

Index

Power Reactor Technology

Volume 8

Note: The page range for each of the four issues of Vol. 8 is as follows: No. 1, pages 1 to 108; No. 2, pages 109 to 156; No. 3, pages 157 to 198; and No. 4, pages 199 to 296.

A

- Accidents
 - frequency, 221-22
 - loss-of-coolant, 240-41
- Aerosols
 - formation in NaK systems, 260
 - trap for, 259-70
- Air
 - effects on corrosion by polyphenyls, 294
 - reactivity effects, 109
- Air-water systems
 - flow, techniques for observing, 165
- Aluminum
 - corrosion by polyphenyls, 293-94
- Aluminum alloys
 - (see also SAP)
- Aluminum alloys (Al-Pu)
 - criticality, 210, 212
- Aluminum oxide systems (Al_2O_3 - UO_2)
 - radiation effects, 8
- Analog computers
 - use for reactor control, 227
- Annuli
 - heat transfer in, 121-22
- Argonne National Laboratory
 - liquid-metal magnetohydrodynamic research, 207-8
- ARGOSY code
 - for graphite-moderated reactor core design, 160-61
- ARGUS code
 - thermal conductivity calculations, 118
- Atoms International
 - liquid-metal magnetohydrodynamic system research, 207

B

- Bellows
 - failures in Hallam Power Reactor, 282-83
- Beryllium
 - corrosion by polyphenyls, 294
- Beryllium-9
 - integral cross section, 115
- Beryllium oxide systems (BeO - UO_2)
 - radiation effects, 8
- Beryllium oxide systems (BeO - UO_2)
 - (Hastelloy-X-clad)
 - fuel elements, evaluation, 173
- Bibliographies
 - two-phase flow, 164

- Biphenyl
 - heat transfer properties, 295
 - pyrolysis, 290
 - radiolysis, 290-92
- Boiling, 14-17
 - bubble growth and control, 256
 - burnout in Freon, 166
 - burnout in Na, 164
 - burnout in steam-water systems, 166-70
 - heat transfer, 235
 - heat transfer from K, 163-64
 - phase velocity in two-phase flow, 235
 - stability in two-phase flow, 228
 - subcooled, burnout heat flux in, 122-23
- Boiling (film)
 - heat transfer coefficients, 231
 - theoretical studies, 232
- Boiling (nucleate)
 - bubble phenomena, 232
 - convection effects, 235
 - effects on frictional pressure drop, 253
 - heat flux effects on, 229
 - heat transfer in brines, 238
 - liquid metal instability, 231
- Boiling (pool)
 - effects of heat flux, 229-30
 - heat transfer, 253
- Boric acid
 - use as chemical shim, 272
 - use as soluble poison, 214
 - use of solution for reactor shutdown, 225
- Boron
 - use as soluble poison, 10-12
- Brass
 - corrosion by polyphenyls, 294
- Breeding blankets
 - design for large fast breeder reactors, 147-52
- Brines
 - deposit formation in boiling, 238
- Brookhaven National Laboratory
 - liquid-metal magnetohydrodynamic system research, 208
- Bubbles
 - effects on heat transfer, 253
 - effects on thermal stresses, 255
 - formation and control in boiling, 256
 - formation rate during boiling, 235
 - phenomena in nucleate boiling, 232
 - in turbulent flow, 234-35
- Buckling
 - experiments, 109-10
 - fuel elements, UC, 111
 - materials, in light-water reactors, 214-15

- Burnable poisons
 - (see Poisons)
- Burnout, 14-17
 - in boiling Na, 164
 - in fog-cooled reactors, 228-29
 - in Freon, 166
 - safety margin computation, 227
 - in steam-water systems, 166-70
 - in water, 121-23
- Burnup
 - fuel elements, Magnox-clad, 62
 - measurements, 216-17

C

- Cadmium sulfates
 - solution, use as poison, 214
- Calcium sulfates
 - deposits in boiling solutions, 238
- Catalytic hydrocracking
 - reclaiming of organic coolants, 292
- Ceramics
 - (see Fuel elements (ceramic))
- Cermets
 - (see Fuel elements (cermet))
- Cesium (liquid)
 - thermal, thermodynamic, and flow properties, 164
- Channels
 - burnout of water in vertical, 121
 - fluid flow stability in heated, 231
- Chloride ions
 - corrosive effects on stainless steels, 254
- Coatings
 - corrosion by polyphenyls, 294
- Cold traps
 - for oxides in Hallam Power Reactor, 285
- Components
 - reliability, 221
- Computer codes
 - ARGOSY, 160-1
 - ARGUS, 118
 - GAM-I, 210, 212
 - HEAT-1, 118
 - HFN, 212
 - HRG, 212
 - MARC-2B, 215
 - MOCA-2, 215
 - REX, 210
 - ROB, 118
 - SOFOCATE, 210
 - STOKE, for heavy water reactor simula-

tion, 35
TEMPEST, 212
THERMOS, 212, 215
TYCHE, 113

Computers
use for reactor control, 226-27

Condensation
dropwise, of ethylene glycol, 233
dropwise, of water, 233
of laminar films, 232
of liquid metals, 232-33
vapor traps utilizing, 259-60

Conductivity
(see Thermal conductivity)

Control, 221-27
calibration for EBR-I, with Pu core, 158
calibration for SRE, second core, 157
computer use for, 226-27
critical assemblies using moderator level, 223-24
gas-cooled reactors, 68-69
poisons, 10-12, 214, 217, 225-26

Control rods
drive mechanisms for EBR-II, 133-34
gravity independent, 223
operation in Hallam Power Reactor, 282
radiation effects, 271
reliability, 221-22
thimble failure in Hallam Power Reactor, 283-84

Control systems, 272-75
ASTR, 223
development, 18
Elk River Power Reactor, 271-72
Hallam Power Reactor, 280, 282
Indian Point Power Reactor, 271
large pressurized-water reactors, 144-46
Yankee Power Reactor, 271-72

