

SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

2016

MEMORANDUM

MARKS/PUNTE: 150

This memorandum consists of 14 pages. *Hierdie memorandum bestaan uit 14 bladsye.*

1.1 A $\checkmark\checkmark$ (2)

1.2 B √√ (2)

(2)

(2)

(2) **[20]**

1.3 B ✓ ✓

1.4 C ✓ ✓

1.5 B ✓✓ (2)

1.6 D ✓ ✓ (2)

 $1.7 C \checkmark \checkmark (2)$

1.8 B $\checkmark\checkmark$ (2)

1.9 A ✓✓ (2)

1.10 C ✓ ✓

2.1

2.1.1 E ✓ (Accept/Aanvaar: methyl propanoate/metiel propanoaat)

(1)

2.1.2 C ✓ (Accept/Aanvaar: butan-1-ol)

(1)

2.1.3 D ✓ (Accept/Aanvaar: 2,2-dimethylpropane/2,2-dimetielpropaan)

(1)

2.2

2.2.1 Pent-2√-yne√ /Pent-2-yn

OR/OF

2√-pentyne√/2-pentyn

Marking criteria/Nasienriglyne:

- Stem i.e. pentyne./Stam d.i. pentyn. 1/2
- Whole name correct./Hele naam korrek.
 2/
 2

2.2.2

Marking criteria/Nasienriglyne:

- Functional group correct./Funksionele groep korrek. 1/2
- Whole structure correct/Hele struktuur korrek. ²/₂

(2)

(2)

2.2.3 2-methylbut-1-ene/2-metielbut-1-een

OR/OF

3-methylbut-1-ene/3-metielbut-1-een

Accept/Aanvaar 2-methyl-1-butene / 2-metiel-1-buteen

Marking criteria/Nasienriglyne:

- Correct stem i.e. <u>but-1-ene/1-butene</u>./Korrekte stam d.i. <u>but-1-een /1-buteen</u>. ✓
- Only one type substituent ,methyl, correctly identified./Slegs een tipe substituent metiel, korrek geïdentifiseer. ✓
- Entire name correct./Hele naam korrek. ✓

(3)

2.3

2.3.1 Esters ✓ (1)

2.3.2 Sulphuric acid/H₂SO₄/Swawelsuur ✓

(1)

2.3.3 Methyl ✓ propanoate ✓ *Metiel* ✓ *propanoat* ✓

Marking criteria/Nasienriglyne:

Ignore spelling, e.g. methylpropanoate. *Ignoreer spelling, bv. metiel propanoaat.*

(2) **[14]**

3.1 The <u>temperature</u> at which the <u>vapour pressure equals the atmospheric pressure</u> (external pressure). $\checkmark\checkmark$ (2 marks or no marks)

Die <u>temperatuur</u> waarby die <u>dampdruk gelyk is aan die atmosferiese d</u>ruk (eksterne druk). (2 punte of geen punte nie)

(2)

(2)

3.2	Criteria for conclusion/Riglyne vir gevolgtrekking:	
	Dependent and independent variables correctly identified.	./
	Afhanklike en onafhanklike veranderlikes korrek geïdentifiseer.	·
	Relationship between the independent and dependent variables correctly	
	stated./Verwantskap tussen die afhanklike en onafhanklike veranderlikes	\checkmark
	korrek genoem.	

Examples/Voorbeelde:

- Boiling point increases with increase in number of (C) atoms/chain length/ molecular size/molecular mass.
 Kookpunt neem toe met styging in getal (C)-atome/kettinglengte/
 - molekulêre grootte/molekulêre massa.
- Boiling point decreases with decrease in number of C atoms/chain length/ molecular size/molecular mass.
 - Kookpunt neem af met daling in getal C-atome/kettinglengte/molekulêre grootte/molekulêre massa.
- Boiling point is proportional to number of C atoms/chain length/molecular size/molecular mass.

 Keekpunt is everedig our gotal C atoms/kettinglengte/molekul@re greate/.
 - Kookpunt is eweredig aan getal C-atome/kettinglengte/molekulêre grootte/molekulêre massa.

