Qualitative inorganic analysis

part (II)

Cations

If you have an alloy??? What are the components???

The first step is dissolution of metals and separation of any insoluble materials e.g. stones, wood,----

Filtrate*: has acidic pH

Cations are classified in 5 groups:

Group	Common reagent	Examples
Group (I)	HCl group	Ag ⁺ , Pb ⁺² , Hg ₂ ⁺²
Group (II)	H ₂ S group	Cu ⁺² , Cd ⁺² , Pb ⁺² , Hg ⁺² , Bi ⁺³ , As ⁺³ , As ⁺⁵ , Sb ⁺³ , Sb ⁺⁵ , Sn ⁺² , Sn ⁺⁴
Group (III)	(NH ₄) ₂ S	Co ⁺² , Ni ⁺² , Mn ⁺² , Zn ⁺² , Fe ⁺² , Al ⁺³ , Cr ⁺³
Group (IV)	(NH ₄) ₂ CO ₃	Ca ⁺² , Ba ⁺² , Sr ⁺²
Group (V)	Soluble group	K ⁺ , Na ⁺ , Li ⁺

Cations precipitate in acidic media as chloride salts belong to this group. Group (I)

This means also chloride salts of cations of group (II) - (V) are soluble

Detection of Ag+:

Complete, mention properties of ppt:

$$Ag^{+} + HCI \longrightarrow$$

$$Ag^{+} + Br^{-} \longrightarrow$$

$$Ag^{+} + I^{-} \longrightarrow$$

$$Ag^{+} + CN^{-} \longrightarrow$$

$$Ag^{+} + SCN^{-} \longrightarrow$$

$$Ag^{+} + SO_{3}^{-2} \longrightarrow$$

$$Ag^{+} + S_{2}O_{3}^{-2} \longrightarrow$$

$$Ag^{+} + PO_{4}^{-3} \longrightarrow$$

Detection of Pb⁺²:

With HCI:

$$Pb^{+2} + 2 HCl \longrightarrow PbCl_{2\downarrow} + 2 H^+$$

white ppt, soluble on heating,

reformed on cooling [ppt has high Ksp]. Pb⁺² is found again in Group (II)

Detection of Pb⁺²:

With NaOH:

$$Pb^{+2} + 2 OH^{-} \longrightarrow Pb(OH)_{2} + 2 OH^{-} [Pb(OH)_{4}]^{-2}$$
white ppt soluble complex

[Pb(OH)₄]⁻²: tetrahydroxoplumbate(II) ion

Detection of Pb⁺²:

Redox reaction: Balance equation

Pbs +
$$HNO_3$$
 \longrightarrow $Pb^{+2} + NO + S + NO3^- + H_2O$

Detection of Pb⁺²:

Redox reaction:

3 PbS + 8 HNO₃
$$\longrightarrow$$
 3 Pb⁺² + 2 NO + 3 S₁ + 6 NO3⁻ + 4 H₂O

Detection of Pb⁺²:

With H₂SO₄ (dil.):

Pb⁺² + SO₄⁻²
$$\longrightarrow$$
 PbSO₄, white ppt, soluble in H₂SO₄ (conc.), NaOH (Conc.)

PbSO₄ (s) + H₂SO₄ (conc.) \longrightarrow Pb⁺² + 2 HSO₄⁻²

PbSO₄ (s) + 4 OH⁻ \longrightarrow [Pb(OH)₄]⁻² + SO₄⁻²

Detection of Pb+2:

With KI: Complete?????

$$Pb^{+2} + 2I^{-} \longrightarrow PbI_{2\downarrow}$$

yellow ppt, soluble in boiling water, on cooling golden yellow plates are formed.

Detection of Hg₂⁺²:

Mercury is a silver-white liquid metal at 25 °C, it is 13 times heavier than water.

