

BE/BAT 485/585 Remote Sensing Data and Methods Lab - 6

Instructor: Kamel Didan^{1,2}

Helpers: Dr. Armando Barreto^{1,2}

Mr. Truman Combs^{1,2}

¹BE Dept., University of Arizona, ²VIP Lab.

Spectral/Spatial convolution

- Convolution uses the Relative Spectral Responses (RSR) to simulate any sensor from a higher definition one. This makes it possible to simulate any sensor from hyperspectral data (ex: MODIS, VIIRS or Landsat from NEON-AOP or AVIRIS/N hyperspectral data).
- The RSR defines how the sensor collects and records the 'EMR' data and how sensitive.
- There are many kinds of convolutions, ex:
 - Spectral convolution
 - Aggregates bands (from finer ones)
 - Spatial convolution
 - Aggregates pixels (from finer obs)

Simulated sensors

Exercise #1: Convolution

Data Input

- We will work with HDF5 file format (a modern and highly specialized data format)
- You can use text file with NEON wavelength values (or read straight from the HDF5 file)
- RSR for each sensor (MODIS, VIIRS, Landsat 5/8, Sentinel2)

You will learn how to

- Read any data layer/band from the HDF 5 file
- Perform a Spectral convolution & Spatial resampling
- Compare how the multispectral differs from the hyperspectral original data
 - RGB, FCC, statistical analysis, etc.

Homework

- Use the provided example (code) for Sentinel 2 (ESA platform)
- Simulate the following sensors from NEON:
 - Landsat 8 OLI, MODIS/VIIRS [but at 50m We do not have enough coverage to simulate the actual 250m/300m data]
- General a figure plot with all RSRs for all bands and all sensors
- Extract different (objects) Spectral Signatures and plot from original and simulated sensor data

Instructions:

- Acquire the following from D2L:
 - viplab_lib3.py (new library)
 - viplab_convolution.py (new library)
 - PickImageToWorkWith.h5
 - NEON_wavelength_values.txt (as before)

- NEON_Landsat8_RSR.csv
- NEON_MODIS_RSR.csv
- NEON VIIRS RSR.csv
- NEON Sentinel2A RSR.csv
- BE485_Lab6_Ex1.ipynb

Examples from NEON

Stats and output during program run

Processing convolution...

min= 646.0 max= 684.0

min= 773.0 max= 908.0

32 33 34 35 36 37 38 39 40 41 .

53 54 55 56 57 58 59 60 61 .

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 .

band: BLUE min= 440.0 max= 535.0

band: GREEN min= 537.0 max= 582.0

band: RED

band: NIR

Spectral convolution + spatial at 5 meters

Only Spectral convolution No spatial (retains native spatial resolution)

The following is similar to Machine Learning

What is Masking

- Let us say we are interested in a feature in an image
 - We can run a spectral signature or any other analysis for one or few pixels over the visually identified feature to learn how it is supposed to look like in the spectral domain
- But what if we want to identify the 'full' spatial extent of this feature
- This is called masking, which basically creates a True/False or 0/1 image that indicates where the feature is
- We can use this mask to analyze the full image for our feature of interest and ignore everything else
- Generating mask can be done
 - Visually or Manually
 - •Using machine learning based on :
 - Threshold technique (like a machine learning decision tree algorithm)
 - You tell the computer what to look for based on training and the computer does the rest
 - For example: We know that a water feature must have an NDVI < -0.5 (from training). Then the
 machine will look over the image for any pixel with NDVI < -0.5 and assigns it to water
 - You can use other metrics too (Red, NIR, Green, Thermal, etc...) any things that defines and separates the features well could be used (hence signature)
 - Try to experiment in this exercise and you will notice that you can improve the classification performance if you combine/include more than one test
 - Look at the provided examples and develop your own

Exercise #2: Data Masking

- Read NEON data cube (We will use a composite cube in BSQ format)
- Extract spectral signatures from Cube
 - By Pixels from an object (you already did this)
 - By a window, 3x3, 5x5, etc (use slicing it should be easy)
 - Extract using a spatial Mask (a mask is again a 0/1 image that defines the extent of the feature(s))
 - Use the provided predefined mask(s)

Homework:

- Follow the exercise code and.
- Compute the stats for all bands over the predefined masks (BLUE, GREEN, RED, NIR, SWIR1)
 - Average signal over the masked feature for a single band
- Modify the code to mask through the full cube and generate population (masked) spectra
 - Average signal over mask feature for all bands (426) and generate an average plot of spectral signatures of the feature
- Generate your own mask(s) using what you have learned so far in terms of spectral signatures (and/or NDVI)
 - Combine more than one thresholds/tests to generate a robust more useful mask

Instructions:

- Download from D2L files:
 - NEON_Composed_Img.bsq
 - NEON_wavelength_values.txt
 - NEON mask.bsq
 - viplab lib3.py
 - BE485 Lab6 Ex2.ipynb

FYI

- What to do with noise in a mask (features)
 - Ignore it if not too much
 - Analyze the spectral signatures
 - Learn what the noise is and if it has any behavior that sets it apart, then enhance your (mask, features extraction) algorithms to avoid that noise
 - The Examples to the right are:
 - Masking water using NIR < 100 only
 - Masking Water using NDVI < -0.5 only

How to Design a Mask

Layer 0 (Band 0)

Layer 1 (Band

TIPS

- Remember you need not write new code each time
- You simply reuse (from older lab or online) and modify code
 - Clever programmer never write code from scratch
- That way you do not waste time in creating new code each time
 - Just start from the notebooks we share with you and
 - Add, modify, and/or improve them