IF/INDIEN:

Boiling point is DIRECTLY proportional to number of C atoms/chain length/molecular size/molecular mass: Max. $\frac{1}{2}$ Kookpunt is DIREK eweredig aan getal C-atome/kettinglengte/molekulêre

grootte/molekulêre massa:

Maks. $\frac{1}{2}$

3.3 3.3.1 P ✓ (1)

 $3.3.2 \quad \mathsf{R} \checkmark$ (1)

3.4	•	Between all	kane	<u>molecules</u>	are	London	forces/dis	persion	forces/in	duced
		dipole forces	<u>:S.</u>							

Tussen alkaanmolekule is <u>London-kragte/dispersiekragte/geïnduseerde</u> <u>dipoolkragte.</u> ✓

- In addition to London forces and dipole-dipole forces each <u>alcohol</u> molecule has (one site) for <u>hydrogen bonding</u>. ✓ Behalwe London-kragte en dipool-dipoolkragte het elke <u>alkohol-molekuul</u> een punt vir waterstofbindings.
- In addition to London forces and dipole-dipole forces each <u>carboxylic acid</u> molecule has <u>two sites for hydrogen bonding</u>. ✓ (Accept: more sites/Aanvaar meer punte)
 Behalwe London-kragte en dipool-dipoolkragte het elke karboksielsuur-
 - Behalwe London-kragte en dipool-dipoolkragte het elke <u>karboksielsuur-molekuul twee punte vir waterstofbindings</u>.
- Intermolecular forces in carboxylic acids are <u>stronger</u> than intermolecular forces in alkanes and alcohols./Intermolecular forces between alkane and alcohol molecules are <u>weaker</u> than intermolecular forces between carboxylic acid molecules.√
 Intermolekulêre kragte in karboksielsure is <u>sterker</u> as intermolekulêre kragte in alkane en alkohole./Intermolekulêre kragte tussen alkane en alkohole is <u>swakker</u> as intermolekulêre kragte tussen karboksielsuurmolekule.
- More energy is needed to overcome/break intermolecular forces in carboxylic acids than in the other two compounds. ✓
 Meer energie word benodig om intermolekulêre kragte in karboksielsure as in die ander twee verbindings te oorkom/breek.

(5) **[11]**

QUESTION/VRAAG 4

4.1

4.1.1 Addition/Hydrogenation ✓ *Addisie/Hidrogenasie/Hidrogenering*

(1)

4.1.2 Elimination/Dehydrohalogenation/Dehydrobromination √
Eliminasie/Dehidrohalogenering/Dehidrohalogenasie/Dehidrobrominering

(1)

4.1.3 Substitution/Halogenation/Bromination ✓ Substitusie/Halogenering/Halogenasie/Brominering

(1)

4.2

4.2.1 Pt/Ni/Pd/platinum/nickel/nikkel/palladium ✓

(1)

4.2.2 H₂SO₄/H₃PO₄/sulphuric acid/phosphoric acid ✓ H₂SO₄/H₃PO₄/swawelsuur/fosforsuur

(1)

4.2.3 Hydration/*Hidrasie/Hidratering* ✓

(1)

4.2.4 2√-bromopropane ✓

Marking criteria/Nasienriglyne:

• Bromopropane/Bromopropaan:

 $n: \frac{1}{2}$

• 2-bromopropane

2-bromopropaan

/2

(2)

Notes/Aantekeninge:

Whole structure of alkene correct/Hele struktuur van alkeen korrek: $\checkmark \checkmark$ Only functional group correct/Slegs funksionele groep korrek: \checkmark

Notes/Aantekeninge:

- Condensed or semistructural formula: Max. $\frac{4}{5}$ Gekondenseerde of semistruktuurformule: Maks. $\frac{4}{5}$
- Molecular formula/Molekulêre formule: 1/5
- Marking rule 3.9/Nasienreël 3.9
- Any additional reactants or products: Max. $\frac{4}{5}$ Enige addisionele reaktanse of produkte: Maks. $\frac{5}{5}$
- If arrow in equation omitted: Max. ⁴/₅
 Indien pyltjie in vergelyking uitgelaat is: Maks. ⁴/₅

