Clinical Hematology Review

Tired, weak, infection, Presentation bleeding, ...? General PT, APTT, Hematology Screening CBC FIB Flow Mixing, Reflex, WBC, RBC, Factors, Confirmation PLT, ... Inhibitors, ...

Erythrocytes Review

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Symptoms: Weakness/fatigue, tachycardia, circulatory collapse, shock, headache, vertigo, dyspnea, hematuria/emesis, bloody/black stools

Physical: Pale skin, hypotension, organomegaly (hepato-/sleno-megaly), koilonychia, smooth tongue, jaundice, dark urine, bone deformities, neurologic dysfunction

Screening Tests

Cell counts

RBC indices, reticulocytes (%, corrected, RPI)

Differential and morphology evaluation

Iron studies

Serum iron, ferritin, transferrin (TIBC)

Reflex Tests

Hemoglobin identification

Solubility, HPLC, electrophoresis

Hemolytic indicators

 Haptoglobin, hemopexin, hemosiderinuria, lactate dehydrogenase

Other

ESR, G6PD, Heinz body, Prussian blue, Kleihauer-Betke, bone marrow, flow cytometry, etc.

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Most common nutritional deficiency worldwide; koilonychia, glossitis, muscle dysfunction, pica syndrome

Screening Tests

CBC

- ↓ MCV, ↓ MCHC, ↑ RDW
- %/# retic normal to ↑, RPI < 2

Differential

Target cells (SL-MOD), ellipt/ovalocytes (SL-MOD), teardrops (SL)

Iron studies

↓ serum fe, ↓ ferritin, ↑ TIBC

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal

- BM erythroid hyperplasia
 - ↓ M:E, ↓ Prussian blue, ↑ ZPP

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Second most common anemia (1/3 hospitalized); \(\tau \) hepcidin, chronic infections, chronic inflammatory disorders, trauma, organ failure, neoplastic disorders

Screening Tests

CBC

- N MCV, N MCHC, N RDW
- %/# retic normal to ↑, RPI < 2

Differential

RBC morphology normal

Iron studies

 ↓ serum fe, N-↑ ferritin, J-N TIBC

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal

- BM erythroid normoplasia
 - ↑ M:E, N-↑ Prussian blue, N ZPP

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Inherited or acquired mutation affecting formation of ALA (in heme synthesis pathway); associations are lead poisoning, alcoholism, ringed sideroblasts

Screening Tests

CBC

- J MCV, J MCHC, ↑ RDW (dimorphic)
- %/# retic normal to ↑, RPI < 2

Differential

Target cells (SL-MOD), pappenheimer bodies, basophilic stippling

Iron studies

 ↑ serum fe, ↑ ferritin, J-N TIBC

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal

- BM erythroid hyperplasia
 - ↓ M:E, ↑ Prussian blue, ↑ ringed sideroblasts, N ZPP

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Quantitative (synthesis) defects; common variants are α -thalassemias and β thalassemias; note demographics (ie African blacks, Mediterranean basin and Southeast Asia); RBC normal or ↓, but ↑ relative to hgb/hct levels

Screening Tests

CBC (↑ RBC)

- → MCV, → MCHC, ↑ RDW
- %/# retic normal to ↑, RPI < 2

Differential

Target cells (MOD-MK), basophilic stippling, nRBCs

Iron studies

↑ serum fe, ↑ ferritin, J-N TIBC

Reflex Tests

Hemoglobin Identification

- α-thal: Bart's (γ4), HbH (β4)

β-thal: ↑ HbA₂

HPFH: ↑ HbF (Kleihauer-Betke)

Hemolytic Indicators

Normal

- BM erythroid hyperplasia
 - ↓ M:E, N Prussian blue, N ZPP

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic Spherocytosis

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Membrane defect; defect in vertical cytoskeleton protein interactions; ↓ spectrin and ankyrin

Screening Tests

CBC

- N-↓ MCV, ↑ MCHC (>36), **N RDW**
- %/# retic normal to ↑, RPI < 2

Differential

Spherocytes (MOD-MK)

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

 – ↑ serum bilirubin, ↓ haptoglobin

Other

= DAT, + osmotic fragility, + autohemolysis

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic Elliptocytosis

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Membrane defect; defect in horizontal cytoskeleton protein interactions; ↓ formation of spectrin tetramers

Screening Tests

CBC

- N-↓ MCV, ↑ MCHC, N RDW
- %/# retic normal to ↑, RPI < 2

Differential

Elliptocytes/ovalocytes (MOD-MK)

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal to slightly abnormal

Other

= DAT, N osmotic fragility, N autohemolysis

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic Pyropoikilocytosis

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Membrane defect; subvariant of hereditary elliptocytosis; two defects - ↓ spectrin plus mutant spectrin

Screening Tests

CBC

- N-↓ MCV, ↑ MCHC, N RDW
- %/# retic ↑, RPI > 2

Differential

Severe poikilocytes (budding, fragments, microspherocytes, elliptocytes, triangulocytes, bizarre forms)

Iron studies

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

 — ↑ serum bilirubin, ↓ haptoglobin

Other

+ thermal sensitivity, = DAT, + osmotic fragility, + autohemolysis

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic Stomatocytosis

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Membrane defect; Overhydrated (OH) - ↑ intracellular Na+ and K+ Dehydrated (DH) - ↑ intracellular Na+, ↓ intracellular K+

