Spis treści

1 Literatura				
2	Język2.1Funkcje języka2.2Nauka o języku2.3Definicja	3 3 3		
3	Alfabet	3		
4	Słowo 4.1 Konkatenacja	3 4 4 4 4 4		
5	Język5.1 Konkatenacja języków5.2 Potęga języka5.3 Odbicie języka5.4 Dzielenie słów	4 5 5 5		
6	Domknięcie Kleenego	5		
7	7.3.2 Domknięcie zbioru stanów	5 6 6 6 7 8 8 9 10 10 10		
8	8.1 Operacje 1 8.2 Przykłady 1 8.3 Tw. Kleenego 1 $8.3.1 w = u + v$ 1 $8.3.2 w = uv$ 1	10 11 11 11 11		
9	9.1 Języki regularne 9.1.1 Lemat o pompowaniu dla języków regularnych 9.1.2 Przechodniość regularności 9.2 Bezkontekstowe	14		

10		ımatyki	14
	10.1	Wyprowadzanie słowa w jednym kroku	14
	10.2	Wyprowadzanie słowa w wielu krokach	14
	10.3	Język generowany przez gramatykę	
		10.3.1 Przykład prosty	
		10.3.2 Przykład złożony	
		10.3.3 Przykład prosty	
		10.3.4 Przykład złożony	
		Suma gramatyk	
		Rodzaje gramatyk	
	10.6	Gramatyki typu 3	
		10.6.1 Gramatyki Normalne typu 3	
	10.7	10.6.2 Gramatyki liniowe	
	10.7	Gramatyki bezkontekstowe	
		10.7.1 Problem należenia słowa pustego	
		10.7.2 Gramatyki normalne bezkontekstowe	
	10.0	10.7.3 Problem słowa	
		Gramatyki kontekstowe	
		Gramatyki ogólne	
		1Przekształcenie gramatyki na automat	
	10.1.	1F tzeksztatceme gramatyki na automat	11
11	Algo	orytmy	18
		Problem	
		11.1.1 Problem rozstrzygalny	
		11.1.2 Problem pustości	
		11.1.3 Problem skończoności	18
		11.1.4 Problem nieskończoności	19
		11.1.5 Problem równości	19
	11.2	Formalizm	19
	11.3	Teza Churcha-Turinga	19
10			10
12		comaty ze stosem	19
	12.1	Konfiguracja	
		12.1.1 Bezpośrednia redukcja konfiguracji	
	10.0	12.1.2 Redukcja konfiguracyj	
		Języki automatu ze stosem	
	12.3	Przykład	$\frac{20}{21}$
	12.4	12.4.1 Klasa języków det CF	
		12.4.2 Właściwości jezyków det CF	
		12.4.2 Widselwosel Jezykow det et	21
13	Mas	szyny Turinga	21
		Modele maszyny Turinga	21
	13.2	Konfiguracja maszyny Turinga	21
	13.3	Język akceptowany przez maszynę Turinga	22
	13.4	Rozstrzygalność	22
	13.5	Maszyna Turinga niedeterministyczna	22
	-		
		żoność obliczeniowa	22
		Notacja O	
		Klasa TIME	
		Redukowalność wielomianowa	
		Klasa P	
	14.5	Klasa NP	
		14.5.1 Klasa NP-trudna	
		14.5.2 Klasa NP-zupełna	23

1 Literatura

- J.E. Hopencroft "Wprowadzenie do teorii automatów i obliczeń"
- M. Sipser "Wprowadzenie do teorii obliczeń"
- G.E. Revesz "Introduction to formal languages"
- H.R. Lewin, Papadimitriou "Elements of the Theory of Computation"

2 Język

 ∞ zdań + n reguł = język

2.1 Funkcje języka

- 1. Poznawcza
- 2. Społeczna
- 3. Ekspresywna

2.2 Nauka o języku

- 1. syntaktyka budowa
- 2. semantyka co znaczy?
- 3. pragmatyka jak się używa?

Przykład:2 + 3 · 4: różna semantyka \rightarrow wieloznaczność syntaktyczna

2.3 Definicja

Język składa się z gramatyk i automatów. Gramatyka generuje język, automat rozpoznaje język.

Diagram 1: Ilustracja relacji języków, automatów i gramatyk

3 Alfabet

Alfabet to zbiór atomowych dozwolonych symboli. Przykład: $\{a, b, c, d\}$

4 Słowo

Słowo to skończony ciąg symboli nad alfabetem.

- ε słowo puste
- $\{K, L, O, P, S\} \neq$ "KLOPS", ponieważ słowa mają dodane znaczenie, w postaci tego do którego języka należą.

4.1 Konkatenacja

- Dla $P = a_1...a_n$ i $Q = b_1...b_n$, to $PQ = a_1...a_nb_1...b_n$
- $P\epsilon = P$
- $\epsilon\epsilon = \epsilon$

4.2 Podsłowo

- $P = Q_1|Q|Q_2$
- \bullet $Q \subset P$

4.3 Długość słowa

- $\bullet \ |\epsilon| = 0$
- |Pa| = |P| + 1
- |PQ| = |P| + |Q|

4.4 Potęga słowa

- $\bullet \ P^0 = \epsilon$
- $\bullet \ P^{n+1} = P^n P$

4.5 Odbicie

- $\bullet \ \epsilon^- 1 = \epsilon$
- $(Pa)^-1 = aP^-1$

5 Język

Zbiór dozwolonych słów nad alfabetem.

- $\bullet~V^*$ zbiór wszystkich języków
- $V^+ = V^* \{ \epsilon \}$
- $\bullet \ L \in V^*$
- $\{a,ab\} \neq \{\epsilon,a,ab\}$ ponieważ inaczej operacje na językach by nie działały

5.1 Konkatenacja języków

$$L_1 = \{a, aa\}, L_2 = \{b, aba\}, L_1L_2 = \{ab, aaba, aab, aaaba\}$$

L_1	a	aa
b	ab	aab
aba	aaba	aaaba

Tabela 1: Tabela konkatenacji języków ${\cal L}_1$ i ${\cal L}_2$

 $|L_1L_2| \leq |L_1| \cdot |L_2|$ bo ϵ wszystko psuje.

$$L_1 = \{a^n : n \ge 0\}, L_2 = \{b^n : n \ge 0\}, L_1L_2 = \{a^nb^m : n, m \ge 0\}$$

5.2 Potęga języka

$$L = \{a, ab\}, L^0 = \{\epsilon\}, L^1 = \{a, ab\}, L^2 = L \cdot L$$

Potęgowanie na językach jest dziwne

$$L = \{a^n : n \ge 0\}, L^2 = \{a^n a^m : a, m \ge 0\} = \{a^n : a \ge 0\} = L$$

Potęgowanie języku nie zwiększyło mocy

$$L = \{a^n : n > 0\}, L^2 = \{a^n a^m : a, m > 0\} = L \setminus \{a\} = \{a^n : n > 1\}$$

Potęgowanie języku zmniejszyło moc

5.3 Odbicie języka

$$L^{-1} = \{P^{-1} : P \in L\}$$

5.4 Dzielenie słów

 $P \in L^n \to \text{ można podzielić } P$ na n (niekoniecznie różnych) słów

$$L = \{a, ab\}, "aababaabab" \in L^n, n = ?$$

Jest to problem wykładniczy, który wymaga stworzenia drzewa różnych możliwości.

