

OWL 2 Web Ontology Language Quick Reference Guide

W3C Recommendation 27 October 2009

This version:

http://www.w3.org/TR/2009/REC-owl2-quick-reference-20091027/

Latest version (series 2):

http://www.w3.org/TR/owl2-quick-reference/

Latest Recommendation:

http://www.w3.org/TR/owl-quick-reference

Previous version:

http://www.w3.org/TR/2009/PR-owl2-quick-reference-20090922/ (color-coded diff)

Editors:

Jie Bao, Rensselaer Polytechnic Institute

Elisa F. Kendall, Sandpiper Software, Inc.

Deborah L. McGuinness, Rensselaer Polytechnic Institute

Peter F. Patel-Schneider, Bell Labs Research, Alcatel-Lucent

Contributors:

Li Ding, Rensselaer Polytechnic Institute

Ankesh Khandelwal, Rensselaer Polytechnic Institute

Please refer to the <u>errata</u> for this document, which may include some normative corrections.

This document is also available in these non-normative formats: <u>PDF version</u>, <u>Reference Card</u>.

See also translations.

Copyright © 2009 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.

Abstract

The OWL 2 Web Ontology Language, informally OWL 2, is an ontology language for the Semantic Web with formally defined meaning. OWL 2 ontologies provide classes, properties, individuals, and data values and are stored as Semantic Web

documents. OWL 2 ontologies can be used along with information written in RDF, and OWL 2 ontologies themselves are primarily exchanged as RDF documents. The OWL 2 <u>Document Overview</u> describes the overall state of OWL 2, and should be read before other OWL 2 documents.

This document provides a non-normative quick reference guide to the OWL 2 language. It also provides links to other documents, including the <u>OWL 2 Primer</u> for language introduction and examples, the <u>OWL 2 Structural Specification and Functional Syntax</u> document for more details of the functional syntax, and the <u>OWL 2 New Features and Rationale</u> document for new feature descriptions.

Status of this Document

May Be Superseded

This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.

XML Schema Datatypes Dependency

OWL 2 is defined to use datatypes defined in the XML Schema Definition Language (XSD). As of this writing, the latest W3C Recommendation for XSD is version 1.0, with version 1.1 progressing toward Recommendation. OWL 2 has been designed to take advantage of the new datatypes and clearer explanations available in XSD 1.1, but for now those advantages are being partially put on hold. Specifically, until XSD 1.1 becomes a W3C Recommendation, the elements of OWL 2 which are based on it should be considered *optional*, as detailed in Conformance, section 2.3. Upon the publication of XSD 1.1 as a W3C Recommendation, those elements cease to be optional and are to be considered required as otherwise specified.

We suggest that for now developers and users follow the XSD 1.1 Candidate Recommendation. Based on discussions between the Schema and OWL Working Groups, we do not expect any implementation changes will be necessary as XSD 1.1 advances to Recommendation.

Summary of Changes

There have been no <u>substantive</u> changes since the <u>previous version</u>. For details on the minor changes see the <u>change log</u> and <u>color-coded diff</u>.

Please Send Comments

Please send any comments to <u>public-owl-comments@w3.org</u> (<u>public archive</u>). Although work on this document by the <u>OWL Working Group</u> is complete, comments may be addressed in the <u>errata</u> or in future revisions. Open discussion among developers is welcome at <u>public-owl-dev@w3.org</u> (<u>public archive</u>).

Endorsed By W3C

This document has been reviewed by W3C Members, by software developers, and by other W3C groups and interested parties, and is endorsed by the Director as a W3C Recommendation. It is a stable document and may be used as reference material or cited from another document. W3C's role in making the Recommendation is to draw attention to the specification and to promote its widespread deployment. This enhances the functionality and interoperability of the Web.

Patents

This document was produced by a group operating under the <u>5 February 2004</u>
<u>W3C Patent Policy</u>. This document is informative only. W3C maintains a <u>public list</u>
<u>of any patent disclosures</u> made in connection with the deliverables of the group;
that page also includes instructions for disclosing a patent.

