# Reactions per turn

Focusing on generating evaluation results for our specific tasks.

```
In [1]:
        import pandas as pd
        import reactions
        import nltk
        import random
        import matplotlib.pyplot as plt
        from pandas.tools.plotting import scatter_matrix
        from nltk.corpus import stopwords
In [2]: %time r = reactions.link reactions to transcript('data/reactions oct3 4project.csv','corpora
        CPU times: user 9.87 s, sys: 0.56 s, total: 10.43 s
        Wall time: 10.52 s
In [3]: r2 = r.copy()
        #del r2["Sync'd start"]
        #del r2["Sync'd end"]
        del r2["Time"]
        del r2["Speaker"]
        \#r2.head(2)
```

# Political questionnaire data

Simplify party membership into R/D/oth

### Merge political questionnaire with reactions

```
In [7]: %time r3 = r2.merge(p2[['UserID','party','candidate']])
```

```
print 'pre-merge:',len(r2),'post-merge:',len(r3)
#r3.head(2)

CPU times: user 0.63 s, sys: 0.05 s, total: 0.67 s
Wall time: 0.67 s
pre-merge: 189015 post-merge: 189015
```

Limit to reactions to the speaker of the *current turn*.

```
In [86]: r4 = r3[r3.Reaction_who == r3.Speaker_name]
#r4 = r3
print 'before:',len(r3),'current-speaker-only:',len(r4), 'difference:',len(r4)-len(r3), 1.0*
```

before: 189015 current-speaker-only: 156622 difference: -32393 -0.206822796287 percent

### **Group by turn**

Statements

```
In [87]: st = r4.groupby(['statement']).first()[['Speaker_name','Transcript','turn',"Sync'd start","S
```

Turns

```
In [17]: t = pd.DataFrame({'speaker':st.groupby('turn').first().Speaker_name,
                            'start':st.groupby('turn').first()["Sync'd start"],
                           'end':st.groupby('turn').last()["Sync'd end"],
                           #'reactions':r4.groupby('turn').count().Speaker_name,
                           'reactions_oba':r4[(r4.candidate=='obama')].groupby('turn').count().turn,
                           'reactions rom':r4[(r4.candidate=='romney')].groupby('turn').count().turn,
                           'statements':st.groupby('turn').count().turn,
                           'text':st.groupby('turn').apply(lambda x: ''.join(x.Transcript)),
                           'agree':r4[r4.Reaction_what=='Agree'].groupby('turn').count().turn,
                           'agree_dem':r4[(r4.party=='democrat') & (r4.Reaction_what=='Agree')].group
                           'agree_rep':r4[(r4.party=='republican') & (r4.Reaction_what=='Agree')].gro
                           'agree_oba':r4[(r4.candidate=='obama') & (r4.Reaction_what=='Agree')].grou
                           'agree_rom':r4[(r4.candidate=='romney') & (r4.Reaction_what=='Agree')].gro
                           'disagree':r4[r4.Reaction_what=='Disagree'].groupby('turn').count().turn,
                           'disagree_dem':r4[(r4.party=='democrat') & (r4.Reaction_what=='Disagree')]
                           'disagree_rep':r4[(r4.party=='republican') & (r4.Reaction_what=='Disagree'
                           'disagree_oba':r4[(r4.candidate=='obama') & (r4.Reaction_what=='Disagree')
                           'disagree_rom':r4[(r4.candidate=='romney') & (r4.Reaction_what=='Disagree'
                           'dodge_oba':r4[(r4.candidate=='obama') & (r4.Reaction_what=='Dodge')].grou
                           'dodge_rom':r4[(r4.candidate=='romney') & (r4.Reaction_what=='Dodge')].gro
                           'dodge':r4[r4.Reaction_what=='Dodge'].groupby('turn').count().turn,
                           'spin oba':r4[(r4.candidate=='obama') & (r4.Reaction what=='Spin')].groupb
                           'spin_rom':r4[(r4.candidate=='romney') & (r4.Reaction_what=='Spin')].group
                           'spin':r4[r4.Reaction_what=='Spin'].groupby('turn').count().turn,
         tmpstart = pd.to_datetime(t.start)
         tmpend = pd.to_datetime(t.end)
         t['dur'] = (tmpend - tmpstart)
         t.duration = 1.0 * t.dur / 1000000000.0
         t['words'] = t.text.apply(lambda txt: [tok.lower() for tok in nltk.tokenize.word_tokenize(tx
         t['word_count'] = t.words.apply(lambda words: len(words))
         #t['r_per_st'] = 1.0 * t.reactions / t.statements
         #t['r_per_w'] = 1.0 * t.reactions / t.word_count
         #t['r_per_sec'] = 1.0 * t.reactions / t.dur
         t['rps_oba'] = 1.0 * t.reactions_oba / t.dur
         t['rps_rom'] = 1.0 * t.reactions_rom / t.dur
```

```
#t['sd per sec'] = 1.0 * (t.spin + t.dodge) / t.dur
t['sdps_oba'] = 1.0 * (t.spin_oba + t.dodge_oba) / t.dur
t['sdps_rom'] = 1.0 * (t.spin_rom + t.dodge_rom) / t.dur
t['a_to_d_dems'] = t.agree_dem / t.disagree_dem
t['a_to_d_reps'] = t.agree_rep / t.disagree_rep
t['a_to_d_oba'] = t.agree_oba / t.disagree_oba
t['a_to_d_rom'] = t.agree_rom / t.disagree rom
del t['agree']
#del t['agree dem']
#del t['agree rep']
del t['disagree']
#del t['disagree_dem']
#del t['disagree rep']
del t['dodge']
del t['spin']
#del t['r_per_st']
#del t['r_per_w']
del t['start']
del t['end']
del t['dur']
```

