CH08-320201 Algorithms and Data Structures

Lecture 20 — 24 Apr 2018

Prof. Dr. Michael Sedlmair

Jacobs University Spring 2018

5. Graph Algorithms

5.1 Graph Representations

Directed and Undirected Graphs

Definition:

- A directed graph (digraph) G=(V,E) is an ordered pair
- consisting of
 - a set V of vertices and
 - a set E ⊂ VxV of edges.
- In an undirected graph G=(V,E), the edge set E consists of unordered pairs of vertices.

Number of edges and vertices

- In a graph, the number of edges is bound by $|E| = O(|V|^2)$.
- If G is connected, then $|E| \ge |V| 1$.
- Hence, for a connected graph we get $|g| = \Theta(|g| |V|)$.

Adjacency Matrices

Definition:

 The adjacency matrix of a graph G=(V,E) with V={1,...,n} is the n×n matrix A given by

$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E, \\ 0 & \text{if } (i,j) \notin E. \end{cases}$$

Dense representation: Storage requirements are $\Theta(|V|^2)$.

Example:

Adjacency list

Definition:

Example:

$$Adj[1] = \{2, 3\}$$

 $Adj[2] = \{3\}$
 $Adj[3] = \{\}$
 $Adj[4] = \{3\}$

Sparse representation:

- Storage requirements for Adj[v] is Θ(|outgoing edges from v|).
- Storage requirement for Adj[v] for all v ∈ V is Θ(|E|).
- Overall storage requirement is Θ(|V|+|E|).

Examples for undirected & directed graphs

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	1 1 0 1 0

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0 0 0 0 0	0	0	0	0	1

Application example: Neighboring states

5.2 Graph Searches

Breadth-first Search (BFS)

Problem:

- Systematically explore all vertices reachable from s.

BFS strategy:

First find all vertices
 of distance 1 from s,
 then of distance 2,
 then of distance 3, etc.

BFS approach

- Use adjacency-list representation.
- Use a color attribute for each vertex ε {white, gray, black}.
 - white: not detected yet
 - gray: just detected, waiting for us to explore their adjacency lists
 - black: done, all neighbors have been visited
- Store all gray vertices in a queue (FIFO principle).
- In addition, store for each vertex an attribute with the (topological) distance to starting vertex s.
- Finally, also store a pointer to the predecessor.

BFS algorithm

```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
         u.color = WHITE
        u.d = \infty
        u.\pi = NIL
    s.color = GRAY
 6 \quad s.d = 0
    s.\pi = NIL
   Q = \emptyset
    ENQUEUE(Q, s)
    while Q \neq \emptyset
10
11
         u = \text{DEQUEUE}(Q)
12
         for each v \in G.Adj[u]
             if v.color == WHITE
13
14
                  v.color = GRAY
15
                  v.d = u.d + 1
16
                  v.\pi = u
17
                  ENQUEUE(Q, \nu)
18
         u.color = BLACK
```


BFS example


```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
         u.color = WHITE
        u.d = \infty
         u.\pi = NIL
    s.color = GRAY
 6 s.d = 0
    s.\pi = NIL
    Q = \emptyset
    ENQUEUE(Q, s)
    while Q \neq \emptyset
10
11
         u = \text{DEQUEUE}(Q)
         for each v \in G.Adj[u]
12
13
             if v.color == WHITE
14
                  v.color = GRAY
15
                  v.d = u.d + 1
16
                  \nu.\pi = u
17
                  ENQUEUE(Q, v)
18
         u.color = BLACK
```

BFS example


```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
         u.color = WHITE
        u.d = \infty
         u.\pi = NIL
    s.color = GRAY
    s.d = 0
    s.\pi = NIL
    Q = \emptyset
    ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
         u = \text{DEQUEUE}(Q)
         for each v \in G.Adj[u]
12
13
             if v.color == WHITE
14
                  v.color = GRAY
15
                  v.d = u.d + 1
16
                  \nu.\pi = u
17
                  ENQUEUE(Q, v)
18
         u.color = BLACK
```

BFS example


```
BFS(G, s)
    for each vertex u \in G.V - \{s\}
         u.color = WHITE
        u.d = \infty
         u.\pi = NIL
    s.color = GRAY
 6 s.d = 0
    s.\pi = NIL
    Q = \emptyset
    ENQUEUE(Q, s)
     while Q \neq \emptyset
10
11
         u = \text{DEQUEUE}(Q)
         for each v \in G.Adj[u]
12
13
             if v.color == WHITE
14
                  v.color = GRAY
15
                  v.d = u.d + 1
16
                  \nu.\pi = u
17
                  ENQUEUE(Q, v)
18
         u.color = BLACK
```

BFS analysis

- Each vertex is enqueued and dequeued once.
- Each queue operation is O(1).
- Total time for queue operations is O(|V|).
- Loop over adjacency list of all vertices is in total Θ(|E|).
- Together, we get a time complexity of O(|V|+|E|).

Breadth-first tree

• When storing the predecessors, we can construct the predecessor subgraph $G_{\pi} = (V_{\pi}, E_{\pi})$ of G with

$$V_{\pi} = \{ v \in V \mid v.\pi \neq NIL \} \cup \{ s \}$$
$$E_{\pi} = \{ (v.\pi, v) \mid v \in V_{\pi} - \{ s \} \}$$

- This subgraph represents a tree structure.
- It is called the breadth-first tree.
- It contains a unique path from s to every vertex in V_{π} .
- All these paths are shortest paths in G.

