

ELIXIR: Efficient and Lightweight model for eXplaining Recommendations

Vincent Guigue ² Ben Kabongo ¹ Pirmin Lemberger ³

²AgroParisTech, UMR MIA Paris-Saclay ³Onepoint ¹Sorbonne University, CNRS, ISIR, MLIA

decoder output

decoder input

(review)

encoder output

encoder input

(continuous prompt)

Learned Frozen

Review-based Explainable Recommendation

- Users expect not only relevant recommendations but also transparent justifications \rightarrow explanation required.
- User reviews = opinions on aspects of interest \rightarrow making them a natural candidates for explanation.

Previous methods:

- Att2Seq [1] & NRT [4] (RNN-based) and PETER [2] (Transformer) fail to leverage the capabilities of pre-trained LLMs.
- PEPLER [3] (GPT-2, 124M) suffers from sub-optimal adaptation.
- Learning compact 2-token user and item profiles to condition the entire generation.
- Neglect aspect modeling.
- ullet Fine-grained, faithful control of generation conditioned on user and item.

Problem Formulation

Notations

- \mathcal{U} users, \mathcal{I} items, \mathcal{A} aspects of interest (e.g., quality of service, cleanliness, in the hotel domain).
- r_{ui} overall rating, r_{ui}^a aspect-level rating, t_{ui} review. $\mathcal{R} = \{(u, i, r_{ui}, t_{ui}, \{r_{ui}^a\}_{a \in \mathcal{A}})\}$ interaction data.

Objectives:

- Recommendation: Predict the overall rating r_{ui} .
- Explainability: Predict aspect ratings $\{r_{ui}^a\}_{a\in\mathcal{A}}$ and generate review t_{ui} .

Our approach:

- Learning global-level and aspect-level user and item profiles.
- Personalized attention to estimate aspect importance.
- Two modules: rating prediction and review generation.

Hypothesis: Aspect information provides better guidance for review generation.

Figure 1. Schematic overview of our approach.

Review Generation Results

Table 1.	Performance	on review	generation	(%).

TripAdvisor	METEOR ↑	BLEU ↑	ROUGE-1↑	ROUGE-2↑	BERT-F1↑
Att2Seq	18.611	04.690	28.783	06.473	84.490
NRT	17.219	03.405	25.833	05.194	82.161
PETER	17.955	03.943	27.974	05.906	84.406
PEPLER	24.340	11.400	33.831	11.679	83.726
ELIXIR	42.752	33.544	53.285	37.878	89.554
w/o Aspects	27.642	10.029	39.076	21.970	86.540
DataDaan	\				
RateBeer	METEOR ↑	BLEU ↑	ROUGE-1↑	ROUGE-2↑	BERT-F1↑
Att2Seq	18.611	04.690	28.783	06.473	84.490
	ı	'	· · · · · · · · · · · · · · · · · · ·	'	
Att2Seq	18.611	04.690	28.783	06.473	84.490
Att2Seq NRT	18.611 24.963	04.690 08.737	28.783 32.589	06.473 11.472	84.490 83.985
Att2Seq NRT PETER	18.611 24.963 28.818	04.690 08.737 11.518	28.783 32.589 35.504	06.473 11.472 13.620	84.490 83.985 86.448
Att2Seq NRT PETER PEPLER	18.611 24.963 28.818 28.266	04.690 08.737 11.518 10.143	28.783 32.589 35.504 32.444	06.473 11.472 13.620 11.182	84.490 83.985 86.448 84.990

- ELIXIR achieves better scores than all baseline models across all considered metrics.
- Efficiency of our lightweight architecture: ELIXIR w/o Aspects outperforms all baselines.
- Importance of aspect integration: ELIXIR performs better than its aspect-ablated version.

Aspect Analysis and Impact of the Number of Tokens

Table 2. Impact of the number of tokens in the personalized prompt (η) on review generation (TripAdvisor dataset)

η	METEOR ↑	BLEU ↑	ROUGE-2↑
PEPLER	24.340	11.400	11.679
2	12.159	01.282	04.436
5	16.730	03.546	06.046
10	21.160	07.692	10.330
20	<u> 29.379</u>	<u>17.018</u>	<u>20.200</u>
50	42.752	33.544	37.878

Figure 2. Projection and clustering of user aspect representations for the TripAdvisor dataset.

