UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA

ESTUDO E APERFEIÇOAMENTO DA TÉCNICA DE STEERING BEHAVIORS NA SIMULAÇÃO FÍSICA DE FLUIDOS EM UM ESPAÇO TRIDIMENSIONAL

DISSERTAÇÃO DE MESTRADO

Henrique Vicentini

Santa Maria, RS, Brasil 2008

ESTUDO E APERFEIÇOAMENTO DA TÉCNICA DE STEERING BEHAVIORS NA SIMULAÇÃO FÍSICA DE FLUIDOS EM UM ESPAÇO TRIDIMENSIONAL

por

Henrique Vicentini

Dissertação apresentada ao Programa de Pós-Graduação em Informática da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para a obtenção do grau de

Mestre em Informática

Orientador: Prof. Dr. César Tadeu Pozzer (UFSM)

Co-orientador: Profa Dra Marcos Cordeiro d'Ornellas (UFSM)

Dissertação de Mestrado Nº 2 Santa Maria, RS, Brasil

Universidade Federal de Santa Maria Centro de Tecnologia Programa de Pós-Graduação em Informática

A Comissão Examinadora, abaixo assinada, aprova a Dissertação de Mestrado

ESTUDO E APERFEIÇOAMENTO DA TÉCNICA DE STEERING BEHAVIORS NA SIMULAÇÃO FÍSICA DE FLUIDOS EM UM ESPAÇO TRIDIMENSIONAL

elaborada por **Henrique Vicentini**

como requisito parcial para obtenção do grau de **Mestre em Informática**

COMISSÃO EXAMINADORA:

Prof^a Dr^a Marcos Cordeiro d'Ornellas (UFSM) (Presidente/Co-orientador)

Prof. Dr. ISSO TROCAR (UFSM)

Prof. Dr ISSO TROCAR (UFSM)

RESUMO

Dissertação de Mestrado Programa de Pós-Graduação em Informática Universidade Federal de Santa Maria

ESTUDO E APERFEIÇOAMENTO DA TÉCNICA DE STEERING BEHAVIORS NA SIMULAÇÃO FÍSICA DE FLUIDOS EM UM ESPAÇO TRIDIMENSIONAL

Autor: Henrique Vicentini Orientador: Prof. Dr. César Tadeu Pozzer (UFSM) Co-orientador: Prof^a Dr^a Marcos Cordeiro d'Ornellas (UFSM) Local e data da defesa: Santa Maria, 22 de Agosto de 2008.

Resumo em português aqui.

Palavras-chave: Simulação de fluidos, stearing behaviors, computação gráfica.

ABSTRACT

Master's Dissertation
Programa de Pós-Graduação em Informática
Universidade Federal de Santa Maria

VXDL: A LANGUAGE FOR INTERCONNECTION AND RESOURCES SPECIFICATION IN VIRTUAL GRIDS

Author: Henrique Vicentini Advisor: Prof. Dr. César Tadeu Pozzer (UFSM) Coadvisor: Prof^a Dr^a Marcos Cordeiro d'Ornellas (UFSM)

Grid computing has been defined as an infrastructure integrator of distributed resources. Although it is already used on a large scale in many areas, this type of computational infrastructure is still an area of active research, with many open questions. Today, new research works investigate the application of resources virtualization techniques to perform the composition of virtual grids. These grids can be defined as a high level abstraction of resources (computing and network), through which users have a view of a wide range of interconnected computers, that can be selected and virtually organized. In a virtual grid, as well in a real grid, users and middleware must have tools that allow the composition and management of the infrastructure. Among these tools, there are languages for resource description that allow the specification of components that will be used in the infrastructure. In a virtualized environment, the resources descriptions languages should offer attributes that interact with some peculiarities, such as the possibility of allocate multiple virtual resources (computing and network) on the same physical resource. In this context, this work presents VXDL, a language developed for the interconnections and resources description in virtual grids. The innovations proposed in VXDL allow the description, classification and parameter specification of all desirable components, including network topology and virtual routers. VXDL also allow the specification of a execution timeline, which can assist grid middleware in the tasks of resources sharing and scheduling. To evaluate the proposed language, this work presentes I) a comparative study between VXDL and other resources description languages and II) an analysis of results obtained with the benchmarks execution in virtual infrastructures composed using different VXDL descriptions.

