Parishram (2025)

Physics

Basic Mathematics

DPP: 5

- **Q1** If $\vec{F}=(10\hat{i}-10\hat{j})$ and $\vec{r}=(5\hat{i}-3\hat{j})$, then calculate torque $(\vec{ au} = \vec{r} imes \vec{F})$.
 - (A) $-38\hat{j}$
 - (B) $-20\hat{k}$
 - (C) $4\hat{i}-10\hat{j}+0\hat{k}$
 - (D) $5\hat{i}-3\hat{j}+0\hat{k}$
- Q2 Find a unit vector perpendicular to both the vectors $(2\hat{i}+3\hat{j}+\hat{k})$ and $(\hat{i}-\hat{j}+2\hat{k})$.
 - (A) $(7\hat{i} + 3\hat{j} 5\hat{k})/\sqrt{83}$
 - (B) $(7\hat{i}-3\hat{j}-5\hat{k})/\sqrt{83}$
 - (C) $(7\hat{i} + 3\hat{j} + 5\hat{k})/\sqrt{83}$
 - (D) $(-7\hat{i} + 3\hat{j} 5\hat{k})/\sqrt{83}$
- following Q3 Which of the unit vector perpendicular to \vec{A} and \vec{B} ?
 - (A) $\frac{\hat{A} \times \hat{B}}{AB \sin \theta}$ (B) $\frac{\hat{A} \times \hat{B}}{AB \cos \theta}$
 - $AB\cos\theta$
 - (C) $\vec{A} \times \vec{B}$
 - (D) $\frac{\overline{AB}\sin\theta}{AB\cos\theta}$
- **Q4** If $\vec{A} imes \vec{B} = \vec{C}$, then which of the following statements is wrong
 - (A) $ec{C} \perp ec{A}$
 - (B) $ec{C} \perp ec{B}$
 - (C) $ec{C} \perp (ec{A} + ec{B})$
 - (D) $\vec{C} \perp (\vec{A} \times \vec{B})$
- **Q5** The angle between the vectors \vec{A} and \vec{B} is θ . The value of the triple product $\vec{A} \cdot (\vec{B} \times \vec{A})$ is (A) A^2B

 - (B) Zero
 - (C) $A^2B\sin\theta$
 - (D) $A^2B\cos\theta$

- **Q6** If $\vec{A} imes \vec{B} = \vec{B} imes \vec{A}$, then the angle between \vec{A} and $ec{B}$ is
 - (A) $\frac{\pi}{2}$
 - (B) $\frac{\pi}{3}$
 - (C) π
 - (D) $\frac{\pi}{4}$
- **Q7** A vector \vec{A} points vertically upward and \vec{B} points towards north. The vector product A imes B is
 - (A) Zero
 - (B) Along west
 - (C) Along east
 - (D) Vertically downward
- Q8 Area of a parallelogram, whose diagonals are $3\hat{i}+\hat{j}-2\hat{k}$ and $\hat{i}-3\hat{j}+4\hat{k}$ will be:
 - (A) 14 unit
 - (B) $5\sqrt{3}$ unit
 - (C) $10\sqrt{3}$ unit
 - (D) $20\sqrt{3}$ unit
- **Q9** If $|\vec{A} imes \vec{B}| = \sqrt{3} \vec{A} \cdot \vec{B}$, then the value of $|ec{A} + ec{B}|$ is
 - (A) $\left(A^2 + B^2 + \frac{AB}{\sqrt{3}}\right)^{1/2}$

 - (B) $\left(A^2+B^2+\sqrt{3}AB\right)^{1/2}$ (C) $\left(A^2+B^2+\sqrt{3}AB\right)^{1/2}$ (D) $\left(A^2+B^2+AB\right)^{1/2}$
- Q10 What is the value of linear velocity, if $ec{\omega}=3\hat{i}-4\hat{j}+\hat{k}$ and $ec{r}=5\hat{i}-6\hat{j}+6\hat{k}$
 - (A) $6\hat{i}-2\hat{j}+3\hat{k}$
 - (B) $6\hat{i}-2\hat{j}+8\hat{k}$
 - (C) $4\hat{i}-13\hat{j}+6\hat{k}$
 - (D) $-18\hat{i} 13\hat{i} + 2\hat{k}$

Answer Key

Q1	(B)	Q6	(C)
Q2	(B)	Q7	(B)
Q3	(C)	Q8	(B)
Q4	(D)	Q9	(D)
Q5	(B)	Q10	(D)

Hints & Solutions

Note: scan the QR code to watch video solution

Q1 Text Solution:

Here we have

Here we have
$$\overrightarrow{F}=\left(10\hat{i}-10\hat{j}
ight)$$
 $\overrightarrow{r}=\left(5\hat{i}-3\hat{j}
ight)$ $\overrightarrow{r}=\overrightarrow{r}\times\overrightarrow{F}$ $=\left(5\hat{i}-3\hat{j}
ight)\times\left(10\hat{i}-10\hat{j}
ight)$ $=-50\hat{k}-30\left(-\hat{k}
ight)$ $=-50\hat{k}+30\hat{k}=-20\hat{k}$

Video Solution:

Q2 Video Solution:

Q3 Video Solution:

Q4 Video Solution:

Q5 Video Solution:

Q6 Video Solution:

Q7 Video Solution:

Q8 Video Solution:

Q9 Video Solution:

Q10 Video Solution:

