Devoir à la maison 4

Fonctions périodiques

À rendre pour le mercredi 10 octobre 2018

Le but de ce problème est l'étude de certaines propriétés des fonctions périodiques. Commençons par donner la définition des fonctions périodiques.

Définitions

Soit I une partie de \mathbb{R} , soit $f: I \longrightarrow \mathbb{R}$ et soit $T \in \mathbb{R}$.

Définition 1 La fonction f est \underline{T} -périodique ssi

(i)
$$\forall x \in I, \ x + T \in I$$

(ii)
$$\forall x \in I, \ f(x+T) = f(x)$$

On dit alors que T est une période de f.

Définition 2 La fonction f est périodique $\overset{\Delta}{\text{ssi}} \exists T \in \mathbb{R}^*, f$ est T-périodique.

Notations

Dans tout le problème, I désigne une partie de \mathbb{R} .

Généralités

- 1. Caractériser les fonctions 0-périodiques, en démontrant votre caractérisation.
- **2.** Soit $T \in \mathbb{R}^*$. Soient $f, g: I \longrightarrow \mathbb{R}$ deux fonctions T-périodiques.
 - a) Montrer que f + g est T-périodique.
 - b) Soit $\lambda \in \mathbb{R}$. Montrer que λf est T-périodique.
- **3.** Soit $T \in \mathbb{R}$ et soit $f : \mathbb{R} \longrightarrow \mathbb{R}$ une fonction T-périodique.
 - a) Montrer que f est (-T)-périodique.
 - b) Montrer que $\forall n \in \mathbb{N}, f$ est nT-périodique.
 - c) Montrer que $\forall n \in \mathbb{Z}, \ f \text{ est } nT\text{-p\'eriodique}.$
 - d) Soit $g: \mathbb{R} \longrightarrow \mathbb{R}$. Montrer que

$$g$$
 est T -périodique \iff $\Big[\forall n \in \mathbb{Z}, \ g$ est nT -périodique $\Big].$

4. Soit T>0 et soit $f:\mathbb{R}\longrightarrow\mathbb{R}$ une fonction T-périodique. Soit a>0. On note g la fonction définie par

$$g: \begin{array}{c} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto f(ax) \end{array}.$$

Montrer que g est périodique et donner (en le démontrant) une période de g.

Partie fractionnaire

Le but de cette partie est de montrer que la somme de deux fonctions périodiques n'est pas nécessairement périodique.

5. Soient $T, T' \in \mathbb{R}^*$.

Soit f une fonction T-périodique, soit g une fonction T'-périodique. On suppose que $\frac{T'}{T} \in \mathbb{Q}$. Montrer que f + g est périodique.

- **6.** Si $x \in \mathbb{R}$, on note $\{x\}$ la partie fractionnaire de x:
 - c'est la partie « après la virgule » de x si $x \ge 0$. Par exemple, on a $\{3,142\} = 0,142$.
 - si $x \in \mathbb{R}_{-}$, on pose $\{x\} = 1 \{|x|\}$

Dans cette question, on n'attend pas de démonstration mathématique des résultats, qui pourront être donnés sans justification. La formalisation mathématique de la partie fractionnaire est l'objet de la question 8.

- a) Proposer une définition de $\{x\}$ si $x \in \mathbb{R}_{-}$.
- b) Combien vaut $\left\{\frac{1}{3}\right\}$?
- c) Combien vaut $\left\{\frac{1}{3} + 1\right\}$?
- d) Combien vaut $\left\{\frac{1}{3}-1\right\}$?
- e) On note Frac la fonction définie par

Frac:
$$\mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto \{x\}$.

La fonction Frac est-elle périodique? Si oui, donner une période de Frac.

- f) Que vaut $\left\{ x \in \mathbb{R} \mid \{x\} = 0 \right\}$?
- 7. Montrer que la somme de deux fonctions périodiques n'est pas nécessairement périodique. On pourra considérer la fonction

2

$$f: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x \longmapsto & \{x\} + \{\sqrt{2} \cdot x\} \end{array}.$$

Justifiez soigneusement toutes vos assertions.

