L^P Spaces

(1) Proliminary:

Motation: 1595∞ . its anjugate exponent p' satisfies: 1/p + 1/p' = 1.

O Mölder Inequility:

Thm. Suppose $f \in L^{0}(n)$, $g \in L^{0}(n)$. $f \in L^{0}(n)$. $f \in L^{0}(n)$. Busines. If $f \in L^{0}(n)$ and $f \in L^{0}(n)$. Busines. If $f \in L^{0}(n)$ and $f \in L^{0}(n)$.

Pf: 10) P=1 or oo. it's rrivial.

2) 1<p< 00. Apply Young's Inequility:

ab = \frac{1}{p}a^p + \frac{1}{p}b^p', \tan. b \geq 0.

Opf: Take log. by Jeasen inequility)

Whoh. Lot 11flip=119112 = 1.

Go. $1/p = \frac{\hat{r}}{2} \frac{1}{pi}$ fiel" $f = \frac{\hat{r}}{i} f_i$ Then. $f \neq L'$ If $II_{i} = \frac{\hat{r}}{i} II f_{i} II_{i}^{pi}$. If: By induction on n: $f = \frac{n!}{i!} f_{i} \cdot f_{n}$. 61. ft l'Ol2. 1=p=2=00. Then fel. (0<x<1)

+ p=r=2. Besilus. Uflli = 11fllip 11fllip 11fllip 1/r=0/p+1-1/2.

11. 111=111-111-.

Gr. $|\Lambda| < \infty$. Then $L^{p} \leq L^{2}$. $|\leq 2 \leq p \leq \infty$. $|L_{hi}| \leq L_{hi}$ $|Pf| = ||f||_{L^{\infty}} \leq ||f||_{L^{p}} ||\Lambda|^{\frac{1}{p} - \frac{1}{p}}.$ if $P \geq 2$.

3 Jensen Inequility:

IN $1 < \infty$. $j : 1k \rightarrow c - \infty$, $t \neq 0$. $ls. c. GnVex. <math>j \neq t \sim 0$. $f \in L'(n)$. $f \in D(j)$. $n \in X$. And $j \in f$ $\in L'(n)$. Then $f \in L'(n)$. $f \in D(j)$. $n \in X$. And $j \in f$ $\in L'(n)$. Then $f \in L'(n)$. $f \in D(j)$. $f \in J(n)$. $f \in L'(n)$. $f \in L'(n)$. Then $f \in L'(n)$. $f \in L'(n)$.

(j* = j) < in In j (fix)) km.

(3) Basic properties of l'span:

7hm. I' is a vector space. II. IIp is a norm
for 15p = 0

1f. Chark by Minkersky. Inspecility.

First: We Non't discuss about l'space. When 0<9<1. Because 11.11/1 isn't a norm (It losset satisfy triangle inequility) 6.1. P== (n+b) * n+b. but 2(n+b). Moreover, there're no BLF's on L'. 0<p<1. when n = ik'. Lexcept l = 0). Pf. If I is monthivial BLF on LOCK). Lat Fix) = 11 X 50.x1 . 1 fex) - figo1 = 1 de x Eq. x 3) | < M | | X Eq. x 3 | | LP = M 1x-717. since +>1. : If cx>1=0. 4 x 30. Symmetrically, Ifix>1=0. 4x. : $(C \chi_{\text{EXM}}) = (C \chi_{\text{EM}})$ Y fe L'aik). Approxi by step fonctions lef) 30. 8 fel'eik) :-130.

7hm. l'ans is Barach span. 415pso.

Pf: 1) $P = \infty$: $|fm - fn| \le f$ in N/E_k . $M(E_k) = 0$. Let $E = UE_k$. : (fm) Converges in L(n/E).

2) I = p < 00: Extract Ifac). Il fac facilité à .

Let quex) = \(\tilde{\text{T}} \) | facilité = \(\text{L}' \) (N). \(\text{VEZ}^t \).