6 Domknięcie Kleenego

$$L^* = \bigcup_{n \ge 0}^{\infty} L^n$$

$$L^+ = \bigcup_{n \ge 1}^{\infty} L^n$$

$$L_1 = \{a\}, L_1^* = \{a^n : n \ge 0\}, L_1^+ = \{a^n : n > 0\}$$

$$L_2 = {\epsilon, a}, L_2^* = {a^n : n \ge 0} = L_2^+$$

 $L = \{aa, ab, ba, bb\}, L^* = \{P \in \{a, b\}^* : 2||P|\} =$ wszystkie słowa nad alfabetem a, b o parzystej długości

- $L^+ \subset L^*$
- $\epsilon \in L \to L^+ = L^*$
- $(L^*)^* = L^*$
- $L_1 \subset L_2 \to L_1^* \subset L_2^*$

$$L = \{a^n : n > 1\}, L^1 \neq L^2, L^* = L$$

7 Automaty Regularne

- nieskończona taśma
- rejestry
- w każdym rejestrze symbol z alfabetu T
- głowica, która porusza się od lewej do prawej po rejestrach taśmy, aż do momentu, kiedy napotka pusty rejestr. Głowica zawsze jest w jednym ze stanów z zbioru stanów

7.1 Deterministyczne automaty skończone

Automat skończenie stanowy jest uporządkowaną piątką

$$\mathfrak{A} = \langle K, T, \delta, q_0, H \rangle$$

- \bullet K zbiór stanów
- Talfabet symbole z tego alfabetu znajdują się w rejestrach
- $\delta: K \times T \to K$ funkcja przejścia automatu
- q_0 stan początkowy automatu
- \bullet H zbiór stanów akceptowalnych/końcowych

7.1.1 Funkcja przejść

Zbiory K i T są skończone, co oznacza, że funkcję δ można przedstawić w formie tabelki. Przykład:

$$K = \{q_0, q_1, q_2\}, T = \{a, b\}, H = \{q_2\}$$

$$\delta: K \times T \to K$$

Diagram 2: Tabela konkatenacji języków L_1 i L_2 oraz graf przejść automatu

7.1.2 Rozszerzona funkcja przejść

$$\stackrel{\wedge}{\delta}: K \times T^* \to K$$

- $\bullet \ \stackrel{\wedge}{\delta} (q,\epsilon) = q$
- $\stackrel{\wedge}{\delta}(q, Pa) = \delta(\stackrel{\wedge}{\delta}(q, P), a)$

$$L(\mathfrak{A}) = \{ P \in T^* : \stackrel{\wedge}{\delta} (q_0, P) \in H \}$$

7.1.3 Przykład

Narysuj diagram przejścia deterministycznego automatu skończenie stanowego \mathfrak{A} w którym $T = \{0,1\}, P \in L(\mathfrak{A})$ wtedy i tylko wtedy gdy w P występuje na pierwszym od końca miejscu.

Diagram 3: Diagram przejścia automatu do wykrywania 1 na pierwszym miejscu od końca

Narysuj diagram przejścia deterministycznego automatu skończenie stanowego $\mathfrak A$ w którym $T=\{0,1\}, P\in L(\mathfrak A)$ wtedy i tylko wtedy gdy w P występuje na drugim od końca miejscu 1.

Diagram 4: Diagram przejścia automatu do wykrywania 1 na drugim miejscu od końca

Widać na diagramie 4 wprost zależność że w zależności od miejsca od końca na którym ma być jeden rośnie ilość stanów. Ilość stanów maszyny |K| do wykrywania 1 na n-tym miejscu od końca można wyrazić w następujący sposób: $|K|=2^n$

7.2 Niedeterministyczne automaty skończone

- zamiast jednego stanu początkowego jest zbiór stanów początkowych
- niedeterministyczna funkcja przejścia, która zwraca zbiór wyjściowych stanów

$$\mathfrak{A} = \langle K, T, \delta, Q_0, H \rangle$$

gdzie oznaczenia sa identyczne jak dla deterministycznego automatu z dwoma różnicami:

- $\delta:K\times T\rightarrow a\in K$ funkcja przejścia automatu
- $\bullet \ Q_0$ zbi
ór stanów początkowych automatu

Diagram 5: Niedeterministyczna wersja automatu X z rysunku 4

Jak widać zamiast 4 stanów potrzeba tylko 3, to dlatego, że dla wersji niedeterministycznej |K| = n + 1

7.2.1 Rozszerzona funkcja przejść

$$\stackrel{\wedge}{\delta}: P(K) \times T^* \to P(K)$$

- $\overset{\wedge}{\delta}(A,\epsilon) = A$
- $\stackrel{\wedge}{\delta}(A, Pa) = \bigcup_{q \in \stackrel{\wedge}{\delta}(A, P)} \delta(q, a)$

$$\overset{\wedge}{\delta}(\{p\}, a) = \delta(p, a)$$

$$L(\mathfrak{A}) = \{ P \in T^* : \stackrel{\wedge}{\delta} (Q_0, P) \cap H \neq \emptyset \}$$

7.2.2 Twierdzenie Scotta

 każdy niedeterministyczny automat skończony można zastąpić równoważnym deterministycznym automatem skończonym

$$\mathfrak{L}_{ndet} \subset \mathfrak{L}_{det}$$

• każdy deterministyczny automat skończony można zastąpić równoważnym **nie**deterministycznym automatem skończonym

$$\mathfrak{L}_{det} \subset \mathfrak{L}_{ndet}$$

• liczba stanów automatu deterministycznego jest wykładnicza w stosunku do liczby stanów automatu niedeterministycznego

$$\mathfrak{L}_{det} = \mathfrak{L}_{ndet}$$

Zatem co nam daje niedeterministyczność? Przede wszystkim prostotę, ale kosztem wykładniczej złożoności.

