概率论与数理统计估计量的评选标准

主讲人: 曾华琳

信息科学与技术学院

前言 Introduction

$X\sim N(\mu,\sigma^2)$

- · 样本均值是否是 µ 的一个好的估计量?
- 样本方差是否是 σ^2 的一个好的估计量?

FUE Introduction

估计量的评选标准

评价一个估计量的好坏,不能仅仅依据 一次试验的结果,而必须由多次试验结果来 衡量。

削声 Introduction

常用的标准:

- 1. 无偏性
- 2. 有效性
- 3. 相合性

无 偏 性

估计量是随机变量,对于不同的样本值会得到不同的估计值。我们希望估计值在未知参数真值附近摆动,而它的期望值等于未知参数的真值。这就导致无偏性这个标准。

设 $\hat{\theta}(X_1,\cdots,X_n)$ 是未知参数 θ 的估计量,若 $E(\hat{\theta})=\theta$ 则称 $\hat{\theta}$ 为 θ 的无偏估计。

一、无偏性

- 无偏性是对估计量的一个常见而重要的要求。
- 无偏性的实际意义是指没有系统性的偏差。

一、无偏性

例1 设总体 X 服从参数为 θ 的指数分布, 其概率密度为

$$f(x) = \begin{cases} \frac{1}{\theta}e^{-x/\theta}, & x > 0, \\ 0, & \sharp \Xi, \end{cases}$$

其中 $\theta > \theta$ 为未知, $X_1,X_2,...X_n$ 是取自总体的一个样本,

试证 \bar{X} 和 $Z = \min(X_1,...,X_n)$ 都是参数 θ 的无偏估计量。

> 一、无偏性

证 $E(X) = \theta, E(\overline{X}) = \theta$ 所以 \overline{X} 是参数 θ 的无偏估计量。

而 $Z = \min(X_1, ..., X_n)$ 具有概率密度

$$f_{\min}(x;\theta) = \begin{cases} rac{n}{ heta}e^{-nx/ heta}, x > 0, \ 0,$$
 其它,

故知 $E(Z) = \frac{\theta}{n}, E(nZ) = \theta$

即 nZ 也是参数 θ 的无偏估计量。

有效性

> 二、有效性

设
$$\hat{\theta}_1 = \hat{\theta}_1(X_1, \dots, X_n)$$
 和 $\hat{\theta}_2 = \hat{\theta}_2(X_1, \dots, X_n)$

都是参数 θ 的无偏估计量,若对任意 $\theta \in \Theta$,

$$D(\hat{\theta}_1) \leq D(\hat{\theta}_2)$$

且至少对于某个 $\theta \in \Theta$ 上式中的不等号成立,

则称 $\hat{\theta}_1$ 较 $\hat{\theta}_2$ 有效。

> 二、有效性

例2 (续例1) 试证:

当 n > 1 时 θ 的无偏估计量 \bar{X} 较 $Z = \min(X_1,...,X_n)$ 有效。

证:
$$D(X) = \theta^2$$
, 故有 $D(\overline{X}) = D(\frac{1}{n}\sum_{i=1}^n X_i) = \frac{1}{n^2}\sum_{i=1}^n D(X_i) = \frac{\theta^2}{n}$

而
$$D(Z) = \frac{\theta^2}{n^2}$$
,故有 $D(nZ) = \theta^2$.

当 n > 1 时, $D(nZ) > D(\overline{X})$, 故 \overline{X} 较 nZ有效。

相合性

> 三、相合行

设 $\hat{\theta}(X_1,...,X_n)$ 是参数 θ 的估计量,若对于任意 $\theta \in \Theta$, 当 $n \to \infty$ 时 $\hat{\theta}(X_1,...,X_n)$ 依概率收敛于 θ ,则称 $\hat{\theta}$ 为 θ 的相合估计量。

 $\hat{\theta}$ 为 θ 的相合估计量。

 対于任意 $\varepsilon > 0$, 有 $\lim_{n \to \infty} P\{|\hat{\theta} - \theta| < \varepsilon\} = 1$, $\theta \in \Theta$

> 三、相合行

由辛钦定理

若总体X的数学期望 $E(X)=\mu$ 有限,

则有
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k \xrightarrow{P} E(X^k) = \mu_k \ (k = 1, 2, \cdots)$$

$$g(A_1, A_2, \cdots, A_k) \xrightarrow{P} g(\mu_1, \mu_2, \cdots, \mu_k)$$

其中g为连续函数。

> 三、相合行

故

若 g 为连续函数,则有 $g(A_1,A_2,...,A_k)$ 为 $g(\mu_1,\mu_2,...,\mu_k)$

的相合估计量。

归纳总结

对于一个未知参数可以提出不同的估计量,因此自然提出比较估计量的好坏的问题,这就需要给出评定估计量好坏的标准。