Topologie des espaces normés

Ouverts et fermés

Exercice 1 [01103] [Correction]

Montrer que tout fermé peut s'écrire comme intersection d'une suite décroissante d'ouverts.

Exercice 2 [01104] [Correction]

On désigne par p_1 et p_2 les applications coordonnées de \mathbb{R}^2 définies par $p_i(x_1, x_2) = x_i$.

- a) Soit O un ouvert de \mathbb{R}^2 , montrer que $p_1(O)$ et $p_2(O)$ sont des ouverts de \mathbb{R} .
- b) Soit $H = \{(x, y) \in \mathbb{R}^2 \mid xy = 1\}$. Montrer que H est un fermé de \mathbb{R}^2 et que $p_1(H)$ et $p_2(H)$ ne sont pas des fermés de \mathbb{R} .
- c) Montrer que si F est fermé et que $p_2(F)$ est borné, alors $p_1(F)$ est fermé.

Exercice 3 [01105] [Correction]

Montrer que si un sous-espace vectoriel F d'un espace vectoriel normé E est ouvert alors F=E.

Exercice 4 [04076] [Correction]

Soient F une partie fermée non vide d'un espace normé E et $x \in E$. Montrer

$$d(x, F) = 0 \Leftrightarrow x \in F$$

Exercice 5 [01107] [Correction]

Soit E une espace vectoriel normé.

a) Soient F une partie fermée non vide de E et $x \in E$. Montrer

$$d(x, F) = 0 \Leftrightarrow x \in F$$

b) Soient F et G deux fermés non vides et disjoints de E.

Montrer qu'il existe deux ouverts U et V tels que

$$F \subset U, G \subset V \text{ et } U \cap V = \emptyset$$

Exercice 6 [01106] [Correction]

Soient A,B deux parties non vides d'un espace vectoriel normé E telles que

$$d(A,B) = \inf_{x \in A, y \in B} d(x,y) > 0$$

Montrer qu'il existe deux ouverts disjoints U et V tels que $A \subset U$ et $B \subset V$.

Exercice 7 [01108] [Correction]

On muni le \mathbb{R} -espace vectoriel des suites réelles bornées de la norme

$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$$

Déterminer si les sous-ensembles suivants sont fermés ou non :

 $A = \{\text{suites croissantes}\}, B = \{\text{suites convergeant vers 0}\},$

 $C = \{\text{suites convergentes}\},\$

 $D = \{\text{suites admettant 0 pour valeur d'adhérence}\}\ \text{et }E = \{\text{suites périodiques}\}.$

Exercice 8 [01110] [Correction]

On note $\mathbb{R}^{(\mathbb{N})}$ l'ensemble des suites réelles nulles à partir d'un certain rang.

- a) Montrer que $\mathbb{R}^{(\mathbb{N})}$ est un sous-espace vectoriel de l'espace $\mathcal{B}(\mathbb{N},\mathbb{R})$ des suites réelles bornées.
- b) $\mathcal{B}(\mathbb{N},\mathbb{R})$ étant normé par $\|\cdot\|_{\infty}$. Le sous-espace vectoriel $\mathbb{R}^{(\mathbb{N})}$ est-il une partie ouverte ? une partie fermée ?

Exercice 9 [02415] [Correction]

Soit A une partie non vide de \mathbb{R} telle que pour tout x réel il existe un et un seul $y \in A$ tel que |x - y| = d(x, A). Montrer que A est un intervalle fermé.

Exercice 10 [02770] [Correction]

On munit l'espace des suites bornées réelles $\mathcal{B}(\mathbb{N}, \mathbb{R})$ de la norme $\|u\|_{\infty} = \sup_{n} (|u_n|)$.

- a) Montrer que l'ensemble des suites convergentes est un fermé de $\mathcal{B}(\mathbb{N},\mathbb{R})$.
- b) Montrer que l'ensemble des suites (a_n) qui sont terme général d'une série absolument convergente n'est pas un fermé de $\mathcal{B}(\mathbb{N}, \mathbb{R})$.

Exercice 11 [02771] [Correction]

Soit E l'ensemble des suites $(a_n)_{n\geqslant 0}$ de $\mathbb C$ telles que la série $\sum |a_n|$ converge. Si $a=(a_n)_{n\geqslant 0}$ appartient à E, on pose

$$||a|| = \sum_{n=0}^{+\infty} |a_n|$$

- a) Montrer que $\|.\|$ est une norme sur E.
- b) Soit

$$F = \left\{ a \in E / \sum_{n=0}^{+\infty} a_n = 1 \right\}$$

L'ensemble F est-il ouvert ? fermé ? borné ?

Exercice 12 [03021] [Correction]

Soient E un espace vectoriel normé, F un sous-espace fermé de E et G un sous-espace vectoriel de dimension finie de E. Montrer que F+G est fermé

Exercice 13 [03037] [Correction]

Caractériser dans $\mathcal{M}_n(\mathbb{C})$ les matrices dont la classe de similitude est fermée. Même question avec \mathbb{R} au lieu de \mathbb{C}

Exercice 14 [02507] [Correction]

Soient $E = \mathcal{C}([0,1], \mathbb{R})$ normé par $\|.\|_{\infty}$ et la partie

$$A = \left\{ f \in E/f(0) = 0 \text{ et } \int_0^1 f(t) \, \mathrm{d}t \geqslant 1 \right\}$$

- a) Montrer que A est une partie fermée.
- b) Vérifier que

$$\forall f \in A, ||f||_{\infty} > 1$$

Exercice 15 [03066] [Correction]

Soient $E = \mathcal{C}([0,1], \mathbb{R})$ normé par $\|.\|_{\infty}$ et la partie

$$A = \left\{ f \in E/f(0) = 0 \text{ et } \int_{0}^{1} f(t) \, \mathrm{d}t \ge 1 \right\}$$

- a) Montrer que A est une partie fermée.
- b) Vérifier que

$$\forall f \in A, ||f||_{\infty} > 1$$

c) Calculer la distance de la fonction nulle à la partie A.

Exercice 16 [03289] [Correction]

a) Montrer que les parties

$$A = \{(x, y) \in \mathbb{R}^2 / xy = 1\} \text{ et } B = \{0\} \times \mathbb{R}$$

sont fermées.

b) Observer que A + B n'est pas fermée.

Exercice 17 [03290] [Correction]

Montrer que \mathbb{Z} est une partie fermée de \mathbb{R} :

- a) en observant que son complémentaire est ouvert;
- b) par la caractérisation séquentielle des parties fermées;
- c) en tant qu'image réciproque d'un fermé par une application continue.

Exercice 18 [03306] [Correction]

Dans $E = \mathbb{R}[X]$, on considère les normes

$$N_1(P) = \sup_{t \in [0,1]} |P(t)| \text{ et } N_2(P) = \sup_{t \in [1,2]} |P(t)|$$

L'ensemble

$$\Omega = \{ P \in E/P(0) \neq 0 \}$$

est-il ouvert pour la norme N_1 ? pour la norme N_2 ?

Intérieur et adhérence

Exercice 19 [01113] [Correction]

Soient E un espace vectoriel normé et F un sous-espace vectoriel de E. Montrer que si $\stackrel{\circ}{F} \neq \emptyset$ alors F = E.

Exercice 20 [01114] [Correction]

Soient A et B deux parties d'un espace vectoriel normé (E, N).

- a) On suppose $A \subset B$. Etablir $A^{\circ} \subset B^{\circ}$ et $\bar{A} \subset \bar{B}$.
- b) Comparer $(A \cap B)^{\circ}$ et $A^{\circ} \cap B^{\circ}$ d'une part puis $(A \cup B)^{\circ}$ et $A^{\circ} \cup B^{\circ}$ d'autre part.
- c) Comparer $\overline{A \cup B}$ et $\overline{A} \cup \overline{B}$ d'une part puis $\overline{A \cap B}$ et $\overline{A} \cap \overline{B}$ d'autre part.

Exercice 21 [01115] [Correction]

Montrer que si F est un sous-espace vectoriel de E alors son adhérence \bar{F} est aussi un sous-espace vectoriel de E.

Exercice 22 [03279] [Correction]

Soit A une partie d'un espace vectoriel normé E. Etablir

$$\operatorname{Vect}(\bar{A}) \subset \overline{\operatorname{Vect}A}$$

Exercice 23 [01116] [Correction]

Soit A une partie d'un espace vectoriel normé E. Etablir que sa frontière Fr(A)est une partie fermée.

Exercice 24 [01117] [Correction]

Soit F une partie fermée d'un espace vectoriel normé E. Etablir

$$Fr(Fr(F)) = Fr(F)$$

Exercice 25 [01118] [Correction]

Soient A un ouvert et B une partie d'un espace vectoriel normé E.

- a) Montrer que $A \cap \bar{B} \subset \overline{A \cap B}$
- b) Montrer que $A \cap B = \emptyset \Rightarrow A \cap \bar{B} = \emptyset$.

Exercice 26 [01119] [Correction]

On suppose que A est une partie convexe d'un espace vectoriel normé E.

- a) Montrer que A est convexe.
- b) La partie A° est-elle convexe?

Exercice 27 [01120] [Correction]

Soient A et B deux parties non vides d'un espace vectoriel normé E. Etablir

$$d(\bar{A}, \bar{B}) = d(A, B)$$

(en notant
$$d(A,B) = \inf_{x \in A, y \in B} d(x,y)$$
)

Exercice 28 [01121] [Correction]

Soient A_1, \ldots, A_n des parties d'un espace vectoriel normé E.

- a) Etablir $\bigcup_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} \overline{A_{i}}$. b) Comparer $\bigcap_{i=1}^{n} A_{i}$ et $\bigcap_{i=1}^{n} \overline{A_{i}}$.

Exercice 29 [01122] [Correction]

Soient $f: E \to F$ continue bornée et $A \subset E$, A non vide. Montrer

$$||f||_{\infty,A} = ||f||_{\infty,\bar{A}}$$

Exercice 30 [02943] [Correction]

Déterminer l'adhérence et l'intérieur de l'ensemble $\mathcal{D}_n(\mathbb{C})$ des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$.

Exercice 31 [03026] [Correction]

Soit A une partie d'un espace normé E.

- a) Montrer que la partie A est fermée si, et seulement si, $\operatorname{Fr} A \subset A$.
- b) Montrer que la partie A est ouverte si, et seulement si, $A \cap \operatorname{Fr} A = \emptyset$

Exercice 32 [03470] [Correction]

Dans $\mathcal{M}_2(\mathbb{C})$, on introduit

$$\mathcal{U} = \{ M \in \mathcal{M}_2(\mathbb{C}) / \operatorname{Sp} M \subset U \} \text{ et } \mathcal{R} = \{ M \in \mathcal{M}_2(\mathbb{C}) / \exists n \in \mathbb{N}^*, M^n = I_2 \}$$

- a) Comparer les ensembles \mathcal{R} et \mathcal{U} .
- b) Montrer que \mathcal{U} est une partie fermée de $\mathcal{M}_2(\mathbb{C})$.
- c) Montrer que \mathcal{U} est inclus dans l'adhérence de \mathcal{R} .
- d) Qu'en déduire?

Continuité et topologie

Exercice 33 [01123] [Correction]

Justifier que $U = \{(x,y) \in \mathbb{R}^2/x^2 + y^2 < x^3 + y^3\}$ est une partie ouverte de \mathbb{R}^2 .

Exercice 34 [01124] [Correction]

Montrer que $GL_n(\mathbb{R})$ est une partie ouverte de $\mathcal{M}_n(\mathbb{R})$.

Exercice 35 [01125] [Correction]

Soit E un espace vectoriel euclidien.

Montrer que l'ensemble $\{(x,y) \in E^2/(x,y) \text{ libre}\}$ est un ouvert de E^2 .

Exercice 36 [01126] [Correction]

Pour $p \in \{0, 1, ..., n\}$, on note R_p l'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ de rang supérieur à p.

Montrer que R_p est un ouvert de $\mathcal{M}_n(\mathbb{K})$.

Exercice 37 [01127] [Correction]

Soient E et F deux espaces vectoriels normés et $f:E\to F$. Montrer qu'il y a équivalence entre les assertions suivantes :

- (i) f est continue;
- (ii) $\forall A \in \mathcal{P}(E), f(\bar{A}) \subset \overline{f(A)};$
- (iii) $\forall B \in \mathcal{P}(F), \overline{f^{-1}(B)} \subset f^{-1}(\bar{B});$
- (iv) $\forall B \in \mathcal{P}(F), f^{-1}(B^{\circ}) \subset (f^{-1}(B))^{\circ}.$

Exercice 38 [01128] [Correction]

Montrer qu'un endomorphisme u d'un espace vectoriel normé E est continu si, et seulement si, la partie $\{x \in E / \|u(x)\| = 1\}$ est fermée.

Exercice 39 [01129] [Correction]

Montrer qu'une forme linéaire est continue si, et seulement si, son noyau est fermé.

Exercice 40 [03393] [Correction]

Soit $f:[0,1] \to [0,1]$ une application continue vérifiant

$$f \circ f = f$$

a) Montrer que l'ensemble

$${x \in [0,1] / f(x) = x}$$

est un intervalle fermé et non vide.

- b) Donner l'allure d'une fonction f non triviale vérifiant les conditions précédentes.
- c) On suppose de plus que f est dérivable. Montrer que f est constante ou égale à l'identité.

Exercice 41 [02774] [Correction]

a) Chercher les fonctions $f:[0,1]\to [0,1]$ continues vérifiant

$$f \circ f = f$$

b) Même question avec les fonctions dérivables.

Exercice 42 [03285] [Correction]

Soient E un espace normé de dimension quelconque et u un endomorphisme de E vérifiant

$$\forall x \in E, \|u(x)\| \leqslant \|x\|$$

Pour tout $n \in \mathbb{N}$, on pose

$$v_n = \frac{1}{n+1} \sum_{k=0}^n u^k$$

- a) Simplifier $v_n \circ (u \mathrm{Id})$.
- b) Montrer que

$$\operatorname{Im}(u - \operatorname{Id}) \cap \ker(u - \operatorname{Id}) = \{0\}$$

c) On suppose E de dimension finie, établir

$$\operatorname{Im}(u - \operatorname{Id}) \oplus \ker(u - \operatorname{Id}) = E$$

d) On suppose de nouveau ${\cal E}$ de dimension quelconque. Montrer que si

$$\operatorname{Im}(u - \operatorname{Id}) \oplus \ker(u - \operatorname{Id}) = E$$

alors la suite (v_n) converge simplement et l'espace $\operatorname{Im}(u-\operatorname{Id})$ est une partie fermée de E.

e) Etudier la réciproque.

Exercice 43 [01111] [Correction]

Montrer que l'ensemble des polynômes réels de degré n scindés à racines simples est une partie ouverte de $\mathbb{R}_n[X]$.

Exercice 44 [02773] [Correction]

Pour $n \in \mathbb{N}^*$, O_n désigne l'ensemble des polynômes réels de degré n scindés à racines simples et F_n l'ensemble des polynômes de $\mathbb{R}_n[X]$ scindés à racines simples.

Ces ensemble sont-ils ouverts dans $\mathbb{R}_n[X]$?

Exercice 45 [03726] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ vérifiant

- 1) $\forall [a, b] \subset \mathbb{R}, f([a, b])$ est un segment;
- 2) $y \in \mathbb{R}, f^{-1}(\{y\})$ est une partie fermée.

Montrer que f est continue.

Exercice 46 [03859] [Correction]

Soit E un \mathbb{R} -espace vectoriel normé de dimension finie.

Montrer que l'ensemble \mathcal{P} des projecteurs de E est une partie fermée de $\mathcal{L}(E)$.

Densité

Exercice 47 [01130] [Correction]

Montrer que $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$.

On pourra considérer, pour $A \in \mathcal{M}_n(\mathbb{R})$, les matrices de la forme $A - \lambda I_n$.

Exercice 48 [01131] [Correction]

Soient E un espace vectoriel normé et F un sous-espace vectoriel de E.

- a) Montrer que \bar{F} est un sous-espace vectoriel de E.
- b) Montrer qu'un hyperplan est soit fermé, soit dense.

Exercice 49 [01132] [Correction]

Soient U et V deux ouverts denses d'un espace vectoriel normé E.

- a) Etablir que $U \cap V$ est encore un ouvert dense de E.
- b) En déduire que la réunion de deux fermés d'intérieurs vides est aussi d'intérieur vide.

Exercice 50 [03058] [Correction]

Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles telles que

$$u_n \to +\infty, v_n \to +\infty \text{ et } u_{n+1} - u_n \to 0$$

a) Soient $\varepsilon > 0$ et $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $|u_{n+1} - u_n| \le \varepsilon$.

Montrer que pour tout $a \ge u_{n_0}$, il existe $n \ge n_0$ tel que $|u_n - a| \le \varepsilon$.

- b) En déduire que $\{u_n v_p/n, p \in \mathbb{N}\}$ est dense dans \mathbb{R} .
- c) Montrer que l'ensemble $\{\cos(\ln n)/n \in \mathbb{N}^*\}$ est dense dans [-1,1].

Exercice 51 [03017] [Correction]

Montrer que $\{m - \ln n/(m, n) \in \mathbb{Z} \times \mathbb{N}^*\}$ est dense dans \mathbb{R} .

Exercice 52 [01133] [Correction]

Soit H un sous-groupe de $(\mathbb{R}, +)$ non réduit à $\{0\}$.

a) Justifier l'existence de

$$a = \inf \left\{ x \in H/x > 0 \right\}$$

- b) On suppose a > 0. Etablir $a \in H$ puis $H = a\mathbb{Z}$.
- c) On suppose a = 0. Etablir que H est dense dans \mathbb{R} .

Exercice 53 [00023] [Correction]

- a) Montrer que $\{\cos(n)/n \in \mathbb{N}\}$ est dense dans [-1,1].
- b) Montrer que $\{\cos(\ln n)/n \in \mathbb{N}^*\}$ est dense dans [-1,1].

Exercice 54 [01135] [Correction]

Montrer que l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$.

Exercice 55 [02779] [Correction]

Montrer qu'un hyperplan d'un espace vectoriel normé (E, ||||) est dense ou fermé dans E.