Keywords: virtualization, virtual grids, virtual clusters, resources description language.

LISTA DE FIGURAS

Figura 2.1 –	Hierarquia do comportamento de movimentação	12
Figura 2.2 –	Forças de direcionamento assimétricas	14
Figura 2.3 –	Comportamento de seek e flee	15
Figura 2.4 –	Comportamento de <i>pursuit</i> e <i>evasion</i>	16
Figura 2.5 –	Separação: Steer para evitar o agrupamento com elementos vizinhos	17
Figura 2.6 –	Alinhamento: Steer com objetivo de alinhar o elemento com seus	
	vizinhos	17
Figura 2.7 –	Coesão: Steer de agrupamento com os elementos vizinhos	17
Figura 4.1 –	Região de vizinhança de um elemento	22

LISTA DE TABELAS

SUMÁRIO

1 1.1 1.2 1.3	INTRODUÇÃO	10 10 10 10
	REVISÃO DE LITERATURA	11
2.1	Steering Behaviors	11
2.1.1		15
2.1.2	· · · · · · · · · · · · · · · · · · ·	18
2.1.3		18
2.1	Simulação de fluidos	18
2.2.	•	18
2.2.2	,,,,,,,,,,	18
3	PROPOSTA	19
3.1	Problema proposto	19
3.1.	1 OpenSteer	19
3.2	Dificuldades Encontradas	19
3.2.	1 Definição dos steerings	19
3.2.2	2 Controle da Entropia	19
	IMPLEMENTAÇÃO	20
4.1	Definição de forças	20
4.1.1		20
4.1.2		20
4.1.3	<u>r</u> 3	21
4.1.4		22
4.1.5	\mathcal{C} 3	22
4.1.6	r	22
4.1.7	7 Comportamento das forças	22
5	RESULTADOS	24
6	CONCLUSÃO	25
REI	FERÊNCIAS	26

1 INTRODUÇÃO

teste001

1.1 Contexto e Motivação

teste 2.5 italico-asdfasf teste-ifem **negrito** conforme a imagem ??

- 1.2 Objetivos e Contribuição
- 1.3 Organização do Texto

2 REVISÃO DE LITERATURA

2.1 Steering Behaviors

Com o objetivo de criar uma solução para [1] so pode 2.5 2.6 2.7

Em seu estudo de 1987 [1] Reynolds desenvolveu uma metodologia diferente dos caminhos pré programados existentes no tratamento comportamentais ligados a grupos de indivíduos. A simulação de grupos pode ser relacionado como uma modificação de um sistema de partículas e sua simulação é criada através de um sistema distribuído de um modelo comportamental, sistema esse parecido com um sistema natural de movimentação em grupo. A movimentação e escolha de caminho é feita através da percepção do ambiente em que o mesmo é inserido, as regras físicas e de movimentação e por um conjunto de comportamentos programados.

A utilização de forças para direcionar elementos em uma simulação de grupo foi proposta por Reynolds em 1999 [1] chamando-a de *steering behavior* a qual é uma versão melhorada de seu estudo de 1987. As simulações podem ser utilizadas em comportamentos como: busca, perseguição, fuga, perambular, aproximação, desvio de obstáculos e forças de direcionamentos relacionadas a grupo de personagens, aonde modelo proposto é estruturado em três forças, as quais direcionam os elementos do grupo individualmente baseado na velocidade e posição dos elementos vizinhos, essas forças são: separação, alinhamento e coesão.

O comportamento de personagens autônomos podem ser dividido em camadas comportamentais para melhor compreensão. Essas camadas podem ser vistas na figura 2.1, são elas: seleção de ação, direcionamento e locomoção.

