The mandi Bundle

Paul J. Heafner*

Printed February 27, 2024

 $\begin{array}{c} \text{mandi version v3.2.2 dated } 2024\text{-}02\text{-}27 \\ \text{mandistudent version v3.2.2 dated } 2024\text{-}02\text{-}27 \\ \text{mandiexp version v3.2.2 dated } 2024\text{-}02\text{-}27 \end{array}$

*Email: heafnerj@gmail.com

Contents

Ac	cknowledgements	3
Cł	nange History	4
Lis	st of Web VPython Programs	5
Lis	st of VPython Programs	5
Lis	st of Figures	5
1	Introduction	6
2	Getting Help	6
3	Code Availability	6
4	Compatibility with Other Packages and Classes	6
5	Student/Instructor Quick Guide	7
6	The mandi Package 6.1 Package Options 6.2 The mandisetup Command 6.3 LualATeX is Required 6.4 Physical Quantities 6.4.1 Typesetting Physical Quantities 6.4.2 Checking Physical Quantities 6.4.3 Predefined Physical Quantities 6.4.4 Defining and Redefining Physical Quantities 6.4.5 Changing Units 6.5 Physical Constants 6.5.1 Typesetting Physical Constants 6.5.2 Checking Physical Constants 6.5.3 Predefined Physical Constants 6.5.4 Defining and Redefining Physical Constants 6.5.5 Changing Precision 6.6 Predefined Units and Constructs 6.7 mandi Source Code	8 8 8 9 9 10 10 22 23 23 24 24 30 31 31 35
7 8	The mandistudent Package 7.1 Traditional Vector Notation	52 56 60 62 62 68 70 71
In	8.1 The Fundamenal Principles	83 85 88 95
111	uca	90

Acknowledgements

To all of the students who have learned \LaTeX 2 $_{\mathcal{E}}$ in my introductory physics courses over the years, I say a heartfelt thank you. You have contributed directly to the state of this software and to its use in introductory physics courses and to innovating how physics is taught.

I also acknowledge the LATEX 2_{ε} developers who inhabit the TEX StackExchange site. Entering a new culture is daunting for anyone, especially for newcomers; the LATEX 2_{ε} development culture is no exception. We all share a passion for creating beautiful documents and I learned much over the summers of 2020 and 2021 that improved my ability to do just that. There are too many of you to list individually, and I would surely accidentally omit some were I to try. Collectively, I thank you all for your patience and advice.

Change History

v3.0.0 - 2021-08-22	mandistudent P.52 \vec P.52 and \dirvec P.52
$ exttt{mandi} ightarrow ext{P. 8} ext{ mandistudent} ightarrow ext{P. 52} ext{ mandiexp} ightarrow ext{P. 83}$	no longer add \scriptspace when no
Initial release 6	sub/superscript is given 74
v3.0.1 - 2021-08-24	mandistudent $^{\rightarrow P.52}$ webvpythonblock $*^{\rightarrow P.62}$ is a
$ exttt{mandi} ightarrow ext{P.8} ext{ mandistudent} ightarrow ext{P.52}$	variant of webvpythonblock ^{→P.62} that omits
mandiexp [→] P.83Minor doc changes 6	the QR code
v3.1.0 - 2022-01-27	$ exttt{mandistudent}^{ ightarrow P.52}$ webvpythonblock $^{ ightarrow P.62}$ now
mandi→ P.8 Added GitHub links to code 6	automatically generates QR codes for
mandi → P.8 Added \hbar → P.33	program listings 80
mandi P.8 Added \lorentzfactor P.16 43	mandiexp ^{→ P.83} Version number works 88
mandi P.8 Added a negative space to	v3.2.0 - 2023-08-01
\lightspeed \(^{\text{P}}\). \\ 37	mandi→ P.8 Changed \unit to \units 37
mandi - P.8 Constants' values now use only	$\mathtt{mandi}^{ ightarrow\ P.8}\ \mathtt{mandistudent}^{ ightarrow\ P.52}\ \mathtt{mandiexp}^{ ightarrow\ P.83}$
\times 46	Source updated 6
mandi P.8 Improved \CheckConstant P.24 50	mandistudent → P.52 Added statement about
mandi P.8 Improved \CheckQuantity P.10 50	BEAMER compatibility 6
	mandistudent → P.52 \hilite → P.58 is not defined
mandi ^{P.8} Unknown package options handled	if Beamer is loaded
safely	$ exttt{mandistudent}^{ ightarrow P.52} \setminus exttt{vpythonfile}^{ ightarrow P.68} \ ext{now}$
mandi P.8 mandistudent P.52 LATEX3 code now	shows URL in header 81
conforms to formatting standards 6	$ exttt{mandistudent}^{ ightarrow P.52} ext{ physicsproblem}^{ ightarrow P.56} ext{ and}$
mandi P.8 mandistudent P.52 mandiexp P.83	physicsproblem* ^{→P.56} are not defined if
Code formatted for better readability 6	BEAMER is loaded 76
mandi ^{→ P.8} mandistudent ^{→ P.52} mandiexp ^{→ P.83}	$\mathtt{mandistudent}^{ op \ P.52}$ $\mathtt{webvpythonblock}^{ op P.62}$ and
xparse is loaded for older formats 6	webvpythonblock* P.62 now show URL in
mandi ^{→ P.8} \mivector ^{→P.34} now requires more	header
than one component 50	mandiexp ^{→ P.83} mandistudent is loaded for \vec* 88
mandistudent → P.52 All instances of GlowScript	v3.2.1 - 2023-11-22
have been changed to Web VPython 62	mandi → P.8 Minor changes to mandi.ins inside
mandistudent → P.52 Default URL for	mandi.dtx 6
\vpythonfile → P.68 is now vpython.org 81	$\mathtt{mandi}^{ ightarrow\ P.8}\ \mathtt{mandistudent}^{ ightarrow\ P.52}\ \mathtt{mandiexp}^{ ightarrow\ P.83}$
mandistudent → P.52 Slightly modified	Source updated and bumped version for new
\image - P. 59 77	CTAN upload 6
mandistudent → P.52 URLs fixed in	Improved README.md at request of CTAN
$\$ \vpythonfile $^{\rightarrow P.68}$	maintainer 6
mandistudent → P.52 URLs fixed in	v3.2.2 - 2024-02-27
$\verb"webvpythonblock"^{\to P.62} \ \dots \ 80$	mandi → P.8 Ensured all subscripts and
mandistudent → P.52 Version number works 71	superscripts are braced 6
$\mathtt{mandistudent}^{\rightarrow \ P.52} \setminus \mathtt{diff} \ \mathrm{renamed} \ \mathrm{to} \setminus \mathtt{df}^{\rightarrow P.62}$	mandi → P.8 Removed unnecessary \ExplSyntaxOn
for compatibility with the numerica package 62	and \ExplSyntaxOff pairs 6

List	of Web VPython Programs	
$\frac{1}{2}$	Example With QR Code	
List	of VPython Programs	co
List	A VPython Program	09
$\frac{1}{2}$	Image shown 20 percent actual size.	

1 Introduction

The mandi¹ bundle consists of three packages: mandi, mandistudent, and mandiexp. Package mandi² P.8 provides the core functionality, namely correctly typesetting physical quantities and constants with their correct SI units as either scalars or vectors, depending on which is appropriate. Package mandistudent² P.52 provides other typesetting capability appropriate for written problem solutions. Finally, package mandiexp² P.83 provides commands for typesetting expressions from Matter & Interactions²

So many changes have been made that I think the best approach for all users is to treat this as a brand new experience. I think the most important thing to keep in mind is that I assume all users will have a relatively recent TEX distribution (like TEX Live) that includes an updated kernel. If users report that this is a major problem, I can provide some degree of backwards compatibility. However, I use a fully updated TEX Live distribution.

2 Getting Help

If you have a question about mandi, first please read this documentation to make sure your question is not addressed here. Then if you wish, email me. As a user, you deserve courteous and timely help if you need it. You will never get a response from me saying that because this software is free you are not entitled to help using it. It is sad that some developers take that attitude. Using free software does not absolve the developer of helping users unless the license specifically says so.

3 Code Availability

The mandi source repository's main branch is at https://github.com/heafnerj/mandi. This code will usually coincide with that found on CTAN. The very latest build can be found on the dev branch found at https://github.com/heafnerj/mandi/tree/dev. Students and other academic academic users should probably get the dev branch code since it is stable and may contain improvements over the main branch code.

4 Compatibility with Other Packages and Classes

When using BEAMER, certain commands in the mandistudent package are not defined. Because BEAMER uses the enumitem package, the physicsproblem*P.56 and physicsproblem*P.56 environments are not defined. The \hilite*P.58 command is also not defined because it does not work and I do not currently know why.

¹The bundle name can be pronounced either with two syllables, to rhyme with candy, or with three syllables, as M and I.

²See Matter & Interactions and https://matterandinteractions.org/ for details.

5 Student/Instructor Quick Guide

Use $\ensuremath{\mbox{$\backslash$}}^{P.52}$ to typeset the symbol for a vector. Use $\ensuremath{\mbox{$\backslash$}}^{P.55}$ to typeset the symbol for a vector's direction. Use $\ensuremath{\mbox{$\backslash$}}^{P.53}$ to typeset the symbol for the change in a vector or scalar. Use $\ensuremath{\mbox{$\backslash$}}^{P.53}$ to typeset the zero vector. Use $\ensuremath{\mbox{$\backslash$}}^{P.53}$ to typeset scientific notation.

Use a physical quantity's P.9 name to typeset a magnitude and that quantity's units. If the quantity is a vector, you can add vector either to the beginning or the end of the quantity's name. For example, if you want momentum, use \momentum P.9 and its variants.

Use a physical constant's P.23 name to typeset its numerical value and units. Append mathsymbol to the constant's name to get its mathematical symbol. For example, if you want to typeset the vacuum permittivity, use \vacuumpermittivity P.30 and its variant.

```
\(\vacuumpermittivitymathsymbol = \vacuumpermittivity \) \epsilon_{
m o} = 9 	imes 10^{-12}\,{
m C}^2/{
m N}\cdot{
m m}^2
```

Use $\backslash \text{mivector}^{\to P.34}$ to typeset symbolic vectors with components. Use the alias $\backslash \text{direction}^{\to P.13}$ to typeset a direction or unit vector.

Use $physicsproblem^{\to P.56}$ and $parts^{\to P.56}$ and $problempart^{\to P.56}$ for problems. For step-by-step mathematical solutions use $physicssolution^{\to P.57}$. Use webvpythonblock to typeset Web VPython programs. Use $physicssolution^{\to P.68}$ to typeset proproblems to type propro

6 The mandi Package

Load mandi as you would any package in your preamble.

\usepackage[options]{mandi}

\mandiversion

Typesets the current version and build date.

The version is \mandiversion{} and is a stable build.

The version is v3.2.2 dated 2024-02-27 and is a stable build.

6.1 Package Options

N 2021-01-30 N 2021-01-30

```
units=\langle type \ of \ unit \rangle
preciseconstants=\langle boolean \rangle
```

(initially unspecified, set to alternate) (initially unspecified, set to false)

Now mandi uses a key-value interface for options. The units key can be set to base, derived, or alternate. The preciseconstants key is always either true or false.

6.2 The mandisetup Command

N 2021-02-17

$\mbox{\mbox{\tt mandisetup}}\{\langle options \rangle\}$

Command to set package options on the fly after loadtime. This can be done in the preamble or inside the \begin{document}...\end{document} environment.

\mandisetup{units=base}

\mandisetup{preciseconstants}

\mandisetup{preciseconstants = false}

6.3 LuaLATEX is Required

In order to make use of better fonts and Unicode features, mandi now requires the LualIATEX engine for processing documents. It will not work with other engines.

6.4 Physical Quantities

6.4.1 Typesetting Physical Quantities

Typesetting physical quantities and constants using semantically appropriate names, along with the correct SI units, is the core function of mandi. Take momentum as the prototypical physical quantity in an introductory physics course.

N 2021-02-24

```
\label{eq:local_momentum} $$\operatorname{magnitude}$ $$\operatorname{constant}_{\langle c_1,\ldots,c_n\rangle}$$ $$\operatorname{constant}_{\langle c_1,\ldots,c_n\rangle}$
```

Command for momentum and its vector variants. The default units will depend on the options passed to mandi at load time. Alternate units are the default. Other units can be forced as demonstrated. The vector variants can take more than three components. Note the other variants for the quantity's value and units.

```
5 \,\mathrm{kg} \cdot \mathrm{m/s}
                                                                                           5 \,\mathrm{kg}\cdot\mathrm{m}\cdot\mathrm{s}^{-1}
\( \momentum{5} \)
                                                                                           5 \,\mathrm{kg} \cdot \mathrm{m/s}
\(\momentumvalue{5}\)
                                                                                           5 \,\mathrm{kg} \cdot \mathrm{m/s}
\(\momentumbaseunits{5}\)
\(\momentumderivedunits{5}\)
                                                                                           \langle 2, 3, 4 \rangle \,\mathrm{kg \cdot m/s}
\(\momentumalternateunits{5} \)
                                                                                           \langle 2, 3, 4 \rangle \,\mathrm{kg} \cdot \mathrm{m/s}
\(\momentumvector{2,3,4}\)
                                                                                           \langle 2, 3, 4 \rangle \,\mathrm{kg} \cdot \mathrm{m/s}
kg \cdot m \cdot s^{-1}
\(\momentumonlybaseunits\)
                                                                                           kg \cdot m/s
\(\momentumonlyderivedunits\)
                                                                                           kg \cdot m/s
\(\momentumonlyalternateunits\)
                                                                                           \langle 2, 3, 4 \rangle
\(\momentumvectorvalue{2,3,4}\)
\(\vectormomentumvalue{2,3,4}\)
                                                                                           \langle 2, 3, 4 \rangle
\(\momentumvectorbaseunits{2,3,4}\)
                                                                                           \langle 2, 3, 4 \rangle \,\mathrm{kg \cdot m \cdot s^{-1}}
\(\vectormomentumbaseunits{2,3,4}\)
                                                                                           \langle 2, 3, 4 \rangle \,\mathrm{kg} \cdot \mathrm{m} \cdot \mathrm{s}^{-1}
\(\momentumvectorderivedunits{2,3,4}\)
                                                                                           \langle 2, 3, 4 \rangle \, \text{kg} \cdot \text{m/s}
\(\vectormomentumderivedunits{2,3,4}\)
\(\momentumvectoralternateunits{2,3,4}\)
                                                                                           \langle 2, 3, 4 \rangle \,\mathrm{kg \cdot m/s}
\(\vectormomentumalternateunits{2,3,4}\)
                                                                                           \langle 2, 3, 4 \rangle \,\mathrm{kg \cdot m/s}
\(\momentumvectoronlybaseunits\)
                                                                                           \langle 2, 3, 4 \rangle \, \mathrm{kg \cdot m/s}
\(\vectormomentumonlybaseunits\)
                                                                                           \mathrm{kg}\cdot\mathrm{m}\cdot\mathrm{s}^{-1}
\(\momentumvectoronlyderivedunits\)
                                                                                           \mathrm{kg}\cdot\mathrm{m}\cdot\mathrm{s}^{-1}
\(\vectormomentumonlyderivedunits\)
                                                              //
\(\momentumvectoronlyalternateunits\)
                                                                                           kg \cdot m/s
\(\vectormomentumonlyalternateunits\)
                                                                                           kg \cdot m/s
                                                                                           kg \cdot m/s
                                                                                           kg \cdot m/s
```

Commands that include the name of a physical quantity typeset units, so they shouldn't be used for algebraic or symbolic values of components. Don't use $\ensuremath{\tt vectormomentum\{mv_{x},mv_{y},mv_{z}\}}$ but instead the generic $\ensuremath{\tt mivector\{mv_{x},mv_{y},mv_{z}\}}$ instead.

6.4.2 Checking Physical Quantities

U 2022-01-27

Command to check and typeset the command, base units, derived units, and alternate units of a defined physical quantity.

6.4.3 Predefined Physical Quantities

Every other defined physical quantity can be treated similarly. Just replace momentum with the quantity's name. Obviously, the variants that begin with \vector will not be defined for scalar quantities. Here are all the physical quantities, with all their units, defined in mandi. Remember that units are not present with symbolic (algebraic) quantities, so do not use the \vector variants of these commands for symbolic components. Use \mivector \(^{\text{-P}.34}\) instead.

N 2021-02-24

```
\label{eq:acceleration} $$\operatorname{acceleration}_{\langle c_1,\ldots,c_n\rangle}$$ \end{tabular} $$\operatorname{command} \quad \operatorname{acceleration}_{\langle c_1,\ldots,c_n\rangle}$$ \end{tabular} $$\operatorname{alternate}_{m\cdot s^{-2}} \quad N/kg \quad m/s^2$$ \end{tabular} $$\operatorname{amount}_{\langle magnitude\rangle}$$
```

 $\begin{array}{ccc} \textbf{command} & & & \\ \textbf{base} & & \textbf{derived} & & \textbf{alternate} \\ \textbf{mol} & & \textbf{mol} & & \textbf{mol} \end{array}$

N 2021-02-24

```
\label{eq:lambda} $$ \angularacceleration \{\langle c_1, \dots, c_n \rangle \} $$ \vector angularacceleration \{\langle c_1, \dots, c_n \rangle \} $$
```

 \agnitude }

N 2021-02-24

```
\agnitude \
\angularmomentumvector\{\langle c_1, \dots, c_n \rangle\}
\vectorangularmomentum\{\langle c_1, \dots, c_n \rangle\}
```

alternate

alternate

 m^2

command

\angularmomentum derived base alternate $\mathrm{kg}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-1}$ $kg \cdot m^2/s$ $kg \cdot m^2/s$

N 2021-02-24

 $\agnitude \$ \angularvelocityvector $\{\langle c_1, \dots, c_n \rangle\}$

> command \angularvelocity

base derived alternate $\rm rad\cdot s^{-1}$ rad/s rad/s

 $\area{\langle magnitude \rangle}$

command \area base derived m^2 m^2

 $\areachargedensity{\langle magnitude \rangle}$

command \areachargedensity

base derived alternate ${\rm A\cdot s\cdot m^{-2}}$ C/m^2 C/m^2

 $\arrowvert \arrowvert \arrowver$

command \areamassdensity

base derived alternate $\rm kg\cdot m^{-2}$ kg/m^2 kg/m^2

 $\colonerright (magnitude)$

command \capacitance

derived alternate $\rm A^2 \cdot s^4 \cdot kg^{-1} \cdot m^{-2}$ C/V

command \charge base derived

 $A \cdot s$ \mathbf{C} \mathbf{C}

N 2021-02-24

N 2021-02-24

command

base

```
\cmagneticfieldvector\{\langle c_1, \dots, c_n \rangle\}
command
                                                                                                                             \cmagneticfield
                       base
                                                                                                                             derived
                                                                                                                                                                                                                                  alternate
                       kg \cdot m \cdot A^{-1} \cdot s^{-3}
                                                                                                                             N/C
                                                                                                                                                                                                                                  N/C
\conductance{\langle magnitude \rangle}
                       command
                                                                                                                             \conductance
                                                                                                                                                                                                                                  alternate
                       base
                                                                                                                             derived
                       A^2 \cdot s^3 \cdot kg^{-1} \cdot m^{-2}
                                                                                                                                                                                                                                  A/V
\conductivity{\langle magnitude \rangle}
                       command
                                                                                                                             \conductivity
                       base
                                                                                                                             derived
                                                                                                                                                                                                                                  alternate
                       A^2 \cdot s^3 \cdot kg^{-1} \cdot m^{-3}
                                                                                                                                                                                                                                  A/V \cdot m
                                                                                                                             S/m
\conventionalcurrent{\langle magnitude \rangle}
                                                                                                                             \conventionalcurrent
                       command
                       base
                                                                                                                             derived
                                                                                                                                                                                                                                  alternate
                       Α
                                                                                                                             C/s
command
                                                                                                                             \current
                       base
                                                                                                                             derived
                                                                                                                                                                                                                                  alternate
                       Α
                                                                                                                             Α
                                                                                                                                                                                                                                  Α
\currentdensity\{\langle magnitude \rangle\}
\currentdensityvector\{\langle c_1, \dots, c_n \rangle\}
\vectorcurrentdensity\{\langle c_1, \dots, c_n \rangle\}
                       command
                                                                                                                             \currentdensity
                       base
                                                                                                                             derived
                                                                                                                                                                                                                                  alternate
                       {\rm A\cdot m^{-2}}
                                                                                                                             C/s \cdot m^2
                                                                                                                                                                                                                                  A/m^2
\del{dielectric} $$ \del
```

\dielectricconstant

alternate

derived

```
N 2021-02-24
                     \direction{\langle magnitude \rangle}
                     \directionvector\{\langle c_1,\ldots,c_n
angle\}
                     \vectordirection\{\langle c_1, \dots, c_n \rangle\}
                               command
                                                                       \direction
                                                                       derived
                               base
                                                                                                                alternate
                     \langle displacement \{ \langle magnitude \rangle \} \}
N 2021-02-24
                     \displacementvector\{\langle c_1, \dots, c_n \rangle\}
                     \displacement
                               command
                               base
                                                                       derived
                                                                                                                alternate
                     \duration{\langle magnitude \rangle}
                               command
                                                                       \duration
                               base
                                                                       derived
                                                                                                                alternate
                               \mathbf{s}
                     \ensuremath{\mbox{\mbox{electricdipolemoment}}} \langle magnitude \rangle \}
                     \electricdipolemomentvector\{\langle c_1, \dots, c_n \rangle\}
N 2021-02-24
                     \vectorelectricdipolemoment\{\langle c_1, \dots, c_n \rangle\}
                               command
                                                                       \electricdipolemoment
                                                                       derived
                               base
                                                                                                                alternate
                               A\cdot s\cdot m
                                                                       C \cdot m
                                                                                                                C \cdot m
                     \ensuremath{\mbox{\mbox{electricfield}}} \langle magnitude \rangle \}
                     \electricfieldvector\{\langle c_1, \dots, c_n \rangle\}
N 2021-02-24
                     \vectorelectricfield\{\langle c_1, \dots, c_n \rangle\}
                                                                       \electricfield
                               command
                               base
                                                                       derived
                                                                                                                alternate
                               \mathrm{kg}\cdot\mathrm{m}\cdot\mathrm{A}^{-1}\cdot\mathrm{s}^{-3}
                                                                       V/m
                                                                                                                N/C
                     \ensuremath{\mbox{\mbox{\bf lectricflux}}} \langle magnitude \rangle \}
                               command
                                                                       \electricflux
                                                                                                                alternate
                                                                       derived
                               \mathrm{kg}\cdot\mathrm{m}^{3}\cdot\mathrm{A}^{-1}\cdot\mathrm{s}^{-3}
                                                                       V \cdot m
                                                                                                                N \cdot m^2/C
```

 $\ensuremath{\mbox{\mbox{electric}potential}} \{\langle magnitude \rangle\}$

	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \text{m}^2 \cdot \text{A}^{-1} \cdot \text{s}^{-3} \end{array}$	\electricpotential derived V	alternate V
N 2021-05-01		$\langle magnitude \rangle \}$	
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \text{m}^2 \cdot \text{A}^{-1} \cdot \text{s}^{-3} \end{array}$	\electricpotentialdiffe derived V	rence alternate V
	$\ensuremath{\mbox{\ensuremath}\ensuremat$		
	$\begin{array}{c} \mathbf{command} \\ \mathbf{base} \\ \mathbf{s}^{-1} \end{array}$	$\begin{array}{c} \texttt{\ \ } \texttt{\ \ }} \texttt{\ \ } \texttt{\ \ }} \texttt{\ \ \ } \texttt{\ \ \ } \texttt{\ \ }} \texttt{\ \ \ } \texttt{\ \ \ } \texttt{\ \ } \texttt{\ \ }} \texttt{\ \ \ } \texttt{\ \ \ } \texttt{\ \ }} \texttt{\ \ \ } \texttt{\ \ \ } \texttt{\ \ }} \texttt{\ \ \ } \texttt{\ \ } \texttt{\ \ \ }} \texttt{\ \ \ \ } \texttt{\ \ \ }} \texttt{\ \ \ } \texttt{\ \ \ }} \texttt{\ \ \ \ } \texttt{\ \ \ }} \texttt{\ \ \ } \texttt{\ \ \ }} \texttt{\ \ \ \ } \texttt{\ \ \ }} \texttt{\ \ \ \ } \texttt{\ \ \ }} \texttt{\ \ \ \ } \texttt{\ \ \ }} \texttt{\ \ \ \ \ }} \texttt{\ \ \ \ \ } \texttt{\ \ \ \ \ }} \texttt{\ \ \ \ }} \texttt{\ \ \ \ \ }} \texttt{\ \ \ \ \ }} \texttt{\ \ \ \ \ \ }} \texttt{\ \ \ \ \ \ }} \ \ \ \ $	$\begin{array}{c} \textbf{alternate} \\ \text{e/s} \end{array}$
	$\ensuremath{\mbox{\sf lemf}} \{\langle magnitude \rangle \}$		
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \mathrm{kg} \cdot \mathrm{m}^2 \cdot \mathrm{A}^{-1} \cdot \mathrm{s}^{-3} \end{array}$	\emf derived V	alternate V
	$\ensuremath{\mbox{\ensuremath}\ensuremath}\ensuremath}\ensuremath}\engen}}}}}}}}}} $		
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \text{m}^2 \cdot \text{s}^{-2} \end{array}$	\energy derived J	alternate J
N 2021-04-15	$\ensuremath{\mbox{\ensuremath}\ensuremath}\ensuremath}\ensuremath}\engen}}}}}}}}}} $		
	$\begin{array}{c} \mathbf{command} \\ \mathbf{base} \\ \mathrm{eV} \end{array}$	\energyinev derived eV	$\begin{array}{c} \textbf{alternate} \\ \text{eV} \end{array}$
N 2021-04-15	$\ensuremath{\mbox{\mbox{\mbox{\sim}}}} \ensuremath{\mbox{\mbox{\mbox{\sim}}}} \ensuremath{\mbox{\mbox{\mbox{\sim}}}} \ensuremath{\mbox{\mbox{\sim}}} \ensurem$		
	command base keV	\energyinkev derived keV	$\begin{array}{c} \textbf{alternate} \\ \text{keV} \end{array}$
N 2021-04-15	$\verb \energyinmev{ }\langle magnitude\rangle $		
	command base MeV	\energyinmev derived MeV	$\begin{array}{c} \textbf{alternate} \\ \text{MeV} \end{array}$

