中国钉螺螺壳的聚类分析 *

周晓农 洪青标 孙乐平 徐 秋 陆安生¹⁾ 吴中兴
Thomas K Kristensen²⁾
(江苏省寄生虫病防治研究所 无锡 214064)

摘要 对中国 9 省 34 个现场点的钉螺 16 项壳形指标进行了数值分类研究。主要成分分析结果壳体大小、壳形和壳厚为描述钉螺壳的主要特征。光壳螺组内,壳形特征较壳体大小和壳厚特征更重要,而肋壳螺组内三者的重要性基本相同。其中,壳顶角度为壳形的主要指标,第三螺层宽、壳高和壳缘胼胝长度为壳体大小的主要指标,唇嵴厚度为壳厚的主要指标。

关键词 钉螺 形态学 数值分类学 壳体大小 壳形 壳厚

在螺类分类中,Brown et~al.、Kristensen 已分别应用数值分类方法(多元变量分析),在非洲小泡螺种的形态上发现有明显区别的特征 $^{1-3}$ 。 Davis 则应用主成分分析建立了圆口螺科各种间的关系图,并首次提出拟钉螺为拟钉螺亚科,钉螺为圆口螺亚科,两者同为圆口螺科 $^{4-5}$ 。

在钉螺种群水平上,一些研究寻找具有明显区别的壳形特征,如壳形指数频率和壳顶角度⁶,但或因应用的形态特征和种群较少,或因数值分类技术进行综合评估,难以推广应用。本研究于 1991 年至 1994 年,应用数值分类法寻找适用于鉴别不同钉螺种群的螺壳主要特征,为钉螺遗传进化研究提供依据。

1 材料和方法

1.1 钉螺来源 钉螺分别采自江苏省的高邮市,南京市的江浦县、六合县、栖霞区花园和八卦洲,吴县市,金坛县,东台市和东台市浒河;上海市的金山;安徽省的铜陵市山区、湖区、老洲,广德县,贵池市,青阳县山区和湖区;江西省的彭泽县;湖南省的华容县、西湖农场;湖北省的汉川县、武昌县、石首县、洪湖县、咸宁县、潜江市、荆州市;四川省的大邑县、丹陵县、普格县和彭山县;云南省的大理县、巍山县和福建省的福清市等地的。34个现场螺点。各地钉螺经随机

抽样30只后备用。

1. 2 螺壳测量 各地钉螺各测量 30 只钉螺壳。钉螺壳用 0.2%草酸清洗后,在解剖镜下照相,螺壳相片分别用计算机控制在测量板(Sum mag raphic Bit Pad Two)测量,测得数据直接输入计算机。

每一螺壳的 13 项测量指标按图 1 测量, 精确度控制在 0. 1mm, 另记录 3 项计数特征: 体螺层纵肋数(RNB)、次螺层纵肋数(RNP)、螺层数(NW)。

1. 3 统计分析 首先对 16 项螺壳变量进行主成分分析(PCA), 并以重要成分构成主因子关系图 7 。根据 PCA 分析结果, 确定用于逐步辨别分析(SDA)的变量及分析组别, 再根据 SDA的分类正确率, 选择用于进一步聚类分析(CA)的主要变量。 CA 采用 UPGMA 方法, 并画出聚类图以显示各种群间的关系。整个统计分析用 SPSS+A dvanced TM 软件包在 IBM 486DX2/66 PC 机上执行。

『PPラ4-2019 China Academic fourna 整行ではOnic Publi 数稿目期で1995: 1AP7-1修用日期51996-05-09http://www.cnki.

^{*} 本课题得到联合国开发署/世界银行/世界卫生组织热带 病研究培训特别规划处的资助。

第一作者介绍: 周晓农, 男, 35岁, 副研究员, 博士;

¹⁾ 无锡市血吸虫病防治站 214064)

Danish Bilharziasis Laboratory, 2920 Charlottenlund Denmark).

图 1 钉螺壳形测量指标示意图

AL: 売口长 AO: 売口突出长 AW: 売口宽

L: 売高

₩: 売宽

LP: 次螺层长度 LBL: 体螺层长 LIT: 唇嵴厚度 TA:売顶角度 TL:后3螺层长度 TW:后3螺层宽度

LPC: 胼胝长度 WP: 体层宽

图 2 主成分分析结果的第 1 因子与第 2 因子的相关图 □. 为光壳螺组: +: 为肋壳螺组

2 结 果

2.1 主成分分析(**PCA**) 34 个种群钉螺中 16 个变量的 PCA 统计结果, KMO 统计值为 0.91,表明资料适合于因子分析。统计所得的首 3 位因子合占总变异的 82 6% (其中分别占 64.6%、10.7%和 7.3%)。