With HCl (dil.):

$$Hg_2^{+2} + 2 Cl^- \longrightarrow Hg_2Cl_2$$

White ppt, (Calomel) insoluble in HNO_3 (dil.), insoluble in NH_3

$$Hg_2Cl_2 + 2NH_3 \longrightarrow Hg_1 + Hg(NH_2)Cl_1 + NH_4^+ + Cl^-$$

Detection of Hg₂⁺²:

With H₂S:

$$Hg_2^{+2} + H_2S \longrightarrow Hg_1 + HgS_1 + 2 H^+$$

black ppt, dissolves

by adding sodium sulfide

$$HgS + S^{-2} \longrightarrow [HgS_2]^{-2}$$

Detection of Hg₂⁺²:

With NaOH:

$$Hg_2^{+2} + 2 OH^- \longrightarrow Hg_1 + HgO_1 + H_2O$$

Detection of Hg₂⁺²:

$$Hg_2^{+2} + 2I^- \longrightarrow Hg_2I_{2\downarrow}$$
greenish-yellow

$$Hg_{2}I_{2}$$
 Δ $Hg_{\downarrow}+$ HgI_{2} red ppt \downarrow with KI excess $[HgI_{4}]^{-2}$ Nessler's reagent

Group (II): H₂S group

Group (II): H₂S group

PPt

H₂S group, Group (II)

CuS, Bi₂S₃, CdS, PbS, HgS, SnS, SnS₂, As₂S₃, As₂S₅, Sb₂S₃, Sb₂S₅

H₂S group, Group (II)

Cations form insoluble sulfide salts in acidic media , since they have a very low Ksp.(?)

 H_2S group is divided into two subgroups according to solubility in ammonium polysulfide $(NH_4)_2S_x$

Group (II): H₂S group

PPt H₂S group

CuS, Bi₂S₃, CdS, PbS, HgS, SnS, SnS₂, As₂S₃, As₂S₅, Sb₂S₃, Sb₂S₅

 Δ , $(NH_4)_2S_x$

Filtrate
Arsenic subgroup
(Thiosalts)
AsS₄⁻³, SbS₄⁻³, SnS₃⁻²

Copper subgroup CuS, Bi₂S₃, CdS, PbS, HgS

AsS₄^{-3:} Thioarsenate ion

SbS₄⁻³: Thioantimonate ion

SnS₃⁻²: Thiostannate ion

Arsenic subgroup: AsS₄⁻³, SbS₄⁻³, SnS₃⁻²

Dissolution of sulfide salts in ammonium polysulfide is due to formation of thiosalts.

Dissolution is accompanied by a redox reaction.

$$As_2S_3 + 2S + 3S^{-2} \longrightarrow 2AsS_4^{-3}$$

$$Sb_2S_3 + 2S + 3S^{-2} \longrightarrow 2SbS_4^{-3}$$

$$SnS + S + S^{-2} \longrightarrow SnS_3^{-2}$$

Filtrate Arsenic subgroup AsS₄⁻³, SbS₄⁻³, SnS₃⁻²

$$AsS_4^{-3} + 3 H_3O^+ \longrightarrow H_3AsS_4 + 3 H_2O$$

$$2 H_3AsS_4 \longrightarrow As_2S_5 + 3 H_2S$$
Thioarsenic acid

HCl (dil.)

ppt SnS₂, As₂S₅, Sb₂S₅

Equations and Explanation

$$[SbCl_6]^- + 3 C_2O_4^{-2} \longrightarrow [Sb(C_2O_4)_3]^{-1} + 6 Cl^-$$

unstable Complex, dissociate rapidly

2
$$[Sb(C_2O_4)_3]^{-1} + 5 H_2S \longrightarrow Sb_2S_5 + 6 C_2O_4^{-2} + 10 H^+$$

$$[SnCl_6]^{-2} + 3 C_2O_4^{-2} \longrightarrow [Sn(C_2O_4)_3]^{-2} + 6 Cl^{-2}$$
Stable Complex

$$[Sn(C_2O_4)_3]^{-2} + H_2S \longrightarrow No reaction$$

Ppt
As₂S₅
Arsenic (V) sulfide

Dissolution
Using Oxidizing
Agent

HNO₃ (Conc.)

OR H_2O_2/NH_3

AsO₄⁻³
Arsenate ion, soluble

Note: As₂S₅ is insoluble in acid, insoluble in HCl (Conc.), soluble in ammonium poly sulfide.

