UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142

PRACTICA 3 (Inducción)

Problema 1.

- a) Encuentre al menos dos proposiciones compuestas que sean **lógicamente equiva**lentes a $p \vee q$ (ver Problema 4 del Listado No 1).
- b) Utilice a) para demostrar que $A\Delta B=(A\cup B)-(A\cap B)$ (ver Problema 1 del Listado No 2).

Problema 2. Sean $a_0, a_1, a_2, \dots, a_n, \dots$, y $b_0, b_1, b_2, \dots, b_n \dots$, sucesiones de números reales. Use inducción para demostrar que

i)
$$\forall n \in \mathbb{N}$$
: $\sum_{i=1}^{n} (a_i - a_{i-1}) = a_n - a_0$ (propiedad telescópica) (**en práctica**).

ii)
$$\forall n \in IN$$
, $\forall k \in IN$:
$$\sum_{i=0}^{n} a_i = \sum_{i=k}^{n+k} a_{i-k}$$

iii)
$$\forall n \in \mathbb{N}, \quad \forall k \in \mathbb{N}, \quad k \geq n : \qquad \sum_{i=1}^n a_{k-i} = \sum_{i=2}^{n+1} a_{k+1-i}$$

Problema 3. Para la resolución aproximada de ecuaciones diferenciales parciales (tema que conocerá en segundo año en el curso Complementos de Cálculo), se utiliza habitualmente el siguiente procedimiento geométrico: se divide inicialmente una región del plano en un número finito de triángulos disjuntos (formando así lo que se llama una triangulación), y luego se generan sucesivamente nuevas triangulaciones uniendo los puntos medios de los triángulos que constituyen la triangulación anterior. De este modo, cada triángulo da origen a 4 nuevos triángulos.

- i) Si una región consta inicialmente de 6 triángulos, ¿cuántas triangulaciones deben realizarse de modo que la última de ellas tenga al menos 2000 triángulos?
- ii) ¿Cuántos triángulos (a lo más) debe tener la triangulación inicial para que, al cabo de N triangulaciones, la suma del número de triángulos de todas ellas sea inferior a 15.000?

1

Problema 4. Observe que al evaluar la identidad $(k+1)^2 - k^2 = 2k+1$ para $k=1,2,3,\cdots,n$, donde n es un número natural fijo, se obtiene:

i) (En práctica). Considere las primeras dos columnas de (1) y utilice las propiedades de la sumatoria (ver **Problema 2**) para demostrar que

$$(n+1)^2 - 1^2 = 2\sum_{k=1}^n k + n.$$

Concluya que
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

ii) (En práctica). Considere ahora la primera y tercera columna de (1) para probar que

$$\sum_{k=1}^{n} (2k-1) := 1+3+5+7+\cdots+2n-1 = n^{2}.$$

Observación. Una misma identidad ha permitido establecer dos fórmulas distintas.

iii) Utilice ahora el principio de inducción para probar las fórmulas de i) y ii) para todo $n \in \mathbb{N}$.

Problema 5. Evalúe la identidad $(k+1)^3 - k^3 = 3k^2 + 3k + 1$ para $k = 1, 2, 3, \dots, n$ donde n es un número natural fijo, y deduzca una fórmula para

$$\sum_{k=1}^{n} k^2 := 1^2 + 2^2 + 3^2 + \dots + n^2.$$

Compruebe lo obtenido aplicando el principio de inducción.

Problema 6. (mire, vea, conjeture). Considere las siguientes identidades:

$$1 = 1$$

$$1-4 = -(1+2)$$

$$1-4+9 = 1+2+3$$

$$1-4+9-16 = -(1+2+3+4)$$
:

es decir:

$$n = 1 \to 1$$

$$n = 2 \to 1$$

$$n = 3 \to 1 - 2^2 = -(1+2)$$

$$n = 3 \to 1 - 2^2 + 3^2 = 1 + 2 + 3$$

$$n = 4 \to 1 - 2^2 + 3^2 - 4^2 = -(1+2+3+4)$$
:

En general, para $n \in \mathbb{N}$, qué identidad escribiría Ud.? Demuestre su conjetura utilizando el principio de inducción.

