2021/11/02 のセミナー資料

Ryo Kawai

2021/11/02

1 factorization and decomposition

1.1 factorization

定義 1.1.1 | 〈 factorable〉

グラフ G の factor F_1, F_2, \ldots, F_t $(t \in \mathbb{N}^+)$ で

$$\bigcup_{i=1}^{t} E(F_i) = E(G) \land E(F_i) \cap E(F_j) = \emptyset \ (i \neq j)$$

を満たすものが存在するとき、グラフ G は F_1, F_2, \ldots, F_t によって factorable であるといい、 $\mathcal{F} = \{F_1, F_2, \ldots, F_t\}$ を G の factorization という.特に各 factor が k-factor $(k \ge 1)$ であるような factorization を k-factorization といい、それが存在するときに G は k-factorable であるという.グラフ G が k-factorable であるとき、G は r-正則であり k|r である.

また, 各 factor がグラフ H と同型すなわち $F_i \simeq H$ であるとき, G は H-factorable であるといい, G は H の isomorphic factorization をもつという.

この分野でよく調べられているのは、どのようなグラフが 1-factorable であるである。もちろん定理 4.4.2、定義 1.1.1 より明らかに偶数次の正則グラフであることが必要条件である。当然 1-正則グラフは 1-factorable であり、2-正則グラフ,すなわち cycle も 1-factorable である(交互に辺をとればよい)。r-正則 $(r \geq 3)$ のときは複雑である。例えば r=3 のときは,定理 4.4.4 より橋を持たない cubic graph は 1-factor と 2-factor に分解できるが,Petersen graph などは 1-factorable ではない.

1-factorable については以下の定理がある.

定理 1.1.2

正の整数 k に対して, K_{2k} は 1-factorable である.

Proof. k=1 のときは明らか. $k\geq 2$ のときを考える. 今 K_{2k} の各頂点を $\{v_0,v_1,\ldots,v_{2k-1}\}$ とする. このとき, v_1,v_2,\ldots,v_{2k-1} を 2k-1 角形の頂点上に並べ, 真ん中に頂点 v_0 をおいて v_0 と v_i を結びその辺の含む直線と線対称になる頂点を結んでできるグラフを F_i とする. すなわち,

 $F_i = (\{v_0, v_1, \dots, v_{2k-1}\}, \{v_n v_m \mid n+m \equiv 2k-1+2i \pmod{2k-1}\} + \{v_0 v_i\}) \ (1 \le i \le 2k-1)$ とすると、

$$\bigcup_{i=1}^{2k-1} E(F_i) = E(K_{2k}) \land E(F_i) \cap E(F_j) = \emptyset \ (i \neq j)$$

となる. よって $\{F_1, F_2, \dots, F_{2k-1}\}$ は K_{2k} の 1-factorization となる.

上の証明では各 F_i は F_1 を $2\pi(i-1)/(2k-1)$ 回転したものになっている. このような factorization を cyclic factorization という.

予想 1.1.3 | ⟨ The 1-Factorization Conjecture⟩

グラフGがr-正則かつ位数が偶数であり、

$$r \ge n/2$$
 $n \equiv 2 \pmod{4}$ $r \ge (n-2)/2$ $n \equiv 0 \pmod{4}$

であるとき, G は 1-factorable である.

とても大きなn以上の位数のグラフでは、この予想が成り立つことが示された[1]. 2-factorable なグラフについては次の定理が知られている.

定理 1.1.4

グラフ G が 2-factorable である必要十分条件は G が 2k-正則 $(k \in \mathbb{N}^+)$ であることである.

Proof. オイラー周遊を使えば示せるっぽい. wait

1.2 decomposition

decomposition は factorization をゆるくした概念である.

定義 1.2.1 | 〈 decomposition〉

グラフ G の空でない部分グラフの集合 $\{H_1,H_2,\ldots,H_t\}$ $(t\in\mathbb{N}^+)$ で、各 H_i について $H_i=G[E_i]$ となる辺集合 E_i が存在し、

$$\bigcup_{i=1}^{t} E_i = E(G) \land E_i \cap E_j = \emptyset \ (i \neq j)$$

を満たす E_1, E_2, \ldots, E_t が存在するとき, $\mathcal{D} = \{H_1, H_2, \ldots, H_t\}$ を G の decomposition という. また, 各 H_i がグラフ H と同型すなわち $H_i \simeq H$ であるとき, G は H-decomposition であるといい, それが存在するときに G は H-decomposable であるという.

