KIRAN.N GREAT LEARNING

# Table of Contents

| List Of Tables                                                                                                                                                                                                                                                                                                                                    | 3                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| List Of Figures                                                                                                                                                                                                                                                                                                                                   | 4                    |
| Problem                                                                                                                                                                                                                                                                                                                                           | 5                    |
| Q1 Read the data as an appropriate Time Series data and plot the data                                                                                                                                                                                                                                                                             | 5                    |
| Q2. Perform appropriate Exploratory Data Analysis to understand the data and also pe decomposition.                                                                                                                                                                                                                                               |                      |
| Size Of Dataset                                                                                                                                                                                                                                                                                                                                   | 6                    |
| Data Type & Null Check                                                                                                                                                                                                                                                                                                                            | 7                    |
| Descriptive Statistics                                                                                                                                                                                                                                                                                                                            | 7                    |
| Univariate Analysis                                                                                                                                                                                                                                                                                                                               | 8                    |
| Q3 Split the data into training and test. The test data should start in 1991                                                                                                                                                                                                                                                                      | 11                   |
| Q4 Build all the exponential smoothing models on the training data and evaluate the matter RMSE on the test data. Other models such as regression, naïve forecast models and sin average models. should also be built on the training data and check the performance of data using RMSE.                                                          | nple<br>n the test   |
| Basic Forecast                                                                                                                                                                                                                                                                                                                                    | 12                   |
| Moving Average Forecast                                                                                                                                                                                                                                                                                                                           | 13                   |
| Exponential Smoothening Forecast                                                                                                                                                                                                                                                                                                                  | 14                   |
| Q5. Check for the stationarity of the data on which the model is being built on using ap statistical tests and also mention the hypothesis for the statistical test. If the data is for non-stationary, take appropriate steps to make it stationary. Check the new data for st and comment. Note: Stationarity should be checked at alpha = 0.05 | und to be ationarity |
| Q6. Build an automated version of the ARIMA/SARIMA model in which the parameters selected using the lowest Akaike Information Criteria (AIC) on the training data and eval model on the test data using RMSE                                                                                                                                      | aluate this          |
| Sparkling Data                                                                                                                                                                                                                                                                                                                                    | 19                   |
| Rose Data                                                                                                                                                                                                                                                                                                                                         | 20                   |
| Q7 Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the transfer and evaluate this model on the test data using RMSE.                                                                                                                                                                                                     | _                    |
| Sparkling data                                                                                                                                                                                                                                                                                                                                    | 22                   |
| Rose Data                                                                                                                                                                                                                                                                                                                                         | 25                   |
| Q8 Build a table with all the models built along with their corresponding parameters ar respective RMSE values on the test data                                                                                                                                                                                                                   |                      |
| Sparkling Data                                                                                                                                                                                                                                                                                                                                    | 28                   |
| Rose Data                                                                                                                                                                                                                                                                                                                                         | 29                   |
| Q9 Based on the model-building exercise, build the most optimum model(s) on the corand predict 12 months into the future with appropriate confidence intervals/bands                                                                                                                                                                              | •                    |
| Sparkling Data                                                                                                                                                                                                                                                                                                                                    | 20                   |

| Rose Data                                                                                 | 30 |
|-------------------------------------------------------------------------------------------|----|
| Q10 Comment on the model thus built and report your findings and suggest the measures the | at |
| the company should be taking for future sales                                             | 30 |
| Suggestions:                                                                              | 31 |
| Thank You                                                                                 | 31 |

# **List Of Tables**

| Table 1: Sparking Data Set Sample                               | 5  |
|-----------------------------------------------------------------|----|
| Table 2: Rose Data Set Sample                                   | 5  |
| Table 3: Descriptive Statistics of Sparkling Dataset            | 7  |
| Table 4: Descriptive Statistics of Rose Dataset                 | 8  |
| Table 5: RMSE Values of Sparkling Data                          | 12 |
| Table 6: RMSE Values of Rose Data                               | 13 |
| Table 7: Moving Average RMSE Values of Sparkling Data           | 13 |
| Table 8: Moving Average RMSE Values of Rose Data                | 14 |
| Table 9: Exponential Smoothening RMSE values of Sparkling Data  | 14 |
| Table 10: Exponential Smoothening RMSE values of Rose Data      | 15 |
| Table 11: Exponential Smoothening Parameters for Sparkling Data | 16 |
| Table 12: Exponential Smoothening Parameters for Rose Data      | 16 |
| Table 13: Summarising ARIMA - SARIMA Optimal Values             | 18 |
| Table 14: Auto ARIMA Model Result Summary of Sparkling Data     | 19 |
| Table 15: Auto SARIMA Model Result Summary of Sparkling Data    | 19 |
| Table 16: Auto ARIMA - SARIMA RMSE values of Sparkling Data     | 20 |
| Table 17: Auto ARIMA Model Result Summary of Rose Data          | 20 |
| Table 18: Auto SARIMA Model Result Summary of Rose Data         | 21 |
| Table 19: ARIMA - SARIMA RMSE values of Rose Data               | 21 |
| Table 20: Manual ARIMA Model Result Summary of Sparkling Data   | 23 |
| Table 21: Manual SARIMA Model Result Summary of Sparkling Data  | 24 |
| Table 22: Manual ARIMA - SARIMA RMSE values of Sparkling Data   | 24 |
| Table 23: Manual ARIMA Model Result Summary of Rose Data        | 26 |
| Table 24: Manual SARIMA Model Result Summary of Rose Data       | 27 |
| Table 25: Manual ARIMA - SARIMA RMSE values of Rose Data        | 28 |
| Table 26: Sparkling Data RMSE Values on the Test Data           | 28 |
| Table 27: Rose Data RMSE Values on the Test Data                | 29 |

