Loop spaces: conformal center of mass and infinite dimensional GIT for the space of isometric loops

Dmitrii Korshunov IMPA

22 November 2024

Abstract We show, following Millson and Zombro, how to construct a Kähler structure on the moduli space of isometric maps of a circle into Euclidean space. The proof upgrades the Kirwan/Kempf–Ness theorem relating symplectic reduction and GIT to the infinite dimensional setting. The construction crucially uses the Douady–Earle's notion of conformal center of mass, which is of independent interest.

1 Three spaces

Definition Millson-Zombro space is

$$\left\{(S^1,g) \xrightarrow{isometric} \mathbb{R}^3\right\} \Big/ \text{SO}(3) \ltimes \mathbb{R}^3$$

- 1. It is a Kähler manifold.
- 2. J is integrable. This means there are holomorphic coordinates, *not* algebraic integrability (N tensor vanishes).

The upshot is that there is no Newlander-Niremerg theorem in infinite dimension.

Definition Brylinskly loop space is: for M 3-dimensional Riemannian manifold,

$$\left\{S^1 \to M\right\} \left/ \mathsf{Diff}^+(S^1) \right.$$

(Without isometry condition.)

Take a normal vector field V_1 to a curve $\gamma: S^1 \to M$,

- 1. Define a complex structure $Jv_1 := v_1 \times \frac{\dot{\gamma}}{|\dot{\gamma}|}$. This is formally integrable (N tensor vanishes) but never has a holomorphic structure (infinite dimensional!)
- 2. $\int_{S^1} \langle V_1, V_2 \rangle$ dt where V_2 is another vector field along γ , and perhaps we must choose arclength parametrization. A Riemannian structure.
- 3. Now consider the volume form on M. The form $V(\cdot, \cdot, \frac{\dot{\gamma}}{|\dot{\gamma}|})$ is skew symmetric. So, a symplectic structure.

Definition *Kapovich-Millson space of polygons*. First, a *polygon* is all the embeddings of n points joined by edges of lengths ℓ_1, \ldots, ℓ_n in that order and possibly intersecting each other. Now fix a point ...? The polygon space is

$$P = polygons/SO(3) \times \mathbb{R}$$
.

Question Why $\times \mathbb{R}$?

$$P \subset S^2_{\ell_1} \times \ldots \times S^2_{\ell_n} \curvearrowright SO(3)$$

where action is diagonal action.

In fact, this action is hamiltonian. Because the action $SO(3) \curvearrowright S^2$ is hamiltonian with moment map the identity. Then the moment map of the product of spheres is just the sum of moment maps. Also it's simple because $\mathfrak{so}(3)^* \cong \mathbb{R}^3$. So we may perform symplectic reduction and obtain a symplectic manifold $\mu^{-1}(0)/SO(3)$. And the resulting space is the space of polygons! That's the symplectic structure.

Question what about complex and Riemannian strutures? are they more straightforward to show?

1.1 Back to MZ space = the loop space

Consider a loop that does not necessarily close up, so a map $\gamma: \mathbb{R} \to \mathbb{R}^3$. And suppose it is *smoothly periodic* so unit veolicity and derivative $\dot{\gamma}: S^1 \to S^2$ periodic. Now Gauss map gives us $\mathbb{R} \to S^2$, but since veolicity is periodic it's actually $S^1 \to S^2$. Now let's put some structures on the space of all $S^1 \to S^2$:

- 1. (Almost complex structure) Tangent vectors to this space are vector fields tangent to S^2 —tangent to the loop! Again: loop is point, vector at this point is a vector field tangent to the loop. Anyway we can act with the complex structure of S^2 on that vector and that's the complex structure.
- 2. The riemannian structure is inherited from the sphere: pair them and integrate. The question is wether that depends on parametrization. Last time we just declared that we use unit speed parametrization.
- 3. Symplectic structure:

$$\omega(\nu_1,\nu_2) = \int \dot{\gamma} \cdot (\nu_1 \times \nu_2) dt$$

where $(v_1 \times v_2)$ is the triple product presented before.

Proposition *w* is closed.

Proof. Consider

ev :
$$LS^2 \times S^1 \rightarrow S^2$$

 $\pi : LS^2 \times S^2 \rightarrow LS^2$.

Then

$$\omega_{LS^2} = \pi_* \, \text{ev}^*(\omega_{S^2}) \wedge dt$$

where ω is the symplectic structure on S^2 and π is "fiber integration over?" .

Corollary $\frac{\omega}{8\pi^2}$ is integral. (There will be a prequantization)

And there's an action $LS^2 \cap SO(3)$. And it's hamiltonian with moment map $\mu: LS^2 \to \mathbb{R}^3 \cong \mathfrak{so}(3)^*$. So the fundamental vector field is $\xi \times \beta$. And the moment map is, for $\beta \in LS^2$

$$\begin{split} \mu(\beta) &= \int_0^{2\pi} \beta(t) dt \\ \int \nu \cdot \xi ds &= \int_0^{2\pi} \beta \cdot \Big((\xi \times \beta) \times \nu \Big) ds \end{split}$$