Directions:

- You should be able to answer all of these questions without the use of a calculator.
- You must show your work or demonstrate your reasoning to earn full credit. If you only write down the answer, you will only earn half-credit.
- For all graphing questions, your graph must be labeled. This includes labelling the axes, asymptotes, and at least a coupls of points.
- 1. Evaluate $4^{-3/2}$.
- 2. Find the exact value of $\log_3 \frac{1}{27}$.
- 3. Find the exact value of $\sin(4\pi/3)$.
- 4. Simplify the expression $\left(\frac{4x^3y}{x^5y^{7/2}}\right)^2$. Write your answer without negative exponents.
- 5. Write an equation in slope-intercept form y = mx + b for the line that passes through the points (-3,7) and (3,-9).
- 6. Expand and simplify $(5x+1)^2 8(x-2)$.
- 7. Use the graph of f(x) below to estimate the value(s) of x such that f(x) = 2.

- 8. For the function $f(x) = \frac{2}{x}$, find the expression f(12+h) f(12). Simplify your answer and write your answer as a single fraction.
- 9. Given the piecewise defined function below, determine the value(s) of x such that f(x) = -20.

$$f(x) = \begin{cases} 2x+3 & x < 0 \\ x^3 & x \ge 0 \end{cases}.$$

- 10. Solve for *x* in the equation $x^2 + 3x = 10$.
- 11. Solve for *x* in the equation $e^{4-7x} = \frac{1}{2}$.

- 12. Find all solutions to the equation $2\cos(\theta) = 1$ in the interval $[0, 2\pi]$.
- 13. A table of values for the function f(x) is given below. Use the table to determine $f^{-1}(5)$.

x									
f(x)	100	50	25	10	5	2	1	-1	-1/5

- 14. Solve the inequality $16 x^2 \le 0$. Give your answer in interval notation.
- 15. Determine the domain of $f(x) = \ln(x-4)$. Give your answer in interval notation.
- 16. In the triangle below, $\sin \theta = \frac{2}{5}$. Determine $\cos \theta$.

Sketch graphs of the following functions. Label the *x*- and *y*-intercepts, if they exist. Draw in any asymptotes using dashed lines, and write the equation of the asymptote, if it exists.

- 17. $f(x) = (x+1)^3$
- 18. $f(x) = 1 + e^x$
- 19. $y = \cos(x)$ on the interval $[-2\pi, 2\pi]$
- 20. Given the graph of f(x) below, draw the graph of -2f(x).

