1

2

1

2

3

WHAT IS CLAIMED IS:

1	1. A method of managing space within an IMS database, wherein said
2	space is managed during loading or updating of said database, comprising:
3	after said IMS database is loaded, assuming control from an IMS program and
4.	obtaining memory addresses of IMS control blocks built by said IMS
5	program and obtaining information about said IMS database;
6	passing control back to said IMS program;
7	when said IMS program attempts to insert data into said IMS database, either
8	during loading or updating of said database, reassuming control from
9	said IMS program;
0	selecting a storage location for said data to be stored;
l 1	modifying said IMS control blocks to indicate the storage location selected;
12	and
13	passing control back to said IMS program.

- 2. The method of Claim 1, wherein said storage location for said storage data to be stored is selected based on IMS database user preferences.
- 1 3. The method of claim 2, wherein said data includes root segments and said user preferences include storing said root segments in fixed storage locations.
 - 4. The method of claim 2, wherein said user preferences include storing said data in particular units of work.
 - 5. The method of claim 3, wherein said data also includes non-root segments and said user preferences include storing non-root segments in a block of memory which also contains the root segment of said non-root segments.
- 1 6. The method of claim 5, wherein said non-root segments are stored in 2 said block of memory which also contains said root segment only if space is available.

- The method of claim 4, wherein said data includes root and non-root
- 2 segments, and said non-root segments are stored in a unit of work which contains the
- 3 root segment of said non-root segments.

2

1 2

3

1

2

3

1	8. A method of	f managing space within an IMS database, wherein said
2	space is managed during lo	pading or updating of said database, comprising:
3	after said IMS data	base is loaded, assuming control from an IMS program and
4	obtaining m	emory addresses of IMS control blocks built by said IMS
5	program an	d obtaining information about said IMS database;
6	passing control back to said IMS program;	
7	when said IMS pro	gram attempts to insert a first segment into said IMS
8	database, ei	ther during loading or updating of said database,
9	reassuming	control from said IMS program, wherein said first segment
10	comprises a	prefix component and a data component;
11	splitting said prefix	component of said first segment from said data component
12	of said first	segment, and appending a data link to each said prefix and
13	data compo	nent, said prefix component with said data link appended
14	becoming a	second segment and said data component with said data
15	link append	ed becoming a third segment;
16	selecting storage lo	cations for said second and third segments to be stored;
17	modifying said IMS	s control blocks to indicate the storage locations selected;
18	and	
19	passing control bac	k to said IMS program.

- 9. The method of claim 8, wherein said storage locations for said second and third segments to be stored are selected based on IMS database user preferences.
- 10. The method of claim 9, wherein said second segment is either a root or non-root segment, and wherein said user preferences include storing root segments in fixed storage locations.
 - 11. The method of claim 10, wherein said user preferences include storing non-root segments in a block of memory which also contains the root segment of said non-root segments, if space is available.

2

1 2

- 1 12. The method of claim 9, wherein said user preferences include storing 2 said second segment in a unit of work.
- 1 13. The method of claim 12, wherein if said second segment is a non-root segment, it is stored in the unit of work which contains the root segment of said second segment.
 - 14. The method of claim 9, wherein said user preferences included storing said second and third segments in different storage locations in one storage device.
 - 15. The method of claim 9, wherein said user preferences include storing said second and third segments in separate storage devices.

1	16. A method of managing space within an IMS database, wherein said
2	space is managed during loading or updating of said database, comprising:
3	after said IMS database is loaded, assuming control from an IMS program and
4	obtaining memory addresses of IMS control blocks built by said IMS
5	program and obtaining information about said IMS database;
6	passing control back to said IMS program;
7	when said IMS program attempts to insert data into said IMS database, either
8	during loading or updating of said database, reassuming control from
9	said IMS program;
10	selecting a storage location for said data to be stored;
11	storing said data in the storage location selected;
12	modifying said IMS control blocks to indicate the storage location selected;
13	and
14	passing control back to said IMS program.

1	17. A method of managing space within an IMS database, wherein said
.2	space is managed during loading or updating of said database, comprising:
3	after said IMS database is loaded, assuming control from an IMS program and
4	obtaining memory addresses of IMS control blocks built by said IMS
5	program and obtaining information about said IMS database;
6	passing control back to said IMS program;
7	when said IMS program attempts to insert a first segment into said IMS
8	database, either during loading or updating of said database,
9	reassuming control from said IMS program, wherein said first segmen
10	comprises a prefix component and a data component;
11	splitting said prefix component of said first segment from said data componen
12	of said first segment, and appending a data link to each said prefix and
13	data component, said prefix component with said data link appended
14	becoming a second segment and said data component with said data
15	link appended becoming a third segment;
16	selecting storage locations for said second and third segments to be stored;
17	storing said second and third segments in the storage locations selected;
18	modifying said IMS control blocks to indicate the storage locations selected;
19	and
20	passing control back to said IMS program.
1	18 A program storage media readable by a machine and containing

- 1 18. A program storage media readable by a machine and containing 2 instructions for performing the method contained in claim 1.
- 1 19. A program storage media readable by a machine and containing 2 instructions for performing the method contained in claim 8.
- 1 20. A program storage media readable by a machine and containing 2 instructions for performing the method contained in claim 16.
- 1 21. A program storage media readable by a machine and containing 2 instructions for performing the method contained in claim 17.