#### **Filter**

For now, we get rid of the really short turns.

```
In [88]: MIN_WORDS = 30 # good results
#MIN_WORDS = 20 #
#MIN_WORDS = 0 # this really affects the republican results strongly
t2 = t[t.word_count >= MIN_WORDS]
print len(t),'->',len(t2)
181 -> 70
```

### **Crossvalidation code**

```
fold starts = range(0, len(df)+fold size, fold size)
folds = zip(fold_starts,fold_starts[1:])
accs = []
for (first,last) in folds:
    test rows = df.index[first:last]
    tst = df.ix[test_rows]
    trn = df.drop(test rows)
    if maxent params == None:
        cl = classifier.train(zip(trn.features, trn.label))
        cl = classifier.train(zip(trn.features, trn.label),
                              algorithm=maxent_params['algorithm'],
                              max_iter=maxent_params['max_iter'],
                              trace=maxent params['trace'])
    accs.append(nltk.classify.accuracy(cl, zip(tst.features, tst.label)))
    #if print features:
         c1
#print accs
return {'mean':mean(accs),'stdev':std(accs)}
```

# **N-Gram Type**

```
In [66]: t2['features'] = t2.bigrams
```

### Task 1: Reactions per second

```
In [67]: e1 = t2.copy()
         e1['label'] = e1.rps oba >= e1.rps oba.quantile(.5)
         print 'DT', cv(e1, classifier=nltk.classify.DecisionTreeClassifier)
         print 'ME', cv(e1, classifier=nltk.classify.MaxentClassifier,
                        maxent_params={'algorithm':nltk.classify.MaxentClassifier.ALGORITHMS[0],
                                        'max_iter':25,
                                        'trace':0})
         print 'NB', cv(e1, classifier=nltk.NaiveBayesClassifier)
         DT {'stdev': 0.12453996981544782, 'mean': 0.3999999999999999991}
         ME {'stdev': 0.13997084244475305, 'mean': 0.59999999999999987}
         NB {'stdev': 0.10690449676496977, 'mean': 0.59999999999999998}
In [68]: | e1 = t2.copy()
         e1['label'] = e1.rps_rom >= e1.rps_rom.quantile(.5)
         print 'DT', cv(e1, classifier=nltk.classify.DecisionTreeClassifier)
         print 'ME', cv(e1, classifier=nltk.classify.MaxentClassifier,
                        maxent_params={'algorithm':nltk.classify.MaxentClassifier.ALGORITHMS[0],
                                        'max iter':25,
                                        'trace':0})
         print 'NB', cv(e1, classifier=nltk.NaiveBayesClassifier)
         DT {'stdev': 0.16225452416572211, 'mean': 0.58571428571428563}
         ME {'stdev': 0.18126539343499315, 'mean': 0.75714285714285712}
         NB {'stdev': 0.15907898179514349, 'mean': 0.77142857142857135}
In [93]: e1['label'] = e1.rps rom >= e1.rps rom.quantile(.5)
         train_rows = random.sample(e1.index, len(e1)*9/10)
```