Table of Contents

- 1 Names, Prefixes, and Notation
- 2 OWL 2 constructs and axioms
 - 2.1 Class Expressions
 - 2.2 Properties
 - 2.3 Individuals & Literals
 - 2.4 Data Ranges
 - 2.5 Axioms
 - 2.6 Declarations
 - 2.7 Annotations
 - 2.8 Ontologies
- 3 Built-in Datatypes and Facets
 - 3.1 Built-in Datatypes
 - 3.2 Facets
- 4 Appendix
 - 4.1 New Features in OWL 2
 - 4.2 Additional Vocabulary in OWL 2 RDF Syntax
- 5 Appendix: Change Log (Informative)
 - 5.1 Changes Since Proposed Recommendation
 - 5.2 Changes Since Last Call

• 6 Acknowledgments

1 Names, Prefixes, and Notation

Names in OWL 2 are IRIs, often written in a shorthand prefix:localname, where prefix: is a prefix name that expands to an IRI, and localname is the remainder of the name. The standard prefix names in OWL 2 are:

Prefix Name	Expansion
rdf:	http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs:	http://www.w3.org/2000/01/rdf-schema#
owl:	http://www.w3.org/2002/07/owl#
xsd:	http://www.w3.org/2001/XMLSchema#

We use notation conventions in the following tables*:

Letters	Meaning	Letters	Meaning	Letters	Meaning	Letters	Meaning
С	class expression	CN	class name	D	data range	DN	datatype name
Р	object property expression	PN	object property name	R	data property	А	annotation property
а	individual	aN	individual name	_:a	anonymous individual (a <u>blank</u> node label)	v	literal
n	non- negative integer**	f	facet	ON	ontology name	U	IRI
s	IRI or anonymous individual	t	IRI, anonymous individual, or literal	p	prefix name	_:x	blank node
(a ₁ a _n)	RDF list						

^{*} All of the above can have subscripts. ** as a shorthand for "n"^^xsd:nonNegativeInteger

2 OWL 2 constructs and axioms

For an OWL 2 DL ontology, there are some global restrictions on axioms.

In the following tables the first column provides links to the <u>Primer</u> (if applicable), the second column provides links to the <u>Functional Syntax</u>, and the third column gives RDF triples in the <u>Turtle syntax</u>.

2.1 Class Expressions

Predefined and Named Classes

Language Feature	Functional Syntax	RDF Syntax
named class	CN	CN
universal class	owl:Thing	owl:Thing
empty class	owl:Nothing	owl:Nothing

Boolean Connectives and Enumeration of Individuals

Language Feature	Functional Syntax	RDF Syntax
intersection	$\frac{ObjectIntersectionOf(C_1}{C_n)}$	_:x rdf:type owl:Class. _:x owl:intersectionOf (C ₁ C _n).
union	ObjectUnionOf(C ₁ C _n)	_:x rdf:type owl:Class. _:x owl:unionOf (C ₁ C _n).
complement	ObjectComplementOf(C)	_:x rdf:type owl:Class. _:x owl:complementOf C.
enumeration	ObjectOneOf(a ₁ a _n)	_:x rdf:type owl:Class. _:x owl:oneOf (a ₁ a _n).

Object Property Restrictions

Language Feature	Functional Syntax	RDF Syntax
<u>universal</u>	ObjectAllValuesFrom(P C)	_:x rdf:type owl:Restriction. _:x owl:onProperty P. _:x owl:allValuesFrom C
existential	ObjectSomeValuesFrom(PC)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:someValuesFrom C
individual value	ObjectHasValue(P a)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:hasValue a.
local reflexivity	ObjectHasSelf(P)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:hasSelf "true"^^xsd:boolean.
exact cardinality	ObjectExactCardinality(n P)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:cardinality n.
qualified exact cardinality	ObjectExactCardinality(n P C)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:qualifiedCardinality n:x owl:onClass C.
maximum cardinality	ObjectMaxCardinality(n P)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:maxCardinality n.
qualified maximum cardinality	ObjectMaxCardinality(n P C)	_:x rdf:type owl:Restriction:x owl:onProperty P:x

