```
In [1]: #step 1: importing All the required libraries

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import preprocessing ,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [2]: df = pd.read_csv(r"C:\Users\Sudheer\Downloads\bottle.csv.zip",low_memory=False

In [3]: df

Out[3]:

	Cst_Cnt	Btl_Cnt	Sta_ID	Depth_ID	Depthm	T_degC	Salnty	O2ml_L	STheta	O25
0	1	1	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0000A-3	0	10.500	33.4400	NaN	25.64900	Ni
1	1	2	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0008A-3	8	10.460	33.4400	NaN	25.65600	Ni
2	1	3	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0010A-7	10	10.460	33.4370	NaN	25.65400	Ni
3	1	4	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0019A-3	19	10.450	33.4200	NaN	25.64300	Ni
4	1	5	054.0 056.0	19- 4903CR- HY-060- 0930- 05400560- 0020A-7	20	10.450	33.4210	NaN	25.64300	Ni
				•••	•••					
864858	34404	864859	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0000A-7	0	18.744	33.4083	5.805	23.87055	108.
864859	34404	864860	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0002A-3	2	18.744	33.4083	5.805	23.87072	108.
864860	34404	864861	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0005A-3	5	18.692	33.4150	5.796	23.88911	108.
864861	34404	864862	093.4 026.4	20- 1611SR- MX-310- 2239- 09340264- 0010A-3	10	18.161	33.4062	5.816	24.01426	107.

Cst_Cnt Btl_Cnt Sta_ID Depth_ID Depthm T_degC Salnty O2ml_L STheta O28 201611SR864862 34404 864863 093.4 MX-310026.4 223915 17.533 33.3880 5.774 24.15297 105.

864863 rows × 74 columns

```
In [4]: df=df[['Salnty','T_degC']]
df.columns=['Sal','Temp']
```

09340264-0015A-3

In [5]: df.head(10)
displaying only the 1st rows along with the

Out[5]:

	Sal	Temp
0	33.440	10.50
1	33.440	10.46
2	33.437	10.46
3	33.420	10.45
4	33.421	10.45
5	33.431	10.45
6	33.440	10.45
7	33.424	10.24
8	33.420	10.06
9	33.494	9.86

In [6]: sns.lmplot(x="Sal",y="Temp",data=df,order=2,ci=None)

Out[6]: <seaborn.axisgrid.FacetGrid at 0x206090d6b60>

In [7]: df.describe()

Out[7]:

	Sal	Temp
count	817509.000000	853900.000000
mean	33.840350	10.799677
std	0.461843	4.243825
min	28.431000	1.440000
25%	33.488000	7.680000
50%	33.863000	10.060000
75%	34.196900	13.880000
max	37.034000	31.140000

```
In [8]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 864863 entries, 0 to 864862
         Data columns (total 2 columns):
              Column Non-Null Count
                                       Dtype
                      _____
          0
              Sal
                      817509 non-null float64
                      853900 non-null float64
          1
              Temp
         dtypes: float64(2)
         memory usage: 13.2 MB
 In [9]: #step 4: Data cleaning - Eliminating NaN or missing input numbers
         df.fillna(method='ffill',inplace=True)
         C:\Users\Sudheer\AppData\Local\Temp\ipykernel 13532\2434860272.py:3: SettingW
         ithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.fillna(method='ffill',inplace=True)
In [10]: x = np.array(df['Sal']).reshape(-1, 1)
         y = np.array(df['Temp']).reshape(-1, 1)
In [11]: | df.dropna(inplace = True)
         # Dropping any rows with nan values
         C:\Users\Sudheer\AppData\Local\Temp\ipykernel 13532\3158782430.py:1: SettingW
         ithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s
         table/user guide/indexing.html#returning-a-view-versus-a-copy (https://panda
         s.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ver
         sus-a-copy)
           df.dropna(inplace = True)
In [12]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25)
         regr = LinearRegression()
         regr.fit(x_train, y_train)
         print(regr.score(x test,y test))
```

0.20830084385093084


```
In [14]: # step7: working with smaller dataset

df500 = df[:][:500]

# selecting the 1st 500 rows of the data

sns.lmplot(x = "Sal",y = "Temp",data = df500, order = 1, ci = None)
```

Out[14]: <seaborn.axisgrid.FacetGrid at 0x20609f6e860>


```
In [15]: df500.fillna(method ='ffill',inplace = True)
    x = np.array(df500['Sal']).reshape(-1, 1)
    y = np.array(df500['Temp']).reshape(-1, 1)
    df500.dropna(inplace=True)
    x_train, x_test, y_train,y_test = train_test_split(x, y, test_size = 0.25)
    regr = LinearRegression()
    regr.fit(x_train, y_train)
    print("Regression: ",regr.score(x_test, y_test))
    y_pred = regr.predict(x_test)
    plt.scatter(x_test, y_test, color = 'b')
    plt.plot(x_test, y_pred, color = 'k')
    plt.show()
```

Regression: 0.8243914870413185

In [16]:	<pre>m sklearn.linear_model import LinearRegression m sklearn.metrics import r2_score el = LinearRegression() el.fit(x_train,y_train) red=model.predict(x_test) = r2_score(y_test,y_pred) nt("R2 score:",r2)</pre>					
	R2 score: 0.8243914870413185					
In []:						
In []:						