Calculus I Derivative of $\frac{a}{x} = ax^{-1}$

Todor Milev

2019

Find the derivative of
$$t = \frac{2\pi}{x^4}$$
.

Find the derivative of
$$t=rac{2\pi}{x^4}.$$

$$t=(2\pi)\left(x^{-4}
ight).$$

Find the derivative of
$$t=rac{2\pi}{x^4}$$
.
$$t=(2\pi)\left(x^{-4}\right).$$

$$rac{\mathrm{d}t}{\mathrm{d}x}=rac{\mathrm{d}}{\mathrm{d}x}\left[(2\pi)\left(x^{-4}\right)\right]$$

Find the derivative of
$$t=\frac{2\pi}{x^4}$$
.
$$t=(2\pi)\left(x^{-4}\right).$$

$$\frac{\mathrm{d}t}{\mathrm{d}x}=\frac{\mathrm{d}}{\mathrm{d}x}\left[\left(2\pi\right)\left(x^{-4}\right)\right]$$
 Constant Multiple Rule: $=\left(2\pi\right)\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{-4}\right)$

Find the derivative of
$$t=\frac{2\pi}{x^4}$$
.
$$t=(2\pi)\left(x^{-4}\right).$$

$$\frac{\mathrm{d}t}{\mathrm{d}x}=\frac{\mathrm{d}}{\mathrm{d}x}\left[\left(2\pi\right)\left(x^{-4}\right)\right]$$
 Constant Multiple Rule: $=(2\pi)\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{-4}\right)$ $=(2\pi)\left(\frac{2\pi}{x^4}\right)$

Find the derivative of
$$t=\frac{2\pi}{x^4}$$
.
$$t=(2\pi)\left(x^{-4}\right).$$

$$\frac{\mathrm{d}t}{\mathrm{d}x}=\frac{\mathrm{d}}{\mathrm{d}x}\left[\left(2\pi\right)\left(x^{-4}\right)\right]$$
 Constant Multiple Rule: $=(2\pi)\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{-4}\right)$ $=(2\pi)\left(-4x^{-5}\right)$

Find the derivative of
$$t=\frac{2\pi}{x^4}$$
.
$$t=(2\pi)\left(x^{-4}\right).$$

$$\frac{\mathrm{d}t}{\mathrm{d}x}=\frac{\mathrm{d}}{\mathrm{d}x}\left[\left(2\pi\right)\left(x^{-4}\right)\right]$$
 Constant Multiple Rule:
$$=(2\pi)\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{-4}\right)$$

$$=(2\pi)\left(-4x^{-5}\right)$$

$$=-\frac{8\pi}{5}.$$