Oefeningen Numerieke Wiskunde

Oefenzitting 3: Veelterminterpolatie

Het doel van deze oefenzitting is de theorie en de algoritmische aspecten van veelterminterpolatie inoefenen. Het bestreken deel van de cursus is *Hoofdstuk 4*, *Veelterminterpolatie*.

Theorie

Gegeven een tabel $\{(x_i, f_i)\}_{i=0}^n$, met $x_i \neq x_j$ als $i \neq j$. De **unieke** interpolerende veelterm van graad n kan op verschillende manieren geschreven worden. In de Lagrange-basis wordt ze geschreven als

$$y_n(x) = l_0(x)f_0 + l_1(x)f_1 + \ldots + l_n(x)f_n,$$

waarbij

$$l_i(x) = \frac{\prod_{k=0, k \neq i}^{n} (x - x_k)}{\prod_{k=0, k \neq i}^{n} (x_i - x_k)}$$

de i-de Lagrangeveelterm van graad n is. In de Newton-basis krijgen we

$$y_n(x) = b_0 + b_1(x - x_0) + \ldots + b_n(x - x_0)(x - x_1) \ldots (x - x_{n-1}),$$

waarbij

$$b_i = f[x_0, x_1, \dots, x_i]$$

de gedeelde differentie is van orde n. In de klassieke basis krijgen we

$$y_n(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

waarbij de coëfficiënten de oplossing zijn van het Vandermonde stelsel

$$\begin{bmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \cdots & x_n^n \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_n \end{bmatrix}.$$

Opgaven

Probleem 1. Beschouw de 2^e -graadsveelterm $f(x) = 2x^2 + 4x - 5$.

- (a) Bereken de interpolerende veelterm $y_1(x)$ in de punten $\{-1, 1\}$ met de methode van Lagrange en met de methode van Newton.
- (b) Stel het Vandermonde stelsel op en ga na dat je oplossing hieraan voldoet.
- (c) Bereken de interpolatiefout $E_1(x)$ met formule (4.10) uit het handboek en maak een grafiek van deze fout. Hoe gedraagt de fout zich buiten het interval [-1, 1]?

Probleem 2. Beschouw dezelfde 2^e -graadsveelterm $f(x) = 2x^2 + 4x - 5$ en herhaal Probleem 1 met de interpolatiepunten $\{-1,0,1\}$ waarbij je voor de methode van Newton de twee soorten tabellen van gedeelde differenties opstelt. Wat is de waarde van $E_2(x)$? Verklaar.

Probleem 3. Beschouw dezelfde 2^e -graadsveelterm $f(x) = 2x^2 + 4x - 5$ en herhaal Probleem 1 met de interpolatiepunten $\{-1,0,0.5,1\}$. Gebruik enkel de methode van Newton en stel de twee soorten tabellen van gedeelde differenties op, waarbij je de tabellen uit Probleem 2 hergebruikt. Verklaar je resultaat.

Probleem 4. Toon aan dat

$$\sum_{i=0}^{n} l_i(x) = 1$$

en dat

$$\sum_{i=0}^{n} l_i(x) x_i^k = x^k$$

onder de veronderstelling dat $k \leq n$. (Hint: zie stelling 3.1 in de cursus.)

Probleem 5. (Toevoegen van een punt) Bewijs

$$y_n(x) = y_{n-1}(x) + (f_n - y_{n-1}(x_n))l_n(x).$$

(Hint: controleer of er aan de interpolatievoorwaarden voldaan is.)

Probleem 6. Toon aan dat $l_i(x)$ ook kan geschreven worden als

$$l_i(x) = \frac{\pi(x)}{\pi'(x_i)(x - x_i)}$$

met
$$\pi(x) = (x - x_0)(x - x_1) \dots (x - x_n).$$

Probleem 7. Veronderstel dat het coëfficiëntenprobleem reeds opgelost is m.b.v. de methode van Newton, i.e., men beschikt over $f[x_0]$, $f[x_0, x_1]$, ..., $f[x_0, ..., x_n]$. Toon aan dat men $y_n(x)$ kan evalueren in een punt met n vermenigvuldigingen en 2n optellingen. Welke methode gebruik je?