# List Of Figures

| Figure 1: Time Series Data Plot of Sparkling Data                                   | 6  |
|-------------------------------------------------------------------------------------|----|
| Figure 2: Time Series Data Plot of Rose Data                                        | 6  |
| Figure 3: Sparkling Sales Yearly Boxplot                                            | 8  |
| Figure 4: Rose Sales Yearly Boxplot                                                 | 8  |
| Figure 5: Sparkling Sales Monthly Boxplot                                           | 9  |
| Figure 6: Rose Sales Monthly Boxplot                                                |    |
| Figure 7: Additive Decomposition of Sparkling Data                                  | 9  |
| Figure 8: Multiplicative Decomposition of Sparkling Data                            | 10 |
| Figure 9: Additive Decomposition of Rose Data                                       | 10 |
| Figure 10: Multiplicative Decomposition of Rose Data                                | 11 |
| Figure 11: Sparkling Dataset After Train and Test Split                             | 12 |
| Figure 12: Rose Dataset After Train and Test Split                                  | 12 |
| Figure 13: Sparkling Data Forecast Plot                                             |    |
| Figure 14: Rose Data Forecast Plot                                                  |    |
| Figure 15: Moving Average Sparkling Data Forecast Plot                              | 14 |
| Figure 16: Moving Average Rose Data Forecast Plot                                   | 14 |
| Figure 17: Exponential Smoothening Sparkling Data Forecast Plot                     | 15 |
| Figure 18: Exponential Smoothening Rose Data Forecast Plot                          | 15 |
| Figure 19: Rolling Statistics plot of Sparkling Data with one level of differencing | 17 |
| Figure 20: Rolling Statistics plot of Rose Data with one level of differencing      | 17 |
| Figure 21: ACF Plot of Sparkling Data                                               | 18 |
| Figure 22: ACF Plot of Rose Data                                                    | 18 |
| Figure 23: Auto SARIMA Model Diagnostic Plot of Sparkling Data                      | 20 |
| Figure 24: SARIMA Model Diagnostic Plot of Rose Data                                | 21 |
| Figure 25: ACF Plot of Sparkling Training Data with 1 Level Differencing            | 22 |
| Figure 26: PACF Plot of Sparkling Training Data with 1 Level Differencing           | 22 |
| Figure 27: ACF Plot of Sparkling Training Data with 12 Level Differencing           | 23 |
| Figure 28: PACF Plot of Sparkling Training Data with 12 Level Differencing          | 23 |
| Figure 29: Manual SARIMA Model Diagnostic Plot of Sparkling Data                    | 24 |
| Figure 30: ACF Plot of Rose Training Data with 1 Level Differencing                 | 25 |
| Figure 31: PACF Plot of Rose Training Data with 1 Level Differencing                | 25 |
| Figure 32: ACF Plot of Rose Training Data with 12 Level Differencing                | 26 |
| Figure 33: PACF Plot of Rose Training Data with 12 Level Differencing               |    |
| Figure 34: Manual SARIMA Model Diagnostic Plot of Rose Data                         | 28 |
| Figure 35: Sparkling Data Forecast Using Optimal Model                              | 30 |
| Figure 36: Rose Data Forecast Using Optimal Model                                   | 30 |
| Figure 37: Optimal Model with Optimal Values                                        | 30 |

#### **Problem**

For this particular assignment, the data of different types of wine sales in the 20th century is to be analysed. Both of these data are from the same company but of different wines. As an analyst in the ABC Estate Wines, you are tasked to analyse and forecast Wine Sales in the 20th century.

#### Q1 Read the data as an appropriate Time Series data and plot the data.

Time Series data present in csv file is read into a pandas Data Frame using read\_csv() function. This normally loads data into a dataframe. To inform pandas that current data is a time series data we pass a parameter 'parse\_dates' with the time series column YearMonth as a value. Also, we make our time series reference as the index.

The current Time series data, Sparkling.csv has the sales information of Sparkling wines from January 1980 to July 1995 total 187 rows.

The current Time series data, Rose.csv has the sales information of Sparkling wines from January 1980 to July 1995 total 187 rows.

|            | Sparkling |
|------------|-----------|
| YearMonth  |           |
| 1980-01-01 | 1686      |
| 1980-02-01 | 1591      |
| 1980-03-01 | 2304      |
| 1980-04-01 | 1712      |
| 1980-05-01 | 1471      |

Table 1: Sparking Data Set Sample

|            | Rose  |
|------------|-------|
| YearMonth  |       |
| 1980-01-01 | 112.0 |
| 1980-02-01 | 118.0 |
| 1980-03-01 | 129.0 |
| 1980-04-01 | 99.0  |
| 1980-05-01 | 116.0 |
|            |       |

Table 2: Rose Data Set Sample

Following figures show the Time series plot of Sparkling and Rose wine sales information.



Figure 1: Time Series Data Plot of Sparkling Data



Figure 2: Time Series Data Plot of Rose Data

Q2. Perform appropriate Exploratory Data Analysis to understand the data and also perform decomposition.

Size Of Dataset

From the above output we observe there are total 187 rows of data in each dataset.

#### Data Type & Null Check

#### Sparkling Dataset

The Sparkling column present in data set is of integer type and there are no null values present in the dataset.

#### Rose dataset

The Rose column present in data set is of integer type and there are 2 null values present in the dataset. Using bfill() we are replacing null values present in the dataset.

