Seneca

Introduction to IP Addressing

Agenda

- Internet Protocol Suite (TCP/IP Model)
 - Link Layer
 - Internet Layer
- IPv4 Addresses
 - Versions
 - Subnet Mask
 - Classes
 - Reserved
 - Private
 - Network
 - Broadcast

Recall: OSI Model

- OSI is an acronym for "Open System Interconnect".
- Introduced in 1984 by the ISO and ITU-T.
- The OSI model is a reference model for how applications communicate over a network.
- The model contains 7 levels:
 - 7. Application
 - 6. Presentation
 - 5. Session
 - 4. Transport
 - 3. Network
 - 2. Data Link
 - 1. Physical

OSI Model

Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
Data Link Layer
Physical Layer

Encapsulation

- Physical Medium

OSI Layers Examples

Layer	Layer Name	Example
7	Application	HTTP, FTP, SMTP
6	Presentation	JPEG, GIF, MPEG
5	Session	AppleTalk, Winsock
4	Transport	TCP, UDP, SPX
3	Network	Router – IP, ICMP
2	Data Link	Switch/Bridge – Ethernet, ATM
1	Physical	Hub, NIC – Ethernet, Token Ring

Protocol Data Units - PDU

• In the OSI model, a **protocol data unit** (PDU) is a single **unit** of data which is specified in a protocol of a given layer and which consists of protocol-control information and user data of that layer

Layer	Layer Name	PDU
7	Application	Data
6	Presentation	Data
5	Session	Data
4	Transport	Segments
3	Network	Packets (or Datagrams)
2	Data Link	Frames
1	Physical	Bits

Internet Protocol Suite

- Also known as the "TCP/IP Model"
- TCP/IP is an acronym for "Transport Control Protocol/Internet Protocol".
- Introduced in 1970s by 2 DARPA scientists: Vint Cerf and Bob Kahn.
 - "Fathers of the Internet"
- The model contains 4 levels:
 - 4. Application
 - 3. Transport
 - 2. Internet
 - 1. Link

TCP/IP Model

OSI	TCP/IP
Application	Application
Presentation	
Session	
Transport	Transport
Network	Internet
Data Link	Link
Physical	

TCP/IP Model: Video

Walking through OSI and TCP/IP

MAC Address

- MAC address
 - Physical address
 - Unique identifier assigned to network card
 - 48 bit address
 - **Example**: **90-E6-BA**-85-3A-DB

MAC Address Activity

- What is the MAC address of the NIC in your computer system?
- Who is the manufacturer of the NIC?

IP Address: Versions

- IP Addressing
 - Logical address applied to a network card
 - Identifier for each device on a computer network
 - Assigned statically or dynamically (DHCP)
 - Uses Internet Protocol for communication
- There are 2 versions available: IPv4 and IPv6
 - IPv4 (we will be focus on this version in this class)
 - 32 bits represented in 4 octets
 - Example: 172.20.10.8
 - IPv6
 - 128 bits represented in 16 octets
 - Example: 2001:0db8:85a3:0000:0000:8a2e:0370:7334

IP Address: Subnet Mask

- Distinguishes between the "network" and "host" portion of an IP address
- Represented with left most bits set to "1"
 - Example: 255.255.255.0
- The subnet mask can be expressed as a prefix
 - Example: 255.255.255.0 can be represented as "/24"
- An IP address along with this prefix is also called a <u>Classless Interdomain</u> <u>Routing (CIDR) notation</u>
 - Example: 192.168.0.1/24
- A device on the network must include an IP Address and a Subnet Mask

IP Address: Subnet Mask Activity

- In groups, determine the subnet mask of the following prefixes:
 - a) /8
 - b) /12
 - c) /13
 - d) /16
 - e) /20
 - f) /28
 - g) /30

IP Address: Classes

There are 5 classes of IPv4 Addresses

Class	Address Range	Supports
Class A	1.0.0.1 to 126.255.255.254 / 8	Supports 16 million hosts on each of 127 networks
Class B	128.1.0.1 to 191.255.255.254 / 16	Supports 65,000 hosts on each of 16,000 networks
Class C	192.0.1.1 to 223.255.254.254 / 24	Supports 254 hosts on each of 2 million networks
Class D	224.0.0.0 to 239.255.255.255	Reserved for multicast groups
Class E	240.0.0.0 to 254.255.255.254	Reserved for future use, or research and development purposes

IP Address: Reserved

These are reserved IPv4 IP Addresses

Address Block	Address Range	Scope / Description
0.0.0.0 / 8	0.0.0.0 to 0.255.255.255	Software – reserved for self-identification
127.0.0.0 / 8	127.0.0.0 to 127.255.255.255	Used for loopback addresses to the local host
169.254.0.0 / 16	169.254.0.0 to 169.254.255.255	Microsoft APIPA - Used for <u>link-local</u> <u>addresses</u>

IP Address: Reserved Activity

- In groups, perform the following:
 - 1. Remove the cable from a computer
 - 2. Open a command prompt
 - 3. Execute the command "ipconfig /release"
 - 4. Execute the command "ipconfig /renew"
 - 5. Record the IP address and share with the class

IP Address: Network Address Translation

- There are 4,294,967,296 (4 billion) IP Addresses and 7 billion people
- There are not enough IP Addresses for all devices
- The solution is to use "Network Address Translation" (NAT)

Network address translation (NAT) is a method of remapping one IP address space into another by modifying network address information in the IP header of packets while they are in transit across a traffic routing

device.

IP Address: Private Address Ranges

Address ranges to be used by private networks

Class	Address Range
Class A	10.0.0.0 to 10.255.255.255 / 8
Class B	172.16.0.0 to 172.31.255.255/ 16
Class C	192.168.0.0 to 192.168.255.255 / 24

IP Address: Network Address

- An identifier to indicate the Network ID
- This is represented where all host bits are "0"
- The Network Address is not assigned to any devices.
- Example: 10.1.1.0/24

IP Address: Broadcast Address

- An identifier to indicate the Broadcast Address
- This is represented where all host bits are "1"
- The Broadcast Address is not assigned to any devices
- Example: 10.1.1.255/24

IP Address: Activity

- Which of the following are Network Addresses and explain why.
 - 10.170.0.0 /16
 - 192.168.10.0 /16
 - 201.255.255.255 /8
 - 55.0.0.2 /24

Additional Resources

- Walking through OSI and TCP/IP
- Video on <u>IP Addresses</u>
- Wiki on <u>IP Addresses</u>