

## (PTIB0301) Elemi lineáris algebra

Dr. Facskó Gábor, PhD

tudományos főmunkatárs facskog@gamma.ttk.pte.hu

Pécsi Tudományegyetem, Természettudományi Kar, Matematikai és Informatikai Intézet, 7624 Pécs, Ifjúság útja 6. Wigner Fizikai Kutatóközpont, Úrfizikai és Űrtechnikai Ösztály, 1121 Budapest, Konkoly-Thege Miklós út 29-33. https://facsko.ttk.pte.hu

2024. szeptember 19.

#### Vektoriális szorzat I

▶ <u>Definíció:</u> Az {a, b, c} nemnulla vektorokból álló vektorrendszert jobbrendszernek nevezzük, ha a harmadik végpontja felől nézve az első vektor 180°-nál kisebb szögben forgatható a második vektor irányába az óramutató járásával ellentétes irányba. (Az ilyen rendszert nevezzük még jobbsodrású vagy jobbkézszabályt teljesítő rendszernek.)



▶ <u>Definíció:</u> Az **a** és **b** nemnulla térbeli vektorok vektoriális szorzata az az **a** × **b**-vel jelölt vektor, amelynek hossza  $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$ , ahol  $\theta = (\mathbf{a}, \mathbf{b}) \angle$ . Az  $\mathbf{a} \times \mathbf{b}$  vektor merőleges **a** és a **b** vektorokra, továbbá a  $\{\mathbf{a}, \mathbf{b}, \mathbf{a} \times \mathbf{b}\}$  jobbrendszert alkot.

Legyen továbbá  $\mathbf{0} \times \mathbf{a} = \mathbf{0}$ , ahol  $(\mathbf{a} \in V^3)$ .

#### Vektoriális szorzat II

- A vektoriális szorzat tulajdonságai
  - 1. <u>Állítás:</u> A vektoriális szorzás antiszimmetrikus, azaz  $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$ , ahol  $(\mathbf{a}, \mathbf{b} \in V^3)$ . Bizonyítás: A jobbsodrású rendszer definíciója alapján nyilvánvaló.
  - 2.  $\underline{\text{\'All\'it\'as:}}$  A vektoriális szorzás homogén, azaz  $(\lambda \mathbf{a}) \times \mathbf{b} = \lambda (\mathbf{a} \times \mathbf{b})$ , ahol  $\mathbf{a}, \mathbf{b} \in V^3$  és  $\lambda \in \mathbb{R}$ .

Bizonyítás:  $|(\lambda \mathbf{a}) \times \mathbf{b}| = |\lambda \mathbf{a}| |\mathbf{b}| \sin \theta = \lambda |\mathbf{a} \times \mathbf{b}|$ , ahol  $\theta = (\lambda \mathbf{a}, \mathbf{b}) \angle$ . A vektorok irány pedig megegyezik, mert **a** párhuzamos a  $\lambda \mathbf{a}$  vektorral.

- 3. <u>Állítás:</u> A vektoriális szorzás disszociatív, azaz  $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$ , ahol  $(\mathbf{a}, \mathbf{b}, \mathbf{c} \in V^3)$ . Bizonyítás: Később, komponensek alapján.
- ▶ <u>Definíció:</u> Az **a** és **b** nemnulla vektorokat párhuzamosaknak nevezzük, ha  $\exists \lambda \in \mathbb{R}$  úgy, hogy **a** =  $\lambda$ **b**. Jele: **a**  $\parallel$  **b**.

#### Vektoriális szorzat III

- ▶ Bármely vektor önmagával vett vektoriális szorzata a zérusvektorral egyenlő, azaz  $\mathbf{a} \times \mathbf{a} = \mathbf{0} \ \forall \mathbf{a} \in V^3$ -re. esetén.
- Ezen felül  $\mathbf{a} \times \mathbf{b} = \mathbf{0} \Leftrightarrow \mathbf{a} \parallel \mathbf{b}$ , vagy  $\mathbf{a}$  és  $\mathbf{b}$  közül legalább az egyik nullvektor.
- Könnyen belátható, hogy

$$\begin{array}{rcl} \mathbf{e}_1 \times \mathbf{e}_2 & = & \mathbf{e}_3 \\ \\ \mathbf{e}_2 \times \mathbf{e}_3 & = & \mathbf{e}_1 \\ \\ \mathbf{e}_3 \times \mathbf{e}_1 & = & \mathbf{e}_2. \end{array}$$

- ► Komponensekkel  $\mathbf{a} \times \mathbf{b} = (a_2b_3 a_3b_2)\mathbf{e}_1 + (a_3b_1 a_1b_3)\mathbf{e}_2 + (a_1b_2 a_2b_1)\mathbf{e}_3$ .
- ▶  $|\mathbf{a} \times \mathbf{b}|$  egyenlő az  $\mathbf{a}$  és  $\mathbf{b}$  által meghatározott paralelogramma területével, mivel  $|\mathbf{a}|$  a paralelogramma alapja és  $|\mathbf{b}|$   $|\sin \theta|$  a magassága, ahol  $\theta = (\mathbf{a}, \mathbf{b}) \angle$ .

