LYCEE HASSAN II SaléAlJadida

EXAMENS NATIONAUX

2ème BAC SC MATHS BIOF

A.S: **2019/2020**

0,5pt

0,5pt

0,5pt

0,5pt

0,25pt

Arithmétiques 2008-2019

PROF: YOUNES BABA

EXAMEN NATIONAL 2019 SESSION NORMAL (3 points)

On admet que **2969** (l'année amazighe actuelle) est un **nombre premier**.

Soient n et m deux entiers naturels vérifiant : $n^8+m^8\equiv 0$ [2969]

- - a) En utilisant le théorème de BEZOUT , montrer que : $(\exists u \in \mathbb{Z})$; $u \times n \equiv 1$ [2969]
- o,5pt b) En déduire que : $(u imes m)^8 \equiv -1[2969]$ et que $(u imes m)^{2968} \equiv 1[2969]$

(On remarque que : $2969 = 8 \times 371$)

- o,5pt c) Montrer que 2969 ne divise pas $u \times m$
 - d) En déduire qu'on a aussi $(u imes m)^{2968}\equiv 1[2969]$
- **0,5pt** | **2) a)** En utilisant les résultats précédents , montrer que 2969 divise n
- o,5pt b) Montrer que: $n^8+m^8\equiv 0[2969]\Leftrightarrow n\equiv 0[2969]$ et $m\equiv 0[2969]$

EXAMEN NATIONAL 2018 SESSION NORMAL (3 points)

Soit $\, oldsymbol{p} \,$ un nombre premier tel que : $\, oldsymbol{p} = oldsymbol{3} + oldsymbol{4} oldsymbol{k} \,$ avec $\, oldsymbol{k} \in \mathbb{N}^*$.

- 1) Montrer que pour tout entier relatif $\,x\,$, si $\,x^2\equiv {f 1}[p]\,$ alors $\,x^{p-5}\equiv {f 1}[p]\,$
- 2) Soit x un entier relatif vérifiant $x^{p-5} \equiv \mathbf{1}[p]$.
- o,5pt a) Montrer que : x et p sont premier entre eux .
- o,5pt b) Montrer que : $x^{p-1} \equiv \mathbf{1}[p]$
 - c) Vérifier que : 2 + (k-1)(p-1) = k(p-5) .
- o,5pt d) En déduire que : $x^2 \equiv 1[p]$
- 0,5pt 3) Résoudre dans \mathbb{Z} l'équation : $x^{62} \equiv 1[67]$

EXAMEN NATIONAL 2017 SESSION NORMAL (3 points)

On admet que 2017 est un nombre premier et que : $2016 = 2^5 \times 3^2 \times 7$

Et soit p un nombre premier supérieur ou égal à 5.

- 1) Soit (x; y) un couple de $\mathbb{N}^* \times \mathbb{N}^*$ vérifiant : $px + y^{p-1} = 2017$
 - a) Vérifier que : p < 2017 .

0,5pt **b)** Montrer que : \boldsymbol{p} ne divise pas \boldsymbol{y} . 0,75pt c) Montrer que : $y^{p-1} \equiv \mathbf{1}[p]$ puis en déduire que p divise $\mathbf{2016}$. 0,5pt d) Montrer que : p = 7. 2)- Déterminer, suivant les valeurs de p, les couples (x; y) de $\mathbb{N}^* \times \mathbb{N}^*$ vérifiant : 1 pt $px + v^{p-1} = 2017$. **EXAMEN NATIONAL 2016 SESSION Normal (3 points)** $\overline{ ext{Partie}}\ I$: Soit (a;b) un élément de $\mathbb{N}^* imes\mathbb{N}^*$ tel que le nombre premier 173 divise a^3+b^3 . 1) Montrer que : $a^{171} \equiv -b^{171} [173]$ (remarquer que 171 = 3 imes 57) 0,25pt 2) Montrer que : 173 divise a si et seulement si 173 divise b0,25pt 3) Supposons que : 173 divise a. Montrer que 173 divise a+b. 0,25pt 4) Supposons que : 173 ne divise pas a . a) En appliquant le théorème de Fermat montrer que : $\,a^{172}\equiv b^{172}\,$ [173] 0,5pt b) Montrer que : $a^{171}(a+b) \equiv 0[173]$ 0,5pt c) En déduire que : 173 divise a + b. 0,5pt <u>Partie</u> II: On considére dans $\mathbb{N}^* \times \mathbb{N}^*$ l'équation $(E): x^3 + y^3 = 173(xy + 1)$. Soit (x; y) un élément de $\mathbb{N}^* \times \mathbb{N}^*$ solution de l'équation (E), on pose : x + y = 173k où $k \in \mathbb{N}^*$ 1) Vérifier que : $k(x-y)^2 + (k-1)xy = 1$. 0,25pt 2) Montrer que : k = 1, puis résoudre l'équation (E). 0,5pt **EXAMEN NATIONAL 2015 SESSION NORMAL (3 points)** Soit x un entier relatif tel que : $x^{1439} \equiv 1436 [2015]$. 1) Sachant que : $1436 \times 1051 - 2015 \times 749 = 1$, montrer que 1436 et 20150,25pt sont premiers entre eux. **2)** Soit d un diviseur commun de x et 2015. a) Montrer que : d divise 1436 . 0,5pt 0,5pt b) En déduire que x et 2015 sont premiers entre eux . a) En appliquant le théorème de Fermat montrer que : $x^{1440} \equiv 1$ [5] ; 0,75pt PROF: YOUNES BABA - Lycée Hassan 2 SALE AL JADIDA - 06 66 86 09 06 - pfe.topologie@gmail.com

