INTRO TO DATA SCIENCE LECTURE 3: KNN CLASSIFICATION

LAST TIME:

- REGRESSION AND ASSUMPTIONS OF LINEAR MODELING
- MULTIPLE REGRESSION
- FEATURE SELECTION VIA BACKWARDS ELIMINATION
- INTRO TO MACHINE LEARNING & TYPICAL PROBLEMS

QUESTIONS?

AGENDA

I. CLASSIFICATION PROBLEMS II. BUILDING EFFECTIVE CLASSIFIERS

EXERCISES:

III. THE KNN CLASSIFICATION MODEL

supervised
unsupervisedregression
dimension reductionclassification
clustering

Here's (part of) an example dataset:

Fisher's Iris Data

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species +
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

Here's (part of) an example dataset:

Fisher's Iris Data

independent variables

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species +
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

Here's (part of) an example dataset:

Fisher's Iris Data

independent variables

Sepal length \$	Sepal width \$	Petal length \$	Petal width \$	Species \$
5.1	3.5	1.4	0.2	I. setosa
4.9	3.0	1.4	0.2	I. setosa
4.7	3.2	1.3	0.2	I. setosa
4.6	3.1	1.5	0.2	I. setosa
5.0	3.6	1.4	0.2	I. setosa
5.4	3.9	1.7	0.4	I. setosa
4.6	3.4	1.4	0.3	I. setosa
5.0	3.4	1.5	0.2	I. setosa

class labels (qualitative) Q: What does "supervised" mean?

Q: What does "supervised" mean?

A: We know the labels.

```
Welcome to R! Thu Feb 28 13:07:25 2013
> summary(iris)
  Sepal.Length
                Sepal.Width
                                 Petal.Length
                                                 Petal.Width
 Min.
       :4.300
                 Min.
                        :2.000
                                Min.
                                        :1.000
                                                Min.
                                                       :0.100
                1st Qu.:2.800
                                1st Qu.:1.600
 1st Qu.:5.100
                                                1st Qu.:0.300
 Median :5.800
                 Median :3.000
                                Median :4.350
                                                Median :1.300
       :5.843
                        :3.057
                                       :3.758
 Mean
                 Mean
                                Mean
                                                Mean
                                                       :1.199
 3rd Qu.:6.400
                 3rd Qu.:3.300
                                 3rd Qu.:5.100
                                                3rd Qu.:1.800
        :7.900 max
                        :4.400
                                        :6.900
                                                       :2.500
                                Max.
                                                Max.
 Max.
       Species
 setosa
 versicolor:50
 virginica:50
```

Q: How does a classification problem work?

Q: How does a classification problem work?

A: Data in, predicted labels out.

Figure 4.2. Classification as the task of mapping an input attribute set x into its class label y.

Q: What steps does a classification problem require?

dataset

Q: What steps does a classification problem require?

1) split dataset model

dataset

- 1) split dataset
- 2) train model

- 1) split dataset
- 2) train model
- 3) test model

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

NOTE

This new data is called

CLASSIFICATION PROBLEMS

- 1) split dataset
- 2) train model
- 3) test model
- 4) make predictions

II. BUILDING EFFECTIVE CLASSIFIERS

1) training error

- 1) training error
- 2) generalization error

- 1) training error
- 2) generalization error
- 3) 00S error

NOTE

BUILDING EFFECTIVE CLASSIFIERS

- 1) training error
- 2) generalization error
- 3) 00S error

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

- We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

 We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

 We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

NOTE

This phenomenon is called *overfitting*.

OVERFITTING - EXAMPLE

FIGURE 18-1. Overfitting: as a model becomes more complex, it becomes increasingly able to represent the training data. However, such a model is overfitted and will not generalize well to data that was not used during training.

Underfitting and Overfitting

Thought experiment:

Suppose instead, we train our model using the entire dataset.

Q: How low can we push the training error?

 We can make the model arbitrarily complex (effectively "memorizing" the entire training set).

A: Down to zero!

NOTE

This phenomenor is called *overfitting*.

A: Training error is not a good estimate of OOS accuracy.

GENERALIZATION ERROR

Suppose we do the train/test split.

GENERALIZATION ERROR

Suppose we do the train/test split.

Q: How well does generalization error predict OOS accuracy?

GENERALIZATION ERROR

Suppose we do the train/test split.

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

A: On its own, not very well.

Q: How well does generalization error predict 00S accuracy?

Thought experiment:

Suppose we had done a different train/test split.

Q: Would the generalization error remain the same?

A: Of course not!

A: On its own, not very well.

NOTE

The generalization error gives a high-variance estimate of OOS accuracy.

Q: How can we do better?

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

Q: How can we do better?

Thought experiment:

Different train/test splits will give us different generalization errors.

Q: What if we did a bunch of these and took the average?

A: Now you're talking!

A: Cross-validation.

CROSS-VALIDATION

1) Randomly split the dataset into n equal partitions.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.
- 4) Repeat steps 2-3 using a different partition as the test set at each iteration.

- 1) Randomly split the dataset into n equal partitions.
- 2) Use partition 1 as test set & union of other partitions as training set.
- 3) Find generalization error.
- 4) Repeat steps 2–3 using a different partition as the test set at each iteration.
- 5) Take the average generalization error as the estimate of OOS accuracy.

CROSS-VALIDATION

1) More accurate estimate of 00S prediction error.

- 1) More accurate estimate of OOS prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.

- 1) More accurate estimate of 00S prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split

- 1) More accurate estimate of 00S prediction error.
- 2) More efficient use of data than single train/test split.
 - Each record in our dataset is used for both training and testing.
- 3) Presents tradeoff between efficiency and computational expense.
 - 10-fold CV is 10x more expensive than a single train/test split
- 4) Can be used for model selection.

III. KNN CLASSIFICATION

1) Pick a value for k.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

- 1) Pick a value for k.
- 2) Find colors of k nearest neighbors.
- 3) Assign the most common color to the grey dot.

OPTIONAL NOTE

Our definition of "nearest" implicitly uses the Euclidean distance function.

EXERCISE – K NEAREST NEIGHBORS CLASSIFICATION IN R

KEY OBJECTIVES	R FUNCTIONS
- knn classification using train/test sets	- knn {class}

Iris Data (red=setosa,green=versicolor,blue=virginica)

KEY OBJECTIVES

Extend the script we used in class to implement knn classification on the iris dataset using n-fold cross-validation.

(Bonus: split code into functions)

for example:

```
knn.nfold <- function(n, ...) {
    # create n-fold partition of dataset
    # perform knn classification n times
    # n-fold generalization error = average over all iterations
}</pre>
```

INTRO TO DATA SCIENCE

DISCUSSION