4.4 • Higher temperature/Hoër temperatuur ✓

 Concentrated base/Base dissolved in ethanol ✓ Gekonsentreerde basis/Basis opgelos in etanol

(2) **[15]**

(2)

(5)

QUESTION/VRAAG 5

5.1 **ANY TWO/ENIGE TWEE:**

Temperature (of reaction mixture)/Temperatuur (van reaksiemengsel) ✓ (Addition of a) catalyst/(Byvoeging van 'n) katalisator ✓ Concentration (of reactants)/Konsentrasie (van reaktanse)

5.2 Sulphur/S/Swawel ✓ (1)

5.3 Water is used to dilute/change the concentration (of the $Na_2S_2O_3(aq)$) \checkmark Water word gebruik (om die $Na_2S_2O_3(aq)$) te verdun/se konsentrasie te verander. (1)

(2)

(3)

The dependent and independent variables are stated correctly.

Die afhanklike en onafhanklike veranderlikes word korrek genoem.

Asks a question about the relationship between dependent and independent variables./Vra 'n vraag oor die verwantskap tussen afhanklike en onafhanklike veranderlikes.

Dependent variable: rate (of reaction)/(reaction rate)

Afhanklike veranderlike: (reaksie)tempo

Independent variable: concentration

Onafhanklike veranderlike: konsentrasie

Examples/Voorbeelde:

What is the relationship between <u>concentration</u> and <u>reaction rate</u>?
 Wat is die verwantskap tussen <u>konsentrasie</u> en <u>reaksietempo</u>?

How does the <u>reaction rate</u> change with change in <u>concentration</u>?
 Hoe verander die reaksietempo met verandering in konsentrasie?

5.5 A ✓ (1)

5.6 **Experiment B/Eksperiment B:**

- The concentration of Na₂S₂O₃(aq) is higher./More Na₂S₂O₃ particles per unit volume. ✓ Accept: higher volume of Na₂S₂O₃(aq) is used

 Die konsentrasie van Na₂S₂O₃(aq) is hoër./Meer Na₂S₂O₃-deeltjies per eenheid volume. Aanvaar: Groter volume Na₂S₂O₃(aq) is gebruik
- More particles with correct orientation / Meer deeltjies met korrekte oriëntasie. ✓
- More effective collisions per unit time / Higher frequency of effective collisions. ✓
 Meer effektiewe botsings per eenheid tyd./Hoër frekwensie van effektiewe botsings.

OR/OF

Experiment D/Eksperiment D:

- The concentration of Na₂S₂O₃(aq) is lower./Less Na₂S₂O₃ particles per unit volume. ✓
 - <u>Die konsentrasie van Na₂S₂O₃(aq) is laer./Minder Na₂S₂O₃-deeltjies per eenheid volume.</u>
- Less particles with correct orientation./Minder deeltjies met korrekte oriëntasie. √
- <u>Less effective collisions per unit time</u>./<u>Lower frequency of effective collisions</u>. ✓
 - <u>Minder effektiewe botsings per eenheid tyd./Laer frekwensie van effektiewe botsings.</u>

5.7 Marking guidelines for Option 1 and 2/Nasienriglyne vir Opsie 1 en 2:

- Formula/Formule: $c = \frac{m}{MV}$ / Both/Beide $n = \frac{m}{M}$ and/enc = $\frac{n}{V}$ or/of ratio / verhouding \checkmark
- Use/Gebruik 158 g·mol⁻¹ ✓
- Use volume (250 cm³) to calculate c(Na₂S₂O₃) or m(Na₂S₂O₃). ✓ Gebruik volume (250 cm³) om c(Na₂S₂O₃) of m(Na₂S₂O₃) te bereken.
- Calculate n(Na₂S₂O₃)./Bereken n(Na₂S₂O₃). ✓
- Use ratio/Gebruik verhouding: n(S) = (Na₂S₂O₃) = 1: 1 ✓
- Use/Gebruik 32 g·mol⁻¹. ✓
- Final answer/Finale antwoord: 0,51 g ✓
- Accepted range/Aanvaarde gebied: 0,50 to 0,51 g

