

COMP90014

Algorithms for Bioinformatics
Week 9B: Dimensionality Reduction II

- 1. Dimensionality Reduction
- 2. Multi-dimensional scaling (MDS)
 - 3. ISOMAP
 - 4. t-SNE
 - 5. UMAP

Linear projections: PCA and SVD

PCA: Finds orthogonal vectors (components) to represent as much variance is as possible. Decomposing the covariance matrix, $C = W\Sigma W^T$. See this animation.

SVD: More efficient
Can interpret PCA as a SVD on the
centered covariance matrix

<u>StatQuest: Principal Component Analysis</u> (20 minute video from Josh Starmer)

- 1. Dimensionality Reduction
- 2. Multi-dimensional scaling (MDS)
 - 3. ISOMAP
 - 4. t-SNE
 - 5. UMAP

Multi-Dimensional Scaling (MDS)

- feature extraction
- produces a lower-dimensional representation that preserves pairwise distances or dissimilarities
- n for visualising data
- sometimes called Principal Coordinates Analysis, but it's not the same as PCA!

MDS

$$D(x_i, x_j) = \begin{cases} a & b & c \\ a & 0 & 1 & 1 \\ b & 1 & 0 & 1 \\ c & 1 & 1 & 0 \end{cases}$$

$$D(x_i, x_j) = \begin{pmatrix} a & b & c & d \\ 0 & 1 & 1 & 1 \\ b & 1 & 0 & 1 & 1 \\ c & d & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$

- start with a pairwise distance matrix or dissimilarity matrix
- we can represent three points that are equally-spaced in 3D exactly in 2D
- we can represent four points that are equally-spaced in 3D exactly in 3D ...

- a... but not in 2D
- in general, we need N-1 dimensions to exactly represent pairwise distances between N samples

Types of MDS

Metric (distance-based) MDS

- Minimise stress
- Stress is the error in the distances (lack-of-fit measure)
- Try to preserve distance between each vector x_i , x_j

$$\mathsf{Cost} = \sum_{i < j} \left(d_{ij} - \hat{d}_{ij} \right)^2$$

actual cost/stress used may be more complex

Non-metric MDS

Try to maintain original ranking of pairwise distances

Interpreting low-dimensionality visualisation

- clusters may represent real clusters
- outliers may represent real outliers
- the position of points is not useful in MDS
- resulting dimensions are not ordered by importance/variance
- a can't reconstruct original data

- 1. Dimensionality Reduction
- 2. Multi-dimensional scaling (MDS)
 - 3. ISOMAP
 - 4. t-SNE
 - 5. UMAP

ISOMAP (Isometric Feature Mapping)

ISOMAP

- nonlinear dimensionality reduction
- preserves the global, non-linear geometry of the data by preserving the geodesic distances

Manifold: a nonlinear low-dimensional surface

a data often lies on or near manifolds

Geodesic: shortest route between two points on the surface of the manifold

(shortest path on a graph)

ISOMAP

- Goal: use geodesic distance between points (with respect to manifold)
- Estimate manifold using graph. Distance between points given by distance of shortest path
- Embed onto 2D plane so that Euclidean distance approximates graph distance

ISOMAP

Two steps:

- 1. Calculate the geodesic distance between every pair of points
 - e.g. use Euclidean distance for points that are 'close enough'
 - For points that are far apart, calculate geodesic distance by summing up local Euclidean distances
- 2. Find Euclidean mapping of the data that preserves the geodesic distance

ISOMAP

Two steps:

- 1. Calculate the geodesic distance between every pair of points
 - e.g. use Euclidean distance for points that are 'close enough'
 - For points that are far apart, calculate geodesic distance by summing up local Euclidean distances
- 2. Find Euclidean mapping of the data that preserves the geodesic distance

	1. construct a graph	
1	if $d(i,j) < \varepsilon$	// ε-isomap
2	or	
3	i is one of j's k nearest neighbours	// k-isomap
4	then	
5	Connect i and j	
6	Set the edge weight as $d(i,j)$ (Euclidean distance)	
7	Compute the geodesic distance between all pairs of points (shortest paths)	

Using ISOMAP

Using ISOMAP

Using ISOMAP

- 1. Dimensionality Reduction
- 2. Multi-dimensional scaling (MDS)
 - 3. ISOMAP
 - 4. <u>t-SNE</u>
 - 5. UMAP

Fashion MNIST data set

- Based on images of fashion items.
- Each item is categorized
- Dataset: zalandoresearch/fashion-mnist

UMAP(统一流形逼近和投影):第三个图使用UMAP,这是一种较新的降维技术,它类似于t-SNE,但通常在计算效率和大规模数 据集的可扩展性方面更优。UMAP同样能够很好地在低维空间中区 分出不同的类别。

PCA(主成分分析):第一个图展示了使用PCA进行降维的结果。PCA试图保持数据的最大方差,并将其映射到新 的低维空间。这个图显示了数据在新的维度上的分布, 但是类别之间的区分不是非常清晰。

t-SNE(t-分布随机邻域嵌入):第二个图是使用t-SNE Leland McInnes, SciPv 2018.

t-Distributed Stochastic Neighbour Embedding

t-SNE是一种非线性的降维方法,用于将高维数据映射到二维或三维空间中,以便于可视化。

PCA: tries to preserve global structure

PCA旨在保持全局结构,即在降维过程中保留数据中最大的方差。而t-SNE关注于保持数据点之间的局部关系,尤其是在处理非线性结构的数据时非常有效。 t-SNE: tries to preserve **local** structure