Screening Tests

CBC

- OH: ↑ MCV, ↓ MCHC, N RDW DH: N-↑ MCV, ↑ MCHC, **N RDW**
- %/# retic normal to ↑, RPI < 2

Differential

OH: Stomatocytes (MOD-MK) DH: Target cells (MOD-MK), echinocytes (SL-MOD)

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal to slightly abnormal

- = DAT, + autohemolysis
- OH: + osmotic fragility at ↑ [NaCl] DH: + osmotic fragility at \ [NaCl]

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic Acanthocytosis

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Membrane defect; abnormalities of lipid membrane – lipid imbalance; consider ratio of cholesterol to phospholipids

Screening Tests

CBC

N MCV, N MCHC, N-↑ RDW %/# retic ↑, RPI > 2

Differential

Acanthocytes (MOD-MK), target cells (SL-MOD), echinocytes (SL-MOD)

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

 — ↑ serum bilirubin, ↓ haptoglobin

- ↑ liver enzymes, = DAT, N osmotic fragility,
 - + autohemolysis at 48 hrs

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic PNH

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Membrane defect; Paroxysmal Nocturnal Hemoglobinuria (PNH) all cells abnormally sensitive to lysis by complement; \(\text{CD55} and \(\text{CD59} \)

Screening Tests

CBC (pancytopenia)

- N- ↑ MCV, N MCHC, N-↑ RDW
- %/# retic ↑, RPI > 2

Differential

Normal

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

 — ↑ serum bilirubin, ↓ haptoglobin

Other

= DAT, N osmotic fragility, + autohemolysis at 48 hrs, ↑ autohemolysis when add glucose, flow CD55 and CD59

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic G6PD Deficiency

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Enzyme deficiency; most common enzyme deficiency; affects hexose monophosphate shunt – maintains levels of GSH to protect RBC from oxidant buildup; acute associations favism (fava beans, infection, drug-induced by primaquine)

Screening Tests

CBC

- N- ↑ MCV, N MCHC, N-↑ RDW
- %/# retic ↑, RPI > 2

Differential

Bite cells (SL-MOD), blister cells (SL-MOD), spherocytes

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

 — ↑ serum bilirubin, ↓ haptoglobin

Other

= DAT, supravital for Heinze bodies, G6PD activity 2-3 months post hemolytic episode

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic PK Deficiency

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Enzyme deficiency; Pyruvate Kinase (PK) second most common enzyme deficiency; affects rapoport-luebering shunt causing \(\) levels of 2-3-BPG and hemoglobin's O2 affinity; \(\text{ATP production and membrane integrity (celldehydration)

Screening Tests

CBC

- N MCV, N MCHC, N-↑ RDW
- %/# retic ↑, RPI > 2

Differential

Echinocytes (SL-MOD), Target Cells (SL-MOD)

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal to slightly abnormal

Other

= DAT, RBCs incubated with PEP, LD, ADP, NADH – ↑ fluorescence indicates ↓ PK activity

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic AIHA

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

[Auto] immune defect; Autoimmune Hemolytic Anemia (AIHA); most cases warm Warm (W) AIHA: optimal reactivity at 37°C, usually IgG to "Rh"; extravascular Cold (C) AIHA: optimal reactivity < 37°C, usually IgM to I/i Ags; intravascular

Screening Tests

CBC

- N MCV, N MCHC, N-↑ RDW
- %/# retic ↑, RPI > 2

Differential

nRBCs, schistocytes W: spherocytes (MOD-MK), C: RBC clump, spherocytes (SL)

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

 W: Normal to slightly abnormal C: ↑ serum bilirubin, ↓ haptoglobin

Other

 W: + DAT, + polyspecific, + anti-IgG C: + DAT, + polyspecific, + anti-C3

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic PCH

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

[Auto] immune defect; Paroxysmal Cold Hemoglobinuria (PCH); bi-phasic IgG antibody to P Ag, Donath-Landsteiner antibody; binds RBCs at < 20°C, activates complement, warm to 37°C, Ab detaches, RBC lysed by complement activation

Screening Tests

CBC

- N MCV, N MCHC, N-↑ RDW
- %/# retic ↑, RPI > 2

Differential

nRBCs, schistocytes, spherocytes (SL)

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

 — ↑ serum bilirubin, ↓ haptoglobin

Other

+ DAT, + polyspecific, + anti-IgG

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic Transfusion Rxns

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

[Allo] immune defect; patient's Abs react to foreign transfused RBCs Immediate Rxn (IR): IgM Ab, occurs within 24 hrs, intravascular Delayed Rxn (DR): IgG Ab, occurs 2-14 days post transfusion, extravascular

Screening Tests

CBC

- N MCV, N MCHC, N-↑ RDW
- %/# retic ↑, RPI > 2

Differential

nRBCs

IR: schistocytes (MOD-MK) DR: spherocytes (MOD-MK)

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

IR: ↑ serum bilirubin, ↓ haptoglobin DR: Normal to slightly abnormal

Other

IR: + DAT, + polyspecific, + anti-C3 DR: + DAT, + polyspecific, + anti-IgG

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic HDFN

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

[Allo] immune defect; Hemolytic Disease of the Fetus and Newborn (HDFN); mother forms Abs to fetal RBCs