Equations and Explanation

$$As_2S_5 \iff 2 As^{+5} + 5 S^{-2}$$

Oxd. Half RXN:

$$5 S^{-2} + 60 H_2O \longrightarrow 5 SO_4^{-2} + 40 e^- + 40 H_3O^+$$

Red. Half RXN:

$$HNO_3 + 3 e^- + 3 H_3O^+ \longrightarrow NO + 5 H_2O$$

$$3 \text{ As}_2 \text{S}_5 + 40 \text{ HNO}_3 + 52 \text{ H}_2 \text{O} \longrightarrow 15 \text{ SO}_4^{-2} + 40 \text{ NO} + 6 \text{ AsO}_4^{-3} + 48 \text{ H}_3 \text{O}^+$$

Equations and Explanation

$$As_2S_5 \iff 2 As^{+5} + 5 S^{-2}$$

Oxd. Half RXN:

$$5 S^{-2} + 60 H_2O \longrightarrow 5 SO_4^{-2} + 40 e^- + 40 H_3O^+$$

Red. Half RXN:

$$H_2O_2 + 2e^- + 2H_3O^+ \longrightarrow 4H_2O$$

$$As_2S_5 + 20 H_2O_2 + 4 H_2O \longrightarrow 5 SO_4^{-2} + 2 AsO_4^{-3} + 16 H_3O^+$$

Detection of Arsenic in very small amount
(Forensic medicine)

Marsh's Test

Marsh's Test

Equations:

$$Zn + 2 H_3O^+ \longrightarrow Zn^{+2} + H_2 + 2 H_2O$$

$$6 H_2 + As_2O_3 \longrightarrow 2 AsH_3^{\uparrow} + 3 H_2O$$

Arseine gas (toxic, garlic like odor)

brownish black (Arsenic mirror)

AsH₃ ignition blue colored flame with white fumes

Marsh's Test

Malfunction is Sb.

To distinguish the results in Marsh's test Arsenic mirror is soluble in H₂O₂/ NH₃
Anitmony mirror is insoluble in H₂O₂/ NH₃

See the following video

Marsh's Test

Group (II): H₂S group

PPt H₂S group

CuS, Bi₂S₃, CdS, PbS, HgS, SnS, SnS₂, As₂S₃, As₂S₅, Sb₂S₃, Sb₂S₅

 Δ , $(NH_4)_2S_x$

Filtrate
Arsenic subgroup
(Thiosalts)

copper subgroup CuS, Bi₂S₃, CdS, PbS, HgS

Remember:

H₂S group are sulfide salts insoluble in acids. Dissolution in HNO₃ (Conc.) due to its' oxidizing agent property.

Redox reaction:

3 CuS + 8
$$\frac{100}{3}$$
 - 3 $\frac{100}{3}$ - 3 $\frac{100}{3}$ - 4 $\frac{100}{3}$ - $\frac{100}{3}$ -

[Cu(CN)₄]⁻², colorless

Tetracyanocuprate(II) ion

[Cd(CN)₄]⁻² colorless

Tetracyanocadimate (II) ion

decomposition

$$[Cu(CN)_4]^{-3} + (CN)_2^{\uparrow}$$
(stable)

[Cd(CN)₄]⁻² (unstable)

Ppt
Bi(OH)₃
White ppt

$$Bi(OH)_3 \longleftrightarrow Bi^{+3} + 3 OH^-$$

$$OH^- + H_3O^+ \longrightarrow 2 H_2O$$

+ HCl for dissolution

Bi⁺³

$$Bi(OH)_3 + 3 HCI \longrightarrow Bi^{+3} + 3 CI^- + 3 H_2O$$

$$Bi^{+3} + Cl^{-} + H_2O \longrightarrow BiOCl_{\downarrow} + 2 H^{+}$$
Bismuthyl chloride

Upon dilution with water turbidity appears (BiOCI), when mineral acid is dded turbidity disappears.

$$Bi^{+3} + 3I^{-} \rightarrow BiI_{3} \downarrow + 3I^{-} \rightarrow [BiI4]^{-}$$
black ppt