#### **Descriptive Statistics**

|       | Sparkling   |
|-------|-------------|
| count | 187.000000  |
| mean  | 2402.417112 |
| std   | 1295.111540 |
| min   | 1070.000000 |
| 25%   | 1605.000000 |
| 50%   | 1874.000000 |
| 75%   | 2549.000000 |
| max   | 7242.000000 |

Table 3: Descriptive Statistics of Sparkling Dataset

|       | Rose       |
|-------|------------|
| count | 187.000000 |
| mean  | 89.919786  |
| std   | 39.232269  |
| min   | 28.000000  |
| 25%   | 62.500000  |
| 50%   | 85.000000  |
| 75%   | 111.000000 |
| max   | 267.000000 |

Table 4: Descriptive Statistics of Rose Dataset

# Univariate Analysis

# Box Plots by Year



Figure 3: Sparkling Sales Yearly Boxplot



Figure 4: Rose Sales Yearly Boxplot

#### Box Plots by Month



Figure 5: Sparkling Sales Monthly Boxplot



Figure 6: Rose Sales Monthly Boxplot

From the above monthly plots, we observe sales during December month are high compared to other months.

Also, sale of Rose wine is decreasing on year-on-year basis.

#### Time Series Decomposition



Figure 7: Additive Decomposition of Sparkling Data



Figure 8: Multiplicative Decomposition of Sparkling Data

We have decomposed the Time series data in Additive and Multiplicative decomposition in Fig 7 and Fig 8 respectively. Observing both the decomposition patterns, Residual component in Additive decomposition still shows some kind of pattern and data points are spread across while Residual component in Multiplicative decomposition does not show any pattern and data points are spread evenly.

Hence Multiplicative decomposition is the right way of decomposition for Sparkling dataset.

Individual Components output is present in IPYNB file.



Figure 9: Additive Decomposition of Rose Data



Figure 10: Multiplicative Decomposition of Rose Data

We have decomposed the Time series data in Additive and Multiplicative decomposition in Fig 9 and Fig 10 respectively. Observing both the decomposition patterns, Residual component in Additive decomposition still shows some kind of pattern and data points are spread across while Residual component in Multiplicative decomposition does not show any pattern and data points are spread evenly.

Hence Multiplicative decomposition is the right way of decomposition for Sparkling dataset.

Individual Components output is present in IPYNB file.

#### Q3 Split the data into training and test. The test data should start in 1991.

The regular approach to split the data into Train and Test dataset was to use TrainTestSplit which randomly splits the data train and test dataset. Currently we are dealing with Timeseries data which cannot be split randomly, here we split the data into train and test dataset based on a date. In the current problem all timeseries data before 1991 is taken as train data and test data starts from 1991.

After splitting the data into train and test data in both Sparkling and Rose dataset, Train dataset has 132 rows and test data set has 55 rows.



Figure 11: Sparkling Dataset After Train and Test Split



Figure 12: Rose Dataset After Train and Test Split

Q4 Build all the exponential smoothing models on the training data and evaluate the model using RMSE on the test data. Other models such as regression, naïve forecast models and simple average models. should also be built on the training data and check the performance on the test data using RMSE.

After splitting the given dataset into test and train dataset, we have built Linear Regression Model, Naïve Forecast Model and Simple average model for Forecasting purpose.

**Basic Forecast** 

|                    | Test RMSE   |
|--------------------|-------------|
| RegressionOnTime   | 1389.135175 |
| NaiveModel         | 3864.279352 |
| SimpleAverageModel | 1275.081804 |

Table 5: RMSE Values of Sparkling Data



Figure 13: Sparkling Data Forecast Plot

|                    | Test RMSE |
|--------------------|-----------|
| RegressionOnTime   | 15.262509 |
| NaiveModel         | 79.699093 |
| SimpleAverageModel | 53.440426 |

Table 6: RMSE Values of Rose Data



Figure 14: Rose Data Forecast Plot

# Moving Average Forecast

|                                 | Test RMSE   |
|---------------------------------|-------------|
| 2pointTrailingMovingAverage     | 813.400684  |
| 4 point Trailing Moving Average | 1156.589694 |
| 6 point Trailing Moving Average | 1283.927428 |
| 9 point Trailing Moving Average | 1346.278315 |

Table 7: Moving Average RMSE Values of Sparkling Data



Figure 15: Moving Average Sparkling Data Forecast Plot

|                                 | Test RMSE |
|---------------------------------|-----------|
| 2pointTrailingMovingAverage     | 11.529409 |
| 4 point Trailing Moving Average | 14.448930 |
| 6 point Trailing Moving Average | 14.560046 |
| 9pointTrailingMovingAverage     | 14.724503 |

Table 8: Moving Average RMSE Values of Rose Data



Figure 16: Moving Average Rose Data Forecast Plot

# **Exponential Smoothening Forecast**

|                                     | Test RMSE   |
|-------------------------------------|-------------|
| Simple Exponential Smoothing        | 1338.008384 |
| <b>Double Exponential Smoothing</b> | 5291.879833 |
| TES With Additive Seasonality       | 378.951023  |
| TES With Multiplicative Seasonality | 404.286809  |

Table 9: Exponential Smoothening RMSE values of Sparkling Data



Figure 17: Exponential Smoothening Sparkling Data Forecast Plot

|                                     | Test RMSE |
|-------------------------------------|-----------|
| Simple Exponential Smoothing        | 36.775787 |
| <b>Double Exponential Smoothing</b> | 15.262498 |
| TES With Additive Seasonality       | 14.237386 |
| TES With Multiplicative Seasonality | 20.132468 |

Table 10: Exponential Smoothening RMSE values of Rose Data



Figure 18: Exponential Smoothening Rose Data Forecast Plot

#### From the above forecasts,

- Sparkling data has highest RMSE for Double Exponential Smoothening Model and lowest RMSE for Triple Exponential Smoothening Model with Additive Seasonality. So Triple Exponential Smoothening Model with Additive Seasonality is better for the given Sparkling data.
- Rose data has highest RMSE for Naïve Forecast Model and lowest RMSE for 2-point Trailing Moving Average Model. So, 2-point Trailing Moving Average Model is better for the given Rose data.