## Task 2a: Majority agrees with speaker THIS IS TASK 2

**Democrats** 

```
In [39]: e2ad = t2.copy()
         #e2ad['label'] = e2ad.agree dem >= e2ad.disagree dem
         e2ad['label'] = e2ad.agree oba >= e2ad.disagree oba
         print 'DT', cv(e2ad, classifier=nltk.classify.DecisionTreeClassifier)
         print 'ME', cv(e2ad, classifier=nltk.classify.MaxentClassifier,
                        maxent_params={'algorithm':nltk.classify.MaxentClassifier.ALGORITHMS[0],
                                       'max iter':25,
                                       'trace':0})
         print 'NB', cv(e2ad, classifier=nltk.NaiveBayesClassifier)
         DT {'stdev': 0.15386185163241442, 'mean': 0.74285714285714277}
         ME {'stdev': 0.13997084244475305, 'mean': 0.82857142857142851}
         NB {'stdev': 0.1743793659390529, 'mean': 0.84285714285714286}
In [95]: e2ad['label'] = e2ad.agree_oba >= e2ad.disagree_oba
         train rows = random.sample(e2ad.index, len(e2ad)*9/10)
         trn = e2ad.ix[train rows]
         tst = e2ad.drop(train rows)
         cl = nltk.NaiveBayesClassifier.train(zip(trn.features, trn.label))
         nltk.classify.accuracy(cl, zip(tst.features, tst.label))
         cl.show_most_informative_features(25)
         Most Informative Features
                           romney = True
                                                   True : False = 11.9 : 1.0
```

```
True : False = 7.7 : 1.0
False : True = 5.7 : 1.0
True : False = 5.3 : 1.0
False : True = 4.8 : 1.0
False : True = 4.8 : 1.0
False : True = 4.8 : 1.0
True : False = 4.8 : 1.0
False : True = 4.5 : 1.0
False : True = 4.5 : 1.0
False : True = 4.5 : 1.0
True : False = 4.3 : 1.0
True : False = 4.3 : 1.0
False : True = 4.0 : 1.0
True : False = 3.8 : 1.0
True : False = 3.8 : 1.0
True : False = 3.8 : 1.0
True : False = 3.3 : 1.0
True : False = 3.3 : 1.0
True : False = 3.3 : 1.0
False : True = 3.2 : 1.0
False : True = 3.2 : 1.0
False : True = 3.1 : 1.0
False : True = 3.1 : 1.0
      qovernor = True
                                                                                 True : False =
                                                                                                                                                 7.7:1.0
          course = True
          making = True
        schools = True
                 rid = True
                came = True
          system = True
  idea = True
place = True
             comes = True
    question = True
answer = True
hire = True
rate = True
  important = True
  problem = True
  approach = True
republican = True
republican = True
               cuts = True
     families = True
                  get = True
             first = True
                ever = True
        instead = True
```

