

$$2. \quad \frac{\partial^2 w}{\partial t^2} = a \frac{\partial}{\partial x} \left(w^n \frac{\partial w}{\partial x} \right) + b w^k.$$

There are solutions of the following forms:

$$\begin{split} w(x,t) &= U(z), \quad z = \lambda x + \beta t & \text{traveling-wave solution;} \\ w(x,t) &= t^{\frac{2}{1-k}} V(\xi), \quad \xi = x t^{\frac{k-n-1}{1-k}} & \text{self-similar solution.} \end{split}$$

References

Ibragimov, N. H. (Editor), CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1, Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, 1994.

Polyanin, A. D. and Zaitsev, V. F., *Handbook of Nonlinear Partial Differential Equations*, Chapman & Hall/CRC, Boca Raton, 2004.

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/npde/npde2202.pdf