 $x^{1440} \equiv 1$ [13] et $x^{1440} \equiv 1$ [31] (Remarque que $2015 = 5 \times 13 \times 31$) b) Montrer que : $x^{1440} \equiv 1$ [65] puis en déduire que : $x^{1440} \equiv 1$ [2015] . 0,5pt 4) Montrer que : $x \equiv 1051 \, [2015]$. 0,5pt **EXAMEN NATIONAL 2015 SESSION DE Rattrapage (2 points)** 1) Soit $a \in \mathbb{Z}$. Montrer que si a et a et a sont premiers entre eux alors : $a^{2016} \equiv a$ [13]. 0,5pt 2) On considére dans \mathbb{Z} l'équation : $(E): x^{2015} \equiv 2 \ [13]$ et soit x une solution de (E)a) Montrer que x et 13 sont premiers entre eux. 0,5pt b) Montrer que: $x \equiv 7[13]$. 0,5pt 3) Montrer que l'ensemble des solutions de l'équation (E) est : $S = \{7+13k \ / \ k \in \mathbb{Z}\}$. 0,5pt **EXAMEN NATIONAL 2014 SESSION NORMAL (3points)** Pour tout $n \in \mathbb{N}^*$; On pose : $a_n = \underbrace{33...31}_{nfois}$ (n fois le chiffre 3) 1) Vérifier que : a_1 et a_2 sont premiers 0,5pt 2) Montrer que Pour tout $n\in\mathbb{N}^*$: $3a_n+7=10^{n+1}$. 0,5pt 3) Montrer que Pour tout $k\in\mathbb{N}$: $10^{30k+2}\equiv 7\lceil 31
ceil$. 0,75pt 4) Montrer que Pour tout $k\in\mathbb{N}$: $3a_{30k+1}\equiv 0[31]$, puis en déduire que : 0,75pt **31** divise a_{30k+1} . 5) Montrer que Pour tout $n\in\mathbb{N}^*$: si $n\equiv \mathbf{1}[\mathbf{30}]$ alors l'équation : 0,5pt $a_n x + 31y = 1$ n'admet pas de solution dans \mathbb{Z}^2 . **EXAMEN NATIONAL 2014 SESSION DE Rattrapage (1point)** Soit n un entier naturel non nul; on pose: $b_n = 2 \times 10^n + 1$ et $c_n = 2 \times 10^n - 1$. 0,5pt 1) Montrer que : $b_n \wedge c_n = c_n \wedge 2$. puis en déduire que b_n et c_n sont premiers entre eux 2) Trouver un couple $(x_n; y_n)$ de \mathbb{Z}^2 vérifiant l'égalité : $b_n x_n + c_n y_n = 1$. 0,5pt

