Exercise 2. Let E be a normed space over the reals. A hyper-plane H is a subspace of E such that the quotient space E/H has dimension 1.

(a) Show that the closure of any subspace of E is again a subspace of E and conclude that a hyper-plane H is either closed or dense in E.

Proof. Consider some vector subspace of E, say H. We recall the definition of the closure of H, denoted \bar{H} , as the following:

$$\bar{H} = \{ H \cup \text{ the limit points of } H \}$$
 (1)

To show that \bar{H} is a vector subspace of E then, we need to verify that it is closed under vector addition and scalar multiplication, and moreover that it contains the zero vector of H.

For this, note that the zero vector $0 \in \bar{H}$, as $0 \in H \subseteq \bar{H}$. Thus for $c \in \mathbb{R}$ and $a, b \in \bar{H}$, it is sufficient to show that:

$$ca + b \in \bar{H} \tag{2}$$

For this, simply note that every point in \bar{H} can be expressed as limit of points in H, (either a constant sequence or some non-trivial sequence for those points in $\bar{H} \setminus H$).

With this in mind, we represent a as $\lim_{n\to\infty} a_n$ and b as $\lim_{n\to\infty} b_n$ respectively, where $\{a_n\}_{n=1}^{\infty}\subseteq H$ and $\{b_n\}_{n=1}^{\infty}\subseteq H$. Using limit rules, we get the following equivalent convergent sequences:

$$ca + b = c \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = \lim_{n \to \infty} ca_n + b_n$$
(3)

But then of course the last sequence in (3) is a sequence of points in H that converges to ca + b, so it must be $ca + b \in \bar{H}$. Thus \bar{H} is a vector subspace of E.

We want to conclude then that a hyper-plane H is either closed or dense in E. For this, assume H is not closed. We would like to show H is dense in E, which is tantamount to showing $E \subseteq \bar{H}$.

For this, consider $y \in E$. As H is not closed, we have:

$$\exists \{x_n\}_{n=1}^{\infty} \subseteq H \text{ such that } x_n \to \hat{x} \notin H, \text{ i.e. } \hat{x} \in \bar{H} \setminus H$$

Then as $\hat{x} \notin H$, the coset $\hat{x} + H$ is not the zero vector in the quotient space. As E/H is 1-dimensional then, it is spanned by $\hat{x} + H$.

In particular, we have for some $c \in \mathbb{R}$ that:

$$y + H = c(\hat{x} + H) = c\hat{x} + H$$

Thus $y - c\hat{x} = h \in H \subseteq \bar{H}$, so we can reorganize to get $y = c\hat{x} + h$. But as \bar{H} is a vector subspace,

$$c\hat{x} + h = y \in \bar{H}$$
 given that $c\hat{x}, h \in \bar{H}$

Thus $E \subseteq \bar{H}$, where we already have $\bar{H} \subseteq E$. Therefore $E = \bar{H}$, which is exactly that H is dense in E.

Therefore H is either closed or dense in E.

(b) Let u be a linear functional on E. Prove that u is discontinuous if and only if there exists a sequence $\{x_n\}_{n=1}^{\infty} \subseteq E$ that conveges to 0 and for which $u(x_n) = 1$, $\forall n \in \mathbb{N}$.

Proof. We will show the forward implication first. For this, we assume u is discontinuous. As u is a linear functional then, it must be discontinuous at 0, i.e. we have a sequence $\{y_n\}_{n=1}^{\infty} \subseteq E$ such that $y_n \to 0$ but $u(y_n)$ does not converge to 0.

As $u(y_n)$ does not converge to zero, we have for some $\epsilon > 0$ that there is a subsequence $\{y_{n_k}\}_{k=1}^{\infty} \subseteq E$ such that $|u(y_{n_k})| \ge \epsilon$ for all $k \in \mathbb{N}$. Define then a sequence $\{x_k\}_{k=1}^{\infty} \subseteq E$ by stipulating $x_k = \frac{y_{n_k}}{u(y_{n_k})}$. We quickly verify $x \to 0$:

$$||x_k|| = \left| \left| \frac{y_{n_k}}{u(y_{n_k})} \right| \right| = \frac{1}{|u(y_{n_k})|} ||y_{n_k}|| \le \frac{1}{\epsilon} ||y_{n_k}|| \tag{4}$$

Of course then, we can take $||y_{n_k}||$ small (as the subsequence still converges to 0), which shows $x_k \to 0$. We want to verify now that $u(x_k) = 1$ for all $k \in \mathbb{N}$. Here, we note:

$$u(x_k) = u\left(\frac{y_{n_k}}{u(y_{n_k})}\right) = \frac{1}{u(y_{n_k})}u(y_{n_k}) = 1$$
 (5)

So x_k is the desired sequence, and so the forward implication holds.

We note then that the reverse implication is obvious, as the negation of continuity at 0 is that there is some sequence $\{x_n\}_{n=1}^{\infty} \subseteq E$ such that $x_n \to 0$ but $u(x_n)$ does not converge to u(0) = 0.

If we assume then that we have some sequence such that $x_n \to 0$ but $u(x_n) = 1$, $\forall n \in \mathbb{N}$, it is clear that such a sequence fulfills this definition of the negation of continuity, and so u would be discontinuous.

(c) Let $x_0 \in E$ be a unit norm vector, and H the complement of the one dimensional space spanned by x_0 . Show that every $x \in E$ can be uniquely decomposed as:

$$x = t(x)x_0 + y(x) \tag{6}$$

where t and y are linear maps from E to \mathbb{R} and H respectively. Prove that t and y are continuous iff H is closed.

