DEFINICIONES (I)

- La eficiencia en la búsqueda de un elemento en un árbol binario de búsqueda se mide en términos de:
 - Número de comparaciones
 - La altura del árbol
- Árbol completamente equilibrado: los elementos del árbol deben estar repartidos en igual número entre el subárbol izquierdo y el derecho, de tal forma que la diferencia en número de nodos entre ambos subárboles sea como mucho 1
- Problema: el mantenimiento del árbol
- Árboles AVL: desarrollado por Adelson-Velskii y Landis (1962). Los AVL son árboles balanceados (equilibrados) con respecto a la altura de los subárboles: "Un árbol está equilibrado respecto a la altura si y solo si para cada uno de sus nodos ocurre que las alturas de los dos subárboles difieren como mucho en 1"
- Consecuencia 1. Un árbol vacío está equilibrado con respecto a la altura
- Consecuencia 2. El árbol equilibrado óptimo será aquél que cumple:

$$n = 2^h - 1$$
, donde $n = n^o$ nodos y $h =$ altura

Tema 3. El tipo árbol

3.2. Árboles AVL

DEFINICIONES (II)

- Si T es un árbol binario no vacío con TL y TR como subárboles izquierdo y derecho respectivamente, entonces T está balanceado con respecto a la altura si y solo si
 - TL y TR son balanceados respecto a la altura, y
 - | hr hl | ≤ 1 donde hl y hr son las alturas respectivas de TL y TR
- El factor de equilibrio FE (T) de un nodo T en un árbol binario se define como hr - hl. Para cualquier nodo T en un árbol AVL, se cumple FE (T) = -1, 0, 1

OPERACIONES BÁSICAS. INSERCIÓN (I)

- Representación de árboles AVL
 - Mantener la información sobre el equilibrio de forma implícita en la estructura del árbol
 - Atribuir a, y almacenar con, cada nodo el factor de equilibrio de forma explícita TNodoArb {

Titem fitem;

TArbBin fiz, fde;

int FE; }

- Inserción en árboles AVL. Casos:
 - Después de la inserción del ítem, los subárboles I y D igualarán sus alturas

2

Tema 3. El tipo árbol

3.2. Árboles AVL

OPERACIONES BÁSICAS. INSERCIÓN (II)

 Después de la inserción, I y D tendrán distinta altura, pero sin vulnerar la condición de equilibrio

Si hI > hD y se realiza inserción en I, ó hI < hD y se realiza inserción en D
 Formas de rotación: II, ID, DI, DD

ROTACIÓN II
 (-2,-1)

OPERACIONES BÁSICAS. INSERCIÓN (III)

Tema 3. El tipo árbol

3.2. Árboles AVL

OPERACIONES BÁSICAS. INSERCIÓN. EJEMPLO (IV)

• Ejemplo. Insertar en el siguiente árbol los elementos 5 y 12

 Hay que tener en cuenta que la actualización del FE de cada nodo se efectúa desde las hojas hacia la raíz del árbol

OPERACIONES BÁSICAS. INSERCIÓN. IMPLEMENTACIÓN (V)

```
ALGORITMO INSERTARAUX
                                                          ENTRADA/SALIDA I: Iterador; Crece: Integer; c: Item;
ALGORITMO INSERTAR
                                                          VAR CreceIz, CreceDe: Integer; B: Arbol;
     ENTRADA/SALIDA
                                                          METODO
              A: AVL; c : Item
                                                                   si EsVacioArbIt (I) entonces
     VAR I: Iterador; Crece: Integer;
                                                                      B = Enraizar (c); Mover (I, B); Crece = TRUE;
     METODO
                                                                   sino
              I = Primer(A);
                                                                       CreceHijo = CreceIz = CreceDe = FALSE;
              InsertarAux (I, c, Crece);
                                                                       si ( c < Obtener ( I ) ) entonces
     fMETODO
                                                                          INSERTARAUX (HijoIzq (I), c, CreceIz);
                                                                          CreceHijo = CreceIz;
                                                                       sino
                                                                          si ( c > Obtener ( I ) ) entonces
INSERTARAUX ( HijoDer ( I ), c, CreceDe );
                                                                              CreceHijo = CreceDe;
                                                                       fsi
                                                                       si CreceHijo entonces
                                                                          caso de:
                                                                              1) ( CreceIz y FE ( I ) = 1 ) \( \delta \) ( CreceDe y FE ( I ) = -1 ):

Crece = FALSE; FE ( I ) = 0;
                                                                              2) CreceIz y FE ( I ) = 0 : FE ( I ) = -1 ; Crece = TRUE;
                                                                              3) CreceDe y FE ( I ) = 0 : FE ( I ) = 1 ; Crece = TRUE;
                                                                              4) CreceIz y FE ( I ) = -1 : EquilibrarIzquierda ( I, Crece ) ;
                                                                              5 ) CreceDe y FE ( I ) = 1 : Equilibrar
Derecha ( I, Crece ) ;
                                                                           fcaso
                                                                       sino
                                                                           Crece=FALSE;
                                                                                                                                           7
                                                                   fsi
                                                          fMETODO
```

