

Feed-forward neural networks

A Neural Network has an Input Layer, one or several Hidden Layers and an Output Layer

Feedforward Neural Network

- The information moves in only **one direction:** forward from the input nodes, through the hidden nodes (if any) to the output nodes.
- Each neuron in one layer has directed connections to the neurons of the subsequent layer
- No connections between nodes within the same layer
- There are no cycles or loops in the network
- Vanilla Neural Network Structure: Subsequent layers are fully connected
- Trainable Parameters: Weights connecting the nodes and biases

A neuron

... applies an activation function to the weighted sum of its inputs

Activation functions

LINEAR
like linear regression
(only used in output
layer)

LOGISTIC /
SIGMOIDAL / TANH
Smooth, differentiable,
saturating functions

RECTIFIED
LINEAR (ReLU)
Cheap to
compute, popular
lately

Activation functions

Name ¢	Plot	Function, $g(x)$	Derivative of $g,g'(x)$ $\qquad $	Range •	Order of continuity •
Identity		x	1	$(-\infty,\infty)$	C^{∞}
Binary step		$\begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$	$\left\{ \begin{aligned} 0 & \text{if } x \neq 0 \\ \text{undefined} & \text{if } x = 0 \end{aligned} \right.$	{0,1}	C^{-1}
Logistic, sigmoid, or soft step		$\sigma(x) \doteq rac{1}{1+e^{-x}}$	g(x)(1-g(x))	(0,1)	C^{∞}
Hyperbolic tangent (tanh)		$\tanh(x) \doteq \frac{e^x - e^{-x}}{e^x + e^{-x}}$	$1 - g(x)^2$	(-1,1)	C^{∞}
Rectified linear unit (ReLU) ^[8]		$(x)^+ \doteq \begin{cases} 0 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$ = $\max(0, x) = x 1_{x > 0}$	$ \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ \text{undefined} & \text{if } x = 0 \end{cases} $	$[0,\infty)$	C^0
Gaussian Error Linear Unit (GELU) ^[S]		$rac{1}{2}x\left(1+\mathrm{erf}\left(rac{x}{\sqrt{2}} ight) ight) \ =x\Phi(x)$	$\Phi(x) + x\phi(x)$	$(-0.17\ldots,\infty)$	C^{∞}
Softplus ^[9]		$\ln(1+e^x)$	$\frac{1}{1+e^{-x}}$	$(0,\infty)$	C^{∞}
Exponential linear unit (ELU) ^[10]		$\begin{cases} \alpha \left(e^{x}-1\right) & \text{if } x\leq 0 \\ x & \text{if } x>0 \end{cases}$ with parameter α	$\begin{cases} \alpha e^x & \text{if } x < 0 \\ 1 & \text{if } x > 0 \\ 1 & \text{if } x = 0 \text{ and } \alpha = 1 \end{cases}$	$(-\alpha,\infty)$	$\begin{cases} C^1 & \text{if } \alpha = 1 \\ C^0 & \text{otherwise} \end{cases}$
Scaled exponential linear unit (SELU) ^[11]		$\lambda \begin{cases} \alpha(e^x-1) & \text{if } x<0\\ x & \text{if } x\geq0\\ & \text{with parameters } \lambda=1.0507 \text{ and } \alpha=1.67326 \end{cases}$	$\lambdaigg\{egin{array}{ll} lpha e^x & ext{if } x < 0 \ 1 & ext{if } x \geq 0 \end{array}$	$(-\lambda lpha, \infty)$	C^0
Leaky rectified linear unit (Leaky ReLU) ^[12]		$ \begin{cases} 0.01x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases} $	$\left\{ \begin{array}{ll} 0.01 & \text{if } x < 0 \\ 1 & \text{if } x \geq 0 \\ \text{undefined} & \text{if } x = 0 \end{array} \right.$	$(-\infty,\infty)$	C^0
Parametric rectified linear unit (PReLU) ^[13]		$\begin{cases} \alpha x & \text{if } x < 0 \\ x & \text{if } x \geq 0 \end{cases}$ with parameter α	$\begin{cases} \alpha & \text{if } x < 0 \\ 1 & \text{if } x \ge 0 \end{cases}$	$(-\infty,\infty)$	C^0
Sigmoid linear unit (SiLU, [5] Sigmoid shrinkage, [14] SiL, [15] or Swish-1[16])		$\frac{x}{1+e^{-x}}$	$\frac{1 + e^{-x} + xe^{-x}}{(1 + e^{-x})^2}$	$[-0.278\ldots,\infty)$	C^{∞}
Gaussian		e^{-x^2}	$-2xe^{-x^2}$	(0,1]	C^{∞}

Source: https://en.wikipedia.org/wiki/Activation_function

Neuron with ReLu activation

... applies an activation function to the weighted sum of its inputs

sum:
$$z = w_0 + w_1 x_1 + w_2 x_2 + ... + w_K x_K$$

output:
$$o = act(z) = \begin{cases} z & \text{if } z \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

The Output Layer

Zürcher Hochschule

The output layer

Regression tasks:

- output is a single node, the predicted value

Classification with two classes:

- output: a single value between 0..1
- decision boundary e.g. at 0.5

Classification with many classes:

- number of output values = number of classes
- sum over all output values = 1
- each output value between 0..1
- decision: largest output value is predicted class

