5A: Product of Measure Spaces

Topic: Products of Sigma-Algebras

Definition 1 (Rectangle). Suppose X and Y are sets. A rectangle in $X \times Y$ is a set of the form $A \times B$, where $A \subset X$ and $B \subset Y$.

Definition 2 (Product of Two σ -algebras; $S \otimes T$). Suppose (X, S) and (Y, T) are measurable spaces. Then

• the product $S \otimes T$ is defined to be the smallest σ -algebra on $X \times Y$ that contains

$${A \times B : A \in S, B \in T};$$

• a measurable rectangle in $S \otimes T$ is a set of the form $A \times B$, where $A \in S$ and $B \in T$.

Definition 3 (Cross Sections of Sets). Suppose X and Y are sets and $E \subset X \times Y$. Then for $a \in X$ and $b \in Y$, the cross sections $[E]_a$ and $[E]^b$ are defined by

$$[E]_a = \{ y \in Y : (a, y) \in E \}$$
 and $[E]^b = \{ x \in X : (x, b) \in E \}.$

Theorem 1 (Cross Sections of Measurable Sets are Measurable). Suppose S is a σ -algebra on X and T is a σ -algebra on Y. If $E \in S \otimes T$, then

$$[E]_a \in T \text{ for every } a \in X$$
 and $[E]^b \in S \text{ for every } b \in Y.$

Definition 4 (Cross Sections of Functions). Suppose X and Y are sets and $f: X \times Y \to \mathbb{R}$ is a function. Then for $a \in X$ and $b \in Y$, the cross section function $[f]_a: Y \to \mathbb{R}$ and $[f]^b: X \to \mathbb{R}$ are defined by

$$[f]_a(y) = f(a, y) \text{ for } y \in Y$$
 and $[f]^b(x) = f(x, b) \text{ for } x \in X.$

Class: Math 500

J. McGuire

Chapter 5: Product Measures

Theorem 2 (Cross Sections of Measurable Functions are Measurable). Suppose S is a σ -algebra on X and T is a σ -algebra on Y. Suppose $f: X \times Y \to \mathbb{R}$ is an $S \otimes T$ -measurable function. Then

 $[f]_a$ is a T-measurable function on Y for every $a \in X$

and

 $[f]^b$ is an S-measurable function on X for every $b \in Y$.

Topic: Monotone Class Theorem

Definition 5 (Algebra). Suppose W is a set and A is a set of subsets of W. Then A is called an algebra on W is the following three conditions are satisfied:

- $\emptyset \in A$;
- if $E \in A$, then $W \setminus E \in A$;
- if E and F are elements of A, then $E \cup F \in A$.

Theorem 3 (The Set of Finite Unions of Measurable Rectangles is an Algebra). Suppose (X, S) and (Y, T) are measurable spaces. Then

- (a) the set of finite unions of measurable rectangles in $S \otimes T$ is an algebra on $X \times Y$;
- (b) every finite union of measurable rectangles in $S \otimes T$ can be written as a finite union of disjoint measurable rectangles in $S \otimes T$.

Definition 6 (Monotone Class). Suppose W is a set and M is a set of subsets of W. Then M is called a monotone class on W if the following two conditions are satisfied:

- If $E_1 \subset E_2 \subset ...$ is an increasing sequence of sets in M, then $\bigcup_{k=1}^{\infty} E_k \in M$;
- If $E_1 \supset E_2 \supset \dots$ is a decreasing sequence of sets in M, then $\bigcap_{k=1}^{\infty} E_k \in M$.

Class: Math 500

Chapter 5: Product Measures

Theorem 4 (Monotone Class Theorem). Suppose A is an algebra on a set W. Then the smallest σ -algebra containing A is the smallest monotone class containing A.

Topic: Products of Measures

Definition 7 (Finite Measure; σ -finite measure). • A measure μ on a measurable space (X,S) is called finite if $\mu(X) < \infty$.

- A measure is called σ -finite if the whole space can be written as the countable union of sets with finite measure.
- More precisely, a measure μ on a measurable space (X, S) is called σ -finite if there exists a sequence X_1, X_2, \ldots of sets in S such that

$$X = \bigcup_{k=1}^{\infty} X_k$$
 and $\mu(X_k) < \infty$ for every $k \in \mathbb{Z}^+$.

Class: Math 500