Rh: anti-D, more severe, immune IgG

ABO: anti-A and/or anti-B, more common, nonimmune IgG

Screening Tests

CBC

- N MCV, N MCHC, N-↑ RDW
- %/# retic ↑, RPI > 2

Differential

nRBCs Rh: schist-/sphero-ocytes (SL) ABO: schist-/sphero-ocytes (MOD-MK)

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Rh: ↑ serum bilirubin, ↓ haptoglobin ABO: Normal to slightly abnormal

Other

Rh: + DAT, + polyspecific, + anti-IgG ABO: weak + DAT

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic HUS

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

[MAHA] nonimmune defect; Microangiopathic Hemolytic Anemia (MAHA); Hemolytic Uremic Syndrome (HUS); most cases diarrhea-associated (D+) in children < 5; GI infection with E. coli

Screening Tests

CBC

- N MCV, N MCHC, N-↑ RDW
- %/# retic ↑, RPI > 2

Differential

Schistocytes, helmet cells, spherocytes, echinocytes/burrs, WBC left shift, ↓ PLT

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal to slightly abnormal

Other

↑ D-dimer

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic TTP

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

[MAHA] nonimmune defect; Microangiopathic Hemolytic Anemia (MAHA); Thrombotic Thrombocytopenic Purpura (TTP); abnormal platelet aggregation on microvascular endothelium; deficiency of ADAMTS13 leads to ultra large vWF

Screening Tests

CBC

- N MCV, N MCHC, N-↑ RDW
- %/# retic ↑, RPI > 2

Differential

Schistocytes, nRBCs WBC left shift, ↓ PLT

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal to slightly abnormal

Other

N D-dimer

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic DIC

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

[MAHA] nonimmune defect; Microangiopathic Hemolytic Anemia (MAHA); Disseminated Intravascular Coagulation (DIC); abnormal activation of coagulation intravascularly; consumptive coagulopathy

Screening Tests

CBC

- N MCV, N MCHC, N-↑ RDW
- %/# retic ↑, RPI > 2

Differential

 Schistocytes, ↓ PLT

Iron studies

Normal to slightly abnormal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal to slightly abnormal

Other

Prolonged PT, APTT, TT ↑ D-dimer, FDPs ↓ fibrinogen

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Aplastic Anemia; pancytopenia, BM "dry tap"; clinically associated with respective cytopenia (ie bleeding, petechia, anemia, infection); Hgb F can be ↑; EPO is often ↑; flow cytometry CD34+ [blasts] cells < 0.3%; differentiate from Renal Disease, Myelodysplastic Syndrome, Hypersplenism

Screening Tests

CBC (pancytopenia)

- N MCV, N MCHC, N-↑ RDW
- %/# retic normal, RPI < 2

Differential

 Relative lymphocytosis normal cell morphologies

Iron studies

↑ serum iron, > 50% saturation of transferrin

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal

Other

BM hypocellular (<25%) plus two of:

Granulocyte < 0.5 x 109/L, $PLT < 20 \times 109/L$ Corrected Retic < 1%

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Rapid blood loss either internally (eg tissue damage) or externally (eg laceration)

Screening Tests

CBC

- N MCV, N MCHC, N RDW
- %/# retic normal, RPI < 2

Differential

Normal

Iron studies

Normal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal

Other

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Vitamin B12, Folic Acid, Folate Deficiencies, and Pernicious Anemia (absence of intrinsic factor); symptoms - lethargy, weakness, yellow or waxy pallor, neurological disturbances

Screening Tests

CBC (pancytopenia)

- ↑ MCV, N MCHC, N RDW
- %/# retic N-↓, RPI < 2

Differential

Neutropenia w/ hypersegs Macro-ovalocytes, HJ bodies, nRBCs

Iron studies

Normal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

 — ↑ serum bilirubin, ↓ haptoglobin

- B12, folate (serum vs RBC), MMA, Homocysteine, FIGLU
- BM erythroid hyperplasia ↑ M:E, megaloblastic cell morphologies

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Common causes are alcoholism (direct toxic effect on RBC precursors), reticulocytosis (hemolysis, GI bleed), and liver disease (RBC membrane changes); megaloblastic symptoms absent

Screening Tests

CBC

- N MCV, N MCHC, N RDW
- %/# retic N-↓, RPI < 2

Differential

Round ovalocytes

Iron studies

Normal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal

Other

Hepatic panel (liver enzymes, cholesterol, lipids)

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

Qualitative (structural) defects; common variants are Hgb S, Hgb E, Hgb C, Hgb D; note demographics (ie African blacks, Mediterranean basin and Southeast Asia); associations vaso-occlusive crisis, splenomegaly, dactylitis

Screening Tests

CBC

- N-↓ MCV, N-↓ MCHC, ↑ RDW
- ↑ %/# retic, RPI > 2

Differential (possible morphologies)

 Sickle cells (SL-MOD), target cells (MOD-MK), basophilic stippling, HJ bodies

Iron studies

N serum fe, N ferritin, N TIBC

Reflex Tests

Hemoglobin Identification

 Solubility (+/=), HPLC and electrophoresis abnormal

Hemolytic Indicators

Normal

- BM erythroid hyperplasia
 - ↓ ME, N Prussian blue, N ZPP

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

No adverse effect on pulmonary gas exchange; associated with dehydration or an overall decrease in plasma volume relative to red cell mass (leading to high hematocrit)

