Группоиды, кольца, поля

Александра Игоревна Кононова

ТЄИМ

30 ноября 2022 г. — актуальную версию можно найти на https://gitlab.com/illinc/otik

Алгебра — множество G (носитель) с заданным на нём набором операций, удовлетворяющим некоторой системе аксиом.

Группоид — алгебра $\mathcal{G}=(G,\cdot)$, сигнатура которой состоит из одной бинарной операции $\cdot \colon G \times G \to G$.

Полугруппа — группоид, операция ассоциативна — $\forall a,b,c \in G$: $a\cdot (b\cdot c)=(a\cdot b)\cdot c$

Моноид — полугруппа с единицей: $\exists \mathbf{1}: \forall a \in G \ a \cdot \mathbf{1} = \mathbf{1} \cdot a = a$, $\mathbf{1}$ — нейтральный элемент (единица) моноида

Группа — моноид, в котором для каждого элемента существует обратный.

Множество G с операцией \cdot — группа, если:

- lacktriangle операция \cdot в G ассоциативна: $a\cdot (b\cdot c)=(a\cdot b)\cdot c \ \ \forall a,b,c\in G;$
- **2** в G существует единица (нейтральный элемент) 1: $a \cdot 1 = 1 \cdot a = a \ \forall a \in G$:
- f 3 для каждого $a \in G$ существует обратный: $a^{-1} \in G\colon a \cdot a^{-1} = a^{-1} \cdot a = {f 1}.$

Если · коммутативна, то полугруппа (группа, группоид) называется коммутативной, или абелевой.

 $\exists \mathbf{0} : \forall a \ a \cdot \mathbf{0} = \mathbf{0} \cdot a = \mathbf{0}$ — полугруппа называется полугруппой **с** нулём (и не может быть группой).

Если все элементы полугруппы (группы, группоида) являются некоторыми целыми степенями $a \in G$ — полугруппа называется моногенной (циклической), a— примитивным (порождающим, образующим).

Трёхмерные вектора с векторным умножением —

 $\mathbb N$ с возведением в степень —

Арифметика с насыщением ([-N,N],+) —

$$(\mathbb{N}, +)$$
 —

$$(\mathbb{N},\cdot)$$
 —

$$\left(\mathbb{N}\cup\left\{ 0\right\} ,+\right) -$$

$$(\mathbb{N} \cup \{0\}, \cdot)$$
 —

$$(\mathbb{Z},+)$$
 —

$$(\mathbb{Z},\cdot)$$
 —

Трёхмерные вектора с векторным умножением — неассоциативный группоид ($(\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b})$).

 $\mathbb N$ с возведением в степень —

Арифметика с насыщением ([-N, N], +) —

$$(\mathbb{N},+)$$

$$(\mathbb{N},\cdot)$$
 —

$$(\mathbb{N} \cup \{0\}, +) - (\mathbb{N} \cup \{0\}, \cdot) -$$

$$(\mathbb{Z},+)$$
 —

$$(\mathbb{Z},\cdot)$$
 —

Трёхмерные вектора с векторным умножением — неассоциативный группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b}))$.

 ${\Bbb N}$ с возведением в степень — н/а группоид $((2^2)^3
eq 2^{\left(2^3\right)}).$

Арифметика с насыщением ([-N,N],+) —

$$(\mathbb{N},+)$$
 — (\mathbb{N},\cdot) —

$$(\mathbb{N} \cup \{0\}, +) -$$

$$(\mathbb{N} \cup \{0\}, \cdot)$$

$$(\mathbb{Z},+)$$
 —

$$(\mathbb{Z},\cdot)$$
 —

Трёхмерные вектора с векторным умножением — неассоциативный группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b}))$.

 $\mathbb N$ с возведением в степень — н/а группоид $((2^2)^3
eq 2^{\left(2^3\right)})$.

Арифметика с насыщением ([-N, N], +) — н/а группоид.

$$(\mathbb{N}, +) - \\ (\mathbb{N}, \cdot) - \\ (\mathbb{N} \cup \{0\}, +) - \\ (\mathbb{N} \cup \{0\}, +) = \\ (\mathbb{N} \cup \{0\}, +)$$

$$(\mathbb{N} \cup \{0\}, \cdot) -$$

$$(\mathbb{Z},+)$$
 (\mathbb{Z},\cdot) $-$

Трёхмерные вектора с векторным умножением — неассоциативный группоид ($(\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b})$).

 ${\Bbb N}$ с возведением в степень — н/а группоид $((2^2)^3
eq 2^{\left(2^3\right)})$.

Арифметика с насыщением ([-N,N],+) — н/а группоид.