Selecão de ação: é responsável pela percepção do mundo e determinação de objetivos;

Figura 2.1: Hierarquia do comportamento de movimentação

- Direcionamento: decompõem os objetivos em sub tarefas de movimentação (aproximação do objetivo, desvio de obstáculos);
- Locomoção: utiliza as informações passadas pela camada de direcionamento para realizar o deslocamento físico do personagem.

O steering behavior é focado na camada do central de direcionamento o qual é responsável pelas forças que atuam sobre o elemento a fim de que ele alcance o objetivo inicial definido na camada de seleção de ação. Como forma de representar essa camada foi utilizado um modelo veicular simples. Esse modelo é simples o suficiente para representar os mais variados tipos de transporte ou formas de movimentação que se deseja.

O veículo é baseado em uma aproximação do ponto de massa. Essa abordagem proporciona um simples e computacionalmente barato modelo físico, porém o mesmo não pode ser considero um modelo físico completo pois o mesmo e capaz de representar o momento linear (velocidade) porém não é capaz de representar o momento rotacional pois o veículo é representado por um ponto de massa não dimensional.

Um ponto de massa é definido pelas propriedades *position* e *mass* que representam respectivamente a posição e a massa do elemento. O veículo ainda possui a propriedade *velocity* representando a velocidade, a velocidade é modificada pela aplicação de forças. As forças e a velocidade aplicada ao veículo possuem um limitador, sendo esse a representação das limitações físicas do próprio veículo, como a aceleração, representada pela propriedade *max_force* e uma limitação de velocidade, causada pelo atrito ou outros fatores, representado pela propriedade *max_speed*. A orientação (*orientation*) representa a direção do veículo a qual junto com posição do veículo representa a coordenada espacial na qual o modelo geométrico do veículo pode ser anexado.

Simple Vehicle Model:

```
mass scalar

position vector

velocity vector

max_force scalar

max_speed scalar

orientation N basis vectors
```

A física do modelo veicular simples é baseada no FORWARD EULER INTEGRATION. A cada iteração da simulação, as forças determinadas pelo comportamento são aplicadas ao ponto de massa do veículo. Isso produz uma aceleração igual a força de deslocamento dividido pela massa do veículo. A aceleração é adicionada a antiga velocidade produzindo uma nova velocidade, a qual é truncada por max_speed. E por fim a velocidade é adicionada à antiga posição do veículo.

```
steering_force = truncate (steering_direction, max_force)
acceleration = steering_force / mass
velocity = truncate (velocity + acceleration, max_speed)
position = position + velocity
```

O modelo veicular simples mantém-se alinhado com a velocidade por ajustes incrementais das iterações prévias. O sistema local de coordenadas é definido em por quatro vetores: vetor posição especificando o local da origem, e três vetores de direção servindo como base vetorial do espaço. A base vetorial indica a direção e comprimento das unidades de coordenadas, no qual três direções mutualmente perpendicular relativas ao veículo. Esses eixos serão referenciados por *forward*, *up* e *side* (esses correspondem aos eixos x, y e z do R3).

Para manter o alinhamento com a velocidade em cada iteração, o vetor base deve ser rotacionado para a nova direção. Ao invés de usar rotações explicitas, o sistema local é reconstruido usando a combinação de substituição, aproximação e reortogonalização. A nova velocidade é utilizada para calcular a nova direção e uma nova aproximação para a nova direção de *up*. Utilizando o produto vetorial é reconstruido o no sistema vetorial base:

```
new_forward = normalize (velocity) approximate_up = normalize
(approximate_up) // if needed new_side = cross (new_forward,
approximate_up) new_up = cross (new_forward, new_side)
```


Figura 2.2: Forças de direcionamento assimétricas

A ideia básica é que o *up* aproximado é quase perpendicular a nova direção de *forward*, porque as diferenças a cada iteração da orientação são tipicamente pequenas. A nova direção *side* será perpendicular ao novo *forward*, pela definição do produto vetorial. O novo *up* será o produto vetorial entre *forward* e *side* logo é perpendicular a cada um deles.

