Project on Machine Learning

Alfred Alocias Mariadason June 27, 2018

- Ising Model
- Metha et al, arXiv 1803.08823 accompanied by a Jupyter notebook.

- Ising Model
- Metha et al, arXiv 1803.08823 accompanied by a Jupyter notebook.
- Coupling constant

- Ising Model
- Metha et al, arXiv 1803.08823 accompanied by a Jupyter notebook.
- Coupling constant
- Phases
 - Ordered
 - Critical
 - Disordered

Linear Regression

•
$$\{y_i, x_i\}_{i=1}^n, i = 1, ..., n$$

•
$$y = X\beta + \varepsilon$$

- ullet minimize the L_2 -norm $\min_{oldsymbol{eta}}ig|Xoldsymbol{eta}-oldsymbol{y}ig|^2$
- Solution: $m{eta}_{\mathrm{LS}} = \operatorname*{argmin}_{m{eta}} ig| m{X} m{eta} m{y} ig|^2 \Rightarrow m{eta}_{\mathrm{LS}} = m{ig(} m{X}^T m{X} m{ig)}^{-1} m{X}^T m{y}$

Linear Regression

•
$$\{y_i, x_i\}_{i=1}^n, i = 1, ..., n$$

•
$$y = X\beta + \varepsilon$$

ullet minimize the L_2 -norm $\min_{oldsymbol{eta}}ig|Xoldsymbol{eta}-oldsymbol{y}ig|^2$

• Solution:
$$oldsymbol{eta}_{\mathrm{LS}} = \operatorname*{argmin}_{oldsymbol{eta}} ig| oldsymbol{X} oldsymbol{eta} - oldsymbol{y} ig|^2 \Rightarrow oldsymbol{eta}_{\mathrm{LS}} = ig(oldsymbol{X}^T oldsymbol{X}^T oldsymbol{y}$$

Ridge Regression

• L_2 -regularization: $y = X\beta + \alpha \sum_{i=1}^{m} \beta_i^2$

•
$$\boldsymbol{\beta}_{\mathrm{Ridge}} = \operatorname*{argmin}_{\boldsymbol{\beta}} \left(\left| X \boldsymbol{\beta} - \boldsymbol{y} \right|^2 + \alpha \left| \boldsymbol{\beta} \right|^2 \right) \Rightarrow \boldsymbol{\beta}_{\mathrm{Ridge}} = \left(X^T X + \alpha \boldsymbol{I} \right)^{-1} X^T \boldsymbol{y}$$

Linear Regression

•
$$\{y_i, x_i\}_{i=1}^n$$
, $i = 1, ..., n$

•
$$y = X\beta + \varepsilon$$

• minimize the L_2 -norm $\min_{oldsymbol{eta}} ig| Xoldsymbol{eta} - y ig|^2$

• Solution:
$$\beta_{\text{LS}} = \underset{\beta}{\operatorname{argmin}} \big| X \beta - y \big|^2 \Rightarrow \beta_{\text{LS}} = \big(X^T X \big)^{-1} X^T y$$

Ridge Regression

• L_2 -regularization: $y = X\beta + \alpha \sum_{i=1}^{m} \beta_i^2$

•
$$\beta_{\mathrm{Ridge}} = \operatorname*{argmin}_{\beta} \left(\left| X \beta - y \right|^2 + \alpha \left| \beta \right|^2 \right) \Rightarrow \beta_{\mathrm{Ridge}} = \left(X^T X + \alpha I \right)^{-1} X^T y$$

Lasso Regression

• L_1 -regularization: $y = X\beta + \alpha \sum_{i=1}^{m} \left| \beta_i \right|$

• Constrained ($|\pmb{\beta}| \le t$): $\pmb{\beta}_{\text{Lasso}} = \operatorname*{argmin}_{\pmb{\beta}} \left(\left| \pmb{X} \pmb{\beta} - \pmb{y} \right|^2 + \alpha \left| \pmb{\beta} \right| \right)$

• Solution: $\beta_j^{\text{Lasso}} = \text{sign}\left(\beta_j^{\text{LS}}\right) \left(\left|\beta_j^{\text{LS}}\right| - \alpha\right)_+$

• Fit to sigmoid $f(x) = \frac{1}{1 + \exp(-x^T w)}$

• Categorisation

- Categorisation
 - Binary: P(Y|X)

