

PATENT APPLICATION

Attorney's Do. No. 2705-129

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

EXPRESS MAIL

MAILING LABEL NO. EL432978329US DATE OF DEPOSIT: NOVEMBER 16, 2000

I HERBY CERTIFY THAT THIS PAPER AND ENCLOSURES AND/OR FEE ARE BEING DEPOSITED WITH THE UNITED STATES POSTAL SERVICE "EXPRESS MAIL POST OFFICE TO ADDRESSEE" SERVICE UNDER 37 CFR 1.10 ON THE DATE INDICATED ABOVE AND IS ADDRESSED TO: BOX PATENT APPLICATION, ASSISTANT COMMISSIONER FOR BATENTS, WASHINGTON D.C. 20231.

EHREN RHEA

(SENDER'S PRINTED NAME)

(SIGNATURE)

Box PATENT APPLICATION Assistant Commissioner for Patents Washington, DC 20231

Enclosed for filing is a patent application under 37 CFR 1.53(b) of:

Inventors: Mehryar Khailili Garakani, Herbert Wildfeuer and Gavin Jin

Title: HIGH-SPEED DIAL-UP MODEM SESSION STARTUP METHOD AND APPARATUS

Enclosures:

- 1. Specification (pages 1-8); claims (pages 9-13); abstract (page 14)
- 2. TWO sheets of drawings
- 3. Combined Declaration and Power of Attorney (newly executed)
- 4. Assignment with cover sheet
- 5. Return postcard

CLAIMS AS FILED						
For	Number Filed	Number Extra	Rate	Basic Fee \$690.00		
Total Claims	20-20	0	x \$18.00	= \$0 ·		
Independent Claims	5-3	2	x \$78.00	= \$156.00		
Multiple Dependent Claim Fee			x \$260.00	= \$0		
TOTAL FILING FEE				\$846.00		

- 6. A check in the amount of \$846.00 to cover filing fee is enclosed. Any deficiency or overpayment should be charged or credited to deposit account number 13-1703. A duplicate copy of this sheet is enclosed.
 - 7. A check in the amount of \$40.00 to cover the assignment recordal fee is enclosed.

Customer No. 20575

Respectfully submitted,

MARGER JOHNSON & McCOLLOM, P.C.

James G. Stewart Registration No. 32,496

MARGER JOHNSON & McCOLLOM, P.C. 1030 SW Morrison Street Portland, OR 97205 (503) 222-3613

10

15

20

25

30

HIGH-SPEED DIAL-UP MODEM SESSION STARTUP METHOD AND APPARATUS

BACKGROUND OF THE INVENTION

The present invention relates generally to voice frame network systems such as Voice over Internet Protocol (VoIP) systems for concurrently carrying both voice and data signals, and more particularly it concerns method and apparatus for transitioning a high-speed data channel from voice mode to modem relay mode during session startup.

VoIP is widely deployed by Internet Service Providers (ISPs) and within large or distributed private enterprises. Because voice channels require low latency for audio continuity and understanding in human conversation, typical VoIP implementations have utilized low-latency mechanisms such as Real-time Transfer Protocol (RTP). Unfortunately, the voice mode of VoIP channels that use RTP is an unreliable transport mechanism for high-speed modem signals. High packet drop rates and frequent retrains cause undesirable deterioration of the signal when high-speed modem signals are carried over a standard VoIP channel.

SUMMARY OF THE INVENTION

A method for establishing a high-speed modem relay connection over a voice frame network between an originating modem with an associated calling-leg gateway and an answering modem with an associated called-leg gateway is described. The method includes determining at a predeterminedly early time during end-to-end physical layer negotiations between the originating modem and the answering modem whether both modems are high-speed modems, with the determining being performed by one or more of the associated gateways. If so then the method further includes terminating end-to-end physical layer negotiations between the originating modem and the answering modem, with the terminating being performed by one or more of the associated gateways. Finally, the method includes negotiating local physical layer parameters on either end of the connection between the originating modem and the calling-leg gateway and the answering modem and the called-leg gateway. By this method, the calling-leg gateway serves as proxy for the originating modem and the called-leg gateway serves as proxy for the originating modem.

