}} - \frac{x_{1} + \xi_{1}}{4\pi \left((x_{1} + \xi_{1})^{2} + (x_{2} + \xi_{2})^{2} + (x_{3} - \xi_{3})^{2} \right)^{3/2}}.$$

Отже, підставляємо умову на те, що $\xi_1 = 0$:

$$\frac{\partial G(\mathbf{x}, \boldsymbol{\xi})}{\partial \boldsymbol{\nu}} \Big|_{\xi_1 = 0} = \frac{x_1}{2\pi \left(x_1^2 + (x_2 - \xi_2)^2 + (x_3 - \xi_3)^2\right)^{3/2}} - \frac{x_1}{2\pi \left(x_1^2 + (x_2 + \xi_2)^2 + (x_3 - \xi_3)^2\right)}$$

Тепер можемо підставити це у вираз для $u(\mathbf{x})$ та обчислити інтеграл. Отримаємо:

$$u(\mathbf{x}) = -\int_{\Omega_1} \frac{\partial G(\mathbf{x}, \boldsymbol{\xi})}{\partial \boldsymbol{\nu}_1} \phi_1(\boldsymbol{\xi}) dS_{\boldsymbol{\xi}} = -\int_{-\infty}^{\infty} \int_{-\infty}^{0} \frac{x_1 \sin 3\xi_2 \sin \xi_3}{2\pi (x_1^2 + (x_2 - \xi_2)^2 + (x_3 - \xi_3)^2)^{3/2}} d\xi_2 d\xi_3 + \int_{-\infty}^{\infty} \int_{-\infty}^{0} \frac{x_1 \sin 3\xi_2 \sin \xi_3}{2\pi (x_1^2 + (x_2 + \xi_2)^2 + (x_3 - \xi_3)^2)^{3/2}} d\xi_2 d\xi_3.$$

Далі залишається лише шаманити:

$$u(\mathbf{x}) = \frac{x_1}{2\pi} \int_{-\infty}^{+\infty} \left(-\sin\xi_3 \int_{-\infty}^0 \frac{\sin 3\xi_2 d\xi_2}{\left(x_1^2 + (x_2 - \xi_2)^2 + (x_3 - \xi_3)^2\right)^{3/2}} + \sin\xi_3 \int_{-\infty}^0 \frac{\sin 3\xi_2 d\xi_2}{\left(x_1^2 + (x_2 + \xi_2)^2 + (x_3 - \xi_3)^2\right)^{3/2}} \right) d\xi_3$$

Тепер пропонується наступне: у першому внутрішньому інтегралі зробити наступну заміну: $\xi_2 \mapsto -\xi_2$. Тоді межі інтегрування зміняться на від $+\infty$ до 0. В такому разі маємо:

$$u(\mathbf{x}) = \frac{x_1}{2\pi} \int_{-\infty}^{+\infty} \left(-\sin \xi_3 \int_{+\infty}^{0} \frac{\sin(-3\xi_2)d(-\xi_2)}{(x_1^2 + (x_2 + \xi_2)^2 + (x_3 - \xi_3)^2)^{3/2}} + \sin \xi_3 \int_{-\infty}^{0} \frac{\sin 3\xi_2 d\xi_2}{(x_1^2 + (x_2 + \xi_2)^2 + (x_3 - \xi_3)^2)^{3/2}} \right) d\xi_3$$

Мінуси всередині інтегралу скорочуються, а мінус перед інтегралом приберемо, змінивши межі інтегрування. Отже, маємо:

$$u(\mathbf{x}) = \frac{x_1}{2\pi} \int_{-\infty}^{+\infty} \left(\sin \xi_3 \int_0^{+\infty} \frac{\sin 3\xi_2 d\xi_2}{(x_1^2 + (x_2 + \xi_2)^2 + (x_3 - \xi_3)^2)^{3/2}} \right) d\xi_3$$

$$+ \sin \xi_3 \int_{-\infty}^0 \frac{\sin 3\xi_2 d\xi_2}{(x_1^2 + (x_2 + \xi_2)^2 + (x_3 - \xi_3)^2)^{3/2}} d\xi_3$$

