ACTIVITATS

- 1. Escriu aquests nombres com a nombres complexos:
 - a) $\sqrt{-3}$
- c) $\sqrt[4]{-16}$

b) 3

- d) -3
- a) $\sqrt{-3} = \sqrt{3} \cdot \sqrt{-1} = \sqrt{3}i$

- c) 3 = 3 + 0i
- b) $\sqrt[4]{-16} = \sqrt{4i} = 2\sqrt{i} = 2\left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right) = \sqrt{2} + \sqrt{2}i$ d) -3 = -3 + 0i
- 2. Calcula a i b perquè les igualtats següents siguin certes:
 - a) 2 + 3bi = a 1

b) 4a - 2b = 2 - ai

- a) a = 2 + 1 = 3 b = 0
- b) a=0
- 4a 2b = 2 b = -1
- 3. Donat el nombre complex $z = -2x + \frac{y}{2}i$, determina el valor de x i y perquè sigui:
 - a) Un nombre real.
 - b) Un nombre imaginari pur.
 - c) Un nombre complex que no sigui real ni imaginari pur.
 - a) y = 0
- b) x = 0
- c) $x \neq 0$, $y \neq 0$
- 4. Calcula l'oposat i el conjugat dels nombres complexos següents:
 - a) $\sqrt{2} 3i$ c) 3 2i e) $\frac{3}{5}i$
- g) 0

- b) $\frac{2}{3} \frac{1}{5}i$ d) $-3 + \frac{2}{5}i$ f) -7 h) -2i

- a) Oposat: $-\sqrt{2} + 3i$ Conjugat: $\sqrt{2} + 3i$
- b) Oposat: $-\frac{2}{3} + \frac{1}{5}i$ Conjugat: $\frac{2}{3} + \frac{1}{5}i$
- c) Oposat: -3 + 2i Conjugat: 3 + 2i
- d) Oposat: $3-\frac{2}{5}i$ Conjugat: $-3-\frac{2}{5}i$

e) Oposat:
$$-\frac{3}{5}i$$

Conjugat:
$$-\frac{3}{5}$$

Conjugat:
$$-7$$

2i

Representa gràficament els nombres complexos següents:

a)
$$\frac{1}{2} + i$$

c)
$$\frac{1}{2}$$
 – i e) i

g)
$$\frac{5}{2}$$

b)
$$-\frac{1}{2} + i$$
 d) $-\frac{1}{2} - i$ f) -5

d)
$$-\frac{1}{2} - i$$

Ara contesta: on serà situat un nombre real? I si el nombre és imaginari pur?

Un nombre real se situarà en l'eix d'abscisses.

Un nombre imaginari pur se situarà en l'eix d'ordenades.

Escriu els nombres complexos representats gràficament.

$$z_1 = -4 + 2i$$

$$z_3 = i$$

$$z_3 = i z_5 = 1 - 3i$$

$$z_2 = 3 + 4i$$

$$z_4 = 5$$

$$z_4 = 5$$
 $z_6 = 6 - 4i$

7. Resol les operacions següents:

a)
$$(-1 - i) + (-4 + 5i)$$

c)
$$(-1-i)(-4+5i)$$

b)
$$\frac{-1-i}{-4+5i}$$

d)
$$\frac{(-2+i)(1+3i)}{-1+2i} - 2i$$

a)
$$(-1 - i) + (-4 + 5i) = -5 + 4i$$

b)
$$\frac{-1-i}{-4+5i} = \frac{(-1-i)+(-4-5i)}{(-4+5i)(-4-5i)} = \frac{-1+9i}{41}$$

c)
$$(-1-i)(-4+5i) = 4-5i+4i+5=9-i$$

d)
$$\frac{(-2+i)(1+3i)}{-1+2i} - 2i = \frac{(-5-5i)(-1-2i)}{(-1+2i)(-1-2i)} - 2i = 3 - i - 2i = 3 - 3i$$

Determina l'invers dels nombres complexos que hi ha a continuació:

c)
$$-1-i$$

e)
$$4 - 3i$$

b)
$$3 + 4i$$

d)
$$i + 3$$

a)
$$\frac{1}{i} = \frac{1}{i} \cdot \frac{-i}{-i} = \frac{-i}{1} = -i$$

d)
$$\frac{1}{i+3} = \frac{1}{i+3} \cdot \frac{-i+3}{-i+3} = \frac{-i+3}{10}$$

b)
$$\frac{1}{3+4i} = \frac{1}{3+4i} \cdot \frac{3-4i}{3-4i} = \frac{3-4i}{25}$$
 e) $\frac{1}{4-3i} = \frac{1}{4-3i} \cdot \frac{4+3i}{4+3i} = \frac{4+3i}{25}$

e)
$$\frac{1}{4-3i} = \frac{1}{4-3i} \cdot \frac{4+3i}{4+3i} = \frac{4+3i}{25}$$

c)
$$\frac{1}{-1-i} \cdot \frac{-1+i}{-1+i} = \frac{-1+i}{2}$$

f)
$$\frac{1}{6+5i} = \frac{1}{6+5i} \cdot \frac{6-5i}{6-5i} = \frac{6-5i}{61}$$

Determina l'expressió polar dels nombres complexos representats.

$$z_{1} \rightarrow \begin{cases} r = |z| = \sqrt{(-3)^{2} + 2^{2}} = \sqrt{13} \\ tg \ \alpha = \frac{2}{-3} \rightarrow \alpha = 146,31^{\circ} \end{cases} \rightarrow z_{1} = \sqrt{13}_{146,31^{\circ}}$$

$$z_2 \to \begin{cases} r = |z| = \sqrt{1^2} = 1 \\ \alpha = 90^\circ \end{cases} \to z_2 = 1_{90^\circ}$$

$$z_{3} \to \begin{cases} r = |z| = \sqrt{3^{2} + 2^{2}} = \sqrt{13} \\ tg \ \alpha = \frac{2}{3} \to \alpha = 33,7^{\circ} \end{cases} \to z_{3} = \sqrt{13}_{33,7^{\circ}}$$

$$z_4 \to \begin{cases} r = |z| = \sqrt{4^2} = 4 \\ \alpha = 0^o \end{cases} \to z_4 = 4_{0^o}$$

$$z_{5} \rightarrow \begin{cases} r = |z| = \sqrt{1^{2} + (-2)^{2}} = \sqrt{5} \\ tg \ \alpha = \frac{-2}{1} \rightarrow \alpha = 296,57^{\circ} \end{cases} \rightarrow z_{5} = \sqrt{5}_{296,57^{\circ}}$$

$$z_{6} \rightarrow \begin{cases} r = |z| = \sqrt{(-4)^{2} + (-2)^{2}} = \sqrt{20} = 2\sqrt{5} \\ tg\alpha = \frac{-2}{-4} \rightarrow \alpha = 206,57^{\circ} \end{cases} \rightarrow z_{6} = 2\sqrt{5}_{206,57^{\circ}}$$

10. Expressa en forma polar:

a)
$$2 + i$$
 c) $-\frac{1}{2} + \frac{1}{2}i$ e) $-4i$

$$e) - 4$$

b)
$$-2-i$$
 d) $2-\sqrt{3}i$ f) 12

d)
$$2 - \sqrt{3}$$

a)
$$2 + i = \sqrt{5}_{26^{\circ}33'54,2''}$$

d)
$$2 - \sqrt{3}i = \sqrt{7}_{310^{\circ}53'36,2''}$$

b)
$$-2 - i = \sqrt{5}_{206°33'54''}$$

e)
$$-4i = 4_{270^{\circ}}$$

c)
$$-\frac{1}{2} + \frac{1}{2} i = \frac{\sqrt{2}}{2_{135^{\circ}}}$$

11. Expressa en forma binòmia i trigonomètrica:

c)
$$2 \frac{\pi}{3}$$

d)
$$3 \frac{3\pi}{2}$$

b)
$$1_{120^{\circ}} = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right) = (\cos 120^{\circ} + i \sin 120^{\circ})$$

c)
$$3_{240^{\circ}} = \left(-\frac{3}{2}, -\frac{3\sqrt{3}}{2}\right) = 3(\cos 240^{\circ} + i \sin 240^{\circ})$$

d)
$$2\frac{\pi}{3} = \left(1, \frac{\sqrt{3}}{2}\right) = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

e)
$$3\frac{3\pi}{2} = (0, -3) = 3(\cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2})$$

12. Expressa en forma polar i trigonomètrica:

a)
$$3 - 4i$$

b)
$$2 + 2i$$
 c) $-\sqrt{3} + i$ d) $-1 - i$

a)
$$3-4i=5_{306.9^{\circ}}=5(\cos 306.9^{\circ}+i\sin 306.9^{\circ})$$

b)
$$2 + 2i = 2\sqrt{2}_{45^{\circ}} = 2\sqrt{2} \left(\cos 45^{\circ} + i \sin 45^{\circ}\right)$$

c)
$$-\sqrt{3} + i = 2_{150^{\circ}} = 2(\cos 150^{\circ} + i \sin 150^{\circ})$$

d)
$$-1-i = \sqrt{2}_{225^{\circ}} = \sqrt{2} \left(\cos 225^{\circ} + i \sin 225^{\circ}\right)$$

13. Efectua les operacions següents i expressa el resultat en forma polar:

a)
$$4_{120^{\circ}} \cdot 3_{60}$$

a)
$$4_{120^{\circ}} \cdot 3_{60^{\circ}}$$
 c) $1_{260^{\circ}} \cdot 6_{120^{\circ}}$ e) $3_{100^{\circ}} : 3_{40^{\circ}}$

b)
$$2_{230^{\circ}} \cdot 3_{130^{\circ}}$$

b)
$$2_{230^{\circ}} \cdot 3_{130^{\circ}}$$
 d) $4_{0^{\circ}} : 2_{180^{\circ}}$ f) $1_{260^{\circ}} \cdot 6_{120^{\circ}}$

a)
$$4_{120^{\circ}} \cdot 3_{60^{\circ}} = (4 \cdot 3)_{120^{\circ} + 60^{\circ}} = 12_{180^{\circ}}$$

b)
$$2_{230^{\circ}} \cdot 3_{130^{\circ}} = (2 \cdot 3)_{230^{\circ} + 130^{\circ}} = 6_{360^{\circ}} = 6_{0^{\circ}}$$

c)
$$1_{260^{\circ}}:6_{120^{\circ}}=\left(\frac{1}{6}\right)_{260^{\circ}-120^{\circ}}=\left(\frac{1}{6}\right)_{140^{\circ}}$$

d)
$$4_{0^{\circ}}:2_{180^{\circ}}=\left(\frac{4}{2}\right)_{360^{\circ}-180^{\circ}}=2_{180^{\circ}}$$

e)
$$3_{100^{\circ}} : 3_{40^{\circ}} = \left(\frac{3}{3}\right)_{100^{\circ} - 40^{\circ}} = 1_{60^{\circ}}$$

f)
$$1_{260^{\circ}} \cdot 6_{120^{\circ}} = (1 \cdot 6)_{260^{\circ} + 120^{\circ}} = 6_{20^{\circ}}$$

14. Donats aquests nombres complexos, calcula:

$$z_1 = 1_{210^{\circ}}$$
 $z_2 = 3[cos(-30^{\circ}) + i sin(-30^{\circ})]$

a)
$$\frac{z_1}{z_2}$$
 b) $\frac{(z_1)^2 \cdot z_2}{z_2}$

$$z_1 = 1_{210^{\circ}}$$
 $z_2 = 3_{330^{\circ}}$

a)
$$\frac{1_{210^{\circ}}}{3_{330^{\circ}}}$$
 b) $\frac{(1_{210^{\circ}})^2 \cdot 3_{30^{\circ}}}{3_{330^{\circ}}} = \frac{1_{420^{\circ}} \cdot 3_{30^{\circ}}}{3_{330^{\circ}}} = \frac{3_{450^{\circ}}}{3_{330^{\circ}}} = 1_{120^{\circ}}$

15. Efectua les operacions següents:

a)
$$(3_{45^{\circ}})^2$$

b) $(3-3 i)^5$

c)
$$\left(2\frac{\pi}{6}\right)^6$$

e)
$$(4_{330^{\circ}})^3$$

b)
$$(3-3i)^5$$

c)
$$\left(2\frac{\pi}{6}\right)$$
 e) $(4_{330^{\circ}})^3$
d) $(\sqrt{5} + \sqrt{5}i)^8$ f) $(-3i)^5$

f)
$$(-3 i)^5$$

a)
$$\left(3_{45^{\circ}}\right)^{2} = 3_{2\cdot45^{\circ}}^{2} = 9_{90^{\circ}} = 9i$$

b)
$$(3-3i)^5 = (3\sqrt{2}_{315^\circ})^5 = (3\sqrt{2})^5_{5\cdot 315^\circ} = 972\sqrt{2}_{135^\circ}$$

c)
$$\left(2_{\frac{\pi}{6}}\right)^6 = 2_{\frac{6\pi}{6}}^6 = 64_{\pi} = -64$$

d)
$$\left(\sqrt{5} + \sqrt{5}i\right)^8 = \left(\sqrt{10}_{45^\circ}\right)^8 = \sqrt{10^8}_{8\cdot 45^\circ} = 10\,000_{360^\circ} = 10\,000$$

e)
$$\left(4_{330^{\circ}}\right)^{3} = 64_{3 \cdot 330^{\circ}} = 64_{270^{\circ}} = -64i$$

f)
$$(-3i)^5 = (3_{270^\circ})^5 = 3^5_{5,270^\circ} = 243_{270^\circ} = -243i$$

16. Resol [16 (cos 60° + i sin 60°)] $\cdot (2_{210°})^4$

$$[16 (\cos 60^{\circ} + i \sin 60^{\circ})] \cdot (2_{210^{\circ}})^{4} = 16_{60^{\circ}} \cdot 16_{840^{\circ}} = 256_{900^{\circ}} = 256_{180^{\circ}}.$$

17. Per mitjà de la fórmula de De Moivre, expressa cos 3α i sin 3α considerant cos α i sin α .

Considerem un nombre complex de mòdul la unitat:

$$(1_{\alpha})^3 = (\cos \alpha + i \sin \alpha)^3 = \cos 3 \alpha + i \sin 3 \alpha$$

Desenvolupem la primera part de la igualtat:

$$\cos^3 \propto +3i \cos^2 \propto \sin \propto -3\cos \propto \sin^2 \propto -i \sin^3 \propto =$$

$$= (\cos^3 \alpha - 3\cos \alpha \sin^2 \alpha) + (3\cos^2 \alpha \sin \alpha - i\sin^3 \alpha)i$$

Igualem aquest resultat amb la segona part de la igualtat:

$$= (\cos^3 \alpha - 3\cos \alpha \sin^2 \alpha) + (3\cos^2 \alpha \sin \alpha - i\sin^3 \alpha)i = \cos 3\alpha + i\sin 3\alpha$$

Igualant les parts reals i les parts imaginàries resulta:

$$\begin{cases} \cos 3 \propto = \cos^3 \propto -3\cos \propto \sin^2 \propto \\ \sin 3 \propto = 3\cos^2 \propto \sin \propto -\sin^3 \propto \end{cases}$$

18. Calcula les arrels següents:

- a) $\sqrt{3_{150^{\circ}}}$
- c) $\sqrt[4]{-i}$
- b) $\sqrt[3]{-27}$
- d) $\sqrt[3]{-1+i}$
- a) $\sqrt{3_{150^{\circ}}}$

El mòdul de les solucions serà l'arrel quadrada de mòdul: $\sqrt{3}$

Existiran tants arguments com indiqui el radical.

Si k = 0
$$\rightarrow$$
 $\beta_1 = \frac{150^\circ + 0.360^\circ}{2} = 75^\circ$

Si k =
$$0 \rightarrow \beta_2 = \frac{150^{\circ} + 1.360^{\circ}}{2} = 225^{\circ}$$

Per tant, les arrels són $\sqrt{3}_{75^{\circ}}\,i\,\sqrt{3}_{225^{\circ}}$

b)
$$\sqrt[3]{-27} = \sqrt[3]{-27_{180^{\circ}}}$$

El mòdul de les solucions serà l'arrel cúbica de mòdul: 3

Existiran tants arguments com indiqui el radical.

Si k = 0
$$\rightarrow$$
 $\beta_1 = \frac{180^\circ + 0.360^\circ}{3} = 60^\circ$

Si k = 1
$$\rightarrow$$
 $\beta_2 = \frac{180^{\circ} + 1.360^{\circ}}{3} = 180^{\circ}$

Si k = 2
$$\rightarrow \beta_3 = \frac{180^{\circ} + 2 \cdot 360^{\circ}}{3} = 300^{\circ}$$

Per tant, les arrels són $3_{60^{\circ}}$, $3_{180^{\circ}} = -3 \text{ i } 3_{300^{\circ}}$.

c)
$$\sqrt[4]{-i} = \sqrt[4]{1_{270^\circ}}$$

El mòdul de les solucions serà l'arrel cúbica de mòdul: 1.

Existiran tants arguments com indiqui el radical.

Si k =
$$0 \rightarrow \beta_1 = \frac{270^{\circ} + 0.360^{\circ}}{4} = 67^{\circ}30'$$

Si k = 1
$$\rightarrow \beta_2 = \frac{270^{\circ} + 1.360^{\circ}}{4} = 157^{\circ}30'$$

Si k = 2
$$\rightarrow \beta_3 = \frac{270^{\circ} + 2 \cdot 360^{\circ}}{4} = 247^{\circ}30'$$

Si k =
$$3 \rightarrow \beta_4 = \frac{270^{\circ} + 3 \cdot 360^{\circ}}{4} = 337^{\circ}30'$$

Per tant, les arrels són $1_{67^{\circ}30'}$, $1_{157^{\circ}30'}$, $1_{247^{\circ}30'}$ i $1_{337^{\circ}30'}$.

d)
$$\sqrt[3]{-1+i} = \sqrt[3]{\sqrt{2_{135^{\circ}}}}$$

El mòdul de les solucions serà l'arrel cúbica de mòdul: $\sqrt[6]{2}$.

Existiran tants arguments com indiqui el radical.

