Éléments de mathématiques pour la physique

JÉRÔME - - FILIO Paul

$13\ {\rm septembre}\ 2024$

Table des matières

1	\mathbf{Sys}	Systèmes de coordonnées			
	1.1	Coord		2	
		1.1.1	Vecteur position	2	
		1.1.2	Vecteur vitesse	2	
		1.1.3	Vecteur accélération	2	
		1.1.4	Différentielles des vecteurs de base	2	
		1.1.5	Déplacement élémentaire	2	
		1.1.6	Volume élémentaire	2	
	1.2	Coord	onnées cylindriques	2	
		1.2.1	Vecteur position	2	
		1.2.2	Vecteur vitesse	2	
		1.2.3	Vecteur accélération	2	
		1.2.4	Différentielles des vecteurs de base	3	
		1.2.5	Déplacement élémentaire	3	
		1.2.6		3	
		1.2.7	Matrice de changement de base	3	
	1.3	Coord	onnées shériques	3	
		1.3.1	Vecteur position	3	
		1.3.2	Différentielles des vecteurs de base	3	
		1.3.3	Déplacement élémentaire	3	
		1.3.4	Volume élémentaire	3	
		1.3.5		3	
2	Vec	teurs e	et différentiation	4	
_	2.1			4	
		2.1.1		4	
		2.1.2		4	
		2.1.3		4	
		2.1.4	· ·	4	
		2.1.5		4	
	2.2	Différe		5	
	2.3			5	
		2.3.1	±	5	
		2.3.2		5	
			~		

1 Systèmes de coordonnées

1.1 Coordonnées cartésiennes

1.1.1 Vecteur position

$$\overrightarrow{OM} = x\overrightarrow{\mathbf{u}_x} + y\overrightarrow{\mathbf{u}_y} + z\overrightarrow{\mathbf{u}_z}$$

1.1.2 Vecteur vitesse

$$\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t} = \dot{x}\overrightarrow{\mathbf{u}_x} + \dot{y}\overrightarrow{\mathbf{u}_y} + \dot{z}\overrightarrow{\mathbf{u}_z}$$

1.1.3 Vecteur accélération

$$\frac{\mathrm{d}^2 \overrightarrow{OM}}{\mathrm{d}t^2} = \ddot{x} \overrightarrow{u_x} + \ddot{y} \overrightarrow{u_y} + \ddot{z} \overrightarrow{u_z}$$

1.1.4 Différentielles des vecteurs de base

$$d\overrightarrow{u_x} = dx\overrightarrow{u_x}$$
$$d\overrightarrow{u_y} = dy\overrightarrow{u_x}$$
$$d\overrightarrow{u_z} = dz\overrightarrow{u_z}$$

1.1.5 Déplacement élémentaire

$$\overrightarrow{\mathrm{d}\ell} = \mathrm{d}x\overrightarrow{\mathrm{u}_x} + \mathrm{d}y\overrightarrow{\mathrm{u}_y} + \mathrm{d}z\overrightarrow{\mathrm{u}_z}$$

1.1.6 Volume élémentaire

$$d\tau = dx dy dz$$

1.2 Coordonnées cylindriques

1.2.1 Vecteur position

$$\overrightarrow{OM} = r\overrightarrow{\mathbf{u}_r}$$

1.2.2 Vecteur vitesse

$$\frac{\mathrm{d}\overrightarrow{OM}}{\mathrm{d}t} = \dot{r}\overrightarrow{\mathbf{u}_r} + r\dot{\theta}\overrightarrow{\mathbf{u}_\theta} + \dot{z}\overrightarrow{\mathbf{u}_z}$$

1.2.3 Vecteur accélération

$$\frac{\mathrm{d}^2 \overrightarrow{OM}}{\mathrm{d}t^2} = \left(\ddot{r} - r\dot{\theta}^2\right) \overrightarrow{\mathbf{u}_r} + \left(r\ddot{\theta} + 2\dot{r}\dot{\theta}\right) \overrightarrow{\mathbf{u}_\theta} + \ddot{z} \overrightarrow{\mathbf{u}_z}$$

1.2.4 Différentielles des vecteurs de base

$$d\overrightarrow{u_r} = d\theta \overrightarrow{u_\theta}$$

$$d\overrightarrow{u_\theta} = -d\theta \overrightarrow{u_r}$$

$$d\overrightarrow{u_z} = dz \overrightarrow{u_z}$$

1.2.5 Déplacement élémentaire

$$\overrightarrow{\mathrm{d}\ell} = \mathrm{d}r\overrightarrow{\mathrm{u}_r} + r\,\mathrm{d}\theta\overrightarrow{\mathrm{u}_\theta} + \mathrm{d}z\overrightarrow{\mathrm{u}_z}$$

1.2.6 Volume élémentaire

$$d\tau = r dr d\theta dz$$

1.2.7 Matrice de changement de base

$$P = \begin{pmatrix} \overrightarrow{u_r} & \overrightarrow{u_\theta} & \overrightarrow{u_z} \\ \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \overrightarrow{\overrightarrow{u_x}} \quad \text{avec } P^{-1} = P^{\top}$$