Narysuj diagram przejścia deterministycznego automatu skończenie stanowego $\mathfrak A$ w którym $T=\{a\}, P\in L(\mathfrak A)$ wtedy i tylko wtedy gdy $(2||P|)\vee (3||P|)$.

Diagram 6: Diagram przejścia automatu do wykrywania słów o długości podzielnej przez 2 lub 3

Jak widzimy na diagramie 6 przyjmuje postać cyklu o okresie 6, ponieważ NWW(3,2)=6. Problem z diagramami deterministycznym się pojawia dla wyższych liczb, np.: 7 i 5, wtedy NWW(7,5)=35. Zatem narysujmy diagram niedeterministyczny 7.

Diagram 7: Diagram przejścia automatu ndet do wykrywania słów o długości podzielnej przez 5 lub 7

Jako, że automaty niedetermnistyczne pozwalają na kilka stanów początkowych, to tworzymy diagram niespójny, który w zależności od tego czy |P| jest podzielne przez 5 czy 7 przechodzi do odpowiedniego pod-automatu. Najłatwiej to można sobie wyobrazić jako dwa równoległe automaty z alternatywą na koniec.

7.2.3 Przekształcenie niedet \rightarrow det

$$\mathfrak{A} = \langle K, T, \delta, Q_0, H \rangle$$

$$\mathfrak{A}' = \langle K', T', \delta', q_0', H' \rangle$$

$$L(\mathfrak{A}) = L(\mathfrak{A}')$$

- T' = T bo nie ma sensu zmieniać taśmy
- K' = P(K) Wykładniczy wzrost liczby stanów w przekształceniu będziemy używać systemu etykiet(konstrukcja potęgowa) aby zamieniać zbiory stanów na pojedyncze stany

$$\{q_0, q_1\} = q^{01}$$
$$P(K) = \{q^{\emptyset}, q^1, q^0, q^{10}, \dots\}$$

- $\bullet \ q_0' = Q_0$ stan odpowiadający zbiorowi stanów początkowych
- $H' = \{A \in K' : A \cap H \neq \emptyset\}$
- $\delta'(A, a) = \bigcup_{q \in A} \delta(q, a)$

Dla automatu 5 zbudujmy równoważny automat deterministyczny. Korzystając z powyższych zasad otrzymujemy:

- $K' = P(K) = \{\emptyset, \{q_0\}, ..., \{q_1, q_2\}, \{q_0, q_1, q_2\}\} = \{q^{\emptyset}, q^0, ..., q^{12}, q^{012}\}$
- $H' = \{q^2, q^{12}, q^{02}, q^{012}\}$
- $q_0' = \{q_0\} = q^0$

Diagram 8: Zdeterminizowany automat z rysunku 5 i jego tabela przejść

Jak widać na diagramie 8 liczba stanów wzrosła z 3 do 8, co jest zgodne z przewidywaniami. Jednocześnie widać, że diagram 4 zawiera się w diagramie 8, co niekoniecznie oznacza, że są sobie równoważne, lecz jako, że stany dodatkowe są nieosiągalne to te dwa automaty są równoważne. Nie zawsze równoważność automatów będzie tak oczywista.

7.3 Automaty z przejściem

Co jeśli moglibyśmy zmienić stan ale nie ruszyć głowicy? Wtedy mamy do czynienia z automatem z przejściem.

 $\epsilon \in T, \epsilon = \text{nie ruszaj głowicy automatu}$

$$\delta: K \times (T \cup \{\epsilon\}) \to P(K)$$

Każdy automat z przejściem jest niedeterministyczny

Diagram 9: Automat z przejściem

Automat przedstawiony na rysunku 9 akceptuje języki o następującej postaci $L(\mathfrak{A}) = \{0^n 1^m 2^k : n, m, k \ge 0\}$. Nie istnieją różne epsilony: $00\epsilon 1\epsilon 222 = 00122$

7.3.1 Domknięcie stanu

E(q)=zbiór stanów osiągalnych z q przez dowolną liczbę epsilonów

- 1. $q \in E(q)$
- 2. $r \in E(q) \land p \in \delta(r, \epsilon) \rightarrow p \in E(q)$

7.3.2 Domknięcie zbioru stanów

$$E(A) = \bigcup_{q \in A} E(q)$$

7.3.3 Rozszerzona funkcja przejść

$$\stackrel{\wedge}{\delta}: P(K) \times T^* \to P(K)$$

- $\overset{\wedge}{\delta}(A, \epsilon) = E(A)$
- $\bullet \ \stackrel{\wedge}{\delta} (A,Pa) = \bigcup_{q \in \stackrel{\wedge}{\delta}(A,P)} E(\delta(q,a))$

7.3.4 Przekształcenie $\epsilon \rightarrow$ ndet

$$\mathfrak{A}' = \langle K', T', \delta', Q'_0, H' \rangle$$

$$T' = T, K' = K, H' = H, Q'_0 = E(Q_0), \delta'(A, a) = E(\delta(q, a))$$

$$\mathfrak{L}_{\mathfrak{ndet}}=\mathfrak{L}_{\epsilon}=\mathfrak{L}_{\mathfrak{det}}$$

δ_ϵ	a	b	ϵ		δ_{ndet}	\mathbf{a}	b
$\rightarrow q_0$) Ø	$\{q_1\}$	$\{q_2\}$	\Longrightarrow	$\rightarrow q_0$	$E(\emptyset) = \emptyset$	$\{q_1\}$
q_1	$\{q_1, q_2\}$	$\{q_2\}$	Ø		q_1	$\{q_1,q_2\}$	$\{q_2\}$
$\underline{q_2}$	$\{q_0\}$	Ø	Ø		$\rightarrow \underline{q_2}$	$E(\{q_0\}) = \{q_0, q_2\}$	Ø

Diagram 10: Przekształcenie automatu z przejściem na niedeterministyczny

8 Wyrażenia regularne

Reg(V) =zbiór wyrażeń regularnych nad alfabetem V

- $o \in Reg(V)$
- $e \in Reg(V)$
- $a \in V \to a \in Reg(V)$
- $u, v \in Reg(V) \rightarrow (u+v), (u\cdot v), (u^*) \in Reg(V)$

8.1 Operacje

W kolejności od najwyższego priorytetu do najniższego

- 1. $P \in Reg(V) \to L(P) \neq \emptyset$
- 2. $L(u^*) = (L(u))^*$
- 3. $L(uv) = L(u) \cdot L(v)$
- 4. $L(u+v) = L(u) \cup L(v)$
- 5. $L(u) = \{u\}$

8.2 Przykłady

$$L(ba^*) = \{ba^n : n \ge 0\}$$

$$L(ba^*) = L(b)L(a^*) = \{b\} \cdot (L(a))^* = \{b\} \cdot \{a\}^* = \{ba^n : n \ge 0\}$$

 $L((a+b)^*ab(a+b)^*)$ - wszystkie słowa nad alfabetem $\{a,b\}$ zaczynające się od a i kończące się b

8.3 Tw. Kleenego

$$\forall_{v \in Reg(V)} L(v) \subset \mathfrak{L}_{det}$$

Każdy język generowany przez wyrażenie regularne jest językiem akceptowanym przez automat skończony. Dowód opiera się na konstrukcji automatu ϵ odpowiadającego operatorowi wyrażenia regularnego.