		owl:maxQualifiedCardinality n.
		_:x owl:onClass C.
minimum cardinality	ObjectMinCardinality(n P)	_:x rdf:type owl:Restriction:x owl:onProperty P:x owl:minCardinality n.
qualified minimum cardinality	ObjectMinCardinality(n P C)	_:x rdf:type owl:Restriction. _:x owl:onProperty P. _:x owl:minQualifiedCardinality
		n. _:x owl:onClass C.

Data Property Restrictions

Language Feature	Functional Syntax	RDF Syntax
universal	<u>DataAllValuesFrom(R D)</u>	_:x rdf:type owl:Restriction. _:x owl:onProperty R. _:x owl:allValuesFrom D.
existential	DataSomeValuesFrom(RD)	_:x rdf:type owl:Restriction:x owl:onProperty R:x owl:someValuesFrom D.
literal value	<u>DataHasValue</u> (R v)	_:x rdf:type owl:Restriction:x owl:onProperty R:x owl:hasValue v.
exact cardinality	DataExactCardinality(nR)	_:x rdf:type owl:Restriction:x owl:onProperty R:x owl:cardinality n.
qualified exact cardinality	DataExactCardinality(n R D)	_:x rdf:type owl:Restriction:x owl:onProperty R:x owl:qualifiedCardinality n:x owl:onDataRange D.
maximum cardinality	DataMaxCardinality(n R)	_:x rdf:type owl:Restriction:x owl:onProperty R:x owl:maxCardinality n.
qualified maximum cardinality	DataMaxCardinality(n R D)	_:x rdf:type owl:Restriction:x owl:onProperty R:x owl:maxQualifiedCardinality n:x owl:onDataRange D.
minimum cardinality	DataMinCardinality(n R)	_:x rdf:type owl:Restriction:x owl:onProperty R:x owl:minCardinality n.
qualified minimum cardinality	DataMinCardinality(n R D)	_:x rdf:type owl:Restriction:x owl:onProperty R:x owl:minQualifiedCardinality n:x owl:onDataRange D.

Restrictions Using n-ary Data Range

In the following table 'Dⁿ' is an n-ary data range.

Language Feature	Functional Syntax	RDF Syntax
n-ary universal	<u>DataAllValuesFrom</u> (R ₁ R _n D ⁿ)	_:x rdf:type owl:Restriction. _:x owl:onProperties (R ₁ R _n). _:x owl:allValuesFrom D ⁿ .
n-ary existential	$\frac{DataSomeValuesFrom}{D^n}(R_1 R_n$	_:x rdf:type owl:Restriction. _:x owl:onProperties (R ₁ R _n). _:x owl:someValuesFrom D ⁿ .

2.2 Properties

Object Property Expressions

Language Feature	Functional Syntax	RDF Syntax
named object property	PN	PN
universal object property	owl:topObjectProperty	owl:topObjectProperty
empty object property	owl:bottomObjectProperty	owl:bottomObjectProperty
inverse property	ObjectInverseOf(PN)	_:x owl:inverseOf PN

Data Property Expressions

Language Feature	Functional Syntax	RDF Syntax
named data property	<u>R</u>	R
universal data property	owl:topDataProperty	owl:topDataProperty
empty data property	owl:bottomDataProperty	owl:bottomDataProperty

2.3 Individuals & Literals

Language Feature	Functional Syntax	RDF Syntax
named individual	<u>aN</u>	aN
anonymous individual	<u>_:a</u>	_:a
<u>literal</u> (datatype value)	"abc"^^DN	"abc"^^DN

2.4 Data Ranges

Data Range Expressions

Language Feature	Functional Syntax	RDF Syntax
named datatype	<u>DN</u>	DN
data range complement	<u>DataComplementOf(D)</u>	_:x rdf:type rdfs:Datatype. _:x owl:datatypeComplementOf D.
data range intersection	<u>DataIntersectionOf(D1Dn)</u>	_:x rdf:type rdfs:Datatype. _:x owl:intersectionOf (D ₁ D _n).