#### Republicans

```
In [43]: e2ar = t2.copy()
         #e2ar['label'] = e2ar.agree rep >= e2ar.disagree rep
         e2ar['label'] = e2ar.agree rom >= e2ar.disagree rom
         print 'DT', cv(e2ar, classifier=nltk.classify.DecisionTreeClassifier)
         print 'ME', cv(e2ar, classifier=nltk.classify.MaxentClassifier,
                         maxent_params={'algorithm':nltk.classify.MaxentClassifier.ALGORITHMS[0],
                                         'max iter':25,
                                         'trace':0})
         print 'NB', cv(e2ar, classifier=nltk.NaiveBayesClassifier)
         DT {'stdev': 0.18126539343499315, 'mean': 0.75714285714285723}
         ME {'stdev': 0.15971914124998499, 'mean': 0.7857142857142857}
         NB {'stdev': 0.1743793659390529, 'mean': 0.44285714285714278}
In [94]: e2ar['label'] = e2ar.agree rom >= e2ar.disagree rom
         train rows = random.sample(e2ar.index, len(e2ar)*9/10)
         trn = e2ar.ix[train rows]
         tst = e2ar.drop(train_rows)
         cl = nltk.NaiveBayesClassifier.train(zip(trn.features, trn.label))
         nltk.classify.accuracy(cl, zip(tst.features, tst.label))
         cl.show most informative features(25)
         Most Informative Features
                                                True : False = 6.1 : 1.0
False : True = 5.8 : 1.0
True : False = 5.5 : 1.0
                              idea = True
                             folks = True
                            course = True
```

True : False =

True : False = 5.5 : 1.0

True : False = 5.2 : 1.0

True : False = 4.8 : 1.0

False : True = 4.5 : 1.0

True : False = 4.5 : 1.0

True : False = 4.2 : 1.0

5.5 : 1.0

four = True

job = True best = True

number = True year = True difference = True small = True saying = True democrats = True energy = True

```
False : True =
   worked = True
                                                        3.8:1.0
                                                       3.7 : 1.0
                              True : False =
 american = True
                             True: False = 3.6:1.0
True: False = 3.6:1.0
True: False = 3.5:1.0
True: False = 3.3:1.0
True: False = 3.3:1.0
3.3:1.0
different = True
     came = True
     hire = True
     seen = True
 million = True
 better = True
spending = True
 percent = True
     look = True
                              True : False =
                                                      3.2:1.0
                              True : False =
                                                      3.1 : 1.0
     work = True
```

## Task 2b: Ratio agree-to-disagree above median

**Democrats** 

```
In [77]: e2bd = t2.copy()
         #e2bd['label'] = e2bd.a_to_d_dems >= e2bd.a_to_d_dems.quantile(.5)
         e2bd['label'] = e2bd.a_to_d_oba >= e2bd.a_to_d_oba.quantile(.5)
         print 'DT', cv(e2bd, classifier=nltk.classify.DecisionTreeClassifier)
         print 'ME', cv(e2bd, classifier=nltk.classify.MaxentClassifier,
                        maxent params={'algorithm':nltk.classify.MaxentClassifier.ALGORITHMS[0],
                                        'max iter':25,
                                        'trace':0})
         print 'NB', cv(e2bd, classifier=nltk.NaiveBayesClassifier)
         DT {'stdev': 0.14568627181693672, 'mean': 0.77142857142857146}
         ME {'stdev': 0.18571428571428572, 'mean': 0.87142857142857155}
         NB {'stdev': 0.11157499537009505, 'mean': 0.81428571428571428}
Republicans
In [22]: e2br = t2.copy()
         #e2br['label'] = e2br.a_to_d_reps >= e2br.a_to_d_reps.quantile(.5)
         e2br['label'] = e2br.a_to_d_rom >= e2br.a_to_d_rom.quantile(.5)
         print 'DT', cv(e2br, classifier=nltk.classify.DecisionTreeClassifier)
         print 'ME', cv(e2br, classifier=nltk.classify.MaxentClassifier,
                        maxent_params={'algorithm':nltk.classify.MaxentClassifier.ALGORITHMS[0],
                                        'max iter':25,
                                        'trace':0})
         print 'NB', cv(e2br, classifier=nltk.NaiveBayesClassifier)
         DT {'stdev': 0.24824658035241429, 'mean': 0.732323232323232326}
         ME {'stdev': 0.19998979669922559, 'mean': 0.64646464646464641}
         NB {'stdev': 0.15907086614165275, 'mean': 0.59595959595959602}
```