Modem relay connection apparatus for use in a voice frame network gateway to establish a data channel between two modems includes an amplitude-modulated answer

PATENT APPLICATION PAGE 1 DO. NO. 2705-129

10

15

2.0

2.5

30

(ANSam) tone detector; a signal suppression mechanism responsive to said tone detector for suppressing signals between the modems to terminate end-to-end negotiation between the two modems; a code detector for detecting a digital call menu (CM) code responsive to an amplitude-modulated answer tone; and a proxy negotiation mechanism responsive to said code detector for negotiating a local physical layer between the gateway and a local one of the two modems.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a system block diagram illustrating a VoIP network in which the highspeed dial-up modem startup apparatus is featured in accordance with a preferred embodiment of the invention.

Fig. 2 is a flowchart of the voice mode-to-modem relay mode transition method in accordance with a preferred embodiment of the invention.

DETAILED DESCRIPTION OF THE INVENTION

Fig. 1 illustrates the invented apparatus 8 coupled with a network 10 operating with respect to voice traffic thereon in accordance with a voice packet protocol such as a voice over frame relay (VoFR) protocol or voice over Internet protocol (VoIP). Network 10 typically includes one or more telephone handsets 12, one or more fax machines 14 and one or more low-speed modems 16 representing different traffic demands on network 10 due to their diverse bandwidth requirements. The faxes 14 and low-speed modems 16 often share telephone numbers with the telephone handsets to provide facsimile, e-mail and Internet service to users/clients. High-speed modems 16' having data rates of 32k-56k bits/second (bps) or higher are typically provided, and are the type of high-speed modems with which the invention finds particular utility.

Handsets 12 communicating voice require relatively low bit rates of only approximately 2.4-4.8k bits/second. Typically, plural handsets 12 are connected with each one of plural voice gateways 18 representing so-called endpoint nodes within network 10. Handsets 12 will be understood to be used for voice communication, whereby voice signals are digitized, packetized and transmitted bi-directionally during a telephone conversation. In a voice frame network like network 10, concurrent with voice traffic over the network is the presence of an increasing volume of data traffic.

Those of skill in the art will appreciate that data and voice traffic are compatible to some extent because both are represented in network 10 in digital form. But voice and

2.5

30

5

10

data traffic have different requirements, especially under increasing traffic demands. For example, voice traffic requires low latency because of the need for immediate feedback or other form of acknowledgement in a two-way human conversation. In voice mode, VoIP channels using RTP or other low-latency protocols represent an unreliable transport for high-speed signaling between high-speed modems 16'. Conventionally, in a VoIP network 10, high-speed modems 16' would have negotiated an end-to-end physical layer, e.g. V.34, and gateways 18 would have been passive enablers of the resulting voice mode VoIP connection which is subject to high packet drop rates and frequent retrains

A solution to the problem described above is to terminate the physical layer, e.g. V.34, at the VoIP gateway, and to packetize and transmit the demodulated data bit stream over the IP network to the peer gateway where it is reconstructed and forwarded to the receiving modem. This is referred to as a modem relay mode of operation. By monitoring physical layer negotiation between the originating and answering endpoints during a predeterminedly early phase of the end-to-end negotiation between endpoints, it is determined whether the endpoints are modems negotiating a high-speed dial-up connection. If so, the VoIP gateways take over the end-to-end negotiation of the physical layer, terminating the physical layer locally on their adjacent telephony segment.

Modem relay startup must first determine that the originating and answering modems are high-speed modems through appropriate tone detection sensitive enough to distinguish low-speed modem 16 and fax 14 signals from high-speed modem 16' dial-up connections. It must then smoothly transition to modem relay mode at an appropriate time and in a non-disruptive manner during the sensitive end-to-end physical layer negotiation. For example, consider an enterprise with a dial-up server or machine S in a central office at location X and an employee at home who tries to make a dial-up connection from the employee's client end-station or machine C at location Y.

Assume the dial-up connection is made through a phone company P that provides the dial-up connection over a phone company P VoIP network. Such a call would have three segments:

- a) Segment 1: a telephony segment from client C to phone company P (e.g. local loop on the client end). This will be referred to herein as the calling leg.
- b) Segment 2: a VoIP segment within phone company P.