Si k =
$$0 \rightarrow \beta_1 = \frac{135^{\circ} + 0.360^{\circ}}{3} = 45^{\circ}$$

Si k = 1
$$\rightarrow \beta_2 = \frac{135^{\circ} + 1 \cdot 360^{\circ}}{3} = 165^{\circ}$$

Si k = 2
$$\rightarrow \beta_3 = \frac{135^{\circ} + 2 \cdot 360^{\circ}}{3} = 285^{\circ}$$

Per tant, les arrels són $\sqrt[6]{2_{45^\circ}}$, $\sqrt[6]{2_{165^\circ}}$, $i\sqrt[6]{2_{285^\circ}}$.

19. Resol les equacions següents:

a)
$$z^3 - 1 = 0$$

c)
$$z^4 + 16 = 0$$

b)
$$z^5 + 32 = 0$$

d)
$$z^4 - 81 = 0$$

a)
$$z^3 - 1 = 0 \rightarrow z = \sqrt[3]{1_{0^\circ}}$$

El mòdul de les solucions serà 1.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = 0^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{0^{\circ} + 1 \cdot 360^{\circ}}{3} = 120^{\circ}$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{0^{\circ} + 2 \cdot 360^{\circ}}{3} = 240^{\circ}$$

Per tant, els valors de z són 1_0° , $1_{120^{\circ}}$, $1_{240^{\circ}}$.

b)
$$z^5 + 32 = 0 \rightarrow z = \sqrt[5]{-32} = \sqrt[5]{32_{180^\circ}}$$

El mòdul de les solucions serà 2.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{180^{\circ}}{5} = 36^{\circ}$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{180^\circ + 1.360^\circ}{5} = 108^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{180^{\circ} + 2 \cdot 360^{\circ}}{5} = 180^{\circ}$$

Si
$$k = 3 \rightarrow \beta_4 = \frac{180^{\circ} + 3 \cdot 360^{\circ}}{5} = 252^{\circ}$$

Si
$$k = 4 \rightarrow \beta_5 = \frac{180^\circ + 4 \cdot 360^\circ}{5} = 324^\circ$$

Per tant, els valors de z són 2_{36°}, 2_{108°}, 2_{180°}, 2_{252°}, 2_{324°}.

c)
$$z^4 + 16 = 0 \rightarrow z = \sqrt[4]{-16} = \sqrt[4]{16_{180^\circ}}$$

El mòdul de les solucions serà 2.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{180^{\circ}}{4} = 45^{\circ}$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{180^\circ + 360^\circ}{4} = 135^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{180^\circ + 360^\circ \cdot 2}{4} = 225^\circ$$

Si
$$k = 3 \rightarrow \beta_4 = \frac{180^\circ + 360^\circ \cdot 3}{4} = 315^\circ$$

Per tant, els valors de z són 2_{45°}, 2_{135°}, 2_{225°}, 2_{315°}.

d)
$$z^4 - 81 = 0 \rightarrow z = \sqrt[4]{81} = \sqrt[4]{81_{0^\circ}}$$

El mòdul de les solucions serà 3.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = 0^{\circ}$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{360^{\circ}}{4} = 90^{\circ}$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{360^{\circ} \cdot 2}{4} = 180^{\circ}$$

Si
$$k = 3 \rightarrow \beta_3 = \frac{360^{\circ} \cdot 3}{4} = 270^{\circ}$$

Per tant, els valors de z són $3_{0^{\circ}}$, $3_{90^{\circ}}$, $3_{180^{\circ}}$, $3_{270^{\circ}}$.

20. Calcula i representa les arrels cúbiques d'aquest nombre: $\frac{1+i}{-1-i}$

$$\frac{1+i}{-1-i} = \frac{(1+i)(-1+i)}{(-1-i)(-1+i)} = \frac{-1-1}{1+1} = -1 = 1_{180^{\circ}}$$

Mòdul:
$$\sqrt[3]{1} = 1$$

Arguments:

Si k =
$$0 \rightarrow \beta_1 = \frac{180^{\circ} + 0.360^{\circ}}{3} = 60^{\circ}$$

Si k = 1
$$\rightarrow \beta_2 = \frac{180^{\circ} + 1.360^{\circ}}{3} = 180^{\circ}$$

Si k = 2
$$\rightarrow \beta_3 = \frac{180^{\circ} + 2 \cdot 360^{\circ}}{3} = 300^{\circ}$$

21. Un quadrat, amb centre en l'origen de coordenades, té un dels vèrtexs en el punt A(3, 2). Determina'n els altres vèrtexs.

Calculem les arrels quartes de 3 + 2i.

Mòdul:
$$\sqrt{3^2 + 2^2} = \sqrt{13}$$
 Arguments: $tg \propto = tg \propto = \frac{2}{3} \rightarrow \propto = 33^{\circ}41'24,2''$

Sumem 90° a l'argument de cada vèrtex per obtenir el següent.

Per tant, les arrels són $\sqrt{13}_{33^\circ41'24,2''}$, $\sqrt{13}_{123^\circ41'24,2''}$, $\sqrt{13}_{213^\circ41'24,2''}$ i $\sqrt{13}_{303^\circ41'24,2''}$

SABER FER

22. Resol aquestes equacions i expressa'n les solucions amb nombres complexos:

a)
$$x^2 + 2x + 2 = 0$$

b)
$$x^2 + 6x + 10 = 0$$

c)
$$x^2 + 10x + 29 = 0$$

d)
$$x^2 - 10x + 26 = 0$$

a)
$$x^2 + 2x + 2 = 0 \rightarrow x = \frac{-2 \pm \sqrt{4 - 8}}{2} = -1 \pm i$$

b)
$$x^2 + 6x + 10 = 0 \rightarrow x = \frac{-6 \pm \sqrt{36 - 40}}{2} = -3 \pm i$$

c)
$$x^2 + 10x + 29 = 0 \rightarrow x = \frac{-10 \pm \sqrt{100 - 116}}{2} = -5 \pm 2i$$

d)
$$x^2 - 10x + 26 = 0 \rightarrow x = \frac{10 \pm \sqrt{100 - 104}}{2} = 5 \pm i$$

23. Calcula les operacions següents:

a)
$$\frac{i^{241}}{1-i} - \frac{2i^{42}}{1+i^9} + i^{8}$$

a)
$$\frac{i^{241}}{1-i} - \frac{2i^{42}}{1+i^9} + i^{83}$$
 b) $i^{333} - \frac{i^{27}}{1-i^{27}} + \frac{i^{72}}{1-i^{25}}$

a)
$$\frac{i^{241}}{1-i} - \frac{2i^{42}}{1+i^9} + i^{83} = \frac{i}{1-i} - \frac{-2}{1+i} - i = \frac{i(1+i) + 2(1-i) - i(1-i^2)}{1-i^2} = \frac{1-3i}{2}$$

b)
$$i^{333} - \frac{i^{27}}{1 - i^{27}} + \frac{i^{72}}{1 - i^{25}} = i - \frac{-i}{1 - (-i)} + \frac{1}{1 - i} = \frac{i(1 - i^2) + i(1 - i) + (1 + i)}{2} = 1 + 2i$$

24. Calcula els inversos d'aquests nombres complexos:

a)
$$z = 2 - 2i$$

b)
$$z = -1 + i$$

c)
$$z = 1 + 4i$$

a)
$$\frac{1}{2-2i} \cdot \frac{2+2i}{2+2i} = \frac{2+2i}{8} = \frac{1+i}{4}$$

b)
$$\frac{1}{-1+i} \cdot \frac{-1-i}{-1-i} = \frac{-1-i}{2}$$

c)
$$\frac{1}{1+4i} \cdot \frac{1-4i}{1-4i} = \frac{1-4i}{17}$$

25. Calcula els inversos d'aquests nombres complexos: a) $\frac{3-z\cdot i+2i}{2}=z+i$ b) $\frac{5+2z\cdot i-4i}{3}=z-2i$

a)
$$\frac{3-z \cdot i + 2i}{2} = z + i$$

b)
$$\frac{5+2z\cdot i-4i}{2} = z-2i$$

a)
$$3-z \cdot i + 2i = 2z + 2i \rightarrow 3 = 2z + zi \rightarrow z = \frac{3}{2+i}$$

$$z = \frac{3}{2+i} \cdot \frac{2-i}{2-i} = \frac{6-3i}{5}$$

b)
$$5+2zi-4i=3z-6i \rightarrow 5+2i=z(3-2i) \rightarrow z=\frac{5+2i}{3-2i}$$

$$z = \frac{5+2i}{3-2i} \cdot \frac{3+2i}{3+2i} = \frac{11+16i}{13}$$

26. Calcula els conjugats dels nombres següents escrits en forma polar:

- a) 2_{33°}
- b) 3_{22°}
- c) $1_{105^{\circ}}$
- d) 2_{222°}

a) El conjugat de
$$2_{33^{\circ}}$$
 és $2_{-33^{\circ}} = 2_{327^{\circ}}$.

c) El conjugat de
$$1_{105^{\circ}}$$
 és $1_{-105^{\circ}}$ = $1_{255^{\circ}}$.

27. Calcula els oposats dels nombres següents escrits en forma polar:

- a) 2_{33°}
- b) 3_{22°}
- c) $1_{105^{\circ}}$
- d) 2₂₂₂

a) L'oposat de
$$2_{33^{\circ}}$$
 és $2_{33^{\circ}} + 180^{\circ} = 2_{213^{\circ}}$.

c) L'oposat de
$$1_{105^{\circ}}$$
 és $1_{105^{\circ}} + 1_{80^{\circ}} = 1_{285^{\circ}}$.

d) L'oposat de
$$2_{222^{\circ}}$$
 és $2_{222^{\circ}} + 180^{\circ} = 2_{42^{\circ}}$.

28. Calcula els inversos dels nombres complexos en forma polar següents:

- a) 2₃₃
- b) 3₂₂
- c) 1_{105°}
- d) 2_{222°}

a) L'invers de 233° és
$$\left(\frac{1}{2}\right)_{-33^\circ}=\left(\frac{1}{2}\right)_{327^\circ}$$
 .

b) L'invers de
$$3_{22^{\circ}}$$
 és $\left(\frac{1}{3}\right)_{-22^{\circ}} = \left(\frac{1}{3}\right)_{338^{\circ}}$.

c) L'invers de
$$1_{105^{\circ}}$$
 és $1_{-105^{\circ}} = 1_{255^{\circ}}$.

d) L'invers de 2_{222°} és
$$\left(\frac{1}{2}\right)_{-222^{\circ}} = \left(\frac{1}{2}\right)_{138^{\circ}}$$
.

29. Resol les operacions següents:

a)
$$2_{30^{\circ}} + 3_{135^{\circ}} - 3_{270^{\circ}}$$

b)
$$\mathbf{1}_{45^{\circ}} + \mathbf{1}_{135^{\circ}} + \mathbf{1}_{225^{\circ}} + \mathbf{1}_{315^{\circ}}$$

a) $((2\cos 30^{\circ} + i \ 2\sin 30^{\circ}) + (3\cos 135^{\circ} + i \ 3\sin 135^{\circ})) - (3\cos 270^{\circ} + i \ 3\sin 270^{\circ}) =$

$$\left(\sqrt{3} + i - \frac{3\sqrt{2}}{2} + i\frac{3\sqrt{2}}{2}\right) - \left(-3i\right) = \sqrt{3} - \frac{3\sqrt{2}}{2} + i\left(4 + \frac{3\sqrt{2}}{2}\right)$$

b) $(\cos 45^{\circ} + i \sin 45^{\circ}) + (\cos 135^{\circ} + i \sin 135^{\circ}) + (\cos 225^{\circ} + i \sin 225^{\circ}) + (\cos 315^{\circ} + i \sin 315^{\circ}) =$

$$\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2} = 0$$

30. Fes l'operació següent:

$$\frac{\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{4} \left(-\sqrt{7} - \sqrt{7}i\right)^{2}}{\left(\frac{1}{4} + \frac{\sqrt{3}}{4}i\right)^{3}}$$

$$\frac{\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{4}\left(-\sqrt{7} - \sqrt{7}i\right)^{2}}{\left(\frac{1}{4} + \frac{\sqrt{3}}{4}i\right)^{3}} = \frac{\left(1_{120^{\circ}}\right)^{4}\left(\sqrt{14}_{225^{\circ}}\right)^{2}}{\left(\left(\frac{1}{2}\right)_{60^{\circ}}\right)^{3}} = \frac{1_{120^{\circ}}14_{90^{\circ}}}{\left(\frac{1}{8}\right)_{180^{\circ}}} = \frac{14_{210^{\circ}}}{\left(\frac{1}{8}\right)_{180^{\circ}}} = 112_{30^{\circ}}$$

31. Determina les coordenades dels vèrtexs del triangle ABC si saps que són els afixos de les arrels cúbiques de -27.

$$\sqrt[3]{-27} = \sqrt[3]{27}_{180^{\circ}}$$

El mòdul de les solucions serà l'arrel cúbica de 27 que és 3.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{180^{\circ}}{3} = 60^{\circ}$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{180^\circ + 360^\circ \cdot 1}{3} = 180^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{180^\circ + 360^\circ \cdot 2}{3} = 300^\circ$$

Per tant, els valors de les arrels són $3_{60^{\circ}}$, $3_{180^{\circ}}$, $3_{300^{\circ}}$.

Les coordenades dels vèrtexs són:

$$A(3\cos 60^{\circ}, 3\sin 60^{\circ}) = \left(\frac{3}{2}, \frac{3\sqrt{3}}{2}\right)$$

$$B(3 \cos 180^{\circ}, 3 \sin 180^{\circ}) = (-3, 0)$$

$$C(3 \cos 300^{\circ}, 3 \sin 300^{\circ}) = \left(\frac{3}{2}, -\frac{3\sqrt{3}}{2}\right)$$

32. Calcula totes les solucions de les equacions següents:

a)
$$z^4 - 16 = 0$$
 b) $z^3 + 8 = 0$ c) $z^4 - 9 = 0$

b)
$$z^3 + 8 = 0$$

c)
$$z^4 - 9 = 0$$

d)
$$z^3 + 9 = 0$$

a)
$$z = \sqrt[4]{16_{0^{\circ}}} \rightarrow z_1 = 2_{0^{\circ}}, z_2 = 2_{90^{\circ}}, z_3 = 2_{180^{\circ}}, z_4 = 2_{270^{\circ}}$$

b)
$$z = \sqrt[3]{8_{180^{\circ}}} \rightarrow z_1 = 2_{60^{\circ}}, z_2 = 2_{180^{\circ}}, z_3 = 2_{300^{\circ}}$$

c)
$$z = \sqrt[4]{9_{0^{\circ}}} \rightarrow z_1 = \sqrt{3}_{0^{\circ}}, z_2 = \sqrt{3}_{90^{\circ}}, z_3 = \sqrt{3}_{180^{\circ}}, z_4 = \sqrt{3}_{270^{\circ}}$$

d)
$$z = \sqrt[3]{9_{180^{\circ}}} \rightarrow z_1 = \sqrt[3]{9}_{60^{\circ}}, z_2 = \sqrt[3]{9}_{180^{\circ}}, z_3 = \sqrt[3]{9}_{300^{\circ}}$$

ACTIVITATS FINALS

33. Expressa aquests nombres complexos en forma binòmia:

a)
$$\sqrt{-16} + 3$$

a)
$$\sqrt{-16} + 3$$
 b) $-2 - \sqrt{-4}$ c) $\sqrt{-8} + \sqrt{2}$

c)
$$\sqrt{-8} + \sqrt{2}$$

a)
$$\sqrt{-16} + 3 = 3 + 4i$$

b)
$$-2 - \sqrt{-4} = -2 - 2i$$

c)
$$\sqrt{-8} + \sqrt{2} = \sqrt{2} + \sqrt{8}i$$

34. Expressa aquests nombres complexos en forma binòmia:

$$z_1 = 2 + 3i$$

$$z_3 = \frac{7}{2} - 2i$$

$$z_3 = \frac{7}{2} - 2i \qquad z_5 = \frac{-3 - 5i}{2} \qquad z_7 = 3i$$

$$z_7 = 3i$$

$$z_2 = 4 + \frac{1}{2}i$$

$$z_4 = 2 - \frac{5}{2}$$

$$z_2 = 4 + \frac{1}{2}i$$
 $z_4 = 2 - \frac{5}{2}i$ $z_6 = -5 + \frac{5}{2}i$

35. Representa aquests nombres en el pla complex:

g)
$$\frac{3}{2} - \frac{5}{3}i$$

b)
$$\sqrt{2} - 3i$$
 e) -4

h)
$$\sqrt{3} - 2i$$

c)
$$-3-i$$
 f) -2i

i)
$$\sqrt{3}i$$

36. Resol les equacions següents i expressa'n les solucions mitjançant nombres complexos:

a)
$$x^2 + 7 = -42$$

b)
$$-x^2 - 64 = 0$$

c)
$$1-(-x^2)=-120$$

d)
$$-3 + x^2 = 2x^2 + 1$$

e)
$$(x-10)^2 = -20x$$

a)
$$x^2 = -49 \rightarrow x = \pm \sqrt{-49} = \pm 7i$$

b)
$$x^2 = -64 \rightarrow x = \pm \sqrt{-64} = \pm 8i$$

c)
$$x^2 = -121 \rightarrow x = \pm \sqrt{-121} = \pm 11i$$

d)
$$x^2 = -4 \rightarrow x = \pm \sqrt{-4} = \pm 2i$$

e)
$$x^2 = -100 \rightarrow x = \pm \sqrt{-100} = \pm 10i$$

37. Escriu i dibuixa el conjugat i l'oposat dels nombres complexos següents:

a)
$$-3 + 2i$$

c)
$$1 - 3i$$

f)
$$4 + i$$

a) Conjugat:
$$-3 - 2i$$

Oposat:
$$3-2i$$
 (vermell)

Oposat:
$$-1 + 3i$$
 (blau)

(groc)

(morat)

e) Conjugat:
$$-2 + 2i$$

Oposat: -4-i

f) Conjugat:
$$4-i$$

38. Escriu el conjugat i l'oposat dels nombres complexos següents:

$$2 - 3i$$

$$3 - 2i$$

$$-2 + i$$

Tenint en compte aquests exemples, dedueix:

- a) Com és la representació del conjugat d'un nombre complex?
- b) Com és la representació de l'oposat d'un nombre complex?

