Agriculture IoT

Team 8corn

CONTENTS

Team AgloT

Introduction

Feasibility of LoRa versus APRS in AgloT

QnA

Team 8Corn

Dong Jun (DJ) Kim Kyunghee Univ.

Hye Won(Hazel) Yoon Kyunghee Univ.

Hyuk (Brian) Lee Handong Univ.

Woojin(Arthur) Jang Chungang Univ.

Brandon Long Purdue Univ.

Miran Lee Dongguk Univ.

Chaehee(Pearl) Weon Gowoon(Kayla) Choi Seoul Women's Univ.

Dongguk Univ.

Heejae(Lydia) Jung Kyunghee Univ.

Zeeshan Khalid Purdue Univ.

Introduction

Project Background

CNIT-581-IOT-FALL-2019

cnit581iotfal-4mg4149.slack.com

Feasibility of LoRa versus APRS in AgloT

CONTENTS

Feasibility of LoRa versus APRS in AgloT

Introduction

Design

Result

Conclusion

• Future Works

Introduction

LoRa and APRS

Low Power Wide Area Network (LPWAN)

Long-range transmissions with low power consumption (more than 10km in open area)

Automatic Packet Reporting System
144.39 MHz

Amateur radio based system for real time digital communications of immediate value in the local area

LoRa and APRS

DESIGN

LoRa Circuit

Receiver

Transmitter

Receiver

Result

Friis transmission equation

Friis transmission equation

$$P_{rx} = P_{tx}G_{tx}G_{rx}(\frac{c}{4\pi D_r f_0})^2$$

$$D_r = \frac{c\sqrt{P_{tx}G_{tx}G_{rx}}}{4\pi f_0\sqrt{P_{rx}}}$$

Result

Fresnel Zone

$$r_n = \sqrt{n \frac{d_1 d_2}{d_1 + d_2}} \lambda$$

$$(d_1, d_2 \gg n\lambda)$$

Result

Test Result

LoRa

Transmitter Power	16 dBm
Transmitter Gain	9 dBi
Receiver Gain	6 dBi
Theoretical Distance	9.3 km (5.78 mile)
Height Needed	27.79m (91.17 ft)

Transmitter Antenna Height	2.1 m (6.89 ft)
Receiver Antenna Height	2.7 m (8.86 ft)
Tested Distance	4.2 km (2.6 mile)
Efficiency Constrained by Height	45.16%

APRS

Transmitter Power	24 dBm
Transmitter Gain	1.17 dBi
Receiver Gain	7 dBi
Theoretical Distance	67.1 km (41.70 mile)
Height Needed	186.58m (612.14 ft)

Transmitter Antenna Height	2.1 m (6.89 ft)
Receiver Antenna Height	3.2 m (10.50 ft)
Tested Distance	0.84 km (0.52 mile)
Efficiency Constrained by Height	1.25%

66

for distance 4.2 km antenna height should be 18.67m

66

for distance 0.84 km antenna height should be 20.88m

"

Conclusion

Limitation and Conclusion

Transmitter and Receiver place 186m height for 67km coverage distance by Fresnel Zone

Test LoRa and APRS distance coverage with same gain antennas

Install antennas on taller structure and test

QnA

Thank You!