 $(\mathbb{N},+)$ — полугруппа (ассоц. группоид), коммутативная циклическая; (\mathbb{N},\cdot) —

 $(\mathbb{N} \cup \{0\}, +) -$

 $(\mathbb{N} \cup \{0\}, \cdot) -$

 $(\mathbb{Z},+)$ —

Трёхмерные вектора с векторным умножением — неассоциативный группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b}))$.

 \mathbb{N} с возведением в степень — н/а группоид $((2^2)^3 \neq 2^{(2^3)})$.

Арифметика с насыщением ([-N,N],+) — н/а группоид.

 $(\mathbb{N},+)$ — полугруппа (ассоц. группоид), коммутативная циклическая; (\mathbb{N},\cdot) — моноид (полугруппа с единицей), коммутативный.

$$(\mathbb{N} \cup \{0\}, +) -$$

$$(\mathbb{N} \cup \{0\}, \cdot) -$$

$$(\mathbb{Z},+)$$
 —

$$(\mathbb{Z},\cdot)$$
 —

Трёхмерные вектора с векторным умножением — неассоциативный группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b}))$.

 $\mathbb N$ с возведением в степень — н/а группоид $((2^2)^3
eq 2^{\left(2^3\right)})$.

Арифметика с насыщением ([-N,N],+) — н/а группоид.

 $(\mathbb{N},+)$ — полугруппа (ассоц. группоид), коммутативная циклическая; (\mathbb{N},\cdot) — моноид (полугруппа с единицей), коммутативный.

 $(\mathbb{N} \cup \{0\}\,, +)$ — циклический коммутативный моноид;

 $(\mathbb{N} \cup \{0\}, \cdot) -$

 $(\mathbb{Z},+)$ —

Трёхмерные вектора с векторным умножением — неассоциативный группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b}))$.

 $\mathbb N$ с возведением в степень — н/а группоид $((2^2)^3
eq 2^{\left(2^3\right)})$.

Арифметика с насыщением ([-N,N],+) — н/а группоид.

 $(\mathbb{N},+)$ — полугруппа (ассоц. группоид), коммутативная циклическая; (\mathbb{N},\cdot) — моноид (полугруппа с единицей), коммутативный.

 $(\mathbb{N} \cup \{0\}, +)$ — циклический коммутативный моноид;

 $(\mathbb{N} \cup \{0\}, \cdot)$ — коммутативный моноид с нулём.

 $(\mathbb{Z},+)$ —

Трёхмерные вектора с векторным умножением — неассоциативный группоид ($(\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b})$).

 ${\Bbb N}$ с возведением в степень — н/а группоид $((2^2)^3
eq 2^{\left(2^3\right)})$.

Арифметика с насыщением ([-N,N],+) — н/а группоид.

 $(\mathbb{N},+)$ — полугруппа (ассоц. группоид), коммутативная циклическая;

 (\mathbb{N},\cdot) — моноид (полугруппа с единицей), коммутативный.

 $(\mathbb{N} \cup \{0\}\,, +)$ — циклический коммутативный моноид;

 $(\mathbb{N} \cup \{0\},\cdot)$ — коммутативный моноид с нулём.

 $(\mathbb{Z},+)$ — циклическая коммутативная группа;

Трёхмерные вектора с векторным умножением — неассоциативный группоид $((\vec{a} \times \vec{b}) \times \vec{b} \neq \vec{a} \times (\vec{b} \times \vec{b}))$.

 ${\Bbb N}$ с возведением в степень — н/а группоид $((2^2)^3
eq 2^{\left(2^3\right)}).$

Арифметика с насыщением ([-N,N],+) — н/а группоид.

 $(\mathbb{N},+)$ — полугруппа (ассоц. группоид), коммутативная циклическая;

 (\mathbb{N},\cdot) — моноид (полугруппа с единицей), коммутативный.

 $(\mathbb{N} \cup \{0\}, +)$ — циклический коммутативный моноид;

 $(\mathbb{N} \cup \{0\}\,,\cdot)$ — коммутативный моноид с нулём.

 $(\mathbb{Z},+)$ — циклическая коммутативная группа;

 (\mathbb{Z},\cdot) — коммутативный моноид.

 $\mathcal{K}=(\mathbb{K},+,\cdot,\mathbf{0},\mathbf{1})$, причём для любых $a,b,c\in\mathbb{K}$:

- **2** a + b = b + a;
- **3** a + 0 = a;
- $m{0}$ для каждого $a \in \mathbb{K}$ существует элемент (-a), такой, что $a + (-a) = \mathbf{0}$;
- **6** $a \cdot 1 = 1 \cdot a = a$;
- $a \cdot (b+c) = a \cdot b + a \cdot c, (b+c) \cdot a = b \cdot a + c \cdot a.$

По Б. Л. ван дер Вардену, кольцо — $\mathcal{K} = (\mathbb{K}, +, \cdot)$: ①, ②, ③, ② и разрешимость a+x=b — может не иметь единицы (③ и ④ доказываются). Множество чётных чисел — не кольцо по ⑤, но кольцо без единицы по ван дер Вардену.