Tema 3. El tipo árbol

3.2. Árboles AVL

ALGORITMO EQUILIBRARIZQUIERDA

OPERACIONES BÁSICAS. INSERCIÓN. IMPLEMENTACIÓN (VI)

```
ENTRADA/SALIDA I : Iterador; Crece: Integer;
VAR J, K: Iterador; int E2;
METODO
           si (FE (HijoIzq (I) = -1 entonces
                                                                  //ROTACIÓN II
                             Mover (J, HijoIzq (I));
                             Mover (HijoIzq (I), HijoDer (J));
                             Mover (HijoDer (J), I);
FE (J) = 0; FE (HijoDer (J)) = 0;
                             Mover (I,J);
                                                                   //ROTACIÓN ID
                              Mover (J, HijoIzq (I));
                             Mover (K, HijoDer (J));
                             E2 = FE(K);
                             Mover (HijoIzq (I), HijoDer (K));
Mover (HijoDer (J), HijoIzq (K));
                             Mover (HijoIzq (K), J);
                             Mover (HijoDer (K), I);
                             FE(K) = 0;
                             caso de E2
                                 -1: FE (HijoIzq (K)) = 0; FE (HijoDer (K)) = 1;
+1: FE (HijoIzq (K)) = -1; FE (HijoDer (K)) = 0;
0: FE (HijoIzq (K)) = 0; FE (HijoDer (K)) = 0;
                             Mover (I, K);
           Crece = FALSE:
fMETODO
```

8

EJERCICIOS inserción

- 1) Construir un árbol AVL formado por los nodos insertados en el siguiente orden con etiquetas 4, 5, 7, 2, 1, 3, 6
- 2) Insertar las mismas etiquetas con el siguiente orden: 1, 2, 3, 4, 5, 6, 7

Tema 3. El tipo áxbol

3.2. Árboles AVL

EJERCICIOS inserción: SOLUCIÓN

1) La solución para los 2 ejercicios es la siguiente:

OPERACIONES BÁSICAS. BORRADO (I)

- Borrado en árboles AVL. Casos:
 - Borrar el ítem nos llevará en el árbol a un FE = 0, no será necesario reequilibrar

 Borrar el ítem nos llevará en el árbol a un FE = ±1, en este caso tampoco será necesario reequilibrar

11

Tema 3. El tipo árbol

3.2. Árboles AVL

OPERACIONES BÁSICAS. BORRADO (II)

- Rotaciones simples
- ROTACIÓN DD (+2,0)

(+2,+1) La altura del árbol decrece

12

OPERACIONES BÁSICAS. BORRADO (III)

- Rotaciones simples

- ROTACIÓN II (-2,0)

(-2,-1) La altura del árbol decrece

13

Tema 3. El tipo áxbol

3.2. Árboles AVL

OPERACIONES BÁSICAS. BORRADO (IV)

- Rotaciones dobles
- ROTACIÓN DI (+2,-1) La altura del árbol decrece

- ROTACIÓN ID
(-2,+1)
La altura del árbol decrece

14

OPERACIONES BÁSICAS. INSERCIÓN Y BORRADO

- Estudio de las complejidades de ambos algoritmos
 - El análisis matemático del algoritmo de inserción es un problema todavía no resuelto. Los ensayos empíricos apoyan la conjetura de que la altura esperada para el árbol AVL de n nodos es

h = log2 (n) + c / c es una constante pequeña

- Estos árboles deben utilizarse sólo si las recuperaciones de información (búsquedas) son considerablemente más frecuentes que las inserciones → debido a la complejidad de las operac. de equilibrado
- Se puede borrar un elemento en un árbol equilibrado con log (n) operaciones (en el caso más desfavorable)
- Diferencias operacionales de borrado e inserción:
 - Al realizar una inserción de una sola clave se puede producir como máximo una rotación (de dos o tres nodos)
 - El borrado puede requerir una rotac. en todos los nodos del camino de búsqueda
 - Los análisis empíricos dan como resultado que, mientras se presenta una rotación por cada dos inserciones,
 - sólo se necesita una por cada cinco borrados. El borrado en árboles equilibrado₅es, pues, tan sencillo (o tan complicado) como la inserción

Tema 3. El tipo árbol

3.2. Árboles AVL

EJERCICIOS borrado

1) Dado el siguiente árbol AVL de entrada, efectuar los siguientes borrados en el mismo: 4, 8, 6, 5, 2, 1, 7. (Nota: al borrar un nodo con 2 hijos, sustituir por el mayor de la izquierda)

EJERCICIOS borrado

2) Dado el siguiente árbol AVL de entrada, efectuar los siguientes borrados en el mismo: 55, 32, 40, 30. (Nota: al borrar un nodo con 2 hijos, sustituir por el mayor de la izquierda)

Tema 3. El tipo árbol

3.2. Árboles AVL

Preguntas de tipo test: Verdadero vs. Falso

- Los árboles AVL son aquellos en los que el número de elementos en los subárboles izquierdo y derecho difieren como mucho en 1
- Cuando se realiza un borrado en un árbol AVL, en el camino de vuelta atrás para actualizar los factores de equilibrio, como mucho sólo se va a efectuar una rotación
- El siguiente árbol está balanceado con respecto a la altura

