Spring 2021

Homework 6 solutions

1. The inverse Lorentz transformation equations for a frame K' traveling at velocity v along the positive x-direction of a frame K are given by

$$t = \gamma \left(t' + \frac{vx'}{c^2}\right)$$
 $x = \gamma (x' + vt')$ $y = y'$ $z = z'$

By explicit differentiation, derive the Lorentz transformation law for velocities:

$$u_x = \frac{u_x' + v}{1 + \frac{vu_x'}{c^2}}$$
 and $u_y = \frac{u_y'}{\gamma \left(1 + \frac{vu_x'}{c^2}\right)}$

Solution: By direct differentiation, we get

$$u_x = \frac{dx}{dt} = \frac{dx}{dt'} \frac{dt'}{dt} = \gamma \frac{d}{dt'} \left[x' + vt' \right] \left(\frac{dt}{dt'} \right)^{-1}$$
 (1)

Let's find dt/dt' first:

$$\frac{dt}{dt'} = \frac{d}{dt'} \left[\gamma \left(t' + \frac{vx'}{c^2} \right) \right] = \gamma \left[1 + \frac{v}{c^2} \frac{dx'}{dt'} \right]$$

But $dx'/dt' = u'_x$, so the equation above becomes

$$\frac{dt}{dt'} = \gamma \left[1 + \frac{vu_x'}{c^2} \right] \tag{2}$$

Substituting this in equation (1), we get

$$u_x = \gamma \frac{d}{dt'} \left[x' + vt' \right] \left(\gamma \left[1 + \frac{vu_x'}{c^2} \right] \right)^{-1} = \frac{\gamma \left[\frac{dx'}{dt'} + v \frac{dt'}{dt'} \right]}{\gamma \left[1 + \frac{vu_x'}{c^2} \right]}$$

Canceling γ from the numerator and denominator, and putting $dx'/dt' = u'_x$, we obtain finally the first of the two desired relations

$$u_x = \frac{u_x' + v}{1 + \frac{vu_x'}{c^2}}$$

In similar manner, we get that

$$u_y = \frac{dy}{dt} = \frac{dy}{dt'} \frac{dt'}{dt} = \frac{dy'}{dt'} \frac{dt'}{dt} = \frac{dy'}{dt'} \left(\frac{dt}{dt'}\right)^{-1}$$
(3)

where the key point of difference from u_x is that, now, y = y'. Putting $dy'/dt' = u'_y$ and writing dt/dt' from equation (2), we get from equation (3) that

$$u_y = \frac{u_y'}{\gamma \left(1 + \frac{vu_x'}{c^2}\right)}$$

which is the second of the two desired relations.

2. Now consider the more general case of the frame K' moving with velocity $\vec{v} = c\vec{\beta}$ with respect to the frame K. Then, the components of velocity transform according to

$$u_{\parallel} = \frac{u_{\parallel}' + v}{1 + \frac{\vec{v} \cdot \vec{u}'}{c^2}} \qquad \vec{u}_{\perp} = \frac{\vec{u}_{\perp}'}{\gamma_v \left(1 + \frac{\vec{v} \cdot \vec{u}'}{c^2}\right)} \tag{4}$$

where u_{\parallel} and \vec{u}_{\perp} refer to components of velocity parallel and perpendicular, respectively, to \vec{v} , and the subscript on γ_v explicitly identifies the relationship to be $\gamma_v = (1 - v^2/c^2)^{-1/2}$.

(a) For the simple case where u' is parallel to the direction of v, use equation (4) to find an expression for u.

Solution: If u' is parallel to v, then $\vec{v} \cdot \vec{u}' = (v)(u')\cos 0 = vu'$, and $u_{\perp} = 0$. Substituting into the equation on the left above, we get

$$u = \frac{u' + v}{1 + vu'/c^2} \tag{5}$$

where I've written $u_{\parallel}=u,$ and $u'_{\parallel}=u'.$

(b) If u' = c, then use the expression you derived in part (a) to find u. Comment on how this result reflects a key aspect of Special Relativity.

Solution: If u' = c, then substituting in equation (5), we get

$$u = \frac{c+v}{1+vc/c^2} = \frac{c+v}{1+v/c}$$

This can be written as

$$u = \frac{c+v}{(c+v)/c}$$

and upon canceling (c+v) in the numerator and denominator, we end up with

$$u = c$$

This upholds the second postulate of Special Relativity that the speed of light (in vacuum) is the same in all inertial frames.

(c) For speeds u' and v both small compared to c, show that the velocity addition law reduces to the Galilean result: u = u' + v.

Solution: Starting from the velocity addition law in equation (5) above, if u' and v are both small compared to c, then we get that

$$\frac{vu'}{c^2} \approx 0$$

and thus equation (5) becomes

$$u = \frac{u' + v}{1 + vu'/c^2} \approx \frac{u' + v}{1 + 0}$$

and thus we get the Galilean result

$$u = u' + v$$

3. In class, we derived the 4-velocity

$$U = \left(\gamma_u c, \gamma_u \vec{u}\right)$$

where $\gamma_u = (1 - u^2/c^2)^{-1/2}$, and $\vec{u} = d\vec{x}/dt$ is the usual 3-dimensional velocity.