data range union	DataUnionOf(D ₁ D _n)	_:x rdf:type rdfs:Datatype. _:x owl:unionOf (D ₁ D _n).
literal enumeration	DataOneOf(v ₁ v _n)	_:x rdf:type rdfs:Datatype. _:x owl:oneOf (v ₁ v _n).
datatype restriction	DatatypeRestriction(DN f ₁ v ₁ f _n v _n)	_:x rdf:type rdfs:Datatype. _:x owl:onDatatype DN. _:x owl:withRestrictions (_:x ₁ :x _n). _:x _j f _j v _j . j=1n

2.5 Axioms

Class Expression Axioms

Language Feature	Functional Syntax	RDF Syntax
<u>subclass</u>	SubClassOf(C ₁ C ₂)	C ₁ rdfs:subClassOf C ₂ .
equivalent classes	EquivalentClasses(C1	Cj owl:equivalentClass Cj+1.
equivalent classes	C _n)	j=1n-1
disjoint classes	DisjointClasses(C ₁ C ₂)	C ₁ owl:disjointWith C ₂ .
pairwise disjoint	DisjointClasses(C ₁ C _n)	_:x rdf:type owl:AllDisjointClasses.
classes	, , , , , , , , , , , , , , , , , , , ,	_:x owl:members (C ₁ C _n).
disjoint union	DisjointUnionOf(CN C1	CN owl:disjointUnionOf (C ₁
uisjoint union	C _n)	C _n).

Object Property Axioms

Language Feature	Functional Syntax	RDF Syntax
subproperty	SubObjectPropertyOf(P1 P2)	P ₁ rdfs:subPropertyOf P ₂ .
property chain inclusion	SubObjectPropertyOf(ObjectPropertyChain(P1 Pn) P)	P owl:propertyChainAxiom (P ₁ P _n).
property domain	ObjectPropertyDomain(P C)	P rdfs:domain C.
property range	ObjectPropertyRange(P C)	P rdfs:range C.
equivalent properties	EquivalentObjectProperties(P ₁ P _n)	P _j owl:equivalentProperty P _{j+1} . j=1n-1
disjoint properties	DisjointObjectProperties(P1 P2)	P ₁ owl:propertyDisjointWith P ₂ .
pairwise disjoint properties	<u>DisjointObjectProperties</u> (P1 Pn)	_:x rdf:type owl:AllDisjointProperties. _:x owl:members (P ₁ P _n).
<u>inverse</u> <u>properties</u>	InverseObjectProperties(P1 P2)	P ₁ owl:inverseOf P ₂ .
functional property	FunctionalObjectProperty(P)	P rdf:type owl:FunctionalProperty.
inverse functional property	InverseFunctionalObjectProperty(P)	P rdf:type owl:InverseFunctionalProperty.
reflexive property	ReflexiveObjectProperty(P)	P rdf:type owl:ReflexiveProperty.

<u>irreflexive</u> <u>property</u>	IrreflexiveObjectProperty(P)	P rdf:type owl:IrreflexiveProperty.
symmetric property	SymmetricObjectProperty(P)	P rdf:type owl:SymmetricProperty.
asymmetric property	AsymmetricObjectProperty(P)	P rdf:type owl:AsymmetricProperty.
transitive property	TransitiveObjectProperty(P)	P rdf:type owl:TransitiveProperty.

