Chapitre 15

Dérivation

Objectifs

- Définir la notion de dérivée, étudier les théorèmes généraux.
- Étudier les applications de cette notion (théorème de *Rolle*, accroissements finis, ...).
- Définir la notion de classe d'une fonction.
- Établir un plan d'étude d'une fonction.
- Étendre la dérivation aux fonctions à valeurs complexes.

Sommaire

I)	Dérivée première			
	1)	Définition	1	
	2)	Théorème généraux	2	
	3)	Dérivabilité à gauche et à droite	3	
	4)	Dérivée d'une bijection réciproque	3	
II)	Applications de la dérivation			
	1)	Théorème de Rolle	4	
	2)	Les accroissements finis	5	
	3)	Sens de variation	6	
III)	Étude d'une fonction			
	1)	Ensemble de définition, ensemble d'étude	7	
	2)	Prolongements éventuels aux bords	7	
	3)	Continuité, dérivabilité	7	
	4)	Sens de variation	7	
	5)	Étude des branches infinies	7	
	6)	Représentation graphique	8	
IV)	Dérivées successives			
	1)	Classe d'une application	8	
	2)	Formule de Leibniz	9	
	3)	Classe d'une composée	9	
	4)	Classe d'une réciproque	10	
V)	Extension aux fonctions à valeurs complexes			
	1)	Définition	10	
	2)	Propriétés	10	
	3)	Classe d'une fonction	11	
VI)	Exer	Exercices		

I) Dérivée première

1) Définition

ØDéfinition 15.1

Soit $f: I \to \mathbb{R}$ une fonction et soit $t_0 \in I$, on dit que f est **dérivable en** t_0 lorsque la fonction : $t\mapsto \frac{f(t)-f(t_0)}{t-t_0}$ admet une limite **finie** en t_0 . Si c'est le cas, cette limite est notée $f'(t_0)$ et appelée **nombre** dérivé de f en t_0 . Lorsque f est dérivable en tout point de I on dit que f est dérivable sur I et la fonction de I vers \mathbb{R} qui à t associe f'(t) est appelée **dérivée de** f **sur** I, on la note f' ou bien $\frac{df}{dt}$. L'ensemble des fonctions dérivables sur I est noté $\mathcal{D}(I,\mathbb{R})$. Si le plan est muni d'un repère orthonormé et si f est dérivable en t_0 , la droite d'équation $y = f'(t_0)(x - t_0) + f(t_0)$ est appelée tangente à la courbe au point d'abscisse t_0 . Si le taux d'accroissement de f en t_0 a une limite infinie et si f est continue en t_0 , alors on dit que la courbe admet une tangente verticale au point d'abscisse t_0 , d'équation $x = t_0$.

Les fonctions trigonométriques, logarithme, exponentielle, polynomiales et rationnelles sont dérivables sur leur ensemble de définition. Mais les fonctions valeur absolue et racine carrée ne sont pas dérivables en 0.

🌳 THÉORÈME 15.1 (définition équivalente)

f est dérivable en t_0 et $f'(t_0) = a \iff f(t) = f(t_0) + a(t - t_0) + (t - t_0)o(1)$

On dit alors que f admet un développement limité d'ordre 1 en t₀.

Preuve: En exercice.

Théorème généraux

THÉORÈME 15.2 (Dérivabilité et continuité)

Si f est dérivable en t_0 , alors f est continue en t_0 mais la réciproque est fausse.

Preuve: Il suffit d'appliquer la définition équivalente ci-dessus pour voir que $\lim f = f(t_0)$. Pour la réciproque, on a par exemple la fonction $t \mapsto |t|$ qui est continue en 0 mais non dérivable.

🌳 THÉORÈME 15.3 (Théorèmes généraux)

- − Si f et g sont dérivables sur I et si $\alpha \in \mathbb{R}$ alors les fonctions f + g, $f \times g$ et αf sont dérivables sur I avec les formules :

 - (f + g)' = f' + g'. $(f \times g)' = f' \times g + f \times g'.$
- Si f est dérivable sur I et **ne s'annule pas** alors $\frac{1}{f}$ est dérivable sur et $\left(\frac{1}{f}\right)' = \frac{-f'}{f^2}$. Si f est dérivable sur I et si g est dérivable sur J avec Im(f) ⊂ J, alors g ∘ f est dérivable sur
- $I \ et (g \circ f)' = f' \times [g' \circ f].$

Preuve: Les deux premiers points ne posent pas de difficultés, passons au troisième : soit $x_0 = f(t_0)$, posons :

$$h(x) = \begin{cases} \frac{g(x) - g(x_0)}{x - x_0} & \text{si } x \neq x_0 \\ g'(x_0) & \text{si } x = x_0 \end{cases}$$

alors h est continue en x_0 et pour $t \neq t_0$ on a : $\frac{g(f(t)) - g(f(t_0))}{t - t_0} = h[f(t)] \times \frac{f(t) - f(t_0)}{t - t_0}$, même si $f(t) = f(t_0)$, comme f est continue en t_0 , on a : $\lim_{t \to t_0} \frac{g(f(t)) - g(f(t_0))}{t - t_0} = h(x_0) \times f'(t_0) = f'(t_0) \times g'(f(t_0))$.

Du troisième point découlent les formules de dérivation usuelles :

Fonction	Dérivée
sin(u)	$u'\cos(u)$
cos(u)	$-u'\sin(u)$
tan(u)	$u'(1 + \tan(u)^2) = \frac{u'}{\cos(u)^2}$
sh(u)	$u'\operatorname{ch}(u)$
ch(u)	$u' \operatorname{sh}(u)$
th(u)	$u'(1 - \operatorname{th}(u)^2) = \frac{u'}{\operatorname{ch}(u)^2}$
e^u	u'e ^u
ln(u)	<u>u'</u> u
u^{α}	$\alpha u'u^{\alpha-1}$

Il découle des théorèmes généraux que pour les opérations usuelles sur les fonctions $\mathscr{D}(I,\mathbb{R})$ est un anneau et un \mathbb{R} -espace vectoriel.

Exercices:

- Fixes.

