

DEEP HISTORY OF THE STUDY OF Haptic Perception

By: Ahmed Nadeem

BACKGROUND COLOR INDICATES PROGRESSION THROUGH TIME

BCE and Middle ages

Recent History

Present Day

CONTENT / BIOLOGICAL TOPIC

Before we begin

ANCIENT PHILOSOPHERS PT.2

Euclid (300 BCE)

- 1. Defined Space
- 2. Worked on size/distance perception

300 BCE -> 1600s

- lots of physiology work

(Brandt et al., 2024; Gibson, 1987; Gregoric & Fink, 2022; Kant's Views on Space and Time (Stanford Encyclopedia of Philosophy), n.d.; Mach, 1960)

PRE SCIENTIFIC REVOLUTION (1600S) — 1800

Kant's Views on Space and Time

First published Mon Sep 14, 2009; substantive revision Fri Apr 1, 2022

Even a casual reader of Kant's *Critique of Pure Reason* (*Kritik der reinen Vernunft*, first published in 1781) will notice the prominence he gives to his discussion of space and time.

Immanuel Kant (1724–1804)

PRE SCIENTIFIC REVOLUTION — 1800

- PEOPLE STARTED TO THINK
 - WHAT ARE SENSES
 - WERE THE GREEKS RIGHT?
 - WHAT IS KNOWLEDGE?
 - WHAT <u>IS ...</u>

1800S ONWARDS — PSYHOPHYSICS! WHAT IS PERCEPTION?

Ernst Heinrich Weber (1795 - 1878)

1. Weber's Law

1. Fechner's Law 2. The two-alternative forced-choice (2AFC) paradigm

(Skrodzki, 2020; Wagner, 2006)

Hermann von Helmholtz (1821–1894)

1850S ONWARDS

3. Physiological
Sense Perception Research

Wilhelm Wundt (1832–1920)

Ernst Mach (1838–1916)

- **Gestalt Psychology**
- **Connecting Psychology and Physiology**

1900S-1950S ONWARDS

Behaviorism/Psychology

s of single neurones in the cat's striate cortex

Wolfgang Kohler (1887 - 1967)

D. H. Hubel, T. N. Wiesel

First published: 01 October 1959

https://doi.org/10.1113/jphysiol.1959.sp006308

Citations: 3,058

(Albert, 1993, 1993; D H Hubel & TN Wiesel, 1959; Patton, 2018; Wertheimer, 1923)

(1880 - 1943)

(1886-1941)

1900S-1950S ONWARDS

Behaviorism/Psychology

Philosophy/Math

Physiology

Behaviorism / Psychology

Philosophy

Math

Physiology

Biology

Computers

Biology

Computers

Biology & Psychology

J.J Gibson

Brain's Algorithms

David Marr

- 1. Worked on the idea of a sketch in the brain
- 2. Understood basics of brain processing*

1950S-1999

Biology & Psychology

Einstein of neuroscience

Brain's Algorithms

David Marr

II: Vision

Chapter 2: Representing the Image

DOL https://doi.org.ozprovulibron.uorku.og/40.7554/mithroog/0674.002.0004

2.2 Zero-Crossings and the Raw Primal Sketch

Figure 2–20. The image (a) has been convolved with $\nabla^2 G$ having $w_{2-D} = 2\sqrt{2}\sigma = 6$, 12, and 24 pixels. These filters span approximately the range of filters that operate in the human fovea. (b), (c), and (d) show the zero-crossings thus obtained. Notice the fine detail picked up by the smallest. This set of figures neatly poses the next problem—How do we combine all this information into a single description? (Reprinted by permission from D. Marr and E. Hildreth, "Theory of edge detection," *Proc. R. Soc. Lond. B* 204, pp. 301–328.)

