Minimisation du regret vs. Exploration pure: Deux critères de performance pour des algorithmes de bandit

Emilie Kaufmann (Telecom ParisTech) joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan (Yahoo Labs)

ANR Spadro, 9 avril 2014

Two bandit problems

2 Regret minimization: a well solved problem

3 Algorithms for pure-exploration

f 4 The complexity of m best arms identification

Two bandit problems

Regret minimization: a well solved problem

3 Algorithms for pure-exploration

4 The complexity of m best arms identification

3 / 26

Bandit model

A multi-armed bandit model is a set of K arms where

- lacksquare Arm a is an unknown probability distribution u_a with mean μ_a
- \blacksquare Drawing arm a is observing a realization of ν_a
- Arms are assumed to be independent

In a **bandit game**, at round t, an agent

- chooses arm A_t to draw based on past observations, according to its sampling strategy (or bandit algorithm)
- lacksquare observes a sample $X_t \sim
 u_{A_t}$

The agent wants to learn which arm(s) have highest means

$$a^* = \operatorname{argmax}_a \mu_a$$

Bernoulli bandit model

A multi-armed bandit model is a set of K arms where

- Arm a is a Bernoulli distribution $\mathcal{B}(\mu_a)$ (with unknown mean μ_a)
- Drawing arm a is observing a realization of $\mathcal{B}(\mu_a)$ (0 or 1)
- Arms are assumed to be independent

In a **bandit game**, at round t, an agent

- \blacksquare chooses arm A_t to draw based on past observations, according to its sampling strategy (or bandit algorithm)
- \blacksquare observes a sample $X_t \sim \mathcal{B}(\mu_{A_t})$

The agent wants to learn which arm(s) have highest means

$$a^* = \operatorname{argmax}_a \mu_a$$

The (classical) bandit problem: regret minimization

Samples are seens as rewards (as in reinforcement learning)

The forecaster wants to maximize the reward accumulated during learning or equivalentely minimize its regret:

$$R_n = n\mu_{a^*} - \mathbb{E}\left[\sum_{t=1}^n X_t\right]$$

He has to find a sampling strategy (or bandit algorithm) that

realizes a tradeoff between exploration and exploitation

Best arm identification (or pure exploration)

The forecaster has to **find the best arm(s)**, and does not suffer a loss when drawing 'bad arms'.

He has to find a sampling strategy that

optimaly explores the environnement,

together with a stopping criterion, and then recommand a set S of marms such that

 $\mathbb{P}(\mathcal{S} \text{ is the set of } m \text{ best arms}) \geq 1 - \delta.$

Zoom on an application: Medical trials

A doctor can choose between K different treatments for a given symptom.

- treatment number a has unknown probability of sucess μ_a
- **Unknown** best treatment $a^* = \operatorname{argmax}_a \mu_a$
- If treatment a is given to patient t, he is cured with probability p_a

The doctor:

- \blacksquare chooses treatment A_t to give to patient t
- lacksquare observes whether the patient is healed : $X_t \sim \mathcal{B}(\mu_{A_t})$

Zoom on an application: Medical trials

A doctor can choose between K different treatments for a given symptom.

- treatment number a has unknown probability of sucess μ_a
- **Unknown** best treatment $a^* = \operatorname{argmax}_a \mu_a$
- If treatment a is given to patient t, he is cured with probability p_a

The doctor:

- \blacksquare chooses treatment A_t to give to patient t
- lacksquare observes whether the patient is healed : $X_t \sim \mathcal{B}(\mu_{A_t})$

The doctor can ajust his strategy (A_t) so as to

Regret minimization	Pure exploration
Maximize the number of patient healed	Identify the best treatment
during a study involving n patients	with probability at least $1-\delta$
	(and always give this one later)

1 Two bandit problems

2 Regret minimization: a well solved problem

3 Algorithms for pure-exploration

4 The complexity of m best arms identification

Asymptotically optimal algorithms

 $N_a(t)$ be the number of draws of arm a up to time t

$$R_T = \sum_{a=1}^{K} (\mu^* - \mu_a) \mathbb{E}[N_a(T)]$$

■ [Lai and Robbins,1985]: every consistent policy satisfies

$$\mu_a < \mu^* \Rightarrow \liminf_{T \to \infty} \frac{\mathbb{E}[N_a(T)]}{\log T} \ge \frac{1}{\mathsf{KL}(\mathcal{B}(\mu_a), \mathcal{B}(\mu_{a^*}))}$$

A bandit algorithm is **asymptotically optimal** if

$$\mu_a < \mu^* \Rightarrow \limsup_{n \to \infty} \frac{\mathbb{E}[N_a(T)]}{\log T} \le \frac{1}{\mathsf{KL}(\mathcal{B}(\mu_a), \mathcal{B}(\mu_{a^*}))}$$

Algorithms: a family of optimistic index policies

■ For each arm a, compute a confidence interval on μ_a :

$$\mu_a \le UCB_a(t) \ w.h.p$$

Act as if the best possible model was the true model (optimism-in-face-of-uncertainty):

$$A_t = \underset{a}{\operatorname{arg\,max}} \ UCB_a(t)$$

Algorithms: a family of optimistic index policies

■ For each arm a, compute a confidence interval on μ_a :

$$\mu_a \le UCB_a(t) \ w.h.p$$

Act as if the best possible model was the true model (optimism-in-face-of-uncertainty):

$$A_t = \underset{a}{\operatorname{arg\,max}} \ UCB_a(t)$$

Example UCB1 [Auer et al. 02] uses Hoeffding bounds:

$$UCB_a(t) = \frac{S_a(t)}{N_a(t)} + \sqrt{\frac{\alpha \log(t)}{2N_a(t)}}.$$

 $S_a(t)$: sum of the rewards collected from arm a up to time t.

UCB1 is not asymptotically optimal, but one can show that

$$\mathbb{E}[N_a(T)] \leq \frac{K_1}{2(\mu_a - \mu^*)^2} \ln T + K_2, \quad \text{with } K_1 > 1.$$

KL-UCB: and asymptotically optimal frequentist algorithm

■ KL-UCB [Cappé et al. 2013] uses the index:

$$\begin{split} u_a(t) &= \operatorname*{argmax}_{x > \frac{S_a(t)}{N_a(t)}} \left\{ d\left(\frac{S_a(t)}{N_a(t)}, x\right) \leq \frac{\ln(t) + c \ln \ln(t)}{N_a(t)} \right\} \\ \text{with } d(p,q) &= \operatorname{KL}\left(\mathcal{B}(p), \mathcal{B}(q)\right) = p \log \left(\frac{p}{q}\right) + (1-p) \log \left(\frac{1-p}{1-q}\right). \end{split}$$

with
$$d(p,q) = \mathsf{KL}\left(\mathcal{B}(p),\mathcal{B}(q)\right) = p\log\left(\frac{p}{q}\right) + (1-p)\log\left(\frac{1-p}{1-q}\right)$$

$$\mathbb{E}[N_a(T)] \le \frac{1}{d(\mu_a, \mu^*)} \ln T + C$$

Regret minimization: Summary

An (asymptotic) lower bound on the regret of any good algorithm

$$\liminf_{T \to \infty} \frac{R_T}{\log T} \ge \sum_{a: \mu_a < \mu^*} \frac{\mu^* - \mu_a}{\mathsf{KL}(\mathcal{B}(\mu_a), \mathcal{B}(\mu^*))}$$

An algorithm based on confidence intervals matching this lower bound: KI-UCB

Regret minimization: Summary

An (asymptotic) lower bound on the regret of any good algorithm

$$\liminf_{T \to \infty} \frac{R_T}{\log T} \ge \sum_{a: \mu_a < \mu^*} \frac{\mu^* - \mu_a}{\mathsf{KL}(\mathcal{B}(\mu_a), \mathcal{B}(\mu^*))}$$

- An algorithm based on confidence intervals matching this lower bound: KI-UCB
- A Bayesian approach of the MAB problem can also lead to asymptotically optimal algorithms (Thompson Sampling, Bayes-UCB)

1 Two bandit problems

Regret minimization: a well solved problem

3 Algorithms for pure-exploration

4 The complexity of m best arms identification

m best arms identification

Assume $\mu_1 \geq \cdots \geq \mu_m > \mu_{m+1} \geq \dots \mu_K$.

Parameters and notations

- m the number of arms to find
- $\delta \in]0,1[$ a risk parameter
- $\mathcal{S}_m^* = \{1, \dots, m\}$ the set of m optimal arms

m best arms identification

Assume $\mu_1 \ge \cdots \ge \mu_m > \mu_{m+1} \ge \dots \mu_K$.

Parameters and notations

- m the number of arms to find
- ullet $\delta \in]0,1[$ a risk parameter
- lacksquare $\mathcal{S}_m^* = \{1, \dots, m\}$ the set of m optimal arms

The forecaster

- chooses at time t one (or several) arms to draw
- $lue{}$ decides to stop after a (possibly random) total number of samples from the arms au
- \blacksquare recommends a set \mathcal{S} of m arms

m best arms identification

Assume $\mu_1 \geq \cdots \geq \mu_m > \mu_{m+1} \geq \dots \mu_K$.

Parameters and notations

- m the number of arms to find
- \bullet $\delta \in]0,1[$ a risk parameter
- $\mathcal{S}_m^* = \{1, \dots, m\}$ the set of m optimal arms

The forecaster

- chooses at time t one (or several) arms to draw
- decides to stop after a (possibly random) total number of samples from the arms au
- \blacksquare recommends a set \mathcal{S} of m arms

His goal

 $\blacksquare \mathbb{P}(S = S_m^*) \ge 1 - \delta$, and $\mathbb{E}[\tau]$ is small (fixed-confidence setting)

Generic algorithms based on confidence intervals

Generic notations:

confidence interval on the mean of arm a at round t:

$$\mathcal{I}_a(t) = [L_a(t), U_a(t)]$$

- J(t) the set of estimated m best arms at round t (m empirical best)
- $u_t \in J(t)^c$ and $l_t \in J(t)$ two 'critical' arms (likely to be misclassified)

$$u_t = \operatorname*{argmax}_{a \notin J(t)} U_a(t) \quad \text{and} \quad l_t = \operatorname*{argmin}_{a \in J(t)} L_a(t).$$

(KL)-Racing: uniform sampling and eliminations

The algorithm maintains a set of remaining arms R and at round t:

- lacksquare draw all the arms in \mathcal{R} (uniform sampling)
- possibly accept the empirical best or discard the empirical worst

In this situation, arm 1 is selected

(KL)-LUCB algorithm: adaptive sampling

At round t, the algorithm:

- lacktriangle draw only two well-chosen arms: u_t and l_t (adaptive sampling)
- lacksquare stops when CI for arms in J(t) and $J(t)^c$ are separated

Set J(t), arm l_t in bold Set $J(t)^c$, arm u_t in bold

Two δ -PAC algorithms

$$L_a(t) = \min \{ q \in [0, \hat{\mu}_a(t)] : N_a(t) d(\hat{\mu}_a(t), q) \le \beta(t, \delta) \},$$

$$U_a(t) = \max \{ q \in [\hat{\mu}_a(t), 1] : N_a(t) d(\hat{\mu}_a(t), q) \le \beta(t, \delta) \}.$$

for $\beta(t, \delta)$ some exploration rate.

Theorem

The KL-Racing algorithm and KL-LUCB algorithm using

$$\beta(t,\delta) = \log\left(\frac{k_1 K t^{\alpha}}{\delta}\right),\tag{1}$$

with $\alpha > 1$ and $k_1 > 1 + \frac{1}{\alpha-1}$ satisfy $\mathbb{P}(\mathcal{S} = \mathcal{S}_m^*) \geq 1 - \delta$.

4 D > 4 D > 4 E > 4 E > E 9 Q P

Confidence intervals based on KL are always better

$$B_1: K = 15; \mu_1 = \frac{1}{2}; \mu_a = \frac{1}{2} - \frac{1}{40} \text{ for } a = 2, 3, \dots, K. \ B_2 = \frac{1}{2}B_1$$

Adaptive Sampling seems to do better than Uniform Sampling

Sample complexity analysis

■ A new informational quantity: Chernoff information

$$d^*(x,y) := d(z^*,x) = d(z^*,y),$$

where z^* is defined by the equality

$$d(z^*, x) = d(z^*, y).$$

4□ → 4□ → 4□ → 4□ → 900

Sample Complexity analysis

KL-LUCB with $\beta(t,\delta)=\log\left(\frac{k_1Kt^{\alpha}}{\delta}\right)$ is δ -PAC and satisfies, for $\alpha>2$,

$$\mathbb{E}[\tau] \le 4\alpha H^* \left[\log \left(\frac{k_1 K(H^*)^{\alpha}}{\delta} \right) + \log \log \left(\frac{k_1 K(H^*)^{\alpha}}{\delta} \right) \right] + C_{\alpha},$$

with

$$H^* = \min_{c \in [\mu_{m+1}; \mu_m]} \sum_{a=1}^K \frac{1}{d^*(\mu_a, c)}.$$

1 Two bandit problems

Regret minimization: a well solved problem

3 Algorithms for pure-exploration

4 The complexity of m best arms identification

Lower bound on the number of sample used complexity

For KL-LUCB,
$$\mathbb{E}[\tau] = O\left(H^* \log \frac{1}{\delta}\right)$$
.

Theorem

Any algorithm that is δ -PAC on every bandit model such that $\mu_m > \mu_{m+1}$ satisfies, for $\delta \leq 0.15$,

$$\mathbb{E}[\tau] \ge \left(\sum_{t=1}^{m} \frac{1}{d(\mu_a, \mu_{m+1})} + \sum_{t=m+1}^{K} \frac{1}{d(\mu_a, \mu_m)}\right) \log \frac{1}{2\delta}$$

The informational complexity of m best arm identification

For a bandit model ν , one can introduce the complexity term

$$\kappa_C(\nu) = \inf_{\substack{\mathcal{A} \text{ } \delta - \mathsf{PAC} \\ \mathsf{algorithm}}} \limsup_{\delta \to 0} \frac{\mathbb{E}_{\nu}[\tau]}{\log \frac{1}{\delta}}.$$

Our results rewrite

$$\sum_{t=1}^{m} \frac{1}{d(\mu_a, \mu_{m+1})} + \sum_{t=m+1}^{K} \frac{1}{d(\mu_a, \mu_m)} \le \kappa_C(\nu) \le 4 \min_{c \in [\mu_{m+1}; \mu_m]} \sum_{a=1}^{K} \frac{1}{d^*(\mu_a, c)}$$

4□ > 4圖 > 4 圖 > 4 圖 > ■ 9 < 0</p>

Regret minimization versus Best arms Identification

■ KL-based confidence intervals are useful in both settings, altough KL-UCB and KL-LUCB draw the arms in a different fashion

Regret minimization versus Best arms Identification

 KL-based confidence intervals are useful in both settings, altough KL-UCB and KL-LUCB draw the arms in a different fashion

Do the complexity of these two problems feature the same information-theoretic quantities?

$$\inf_{\substack{\text{constistent}\\ \text{algorithms}}} \limsup_{T \to \infty} \frac{R_T}{\log T} = \sum_{a=2}^K \frac{\mu_1 - \mu_a}{d(\mu_a, \mu_1)}$$

$$\inf_{\substack{\delta-PAC\\\text{algorithms}}}\limsup_{\delta\to\infty}\frac{\mathbb{E}[\tau]}{\log(1/\delta)} \geq \sum_{a=1}^K\frac{1}{d(\mu_a,\mu_{m+1})} + \sum_{\substack{a=m+1\\ a \neq m+1}}^K\frac{1}{d(\mu_a,\mu_m)}$$