 Étudier la dérivabilité de : $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$
- Étudier la dérivabilité de : $f(x) = |x \ln(|x|)|$.

Dérivabilité à gauche et à droite

DÉFINITION 15.2

Soit $f: I \to \mathbb{R}$ une fonction, et soit $t_0 \in I$:

- Si $t_0 \neq \inf(I)$: on dit que f est dérivable à gauche en t_0 lorsque le taux d'accroissement de fa une limite finie à gauche en t_0 . Si c'est le cas, cette limite est notée $f_g'(t_0)$ et la demi-droite

a une limite finie à gauche en
$$t_0$$
. Si c'est le cas, cette limite est notée $f_g'(t_0)$ et la demi-droite d'équation
$$\begin{cases} y = f_g'(t_0)(x - t_0) + f(t_0) \\ x \le t_0 \end{cases}$$
, est appelée demi-tangente à la courbe au point d'abscisse t_0

- $Si \ t_0 \neq \sup(I)$: on dit que f est dérivable à droite en t_0 lorsque le taux d'accroissement de fa une limite finie à droite en t_0 . Si c'est le cas, cette limite est notée $f_d'(t_0)$ et la demi-droite

$$d'équation \begin{cases} y = f_d'(t_0)(x-t_0) + f(t_0) \\ x \geqslant t_0 \end{cases} , \text{ est appelée demi-tangente à la courbe au point } d'abscisse t_0.$$

Exemples:

- La fonction valeur absolue est dérivable à gauche en 0, et $f_g'(0) = -1$, elle est dérivable à droite en 0 et $f_d'(0) = 1$, mais elle n'est pas dérivable en 0 car $-1 \neq 1$, on dit que le point de la courbe d'abscisse 0 est **un** point anguleux.
- La fonction $f(t) = \sqrt{|t|}$ n'est pas dérivable en 0, le taux d'accroissement tend vers +∞ en 0⁺ et vers -∞ en 0⁻, on dit que le point de la courbe d'abscisse 0 est un point de rebroussement de première espèce.

√ THÉORÈME 15.4

Soit t_0 un point intérieur à I, f est dérivable en t_0 ssi f est dérivable à gauche et à droite en t_0 avec $f_g'(t_0) = f_d'(t_0).$

Preuve: Cela découle des propriétés des limites.

Dérivée d'une bijection réciproque

`**⊘**-THÉORÈME 15.5

 $Si\ f:I\to\mathbb{R}$ est une fonction continue strictement monotone, alors f induit une bijection de I sur $J=\operatorname{Im}(f)$. Soit $y_0=f(t_0)\in J$ $(t_0\in I)$, si f est dérivable en t_0 et si $f'(t_0)\neq 0$, alors la bijection réciproque, ϕ , est dérivable en y_0 et $\phi'(y_0)=\frac{1}{f'(t_0)}=\frac{1}{f'\circ\phi(y_0)}$. Si f est dérivable en t_0 et $f'(t_0)=0$, alors ϕ n'est pas dérivable en y_0 mais la courbe représentative de ϕ admet une tangente verticale au point d'abscisse y_0 .

Preuve: Soit $t_0 \in I$ et $y_0 = f(t_0)$, pour $y \in J \setminus \{y_0\}$, on a $\frac{\phi(y) - \phi(y_0)}{y - y_0} = \frac{t - t_0}{f(t) - f(t_0)}$ en posant $t = \phi(y)$, ϕ étant continue, lorsque $y \to y_0$, on a $t \to t_0$ et donc $\frac{t - t_0}{f(t) - f(t_0)} \to \frac{1}{f'(t_0)}$ car $f'(t_0) \neq 0$. Ce qui prouve le premier résultat. Si $f'(t_0) = 0$, comme f est monotone la fraction $\frac{t - t_0}{f(t) - f(t_0)}$ garde un signe constant, donc sa limite lorsque $y \to y_0$

est infinie, ce qui prouve le second résultat.

Si $f:I\to J$ est bijective, continue, dérivable et si f' ne s'annule pas sur I, alors d'après le théorème précédent, f^{-1} est dérivable sur J et on a la formule :

$$\left(f^{-1}\right)' = \frac{1}{f' \circ f^{-1}}.$$

– Si f n'est pas dérivable en t_0 mais si sa courbe a une tangente verticale en ce point, alors f^{-1} est dérivable en $y_0 = f(t_0)$ et $f^{-1'}(y_0) = 0$ (car le taux d'accroissement de f en t_0 a une limite infinie en

Exemples:

- La fonction ln :]0;+∞[→ ℝ est une fonction continue, strictement croissante, dérivable et sa dérivée ne s'annule pas. Sa bijection réciproque, la fonction exponentielle, est donc dérivable sur $\mathbb R$ et :

$$\forall x \in \mathbb{R}, \exp(x)' = \frac{1}{\ln' \circ \exp(x)} = \exp(x).$$

- La fonction $f: \left[-\frac{\pi}{2}; \frac{\pi}{2}\right] \to \left[-1; 1\right]$ définie par $f(x) = \sin(x)$ est bijective, continue, dérivable et sa dérivée $(f'(x) = \cos(x))$ ne s'annule pas sur $]-\frac{\pi}{2}; \frac{\pi}{2}[$, donc la bijection réciproque arcsin, est dérivable sur]-1;1[

$$\arcsin'(x) = \frac{1}{f'(\arcsin(x))} = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\sqrt{1 - x^2}}.$$

- La fonction $f:[0;\pi]$ → [-1;1] définie par $f(x)=\cos(x)$ est bijective, continue, dérivable et sa dérivée $(f'(x) = -\sin(x))$ ne s'annule pas sur $]0; \pi[$, donc la bijection réciproque arccos, est dérivable sur]-1;1[et :

$$\arccos'(x) = \frac{1}{f'(\arccos(x))} = \frac{-1}{\sin(\arccos(x))} = \frac{-1}{\sqrt{1-x^2}}.$$

Par contre la fonction arccos n'est pas dérivable en ± 1 (une tangente verticale en ces points).