Following table gives the Exponential smoothening parameters for each of the models.

|                                      | Alpha | Beta   | Gama |
|--------------------------------------|-------|--------|------|
| Single Exponential Smoothening       | 0.07  | -      | -    |
| Double Exponential Smoothening       | 0.67  | 0.0001 | -    |
| Triple Exponential Smoothening (Add) | 0.11  | 0.01   | 0.46 |
| Triple Exponential Smoothening (Mul) | 0.11  | 0.04   | 0.36 |

Table 11: Exponential Smoothening Parameters for Sparkling Data

|                                      | Alpha | Beta   | Gama    |
|--------------------------------------|-------|--------|---------|
| Single Exponential Smoothening       | 0.098 | -      | -       |
| Double Exponential Smoothening       | 0     | 0.16   | -       |
| Triple Exponential Smoothening (Add) | 0.08  | 0.0002 | 0.003   |
| Triple Exponential Smoothening (Mul) | 0.07  | 0.04   | 0.00007 |

Table 12: Exponential Smoothening Parameters for Rose Data

Q5. Check for the stationarity of the data on which the model is being built on using appropriate statistical tests and also mention the hypothesis for the statistical test. If the data is found to be non-stationary, take appropriate steps to make it stationary. Check the new data for stationarity and comment. Note: Stationarity should be checked at alpha = 0.05.

The Augmented Dickey-Fuller test is a unit root test which determines whether there is a unit root and subsequently whether the series is non-stationary.

The hypothesis in a simple form for the ADF test is:

HO: The Time Series has a unit root and is thus non-stationary.

H1: The Time Series does not have a unit root and is thus stationary.

We would want the series to be stationary for building ARIMA models and thus we would want the p-value of this test to be less than the alpha value where alpha = 0.05.

- We see that at 5% significant level the Sparkling Time Series data is non-stationary. (p-value = 0.567)
- We see that at 5% significant level the Rose Time Series data is non-stationary.
   (p-value = 0.756)

Let us take one level of differencing to see whether the series becomes stationary.

- We see that at  $\alpha$  = 0.05 the Sparkling Time Series with one level of differencing is indeed stationary. (p-value = 8.47 e-11)
- We see that at  $\alpha$  = 0.05 the Sparkling Time Series with one level of differencing is indeed stationary. (p-value = 3.89 e-08)

Above we have considered training data, also complete dataset is not stationary for both Sparkling and Rose but with one level of differencing they are stationary.



Figure 19: Rolling Statistics plot of Sparkling Data with one level of differencing



Figure 20: Rolling Statistics plot of Rose Data with one level of differencing

Q6. Build an automated version of the ARIMA/SARIMA model in which the parameters are selected using the lowest Akaike Information Criteria (AIC) on the training data and evaluate this model on the test data using RMSE.

ARIMA models can be built keeping the Akaike Information Criterion (AIC) in mind as well. In this case, we choose the 'p' and 'q' values to determine the AR and MA orders respectively which gives us the lowest AIC value. Lower the AIC better is the model.

After building the ARIMA mode, optimal values for p, d, q with lowest AIC is:

- Sparkling data -> (2,1,2) with AIC of 2210.61
- Rose data -> (0,1,2) with AIC of 1276.83

We will Plot PACF plot to find the seasonality factor before proceeding with SARIMA model.



Figure 21: ACF Plot of Sparkling Data



Figure 22: ACF Plot of Rose Data

From the above 2 plots we observe the seasonality of 6 as well as 12 for both Sparkling and Rose Data. We will proceed with 6.

Since the Sparkling data and Rose data with difference level equal to seasonal factor (6) is stationary we take D as 0.

After building the ARIMA mode, optimal values for (p, d, q) and (P, D, Q, seasonal factor) with lowest AIC is:

- Sparkling data -> (0,1,2) (2, 0, 2, 6) with AIC of 1727.88
- Rose data -> (1,1,2) (2, 0, 2, 6) with AIC of 1041.65

|                       | ARIMA (p, d, q) | SARIMA (p, d, q) (P, D, Q, Seasonal Factor) |
|-----------------------|-----------------|---------------------------------------------|
| <b>Sparkling Data</b> | (2, 1, 2)       | (0,1,2) (2, 0, 2, 6)                        |
| Rose Data             | (0, 1, 2)       | (1,1,2) (2, 0, 2, 6)                        |

