

Deep Learning Clinic (DLC)

Lecture 1 - Introduction

Jin Sun

9/28/2018

Welcome

- Overview of the class
 - Background
 - Logistics
- Lectures preview
- Lab preview
- FAQ
- A simple interactive machine learning example

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

What DL is good for

Problems with massive data

Classification problems

Regression problems

Correlation relationship

What DL is not good at

Limited amount data

Partial labels

Structure output

Long term relationship

Causal relationship

Overview of DLC

Deep Learning Tutorial **PDF**

Open SourceDeep Learning Tutorial

Deep Learning **Examples**

Deep Learning **Explained**

Deep Learning Google

Deep Learning Example

Deep Learning Tools

Deep Learning Plateau

Deep Learning Algorithms

Deep Learning Kelly Howell

Deep Learning GPU

Deep Processing a

Unsupervised Feature Learning and Deep Learning Tutorial

Why Deep Learning?

Compositional Models Learned End-to-End

Back-propagation jointly learns all of the model parameters to optimize the output for the task.

DL/ML Basic Concepts

Real World Application

Hands On

Step-by-step

Deep Learning Clinic

Practical Guidance

One-on-one

Get Started

For You

Technical Background

Eager to solve complex real world problems

What tools to use

How to train a DL model

How to use existing tools

Overview of DLC - Logistics

Lecture Session

Fri 8:30-10am, Bloomberg 081

- Introduction to:
 - Techniques
 - o Tools
 - Tricks
 - How to solve a real-world problem
- Concise

Lab Session

Wed 8:30-9:30am, Bloomberg 061

- One-on-one advice
- Problem solving:
 - Feasibility evaluation
 - Modeling and task formulation
 - Network design
 - Practical guidance on training

Zero-credit, no assignments or evaluations.

Overview of DLC - Reference

Online Courses

MIT 6.S191: Introduction to Deep Learning link

Stanford CS231n: Convolutional Neural Networks for Visual Recognition <u>link</u>

Free Textbooks

A Course in Machine Learning by Hal Daume III link

Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville link

Overview of DLC - Logistics

Jin Sun

jinsun@cornell.edu - *Please include the tag 'DLC' in the subject

http://www.cs.cornell.edu/~jinsun/

Slack channel: https://dlc18.slack.com/, open to cornell.edu address

Survey: https://www.surveymonkey.com/r/NVV8V59

Welcome

- Overview of the class
 - Background
 - Logistics
- Lectures preview
- Lab preview
- A simple interactive machine learning example

10/5 Deep Learning Frameworks

How to set up a basic deep learning development environment

Python virtualenv, Jupyter Notebook

By the end of this lecture, you should have a working DL environment to play with!

10/12 Brief Introduction to Machine Learning

Introduction/Review of core ML concepts:

Supervised learning

Unsupervised learning

Classification

Regression

Training

Wachine Learning
Unsupervised
Feature Extraction
Algorithm
Grouping of Objects
Supervised
New Data
Annotated Data

Evaluation, Cross-validation, and etc

Reference

Online Courses

MIT 6.S191: Introduction to Deep Learning link

Free Textbooks

A Course in Machine Learning by Hal Daume III link

10/19 Brief Introduction to Deep Learning

Introduction/Review of DL topics:

Optimization techniques

Network structures (e.g., Fully Connected Nets, Convolutional Nets,

Recurrent Nets)

Generative Adversarial Nets

Reinforcement Learning

. . .

Reference

Online Courses

Stanford CS231n: Convolutional Neural Networks for Visual Recognition <u>link</u>

Free Textbooks

Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville link

10/26 DL in the Real-World: A Case Study

Data

Data Collection

Data Annotation

Verification

How to use

Amazon Mechanical Turks

Practical tips: pre-processing, learning rate, batch size, etc

11/9 Tricks on Training Neural Networks

Practical tips and tricks

Pre-processing, post-processing, learning rate, batch size, normalization, network depth, architecture search, fine-tuning, and etc

Real-World Ready Machine Learning Tools

Tools that are widely used and proven to be effective in real-world problems

Natural Language Analyses with NLTK

Welcome

- Overview of the class
 - Background
 - Logistics
- Lectures preview
- Lab preview
- FAQ
- A simple interactive machine learning example

Lab Preview

Welcome

- Overview of the class
 - Background
 - Logistics
- Lectures preview
- Lab preview
- FAQ
- A simple interactive machine learning example

FAQ

Can I attend only selected sessions?

Sure! But I recommend to you to attend the first few introduction lectures to grasp some basic understanding about DL/ML.

I don't have a strong technical background, can I still attend?

Of course! Come for the lectures that provide high level idea and how to use existing tools for quick prototyping. (9/28, 10/5, 10/26, 11/2, 11/16)

Do I have to come for every lab session?

Only come as you needed, or when there's a guided exercise (later this semester) that you are interested.

Welcome

- Overview of the class
 - Background
 - Logistics
- Lectures preview
- Lab preview
- FAQ
- A simple interactive machine learning example

A Simple Interactive Machine Learning Example

A Neural Network Playground <u>Link</u>

DATA

Which dataset do you want to use?

Ratio of training to test data: 50%

Noise: 0

Batch size: 10

REGENERATE

Data:

(x,y) 2D Points

Binary Label

Train/Test Split

Noise Level

Batch Size

Feature Representation:

Learning problem becomes easier/harder with different feature representations, even with the same data!

A Learning Model:

Network Structure

Layers

Connectivity

No network works for all the problems!

Training:

Train/Test Loss

Epochs

Optimization Algorithm

Evaluation:

Metric (accuracy, distance, ...)

Cross-validation

OUTPUT

Test loss 0.498

Training loss 0.504

Next Friday: Deep Learning Frameworks

How to set up a basic deep learning development environment

Python virtualenv, Jupyter Notebook

By the end of this lecture, you should have a working DL environment to play with!

DLC Logistics

Jin Sun

<u>jinsun@cornell.edu</u> - *Please include the tag 'DLC' in the subject

http://www.cs.cornell.edu/~jinsun/

Slack channel: https://dlc18.slack.com/, open to cornell.edu address

Survey: https://www.surveymonkey.com/r/NVV8V59