- La fonction $f:]-\pi/2; \pi/2[\to \mathbb{R}$ définie par $f(x) = \tan(x)$ est bijective, continue, dérivable et sa dérivée $(f'(x) = 1 + \tan(x)^2)$ ne s'annule pas, donc la bijection réciproque arctan, est dérivable sur \mathbb{R} et :

$$\arctan'(x) = \frac{1}{f'(\arctan(x))} = \frac{1}{1 + \tan^2(\arctan(x))} = \frac{1}{1 + x^2}.$$

Applications de la dérivation II)

Théorème de Rolle

Proposition: Soit $f:[a;b] \to \mathbb{R}$ dérivable sur]a;b[et soit $t_0 \in]a;b[$. Si f admet un extremum local en t_0 , alors $f'(t_0) = 0$, mais la réciproque est fausse.

Preuve: Supposons que f présente un maximum local en t_0 , alors à gauche en t_0 on a $\frac{f(t)-f(t_0)}{t-t_0} \geqslant 0$, d'où par passage à la limite en $t_0: f'(t_0) \ge 0$. À droite en t_0 on a : $\frac{f(t)-f(t_0)}{t-t_0} \le 0$, d'où par passage à la limite en $t_0: f'(t_0) \le 0$, par conséquent $f'(t_0) = 0$. Pour la réciproque il suffit de considérer la fonction $x \mapsto x^3$ en 0.

Dans la proposition ci-dessus, il est essentiel que t_0 ne soit pas une borne de l'intervalle. Par exemple la fonction f(t) = 1 + t admet un maximum sur [0;1] en $t_0 = 1$ mais $f'(t_0) \neq 0$.

 $^{-}$ THÉORÈME 15.6 (de Rolle 1)

Si $f : [a;b] \to \mathbb{R}$ est continue sur [a;b], dérivable sur]a;b[et si f(a) = f(b), alors il existe $c \in]a;b[,f'(c) = 0.$

Preuve: Si f est constante alors il n'y a rien à montrer. Si f n'est pas constante, Im(f) = [m; M] (f est continue sur le segment [a; b]) avec m < M. Supposons $f(a) \neq M$, alors $f(b) \neq M$ or il existe $c \in [a; b]$ tel que f(c) = M donc $c \in]a; b[$, d'après la proposition précédente (maximum global en c) on a f'(c) = 0. Si f(a) = M alors $f(a) \neq m$ et le même raisonnement s'applique avec le minimum.

Remarques:

- Ce théorème est faux si f n'est pas continue en a ou en b (prendre f(x) = x sur [0; 1[et f(1) = 0)).
- Ce théorème est faux si f est à valeurs complexes, par exemple $f(t) = e^{it}$, on a $f(0) = f(2\pi)$ mais $f'(t) = ie^{it}$ ne s'annule jamais.

Exercice: Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction dérivable qui admet n racines distinctes, alors f' admet au moins n-1 racines distinctes.

Réponse: Il suffit d'appliquer le théorème de *Rolle* à la fonction f entre deux racines consécutives. On montre ainsi qu'entre deux racines de f il y a toujours une racine de f'.

2) Les accroissements finis

THÉORÈME 15.7 (égalité de accroissements finis)

 $Sif: [a;b] \to \mathbb{R}$ est continue sur[a;b] et dérivable sur[a;b] alors :

$$\exists c \in]a; b[, f(b) - f(a) = (b - a)f'(c).$$

Preuve: Soit $\phi(t) = t (f(b) - f(a)) - (b - a)f(t)$, la fonction ϕ est continue sur [a; b] et dérivable sur [a; b], de plus $\phi(a) = af(b) - bf(a) = \phi(b)$, d'après le théorème de *Rolle*, il existe $c \in]a; b[$ tel que $\phi'(c) = 0$, ce qui donne la relation.

Remarques:

− De même, si f et g sont continues sur [a;b] et dérivables sur]a;b[, il existe $c\in]a;b[$ tel que :

$$(f(b)-f(a))g'(c) = (g(b)-g(a))f'(c).$$

- L'égalité s'écrit aussi : $f'(c) = \frac{f(b)-f(a)}{b-a}$, ce qui signifie géométriquement qu'il existe un point de la courbe (d'abscisse c) où la tangente est parallèle à la corde définie par le point d'abscisse a et le point d'abscisse b.
- Autre preuve : soit g la fonction affine prenant la même valeur que f en a et b, $g(x) = \frac{f(b)-f(a)}{b-a}(x-a)+f(a)$. On a f(a) g(a) = f(b) g(b), d'après le théorème de Rolle il existe c ∈]a; b [tel que f'(c) = g'(c) ce qui donne $f'(c) = \frac{f(b)-f(a)}{b-a}$.

^{1.} ROLLE Michel (1652 - 1719): mathématicien français.

√THÉORÈME 15.8 (inégalité des accroissements finis)

 $Sif: [a;b] \to \mathbb{R}$ est continue sur[a;b], dérivable sur[a;b] et s'il existe deux réels m et M tels $que: \forall x \in]a; b[, m \leq f'(x) \leq M$, alors:

$$m(b-a) \le f(b) - f(a) \le M(b-a)$$
.

Preuve: Celle-ci découle directement de l'égalité des accroissement finis.

Remarque: Si $\forall t \in]a; b[, |f'(t)| \leq M$, alors $|f(b) - f(a)| \leq M(b - a)$, et plus généralement :

 $\forall x, y \in [a; b], |f(x) - f(y)| \le M|x - y|$, la fonction f est M-lipschitzienne.

Exemple: Pour tout x, y de $[1; +\infty[$, on a $|\sqrt{x} - \sqrt{y}| \le \frac{1}{2}|x - y|$. $\forall x > 0, \frac{1}{x+1} \le \ln(x+1) - \ln(x) \le \frac{1}{x}$.

THÉORÈME 15.9 (limite de la dérivée)

Soit $f : [a;b] \to \mathbb{R}$ une fonction continue sur [a;b] et dérivable sur [a;b[. Si f' admet une limite ℓ en b, alors :

- Si ℓ ∈ \mathbb{R} alors f est dérivable en b et $f'(b) = \ell$.
- Si $\ell = \pm \infty$ alors f n'est pas dérivable en b, mais il y a une tangente verticale pour la courbe réprésentative.

