

LOG2810

STRUCTURES DISCRÈTES

TD 7: THÉORIE DES NOMBRES

A2022

Directives pour la remise :

- Répondez directement sur ce document papier.
- La remise est individuelle, mais le travail en équipe est encouragé.
- La remise se fait à la fin de la séance de TD.
- Aucun retard ne sera accepté.
- Le non-respect des consignes entraînera automatiquement la note 0 pour ce TD.

Identification

Veuillez inscrire votre section, nom, prénom et matricule ainsi que les noms des collègues avec lesquels vous avez collaboré pour le TD

des collègues avec lesquels vous avez collaboré pour le TD
Section:
Nom:
Prénom :
Matricule :
Collègues :

Exercice 1:

Utilisez l'algorithme d'Euclide Étendu pour trouver le pgcd de 4830 et 476.

Réponse :

```
On utilise les vecteurs de l'algorithme étendu d'Euclide, soit :
```

```
[4830, 1, 0] [476, 0, 1]
[70,1,-10] [476, 0, 1]
[70,1,-10] [56,-6,61]
[14,7,-71] [56,-6,61]
```

[14,7,71][50,0,01]

[14,7,-71][14,-27,274]

Vérification:

```
7. 4830 + (-71).476 = 14
(-27).4830 + 274.476 = 14
```

Le pgcd de 4830 et 476 est 14.

Exercice 2:

Dans le cadre d'un chiffrement RSA, on considère les valeurs p=41, q=73

a) Calculez la base modulaire n.

Réponse:

La base modulaire est n = p.q = 41.73 = 2993

b) Calculez l'indicatrice de Carmichael i = ppcm(p - 1, q - 1)

Réponse :

```
i = ppcm(40, 72)
i = 40. 72 / pgcd(40,72)
i = 2880/8
i = 360
```

c) En considérant que la clé de chiffrement est e= 163, Calculez la valeur de la clé privée d

```
Réponse :
```

```
e.d \equiv 1 (mod i)

e.d \equiv 1 (mod 360)

163.d \equiv 1 (mod 360)

Nous avons donc l'équation 163d +360a = 1

163et 360 sont relativement premiers.

Résolvons l'équation avec l'algorithme d'Euclide étendu.

[360, 1, 0] [ 163,0,1]

[34, 1, -2] [163, 0, 1]

[34, 1, -2] [27, -4, 9]

[7, 5, -11] [27, -4, 9]

[7, 5, -11] [6, -19, 42]

[1, 24, -53] [6, -19, 42]

[1, 24, -53] [1, -139, 307]

On peut prendre d=307 comme clée privée :

163*307 \equiv 1 (mod 360)
```

Exercice 3:

En utilisant vos notions en théorie des nombres, montrez que :

a) Soit n un entier naturel, 3⁶ⁿ-1 est divisible par 7.

Réponse :

3 n'est pas divisible par 7 et 7 est premier, donc d'après le petit théorème de Fermat :

```
3^6 \equiv 1 \mod 7

(3^6)^n \equiv 1^n \mod 7

3^{6n} \equiv 1 \mod 7

3^{6n} -1 \equiv 0 \mod 7

D'où 3^{6n} -1 est divisible par 7.
```

b) Soit a un entier et n un entier naturel, $a(a^{2n} - 1)$ est divisible par 3. **Réponse :**

```
Cas 1 : Si a est divisible par 3, c'est trivial.
```

Cas 2 : Si a n'est pas divisible par 3

```
3 est premier, donc d'après le petit théorème de Fermat, on a : a^2 \equiv 1 \pmod{3} donc (a^2)^n \equiv 1^n \pmod{3}, soit (a^2)^n \equiv 1 \pmod{3}
On obtient successivement : (a^2)^n - 1 \equiv 0 \pmod{3}
(a^{2n} - 1) \equiv 0 \pmod{3}
a(a^{2n} - 1) \equiv 0 \pmod{3}
```

Des deux cas, on déduit que $a(a^{2n} - 1)$ est divisible par 3 pour tout a entier et tout n entiers naturels.

Exercice 4:

Calculez 11⁵⁰⁷² mod 131.

Réponse :

```
5072 = 130.39 + 2
Donc 11^{5072} = 11^{130.39 + 2}
11 \text{ n'est pas divisible par } 131 \text{ et } 131 \text{ est premier, donc d'après le petit théorème de Fermat : } 11^{130} = 1 \text{ (mod } 131)
D'où :
(11^{130})^{39} = 1^{39} \text{ (mod } 131)
11^{130.39} = 1 \text{ (mod } 131)
11^{130.39 + 2} = 11^{130.39} \cdot 11^{2} = 1.11^{2} \text{ (mod } 131)
11^{5072} = 121 \text{ (mod } 131)
```

Exercice 5:

Quel est le plus petit un entier naturel qui divisé par 8, 15, 18 et 24 donne pour reste respectivement 7, 14, 17 et 23?

