Name: Brandon Jaipersaud

UTORid: jaipers5

Student Number: 1002521130

Variables:

 $A = \text{sensitive attribute (i.e. gender)} = \{M, F\}$

C = classification (i.e Hyperlipidemia prediction) = $\{T, F\}$

 $Y = ground truth (i.e whether the patient actually has Hyperlipidemia) = {T, F}$

Note that probabilities are rounded to 2 decimal places.

Case 1: Separation but no sufficiency

Joint Distribution Table for P(A, C, Y)

A	С	Y	P(A, C, Y)
M	T	T	0.20
M	T	F	0.25
M	F	T	0.10
M	F	F	0.10
F	T	T	0.10
F	T	F	0.08
F	F	Т	0.05
F	F	F	0.12

Separation:

$$P(C=T \mid Y=T, A=M) = P(C=T \mid Y=T) = 0.67$$

No Sufficiency:

$$P(Y=T \mid C=T, A=M) = 0.44$$

 $P(Y=T \mid C=T) = 0.48$

→
$$P(Y=T | C=T, A=M) != P(Y=T | C=T)$$

Case 2: Sufficiency but no separation

Joint Distribution Table for P(A, C, Y)

A	С	Y	P(A,C,Y)
M	T	T	0.10
M	T	F	0.15
M	F	T	0.05
M	F	F	0.15
F	T	T	0.20
F	T	F	0.30
F	F	T	0.02
F	F	F	0.03

Sufficiency:

$$P(Y=T \mid C=T, A=M) = P(Y=T \mid C=T) = 0.40$$

No Separation

$$P(C=T \mid Y=T, A=M) = 0.67$$

 $P(C=T \mid Y=T) = 0.81$

→
$$P(C=T \mid Y=T, A=M) != P(C=T \mid Y=T)$$