University of Genoa, 2022/23 Luca Buoncompagni,PhD

Assignment 1

7. Lecture of Experimental robotics

The Scenario

The scenario involves a robot deployed in a indoor environment for surveillance purposes.

The robot's objective is to visit the different locations and stay there for some times.

The Environment

Consider a 2D environment made of 4 rooms and 3 corridors.

Which might not necessary be as in the figure.

The Phases (1)

The robot start in the E location and waits until it receives the information to build the topological map, i.e., the relations between C1, C2, R1, R2, R3 locations and the doors D1...D6.

The Phases (2)

The robot moves in a new location, and waits for some times before to visit another location. This behavior is repeated in a infinite loop.

When the robot's battery is low, it goes in the E location, and wait for some times before to start again with the above behavior

Hint: Consider the waiting duration as parameters.

The Surveillance Policy

When robot's battery is not low, it should move among locations with this policy:

- It should mainly stay on corridors,
- If a reachable room has not been visited for some times it should visit it.

Hint: see the ROOM, CORRIDOR and URGENCY concepts presented in the

https://github.com/buoncubi/topological_map tutorial.

Robot Control and Stimulus

Use the approach presented in the https://github.com/buoncubi/arch_skeleton example to simulate the movements of the robot and its stimulus (e.g., battery low).

Use a similar approach also to provide the robot with the information to build the topological map during Phase 1.

Submission

Submission

 Send the link of a github repository to luca.buoncompagni.unige@gmail.com and carmine.recchiuto@dibris.unige.it

The repository should contain:

- all the developed code
- documentation with Doxygen, docstring, or similar
- a README.md file with the report of your work

Deadline: the 13th of November.

Readme Template

- 1. Brief introduction (couple of sentences).
- 2. Software architecture, temporal diagram and states diagrams (if applicable). Each diagram should be commented with a paragraph, plus a list describing ROS messages and parameters.
- 3. Installation and running procedure (including all the steps to display the robot's behavior).
- 4. A commented small video, a GIF, or screenshots showing the relevant parts of the running code.
- 5. Working hypothesis and environment (1 or 2 paragraph).
 - 1. System's features (1 or 2 paragraph).
 - 2. System's limitations (1 or 2 paragraph).
 - 3. Possible technical Improvements (1 or 2 paragraph).
- 6. Authors and contacts (at least the email).

Evaluation

We mainly evaluate:

- the design of the software architecture included: interfaces, parameters and behaviors formalization,
- the quality of the developed code and its documentation,
- the ability to design and highlight working hypothesis and limitations,
- the ability to plan ahead and make an architecture that could be adapted for more complex scenarios.
- the ability to test (using randomness) the architecture and evaluate its outcomes,
- the quality of the repository and readme file.

Questions?!