O conceito do alinhamento da velocidade não especifica somente uma orientação. O grau de liberdade correspondente a rotação sobre o eixo *forward* (também conhecido como inclinação) permanece não limitado. Construindo um novo espaço local relativo ao primeiro é garantido que a inclinação permanece consistente. Definir o valor correto de inclinação requere heurísticas futuras, baseada na intenção de uso do modelo veicular.

Nesse sistema veicular simples, o sinal de controle passado da camada comportamental de direcionamento para a camada de movimentação consiste em exatamente um vetor quantidade: uma força de direcionamento desejada. Mais realisticos modelos veiculares poderá ter varios diferentes conjuntos de sinais de controles. Por exemplo um automovel teria um volante de direção, acelerador e freio os quais cada um podem ser representados por quantidades escalares. É possível mapear um vetor força de direcionamento generalizado nesses sinais escalares: o componente *side* do vetor direcionamento pode ser interpretado como o sinal de direção, o *forward* pode ser mapeado em no acelerador caso positovo ou freio caso negativo. Esse mapeamento pode ser assimétrico, por exemplo um automóvel pode desacelerar através da freagem muito mais rápido que acelerar através do impulso do motor como mostrado na Figura 2.2.

Por causa dessa concepção de alinhamento à velocidade, esse sistema veicular simples não pode simular efeitos como derrapagem. Além do mais esse modelo permite que o veículo gire com sua velocidade em zero, esse problema pode ser resolvido adicionando um limitador na mudança de orientação, ou limitando o componente de direcionamento lateral em velocidades baixas, ou simulado o momento de inércia.

Figura 2.3: Comportamento de seek e flee

2.1.1 Modelos de *Steering Behaviors*

Para cada *steering behavior* específico assumiremos que a movimentação seja implementada pelo modelo veícular simples previamente descrito, o qual é parametrizada por um simples vetor força de direcionamento.

2.1.1.1 Seek

O comportamento *seek* (perseguição a um ponto estático) atua no direcionamento do personagem a uma posição fixa especificada no mundo virtual. Esse comportamento coordena o personagem em uma velocidade radialmente alinhada para o alvo. A velocidade desejada é um vetor na direção do personagem para o ponto de objetivo. O módulo da velocidade desejada pode ser max_speed, ou pode ser a velocidade corrente do personagem, dependendo da aplicação. O vetor de direcionamento é a diferença entre a velocidade desejada e a velocidade corrente do personagem conforme a Figura 2.3.

```
desired_velocity = normalize (position - target) * max_speed
steering = desired_velocity - velocity
```

Caso o personagem continue com o comportamento de *seek*, ele eventualmente passará pelo objetivo e após voltará para uma nova aproximação. Isso produzirá um movimento parecido com o movimento de moscas ao redor de uma lâmpada, diferente do comportamento de *arrival* a seguir.

Figura 2.4: Comportamento de pursuit e evasion

2.1.1.2 Flee

O comportamento de *flee* é simplesmente o inverso do *seek*, atuando no direcionamento do personagem a se afastar de um ponto fixo especificado. A velocidade desejada apontará para a direção oposta formada entre o personagem e o ponto de objetivo verificado na Figura 2.3.

2.1.1.3 Pursuit

O comportamento de *pursuit* é similar ao *seek* exceto que o alvo é outro personagem móvel. Uma perseguição efetiva requer a previsão da futura posição do alvo. Uma das abordagens é usar um simples previsor que reavalia a cada iteração a futura posição do alvo. Como exemplo pode se usar um previsor linear basedo na velocidade o qual leva em conta que o alvo não mudara de direção durante o intervalo da previsão. O mesmo avalia a posição do personagem T unidades de tempo no futuro e ajusta a velocidade escalonando-a pelo período T previsto. O direcionamento de *pursuit* é um simples resultado da aplicação do comportamento de seek na posição prevista do alvo. Verifique a Figura 2.4.