Screening Tests

CBC

- N MCV, N MCHC, N RDW ↑ HCT
- N %/# retic, RPI < 2

Differential

Normal

Iron studies

Normal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal

Other

Normal

Microcytic

Iron deficiency

Chronic inflammation

Sideroblastic

Thalassemia

Normocytic

Hereditary hemolytic

Acquired hemolytic

Hypoproliferative

Acute hemorrhage

Macrocytic

Megaloblastic

Non-megaloblastic

Hemoglobinopathies

Erythrocytosis

Relative

Absolute

Key Features

No adverse effect on pulmonary gas exchange; associated with benign causes, think body compensation Secondary Polycythemia Vera (SPV) (eg smoker, altitude, patients with renal disease receiving EPO) and malignant causes, think Myeloproliferative Neoplasm and Primary Polycythemia Vera (PPV)

Screening Tests

CBC

- N MCV, N MCHC, N RDW ↑ HCT
- N %/# retic, RPI < 2

Differential

SPV: Normal PPV: ↑ WBC, ↑ PLT

Iron studies

Normal

Reflex Tests

Hemoglobin Identification

Normal

Hemolytic Indicators

Normal

Other

 SPV: ↑ EPO, JAK2 = PPV: N EPO, JAK2 +

Leukocytes Review

Benign leukocyte disorders

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Symptoms: bacterial infections, viral infections, bleeding, medication exposure

Physical: organomegaly

Screening Tests

Cell counts

WBC, RBC, PLT concentrations

Differential and morphology evaluation

> Blast concentration

Reflex Tests

Special Stains

MPO, SBB, SE, NSE, TdT, TB, PAS, LAP

Flow Cytometry Immunophenotyping

CD Markers? Myeloid vs Lymphoid (T vs B)

Cytogenetics, Molecular

Benign leukocyte disorders Myeloid

NE

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Neutrophil (NE) changes associated with *bacterial infections*, tissue damage or necrosis, injury, inflammation, leukoerythroblastic reaction

Screening Tests

Cell counts

- ↑ WBC (<50)</p>

Differential and morphology evaluation

- ↑ % / # neutrophils with left shift, toxic changes – dohle bodies, toxic granulation, vacuolization

Reflex Tests

Special Stains

 $- \uparrow LAP$

Flow Cytometry Immunophenotyping

Normal

Cytogenetics, Molecular

Normal

Other

Benign leukocyte disorders Myeloid

EO

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Eosinophil (EO); associated with helminthic parasite infections

Screening Tests

Cell counts

– N-↑ WBC

Differential and morphology evaluation

- ↑ % / # eosinophils

Reflex Tests

Special Stains

Normal

Flow Cytometry Immunophenotyping

Normal

Cytogenetics, Molecular

Normal

Other

Benign leukocyte disorders Myeloid

BA

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Basophil (BA); associated with hypersensitivity reactions and chronic myeloproliferative disorders (CML, PV, ET)

Screening Tests

Cell counts

– N-↑ WBC

Differential and morphology evaluation

- ↑ % / # basophils

Reflex Tests

Special Stains

Normal

Flow Cytometry Immunophenotyping

Normal

Cytogenetics, Molecular

Normal

Other

Benign leukocyte disorders Myeloid MO

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Monocytes (MO); associated with myeloid neoplasms (CML, CMML, some other acute leukemias)

Screening Tests

Cell counts

– N-↑ WBC

Differential and morphology evaluation

- ↑ % / # monocytes

Reflex Tests

Special Stains

Normal

Flow Cytometry Immunophenotyping

Normal

Cytogenetics, Molecular

Normal

Other

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Lymphocytosis (LY) associations are viral infections (eg infectious mononucleosis (IM), Bordetella pertussis, CMV) Lymphopenia associations are HIV and inverted CD4:CD8, Wiskott-Aldrich syndrome, DiGeorge syndrome

Screening Tests

Cell counts

– N-↑ WBC

Differential and morphology evaluation

- Cytosis: ↑ % / # lymphocytes with ↑ % / # reactive lymphocytes
- Cytopenia: ↓ % / # lymphocytes

Reflex Tests

Special Stains

Normal

Flow Cytometry Immunophenotyping

Normal or evaluate CD4:CD8 ratios

Cytogenetics, Molecular

Normal

Other

IM only: + heterophile Ab

Myeloid

Lymphoid

Myeloid neoplasia **Acute leukemia**

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Presence of blasts in PB and BM; common recurring cytogenetic abnormalities shown according to WHO; complication of APL is DIC; ↑ serum and urine muramidase associated with ↑↑↑ monos/monoblasts

Screening Tests

Cell counts

– ↓-N-↑ WBC ↓ PLT

Differential and morphology evaluation

> → ↑ % Blasts, auer rods

BM Diff

 Hypercellular, >20% Blasts, auer rods

Reflex Tests

Special Stains

[MPO, SBB]+, myeloid [SE]+, mono [NSE]+

Flow Cytometry Immunophenotyping

Myeloblasts [CD34, CD13, CD33, HLA-DR]+ Monoblasts [CD14, CD11b, CD11c]+ APL abnormal "blast" promyelos [CD34]=

Cytogenetics, Molecular

AML: t(8;21), RUNX1-RUNX1T1 AMML(eo): t(16;16) or inv(16), CBFβ/MYH11 APL: t(15;17), PML/RARα