Аксиомы кольца

Аксиомы поля

Поле есть алгебра $\mathcal{F}=(\mathbb{F},+,\cdot,\mathbf{0},\mathbf{1}),\mathbf{0}
eq\mathbf{1},$ причём:

- **2** a + b = b + a;
- **3** a + 0 = a;
- $oldsymbol{4}$ для каждого $a\in \mathbb{F}$ существует элемент (-a), такой, что $a+(-a)=\mathbf{0};$

- f 3 для каждого $a \in \mathbb{F}$, отличного от ${\bf 0}$, существует элемент a^{-1} , такой, что $a \cdot a^{-1} = {\bf 1}$;

Поле = кольцо + $(\mathbf{0} \neq \mathbf{1}) + \mathbf{0} + \mathbf{0}$

Некоммутативное поле (без 💿) — тело.

Кольцо с 6 — коммутативное кольцо.

Кольцо с ${f 0}-$ тело либо нулевое кольцо (единственный элемент ${f 0}={f 1}).$

$$\mathbb{Z}$$
 —

$$\mathbb{Z}_k = ig(\{0,\!1,\ldots,\!k-1\},\oplus_k,\odot_k,0,\!1ig)$$
 с операциями сложения и умножения по модулю $k-$

 $\mathbb H$ с операциями сложения и умножения кватернионов —

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} —

$$\mathbb{Z}_p \ (p-$$
 простое $) (\{a+b\cdot\sqrt{2}\},+,\cdot,0,1),\ a,b\in\mathbb{Q}-$

$$\mathbb{Z}_k = ig(\{0,1,\dots,k-1\},\oplus_k,\odot_k,0,1ig)$$
 с операциями сложения и умножения по модулю k —

 $\mathbb H$ с операциями сложения и умножения кватернионов —

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} —

$$\mathbb{Z}_p \ (p-$$
 простое) — $\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1
ight),\ a,b\in\mathbb{Q}$ —

 \mathbb{Z} — коммутативное кольцо.

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 $\mathbb H$ с операциями сложения и умножения кватернионов —

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} —

$$\mathbb{Z}_p$$
 $(p-$ простое $) (\{a+b\cdot\sqrt{2}\},+,\cdot,0,1),\ a,b\in\mathbb{Q}-$

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 ${\mathbb H}$ с операциями сложения и умножения кватернионов — тело.

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} —

$$\mathbb{Z}_p \ (p-$$
 простое) —
$$\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right),\ a,b\in\mathbb{Q} - \right)$$

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 ${\mathbb H}$ с операциями сложения и умножения кватернионов — тело.

$$\mathbb{Q}$$
, \mathbb{R} , \mathbb{C} — поля.

$$\mathbb{Z}_p \ (p-$$
 простое $) (\{a+b\cdot\sqrt{2}\},+,\cdot,0,1),\ a,b\in\mathbb{Q}-$

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 ${\mathbb H}$ с операциями сложения и умножения кватернионов — тело.

 \mathbb{Q} , \mathbb{R} , \mathbb{C} — поля.

 \mathbb{Z}_p (p-простое)-поле.

$$(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1)$$
, $a,b\in\mathbb{Q}$ —

 $\mathbb{Z}_k = \big(\{0,1,\dots,k-1\}, \oplus_k, \odot_k, 0,1\big)$ с операциями сложения и умножения по модулю k — коммутативное кольцо (кольцо классов вычетов по модулю k).

 ${\mathbb H}$ с операциями сложения и умножения кватернионов — тело.

 \mathbb{Q} , \mathbb{R} , \mathbb{C} — поля.

 \mathbb{Z}_p (p- простое)- поле.

 $\left(\{a+b\cdot\sqrt{2}\},+,\cdot,0,1\right)$, $a,b\in\mathbb{Q}$ — поле.

Конечное поле или поле Галуа

Поле, состоящее из конечного числа элементов. \mathbb{F}_q или $\mathrm{GF}(q)$, где q — число элементов (мощность).

 $q=p^n$, где p — простое число (характеристика поля), $n\in\mathbb{N}.$ С точностью до изоморфизма:

для
$$q=p$$
 $\operatorname{GF}(q)=\mathbb{Z}_p$ для $q=p^n$ $\operatorname{GF}(q)$ — расширение поля \mathbb{Z}_p

ТЄИМ

www.miet.ru

Александра Игоревна Кононова illinc@mail.ru gitlab.com/illinc/raspisanie