Data Property Axioms

Language Feature	Functional Syntax	RDF Syntax
subproperty	SubDataPropertyOf(R ₁ R ₂)	R ₁ rdfs:subPropertyOf R ₂ .
property domain	DataPropertyDomain(R C)	R rdfs:domain C.
property range	DataPropertyRange(R D)	R rdfs:range D.
<u>equivalent</u>	EquivalentDataProperties(R1	R _j owl:equivalentProperty
<u>properties</u>	R _n)	R _{j+1} . j=1n-1
disjoint properties	DisjointDataProperties(R ₁	R ₁ owl:propertyDisjointWith
disjoint properties	R ₂)	R ₂ .
pairwise disjoint properties	$\frac{\text{DisjointDataProperties}}{R_{n}}(R_{1} \dots R_{n})$	_:x rdf:type owl:AllDisjointProperties. _:x owl:members (R ₁ R _n).
functional property	FunctionalDataProperty(R)	R rdf:type owl:FunctionalProperty.

Datatype Definitions

Language Feature	Functional Syntax	RDF Syntax
datatype definition	DatatypeDefinition(DN D)	DN owl:equivalentClass D.

Assertions

Language Feature	Functional Syntax	RDF Syntax
individual equality	SameIndividual(a ₁ a _n)	aj owl:sameAs aj+1. j=1n-1
individual inequality	DifferentIndividuals(a ₁ a ₂)	a ₁ owl:differentFrom a ₂ .
pairwise individual inequality	<u>DifferentIndividuals</u> (a ₁ a _n)	_:x rdf:type owl:AllDifferent. _:x owl:members (a ₁ a _n).
class assertion	ClassAssertion(C a)	a rdf:type C.
positive object property assertion	ObjectPropertyAssertion(PN a ₁ a ₂)	a ₁ PN a ₂ .
positive data property assertion	<u>DataPropertyAssertion(</u> R a v)	a R v.
negative object	NegativeObjectPropertyAssertion(P a ₁ a ₂)	_:x rdf:type owl:NegativePropertyAssertion. _:x owl:sourceIndividual a ₁ .

property assertion		_:x owl:assertionProperty P. _:x owl:targetIndividual a ₂ .
negative data property assertion	NegativeDataPropertyAssertion(R a v)	_:x rdf:type owl:NegativePropertyAssertion. _:x owl:sourceIndividual a. _:x owl:assertionProperty R. :x owl:targetValue v.

Keys

Language Feature	Functional Syntax	RDF Syntax
Key	$\frac{\text{HasKey}(C (P_1 P_m) (R_1}{R_n))}$	C owl:hasKey ($P_1 \dots P_m R_1 \dots R_n$). m+n>0

2.6 Declarations

Language Feature	Functional Syntax	RDF Syntax
class	Declaration(Class(CN))	CN rdf:type owl:Class.
<u>datatype</u>	Declaration(Datatype(DN))	DN rdf:type rdfs:Datatype.
object property	Declaration(ObjectProperty(PN))	PN rdf:type owl:ObjectProperty.
data property	Declaration(DataProperty(R))	R rdf:type owl:DatatypeProperty.
annotation	Declaration(AnnotationProperty(A rdf:type
property	A))	owl:AnnotationProperty.
named individual	Declaration(NamedIndividual(aN))	aN rdf:type owl:NamedIndividual.

2.7 Annotations

Annotations

Language Feature	Functional Syntax	RDF Syntax
annotation assertion	AnnotationAssertion(A s t)	s A t.
annotation of an axiom where the axiom in RDF is one or more triples of the form s _i U t _i , i.e., with the same predicate U.	AXIOM(<u>Annotation</u> (A t))	_:Xi A t. si U ti:Xi rdf:type owl:Axiom:Xi owl:annotatedSource si:Xi owl:annotatedProperty U:Xi

annotation of an axiom where the axiom in RDF is _:x U t ₁	AXIOM(<u>Annotation</u> (A t))	owl:annotatedTarget ti. _:x A t. _:x U t ₁ .
annotation of another annotation (the other annotation in RDF starts with s1)	Annotation(<u>Annotation</u> (A t) A ₁ t ₁)	_:x A t. s1 A1 t1:x rdf:type owl:Annotation:x owl:annotatedSource s1:x owl:annotatedProperty A1:x owl:annotatedTarget t1.

