Atelier Data Science

Deep learning practice 2
Convolutional Neural Networks

Irina Proskurina

Irina.Proskurina@univ-lyon2.fr

Laboratoire ERIC – Université Lyon 2

Previous Lesson Recap 1

- 1. Neural Networks -> no feature engineering needed
- 2. Fully connected layers/Dense/nn.Linear() layers
- 3. Fully connected neural networks : connect every neuron in one layer to every neuron in the other layer

Previous Lesson Recap 2 MNIST

 Each neuron can detect the presence of a specific set of pixels

Previous Lesson Recap 2 MNIST

• If you shift the digit slightly, the neuron will no longer detect its

pattern

Number of parameters

- 784 inputs
- Fully connected layer: 1000 neurons
- Output layer: 10 neurons (one for each class)
- Weights between input and fully connected layers:
 (784 + 1) * 1000 = 785,000
- Weights between fully connected and output layers:
 (1000 + 1) * 10 = 10,010

Fully connected neural networks for image classification

- A lot of parameters
- Prone to overfitting
- Does not consider the specifics of images (shifts, slight changes in shape, etc.)
- One of the best ways to combat overfitting is to reduce the number of parameters

Convolutional neural network

Experiments with the visual cortex

1	1	ala.	1	0	_	2
0	1	*	0	1	_	2

1	1	مام	1	0	_	2
1	1	*	0	1	_	

1	2		1	0		
		مام			_	1
J	0	*	0	1	_	

3	0		1	0	_	
0	3	*	0	1	=	6

5	0		1	0	_	10
0	5	*	0	1	=	10

- Detects a pattern in the image, which is defined by a filter
- The stronger the pattern is represented in a particular area of the image, the higher the convolution value will be

• The result of convolving an image with a filter is a new image

The convolution maximum is invariant to shifts

Convolutions in computer vision

Convolutions in computer vision

Convolutions in computer vision

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$Im^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} (K(i,j) Im^{in}(x+i,y+j) + b)$$

- A pixel in the resulting image depends only on a small region of the input image (local connectivity)
- The weights are the same for all pixels in the output image (shared weights)

- Usually, the original image is colored!
- This means that it has multiple channels (R, G, B). Let's consider it in the formula:

$$\operatorname{Im}^{out}(x,y) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} (K(i,j,c) \operatorname{Im}^{in}(x+i,y+j,c) + b)$$

Number of parameters

$$\operatorname{Im}^{out}(x, y, t) = \sum_{i=-d}^{d} \sum_{j=-d}^{d} \sum_{c=1}^{C} \left(K_{t}(i, j, c) \operatorname{Im}^{in}(x + i, y + j, c) + b_{t} \right)$$

- Kernel parameters
- $((2d+1)^2*C+1)*T$

- Let's take a pixel in the output image
- Which part of the input image does the value in this pixel depend on?

Receptive field: 3 x 3

Receptive field: 5 x 5

Receptive field for 3 x 3 convolution:

- After 1 convolutional layer: 3 x 3
- After 2 convolutional layers: 5 x 5
- After 3 convolutional layers: 7 x 7

We need a lot layers if the image size is 512 x 512

Strides

Strides

Receptive field: 7 x 7

Dilated convolutions

Dilated convolutions

The convolution maximum is invariant to shifts

Pooling

1	0	2	1	0	0
0	1	3	2	1	2

Pooling

- Splits the image into $n \times m$ sections applying some function (usually a maximum)
- Significantly reduces the size of the image (which means it increases the field of perception of the following layers)
- Has no parameters

Why we need to know all this?

 It is important to ensure that the last convolutional layers have a perceptual field size comparable to the entire image

 If you apply convolution, the output image will be smaller than the input

Valid mode

 When counting convolutions, the pixels at the edges do not have a big impact on the result

We will not see that the filter has a good response when placing the center at this pixel

* 0 0 1 0 0 1 1 1 1

Zero padding

0	0	0	0	0	0	0	0
0							0
0							0
0							0
0							0
0							0
0							0
0	0	0	0	0	0	0	0

Zero padding

- We add zeros along the boundaries so that the convolution calculated after this in valid mode gives an image of the same size as the original one
- There is a risk that the model will learn to understand where the edges are in the image we may lose invariance

Reflection padding

3	6	6	7	8				
8	7	1	2	3				
2	1	1	2	3	4	5	6	
7	6	6	7	8	9	8	7	
2	1	1	2	3				

*

Reflection padding

- Can't easily find image edges
- But now the model can begin to find specular reflections and select filters for them

Replication padding

1	1	1	2	3				
1	1	1	2	3				
1	1	1	2	3	4	5	6	
6	6	6	7	8	9	8	7	
1	1	1	2	3				

*

Replication padding

- The pixel on the border is equal to the nearest pixel from the image
- The model can still adjust to the patterns that arise from such padding

Summary

- Padding allows you to control the size of the output images
- Padding allows you to take into account objects on the edges
- Different types of padding allow different methods of retraining for edges

Convolutional Neural Networks

Architecture

Architecture

- Convolution->linear layer>pooling or convolution->non-linear layer
- flattening of the output
- Fully-connected layer

LeNet

AlexNet

Image representation (embedding) from the last layers

- Important observation: the outputs of fully connected layers serve as good feature representations of images and are valuable in many tasks
- For instance, they can be utilized in tasks like searching for similar images

CNN

Layer 1

