High-performance computation of correlation functions

Eloy Romero Alcalde

JLab, USA

SciDAC-5 PI Meeting September 17 2025

Big pic

- 1. Gauge generation computationally intensive
- **2. Compute observables** computationally intensive
- 3. Analysis meh

Dirac matrix, D:

- 4D (space-time) lattice object
- lacktriangle the links are 12 imes 12 matrices from the configuration gauge links

In computing observables, the time is dominated by:

- Solving linear systems $D\mathbf{u} = \mathbf{v}$ iteratively
- Tensor contractions

Calculating correlation functions with distillation

One needs to compute:

(cheap)

■ Distillation basis:

 $V_t pprox \ k$ eigenvecs of $D_{t,t}$

(expensive)

- Propagators: $V_{t_1}^{\dagger} D^{-1} V_{t_0}$
- Generalized propagators:

$$V_{t_2}^{\dagger} \ D^{-1} \ I_{t_1} \ \Gamma \ D^{-1} \ V_{t_0}$$

Disconnected loops: trace $[\Gamma[D^{-1}]_{t,t}]$

(cheap)

- Meson: $V_t^{\dagger} \Gamma V_t$
- Baryons: $\langle V_t, V_t, V_t \rangle$

(expensive)

The correlation functions: $f_i = \sum_i f_{i,j}$, where $f_{i,j} = \prod_k M_{\tau(i,i,k)}^{(i,j,k)} \in \mathbb{C}$

and $M_{\mathcal{I}(i,j,k)}^{(i,j,k)}$ are mesons, baryons, propagators, or generalized propagators

Domain Decomposition [K. Orginos, B. Slimmer, W&M]

- Divide the domain and image of a matrix D into two non-overlapping domains F (frozen sites) and R (disconnected domains)
- We are interested in D^{-1} restricted to R: $\begin{bmatrix} D_F & D_{FR} \\ D_{RF} & D_R \end{bmatrix}^{-1} = \begin{bmatrix} \cdots & \cdots \\ \cdots & D_{(R,R)}^{-1} \end{bmatrix}$
- Approximate perambulator:

$$V_{t_1}^{\dagger} D_{(R,R)}^{-1} V_{t_0} \approx V_{t_1}^{\dagger} (D_R^{-1} + D_R^{-1} D_{RF} D_F^{-1} D_{FR} D_R^{-1}) V_{t_0}$$

Domain Decomposition [K. Orginos, B. Slimmer, W&M]

- Divide the domain and image of a matrix D into two non-overlapping domains F (frozen sites) and R (disconnected domains)
- We are interested in D^{-1} restricted to R: $\left[\begin{array}{c|c} D_F & D_{FR} \\ \hline D_{RF} & D_R \end{array} \right]^{-1} = \left[\begin{array}{c|c} \cdots & \cdots \\ \hline \cdots & D_{(R,R)} \end{array} \right]$
- Approximate perambulator:

$$V_{t_1}^{\dagger} D_{(R,R)}^{-1} V_{t_0} \approx V_{t_1}^{\dagger} (D_R^{-1} + D_R^{-1} D_{RF} D_F^{-1} D_{FR} D_R^{-1}) V_{t_0}$$

Comparison of a nucleon 2 point correlation function with the full perambulator, $O(t) = \langle \mathcal{N}(t) \overline{\mathcal{N}}(0) \rangle$, and with the cheap perambulator, $\widetilde{O}(t)$:

Multigrid [T. Whyte, Jülich Supercomputer Ctr, A. Stathopoulos, W&M]

New Chiral SVD[†] prolongators:

- **1** Get K null vectors, that is, solving $D\psi_i = 0$ with K random initial guesses
- f 2 Take each chiral component, $\Psi_0=(1+\gamma_5)\Psi$ and $\Psi_1=(1-\gamma_5)\Psi$
- Divide the lattice into d small domains (blocking), Λ_j , and select the $k \leq K$ most frequent directions on Ψ_i on each Λ_j , $SVD_k(\Psi_i(\Lambda_j))$
- 4 Construct the prolongator as [SVD_k($\Psi_i(\Lambda_j)$) for $i \in \{0,1\}, 1 \le j \le d$]

† T. Whyte et al., Accelerating multigrid with streaming chiral SVD for Wilson Fermions in lattice QCD. https://arxiv.org/abs/2505.14399

Multigrid [T. Whyte, Jülich Supercomputer Ctr, A. Stathopoulos, W&M]

- The Chiral SVD prolongators are equivalent to the regular prolongators when k = K
- Their application cost is the same as the regular prolongators generated with k null vectors,
- but they perform closer to prolongators generated with K null vectors

Average number of
iterations for each multigric
level on a $32^3 \times 64$ lattice
with $K = 2k$ for all levels

	Regular	CSVD		
MG Level	Prolong.	Prolong.		
0	12.0	8.0		
1	34.0	16.0		
2	115.2	58.1		

Efforts in the Dirac equation ILU(0) [H. Liu, A. Stathopoulos, W&M, X. S. Li, Y. Liu, LBNL]

- We are exploring the potential of using Incomplete LU (ILU) factorizations as preconditioners as complement for multigrid
- Despite the fact that solving the triangular factors is difficult to parallelize, ILU may be useful:
 - as part of the domain decomposition based preconditioners
 - for solving the coarse operator with a small number of processes
- We are planning on taking advantage of SuperLU optimized sparse triangular solver kernels

Efforts in the Dirac equation ILU(0) [H. Liu, A. Stathopoulos, W&M, X. S. Li, Y. Liu, LBNL]

Preliminary study of several preconditioners for accelerating the solution of the coarsest operator on a typical 2-level mutitigrid for a lattice of $32^4 \times 64$

Efforts in contractions (redstar)

J. Chen, JLab

■ The correlation functions: $f_i = \sum_j f_{i,j}$, where $f_{i,j} = \prod_k M_{\mathcal{I}(i,j,k)}^{(i,j,k)} \in \mathbb{C}$ and $M_{\mathcal{I}(i,j,k)}^{(i,j,k)}$ are mesons, baryons, propagators, or generalized propagators

Examples:
$$f_0 = M_{0,1}^{(0,0,0)} M_{0,1}^{(0,0,1)} + M_{0,1}^{(0,1,0)} M_{1,2}^{(0,1,1)} M_{2,0}^{(0,1,2)}$$

$$f_1 = M_{0,1,2}^{(1,0,0)} M_{0,3}^{(1,0,0)} M_{1,2,3}^{(1,0,0)}$$

(:: 1)

- $M_{\mathcal{I}(i,j,k)}^{(i,j,k)}$ are read from disk, they repeat, but they don't fit all in memory
- lacktriangle There are common sub-sequences of tensor products across several f_i

	Numbe	er of $M_{\mathcal{I}(i,j,k)}^{(i,j,k)}$	Read			Speedup from
Test	Total	Unique	from disk	TFLOPs	Time	prev. version
roper	1k	334	1 TiB	514	207 s	10×
nucleon 3 pt	71M	2k	1.8 TiB	1100	900 s	20x

Questions?