各 H_i が全域部分グラフの時には decomposition は factorization になる.

2 tree

定義 2.0.1 | 〈 tree〉

グラフが cycle をもたず連結なとき、そのグラフを $tree(\mathbf{\Lambda})$ という. 木はよく T と表記する.

3 labeling

定義 3.0.1 | 〈 labeling〉

グラフGの頂点集合もしくは辺集合 (もしくはその両方) に対して、各要素に値を割り当てる写像のことを labeling(ラベリング) という。通常は値として整数や自然数を割り当てることがおおい。

3.1 graceful labeling

定義 3.1.1 | 〈 graceful〉

空でないサイズ m のグラフ G に対して、各頂点に $0,1,\ldots,m$ を、各辺 xy に |x-y| を割り当てるラベリングを考える。このとき、頂点のラベリングが単射であり、辺のラベリングの像が $\{1,2,\ldots,m\}$ であるようなラベリングが存在するとき、グラフ G は $\mathbf{graceful}$ (優美) であるといい、このラベリングを $\mathbf{graceful}$ labeling(優美ラベリング) という。

位数 4 までの連結なグラフは優美である. 位数 5 では 3 つの連結なグラフ $C_5, K_5, K_1 \lor 2K_2$ が優美ではない. 位数 6 では以下の 6 つの連結なグラフが優美ではない.

図 1 位数 6 の連結な優美でないグラフ

優美ラベリングに関しては、以下の有名な予想がある.

予想 3.1.2 | ⟨ Graceful Tree Conjecture⟩

任意の木は優美である.

予想 3.1.3 | ⟨ Ringel's Conjecture⟩

サイズmの任意の木は K_{2m+1} を分解することができる.

おおきなmでは解かれたと[2]にある.

予想 3.1.4 | ⟨ Ringel-Kotzig Conjecture⟩

サイズmの任意の木は K_{2m+1} を周期的に分解することができる.

実はこの予想は予想 3.1.2 と同値であるらしい. 予想 3.1.2 が解けると予想 3.1.4 が解けるのはすぐにわかる. 反対はちょっとわからない.

セミナーで発表した際に、間違えて graceful の定義の頂点のラベリングから単射性を抜いて発表してしまった。このラベリングを pseudo graceful labeling(擬似優美ラベリング) とでも名付けておこう。明らかに優美ラベリングは擬似優美ラベリングであるから、優美なグラフは擬似優美なグラフである。すると次のような疑問がでる。

疑問 3.1.5

優美ではないが擬似優美なグラフは存在するのか.

とりあえず位数7までは存在しないことを計算機にて確認した.

4 graph

4.1 basis

定義 4.1.1 | 〈 incident〉

グラフにおいて, $v \in e$ であるとき, 頂点 v は辺 e に incident(接続) しているといい, e を v の incident edge(接続辺) という. 一つの辺に接続する 2 つの頂点をその辺の end(端点) といい, 辺はその端点を join(結ぶ) という.

辺 $\{x,y\}$ をよく省略して xy(=yx) と表す. $x \in X \land y \in Y(X,Y \subseteq V)$ であるとき, 辺 xy を X-Y edge(X-Y 辺) という. E に属する X-Y 辺全体の集合を E(X,Y) と表し, $E(\{x\},Y)$ や $E(X,\{y\})$ のことを単に E(x,Y) や E(X,y) と表す. また, $v \in V$ の E 上の接続辺全体を E(v) と表す. すなわち E(v) = E(V,v) である.

定義 4.1.2 | 〈 adjacent 〉

2つの頂点 x,y が $\{x,y\} \in G$ であるとき, x と y は adjacent(隣接) しているといい, 互いに他の neighbour(隣接点) *1 であるという. neighbour 関係については定義 4.2.1 にある. st, 2 つの異なる辺 e,f が 1 つの端点を共有しているとき, t0 すなわち t2 t3 t4 t5 t7 であるときも t8 と t9 は t9 は t9 しているという. t9 と t9 は t9 と t9 は t9 と t9 と

定義 $4.1.3 \mid \langle \text{ complete graph} \rangle$

全ての頂点が隣接しているグラフを complete graph(完全グラフ) といい, |G|=n のものを K_n で表す*3. 特に K_3 は triangle(三角形) と呼ばれる.