Proof. We adopt the notation $\langle x_0 \rangle = \operatorname{span}(x_0)$. As H is selected to be the complement of $\langle x_0 \rangle$, we have that:

$$E = \langle x_0 \rangle \oplus H$$

From this it follows we can uniquely write any element $x \in E$ as:

$$x = \lambda x_0 + h$$

for some $\lambda \in \mathbb{R}$, $h \in H$. We denote these elements λ_x and h_x , i.e. $x = \lambda_x x_0 + h_x$. With this in mind, we define our functions $t(x) = \lambda_x$ and $y(x) = h_x$.

(1) (Decomposition and well-definedness) By construction, we then get a decomposition $x = t(x)x_0 + y(x)$ for all x.

Moreover, note these functions are well-defined, as the decomposition of x into a sum of elements in complementary subspaces is unique.

(2) (Linearity) Linearity also follows almost immediately from the uniqueness of our decomposition. In particular, we note for $x, y \in E$, we of course can write

$$x = \lambda_x x_0 + h_x$$
 and $y = \lambda_y x_0 + h_y$

Moreover, we can express $x + y = \lambda_{x+y}x_0 + h_{x+y}$, for some $\lambda_{x+y} \in \mathbb{R}$ and $h_{x_y} \in H$.

However, we also have that:

$$x + y = \lambda_x x_0 + h_x + \lambda_y x_0 + h_y = (\lambda_x + \lambda_y) x_0 + (h_x + h_y)$$

Uniqueness of this decomposition gives us then that:

$$\lambda_{x+y} = \lambda_x + \lambda_y$$
 and $h_{x+y} = h_x + h_y$

Thus t(x+y) = t(x) + t(y) and y(x+y) = y(x) + y(y), and so both functions are linear.

(3) (Uniqueness) We finally remark that these functions t, y are necessarily unique, again using the uniqueness of the decomposition into a sum.

In particular, we know we have the unique decomposition $x = \lambda_x x_0 + h_x$, so if we have functions:

$$a: E \to \mathbb{R}$$
 and $b: E \to H$ where $x = a(x)x_0 + b(x)$

as $a(x)x_0 \in \langle x_0 \rangle$ and $b(x) \in H$, the only possibility is that $a(x) = \lambda_x$ and $b(x) = h_x$, which yields the given functions t and y.

(4) (Continuity of both implies closedness of H) We want now to show that t and y being continuous implies the closedness of H.

For this, we will consider the contrapositive, that is H being not closed implies

that t or y is not continuous. In particular, we will show that t is not continuous if H is not closed.

For this, assume that we have a sequence:

$$\{x_n\}_{n=1}^{\infty} \subseteq H \text{ such that } x_n \to x \notin H$$

We note as $x \notin H$, it must be then that $\lambda_x \neq 0$, i.e. $t(x) \neq 0$. However, as each $x_n \in H$, we know $t(x_n) = \lambda_{x_n} = 0$. Thus:

$$\lim_{n \to \infty} t(x_n) = 0 \neq 1 = t(x)$$

So t is not continuous at x, the desired result.

(5) (Closedness of H implies continuity of both t and y) Note it is enough to prove that one is continuous, i.e. t is continuous, because we can reorganize to get $y(x) = x - t(x)x_0$.

In particular, $t: E \to \mathbb{R}$ being continuous has $tx_0: E \to E$ being continuous, which has y continuous as the difference of the identity and this function.

So we want to show H being closed has t continuous. For this, we assume for the sake of contradiction that t is discontinuous.

Then as t is a linear functional on E, we apply our result in (b) to get some sequence:

$$\{x_n\}_{n=1}^{\infty} \subseteq E \text{ such that } x_n \to 0 \text{ but } t(x_n) = 1$$

for all $n \in \mathbb{N}$.

Then we get $y(x_n) = x_n - x_0$. So taking the limit gets $\lim_{n \to \infty} y(x_n) = -x_0$. But this is an issue, as y maps into H, so $\{y(x_n)\}_{n=1}^{\infty} \subseteq H$.

As H is closed then, it should be $-x_0 \in H$, but of course $-x_0 \neq 0 \in \langle x_0 \rangle$ and so as H is a complementary subspace, it must be then that $-x_0 \notin H$.

So we have a contradiction, and thus H being closed has t and furthermore y continuous.

(d) Let u be a linear functional on E. Prove that u is continuous if and only if H, the kernel, is closed.

Proof. We will show both directions seperately.

(1) (Continuity of u implies the kernel is closed) Say u is continuous, and assume for contradiction that $H = \ker(u)$ is not closed.

By definition then, there exists some sequence

$$\{x_n\}_{n=1}^{\infty} \subseteq \ker(u) \text{ such that } x_n \to x \notin \ker(u), \text{ i.e. } u(x) \neq 0$$

We note additionally then that for any $n \in \mathbb{N}$, we have that $u(x_n) = 0$, as each term in the kernel.

We can apply continuity then:

$$0 = \lim_{n \to \infty} u(x_n) = u(\lim_{n \to \infty} x_n) = u(x) \neq 0 \tag{7}$$

But of course this generates a contradiction. So it must be ker(u) is closed.

(2) (The closedness of the kernel implies the continuity of u) Say that ker(u) is closed, and assume for contradiction that u is not continuous.

As u is not continuous, it is not bounded, i.e. for $\forall c > 0$, there exists $x \in E$ such that:

Consider the sequence $\{x_n\}_{n=1}^{\infty}$ generated by taking c=n in the above definition, i.e. $|u(x_n)| \ge n||x_n||$.

