

Splines in Statistical Learning

by

Segun Light Jegede and Isaac Akoji Paul

from:

Department of Pure and Applied Mathematics
Data Mining Course

2nd of November, 2020

What are Splines?

- What are Splines?
- Piecewise Polynomials and Splines
- Spline of Degree k
- Natural Cubic Spline
- Smoothing Spline
- Degree of Freedom and Smoother Matrices
- Choosing Spline Parameters
- Integrated Squared Predicted Error (EPE)
- Multidimensional Splines
- B-Splines
- Case Study
- Conclusion

References

R Code for Data Illustration

R Code for Case Study

What are Splines?

- a curve
- the first mathematical reference to spline is in Schoenberg's book chapter titled "Contributions to the problem of approximation of equidistant" - 1946,
- function specially defined piecewise by polynomials,
- the ideas have their roots in the aircraft and ship-building,
- but have its usefulness across fields such as pharmacokinetics, astrophysics, geophysics and so on.
- applicable in theoretical and applied statistical research
- especially when data requires interpolation and smoothing,

What are Splines? – The History:

- "splines" the word was originally an East Anglian dialect word.
- the problem naval architects needed a way to draw a smooth curve through a set of points
- the Solution place metal weights (called knots; "ducks" by Forrest or "dogs"/"rats" by Schoenberg) at the control points and pass thin wooden strips (called "splines") through the weights.
- this technique is borrowed from ship-hull design and was used during World War II by British aircraft industry.

What are Splines? – An Illustration

Figure 1: Splines passing through a set pf points called "ducks" or "knots"

Figure 2: Splines on a Motor Yacht

What are Splines? – The Idea:

- \diamond Consider a vector of inputs, X, the independent variable of a model
- ❖ Denote $h_m(X): \mathbb{R}^p \to \mathbb{R}$ the mth transformation of X, with m=1,...,M. Then, f(X) is modelled as

$$f(X) = \sum_{m=1}^{M} \beta_m h_m(X) \dots \dots (i)$$

- \Leftrightarrow with f(X), a linear basis expansion in X
- \diamond in short, the idea is to compute transformations of X, and then use linear models in this new models in this new space of derived input features.

What are Splines? – Data Illustration:

- \Leftrightarrow consider a model Y = aX + cWhere X is age, Y is salary and a is the slope.
 - polynomial (quadratic) function of the model: $Y = aX^2 + bX + c$
 - The linear doesn't fit well; the apex of the data is also different from what the quadratic predicts.

What are Splines? - Data Illustration:

- the real apex is observed around age=35
- place a knot at age=35.
- new function:

$$Y = aX^2 + b(X - 35) \times Xk + c$$

$$X_k = \begin{cases} 0 & X \le 35 \\ 1 & X > 35 \end{cases}$$

Figure 5: Splines Illustration

Piecewise Polynomials and Splines

- \diamond a piecewise polynomial function f(X) is obtained by dividing the domain of f into contiguous interval, and presenting f by a separate polynomial in each interval.
- \diamond consider Figure 3 and label each gapped line (knot) as ξ_1 and ξ_2 respectively
- the contiguous interval:

$$h_1(X) = I(X < \xi_1), h_2(X) = I(\xi_1 \le X < \xi_2), h_1(X) = I(\xi_2 \le X) \dots \dots \dots (ii)$$

- ❖ in each interval, the degree of the fitted line determines the order of the piecewise-polynomial.
- \clubsuit an order-M spline with spline with knot ξ_j , j=1,2,...,k, is a piecewise-polynomial of order M, and has continuous derivatives up to order M-2.
- ❖ for instance, the piecewise-constant function is an order-1 spline, while the continuous piecewise linear function is an order-2 spline.

Piecewise Polynomials and Splines

Figure 6: Piecewise Polynomials and Splines

Piecewise Polynomials and Splines

Let's take a case study from a "Polygonal Function"

Figure 4: Graph of polygonal function

$$f(x) = \begin{cases} f_0(x) & x \in [t_0, t_1] \\ f_1(x) & x \in [t_1, t_2] \\ \vdots & \vdots \\ f_{n-1}(x) & x \in [t_{n-1}, t_n] \end{cases}$$
 with $f_i(x) = a_i x + b_i \dots \dots (iii)$

- \diamond such function, f(x), is called piecewise linear.
- the polygonal function is a spline of degree 1 which consists of linear polynomials joined together to achieve continuity.