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Acquired proliferation of defective stem cell; associated with exposure to chemicals, radiation, viral infections, or therapy related (chemo/radiation)

Screening Tests

Cell counts

≥ 1 PB cytopenias

Differential and morphology evaluation

Cell maturation abnormalities, anisopoikilocytosis

BM Diff

<20% Blasts, auer rods, dysplasia, ringed sideroblasts

Reflex Tests

Special Stains

Not necessary

Flow Cytometry Immunophenotyping

Not necessary

Cytogenetics, Molecular

Chromosome abnormalities of 5, 7, 8, 20, Y

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

CML

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Chronic Myelogenous Leukemia (CML); most common MPN; most often seen in elderly (> 50 years)

Screening Tests

Cell counts

 ↑↑↑ WBC, ↑↑↑ PLT

Differential and morphology evaluation

↑↑↑ myeloids left shift, ↑ eos, ↑ basos

BM Diff

Hypercellular, <20% Blasts, ↑ ↑ M:E

Reflex Tests

Special Stains

− ↓ LAP

Flow Cytometry Immunophenotyping

Not necessary

Cytogenetics, Molecular

– t(9;22), Ph +, BCR-ABL1

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

PMF

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Primary Myelofibrosis (PMF); Cytokine-mediated proliferation of fibroblasts and PDGF (platelet derived growth factor)

Screening Tests

Cell counts

Pancytopenia

Differential and morphology evaluation

> Leukoerythroblast osis, teardrops, anisopoikilocytosis

BM Diff

<20% Blasts, "dry tap"

Reflex Tests

Special Stains

Not necessary

Flow Cytometry Immunophenotyping

Not necessary

Cytogenetics, Molecular

- 50% JAK2 +

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies

Key Features

~80–85% of cases of childhood ALL is B-cell

Screening Tests

Cell counts

– ↓-N-↑ WBC J PLT

Differential and morphology evaluation

– ↑ % Blasts

BM Diff

Hypercellular, >20% Blasts

Reflex Tests

Special Stains

Lymphoblasts [TdT] + B-blasts [PAS, AP] = T-blasts [PAS, AP] +

Flow Cytometry Immunophenotyping

B-blasts [CD34, 10, 19, 20, 22] + T-blasts [CD34, 2, 3, 5, 7, 8] +

Cytogenetics, Molecular

~25% cases t(12;21), ETV6-RUNX1

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma CLL/SLL

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Chronic Lymphocytic Leukemia (CLL) presents with PB lymphocytosis vs Small Lymphocytic Lymphoma (SLL) presents with lymphadenopathy

Screening Tests

Cell counts

− ↑ WBC

Differential and morphology evaluation

> - ↑↑ %/# lymphs, turtle shell nucleus ↑↑ smudge cells

BM Diff

Hypercellular

Reflex Tests

Special Stains

Not necessary

Flow Cytometry Immunophenotyping

B-cell [CD5, CD19] +, κ or λ clonality

Cytogenetics, Molecular

None

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma HCL

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Hairy Cell Leukemia (HCL)

Screening Tests

Cell counts

– N-↑ WBC

Differential and morphology evaluation

> ↑ %/# lymphs, "Hairy cells"

BM Diff

"Dry tap", "Friedegg" appearance

Reflex Tests

Special Stains

– TRAP+

Flow Cytometry Immunophenotyping

- [CD19, 20, 22, 11c, 25, 103, slg intense] +

Cytogenetics, Molecular

None

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

BL

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Burkitt Lymphoma (BL); EBV virus thought to play a role in pathogenesis

Screening Tests

Cell counts

– N-↑ WBC

Differential and morphology evaluation

↑ %/# lymphs, "blast" have deep blue basophilic cytoplasm with vacuoles

BM Diff

"starry sky"

Reflex Tests

Special Stains

– TRAP+

Flow Cytometry Immunophenotyping

[CD19, CD10, slg]+ [CD5]=

Cytogenetics, Molecular

t(8;14) (MYC and IGH gene rearrangement)

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

LGL

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Large Granular Lymphocytic Leukemia (LGL); composed of mature T cells; must be differentiated from Reactive lymphocytosis and NK neoplasms

Screening Tests

Cell counts

– N-↑ WBC

Differential and morphology evaluation

> ↑ %/# lymphs, abundant pale cytoplasm, azurophilic granules

BM Diff

None

Reflex Tests

Special Stains

None

Flow Cytometry Immunophenotyping

- [CD4]=, [CD2, 3, 5, 7, 8, 16] + usually CD56=, CD57+

Cytogenetics, Molecular

None

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma Sezary

Plasma cell dyscrasias

Hereditary anomalies

Key Features

Sezary's Syndrome; neoplasm of mature T-cells in skin, LN, PB; must be differentiated from mycosis fungoides (cutaneous T-cell lymphoma)

Screening Tests

Cell counts

– N-↑ WBC

Differential and morphology evaluation

> ↑ %/# lymphs, Convoluted (cerebriform) nuclei

BM Diff

None

Reflex Tests

Special Stains

None

Flow Cytometry Immunophenotyping

[Cd7]=, [CD3, 4]+CD4:CD8 > 10

Cytogenetics, Molecular

None

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias WM

Hereditary anomalies

Key Features

Waldenstrom's Macroglobulinemia (WM); combination of Lymphoplasmacytic Lymphoma with BM involvement and increase of IgM monoclonal paraprotein

