

INTERNATIONAL MASTER OF SCIENCE ON CYBER PHYSICAL SYSTEMS

The course content has been originally prepared by Dell-EMC and is modified/improved by Dr. Ala' Khalifeh- German Jordanian University under the developed master projects funded by the

Tempus project: Enterprise System Engineering Project ID: 530260-tempus-1-2012-1-de-tempus-jpcr

and

Erasmus+ project: Master of Cyber Physical Systems (MS@CPS)
Project ID: 598750-EPP-1-2018-1-DE-EPPKA2-CBHE-JP

INTERNATIONAL MASTER OF SCIENCE ON CYBER PHYSICAL SYSTEMS

Cloud Computing and BigData

Dr. Ala'a Khalifah

Redundant Array of Independent Disks (RAID)

RAID

A technology which utilizes multiple disk drives as a set to provide protection, capacity, and/or performance benefits

- Overcomes limitations of disk drives
- Improves storage system performance
 - By serving I/Os from multiple disks simultaneously
- RAID techniques are:
 - Striping, mirroring, and parity

RAID Techniques

Striping

Mirroring

Parity

RAID Levels

RAID Levels	Definition
RAID 0	Striping with no fault tolerance
RAID 1	Disk mirroring
Nested	Combinations of RAID levels; Example: RAID 1 + RAID 0
RAID 3	Parity RAID with dedicated parity disk
RAID 5	Parity RAID with distributed parity across all the disks in the set
RAID 6	Distributed parity RAID with dual parity

Classic Data Center

- -Raid 3 is byte level striping
- RAID 4 uses block level striping
- Both have dedicated parity disk

http://fatmin.com/2010/04/30/raid-levels-explained-and-simplified/

Classic Data Center

http://www.seagate.com/em/ar/manuals/network-storage/business-storage-nas-os/raid-modes/:

Intelligent Storage System

- Is a RAID array highly optimized for I/O processing
- Have large amounts of cache for improving I/O performance
- Have operating environments that provide:
 - Intelligence for managing cache
 - Optimal management, allocation, and utilization of storage resources

Components of an Intelligent Storage System

Intelligent Storage System

Presenting Storage to Compute System

Classic Data Center (CDC)

Storage Networking Technologies -1

- Topics covered in this lesson:
 - Compute to compute communication
 - Compute to storage communication
 - Direct Attached Storage (DAS)
 - Fibre Channel SAN (FC-SAN)

Compute to Compute Communication

- Typically uses Ethernet or TCP/IP protocol
 - LAN, MAN, and WAN
- Communication is enabled using various components:
 - Network Interface Card (NIC)
 - Has unique MAC address
 - Switches and routers
 - Switch provides scalability and interconnection between multiple compute systems
 - Routers allow different networks to communicate with each other
 - Cables
 - Twisted pair, co-axial cable, optical fiber

Compute to Storage Communication

- Communication is enabled using various hardware components (HBA, CNA, NIC, switch, router, gateway, and cables) and protocols
- Host bus adaptor (HBA): Is an application-specific integrated circuit (ASCI) board that performs I/O interface functions between the host and the storage, relieving the CPU from additional I/O processing workload. (like the DMA controller)
- Converged network adaptor (CNA): Is a multi function adapter which consolidates the functionality of an NIC card and a Fiber Channel Host bus adaptor (HBA) onto a single adapter.

Compute to Storage Communication

- Communication is enabled using various hardware components (HBA, CNA, NIC, switch, router, gateway, and cables) and protocols
- Communication between compute and storage can be done using channel or network technologies

Channel Technology	Network Technology
Compute system and peripheral devices are connected through channel	Compute system and peripheral devices are connected over a network
Provides low protocol overhead due to tight coupling	High protocol overhead due to network connection
Supports transmission only over short distances	Supports transmission over long distances
Protocol examples: PCI, IDE/ATA, SCSI, etcChannel technologies provide fixed connections between compute systems and their peripheral devices	Protocol examples: iSCSI(SCSI over IP), FCoE (Fibre Channel over Ethernet), and FC

Communication Protocols

- Peripheral Component Interconnect (PCI)
 - Provides interconnection between CPU and attached devices
 - Latest PCI Express bus provides throughput of 133 MB/sec
- Integrated Device Electronics/Advanced Technology Attachment (IDE/ATA)
 - Popular protocol to connect to disk drives
 - Supports 16-bit parallel transmission
 - Serial version is called Serial ATA (SATA)
 - Both versions offer good performance at a relatively low cost

Communication Protocols (contd.)

