Telematics Package Examples

This document shows the usage scenarios for the Telematics package. Their are two entry points to using the package. * 1) If you do not have a Master Summary File created and you want to create One * 2) If you have a Master Summary File and you want to load it and do some analysis

Defining some variable

```
library(package = "niraj9.telematics")
public.folder = "/home/niraj9/public/"
master.file.3 = paste(public.folder , "master-3.csv" , sep = "")
master.file.4 = paste(public.folder , "master-4.csv" , sep = "")
```

Scenario 1 - Create a Master Summary File

Scenario 2 - Load an existing Master Summary File

```
## [1] " Master Summary = /home/niraj9/public/master-3.csv"

## [1] "Master File is loaded"
```

Driver Analysis - Example 1 - Show Drivers loaded

telematics\$drivers()

```
## [1] 245 263 289 348 2440 2453 2549 2596 2643 2647 2684 2704 2741 2744
## [15] 2747 2751 2784 2902 3012 3141 3148 3224 3265 3300 3351 3381 3492 3544
## [29] 3587 3610
```

Load a Driver

```
driver = Driver$new(db = telematics , driver.name = "2751")
driver$summary()
```

```
## [1] " trip count = 200"
## [1] " Driver Name/Num = 2751"
```

Driver Analysis - Example 2 - Show Driver Graphs

```
q =driver$ShowCoordinates(trip = 165)
```

```
## [1] 165
```


q =driver\$ShowVelocity(trip = 165)

q =driver\$ShowAcceleration(trip = 165)

Acceleration Moving Avg(10 sec) for Driver = 2751 and Trip = 165


```
q =driver$ShowBreaks(trip = 165)
```

eaking behaviour(4 sec moving avg) for Driver = 2751 and Trip = 165

q=driver\$ShowQuantiles(trip = 111)

q=driver\$ShowSpeedBreaks(trip = 120)

d Limit Breakages on Freeway for Driver = 2751 and Trip = 120

Driver Analysis - Example 3 - Driver Signature Predictive Model

Create a Unique Driver Signature. i.e a GBM Model that can identify a driver

```
model = driver$CreateDriverSignature()
summary(model)
```



```
##
                    rel.inf
             v18 9.94733837
## v18
## a1
              a1 9.80507317
             v15 5.59411053
## v15
## dis
             dis 5.39207183
             v17 5.12658450
## v17
## v16
             v16 4.72686096
## a9
              a9 4.46735035
## b19
             b19 3.90593212
## v5
              v5 3.66095148
## b9
              b9 3.46680518
## vecDis vecDis 3.35616034
## a20
             a20 2.98542153
## b20
             b20 2.68478647
## v13
             v13 2.46325146
              v4 2.31790788
## v4
             v11 2.11514852
## v11
## a8
              a8 1.81554908
## a7
              a7 1.80150174
## v14
             v14 1.63828376
              b3 1.60439867
## b3
## a10
             a10 1.58876583
```

##	b2 b2	1.57652154
##	v12 v12	1.44267613
##	v20 v20	1.29284827
##	a11 a11	1.26349558
##	v19 v19	1.13957260
##	b1 b1	1.03019412
##	a4 a4	1.00021543
##	a19 a19	0.81452160
##	v1 v1	0.64783247
##	b8 b8	0.62149323
##	b7 b7	0.60429795
##	b13 b13	0.56175405
##	time time	0.52492277
##	b10 b10	0.46544066
##	a3 a3	0.46037915
##	b11 b11	0.45496117
##	v8 v8	0.45149714
##		0.44819231
##		0.44313730
##		0.43415879
		0.39776718
##		0.36482425
##		0.31894215
##		0.30671508
##		0.30181281
##		0.29563785
		0.27184760
		0.24435949
		0.23444004
##		0.22325496
##		0.20026542
		0.14601833
		0.12449251
		0.12098907
		0.10431429
		0.10431423
##		0.09857065
##		0.00000000
		0.00000000
		0.00000000
		0.00000000
		0.00000000
ππ	01/ 01/	0.0000000

Driver Analysis - Example 4 - Driver Class Predictive Model

Use the Telematics class to segment the drivers into 5 driver classes

```
fit <- telematics$SegmentDrivers(segments = 5)</pre>
```

```
Length Class Mode
##
                6000
## cluster
                       -none- numeric
                 315
## centers
                       -none- numeric
## totss
                   1
                       -none- numeric
## withinss
                   5
                       -none- numeric
## tot.withinss
                   1
                       -none- numeric
## betweenss
                   1
                       -none- numeric
## size
                   5
                       -none- numeric
## iter
                   1
                       -none- numeric
## ifault
                   1
                       -none- numeric
```

summary(fit)

```
##
                Length Class Mode
                6000
## cluster
                       -none- numeric
## centers
                 315
                       -none- numeric
                   1
## totss
                       -none- numeric
## withinss
                   5
                       -none- numeric
## tot.withinss
                   1
                       -none- numeric
## betweenss
                   1
                       -none- numeric
                   5
## size
                       -none- numeric
## iter
                   1
                       -none- numeric
## ifault
                   1
                       -none- numeric
```

Visualize the Driver Clusters

```
telematics$VisualizeSegments()
```

Cluster Plot against 1&2 principal components

These two components explain 58.28 % of the point variability.

[1] TRUE