Functional Programming and Scheme

CMPSC 461
Programming Language Concepts
Penn State University
Fall 2016

The λ-Calculus

A pure λ -term t is defined inductively as follows:

- Any variable x is a λ -term
- If t is a λ -term, so is λx . t (abstraction)
- If t_1 , t_2 are λ -terms, so is t_1t_2 (application)

We use x, y, z, ... for variables

The definition above defines an infinite set, named t

α -Reduction

Replacing all bound variables gives the same term

$$(\lambda x. x) = (\lambda y. y)$$

```
Analogy in C:

int f (int x) {return x+1}

Is same as int f (int y) {return y+1}
```

λ-Calculus Evaluation (Informal)

Identity function: λx . x

$$(\lambda x. x) y = y$$

Observation: we can substitute the formal parameter with the true parameter

```
Analogy in C:
```

Abstraction: int f (int x) {return x}

Application: f(y) evaluates to y

λ-Calculus Evaluation (Informal)

Observation: we can substitute the formal parameter with the true parameter (with one exception!)

$$(\lambda x.(\lambda y.x)) y = \lambda y.y?$$
?

β -Reduction

Substitute x with t_2

$$(\lambda x. t_1) t_2 = t_1 \{t_2/x\}$$

- When no free variable in t_2 is bound in t_1 , we have $(\lambda x. t_1) t_2 = t_1 \{t_2/x\}$
- Otherwise, apply α -reduction to t_1 until the condition above holds

$$(\lambda x. (x x)) y = y y$$

 $(\lambda x. (\lambda y. x)) y = \lambda z. y$

β -Reduction Example

```
Example 1: (\lambda x. (x x)) y

In this case, (x x) corresponds to t_1, y corresponds to t_2

\mathsf{FV}(t_2) = y. \ y is not in t_1, hence, not bound

The first rule of substitution applies, which gives (\lambda x. (x x)) y = y y
```

β -Reduction Example

```
Example 2: (\lambda x. (\lambda y. x)) y
In this case, (\lambda y. x) corresponds to t_1,
                       y corresponds to t_2
FV(t_2) = \{y\}. y is used in t_1, we compute
FV(t_1) = \{x\}
So y is not free, hence, is bound in t_1. The first rule
does not apply. We replace y with z in t_1 (\alpha reduction)
(\lambda x.(\lambda y.x)) y = (\lambda x.(\lambda z. x)) y
Then it's easy to check the first rule applies, so
(\lambda x.(\lambda z.x)) y = \lambda z.y
```

β -Reduction

Substitute x with t_2

$$(\lambda x. t_1) t_2 = t_1 \{t_2/x\}$$

- When no free variable in t_2 is bound in t_1 , we have $(\lambda x. t_1) t_2 = t_1 \{t_2/x\}$
- => Substitution is *always correct* when t_2 is a *closed term* (a term with no free variable)

β -Reduction Example

Ω Combinator: λx.(x x)

Evaluate:
$$(\lambda x.(x x)) (\lambda v.v) = (\lambda v.v) (\lambda v.v) = (\lambda v.v)$$

And
$$(\lambda x.(x x)) (\lambda x.(x x))$$

= $(\lambda x.(x x)) (\lambda x.(x x))$ Infinite loop!

 β -reduction rules for $(\lambda x. t_1) t_2$

Substitute x with t_2 in t_1 when t_2 is a closed term (a term with no free variable)

Another Useful Rule

 $(\lambda x_1 \ x_2 \ ... x_n.t) \ t_1 \ t_2 \ ... \ t_n = \ t\{t_1/x_1\} \ ... \{t_n/x_n\}$ when $t_1 \ t_2 \ ... \ t_n$ are all closed terms

Evaluation

An *evaluation* of a lambda term is a sequence

$$e_1 = e_2 = e_3 = \dots$$

where each step is either an α -reduction or a β -reduction

Evaluation Order

No reduction order is specified in classical λ -Calculus

If evaluation terminates, any order gives same result

$$(\lambda x. (\lambda y. x) z) u \qquad (\lambda x. (\lambda y. x) z) u$$

$$= (\lambda y. u) z \qquad = (\lambda x. x) u$$

$$= u \qquad = u$$

Is the λ-Calculus Turing complete?

Encoding: Boolean

Booleans

Shorthand for $\lambda x.(\lambda y.x)$

TRUE $\triangleq \lambda x \ y \cdot x$ FALSE $\triangleq \lambda x \ y \cdot y$

Encoding of "if"?

Goal: IF
$$b$$
 t $f = \begin{cases} t$ when b is TRUE f when h is FALSE

Definition IF $\triangleq \lambda b t f$. (b t f)

Encoding: Boolean

Booleans

TRUE
$$\triangleq \lambda x y \cdot x$$

$$FALSE \triangleq \lambda x \ y. y$$

Encoding of "and"?

Goal: AND
$$b_1$$
 $b_2 = \begin{cases} \text{TRUE when } b_1, b_2 \text{ are both TRUE} \\ \text{FALSE otherwise} \end{cases}$

Definition AND $\triangleq \lambda b_1 b_2$. (b_1 (b_2 TRUE FALSE) FALSE)

Check that AND TRUE FALSE = FALSE (Note 2)