hw5

Jiahao Tian

2023-03-07

Question 1

• From the book we knew that:

$$\Omega = \sum_{k=1}^{r} \sigma_k^2 \Gamma_k$$

• where the variance components σ_k^2 are nonnegative and the matrices Γ_k are known covariance matrices.

$$L(\gamma) = \frac{-m}{2}ln2\pi - \frac{1}{2}lndet\Omega - \frac{1}{2}(y - A\mu)^t\Omega^{-1}(y - A\mu)$$

- In the multivariate normal loglikelihood, $det\Omega$ denotes the determinant of Ω , and $\gamma = (\mu_1, ..., \mu_p, \sigma_1^2, ..., \sigma_r^2)^t$ denotes the parameters collected into a column vector. Because we assume $\Gamma_r = I$, Ω is nonsingular whenever $\sigma_r^2 > 0$.
- Show: $\sum_{i=1}^{s} m_i = \sum_{i=1}^{s} (Y^i A_i \hat{\mu})^t \cdot \hat{\Omega}_i^{-1} \cdot (Y^i A_i \hat{\mu}).$
- Proof:
- From the hint we knew that:

$$\sum_{k=1}^{r} \hat{\sigma}_k^2 \frac{d}{d\sigma_k^2} L(\hat{\gamma}) = 0$$

• plug in the loglikelihood.

$$\frac{d}{d\sigma_k^2}L(\gamma) = -\frac{1}{2}\frac{d}{d\sigma_k^2}lndet\Omega - \frac{1}{2}(y-A\mu)^t\frac{d}{d\sigma_k^2}\Omega^{-1}(y-A\mu)$$

From the book, one of the property is that:

$$\begin{split} \frac{d}{d\theta} ln det B &= \sum_{ij} \left(\frac{d}{db_{ij}} ln det B \right) \frac{d}{d\theta} b_{ij} \\ &= \sum_{ij} \frac{B_{ij}}{det B} \frac{d}{d\theta} b_{ij} \\ &= tr(B^{-1} \frac{d}{d\theta} B) \\ &= -\frac{1}{2} tr(\Omega^{-1} \Gamma_k) + \frac{1}{2} (y - A\mu)^t \Omega^{-1} \Gamma_k \Omega^{-1} (y - A\mu) \end{split}$$

• Now consider the whole k dataset:

$$\begin{split} \sum_{k=1}^{r} \hat{\sigma}_{k}^{2} \frac{d}{d\sigma_{k}^{2}} L(\gamma) &= -\frac{1}{2} \sum_{k=1}^{r} \hat{\sigma}_{k}^{2} \cdot tr(\Omega^{-1} \Gamma_{k}) + \frac{1}{2} \sum_{k=1}^{r} \hat{\sigma}_{k}^{2} \cdot (y - A\mu)^{t} \Omega^{-1} \Gamma_{k} \Omega^{-1} (y - A\mu) \\ &= -\frac{1}{2} tr \sum_{k=1}^{r} \left(\hat{\sigma}_{k}^{2} \cdot \Omega^{-1} \Gamma_{k} \right) + \frac{1}{2} \sum_{k=1}^{r} \hat{\sigma}_{k}^{2} \cdot \Omega^{-1} \Gamma_{k} \cdot \left[(y - A\mu)^{t} \Omega^{-1} (y - A\mu) \right] \\ &= -\frac{1}{2} tr(I) + \frac{1}{2} \left[(y - A\mu)^{t} \Omega^{-1} (y - A\mu) \right] \\ &= -\frac{1}{2} m + \frac{1}{2} \left[(y - A\mu)^{t} \Omega^{-1} (y - A\mu) \right] \\ &= 0 \end{split}$$

So we get:

$$m = (y - A\mu)^t \Omega^{-1} (y - A\mu)$$

• At the end, the ith of s pedigrees evaluated at the maximum likelihood estimates is:

$$\sum_{i=1}^{s} m_{i} = \sum_{i=1}^{s} (Y^{i} - A_{i}\hat{\mu})^{t} \cdot \hat{\Omega}_{i}^{-1} \cdot (Y^{i} - A_{i}\hat{\mu})$$

