Algorithmie de l'image Flot Optique

Christophe Tilmant - Vincent Barra (tilmant@isima.fr)

ISIMA - Université Blaise Pascal

ZZ3 F2-F4

Perception du mouvement dans les images

Séquence 2D+t \to Mouvement apparent \leftrightarrow changements de la distribution spatiale des intensités lumineuses .

Champ des vitesses apparentes : flot optique

Estimation du mouvement dans les images

Estimation du mouvement apparent \Rightarrow conservation de certaines propriétés photométriques des objets.

Niveaux de gris ou couleurs ⇒ problème sous-déterminé :

$$I(\mathbf{m}, t) = I(\mathbf{m} - \mathbf{v}t, 0)$$

- $I(\mathbf{m},t)$: niveau de gris de l'image en $\mathbf{m}=(x,y)^T$ au temps t,
- $\mathbf{v} = (u, v)^T$: vecteur vitesse.

Estimation du mouvement dans les images

$$I(\mathbf{m}, t) = I(\mathbf{m} - \mathbf{v}t, 0)$$

Pour de petits déplacements et sous l'hypothèse de différentiabilité spatio-temporelle de la fonction intensité :

$$I_x \cdot u + I_y \cdot v + I_t = \nabla I \cdot \mathbf{v} + I_t = 0$$

 I_x , I_y , I_t : composantes du gradient de I

ightarrow Projection du vecteur vitesse dans la direction du gradient spatial de l'intensité :

Composante normale du vecteur vitesse

Composante tangentielle ⇒ Régularisation

Méthode différentielle de Horn et Schunck

Régularisation globale pour estimer $\mathbf{v}(\mathbf{m},t) = (u(\mathbf{m},t),v(\mathbf{m},t))$

$$\min_{u,v} \int_D (\nabla I \cdot \mathbf{v} + I_t)^2 + \lambda^2 (\|\nabla u\|^2 + \|\nabla v\|^2) d\mathbf{m}$$

 λ : hyperparamètre contrôlant la régularisation.

Schéma numérique itératif au pas de temps \boldsymbol{k}

$$u^{k+1} = \bar{u}^k - \frac{I_x \left[I_x \bar{u}^k + I_y \bar{v}^k + I_t \right]}{\lambda^2 + I_x^2 + I_y^2}$$
$$v^{k+1} = \bar{v}^k - \frac{I_y \left[I_x \bar{u}^k + I_y \bar{v}^k + I_t \right]}{\lambda^2 + I_x^2 + I_y^2}$$

avec $\mathbf{v^0} = (u^0, v^0)$ et . l'opérateur moyenneur.

Méthode différentielle de Lucas et Kanade

Régularisation locale pour estimer $\mathbf{v}(\mathbf{m},t) = (u(\mathbf{m},t),v(\mathbf{m},t))$

$$\min_{u,v} \sum_{\mathbf{m} \in \Omega} W^2(\mathbf{m}) \left[\nabla I(\mathbf{m},t) \cdot \mathbf{v} + I_t(\mathbf{m},t) \right]^2$$

avec Ω voisinage spatial, $W(\mathbf{m})$ fonction de fenêtrage. Le système aux équations normales donne

$$\mathbf{A}^{\mathbf{T}}W^{2}\mathbf{A}\mathbf{v} = \mathbf{A}^{\mathbf{T}}W^{2}\mathbf{b}$$

avec

$$\mathbf{A} = [\nabla I(\mathbf{m}_1), \dots, \nabla I(\mathbf{m}_n)]^T$$

$$\mathbf{W} = diag[W(\mathbf{m}_1), \dots, W(\mathbf{m}_n)]$$

$$\mathbf{b} = -(I_t(\mathbf{m}_1), \dots, I_t(\mathbf{m}_n))^T$$

Méthode différentielle de Lucas et Kanade

Si

$$\mathbf{B} = \mathbf{A}^{\mathbf{T}} W^2 \mathbf{A} = \begin{bmatrix} \sum W^2(\mathbf{m}) I_x^2(\mathbf{m}) & \sum W^2(\mathbf{m}) I_x(\mathbf{m}) I_y(\mathbf{m}) \\ \sum W^2(\mathbf{m}) I_y(\mathbf{m}) I_x(\mathbf{m}) & \sum W^2(\mathbf{m}) I_y^2(\mathbf{m}) \end{bmatrix}$$

et
$$Sp(B) = \{\lambda_1, \lambda_2\}$$

- ① si λ_1, λ_2 grandes : $\mathbf{v} = \mathbf{B}^{-1} \mathbf{A}^T W^2 \mathbf{b}$
- ② si λ_1, λ_2 proches de 0 aucune solution à estimer
- ③ si l'une des λ_i seulement est significativement non nulle, les gradients de l'intensité lumineuse possèdent une direction spatiale privilégiée \Rightarrow vitesse normale estimée