Teoría de Conjuntos

Clasificación de los Números Complejos

Relaciones entre conjuntos

- Inclusión de conjuntos. ($\subset: Subconjunto, \supset: Superconjunto$)

$$A \subset B \Leftrightarrow \forall x : x \in A \Rightarrow x \in B$$

Propiedades:

Reflexividad: $\forall x : x \in A \Rightarrow x \in A; Verdad, \therefore A \subset A$

Transitividad: Si $A \subset B \land B \subset C \Rightarrow A \subset C$ Antisimétrica: Si $A \subset B \land B \subset A \Rightarrow A = B$

- Igualdad de conjuntos.

$$A = B \Leftrightarrow A \subset B \land B \subset A$$

- Conjuntos de partes.

Sea el conjunto *A*, con *n* elementos

X: Subconjuntos de A

P(A): Conjunto de partes, con 2^n elementos

$$P(A) = \{X \mid X \subset A\}$$

$$X \in P(A) \Leftrightarrow X \subset A$$

Operaciones entre conjuntos

- Unión de conjuntos.

Caso general:

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup A_3 \cup \dots \cup A_n$$

Caso específico:

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

- Intersección de conjuntos.

Caso general:

$$\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n$$

Caso específico:

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

- Complemento de un conjunto.

$$A^C = \{x / x \in U \land x \notin A\}$$

- Diferencia de conjuntos.

$$A - B = \{x \mid x \in A \land x \notin B \land x \notin (A \cap B)\}$$

- Diferencia simétrica de conjuntos.

$$A\Delta B = (A - B) \cup (B - A)$$
$$A\Delta B = \{x / x \in A \land x \in B \land x \notin (A \cap B)\}$$

Leyes de operaciones de conjuntos

- Leyes de idempotencia.

$$A \cup A = A$$
$$A \cap A = A$$

- Leyes de identidad.

$$A \cup \phi = A$$
$$A \cup U = U$$
$$A \cap \phi = \phi$$
$$A \cap U = A$$

- Leyes de complemento.

$$\phi^{C} = U$$

$$U^{C} = \phi$$

$$A \cup A^{C} = U$$

$$A \cap A^{C} = \phi$$

$$(A^{C})^{C} = A$$

- Leyes de diferencia.

$$A - A = \phi$$

$$A - B = A \cap B^{C}$$

$$A\Delta B = (A - B) \cup (B - A)$$

- Leyes conmutativas.

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

- Leyes asociativas.

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

- Leyes distributivas.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

- Leyes de Morgan.

$$A - (B \cup C) = (A - B) \cap (A - C)$$

$$A - (B \cap C) = (A - B) \cup (A - C)$$

$$(A \cup B)^{C} = A^{C} \cap B^{C}$$

$$(A \cap B)^{C} = A^{C} \cup B^{C}$$

- Leyes de absorción.

$$A \cap (A \cup B) = A$$
$$A \cup (A \cap B) = A$$

Relación entre la Teoría de Conjuntos y la Lógica Matemática.

- El conjunto vacío (ϕ) , corresponde con una contradicción.
- El conjunto universal (U), corresponde con una tautología.

Conjuntos	$A \subset B$	A = B	$A \cup B$	$A \cap B$	A^{C}	A-B	$A\Delta B$
Proposiciones	$p \Rightarrow q$	$p \Leftrightarrow q$	$p \lor q$	$p \wedge q$	$\neg p$	$p \land \neg q$	$p \lor q$

Cardinal de un conjunto.

Sean A, B, C tres conjuntos dados, entonces: El cardinal de cada conjunto respectivamente es: n(A), n(B), n(C), por tanto tenemos las siguientes propiedades:

$$n(A-B) = n(A) - n(A \cap B)$$

$$n(A \triangle B) = n(A \cup B) - n(A \cap B)$$

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$$

Producto Cartesiano.

Símbolo: $A \times B$

Definición: $A \times B = \{(x, y) | x \in A \land y \in B\}$

O bien: $(x, y) \in A \times B \iff x \in A \land y \in B$

Si B = A, entonces $A^2 = A \times A = \{(x, y) | x \in A \land y \in A\}$

Partición de conjunto.

Sea el conjunto A, donde sus particiones son: $A_1 + A_2 + A_3 + ...$

Tales que:

o
$$A_i \cap A_j = \phi$$
 Si $i \neq j$ (Disjuntos)

$$\circ \quad A_1 \cup A_2 \cup A_3 \cup \dots = A$$