Generated on 2016-10-09 23:50:40 by gEcon version 1.0.0 (2016-10-09) Model name: rbc

1 CONSUMER

1.1 Optimisation problem

$$\max_{K_t^s, C_t, L_t^s, I_t} U_t = \beta \mathcal{E}_t \left[U_{t+1} \right] + (1 - \eta)^{-1} \left(C_t^{\ \mu} (1 - L_t^s)^{1 - \mu} \right)^{1 - \eta} \tag{1.1}$$

s.t.

$$C_t + I_t = \pi_t + K_{t-1}^{\mathrm{s}} r_t + L_t^{\mathrm{s}} W_t \quad \left(\lambda_t^{\mathrm{CONSUMER}^1}\right)$$

$$\tag{1.2}$$

$$K_t^{\mathrm{s}} = I_t + K_{t-1}^{\mathrm{s}} (1 - \delta) \quad \left(\lambda_t^{\mathrm{CONSUMER}^2}\right) \tag{1.3}$$

1.2 First order conditions

$$-\lambda_t^{\text{CONSUMER}^2} + \beta \left((1 - \delta) E_t \left[\lambda_{t+1}^{\text{CONSUMER}^2} \right] + E_t \left[\lambda_{t+1}^{\text{CONSUMER}^1} r_{t+1} \right] \right) = 0 \quad (K_t^s)$$
(1.4)

$$-\lambda_t^{\text{CONSUMER}^1} + \mu C_t^{-1+\mu} (1 - L_t^s)^{1-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1-\mu} \right)^{-\eta} = 0 \quad (C_t)$$
 (1.5)

$$\lambda_t^{\text{CONSUMER}^1} W_t + (-1 + \mu) C_t^{\mu} (1 - L_t^s)^{-\mu} \left(C_t^{\mu} (1 - L_t^s)^{1 - \mu} \right)^{-\eta} = 0 \quad (L_t^s)$$
(1.6)

$$-\lambda_t^{\text{CONSUMER}^1} + \lambda_t^{\text{CONSUMER}^2} = 0 \quad (I_t)$$
 (1.7)

2 FIRM

2.1 Optimisation problem

$$\max_{K_t^d, L_t^d, Y_t} \pi_t = Y_t - L_t^d W_t - r_t K_t^d$$
(2.1)

s.t.:

$$Y_t = Z_t K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{1-\alpha}} \quad \left(\lambda_t^{\mathrm{FIRM}^1}\right) \tag{2.2}$$

2.2 First order conditions

$$-r_t + \alpha \lambda_t^{\text{FIRM}^1} Z_t K_t^{d^{-1+\alpha}} L_t^{d^{1-\alpha}} = 0 \quad (K_t^d)$$
(2.3)

$$-W_t + \lambda_t^{\text{FIRM}^1} Z_t (1 - \alpha) K_t^{\text{d}^{\alpha}} L_t^{\text{d}^{-\alpha}} = 0 \quad (L_t^{\text{d}})$$

$$(2.4)$$

$$1 - \lambda_t^{\text{FIRM}^1} = 0 \quad (Y_t) \tag{2.5}$$

2.3 First order conditions after reduction

$$-r_t + \alpha Z_t K_t^{\mathrm{d}^{-1+\alpha}} L_t^{\mathrm{d}^{1-\alpha}} = 0 \quad (K_t^{\mathrm{d}})$$

$$(2.6)$$

$$-W_t + Z_t (1 - \alpha) K_t^{\mathrm{d}^{\alpha}} L_t^{\mathrm{d}^{-\alpha}} = 0 \quad (L_t^{\mathrm{d}})$$

$$(2.7)$$

3 EQUILIBRIUM

3.1 Identities

$$K_t^{\mathbf{d}} = K_{t-1}^{\mathbf{s}} \tag{3.1}$$

$$L_t^{\rm d} = L_t^{\rm s} \tag{3.2}$$

4 EXOG

2

4.1 Identities

$$Z_t = e^{\epsilon_t^{\mathrm{Z}} + \phi \log Z_{t-1}} \tag{4.1}$$

5 Equilibrium relationships (after reduction)

$$-r_t + \alpha Z_t K_{t-1}^{s}^{-1+\alpha} L_t^{s^{1-\alpha}} = 0 (5.1)$$

$$-W_t + Z_t (1 - \alpha) K_{t-1}^s {}^{\alpha} L_t^{s-\alpha} = 0$$
 (5.2)