 $\verb|\energydensity| \{ \langle magnitude \rangle \}$

	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-2} \end{array}$	\energydensity derived ${ m J/m^3}$	$\begin{array}{c} \textbf{alternate} \\ \text{J/m}^3 \end{array}$
N 2021-02-24	$\label{eq:constraint} $$\operatorname{\energyflux}(\langle magnitude \rangle)$$ $$\operatorname{\energyflux}(\langle c_1,\dots,c_n \rangle)$$ $$\operatorname{\energyflux}(\langle c_1,\dots,c_n \rangle)$$$		
	$egin{array}{c} {f command} \ {f base} \ { m kg\cdot s^{-3}} \end{array}$	$ \begin{array}{c} \texttt{\energyflux} \\ \mathbf{derived} \\ \mathbf{W}/\mathbf{m}^2 \end{array} $	$\begin{array}{c} \textbf{alternate} \\ \text{W/m}^2 \end{array}$
	$\verb \entropy { } \langle magnitude \rangle \}$		
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \text{m}^2 \cdot \text{s}^{-2} \cdot \text{K}^{-1} \end{array}$	\entropy derived J/K	$\begin{array}{c} \textbf{alternate} \\ \text{J/K} \end{array}$
N 2021-02-24	$\label{eq:local_continuous} $$ \operatorname{\colored}_{\langle c_1,\ldots,c_n\rangle} $$ \operatorname{\colored}_{\langle c_1,\ldots,c_n\rangle} $$$		
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \text{m} \cdot \text{s}^{-2} \end{array}$	\force derived N	alternate N
	$\frac{\operatorname{frequency}}{\langle magnitude \rangle}$		
	$\begin{array}{c} \mathbf{command} \\ \mathbf{base} \\ \mathbf{s}^{-1} \end{array}$	\frequency derived Hz	alternate Hz
N 2021-02-24	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\ldots, c_n \rangle$ }	
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{m} \cdot \text{s}^{-2} \end{array}$	$\begin{tabular}{ll} $\tt \clim{table} \clim{table} & \tt \$	$\begin{array}{c} \textbf{alternate} \\ \text{N/kg} \end{array}$
	$\verb \gravitationalpotential{ } {\it magn}$	$itude angle \}$	
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{m}^2 \cdot \text{s}^{-2} \end{array}$	$\label{eq:constraint} $$ \operatorname{\mathbf{derived}}$ $ J/kg $$	$\begin{array}{c} \textbf{alternate} \\ \textbf{J/kg} \end{array}$
N 2021-05-01	\gravitationalpotentialdiffere	$ence\{\langle magnitude \rangle\}$	

	${f command} \ {f base}$	\gravitationalpotentialo	difference alternate
	$\mathrm{m}^2\cdot\mathrm{s}^{-2}$	J/kg	J/kg
N 2021-02-24	$\label{eq:limbulse} $$ \displaystyle \begin{aligned} & \langle magnitude \rangle \\ & \langle c_1, \dots, c_n \rangle \\ & \langle c_1, \dots, c_n \rangle \end{aligned} $$ \\ & \langle c_1, \dots, c_n \rangle \\ & \langle c_1, \dots, c_$		
	$egin{array}{c} \mathbf{command} \ \mathbf{base} \ \mathrm{kg}\cdot\mathrm{m}\cdot\mathrm{s}^{-1} \end{array}$	$ \begin{array}{c} \texttt{\int} \\ \textbf{derived} \\ \\ \text{N} \cdot \text{s} \end{array} $	$\begin{array}{c} \textbf{alternate} \\ \textbf{N} \cdot \textbf{s} \end{array}$
	$\verb \indexofrefraction{ } \langle magnitude \rangle $	}	
	command base	\indexofrefraction derived	alternate
	$\label{limit} $$ \inductance{\langle magnitude \rangle}$ $		
	$\begin{array}{c} \mathbf{command} \\ \mathbf{base} \\ \mathrm{kg} \cdot \mathrm{m}^2 \cdot \mathrm{A}^{-2} \cdot \mathrm{s}^{-2} \end{array}$	\inductance derived H	$\begin{array}{l} \textbf{alternate} \\ \textbf{V} \cdot \textbf{s}/\textbf{A} \end{array}$
	$\verb \linearchargedensity { } \langle magnitude$	$ le angle \}$	
	$\begin{array}{c} \mathbf{command} \\ \mathbf{base} \\ \mathbf{A} \cdot \mathbf{s} \cdot \mathbf{m}^{-1} \end{array}$	$\begin{array}{c} \texttt{\label{linearchargedensity}} \\ \textbf{derived} \\ \text{C/m} \end{array}$	$\begin{array}{c} \textbf{alternate} \\ \text{C/m} \end{array}$
	$\verb \linearmassdensity {\langle magnitude\rangle} $		
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \text{m}^{-1} \end{array}$	$\begin{array}{c} \texttt{\label{linearmassdensity}} \\ \textbf{derived} \\ \text{kg/m} \end{array}$	$\begin{array}{c} \textbf{alternate} \\ \text{kg/m} \end{array}$
N 2022-01-27	$\label{lorentzfactor} $$ \operatorname{lorentzfactor}(\langle magnitude \rangle) $$$		
	command base	\lorentzfactor derived	alternate
U 2021-05-02	$\verb \label{luminousintensity} \{ \langle magnitude \rangle$	}	
	command base cd	\luminousintensity derived cd	alternate cd

	$\mbox{\tt \mbox{\tt \m}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$		
N 2021-02-24	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \textbf{A} \cdot \textbf{m} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\{c_1,\dots,c_n\}$	$\begin{array}{c} \textbf{alternate} \\ \textbf{A} \cdot \textbf{m} \end{array}$
		$\{c_1,\ldots,c_n\}$ \magneticdipolemoment $\mathbf{derived}$ $\mathbf{A}\cdot\mathbf{m}^2$	$_{ m J/T}$
N 2021-02-24	$\label{eq:local_magneticfield} $$ \arrowvertextime description of the constraints of th$		
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \mathrm{A}^{-1} \cdot \mathrm{s}^{-2} \end{array}$	$\begin{array}{c} \texttt{\colored} \\ \mathbf{derived} \\ \mathrm{N/A} \cdot \mathrm{m} \end{array}$	alternate T
	$\mbox{\mbox{\tt magneticflux}} \langle magnitude \rangle \}$		
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \mathrm{kg} \cdot \mathrm{m}^2 \cdot \mathrm{A}^{-1} \cdot \mathrm{s}^{-2} \end{array}$	$\begin{array}{l} \texttt{\mbox{\backslash}} \texttt{magneticflux} \\ \textbf{derived} \\ \textbf{T} \cdot \textbf{m}^2 \end{array}$	$\begin{array}{c} \textbf{alternate} \\ V \cdot s \end{array}$
	$\mbox{\mbox{$\backslash$}mass} \{\langle magnitude \rangle \}$		
	$\begin{array}{c} \mathbf{command} \\ \mathbf{base} \\ \mathrm{kg} \end{array}$	$egin{array}{c} { t \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} \textbf{alternate} \\ \text{kg} \end{array}$
	$\mbox{\mbox{$\mbox{mobility}}} \langle magnitude \rangle \}$		
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \text{m}^2 \cdot \text{A}^{-1} \cdot \text{s}^{-4} \\ \\ \textbf{\begin{tikzpicture}(magnitude)} \end{array}}$	$ \begin{array}{c} \texttt{\mbox{\backslash}} \\ \textbf{derived} \\ m^2/V \cdot s \end{array} $	$\begin{array}{l} \textbf{alternate} \\ \textbf{C} \cdot \textbf{m} / \textbf{N} \cdot \textbf{s} \end{array}$
	command base	\momentofinertia derived	alternate

 $J \cdot s^2$

 $kg\cdot m^2$

 $\begin{array}{c} \textbf{alternate} \\ \text{kg} \cdot \text{m}^2 \end{array}$

 $\mbox{\mbox{\mbox{$\setminus$}}} (magnitude)$ N 2021-02-24 $\mbox{\verb|momentumvector|} \langle c_1, \dots, c_n \rangle \}$ \vectormomentum $\{\langle c_1, \dots, c_n \rangle\}$ command \momentum base derived alternate $m kg \cdot m \cdot s^{-1}$ $kg \cdot m/s$ $kg \cdot m/s$ $\mbox{\mbox{\mbox{$\mbox{\m N 2021-02-24 \momentumfluxvector $\{\langle c_1, \dots, c_n \rangle\}$ command \momentumflux base derived alternate $\rm kg\cdot m^{-1}\cdot s^{-2}$ N/m^2 N/m^2 $\noindent \{ \langle magnitude \rangle \}$ command \numberdensity base derived alternate m^{-3} $/\mathrm{m}^3$ $/\mathrm{m}^3$ \permeability $\{\langle magnitude \rangle\}$ command \permeability base derived alternate $\mathrm{kg}\cdot\mathrm{m}\cdot\mathrm{A}^{-2}\cdot\mathrm{s}^{-2}$ H/m $T \cdot m/A$ \permittivity $\{\langle magnitude \rangle\}$ \permittivity command base derived alternate $A^2 \cdot s^4 \cdot kg^{-1} \cdot m^{-3}$ F/m $\mathrm{C^2/N\cdot m^2}$ $\planeangle{\langle magnitude \rangle}$

\planeangle

\polarizability

derived

derived

 $C \cdot m^2/V$

rad

command

command

 $A^2 \cdot s^4 \cdot kg^{-1}$

 $\polarizability{\langle magnitude \rangle}$

base

base

 $\power{\langle magnitude \rangle}$

 $\mathbf{m}\cdot\mathbf{m}^{-1}$

alternate

alternate

 $C^2 \cdot m/N$

rad

$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \text{m}^2 \cdot \text{s}^{-3} \end{array}$	\power derived W	$\begin{array}{c} \textbf{alternate} \\ \text{J/s} \end{array}$		
$\label{eq:conting} $$ \operatorname{poynting}(\langle magnitude \rangle) $$ \operatorname{vectorpoynting}(\langle c_1, \dots, c_n \rangle) $$$				
$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \text{s}^{-3} \end{array}$	$\begin{array}{c} \texttt{\poynting} \\ \textbf{derived} \\ W/m^2 \end{array}$	$\begin{array}{c} \textbf{alternate} \\ \text{W/m}^2 \end{array}$		
$\mathbf{pressure}\{\langle magnitude \rangle\}$				
$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-2} \\ \\ \textbf{\ensuremath{\backslash}} \textbf{relative permeability} \{ \langle \textit{magni} \rangle \} \\ \end{array}$	\pressure derived Pa	$\begin{array}{c} \textbf{alternate} \\ \text{N/m}^2 \end{array}$		
command base	\relativepermeability derived	alternate		
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				
command base	\relativepermittivity derived	alternate		
$\rack {magnitude}$				
$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \mathrm{kg} \cdot \mathrm{m}^2 \cdot \mathrm{A}^{-2} \cdot \mathrm{s}^{-3} \end{array}$	\resistance $f derived$	$\begin{array}{c} \textbf{alternate} \\ \Omega \end{array}$		
$\c \c \$				
$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \text{m}^3 \cdot \text{A}^{-2} \cdot \text{s}^{-3} \end{array}$	\resistivity ${f derived} \ \Omega \cdot {f m}$	$egin{alternate} \mathbf{V}\cdot\mathbf{m}/\mathbf{A} \end{split}$		
\slash solidangle $\{\langle magnitude \rangle\}$				
$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{m}^2 \cdot \text{m}^{-2} \end{array}$	\solidangle derived sr	$rac{ ext{alternate}}{ ext{sr}}$		

N 2021-02-24

 sr

 sr

 $\begin{array}{c} \textbf{base} \\ \mathbf{m^2 \cdot m^{-2}} \end{array}$

	$\specificheatcapacity{\langle magnitude \rangle}$		
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{m}^2 \cdot \text{s}^{-2} \cdot \text{K}^{-1} \end{array}$	\specificheatcapacity ${f derived} \ { m J/K\cdot kg}$	${f alternate} \ {f J/K \cdot kg}$
	$\springstiffness\{\langle magnitude \rangle\}\$		
	$egin{array}{c} \mathbf{command} \ \mathbf{base} \ \mathrm{kg}\cdot\mathrm{s}^{-2} \end{array}$	$\begin{array}{c} \texttt{\sc springstiffness} \\ \textbf{derived} \\ \text{N/m} \end{array}$	$\begin{array}{c} \textbf{alternate} \\ \text{N/m} \end{array}$
	$\springstretch{\{\langle magnitude \rangle\}}$		
	$\begin{array}{c} \mathbf{command} \\ \mathbf{base} \\ \mathbf{m} \end{array}$	$\begin{array}{c} \texttt{\springstretch} \\ \textbf{derived} \\ \mathbf{m} \end{array}$	alternate m
	$\stress{\langle magnitude \rangle}$		
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-2} \end{array}$	\stress derived Pa	$\begin{array}{c} \textbf{alternate} \\ \text{N/m}^2 \end{array}$
	$\operatorname{\mathtt{\baseline}}(\operatorname{magnitude})$		
	command base	\strain derived	alternate
	$\verb \temperature \{\langle magnitude \rangle\} $		
	command base K	\temperature derived K	alternate K
N 2021-02-24	$\begin{split} & \texttt{\torque}\{\langle magnitude \rangle\} \\ & \texttt{\torque} \\ & $		
	$\begin{array}{c} \textbf{command} \\ \textbf{base} \\ \mathrm{kg}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-2} \end{array}$	$ \begin{array}{c} \texttt{\t torque} \\ \textbf{derived} \\ \textbf{N} \cdot \textbf{m} \end{array} $	$\begin{array}{c} \textbf{alternate} \\ \textbf{N} \cdot \textbf{m} \end{array}$
N 2021-02-24	$\label{eq:continuity} $$ \operatorname{\colored}_{\langle c_1, \ldots, c_n \rangle} $$ \operatorname{\colored}_{\langle c_1, \ldots, c_n \rangle} $$$		

command \velocity base derived alternate $\mathrm{m}\cdot\mathrm{s}^{-1}$ m/sm/s $\ensuremath{\left\langle c_1,\ldots,c_n
ight
angle}$ \vectorvelocityc $\{\langle c_1, \dots, c_n \rangle\}$ command \velocityc base derived alternate \mathbf{c} command \volume base derived alternate m^3 m^3 m^3 $\vert volume charge density {\langle magnitude \rangle}$ \volumechargedensity command base derived alternate $A \cdot s/m^{-3}$ $\rm C/m^3$ $\rm C/m^3$ \volume massdensity $\{\langle magnitude \rangle\}$ command \volumemassdensity derived base alternate kg/m^3 ${
m kg\cdot m^{-3}}$ kg/m^3 $\mathbf{wavelength}\{\langle magnitude \rangle\}$ command \wavelength base derived alternate $_{
m m}$ \mathbf{m} \mathbf{m} $\wedge wavenumber {\langle magnitude \rangle}$ \wavenumbervector $\{\langle c_1, \dots, c_n \rangle\}$ \vectorwavenumber $\{\langle c_1, \dots, c_n \rangle\}$ \wavenumber command base derived alternate m^{-1} /m/m

N 2021-02-24

N 2021-02-24

command \work
base derived

 $kg \cdot m^2 \cdot s^{-2}$ J

\youngsmodulus $\{\langle magnitude \rangle\}$

command \youngsmodulus

 $\begin{array}{ccc} \textbf{base} & \textbf{derived} & \textbf{alternate} \\ kg \cdot m^{-1} \cdot s^{-2} & Pa & N/m^2 \end{array}$

6.4.4 Defining and Redefining Physical Quantities

N 2021-02-16 N 2021-02-21 N

Command to (re)define a new/existing scalar quantity. If the derived or alternate units are omitted, they are defined to be the same as the base units. Do not use both this command and <code>\NewVectorQuantity</code> or <code>\RenewVectorQuantity</code> to (re)define a quantity.

alternate

N 2021-02-16 | NewVectorQuantity $\{\langle name \rangle\}$ $\{\langle base\ units \rangle\}$ $[\langle derived\ units \rangle]$ $[\langle alternate\ units \rangle]$ $[\langle derived\ units \rangle]$ $[\langle alternate\ units \rangle]$

Command to (re)define a new/existing vector quantity. If the derived or alternate units are omitted, they are defined to be the same as the base units. Do not use both this command and \NewScalarQuantity or \RenewScalarQuantity to (re)define a quantity.

6.4.5 Changing Units

Units are set when mandi is loaded, but the default setting can be easily overridden in four ways: command variants that are defined when a physical quantity P.9 or physical constant P.23 is defined, a global modal command (switch), a command that sets units for a single instance, and an environment that sets units for its duration. All of these methods work for both physical quantities and physical constants.

U 2021-02-26 \alwaysusebaseunits
U 2021-02-26 \alwaysusederivedunits
U 2021-02-26 \alwaysusealternateunits

Modal commands (switches) for setting the default unit form for the entire document. When mandi is loaded, one of these three commands is executed depending on whether the optional units key is provided. See the section on loading the package for details. Alternate units are the default because they are the most likely ones to be seen in introductory physics textbooks.

 $\begin{array}{ll} \textbf{U} \ 2021-02-26 & \textbf{ \hereuse base units} \{\langle content \rangle\} \\ \textbf{U} \ 2021-02-26 & \textbf{ \hereuse derived units} \{\langle content \rangle\} \\ \textbf{U} \ 2021-02-26 & \textbf{ \hereuse alternate units} \{\langle content \rangle\} \\ \end{array}$

Commands for setting the unit form on the fly for a single instance. The example uses momentum and the Coulomb constant, but they work for any defined quantity and constant.

```
5\,\mathrm{kg}\cdot\mathrm{m}\cdot\mathrm{s}^{-1}
\(\hereusebaseunits{\momentum{5}}\)
                                                                     11
                                                                                     5 \, \mathrm{kg} \cdot \mathrm{m/s}
\(\hereusederivedunits{\momentum{5}}\)
                                                                     //
                                                                                     5 \,\mathrm{kg} \cdot \mathrm{m/s}
\(\hereusealternateunits{\momentum{5}}\)
                                                                    11
\( \hereusebaseunits{\oofpez} \)
                                                                                     9 \times 10^9 \,\mathrm{kg} \cdot \mathrm{m}^3 \cdot \mathrm{A}^{-2} \cdot \mathrm{s}^{-4}
\(\hereusederivedunits{\oofpez}\)
                                                                     11
                                                                                     9 \times 10^9 \,\mathrm{m/F}
\(\hereusealternateunits{\oofpez}\)
                                                                                     9 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2
```

```
      U 2021-02-26
      \begin{usebaseunits}
      (use base units)

      \end{usebaseunits}
      (use derived units)

      U 2021-02-26
      \begin{usederivedunits}
      (use derived units)

      \end{usederivedunits}
      (use alternate units)

      \environment content⟩
      (use alternate units)

      \environment content⟩
      \end{usealternateunits}
```

Inside these environments units are changed for the duration of the environment regardless of the global default setting.

```
\(\momentum{5}\)
\( \oofpez \)
\begin{usebaseunits}
                                                                                     5 \,\mathrm{kg} \cdot \mathrm{m/s}
   \( \momentum{5} \) \\
                                                                                     9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2
   \( \oofpez \)
                                                                                     5\,\mathrm{kg}\cdot\mathrm{m}\cdot\mathrm{s}^{-1}
\end{usebaseunits}
                                                                                     9\times10^9\,\mathrm{kg\cdot m^3\cdot A^{-2}\cdot s^{-4}}
\begin{usederivedunits}
   \(\momentum{5}\)\\
                                                                                     5 \, \mathrm{kg} \cdot \mathrm{m/s}
   \( \oofpez \)
                                                                                     9 \times 10^{9} \, \text{m/F}
\end{usederivedunits}
                                                                                     5 \,\mathrm{kg} \cdot \mathrm{m/s}
\begin{usealternateunits}
                                                                                     9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2
   \(\momentum{5}\)\\
   \(\oofpez\)
\end{usealternateunits}
```

6.5 Physical Constants

6.5.1 Typesetting Physical Constants

Take the quantity $\frac{1}{4\pi\epsilon_o}$, sometimes called the Coulomb constant, as the prototypical physical constant in an introductory physics course. Here are all the ways to access this quantity in mandi. As you can see, these commands are almost identical to the corresponding commands for physical quantities.

\oofpez

Command for the Coulomb constant. The constant's numerical precision and default units will depend on the options passed to mandi at load time. Alternate units and approximate numerical values are the defaults. Other units can be forced as demonstrated.

```
9 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2
                                                                         9 \times 10^9
\(\oofpez\)
\(\oofpezapproximatevalue\)
                                                                         8.9875517923 \times 10^9
\( \oofpezprecisevalue \)
\( \oofpezmathsymbol \)
                                                                         9\times10^9\,\mathrm{kg\cdot m^3\cdot A^{-2}\cdot s^{-4}}
\( \oofpezbaseunits \)
\(\oofpezderivedunits\)
                                                                         9 \times 10^9 \,\mathrm{m/F}
\(\oofpezalternateunits\)
                                                                         9 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2
\(\oofpezonlybaseunits\)
                                                                         kg \cdot m^3 \cdot A^{-2} \cdot s^{-4}
\(\oofpezonlyderivedunits\)
\(\oofpezonlyalternateunits\)
                                                                         m/F
                                                                         N \cdot m^2/C^2
```

6.5.2 Checking Physical Constants

U 2022-01-27

N 2021-02-02

Command to check and typeset the constant's name, mathematical symbol, approximate value, precise value, base units, derived units, and alternate units.

6.5.3 Predefined Physical Constants

Every other defined physical constant can be treated similarly to \oofpez^P.27. Just replace oofpez with the constant's name. Unfortunately, there is no universal agreement on the names of every constant so don't fret if the names used here vary from other sources. Here are all the physical constants, with all their units, defined in mandi. The constants \coulombconstant^P.25 and \biotsavartconstant are defined as semantic aliases for, respectively, \oofpez^P.27 and \mzofp^P.27.

\avogadro			(exact)
$\begin{array}{c} \mathbf{command} \\ \mathbf{symbol} \\ \mathbf{N_A} \\ \mathbf{base} \\ \mathbf{mol}^{-1} \end{array}$	$egin{aligned} {f avogadro} \\ {f approximate} \\ 6 imes 10^{23} \\ {f derived} \\ /{ m mol} \end{aligned}$	$\begin{array}{c} \textbf{precise} \\ 6.02214076 \times 10^{23} \\ \textbf{alternate} \\ / \text{mol} \end{array}$	
\biotsavartconstant			
$egin{array}{c} \mathbf{command} \ \mathbf{symbol} \ rac{\mu_{\mathrm{o}}}{4\pi} \ \mathbf{base} \ \mathrm{kg}\cdot\mathrm{m}\cdot\mathrm{A}^{-2}\cdot\mathrm{s}^{-2} \end{array}$	\biotsavartconstant approximate 10 ⁻⁷ derived H/m	$egin{aligned} \mathbf{precise} \ 10^{-7} \ \mathbf{alternate} \ \mathrm{T\cdot m/A} \end{aligned}$	

\bohrradius

command \bohrradius symbol approximate

 5.3×10^{-11} $5.29177210903\times 10^{-11}$ a_{o}

derived base alternate

 \mathbf{m} m \mathbf{m}

\boltzmann (exact)

precise

command \boltzmann symbol approximate

precise 1.380649×10^{-23} 1.4×10^{-23} k_{B} derived alternate base $\mathrm{kg}\cdot\mathrm{m}^2\cdot\mathrm{s}^{-2}\cdot\mathrm{K}^{-1}$ J/KJ/K

\coulombconstant N 2021-02-02

> \coulombconstant command

symbolapproximate precise

 $\frac{1}{4\pi\epsilon_{o}}$ 9×10^{9} 8.9875517923×10^9

derived alternate base $\mathrm{kg}\cdot\mathrm{m}^{3}\cdot\mathrm{A}^{-2}\cdot\mathrm{s}^{-4}$ m/F $N \cdot m^2/C^2$

\earthmass

command \earthmass symbol approximate

precise 5.9722×10^{24} 6.0×10^{24} $M_{\rm Earth}$ base derived alternate kg

kg kg

\earthmoondistance

command \earthmoondistance

symbol approximate precise 3.8×10^8 3.81550×10^{8} $d_{\rm EM}$ base derived alternate

 \mathbf{m} \mathbf{m}

\earthradius

command \earthradius

symbol approximate precise 6.3781×10^{6} 6.4×10^{6} $\mathrm{R}_{\mathrm{Earth}}$ derived alternate base

m \mathbf{m} m

\earthsundistance

command \earthsundistance

 $\mathbf{m} \qquad \qquad \mathbf{m} \qquad \qquad \mathbf{m}$

\electroncharge

command \electroncharge
symbol approximate precise

 $q_{\rm e} \qquad \qquad -1.6 \times 10^{-19} \qquad \qquad -1.602176634 \times 10^{-19}$

base derived alternate

 $A \cdot s$ C

\electronCharge

command \electronCharge
symbol approximate pr

 $\begin{array}{lll} \textbf{ymbol} & \textbf{approximate} & \textbf{precise} \\ \textbf{0}_{\text{e}} & -1.6 \times 10^{-19} & -1.602176634 \times 10^{-19} \end{array}$

 $Q_{\rm e}$ -1.6×10^{-19} -1.60217663 base derived alternate

 $A \cdot s$ C

\electronmass

command \electronmass
symbol approximate precise

 $m_{\rm e}$ 9.1 × 10⁻³¹ 9.1093837015 × 10⁻³¹

base derived alternate

kg kg kg

\elementarycharge (exact)

command \elementarycharge

symbol approximate precise

e 1.6×10^{-19} $1.602176634 \times 10^{-19}$

base derived alternate

 $A \cdot s$ C

\finestructure

command \finestructure
symbol approximate precise

 α $\frac{1}{107}$ $7.2973525693 \times 10^{-3}$

 $\begin{array}{ccc} \alpha & & \frac{1}{137} & & 1.29135250 \\ \text{base} & & \text{derived} & & \text{alternate} \end{array}$

\hydrogenmass

command \hydrogenmass symbol approximate

kg kg kg

\moonearthdistance

command \moonearthdistance

 ${
m m}$ ${
m m}$

\moonmass

command \moonmass
symbol approximate

kg kg

\moonradius

command \moonradius

 $\begin{array}{lll} \text{symbol} & \text{approximate} & \text{precise} \\ R_{Moon} & 1.7 \times 10^6 & 1.7371 \times 10^6 \\ \text{base} & \text{derived} & \text{alternate} \end{array}$

m m m

\mzofp

command \mzofp

 $\begin{array}{ccc} \textbf{symbol} & \textbf{approximate} & \textbf{precise} \\ \frac{\mu_0}{4\pi} & 10^{-7} & 10^{-7} \end{array}$

 $\begin{array}{cccc} \text{base} & \text{derived} & \text{alternate} \\ \text{kg} \cdot \text{m} \cdot \text{A}^{-2} \cdot \text{s}^{-2} & \text{H/m} & \text{T} \cdot \text{m/A} \end{array}$

\neutronmass

command \neutronmass symbol approximate

 m_n 1.7 × 10⁻²⁷ 1.67492749804 × 10⁻²⁷

precise

base derived alternate

kg kg

\oofpez

command \oofpez symbol approximate

 $\begin{array}{ccc} \textbf{symbol} & \textbf{approximate} & \textbf{precise} \\ \frac{1}{4\pi\epsilon_{\text{o}}} & 9\times10^9 & 8.9875517923\times10^9 \end{array}$

