Observation numérique de cristaux

% Capacités exigibles

♦ Utiliser un logiciel ou des modèles cristallins pour visualiser des mailles et des sites interstitiels et pour déterminer des paramètres géométriques.

${f I} \mid {f Objectifs}$

- ♦ Visualiser à l'aide d'outils numériques des structures cristallines (parfaites).
- ♦ Se familiariser avec l'observation des différents types de sites et de structures.
- ♦ Bien comprendre les règles de construction de cristaux ioniques.

II S'approprier

Lancer le logiciel en ligne minusc : https://libmol.org/minusc/.

- ♦ L'onglet Commandes permet de modifier l'affichage de la maille.
- ♦ L'onglet Fichier permet de changer de structure cristalline.
- ♦ L'onglet Formule permet d'afficer seulement certains atomes de la maille. Pour revenir à la maille complète, on peut cliquer sur désactiver le mode formule en bas à gauche.
- ♦ Les paramètres de maille (distance a,b,c et angles α,β,γ) sont affichés en haut à gauche de l'écran. Les distances sont données en Angström : $1 \text{ Å} = 10^{-10} \text{ m}$.
- ♦ La distance entre deux motifs peut être mesurée en double-cliquant sur un motif, puis en pointant le second.

FIGURE 29.1 – Définition paramètres de maille.

 \diamond Plusieurs mailles peuvent être affichées en changeant les valeurs de a,b,c en bas à droite : a=2 signifie « afficher 2 mailles selon l'axe de a ».

III Réaliser

A Étude d'une structure métallique : argent

Dans Fichier, rechercher le cristal Argent.

- 1 Quelle est la configuration cristallographique de l'argent?
- 2 Quelle est la population de la maille? La coordinence des atomes d'argent?

- 3 Dans Afficher atomes, choisir sphères. Observer la tangence des atomes. Sachant que le rayon métallique des atomes d'argent vaut $r = 144 \,\mathrm{pm}$, en déduire la valeur du paramètre de maille théorique a. Le comparer au paramètre de maille réel.
- 4 Repérer et représenter les sites interstitiels tétraédriques et octaédriques.

III/B Étude de plusieurs structures ioniques D'après Mines-Pont

Sachant que les anions sont plus gros que les cations, indiquer une première inégalité du rapport $\frac{r_+}{r_-}$, sous la forme $\frac{r_+}{r_-} < x$.

III/B) 1 Étude de la structure type CsCl

Dans Fichier, recherchez le cristal CsCl en écrivant chlorure de césium.

 $r_{+} = 169 \,\mathrm{pm}$ et $r_{-} = 181 \,\mathrm{pm}$.

- 6 Où se situe Cs⁺? Quelle est sa coordinence? (On pourra choisir d'afficher 2 mailles par 2 mailles).
- [7] En visualisation 1 maille par 1 maille, quel type de site occupe Cl⁻? Quelle est sa coordinence?
- 8 Comment avait-on décrit le chlorure de césium dans le cours? Quels étaient les sites occupés par Cl⁻ et Cs⁺? Montrer que ces deux descriptions sont équivalentes.
- Dans afficher atomes, choisir sphères. Observer la tangence des anions et des cations. Sachant que $r_+ = 169 \,\mathrm{pm}$ et $r_- = 181 \,\mathrm{pm}$, déterminer le paramètre théorique a_{th} de la maille.
- Le comparer au paramètre a_{exp} . En déduire l'erreur relative commise sur a avec le modèle de sphères dures. Est-ce qu'il justifie l'emploi du modèle utilisé?
- Sans le logiciel : d'après les règles de stabilité d'une structure ionique, déterminer une deuxième limite au rapport $\frac{r_+}{r_-}$ pour cette structure.
- 12 Donner donc les 2 inégalités sur $\frac{r_+}{r_-}$ (cf. question $\boxed{5}$). Est-ce vérifié pour ce cristal?

III/B) 2 Étude de la structure type NaCl

Dans Fichier, recherchez le cristal NaCl en écrivant halite.

 $r_+ = 95\,\mathrm{pm}$ et $r_- = 181\,\mathrm{pm}.$

Mêmes questions de 13 à 19 que pour CsCl.

[III/B)3] Étude de la structure type ZnS

Dans Fichier, recherchez le cristal ZnS en écrivant ZnS.

 $r_{+} = 74 \,\mathrm{pm} \,\,\mathrm{et} \,\,r_{-} = 184 \,\mathrm{pm}.$

III. Réaliser 3

Mêmes questions de 20 à 26 que pour CsCl.

III/B) 4 Étude d'une nouvelle structure : la fluorine

Dans Fichier, recherchez la structure de la fluorine.

$$r_{+} = 99 \,\mathrm{pm}$$
 et $r_{-} = 136 \,\mathrm{pm}$.

- 27 Décrire la maille telle que vous la voyez.
- Quel est le nombre de cations par maille? d'anions par maille? La règle de neutralité est-elle satisfaite? En déduire la formule chimique de la fluorine.
- $\boxed{29}$ Quelle est la coordinence de Ca^{2+} ? de F^- ?
- Observer la tangence des anions et des cations, en déduire le paramètre théorique $a_{\rm th}$ de la maille. Le comparer au paramètre $a_{\rm exp}$. En déduire l'erreur relative commise sur a avec le modèle de sphères dures.
- 31 En observant plusieurs mailles, pourriez-vous proposer une autre façon de décrire la maille de fluorine? La dessiner sur votre feuille; vérifier le nombre d'ions de chaque espèce par maille avec cette nouvelle description.

La valeur du rapport r_+/r_- peut vous aider à trouver cette nouvelle description.

əbiA

III/C Étude d'une structure non cubique : le quartz

Dans Fichier, sélectionner la structure Quartz

- 32 Vérifier la neutralité du cristal. Quelle est la formule brute du quartz?
- 33 Pour un espace délimité par 3 vecteurs non coplanaires \vec{a} , \vec{b} , \vec{c} , son volume V s'exprime grâce au produit mixte $V = (\vec{a} \wedge \vec{b}) \cdot \vec{c}$

Calculer la masse volumique du cristal, sachant que les rayons ioniques valent $r_+ = 27 \,\mathrm{pm}$ et $r_- = 132 \,\mathrm{pm}$, ainsi que $M_{\mathrm{Si}} = 28.1 \,\mathrm{g \cdot mol^{-1}}$ et $M_{\mathrm{O}} = 16.0 \,\mathrm{g \cdot mol^{-1}}$. Comparer à une valeur expérimentale.