用 Oblimin 移位法进行 PCA 统计, 各主因 子相关数据见表 1。表 1 显示首 3 位因子分别 代表着 3 个主要螺壳成分: 螺壳体大小(第 1 因子), 螺壳形态(第 2 因子)和螺壳厚度(第 3 因

表 1 Oblimin 法主成分分析所得因子相关系数

特征	第1因子	第2因子	第3因子
TA	— o. 41710	0. 83208	0. 08871
RNB	0. 57753	— o. 73737	0. 58294
RNP	0. 58309	− 0. 75699	0. 58645
NW	0. 30157	— o. 81320	0. 01357
L	0. 94287	- 0. 66990	0. 39324
\mathbf{W}	0. 91719	— o. 25037	0. 65555
AL	0. 93235	— o. 38834	0. 58230
\mathbf{AW}	0. 88520	− 0. 31873	0. 57821
AO	0. 40230	− 0. 03372	0. 75361
LIT	0. 51193	— o. 19850	0. 79640
LPC	0. 82498	- 0. 28260	0. 43236
LBL	0. 95575	- 0. 44009	0. 55708
LP	0. 89760	− 0. 53922	0. 28719
WP	0. 95472	- 0. 35460	0. 34394
TL	0. 98000	- 0. 52218	0. 45946
TW	0. 92859	− 0. 44379	0. 25311

图 3 主成分分析结果的第 1 因子与第 3 因子的相关图 □. 为光壳螺组; +; 为肋壳螺组

子)。第1与第2因子、第1与第3因子分别构成关系图(见图2、3),显示光壳螺和肋壳螺间分离较大,所分布的位置重叠较少。

2. 2 逐步辨别分析(SDA) 根据 PCA 结果,所有钉螺种群分成光壳螺和肋壳螺 2 组。光壳螺组包括的种群为盐城、盐城浒河、广德、大邑、丹陵、普格、彭山、大理、巍山和福清。 Wilks SDA 统计方法结果显示,组内 8 个最重要的特征依次为: 壳顶角度(TA)、螺层数(NW)、后 3 螺层宽度(TW)、壳宽(W)、壳高(L)、胼胝长度

(LPC)、唇嵴厚度(LIT)和次螺层长度(LP)

以该 8 项特征对光壳螺组 10 个钉螺的种群的 分类正确率为 82. 95%。

肋壳螺组包括 24 个钉螺种群, Wilks SDA 统计结果, 最重要的特征依次为: 壳顶角度 (TA)、后 3 螺层宽度(TW)、唇嵴厚(LIT)、螺层数(NW)、体螺层长度(LBW)、胼胝长度(LPC)、壳口壳(AW)、壳高(L)、次螺层纵肋数(RNP)、后 3 螺层长度(TL)。以该 10 个重要特征进行 SDA 的分类正确率为 56.08 %, 而全部 16 个变量的分类正确率为 61.81%。

2.3 聚类分析(CA) CA 结果分出 2 个组别,一组别来自四川省钉螺,另一组别为来自云南、安徽、江苏和福建的钉螺,后组别又分成云南和安徽、沿海的江苏和福建两亚组(见图 4)。

肋壳螺组, CA 结果分出 3 个主要组别, 一

是以湖北省钉螺为主组成,一是以湖南、江西和安徽省钉螺为主组成,一是以安徽、江苏和上海等地钉螺为主组成(见图 5)。

3 讨论

数值分类法是根据生物性状的数值对分类单元进行分组,以评价分类特征关系中客观的、可解释的和重复的方法。最常用技术是运用多元变量分析法,以确定种群间的差异(距离),并根据可能少的维性指标,找出最佳判别方程。Davis 通过 37 项指标 50 项特征的多元变量分析,在 PCA 得出主成分 I 和 II 后,用 Q 模型分类距离的多维测量值建立了拟钉螺亚属间的关系图 4.5 。本研究则成功地复合运用多元变量分析中的 PCA、SDA 和 CA 等方法,对中国钉

螺作了定量形态学研究。分类正确率为 56.08%和 82.95%。

本研究对钉螺外壳特征归纳出3个主要成分,壳大小、壳形态和壳厚度。前两者分别占变异的64.6%和10.7%,常被用作区别不同钉螺种群的鉴别。但螺壳厚度占总变异的7.3%,易被分类应用时忽略。研究中以唇嵴厚度作为螺壳厚度指标,且该指标与钉螺的地理分布相关⁶⁸⁹,因此值得重视。