定義 $4.1.4 \mid \langle \text{ independent} \rangle$

グラフ G の頂点で、他のどの頂点とも隣接していない頂点を **independent(独立)** した頂点という. 同じように、グラフ G の辺で、他のどの辺とも隣接していない辺を **independent(独立)** した辺という. より一般に、 $X \subseteq V(G) \veebar E(G)$ のすべての要素が独立しているときに X は **independent(独立)** しているという. V(G) が独立しているとき、**stable set(安定集合)** ということもある.

定義 4.1.5 | 〈 graph isomorphism〉

2 つのグラフ G = (V, E), G' = (V', E') に対して、グラフの間の写像 $\varphi : V \to V'$ を $\varphi : G \to G'$ と表す.2 つのグラフ G = (V, E), G' = (V', E') に対して、 $\varphi : G \to G'$ が

$$\{x,y\} \in E \implies \{\varphi(x), \varphi(y) \in E'\}$$

を満たすとき, φ を graph homomorphism(グラフ準同型写像) であるという. 特にこのとき,

^{*1} イギリス英語は neighbour,neighbourhood. アメリカ英語は neighbor,neighborhood.

 $^{*^2} x$ と y を adjacent vertices(隣接頂点), e と f を adjacent edges(隣接辺) という.

 $^{*^3} K^n$ と表記している本もある.

 $x' \in V'$ の φ による逆像 $\varphi^{-1}(x')$ は独立している.

 φ が全単射であり φ^{-1} もグラフ準同型写像であるとき, φ を graph isomorphism(グラフ同型写像) という. またこのとき, G と G' は graph isomorphic(グラフ同型) であるといい, $G \simeq G'$ と書き表す. 同型なグラフは区別せず, $G \simeq G'$ のことを, G = G' と書くことが多い.

G から G へのグラフ同型写像を automorphism(自己同型写像) という.

定義 4.1.6

同型写像の下で保存されるような性質を graph property(グラフの性質) といい, その中で引数を持つものを graph invariant(グラフ不変量) という.

グラフの頂点の数や辺の数などはグラフ不変量である.

4.2 degree

定義 **4.2.1** | 〈 neighbours〉

グラフGの頂点集合Uに対して、その頂点の隣接点でUに属さないもの全体、すなわち、

$$\left\{ x \in V(G \setminus U) \mid \exists y \in U \ s.t. \ xy \in E(G) \right\}$$

をグラフG におけるUの neighbourhood(近傍) *4 または open neighbourhood(開近傍) といい, $N_G(U)$ で表す. $N_G(U) \cup U$ をグラフG におけるUの closed neighbourhood(閉近傍) といい, $N_G[U]$ で表す.

グラフGが明らかである場合には $N_G(U)$ を単にN(U)と書き表し、特に $U=\{u\}$ のとき、 $N(\{u\})$ を単にN(u)と表す。すなわちN(u)はuの隣接点全体である。 $N_G[U]$ も同様である。

定義 4.2.2 | 〈 degree〉

グラフGの頂点vに対して、その頂点の接続辺の数、すなわち、

$$|E(v)| = |\{vx \in E(G) \mid \exists x \in V(G)\}|$$

をグラフGにおけるxの degree (次数) といい, $\operatorname{deg}_G(v)^{*5}$ や, G が明らかである場合は単に $\operatorname{deg}(v)$ で表す. (単純) グラフの場合, 頂点vに対して, 接続する辺の数と隣接する頂点の数は等しいため, $\operatorname{deg}(v) = |N(v)|$ が成り立つ.

次数が 0 の頂点を isolated vertex(孤立点), 次数が 1 の頂点を leaf(葉) または end vertex(端点) という. 葉に接続する辺を pendant edge という.

 $\sup\{\deg(v)\mid v\in V(G)\}$ を G の maximum degree(最大次数) , $\inf\{\deg(v)\mid v\in V(G)\}$ を G の minimum degree(最小次数) といい, それぞれ $\Delta(G)$, $\delta(G)$ で表す.

定義より次のことが直ちにわかる.

^{*4} neighbours of U ともいう.

 $^{^{*5}}$ $d_G(v)$ で表している本もある. [?] とか.

系 4.2.3

 $|G|=n, \forall v \in V(G)$ のとき, 以下が成り立つ.

$$0 \le \delta(G) \le \deg_G(v) \le \Delta(G) \le n - 1$$

定理 4.2.4 | 〈 The First Theorem of Graph Theory(グラフ理論の第一定理)〉

サイズmのグラフGに対して、以下が成り立つ.

$$\sum_{v \in V(G)} \deg(v) = 2m$$

Proof. 1 つの辺に対して 2 つの頂点が接続していることからわかる.