8.3.1 w = u + v

$$\begin{split} L(u+v) &= L(u) \cup L(v) \\ L(u) &= L(\mathfrak{A}_u), L(v) = L(\mathfrak{A}_v) \\ L(\mathfrak{A}) &= L(\mathfrak{A}_u) \cup L(\mathfrak{A}_v) \end{split}$$

Diagram 11: Konstrukcja automatu dla wyrażenia regularnego u+v

8.3.2 w = uv

$$L(uv) = L(u) \cdot L(v)$$

$$L(u) = L(\mathfrak{A}_u), L(v) = L(\mathfrak{A}_v)$$

$$L(\mathfrak{A}) = L(\mathfrak{A}_u) \cdot L(\mathfrak{A}_v)$$

$$t \longrightarrow \overbrace{q_0} \longrightarrow \overbrace{\mathfrak{A}_u} \longrightarrow \overbrace{\mathfrak{A}_v}$$

Diagram 12: Konstrukcja automatu dla wyrażenia regularnego uv

8.3.3 $w = u^*$

$$L(u^*) = (L(u))^*$$

$$L(u) = L(\mathfrak{A}_u)$$

$$L(\mathfrak{A}) = (L(\mathfrak{A}_u))^*$$

Diagram 13: Konstrukcja automatu dla wyrażenia regularnego u^*

9 Klasy języków

Języki w zależności od swoich właściwości można podzielić na klasy. Z reguły języki dzielimy na klasy w zależności od tego co jest konieczne do ich rozpoznania i generowania.

Diagram 14: Nadzbiory języków regularnych

Każda klasa języków ma odpowiadającą klasę automatów, oraz gramatyk.

$$L(G_n) = \mathfrak{L}_n = L(\mathfrak{A}_n)$$

9.1 Języki regularne

Diagram 15: Konstrukcja automatu dla automatu a^*b^*

Język regularny to język akceptowany przez wyrażenie regularne, czyli język akceptowany przez automat skończony.

Diagram 16: Konstrukcja automatu akceptującego język $L = \{a^n b^n : 1 \le n \le 3\}$ bez śmietnika

Czy można zapisać automat deterministyczny (lub nie) skończenie stanowy, akceptujący język $L=\{a^nb^n:n\geq 1\}$?

Nie da się, ponieważ wymagałoby to nieskończonej ilości stanów. Zatem język L nie jest językiem regularnym.

9.1.1 Lemat o pompowaniu dla języków regularnych

Służy do dowodzenia, że język **nie** jest regularny.

Jeżeli $L = L(\mathfrak{A})$

to: istnieje $k \ge 0$, taki, że każde słowo $P \in L$ o długości $|P| \ge k$ można zapisać jako P = XYZ, spełniające warunki:

- $Y \neq \epsilon$
- $|XY| \le k$
- $\bullet \ \forall_{i>0} XY^iZ \in L$

Parafrazując: jeśli język jest regularny, to nie ma w nim słowa, którego nie mógłbyś podzielić na trzy części, takie, że środkowa część jest powtarzalna.

Lemat o pompowaniu jest warunkiem koniecznym ale nie wystarczającym. To oznacza, że wszystkie języki regularne spełniają warunek lematu o pompowaniu, ale nie wszystkie języki spełniający warunek lematu o pompowaniu są regularne. Warunkiem dostatecznym jest zdefiniowanie automatu skończenie stanowego akceptującego język.

Przykład zgodny

Dlaczego język $L = \{a^n b^m : n, m \ge 1\}$ jest regularny?

- $k > 2, P \in L$
- $|P| \ge k \to n + m \ge k$
- $P = a^{n-x}a^xb^m$ czyli P = XYZ gdzie $X = a^{n-x}, Y = a^x, Z = b^m$
- $n x + x < k \leftrightarrow |XY| \le k$
- dla i > 0 $XY^iZ = a^{n-x}a^{xi}b^m = a^{n+x(i-1)}b^m$, co jak widzimy jest w języku L

Przykład niezgodny

Dlaczego język $L = \{a^n b^n : n \ge 1\}$ nie jest regularny?

- $k > 2, P \in L$
- $|P| > k \rightarrow 2n > k$
- $|XY| \le k \to XY = a^n \lor XY = b^n$
- dla $i = 2 XY^2Z = a^nb^nb^n \notin L$

Zatem muszą istnieć języki nieregularne

9.1.2 Przechodniość regularności

Z tw. Kleenego:

$$L_1, L_2 \in \mathfrak{L}_{reg} \to L_1 \cup L_2, L_1 \cdot L_2, L_1^*, L_2^* \in \mathfrak{L}_{reg}$$

$$L_1 \cup L_2 = L(v+w) = L(v) \cup L(w) = L_1 \cup L_2$$

$$L_1 \cap L_2 = \overline{L_1 \cap L_2} = \overline{\overline{L_1} \cup \overline{L_2}}$$

$$L_3 \subsetneq L_2 \subsetneq L_1 \subsetneq L_0$$

9.2 Bezkontekstowe

Klasa języków bezkontekstowych jest zamknięta na operacje sumy, konkatenacji i domknięcia Kleene'ego.

9.2.1 Część wspólna języków bezkontekstowych

$$\{a^nb^nc^k: n \geq 1\} \cap \{a^nb^kc^k: n \geq 1\} = \{a^nb^nc^n: n \geq 1\}$$

9.2.2 Lemat o pompowaniu dla języków bezkontekstowych

Istnieje liczba naturalna p zależna od L, taka, że dla każdego słowa $P \in L$ o długości $|P| \ge p$ istnieje podział P = UXWYZ spełniający warunki:

- $XY \neq \epsilon$
- $|XWY| \le p$
- $\bullet \ \forall_{i>0} UX^iWY^iZ \in L$

9.3 Kontekstowe

9.4 Rozpoznawane przez maszyny Turinga

10 Gramatyki

Gramatyki służą do generowania języków. Działanie gramatyk wyraża się przy pomocy reguły przepisującej.

$$(P,Q)$$
 – słowa

Jeżeli
$$P \to Q$$
 oraz $U = P_1 P P_2$ to $U \Rightarrow P_1 Q P_2$

Jeżeli reguła przepisująca jest wykonywana wielokrotnie to używamy oznaczenia $\stackrel{*}{\Rightarrow}$.

$$G = \langle V_N, V_T, S, F \rangle$$

gdzie:

- V_N zbiór nieterminali (symboli zastępowanych)
- V_T zbiór terminali (symboli niezastępowanych)
- \bullet S symbol początkowy
- \bullet F zbiór reguł przepisujących

$$V_N \cap V_T = \emptyset$$

10.1 Wyprowadzanie słowa w jednym kroku

Dla gramatyki G mówimy, że W jest wyprowadzane w jednym kroku z U (oznaczane $U \Rightarrow W$) jeżeli istnieje reguła $P \to Q \in F$ taka, że $U = P_1 P Q_2$ oraz $W = P_1 Q Q_2$.