本研究中 TA 在两组分类中均为最重要指标, 因该指标反应了原始壳顶角度, 不仅表达了壳顶螺层的形态, 同时也是螺层成长过程的指标之一。 TA 值小, 壳顶较尖, 螺层度较散, 表明螺壳发育较快, TA 值大,则相反。 因此, TA 是集螺壳形态和螺壳发育于一体的综合性指标。在其它研究中该指标显示出相同意义[7]。

在壳体大小成分中,同时作为两组分类重要指标的是TW、L

图 4 光壳螺组聚类图

图 5 肋壳螺组聚类图

和 LPC, 它们分别代表了螺壳的壳顶、壳层和 壳口特征, 因此是钉螺分类中较为重要的特征。

在中国无纵肋的光壳钉螺与有纵肋的肋壳钉螺的地理分布有明显区别。主成分关系图显示出该两组螺间的区分显著,并提示光壳螺体较小,螺壳较薄,肋壳螺则相反。因此可把有无纵肋作为区别光壳螺和肋壳螺组的唯一客观指标,原因是纵肋的有无是由单基因控制,显性于光壳,而纵肋的强弱则由多基因位点控制⁹¹,且钉螺壳的纵肋强度随地理分布呈一连续变化过程,是亚种分类的主要特征之一^[568]。

SDA 结果表明,在光壳螺组内,前 8 项重要特征中,前 2 项(TA、NW)为螺壳形态指称,后 5 项(TW、W、L、LPC、LP)为壳体大小指标,最后第 2 项(LIT)为螺壳厚度指标,表明鉴别光壳螺时,螺壳形态的指标较螺壳大小、厚度等指标更重要。但在肋壳螺的 10 项重要指标中,前 3 项(TA、TW、LIT)指标表明,壳形、壳体大小和壳厚 3 类特征在鉴别肋壳螺中的重要性几乎相同。同时,SDA 统计发现,代表纵肋强弱的 RNB 和 RNP 在肋壳螺中分别列第 9 和 13 位。因此,尽管纵肋特征为区别光壳和肋壳钉螺时是唯一重要指标,但在肋壳螺中作进一步区别时,重要性很小。

参考文献

- Brown, D. S., G. Oberholzer and J. A. Van Eeden. The Bulinus nataknsis tropicus complex (Basmatophora; Planorbidae) in southeastern Africal; 1. Shell etc. Malacologia, 1971, 11: 131-170.
- 2 Kristensen T. K., F. Frandsen and A. G. Christensen Bulinus africanus-group shails in East and South East Africa differentiated by use of biometric multivar iate analysis on morphological characters (Pulmonata; Planorbidae). Rev ue Zoobgie Africaina 1987, 101; 55—67.
- 3 Kristensen. T. K. and A. G. Christensen Bulinus africanusgroup species in West Africa differentiated by morphormetric analysis. Journal of Molluscan Studies, 1989, 55: 103-110.
- 4 Davis, G. M. The origin and evolution of the Pomatiopsidae, with emphasis on the Mekong River Triculinae. *Monograph of the Academy of Natural Sciences of Philadelphia*, 1979, 20(8): 1-120.
- 5 Davis G. M. Molecular genetics and taxonomic discrimination. The Nautilus supplement 1994, 2: 3-23.
- 6 刘月英, 楼子康, 王耀先等。钉螺的亚种分化。动物分类 学报, 1981, **6**(3), 253-267.
- 7 王经邦, 刘寿喜。钉螺壳体"角度"与地区性差异的研究。 血吸虫病研究资料汇编(1961—1979)。上海: 上海科技出版社, 1985。106—108。
- 8 楼子康, 刘月英, 张文珍等。 钉螺分类探讨。 动物学集刊, 1982. **2**(6): 97-117。
- 9 Davis, G. M. Snail host as of Asian schistosoma infecting man, evolution and coevolution. In: Bruce et al., eds. The Mekong Schistosome Malacological Review, Supplement 1980, 2: 195-238.

热休克诱导虹鳟二倍体雌核发育

李胜忠 陈 琳 杜劲松 (新疆水产科学研究所 乌鲁木齐 830000)

摘要 本文采用温度休克的方法进行了虹鳟二倍体雌核发育试验。发眼率为 12 66%, 孵化率为 0. 21%, 获得雌核发育二倍体虹鳟鱼苗 17 尾。试验结果表明, 只要处理方法得当就可以获得二倍体雌核发育的虹鳟幼苗。

关键词 雌核发育 二倍体 热休克 虹鳟

^{*} 新疆青年自然科学基金项目资助,第一作者介绍: 李胜忠, 男, 33 岁, 工程师, 硕士; 收稿日期: 1996-04-19, 修见日期: 1996-04-12 china Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.