10

15

2.0

25

30

c) Segment 3: a telephony segment from phone company P to server S (e.g. local loop on the server end). This will be referred to herein as the called leg.

Further assume that server machine S and client machine C are connected to the dial-up circuit through a high-speed V.34 modem 16' and that initially the VoIP channel is in voice mode.

Fig. 2 is a flowchart illustrating the high-speed modem relay connection method in accordance with a preferred embodiment of the invention. The invented high-speed dial-up modem session startup method proceeds in five numbered steps as follows:

1) A VoIP gateway on the called leg is conditioned to detect an ITU-T V.8 amplitude-modulated answer tone (ANSam) signal on the stream at least from server machine S's modem to the VoIP gateway. Those of skill in the art will appreciate that detecting the ANSam signal is a strong indication that the answering modem (e.g. the server machine S modem in this example) supports high-speed dial-up connection via a V.34 or higher speed modem, e.g. V.90. The evolving ITU-T Recommendation V.8 (hereinafter the V.8 standard) is described in a February 1998 publication of the International Telecommunication Union entitled Series V: Data Communication Over The Telephone Network and subtitled Procedures For Starting Sessions Of Data Transmission Over The Public Switched Telephone Network.

In accordance with the preferred embodiment of the invention, either gateway is conditioned to detect ANSam. Occasionally, ANSam echoes back from a calloriginating modem to the call-answering modem that generated the ANSam signal. Due to needed high-sensitivity in the tone detectors, ANSam then may be detected at either end. Because the earliest possible detection of ANSam is desired, in accordance with the invention, the gateways of both the called leg and the calling leg are conditioned to detect ANSam. The first gateway to detect ANSam then simply signals the other gateway that ANSam has been detected. Those of skill in the art will appreciate that such signaling may be performed in any suitable manner, e.g. via known out-of-band gateway-to-gateway signaling techniques.

Step 1 including ANSam tone detection is illustrated in Fig. 2 at 100 and 102.

2) As soon as the ANSam signal is detected, the channel is placed in a passthrough state by disabling voice compression and echo cancellation. This is accomplished preferably at both gateways, whereby the ANSam signal-detecting gateway signals the other gateway and both gateways proceed as follows. Voice compression is disabled (i.e. the channel is required to switch over to uncompressed

10

15

25

30

G711 mode), assuming compression previously was enabled. (Those of skill in the art will appreciate this allows the least amount of distortion in the modem signals on the channel.) Also, voice echo cancellation is disabled, assuming it previously was enabled in voice mode. (Those of skill will appreciate that during the modem physical layer training phase, the modems configure their own echo cancellation parameters, which are used subsequently by the modems for echo cancellation.)

Next, and as part of step 2, the VoIP gateway on the calling leg is conditioned to detect a V.8 call menu (CM) signal identifying a modem (a digital code generated by a high-speed originating modem to indicate the fact) on the stream arriving from the originating modem on the calling leg. This is a further indication that modem relay transition is desired because it indicates that the originating modem is a high-speed modem. (Those of skill in the art will appreciate that detection of a V.8 CM signal is important in accordance with the preferred embodiment of the invention by brief consideration of the case where the originating modem is V.32 and the answering modem is V.34. In such case, ANSam would be generated on the called leg, but there would be no CM generation.)

Those of skill in the art will appreciate that, in accordance with the preferred embodiment of the invention, both gateways are conditioned to detect CM even though it is the calling leg that generates CM. It is within the spirit and scope of the invention, however, to condition only the called-leg gateway to detect CM, assuming the called-leg gateway can be identified with sufficiently high probability.

Step 2 including CM code detection is illustrated in Fig. 2 at 200 and 202.

3) Upon CM detection, the CM-detecting gateway silences or suppresses transmission of modern signals to the other leg. This is to avoid undesirable end-to-end negotiation between the two modems that would otherwise result if successive identical CMs generated by the caller modern were received by the answering modern (which under a typical protocol would respond with a V.8 joint menu (JM) signal or code). The phenomenon whereby CM undesirably reaches the far end is referred to herein as CM leakage from the calling leg to the called leg. In accordance with the invention in its preferred embodiment, CM leakage is avoided.

