Univ. Al

Named Entity Recognition (NER)

Rachit Jain, Anshul Bhardwaj

ABOUT

The project focuses on creating a NER model that identifies key tokens and classifies them into set of predefined entities. The data would involve scientific publications in the **WIESP Dataset**.

NER helps us extract key information from scientific papers which can help search engines to better select and filter articles.

MODELS & RESULTS

USING SIMPLE RNN

USING WORD2VEC

BASELINE: 2 LSTM STACKED

TFOpLambda

time_distributed(softmaxLayer)

The trained embeddings do not do well for our task

Improvement over RNNs; 92.5% accuracy after fine-tuning

Accuracy maxed out at **92%** with multiple design changes

The basic architecture of any model remains the same. What defines its success is how well it is put into use!

		7									
Mainframe ▼	Layers ▼	Sentence Length	Bidirectional T	Hidden Size 🔻	Batch Size	Epochs 1	Dataset ▼	Loss ▼	Accuracy ▼	Validation Loss	Validation Accuracy
SimpleRNN	3	10 to 30	FALSE	32	8	30	After extra pre-processing	0.1811	0.9378	0.2933	0.9195
SimpleRNN	3	10 to 30	FALSE	32	8	30	Without extra pre-processing	0.2388	0.9249	0.2897	0.9166
SimpleRNN	3	10 to 30	TRUE	32	8	30	After extra pre-processing	0.2414	0.9228	0.287	0.9155
SimpleRNN	3	10 to 30	TRUE	32	8	30	Without extra pre-processing	0.2332	0.9255	0.284	0.9142
SimpleRNN	3	10 to 30	TRUE	32	8	8	After extra pre-processing	0.2031	0.9308	0.2797	0.9169
SimpleRNN	3	10 to 30	TRUE	32	8	10	Without extra pre-processing	0.218	0.9289	0.2844	0.9182
SimpleRNN	3	10 to 60	TRUE	32	8	9	Without extra pre-processing	0.1352	0.9278	0.1651	0.9191

Fig: Different experiments with basic model architectures by tuning parameters

2 BIDIRECTIONAL LSTM LAYERS

tf. operators .getitem

tf. operators .add 1

lstm 3

tf.__operators__.getitem_1

DATA & LABELS

- . **bibcode**: Can be used to extract the texts.
- 2. label_studio_id: Can also be used to extract texts.
- 3. ner_ids: Can be used as label encoded values for the ner_tags.
- 4. **section**: Two types: fulltext or acknowledgement.
- 5. **tokens**: The units whose entities need to be found by the model.
- 6. unique_id: This could also be used to separate out units of texts.

This allowed model to learn context over long input_1 InputLayer sentences and have enough trainable Fig: Custom Model parameters to increase its robustness. Accuracy Architecture embedding **Embedding** rose to **95.75%** without any pre-training system lstm_2 | LSTM dense 1 dense Dense **BERT-BASED MODEL** SlicingOpLambda lstm LSTM

TFOpLambda

LSTM

tf.__operators__.add

SlicingOpLambda

SCOPE OF IMPROVEMENT

lstm 1

TimeDistributed(Dense)

After multiple BERT versions, the best accuracy of 97.2% came on the model based on SciBERT: A Pretrained Language Model for Scientific Text

CONCLUSION

Right Batch Size, Early Stopping, More Trainable Parameters, Deep Architectures and Transfer Learning truly boost the performance of models.

- Class Imbalance: use custom loss function
- More data for under-represented tokens
- Use embeddings trained for Scientific NER