- Small Computer System Interface (SCSI)
 - Preferred storage connectivity option for high-end environments
 - Improved performance, scalability, and high cost when compared to ATA
 - Serial version is called Serial Attached SCSI (SAS)
- Transmission Control Protocol/Internet Protocol (TCP/IP)
 - Traditionally used for compute to compute communication
 - Now used for compute to storage communication also
 - iSCSI (SCSI over IP) and FCoE (Fibre Channel over Ethernet) are examples

Direct Attached Storage (DAS)

DAS

An internal or external storage device, which connects directly to a compute system

- DAS is classified as internal or external based on the location of the storage device with respect to the compute system
- Benefits:
 - Simple to deploy and ideal for local data provisioning
 - Low capital expense and less complexity
- Challenges:
 - Limited scalability
 - Limited ability to share resources
 - Islands of over and under utilized storage resources

Emergence of Storage Networking Technologies

- Just-in-time information for business users
- Flexible and resilient storage architecture
- DAS is inefficient to fulfill these requirements
- Storage networking technologies emerged as a solution
 - Fibre Channel SAN (FC SAN)
 - Network Attached Storage (NAS)
 - Internet Protocol SAN (IP SAN)
 - Fibre Channel over Ethernet (FCoE)

What is Fiber Channel SAN (FC SAN) Cyber Physical Systems

- Dedicated high speed network of compute systems and shared storage devices
- Uses SCSI over FC protocol
- Provides block level data access

Benefits

- Enables storage consolidation and sharing
- Enables centralized Management
- Provides scalability and high performance
- Reduces storage and administration cost

Components of FC SAN

- Node ports
- Cables
- Connectors
- Interconnecting Devices
- Storage Arrays
- SAN Management software

Fiber Channel Fabric

FC Fabric

One or more interconnected FC switches through which multiple SAN nodes can communicate

 In a switched fabric, the link between any two switches is called Inter Switch Link (ISL)

Port Types

Classic Data Center (CDC)

- Storage Networking Technologies -2
 - Topics covered in this lesson:
 - Internet Protocol SAN (IP-SAN)
 - Fiber Channel over Ethernet (FCoE)
 - Network Attached Storage (NAS)

It is a technology that provides transfer of block level data over an IP network.

- IP is being positioned as a storage transport because:
 - Offers easier management
 - Allows existing network infrastructure to can be leveraged
 - Reduces cost compared to new SAN hardware and software
 - Supports multi-vendor interoperability
 - Many long-distance disaster recovery solutions already leverage IPbased networks
 - Many robust and mature security options are available for IP networks

Block Storage Over IP – Protocol Options Master of Cyber Physical Systems

Two primary protocols that leverage IP as the transport mechanism for block level data transmission are iSCSI and Fibre Channel over IP (FCIP).

- iSCSI (SCSI over IP)
 - Encapsulation of SCSI data in IP packets
 - Ethernet NIC card
 - TCP/IP offload engine (TOE) card or
 - iSCSI Host bus adaptor (HBA)
 - Hardware-based gateway to Fibre Channel storage
 - Used to connect compute systems
- FCIP
 - Fibre Channel-to-IP bridge/tunnel (point-topoint)
 - Fibre Channel end points
 - Used in DR

(b) FCIP Implementation

iSCSI Topologies

- Native
 - No FC components
 - iSCSI Initiators connect directly to the Array

- Bridged
 - Translates iSCSI/IP to FC
 - iSCSI initiator configured with bridge as target
 - Bridge acts as virtual FC initiator

Fibre Channel over IP (FCIP)

- IP-based storage networking technology
- Combines advantages of Fibre Channel and IP
- Creates virtual FC link that connects devices in a different fabric
- Distance extension solution
 - Used for data sharing over geographically dispersed SAN

Fibre Channel over Ethernet (FCoE)

- A protocol that encapsulates Fibre Channel frames for transport over Enhanced Ethernet networks
- Enables the consolidation of SAN traffic and Ethernet traffic onto a common 10 Gigabit Ethernet infrastructure
 - Consolidates compute to compute and compute to storage communication over a single channel

Benefits

- Lowers capital expenditure
- Reduces power and cooling requirements
- Enables consolidation of network infrastructure
- Lowers Total Cost of Ownership (TCO)

I/O Consolidation with FCoE

Classic Data Center

Figure 1. Existing data center with separate Ethernet and FC networks

https://www.emc.com/collateral/hardware/white-papers/h5916-intro-to-fcoe-wp.pdf

Classic Data Center

Figure 2. FCoE environment with converged adapters at the server attached to a converged switch