Step 3 is illustrated in Fig. 2 at 300.

4) After signal suppression, the VoIP gateways undertake physical layer negotiation, effectively usurping the modems' normal role and preventing the modems from completing end-to-end negotiation. Those of skill in the art will appreciate that, by

10

15

25

30

this time, the originating and answering modems already are partway through V.34 Phase 1 negotiation, which was conducted end-to-end by the modems via exchange of ANSam and CM. In accordance with the invention, the V.34 stacks on the VoIP gateways accommodate for this fact as follows.

4a) On the calling leg, the VoIP gateway acts like an answering modem in Phase 1 but begins with a local truncated V.34 Phase 1 negotiation. Phase 1 negotiation is continued by the gateway at the point subsequent to generation of the ANSam signal (i.e. the gateway need not generate any additional ANSam tones). The gateway awaits two additional CMs from the originating modem (e.g. the client machine C modem, in this example). When two additional identical CMs are received, the calling-leg gateway proceeds with the rest of V.34 Phase 1 and subsequent physical layer startup as usual (i.e. as specified in the V.8 standard).

Step 4a, including determining which leg gateway 18 is in, is illustrated in Fig. 2 at 400 and 400a.

4b) On the called leg, the VoIP gateway acts like an originating modem in Phase 1 but begins with a local truncated V.34 Phase 1 negotiation. Phase 1 negotiation is continued by the gateway at the point subsequent to generation of CM since the answering modem (e.g. the server machine S modem, in this example) already has generated ANSam. Thus, the called-leg gateway begins generating at least two identical CMs immediately and proceeds with the rest of Phase 1 and subsequent physical layer startup as usual (i.e. as specified in the V.8 standard).

Step 4b is illustrated in Fig. 2 at 400b.

5) With the transition complete, local physical layer negotiation on Segment 1 (between client machine C modern and its associated VoIP gateway) and Segment 3 (between server machine S modem and its associated VoIP gateway) have supplanted the initial end-to-end negotiation between the two modems. A modem relay session is established end to end in the form of a high-speed dial-up connection that is far more reliable than traditional voice mode connections within VoIP networks.

Step 5 is illustrated in Fig. 2 at 500.

In accordance with a preferred embodiment of the invention, CM signal tone detection in step 2) above may be performed as follows. The VoIP gateway demodulates the bit stream and looks for a specific bit pattern identifying modem CM. In the case of a V.8 modem, the bit pattern is 1111111111 0000001111 0100000111. The leading twenty bits represent the CM/JM wake-up and synchronize header. The trailing ten bits

10

15

20

25

30

include an information octet (framed by start and stop bits) that represents the call function and V-Series modern type. The modern type should be V.34 or higher speed modern 16', in accordance with the invention.

Referring again now to Fig. 1, apparatus 8 will be described in more detail. Apparatus 8, which may be thought of as a modem relay connection mechanism, includes an ANSam tone detector 20; a pass-through (pass-thru) mode invocation mechanism 22; and preferably also a remote-gateway (remote-GW) signaling mechanism 24. Apparatus 8 also includes a CM code detector 26; a signal suppression mechanism 28; and a local proxy negotiation mechanism 30. As will be understood from the above description of the invented method, ANSam detector 20 causes pass-through mode invocation mechanism 22 to disable voice compression and echo cancellation if either or both are determined to have been enabled. ANSam detector 20 also causes remote-GW signaling mechanism 24 to signal the remote gateway 18 connected to the far-end modem. Those of skill in the art will appreciate that it is not yet determined to a high degree of certainty that both modems are high-speed.

Upon detection of a CM code by code detector 26, the transition to modem relay mode may begin, since detection of a CM code by either gateway 18 indicates that a high-speed modem 16' has received an ANSam from another high-speed modem 16' in accordance with the V.34 protocol. Thus, CM code detector 26 causes a signal suppression mechanism 28 immediately to suppress further signals between high-speed modems 16', effectively terminating the end-to-end physical layer negotiations therebetween. Once signals have been suppressed--at what is referred to herein as a predeterminedly early time in the end-to-end negoatiations--local proxy negotiation mechanism 30 transmits or detects consecutive identical CM codes, as described above, and then completes local physical layer negotiation in accordance with the high-speed, dial-up V.34 modem protocol.