	EXAMEN NATIONAL 2013 SESSION NORMAL (3points)
	On cherche les entiers naturels $ m{n}$ supérieur strictement de $ 1 $ vérifiant la relation :
	$(R): 3^n-2^n\equiv 0 [n].$
	1) Supposons que $ m{n}$ vérifie la relation $ (m{R})$, et soit $ m{p}$ le plus petit diviseur positif $$ premier de n .
0,75pt	a) Montrer que : $ {f 3^n-2^n} \equiv {f 0} [{m p}] $, puis en déduire que $ {m p} \geq {f 5} $.
0,5pt	b) Montrer que : $3^{p-1} \equiv 1[p]$ et que $2^{p-1} \equiv 1[p]$.
o,5pt	c) Montrer qu'il existe un couple $(a;b)$ de \mathbb{Z}^2 tel que : $an-b(p-1)=1$
	d) Soit $ oldsymbol{q} $ et $ oldsymbol{r} $ le quotient et le reste de la division euclidienne de $ oldsymbol{a} $ par $ (oldsymbol{p} - oldsymbol{1}) $.
o,5pt	Montrer qu'il existe un entier naturel non nul $ k $ tel que : $ rn = 1 + k(p-1)$.
0,75pt	2) En déduire qu'il n'existe aucun entier supérieur strictement de $ {f 1}$ vérifiant la relation $({m R})$.
	EXAMEN NATIONAL 2012 SESSION NORMAL (3points)
	On considére dans \mathbb{Z}^2 l'équation : $(\mathrm{E}):143x-195y=52$.
o,5pt	1) a) Déterminer le $PGCD$ de $f 195$ et $f 143$, puis en déduire que l'équation $m (E)$ admet
	des solutions dans \mathbb{Z}^2 .
0,75pt	b) Sachant que $(-1;-1)$ est une solution particuliére de $({\it E})$, résoudre dans ${\Bbb Z}^2$
0,73pc	l'équation $({\it E})$ en précisant les étapes de la résolution .
	2) Soit $m{n}$ un entier naturel non nul et premier avec $ m{5} $.
o,5pt	Montrer que pour tout k de \mathbb{N} : $n^{4k} \equiv 1[5]$.
	3) Soit \pmb{x} et \pmb{y} deux entiers naturels non nuls tel que : $\pmb{x} \equiv \pmb{y}[4]$.
o,5pt	a) Montrer que pour tout $m{n}$ de \mathbb{N}^* on a : $m{n}^{m{x}}\equivm{n}^{m{y}}[m{5}]$.
o Ent	b) Montrer que pour tout $m{n}$ de \mathbb{N}^* on a : $m{n^x} \equiv m{n^y} [m{10}]$.
o,5pt	4) Soit \pmb{x} et \pmb{y} deux entiers naturels $$ tel que le couple $(\pmb{x};\pmb{y})$ est une solution de l'équation $({ m E})$.
0,25pt	Montrer que $$ pour tout $$ $$ de $$ $$ $$ $$ $$ les deux nombres $$ $$ $$ $$ $$ $$ $$ $$ ont le même chiffre
	d'unités dans la base décimale .

	EXAMEN NATIONAL 2012 SESSION DE Rattrapage (3points)
0,25pt 0,75pt	1) a) Vérifier que $$
0,5pt	Sachant que le couple $(1;8)$ est une solution particulier de (E) ; résoudre dans \mathbb{Z}^2 l'équation (E) en précisant les étapes de la résolution .
0,25pt 1pt 0,25pt	3) On pose : $N=1+7+7^2+\cdots+7^{2007}$. a) Vérifier que le couple $(7^{2006};N)$ est une solution de l'équation (E) . b) Montrer que : $N\equiv 0[4]$ et $N\equiv 0[503]$.
3,3,7	c) En déduire que le nombre N est divisible par 2012 . EXAMEN NATIONAL 2011 SESSION NORMAL (2,5points)
0,25pt	Soit N l'entier naturel dont l'écriture dans la base décimale est : $N = \underbrace{111 \dots 11}_{2010 \ fois \ 1}$ 1) Montrer que le nombre N est divisible par 11 . 2) a) Vérifier que le nombre 2011 est premier et que : $10^{2010} - 1 = 9N$.
0,75pt 0,5pt 0,5pt	b) Montrer que le nombre 2011 divise le nombre $9N$. c) En déduire que le nombre 2011 divise le nombre N .
0,5pt	3) Montrer que le nombre N est divisible par 22121. EXAMEN NATIONAL 2011 SESSION DE Rattrapage (2,5 points)
0,25pt	Soit $m{x}$ un entier naturel vérifiant $: m{10}^x \equiv m{2[19]}$. 1) a) Vérifier que $: m{10}^{x+1} \equiv m{1[19]}$.
0,5pt 0,75pt	b) Montrer que : $10^{18} \equiv 1[19]$. 2) Soit d le PGCD de 18 et $(x + 1)$.
o,5pt	a) Montrer que : ${f 10^d}\equiv{f 1[19]}$. b) Montrer que : ${f d}={f 18}$. c) En déduire que : ${f x}\equiv{f 17[18]}$

