

Recursion Excercise – Magic Square

Tecniche di Programmazione – A.A. 2019/2020

Magic Square

A magic square is n * n grid (where n is the number of cells on each side) filled with distinct positive integers in the range $1, 2, ..., n^2$ such that each cell contains a different integer and the sum of the integers in each row, diagonal and column is equal

▶ The sum is called *magic constant*.

Magic Square

- magic constant $M = \frac{n(n^2+1)}{2}$
 - For normal magic squares of orders n = 3, 4, 5, 6, 7, and 8, the magic constants are, respectively: 15, 34, 65, 111, 175, and 260
- ▶ There exist exact methods for constructing magic squares of even or odd order...
- ... while we will use recursion

Design tips

Recursion

I	2	3

I	2	3
4		

I	2	3
4	5	

I	2	3
4	5	6

I	2	3
4	5	6
7		

I	2	3
4	5	6
7	8	

I	2	3
4	5	6
7	8	9

I	2	3
4	5	6
7	8	

l	2	3
4	5	6
7	8	9

I	2	3
4	5	6
7	8	

I	2	3
4	5	6
7	8	9

FAILED

- Come imposto in generale la ricorsione?
- Che cosa mi rappresenta il "livello"?
- Qual è il livello massimo?
- Com'è fatta una soluzione parziale?
- Com'è fatta una soluzione completa?
- Come viene avviata la ricorsione (livello 0)?
- ▶ Come genero Parziale(i+1) partendo da Parziale(i)?

- Come imposto in generale la ricorsione?
 - Ad ogni passo inserisco un numero $1, 2, ..., n^2$ nella prima casella libera del quadrato. Delego al passo successivo il riempimento delle successive caselle

- Come imposto in generale la ricorsione?
 - Ad ogni passo inserisco un numero $1, 2, ..., n^2$ nella prima casella libera del quadrato. Delego al passo successivo il riempimento delle successive caselle
- ▶ Che cosa mi rappresenta il "livello" i-esimo?
 - Il livello rappresenta la casella i-esima del quadrato che devo riempire

- Come imposto in generale la ricorsione?
 - Ad ogni passo inserisco un numero $1, 2, ..., n^2$ nella prima casella libera del quadrato. Delego al passo successivo il riempimento delle successive caselle
- Che cosa mi rappresenta il "livello" i-esimo?
 - Il livello rappresenta la casella i-esima del quadrato che devo riempire
- Qual è il livello massimo?
 - $\rightarrow n^2$, l'ultima casella

- ▶ Com'è fatta una soluzione parziale i-esima?
 - Quadrato riempito fino alla casella i-esima

I	2	3
4	5	

- ▶ Com'è fatta una soluzione parziale i-esima?
 - Quadrato riempito fino alla casella i-esima

I	2	3
4	5	

- ▶ Com'è fatta una soluzione completa?
 - Il quadrato completo di tutti numeri $1, 2, ..., n^2$

I	2	3
4	5	6
7	8	9

- ▶ Come viene avviata la ricorsione (livello 0)?
 - La ricorsione inizia al livello 0 con il quadrato vuoto

- Come viene avviata la ricorsione (livello 0)?
 - La ricorsione inizia al livello 0 con il quadrato vuoto
- Come genero Parziale(i+1) partendo da Parziale(i)?

```
for (i = 0; i < n*n; i++)
   if (!parziale.contains(i))
          parziale.add(i)
```

Identificare le soluzioni valide

- Data una soluzione parziale, come sapere se è valida?
 - Non esistono soluzioni parziali valide

Identificare le soluzioni valide

- Data una soluzione parziale, come sapere se è valida?
 - Non esistono soluzioni parziali valide
- Data una soluzione **completa**, come sapere se è valida?
 - Calcolo la somma del numero di righe, di colonne e delle diagonali. Confronto con magic number

Identificare le soluzioni valide

- Data una soluzione parziale, come sapere se è valida?
 - Non esistono soluzioni parziali valide
- Data una soluzione completa, come sapere se è valida?
 - Calcolo la somma del numero di righe, di colonne e delle diagonali. Confronto con magic number
- Cosa devo fare con le soluzioni complete valide?
 - Fermarmi alla prima?
 - Generarle e memorizzarle tutte?
 - Contarle?

Progettare le strutture dati

- Qual è la struttura dati per memorizzare una soluzione (parziale o completa)?
 - ArrayList<Integer>

Progettare le strutture dati

- Qual è la struttura dati per memorizzare una soluzione (parziale o completa)?
 - ArrayList<Integer>
- Qual è la struttura dati per memorizzare lo stato della ricerca (della ricorsione)?
 - Variabile intera livello.

Scheletro del codice

```
// Struttura di un algoritmo ricorsivo generico
void recursive (..., level) {
 // E -- sequenza di istruzioni che vengono eseguite sempre
 // Da usare solo in casi rari (es. Ruzzle)
 doAlways();
 // A
  if (condizione di terminazione) {
    doSomething;
    return;
 // Potrebbe essere anche un while ()
  for () {
    // B
    generaNuovaSoluzioneParziale;
    if (filtro) { // C
      recursive (..., level + 1);
    // D
    backtracking;
}
```

Riempire lo scheletro (del codice)

Blocco	Frammento di codice
Α	
В	
С	
D	
Е	

```
// Struttura di un algoritmo ricorsivo
void recursive (..., level) {
 // E -- sequenza di istruzioni che ve
 // Da usare solo in casi rari (es. Ru
 doAlways();
 // A
 if (condizione di terminazione) {
   doSomething;
    return;
 // Potrebbe essere anche un while ()
 for () {
   // B
   generaNuovaSoluzioneParziale;
    if (filtro) { // C
      recursive (..., level + 1);
    // D
    backtracking;
```

Licenza d'uso

 Queste diapositive sono distribuite con licenza Creative Commons "Attribuzione - Non commerciale - Condividi allo stesso modo (CC BY-NC-SA)"

Sei libero:

- di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest'opera

di modificare quest'opera

Alle seguenti condizioni:

Attribuzione — Devi attribuire la paternità dell'opera agli autori originali e in modo tale da non suggerire che essi avallino te o il modo i cui tu usi l'opera.

Non commerciale — Non puoi usare quest'opera per fini commerciali.

- Condividi allo stesso modo Se alteri o trasformi quest'opera, o se la usi per crearne un'altra, puoi distribuire l'opera risultante solo con un licenza identica o equivalente a questa.
- http://creativecommons.org/licenses/by-nc-sa/3.0/