 $\begin{array}{lll} \textbf{base} & \textbf{derived} & \textbf{alternate} \\ kg \cdot m^3 \cdot A^{-2} \cdot s^{-4} & m/F & N \cdot m^2/C^2 \end{array}$

\oofpezcs

 $\begin{array}{ccc} \frac{1}{4\pi\varepsilon_{o}c^{2}} & 10^{-7} & 10^{-7} \\ \textbf{base} & \textbf{derived} & \textbf{alternate} \\ kg \cdot m \cdot A^{-2} \cdot s^{-2} & T \cdot m^{2} & N \cdot s^{2}/C^{2} \end{array}$

\planck (exact)

precise

command \planck
symbol approximate

\planckbar

command \planckbar
symbol approximate precise

 $kg \cdot m^2 \cdot s^{-1}$ J·s J·s

\planckc

command \planckc
symbol approximate precise

hc 2.0×10^{-25} $1.98644586 \times 10^{-25}$ base derived alternate

\protoncharge

command \protoncharge
symbol approximate precise

 $q_{\rm p}$ +1.6 × 10⁻¹⁹ +1.602176634 × 10⁻¹⁹

base derived alternate

 $A \cdot s$ C

\protonCharge

 $\begin{array}{lll} \text{symbol} & \text{approximate} & \text{precise} \\ Q_p & +1.6\times 10^{-19} & +1.602176634\times 10^{-19} \end{array}$

base derived alternate

 $A \cdot s$ C

\protonmass

command \protonmass

symbol approximate precise

 $\begin{array}{lll} m_p & 1.7\times 10^{-27} & 1.672621898\times 10^{-27} \\ \textbf{base} & \textbf{derived} & \textbf{alternate} \end{array}$

kg kg kg

\rydberg

command \rydberg symbol approximate

 $\begin{array}{lll} \text{symbol} & \text{approximate} & \text{precise} \\ R_{\infty} & 1.1 \times 10^7 & 1.0973731568160 \times 10^7 \end{array}$

\speedoflight (exact)

command \speedoflight

symbol approximate precise

 $\begin{array}{lll} c & 3\times 10^8 & 2.99792458\times 10^8 \\ \textbf{base} & \textbf{derived} & \textbf{alternate} \\ m\cdot s^{-1} & m/s & m/s \end{array}$

\stefanboltzmann

command \stefanboltzmann

symbol approximate precise

 $\begin{array}{lll} \sigma & & 5.7\times 10^{-8} & & 5.670374\times 10^{-8} \\ \textbf{base} & & \textbf{derived} & & \textbf{alternate} \\ kg\cdot s^{-3}\cdot K^{-4} & & W/m^2\cdot K^4 & & W/m^2\cdot K^4 \end{array}$

\sunearthdistance

command \sunearthdistance

 $m \hspace{1.5cm} m \hspace{1.5cm} m \hspace{1.5cm}$

\sunradius

command \sunradius symbol approximate

 $\begin{array}{lll} \text{symbol} & \text{approximate} & \text{precise} \\ R_{Sun} & 7.0 \times 10^8 & 6.957 \times 10^8 \\ \text{base} & \text{derived} & \text{alternate} \end{array}$

 $m \hspace{1.5cm} m \hspace{1.5cm} m \hspace{1.5cm}$

\surfacegravfield

command \surfacegravfield

 $\begin{array}{ccccc} \text{symbol} & \text{approximate} & \text{precise} \\ g & 9.8 & 9.807 \\ \textbf{base} & \textbf{derived} & \textbf{alternate} \\ m \cdot s^{-2} & N/kg & N/kg \end{array}$

\universalgrav

command \universalgrav symbol approximate precise

\vacuumpermeability

command \vacuumpermeability

\vacuumpermittivity

N 2021-02-16

N 2021-02-21

command \vacuumpermittivity

symbol approximate precise

 $\epsilon_{\rm o} \qquad \qquad 9\times 10^{-12} \qquad \qquad 8.854187817\times 10^{-12}$

 $\begin{array}{ccc} \textbf{base} & \textbf{derived} & \textbf{alternate} \\ A^2 \cdot s^4 \cdot kg^{-1} \cdot m^{-3} & F/m & C^2/N \cdot m^2 \end{array}$

6.5.4 Defining and Redefining Physical Constants

 $\ensuremath{\mbox{NewPhysicalConstant } {\langle name \rangle}} {\langle approximate \ value \rangle}} {\langle base \ units \rangle} {\langle derived \ units \rangle} {\langle alternate \ units \rangle}$

 $[\langle derived\ units \rangle] [\langle alternate\ units \rangle]$

Command to define/redefine a new/existing physical constant. If the derived or alternate units are omitted, they are defined to be the same as the base units.

6.5.5 Changing Precision

Changing units^{P.22} works for physical constants just as it does for physical quantities. A similar mechanism is provided for changing the precision of physical constants' numerical values.

N 2021-02-16 N 2021-02-16

```
\alwaysuseapproximateconstants
\alwaysusepreciseconstants
```

Modal commands (switches) for setting the default precision for the entire document. The default when the package is loaded is set by the presence or absence of the preciseconstants P.8 key.

N 2021-02-16 N 2021-02-16

Commands for setting the precision on the fly for a single instance.

```
\( \hereuseapproximateconstants{\oofpez} \) \\ 9 \times 10^9 \ N \cdot m^2/C^2 \\( \hereusepreciseconstants{\oofpez} \) \\ 8.9875517923 \times 10^9 \ N \cdot m^2/C^2
```

N 2021-02-16

```
\begin{useapproximateconstants} (use approximate constants)
\delta environment content\rangle
\end{useapproximateconstants}
\begin{usepreciseconstants} (use precise constants)
\delta environment content\rangle
\end{usepreciseconstants}
```

N 2021-02-16

Inside these environments precision is changed for the duration of the environment regardless of the global default setting.

6.6 Predefined Units and Constructs

These commands should be used only in defining or redefining physical quantities or physical constants. One exception is **\emptyunit**, which may be used for explanatory purposes.

U 2023-08-01

\degree \electronvolt (not SI but common in introductory ph	ysics) (alias)
\electronvolt (not SI but common in introductory ph \electronvolt (not SI but common in introductory ph \electronvolt (not SI but common in introductory ph \farad (not SI but common in introductory ph \electronvolt (not SI but	(alias)
N 2021-04-15 \ev \farad \henry	(alias)
\farad \henry	,
	alias)
harts	alias)
/IIET CZ	alias)
\joule	alias)
\kelvin	alias)
N 2021-04-15 \kev	
N 2021-04-15 \kiloelectronvolt (not SI but common in introductory ph	ysics)
\kilogram	
\lightspeed (not SI but common relat	ivity)
N 2021-04-15 \megaelectronvolt (not SI but common in introductory ph	ysics)
\meter	
\metre \	(alias)
N 2021-04-15 \mev	alias)
\mole	
\newton	
\ohm	
\pascal	
\radian	
\second	
\siemens	
\steradian	
\tesla	
\volt	
\watt	
\weber	
1-	ostfix)
	ostfix)
· ·	ostfix)
1-	ostfix)
· ·	ostfix)
1-	ostfix)
\totheinversefour (pc	ostfix)

```
3\,\mathrm{m/s}
                                                           П
\( \per \)
                                                           Α
\( \usk \)
                                                           u
\operatorname{cd}
\( \emptyunit \)
                                                           \mathbf{C}
\( \ampere \)
\( \atomicmassunit \)
\(\candela\)
                                                           eV
\(\coulomb\)
                                                           F
\( \degree \)
                                                           Η
\( \electronvolt \)
\( \farad \)
                                                           Hz
\( \henry \)
                                                           J
\( \hertz \)
                                                           Κ
\(\joule\)
\(\kelvin\)
                                                           keV
\( \kev \)
                                                           kg
\( \kilogram \)
                                                           \mathbf{c}
\( \lightspeed \)
                                                           \mathbf{m}
\( \meter \)
\( \metre \)
                                                           _{\mathrm{m}}
\( \mev \)
                                                           MeV
\( \mole \)
                                                           \operatorname{mol}
\( \newton \)
                                                           Ν
\( \ohm \)
\( \pascal \)
                                                           \Omega
\(\radian\)
                                                           Pa
rad
\mathbf{S}
\(\steradian\)
\( \tesla \)
                                                           S
\( \volt \)
                                                           \operatorname{sr}
\( \watt \)
                                                           \mathbf{T}
\( \weber \)
                                                           V
\( \emptyunit\tothetwo \)
\( \emptyunit\tothethree \)
                                                           W
\( \emptyunit\tothefour \)
                                       11
                                                           Wb
\( \emptyunit\inverse \)
                                                           \square^2
\( \emptyunit\totheinversetwo \)
                                                           \square^3
\(\emptyunit\totheinversethree\)\\
\( \emptyunit\totheinversefour \)
                                                           \Box^4
                                                           \square^{-1}
                                                           \Box^{-2}
                                                           \Box^{-3}
                                                           \Box^{-4}
```

N 2022-01-27

\hbar

A better glyph for Planck's constant over 2π .

```
\(\hbar\)
```

Commands for powers of ten and scientific notation.

```
\( \tento{-4} \) \\ \( 3\timestento{8} \) \\ \\ 3 \timestento{8} \) \\ 3 \timestento{8} \) \\ 3 \timestento{8} \)
```

U 2022-01-27

$\mbox{\constraint} (delimiter)] {\langle c_1, \dots, c_n \rangle} [\langle units \rangle]$

```
2
\(\mivector{p_0,p_1,p_2,p_3}\)
\langle p_0, p_1, p_2, p_3 \rangle
    mv_{z} \) \\
                                                                             \langle \gamma mc, \gamma mv_x, \gamma mv_y, \gamma mv_z \rangle
2
                                                                             \langle \frac{Q_1Q_2}{2}, 0, 0 \rangle
    ζ
         11
                                                                             \langle \overline{x^2}, 0, \langle -1, 0, 0 \rangle
\(\mivector{-1,0,0}\)
                                                                   2
    ( )/
                                                                             \langle -1, 0, 0 \rangle m/s
\(\mivector{-1,0,0}[\velocityonlyderivedunits]\)
                                                                   2
                                                                             \langle -1, 0, 0 \rangle m/s
\(\mivector{-1,0,0}[\meter\per\second]\)
                                                                             \langle -1, 0, 0 \rangle m/s
```

6.7 mandi Source Code

Define the package version and date for global use, exploiting the fact that in a .sty file there is now no need for \makeatletter and \makeatother. This simplifies defining internal commands (with @ in the name) that are not for the user to know about.

- 1 \def\mandi@version{3.2.2}
- 2 \def\mandi@date{2024-02-27}
- 3 \NeedsTeXFormat{LaTeX2e}[2020-02-02]
- 4 \DeclareRelease{v3.2.2}{2024-02-27}{mandi.sty}
- 5 \DeclareCurrentRelease{v\mandi@version}{\mandi@date}
- 6 \ProvidesPackage{mandi}
- 7 [\mandi@date\space v\mandi@version\space Macros for physical quantities]

Define a convenient package version command.

8 \newcommand*{\mandiversion}{v\mandi@version\space dated \mandi@date}

Load third party packages, documenting why each one is needed.

We need pgfopts for a key-value interface.

9 \RequirePackage{pgfopts}

We need array for \chkquantity and \chkconstant.

10 \RequirePackage{array}

We need iftex so we can require LuaLATEX.

11 \RequirePackage{iftex}

We need mathtools for intelligent delimiters.

12 \RequirePackage{mathtools}

We need unicode-math for Unicode support and changing fonts.

13 \RequirePackage{unicode-math}

Suppress some annoying warnings.

14 \unimathsetup{warnings-off={mathtools-colon,mathtools-overbracket}}

Load xparse if necessary.

- 15 \IfFormatAtLeastTF{2020-10-01}
- 16 {}%
- 17 {\RequirePackage{xparse}}%

We require the LuaLATEX engine.

18 \RequireLuaTeX

Parts of the unit engine have been rewritten with xparse for both clarity and power. Note that xparse is now part of the \LaTeX kernel. Other parts have been rewritten in expl with a look to the future.

Define some generic internal selectors.

- 19 \newcommand*{\mandi@selectunits}{}
- 20 \newcommand*{\mandi@selectprecision}{}

Define some specific internal selectors. The first two are really just workalikes for \@firstoftwo and \@secondoftwo. The third, fourth, and fifth are \@firstofthree, \@secondofthree, and \@thirdofthree and apparently do not yet exist.

- 21 \newcommand*{\mandi@selectapproximate}[2]{#1}
- 22 \newcommand*{\mandi@selectprecise}[2]{#2}
- 23 \newcommand*{\mandi@selectbaseunits}[3]{#1}
- 24 \newcommand*{\mandi@selectderivedunits}[3]{#2}
- 25 \newcommand*{\mandi@selectalternateunits}[3]{#3}

Document level global switches.

```
26 \NewDocumentCommand{\alwaysusebaseunits}{}
         {\renewcommand*{\mandi@selectunits}{\mandi@selectbaseunits}}%
 27
 28 \NewDocumentCommand{\alwaysusederivedunits}{}
         {\renewcommand*{\mandi@selectunits}{\mandi@selectderivedunits}}%
 29
 30 \NewDocumentCommand{\alwaysusealternateunits}{}
         {\renewcommand*{\mandi@selectunits}{\mandi@selectalternateunits}}%
 32 \NewDocumentCommand{\alwaysuseapproximateconstants}{}
         {\renewcommand*{\mandi@selectprecision}{\mandi@selectapproximate}}%
 33
 34 \NewDocumentCommand{\alwaysusepreciseconstants}{}
        {\renewcommand*{\mandi@selectprecision}{\mandi@selectprecise}}%
     Document level localized variants.
 36 \NewDocumentCommand{\hereusebaseunits}{ m }{\begingroup\alwaysusebaseunits#1\endgroup}%
 37 \NewDocumentCommand{\hereusederivedunits}{ m }{\begingroup\alwaysusederivedunits#1\endgroup}}
 38 \NewDocumentCommand{\hereusealternateunits}{ m }{\begingroup\alwaysusealternateunits#1\endgroup}%
 {\tt 39 \ NewDocumentCommand \{ hereuse approximate constants \} \{ \ m \ \} \{ \ beging roup \ always use approximate constants \# 1 \ end group \} \% } }
 40 \NewDocumentCommand{\hereusepreciseconstants}{ m }{\begingroup\alwaysusepreciseconstants#1\endgroup}%
     Document level environments.
 41 \NewDocumentEnvironment{usebaseunits}{}{\alwaysusebaseunits}{}%
 42 \NewDocumentEnvironment{usederivedunits}{}{\alwaysusederivedunits}{}%
 43 \we Document Environment \{use alternate units\} {} {\always use alternate units} {} {} {\always use alternate units} {} {} {} {\always use alternate units} {} {} {\always use alternate units} {} {\always use alternate units} {\always use alte
 44 \NewDocumentEnvironment{useapproximateconstants}{}{\alwaysuseapproximateconstants}{}}
 45 \NewDocumentEnvironment{usepreciseconstants}{}{\alwaysusepreciseconstants}{}}
     mandi now has a key-value interface, implemented with pgfopts and pgfkeys. There are two options:
units P.8, with values base, derived, or alternate selects the default form of units
preciseconstants 7.8, with values true and false, selects precise numerical values for constants rather than approximate
values.
     First, define the keys. The key handlers require certain commands defined by the unit engine.
 46 \newif\ifusingpreciseconstants
 47 \pgfkeys{%
        /mandi/options/.cd,
 48
        initial@setup/.style={%
 49
 50
            /mandi/options/buffered@units/.initial=alternate,%
 51
        },%
 52
        initial@setup,%
        preciseconstants/.is if=usingpreciseconstants,%
 53
        units/.is choice,%
 54
        units/.default=derived,%
 55
        units/alternate/.style={/mandi/options/buffered@units=alternate},%
 56
        units/base/.style={/mandi/options/buffered@units=base},%
 57
        units/derived/.style={/mandi/options/buffered@units=derived},%
 58
         .unknown/.code={%
 59
            \typeout{}%
 60
            \typeout{mandi: You used unknown option '\pgfkeyscurrentname'.}%
 61
       },%
 62
 63 }%
     Process the options.
 64 \ProcessPgfPackageOptions{/mandi/options}
     Write a banner to the console showing the options in use.
 65 \typeout{}%
 66 \typeout{mandi: You are using mandi \mandiversion.}%
 67 \typeout{mandi: This package requires LuaLaTeX.}%
 68 \typeout{mandi: Loadtime options...}
```

Complete the banner by showing currently selected options. The value of the units $^{-P.8}$ key is used in situ to set the default units.

```
69 \newcommand*{\mandi@do@setup}{%
    \csname alwaysuse\pgfkeysvalueof{/mandi/options/buffered@units}units\endcsname%
    \typeout{mandi: You will get \pgfkeysvalueof{/mandi/options/buffered@units}\space units.}%
71
72
    \ifusingpreciseconstants
      \alwaysusepreciseconstants
73
      \typeout{mandi: You will get precise constants.}%
74
    \else
75
76
      \alwaysuseapproximateconstants
77
      \typeout{mandi: You will get approximate constants.}%
78
79
    \typeout{}%
80 }%
81 \mandi@do@setup
```

Define a setup command that overrides the loadtime options when called with new options. A new banner is written to the console.

```
82 \NewDocumentCommand{\mandisetup}{ m }%
83
    {%
      \IfValueT{#1}%
84
85
           \pgfqkeys{/mandi/options}{#1}
86
           \typeout{}%
87
           \typeout{mandi: mandisetup options...}
88
           \mandi@do@setup
89
90
        }%
    }%
91
```

Define units and related constructs to be used with the unit engine. All single letter macros are now gone. We basically absorbed and adapted the now outdated Slunits package. We make use of \symup{...} from the unicode-math package.

```
92 \NewDocumentCommand{\per}{}{/}
93 \NewDocumentCommand{\usk}{}{\cdot}
94 \NewDocumentCommand{\units}{ m m }%
95 {%
     \IfValueTF{#2}
96
97
     {%
       {#1}{\,#2}
98
99
     }%
100
     {%
       {#1}{}
101
     }%
102
103 }%
104 \NewDocumentCommand{\ampere}{}{\symup{A}}
105 \NewDocumentCommand{\atomicmassunit}{}{\symup{u}}
106 \NewDocumentCommand{\candela}{}{\symup{cd}}
107 \NewDocumentCommand{\coulomb}{}{\symup{C}}
108 \NewDocumentCommand{\degree}{}{^{\circ}}
109 \NewDocumentCommand{\electronvolt}{}\symup{eV}}
110 \NewDocumentCommand{\ev}{}{\electronvolt}
111 \NewDocumentCommand{\farad}{}{\symup{F}}
112 \NewDocumentCommand{\henry}{}{\symup{H}}}
113 \NewDocumentCommand{\hertz}{}{\symup{Hz}}
114 \NewDocumentCommand{\joule}{}{\symup{J}}}
115 \NewDocumentCommand{\kelvin}{}{\symup{K}}
116 \NewDocumentCommand{\kev}{}{\kiloelectronvolt}
117 \NewDocumentCommand{\kiloelectronvolt}{}{\symup{keV}}
118 \NewDocumentCommand{\kilogram}{}{\symup{kg}}
```

```
119 \NewDocumentCommand{\lightspeed}{}{\!\symup{c}}
120 \NewDocumentCommand{\megaelectronvolt}{}{\symup{MeV}}
121 \NewDocumentCommand{\meter}{}{\symup{m}}
122 \NewDocumentCommand{\metre}{}{\meter}
123 \NewDocumentCommand{\mev}{}{\megaelectronvolt}
124 \NewDocumentCommand{\mole}{}{\symup{mol}}
125 \NewDocumentCommand{\newton}{}{\symup{N}}
126 \NewDocumentCommand{\ohm}{}{\symup\Omega}
127 \NewDocumentCommand{\pascal}{}{\symup{Pa}}
128 \NewDocumentCommand{\radian}{}\symup{rad}}
129 \NewDocumentCommand{\second}{}{\symup{s}}
130 \NewDocumentCommand{\siemens}{}{\symup{S}}
131 \NewDocumentCommand{\steradian}{}{\symup{sr}}
132 \NewDocumentCommand{\tesla}{}{\symup{T}}
133 \NewDocumentCommand{\volt}{}{\symup{V}}
134 \NewDocumentCommand{\operatorname{{\hspace{-0.05cm}}}}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}{\Sum}
135 \NewDocumentCommand{\weber}{}{\symup{Wb}}
136 \NewDocumentCommand{\tothetwo}{}{^{2}}}
137 \NewDocumentCommand{\tothethree}{}{^{3}}
138 \NewDocumentCommand{\tothefour}{}{^{4}}
139 \NewDocumentCommand{\inverse}{}{^{-1}}
140 \NewDocumentCommand{\totheinversetwo}{}{^{-2}}
141 \NewDocumentCommand{\totheinversethree}{}{^{-3}}
142 \NewDocumentCommand{\totheinversefour}{}{^{-4}}
143 \NewDocumentCommand{\emptyunit}{}{\mdlgwhtsquare}
144 \NewDocumentCommand{\tento}{ m }{10^{#1}}
145 \NewDocumentCommand{\timestento}{ m }{\times\tento{#1}}
146 \NewDocumentCommand{\xtento}{ m }{\times\tento{#1}}
147 \ExplSyntaxOn
148 \cs_new:Npn \__mandi_newscalarquantity:nnnn #1#2#3#4
149
            \cs_new:cpn {#1} ##1 {\units{##1}{\mandi@selectunits{#2}{#3}{#4}}}
150
            \cs_new:cpn {#1value} ##1 {##1}
151
152
            \cs_new:cpn {#1baseunits} ##1 {\units{##1}{\mandi@selectbaseunits{#2}{#3}{#4}}}
153
            \cs_new:cpn {#1derivedunits} ##1 {\units{##1}{\mandi@selectderivedunits{#2}{#3}{#4}}}
            \cs_new:cpn {#1alternateunits} ##1 {\units{##1}{\mandi@selectalternateunits{#2}{#3}{#4}}}
154
            \cs_new:cpn {#1onlybaseunits} {\mandi@selectbaseunits{#2}{#3}{#4}}
155
            \cs_new:cpn {#1onlyderivedunits} {\mandi@selectderivedunits{#2}{#3}{#4}}
156
            \cs_new:cpn {#1onlyalternateunits} {\mandi@selectalternateunits{#2}{#3}{#4}}
157
        }
158
     \NewDocumentCommand{\NewScalarQuantity}{ m m O{#2} O{#2} }
159
             \__mandi_newscalarquantity:nnnn { #1 }{ #2 }{ #3 }{ #4 }
161
162
     Redefining an existing scalar quantity.
163 \cs_new:Npn \__mandi_renewscalarquantity:nnnn #1#2#3#4
        {
164
            \cs_set:cpn {#1} ##1 {\units{##1}{\mandi@selectunits{#2}{#3}{#4}}}
165
            \cs_set:cpn {#1value} ##1 {##1}
166
            \cs_set:cpn {#1baseunits} ##1 {\units{##1}{\mandi@selectbaseunits{#2}{#3}{#4}}}
167
            \cs_set:cpn {#1derivedunits} ##1 {\units{##1}{\mandi@selectderivedunits{#2}{#3}{#4}}}
168
            \cs_set:cpn {#1alternateunits} ##1 {\units{##1}{\mandi@selectalternateunits{#2}{#3}{#4}}}
169
170
            \cs_set:cpn {#1onlybaseunits} {\mandi@selectbaseunits{#2}{#3}{#4}}
171
            \cs_set:cpn {#1onlyderivedunits} {\mandi@selectderivedunits{#2}{#3}{#4}}
            \cs set:cpn {#1onlyalternateunits} {\mandi@selectalternateunits{#2}{#3}{#4}}
172
        }
173
174 \NewDocumentCommand{\RenewScalarQuantity}{ m m O{#2} O{#2} }
175
```

```
\__mandi_renewscalarquantity:nnnn { #1 }{ #2 }{ #3 }{ #4 }
176
177
     }
   Defining a new vector quantity. Note that a corresponding scalar is also defined.
178 \cs_new:Npn \__mandi_newvectorquantity:nnnn #1#2#3#4
     {
179
180
       \__mandi_newscalarquantity:nnnn { #1 }{ #2 }{ #3 }{ #4 }
       \cs new:cpn {vector#1} ##1 {\units{\mivector{##1}}{\mandi@selectunits{#2}{#3}{#4}}}
181
       \cs_new:cpn {#1vector} ##1 {\units{\mivector{##1}}{\mandi@selectunits{#2}{#3}{#4}}}
182
       \cs_new:cpn {vector#1value} ##1 {\mivector{##1}}
183
       \cs_new:cpn {#1vectorvalue} ##1 {\mivector{##1}}
184
       \cs_new:cpn {vector#1baseunits} ##1 {\units{\mivector{##1}}{\mandi@selectbaseunits{#2}{#3}{#4}}}
185
       \cs_new:cpn {#1vectorbaseunits} ##1 {\units{\mivector{##1}}{\mandi@selectbaseunits{#2}{#3}{#4}}}
       \cs_new:cpn {vector#1derivedunits} ##1 {\units{\mivector{##1}}{\mandi@selectderivedunits{#2}{#3}{#4}}}
187
       \cs_new:cpn {#1vectorderivedunits} ##1 {\units{\mivector{##1}}{\mandi@selectderivedunits{#2}{#3}{#4}}}
188
       \cs_new:cpn {vector#1alternateunits} ##1 {\units{\mivector{##1}}}{\mandi@selectalternateunits{#2}{#3}{#4}}}
189
       \cs_new:cpn {#1vectoralternateunits} ##1 {\units{\mivector{##1}}}{\mandi@selectalternateunits{#2}{#3}{#4}}}
190
       \cs_new:cpn {vector#1onlybaseunits} {\mandi@selectbaseunits{#2}{#4}}
191
       \cs_new:cpn {#1vectoronlybaseunits} {\mandi@selectbaseunits{#2}{#3}{#4}}
192
193
       \cs new:cpn {vector#1onlyderivedunits} {\mandi@selectderivedunits{#2}{#3}{#4}}
194
       \cs_new:cpn {#1vectoronlyderivedunits} {\mandi@selectderivedunits{#2}{#3}{#4}}
       \cs_new:cpn {vector#1onlyalternateunits} {\mandi@selectalternateunits{#2}{#3}{#4}}
195
       \cs_new:cpn {#1vectoronlyalternateunits} {\mandi@selectalternateunits{#2}{#3}{#4}}
196
    }
197
198 \NewDocumentCommand{\NewVectorQuantity}{ m m O{#2} O{#2} }
199
       \__mandi_newvectorquantity:nnnn { #1 }{ #2 }{ #3 }{ #4 }
200
201
   Redefining an existing vector quantity. Note that a corresponding scalar is also redefined.
202 \cs_new:Npn \__mandi_renewvectorquantity:nnnn #1#2#3#4
     {
203
204
       \__mandi_renewscalarquantity:nnnn { #1 }{ #2 }{ #3 }{ #4 }
       \cs_set:cpn {vector#1} ##1 {\units{\mivector{##1}}}{\mandi@selectunits{#2}{#3}{#4}}}
205
       \cs_set:cpn {#1vector} ##1 {\units{\mivector{##1}}{\mandi@selectunits{#2}{#3}{#4}}}
206
       \cs_set:cpn {vector#1value} ##1 {\mivector{##1}}
207
       \cs_set:cpn {#1vectorvalue} ##1 {\mivector{##1}}
208
       \cs_set:cpn {vector#1baseunits} ##1 {\units{\mivector{##1}}{\mandi@selectbaseunits{#2}{#3}{#4}}}
209
       \cs_set:cpn {#1vectorbaseunits} ##1 {\units{\mivector{##1}}{\mandi@selectbaseunits{#2}{#3}{#4}}}
210
       \cs_set:cpn {vector#1derivedunits} ##1 {\units{\mivector{##1}}{\mandi@selectderivedunits{#2}{#3}{#4}}}
211
       \cs_set:cpn {#1vectorderivedunits} ##1 {\units{\mivector{##1}}{\mandi@selectderivedunits{#2}{#3}{#4}}}
212
       \cs_set:cpn {vector#1alternateunits} ##1 {\units{\mivector{##1}}}{\mandi@selectalternateunits{#2}{#3}{#4}}}
213
       214
       \cs_set:cpn {vector#10nlybaseunits} {\mandi@selectbaseunits{#2}{#3}{#4}}
215
216
       \cs_set:cpn {#1vectoronlybaseunits} {\mandi@selectbaseunits{#2}{#3}{#4}}
217
       \cs_set:cpn {vector#1onlyderivedunits} {\mandi@selectderivedunits{#2}{#3}{#4}}
       \cs_set:cpn {#1vectoronlyderivedunits} {\mandi@selectderivedunits{#2}{#3}{#4}}
218
       \cs_set:cpn {vector#1onlyalternateunits} {\mandi@selectalternateunits{#2}{#3}{#4}}
219
       \cs_set:cpn {#1vectoronlyalternateunits} {\mandi@selectalternateunits{#2}{#4}}
220
    }
221
222 \NewDocumentCommand{\RenewVectorQuantity}{ m m O{#2} O{#2} }
223
       \__mandi_renewvectorquantity:nnnn { #1 }{ #2 }{ #3 }{ #4 }
224
   Defining a new physical constant.
226 \cs_new:Npn \__mandi_newphysicalconstant:nnnnnn #1#2#3#4#5#6#7
227
       \cs_new:cpn {#1} {\units{\mandi@selectprecision{#3}{#4}}{\mandi@selectunits{#5}{#6}{#7}}}
```

```
229
              \cs new:cpn {#1mathsymbol} {#2}
              \cs_new:cpn {#1approximatevalue} {#3}
230
              \cs_new:cpn {#1precisevalue} {#4}
231
              \cs_new:cpn {#1baseunits}
232
                   {\units{\mandi@selectprecision{#3}{#4}}{\mandi@selectbaseunits{#5}{#6}{#7}}}
233
              \cs new:cpn {#1derivedunits}
234
235
                   {\units{\mandi@selectprecision{#3}{#4}}{\mandi@selectderivedunits{#5}{#6}{#7}}}
236
              \cs new:cpn {#1alternateunits}
                   {\units{\mandi@selectprecision{#3}{#4}}{\mandi@selectalternateunits{#5}{#6}{#7}}}
237
              \cs_new:cpn {#1onlybaseunits} {\mandi@selectbaseunits{#5}{#6}{#7}}
238
              \cs_new:cpn {#1onlyderivedunits} {\mandi@selectderivedunits{#5}{#6}{#7}}
239
              \cs_new:cpn {#1onlyalternateunits} {\mandi@selectalternateunits{#5}{#6}{#7}}
240
          }
241
242 \NewDocumentCommand{\NewPhysicalConstant}{ m m m m 0{#5} 0{#5} }
243
               \__mandi_newphysicalconstant:nnnnnnn { #1 }{ #2 }{ #3 }{ #4 }{ #5 }{ #6 }{ #7 }
244
          }
245
      Redefining an existing physical constant.
246 \cs_new:Npn \__mandi_renewphysicalconstant:nnnnnnn #1#2#3#4#5#6#7
247
          {
              \cs_{#1} {\units{\mandi@selectprecision{#3}{#4}}{\mandi@selectunits{#5}{#6}{#7}}}
248
              \cs_set:cpn {#1mathsymbol} {#2}
249
              \cs_set:cpn {#1approximatevalue} {#3}
250
              \cs_set:cpn {#1precisevalue} {#4}
251
              \cs_set:cpn {#1baseunits}
252
                   {\modesign} {\mo
253
              \cs_set:cpn {#1derivedunits}
254
                   {\units{\mandi@selectprecision{#3}{#4}}{\mandi@selectderivedunits{#5}{#6}{#7}}}
255
              \cs_set:cpn {#1alternateunits}
256
                   {\units{\mandi@selectprecision{#3}{#4}}{\mandi@selectalternateunits{#5}{#6}{#7}}}
257
              \cs_set:cpn {#1onlybaseunits} {\mandi@selectbaseunits{#5}{#6}{#7}}
258
259
              \cs_set:cpn {#1onlyderivedunits} {\mandi@selectderivedunits{#5}{#6}{#7}}
260
               \cs_set:cpn {#1onlyalternateunits} {\mandi@selectalternateunits{#5}{#6}{#7}}
          }
261
262 \NewDocumentCommand{\RenewPhysicalConstant}{ m m m m 0{#5} 0{#5} }
263
               \__mandi_renewphysicalconstant:nnnnnnn { #1 }{ #2 }{ #3 }{ #4 }{ #5 }{ #6 }{ #7 }
264
          }
265
266 \ExplSyntaxOff
```