Convection (forced)
in boiling K, 163-64
burnout heat flux in subcooled boiling water, 122
effects in boiling, 235
fluid flow stability, 231-32
two-phase flow, 228

Convection (free)
burnout of water in vertical channel, 121
coolant loop transient behavior, 122
effects on film condensation, 232
heat transfer coefficients for ice-water systems, 239-40
heat transfer at cryogenic temperatures, 239
heat transfer to finned tubes, 236-37
liquid metal boiling in, 231

Coolant loops
fluid flow stability, 122
transient behavior under free convection, 122

Coolants
(see also Potassium alloys (K-Na) (liquid))
contamination in Dounreay Fast Reactor, 75
flow oscillations in Elk River Power Reactor, 273
loss accidents, 240-41
Na, 75-96

Coolants (organic)
corrosive effects, 293-94
film formation by, 293-94
heat transfer properties, 123-24, 295
pyrolysis, 290-91
radiolysis, 290-94
reactivity effects of Dowtherm A, 109
reclamation, 292-93

Cooling systems
Hallam Power Reactor, 282

Copper
corrosion by polyphenyls, 294

Cores
radiation effects on lifetime, 216

Cores (graphite moderated)
physics calculations, 160-61

Corrosion
by nitrogen, 173-74
by organic coolants, 44-45, 293-94
in Agesta Reactor, 275
of ceramic fuel elements (Zircaloy-2-clad), 177-82
of Hastelloy-C, 23, 173-74
of Incoloy-X, 23
of Nb alloys, 42-45
of stainless steels, 254-55, 293-94
of steels, 9-10, 293-94
of Yankee Power Reactor control rods, 271-72

Corrosion products
deposition in reactors, 252, 256

Cracks
propagation in boiling water reactor fuel elements, 254

Critical assemblies
control by moderator level, 223-24
perturbations in graphite-moderated, 115

Critical assemblies (Anna)
design, 111-12

Critical assemblies (Helena)
design, 111

Critical assemblies (OCF)
pulsed neutrons in, 112

Critical assemblies (ROSPo)
design, 112

Critical assemblies (Scorpio I)
criticality measurements in, 212

Critical assemblies (Scorpio II)
criticality measurements in, 212

Critical assemblies (TCA)
pulsed neutrons in, 112

Critical experiments, 109-13, 210-14

Critical facilities (Alize-II)
use of soluble poisons in, 214

Cross sections, 114-15
absorption, thermal neutrons in graphite, 114-15
calculations, 210, 212
fission, of ^{241}Pu , 115
fission spectrum, of ^{235}U , 115
integral, of ^{9}Be , 115
neutron capture, of Pu isotopes, 211

Crud
analysis from VBWR, 254, 256

Cryogenics
heat transfer, 232-33

D

Decontamination
sodium reactor coolants, 75-77

Delayed neutrons
calculations, 161-62

Departure from nucleate boiling
effects of nonuniform heat flux on, 229

Desalination
deposits during boiling and heat transfer through films, 238

Diffusion length
thermal neutrons in graphite, 114-15

Digital computers
use for reactor control, 226

Diphenyl
(see Biphenyl)

Direct power conversion
plants, 105-6

"Dowtherm A" coolant
reactivity effects, 109

E

Economics
of catalytic hydrocrackers for organic coolant reclamation, 292-93
fast breeder reactors, 85
radiation effects on core lifetime, 216
sodium graphite reactors, 185

Electrical circuits
SPERT-3, failure, 272-73

Electrons
radiation effects on polyphenyls, 291-92

Electrostatic precipitations
use with NaK vapors, 260

Energy conversion (direct)
plants, 105-6

Ethylene glycol
condensation, dropwise, 233

Excursions, 221-22

Exponential experiments, 109-13, 211-14

F

Fission parameters
calculations, 161-62

Fission products
contamination at Dounreay Fast Reactor coolant, 75
gases, monitor for, 263

Fluid flow, 14-17, 118-25, 163-71, 228-44
effects on boiling, 253
large pressurized water reactors, 142-44
oscillations in Elk River Power Reactor, 273

Fluid flow (annular)
transition to two-phase, 234

Fluid flow (froth)
occurrence and characterization, 123

Fluid flow (turbulent)
bubble studies, 234-35
heat transfer in annuli, 122

Flowsheets
Halden Reactor, 50
soluble poison control systems, 11

Forced convection
(see Convection (forced))

Free convection
(see Convection (free))

Freeze traps
for Na in Hallam Power Reactor, 285

Freon systems
boiling burnout in, 166

Froth flow
(see Fluid flow (froth))

Fuel assemblies
design for large pressurized-water reactors, 139-41

Fuel cycles
evaluation for large fast breeder reactors, 154-55

Fuel elements
Agesta Reactor, 51-52
burnout of rods, 167
criticality of pins, 210
design, 3, 6-9
design for AGR Reactor, 62
design for Anna Critical Assembly, 112
design for BONUS Reactor, 27
design for NORA Reactor, 112
design for RB Reactor, 112
development for fast breeder reactors, 86-91
development of SAP, 37, 39
fabrication, 126-31
failures in boiling water reactors, 254-56