Besides, \(\text{L} \) | q \(\text{Resident} \) \(\text{T} \) = 1. \(\text{L} \) \(\t

7hm. fr -> f in LP. If sulf3 = LP(n). I = p = n.

Then exists (for) = (for). ht L'ens. st.

i) for -> f. n.z. ii) Ifazi & h. 4k. n.z.

If: i) per is trivial.

2) We have showed before: $\exists c f_{nk}$) $f_{nk} \longrightarrow f_{cx}^*$. And $f^* = f_{can}$.

Let $g + |f^*| = h$. $f = \lim_{N \to \infty} \sum_{i=1}^{N} |f_{nk} - f_{nk}|$

(2) Durl of L'ens spans:

1 1 P < 00:

7hm. L' is reflective for 1 = p = -.

Actually, L' is uniformly convex. 1 < p < n.

2') $1 :

Lemma & Clarkion's Second Inequility.

<math display="block">
\frac{1 + r}{2} ||_{p}^{p'} + || \frac{f - r}{2} ||_{p}^{p'} = \left(\frac{1}{2} c ||f||_{p}^{p} + ||g||_{p}^{p}\right)^{p}, \forall f, g \in l^{p}.$

Three CRiesz Representation) $1 . <math>\forall \phi \in (1^p)^+$. Then exists a unique element $u \in L^{p'}$. St. $< \phi, f > = \int_{\Omega} u f \, k m$. $\forall f \in L^{p}$. $||u||_{p'} = ||\phi||_{cU^{p'}}$. $i.e. (L^p)^+ = \int_{U^{p'}} u f \, k m$. $U^{p'} = ||\phi||_{cU^{p'}}$.

Pf: Gonsider $T: L^{p'} \longrightarrow (L^{p})^{*}$ $\times Tu, f > = \int u f \cdot V f \in L^{p}$. $u \mapsto Tu$

Jince 1<7n, f>1 < 11 v 11 Le 11 f 11 Le ... Tu & (L')*. Well- Lef.

Besides. 11 Tull (L') = 11 mil LP'

Let fo = INIP'2 U .. Hulle = 1 < Tr. fo> | < 11 Tr. 11 11 fo 11 Le.

: 11 Tullest = 11 uller i.e. 11 Tull = 11 uller. Tis isomosty.

For surjective: Telp's is closed. LT is isometry,

prove: Tel's lease in (L')*.

If ht (LP)**. <h. Tn>=0. Vnel".

By reflective ptlp. : <Tu, +> =0. choose u= 1h1p-2h. h=0.

7hm, CociR") is done in L'air". Ispen.

Pf: 1) For $f \in L^{p}(\mathbb{N}^{n})$. $\forall 3>0$. $\exists f \in L^{p}(\mathbb{N}^{n})$ $k = supp g \text{ is } cpt. 5t. ||f-g||_{L^{p}} \leq \Sigma$ $\text{Let } g = \gamma_{\overline{B(p,n)}} T_{n}(f). \text{ trunstion of } f(x).$

20) I git Colle". st. 11 gi-q 11 Li = 8.

Since It L'CK". Colle" Lonso in L'Ole".

Suppose 11 gillo = 11 gar. or Let gi= Tigue(9,).

3°) Chark 119-9:1121 = 119-9:112 = 2119112 = 68.

g = 9. . 9. inf. chiose 6 Small cromph.

Def: measure space (n.M.m) is separable if M
is countably generated. If a is metric space
and M consists of Breel sets, Call it separable
measure space.

7hm. If N is separable measurable space. Then
L'en is separable. 15p=26.

Pf: Only unsider $N = iR^N$. Then M = 6 cIR = Ti(cai,bi) $1 \text{ ai.bi} \in 0$. $\forall 1 \leq i \leq N3$) $\stackrel{\Delta}{=} G c R$).

Claim: $E = I \times R \mid R \in R3$ dense in $L' \in N3$.