Define every quantity we need in introductory physics, alphabetically for convenience. This is really the core feature of mandi that no other package offers. There are commands for quantities that have no dimensions or units, and these quantities are defined for semantic completeness.

```
267 \NewVectorQuantity{acceleration}%
     {\meter\usk\second\totheinversetwo}%
268
     [\newton\per\kilogram]%
269
     [\meter\per\second\tothetwo]%
271 \NewScalarQuantity{amount}%
     {\mole}%
272
273 \NewVectorQuantity{angularacceleration}%
     {\radian\usk\second\totheinversetwo}%
274
     [\radian\per\second\tothetwo]%
275
276
     [\radian\per\second\tothetwo]%
277 \NewScalarQuantity{angularfrequency}%
     {\radian\usk\second\inverse}%
278
     [\radian\per\second]%
279
     [\radian\per\second]%
280
```

Angular impulse may also be \newton\usk\meter\usk\second or \joule\usk\second. 281 \NewVectorQuantity{angularimpulse}% {\kilogram\usk\meter\tothetwo\usk\second\inverse}% 282 [\kilogram\usk\meter\tothetwo\per\second]% 283 [\kilogram\usk\meter\tothetwo\per\second]% 284 Angular momentum may also be \joule\usk\second or \newton\usk\meter\usk\second. 285 \NewVectorQuantity{angularmomentum}% 286 {\kilogram\usk\meter\tothetwo\usk\second\inverse}% 287 [\kilogram\usk\meter\tothetwo\per\second]% [\kilogram\usk\meter\tothetwo\per\second]% 288 289 \NewVectorQuantity{angularvelocity}% {\radian\usk\second\inverse}% 290 [\radian\per\second]% 291 292 [\radian\per\second]% 293 \NewScalarQuantity{area}% {\meter\tothetwo}% 294 295 \NewScalarQuantity{areachargedensity}% {\ampere\usk\second\usk\meter\totheinversetwo}% 296 [\coulomb\per\meter\tothetwo]% 297 [\coulomb\per\meter\tothetwo]% 298 299 \NewScalarQuantity{areamassdensity}% {\kilogram\usk\meter\totheinversetwo}% 300 [\kilogram\per\meter\tothetwo]% 301 302 [\kilogram\per\meter\tothetwo]% Capacitance may also be \coulomb\tothetwo\per\newton\usk\meter or \second\per\ohm. 303 \NewScalarQuantity{capacitance}% {\ampere\tothetwo\usk\second\tothefour\usk\kilogram\inverse\usk\meter\totheinversetwo}% 304 [\farad]% 305 [\coulomb\per\volt]% 306 Charge may also be \farad\usk\volt. 307 \NewScalarQuantity{charge}% {\ampere\usk\second}% 308 309 [\coulomb]% 310 [\coulomb]% Magnetic field times c may also be \volt\per\meter. 311 \NewVectorQuantity{cmagneticfield}% {\kilogram\usk\meter\usk\ampere\inverse\usk\second\totheinversethree}} 312 [\newton\per\coulomb]% 313 [\newton\per\coulomb]% 314 315 \NewScalarQuantity{conductance}% 316 {\ampere\tothetwo\usk\second\tothethree\usk\kilogram\inverse\usk\meter\totheinversetwo}% [\siemens]% 317 [\ampere\per\volt]% 318 319 \NewScalarQuantity{conductivity}% {\ampere\tothetwo\usk\second\tothethree\usk\kilogram\inverse\usk\meter\totheinversethree}} 320 [\siemens\per\meter]% 321 [\ampere\per\volt\usk\meter]% 322323 \NewScalarQuantity{conventionalcurrent}% 324 {\ampere}% [\coulomb\per\second]% 325 [\ampere]% 326 327 \NewScalarQuantity{current}% {\ampere}%

329 \NewScalarQuantity{currentdensity}%

```
{\ampere\usk\meter\totheinversetwo}%
330
     [\coulomb\per\second\usk\meter\tothetwo]%
331
     [\ampere\per\meter\tothetwo]%
332
333 \NewScalarQuantity{dielectricconstant}%
334
     {}%
335 \NewVectorQuantity{direction}%
336
337 \NewVectorQuantity{displacement}%
     {\meter}
338
339 \NewScalarQuantity{duration}%
     {\second}%
340
341 \NewVectorQuantity{electricdipolemoment}%
     {\ampere\usk\second\usk\meter}%
     [\coulomb\usk\meter]%
343
     [\coulomb\usk\meter]%
344
345 \NewVectorQuantity{electricfield}%
     {\kilogram\usk\meter\usk\ampere\inverse\usk\second\totheinversethree}}
346
     [\volt\per\meter]%
347
     [\newton\per\coulomb]%
348
349 \NewScalarQuantity{electricflux}%
     {\kilogram\usk\meter\tothethree\usk\ampere\inverse\usk\second\totheinversethree}}
350
     [\volt\usk\meter]%
351
     [\newton\usk\meter\tothetwo\per\coulomb]%
352
   Electric potential, electric potential difference, and emf may also be \joule\per\coulomb.
353 \NewScalarQuantity{electricpotential}%
     {\kilogram\usk\meter\tothetwo\usk\ampere\inverse\usk\second\totheinversethree}%
     [\volt]%
355
     [\volt]%
356
357 \NewScalarQuantity{electricpotentialdifference}%
     {\kilogram\usk\meter\tothetwo\usk\ampere\inverse\usk\second\totheinversethree}%
358
     [\volt]%
359
     [\volt]%
360
361 \NewScalarQuantity{electroncurrent}%
362
     {\second\inverse}%
     [\ensuremath{\symup{e}}\per\second]%
363
     [\ensuremath{\symup{e}}\per\second]%
364
365 \NewScalarQuantity{emf}%
     {\kilogram\usk\meter\tothetwo\usk\ampere\inverse\usk\second\totheinversethree}%
366
     [\volt]%
367
     [\volt]%
368
   Energy may also be \newton\usk\meter.
369 \NewScalarQuantity{energy}%
     {\kilogram\usk\meter\tothetwo\usk\second\totheinversetwo}%
370
371
     [\joule]%
     [\joule]%
373 \NewScalarQuantity{energyinev}%
     {\electronvolt}%
374
375 \NewScalarQuantity{energyinkev}%
     {\kiloelectronvolt}%
376
377 \NewScalarQuantity{energyinmev}%
     {\megaelectronvolt}%
378
379 \NewScalarQuantity{energydensity}%
     {\kilogram\usk\meter\inverse\usk\second\totheinversetwo}%
380
     [\joule\per\meter\tothethree]%
381
     [\joule\per\meter\tothethree]%
382
383 \NewScalarQuantity{energyflux}%
```

```
{\kilogram\usk\second\totheinversethree}%
384
           [\watt\per\meter\tothetwo]%
385
           [\watt\per\meter\tothetwo]%
386
387 \NewScalarQuantity{entropy}%
           {\kilogram\usk\meter\tothetwo\usk\second\totheinversetwo\usk\kelvin\inverse}%
388
           [\joule\per\kelvin]%
389
390
           [\joule\per\kelvin]%
       Force may also be \kilogram\usk\meter\per\second\tothetwo.
391 \NewVectorQuantity{force}%
           {\kilogram\usk\meter\usk\second\totheinversetwo}%
392
393
           [\newton]%
           [\newton]%
394
395 \NewScalarQuantity{frequency}%
           {\second\inverse}%
396
           [\hertz]%
397
           [\hertz]%
398
399 \NewVectorQuantity{gravitationalfield}%
           {\meter\usk\second\totheinversetwo}%
400
           [\newton\per\kilogram]%
401
           [\newton\per\kilogram]%
402
403 \NewScalarQuantity{gravitationalpotential}%
           {\meter\tothetwo\usk\second\totheinversetwo}%
404
           [\joule\per\kilogram]%
405
406
           [\joule\per\kilogram]%
407 \NewScalarQuantity{gravitationalpotentialdifference}%
           {\meter\tothetwo\usk\second\totheinversetwo}%
408
           [\joule\per\kilogram]%
409
           [\joule\per\kilogram]%
410
411 \NewVectorQuantity{impulse}%
           {\kilogram\usk\meter\usk\second\inverse}%
412
           [\newton\usk\second]%
413
           [\newton\usk\second]%
414
415 \NewScalarQuantity{indexofrefraction}%
416
       Inductance may also be \square\meter\usk\kilogram\per\coulomb\tothetwo or \Wb\per\ampere.
417 \NewScalarQuantity{inductance}%
           {\bf \{\c kilogram\c us k\meter\t o the inverse two\us k\second\t o the inverse two\c k\second
418
           [\henry]%
419
           [\volt\usk\second\per\ampere]%
420
421 \NewScalarQuantity{linearchargedensity}%
           {\ampere\usk\second\usk\meter\inverse}%
422
           [\coulomb\per\meter]%
423
           [\coulomb\per\meter]%
424
425 \NewScalarQuantity{linearmassdensity}%
           {\kilogram\usk\meter\inverse}%
426
           [\kilogram\per\meter]%
427
           [\kilogram\per\meter]%
428
429 \NewScalarQuantity{lorentzfactor}%
430
431 \NewScalarQuantity{luminousintensity}%
           {\candela}%
432
       There is another convention for magnetic charge, so be careful.
433 \NewScalarQuantity{magneticcharge}%
           {\ampere\usk\meter}%
```

```
435 \NewVectorQuantity{magneticdipolemoment}%
     {\ampere\usk\meter\tothetwo}%
436
     [\ampere\usk\meter\tothetwo]%
437
     [\joule\per\tesla]%
438
   Magnetic field may also be \Wb\per\meter\tothetwo.
439 \NewVectorQuantity{magneticfield}%
     {\kilogram\usk\ampere\inverse\usk\second\totheinversetwo}%
440
     [\newton\per\ampere\usk\meter]%
     [\tesla]%
442
   Magnetic flux may also be \Wb or \joule\per\ampere.
443 \NewScalarQuantity{magneticflux}%
     {\kilogram\usk\meter\tothetwo\usk\ampere\inverse\usk\second\totheinversetwo}%
444
     [\tesla\usk\meter\tothetwo]%
445
     [\volt\usk\second]%
446
447 \NewScalarQuantity{mass}%
     {\kilogram}%
448
449 \NewScalarQuantity{mobility}%
     {\kilogram\usk\meter\tothetwo\usk\ampere\inverse\usk\second\totheinversefour}%
450
451
     [\meter\tothetwo\per\volt\usk\second]%
     [\coulomb\usk\meter\per\newton\usk\second]%
452
453 \NewScalarQuantity{momentofinertia}%
     {\kilogram\usk\meter\tothetwo}%
454
     [\joule\usk\second\tothetwo]%
455
     [\kilogram\usk\meter\tothetwo]%
456
457 \NewVectorQuantity{momentum}%
458
     {\kilogram\usk\meter\usk\second\inverse}%
459
     [\kilogram\usk\meter\per\second]%
460
     [\kilogram\usk\meter\per\second]%
461 \NewVectorQuantity{momentumflux}%
     {\kilogram\usk\meter\inverse\usk\second\totheinversetwo}%
462
463
     [\newton\per\meter\tothetwo]%
464
     [\newton\per\meter\tothetwo]%
465 \NewScalarQuantity{numberdensity}%
     {\meter\totheinversethree}%
466
     [\per\meter\tothethree]%
467
468
     [\per\meter\tothethree]%
469 \NewScalarQuantity{permeability}%
470
     {\kilogram\usk\meter\usk\ampere\totheinversetwo\usk\second\totheinversetwo}%
471
     [\henry\per\meter]%
472
     [\tesla\usk\meter\per\ampere]%
473 \NewScalarQuantity{permittivity}%
     {\ampere\tothetwo\usk\second\tothefour\usk\kilogram\inverse\usk\meter\totheinversethree}%
474
475
     [\farad\per\meter]%
     [\coulomb\tothetwo\per\newton\usk\meter\tothetwo]%
476
477 \NewScalarQuantity{planeangle}%
     {\meter\usk\meter\inverse}%
478
     [\radian]%
479
     [\radian]%
480
481 \NewScalarQuantity{polarizability}%
     {\ampere\tothetwo\usk\second\tothefour\usk\kilogram\inverse}%
482
     [\coulomb\usk\meter\tothetwo\per\volt]%
483
484
     [\coulomb\tothetwo\usk\meter\per\newton]%
485 \NewScalarQuantity{power}%
     {\kilogram\usk\meter\tothetwo\usk\second\totheinversethree}%
486
     [\watt]%
487
     [\joule\per\second]%
488
489 \NewVectorQuantity{poynting}%
```

```
{\kilogram\usk\second\totheinversethree}%
490
     [\watt\per\meter\tothetwo]%
491
     [\watt\per\meter\tothetwo]%
492
493 \NewScalarQuantity{pressure}%
     {\kilogram\usk\meter\inverse\usk\second\totheinversetwo}%
494
     [\pascal]%
495
496
     [\newton\per\meter\tothetwo]%
497 \NewScalarQuantity{relativepermeability}
498
499 \NewScalarQuantity{relativepermittivity}%
500
     {}%
   Resistance may also be \volt\per\ampere.
501 \NewScalarQuantity{resistance}%
     {\kilogram\usk\meter\tothetwo\usk\ampere\totheinversetwo\usk\second\totheinversethree}}
502
     [\ohm]%
503
     [\ohm]%
504
505 \NewScalarQuantity{resistivity}%
     {\kilogram\usk\meter\tothethree\usk\ampere\totheinversetwo\usk\second\totheinversethree}%
506
     [\ohm\usk\meter]%
507
     [\volt\usk\meter\per\ampere]%
508
509 \NewScalarQuantity{solidangle}%
     {\meter\tothetwo\usk\meter\totheinversetwo}%
510
     [\steradian]%
511
     [\steradian]%
512
513 \NewScalarQuantity{specificheatcapacity}%
     {\meter\tothetwo\usk\second\totheinversetwo\usk\kelvin\inverse}%
514
     [\joule\per\kelvin\usk\kilogram]%
515
     [\joule\per\kelvin\usk\kilogram]
516
517 \NewScalarQuantity{springstiffness}%
     {\kilogram\usk\second\totheinversetwo}%
518
     [\newton\per\meter]%
519
     [\newton\per\meter]%
520
   Spring stretch is really just a displacement.
521 \NewScalarQuantity{springstretch}%
     {\meter}%
522
523 \NewScalarQuantity{stress}%
     {\kilogram\usk\meter\inverse\usk\second\totheinversetwo}%
524
     [\pascal]%
525
526
     [\newton\per\meter\tothetwo]%
527 \NewScalarQuantity{strain}%
528
     ፈጉ%
529 \NewScalarQuantity{temperature}%
     {\kelvin}%
530
531 \NewVectorQuantity{torque}%
     {\kilogram\usk\meter\tothetwo\usk\second\totheinversetwo}%
532
     [\newton\usk\meter]%
533
     [\newton\usk\meter]%
534
535 \NewVectorQuantity{velocity}%
     {\meter\usk\second\inverse}%
536
     [\meter\per\second]%
537
     [\meter\per\second]%
538
539 \NewVectorQuantity{velocityc}%
     {\lightspeed}%
540
     [\lightspeed]%
541
     [\lightspeed]%
542
```

543 \NewScalarQuantity{volume}%

```
{\meter\tothethree}%
544
545 \NewScalarQuantity{volumechargedensity}%
               {\ampere\usk\second\per\meter\totheinversethree}%
546
                [\coulomb\per\meter\tothethree]%
547
                [\coulomb\per\meter\tothethree]%
548
549 \NewScalarQuantity{volumemassdensity}%
550
               {\kilogram\usk\meter\totheinversethree}%
551
                [\kilogram\per\meter\tothethree]%
                [\kilogram\per\meter\tothethree]%
552
          Wavelength is really just a displacement.
553 \NewScalarQuantity{wavelength}%
               {\meter}%
555 \NewVectorQuantity{wavenumber}%
               {\meter\inverse}%
                [\per\meter]%
557
               [\per\meter]%
558
          Work may also be \newton\usk\meter but this is discouraged to avoid confusion with torque.
559 \NewScalarQuantity{work}%
560
               {\kilogram\usk\meter\tothetwo\usk\second\totheinversetwo}%
561
                [\joule]%
               [\joule]%
562
          Young's modulus is really just a stress.
563 \NewScalarQuantity{youngsmodulus}%
               {\kilogram\usk\meter\inverse\usk\second\totheinversetwo}%
564
                [\pascal]%
565
                [\newton\per\mbox{$\mbox{meter}$}\xspace{1mm} % \norm{\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\mbox{$\m
566
          We need a better glyph for Planck's constant over 2\pi.
567 \AtBeginDocument{%
               569 }%
570 \newcommand*{\hbar@}[2]{%
               \label{local-prop} $$\max\{-0.07\leq 1,0\}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\modelnoth}_{\modelnoth}^{\model
571
          Optional line to make the bar thicker; must use -0.11 in \raisebox.
               \label{local-problem} $$\max\{-0.11\neq 1^{\infty}_{\infty} 1^{\infty} (\mathbb{1}_{\pi}^2)^{}%
573 }%
         Define physical constants for introductory physics, again alphabetically for convenience.
574 \NewPhysicalConstant{avogadro}%
575
               {\sup\{N_{A}\}}
               \{6\times10^{23}\}\{6.02214076\times10^{23}\}\%
576
                {\mole\inverse}%
                [\per\mole]%
578
                [\per\mole]%
579
          \biotsavartconstant is an alias for \mzofp.
580 \NewPhysicalConstant{biotsavartconstant}%
               {\sup{\frac{mu_{o}}{4\pi }}}%
581
               {10^{-7}}{10^{-7}}%
582
583
               {\kilogram\usk\meter\usk\ampere\totheinversetwo\usk\second\totheinversetwo}%
584
               [\henry\per\meter]%
               [\tesla\usk\meter\per\ampere]%
585
586 \NewPhysicalConstant{bohrradius}%
               {\sup\{a_{0}\}}
587
               \{5.3 \times 10^{-11}\} \{5.29177210903 \times 10^{-11}\} \%
588
```

```
{\meter}%
589
590 \NewPhysicalConstant{boltzmann}%
     {\symup{k {B}}}}%
591
     {1.4\times10^{-23}}{1.380649\times10^{-23}}%
592
     {\kilogram\usk\meter\tothetwo\usk\second\totheinversetwo\usk\kelvin\inverse}%
593
     [\joule\per\kelvin]%
594
595
     [\joule\per\kelvin]%
   \coulombconstant is an alias for \oofpez.
596 \NewPhysicalConstant{coulombconstant}%
     {\sup{\frac{1}{4\pi {0}}}}%
597
     {9\times10^{9}}{8.9875517923\times10^{9}}%
598
     {\kilogram\usk\meter\tothethree\usk\ampere\totheinversetwo\usk\second\totheinversefour}}
599
     [\meter\per\farad]%
600
     [\newton\usk\meter\tothetwo\per\coulomb\tothetwo]%
601
602 \NewPhysicalConstant{earthmass}%
     {\symup{M_{Earth}}}%
603
     \{6.0\times10^{24}\}\{5.9722\times10^{24}\}\%
604
     {\kilogram}%
606 \NewPhysicalConstant{earthmoondistance}%
     {\symup{d_{EM}}}%
607
     {3.8\times10^{8}}{3.81550\times10^{8}}%
608
     {\meter}%
609
610 \NewPhysicalConstant{earthradius}%
     {\symup{R_{Earth}}}%
611
     \{6.4\times10^{6}\}\{6.3781\times10^{6}\}\%
612
     {\meter}%
614 \NewPhysicalConstant{earthsundistance}%
     {\symup{d_{ES}}}%
615
     {1.5\times10^{11}}{1.496\times10^{11}}%
616
     {\meter}%
617
618 \NewPhysicalConstant{electroncharge}%
619
     {\sup\{q_{e}\}}%
     {-\elementarychargeapproximatevalue}{-\elementarychargeprecisevalue}%
620
     {\ampere\usk\second}%
621
     [\coulomb]%
622
     [\coulomb]%
623
624 \NewPhysicalConstant{electronCharge}%
     {\sup{Q_{e}}}
625
     {-\elementarychargeapproximatevalue}{-\elementarychargeprecisevalue}%
626
     {\ampere\usk\second}%
627
     [\coulomb]%
628
     [\coulomb]%
629
630 \verb|\NewPhysicalConstant{electronmass}| %
631
     {\sup\{m_{e}}\}
     {9.1\times10^{-31}}{9.1093837015\times10^{-31}}%
632
     {\kilogram}%
633
634 \NewPhysicalConstant{elementarycharge}%
     {\symup{e}}%
635
     {1.6\times10^{-19}}{1.602176634\times10^{-19}}%
636
     {\ampere\usk\second}%
637
     [\coulomb]%
638
     [\coulomb]%
640 \NewPhysicalConstant{finestructure}%
     {\symup{\alpha}}%
641
     {\frac{1}{137}}{7.2973525693\times10^{-3}}%
642
643
644 \NewPhysicalConstant{hydrogenmass}%
```