failure due to internal pressure, 252
failure in VBWR, 252-54, 256
Marviken Reactor, 51-52
radiation effects, 7-8, 62, 82, 255-56
thermal conductivity, 118-21, 129
Fuel elements (Al-Pu),
criticality in graphite lattices, 212
Fuel elements (BeO-UO₂)(Hastelloy-X-clad)
evaluation, 173
Fuel elements (ceramic)
design, 3, 6-9, 147-52
evaluation, 172-74
Fuel elements (ceramic)(Zircaloy-2-clad)
fretting corrosion, 177-82
Fuel element (cermet)
development, 89, 126-28
fabrication, 129
thermal conductivity, 129
Fuel elements (enriched U)
criticality in D₂O lattices, 213
Fuel elements (Incoloy-800-clad)
evaluation for superheating reactors,
174-75
Fuel elements (Magnox-clad)
burnup, 62
design, 63-66
radiation effects, 62
Fuel elements (Mo-UO₂ cermet)
fabrication and thermal conductivity, 129
Fuel elements (Mo-W-UO₂ cermet)
development, 128
Fuel elements (Nb-ThO₂-UO₂ cermet)
thermal conductivity, 129
Fuel elements (Pu)
criticality in graphite lattices, 212
Fuel elements (Pu-U)
criticality in graphite lattices, 212-13
Fuel elements (PuC-UC)
design for large fast breeder reactors,
147-49, 151-52
Fuel elements (PuO₂-UO₂)
criticality in water, 212
design for large fast breeder reactors,
149-52
specifications, 129
Fuel elements (PuO₂-UO₂)(Zircaloy-2-clad)
fretting corrosion, 177-82
Fuel elements (PuO₂-UO₂)(Zr-clad)
criticality, 210
fretting corrosion, 177-82
Fuel elements (stainless steel-clad)
design, 3, 6-9
Fuel elements (stainless steel-UO₂ cermet)
development, 126-27
Fuel elements (Th-U)
development for fast breeder reactors, 89
Fuel elements (Th-U-Zr)(Zircaloy-2-clad)
fabrication, 130
Fuel elements (ThO₂-UO₂)
design, 3, 6-9
Fuel elements (W-UO₂ cermet)
development, 127-28
Fuel elements (U)
criticality in graphite lattices, 212-13
Fuel elements (UC)
buckling studies, 111
development for sodium graphite reactors, 81-83
radiation effects, 82
Fuel elements (UC)(stainless steel-clad)
evaluation, 174
fabrication of Na-bonded, 129-30
Fuel elements (UO₂)
design, 3, 6-9
fabrication, 129
thermal conductivity, 119-21
Fuel elements (UO₂)(enriched)

pulsed neutron studies, 112
Fuel elements (UO₂)(stainless steel-clad)
evaluation, 172
fabrication, 128-29
Fuel elements (UO₂)(Zircaloy-2-clad)
evaluation, 172-74
fretting corrosion, 177-82
Fuel elements (Zircaloy-clad)
design, 3, 6-9
evaluation, 18
Fueling machines
Bradwell Reactor, operation, 68
EBR-2, vapor traps for, 262-63
design, 68, 141-42

G

Gadolinium nitrates
use of solutions for reactor shutdown,
226
GAM-I code
criticality and cross section calculations,
210, 212
Gases
entrainment in Hallam Power Reactor,
284
fission product monitoring, 263
thermodynamic properties, 121, 239
Graphite
criticality of Pu alloys in lattices of, 212-
13
moderator, pulsed neutron studies in, 112-
13
thermal neutron absorption cross section
and diffusion length in, 114-15
Gravity
control rod independence from, 223

H

Hastelloy-C alloy
corrosion in superheating reactors, 23
Hastelloy-X alloy
corrosion by N₂, 173-74
HEAT-1 code
thermal conductivity calculations, 118
Heat exchangers
concentric tube, dynamic analysis of, 237
design, 236-37
efficiency, 236
failures in Hallam Power Reactor, 284
finned tube, 236-37
heat transfer coefficients for NaK,
235-36
Heat transfer, 14-17, 118-25, 163-71,
228-44, 253
large pressurized-water reactors,
142-44
organic coolants, 123-24, 295
Heavy water
chemistry of, 39-40
control of oxygen in, 277
criticality studies in lattices of, 213
moderator, pulsed neutron studies in, 113
reactivity effects, 109
reflector, in University of Michigan
Reactor, 277, 279

Heavy Water Lattice Project
buckling experiments, 109-10
Helium
thermodynamic properties, 121
HFN code
cross section calculations, 212
Hot traps
for carbon in Hallam Power Reactor,
285

HRG code
cross section calculations, 212
Hydriding
Zr alloys, 9, 246-51
Hydrogen
effects on corrosion by polyphenyls,
294
reactions with Zircaloys, 245-46
thermal conductivity at high temperatures, 239

I

Ice-water systems
free convection melting, heat transfer
calculations, 239-40
Impingement
vapor traps utilizing, 260
Incoloy-800 alloy
testing for fuel element cladding,
174-75
Inconel-X alloy
corrosion in superheating reactors, 23
Indium resonance energy
flux age, 113-14
TYCHE code, determination by, 113
Instrumentation
gas-cooled reactors, 68-69
Hallam Power Reactor, 283, 285
large pressurized water reactors, 145-47
level controllers, failure, 272
liquid metal level indicators, 176-77
neutron detectors, 224-25
pressure switches, failure, 272
temperature sensors, failure, 272
Integral cross sections
⁹Be, 115
Iron
corrosion by polyphenyls, 294

J

Jet Propulsion Laboratory
liquid-metal magnetohydrodynamic system
research, 207

L

Leaks
Hallam Power Reactor, 282
pressure vessels, 3
SPERT-3, 275-76
Yankee Power Reactor, 275-76
Level controllers
SPERT-3, failure, 272
Level indicators
for liquid metals, 176-77
Light water
(see Water)
Liquid metals
(see Metals (liquid))
Lithium (liquid)
thermal, thermodynamic, and flow properties,
163-64
Loss-of-coolant
accident analysis, 240-41

M

Magnesium
corrosion by polyphenyls, 294
Magnesium alloys
corrosion by polyphenyls, 294
Magnesium oxide systems (MgO-PuO₂)
radiation effects, 8