Marking guidelines for Option 3 and 4/Nasienriglyne vir Opsie 3 en 4:

- Use volume (250 cm³)/Gebruik volume (250 cm³)
- Use m(Na₂S₂O₃). 62,5 g \checkmark /Gebruik $m(Na_2S_2O_3)$ = 62,5 g
- Use/Gebruik 158 g·mol⁻¹ ✓
- Calculate n(Na₂S₂O₃) or m(Na₂S₂O₃)./Bereken n(Na₂S₂O₃) of m(Na₂S₂O₃). √
- Use ratio/Gebruik verhouding: n(S) = (Na₂S₂O₃) = 1: 1 √
- Use/Gebruik 32 g·mol⁻¹. ✓

Copyright reserved/Kopiereg voorbehou

- Final answer/Finale antwoord: 0,51 g ✓
- Accepted range/Aanvaarde gebied: 0,50 to 0,51 g

m = 0.51 g

Please turn over/Blaai om asseblief

(2)

QUESTION/VRAAG 6

6.1 Reversible reaction/*Omkeerbare reaksie* ✓ (1)

 ΔH is positive./ $\Delta H > 0$ /(Net) energy is absorbed./More energy is absorbed than released/Energy of product > energy of reactant. \checkmark ΔH is positief./ $\Delta H > 0$ /(Netto) energie word opgeneem./Meer energie word geabsorbeer as vrygestel./Energie van produk > Energie van reaktans

6.3 Larger than/Groter as \checkmark $K_c > 1 \checkmark$ (2)

6.4 <u>CALCULATIONS USING NUMBER OF MOLES</u> <u>BEREKENINGE WAT GETAL MOL GEBRUIK</u>

Mark allocation/Puntetoekenning:

- Calculate n(CO)_{equilibrium} i.e. divide m by 28 g·mol⁻¹ OR substitute 6 mol for equilibrium mole of CO. ✓
 Bereken n(CO)_{ewewig} d.i. deel m deur 28 g·mol⁻¹ OF vervang 6 mol vir ewewigsmol van CO.
- Change in n(CO) = equilibrium n(CO) initial n(CO) √
 Verandering in n(CO) = ewewig n(CO) aanvanklike n(CO)
- USING ratio/GEBRUIK verhouding: CO₂: CO = 1:2√
- Equilibrium n(CO₂)= initial n(CO₂) change n(CO₂). √
 Ewewig n(CO₂)= aanvanklike n(CO₂) verandering n(CO₂).
- Equilibrium mole of both CO₂ and CO divided by 2 dm³. ✓
 Ewewigsmol van beide CO₂ en CO gedeel deur 2 dm³
- Correct K_c expression (<u>formulae in square brackets</u>). ✓ *Korrekte K_c-uitdrukking* (<u>formules in vierkanthakies</u>).
- Substitution of concentrations into K_c expression. ✓
 Vervanging van konsentrasies in K_c-uitdrukking.
- Substitution of K_c value/Vervanging van K_c-waarde. ✓
- Final answer/Finale antwoord: 4,28–4,29 (mol) ✓

OPTION 1/OPSIE 1

$$n = \frac{m}{M}$$

$$= \frac{168}{28} \checkmark$$

$$= 6 \text{ mol}$$

	CO ₂	CO
Initial quantity (mol)	v	0
Aanvangshoeveelheid (mol)	X	U
Change (mol)	2	6./
Verandering (mol)	J	0 1
Quantity at equilibrium (mol)/	x – 3 ✓	6
Hoeveelheid by ewewig (mol)	X = 3 V	0
Equilibrium concentration (mol·dm ⁻³)	x-3	
Ewewigskonsentrasie (mol·dm ⁻³)	2	3

ratio ✓ verhouding

Divide by 2 ✓

$$K_{c} = \frac{[CO]^{2}}{[CO_{2}]}$$

$$14 \checkmark = \frac{(3)^{2}}{\frac{x-3}{2}}$$

$$\therefore x = 4,29 \text{ mol } \checkmark$$

No K_C expression, correct substitution/Geen K_c uitdrukking, korrekte substitusie: Max./Maks. $\frac{8}{9}$