 ${\sup\{m_{H}}}%$

```
\{1.7 \times 10^{-27}\} \{1.6737236 \times 10^{-27}\} \%
646
     {\kilogram}%
647
648 \NewPhysicalConstant{moonearthdistance}%
     {\symup{d_{ME}}}%
649
     {3.8\times10^{8}}{3.81550\times10^{8}}%
650
     {\meter}%
651
652 \NewPhysicalConstant{moonmass}%
     {\symup{M {Moon}}}%
653
    {7.3\times10^{22}}{7.342\times10^{22}}%
654
    {\kilogram}%
655
656 \NewPhysicalConstant{moonradius}%
     {\symup{R_{Moon}}}%
     {1.7\times10^{6}}{1.7371\times10^{6}}%
     {\meter}%
659
660 \NewPhysicalConstant{mzofp}%
     {\sup{\int (u_{o}){4\pi}}}%
661
     {10^{-7}}{10^{-7}}%
662
     {\kilogram\usk\meter\usk\ampere\totheinversetwo\usk\second\totheinversetwo}%
663
     [\henry\per\meter]%
664
665
     [\tesla\usk\meter\per\ampere]%
666 \NewPhysicalConstant{neutronmass}%
     {\sup_{n}}
667
     {1.7\times10^{-27}}{1.67492749804\times10^{-27}}%
668
     {\kilogram}%
669
670 \NewPhysicalConstant{oofpez}%
     {\sup{\frac{1}{4\pi {0}}}}%
     {9\times10^{9}}{8.9875517923\times10^{9}}%
672
     673
     [\meter\per\farad]%
674
     [\newton\usk\meter\tothetwo\per\coulomb\tothetwo]%
675
676 \NewPhysicalConstant{oofpezcs}%
    {\sup{\frac{1}{4\pi c_1}}{4\pi c_0} c^2}}%
677
678
     {10^{-7}}{10^{-7}}%
     {\kilogram\usk\meter\usk\ampere\totheinversetwo\usk\second\totheinversetwo}%
679
     [\tesla\usk\meter\tothetwo]%
680
     [\newton\usk\second\tothetwo\per\coulomb\tothetwo]%
681
682 \NewPhysicalConstant{planck}%
683
    {\sup\{h}}
     \{6.6\times10^{-34}\}\{6.62607015\times10^{-34}\}\%
684
     {\kilogram\usk\meter\tothetwo\usk\second\inverse}%
     [\joule\usk\second]%
686
     [\joule\usk\second]%
687
   See https://tex.stackexchange.com/a/448565/218142.
688 \NewPhysicalConstant{planckbar}%
689
     {\hbar}%
     {1.1\times10^{-34}}{1.054571817\times10^{-34}}%
690
     {\kilogram\usk\meter\tothetwo\usk\second\inverse}%
691
     [\joule\usk\second]%
692
     [\joule\usk\second]
693
694 \NewPhysicalConstant{planckc}%
     {\symup{hc}}%
695
     {2.0\times10^{-25}}{1.98644586\times10^{-25}}%
696
     {\kilogram\usk\meter\tothethree\usk\second\totheinversetwo}%
697
     [\joule\usk\meter]%
698
     [\joule\usk\meter]%
699
700 \NewPhysicalConstant{protoncharge}%
701
     {\sup\{q_p\}}%
     {+\elementarychargeapproximatevalue}{+\elementarychargeprecisevalue}%
```

```
{\ampere\usk\second}%
703
     [\coulomb]%
704
     [\coulomb]%
705
706 \NewPhysicalConstant{protonCharge}%
     {\sup{Q_p}}%
707
     {+\elementarychargeapproximatevalue}{+\elementarychargeprecisevalue}%
708
709
     {\ampere\usk\second}%
     [\coulomb]%
710
     [\coulomb]%
711
712 \NewPhysicalConstant{protonmass}%
     {\sup\{m_p\}}%
713
     \{1.7\times10^{-27}\}\{1.672621898\times10^{-27}\}\%
714
     {\kilogram}%
715
716 \NewPhysicalConstant{rydberg}%
     {\sup{R_{\min{y}}}}
717
     {1.1\times10^{7}}{1.0973731568160\times10^{7}}%
718
     {\meter\inverse}%
719
720 \NewPhysicalConstant{speedoflight}%
     {\symup{c}}%
721
722
     {3\times10^{8}}{2.99792458\times10^{8}}%
     {\meter\usk\second\inverse}%
723
     [\meter\per\second]%
724
     [\meter\per\second]
725
726 \NewPhysicalConstant{stefanboltzmann}%
     {\symup{\sigma}}%
727
     \{5.7\times10^{-8}\}\{5.670374\times10^{-8}\}\%
728
     {\kilogram\usk\second\totheinversethree\usk\kelvin\totheinversefour}%
729
     [\watt\per\meter\tothetwo\usk\kelvin\tothefour]%
730
     [\watt\per\meter\tothetwo\usk\kelvin\tothefour]
731
732 \NewPhysicalConstant{sunearthdistance}%
     {\sup\{d_{SE}\}}%
733
     {1.5\times10^{11}}{1.496\times10^{11}}%
734
735
     {\meter}%
736 \NewPhysicalConstant{sunmass}%
     {\symup{M_{Sun}}}%
737
     {2.0\times10^{30}}{1.98855\times10^{30}}%
738
     {\kilogram}%
739
740 \NewPhysicalConstant{sunradius}%
     {\sup{R_{Sun}}}%
     {7.0\times10^{8}}{6.957\times10^{8}}%
742
     {\meter}%
743
744 \NewPhysicalConstant{surfacegravfield}%
     {\symup{g}}%
745
     {9.8}{9.807}%
746
747
     {\meter\usk\second\totheinversetwo}%
748
     [\newton\per\kilogram]%
     [\newton\per\kilogram]%
749
   The gravitational constant may also have units of \joule\usk\meter\per\kilogram\tothetwo.
750 \NewPhysicalConstant{universalgrav}%
751
     {\sup\{G\}}
     \{6.7\times10^{-11}\}\{6.67430\times10^{-11}\}\%
752
     {\meter\tothethree\usk\kilogram\inverse\usk\second\totheinversetwo}%
753
     [\newton\usk\meter\tothetwo\per\kilogram\tothetwo]%
754
     [\newton\usk\meter\tothetwo\per\kilogram\tothetwo]%
755
   As of 2018 the vacuum permeability is no longer defined as 4\pi \times 10^{-7}.
756 \NewPhysicalConstant{vacuumpermeability}%
     {\sup\{\sum_{o}\}}
```

```
{4\pi\times10^{-7}}{4\pi\times10^{-7}}%
758
     {\kilogram\usk\meter\usk\ampere\totheinversetwo\usk\second\totheinversetwo}%
759
     [\henry\per\meter]%
760
     [\tesla\usk\meter\per\ampere]%
761
762 \NewPhysicalConstant{vacuumpermittivity}%
     {\symup{\epsilon_o}}%
763
764
     {9\times10^{-12}}{8.854187817\times10^{-12}}%
     {\tt \{\ampere\tothetwo\usk\second\tothefour\usk\kilogram\inverse\usk\meter\totheinversethree}\}} \\
765
     [\farad\per\meter]%
766
     [\coulomb\tothetwo\per\newton\usk\meter\tothetwo]%
767
   Diagnostic commands to provide sanity checks on commands that represent physical quantities and constants.
768 \ExplSyntaxOn
769 \NewDocumentCommand{\@aux}{ m }
     {
770
       \use:c { #1 }
771
     }
772
773 \NewDocumentCommand{\@auy}{ m }
774
775
       \normalfont\ttfamily\token_to_str:c { #1 }
776
     }
777 \ExplSyntaxOff
778 \newcolumntype{M}\{>\{\(\}p\{0.25\linewidth\}<\{\)\}\}
779 \NewDocumentCommand{\CheckQuantity}{ m }
     {%
780
       \begin{center}
781
         \begin{tabular}{MMM}
782
           \textbf{command}
                                    & \multicolumn{2}{1}{\@auy{#1}}
                                                                                                    \tabularnewline
783
           \text{\textbf{base}}
                                    & \text{\textbf{derived}}
                                                                    & \text{\textbf{alternate}}
                                                                                                    \tabularnewline
784
           \@aux{#1onlybaseunits} & \@aux{#1onlyderivedunits}
                                                                    & \@aux{#1onlyalternateunits} \tabularnewline
785
         \end{tabular}
786
       \end{center}
787
788
     }%
   \NewDocumentCommand{\CheckConstant}{ m }
789
     {%
790
       \begin{center}
791
         \begin{tabular}{MMM}
792
           \textbf{command}
                                    & \multicolumn{2}{1}{\@auy{#1}}
                                                                                                    \tabularnewline
793
           \text{\textbf{symbol}} & \text{\textbf{approximate}} &
                                                                      \text{\textbf{precise}}
                                                                                                    \tabularnewline
794
           \@aux{#1mathsymbol}
                                    & \@aux{#1approximatevalue}
                                                                    & \@aux{#1precisevalue}
                                                                                                    \tabularnewline
795
           \text{\textbf{base}}
                                    & \text{\textbf{derived}}
                                                                    & \text{\textbf{alternate}}
                                                                                                    \tabularnewline
796
           \@aux{#1onlybaseunits} & \@aux{#1onlyderivedunits}
                                                                    & \@aux{#1onlyalternateunits} \tabularnewline
797
         \end{tabular}
798
       \end{center}
799
800
   \mivector → P. 34 is a workhorse command.
See https://tex.stackexchange.com/a/39054/218142.
801 \ExplSyntaxOn
802 \NewDocumentCommand{\mivector}{ O{,} m o }
803
     {
       \__mandi_vector:nn { #1 } { #2 }
804
       \If Value T {#3}{\,{#3}}
805
     }
806
807 \seq_new:N \l__mandi_list_seq
   \cs_new_protected:Npn \__mandi_vector:nn #1#2
808
809
     {
         \seq_set_split:Nnn \l__mandi_list_seq { , } { #2 }
810
```

\int_compare:nT { \seq_count:N \l__mandi_list_seq = 1 }

811

```
812
             \msg_new:nnnn { mandi } { onecomponent }
813
814
                  {\tt More\mbox{-}than\mbox{-}one\mbox{-}component\mbox{-}expected.}
                                                               \iow_newline:
815
                  You~provided~one~component~to~a~command \iow_newline:
816
817
                  that~expects~a~vector.~Either~you~don't \iow_newline:
                  need~a~vector~here~or~you~didn't~supply \iow_newline:
818
                  all~the~components.
819
               }
820
               {
821
                  Decide~whether~or~not~you~really~need~a~vector~command~here. \iow_newline:
822
                  \msg_see_documentation_text:n { mandi }
823
               }
824
             \msg_fatal:nn { mandi } { onecomponent }
825
826
           }
827
          \left\langle \right\rangle
828
            \seq_use:Nnnn \l__mandi_list_seq { #1 } { #1 } { #1 }
829
830
          \right\rangle
     }
831
832 \ExplSyntaxOff
```

7 The mandistudent Package

mandi comes with an accessory package mandistudent, which extends mandi with a collection of commands physics students can use for writing problem solutions. This package focuses on the most frequently needed tools. These commands should always be used in math mode. mandistudent requires, and loads, mandi but mandi doesn't require, and doesn't load, mandistudent.

Load mandistudent as you would any package in your preamble. There are no package options.

```
\usepackage{mandistudent}
```

\mandistudentversion

Typesets the current version and build date.

```
The version is \mandistudentversion{} and is a stable build.

The version is v3.2.2 dated 2024-02-27 and is a stable build.
```

7.1 Traditional Vector Notation

U 2021-09-18 U 2021-09-18

```
\begin{tabular}{ll} $\ \cline{Continuous} \ \cline{Continuous} \end{tabular} $$ (use this variant for boldface notation) $$ \cline{Continuous} \end{tabular} $$ (use this variant for arrow notation) $$
```

Powerful and intelligent command for symbolic vector notation. The mandatory argument is the symbol for the vector quantity. The optional label(s) consists of superscripts and/or subscripts and can be mathematical or textual in nature. If textual, be sure to wrap them in $\sum_{s,s} f$ for proper typesetting. The starred variant gives arrow notation whereas without the star you get boldface notation. Subscript and superscript labels can be arbitrarily mixed, and order doesn't matter. This command redefines the default $\text{LAT}_{EX} 2_{\varepsilon} \text{vec}$ command.

```
\boldsymbol{p}
                                                                                                                                                                                                                                                                                                                                                                                                                      oldsymbol{p}_2^{	ext{ball}}
\( \vec{p} \)
                                                                                                                                                                                                                                                                                                          11
\(\vec{p}_{2}\)
                                                                                                                                                                                                                                                                                                          11
                                                                                                                                                                                                                                                                                                                                                                                                                      p_{\mathrm{final}}
\( \vec{p}^{\symup{ball}} \)
\(\vec{p}_{\symup{final}} \)
                                                                                                                                                                                                                                                                                                                                                                                                                      oldsymbol{p}_{	ext{final}}
                 \ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ensuremath{\ens
\c \operatorname{p}^{\simeq}_{\symup{final}}_{\symup{ball}} \)
                                                                                                                                                                                                                                                                                                                                                                                                                       oldsymbol{p}_{	ext{ball}}
                                                                                                                                                                                                                                                                                                          //
                                                                                                                                                                                                                                                                                                                                                                                                                       \overrightarrow{p}
\overrightarrow{p}
\overrightarrow{p}
\overrightarrow{p}
\overrightarrow{p}
ball
\( \vec*{p} \)
                                                                                                                                                                                                                                                                                                          11
//
\( \vec*{p}^{\symup{ball}} \)
                                                                                                                                                                                                                                                                                                          11
\( \vec*{p}_{\symup{final}} \)
                                                                                                                                                                                                                                                                                                                                                                                                                         \overrightarrow{p}_{\text{final}}
\(\vec*{p}^{\symup{ball}}_{\symup{final}} \) \\
                                                                                                                                                                                                                                                                                                                                                                                                                       \overrightarrow{p}_{\text{final}}^{\text{final}}
\overrightarrow{p}_{\text{ball}}^{\text{final}}
```

U 2021-09-18

```
\dirvec{\langle symbol \rangle} [\langle labels \rangle]
```

(use this variant for boldface notation)

U 2021-09-18

$\dirvec*{\langle symbol \rangle}[\langle labels \rangle]$

(use this variant for arrow notation)

Powerful and intelligent command for typesetting the direction of a vector. The options are the same as those for \vec.

```
\widehat{p}
                                                                                                                            ball
\( \dirvec{p} \)
                                                                                        11
\( \dirvec{p}_{2} \)
                                                                                        \\
                                                                                                                        \widehat{m{p}}_{	ext{final}}
\( \dirvec{p}^{\symup{ball}} \)
                                                                                                                        \widehat{m{p}}_{	ext{final}}
\( \dirvec{p}_{\symup{final}} \)
                                                                                        //
//
                                                                                                                        \widehat{m{p}}_{	ext{ball}}^{	ext{fin.}}
                                                                                        //
\( \dirvec*{p} \)
                                                                                        //
                                                                                                                         \widehat{p}
                                                                                                                       \widehat{\overline{p}}_2 ball
\( \dirvec*{p}_{2} \)
                                                                                        //
\( \dirvec*{p}^{\symup{ball}} \)
                                                                                        11
\(\dirvec*{p}_{\symup{final}} \)
\(\dirvec*{p}^{\symup{ball}}_{\symup{final}} \)
\(\dirvec*{p}^{\symup{final}}_{\symup{ball}} \)
                                                                                        11
                                                                                                                        \widehat{p}_{\text{final}}
                                                                                                                        \widehat{p}_{	ext{final}}^{	ext{final}}
\widehat{p}_{	ext{ball}}^{	ext{final}}
```

\zerovec \zerovec*

(use this variant for boldface notation)
(use this variant for arrow notation)

Command for typesetting the zero vector. The starred variant gives arrow notation. Without the star you get boldface notation.

```
\(\zerovec\)\\\\(\zerovec*\)
```

\changein

Semantic alias for \Delta.

```
\( \changein t \) \\ \( \changein \vec{p} \) \\ \Delta p
```

```
N 2021-02-21
                       \doublebars[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                            (double bars)
                       \doublebars*[\langle size \rangle] \{\langle quantity \rangle\}
N 2021-02-21
                                                                                                                                         (double bars for fractions)
                       \singlebars[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                             (single bars)
N 2021-02-21
N 2021-02-21
                       \singlebars*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                          (single bars for fractions)
                       \agglebrackets[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                        (angle brackets)
N 2021-02-21
N 2021-02-21
                       \agglebrackets*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                     (angle brackets for fractions)
                       \parentheses [\langle size \rangle] {\langle quantity\rangle}
N 2021-02-21
                                                                                                                                                            (parentheses)
                       \parentheses*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                         (parentheses for fractions)
N 2021-02-21
                       \squarebrackets[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                                      (square brackets)
N 2021-02-21
N 2021-02-21
                       \squarebrackets*[\langle size \rangle] \{\langle quantity \rangle\}
                                                                                                                                    (square brackets for fractions)
```

```
N 2021-02-21
N 2021-02-21
```

```
\label{lem:curlybraces} $$ \langle size \rangle ] {\langle quantity \rangle} $$ (curly braces) $$ \langle curly braces for fractions) $$
```

If no argument is given, a placeholder is provided. Sizers like \big,\Big,\bigg, and \Bigg can be optionally specified. Beginners are encouraged not to use them. See the mathtools package documentation for details.

<pre>\[\] \[\doublebars{\vec{a}} \] \[\doublebars*{\frac{\vec{a}}{3}} \] \[\doublebars[\Bigg]{\frac{\vec{a}}{3}} \]</pre>	$\ \cdot\ $ $\ a\ $ $\ \frac{a}{3}\ $ $\ \frac{a}{3}\ $
<pre>\[\] \[\singlebars{x} \] \[\singlebars*{\frac{x}{3}} \] \[\singlebars[\Bigg]{\frac{x}{3}} \]</pre>	$\begin{vmatrix} \cdot \\ x \\ \left \frac{x}{3} \right \\ \left \frac{x}{3} \right \end{vmatrix}$
<pre>\[\] \[\anglebrackets{\vec{a}} \] \[\anglebrackets*{\frac{\vec{a}}{3}} \] \[\anglebrackets[\Bigg]{\frac{\vec{a}}{3}} \]</pre>	$\langle \cdot \rangle$ $\langle a \rangle$ $\langle \frac{a}{3} \rangle$ $\langle \frac{a}{3} \rangle$
<pre>\[\] \[\parentheses{x} \] \[\parentheses*{\frac{x}{3}} \] \[\parentheses[\Bigg]{\frac{x}{3}} \]</pre>	$ \begin{array}{c} (\cdot) \\ (x) \\ \left(\frac{x}{3}\right) \\ \left(\frac{x}{3}\right) \end{array} $

```
N 2021-02-21
N 2021-02-21
N 2021-02-21
N 2021-02-21
N 2021-02-21
N 2021-02-21
```

Semantic aliases. Use $\mbox{\tt magnitude}$ or $\mbox{\tt magnitude*}$ to typeset the magnitude of a vector.

```
\|p\| \\ \ \|p\|
```

N 2021-04-06 N 2021-04-06

\parallelto \perpendicularto

Commands for geometric relationships, mainly intended for subscripts.

```
\(\vec{F}_{\parallelto} + \vec{F}_{\perpendicularto} \) F_{\parallel} + F_{\perp}
```

7.2 Problems and Annotated Problem Solutions

Provides an environment for stating physics problems. Each problem will begin on a new page. See the examples for how to handle single and multiple part problems. Due to incompatibilities with BEAMER and the enumitem package, these environments are not defined if BEAMER is loaded.

U 2023-08-01

\problempart

Denotes a part of a problem within a parts environment. This command is not defined if BEAMER is loaded.

```
\begin{physicsproblem}{Problem 1}
This is a physics problem with no parts.
\end{physicsproblem}
```

Problem 1

This is a physics problem with no parts.

```
\begin{physicsproblem}{Problem 2}
This is a physics problem with multiple parts.
The list is vertical.
\begin{parts}
  \problempart This is the first part.
  \problempart This is the second part.
  \problempart This is the third part.
  \end{parts}
\end{physicsproblem}
```

Problem 2

This is a physics problem with multiple parts. The list is vertical.

- (a) This is the first part.
- (b) This is the second part.
- (c) This is the third part.

```
\begin{physicsproblem*}{Problem 3}

This is a physics problem with multiple parts.

The list is in-line.
\begin{parts}

\problempart This is the first part.
\problempart This is the second part.
\problempart This is the third part.
\end{parts}

\end{parts}
\end{physicsproblem*}
```

Problem 3

This is a physics problem with multiple parts. The list is in-line. (a) This is the first part. (b) This is the second part. (c) This is the third part.

U 2021-02-26

U 2021-02-26

```
\begin{physicssolution} (use this variant for numbered steps)
\solution steps\\
\end{physicssolution*}
\begin{physicssolution*} (use this variant for unnumbered steps)
\solution steps\\
\end{physicssolution*}
```

This environment is only for mathematical solutions. The starred variant omits numbering of steps. See the examples.

```
(1)
                                                                          x = y + z
\begin{physicssolution}
 x &= y + z \\
                                                                                                     (2)
                                                                          z = x - y
 z &= x - y \\
                                                                          y = x - z
                                                                                                     (3)
 y &= x - z
\end{physicssolution}
\begin{physicssolution*}
 x &= y + z \\
 z &= x - y \\
                                                                          x = y + z
  y &= x - z
\end{physicssolution*}
                                                                          z = x - y
                                                                          y = x - z
```

U 2021-02-26

$\rcsin {\langle reason \rangle}$

Provides an annotation in a step-by-step solution. Keep reasons short and to the point. Wrap mathematical content in math mode.

```
(4)
                                                   x = y + z This is a reason.
\begin{physicssolution}
 x &= y + z \reason{This is a reason.}
                                                                                           (5)
                                                              This is a reason too.
 z &= x - y \reason{This is a reason too.} \\
                                                                                           (6)
                                                   y = x - z
 y &= x - z \reason{final answer}
                                                               final answer
\end{physicssolution}
\begin{physicssolution*}
 x \&= y + z \geq \{This is a reason.\}
 x = y + z
                                                                 This is a reason.
 y &= x - z \reason{final answer}
\end{physicssolution*}
                                                    z = x - y
                                                                 This is a reason too.
                                                    y = x - z
                                                                 final answer
```

When writing solutions, remember that the $physicssolution^{\rightarrow P.57}$ environment is *only* for mathematical content, not textual content or explanations.

```
\begin{physicsproblem}{Combined Problem and Solution}

This is an interesting physics problem.
\begin{physicssolution}

The solution goes here.
\end{physicssolution}

\end{physicsproblem}
```

```
\begin{physicsproblem}{Combined Multipart Problem with Solutions}
  This is a physics problem with multiple parts.
  \begin{parts}
    \problempart This is the first part.
      \begin{physicssolution}
       The solution goes here.
      \end{physicssolution}
    \problempart This is the second part.
      \begin{physicssolution}
       The solution goes here.
      \end{physicssolution}
    \problempart This is the third part.
      \begin{physicssolution}
       The solution goes here.
      \end{physicssolution}
  \end{parts}
\end{physicsproblem}
```

U 2023-08-01

Hilites the desired target, which can be an entire mathematical expression or a part thereof. The default color is magenta and the default shape is a rectangle. This command is not defined if BEAMER is loaded.

```
\begin{align*}

(\Delta s)^2 &= -(\Delta t)^2 + (\Delta x)^2 + (\Delta y)^2 +

(\Delta s)^2 &= \hilite{-(\Delta t)^2 + (\Delta x)^2}[rounded rectangle] +

(\Delta s)^2 &= \hilite{-(\Delta t)^2 + (\Delta x)^2}[rectangle] +

(\Delta s)^2 &= \hilite{-(\Delta t)^2 + (\Delta x)^2}[rectangle] +

(\Delta y)^2 + (\Delta z)^2 \\

(\Delta s)^2 &= \hilite{-(\Delta t)^2 + (\Delta x)^2}[ellipse] +

(\Delta y)^2 + (\Delta z)^2 \\

(\Delta s)^{\hilite{2}}[circle]} &= \hilite[green]{-}[circle]

(\Delta s)^{\hilite{2}}[circle]} +

(\Delta x)^{\hilite[cyan]{2}[circle]} +

(\Delta y)^{\hilite[blue!50]{2}[circle]} +

(\Delta z)^{\hilite[blue!50]{2}[circle]} +

(\Delta z)^{\hilite[blue!50]{2}[circle]} +

(\Delta z)^{\hilite[violet!45]{2}[circle]} +

(\Delta z)^{\hilite[violet!45]{2}[circle]}
```

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$(\Delta s)^{2} = -(\Delta t)^{2} + (\Delta x)^{2} + (\Delta y)^{2} + (\Delta z)^{2}$$

$$\Delta p = F_{
m net} \Delta t$$
 $\Delta p = F_{
m net} \Delta t$
 $\Delta p = F_{
m net} \Delta t$

Simplified interface for importing an image. The images are treated as floats, so they may not appear at the most logically intuitive place.

```
\image[scale=0.20]{example-image-1x1}
{Image shown 20 percent actual size.}{reffig1}
```

1×1

Figure 1: Image shown 20 percent actual size.

```
Figure \ref{reffig1} is nice.
It's captioned \nameref{reffig1} and is on page \pageref{reffig1}.

Figure 1 is nice. It's captioned Image shown 20 percent actual size and is on page 60.
```

\image[scale=0.20,angle=45]{example-image-1x1}
{Image shown 20 percent actual size and rotated.}{reffig1}

Figure 2: Image shown 20 percent actual size and rotated.

```
Figure \ref{reffig2} is nice.
It's captioned \nameref{reffig2} and is on page \pageref{reffig2}.

Figure 2 is nice. It's captioned Image shown 20 percent actual size and rotated and is on page 60.
```

7.3 Coordinate-Free and Index Notation

Beyond the current level of introductory physics, we need intelligent commands for typesetting vector and tensor symbols and components suitable for both coordinate-free and index notations.

```
\colvec[\langle delimiter \rangle] \{\langle c_1, \dots, c_n \rangle\}  \colvec[\langle delimiter \rangle] \{\langle c_1, \dots, c_n \rangle\}
```

Typesets column vectors and row vectors as numeric or symbolic components. There can be more than three components. The delimiter used in the list of components can be specified; the default is a comma. Units are not supported, so these are mainly for symbolic work.

```
 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}  \[ \colvec{1,2,3} \] \[ \rowvec{1,2,3} \] \[ \colvec{x^{0},x^{1},x^{2},x^{3}} \] \[ \colvec{x^{0},x^{1},x^{2},x^{3}} \] \[ \rowvec{x^{0},x^{1},x^{2},x^{3}} \] \[ \rowvec{x^{0},x^{1},x^{2},x^{3}} \] \] \( (x_0 \ x_1 \ x_2 \ x_3) \)
```

```
\begin{tabular}{ll} $\langle symbol \rangle$ & (use this variant for coordinate-free vector notation) \\ $\langle symbol \rangle$ & (use this variant for index vector notation) \\ $\langle symbol \rangle$ & (use this variant for coordinate-free tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use this variant for index tensor notation) \\ $\langle symbol \rangle$ & (use
```

Conforms to ISO 80000-2 notation.

```
\(\veccomp{r}\)\\
\(\veccomp*{r}\)\\
r\\(\tencomp*{r}\)\\
r\\(\tencomp*{r}\)\\
r
```

```
\label{localization} $$\operatorname{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\colored}^{\colored}_{\color
```

Typesets tensor valence. The starred variant typesets it horizontally.

```
A vector is a \( \valence{1}{0} \) tensor. \\ A vector is a \binom{1}{0} tensor. A vector is a (1,0) tensor. A vector is a (1,0) tensor.
```

```
\contraction\{\langle slot, slot \rangle\}\contraction*\{\langle slot, slot \rangle\}
```

Typesets tensor contraction in coordinate-free notation. There is no standard for this so we assert one here.

```
\(\contraction{1,2} \) \\ \(\contraction*{1,2} \) \\ C_{1,2}
```

An intelligent slot command for coordinate-free vector and tensor notation. The starred variants suppress the underscore.