Take then some point $x \notin \ker(u)$ (if no such point exists, then u is identically zero and thus already continuous). We define the following sequence:

$$\hat{x}_n = x - \frac{u(x)}{u(x_n)} x_n \tag{8}$$

Note then:

$$\hat{x}_n = u \left(x - \frac{u(x)}{u(x_n)} x_n \right) = u(x) - u \left(\frac{u(x)}{u(x_n)} x_n \right)$$

$$= u(x) - \frac{u(x)}{u(x_n)} u(x_n) = u(x) - u(x) = 0$$
(9)

Thus $\{\hat{x}_n\}_{n=1}^{\infty} \subseteq \ker(u)$. We claim then that $\frac{u(x)}{u(x_n)}x_n \to 0$ as $n \to \infty$. For this we note the following argument:

$$\left| \left| \frac{u(x)}{u(x_n)} x_n \right| \right| = \left| \frac{u(x)}{u(x_n)} \right| ||x_n|| = \frac{|u(x)|}{|u(x_n)|} ||x_n||$$

$$= \frac{||x_n||}{|u(x_n)|} |u(x)| < \frac{|u(x)|}{n}$$
(10)

Taking n large thus demonstrates that $\frac{u(x)}{u(x_n)}x_n \to 0$ as $n \to \infty$.

Thus $\lim_{n\to\infty} \hat{x}_n = x \notin \ker(u)$, but this is a contradiction as $\{\hat{x}_n\}_{n=1}^{\infty} \subseteq \ker(u)$ and $\ker(u)$ is closed. So it must be u is continuous.

Exercise 5. Let E be a Banach space.

(a) Prove that if $T \in L(E, E)$ and ||I - T|| < 1 where I is the identity operator, then T is invertible, and that the series $\sum_{n=0}^{\infty} (I - T)^n$ converges in L(E, E) to T^{-1} .

Proof. For simplicitly, we denote S = I - T, and observe clearly $S \in L(E, E)$. As E is complete with respect to its norm metric, so is L(E, E) by a theorem in Folland.

Note then, using submultiplicity of the norm metric, we get the following:

$$\sum_{n=0}^{\infty} ||S^n|| \le \sum_{n=0}^{\infty} ||S||^n < \infty \tag{11}$$

In particular, convergence here follows from the geometric series test, as ||S|| < 1.

As L(E, E) is complete then, we have that the series $\sum_{n=0}^{\infty} S^n$ converges to a $T^{-1} \in L(E, E)$ (we are not assuming this is the inverse of T, just calling it this for now).

We want then to actually verify this $T^{-1} = \sum_{n=0}^{\infty} S^n \in L(E, E)$ is the inverse of T. For this, we need to show composition on both sides yields the identity operator I.

We start by verifying it is a right inverse, using the linearity of T:

$$T\sum_{n=0}^{\infty} S^{n} = T\lim_{k \to \infty} \sum_{n=0}^{k} S^{n} = \lim_{k \to \infty} \sum_{n=0}^{k} TS^{n} = \lim_{k \to \infty} \sum_{n=0}^{k} (I - S)S^{n}$$

$$= \lim_{k \to \infty} \sum_{n=0}^{k} S^{n} - S^{n+1} = \lim_{k \to \infty} I - S^{k+1}$$
(12)

Using the divergence test on the first series in (11), we note that it is that $\lim_{k\to\infty} ||S^k|| = 0$, which is that $S^k \xrightarrow{L(E,E)} 0$, where 0 is the zero operator.

Thus the last limit in (12) is just the identity, and thus $\sum_{n=0}^{\infty} S^n$ is a right inverse.

For verifying that it also left inverse, we note the same argument works as $(I-S)S^n = S^n(I-S)$, and so the argument ends being the exact same.

Thus T is invertible with $T^{-1} = \sum_{n=0}^{\infty} S^n \in L(E, E)$, and of course by construction our series $\sum_{n=0}^{\infty} S^n \in L(E, E)$ converges to T^{-1} .

(b) Show that if $T \in L(E, E)$ is invertible and $||S - T|| < ||T^{-1}||^{-1}$, then S is invertible. Conclude that the set of invertible operators in L(E, E) is open.

Proof. We get the following use submultiplicity of the operator norm:

$$||T^{-1}S - I|| = ||T^{-1}(S - T)|| < ||T^{-1}|| \, ||S - T|| < ||T^{-1}|| \, ||T^{-1}||^{-1} = 1$$
(13)

Using part (a) then, it follows that $T^{-1}S$ is invertible, i.e. there is some $R \in L(E, E)$ such that $RT^{-1}S = T^{-1}SR = I$.

Of course, this shows RT^{-1} is a left inverse of S. Given $T^{-1}SR = I$ we can reorganize:

$$T^{-1}SR = I \to SR = T \to SRT^{-1} = I \tag{14}$$

So S is invertible with inverse RT^{-1} .

For the conclusion that the set of invertible operators is open in L(E, E), we just note that this has for an invertible operator T that $S \in B_{||T^{-1}||^{-1}}(T)$ is also invertible, i.e.:

$$B_{||T^{-1}||^{-1}}(T) \subseteq \{\text{invertible operators in } L(E,E)\}$$

but this is precisely the definition of openness is the norm topology. \Box

Exercise 8. Suppose that H is a Hilbert space and $T \in L(H, H)$.

(a) Prove that there exists a unique $T^* \in L(H, H)$, called the adjoint of T, such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$, for all $x, y \in H$.

Proof. Let $y \in H$, then $\langle Tx, y \rangle$ is a functional in x. Linearity of this functional immediately follows from the linearity of the inner product and T.

We can furthermore see it is bounded by the Cauchy-Schwarz inequality (and that T is bounded, i.e. $||Tx|| \le c||x||$ for c > 0):

$$|\langle Tx, y \rangle| \le ||Tx|| \, ||y|| \le (c||y||)||x||$$
 (15)

And so it is bounded. As it a linear, bounded functional then, we can apply the **Riesz Representation Theorem** to get a unique $z \in H$ for which we have the following:

$$\langle Tx, y \rangle = \langle x, z \rangle, \forall x \in H$$
 (16)

With this in mind, we define $T^*y = z$. It is clear this mapping is unique, as z for which (16) is satisfied is unique. Moreover, by construction, it is that $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all $x, y \in H$.

