Semaine du 18/12/2023

Chapitre M2 - Dynamique du point matériel

Plan du cours

I Quantité de mouvement

- I.1 Masse d'un système
 - ightarrow Justifier qualitativement la position du centre de masse d'un système, cette position étant donnée.
- I.2 Quantité de mouvement
 - \rightarrow Utiliser la relation entre la quantité de mouvement d'un système et la vitesse de son centre de masse.

II Lois de Newton

- **II.1** Première loi : principe d'inertie
 - → Décrire le mouvement relatif de deux référentiels galiléens.
 - → Discuter qualitativement du caractère galiléen d'un référentiel donné pour le mouvement étudié.
- II.2 Troisième loi : principe des actions réciproques
 - \rightarrow Établir un bilan des forces sur un système ou sur plusieurs systèmes en interaction et en rendre compte sur un schéma.
- II.3 Deuxième loi : principe fondamental de la dynamique
 - ightarrow Utiliser la deuxième loi de Newton dans des situations variées.

III Exemples classiques

III.1 Chute libre

 \rightarrow Mouvement dans un champ de pesanteur uniforme : établir et exploiter les équations horaires du mouvement, établir l'équation de la trajectoire.

III.2 Chute dans un fluide

 \rightarrow Exploiter une équation différentielle sans la résoudre analytiquement, par exemple : analyse en ordres de grandeur, existence d'une vitesse limite, écriture adimensionnée, utilisation des résultats obtenus par simulation numérique.

III.3 Système masse-ressort : l'oscillateur harmonique

 \rightarrow Système masse-ressort sans frottement : déterminer et résoudre l'équation différentielle du mouvement, exploiter les analogies avec un oscillateur harmonique électrique.

III.4 Pendule simple

 \rightarrow Établir l'équation du mouvement du pendule simple. Justifier le caractère harmonique des oscillations de faible amplitude.

Questions de cours

- → Énoncer les lois de Newton : principe d'inertie, principe fondamental de la dynamique et principe des actions réciproques.
- → En s'appuyant sur un schéma, énoncer avec précision une des lois de force suivantes : poids, poussée d'Archimède, force de rappel associée à un ressort, tension d'un fil, réaction du support, interaction gravitationnelle, interaction électrostatique.
- → Appliquer la méthode de résolution décrite dans le Doc. 3 pour obtenir les équations horaires du mouvement.
- \rightarrow Les exemples vus en cours doivent pouvoir être traités très rapidement.

Chapitre M3 – Énergie mécanique

Tout sauf approximation harmonique

Plan du cours

I Théorème de l'énergie cinétique

- **I.1** Puissance d'une force
 - $\rightarrow\,\,$ Reconnaître le caractère moteur ou résistant d'une force.
- I.2 Travail d'une force
- I.3 Théorème de l'énergie cinétique
 - \rightarrow Exploiter le théorème de l'énergie cinétique.

II Énergie potentielle, énergie mécanique

- II.1 Force conservative et énergie potentielle
- II.2 Exemples de forces conservatives
 - → Établir et citer les expressions de l'énergie potentielle de pesanteur (champ uniforme), de l'énergie potentielle gravitationnelle (champ créé par un astre ponctuel), de l'énergie potentielle élastique.
- II.3 Lien entre une énergie potentielle et une force conservative
 - ightarrow Déduire qualitativement du graphe d'une fonction énergie potentielle le sens et l'intensité de la force associée pour une situation à un degré de liberté.
- II.4 Théorème de l'énergie mécanique

III Mouvement conservatif à une dimension

- III.1 Mouvement conservatif
 - \rightarrow Exploiter la conservation de l'énergie mécanique pour analyser un mouvement.

III.2 Profil d'énergie potentielle

- → Identifier sur un graphe d'énergie potentielle une barrière et un puits de potentiel.
- → Déduire d'un graphe d'énergie potentielle le comportement qualitatif : trajectoire bornée ou non, mouvement périodique, positions de vitesse nulle.

III.3 Approximation harmonique

- $\rightarrow~$ Déduire d'un graphe d'énergie potentielle l'existence de positions d'équilibre.
- → Analyser qualitativement la nature, stable ou instable, de ces positions.
- → Établir l'équation différentielle linéarisée du mouvement au voisinage d'une position d'équilibre.

Questions de cours

- → Citer les théorèmes de la puissance cinétique et de l'énergie cinétique.
- \rightarrow Citer, puis établir les expressions des énergies potentielles de pesanteur, gravitationnelle et élastique.
- → Citer les théorèmes de la puissance mécanique et de l'énergie mécanique.
- → Identifier, sur un graphe d'énergie potentielle quelconque les positions d'équilibre stables et instables, les barrières et puits de potentiels.
- → Décrire qualitativement (par exemple, à l'aide d'un graphe commenté) l'évolution temporelle d'un système suivant son énergie mécanique, à partir d'un profil quelconque d'énergie potentielle.
- \rightarrow Établir l'équation différentielle linéarisée du pendule simple en utilisant le théorème de l'énergie mécanique.

Note aux colleurs : l'opérateur $\overrightarrow{\operatorname{grad}}$ n'est pas au programme de MP2I et ne sera introduit qu'en deuxième année. En particulier, la relation $\overrightarrow{F} = -\overrightarrow{\operatorname{grad}}\mathcal{E}_{\operatorname{p}}$ se restreint au cas à un degré de liberté, où $\overrightarrow{F} = -\frac{\mathrm{d}\mathcal{E}_{\operatorname{p}}}{\mathrm{d}x}\overrightarrow{e_x}$.