

FEOR – Module 6 – Optimization

Optimization under uncertainty Agnès Gorge – Rachid Ellaia

abs.um6p.ma

FEOR – Module 6 – Optimization for supply-chain

Jour 1 – Vendredi 21/01

9h - 11h	Combinatorial optimization	Rachid Ellaia
11h15 - 12h45	TP1 : MILP with PuLP (knapsack problem)	Agnès Gorge
14h – 15h30	Dynamic Programming	Rachid Ellaia
15h45 - 16h45	TP2 : Dynamic Programming (knapsack problem)	Agnès Gorge
17h – 18h	Introduction to scheduling and project presentation (Mine Scheduling)	Agnès Gorge

Jour 2 – Samedi 22/01

9h - 11h	Meta-heuristics	Rachid Ellaia
11h15	TP3 : Knapsack problem with	Agnès Gorge
12h45	meta-heuristics	

Later on

30/10 18h	Quizz
02/02 14h-17h	Project defense

Jour 3 – Samedi 29/01

9h – 10h30	Multi-objective Optimization	Rachid Ellaia
10h45 - 12h15	TP4 : Multi- objective	Rachid Ellaia
13h15 - 14h15	Stochastic optimization	Agnès Gorge
14h15 - 15h45	TP5 : Newsvendor problem with LP	Agnès Gorge
16h00 - 17h30	TP6: Dynamic (stochastic) programming for Inventory Management	Agnès Gorge

Newsvendor

TP5: The newsvendor problem through LP

Decision variable

- Purchase
- Sales[scenarios] : how much to sell
- Liq[scenarios]: how much to liquidate
- Revenue[scenarios]: the revenue of sales and liquidation

Uncertain data: demand following a discrete distribution (scenarios)

Known datas:

- SalesPrice
- LigPrice
- UnitCost
- 1. Formulate the problem as a linear program, for maximization of expected profit
- 2. What about considering the minimization of the variance in the objective function?
- 3. Consider chance-constraint : Proba[sold out] <= 1%
- 4. Bonus: add a constraint over the Value at Risk (VaR) or Conditional Value at Risk (CVaR)

Reminder: Chance-constraint, VaR, CVaR

Chance-constraint (or probability constraint) $P[f(x) \le a] \ge 1-\epsilon$

Define a binary variable per scenario to « flag » whether or not the sold-out happen in this scenario. Let X[s] be this variable.

Define X[s] such that « sold-out on scenario s implies X[s] = 1 »

Then limit the number of X[s] = 1

Reminder: BigM tips

- X a continuous variable
- B a binary variable

We want : X > 0 implies B = 1

Add a « bigM » constraint :

X <= M. B with M big enough

VaR and CVaR Let X be the Profit & Loss variable

VaR

VaR = Value at Risk. VaR_p is the threshold such that : $P[X \le VaR_p] \ge 1-p$ and $P[X \ge VaR_p] \le p$

CVaR

CVaR: also called Expected Shortfall

 $CVaR_p$ = expected value of X strictly exceeding the VaR_p cutoff point

Problem presentation

TP5: The newsvendor problem

Decision variable

• x: purchase

Uncertain data: demand to satisfy **D** of distribution F

Certain datas:

- SalesPrice p
- LiqPrice I (<p)
- UnitCost c

Max
$$E[p min(\mathbf{x}, \mathbf{D}) + I max(0, \mathbf{x} - \mathbf{D})] - c \mathbf{x}$$

Max
$$E[p min(\mathbf{x}, \mathbf{D}) + l max(0, \mathbf{x} - \mathbf{D})] - c \mathbf{x}$$

Solution:
$$x^* = F^{-1}(\frac{p-c}{p})$$

→ One of the rare example where a closed formula can be found !!

An example where: Expected (optimal) <> Optimal (expected)

Inventory management

Inventory management

Loss of revenue

What do we mean by stock & inventory?

Formal definition

Inventory (American English) or stock (British English) refers to the goods and materials that a business holds available for future sale, production or utilization

Key dynamics

StockLevel[t] = StockLevel[t-1] + Inflow[t] - Outflow[t]

Extended vision

- Can be extended to services : ex : a transportation capacity = a perishable stock of potential transportation
- Can be extended to a waiting line = a stock of persons, vehicles, vessels

Stocks are fundamentally a way to decouple upstream and downstream flows

Examples

Inventory management is also a way to smooth predictable price fluctuations and to hedge against unpredictable price fluctuations

Inventory management is also a way to smooth predictable price fluctuations and to hedge against unpredictable price fluctuations

Inventory management aims at finding the best trade-off between costs and value-creation

Ordering cost

- Order placing
- Transportation
- Quality control

Carrying costs

- Storage + handling
- Deterioration & obsolescence
- Cost of capital

Avoid stock-outs

- Meet variations in customer demand
- Ensure uninterrupted production
- Reliability image

Perform financially

- Hedge against price increases
- Strengthen your negociating position

Costs

Value creation

Different types de stocks all along the value chain

Different paradigms of inventory management

Decisions to make related to inventory management

What do we mean by policy?