$$-Y_t + Z_t K_{t-1}^s {}^{\alpha} L_t^{s1-\alpha} = 0 (5.3)$$

$$\beta \left(\mu \mathcal{E}_{t} \left[r_{t+1} C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \right)^{-\eta} \right] + \mu \left(1 - \delta \right) \mathcal{E}_{t} \left[C_{t+1}^{-1+\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \left(C_{t+1}^{\mu} \left(1 - L_{t+1}^{s} \right)^{1-\mu} \right)^{-\eta} \right] \right) - \mu C_{t}^{-1+\mu} \left(1 - L_{t}^{s} \right)^{1-\mu} \left(C_{t}^{\mu} \left(1 - L_{t}^{s} \right)^{1-\mu} \right)^{-\eta} \right) \right)$$

$$(5.5)$$

$$(-1+\mu)C_t^{\mu}(1-L_t^s)^{-\mu}\left(C_t^{\mu}(1-L_t^s)^{1-\mu}\right)^{-\eta} + \mu W_t C_t^{-1+\mu}(1-L_t^s)^{1-\mu}\left(C_t^{\mu}(1-L_t^s)^{1-\mu}\right)^{-\eta} = 0$$
(5.6)

$$-C_t - I_t + Y_t = 0 (5.7)$$

$$I_t - K_t^{s} + K_{t-1}^{s} (1 - \delta) = 0 (5.8)$$

$$U_t - \beta \mathcal{E}_t \left[U_{t+1} \right] - (1 - \eta)^{-1} \left(C_t^{\mu} (1 - L_t^{\mathrm{s}})^{1 - \mu} \right)^{1 - \eta} = 0$$
 (5.9)

6 Steady state relationships (after reduction)

$$-r_{\rm ss} + \alpha Z_{\rm ss} K_{\rm ss}^{\rm s}^{-1+\alpha} L_{\rm ss}^{\rm s}^{1-\alpha} = 0 \tag{6.1}$$

$$-W_{\rm ss} + Z_{\rm ss} (1 - \alpha) K_{\rm ss}^{\rm s} {}^{\alpha} L_{\rm ss}^{\rm s} {}^{-\alpha} = 0$$
 (6.2)

$$-Y_{\rm ss} + Z_{\rm ss} K_{\rm ss}^{\rm s \alpha} L_{\rm ss}^{\rm s 1-\alpha} = 0 \tag{6.3}$$

$$-Z_{\rm ss} + e^{\phi \log Z_{\rm ss}} = 0 \tag{6.4}$$

$$\beta \left(\mu r_{\rm ss} C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} + \mu (1 - \delta) C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta}\right) - \mu C_{\rm ss}^{-1+\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu} \left(C_{\rm ss}^{\mu} (1 - L_{\rm ss}^{\rm s})^{1-\mu}\right)^{-\eta} = 0$$

$$(6.5)$$

$$(-1+\mu)C_{ss}^{\mu}(1-L_{ss}^{s})^{-\mu}\left(C_{ss}^{\mu}(1-L_{ss}^{s})^{1-\mu}\right)^{-\eta} + \mu W_{ss}C_{ss}^{-1+\mu}(1-L_{ss}^{s})^{1-\mu}\left(C_{ss}^{\mu}(1-L_{ss}^{s})^{1-\mu}\right)^{-\eta} = 0$$

$$(6.6)$$

$$-C_{\rm ss} - I_{\rm ss} + Y_{\rm ss} = 0 ag{6.7}$$

$$I_{\rm ss} - K_{\rm ss}^{\rm s} + K_{\rm ss}^{\rm s} (1 - \delta) = 0$$
 (6.8)

$$U_{\rm ss} - \beta U_{\rm ss} - (1 - \eta)^{-1} \left(C_{\rm ss}^{\ \mu} (1 - L_{\rm ss}^{\rm s})^{1 - \mu} \right)^{1 - \eta} = 0 \tag{6.9}$$

7 Calibrating equations

$$-0.36Y_{\rm ss} + r_{\rm ss}K_{\rm ss}^{\rm s} = 0 (7.1)$$

8 Parameter settings

$$\beta = 0.99 \tag{8.1}$$

$$\delta = 0.025 \tag{8.2}$$

$$\eta = 2 \tag{8.3}$$

$$\mu = 0.3 \tag{8.4}$$

$$\phi = 0.95 \tag{8.5}$$

4

9 Steady-state values

	Steady-state value
r	0.0351
C	0.7422
I	0.2559
$K^{ m s}$	10.2368
L^{s}	0.2695
U	-136.2372
W	2.3706
Y	0.9981
Z	1

10 The solution of the 1st order perturbation

Matrix P

$$\begin{array}{ccc} K_{t-1}^{\mathrm{s}} & Z_{t-1} \\ K_{t}^{\mathrm{s}} & 0.9631 & 0.0962 \\ Z_{t} & 0 & 0.95 \end{array} \right)$$

Matrix Q

$$\begin{array}{c}
\epsilon^{Z} \\
K^{s} \\
Z
\end{array}
\left(\begin{array}{c}
0.1012 \\
1
\end{array}\right)$$