Exercice 56 [01134] [Correction]

On note $\mathbb{R}^{(\mathbb{N})}$ l'ensemble des suites réelles nulles à partir d'un certain rang.

a) Montrer que $\mathbb{R}^{(\mathbb{N})}$ est une partie dense de l'espace des suites sommables normé par

$$||u||_1 = \sum_{n=0}^{+\infty} |u_n|$$

b) $\mathbb{R}^{(\mathbb{N})}$ est-il une partie dense de l'espace des suites bornées normé par

$$||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n| ?$$

Exercice 57 [02780] [Correction]

On note E l'ensemble des fonctions réelles définies et continues sur $[0, +\infty[$ et dont le carré est intégrable. On admet que E est un espace vectoriel réel. On le munit de la norme

$$\|.\|_2: f \mapsto \sqrt{\int_0^{+\infty} f^2(t) \,\mathrm{d}t}$$

On note E_0 l'ensemble des $f \in E$ telles que f est nulle hors d'un certain segment. On note F l'ensemble des fonctions de E du type $x \mapsto P(e^{-x})e^{-x^2/2}$ où P parcourt $\mathbb{R}[X]$. Montrer que E_0 est dense dans E puis que F est dense dans E.

Exercice 58 [02944] [Correction]

Soit A une partie convexe et partout dense d'un espace euclidien E. Montrer que A=E.

Exercice 59 [03018] [Correction]

Soit A une partie non vide de \mathbb{R} vérifiant

$$\forall a, b \in A, \, \frac{a+b}{2} \in A$$

Montrer que A est dense dans l'intervalle $\inf A$, sup A[.

Exercice 60 [03020] [Correction]

Soit A une partie non vide de $\mathbb{R}^{+\star}$ vérifiant

$$\forall (a,b) \in A^2, \sqrt{ab} \in A$$

Montrer que $A \cap (\mathbb{R} \setminus \mathbb{Q})$ est dense dans]inf A, sup A[.

Exercice 61 [03059] [Correction]

Soient $E = \mathcal{C}([0,1],\mathbb{R})$ et $\varphi \in E$. On note $N_{\varphi}: E \to \mathbb{R}$ l'application définie par

$$N_{\varphi}(f) = \|f\varphi\|_{\infty}$$

Montrer que N_{φ} est une norme sur E si, et seulement si, $\varphi^{-1}(\mathbb{R}^{*})$ est dense dans [0,1].

Exercice 62 [03402] [Correction]

Soit (u_n) une suite de réels strictement positifs. On suppose

$$(u_n)$$
 strictement croissante, $u_n \to +\infty$ et $\frac{u_{n+1}}{u_n} \to 1$

Montrer que l'ensemble

$$A = \left\{ \frac{u_m}{u_n} / m > n \right\}$$

est une partie dense dans l'intervalle $[1, +\infty[$

Exercice 63 [03649] [Correction]

Soient A et B deux parties denses d'un espace normé E. On suppose la partie A ouverte, montrer que $A \cap B$ est une partie dense.

Continuité et densité

Exercice 64 [01136] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ continue vérifiant

$$\forall x, y \in \mathbb{R}, f(x+y) = f(x) + f(y)$$

Déterminer f.

Exercice 65 [01139] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue telle que

$$\forall x, y \in \mathbb{R}, f\left(\frac{x+y}{2}\right) = \frac{1}{2}\left(f(x) + f(y)\right)$$

- a) Montrer que $\mathcal{D} = \{p/2^n/p \in \mathbb{Z}, n \in \mathbb{N}\}$ est dense dans \mathbb{R} .
- b) Montrer que si f s'annule en 0 et en 1 alors f = 0.
- c) Conclure que f est une fonction affine.

Exercice 66 [01137] [Correction]

Montrer que pour tout $A, B \in \mathcal{M}_n(\mathbb{C}), \chi_{AB} = \chi_{BA}$.

Enoncés

Exercice 67 [01138] [Correction]

Soit $n \ge 2$. Calculer $\det(\text{com} A)$ pour $A \in \mathcal{M}_n(\mathbb{C})$.

Exercice 68 [03128] [Correction]

Soient $n \in \mathbb{N}$ avec $n \geq 2$.

a) Soient $A \in \mathcal{M}_n(\mathbb{C})$ et $P \in GL_n(\mathbb{C})$.

Exprimer la comatrice de $P^{-1}AP$ en fonction de P, P^{-1} et de la comatrice de A. b) En déduire que les comatrices de deux matrices semblables sont elle-même

semblables.

Exercice 69 [00750] [Correction]

Pour $A \in \mathcal{M}_n(\mathbb{K})$, on note \widetilde{A} la transposée de la comatrice de A.

- a) Calculer $\det \widetilde{A}$.
- b) Etudier le rang de \widetilde{A} .
- c) Montrer que si A et B sont semblables alors \widetilde{A} et \widetilde{B} le sont aussi.
- d) Calculer \widetilde{A} .

Exercice 70 [03275] [Correction]

Montrer

$$\forall A, B \in \mathcal{M}_n(\mathbb{R}), \operatorname{com}(AB) = \operatorname{com}(A)\operatorname{com}(B)$$

Approximations uniformes

Exercice 71 [01140] [Correction]

Soit $f:[a,b]\to\mathbb{C}$ continue. Montrer

$$\int_{a}^{b} f(t)e^{int} dt \xrightarrow[n \to +\infty]{} 0$$

On pourra commencer par étudier le cas où f est une fonction de classe \mathcal{C}^1 .

Exercice 72 [01141] [Correction]

Soit $f:[0,1] \to \mathbb{R}$ continue. Montrer que si pour tout $n \in \mathbb{N}$,

$$\int_0^1 t^n f(t) \, \mathrm{d}t = 0$$

alors f est la fonction nulle.

Exercice 73 [01142] [Correction]

Soit $f:[a,b]\to\mathbb{R}$ continue telle que $\int_a^b f(t) dt = 0$. Montrer qu'il existe une suite (P_n) de polynômes telle que

$$\int_{a}^{b} P_n(t) dt = 0 \text{ et } \sup_{t \in [a,b]} |f(t) - P_n(t)| \xrightarrow[n \to +\infty]{} 0$$

Exercice 74 [01143] [Correction]

Soit $f:[a,b] \to \mathbb{R}$ continue telle que $f \ge 0$. Montrer qu'il existe une suite (P_n) de polynômes telle que $P_n \ge 0$ sur [a,b] et $\sup_{t \in [a,b]} |f(t) - P_n(t)| \xrightarrow[n \to +\infty]{} 0$.

Exercice 75 [01144] [Correction]

Soit $f:[a,b]\to\mathbb{R}$ de classe \mathcal{C}^1 . Montrer qu'il existe une suite (P_n) de polynômes telle que

$$N_{\infty}(f-P_n) \to 0 \text{ et } N_{\infty}(f'-P_n') \to 0$$

Exercice 76 [01145] [Correction]

[Théorème de Weierstrass : par les polynômes de Bernstein] Pour $n \in \mathbb{N}$ et $k \in \{0, \dots, n\}$, on pose

$$B_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k}$$

a) Calculer

$$\sum_{k=0}^{n} B_{n,k}(x), \sum_{k=0}^{n} k B_{n,k}(x) \text{ et } \sum_{k=0}^{n} k^{2} B_{n,k}(x)$$

b) Soient $\alpha > 0$ et $x \in [0, 1]$. On forme

$$A = \{k \in [0, n] \mid |k/n - x| \ge \alpha\} \text{ et } B = \{k \in [0, n] \mid |k/n - x| < \alpha\}$$

Montrer que

$$\sum_{k \in A} B_{n,k}(x) \leqslant \frac{1}{4n\alpha^2}$$

c) Soit $f:[0,1]\to\mathbb{R}$ continue. On pose

$$f_n(x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{n,k}(x)$$

Montrer que (f_n) converge uniformément vers f sur [0,1].

Exercice 77 [01146] [Correction]

[Théorème de Weierstrass : par convolution] n désigne un entier naturel.

On pose

$$a_n = \int_{-1}^{1} (1 - t^2)^n \, \mathrm{d}t$$

et on considère la fonction $\varphi_n: [-1,1] \to \mathbb{R}$ définie par

$$\varphi_n(x) = \frac{1}{a_n} (1 - x^2)^n$$

a) Calculer $\int_0^1 t(1-t^2)^n dt$. En déduire que

$$a_n = \int_{-1}^{1} (1 - t^2)^n dt \geqslant \frac{1}{n+1}$$

- b) Soit $\alpha \in]0,1]$. Montrer que (φ_n) converge uniformément vers la fonction nulle sur $[\alpha,1]$.
- c) Soit f une fonction continue de $\mathbb R$ vers $\mathbb R$ nulle en dehors de [-1/2,1/2]. Montrer que f est uniformément continue.

On pose

$$f_n(x) = \int_{-1}^{1} f(x-t)\varphi_n(t) dt$$

pour tout $x \in \mathbb{R}$.

- d) Montrer que f_n est une fonction polynomiale sur [-1/2, 1/2]
- e) Montrer que

$$f(x) - f_n(x) = \int_{-1}^{1} (f(x) - f(x - t))\varphi_n(t) dt$$

- f) En déduire que f_n converge uniformément vers f sur \mathbb{R} .
- g) Soit f une fonction réelle continue nulle en dehors de [-a, a].

Montrer que f est limite uniforme d'une suite de polynômes.

h) Soit f une fonction réelle continue sur [a, b].

Montrer que f est limite uniforme d'une suite de polynômes.

Exercice 78 [02828] [Correction]

Soit $f \in \mathcal{C}([a,b],\mathbb{R})$. On suppose que pour tout $n \in \mathbb{N}$,

$$\int_{a}^{b} x^{n} f(x) \, \mathrm{d}x = 0$$

- a) Montrer que la fonction f est nulle.
- b) Calculer

$$I_n = \int_0^{+\infty} x^n e^{-(1-i)x} dx$$

c) En déduire qu'il existe f dans $\mathcal{C}([0, +\infty[\ ,\mathbb{R})$ non nulle, telle que, pour tout n dans \mathbb{N} , on ait

$$\int_0^{+\infty} x^n f(x) \, \mathrm{d}x = 0$$

Exercice 79 [02601] [Correction]

Soit $f:[a,b]\to\mathbb{R}$ continue par morceaux.

On désire établir,

$$\lim_{n \to +\infty} \left(\int_a^b f(x) \left| \sin(nx) \right| dx \right) = \frac{2}{\pi} \int_a^b f(x) dx$$

- a) Vérifier le résultat pour une fonction f constante.
- b) Observer le résultat pour une fonction f en escalier.
- c) Etendre enfin le résultat au cas où f est une fonction continue par morceaux.

Corrections

Exercice 1 : [énoncé]

Soient F un fermé et pour tout $n \in \mathbb{N}^*$,

$$O_n = \bigcup_{a \in F} B(a, 1/n)$$

 O_n est un ouvert (car réunion d'ouverts) contenant F. Le fermé F est donc inclus dans l'intersection des O_n pour $n \in \mathbb{N}^*$.

Inversement si x appartient à cette intersection, alors, pour tout $n \in \mathbb{N}$, il existe $a_n \in F$ tel que $x \in B(a_n, 1/n)$. La suite (a_n) converge alors vers x et donc $x \in F$ car F est fermé.

Finalement F est l'intersection des O_n pour $n \in \mathbb{N}^*$.

Exercice 2 : [énoncé]

- a) Soit $x \in p_1(O)$, il existe $y \in \mathbb{R}$ tel que $a = (x, y) \in O$. Comme O est ouvert, il existe $\varepsilon > 0$ tel que $B_{\infty}(a, \varepsilon) \subset O$ et alors $]x \varepsilon, x + \varepsilon[\subset p_1(O)]$. Ainsi $p_1(O)$ et de même $p_2(O)$ est ouvert.
- b) Soit $((x_n, y_n))_{n \in \mathbb{N}} \in H^{\mathbb{N}}$ telle que $(x_n, y_n) \to (x, y)$. Comme $x_n y_n = 1$, à la limite xy = 1.

Par la caractérisation séquentielle des fermés, H est fermé. $p_1(H) = \mathbb{R}^*$, $p_2(H) = \mathbb{R}^*$ ne sont pas fermés dans \mathbb{R} .

c) Soit $(x_n)_{n\in\mathbb{N}}\in(p_1(F))^{\mathbb{N}}$ telle que $x_n\to x$. Pour $n\in\mathbb{N}$, il existe y_n tel que $(x_n,y_n)\in F$.

La suite $((x_n, y_n))$ est alors une suite bornée dont on peut extraire une suite convergente : $((x_{\varphi(n)}, y_{\varphi(n)}))$.

Notons $y = \lim y_{\varphi(n)}$. Comme F est fermé, $(x, y) = \lim(x_{\varphi(n)}, y_{\varphi(n)}) \in F$ puis $x = p_1((x, y)) \in p_1(F)$.

Exercice 3: [énoncé]

 $0_E \in F$ donc il existe $\alpha > 0$ tel que $B(0_E, \alpha) \subset F$.

Pour tout $x \in E$, on peut écrire

$$x = \lambda y$$

avec $y \in B(0_E, \alpha)$ et λ bien choisis

On a alors $y \in F$ puis $x \in F$ car F est un sous-espace vectoriel.

Ainsi F = E.

Exercice 4: [énoncé]

Rappelons

$$d(x, F) = \inf \{ ||x - y|| / y \in F \}$$

- (\Leftarrow) Si $x \in F$ alors $0 \in \{||x y|| / y \in F\}$ et donc d(x, F) = 0
- (\Rightarrow) Si d(x,F)=0 alors pour tout $n\in\mathbb{N}$, il existe $y_n\in F$ vérifiant

$$||x - y_n|| \leqslant \frac{1}{n+1}$$

En faisant varier n, cela détermine $(y_n) \in F^{\mathbb{N}}$ telle que $y_n \to x$.

Or F est une partie fermée, elle contient les limites de ses suites convergentes et par conséquent $x \in F$.

Exercice 5: [énoncé]

a) Rappelons

$$d(x, F) = \inf \{ ||x - y|| / y \in F \}$$

- (\Leftarrow) Si $x \in F$ alors $0 \in \{\|x y\| / y \in F\}$ et donc d(x, F) = 0
- (\Rightarrow) Si d(x,F)=0 alors pour tout $n\in\mathbb{N}$, il existe $y_n\in F$ vérifiant

$$||x - y_n|| \leqslant \frac{1}{n+1}$$

En faisant varier n, cela déterminer $(y_n) \in F^{\mathbb{N}}$ telle que $y_n \to x$.

Or F est une partie fermée, elle contient les limites de ses suites convergentes et par conséquent $x \in F$.

b) Soient

$$U = \bigcup_{x \in F} B\left(x, \frac{1}{2}d(x, G)\right) \text{ et } V = \bigcup_{x \in G} B\left(x, \frac{1}{2}d(x, F)\right)$$

Les parties U et V sont ouvertes car réunion de boules ouvertes et il est clair que U et V contiennent respectivement F et G.

S'il existe $y \in U \cap V$ alors il existe $a \in F$ et $b \in G$ tels que

$$d(a,y)<\frac{1}{2}d(a,G) \text{ et } d(b,y)<\frac{1}{2}d(b,F)$$

Puisque

$$d(a,G), d(b,F) \leq d(a,b)$$

on a donc

$$d(a,b) \leqslant d(a,y) + d(y,b) < d(a,b)$$

C'est absurde et on peut conclure

$$U \cap V = \emptyset$$

Exercice 6 : [énoncé]

Les ensembles

$$U = \bigcup_{a \in A} B(a, d/2)$$
 et $V = \bigcup_{b \in B} B(b, d/2)$

avec d = d(A, B) sont solutions.

En effet U et V sont des ouverts (par réunion d'ouverts) contenant A et B. U et V sont disjoints car

$$U \cap V \neq \emptyset \Rightarrow \exists (a,b) \in A \times B, B(a,d/2) \cap B(b,d/2) \neq \emptyset \Rightarrow d(A,B) < d$$

Exercice 7 : [énoncé]

A est fermé car si $u^p = (u_p^p)$ est une suite d'éléments de A convergeant vers une suite $u = (u_n)$ pour la norme $\|.\|_{\infty}$ alors pour tout $n \in \mathbb{N}$ et tout $p \in \mathbb{N}$, $u_n^p \leqslant u_{n+1}^p$ qui donne à la limite $u_n \leqslant u_{n+1}$ et donc $u \in A$.

B est fermé car si $u^p = (u_n^p)$ est une suite d'éléments de B convergeant vers une suite $u=(u_n)$ pour la norme $\|.\|_{\infty}$ alors pour tout $\varepsilon>0$ il existe $p\in\mathbb{N}$ tel que $\|u-u^p\|_{\infty} \leqslant \varepsilon/2$ et puisque $u_n^p \xrightarrow[n \to \infty]{} 0$, il existe $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, |u_n^p| \leqslant \varepsilon/2$$

et donc

$$|u_n| \leqslant |u_n - u_n^p| + |u_n^p| \leqslant \varepsilon$$

Ainsi $u \to 0$ et donc $u \in B$.

C est fermé. En effet si $u^p = (u_p^p)$ est une suite d'éléments de C convergeant vers une suite $u = (u_n)$ pour la norme $\|\cdot\|_{\infty}$ alors en notant ℓ^p la limite de u^p , la suite (ℓ^p) est une suite de Cauchy puisque $|\ell^p - \ell^q| \leq ||u^p - u^q||_{\infty}$. Posons ℓ la limite de la suite (ℓ^p) et considérons $v^p = u^p - \ell^p$. $v^p \in B$ et $v^p \to u - \ell$ donc $u - \ell \in B$ et $u \in C$.

D est fermé car si $u^p = (u_p^p)$ est une suite d'éléments de D convergeant vers une suite $u = (u_n)$ pour la norme $\|.\|_{\infty}$ alors pour tout $\varepsilon > 0$ il existe $p \in \mathbb{N}$ tel que $||u-u^p||_{\infty} \leq \varepsilon/2$ et puisque 0 est valeur d'adhérence de u^p , il existe une infinité de n tels que $|u_n^p| \leq \varepsilon/2$ et donc tels que

$$|u_n| \leqslant |u_n - u_n^p| + |u_n^p| \leqslant \varepsilon$$

Ainsi 0 est valeur d'adhérence de u et donc $u \in D$.