Biology & Psychology

J.J Gibson

Brain's Algorithms

David Marr

(Gibson, 1969, 1987)

1. Ecological Optics

2. Combined psychology, neuroscience, and physiology

3. Invariants

19505-1999

Biology & Psychology

Brain's Algorithms

Figure 6.5 Bones, joints, and muscles. A pair of antagonistic muscles is represented, a flexor and an extensor of the upper arm. They are so innervated that when one is contracted the other is relaxed. The bending of the joint at the elbow through an angle of 30° is shown.

(Klatzky & Lederman, 1993)

Biology

Psychology

1950S-1999

Klatzky, Roberta L.

14,538

Citations by **9,693** documents

310 Documents 65
h-index View h-graph

View more metrics >

Lederman, Susan J.

10,553

Citations by 6,175 documents

135

Documents

52

h-index View h-graph

J.J Gibson

Toward a computational model of constraint-driven exploration and haptic object identification

Brain's Algorithms

David Marr

Roberta L Klatzky

University of California, Santa Barbara, CA 93106, USA

Susan J Lederman

Queen's University, Kingston, Ontario K7L 3N6, Canada Received 3 August 1992

P:

BiologyPsychology

Volume 15, Issue 1, January 1992, Pages 20-25

Review

Separate visual pathways for perception and action

Melvyn A. Goodale a, A.David Milner b

Show more ∨

Brain's Algorithms

David Marr

The visual brain in action D Milner, M Goodale Oup Oxford	7258	2006
A neurological dissociation between perceiving objects and grasping them MA Goodale, AD Milner, LS Jakobson, DP Carey Nature 349 (6305), 154-156	1921	1991
Two visual systems re-viewed AD Milner, MA Goodale Neuropsychologia 46 (3), 774-785	1818	2008
Size-contrast illusions deceive the eye but not the hand S Aglioti, JFX DeSouza, MA Goodale Current biology 5 (6), 679-685	1465	1995

Popular Links ▼

Q

The effects of long-term exposure to microgravity and body orientation relative to gravity on perceived traveled distance

Björn Jörges [™], Nils Bury, Meaghan McManus, Ambika Bansal, Robert S. Allison, Michael Jenkin & Laurence R. Harris [™]

THE PERCEPTION OF UPRIGHT UNDER LUNAR GRAVITY

L. R. Harris^{1,2}, M. R. M. Jenkin^{1,3}, R. T. Dyde^{1†}

- ¹ Centre for Vision Research,
- ² Departments of Psychology, and
- ³ Computer Science and Engineering, York University, Toronto, Ontario, M3J 1P3, Canada
- † deceased

2000S-PRESENT

Haptic perception of spatial relations

AML Kappers, JJ Koenderink PERCEPTION 28, 781-796

Klatzky, Roberta L.

Lederman, Susan J.

Toward a computational model of constraint-driven exploration and haptic object identification

Roberta L Klatzky

University of California, Santa Barbara, CA 93106, USA

Susan J Lederman

Queen's University, Kingston, Ontario K7L 3N6, Canada Received 3 August 1992

Haptic perception of spatial relations

AML Kappers, JJ Koenderink PERCEPTION 28, 781-796

x = 10 cm y = 15 cm

gaps

gaps

University of California, Santa Barbara, CA 93106, USA

Susan J Lederman

Queen's University, Kingston, Ontario K7L 3N6, Canada Received 3 August 1992

Stimulus Intensity

Haptic perception of spatial relations

AML Kappers, JJ Koenderink PERCEPTION 28, 781-796

Toward a computational model of constraint-driven exploration and haptic object identification