Magnetohydrodynamic systems, 199-209
 Maintenance
 handling of Hallam Power Reactor core components, 283
 MARC-2B code
 thermal neutron distribution calculation, 215
 Massachusetts Institute of Technology
 liquid-metal magnetohydrodynamic system research, 208
 Melt Refining Process
 vapor traps, 266
 Mercury
 condensation in Ni surfaces, 232-33
 thermal, thermodynamic, and flow properties, 163-64
 Metals (gaseous)
 film condensation, 232-33
 Metals (liquid)
 boiling behavior, 231
 level indicators, 176-77
 pumps for, 282
 thermal, thermodynamic, and flow properties, 163-64
 use in magnetohydrodynamic systems, 199
 209
 vapor traps for use with, 259-70
 Meters
 plugging in Hallam Power Reactor, 283
 MHD system
 (see Magnetohydrodynamic systems)
 MOCA-2 code
 criticality calculation, 215
 Moderators
 criticality control with, 223-24
 element failure in Hallam Power Reactor, 285-87
 Molybdenum systems (Mo-W-UO₂ cermet)
 development for fuel elements, 128
 Molybdenum systems (Mo-UO₂ cermet)
 fabrication into fuel elements and thermal conductivity, 129
 Multiplication factors
 for EBR-I, with Pu core, 158-59

N

NaK
 (see Potassium alloys (K-Na)(liquid))
 Natural convection
 (see Convection (free))
 Neutrons
 age determination, 113-15
 delayed, 161-62
 detector design, 224-25
 flux measurements, 157-58
 pulsed, 112-13
 scattering, 116
 thermal, 114-15, 215
 thermalization, 115-16
 Nimbus Satellite
 thermal design calculations, 240
 Niobium
 corrosion by polyphenyls, 294
 Niobium alloys (Nb-Zr)
 corrosion, 42-45
 hydriding stress allowance, 9
 use in pressure tubes, 41
 Niotium systems (Nb-ThO₂-UO₂ cermet)
 thermal conductivity, 129
 Nitrogen
 corrosive effects, 173-74
 Noble gases
 thermal conductivity at high temperature, 239
 NPY Project, 111-12

O

Organic coolants
 (see Coolants (organic))
 Orifices
 operating problems in Hallam Power Reactor, 288
 Oxide films
 effects on hydriding of Zr alloys, 246-48
 Oxygen
 control of concentration in D₂O, 277
 effects on corrosion by polyphenyls, 294

P

Packed beds
 heat transfer, 237-38
 Petroleum distillates
 development for reactor use, 295
 Physics, 109-17, 154-55, 157-62, 210-20
 Plates
 evaporation rates from hot, 240
 heat transfer from at cryogenic temperatures, 239
 Plutonium
 critical experiments, 211-14
 neutron capture cross sections, 211
 Plutonium-239
 neutron capture cross sections, 211
 Plutonium-240
 neutron capture cross sections, 211
 Plutonium-241
 fission cross sections, 115
 neutron capture cross sections, 211
 Plutonium alloys
 criticality in D₂O lattices, 213
 Plutonium alloys (Al-Pu)
 criticality, 210, 212
 Plutonium alloys (Pu-U)
 criticality in lattices, 212-13
 Plutonium carbide systems (PuC-UC)
 design of fuel elements for large fast breeder reactors, 147-49, 151-52
 radiation effects, 8
 Plutonium carbides (PuC)
 radiation effects, 8
 Plutonium nitrates
 criticality of solution, 213-14
 Plutonium oxide systems
 critical experiments in water lattices, 210
 Plutonium oxide systems (MgO-PuO₂)
 radiation effects, 8
 Plutonium oxide systems (PuO₂-UO₂)
 critical experiments in water lattices, 210, 212
 design of fuel elements for large fast breeder reactors, 149-52
 fuel elements, fretting corrosion of Zircaloy-2 cladding, 177-82
 fuel elements, specifications, 129
 radiation effects, 8
 Plutonium oxide systems (PuO₂-ZrO₂)
 radiation effects, 8
 Plutonium oxides
 criticality in polystyrene, 214
 Pneumatic systems
 use in control systems, 223
 Poisons, 10-12
 boric acid, 214, 225
 CdSO₄ solution use, 214
 Gd(NO₃)₃, 226
 use in water-moderated reactors, 217
 Polyethylene
 reactivity effects, 109
 Polyphenyls, 123-24, 290-95
 Polystyrene
 moderating effects on PuO₂, 214
 Potassium (liquid)

thermal, thermodynamic, and flow properties, 163-64

Potassium alloys (K-Na)(liquid)
 aerosol formation in, 260
 heat transfer coefficients, 235-36
 thermal, thermodynamic, and flow properties, 163

Power conversion (direct)
 plants, 105-6

Pressure
 effects on boiling superheat, 253
 Pressure drop
 of air in finned-tube heat exchangers, 236-37

turbulent flow through wire-wrapped, seven-rod fuel assemblies, 123
 two-phase, 166, 233-35
 Pressure switches
 Elk River Power Reactor, failure, 272

Pressure tubes
 design, 40-41
 fretting corrosion, 177-82

Pressure vessels, 12-14
 design for large pressurized water reactors, 138-39
 design for Magnox reactors, 66-68

KRB Reactor, 12-13
 leaks, 3
 SENA Reactor, 12-13

SENN Reactor, 12-13
 SEP Reactor, 12
 WWER-1 Reactor, 9-10, 12-14

Pressurized water
 burnout calculations, 121-23

Pumps
 development for reactors, 18
 liquid metal, for Hallam Power Reactor, 282
 Hallam Power Reactor, 282
 Pyrolysis
 organic coolants, 290-91

R

Rabbit facility
 design and fabrication, 277
 Radiation (thermal)
 heat transfer calculations, 233-39

Radiation effects
 biphenyl, 290
 control rods, 271
 core lifetime, 216
 fuel elements, 7-8, 62, 82, 255-56
 hydriding of Zr alloys, 246-48
 polyphenyls, 290-91, 293-94
 reactivity, 217
 SA-38
 Zircaloy-2, 38, 41

Radiolysis
 organic coolants, 290-94

Reactivity
 calculations, 217
 changes with irradiation, 216
 effects on, 109-10
 measurements in reactors, 157-59