E n'est pas fermé. Notons δ^p , la suite déterminée par $\delta^p_p = 1$ si $p \mid n$ et 0 sinon. La suite δ^p est périodique et toute combinaison linéaire de suites δ^p l'est encore. Posons alors

$$u^p = \sum_{k=1}^p \frac{1}{2^k} \delta^k$$

qui est élément de E. La suite u^p converge car

$$||u^{p+q} - u^p||_{\infty} \le \sum_{k=p+1}^{p+q} \frac{1}{2^k} \le \frac{1}{2^p} \to 0$$

et la limite u de cette suite n'est pas périodique car

$$u_0 = \lim_{p \to +\infty} \sum_{k=1}^{p} \frac{1}{2^k} = 1$$

et que $u_n < 1$ pour tout n puisque pour que $u_n = 1$ il faut $k \mid n$ pour tout $k \in \mathbb{N}$.

Exercice 8: [énoncé]

a) Les éléments de $\mathbb{R}^{(\mathbb{N})}$ sont bornés donc $\mathbb{R}^{(\mathbb{N})} \subset \mathcal{B}(\mathbb{N}, \mathbb{R})$.

L'appartenance de l'élément nul et la stabilité par combinaison linéaire sont immédiates.

b) Si $\mathbb{R}^{(\mathbb{N})}$ est ouvert alors puisque $0 \in \mathbb{R}^{(\mathbb{N})}$ il existe $\alpha > 0$ tel que $B_{\infty}(0,\alpha) \subset \mathbb{R}^{(\mathbb{N})}$.

Or la suite constante égale à $\alpha/2$ appartient à $B_{\infty}(0,\alpha)$ et n'est pas nulle à partir d'un certain rang donc $B_{\infty}(0,\alpha) \not\subset \mathbb{R}^{(\mathbb{N})}$ et donc $\mathbb{R}^{(\mathbb{N})}$ n'est pas ouvert. c) Pour $N \in \mathbb{N}$, posons u^N définie par $u_n^N = \frac{1}{n+1}$ si $n \leqslant N$ et $u_n^N = 0$ sinon.

 $(u^N) \in \mathbb{R}^{(\mathbb{N})}$ et $u^N \to u$ avec u donné par $u_n = \frac{1}{n+1}$. En effet

$$\left\| u^N - u \right\|_{\infty} = \frac{1}{N+2} \to 0$$

Mais $u \notin \mathbb{R}^{(\mathbb{N})}$ donc $\mathbb{R}^{(\mathbb{N})}$ n'est pas fermé.

Exercice 9: [énoncé]

Soit $(x_n) \in A^{\mathbb{N}}$ convergeant vers $x \in \mathbb{R}$. Il existe un unique $y \in A$ tel que |x-y|=d(x,A). Or d(x,A)=0 donc $x=y\in A$. Ainsi A est fermé.

Par l'absurde supposons que A ne soit pas un intervalle. Il existe a < c < b tel que $a,b\in A \text{ et } c\notin A.$

Posons $\alpha = \sup \{x \in A / x \le c\}$ et $\beta = \inf \{x \in A / x \ge c\}$. On a $\alpha, \beta \in A$, $\alpha < c < \beta \text{ et }]\alpha, \beta[\subset C_{\mathbb{R}}A.$

Posons alors $\gamma = \frac{\alpha + \beta}{2}$. On a $d(\gamma, A) = \frac{\beta - \alpha}{2} = |\gamma - \alpha| = |\gamma - \beta|$ ce qui contredit l'hypothèse d'unicité. Absurde.

Exercice 10: [énoncé]

a) Notons C l'espace des suites convergentes de $\mathcal{B}(\mathbb{N},\mathbb{R})$.

Soit (u^n) une suite convergente d'éléments de C de limite u^{∞} .

Pour chaque n, posons $\ell^n = \lim u^n = \lim_{p \to +\infty} u_p^n$.

Par le théorème de la double limite appliquée à la suite des fonctions u^n , on peut affirmer que la suite (ℓ^n) converge et que la suite u^{∞} converge vers la limite de (ℓ^n) . En particulier $u^{\infty} \in C$.

b) Notons A l'espace des suites dont le terme général est terme général d'une série absolument convergente.

Soit (u^n) la suite définie par

$$\forall n \in \mathbb{N}^*, \forall p \in \mathbb{N}, u_p^n = \frac{1}{(p+1)^{1+1/n}}$$

La suite (u^n) est une suite d'éléments de A et une étude en norme $\|\|_{\infty}$ permet d'établir que $u^n \to u^{\infty}$ avec $u_p^{\infty} = \frac{1}{p+1}$. La suite u^{∞} n'étant pas élément de A, la partie A n'est pas fermée.

Exercice 11 : [énoncé]

a) Par définition de l'ensemble E, l'application $\|\cdot\|: E \to \mathbb{R}^+$ est bien définie. Soient $(a_n)_{n \geqslant 0}$, $(b_n)_{n \geqslant 0}$ éléments de E et $\lambda \in \mathbb{R}$.

$$||a+b|| = \sum_{n=0}^{+\infty} |a_n + b_n| \le \sum_{n=0}^{+\infty} (|a_n| + |b_n|) = ||a|| + ||b||$$

avec convergence des séries écrites, et

$$\|\lambda.a\| = \sum_{n=0}^{+\infty} |\lambda a_n| = \sum_{n=0}^{+\infty} |\lambda| |a_n| = |\lambda| \sum_{n=0}^{+\infty} |a_n| = |\lambda| \|a\|$$

Enfin, si ||a|| = 0 alors

$$\forall n \in \mathbb{N}, |a_n| \leqslant ||a|| = 0$$

 $donne (a_n)_{n\geqslant 0} = (0)_{n\geqslant 0}$

b) Considérons la forme linéaire

$$\varphi: (a_n)_{n\geqslant 0} \mapsto \sum_{n=0}^{+\infty} a_n$$

On vérifie

$$\forall a = (a_n)_{n \geqslant 0} \in E, |\varphi(a)| = \left| \sum_{n=0}^{+\infty} a_n \right| \leqslant \sum_{n=0}^{+\infty} |a_n| = ||a||$$

La forme linéaire φ est donc continue.

Puisque $F = \varphi^{-1}(\{1\})$ avec $\{1\}$, la partie F est fermée en tant qu'image réciproque d'une partie fermée par une application continue..

Posons e = (1, 0, 0, ...) et un élément de F et

$$\forall \alpha > 0, e + \alpha e \notin F \text{ et } ||e - (e + \alpha e)|| = \alpha$$

On en déduit que F n'est pas un voisinage de son élément e et par conséquent la partie F n'est pas ouverte.

Posons $\alpha^p = e + p.(1, -1, 0, 0, ...).$

$$\forall p \in \mathbb{N}, \alpha^p \in F \text{ et } \|\alpha^p\| \xrightarrow[p \to +\infty]{} +\infty$$

La partie F n'est donc pas bornée.

Exercice 12 : [énoncé]

Pour obtenir ce résultat, il suffit de savoir montrer F + Vect(u) fermé pour tout $u \notin F$.

Soit (x_n) une suite convergente d'éléments de F + Vect(u) de limite x.

Pour tout $n \in \mathbb{N}$, on peut écrire $x_n = y_n + \lambda_n u$ avec $y_n \in F$ et $\lambda_n \in \mathbb{K}$.

Montrons en raisonnant par l'absurde que la suite (λ_n) est bornée.

Si la suite (λ_n) n'est pas bornée, quitte à considérer une suite extraite, on peut supposer $|\lambda_n| \to +\infty$.

Posons alors $z_n = \frac{1}{\lambda_n} x_n = \frac{1}{\lambda_n} y_n + u$.

Puisque $||x_n|| \to ||x||$ et $|\lambda_n| \to +\infty$, on a $||z_n|| \to 0$ et donc $\frac{1}{\lambda_n} y_n \to -u$.

Or la suite de terme général $\frac{1}{\lambda_n}y_n$ est une suite d'éléments de l'espace fermé F, donc $-u \in F$ ce qui exclu.

Ainsi la suite (λ_n) est bornée et on peut en extraire une suite convergente $(\lambda_{\varphi(n)})$ de limite $\lambda \in \mathbb{K}$.

Par opérations, la suite $(y_{\varphi(n)})$ est alors convergente.

En notant y sa limite, on a $y \in F$ car l'espace F est fermé.

En passant la relation $x_n = y_n + \lambda_n u$ à la limite on obtient $x = y + \lambda u \in F + \text{Vect}(u)$.

Ainsi l'espace F + Vect(u) est fermé.

Exercice 13: [énoncé]

Cas $A \in \mathcal{M}_n(\mathbb{C})$ est diagonalisable.

Soit (A_p) une suite convergente de matrices semblables à A.

Notons A_{∞} la limite de (A_p) .

Si P est un polynôme annulateur de A, P est annulateur des A_p et donc P annule A_{∞} . Puisque A est supposée diagonalisable, il existe un polynôme scindé simple annulant A et donc A_{∞} et par suite A_{∞} est diagonalisable.

De plus $\chi_A = \chi_{A_p}$ donc à la limite $\chi_A = \chi_{A_{\infty}}$.

On en déduit que A et A_{∞} ont les mêmes valeurs propres et que celles-ci ont mêmes multiplicités. On en conclut que A et A_{∞} sont semblables.

Ainsi la classe de similitude de A est fermée.

Cas $A \in \mathcal{M}_n(\mathbb{C})$ non diagonalisable.

A titre d'exemple, considérons la matrice

$$A = \left(\begin{array}{cc} \lambda & 1\\ 0 & \lambda \end{array}\right)$$

Pour $P_p = \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix}$, on obtient

$$P_p^{-1}AP_p = \begin{pmatrix} \lambda & 1/p \\ 0 & \lambda \end{pmatrix} \to \lambda I_2$$

qui n'est pas semblable à A.

De façon plus générale, si la matrice A n'est pas diagonalisable, il existe une valeur propre λ pour laquelle

$$\ker(A - \lambda I_2)^2 \neq \ker(A - \lambda I_2)$$

Pour $X_2 \in \ker(A - \lambda I_2)^2 \setminus \ker(A - \lambda I_2)$ et $X_1 = (A - \lambda I_2)X_2$, la famille (X_1, X_2) vérifie $AX_1 = \lambda X_1$ et $AX_2 = \lambda X_2 + X_1$. En complétant la famille libre (X_1, X_2) en une base, on obtient que la matrice A est semblable à

$$T = \left(\begin{array}{ccc} \lambda & 1 & (\star) \\ 0 & \lambda & (\star) \\ (0) & (0) & B \end{array}\right)$$

Pour $P_p = \operatorname{diag}(p, 1, \dots, 1)$, on obtient

$$P_p^{-1}TP_p = \begin{pmatrix} \lambda & 1/p & (\star/p) \\ 0 & \lambda & (\star) \\ (0) & (0) & B \end{pmatrix} \to \begin{pmatrix} \lambda & 0 & (0) \\ 0 & \lambda & (\star) \\ (0) & (0) & B \end{pmatrix} = A_{\infty}$$

Or cette matrice n'est pas semblable à T ni à A car $\operatorname{rg}(A_{\infty} - \lambda I_n) \neq \operatorname{rg}(T - \lambda I_n)$. Ainsi, il existe une suite de matrices semblables à A qui converge vers une matrice qui n'est pas semblable à A, la classe de similitude de A n'est pas fermée. Cas $A \in \mathcal{M}_n(\mathbb{R})$ Si A est diagonalisable dans \mathbb{C} alors toute limite A_{∞} d'une suite de la classe de similitude de A est semblable à A dans $\mathcal{M}_n(\mathbb{C})$. Soit $P \in GL_n(\mathbb{C})$ telle que $P^{-1}AP = A_{\infty}$. On a alors $AP = PA_{\infty}$. En introduisant les parties réelles et imaginaires de P, on peut écrire P = Q + iR avec $Q, R \in \mathcal{M}_n(\mathbb{R})$.

L'identité $AP = PA_{\infty}$ avec A et A_{∞} réelles entraîne $AQ = QA_{\infty}$ et $AR = RA_{\infty}$. Puisque la fonction polynôme $t \mapsto \det(Q + tR)$ n'est pas nulle (car non nulle en i), il existe $t \in \mathbb{R}$ tel que $P' = Q + tR \in \mathrm{GL}_n(\mathbb{R})$ et pour cette matrice $AP' = P'A_{\infty}$. Ainsi les matrices A et A_{∞} sont semblables dans $\mathcal{M}_n(\mathbb{R})$.

Si A n'est pas diagonalisable dans \mathbb{C} .

Il existe une valeur propre complexe λ pour laquelle $\ker(A - \lambda I_2)^2 \neq \ker(A - \lambda I_2)$. Pour $X_2 \in \ker(A - \lambda I_2)^2 \setminus \ker(A - \lambda I_2)$ et $X_1 = (A - \lambda I_2)X_2$, la famille (X_1, X_2) vérifie $AX_1 = \lambda X_1$ et $AX_2 = \lambda X_2 + X_1$.

Si $\lambda \in \mathbb{R}$, il suffit de reprendre la démonstration qui précède.

Si $\lambda \in \mathbb{C}\backslash \mathbb{R}$, on peut écrire $\lambda = a + ib$ avec $b \in \mathbb{R}^*$.

Posons $X_3 = \bar{X}_1$ et $X_4 = \bar{X}_2$.

La famille (X_1, X_2, X_3, X_4) est libre car $\lambda \neq \bar{\lambda}$.

Introduisons ensuite $Y_1 = \operatorname{Re}(X_1)$, $Y_2 = \operatorname{Re}(X_2)$, $Y_3 = \operatorname{Im}(X_1)$ et $Y_4 = \operatorname{Im}(X_2)$.

Puisque $\operatorname{Vect}_{\mathbb{C}}(Y_1,\ldots,Y_4) = \operatorname{Vect}_{\mathbb{C}}(X_1,\ldots,X_4)$, la famille (Y_1,\ldots,Y_4) est libre et peut donc être complétée en une base.

On vérifie par le calcul $AY_1 = aY_1 - bY_3$, $AY_2 = aY_2 - bY_4 + Y_1AY_3 = aY_3 + bY_1$ et $AY_4 = bY_2 + aY_4 + Y_3$.

et on obtient que la matrice A est semblable dans $\mathcal{M}_n(\mathbb{R})$ à la matrice

$$\begin{pmatrix} T & \star \\ O & B \end{pmatrix}$$
 avec

$$T = \left(\begin{array}{cccc} a & 1 & b & 0 \\ 0 & a & 0 & b \\ -b & 0 & a & 1 \\ 0 & -b & 0 & a \end{array}\right)$$

Pour $P_p = diag(p, 1, p, 1, ... 1)$, on obtient

$$P_p^{-1}TP_p \to \left(\begin{array}{cc} T_\infty & \star' \\ O & B \end{array}\right) = A_\infty$$

avec

$$T_{\infty} = \left(\begin{array}{cccc} a & 0 & b & 0 \\ 0 & a & 0 & b \\ -b & 0 & a & 0 \\ 0 & -b & 0 & a \end{array}\right)$$

Or dans $\mathcal{M}_n(\mathbb{C})$, la matrice A_{∞} est semblable est à diag $(\lambda, \lambda, \bar{\lambda}, \bar{\lambda}, B)$ qui n'est pas semblable à A pour des raisons de dimensions analogues à ce qui a déjà été vu. Les matrices réelles A et A_{∞} ne sont pas semblables dans $\mathcal{M}_n(\mathbb{C})$ ni a fortiori dans $\mathcal{M}_n(\mathbb{R})$.

On en déduit que la classe de similitude de A n'est pas fermée

Exercice 14: [énoncé]

a) Soient (f_n) une suite convergente d'éléments de A et $f_{\infty} \in E$ sa limite. Puisque la convergence de la suite (f_n) a lieu pour la norme $\|\cdot\|_{\infty}$, cette convergence correspond à la convergence uniforme. En particulier, il y a convergence simple et

$$f_n(0) \to f_\infty(0)$$

On en déduit $f_{\infty}(0) = 0$.

Puisqu'il y a convergence uniforme de cette suite de fonctions continues, on a aussi

$$\int_0^1 f_n(t) dt \to \int_0^1 f_\infty(t) dt$$

et donc

$$\int_0^1 f_{\infty}(t) \, \mathrm{d}t \geqslant 1$$

Ainsi $f_{\infty} \in A$ et la partie A est donc fermée en vertu de la caractérisation séquentielle des parties fermées.

b) Par l'absurde, supposons qu'il existe $f \in A$ vérifiant $||f||_{\infty} \leq 1$. Puisque

$$\left| \int_{0}^{1} f(t) \, dt \right| \leq \int_{0}^{1} |f(t)| \, dt \leq \int_{0}^{1} ||f||_{\infty} \, dt \leq 1$$

on peut affirmer que

$$\int_0^1 f(t) \, \mathrm{d}t = 1$$

et donc

$$\int_0^1 (1 - f(t)) \, \mathrm{d}t = 0$$

Or la fonction $t \mapsto 1 - f(t)$ est continue et positive, c'est donc la fonction nulle. Par suite f est la fonction constante égale à 1, or f(0) = 0, c'est absurde.

Exercice 15 : [énoncé]

a) Soient (f_n) une suite convergente d'éléments de A et $f_{\infty} \in E$ sa limite. Puisque la convergence de la suite (f_n) a lieu pour la norme $\|.\|_{\infty}$, il s'agit d'une convergence uniforme.

Puisqu'il y a convergence uniforme, il y a convergence simple et en particulier

$$f_n(0) \to f_\infty(0)$$

On en déduit $f_{\infty}(0) = 0$.

Puisqu'il y a convergence uniforme de cette suite de fonctions continues, on a aussi

$$\int_0^1 f_n(t) dt \to \int_0^1 f_\infty(t) dt$$

et donc $\int_0^1 f_{\infty}(t) dt \ge 1$.

Ainsi $f_{\infty} \in A$ et la partie A est donc fermée en vertu de la caractérisation séquentielle des parties fermées.

b) Par l'absurde, supposons qu'il existe $f \in A$ vérifiant $||f||_{\infty} \leq 1$. Puisque

$$\left| \int_0^1 f(t) \, \mathrm{d}t \right| \leqslant \int_0^1 |f(t)| \, \, \mathrm{d}t \leqslant \int_0^1 \|f\|_{\infty} \, \, \mathrm{d}t \leqslant 1$$

on peut affirmer que

$$\int_0^1 f(t) \, \mathrm{d}t = 1$$

et donc

$$\int_0^1 (1 - f(t)) \, \mathrm{d}t = 0$$

Or la fonction $t \mapsto 1 - f(t)$ est continue et positive, c'est donc la fonction nulle. Par suite f est la fonction constante égale à 1, or f(0) = 0, c'est absurde.

c) $d(\tilde{0}, A) = \inf_{f \in A} \|f\|_{\infty}$ et par ce qui précède on a déjà $d(\tilde{0}, A) \geqslant 1$.