Definition

A policy is a rule allowing to make decisions

Stationary policy

A policy is stationary if the action it chooses at time t only depends on the state of the process at time t.

Basic tools of inventory management

Classical models for inventory management relies on the following (simplified) vision of inventories

Economic Order Quantity (Wilson formula)

Key question

How much to purchase per order in order to minimize the handling costs?

Tradeoff

Small frequent orders

Large infrequent orders

Less holding costs

Decreases the risk of stockouts

Model & data

- Continuous time
- Deterministic and constant demand (D) per period
- Immediate refill (no lead-time)
- Costs:
 - Order cost C_o (per order)
 - Holding cost C_h
 - Purchase cost : C_p

Resolution

- Let X be the volume per order
- Total cost : $F(X) = C_o D/X + C_h/2 X + DC_p$
- $dF/dX(X) = -C_0 D/X^2 + C_h/2$
- $dF/dX(X) = 0 \rightarrow X^* = \sqrt{2 C_o D / C_h}$

Safety stock with uncertain demand

Key question

What is the minimum level to launch a new purchase so that the stockout risk during the leadtime be not more than a certain level p

Remark

Do not consider costs here, only service level

Model & data

- The lead-time is known and has a duration of N time steps
- The demand during one time-step D follows a distribution F of mean μ and standard deviation σ
- p in [0,1] is the required service level
- S is the safety stock if :
 - SS = min X such that $P[D \le E+X] \ge p$

Safety stock with Gaussian demand and uncertain lead time

Key question

What is the minimum level to launch a new purchase so that the stockout risk during the leadtime be not more than a certain level p

Remark

Do not consider costs here, only service level

Model & data

- The lead-time L is uncertain and follows a Gaussian distribution F of mean μ_L and standard deviation σ_L
- The demand during one time-step D follows a Gaussian distribution F of mean μ_D and standard deviation σ_D
- p in [0,1] is the required service level
- S is the safety stock if:
 - SS = min X such that $P[D \ge E+X] \le p$

Re-order point Policy

= EOQ + LT

Definition

Re-order level L

Level of the stock when an order is needed to be placed for avoiding the risk of being out of stock

Re-order quantity Q

Quantity of the order that is to be placed on the new purchase

Policy : Wheneven S ≤ L, purchase Q

Formula

Re-order level L

L = what you plan to use during LT + safety stock L = $\mu_L^*\mu_D$ + SS

Re-order quantity Q

 $Q = \sqrt{2 C_o D / C_h}$ #with D = what you plan to use during LT

Dynamic programming for inventory management

Introduction to dynamic programming

Which relationship between graph theory, inventory management and finance?

Dynamic programming, a very powerful framework of algorithms :

- Can be applied to problem with a « dynamic » structure (not necessarily linear)
- Can easily be extended to uncertainty consideration.

What is a dynamic structure?

- Decisions are made in stages → a sequence of decision x,
- Discrete-time dynamic system → a state variable that varies depending on the decisions
- Cost function is Markovian

Captures a tradeoff between present and future costs by

- suming present cost and expected future cost
- assuming optimal decisions making for subsequent stages

Example:

- Which route shall I take?
- How much shall I fill up / empty my inventory?
- Do I have to sell my stock now or later?

Example of the shortest path in a graph

Illustration on the shortest path in a graph

Bellman's principle

"The subpolicy of an optimal policy is itself optimal"

Shortest path (AZ) is AECDZ if and only if

- the shortest path (AD) is AECD
- the shortest path (ED) is ECD
- ... for each subpath of AECDZ

Suppose that I know that:

- The shortest path (CZ) is CDZ, which gives 7
- The shortest path (FZ) is FZ, which gives 5

In E, only two possibilities:

- Go to C, then do CDZ \rightarrow 2+7 = 9
- Go to F, then do FZ \rightarrow 6+5 = 11

Then I know that the shortest path (EZ) is ECDZ that gives 9

Key idea:

From optimal solution and value of subsequent stages,

I can deduce the optimal solution and value of the current stage

→ Red values are called « Bellman values »

How works dynamic programming?

