

<u>Gameboard</u>

Chemistry

Foundations

Stoichiometry Essential Pre-Uni Chemistry B4.3

Essential Pre-Uni Chemistry B4.3

Calculate the amount of substance in:
Part A (a)
$1.001\mathrm{g}$ of $\mathrm{CaCO_3(s)}$, to 3 significant figures
Part B (b)
$197\mathrm{kg}$ of $\mathrm{Au}(\mathrm{s})$, to 3 significant figures
Part C (c)
$1.4\mathrm{g}$ of $\mathrm{CO}(\mathrm{g})$, to 2 significant figures

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Gameboard

Chemistry

Foundations

Stoichiometry

Essential Pre-Uni Chemistry B6.1

Essential Pre-Uni Chemistry B6.1

Calculate the amount of oxygen needed, and amount of carbon dioxide produced, in each of the cases below.

Part A
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

$$C_3H_8+5\,O_2 \longrightarrow 3\,CO_2+4\,H_2O,$$
 using $1.0\,mol$ of C_3H_8

Calculate the amount of oxygen needed.

Calculate the amount of carbon dioxide produced.

Part B
$$C_2H_6O + 3\,O_2 \longrightarrow 2\,CO_2 + 3\,H_2O$$

$$C_2H_6O+3\,O_2 \longrightarrow 2\,CO_2+3\,H_2O$$
, using $0.2\,mol$ of of C_2H_6O

Calculate the amount of oxygen needed.

Calculate the amount of carbon dioxide produced.

Part C
$$2 CO + O_2 \longrightarrow 2 CO_2$$

$$2\,\mathrm{CO} + \mathrm{O}_2 \longrightarrow 2\,\mathrm{CO}_2,$$
 using $4.0\,\mathrm{moles}$ of CO

Calculate the amount of oxygen needed:

Calculate the amount of carbon dioxide produced:

Part D
$$C_6H_{12}O_6+6\,O_2\longrightarrow 6\,CO_2+6\,H_2O$$

$$C_6H_{12}O_6+6\,O_2 \longrightarrow 6\,CO_2+6\,H_2O,$$
 using $0.040\,moles$ of $C_6H_{12}O_6$

Calculate the amount of oxygen needed:

Calculate the amount of carbon dioxide produced:

Part E
$$C_2H_4O_2 + 2O_2 \longrightarrow 2CO_2 + 2H_2O$$

$$C_2H_4O_2 + 2\,O_2 \longrightarrow 2\,CO_2 + 2\,H_2O,$$
 using $0.10\,moles$ of $C_2H_4O_2$

Calculate the amount of oxygen needed:

Calculate the amount of carbon dioxide produced:

<u>Gameboard</u>

Chemistry

Foundations

Stoichiometry

Essential Pre-Uni Chemistry B6.2

Essential Pre-Uni Chemistry B6.2

By considering a balanced equation each time, calculate the amount of water produced by complete combustion of the following in oxygen.

Part D (d)
$4.0\mathrm{moles}$ of butane
Part E (e)
$0.0030\mathrm{moles}$ of methane

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Home

Gameboard

Chemistry Foundations Stoichiometry

Essential Pre-Uni Chemistry B6.3

Essential Pre-Uni Chemistry B6.3

Consider the equation for each reaction and hence calculate the amount of acid required for complete reaction in each of the following cases.

Part D	(d)
5.6	m 6g~Fe reacting with $ m HCl.$ Give your answer to $ m 2$ significant figures.
Part E	(e)
14	$.8\mathrm{g}$ of calcium hydroxide reacting with $\mathrm{H}_2\mathrm{SO}_4.$ Give your answer to 3 significant figures.
Part F	(f)
10	${f g}$ of magnesium oxide reacting with nitric acid. Give your answer to ${f 2}$ significant figures.
	All materials on this site are licensed under the <u>Creative Commons license</u> , unless stated otherwise.