Considérons maintenant la fonction f_n définie pour $n \in \mathbb{N}^*$ par le schéma.

La fonction f_n

La fonction f_n est continue, $f_n(0) = 0$ et par calcul d'aires

$$\int_0^1 f_n(t) dt = \frac{1}{2n} \frac{n+1}{n} + \left(1 - \frac{1}{n}\right) \frac{n+1}{n} = \frac{(2n-1)(n+1)}{2n^2} = \frac{2n^2 + n - 1}{2n^2} \geqslant 1$$

Corrections

Ainsi la fonction f_n est élément de A. Or

$$||f_n||_{\infty} = \frac{n+1}{n} \to 1$$

donc

$$d(\tilde{0}, A) = 1$$

Exercice 16: [énoncé]

a) Soit (u_n) une suite convergente d'éléments de A de limite $u_{\infty} = (x_{\infty}, y_{\infty})$. Pour tout $n \in \mathbb{N}$, on peut écrire $u_n = (x_n, y_n)$ avec $x_n y_n = 1$. À la limite on obtient $x_{\infty} y_{\infty} = 1$ et donc $u_{\infty} = 1$.

En vertu de la caractérisation séquentielle des parties fermées, on peut affirmer que A est fermée.

La partie B, quant à elle, est fermée car produit cartésien de deux fermées.

b) Posons

$$u_n = (1/n, 0) = (1/n, n) + (0, -n) \in A + B$$

Quand $n \to +\infty$, $u_n \to (0,0)$.

Or $(0,0) \notin A+B$ car le premier élément d'un couple appartenant à A+B ne peut pas être nul.

Exercice 17: [énoncé]

a) On a

$$\mathbb{R}\backslash\mathbb{Z}=\bigcup_{n\in\mathbb{Z}}]n,n+1[$$

Puisque $\mathbb{R}\backslash\mathbb{Z}$ est une réunion d'ouverts, c'est un ouvert.

b) Soit (x_n) une suite convergente d'entiers de limite ℓ .

Pour $\varepsilon = 1/2$, il existe un rang $N \in \mathbb{N}$ tel que

$$\forall n \geqslant N, |x_n - \ell| < 1/2$$

et alors

$$\forall m, n \geqslant N, |x_m - x_n| < 1$$

Puisque les termes de la suite (x_n) sont entiers, on en déduit

$$\forall m, n \geqslant N, x_m = x_n$$

La suite (x_n) est alors constante à partir du rang N et sa limite est donc un nombre entier.

c) Considérons $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \sin(\pi x)$.

La fonction f est continue et

$$\mathbb{Z} = f^{-1}\left(\{0\}\right)$$

avec $\{0\}$ partie fermée de \mathbb{R} .

Exercice 18 : [énoncé]

Posons $\varphi: E \to \mathbb{R}$ l'application définie par $\varphi(P) = P(0)$.

L'application φ est linéaire et puisque $|\varphi(P)| \leq N_1(P)$, cette application est continue. On en déduit que $\Omega = \varphi^{-1}(\mathbb{R}^*)$ est un ouvert relatif à E i.e. un ouvert de E pour la norme N_1 .

Pour la norme N_2 , montrons que la partie Ω n'est pas ouverte en observant qu'elle n'est pas voisinage de son point P=1. Pour cela considérons la fonction continue $f:[0,2]\to\mathbb{R}$ donnée par le graphe suivant :

Par le théorème d'approximation de Weierstrass, il existe une suite (P_n) de polynômes vérifiant

$$\sup_{t \in [0,2]} |P_n(t) - f(t)| \to 0$$

et en particulier

$$P_n(0) \to 0 \text{ et } N_2(P_n - P) \to 0$$

Considérons alors la suite de polynômes (Q_n) avec

$$Q_n = P_n - P_n(0)$$

Pour tout $n \in \mathbb{N}$, $Q_n(0) = 0$ donc $Q_n \notin \Omega$ et

$$N_2(Q_n) \leq N_2(P_n - P) + |P_n(0)| \to 0$$

donc

$$Q_n \xrightarrow{N_2} P$$

Puisque la partie Ω n'est pas voisinage de chacun de ses points, elle n'est pas ouverte pour la norme N_2 .

Exercice 19 : [énoncé]

Supposons $\overset{\circ}{F} \neq \emptyset$ et introduisons $x \in \overset{\circ}{F}$, il existe $\varepsilon > 0$ tel que $B(x, \varepsilon) \subset F$. Pour tout $u \in E$ tel que $u \neq 0_E$, considérons

$$y = x + \frac{\varepsilon}{2} \frac{u}{\|u\|}$$

on a $y \in B(x, \varepsilon)$ donc $y \in F$, or $x \in F$ donc $u \in F$. Ainsi $E \subset F$ puis E = F.

Exercice 20: [énoncé]

a) Si a est intérieur à A alors A est voisinage de a et donc B aussi. Par suite $a \in B^{\circ}$.

Si a est adhérent à A alors a est limite d'une suite convergente d'éléments de A. Celle-ci est aussi une suite convergente d'éléments de B donc $a \in \overline{B}$. On peut aussi déduire ce résultat du précédent par un passage au complémentaire. b) $A \cap B \subset A$, B donc $(A \cap B)^{\circ}$ est inclus dans $A^{\circ} \cap B^{\circ}$. Inversement si a un élément de $A^{\circ} \cap B^{\circ}$, alors A est voisinage de a et B aussi donc $A \cap B$ est voisinage de a et donc a est intérieur à $A \cap B$. Ainsi $(A \cap B)^{\circ}$ et $A^{\circ} \cap B^{\circ}$ sont égaux. $A \subset A \cup B$ et $B \subset A \cup B$ donc $A^{\circ} \cup B^{\circ}$ est inclus dans $(A \cup B)^{\circ}$. L'égalité n'est pas toujours vraie. Un contre-exemple est obtenu pour A = [0, 1] et B = [1, 2] où

 $A^{\circ} \cup B^{\circ} =]0, 1[\cup]1, 2[$ alors que $(A \cup B)^{\circ} =]0, 2[$. c) Par passage au complémentaire des résultats précédents : $\overline{A \cup B}$ et $\overline{A} \cup \overline{B}$ sont égaux alors que $\overline{A} \cap \overline{B}$ contient $\overline{A \cap B}$ sans pouvoir dire mieux. On peut aussi mener une résolution directe en exploitant a) et la caractérisation séquentielle des points adhérents pour l'inclusion de $\overline{A \cup B}$ dans $\overline{A} \cup \overline{B}$.

Exercice 21 : [énoncé]

 $\bar{F} \subset E \text{ et } 0_E \in \bar{F} \text{ car } 0_E \in F.$

Soient $\lambda, \mu \in \mathbb{K}$ et $x, y \in \bar{F}$.

Il existe deux suites (x_n) et (y_n) d'éléments de F vérifiant

$$x_n \to x \text{ et } y_n \to y$$

On a alors

$$\lambda x_n + \mu y_n \to \lambda x + \mu y$$

avec $\lambda x_n + \mu y_n \in F$ pour tout $n \in \mathbb{N}$. On en déduit $\lambda x + \mu y \in \overline{F}$.

Exercice 22 : [énoncé]

Puisque $A \subset \text{Vect} A$, on a $\bar{A} \subset \overline{\text{Vect} A}$.

Puisque VectA est un sous-espace vectoriel, on montrer aisément que $\overline{\text{Vect}A}$ l'est aussi. Puisqu'il contient \bar{A} , on obtient

$$\operatorname{Vect}(\bar{A}) \subset \overline{\operatorname{Vect}A}$$

Exercice 23 : [énoncé]

On a

$$\operatorname{Fr}(A) = \overline{A} \setminus \overset{\circ}{A} = \overline{A} \cap C_E \overset{\circ}{A} = \overline{A} \cap \overline{C_E A}$$

On en déduit que Fr(A) est fermée par intersection de parties fermées

Exercice 24 : [énoncé]

On sait

$$\operatorname{Fr}(F) = \overline{F} \cap \overline{C_E F}$$

donc

$$\operatorname{Fr}(\operatorname{Fr}(F)) = \operatorname{Fr}(F) \cap \overline{C_E \operatorname{Fr}(F)}$$

Or $Fr(F) \subset \overline{F} = F$ donc $C_E F \subset C_E Fr(F)$ puis $\overline{C_E F} \subset \overline{C_E Fr F}$. De plus $Fr F \subset \overline{C_E F}$ donc $Fr F \subset \overline{C_E Fr F}$ puis

$$Fr(Fr(F)) = Fr(F)$$

Exercice 25 : [énoncé]

- a) Soit $x \in A \cap \overline{B}$. Il existe une suite $(b_n) \in B^{\mathbb{N}}$ telle que $b_n \to x$. Or $x \in A$ et A est ouvert donc à partir d'un certain rang $b_n \in A$. Ainsi pour n assez grand $b_n \in A \cap B$ et puisque $b_n \to x$, $x \in \overline{A \cap B}$.
- b) Si $A \cap B = \emptyset$ alors $A \cap \overline{B} \subset \overline{A \cap B} = \overline{\emptyset} = \emptyset$.

Exercice 26 : [énoncé]

a) Soient $a, b \in \bar{A}$. Il existe $(a_n) \in A^{\mathbb{N}}$ et $(b_n) \in A^{\mathbb{N}}$ telles que $a_n \to a$ et $b_n \to b$. Pour tout $\lambda \in [0, 1]$,

$$\lambda a + (1 - \lambda)b = \lim_{n \to +\infty} (\lambda a_n + (1 - \lambda)b_n)$$

avec $\lambda a_n + (1 - \lambda)b_n \in [a_n, b_n] \subset A \text{ donc } \lambda a + (1 - \lambda)b \in \bar{A}$.

b) Soient $a,b \in A^{\circ}$. Il existe $\alpha_a,\alpha_b>0$ tel que $B(a,\alpha_a),B(b,\alpha_b)\subset A$. Posons $\alpha=\min(\alpha_a,\alpha_b)>0$.

Pour tout $\lambda \in [0,1]$ et tout $x \in B(\lambda a + (1-\lambda)b, \alpha)$ on a $x = (\lambda a + (1-\lambda)b) + \alpha u$ avec $u \in B(0,1)$.

 $a' = a + \alpha u \in B(a, \alpha) \subset A$ et $b' = b + \alpha u \in B(b, \alpha) \subset A$ donc $[a', b'] \subset A$ puisque A est convexe donc $\lambda a' + (1 - \lambda)b' = x \in A$. Ainsi $B(\lambda a + (1 - \lambda)b, \alpha) \subset A$ et donc $\lambda a + (1 - \lambda)b \in A^{\circ}$. Finalement A° est convexe.

Exercice 27 : [énoncé]

 $A \subset \bar{A}, B \subset \bar{B} \text{ donc } d(\bar{A}, \bar{B}) \leqslant d(A, B).$

Pour tout $x \in \bar{A}$ et $y \in \bar{B}$, il existe $(a_n) \in A^{\mathbb{N}}$ et $(b_n) \in B^{\mathbb{N}}$ telles que $a_n \to x$ et $b_n \to y$.

On a alors $d(x,y) = \lim_{n \to +\infty} d(a_n, b_n)$ or $d(a_n, b_n) \ge d(A, B)$ donc à la limite $d(x,y) \ge d(A,B)$ puis $d(\bar{A},\bar{B}) \ge d(A,B)$ et finalement l'égalité.

Exercice 28 : [énoncé]

a) $\bigcup_{i=1}^{n} \overline{A_i}$ est un fermé qui contient $\bigcup_{i=1}^{n} A_i$ donc $\overline{\bigcup_{i=1}^{n} A_i} \subset \bigcup_{i=1}^{n} \overline{A_i}$. Pour tout $j \in \{1, \dots, n\}, A_j \subset \overline{\bigcup_{i=1}^{n} A_i}$ et $\overline{\bigcup_{i=1}^{n} A_i}$ est fermé donc $\overline{A_j} \subset \overline{\bigcup_{i=1}^{n} A_i}$ puis

$$\bigcup_{i=1}^n \overline{A_i} \subset \bigcup_{i=1}^n A_i.$$

b) $\bigcap_{i=1}^{n} \overline{A_i}$ est un fermé qui contient $\bigcap_{i=1}^{n} A_i$ donc $\overline{\bigcap_{i=1}^{n} A_i} \subset \bigcap_{i=1}^{n} \overline{A_i}$.

Il ne peut y avoir égalité : pour $A_1 = \mathbb{Q}$, $A_2 = \mathbb{R} \setminus \mathbb{Q}$ on a $\overline{A_1 \cap A_2} = \emptyset$ et $A_1 \cap A_2 = \mathbb{R}$.

Exercice 29 : [énoncé]

Pour tout $x \in A$, $x \in \bar{A}$ et donc $|f(x)| \leq ||f||_{\infty, \bar{A}}$. Ainsi

$$||f||_{\infty,A} \leqslant ||f||_{\infty,\bar{A}}$$

Soit $x \in \bar{A}$, il existe $(u_n) \in A^{\mathbb{N}}$ tel que $u_n \to x$ et alors $f(u_n) \to f(x)$ par continuité de f. Or $|f(u_n)| \leq ||f||_{\infty,A}$ donc à la limite $|f(x)| \leq ||f||_{\infty,A}$ puis

$$||f||_{\infty,\bar{A}} \leqslant ||f||_{\infty,A}$$

Exercice 30 : [énoncé]

Commençons par montrer que $\mathcal{D}_n(\mathbb{C})$ est dense dans $\mathcal{M}_n(\mathbb{C})$.

Soit $A \in \mathcal{M}_n(\mathbb{C})$. La matrice A est trigonalisable, on peut donc écrire

 $A = PTP^{-1}$ avec $P \in GL_n(\mathbb{C})$ et $T \in \mathcal{T}_n^+(\mathbb{C})$. Posons alors pour $p \in \mathbb{N}^*$, on pose $A_p = P(T + D_p)P^{-1}$ avec $D_p = \text{diag}(1/p, 2/p, \dots, n/p)$.

Par opérations, $A_p \xrightarrow[p \to +\infty]{} A$ et pour p assez grand les coefficients diagonaux de

la matrice triangulaire $T + D_p$ sont deux à deux distincts, ce qui assure

 $A_p \in \mathcal{D}_n(\mathbb{C})$. Ainsi $A \in \overline{\mathcal{D}_n(\mathbb{C})}$ et donc $\overline{\mathcal{D}_n(\mathbb{C})} = \mathcal{M}_n(\mathbb{C})$.

Montrons maintenant que l'intérieur de $\mathcal{D}_n(\mathbb{C})$ est formée des matrices possédant exactement n valeurs propres distinctes.

Soit $A \in \mathcal{D}_n(\mathbb{C})$.

 $\operatorname{Cas} |\operatorname{Sp} A| < n.$

On peut écrire $A = PDP^{-1}$ avec $P \in GL_n(\mathbb{C})$ et $D = diag(\lambda, \lambda, \lambda_2, \dots, \lambda_n)$.

Posons alors
$$D_p = D + \begin{pmatrix} 0 & 1/p & & \\ 0 & 0 & & (0) \\ & & \ddots & \\ & (0) & & 0 \end{pmatrix}$$
 et $A_p = PD_pP^{-1}$.

La matrice D_n n'est pas diagonalisable car dim $E_{\lambda}(D_n) < m_{\lambda}(D_n)$ donc A_n non plus et puisque $A_n \to A$, on peut affirmer que la matrice A n'est pas intérieure à $\mathcal{D}_n(\mathbb{C}).$

 $\operatorname{Cas} |\operatorname{Sp} A| = n.$

Supposons par l'absurde que A n'est pas intérieur à $\mathcal{D}_n(\mathbb{C})$. Il existe donc une suite (A_n) de matrices non diagonalisables convergeant vers A. Puisque les matrices A_n ne sont pas diagonalisables, leurs valeurs propres ne peuvent être deux à deux distinctes. Notons λ_p une valeur propre au moins double de A_p . Puisque $A_p \to A$, par continuité du déterminant $\chi_{A_p} \to \chi_A$. Les coefficients du polynôme caractéristique χ_{A_p} sont donc bornés ce qui permet d'affirmer que les racines de χ_{A_p} le sont aussi (car si ξ est racine de $P = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$, on a $|\xi| \leq \max(1, |a_0| + |a_1| + \cdots + |a_{n-1}|)$). La suite complexe (λ_p) étant bornée, on peut en extraire une suite convergente $(\lambda_{\varphi(p)})$ de limite λ . On a alors $A_p - \lambda_{\varphi(p)} I_n \to A - \lambda I_n$. Or les valeurs propres de A étant simples, on a $\dim \ker(A - \lambda I_n) \leq 1$ et donc $\operatorname{rg}(A - \lambda I_n) \geq n - 1$. La matrice $A - \lambda I_n$ possède donc un déterminant extrait non nul d'ordre n-1. Par continuité du déterminant, on peut affirmer que pour p assez grand $\operatorname{rg}(A_{\varphi(p)} - \lambda_{\varphi(p)} I_n) \geqslant n-1$ et donc dim $\ker(A_{\varphi(p)} - \lambda_{\varphi(p)}I_n) \leq 1$ ce qui contredit la multiplicité de la valeur propre $\lambda_{\varphi(p)}$. C'est absurde et on conclut que la matrice A est intérieure à $\mathcal{D}_n(\mathbb{C})$.

Exercice 31 : [énoncé]

a) Si A est fermée alors A = A donc $FrA = A \setminus A^{\circ} \subset A$.

Inversement, si $Fr(A) = \bar{A} \backslash A^{\circ} \subset A$ alors puisque $A^{\circ} \subset A$ on a $\bar{A} \subset A$.

En effet, pour $x \in \overline{A}$, si $x \in A^{\circ}$ alors $x \in A$ et sinon $x \in \operatorname{Fr} A$ et donc $x \in A$.