$$= \frac{x_1}{2\pi} \int_{-\infty}^{+\infty} \left(\sin \xi_3 \int_{-\infty}^{+\infty} \frac{\sin 3\xi_2 d\xi_2}{(x_1^2 + (x_2 + \xi_2)^2 + (x_3 - \xi_3)^2)^{3/2}} \right) d\xi_3$$

$$= \frac{x_1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\sin \xi_3 \sin 3\xi_2 d\xi_2 d\xi_3}{(x_1^2 + (x_2 + \xi_2)^2 + (x_3 - \xi_3)^2)^{3/2}}$$

Тепер зробимо заміну змінних $\eta_2 := x_2 + \xi_2$, $\eta_3 := \xi_3 - x_3$. Тоді маємо:

$$u(\mathbf{x}) = \frac{x_1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\sin(\eta_3 + x_3)\sin(3\eta_2 - 3x_2)d\eta_2d\eta_3}{\left(x_1^2 + \eta_2^2 + \eta_3^2\right)^{3/2}}$$

Тепер помітимо наступний факт:

$$\sin(\eta_3 + x_3)\sin(3\eta_2 - 3x_2) = (\sin\eta_3\cos x_3 + \cos\eta_3\sin x_3)(\sin 3\eta_2\cos 3x_2 - \cos 3\eta_2\sin 3x_2)$$

$$= \sin\eta_3\sin 3\eta_2\cos x_3\cos 3x_2 - \sin\eta_3\cos x_3\cos 3\eta_2\sin 3x_2$$

$$+ \cos\eta_3\sin x_3\sin 3\eta_2\cos 3x_2 - \cos\eta_3\sin x_3\cos 3\eta_2\sin 3x_2$$

Помітимо, що якщо ми розпишемо інтеграл на чотири окремі інтеграли, то усі, окрім четвертого, будуть нульовими через непарність функції sin. Таким чином, маємо:

$$u(\mathbf{x}) = -\frac{x_1 \sin x_3 \sin 3x_2}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\cos \eta_3 \cos 3\eta_2 d\eta_2 d\eta_3}{\left(x_1^2 + \eta_2^2 + \eta_3^2\right)^{3/2}}$$

Отже, позначимо:

$$\psi(x_1) = -\frac{x_1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{\cos \eta_3 \cos 3\eta_2 d\eta_2 d\eta_3}{\left(x_1^2 + \eta_2^2 + \eta_3^2\right)^{3/2}}$$

Звичайно, обрахувати цей інтеграл аналітично дуже складно, тому ми знайдемо цю функцію іншим способом. Маємо, що наш розв'язок:

$$u(x_1, x_2, x_3) = \sin x_3 \sin 3x_2 \cdot \psi(x_1).$$

Отже, знайдемо Лапласіан цієї функції:

$$\begin{split} \Delta u(x_1, x_2, x_3) &= \frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \frac{\partial^2 u}{\partial x_3^2} \\ &= \sin x_3 \sin 3x_2 \cdot \psi''(x_1) - 9 \sin x_3 \sin 3x_2 \cdot \psi(x_1) - \sin x_3 \sin 3x_2 \cdot \psi(x_1) \\ &= \sin x_3 \sin 3x_2 \cdot \psi''(x_1) - 10 \sin x_3 \sin 3x_2 \cdot \psi(x_1) \\ &= \sin x_3 \sin 3x_2 (\psi''(x_1) - 10\psi(x_1)) = 0 \end{split}$$

Отже маємо диференціальне рівняння відносно $\psi(x_1)$:

$$\psi''(x_1) = 10\psi(x_1)$$

Як відомо, розв'язок такого рівняння $\psi(x_1) = C_1 e^{\sqrt{10}x_1} + C_2 e^{-\sqrt{10}x_1}$. Оскільки розв'язок має бути обмеженим, причому для $x_1 < 0$, то $C_2 = 0$. Константу C_1 знайдемо з граничної умови: $u(0, x_2, x_3) = \sin x_3 \sin 3x_2 \cdot \psi(0) = \sin x_3 \sin 3x_2$, звідки $\psi(0) = 1$. Отже, $C_1 = 1$, тому остаточно:

$$u(x_1, x_2, x_3) = \sin x_3 \sin 3x_2 e^{\sqrt{10}x_1}$$

1.3 Номер 2.6.

