Asymptotic Notations

Introduction

- In mathematics, computer science, and related fields, **big O notation** describes the limiting behavior of a function when the argument tends towards a particular value or infinity, usually in terms of simpler functions. Big O notation allows its users to simplify functions in order to concentrate on their growth rates: different functions with the same growth rate may be represented using the same O notation.
- The time complexity of an algorithm quantifies the amount of time taken by an algorithm to run as a function of the size of the input to the problem. When it is expressed using big O notation, the time complexity is said to be described asymptotically, i.e., as the input size goes to infinity.

Asymptotic Complexity

- Running time of an algorithm as a function of input size n for large
 n.
- Expressed using only the highest-order term in the expression for the exact running time.
 - Instead of exact running time, say $\Theta(n^2)$.
- Describes behavior of function in the limit.
- Written using Asymptotic Notation.
- The notations describe different rate-of-growth relations between the defining function and the defined set of functions.

O-notation

For function g(n), we define O(g(n)), big-O of n, as the set:

```
O(g(n)) = \{f(n) :

\exists positive constants c and n_{0}, such that \forall n \geq n_{0}, we have 0 \leq f(n) \leq cg(n)
```

Intuitively: Set of all functions whose *rate of growth* is the same as or lower than that of g(n).

g(n) is an asymptotic upper bound for f(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n)).$$

 $\Theta(g(n)) \subset O(g(n)).$

Ω -notation

For function g(n), we define $\Omega(g(n))$, big-Omega of n, as the set:

```
\Omega(g(n)) = \{f(n) :
\exists positive constants c and n_{0}, such that \forall n \geq n_{0}, we have 0 \leq cg(n) \leq f(n)\}
```

Intuitively: Set of all functions whose *rate of growth* is the same as or higher than that of g(n).

g(n) is an asymptotic lower bound for f(n).

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n)).$$

 $\Theta(g(n)) \subset \Omega(g(n)).$

9-notation

For function g(n), we define $\Theta(g(n))$, big-Theta of n, as the set:

```
\Theta(g(n)) = \{f(n) :
\exists positive constants c_1, c_2, and n_0, such that \forall n \geq n_0, we have 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n)
\}
```

Intuitively: Set of all functions that have the same *rate of growth* as g(n).

g(n) is an asymptotically tight bound for f(n).

Definitions

- Upper Bound Notation:
 - f(n) is O(g(n)) if there exist positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$
 - Formally, $O(g(n)) = \{ f(n) : \exists positive constants c and <math>n_0$ such that $f(n) \le c \cdot g(n) \forall n \ge n_0$
 - Big O fact: A polynomial of degree k is $O(n^k)$
- Asymptotic lower bound:
 - f(n) is $\Omega(g(n))$ if \exists positive constants c and n_0 such that $0 \le c \cdot g(n) \le f(n) \ \forall \ n \ge n_0$
- Asymptotic tight bound:
 - f(n) is $\Theta(g(n))$ if \exists positive constants c_1 , c_2 , and n_0 such that c_1 $g(n) \le f(n) \le c_2$ $g(n) \forall n \ge n_0$
 - $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) AND $f(n) = \Omega(g(n))$

Relations Between Θ , O, Ω

o-notation

For a given function g(n), the set little-o:

```
o(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that} \\ \forall n \ge n_0, \text{ we have } 0 \le f(n) < cg(n)\}.
```

f(n) becomes insignificant relative to g(n) as n approaches infinity:

$$\lim_{n\to\infty} [f(n) / g(n)] = 0$$

g(n) is an **upper bound** for f(n) that is not asymptotically tight.

o -notation

For a given function g(n), the set little-omega:

$$\omega(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that } \forall n \geq n_0, \text{ we have } 0 \leq cg(n) < f(n)\}.$$

f(n) becomes arbitrarily large relative to g(n) as n approaches infinity:

$$\lim_{n\to\infty} [f(n)/g(n)] = \infty.$$

g(n) is a **lower bound** for f(n) that is not asymptotically tight.

Comparison of Functions

$$f \leftrightarrow g \approx a \leftrightarrow b$$

$$f(n) = O(g(n)) \approx a \leq b$$

 $f(n) = \Omega(g(n)) \approx a \geq b$
 $f(n) = \Theta(g(n)) \approx a = b$
 $f(n) = o(g(n)) \approx a < b$
 $f(n) = \omega(g(n)) \approx a > b$

Review: Other Asymptotic Notations

Intuitively, we can simplify the above by:

- o() is like < ω () is like >
- O() is like \leq Ω () is like \geq

 \bullet Θ () is like =

A Comparison of Growth-Rate Functions

Common growth rates

Time complexity		Example
O(1)	constant	Adding to the front of a linked list
O(log N)	log	Finding an entry in a sorted array
O(N)	linear	Finding an entry in an unsorted array
O(N log N)	n-log-n	Sorting n items by 'divide-and-conquer'
$O(N^2)$	quadratic	Shortest path between two nodes in a graph
$O(N^3)$	cubic	Simultaneous linear equations
O(2 ^N)	exponential	The Towers of Hanoi problem

 $O(N^2)$

For a short time N^2 is better than $N \log N$

Time

Number of Inputs

Running Times

- "Running time is O(f(n))" \Rightarrow Worst case is O(f(n))
- O(f(n)) bound on the worst-case running time $\Rightarrow O(f(n))$ bound on the running time of every input.
- $\Theta(f(n))$ bound on the worst-case running time $\Rightarrow \Theta(f(n))$ bound on the running time of every input.
- "Running time is $\Omega(f(n))$ " \Rightarrow Best case is $\Omega(f(n))$
- Can still say "Worst-case running time is $\Omega(f(n))$ "
 - Means worst-case running time is given by some unspecified function $g(n) \in \Omega(f(n))$.

Time Complexity Vs Space Complexity

- Achieving both is difficult and we have to make use of the best case feasible
- There is always a trade off between the space and time complexity
- If memory available is large then we need not compensate on time complexity
- If speed of execution is not main concern and the memory available is less then we can't compensate on space complexity.