Conjugat:
$$2 + 3i$$
 Oposat: $-2 + 3i$

Conjugat:
$$3 + 2i$$
 Oposat: $-3 + 2i$

Conjugat:
$$-2 - i$$
 Oposat: $2 - i$

- a) És simètrica respecte de l'eix X.
- b) És simètrica respecte de l'origen de coordenades.

- 39. Calcula el valor de k perquè el nombre k + (k 3) i verifiqui les condicions següents:
 - a) Que sigui un nombre imaginari pur.
 - b) Que sigui un nombre real.
 - a) k = 0
- b) $k 3 = 0 \rightarrow k = 3$
- 40. Calcula i representa en el pla complex els nombres

$$i^1$$
, i^2 , i^3 , i^4 , i^5 , i^6 , ...

Investiga també què passa amb els nombres

$$\dot{r}^{1}$$
, \dot{r}^{2} , \dot{i}^{-3} , \dot{r}^{4} , \dot{r}^{5} , \dot{r}^{6} , ...

$$i^{4n-3} = i$$
 $i^{-4n+3} = -i$

$$i^{4n-2} = -1$$
 $i^{-4n+2} = -1$

$$i^{4n-1} = -i$$
 $i^{-4n+1} = i$

$$i^{4n} = 1$$
 $i^{-4n} = 1$

- 41. Calcula el resultat d'aquestes operacions:
 - a) (4-i)+(-2+3i) c) 5-(2-i)
 - **b)** $\left(\frac{1}{3} \frac{1}{2}\mathbf{i}\right) \left(-\frac{1}{3} + \frac{1}{4}\mathbf{i}\right)$ **d)** $\left(\frac{2}{5} \mathbf{i}\right) + \left(\frac{1}{3} \frac{2}{5}\mathbf{i}\right)$

- a) 2+2i b) $\frac{2}{3}-\frac{3}{4}i$ c) 3+i d) $\frac{11}{15}-\frac{7}{5}i$
- 42. Efectua les operacions següents:

a)
$$(3-5i)+(2-7i)+(-4+8i)$$

b)
$$(-1+2i)-(3+6i)-(-4-i)$$

c)
$$-(1-2i)-(-7i)-(-4-3i)$$

d)
$$2(1-4i)-2(1+4i)-3(4-4i)$$

e)
$$2(\sqrt{3}+i)-3(2\sqrt{3}+4i)$$

f)
$$(\sqrt{2}-3i)+2(2-\sqrt{3}i)$$

a)
$$(3-5i) + (2-7i) + (-4+8i) = 1-4i$$

b)
$$(-1+2i)-(3+6i)-(-4-i)=(-1+2i)+(-3-6i)-(-4-i)=-3i$$

c)
$$-(1-2i)-(-7i)-(-4-3i)=-(1+2i)+(7i)+(4+3i)=3+12i$$

d)
$$2(1-4i)-2(1+4i)-3(4-4i)=-12-4i$$

e)
$$2(\sqrt{3}+i)-3(2\sqrt{3}+4i)=2(\sqrt{3}+2i)+(-6\sqrt{3}-12i)=-4\sqrt{3}-10i$$

f)
$$(\sqrt{2} - 3i) + 2(2 - \sqrt{3}i) = (\sqrt{2} - 3i) + (4 - 2\sqrt{3}i) = (\sqrt{2} - 4) - (3 + 2\sqrt{3})i$$

43. Calcula els productes i les potències següents:

a)
$$(1-3i)(2-6i)$$
 d) $(5-4i)(5+4i)$

b)
$$(-3-4i)(7-i)$$
 e) $(-3-2\sqrt{2}i)(-3+2\sqrt{2}i)$

c)
$$(-2+5i)^2$$
 f) $(\sqrt{2}-i)^3$

a)
$$(1-3i)(2-6i) = 2-6i-6i-18 = -16-12i$$

b)
$$(-3-4i)(7-i) = -21+3i-28i-4 = -25-25i$$

c)
$$(-2+5i)^2 = 4-25-20i = -21-20i$$

d)
$$(5-4i)(5+4i) = 25 = 41$$

e)
$$(-3 - 2\sqrt{2}i)(-3 + 2\sqrt{2}i) = 9 + 8 = 17$$

f)
$$(\sqrt{2}-i)^3 = \sqrt{2^3}-6i-3\sqrt{2}+i = -\sqrt{2}-5i$$

44. Efectua aquestes divisions:

a)
$$\frac{-1+5i}{3-2i}$$

a)
$$\frac{-1+5i}{3-2i}$$
 b) $\frac{20+40i}{8+6i}$ c) $\frac{-1+5i}{2-i}$

c)
$$\frac{-1+5i}{2-i}$$

a)
$$\frac{-1+5i}{3-2i} = \frac{(-1+5i)(3+2i)}{(3-2i)(3+2i)} = \frac{-3-2i+15i-10}{9+4} = \frac{-13+13i}{13} = -1 + i$$

b)
$$\frac{20+40i}{8+6i} = \frac{(20+40i)(8-6i)}{(8+6i)(8-6i)} = \frac{160-120i+320i+240}{64+36} = 4+2i$$

c)
$$\frac{-1+5i}{2-i} = \frac{(-1+5i)(2+i)}{(2-i)(2+i)} = \frac{-2-i+10i-5}{4+1} = \frac{-7+9i}{5}$$

45. Fes les divisions de nombres complexos següents:

a)
$$(3-i):(1-i)$$
 c) $(5+2i):(2i)$

c)
$$(5+2i)$$
: $(2i)$

b)
$$\frac{5}{2+4i}$$

b)
$$\frac{5}{2+4i}$$
 d) $\frac{\sqrt{2}}{1+\sqrt{2}i}$

a)
$$\frac{3-i}{1-i} \cdot \frac{1+i}{1+i} = \frac{3+2i+1}{2} = 2+i$$

a)
$$\frac{3-i}{1-i} \cdot \frac{1+i}{1+i} = \frac{3+2i+1}{2} = 2+i$$
 c) $\frac{5+2i}{2i} \cdot \frac{-2i}{-2i} = \frac{-10i+4}{4} = \frac{-5i+2}{2}$

b)
$$\frac{5}{2+4i} \cdot \frac{2-4i}{2-4i} = \frac{10-20i}{20} = \frac{1-2i}{2}$$

d)
$$\frac{\sqrt{2}}{1+\sqrt{2}i} \cdot \frac{1-\sqrt{2}i}{1-\sqrt{2}i} = \frac{\sqrt{2}-2i}{3}$$

46. Determina el resultat de les operacions següents en forma binòmia:

a)
$$\frac{30(1-i)}{-4-2i} + (2-3i)i$$

b)
$$2i - \frac{(2+3i)3}{-3+i}$$

c)
$$\frac{4(10-i)+8}{2-6i}$$
 - $(3-i)(2+6i)$

d)
$$(-2-5i) - \frac{10-10i-5(1+i)}{(8+2i)-(5+3i)}$$

e)
$$\frac{(1+3i)^2-(2i)^2}{-3+4i}$$

a)
$$\frac{30(1-i)}{-4-2i} + (2-3i)i = -3+9i+(3+2i) = 11i$$

b)
$$2i - \frac{(2+3i)3}{-3+i} = 2i + \frac{9}{10} + \frac{33}{10}i = \frac{9}{10} + \frac{53}{10}i$$

c)
$$\frac{4(10-i)+8}{2-6i} - (3-i)(2+6i) = \frac{48-4i}{2-6i} - (6+18i-2i+6) = 3+7i - (12+16i) = -9-9i$$

d)
$$(-2-5i) - \frac{10-10i-5(1+i)}{(8+2i)-(5+3i)} = (-2-5i) - \frac{5-15i}{3-i} = (-2-5i)-(3-4i) = -5-i$$

e)
$$\frac{(1+3i)^2 - (2i)^2}{-3+4i} = \frac{-8+6i+4}{-3+4i} = \frac{36}{25} - \frac{2}{25}i$$

47. Efectua l'operació següent:

$$\frac{1}{i} + \frac{1+i}{-i} - \frac{1-i^2}{i^2-1} - \frac{2+2i}{i-1}$$

$$\frac{1}{i} + \frac{1+i}{-i} - \frac{1-i^2}{i^2 - 1} - \frac{2+2i}{i-1} = \frac{1}{i} - \frac{1+i}{i} + 1 - \frac{2+2i}{i-1} = -\frac{2+2i}{i-1}$$

$$-\frac{2+2i}{i-1} \cdot \frac{i+1}{i+1} = -\frac{(2+2i)(i+1)}{-2} = 2i$$

48. Calcula i simplifica les expressions que hi ha a continuació:

a)
$$i^{49} \cdot i^{87}$$

c)
$$(-3i)^3 + (2i)^6 : (12i^{18})$$

b)
$$i^{34} \cdot i^{103} + i^{78} \cdot i^{116}$$

d)
$$i^{19} \cdot (2i^{33} - 3i^{28})$$

a)
$$i^{49} \cdot i^{87} = i^{136} = 1$$

c)
$$(-3i)^3 + (2i)^6 : (12i^{18}) = 27i - 64 : (-12) = 27i + \frac{16}{3}$$

b)
$$i^{34} \cdot i^{103} \perp i^{78} \cdot i^{116} = i^{137} \perp i^{194} = i = i^{137}$$

b)
$$i^{34} \cdot i^{103} + i^{78} \cdot i^{116} = i^{137} + i^{194} = i - 1$$
 d) $i^{19} \cdot (2i^{33} - 3i^{28}) = -i \cdot (2i - 3) = 2 + 3i$

49. Representa 5 + 2i. Multiplica-ho per i i representa el resultat. Multiplica-ho dues vegades per i i explica què obtens.

$$(5 + 2i)i = -2 + 5i$$

$$(5 + 2i)i^2 = -5 - 2i$$

Quan multipliquem per *i* el punt es desplaça 90°, mitjançant un gir de centre l'origen, en el sentit contrari a les agulles del rellotge.

Quan multipliquem per i^2 obtenim el punt simètric respecte de l'origen (el seu oposat).

50. Comprova si els valors de z que es donen són solucions de les equacions corresponents.

Solució	Equació		
z = 1 + 2i	$z^2 - 2z + 5 = 0$		
z = 1 + i	$z^2 + (3-i)z - (4+4i) = 0$		
$z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$	$z^3 + 1 = 0$		

$$(1+2i)^2-2(1+2i)+5=0$$

$$1+4i-4-2-4i+5=0$$

Sí és solució.

$$(1+i)^2 + (3-i)(1+i) - (4+4i) = 0$$

$$1 + 2i - 1 + 3 + 2i + 1 - 4 - 4i = 0$$

Sí és solució.

$$\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^3 + 1 = 0$$

$$\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) + 1 = 1 + 1 = 2$$

No és solució.

51. Calcula el valor de k perquè les expressions següents siguin nombres imaginaris purs:

a)
$$\frac{3+ki}{k+2i}$$

b)
$$3ki \cdot \frac{1-ki}{1-i}$$

a)
$$\frac{3+ki}{k+2i} \cdot \frac{k-2i}{k-2i} = \frac{5k+i(-6+k^2)}{k^2+4} \to k=0$$

b)
$$3ki \cdot \frac{1-ki}{1-i} \cdot \frac{1+i}{1+i} = \frac{\left(3ki+3k^2\right)\left(1+i\right)}{2} = \frac{-3k+3k^2+i\left(3k+3k^2\right)}{2} \rightarrow k = 1$$

No considerem la solució k = 0 perquè el nombre seria zero.

52. Troba p i q perquè es compleixi la igualtat següent:

$$(p+3i)(4+qi)=15+9i$$

$$(p+3i)(4+qi) = 15+9i \rightarrow (4p-3q)+(12+pq)i = 15+9i$$

$$\begin{cases} 4p - 3q = 15 \\ 12 + pq = 9 \end{cases} \rightarrow \begin{cases} p_1 = 3; \ q_1 = -1 \\ p_2 = \frac{3}{4}; \ q_2 = -4 \end{cases}$$

53. Demostra que el nombre complex z = 1 - 3i verifica la igualtat

$$\frac{z^2}{2} = z - 5$$

$$\frac{z^2}{2} = \frac{(1-3i)^2}{2} = \frac{-8-6i}{2} = -4-3i = 1-3i-5 = z-5$$

54. La suma de dos nombres complexos és 3 + 2*i* i la part real del segon és 2. Calcula els dos nombres si saps que el quocient del primer entre el segon és un nombre imaginari pur.

$$(a + bi) + (2 + di) = 3 + 2i \rightarrow a = 1, b + d = 2$$

$$\frac{1+bi}{2+di} \cdot \frac{2-di}{2-di} = \frac{2+bd+(2b-d)i}{2+d^2} \to 2+bd = 0$$

$$\begin{cases} b+d=2\\ 2+bd=0 \end{cases} \to d=1+\sqrt{3},\ b=1-\sqrt{3}\ o\ b\acute{e}\ d=1-\sqrt{3}, b=1+\sqrt{3}$$

Els nombres són:

$$z_1 = 1 + (1 + \sqrt{3})i$$
 y $z_2 = 2 + (1 - \sqrt{3})i$

$$z_1 = 1 + (1 - \sqrt{3})i$$
 y $z_2 = 2 + (1 + \sqrt{3})i$

55. Determina dos nombres complexos si sabem que la seva suma és 3 i que el seu quocient és i.

$$(a + bi) + (c + di) = 3 \rightarrow a + c = 3, b + d = 0$$

$$\frac{a+bi}{c+di} = \frac{3-c-di}{c+di} \cdot \frac{c-di}{c-di} = \frac{3c-c^2-d^2-3di}{c^2+d^2} = i \to 3c-c^2-d^2-3di = i\left(c^2+d^2\right)$$

$$\begin{vmatrix} 3c - c^2 - d^2 = 0 \\ -3d = c^2 + d^2 \end{vmatrix} \rightarrow c = \frac{3}{2}, \ d = -\frac{3}{2}, \ a = \frac{3}{2}, \ b = \frac{3}{2}$$

Els nombres són: $z_1 = \frac{3}{2} + \frac{3}{2}i$ y $z_2 = \frac{3}{2} - \frac{3}{2}i$

56. Representa gràficament aquests nombres complexos i expressa'ls en forma binòmia:

- a) 1_{60°}
- c) 2_{135°}
- e) $\sqrt{5}_{60}$ °

- b) 5_{90°}
- c) 3_{120°}
- e) $\sqrt{3}_{45^{\circ}}$

a)
$$\cos 60^{\circ} + i \sin 60^{\circ} = \frac{1}{2} + i \frac{\sqrt{3}}{2}$$

b)
$$5 \cos 90^{\circ} + i \sin 90^{\circ} = 5i$$

c)
$$2 \cos 135^{\circ} + i 2 \sin 135^{\circ} = -\sqrt{2} + i\sqrt{2}$$

d)
$$3\cos 120^{\circ} + i 3\sin 120^{\circ} = -\frac{3}{2} + i\frac{3\sqrt{3}}{2}$$

e)
$$\sqrt{5} \cos 60^{\circ} + i \sqrt{5} \sin 60^{\circ} = \frac{\sqrt{5}}{2} + i \frac{\sqrt{15}}{2}$$

f)
$$\sqrt{3} \cos 45^\circ + i \sqrt{3} \sin 45^\circ = \frac{\sqrt{6}}{2} + i \frac{\sqrt{6}}{2}$$

57. Expressa aquests nombres complexos en forma polar:

$$z_1 = 3 + 4i = 5_{53,13}$$
°

$$z_2 = 2 = 2_0^{\circ}$$

$$z_3 = -3i = 3_{270^\circ}$$

$$z_4 = -1 - 3i = \sqrt{10}_{251.57^{\circ}}$$

$$z_5 = -2 + 2i = 2\sqrt{2}_{135^\circ}$$

58. Escriu els nombres següents en forma polar i representa'ls gràficament:

- a) 3 4*i*
- d) 3i
- b) $\sqrt{3} + i$
- e) 3

c)
$$-\sqrt{2} - \sqrt{2}i$$
 f) $\frac{1}{2}i$

- a) $3 4i = 5_{306^{\circ}52'}_{11,63''}$
- b) $\sqrt{3} + i = 2_{30^{\circ}}$
- c) $-\sqrt{2} \sqrt{2}i = 2_{225^{\circ}}$

- d) $-3i = 3_{270^{\circ}}$
- e) $-3 = 3_{180^{\circ}}$
- f) $\frac{1}{2}i = \frac{1}{290^{\circ}}$

59. Escriu en forma binòmia els nombres complexos següents:

- a) $4_{60^{\circ}}$

- c) $3\frac{\pi}{2}$ e) $3_{150^{\circ}}$ g) $\sqrt{2}_{\frac{7\pi}{4}}$

- b) $2_{215^{\circ}}$ d) 2_{π} f) $1_{\frac{3\pi}{2}}$ h) $\sqrt{3}_{300^{\circ}}$

- **b)** -1,64-1,15i **d)** -2 **f)** -i **h)** $\frac{\sqrt{3}}{2}-\frac{3}{2}i$

60. Donats aquests nombres complexos:

$$z_1 = 5_{240}$$

$$z_1 = 5_{240^{\circ}}$$
 $z_1 = 3_{135^{\circ}}$ $z_1 = \sqrt{3}\frac{\pi}{5}$

$$z_1 = \sqrt{3}_{\frac{\pi}{6}}$$

escriu-ne el conjugat i l'oposat de cadascun en forma polar i binòmia.

Tenim en consideració que el conjugat és el punt simètric respecte l'eix d'abscisses i l'oposat és el simètric respecte de l'origen.