Screening Tests

Cell counts

– N-↑ WBC

Differential and morphology evaluation

rouleaux

BM Diff

diffuse infiltrate of neoplastic lymphocytes and plasma cells

Reflex Tests

Special Stains

None

Flow Cytometry Immunophenotyping

None

Cytogenetics, Molecular

None

Other

 Serum monoclonal heavy chain IgM, Monoclonal light chain clg (κ or λ)

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias **PCM**

Hereditary anomalies

Key Features

Plasma Cell Myeloma (PCM) or Multiple Myeloma (MM); Ig-secreting cells in absence of neoplastic B lymphocytes; S/UPEP show M (monoclonal) spike

Screening Tests

Cell counts

– N-↑ WBC

Differential and morphology evaluation

rouleaux

BM Diff

Lytic bone lesions, Plasma cells

Reflex Tests

Special Stains

None

Flow Cytometry Immunophenotyping

None

Cytogenetics, Molecular

None

Other

 Serum monoclonal heavy chain IgG, Monoclonal light chain clg (κ or λ, in urine as Bence-Jones)

Benign leukocyte disorders Myeloid Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies Pelger Huet

Key Features

Cells function normally; decrease segmentation (hyposegments) of all granulocytes; maturation/texture of nucleus does not align with shape of nucleus and maturation of cytoplasm; homozygotes round/oval nuclei; heterozygotes bilobed

Screening Tests

Cell counts

N WBC

Differential and morphology evaluation

> Automated and manual count show morphological left shift, no toxic changes

Reflex Tests

Special Stains

Normal

Flow Cytometry Immunophenotyping

Normal

Cytogenetics, Molecular

Normal

Other

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies Alder Reilly

Key Features

Cells function normally; known as Hunter's or Hurler's syndrome; aggregate of incomplete mucopolysaccharides degradation

Screening Tests

Cell counts

N WBC

Differential and morphology evaluation

> Large, purplish granules in cytoplasm of all WBCs

Reflex Tests

Special Stains

- + TB

Flow Cytometry Immunophenotyping

Normal

Cytogenetics, Molecular

Normal

Other

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies Chediak Higashi

Key Features

Cells dysfunctional – decreased bactericidal effect; fusion of primary + secondary granules in NEs and LYs

Screening Tests

Cell counts

N WBC

Differential and morphology evaluation

> Giant green-gray bodies

Reflex Tests

Special Stains

Normal

Flow Cytometry Immunophenotyping

Normal

Cytogenetics, Molecular

Normal

Other

Myeloid

Lymphoid

Myeloid neoplasia

Acute leukemia

Myelodysplastic syndromes

Myeloproliferative neoplasms

Lymphoid neoplasia

Acute leukemia

Chronic leukemia/lymphoma

Plasma cell dyscrasias

Hereditary anomalies May Hegglin

Key Features

Cells function normally; cytoplasmic inclusions of RNA from RER

Screening Tests

Cell counts

N WBC

Differential and morphology evaluation

> Blue, large, and round Dohle-like bodies in all granulocytes Giant platelets

Reflex Tests

Special Stains

Normal

Flow Cytometry Immunophenotyping

Normal

Cytogenetics, Molecular

Normal

Other

Hemostasis Review

Quantitative abnormalities Thrombocytopenia Increased destruction Decreased production Pseudothrombocytopenia Thrombocytosis Qualitative defects von Willebrand disease **Bernard-Soulier syndrome** Glanzmann thrombasthenia

Disease States

Coagulation factor deficiencies Acquired Hereditary **Inhibitors** Fibrinolytic system Hypercoagulable states DIC

Key Features

Platelet and vWF disorders: superficial skin or mucous membrane bleeding (nose, gums), petechia, purpura, ecchymoses Coagulation factor disorders: hématoma, deep tissue/joint bleeding Thrombosis disorders: DVT, PE, neurological, cerebral/myocardial infarction Age of initial presentation can aid in differentiating hereditary vs acquired disorder

Screening Tests

Platelet

- CBC count
- Morphology evaluation

Hemostasis

– PT/INR/APTT Fibrinogen

Therapy Monitoring

Reflex Tests

Platelet

- Function (PFA)
- Aggregation Studies

Hemostasis

- D-dimer, Thrombin Time, Mixing study, inhibitor screen
- Factor assay, vWF assay
- aPL, Protein C/S, HIT
- FV Leiden, PT20210

<u>Platelets</u>

Quantitative abnormalities Thrombocytopenia Increased destruction ITP

Decreased production Pseudothrombocytopenia Thrombocytosis Qualitative defects von Willebrand disease Bernard-Soulier syndrome Glanzmann thrombasthenia

Disease States

Coagulation factor deficiencies Acquired Hereditary Inhibitors Fibrinolytic system Hypercoagulable states DIC

Key Features

Immune Thrombocytopenia (ITP); Most common form of thrombocytopenia; associated with children 5-6 yrs following a viral infection; autoreactive antibodies to GPIIb/IIIa or GPI/IX

Screening Tests

Platelet

- − ↓ PLT
- Morphology normal

Hemostasis

Normal

Reflex Tests

Platelet

Function normal

Hemostasis

Quantitative abnormalities Thrombocytopenia Increased destruction HIT

Decreased production Pseudothrombocytopenia Thrombocytosis Qualitative defects von Willebrand disease Bernard-Soulier syndrome Glanzmann thrombasthenia

