Si vector és un array d'enters de 4 bytes definit al rang 1..100, pel següents programes:

```
Programa 1
                                        Programa 2
void invertir (vector v) {
                                        boolean cercar (vector v, intx) {
  int i, j , aux ;
                                          int i = 1;
  i = 1;
                                          while ((v[i] != x) && (x < 100)) {
  j = 100;
                                             i = i + 1;
  while (i < j) {
    aux = v[i];
                                          return x;
     v[i] = v[j];
     v[j] = aux;
     i = i + 1;
     j = j - 1;
  }
}
```

- Construeix els codis intermedis que generarien les rutines semàntiques.
- Aplica les optimitzacions de finestreta als codis generats.

Programa 1

Segons el vist a classe, el codi de tres adreces pot ser aquest:

	C3@	Codi font corresponent
1	emenor: skip	<pre>void invertir (vector v) {</pre>
2	pmb n _{invertir}	Void invertir (vector v) (
3	$t_1 = 1$	i = 1;
4	$i = t_1$	1 - 1,
5	$t_2 = 100$	j = 100;
6	$j = t_2$	J = 100,
7	e1: skip	
8	if i $<$ j goto e_2	
9	goto e ₃	
10	e ₂ : skip	
11	$t_3 = -1$	i < j
12	goto e ₄	
13	e ₃ : skip	
14	$t_3 = 0$	
15	e4: skip	
16	if t ₃ = 0 goto e ₅	if (·) {
17	$t_4 = i - 1$	
18	$t_5 = t_4 * 4$	aux = v[i];
	$aux = v[t_5]$	
20	$t_6 = j - 1$	
21 22	$t_7 = t_6 * 4$	
23	$t_8 = v[t_7]$	v[i] = v[j];
23	$t_9 = i - 1$	
25	$t_{10} = t_9 * 4$	
26	$v[t_{10}] = t_8$ $t_{11} = j - 1$	
27	$t_{11} - J - I$ $t_{12} = t_{11} * 4$	
28	$v[t_{12}] = aux$	v[j] = aux;
29	$t_{13} = 1$	
30	$t_{14} = i + t_{13}$	i = i + 1;
31	$i = t_{14}$	1 - 1 , 1,
32	$t_{15} = 1$	
33	$t_{16} = j - t_{15}$	j = j - 1;
34	$j = t_{16}$	
35	goto e ₁	}
36	e ₅ : skip	J
37	rtn n _{invertir}	}
٠,	rinvertit	L

Optimitzacions

- 1. Brancaments adjacents. No hi ha cap canvi
- 2. Brancaments sobre brancaments. No hi ha cap canvi. **Nota**: s'aplica un millora en la gestió de les expressions condicionals que estalvia un bot.
- 3. Assignació de booleans. No hi ha cap canvi
- 4. Operacions constants. No hi ha cap canvi
- 5. Eliminació de codi inaccessible. No hi ha cap canvi
- 6. Desplaçament de constants: No hi ha cap canvi
- 7. Normalització d'operacions commutatives: suposant que les variables v, i, j i aux tenen un valor de nv inferior a les variables temporals, i aquestes el tenen pel seu número d'ordre...

	C3@ de partida	C3@ amb l'optimització aplicada
1	e _{invertir} : skip	einvertir: skip
2	pmb n _{invertir}	<pre>pmb n_{invertir}</pre>
3	$t_1 = 1$	$t_1 = 1$
4	$i = t_1$	$i = t_1$
5	$t_2 = 100$	$t_2 = 100$
6	$j = t_2$	$j = t_2$
7	e ₁ : skip	e ₁ : skip
8	if i < j goto e ₂	if i < j goto e ₂
9	goto e₃	
10	e ₂ : skip	
11	$t_3 = -1$	$t_3 = 0$
12	goto e ₄	goto e ₄
13	e ₃ : skip	e2: skip
14	$t_3 = 0$	$t_3 = -1$
15	e ₄ : skip	e ₄ : skip
16	if t ₃ = 0 goto e ₅	if $t_3 = 0$ goto e_5
17	$t_4 = i - 1$	$t_4 = -1 + i$
18	$t_5 = t_4 * 4$	$t_5 = 4 * t_4$
19	$aux = v[t_5]$	$aux = v[t_5]$
20	$t_7 = j - 1$	$t_7 = -1 + j$
21	$t_8 = t_7 * 4$	$t_8 = 4 * t_7$
22	$t_9 = v[t_8]$	$t_9 = v[t_8]$
23	$t_{10} = i - 1$	$t_{10} = -1 + i$
24	$t_{11} = t_{10} * 4$	$t_{11} = 4 * t_{10}$
25	$v[t_{11}] = t_9$	$v[t_{11}] = t_9$
26	$t_{12} = j - 1$	$t_{12} = -1 + j$
27	$t_{13} = t_{12} * 4$	$t_{13} = 4 * t_{12}$
28	v[t ₁₃] = aux	v[t ₁₃] = aux
29	$t_{14} = 1$	$t_{14} = 1$
30	$t_{15} = i + t_{14}$	$t_{15} = i + t_{14}$
31	i = t ₁₅	$i = t_{15}$
32	$t_{16} = 1$	$t_{16} = 1$
33	$t_{17} = j - t_{16}$	$t_{17} = j - t_{16}$
34	j = t ₁₇	$j = t_{17}$
35	goto e ₁	goto e ₁
36	e ₅ : skip	e ₅ : skip
37	rtn n _{invertir}	rtn n _{invertir}