# Task 3: Spins+dodges per second above median

### **Hyperparameters**

```
In [89]: gr = t2.copy()
         p = []
         trn_means = []
         tst means = []
         \#MAX = 500
         #gr['label'] = gr.rps_oba >= gr.rps_oba.quantile(.5) # Task 1 ~300
         #gr['label'] = gr.agree_oba >= gr.disagree_oba # Task 2 ~700
         gr['label'] = gr.agree rom >= gr.disagree rom # Task 2
         #gr['label'] = gr.sdps oba >= gr.sdps oba.guantile(.5) # Task 3 ~500
         #gr['label'] = gr.sdps_rom >= gr.sdps_rom.quantile(.5) # Task 3
         #gr['label'] = gr.a_to_d_dems >= gr.a_to_d_dems.quantile(.5)
         #for max feats in range(1,700,100):
         for max_feats in range(1,len(ranked_unigrams),100):
             gr['features'] = gr.words.apply(lambda words: {w:True for w in words if w in ranked unig
             trn ac = []
             tst ac = []
             print max feats,
             for i in range(0,50):
                 print i,
                 train rows = random.sample(gr.index, len(gr)*9/10)
                 #print train rows
                 trn,tst = gr.ix[train rows],gr.drop(train rows)
                 cl = nltk.NaiveBayesClassifier.train(zip(trn.features, trn.label))
                 trn_ac.append(nltk.classify.accuracy(cl, zip(trn.features, trn.label)))
                 tst ac.append(nltk.classify.accuracy(cl, zip(tst.features, tst.label)))
             p.append(max_feats)
             trn means.append(mean(trn ac))
             tst means.append(mean(tst ac))
             print ''
```

```
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 101 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 201 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
```

```
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
301 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
401 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
501 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
601 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
701 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
801 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
901 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
1001 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
1101 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
1201 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
1301 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
1401 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
1501 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
1601 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
1701 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
```

#### Task 1

```
In [48]: figsize(6,5)
    results = pd.DataFrame({'max_features':p, 'train':trn_means, 'test':tst_means})
    results.plot(x='max_features')
    xlabel('Unigram Features')
    title('Naive Bayes Accuracy on Task 1')
    ylim(0,1)
```

#### Out[48]: (0, 1)



```
In [31]: figsize(6,5)
    results = pd.DataFrame({'max_features':p, 'train':trn_means, 'test':tst_means})
    results.plot(x='max_features')
    xlabel('Unigram Features')
    title('Naive Bayes Accuracy on Task 2')
    ylim(0,1)
```

#### Out[31]: (0, 1)



#### Task 2 Romney

```
In [90]: figsize(6,5)
    results = pd.DataFrame({'max_features':p, 'train':trn_means, 'test':tst_means})
    results.plot(x='max_features')
    xlabel('Unigram Features')
    title('Naive Bayes Accuracy on Task 1')
    ylim(0,1)
```

#### Out[90]: (0, 1)



#### Task 3

```
In [53]: figsize(6,5)
    results = pd.DataFrame({'max_features':p, 'train':trn_means, 'test':tst_means})
    results.plot(x='max_features')
    xlabel('Unigram Features')
    title('Naive Bayes Accuracy on Task 3')
    ylim(0,1)
```

### Out[53]: (0, 1)



### In [54]: results

### Out[54]:

|    | max_features | test     | train    |
|----|--------------|----------|----------|
| 0  | 1            | 0.351429 | 0.516508 |
| 1  | 101          | 0.814286 | 0.909524 |
| 2  | 201          | 0.754286 | 0.931429 |
| 3  | 301          | 0.845714 | 0.975238 |
| 4  | 401          | 0.828571 | 0.975873 |
| 5  | 501          | 0.840000 | 0.984444 |
| 6  | 601          | 0.800000 | 0.989524 |
| 7  | 701          | 0.834286 | 0.985714 |
| 8  | 801          | 0.831429 | 0.993333 |
| 9  | 901          | 0.820000 | 0.992698 |
| 10 | 1001         | 0.825714 | 0.996508 |
| 11 | 1101         | 0.825714 | 0.998095 |
| 12 | 1201         | 0.842857 | 0.998730 |
| 13 | 1301         | 0.860000 | 0.998095 |
| 14 | 1401         | 0.805714 | 0.997778 |
| 15 | 1501         | 0.825714 | 0.998095 |

| 16 | 1601 | 0.857143 | 0.998095 |
|----|------|----------|----------|
| 17 | 1701 | 0.825714 | 0.998095 |