Nombre		Conjugat		Oposat	
Polar	Binòmia	Polar	Binòmia	Polar	Binòmia
5 _{240°}	$\left(-\frac{5}{2}, -\frac{5\sqrt{3}}{2}\right)$	5 _{120°}	$\left(-\frac{5}{2}, \frac{5\sqrt{3}}{2}\right)$	5 _{60°}	$\left(\frac{5}{2}, \frac{5\sqrt{3}}{2}\right)$
3 _{135°}	$\left(-\frac{3\sqrt{2}}{2},\frac{3\sqrt{2}}{2}\right)$	3 _{225°}	$\left(-\frac{3\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2}\right)$	3 _{315°}	$\left(\frac{3\sqrt{2}}{2}, -\frac{3\sqrt{2}}{2}\right)$
$\sqrt{3}\frac{\pi}{6}$	$\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)$	$\sqrt{3}_{\frac{11\pi}{6}}$	$\left(\frac{3}{2}, -\frac{\sqrt{3}}{2}\right)$	$\sqrt{3}_{\frac{7\pi}{6}}$	$\left(-\frac{3}{2}, -\frac{\sqrt{3}}{2}\right)$

61. Escriu en forma polar els nombres complexos que hi ha a continuació:

a)
$$\sqrt{3}(\cos{\frac{\pi}{6}} + i \sin{\frac{\pi}{6}})$$
 b) $3(\cos{\frac{\pi}{2}} + i \sin{\frac{\pi}{2}})$

b)
$$3(\cos{\frac{\pi}{2}} + i \sin{\frac{\pi}{2}})$$

a)
$$\sqrt{3}\frac{\pi}{6}$$

b)
$$3_{\frac{\pi}{2}}$$

62. Donat el nombre escrit en forma polar r_{α} , digues com serien l'oposat i el conjugat corresponents.

Oposat: $-r_{\alpha} = r_{180^{\circ}+\alpha}$

Conjugat: r-a

63. Efectua les operacions següents amb nombres complexos:

a)
$$4_{120^{\circ}} \cdot 3_{60^{\circ}}$$
 d) $\frac{8_{170^{\circ}}}{2_{50^{\circ}}}$ g) $\frac{7_{2\pi}}{\frac{2\pi}{3}}}{5_{5\pi}}$

d)
$$\frac{8_{170^{\circ}}}{2_{50^{\circ}}}$$

g)
$$\frac{7_{\frac{2\pi}{3}}}{5_{\frac{5\pi}{3}}}$$

b)
$$\frac{6_{\pi}}{2_{\frac{\pi}{4}}}$$

b)
$$\frac{6_{\pi}}{2_{\pi}}$$
 e) $\left(5_{\frac{\pi}{3}}\right)^2$ h) $(2_{120^{\circ}})^5$

c)
$$4_{\frac{\pi}{2}} \cdot 2_{270^{\circ}}$$
 f) $2_{260^{\circ}} \cdot 5_{130^{\circ}}$ i) $\frac{10_{120^{\circ}}}{5_{240^{\circ}}}$

i)
$$\frac{10_{120^{\circ}}}{5}$$

a)
$$4_{120^{\circ}} \cdot 3_{60^{\circ}} = 12_{180^{\circ}}$$

d)
$$\frac{8_{170^{\circ}}}{2_{50^{\circ}}} = 4_{120^{\circ}}$$

g)
$$\frac{7_{\frac{2\pi}{3}}}{5_{\frac{5\pi}{3}}} = \frac{7}{5_{\frac{\pi}{6}}}$$

b)
$$\frac{6_{\pi}}{2_{\frac{\pi}{4}}} = 3_{\frac{3\pi}{4}}$$

b)
$$\frac{6_{\pi}}{2_{\frac{\pi}{4}}} = 3_{\frac{3\pi}{4}}$$
 e) $\left(5_{\frac{\pi}{3}}\right)^2 = 25_{\frac{2\pi}{3}}$

h)
$$(2_{120^{\circ}})^5 = 32_{600^{\circ}} = 32_{240^{\circ}}$$

c)
$$4_{\frac{\pi}{3}} \cdot 2_{270^{\circ}} = 4_{60^{\circ}} \cdot 2_{270^{\circ}} = 8_{330^{\circ}}$$
 f) $2_{260^{\circ}} \cdot 5_{130^{\circ}} = 10_{390^{\circ}} = 10_{30^{\circ}}$ i) $\frac{10_{120^{\circ}}}{5_{240^{\circ}}} = 2_{240^{\circ}}$

f)
$$2_{260^{\circ}} \cdot 5_{130^{\circ}} = 10_{390^{\circ}} = 10_{30^{\circ}}$$

i)
$$\frac{10_{120^{\circ}}}{5_{240^{\circ}}} = 2_{240}$$

64. Expressa en forma polar l'invers d'aquests nombres:

a)
$$2_{150^{\circ}}$$

c)
$$4\frac{\pi}{3}$$

b)
$$e_{\frac{\pi}{2}}$$

d)
$$\left(\frac{1}{4}\right)_{7}$$

b)
$$e_{\frac{\pi}{2}}$$
 d) $(\frac{1}{4})_{\pi}$ f) $\sqrt{7}_{35^{\circ}}$

Per calcular l'invers d'un nombre en forma polar, calculem l'invers del mòdul i l'oposat de l'argument.

a)
$$\left(\frac{1}{2}\right)_{210^{\circ}}$$

c)
$$\left(\frac{1}{4}\right)_{\frac{5\pi}{3}}$$

e)
$$\left(\frac{1}{e}\right)_{\frac{11\pi}{6}}$$

$$b) \left(\frac{1}{3}\right)_{\frac{3\pi}{2}}$$

d)
$$4_{\pi}$$

f)
$$\left(\frac{\sqrt{7}}{7}\right)_{325^\circ}$$

65. Calcula les potències de nombres complexos següents en forma polar:

b)
$$\left(4\frac{\pi}{3}\right)^2$$

c)
$$(3_{-25^{\circ}})^6$$

a)
$$(2_{105^{\circ}})^4$$
 b) $\left(4_{\frac{\pi}{3}}\right)^2$ c) $(3_{-25^{\circ}})^6$ d) $\left(\sqrt{5}_{\frac{3\pi}{4}}\right)^6$

b)
$$16_{2\pi/3}$$

b)
$$16_{2\pi/3}$$
 c) 729_{210}°

66. Efectua les operacions combinades de nombres complexos següents:

a)
$$(4_{20^{\circ}} \cdot 1_{50^{\circ}}) \cdot 3_{35^{\circ}}$$

c)
$$\frac{6_{60^{\circ}} \cdot 3_{40^{\circ}}}{9_{56^{\circ}}}$$

b)
$$(9_{39^{\circ}}: 3_{25^{\circ}}) \cdot 5_{100^{\circ}}$$

d)
$$(1_{105^{\circ}})^8 \cdot (1_{65^{\circ}})^5$$

a)
$$4_{70^{\circ}} \cdot 3_{35^{\circ}} = 12_{105^{\circ}}$$

c)
$$\frac{18_{100^{\circ}}}{9_{56^{\circ}}} = 2_{44^{\circ}}$$

b)
$$3_{14^{\circ}} \cdot 5_{100^{\circ}} = 15_{114^{\circ}}$$

d)
$$1_{120^{\circ}} \cdot 1_{325^{\circ}} = 1_{85^{\circ}}$$

67. Fes les operacions combinades amb nombres complexos següents:

a)
$$(4-2i) - (3-2\sqrt{2}i) \cdot 2_{30^{\circ}}$$
 b) $\frac{(1+\sqrt{3i})^2 - 4_{3\pi}}{-3+3i}$

$$(1+\sqrt{3i})^2-4_{\frac{3\pi}{2}}$$

a)
$$((4-2i)-(3-2\sqrt{2}i)(\sqrt{3}+i))^2 = ((4-2i)-(3\sqrt{3}+3i-2\sqrt{6}i+2\sqrt{2}))^2$$

$$\left(4 - 3\sqrt{3} - 2\sqrt{2} + \left(-5 + 2\sqrt{6}\right)i\right)^2 = 2 - 40i - \left(16 + 16i\right)\sqrt{2} - \left(24 - 14i\right)\sqrt{3} + \left(32 + 16i\right)\sqrt{6}$$

b)
$$\frac{\left(2_{60^{\circ}}\right)^{2}+4i}{-3+3i} = \frac{4_{120^{\circ}}+4i}{-3+3i} = \frac{-2+2\sqrt{3}i+4i}{-3+3i} \cdot \frac{-3-3i}{-3-3i} = \frac{18+6\sqrt{3}-6i-6\sqrt{3}i}{18} = \frac{3+\sqrt{3}}{3}-i\frac{1+\sqrt{3}}{3}$$

68. Fes les operacions següents expressant primer els nombres en forma polar:

a)
$$(1-i)^4$$

c)
$$(-1 + \sqrt{3}i)^4$$

b)
$$(-\sqrt{2} + \sqrt{2}i)^6$$

d)
$$\left(\sqrt{2}+i\right)^7$$

b)
$$(-\sqrt{2} + \sqrt{2}i)^6$$

a) $(1-i)^4 = (\sqrt{2}_{315^\circ})^4 = 4_{180^\circ}$

c)
$$\left(-1+\sqrt{3}i\right)^4=(2_{120^\circ})^4=16_{120^\circ}$$

b)
$$(-\sqrt{2} + \sqrt{2}i)^6 = (2_{135^\circ})^6 = 64_{90^\circ}$$
 d) $(\sqrt{2} + i)^7 = \sqrt{3}_{324^\circ 44'8.2''}$

d)
$$(\sqrt{2} + i)^7 = \sqrt{3}_{324^\circ 44'8.2''}$$

69. Representa aquests nombres i els resultats de les operacions en el pla complex. Explica què passa en cada cas.

a)
$$2_{150^{\circ}} \cdot 3_{120^{\circ}}$$

b)
$$\frac{6_{150^{\circ}}}{2_{60^{\circ}}}$$

c)
$$\left(2\frac{\pi}{3}\right)^4$$

a) El mòdul del resultat és el producte dels mòduls, i l'argument és la suma dels arguments dels nombres donats.

b) El mòdul del resultat és el quocient dels mòduls, i l'argument és la resta dels arguments dels nombres donats.

c) El mòdul del resultat és la quarta potència del mòdul, I l'argument és el quàdruple de l'argument del nombre donat.

70. Efectua les potències següents mitjançant la fórmula de De Moivre:

a)
$$(3 (\cos 25^{\circ} + i \sin 25^{\circ}))^{4}$$

b)
$$(2 (\cos 40^{\circ} + i \sin 40^{\circ}))^{9}$$

c)
$$(5 (cos 115^{\circ} + i sin 115^{\circ}))^{7}$$

d)
$$\left(\cos\frac{\pi}{3} + i \operatorname{sen}\frac{\pi}{3}\right)^3$$

$$\mathbf{e)} \left(3 \left(\cos \frac{3\pi}{2} + i \operatorname{sen} \frac{3\pi}{2} \right) \right)^4$$

a)
$$(3 (\cos 25^{\circ} + i \sin 25^{\circ}))^{4} = 81(\cos 100^{\circ} + i \sin 100^{\circ})$$

b)
$$(2 (\cos 40^{\circ} + i \sin 40^{\circ}))^{9} = 512(\cos 0^{\circ} + i \sin 0^{\circ}) = 512$$

c)
$$(5 (\cos 115^{\circ} + i \sin 115^{\circ}))^{7} = 78 125 (\cos 85^{\circ} + i \sin 85^{\circ})$$

d)
$$\left(\cos\frac{\pi}{3} + i \operatorname{sen}\frac{\pi}{3}\right)^3 = \cos\pi + i \operatorname{sen}\pi = -1$$

e)
$$\left(3\left(\cos\frac{3\pi}{2} + i \operatorname{sen}\frac{3\pi}{2}\right)\right)^4 = 81\left(\cos 0 + i \operatorname{sen} 0\right) = 81$$

71. Dibuixa els nombres 2_{30° i 6_{150° . Determina per quin nombre complex hem de multiplicar el primer per obtenir el segon.

S'ha de multiplicar per $3_{120^{\circ}}$

72. Dibuixa els nombres 12_{300° i 4_{120° . Indica per quin nombre complex hem de dividir el primer per obtenir el segon.

S'ha de dividir per 3_{180°}

73. Calcula les solucions de les arrels següents:

a)
$$\sqrt[3]{64_{120^{\circ}}}$$

$$5\sqrt{32_{\frac{51}{4}}}$$

e)
$$\sqrt[4]{9_{220}}$$

b)
$$\sqrt[5]{1_{150^{\circ}}}$$

d)
$$\sqrt[6]{64_{180}}$$

$$\sqrt[6]{2_{75}}$$

a)
$$\sqrt[3]{64_{120^{\circ}}}$$

El mòdul de les solucions serà l'arrel cúbica del mòdul: 4.

Existiran tants arguments com indiqui el radical.

Si k = 0
$$\rightarrow$$
 $\beta_1 = \frac{120^o + 0.360^o}{3} = 40^o$

Si k = 1
$$\rightarrow$$
 $\beta_2 = \frac{120^{\circ} + 1 \cdot 360^{\circ}}{3} = 160^{\circ}$

$$\text{Si k = 2} \rightarrow \beta_3 = \frac{120^{\circ} + 2 \cdot 360^{\circ}}{3} = 280^{\circ}$$

Per tant, les arrels són 4_{40°}, 4_{160°}, 4_{280°}.

b) El mòdul de les solucions serà l'arrel cinquena de 1: 1.

Existiran tants nombres com indiqui el radical.

$$\beta_1 = \frac{150^\circ + 0 \cdot 360^\circ}{5} = 30^\circ$$
 Si k = 0 \rightarrow

$$\beta_2 = \frac{150^{\circ} + 1 \cdot 360^{\circ}}{5} = 102^{\circ}$$
 Si k = 1 \rightarrow

$$\beta_3 = \frac{150^{\circ} + 2 \cdot 360^{\circ}}{5} = 174^{\circ}$$
 Si k = 2 \rightarrow

$$\beta_4 = \frac{150^{\circ} + 3 \cdot 360^{\circ}}{5} = 246^{\circ}$$
 Si k = 3 \rightarrow

Per tant, les arrels són 1_{30°}, 1_{102°}, 1_{174°}, 1_{246°}, 1_{318°}

c) El mòdul de les solucions serà l'arrel cinquena de 32: 2.

Existiran tants arguments com indiqui el radical.

$$\beta_1 = \frac{225^\circ + 0 \cdot 360^\circ}{5} = 45^\circ$$
 Si k = 0 \rightarrow

$$\beta_2 = \frac{225^{\circ} + 1 \cdot 360^{\circ}}{5} = 117^{\circ}$$
 Si k = 1 \rightarrow

$$\beta_3 = \frac{225^{\circ} + 2 \cdot 360^{\circ}}{5} = 189^{\circ}$$
 Si k = 2 \rightarrow

$$\beta_4 = \frac{225^{\circ} + 3 \cdot 360^{\circ}}{5} = 261^{\circ}$$
 Si k = 3 \rightarrow

$$\beta_{5} = \frac{225^{\circ} + 4 \cdot 360^{\circ}}{5} = 333^{\circ}$$
 Si k = 4 \rightarrow

Per tant, les arrels són $2_{40^{\circ}},\,2_{117^{\circ}},\,2_{189^{\circ}},\,2_{261^{\circ}},\,2_{333^{\circ}}$

d) El mòdul de les solucions serà l'arrel sisena de 64: 2.

Existiran tants nombres com indiqui el radical.

$$\text{Si k = 0} \rightarrow \beta_1 = \frac{180^\circ + 0 \cdot 360^\circ}{6} = 30^\circ$$

$$\beta_2 = \frac{180^{\circ} + 1 \cdot 360^{\circ}}{6} = 90^{\circ}$$
 Si k = 1 \rightarrow

$$\beta_3 = \frac{180^{\circ} + 2 \cdot 360^{\circ}}{6} = 150^{\circ}$$
 Si k = 2 \rightarrow

$$\beta_4 = \frac{180^{\circ} + 3 \cdot 360^{\circ}}{6} = 210^{\circ}$$
 Si k = 3 \rightarrow

$$\beta_5 = \frac{180^{\circ} + 4 \cdot 360^{\circ}}{6} = 270^{\circ}$$
 Si k = 4 \rightarrow

$$\beta_6 = \frac{180^{\circ} + 5 \cdot 360^{\circ}}{6} = 330^{\circ}$$
 Si k = 5 \rightarrow

Per tant, les arrels són 230°, 290°, 2150°, 2210°, 2270°, 2330°.

e) El mòdul de les solucions serà l'arrel cúbica de 9: $\sqrt{3}$.

Existiran tants arguments com indiqui el radical.

$$\beta_1 = \frac{220^{\circ} + 0.360^{\circ}}{4} = 55^{\circ}$$
 Si k = 0 \rightarrow

$$\beta_2 = \frac{220^{\circ} + 1 \cdot 360^{\circ}}{4} = 145^{\circ}$$
 Si k = 1 \rightarrow

$$\beta_3 = \frac{220^{\circ} + 2 \cdot 360^{\circ}}{4} = 235^{\circ}$$
 Si k = 2 \rightarrow

$$\beta_4 = \frac{220^{\circ} + 3 \cdot 360^{\circ}}{4} = 325^{\circ}$$
 Si k = 3 \rightarrow

Per tant, les arrels són $\sqrt{3}_{55^\circ}, \sqrt{3}_{145^\circ}, \sqrt{3}_{235^\circ}, \sqrt{3}_{325^\circ}$

f) El mòdul de les solucions serà l'arrel sisena de 2.

Existiran tants nombres com indiqui el radical.

$$\beta_1 = \frac{75^{\circ} + 0.360^{\circ}}{6} = 12,5^{\circ}$$
 Si k = 0 \rightarrow

$$\beta_2 = \frac{75^{\circ} + 1 \cdot 360^{\circ}}{6} = 72,5^{\circ}$$
 Si k = 1 \rightarrow

$$\beta_3 = \frac{75^{\circ} + 2 \cdot 360^{\circ}}{6} = 132, 5^{\circ}$$
 Si k = 2 \rightarrow

Si k = 3
$$\rightarrow$$
 $\beta_4 = \frac{75^{\circ} + 3 \cdot 360^{\circ}}{6} = 192, 5^{\circ}$

$$\beta_5 = \frac{75^{\circ} + 4 \cdot 360^{\circ}}{6} = 252, 5^{\circ}$$
 Si k = 4 \rightarrow

Si k = 5
$$\rightarrow$$
 $\beta_6 = \frac{75^{\circ} + 5 \cdot 360^{\circ}}{6} = 312,5^{\circ}$

Per tant, les arrels són
$$\sqrt[6]{2}_{12,5^{\circ}}$$
, $\sqrt[6]{2}_{72,5^{\circ}}$, $\sqrt[6]{2}_{132,5^{\circ}}$, $\sqrt[6]{2}_{192,5^{\circ}}$, $\sqrt[6]{2}_{252,5^{\circ}}$, $\sqrt[6]{2}_{312,5^{\circ}}$.