Réponse:

```
Soit n cet entier naturel.
```

On a:

 $n \equiv 7 \pmod{8}$

 $n \equiv 14 \pmod{15}$

 $n \equiv 17 \pmod{18}$

 $n \equiv 23 \pmod{24}$

MÉTHODE 1:

Soit les entiers a, b, c, d. On peut réécrire les modulos :

n + 8a = 7

n + 15b = 14

n + 18c = 17

n + 24d = 23

En combinant deux à deux ces égalités on a :

$$7 - 8a = 14 - 15b$$
 et $17 - 18c = 23 - 24d$

Ou encore -8a + 15b = 7 et -18c + 24d = 6

• Considérons l'égalité -8a + 15b = 7.

Elle peut se réécrire : 8e + 15b = 7 avec e = -a.

8 et 15 étant relativement premiers entre eux, on peut résoudre 8e + 15b = 1 et multiplier les résultats par 7.

Résolvons cette équation avec l'algorithme d'Euclide étendu.

On part donc des vecteurs [8, 1, 0] [15, 0, 1].

À la suite des manipulations successives, on obtient : [1, 2, -1] [1, -13, 7].

(2, -1) est une solution particulière de 8e + 15b = 1. On en déduit que (14, -7)

est une solution particulière de 8e + 15b = 7, ou encore que (-14, -7) est une solution particulière de -8a + 15b = 7.

On peut donc écrire a = -14 + 15k et b = -7 - 8k, avec k entier.

De ce résultat, on peut déduire :

n = 7 - 8a = 7 - 8(-14 - 15k) = 7 + 112 + 120k = 119 + 120k, avec k entier.

n = 14 - 15b = 14 - 15(-7 - 8k) = 14 + 105 + 120k = 119 + 120k, avec k entier.

• Considérons à présent l'égalité -18c + 24d = 6.

Elle peut se réécrire : -3c + 4d = 1, soit 3f + 4d = 1 avec f = -c.

3 et 4 étant relativement premiers entre eux, 3f + 4d = 1 admet une solution.

Résolvons cette équation avec l'algorithme d'Euclide étendu.

On part donc des vecteurs [3, 1, 0] [4, 0, 1].

À la suite des manipulations successives, on obtient : [1, 3, -2] [1, -1, 1].

(-1, 1) est une solution particulière de 3f + 4d = 1.

On peut donc écrire f = -1 + 4p et d = 1 - 3p, avec p entier.

Soit c = 1 - 4p et d = 1 - 3p, avec p entier.

De ce résultat, on peut déduire :

$$n = 17 - 18c = 17 - 18(1 - 4p) = 17 - 18 + 72p = -1 + 72p$$
, avec p entier.

$$n = 23 - 24d = 23 - 24(1 - 3p) = 23 - 24 + 72p = -1 + 72p$$
, avec p entier.

En tenant compte des deux résultats précédents, soit n = 119 + 120k et n = -1 + 72p, avec k et p entiers, on obtient une nouvelle égalité : 119 + 120k = -1 + 72p, soit 120k - 72p = -120.

Elle devient après simplification:

$$5k - 3p = -5$$
, soit $5k + 3g = -5$ avec $g = -p$.

3 et 5 étant relativement premiers entre eux, 5k + 3g = 1 admet une solution.

Les résultats seront multipliés par -5 pour trouver les solutions de 5k + 3g = -5.

Résolvons cette équation avec l'algorithme d'Euclide étendu.

On part donc des vecteurs [5, 1, 0] [3, 0, 1].

À la suite des manipulations successives, on obtient : [1, 2, -3] [1, -1, 2].

(-1, 2) est une solution particulière de 5k + 3g = 1.

Ainsi, (5, -10) est une solution particulière de 5k + 3g = -5, ou encore (5, 10) est une solution particulière de 5k - 3p = -5.

On peut donc écrire k = 5 - 3t et p = 10 - 5t, avec entier.

De ce résultat, on peut déduire :

$$n = 119 + 120k = 119 + 120(5 - 3t) = 119 + 600p - 360t = 719 - 360t$$
, avec t entier.

$$n = -1 + 72p = -1 + 72(10 - 5t) = -1 + 720 - 360t = 719 - 360t$$
, avec t entier.

Conclusion

On obtient la plus petite valeur de n lorsque t = 1, soit n = 359

MÉTHODE 2 (hors-programme par rapport au cours) :

On peut réécrire les modulos :

 $n+1 \equiv 0 \pmod{8}$

 $n+1 \equiv 0 \pmod{15}$

 $n+1 \equiv 0 \pmod{18}$

 $n+1 \equiv 0 \pmod{24}$

La plus petite valeur de n+1 sera donc ppcm(8,15,18,24).

On peut en déduire que la plus petite valeur possible de n sera ppcm(8,15,18,24) - 1.

Calcul du ppcm

Méthode A : en utilisant la décomposition en facteurs premiers :

 $8 = 2^3.3^0.5^0$

 $15 = 2^{\circ}.3^{\circ}.5^{\circ}$

 $18 = 2^{1}.3^{2}.5^{0}$

 $24 = 2^3.3^1.5^0$

Pour trouver le ppcm, il suffit de faire le produit de chaque facteur premier à

l'exposant le plus élevé. On a donc :

$$ppcm(8,15,18,24) = 2^3.3^2.5^1 = 360$$

<u>Méthode B</u>: à la calculatrice

Ppcm(8,15,18,24) = ppcm(ppcm(8,15), ppcm(18,24))

Ppcm(8,15,18,24) =ppcm (120,72)

Ppcm(8,15,18,24) =360

et n = 359