Anieudh Arora IIT2019003

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |      |      | tore : |      |      |      |    |      |    |      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|--------|------|------|------|----|------|----|------|--|
| Years                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2006  |      |      | 2011   |      |      |      |    |      |    | 2019 |  |
| Reviews<br>Billion<br>Ruppers                                                                                                                                                                                                                                                                                                                                                                                                          | 100.2 | 98.3 | 87.1 | 89.2   | 88-9 | 83.5 | 89.1 | 84 | 92.3 | 96 | 97   |  |
| Rev. in 100.2 98.3 87.1 89.2 88.9 83.5 89.1 84 92.3 96 97  (a) let $h_{w}(x) = W_{0} + W_{1}x$ $J(W_{0}, W_{1}) = \frac{1}{2m} \left(h_{w}(x_{1}) - y_{1}\right)^{2}$ , $m = 11$ $J(W) = \frac{1}{2m} \left(W_{0} + W_{1}x_{1} - y_{1}\right)^{2} + \cdots + \left(W_{0} + W_{1}x_{m} - y_{m}\right)^{2}$ $= \frac{1}{2m} \left(W_{0} + W_{1}x_{1} - y_{1}\right)^{2} + \cdots + \cdots + \left(W_{0} + W_{1}x_{m} - y_{m}\right)^{2}$ |       |      |      |        |      |      |      |    |      |    |      |  |

$$= \frac{1}{2m} \left( w_0 + w_1 x_1 - y_1 \right)^2 + \frac{1}{2m} \left( w_0 + w_1 x_1 - y_1 \right)^2 + \frac{1}{2m} \left( w_0 + w_1 x_1 - y_1 \right) \left( 1 + 0 - 0 \right) + \frac{1}{2m} \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 1 + 0 - 0 \right) + \frac{1}{2m} \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( x_1 \right) \right) + \frac{1}{2m} \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( x_1 \right) \right) + \frac{1}{2m} \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( x_1 \right) \right) + \frac{1}{2m} \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( x_1 \right) \right) + \frac{1}{2m} \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( x_1 \right) \right) + \frac{1}{2m} \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( x_1 \right) \right) + \frac{1}{2m} \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( x_1 \right) \right) + \frac{1}{2m} \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( x_1 \right) \right) + \frac{1}{2m} \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( x_1 \right) \right) + \frac{1}{2m} \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \left( 2 \left( w_0 + w_1 x_1 - y_1 \right) \right) \right) \right) \right) \right) \right)$$

 $\frac{\partial J}{\partial W_{i}} = \frac{1}{2m} \left( 2(w_{0} + w_{1} \times_{i} - y_{i})(x_{i}) + 2(w_{0} + w_{1} \times_{m} - y_{m})(x_{m}) \right)$ simplifying  $\frac{\partial \overline{J}}{\partial W_0} = \frac{1}{m} \left( W_0 \cdot m + W_1 \left( \sum_{i=1}^m x_i \right) - \sum_{i=1}^m y_i \right)$ 

$$\frac{\partial J}{\partial W_0} = \frac{1}{m} \left( W_0 \cdot \sum_{i=1}^{m} x_i^2 + W_i \left( \sum_{i=1}^{m} x_i^2 \right) - \sum_{i=1}^{m} \left( x_i \cdot y_i \right) \right)$$

$$\frac{\partial J}{\partial W_1} = \frac{1}{m} \left( W_0 \cdot \sum_{i=1}^{m} x_i^2 + W_i \left( \sum_{i=1}^{m} x_i^2 \right) - \sum_{i=1}^{m} \left( x_i \cdot y_i \right) \right)$$

 $\sum x_i = 221436, \sum x_i^2 = 44586122, \sum y_i = 1005.6$ 



) Expected value for 2021 is  $h_{w}(2021) = 627.63 + (-0.26634)(2021)$  = 89.35 billion ruppers