74. Calcula les arrels següents de nombres complexos:

a)
$$\sqrt{1}$$

c)
$$\sqrt[4]{1}$$

e)
$$\sqrt[3]{i}$$

b)
$$\sqrt[3]{1}$$

d)
$$\sqrt{i}$$

f)
$$\sqrt[4]{i}$$

a)
$$\sqrt{1} = 1_{\frac{0^{\circ} + k \cdot 360^{\circ}}{2}}$$

Si
$$k = 0 \rightarrow x_1 = 1_{180^{\circ}} = -1$$

Si
$$k = 1 \rightarrow x_2 = 1_{0^{\circ}} = 1$$

b)
$$\sqrt[3]{1} = 1_{\frac{0^{\circ} + k \cdot 360^{\circ}}{3}}$$

$$\mathsf{Si}\; k = 0 \to x_1 = 1_{120^\circ}$$

Si
$$k = 2 \rightarrow x_3 = 1_{0^{\circ}} = 1$$

Si
$$k = 1 \rightarrow x_2 = 1_{240^{\circ}}$$

c)
$$\sqrt[4]{1} = 1_{\frac{0^{\circ} + k \cdot 360^{\circ}}{4}}$$

Si
$$k = 0 \rightarrow x_1 = 1_{90^{\circ}} = i$$
 Si $k = 2 \rightarrow x_3 = 1_{270^{\circ}} = -i$

Si
$$k = 2 \rightarrow x_2 = 1_{270^{\circ}} = -i$$

Si
$$k = 1 \rightarrow x_2 = 1_{180^{\circ}} = -1$$
 Si $k = 3 \rightarrow x_4 = 1_{0^{\circ}} = 1$

d)
$$\sqrt{i} = 1_{\frac{90^{\circ} + k \cdot 360^{\circ}}{2}}$$

Si
$$k = 0 \rightarrow x_1 = 1_{45^{\circ}}$$

Si
$$k = 1 \rightarrow x_2 = 1_{225^{\circ}}$$

e)
$$\sqrt[3]{i} = 1_{\frac{90^{\circ} + k \cdot 360^{\circ}}{3}}$$

Si
$$k = 0 \rightarrow x_1 = 1_{30^{\circ}}$$

Si
$$k = 2 \rightarrow x_3 = 1_{270^{\circ}} = -i$$

Si
$$k = 1 \rightarrow x_2 = 1_{150^{\circ}}$$

f)
$$\sqrt[4]{i} = 1_{\frac{90^{\circ} + k \cdot 360^{\circ}}{4}}$$

Si
$$k = 0 \rightarrow x_1 = 1_{22.5^{\circ}}$$

Si
$$k = 2 \rightarrow x_3 = 1_{202.5^{\circ}}$$

Si
$$k = 1 \rightarrow x_2 = 1_{112.5^{\circ}}$$

Si
$$k = 3 \rightarrow x_4 = 1_{292.5^{\circ}}$$

75. Calcula aquestes arrels i representa-les:

- a) $\sqrt[6]{-16}$
- c) $\sqrt[3]{16i}$
- e) $\sqrt[5]{1-\sqrt{3}i}$

Nombres complexos

b)
$$\sqrt[3]{-i}$$

d)
$$\sqrt[3]{\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i}$$
 f) $\sqrt[4]{625}$

f)
$$\sqrt[4]{625}$$

a)
$$\sqrt[6]{-16} = \sqrt[6]{16_{180^{\circ}}}$$

El mòdul de les solucions serà l'arrel sisena de 16: $\sqrt[3]{4}$.

Si
$$k = 0 \rightarrow \beta_1 = \frac{180^\circ + 0.360^\circ}{6} = 30^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{180^\circ + 1 \cdot 360^\circ}{6} = 90^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{180^\circ + 2 \cdot 360^\circ}{6} = 150^\circ$$

Si
$$k = 3 \rightarrow \beta_4 = \frac{180^{\circ} + 3 \cdot 360^{\circ}}{6} = 210^{\circ}$$

Si
$$k = 4 \rightarrow \beta_5 = \frac{180^\circ + 4 \cdot 360^\circ}{6} = 270^\circ$$

Si
$$k = 5 \rightarrow \beta_6 = \frac{180^\circ + 5 \cdot 360^\circ}{6} = 330^\circ$$

Per tant, les arrels són $\sqrt[3]{4}_{30^{\circ}}$, $\sqrt[3]{4}_{90^{\circ}} = \sqrt[3]{4}i$, $\sqrt[3]{4}_{150^{\circ}}$, $\sqrt[3]{4}_{210^{\circ}}$, $\sqrt[3]{4}_{270^{\circ}} = -\sqrt[3]{4}i$, $\sqrt[3]{4}_{330^{\circ}}$,

El mòdul de les solucions serà l'arrel cúbica de 1: 1.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{270^\circ + 0.360^\circ}{3} = 90^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{270^\circ + 1.360^\circ}{3} = 210^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{270^\circ + 2 \cdot 360^\circ}{3} = 330^\circ$$

Per tant les arrels són 190°, 1210°, 1330°

c)
$$\sqrt[3]{16i} = \sqrt[3]{16_{90^{\circ}}}$$

El mòdul de les solucions serà l'arrel cúbica de 16: $2\sqrt[3]{2}$.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{90^\circ + 0.360^\circ}{3} = 30^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{90^\circ + 1 \cdot 360^\circ}{3} = 150^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{90^\circ + 2 \cdot 360^\circ}{3} = 270^\circ$$

Per tant, les arrels són $2\sqrt[3]{2}_{30^{\circ}}$, $2\sqrt[3]{2}_{150^{\circ}}$, $2\sqrt[3]{2}_{270^{\circ}} = -2\sqrt[3]{2}i$.

d)
$$\sqrt[3]{\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i} = \sqrt[3]{1_{45^{\circ}}}$$

El mòdul de les solucions serà l'arrel cúbica de 1: 1.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{45^\circ + 0.360^\circ}{3} = 15^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{45^{\circ} + 1.360^{\circ}}{3} = 135^{\circ}$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{45^\circ + 2 \cdot 360^\circ}{3} = 255^\circ$$

Per tant, les arrels són 1_{15°}, 1_{135°}, 1_{255°}

e)
$$\sqrt[5]{1-\sqrt{3}i} = \sqrt[5]{2_{300^{\circ}}}$$

El mòdul de les solucions serà l'arrel cinquena de 2.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{300^\circ + 0.360^\circ}{5} = 60^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{300^\circ + 1 \cdot 360^\circ}{5} = 132^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{300^{\circ} + 2 \cdot 360^{\circ}}{5} = 204^{\circ}$$

Si
$$k = 3 \rightarrow \beta_4 = \frac{300^\circ + 3.360^\circ}{5} = 276^\circ$$

Si
$$k = 4 \rightarrow \beta_5 = \frac{300^\circ + 4 \cdot 360^\circ}{5} = 348^\circ$$

Per tant, les arrels són $\sqrt[5]{2}_{60^{\circ}}$, $\sqrt[5]{2}_{132^{\circ}}$, $\sqrt[5]{2}_{204^{\circ}}$, $\sqrt[5]{2}_{276^{\circ}}$, $\sqrt[5]{2}_{348^{\circ}}$.

f)
$$\sqrt[4]{625} = \sqrt[4]{625_{0^{\circ}}}$$

El mòdul de les solucions serà l'arrel cúbica de 625: 5.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{0^\circ + 0 \cdot 360^\circ}{4} = 0^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{0^\circ + 1 \cdot 360^\circ}{4} = 90^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{0^{\circ} + 2 \cdot 360^{\circ}}{4} = 180^{\circ}$$

Si
$$k = 3 \rightarrow \beta_4 = \frac{0^\circ + 3 \cdot 360^\circ}{4} = 270^\circ$$

Per tant, les arrels són 5_{0°}, 5_{90°}, 5_{180°}, 5_{270°}.

76. Una de les arrels cúbiques d'un nombre complex és 2 + 4i. Calcula'n les altres dues.

Les altres dues arrels tindran el mateix mòdul.

$$z_1 = 2 + 4i = \sqrt{20}_{63,435^{\circ}}$$

$$Z_2 = \sqrt{20}_{63,435^{\circ}} \cdot 1_{120^{\circ}} = \sqrt{20}_{183,435^{\circ}}$$

$$Z_3 = \sqrt{20}_{63,435^{\circ}} \cdot 1_{240^{\circ}} = \sqrt{20}_{303,435^{\circ}}$$

77. Els vèrtexs del polígon següent són les arrels quartes d'un nombre complex:

Determina el nombre i les seves arrels

Les arrels són:

$$z_1 = 4 + 4i = \sqrt{32}_{45^{\circ}}$$
 $z_2 = -4 + 4i = \sqrt{32}_{135^{\circ}}$ $z_3 = -4 - 4i = \sqrt{32}_{225^{\circ}}$ $z_4 = 4 - 4i = \sqrt{32}_{315^{\circ}}$

El nombre és:
$$z = 1024_{180^{\circ}} = -1024$$
.

78. El nombre complex $2_{30^{\circ}}$ és un dels vèrtexs d'un pentàgon regular. Calcula'n els altres quatre vèrtexs i el nombre complex que té aquests nombres com a arrels cinquenes.

Les arrels són:
$$z_1 = 2_{30^{\circ}}$$
, $z_2 = 2_{102^{\circ}}$, $z_3 = 2_{174^{\circ}}$, $z_4 = 2_{246^{\circ}}$, $z_5 = 2_{318^{\circ}}$.

El nombre és:
$$z = 32_{150^{\circ}}$$
.

79. Troba n i z de manera que dues de les solucions de $\sqrt[n]{z}$ n siguin $6_{30^{\circ}}$ i $6_{120^{\circ}}$. Hi ha una única solució? Quin és el nombre n més petit que pots trobar?

Sigui
$$z = r_{\alpha}$$
.

El nombre més petit que compleix les condicions és
$$n = 4$$
.

$$z_1 = 1296_{120^{\circ}}$$

Una altra solució és
$$n = 8$$
.

$$z_2 = 1679616_{240^{\circ}}$$

80. Calcula totes les solucions complexos de les equacions següents:

a)
$$x^5 + 1 = 0$$

c)
$$x^5 - 1 = 0$$

b)
$$x^4 - 625 = 0$$

d)
$$x^4 + 16 = 0$$

a)
$$x = \sqrt[5]{-1} = \sqrt[5]{1_{180^{\circ}}}$$

El mòdul de les solucions serà l'arrel cinquena de 1.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{180^{\circ} + 0.360^{\circ}}{5} = 36^{\circ}$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{180^\circ + 1 \cdot 360^\circ}{5} = 108^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{180^\circ + 2 \cdot 360^\circ}{5} = 180^\circ$$

Si
$$k = 3 \rightarrow \beta_4 = \frac{0^\circ + 3 \cdot 360^\circ}{5} = 252^\circ$$

Si
$$k = 4 \rightarrow \beta_5 = \frac{180^\circ + 3 \cdot 360^\circ}{5} = 324^\circ$$

Per tant, les arrels són $1_{36^{\circ}}$, $1_{108^{\circ}}$, $1_{180^{\circ}}$, $1_{252^{\circ}}$, $1_{324^{\circ}}$.

b)
$$x = \sqrt[4]{625} = \sqrt[4]{625_{0^{\circ}}}$$

El mòdul de les solucions serà l'arrel cúbica de 625: 5.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{0^\circ + 0.360^\circ}{4} = 0^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{0^\circ + 1 \cdot 360^\circ}{4} = 90^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{0^{\circ} + 2 \cdot 360^{\circ}}{4} = 180^{\circ}$$

Si
$$k = 3 \rightarrow \beta_4 = \frac{0^\circ + 3 \cdot 360^\circ}{4} = 270^\circ$$

Per tant, les arrels són 5_{0°}, 5_{90°}, 5_{180°}, 5_{270°}.

c)
$$x = \sqrt[5]{1} = \sqrt[5]{1_{0^{\circ}}}$$

El mòdul de les solucions serà l'arrel cinquena de 1.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{0^\circ + 0.360^\circ}{5} = 0^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{0^{\circ} + 1 \cdot 360^{\circ}}{5} = 72^{\circ}$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{0^\circ + 2 \cdot 360^\circ}{5} = 144^\circ$$

Si
$$k = 3 \rightarrow \beta_4 = \frac{0^\circ + 3 \cdot 360^\circ}{5} = 216^\circ$$

Si
$$k = 4 \rightarrow \beta_5 = \frac{0^\circ + 4 \cdot 360^\circ}{5} = 288^\circ$$

Per tant, les arrels són 1_{0°}, 1_{72°}, 1_{144°}, 1_{216°}, 1_{288°}.

d)
$$x = \sqrt[4]{-16} = \sqrt[4]{16_{180^{\circ}}}$$

El mòdul de les solucions serà l'arrel cúbica de 16: 2.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{180^{\circ} + 0.360^{\circ}}{4} = 45^{\circ}$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{180^\circ + 1.360^\circ}{4} = 135^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{180^\circ + 2 \cdot 360^\circ}{4} = 225^\circ$$

Si
$$k = 3 \rightarrow \beta_4 = \frac{180^{\circ} + 3 \cdot 360^{\circ}}{4} = 315^{\circ}$$

Per tant, les arrels són 2_{45°}, 2_{135°}, 2_{225°}, 2_{315°}.

81. Resol les equacions següents:

a)
$$x^2 - 4x + 13 = 0$$

a)
$$x^2 - 4x + 13 = 0$$
 c) $x^4 - 6x^2 - 9 = 0$
b) $x^4 - 8x = 0$ d) $x^4 + 27x = 0$

b)
$$x^4 - 8x = 0$$

d)
$$x^4 + 27x = 0$$

a)
$$x = \frac{4 \pm \sqrt{16 - 52}}{2} = \frac{4 \pm \sqrt{-36}}{2} = 2 \pm 3i$$

b)
$$x(x^3-8)=0 \rightarrow x=\sqrt[3]{8}_{0^0}$$

El mòdul de les solucions serà l'arrel cúbica de 8: 2.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{0^\circ + 0.360^\circ}{3} = 0^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{0^\circ + 1 \cdot 360^\circ}{3} = 120^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{0^\circ + 2 \cdot 360^\circ}{3} = 240^\circ$$

Per tant, les arrels són 0, 2, 2_{120°}, 2_{140°}.

c)
$$t = x^2$$

$$t = \frac{6 \pm \sqrt{36 + 36}}{2} = 3 \pm 3\sqrt{2}$$

$$x_1 = \sqrt{3 + 3\sqrt{2}}$$

$$x_2 = -\sqrt{3 + 3\sqrt{2}}$$

$$x_3 = \sqrt{3 - 3\sqrt{2}} = i\sqrt{3(\sqrt{2} - 1)}$$

$$x_4 = -\sqrt{3 - 3\sqrt{2}} = -i\sqrt{3(\sqrt{2} - 1)}$$

d)
$$x(x^3 + 27) = 0$$

$$x = \sqrt[3]{-27} = \sqrt[3]{27_{180^{\circ}}}$$

El mòdul de les solucions serà l'arrel cúbica de 27: 3.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{180^\circ + 0.360^\circ}{3} = 60^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{180^{\circ} + 1.360^{\circ}}{3} = 180^{\circ}$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{180^\circ + 2 \cdot 360^\circ}{3} = 300^\circ$$

Per tant, les arrels són 0, 3_{60°}, 3_{180°}, 3_{300°}.

82. Fes aquestes operacions amb nombres complexos:

a)
$$\sqrt[4]{\frac{16}{i}}$$

b)
$$\sqrt{\frac{-1+i}{1+i}}$$

b)
$$\sqrt{\frac{-1+i}{1+i}}$$
 c) $\sqrt[3]{(2-i)^2-3(1-i)}$

a)
$$\sqrt[4]{\frac{16}{i}} = \sqrt[4]{-16i} = \sqrt[4]{16}_{270^{\circ}}$$

El mòdul de les solucions serà l'arrel cúbica de 16: 2.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{270^{\circ} + 0.360^{\circ}}{4} = 67,5^{\circ}$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{270^\circ + 1 \cdot 360^\circ}{4} = 157,5^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{270^\circ + 2 \cdot 360^\circ}{4} = 247,5^\circ$$

Si
$$k = 3 \rightarrow \beta_4 = \frac{270^{\circ} + 3 \cdot 360^{\circ}}{4} = 337,5^{\circ}$$

Per tant, les arrels són 2_{67,5°}, 2_{157,5°}, 2_{247,5°}, 2_{337,5°}.

b)
$$\sqrt{\frac{-1+i}{1+i}} = \sqrt{\frac{-1+i}{1+i} \cdot \frac{1-i}{1-i}} = \sqrt{i} = \sqrt{1_{90^{\circ}}}$$

El mòdul de les solucions serà l'arrel quadrada de 1: 1.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{90^\circ + 0.360^\circ}{2} = 45^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{90^\circ + 1.360^\circ}{2} = 225^\circ$$

Per tant, les arrels són 1_{45°}, 1_{225°}.

c)
$$\sqrt[3]{(2-i)^2-3(1-i)} = \sqrt[3]{-i} = \sqrt[3]{1_{270^\circ}}$$

El mòdul de les solucions serà l'arrel cúbica de 1: 1.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{270^\circ + 0.360^\circ}{3} = 90^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{270^\circ + 1.360^\circ}{3} = 210^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{270^\circ + 2 \cdot 360^\circ}{3} = 330^\circ$$

Per tant, les arrels són 190°, 1210°, 1330°.

83. Calcula i expressa el resultat en forma binòmia.

$$\sqrt[4]{\frac{12_{70^{\circ}} \cdot \left(1_{20}\right)^{4}}{3 + 3\sqrt{3}i}}$$

$$\sqrt[4]{\frac{12_{70^{\circ}} \cdot \left(1_{20}\right)^{4}}{3 + 3\sqrt{3}i}} = \sqrt[4]{\frac{12_{70^{\circ}} \cdot 1_{80^{\circ}}}{6_{60^{\circ}}}} = \sqrt[4]{2_{90^{\circ}}}$$

El mòdul de les solucions serà l'arrel cúbica de 2.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{90^\circ + 0.360^\circ}{4} = 22,5^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{90^{\circ} + 1.360^{\circ}}{4} = 112,5^{\circ}$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{90^\circ + 2 \cdot 360^\circ}{4} = 202,5^\circ$$

Si
$$k = 3 \rightarrow \beta_4 = \frac{90^\circ + 3 \cdot 360^\circ}{4} = 292,5^\circ$$

Per tant, les arrels són $\sqrt[4]{2}_{22,5^{\circ}}$, $\sqrt[4]{2}_{112,5^{\circ}}$, $\sqrt[4]{2}_{202,5^{\circ}}$, $\sqrt[4]{2}_{292,5^{\circ}}$.

