Math 640 Final Presentation

Tommy Jones and Max Kearns

Goals

- Better understand the analysis of text data
- Improve the analysis of text Data in a Bayesian Context
- Build a better model from an existing framework

BLUF: More complicated models aren't always better.

https://imgflip.com/memetemplate/10089132/Sad-kitten

Existing Models for Text Analysis

• y is a vector of word counts (length=k)

• $y \sim Multinom(n, \theta)$

• θ is a vector of word probabilities

• $\theta \sim Dir(\alpha)$

• α is a vector of length k

• α~Unif

Zipf's Law

- Empirical law that holds for *all* languages
- When ordered by rank, frequency follows a harmonic series
- Language models may benefit from this prior knowledge

By SergioJimenez - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45516736

Putting Zipf's law into a Hyperprior

$$E[\vec{y}] = E \left[E[\vec{y}|\vec{\theta}] \right]$$

$$E[\vec{y}] = E \left| n\vec{\theta} \right|$$

$$E[\vec{y}] = nE[\vec{\theta}]$$

$$E[\vec{y}] = n \frac{\vec{\alpha}}{\sum_{k} \alpha_{k}}$$

$$E[\vec{y}] \propto \vec{\alpha}$$

- May get better estimates of α with more uncertainty
- Can create a prior based on inherent properties of language
- Zipf's law provides a framework for a prior on α

Main Model

• $y \sim Multinom(n, \theta)$

• $\alpha \sim \text{Pareto}(\gamma, \beta)$

• $\theta \sim Dir(\alpha)$

• $\beta \sim 1/\beta$

$$\begin{split} P(\vec{\theta}, \vec{\alpha}, \beta | \vec{y}) &\propto \left[\prod_{k} \theta_{k}^{y_{k}} \right] \left[\mathcal{B}(\vec{\alpha}) \prod_{k} \theta_{k}^{\alpha_{k} - 1} \right] \left[\prod_{k} \gamma^{\beta} \beta \alpha_{k}^{-(\beta + 1)} \right] \\ &= \beta^{K - 1} \gamma^{\beta k} \mathcal{B}(\vec{\alpha}) \prod_{k} \theta_{k}^{y_{k} + \alpha_{k} - 1} \alpha_{k}^{-(\beta + 1)} \end{split}$$

Data

- 100 randomly sampled NIH grant abstracts from 2014
- 5,542 unique words
- Most common word ('the') appears 1928 times
- 2,479 words appear one time
- 'toxicology' appears 7 times

Conditional Posterior Distributions

Main Model

$$\vec{\theta} | \vec{\alpha}, \vec{\beta}, \vec{y} \sim Dir(\vec{\alpha} + \vec{y})$$

$$\vec{\alpha}|\vec{\theta}, \vec{\beta}, \vec{y} \sim Unknown$$

$$\beta | \vec{\theta}, \vec{\alpha}, \vec{y} \sim Gamma\left(k, \sum_{k} log(\alpha_k) - klog(\gamma)\right)$$

Control Model

$$\vec{\theta} | \vec{\alpha}, \vec{y} \sim Dir(\vec{\alpha} + \vec{y})$$

$$\vec{\alpha}|\vec{\theta}, \vec{y} \sim Unknown$$

Sampling

- Sampled 4 chains of 20,000 iterations
- 4,000 samples remain after the 50% burn-in and 10% thinning
- Proposal distribution for α is Inverse-Gaussian(0.1, 0.01)

MCMC Diagnostics

Acceptance Rates

	Main	Control
Minimum	35.15%	27.46%
First Quartile	55.4%	47.38%
Median	57.89%	49.26%
Third Quartile	59.94%	50.73%
Maximum	69.51%	51.46%

Convergence

Main θ	Main α	Control θ	Control α
5.1	38.9	5.8	7.6
5.0	26.3	4.9	6.1
5.7	36.3	5.6	6.7
5.5	38.3	5.8	6.9

