Prof. Pablo Rosero. Abstract Algebra: Lesson 1

1 Basic properties of the integers

In this lesson and onwards, we consider \mathbb{Z} to be the set of integers numbers, whereas \mathbb{Z}^+ is the set of strictly positive integers numbers.

Definition 1.1. Let $a, b \in \mathbb{Z}$, with $a \neq 0$, then a is a divisor of b if there is an integer c such that $a \cdot c = b$. We denote this by $a \mid b$.

Remark 1. If *a* does not divide *b*, we write $a \nmid b$.

Theorem 1.1. Let $a, b \in \mathbb{Z} \setminus \{0\}$, there is a unique positive integer d, called the **greatest common divisor of** a **and** b, satisfying

- 1. $d \mid a$ and $d \mid b$.
- 2. *If e* | *a* and *e* | *b* then *e* | *d*.

Remark 2. If *d* is the greatest common divisor of *a* and *b*, we write d = (a, b). In particular, if (a, b) = 1, then *a* and *b* are called coprimes.

Question 1. Why does (a, b) always exist for $a, b \in \mathbb{Z} \setminus \{0\}$?

Theorem 1.2. *If* $a, b \in \mathbb{Z} \setminus \{0\}$ *, there are unique* $q, r \in Z$ *such that*

$$a = qb + r$$
 and $0 \le r < |b|$.

We call q the quotient and r the remainder.

Proof.

Theorem 1.3 (Euclidean Algortihm).

Exercise 1. Compute (1716, 1657) and write this integer as a linear combination of 1716 and 1657.

Definition 1.2. An integer p is prime iff

- (i) p > 1, and
- (ii) the only positive divisors of p are p and 1.

An integer is *composite* iff it not prime.

Remark 3. If *p* is a prime and $b \in \mathbb{Z} \setminus \{0\}$ then

$$(p,b) = \begin{cases} p & \text{if } p|b\\ s & \text{othermerre} \end{cases}$$

Prove this claim.

Exercise 2. Let $I \subseteq \mathbb{Z}$ be such that

- (i) $0 \in I$,
- (ii) if $a, b \in I$, then $a b \in I$,
- (iii) if $a \in I$ and $q \in I$, then $aq \subseteq I$.

Then, there is some nonnegative integer $d \in I$ such that

$$I = \{dk : k \in \mathbb{Z}\}.$$

Remark 4. If $A \subseteq \mathbb{Z}$ and $n \in \mathbb{Z}$, we denote $nA = \{na : a \in A\}$. If $A = \mathbb{Z}$, then $(n) = n\mathbb{Z}$. Thus, this result states that I = (d) for some $d \in I$.

Solution 1.

Theorem 1.4 (Euclid's lemma). Let $a, b \in \mathbb{Z}$. If p is prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.

 \square

Exercise 3. Let $a_1a_2 \cdots a_n \in \mathbb{Z}$. Prove, by induction, that if p is prime and $p \mid a_1a_2 \cdots a_n$, then there is $i \in \{1, \dots, n\}$ such that $p \mid a_i$, i.e., p must divide at least one integer in the product.

The converse of Euclid's lemma is also true.

Proposition 1.1. *Let* p > 1. *If*

$$\forall a, b \in \mathbb{Z} : p \mid ab \implies p \mid a \text{ or } p \mid b$$

then p is prime.

Proof. By contradiction.

Proposition 1.2. *Let* a, b, $c \in Z$. *If*

- (i) (a,c) = 1, and
- (ii) c | ab

then $c \mid b$.

Proof.

Definition 1.3. Let $a, b \in \mathbb{Z}$ with $b \neq 0$. We say $\frac{a}{b}$ is in lowest terms if (a, b) = 1.

Lemma 1.1. Every nonzero rational number equals a fraction in lowest terms.

Proof.

Proposition 1.3. $\sqrt{2}$ *is irrational.*

Proof.

Theorem 1.5 (Fundamental Theorem of Arithmetic).

The following function computes the amount of smaller integers that are coprime to a given integer.

Definition 1.4 (Euler's totient function φ). Define $\varphi \colon \mathbb{Z}^+ \to \mathbb{Z}$ by

$$\varphi(n) = |\{a \le n : (a,n) = 1\}|.$$

Properties.