Table 13: Summarising ARIMA - SARIMA Optimal Values

# Sparkling Data

#### ARIMA Model Results

|                                         |                         | =======   |            |                       |           | =      |
|-----------------------------------------|-------------------------|-----------|------------|-----------------------|-----------|--------|
| Dep. Variable:                          | . Variable: D.Sparkling |           |            | No. Observations: 131 |           |        |
| Model:                                  | ARIMA(2                 |           |            |                       | -1099.30  | 9      |
| Method:                                 |                         |           |            | ovations              | 1012.73   | 30     |
| Date:                                   | Wed, 06 J               | ul 2022 / | AIC        |                       | 2210.61   | 19     |
| Time:                                   | 1                       | 3:12:43 E | BIC        |                       | 2227.87   | 70     |
| Sample:                                 | 02-                     | 01-1980 H | HQIC       |                       | 2217.62   | 28     |
|                                         | - 12-                   | 01-1990   |            |                       |           |        |
|                                         |                         |           |            |                       |           |        |
|                                         |                         |           |            |                       | [0.025    | 0.975] |
| const                                   | E E843                  |           |            |                       | 4,570     | 6 500  |
| ar.L1.D.Sparkling                       |                         |           |            |                       |           |        |
| ar.L2.D.Sparkling                       |                         |           |            |                       |           |        |
| ma.L1.D.Sparkling                       |                         |           |            |                       |           |        |
| ma.L2.D.Sparkling                       |                         |           |            |                       |           |        |
| ma.cz.b.sparkiing                       | 0.5570                  | Roots     |            | 0.000                 | 0.515     | 1.001  |
| ======================================= |                         |           | -<br>      |                       |           |        |
|                                         | Real                    | Imaginary | У          | Modulus               | Frequency | ′      |
| AR.1 1.                                 | 1333                    | -0.7073   | j          | 1.3359                | -0.0888   | }      |
| AR.2 1.                                 | 1.1333                  |           | 73j 1.3359 |                       | 0.0888    | 3      |
|                                         | 1 1.0004                |           | 00j 1.0004 |                       | 0.0000    |        |
| MA.2 1.                                 | .0019                   | +0.0000   | j          | 1.0019                | 0.0000    | )      |
|                                         |                         |           |            |                       |           | •      |

Table 14: Auto ARIMA Model Result Summary of Sparkling Data

#### SARIMAX Results

| Dep. Variable:                          | у                 | No. Observations | : 132    |  |  |  |
|-----------------------------------------|-------------------|------------------|----------|--|--|--|
| Model: SARIMAX(0, 1                     | , 2)x(2, 0, 2, 6) | Log Likelihood   | -856.944 |  |  |  |
| Date:                                   | Wed, 06 Jul 2022  | AIC              | 1727.889 |  |  |  |
| Time:                                   | 15:06:45          |                  | 1747.164 |  |  |  |
| Sample:                                 | 0                 | HQIC             | 1735.713 |  |  |  |
|                                         | - 132             |                  |          |  |  |  |
| Covariance Type:                        | opg               |                  |          |  |  |  |
| ======================================= | -ro               |                  |          |  |  |  |
| coef std er                             | r 7               | P> z  [0.025     | 0.9751   |  |  |  |
|                                         |                   |                  |          |  |  |  |
| ma.L1 -0.7851 0.10                      | 3 -7.655          | 0.000 -0.986     | -0.584   |  |  |  |
| ma.L2 -0.0976 0.11                      | 2 -0.871          | 0.384 -0.317     | 0.122    |  |  |  |
| ar.S.L6 0.0022 0.02                     | 6 0.084           | 0.933 -0.049     | 0.053    |  |  |  |
| ar.S.L12 1.0396 0.01                    | 8 58.254          | 0.000 1.005      | 1.075    |  |  |  |
| ma.S.L6 0.0427 0.14                     | 3 0.298           | 0.766 -0.238     | 0.324    |  |  |  |
| ma.S.L12 -0.6202 0.09                   | 0 -6.878          | 0.000 -0.797     | -0.443   |  |  |  |
| sigma2 1.475e+05 1.42e+6                | 4 10.372          | 0.000 1.2e+05    | 1.75e+05 |  |  |  |
|                                         |                   |                  |          |  |  |  |
| Ljung-Box (L1) (Q):                     | 0.00 Jaro         | que-Bera (JB):   | 38.96    |  |  |  |
| Prob(Q):                                | 0.97 Prob         | )(JB):           | 0.00     |  |  |  |
| Heteroskedasticity (H):                 | 2.85 Skev         | ı:               | 0.58     |  |  |  |
| Prob(H) (two-sided):                    | 0.00 Kurt         | osis:            | 5.59     |  |  |  |
|                                         |                   |                  |          |  |  |  |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Table 15: Auto SARIMA Model Result Summary of Sparkling Data



Figure 23: Auto SARIMA Model Diagnostic Plot of Sparkling Data

RMSE SARIMA(0, 1, 2)(2, 0, 2, 6)-AIC 601.122857 ARIMA(2, 1, 2)-AIC 1374.546024

Table 16: Auto ARIMA - SARIMA RMSE values of Sparkling Data

#### Rose Data

#### ARIMA Model Results

| Dep. Variable: |         | D.Rose       | No. Observations: |             |        | 131      |
|----------------|---------|--------------|-------------------|-------------|--------|----------|
| Model:         | AR      | IMA(0, 1, 2) | Log Like          | lihood      |        | -634.418 |
| Method:        |         | css-mle      | S.D. of           | innovations |        | 30.167   |
| Date:          | Wed,    | 06 Jul 2022  | AIC               |             |        | 1276.835 |
| Time:          | •       | 13:12:44     |                   |             |        | 1288.336 |
| Sample:        |         | 02-01-1980   |                   |             |        | 1281.509 |
|                |         | - 12-01-1990 |                   |             |        |          |
| ==========     |         |              |                   |             |        |          |
|                | coef    | std err      | Z                 | P>   z      | [0.025 | 0.975]   |
| const          | -0.4886 | 0.085        | -5.742            | 0.000       | -0.655 | -0.322   |
| ma.L1.D.Rose   | -0.7601 | 0.101        | -7.499            | 0.000       | -0.959 | -0.561   |
| ma.L2.D.Rose   | -0.2398 | 0.095        | -2.518            | 0.012       | -0.427 | -0.053   |
|                |         | Ro           | ots               |             |        |          |
|                |         |              |                   |             |        |          |
|                |         | Imagin       | -                 |             | Fr     |          |
|                |         | +0.00        |                   | 1.0001      |        | 0.0000   |
| MA.2           | -4.1695 | +0.00        | 00j               | 4.1695      |        | 0.5000   |
|                |         |              |                   |             |        |          |

