Homework 7 Solutions

Zheming Gao

October 23, 2017

Problem 1 (4.7)

Proof. Suppose that the dual is feasible and bounded. Then, it has a finite optimum. By strong duality theorem, the dual of dual, which is the primal, also has a finite optimum. But this is a contradiction to the infeasibility of primal problem.

Problem 2 (4.8)

Problem 4 (4.11)

Proof. If $Ax = b, x \ge 0$ has a solution x_0 and $A^T w \ge 0$, then $x_0^T A^T w \ge$. This implies that $b^T w \ge 0$.

Conversely, we need to show that if $Ax = b, x \ge 0$ has no solution, then $b^T w < 0$ as $A^w \ge 0$. Indeed, this is true due to Farkas Lemma.

Problem 5 (4.13)

Proof. If $Ax \leq b, x \geq 0$ has a solution x_0 and $A^T w \geq 0, w \geq 0$, then $x_0^T A^T \leq b^T$. Multiply w on both sides and we have

$$0 = x_0^T A^T w \leqslant b^T w.$$

which is $b^T w \geqslant 0$.

Conversely, we need to show that if $b^T w \ge 0$ when $A^T w \ge 0$, $w \ge 0$, then $Ax \le b, x \ge 0$ has a solution. Consider the following primal dual problem,

$$\begin{array}{ll}
\operatorname{Min} & 0^T x \\
\operatorname{Subject to} & Ax \leqslant b \\
 & x \geqslant 0
\end{array} \tag{1}$$

$$\begin{array}{ll} \text{Max} & b^T y \\ \text{Subject to} & A^T y \leqslant 0 \\ & y \leqslant 0 \end{array} \tag{2}$$

(2) is equivalent to (3)

$$\begin{aligned} & \text{Max} & -b^T w \\ & \text{Subject to} & A^T w \geqslant 0 \\ & & w \geqslant 0 \end{aligned} \tag{3}$$

In (3), it is obvious that w=0 is a feasible solution. What's more, it is also an optimal solution due to the assumption that $b^Tw \ge 0$ when $A^Tw \ge 0$, $w \ge 0$. Hence, $\max -b^Tw = 0$. By strong duality theorem, we know (1) is also feasible.