

Analisi e Visualizzazione delle Reti Complesse

Final Project

Prof. Rossano Schifanella

Scope

- The objective of the final project is to let the students play with a real-world dataset applying the theoretical concepts and the practical tools we have introduced in class.
 - and perhaps exploring something new in autonomy!
- After selecting a topic and datasets, the goal is to present a narrative through quantitative exploration.
- The dataset should allow the formalization of the problem using networks.
 - o networks have to be present, however, other types such as geographical data may also be included.
 - when applicable, it is recommended to explore heterogeneous contexts.
- [9 credits] The narrative should contain a visual exploration of the domain and the results should be represented in a data visualization.
 - interactive vs static
 - same domain vs different domain

Organization

- The project can be developed in **groups of maximum 3 students**.
- You have to register your project at this link to specify the group and the topic.
 - deadline: the end of the course.
- Groups and topics should not be changed after the registration.
 - of course, this could happen for many unpredicable reasons, so in this case, please, reach out and we will find an alternative solution.
- Groups and topics will be presented in the last class of the course. You will be asked to:
 - Prepare a short presentation (5min-8min) explaining the idea and the datasets you intend to use
 - Present to the class your project
 - Receive feedbacks
 - more info will be shared towards the end of the course

What to submit

- A report describing the project and its contributions. Generally, it should contain the following sections:
 - Introduction and contextualization
 - What is your project about and why it is worth exploring it
 - Methods
 - What methods did you implement in the analys and visualization pipelines
 - Results
 - What are the main results and observations you extracted from your analysis
 - Discussion
 - Elaborate on the possible implications of your observations, or why you made some methodological choices over other available alternatives, explore alternative scenarios
 - Conclusions and extensions
 - What did you learn and how this could be extended if you have time?
- This organization is arbitrary and serves as a template to simplify your work.
 - You are free to use your own structure!
- We expect concise yet complete reports.

4

What to submit

- The **code** implementing:
 - (a) the network analysis
 - (b) the visualization
- Depending of the type of project it be in the form of:
 - a series of Jupyter notebooks
 - an interactive web app
 - o an Observable notebook
 - combinations of them
 - others
- All the material should be packed in an archive and submitted through Moodle at least 3 days before the exam session.
- The link will be active at the end of the course.

General rule (probably the most important!)

If you have **any doubt** reach out and we can discuss alternatives that **fit best your case study and project**.

Exam

- The exam is organized in two main parts:
 - project discussion (40%)
 - oral examination (60%)
 - o and remember the 10% bonus for the active participation in class

• Project discussion:

- the group/student presents the project usually with the help of a presentation
 - the presentation is not mandatory, however, it usually usueful to organize to discourse
- the goal is to show what has been done, the results, the methodology, run a demo if you created an interactive data viz and so on.
- o questions on anything related to the project, the submitted report, the code, will be asked.
- all the member of a group must discuss the project in the same session.
 - Only in specific, motivated cases we can break this rule.

Exam

• Oral:

- the oral part of the exam will test your knowledge of all the concepts introduced in course.
- everything we discussed that has not be marked as optional is a potential candidate for a question.
- o it is possible that a question involves the solution of a **simple exercise** involving theory constructs.
 - a theory question could be practical, e.g., given this networks, compute the betweenness centrality of the nodes
- each student in a group will be evaluated separately
 - you should expect around 3 questions per candidate
 - this is just an **estimate**, there will be variability

What you can focus on?

- Generic description of the network. Calculate structural measures and plot them whenever it is possible/significant:
 - Distances: average, distribution
 - Degree: average, variance/standard deviation, degree distribution (some fit? Does it follow a power law? If yes, is
 it in the scale-free regime?)
 - Clustering coefficient
 - Largest connected component size
 - Degree correlation: neutral, assortative, disassortative?
 - Are there communities? Can you properly show them with an appropriate layout? Can you discuss them?
 - Centralities
 - Can you analyze homophily?
- Try to interpret the results of these measures, and comment/discuss results.