First $\exists g \in C_0 C_0 R^{L}$, $m \in G_0 L' \in N3$.

Then approxi g by E.

7tm. (Riesz Representation)

If $\phi \in (L')^*$. There exists unique $n \in L^{\infty}$. St. $\langle \phi, f \rangle = \int_{\Omega} n f \, \Lambda m \cdot \forall f \in L'$. Besides. $||u||_{L^{\infty}} = ||\phi||_{(U)^*}$. i.e. $(L')^* = \int_{i \in \mathcal{D}} L^{\infty}$.

Pf: Suppose N is σ -measurable. $\Lambda = U \Lambda n$.

Denote $\chi_n = \chi_{nn}$. |Nn| < n. $\forall n$.

1') Uniqueness: $\int_{\Gamma} (\mu_1 - \mu_2) f \ dm = 0. \ \text{let } f = [sgn(\mu_1 - \mu_2)] \gamma_n.$

- 2) Existence:
- i) Construct $\theta(x) \in l^2(n)$. Choose $l \neq n l = l^2$:

 Let $\theta = \alpha_n$. $x \in \mathcal{N}$ and $\theta = \alpha_n$. $x \in \mathcal{N}$ and $\theta = \alpha_n$.

 It's for $\forall f \in l^2(n) \Rightarrow \theta \neq \ell^2(n)$.
- ii) $Pq \cdot f = \langle \phi, \theta f \rangle$ is BLF or $f \in L^2(n)$.

 By Riesz Representation on P = 2. $\langle \phi, \theta f \rangle = \int u f$. $\exists u \in L^2(n)$. Let $V = \frac{u}{\theta}$ $\therefore \langle \phi, \theta f \rangle = \int v \cdot \theta f$. Let $f : \eta \times n/\theta$. $\eta \in L^2(n)$. $\therefore \langle \phi, \eta \times r \rangle = \int v \cdot \eta \times n \wedge n$. $\forall \eta \in L^2(n)$.
 - iii) Claim: VE (= N). ||V||_ = ||q||a||.

 \(\rightarrow \text{Prive } A = 1 \ V(x) > C > || \phi || \} is A-nn||.

 Test with \(7 = \text{XA. for } \text{VA.}.
 - iv) Claim: < \phi, h> = \int Uhdm Conti on \telian;

 by truncation: \q = \chi_n \text{Trunch}. \rightarrow h in L'

 Besikes \(\phi \text{Ull}_{\phi} \times \text{IVIII_{\phi}} \q \text{11 \quad \text{Ull}_{\phi}} \q \text{11 \quad \text{Ull}_{\phi}}.

from the l'en is never reflective except where a consists of finite number of atoms, in that case l'en is finite himensional.

9f: 19) By untradiction: L'en) is reflective.

- i) \$270. AWEM. St. O < MLW) < C.

 A(Wr). M(Wr) & O. M(Wr) > 0. &n.

 Let un = \frac{\chi_{\text{IXWML'}}}{\text{IIXWML'}}. A(Mr). Unk \rightarrow U.

 Test with \(\chi_{\text{Wj}}\). By Pomination Convergence 7hm.
- II) I 2 > 0. St. Mew) > 2. Ywem, mew) > 0.

 Then N is atomic w. s.t. M. with

 Conntable atoms (an). Lin) = 1'.

 But 1' isn't reflexive.
- 2") Suppose capi, is nooms. Then for folion.

 only unsider values or X=nk. 1sk = n.

 if f(x)= q(x). a.c. M. if f(ak)=q(ak) y16k = n.

3) P= 10:

. Note that L = (L')*.

proporties: i) Bloo upt in oct. L')

- ii) (fn) = L-. I(fnk) -f in G(L.L)

 if (fn) is bounded.
- iii) Lo isn't reflexive except 1 ansists of finite number of atoms.

iv) Local ish't separable except when a consists of finite number of atoms.