Puisque de plus $A \subset \bar{A}$, on en déduit $A = \bar{A}$ et donc \bar{A} est fermé.

b) A est un ouvert si, et seulement si, C_EA est un fermé i.e. si, et seulement si, $\operatorname{Fr}(C_E A) \subset C_E A$.

Or $Fr(C_E A) = Fr A$ donc A est un ouvert si, et seulement si, $Fr A \cap A = \emptyset$.

Exercice 32 : [énoncé]

a) Une matrice de \mathcal{R} est annulée par un polynôme de la forme X^n-1 dont les racines sont de module 1. Puisque les valeurs propres figurent parmi les racines des polynômes annulateurs

$$\mathcal{R} \subset \mathcal{U}$$

b) Une matrice $M \in \mathcal{M}_2(\mathbb{C})$ admet deux valeurs propres comptées avec multiplicité λ, μ . Celles-ci sont déterminées comme les solutions du système

$$\begin{cases} \lambda + \mu = \operatorname{tr} M \\ \lambda \mu = \det M \end{cases}$$

Pour alléger les notations, posons $p=(\operatorname{tr} M)/2$ et $q=\det M$. Les valeurs propres λ et μ sont les deux racines du polynôme

$$X^2 - pX + q$$

et en posant $\delta \in \mathbb{C}$ tel que $\delta^2 = p^2 - q$, ces racines sont

$$\lambda = p + \delta$$
 et $\mu = p - \delta$

de sorte que

$$|\lambda|^2 = |p|^2 + |\delta|^2 + 2\text{Re}(\bar{p}\delta) \text{ et } |\mu|^2 = |p|^2 + |\delta|^2 - 2\text{Re}(\bar{p}\delta)$$

On en déduit que la fonction f qui à $M \in \mathcal{M}_2(\mathbb{C})$ associe le réel $\left(\left|\lambda\right|^2 - 1\right)^2 \left(\left|\mu\right|^2 - 1\right)^2$ s'exprime comme somme, produit et conjuguée des $\operatorname{tr} M$ et det M et c'est donc une fonction continue.

Puisque $\mathcal{U} = f^{-1}(\{0\})$ avec $\{0\}$ fermé, \mathcal{U} est une partie fermée de $\mathcal{M}_2(\mathbb{C})$. c) Soit $M \in \mathcal{U}$. La matrice M est trigonalisable et donc il existe $P \in GL_2(\mathbb{C})$ et $T \in \mathcal{T}_2^+(\mathbb{C})$ telle que

$$M = PTP^{-1}$$
 avec $T = \begin{pmatrix} \lambda & \nu \\ 0 & \mu \end{pmatrix}, |\lambda| = |\mu| = 1$

On peut écrire $\lambda=\mathrm{e}^{i\alpha}$ et $\mu=\mathrm{e}^{i\beta}$ avec $\alpha,\beta\in\mathbb{R}$. Pour $n\in\mathbb{N}^{\star}$, posons

$$\alpha_n = 2\pi \frac{[n\alpha/2\pi]}{n}$$
 et $\beta_n = 2\pi \frac{[n\beta/2\pi] + 1}{n}$

et considérons la matrice

$$M_n = PT_nP^{-1}$$
 avec $T_n = \begin{pmatrix} e^{i\alpha_n} & \nu \\ 0 & e^{i\beta_n} \end{pmatrix}$

Par construction,

$$e^{i\alpha_n} \neq e^{i\beta_n}$$

au moins pour n assez grand et ce même lorsque $\alpha = \beta$.

On en déduit que pour ces valeurs de n la matrice T_n est diagonalisable.

De plus, puisque

$$\left(e^{i\alpha_n}\right)^n = \left(e^{i\beta_n}\right)^n = 1$$

on a alors $T_n^n = I_2$ et donc $M_n \in \mathcal{R}$.

Enfin, on a évidemment $M_n \to M$.

d) \mathcal{U} est un fermé contenant \mathcal{R} donc $\bar{\mathcal{R}} \subset \mathcal{U}$ et par double inclusion $\bar{\mathcal{R}} = \mathcal{U}$.

Exercice 33 : [énoncé]

La fonction $f: (x,y) \mapsto x^3 + y^3 - x^2 - y^2$ est continue sur \mathbb{R}^2 et $U = f^{-1}(]0, +\infty[)$ est un ouvert relatif de \mathbb{R}^2 car image réciproque d'un ouvert par une fonction continue. Or un ouvert relatif à \mathbb{R}^2 n'est autre qu'un ouvert de \mathbb{R}^2 .

Exercice 34: [énoncé]

L'application $\det : \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ est polynomiale en les coefficients matriciels, elle est donc continue. Puisque $\mathrm{GL}_n(\mathbb{R})$ est l'image réciproque de l'ouvert \mathbb{R}^* par cette application continue, $\mathrm{GL}_n(\mathbb{R})$ est un ouvert relatif à $\mathcal{M}_n(\mathbb{R})$, c'est donc un ouvert de $\mathcal{M}_n(\mathbb{R})$.

Exercice 35: [énoncé]

Par le cas d'égalité dans l'inégalité de Cauchy-Schwarz

$$(x,y)$$
 est libre $\Leftrightarrow |(x\mid y)| < ||x|| ||y||$

Considérons l'application $f: E^2 \to \mathbb{R}$ définie par

$$f(x,y) = ||x|| \, ||y|| - (x \mid y)$$

L'ensemble $\{(x,y) \in E^2/(x,y) \text{ libre}\} = f^{-1}(]0,+\infty[)$ est un ouvert car image réciproque d'un ouvert par une fonction continue.

Exercice 36: [énoncé]

Soit $A \in R_p$. La matrice A possède un déterminant extrait non nul d'ordre p. Par continuité du déterminant, au voisinage de A, toute matrice à ce même déterminant extrait non nul et est donc de rang supérieur à p. Ainsi la matrice A est intérieure à R_p .

Exercice 37: [énoncé]

- (i) \Rightarrow (ii) Supposons f continue et introduisons $A \subset E$. Tout élément y de $f(\bar{A})$ est l'image par f de la limite x d'une suite convergente (x_n) d'éléments de A. Or f étant continue, $f(x_n) \to y$ et donc y est limite d'une suite d'élément de f(A). Ainsi $f(\bar{A}) \subset \overline{f(A)}$.
- (ii) \Rightarrow (iii) Supposons (ii) et introduisons $B \subset F$. Pour $A = f^{-1}(B)$, on a $f(\bar{A}) \subset \bar{f}(A) \subset \bar{B}$ donc $\bar{A} \subset f^{-1}(\bar{B})$ c'est à dire

$$\overline{f^{-1}(B)} \subset f^{-1}(\bar{B})$$

 $(iii) \Rightarrow (iv)$ Supposons (iii) et introduisons $B \subset F$. On remarque la propriété $f^{-1}(C_F B) = C_E f^{-1}(B)$ et donc

$$f^{-1}(B^{\circ}) = f^{-1}(C_F(\overline{C_FB})) = C_E f^{-1}(\overline{C_FB}) \subset C_E \overline{f^{-1}(C_FB)} = (C_E f^{-1}(C_FB))^{\circ} = C_E f^{-1}(C_FB)$$

(iv) \Rightarrow (i) Supposons (iv). Pour tout $a \in A$ et tout $\varepsilon > 0$, $B(f(a), \varepsilon)$ est un ouvert de F dont

$$f^{-1}(B(f(a),\varepsilon)) \subset (f^{-1}(B(f(a),\varepsilon)))^{\circ}$$

Or $a \in f^{-1}(B(f(a), \varepsilon))$ donc $a \in (f^{-1}(B(f(a), \varepsilon)))^{\circ}$. Par conséquent, il existe $\alpha > 0$ tel que

$$B(a,\alpha) \subset f^{-1}(B(f(a),\varepsilon))$$

Ainsi nous obtenons

$$\forall a \in E, \forall \varepsilon > 0, \exists \alpha > 0, \forall x \in E, x \in B(a, \alpha) \Rightarrow f(x) \in B(f(a), \varepsilon)$$

ce qui correspond à la continuité de f.

Exercice 38 : [énoncé]

Si u est continue alors

$$A = \{x \in E / ||u(x)|| = 1\} = f^{-1}(\{1\})$$

est l'image réciproque du fermé $\{1\}$ par l'application continue $f = \|.\| \circ u$. La partie A est donc un fermé relatif à E, c'est donc une partie fermée. Inversement, si u n'est pas continu alors l'application u n'est par bornée sur $\{x \in E/\|x\|=1\}$. Cela permet de construire une suite $(x_n) \in E^{\mathbb{N}}$ vérifiant

$$||x_n|| = 1 \text{ et } ||u(x_n)|| > n$$

En posant

$$y_n = \frac{1}{\|u(x_n)\|} x_n$$

on obtient une suite $(y_n) \in A^{\mathbb{N}}$ vérifiant $y_n \to 0$. Or $0 \notin A$ donc la partie A n'est pas fermée.

Exercice 39 : [énoncé]

Si la forme linéaire est continue assurément son noyau est fermé car image réciproque du fermé {0}.

Inversement, supposons que φ est une forme linéaire discontinue.

Pour tout $k \in \mathbb{R}^+$, il existe alors $x \in E$ tel que

$$|\varphi(x)| > k ||x||$$

 $f^{-1}(B^{\circ}) = f^{-1}(C_F\overline{(C_FB)}) = C_Ef^{-1}(\overline{C_FB}) \subset C_E\overline{f^{-1}(C_FB)} = \left(C_Ef^{-1}(C_FB)\right)^{\circ} = \left(f^{-1}(B)\right)^{\circ} = \left(f^{-1}(B)\right)^{\circ}$ pour tout $n \in \mathbb{N}$

$$|\varphi(x_n)| > n \|x_n\|$$

Posons alors

$$y_n = \frac{1}{\varphi(x_n)} x_n$$

On a par construction $\varphi(y_n) = 1$ et $||y_n|| \le 1/n$ donc $y_n \to 0_E$. Considérons enfin

$$z_n = y_0 - y_n$$

On a $\varphi(z_n) = 0$ et donc $z_n \in \ker \varphi$. Or

$$z_n \to y_0$$

avec $y_0 \notin \ker \varphi$. Ainsi $\ker \varphi$ n'est pas fermé car ne contient pas toutes les limites de ses suites convergentes.

Exercice 40 : [énoncé]

a) Notons

$$A=\left\{ x\in\left[0,1\right]/f(x)=x\right\}$$

On a évidemment $A \subset \operatorname{Im} f$, mais inversement, pour $x \in \operatorname{Im} f$, on peut écrire x = f(a) et alors

$$f(x) = f(f(a)) = f(a) = x$$

Ainsi $\operatorname{Im} f \subset A$, puis, par double inclusion, $A = \operatorname{Im} f$.

On en déduit que A est un segment de \mathbb{R} de la forme $[\alpha, \beta]$ car image d'un compact par une fonction réelle continue.

b) Une fonction f d'allure suivante convient

c) Soit f solution dérivable.

Si $\alpha = \beta$ alors f est constante égale à cette valeur commune.

Si $\alpha < \beta$ alors $f'(\alpha) = f'_d(\alpha) = 1$ car f(x) = x sur $[\alpha, \beta]$.

Par suite, si $\alpha > 0$, f prend des valeurs strictement inférieur à α ce qui est contradictoire avec l'étude qui précède. On en déduit $\alpha = 0$.

De même on obtient $\beta = 1$ et on conclut $f : x \in [0,1] \mapsto x$.

Exercice 41: [énoncé]

a) Soit f solution. Formons

$$A = \{x \in [0, 1] / f(x) = x\}$$

On a évidemment $A \subset \operatorname{Im} f$, mais inversement, pour $x \in \operatorname{Im} f$, on peut écrire x = f(a) et alors

$$f(x) = f(f(a)) = f(a) = x$$

Ainsi $\operatorname{Im} f \subset A$, puis, par double inclusion, $A = \operatorname{Im} f$.

On en déduit que A est un segment de $\mathbb R$ de la forme $[\alpha,\beta]$ car image d'un compact par une fonction réelle continue.

Pour tout $x \in [\alpha, \beta]$, f(x) = x et pour tout $x \in [0, \alpha[\cup]\beta, 1]$, $f(x) \in [\alpha, \beta]$. Inversement, une fonction continue vérifiant les deux conditions précédente est solution.

Cela peut apparaître sous la forme d'une fonction ayant l'allure suivante

b) Soit f solution dérivable.

Si $\alpha = \beta$ alors f est constante égale à cette valeur commune.

Si $\alpha < \beta$ alors $f'(\alpha) = f'_d(\alpha) = 1$ car f(x) = x sur $[\alpha, \beta]$.

Par suite, si $\alpha>0$, f prend des valeurs strictement inférieur à α ce qui est contradictoire avec l'étude qui précède. On en déduit $\alpha=0$.

De même on obtient $\beta = 1$ et on conclut $f : x \in [0,1] \mapsto x$.

Exercice 42: [énoncé]

a) Par télescopage

$$\left(\sum_{k=0}^{n} u^{k}\right) \circ (u - \operatorname{Id}) = u^{n+1} - \operatorname{Id}$$

donc

$$v_n \circ (u - \operatorname{Id}) = \frac{1}{(n+1)} (u^{n+1} - \operatorname{Id})$$

b) Soit $x \in \text{Im}(u - \text{Id}) \cap \ker(u - \text{Id})$. On peut écrire x = u(a) - a et on a u(x) = x. On en déduit

$$v_n \circ (u - \operatorname{Id})(a) = x$$

Or

$$v_n \circ (u - \mathrm{Id})(a) = \frac{1}{n+1} (u^{n+1}(a) - a) \to 0$$

car

$$||u^{n+1}(a) - a|| \le ||u^{n+1}(a)|| + ||a|| \le 2 ||a||$$

On en déduit x = 0.

c) Par la formule du rang

$$\dim \operatorname{Im}(u - \operatorname{Id}) + \dim \ker(u - \operatorname{Id}) = \dim E$$

et puisque les deux espaces sont en somme directe, ils sont supplémentaires.

d) Soit $z \in E$. On peut écrire z = x + y avec $x \in \text{Im}(u - \text{Id})$ et $y \in \text{ker}(u - \text{Id})$. On a alors $v_n(z) = v_n(x) + y$ avec, comme dans l'étude du b), $v_n(x) \to 0$. On en déduit $v_n(z) \to y$.

Ainsi la suite de fonctions (v_n) converge simplement vers la projection p sur $\ker(u - \operatorname{Id})$ parallèlement à $\operatorname{Im}(u - \operatorname{Id})$.

Puisque pour tout $x \in E$, on a

$$||v_n(x)|| \le \frac{1}{n+1} \sum_{k=0}^n ||u^k(x)|| \le \frac{1}{n+1} \sum_{k=0}^n ||x|| = ||x||$$

on obtient à la limite $||p(x)|| \le ||x||$. On en déduit que la projection p est continue puis que $\text{Im}(u - \text{Id}) = \ker p$ est une partie fermée.

e) Supposons la convergence simple de la suite de fonctions (v_n) et la fermeture de Im(u-Id).

Soit $z \in E$. Posons $y = \lim_{n \to +\infty} v_n(z)$ et x = z - y.

D'une part, puisque

$$u(v_n(z)) = \frac{1}{n+1} \sum_{k=0}^{n} u^{k+1}(z) = v_n(z) + \frac{1}{n+1} \left(u^{n+1}(z) - z \right)$$

on obtient à la limite

$$u(y) = y$$

car l'application linéaire u est continue et $||u^{n+1}(z)|| \le ||z||$. On en déduit $y \in \ker(u - \operatorname{Id})$.

D'autre part

$$z - v_n(z) = \frac{1}{n+1} \left(\sum_{k=0}^n (\mathrm{Id} - u^k)(z) \right)$$

 $_{
m et}$

$$\operatorname{Im}(\operatorname{Id} - u^k) = \operatorname{Im}\left((\operatorname{Id} - u) \circ \sum_{\ell=0}^{k-1} u^{\ell-1}\right) \subset \operatorname{Im}(\operatorname{Id} - u) = \operatorname{Im}(u - \operatorname{Id})$$

donc $z - v_n(z) \in \text{Im}(u - \text{Id})$. On en déduit $x = \lim(z - v_n(z)) \in \text{Im}(u - \text{Id})$ car Im(u - Id) est fermé.

Finalement, on a écrit z = x + y avec

$$x \in \operatorname{Im}(u - \operatorname{Id}) \text{ et } y \in \ker(u - \operatorname{Id})$$

Exercice 43: [énoncé]

On note U l'ensemble des polynômes considérés.

Soit $P \in U$. En notant $x_1 < \ldots < x_n$ ses racines, on peut écrire

$$P = \lambda(X - x_1) \dots (X - x_n)$$

avec $\lambda \neq 0$. Pour fixer les idées, supposons $\lambda > 0$ (il est facile d'adapter la démonstration qui suit au cas $\lambda < 0$)

Posons y_1, \ldots, y_{n-1} les milieux des segments $[x_1, x_2], \ldots, [x_{n-1}, x_n]$.

Posons aussi $y_0 \in]-\infty, x_1[$ et $y_n \in]x_n, +\infty[$.

 $P(y_0)$ est du signe de $(-1)^n$, $P(y_1)$ est du signe de $(-1)^{n-1}$,..., $P(y_{n-1})$ est du signe de (-1), $P(y_n)$ du signe de +1.

Considérons maintenant l'application

$$f_i: Q \in \mathbb{R}_n [X] \mapsto Q(y_i)$$

L'application f_i est continue et donc $f_i^{-1}(\pm \mathbb{R}^{+\star})$ est une partie ouverte de $\mathbb{R}_n[X]$. Considérons V l'intersection des

$$f_0^{-1}\left((-1)^n\mathbb{R}^{+\star}\right), f_1^{-1}\left((-1)^{n-1}\mathbb{R}^{+\star}\right), \dots, f_n^{-1}(\mathbb{R}^{+\star})$$

Les éléments de V sont des polynômes réels alternant de signe entre $y_0 < y_1 < \ldots < y_n$. Par application du théorème des valeurs intermédiaires, un tel polynôme admet n racines distinctes et donc est scindé à racines simples. Ainsi $V \subset U$. Or $P \in V$ et V est ouvert donc V est voisinage de P puis U est voisinage de P.

Au final U est ouvert car voisinage de chacun de ses éléments.