Reactors
 (see also Critical...)
 corrosion product deposition in, 252
 future development, 17-20
 reactivity, 216-17
 subcriticality measurement during shutdown, 224-25

Reactors (Advanced Gas Cooled)(AGR)
 design, 58
 fuel element design, 62
 operation, 60

Reactors (Advanced Sodium Graphite)

buckling studies, 111

- Reactors (Aerospace Shield Test)(ASTR)
control system, 223
- Reactors (Agesta)
corrosion in, 275
design, 47-48, 52-53
repair procedures, 276
- Reactors (AKB)
design, 36
- Reactors (Aquilon-II)
criticality measurements in, 213
- Reactors (ARBUS)
design and operation, 103-4
- Reactors (AVR)
design, 73-74
- Reactors (Bashful-600)
design, 53, 55-56
- Reactors (Beloyarsk-1)
design, 28-34
- Reactors (Beloyarsk-2)
design, 28-34
- Reactors (Big Rock Point Power), 6
design, 4, 7
flow-induced vibrations, failures from, 273
operating experience, 3
pumps, 18
- Reactors (BN-350)
design, 94
status, 92
- Reactors (Bodega Bay Power)
design, 4
- Reactors (Boiling, Experiments-5)
(BORAX-5)
design, 23
- Reactors (Boiling heavy-water)
design, 55
- Reactors (boiling-water), 3-29
corrosion product deposition in, 256
fuel element failure, 254-56
radiation effects on fuel elements, 255
water quality control, 254
- Reactors (BONUS)
design, 23, 25, 27
- Reactors (BR-3)
design, 5
use of soluble poison control, 10, 12
- Reactors (BR-5)
coolant contamination, 75-76
status, 95
- Reactors (Berkeley)
design, 58
performance, 60
- Reactors (Bradwell)
design, 58
performance, 60
refueling machine operation, 68
- Reactors (Calder Hall)
design, 58
- Reactors (CANDU), 37-44
physics, 217
- Reactors (Chapelcross)
design, 58
- Reactors (Connecticut Yankee Power)
design, 5
- Reactors (Czechoslovakian Heavy Water)
design, 56
- Reactors (DON)
design, 36
- Reactors (DOR)
design, 36
- Reactors (Dounreay Fast)
fission product contamination of coolant, 75
status, 92
- Reactors (Dragon)
design, 72-73
- Reactors (Dresden Power), 6
design, 4, 7
operating experience, 3
- pumps, 18
- Reactors (Dungeness)
design, 58
- Reactors (EDF-1)
criticality studies in, 213
design, 58
- Reactors (EDF-2)
design, 58
- Reactors (EDF-3)
design, 58
pressure vessel, 67
- Reactors (EDF-4)
design, 58
pressure vessel, 67
- Reactors (EL-4)
design, 36
- Reactor (Elk River Power)
control system, 271-72
coolant flow oscillations, 273
design, 4
instrument failure, 272
- Reactors (Enrico Fermi Fast Breeder)
auxiliary systems, 77-78
coolant decontamination, 77
design, 78-80
operation, 78
status, 92
vapor traps, 261
- Reactors (Experimental Beryllium Oxide)
(EBOR)
development, 106
- Reactors (Experimental Boiling Water)
(EBWR)
operation, 147
scaling, 252
- Reactors (Experimental Breeder-I)
(EBR-I)
nuclear parameters for Pu core, 158-9
vapor traps, 260-61
- Reactors (Experimental Breeder-2)
(EBR-2)
control rod drive mechanisms, 133-34
design, 78-80
coolant decontamination, 77
status, 92
vapor traps, 261-63
- Reactors (fast breeder), 84-95
criticality studies, 110
design of large, 147-55
gas coolant, 95
- Reactors (Fast Supercritical Pressure
Power)(FSPPR)
design, 186-93
- Reactors (Fast, Test)(FARET)
vapor traps, 264-65
- Reactors (First Atomic Power Station)
design, 28-29
- Reactors (fog-cooled)
heat transfer, 228-29
- Reactors (G2)
design, 58
pressure vessel, 67
- Reactors (G3)
design, 58
pressure vessel, 67
- Reactors (gas-cooled), 56, 58-74
design of fast breeders, 95
operating experience, 216
physics, 216
- Reactors (General Electric Test)(GETR)
flow-induced vibrations, failures from, 273-74
- Reactors (graphite-moderated), 28-34
core physics calculations, 160-61
- Reactors (Halden)
flowsheets, 50
operation, 50-51
water chemistry, 52
- Reactors (Hallam Power)
- coolant decontamination, 77
design, 78-80
operation, 81, 279-80, 282-88
vapor traps, 264
- Reactors (Hanford Graphite Superheat)
(HGSR)
design, 193-98
- Reactors (heavy-water), 35-37
oxygen concentration control in coolant, 277
physics, 217
- Reactors (Heavy Water Components Test)
(HWCTR)
control rod-guide-tube rupture, 222-23
shutdown with boric acid, 225
- Reactors (Hector)
criticality measurements in, 212
- Reactors (Hinkley Point)
design, 58
- Reactors (Humboldt Bay Power), 6
design, 4, 7
operating experience, 3
- Reactors (Hunterston)
design, 58
- Reactors (Indian Point Power)
(CETR), 6
control system, 271
operating experience, 3
repair procedures, 276-77
- Reactors (Industrial Reactor Laboratories)
rabbit facility design and fabrication, 277
- Reactors (JPDR)
design, 4
- Reactors (Kahl Superheating)
design, 22, 24
- Reactors (KBWP)
design, 5
- Reactors (KRB)
design, 4
pressure vessel, 12-13
- Reactors (La Crosse Boiling Water)
(LACBWR)
design, 4
- Reactors (Large Closed Cycle Water)
fuel element evaluation, 172
- Reactors (Latina)
design, 58
- Reactors (Lenin)
design and operation, 97-98
- Reactors (liquid metal-cooled), 75-96
- Reactors (Lithium Cooled, Experiment)
(LCRE)
vapor traps, 266-67
- Reactors (Los Alamos Fast, Core Test
Facility)(FRCTF)
vapor traps, 265
- Reactors (Los Alamos Molten Plutonium,
Experiments)(LAMPRE)
vapor traps, 265
- Reactors (Loss-of-Flow Test)(LOFT)
program analysis, 240-41
- Reactors (Lucens)
design, 36
- Reactors (Magnox), 58-71
- Reactors (Malibu-1 Power)
design, 5
- Reactors (marine), 97-102
- Reactors (Marius)
criticality measurements in, 213
- Reactors (Maryla)
design, 111
- Reactors (Marviken)
design, 47, 49, 52-55
- Reactors (Minerve)
criticality measurements in, 213
- Reactors (ML-1)
fuel element evaluation, 173-74
- Reactors (Molten Salt, Experiment)
(MSRE)

