Тестовое задание

4 апреля 2018 г.

Одометрия двухколёсной тележки

Есть двухколёсная тележка (см. рис. 1a). Каждое из колёс тележки приводится во вращение независимым двигателем. При вращении колёс в одном направлении тележка движется вперёд (или назад), при вращении в разных — разворачивается.

Рис. 1: Двухколёсная тележка

Введём неподвижную систему координат Ol_xl_y . Положение тележки в ней можно однозначно задать радиус-вектором $r=(x,y)^T$ и углом поворота α (отсчитывается против часовой стрелки). Центр тележки A расположен посередине между колёсами, как показано на рисунке 1b. Известны параметры тележки: b – расстояние между колёсами, R – радиус колёс.

У тележки есть система навигации. Каждые несколько миллисекунд происходит измерение абсолютных значений углов поворота колёс: θ_1 — угол поворота левого колеса, θ_2 — угол поворота правого колеса.

Задача: написать программу на языке C++, которая по заданному набору измерений углов поворота колёс определит положение тележки в текущий момент времени. Предполагается, что в начальный момент времени тележка имеет нулевые координаты: $x_0 = 0$, $y_0 = 0$, $\alpha_0 = 0$.

Программа должна запускаться из командной строки следующим образом:

./odometry measurements.txt

и печатать на экран 3 числа: x,y,α .

Аргумент программы — **measurements.txt** — путь к файлу, содержащему измерения и параметры тележки. Файл разбит на строки. Первая строка файла содержит 2 вещественных числа: b-R — параметры тележки. Остальные строки содержат измерения. Каждое измерение — 3 вещественных числа: $t-\theta_1-\theta_2$. t — время измерения (в секундах), θ_1, θ_2 — углы поворота колёс (в радианах). В приложении имеются 2 файла **forward.txt** и **circle.txt**. В первом содержатся измерения, соотвествующие прямолинейному движению, во втором — движению по окружности.