Reference information

Remember what colors correspond to what bands

Data and Specs

Blue

Green

Red

NIR

SWIR1

	101 1 11	- 54		404		454		004	
Index	Wavelength	51	636.687622	101	887.094116	151	1137.500488	201	1387.906982
0		52	641.695679	102	892.102173	152	1142.508667	202	1392.915161
1	386.281097	53	646.703796	103	897.110291	153	1147.516846	203	1397.92334
		54	651.711975	104	902.118408	154	1152.524902	204	1402.931396
3		55	656.720093	105	907.126587	155	1157.533081	205	1407.939575
5	.01.000011	56	661.72821	106	912.134705	156	1162.54126	206	1412.947754
6		57	666.736328	107	917.142822	157	1167.549316	207	1417.955811
7	411.321686 416.329895	58	671.744507	108	922.151001	158	1172.557495	208	1422.963867
8		59	676.752625	109	927.159119	159	1177.565552	209	1427.972046
9		60	681.760681	110	932.167175	160	1182.57373	210	1432.980225
10	431.354309	61	686.768921	111	937.175415	161	1187.581787	211	1437.988281
11	431.354309	62	691.776978	112	942.183472	162	1192.589966	212	1442.99646
12		63	696.785095	113	947.191589	163	1197.598145	213	1448.004639
13		64	701.793274	114	952.199707	164	1202.606201	214	1453.012695
14		65	706.801392	115	957.207886	165	1207.61438	215	1458.020874
15		66	711.809509	116	962.216003	166	1212.622559	216	1463.029053
16		67	716.817627	117	967.224121	167	1217.630615	217	1468.037109
17	466.411194	68	721.825806	118	972.2323	168	1222.638794	218	1473.045166
18	471.419312	69	726.833923	119	977.240417	169	1227.646851	219	1478.053345
19	476.427399	70	731.84198	120	982.248474	170	1232.655029	220	1483.061523
20	481.435486	71	736.85022	121	987.256714	171	1237.663086	221	1488.06958
21	486,443695	72	741.858276	122	992,264771	172	1242.671265	222	1493.077759
22		73	746.866394	123	997.272888	173	1247.679443	223	1498.085938
23		74	751.874573	124	1002.281006	174	1252.6875	224	1503.093994
24	501.468109	75	756.88269	125	1007.289185	175	1257.695679	225	1508.102173
25		76	761.890808	126	1012.297302	176	1262.703857	226	1513.110352
26		77	766.898926	127	1017.30542	177	1267.711914	227	1518.118408
27	516.492493	78	771.907104	128	1022.313599	178	1272.720093	228	1523.126465
28		79	776.915222	129	1027.321655	179	1277.728149	229	1528.134644
29	526.508728	80	781.923279	130	1032.329834	180	1282.736328	230	1533.142822
30	531.516785	81	786.931519	131	1037.338013	181	1287.744385	231	1538,150879
31	536.525024	82	791.939575	132	1042.346069	182	1292.752563	232	1543.159058
32	541.533081	83	796.947693	133	1047.354248	183	1297.760742	233	1548.167236
33	546.541199	84	801.955872	134	1052.362305	184	1302.768799	234	1553.175293
34	551.549377	85	806.963989	135	1057.370483	185	1307.776978	235	1558.18335
35	556.557495	86	811.972107	136	1062,37854	186	1312.785156	236	1563.19165
36	561.565613	87	816.980225	137	1002.37834	187	1317.793213	237	1568.199707
37	566.573792	88	821.988403	138	1072.394897	188	1322.80127	238	1573.207764
38	0711001303	89	826.996521	139	1072.334837	189	1327.809448	239	1578.215942
39		90	832.004578	140	1077.402934	190	1332.817627	240	1578.215542
40	581.598083	91	837.012817	141	1087.411133	191	1337.825684	241	1588.232178
41	586.606323	92	842.020874	142	1092.427368	192	1342.833862	242	1593.240356
42		93	847.028992	143	1092.427508	193	1347.842041	243	1598.248535
43		94	852.03717	144	1102.443604	194	1352.850098	243	1603,256592
44	601.630676	95	857.045288	145	1102.443604	195	1357.858276	245	1608.264648
45	606.638794	96	862.053406	146		196	1362.866455	245	1613.272949
46		97	867.061523	146	1112.459961	190	1362.866455	240	1613.272949
47	616.65509	98	872.069702	147	1117.468018	198	1367.874512	247	1618.281006
48		99	877.07782	149	1122.476196	199	1377.890747	249	1623.289063
49 50		100		150	1127.484253	200		250	
50	631.679382	100	882.085876	150	1132.492432	200	1382.898926	250	1633.30542

These are the NEON-AOP images you can work with

Where & How to get the NEON AOP data

- https://vip.arizona.edu/classes/BE485/NEON_1KM/
 - NEON D01 HARV DP3 725000 4712000 reflectance.h5
 NEON D09 WOOD DP3 476000 5221000 reflectance.h5
 NEON D14 JORN DP3 316000 3613000 reflectance.h5
 NEON D14 SRER DP3 501000 3523000 reflectance.h5
 NEON D14 SRER DP3 502000 3523000 reflectance.h5
 NEON D16 ABBY DP3 551000 5070000 reflectance.h5

NEON_D01_HARV_DP3_725000_4712000_reflectance.h5

Massachusetts Templeton

NEON_D09_WOOD_DP3_476000_5221000_reflectance.h5

North Dakota Woodworth

NEON_D16_ABBY_DP3_551000_5070000_reflectance.h5

Washington Vancouver

NEON_D14_JORN_DP3_31600_361300_reflectance.h5

New Mexico Rincon

NEON_D14_SRER_DP3_502000_3523000_reflectance.h5

Arizona Continental

NEON_D14_SRER_DP3_511000_3510000_reflectance.h5

Arizona Madera Canyon

NEON_D14_SRER_DP3_502000_3524000_reflectance.h5

Arizona