Preuve: D'après l'égalité des accroissements finis, pour $t \in [a; b[$, il existe $c_t \in]t; b[$ tel que $f(b) - f(t) = (b - t)f'(c_t) = (b - t)f'(c_t)$, d'où $\frac{f(t) - f(b)}{t - b} = f'(c_t)$, mais si t tend vers b, alors c_t tend vers b et donc $f'(c_t)$ tend vers ℓ , d'où : $\lim_{t \to b} \frac{f(t) - f(b)}{t - b} = \ell$, ce qui termine la preuve. \Box

Remarque: On a un résultat analogue pour $f:[a;b] \to \mathbb{R}$ continue sur [a;b], dérivable sur [a;b], avec $\lim_{t\to a} f'(t) = \ell$.

Exemple: La fonction arcsin est dérivable sur]-1;1[et $\arcsin'(x)=\frac{1}{\sqrt{1-x^2}},$ cette dérivée a pour limite $+\infty$ quand $x\to 1$. On retrouve ainsi que arcsin n'est pas dérivable en 1 et qu'il y a une tangente verticale en ce point pour la courbe.

3) Sens de variation

THÉORÈME 15.10

Soit $f: I \to \mathbb{R}$ une fonction continue sur l'intervalle I, et dérivable sur I privé des ses bornes (noté I, intérieur de I), on a les résultats suivants :

- f est croissante si et seulement si \forall t ∈ \mathring{I} , $f'(t) \ge 0$.
- f est décroissante si et seulement si \forall t ∈ $\stackrel{\circ}{I}$, $f'(t) \leq 0$.
- f est constante si et seulement si \forall $t \in \overset{\circ}{I}, f'(t) = 0$.
- f est strictement croissante si et seulement si \forall $t \in \mathring{I}, f'(t) \geqslant 0$ et il n'existe aucun intervalle ouvert non vide inclus dans I sur lequel f' est constamment nulle.
- f est strictement décroissante si et seulement si \forall t ∈ I, $f'(t) \leq 0$ et il n'existe aucun intervalle ouvert non vide inclus dans I sur lequel f' est constamment nulle.

Preuve: Si f est croissante sur I, soit $t_0 \in I$, le taux d'accroissement de f en t_0 est toujours positif, donc par passage à la limite, on a $f'(t_0) \geqslant 0$. Réciproquement, si $f' \geqslant 0$ sur I, soit I soit I deux éléments de I, d'après l'égalité des accroissements finis, il existe I comprisement I et I sufficement tel que I constante. Pour I décroissante on applique ce qui précède à I pour I constante, il suffit de dire que I est à la fois croissante et décroissante.

Si f est strictement croissante, alors on sait que $f' \ge 0$ sur I. Si f' est nulle sur un intervalle $J \subset I$, alors f est constante sur J, ce qui est absurde. Réciproquement, si $\forall t \in I$, $f'(t) \ge 0$ et il n'existe aucun intervalle ouvert non vide inclus dans I sur lequel f' est constamment nulle, soit t < t' deux éléments de I, on sait que $f(t) \le f(t')$, si on avait f(t) = f(t') alors $\forall c \in [t; t'], f(t) = f(c) = f(t')$, donc f est constante sur [t; t'], ce qui entraîne que f' est nulle sur [t; t']: absurde, donc f(t) < f(t') i.e. f est strictement croissante.

Ce théorème est faux si I n'est pas intervalle, par exemple la fonction $f(t) = \frac{1}{t}$ est dérivable sur \mathbb{R}^* avec f' < 0, mais f n'est pas monotone sur \mathbb{R}^* .

Étude d'une fonction III)

Ensemble de définition, ensemble d'étude

- \mathcal{D}_f est l'ensemble des réels de l'ensemble de départ ayant une image par f .
- Si \mathcal{D}_f est symétrique par rapport à un réel a, il se peut que la courbe de f présente une symétrie :
 - un axe d'équation x = a lorsque $\forall x \in \mathcal{D}_f, f(2a x) = f(x)$.
 - un centre de symétrie de coordonnées (a, b) lorsque $\forall x \in \mathcal{D}_f, f(2a x) = 2b f(x)$. Dans les deux cas, on peut restreindre l'étude à $\mathcal{D}_f \cap [a; +\infty[$.
- S'il existe un réel T > 0 tel que : $\forall x \in \mathcal{D}_f, x \pm T \in \mathcal{D}_f, f(x + T) = f(x)$, alors f est T-périodique. On peut restreindre l'étude à un intervalle de longueur une période : $\mathcal{D}_f \cap [a; a+T[$ (a peut être quelconque), on complète ensuite la courbe avec les translations de vecteurs $nT \overrightarrow{\iota}$, $n \in \mathbb{Z}$.

Prolongements éventuels aux bords

Il se peut que f admette un prolongement par continuité aux bornes (finies) de \mathcal{D}_f . C'est un calcul de limite, si celle-ci existe dans R, alors il y a un prolongement. Si celle-ci est infinie, alors il y a une asymptote verticale.

S'il y a un prolongement, on étudie la fonction prolongée, ce qui change l'ensemble de définition.

Continuité, dérivabilité

- On cherche à appliquer les théorèmes généraux, pour cela il faut regarder comment est faite la fonction (somme, produit, composée...).
- Il reste parfois des points où ces théorèmes ne s'appliquent pas, on étudie alors la continuité en revenant à la définition (calcul de limite). S'il y a continuité, alors on étudie s'il y a dérivabilité en ce même point, il y a plusieurs méthodes : le théorème sur la limite de la dérivée, ou la définition.

Sens de variation

On rappelle que le théorème qui donne le sens de variation en fonction du signe de la dérivée, n'est valable que sur un intervalle.

- On peut parfois éviter l'étude du signe de la dérivée : sens de variation d'une somme, d'une composée, d'un produit... Par exemple, les fonctions ln(u), \sqrt{u} , e^u ont le même sens de variation que u.
- Lorsqu'on ne peut pas faire autrement, on étudie le signe de la dérivée (sur un intervalle).
- Les résultats sont consignés dans le tableau des variations, où doivent figurer :
 - l'ensemble d'étude,
 - les valeurs particulières qui sont intervenues dans l'étude de la continuité, la dérivabilité et l'étude du signe de la dérivée,
 - le signe de la dérivée (si on est passé par là),
 - les limites aux bornes de l'ensemble d'étude.