We need to verify this definition yields an operator that is linear and bounded. We start with linearity, we would like to show $T^*(ag + bh) = aT^*g + bT^*h$ where $g, h \in H$

and $a, b \in \mathbb{C}$.

For this, we note the following argument:

$$\langle x, T^*(ag + bh) \rangle$$

$$= \langle Tx, ag + bh \rangle$$

$$= \bar{a} \langle Tx, g \rangle + \bar{b} \langle Tx, h \rangle$$

$$= \bar{a} \langle x, T^*g \rangle + \bar{b} \langle x, T^*h \rangle$$

$$= \langle x, aT^*g \rangle + \langle x, bT^*h \rangle$$

$$= \langle x, aT^*g + bT^*h \rangle$$
(17)

Thus:

$$\langle x, T^*(ag+bh) \rangle = \langle Tx, ag+bh \rangle = \langle x, aT^*g + bT^*h \rangle, \forall x \in H$$
 (18)

But as we've already shown $\langle Tx, ag + bh \rangle$ is a linear bounded functional, and so it is equivalent to $\langle x, z \rangle$ for all x for some unique z.

Uniqueness of this z thus tells us from (18) it is that $T^*(ag + bh) = aT^*g + bT^*h$, which is precisely linearity.

We need finally to show boundedness then. Here, will we again appeal to the **Riesz Representation Theorem**. Recall that by this theorem and the definition of T^*y , we have that $||T^*y|| = ||\langle Tx, y \rangle||$, where the latter term is the operator norm.

In particular, we get the following:

$$||T^*y|| = ||\langle Tx, y \rangle|| = \sup_{||x||=1} |\langle Tx, y \rangle|$$

$$\leq \sup_{||x||=1} ||Tx|| \, ||y|| = ||y|| \, ||T||$$
(19)

So T^* is bounded with c = ||T||, and so we finally have $T^* \in L(H, H)$.

Putting this all together has that we have a unique T^* such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$, for all $x, y \in H$, and moreover $T^* \in L(H, H)$.

(b) Prove that $T^* = V^{-1}T^{\dagger}V$, where V is the conjugate-linear isomorphism from H to H^* given by $(Vy)(x) = \langle x, y \rangle$.

Proof. For $T \in L(H, H)$, we have $\langle x, T^*y \rangle = \langle Tx, y \rangle$, for all $x, y \in H$. Using this, we can get the following:

$$\langle x, T^* y \rangle = \langle Tx, y \rangle$$

$$\to (VT^* y)(x) = \langle Tx, y \rangle$$
(20)

Moreover, we have the following:

$$\langle Tx, y \rangle = (Vy)(Tx) = (Vy \circ T)(x) = T^{\dagger}Vy(x)$$
 (21)

We use this to continue (20):

$$(VT^*y)(x) = \langle Tx, y \rangle$$

$$\to (VT^*y)(x) = T^{\dagger}Vy(x), \text{ still for all } x \in H$$

$$\to VT^*y = T^{\dagger}Vy, \text{ still for all } y \in H$$

$$\to VT^* = T^{\dagger}V$$

$$\to T^* = V^{-1}T^{\dagger}V$$
(22)

Which is the desired result.

(c) Prove that:

(i)
$$||T^*|| = ||T||$$

Proof. We will establish this by showing that $V: H \to H^*$ and $V^{-1}: H^* \to H$ as given in the previous part both have operator norm 1.

We first move to compute the norm of V:

$$||V|| = \sup_{||y||=1} ||Vy|| = \sup_{||y||=1} \sup_{||x||=1} |\langle x, y \rangle|$$
(23)

On one hand:

$$\sup_{||y||=1,||x||=1} \sup_{||y||=1,||x||=1} ||x|| \, ||y|| = 1 \tag{24}$$

But then also clearly this quantity ||V|| must bound above $|\langle x, x \rangle|$ for some x where ||x|| = 1, i.e. $||V|| \ge |\langle x, x \rangle| = 1$. Thus ||V|| = 1.

To ascertain the value of $||V^{-1}||$, we first need to explicitly write out what V^{-1} is.

For this, we claim that $V^{-1}: H^* \to H$ is the mapping given by $f \mapsto z$, where f is a bounded linear functional and z is the unique point associated with it by the **Riesz Representation Theorem**.

We verify this is indeed the inverse:

$$V^{-1}Vy = V^{-1}\langle \cdot, y \rangle = y$$

$$VV^{-1}f = Vz = \langle \cdot, z \rangle = f$$
(25)

Note here we are making extensive use the **Riesz Representation Theorem** (in particular, the uniqueness of z).

Thus the described mapping is V^{-1} , and we can ascertain its norm again by using the **Riesz Representation Theorem**, in particular using the fact that:

$$||f|| = ||\text{the } z \text{ associated with it}||$$

We consequently have the following:

$$||V^{-1}|| = \sup_{\|f\|=1} ||V^{-1}f|| = \sup_{\|f\|=1} ||z|| = \sup_{\|f\|=1} ||f|| = 1$$
 (26)

And thus $||V^{-1}|| = 1$. Using the previous part and some reorganizing then, we have that both $T^* = V^{-1}T^{\dagger}V$ and $VT^*V^{-1} = T^{\dagger}$. Recalling from **Problem 6** that $||T^{\dagger}|| = ||T||$ then, we get the following using submultiplicity:

$$||T^*|| = ||V^{-1}T^{\dagger}V|| \le ||V^{-1}|| \, ||T^{\dagger}|| \, ||V|| = ||T^{\dagger}|| = ||T||$$

$$||T|| = ||T^{\dagger}|| = ||VT^*V^{-1}|| \le ||V|| \, ||T^*|| \, ||V^{-1}|| = ||T^*||$$
(27)

Thus
$$||T|| = ||T^*||$$
.