10.2 Wyprowadzanie słowa w wielu krokach

Dla gramatyki G mówimy, że W jest wyprowadzane w wielu krokach z U (oznaczane $U \stackrel{*}{\Rightarrow} W$) wtedy gdy U = W, lub gdy istnieją słowa $R_1 \dots R_n : n > 1$ gdzie $R_1 = U$ a $R_n = W$.

10.3 Język generowany przez gramatykę

$$L(G) = \{ W \in V_T^* : S \stackrel{*}{\Rightarrow} W \}$$

10.3.1 Przykład prosty

$$F = \{S \to aaSA, S \to \epsilon, A \to bA, A \to b\}$$

$$S \stackrel{*}{\Rightarrow} a^{2n} S A^n \Rightarrow a^{2n} A^n \stackrel{*}{\Rightarrow} a^{2n} b^m$$

$$L(G)=\{a^{2n}b^m:n\geq 0, m\geq 0\}\cup \{\epsilon\}$$

10.3.2 Przykład złożony

$$F = \{S \to abScd, S \to A, A \to dcAba, A \to \epsilon\}$$

$$S \stackrel{*}{\Rightarrow} (ab)^n S(cd)^n \Rightarrow (ab)^n A(cd)^n \stackrel{*}{\Rightarrow} (ab)^n (dc)^m A(ba)^m (cd)^n \Rightarrow (ab)^n (dcba)^m (cd)^n$$

$$L(G) = \{(ab)^n (dcba)^m (cd)^n : n \ge 1, m \ge 0\} \cup \{\epsilon\}$$

10.3.3 Przykład prosty

$$L(G) = \{a^n : n \ge 0\} = L(a^*)$$

$$G = \langle \{S\}, \{a\}, S, \{S \to aS, S \to \epsilon\} \rangle$$

10.3.4 Przykład złożony

$$L(G) = \{a^n b^n : n \ge 1\} \notin \mathfrak{L}_{reg}$$

$$G = \langle \{S\}, \{a, b\}, S, \{S \rightarrow aSb, S \rightarrow ab\} \rangle$$

10.4 Suma gramatyk

$$F_1 = \{S \to aS, S \to \epsilon\}, L(G_1) = \{a^n : n \ge 0\}$$

$$F_2 = \{S \to bS, S \to \epsilon\}, L(G_2) = \{b^n : n \ge 0\}$$

$$F_1 \cup F_2 \neq F_{G_1 \cup G_2}$$

$$F_{G_1 \cup G_2} = \{S^1 \to aS^1, S^1 \to \epsilon, S^2 \to bS^2, S^2 \to \epsilon, S \to S^1, S \to S^2, S \to S^1S^2\}$$

10.5 Rodzaje gramatyk

- Typu 0 (ogólne)
- Typu 1 (kontekstowe)
- Typu 2 (bezkontekstowe)
- Typu 3 (regularne)

$$G_2 \subset G_1 \subset G_0, G_3 \subset G_0$$

10.6 Gramatyki typu 3

$$F = \{A \rightarrow aB, A \rightarrow a, A \rightarrow \epsilon : A, B \in V_N, a \in V_T\}$$

10.6.1 Gramatyki Normalne typu 3

$$F = \{A \to aB, A \to \epsilon : A \in V_N, a \in V_T\}$$

Liczba kroków generacji = |P|. Każda gramatyka regularna może być zapisana w postaci gramatyki normalnej typu 3.

10.6.2 Gramatyki liniowe

Gramatyki regularne inaczej nazywa są gramatykami liniowymi prawostronnymi. Gramatyki liniowe prawostronne to gramatyki, w których $F = \{A \to Pb\}$. Gramatyki liniowe lewostronne to gramatyki, w których $F = \{A \to bP\}$. Gramatyki liniowe lewostronne są równoważne gramatykom liniowym prawostronnym. Gramatyki liniowe to gramatyki kontekstowe, w których $F = \{A \to P_1B_2\}$

10.7 Gramatyki bezkontekstowe

$$F = \{A \to P : A \in V_N, P \in \{V_N \cup V_T\}^*\}$$

10.7.1 Problem należenia słowa pustego

Dla każdej gramatyki bezkontekstowej G można efektywnie skonstruować równoważną jej gramatykę bezkontekstową G', w której nie ma reguł przepisujących symbol początkowy w słowo puste, za wyjątkiem sytuacji jeśli $\epsilon \in L(G)$. Wówczas jedyną regułą w F' zawierającą ϵ będzie $S' \to \epsilon$ i S' nie pojawia się po prawej stronie żadnej reguły.

Problem należenia słowa pustego jest rozstrzygalny dla gramatyk bezkontekstowych. Algorytm wygląda następująco:

- 1. Przekształć gramatykę G na równoważną jej gramatykę G', w której nie ma reguł przepisujących symbol początkowy w słowo puste.
- 2. Sprawdź, czy $S' \to \epsilon \in F'$.

10.7.2 Gramatyki normalne bezkontekstowe

Gramatyka bezkontekstowa jest normalna, jeżeli każda reguła przepisująca ma postać $A \to a$ lub $A \to BC$, efektywnie tworząc drzewo binarne.

Dla każdej ϵ -wolnej gramatyki bezkontekstowej można efektywnie skonstruować równoważną jej gramatykę bezkontekstową normalną.