- 84. Escriu una equació de segon grau amb coeficients reals que tingui de solucions aquests nombres complexos:
 - a) 1 i
- b) 3 2i
- a) Com que 1 i és solució, llavors 1 + i també ho és.

$$(x-(1+i))(x-(1-i))=x^2-2x+2$$

b) Com que 3 – 2i és solució, llavors 3 + 2i també ho és.

$$(x-(3+2i))(x-(3-2i))=x^2-6x+13$$

85. Calcula el valor de m perquè aquest polinomi:

$$x^{2} - 6x - m$$

tingui l'arrel 3 – i. Troba l'arrel que falta.

$$(3-i)^2-6(3-i)-m=0 \rightarrow 8-6i-18+6i=m \rightarrow m=-10$$

L'arrel que falta és 3 + i.

86. Calcula el valor dels nombres complexos p i q perquè el polinomi següent:

$$x^3 + px^2 + qx - 2$$

tingui les arrels i i 2i. Troba l'arrel que falta.

$$(x-i)(x-2i) = x^2 - 3xi - 2$$

$$(x^2 - 3xi - 2)(x - a) = x^3 + (-a - 3i)x^2 + (-2 + 3ia)x + 2a \rightarrow a = -1$$

$$p = 1 - 3i$$

$$q = -2 - 3i$$

L'arrel que falta és x = a = -1.

87. Resol les equacions següents:

a)
$$x^2 + ix + 1 = 0$$

c)
$$ix^2 + 7x - 12i = 0$$

b)
$$x^2 - 2x + 3i = 0$$

d)
$$ix^3 + 27 = 0$$

a)
$$x = \frac{-i \pm \sqrt{-1-4}}{2} = \frac{-i \pm \sqrt{5}i}{2} \rightarrow x_1 = \frac{-1+\sqrt{5}}{2}i, \ x_2 = \frac{-1-\sqrt{5}}{2}i$$

b)
$$x = \frac{2 \pm \sqrt{4 - 12}}{2} = \frac{2 \pm 2i\sqrt{2}}{2} \rightarrow x_1 = 1 + i\sqrt{2}, \ x_2 = 1 - i\sqrt{2}$$

c)
$$x = \frac{-7 \pm \sqrt{49 - 48}}{2i} = \frac{-7 \pm 1}{2i} \rightarrow x_1 = 3i, \ x_2 = 4i$$

d)
$$x^3 = \frac{-27}{i} = 27i \rightarrow x = \sqrt[3]{27_{90^\circ}}$$

El mòdul de les solucions serà l'arrel cúbica de 27: 3.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{90^\circ + 0.360^\circ}{3} = 30^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{90^\circ + 1 \cdot 360^\circ}{3} = 150^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{90^\circ + 2 \cdot 360^\circ}{3} = 270^\circ$$

Per tant, les arrels són $3_{30^{\circ}}$, $3_{150^{\circ}}$, $3_{270^{\circ}}$.

88. Calcula el valor de b perquè l'operació següent sigui certa:

$$4_{72^{\circ}} \cdot (1 + bi) = 8_{132^{\circ}}$$

$$1 + bi = \frac{8_{132^{\circ}}}{4_{72^{\circ}}} = 2_{60^{\circ}} \rightarrow tg \ 60^{\circ} = \sqrt{3} = b$$

89. Quin nombre complex hem de sumar a –3 + 2i perquè resulti $5_{270^{\circ}}$? I perquè doni $6_{5\pi}$?

$$(-3+2i) + (a+bi) = -5i \rightarrow a = 3, b = -7$$

 $(-3+2i) + (a+bi) = 3 - 3\sqrt{3}i \rightarrow a = 6, b = -2 - 3\sqrt{3}$

- 90. Comprova que les arrels següents sumen 0:
 - a) Les arrels quartes de -1 + 3i.
 - b) Les arrels sisenes de 64.
 - a) Les solucions de $\sqrt[4]{2}_{120^{\circ}}$ són $\sqrt[4]{2}_{30^{\circ}}$, $\sqrt[4]{2}_{120^{\circ}}$, $\sqrt[4]{2}_{210^{\circ}}$, $\sqrt[4]{2}_{300^{\circ}}$.

$$\sqrt[4]{2} \left(\cos 30^{\circ} + i \sin 30^{\circ}\right) + \sqrt[4]{2} \left(\cos 120^{\circ} + i \sin 120^{\circ}\right) +$$

$$+\sqrt[4]{2}(\cos 210^{\circ} + i \sin 210^{\circ}) + \sqrt[4]{2}(\cos 300^{\circ} + i \sin 300^{\circ}) =$$

$$= \sqrt[4]{2} \left(\frac{\sqrt{3}}{2} + i\frac{1}{2} - \frac{1}{2} + i\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} - i\frac{1}{2} + \frac{1}{2} - i\frac{\sqrt{3}}{2} \right) = 0$$

b) Les solucions de $\sqrt[6]{64}$ són 2_0° , 2_{60° , 2_{120° , 2_{180° , 2_{240° , 2_{300° .

$$2(\cos 0^{\circ} + i \sin 0^{\circ}) + 2(\cos 60^{\circ} + i \sin 60^{\circ}) + 2(\cos 120^{\circ} + i \sin 120^{\circ}) +$$

$$+2(\cos 180^{\circ} + i \sin 180^{\circ}) + 2(\cos 240^{\circ} + i \sin 240^{\circ}) + 2(\cos 300^{\circ} + i \sin 300^{\circ}) =$$

$$=2\left(1+\frac{1}{2}+i\frac{\sqrt{3}}{2}-\frac{1}{2}+i\frac{\sqrt{3}}{2}-1-\frac{1}{2}-i\frac{\sqrt{3}}{2}+\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)=0$$

91. Determina el valor que ha de tenir k perquè $\frac{2+i}{k-i}$ un nombre real. De quin nombre real es tracta?

$$\frac{2+i}{k-i} \cdot \frac{k+i}{k+i} = \frac{2k-1+(2+k)i}{k^2+1} \to k = -2$$

- El nombre és $\frac{-4-1}{4+1} = -1$.
- 92. Esbrina el valor que ha de tenir k perquè $\frac{k-\sqrt{2}i}{\sqrt{2}-i}$ sigui un nombre imaginari pur. Quin és aquest nombre imaginari pur?

$$\frac{k - \sqrt{2}i}{\sqrt{2} - i} \cdot \frac{\sqrt{2} + i}{\sqrt{2} + i} = \frac{\sqrt{2}k + \sqrt{2} + (k - 2)i}{2 + 1} \to k = -1$$

- El nombre és $\frac{-3i}{3} = -i$.
- 93. Calcula el valor de a perquè el nombre $\frac{6-2i}{1+ai}$ sigui:
 - a) Un nombre imaginari pur.
 - b) Un nombre real.
 - c) El nombre complex 2 4i.
 - d) Un nombre complex amb mòdul 1.
 - e) Un nombre complex amb argument $\frac{7\pi}{4}$

$$\frac{6-2i}{1+ai} \cdot \frac{1-ai}{1-ai} = \frac{6-2a+(-6a-2)i}{1+a^2}$$

- a) $6 2a = 0 \rightarrow a = 3$
- b) $-6 2a = 0 \rightarrow a = -3$

c)
$$\frac{6-2i}{2-4i} = \frac{3-i}{1-2i} \cdot \frac{1+2i}{1+2i} = \frac{5+5i}{5} = 1+i \rightarrow a = 1$$

d)
$$\frac{\sqrt{40}}{\sqrt{1+a^2}} = 1 \rightarrow 40 = 1 + a^2 \rightarrow a = \pm \sqrt{39}$$

e)
$$\frac{\sqrt{40}_{arctg}\left(-\frac{1}{3}\right)}{\sqrt{1+a^2}_{arctga}} = r_{\frac{7\pi}{4}}$$

$$arctg\left(-\frac{1}{3}\right) - arctg \ a = \frac{7\pi}{4} \rightarrow arctg \ a = arctg\left(-\frac{1}{3}\right) - 315^{\circ} \rightarrow a = \frac{1}{2}$$

94. Calcula el valor de a perquè el nombre complex següent verifiqui que el seu quadrat sigui igual al seu conjugat:

$$a+\frac{\sqrt{3}}{2}i$$

Calculem el quadrat:
$$\left(a + \frac{\sqrt{3}}{2}i\right)^2 = a^2 - \frac{3}{4} + \sqrt{3}ai$$

El conjugat:
$$a - \frac{\sqrt{3}}{2}i$$

$$\begin{cases} a^2 + \frac{3}{4} = a \\ \sqrt{3} = -\frac{\sqrt{3}}{2} \end{cases} \to a = -\frac{1}{2}$$

95. Resol aquesta equació: $\frac{xi}{1+3i} - \frac{2x}{4-i} = 1$.

$$xi(4-i) - 2x(1+3i) = (1+3i)(4-i) \rightarrow x(4i+1-2-6i) = 7+11i \rightarrow x = \frac{7+11i}{-1-2i} \cdot \frac{-1+2i}{-1+2i} = \frac{-29+3i}{5}$$

96. Troba el nombre complex que verifica que el seu cub és un nombre real i que la part real del mateix nombre és una unitat superior a la part imaginària.

$$a = b + 1$$

$$(b+1+bi)^3 = -2b^3 + 6b^2i + 2b^3i + 3b + 3bi + 1$$

$$2b^3 + 6b^2 + 3b = 0 \rightarrow b (2b^2 + 6b + 3) = 0$$

Els nombres són: (1, 0),
$$\left(\frac{-1-\sqrt{3}}{2}, \frac{-3-\sqrt{3}}{2}\right), \left(\frac{-1+\sqrt{3}}{2}, \frac{-3+\sqrt{3}}{2}\right).$$

97. Determina els nombres complexos el cub dels quals és igual al seu conjugat.

$$(r_{\alpha})^3 = r_{-\alpha} \rightarrow r = 1$$

$$3\alpha = -\alpha \rightarrow \alpha = 0^{\circ}$$

$$3\alpha = 360^{\circ} - \alpha \rightarrow \alpha = 90^{\circ}$$

$$3\alpha = 720^{\circ} - \alpha \rightarrow \alpha = 180^{\circ}$$

$$3\alpha = 1080^{\circ} - \alpha \rightarrow \alpha = 270^{\circ}$$

Els nombres són: 1, i, -1, -i.

98. Calcula c sabent que la representació gràfica de $\frac{12+ci}{-5+2i}$ és sobre la bisectriu del primer quadrant.

Perquè estigui sobre la bisectriu del primer quadrant, la part imaginària ha de ser igual a la part real.

$$\frac{12+ci}{-5+2i} = \frac{(12+ci)(-5-2i)}{(-5+2i)(-5-2i)} = \frac{-60+2c+(-24-5c)i}{29}$$
$$-60+2c = -24-5c \to c = \frac{36}{7}$$

99. Troba dos nombres complexos conjugats tal que la seva diferència sigui 6i el seu quocient sigui la unitat imaginària.

$$(a+bi) - (a-bi) = 2bi = 6i \to b = 3$$

$$\frac{a+bi}{a-bi} \cdot \frac{a+bi}{a+bi} = \frac{a^2 - b^2 + 2abi}{a^2 + b^2} = \frac{a^2 - 9 + 6ai}{9 + a^2} = i$$

$$a^2 - 9 = 0 \text{ y } \frac{6a}{18} = 1 \to a = 3$$

Els nombres són: 3 + 3i i 3 - 3i.

100. L'equació $z^3 + az^2 + bz - 6i = 0$ té d'arrels 2 i 3. Calcula el valor de a, b i la resta d'arrels.

$$8+4a+2b-6i=0
27+9a+3b-6i=0$$
 $\Rightarrow a=-5-i, b=6+5i$

$$z^{3} - (5+i)z^{2} + (6+5i)z - 6i = (z-3)(z-2)(z-a) = z^{3} - az^{2} - 5z^{2} + 5za + 6z - 6a \rightarrow a = i$$

L'altra arrel és z = i.

101. Troba dos nombres complexos, z i w, tal que la seva suma sigui i, i que 2i sigui una arrel quadrada del seu quocient.

$$z = a + bi$$

$$w = c + di$$

$$(a + bi) + (c + di) = i \rightarrow a = -c, b = 1 - d$$

$$\sqrt{\frac{-c + (1 - d)i}{c + di}} = 2i \rightarrow -c + (1 - d)i = -4(c + di) \rightarrow c = 0, d = -\frac{1}{3}$$

$$z = \frac{4}{3}i$$

$$w = -\frac{1}{3}i$$

102. Determina un nombre complex que, si hi sumem $\frac{1}{2}$ doni com a resultat un nombre complex de mòdul c i argument 60°.

$$a+bi+\frac{1}{2}=a+\frac{1}{2}+bi$$

$$c = \sqrt{\left(a + \frac{1}{2}\right)^2 + b^2}$$

$$tg \ 60^{\circ} = \sqrt{3} = \frac{b}{a + \frac{1}{2}} \rightarrow b = \sqrt{3} \left(a + \frac{1}{2} \right)$$

$$c = \sqrt{\left(a + \frac{1}{2}\right)^2 + 3\left(a + \frac{1}{2}\right)^2} = 2\left(a + \frac{1}{2}\right)$$

$$a = \frac{c-1}{2}, b = \sqrt{3}\frac{c}{2}$$

El nombre complex és $\frac{c-1}{2} + \sqrt{3} \frac{c}{2} i$.

103. Busca un nombre complex que, si hi sumem $\frac{1+i}{2-2i}$, doni un nombre complex de mòdul $\sqrt{2}$ i argument 45°.

$$\frac{1+i}{2-2i} \cdot \frac{1+i}{1+i} = \frac{i}{2}$$

$$a+bi+\frac{1}{2}i=a+\left(b+\frac{1}{2}\right)i$$

$$\sqrt{2} = \sqrt{a^2 + \left(b + \frac{1}{2}\right)^2} \rightarrow a^2 + \left(b + \frac{1}{2}\right)^2 = 2$$

$$tg \ 45^{\circ} = 1 = \frac{b + \frac{1}{2}}{a} \rightarrow a = b + \frac{1}{2}$$

$$a = 1, b = \frac{1}{2}$$

El nombre complex és $1 + \frac{1}{2}i$.

104. Calcula l'àrea d'un quadrilàter que té de vèrtexs les solucions de l'equació x4 + 4 = 0.

$$x = \sqrt[4]{-4} = \sqrt[4]{4_{180^{\circ}}}$$

El mòdul de les solucions serà l'arrel cúbica de 4: $\sqrt{2}$.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{180^\circ + 0.360^\circ}{4} = 45^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{180^{\circ} + 1 \cdot 360^{\circ}}{4} = 135^{\circ}$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{180^\circ + 2 \cdot 360^\circ}{4} = 225^\circ$$

Si
$$k = 3 \rightarrow \beta_4 = \frac{180^\circ + 3.360^\circ}{4} = 315^\circ$$

Per tant, les arrels són: 1+i, 1-i, -1+i, -1-i.

És un quadrat de costat 2: $A = l^2 = 2^2 = 4$.

105. Un pentàgon regular, amb centre en l'origen de coordenades, té un dels vèrtexs en (-3, -2). Troba els altres vèrtexs usant nombres complexos.

$$z_2 = -3 - 2i$$

Fem potència cinquena: $z = \sqrt{13^5}_{213^\circ 41'24,2''}$

Calculem la resta de les arrels: $\sqrt{13}_{\frac{213^{\circ}41'24,2''}{5}}$

Si k = 0
$$\rightarrow x_1 = \sqrt{13}_{42^{\circ}44'16,85''}$$

Si k = 2
$$\rightarrow x_3 = \sqrt{13}_{180^{\circ}44'16,85''}$$

Si k = 1
$$\rightarrow x_2 = \sqrt{13}_{114^{\circ}44'16,85''}$$

Si k = 3
$$\rightarrow x_4 = \sqrt{13}_{258^{\circ}44'16,85''}$$

106. Determina quin nombre complex forma un triangle equilàter amb el seu conjugat i amb -5?

Sigui L la longitud del costat dels triangle equilàter, un dels vèrtexs és el complex a + bi i l'altre vèrtex és el seu conjugat a - bi.

$$b = L \cdot \sin 30^{\circ} = \frac{L}{2}$$
 $a = -5 + L \cdot \cos 30^{\circ} = -5 + \frac{L \cdot \sqrt{3}}{2}$

Tots els triangles tenen -5 com a vèrtex situat a l'esquerra.

Si el vèrtex -5 estigués situat a la dreta del triangle, les coordenades dels altres vèrtexs seran:

$$b = L \cdot \sin 30^{\circ} = \frac{L}{2}$$
 $a = -5 - L \cdot \cos 30^{\circ} = -5 - \frac{L \cdot \sqrt{3}}{2}$

107. Calcula l'àrea de l'hexàgon regular que determinen els afixos de les arrels sisenes de -64.

$$\sqrt[6]{-64} = \sqrt[6]{64_{180^\circ}}$$

El mòdul de les solucions serà l'arrel sisena de 64: 2.

Existiran tants arguments com indiqui el radical.

Si
$$k = 0 \rightarrow \beta_1 = \frac{180^\circ + 0.360^\circ}{6} = 30^\circ$$

Si
$$k = 1 \rightarrow \beta_2 = \frac{180^\circ + 1 \cdot 360^\circ}{6} = 90^\circ$$

Si
$$k = 2 \rightarrow \beta_3 = \frac{180^\circ + 2 \cdot 360^\circ}{6} = 150^\circ$$

Si
$$k = 3 \rightarrow \beta_4 = \frac{180^\circ + 3.360^\circ}{6} = 210^\circ$$

Si
$$k = 4 \rightarrow \beta_5 = \frac{180^\circ + 4 \cdot 360^\circ}{6} = 270^\circ$$

Si
$$k = 5 \rightarrow \beta_6 = \frac{180^\circ + 5 \cdot 360^\circ}{6} = 330^\circ$$

Per tant, les arrels són: 2_{30°}, 2_{90°}, 2_{150°}, 2_{210°}, 2_{270°}, 2_{330°}.

