Reference Formuale

Focus : (ae, 0)Directrix : $x = \frac{a}{e}$

Parabola (e=1)

Equation:

$$y^2 = 4ax$$

Parametric form : $(at^2, 2at)$

Ellipse (0 < e < 1)

Equation:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Parametric form : $(a\cos t, b\sin t)$

Hyperbola (e > 1)

Equation:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Parametric form : $(a \sec t, b \tan t)$

Group law on Parabola

Given any parabola, there exists an affine transformation that takes it to the curve $y = x^2$.

Figure 1: $R = P \oplus Q$

We define the parametric coordinates of the point R as (r, r^2) . We compare the slopes of the two lines PQ and OR to obtain the co-ordinates of R.

$$\frac{r^2 - o^2}{r - o} = \frac{p^2 - q^2}{p - q}$$
$$r = p + q - o$$

We define a homomorphism from the points on the parabola to R as $\phi((x, x^2)) = x - o$. The map that is defined is a bijection hence it is an isomorphism. The curve shown in the figure is \mathbb{R}^2 however the algebra performed remains the same if the field is changed to \mathbb{C}^2 .

Solving for curves in finite fields

We first investigate the solution set of a curve when working with finite field \mathbb{Z}_p .

$$\mathcal{C} = \{(x_1, x_2, \cdots, x_n) \in \mathbb{Z}_p^n \mid condition\} \subseteq \mathbb{Z}_p^n$$

We notice that \mathbb{Z}_p^n contains a finite number of points (p^n) and so will V. So it is a valid approach to just verify which points out of these will satisfy the condition.

We now see the solution for one such problem

$$V = \{(x, y, z) \in \mathbb{Z}_n^3 \mid x^2 + y^2 = z^2\}$$

We take a different approach to the problem. We set z as a parameter and plot the various curves for different values of z. Now the problem is simplified to two variables for each value of z. We see that we can embed \mathbb{Z}_p^2 in \mathbb{R}^2 such that $\mathbb{Z}_p^2 \subset \mathbb{R}^2$.

that we can embed \mathbb{Z}_p^2 in \mathbb{R}^2 such that $\mathbb{Z}_p^2 \subset \mathbb{R}^2$. For every $z \in \mathbb{Z}_p$, Define $\mathcal{V}_z = \{(x,y) | x^2 + y^2 = z^2\}$

Notice that:

$$V = \bigcup_{z \in \mathbb{Z}_p} \mathcal{V}_z \cap \mathbb{Z}_p^2$$

Figure 2: The figure represents the \mathbb{Z}_5 solutions

Desargues' Theorem

There are two triangles $\triangle ABC$ and $\triangle XYZ$ in in three dimensional space. If the lines AX,BY and CZ meet at a point, then the points formed from joining lines AB,BC,AC with PQ,QR,PR respectively are collinear.

Group Law on Cubics

We have a projective cubic curve C with a given point O on it. The addition law is defined as follows:

To add P and Q, take the third intersection point P * Q, join it to O by a line, and then take the third intersection point to be P + Q. In other words, set P + Q = O * (P * Q) In case of P = Q, the line passing through P and Q is taken to be the tangent to C at P.

In short, we consider a point to intersect a line twice if it is tangent to the curve and thrice if the point is an inflection point.

Notice that:

$$P * Q = R \iff Q * R = P \iff R * P = Q$$

Now we verify that the above addition rule with the set of points on $\mathcal C$ does indeed form a group.

Closure

We first see that the set is closed under the operation *. From Bezout's theorem we can say that given two points on \mathcal{C} , there is a third point that intersects with the curve and line through the previous point which proves \mathcal{C} is closed under *. Thus, for any two points P and Q that lie on \mathcal{C} , P+Q:=O*(P*Q) also lies on \mathcal{C} .

Identity

For any P, we have

$$P + O = O * (O * P) = P$$

Which shows that O is the identity element and it belongs to C

Inverse

Let S := O * O. For any point Q, consider Q + (Q * S)

$$Q + (Q * S) = O * (Q * (Q * S)) = O * S = O$$

(Q*S) exists if S exists which it must due to Bezout's theorem. If O is an inflection point then S=O. Thus, the inverse of Q is (Q*S) which lies on \mathcal{C}

Associativity

We define the following sets of lines:

 l_1 : Passes through Q, R, Q * R

 l_2 : Passes through O, P * Q, P + Q

 l_3 : Passes through P, Q + R

 m_1 : Passes through P, Q, P * Q

 m_2 : Passes through O, Q * R, Q + R

 m_3 : Passes through R, P + R

Because the curve is in the projective plane, the point of intersection of lines l_3 and m_3 always exists and let that point be T. Now we consider two cubic curves:

$$L: l_1 l_2 l_3 \text{ and } M: m_1 m_2 m_3$$

The two cubics meet at at 9 points:

$$O, P, Q, R, P * Q, Q * R, P + Q, Q + R, T$$

Figure 3: Solid lines represents L while dotted lines represents M

But we see that the cubic curve \mathcal{C} passes through all these points except T. From the Cayley-Bacharach theorem, we have that if two cubic curves L and M intersect at 9 points and another cubic curve \mathcal{C} passes through 8 of those points then it passes through the ninth. Hence we can say that T lies on \mathcal{C} .

Consider the points of intersection between C and l_3 . P and Q + R lie on both thus the third point of intersection will be P * (Q + R) which happens to be T.

Similarly, looking at the points of intersection between C and m_3 we see that point T also happens to be (P+Q)*R.

Because they are the same point, we have that:

$$(P+Q)*R = P*(Q+R)$$

From which we can conclude

$$(P+Q) + R = P + (Q+R)$$