Stort by defining a "moster" or "parent"

$$\lambda_{1} = \frac{1}{4}(1-3)(1-n) \quad \lambda_{2} = \frac{1}{4}(1+3)(1+n) \quad \lambda_{3} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{4} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{5} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{5} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{6} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{7} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{8} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{8} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{8} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{1} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{1} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{1} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{1} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{2} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{3} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{1} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{2} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{3} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{4} = \frac{1}{4}(1-2)(1+n) \quad \lambda_{5} = \frac{1}{4}(1+2)(1+n) \quad \lambda_{5} = \frac{1}{$$

$$\chi = \frac{\chi_{i} \hat{N}_{i}(\xi, \eta)}{\chi_{i}(\xi, \eta)}$$

$$K_{ij} = \int a(x,y) \frac{\partial N_i}{\partial N_i} \frac{\partial N_j}{\partial N_j} + b(x,y) \frac{\partial N_i}{\partial y} \frac{\partial N_j}{\partial y} + c(x,y) N_i N_j \int dx dy$$

$$N' = U' : \frac{9\lambda}{90!} \Rightarrow \frac{9\lambda}{90!}$$

$$N' = 0 : \frac{9\lambda}{90!} \Rightarrow \frac{9\lambda}{90!}$$

$$\frac{\partial N_1}{\partial x} = \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial x}{\partial y} \frac{\partial y}{\partial x}$$

$$\frac{\partial N_1}{\partial x} = \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial y}{\partial x} \frac{\partial y}{\partial x}$$

$$\frac{\partial N_1}{\partial x} = \frac{\partial x}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial y}{\partial x} \frac{\partial y}{\partial x}$$

$$\frac{3\nu}{9\nu_1} = \frac{9\nu}{9\nu_1} \frac{9\nu}{9\nu} + \frac{9\nu}{9\nu_1} \frac{9\nu}{9\nu}$$

$$\begin{aligned}
\mathcal{L} &= get([2]) = g^{2}g^{2}g^{2} - g^{2}g^{2}g^{2} > 0 \\
&= \begin{cases}
x' \frac{gy}{gy} & \lambda' \frac{gy}{gy} & \lambda' \frac{gy}{gy} \\
\frac{gy}{gy} &= x' \frac{gy}{gy} & \lambda' \frac{gy}{gy} \\
\frac{gy}{gy} &= x' \frac{gy}{gy} & \lambda' \frac{gy}{gy} \\
\frac{gy}{gy} &= x' \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} \\
&= \begin{cases}
x' \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} \\
\frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} \\
\frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} \\
&= \begin{cases}
x' \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} \\
\frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} \\
&= \begin{cases}
x' \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} \\
\frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} \\
&= \begin{cases}
x' \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} \\
\frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} \\
&= \begin{cases}
x' \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} \\
\frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} \\
&= \begin{cases}
x' \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} & \frac{gy}{gy} \\
\frac{gy}{gy} & \frac{gy}{gy} \\
\frac{gy}{gy} & \frac{gy}{$$

$$[J] = \begin{bmatrix} 1 & -\frac{1}{2}(1+n) \\ 0 & 2-\frac{1}{2} \end{bmatrix}$$

$$[J] = \begin{bmatrix} 1 & -\frac{1}{2}(1+n) \\ 0 & 2 - \frac{1}{2} \end{bmatrix} \Rightarrow det([J]) = \frac{1}{2}(4-3) > 0$$

$$-1 < 3 < 1 \qquad always invertable$$

For 122

$$[J] = \begin{bmatrix} 1 + \frac{1}{2}\eta & \frac{1}{2}(1 - \eta) \\ \frac{1}{2}(1 + \zeta) & 1 - \frac{1}{2}\zeta \end{bmatrix} \Rightarrow det([J]) = \frac{3}{4}(1 + \eta - \zeta) \qquad \text{not invertable}$$

$$\leq -1 + \eta \Rightarrow J = 0$$

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}(1-n) & 1 \\ 2+\frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} 2+\frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} 2+\frac{1}{2} \end{bmatrix}$$
 invertable

$$K_{ij} = \int_{\mathcal{Q}} \left[\hat{\alpha} \left(J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right) \left(J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right) \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right] \left(J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right)$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right] \left(J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right)$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial y} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} \right]$$

$$= \left[J_{ij}^{*} \frac{\partial \hat{N}_{i}}{\partial x} + J_{ij}^{*} \frac{\partial \hat{N}_{i}}$$