### Vegyes szorzat

▶ Definíció: Az  $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V^3$  vektorok vegyes szorzata:

$$(\mathbf{a},\mathbf{b},\mathbf{c})=(\mathbf{a}\times\mathbf{b})\,\mathbf{c}.$$

- ► Ha a, b, c jobbrendszert alkot, akkor (a, b, c) megegyezik az a, b, c vektorok által kifeszített paralelepipedon térfogatával. Ellenkező esetben a térfogat (-1)-szeresét kapjuk.
- Könnyen igazolható, hogy

$$(a, b, c) = (b, c, a) = (c, a, b) = -(a, c, b) = -(c, b, a) = -(b, a, c).$$



## Operátorok I

- <u>Definíció:</u> Halmaz dolgok összesége. Alapfogalom. Kell egy kijelentés, ami kollektivizál, azaz ami alapján egyértelműen eldönthető, hogy egy elem része-e a halmaznak.
- Definíció: Párok két elemű halmazok.
- Definíció: Az  $e_1$  és az  $e_2$  elemek rendezett párt alkotnak, ha  $\{e_1, \{e_2\}\}$ . Ezt  $(e_1, e_2)$ -vel jelöljük.
- Definíció: Relációnak rendezett párok halmazát nevezzük.



<u>Definíció</u>: A injekciónak, injektív relációnak, egy-egy értelmű relációnak vagy kölcsönösen egyértelmű relációnak nevezzük azokat a relációkat, melyek az értelmezési tartomány (X) különböző elemeihez az értékkészlet (Y) különböző elemeit rendelik.

### Operátorok II





- <u>Definíció:</u> A ráképezésnek vagy szürjekciónak, illetve szürjektív relációnak nevezzük azokat a relációkat, amelyeknél a reláció értékkészlete megegyezik a függvény érkezési halmazával.
- Definíció: A bijekciónak vagy bijektív relációnak nevezzük azokat a relációkat, amelyek egyidejűleg injektívek és szürjektívek. Más szavakkal azt is mondhatjuk, hogy a bijektív leképezések kölcsönösen egyértelmű relációk. Amennyiben az X halmaz összes eleméhez rendel elemet, akkor bijekció olyan megfeleltetést létesít két halmaz között, aminél az egyik halmaz minden egyes elemének a másik halmaz pontosan egy eleme felel meg, és fordítva.

### Operátorok III

<u>Definíció</u>: Függvényen rendezett párok olyan halmazát értjük, amiben első komponensként legfeljebb csak egyszer szerepelhet egy elem:

$$(\forall x)(\forall y_1)(\forall y_2)[(x,y_1)\in f\wedge (x,y_2)\in f\Rightarrow y_1=y_2]$$

Ezt egyértelműségi tulajdonságnak nevezik.

- ▶ Definíció: Legyen V és U a  $\mathbb T$  test feletti két vektortér Az  $f:V\to U$  leképezést lineárisnak nevezzük, ha
  - 1. Additív, azaz minden  $v_1, v_2 \in V$  vektora  $f(v_1 + v_2) = f(v_1) + f(v_2)$ .
  - 2. Homogén, azaz minden  $v \in V$  vektorra és  $\lambda \in \mathbb{T}$  elemre  $f(\lambda v) = \lambda f(v)$ .
- <u>Definíció</u>: Operátornak a lineáris vektor-vektor függvényeket nevezzük.
- Például:
  - Egység operátor:  $\mathbf{A} \cdot \mathbf{1} = \mathbf{A}$ , minden  $\mathbf{A}$  operátorra.
  - Null operator:  $\mathbf{A} \cdot \mathbf{0} = \mathbf{0}$ , minden  $\mathbf{A}$  operatorra.

## Operátorok IV

- ▶ Tükrözési operátor:  $(\mathbf{A} \cdot \mathbf{T}) \cdot \mathbf{T} = \mathbf{A}$ , minden  $\mathbf{A}$  operátorra.
- Projekció operátor:  $\mathbf{A} \cdot \mathbf{P} = \mathbf{P}$ , minden  $\mathbf{A}$  operátorra.
- Forgatási operátor: később.
- Mindkét oldalról lehet szorozni.
- Az operátorok reprezentációt nevezzük mátrixnak. Azaz, legyen  $\alpha_{ij} \in \mathbb{R}$  minden  $i \in \{1, 2, ..., m\}$  és  $j \in \{1, 2, ..., n\}$  estén, ahol  $m, n \in \mathbb{N}^+$ . Az

$$A = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix}$$

számtáblázatot  $m \times n$  típusú mátrixnak nevezzük. Jelölje az  $m \times n$  típusú mátrixok halmazát  $M_{m \times n}$ .

#### Operátorok V

- A mátrix főátlója alatt az  $\{\alpha_{11}, \alpha_{22}, \dots, \alpha_{nn}\}$  halmazt értjük.
- Az  $\alpha_{ij}$  elem indexei közül az első a sorindex (*i*), a második pedig az oszlopindex (*j*).
- ightharpoonup A mátrix i-edik sorát  $A_i$ , j-edik oszlopát pedig  $A_i$ j jelölésekkel említjük.
- Determináns!!!

# Vége

Köszönöm a figyelmüket!