UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS DA SAÚDE DEPARTAMENTO DE FISIOTERAPIA

Introdução aos Testes Estatísticos

Tecnologia da Informação em Saúde – UFRN – 2018

DEB 1120 - Beatriz Stransky

DIM 0122 - Edgard Corrêa e e Fabricia Costa

IMD 0920 - Anna Giselle Rodrigues e Julio Melo

Conceito de Estatística

"Estatística é um ramo do conhecimento científico que consta de um conjunto de processos que têm, por objeto a observação, a classificação formal e a análise dos fenômenos coletivos ou de massa (finalidade descritiva) e, por fim, investigar a possibilidade de fazer inferências indutivas válidas a partir dos dados observados e buscar métodos capazes de permitir esta inferência (finalidade indutiva)"

Elza Salvatori Berquó

Divisões da Estatística

Estatística Descritiva ou Dedutiva

Como o próprio nome indica, pode ser usada para somente descrever os dados através de suas medidas mais comuns (frequências, médias, distribuições, etc.)

Estatística Inferencial, Indutiva ou Analítica

Utilizada para comparar grupos e fazer generalizações a partir dos resultados obtidos

Conceito de Variável

Resumidamente, uma variável pode ser definida como a expressão numérica de um evento qualquer. Isso significa, portanto, que a variável é o elemento-chave na análise estatística e que a estatística somente pode ser utilizada em eventos quantificáveis.

Classificação das Variáveis

Tipos de Variáveis

Qualitativas

Nominal

- Profissão
- Sexo
- Religião

Ordinal

- Escolaridade
- Estágio da doença
- Classe social

Quantitativas

Discreta

- Nº de filhos

Nº de acessos

à plataforma

Contínua

- Altura
- Peso
- Salário

Densidade e Distribuições

Função de densidade de probabilidade

- Função gerada pelo histograma das variáveis aleatórias, onde a amplitude representa a probabilidade da variável ser igual aquele valor.
- Definido por $P(x = x_0)$ ou $f(x_0)$.

Distribuição de variáveis aleatórias

- Funções de densidade de probabilidade que são largamente conhecidas na ciência:
 - Distribuição Uniforme
 - Distribuição Binomial
 - Distribuição Normal ou Gaussiana
 - Distribuição de Poisson
 - etc

Distribuição Uniforme

Distribuição de probabilidade para variáveis aleatórias

Valor esperado:
$$\bar{X} = \frac{a+b}{2}$$

Variância:
$$S^2 = \frac{1}{12} (b - a)^2$$

Densidade:
$$P(x=x_0) = \begin{cases} \frac{1}{b-a} & \text{se } a < x_0 < b \\ 0 & \text{caso contrário} \end{cases}$$

A Curva Normal ou Gaussiana

Johann Carl Friedrich Gauss

Distribuição Normal ou Gaussiana

Distribuição de probabilidade para variáveis aleatórias

Valor esperado: $\bar{X} = \mu$

Variância: $S^2 = \sigma^2$

Densidade: $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(\mu - x)}{2\sigma^2}}$

"O conhecimento, pelo investigador, dos tipos de variáveis e dos testes estatísticos apropriados são análogos ao conhecimento do pintor a respeito dos tipos de pinturas (óleo, têmpera, aquarela etc.) e dos pincéis apropriados e as técnicas a serem usadas."

Jekel et al., 2002

Princípio para aplicação de Testes

A aplicação adequada de um teste estatístico depende de alguns fatores:

- O tipo de pergunta que se deseja responder
- A classificação da variável dependente e da independente

Variável Independente

Variável dependente

Que exerce influência

Desfecho, resposta

Princípio para aplicação de Testes

Desse modo, são possíveis várias combinações em função destes fatores:

Variável Dependente	Variável Independente	Pergunta
Quantitativa Contínua/ Discreta Categórica	Quantitativa Contínua/ Discreta Categórica	As variáveis se correlacionam entre si? Com que magnitude?
Quantitativa Contínua/ Discreta	Categórica	As médias (ou medianas) da variável dependente diferem entre as categorias da variável independente?

<u>Pergunta da Pesquisa</u>: As médias da variável dependente diferem entre os grupos estudados?

1ª Pergunta: Os dados apresentam distribuição normal?

Pergunta da Pesquisa: As variáveis dependente e independente se correlacionam entre si? Qual a magnitude?

1ª Pergunta: Qual o tipo de variável?

ALGUNS EXEMPLOS....

O Teste "t" de Student

É o teste estatístico indicado para variáveis com distribuição normal, estabelecendo a comparação entre duas médias.

- Existe diferença significativa entre as médias da altura dos homens e das mulheres de Natal?
- MÉDIA da altura de "n" Mulheres

MÉDIA da altura de "n" Homens

A Análise de Variância - ANOVA

É o teste estatístico indicado para variáveis com distribuição normal, estabelecendo a comparação entre três ou mais médias.