系 4.2.5

任意のグラフにおいて、次数が奇数の頂点の個数は偶数である.

Proof. 定理 4.2.4 よりわかる.

4.3 operation

定義 4.3.1 | 〈 subgraph〉

2 つのグラフ G=(V,E),G'=(V',E') が, $V'\subseteq V$ ∧ $E'\subseteq E$ であるとき, G' を G の subgraph(部分グラフ) であるといい, G は G' の supergraph(スーパーグラフ) であるという. G' が G の部分グラフであるとき, $G\subseteq G'$ と書き表す.

よくGはG'をcontain(含む) ともいう.

 $G' \subseteq G \land G' \neq G$ であるとき、すなわち $G' \subsetneq G$ であるとき、G' を G の proper subgraph(真部分グラフ) という。また、 $G' \subseteq G \land V(G') = V(G)$ であるとき、G' を G の spanning subgraph(全域部分グラフ) という。

定義 4.3.2 | 〈 induced〉

グラフGの空でない頂点部分集合 $S \subset V(G)$ に対して、頂点集合がSであり、Sの2点v,uがG上で隣接しているときにのみS上で隣接しているグラフを subgraph of G induced by S(S) によって誘導されるGの部分グラフ)といい、G[S]と表す、すなわち、

$$G[S] \coloneqq (S, \{xy \mid x, y \in S \ \land \ xy \in E(G)\})$$

である. G の部分グラフ H が H=G[S] となる空でない頂点集合 S をもつとき, H を G の induced subgraph(誘導部分グラフ) という.

同じように、グラフ G の空でない辺部分集合 $X \subset E(G)$ に対して、辺集合が X であり、G 上で X の元 (辺) に接続している頂点全体を頂点集合としてもつグラフを subgraph induced by X(X) に

よって誘導される部分グラフ)といい, G[X]と表す. すなわち,

$$G[X] := (\{v \mid \exists e \in E(G) \text{ s.t. } v \in e\}, X)$$

である. G の部分グラフ H が H=G[X] となる空でない辺集合 X をもつとき, H を G の edge induced subgraph(辺誘導部分グラフ) という.

任意のグラフ G において G=G[V(G)] であり、孤立点を持たない任意のグラフ H において H=H[E(H)] である.

定義 4.3.3 | 〈 complement〉

グラフ G=(V,E) に対して、すべての頂点の隣接関係を反転させたもの、すなわち V の 2 頂点 v,u に対して $vu \in E \Leftrightarrow vu \notin E'$ を満たすグラフ (V,E') をグラフ G の complement graph(補グラフ) といい、 \overline{G} で表す.定義より明らかに $|G|=n, \|G\|=m$ ならば $|\overline{G}|=n, \|\overline{G}\|=\binom{n}{2}-m$ であり, $G\simeq H\Leftrightarrow \overline{G}\simeq \overline{H}$ である. $\overline{K_n}$ は位数 n の edgeless graph である.

G が $G \simeq \overline{G}$ であるとき, G は self complementary であるという. 明らかに self complementary なグラフは位数 n が $n \equiv 0 \pmod{4} \lor n \equiv 1 \pmod{4}$ である.

表記 4.3.4

グラフ G=(V,E) とその頂点 $v\in V$ と辺 $e\in E$ に対して、G から頂点 v とその接続辺を除いたグラフを G-v 、G から辺 e を除いたグラフを G-e で表す.より一般に、G の真の頂点部分集合 $U\subsetneq V$ と辺部分集合 $X\subset E$ に対して、G から U に含まれる頂点とその接続辺を全て除いたグラフを G-U 、G から X に含まれる辺を全て除いたグラフを G-X で表す.また、G の隣接していない 2 頂点 u,v を結ぶ辺を加えたグラフを G+uv で表す.すなわち、

$$G - v := G[V \setminus \{v\}]$$

$$G - U := G[V \setminus U]$$

$$G - X := (V, E \setminus X)$$

$$G + uv := (V, E \cup \{uv\})$$

である.