Disease States

Coagulation factor deficiencies Acquired Hereditary **Inhibitors**

Fibrinolytic system

DIC

Hypercoagulable states

<u>Platelets</u>

Key Features

Heparin-Induced Thrombocytopenia (HIT); immune-mediated destruction of platelets via heparin-dependent platelet activating IgG antibodies; complication is activation of platelets leading to thrombosis

Screening Tests

Platelet

- PLT trend ↓ after heparin initiation
- Morphology normal

Hemostasis

Therapy Monitoring

APTT or anti-Xa

Reflex Tests

Platelet

Function normal

Hemostasis

Normal

Quantitative abnormalities Thrombocytopenia

Increased destruction

Decreased production

Pseudothrombocytopenia

Thrombocytosis

Qualitative defects

von Willebrand disease

Bernard-Soulier syndrome

Glanzmann thrombasthenia

Disease States

Coagulation factor deficiencies

Acquired

Hereditary

Inhibitors

Fibrinolytic system

Hypercoagulable states

Key Features

See Aplastic Anemia (AA) and Myelodysplastic Syndrome (MDS)

Screening Tests

Platelet

- − ↓ PLT
- Morphology normal in AA, abnormal in MDS

Hemostasis

Normal

Reflex Tests

Platelet

Function normal

Hemostasis

Quantitative abnormalities Thrombocytopenia

Increased destruction Decreased production

Pseudothrombocytopenia

Thrombocytosis

Qualitative defects

von Willebrand disease

Bernard-Soulier syndrome

Glanzmann thrombasthenia

Disease States

Coagulation factor deficiencies

Acquired

Hereditary

Inhibitors

Fibrinolytic system

Hypercoagulable states

Key Features

In vitro artifact of automated cell counting – "low" automated platelet count; usually autoantibody (GPIIb/IIIa) – recognizes EDTA-induced cryptic epitopes on platelets

Screening Tests

Platelet

- − ↓ PLT
- PLT clumping, satellitosis

Hemostasis

Normal

Reflex Tests

Platelet

Function normal

Hemostasis

Quantitative abnormalities

Thrombocytopenia Increased destruction Decreased production Pseudothrombocytopenia

Thrombocytosis

Qualitative defects von Willebrand disease Bernard-Soulier syndrome Glanzmann thrombasthenia

Disease States

Coagulation factor deficiencies Acquired Hereditary

Inhibitors

Fibrinolytic system

Hypercoagulable states

Key Features

Primary association is ↑ production (eg MPNs); secondary associated with reactive process (eg acute hemorrhage, post splenectomy, surgery); transient thrombocytosis associated with vigorous exercise and childbirth

Screening Tests

Platelet

- \uparrow PLT
- Morphology normal

Hemostasis

Normal

Therapy Monitoring (if thrombosis occurs)

APTT or anti-Xa

Reflex Tests

Platelet

Function normal

Hemostasis

Normal or D-dimer if thrombosis occurs

Quantitative abnormalities Thrombocytopenia Increased destruction Decreased production Pseudothrombocytopenia Thrombocytosis

Qualitative defects von Willebrand disease

Bernard-Soulier syndrome Glanzmann thrombasthenia

Disease States

Coagulation factor deficiencies Acquired Hereditary Inhibitors

Fibrinolytic system Hypercoagulable states

Key Features

Most common hereditary bleeding disorder; main role in primary hemostasis – mediates platelet adhesion via GPIb/IX/V and collagen; main role in secondary hemostasis – complexes with and stabilizes FVIII; Type 1 vWD is quantitative, Type 2 is qualitative

Screening Tests

Platelet

- N PLT
- Morphology normal

Hemostasis

– N-↑ APTT, N PT/INR

Reflex Tests

Platelet

- ↑ PFA
- N ADP, collagen, epinephrine, ristocetin w vWF ABN ristocetin

Hemostasis

vWF assay

Quantitative abnormalities

Thrombocytopenia Increased destruction

Decreased production

Pseudothrombocytopenia

Thrombocytosis

Qualitative defects

von Willebrand disease

Bernard-Soulier syndrome

Glanzmann thrombasthenia

Disease States

Coagulation factor deficiencies

Acquired

Hereditary

Inhibitors

Fibrinolytic system

Hypercoagulable states

Key Features

Dysfunctional/deficient GPIb/IX/V complex

Screening Tests

Platelet

- − ↓ PLT
- Morphology giant

Hemostasis

Normal

Reflex Tests

Platelet

- ↑ PFA
- N ADP, collagen, epinephrine ABN ristocetin, ristocetin w vWF

Hemostasis

Normal

Other

Flow shows ↓ or abnormal GPIb/IX (CD42b/CD42a)

Quantitative abnormalities Thrombocytopenia Increased destruction Decreased production Pseudothrombocytopenia Thrombocytosis

Qualitative defects

von Willebrand disease Bernard-Soulier syndrome

Glanzmann thrombasthenia

Disease States

Coagulation factor deficiencies Acquired Hereditary

Inhibitors

Fibrinolytic system

Hypercoagulable states

Key Features

Dysfunctional/deficient GPIIb/IIIa complex leading to platelets unable to link via fibrinogen/fibrin