U 2022-01-27

\df

Intelligent differential and exterior derivative operator.

```
 \begin{cases} & \text{int } x \setminus dx \\ & \text{int } x \setminus dx \end{cases}
```

7.4 Web VPython and VPython Program Listings

Web VPython³ and VPython⁴ are programming environments (both use Python) frequently used in introductory physics to introduce students for modeling physical systems. mandi makes including code listings very simple for students.

7.5 The webvpythonblock Environment

U 2023-08-01

U 2023-08-01

```
\label{lem:code} $$ \left(\frac{\text{webvpythonblock}}{\langle \textit{Web VPython code} \rangle} \right) \left(\frac{\sinh \gamma}{\langle \textit{caption} \rangle} \right) $$ (now includes a QR code) $$ \left(\frac{\text{webvpythonblock}}{\langle \textit{webvpythonblock*}} \right) \left(\frac{\sinh \gamma}{\langle \textit{caption} \rangle} \right) $$ (use this variant to omit QR code) $$ \left(\frac{\text{web VPython code}}{\langle \textit{webvpythonblock*}} \right) $$ (use this variant to omit QR code) $$ \left(\frac{\text{web vpythonblock*}}{\langle \textit{webvpythonblock*}} \right) $$ (use this variant to omit QR code) $$ \left(\frac{\text{web vpythonblock*}}{\langle \textit{webvpythonblock*}} \right) $$ (use this variant to omit QR code) $$ \left(\frac{\text{web vpythonblock*}}{\langle \textit{webvpythonblock*}} \right) $$ (use this variant to omit QR code) $$ \left(\frac{\text{web vpythonblock*}}{\langle \textit{webvpythonblock*}} \right) $$ (use this variant to omit QR code) $$ \left(\frac{\text{web vpythonblock*}}{\langle \textit{webvpythonblock*}} \right) $$ (use this variant to omit QR code) $$ \left(\frac{\text{web vpythonblock*}}{\langle \textit{webvpythonblock*}} \right) $$ (use this variant to omit QR code) $$ \left(\frac{\text{web vpythonblock*}}{\langle \textit{webvpythonblock*}} \right) $$ (use this variant to omit QR code) $$ \left(\frac{\text{web vpythonblock*}}{\langle \textit{webvpythonblock*}} \right) $$ (use this variant to omit QR code) $$ (use thi
```

Code placed here is nicely formatted and optionally linked to its source on WebVPython.org, which must be in a public (not private) folder. Clicking anywhere in the code window (between the black horizontal bars) or on the URL will open the link in the default browser. A caption is mandatory, and a label is internally generated. The listing always begins on a new page. A URL shortening utility is recommended to keep the URL from getting unruly especially if it generates an overfull box error. For convenience, https:// is automatically prepended to the URL and can be omitted. The # character in a URL should not cause problems. The default URL is that of the Web VPython home page.

³On November 9, 2021 GlowScript was renamed to Web VPython. The website was changed to https://webvpython.org.

⁴https://vpython.org

```
\begin{webvpythonblock}
  (glowscript.org/#/user/heafnerj/folder/mandidemo/program/mandidemo)
  {Example With QR Code}
Web VPython 3.2
scene.width = 400
scene.height = 760
\# constants and data
g = 9.8 # m/s^2
mball = 0.03 # kg
Lo = 0.26 # m
ks = 1.8 # N/m
deltat = 0.01 # s
# objects (origin is at ceiling)
ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,
              width=0.2)
ball = sphere(pos=vector(0,-0.3,0),radius=0.025,
              color=color.orange)
spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos,
               color=color.cyan,thickness=0.003,coils=40,
               radius=0.010)
# initial values
                                 # kg m/s
pball = mball * vector(0,0,0)
Fgrav = mball * g * vector(0,-1,0) # \mathbb{N}
t = 0
# improve the display
scene.autoscale = False
                             # turn off automatic camera zoom
scene.center = vector(0,-Lo,0) # move camera down
scene.waitfor('click')
                             # wait for a mouse click
# initial calculation loop
# calculation loop
while t < 10:
    rate(100)
    # we need the stretch
    s = mag(ball.pos) - Lo
    # we need the spring force
    Fspring = ks * s * -norm(spring.axis)
    Fnet = Fgrav + Fspring
    pball = pball + Fnet * deltat
    ball.pos = ball.pos + (pball / mball) * deltat
    spring.axis = ball.pos - ceiling.pos
    t = t + deltat
\end{webvpythonblock}
```


Web VPython Program 1: Example With QR Code https://glowscript.org/#/user/heafnerj/folder/mandidemo/program/mandidemo

```
Web VPython 3.2
2
   scene.width = 400
3
   scene.height = 760
4
   # constants and data
5
   g = 9.8
                # m/s^2
   mball = 0.03 \# kg
   Lo = 0.26
               # m
   ks = 1.8
                 # N/m
9
   deltat = 0.01 # s
10
   # objects (origin is at ceiling)
12
   ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,
13
                  width=0.2)
14
   ball = sphere(pos=vector(0,-0.3,0), radius=0.025,
15
                  color=color.orange)
   spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos,
17
                   color=color.cyan,thickness=0.003,coils=40,
18
                   radius=0.010)
19
20
   # initial values
   pball = mball * vector(0,0,0)
                                     # kg m/s
22
   Fgrav = mball * g * vector(0,-1,0) # N
23
   t = 0
24
25
   # improve the display
   scene autoscale = False
                                   # turn off automatic camera zoom
27
   scene.center = vector(0, -Lo, 0) # move camera down
28
   scene.waitfor('click')
                                   # wait for a mouse click
29
30
   # initial calculation loop
31
   # calculation loop
32
   while t < 10:
33
       rate(100)
34
       # we need the stretch
35
       s = mag(ball.pos) - Lo
36
        # we need the spring force
37
       Fspring = ks * s * -norm(spring.axis)
38
        Fnet = Fgrav + Fspring
39
40
       pball = pball + Fnet * deltat
       ball.pos = ball.pos + (pball / mball) * deltat
41
42
       spring.axis = ball.pos - ceiling.pos
        t = t + deltat
43
```

Here is how one would reference this program elsewhere. Notice the references are numbered sequentially within the document.

```
\WebVPython{} program \ref{gs:1} is nice.
It's called \nameref{gs:1} and is on page \pageref{gs:1}.

Web VPython program 1 is nice. It's called Example With QR Code and is on page 64.
```

```
\begin{webvpythonblock*}
  (glowscript.org/#/user/heafnerj/folder/mandidemo/program/mandidemo)
  {Example Without QR Code}
Web VPython 3.2
scene.width = 400
scene.height = 760
\# constants and data
g = 9.8 # m/s^2
mball = 0.03 # kg
Lo = 0.26 # m
ks = 1.8 # N/m
deltat = 0.01 # s
# objects (origin is at ceiling)
ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,
              width=0.2)
ball = sphere(pos=vector(0,-0.3,0),radius=0.025,
              color=color.orange)
spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos,
               color=color.cyan,thickness=0.003,coils=40,
               radius=0.010)
# initial values
                                 # kg m/s
pball = mball * vector(0,0,0)
Fgrav = mball * g * vector(0,-1,0) # \mathbb{N}
t = 0
# improve the display
scene.autoscale = False
                             # turn off automatic camera zoom
scene.center = vector(0,-Lo,0) # move camera down
scene.waitfor('click')
                              # wait for a mouse click
# initial calculation loop
# calculation loop
while t < 10:
    rate(100)
    # we need the stretch
    s = mag(ball.pos) - Lo
    # we need the spring force
    Fspring = ks * s * -norm(spring.axis)
    Fnet = Fgrav + Fspring
    pball = pball + Fnet * deltat
    ball.pos = ball.pos + (pball / mball) * deltat
    spring.axis = ball.pos - ceiling.pos
    t = t + deltat
\verb|\end{webvpythonblock*}|
```

Web VPython Program 2: Example Without QR Code https://glowscript.org/#/user/heafnerj/folder/mandidemo/program/mandidemo

```
Web VPython 3.2
2
   scene.width = 400
3
   scene.height = 760
   # constants and data
5
   g = 9.8
                # m/s^2
   mball = 0.03 \# kg
   Lo = 0.26 # m
   ks = 1.8
                 # N/m
9
   deltat = 0.01 # s
10
   # objects (origin is at ceiling)
12
   ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,
13
                  width=0.2)
14
   ball = sphere(pos=vector(0,-0.3,0), radius=0.025,
15
                  color=color.orange)
16
   spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos,
17
                   color=color.cyan,thickness=0.003,coils=40,
18
                   radius=0.010)
19
20
   # initial values
21
   pball = mball * vector(0,0,0)
                                     # kg m/s
22
   Fgrav = mball * g * vector(0,-1,0) # N
   t = 0
24
25
   # improve the display
26
   scene.autoscale = False
                                   # turn off automatic camera zoom
27
   scene.center = vector(0, -Lo, 0) # move camera down
   scene.waitfor('click')
                                   # wait for a mouse click
29
30
   # initial calculation loop
31
   # calculation loop
32
   while t < 10:
33
       rate(100)
34
35
        # we need the stretch
       s = mag(ball.pos) - Lo
36
37
       # we need the spring force
       Fspring = ks * s * -norm(spring.axis)
38
       Fnet = Fgrav + Fspring
39
        pball = pball + Fnet * deltat
40
        ball.pos = ball.pos + (pball / mball) * deltat
41
        spring.axis = ball.pos - ceiling.pos
42
        t = t + deltat
43
```

```
\WebVPython{} program \ref{gs:2} is nice.
It's called \nameref{gs:2} and is on page \pageref{gs:2}.

Web VPython program 2 is nice. It's called Example Without QR Code and is on page 67.
```

7.6 The vpythonfile Command

U 2023-08-01

$\vert vpythonfile [\langle options \rangle] (\langle link \rangle) \{\langle file \rangle\} \{\langle caption \rangle\}$

Command to load and typeset a VPython program, read from local file $\{\langle file \rangle\}$. Clicking anywhere in the code window (between the black horizontal bars) or on the URL will open the link in the default browser. A caption is mandatory, and a label is internally generated. The listing always begins on a new page. A URL shortening utility is recommended to keep the URL from getting unruly especially if it generates an overfull box error. For convenience, https:// is automatically prepended to the URL and can be omitted. The default URL is that of the VPython home page.

\vpythonfile{vdemo.py}{A \VPython{} Program}

VPython Program 1: A VPython Program from vpython import * scene.width = 4003 scene.height = 7604 # constants and data g = 9.8# m/s^2 mball = 0.03 # kg# m Lo = 0.26ks = 1.8# N/m deltat = 0.01 # s11 # objects (origin is at ceiling) 12 ceiling = box(pos=vector(0,0,0), length=0.2, height=0.01,13 width=0.2) 14 ball = sphere(pos=vector(0,-0.3,0), radius=0.025, color=color.orange) 16 17 spring = helix(pos=ceiling.pos, axis=ball.pos-ceiling.pos, color=color.cyan,thickness=0.003,coils=40, 18 radius=0.010) 19 20 # initial values 21 pball = mball * vector(0,0,0)# kg m/s 22 Fgrav = mball * g * vector(0,-1,0) # N 23 25 # improve the display 26 # turn off automatic camera zoom scene.autoscale = False 27 scene.center = vector(0, -Lo, 0) # move camera down 28 scene.waitfor('click') # wait for a mouse click 30 # initial calculation loop 31 32 # calculation loop while t < 10: 33 34 rate(100) # we need the stretch 35 s = mag(ball.pos) - Lo36 # we need the spring force 37 Fspring = ks * s * -norm(spring.axis) 38 Fnet = Fgrav + Fspringpball = pball + Fnet * deltat 40 ball.pos = ball.pos + (pball / mball) * deltat 41 spring.axis = ball.pos - ceiling.pos 42 t = t + deltat43

```
\VPython{} program \ref{vp:1} is nice.
It's called \nameref{vp:1} and is on page \pageref{vp:1}.

VPython program 1 is nice. It's called A VPython Program and is on page 69.
```

7.7 The webvpythoninline and vpythoninline Commands

\webvpythoninline{ $\langle Web \ VPython \ code \rangle$ } \vpythoninline{ $\langle VPython \ code \rangle$ }

Typesets a small, in-line snippet of code. The snippet should be less than one line long.

\WebVPython{} programs begin with \webvpythoninline{Web VPython 3.2}.

Web VPython programs begin with Web VPython 3.2.

\VPython{} programs begin with \vpythoninline{from vpython import *}.

VPython programs begin with from vpython import *.

7.8 mandistudent Source Code

28 \RequirePackage[most] {tcolorbox}

Definine the package version and date for global use, exploiting the fact that in a .sty file there is now no need for \makeatletter and \makeatother. This simplifies defining internal commands, with @ in the name, that are not for the user to know about.

1 \def\mandistudent@version{3.2.2} 2 \def\mandistudent@date{2024-02-27} 3 \NeedsTeXFormat{LaTeX2e}[2020-02-02] 5 \DeclareCurrentRelease{v\mandistudent@version}{\mandistudent@date} 6 \ProvidesPackage{mandistudent} [\mandistudent@date\space v\mandistudent@version\space Macros for introductory physics] Define a convenient package version command. 8 \newcommand*{\mandistudentversion}{v\mandistudent@version\space dated \mandistudent@date} Load third party packages, documenting why each one is needed. AMS goodness. Don't load amssymb or amsfonts. 9 \RequirePackage{amsmath} We need enumitem for the physicsproblem environment. BEAMER is not compatible with enumitem so if BEAMER is loaded certain commands are not defined. 10 \IfClassLoadedTF{beamer}% 11 {}% \RequirePackage[inline]{enumitem}% 13 We need eso-pic for \hilite. 15 \RequirePackage{eso-pic} We need esvect for nice vector arrows, style g. 16 \RequirePackage[g]{esvect} We need pgfopts for a key-value interface. 17 \RequirePackage{pgfopts} We need iftex so we can require LuaLATEX. 18 \RequirePackage{iftex} We need makebox for consistent \dirvect notation. 19 \RequirePackage{makebox} We need mandi to load mathtools and unicode-math. 20 \IfPackageLoadedTF{mandi}% {}% 22 \RequirePackage{mandi}% 23 24 We need nicematrix for column and row vectors. 25 \RequirePackage{nicematrix} We need qrcode for QR codes in webvpythonblock. 26 \RequirePackage{qrcode} Set the default size for QR codes. 27 \qrset{height=1.5cm} We need toolorbox for program listings.

```
We need tensor for index notation.
29 \RequirePackage{tensor}
30 %
31 % We need \pkg{tikz} for |\hilite|...
32 %
33 \RequirePackage{tikz}
34 \usetikzlibrary{shapes,fit,tikzmark}
   Load xparse if necessary.
35 \IfFormatAtLeastTF{2020-10-01}
     {}%
36
     {\RequirePackage{xparse}}%
   Always load hyperref last if possible.
38 \RequirePackage{hyperref}
   We require the LuaLATEX engine.
39 \RequireLuaTeX
   Set up the fonts to be consistent with ISO 80000-2 notation. The unicode-math package loads the fontspec and xparse
packages. Note that xparse is now part of the \LaTeX 2_{\varepsilon} kernel. Because unicode-math is required, all documents using mandi
must be compiled with an engine that supports Unicode, and I recommend LualATeX.
40 \unimathsetup{math-style=ISO}
   Use normal math letters from Latin Modern Math for familiarity with textbooks. This gives a better J.
41 \setmathfont[Scale=MatchLowercase]
     {Latin Modern Math}
   Borrow from TeX Gyre DejaVu Math for vectors and tensors to get single-storey lowercase g.
43 \setmathfont[Scale=MatchLowercase, range={sfit/{latin}, bfsfit/{latin}}]
     {TeX Gyre DejaVu Math}
   Borrow from TeX Gyre DejaVu Math to get single-storey lowercase g.
45 \setmathfont[Scale=MatchLowercase,range={sfup/{latin},bfsfup/{latin}}]
     {TeX Gyre DejaVu Math}
   Borrow mathscr and mathbfscr from XITS Math.
See https://tex.stackexchange.com/a/120073/218142.
47 \setmathfont[Scale=MatchLowercase, range={\mathscr,\mathbfscr}]{XITS Math}
   Get original and bold mathcal fonts.
See https://tex.stackexchange.com/a/21742/218142.
48 \setmathfont[Scale=MatchLowercase,range={\mathcal,\mathbfcal},StylisticSet=1]{XITS Math}
   Borrow Greek sfup and sfit letters from STIX Two Math. Since this isn't officially supported in unicode-math we have
to manually set this up.
49 \setmathfont[Scale=MatchLowercase,range={"E17C-"E1F6}]{STIX Two Math}
50 \newfontfamily{\symsfgreek}{STIX Two Math}
   I don't understand why \text{...} is necessary.
51 \newcommand{\symsfupalpha}
                                    {\text{\symsfgreek{^^^^e196}}}
52 \newcommand{\symsfupbeta}
                                    {\text{\symsfgreek{^^^e197}}}
                                    {\text{\symsfgreek{^^^^e198}}}
53 \newcommand{\symsfupgamma}
                                    {\text{\symsfgreek{^^^e199}}}
54 \newcommand{\symsfupdelta}
                                    {\text{\symsfgreek{^^^^e1af}}}
55 \newcommand{\symsfupepsilon}
56 \newcommand{\symsfupvarepsilon} {\text{\symsfgreek{^^^^e19a}}}
                                    {\text{\symsfgreek{^^^^e19b}}}
57 \newcommand{\symsfupzeta}
```

{\text{\symsfgreek{^^^^e19c}}}

58 \newcommand{\symsfupeta}

```
{\text{\symsfgreek{^^^e19d}}}
 59 \newcommand{\symsfuptheta}
 60 \newcommand{\symsfupvartheta}
                                                                {\text{\symsfgreek{^^^e1b0}}}
                                                                {\text{\colored} {\text{\coler}} {\text{\coler} {\text{\colored} {\text{\colored} {\text{\coler}} {\text{\coler}
 61 \newcommand{\symsfupiota}
                                                                {\text{\symsfgreek{^^^^e19f}}}
 62 \newcommand{\symsfupkappa}
 63 \newcommand{\symsfuplambda}
                                                                {\text{\symsfgreek{^^^^e1a0}}}
                                                                {\text{\symsfgreek{^^^e1a1}}}
 64 \newcommand{\symsfupmu}
                                                                {\text{\symsfgreek{^^^^e1a2}}}
 65 \newcommand{\symsfupnu}
                                                                {\text{\symsfgreek{^^^e1a3}}}
 66 \newcommand{\symsfupxi}
                                                                {\text{\symsfgreek{^^^^e1a4}}}
 67 \newcommand{\symsfupomicron}
                                                                {\texttt{\colored} \{ \texttt{\colored} \{ \texttt{\colored} \} \}}
 68 \newcommand{\symsfuppi}
                                                                {\text{\symsfgreek{^^^^e1b3}}}
 69 \newcommand{\symsfupvarpi}
                                                                {\text{\symsfgreek{^^^^e1a6}}}
 70 \newcommand{\symsfuprho}
                                                                {\text{\symsfgreek{^^^^e1b2}}}
 71 \newcommand{\symsfupvarrho}
                                                                {\text{\symsfgreek{^^^^e1a8}}}
 72 \newcommand{\symsfupsigma}
                                                                {\text{\symsfgreek{^^^^e1a7}}}
 73 \newcommand{\symsfupvarsigma}
                                                                {\text{\colored} } {\text{\colored} }
 74 \newcommand{\symsfuptau}
 75 \newcommand{\symsfupupsilon}
                                                                {\text{\symsfgreek{^^^^e1aa}}}
 76 \newcommand{\symsfupphi}
                                                                {\text{\symsfgreek{^^^^e1b1}}}
                                                                {\text{\symsfgreek{^^^^e1ab}}}
 77 \newcommand{\symsfupvarphi}
                                                                {\text{\symsfgreek{^^^^e1ac}}}
 78 \newcommand{\symsfupchi}
 79 \newcommand{\symsfuppsi}
                                                                {\text{\symsfgreek{^^^^e1ad}}}
                                                                {\text{\symsfgreek{^^^^e1ae}}}
 80 \newcommand{\symsfupomega}
                                                                {\text{\symsfgreek{^^^^e180}}}
 81 \verb|\newcommand{\symsfupDelta}|
                                                                {\text{\symsfgreek{^^^^e17f}}}
 82 \newcommand{\symsfupGamma}
                                                                {\text{\symsfgreek{^^^^e18e}}}
 83 \newcommand{\symsfupTheta}
                                                                {\text{\symsfgreek{^^^^e187}}}
 84 \newcommand{\symsfupLambda}
                                                                {\text{\symsfgreek{^^^^e18a}}}
 85 \newcommand{\symsfupXi}
                                                                {\text{\symsfgreek{^^^^e18c}}}
 86 \newcommand{\symsfupPi}
 87 \newcommand{\symsfupSigma}
                                                                {\text{\symsfgreek{^^^^e18f}}}
                                                                {\texttt{\colored} \{ \texttt{\colored} \{ \texttt{\colored} \} \}}
 88 \newcommand{\symsfupUpsilon}
 89 \newcommand{\symsfupPhi}
                                                                {\text{\symsfgreek{^^^e192}}}
                                                                {\text{\symsfgreek{^^^e194}}}
 90 \newcommand{\symsfupPsi}
                                                                {\text{\symsfgreek{^^^^e195}}}
 91 \newcommand{\symsfupOmega}
                                                                {\text{\symsfgreek{^^^^e1d8}}}
 92 \newcommand{\symsfitalpha}
                                                                {\text{\symsfgreek{^^^^e1d9}}}
 93 \newcommand{\symsfitbeta}
                                                                {\text{\symsfgreek{^^^^e1da}}}
 94 \newcommand{\symsfitgamma}
                                                                {\text{\symsfgreek{^^^e1db}}}
 95 \newcommand{\symsfitdelta}
                                                                {\text{\symsfgreek{^^^^e1f1}}}
 96 \newcommand{\symsfitepsilon}
                                                               {\text{\symsfgreek{^^^^e1dc}}}
 97 \newcommand{\symsfitvarepsilon}
                                                                {\text{\symsfgreek{^^^^e1dd}}}
 98 \newcommand{\symsfitzeta}
                                                                {\text{\symsfgreek{^^^^e1de}}}
 99 \newcommand{\symsfiteta}
                                                                {\text{\symsfgreek{^^^^eldf}}}
100 \newcommand{\symsfittheta}
101 \newcommand{\symsfitvartheta}
                                                                {\text{\symsfgreek{^^^^e1f2}}}
                                                                {\text{\symsfgreek{^^^^e1e0}}}
102 \newcommand{\symsfitiota}
                                                                {\text{\symsfgreek{^^^^e1e1}}}
103 \newcommand{\symsfitkappa}
                                                                {\text{\symsfgreek{^^^^e1e2}}}
104 \newcommand{\symsfitlambda}
                                                                {\text{\symsfgreek{^^^^e1e3}}}
105 \newcommand{\symsfitmu}
                                                                {\text{\symsfgreek{^^^^e1e4}}}
106 \newcommand{\symsfitnu}
                                                                {\text{\symsfgreek{^^^^e1e5}}}
107 \newcommand{\symsfitxi}
                                                                {\text{\symsfgreek{^^^^e1e6}}}
108 \newcommand{\symsfitomicron}
                                                                {\text{\symsfgreek{^^^^e1e7}}}
109 \newcommand{\symsfitpi}
                                                                {\text{\symsfgreek{^^^^e1f5}}}
110 \newcommand{\symsfitvarpi}
                                                                {\text{\symsfgreek{^^^^e1e8}}}
111 \newcommand{\symsfitrho}
                                                                {\text{\symsfgreek{^^^e1f4}}}
112 \newcommand{\symsfitvarrho}
113 \newcommand{\symsfitsigma}
                                                                {\text{\symsfgreek{^^^e1ea}}}
114 \newcommand{\symsfitvarsigma}
                                                                {\texttt{\colored} } \{ \texttt{\colored} \} \}
115 \newcommand{\symsfittau}
                                                                {\text{\symsfgreek{^^^e1eb}}}
                                                                {\text{\symsfgreek{^^^^e1ec}}}
116 \newcommand{\symsfitupsilon}
117 \newcommand{\symsfitphi}
                                                                {\text{\symsfgreek{^^^^e1f3}}}
```

```
{\text{\symsfgreek{^^^e1ed}}}
118 \newcommand{\symsfitvarphi}
119 \newcommand{\symsfitchi}
                                    {\text{\symsfgreek{^^^^e1ee}}}
                                    {\text{\symsfgreek{^^^^e1ef}}}
120 \newcommand{\symsfitpsi}
121 \newcommand{\symsfitomega}
                                    {\text{\symsfgreek{^^^^e1f0}}}
122 \newcommand{\symsfitDelta}
                                    {\text{\symsfgreek{^^^^e1c2}}}
123 \newcommand{\symsfitGamma}
                                    {\text{\symsfgreek{^^^e1c1}}}
                                    {\text{\symsfgreek{^^^^e1d0}}}
124 \newcommand{\symsfitTheta}
                                    {\text{\symsfgreek{^^^e1c9}}}
125 \newcommand{\symsfitLambda}
                                    {\text{\symsfgreek{^^^^e1cc}}}
126 \newcommand{\symsfitXi}
                                    {\text{\symsfgreek{^^^^e1ce}}}
127 \newcommand{\symsfitPi}
                                    {\text{\symsfgreek{^^^^e1d1}}}
128 \newcommand{\symsfitSigma}
                                    {\text{\symsfgreek{^^^e1d3}}}
129 \newcommand{\symsfitUpsilon}
                                    {\text{\symsfgreek{^^^^e1d4}}}
130 \newcommand{\symsfitPhi}
                                    {\text{\symsfgreek{^^^^e1d6}}}
131 \newcommand{\symsfitPsi}
132 \newcommand{\symsfitOmega}
                                    {\text{\symsfgreek{^^^^e1d7}}}
   Tweak the esvect package fonts to get the correct font size.
See https://tex.stackexchange.com/a/566676.
133 \DeclareFontFamily{U}{esvect}{}
134 \DeclareFontShape{U}{esvect}{m}{n}{%
     <-5.5> vect5
135
     <5.5-6.5> vect6
136
     <6.5-7.5> vect7
137
     <7.5-8.5> vect8
138
     <8.5-9.5> vect9
139
     <9.5-> vect10
140
141 }{}%
   Write a banner to the console showing the options in use.
143 \typeout{mandistudent: You are using mandistudent \mandistudentversion.}%
144 \typeout{mandistudent: This package requires LuaLaTeX.}%
145 \typeout{mandistudent: This package changes the default math font(s).}\%
146 \typeout{mandistudent: This package redefines the \protect\vec\space command.}%
147 \IfClassLoadedTF{beamer}%
       \typeout{mandistudent: BEAMER detected. Certain commands will not be defined.}%
149
150
     }%
     {}%
151
152 \typeout{}%
   A better, intelligent coordinate-free \vec→P.52 command. Note the use of the e{_^} type of optional argument. This
accounts for much of the flexibility and power of this command. Also note the use of the TEX primitives \sb{} and \sp{}.
Why doesn't it work when I put spaces around #3 or #4? Because outside of \ExplSyntaxOn...\ExplSyntaxOff, the _ character
has a different catcode and is treated as a mathematical entity.
See https://tex.stackexchange.com/q/554706/218142.
See also https://tex.stackexchange.com/a/531037/218142.
153 \RenewDocumentCommand{\vec}{ s m e{ ^}} }%
     {%
154
       \IfBooleanTF{#1}
155
         {%
156
           \vv{#2}%
```