As médias de equilíbrio de 03 grupos pós experimento fisioterapêutico são diferentes???

● Grupo 01 – Controle

Grupo 02 – Tratamento convencinal

Grupo 03 – Tratamento por RV

A Análise de Variância - ANOVA

O Pós-Teste de Tukey-Kramer

O teste ANOVA nos informa somente se há diferença entre os grupos. Para saber onde residem as diferenças, usa-se o Pós-Teste de Tukey

As Tabelas de Contingência

O Teste Qui Quadrado

Testa a associação entre duas variáveis categóricas

Quem fuma mais homens ou mulheres?

TABELA 02 x 02

Grupo 01 – Homens que fumam

Grupo 02 – Homens que não fumam

Grupo 03 – Mulheres que fumam

Grupo 04 – Mulheres que não fumam

O Coeficiente de Correlação

É o número que expressa em que medida duas variáveis se correlacionam. É dado pelo Coeficiente de Correlação de Pearson e varia de -1 a +1,

r = 1 correlação perfeita positiva entre as duas variáveis.

- Isto é, se uma aumenta, a outra também aumenta.

r = -1 correlação negativa perfeita entre as duas variáveis

- Isto é, se uma aumenta, a outra sempre diminui.

O Coeficiente de Correlação

A escolha do teste estatístico – um tutorial em forma de apresentação em PowerPoint*

David Normando**, Leo Tjäderhane***, Cátia Cardoso Abdo Quintão****

Dental Press J. Orthod. v. 15, no. 1, p. 101-106, Jan./Feb. 2010

Apresenta um grupo de ícones (links) que levam o usuário a prosseguir de acordo com as suas necessidades.

Existem 5 opções:

- 1) Quero examinar se os meus dados apresentam uma distribuição Normal.
- 2) Desejo comparar grupos (procurando por diferença entre amostras).
- 3) Quero fazer correlação ou predição (regressão).
- 4) Quero checar a replicabilidade de dados (análise do erro sistemático e casual).
- 5) Desejo escolher o grafico apropriado para os meus dados.

Bioestatística

- A bioestatística é caracterizada pelos dados e não pela ciência.
- Bases de dados biológicos (que na maioria das vezes são numéricas).
- Médias, medianas, desvio padrão e variância passam a ter significado biológico ao invés de puramente numérico.
- Estudos passam a requerer maior espaço amostral devido à grande diversidade e aleatoriedade dos processos biológicos.

Bioestatística

- Base de dados Zika Virus Epidemic^[1]
- Reporta alguns casos reportados de Zika Virus a partir de 2015.
- Base contem informações como local, quantidade de casos reportados, período da informação dos dados (report) e outros.
 - report_date
 - location/location_type
 - data_field
 - value, unit

Bioestatística - Exercícios

- 1. Mostre, através de histogramas, os países com mais reports na base de dados.
- 2. Construa 3 histogramas que mostrem, por mês, incidências de Zika nos países onde houve maior incidência no ano de 2016.
- 3. Mostre, através de Box Plot, os números de casos por região no Brasil. (Use os estados como sendo as amostras, para cada boxplot).
- 4. Crie um histograma que mostre a incidência total de casos no Brasil por estado e por mês.
 - Através desse histograma construa a função de densidade de probabilidade que mostra a distribuição de casos de zika por estado e por mês.

Teste Estatístico

- Testes usados para determinar se certos dados descrevem ou não determinada característica:
 - Hipótese H₀ vs H₁
 - Probabilidade de que, em uma determinada população, a característica testada seja observada na maioria dos subconjuntos amostrais possíveis.
 - Na maioria dos casos, a distribuição 'pai', de onde as amostras vem, é considerada com sendo normal, o que é uma suposição válida pelo teorema do limite central [1].

Teste Estatístico

Teste t-student

- Usa uma distribuição bem conhecida pra testar variáveis dentro de um determinado intervalo.
- Define um valor de p que indica a probabilidade de erro dentro do grupo amostral escolhido.

$$t=rac{\overline{x}-\mu_0}{s/\sqrt{n}}$$

Equação para determinação de t, em um teste de médias

Teste Estatístico - Exercício

- Calcule a média do aparecimento de Zika no Brasil no ano de 2016, em cada estado brasileiro, reportado na base de dados do Zika Virus.
 Calcule, através desses valores, a média de casos por 100 mil habitantes em cada estado.
- Verifique, através de teste estatístico, se os valores calculados condizem com a média real proposta pelo ministério da saúde^[1] para cada região do Brasil (em casos/100 mil habitantes):

Centro Oeste: 113,4;

• Nordeste: 53,5;

• Sudeste: 41.4:

• Norte: 36,0;

• Sul: 6,1.