Exercice 44 : [énoncé]

Soit $P \in O_n$. En notant $x_1 < \ldots < x_n$ ses racines, on peut écrire

$$P = \alpha(X - x_1) \dots (X - x_n)$$

avec $\alpha \neq 0$.

Posons y_1, \ldots, y_{n-1} les milieux des segments $[x_1, x_2], \ldots, [x_{n-1}, x_n]$.

Posons aussi $y_0 \in]-\infty, x_1[$ et $y_n \in]x_n, +\infty[$.

 $P(y_0)$ est du signe de $(-1)^n \alpha$, $P(y_1)$ est du signe de $(-1)^{n-1} \alpha, \ldots, P(y_{n-1})$ est du signe de $(-1)\alpha$, $P(y_n)$ du signe de α . Pour simplifier l'exposé de ce qui suit, on va supposer $\alpha > 0$. La résolution se transposera aisément au cas $\alpha < 0$. Considérons l'application

$$f_i: Q \in \mathbb{R}_n [X] \mapsto Q(y_i)$$

L'application f_i est continue et donc $f_j^{-1}(\mathbb{R}^{+\star})$ et $f_j^{-1}(\mathbb{R}^{-\star})$ sont des parties ouvertes de $\mathbb{R}_n[X]$.

Considérons U l'intersection des ouverts

$$f_0^{-1}\left((-1)^n\mathbb{R}^{+\star}\right), f_1^{-2}\left((-1)^{n-1}\mathbb{R}^{+\star}\right), \dots, f_n^{-1}(\mathbb{R}^{+\star})$$

Les éléments de U sont des polynômes réels alternant de signe entre $y_0 < y_1 < \ldots < y_n$. Par application du théorème des valeurs intermédiaires, un tel polynôme admet n racines distinctes et donc est scindé à racines simples. Ainsi $U \subset O_n$. Or $P \in U$ et U est ouvert donc U est voisinage de P puis O_n est voisinage de P.

Au final O_n est ouvert car voisinage de chacun de ses éléments.

Dans le cas $n = 1 : F_n = O_n$ et donc F_n est ouvert.

Dans le cas $n=2:F_n$ réunit les polynômes $P=aX^2+bX+c$ avec $b^2-4ac>0$ (que a soit égal à 0 ou non). L'application $P\mapsto b^2-4ac$ étant continue, on peut affirmer que F_n est encore ouvert car image réciproque d'un ouvert pas une application continue.

Dans le cas $n \ge 3$: $P_n = X(1 + X^2/n)$ est une suite de polynômes non scindés convergeant vers X scindé à racines simples. Par suite F_n n'est pas ouvert.

Exercice 45: [énoncé]

Par l'absurde, supposons f discontinue en $a \in \mathbb{R}$. On peut alors construire une suite (x_n) vérifiant

$$x_n \to a \text{ et } \forall n \in \mathbb{N}, |f(x_n) - f(a)| \ge \varepsilon$$

avec $\varepsilon > 0$ fixé.

Soit $n \in \mathbb{N}$, puisque $f([a, x_n])$ est un segment contenant f(a) et $f(x_n)$, il contient aussi l'intermédiaire $f(a) \pm \varepsilon$ (le \pm étant déterminé par la position relative de $f(x_n)$ par rapport à f(a)). Il existe donc a_n compris entre a et x_n vérifiant

$$|f(a_n) - f(a)| = \varepsilon$$

La suite (a_n) évolue dans le fermé $f^{-1}(\{f(a) + \varepsilon\}) \cup f^{-1}(\{f(a) - \varepsilon\})$ et converge vers a donc $a \in f^{-1}(\{f(a) + \varepsilon\}) \cup f^{-1}(\{f(a) - \varepsilon\})$ ce qui est absurde.

Exercice 46: [énoncé]

Considérons l'application $\varphi: \mathcal{L}(E) \to \mathcal{L}(E)$ déterminée par $\varphi(f) = f^2 - f$. L'application φ est continue par opérations sur les fonctions continues, notamment parce que l'application $f \mapsto f \circ f$ est continue (elle s'obtient à partir du produit dans l'algèbre $\mathcal{L}(E)$).

Puisque $\{\tilde{0}\}$ est une partie fermée de $\mathcal{L}(E)$, l'ensemble $\mathcal{P} = \varphi^{-1}(\{\tilde{0}\})$ est un fermé relatif à $\mathcal{L}(E)$, donc un fermé de $\mathcal{L}(E)$.

Exercice 47: [énoncé]

L'application $\lambda \mapsto \det(A - \lambda I_n)$ est polynomiale non nulle en λ donc possède un nombre fini de racine.

Par suite : $\forall A \in \mathcal{M}_n(\mathbb{R}), \forall \alpha > 0, B(A, \alpha) \cap \operatorname{GL}_n(\mathbb{R}) \neq \emptyset$.

Exercice 48: [énoncé]

a) Soient $u, v \in \bar{F}$ et $\lambda, \mu \in \mathbb{R}$. Il existe $(u_n), (v_n) \in F^{\mathbb{N}}$ telles que $u_n \to u$ et $v_n \to v$.

Comme $\lambda u_n + \mu v_n \to \lambda u + \mu v$ et $\lambda u_n + \mu v_n \in F$ on a $\lambda u + \mu v \in \overline{F}$.

- b) Soit H un hyperplan de E.
- Si $\bar{H} = H$ alors H est fermé.

Sinon alors \bar{H} est un sous-espace vectoriel de E, contenant H et distinct de H. Puisque H est un hyperplan $\exists a \notin H$ tel que $H \oplus \operatorname{Vect}(a) = E$.

Soit $x \in \bar{H} \backslash H$. On peut écrire $x = h + \lambda a$ avec $h \in H$ et $\lambda \neq 0$. Par opération $a \in \bar{H}$ et puisque $H \subset \bar{H}$ on obtient $E \subset \bar{H}$. Finalement $\bar{H} = E$ et donc H est dense.

Exercice 49 : [énoncé]

a) Pour tout $a \in E$ et tout $\varepsilon > 0$, $B(a, \varepsilon) \cap U \neq \emptyset$ car U est dense. Soit $x \in B(a, \varepsilon) \cap U$. Puisque $B(a, \varepsilon) \cap U$ est ouvert, il existe $\alpha > 0$ tel que $B(x, \alpha) \subset B(a, \varepsilon) \cap U$ et puisque V est dense $B(x, \alpha) \cap V \neq \emptyset$. Par suite

$$B(a,\varepsilon)\cap (U\cap V)\neq\emptyset$$

b) Soient F et G deux fermés d'intérieurs vides.

$$C_E(F \cup G)^\circ = \overline{C_E(F \cup G)} = \overline{C_EF \cap C_EG}$$

avec $C_E F$ et $C_E G$ ouverts denses donc

$$\overline{C_E F \cap C_E G} = E$$

puis

$$(F \cup G)^{\circ} = \emptyset$$

Exercice 50: [énoncé]

a) Posons

$$A = \{ n \geqslant n_0/a \geqslant u_n \}$$

A est une partie de \mathbb{N} , non vide car $n_0 \in A$ et majorée car $u_n \to +\infty$. La partie A admet donc un plus grand élément $n \ge n_0$ et pour celui-ci $u_n \le a < u_{n+1}$.

Par suite $|u_n - a| \leq |u_{n+1} - u_n| \leq \varepsilon \operatorname{car} n \geq n_0$.

b) Soient $x \in \mathbb{R}$ et $\varepsilon > 0$.

Puisque $u_{n+1} - u_n \to 0$, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $|u_{n+1} - u_n| \le \varepsilon$.

Puisque $v_n \to +\infty$, il existe $p \in \mathbb{N}$ tel que $x + v_p \geqslant u_{n_0}$.

Par l'étude précédente, il existe $n \in \mathbb{N}$ tel que $|u_n - (x + v_p)| \leq \varepsilon$ i.e.

 $|(u_n - v_p) - x| \leqslant \varepsilon.$

Par suite l'ensemble $\{u_n - v_p/n, p \in \mathbb{N}\}$ est dense dans \mathbb{R} .

c) Remarquons que

$$A = \{\cos(\ln n)/n \in \mathbb{N}^*\} = \{\cos(\ln(n+1) - 2p\pi)/n, p \in \mathbb{N}\}\$$

Posons $u_n = \ln(n+1)$ et $v_n = 2n\pi$. Les hypothèses précédentes sont réunies et donc

$$B = \{u_n - v_n/n, p \in \mathbb{N}\} = \{\ln(n+1) - 2p\pi/n, p \in \mathbb{N}\}\$$

est dense dans \mathbb{R} .

Soient $x \in [-1, 1]$ et $\theta = \arccos x$.

Par densité, il existe une suite (θ_n) d'éléments de B convergeant vers θ et, par continuité de la fonction cosinus, la suite (x_n) de terme général $x_n = \cos(\theta_n)$ converge vers $x = \cos \theta$.

Or cette suite (x_n) est une suite d'éléments de $\cos(B) = A$ et donc A est dense dans [-1,1].

Exercice 51 : [énoncé]

Soient $x \in \mathbb{R}$ et $\varepsilon > 0$.

Il existe $n_0 \in \mathbb{N}^*$ tel que $1/n_0 \leqslant \varepsilon$.

Pour $a \ge \ln n_0$ et $n = E(e^a) \ge n_0$, on a $\ln n \le a \le \ln(n+1)$.

On en déduit

$$|a - \ln n| \le \ln(n+1) - \ln n = \ln(1+1/n) \le 1/n \le 1/n_0 \le \varepsilon$$

Puisque $m-x \xrightarrow[m \to +\infty]{} +\infty$, pour m assez grand, on a $a=m-x \geqslant \ln n_0$ et donc il existe $n \in \mathbb{N}^*$ vérifiant $|a-\ln n| \leqslant \varepsilon$ i.e.

$$|m - \ln n - x| \leqslant \varepsilon$$

Par suite $\{m - \ln n/(m, n) \in \mathbb{Z} \times \mathbb{N}^*\}$ est dense dans \mathbb{R} .

Exercice 52 : [énoncé]

a) Il existe $h \in H$ tel que $h \neq 0$ car H n'est pas réduit à $\{0\}$.

Si h > 0 alors $h \in \{x \in H/x > 0\}$. Si h < 0 alors $-h \in \{x \in H/x > 0\}$.

Dans les deux cas $\{x \in H/x > 0\} \neq \emptyset$. De plus $\{x \in H/x > 0\} \subset \mathbb{R}$ et

 $\{x\in H/x>0\}$ est minoré par 0 donc $a=\inf{\{x\in H/x>0\}}$ existe dans $\mathbb R.$

b) On suppose a > 0.

Si $a \notin H$ alors il existe $x, y \in H$ tel que a < x < y < 2a et alors y - x est élément de H et vérifie 0 < y - x < a ce qui contredit la définition de a. C'est absurde. $a \in H$ donc $a\mathbb{Z} = < a > \subset H$.

Inversement, soit $x \in H$. On peut écrire x = aq + r avec $q \in \mathbb{Z}$, $r \in [0, a[$ (en fait q = E(x/a) et r = x - aq)

Puisque r=x-aq avec $x\in H$ et $aq\in a\mathbb{Z}\subset H$ on a $r\in H.$

Si r > 0 alors $r \in \{x \in H/x > 0\}$ et r < a contredit la définition de a.

Il reste r=0 et donc x=aq. Ainsi $H\subset a\mathbb{Z}$ puis l'égalité.

c) Puisque inf $\{x \in H/x > 0\} = 0$, on peut affirmer que pour tout $\alpha > 0$, il existe $x \in H$ tel que $0 < x < \alpha$.

Soient $a \in \mathbb{R}$ et $\alpha > 0$. Montrons $H \cap B(a, \alpha) \neq \emptyset$ i.e. $H \cap]a - \alpha, a + \alpha[\neq \emptyset]$ Il existe $x \in H$ tel que $0 < x < \alpha$. Posons n = E(a/x). On a a = nx + r avec $0 \le r < \alpha$.

 $nx \in \langle x \rangle \subset H$ et $|a - nx| = r \langle \alpha \text{ donc } nx \in H \cap B(a, \alpha)$ et donc $H \cap B(a, \alpha) \neq \emptyset$.

Ainsi H est dense dans \mathbb{R} .

Exercice 53: [énoncé]

a)
$$\{\cos(n)/n \in \mathbb{N}\} = \{\cos(n)/n \in \mathbb{Z}\} = \{\cos(n+2k\pi)/n, k \in \mathbb{Z}\} = \cos(\mathbb{Z} + 2n\mathbb{Z})$$

Puisque $\mathbb{Z}+2\pi\mathbb{Z}$ est un sous-groupe de $(\mathbb{R},+)$ et c'est un sous-groupe dense car il n'est pas monogène puisque π n'est pas rationnel; c'est en effet un résultat classique bien que en dehors du programme, les sous-groupes de $(\mathbb{R},+)$ sont monogènes ou denses.

Pour tout $x \in [-1, 1]$, il existe $\theta \in [0, \pi]$ tel que $\cos \theta = x$ et puisque $\mathbb{Z} + 2\pi \mathbb{Z}$ est dense dans \mathbb{R} , il existe une suite d'éléments $\mathbb{Z} + 2\pi \mathbb{Z}$ convergeant vers θ . L'image de cette suite par la fonction continue cosinus détermine une suite d'élément de $\{\cos(n)/n \in \mathbb{N}\}$ convergeant vers x.

b) En notant que les 2^p avec $p \in \mathbb{N}$ sont des naturels non nuls, on observe

$$\{\cos(p\ln 2)/p \in \mathbb{N}\} \subset \{\cos(\ln n)/n \in \mathbb{N}^*\}$$

Ainsi

$$\cos(\ln 2.\mathbb{Z} + 2\pi\mathbb{Z}) \subset \{\cos(\ln n)/n \in \mathbb{N}^*\}$$

Si π et ln 2 ne sont pas commensurables, on peut conclure en adaptant la démarche précédente.

Si en revanche π et ln 2 sont commensurables (ce qui est douteux...), on reprend l'idée précédente avec ln 3 au lieu de ln 2.

Assurément π et ln 3 ne sont pas commensurables car s'ils l'étaient, ln 2 et ln 3 le seraient aussi ce qui signifie qu'il existe $p,q\in\mathbb{N}^{\star}$ tels que $p\ln 2=q\ln 3$ soit encore $2^p=3^q$ ce qui est faux!

Exercice 54 : [énoncé]

Soit $A \in \mathcal{M}_n(\mathbb{C})$. La matrice A est trigonalisable donc il existe P inversible telle que $P^{-1}AP = T$ avec T triangulaire supérieure. Posons alors $T_p = T + \operatorname{diag}(1/p, 2/p, \dots, n/p)$ et $A_p = PT_pP^{-1}$. Il est immédiat que $T_p \to T$ quand $p \to +\infty$ et donc $A_p \to A$. De plus, pour p assez grand, la matrice T_p est triangulaire supérieure à coefficients diagonaux deux à deux distincts, cette matrice admet donc n valeurs propres et est donc diagonalisable. Il en est de même pour A_p qui lui est semblable. Ainsi toute matrice de $M_n(\mathbb{C})$ est limite d'une suite de matrices diagonalisables.

Exercice 55 : [énoncé]

1ère méthode (nécessitant quelques résultats non triviaux mais intuitifs sur la codimension)

Par définition, un hyperplan H de E est un sous-espace vectoriel de codimension 1. Son adhérence \bar{H} est aussi un sous-espace vectoriel et, puisque contenant H, sa codimension vaut 0 ou 1.

Si \bar{H} est de codimension 0 alors $\bar{H} = E$ ce qui signifie que H est dense dans E.

Si \bar{H} est de codimension 1, puisque \bar{H} contient l'hyperplan H, on a $\bar{H}=H$ et donc \bar{H} est fermé.

2ème méthode (plus élémentaire)

Par définition un hyperplan H de E est un sous-espace vectoriel de codimension 1. Il existe donc un vecteur $a \in E$ non nul vérifiant

$$H \oplus \operatorname{Vect}(a) = E$$

Supposons que H ne soit pas fermé. Il existe alors une suite (x_n) d'éléments de H convergeant vers un élément x n'appartenant pas à H. On peut écrire

$$x = h + \lambda a \text{ avec } h \in H \text{ et } \lambda \neq 0$$

En considérant

$$y_n = \frac{1}{\lambda}(x_n - h)$$

on construit une suite (y_n) d'éléments de H convergeant vers a.

Il est désormais facile d'établir que H est dense dans E. En effet pour $z \in E,$ on peut écrire

$$z = k + \mu a$$

avec $k \in H$ et $\mu \in \mathbb{R}$ de sorte que la suite de terme général

$$z_n = k + \mu y_n$$

est une suite d'éléments de H convergeant vers z.

Exercice 56 : [énoncé]

a) Soit u une suite sommable. On a

$$\sum_{n=N+1}^{+\infty} |u_n| \to 0$$

donc pour tout $\alpha > 0$, il existe N tel que

$$\sum_{n=N+1}^{+\infty} |u_n| < \alpha$$

Considérons alors v définie par $v_n = u_n$ si $n \leq N$ et $v_n = 0$ sinon.

On a $v \in \mathbb{R}^{(\mathbb{N})}$ et $||v - u||_1 < \alpha$ donc $B(u, \alpha) \cap \mathbb{R}^{(\mathbb{N})} \neq \emptyset$.

b) Non, en notant u la suite constante égale à 1, $B_{\infty}(u, 1/2) \cap \mathbb{R}^{(\mathbb{N})} = \emptyset$.

Exercice 57: [énoncé]

Soit f une fonction élément de E. Pour tout $\varepsilon>0$, il existe un réel A vérifiant

$$\int_{A}^{+\infty} f^{2}(t) \, \mathrm{d}t \leqslant \varepsilon$$

Considérons alors la fonction $\varphi:[0,+\infty[\to\mathbb{R}$ définie par $\varphi(t)=1$ pour $t\in[0,A]$, $\varphi(t)=0$ pour $t\geqslant A+1$ et $\varphi(t)=1-(t-A)$ pour $t\in[A,A+1]$. La fonction $f\varphi$ est éléments de E_0 et

$$\|f - f\varphi\|_2 \leqslant \sqrt{\int_A^{+\infty} f^2(t) \, \mathrm{d}t} \leqslant \varepsilon$$

Ainsi E_0 est dense dans E.