Pef: (N, M, M) is nonntenic. if $\forall A \in M. M(A) > 0$. $\exists B \in A. B \notin M. J t. 0 < M(B) = M(A)$. M is conti on M if $\forall t. 0 < t < M(N). Then

<math>\exists W \in M. J t. M(W) = t.$

prop. M is conti = M is nonatoric.

Pf: (=) It's trivial.

(E) If $\exists c > 0$. $ho \in h$. st. M(E) = c. $A = I \text{ fom } | m(k) < c. \} \text{ with } | s_i' = st.$ $k_i \leq k_i \leq k_i.$ $B = I \text{ fem } | m(k) > c \} \text{ with } | s_i' = st.$ $k_i \leq k_i = k_i.$

Apply Zorn's Lemma on (A, <1). (B, <1).

We obtain max elements R.R. m(R/6) >0.

But no WEM. St. 0 < M(W) < m(R/6).

Otherwise. Come into a Contradiction.

fernin to the pf:

Lomma. E is Branch span. If 3 (0i): 62. satisfies:

(M) I is unconstable (b) Oin Oj= &. Vi=j&I.

(6). Oi open. nonempeg. ViEI. Thom Eisn't separable.

Pf: By contradiction:

Suppose (an) is bountable Lorse.

I Ani E (an) noi. b: Fai Then I cantable

which violates (a).

- → Grisiner to construct Oi, it I.
- 1°) Claim: A cvi)itz. It. I is uncompath. With.

 MCW; AW;) >0. Y i + i & Z.

sinu N = Na VAA. Na is atoric. Al is nonatoric.

If NA + &. Then Ut. O < t < MINAI. I WEEM.

5t. M: Wt) = t. (Wt) OCTOMINA) is what we need.

If NA = 8. Then sina Na = (An)rest.

Let WA = U [Ax3. (WA)A = N is what we need.

2) $0i = I f \in L^{\infty}(n) \mid 11f - \chi_{w_i} \mid_{n=\pm}^{\pm} \}$ is what we need. Since $11 \chi_{w_i} - \chi_{w_i} \mid_{n=1}^{\pm} = 1$, if $i \neq j$.

(3) 1º segnena spans:

ii) Denote: $C = E \times E \cdot |R^{w}| \lim_{k \to \infty} X_k = exists \}$. $C = E \times E \cdot |R^{w}| \lim_{k \to \infty} X_k = 0 \}.$

Then (C. 11.11,) = (C. 11.11,) = 10.

Holder Inequility in Liserese form:

1 = Xxxxx 1 = 11x112 11x112 for x & 2. 7 & 2.

O proporties:

- i) l' is Barnach space. $\forall 1 \leq p \leq -\infty$.

 Pf: $l' = L^p(\Lambda)$. When $\Lambda = N$, M is counting measure.
- ii) 1° is reflexive, even uniformly convex. & 1-p < -.
- iii) 1º (1< p< 10). C. C. are suparable.

Pf: Chesk: $D = E(XK) | XK \in A, XK = 0. \forall k \geq N. N \in \mathbb{Z}^{+} S$.

is lenge in Co

So D+201.1...). 2+ a perse in C.

Permit: l^{α} isn't Separable.

If $A \subseteq l^{\alpha}$. Countable. $A = (a^{k})$.

Let $b_{k} = \begin{cases} a_{k}^{k+1} & a_{k}^{k} \in I \\ 0 & a_{k}^{k} > I \end{cases}$ But $||b-a^{k}||_{\alpha} \geqslant 1$. $|b \notin \overline{A}|$.

 $|V| = \ell^{2} \text{ for } |z| = 2^{2} - \frac{1}{2} |x|^{2}$ $|P| = ||x||^{2} = ||\overline{z}||x||^{2} ||x||^{2} ||x||^{2}$ $= ||x||^{2} ||x||^{2} ||x||^{2} ||x||^{2} ||x||^{2}$ $= ||x||^{2} ||x||^{2} ||x||^{2} ||x||^{2}$ $= ||x||^{2} ||x||^{2} ||x||^{2} ||x||^{2}$

Female: It's totally reversed in L'CA).