Question 8

a)

$$(cA) \otimes B = \begin{pmatrix} c \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \end{pmatrix} \otimes B = \begin{pmatrix} ca_{11} & \dots & ca_{1n} \\ \vdots & & \vdots \\ ca_{m1} & \dots & ca_{mn} \end{pmatrix} \otimes B$$

$$= \begin{pmatrix} ca_{11}B & \dots & ca_{1n}B \\ \vdots & & \vdots \\ ca_{m1}B & \dots & ca_{mn}B \end{pmatrix} = c \begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & & \vdots \\ a_{m1}B & \dots & a_{mn}B \end{pmatrix} = c(A \otimes B)$$

$$= \begin{pmatrix} ca_{11}B & \dots & ca_{1n}B \\ \vdots & & \vdots \\ ca_{m1}B & \dots & ca_{mn}B \end{pmatrix} = \begin{pmatrix} a_{11}cB & \dots & a_{1n}cB \\ \vdots & & \vdots \\ a_{m1}cB & \dots & a_{mn}cB \end{pmatrix} = A \otimes (cB)$$

b)

$$(A \otimes B)^T = \begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & & \vdots \\ a_{m1}B & \dots & a_{mn}B \end{pmatrix}^T = \begin{pmatrix} a_{11}B^T & \dots & a_{1n}B^T \\ \vdots & & \vdots \\ a_{m1}B^T & \dots & a_{mn}B^T \end{pmatrix} = A^T \otimes B^T$$

c)

$$(A+B) \otimes C = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} \otimes C$$

$$= \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix} \otimes C$$

$$= \begin{pmatrix} (a_{11} + b_{11})C & \dots & (a_{1n} + b_{1n})C \\ \vdots & & \vdots \\ (a_{m1} + b_{m1})C & \dots & (a_{mn} + b_{mn})C \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}C + b_{11}C & \dots & a_{1n}C + b_{1n}C \\ \vdots & & \vdots \\ a_{m1}C + b_{m1}C & \dots & a_{mn}C + b_{mn}C \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}C & \dots & a_{1n}C \\ \vdots & & \vdots \\ a_{m1}C & \dots & a_{mn}C \end{pmatrix} + \begin{pmatrix} b_{11}C & \dots & b_{1n}C \\ \vdots & & \vdots \\ b_{m1}C & \dots & b_{mn}C \end{pmatrix}$$

$$= (A \otimes C)(B \otimes C)$$

d)

$$A \otimes (B+C) = \begin{pmatrix} a_{11}(B+C) & \dots & a_{1n}(B+C) \\ \vdots & & \vdots \\ a_{m1}(B+C) & \dots & a_{mn}(B+C) \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}B + a_{11}C & \dots & a_{1n}B + a_{1n}C \\ \vdots & & \vdots \\ a_{m1B} + a_{m1}C & \dots & a_{mn}B + a_{mn}C \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & & \vdots \\ a_{m1}B & \dots & a_{mn}B \end{pmatrix} + \begin{pmatrix} a_{11}C & \dots & a_{1n}C \\ \vdots & & \vdots \\ a_{m1}C & \dots & a_{mn}C \end{pmatrix}$$

$$= (A \otimes B)(A \otimes C)$$

e)

$$(A \otimes B) \otimes C = \begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & & \vdots \\ a_{m1}B & \dots & a_{mn}B \end{pmatrix} \otimes C$$

$$= \begin{pmatrix} (a_{11}B) \otimes C & \dots & (a_{1n}B) \otimes C \\ \vdots & & \vdots \\ (a_{m1}B) \otimes C & \dots & (a_{mn}B) \otimes C \end{pmatrix}$$

$$= \begin{pmatrix} a_{11}(B \otimes C) & \dots & a_{1n}(B \otimes C) \\ \vdots & & \vdots \\ a_{m1}(B \otimes C) & \dots & a_{mn}(B \otimes C) \end{pmatrix}$$

$$= A \otimes (B \otimes C)$$

f)

