Cours de quantique II

Lucas

14 février 2019

Table des matières

1	Outils mathématiques		2
	1.1	Le produit tensoriel de 2 espaces vectoriels	2
		1.1.1 Bilinéarité	2
	1.2	Produit tensoriel de 3 espaces vectoriels	3
	1.3	Produit tensoriel de 2 espaces d'Hilbert	3
		1.3.1 Exemples d'espaces d'Hilbert produits tensoriels	3
	1.4	Vecteur produit tensoriel	3
	1.5	Le prolongement des opérateurs	4
	1.6	Commutateur dans l'espace produit	5
2	Le s	spin	6

Chapitre 1

Outils mathématiques

1.1 Le produit tensoriel de 2 espaces vectoriels

Le produit scalaire est une application qui à deux vecteurs renvoie un nombre. Nous allons introduire le produit scalaire.

Soient ε_1 , ε_2 espaces vectoriels de dimensions N_1 et N_2 .

Théorème. Il existe toujours un espace vectoriel ε et 1 application bilinéaire 1. $G: \varepsilon_1 \times \varepsilon_2 \to \varepsilon$ tels que, pour toute application bilinéaire $S: \varepsilon_1 \times \varepsilon_2 \to \varepsilon_S$, il existe une application linéaire $\tilde{S}: \varepsilon \to \varepsilon_S$ telle que

$$S(|u\rangle, |v\rangle) = \tilde{S}G(|u\rangle, |v\rangle), \forall |u\rangle \in \varepsilon_1, |v\rangle \in \varepsilon_2$$

Ce théorème est fondateur pour le produit tensoriel. On peut le lire autrement. Soient deux EV, il existe toujours un troisième EV avec une application G.

Théorème. L'espace vectoriel ε est unique à un isomorphisme près, de même que l'application G. Cet espace est de dim $N_1 \cdot N_2$ et $\{G(|u_i\rangle, |v_j\rangle)\}$ est une base de ε

L'application G est l'application produit tensoriel.

Définition. L'espace ε est appelé espace produit tensoriel des espaces vectoriels ε_1 et ε_2 et on le note

$$\varepsilon = \varepsilon_1 \otimes \varepsilon_2$$

On peut noter les vecteurs $G(|u\rangle, |v\rangle) |u\rangle \otimes |v\rangle$ ou $|u\rangle |v\rangle$ ou $|u,v\rangle$ Il faut avoir conscience qu'on joue dans des espaces vectoriels différents.

1.1.1 Bilinéarité

Par construction, on a $(|u\rangle, |v\rangle) \rightarrow |u\rangle \otimes |v\rangle$ qui vérifie la bilinéarité.

$$|u\rangle \otimes [\lambda |v_1\rangle + \mu |v_2\rangle] = \lambda (|u\rangle \otimes |v_1\rangle) + \mu (|u\rangle \otimes |v_2\rangle)$$

$$\left[\lambda \left|u_{1}\right\rangle +\mu \left|u_{2}\right\rangle \right]\otimes \left|v\right\rangle =\lambda \left(\left|u_{1}\right\rangle \otimes\left|v\right\rangle \right) +\mu \left(\left|u_{2}\right\rangle \otimes\left|v\right\rangle \right)$$

^{1.} Linéaire tant sur le premier membre que sur le second

1.2 Produit tensoriel de 3 espaces vectoriels

On généralise, cela peut se faire pour d'autres nombres que 3. Soient $\varepsilon_1, \varepsilon_2, \varepsilon_3$, espaces vectoriels de dimensions N_1 N_2 N_3