Screening Tests

Platelet

- N PLT
- Morphology normal

Hemostasis

Normal

Reflex Tests

Platelet

- ↑ PFA
- N ristocetin, ristocetin w vWF ABN ADP, collagen, epinephrine

Hemostasis

Normal

Other

Decreased GPIIb/IIIa by flow cytometry (CD41 and CD61)

Quantitative abnormalities Thrombocytopenia Increased destruction Decreased production Pseudothrombocytopenia Thrombocytosis Qualitative defects

Disease States

Bernard-Soulier syndrome

Glanzmann thrombasthenia

von Willebrand disease

Coagulation factor deficiencies Acquired

Hereditary

Inhibitors

Fibrinolytic system

Hypercoagulable states

Key Features

Commonly associated with DIC - consumptive coagulopathy, liver disease (LD) primary organ of hemostasis protein production, Vitamin K Deficiency (VKD) vitamin K dependent factors; onset is later in life DIC associated with systemic bleeding; LD, VKD with deep bleeding

Screening Tests

Platelet

- DIC: ↓ PLT LD, VKD: N PLT
- Morphology normal

Hemostasis

DIC, LD, VKD: ↑ APTT, PT/INR, ↓ FIB

Reflex Tests

Platelet

Function and aggregation normal

Hemostasis

Not indicated; treat underlying disorder

Quantitative abnormalities Thrombocytopenia Increased destruction Decreased production Pseudothrombocytopenia

Thrombocytosis

Qualitative defects

von Willebrand disease

Bernard-Soulier syndrome

Glanzmann thrombasthenia

Disease States

Coagulation factor deficiencies

Acquired

Hereditary

Inhibitors

Fibrinolytic system

Hypercoagulable states

Key Features

Order of prevalence – FVIII, FIX, FXI or Hemophilias A, B, C; associated with deep bleeding with an early age onset

Screening Tests

Platelet

- N PLT
- Morphology normal

Hemostasis

– ↑ APTT, N PT/INR, FIB

Reflex Tests

Platelet

Function and aggregation normal

Hemostasis

Mixing study corrects, inhibitor screen corrects Factor specific assays

Quantitative abnormalities Thrombocytopenia Increased destruction Decreased production Pseudothrombocytopenia Thrombocytosis Qualitative defects

Disease States

von Willebrand disease

Bernard-Soulier syndrome

Glanzmann thrombasthenia

Coagulation factor deficiencies Acquired Hereditary

Inhibitors

Fibrinolytic system Hypercoagulable states

Key Features

Factor specific inhibitors (FSI) acquired after receiving treatment Antiphospholipid antibodies (aPL) associated with thrombosis presentation but bleeding indicated by hemostasis testing

Screening Tests

Platelet

- N PLT
- Morphology normal

Hemostasis

– FSI: ↑ APTT (for intrinsic factors), N PT/INR, FIB aPL: ↑ APTT, N PT/INR, FIB

Reflex Tests

Platelet

Function and aggregation normal

Hemostasis

FSI: Mixing study corrects, inhibitor screen prolongs; perform inhibitor titer aPL: Mixing study prolongs, inhibitor screen prolongs; perform further confirmation testing

Quantitative abnormalities Thrombocytopenia Increased destruction Decreased production Pseudothrombocytopenia Thrombocytosis Qualitative defects von Willebrand disease Bernard-Soulier syndrome Glanzmann thrombasthenia

Disease States

Coagulation factor deficiencies Acquired Hereditary Inhibitors

Fibrinolytic system

Hypercoagulable states

Key Features

Normally plasminogen activator (PA) converts plasminogen to plasmin; plasmin breaks down fibrin via fibrinolysis; PA is inhibited by plasminogen activator inhibitor (PAI), plasminogen is inhibited by thrombin-activatable fibrinolysis inhibitor, plasmin is inhibited by antiplasmin ... leads to less fibrinolysis and more thrombosis

Screening Tests

Platelet

- N PLT
- Morphology normal

Hemostasis

N APTT, N PT/INR, FIB

Reflex Tests

Platelet

Function and aggregation normal

Hemostasis

Excessive plasmin activation leads to more fibrinolysis and fibrinogenolysis leading to increased D-dimer and FDP concentrations; excessive plasmin without fibrin formation is primary fibrinogenolysis and only FDP is increased

Quantitative abnormalities Thrombocytopenia Increased destruction Decreased production Pseudothrombocytopenia Thrombocytosis Qualitative defects von Willebrand disease

Disease States

Bernard-Soulier syndrome

Glanzmann thrombasthenia

Coagulation factor deficiencies Acquired Hereditary Inhibitors Fibrinolytic system

Hypercoagulable states

DIC (RBC Hemolytic Anemia)

Key Features

Arterial vs venous thrombi; \(\) in natural inhibitors of clotting - Antithrombin Deficiency, Protein C/S Deficiency; ↑ in procoagulant potential - FV Leiden, PT20210; Abnormalities of fibrinolysis - Fibrinolytic System Disorders; Inpatients receive anticoagulant heparin, outpatients receive anticoagulant coumadin

Screening Tests

Platelet

- N PLT
- Morphology normal

Hemostasis

N APTT, N PT/INR, FIB

Therapy Monitoring (if thrombosis occurs)

 Inpatient: APTT or anti-Xa Outpatient: PT/INR

Reflex Tests

Platelet

Function and aggregation normal

Hemostasis

- ↑ D-dimer
- Antithrombin, Protein C/S assays
- FV Leiden, PT20210 by PCR