Home Gameboard Chemistry Foundations Stoichiometry Balancing Equations

Balancing Equations

Part A Be and O

Balance the following equation, reducing coefficients to the smallest possible integers:

$$Be + O_2 \longrightarrow BeO$$

Part B Ce and O

Balance the following equation, reducing coefficients to the smallest possible integers:

$$Ce + O_2 \longrightarrow CeO_2$$

Part C Cr and Cl

Balance the following equation, reducing coefficients to the smallest possible integers:

$$Cr + Cl_2 \longrightarrow CrCl_3$$

Balance the following equation, reducing coefficients to the smallest possible integers:

$$\mathrm{C} + \mathrm{CO}_2 \to \mathrm{CO}$$

Part E NaCl and $CaCO_3$

Balance the following equation, reducing coefficients to the smallest possible integers:

$$NaCl + CaCO_{3} \longrightarrow Na_{2}CO_{3} + CaCl_{2}$$

Part F Fe_2O_3 and CO

Balance the following equation, reducing coefficients to the smallest possible integers:

$$Fe_2O_3 + CO \longrightarrow Fe + CO_2$$

Created for isaacphysics.org by Andrea Chlebikova

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

Home Gameboard Chemistry Foundations Stoichiometry TNT

TNT

TNT is used as an explosive. It can decompose according to the following equation:

$$2C_{7}H_{5}N_{3}O_{6}\left(s\right)\longrightarrow7\,CO\left(g\right)+7\,C\left(s\right)+5\,H_{2}O\left(g\right)+3\,N_{2}\left(g\right)$$

Part A RMM

Calculate the relative molecular mass of TNT, rounding your answer to an integer.

Part B Moles of gas

The volume of gas produced at $400\,^{\circ}\mathrm{C}$, when $10\,\mathrm{g}$ of TNT explode, is to be calculated.

How many moles of gas are produced from 1 mol of TNT?

Part C Volume of gas

At $400\,^{\circ}\mathrm{C}$ and $1\,\mathrm{atm},\,1\,\mathrm{mol}$ of gas occupies $55\,\mathrm{dm}^3.$

Calculate the volume of gas produced under these conditions from $10\,\mathrm{g}$ of TNT.

<u>Gameboard</u>

Chemistry

Foundations

Stoichiometry

Essential Pre-Uni Chemistry B3.1

Essential Pre-Uni Chemistry B3.1

RTP = room temperature and pressure.

Any gas occupies $24\,\mathrm{dm^3}$ per mole at RTP.

Avogadro's number, $N_{
m A} = 6.02\, imes\,10^{23}\,{
m mol}^{-1}.$

Part A (a)

Calculate the volume occupied by $4.0\,\mathrm{moles}$ of gas at RTP.

Part B (b)

Calculate the volume occupied by $0.030 \, \mathrm{moles}$ of gas at RTP.

Part C (c)

Calculate the volume occupied by $5.0 \times\ 10^{18}$ atoms of helium gas at RTP.

Home

Gameboard

Chemistry

Foundations

Stoichiometry Essential Pre-Uni Chemistry B3.2

Essential Pre-Uni Chemistry B3.2

RTP = room temperature and pressure.

Any gas occupies $24\,\mathrm{dm^3}$ per mole at RTP.

Avogadro's number, $N_{
m A}=6.02\, imes\,10^{23}.$

(a) Part A

Calculate the amount of gas (at RTP) in $4.8\,\mathrm{dm^3}$.

Part B (b)

Calculate the amount of gas (at RTP) in $12 \,\mathrm{m}^3$.

Part C (c)

Calculate the amount of gas (at RTP) in $400\,\mathrm{cm^3}$. Give your answer to 2 significant figures.

Calculate the amount of gas (at RTP) in $18\mathrm{ml}$.
All materials on this site are licensed under the Creative Commons license , unless stated otherwise.

Part D (d)

Home

Gameboard

Chemistry

Foundations

Stoichiometry Essential Pre-Uni Chemistry B3.5

Essential Pre-Uni Chemistry B3.5

RTP = room temperature and pressure.

Any gas occupies $24\,\mathrm{dm^3}$ per mole at RTP.

Avogadro's number, $N_{
m A}=6.02\, imes\,10^{23}.$

Part A (a)

Calculate the the mass of $1.0\,\mathrm{m}^3$ of neon at RTP.

Part B (b)

Calculate the the mass of $20\,\mathrm{cm}^3$ of $(\mathrm{CH_3})_2\mathrm{O}$ at RTP.

Part C (c)

Calculate the the mass of $420\,\mathrm{cm}^3$ of ammonia at RTP. Give your answer to 2 significant figures.