

Vorlesung 10 - Verbände

Diskrete Strukturen (WS 2024-25)

Łukasz Grabowski

Mathematisches Institut

Wo sind wir im Modul?

- · Gemacht:
 - ▶ Logik
 - ▶ Mengenlehre
 - ► Insbesondere: Relationen, Äquivalenzrelationen, Funktionen, Ordnungsrelationen, Kardinalität
- Ab jetzt: Verschiedene Strukturen die in Anwendungen in Mathematik und Informatik wichtig sind.

Diskrete Strukturen 1/16

• Das Supremum $\sup X$ von X ist die kleinste obere Schranke für X, also das kleinste Element von $\uparrow X$.

• Sei (M, \prec) eine teilweise geordnete Menge und $X \subseteq M$.

- Das Infimum $\inf X$ von X ist die größte untere Schranke für X, also das größte Element von $\downarrow X$.
- Suprema/Infima existieren nicht immer. Als Beispiel betrachten wir

 R mit der
 üblichen Ordnungsrelation. Dann

 R selbst hat kein Supremum und kein Infimum.
- Noch ein Beispiel: Die Menge M von allen endlichen Teilmengen von $\mathbb N$, mit der Teilmengerelation \subseteq . Dann hat M kein Supremum in M.
- Sei M eine Menge, und sei $X \subset \mathcal{P}(\mathcal{M})$. Dann X hat Supremum und Infimum in $\mathcal{P}(\mathcal{M})$, und es gilt $\sup X = \bigcup X$, $\inf X = \bigcap X$.
- Dieser Satz motiviert die folgende Notation: Sei (M, \subseteq) eine geordnete Menge, und $x, y \in M$. Dann schreiben wir $x \vee y := \sup(\{x,y\}), \ x \wedge y := \inf(\{x,y\}).$

- (M,\subseteq) heißt Verband gdw. für alle $x,y\in M$ gilt dass $x\vee y$ und $x\wedge y$ existieren.
- (M,\subseteq) heißt vollständiger Verband gdw. für alle $X\subseteq M$ gilt dass $\sup X$ und $\inf X$ existieren.

Beispiele

- (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{Q}, \leq) und (\mathbb{R}, \leq) sind alle Verbände. Sie sind alle nicht vollständig.
- Für jede Menge M gilt dass $(\mathcal{P}(\mathcal{M}),\subseteq)$ ist ein vollständiger Verband.
- vollstandig gdw. M ist eine endliche Menge.

• Sei $Q \subset \mathcal{P}(\mathcal{M})$ die Menge von allen endlichen Mengen. Dann Q is ein Verband. Q ist

• Jeder vollständiger Verband $\mathcal M$ hat das kleinste und das grosste Element. Sie sind jeweils $\inf \mathcal M$ und $\sup \mathcal M$.

Satz. Jeder endliche Verband ist vollständig.

Beweis.

- Sei (M, \preceq) ein Verband. Wir beweisen durch Induktion über n = |X|: Für jede endliche nicht-leere Teilmenge $X \subseteq M$ existiert $\sup X$.
- (Ähnlich mit $\inf X$).
- Induktionsanfang: Sei n=1=|X| und $x\in X$. Dann ist $x\preceq x$ und für alle oberen Schranken z von X gilt $x\preceq z$. Deswegen ist x die kleinste obere Schranke, also $x=\sup X$.
- Sei $n \in \mathbb{N}_+$ beliebig.
 - ▶ Induktionshypothese: Für jedes $X \subseteq M$ mit |X| = n existiert $\sup X$.
 - ▶ Induktionsbehauptung: Für jedes $X \subseteq M$ mit |X| = n + 1 existiert $\sup X$.

Satz. Jeder endliche Verband ist vollständig.

Beweis. (Fortzetzung)

- Sei $X \subseteq M$ mit |X| = n + 1 und $z \in X$.
- Gemäß Induktionshypothese existiert ein $y = \sup(X \setminus \{z\})$.
- Wir zeigen jetzt, dass $z \vee y = \sup X$.
 - Für alle $x \in X$ gilt $x \leq z \vee y$. Deswegen ist $z \vee y$ eine obere Schranke für X.
 - ▶ Sei $m \in M$ eine obere Schranke für X, so dass für alle $x \in X$ gilt $x \leq m$. Also auch $z \leq m$ und $y \leq m$. Damit folgt auch $z \vee y \leq m$, also ist $z \vee y$ die kleinste obere Schranke.
 - ▶ Dies zeigt dass $z \lor y = \sup X$.

• $x \lor y = y \lor x$ und $x \land y = y \land x$ Kommutativität • $x \lor (y \lor z) = (x \lor y) \lor z$ und $x \land (y \land z) = (x \land y) \land z$ Assoziativität

Satz. Für jeden Verband (M, \geq) und alle $x, y, z \in M$ gelten die folgende Eigen-

• $x \lor (x \land y) = x$ und $x \land (x \lor y) = x$ **Absorption Beweis.** Als Beispiel, beweisen wir dass $x \wedge (y \wedge z) = (x \wedge y) \wedge z$.

• $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y \wedge z$. Also $x \wedge (y \wedge z) \geq x$ und $x \wedge (y \wedge z) \geq y$ und $x \wedge (y \wedge z) > z$.

schaften.

- Damit sehen wir $x \wedge (y \wedge z) \geq x \wedge y$, und deswegen
 - $x \wedge (y \wedge z) \geq (x \wedge y) \wedge z$.