Spline of Degree k

- \Leftrightarrow A function, f(x) is called a spline of degree 1 if:
 - The domain of f is an interval [a, b]
 - f', f'', ..., $f^{(k-1)}$ in each interval.
 - There are points t_i (the knots of S) such that $a=t_0 < t_i < \cdots < t_n = b$ and such that S is a polynomial of degree at most k on each subinterval $[t_i, t_{i+1}]$.
- This leads to different kinds of Spline:
 - Linear Spline: Spline of degree 1
 - Quadratic Spline: Spline of degree 2
 - Cubic Spline: Spline of degree 3
- ❖ In practice, the most widely used are up to degree 3
- the fixed knot splines are also known as regression splines

Natural Cubic Spline

- ❖ a piece-wise cubic polynomial a special case of cubic splines
- twice continuously differentiable
- has less tendency to oscillate between data points during interpolation
- ❖ a natural cubic spline with k knots is represented by k basis function.
- it adds additional constraints,

$$f_0''(x_0) = 0$$
 and $f_{n-1}''(x_n) = 0 \dots (iv)$

which assumes linearity outside of boundary knots

Smoothing Spline

- controls complexity of fit by regularization
- generally, spline functions does not exhibit oscillatory behaviour compare to polynomials during interpolation.
- Consider,

$$RSS(f,\lambda) = \sum_{i=1}^{n} \{y_i - f(x_i)\}^2 + \lambda \int \{f''(t)\}^2 dt \dots \dots (v)$$

 \diamond search for a function that minimizes penalized residual sum of squares depending on the choice of smoothing parameter, λ

Smoothing Spline

furthermore, consider n-dimensional set of basis functions for

representing the family of natural splines - $N_i(x)$ with j = 1, 2, ..., n

•
$$f(x)$$
 can be written as $f(x) = \sum_{j=1}^{n} N_j(x) \theta_j \dots \dots \dots (vi)$

• Thus,
$$RSS(\theta, \lambda) = (y - N\theta)^T (y - N\theta) + \lambda \theta^T \Omega_n \theta \dots \dots (vii)$$

with
$$\{N\}_j = N_j(x_i)$$
 and $\{\Omega_n\}_{jk} = \int N_j''(t)N_k''(t) dt$

the solution is a form of the generalized ridge regression presented as:

$$\hat{\theta} = (N^T N + \lambda \Omega_n)^{-1} N^T y \dots \dots (viii)$$

The estimated fitted smoothing spline is given as:

$$\hat{f}(x) = \sum_{j=1}^{n} N_j(x) \, \hat{\theta}_j \dots \dots \dots (ix)$$

Degree of Freedom and Smoother Matrices

 \clubsuit Let \hat{f} be the n-vector of fitted values $\hat{f}(x_i)$ at the training predictors, x_i .

Then,
$$\hat{f} = N\hat{\theta} = N((N^TN + \lambda\Omega_n)^{-1}N^Ty) = S_{\lambda}y (x)$$

- the effective degree of freedom,

$$df_{\lambda} = trace(S_{\lambda}) \dots \dots (xi)$$

- * while λ ranging from 0 to ∞ , controls smoothness and restricts effective degrees of freedom, df_{λ}

Choosing Spline Parameters

Choosing the number and locations of the knot:

- place more knots at points where the function might vary most rapidly
- in practice, knots are placed in a uniform fashion
- this implies specifying the desired degrees of freedom and allow the software automatically place the knots at uniform quantiles of the data

Choosing df_{λ} :

- \diamond create model with different values of df_{λ} and choose the best fit
- use of cross validation, CART, MARS or boosting.

Integrated Squared Predicted Error (EPE)

- important in controlling model fit
- the term "variance" accounts for model over-fitting
- the term "bias" accounts for model under-fitting
- EPE controls both and allows us to find the best fit

$$Cov(\hat{f}) = S_{\lambda}Cov(y)S_{\lambda}^{T} = S_{\lambda}S_{\lambda}^{T} \dots (xii)$$

$$Bias(\hat{f}) = f - E(\hat{f}) = f - S_{\lambda}f \dots (xiii)$$

$$EPE(\hat{f}_{\lambda}) = E(y_i - f(x_i))^2 = \sigma^2 + MSE(\hat{f}_{\lambda}) \dots \dots \dots (xiv)$$

where
$$MSE(\hat{f}_{\lambda}) = E[Bias^{2}(\hat{f}_{\lambda}(x)) + Var(\hat{f}_{\lambda}(x))]$$

- creates a trade off between bias and variance
- an approximately unbiased estimator is leave-one-out cross validation curve expressed mathematically as:

$$CV(\hat{f}_{\lambda}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}_{\lambda}^{-i}(x_i))^2 \dots \dots (xv)$$

Multidimensional Splines

- they can be seen as generalisation of 1D case
- every one-dimensional approach has it's multi-dimensional counterpart

Consider $x \in \mathbb{R}^2$, the $M_1 \times M_2$ dimensional tensor product basis defined by

$$g_{jk}(x) = h_{1j}(x_1)h_{2k}(x_2), \quad j = 1, ..., M_1; \ k = 1, ..., M_2 \dots \dots (xvi)$$

can be used for representing a two-dimensional function:

$$g(x) = \sum_{j=1}^{M_1} \sum_{k=1}^{M_2} \theta_{jk} g_{jk}(x) \dots (xvii)$$

where $h_{1j}(x_1)$ and $h_{2k}(x_2)$ are basis function for representing function of coordinate x_1 and x_2 .