(ii) $||TT^*|| = ||T||^2$

Proof. Obviously, from the prior part, we get $||TT^*|| \le ||T||^2$, as this is just:

$$||TT^*|| \le ||T|| \, ||T^*|| = ||T||^2 \tag{28}$$

We want to show $||T||^2 \le ||TT^*||$. For this, we note the following argument:

$$||T||^{2} = \left(\sup_{||x||=1} ||Tx||\right)^{2}$$

$$= \sup_{||x||=1} ||Tx||^{2} = \sup_{||x||=1} |\langle Tx, Tx \rangle|$$

$$= \sup_{||x||=1} |\langle x, T^{*}Tx \rangle| \le \sup_{||x||=1} ||x|| ||T^{*}Tx||$$

$$= \sup_{||x||=1} ||T^{*}Tx|| = ||T^{*}T||$$
(29)

Thus $||TT^*|| = ||T||^2$.

(iii) $(aS + bT)^* = \bar{a}S * + \bar{b}T^*$

Proof. For this, we note the following argument using the sesquilinear properties of the inner product:

$$\langle x, (aS + bT)^* y \rangle = \langle (aS + bT)x, y \rangle$$

$$= \langle aSx + bTx, y \rangle = a \langle Sx, y \rangle + b \langle Tx, y \rangle$$

$$= a \langle x, S^* y \rangle + b \langle x, T^* y \rangle = \langle x, \bar{a}S^* y \rangle + \langle x, \bar{b}T^* y \rangle$$

$$= \langle x, \bar{a}S^* y + \bar{b}T^* y \rangle, \forall x, y \in H$$
(30)

The idea given after (17) concludes then that it must be $(aS + bT)^* = \bar{a}S * + \bar{b}T^*$. However, we can also see this in a more general way by the following, fixing a $y \in H$:

$$\langle x, (aS + bT)^* y \rangle = \langle x, \bar{a}S^* y + \bar{b}T^* y \rangle$$

$$\to \langle x, (aS + bT)^* y \rangle - \langle x, \bar{a}S^* y + \bar{b}T^* y \rangle = 0$$

$$\to \langle x, (aS + bT)^* y \rangle + \langle x, -\bar{a}S^* y - \bar{b}T^* y \rangle = 0$$

$$\to \langle x, (aS + bT)^* y - \bar{a}S^* y - \bar{b}T^* y \rangle = 0, \forall x \in H$$

$$(31)$$

The only vector orthogonal to all others is the zero vector then, so $(aS + bT)^*y - \bar{a}S^*y - \bar{b}T^*y = 0, \forall y \in H$, i.e.:

$$(aS + bT)^* y = \bar{a}S^* y + \bar{b}T^* y$$

$$\rightarrow (aS + bT)^* y = (\bar{a}S^* + \bar{b}T^*)y, \forall y \in H$$

$$\rightarrow (aS + bT)^* = \bar{a}S^* + \bar{b}T^*$$

$$(32)$$

I will use this same motif in later parts by appealing to it here. \Box

(iv) $(ST)^* = T^*S^*$ We use the same type of argument as the previous parts:

Proof.

$$\langle x, (ST)^* y \rangle = \langle STx, y \rangle$$

$$= \langle Tx, S^* y \rangle = \langle x, T^* S^* y \rangle$$
(33)

The same trick as the previous part gets $(ST)^* = T^*S^*$.

(v) $T^{**} = T$ Again, we use a similar argument:

Proof.

$$\langle x, T^{**}y \rangle = \langle T^*x, y \rangle$$

$$= \overline{\langle y, T^*x \rangle} = \overline{\langle Ty, x \rangle}$$

$$= \langle x, Ty \rangle$$
(34)

The same idea again concludes $T^{**} = T$.

(d) Let R(T) and N(T) denote the range and nullspace of T respectively. Prove that $R(T)^{\perp} = N(T^*)$ and $N(T)^{\perp} = \overline{R(T^*)}$.

Proof. We will first show that $R(T)^{\perp} = N(T^*)$. For this, let $x \in R(T)^{\perp}$. This is precisely that for $\forall y \in H$ we have $\langle x, Ty \rangle = 0$. Using that $T^{**} = T$ then, this is that:

$$0 = \langle x, Ty \rangle = \langle x, T^{**}y \rangle = \langle T^*x, y \rangle, \forall y \in H$$

Again, the only vector orthogonal to all other vectors is the the zero vector. Thus $T^*x = 0$, and so $x \in N(T^*)$. It follows $R(T)^{\perp} \subseteq N(T^*)$.

Consider $x \in N(T^*)$, then $T^*x = 0$. Thus $\langle T^*x, y \rangle = 0, \forall y \in H$. Continuing this we get (again using $T^{**} = T$):

$$0 = \langle T^*x, y \rangle = \langle x, Ty \rangle, \forall y \in H$$

As every term in R(T) can be expressed as Ty then for some $y \in H$, it follows that $x \in R(T)^{\perp}$. Thus $R(T)^{\perp} \subseteq N(T^*)$, and so $R(T)^{\perp} = N(T^*)$.

We want then to prove that $N(T)^{\perp} = \overline{R(T^*)}$. Note first, that by substituting T^* in our previous work, we get $R(T^*)^{\perp} = N(T)$ (we can do this as $T^* \in L(H, H)$ and $T^{**} = T$).

Thus
$$\left(R(T^*)^{\perp}\right)^{\perp} = N(T)^{\perp}$$
. Recall then $\left(R(T^*)^{\perp}\right)^{\perp} = \overline{\operatorname{span}R(T^*)}$.

Obviously $R(T^*) \subseteq \operatorname{span} R(T^*)$. Consider then some $x \in \operatorname{span} R(T^*)$, then

$$x = \sum_{n=1}^{N} c_n T^* y_n = T^* \left(\sum_{n=1}^{N} c_n y_n \right)$$

using the linearity of T^* . But then of course $\sum_{n=1}^{\infty} c_n y_n \in H$, so it is that x is in the range of T^* , i.e. $x \in R(T^*)$. Thus $R(T^*) = \operatorname{span} R(T^*)$.

