

Provas de ingresso específicas para avaliar a capacidade para a frequência do ciclo de estudos de licenciatura, pelos titulares de um diploma de especialização tecnológica, Decreto-Lei n.º 113/2014, de 16 de julho

AVALIAÇÃO DA CAPACIDADE PARA A FREQUÊNCIA DO CURSO DE LICENCIATURA EM ENGENHARIA MECÂNICA

DO INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

PROVA MODELO 2016

Duração da prova: 120 minutos

Nome:	
CC/BI/Passaporte N.º	Validade:/

INSTRUÇÕES (leia com atenção, por favor)

- Os candidatos com aprovação em cursos preparatórios para o ingresso no ensino superior, organizados no âmbito de uma área departamental, poderão optar pela creditação das classificações aí obtidas como sendo a classificação do conjunto das perguntas da prova relativas às matérias já avaliadas nesses cursos. Para este efeito, consideram-se apenas os cursos homologados pelo conselho técnico-científico.
- Indique em todas as folhas o número do seu CC, BI ou Passaporte. Coloque esse documento de identificação sobre a mesa para validação de identidade.
- As respostas devem ser efetuadas nos locais apropriados de resposta, nesta mesma prova, utilizando caneta preta ou azul.
- As questões de desenvolvimento devem ser também respondidas nas folhas de prova. Se necessitar de mais folhas de resposta solicite-as aos professores vigilantes. Numere todas as folhas suplementares que utilizar.
- Não utilize corretor ou borracha para eliminar respostas erradas. Caso se engane, risque a resposta errada e volte a responder.
- Se responder a alguma questão fora do local apropriado de resposta, indique no local da resposta que esta foi efetuada em folha anexa.
- Para a realização desta prova será permitido o seguinte material de apoio: caneta, lápis e máquina de calcular.
- Durante a realização da prova os telemóveis e outros meios de comunicação deverão estar desligados. A utilização destes equipamentos implica a anulação da prova.

ESTRUTURA DA PROVA

- **Grupo 1** Três questões de resposta múltipla de matemática.
- **Grupo 2** Um problema de matemática.
- **Grupo 3 -** Três questões de resposta múltipla de física.
- Grupo 4 Um problema de física.
- Grupo 5 Seis questões de resposta múltipla enquadradas nos conteúdos do curso.
- Grupo 6 Questão para desenvolvimento de assunto de cultura científica na área do curso.

Grupo 1

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -1/5 de valor)

Para cada uma das questões indique **a resposta correta** do seguinte modo **X**.

- 1. Considere no espaço o plano de equação x + 2y z = 1. A reta que passa no ponto (2,1,2) e é perpendicular a este plano, pode ser definida por:
 - \square (A) $(x, y, z) = (2,1,2) + k(1,-2,-1), k \in \mathbb{R}$
 - \Box (B) $x = y + 3 \land z = y 5$
 - \square (C) $x-2=\frac{1}{2}(y-1)=2-z$
 - \square (D) $(x, y, z) = (2,1,2) + k(-1, -2, -1), k \in \mathbb{R}$
 - \square (E) $x-2=\frac{1}{2}(y-1)=z-2$
- 2. O domínio da função $f(x) = \sqrt{\frac{5-x}{x+3}}$ é:
 - \square (A)] $-\infty$, -3[
 - \square (B) $[5, +\infty[$
 - \Box (C)] 3,5]
 - \square (D)] $-\infty$, -3[\cup [5, $+\infty$ [
 - \square (E) \mathbb{R}
- **3.** Um aluno tem 3 livros de Matemática, 4 de Física e 3 de Química (todos diferentes). De quantas formas distintas os pode arrumar numa prateleira caso queira manter juntos os livros da mesma disciplina?
 - \square (A) $7! \times 3!$
 - \square (B) $3! \times 4! \times 3!$
 - □ (C) 10!
 - \square (D) $3! \times 3! \times 4! \times 3!$
 - \Box (E) 3! × 10!

CC /BI / Passaporte N.º

Grupo 2

(Cotação: 2,0 valores)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

Considere o polinómio $p(x) = x^3 - 3x^2 - 9x + 27$.

- a) Sabendo que x = 3 é um zero de p, determine os restantes zeros.
- b) Escreva os intervalos de monotonia de p. Justifique todos os passos.

CC/BI/	Passaporte	N.º	
00,00,	. accapcito	• • •	

Grupo 3

(Cotação total: 3,0 valores; cotação parcial: 1,0 valor por questão; por cada resposta errada: -1/5 de valor)

Indique <u>as respostas corretas</u> do seguinte modo ⊠

1. Num teste de performance, um automóvel é submetido durante 2 minutos a mudanças de velocidade e aceleração em movimento retilíneo. Sabe-se que no percurso total a sua velocidade foi constante durante 45 s e que o módulo da sua aceleração nunca excedeu os 3 m·s⁻².