Multidimensional Splines

Suppose we have pairs y_i , x_i with $x_i \in \mathbb{R}^d$, and we seek a d-dimensional regression function f(x).

The idea is to set up

$$\min_{f} \sum_{i=1}^{n} \{y_i - f(x_i)\}^2 + \lambda J[f] \dots \dots (xviii)$$

where J is a natural generalisation of penalty function in 1D case, that is:

$$J[f] = \int \int \left(\left(\frac{\partial^2 f(x)}{\partial x_1^2} \right)^2 + 2 \left(\frac{\partial^2 f(x)}{\partial x_1 \partial x_2} \right)^2 + \left(\frac{\partial^2 f(x)}{\partial x_2^2} \right)^2 \right) dx_1 dx_1 \dots \dots (xix)$$

having $x = [x_1, x_2]$.

The solution has the form:

$$f(x) = \beta_0 + \beta^T x + \sum_{j=1}^n \alpha_j h_j(x) \dots (xx)$$

where
$$h_j(x) = ||x - x_j||^2 log ||x - x_j||$$

Multidimensional Splines

Figure 7: A tensor product basis of B-splines, showing some selected pairs.

B-Splines

- ❖ a piecewise polynomial curve on the interval [a, b] has a B-spline basis representation with Bezier curves.
- The *i*-th B-spline basis function of degree p is denoted by $N_{i,p}(t)$
- defined recursively as

$$N_{i,p}(t) = \begin{cases} 1 & ti \le t < ti \\ 0 & otherwise \end{cases} + 1$$

$$N_{i,p}(t) = \frac{t - t_i}{t_{i+p} - t_i} N_{i,p-1}(t) + \frac{t_{i+p+1} - t}{t_{i+p+1} - t_{i+1}} N_{i+1,p-1}(t)$$

where i = 0, ..., n and $p \ge 1$.

❖ A B-spline curve of degree p with control points $b_0, ..., bn$ is defined on the interval $[a, b] = [t_m, t_m]$ as

$$B(t) = \sum_{i=0}^{n} b_i N_{i,p}(t)$$

Dataset:

- clothing sales data of men's fashion store in Netherland
- ❖ 400 observations × 13 columns

Selected Data for Application:

- independent variable: investment in automation
- dependent variable: annual sales in Dutch guilders

Figure 8: Sample Data Linear and Polynomial Model

Figure 9: Splines with no specified degree of freedom

Figure 10: Splines with (a) degree of freedom = 4 and (b) degree of freedom = 8

Figure 11: Splines with (a) degree of freedom = 12 and (b) degree of freedom = 24

Smoothing Parameter

 df_{λ} : 2.791762 λ : 0.1138609

RSS: 29

No. of Iterations: 29

Figure 12: Splines with degree of freedom from iteration

Conclusion

The application of splines in statistical learning is

- a powerful tool for interpolating purposes
- helpful in improving a model due to wide range oof parameters
- useful for generating great fits

However, its disadvantages lies in

- the choice of parameter which is not always intuitive
- computational extensiveness
- the relative difficulty to understand complicated models

Thank you for Listening!

References

- Schoenberg I.J. (1988) Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions. In: de Boor C. (eds) I. J. Schoenberg Selected Papers. Contemporary Mathematicians. Birkhäuser, Boston, MA
- ❖ Hastie, Trevor & Tisbshirani, Robert & Friedman, Jerome & Franklin, James (2004). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Math. Intell. 27:(83-85)

R Code for Illustration

```
# SPLINE ILLUSTRATION
age < -c(25,27,28,29,30,33,34,35,36,37,39,41,42,45,50)
salary<-
c(1500, 2500, 3200, 3400, 3600, 4100, 4700, 5200, 4200, 3800, 3300, 2900, 2400, 1700,
1500)
datasal<-data.frame(age, salary)</pre>
# Linear and Polynomial Fit
fit<-lm(salary~age, data=datasal)
fit2<-lm(salary~poly(age,2)+age, data=datasal)
# Step Function Transformation
datasal$Xbar<-ifelse(datasal$age>35,1,0)
datasal$diff<-datasal$age - 35
datasal$X<-datasal$diff*datasal$Xbar
#Fitting Spline
regsal<-lm(salary~age+X, data=datasal)
```


R Code for Case Study

```
#Libraries For Spline Regression
library(splines)
library(pracma)
library(Ecdat)
data(Clothing)
#linear and polynomial model
lm.parameters<-lm(tsales~inv2)</pre>
poly.parameters<-lm(tsales~poly(inv2,3)+inv2)
#splines with no df
fitbs<-lm(tsales~bs(inv2))
fitns<-lm(tsales~ns(inv2))
fitsp<-smooth.spline(tsales~inv2)
#splines with df=4
fitbs<-lm(tsales~bs(inv2, df=4))
fitns<-lm(tsales~ns(inv2, df=4))
fitsp<-smooth.spline(tsales~inv2, df=4)
#Smoothing Splines by Cross Validation
fitsp2<-smooth.spline(x=inv2,y=tsales,cv=TRUE)</pre>
```