ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Вопрос по выбору, 4 семестр

Генерация второй гармоники в нелинейном кристалле

МФТИ 2019

Студенты Ян Логовский Мария Чикунова Преподаватель Владимир Владимирович Усков

1 Теория

Начнём с выявления причины появления второй гармоники. Для этого нам придётся рассмотреть электрон в решётке кристалла как линейный осциллятор. Он совершает вынужденные колебания под действием внешнего электрического поля E(t) светового излучения лазера и возвращающей силы F(x). Сразу отметим, что возникновение нелинейных эффектов может происходить только при величинах E(t), сравнимых с величиной внутриатомного поля $E(t) \sim 10^8 \div 10^9 \frac{V}{cm}$

$$m\ddot{x} = eE(t) + F(x) \tag{1}$$

При больших x, решая (1), необходимо учитывать не только линейный по x член в разложении в ряд Тейлора F(x), но и квадратичный. В таком случае решение будет иметь вид:

$$x(t) = \frac{\frac{e}{m}E_0}{\omega_0^2 - \omega^2}cos(\omega t) + \frac{F''(0)}{4m\omega_0^2} \left[\frac{\frac{e}{m}E_0}{\omega_0^2 - \omega^2}\right]^2 + \frac{F''(0)}{4m} \left[\frac{\frac{e}{m}E_0}{\omega_0^2 - \omega^2}\right]^2 \frac{cos2\omega t}{\omega_0^2 - (2\omega)^2}$$
(2)

Видим, что здесь появляется вторая мода колебаний с частотой 2ω . А так как вторичные волны появляются как раз за счёт колебаний элетронов, то на выходе из нелинейного кристалла получаем свет с двумя длинами волн: $\lambda = \frac{2\pi c}{\omega}$ и $\lambda/2$.

Теперь нужно учесть то, что у кристалла есть какой-то размер, соответственно необходимо просуммировать вклады генерации вторичных волн с частотой 2ω от разных его частей. Откуда получаем:

$$A^{(2\omega)} \sim \frac{\sin(k_0(\omega)\Delta nz)}{k_0(\omega)\Delta nz} \tag{3}$$

Для наибольшей интенсивности излучения второй гармоники необходимо, чтобы $\Delta n = n(2\omega) - n(\omega) = 0$. Но в области нормальной дисперсии - $\frac{dn}{d\omega} > 0$, откуда получаем $n(2\omega) > n(\omega)$. Однако мы всё-таки можем достичь того случая, когда $\Delta n = 0$, воспользовавшись свойствами анизотропных кристаллов:

- ullet в них волна расщепляется на обыкновенную с n_0 и необыкновенную с n_e
- показатель преломления необыкновенной волны зависит от направления распространения, поэтому, построив сечение поверхности $n_e(\omega)$ в координатах направлений распространения волны в кристалле получим эллипс, а не окружность как в случае обыкновенной волны.
- в отрицательных кристаллах $n_e n_0 < 0$ в направлениях, отличных от оптической оси (ось, где распространяющийся луч не испытывет двойного лучепреломления на рисунке ось Z).

При достаточной величине двулучепреломления $|n_e - n_0|$ возможно пересечиние эллипса $n_e(2\omega)$ и сферы $n_0(\omega)$. Тогда в получившемся направлении θ_0 с оптической осью для *отрицательных* кристаллов получим:

$$n_0(\omega) = n_e(2\omega) \tag{4}$$

Угол θ_0 называется углом синхронизма, именно в направлении θ_0 с оптической осью можно наблюдать генерацию второй гармоники. Небольшое отклонение от данного направления ведёт к быстрому затуханию данной гармоники, что будет видно при исследовании зависимости $I_{2\omega}(\Delta\theta)$.

2 Установка

Рис. 6: Схема установки для изучения второй гармоники.

Излучение лазера 1, пройля ослабитель О. и линзу-корректор Л., попадает в нелинейный кристалл Н.К., где его частота удваивается. Излучение удвоенной частоты далее попадает в фотоприёмник Φ .П. и регистрируется осциллографом 4.

3 Интенсивность второй гармоники от интенсивности возбуждающей

В данной таблице показаны значения интенсивности основной и второй гармоники от номера ослабителя, откуда можем построить зависимость $I_{2\omega}(I_{\omega})$.

Как видно из формулы (1) - слагаемое с удвоенной частотой содержит амплитуду возбуждающей волны в квадрате. Следовательно, интенсивность излучения $I_{2\omega}$ будет пропорциональна квадрату интенсивности I_{ω} . На графике интенсивности измерены в относительных величинах, однако качественно можно наблюдать, что наклон графика растёт, что соответствует квадратичной зависимости.

n	1	2	3	4
I_{ω}	4.4	3.6	3.2	2.6
$I_{2\omega}$	4.2	2.4	1.8	1.2

4 Исследуем зависимость $I_{2\omega}(\Delta\theta)$

При отклонениях от угла синхронизма θ_0 интенсивность второй гамормоники быстро падает. Это вызвано большим влиянием расходимости световых пучков.

$\Delta\theta$, grad	3'1"	6'11"	7'42"	9'05"	10'10"	11'01"	12'02"	13'32"	14'31"
$I_{2\omega}$	4.2	3.6	3	2.4	1.6	1.2	0.8	0.4	0

5 Находим коэффициент преобразования

Интенсивность света с двумя компонентами $I_{\omega+2\omega}=7.8$ Интенсивность света без второй гармоники $I_{\omega}=7.6$ Откуда коэффициент преобразования $K=\frac{\Delta I}{I}=0.0256\approx 2.6\%$

Малость коэффициента преобразования подтверждает, что энергия второй гармоники черпается из первичной волны, мощность которой уменьшается по мере углубления в среду. Притом мощность волны с удвоенной частотой квадратично зависит от мощности первичной волны.

6 Вывод

Мы исследовали эффект генерации второй гармоники. Постановкой эксперимента убедились в наличии определённого направления в кристалле, в котором возможна генерация. Применили на практике способ преобразования инфракрасного излучения в видимое.