Minor Exam Set-1

(2) (a)
$$y = ((a' \cdot b') + (b \cdot c'))' \cdot ((a' \cdot c) + (b \cdot c))$$

NANS+NOT NANS+NOT

NOR, NOR + NOT

There could be some other ways to implement the circuit. We will check for all such answers and correct answers will get full grades.

(b)
$$y = ((a',b') + (b,c'))' \cdot ((a',c) + (b,c))$$

 $= ((a',b')' \cdot (b,c')' \cdot (a'c+b.c))$
 $= (a+b) \cdot (b'+c) \cdot (a'+b) \cdot c$
 $= (ab' + ac+bc) \cdot (a'+b) \cdot c$
 $= (a'bc + abc+bc) \cdot c$
 $= bc \cdot c$
 $= bc \cdot c$

(3)
$$f(a, b, c, d) = \sum m(0, 1, 3, 9) + \sum d(2, 11, 15)$$
 $ab cd 0 0 1 11 10$
 $00 1 1 1 1 10$
 $11 10 11 1 10$
 $f = a'b' + b'd$

aparoue de

(5) x3x y3 20 x0x y3 x1 x2 x2 x2

equivalent in terms of the delay & hence any feeth could be relected as the critical path.

0-shift x3 x2 x1 x0 1-shift x0 x3 x2 x1 x1 2-shift x1 x0 x3 x2 3-shift x2 x1 x0 x3

NOR + NOT

6 à We consider a 2-bit variable à'a; • b; " such that

a:	t;	α_i	aiti	biti	y'i
O	O	0	0	1	0
O	0	1	0	0	0
0	(D	1	0	0
0	1	1	D	0	D
1	0	D		0	D
1	0	1	1	1	0
1	1	D	0	1	1
1	1	1	0	0	0

8	(9)

+		
M	N	Q _{±+1}
O	0	0' ₊
0	1	
	0	0
1	1	0,

(b)
$$Z = M'O'_{+} + N.O_{+}$$