- development, 106
 Reactors (NERO)
 design, 100-1
 Reactors (New Production)(NPR)
 tubes and fittings, 134-36
 Reactors (Nine Mile Point Power)
 design, 4
 Reactors (NORA)
 fuel element design, 112
 Reactors (Novo-Veronezh)(WWER)
 burnup, 217
 Reactors (NPD), 35-44
 Reactors (NRX)
 testing of reactor materials in, 38
 Reactors (Oldbury)
 design, 58
 pressure vessel, 67
 Reactors (Organic Cooled, Heavy Water
 Moderated Power)
 design, 36
 Reactors (Otto Hahn)
 design, 98-99
 Reactors (Oyster Creek Power)
 design, 4
 Reactors (Parr Shoals Power)
 design, 36
 Reactors (Pathfinder Power)
 design, 23
 Reactors (Peachbottom Power)
 design, 72-73
 Reactors (pebble bed)
 design, 73-74
 Reactors (Plutonium Recycle Test)
 (PRT)
 control of oxygen in D₂O system, 277
 nuclear parameters, 158
 pressure-tube fretting corrosion,
 177-82
 Reactors (PM-1)
 status, 103
 Reactors (PM-2A)
 status, 103
 Reactors (PM-3A)
 status, 103
 Reactors (portable power), 103-4
 Reactors (pressure-tube), 35-45
 Reactors (Pressurized Heavy Water)
 design, 51-53, 55
 Reactors (pressurized-water), 3-29
 development and design of large, 137-47
 use of soluble poisons for control, 10-12
 Reactors (Puerto Rico Power)(BONUS)
 design, 23, 25, 27
 Reactors (R-1)
 design, 36
 Reactors (R-2)
 design, 36
 Reactors (R3/Adam)
 (see Reactors (Agesta))
 Reactors (Rapsodie)
 status, 92
 Reactors (RB)
 fuel element design, 112
 Reactors (Romaska)
 design, 105-6
 Reactors (RWE)
 design, 4
 Reactors (San Onofre Power)
 design, 5
 pumps, 18
 Reactors (Savannah River)
 burnout computation, 227
 Reactors (Saxton Power)
 design, 5, 7
 operating experience, 3
 use of soluble poison control, 12
 Reactors (SELNI)
 design, 5
 Reactors (SENA)
- design, 5
 pressure vessel, 12-13
 Reactors (SENN)
 design, 4
 pressure vessel, 12-13
 Reactors (SEP)
 design, 4
 pressure vessel, 12
 Reactors (Shippingport Pressurized Water)
 (PWR), 6
 design, 5
 fuel element performance, 172, 252
 operating experience, 3
 use of burnable poison, 12
 Reactors (Sizewell)
 design, 58
 Reactors (SM-1)
 status, 103
 Reactors (SM-1A)
 status, 103
 Reactors (SNAP-10A)
 design, 105
 Reactor (Sodium, Experiment)(SRE)
 nuclear parameters of second core,
 157-58
 operation, 80-81
 vapor traps, 264
 Reactors (sodium graphite), 80-84
 steam cycles, 183-85
 Reactors (Southwest Experimental Fast
 Oxide)(SEFOR)
 vapor traps, 265
 Reactors (Special Excursion, Tests-2)
 (SPERT-2)
 critical experiments with, 109
 Reactors (Special Power Excursion, Tests-3)
 (SPERT-3)
 electrical circuits, failure, 272-73
 flow-induced vibrations, failures from,
 273-75
 leaks, 275-76
 level controller failure, 272
 Reactors (Steam Generating Heavy Water)
 design, 36
 Reactors (superheating), 22-34
 design of HGSR, 193-98
 fuel element development, 174-75
 Reactors (Tarapur)
 design, 4
 Reactors (TES-3)
 operation, 104
 Reactors (Tokai Mura)
 design, 58
 Reactors (Transient, Test Facility)
 (TREAT)
 vapor traps, 265-66
 Reactors (Trawsfynydd)
 design, 58
 Reactors (UEM)
 design, 5
 Reactors (Ultra High Temperature, Experi-
 ment) (UHTREX)
 development, 106
 Reactors (Ulyanovsk)
 design, 25-26
 Reactors (University of Michigan)
 D₂O reflectors, 277, 279
 Reactors (University of Missouri at Rolla)
 (UMRR)
 control rod swelling, 222
 Reactors (Vallecitos Boiling Water)
 (VBWR)
 fuel element failure in, 252-54, 256
 Reactors (Vallecitos Superheat)
 design, 22, 24
 Reactors (VULCAIN)
 design, 99-101
 Reactors (water-cooled), 3-29
 material buckling in, 214-15
 physics, 216
 Reactors (water-moderated), 3-29
 material buckling in, 214-15
 physics, 216
 use of poisons in, 217
 Reactors (WWER)
 design, 5
 operating experience, 3
 Reactors (WWER-1)
 design, 19-20
 pressure vessel, 9-10, 12-14
 Reactors (WWER-2)
 design, 19-20
 Reactors (Wylfa)
 design, 58
 pressure vessel, 67
 Reactors (Yankee Power), 6
 control system, 271-72
 critical experiments, 210
 design, 5
 flow-induced vibrations, failures from,
 273-74
 leaks, 275-76
 operating experience, 3
 pumps, 18
 use of soluble poison control, 12
 Reactors (ZPR-3)
 core design, 110-11
 Reflectors
 D₂O in University of Michigan Reactor,
 277, 279
 Resonance absorption
 mathematical analysis, 159-60
 Resonance capture
 in U-238, 215
 Resonance Integral Theory
 calculations, 218
 REX code
 criticality calculations, 210
 ROB code
 thermal conductivity calculations, 118
 Rubidium (liquid)
 thermal, thermodynamic, and flow proper-
 ties, 163-64