- **8.** Le but de cette question est de montrer que $\forall x \in \mathbb{R}, \exists ! n \in \mathbb{Z}, \exists ! r \in [0,1], x = n + r.$
 - a) Écrire la formule mathématique correspondant à l'unicité.
 - b) Démontrer l'unicité.
 - c) Démontrer l'existence.

Fonction indicatrice des rationnels

Le but de cette partie est de répondre (partiellement) à la question suivante :

« Que peut-on dire d'une fonction f admettant des périodes T>0 aussi petites qu'on veut ? »

- **9.** Montrer que $\forall x, y \in \mathbb{Q}, x + y \in \mathbb{Q}$.
- **10.** Montrer que l'assertion « $\forall x, y \in (\mathbb{R} \setminus \mathbb{Q}), x + y \in (\mathbb{R} \setminus \mathbb{Q})$ » est fausse.
- **11.** Montrer que $\forall x \in (\mathbb{R} \setminus \mathbb{Q}), \forall y \in \mathbb{Q}, x + y \in (\mathbb{R} \setminus \mathbb{Q}).$
- 12. On appelle fonction indicatrice de \mathbb{Q} , la fonction de \mathbb{R} dans \mathbb{R} , notée $\mathbb{1}_{\mathbb{Q}}$ et définie par

$$\mathbb{R} \longrightarrow \mathbb{R}$$

$$\mathbb{1}_{\mathbb{Q}} : x \longmapsto \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{sinon} \end{cases}$$

- a) Combien vaut $\mathbb{1}_{\mathbb{Q}}(0)$?
- b) Combien vaut $\mathbb{1}_{\mathbb{Q}}(1)$?
- c) Combien vaut $\mathbb{1}_{\mathbb{Q}}(\sqrt{2})$?
- d) Combien vaut $\mathbb{1}_{\mathbb{Q}}(\sqrt{2}+\sqrt{3}+\sqrt{5})$? On pourra démontrer la réponse en raisonnant par l'absurde.
- 13. Montrer que $\forall q \in \mathbb{Q}$, $\mathbb{1}_{\mathbb{Q}}$ est q-périodique.
- **14.** Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction telle que $\forall n \in \mathbb{N}^*$, f est (1/n)-périodique. Est-ce que f est nécessairement constante?

La méthode montrée dans cette partie peut se généraliser sans problème au cas où la fonction admet une suite de périodes $(T_n)_n$ tendant vers 0.

Étude de quelques exemples

On considère les fonctions

$$f: \begin{array}{ccc} \mathbb{R}_+ & \longrightarrow \mathbb{R} & & & & & \\ x & \longrightarrow \sqrt{x} & & & & & \\ & & & & & \\ \end{array} \quad \text{ln}: \begin{array}{ccc} \mathbb{R}^*_+ & \longrightarrow \mathbb{R} & & & \\ & & & & \\ \end{array} \quad \text{exp}: \begin{array}{ccc} \mathbb{R} & \longrightarrow \mathbb{R} & & \\ & & & \\ x & \longmapsto & \\ \end{array} \quad \text{exp}: \begin{array}{ccc} \mathbb{R} & \longrightarrow \mathbb{R} & \\ \end{array}$$

- 15. Montrer que la fonction f n'est pas périodique.
- 16. Montrer que la fonction ln n'est pas périodique.
- 17. Montrer que la fonction exp n'est pas périodique.
- **18.** Soit $n \in \mathbb{N}^*$ et soient $a_0, a_1, \dots, a_n \in \mathbb{R}$. On considère la fonction

$$P: \begin{array}{c} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \end{array}.$$

Est-il possible que P soit périodique? Montrez votre affirmation :

- par un exemple si votre réponse est « Oui » ;
- par une démonstration si votre réponse est « Non ».

L'exponentielle n'est pas une somme de fonctions périodiques

- 19. Montrer que l'exponentielle n'est pas la somme de deux fonctions périodiques.
- **20.** Montrer que l'exponentielle n'est pas la somme (*ie* n'est pas la somme d'un nombre fini) de fonctions périodiques.