2023 / 06 / 05 進捗報告

B4 小島光

バッファの構成

電流源の設計一閾値電圧の推定

Gnuplotのfitコマンドを 用いて非線形最小二乗法 により

prosecc: rhom 0.18μ

チャネル幅:1 μm

チャネル長:1 μm

ドレインソース間電圧

 $: 0.1 \sim 0.9 \text{ V}$

の条件で

$$I_d(v_{gs})$$

$$= K_{c1} \cdot (v_{gs} - V_{th^3})^2$$

1-1-11

電流源の設計一閾値電圧の推定

vds [V]	Vth [V]	Kc [S/V]
0.1	0.40	7.64.E-05
0.2	0.41	8.95.E-05
0.3	0.42	1.06.E-04
0.4	0.42	1.07.E-04
0.5	0.42	1.08.E-04
0.6	0.42	1.09.E-04
0.7	0.42	1.10.E-04
0.8	0.42	1.10.E-04
0.9	0.41	1.10.E-04
ave.	0.41	1.03.E-04

シミュレーション結果から 閾値電圧は0.42 Vとした

電流源の設計一閾値電圧の推定

閾値電圧に余裕をもたせ0.45 V としたとき、バッファの出力端 子の直流電位は0.45 V

ピンチオフしない条件は $V_{DS} > V_{GS} - V_{th}$ なので、 $V_{bias1} = 0.9 \pm 0.15 \text{ V}$ となる。 ピンチオフしないために $V_{bias1} = 0.9 - 0.15 = 0.75 \text{ V}$ とした。

電流源の設計一出力抵抗

L [µm]	Lambda [V ⁻¹]	L [μm]	Lambda [V ⁻¹]
0.18	4.39.E-01	1.98	6.53.E-02
0.36	1.30.E-01	2.16	6.23.E-02
0.54	2.07.E-01	2.34	5.97.E-02
0.72	1.51.E-01	2.52	5.75.E-02
0.9	1.20.E-01	2.7	5.56.E-02
1.08	1.01.E-01	2.88	5.38.E-02
1.26	8.85.E-02	3.06	5.23.E-02
1.44	7.99.E-02	3.24	5.08.E-02
1.62	7.37.E-02	3.42	4.95.E-02
1.8	6.90.E-02	3.6	4.83.E-02

閾値電圧同様、gnuplotのfitコマンドを 用いて近似を行った 条件は以下の通りである

process: rhom 0.18u

チャネル幅:1 μm

チャネル長: $0.18 \sim 3.6 \, \mu m(\Delta = 0.18 \, \mu m)$

ゲートソース間電圧: 0.75 V

近似する式は

$$I_d(v_{ds}) = K_{c2} \cdot \frac{1}{L} \cdot (0.75 - 0.45) \cdot (1 + \lambda v_{ds})$$

電流源の設計一出力抵抗

↑バッファの等価回路 出力抵抗は

1

 $g_{m1} + g_{d1} + g_{d2}$ これが 50Ω を目指すので

 $g_{m1} + g_{d1} + g_{d2} = 20 \text{ mS}$ となればよい $\lambda I_d = g_d$ であるので、 λ が大きい方が g_d が大きくなるので g_{m1} が小さくてもよい

λが大きいとチャネル長変調が大きくなり、電流が変動しやすい

⇒電流を大きくする

電流源の設計一出力抵抗

 $I_d = 1 \text{ mA}$ のとき、チャネル長 とドレイン-トランスコンダク タンスの関係は左のようにな る

 $L=0.52~\mu \mathrm{m}$ の時、 $g_{d}\approx 0.2~\mathrm{mS}$ であるので、ドレイン電流を $5~\mathrm{mA}$ とすれば、 $g_{d2}\approx 1~\mathrm{mS}$ となる

電流源の設計

並列数10の時のドレイン電 流は左のようになる。

 $5 \, \text{mA}$ を流すにはチャネル幅はおよそ $20 \, \mu \text{m}$ 必要となるしたがって、実質的なチャネル幅は $200 \, \mu \text{m}$ 、チャネル面積は

M1の設計

M1もM2と同じチャネル長にするとき
$$g_{d1}=g_{d2}=1~\mathrm{mS}$$
 であるので、 $g_{m1}+g_{d1}+g_{d2}=20~\div g_{m1}=18~\mathrm{mS}$ が必要となる。 $g_{m1}=\sqrt{2KI_d}~(K\equiv\mu_nC_{ox})$ より、 $K=\frac{g_{m1}^2}{2I_d}=\frac{(18\times 10^{-3})^2}{2\cdot 5\times 10^{-3}}=0.0324$

M1の設計

チャネル長、チャネル幅ともに $1 \mu m$ の時、 $K = 8.78 \times 10^{-5}$ だったので、M1の形状比は

$$\frac{0.0324}{8.78 \times 10^{-5}} = 369.02 \dots$$

 $L = 0.52 \,\mu\text{m}$ としていたので、 $W = 0.52 \times 369 = 191.88 \,\mu\text{m}$ と求められる。

チャネル幅は50 μmが最大なので、

$$191.88 = 0.18 \times 26 \times 41$$

と計算できるので、 $W = 7.38 \, \mu \text{m}$ 、並列数26とする。

シミュレーション

全然数値が合わないの 0.0035 で、M1のチャネル幅で スイープし妥当なとこ ろを探す

シミュレーション

M1

チャネル幅: 25.4 μm

チャネル長: 0.52 μm

並列数:70

M2

チャネル幅: 20.3 μm

チャネル長: 0.52 μm

並列数:10