辺集合を取り除く時は頂点は取り除かないため, G-X は一般には $G[E\setminus X]$ と同じにはならない。例えば G として leaf v があるグラフ, X として pendant edge を取ると, $v\in G-X$ だが $v\notin G[E(G)\setminus X]$ である。

U や X を G の中に限らなくてもよさそうだが、結局差集合の定義より含まれていない部分は無視される. X については限る必要がなく,U は $V\setminus U\neq\emptyset$ であれば限る必要がない.頂点集合のところに「真の」とついているのは, $G[\emptyset]$ が定義されていないからである.

定義 4.3.5

2つのグラフ G_1,G_2 に対して, 2つのグラフの union(和) を, 頂点集合と辺集合を集合として union

したもので定め, $G_1 \cup G_2$ で表す. intersection(共通部分) も同様で, $G_1 \cap G_2$ で表す. すなわち,

$$G_1 \cup G_2 := (V(G_1) \cup V(G_2), E(G_1) \cup E(G_2))$$

 $G_1 \cap G_2 := (V(G_1) \cap V(G_2), E(G_1) \cap E(G_2))$

である. これらは確かめるとグラフになっている.

 $G_1\cap G_2=\emptyset$ であるとき, G_1 と G_2 は $\operatorname{disjoint}$ (非交) であるという. G_1,G_2 が $\operatorname{disjoint}$ であるとき, $G_1\cup G_2$ を G_1+G_2 で表す.逆に, G_1+G_2 と書いてあるときは G_1 と G_2 は $\operatorname{disjoint}$ であることを仮定するものとする.グラフ G に対して,G+G と書いたときは,G と G は G のコピーとの union であると考える.すなわち,G と同型で G は G との union G と G との union G に対して G で表す.より一般に,G がグラフ G と同型で互いに G は G に対して G に

 G_1, G_2 が disjoint であるとき、その 2 つのグラフの頂点間を結んで得られるグラフを G_1 と G_2 の **join**(結合) といい, $G_1 \vee G_2$ で表す.すなわち,

$$G_1 \vee G_2 := (V(G_1) \cup V(G_2), E(G_1) \cup E(G_2) \cup \{uv \mid u \in V(G_1), v \in V(G_2)\})$$

である.

定義 4.3.6

2 つのグラフ G_1,G_2 に対して、その直積ともいえるグラフ G を次のように考えることができる. G の頂点集合を、 G_1,G_2 の頂点集合の集合としての直積で定める. G の 2 つの頂点 $(u_1,u_2),(v_1,v_2)$ の 隣接関係を、 $u_1=v_1 \land u_2v_2 \in E(G_2)$ または $u_2=v_2 \land u_1v_1 \in E(G_1)$ であるとき、そのときに限り隣接していると定める. すなわち、

$$V(G) := V(G_1) \times V(G_2)$$

$$E(G) := \{\{(u_1, u_2), (v_1, v_2)\} \mid (u_1 = v_1 \land u_2 v_2 \in E(G_2)) \lor (u_2 = v_2 \land u_1 v_1 \in E(G_1))\}$$

であるとき, G を G_1 と G_2 の cartesian product(直積, デカルト積) といい, $G_1 \times G_2$ で表す.

定義 4.3.7 | 〈 contraction〉

グラフG = (V, E) とその辺 $xy \in E$ に対して, $v_{xy} \notin V$ として

 $(V\setminus\{x,y\}\cup\{v_{xy}\},\{vw\in E\mid\{x,y\}\cap\{v,w\}=\emptyset\}\cup\{v_{xy}w\mid w\in V\setminus\{x,y\}\ s.t.\ xw\in E\ \lor\ yw\in E\})$ すなわち

$$G - \{x, y\} \cup \{v_{xy}\} + \{v_{xy}w \mid w \in V \setminus \{x, y\} \ s.t. \ xw \in E \ \lor \ yw \in E\}$$

で与えられるグラフを G/xy で表し, G から G/xy を作ることを contraction(縮約) という.

定義より次のことが直ちにわかる.

系 4.3.8

定義 4.3.7 の $G, v_{xy}, G/xy$ において,

$$N(\{x,y\}) = N(v_{xy}), G - \{x,y\} = G/xy - v_{xy}$$

4.4 regular

定義 4.4.1

グラフGの各頂点の次数が同じであるとき, G は regular(正則) であるといい, 特に各頂点の次数 が r であるときに r-regular(r-正則) であるという. 特に 3-正則なグラフは cubic graph と呼ばれる.