A chave para a implementação do *pursuit* é o método usado para estimar o intervalo T de predição. No caso ideal o intervalo T deveria ser o tempo até a interceptação, mas o valor é desconhecido pelo fato do alvo realizar mudanças de rota imprevisíveis. T pode assumir um valor constante, o qual deve produzir melhor perseguição que o comportamento simples *seek* (o qual corresponde T=0). No entanto, para uma performance aceitável T

Figura 2.5: Separação: Steer para evitar o agrupamento com elementos vizinhos

Figura 2.6: Alinhamento: Steer com objetivo de alinhar o elemento com seus vizinhos

deve ser maior quando o perseguidor está longe do objetivo, e menor quando ele está próximo. Outros métodos para estimar o valor de T podem ser utilizados dependendo do ambiente no qual será aplicado e do comportamento esperado.

2.1.1.4 Evasion

O comportamento de *evasion* é análoga a de *pursuit*, exceto que o comportamento de *flee* é utilizado para direcionar para longe da posição futura estimada. As técnicas de perseguição e evasão daddas aqui tem a intenção de serem computacionalmente leves e são não-ótima, existem técnicas ótimas na literatura porém em um sistema natural a evasão é intencionalmente não-ótima com o objetivo de ser imprevisível, permitindo que frustre estratégias de perseguição previsíveis [Cliff 96].

e podem ser vistas nas figuras 2.5 2.6 2.7 respectivamente.

itálico negrito código

Figura 2.7: Coesão: Steer de agrupamento com os elementos vizinhos

Falar sobre reinolds, boids, birds e afins.

2.1.2 Mecânica

- Funcionamento e objetivo dos steerings.

2.1.3 Aplicações

- Utilizações (citar outras utilizações além de direcionamento de elementos)

2.2 Simulação de fluidos

Formas de simulação de fluidos

2.2.1 Baseadas em Malha (Eulerian)

Stable fluids

2.2.2 BBaseadas em Partículas (Lagrangian)

SPH (smoothed particle hydrodynamics)

3 PROPOSTA

3.1 Problema proposto

Proposta do projeto, como funcionarão as forças para simular fluidos (viscosidade, interação entre os elementos, perda de energia)

3.1.1 OpenSteer

Falar sobre o framework OpenSteer, dificuldades, funcionalidades e aplicações.

3.2 Dificuldades Encontradas

3.2.1 Definição dos steerings

Falar dos steerings utilizados e como eles afetam os elementos Falar da interação dos elementos

3.2.2 Controle da Entropia

Falar do problema de adição constante de energia ao sistema, e falar que é uma caracteristica do próprio sistema de steering behaviors criar novas forças para simular o comportamento dos elementos, sendo necessário um controle para que o sistema se estabilize.

4 IMPLEMENTAÇÃO

4.1 Definição de forças

4.1.1 Gravidade

Para simulação de grupo de elementos em um sistema de steering behaviors a geralmente gravidade no mundo não é relevante para o resultado esperado, porém em uma representação gráfica de fluídos a gravidade é importante para o correto fluxo dos elementos e da representação correta dos elementos. A gravidade foi implementada como uma força que age constantemente sobre todos os elementos do sistema. Essa força faz com que os elementos formam um fluxo em direção em que força está atuando.

4.1.2 Coesão

A coesão consiste em uma região, geralmente mais externa, na qual os elementos tendem a se aproximar do centro do grupo. A coesão entre as partículas faz com que as mesmas tendam a não se separar do grupo, esse comportamento é esperado na representação de fluídos uma vez que as partículas tendem a manter-se unidas na simulação. Em nossa implementação estudamos a força de coesão em nossa simulação nas seguintes condições:

- Comportamento original: os elementos se atraem com igual força não importando em qual região de vizinhança o elemento se encontra, nesse caso em especial o comportamento de agrupamento dos elementos funcionava conforme esperado, porém com a força de separação 4.1.3 adicionando força de forma exponencial ao inverso da distância entre os elementos, o sistema reagia com divergência do funcionamento esperado.
- Força exponencial: os elementos são atraídos através de uma força exponencial

proporcional à distância entre os elementos do grupo, assim quanto mais afastado do centro e mais próximo da fronteira da região de vizinhança 4.1.5 maior será a força de atração entre os elementos, e quanto mais próximo da região de separação menor a força fazendo com que os elementos encontrem uma região de transição estável entre a força de separação e coesão. Esse comportamento atuará como um facilitador na solução do problema de estabilização das forças internas do sistema 4.1.7.2.

