SEMICONDUCTOR

TECHNICAL DATA

NE555

General purpose timer

The NE555 is CMOS RC timers providing significantly improved performance over the standard SE/NE555 and 355 timers, while at the same time being direct replacements for those devices in most applications. Improved parameters include low supply current, wide operating supply voltage range, low THRESHOLD, TRIGGER and RESET currents, no crowbarring of the supply current during output transitions, higher frequency performance and no requirement to decouple CONTROL VOLTAGE for stable operation.

Specifically, the NE555 is stable controller capable of producing accurate time delays of frequencies.

- Exact equivalent in most cases for SE/NE555.
- Low Supply Current.
- High speed operation -500 kHz guaranteed.
- Wide operation supply voltage range 2 to 18 volts.
- Timing from microseconds through hours.
- Operates in both astable and monostable modes.
- Adjustable duty cycle.
- High output source/sink driver can drive TTL/CMOS

PIN ASSIGNMENT

TRUTH TABLE

THRESHOLD	TRIGGER	RESET	OUTPUT	DISCHARGE
Х	Х	L	L	ON
> 2/3 V _{CC}	> 1/3 V _{CC}	Н	L	ON
< 2/3 V _{CC}	> 1/3 V _{CC}	Н	STABLE	STABLE
Х	< 1/3 V _{CC}	Н	Н	OFF

MAXIMUM RATINGS AND RECOMMENDED OPERATING CONDITIONS

		Recomn operating o		Maximum ratings		
Parameter, unit	Symbol	Val	ue	Value		
		min	max	min	max	
Supply Voltage (V)	V _{CC}	2.0	18.0	0	18.0	
Output Current (mA)	Io		20	-	100	
Input Voltage (V)	$V_{TH,}V_{TRIG,}V_{RST}$	-	-	-0.3	V _{CC} +0.3	
Power Dissipation (mW)	P _D	-	-	-	200	
Operating Temperature, *C	T _{OPR}	-20	70	-20	85	
Storage Temperature, •	T _{STG}	-	-	-65	150	
Lead Temperature, 1 mm from Case for 10 Seconds, [*] C	T _{SOLDER}	-	-		260	

^{*} Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied.

Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Revision No: 0

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Barran dan amita	0	Test Conditions		Value		Tempe-
Parameter, units	Symbol	I _{OL} , I _{OH}	Vcc, V	min	max	rature, °C
Threshold Voltage, V	V _{TH}		5.0	0.65 V _{CC}	0.70 V _{CC}	25±10
				0.60 V _{CC}	0.80 V _{CC}	-20, 70
Trigger voltage, V	V_{TRIG}		5.0	0.31 V _{CC}	0.36 V _{CC}	25±10
				0.28 V _{CC}	0.40 V _{CC}	-20, 70
			2.0	0.4	1.0	25±10
Reset voltage, V	V _{RST}		18.0			
			2.0	0.2	1.5	-20, 70
			18.0			
Control Voltage Lead, V	V _{CV}			0.65 V _{CC}	0.69 V _{CC}	25±10
				0.60 V _{CC}	0.80 V _{CC}	-20, 70
Output voltage Low, V	V _{OL}	$I_{OL} = 3.2 \text{ mA}$	5.0		0.4	25±10
		$I_{OL} = 20 \text{ mA}$	15.0		1.0	
		$I_{OL} = 3.2 \text{ mA}$	5.0		0.6	-20, 70
		$I_{OL} = 20 \text{ mA}$	15.0		1.5	
Output voltage High, V	V _{OH}		5.0	4.0		25±10
		$I_{OH} = -0.8 \text{ mA}$	15.0	14.3		
			5.0	3.5		-20, 70
			15.0	14.0		
			2.0		200	25±10
Supply Current, μA	I _{cc}		18.0		300	
			2.0		400	-20, 70
			18.0		600	

Revision No: 0

AC ELECTRICAL CHARACTERISTICS

		Test Conditions		Value		Tempe-
Parameter, unit	Symbol	R _L , C _L	V _{CC,}	Min	Max	rature, °C
Rise (Fall) Time of Output, ns	t _{THL} , t _{TLH}	$R_L = 10 \text{ M}\Omega$, $C_L = 10 \text{ pF}$	5.0	35	75	25±10
				70	150	-20, 70
Guaranteed Max Osc Freq, kHz	f _{MAX}	Astable Operation	2.0-	500		25±10
			18.0	200		-20, 70
Initial accuracy, %				5		
Drift with Temperature, %/°C	Δf	5 4 40010	5.0		0.02	-20, 70
		$R_L = 1 - 100 \text{ k}\Omega$	10.0		0.03	
		C _L = 0.1 μF	15.0		0.06	
Drift with Supply Voltage,	Δ f		5.0		3	25±10
%/B					6	-20, 70

Figura 1. Block Diagram

Figura 2. Switcing Waveforms

Revision No: 0

SEMICONDUCTOR

TECHNICAL DATA

NE555

P SUFFIX PLASTIC DIP

NOTES:

Dimensions "A", "B" do not include mold flash or protrusions.
 Maximum mold flash or protrusions 0.25 mm (0.010) per side.

	Dimension, mm			
Symbol	MIN	MAX		
A	8.51 10.16			
В	6.1	7.11		
C		5.33		
D	0.36 0.56			
F	1.14	1.78		
G	2.54			
Н	7.62			
J	0°	10°		
K	2.92	3.81		
L	7.62	8.26		
M	0.2	0.36		
N	0.38			

F SUFFIX SOIC

NOTES:

- 1. Dimensions A and B do not include mold flash or protrusion.
- 2. Maximum mold flash or protrusion 0.15 mm (0.006) per side for A; for B 0.25 mm (0.010) per side.

	Dimension, mm			
Symbol	MIN MAX			
A	4.8 5			
В	3.8	4		
C	1.35	1.75		
D	0.33 0.51			
F	0.4 1.27			
G	1.27			
Н	5.72			
J	0° 8°			
K	0.1	0.25		
M	0.19 0.25			
P	5.8 6.2			
R	0.25 0.5			