8. Assignacions diferides

	C3@ de partida	C3@ amb l'optimització aplicada
1	e _{invertir} : skip	e _{invertir} : skip
2	<pre>pmb n_{invertir}</pre>	pmb n _{invertir}
3	$t_1 = 1$	
4	$i = t_1$	i = 1
5	$t_2 = 100$	
6	$j = t_2$	j = 100
7	e ₁ : skip	e ₁ : skip
8	if i < j goto e₃	if i < j goto e2
9		
10		
11	$t_3 = -1$	$t_3 = -1$
12	goto e ₄	goto e ₄
13	e ₂ : skip	e ₂ : skip
14	$t_3 = 0$	$t_3 = 0$
15	e ₄ : skip	e ₄ : skip
16	if $t_3 = 0$ goto e_5	if $t_3 = 0$ goto e_5
17	$t_4 = -1 + i$	$t_4 = -1 + i$
18	$t_5 = 4 * t_4$	$t_5 = 4 * t_4$
19	$aux = v[t_5]$	$aux = v[t_5]$
20	$t_7 = -1 + j$	$t_7 = -1 + j$
21	$t_8 = 4 * t_7$	$t_8 = 4 * t_7$
22	$t_9 = v[t_8]$	$t_9 = v[t_8]$
23	$t_{10} = -1 + i$	$t_{10} = -1 + i$
24	$t_{11} = 4 * t_{10}$	$t_{11} = 4 * t_{10}$
25	$v[t_{11}] = t_9$	$v[t_{11}] = t_9$
26	$t_{12} = -1 + j$	$t_{12} = -1 + j$
27	$t_{13} = 4 * t_{12}$	$t_{13} = 4 * t_{12}$
28	$v[t_{13}] = aux$	$v[t_{13}] = aux$
29	$t_{14} = 1$	
30	$t_{15} = i + t_{14}$	$t_{15} = 1 + i$
31	i = t ₁₅	$i = t_{15}$
32	$t_{16} = 1$	
33	$t_{17} = j - t_{16}$	$t_{17} = -1 + j$
34	$j = t_{17}$	$j = t_{17}$
35	goto e ₁	goto e ₁
36	e ₅ : skip	e ₅ : skip
37	rtn n _{invertir}	rtn n _{invertir}

Notes:

• Les assignacions a t₁₅ i t₁₇ provoquen altres optimitzacions (tipus 7)

Programa 2

El corresponent codi de tres adreces sense optimitzar pot ser aquest:

	C3@	Codi font corresponent
1	ecercar: skip	<pre>boolean cercar (vector v, intx) {</pre>
2	pmb n _{cercar}	boolean cercar (vector v, Incx) (
3	$t_1 = 1$	i = 1;
4	$i = t_1$	
5	e_1 : skip	while
6	$t_2 = i - 1$	
7	$t_3 = t_2 * 4$	
8	$t_4 = v[t_3]$	((v[i] != x)
9	if $t_4 \neq x$ goto e_4	
10	goto e ₃	
	1-2	
11	e ₄ : skip	&&
12	$t_5 = 100$	
12 13		(x < 100))
12	$t_5 = 100$	
12 13	$t_5 = 100$ if x < t_5 goto e_2	
12 13 14	t ₅ = 100 if x < t ₅ goto e ₂ goto e ₃	(x < 100))
12 13 14 15	t ₅ = 100 if x < t ₅ goto e ₂ goto e ₃ e ₂ : skip	
12 13 14 15 16 17	t ₅ = 100 if x < t ₅ goto e ₂ goto e ₃ e ₂ : skip t ₆ = 1	(x < 100))
12 13 14 15 16 17	t ₅ = 100 if x < t ₅ goto e ₂ goto e ₃ e ₂ : skip t ₆ = 1 t ₇ = i + t ₆	(x < 100)) { i = i + 1;
12 13 14 15 16 17	t ₅ = 100 if x < t ₅ goto e ₂ goto e ₃ e ₂ : skip t ₆ = 1 t ₇ = i + t ₆ i = t ₇	(x < 100))

Aquest és un cas en què la definició té una assignació i això sí que s'ha de reflectir al codi de tres adreces.

