PRACTICAL-2

Aim: Implement and analyze algorithms given below.(Compare them)

2.1 Bubble Sort:

PROGRAM:

```
#include <iostream>
using namespace std;
int main()
int arr[50];
int n,i,j,temp,c=0;
bool swapped;
cout << "Enter size of array : ";</pre>
cin >> n;
cout << "Enter " << n << " elements : ";
for (i=0; i < n; i++)
 cin >> arr[i];
for (i = 0; i < n-1; i++) {
 swapped = false;
  for (j = 0; j < n-i-1; j++) {
    c++;
  if (arr[j] > arr[j+1]) {
     temp = arr[j];
```

```
arr[j] = arr[j+1];
arr[j+1] = temp;
swapped = true;
}
if (swapped == false)
break;
}

cout << "Sorted array:";
for (i=0; i < n; i++)
    cout << " " << arr[i];
cout << "\nCounter = " << c;
return 0;
}</pre>
```

OUTPUT:

```
Enter size of array: 5
Enter 5 elements: 3
2
9
7
8
Sorted array: 2 3 7 8 9
Counter = 7
...Program finished with exit code 0
Press ENTER to exit console.
```

ANALYSIS TABLE:

SIZE OF SET	COUNTER
5	7
4	6
7	20
11	55
1	0

GRAPH:

CONCLUSION:

In this practical we can conclude that bubble sort algorithm behavior is non-linear.

Aim: Implement and analyze algorithms given below.(Compare them)

2.2 Selection Sort:

PROGRAM:

```
#include<iostream>
using namespace std;
int counter=0;
int main()
  int length;
  coot<<"Enter the size of array :";</pre>
  cin>>length;
  int arr[length];
  for (int i=0;i<length;i++)
  {
     arr[i]=i+10; cout<<"Enter element"<<(i+1)<<":";
     cin>>arr[i];
  }
  for(int m=0;m<length;m++)</pre>
  {
     int minimum=m;
     float temp;
     for(int n=m+1;n<length;n++)</pre>
       counter++;
```

```
if(arr[n]<arr[minimum])
    {
        minimum=n;
    }
    temp=arr[m];
    arr[m]=arr[minimum];
    arr[minimum]=temp;
}
    cout<<endl<<"Sorted Array is: " <<endl;
    for(int i=0;i<length;i++)
    cout<<arr[i]<<" ";
    cout<<endl;</pre>
```

OUTPUT:

```
Enter the size of array:5
Enter element1:31
Enter element2:12
Enter element3:21
Enter element4:9
Enter element5:0

Sorted Array is:
0 9 12 21 31
Counter:10

...Program finished with exit code 0
Press ENTER to exit console.
```

ANALYSIS TABLE:

Size Of Array		Counter
	5	10
	3	3
	10	45
	12	66
	9	36

GRAPH:

CONCLUSION:

In this practical we analyzed the graph of selection sort

Aim: Implement and analyze algorithms given below.(Compare them)

2.3 Insertion Sort:

PROGRAM:

```
#include<iostream>
using namespace std;
int counter=0;
int main()
  float temp;
  int i,j,length;
  cout<<"\nEnter the size of Array:";</pre>
  cin>>length;
  int arr[length];
  cout<<"Enter Array elements: "<<endl;</pre>
  for(i=0;i<length;i++)
     cin>>arr[i];
  }
  for(i=1;i<length;i++)
  {
     temp=arr[i];
     j=i-1;
     counter++;
     while((temp < arr[j]) & & (j > = 0))
        counter++;
       arr[j+1]=arr[j];
```

```
j=j-1;
}
arr[j+1]=temp;
}
cout<<"\nArray after Being sorted : \n";
for(i=0;i<length;i++)
{
    cout<<arr[i]<<" ";
}
cout<<"\n\nCounter :"<<counter<<endl;
return 0;
}</pre>
```

OUTPUT:

```
Enter the size of Array:3
Enter Array elements:

19
16
12
Array after Being sorted:
12 16 19

Counter:5

...Program finished with exit code 0
Press ENTER to exit console.
```

ANALYSIS TABLE:

Size of Array		Counter
	3	5
	10	39
	11	46
	7	25
	9	8

GRAPH:

CONCLUSION:

In this practical we analyzed the behavior of Insertion Sort graph.