Annotation Properties

Language Feature	Functional Syntax	RDF Syntax
named annotation property	A	Α
human-readable name	rdfs:label	rdfs:label
human-readable comment	rdfs:comment	rdfs:comment
additional information	rdfs:seeAlso	rdfs:seeAlso
defining agent	rdfs:isDefinedBy	rdfs:isDefinedBy
version information	owl:versionInfo	owl:versionInfo
deprecation	owl:deprecated	owl:deprecated
backwards compatibility	owl:backwardCompatibleWith	owl:backwardCompatibleWith
incompatibility	owl:incompatibleWith	owl:incompatibleWith
prior version	owl:priorVersion	owl:priorVersion

Annotation Axioms

Language Feature	Functional Syntax	RDF Syntax	
annotation aubaranartica	SubAnnotationPropertyOf(A ₁	A ₁ rdfs:subPropertyOf	
annotation subproperties	A ₂)	A ₂ .	
annotation property	AnnotationPropertyDomain(A	n(A A rdfs:domain U.	
domain	U)		
annotation property	AnnotationPropertyRange(A	A rdfo:rongo II	
range	U)	A rdfs:range U.	

2.8 Ontologies

Ontologies

Language Feature	Functional Syntax	RDF Syntax
OWL ontology (importing) ¹²	Ontology([ON [U]] Import(ON ₁) Annotation(A t))	ON rdf:type owl:Ontology. [ON owl:versionIRI U.] ON owl:imports ON ₁ ON A t.
prefix declaration ³	Prefix(p=U)	@prefix p U.

- 1. [] represents optional constructs
- 2. In the RDF syntax _:x is used in place of ON if there is no ontology name.
- 3. RDF syntax is in Turtle, other RDF serializations may vary.

3 Built-in Datatypes and Facets

3.1 Built-in Datatypes

Universal Datatype	rdfs:Literal			
	owl:rational		owl:real	
	xsd:double	xsd:float	xsd:decimal	xsd:integer
	xsd:long	xsd:int	xsd:short	xsd:byte
<u>Numbers</u>	xsd:nonNegativeInteger		xsd:nonPositiveInteger	
	xsd:positiveInteger		xsd:negativeInteger	
	xsd:unsignedLong		xsd:unsignedInt	
	xsd:unsignedShort		xsd:unsignedByte	
	rdf:PlainLiteral (RDF plain literals)			
<u>Strings</u>	xsd:string	xsd:NCName	xsd:Name	xsd:NMTOKEN
	xsd:token		xsd:normalizedString	
Boolean Values	xsd:boolean (value space: true and false)			
Binary Data	xsd:base64Binary		xsd:hexBinary	
<u>IRIs</u>	xsd:anyURI			
Time Instants	xsd:dateTime (optional time zone offset)			
	xsd:dateTimeStamp (required time zone offset)			
XML Literals	<u>rdf:XMLLiteral</u>			

3.2 Facets

Facet	Value	Applicable Datatypes	Explanation
xsd:minInclusive xsd:maxInclusive xsd:minExclusive xsd:maxExclusive	literal in the corresponding datatype	Numbers, Time Instants	Restricts the value-space to greater than (equal to) or lesser than (equal to) a value
xsd:minLength xsd:maxLength xsd:length	Non-negative integer	Strings, Binary Data, IRIs	Restricts the value-space based on the lengths of the literals
xsd:pattern	xsd:string literal as a regular expression	Strings, IRIs	Restricts the value space to literals that> match the regular expression

rdf:langRange	xsd:string literal as a regular expression		Restricts the value space to literals with language tags that match the regular expression
---------------	---	--	--