Optimitzacions

1. Brancaments adjacents.

	C3@ de partida	C3@ amb l'optimització aplicada
1	ecercar: skip	ecercar: skip
2	pmb n _{cercar}	pmb n _{cercar}
3	$t_1 = 1$	$t_1 = 1$
4	$i = t_1$	$i = t_1$
5	e ₁ : skip	e ₁ : skip
6	$t_2 = i - 1$	$t_2 = i - 1$
7	$t_3 = t_2 * 4$	$t_3 = t_2 * 4$
8	$t_4 = v[t_3]$	$t_4 = v[t_3]$
9	if $t_4 \neq x$ goto e_4	if $t_4 = x$ goto e_3
10	goto e ₃	
11	e ₄ : skip	
12	$t_5 = 100$	$t_5 = 100$
13	if $x < t_5$ goto e_2	if $x \ge t_5$ goto e_3
14	goto e₃	
15	e ₂ : skip	
16	t ₆ = 1	$t_6 = 1$
17	$t_7 = i + t_6$	$t_7 = i + t_6$
18	$i = t_7$	$i = t_7$
19	goto e ₁	goto e ₁
20	e ₃ : skip	e ₃ : skip
21	rtn n _{cerca} , x	rtn n _{cerca} , x

- 2. Brancaments sobre brancaments. No hi ha cap canvi
- 3. Assignació de booleans. No hi ha cap canvi

- 4. Operacions constants. No hi ha cap canvi
- 5. Eliminació de codi inaccessible. No hi ha cap canvi
- 6. Desplaçament de constants: No hi ha cap canvi
- 7. Normalització d'operacions commutatives: suposant que les variables v, x i i tenen un valor de nv inferior a les variables temporals, i aquestes el tenen pel seu número d'ordre...

	C3@ de partida	C3@ amb l'optimització aplicada
1	ecercar: skip	ecercar: skip
2	pmb n _{cercar}	pmb n _{cercar}
3	$t_1 = 1$	$t_1 = 1$
4	$i = t_1$	$i = t_1$
5	e ₁ : skip	e ₁ : skip
6	$t_2 = i - 1$	$t_2 = -1 + i$
7	$t_3 = t_2 * 4$	$t_3 = 4 * t_2$
8	$t_4 = v[t_3]$	$t_4 = v[t_3]$
9	if $t_4 \neq x$ goto e_3	if $t_4 = x$ goto e_3
10		
11		
12	$t_5 = 100$	$t_5 = 100$
13	if $x \ge t_5$ goto e_3	if $x \ge t_5$ goto e_3
14		
15		
16	$t_6 = 1$	$t_6 = 1$
17	$t_7 = i + t_6$	$t_7 = i + t_6$
18	$i = t_7$	$i = t_7$
19	goto e ₁	goto e ₁
20	e ₃ : skip	e ₃ : skip
21	rtn n _{cerca} , x	rtn n _{cerca} , x

8. Assignacions diferides

	C3@ de partida	C3@ amb l'optimització aplicada
1	ecercar: skip	e _{cercar} : skip
2	pmb n _{cercar}	pmb n _{cercar}
3	$t_1 = 1$	
4	$i = t_1$	i = 1
5	e ₁ : skip	e1: skip
6	$t_2 = -1 + i$	$t_2 = -1 + i$
7	$t_3 = 4 * t_2$	$t_3 = 4 * t_2$
8	$t_4 = v[t_3]$	$t_4 = v[t_3]$
9	if $t_4 = x$ goto e_3	if $t_4 = x$ goto e_3
10		
11		
12	$t_5 = 100$	
13	if $x \ge t_5$ goto e_3	if x ≥ 100 goto e ₃
14	_	_
15		
16	$t_6 = 1$	
17	$t_7 = i + t_6$	$t_7 = 1 + i$
18	$i = t_7$	$i = t_7$
19	goto e ₁	goto e ₁
20	e ₃ : skip	e ₃ : skip
21	rtn n _{cerca} , x	rtn n _{cerca} , x

Notes:

• L'assignació a t₆ provoca altres optimitzacions (tipus 7)