定理 4.4.2

 $n,r\in\mathbb{N}^+$ とする. 位数 n の r-正則グラフが存在する必要十分条件は, $0\leq r\leq n-1$ \wedge $\neg(n,r)$ 奇数) である.

Proof. wait \Box

定義 4.4.3 | 〈 factor〉

グラフGの全域部分グラフをGの factor(因子) といい, 特にk-正則なものをk-factor(k-因子) という.

定理 4.4.4 | 〈 Petersen's Theorem〉

橋を持たない cubic graph は 1-factor をもつ.

Proof. G を橋を持たない cubic graph, S を V(G) の真の部分集合とし k=|S| とする.

4.5 path and cycle

定義 4.5.1 | 〈 path〉

空でないグラフP = (V, E)が

$$V = \{x_0, x_1, \dots, x_k\}, E = \{x_0x_1, x_1x_2, \dots, x_{k-1}x_k\}$$
 (x_0, x_1, \dots, x_k) はすべて異なる)

とかけるとき、P を path(道) といい、 $\|P\| = k - 1$ を path P の length(長さ) という. 位数 n の path を P_n で表す. すなわち P_n の長さは n-1 である. またこの P について、 x_0 と x_k は P で link(結ばれている) という. x_0 と x_k を P の end(端点) といい、 x_1, \ldots, x_{k-1} を P の inner vertex(内点) という. 複数の道が互いに内点を含まないとき、それらを independent(独立) な path といい、それぞれの path は independent(独立) であるという.

表記 4.5.2

定義 4.5.1 の P を簡単に $P = x_0x_1 \cdots x_k$ と書いて, x_0 から k までの path という. また、0 < i < k

 $j \le k$ に対して,

$$Px_i := x_0 \cdots x_i$$
$$x_i P := x_i \cdots x_k$$
$$x_i Px_j := x_i \cdots x_j$$

のように書き表す. 他にも、直観的にわかりやすいため、path $P(\ni x), Q(\ni x,y), R(\ni y)$ に対して $Px \cup xQy \cup yR$ を PxQyR と書き表す.

定義 4.5.3 | 〈 A-B path〉

頂点集合 A, B に対して, path $P = x_0 x_1 \cdots x_k$ が

$$V(P) \cap A = \{x_0\} \land V(P) \cap B = \{x_k\}$$

であるとき, P を A-B path(A-B 道) という.

表記 4.5.4

上の $A=\{a\}$ のときは, $\{a\}$ -B path の意味で単に a-B path と書く. また, A, B がグラフであるとき, V(A)-V(B) path を単に A-B path と書く.

定義 $4.5.5 \mid \langle H ext{-path} angle$

グラフHに対して、その端点のみでHと接しているような自明でない path のことをH-path(H- 道) という. すなわち、path $P=x_0x_1\cdots x_k$ が

$$P \cap H = (\{x_0, x_k\}, \emptyset) \land |P| > 1$$

であるとき, P は H-path であるという.

定義より, 長さが 1 の H-path x_0x_1 の辺は H の辺にはならない.

定義 4.5.6 | 〈 cycle〉

空でないグラフC = (V, E)が

 $V = \{x_0, x_1, \dots, x_{k-1}\}, E = \{x_0x_1, x_1x_2, \dots, x_{k-2}x_{k-1}, x_{k-1}x_0\}$ $(x_0, x_1, \dots, x_k$ はすべて異なる, $k \ge 3$)

とかけるとき, C を cycle(閉路) といい, 位数 n のものを C_n で表す.

いいかえれば, path $P = x_0 x_1 \cdots x_{k-1} (k \ge 3)$ に対して $C_k := P + x_0 x_{k-1}$ を cycle という.

4.6 connectivity

この subsection にはまずい部分が多い

定義 4.6.1 | 〈 connected〉

グラフG が **connected(連結)** であるとは, G の任意の 2 頂点 x,y に対してその 2 点を結ぶ G 上の path が存在することである. すなわち,

$$\forall x, y \in G, \exists P \subset G : \text{path } s.t. P = x \cdots y$$

であるとき, G は connected であるという.

また, グラフG が連結でないとき, グラフG は disconnected(非連結) であるという.

定義 4.6.2

グラフ G の空でない極大な連結部分グラフを G の component (連結成分) という. 言い換えれば、H が G の連結成分であるとは、G の連結な部分グラフで H を真部分グラフとして持つグラフが存在しないということである。各連結成分は共通部分を持たない。そのため、 G_1,G_2,\ldots,G_n がグラフ G の連結成分であるとき、 $G=G_1+G_2+\cdots+G_n$ である。またこのときグラフ連結成分の個数 n をk(G) で表す。すなわちグラフ G が連結であるということは k(G)=1 と同値である。空グラフは連結成分を持たないことに注意する。

次の定理は、次数がとても高いグラフは連結であるということを示している.