Étude des branches infinies

 \mathcal{C}_f désigne la courbe de f dans un repère orthogonal.

- Si x_0 est un réel de \mathcal{D}_f ou une borne et si f a une limite infinie en x_0 , alors on dit que \mathscr{C}_f admet une asymptote verticale d'équation $x = x_0$.
- Si ∞ est une borne de \mathscr{D}_f , et si $\lim_{\longrightarrow} f = \ell \in \mathbb{R}$, alors on dit que \mathscr{C}_f admet une asymptote horizontale d'équation $y = \ell$.
- Si ∞ est une borne de \mathcal{D}_f , et si $\lim_{\infty} f = \infty$, alors on étudie le rapport $\frac{f(x)}{x}$:

- Si $\lim_{x \to \infty} \frac{f(x)}{x} = \infty$: on dit que \mathscr{C}_f admet une branche parabolique dans ladirection de l'axe Oy, exemple : $f(x) = e^x$ en $+\infty$.
- Si $\lim_{x \to \infty} \frac{f(x)}{x} = 0$: on dit que \mathscr{C}_f admet une branche parabolique dans la direction de l'axe Ox, exemple : $f(x) = \ln(x)$ en $+\infty$.
- Si $\frac{f(x)}{x}$ n'a pas de limite en ∞, alors on ne dit rien, exemple : $f(x) = x(2 + \sin(x))$ en +∞.
- Si $\lim_{x \to \infty} \frac{f(x)}{x} = a \in \mathbb{R}^*$: alors on étudie la différence f(x) ax:
 - Si $\lim_{t \to a} f(x) ax = b \in \mathbb{R}$: alors on dit que \mathscr{C}_f admet une asymptote d'équation y = ax + b, ce qui équivaut à $\lim_{x \to a} f(x) - ax - b = 0$. La position courbe-asymptote se détermine en étudiant le signe de l'expression f(x) - ax - b, exemple : $f(x) = \frac{x^2 + x + 1}{x + 2}$ en $+\infty$. - Si $\lim_{x \to \infty} f(x) - ax = \infty$: alors on dit que \mathscr{C}_f admet une branche parabolique dans la direction
 - y = ax, exemple : $f(x) = x + \ln(x)$ en $+\infty$.
 - Si f(x) ax n'a pas de limite en ∞ : alors on dit que \mathscr{C}_f admet une branche infinie dans la direction asymptotique y = ax, exemple : $f(x) = x + \sin(x)$ en $+\infty$.

PDÉFINITION 15.3

Si f et g sont deux fonctions définies au voisinage de ∞ , on dit que \mathscr{C}_f et \mathscr{C}_g sont asymptotes en ∞ lorsque $\lim_{x \to \infty} f(x) - g(x) = 0$.

Représentation graphique

- On commence par placer: les asymptotes, les tangentes remarquables, les points particuliers (anguleux, de rebroussement, d'intersection avec les axes...),
- On donne ensuite l'allure de la courbe d'après le tableau de variation. Il est parfois nécessaire d'étudier la position de la courbe par rapport à certaines tangentes ou asymptotes.

Dérivées successives IV)

Classe d'une application

DÉFINITION 15.4

Soit $f: I \to \mathbb{R}$ une fonction et soit $n \in \mathbb{N}^*$. On dit que f est de classe \mathscr{C}^n sur I lorsque f est n fois dérivable sur I et que la dérivée n-ième de f est continue sur I. L'ensemble des fonctions de classe \mathscr{C}^n sur I est noté $\mathscr{C}^n(I,\mathbb{R})$. La dérivée n-ième de f est notée $f^{(n)}$ où $\frac{d^n f}{dt^n}$. Par convention, on pose $f^{(0)} = f$, on a alors $\forall n \in \mathbb{N}, f^{(n+1)} = (f^{(n)})'$.

Remarques:

- $\mathcal{C}^{n+1}(I,\mathbb{R}) \subset \mathcal{C}^n(I,\mathbb{R}).$
- Si $f \in \mathcal{C}^n(I,\mathbb{R})$ avec $n \ge 1$, alors $\forall k \in \llbracket 0..n \rrbracket, f^{(k)} \in \mathcal{C}^{n-k}(I,\mathbb{R})$.

Exemples:

- $\forall n \in \mathbb{N}, f(t) = \frac{1}{t} \text{ est de classe } \mathscr{C}^n \text{ sur } \mathbb{R}^* \text{ et pour } n \geqslant 0, f^{(n)}(t) = \frac{(-1)^n n!}{t^{n+1}}.$
- $\forall n \in \mathbb{N}, f(t) = \ln(t)$ est de classe \mathscr{C}^n sur]0; +∞[et pour $n \ge 1, f^{(n)}(t) = \frac{(-1)^{n-1}(n-1)!}{t^n}$.
- \forall *n* ∈ N, les fonctions cos et sin sont de classe \mathscr{C}^n sur \mathbb{R} et $\cos^{(n)}(t) = \cos(t + n\pi/2)$, $\sin^{(n)}(t) = \sin(t + n\pi/2)$.

DÉFINITION 15.5

Lorsque f est de classe \mathscr{C}^n pour tout entier n, on dit que f est de classe \mathscr{C}^∞ , l'ensemble des ces fonctions est noté $\mathscr{C}^{\infty}(I,\mathbb{R})$, et on a donc $\mathscr{C}^{\infty}(I,\mathbb{R}) = \bigcap \mathscr{C}^{n}(I,\mathbb{R})$.

Remarques:

- $\forall n \in \mathbb{N}, \mathscr{C}^{\infty}(I, \mathbb{R}) \subset \mathscr{C}^{n}(I, \mathbb{R}).$
- Dire que f est \mathscr{C}^{∞} sur I revient à dire que f est dérivable autant de fois que l'on veut (infiniment dérivable), autrement dit $\mathscr{C}^{\infty}(I,\mathbb{R}) = \bigcap \mathscr{D}^n(I,\mathbb{R})$.

