#### Primal-Dual Block Generalized Frank-Wolfe

Qi Lei\*, Jiacheng Zhuo\*, Constantine Caramanis\*, Inderjit S. Dhillon\*,† and Alexandros G. Dimakis\*.

\* University of Texas at Austin

† Amazon

## Problem Setup

Convex-concave saddle point Problem (with constraints):

$$\min_{oldsymbol{x} \in \mathcal{C} \subset \mathbb{R}^d} \max_{oldsymbol{y} \in \mathbb{R}^n} \left\{ L(oldsymbol{x}, oldsymbol{y}) = f(oldsymbol{x}) + oldsymbol{y}^{ op} A oldsymbol{x} - g(oldsymbol{y}) 
ight\}$$

Why is this formulation important?

Many machine learning applications

# Machine Learning Applications with Convex-Concave Formulations

#### **Empirical Risk Minimization**





#### Reinforcement Learning



### Robust Optimization



## Problem Setup

Convex-Concave Saddle Point Problem:

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \max_{oldsymbol{y} \in \mathbb{R}^n} \left\{ L(oldsymbol{x}, oldsymbol{y}) = f(oldsymbol{x}) + oldsymbol{y}^ op Aoldsymbol{x} - g(oldsymbol{y}) 
ight\}$$

Why is this formulation important?

- Many machine learning applications
- To exploit special structure induced by the constraints

## Observations and Challenges On Frank-Wolfe algorithm

Lessons from simple constrained minimization problems:

#### Observations.

Frank-Wolfe conducts partial updates:

- 1. For  $\ell_1$  ball constraint, FW conducts **1-sparse** update
- 2. For nuclear norm ball constraint, FW conducts rank-1 update

### Challenges to get full benefits from FW and the partial updates.

- 1. FW yield sublinear convergence even for strongly convex problems
- 2. Even with partial updates, FW requires to compute the full gradient. (For big data setting, **per iteration complexity is the same with projected gradient descent**. )

## Tackle challenge 1: To achieve linear convergence

• Continue to look at simple minimization problems:

$$\min_{\boldsymbol{x} \in \mathbb{R}^d, \|\boldsymbol{x}\|_1 \leq \tau} \left\{ f(\boldsymbol{x}) \right\}$$

| Method       | iteration complexity      | # update per iteration |
|--------------|---------------------------|------------------------|
| Projected GD | $\kappa \log \frac{1}{e}$ | d (feature dimension)  |
| Frank-Wolfe  | $\frac{1}{e}$             | 1                      |
| Ours         | $\kappa \log \frac{1}{e}$ | s (optimal sparsity)   |

## Tackle challenge 1: block Frank-Wolfe

- 1: **Input:** Data matrix  $A \in \mathbb{R}^{n \times d}$ , label matrix b, iteration T.
- 2: **Initialize:**  $x_1 \leftarrow 0$ .
- 3: **for**  $t = 1, 2, \dots, T 1$  **do**

4:

ProjectedGD: 
$$\Delta x_t \leftarrow \underset{\|\Delta x\|_1 \leq \tau}{\operatorname{argmin}} \{ \langle \nabla f(x_t), \Delta x \rangle + \frac{\beta}{2} \eta \|\Delta x - x_t\|_2^2 \}$$

5:

$$x_{t+1} \leftarrow (1-\eta)x_t + \eta \Delta x_t$$

- 6: end for
- 7: **Output:** *x*<sub>*T*</sub>

## Tackle challenge 1: block Frank-Wolfe

- 1: **Input:** Data matrix  $A \in \mathbb{R}^{n \times d}$ , label matrix b, iteration T.
- 2: **Initialize:**  $x_1 \leftarrow 0$ .
- 3: **for**  $t = 1, 2, \dots, T 1$  **do**

4:

ProjectedGD: 
$$\Delta x_t \leftarrow \underset{\|\Delta x\|_1 \leq \tau}{\operatorname{argmin}} \{ \langle \nabla f(x_t), \Delta x \rangle + \frac{\beta}{2} \eta \|\Delta x - x_t\|_2^2 \}$$

FW: 
$$\Delta x_t \leftarrow \underset{\|\Delta x\|_1 \leq \tau}{\operatorname{argmin}} \{ \langle \nabla f(x_t), \Delta x \rangle \}$$

5:

$$x_{t+1} \leftarrow (1-\eta)x_t + \eta \Delta x_t$$

- 6: end for
- 7: Output:  $x_T$

## Tackle challenge 1: block Frank-Wolfe

- 1: **Input:** Data matrix  $A \in \mathbb{R}^{n \times d}$ , label matrix b, iteration T.
- 2: **Initialize:**  $x_1 \leftarrow 0$ .
- 3: **for**  $t = 1, 2, \dots, T 1$  **do**

4:

ProjectedGD: 
$$\Delta x_t \leftarrow \underset{\|\Delta x\|_1 \leq \tau}{\operatorname{argmin}} \{ \langle \nabla f(x_t), \Delta x \rangle + \frac{\beta}{2} \eta \|\Delta x - x_t\|_2^2 \}$$

