Catálogo de espaços básicos*

Tiago J. Fonseca tfonseca@unicamp.br

27 de julho de 2023

Notação	Nome	Definição
*	ponto	conjunto unitário
I	intervalo unitário	$[0,1] \subset \mathbb{R}$
\mathbb{R}^n	espaço euclidiano real de dimensão n	\mathbb{R}^n
\mathbb{C}^n	espaço euclidiano complexo de dimensão n	\mathbb{C}^n
D^n	n-célula	$\{z \in \mathbb{R}^n : x \le 1\}$
S^n	$n ext{-esfera}$	$\{x \in \mathbb{R}^{n+1} : x = 1\}$
T^n	$n ext{-toro}$	$S^1 \times \cdots \times S^1$ (n vezes)
\mathbb{RP}^n	espaço projetivo real de dimensão n	$(\mathbb{R}^{n+1} \setminus 0)/\mathbb{R}^{\times}$ $(\mathbb{C}^{n+1} \setminus 0)/\mathbb{C}^{\times}$
\mathbb{CP}^n	espaço projetivo complexo de dimensão n	$(\mathbb{C}^{n+1} \setminus 0)/\mathbb{C}^{\times}$

- Nas definições de espaço projetivo, o quociente é pela ação de grupos dada pelas transformações de homotetia.
- * é um objeto terminal na categoria Top e existe uma bijeção natural entre X e Top(*, X).
- Relações básicas:

$$- \mathbb{R}^0 \cong \mathbb{C}^0 \cong D^0 \cong *$$

$$-\mathbb{C}^n \cong \mathbb{R}^{2n}$$

$$-D^n \cong I \times \cdots \times I \ (n \text{ vezes})$$

$$-S^n \cong D^n/\partial D^n$$

$$-S^{n-1} = \partial D^n$$

$$-\mathbb{R}^n \cong S^n \setminus x$$
, para qualquer $x \in S^n$

$$-S^1 \cong \{z \in \mathbb{C} : |z| = 1\}$$

$$-D^1 \cong \{z \in \mathbb{C} : |z| \le 1\}$$

$$-\mathbb{RP}^n \cong S^n / \sim$$
, onde $x \sim -x$ para todo $x \in S^n$

$$-\mathbb{RP}^1 \cong S^1$$

$$-\mathbb{CP}^n \cong S^{2n+1}/S^1$$
 (quociente de ação de grupos)

$$-\mathbb{CP}^1 \cong S^2$$

 $^{{\}rm ^*Em\ construç\~ao.\ Vers\~ao\ atual:\ https://tjfonseca.github.io/teaching/espacos.pdf.}$