Exemples:

- Toute fonction polynomiale est \mathscr{C}^{∞} sur \mathbb{R} (car la dérivée d'un polynôme est un polynôme).
- Toute fonction rationnelle est \mathscr{C}^{∞} sur son ensemble de définition (car la dérivée d'une fonction rationnelle est une fonction rationnelle).
- Les fonctions ln, exp, cos, sin et tan sont \mathscr{C}^{∞} sur leur ensemble de définition.

Exercice: Étudier la classe sur \mathbb{R} de la fonction $f: x \mapsto x^2|x|$.

2) Formule de Leibniz

Si f et g sont de classe \mathscr{C}^n sur I alors :

- f + g est de classe \mathscr{C}^n sur I et $(f + g)^{(n)} = f^{(n)} + g^{(n)}$. $\forall \lambda \in \mathbb{R}$, λf est de classe \mathscr{C}^n sur I et $(\lambda f)^{(n)} = \lambda f^{(n)}$.
- $-f \times g$ est de classe \mathscr{C}^n sur I et on a la formule (de Leibniz): $(f \times g)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)} \times g^{(n-k)}$.

Preuve: Pour n=0 le théorème est vrai. Supposons le théorème démontré au rang $n \ge 0$ avec la formule de *Leibniz*, et supposons que f et g sont de classe \mathscr{C}^{n+1} . En particulier f et g sont \mathscr{C}^n , donc $f \times g$ aussi et $(f \times g)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)} \times g$ $g^{(n-k)}$, on en déduit donc que $(f \times g)^{(n)}$ est dérivable sur I (somme de produits de fonctions dérivables) et sa dérivée est $(f \times g)^{(n+1)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k+1)} \times g^{(n-k)} + \sum_{k=0}^{n} \binom{n}{k} f^{(k)} \times g^{(n+1-k)}$, ce qui donne $f^{(n+1)} + g^{(n+1)} + \sum_{k=0}^{n} \binom{n}{k} + \binom{n}{k-1} f^{(k)} \times g^{(n-k)}$ $g^{(n+1-k)}$, c'est à dire $\sum_{k=0}^{n+1} {n+1 \choose k} f^{(k)} \times g^{(n+1-k)}$, ce qui donne la formule au rang n+1, de plus cette somme est une somme de fonctions continues, ce qui prouve que $f \times g$ est bien de classe \mathscr{C}^{n+1} sur I.

 $\forall n \in \mathbb{N} \cup \{+\infty\}, \mathscr{C}^n(I,\mathbb{R}) \text{ est un } \mathbb{R}\text{-espace vectoriel et un anneau.}$

Preuve: Cela découle du théorème précédent (s.e.v et sous-anneau de $\mathscr{F}(I,\mathbb{R})$).

Exercice: Calculer de deux façons la dérivée *n*-ième en 0 de la fonction $x \mapsto (1-x^2)^n$. Quelle relation obtient-on?

3) Classe d'une composée

-`<mark>@</mark>-THÉORÈME 15.13

Soient $f: I \to \mathbb{R}$ et $g: J \to \mathbb{R}$ deux fonctions de classe \mathscr{C}^n avec $\mathrm{Im}(f) \subset J$, alors $g \circ f$ est de classe \mathscr{C}^n sur I. En particulier, si f et g sont \mathscr{C}^∞ alors $g \circ f$ aussi.

Preuve: Le théorème est vrai pour n=0 (composée de deux fonctions continues), supposons le vrai au rang $n \ge 0$ et supposons f et g de classe \mathscr{C}^{n+1} , comme $n+1 \ge 1$, f et g sont dérivables, donc $g \circ f$ est dérivable avec la formule $(g \circ f)' = f' \times g' \circ f$, d'après l'hypothèse de récurrence, $g' \circ f$ est de classe \mathscr{C}^n (car g' et f sont de classe \mathscr{C}^n), or f'est également de classe \mathscr{C}^n , par conséquent $f' \times g' \circ f$ est de classe \mathscr{C}^n , ce qui signifie que $g \circ f$ est de classe \mathscr{C}^{n+1} . \square

Remarques:

- Il existe une formule qui exprime $(g \circ f)'$ en fonction des dérivées de f et de g, mais ce n'est pas une formule
- La fonction inverse $g: x \mapsto 1/x$ est \mathscr{C}^{∞} sur \mathbb{R}^* , si $f: I \to \mathbb{R}$ est une fonction de classe \mathscr{C}^n qui ne s'annule, alors la composée, i.e. la fonction $\frac{1}{f}$, est de classe \mathscr{C}^n (même si $n = \infty$).
- On retrouve donc les mêmes théorèmes généraux que pour la continuité et la dérivabilité.

Classe d'une réciproque

-`^THÉORÈME 15.14

Soit $f: I \to J$ une bijection de I sur J = Im(f), de classe \mathscr{C}^n avec $n \in \mathbb{N}^* \cup \{\infty\}$. Si f' ne s'annule pas sur I, alors la bijection réciproque f^{-1} est de classe \mathscr{C}^n sur J (i.e. de même classe que f).

Preuve: On sait déjà que f^{-1} est dérivable sur J et que $(f^{-1})' = \frac{1}{f' \circ f^{-1}}$, on voit alors que f^{-1} est de classe \mathscr{C}^1 sur J, le théorème est donc vrai pour n = 1, supposons le vrai au rang $n \ge 1$ et supposons que f est \mathcal{C}^{n+1} , par hypothèse de récurrence f^{-1} est de classe \mathscr{C}^n , mais alors $f' \circ f^{-1}$ est une fonction de classe \mathscr{C}^n qui ne s'annule pas, donc son inverse est de classe \mathscr{C}^n , i.e. $(f^{-1})'$ est \mathscr{C}^n , ce qui signifie que f^{-1} est de classe \mathscr{C}^{n+1} sur J.

Exemples:

- Les fonctions arcsin et arccos sont de classe \mathscr{C}^{∞} sur] 1; 1[.
- La fonction arctan est de classe \mathscr{C}^{∞} sur \mathbb{R} .

