Mathematical language	Picture File language
A one line comment	NOTA bla, bla, bla
Measure $ 0\rangle\langle 0 $ at qubit 1	I I MO I
Measure $ 1\rangle\langle 1 $ at qubit 1	l M1 l
Measure both $ 0\rangle\langle 0 $ and $ 1\rangle\langle 1 $ at qubit 1	l l M l
New state is mixture.	
Loop named 5 with 2 repetitions	LOOP 5 REPS:2
Next iteration of loop named 5	NEXT 5
$E(1,0)^{\overline{n}(3)n(2)}$	0@>
$e^{i42.7\frac{\pi}{180}\overline{n}(3)n(2)}$	0@+Ph
$e^{i42.7\frac{\pi}{180}\overline{n}(3)n(2)}$	0P@
$e^{i42.7\frac{\pi}{180}}n(3)n(2)$	@P@
$\sigma_X(1)^{\overline{n}(3)n(2)}$	0@X I
$\sigma_Y(1)^{\overline{n}(3)n(2)}$	0@Y I
$\sigma_Z(1)^{\overline{n}(3)n(2)}$	0@Z
$H(1)^{\overline{n}(3)n(2)}$	О@Н
$(e^{\frac{i}{2}\frac{\pi}{180}23.7\sigma_X(1)})\overline{n}(3)n(2)$	0@Rx
$(e^{\frac{i}{2}\frac{\pi}{180}23.7\sigma_Y(1)})\overline{n}(3)n(2)$	0@Ry
$(e^{\frac{i}{2}\frac{\pi}{180}23.7\sigma_Z(1)})^{\overline{n}(3)n(2)}$	0@Rz
$ (e^{\frac{i}{2}\frac{\pi}{180}[30\sigma_X(1)+40\sigma_Y(1)+11\sigma_Z(1)]})\overline{n}(3)n(2) $	0@R
$e^{i\sum_{b1,b0}\theta_{b_1b_0}\sigma_Y(3)P_{b_1b_0}(2,1)}]^{n(0)}$	Ry(1(0@
$\theta_{00} = 30.0(\frac{\pi}{180})$	
where $\begin{cases} \theta_{00} = 30.0(\frac{\pi}{180}) \\ \theta_{01} = 10.5(\frac{\pi}{180}) \\ \theta_{10} = 11.0(\frac{\pi}{180}) \end{cases}$	
$\theta_{10} = 11.0(\frac{\pi}{180})$	•
$\theta_{11} = 83.1(\frac{\pi}{180})$	