Zamiana $CF \rightarrow CF$ norm

 \bullet Pozbądź się terminałów z reguł innych niż te o kształcie $A \to a$ kosztem nowych nieterminali.

$$\{A \to abXc\} \Rightarrow \{A \to X_aX_bXX_c, X_a \to a, X_b \to b, X_c \to c\}$$

• Zamień reguły o kształcie $A \to a_1 a_2 \dots a_n B$ na reguły o kształcie $A \to a_1 X_1, X_1 \to a_2 X_2, \dots, X_{n-1} \to a_n B$.

$$\{A \to X_1 X_2 X_3 X_4\} \Rightarrow \{A \to X_1 Z_1, Z_1 \to X_2 Z_2, Z_2 \to X_3 X_4\}$$

10.7.3 Problem słowa

Problem słowa jest rozstrzygalny dla gramatyk bezkontekstowych. Problem słowa polega na sprawdzeniu, czy dane słowo należy do języka generowanego przez gramatykę bezkontekstową. Algorytm siłowy ma złożoność $O(|F|^{|P|})$ gdzie |P| to długość słowa. Z kolei algorytm "CYK" ma złożoność $O(|P|^3)$.

Algorytm CYK

Algorytm CYK na wejściu przyjmuje gramatykę bezkontekstową w postaci normalnej. Dla danego słowa P sprawdza, czy $P \in L(G)$. Ponieważ drzewa wyprowadzenia w postaci normalnej są drzewami binarnymi, drzewo dla P będzie miało dokładnie |P|-1 wierzchołków wewnętrznych. Algorytm ten polega na konstruowaniu tablicy trójkątnej o końcowej podstawie długości |P| elementów i wysokości |P|-1 wierszy. W komórce (i,j) przechowywane są nieterminalne symbole, które mogą wyprowadzić słowo P[i..j]. Wartość w komórce (1,|P|) oznacza, czy $P \in L(G)$.

$$\begin{vmatrix} X_{15} \\ X_{14} & X_{25} \\ X_{13} & X_{24} & X_{35} \\ X_{12} & X_{23} & X_{34} & X_{45} \\ X_{11} & X_{22} & X_{33} & X_{44} & X_{55} \\ \hline P_1 & P_2 & P_3 & P_4 & P_5 \\ \end{vmatrix}$$

Tabela 2: Tablica trójkatna dla algorytmu CYK

Tabelę konstruujemy od dołu. W pierwszym kroku wypełniamy komórki P_n . Potem dla każdego P_n znajdujemy wszystkie nieterminalne symbole, które mogą tworzyć P_n . W kolejnym kroku dla zbioru X_{ij} znajdujemy wszystkie nieterminalne symbole, które mogą wyprowadzić $P_iP_{i+1}\dots P_j$. Dla normalnych gramatyk $n=\overline{\overline{V_n}},\ p=2^n$

Przykład

$$F = \{S \rightarrow AB|BC, A \rightarrow BA|a, B \rightarrow CC|b, C \rightarrow AB|a\}$$

 $X_{11} = \{B\}$, ponieważ tylko B generuje b. Z kolei $X_{12} \to X_{11} \times X_{22} = \{BA, BC\}$ zatem $X_{22} = \{S, A\}$ bo to jedyne nieterminalne symbole, które generują BA lub BC.

Z kolei ta tabela potrafi określić, np.: że $S|A \stackrel{*}{\Rightarrow} ba$ oraz $B \stackrel{*}{\Rightarrow} aba$.

Tabela 3: Tablica trójkątna dla F i słowa "baaba"

10.8 Gramatyki kontekstowe

$$F = \{Q_1 A Q_2 \to Q_1 P Q_2 : Q_1, Q_2, A, P \in \{V_N \cup V_T\}^* \setminus S\} \cup \{S \to \epsilon\}$$

Reguły w F nie mogą pozwolić na zmniejszenie się ciągu.

10.9 Gramatyki ogólne

Bez ograniczeń na reguły

10.10 Przekształcenie automatu na gramatykę

Dla $\mathfrak{A} = \langle K, T, \delta, q_0, H \rangle, \mathfrak{A} \in \mathfrak{A}_{det}$

- $V_T = T$
- $V_N = K \cup \{S\}$
- $\delta(q_0, a) = p$ to $p \to a \in F$
- $\delta(q, a) = p \text{ to } p \to qa \in F$
- $q \in H$ to $S \to p \in F$
- $q_0 \in H$ to $S \to \epsilon \in F$

10.11 Przekształcenie gramatyki na automat

Dla $G = \langle V_N, V_T, S, F \rangle$

- $K = V_N$
- $T = V_T$
- $Q_0 = \{S\}$
- $\bullet \ \ H = \{A \in K : A \to \epsilon \in F\}$
- $A \to aB \in F$ to $B \in \delta(A, a)$

11 Algorytmy

Diagram 17: Schemat blokowy przykładowego algorytmu

Algorytm to zbiór procedur, które dla danego wejścia dają określony wynik. My zakładamy, że algorytm zwraca TAK lub NIE.

11.1 Problem

Problem to zbiór instancji, oraz zbiór instancji pozytywnych problemu.

$$\mathcal{P} = \langle \mathbb{I}, \mathbb{P} \rangle$$
$$\mathbb{P} \subset \mathbb{I}$$

Warto zauważyć zatem, że \mathbb{I} działa jak alfabet, a \mathbb{P} jak język nad tym alfabetem. Algorytm dla danego problemu określa czy dana instancja należy do zbioru pozytywnego (języka), w podobny sposób jak automat określa co jest w języku. Zatem algorytm działa trochę jak funkcja $\mathcal{A}: \mathbb{I} \to \{\top, \bot\}$.

11.1.1 Problem rozstrzygalny

Problem rozstrzygalny to taki problem, dla którego istnieje algorytm, który dla każdej instancji zwraca TAK lub NIE.

11.1.2 Problem pustości

$$\mathbb{I} = \text{wszystkie automaty} = \mathbb{A}$$
$$\mathbb{P} = \{\mathfrak{A} \in \mathbb{A} : L(\mathfrak{A} = \emptyset)\}$$

Jest to problem **rozstrzygalny** dla języków regularnych.

11.1.3 Problem skończoności

$$\mathbb{I}=\mathbb{A}$$

$$\mathbb{P}=\{\mathfrak{A}\in\mathbb{A}:|L(\mathfrak{A})|<\infty\}$$

Jest to problem **rozstrzygalny** dla języków regularnych.

11.1.4 Problem nieskończoności

$$\mathbb{I} = \mathbb{A}$$

$$\mathbb{P} = \{\mathfrak{A} \in \mathbb{A} : |L(\mathfrak{A})| = \infty\}$$

Jest to problem **rozstrzygalny** dla języków regularnych, ponieważ jest to odwrotne pytanie do problemu skończoności.

11.1.5 Problem równości

$$\mathbb{I}=\mathbb{A}\times\mathbb{A}$$

$$\mathbb{P}=\{(\mathfrak{A}_1,\mathfrak{A}_2)\in\mathbb{A}\times\mathbb{A}:L(\mathfrak{A}_1)=L(\mathfrak{A}_2)\}$$

Jest to problem rozstrzygalny dla języków regularnych.