4 Appendix

4.1 New Features in OWL 2

Class Expressions	 local reflexivity (self restriction) object and data qualified exact/maximum/minimal cardinality restriction universal and existential restriction on n-ary data range 		
Class Axioms	pairwise disjoint classesclass disjoint union		
Property Expressions	 <u>universal</u> and <u>empty</u> object property <u>universal</u> and <u>empty</u> data property <u>inverse object property expression</u> 		
Property Axioms	 property chain inclusion disjoint object properties disjoint data properties reflexive, irreflexive, and asymmetric object property. 		
Data Ranges	 datatype definition data range complement, intersection and union datatype restriction and facets hook for n-ary datatype 		
Assertions	negative object property assertionnegative data property assertion		
Annotation	 annotation assertion annotation of an axiom or an annotation annotation subproperties annotation property domain and range owl:deprecated annotation property 		
Extra Built-in Datatypes	 owl:rational, owl:real, xsd:dateTimeStamp, rdf:PlainLiteral 		
Others	 key declaration metamodeling capabilities (Punning) anonymous individual 		

4.2 Additional Vocabulary in OWL 2 RDF Syntax

Feature	Vocabulary Note	
data range	owl:DataRange	deprecated in OWL 2, replaced by rdfs:Datatype
membership of a set of pairwise different individuals	owl:distinctMembers	can alternatively use owl:members
ontology property	owl:OntologyProperty	
deprecation	owl:DeprecatedClass, owl:DeprecatedProperty	alternative RDF syntax: s rdf:type

5 Appendix: Change Log (Informative)

5.1 Changes Since Proposed Recommendation

This section summarizes the changes to this document since the <u>Proposed</u> Recommendation of 22 September, 2009.

- · Minor editorial changes to "Annotations" table.
- Minor editorial change to the explanation of table headers and others.
- Link to a pdf version of the guide, i.e., the OWL 2 Reference Card.

5.2 Changes Since Last Call

This section summarizes the changes to this document since the <u>Candidate</u> Recommendation of 11 June, 2009.

- The "Features At Risk" note w.r.t. the owl:rational and rdf:XMLLiteral datatypes was removed: implementation support has been adequately demonstrated, and the features are no longer considered at risk (see Resolution 5 and Resolution 6, 05 August 2009).
- Some minor editorial changes were made.

6 Acknowledgments

The starting point for the development of OWL 2 was the <u>OWL1.1 member submission</u>, itself a result of user and developer feedback, and in particular of information gathered during the <u>OWL Experiences and Directions (OWLED)</u> <u>Workshop series</u>. The working group also considered <u>postponed issues</u> from the <u>WebOnt Working Group</u>.

This document has been produced by the OWL Working Group (see below), and its contents reflect extensive discussions within the Working Group as a whole. The editors extend special thanks to Bernardo Cuenca Grau (Oxford University), Christine Golbreich (Université de Versailles St-Quentin and LIRMM), Ivan Herman (W3C/ERCIM), and Bijan Parsia (University of Manchester) for their thorough reviews.

The regular attendees at meetings of the OWL Working Group at the time of publication of this document were: Jie Bao (RPI), Diego Calvanese (Free University of Bozen-Bolzano), Bernardo Cuenca Grau (Oxford University Computing Laboratory), Martin Dzbor (Open University), Achille Fokoue (IBM Corporation), Christine Golbreich (Université de Versailles St-Quentin and LIRMM), Sandro Hawke (W3C/MIT), Ivan Herman (W3C/ERCIM), Rinke Hoekstra (University of Amsterdam), Ian Horrocks (Oxford University Computing Laboratory), Elisa Kendall (Sandpiper Software), Markus Krötzsch (FZI), Carsten Lutz (Universität Bremen), Deborah L. McGuinness (RPI), Boris Motik (Oxford University Computing Laboratory), Jeff Pan (University of Aberdeen), Bijan Parsia (University of Manchester), Peter F. Patel-Schneider (Bell Labs Research, Alcatel-Lucent), Sebastian Rudolph (FZI), Alan Ruttenberg (Science Commons), Uli Sattler (University of Manchester), Michael Schneider (FZI), Mike Smith (Clark & Parsia), Evan Wallace (NIST), Zhe Wu (Oracle Corporation), and Antoine Zimmermann (DERI Galway). We would also like to thank past members of the working group: Jeremy Carroll, Jim Hendler, Vipul Kashyap.