Théorème. Il existe toujours un espace vectoriel ε et 1 application trilinéaire $G: \varepsilon_1 \times \varepsilon_2 \times \varepsilon_3 \to \varepsilon$ tels que, pour toute application trilinéaire $S: \varepsilon_1 \times \varepsilon_2 \times \varepsilon_3 \to \varepsilon_S$, il existe une application linéaire $\tilde{S}: \varepsilon \to \varepsilon_S$ telle que

$$S(|u\rangle, |v\rangle, |w\rangle) = \tilde{S}G(|u\rangle, |v\rangle, |w\rangle), \forall |u\rangle \in \varepsilon_1, |v\rangle \in \varepsilon_2, |w\rangle \in \varepsilon_3$$

Théorème. L'espace vectoriel ε est unique à un isomorphisme près, de même que l'application G. Cet espace est de dim $N_1 \cdot N_2 \cdot N_3$ et $\{G(|u_i\rangle, |v_i\rangle, |w_k\rangle)\}$ est une base de ε

Définition. L'espace ε est appelé espace produit tensoriel des espaces vectoriels ε_1 , ε_2 et ε_3 et on le note

$$\varepsilon = \varepsilon_1 \otimes \varepsilon_2 \otimes \varepsilon_3$$

1.3 Produit tensoriel de 2 espaces d'Hilbert

Soient ε_1 et ε_1 , deux espaces d'Hilbert de dimension N_1 et N_2 . On peut définir le produit scalaire suivant ² dans l'espace ε

Théorème. L'application

$$\langle G(|u\rangle, |v\rangle) |G(|u'\rangle, |v'\rangle) \rangle_{\epsilon} = \langle u|u'\rangle_{\varepsilon_1} \cdot \langle v|v'\rangle_{\varepsilon_2}$$

définit un produit scalaire du ε et confère à cet espace, avec la norme et la métrique associée, la structure d'un espace d'Hilbert.

Définition. L'espace ε est appelé espace produit tensoriel des espaces d'Hilbert ε_1 et ε_2 et on le note

$$\varepsilon = \varepsilon_1 \otimes \varepsilon_2$$

1.3.1 Exemples d'espaces d'Hilbert produits tensoriels

$$\mathbb{R}^{n.m} = \mathbb{R}^n \otimes \mathbb{R}^m$$

$$\mathbb{C}^{n.m} = \mathbb{C}^n \otimes \mathbb{C}^m$$

$$L^{(2)}(\mathbb{R}^{n+m}) = L^{(2)}(\mathbb{R}^n) \otimes L^{(2)}(\mathbb{R}^m)$$

On peut calculer le produit scalaire pour chacun des espaces proposés.

1.4 Vecteur produit tensoriel

- Tout vecteur $|u\rangle \otimes |v\rangle$ est appelé vecteur produit tensoriel
- 2. A vérifier par soi-même que c'est bien correct, et que c'est un produit scalaire

Tout vecteur produit tensoriel peut se décomposer sur une base de ε : Si $\{|u_i\rangle\}$ base de ε_1 et $\{|v_i\rangle\}$ base de ε_2

$$|u\rangle \otimes |v\rangle = \left(\sum_{i} a_{i} |u_{i}\rangle\right) \otimes \left(\sum_{j} b_{j} |v_{j}\rangle\right) = \sum_{i,j} a_{i}b_{j} |u_{i}\rangle \otimes |v_{j}\rangle^{3}$$

Tout vecteur de ε n'est pas nécessairement un vecteur produit tensoriel : l'expression la plus générale d'un ket $|\psi\rangle \in \varepsilon$ est donnée par

$$|\psi\rangle = \sum_{i,j} c_{i,j} |u_i\rangle \otimes |v_j\rangle \neq |\psi_1\rangle \otimes |\psi_2\rangle^4$$

L'espace produit tensoriel contient des vecteurs produits tensoriel des vecteurs des espaces ε_1 ε_2 mais il contient aussi d'autres vecteurs qui ne sont pas résultats de produits

En mécanique quantique, les premiers sont appelés états séparés, les seconds états intriqués.