Table 17: Auto ARIMA Model Result Summary of Rose Data

#### SARIMAX Results

| Dep. Varia   | ole:          |              |           | y No. (     | Observations: |          | 132      |
|--------------|---------------|--------------|-----------|-------------|---------------|----------|----------|
| Model:       | SARI          | MAX(1, 1, 2) | x(2, 0, 2 | , 6) Logl   | ikelihood     |          | -512.828 |
| Date:        |               | Wed          | 1. 06 Jul | 2022 AIC    |               |          | 1041.656 |
| Time:        |               |              | •         | 8:58 BIC    |               |          | 1063.685 |
| Sample:      |               |              |           | 0 HQIC      |               |          | 1050.598 |
| 54p20.       |               |              | _         | 132         |               |          | 2030.330 |
| Covariance   | Tyne:         |              |           | opg         |               |          |          |
| coval Tallce | туре.         |              |           |             |               |          |          |
|              |               |              |           |             | [0.025        | 0.0751   |          |
|              |               |              |           |             | -             | -        |          |
| ar.L1        |               |              |           |             | -0.892        |          |          |
|              | -0.1954       |              |           |             |               |          |          |
|              | -0.8047       |              |           |             |               |          |          |
|              | -0.0626       |              |           |             |               |          |          |
|              |               |              |           |             |               |          |          |
|              | 0.8451        |              |           |             |               |          |          |
|              | 0.2226        |              |           |             |               |          |          |
|              | -0.7774       |              |           |             |               |          |          |
| sigma2       | 335.2013      | 3.9e+05      | 0.001     | 0.999       | -7.64e+05     | 7.65e+05 |          |
|              |               |              |           |             |               |          |          |
| Ljung-Box    | (L1) (Q):     |              |           | Jarque-Bera | a (JB):       | 56       |          |
| Prob(Q):     |               |              | 0.78      | Prob(JB):   |               | (        | 0.00     |
| Heteroskeda  | asticity (H): |              | 0.47      | Skew:       |               | (        | 0.52     |
| Prob(H) (t   | vo-sided):    |              | 0.02      | Kurtosis:   |               | (        | 5.26     |
| =======      |               |              |           |             |               |          |          |
|              |               |              |           |             |               |          |          |
|              |               |              |           |             |               |          |          |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).





Figure 24: SARIMA Model Diagnostic Plot of Rose Data

RMSE SARIMA(1, 1, 2)(2, 0, 2, 6)-AIC 26.111408 ARIMA(0, 1, 2)-AIC 15.611357

Table 19: ARIMA - SARIMA RMSE values of Rose Data

Q7 Build ARIMA/SARIMA models based on the cut-off points of ACF and PACF on the training data and evaluate this model on the test data using RMSE.

For both Sparkling and Rose data, data as it is was not stationary but data with 1 level of differencing is stationary so d = 1.

#### Sparkling data

Let us plot ACF and PACF plot and find the values for p and q based on the cut off



Figure 25: ACF Plot of Sparkling Training Data with 1 Level Differencing



Figure 26: PACF Plot of Sparkling Training Data with 1 Level Differencing

- The Auto-Regressive parameter in an ARIMA model is 'p' which comes from the significant lag before which the PACF plot cuts-off to 0.
- The Moving-Average parameter in an ARIMA model is 'q' which comes from the significant lag before the ACF plot cuts-off to 0.

So, for ARIMA model (p, d, q) is (0, 1, 0)

#### ARIMA Model Results

| Dep. Variable: |         | D.Sparklin     | g No.  | Observations: |          | 131       |  |
|----------------|---------|----------------|--------|---------------|----------|-----------|--|
| Model:         |         | ARIMA(0, 1, 0  | ) Log  | Likelihood    |          | -1132.791 |  |
| Method:        |         | CS             | s S.D. | of innovatio  | ns       | 1377.911  |  |
| Date:          | We      | ed, 06 Jul 202 | 2 AIC  |               |          | 2269.583  |  |
| Time:          |         | 16:35:2        | 3 BIC  |               |          | 2275.333  |  |
| Sample:        |         | 02-01-198      | 0 HQIC |               |          | 2271.919  |  |
|                |         | - 12-01-199    | 0      |               |          |           |  |
|                |         |                |        |               |          |           |  |
|                | coef    | std err        | z      | P> z          | [0.025   | 0.975]    |  |
| const          | 33.2901 | 120.389        | 0.277  | 0.782         | -202.667 | 269.248   |  |
|                |         |                |        |               |          |           |  |

Table 20: Manual ARIMA Model Result Summary of Sparkling Data

Since we observe a seasonality of 12 we plot a ACF and PACF plot for Data with level of difference equal to 12 to find P and Q based on the cut off.



Figure 27: ACF Plot of Sparkling Training Data with 12 Level Differencing



Figure 28: PACF Plot of Sparkling Training Data with 12 Level Differencing

- The Auto-Regressive parameter in a SARIMA model is 'P' which comes from the significant lag before which the PACF plot cuts-off to 1.
- The Moving-Average parameter in a SARIMA model is 'Q' which comes from the significant lag before the ACF plot cuts-off to 1.

