

算法设计与分析

作业(七)

姓	名	熊恪峥		
学	号	22920202204622		
日	期	2022年4月13日		
学	院	信息学院		
课程名称		算法设计与分析		

作业(七)

L
۰

1	题8.3	1
2	题8.4	1
3	题8.6	1
4	题8.7	2
5	题8.11	2
6	题8.12	2
7	题8.13	2
8	题8.14	3
9	题8.16	3
10	题8.20	3
11	. 题8.24	3
12	2 题8.25	3
13	5 题8.26	4
14	题8.27	4

1 题8.3

使用邻接矩阵存图,图的转置就是矩阵的转置,因此可以直接使用矩阵的转置来求解。这种方法的时间 复杂度是 $\mathcal{O}(\|V\|^2)$,如算法 1。

```
算法 1 转置邻接矩阵
```

```
Input: 邻接矩阵M

1: procedure TRANSPOSE(M)

2: V \leftarrow VERTICES(M)

3: T \leftarrow EMPTYMATRIX(V)

4: for i = 1 \rightarrow |V| do

5: for j = 1 \rightarrow |V| do

6: T[i,j] \leftarrow M[j,i]

7: return T
```

使用邻接表存图,可以通过遍历每个顶点的邻接表并将反向边插入新图中实现,这种方法的时间复杂度 是 $\mathcal{O}(\|V\| + \|E\|)$,如算法 2。

算法 2 转置邻接表

```
Input: 邻接表G
```

```
1: \mathbf{procedure} \ \mathrm{Transpose}(G)

2: GT.Vertices \leftarrow G.Vertices

3: \mathbf{for} \ v \in G.Vertices \ \mathbf{do}

4: GT.Adj[v] \leftarrow \mathrm{EmptyList}

5: \mathbf{for} \ e \in G.Adj[v] \ \mathbf{do}

6: GT.Adj[e.V2] \leftarrow (e.V2, e.V1)
```

2 题8.4

如图 2,以a为源点进行深度优先遍历,得到的d(u)如表 2

图 1: 反例

u	a	b	c	d
d(u)	1	2	3	4

表格 1: 深度优先遍历得到的d(u)

可见d(c) > d(d),且c到d存在路径,但d不是c的子顶点。

3 题8.6

 Tarjan 算法可以在 $\mathcal{O}(\|V\|+\|E\|)$ 的时间里求出强连通分量。对无向图中的每一个顶点使用算法 3,可以求出强连通分量。

22920202204622 作业(七) 第2页, 共4页

算法 3 Tarjans算法

- 1: **procedure** TARJAN(G)
- 2: $GT.Vertices \leftarrow G.Vertices$

4 题8.7

Floyd算法的修改版可以用来计算传递闭包,如算法4。

算法 4 Floyd算法求传递闭包

- 1: **procedure** FLOYD(G)
- 2: $GT.Vertices \leftarrow G.Vertices$

5 题8.11

存在一些图使得Prim算法慢于Kruskal算法。当使用的排序算法足够好时,Kruskal算法的时间复杂度时 $\mathcal{O}(\|E\|\log\|E\|)$,而Prim算法的时间复杂度是 $\mathcal{O}(\|V\|^2)$ 。因此,对于顶点多而边少的图,Prim算法比Kruskal算法慢。

6 题8.12

当图中存在负环时i到j无最短路径。如图 2。

图 2: 反例

7 题8.13

实现该功能,只需要遍历所有的边,并比较是否有不满足三角形不等式的距离,即 d[v] > d[u] + w(u,v)。如算法5。

算法 5 Bellmanford算法

```
1: procedure Bellmanford(G, w, s)
      for i \leftarrow 1 \rightarrow \|V\| - 1 do
2:
           for each\ edge(u,v) \in E do
3:
4:
               Relax(u,v,w)
      for each edge(u, v) \in E do
5:
           if d[v] > d[u] + w(u, v) then
6:
              d[v] \leftarrow \infty
7:
               return 0
8:
9:
      return 1
```

8 题8.14

为了求出DAG中的路径数量,首先进行拓扑排序然后按由逆拓扑序递推可以求出任意两点s,t间的路径数量。

$$f[i] = \begin{cases} 1 & i = t \\ f[i] + \sum_{(i,v) \in E} f[v] & i \neq t \end{cases}$$
 (1)

然后对起点s和任意点求路径数并求和,就可以得到路径树,如算法6。

算法 6 计算路径数

- 1: **procedure** PATHCOUNT(G, s)
- 2: $GT.Vertices \leftarrow G.Vertices$

9 题8.16

当第一次Relax操作未能改变d[v]时停止,则可以得到最小边数的最大值。如算法 7

算法 7 计算最小边数最大值

- 1: **procedure** Bellmanford(G, s)
- 2: $GT.Vertices \leftarrow G.Vertices$

10 题8.20

算法仍然正确。

Proof. 设最后一个顶点为u, 如果u到s不可达,则 $d[u] \leftarrow \infty = \delta(s,u)$

如果u到s可达,则存在路径p,从s经过点m到达u,由于 $d[x]=\delta(s,x)$,则按路径松弛性质, $d[u]=\delta(s,u)$ 则算法正确

11 题8.24

为了构造最优解,需要在每次成功松弛的时候记录松弛的点。如算法8

算法 8 计算最小边数最大值

- 1: **procedure** FLOYD(G)
- $2: \qquad GT.Vertices \leftarrow G.Vertices$

12 题8.25

每次迭代生成的矩阵如表:

13 题8.26

该算法需要存储 d_{ij} ,由于 $i \leq \|V\|, j \leq \|V\|$,则所需空间为 $\mathcal{O}(\|V\|^2)$ 。该算法的正确性证明如下

Proof.

14 题8.27

由松弛方法可知,可以调用两次Floyd算法,如果调用完第二次,有路径长度被再一次更新,则说明存在负环。