Finally, those of skill in the art will appreciate that the invented method and apparatus described and illustrated herein may be implemented in software, firmware or hardware, or any suitable combination thereof. Preferably, the method and apparatus are implemented in software, for purposes of low cost and flexibility. Thus, those of skill in the art will appreciate that the method and apparatus of the invention may be implemented by a computer or microprocessor process in which instructions are executed, the instructions being stored for execution on a computer-readable medium and

being executed by any suitable instruction processor. Alternative embodiments are contemplated, however, and are within the spirit and scope of the invention.

Having illustrated and described the principles of my invention in a preferred embodiment thereof, it should be readily apparent to those skilled in the art that the invention can be modified in arrangement and detail without departing from such principles. I claim all modifications coming within the spirit and scope of the accompanying claims.

10

15

20

CLAIMS

 A method for establishing a high-speed modem relay connection over a voice frame network between an originating modem with an associated calling-leg gateway and an answering modem with an associated called-leg gateway, the method comprising:

determining at a predeterminedly early time during end-to-end physical layer negotiations between the originating modem and the answering modem whether both modems are high-speed modems, said determining being performed by one or more of the associated gateways, and if so then

terminating end-to-end physical layer negotiations between the originating modem and the answering modem, said terminating being performed by one or more of the associated gateways, and

negotiating local physical layer on either end of the connection between the originating modem and the calling-leg gateway and the answering modem and the called-leg gateway, wherein the calling-leg gateway serves as proxy for the answering modem and wherein the called-leg gateway serves as proxy for the originating modem.

- The method of claim 1, wherein said determining includes first detecting an
 amplitude-modulated answer (ANSam) tone at one of the gateways and second detecting
 a digital call menu (CM) code at the other one of the gateways.
- 3. The method of claim 1, wherein said determining includes detecting an amplitude-modulated answer (ANSam) tone, said tone-detecting being performed by one or more of the associated gateways, and wherein said determining further includes second detecting a digital call menu (CM) code, said code-detecting being performed by one of the associated gateways, which method further comprises:

signaling, by the first one of the gateways to perform said tone-detecting, of the other one of the gateways that said tone-detecting has occurred.

30 4. The method of claim 2, wherein said terminating includes suppressing signal transmission between the originating modem and the answering modem.

10

15

20

25

30

5. The method of claim 4, wherein said negotiating includes:

at the calling-leg gateway detecting two additional digital CM codes from the originating modem and completing local calling-leg physical layer negotiation, and

at the called-leg gateway transmitting at least two additional digital CM codes to the answering modem and completing local called-leg physical layer negotiation.

 The method of claim 2 which, after said first detecting and before said second detecting, further comprises:

disabling voice compression if the same is determined to have been enabled.

7. The method of claim 2 which, after said first detecting and before said second detecting, further comprises:

disabling echo cancellation if the same is determined to have been enabled.

8. A method for establishing a modem relay connection over a voice frame network between an originating modem and an answering modem, the method comprising:

first detecting a predefined modulated answer tone at a first voice frame network gateway corresponding with the answering modem;

second detecting a predefined digital code at a second voice frame network gateway corresponding with the originating modem;

suppressing signal transmission between the originating modem and the answering modem;

at the second gateway detecting two additional predefined digital codes from the originating modem and completing local physical layer negotiation;

at the first gateway transmitting at least two additional predefined digital codes to the answering modem and completing local physical layer negotiation; and

enabling signal transmission between the originating modem and the answering modem.

whereby the voice frame network connection is selectively automatically transitioned from voice mode to modem relay mode upon a determination that the originating modem and the answering modem are both high-speed modems.

15

20

25

30

 The method of claim 8 which, after said first detecting and before said second detecting, further comprises:

disabling voice compression if the same is determined to have been enabled.

5 10. The method of claim 8 which, after said first detecting and before said second detecting, further comprises:

disabling echo cancellation if the same is determined to have been enabled.