$$\begin{array}{ll}
(c) & \text{Evor} = J(w) \\
&= \frac{1}{2m} \left[ (h_w(x_i) - y_i)^2 \right] \\
&= \frac{1}{2m} \left[ (x_0 + w_1 x_i - y_i)^2 \right] \\
&= \frac{1}{2m} \left[ (w_0^2 + \omega_1^2 x_i^2 + y_i^2 - 2y_i w_0 = 2\omega_1 x_i y_i + 2\omega_0 \omega_1 x_i) \right] \\
&= \frac{1}{2m} \left[ (m \omega_0^2 + \omega_1^2 \sum_{i=1}^{2} + \sum_{i=1}^{2} - 2\omega_0 \sum_{i=1}^{2} - 2\omega_i \sum_{i=1}^{2} x_i y_i + 2\omega_0 \omega_1 \sum_{i=1}^{2} x_i y_i \right] \\
&= \frac{1}{2m} \left[ (m \omega_0^2 + \omega_1^2 \sum_{i=1}^{2} + \sum_{i=1}^{2} - 2\omega_0 \sum_{i=1}^{2} y_i - 2\omega_i \sum_{i=1}^{2} x_i y_i \right] \\
&= \frac{1}{2m} \left[ (m \omega_0^2 + \omega_1^2 \sum_{i=1}^{2} + \sum_{i=1}^{2} - 2\omega_0 \sum_{i=1}^{2} y_i - 2\omega_i \sum_{i=1}^{2} x_i y_i \right] \\
&= \frac{1}{2m} \left[ (m \omega_0^2 + \omega_1^2 \sum_{i=1}^{2} + \sum_{i=1}^{2} - 2\omega_0 \sum_{i=1}^{2} y_i - 2\omega_i \sum_{i=1}^{2} x_i y_i \right] \\
&= \frac{1}{2m} \left[ (m \omega_0^2 + \omega_1^2 \sum_{i=1}^{2} + \sum_{i=1}^{2} - 2\omega_0 \sum_{i=1}^{2} y_i - 2\omega_0 \sum_{i=1}^{2} x_i y_i \right] \\
&= \frac{1}{2m} \left[ (m \omega_0^2 + \omega_1^2 \sum_{i=1}^{2} + \sum_{i=1}^{2} - 2\omega_0 \sum_{i=1}^{2} y_i - 2\omega_0 \sum_{i=1}^{2} x_i y_i \right] \\
&= \frac{1}{2m} \left[ (m \omega_0^2 + \omega_1^2 \sum_{i=1}^{2} + \sum_{i=1}^{2} - 2\omega_0 \sum_{i=1}^{2} y_i - 2\omega_0 \sum_{i=1}^{2} x_i y_i \right] \\
&= \frac{1}{2m} \left[ (m \omega_0^2 + \omega_1^2 \sum_{i=1}^{2} + \omega_1^2 \sum_{i=1}^{2} + 2\omega_0 \omega_1 \sum_{i=1}^{2} x_i y_i \right] \\
&= \frac{1}{2m} \left[ (m \omega_0^2 + \omega_1^2 \sum_{i=1}^{2} + \omega_1^2 \sum_{i=1}^{2} + 2\omega_0 \omega_1 \sum_{i=1}^{2} x_i y_i \right] \\
&= \frac{1}{2m} \left[ (m \omega_0^2 + \omega_1^2 \sum_{i=1}^{2} + \omega_1^2 \sum_{i=1}^{2} + 2\omega_0 \omega_1 \sum_{i=1}^{2} x_i y_i \right] \\
&= \frac{1}{2m} \left[ (m \omega_0^2 + \omega_1^2 \sum_{i=1}^{2} + \omega_1^2 \sum_{i=1}^{2} + 2\omega_0 \omega_1 \sum_{i=1}^{2} x_i y_i \right] \\
&= \frac{1}{2m} \left[ (m \omega_0^2 + \omega_1^2 \sum_{i=1}^{2} x_i y_i \right] \\
&= \frac{1}{2m} \left[ (m \omega_0^2 + \omega_1^2 \sum_{i=1}^{2} \omega_1^2 \sum_{i=1}^{2} + \omega_1^2 \sum_{i=1}^{2} \omega_1^2 \sum_{i=1}$$

 $= \frac{1}{2m} \left( \frac{393919.41) \times m}{-2 \times 623.63 \times (1005.6)} + 2 \left( 0.26634 \right) \left( \frac{2024498}{2024498} \right) \right)$   $- \frac{1}{2} \left( \frac{393919.41}{2024498} \times m + \frac{1005.6}{2024498} \right) + 2 \left( \frac{20260.54}{2024498} \right) \left( \frac{2024498}{2024498} \right)$ 

 $= \frac{1}{22} \times \left( \frac{4333113.51 + 3161156.04 + 92260.54}{-1262289.456 + 1078409.594} - 1262289.456 + 1078409.594 - 7403982.45 \right)$ 

5

ML 85 90 93 65 87 71 98 68 84 87

HUR 82 88 96 72 91 80 95 72 89 87

(a) Let ML be the independent variable let 
$$h_{W} = W_{0} + W_{1} \times T_{1} \times W_{1} \times T_{2} \times W_{1} \times W_{1} \times W_{1} \times W_{1} \times W_{2} \times W_{1} \times W_{2} \times W_{2$$

(b) let HUR be the independent variable let 
$$h_{w}(x) = W_{o}' + W_{o}' x'$$
 $J'(w) = \frac{1}{2m} \sum_{i=1}^{m} \left( h_{w}'(x_{i}') - y_{i}' \right)^{2}$ 

on solving  $\frac{\partial J(w')}{\partial W_{o}} = 0$  and  $\frac{\partial J(w')}{\partial W_{i}} = 0$ 

we get  $W_{o}' = \frac{B'C' - A'D'}{C'm - (A')^{2}}$ ,  $W_{i}' = \frac{A'B' - Dm}{(A')^{2} - C'm}$ 

where  $A' = \sum x_{i}$   $B' = \sum y_{i}'$ 
 $C' = \sum (x_{i}')^{2}$   $D' = \sum x_{i}' y_{i}'$ 
 $A' = 849$   $B' = 828$ 
 $C' = 72735$ .  $D' = 71085$ 
 $W_{o}' = -19.3289$ .  $W_{i}' = 1.20293$ 