It follows
$$\overline{R(T^*)} = \left(R(T^*)^{\perp}\right)^{\perp} = N(T)^{\perp}$$
, which gives the desired result.

(e) Show that T is unitary if and only if T is invertible and $T^{-1} = T^*$.

Proof. Assume T is unitary, then we have it is surjective and $\langle Tx, Ty \rangle = \langle x, y \rangle$, $\forall x, y \in H$. Thus:

$$\langle x, y \rangle = \langle Tx, Ty \rangle = \langle x, T^*Ty \rangle$$

Consider some $y \in H$. Using this we get the following argument:

$$\langle x, T^*Ty \rangle = \langle x, y \rangle$$

$$\to \langle x, T^*Ty \rangle - \langle x, y \rangle = 0$$

$$\to \langle x, T^*Ty \rangle + \langle x, -y \rangle = 0$$

$$\to \langle x, T^*Ty - y \rangle = 0, \forall x \in H$$
(35)

Using the same argument as earlier, thus $T^*Ty - y = 0 \to T^*Ty = y, \forall y \in H$, i.e. $T^*T = I$.

T has a left inverse then, and so it is injective. This thus has it is a bijection, and so it admits a unique inverse T^{-1} .

Furthermore, we note $T^*TT^{-1}=T^{-1}\to T^*=T^{-1}$. So $T^*\in L(H,H)$ is the inverse of T, and so T is invertible with $T^{-1}=T^*$.

Say then for the reverse implication that T is invertible and $T^{-1} = T^*$. Obviously, this has that T is surjective. We want to show then that the inner product is preserved, i.e.:

$$\langle Tx, Ty \rangle = \langle x, y \rangle, \ \forall x, y \in H$$
 (36)

For this, we just note the following argument:

$$\langle Tx, Ty \rangle = \langle x, T^*Ty \rangle = \langle x, y \rangle$$
 (37)

It follows T is unitary.

Exercise 12. Let M be a closed subspace of $L^2([0,1])$ that is contained in C([0,1]).

(a) Prove that there exists a C > 0 such that $||f||_u \le C||f||_2$ for all $f \in M$.

Proof. Consider the space $(M, ||\cdot||_u)$, we would like to show it is a closed subspace of $(C[0,1], ||\cdot||_u)$.

We first note that C[0,1] is a subspace of $L^2[0,1]$ (as the continuous functions are closed under sums and scaling).

As M is also a subspace of $L^2([0,1])$ then and C[0,1] contains M, it naturally follows M is a subspace of C[0,1].

We want then to show M is closed in C[0,1] under the topology generated by the supremum norm.

By assumption, M is closed under the norm topology generated by the L^2 norm, i.e.:

if
$$\{f_n\}_{n=1}^{\infty} \subseteq M$$
 and $f_n \xrightarrow{L_2} f \in L^2[(0,1)]$ then $f \in M$

Consider then some sequence of functions $\{f_n\}_{n=1}^{\infty} \subseteq M$ such that:

$$f_n \to f \in C[0,1] \subseteq L^2([0,1])$$
 uniformly

We recall uniform convergence implies convergence in L^2 , so using the closedness of M with respect to the L^2 norm in $L^2([0,1])$ thus implies that $f \in M$.

So M is a closed subset of C[0,1] under the topology induced by the supremum norm.

It follows $(M, ||\cdot||_u)$ is a closed subspace of $(C[0,1], ||\cdot||_u)$. As the latter is Banach then (a well-known result), so is the former (as closed subspaces of Banach spaces are also Banach spaces).

Similarly, this has that $(M, ||\cdot||_2)$ is a Banach space. With this in mind, we define a mapping I by the following specifications:

$$I: (M, ||\cdot||_u) \to (M, ||\cdot||_2)$$

$$I: f \mapsto f$$
(38)

Trivially, this map is linear, as it is essentially the identity map. Moreover, we remark it is continuous as uniform convergence implies convergence in the L^2 norm.

In particular, that is whenever we have a sequence of functions $\{f_n\}_{n=1}^{\infty}$ such that $f_n \to f$ uniformly, we naturally have $I(f_n) = f_n \xrightarrow{L_2} f = I(f)$.

As I is continuous then, it is bounded. Moreover, it is trivially a bijection. Appealing to the **Bounded Inverse Theorem** then, it follows that I has a bounded

inverse.

Of course this inverse I^{-1} is also the identity mapping, but we now know it is bounded. In particular, this means for some C > 0:

$$||I^{-1}f||_u = ||f||_u \le C||f||_2 \tag{39}$$

Which is the desired result.

(b) For each $x \in [0,1]$, prove that there exists a $g_x \in M$ such that $f(x) = \langle f, g_x \rangle$ for all $f \in M$ and that $||g_x||_2 \leq C$.

Proof. Let some $x \in [0,1]$. Consider the functional $T_x : (M,||\cdot||_2) \to \mathbb{C}$ defined by $T_x : f \mapsto f(x)$.

We quickly verify T_x is linear:

$$T_x(af + bg) = (af + bg)(x)$$

= $af(x) + bg(x) = aT_x(f) + bT_x(g)$ (40)

Moreover, it is clearly bounded as:

$$|f(x)| \le ||f||_u \le C||f||_2 \tag{41}$$

per the previous part. Note then that as M is a closed subspace of $L^2([0,1])$, we have that $(M, ||\cdot||_2)$ is a Hilbert space under the inherited inner product structure.