Roberta L Klatzky

University of California, Santa Barbara, CA 93106, USA

Susan J Lederman

Queen's University, Kingston, Ontario K7L 3N6, Canada Received 3 August 1992

Stimulus Intensity

- Albert, M. K. (1993). Parallelism and the Perception of Illusory Contours. Perception, 22(5), 589–595. https://doi.org/10.1068/p220589
- Brandt, T., Dieterich, M., & Huppert, D. (2024). Human senses and sensors from Aristotle to the present. Frontiers in Neurology, 15, 1404720. https://doi.org/10.3389/fneur.2024.1404720
- D H Hubel & T N Wiesel. (1959). Receptive fields of single neurones in the cat's striate cortex—PMC. https://pmc.ncbi.nlm.nih.gov/articles/PMC1363130/
- David Marr. (1982). Vision. https://books.apple.com/us/book/vision/id1521739041
- Gibson, J. J. (1987). The Perception of Visual Surfaces.
- Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neurosciences, 15(1), 20–25. https://doi.org/10.1016/0166-2236(92)90344-8
- Gregoric, P., & Fink, J. L. (2022). Introduction Sense Perception in Aristotle and the Aristotelian Tradition. Brill. https://doi.org/10.1163/9789004506077_003

James J. Gibson. (1969). The Senses Considered as Perceptual Systems. Rukin House, 44(1), 104–105. https://doi.org/10.1086/406033

James, W. (1887). The Perception of Space. (I.). Mind, 12(45), 1–30.

Johnson, M. R. (2011). Spatial Cognition, Spatial Perception. The Yale Journal of Biology and Medicine, 84(1), 63.

Kant's Views on Space and Time (Stanford Encyclopedia of Philosophy). (n.d.). Retrieved November 6, 2024, from https://plato.stanford.edu/entries/kant-spacetime/

Killeen, P. (2019). The Behavioral Psychophysics of SS Stevens.

Klatzky, R. L., & Lederman, S. J. (1988). The Intelligent Hand. In G. H. Bower (Ed.), Psychology of Learning and Motivation (Vol. 21, pp. 121–151). Academic Press. https://doi.org/10.1016/S0079-7421(08)60027-4

Klatzky, R. L., & Lederman, S. J. (1993). Toward a Computational Model of Constraint-Driven Exploration and Haptic Object Identification. Perception, 22(5), 597–621. https://doi.org/10.1068/p220597

- Lanczos, C. (1970). Space through the Ages The Evolution of Geometrical Ideas from Pythagoras to Hilbert and Einstien (Vol. 30). Academic Press London and New York.
- Lederman, S. J., & Klatzky, R. L. (2007). New directions in touch. Canadian Journal of Experimental Psychology / Revue Canadienne de Psychologie Expérimentale, 61(3), 169–170. https://doi.org/10.1037/cjep2007017
- Mach, E. (1960). Space and Geometry in the Light of Physiological, Psychological and Physical Inquiry (T. J. McCormack, Trans.). Cambridge University Press. https://doi.org/10.1017/CBO9781107338449
- Melvyn A. Goodale & G. Keith Humphrey. (n.d.). The objects of action and perception—ScienceDirect. Retrieved November 4, 2024, from https://www.sciencedirect.com/science/article/pii/S0010027798000171
- Millar, S. (2008). Space and Sense. Psychology Press. https://doi.org/10.4324/9780203938645
- Patton, L. (2018). Helmholtz's physiological psychology 1. In S. Lapointe (Ed.), Philosophy of Mind in the Nineteenth Century (1st ed., pp. 96–116). Routledge. https://doi.org/10.4324/9780429508134-6
- R. Steven Turner. (1994). In The Eye's Mind. Princeton University Press.

Skrodzki, M. (2020). Illustrations of non-Euclidean geometry in virtual reality (No. arXiv:2008.01363). arXiv. https://doi.org/10.48550/arXiv.2008.01363

Wagner, M. (2006). The Geometries of Visual Space. Psychology Press. https://doi.org/10.4324/9780203837627

Weber, E. H. (1834). E.H. Weber on the Tactile Senses (E. R. Helen & J. M. David, Eds.; 2nd ed.). Psychology Press. https://doi.org/10.4324/9781315782089

Wertheimer, M. (1923). Investigations on Gestalt Principles.

