Biostat 216 Homework 5

Due Nov 15 @ 11:59pm

Submit a PDF (scanned/photographed from handwritten solutions, or converted from RMarkdown or Jupyter Notebook or Quarto) to Gradescope in BruinLearn.

1 Q1

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Show the following properties of generalized inverses.

- 1. For any generalized inverse \mathbf{A}^- , $\mathrm{rank}(\mathbf{A}^-) \geq \mathrm{rank}(\mathbf{A})$.
- $2. \operatorname{rank}(\mathbf{A}^+) = \operatorname{rank}(\mathbf{A}).$
- 3. $(\mathbf{A}^-)'$ is a generalized inverse of \mathbf{A}' .
- 4. $(\mathbf{A}^+)' = (\mathbf{A}')^+$.

2 Q2 Householder algorithm for QR factorization

Let $\mathbf{v} \in \mathbb{R}^n$. Define the **Householder reflection matrix**

$$\mathbf{H} = \mathbf{I} - 2 \frac{\mathbf{v}\mathbf{v}'}{\|\mathbf{v}\|^2} = \mathbf{I} - 2\mathbf{u}\mathbf{u}',$$

where \mathbf{u} is the unit vector $\mathbf{v}/\|\mathbf{v}\|$.

- 1. Show that ${f H}$ is symmetric and orthogonal.
- 2. Let $\mathbf{a},\mathbf{b}\in\mathbb{R}^n$ such that $\|\mathbf{a}\|=\|\mathbf{b}\|$. Find a Householder matrix such that $\mathbf{Ha}=\mathbf{b}$.
- 3. Let $\mathbf{a} \in \mathbb{R}^n$ be a non-zero vector. Find a Householder matrix such that

$$\mathbf{H}\mathbf{a} = egin{pmatrix} \|\mathbf{a}\| \ \mathbf{0}_{n-1} \end{pmatrix}.$$

4. Let $\mathbf{a} \in \mathbb{R}^n$. Find a Householder matrix such that

$$\mathbf{H}\mathbf{a} = egin{pmatrix} a_1 \ \|\mathbf{a}_{2:n}\| \ \mathbf{0}_{n-2} \end{pmatrix}.$$

5. Let $\mathbf{A} \in \mathbb{R}^{n \times p}$. Describe how to find a sequence of Householder matrices $\mathbf{H}_1, \dots, \mathbf{H}_p$ such that

$$\mathbf{H}_{p}\mathbf{H}_{p-1}\cdots\mathbf{H}_{1}\mathbf{A}=\mathbf{R},$$

where $\mathbf{R} \in \mathbb{R}^{n imes p}$ is an upper triangular matrix.

6. Describe how this generates a full QR decomposition of matrix $\mathbf{A}=\mathbf{Q}\mathbf{R}$, where $\mathbf{Q}\in\mathbb{R}^{n\times n}$ is an orthogonal matrix and \mathbf{R} is upper triangular.

3 Q3

1. For any $\mathbf{X} \in \mathbb{R}^{n imes p}$ and $\mathbf{y} \in \mathbb{R}^n$, show that the normal equation

$$\mathbf{X}'\mathbf{X}\boldsymbol{\beta} = \mathbf{X}'\mathbf{y}$$

always has at least one solution.

- 2. Show that $(\mathbf{A}'\mathbf{A})^{-}\mathbf{A}'$ is a generalized inverse of \mathbf{A} .
- 3. $\mathbf{P_A} = \mathbf{A}(\mathbf{A}'\mathbf{A})^-\mathbf{A}'$ is the orthogonal projector onto $\mathcal{C}(\mathbf{A})$.

4 Q4 Missile tracking

A missile is fired from enemy territory, and its position in flight is observed by radar tracking devices at the following positions.

$x = extsf{Position}$ down range (1000 miles)	0	0.25	0.5	0.75	1
y=Height (1000 miles)	0	0.008	0.015	0.019	0.020

Suppose that intelligence sources indicate that enemy missiles are programmed to follow a parabolic flight path: $y=f(x)=\alpha_0+\alpha_1x+\alpha_2x^2$. Where is the missile expected to land? Hint: You can find the solution using computer program. For example, in Julia, least squares solution is obtained by command A \ b .

5 BV exercises

12.2, 12.4, 12.8