157

158 159

160 161

162

163

164

\IfValueT{#4}%

\symbfit{#2}

\IfValueT{#4}%

 ${\left\langle ,\#4\right\rangle ,\#4\right\rangle .}$

```
}%
165
       \IfValueT{#3}%
166
          {\sh}{\#3\vphantom{\smash[b]{|}}}
167
     }%
168
A command for the direction of a vector. We use a slight tweak to get uniform hats that requires the makebox package.
See https://tex.stackexchange.com/a/391204/218142.
169 \NewDocumentCommand{\dirvec}{ s m e{_^} }%
170
171
       \widehat%
172
          {%
            \mbox{makebox*{\(w\))}%}
173
174
                \ensuremath{%
175
                  \IfBooleanTF {#1}%
176
177
                    {%
                      #2%
178
                    }%
179
                    {%
180
                      \symbfit{#2}%
181
                    }%
182
                }%
183
184
              }%
         }%
185
       \IfValueT{#3}%
186
          {\sb{#3\vphantom{\smash[b]{|}}}}%
187
       \IfValueT{#4}%
188
          {\left[t\right],\#4\right]}%
189
     }%
190
   The zero vector.
191 \NewDocumentCommand{\zerovec}{ s }%
192
       \IfBooleanTF {#1}
193
          {\vv{0}}%
194
195
          {\symbfup{0}}%
     }%
   Notation for column and row vectors.
See https://tex.stackexchange.com/a/39054/218142.
197 \ExplSyntaxOn
198 \NewDocumentCommand{\colvec}{ O{,} m }
199
       \__mandi_vectormain:nnnn { p } { \\ } { #1 } { #2 }
200
     }
201
202 \NewDocumentCommand{\rowvec}{ O{,} m }
203
        \__mandi_vectormain:nnnn { p } { & } { #1 } { #2 }
204
205
206 \seq_new:N \l__mandi_vectorarg_seq
207 \cs_new_protected:Npn \__mandi_vectormain:nnnn #1#2#3#4
     {
208
209
       \seq_set_split:Nnn \l__mandi_vectorarg_seq { #3 } { #4 }
210
       \begin{#1NiceMatrix}[r]
          \seq_use: Nnnn \l__mandi_vectorarg_seq { #2 } { #2 } { #2 }
211
212
       \end{#1NiceMatrix}
     }
213
```

214 \ExplSyntaxOff

Students always need this symbol.

```
215 \NewDocumentCommand{\changein}{}{\Delta}
```

Intelligent delimiters provided via the mathtools package. Use the starred variants for fractions. You can supply optional sizes. Note that default placeholders are used when the argument is empty.

Some semantic aliases. Because of the way $\ensuremath{\mbox{$\vee ec^{\to P.52}$}}$ and $\ensuremath{\mbox{$\vee dirvec^{\to P.52}$}}$ are defined, I reluctantly decided not to implement a $\ensuremath{\mbox{$\backslash magnitude^{\to P.55}$}}$ is the new solution.

```
222 \NewDocumentCommand{\magnitude}{}{\doublebars}
223 \NewDocumentCommand{\norm}{}{\doublebars}
224 \NewDocumentCommand{\absolutevalue}{}{\singlebars}
```

Commands for two important geometric relationships. These are meant mainly to be subscripts.

```
225 \NewDocumentCommand{\parallelto}{}%
226 {%
227 \mkern3mu\vphantom{\perp}\vrule depth Opt\mkern2mu\vrule depth Opt\mkern3mu%
228 }%
229 \NewDocumentCommand{\perpendicularto}{}{\perp}
```

An environment for problem statements. The starred variant gives in-line lists. These are not defined if BEAMER is loaded.

```
230 \IfClassLoadedTF{beamer}
     {}%
231
     {%
232
233
       \NewDocumentEnvironment{physicsproblem}{ m }%
234
            \newpage%
235
236
            \section*{#1}%
            \newlist{parts}{enumerate}{2}%
237
            \setlist[parts]{label=\bfseries(\alph*)}%
238
         }%
239
          {}%
240
       \NewDocumentEnvironment{physicsproblem*}{ m }%
241
242
            \newpage%
243
            \section*{#1}%
244
            \newlist{parts}{enumerate*}{2}%
245
246
            \setlist[parts]{label=\bfseries(\alph*)}%
247
         }%
248
249
       \NewDocumentCommand{\problempart}{}{\item}%
250
```

An environment for problem solutions. Equation numbering is consecutive through the document.

```
251 \NewDocumentEnvironment{physicssolution}{ +b }%
     {%
252
       \begin{align}
253
         #1
254
255
       \end{align}
     }%
256
     {}%
257
    NewDocumentEnvironment{physicssolution*}{ +b }%
258
259
       \begin{align*}
260
```

```
261
         #1
       \end{align*}
262
     }%
263
     {}%
264
   See https://tex.stackexchange.com/q/570223/218142.
265 \NewDocumentCommand{\reason}{ O{4cm} m }%
266
       &&\begin{minipage}{#1}\raggedright\small #2\end{minipage}%
267
     }%
268
   Command for highlighting parts of, or entire, mathematical expressions.
This command is not defined if BEAMER is loaded.
See https://texample.net/tikz/examples/beamer-arrows/.
See also https://tex.stackexchange.com/a/406084/218142.
See also https://tex.stackexchange.com/a/570858/218142.
See also https://tex.stackexchange.com/a/570789/218142.
See also https://tex.stackexchange.com/a/79659/218142.
See also https://tex.stackexchange.com/q/375032/218142.
See also https://tex.stackexchange.com/a/571744/218142
269 \newcounter{tikzhighlightnode}
270 \NewDocumentCommand{\hilite}{ O{magenta!60} m O{rectangle} }%
271
       \stepcounter{tikzhighlightnode}%
272
       \tikzmarknode{highlighted-node-\number\value{tikzhighlightnode}}{#2}%
273
       \edef\temp{%
274
275
         \noexpand\AddToShipoutPictureBG{%
           \noexpand\begin{tikzpicture}[overlay,remember picture]%
276
           \noexpand\iftikzmarkoncurrentpage{highlighted-node-\number\value{tikzhighlightnode}}}%
277
            \noexpand\node[inner sep=1.0pt,fill=#1,#3,fit=(highlighted-node-\number\value{tikzhighlightnode})]{};%
278
279
           \noexpand\fi
           \noexpand\end{tikzpicture}%
280
281
         }%
282
       }%
283
       \temp%
     }%
284
   A simplified command for importing images.
See https://tex.stackexchange.com/a/614478/218142.
285 \NewDocumentCommand{\image}{ O{scale=1} m m m }%
     {%
286
287
       \par
       \begin{figure}[ht!]
288
         \centering%
289
290
         \includegraphics[#1]{#2}%
         \caption{#3}%
291
         \label{#4}%
292
       \end{figure}%
293
294
       \par
295
     }%
```

Intelligent commands for typesetting vector and tensor symbols and components suitable for use with both coordinate-free and index notations. Use starred form for index notation, unstarred form for coordinate-free.

Consider renaming these to \vectorsym and \tensorsym.

```
296 \NewDocumentCommand{\veccomp}{ s m }%
297 {%
298 \IfBooleanTF{#1}
299 {%
```

```
\symnormal{#2}%
300
          }%
301
302
            \symbfit{#2}%
303
304
305
     }%
   \NewDocumentCommand{\tencomp}{ s m }%
306
307
        \IfBooleanTF{#1}%
308
309
            \symsfit{#2}%
310
311
312
            \symbfsfit{#2}%
313
          }%
314
     }%
315
   Command to typeset tensor valence.
316 \NewDocumentCommand{\valence}{ s m m }%
317
        \IfBooleanTF{#1}%
318
319
          {%
            (#2,#3)%
320
          }%
321
322
            \binom{#2}{#3}%
323
324
     }%
325
   Intelligent notation for contraction on pairs of slots.
326 \NewDocumentCommand{\contraction}{ s m }%
327
        \IfBooleanTF{#1}
328
329
            \mathsf{C}^{C}
330
          }%
331
332
            \symbb{C}%
333
334
335
        {#2}
336
   Intelligent slot command for coordinate-free tensor notation. d[] must be used because of the way consecutive optional
arguments are handled. See xparse docs for details.
337 \NewDocumentCommand{\slot}{ s d[] }%
338
        \IfBooleanTF{#1}
339
340
          \IfValueTF{#2}
341
   Insert a vector, but don't show the slot.
342
            \smash{\makebox[1.5em]{\ensuremath{#2}}}
343
344
   No vector, no slot.
345
            \smash{\makebox[1.5em]{\ensuremath{}}}
346
```

347

}%

```
}%
348
       {%
349
          \IfValueTF{#2}
350
   Insert a vector and show the slot.
351
              \underline{\smash{\makebox[1.5em]{\ensuremath{#2}}}}
352
            }%
353
   No vector; just show the slot.
354
            ₹%
              \underline{\smash{\makebox[1.5em]{\ensuremath{}}}}
355
            }%
356
       }%
357
     }%
358
   Intelligent differential (exterior derivative) operator.
359 \NewDocumentCommand{\df}{ s }%
     ₹%
360
       \mathop{}\!%
361
       \IfBooleanTF{#1}%
362
363
            \symbfsfup{d}%
364
         }%
365
          {%
366
            \symsfup{d}%
367
368
         }%
     }%
369
   Here is a clever way to color digits in program listsings thanks to Ulrike Fischer.
See https://tex.stackexchange.com/a/570717/218142.
370 \directlua{%
    luaotfload.add_colorscheme("colordigits",
      {["8000FF"] = {"one","two","three","four","five","six","seven","eight","nine","zero"}})
373 }%
374 \newfontfamily\colordigits{DejaVuSansMono} [RawFeature={color=colordigits}]
   Set up a color scheme and a new code environment for listings. The new colors are more restful on the eye. All listing
commands now use tcolorbox.
See https://tex.stackexchange.com/a/529421/218142.
   We set a new font for listings and some new colors (background gray, gray, green, orange, peach, pearl, and plum).
375 \newfontfamily{\gsfontfamily}{DejaVuSansMono}
376 \definecolor{gsbggray}
                                {rgb}{0.90,0.90,0.90}
377 \definecolor{gsgray}
                                {rgb}{0.30,0.30,0.30}
378 \definecolor{gsgreen}
                                {rgb}{0.00,0.60,0.00}
379 \definecolor{gsorange}
                                {rgb}{0.80,0.45,0.12}
380 \definecolor{gspeach}
                                {rgb}{1.00,0.90,0.71}
381 \definecolor{gspearl}
                                {rgb}{0.94,0.92,0.84}
382 \definecolor{gsplum}
                                \{rgb\}\{0.74,0.46,0.70\}
383 \lstdefinestyle{vpython}%
384
     ₹%
       backgroundcolor=\color{gsbggray},%
                                                       % background color
385
       basicstyle=\colordigits\footnotesize,%
                                                       % default style
386
387
       breakatwhitespace=true%
                                                       % break at whitespace
388
       breaklines=true,%
                                                       % break long lines
       captionpos=b,%
                                                       % position caption
389
                                                       % STILL DON'T UNDERSTAND THIS
390
       classoffset=1,%
                                                       % font for comments
       commentstyle=\color{gsgray},%
391
```

% delete keywords from the given language

392

deletekeywords={print},%

```
emph={self,cls,@classmethod,@property},%
                                                                                                      % words to emphasize
393
              emphstyle=\color{gsorange}\itshape,%
                                                                                                      % font for emphasis
394
              escapeinside=\{(*0)\}\{(0*)\},%
                                                                                                      % add LaTeX within your code
395
              frame=tb,%
                                                                                                     % frame style
396
              framerule=2.0pt,%
                                                                                                     % frame thickness
397
              framexleftmargin=5pt,%
                                                                                                      % extra frame left margin
398
399
              %identifierstyle=\sffamily,%
                                                                                                      % style for identifiers
              keywordstyle=\gsfontfamily\color{gsplum},%
400
                                                                                                     % color for keywords
              language=Python,%
                                                                                                      % select language
401
              linewidth=\linewidth,%
                                                                                                     % width of listings
402
                                                                                                     % VPython/Web VPython specific keywords
              morekeywords={%
403
                  __future__,abs,acos,align,ambient,angle,append,append_to_caption,%
404
                  append_to_title,arange,arrow,asin,astuple,atan,atan2,attach_arrow,%
405
                  attach_trail,autoscale,axis,background,billboard,bind,black,blue,border,%
406
407
                  bounding_box,box,bumpaxis,bumpmap,bumpmaps,camera,canvas,caption,capture,%
                  ceil,center,clear,clear_trail,click,clone,CoffeeScript,coils,color,combin,%
408
                  comp,compound,cone,convex,cos,cross,curve,cyan,cylinder,data,degrees,del,%
409
                  delete, depth, descender, diff_angle, digits, division, dot, draw_complete, %
410
                  ellipsoid, emissive, end_face_color, equals, explog, extrusion, faces, factorial, %
411
412
                  False, floor, follow, font, format, forward, fov, frame, gcurve, gdisplay, gdots, %
                  get_library,get_selected,ghbars,global,GlowScript,graph,graphs,green,gvbars,%
413
414
                  hat, headlength, headwidth, height, helix, hsv_to_rgb, index, interval, keydown, %
                  keyup,label,length,lights,line,linecolor,linewidth,logx,logy,lower_left,%
415
                  lower_right, mag, mag2, magenta, make_trail, marker_color, markers, material, %
416
                 max, min, mouse, mousedown, mousemove, mouseup, newball, norm, normal, objects, %
417
                  offset, one, opacity, orange, origin, path, pause, pi, pixel_to_world, pixels, plot, %
418
                  points, pos, pow, pps, print, print_function, print_options, proj, purple, pyramid, %
419
                  quad, radians, radius, random, rate, ray, read_local_file, readonly, red, redraw, %
420
                  retain, rgb_to_hsv, ring, rotate, round, scene, scroll, shaftwidth, shape, shapes, %
421
                  shininess, show_end_face, show_start_face, sign, sin, size, size_units, sleep, %
422
                  smooth, space, sphere, sqrt, start, start_face_color, stop, tan, text, textpos, %
423
                  texture,textures,thickness,title,trail_color,trail_object,trail_radius,%
424
425
                  trail_type,triangle,trigger,True,twist,unbind,up,upper_left,upper_right,%
                  userpan, userspin, userzoom, vec, vector, vertex, vertical_spacing, visible, %
426
427
                  visual, vpython, VPython, waitfor, Web, VPython, white, width, world, xtitle, %
                  yellow, yoffset, ytitle%
428
              },%
429
              morekeywords={print,None,TypeError},%
                                                                                                      % additional keywords
430
              morestring=[b]{"""},%
                                                                                                      % treat triple quotes as strings
431
              numbers=left,%
                                                                                                      % where to put line numbers
432
433
              numbersep=10pt,%
                                                                                                      % how far line numbers are from code
              numberstyle=\bfseries\tiny,%
                                                                                                     % set to 'none' for no line numbers
434
              showstringspaces=false,%
                                                                                                     % show spaces in strings
435
              showtabs=false,%
                                                                                                     % show tabs within strings
436
              stringstyle=\gsfontfamily\color{gsgreen},%
437
                                                                                                     % color for strings
438
              upquote=true,%
                                                                                                     % how to typeset quotes
         }%
439
      Introduce a new, more intelligent webvpythonblock<sup>→ P. 62</sup> environment.
See https://tex.stackexchange.com/a/232208/218142.
440 \AtBeginEnvironment{webvpythonblock}{\catcode`\#=12}
441 \AtEndEnvironment{webvpythonblock}{\catcode`\#=6}
442 \ensuremath{$\setminus$} 
          {%
443
              breakable.%
444
              center,%
445
              code = \newpage,%
446
              %derivpeach,%
447
              enhanced, %
448
```

```
hyperurl interior = https://#2,%
449
       label = {gs:\thetcbcounter},%
450
       left = 8mm, %
451
       list entry = \thetcbcounter~~~#3,%
452
       listing only,%
453
       listing style = vpython,%
454
455
       nameref = \{#3\},%
       title = \begin{minipage}{1.5cm}%
456
                  \protect\qrcode*{https://#2}%
457
                \end{minipage}\hspace{5mm}%
458
                \begin{minipage}{0.8\textwidth}%
459
                  \texttt{Web VPython} Program \thetcbcounter: #3\\
460
                  \footnotesize{\href{https://#2}{\color{white}{https://#2}}}%
461
                \end{minipage},%
462
       width = 0.9\textwidth,%
463
       {#1},
464
     }%
465
   Here is a variant that omits the QR code.
466 \AtBeginEnvironment{webvpythonblock*}{\catcode`\#=12}
467 \AtEndEnvironment{webvpythonblock*}{\catcode`\#=6}
468 \NewTCBListing[use counter from=webvpythonblock,list inside=gsprogs]
     {webvpythonblock*}{ O{} D(){webvpython.org} m }%
469
470
         breakable,%
471
         center,%
472
         code = \newpage,%
473
         %derivpeach,%
474
         enhanced, %
475
         hyperurl interior = https://#2,%
476
         label = {gs:\thetcbcounter},%
477
         left = 8mm, %
478
479
         list entry = \thetcbcounter~~~#3,%
         listing only,%
480
         listing style = vpython,%
481
         nameref = {#3},%
482
                    \texttt{Web VPython} Program \thetcbcounter: #3\\%
         title =
483
                    \footnotesize{\href{https://#2}{\color{white}{https://#2}}},%
484
         width = 0.9\textwidth,%
485
         {#1},
487
   A new command for generating a list of Web VPython programs.
488 \verb|\NewDocumentCommand{\listofwebvpythonprograms}{} \%
489
       \tcblistof[\section*]{gsprogs}{List of \texttt{Web VPython} Programs}%
490
     }%
491
   Introduce a new, more intelligent \vpythonfile \frac{P.68}{} command.
See https://tex.stackexchange.com/q/616205/218142.
492 \newcommand*{\vpythonfile}{\catcode`\#=12 \vpythonfile@auxA}
493 \NewDocumentCommand{\vpythonfile@auxA}{ O{} D(){vpython.org} m m }%
     {%
494
       \vpythonfile@auxB[#1](#2){#3}{#4}%
495
       \colored{catcode} \t = 6
496
     }%
497
    NewTCBInputListing[auto counter,list inside=vpprogs]
498
     {\vpythonfile@auxB}{ O{} D(){vpython.org} m m }%
499
       {%
500
```

```
breakable,%
501
          center.%
502
          code = \newpage,%
503
         %derivgray,%
504
         enhanced, %
505
506
         hyperurl interior = https://#2,%
507
         label = {vp:\thetcbcounter},%
         left = 8mm, %
508
         list entry = \thetcbcounter~~~#4,%
509
         listing file = {#3},%
510
         listing only,%
511
         listing style = vpython,%
512
         nameref = {#4},%
513
         title = \texttt{VPython} Program \thetcbcounter: #4,%
514
         width = 0.9\textwidth,%
515
         {#1},%
516
       }%
517
   A new command for generating a list of VPython programs.
518 \NewDocumentCommand{\listofvpythonprograms}{}%
519
       \tcblistof[\section*]{vpprogs}{List of \texttt{VPython} Programs}%
520
     }%
521
   Introduce a new \webvpythoninline \rightarrow P. 70 command.
522 \DeclareTotalTCBox{\webvpythoninline}{ m }%
523
     {%
       bottom = Opt,%
524
       bottomrule = 0.0mm,%
525
       boxsep = 1.0mm,%
526
       colback = gsbggray,%
527
528
       colframe = gsbggray,%
529
       left = Opt,%
       leftrule = 0.0mm,%
530
       nobeforeafter,%
531
       right = Opt,%
532
       rightrule = 0.0mm,%
533
       sharp corners,%
534
       tcbox raise base,%
       top = Opt,%
536
       toprule = 0.0mm,%
537
     }%
538
     {\lstinline[style = vpython]{#1}}%
539
```

Define \vpythoninline \frac{1}{2}P. 70, a semantic alias for VPython in-line listings.

 $540\ \ensuremath{\normaline}{}{\normaline}%$

8 The mandiexp Package

mandi comes with an accessory package mandiexp which extends mandi with commands specific to *Matter & Interactions*. The commands are primarily for typesetting mathematical expressions used in that text. mandiexp requires, and loads, mandi but mandi doesn't require, and doesn't load, mandiexp. mandiexp requires the \vec* command and so loads mandistudent if it has not already been loaded.

Load mandiexp as you would any package in your preamble. There are no package options.

\usepackage{mandiexp}

\mandiexpversion

Typesets the current version and build date.

The version is \mandiexpversion{} and is a stable build.

The version is v3.2.2 dated 2024-02-27 and is a stable build.

8.1 The Fundamenal Principles

```
\lhsmomentumprinciple
                                                                 (LHS of delta form, bold vectors)
\rhsmomentumprinciple
                                                                 (RHS of delta form, bold vectors)
\lhsmomentumprincipleupdate
                                                               (LHS of update form, bold vectors)
\rhsmomentumprincipleupdate
                                                               (RHS of update form, bold vectors)
\momentumprinciple
                                                                        (delta form, bold vectors)
                                                                      (update form, bold vectors)
\momentumprincipleupdate
\lhsmomentumprinciple*
                                                                (LHS of delta form, arrow vectors)
\rhsmomentumprinciple*
                                                                (RHS of delta form, arrow vectors)
\lhsmomentumprincipleupdate*
                                                              (LHS of update form, arrow vectors)
\rhsmomentumprincipleupdate*
                                                              (RHS of update form, arrow vectors)
\momentumprinciple*
                                                                       (delta form, arrow vectors)
\momentumprincipleupdate*
                                                                     (update form, arrow vectors)
```

Variants of command for typesetting the momentum principle. Use starred variants to get arrow notation for vectors.