Because VK -0. its order will

increase when P. Then it's easy

to converge.

@ Representation:

Thm, $1 = p < \infty$. If $\phi \in (A^p)^*$. Then exists a unique $\mu \in A^p$. St. $\langle \phi, \chi \rangle = \sum_{i=1}^{K} \mu_i \chi_i \chi_i k$.

If $i = A^p$. Besides $||\phi||_{(A^p)^*} = ||\mu||_{A^p}$.

Pf: Only ansign ϕ on $||c_k||_{k \in \mathbb{Z}^+}$. $e_k = (0,0\cdots 0,1,0\cdots 0)$, $e_k = 1$. $e_k = 0$. In k = 1.

Set $\mu_k = \phi(e_k)$. Check $||\mu|| = ||\phi||$.

(let $\chi = (\chi, \dots, \chi_n, 0 \dots)_i \chi_k = |\mu_k|^{\frac{p}{2}} \mu_k$)

 $\frac{7hn}{\sqrt{hn}} + \phi \in (C_0)^* \cdot \exists unique u \in C'. \text{ St.}$ $<\phi, x > = \exists \mu_{\mathsf{F}} \chi_{\mathsf{F}} \cdot \forall x \in C_0. \text{ Besides}$ $\|\mu\|_{C_0} = \|\phi\|_{(C_0)^*}.$

 $\frac{7hm}{} \cdot \forall \phi \in (c)^{*}. \quad 7hen exists \quad (u, \chi) \in d'x \cdot \mu'.$ $5t. \quad \langle \phi, \chi \rangle = \tilde{\Xi}_{u \notin \chi_{lc}} + \chi \lim_{k \to \infty} \chi_{k}, \quad \forall \chi \in c.$ $\text{Besides}. \quad \|u\|_{L^{s}} + |\chi| = \|\phi\|_{co}^{*}.$

Pf: Let X = 9 + ne. $a = lim X_k$. $L = \overline{\Sigma}ek$.

Then $g \in C_0$. Consider $g(e) = \lambda + \overline{\Sigma}rk$.

Which is reduced to C_0 case.

Check it's isometry by $X = \{ \begin{cases} X_k = Sgn(kk), k \geq N \\ 2k = Sgn(k), k \geq N \end{cases}$.

600. L'. 100, C. Co aren't reflexive

(4) Gravolation and Regularization:

1 Young Inequility:

 $\frac{1}{\Gamma} + 1 = \frac{1}{p} + \frac{1}{2}$. where $1 \leq p \cdot q \cdot r \leq \infty$. And $f \in L^{p} \in L^{p} \cap R^{p}$, $g \in L^{p} \in L^{p} \cap R^{p}$. Then we have: $f \neq q \in L^{p} \cap R^{p}$. If $f \neq q \mid r = ||f||_{p} ||q||_{q}$.

i) fex-nogenois integrable on y for n.e.x.

15: \[| f(x-n) g(n) | = \[|f|^{\tau_1} g|^{\theta_1} f(x-n) g'^{\theta_1} |

= 11 f "11, 11 7 811, 11 fex-y, gin, 11, 3. = 1

 $\therefore \begin{cases} T = P/2 \\ \beta = \frac{q}{p} \end{cases}$ Note that $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1$

Then I fix- 7, gogs 1 & L'. (by Fubini Thm on the lose term)

. 11 fx 711, = 11 f11 p 11 7112.

Gr. When I = ao. Then frq elicipis of Cipis,

if 1=p=00. then, frq ->0 cixi-on)

Pf: Exists (fn). (qn) = Coupe's. 50.

In \rightarrow f in Lp. In \rightarrow q in L2.

Note that fat qn & Coupe's. Il ftg-fat quill_ \rightarrow 0.

