Cross-Layer Resource Allocation with elastic service scaling in Cloud Radio access network

Md.Al-Helal Jobayed Ullah Roll:SH-51 Roll:EK-107

Computer Science & Engineering CSEDU

February 24, 2018

Cross-Layer Resource Allocation with elastic service scaling in Cloud Radio access network

Jianhua Tang Wee Pen Tay Tony Q. S. Quek

IEEE Transactions on Wireless Communications, vol 14, no. 9

September 2015

Assumption

Assumption

$$\mu_i, c_i > \lambda_i$$

$$\varphi_i(\mu_i) \ge 0, \forall \mu_i$$

 $\varphi_i(\mu_i)$ is a convex and increasing function of μ_i

- ullet μ_i service rate
- λ_i arrival rate
- $\bullet \ \varphi_i \mu_i = k_i \mu_i^{a_i}$
- $k_i > 0$
- $a_i > 1$

Aim

Minimizing system power consumtion in C-RAN, which consists of three components:

- Power consumption in BBU pool
- Power consumption in fibre links
- Power consumption in RRHs

Delay equation

Delay

$$d_i = \frac{1}{\mu_i - \lambda_i} + \frac{1}{c_i - \lambda_i}$$

- d_i total delay
- μ_i service rate
- λ_i arival rate

Equation

Recieved signal at UE i

$$\hat{x_i} = \sum_{j \in \mathcal{A}} h_{ij}^H w_{ij} x_i + \sum_{k \neq i}^N \sum_{j \in \mathcal{A}} h_{ij}^H w_{kj} x_k + \delta_i$$

- \bullet \mathcal{A} set of active RRHs
- x_i data symbol for ith user
- $w_{ij} \in \mathbb{C}^k$ transmit beamformer for UE i from RRH j
- $h_{ij}^H \in \mathbb{C}^k$ channel from RRH j to UE i
- $\delta_i \sim \mathcal{CN}(0, \sigma_i)$ additive white Gaussian noise(AWGN) at UE i
- $i \in \mathcal{N}$
- $j \in \mathcal{A}$

Equation

Signal-to-Interference-plus-Noise-Ratio(\overline{SINR}) at UE i

$$\mathsf{SINR}_i(\mathcal{A}) = \frac{\left|\sum\limits_{j \in \mathcal{A}} h^H_{ij} w_{ij}\right|^2}{\sigma^2_i + \sum\limits_{k \neq i}^N \left|\sum\limits_{j \in \mathcal{A}} h^H_{ij} w_{kj}\right|}$$

- \bullet σ_i
- ullet ${\cal A}$ set of active RRHs
- $w_{ij} \in \mathbb{C}^k$ transmit beamformer for UE i from RRH j
- $\bullet \ h^H_{ij} \in \mathbb{C}^k \quad \text{channel from RRH} \ j \ \text{to UE} \ i$
- $i \in \mathcal{N}$
- $j \in \mathcal{A}$

Achieveable rate c_i

The achieveable rate $\overline{c_i}$ of UE i should satisfy

$$c_i \le B_i \log(1 + \mathsf{SINR}_i(\mathcal{A}))$$

- B_i bandwidth for UE i
- SINR Signal-to-Interference-plus-Noise-Ratio
- ullet ${\cal A}$ set of active RRHs

Transmitting Power

Each RRH j has maximum transmitting power constraint

$$\sum_{i=1}^{N} w_{ij}^{H} w_{ij} = \sum_{i=1}^{N} ||w_{ij}||^{2} \le E_{j}$$

- $w_{ij} \in \mathbb{C}^k$ transmit beamformer for UE i from RRH j
- $i \in \mathcal{N}$
- $j \in \mathcal{L}$

Optimization Problem

$$\min_{\mu_i, c_i, w_{ij}, \mathcal{A}} \sum_i^N \varphi_i(\mu_i) + |\mathcal{A}| P_f + \frac{1}{\eta} \sum_{i=1}^N \sum_{j \in \mathcal{A}} w_{ij}^H w_{ij}$$

subject to

$$\frac{1}{\mu_i - \lambda_i} + \frac{1}{c_i - \lambda_i} \le \tau_i$$
$$\lambda_i < \mu_i, \lambda_i < c_i$$

$$c_i i \le B_i \log(1 + SINR_i(\mathcal{A}))$$

$$\sum_{i=1}^{N} w_{ij}^{H} w_{ij} \le E_{i}, \quad \forall i \in \mathcal{N}, \quad \forall j \in \mathcal{L}$$

- $\varphi_i(\mu_i)$ VM i's power consumption
- μ_i VM i's computation capacity/service rate/processing rate
- ullet P_f power consumption active fibre links
- $\begin{array}{ll} \bullet & \eta \in (0,1) & \text{ineffficiency} \\ \text{coefficient amplifier in RRH} \end{array}$
- ullet ${\cal A}$ set of active RRHs
- $\begin{array}{l} \bullet \ \ \, w_{ij} \in \mathbb{C}^k \quad \text{transmit} \\ \text{beamformer for UE } i \text{ from} \\ \text{RRH } j \end{array}$
- $i \in \mathcal{N}$
- $j \in \mathcal{A}$

BnB algorithm for QWSRM problem

Input: Q_{init} , A, and $\{(c)$.

Initialize: Obtain c_i by solving $\frac{\delta f(c)}{\delta c_i} = 0$, for $i \in \mathcal{N}$. Set $k = 1, \mathcal{B} = \mathcal{Q}_{init}, u_1 = 0$

 $\gamma_{ub}(\mathcal{Q}_{init})$ and $l_1 = \gamma_{lb}(\mathcal{Q}_{init})$.

Check the feasibility of problem (17) with given

if feasible then

$$c_0 = \tilde{c};$$

else

while $u_k - l_k > \epsilon$ do

Branching:

- Set $Q_k = Q$, where Q satisfies $\gamma_{lb}(Q) = l_k$.
- \bullet Split ${\cal Q}$ into ${\cal Q}_{\rm I}$ and ${\cal Q}_{\rm II},$ along one of its longest edges.
- Update $\mathcal{B}_{k+1} = (\mathcal{B}_k \setminus \{\mathcal{Q}_k\}) \bigcup (\mathcal{Q}_{\mathrm{I}}, \mathcal{Q}_{\mathrm{II}}).$

Bounding:

- Update $u_{k+1} = \min_{\mathcal{Q} \in \mathcal{B}_{k+1}} \{ \gamma_{ub}(\mathcal{Q}) \}$
- Update $l_{k+1} = \min_{\mathcal{Q} \in \mathcal{B}_{k+1}} \left\{ \gamma_{lb}(\mathcal{Q}) \right\}$

end while

Set $c_0 = c_{min}$;

end if

Output: c_0 .

Thank You

