Goal: Figure 6-37 shows an infinitely long solenoid with air core having a radius b and n closely wound turns per unit length. The windings are slanted at an angle α and carry a current I. Determine the magnetic flux density both inside and outside the solenoid.

Fig. 6-37. A long solenoid with closely wound windings carrying a current *I*.

Steps:

1. Decompose the current I into a component along \mathbf{a}_z and a component along \mathbf{a}_ϕ . Solution: In the \mathbf{a}_ϕ direction

$$I_{\phi} = nI \cos \alpha$$

In the a_z direction

$$I_z = 2\pi b n I \sin \alpha$$

- 2. What is the contribution of the a_z component of the current to the B-field inside the solenoid? *Solution:* zero.
- 3. What is the contribution of the \mathbf{a}_z component of the current to the B-field outside the solenoid? *Solution:*

$$\mathbf{B}_1 = \mathbf{a}_{\phi} \mu_o \frac{bnI}{r} \sin \alpha$$

4. What is the contribution of the \mathbf{a}_{ϕ} component of the current to the B-field inside the solenoid? *Solution:*

$$\mathbf{B}_2 = \mathbf{a}_z \mu_o n I \cos \alpha$$

5. What is the contribution of the \mathbf{a}_{ϕ} component of the current to the B-field outside the solenoid? *Solution:* zero.

6. What is the total B-field inside and outside the solenoid? *Solution:* Using superposition, add up all the fields above.

$$\mathbf{B} = \mathbf{B}_1 + \mathbf{B}_2$$

Answer:

Inside:
$$\mathbf{B} = a_z \, \mu_o \, nI \cos \alpha$$

Outside:
$$\mathbf{B} = a_z \, \mu_o \frac{bnI}{r} \sin \alpha$$