So, for SARIMA model (p, d, q) (P, D, Q, seasonal Factor) is (0, 1, 0) (1, 0, 1, 12)

#### SARIMAX Results \_\_\_\_\_\_ No. Observations: SARIMAX(0, 1, 0)x(1, 0, [1], 12) Model: Log Likelihood -900.495 Date: Wed, 06 Jul 2022 1806.991 AIC Time: 17:16:17 1815.303 Sample: HQIC Θ 1810.365 - 132 Covariance Type: opg coef std err z P>|z| [0.025 0.975] ar.S.L12 1.0325 0.019 52.957 0.000 0.994 1.071 ma.S.L12 -0.5384 0.078 -6.896 0.000 -0.691 -0.385 sigma2 2.463e+05 2.34e+04 10.520 0.000 2e+05 2.92e+05 -0.565 2.92e+05 \_\_\_\_\_\_ Ljung-Box (L1) (Q): 19.69 Jarque-Bera (JB): 31.97 0.00 Prob(JB): Prob(Q): 0.00 Heteroskedasticity (H): 1.88 Skew: 0.66 Prob(H) (two-sided): 0.05 Kurtosis: 5.18

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).





Figure 29: Manual SARIMA Model Diagnostic Plot of Sparkling Data

|                                     | RMSE        |
|-------------------------------------|-------------|
| ARIMA(0, 1, 0)-Manual               | 4779.154299 |
| SARIMA(0, 1, 0)(1, 0, 1, 12)-Manual | 1787.706713 |

Table 22: Manual ARIMA - SARIMA RMSE values of Sparkling Data

#### Rose Data

Let us plot ACF and PACF plot and find the values for p and q based on the cut off



Figure 30: ACF Plot of Rose Training Data with 1 Level Differencing



Figure 31: PACF Plot of Rose Training Data with 1 Level Differencing

- The Auto-Regressive parameter in an ARIMA model is 'p' which comes from the significant lag before which the PACF plot cuts-off to 2.
- The Moving-Average parameter in an ARIMA model is 'q' which comes from the significant lag before the ACF plot cuts-off to 2.

So, for ARIMA model (p, d, q) is (2, 1, 2)

#### ARIMA Model Results

| Dep. Variable: Model: Method: Date: Time: Sample: | ARI<br>Wed, | [MA(2, 1, 2) | S.D. of<br>AIC<br>BIC |         | 1      | 131<br>633.649<br>29.975<br>.279.299<br>.296.550<br>.286.309 |
|---------------------------------------------------|-------------|--------------|-----------------------|---------|--------|--------------------------------------------------------------|
|                                                   | _           |              |                       |         |        |                                                              |
|                                                   | coef        | std err      | Z                     | P>   z  | [0.025 | 0.975]                                                       |
|                                                   |             |              |                       |         |        |                                                              |
| const                                             | -0.4911     | 0.081        | -6.076                | 0.000   | -0.649 | -0.333                                                       |
| ar.L1.D.Rose                                      | -0.4383     | 0.218        | -2.015                | 0.044   | -0.865 | -0.012                                                       |
| ar.L2.D.Rose                                      | 0.0269      | 0.109        | 0.246                 | 0.806   | -0.188 | 0.241                                                        |
| ma.L1.D.Rose                                      | -0.3316     | 0.203        | -1.633                | 0.102   | -0.729 | 0.066                                                        |
| ma.L2.D.Rose                                      | -0.6684     | 0.201        | -3.332                | 0.001   | -1.062 | -0.275                                                       |
|                                                   |             | Ro           | ots                   |         |        |                                                              |
|                                                   |             |              |                       |         |        |                                                              |
|                                                   | Real        | Imagin       | ary                   | Modulus | Fre    | quency                                                       |
| AR.1                                              | -2.0290     | +0.00        | 00j                   | 2.0290  |        | 0.5000                                                       |
| AR.2                                              | 18.3389     | +0.00        | 00j                   | 18.3389 |        | 0.0000                                                       |
| MA.1                                              | 1.0000      | +0.00        | 00j                   | 1.0000  |        | 0.0000                                                       |
| MA.2                                              | -1.4961     | +0.00        | 00j                   | 1.4961  |        | 0.5000                                                       |
|                                                   |             |              |                       |         |        |                                                              |

Table 23: Manual ARIMA Model Result Summary of Rose Data

Since we observe a seasonality of 12 we plot a ACF and PACF plot for Data with level of difference equal to 12 to find P and Q based on the cut off.



Figure 32: ACF Plot of Rose Training Data with 12 Level Differencing



Figure 33: PACF Plot of Rose Training Data with 12 Level Differencing

- The Auto-Regressive parameter in a SARIMA model is 'P' which comes from the significant lag before which the PACF plot cuts-off to 2.
- The Moving-Average parameter in a SARIMA model is 'Q' which comes from the significant lag before the ACF plot cuts-off to 1.