- probabilistic version of MDS
- each point in high-dimensionality has a conditional probability of picking each other point as its neighbor
 - probability of picking j given you start at i

 $p_{j|i} = \frac{\exp\left(\frac{-\|x_i - x_j\|^2}{2\sigma_i^2}\right)}{\sum_{k \neq i} \exp\left(\frac{-\|x_i - k_k\|^2}{2\sigma_i^2}\right)}$

t-SNE被认为是多维尺度分析(MDS)的概率版本。它通过概率分布来表示高维空间中的点之间的相似性,并在低维空间中保持这些概率分布。 在t-SNE中,每个点在高维空间中都有一个条件概率,这个概率定义了选择另一个点作为其邻居的可能性。 pji表示在给定起点 i 的情况下选择 j 作为邻居的条件概率。

t-Distributed Stochastic Neighbour Embedding

$$p_{j|i} = \frac{\exp\left(\frac{-\|x_i - x_j\|^2}{2\sigma_i^2}\right)}{\sum_{k \neq i} \exp\left(\frac{-\|x_i - k_k\|^2}{2\sigma_i^2}\right)}$$

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq i} \left(1 + \|y_k - y_i\|^2\right)^{-1}}$$

0.10

- t pdf (df=10)

- a calculate the Gaussian probabilities $(p_{j|i})$ in high-dimensional space
- compare to a probability in lower-dimensional space

t-Distributed Stochastic Neighbour Embedding

$$p_{j|i} = \frac{\exp\left(\frac{-\|x_i - x_j\|^2}{2\sigma_i^2}\right)}{\sum_{k \neq i} \exp\left(\frac{-\|x_i - k_k\|^2}{2\sigma_i^2}\right)}$$

$$q_{ij} = \frac{\left(1 + \|y_i - y_j\|^2\right)^{-1}}{\sum_{k \neq i} \left(1 + \|y_k - y_i\|^2\right)^{-1}}$$

- a calculate the Gaussian probabilities $(p_{j|i})$ in high-dimensional space
- compare to a probability in lower-dimensional space

Evaluate a mapping:

- in lower-dimensional space, calculate probabilities using Student's t-distribution (q)
- probability goes to zero more slowly than a Gaussian
- this relaxes distances in lower-dimensional space

t-SNE cost function

Kullback-Liebler divergence:
$$C = \mathsf{KL}(P \mid\mid Q) = \sum_{i} \sum_{j} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

- measures the difference between the high-dimensional probability distributions and the low-dimensional probability distributions
- t-SNE algorithm performs gradient descent on the cost function

t-SNE vs. ISOMAP

Example on MNIST dataset

- a classic machine learning dataset of images of handwritten digits
- MNIST dataset: yann.lecun.com/exdb/mnist
- t-SNE publication and code: lvdmaaten.github.io/tsne

- 1. Dimensionality Reduction
- 2. Multi-dimensional scaling (MDS)
 - 3. ISOMAP
 - 4. t-SNE
 - 5. <u>UMAP</u>

UMAP

Uniform Manifold Approximation and Projection (UMAP):

- inspired by t-SNE, based on manifolds and topology rather than probability distributions.
- publications and code at Imcinnes/umap
- UMAP talk at SciPy: youtube.com
- UMAP talk at PyData: youtube.com

MHIST LENE

James Melville, ilmelville/uwot.

UMAP的第一步是构建一个加权k邻居图。这意味着算法会测量数据点之间的距离,并且基于最近的k个邻居创建一个图,图中的边缘是根据距离加权的。

UMAP的第二步是计算这个图在低维空间的布局。这涉及到在较低维度的空间中找到数据点的一个新表示,同时尽可能地保持高维空间中的局部和全局结构。

- In the first phase a weighted k-neighbour graph is constructed.
- In the second phase a low dimensional layout of this graph is computed

这是一种在图绘制中常用的算法,用于美观地排列图的节点和边

Force directed graph layout

- Edge weights mean that nearby points attract each other
- Weight normalization acts as a global force pushing points apart
- Algorithm: iteratively apply attractive and repulsive forces at each edge or node

边缘权重意味着相邻的点会相互吸引。 权重归一化作为一种全局力量,有助于将点分开。 算法迭代地应用吸引力和排斥力在每个边缘或节点上。

Fashion MNIST data set

- Based on images of fashion items.
- Each item is categorized
- Dataset: zalandoresearch/fashion-mnist

UMAP的缺点包括:

UMAP

图中的距离不是真实的距离。 降维后的维度没有可解释的意

超参数需要谨慎调整

Oriainal

Step: 5.000

Perplexity: 5 Step: 5.000

Perplexity: 30 Step: 5.000

Perplexity: 50 Step: 5.000

Perplexity: 100 Step: 5.000

比t-SNE快一个数量级。 是确定性算法。

Advantages

- an order of magnitude faster than t-SNF
- deterministic (t-SNE and MDS are stochastic)

Disadvantages

- distances in the plot are not real distances
- dimensions have no interpretable meaning
- hyperparameters need to be tuned carefully and have a huge impact on the result

- 1. Dimensionality Reduction
- 2. Multi-dimensional scaling (MDS)
 - 3. ISOMAP
 - 4. t-SNE
 - 5. UMAP

Thank you!

Today: Dimensionality Reduction II

Next time: Unsupervised Learning