- Zbuduj \mathfrak{B} , takie, że $L(\mathfrak{B}) = (L(\mathfrak{A}_1) \cap \overline{L(\mathfrak{A}_2)}) \cup (L(\mathfrak{A}_2) \cap \overline{L(\mathfrak{A}_1)})$ (XOR mnogościowe)
- \bullet Zastosuj problem pustości na ${\mathfrak B}$

11.2 Formalizm

Algorytmy nie mają formalnej definicji. Jest to pojęcie intuicyjne. Formalizacją algorytmu są maszyny Turinga(13). Z kolei ciekawą konsekwencją jest to, że zatem teoretycznie nie ma dowodu na to czy każdy problem i algorytm ma swoją maszynę Turinga.

11.3 Teza Churcha-Turinga

Klasa funkcji obliczalnych na maszynie Turinga, maszynie RAM oraz funkcji λ jest równoważna klasie algorytmów. Innymi słowy: każdy algorytm (pojęcie rozmyte) ma swoją implementację.

Nie jest to twierdzenie, ani lemat - jest to teza, która nie ma dowodu. Jest to dogmat, aksjomat informatyki jako dziedziny. Jej zaprzeczenie by oznaczało, że istnieje algorytm, którego nie da się zaimplementować.

12 Automaty ze stosem

Zachowują się jak automaty regularne z ϵ przejściami, ale z tą różnicą, że mają dodatkową głowicę operującą na stosie.

$$\mathfrak{A}_{zs} = \langle Z, K, T, \delta, z_0, q_0, H \rangle$$

- \bullet Z zbiór symboli stosu
- \bullet K zbiór stanów
- T zbiór symboli wejściowych
- $\bullet~\delta$ funkcja przejścia
- z_0 symbol początkowy stosu
- q_0 stan początkowy
- \bullet H zbiór stanów akceptujących

Głowica na taśmie jest tylko i wyłącznie do odczytu, natomiast głowica na stosie czytając element ze stosu, usuwa go i następnie może włożyć na stos nowe elementy.

$$\delta: Z \times K \times (T \cup \{\epsilon\}) \to P(Z^* \times K)$$

12.1 Konfiguracja

Konfiguracja to opis chwilowy automatu ze stosem. Formalnie jest to słowo postaci $WqP \in Z^*KT^*$ takie, że $W \in Z^*$ (głowica ogląda ostatni symbol W), $q \in K$ natomiast $P \in T^*$

Konfiguracja początkowa to konfiguracja dla początkowych zmiennych automatu. Z reguły jest to z_0q_0P : $P \in T^*$. Konfiguracja końcowa z kolei to konfiguracja dla stanów akceptujących. Z reguły przyjmuje postać $zq\epsilon:z\in Z,q\in H$.

12.1.1 Bezpośrednia redukcja konfiguracji

Dla dwóch konfiguracji X,Y mówimy że X bezpośrednio redukuje się do Y $(X\Rightarrow Y)$ jeśli $X=\omega zqaP,\,Y=\omega Upp$ oraz:

- $q, p \in K$
- $z \in Z, a \in T \cup \{\epsilon\}$
- $\omega, U \in Z^*, p \in T^*$
- $(U, p) \in \delta(z, q, a)$

12.1.2 Redukcja konfiguracyj

Dla dwóch konfiguracji X, Y mówimy że X redukuje się do $Y \stackrel{*}{\Rightarrow}$), jeśli istnieje ciąg X_1, X_2, \dots, X_n taki, że: $X_1 = X, X_n = Y, \forall_{1 \le i \le n} X_i \Rightarrow X_{i+1}$

12.2 Języki automatu ze stosem

Dla automatów ze stosem języki definiujemy przy pomocy redukcji konfiguracji. Język akceptowany przez \mathfrak{A}_{zs} to zbiór $L(\mathfrak{A}) = \{P \in T^* : z_0 q_0 P \stackrel{*}{\Rightarrow} Wp\epsilon : W \in Z^*, p \in H\}$ lub $N(\mathfrak{A}) = \{P \in T^* : z_0 q_0 P \stackrel{*}{\Rightarrow} \epsilon p\epsilon : p \in K\}$

Są dwie różne konwencje dot. tego czy automat akceptuje język. Albo automat dochodzi do stanu końcowego $(L(\mathfrak{A}))$, albo kończy mu się stos $(N(\mathfrak{A}))$. Dla dowolnego automatu ze stosem \mathfrak{A} można skonstruować automat \mathfrak{A}' dla którego $L(\mathfrak{A}) = N(\mathfrak{A}')$ i na odwrót.

12.3 Przykład

 \mathfrak{A}_{zs} akceptujący język $\{a^nb^n: n \geq 1\}$

- $Z = \{z_0, a\}$
- $K = \{q_0, q_1, q_2\}$
- $\bullet \ T = \{a, b\}$
- $H = \{q_2\}$

$$\delta: Z \times K \times (T \cup \{\epsilon\}) \to P(Z^* \times K)$$

Przy każdym a dodajemy a na stos, a potem czytając b ściagamy ze stosu. Jeśli liczba jest a i b jest równa to jak dojdziemy do końca to stos będzie pusty.

- 1. $\delta(z_0, q_0, b) = \emptyset$ pierwsze co czytamy to b: nonsens
- 2. $\delta(z_0, q_0, a) = (z_0 a, q_0)$ przechodzimy w tryb czytania a
- 3. $\delta(a,q_0,a)=(aa,q_0)$ czytamy a
- 4. $\delta(a, q_0, b) = (\epsilon, q_1)$ przechodzimy w tryb czytania b
- 5. $\delta(a, q_1, b) = (\epsilon, q_1)$ czytamy b
- 6. $\delta(z_0, q_1, b) = \emptyset$ jeśli stos jest pusty a dalej są b
- 7. $\delta(z_0, q_1, \epsilon) = (z_0, q_2)$ stan końcowy

12.4 Deterministyczne automaty ze stosem

Jeśli poniższe warunki są spełnione to uznajemy, że automat ze stosem jest deterministyczny:

- Dla dowolnych $z \in Z$ oraz $q \in K$ jeśli $\delta(z,q,\epsilon) \neq \emptyset$ to dla każdego $a \in T$ mamy $\delta(z,q,a) = \emptyset$
- Dla każdego $q \in K, z \in Z, a \in T \cup \{\epsilon\}$ zachodzi $|\delta(z, q, a)| \leq 1$

Innymi słowy: automaty ze stosem są deterministyczne, jeśli dla każdego stanu i symbolu wejściowego istnieje co najwyżej jedno przejście, oraz jeśli istnieje przejście na ϵ to nie ma przejść na inne symbole.