Wrong K_C expression/ $Verkeerde\ K_c$ -uitdrukking: Max./Maks. $\frac{6}{9}$

OPTION 2/OPSIE 2

$$n = \frac{m}{M}$$

$$= \frac{168}{28} \checkmark$$

$$= 6 \text{ mol}$$

$$c = \frac{n}{V}$$

$$= \frac{6}{2} \text{ Divide by/Deel deur 2 } \checkmark$$

$$= 3 \text{ mol} \cdot \text{dm}^{-3}$$

	CO ₂	CO	
Initial concentration (mol·dm ⁻³) Aanvangskonsentrasie (mol·dm ⁻³)	X	0	
Change (mol·dm ⁻³) Verandering (mol·dm ⁻³)	1,5	3 ✓	ratio ✓
Equilibrium concentration (mol·dm ⁻³) Ewewigskonsentrasie (mol·dm ⁻³)	x − 1,5 ✓	3	verhouding

$$K_{c} = \frac{[CO]^{2}}{[CO_{2}]} \checkmark$$

$$14 \checkmark = \frac{[3]^{2}}{x - 1.5} \checkmark$$

$$\therefore x = 2.14 \text{ mol.dm}^{-3}$$

No K_C expression, correct substitution/Geen K_c uitdrukking, korrekte substitusie: Max./Maks. $\frac{8}{9}$

x - 1.5 Wrong K_C expression/Verkeerde K_c-uitdrukking: Max./Maks. $\frac{6}{9}$

$$n(CO_2) = cV$$

= (2,14)(2)
= 4,29 mol \checkmark

OPTION 3/OPSIE 3

$$n = \frac{m}{M}$$

$$= \frac{168}{28} \checkmark$$

$$= 6 \text{ mol}$$

	CO ₂	CO	
Initial quantity (mol)	4,28√	0	
Aanvangshoeveelheid (mol)		O	
Change (mol)	3	→ 6	
Verandering (mol)	3	0	
Quantity at equilibrium (mol)/	1,28 ✓	6√	
Hoeveelheid by ewewig (mol)	1,20 V	U v	
Equilibrium concentration (mol·dm ⁻³)	0.64	2	
Ewewigskonsentrasie (mol·dm ⁻³)	0,64	\ \	

ratio √ verhouding

multiply by 2√ vermenigvuldig met 2

$$K_{c} = \frac{[CO]^{2}}{[CO_{2}]} \checkmark$$

$$14 \checkmark = \frac{[3]^{2}}{[CO_{2}]} \checkmark$$

No K_C expression, correct substitution/Geen K_c uitdrukking, korrekte substitusie: Max./Maks. 8/9

∴ $[CO_2] = 0,64 \text{ mol} \cdot \text{dm}^{-3}$

Wrong K_c expression/Verkeerde K_c -uitdrukking: Max./Maks. $\frac{6}{9}$

(9)

6.5

6.5.1 Remains the same/*Bly dieselfde* ✓

(1)

6.5.2 Decreases/Verminder √

(1)

6.5.3 Increases/Vermeerder ✓

(1) **[17]**

QUESTION/VRAAG 7

7.1

7.1.1 An acid is a proton/ H^+ donor. \checkmark **NOTE**: not H_3O^+ (2 or/of 0) 'n Suur is 'n protondonor/ H^+ skenker. **LET WEL** nie H_3O^+ nie

(2)

7.1.2 H₂O √ H₂CO₃ √

(2)

7.1.3 H₂O ✓

OR/OF

 HCO_3^-

(1)