### **Smaller range**

```
In [18]: gr = t2.copy()
         p = []
         trn means = []
         tst means = []
         MAX = 500
         gr['label'] = gr.rps_oba >= gr.rps_oba.quantile(.5)
         for max feats in range(1,200,10):
             gr['features'] = gr.words.apply(lambda words: {w:True for w in words if w in ranked_unig
             trn_ac = []
             tst_ac = []
             print max_feats,
             for i in range(0,50):
                 print i,
                 train rows = random.sample(gr.index, len(gr)*9/10)
                 #print train_rows
                 trn,tst = gr.ix[train_rows],gr.drop(train_rows)
                 cl = nltk.NaiveBayesClassifier.train(zip(trn.features, trn.label))
                 trn_ac.append(nltk.classify.accuracy(cl, zip(trn.features, trn.label)))
                 tst_ac.append(nltk.classify.accuracy(cl, zip(tst.features, tst.label)))
             p.append(max feats)
             trn_means.append(mean(trn_ac))
             tst_means.append(mean(tst_ac))
             print ''
```

```
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
11 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
21 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
31 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
41 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
51 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
61 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
71 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
81 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
91 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
101 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
111 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
121 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
131 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
141 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
```

```
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
151 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
161 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
171 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
181 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
191 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
201 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
211 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
221 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
231 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
241 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
251 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
261 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
271 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
281 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
291 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
301 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
311 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
321 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
331 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
341 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
351 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
361 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
371 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
381 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
391 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
401 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
411 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
421 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
431 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
441 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
451 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
461 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
```

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

```
471 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

481 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

491 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49

In [19]: figsize(6,5)

results = pd.DataFrame({'max_features':p, 'train':trn_means, 'test':tst_means})

results.plot(x='max_features')
```

```
Out[19]: <matplotlib.axes.AxesSubplot at 0x8b171f0>
```



## More interpretation

```
In [80]: figsize(10,8)
         BINS=20
         subplot(221)
         #log10(t.a_to_d_dems).hist()
         log10(t.a_to_d_oba).hist(bins=BINS)
         xlabel('log(agree/disagree)')
         title('Reactions of Obama Supporters')
         subplot(222)
         #log10(t.a_to_d_reps).hist(bins=30)
         log10(t.a_to_d_rom).hist(bins=BINS)
         xlabel('log(agree/disagree)')
         title('Reactions of Romney Supporters')
         subplot(223)
         #log10(t2.a_to_d_dems).hist()
         log10(t2.a_to_d_oba).hist(bins=BINS)
         xlabel('log(agree/disagree)')
         title('Reactions of Obama Supporters (All Turns)')
         subplot(224)
         #log10(t2.a to d reps).hist()
         log10(t2.a_to_d_rom).hist(bins=BINS)
         xlabel('log(agree/disagree)')
```

```
title('Reactions of Romney Supporters (All Turns)')
show()
```



```
In [84]: figsize(5,5)
BINS=20

#log10(t.a_to_d_dems).hist()
log10(t.a_to_d_oba).hist(bins=BINS)
xlabel('log(agree/disagree)')
title('Reactions of Obama Supporters')
show()
```



```
2
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 log(agree/disagree)
```

```
In [85]: figsize(5,5)

BINS=20

#log10(t.a_to_d_reps).hist(bins=30)
log10(t.a_to_d_rom).hist(bins=BINS)
xlabel('log(agree/disagree)')
title('Reactions of Romney Supporters')
show()
```



```
In [ ]:
```