CE394M: Constitutive Modeling

Krishna Kumar

University of Texas at Austin

krishnak@utexas.edu

March 10, 2019

Overview

Definition of stress and strain tensors

The objective of constitutive modelling is the determination of stiffness tensor ${\bf C}$, a relation between stress and strain tensors.

Stresses

- Stress state at a point is defined by σ_{ij} in a frame of reference.
- Equilibrium of moments require $sigma_{xz} = \sigma_{zx}, \dots$ etc.,

CE394M: Constitutive Modeling

Definition of stress and strain tensors

└─Stresses

- σ_{xz} stress acting on plane perpendicular to axis x and in the direction of z
- σ_{xx} stress acting on plane perpendicular to axis x and in the direction of x

Stresses

- 9 components of the stress tensor.
- 6 stresses: $\sigma_{11}, \sigma_{22}, \sigma_{33}, \tau_{12}, \tau_{23}, \tau_{31}$.
- $\bullet \ \tau_{21} = -\tau_{12}, \tau_{32} = -\tau_{23}, \tau_{13} = -\tau_{31}$
- Compression is positive
- Shear stress, anti-clockwise is positive
- In order to write the components in a more concise way we can use the indices notation: σ_{ij} (use i=1,2,3 and j=1,2,3)
- Correspondence from x, y, z to 1, 2, 3 (e.g., $\sigma_{11} = \sigma_{xx}, \sigma_{12} = \sigma_{xy}$)

Stress vector on a plane

Stress vector on a plane normal to $\hat{\mathbf{n}}$ (Reddy., 2008)

If we denote by $\Delta(\mathbf{f}\hat{\mathbf{n}})$ the force on a small area $\hat{\mathbf{n}}$ located at the position x, the stress vector can be defined:

$$\mathbf{t}(\mathbf{\hat{n}}) = \lim_{\Delta a \to 0} \frac{\Delta \mathbf{f}(\mathbf{\hat{n}})}{\Delta a}$$

Cauchy stress is the true stress, that is, stress in the deformed configuration.

To establish the relationship between \mathbf{t} and $\hat{\mathbf{n}}$ we now set up an infinitesimal tetrahedron in Cartesian coordinates:

If $-\mathbf{t}_1, -\mathbf{t}_2, -\mathbf{t}_3$ and \mathbf{t} denote the stress vectors in the outward directions on the faces of the infinitesimal tetrahedron whose areas are $\Delta a_1, \Delta a_2, \Delta a_3$, and Δa , respectively. Δv is the volume of the tetrahedron, ρ the density, f the body force per unit mass, and \mathbf{a} the acceleration.

we have by Newton's second law for the mass inside the tetrahedron:

$$\mathbf{t}\Delta a - \mathbf{t}_1\Delta a_1 - \mathbf{t}_1\Delta a_1 - \mathbf{t}_1\Delta a_1 + \rho\Delta v\mathbf{f} = \rho\Delta v\mathbf{a}$$

Since the total vector area of a closed surface is zero (gradient theorem):

$$\Delta a \hat{\mathbf{n}} - \Delta a_1 \hat{\mathbf{e}}_1 - \Delta a_2 \hat{\mathbf{e}}_2 - \Delta a_3 \hat{\mathbf{e}}_3 = \mathbf{0}$$

$$\Delta a_1 = (\hat{\mathbf{n}} \cdot \hat{\mathbf{e}}_1) \Delta a, \quad \Delta a_2 = (\hat{\mathbf{n}} \cdot \hat{\mathbf{e}}_2) \Delta a, \quad \Delta a_3 = (\hat{\mathbf{n}} \cdot \hat{\mathbf{e}}_3) \Delta a.$$

The volume Δv can be expressed as: $\Delta v = (\Delta h/3)\Delta a$ where Δh is the perpendicular distance from the origin to the slant face.

$$\mathbf{t} = (\hat{\mathbf{n}} \cdot \hat{\mathbf{e}}_1)\mathbf{t}_1 + (\hat{\mathbf{n}} \cdot \hat{\mathbf{e}}_2)\mathbf{t}_2 + (\hat{\mathbf{n}} \cdot \hat{\mathbf{e}}_3)\mathbf{t}_3 + \rho \frac{\Delta h}{3}(\mathbf{a} - \mathbf{f})$$

In the limit when the tetrahedron shrinks to a point $\Delta h \rightarrow 0$:

$$\mathbf{t} = (\mathbf{\hat{n}} \cdot \mathbf{\hat{e}}_1)\mathbf{t}_1 + (\mathbf{\hat{n}} \cdot \mathbf{\hat{e}}_2)\mathbf{t}_2 + (\mathbf{\hat{n}} \cdot \mathbf{\hat{e}}_3)\mathbf{t}_3 = (\mathbf{\hat{n}} \cdot \mathbf{\hat{e}}_i)\mathbf{t}_i$$

where the summation convention is used.

$$\mathbf{t} = \mathbf{\hat{n}} \cdot (\mathbf{\hat{e}}_1 \mathbf{t}_1 + \cdot \mathbf{\hat{e}}_2 \mathbf{t}_2 + \mathbf{\hat{e}}_3 \mathbf{t}_3).$$

The terms in the parenthesis is the **stress tensor** σ :

$$\sigma \equiv \mathbf{\hat{e}}_1 \mathbf{t}_1 + \cdot \mathbf{\hat{e}}_2 \mathbf{t}_2 + \mathbf{\hat{e}}_3 \mathbf{t}_3$$

The stress tensor is a property of the medium that is independent of the $\hat{\mathbf{n}}$

$$\mathbf{t}(\mathbf{\hat{n}}) = \mathbf{\hat{n}}\sigma = \sigma^T \mathbf{\hat{n}}.$$

The stress vector \mathbf{t} represents the vectorial stress on a plane whose normal is $\hat{\mathbf{n}}$. σ is the *Cauchy stress tensor* defined to be the *current force per unit deformed area*. In Cartesian component, the Cauchy formula is: $t_i = n_i \sigma_i i_{\sigma_i}$

The Cauchy stress tensor σ , which takes a directional unit vector e as input and maps it to the stress vector T(e), which is the force (per unit area) exerted by material on the negative side of the plane orthogonal to e against the material on the positive side of the plane, thus expressing a relationship between these two vectors

Cauchy stress vs Piola-Kirchoff stress

An introduction to continuum mechanics - J. N. Reddy (2008)

 The first Piola–Kirchhoff stress tensor, also referred to as the nominal stress tensor, or Lagrangian stress tensor, gives the current force per unit undeformed area.