Flowe: Coupe's = Coupe's. it's the point.

Prop. $f \in L^{c}(R^{r})$. $g \in L^{c}(R^{r})$. $h \in L^{r}(R^{r})$.

Where $\dot{\tau} + \dot{\tau} = 1 + \dot{\tau}$. $1 = P \cdot 2 \cdot r = -$. Departe F(x) = F(x). Then $\int (f * q) h = \int f(\check{q} * x h)$ $Pf: (f * q) h \in L^{c}(R^{n})$. it's easy to shock

@ Support :

Prop. $f \in L^2(\mathbb{R}^n)$. $g \in L^2(\mathbb{R}^n)$. $\frac{1}{p} + \frac{1}{2} > 1$.

Then $Supp (f*1) \subseteq Supp f + Supp f$.

Pf: fx7 = S fex-nogenda : if x a suppf+suppq

Then x = suppf n supp 7 = & = f*1=0

femole: If supply supply were opt. Then

supply fixed is opt as well.

since supply supply is opt. And

supply fixed is close.

3) Continuity:

Then tog & CUK's.

81: $f(x-\eta)$ geys is integrable. Check to $\forall x n \rightarrow x$. Since $|f \neq g(x_n) - f \neq g(x_n)| \leq |f(x-\eta) - f(x_n-\eta)| ||g||_{L^2}$.

Prop. $f \in C_0^k \cap R^m$, $g \in L_{loc} \cap R^m$, $l \in L_0^k \cap R^m$, $l \in$

A Mollifiers:

Ptf: A set of mollifiers $(\ell_n)_{n\in\mathbb{Z}^+}$ satisfies: $\forall n\in\mathbb{Z}^+$ $\ell_n \in C_{\infty}^{\infty}(\ell_n)$. Supplied $= B(0,\frac{1}{n})$ $\int \ell_n=1$. $\ell_n\geq 0$ $\ell_1 = \ell_1 = \ell_2 = \ell_$

Pf: If, & Coupers. fi -> f in L'.

Then ln+fi -> f, in L'. (n->0)

Since supplication is upt.

Cor. For N = IR". Cool) is lease in LPCN). Y 15 P = 00.

Pf: Set $\overline{f}(x) = \int_0^{f(x)} x \in \Lambda$: $\overline{f} \in L^0(\mathbb{R}^n)$ Consider exhaustion of $\Lambda = \overline{U} \times h$. $\overline{h} \cdot \operatorname{opt}$.

Set $q_n = \overline{f} \cdot \chi_{\times n}$. $f_n = \ell_n \times f_n$.

Let $f_n = \{ |x| \leq n, \ell(x, \Lambda^n) \geq \overline{h} \}$ for $\operatorname{Supp} f_n \leq \Lambda$.

Check $f_n \in C^{\infty}(\mathbb{R}^n)$ $\longrightarrow f$. in L^p .

Remork: For p:00. Coops is line in
Looms with octilis.

Lemma. $\forall u \in L^{2}(R^{n})$. If $(3n) \in L^{-1}(R^{n})$. It. $||3n||_{L^{m}} \leq ||3n| \rightarrow 3$, a.t. Then Set $||3n||_{L^{m}} \leq ||3n| \rightarrow 3$, a.t. Then Set $||3n||_{L^{m}} \leq ||3n| \rightarrow 3$, a.t. Then Set $||3n||_{L^{m}} \leq ||3n| \rightarrow 3$, a.t. Then Set $||3n||_{L^{m}} \leq ||3n| \rightarrow 3$, a.t. Then Set $||3n||_{L^{m}} \leq ||3n|| \rightarrow 3$, a.t. Then Set $||3n||_{L^{m}} \leq ||3n|| \rightarrow 3$, a.t. Then Set $||3n||_{L^{m}} \leq ||3n||_{L^{m}} \leq$

= 114110 (114110 11 6.74-611, + 117-211-1411)

- 2') let l= XB & [" L'K" >. Y 15 P = ~.
- > Then for ut Locar, we can find (un) ∈ Cocar)

 St. (a) Hunlin = Hull (b) Vn → u, a.e. on a.