Além das modificações comportamental dos steering behaviors citadas, foram realizadas modificações na região de atuação da força e coesão e no seu peso na contribuição final na força resultante do processo de interação com os demais elementos. Com essas modificações espera-se chegar a representação da viscosidade de um fluido. Esse resultado é esperado pelo fato de que a região de coesão é determina a resistência em que os elementos são capaz de separar do grupo principal, quanto menor o for a colaboração na força final de interação mais fácil é da partícula se separar do grupo a qual ele pertence e quanto maior a sua contribuição, mais coeso é o grupo.

4.1.3 Separação

A força de separação tende a afastar os elementos quando internos à região de separação. A força de separação é um elemento importante na simulação de fluídos, a mesma vem em substituição da colisão das partículas na simulação clássica de partículas [CITAÇÃO FALTANDO]. Como no steering behaviors os elementos não trabalham com colisão é necessária uma força capaz de separar os elementos quando muito próximos ou quando em rota de colisão. Essa força é diretamente proporcional ao inverso da distância ao quadrado fazendo com que a mesma cresça rapidamente ao se aproximar de outro elemento, fazendo com que ambos sejam repelidos como resultado. A região de atuação da força de separação corresponde com a distância esperada em que as particulas permanecam separadas uma das outras, analogamente podemos relacionar com a densidade do fluído, pois quanto mais próximas as partículas se estabilizarem mais difícil sera desloca-las na interação com outros elementos, dado que a força de repulsão do grupo a um elemento novo é maior devido ao somatório das forças resultantes do grupo.

Figura 4.1: Região de vizinhança de um elemento

4.1.4 Alinhamento

A força de alinhamento direciona os elementos a se alinharem com o grupo que pertence a região de alinhamento. [Acredito que não sera utilizado]

4.1.5 Região de atuação da vizinhança

Na implementação dos steering behaviors cada elemento possui um campo de visão baseado no angulo definido de sua frente, essa região define qual a área em que é considerada na interação entre outros elementos. Os elementos fora dessa área ou raio não são relevantes para determinar as forças que estão atuando atualmente no elemento sendo descartados no processamento e restringindo a interação a um grupo de proximidade. Essa região pode ser visualizada na figura 4.1. A restrição da atuação é utilizada nos casos em que os elementos devem manter-se em movimentação. TODO: CONTINUAR COM A IDEIA.

4.1.6 Interação com paredes do recipiente

4.1.7 Comportamento das forças

4.1.7.1 Atrito / Viscosidade

4.1.7.2 Estabilidade e entropia

O problema de instabilidade ocorre pela funcionamento básico do *steering behavior*, o mesmo não utiliza a energia existente no elemento na adição das forças de interação com a vizinhança, a força é criada fazendo com que o sistema não se estabilize. A criação de forças é uma característica intrínseca ao funcionamento do *steering behavior* fazendo

com que a mesma não possa ser alterada ou removida, sendo necessário desenvolver uma metodologia baseada em forças para que essas a entropia do sistema se estabilize. Algumas regras foram definidas para que o sistema tendesse ao equilíbrio, essas regras são de perda e adição de energia ao sistema.

- Perda de energia pelo sistema. Como no mundo real o atrito e a interação das moléculas fazem com que o sistema tenda a se estabilizar, em nossa abordagem os elementos perdem sua velocidade quando próximos a outros elementos (caracterizando a viscosidade) e quando interagindo com a parede do recipiente (caracterizando o atrito com outros elementos
- Adição de energia somente. A força somente será criada quando for necessária e guardando as proporções dos eventos.

5 RESULTADOS

6 CONCLUSÃO

teste italico-asdfasf teste-ifem **negrito** conforme a imagem 6

REFERÊNCIAS

[1] Craig W. Reynolds. Steering behaviours for autonomous characters. In *Game Developers Conference 1999*, 1999.