Appealing to the Riesz Representation Theorem then, we have that there is some unique $g_x \in M$ such that:

$$f(x) = T_x(f) = \langle f, g_x \rangle, \, \forall f \in M$$
 (42)

Moreover, we have that:

$$||g_x||_2 = ||T_x|| = \sup_{\|f\|_2 = 1} |f(x)| \tag{43}$$

But when $||f||_2 = 1$, we naturally have:

$$|f(x)| \le ||f||_u \le C||f||_2 = C \tag{44}$$

So as we have here that $|f(x)| \leq C$, it follows:

$$||g_x||_2 = ||T_x|| = \sup_{\|f\|_2 = 1} |f(x)| \le C \tag{45}$$

Thus our g_x satisfies the desired properties.

(c) Show that the dimension of M is at most C^2 by proving that if $\{f_k\}_{k=1}^{\infty}$ is any orthonormal sequence in M then $\sum_{k=1}^{\infty} |f_k(x)|^2 \leq C^2$ for all $x \in [0,1]$.

Proof. Let $x \in [0,1]$ Using our work in part (b) (i.e. generating a g_x), this becomes a routine application of **Bessel's inequality**, which applies as we are given an orthonormal sequence.

$$\sum_{k=1}^{\infty} |f_k(x)|^2 = \sum_{k=1}^{\infty} |\langle f_k, g_x \rangle|$$

$$= \sum_{k=1}^{\infty} |\langle g_x, f_k \rangle| \le ||g_x||_2^2 \le C^2$$

$$(46)$$

Note we are able to consider this sequence as countable, as the M inherits the seperability of L^2 (given it is a closed subspace), and so every orthnormal sequence in M is countable.

Consider then an ONB for M given by $\{f_k\}_{k=1}^{\infty}$ (all Hilbert spaces admit orthonormal bases). We get the following:

$$\sum_{k=1}^{\infty} \langle f_k, f_k \rangle = \sum_{k=1}^{\infty} ||f_k||_2^2 = \sum_{k=1}^{\infty} \int_0^1 |f_k|^2$$
 (47)

$$= \int_0^1 \sum_{k=1}^{\infty} |f_k|^2 \qquad \text{(Swapping sum and integral, as } |f_k| > 0) \tag{48}$$

$$\leq \int_0^1 C^2 = C^2$$
 (Using previous work) (49)

But of course $\sum_{k=1}^{\infty} \langle f_k, f_k \rangle$ should be the amount of nonzero terms in $\{f_k\}_{k=1}^{\infty}$, as its orthonormal.

Therefore the amount of nonzero terms is bounded above by C^2 , i.e. we have a basis for M with at most C^2 vectors. Thus the dimension of M is at most C^2 .

Exercise 20. Suppose $||f_0||_p = ||f_1||_p = 1$ and let:

$$f_t = (1 - t)f_0 + f_1 (50)$$

be the straight line segment joining the points f_0 and f_1 . Then $||f_t||_p < 1$ for all t with 0 < t < 1, unless $f_0 = f_1$.

(a) Let $f \in L^p$ and $g \in L^q$, p,q dual, with $||f||_p = 1$ and $||g||_q = 1$. Then:

$$\int fgd\mu = 1 \tag{51}$$

only when $f(x) = \text{sign}|g(x)|^{q-1}$.

Proof. We first verify that taking $f(x) = \operatorname{sign} g(x)|g(x)|^{q-1}$ has that $\int fgd\mu = 1$, which we can do simply by noting $|g| = \operatorname{sign} g \cdot g$.

$$\int fgd\mu = \int \left(\operatorname{sign} g|g|^{q-1}\right)gd\mu$$

$$= \int \left(\operatorname{sign} g \cdot g\right)|g|^{q-1}d\mu = \int |g||g|^{q-1}d\mu$$

$$= \int |g|^q d\mu = ||g||_q^q = 1$$
(52)

Assume then for the other direction that $\int fgd\mu = 1$, we will show that $f(x) = \text{sign}|g(x)|^{q-1}$, where equality here is equality almost everywhere.

By applying Hölder's inequalty as well as monotonicity, we get the following:

$$1 = \int fg d\mu \le \int |fg| d\mu = ||fg||_1 \le ||f||_p ||g||_q = 1 \tag{53}$$

Thus $||fg|| = ||f||_p ||g||_q$. Using **Theorem 6.2** from Folland then, we know that equality holds in Hölder's inequality if and only $|f|^p = C|g|^q$ almost everywhere for some constant C > 0.

Thus we take $|f|^p = C|g|^q$ almost everywhere for some C > 0. Note that as p, q dual we have $\frac{1}{p} + \frac{1}{q} = 1 \to \frac{q}{p} = q - 1$. We can therefore reorganize to get the following:

$$|f| = (C|g|^q)^{\frac{1}{p}} = C^{\frac{1}{p}}|g|^{\frac{q}{p}} = C^{\frac{1}{p}}|g|^{q-1}$$
(54)

Recall then that we showed in (48) that $\int fgd\mu = \int |fg|d\mu$. It is not particularly difficult to show that this implies fg = |fg| a.e., which can seen in the following:

$$\int fgd\mu = \int |fg|d\mu$$

$$\to \int (fg)^{+} - (fg)^{-}d\mu = \int (fg)^{+} + (fg)^{-}$$

$$\to \int (fg)^{+}d\mu - \int (fg)^{-}d\mu = \int (fg)^{+}d\mu + \int (fg)^{-}d\mu$$

$$\to \int (fg)^{-} = 0$$

$$(55)$$

Which clearly implies $(fg)^- = 0$ a.e., i.e. fg is at most negative on a set of measure zero, so clearly fg = |fg| almost everywhere. With this in mind, note we additionally have following:

$$1 = ||f||_p^p = \int |f|^p = \int C|g|^q = C \int |g|^q = C||g||_q^q = C$$
 (56)