Diskrete Strukturen | Charakterisierung von Verbänden durch die Operationen ∨ und ∧

- Ähnlich zeigen wir $(x \wedge y) \wedge z \geq x \wedge (y \wedge z)$. Deswegen $(x \wedge y) \wedge z = x \wedge (y \wedge z)$,

Ein Verband (M,\subseteq) ist distributiv gdw. für alle $x,y,z\in M$ gilt

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

und

$$x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z)$$

Satz. Jede total geordnete Menge (M, \preceq) ist ein distributiver Verband.

Beweis.

- Wir müssen zeigen dass ∨ und ∧ existieren, und dass die Distributivität gilt
- Supremum: Für alle $x, y \in M$ gilt $x \preceq y$ oder $y \preceq x$.
- Ohne Beschränkung der Allgemeinheit (oBdA) sei $x \leq y$. Dann ist y eine obere Schranke für $\{x, y\}$. Sei z eine beliebige obere Schranke für $\{x, y\}$. Dann gilt $y \leq z$ und damit ist y die kleinste obere Schranke für $\{x, y\}$. D.h. $y = x \vee y$.
- Infimum: Ähnlich.

Satz. Jede total geordnete Menge (M, \preceq) ist ein distributiver Verband.

Beweis. (Fortzetzung.)

• Distributivität: Seien $x,y,z\in M$. Wir zeigen z.B. dass $x\wedge (y\vee z)=(x\wedge y)\vee (x\wedge z)$.

Ordnung	$x \wedge (y \vee z)$	$(x \wedge y) \vee (x \wedge z)$
$x \leq y \leq z$	x	x
$x \leq z \leq y$	x	x
$y \leq x \leq z$	x	x
$y \leq z \leq x$	z	z
$z \leq x \leq y$	x	x
$z \preceq y \preceq x$	y	y

- Wir betrachten jetzt die folgende Frage: Inwieweit erlauben die Operationen \vee und \wedge die Wiederherstellung der Ordnungsrelation?
- Wir betrachten also eine Menge M zusammen mit zwei Funktionen $\vee, \wedge : M \times M \to M$.
- Der nächste Satz sagt, dass, wenn wir annehmen, dass diese Operationen sind kommutativ, assoziativ und abssorptiv, dann stammen sie aus einer Ordnungsrelation stammen.

Satz. Sei (M, \sqcup, \sqcap) eine Menge zusammen mit zwei Funktionen $\sqcup, \sqcap \colon M \times M \to M$. Wir nehmen an, dass für alle $x, y, z \in M$ das Folgende gilt:

- $x \sqcup y = y \sqcup x \text{ und } x \sqcap y = y \sqcap x$
- $x \sqcup (x \sqcap y) = x \text{ und } x \sqcap (x \sqcup y) = x$
- Dann ist (M, \preceq) ein Verband, wobei

 $x \sqcup (y \sqcup z) = (x \sqcup y) \sqcup z \text{ und } x \sqcap (y \sqcap z) = (x \sqcap y) \sqcap z$

$$\preceq = \{(x, y) \in M \times M \mid x = x \cap y\}$$
.

Charakterisierung von Verbänden durch die Operationen ∨ und ∧ Diskrete Strukturen

(Kommutativität)

(Assoziativität)

(Absorption)

Beweis. Für alle $x,y\in M$ definieren wir $x\preceq y$ gdw. $x=x\sqcap y$. Wir beweisen zunächst die Eigenschaften einer Ordnungsrelation.

• Reflexivität: Für jedes $x \in M$ gilt nach zweimaligem Anwenden der Absorption

$$x = x \sqcap (x \sqcup (x \sqcap x)) = x \sqcap x ,$$

also $x \leq x$.

• Antisymmetrie: Seien $x \leq y$ und $y \leq x$. Es gelten $x = x \sqcap y$ und $y = y \sqcap x$.

Mit Hilfe der Kommutativität gilt dann

$$x = x \cap y = y \cap x = y$$
.

Beweis. (Fortsetzung)

• Transitivität: Seien $x \leq y$ und $y \leq z$. Es gelten $x = x \sqcap y$ und $y = y \sqcap z$. Unter Nutzung der Assoziativität erhalten wir

$$x = x \cap y = x \cap (y \cap z) = (x \cap y) \cap z = x \cap z$$

und damit $x \prec z$.

Wir beweisen nun noch die Existenz der Suprema (Infima ähnlich). Seien $x, y \in M$. Wir zeigen, dass $x \sqcup y$ das Supremum von $\{x, y\}$ ist.

• Obere Schranke: Es gilt $x=x\sqcap(x\sqcup y)$ und damit $x\preceq x\sqcup y$. Ebenso gilt $y=y\sqcap(y\sqcup x)$ und damit $y\preceq x\sqcup y$,

Beweis. (Fortsetzung)

• Kleinste obere Schranke: Sei $z \in M$ mit $x \preceq z$ und $y \preceq z$, also $x = x \sqcap z$ und $y = y \sqcap z$. Wir folgern zunächst mit Absorption und Kommutativität

$$x \sqcup z = (x \sqcap z) \sqcup z = z$$
 und $y \sqcup z = (y \sqcap z) \sqcup z = z$.

Damit ergibt sich nun

$$(x \sqcup y) \sqcap z = (x \sqcup y) \sqcap (x \sqcup z)$$

$$= (x \sqcup y) \sqcap (x \sqcup (y \sqcup z))$$

$$= (x \sqcup y) \sqcap ((x \sqcup y) \sqcup z) = (x \sqcup y)$$

und damit $(x \sqcup y) \preceq z$.

16 / 16

VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

Łukasz Grabowski

Mathematisches Institut

grabowski@math.uni-leipzig.de