Components of FCoE

- Converged Network Adapter(CNA)
 - Multi function adapter
 - Performs the data networking of NIC and storage networking of HBA
- FCoE Switch
 - Contains Ethernet bridge and Fibre Channel Forwarder (FCF)
 - FCF encapsulates FC frames into FCoE frames and de-capsulates FCoE frames to FC frames
- Converged Enhanced Ethernet (CEE)
 - Extensions to conventional Ethernet standard to eliminate its lossy nature

Classic Data Center (CDC)

Business Continuity Overview and Backup

- Topics covered in this lesson:
 - Business Continuity (BC) Terminologies
 - Backup Granularity
 - Backup Components and Operation
 - Deduplication: Types and methods

Business Continuity

BC

Processes and/or procedures for ensuring continued business operations

- BC solutions address unavailability and degraded application performance
- BC is an integrated and enterprise wide process and set of activities to ensure "information availability"

BC Terminologies

BC Terminologies	Description
Disaster Recovery(DR)	Coordinated process of restoring systems, data, and infrastructure required to support ongoing business operations in the event of a disaster
Hot Site	A site to where an enterprise's operations can be moved, in the event of a disaster. It is a site equipped with all the required hardware, operating system, application, and network support that help perform business operations, and where the equipment is available and running at all times.
Cold Site	A site to where an enterprise's operations can be moved, in the event of disaster It has minimum IT infrastructure and environmental facilities in place, but are not activated.
Cluster	A group of servers and other necessary resources, coupled to operate as a single system

Classic Data Center

- A hot site has all the equipment needed for the enterprise to continue operation,
- A cold site is less expensive, but it takes longer to get an enterprise in full operation after the disaster.

-Typically, a business has an annual contract with a company that offers hot and cold site services with a monthly service charge

Classic Data Center (CDC)

CDC Management

Topics covered in this lesson:

- Key Management activities in a CDC
- Information Lifecycle Management (ILM)

Overview of CDC Management Activities

Key management activities in a CDC:

- Monitoring and Alerting
- Reporting
- Availability Management
- Capacity Management
- Performance Management
- Security Management

Monitoring

 Compute systems, storage, and networks are the key components to be monitored

Key Parameters to be Monitored	Description
Accessibility	Availability of a component to perform a desired operation
Capacity	Amount of resources available For ex: free space available on a file system or RAID group
Performance	How efficiently different components are performing
Security	Mechanisms to track and prevent unauthorized access

Classic Data Center

- Monitoring CDC resources for security helps to track and prevent unauthorized access and login failures, whether accidental or malicious.
- Security monitoring also helps to tracks unauthorized configuration changes of storage infrastructure elements. For example, security monitoring tracks and reports the initial zoning configuration performed and all subsequent changes.
- Physical security of a storage infrastructure is also continuously monitored using badge readers, biometric scans, or video cameras.

Alerting of Events

- Alerting is an integral part of monitoring
- Monitoring tools enables administrators to assign different severity levels for different alerts

Levels of Alerts based on Severity	Description
Information alert	Provides useful information and may not require administrator intervention For ex: creation of zone or LUN
Warning alert	Require administrative attention For ex: file systems becoming full
Fatal alert	Require immediate administrative attention For ex: power failures/disk failures/memory failures

Reporting

 Reporting on CDC resources involves keeping track and gathering information from various components/processes

Type of Report	Description
Capacity Planning	Provides current and historic information about utilization of storage, file system, database tablespace, ports, and so on
Chargeback	Provides information about the allocation or utilization of the CDC infrastructure components by various departments or user groups
Performance	Provides details about the performance of various infrastructure components in a CDC

- Establishes guidelines for all configurations to achieve high availability based on service level requirements
- Ensures high availability by:
 - Eliminating single points of failure by configuring
 - Two or more host bus adapters (HBAs)/NICs
 - Multipathing software
 - RAID protection
 - Redundant Fabrics
 - Connecting the server to the storage array using at least two independent fabrics and switches that have built-in redundancy
 - Performing data backup and replication

Multipathing

- Multi-pathing
- The role of multi-pathing software
- 1. Automatic failover:
- To automatically re-distribute I/O to another channel in the case of fabric

- 2. Load Balancing
- Dynamic load distribution among several network parts and nodes
- * Using SANs and NAS: Help for Storage Administrators Curtis Preston, O'Reilly

- Multipathing
- Examples of multipathing software:
- EMC's power path
- Solaris 8 has native multipathing support
- Veritas Volume Manager has multipathing support
- Vicom's storage virtualization Engine

* Using SANs and NAS: Help for Storage Administrators Curtis Preston, O'Reilly

Managing Information in CDC

Challenges

- Exploding digital universe
 - Multifold increase of information growth
- Increasing dependency on information
 - The strategic use of information plays an important role in determining the success of an organization
- Changing value of information
 - Information that is valuable today may become less important tomorrow