FABLE 2: THE PERFORMANCE OF THE PROPOSED ALGORITHM

OFFLINE SIGNATURE VERIFICATION

KUMAR SHUBHAM, KUNAL KUMAR, Team ID: 68, Supervisor: Prof. SOURAV SAHA, CSE, IEM

Introduction

- ☐ Human being authentication by offline handwritten signature biometric research has been increasing, especially in the last decade. The fact that the signature is widely used as a means of personal verification emphasizes the need for an automatic verification system.
- □ Our goal is to present an offline signature verification mechanism based on a Histogram of gradient and artificial neural network[2].

Fig. 1. (1) Before pre-processing of image (2) After pre-processing of images.

Challenges

- ☐ Extract **signature part** and to remove any noise present from different **scanned images**.
- □ Construction of Histogram Orientation Gradient (HOG)[1], in order to be passed into Artificial Neural Network for the recognition operation.

☐ In our approach, initially the pre-processing of images is

☐ Histogram of oriented gradients is constructed based on the

☐ The extracted data is sent to neural network, which is already

☐ The trained neural network allows us to test and distinguish

done. The pre-processing stage includes: Denoising, Color

□ Avoid the inn-Accuracy in verification .

inversion, Filtering and Binarization of image.

trained from the training signatures.

Our Approach

feature extraction.

different signature.

Results

FAR %	FRR %	Accuracy %
3	3.35	96.8

Existing Techniques	FAR (%)	FRR (%)
Normalized Static Features and ANN Classification	5.05	4.25
Normalized Weighted	4.0	5.0
Coefficients[18] / 2016	4.9	5.2
Proposed Scheme	3	3.35

Table 2: THE PERFORMANCE OF THE PROPOSED ALGORITHM

Discussion

- Our implementation robustly and accurately addressed the challenges previously presented.
- ☐ The approach for the offline signature verification is simple to apply, and require previously training data sets.

Future Work

☐This project model can be made more handy and visually effective if a UI is connected with it.

Fig. 5: A basic UI design that can be linked to the implemented project to give a better visual effect.

References

[1]N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In *Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Volume 1 - Volume 01*, CVPR '05, pages 886–893, Washington, DC, USA, 2005. IEEE Computer Society.

[2] Wikipedia. https://en.wikipedia.org/wiki/Artificial neural network