12.4.1 Klasa jezyków det CF

Deterministycznym automatom ze stosem odpowiada klasa języków. Potocznie nazywamy ją klasą języków deterministycznych bezkontekstowych (det CF).

12.4.2 Właściwości języków det CF

Jest to klasa domknięta na dopełnienie, iloczyn.

 $detCF \subset CF$

13 Maszyny Turinga

$$\mathfrak{M} = \langle K, \gamma, \delta, q_0, H \rangle$$

- \bullet K zbiór stanów
- \bullet γ zbiór symboli taśmy
- $\bullet~\delta$ funkcja przejścia
- q_0 stan początkowy
- H zbiór stanów akceptujących

$$\delta: K \times \gamma \to K \times \gamma \times \{L, R\}$$

Głowica tego automatu porusza się po taśmie, czytając i zapisując symbole. Instrukcje (zapisane w δ) mają postać: $qaq'a'M: M \in \{L,R\}$ i czyta się w następujący sposób: jeśli głowica jest w stanie q i czyta symbol a to zapisuje symbol a', przechodzi w stan q' i przesuwa głowicę w lewo (L) lub w prawo (R). δ nie musi być funkcją całkowitą, czyli może nie być zdefiniowana dla niektórych stanów i symboli.

13.1 Modele maszyny Turinga

Istnieje wiele różnych modeli maszyny Turinga. Z reguły różnią się one ilością taśm oraz tym czy taśmy są nieskończone. Wszystkie te modele są równoważne. Jedynie złożoność obliczeniowa maszyn z większą długością taśm jest "lepsza" od maszyn z mniejszą długością taśm. Czyli, np.: maszyna z dwiema taśmami jest równoważna maszynie z jedną taśmą, ale jest bardziej wydajna.

13.2 Konfiguracja maszyny Turinga

Konfiguracja to opis chwilowy maszyny Turinga. Formalnie jest to słowo postaci $WqP \in \gamma^*K\gamma^*$ takie, że W to zawartość taśmy po lewej stronie głowicy, q to stan w którym znajduje się głowica, a P to zawartość taśmy po prawej stronie głowicy.

Rozkaz maszyny qbq'b'L przekształca $uaqbw \to uq'ab'w$. \mathfrak{M} akceptuje słowo w wtedy gdy istnieje ciąg konfiguracji C_1, C_2, \ldots, C_n taki, że $C_1 = q_0 w$, $C_n = uq'bw$ oraz C_i redukuje się do C_{i+1} .

13.3 Język akceptowany przez maszynę Turinga

Język akceptowany przez maszynę Turinga to zbiór wszystkich słów, które maszyna Turinga akceptuje. Formalnie jest to zbiór $L(\mathfrak{M}) = \{w \in \gamma^* : q_0 w \stackrel{*}{\Rightarrow} u q_a w : u, w \in \gamma^* \}$

13.4 Rozstrzygalność

Jeśli maszyna zatrzymuje się dla każdego wejścia w stanie q_a lub q_r to jest rozstrzygająca. Maszyna Turinga to formalizm algorytmu. Dwie maszyny są równoważne jeśli rozstrzygają te same języki. Problem jest rozstrzygalny jeśli istnieje maszyna Turinga, która rozstrzyga język

$$L_{I.P} = \{ \langle i \rangle : i \in P \}$$

13.5 Maszyna Turinga niedeterministyczna

Maszyna Turinga niedeterministyczna to maszyna Turinga, która w każdym stanie może mieć wiele możliwości przejścia. Formalnie jest to maszyna Turinga, dla której funkcją przejścia δ nie jest funkcją, ale zbiorem funkcji.

14 Złożoność obliczeniowa

Niech \mathfrak{M} będzie det. maszyną Turinga, która zatrzymuje się dla każdego wejścia. Złożoność obliczeniowa maszyny Turinga to funkcja $f: \mathbb{N} \to \mathbb{N}$ taka, że dla każdego słowa wejściowego w, maszyna zatrzymuje się w co najwyżej f(|w|) krokach.

14.1 Notacja O

Jest to notacja asymptotyczna, używana do określania skali osiąganych wartości przez funkcję. Niech $f, g : \mathbb{N} \to \mathbb{R}^+ \cup \{0\}$. Mówimy, że funkcja jest duże O od g jeśli istnieje c > 0 i n_0 takie, że dla każdego $n > n_0$ zachodzi $f(n) \leq c \cdot g(n)$.

Diagram 18: Ilustracja notacji O

14.2 Klasa TIME

Niech $f: \mathbb{N} \to \mathbb{R}^+ \cup \{0\}$. Klasą TIME(f) nazywamy zbiór języków, które są akceptowane przez maszynę Turinga, której złożoność obliczeniowa jest O(f(n)).

Dla każdej deterministycznej wielotaśmowej maszyny Turinga o złożoności f(n) można skonstruować odpowiadającą jej jednotaśmową maszynę Turinga o złożoności $O(f(n)^2)$.

Podobna transformacja jest możliwa dla maszyn niedeterministycznych, ale złożoność wynosi $2^{O(f(n))}$. Zatem widzimy, że maszyny niedeterministyczne sa bardziej wydajne, ale mniej realistyczne.

14.3 Redukowalność wielomianowa

Język L_1 jest redukowalny do języka L_2 w czasie wielomianowym, jeśli istnieje funkcja obliczalna w czasie wielomianowym $f: V^* \to V^*$ taka, że dla każdego $w \in V^*$ zachodzi $w \in L_1 \Leftrightarrow f(w) \in L_2$. Czyli jeśli istnieje przyporządkowanie wielomianowe między językami.

14.4 Klasa P

Klasa wszystkich języków rozstrzygalnych w czasie wielomianowym przez maszynę Turinga deterministyczną to klasa P.

$$P = \bigcup_{k \in \mathbb{N}} TIME(n^k)$$

$$L_1 \leq_p L_2 \land L_2 \in P \Rightarrow L_1 \in P$$

14.5 Klasa NP

Klasa wszystkich języków, które są rozstrzygalne w czasie wielomianowym przez maszynę Turinga niedeterministyczną to klasa NP.

14.5.1 Klasa NP-trudna

$$\forall_{L \in NP} L' \leq_p L \Rightarrow L \in NP_{HARD}$$

14.5.2 Klasa NP-zupełna

$$L \in NP_{HARD} \land L \in NP \Rightarrow L \in NP_{COMPLETE}$$

$$L \in NP_{COMPLETE} \land L \in P \Rightarrow P = NP$$