Diga qual dos gráficos, A, B, C ou D, representa a sua velocidade durante o teste:

	☐ gráfico A	☐ gráfico B	☐ gráfico C	☐ gráfico D	☐ nenhum dos gráficos
--	-------------	-------------	-------------	-------------	-----------------------

- 2. Diga qual das seguintes afirmações é verdadeira:
 - ☐ (A) Um corpo tem aceleração nula apenas quando nenhuma força atua sobre ele.
 - \square (B) Um corpo, inicialmente em repouso, é empurrado sobre uma superfície sem atrito através de uma força constante F durante um intervalo de tempo t até atingir uma velocidade v. O mesmo corpo quando atuado por uma força constante 2F atingirá a mesma velocidade v após um tempo igual a 2t.
 - ☐ (C) A massa de um corpo é uma medida da resistência do corpo à variação da sua velocidade.
 - □ (D) A aceleração que um corpo adquire quando atuado por uma força não depende da direção da força.
 - ☐ (E) Duas forças constituem um par ação-reação se tiverem a mesma intensidade e direção, sentidos opostos e forem aplicadas no mesmo corpo.

 $\bf 3.$ O seguinte diagrama pV representa uma transformação isotérmica de um gás perfeito.

Os valores do volume no estado B e da pressão no estado C são:

- \square (A) $V_B = 3 \times 10^{-3} \,\text{m}^3 \,\text{e} \, p_C = 2 \times 10^5 \,\text{Pa}$
- \Box (B) $V_B = 3 \times 10^{-3} \,\mathrm{m}^3 \,\mathrm{e} \, p_C = 10^5 \,\mathrm{Pa}$
- \square (C) $V_B = 4 \times 10^{-3} \text{ m}^3 \text{ e } p_C = 2 \times 10^5 \text{ Pa}$
- \Box (D) $V_B = 3 \times 10^{-3} \,\mathrm{m}^3 \,\mathrm{e} \,p_C = 2 \times 10^5 \,\mathrm{Pa}$
- \square (E) $V_B = 4 \times 10^{-3} \text{ m}^3 \text{ e } p_C = 10^5 \text{ Pa}$

CC /BI / Passaporte N.º

Grupo 4

(Cotação: 2 valores)

Resolva o problema proposto na folha de prova e indique claramente a resposta final do mesmo. Se o espaço para responder se mostrar insuficiente poderá usar o verso desta folha para continuar a resposta.

Considere o sistema de dois blocos de massas $m_A = 10 \,\mathrm{kg}$ e $m_B = 5 \,\mathrm{kg}$ ligados por um cabo inextensível e de massa desprezável, como se mostra na figura.

Considerando que o sistema está em repouso e usando $g = 10 \,\mathrm{m\cdot s}^{-1}$, determine:

- a) os pesos dos dois blocos;
- b) a tensão no cabo.
- c) a reacção exercida pela superfície sobre o bloco B.
- d) a força de atrito que a superfície exerce sobre o bloco B.

CC/BI/	Passaporte	N.º	
00,00,	. accapcito	• • •	

Grupo 5

(Cotação total: 6,0 valores; cotação parcial: 1,0 valores por questão; por cada resposta errada: -1/5 de valor)

Para cada uma das questões indique <u>a resposta correta</u> do seguinte modo ⊠.

1 – Qual das seguintes afirmações é verdadeira?
☐ (A) O quilowatt-hora é uma unidade de potência e o seu símbolo é kW h
☐ (B) O quilowatt-hora é uma unidade de potência e o seu símbolo é kW/h
☐ (C) O quilowatt-hora é uma unidade de energia e o seu símbolo é kW h
□ (D) O quilowatt-hora é uma unidade de energia e o seu símbolo é kW/h
2 – Um barco, com o motor à potência máxima, sobe um rio a 10 km/h e desce-o a 30 km/h. Qual a velocidade da corrente do rio (em relação às margens)?
□ (A) 30 km/h
□ (B) 20 km/h
□ (C) 10 km/h
□ (D) 0 km/h
3 – Um cubo com aresta <u>a</u> , feito de uma substância X, tem massa m. Um cubo com aresta <u>2a</u> e feito de uma substância Y tem massa 2m. Qual a densidade de Y em relação a X?
□ (A) 1/4
□ (B) 1
□ (C) 2
□ (D) 1/2
4 – Um submarino encontra-se 50 m abaixo da superfície do oceano com o seu peso exatamente contrabalançado pela impulsão. Se ele descer para 100 m, a impulsão:
□ (A) Mantém-se constante
□ (B) Duplica
☐ (C) Reduz-se a metade
☐ (D) Quadruplica

CC	/BI/	Passa	porte	N.º	

5 – Em cada ciclo, uma máquina térmica recebe, sob a forma de calor, quatro vezes o valor da energia que produz, sob a forma de trabalho; nestas condições:
☐ (A) A máquina tem um rendimento de 25% e liberta para a atmosfera 25 % do calor recebido
□ (B) A máquina tem um rendimento de 75% e liberta para a atmosfera 25 % do calor recebido
\square (C) A máquina tem um rendimento de 25% e liberta para a atmosfera 75 % do calor recebido
\square (D) A máquina tem um rendimento de 50% e liberta para a atmosfera 50 % do calor recebido
6 – Qual das seguintes grandezas não é vetorial?
\square (A) Velocidade
\square (B) Força
\square (C) Pressão
\square (D) Peso

CC/BI/	Passapoi	te N.º	
O O / D : /	. accapci		

Grupo 6 (Cotação: 4,0 valores)

(Responda e desenvolva o tema proposto. Escreva entre 15 a 25 linhas)

desenvolviment	0. "			