Matrix R

$$\begin{array}{c|cccc} & K_{t-1}^{\mathrm{s}} & Z_{t-1} \\ r_t & -0.7559 & 1.3521 \\ C_t & 0.4919 & 0.4921 \\ I_t & -0.4745 & 3.8461 \\ L_t^{\mathrm{s}} & -0.181 & 0.6282 \\ U_t & 0.0418 & 0.0644 \\ W_t & 0.4252 & 0.7238 \\ Y_t & 0.2441 & 1.3521 \\ \end{array}$$

Matrix S

$$\begin{array}{c} \epsilon^{\rm Z} \\ r \\ C \\ I \\ L^{\rm s} \\ U \\ W \\ Y \end{array} \begin{pmatrix} 1.4232 \\ 0.518 \\ 4.0485 \\ 0.6613 \\ 0.0678 \\ 0.7619 \\ 1.4232 \\ \end{array}$$

11 Model statistics

11.1 Basic statistics

	Steady-state value	Std. dev.	Variance	Loglin
\overline{r}	0.0351	0.1893	0.0358	Y
C	0.7422	0.0711	0.0051	Y
I	0.2559	0.5284	0.2792	Y
K^{s}	10.2368	0.0469	0.0022	Y
L^{s}	0.2695	0.0867	0.0075	Y
U	-136.2372	0.009	1e-04	Y
W	2.3706	0.1011	0.0102	Y
Y	0.9981	0.1857	0.0345	Y
Z	1	0.1303	0.017	Y

11.2 Correlation matrix

	r	C	I	K^{s}	L^{s}	U	W	Y	Z
\overline{r}	1	0.868	0.989	0.084	0.996	0.918	0.926	0.969	0.982
C		1	0.931	0.567	0.909	0.994	0.991	0.964	0.946
I			1	0.228	0.998	0.966	0.971	0.995	0.999
K^{s}				1	0.174	0.472	0.454	0.328	0.269
L^{s}					1	0.95	0.956	0.987	0.995
U						1	1	0.988	0.976
W							1	0.991	0.98
Y								1	0.998
Z									1

11.3 Cross correlations with the reference variable (Y)

	$\sigma[\cdot]$ rel. to $\sigma[Y]$	Y_{t-5}	Y_{t-4}	Y_{t-3}	Y_{t-2}	Y_{t-1}	Y_t	Y_{t+1}	Y_{t+2}	Y_{t+3}	Y_{t+4}	$\mid Y_{t+5} \mid$
r_t	1.019	0.116	0.234	0.378	0.548	0.745	0.969	0.623	0.343	0.121	-0.048	-0.172
C_t	0.383	-0.14	-0.013	0.156	0.372	0.64	0.964	0.77	0.592	0.431	0.29	0.169
I_t	2.845	0.044	0.168	0.323	0.511	0.735	0.995	0.684	0.426	0.216	0.05	-0.077
K_t^{s}	0.253	-0.474	-0.415	-0.313	-0.162	0.049	0.328	0.513	0.62	0.665	0.662	0.624
L_t^{s}	0.467	0.072	0.194	0.345	0.527	0.741	0.987	0.662	0.395	0.18	0.013	-0.113
U_t	0.049	-0.086	0.042	0.21	0.42	0.679	0.988	0.755	0.55	0.372	0.221	0.096
W_t	0.544	-0.076	0.052	0.219	0.428	0.685	0.991	0.752	0.541	0.361	0.208	0.083
Y_t	1	-0.008	0.119	0.28	0.479	0.718	1	0.718	0.479	0.28	0.119	-0.008
Z_t	0.702	0.023	0.149	0.306	0.499	0.729	0.998	0.699	0.448	0.242	0.078	-0.049

11.4 Autocorrelations

	Lag 1	${\rm Lag}\ 2$	Lag 3	Lag 4	${\rm Lag}\ 5$
r	0.71	0.466	0.265	0.103	-0.022
C	0.76	0.545	0.357	0.196	0.063
I	0.711	0.467	0.267	0.105	-0.02
K^{s}	0.96	0.862	0.727	0.571	0.407
L^{s}	0.709	0.465	0.264	0.102	-0.023
U	0.739	0.512	0.319	0.158	0.028
W	0.736	0.507	0.312	0.152	0.022
Y	0.718	0.479	0.28	0.119	-0.008
Z	0.713	0.471	0.271	0.11	-0.016

12 Impulse response functions

Figure 1: Impulse responses $(r,C,K^{\mathrm{s}},Y,L^{\mathrm{s}})$ to ϵ^{Z} shock

Figure 2: Impulse response (I) to $\epsilon^{\mathbf{Z}}$ shock