So, the least square fitting lines comes out to be

 $h_{w}(x') = -19.3289 + (1.20293)x'$ 
 $(x_{i}') = -19.3289 + (1.20293)x'$ 

Marks in ML = 96 (c) using equation (1) Expected marks in HUR = hw (96) = 25.7936 + (0.713846) × 96 = 94.322816 Marks in HUR=95 (q)using equation (2) Experted marks in ML = hw. (95)  $=-19.3289+(1.20293)\times95$ = 94.94945 hw(x') =-19.3289 + (e)> h...(x)=25,7936 +0.713846 2 100 In ean hw(x), we are trying to minimize 80 the vertical distance while in hor(x1) we are trying to minimize 60 the norizontal distance J. (W) = 4.62662 40 J(W) = 7.79652 line hw(x) gives more accurate results. 20 ) Both the lines are independent and cannot be derived from each other 100 40 20

3

| (  |            |        |                                                   |                                            |          |                                         |                       |
|----|------------|--------|---------------------------------------------------|--------------------------------------------|----------|-----------------------------------------|-----------------------|
|    | <b>V</b> 2 | 54.3   | 61.8                                              | 72.4                                       | 88.7     | 118.6                                   | 194                   |
|    | P          | 61.2   | 49.5                                              | 37-5                                       | 28.4     | 19-2                                    | 10.1                  |
| .1 | -          |        |                                                   | PV                                         |          |                                         | 7                     |
| (  | (a)        | le     | og (PV                                            | (n) = t                                    | log (    | -) = K                                  | constart)             |
|    |            | log    | (P) + Y                                           | n log (V                                   | ) = 1    | <                                       |                       |
|    |            | 000 (  | P) =                                              | K-n                                        | log(V)   |                                         |                       |
|    | \$0,       | let \  | ~ ( <b>v</b> ) =                                  | K-7                                        |          | )                                       |                       |
|    |            |        | h (V')<br>Compari                                 | = K-                                       | n Wot    | W12C                                    |                       |
|    |            | J ( =  | 1<br>2m 2                                         | $\sum_{m}^{\infty} \left( K \cdot \right)$ | + n'V' - | - P') ne P'= V'=                        | log P<br>log V<br>- n |
|    | 9n         | Solvin | $\frac{\partial \mathbf{k}}{\partial \mathbf{k}}$ | _ = 0                                      | and      | $n' = \frac{\zeta_{\delta}}{\delta n'}$ | 2 - M                 |
|    | we o       | 4      | V - a                                             | .6759<br>-1.40                             | 2 =) l   | og(c) =                                 | 9-6+59                |
|    |            |        | // -                                              |                                            |          |                                         | <b>V</b> V            |

=) n = 1.40371 , c = 15929.3723241

(b) So, 
$$p. y^{1.40371} = 15929.3723241 - (1)$$

is the equation connecting P&V

(c) given  $V = 100$ 

using equation 1

 $P = 15929.3723241 \implies 24.81867$ 
 $(100)^{1.40371}$ 
 $(100)^{1.40371}$ 

Solving  $\frac{\partial J}{\partial y} = 0$ ,  $\frac{\partial J}{\partial y} = 0$ 

$$\frac{\partial J}{\partial \omega_{0}} = \frac{1}{m} \left( \omega_{0} m + \omega_{1} \sum_{i} x_{i} + \omega_{2} * \sum_{i} x_{i}^{2} - \sum_{i} b_{i} \right) = 0$$

$$\frac{\partial J}{\partial \omega_{1}} = \frac{1}{m} \left( \omega_{0} \sum_{i} x_{i} + \omega_{1} \sum_{i} x_{i}^{2} + \omega_{2} \sum_{i} x_{i}^{3} - \sum_{i} b_{i} x_{i}^{2} \right) = 0$$

$$\frac{\partial J}{\partial \omega_{2}} = \frac{1}{m} \left( \omega_{0} \sum_{i} x_{i}^{2} + \omega_{1} \sum_{i} x_{i}^{3} + \omega_{2} \sum_{i} x_{i}^{2} - \sum_{i} b_{i} x_{i}^{2} \right) = 0$$

$$\omega_{0} \cdot (1) + \omega_{1} \cdot (21) + \omega_{2} \cdot (21) - 59.1 = 0 \qquad (1)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (21) - 266.9 = 0 \qquad (2)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (21) - 266.9 = 0 \qquad (2)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (21) - 266.9 = 0 \qquad (2)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 1367.5 = 0 \qquad (3)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 2366.9 = 0 \qquad (2)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 2366.9 = 0 \qquad (2)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 2366.9 = 0 \qquad (2)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (2275) - 2366.9 = 0 \qquad (2)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (21) + \omega_{2} \cdot (21)$$

$$\omega_{0} \cdot (21) + \omega_{1} \cdot (21) + \omega_{2} \cdot (21) + \omega_{$$