Query Optimization Homework 5

February 2, 2021

1 Exercise 1

1.1 Perform the IKKBZ algorithm

2. Call $IKKBZ - Sub(G_A, C_{out})$ with G_A :

Relation	n	s	С	Т	rank
В	10	0,9	9	9	<u>8</u> 9
С	100	0,1	10	10	$\frac{9}{10}$
D	100	0,1	10	10	$\frac{9}{10}$

2.1 Normalize(A) doesn't change anything

2.2 Merge the chains under A:

- 2.3 Denormalize (G_A) doesn't change anything
- 2.4 Compute C_{out} :

$$\begin{split} C_{out}(A \bowtie B) &= 10 \cdot 10 \cdot 0.9 = 90 \\ C_{out}((A \bowtie B) \bowtie D) &= 90 \cdot 100 \cdot 0.1 + 90 = 990 \\ C_{out}(((A \bowtie B) \bowtie D) \bowtie C) &= 900 \cdot 100 \cdot 0.1 + 990 = 9990 \end{split}$$

3. Call $IKKBZ - Sub(G_B, C_{out})$ with G_B :

Relation	n	s	С	Т	rank
A	10	0,9	9	9	<u>8</u> 9
С	100	0,1	10	10	$\frac{9}{10}$
D	100	0,1	10	10	$\frac{9}{10}$

3.1 Normalize(B) doesn't change anything

3.2 Merge the chains under B:

3.3 Denormalize (G_B) doesn't change anything

3.4 Compute C_{out} :

$$\begin{split} &C_{out}(B\bowtie A) = 10\cdot 10\cdot 0.9 = 90\\ &C_{out}((B\bowtie A)\bowtie C) = 90\cdot 100\cdot 0.1 + 90 = 990\\ &C_{out}(((B\bowtie A)\bowtie C)\bowtie D) = 900\cdot 100\cdot 0.1 + 990 = 9990 \end{split}$$

4. Call $IKKBZ - Sub(G_C, C_{out})$ with G_C :

Relation	n	s	С	Т	rank
A	10	0,1	1	1	0
В	10	0,9	9	9	8 9
D	100	0,1	10	10	$\frac{9}{10}$

- 4.1 Denormalize (G_C) doesn't change anything
- 4.2 Compute C_{out} :

$$\begin{split} C_{out}(C\bowtie A) &= 100\cdot 10\cdot 0.1 = 100 \\ C_{out}((C\bowtie A)\bowtie B) &= 100\cdot 10\cdot 0.9 + 100 = 1000 \\ C_{out}(((C\bowtie A)\bowtie B)\bowtie D) &= 900\cdot 100\cdot 0.1 + 1000 = 10000 \end{split}$$

5. Call $IKKBZ - Sub(G_D, C_{out})$ with G_D :

Relation	n	S	С	Τ	rank
A	10	0,9	9	9	$\frac{8}{9}$
В	10	0,1	1	1	0
С	100	0,1	10	10	$\frac{9}{10}$

- 5.1 Denormalize(G_D) doesn't change anything
- 5.2 Compute C_{out} :

$$\begin{split} C_{out}(D \bowtie B) &= 100 \cdot 10 \cdot 0.1 = 100 \\ C_{out}((D \bowtie B) \bowtie A) &= 100 \cdot 10 \cdot 0.9 + 100 = 1000 \\ C_{out}(((D \bowtie B) \bowtie A) \bowtie C) &= 900 \cdot 100 \cdot 0.1 + 1000 = 10000 \end{split}$$

6. Choose the precedence graph with the minimal cost, both G_A and G_B are minimal, so we choose G_A and construct the following join tree:

