Prompts - Atelier : L'IA, un outil pour le code

Prompt 1: Le prompt maladroit et flou

"Fais-moi un graphique avec mes données d'expression génique du fichier breast_cancer.tsv. J'ai des gènes et des groupes de samples. **Donne-moi un script Python pour le faire.**"

Prompt 2 : Le prompt plus précis

"Je veux visualiser l'expression génique différentielle. Mon fichier breast_cancer.tsv a une colonne ID_REF pour les noms des gènes, et les autres colonnes sont des niveaux d'expression pour différents échantillons. Les échantillons sont nommés Ctrl_X, BRCA1_X, et BRCA2_X. Génère un script Python qui me donne un graphique pour voir les différences entre ces trois groupes."

Prompt 3: Le prompt très précis et complet avec Chain of Thought (CoT)

"Agis comme un bioinformaticien expert. Je souhaite créer une visualisation claire et informative de l'expression génique différentielle. **Génère un script Python complet pour réaliser ceci.**

Contexte: J'ai un fichier TSV nommé breast_cancer.tsv. La première colonne est **ID_REF** et contient les identifiants de gènes. Les colonnes suivantes sont les valeurs d'expression pour différents échantillons. Les noms de colonnes pour les échantillons suivent le format [Condition]_[Numéro], où [Condition] peut être 'Ctrl', 'BRCA1', ou 'BRCA2'.

Objectif: Générer un **graphique en violon (violin plot)** pour un ensemble de gènes spécifiques (par exemple, 1007_s_at, 1053_at, 121_at) afin de comparer la distribution de leur expression entre les trois conditions: 'Ctrl', 'BRCA1', et 'BRCA2'.

Instructions détaillées (Chain of Thought) :

- Chargement des données: Commence par charger les données depuis le fichier breast_cancer.tsv dans un DataFrame pandas. Assure-toi de gérer le séparateur de tabulations.
- 2. **Transformation des données :** Le DataFrame est en format "wide". Convertis-le en format "long" pour faciliter la visualisation avec seaborn. Cela signifie avoir des

- colonnes comme Gene_ID, Condition, et Expression_Value. Les conditions ('Ctrl', 'BRCA1', 'BRCA2') doivent être extraites des noms de colonnes d'échantillons.
- 3. **Filtrage des gènes :** Sélectionne les gènes d'intérêt spécifiques : 1007_s_at, 1053_at, et 121_at.
- 4. **Génération du plot :** Utilise matplotlib.pyplot et seaborn pour créer le graphique en violon.
 - o L'axe des X doit représenter les conditions ('Ctrl', 'BRCA1', 'BRCA2').
 - o L'axe des Y doit représenter le niveau d'expression.
 - Chaque violon doit correspondre à une condition.
 - Utilise col= 'Gene_ID' pour créer une facette pour chaque gène sélectionné (un graphique séparé par gène).
 - Personnalise les couleurs pour les conditions si possible (par exemple, 'Ctrl' en bleu, 'BRCA1' en orange, 'BRCA2' en vert).
 - Ajoute un titre clair : 'Distribution de l'Expression Génique pour les Gènes Sélectionnés par Condition'.
 - o Les légendes des axes doivent être 'Condition' et 'Niveau d'Expression'.
 - Assure-toi que le graphique est lisible et que les étiquettes ne se chevauchent pas.
 - Enregistre le graphique sous 'gene_expression_violin_plot.png' avec une haute résolution."