FW: 
$$\Delta x_t \leftarrow \underset{\|\Delta x\|_1 \leq \tau}{\operatorname{argmin}} \{ \langle \nabla f(x_t), \Delta x \rangle \}$$

ours: 
$$\Delta x_t \leftarrow \underset{\|\Delta x\|_1 \leq \tau, \|\Delta x\|_0 \leq s}{\operatorname{argmin}} \{ \langle \nabla f(x_t), \Delta x \rangle + \frac{\beta}{2} \eta \|\Delta x - x_t\|_2^2 \}$$

5:

$$x_{t+1} \leftarrow (1-\eta)x_t + \eta \Delta x_t$$

- 6: end for
- 7: Output:  $x_T$

# Tackle challenge 2: reduce iteration complexity from partial updates

$$\min_{\boldsymbol{x} \in C \subset \mathbb{R}^d} \max_{\boldsymbol{y} \in \mathbb{R}^n} \left\{ L(\boldsymbol{x}, \boldsymbol{y}) = f(\boldsymbol{x}) + \boldsymbol{y}^{\top} A \boldsymbol{x} - g(\boldsymbol{y}) \right\}$$

Write  $\mathbf{w} = A\mathbf{x}$  and  $\mathbf{z} = A^{\top}\mathbf{y}$ . For each iteration.

Remark 1: take k = ns/d the iteration complexity is  $\mathcal{O}(sn)$ . Remark 2: the advantage comes from the fact that gradient could be maintained with the bilinear form

# Tackle challenge 2: reduce iteration complexity from partial updates

$$\min_{\boldsymbol{x} \in C \subset \mathbb{R}^d} \max_{\boldsymbol{y} \in \mathbb{R}^n} \left\{ L(\boldsymbol{x}, \boldsymbol{y}) = f(\boldsymbol{x}) + \boldsymbol{y}^\top A \boldsymbol{x} - g(\boldsymbol{y}) \right\}$$

Maintain  $\mathbf{w} = A\mathbf{x}$  and  $\mathbf{z} = A^{\mathsf{T}}\mathbf{y}$ .

For each iteration,

| Operation                                                                     |                   |  |
|-------------------------------------------------------------------------------|-------------------|--|
| Compute full gradient $\partial_{\mathbf{x}} L = \mathbf{z} + f'(\mathbf{x})$ |                   |  |
| Conduct BlockFW on $x$ to find $s$ -sparse update $\Delta x$                  |                   |  |
| $oldsymbol{x}^+ \leftarrow (1-\eta)oldsymbol{x} + \eta \Delta oldsymbol{x}$   | $\mathcal{O}(d)$  |  |
| $oldsymbol{w}^+ \leftarrow (1-\eta)oldsymbol{w} + \eta A \Delta oldsymbol{x}$ | $\mathcal{O}(sn)$ |  |
| Greedy block- $k$ coordinate ascent for ${m y}$ and ${m z}$                   |                   |  |

Remark 1: take k = ns/d the iteration complexity is  $\mathcal{O}(sn)$ . Remark 2: the advantage comes from the fact that gradient could be maintained with the bilinear form

## Time complexity comparisons

| Algorithm                 | Per Iteration Cost                                      | Iteration Complexity                                |
|---------------------------|---------------------------------------------------------|-----------------------------------------------------|
| Frank Wolfe               | $\mathcal{O}(nd)$                                       | $\mathcal{O}(rac{1}{\epsilon})$                    |
| Accelerated PGD           | $\mathcal{O}(nd)$                                       | $\mathcal{O}(\sqrt{\kappa}\log \frac{1}{\epsilon})$ |
| (Nesterov et al. 2013)    |                                                         |                                                     |
| SVRG (Rie et al. 2013)    | $\mathcal{O}(nd)$                                       | $\mathcal{O}((1+\kappa/n)\log rac{1}{\epsilon})$   |
| SCGS (Lan et al. 2016)    | $\mathcal{O}(\kappa^2 \frac{\# i ter^3}{\epsilon^2} d)$ | $\mathcal{O}(rac{1}{\epsilon})$                    |
| STORC (Hazan et al. 2016) | $\mathcal{O}(\kappa^2 d + nd)$                          | $\mathcal{O}(\log \frac{1}{\epsilon})$              |
| Primal Dual FW (ours)     | $\mathcal{O}(\mathit{ns})$                              | $\mathcal{O}((1+\kappa/n)\log\frac{1}{\epsilon})$   |

Remark 1: s is the sparsity of primal optimal induced by  $\ell_1$  constraint. Remark 2: for algorithm and complexity for nuclear norm constraints, refer to our paper to details.

### **Experiments**

Compared methods: (1) Accelerated ProjectedGradient Descent (Acc PG) (2) Frank-Wolfe algorithm (FW) (3) Stochastic Variance ReducedGradient (SVRG) (4) Stochastic Conditional Gradient Sliding (SCGS) and (5) StochasticVariance-Reduced Conditional Gradient Sliding (STORC)