So C = 1, i.e. $|f| = |g|^{q-1}$ almost everywhere. With this, we can finally put everything together, also using the fact that g = sign g|g|:

$$|f| = |g|^{q-1}$$
 a.e. (57)

$$\rightarrow |fg| = |g|^q$$
 a.e. (Multiplying both sides by $|g|^q$) (58)

$$\rightarrow fg = |g|^q \text{ a.e.}$$
 (Using that $fg = |fg| \text{ a.e.}$) (59)

$$\rightarrow f = \frac{|g|^q}{g}$$
 a.e. (Dividing by g) (60)

(61)

Note then that as $\frac{1}{\text{sign}g} = \text{sign}g$, we have that:

$$\frac{1}{g} = \frac{1}{\operatorname{sign}g|g|} = \frac{\operatorname{sign}g}{|g|} \tag{62}$$

Using this with (55) finally gets:

$$f = \frac{|g|^q}{g} = \frac{|g|^q \text{sign}g}{|g|} = \text{sign}g|g|^{q-1} \text{ a.e.}$$
 (63)

Note here some of our work relies on $g \neq 0$ so that division is defined, but we note when g(x) = 0 we have f(x) = 0, which is still consistent with $f(x) = \operatorname{sign} g(x)|g(x)|^{q-1}$. \square

(b) Suppose that $||f_{t'}||_p = 1$ for some 0 < t' < 1. Find some $g \in L^q$, $||g||_q = 1$, so that:

$$\int f_{t'}gd\mu = 1 \tag{64}$$

and let $F(t) = \int f_t g d\mu$. Observe as a result that F(t) = 1 for all $0 \le t \le 1$. Conclude that $f_t = f_0$ for all $0 \le t \le 1$.

Proof. Let $g = \operatorname{sign} f_{t'}|f_{t'}|^{p-1}$. We note here that this has $|g| = |f_{t'}|^{p-1}$, where we get the following:

$$\int |g|^q d\mu = \int |f_{t'}|^{qp-q} \tag{65}$$

As p, q dual, we note that we have q + p = qp. Thus qp - q = p, and so we continue further:

$$\int |g|^q d\mu = \int |f_{t'}|^{qp-q} d\mu = \int |f_{t'}|^p = ||f_{t'}||_p^p = 1$$
 (66)

Thus $||g||_q^q = 1$, and so $||g||_q = 1$. Of course this also has $g \in L^q$, so this is the desired g.

We turn now to the given function F(t), which we can examine in the following way:

$$F(t) = \int f_t g d\mu = \int (1 - t) f_0 g + f_1 g d\mu$$

$$= (1 - t) \int f_0 g d\mu + t \int f_1 g d\mu$$
(67)

But $\int f_0 g d\mu$ and $\int f_1 g d\mu$ are constants, so it follows F(t) is a linear polynomial in t. Moreover, we observe through an application of Hölder's inequality (and the triangle inequality) that we have the following:

$$F(t) = \int f_t g d\mu \le \int |f_t g| d\mu = ||f_t g||_1 \le ||f_t||_p ||g||_q$$

$$= ||f_t||_p = ||(1-t)f_0 + tf_1||_p \le (1-t)||f_0||_p + ||f_1||_p = 1 - t + t = 1$$
(68)

Putting it all together, we have that F(t) is a linear polynomial in $t, F(t) \le 1$ on [0, 1], and F(t') = 1 for $t' \in (0, 1)$.

As F(t) is a linear polynomial, it is either strictly increasing/decreasing or constant, as observed by taking its derivative. However, we note either of the strictly increasing/decreasing cases are not possible.

In particular, this would have that for some small $\epsilon > 0$, $F(t' - \epsilon)$ or $F(t' + \epsilon)$ would be greater than F(t') (depending on decreasing or increasing), but this would contradict that $F(t) \leq 1 = F(t')$ on [0, 1].

Thus the only possibility is that F(t) is a constant function equal to 1.

We conclude that $f_t = f_0$ for all $0 \le t \le 1$ using part (a) then; in particular, note that having F(t) = 1 gives us that $||f_t||_p = 1$ for all $t \in [0, 1]$ using our argument in (68).

Thus all the hypotheses of (a) are satisfied, so it is that $f_t = \text{sign} g |g|^{q-1} = f_0$, applying (a) to an arbitrary t and 0. This gives the desired conclusion.

(c) Show that the strict convexity fails when p = 1 or $p = \infty$. What can be said about these cases?

Proof. We present two counterexamples for the cases where $p = 1, p = \infty$. In the case of p = 1, we consider on $L^1([-1,1])$ the following functions:

$$f_0 = \frac{1}{2}, f_1 = |x|$$

Clearly we have $||f_0||_1 = ||f_1|| = 1$. However, we consider the following for some 0 < t < 1:

$$||f_t||_1 = \int_{-1}^1 |f_t| d\mu = \int_{-1}^1 f_t d\mu$$

$$= \int_{-1}^1 (1-t)\frac{1}{2} + t|x| d\mu = (1-t)\int_{-1}^1 \frac{1}{2} + t\int_{-1}^1 |x|$$

$$(69)$$

$$(1-t) + t = 1$$

And so strict convexity is violated.

For the case $p = \infty$, we work on $L^{\infty}([-1,1])$. We consider the following functions:

$$f_0 = \mathbb{1}_{[-1,0]}, f_1 = 1 \tag{70}$$

We clearly have $||f_0||_{\infty} = ||f_1||_{\infty} = 1$. However, considering some point $x \in [-1, 0]$, we note for some 0 < t < 1:

$$f_t(x) = (1-t)\mathbb{1}_{[-1,0]}(x) + t = (1-t) + t = 1 \tag{71}$$

We know [-1,0] is positive measure then, so it follows $||f_t||_{\infty} \ge 1$, but this also violates strict convexity.

As for these cases, all we can say is that we have convexity, which follows from Minkowski's inequality. \Box