 The method of claim 8 which, after said first detecting and before said second detecting, further comprises:

disabling voice compression if the same is determined to have been enabled; and disabling echo cancellation if the same is determined to have been enabled.

12. Modem relay connection apparatus for use in a voice frame network gateway to establish a data channel between two modems, the apparatus comprising:

an amplitude-modulated answer (ANSam) tone detector;

a code detector for detecting a digital call menu (CM) code responsive to an amplitude-modulated answer tone;

a signal suppression mechanism responsive to said code detector for suppressing signals between the modems to terminate end-to-end negotiation between the two modems;

a proxy negotiation mechanism responsive to said signal suppression mechanism for negotiating a local physical layer between the gateway and a local one of the two modems.

13. The apparatus of claim 12, which further comprises:

a pass-through invocation mechanism responsive to said tone detector for disabling voice compression if the same is determined to have been enabled and for disabling echo cancellation if the same is determined to have been enabled.

14. The apparatus of claim 12 which further comprises:

a signaling mechanism for signaling a remote gateway upon detection of an amplitude-modulated answer tone by said tone detector.

30

5

10

15. A computer-readable medium containing a program for establishing a high-speed modem relay connection over a voice frame network between an originating modem with an associated calling-leg gateway and an answering modem with an associated called-leg gateway, the program comprising:

instructions for determining at a predeterminedly early time during end-to-end physical layer negotiations between the originating modem and the answering modem whether both modems are high-speed modems, said determining instructions being executed by one or more of the associated gateways, and

instructions for terminating such end-to-end physical negotiations between highspeed modems, said terminating instructions being executed by one or more of the associated gateways; and

instructions for negotiating local physical layer on either end of the connection between the originating modem and the calling-leg gateway and between the answering modem and the called-leg gateway, wherein the calling-leg gateway serves as proxy for the answering modem and wherein the called-leg gateway serves as proxy for the originating modem.

- 16. The computer-readable medium in accordance with claim 15, wherein said instructions for determining include instructions for first detecting an amplitude-modulated answer (ANSam) tone at one of the gateways and instructions for second detecting a digital call menu (CM) code at the other one of the gateways.
- 17. The computer-readable medium in accordance with claim 15, wherein said instructions for terminating include instructions for suppressing signal transmission between the originating modem and the answering modem, and wherein said instructions for determining include instructions for first detecting an amplitude-modulated answer (ANSam) tone at one of the gateways and instructions for second detecting a digital call menu (CM) code at the other one of the gateways, which computer-readable medium further comprises:

instructions for signaling, by the first one of the gateways to accomplish tone detection, of the other one of the gateways that tone-detection has occurred.

10

15

20

2.5

18. The computer-readable medium in accordance with claim 17, wherein said instructions for negotiating include:

instructions executing at the calling-leg gateway for detecting two additional digital CM codes from the originating modem and for completing local calling-leg physical layer negotiation, and

instructions executing at the called-leg gateway for transmitting at least two additional digital CM codes to the answering modern and for completing local called-leg physical layer negotiation.

19. Apparatus for establishing a high-speed modem relay connection over a voice frame network between an originating modem with an associated calling-leg gateway and an answering modem with an associated called-leg gateway, the apparatus comprising:

means for determining at a predeterminedly early time during end-to-end physical layer negotiations between the originating modem and the answering modem whether both modems are high-speed modems, said determining means being operatively connected with one or more of the associated gateways;

means for terminating end-to-end physical layer negotiations between the originating modem and the answering modem, said terminating means being operatively connected with one or more of the associated gateways, and

means for negotiating local physical layer on either end of the connection between the originating modem and the calling-leg gateway and the answering modem and the called-leg gateway, wherein the calling-leg gateway serves as proxy for the answering modem and wherein the called-leg gateway serves as proxy for the originating modem.

20. The apparatus of claim 19, wherein said determining means includes means for detecting an amplitude-modulated answer (ANSam) tone at one of the gateways and means for detecting a digital call menu (CM) code at the other one of the gateways.