S

- Safety
 accident frequency, 221-22
 burnout computation in Savannah River
 Reactors, 227
 coolant flow oscillations in Elk River
 Power Reactor, 273
 fast breeder reactors, 85-86, 153-54
 Hallam Power Reactor, 280
 instrument failures, 272-73
 leaks, 275-76, 282
 loss-of-coolant accidents, 240-41
 shutdown, emergency, 225-26
 University of Michigan Reactor, 279
 University of Missouri at Rolla Reactor,
 222
 vibrations, flow-induced, 273-75
 Salt solutions
 heat transfer to, from wire-wrapped,
 seven-rod fuel element bundles, 123
 Santowax
 sampling techniques, 294-95
 Santowax OMP
 corrosive effects, 294
 film formation by, 293-94
 radiolysis, 290-91
 use in ROSPO Critical Assembly, 112
 Santowax-R
 corrosive effects, 294
 heat transfer properties, 123-24, 295
 radiolysis, 291-92
 SAP

- corrosion by polyphenyls, 293-94
development for reactor fuels, 37, 39
radiation effects, 38
- Satellites (man-made)
Nimbus, thermal design calculations, 240
- Seals
pressure vessel, leaks, 3
use of freeze, in Hallam Power Reactor, 283
- Shims (chemical), 10-11
Yankee Power Reactor, 272
- Shutdown (emergency)
use of boric acid, 225
use of gadolinium nitrate, 226
- Sintered aluminum products
(see SAP)
- Sodium (gaseous)
freeze traps for, 285
- Sodium (liquid)
heat transfer from boiling, 164
reactor cooling, 75-96
thermal, thermodynamic, and flow properties, 163-64
- Sodium alloys (K-Na)(liquid)
aerosol formation in, 260
heat transfer coefficients, 235-36
thermal, thermodynamic, and flow properties, 163
- Sodium Components Test Installation
vapor traps, 264
- Sodium Test Facility
vapor traps, 265
- SOFOCATE code
criticality calculations, 210
- Specifications
fuel elements, $\text{PuO}_2\text{-UO}_2$, 129
pressure vessels, 13-14
- Spiralator
heat exchanger, design, 237
- Springs
use in control system, 223
- Stagnation
vapor traps utilizing, 260
- Stainless steel systems (stainless steel-UO₂ cermets)
development for fuel elements, 126-27
- Stainless steels
cladding for fuel elements, 3, 6-9
corrosion of, 254, 293-94
effects of boiling water on, 255
performance in water-cooled reactors, 254, 256
- Steam
effects on hydriding of Zr alloys, 246
- Steam (superheated)
heat transfer, 40, 121
- Steam generators
design for large pressurized water reactors, 138
operating problems in Hallam Power Reactor, 284
- Steam-water systems
boiling burnout in, 166-67
flow and heat transfer, 165, 166-70
- Steels
corrosion, 9-10, 293-94
- STOKE code, 35
for heavy water reactor simulation, 35
- Stress corrosion
effects of oxygen concentration, 255
- Stresses
(see also Thermal stresses)
effects on cracking, 252, 255
- Subcriticality
measurement, 224-25
- Sulfur
effects on corrosion by polyphenyls, 294
- Superheated steam
(see Steam (superheated))
- Superheating
pressure effects on boiling, 253
- Surfaces
effects on boiling, 231, 253
- T**
- Tanks
failure of Na expansion, in Hallam Power Reactor, 285
- Teflon
flexible tube heat exchangers, 237
- Temperature sensors
failure in Elk River Power Reactor, 272
- TEMPEST code
cross section calculations, 212
- Terphenyl
heat transfer properties of irradiated, 123-24
- Thermal conductivity
effects on pool boiling, 230
fuel elements, 118-21, 129
heat transfer calculations, 239
hydrogen at high temperatures, 239
noble gases at high temperature, 239
- Thermal neutrons
absorption cross section and diffusion length in graphite, 114-15
distribution in light-water reactors, 215
- Thermal radiation
heat transfer calculations, 238-39
- Thermal stresses
in fuel elements, 253, 255
- Thermometers
failure in Elk River Power Reactor, 272
- THERMOS code
cross section calculations, 212
thermal neutron distribution calculations, 215
- Thorium alloys (Th-U)
fuel element development for fast breeder reactors, 89
- Thorium alloys (Th-U-Zr)(Zircaloy-2-clad)
fabrication of fuel elements, 130
- Thorium oxide systems (Nb-ThO₂-UO₂ cermets)
thermal conductivity, 129
- Thorium oxide systems (ThO₂-UO₂)
fuel element design, 3, 6-9
radiation effects, 8
- Traps
for aerosols, 359-70
for carbon, oxides, and Na in Hallam Power Reactor, 285
for liquid metal systems, 259-70
- Tubes
(see also Pressure tubes)
burnout, 16-17
burnout of water in, 121
heat transfer from, at cryogenic temperatures, 239-40
- Tubes (finned)
use in heat exchangers, 236-37
- Tungsten systems (Mo-UO₂ cermets)
development for fuel elements, 128
- Tungsten systems (W-UO₂ cermets)
development for fuel elements, 127-28
- Turbulent flow
(see Fluid flow (turbulent))
- Two-phase flow
(see Fluid flow)
- U**
- Uranium
criticality in D₂O lattices, 213
criticality in graphite lattices, 212-13
- radiation effects on reactivity, 217
- Uranium-233
radiation effects on reactivity, 217
- Uranium-235
fission ratio to U-238, 110
fission spectrum cross section, 115
radiation effects on reactivity, 217
- Uranium-238
fission ratio to U-235, 110
resonance capture, 215
- Uranium (enriched)
criticality in D₂O lattices, 213
- Uranium alloys (Pu-U)
criticality in lattices, 212-13
- Uranium alloys (Th-U)
fuel element development for fast breeder reactors, 89
- Uranium alloys (Th-U-Zr)(Zircaloy-2-clad)
fabrication of fuel elements, 130
- Uranium carbide systems (PuC-UC)
design of fuel elements for large fast breeder reactors, 147-49, 151-52
radiation effects, 8
- Uranium carbides (UC)
buckling studies, 111
development for fuel elements for sodium graphite reactors, 81-83
evaluation for fuel elements, 174
fabrication of Na-bonded fuel elements, 129-30
radiation effects, 8, 82
- Uranium nitrides (UN)
radiation effects, 8
- Uranium oxide systems
critical experiments in water lattices, 210
- Uranium oxide systems (Al₂O₃-UO₂)
radiation effects, 8
- Uranium oxide systems (BeO-UO₂)
radiation effects, 8
- Uranium oxide systems (BeO-UO₂ (Hastelloy-X-clad))
fuel elements, evaluation, 173
- Uranium oxide systems (Mo-UO₂ cermets)
fabrication into fuel elements and thermal conductivity, 129
- Uranium oxide systems (Mo-W-UO cermets)
development for fuel elements, 128
- Uranium oxide systems (Nb-ThO₂-UO₂ cermets)
thermal conductivity, 129
- Uranium oxide systems (PuO₂-UO₂)
critical experiments in water lattices, 210, 212
- design of fuel elements for large fast breeder reactors, 149-52
- fuel elements, fretting corrosion of Zircaloy-2 cladding, 177-82
- fuel elements, specifications, 129
radiation effects, 8
- Uranium oxide system (stainless steel-UO₂ cermets)
development for fuel elements, 126-27
- Uranium oxide systems (ThO₂-UO₂)
fuel element design, 3, 6-9
radiation effects, 8
- Uranium oxide systems (W-UO₂ cermets)
development for fuel elements, 127-28
- Uranium oxide systems (UO₂-ZrO₂)
radiation effects, 8
- Uranium oxides (UO₂)
evaluation, 172-74
fretting corrosion, 177-82
- fuel elements, design, 3, 6-9
- fuel elements, evaluation, 172-74
- fuel elements, fabrication, 128-29
- fuel elements, thermal conductivity,