Zhou, J., Duong, L. R., & Simoncelli, E. P. (2024). A unified framework for perceived magnitude and discriminability of sensory stimuli. Proceedings of the National Academy of Sciences, 121(25), e2312293121. https://doi.org/10.1073/pnas.2312293121

REFERENCES OF IMAGES

Links point to images, and are ordered in order of appearance of the slide deck: (all images were in the public domain and followed proper copyright agreements):

- https://en.wikipedia.org/wiki/Plato#/media/File:Plato Silanion Musei Capitolini MC1377.jpg
- https://upload.wikimedia.org/wikipedia/commons/a/ae/Aristotle Altemps Inv8575.jpg
- https://en.wikipedia.org/wiki/Euclid#/media/File:0 Chambre de Rapha%C3%ABI %C3%89cole d'Ath%C3%A8nes Mus%C3%A9es du Vatican.JPG
- https://en.wikipedia.org/wiki/Euclid#/media/File:Euclid Dodecahedron 1.svg (no changes made to original image)
- https://en.wikipedia.org/wiki/Ren%C3%A9 Descartes#/media/File:Frans Hals Portret van Ren%C3%A9 Descartes.jpg
- https://en.wikipedia.org/wiki/William Molyneux#/media/File:William Molyneux Kneller.jpg
- https://en.wikipedia.org/wiki/Immanuel Kant#/media/File:Immanuel Kant Gemaelde 1.jpg
- https://en.wikipedia.org/wiki/Ernst Heinrich Weber.jpg
- https://wikimedia.org/api/rest_v1/media/math/render/svg/aba5c17d611ef62e9acce27266caab0ec1e7c6ed
- https://en.wikipedia.org/wiki/Just-noticeable difference#/media/File:Weber-Fechner law demo circles.svg (no changes made to the original image)

REFERENCES OF IMAGES

Links point to images, and are ordered in order of appearance of the slide deck: (all images were in the public domain and followed proper copyright agreements):

- https://www.psywww.com/intropsych/ch04-senses/psychophysics.html
- https://en.wikipedia.org/wiki/Wilhelm Wundt#/media/File:Wilhelm Wundt.jpg
- https://en.wikipedia.org/wiki/Wilhelm-Wundt#/media/File:Wundt-research-group.jpg
- https://en.wikipedia.org/wiki/Ernst Mach#/media/File:Ernst Mach 01.jpg
- https://en.wikipedia.org/wiki/Hermann von Helmholtz#/media/File:Hermann von Helmholtz.jpg
- https://www.gestalttherapyblog.com/blog/max-wertheimer
- https://m.media-amazon.com/images/I/31Z0Jj5cp7L. AC UF1000,1000 QL80 .jpg
- https://definingmomentscanada.ca/wp-content/uploads/2022/09/img EP hubel-weisel-toys2-1.jpg
- https://definingmomentscanada.ca/wp-content/uploads/2022/09/Hubel-Experiment.jpg Courtesy of Probabilistic Deep Learning with Python by Oliver Dürr, Beate Sick, and Elvis Murina.
- https://tr.wikipedia.org/wiki/James J. Gibson#/media/Dosya:JeremyGibson.jpeg
- https://www.researchgate.net/publication/235626691 The Vision of David Marr
- https://en.wikipedia.org/wiki/Melvyn A. Goodale#/media/File:Photo of Melvyn Goodale taken in 2008.jpg (no changes made to the original image)
- https://qbi.uq.edu.au/brain/brain-functions/visual-perception

REFERENCES OF IMAGES

Links point to images, and are ordered in order of appearance of the slide deck: (all images were in the public domain and followed proper copyright agreements):

- https://en.wikipedia.org/wiki/lan P. Howard#/media/File:lan-&-Einstein.jpg
- https://health.yorku.ca/health-profiles/index.php?mid=4469
- https://www.freepik.com/premium-vector/tree-branch-clipart-vector-icon-sticker-illustration 249711125.htm#fromView=keyword&page=1&position=12&uuid=b46218e8-1cda-470b-84f2-05838d148c1a

Any questions?