Problema 7. (En práctica). Demuestre que

i)
$$\forall n \in \mathbb{N}$$
:
$$\sum_{k=0}^{n} \binom{n+k}{k} = \binom{2n+1}{n}.$$

ii)
$$\forall n \in N$$
:
$$\sum_{k=0}^{n} 2^k \binom{n}{k} = 3^n.$$

Problema 8. Demuestre por inducción que

i) $\forall n \in \mathbb{N}$: $n^5 - n$ es divisible por 5.

ii) $\forall n \in \mathbb{N}$: $3^{2n} + 7$ es múltiplo de 8.

Problema 9. Encuentre:

- i) el cuarto término en el desarrollo de $(x + 8)^{15}$.
- ii) el término constante en el desarrollo de $(x^2 \frac{1}{x^2})^8$ (en práctica).
- iii) los términos centrales del desarrollo de $(y + \frac{1}{y^{1/3}})^{12}$.
- iv) los términos que contienen $\frac{x^2}{y^3}$ y $\frac{x}{y}$ (si existen) en el desarrollo de $(x^2y \frac{x}{y})^{16}$ (en práctica).

Problema 10. Una familia de conjuntos es una colección indexada de conjuntos. En particular, una familia $\{A_1, A_2, \dots, A_n\}$ se denotará por $\{A_i\}_{i \in I}$ y diremos que $I = \{1, \dots, n\}$ es el conjunto de índices de la familia. La **unión** y la **intersección de una familia** $\{A_i\}_{i \in I}$ se definen por:

$$\bigcup_{i \in I} A_i := A_1 \cup A_2 \cup \cdots
x \in \bigcup_{i \in I} A_i \iff \exists i \in I : \quad x \in A_i
\cap_{i \in I} A_i := A_1 \cap A_2 \cap \cdots
x \in \bigcap_{i \in I} A_i \iff \forall i \in I : \quad x \in A_i$$

(a) (**En práctica**). Considere una familia $\{A_n\}_{n\in\mathbb{N}}$ y defina la nueva familia $\{B_n\}_{n\in\mathbb{N}}$ por:

$$B_1 := A_1 \quad \text{y} \quad \forall n \ge 2 : \qquad B_n := A_n - \bigcup_{k=1}^{n-1} A_k.$$

Demuestre que:

- (i) $\forall i, j \in \mathbb{N}, i \neq j : B_i \cap B_j = \phi$
- (ii) $\bigcup_{n \in \mathbb{I} N} B_n = \bigcup_{n \in \mathbb{I} N} A_n$
- \mathcal{E} Es $\{B_n\}_{n\in\mathbb{N}}$ una partición para $\cup_{n\in\mathbb{N}}A_n$? Justifique su respuesta.
- (b) Considere la familia $\{A_n\}_{n\in\mathbb{N}}$ con $A_n=[-2n,3n]$.
 - (i) Encuentre $\bigcup_{n \in \mathbb{N}} A_n$ y $\bigcap_{n \in \mathbb{N}} A_n$.
 - (ii) Defina la familia $\{B_n\}_{n\in\mathbb{N}}$ como en la parte (a). ¿ Es $\{B_n\}_{n\in\mathbb{N}}$ una partición para $\bigcup_{n\in\mathbb{N}}A_n$?. ¿ Es $\{B_n\}_{n\in\mathbb{N}}$ una partición para \mathbb{R} ?.
- (c) Repita parte (b) anterior con $A_n = [0, \frac{1}{2n}]$.

Problema 11. (En práctica). Dado $n \in \mathbb{N}$, considere la partición $\left[0, \frac{1}{n}\right), \left[\frac{1}{n}, \frac{2}{n}\right), \cdots$, $\left[\frac{n-2}{n}, \frac{n-1}{n}\right), \left[\frac{n-1}{n}, 1\right]$ del intervalo [0,1], y para cada $k \in \{1, 2, \cdots, n\}$ construya un rectángulo sobre el sub-intervalo $\left[\frac{k-1}{n}, \frac{k}{n}\right]$ de altura $\frac{(k+n)^2}{n^2}$. Defina S(n) como la suma de las áreas de los n rectángulos, y encuentre una fórmula para S(n). ¿Qué puede decir sobre el $\lim_{n \to \infty} S(n)$?

 $01.04.2002 \; GGP/cln$