Final project

9

What can you focus on?

- Dynamics:
- Once you have studied your network, and you have a general understanding of its structure, you can use it to simulate some dynamic processes, e.g.:
 - Behavioral cascades
 - Diffusion of innovations
 - Epidemics
 - o ...
- What could you expect to happen over that network when some of these models is simulated?

What can you focus on?

- Generative models:
 - You might need to create your own artificial random networks for comparison purposes
 - Erdos-Renyi
 - Watts-Strogatz (small-world)
 - Configuration model (degree preserving)
 - Barabasi-Albert (preferential attachment)
 - Stochastic block model
 - others
- You can use different generative models, to produce comparisons, varying some parameters (e.g., linking probability, number of edges added at each step, degree distributions, and so on)
 - For some comparisons, you may need to preserve some characteristics (e.g., degree distribution). Try to rewire properly your network in order to shuffle your data.
- You can perform on such synthetic networks the analysis that has been proposed in the previous slides, to detect differences
- Try to explain different behaviors

Datasets

- Stanford Large Network Dataset Collection
- The KONECT project
- More into the data visualization side:
 - Awesome public datasets
 - Kaggle datasets
 - FiveThirtyEight Datasets
 - data.gov
 - AWS Public Data Sets
 - r/datasets
 - Google BigQuery Public Datasets

Ispiration for projects

- MIT course on Networks (2018)
- Network Science course Ilya Makarov (2020)
- More on the data viz side but still useful YY Ahn (2023)

Examples

Organizational / Social	Enron Email (~34k / 180k)	Rich temporal corporate comms; used in network-analysis seminars
Online Social	Facebook New-Orleans (63 k / 817 k)	Classic friend graph; community & hub structure
Biological	Yeast PPI (~6k/90k)	Scale-free interactome; centrality-lethality studies
Infrastructure	US Western Power Grid (4.9k/6.6k)	Small-world grid; resilience analysis
Citation	arXiv HEP-TH Citations (27 k / 352 k)	Directional growth; influence over a decade
Transportation	Global Airline Routes (OpenFlights) (2.9k/30k)	Hub-and-spoke pattern; robustness to hub loss

Project Example 1 – Enron Email

Research question

Who were the key actors in Enron's communication network and how did their roles shift during the 2001 crisis?

Narrative hooks

"Rising and falling power brokers" inside a collapsing firm.

Key steps / metrics

- 1. Build monthly snapshots → **degree & betweenness** trends
- 2. Community detection (Louvain) to reveal departments
- 3. Compare pre- vs post-crisis density & centrality
- 4. Visualize ego-networks of top executives

Story payoff

Show how hubs fragment and new brokers emerge as the scandal unfolds.

Project Example 2 – Yeast PPI Network

Research question

Do highly connected proteins (hubs) correspond to genes essential for cell survival?

Narrative hooks

"Life's linchpins" – when a hub fails, the cell dies.

Key steps / metrics

- 1. Compute degree centrality; rank top 5% proteins
- 2. Cross-reference with essential-gene database
- 3. **Community detection** → functional modules
- 4. Contrast with a degree-preserving randomized network

Story payoff

Quantitatively confirm the centrality-lethality rule; map hubs to biological functions.

Project Example 3 – Global Airline Network

Research question

Which airports are critical hubs, and how does their loss affect global connectivity?

Narrative hooks

"What if Heathrow grounded all flights tomorrow?"

Key steps / metrics

- 1. Degree & betweenness to list top hubs
- 2. Remove top-N hubs → measure drop in **largest component size** & **avg. path length**
- 3. Visualize community structure (geographical clusters)
- 4. Optional: simulate rerouting strategies for resilience

Story payoff

Reveals vulnerability of a hub-and-spoke world and highlights hidden choke-points like DXB.