119-21
 pulsed neutron studies, 112
 radiation effects, 8
 Uranium silicides (UsSi)
 radiation effects, 8
 Uranium sulfides (US)
 radiation effects, 8
 Uranium systems
 criticality in water lattices, 210-11
 Uranyl nitrate
 criticality of solutions, 213

V

Valves
 performance in Hallam Power Reactor, 282-84
 Vapor traps
 for liquid metal systems, 259-70
 Vaporizers
 flow stability in forced convection, 231-32
 Vena contracta
 mixing during reexpansion, 235
 Vertical channels
 (see Channels)
 Vibrations
 flow-induced, failures from, 273-75

W

Water
 burnout heat flux under forced convection, 122
 condensation, 233
 corrosion of steel, 9-10
 criticality studies in lattices of, 210-212
 dissociation, effects on hydriding of Zr alloys, 248
 effects on corrosion by polyphenyls, 294
 moderator, pulsed neutron studies in, 113
 quality control, 254
 reactivity effects, 109-10
 Water (pressurized)
 burnout calculations, 121-23
 Water-air systems
 flow, techniques for observing, 165
 Water-ice systems
 free convection melting, heat transfer calculations, 239-40
 Water-steam systems
 boiling burnout in, 166-67
 flow and heat transfer, 165, 166-70

Z

Zircaloy alloy
 cladding for fuel elements, 3, 6-9
 effects of hydriding on properties, 245

Zircaloy-2 alloy
 corrosion, 42-45
 effects of hydriding on properties, 245, 248-49
 hydriding, control of, 249-50
 hydrogen absorption, 246
 radiation effects, 38, 41
 use in pressure tubes, 41
 Zircaloy-2 alloy (Ni-tree)
 hydrogen absorption, 246
 Zircaloy-4 alloy
 hydriding, control of, 250
 hydrogen absorption, 246
 Zirconium alloys
 hydriding, 246-51
 Zirconium alloys (coated)
 corrosion by polyphenyls, 294
 Zirconium alloys (Nb-Zr)
 corrosion, 42-45
 hydriding stress allowance, 9
 use in pressure tubes, 41
 clad)
 Zirconium alloys (Th-U-Zr)(Zircaloy-2-clad)
 fabrication of fuel elements, 130
 Zirconium hydride
 formation in Zircalloys, 245-46
 orientation, 250-51
 Zirconium oxide systems (PuO_2-ZrO_2)
 radiation effects, 8
 Zirconium oxide systems (UO_2-ZrO_2)
 • radiation effects, 8

LEGAL NOTICE

This journal was prepared under the sponsorship of the U. S. Atomic Energy Commission. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this journal, or that the use of any information, apparatus, method, or process disclosed in this journal may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this journal.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor acts on the Commission's or employee of such contractor prepares, disseminates, or provides access to, any information pertinent to his employment or contract with the Commission, or his employment with such contractor.