Dragendorf's reagent

$$Bi^{+3} + 3 OH^{-} \longrightarrow Bi(OH)_{3} \downarrow$$

2 $Bi(OH)_{3} + 3 [Sn(OH)_{4}]^{-2} \longrightarrow 2 Bi \downarrow + 3 [Sn(OH)_{6}]^{-2}$

black ppt

HgS
$$\longleftrightarrow$$
 Hg⁺² + S⁻²
OCl⁻ + Cl⁻ + 2H₃O⁺ \longrightarrow Cl₂ + 3 H₂O
4 Cl₂ + S⁻² + 12 H₂O \longrightarrow SO₄⁻² + 8 Cl⁻ + 8 H₃O⁺

$$Hg^{+2} + Cu \longrightarrow Cu^{+2} + Hg^0$$

silverish spot Δ spot on flame
disappear because Hg sublimate.
 Hg_2^{+2} is a malfunction

$$Hg^{+2} + 2I^{-} \longrightarrow Hgl_{2\downarrow} \xrightarrow{+2I^{-}} [Hgl_{4}]^{-2}$$
Red ppt

Nessler's reagent

$$Hg^{+2} + 2OH^{-} \longrightarrow HgO_{\downarrow} + H_{2}O$$
yellow-brown ppt

Qualitative inorganic analysis

part (II)

Cations

Group (III): Basic H₂S group

Group (III): Basic H_2S , $(NH_4)_2S$ group

Group (III)

Basic H2S, (NH₄)₂S

NiS, CoS, FeS, MnS, ZnS, Al(OH)₃, Cr(OH)₃ Black, black, red, white, white, green

Group (III)

Cations form insoluble sulfide or hydroxide salts

Ksp of sulfide salts is high, that they were soluble in acidic media

Sulfide salts of this group are soluble in acidic media. Co₂S₃, Ni₂S₃ are insoluble in acids [HCl (dil.)]

Notice: Co₂S₃, Ni₂S₃ have cation in oxidation state +3 The products are in oxidation state +2

Equations and Explanation

$$Co_2S_3 \iff 2 Co^{+3} + 3 S^{-2}$$

Oxd. Half RXN:

$$3 S^{-2} + 36 H_2O \longrightarrow 3 SO_4^{-2} + 24 e^- + 24 H_3O^+$$

Red. Half RXN:

$$2 \text{ Co}^{+3} + 2 \text{ e}^{-} \longrightarrow 2 \text{ Co}^{+2}$$

 $11 \text{ H}_2\text{O}_2 + 22 \text{ e}^{-} + 22 \text{ H}_3\text{O}^{+} \longrightarrow 44 \text{ H}_2\text{O}$

$$Co_2S_3 + 11 H_2O_2 \longrightarrow 2 Co^{+2} + 3 SO_4^{-2} + 8 H_2O + 2 H_3O^{+}$$

 $Co_2S_3 + 11 H_2O_2 \longrightarrow 2 CoSO_4 + 10 H_2O + H_2SO_4$

Equations and Explanation

$$Co_2S_3 + 11 H_2O_2 \longrightarrow 2 CoSO_4 + 10 H_2O + H_2SO_4$$

$$Ni_2S_3 + 11 H_2O_2 \longrightarrow 2 NiSO_4 + 10 H_2O + H_2SO_4$$

Ni⁺², Co⁺²

Separate filtrate in 2 test tubes

Add NH₄SCN, ether detect Co⁺²

Aqueous and ether phases are blue

Add Dimethylglyoxime (DMG) detect Ni⁺²

Red ppt [Ni(DMG)₂]

Group (III): Basic H_2S , $(NH_4)_2S$ group

Equations and Explanation

$$2 \text{ SCN}^{-} + \text{ Co}^{+2} \longrightarrow \text{ Co(SCN)}_{2}$$
soluble in ether with blue color
$$4 \text{ SCN}^{-} + \text{ Co}^{+2} \longrightarrow [\text{Co(SCN)}_{4}]^{-2}$$
soluble in water, blue color