Extension aux fonctions à valeurs complexes

1) Définition

Celle-ci a déjà été donnée dans le chapitre sur les équations différentielles, rappelons la cependant :

ØDéfinition 15.6

Soit $f: I \to \mathbb{C}$ une fonction, soit u = Re(f) et v = Im(f), on dira que f est dérivable en $t_0 \in I$ lorsque u et v sont dérivables en t_0 . Si tel est le cas, on pose $f'(t_0) = u'(t_0) + iv'(t_0)$. On a alors $\operatorname{Re}(f') = \operatorname{Re}(f)'$ et $\operatorname{Im}(f') = \operatorname{Im}(f)'$. L'ensemble des fonctions dérivables sur I est noté $\mathfrak{D}(I,\mathbb{C})$.

2) Propriétés

- THÉORÈME 15.15 (caractérisation)

La fonction $f: I \to \mathbb{C}$ est dérivable en $t_0 \in I$ ssi la fonction $t \mapsto \frac{f(t) - f(t_0)}{t - t_0}$ définie sur $I \setminus \{t_0\}$ admet une limite finie (dans \mathbb{C}) en t_0 . Si celle-ci existe, elle est égale à $f'(t_0)$

Preuve: Il suffit d'écrire que :

$$\frac{f(t) - f(t_0)}{t - t_0} = \frac{u(t) - u(t_0)}{t - t_0} + i \frac{v(t) - v(t_0)}{t - t_0}$$

avec u = Re(f) et v = Im(f).

Comme dans la définition on se ramène aux fonctions à valeurs réelles, on peut déduire les propriétés des fonctions dérivables à valeurs complexes :

- On retrouve les mêmes théorèmes généraux, à savoir :
 - Toute fonction $f: I \to \mathbb{C}$ dérivable est continue (réciproque fausse).
 - Si $f, g: I \to \mathbb{C}$ sont dérivables, alors f + g, $f \times g$ et λf ($\lambda \in \mathbb{C}$) sont dérivables avec les formules : $(f+g)' = f' + g', (f \times g)' = f' \times g + f \times g', (\lambda f)' = \lambda f'.$
 - Si $g:I\to\mathbb{C}$ est dérivable et ne s'annule pas, alors 1/g est dérivable sur I et $(\frac{1}{g})'=-\frac{g'}{g^2}$. On en déduit que si f est également dérivable sur I alors $\left(\frac{f}{g}\right)' = \frac{f' \times g - f \times g'}{g^2}$. - Si $f: I \to \mathbb{R}$ et $g: J \to \mathbb{C}$ sont dérivables avec $\mathrm{Im}(f) \subset J$, alors $g \circ f$ est dérivable sur I et
 - $(g \circ f)' = f' \times g' \circ f$.
- Cependant, le théorème de Rolle n'est plus valable, par exemple la fonction $f(t) = \exp(it)$ est dérivable sur \mathbb{R} et $f'(t) = i \exp(it)$, on a $f(0) = f(2\pi)$ mais f' ne s'annule pas. Par conséquent l'égalité des accroissements finis n'est plus valable non plus, mais on conserve les inégalités.

THÉORÈME 15.16 (inégalité des accroissements finis généralisée)

Si $f: I \to \mathbb{C}$ est continue sur [a; b], dérivable sur]a; b[et si $\forall t \in]a; b[, |f'(t)| \leq g'(t)$ où $g:[a;b] \to \mathbb{R}$ est une fonction continue sur [a;b] et dérivable sur [a;b], alors :

$$|f(b) - f(a)| \le |g(b) - g(a)|.$$

Remarques:

- Si $\forall t \in]a; b[,|f'(t)| \leq M$, alors en prenant la fonction g(t) = Mt, et en appliquant le théorème ci-dessus, on obtient:

$$|f(b) - f(a)| \le M|b - a|.$$

- Sous les mêmes hypothèses du théorème, on a $\forall x, y \in [a; b], |f(x) - f(y)| \le |g(x) - g(y)|$.

Exemple: Avec $f(t) = \exp(\alpha t)$ où $\alpha = a + ib \in \mathbb{C}$ avec $a \neq 0$, on a $|f'(t)| = |\alpha| \exp(\alpha t) = g'(t)$, par conséquent :

$$\forall t, t' \in \mathbb{R}, |\exp(\alpha t) - \exp(\alpha t')| \leq \frac{|\alpha|}{|\alpha|} |\exp(\alpha t) - \exp(\alpha t')|.$$

Classe d'une fonction

On donne la même définition avec les mêmes notations que pour les fonctions à valeurs réelles, à savoir : $f: I \to \mathbb{C}$ est de classe \mathscr{C}^n ssi f est n fois dérivable et $f^{(n)}$ est continue sur I, ce qui revient à dire que les parties réelle et imaginaire de f sont de classe \mathscr{C}^n . L'ensemble des fonctions de classe \mathscr{C}^n sur I est noté $\mathscr{C}^n(I,\mathbb{C})$, et on pose $\mathscr{C}^\infty(I,\mathbb{C}) = \bigcap \mathscr{C}^n(I,\mathbb{C})$: ensemble des fonctions de classe \mathscr{C}^∞ .

On retrouve les mêmes théorèmes généraux : $\mathscr{C}^n(I,\mathbb{C})$ est une \mathbb{C} -algèbre $(n \in \mathbb{N} \cup \{\infty\})$. La formule de *Leibniz* reste valable, et la composée de deux fonctions de classe \mathscr{C}^n est également de classe \mathscr{C}^n . **Exercice**: Soit $f(t) = \cos(t) \exp(t\sqrt{3})$, calculer $f^{(n)}(t)$.

Réponse: On a f(t) = Re(g(t)) avec $g(t) = \exp(t(i+\sqrt{3})) = \exp(\alpha t)$ en posant $\alpha = \sqrt{3} + i = 2\exp(i\pi/6)$. On a donc $g^{(n)}(t) = \alpha^n \exp(\alpha t)$ et $f(t) = \operatorname{Re}(\alpha^n \exp(\alpha t)) = 2^n \cos(t + n\pi/6) \exp(t\sqrt{3})$.

Exercices VI)

★Exercice 15.1

Soit f une fonction dérivable en a, calculer : $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$.