- Categorisation
 - Binary: P(Y|X)
- Cost: $C(\boldsymbol{w}) = -\sum_{i=1}^{n} \left[Y_i \log \left(f\left(\boldsymbol{X}_i^T \boldsymbol{w} \right) \right) + (1 Y_i) \log \left(1 f\left(\boldsymbol{X}_i^T \boldsymbol{w} \right) \right) \right]$

- Categorisation
 - Binary: P(Y|X)
- Cost: $C(\boldsymbol{w}) = -\sum_{i=1}^{n} \left[Y_i \log \left(f\left(\boldsymbol{X}_i^T \boldsymbol{w} \right) \right) + (1 Y_i) \log \left(1 f\left(\boldsymbol{X}_i^T \boldsymbol{w} \right) \right) \right]$
- Numerical minimization: $\mathbf{0} = \nabla C(\mathbf{w}) = \sum\limits_{i=1}^{n} \left[f\left(\mathbf{X}_{i}^{T}\mathbf{w}\right) Y_{i} \right] \mathbf{X}_{i}$

• Consists of Decision Trees

- Consists of Decision Trees
- Bagging: Create bootstrap ensemble from data

- Consists of Decision Trees
- Bagging: Create bootstrap ensemble from data
- Feature Bagging: Bagging on data and labels

- Consists of Decision Trees
- Bagging: Create bootstrap ensemble from data
- Feature Bagging: Bagging on data and labels
- Extremized Random Forest: Split decision trees at random

• input:
$$x = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \vdots & \ddots & \vdots \\ x_{d1} & \dots & x_{nd} \end{pmatrix}$$

• input:
$$\mathbf{x} = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \vdots & \ddots & \vdots \\ x_{d1} & \dots & x_{nd} \end{pmatrix}$$

• $\{\mathbf{w}\}_{l=1}^m = \begin{pmatrix} \mathbf{w}^{(1)}, \dots, \mathbf{w}^{(m)} \end{pmatrix}$

•
$$\{w\}_{l=1}^m = (w^{(1)}, \dots, w^{(m)})$$

• input:
$$x = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \vdots & \ddots & \vdots \\ x_{d1} & \dots & x_{nd} \end{pmatrix}$$

•
$$\{w\}_{l=1}^m = \left(w^{(1)}, \dots, w^{(m)}\right)$$

• Bias:
$$z^{(l)} = \boldsymbol{w}^{(l)} \cdot \boldsymbol{x} + b^{(l)}$$

• input:
$$x = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \vdots & \ddots & \vdots \\ x_{d1} & \dots & x_{nd} \end{pmatrix}$$

•
$$\{w\}_{l=1}^m = \left(w^{(1)}, \dots, w^{(m)}\right)$$

• Bias:
$$z^{(l)} = w^{(l)} \cdot x + b^{(l)}$$

- Backpropagation:
 - Activation at input layer: Calculate activations $a_j^l = \sigma\left(\sum_k w_{kj}^l a_k^{l-1}\right)$
 - **Feedforward**: Compute z^l and a^l for subsequent layers
 - Error at output: Calculate error in output
 - Backpropagate: Calculate error for all layers
 - Calculate Gradient: Calculate gradient and update weights

• input:
$$x = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \vdots & \ddots & \vdots \\ x_{d1} & \dots & x_{nd} \end{pmatrix}$$

•
$$\{w\}_{l=1}^m = \left(w^{(1)}, \dots, w^{(m)}\right)$$

• Bias:
$$z^{(l)} = w^{(l)} \cdot x + b^{(l)}$$

- Backpropagation:
 - Activation at input layer: Calculate activations $a_j^l = \sigma\left(\sum_k w_{kj}^l a_k^{l-1}\right)$
 - **Feedforward**: Compute z^l and a^l for subsequent layers
 - Error at output: Calculate error in output
 - Backpropagate: Calculate error for all layers
 - Calculate Gradient: Calculate gradient and update weights
- Cost function

• Data with J = 1

- Data with J = 1
- $\bullet \ E^{(i)} = -X^{(i)} \cdot J$

Determine the Phase of the Two-Dimensional Ising Model

Determine the Phase of the Two-Dimensional Ising Model

Determine the Phase of the Two-Dimensional Ising Model

0.0.1 Using Random Forest to Classify Phases in the Ising Model

0.0.2 Using Random Forest to Classify Phases in the Ising Model

0.0.3 Using Random Forest to Classify Phases in the Ising Model

0.0.4 Using Random Forest to Classify Phases in the Ising Model

0.0.5 Classifying the Ising Model Phase Using Neural Networks

0.0.6 Classifying the Ising Model Phase Using Neural Networks