Bellman's principle

"The subpolicy of an optimal policy is itself optimal"

Dynamic programming:

- → Divide the problem into one subproblem by stage
- → Solve subproblems in the recursive order
- → Prune partial decision sequences that cannot lead to the optimal solution

Dynamic programming is a smart way to efficiently explore a decision-tree

Problem that have

- a dynamic structure
- a finite set of alternatives

can be represented by a decision-tree:

Dynamic programming allows to explore efficiently a decision-tree

by pruning useless branches

Dynamic programming for inventory management Let's practice

Problem description

Characteristics:

- N time step, with a demand **d**, to satisfy
- At each time, decide how much to purchase, with a max = orderMax
- Minimize the cost, which is the sum of two components :
 - Purchasing cost **c**^p_t per unit
 - Stockout cost c^s per unit of unsatisfied demand
- Maximal inventory S^{max}

Assumptions:

- Initial inventory = **S**⁰
- Final inventory is lost

Model description

Variables:

- Decision variables : x_t ≥ 0
- State variables : $s_{+} \ge 0$

State equation:

• $s_{t+1} = s_t + x_t - d_t + stockout_t$

Cost function:

• $f_t(x_t, s_t) = c_t^p x_t + c_s stockout_t$

Recursive relationship:

- $B_{N+1}(s_t) = 0$, for all s_t
- $B_t(s_t) = min\{x_t : s_{t+1} \ge 0\}$ ($f_t(x_t, s_t) + B_{t+1}(s_{t+1})$)

Dynamic programming: let's practice (2) First we have to discretize the possible states in order to build a grid

At each stage, we compute the Bellman value of each state

The algorithm is based on the Bellman recursive relationship

Recursion to compute
Bellman values

2

Deduce the optimal states and decisions

Dynamic programming : let's practice (3) Determine the values xxx

Dynamic programming : let's practice (4)The final grid

Bellman values can be used to make your inventory decisions in a « value-driven » way

Optimal policy

Optimal trajectory = main outcome

Bellman values = a valuable by-product :

- → For each point of the grid : we know how to carry on being optimal
- → Notion of optimal policy

A optimal policy is a set of rules enabling to adapt the decisions to a dynamic context

Static decisions

Dynamic decisions through optimal policy

Dynamic programming can be extended to consider uncertainty

Example of uncertainty:

- Sourcing cost
- Demand

At each stage t:

→ Determine the Bellman value for each possible value of the uncertain data :

$$B_{t}(\xi_{t}, s_{t}) = \min\{x_{t} : s_{t+1} \ge 0\} (f_{t}(x_{t}, s_{t}, \xi_{t})) + B_{t+1}(s_{t+1}))$$

 \rightarrow Take its expected value : $B_t(s_t) = E[B_t(\xi_t, s_t)]$

Exploration of a stochastic decision-tree

Dynamic programming reveals all its power when considering uncertainty

Dynamic programming for inventory management Let's practice with a stochastic demand

Problem description

Characteristics:

- N time step, with a random demand d, to satisfy
- At each time, decide how much to purchase, with a max = orderMax
- Minimize the cost, which is the sum of two components :
 - Purchasing cost **c**^p_t per unit
 - Stockout cost c^s per unit of unsatisfied demand
- Maximal inventory S^{max}

Assumptions:

- Initial inventory = **S**⁰
- Final inventory is lost

Model description

Variables:

- Decision variables: x_t ≥ 0
- State variables: s_t ≥ 0

State equation:

• $s_{t+1} = s_t + x_t - d_t + stockout_t$

Cost function:

• $f_t(x_t, s_t) = c_t^p x_t + c_s stockout_t$

Recursive relationship:

- $B_{N+1}(s_t) = 0$, for all s_t
- $B_t(s_t) = min\{x_t : s_{t+1} \ge 0\}$ ($f_t(x_t, s_t) + B_{t+1}(s_{t+1})$)

Stochastic programming: 2 possible schemes

Cas 1: hazard-decision

$$B_t(s_t) = E[min\{x_t feasible\} (f_t(x_t, s_t, \xi_t)) + B_{t+1}(s_t+1))$$

But what does « x_t feasible" mean in this case ?

Cas 2: decision-hazard

Bellman values can be used to dynamically optimize your inventory decisions and even more...

Optimal policy

Optimal trajectory = main outcome in deterministics

Bellman values = a valuable by-product :

- → For each point of the grid : we know how to carry on being optimal
- → Notion of optimal policy

A optimal policy is a set of rules enabling to adapt the decisions to a dynamic context

Static decisions

Dynamic decisions through optimal policy

In practice

Suppose you are a fertilizer producer that shall purchase raw material on the market...

When optimizing your production: which cost do you consider for raw materials?

- If you have no (physical / virtual) storage: it's easy, you consider the Spot price
- Suppose you have some physical storage? Is Spot price still relevant?

<u>Bellman value(s)</u>: the (expected) cost to attain s.

<u>Bellman value derivative(s)</u> = Use Value : the (expected) cost to get one more unit of inventory, if we are at level s.

- → the most appropriate cost to use for optimization
- → valid provided that the raw material procurement follows the optimal policy

Pros & Cons of Dynamic Programming

As soon as you can use Dynamic Programming, just use it