L'àrea de l'hexàgon és
$$A = \frac{p \cdot ap}{2} = \frac{12 \cdot \sqrt{3}}{2} = 6\sqrt{3}$$
.

108. Les quatre arrels cúbiques de -4 096 descriuen un quadrat; calcula'n l'àrea. A més, les arrels cúbiques descriuen un triangle equilàter; determina'n l'àrea.

Les arrels quartes de -4 096 són:

$$z_{1} = 8_{45^{\circ}} = \left(4\sqrt{2}\,,\,4\sqrt{2}\right) \quad z_{2} = 8_{135^{\circ}} = \left(-4\sqrt{2}\,,\,4\sqrt{2}\right) \\ z_{3} = 8_{225^{\circ}} = \left(-4\sqrt{2}\,,\,-4\sqrt{2}\right) \\ z_{4} = 8_{315^{\circ}} = \left(4\sqrt{2}\,,\,-4\sqrt{2}\right) \\ z_{5} = \left(-4\sqrt{2}\,,\,-4\sqrt{2}\right) \\ z_{7} = 8_{135^{\circ}} = \left(4\sqrt{2}\,,\,-4\sqrt{2}\right) \\ z_{7} = 8_{135^{\circ}} = \left(-4\sqrt{2}\,,\,-4\sqrt{2}\right) \\ z_{8} = 8_{135^{\circ}} = \left(-4\sqrt{2}\,,\,-4\sqrt{2}\right$$

$$z_3 = 8_{225^\circ} = \left(-4\sqrt{2}, -4\sqrt{2}\right)$$

$$z_4 = 8_{315^\circ} = \left(4\sqrt{2}, -4\sqrt{2}\right)$$

Calculem el costat:
$$\sqrt{\left(4\sqrt{2}+4\sqrt{2}\right)^2+\left(4\sqrt{2}-4\sqrt{2}\right)^2}=8\sqrt{2}$$
 .

Per tant, l'àrea és de 128.

Les arrels cúbiques de -4 096 són:

$$z_1 = 16_{60^{\circ}} = \left(8, 8\sqrt{3}\right)$$
 $z_2 = 16_{180^{\circ}} = \left(-16, 0\right)$ $z_3 = 16_{300^{\circ}} = \left(8, -8\sqrt{3}\right)$

$$z_3 = 16_{300^\circ} = \left(8, -8\sqrt{3}\right)$$

Se forma un triangle amb base de 16 i la seva altura és de 24.

Per tant, la seva àrea és $192\sqrt{3}$.

109. Dos vèrtexs consecutius d'un quadrat són els afixos dels nombres 6 + 5*i* i 3 + *i*. Determina els altres vèrtexs si saps que en té un al quart quadrant.

El vector del costat és (6+5i) - (3+i) = 3+4i i el perpendicular és 4-3i.

En el quart quadrant estarà el vèrtex (3 + i) + (4 - 3i) = 7 - 2i.

El vèrtex que falta és (6 + 5i) + (4 - 3i) = 10 + 2i.

110. El nombre complex 3 + 5i és una de les arrels cúbiques de z. Troba les altres dues arrels.

$$z_1 = 3 + 5i = \sqrt{35}_{59^{\circ}2'10.48''}$$

Les arrels tindran el mateix mòdul

Calculem les altres arrels: $\sqrt{35}_{59^{\circ}2'10,48''+\frac{k\cdot360^{\circ}}{3}}$

Si k=0
$$\rightarrow x_1 = \sqrt{35}_{59^{\circ}2'10.48''}$$

Si k=2
$$\rightarrow x_3 = \sqrt{35}_{299^{\circ}2'_{10.48''}}$$

Si k=1
$$\rightarrow x_2 = \sqrt{35}_{17^{\circ}2'_{10,48''}}$$

111. Escriu una equació de segon grau que tingui com a solucions 3 + *i* i 3 – *i*. Fes el mateix amb -2 – 5*i* i – 2 + 5*i*.

$$(x-3+i)(x-3-i) = 0 \to x^2 - ix - 3x + 9 + 3i + ix - 3i + 1 = 0$$
$$\to x^2 - 6x + 10 = 0$$
$$(x+2+5i)(x+2-5i) = 0 \to x^2 + 2x - 5ix + 2x + 4 - 10i + 5ix + 10i + 25 = 0$$

$$\rightarrow x^2 + 4x + 29 = 0$$

112. Demostra que si una equació de segon grau amb nombres reals com a coeficients té dues arrels complexes, aquestes arrels han de ser nombres conjugats.

Tenim l'equació: $ax^2 + bx + c = 0$

Resolem l'equació:

$$x = \frac{-b \pm \sqrt{b^2 - 4 \cdot a \cdot c}}{2 \cdot a} \to \begin{cases} x_1 = \frac{-b + \left(\sqrt{-b^2 + 4 \cdot a \cdot c}\right)i}{2 \cdot a} \\ x_2 = \frac{-b - \left(\sqrt{-b^2 + 4 \cdot a \cdot c}\right)i}{2 \cdot a} \end{cases}$$

Les seves solucions són dos nombres complexos conjugats.

113. Calcula el producte de les dues arrels de $\sqrt{1}$ el producte de les tres arrels de $\sqrt[3]{1}$. Ara troba una fórmula per al producte de les n arrels n-èsimes de la unitat.

Les arrels quadrades de 1 són $1_{0^{\circ}}$, $1_{180^{\circ}}$ i el seu producte és $1_{180^{\circ}} = -1$.

Les arrels cúbiques de 1 són $1_{0^{\circ}}$, $1_{120^{\circ}}$, $1_{240^{\circ}}$ i el seu producte és $1_{360^{\circ}} = 1$.

El mòdul del producte de les *n* arrels *n*-èsimes serà 1.

L'argument del producte de les *n* arrels n-èsimes serà:

$$\frac{360^{\circ} \cdot 0}{n} + \frac{360^{\circ} \cdot 1}{n} + \dots + \frac{360^{\circ} \cdot (n-1)}{n} = \frac{360^{\circ}}{n} \cdot (0+1+\dots+(n-1)) = \frac{360^{\circ} \cdot n \cdot (n-1)}{2n} = 180^{\circ} (n-1)$$

El producte de les n arrels n-èsimes serà $(-1)^{n+1}$.

114. Determina la relació que hi ha entre el mòdul de la suma de dos complexos i la suma dels seus mòduls.

El mòdul de la suma de dos nombres complexos és sempre més petit que la suma dels mòduls dels nombres.

115. És cert que sempre que multipliques un nombre real per un nombre complex z el resultat té el mateix argument que z?

Si no és cert, enuncia una propietat correcta.

No és cert, ja que: $1_{180^{\circ}} \cdot 1_{90^{\circ}} = 1_{270^{\circ}}$

Sols és cert si el nombre real és positiu.

Si multipliquem un nombre real positiu per un nombre complex z, el resultat té el mateix argument que z.

116. Indica si és cert que l'invers del producte de dos nombres complexos és el producte dels seus inversos.

És cert, ja que donats z_1 i z_2 dos nombres complexos qualsevol, és compleix que

$$(z_1 \cdot z_2)^{-1} = \frac{1}{z_1 \cdot z_2} = \frac{1}{z_1} \cdot \frac{1}{z_2} = z_1^{-1} \cdot z_2^{-1}$$

117. Demostra que per a qualsevol parell de nombres complexos es compleix que:

$$\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$$
 $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$

Utilitza aquestes propietats per demostrar que si z = a + bi és una solució de l'equació de grau n següent:

$$a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \dots + a_1 \cdot x^1 + a_0 = 0$$

amb $a_i \in \mathbb{R}$! R, aleshores el valor z també és solució de la mateixa equació.

$$\overline{z_1 + z_2} = \overline{a + bi + c + di} = \overline{(a + c) + (b + d)i} = a + c - (b + d)i = a - bi + c - di = \overline{z_1} + \overline{z_2}$$

$$\overline{z_1 \cdot z_2} = \overline{(a+bi)(c+di)} = \overline{ac-bd+(bc+ad)i} = ac-bd-(bc+ad)i = (a-bi)(c-di) = \overline{z_1} \cdot \overline{z_2}$$

Si z = a + bi és una solució de la equació de grau n, llavors z també és solució de la mateixa equació:

$$a_n(a+bi)^n + ... + a_1(a+bi) + a_0 = 0 \rightarrow \overline{a_n(a+bi)^n + ... + a_1(a+bi) + a_0} = \overline{0} = 0$$

$$\overline{a_n(a+bi)^n} + \dots + \overline{a_1(a+bi)} + \overline{a_0} = a_n\overline{(a+bi)^n} + \dots + a_1\overline{(a+bi)} + a_0 =$$

$$= a_n \overline{(a+bi)}^n + ... + a_1 \overline{(a+bi)} + a_0 = a_n (a-bi)^n + ... + a_1 (a-bi) + a_0 = 0$$

118. Fes servir els nombres complexos per resoldre les equacions següents:

a)
$$z^2 - 2z - 2 + 4i = 0$$

b)
$$z^4 + (4-2i)z^2 - 2i = 0$$

c)
$$z^4 + 10z^2 + 169 = 0$$

a)
$$z = \frac{2 \pm \sqrt{4 - 4(-2 + 4i)}}{2} = 1 \pm \sqrt{3 - 4i} = 1 \pm \sqrt{5}_{306,87^{\circ}} = 1 \pm (-2 + i)$$

$$z_1 = -1 + i$$
, $z_2 = 3 - i$

b)
$$t = \frac{-4 + 2i \pm \sqrt{12 + 16i}}{2} = -2 + i \pm \sqrt{3 + 4i} = -2 + i \pm \sqrt{5}_{53,13^{\circ}} = -2 + i \pm (-2 - i)$$

$$t_1 = 2i$$
, $t_2 = -4$

$$z_1 = \sqrt{2} \frac{90^{\circ}}{2} = 1 + i \quad z_2 = \sqrt{2} \frac{90^{\circ} + 360^{\circ}}{2} = -1 - i \qquad \qquad z_3 = \sqrt{4} \frac{180^{\circ}}{2} = 2i \qquad \qquad z_4 = \sqrt{4} \frac{180^{\circ} + 360^{\circ}}{2} = -2i$$

c)
$$t = \frac{-10 \pm \sqrt{100 - 676}}{2} = -5 \pm 12i$$

$$t_1 = -5 + 12i$$
, $t_2 = -5 - 12i$

$$z_1 = \sqrt{13}_{56.31^{\circ}} = 2 + 3i$$
 $z_3 = \sqrt{13}_{123.69} = -2 + 3i$

$$z_2 = \sqrt{13}_{236,31} = -2 - 3i$$
 $z_4 = \sqrt{13}_{303,69} = 2 - 3i$

119. Resol les equacions amb nombres complexos següents:

a)
$$\frac{z}{5-i} + (2-i)6i = -3 + 2i$$

b)
$$z(-2+6i) + \frac{-41+37i}{4-3i} + 10 - 8i = z(1+7i)$$

b)
$$Z(-2+6i) + \frac{-41+37i}{4-3i} + 10 - 8i = z(1+7i) \rightarrow z(-2+6i) - 11 + i + 10 - 8i = z(1+7i) \rightarrow z(-2+6i) - 1 - 7i = z(1+7i)$$

 $\rightarrow z(-2+6i) - z(1+7i) = 1 + 7i \rightarrow z(-2+6i-1-7i) = 1+7i$
 $\rightarrow z = \frac{1+7i}{-3-i} \rightarrow z = -1-2i$

120. Resol les equacions següents:

a)
$$x^2 - 8ix + 4i - 19 = 0$$

b)
$$\begin{cases} x - iy = 0 \\ y - ix = 4 - 6i \end{cases}$$

a)
$$x^2 - 8ix + 4i - 19 = 0 \rightarrow x = \frac{8i \pm \sqrt{-64 - 4 \cdot 1 \cdot (4i - 19)}}{2 \cdot 1} = \frac{8i \pm \sqrt{10 - 16i}}{2}$$

b)
$$\begin{cases} x - iy = 0 \\ y - ix = 4 - 6i \end{cases} \rightarrow x = iy \rightarrow y - i(iy) = 4 - 6i \rightarrow y + y = 4 - 6i \rightarrow y = 2 - 3i$$
$$x = i(2 - 3i) = 3 + 2i$$

121. Representa el nombre complex $1 + 2\sqrt{3}i$ i fes en aquest punt un gir de 60° centrat en l'origen. Escriu les expressions binòmia i polar del nombre complex que en resulta.

$$z = 1 + 2\sqrt{3}i = \sqrt{13}_{73^{\circ}53'52.39''}$$

Fem un gir de 60°:

$$\sqrt{13}_{133^{\circ}53'52.39''} = -2.5 + 2.6i$$

122. La suma de dos nombres complexos conjugats és 16 i la suma dels seus mòduls és 20. Quins nombres són?

Sigui
$$z = a + bi$$
.

$$\begin{cases} a+bi+a-bi=16\\ \sqrt{a^2+b^2}+\sqrt{a^2+(-b)^2}=20 \end{cases} \to \begin{cases} a=8\\ \sqrt{a^2+b^2}=10 \end{cases}$$
$$\to 64+b^2=100 \to b=+6$$

Els nombres són: 8 + 6i i 8 - 6i.

123. Considera $\mathbf{u} = -\frac{1}{2} + \frac{\sqrt{3}}{2}\mathbf{i}$. Comprova que si $\mathbf{z} = -2 + 5\mathbf{i}$, aleshores \mathbf{z} , $\mathbf{u} \cdot \mathbf{z}$ i $\mathbf{u}^2 \cdot \mathbf{z}$ són les tres arrels cúbiques d'un nombre complex. Demostra que això passa per a qualsevol nombre \mathbf{z} . Què té de particular el nombre \mathbf{u} ?

$$z = -2 + 5i = \sqrt{29}_{111^{\circ}48'5,07''}$$

$$u \cdot z = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)(-2 + 5i) = 1_{120^{\circ}} \cdot \sqrt{29}_{111^{\circ}48'5,07''} = \sqrt{29}_{231^{\circ}48'5,07''}$$

$$u^{2} \cdot z = \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{2}(-2 + 5i) = 1_{120^{\circ}} \cdot \sqrt{29}_{111^{\circ}48'5,07''} = \sqrt{29}_{351^{\circ}48'5,07''}$$

Són les arrels cúbiques de $29_{335^{\circ}24'15,2''}$

Això succeeix per a qualsevol nombre complex, ja que les arrels cúbiques d'un nombre complex tenen el mateix mòdul i el seu argument es diferencia en 120°.

Quan multipliquem qualsevol nombre per u, el seu mòdul no varia i el seu argument augmenta 120°.

124. Sabem que l'argument del nombre complex z₁ és 150°, i que el mòdul de z₂ és 2. Calcula z₁ i z₂ si el seu producte és -8*i*.

$$\begin{split} z_1 &= r_{150^{\circ}} \\ z_2 &= 2_{\alpha} \\ -8i &= 8_{270^{\circ}} \\ r_{150^{\circ}} \cdot 2_{\alpha} &= 8_{270^{\circ}} \\ \left\{ \begin{matrix} r \cdot 2 = 8 \\ 150^{\circ} + \alpha = 270^{\circ} \end{matrix} \right. \rightarrow \left\{ \begin{matrix} r = 4 \\ \alpha = 120^{\circ} \end{matrix} \right. \rightarrow \left\{ \begin{matrix} z_1 = 4_{150^{\circ}} \\ z_2 = 2_{120^{\circ}} \end{matrix} \right. \end{split}$$

125. Un dels vèrtexs d'un quadrat amb centre en l'origen té coordenades (-1, 3). Fes servir els nombres complexos per determinar-ne els altres vèrtexs i l'àrea.

Mòdul:
$$\sqrt{(-1)^2 + 3^2} = \sqrt{10}$$

Argument: $tg \ \alpha = \frac{3}{-1} \rightarrow \alpha = 108,43^\circ$

Els vèrtexs són: $\sqrt{10}_{18,43^\circ} = \sqrt{10} \left(\cos 18,43^\circ + i \sin 18,43^\circ\right) = 3 + i \rightarrow (3,1)$
 $\sqrt{10}_{108,43^\circ} \rightarrow (-1,3)$
 $\sqrt{10}_{198,43^\circ} \rightarrow (-3,-1)$
 $\sqrt{10}_{288,43^\circ} \rightarrow (1,-3)$

L'àrea del quadrat és $\left(2\sqrt{10}\right)^2 = 40$

126. Calcula la suma dels 10 primers termes d'una progressió aritmètica de diferència 1 + 2*i* i que té de primer terme – 6 – 2*i*.

$$d = 1 + 2i$$

$$a_1 = -6 - 2i$$

$$a_n = a_1 + (n-1)d$$

$$a_{10} = -6 - 2i + (10 - 1)(1 + 2i) = 3 + 16i$$

$$S_n = \frac{(a_1 + a_n)n}{2}$$

$$S_{10} = \frac{-6 - 2i + 3 + 16i)10}{2} = -15 + 70i$$

Simplifica l'expressió següent per a cada $n \in \mathbb{N}$.

$$1 + i + i^2 + i^3 + ... + i^n$$

Observem que $1 + I + i^2 + i^3 = 0$.

Sigui $m \in \mathbb{N}$:

Si n = 4m - 4 llavors l'expressió val 1.

Si n = 4m - 3 llavors l'expressió val 1 + i.

Si n = 4m - 2 llavors l'expressió val i.

Si n = 4m - 1 llavors l'expressió val 0.