7.2
7.2.1 $n(HC\ell) = cV \checkmark$ $= (0,1)(0,5) \checkmark$ = 0,05 mol $n(NaHCO_3) = cV$ $= (0,25) (0,8) \checkmark$ = 0,2 mol $n(NaHCO_3)_{reacted/gereageer} = n(HC\ell)$ $= 0,05 \text{ mol} \checkmark$ $n(NaHCO_3)_{excess/oormaat} = 0,2-0,05 \checkmark$ = 0,15 mol $n(OH^-) = n(NaHCO_3) \checkmark$ = 0,15 mol $c(OH^-) = \frac{n}{N}$

Marking guidelines/Nasienriglyne:

• Formula/Formule:

$$c = \frac{n}{V} / n = cV \checkmark$$

- Substitution of (0,1)(0,5). ✓ *Vervanging van* (0,1)(0,5).
- Substitution of (0,8)(0,25). ✓ *Vervanging van* (0,8)(0,25).
- Use n(NaHCO₃) = n(HCℓ) = 1:1. ✓
 Gebruik n(NaHCO₃) = n(HCℓ) = 1:1.
- $n_{b(in \text{ excess})} = n_{b(initial)} n_{b(reacted)}$ $n_{b(in \text{ oormaat})} = n_{b(aanvanklik)} - n_{b(gereageer)}$
- Use n(OH⁻) = n(NaHCO₃) = 1:1. √
 Gebruik n(OH⁻) = n(NaHCO₃) = 1:1.
- Substitute V = 1,3 dm³ in c = $\frac{n}{V}$ Vervang V = 1,3 dm³ in c = $\frac{n}{V}$
- Final answer/Finale antwoord:
 0.12 mol·dm⁻³ √

(8)

7.2.2 POSITIVE MARKING FROM QUESTION 7.2.1 POSITIEWE NASIEN VAN VRAAG 7.2.1

 $= 0.12 \text{ mol} \cdot \text{dm}^{-3} \checkmark$

OPTION 2/OPSIE 2
pOH = -log[OH [−]] ✓
= -log(0,12) √
= 0,92
pH + pOH = 14
pH + 0,92 = 14 ✓
pH = 13,08 ✓

(4) **[17]**

(1)

QUESTION/VRAAG 8

8.1 <u>Electrons are transferred</u>./<u>Elektrone word oorgedra</u>. ✓

OR/OF

The oxidation number of Mg/H changes. *Die oksidasiegetal van Mg/H verander.*

OR/OF

Mg is oxidised / H⁺ is reduced.

Mg word geoksideer / H⁺ word gereduseer.

8.2 H^{\dagger} ions/HC ℓ / H^{\dagger} (aq)/HC ℓ (aq) \checkmark (1)

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

SCE/SSE - Memorandum

8.3 Ag is a weaker reducing agent \checkmark (than H_2) and will not be oxidised \checkmark to $Ag^+ \checkmark Ag$ is 'n swakker reduseermiddel (as H_2) en sal nie na Ag^+ geoksideer word nie.

OR/OF

 H_2 is a stronger reducing agent \checkmark (than Ag) and will be oxidised \checkmark to H^+ . \checkmark H_2 is 'n sterker reduseermiddel (as Ag) en sal na H^+ geoksideer word.

(3)

8.4 Electrode/Conductor of electrons (in hydrogen half-cell) ✓ Elektrode/Geleier van elektrone in waterstofhalfsel.

(1)

8.5

8.5.1 Chemical energy to electrical energy ✓ *Chemiese energie na elektriese energie*

(1)

8.5.2 Provides path for movement of ions./Completes the circuit./Ensures electrical neutrality in cell. ✓

Verskaf pad vir die beweging van ione./Voltooi die stroombaan./Verseker elektriese neutraliteit in sel.