Pour montrer maintenant que F est dense dans E, nous allons établir que F est dense dans E_0 .

Soit f une fonction élément de E_0 . Remarquons

$$\int_0^{+\infty} \left(f(t) - P(e^{-t})e^{-t^2/2} \right)^2 dt = \int_0^1 \left(f(-\ln u)e^{(\ln u)^2/2} - P(u) \right)^2 \frac{e^{-(\ln u)^2}}{u} du$$

La fonction $u \mapsto \frac{e^{-(\ln u)^2}}{u}$ est intégrable sur]0,1] car $\sqrt{u} \frac{e^{-(\ln u)^2}}{u} \xrightarrow[u \to 0]{} 0$.

La fonction $g: u \mapsto f(-\ln u) \mathrm{e}^{(\ln u)^2/2}$ peut-être prolongée par continuité en 0 car f est nulle en dehors d'un segment. Par le théorème de Weierstrass, pour tout $\varepsilon > 0$, il existe un polynôme $P \in \mathbb{R}[X]$ vérifiant $\|g - P\|_{\infty,[0,1]} \leqslant \varepsilon$ et pour $\varphi: t \mapsto P(\mathrm{e}^{-t})\mathrm{e}^{-t^2/2}$ on a alors

$$||f - \varphi||_2 \leqslant \lambda \varepsilon \text{ avec } \lambda = \sqrt{\int_0^1 \frac{e^{-(\ln u)^2}}{u} du}$$

Cela permet de conclure à la densité proposée.

Exercice 58 : [énoncé]

Par l'absurde supposons $A \neq E$.

Il existe un élément $a \in E$ tel que $a \notin A$. Par translation du problème, on peut supposer a=0.

Posons $n = \dim E$.

Si $\operatorname{Vect}(A)$ est de dimension strictement inférieure à n alors A est inclus dans un hyperplan de E et son adhérence aussi. C'est absurde car cela contredit la densité de A.

Si Vect(A) est de dimension n, on peut alors considérer (e_1, \ldots, e_n) une base de Eformée d'éléments de A.

Puisque $0 \notin A$, pour tout $x \in A$, on remarque : $\forall \lambda \in \mathbb{R}^-, -\lambda x \notin A$ (car sinon, par convexité, $0 \in A$).

Par convexité de $A: \forall \lambda_1, \dots, \lambda_n \geq 0, \lambda_1 + \dots + \lambda_n = 1 \Rightarrow \lambda_1 e_1 + \dots + \lambda_n e_n \in A$ et donc: $\forall \lambda \in \mathbb{R}^-, \forall \lambda_1, \dots, \lambda_n \geqslant 0, \lambda_1 + \dots + \lambda_n = 1 \Rightarrow \lambda(\lambda_1 e_1 + \dots + \lambda_n e_n) \notin A$. Ainsi $\forall \mu_1, \dots, \mu_n \leq 0, \mu_1 e_1 + \dots + \mu_n e_n \notin A$.

Or la partie $\{\mu_1 e_1 + \cdots + \mu_n e_n / \mu_i < 0\}$ est un ouvert non vide de A et donc aucun de ses éléments n'est adhérent à A. Cela contredit la densité de A.

Exercice 59 : [énoncé]

Soient $a < b \in A$.

Puisque $a, b \in A$, $\frac{a+b}{2} \in A$, puis $\frac{3a+b}{4} = \frac{a+(a+b)/2}{2} \in A$ et $\frac{a+3b}{4} \in A$ etc.

Par récurrence sur $n \in \mathbb{N}$, montrons $\forall k \in \{0, \dots, 2^n\}$, $\frac{ka + (2^{\frac{2}{n}} - k)b}{2^n} \in A$.

La propriété est immédiate pour n = 0.

Supposons la propriété vraie au rang $n \ge 0$.

Soit $k \in \{0, \dots, 2^{n+1}\}.$

 $\operatorname{Cas} k \operatorname{pair} :$

k = 2k' avec $k' \in \{0, \dots, 2^n\}$ et $\frac{ka + (2^{n+1} - k)b}{2n+1} = \frac{k'a + (2^n - k')b}{2n} \in A$ en vertu de l'hypothèse de récurrence.

 $\operatorname{Cas} k \text{ impair}:$

 $k = 2k' + 1 \text{ avec } k' \in \{0, \dots, 2^n - 1\} \text{ et}$

$$\frac{ka + (2^{n+1} - k)b}{2^{n+1}} = \frac{1}{2} \left(\frac{k'a + (2^n - k')b}{2^n} + \frac{(k'+1)a + (2^n - (k'+1))b}{2^n} \right) \in A$$

car par hypothèse de récurrence

$$\frac{k'a + (2^n - k')b}{2^n}, \frac{(k'+1)a + (2^n - (k'+1))b}{2^n} \in A$$

La récurrence est établie.

Soit $x \in \inf A$, sup A[.

Il existe $a, b \in A$ tel que $x \in [a, b]$ ce qui permet d'écrire $x = \lambda a + (1 - \lambda)b$. Soit $k_n = E(2^n \lambda)$ et $x_n = \frac{k_n a + (2^n - k_n)b}{2^n}$.

On vérifie aisément que $x_n \to x$ car $2^n k \to \lambda$ et pour tout $n \in \mathbb{N}$ $x_n \in A$ Ainsi A est dense dans $\inf A$, sup A[.

Exercice 60 : [énoncé]

Considérons l'ensemble $B = \ln A = \{\ln a/a \in A\}.$

Pour tout $x,y\in B, \frac{x+y}{2}=\frac{\ln a+\ln b}{2}=\ln \sqrt{ab}\in B.$ En raisonnant par récurrence, on montre que pour tout $x,y\in B$, on a la propriété

$$\forall n \in \mathbb{N}, \forall k \in \{0, \dots, 2^n\}, \frac{kx + (2^n - k)y}{2^n} \in B$$

Soit $x \in \inf A$, sup A[. Il existe $a, b \in A$ tels que a < x < b.

On a alors $\ln a < \ln x < \ln b$ avec $\ln a, \ln b \in B$.

On peut écrire $\ln x = \lambda \ln a + (1 - \lambda) \ln b$ avec $\lambda \in [0, 1]$.

Posons alors k_n la partie entière de $\lambda 2^n$ et $x_n = \exp\left(\frac{k_n}{2n} \ln a + \left(1 - \frac{k_n}{2n}\right) \ln b\right)$

Il est immédiat que $x_n \to x$ avec pour tout $n \in \mathbb{N}$, $x_n \in A$.

Si, dans cette suite, il existe une infinité d'irrationnels, alors x est limite d'une suite d'éléments de $A \cap (\mathbb{R} \setminus \mathbb{Q})$.

Sinon, à partir d'un certain rang, les termes de la suite x_n sont tous rationnels. Le rapport x_{n+1}/x_n est alors aussi rationnel; mais

$$\frac{x_{n+1}}{x_n} = \left(\frac{a}{b}\right)^{\frac{k_{n+1}}{2^{n+1}} - \frac{k_n}{2^n}} \text{ avec } \frac{k_{n+1}}{2^{n+1}} - \frac{k_n}{2^n} = 0 \text{ ou } \frac{1}{2^{n+1}}$$

S'il existe une infinité de n tels que $\frac{k_{n+1}}{2^{n+1}} - \frac{k_n}{2^n} = \frac{1}{2^{n+1}}$ alors il existe une infinité de $n \in \mathbb{N}$ tels que

$$\left(\frac{a}{b}\right)^{\frac{1}{2^n}} \in \mathbb{Q}$$

et puisque l'élévation au carré d'un rationnel est un rationnel, le nombre a/b est lui-même rationnel. Or les racines carrées itérés d'un rationnel différent de 1 sont irrationnelles à partir d'un certain rang.

Il y a absurdité et donc à parti d'un certain rang $k_{n+1} = 2k_n$. Considérons à la suite (x'_n) définie par

$$x'_n = \exp\left(\frac{k'_n}{2^n} \ln a + \left(1 - \frac{k'_n}{2^n}\right) \ln b\right) \text{ avec } k'_n = k_n + 1$$

On obtient une suite d'éléments de A, convergeant vers x et qui, en vertu du raisonnement précédent, est formée d'irrationnels à partir d'un certain rang.

Exercice 61 : [énoncé]

 $N_{\varphi}: E \to \mathbb{R}^+$ est bien définie et on vérifie immédiatement

$$N_{\varphi}(\lambda f) = |\lambda| N_{\varphi}(f) \text{ et } N_{\varphi}(f+g) \leqslant N_{\varphi}(f) + N_{\varphi}(g)$$

Il reste à étudier la véracité de l'implication

$$N_{\varphi}(f) = 0 \Rightarrow f = 0$$

Supposons : $\varphi^{-1}(\mathbb{R}^*)$ dense dans [0,1].

Si $N_{\varphi}(f) = 0$ alors $f\varphi = 0$ et donc pour tout $x \in \varphi^{-1}(\mathbb{R}^*)$, on a f(x) = 0 car $\varphi(x) \neq 0$.

Puisque la fonction continue f est nulle sur la partie $\varphi^{-1}(\mathbb{R}^*)$ dense dans [0,1], cette fonction est nulle sur [0,1].

Supposons : $\varphi^{-1}(\mathbb{R}^*)$ non dense dans [0,1].

Puisque le complémentaire de l'adhérence est l'intérieur du complémentaire, la partie $\varphi^{-1}(\{0\})$ est d'intérieur non vide et donc il existe $a < b \in [0,1]$ tels que $[a,b] \subset \varphi^{-1}(\{0\})$.

Considérons la fonction f définie sur [0,1] par

$$f(x) = \begin{cases} (x-a)(b-x) & \text{si } x \in [a,b] \\ 0 & \text{sinon} \end{cases}$$

Cette fonction f est continue sur [0,1], ce n'est pas la fonction nulle mais en revanche la fonction $f\varphi$ est la fonction nulle. Ainsi on a formé un élément f non nul de E tel que $N_{\varphi}(f) = 0$. On en déduit que N_{φ} n'est pas une norme.

Exercice 62: [énoncé]

Soit $[a,b] \subset [1,+\infty[$ avec a < b. Pour établir la densité de A, montrons que $A \cap [a,b]$ est non vide.

Considérons q > 1 tel que $qa \leq b$.

Il existe $N \in \mathbb{N}$ tel que

$$\forall n \in \mathbb{N}, n \geqslant N \Rightarrow \frac{u_{n+1}}{u_n} \leqslant q$$

Considérons alors

$$E = \left\{ m \in \mathbb{N}/m > N \text{ et } \frac{u_m}{u_N} \leqslant b \right\}$$

E est une partie de \mathbb{N} , non vide (car $N+1\in E$) et majorée (car $u_n\to +\infty$). La partie E possède donc un plus grand élément M. Pour celui-ci, on a

$$\frac{u_M}{u_N} \leqslant b \text{ et } \frac{u_{M+1}}{u_N} > b$$

Or

$$u_{M+1} \leqslant q u_M$$

donc

$$\frac{u_M}{u_N} > \frac{b}{q} \geqslant a$$

Ainsi u_M/u_N est un élément de $A \cap [a,b]$.

Exercice 63: [énoncé]

Soient $x \in E$ et r > 0.

Puisque A est une partie dense, $B(a,r)\cap A\neq\emptyset$. On peut donc introduire $x\in B(a,r)\cap A$. Or par intersection d'ouverts, $B(a,r)\cap A$ est aussi une partie ouverte et donc il existe $\alpha>0$ tel que $B(x,\alpha)\subset B(a,r)\cap A$. Puisque la partie B est dense, $B(x,\alpha)\cap B\neq\emptyset$ et finalement $B(a,r)\cap A\cap B\neq\emptyset$.

On peut donc conclure que $A \cap B$ est une partie dense de E.

Exercice 64: [énoncé]

Soit f une fonction solution.

On a
$$f(0+0) = f(0) + f(0)$$
 donc $f(0) = 0$

Par une récurrence facile

$$\forall n \in \mathbb{N}, \forall x \in \mathbb{R}, f(nx) = nf(x)$$

De plus, puisque f(-x+x) = f(-x) + f(x), on a f(-x) = -f(x). Par suite

$$\forall n \in \mathbb{Z}, \forall x \in \mathbb{R}, f(nx) = nf(x)$$

Pour $x = p/q \in \mathbb{Q}$, f(x) = pf(1/q) et f(1) = qf(1/q) donc f(x) = ax avec a = f(1).

Les fonctions $x \mapsto f(x)$ et $x \mapsto ax$ sont continues et coïncident sur \mathbb{Q} partie dense dans \mathbb{R} donc ces deux fonctions sont égales sur \mathbb{R} .

Au final f est une fonction linéaire.

Inversement, une telle fonction est évidemment solution.

Exercice 65 : [énoncé]

a) Soit $x \in \mathbb{R}$. Puisque

$$u_n = \frac{\lfloor 2^n x \rfloor}{2^n} \to x$$

avec $u_n \in \mathcal{D}$, la partie \mathcal{D} est dense dans \mathbb{R} .

b) Supposons que f s'annule en 0 et 1.

$$\frac{1}{2}(f(-x) + f(x)) = f(0)$$

donc la fonction f est impaire.

Par récurrence double, montrons $\forall n \in \mathbb{N}, f(n) = 0$.

Pour n = 0 ou n = 1: ok

Supposons la propriété établie aux rangs $n \ge 1$ et $n-1 \ge 0$.

$$\frac{f(n+1) + f(n-1)}{2} = f(n)$$

donne en vertu de l'hypothèse de récurrence : f(n+1) = 0. Récurrence établie.

Par l'imparité

$$\forall p \in \mathbb{Z}, f(p) = 0$$

Par récurrence sur $n \in \mathbb{N}$, montrons

$$\forall p \in \mathbb{Z}, f\left(\frac{p}{2^n}\right) = 0$$

Pour n = 0: ok

Supposons la propriété établie au rang $n \in \mathbb{Z}$.

Soit $p \in \mathbb{Z}$,

$$f\left(\frac{p}{2^{n+1}}\right) = f\left(\frac{1}{2}\left(0 + \frac{p}{2^n}\right)\right) = \frac{1}{2}\left(f(0) + f\left(\frac{p}{2^n}\right)\right) \underset{HR}{=} 0$$

Récurrence établie.

Puisque f est continue et nulle sur une partie

$$\mathcal{D} = \left\{ \frac{p}{2^n} / p \in \mathbb{Z}, n \in \mathbb{N} \right\}$$

dense dans \mathbb{R} , f est nulle sur \mathbb{R} .

c) Posons $\beta = f(0)$ et $\alpha = f(1) - \beta$.

La fonction $q: x \mapsto f(x) - \alpha x + \beta$ est continue et vérifie la propriété

$$g\left(\frac{x+y}{2}\right) = \frac{1}{2}\left(g(x) + g(y)\right)$$

donc g est nulle puis f affine.

Exercice 66: [énoncé]

Soit $\lambda \in \mathbb{C}$. Si A est inversible

$$\chi_{AB}(\lambda) = \det(\lambda I_n - AB) = \det(A)\det(\lambda A^{-1} - B)$$

donc

$$\chi_{AB}(\lambda) = \det(\lambda A^{-1} - B) \det A = \det(\lambda I_n - BA) = \chi_{BA}(\lambda)$$

Ainsi les applications continues $A \in \mathcal{M}_n(\mathbb{C}) \mapsto \chi_{AB}(\lambda)$ et $A \in \mathcal{M}_n(\mathbb{C}) \mapsto \chi_{BA}(\lambda)$ coïncident sur la partie $GL_n(\mathbb{C})$ dense dans $\mathcal{M}_n(\mathbb{C})$, elles sont donc égales sur $\mathcal{M}_n(\mathbb{C})$.

Ainsi pour tout $\lambda \in \mathbb{C}$, $\chi_{AB}(\lambda) = \chi_{BA}(\lambda)$ et donc $\chi_{AB} = \chi_{BA}$.

Exercice 67 : [énoncé]

On sait

$$^{t}(\text{com}A)A = \det A.I_{n}$$

donc

$$\det(\operatorname{com} A) \det A = (\det A)^n$$

Si A est inversible on obtient

$$\det(\operatorname{com} A) = \det(A)^{n-1}$$

Puisque l'application $A \mapsto \det(\operatorname{com} A)$ est continue et qu'elle coïncide avec l'application elle aussi continue $A \mapsto (\det A)^{n-1}$ sur $\operatorname{GL}_n(\mathbb{C})$ qui est dense dans $\mathcal{M}_n(\mathbb{C})$, on peut affirmer $\det(\operatorname{com} A) = (\det A)^{n-1}$ pour tout $A \in \mathcal{M}_n(\mathbb{C})$.

Exercice 68 : [énoncé]

a) Si A est inversible alors

$$A^{-1} = \frac{1}{\det A}^t(\text{com}A)$$

et donc

$$com A = \det(A)^t \left(A^{-1} \right)$$

De même

$$com(P^{-1}AP) = det(A)^t(P^{-1}A^{-1}P)$$

ce qui donne

$$com(P^{-1}AP) = {}^tPcomA^t(P^{-1})$$

Les fonctions $A \mapsto \text{com}(P^{-1}AP)$ et $A \mapsto {}^tP\text{com}A^t(P^{-1})$ sont continues sur $\mathcal{M}_n(\mathbb{C})$ et coïncident sur $\text{GL}_n(\mathbb{C})$ partie dense dans $\mathcal{M}_n(\mathbb{C})$, c'est deux fonctions sont donc égales. Ainsi la relation

$$com(P^{-1}AP) = {}^tPcomA^t(P^{-1})$$

est valable pour tout $A \in \mathcal{M}_n(\mathbb{C})$

b) C'est immédiat sachant que ${}^{t}(P^{-1})$ est l'inverse de ${}^{t}P$.