(a) Find the norm or invariant length U^2 of this 4-velocity. Reduce to the simplest possible form.

Solution: U^2 is just the scalar product, similar to the way it is defined for a 3-vector, except we have to be careful with the signs. So

$$U^{2} = U \cdot U = \gamma_{u}^{2} c^{2} - \gamma_{u}^{2} \left(u_{x}^{2} + u_{y}^{2} + u_{z}^{2} \right) = \gamma_{u}^{2} \left(c^{2} - u^{2} \right)$$

Putting in the form for γ_u given above, we get

$$U^{2} = \frac{c^{2} - u^{2}}{1 - u^{2}/c^{2}} = \frac{c^{2} - u^{2}}{(c^{2} - u^{2})/c^{2}} = c^{2}$$

Therefore, the norm or invariant length of the 4-velocity is just c^2

(b) Starting from U, write down an expression for the 4-acceleration A.

Solution: The 4-acceleration can be found from the derivative of the 4-velocity with respect to proper time, so that

$$A = \frac{dU}{d\tau} = \frac{dU}{dt} \frac{dt}{d\tau} \tag{6}$$

From equation (2), we know that if $dt' = d\tau$, the proper time, then $dt/d\tau = \gamma_u$, where the expression for $\gamma_u = (1 - u^2/c^2)^{-1/2}$ is written in the statement of the problem above.

Then, equation (6) gives

$$A = \frac{dU}{dt} \gamma_u = \gamma_u \frac{d}{dt} \left[\gamma_u c, \gamma_u \vec{u} \right]$$

Therefore, the 4-acceleration A is given by

$$A = \gamma_u \left[c \frac{d\gamma_u}{dt}, \left(\vec{u} \frac{d\gamma_u}{dt} + \gamma_u \vec{a} \right) \right]$$
 (7)

(c) Find the scalar product $U \cdot A$ of the 4-velocity and the 4-acceleration.

Solution: This is straightforward, if we use the result in part (a), where we showed that $U^2 = c^2$:

$$U \cdot A = U \cdot \frac{dU}{d\tau} = \frac{1}{2} \frac{d}{d\tau} \left[U \cdot U \right]$$

But in part (a), we showed that $U \cdot U = c^2$, so that

$$U \cdot A = \frac{1}{2} \frac{d}{d\tau} \left[U \cdot U \right] = \frac{1}{2} \frac{d}{d\tau} \left[c^2 \right] = 0$$

Thus, we have proved that $U \cdot A = 0$.

4. The Lorentz transformation equations are given by

$$x'_0 = \gamma (x_0 - \beta x_1).$$
 $x'_2 = x_2$
 $x'_1 = \gamma (x_1 - \beta x_0)$ $x'_3 = x_3$

where

$$\beta = \frac{v}{c}$$
 and $\gamma = (1 - \beta^2)^{-1/2}$

(a) If we introduce the parametrization $\beta = \tanh \zeta$, then **show that** the relations above imply that

$$\gamma = \cosh \zeta$$
 and $\gamma \beta = \sinh \zeta$

where ζ is known as the *boost parameter* or rapidity.

Solution: Putting $\beta = \tanh \zeta$ in the expression for γ , we get

$$\gamma = (1 - \beta^2)^{-1/2} = \frac{1}{\sqrt{1 - \beta^2}} = \frac{1}{\sqrt{1 - \tanh^2 \zeta}} = \frac{1}{\sqrt{\operatorname{sech}^2 \zeta}} = \frac{1}{\operatorname{sech} \zeta} = \cosh \zeta$$

which proves the first of the two relations.

Meanwhile

$$\gamma \beta = \cosh \zeta \tanh \zeta = \cosh \zeta \left(\frac{\sinh \zeta}{\cosh \zeta} \right) = \sinh \zeta$$

which proves the second of the two relations.

(b) Using the parametrization in part (a), show that the Lorentz transformation equations written above can be put in the form

$$\begin{pmatrix} x_0' \\ x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{pmatrix} \cosh \zeta & -\sinh \zeta & 0 & 0 \\ -\sinh \zeta & \cosh \zeta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
(8)

Solution: The first of the Lorentz transformation equations, with γ now parametrized as $\cosh \zeta$, and $\gamma \beta = \sinh \zeta$, becomes

$$x_0' = \gamma (x_0 - \beta x_1) = \gamma x_0 - \gamma \beta x_1 = (\cosh \zeta) x_0 - (\sinh \zeta) x_1$$

and to put it in the form of the matrix equation written above, we can write

$$x'_0 = (\cosh \zeta) x_0 - (\sinh \zeta) x_1 + (0) x_2 + (0) x_3$$

Likewise, the second the Lorentz transformation equations written above becomes

$$x'_1 = \gamma (x_1 - \beta x_0) = \gamma x_1 - \gamma \beta x_0 = (\cosh \zeta) x_1 - (\sinh \zeta) x_0$$

or swapping the terms and adding the last two with coefficients zero, we get

$$x_1' = -(\sinh \zeta) x_0 + (\cosh \zeta) x_1 + (0) x_2 + (0) x_3$$

It is trivial to show x'_3 and x'_4 , and thus we have demonstrated that the Lorentz transformation equations can be put in the form written in equation (8) above.