- Impact of the number of tokens: Starting from 20 tokens, ELIXIR outperforms PEPLER.
- Aspect analysis: We observe a consistent semantic separation of aspects.
- Aspect integration leads to performance improvements across all tasks.

ELIXIR

Figure 3. ELIXIR consists of two modules: (a) the rating prediction module on the left and (b) the personalized review generation module on the right.

- Global-Level Representations: $\mathbf{u}, \mathbf{i} \in \mathbb{R}^d$
- Aspect-Level Representations: $\mathbf{a}_u = \phi_{\mathcal{U}}^a(\mathbf{u}), \quad \mathbf{a}_i = \phi_{\mathcal{T}}^a(\mathbf{i}), \quad \phi_*^a : \mathbb{R}^d \to \mathbb{R}^d.$
- Personalized Attention:

$$\alpha_u^a = \frac{\exp(q_{\mathcal{U}}(\mathbf{u}) \cdot k_{\mathcal{U}}(\mathbf{a}_u))}{Z_u}, \quad \tilde{\mathbf{u}} = \sum_{a \in \mathcal{A}} \alpha_u^a v_{\mathcal{U}}(\mathbf{a}_u).$$

Similar for $\tilde{\mathbf{i}} \in \mathbb{R}^d$.

 $q_*, k_*, v_* : \mathbb{R}^d \to \mathbb{R}^d$ (linear functions); Z_* (normalization terms).

- Rating Prediction Module: overall + aspect-level ratings. $\hat{r}_{ui} = f(\tilde{\mathbf{u}}, \tilde{\mathbf{i}}), \quad \hat{r}_{ui}^a = g_a(\mathbf{a}_u, \mathbf{a}_i)$
- Review Generation Module: personalized prompt + review.

$$\mathbf{p}_{ui} = \psi(\mathbf{u}, \mathbf{i}, \{\mathbf{a}_u, \mathbf{a}_i\}_{a \in \mathcal{A}}) \in \mathbb{R}^{\eta \times d_w}, \qquad P_{\theta_P, \theta_{LM}}(t_{ui} | \mathbf{p}_{ui}) = \prod_{k=1}^{|t_{ui}|} P_{\theta_P, \theta_{LM}}(y_k | \mathbf{p}_{ui}, y_{< k}).$$

 η : number of prompt tokens; θ_P : prompt parameters; θ_{LM} : language model parameters. Parameter-efficient fine-tuning: We freeze the language model parameters during training and only optimize the prompt generation parameters.

Lightweight model: We use T5-Small (60M) as language model.

Overall Rating Results

Table 3. Performance on overall rating prediction.

	Average	MF	MLP	NeuMF	NRT	PETER	PEPLER	ELIXIR	w/o Attn	Global-only
TripAdvisor RMSE↓ MAE↓	0.932			0.840 0.570			0.779 0.478	0.748 0.447	0.771 0.513	0.865 0.632
RateBeer RMSE↓ MAE↓	0.571			0.473 0.329		0.415 0.300	0.430 0.305	0.416 0.305	0.421 0.311	0.443 0.332

- ELIXIR w/o Attention > ELIXIR Global-only: Learning aspect-level representations in addition to global representations to better capture fine-grained preferences.
- ELIXIR > ELIXIR w/o Attention: Personalized attention allows for better aggregation of aspect information.

Personalized Attention Analysis

Table 4. Attention visualization on aspects and alignment with the review (TripAdvisor)

• Personalized attention infers the relative importance of aspects for each user-item pair, also enabling explainable recommendations.

References

[1] Dong, L., Huang, S., Wei, F., Lapata, M., Zhou, M., and Xu, K. Learning to generate product reviews from attributes. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers (2017), pp. 623-632.

Our paper

[2] Li, L., Zhang, Y., and Chen, L. Personalized transformer for explainable recommendation. arXiv preprint arXiv:2105.11601 (2021).

- [3] Li, L., Zhang, Y., and Chen, L. Personalized prompt learning for explainable recommendation. ACM Transactions on Information Systems 41, 4 (2023), 1–26.
- [4] Li, P., Wang, Z., Ren, Z., Bing, L., and Lam, W. Neural rating regression with abstractive tips generation for recommendation.
- In Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval (2017), pp. 345-354.