Умова Задачі 1.3. Довести додатність функції Гріна задачі Діріхле для оператора Лапласа в обмеженій області.

Підказка. Використати принцип максимуму.

Розв'язання. Отже, нехай перед нами задача Діріхле для оператора Лапласа:

$$\Delta u(\mathbf{x}) = 0, \quad \mathbf{x} \in \Omega \subset \mathbb{R}^m,$$

 $u(\mathbf{x}) = \phi(\mathbf{x}) \quad \mathbf{x} \in \partial\Omega,$

де $\phi:\partial\Omega\to\mathbb{R}$ — це задана функція.

Як було доведено на лекції, розв'язок цієї задачі можна записати у вигляді:

$$u(\mathbf{x}) = -\int_{\partial \Omega} \frac{\partial G(\mathbf{x}, \boldsymbol{\xi})}{\partial \boldsymbol{\nu}} \phi(\boldsymbol{\xi}) d_{\boldsymbol{\xi}} S,$$

де $G(\mathbf{x}, \boldsymbol{\xi})$ — наша функція Гріна. Потрібно довести, що $G(\mathbf{x}_0, \boldsymbol{\xi}) \succ 0$ для $\mathbf{x}_0 \in \text{int}(\Omega)$. Для початку згадаємо з означення, що на границі ми маємо мати:

$$G(\mathbf{x}, \boldsymbol{\xi}) = 0, \quad \forall \boldsymbol{\xi} \in \partial \Omega.$$

Цей факт спонукає застосувати принцип максимуму. Нагадаємо його.

Theorem 1.4 (Принцип максимуму). Якщо $u(\mathbf{x}) \in \mathcal{C}(\overline{\Omega})$ — гармонічна функція в обмеженій області Ω , то вона приймає свої тах та та та тачення на границі $\partial\Omega$.

Наша функція G є гармонічною за $\boldsymbol{\xi}$ (\mathbf{x}_0 є фіксованим) в $\Omega \setminus B_{\varepsilon}(\mathbf{x}_0)$ для деякого малого $\varepsilon > 0$, а тому застосувавши цю теорему ми знаємо, що G досягає свого мінімума або максимума на $\partial \Omega$, тобто нуля. Більш того, оскільки границі у нас по суті дві, то інший екстремум буде досягатися на $\partial B_{\varepsilon}(\mathbf{x}_0)$. Залишається дізнатися де максимум, де мінімум, і які значення вони мають.

3 означення можна пригадати, що $G(\mathbf{x}_0, \boldsymbol{\xi}) \xrightarrow[\boldsymbol{\xi} \to \mathsf{x}_0]{} + \infty$, що означає

$$(orall
ho>0)\;(\exists arepsilon>0):\{G(\mathbf{x}_0,oldsymbol{\xi})>
ho\}$$
 для $oldsymbol{\xi}\in\partial B_arepsilon(\mathbf{x}_0)$

Отже можна покласти будь-яке $\rho > 0$, зафіксувати відповідне ε і в нас буде принаймі одне додатнє значення на границі $\partial B_{\varepsilon}(\mathbf{x}_0)$. Таким чином, на одній межі $\partial \Omega$ в нас 0, а на іншій ∂B_{ε} — додатне значення. Отже, функція Гріна є додатно визначеною в усій множині $\operatorname{int}(\Omega) \setminus B_{\varepsilon}(\mathbf{x}_0)$. Взявши перехід $\varepsilon \to 0$, ми узагальнимо цей результат на всю область $\operatorname{int}(\Omega)$. Отже, функція Гріна є додатно визначеною в усій області $\operatorname{int}(\Omega)$.