★Exercice 15.2

Soit f une fonction continue sur [a; b] et dérivable sur [a; b]. Montrer qu'il existe $c \in]a; b[$ tel que l'aire algébrique du triangle formé par A(a, f(a)), B(b, f(b)), C(c, f(c)) soit maximale ou minimale. Quelle particularité la tangente à la courbe de f a-t'elle en ce point?

On considère la fonction $f(x) = x^n(1-x)^n$ sur [0;1]; Montrer que la dérivée *n*-ième de *f* s'annule au moins n fois dans]0;1[.

★Exercice 15.4

Soit $f: \mathbb{R} \to \mathbb{R}$ dérivable et telle que $f^2 + (1 + f')^2 \le 1$. Montrer que f est nulle.

★Exercice 15.5

Soit f une fonction continue sur [a; b] et n fois dérivable sur [a; b[, on suppose que f s'annule en *n* points : $x_1, ..., x_n$ ($n \ge 1$). Montrer que $\forall x \in [a; b], \exists c_x \in]a; b[$ tel que :

$$f(x) = \frac{(x - x_1) \cdots (x - x_n)}{n!} f^{(n)}(c_x).$$

★Exercice 15.6

Soit f une fonction de classe \mathscr{C}^2 sur [a;b].

a) Montrer que $\forall x \in [a; b], \exists c_x \in]a; b[$ tel que :

$$f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a) = \frac{(x - a)(x - b)}{2}f''(c_x).$$

Donner une interprétation graphique lorsque $f'' \ge 0$.

b) Soit g une autre fonction de classe \mathscr{C}^2 sur [a;b] et telle que f(a)=g(a),g(b)=f(b). On suppose en outre que $\forall x \in [a;b], f''(x) \leq g''(x)$, montrer que $\forall x \in [a;b], g(x) \leq f(x)$.

★Exercice 15.7

Soit f une fonction de classe \mathscr{C}^1 sur [a;b] et deux fois dérivable sur]a;b[.

- a) On suppose que $f'' \ge 0$ sur a; b. Montrer qu'en tout point de a; b la courbe de f est au-dessus de la tangente (on dit que f est convexe).
- b) Réciproquement, montrer que si en tout point de [a;b] la courbe de f est au-dessus de la tangente, alors $f'' \ge 0$ (on cherchera à montrer que f' est croissante).

★Exercice 15.8

- a) Soit f de classe \mathscr{C}^1 sur [a;b] et deux fois dérivable sur]a;b[, soit $x\in [a;b]$ et h>0 avec $x+2h\in [a;b]$, montrer qu'il existe $\theta\in]0;1[$ tel que $f(x)-2f(x+h)+f(x+2h)=h^2f''(x+2\theta h).$
- b) Soit f de classe \mathscr{C}^3 au voisinage de $a \in \mathbb{R}$, calculer :

$$\lim_{h \to 0} \frac{f(a+3h) - 3f(a+2h) + 3f(a+h) - f(a)}{h^3}.$$

★Exercice 15.9

Théorème de Rolle à l'infini:

- a) Soit $f:[a;+\infty[\to\mathbb{R}]$ une fonction continue, dérivable sur $]a;+\infty[$ telle que $f(a)=\lim_{x\to+\infty}f(x)$. Montrer qu'il existe c>a tel que f'(c)=0.
- b) Si f est dérivable sur $\mathbb R$ avec $\lim_{-\infty} f = \lim_{+\infty} f$, montrer qu'il existe $c \in \mathbb R$ tel que f'(c) = 0.

★Exercice 15.10

Soit f une fonction n fois dérivable sur un intervalle I, calculer la dérivée n-ième de la fonction $g_n(x) = x^{n-1} f(1/x)$. Appliquer le résultat aux fonctions : $f(x) = \exp(x)$ et $f(x) = \ln(1+x)$.

★Exercice 15.11

- a) Montrer que la fonction f définie par : $f(x) = \begin{cases} \exp(-1/x^2) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ est de classe \mathscr{C}^{∞} sur
- b) Calculer la dérivée *n*-ième de la fonction $f(x) = \sin(x) \exp(x\sqrt{3})$.
- c) Calculer la dérivée *n*-ième sur $\mathbb{R} \setminus \{\pm 1\}$ de la fonction $f(x) = \frac{2x}{1-x^2}$.
- d) Soit $f(x) = (x^2 1)^n$, en calculant $f^{(n)}(0)$ de deux façons, simplifier $\sum_{k=0}^{n} (-1)^k {n \choose k}^2$.

★Exercice 15.12

Théorème de Darboux:

- a) Soit f une fonction continue et dérivable sur I, on suppose qu'il existe $a, b \in I$ tels que f'(a)f'(b) < 0. Montrer que f' s'annule.
- b) Soit f une fonction continue et dérivable sur I, soient $\alpha, \beta \in \text{Im}(f')$ avec $\alpha < \beta$, montrer que pour tout réel $\gamma \in \alpha$; β [il existe un réel $\alpha \in \beta$ tel que α d' α et héorème ainsi démontré.

★Exercice 15.13

- a) Déterminer les fonctions f dérivables en 0 et telles que : $\forall x \in \mathbb{R}, f(2x) = 2f(x)$.
- b) Déterminer toutes les fonctions $f:[0;1] \to [0;1]$ dérivables et telles que $f \circ f = f$.

★Exercice 15.14

À l'aide des accroissements finis, étudier la nature des deux suites :

$$u_n = \sum_{k=1}^n \frac{1}{k}$$
 et $v_n = \sum_{k=2}^n \frac{1}{k \ln(k)}$.

On donnera un équivalent.

★Exercice 15.15

Étudier les fonctions : $f(x) = \left| 1 + \frac{1}{x} \right|^x$ $g(x) = (1 + \tan(x))^{\sin(x)}$ $h(x) = |x \ln(|x|)|$.

★Exercice 15.16

Montrer que $\forall x \in \mathbb{R}, \exists ! y \in \mathbb{R}, \int_{x}^{y} \exp(t^{2}) dt = 1$. On pose y = f(x). Faire l'étude complète de la fonction f, montrer que \mathscr{C}_{f} présente un axe de symétrie.