 $^{^5} See~\textit{Matter~\& Interactions}$ and https://matterandinteractions.org/ for details.

```
\Delta p_{
m sys}
                                                                                                  F_{\text{sys,net}} \Delta t
\(\lhsmomentumprinciple\)
\(\rhsmomentumprinciple\)
                                                                //
                                                                                                 p_{
m sys,initial} + F_{
m sys,net} \, \Delta t
\(\lhsmomentumprincipleupdate\)
                                                                11
\(\rhsmomentumprincipleupdate\)
                                                                                                 \Delta \boldsymbol{p}_{\mathrm{sys}} = \boldsymbol{F}_{\mathrm{sys,net}} \, \Delta t
\(\momentumprinciple\)
                                                                                                 oldsymbol{p}_{	ext{sys,final}} = oldsymbol{p}_{	ext{sys,initial}} + oldsymbol{F}_{	ext{sys,net}} \, \Delta t
\(\momentumprincipleupdate\)
                                                                                                  \Delta \vec{p}_{\mathrm{sys}}
\(\lhsmomentumprinciple*\)
                                                                //
\(\rhsmomentumprinciple*\)
                                                                                                  \vec{F}_{\text{sys,net}} \Delta t
\(\lhsmomentumprincipleupdate*\)\\
                                                                                                  \overrightarrow{p}_{\text{sys,final}}
\(\rhsmomentumprincipleupdate*\)\\
                                                                                                 \overrightarrow{\vec{p}}_{\rm sys,initial} + \overrightarrow{F}_{\rm sys,net} \, \Delta t
\Delta \overrightarrow{\vec{p}}_{\rm sys} = \overrightarrow{F}_{\rm sys,net} \, \Delta t
\( \momentumprinciple* \)
\(\momentumprincipleupdate* \)
                                                                                                 \vec{p}_{\text{sys,final}} = \vec{p}_{\text{sys,initial}} + \vec{F}_{\text{sys,net}} \Delta t
```

```
\label{lem:continuous} $$ \begin{array}{ll} \label{lem:continuous} & (LHS \ of \ delta \ form) \\ \label{lem:continuous} \\ \label{le
```

Variants of command for typesetting the energy principle.

```
\Delta E_{\rm sys}
\( \lhsenergyprinciple \)
                                                                                  W_{\rm ext}
\( \rhsenergyprinciple \)
                                                                                  W_{\rm ext} + Q
\(\rhsenergyprinciple[+Q]\)
\(\energyprinciple\)
                                                                                  \begin{split} \Delta E_{\rm sys} &= W_{\rm ext} \\ \Delta E_{\rm sys} &= W_{\rm ext} + Q \end{split}
\(\energyprinciple[+Q]\)
\(\lhsenergyprincipleupdate\)
                                                                                  E_{\rm sys,final}
\(\rhsenergyprincipleupdate\)
                                                                                  E_{\text{sys,initial}} + W_{\text{ext}}
\(\rhsenergyprincipleupdate[+Q]\)
                                                                                  E_{\text{sys,initial}} + W_{\text{ext}} + Q
\(\energyprincipleupdate\)
                                                                                  E_{\rm sys,final} = E_{\rm sys,initial} + W_{\rm ext}
\(\energyprincipleupdate[+Q]\)
                                                                                  E_{\text{sys,final}} = E_{\text{sys,initial}} + W_{\text{ext}} + Q
```

```
(LHS of delta form, bold vectors)
\lhsangularmomentumprinciple
\rhsangularmomentumprinciple
                                                                (RHS of delta form, bold vectors)
                                                               (LHS of update form, bold vectors)
\lhsangularmomentumprincipleupdate
                                                              (RHS of update form, bold vectors)
\rhsangularmomentumprincipleupdate
\angularmomentumprinciple
                                                                        (delta form, bold vectors)
\angularmomentumprincipleupdate
                                                                      (update form, bold vectors)
\lhsangularmomentumprinciple*
                                                               (LHS of delta form, arrow vectors)
\rhsangularmomentumprinciple*
                                                               (RHS of delta form, arrow vectors)
                                                             (LHS of update form, arrow vectors)
\lhsangularmomentumprincipleupdate*
\rhsangularmomentumprincipleupdate*
                                                             (RHS of update form, arrow vectors)
\angularmomentumprinciple*
                                                                      (delta form, arrow vectors)
\angularmomentumprincipleupdate*
                                                                     (update form, arrow vectors)
```

Variants of command for typesetting the angular momentum principle. Use starred variants to get arrow notation for vectors.

```
\Delta oldsymbol{L}_{A, \mathrm{sys, net}}
                                                                                      \tau_{A, \rm sys, net} \, \Delta t
\(\lhsangularmomentumprinciple\)
                                                                                      oldsymbol{L}_{A,	ext{sys,final}}
\(\rhsangularmomentumprinciple\)
                                                                    //
                                                                                      L_{A, \text{sys,initial}} + \tau_{A, \text{sys,net}} \Delta t
\(\lhsangularmomentumprincipleupdate\)
\(\rhsangularmomentumprincipleupdate\)
                                                                    //
                                                                                      \Delta L_{A, \mathrm{sys, net}} = \tau_{A, \mathrm{sys, net}} \Delta t
\(\angularmomentumprinciple\)
                                                                    //
                                                                                      L_{A,\text{sys,final}} = L_{A,\text{sys,initial}} + \tau_{A,\text{sys,net}} \Delta t
\(\angularmomentumprincipleupdate\)
                                                                    //
                                                                                      \Delta \hat{L}_{A, \text{sys,net}}
\(\lhsangularmomentumprinciple*\)
                                                                    //
\(\rhsangularmomentumprinciple* \)
                                                                                      \overrightarrow{\tau}_{A, \mathrm{sys, net}} \Delta t
\(\lhsangularmomentumprincipleupdate*\)\\
                                                                                      \hat{L}_{A, \mathrm{sys, final}}
\(\rhsangularmomentumprincipleupdate*\)
\(\angularmomentumprinciple*\)
                                                                                      \overrightarrow{L}_{A, \text{sys,initial}} + \overrightarrow{\tau}_{A, \text{sys,net}} \Delta t
\(\angularmomentumprincipleupdate* \)
                                                                                      \Delta \vec{L}_{A,\text{sys,net}} = \vec{\tau}_{A,\text{sys,net}} \Delta t
                                                                                      \vec{L}_{A,\mathrm{sys,final}} = \vec{L}_{A,\mathrm{sys,initial}} + \vec{\tau}_{A,\mathrm{sys,net}} \Delta t
```

8.2 Other Symbols

N 2021-02-13

$\ensuremath{\mbox{energyof}} \{\langle label \rangle\} [\langle label \rangle]$

Generic symbol for the energy of some entity.

<pre>\(\energyof{\symup{electron}} \) \\ \(\energyof{\symup{electron}}[\symup{final}] \)</pre>	$E_{ m electron} \ E_{ m electron, final}$
--	--

N 2021-02-13

\systemenergy [$\langle label \rangle$]

Symbol for system energy.

```
\(\systemenergy\)\\ \(\systemenergy[\symup{final}]\) E_{\rm sys}
```

N 2021-02-13

\particleenergy [$\langle label \rangle$]

Symbol for particle energy.

```
\(\particleenergy \) \\ (\particleenergy [\symup{final}] \) E_{\rm particle} \\ E_{\rm particle,final}
```

N 2021-02-13

$\rule | \langle label \rangle |$

Symbol for rest energy.

```
\(\restenergy\)\\\(\restenergy[\symup{final}]\) E_{\rm rest}
```

$\internal energy [\langle label \rangle]$ N 2021-02-13 Symbol for internal energy. E_{internal} \(\internalenergy\)\\ \(\internalenergy[\symup{final}] \) $E_{\text{internal,final}}$ N 2021-02-13 \chemicalenergy $[\langle label \rangle]$ Symbol for chemical energy. $E_{\rm chem}$ \(\chemicalenergy\)\\ \(\chemicalenergy[\symup{final}]\) $E_{\text{chem,final}}$ N 2021-02-13 \thermalenergy [$\langle label \rangle$] Symbol for thermal energy. $E_{\rm therm}$ \(\thermalenergy\)\\ \(\thermalenergy[\symup{final}]\) $E_{ m therm,final}$ \photonenergy [$\langle label \rangle$] N 2021-02-13 Symbol for photon energy. $E_{\rm photon}$ \(\photonenergy\)\\ \(\photonenergy[\symup{final}]\) $E_{\rm photon,final}$ $\translationalkineticenergy[\langle label angle]$ N 2021-02-13 N 2021-02-13 \translationalkineticenergy*[$\langle label \rangle$] Symbol for translational kinetic energy. The starred variant gives E notation. $K_{\rm trans}$ \(\translationalkineticenergy\) $K_{\rm trans,initial}$ \(\translationalkineticenergy[\symup{initial}]\)\\ \(\translationalkineticenergy*\) $E_{\mathbf{K}}$ \(\translationalkineticenergy*[\symup{initial}] \) $E_{\rm K,initial}$ \rotationalkineticenergy [$\langle label \rangle$] N 2021-02-13 N 2021-02-13 \rotationalkineticenergy* $[\langle label \rangle]$ Symbol for rotational kinetic energy. The starred variant gives E notation.

\(\rotationalkineticenergy\)

\(\rotationalkineticenergy*\)

\(\rotationalkineticenergy[\symup{initial}]\)\\

\(\rotationalkineticenergy*[\symup{initial}]\)

 $K_{\rm rot}$

 $E_{\rm rot}$

 $K_{\rm rot,initial}$

 $E_{\rm rot,initial}$

N 2021-02-13 N 2021-02-13 Symbol for vibrational kinetic energy. The starred variant gives E notation.

N 2021-02-13

\gravitationalpotentialenergy [$\langle label \rangle$]

Symbol for gravitational potential energy.

```
\(\gravitationalpotentialenergy\)\\ \(\gravitationalpotentialenergy[\symup{final}]\) U_{\rm g} = U_{\rm g,final}
```

N 2021-02-13

\electricpotentialenergy [$\langle label \rangle$]

Symbol for electric potential energy.

```
\( \electricpotentialenergy \) \\ \( \electricpotentialenergy[\symup{final}] \) U_{\rm e,final}
```

N 2021-02-13

\springpotentialenergy [$\langle label \rangle$]

Symbol for spring potential energy.

```
\(\springpotentialenergy \) \\ \(\springpotentialenergy[\symup{final}] \) U_{\rm s,final}
```

8.3 mandiexp Source Code

Definine the package version and date for global use, exploiting the fact that in a .sty file there is now no need for \makeatletter and \makeatother. This simplifies defining internal commands, with @ in the name, that are not for the user to know about.

```
1 \def\mandiexp@version{3.2.2}
 2 \def\mandiexp@date{2024-02-27}
 3 \NeedsTeXFormat{LaTeX2e}[2020-02-02]
 4 \DeclareRelease{v3.2.2}{2024-02-27}{mandiexp.sty}
 5 \DeclareCurrentRelease{v\mandiexp@version}{\mandiexp@date}
 6 \ProvidesPackage{mandiexp}
     [\mandiexp@date\space v\mandiexp@version\space Macros for Matter & Interactions]
  Define a convenient package version command.
 8 \newcommand*{\mandiexpversion}{v\mandiexp@version\space dated \mandiexp@date}
  We need mandi to load mathtools and unicode-math.
 9 \IfPackageLoadedTF{mandi}%
    {}%
10
    {%
11
12
      \RequirePackage{mandi}%
13
    }%
  We need mandistudent for the new \vec* command.
14 \IfPackageLoadedTF{mandistudent}%
    {}%
15
16
    {%
17
       \RequirePackage{mandistudent}%
18
  Load xparse if necessary.
19 \IfFormatAtLeastTF{2020-10-01}%
    {\RequirePackage{xparse}}%
  We require the LuaLATEX engine.
22 \RequireLuaTeX
23 \typeout{}%
24 \typeout{mandiexp: You are using mandiexp \mandiexpversion.}
25 \typeout{mandiexp: This package requires LuaLaTeX.}%
26 \typeout{}%
  The momentum principle's lefthand and righthand sides.
27 \NewDocumentCommand{\lhsmomentumprinciple}{ s }%
    {%
28
      \Delta
29
      \IfBooleanTF{#1}%
30
31
           \vec*{p}
32
33
        }%
         {%
34
           \sqrt{p}
35
        }%
36
37
      \sb{\symup{sys}}%
    }%
38
39 \NewDocumentCommand{\rhsmomentumprinciple}{ s }%
    {%
40
      \IfBooleanTF{#1}%
41
         {%
42
```

```
\vec*{F}%
43
        }%
44
         {%
45
           \sqrt{F}%
46
        }%
47
48
       \sb{\symup{sys,net}}\,\Delta t%
49
  The momentum principle in update form, lefthand and righthand sides.
50 \NewDocumentCommand{\hsmomentumprincipleupdate} \{ s }\%
51
      \IfBooleanTF{#1}%
52
53
          \vec*{p}%
54
        }%
55
         {%
56
           \sqrt{p}
57
        }%
58
59
      \sb{\symup{sys,final}}%
60
    }%
  \NewDocumentCommand{\rhsmomentumprincipleupdate}{ s }%
61
62
      \IfBooleanTF{#1}%
63
64
           \vec*{p}%
65
        }%
66
67
         {%
           \sqrt{p}
68
69
      \sb{\symup{sys,initial}}+%
70
      \IfBooleanTF{#1}%
71
72
         {%
           \vec*{F}%
73
        }%
74
75
           \sqrt{F}
76
77
      \sb{\symup{sys,net}}\,\Delta t%
78
79
  The full momentum principle as an expression.
80 \NewDocumentCommand{\momentumprinciple}{ s }%
81
      \IfBooleanTF{#1}%
82
83
        {%
           \lhsmomentumprinciple* = \rhsmomentumprinciple*%
84
85
86
         {%
           \lhsmomentumprinciple = \rhsmomentumprinciple%
87
        }%
88
    }%
89
  The full momentum principle in update form as an expression.
90 \NewDocumentCommand{\momentumprincipleupdate}{ s }%
91
    {%
      \IfBooleanTF{#1}%
92
93
           \lhsmomentumprincipleupdate* = \rhsmomentumprincipleupdate*%
94
95
        }%
```

```
96
            \lhsmomentumprincipleupdate = \rhsmomentumprincipleupdate%
97
         }%
98
     }%
99
   The energy principle's lefthand and righthand sides.
100 \NewDocumentCommand{\lhsenergyprinciple}{}%
101
       \Delta E_{\symup{sys}}%
102
     }%
103
    NewDocumentCommand{\rhsenergyprinciple}{ O{} }%
104
105
       W_{\symup{ext}}#1%
107
   The energy principle in update form, lefthand and righthand sides.
108 \NewDocumentCommand{\lhsenergyprincipleupdate}{}%
109
       E_{\symup{sys,final}}%
     }%
112 \NewDocumentCommand{\rhsenergyprincipleupdate}{ 0{} }%
113
       E_{\symup{sys,initial}}+%
114
       W_{\symup{ext}}#1%
115
     }%
116
   The full energy principle as an expression.
117 \NewDocumentCommand{\energyprinciple}{ O{} }%
     {%
118
        \lhsenergyprinciple = \rhsenergyprinciple[#1]%
119
     }%
120
   The full energy principle in update form as an expression.
121 \NewDocumentCommand{\energyprincipleupdate}{ O{} }%
122
       \lhsenergyprincipleupdate = \rhsenergyprincipleupdate[#1]%
123
     }%
124
   The angular momentum principle's lefthand and righthand sides.
125 \NewDocumentCommand{\lhsangularmomentumprinciple}{ s }%
126
       \Delta%
127
       \IfBooleanTF{#1}%
128
          {%
129
            \ensuremath{\ensuremath{\mbox{vec*\{L\}\%}}}
130
131
          }%
132
            \vec{L}%
133
134
       \sb{A\symup{,sys,net}}%
135
     }%
136
    NewDocumentCommand{\rhsangularmomentumprinciple}{ s }%
137
     {%
138
       \IfBooleanTF{#1}%
139
140
            \vec*{\tauu}%
141
         }%
142
          {%
143
            \c \t u
144
```

```
145
       \sb{A\symup{,sys,net}}\,\Delta t%
146
     }%
147
   The energy principle in update form, lefthand and righthand sides.
148 \NewDocumentCommand{\lhsangularmomentumprincipleupdate}{ s }%
149
       \IfBooleanTF{#1}%
150
          {%
151
            \vec*{L}%
152
         }%
153
          {%
154
            \sqrt{L}
155
         }%
156
       \sb{A,\symup{sys,final}}%
157
     }%
158
159 \NewDocumentCommand{\rhsangularmomentumprincipleupdate}{ s }%
160
       \IfBooleanTF{#1}%
161
162
          {%
            \vec*{L}%
163
         }%
164
          {%
165
            \sqrt{L}
166
167
       \sb{A\symup{,sys,initial}}+%
168
       \IfBooleanTF{#1}%
169
          {%
170
            \vec*{\tau}%
171
         }%
172
          {%
173
            \vec{\tauu}
174
175
       \sb{A\symup{,sys,net}}\,\Delta t%
176
177
   The full angular momentum principle as an expression.
178 \NewDocumentCommand{\angularmomentumprinciple}{ s }%
179
       \IfBooleanTF{#1}%
180
          {%
181
            \lhsangularmomentumprinciple* = \rhsangularmomentumprinciple*%
182
183
          {%
184
            \lhsangularmomentumprinciple = \rhsangularmomentumprinciple%
185
186
         }%
     }%
187
   The full angular momentum principle in update form as an expression.
188 \NewDocumentCommand{\angularmomentumprincipleupdate}{ s }%
189
       \IfBooleanTF{#1}%
190
191
            \lhsangularmomentumprincipleupdate* = \rhsangularmomentumprincipleupdate*%
192
         }%
193
          {%
194
            \lhsangularmomentumprincipleupdate = \rhsangularmomentumprincipleupdate%
195
196
         }%
```

197

}%

```
The symbol for an arbitrary entity.
198 \NewDocumentCommand{\energyof}{ m o }%
     {%
199
200
       E_{#1%
            \IfValueT{#2}%
201
              {,#2}%
202
         }%
203
     }%
204
   The symbol for a system's energy.
205 \NewDocumentCommand{\systemenergy}{ o }%
206
       E_{\symup{sys}%
207
            \IfValueT{#1}%
208
              {,#1}%
209
         }%
210
     }%
211
   \NewDocumentCommand{\particleenergy}{ o }%
212
213
     {%
        E_{\symup{particle}%
214
            \If Value T{#1}%
215
              {,#1}%
216
217
          }%
     }%
218
   The symbol for a particle's rest energy.
219 \NewDocumentCommand{\restenergy}{ o }%
220
        E_{\symup{rest}%
221
            \IfValueT{#1}%
222
              {,#1}%
223
224
         }%
225
     }%
   The symbol for a system's internal energy.
226 \NewDocumentCommand{\internalenergy}{ o }%
     {%
227
228
        E_{\symup{internal}%
229
            \IfValueT{#1}%
230
              {,#1}%
231
     }%
232
   The symbol for a system's chemical energy.
233 \NewDocumentCommand{\chemicalenergy}{ o }%
     {%
234
        E_{\symup{chem}%
235
            \IfValueT{#1}%
236
237
              {,#1}%
         }%
238
     }%
239
   The symbol for a system's thermal energy.
240 \NewDocumentCommand{\thermalenergy}{ o }%
     {%
241
        E_{\symup{therm}%
242
            \IfValueT{#1}%
243
              {,#1}%
244
         }%
245
     }%
246
```

```
The symbol for a photon's energy.
```

The symbol for translational kinetic energy. d[] must be used because of the way consecutive optional arguments are handled. See xparse docs for details.

See https://tex.stackexchange.com/a/569011/218142.

```
254 \NewDocumentCommand{\translationalkineticenergy}{ s d[] }%
255
     {%
       \IfBooleanTF{#1}%
256
          {%
257
258
            E_\bgroup \symup{K}%
259
         }%
260
          {%
            K_\bgroup\symup{trans}%
261
262
                \IfValueT{#2}{,#2}%
263
              \egroup%
264
265
     }%
   The symbol for rotational kinetic energy.
```

```
266 \NewDocumentCommand{\rotationalkineticenergy}{ s d[] }%
267
268
        \IfBooleanTF{#1}%
269
            E_\bgroup%
270
         }%
271
272
            K_\bgroup%
273
274
          }%
                 \symup{rot}\IfValueT{#2}{,#2}%
275
              \egroup%
276
     }%
277
```

The symbol for vibrational kinetic energy.

```
278 \NewDocumentCommand{\vibrationalkineticenergy}{ s d[] }%
279
     {%
280
       \IfBooleanTF{#1}%
281
          {%
            E_\bgroup%
282
         }%
283
          {%
284
            K_\bgroup%
286
                \symup{vib}\IfValueT{#2}{,#2}%
287
              \egroup%
288
     }%
289
```

The symbol for a system's gravitational potential energy.

```
290 \NewDocumentCommand{\gravitationalpotentialenergy}{ o }% 291 {%  U_{\text{symup}g}%  292  U_{\text{symup}fg}%  \IfValueT{#1}%
```

```
{,#1}%
294
295
      }%
296
    }%
   The symbol for a system's electric potential energy.
297 \NewDocumentCommand{\electricpotentialenergy}{ o }%
298
      U_{\symup{e}%
299
          \IfValueT{#1}%
300
            {,#1}%
301
        }%
302
    }%
303
   The symbol for a system's spring potential energy.
305
      U_{\symup{s}%
306
          \IfValueT{#1}%
307
            {,#1}%
308
        }%
309
    }%
310
```

\mathbf{Index}

Page numbers refer to page where the corresponding entry is documented and/or referenced.

A	\CheckConstant
\absolutevalue 55	\CheckQuantity 10
\absolutevalue* 55	\chemicalenergy 86
\acceleration 10	\cmagneticfield 12
\accelerationvector 10	\cmagneticfieldvector 12
alternate value	\colvec
\alwaysusealternateunits	\conductance
\alwaysuseapproximateconstants	\conductivity
\alwaysusebaseunits	\contraction
\alwaysusederivedunits	\contraction* 61
\alwaysusepreciseconstants	\conventionalcurrent 12
\amount	\coulomb
\ampere	\coulombconstant
\anglebrackets	\curlybraces
\anglebrackets*	\curlybraces*
\angularacceleration	\current 12
\angularaccelerationvector	\currentdensity
\angularfrequency 10	\currentdensity \currentdensit \currentdensity \currentdensity \currentdensity \currentdensity
\angularimpulse 10	(Current cuents to y vector
\angularimpulse \tag{10}	D
\angularmomentum	\degree 32
\angularmomentumprinciple 84	derived value
\angularmomentumprinciple*84	\df
\angularmomentumprincipleupdate 84	\dielectricconstant
\angularmomentumprincipleupdate* 84	\direction
	\directionvector
· · · · · · · · · · · · · · · · · · ·	\dirvec
\angularvelocity	\dirvec*
8	\displacement
,======================================	\displacement \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\areachargedensity	\doublebars
· · · · · · · · · · · · · · · · · · ·	\doublebars*
\atomicmassunit	\duration
\avogadro 24	(duration
В	${f E}$
base value 8, 36	\earthmass 25
\biotsavartconstant 24	$\verb \earthmoondistance $
\bohrradius 24	\earthradius 25
\boltzmann 25	\earthsundistance
	\electricdipolemoment 13
${f C}$	\electricdipolemomentvector 13
\candela 31	\electricfield 13
	(01000110110111 11111111111111111111111
\capacitance 11	\electricfieldvector
\capacitance	
-	$\verb \electricfield vector \dots \dots$

\electricpotentialdifference 14	Н
\electricpotentialenergy 87	\hbar 33
\electronCharge	\henry 32
\electroncharge 26	\hereusealternateunits 22
\electroncurrent 14	\hereuseapproximateconstants 31
\electronmass 26	\hereusebaseunits 22
\electronvolt 32	\hereusederivedunits 22
\elementarycharge	\hereusepreciseconstants 31
\emf14	\hertz 32
\emptyunit 31	\hilite 58
\energy 14	\hydrogenmass 26
\energydensity 14	, , , , , , , , , , , , , , , , , , ,
\energyflux	I
\energyfluxvector	\image 59
\energyinev 14	\impulse 16
\energyinkev	\impulsevector 16
\energyinmev	\indexofrefraction 16
\energyof	\inductance 16
\energyprinciple	\internalenergy
\energyprincipleupdate 84	\inverse
\entropy	\tag{21100150 \\ \tag{2}
Environments	J
parts 56	\joule 32
physicsproblem	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
physicsproblem*	K
	\kelvin 32
F-3	\kev 32
1 3	Keys
usealternateunits	preciseconstants 8
useapproximateconstants 31	units
usebaseunits	\kiloelectronvolt 32
usederivedunits	\kilogram 32
usepreciseconstants	(MIIOGIAM
webvpythonblock	L
webvpythonblock* 62	\lhsangularmomentumprinciple 84
\ev 32	\languarmomentumprinciple* 84
T.	\languarmomentumprincipleupdate 84
F	\languardamomentumprincipleupdate* 84
false value 8, 36	\language \langu
\farad 32	\langle \langl
\finestructure 26	\lambda \lambd
\force 15	\lambda \lambd
\forcevector 15	
\frequency 15	\lhsmomentumprincipleupdate
-	\limburghtarrowd \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
G	\lightspeed
\gravitationalfield 15	\linearchargedensity
\gravitationalfieldvector 15	\linearmassdensity 16
\gravitationalpotential 15	\lorentzfactor
$\verb \gravitationalpotentialdifference 15 $	\luminousintensity 16
\gravitationalpotentialenergy 87	

${f M}$	P	
\magneticcharge 17	\parallelto	55
\magneticdipolemoment 17	\parentheses	53
\magneticdipolemomentvector 17	\parentheses*	53
\magneticfield 17	\particleenergy	85
\magneticfieldvector 17	parts environment	56
\magneticflux 17	\pascal	32
\magnitude 55	\per	31
\magnitude* 55	\permeability	18
\mandiexpversion 83	\permittivity	18
\mandisetup 8	\perpendicularto	55
\mandistudentversion 52	\photonenergy	86
\mandiversion 8	physicsproblem environment	56
\mass 17	physicsproblem* environment	56
\megaelectronvolt 32	physicssolution environment	57
\meter 32	physicssolution* environment	57
\metre 32	\planck	28
\mev 32	\planckbar	28
\mivector 34	\planckc	28
\mobility 17	\planeangle	18
\mole 32	\polarizability	18
\momentofinertia 17	\power	18
\momentum 9, 18		19
\momentumflux	\poyntingvector	19
\momentumfluxvector 18	preciseconstants key	8
\momentumprinciple 83	\pressure	19
\momentumprinciple* 83	\problempart	56
\momentumprincipleupdate 83	\protonCharge	28
\momentumprincipleupdate* 83	\protoncharge	28
\momentumvector 9, 18	\protonmass	29
\moonearthdistance 27		
\moonmass 27	${f R}$	
\moonradius 27	\radian	32
\mzofp 27	\reason	57
	\relativepermeability	19
${f N}$	\relativepermittivity	19
\neutronmass 27	\RenewPhysicalConstant	30
\NewPhysicalConstant	\RenewScalarQuantity	22
\NewScalarQuantity 22	\RenewVectorQuantity	22
\newton 32	\resistance	19
\NewVectorQuantity 22	\resistivity	19
\norm 55	\restenergy	
\norm* 55	\rhsangularmomentumprinciple	
\numberdensity 18	\rhsangularmomentumprinciple*	84
	\rhsangularmomentumprincipleupdate	
0	\rhsangularmomentumprincipleupdate*	84
\ohm 32	\rhsenergyprinciple	
\oofpez 23, 27	\rhsenergyprincipleupdate	
\oofpezcs 28	\rhsmomentumprinciple	
	\rhsmomentumprinciple*	83

\rhsmomentumprincipleupdate 8	\mathbf{U}
	33 \units 31
	86 units key 8
	36 \universalgrav 30
	usealternateunits environment
	useapproximateconstants environment 31
	usebaseunits environment
${f S}$	usederivedunits environment
\second 3	usepreciseconstants environment 31
\siemens 3	32 \usk
	53
. •	53 V
	Vacuumpermeability 30
	31 \vacuumpermittivity 30
	20 \valence*
	29 Values
	87 alternate
	20 base
	20 derived
	·
. 1	,
1	53 true 8, 36
•	29 \vec
	32 \vec*
	20 \veccomp
•	20 \veccomp* 61
•	29 \vectoracceleration
•••	vectorangularacceleration
. 0	vectorangularimpulse
\systemenergy 8	35 \vectorangularmomentum 11
m.	\vectorangularvelocity 11
T	\vectorcmagneticfield 12
	vectorcurrentdensity
•	vectordirection
•	vectordisplacement
\tento 3	34 \vectorelectricdipolemoment
\tesla 3	32 \vectorelectricfield
\thermalenergy 8	86 \vectorenergyflux 15
\timestento 3	34 \vectorforce
•	20 \vectorgravitationalfield 15
\torquevector 2	20 \vectorimpulse 16
\tothefour 3	32 \vectormagneticdipolemoment 17
\totheinversefour 3	32 \vectormagneticfield
\totheinversethree 3	32 \vectormomentum 9, 18
\totheinversetwo 3	32 \vectormomentumflux
\tothethree 3	32 \vectorpoynting
\tothetwo 3	32 \vectortorque 20
\translationalkineticenergy 8	36 \vectorvelocity
	86 \vectorvelocityc
true value 8, 3	

\velocity	20
\velocityc	21
\velocitycvector	21
\velocityvector	20
\vibrationalkineticenergy	87
\vibrationalkineticenergy*	87
\volt	32
\volume	21
\volumechargedensity	21
\volumemassdensity	21
\vpythonfile	68
\vpythoninline	70
\mathbf{W}	
\watt	32
\wavelength	21
\wavenumber	21
\wavenumbervector	21
\weber	32
webvpythonblock environment	62
webvpythonblock* environment	62
\webvpythoninline	70
\work	21
X	
\xtento	34
Y	
\youngsmodulus	22
${f z}$	
\zerovec	55
\\	E 5