Percent of Geweke statistics greater than 1.96 in absolute value

Most Common Word: 'the'

Iteration

Word at the 95th percentile: 'regulation'

Word at the 75th percentile: 'men'

Iteration

Iteration

Iteration

3000

Beta

Iteration

Model Comparison

DIC

Log-likelihood

https://imgflip.com/memetemplate/10089132/Sad-kitten

Remember our core observation:

Discussion/Questions

References

- Meyers, G. (1994). Quantifying the Uncertainty in Claim Severity Estimates for an Excess Layer When Using the Single Parameter Pareto.
 In Proceedings of the Casualty Actuarial Society (Vol. 81, pp. 91-122).
- Zipf, G. K. (2016). Human behavior and the principle of least effort: An introduction to human ecology. Ravenio Books.
- Manaris, B. Z., Pellicoro, L., Pothering, G., & Hodges, H. (2006, February). Investigating Esperanto's Statistical Proportions Relative to other Languages using Neural Networks and Zipf's Law. In Artificial Intelligence and Applications (pp. 102-108).
- National Institutes of Health. (2014). NIH ExPORTER. Retrieved from http://exporter.nih.gov/ExPORTER Catalog.aspx (January 2015)

Backup

Data

Conditional Distributions: Control

$$\begin{split} P(\vec{\theta}, \vec{\alpha} | \vec{y}) &\propto \left[\prod_{k} \theta_{k}^{y_{k}} \right] \left[\mathcal{B}(\vec{\alpha}) \prod_{k} \theta_{k}^{\alpha_{k} - 1} \right] \times 1 \\ &= \left[\prod_{k} \theta_{k}^{y_{k}} \right] \left[\mathcal{B}(\vec{\alpha}) \prod_{k} \theta_{k}^{\alpha_{k} - 1} \right] \\ P(\vec{\theta} | \vec{\alpha}, \vec{y}) &\propto \prod_{k} \theta_{k}^{y_{k} + \alpha_{k} - 1} \\ &\implies \vec{\theta} | \vec{\alpha}, \vec{y} \sim Dir(\vec{y} + \vec{\alpha}) \\ P(\vec{\alpha} | \vec{\theta}, \vec{y}) &\propto \mathcal{B}(\vec{\alpha}) \prod_{k} \theta_{k}^{\alpha_{k}} \\ P(\alpha_{k} | \theta_{k}, y_{k}) &\propto \theta_{k}^{\alpha_{k}} \end{split}$$

Conditional Distributions: Main

$$P(\vec{\theta}|\vec{\alpha}, \beta, \vec{y}) \propto \prod_{k} \theta_{k}^{y_{k} + \alpha_{k} - 1}$$

$$\implies \vec{\theta}|\vec{\alpha}, \beta, y \sim Dir(\vec{y} + \vec{\alpha})$$

$$P(\vec{\alpha}|\vec{\theta}, \beta, \vec{y}) \propto \mathcal{B}(\vec{\alpha}) \prod_{k} \theta_{k}^{y_{k} + \alpha_{k} - 1} \alpha_{k}^{-(\beta + 1)}$$

$$\implies \text{unknown distribution}$$

Conditional Distributions: Main, cont.

$$P(\beta|\vec{\theta}, \vec{\alpha}, \vec{y}) \propto \beta^{K-1} \gamma^{\beta k} (\prod_{k} \alpha_{k})^{-(\beta+1)}$$

$$\propto \beta^{K-1} \gamma^{\beta k} (\prod_{k} \alpha_{k})^{-\beta}$$

$$\propto \beta^{K-1} \exp \left[-\beta \left(\sum_{k} \log(\alpha_{k}) - k \log(\gamma) \right) \right]$$

$$\implies \beta|\vec{\theta}, \vec{\alpha}, \vec{y} \sim Gamma \left(k, \sum_{k} \log(\alpha_{k}) - k \log(\gamma) \right)$$