1.5 Le prolongement des opérateurs

Soient \hat{A} et \hat{B} opérateurs définis respectivement sur les espaces ε_1 et ε_2 . On a aussi $|\psi_1\rangle \in \varepsilon_1$ et $|\psi_2\rangle \in \varepsilon_2$

On définit le prolongateur de \hat{A} dans ε , opérateur linéaire de ε noté $\hat{\hat{A}}$

$$\hat{\tilde{A}}\left[\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle \right]=\left[\hat{A}\left|\psi_{1}\right\rangle \right]\otimes\left|\psi_{2}\right\rangle$$

On définit le prolongateur de \hat{B} dans ε , opérateur linéaire de ε noté \tilde{B}

$$\hat{\tilde{B}}\left[\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle\right]=\left|\psi_{1}\right\rangle \otimes\left[\hat{B}\left|\psi_{2}\right\rangle\right]$$

On peut calculer aussi l'action de \tilde{A} sur un vecteur $|\psi\rangle$ quelquonque appartenant à ε On peut ensuite définir le produit tensoriel $\hat{A} \otimes \hat{B}$

$$\left[\hat{A} \otimes \hat{B}\right] |\psi_1\rangle \otimes |\psi_2\rangle = \left[\hat{A} \otimes |\psi_1\rangle\right] \otimes \left[\hat{B} \otimes |\psi_2\rangle\right]$$

Pour simplifier la notation, on peut laisser tomber la tilde, car l'état sur lequel va s'applique l'opérateur nous donne l'information, ce qui lèvera l'ambiguité.

Pour le produit tensoriel $\hat{A} \otimes \hat{B}$, la notation $\hat{A}\hat{B}$ n'est pas ambigue, étant donné que le produit d'opérateurs provenant d'espaces différents n'est pas défini.

3.
$$|\psi_1\rangle \otimes |\psi_1\rangle = \sum_i a_i |u_i\rangle \otimes \sum_j b_j |v_j\rangle = \sum_i a_i \left(|u_i\rangle \otimes \sum_j b_j |v_j\rangle\right) = \sum_i a_i \sum_j b_j |u_i\rangle \otimes |v_j\rangle = \sum_{i,j} a_i b_j |u_i\rangle \otimes |v_j\rangle$$

^{4.} Soit $|\psi\rangle$ quelconque $\in \varepsilon$. On peut le décomposer dans la base de ε $\{|u_i\rangle\otimes|v_j\rangle\,\forall i,j\}$. $|\psi\rangle=\sum_{i,j}c_{i,j}\,|u_i\rangle\otimes v_j$

La question est de savoir s'il existe N_1 coefficients a_i et N_2 coefficients b_j tels que $\forall i,j$ on a $c_{i,j}=a_ib_j$. Si oui, alors, on pourra écrire $|\psi\rangle=\sum_{i,j}c_{i,j}\,|u_i\rangle\otimes|v_j\rangle=\sum_{i,j}a_ib_j\,|u_i\rangle\otimes|v_j\rangle=\sum_ia_i\,|u_i\rangle\otimes\sum_jb_j\,|v_j\rangle$. Et donc $|\psi\rangle$ appartient à l'ensemble des états séparés.

Si non, cela veut dire que $|\psi\rangle$ n'appartient pas à l'ensemble des états séparés. On peut montrer facilement que possible. En effet, il est rarement possible de trouver N_1 et N_2 nombres a_i et b_i tels que N_1N_2 nombres $c_{i,j}$ peuvent s'écrire $c_{i,j} = a_i b_j$. On a $N_1 N_2$ équations à $N_1 + N_2$ inconnues, cela semble complexe à résoudre.

1.6 Commutateur dans l'espace produit

Soient \hat{A} et \hat{B} opérateurs prolongés dans $\varepsilon,$

$$\left[\hat{A},\hat{B}\right]=0$$

TODO :démonstration

On dit que 2 opérateurs originaires d'espaces différents commutent toujours.

Chapitre 2

Le spin