EBMYL 505 – DOĞRUSAL SİSTEM TEORİSİ YILİÇİ SINAVI

1. (40 puan) Aşağıda verilen matrislerin öz sistemini (eigensystem) bulunuz. (Bu çözümünüzü sol özvektörler için de tekrarlayınız.) Çözümünüzde tüm ayrıntıları açıklayınız.

a.
$$A = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, **b.** $A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 4 & 0 & 0 \\ 2 & 5 & 2 & 0 \\ 1 & 1 & 3 & 2 \end{bmatrix}$, **c.** $A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 2 & 1 & 2 & 0 \\ 1 & 1 & 3 & 4 \end{bmatrix}$

2. (35 puan) R³'te bir C bazı $\{ \vec{v}_1, \vec{v}_2, \vec{v}_3 \} = \{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \}$ olarak tanımlanıyor. Yine R³'te tanımlı

bir başka D bazı $\left\{\stackrel{\rightarrow}{\omega_1},\stackrel{\rightarrow}{\omega_2},\stackrel{\rightarrow}{\omega_3}\right\}$ için D bazından C bazına geçiş matrisi $P_{D\to C}$ aşağıdaki gibi tanımlanıyor:

$$P_{D \to C} = \begin{bmatrix} -1 & 1 & 2 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}$$

- a. (20 puan) Buna göre D bazını oluşturan vektörleri bulunuz.
- **b.** (10 puan) $\vec{x} = \begin{bmatrix} 3 \\ 12 \\ 4 \end{bmatrix}$ vektörünü D ve C bazları cinsinden ifade ediniz.
- c. (5 puan) b seçeneğinde bulmuş olduğunuz çözüm üzerinden $P_{D \to C}$ matrisinin doğruluğunu teyit ediniz.
- 3. (25 puan) Rⁿ'de k<n olmak üzere lineer bağımsız bir vektör kümesi $\left\{ \stackrel{\rightarrow}{v_1}, \stackrel{\rightarrow}{v_2}, \dots \stackrel{\rightarrow}{v_k} \right\}$ olarak veriliyor. Buna göre aşağıdaki koşulu sağlayan bir $\stackrel{\rightarrow}{v_m}$ vektörü için:

$$\overrightarrow{v}_m \notin span \left\{ \overrightarrow{v}_1, \overrightarrow{v}_2, \dots \overrightarrow{v}_k \right\}$$

 $\left\{ \stackrel{\rightarrow}{v_1}, \stackrel{\rightarrow}{v_2}, \dots \stackrel{\rightarrow}{v_k}, \stackrel{\rightarrow}{v_m} \right\}$ şeklinde verilen k+1 elemanlı vektör kümesinin de lineer bağımsız olacağını gösteriniz.

Sınav elle çözülecektir. Çözümlerinizi içeren cevap kağıtlarını en geç 24 Ocak 2018 Çarşamba saat 17:30'a kadar elden teslim etmeniz gerekmektedir. (Cevap kağıtlarını elden teslim etme şansınız olmayacaksa cevaplarınızın düzgünce taratılmış halini barisnesimioglu@gmail.com veya barisnesimioglu@gmail.com veya barisnesimioglu@gmail.com veya barisnesimioglu@gmail.com barisnesimioglu@gmail.com barisnesimioglu@gmail.com barisnesimioglu@gmail.com barisnesimioglu@gmail.com barisnesimioglu@gma