Contrôle sur les chapitres 4, 5 et 6

Les exercices avec un \clubsuit sont à faire sur la copie double.

Exercice 1:

1. Ranger dans l'ordre décroissant les nombres suivants :

$$5,4$$
 ; $\frac{542}{100} + \frac{3}{1000}$; $\frac{53}{10} + \frac{9}{100}$; 538 centièmes et $\frac{5470}{1000}$

2. Compléter avec l'un des signes : <,>ou=

$$8,74 \dots \frac{874}{100}$$

$$5.8 \dots 5.08$$
 $8.04 \dots 8.038$ $8.74 \dots \frac{874}{100}$ $\frac{7}{10} + \frac{4}{100} \dots 0.47$ $12 + \frac{9}{100} \dots 12.9$

$$12 + \frac{9}{100} \dots 12,9$$

3. Compléter avec le nombre entier qui suit ou celui qui précède :

$$12, 6 < \dots$$

$$6,09 > \dots$$

$$\dots < \frac{2453}{100}$$

Exercice 2:

1. Intercaler un nombre entre 3,1 et 3,2 :

......

2. Encadrer les nombres suivants par deux entiers consécutifs :

$$\ldots < 74{,}586 < \ldots \ldots$$

$$\ldots \ldots < \frac{8523}{100} < \ldots \ldots$$

Exercice 3:

 π est un nombre qui a fasciné tant de savants depuis l'antiquité.

 π est un nombre irrationnel (c'est à dire qu'il s'écrit avec un nombre infini de décimales sans suite logique).

Le 2 Août 2010, 5 000 milliards de décimales de π ont été découverts par deux japonnais Alexander J. Yee et Shigeru en 90 jours.

Et 1 an plus tard après 371 jours de travail, ces même chercheurs ont battu leur record et ont découvert jusqu'à 10 000 milliards de décimales de π . En voici une toute petite approximation :

$\pi \approx 3.141592653589793238462643383279502884197169399375$

- 1. Encadrer le nombre π au millième près.
- 2. Donner la valeur approchée au millième près de π par défaut.
- 3. Encadrer le nombre π au dixième près.
- 4. Donner la valeur approchée au dixième près de π par excès.

Exercice 4:

- 1. Donner les abscisses des points A, B et C:....
- 2. Placer (à l'aide d'une croix bleue) les points E, F et G sur la demi-droite graduée :

/1,5 **Exercice 5**: Pour chaque question, entourer la bonne réponse :

1	On sait que : (AB) // (CD) et que : (AB) // (EF) alors	On peut dire que : (CD) // (EF)	On peut dire que : (CD) \(\preceq\) (EF)	On ne peut rien dire.
2	On sait que : (d) // (d'), que (d'') ⊥ (d') et que (Δ) ⊥ (d'') alors	On peut dire que : $(d) // (\Delta)$	On peut dire que : $(d) \perp (\Delta)$	On ne peut rien dire.
3	On sait que : (d) et (d') sont sécantes, que (d'') \(\(\) (d') et que (\(\) // (d) alors	On peut dire que : $(d") \perp (\Delta)$	On peut dire que : (d'') et (Δ) sont sécantes	On ne peut rien dire.

/3,75 **Exercice 6** : ♣

- 1. Avec la règle plate et l'équerre, construire soigneusement sur votre copie double :
- Tracer une droite (AL)
- Placer un point $M \in (AC)$ et un point $B \notin (AC)$
- Tracer la droite (d_1) perpendiculaire à la droite (AL) passant par le point M
- Tracer la droite (d_2) parallèle à la droite (AM) passant par le point B.
- 2. Démontrer que les droites (d_1) et (d_2) sont perpendiculaires.

/1.25 **Exercice 7**: ♣

Luc doit construire la figure ci-contre.

Voici les différentes instructions dans le désordre.

Réécrire sur votre copie double les instructions dans le bon ordre.

- Tracer la droite perpendiculaire à (MU) passant par I. Elle coupe (MU) en O.
- Tracer la droite perpendiculaire à (MA) passant par U. Elle coupe (MA) en I.
- Les droites (OH) et (IU) sont sécantes en B.
- Tracer un triangle MAU.
- Tracer la droite parallèle à (MA) passant par O. Elle coupe (AU) en H.

/ Exercice 8 : BONUS

22			7
11		21	2
	10	-	24
4		6	