准考 证号									工位号			
					注意:	只均	真写准	È考证	号和工位-	号,否	则试卷	作废
密			封				线	;				

2015年"蓝桥杯" 第六届全国软件和信息技术专业人才大赛个人赛 (电子类) 决赛单片机设计与开发项目

竞赛时间: 5小时

题 号	_	二	三	总分
配 分	10 分	30分	60 分	100 分
得 分				

"智能物料传送系统"设计任务书

功能简述

智能物料传送系统能够实现货物类型判断、过载监测、紧急停止和系统参数存储记录等 功能。系统硬件部分主要由按键电路、显示电路、数据存储电路、传感器检测电路及单片机 系统组成,系统框图如图1所示:

图 1. 系统框图

I2C 总线驱动程序、CT107D 单片机考试平台电路原理图以及本题所涉及到的芯片数据 手册,可参考计算机上的电子文档。原理图文件、程序流程图及相关工程文件请以考生号命 名,并保存在计算机上的考生文件夹中(文件夹名为考生准考证号,文件夹位于 Windows 桌面上)。

设计任务及要求

1. 过载监测与货物类型识别

1.1 空载、过载监测

使用电位器 RB_2 输出电压 V_0 模拟压力变送器输出,设备实时采集电位器输出电压,完成货物空载、过载监测功能。

- 1.1.1 当 0 < V。 < 1V 时,判断为空载,L1 点亮;
- $1.1.2 当 1 ≤ V_o < 4V$ 时,判断为非空载,货物被填装到传送起始位置,L2 点亮;
- 1.1.3 当 V_o ≥ 4V 时,判断为过载状态,L3 以 0.5 秒为间隔闪烁提醒,蜂鸣器报警提示。

说明: 空载状态下, 所有数码管熄灭。

1.2 货物类型判断

货物被填装到传送起始位置后,系统启动超声波测距功能,完成货物类型判断,数码管显示界面如图 2 所示:

- 1.2.1 当超声探头与货物之间的距离小于等于 30cm 时判断为 I 类货物;
- 1.2.2 当超声探头与货物之间的距离大于 30cm 时判断为 II 类货物。

1	8	8	3	2	8	8	2
界面编号	熄	!灭	距离:	32cm	熄	灭	II 类货物

图 2. 数码管显示界面 1-货物类型显示

说明:

- 货物类型显示格式: Ⅰ类货物 数字 1、Ⅱ 类货物 数字 2;
- 2. A3 草稿纸短边接近 30cm,可用于验证测距结果。

2. 货物传送

在非空载、非过载的前提下,通过按键控制继电器吸合,启动货物传送过程,并通过数码管实时显示剩余的传送时间,倒计时结束后,继电器自动断开,完成本次传送过程,数码管显示格式如图 3 所示:

2	8	8	8	8	8	0	1
界面编号	熄灭				剩余传送	时间: 1秒	

图 3. 数码管显示界面 2-剩余传送时间显示

说明:继电器吸合时,指示灯 L10 点亮,断开时 L10 熄灭。

3. 按键功能描述

- 3.1 按键 S4 定义为"启动传送"按键,按键按下后,启动货物传送过程。 **说明**:按键 S4 在空载、过载、传送过程中无效。
- 3.2 按键 S5 定义为"紧急停止"按键,按键按下后,继电器立即断开,指示灯 L4 以 0.5 秒为间隔闪烁,剩余传送时间计时停止。再次按下 S5,传送过程恢复,

L4 熄灭,恢复倒计时功能,继电器吸合,直到本次传送完成。

说明:按键 S5 仅在传送过程中有效。

3.3 按键 S6 定义为"设置"按键,按下 S6 按键,调整 I 类货物传送时间,再次按下 S6 按键,调整 II 类货物传送时间,第三次按下 S6,保存调整后的传送时间到 E2PROM,并关闭数码管显示。设置过程中数码管显示界面如图 4 所示:

3	8	8	0	2	8	0	4
界面编号	熄灭		I 类: 传递	送时间2秒	熄灭	II 类:传过	送时间4秒

图 4. 数码管显示界面 3-传送时间设置界面

说明:

- 1. 货物传送时间可设定范围为 1-10 秒,通过按键 S7 调整;
- 2. "设置"按键 S6、"调整"按键 S7 仅在空载状态下有效;
- 3. 通过按键 S6 切换选择到不同货物类型的传送时间时,显示该类货物传送时间的数码管闪烁。

4. 数据存储

I、II 类型货物的传送时间在设置完成后需要保存到 E2PROM 中,设备重新上电后,能够恢复最近一次的传送时间配置信息。

5. 上电初始化状态与工作流程说明

- 5.1 Ⅰ类设备默认传送时间为 2 秒, Ⅱ类设备为 4 秒;
- 5.2 最终作品提交前,将 RB2 输出电压调整到最小值,确保设备处于空载状态;

6. 其它

建立一个准考证号命名的txt文档,写出作品设定的单片机内部振荡器频率。

7. 电路原理图设计

假定设备使用压力感应电阻 R_{FS} 完成过载监测功能,压力变化与压力感应电阻阻值之间的关系如图 5 所示,使用简单阻容元器件、三极管、运算放大器等设计电路,当货物重量小于 1000g 时,电路驱动继电器吸合,否则继电器断开,设计电路原理图并说明电路工作原理。

图 5. 压力-电阻值关系曲线

项目名称	得分	评卷人
电路设计		

一. 电路原理图设计

根据设计任务要求,使用 Protel 99se 或 Altium Designer Summer09 软件设计电路原理图,标明元器件参数,说明电路工作原理。原理图文件保存在考生文件夹中(文件夹以考生的准考证号命名)。

项目名称	得分	评卷人
程序设计		

二. 程序编写及流程图绘制

- 1. 画出程序流程图,保存在考生文件夹中;
- 2. 按照设计要求完成程序设计任务,并将工程文件保存在考生文件夹中。

项目名称	得分	评卷人
硬件调试		

三. 软、硬件统调

将编译通过的程序下载到单片机芯片中,进行软、硬件统调。

- 1. 系统初始化状态;
- 2. LED、蜂鸣器报警指示功能;
- 3. 数码管显示数据及显示界面切换功能;
- 4. 继电器时序控制功能;
- 5. 货物空载、过载判断功能;
- 6. 货物类型判断功能;
- 7. 按键控制与不同状态下的按键功能锁定;
- 8. EEPROM 参数存储功能。