So, for SARIMA model (p, d, q) (P, D, Q, seasonal Factor) is (2, 1, 2) (2, 0, 1, 12)

#### SARIMAX Results \_\_\_\_\_\_ Dep. Variable: No. Observations: 132 Model: SARIMAX(2, 1, 2)x(2, 0, [1], 12)Log Likelihood -441.189 Date: Wed, 06 Jul 2022 AIC 898.378 Time: 19:03:27 BIC 919.610 Sample: 0 HQIC 906.982 - 132 Covariance Type: \_\_\_\_\_\_ coef std err P>|z| [0.025 0.975] Z 0.4772 0.305 a 104 1.564 0.118 -0.121 1.075 0.104 -0.1667 ar.L2 -1.608 0.108 -0.370 0.037 -1.3270 391.036 0.997 -767.744 -0.003 765.090 ma.L1 0.003 0.998 -250.377 ma.L2 0.3270 127.912 251.031 ar.S.L12 0.3280 0.082 3.983\_\_\_\_ 0.000 0.167 0.489 4.04 file\_preview 90 0.420 ar.S.L24 0.2831 0.070 0.146 0.1309 0.131 0.998 0.318 -0.126 0.388 ma.S.L12 248.8255 9.73e+04 0.003 0.998 sigma2 -1.9e+05 1.91e+05 ----------Ljung-Box (L1) (Q): 0.02 Jarque-Bera (JB): 2 96 Prob(JB): 0.90 0.23 Prob(Q): Heteroskedasticity (H): 0.37 1.01 Skew: Prob(H) (two-sided): 0.99 Kurtosis: 3.34

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

\_\_\_\_\_\_

Table 24: Manual SARIMA Model Result Summary of Rose Data



Figure 34: Manual SARIMA Model Diagnostic Plot of Rose Data

|                                     | RMSE      |
|-------------------------------------|-----------|
| ARIMA(2, 1, 2)-Manual               | 15.348707 |
| SARIMA(2, 1, 2)(2, 0, 1, 12)-Manual | 28.199343 |

Table 25: Manual ARIMA - SARIMA RMSE values of Rose Data

Q8 Build a table with all the models built along with their corresponding parameters and the respective RMSE values on the test data.

Sparkling Data

|                                     | RMSE        |  |
|-------------------------------------|-------------|--|
| TES With Additive Seasonality       | 378.951023  |  |
| TES With Multiplicative Seasonality | 404.286809  |  |
| SARIMA(0, 1, 2)(2, 0, 2, 6)-AIC     | 601.122857  |  |
| 2pointTrailingMovingAverage         | 813.400684  |  |
| 4pointTrailingMovingAverage         | 1156.589694 |  |
| SimpleAverageModel                  | 1275.081804 |  |
| 6pointTrailingMovingAverage         | 1283.927428 |  |
| Simple Exponential Smoothing        | 1338.008384 |  |
| 9pointTrailingMovingAverage         | 1346.278315 |  |
| ARIMA(2, 1, 2)-AIC                  | 1374.546024 |  |
| RegressionOnTime                    | 1389.135175 |  |
| SARIMA(0, 1, 0)(1, 0, 1, 12)-Manual | 1787.706713 |  |
| NaiveModel                          | 3864.279352 |  |
| ARIMA(0, 1, 0)-Manual               | 4779.154299 |  |
| Double Exponential Smoothing        | 5291.879833 |  |
|                                     |             |  |

Table 26: Sparkling Data RMSE Values on the Test Data

#### Rose Data

# RMSE 2pointTrailingMovingAverage 11.529409 TES With Additive Seasonality 14.237386 4pointTrailingMovingAverage 14.448930 6pointTrailingMovingAverage 14.560046 9pointTrailingMovingAverage 14.724503 Double Exponential Smoothing 15.262498 RegressionOnTime 15.262509 ARIMA(2, 1, 2)-Manual 15.348707 ARIMA(0, 1, 2)-AIC 15.611357 TES With Multiplicative Seasonality 20.132468 SARIMA(1, 1, 2)(2, 0, 2, 6)-AIC 26.111408 SARIMA(2, 1, 2)(2, 0, 1, 12)-Manual 28.199343 Simple Exponential Smoothing 36.775787 SimpleAverageModel 53.440426 NaiveModel 79.699093

Table 27: Rose Data RMSE Values on the Test Data

Q9 Based on the model-building exercise, build the most optimum model(s) on the complete data and predict 12 months into the future with appropriate confidence intervals/bands

#### Sparkling Data

From the Table 27 we observe Triple Exponential Smoothing with additive seasonality is the optimal model for given Sparkling dataset which has least RMSE value compared to other models built.

So, using this model we will forecast the data for next 12 months.



Figure 35: Sparkling Data Forecast Using Optimal Model

#### Rose Data

From the Table 28 we observe Triple Exponential Smoothing with additive seasonality is the 2nd optimal model for given Rose dataset which has least RMSE value compared to other models built.

2 Point Trailing Moving average was one with least RMSE.

Here using Triple Exponential Smoothing with additive seasonality model we will forecast the data for next 12 months.



Figure 36: Rose Data Forecast Using Optimal Model

Q10 Comment on the model thus built and report your findings and suggest the measures that the company should be taking for future sales.

Here Triple Exponential Smoothing with additive seasonality model has been selected as optimal Model.

|                                                       | Alpha | Beta | Gama    |
|-------------------------------------------------------|-------|------|---------|
| Triple Exponential Smoothening (Add) – Sparkling Data | 0.11  | 0.01 | 0.46    |
| Triple Exponential Smoothening (Mul) – Rose Data      | 0.07  | 0.04 | 0.00007 |

Figure 37: Optimal Model with Optimal Values

Triple Exponential Smoothing with additive seasonality had RMSE of 404.28 and 14.23 for Sparkling and Rose data respectively.

#### Suggestions:

- From Figure 4 we observe Sales of Rose is decreasing year by year, so company can give more offers on Rose wines and market about the product so that sales increase.
- From Figure 5 and Figure 6 we observe sales of Sparkling and Rose are more in December month Compared to other moths. So, they can increase their production in December month and give more offers and attract customers in other months.
- Market about the products to increase visibility.
- Promote the products by promoting health benefits of wine

# Thank You