第十二周作业参考解答及补充

作业

1. (习题 3.4.1)

设 p > 2 是素数, $\alpha \in \mathbb{C}$ 是 $f(x) = x^{p-1} + x^{p-2} + \dots + x + 1 \in \mathbb{Q}[x]$ 的根. 证明: 域 $L = \mathbb{Q}[\alpha]$ 的自同构群 G 是一个 p-1 阶的循环群.

proof

由 3.1.5 和 3.1.6, f(x) 的所有根构成循环群, α 是生成元, 因此按定义 $\mathbb{Q}[\alpha]$ 是 f(x) 的分裂域, 由 3.3.14 的注记, 这是一个 Galois 扩张. $|\mathrm{Gal}(L/\mathbb{Q})| = p-1$, 而 $\alpha \mapsto \alpha^i, 1 \leq i \leq p-1$ 恰好为 p-1 个 L/\mathbb{Q} 的自同构. 从而 $\mathrm{Gal}(L/\mathbb{Q}) = \mathbb{F}_p^* \cong \mathbb{Z}/(p-1)\mathbb{Z}$.

注:

用到了结论: 当 p 是素数时, $(\mathbb{Z}/p\mathbb{Z})^* \cong \mathbb{Z}/(p-1)\mathbb{Z}$. 证明这个结论需要一个命题.

命题 设 G 是 Abel 群, 若 $g \in G$ 有最大的有限阶, 则 $\forall h \in G, |h| < \infty \implies |h| |g|$.

这个需要对阶进行一些分析. 按阶的定义可以得到一个常用的等式是 $|g^n| = \frac{|g|}{(n,|g|)} = \frac{[n,|g|]}{n}$, 这里 [a,b] 表示两个正整数的最小公倍数. 根据这个等式可以得到, 若 gh = hg 且 (|g|,|h|) = 1, 则 $|gh| = |g| \cdot |h|$. 下面用反证发证明这个命题.

假设 $|h| \nmid |g|$, 考虑他们的素因子分解, 那么将存在某个素数 p 使得 $|g| = p^m r$, $|h| = p^n s$, (p, r) = (p, s) = 1, m < n. 此时我们计算 $g^{p^m} h^s$ 的阶

$$|g^{p^m}| = \frac{|g|}{(p^m, |g|)} = r,$$

$$|h^s| = \frac{|h|}{(s, |h|)} = p^n,$$

$$(p^n, r) = 1 \implies |g^{p^m} h^s| = |g^{p^m}| |h^s| = p^n r > |g|$$

从而和 g 有最大有限阶矛盾. (这个证明的技巧性还是挺强的, 以上都在教材 4.3 节)

有了这个命题, 由于 $(\mathbb{Z}/p\mathbb{Z})^*$ 是有限群, 从而存在这样的 g 有最大的有限阶, 我们证明 |g| = p-1 即可. 一方面根据 Fermat 小定理 $g^{p-1} = 1$, 因此 $|g| \leqslant p-1$; 另一方面, 任意的 $h \in (\mathbb{Z}/p\mathbb{Z})^*$ 都有 |h| |g|, 因此 $h^{|g|} = 1$, 也就是说多项式 $x^{|g|} - 1$ 在 \mathbb{F}_p 上有 p-1 个根, 那么 $|g| \geqslant p-1$. 从而只能是 |g| = p-1.

2. (习题 3.4.2)

设 $K = \mathbb{Q}$, $L = K[\sqrt[3]{2}]$. 证明: $G = \operatorname{Gal}(L/K) = \{1\}$ (所以 $L^G = L \neq K$). 如果令 $\overline{L} = K[\sqrt[3]{2}, \sqrt{-3}]$, 试证明: $\operatorname{Gal}(\overline{L}/K) \cong S_3$. 并求出中间域 $K \subseteq K[\sqrt{-3}] \subseteq \overline{L}$ 对应的子群 $H \subseteq \operatorname{Gal}(\overline{L}/K)$, 即: 求 $H \subseteq \operatorname{Gal}(\overline{L}/K)$ 使得 $\overline{L}^H = K[\sqrt{-3}]$. (提示: $H = \operatorname{Gal}(\overline{L}/K[\sqrt{-3}]) \cong A_3$.)

proof

该题的后半部分已在上课时讲过.

由 3.3.2, $\sqrt[3]{2}$ 的极小多项式是 x^3-2 , 且三个根中只有 $\sqrt[3]{2} \in L$, 根据 3.3.6, 若 $\sigma \in \operatorname{Gal}(L/K)$, 则 $\sigma(\sqrt[3]{2}) \in L$ 也是 x^3-2 的根, 那么只能是 $\sigma(\sqrt[3]{2}) = \sqrt[3]{2}$, 从而 $\sigma = \operatorname{id}_L$.

类似 3.1.14, 3.3.4, 同样的分析 degree 的操作可以得到 $[\overline{L}:K]=3\cdot 2=6$. 注意到 $\zeta_3=e^{\frac{2\pi i}{3}}=-\frac{1}{2}+\frac{\sqrt{-3}}{2}$, 因此 $\overline{L}=K[\sqrt[3]{2},\sqrt{-3}]=K[\sqrt[3]{2},\zeta_3]$, 正好是 x^3-2 的分裂域. 由 3.3.14 的注记, \overline{L}/K 是 Galois 扩张. 此时 $\eta\in \mathrm{Gal}(\overline{L}/K)$, 对两个中间域 $K[\sqrt[3]{2}]$ 和 $K[\zeta_3]$ 分别考虑 3.3.6, $\eta(\sqrt[3]{2})=\sqrt[3]{2}\zeta_3^i, i=0,1,2$, $\eta(\zeta)=\zeta^j, j=1,2$. 那么记

$$\alpha: L \to L, \sqrt[3]{2} \mapsto \sqrt[3]{2}\zeta_3, \zeta_3 \mapsto \zeta_3, \beta: L \to L, \sqrt[3]{2} \mapsto \sqrt[3]{2}, \zeta_3 \mapsto \zeta_3^2$$

根据 1.3.5 可以验证 α, β 正是生成元, $Gal(\overline{L}/K) \cong S_3$. 而中间域 $K[\sqrt{-3}] = K[\zeta_3]$, 根据 Galois 对应 (教材定理 3.4.2, 定理 4.4.1), $H = Gal(\overline{L}/K[\zeta_3]), \overline{L}^H = K[\zeta_3]$. 那么 $|[G:H]| = [K[\zeta_3]:K] = 2$, $G/H = \mathbb{Z}/2\mathbb{Z}$; $|H| = [\overline{L}:K[\zeta]] = 3$, $H = A_3$.

注:

阶数 3 以下的群是唯一的, 直接分析乘法表就行, 4 阶群有两种 (4.2.7).