30

10

15

20

2.5

HIGH-SPEED DIAL-UP MODEM SESSION STARTUP METHOD AND APPARATUS

ABSTRACT

A method for establishing a high-speed modern relay connection over a voice frame network between an originating modem with an associated calling-leg gateway and an answering modem with an associated called-leg gateway is described. The method includes determining at a predeterminedly early time during end-to-end physical layer negotiations between the originating modem and the answering modem whether both modems are high-speed modems, with the determining being performed by one or more of the associated gateways. If so then the method further includes terminating endto-end physical layer negotiations between the originating modem and the answering modem, with the terminating being performed by one or more of the associated gateways. Finally, the method includes negotiating local physical layer on either end of the connection between the originating modem and the calling-leg gateway and the answering modem and the called-leg gateway. By this method, the calling-leg gateway serves as proxy for the answering modem and the called-leg gateway serves as proxy for the originating modem. Modem relay connection apparatus for use in a voice frame network gateway to establish a data channel between two modems is also described. The apparatus includes an amplitude-modulated answer (ANSam) tone detector; a signal suppression mechanism responsive to said tone detector for suppressing signals between the modems to terminate end-to-end negotiation between the two modems; a code detector for detecting a digital call menu (CM) code responsive to an amplitudemodulated answer tone; and a proxy negotiation mechanism responsive to said code detector for negotiating a local physical layer between the gateway and a local one of the two modems.

FIG. 1

FIG. 2

COMBINED DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled HIGH-SPEED DIAL-UP MODEM SESSION STARTUP METHOD AND APPARATUS, the specification of which is attached hereto.

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the patentability of this application in accordance with Title 37, Code of Federal Regulations, Sec. 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, Sec. 119 (a)-(d) or §365(b) of any foreign application(s) for patent or inventor's certificate, or §365(a) of any PCT international application which designated at least one country other than the United States of America, listed below and have also identified below any foreign application for patent or inventor's certificate, or of any PCT international application having a filing date before that of the application on which priority is claimed:

Prior Foreign A	pplication(s)		Claimir Priority	
(Number)	(Country)	(Day/Month/Year Filed)	∐ Yes	
	claim the benefit under Ti ovisional application listed	tle 35, United States Code, Sec. 119(ed below:	e) of any	
Provisional Application No.		Filing Date	Filing Date	

I hereby claim the benefit under Title 35, United States Code, Sec. 120 or §365(c) of any PCT international application designating the United States of America listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, Sec. 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Sec. 1.56 which

occurred between the filing date of the prior application and the national or PCT international filing date of this application:

(Application No.) (Filing Date) (Status) (patented, pending, abandoned)

I hereby appoint the following attorneys to prosecute the application, to file a corresponding international application, to prosecute and transact all business in the Patent and Trademark Office connected therewith:

Customer No. 20575

Attorney Name	Registration No
Jerome S. Marger	26,480
Alexander C. Johnson, Jr.	29,396
Alan T. McCollom	28,881
James G. Stewart	32,496
Glenn C. Brown	34,555
Stephen S. Ford	35,139
Julie L. Reed	35,349
Gregory T. Kavounas	37,862
Scott A. Schaffer	38,610
Joseph S. Makuch	39,286
James E. Harris	40,013
Graciela G. Cowger	42,444
Ariel Rogson	43,054
Craig R. Rogers	43,888

Direct all telephone calls to James G. Stewart at (503) 222-3613 and send all correspondence to:

James G. Stewart
Marger Johnson & McCollom, P.C.
1030 SW Morrison Street
Portland, OR 97205

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Post Office address:

Full name of first inventor:	Mehryar Khailili Garakani	Nov 15, 2000 (Date)
Residence:	Los Angeles, CA	
Citizenship:	Iran/USA	
Post Office address:	8665 Burton Way Los Angeles, CA 90048	
Full name of second joint inventor; Inventor's signature:	Herbert M. Wildfeuer	
Residence:	Santa Barbara, CA	
Citizenship:	United States of America	
Post Office address:	3107 Lucinda Lane Santa Barbara, CA 93105	
Full name of third joint inventor: Inventor's signature:	Gavin Jin	Oct 24, 2000 (Date)
Residence:	Santa Barbara, CA	
Citizenship:	Taiwan	

102 North Hope Avenue, Apt. 36 Santa Barbara, CA 93110