Equations and Explanation

$$Ni^{+2} + 2 DMG \longrightarrow [Ni(DMG)_2] \downarrow + 2 H^+$$
Red ppt

Bidendate ligand (Neutral Chelate)

[Ni(DMG)₂]

Equations and Explanation

$$MnO_2 + 4 HCl \longrightarrow MnCl_2 + Cl_2 (g) + 2 H_2O$$

$$Fe(OH)_3 + 3 HCl \longrightarrow Fe^{+3} + 3 Cl^- + 3 H_2O$$

Mn⁺², Fe⁺³

Separate filtrate in 2 test tubes

Detect Fe⁺³

Add NH₄SCN, ether

Ether phase is red

Add K₄[Fe(CN)₆]

Prussian blue ppt

Add PbO₂ + HNO₃

Violet color of solution

MnO₄

$$PbO_2 + Mn^{+2} + H_3O^+ \longrightarrow MnO_4^- + Pb^{+2}$$

Which is oxidizing agent, and reducing agent???

In this RXN HNO₃ was not the oxidizing agent. It is just acidic media.

MnO₄ has violet color and it decolorizes when e.g. S⁻² (reducing agent) is added, since it converts to colorless in acidic pH (Mn⁺²).

Equations and Explanation

$$[AI(OH)_4]^- \longleftrightarrow AI^{+3} + 4 OH^-$$

$$OH^- + NH_4^+ \longrightarrow NH_3 + H_2O$$

$$AI^{+3} + 3 OH^- \longrightarrow AI(OH)_3$$

$$[AI(OH)_4]^- + NH_4^+ \longrightarrow AI(OH)_3 + NH_3 + H_2O$$

Qualitative inorganic analysis

part (II)

Cations

Dr. Mai Ramadan

Group (III): Basic H₂S group

Group (IV)
(NH₄)₂CO₃
BaCO₃, CaCO₃, SrCO₃

Group (IV)

Cations form insoluble carbonate salts

Note:

 Mg^{+2} is not precipitated in this stage as $MgCO_3$ or $Mg(OH)_2$, due to the presence of NH_4^+ -salts.

MgCO₃ has a high ksp

$$MgCO_3 \longleftrightarrow Mg^{+2} + CO_3^{-2}$$

$$CO_3^{-2} + NH_4^+ \longrightarrow HCO_3^- + NH_3$$

Mg ⁺² forms soluble complex with NH₃ [Mg (NH₃)(H₂O)₅]⁺²

Equations and Explanation

Buffer system (pH 4-5) is important

pH < 4

$$2 \text{ CrO}_4^{-2} + 2 \text{ H}_3\text{O}^+ \iff \text{Cr}_2\text{O}_7^{-2} + 3 \text{ H}_2\text{O}$$

pH > 5 Ca⁺², Sr⁺² are precipitated.

 Ca^{+2} is not precipitated as sulfate salt in this condition, by adding $(NH_4)_2SO_4$.

Equations and Explanation

$$Ca^{+2} + SO_4^{-2} \leftarrow CaSO_4$$
 white ppt

$$CaSO_4 + 2 (NH_4)_2SO_4 \longrightarrow [Ca(SO_4)_2]^{-2} + 2 NH_4^+$$

soluble complex

Group (V): Soluble group

Group (V): Soluble group

Group (V): Soluble group

Exercise

Describe <u>only schematic</u> how could the following ions be separated:

Ag⁺, Pb⁺², Cu⁺², Bi⁺³, As⁺³, Sn⁺², Fe⁺², Ni⁺², Ca⁺², Na⁺, K⁺.

Exercise

- A chemist has the following results for analysis of a salt:
- A- Pulverize the sample with KHSO₄ a vinegar odor was characterized.
- B- Upon adding HCl (dil) to sample solution a white ppt was formed which was soluble upon heating
- C- Upon passage of H₂S to acidified solution of sample a black ppt was formed, which was soluble in HNO₃ (conc.)
- D- Upon addition of KI solution to sample a yellow crystals was formed.
- 1. What is the salt?
- 2. Explain your judgment with equations?
- 3. Give a malfunction for test (A)? Then explain how to be removed (One solution)?