(1)

(2)

8.5.3 $2H^+ + 2e^- \rightarrow H_2 \checkmark \checkmark$

Notes/Aantekeninge

$$H_2 \leftarrow 2H^+ + 2e^- \qquad (\frac{2}{2})$$

 $H_2 = 2H^+ + 2e^- \qquad (\frac{0}{2})$

$$2H^{+} + 2e^{-} \Rightarrow H_{2} \qquad (\frac{1}{2})$$

$$2H^+ + 2e \leftarrow H_2 \qquad (\frac{0}{2})$$

8.5.4 Mg(s) $|Mg^{2+}(aq)| |H^{+}(aq)| H_{2}(g)| Pt$

ORIOE

 $Mg(s) \mid Mg^{2+}(1 \text{ mol} \cdot dm^{-3}) \mid \mid H^{+}(1 \text{ mol} \cdot dm^{-3}) \mid H_{2}(g) \mid Pt$

Accept/Aanvaar

$$Mg \mid \dot{M}g^{2+} \mid \mid H^{+} \mid H_{2} \mid Pt$$

(3)

8.6 **OPTION 1/OPSIE 1**

$$E_{\text{cell}}^{\theta} = E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} \checkmark$$

$$= 0,00 \checkmark - (-2,36) \checkmark$$

$$= 2,36 \text{ V} \checkmark$$

Notes/Aantekeninge

- Accept any other correct formula from the data sheet./Aanvaar enige ander korrekte formule vanaf gegewensblad.
- Any other formula using unconventional abbreviations, e.g. E°_{cell} = E°_{OA} - E°_{RA} followed by correct substitutions:/Enige ander formule wat onkonvensionele afkortings gebruik, bv. E°_{sel} =

 E°_{OM} - E°_{RM} gevolg deur korrekte vervangings: $\frac{3}{4}$

OPTION 2/OPSIE 2

$$H^{+}(aq) + e^{-} \rightarrow H_{2}(g)$$
 $Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-}$

$$E^{\theta} = +2,36 \text{ V } \checkmark$$

$$E^{\theta} = +2.36 \text{ V} \checkmark$$

8.7 Increases/Verhoog ✓

(1)

(4)

[18]

9.1 9.1.1	Electrolyte/ <i>Elektroliet</i> ✓	(1)
9.1.2	Electrolytic (cell)/ <i>Elektrolitiese (sel)</i> ✓	
	Electrolysis / Elektroliese $\frac{0}{1}$	(1)
9.2	A to/na B ✓	(1
9.3 9.3.1	B✓	(1)
9.3.2	A✓	(1
9.4(-)	Decreases/Verminder ✓	
_	Copper (Cu) is oxidised to Cu ²⁺ /Oxidation takes place at A/Electrons are lost. Koper (Cu) word na Cu ²⁺ geoksideer/Oksidasie vind by A plaas/Verlies van elektrone	(2 [7]

(3)

QUESTION/VRAAG 10

10.1 10.1.1 Air/Lug ✓ (1) 10.1.2 Natural gas/methane/oil/coal ✓ Aardgasse/metaan/olie/steenkool (1) 10.1.3 Sulphur/iron pyrite/Iron sulphide ✓ Swawel/ysterpiriet/ystersulfied (1) 10.2 10.2.1 Haber ✓ (1) 10.2.2 Ammonia/Ammoniak ✓ (1) 10.2.3 H₂SO₄ ✓ (1) $SO_3+ H_2SO_4 \checkmark \rightarrow H_2S_2O_7 \checkmark$ 10.2.4 Bal. ✓ Notes/Aantekeninge:

- Reactants ✓ Products ✓ Balancing ✓
 Reaktanse Produkte Balansering
- Ignore double arrows./Ignoreer dubbele pyle.
- Marking rule 6.3.10./Nasienreël 6.3.10.

10.3.1
$$%N[NH_4NO_3] = \frac{28}{80} \checkmark x \ 100 = 35\%$$

 $%N[(NH_4)_2SO_4] = \frac{28}{132} \checkmark x \ 100 = 21,21\%$

<u>Ammonium nitrate (</u>has the highest percentage of nitrogen) ✓ <u>Ammoniumnitraat (</u>het die hoogste persentasie) stikstof.

10.3.2 Ostwald (process/proses) √

(1) **[14]**

(4)

TOTAL/TOTAAL: 150