ReLU Activation function for all hidden nodes:

$$\operatorname{act}(\mathbf{z}_{a_i}) = \operatorname{ReLu}(\mathbf{z}_{a_i}) = \begin{cases} z_{a_i} & \text{if } z_{a_i} \geq 0 \\ 0 & \text{otherwise} \end{cases}$$
 Sigmoid for output node

$$act(z_o) = \sigma(z_o) = \frac{1}{1 + e^{-(z_o)}}$$

The bias (w_0) is not explicitly depicted. It is the same for all nodes:

$$w_{a_1,0} = w_{a_2,0} = w_{a_3,0} = w_{0,0} = 0.2$$

$$act(z_{a_i}) = ReLu(z_{a_i}) = \begin{cases} z_{a_i} & \text{if } z_{a_i} \ge 0\\ 0 & \text{otherwise} \end{cases}$$

$$z_{a_1} = i_1 \cdot 1 + i_2 \cdot 0.9 + w_{a_{1,0}} = 3 \cdot 1 - 2 \cdot 0.9 + 0.2 = 1.4$$

 $a_1 = \text{act}(z_{a_1}) = \text{ReLu}(1.4) = 1.4$

$$act(z_{a_i}) = ReLu(z_{a_i}) \begin{cases} z_{a_i} & \text{if } z_{a_i} \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

$$z_{a_2} = i_1 \cdot 0.1 + i_2 \cdot 0.3 + w_{a_{2,0}} = 3 \cdot 0.1 - 2 \cdot 0.3 + 0.2 = -0.1$$

 $a_2 = \text{act}(z_{a_2}) = \text{ReLu}(-0.1) = 0$

$$act(z_{a_i}) = ReLu(z_{a_i}) = \begin{cases} z_{a_i} & \text{if } z_{a_i} \ge 0\\ 0 & \text{otherwise} \end{cases}$$

$$z_{a_3} = i_1 \cdot 1.1 + i_2 \cdot 0.7 + w_{a_{3,0}} = 3 \cdot 1.1 - 2 \cdot 0.7 + 0.2 = 2.1$$

 $a_3 = \text{act}(z_{a_3}) = \text{ReLu}(2.1) = 2.1$

$$act(z_o) = \sigma(z_o) = \frac{1}{1 + e^{-(z_o)}}$$

$$z_o = a_1 \cdot 0.4 + a_2 \cdot 0.4 + a_3 \cdot 2.1 + w_{0,0} = 1.4 \cdot 0.4 + 0 \cdot 0.4 + 2.1 \cdot 1.1 + 0.2 = 3.07$$

$$\hat{y} = \arctan(z_o) = \frac{1}{1 + e^{-(z_o)}} = 0.96$$

Training Neural Networks

The cost function for neural networs

Regression: Average sum of squared residuals

$$J(\mathbf{W}) = \frac{1}{2M} \sum_{m=1}^{M} (y_m - \hat{y}_m)^2$$

Classification: Average Cross Entropy

Binary (logistic):

$$J(\mathbf{W}) = -\frac{1}{M} \sum_{m=1}^{M} y_m \log \hat{y}_m + (1 - y_m) \log(1 - \hat{y}_m)$$

Multinomial, i.e. multiclass (softmax):

$$J(W) = -\frac{1}{M} \sum_{m=1}^{M} y_{mk} \log \hat{y}_{mk} \text{ (where } k \text{ is the correct class index for sample } m)$$

Minimisation by gradient descent

- Initial guess for the model parameters: the weights
- Repeat until stopping criterium is reached:
 - 1. compute **gradient** of the cost function with respect to parameters
 - 2. adjust the parameters in the opposite direction of the gradient by a small step, i.e. the learning rate α

$$w_{kl} \leftarrow w_{kl} - \alpha \frac{\partial J(\mathbf{W})}{\partial w_{kl}}$$

Backpropagation: efficient computation of the partial derivatives in gradient descent

5. Backpropagation

Compare output to desired value

4. Compute gradient

1. Training samples

Re-use of Partial Derivative Chains

In each path for the partial derivatives, we can re-use sub-paths from previous calculations. This makes backpropagation efficient.

History:

- First described by Werbos 1974
- Re-discovered by Parker 1982 and Rumelhart et al. 1986

MLDM – Machine Learning and Data Mining

Key factor: Differentiability

If all components in a neural network are differentiable, we can efficiently compute the gradient of the cost function with respect to the weights and optimise using gradient descent

Disadvantages of Backpropagation

- Requires large amount of labelled training data
- Learning time is slow for multiple hidden layers
- Can get stuck in local optima (although not a big problem in high dimensions)
- Vanishing Gradient Problem

Vanishing Gradient Problem Sepp Hochreiter 1991

- Observation: if we have many hidden layers, and if all partial derivatives are between -1 and 1 (sigmoid function), then multiplying them makes them exponentially small
- Thus, changes in the first layers will diminish since the gradient becomes extremely small
- Depths of a network can be easily up to 150 layers
- In practice, this results in very slowly changing weights, thus, very long training times
- Less of problem with ReLu (question: why?)
- Advanced network architectures avoid this problem

Neural networks for non-linear problems

Non-linear decision boundaries with neural networks

Universality Theorem Hornik 1991

A neural net with one hidden layer and arbitrary number of neurons can approximate any given continuous function.

Proof Idea of Universality Theorem

Idea: Cut a given function *f* in sufficient amount of small pieces, then use 2 neurons that model a partial linear function to approximate each of these pieces