Gauss Integration

$$\int_{1}^{1} f(t) dt = \omega_{1} f(t_{1}) + \omega_{2} f(t_{2}) \qquad (A)$$

$$\int_{-1}^{1} t^{3} dt = \left[\frac{1}{4} t^{4} \right]_{-1}^{1} = \frac{1}{4} - \frac{1}{4} = 0 = \omega, t_{1}^{3} + \omega_{2} t_{2}^{3}$$
 (1)

$$\int_{-1}^{1} + ^{2} dt = \left[\frac{1}{3} t^{3} \right]_{-1}^{1} = \frac{1}{3} - \frac{1}{3} = 0 = \omega, t^{2}, + \omega_{2} t^{2}$$
 (2)

$$\sum_{i=1}^{n} t dt = \left[\frac{1}{2}t^{2}\right]_{i=1}^{n} = \frac{1}{2} = 0$$
 = $w_{1}t_{1} + w_{2}t_{2}$ (3)

Let
$$f(t)=1$$

Let $f(t)=1$

Solve (1)-(u) for $\int_{-\infty}^{1} 1 dt = [t]_{-\infty}^{1} = 2 = \omega_{1} + \omega_{2}$ (4)

 $\omega_{1}, \omega_{2}, t_{1}, t_{2}$

$$\omega_1 = \omega_2 = 1$$

$$t_1 = -t_2 = \sqrt{\frac{3}{3}}$$

$$\int_{-1}^{1} f(t) dt = \omega_{1} f(t_{1}) + \omega_{2} f(t_{2})$$

$$= f(-\sqrt{3}) + f(\sqrt{3})$$

Extend

$$\tilde{l}_{i}$$
 $t(+)9f = \sum_{i=1}^{i=1} ni t(fi)$ for u boints

Points	Value of t	Weights (w;)	Valid up to degres
1	\circ	2	
2	-0.5773 = 13 0.5773 = 13		3
3	-0,77459 0,0 0,77459	0,5555 0,888 0,5555	5
	V		J

Choch the web for longer tobles

$$f(t) = 100 t^{5} - 43 t^{4} + 75 t^{3} - t^{2} + 5t + 10$$

 $\int_{-1}^{1} f(t)$

tί	F(4¿)	ω;	$w_i \in (t_i)$	
-0.5773 0.5773	-18,8466 28,6244	1	-18,8466 28,6294	
			9.777	
Ł;	₹(t;)	ωi	wit(ti)	
-0.77459	- 72,6954	0.5555	- 40,3864	
0) D	0.8888	8,888	
0,7745%	60.5359	0.5555	33.6308	
			2.1333	
	Exact is	2.1833	4	

$$I = \int_{-1}^{1} \int_{-1}^{1} f(s,t) ds dt = \int_{-1}^{1} \sum_{j=1}^{\infty} \omega_{j} f(s,t_{j}) ds = \sum_{i=1}^{\infty} \omega_{i} \left(\sum_{j=1}^{s} \omega_{i} \left(\sum_{j=$$

$$= \sum_{i=1}^{m} \sum_{j=1}^{n} \omega_i \omega_j f(s_i, t_j)$$

Example

2×2 quadratre

Si	t;	$f(s_i,t_i)$	w; wj	wiw; f(sisti)
- 13	- 13	0,251664	ļ	0:251664
-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(3	-3.08167	l	- 3.08167 13.0817
V3	- []	13,0817	l	-0.251664
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(3)	-0.251664	Exact	10