	EXAMEN NATIONAL 2010 SESSION NORMAL (3points)
0,75pt	1) Déterminer les entiers relatifs $ m$ vérifiant : $ m^2 + 1 \equiv 0 [5] $.
	2) Soit $ m p$ un nombre premier tel que : $ m p = m 3 + m 4 m k $ avec $ m k$ un entier naturel $. $
	Et soit $ m{n} $ un entier naturel tel que : $ m{n^2} + m{1} \equiv m{0}[m{p}] $
o,5pt	a) Vérifier que : $(n^2)^{2k+1} \equiv -1[p]$
0,75pt	b) Montrer que $m{n}$ et $m{p}$ sont premiers entre eux $$.
o,5pt	c) En déduire que $(n^2)^{2k+1}\equiv {f 1}[p]$.
0,5pt	d) Déduire qu'il n'existe aucun entier naturel $ m{n} $ vérifiant : $ m{n^2 + 1} \equiv m{0} [m{p}] $.
	EXAMEN NATIONAL 2009 SESSION NORMAL (3points)
	Pour tout entier naturel non nul $ n$ on pose : $ a_n = 2^n + 3^n + 6^n - 1 $
0,25pt	1) a) Vérifier que : $oldsymbol{a_n}$ est pair pour tout $oldsymbol{n}$ de \mathbb{N}^* .
0,5pt	b) Déterminer les valeurs de n pour lesquelles $: a_n \equiv 0[3]$.
	2) Soit p un nombre premier tel que $p>3$.
0,75pt	a) Montrer que : $2^{p-1} \equiv 1[p]$; $3^{p-1} \equiv 1[p]$ et $6^{p-1} \equiv 1[p]$.
0,75pt	b) Montrer que : $m{p}$ divise $m{a_{p-2}}$.
0,75pt	3) Montrer que pour tout nombre entier naturel premier $oldsymbol{q}$,
	il existe un entier naturel non nul $ n $ tel que $: a_n \wedge q = q .$
	EXAMEN NATIONAL 2008 SESSION NORMAL (3points)
	I- On considére dans \mathbb{Z}^2 l'équation : $(E):35u-96v=1$.
0,25pt	1) Vérifier que le couple $(11;4)$ est une solution particuliére $\;$ de $\;$ (E) .
o,5pt	2) En déduire l'ensemble des solutions de l'équation $(oldsymbol{E})$.
	II- On considére dans \mathbb{Z} l'équation $(F):x^{35}\equiv 2\;[97]$
	1) Soit $oldsymbol{x}$ une solution de l'équation $(oldsymbol{F})$.
o,5pt	a) Montrer que ${f 97}$ est premier ; et que ${m x}$ et ${f 97}$ sont premier entre eux .
o,5pt	b) Montrer que : $x^{96}\equiv 1[97]$.

o,5pt

0,25pt

0,5pt

c) Montrer que: $x \equiv 2^{11}$ [97].

2) Montrer que si l'entier x vérifie $x \equiv 2^{11}$ [97] alors : x est une solutions de l'équation (F) .

3) Montrer que l'ensemble des solutions de l'équation (F) est l'ensemble des entier qui s'écrivent sous la forme 11+97k avec $k\in\mathbb{Z}$.

إهداء

إلى صاحبة القلب الكبير المليء بالعطف والحنان ، التي لاتبخل علينا من جودها ، والتي تملئ حياتنا بوجودها ، فلن نوفي قدرها حتى ولو أتينا بأرقى العبارات ، ولن نستطيع أن نوفي كل ما عانته من أجلنا . فلها الفضل بعد الله عز وجل . في كل نجاح نصيبه . فنسأل الله أن يحفظ أمهاتنا جميعا.

إلى سواعد الأمة و أحيال المستقبل تلميذات و تلاميذ شعبة العلوم الرياضية و بالخصوص تلاميذ ثانوية الحسن الثاني التأهيلية نهدي هذا العمل المتواضع .