定理 4.6.3

G を位数 n の自明でないグラフとする. G の任意の隣接していない頂点 u,v が $\deg(u) + \deg(v) \ge n-1$ を満たすとき, G は連結である.

Proof. G の異なる 2 頂点 x,y に対して、その 2 頂点を結ぶ path があることを示す。x と y が隣接 しているときは明らかにその接続辺が path となるため、x と y は隣接していないとする。仮定より、 $\deg(x) + \deg(y) \geq n-1$ であるが、 $N(x) \cap N(y) = \emptyset$ とすると x と y が隣接していないことから、 $|G| \geq n+1$ となり矛盾する。よって $N(x) \cap N(y) \neq \emptyset$ であり、 $a \in N(x) \cap N(y)$ とすると xay は x-y path になる。よって任意の 2 頂点を結ぶ path が存在するので G は連結である。

系 4.6.4

位数 n のグラフ G が $\delta(G) \ge (n-1)/2$ であるとき, G は連結である.

Proof. G の任意の隣接していない 2 頂点 u,v について,

$$\deg(u) + \deg(v) \ge \frac{n-1}{2} + \frac{n-1}{2} = n - 1$$

であるため, 定理 4.6.3 より G は連結なグラフである.

定義 $4.6.5 \mid \langle k \text{-connected} \rangle$

 $k \in \mathbb{N}, |G| > k$ で, |X| < k である任意の頂点集合 (グラフ)X に対して G - X が連結であるとき, グラフ G は k-connected(k-連結) または k-vertex connected(k-点連結) であるという.

X は任意だが,仮に G の部分グラフではない X を取ったとしても |G| > k, |X| < k より $G \cap X \subset X' \subset G, |X'| < k$ となる X' が取れ, $G - X \supset G - X'$ である.そのため, $X \subset G$ としても 問題はない.定義より,全ての空でないグラフは 0-連結であり,全ての連結なグラフは 1-連結である.また定義より $n, m \in \mathbb{N}, n < m$ のとき,グラフ G が m-連結ならば G は n-連結である.

定義 4.6.6

定義 4.6.5 より, グラフ G は有限なので $\{x \in \mathbb{N} \mid G$ は x-連結 $\}$ は最大値をもつ. その値をグラフ G の connectivity(連結度) または vertex connectivity(点連結度) といい, $\kappa(G)$ で表す. すな わち, グラフ G に対して k-連結であるが (k+1)-連結でない $k \in \mathbb{N}$ が存在し, $\kappa(G) = k$ を G の connectivity という.

当然点の場合があれば辺の場合もある.

定義 $4.6.7 \mid \langle k \text{-edge connected} \rangle$

 $k \in \mathbb{N}, |G| > k$ で、|X| < k である任意の辺集合 X に対して G - X が連結であるとき、グラフ G は k-edge connected(k-辺連結) であるという.

点連結のときと同様の議論で, $X\subset G$ としても問題はない. 定義より, 全ての空でないグラフは 0-辺連結であり, 全ての連結なグラフは 1-辺連結である. また定義より $n,m\in\mathbb{N},n< m$ のとき, グラフ G が m-辺連結ならば G は n-辺連結である.

定義 4.6.8

定義 4.6.7 より, グラフ G は有限なので $\{x \in \mathbb{N} : G$ は x-辺連結 $\}$ は最大値をもつ. その値をグラフ G の edge connectivity(辺連結度) といい, $\lambda(G)$ で表す. すなわち, グラフ G に対して k-連結であるが (k+1)-辺連結でない $k \in \mathbb{N}$ が存在し, $\lambda(G) = k$ を G の edge connectivity という.

定義より次のことが直ちにわかる.

系 4.6.9

位数 n のグラフ G に対して

$$0 \le \kappa(G) \le n-1$$
, $0 \le \lambda(G) \le \delta(G) \le n-1$

また、(点)連結度と辺連結度の間には綺麗な関係がある.

定理 4.6.10 | 〈 Whitney's Inequalities〉

任意のグラフGに対して、以下が成り立つ.

$$\kappa(G) \le \lambda(G) \le \delta(G)$$

Proof. $\kappa(G) \leq \lambda(G)$ を示す. wait

note

参考にしたのは [?][?].

