Instructors: Matt Fredrikson, Jean Yang

TA: Samuel Yeom

Exam Date: March 9

Midterm Exam Topics

This is an outline of the topics that you should be familiar with for the 15-316 midterm exam. On March 7, we will go through selected topics during lecture, and answer any questions you have about these topics.

Note: You are allowed one cheat sheet (front and/or back) to bring in to the midterm!

The following topics are "fair game" for the exam.

- Basic security principles (complete mediation; least trust; minimal TCB)
- Safety
 - Formal definition of safety
 - Expressing safety properties using security automata
 - What are safety properties, and what are not
 - Inline reference monitors
 - * Software fault isolation
 - * Control flow integrity
 - What safety properties are used for in systems
 - Proof-carrying code
 - * High-level motivation and mechanics of proof-carrying code
 - * What the agent does, what the host does, what is trusted, etc.
 - * What is the guarantee that proof-carrying code provides?
 - * How would language extensions affect the proof rules and proofs?
 - * What is trusted, what is not trusted
 - * Understanding of the proof rules, and proof of soundness of the Safety Policy
- Authentication, authority, and trust
 - Formalism for proof-carrying authentication
 - Authentication logic, inference rules
 - Basic authentication proofs
 - The role of certificate authorities
 - Application of authorization logic to trusted software execution
- Information flow
 - Informal high-level definition of information flow
 - Process-level information flow with Flume
 - Conservative approximations of information flow with reference monitors

- Basic information flow type system from class
- Technique for proving soundness of the information flow type system
- How would language extensions affect our information flow type system and proofs?

Techniques you should be familiar with include the following:

- Using automata to specify safety properties
- Proofs using our proof-carrying authentication logic
- Typing rules, derivations, and proof techniques for our information flow type system
- Proof rules and proof of soundness for the safety policy in PCC