COL778: Principles of Autonomous Systems Assignment 3

Harshit Goyal (2021MT10143)

April 2025

Please find all video rollouts at here.

1 DAGGER Implementation

- 1. For collecting rollouts during training, we allow the simulation for the maximum number of timesteps allowed by the environment (or till failure).
- 2. Trajectories are collected will be have at least a target number of timesteps (total), which are added to the buffer.
- 3. At every timestep, give the current state of the agent (observation), the next action is chosen, with β probability using the expert's policy, otherwise, the agent's policy.
- 4. Batch size number of observations are sampled from the buffer. The MLP predicts the actions on these, which are training against the expert's predictions on these observations using \mathcal{L}_2 loss.

2 Environment Description

Environment	Observation space dimension	Action space dimension	Action type
Hopper-v4	11	3	continuous
Ant-v4	27	8	continuous

Table 1: Environment Description

3 Best Model Evaluation Metrics

3.1 Hopper-v4 Agent

Agent	n_layers	hidden_size	Episode mean	Episode mean	Episode stdev
			\mathbf{length}	return	return
Expert	-	-	884 - 888	2667 - 2676	467 - 482
Imitation	3	64	851.7	2646.5	631.6
Imitation*	3	128	945.8	2838.3	377.0
Imitation	3	256	953.0	2873.9	351.1

Table 2: Hopper-v4 agent. Episode maximum length (set by environment) is 1000, training rollouts sampled till 15,000 timesteps collected, 30 minutes of training on CPU, $\beta = 0.1$, replay buffer size 50,000, batch size 512, Adam(1r = 1e-3) optimizer, model saving metric described in Metric for model saving. Evaluation over 1000 trajectories.

Agent	n_layers	hidden_size	Episode mean	Episode mean	Episode stdev
			length	return	return
Expert	-	-	999 - 1000	1009 - 1027	260 - 285
Imitation	4	128	1000.0	969.8	2.7
Imitation	4	256	1000.0	938.9	5.0
Imitation*	5	128	1000.0	977.0	2.9
Imitation	5	256	1000.0	943.8	2.1

Table 3: Ant-v4 agent. Episode maximum length (set by environment) is 1000, training rollouts sampled till 15,000 timesteps collected, 60 minutes of training on CPU, $\beta = 0.1$, replay buffer size 50,000, batch size 512, Adam(1r = 1e-3) optimizer, model saving metric described in Metric for model saving. Evaluation over 1000 trajectories.

4 Metric for model saving

Environment	Reward
Hopper-v4	healthy_reward + forward_reward - ctrl_cost
Ant-v4	healthy_reward + forward_reward - ctrl_cost - contact_cost

Table 4: Reward functions for different environments

From Table 4 we see that the reward is a proxy for the episode length in both cases (forward_reward component). Hence we track the evaluation return, instead of episode length. Since evaluation is done on only around 15 trajectories, we use the metric

```
metric = eval_mean_return - eval_stdev_return
```

This intends to maximize the "worst performance" of the agent. To make this requirement even harder, the coefficient of eval_stdev_return can be increased, for example metric = eval_mean_return - 3 * eval_stdev_return.

5 Observations

- 1. As evident in the training plots below (Ant-v4), the model doesn't get trained well and the return keeps reducing. Since the Ant-v4 agent is 4-legged, it doesn't fall and hence the episode length is usually 1000 (full episode).
- 2. Even without training the policy network (n_layers = 2, hidden_size = 64), the average episode length is 1000 and for return, mean 957 with standard deviation 12.
- 3. We suspect this is because the return is mostly dominated by forward_reward, which always reaches it's full value, and there's not enough room left to learn skill.
- 4. We tried experimenting with reducing learning rate, Figure 1 but the return just reduces more slowly in this case. Similarly, changing min_timesteps_per_batch too didn't help.

Average Return

Standard Deviation of Return

Figure 1: Evaluation metrics of Ant-v4 agent with lr = 1e-4

6 Training Plots

Figure 2: Evaluation metric while training. Mean Episode Length, Mean Return, Standard Deviation of Return, Training Loss (top to bottom). Hopper-v4 (left), Ant-v4 (right). Red dotted line indicates best-model.