127. Si el nombre complex a + b*i* té mòdul m i argument α , com expressaries en forma binòmia un nombre complex amb mòdul 6m i argument 2π - α ? I si el mòdul és 3m i l'argument és $\alpha + \frac{3\pi}{2}$

Sigui w = c + di el nombre complex que té per mòdul 6m i argument $2\pi - \alpha$.

$$c = 6\sqrt{a^2 + b^2}\cos(2\pi - \alpha) = 6\sqrt{a^2 + b^2}\cos\alpha$$

$$d = 6\sqrt{a^2 + b^2}\sin(2\pi - \alpha) = -6\sqrt{a^2 + b^2}\sin\alpha$$

Sigui v = e + fi el nombre complex que té per mòdul 3m i argument $\alpha + \frac{3\pi}{2}$.

$$e = 3\sqrt{a^2 + b^2}\cos\left(\alpha + \frac{3\pi}{2}\right) = 3\sqrt{a^2 + b^2}\sin\alpha$$

$$f = 3\sqrt{a^2 + b^2} \sin\left(\alpha + \frac{3\pi}{2}\right) = -3\sqrt{a^2 + b^2} \cos\alpha$$

128. Considera $z=r_{\alpha}$ un nombre complex en forma polar i z el seu conjugat. Calcula el valor del quocient.

$$\frac{\overline{(z+\overline{z})\cdot[z^2+(\overline{z})^2]\cdot...\cdot[z^n+(\overline{z})^n]}}{(z+\overline{z})\cdot[z^2+(\overline{z})^2]\cdot...\cdot[z^n+(\overline{z})^n]}$$

$$z = r_{\alpha} = r(\cos\alpha + i\sin\alpha)$$

$$\frac{\overline{z} = r_{360^\circ-\alpha} = r(\cos\alpha - i\sin\alpha)}{(z+\overline{z})\cdot[z^2+(\overline{z})^2]\cdot...\cdot[z^n+(\overline{z})^n]} = \frac{\cos\alpha \cdot \cos 2\alpha \cdot...\cdot \cos\alpha n}{(z+\overline{z})\cdot[z^2+(\overline{z})^2]\cdot...\cdot[z^n+(\overline{z})^n]} = \frac{\cos\alpha \cdot \cos 2\alpha \cdot...\cdot \cos\alpha n}{[r(\cos\alpha + i\sin\alpha) + r(\cos\alpha - i\sin\alpha)]\cdot...\cdot[r^n(\cos\alpha + i\sin\alpha) + r^n(\cos\alpha - i\sin\alpha)]} = \frac{\cos\alpha \cdot \cos 2\alpha \cdot...\cdot \cos\alpha n}{2r\cos\alpha \cdot 2r^2\cos 2\alpha \cdot 2r^n\cos n\alpha} = \frac{1}{2^n\cdot r^{\frac{n+n^2}{2}}}$$

129. Donada l'equació $z^2 + (a + bi)z + c + di = amb a, b, c i d nombres reals, troba la relació entre aquests nombres perquè les seves arrels tinguin el mateix argument.$

$$z^{2} + (a+bi)z + c + di = 0$$

$$z = \frac{-a - bi \pm \sqrt{(a+bi)^{2} - 4(c+di)}}{2} = \frac{-a - bi \pm \sqrt{a^{2} - b^{2} + 2abi - 4c - 4di}}{2}$$

Perquè tinguin el mateix argument el quocient entre la part imaginària i la part entera ha de ser el mateix.

$$\begin{cases} a^2 - b^2 + 2abi - 4c - 4di = 0 \\ 2ab - 4d = 0 \end{cases}$$

Com que tenim solament dues equacions i quatre incògnites, hem de deixar dues de les incògnites en funció de les altres.

$$a_{1} = \frac{\left(\sqrt{2c^{2}+2d^{2}}+\sqrt{2}c\right)\sqrt{\sqrt{c^{2}+d^{2}}-c}}{d}$$

$$b_{1} = \sqrt{2\sqrt{c^{2}+d^{2}}-2c}$$

$$a_{2} = -\frac{\left(\sqrt{2c^{2}+2d^{2}}+\sqrt{2}c\right)\sqrt{\sqrt{c^{2}+d^{2}}-c}}{d}$$

$$b_{2} = -\sqrt{2\sqrt{c^{2}+d^{2}}-2c}$$

$$a_{3} = \frac{\sqrt{\sqrt{c^{2}+d^{2}}+c}\left(\sqrt{2c^{2}+2d^{2}}-\sqrt{2}c\right)i}}{d}$$

$$b_{3} = -\sqrt{2\sqrt{c^{2}+d^{2}}+2ci}$$

$$a_{4} = \frac{\sqrt{-\sqrt{c^{2}+d^{2}}+c}\left(\sqrt{2c^{2}+2d^{2}}-\sqrt{2}c\right)i}}{d}$$

$$b_{4} = \sqrt{2\sqrt{c^{2}+d^{2}}+2ci}$$

130. Escull la resposta adequada.

Determina quantes ternes ordenades (x, y, z) de nombres enters no negatius més petits que 20 verifiquen que hi ha justament dos elements diferents en el conjunt $(i^x, (1+i)^y, z)$, en què $i^2=-17$	149	205	215	225	235
Un dels nombres complexos z que verifiquen el sistema $\begin{cases} z \cdot t = 6_{s0} \\ \frac{z}{t} = 3_{av} \end{cases}$ és:	2+2√31	2√3 - 2/	3 + 3/	2 + 2/	$\frac{1}{2} + \frac{\sqrt{3}}{2}I$
¿Quin dels nombres següents no és arrel del polinomi $z^4 - 5z^2 - 367$	2/	297	204	347	3
Indica per a quin valor de n es verifica que $l+2j^2+3l^4+4l^4++nl^6$ és el nombre complex $48+49l^2$	24	48	49	97	98
El valor de $\left(\frac{1+\sqrt{3}i}{-1+\sqrt{3}i}\right)^{12}$ és:	1	16	243	1024	-1 - √3

a) Perquè en una terna dos elements siguin diferents, ha de succeir que dos d'ells siguin iguals i que el tercer sigui diferent. En aquest cas pot succeir que $i^x = z$, $i^x = (1+i)^y$ o $(1+i)^y = z$.

Si ho passem a polars tenim {190x, $\sqrt{2^y}$ 45·y , z₀}

Si
$$i^x = z$$
 i $i \neq z$ implica que $\mathbf{1}_{90x} = z_0$ i $\sqrt{2^y}_{45 \cdot y} \neq \mathbf{1}_{90x}$

 $1_{90x} = z_0 \rightarrow z = 1$ i x és múltiple de 4 (0 mod 4)

$$\sqrt{2^{y}}_{45\cdot y} \neq 1_{0} \rightarrow y \neq 0$$

Hi ha 5 casos per la x (0, 4, 8, 12, 16), 19 casos per la y (1, 2, 3, 4, ... 18 i 19) un cas per la z (1), fa un total de $5 \cdot 19 \cdot 1 = 95$ casos.

Si
$$i^x = (1 + i)^y e^{-i^x} \neq z$$
 implica que $1_{90x} = \sqrt{2^y}_{45 \cdot y}$ i $z_0 \neq 1_{90x}$.

$$1_{90x} = \sqrt{2^{y}}_{45\cdot y} \rightarrow y = 0 \text{ i } x \text{ és múltiple de 4 (0 mod 4)}.$$

 $z_0 \neq 1_{90x} \Rightarrow z \neq 1$ o x no és múltiple de 4 (0 mod 4)(això no és possible perquè ha de ser múltiple de 4)

Hi ha 5 casos per la x (0, 4, 8, 12, 16), un cas per la y (0), 19 casos per la z (1, 2, 3, 4, ... 18 i 19), fa un total de $5 \cdot 19 \cdot 1 = 95$ casos.

Si
$$(1+i)^y = z e i^x \neq z$$
 implica que $\sqrt{2^y}_{45 \cdot y} = z_0 i z_0 \neq 1_{90x}$.

$$\sqrt{2^y}_{45\cdot y} = z_0 \rightarrow z = 2^{y/2}$$
 e i és múltiple de 8 (0 mod 8) (el valor 16 de i no és vàlid perquè $z = 2^8 > 19$) $z_0 \neq 1_{90x} \rightarrow x$ no és múltiple de 4 (0 mod 4) o $z \neq 1$

Hi ha 2 casos per la y(0, 8), per cada i un sol valor de z(y = 0, z = 1; y = 8, z = 16), per y = 0, z = 1, xpot ser qualsevol no múltiple de 4, 15 possibilitats; per y = 8, z = 16, x pot assolir qualsevol valor, 20 possibilitats, fa un total de 15 + 20 = 35 casos.

Afegint els tres casos 95 + 95 + 35 = 215.

b) S'aïlla z de la segona equació i se substitueix a la primera, i s'obté:

$$z = t \cdot 3_{30^{\circ}} \rightarrow t^{2} \cdot 3_{30^{\circ}} = 6_{60^{\circ}}$$

Aïllant t:

$$t^2 = 2_{30^\circ} \rightarrow t = \sqrt{2_{30^\circ}} \rightarrow t_1 = \sqrt{2_{15^\circ}}, \ t_2 = \sqrt{2_{195^\circ}}$$

$$z = \frac{6_{60^{\circ}}}{\sqrt{2}_{15^{\circ}}} = 3\sqrt{2}_{.45^{\circ}} = 3 + 3i$$

c)
$$t = \frac{5 \pm \sqrt{25 + 144}}{2} = \frac{5 \pm 13}{2} \rightarrow t_1 = 9, \ t_2 = -4$$

$$z_1 = 3$$

$$z_2 = -3$$

$$z_2 = -3$$
 $z_3 = 2i$ $z_4 = -2i$

$$z_4 = -2i$$

No és solució $2_{180^{\circ}} = -2$.

d) Cada quatre nombres s'afegeix +2 - 2i.

Per arribar a 48 necessitem 24 · 4 = 96 nombres, i s'obté 48 - 48i.

El següent nombre serà 97i97 = 97i.

$$Aixi$$
, $i + 2i^2 + 3i^3 + ... + 97i^{97} = 48 - 48i + 97i = 48 + 49i \rightarrow n = 97$.

e) $1+i\sqrt{3}=2_{sor}$ y $-1+i\sqrt{3}=2_{sor}$. Llavors, es fa l'operació donada en coordenades polars:

$$\left(\frac{2_{60^{\circ}}}{2_{300^{\circ}}}\right)^{12} = \left(1_{240^{\circ}}\right)^{12} = \left(1_{120^{\circ}}\right)^{12} = 1_{1440^{\circ}} = 1_{0^{\circ}} = 1$$

131. Demostra que si un nombre complex qualsevol z és una arrel del polinomi $P(x) = ax^2 + bx + c$, en què a, b i c són nombres reals, el seu conjugat z també és una arrel d'aquest polinomi.

$$z = d + ei$$

$$P(d + ei) = a(d + ei)^{2} + b(d + ei) + c = a(d^{2} - e^{2} + 2dei) + bd + ebi + c = a(d^{2} - e^{2} + 2dei) + a(d^{2} - e^{$$

$$= ad^2 - ae^2 + 2adei + bd + ebi + c = 0$$

Per tant,
$$ad^2 - ae^2 + bd + c = 0$$
 $2adei + ebi = 0$

$$P(d-ei) = a(d-ei)^2 + b(d-ei) + c = a(d^2 - e^2 - 2dei) + bd - ebi + c =$$

$$= ad^{2} - ae^{2} - 2adei + bd - ebi + c =$$

$$= ad^{2} - ae^{2} + bd + c - (2adei + ebi) = 0$$

132. Calcula les cinc solucions complexes de l'equació següent:

$$x^5 + x^4 + x^3 + x^2 + x + 1 = 0$$

El primer terme és la suma dels termes d'una progressió geomètrica.

$$a_1 = 1, r = x$$
 $S_5 = \frac{(x^6 - 1)}{x - 1}$

Per tant, resulta:
$$\frac{(x^6-1)}{x-1} = 0 \rightarrow x^6 - 1 = 0 \rightarrow x = \sqrt[5]{1} \rightarrow \begin{cases} x_1 = 1 \\ x_2 = 1_{60^\circ} \\ x_3 = 1_{120^\circ} \\ x_4 = 1_{180^\circ} \\ x_5 = 1_{240^\circ} \\ x_6 = 1_{300^\circ} \end{cases}$$

Les solucions són: x_2, x_3, x_4, x_5 , i x_6 ,

133. Troba l'expressió de z si sabem que els afixos dels nombres complexos 1, z i z² estan alineats.

Les coordenades dels nombres complexos són:

A(1,0) B(a,b)
$$C(a^2 - b^2, 2ab)$$

Calculem els vectors:

$$\overrightarrow{AB} = (a-1,b)$$
 $\overrightarrow{AC} = (a^2 - b^2 - 1,2ab)$

Els punts es troben alineats si els vectors són proporcionals.

$$\overrightarrow{AB} = t\overrightarrow{AC} \rightarrow (a-1,b) = t(a^2 - b^2 - 1,2ab)$$

$$\begin{cases} a - 1 = t(a^2 - b^2 - 1) \\ b = t \cdot 2ab \end{cases} \rightarrow t = \frac{1}{2a} \rightarrow a - 1 = \left(\frac{1}{2a}\right)(a^2 - b^2 - 1)$$
$$\rightarrow a^2 - 2a + 1 = b \rightarrow b = a - 1$$

Per tant, resulta que:z = a + (a - 1)i

134. Representa el nombre 1 + i. Passa'l a forma polar, calcula'n les 10 primeres potències i representa-les en el pla complex. Observa que els afixos d'aquests nombres complexos descriuen una corba espiral.

$$z = 1 + i = \sqrt{2}_{45}^{\circ}$$

$$z^{2} = 2_{90}^{\circ}$$

$$z^{3} = 2\sqrt{2}_{135}^{\circ}$$

$$z^{4} = 4_{180}^{\circ}$$

$$z^{5} = 4\sqrt{2}_{225}^{\circ}$$

$$z^{6} = 8_{270}^{\circ}$$

$$z^{7} = 8\sqrt{2}_{315}^{\circ}$$

$$z^{8} = 16_{0}^{\circ}$$

$$z^{9} = 16\sqrt{2}_{45}^{\circ}$$

$$z^{10} = 32_{90}^{\circ}$$

135. Calcula, en el camp complex, les arrels del polinomi $ax^2 + bx + c$, si sabem que són iguals que les dels polinomis $cx^2 + ax + b$ i $bx^2 + cx + a$.

S'aplica la propietat de la suma de les arrels d'un polinomi de segon grau, i suposem que les arrels comunes són α i β :

$$\alpha + \beta = -\frac{b}{a} = -\frac{a}{b} = -\frac{c}{b} \rightarrow a = b = c$$

El polinomi és ax² + ax + a, i les seves arrels $-\frac{1}{2} + \frac{\sqrt{3}}{2}i$ i $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$.

136. Considera els conjunts de nombres complexos:

A = {z:arg [z - (2 + 3i)] =
$$\frac{\pi}{4}$$

$$B = \{z: |z - (2 + i)| < 2\}$$

Determina la projecció ortogonal del conjunt intersecció de A i B sobre l'eix X.

Els conjunts A i B són:

$$A = \left\{ z = x + yi / \arg[z - (2 + 3i)] = \frac{\pi}{4} \right\} = \left\{ (x, y) / x - y + 1 = 0 \right\}$$

$$B = \left\{ z = x + yi / \left| z - (2+i) < 2 \right| \right\} = \left\{ (x, y) / (x-2)^2 + (y-1)^2 < 4 \right\}$$

Sigui A el conjunt format pels punts de la recta x - y + 1 = 0, i B el dels punts interiors de la circumferència d'equació $(x - 2)^2 + (y - 1)^2 = 4$ amb centre C (2, 1) i radi r = 2.

La intersecció d'ambdós conjunts és la solució del sistema x-y+1=0 $(x-2)^2+(y-1)^2<4$, que és el segment obert D (0, 1) i E (2, 3).

La seva projecció sobre l'eix X és el segment d'extrems O (0, 0) i E' (2, 0), sense incloure O y E'.

137. Considera la successió de nombres complexos { an }, n ≥ 1:

$$a_n = (1+i) \cdot \left(1 + \frac{i}{\sqrt{2}}\right) \cdot ... \cdot \left(1 + \frac{i}{\sqrt{n}}\right)$$

Determina si existeix un nombre natural m tal que:

$$\sum_{n=1}^{m} |a_n - a_{n+1}| = 1990$$

Els mòduls de les diferències dels termes de la successió valen:

$$\begin{split} \left|a_{n}-a_{n+1}\right| &= \left|(1+i)\left(1+\frac{i}{\sqrt{2}}\right)\cdot\ldots\left(1+\frac{i}{\sqrt{n}}\right)-(1+i)\left(1+\frac{i}{\sqrt{2}}\right)\cdot\ldots\left(1+\frac{i}{\sqrt{n}}\right)\cdot\left(1+\frac{i}{\sqrt{n+1}}\right)\right| = \\ &= \left\|\left(1+i\right)\cdot\left(1+\frac{i}{\sqrt{2}}\right)\cdot\ldots\left(1+\frac{i}{\sqrt{n}}\right)\right\|\cdot\left[1-\left(1+\frac{i}{\sqrt{n+1}}\right)\right] - \left(1+\frac{i}{\sqrt{n+1}}\right)\right\| = \\ &= \left\|\left(1+i\right)\cdot\left(1+\frac{i}{\sqrt{2}}\right)\cdot\ldots\left(1+\frac{i}{\sqrt{n}}\right)\right\|\cdot\left[1-\left(1+\frac{i}{\sqrt{n+1}}\right)\right] - \left(1+\frac{i}{\sqrt{n+1}}\right)\right\| = \\ &= \left\|\left(1+i\right)\cdot\left(1+\frac{i}{\sqrt{2}}\right)\cdot\ldots\left(1+\frac{i}{\sqrt{n}}\right)\right\|\cdot\left[1-\left(1+\frac{i}{\sqrt{n+1}}\right)\right] - \left(1+\frac{i}{\sqrt{n+1}}\right)\right\| = \\ &= \left\|\left(1+i\right)\cdot\left(1+\frac{i}{\sqrt{2}}\right)\cdot\ldots\left(1+\frac{i}{\sqrt{n}}\right)\right\| - \left(1+\frac{i}{\sqrt{n+1}}\right) - \left(1+\frac{i}{\sqrt{n+1}}\right)\right\| - \left(1+\frac{i}{\sqrt{n+1}}\right) -$$

Com que el mòdul del producte és el producte dels mòduls, resulta:

$$\sqrt{2} \cdot \frac{\sqrt{3}}{\sqrt{2}} \cdot \dots \cdot \frac{\sqrt{n+1}}{\sqrt{n}} \cdot \frac{1}{\sqrt{n+1}} = 1$$

$$\sum_{n=1}^{m} |a_n - a_{n+1}| = 1 + 1 + \dots + 1 = m \to m = 1990$$