1.3 Coordonnées shériques

$$(\theta,\,\varphi)\in[0,\,\pi[\times[0,\,2\pi[$$

1.3.1 Vecteur position

$$\overrightarrow{OM} = r\overrightarrow{\mathbf{u}_r}$$

1.3.2 Différentielles des vecteurs de base

$$\begin{split} \mathrm{d}\overrightarrow{\mathrm{u}_r} &= \mathrm{d}\theta\overrightarrow{\mathrm{u}_\theta} + \sin(\theta)\,\mathrm{d}\varphi\overrightarrow{\mathrm{u}_\varphi} \\ \mathrm{d}\overrightarrow{\mathrm{u}_\theta} &= -\,\mathrm{d}\theta\overrightarrow{\mathrm{u}_r} + \cos(\theta)\,\mathrm{d}\varphi\overrightarrow{\mathrm{u}_\varphi} \\ \mathrm{d}\overrightarrow{\mathrm{u}_\varphi} &= -\,\mathrm{d}\varphi\,(\sin(\theta)\overrightarrow{\mathrm{u}_r} + \cos(\theta)\overrightarrow{\mathrm{u}_\theta}) \end{split}$$

1.3.3 Déplacement élémentaire

$$\overrightarrow{d\ell} = dr \overrightarrow{u_r} + r d\theta \overrightarrow{u_\theta} + r \sin(\theta) d\varphi \overrightarrow{u_\varphi}$$

1.3.4 Volume élémentaire

$$d\tau = r^2 \sin\theta \, dr \, d\theta \, d\varphi$$

1.3.5 Matrice de changement de base

$$P = \begin{pmatrix} \overrightarrow{\mathbf{u}_r} & \overrightarrow{\mathbf{u}_\theta} & \overrightarrow{\mathbf{u}_\varphi} \\ \sin(\theta)\cos(\varphi) & \cos(\theta)\cos(\varphi) & -\sin(\varphi) \\ \sin(\theta)\sin(\varphi) & \cos(\theta)\sin(\varphi) & \cos(\varphi) \\ \cos(\theta) & -\sin(\theta) & 0 \end{pmatrix} \vec{\overrightarrow{\mathbf{u}_x}} \quad \text{avec } P^{-1} = P^{\top}$$

2 Vecteurs et différentiation

2.1 Vecteurs et différentiation

2.1.1 Nabla

$$\overrightarrow{\nabla} = \frac{\partial}{\partial x} \overrightarrow{\mathbf{u}_x} + \frac{\partial}{\partial y} \overrightarrow{\mathbf{u}_y} + \frac{\partial}{\partial z} \overrightarrow{\mathbf{u}_z} \quad \text{en coordonn\'ees cart\'esiennes}$$

$$\overrightarrow{\nabla} = \frac{\partial}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{\theta} \frac{\partial}{\partial \theta} \overrightarrow{\mathbf{u}_\theta} + \frac{\partial}{\partial z} \overrightarrow{\mathbf{u}_z}$$
 en coordonnées cylindriques
$$= \frac{\partial}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{r} \frac{\partial}{\partial \theta} \overrightarrow{\mathbf{u}_\theta} + \frac{1}{r \sin(\theta)} \frac{\partial}{\partial \varphi} \overrightarrow{\mathbf{u}_\varphi}$$
 en coordonnées sphériques

2.1.2 Gradient

$$\overrightarrow{\operatorname{grad}} f = \overrightarrow{\nabla} f$$

2.1.3 Divergence

$$\overrightarrow{\text{div } A} = \overrightarrow{\nabla}.\overrightarrow{A}$$

2.1.4 Rotationnel

$$\overrightarrow{\operatorname{rot}}\overrightarrow{A} = \overrightarrow{\nabla} \wedge \overrightarrow{A}$$

2.1.5 Laplacien scalaire

$$\begin{split} \Delta f &= \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} & \text{en coordonn\'es cart\'esiennes} \\ &= \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2} & \text{en coordonn\'es cylindriques} \\ &= \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left(\sin(\theta) \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2(\theta)} \frac{\partial^2 f}{\partial \varphi^2} & \text{en coordonn\'es sph\'eriques} \end{split}$$

2.2 Différentielle d'une fonction de plusieurs variables

$$df = \overrightarrow{\operatorname{grad}}(f).\overrightarrow{d\ell}$$

$$\mathrm{d}f=\frac{\partial f}{\partial x}\,\mathrm{d}x+\frac{\partial f}{\partial y}\,\mathrm{d}y+\frac{\partial f}{\partial z}\,\mathrm{d}z\quad\text{en coordonn\'ees cart\'esiennes}$$

2.3 Circulation d'un champ vectoriel

Circulation d'un champ vectoriel \overrightarrow{v} du point A au point B le long d'une courbe \mathcal{C} :

$$\mathfrak{C} = \int_{A}^{B} \overrightarrow{v} . \overrightarrow{d\ell}$$

2.3.1 Circulation le long d'une courbe fermée

$$\oint_{\mathcal{C}} \overrightarrow{v}.\overrightarrow{\mathrm{d}\ell} = \iint_{\mathcal{S}} \overrightarrow{\mathrm{rot}}(\overrightarrow{v}).\overrightarrow{\mathrm{d}S}$$

2.3.2 Circulation d'un gradient

$$\int_A^B \overrightarrow{\operatorname{grad}}(f).\overrightarrow{\operatorname{d}\ell} = f(B) - f(A)$$