索引

A- B path(A - B 道), 12	$leaf(\mathbf{x}), 7$
H-decomposable, 3	length(長さ), 11
H-decomposition, 3	link(結ばれている), 11
H-factorable, 2	maximum degree(最大次数), 7
k-connected(k -連結), 13	minimum degree(最小次数), 7
k-edge connected(k -辺連結), 14	neighbour(隣接点), 6
k-factor(k -因子), 11	neighbourhood(近傍), 7
k-factorable, 2	open neighbourhood(開近傍), 7
k-factorization, 2	path(道), 11
k-vertex connected(k -点連結), 13	pendant edge, 7
r-regular $(r$ -正則), 11	proper subgraph(真部分グラフ), 8
X-Y edge $(X-Y$ 辺), 6	pseudo graceful labeling(擬似優美ラベリング), 5
adjacent(隣接), 6	regular(正則), 11
adjacent edges(隣接辺), 6	self complementary, 9
adjacent vertices(隣接頂点), 6	spanning subgraph(全域部分グラフ), 8
automorphism(自己同型写像), 7	stable set(安定集合), 6
cartesian product(直積, デカルト積), 10	subgraph(部分グラフ), 8
closed neighbourhood(閉近傍), 7	subgraph induced by $X(X)$ によって誘導される部分グラ
complement graph(補グラフ), 9	7), 9
complete graph(完全グラフ), 6	subgraph of G induced by $S(S \ $ によって誘導される $G \ $ の
component(連結成分), 13	部分グラフ), 8
connected(連結), 13	supergraph(スーパーグラフ), 8
connectivity(連結度), 14	tree(木), 4
contain(含む), 8	triangle(三角形), 6
contraction(縮約), 10	union(和), 9
cubic graph, 11	vertex connectivity(点連結度), 14
cycle(閉路), 12	vortion confidentitly (mixing), 11
cyclic factorization, 2	2G, 10
decomposition, 3	C_n , 12
degree(次数), 7	$\deg_G(v), 7$
disconnected(非連結), 13	$\Delta(G)$, 7
disjoint(非交), 10	$\delta(G)$, 7
edge connectivity(辺連結度), 14	E(v), 6
edge induced subgraph(辺誘導部分グラフ), 9	E(X,Y), 6
end(端点), 6, 11	G+G, 10
end vertex(端点), 7	$G \simeq G', 7$
factor(因子),11	$G \subseteq G'$, 8
factorable, 2	$G \subseteq G$, $G \subseteq G$
factorization, 2	G-e, 9
graceful(優美), 4	G-U, 9
graceful labeling(優美ラベリング), 4	G-v, 9
graph homomorphism(グラフ準同型写像), 6	G-X, 9
graph invariant(グラフ不変量), 7	G/xy, 10
graph isomorphic(グラフ同型), 7	G[S], 8
graph isomorphism(グラフ同型写像), 7	G[X], 0
graph property(グラフの性質), 7	$G_1 + G_2$, 10
H-path(<i>H</i> -道), 12	$G_1 \cap G_2$, 10
incident(接続), 6	$G_1 \cup G_2$, 10
incident edge(接続辺), 6	$G_1 \times G_2$, 10
independent(独立), 6, 11	$G_1 \vee G_2, 10$
induced subgraph(誘導部分グラフ), 8	k(G), 13
inner vertex(内点), 11	K_n , 6
intersection(共通部分), 10	$\kappa(G)$, 14
isolated vertex(孤立点), 7	kH, 10
isomorphic factorization, 2	$\lambda(G)$, 14
join(結ぶ), 6	$N_G(U)$, 7
join(結合), 10	$N_G[U], 7$
labeling(ラベリング), 4	\overline{G} , 9

 $P_n, 11$ $\varphi: G \to G', 6$

参考文献

- [1] B. Csaba, D. Kühn, A. Lo, D. Osthus, and A. Treglown. PROOF OF THE 1-FACTORIZATION AND HAMILTON DECOMPOSITION CONJECTURES III: APPROXIMATE DECOMPOSITIONS.https://arxiv.org/pdf/1401.4178.pdf.
- [2] R. Montgomery, A. Pokrovskiy, B. Sudakov. A proof of Ringel's Conjecture. https://arxiv.org/abs/2001.02665.