Exercice 69 : [énoncé]

a) On sait

$$\tilde{A}A = A\tilde{A} = \det A I_n$$

Si A est inversible alors

$$\det \tilde{A}. \det A = (\det A)^n$$

donne

$$\det \tilde{A} = (\det A)^{n-1}$$

L'application $A \mapsto \det \tilde{A}$ étant continue et coïncidant avec l'application elle aussi continue $A \mapsto (\det A)^{n-1}$ sur $GL_n(\mathbb{K})$ qui est dense dans $\mathcal{M}_n(\mathbb{K})$, on peut assurer que $\det \tilde{A} = (\det A)^{n-1}$ pour tout $A \in \mathcal{M}_n(\mathbb{K})$.

b) Si A est inversible alors \tilde{A} aussi donc

$$rg(A) = n \Rightarrow rg(\tilde{A}) = n$$

Si $\operatorname{rg}(A) \leqslant n-2$ alors A ne possède pas de déterminant extrait non nul d'ordre n-1 et donc $\tilde{A}=0$. Ainsi

$$\operatorname{rg}(A) \leqslant n - 2 \Rightarrow \operatorname{rg}(\tilde{A}) = 0$$

Si $\operatorname{rg}(A) = n - 1$ alors dim $\ker A = 1$ or $A\tilde{A} = \det A.I_n = 0$ donne $\operatorname{Im}\tilde{A} \subset \ker A$ et donc $\operatorname{rg}(\tilde{A}) \leq 1$. Or puisque $\operatorname{rg}(A) = n - 1$, A possède un déterminant extrait d'ordre n - 1 non nul et donc $\tilde{A} \neq O$. Ainsi

$$rg(A) = n - 1 \Rightarrow rg(\tilde{A}) = 1$$

c) Soit P une matrice inversible. Pour tout $A \in GL_n(\mathbb{K})$,

$$(P^{-1}\tilde{A}P)(P^{-1}AP) = \det A.I_n$$

et $P^{-1}AP$ inversible donc

$$P^{-1}\tilde{A}P = \widetilde{P^{-1}AP}$$

Ainsi

$$\tilde{A} = P\widetilde{P^{-1}APP^{-1}}$$

Les applications $A \mapsto \tilde{A}$ et $A \mapsto PP^{-1}APP^{-1}$ sont continues et coïncident sur la partie dense $GL_n(\mathbb{K})$ elles sont donc égales sur $\mathcal{M}_n(\mathbb{K})$.

Si A et B sont semblables alors il existe P inversible vérifiant $P^{-1}AP = B$ et par la relation ci-dessus $P^{-1}\tilde{A}P = P^{-1}AP = \tilde{B}$ donc \tilde{A} et \tilde{B} sont semblables.

d) Si A est inversible alors $\tilde{A} = \det(A)A^{-1}$ et

$$\widetilde{\widetilde{A}} = \det(\widetilde{A})\widetilde{A}^{-1} = \det(A)^{n-2}A$$

Par coïncidence d'applications continues sur une partie dense, pour tout $A \in \mathcal{M}_n(\mathbb{K})$,

$$\widetilde{\widetilde{A}} = \det(A)^{n-2}A$$

Exercice 70 : [énoncé]

Cas $A, B \in \mathrm{GL}_n(\mathbb{R})$

On sait

$$A^{-1} = \frac{1}{\det A}^t(\text{com}A), B^{-1} = \frac{1}{\det B}^t(\text{com}B)$$

 $_{
m et}$

$$(AB)^{-1} = \frac{1}{\det(AB)}^t(\text{com}AB) = B^{-1}A^{-1}$$

donc

$$(AB)^{-1} = \frac{1}{\det(AB)}^t(\operatorname{com}AB) = \frac{1}{\det A \det B}^t(\operatorname{com}B)^t(\operatorname{com}A)$$

puis

$$^{t}(com(AB)) = ^{t}(com(A)com(B))$$

et enfin

$$com(AB) = com(A)com(B)$$

Cas général

Posons

$$A_p = A + \frac{1}{p}I_n$$
 et $B_p = B + \frac{1}{p}I_n$

Pour p assez grand $A_p, B_p \in \mathrm{GL}_n(\mathbb{R})$ et donc

$$com(A_p B_p) = com(A_p)com(B_p)$$

Or la fonction $M \to \text{com} M$ est continue donc par passage à la limite

$$com(AB) = com(A)com(B)$$

Exercice 71 : [énoncé]

Cas f de classe \mathcal{C}^1 :

$$\left| \int_a^b f(t)e^{int} dt \right| \leqslant \frac{|f(a)| + |f(b)|}{n} + \frac{1}{n} \int_a^b |f'(t)| dt \to 0$$

Cas f continue:

Pour tout $\varepsilon > 0$, il existe $g : [a, b] \to \mathbb{C}$ de classe \mathcal{C}^1 tel que $||f - g||_{\infty} \leqslant \varepsilon$. On a alors

$$\left| \int_{a}^{b} f(t) e^{int} dt \right| \leq (b-a) \|f - g\|_{\infty} + \left| \int_{a}^{b} g(t) e^{int} dt \right|$$

donc pour n assez grand

$$\left| \int_{a}^{b} f(t)e^{int} dt \right| \leq (b-a)\varepsilon + \varepsilon$$

Par suite

$$\int_{a}^{b} f(t)e^{int} dt \xrightarrow[n \to +\infty]{} 0$$

Exercice 72: [énoncé]

Par le théorème de Weierstrass, il existe une suite (P_n) de fonction polynomiale telles $N_{\infty}(P_n - f) \to 0$.

On a alors

$$\int_0^1 f^2(t) dt = \int_0^1 f(t)(f(t) - P_n(t)) dt + \int_0^1 f(t)P_n(t) dt = \int_0^1 f(t)(f(t) - P_n(t)) dt$$

or

$$\left| \int_0^1 f(t)(f(t) - P_n(t)) \, \mathrm{d}t \right| \leqslant N_\infty(f) N_\infty(f - P_n) \to 0$$

donc

$$\int_0^1 f^2(t) \, \mathrm{d}t = 0$$

puis f = 0 par nullité de l'intégrale d'une fonction continue et positive.

Exercice 73: [énoncé]

Par le théorème de Weierstrass, il existe une suite (Q_n) de fonctions polynomiales telles $N_{\infty}(Q_n - f) \to 0$.

On a alors

$$\int_{a}^{b} Q_{n}(t) dt \xrightarrow[n \to +\infty]{} \int_{a}^{b} f(t) dt = 0$$

Posons

$$P_n(t) = Q_n(t) - \frac{1}{b-a} \int_a^b Q_n(t) dt$$

On vérifie alors sans peine que

$$\int_a^b P_n(t) dt = 0 \text{ et } N_{\infty}(f - P_n) \to 0$$

Exercice 74: [énoncé]

Par le théorème de Weierstrass, il existe une suite (Q_n) de fonctions polynomiales telles $N_{\infty}(Q_n - f) \to 0$. Posons $m_n = \inf_{t \in [a,b]} Q_n(t) = Q_n(t_n)$ pour un certain $t_n \in [a,b]$. Montrons que $m_n \to m = \inf_{t \in [a,b]} f$. Notons que $\inf_{t \in [a,b]} f = f(t_{\infty})$ pour un certain $t_{\infty} \in [a,b]$. Pour tout $\varepsilon > 0$, pour n assez grand, $N_{\infty}(Q_n - f) \leqslant \varepsilon$ donc $m_n = Q_n(t_n) \geqslant f_n(t_n) - \varepsilon \geqslant m - \varepsilon$ et $m = f(t_{\infty}) \geqslant Q_n(t_{\infty}) - \varepsilon \geqslant m_n - \varepsilon$ donc $|m_n - m| \leqslant \varepsilon$. Ainsi $m_n \to m$. Il suffit ensuite de considérer $P_n = Q_n - m_n + m$ pour obtenir une solution au problème posé.

Exercice 75: [énoncé]

Par le théorème de Weierstrass, il existe une suite (Q_n) de fonctions polynomiales telle $N_{\infty}(Q_n - f') \to 0$.

Posons alors $P_n(x) = f(a) + \int_a^x Q_n(t) dt$. L'inégalité $|P_n(x) - f(x)| \le \int_a^x |f'(t) - Q'_n(t)| dt$ permet d'établir que $N_\infty(f - P_n) \to 0$ et puisque $P'_n = Q_n$, la suite (P_n) est solution du problème posé.

Exercice 76: [énoncé]

a) On a

$$\sum_{k=0}^{n} B_{n,k}(x) = (x + (1-x))^{n} = 1$$

On a

$$\sum_{k=0}^{n} k B_{n,k}(x) = nx$$

via $k \binom{n}{k} = n \binom{n-1}{k-1}$ et la relation précédente De manière semblable

$$\sum_{k=0}^{n} k^{2} B_{n,k}(x) = \sum_{k=0}^{n} k(k-1) B_{n,k}(x) + \sum_{k=0}^{n} k B_{n,k}(x) = nx(1 + (n-1)x)$$

b) On a

$$n^2 \alpha^2 \sum_{k \in A} B_{n,k}(x) \leqslant \sum_{k \in A} (k - nx)^2 B_{n,k}(x) \leqslant \sum_{k \in [0,n]} (k - nx)^2 B_{n,k}(x)$$

car les $B_{n,k}$ sont positifs sur [0,1].

Par suite

$$n^2 \alpha^2 \sum_{k \in A} B_{n,k}(x) \leqslant nx(1-x)$$

d'où

$$\sum_{k \in A} B_{n,k}(x) \leqslant \frac{1}{4n\alpha^2}$$

c) Pour tout $\varepsilon > 0$, par l'uniforme continuité de f, il existe $\alpha > 0$ tel que

$$\forall x, y \in [0, 1], |x - y| \leqslant \alpha \Rightarrow |f(x) - f(y)| \leqslant \varepsilon$$

On a alors

$$|f(x) - f_n(x)| \le \sum_{x \in A} |f(x) - f(k/n)| B_{n,k}(x) + \sum_{x \in B} |f(x) - f(k/n)| B_{n,k}(x)$$

donc

$$|f(x) - f_n(x)| \le 2 \|f\|_{\infty} \sum_{x \in A} B_{n,k}(x) + \sum_{x \in B} \varepsilon B_{n,k}(x) \le \frac{\|f\|_{\infty}}{2n\alpha^2} + \varepsilon$$

Pour n assez grand, on a

$$||f||_{\infty}/2n\alpha^2 \leqslant \varepsilon$$

et donc $|f(x) - f_n(x)| \le 2\varepsilon$ uniformément en x.

Exercice 77: [énoncé]

a) On a

$$\int_0^1 t(1-t^2)^n \, \mathrm{d}t = \frac{1}{2(n+1)}$$

On en déduit

$$a_n = 2 \int_0^1 (1 - t^2)^n dt \ge 2 \int_0^1 t (1 - t^2)^n dt = \frac{1}{n+1}$$

b) Sur $[\alpha, 1]$,

$$|\varphi_n(x)| \le \frac{(1-\alpha^2)^n}{a_n} \le (n+1)(1-\alpha^2)^n \to 0$$

c) Sur le compact [-1,1], f est uniformément continue car f est continue. Ainsi :

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x, y \in [-1, 1], |x - y| \leqslant \alpha \Rightarrow |f(x) - f(y)| \leqslant \varepsilon$$

Pour $\alpha' = \min(\alpha, 1/2)$, on a pour tous $x, y \in \mathbb{R}$ tels que $|x - y| \leq \alpha'$

Si $x, y \in [-1, 1]$ alors

$$|f(x) - f(y)| \le \varepsilon$$

Sinon $x, y \in [1/2, +\infty[$ ou $x, y \in]-\infty, -1/2]$ et alors

$$|f(x) - f(y)| = 0 \leqslant \varepsilon$$

d) On a

$$f_n(x) = \int_{x-1}^{x+1} f(u)\varphi_n(x-u) du$$

Or

$$\varphi_n(x-u) = \sum_{k=0}^{2n} a_k(u) x^k$$

donc

$$f_n(t) = \sum_{k=0}^{2n} \left(\int_{x-1}^{x+1} f(u) a_k(u) du \right) x^k$$

Mais

$$\int_{x-1}^{x+1} f(u)a_k(u) \, \mathrm{d}u = \int_{-1/2}^{1/2} f(u)a_k(u) \, \mathrm{d}u$$

pour $x \in [-1/2, 1/2]$ car $x - 1 \le -1/2$ et $x + 1 \ge 1/2$ alors que f est nulle en dehors que [-1/2, 1/2]. Il s'ensuit que f_n est polynomiale.

e) On observe que

$$\int_{-1}^{1} \varphi_n(t) \, \mathrm{d}t = 1$$

et la relation proposée est alors immédiate sur [-1/2, 1/2].

f) On a

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x, y \in \mathbb{R}, |x - y| \leqslant \alpha \Rightarrow |f(x) - f(y)| \leqslant \varepsilon$$

et alors

$$|f(x) - f_n(x)| \leqslant \int_{-\alpha}^{\alpha} |f(x) - f(x - t)| \varphi_n(t) dt + 4 ||f||_{\infty} \int_{\alpha}^{1} \varphi_n(t) dt \leqslant \varepsilon + 4 ||f||_{\infty} \int_{\alpha}^{1} \varphi_n(t) dt$$

Or

$$\int_{0}^{1} \varphi_n(t) \, \mathrm{d}t \to 0$$

donc pour n assez grand

$$4 \|f\|_{\infty} \int_{\alpha}^{1} \varphi_n(t) \, \mathrm{d}t \leqslant \varepsilon$$

et alors

$$|f(x) - f_n(x)| \le 2\varepsilon$$

- g) Il suffit de commencer par approcher la fonction $x \mapsto f(2ax)$ qui vérifie les conditions de la question précédente.
- h) Soit A > 0 tel que $[a, b] \subset [-A, A]$. Il suffit de prolonger f par continuité de sorte qu'elle soit nulle en dehors de [-A, A].

Exercice 78 : [énoncé]

a) Par le théorème de Weierstrass, pour tout $\varepsilon > 0$, il existe $P \in \mathbb{R}[X]$ tel que $\|f - P\|_{\infty} \leqslant \varepsilon$.

$$0 \leqslant \int_a^b f^2 = \int_a^b f(f-P) + \int_a^b fP = \int_a^b f(f-P) \leqslant (b-a) \|f\|_{\infty} \varepsilon$$

En faisant $\varepsilon \to 0$, on obtient $\int_a^b f^2 = 0$ et donc f = 0.

b) L'intégrale étudiée est bien définie. Par intégration par parties,

$$(n+1)I_n = (1-i)I_{n+1}$$

Or $I_0 = \frac{1+i}{2}$ donc

$$I_n = \frac{(1+i)^{n+1}}{2^{n+1}} n!$$

c) $I_{4p+3} \in \mathbb{R}$ donc

$$\int_0^{+\infty} x^{4p+3} \sin(x) e^{-x} dx = 0$$

puis

$$\int_0^{+\infty} u^p \sin(u^{1/4}) e^{-u^{1/4}} du = 0$$

pour tout $p \in \mathbb{N}$.

Exercice 79 : [énoncé]

a) Supposons f constante égale à C.

$$\int_a^b f(x) |\sin(nx)| dx = C \int_a^b |\sin(nx)| dx$$

Posons $p = \left| \frac{an}{\pi} \right| + 1$ et $q = \left| \frac{bn}{\pi} \right|$.

$$\int_{a}^{b} |\sin(nx)| \, dx = \int_{a}^{\frac{p\pi}{n}} |\sin(nx)| \, dx + \sum_{k=n+1}^{q} \int_{\frac{(k-1)\pi}{n}}^{\frac{k\pi}{n}} |\sin(nx)| \, dx + \int_{\frac{q\pi}{n}}^{b} |\sin(nx)| \, dx$$

On a

$$\left| \int_{a}^{\frac{p\pi}{n}} |\sin(nx)| \, \mathrm{d}x \right| \leqslant \frac{\pi}{n}$$

donc

$$\int_{a}^{\frac{p\pi}{n}} |\sin(nx)| \, \mathrm{d}x \to 0$$

et aussi

$$\int_{\frac{q\pi}{n}}^{b} |\sin(nx)| \, \mathrm{d}x \to 0$$

De plus

$$\sum_{k=n+1}^{q} \int_{\frac{(k-1)\pi}{n}}^{\frac{k\pi}{n}} |\sin(nx)| \, dx = \frac{(q-p)}{n} \int_{0}^{\pi} \sin t \, dt = \frac{2(q-p)}{n} \to \frac{2(b-a)}{\pi}$$

Ainsi

$$\int_{a}^{b} |\sin(nx)| \, \mathrm{d}x \to \frac{2}{\pi} (b - a)$$

puis

$$\int_a^b f(x) \left| \sin(nx) \right| \, \mathrm{d}x = \frac{2}{\pi} \int_a^b f(x) \, \mathrm{d}x$$

b) Supposons f en escalier.

Soit a_0, \ldots, a_n une subdivision adaptée à f.

Par l'étude qui précède,

$$\int_{a_{k-1}}^{a_k} f(x) |\sin(nx)| dx \to \frac{2}{\pi} \int_{a_{k-1}}^{a_k} f(x) |\sin(nx)| dx \to \frac{2}{\pi} \int_{a_{k-1}}^{a_k} f(x) |\sin(nx)| dx$$

Puis en sommant par la relation de Chasles

$$\int_{a}^{b} f(x) \left| \sin(nx) \right| dx \to \frac{2}{\pi} \int_{a}^{b} f$$

c) Supposons enfin f continue par morceaux. Pour $\varepsilon > 0$, il existe φ en escalier vérifiant

$$||f - \varphi||_{\infty,[a,b]} \leqslant \frac{\varepsilon}{b-a}$$

Puisque

$$\int_{a}^{b} \varphi(x) \left| \sin(nx) \right| dx \to \frac{2}{\pi} \int_{a}^{b} \varphi$$

pour n assez grand, on a

$$\left| \int_{a}^{b} \varphi(x) \left| \sin(nx) \right| dx - \frac{2}{\pi} \int_{a}^{b} \varphi \right| \leqslant \varepsilon$$

Or

$$\left| \int_{a}^{b} \varphi(x) \left| \sin(nx) \right| dx - \int_{a}^{b} f(x) \left| \sin(nx) \right| dx \right| \leqslant \varepsilon$$

 $_{
m et}$

$$\left| \int_{a}^{b} \varphi - \int_{a}^{b} f \right| \leqslant \varepsilon$$

donc

$$\left| \int_{a}^{b} f(x) \left| \sin(nx) \right| dx - \frac{2}{\pi} \int_{a}^{b} f \right| \leq 2\varepsilon + \frac{2}{\pi}\varepsilon$$

Ainsi

$$\int_{a}^{b} f(x) \left| \sin(nx) \right| dx \to \frac{2}{\pi} \int_{a}^{b} f$$