 (b) un + u. in scla.L')
 - Pf: N = V k n exhaustion of n. Let $S_n = \chi k n$.

 Let $\bar{u} = \begin{cases} 0 & \chi \notin N^2 \\ u & \chi \notin N \end{cases}$. $V_n = S_n \star (\bar{u} \chi \notin N) \notin C_n^{or}(\bar{k})$ For $\forall B_n = B(0,n)$. $\exists (V_k^n) \in (V_k)$. $V_k^n \to \bar{u}$ in B_n .

 Since $V_k^n \stackrel{L'}{\longrightarrow} \bar{u}$ in B_n . Let $U_n = V_n^n$. Done.

Cor. u & L'in (N). 56. Inf Am = 0. 4 f & Common Then u = 0. a.e. on r.

Pf: prove: $\int nf \not= mux = 0$. $\forall f \in L^{\infty}(n)$, $\int nppf is cpt$.

Then Let $f: Sgn(n) \not= m : N=0 \forall x \in k_n . \forall n$.

Note that $ln \not= f \in C^{\infty}(n) . \longrightarrow f in L'$.

I lot $f \mapsto f : n \in Sp$ Domination Converge $f : m \in Sp$.

Pernok: It can be applied to Yue l'ens. YISpson.

Since UEL'(N) = uel'n(n) = uelin(n)

(5) Strong Components in LP:

Denote: Th fix) = fix+h)
We will introduce Ascoli Thm in L'space:

Thm: F is bounder in L'iR". ISP<00.

And equianti in L'. i.e. 117ht-flle >0. paiform

with te F. Then Fln is opt in L'en.

for Y n & Mur". men.

- Pf: 1) Approxi fef by lnxf
- 2) Denote $M = l \ln x f | f \in F$.

 Note that: $|| \ln x f ||_{m} = || \ln ||_{L^{p'}} || f ||_{L^{p}}$ $|| \ln x f (x_{i}) \ln x f (x_{i}) || = || \nabla \ln x f$
- 3') $\forall n \in \mathbb{R}^n$, $m(n) < \infty$. Then $\forall \xi > 0$. $\exists w. ept.$ $5t. w \in \mathbb{R}$. $||f||_{L^p(n/w)} = \xi$. $\forall f \in F$.

 by approxi of lat f.
- 4) L'ECR) is complete metrizable space

 : prove: Fln is totally bombed.

 By 2') AAR Ascoli. Alw is upt

 : MIN = V Bigi. E), totally back

 New them to cover Fln

ferrit: We can't conclude F has cyt

Closure if it satisfies conditions above

6. F is bounded in l'(i,k'). $l = p < \infty$. Equipment in l^p . Moreover. $\forall s > 0$. $\exists l \in M(i,k')$. bounded.

5. If $||f||_{L^p(i,k')/n} = s$. $\forall f \in F$.

Then F has upt closure in l'(i,k''). $Pf: Fln = VBig(i,s) \Rightarrow F = VBig(i,2s)$

from K: The converse is true:

If $F = L^P(c, K^n)$. $1 = p = \infty$. Opt. Then $F = \tilde{U}B(g)$. So Convert F to finite elements set!

Gr. g & L'ir", B = L'ir", boman sor. \frac{1}{9} + \frac{1}{3} > 1.

1= p. 1 < p. 7hin g * B | n has opt closure.

in L'in. Y n & Mir", min) = ...

Pf: 1) J*Bln is bowerd

2) 11 Th (9*f) - 9*f||L" = 11 (Th g-9)*f||,

= 11 Th g-9 11 p 11 f 112.

11 Th g-9 11 p → 0 (h→0) since Cicili) ≥ L'exts

By the thm above. Done.