• Let $A \in M_{m,n}$ $B \in M_{p,q}$ $C \in M_{n,m}$ and $D \in M_{q,r}$ Then,

$$(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$$

• Proof:

$$(A \otimes B)(C \otimes D) = \begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & & \vdots \\ a_{m1}B & \dots & a_{mn}B \end{pmatrix} \begin{pmatrix} c_{11}D & \dots & c_{1m}D \\ \vdots & & \vdots \\ c_{n1}D & \dots & c_{nm}D \end{pmatrix}$$

$$= \begin{pmatrix} (\sum_{n=1}^{N} a_{1n}c_{n1})BD & \dots & (\sum_{n=1}^{N} a_{1n}c_{nm})BD \\ \vdots & & \vdots \\ (\sum_{n=1}^{N} a_{mn}c_{n1})BD & \dots & (\sum_{n=1}^{N} a_{mn}c_{nm})BD \end{pmatrix}$$

$$= \begin{pmatrix} (ac)_{11}BD & \dots & (ac)_{1m}BD \\ \vdots & & \vdots \\ (ac)_{m1}BD & \dots & (ac)_{mm}BD \end{pmatrix}$$

$$= (AC) \otimes (BD)$$

• we have used the fact that the multiplication of two block matrices can be carried out as if their blocks were scalars; and we also have used the definition of matrix multiplication to deduce that $(ac)_{mm} = \sum_{n=1}^{N} a_{mn}c_{nm}$.

 \mathbf{g}

• If $A \in M_m$ $B \in M_n$ are nonsingular, then $A \otimes B$ is also nonsingular with:

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$$

• Proof: The following results follows part f.

$$(A \otimes B)(A^{-1} \otimes B^{-1}) = (AA^{-1}) \otimes (BB^{-1}) = I \otimes I = I$$

 $(A^{-1} \otimes B^{-1})(A \otimes B) = (A^{-1}A) \otimes (B^{-1}B) = I \otimes I = I$

• This implies that $A^{-1} \otimes B^{-1}$ is the unique inverse of $A \otimes B$ under conventional matrix multiplication. Therefore, $A \otimes B$ is nonsingular.

h)

- Proof: The following results follows part f.
- consider $Ar = \lambda r$ and $Bs = \mu s$ for $r, s \neq 0$.

$$(A \otimes B)(r \otimes s) = (Ar) \otimes (Bs) = (\lambda r) \otimes (\mu s) = \lambda \mu(r \otimes s)$$

- Above shows that λ, μ is an eigenvalue of $A \otimes B$ with corresponding algebraic multiplicity r, s.
- By the triangularization theorem, consider $U \in M_n$ and $V \in M_m$ such that $U^{-1}AU = \Delta_A$ and $V^{-1}BV = \Delta_B$ where Δ_A and Δ_B are upper triangular matrices. By part f:

$$(U \otimes V)^{-1}(A \otimes B)(U \otimes V) = (U^{-1}AU) \otimes (V^{-1}BV) = \Delta_A \otimes \Delta_B$$

• From above, it follows that $\Delta_A \otimes \Delta_B$ is an upper triangular matrix that is similar to $A \otimes B$. The eigenValues of A, B, and $A \otimes B$ are the main diagonal entries of the upper triangular matrices to which they are similar $(\Delta_A, \Delta_B \text{ and } \Delta_A \otimes \Delta_B)$. Since $\Delta_A \text{ and } \Delta_B$ are square matrices, it follows from the definition of the Kronecker product that the entries of the main diagonal of $\Delta_A \otimes \Delta_B$ are the pairwise products of the entries on the main diagonals of $\Delta_A \text{ and } \Delta_B$ Therefore, the eigenvalues of $\Delta_A \otimes \Delta_B$ are also the pairwise products of the eigenValues of A and B. Since the eigenvalues of $B \otimes A$ are the pairwise products of the eigenvalues of B and A, they will be the same as the eigenvalues of $\Delta_A \otimes \Delta_B$.

i)

- The trace is the sum of the diagonal entries of a matrix. As a consequence, can also be computed as the sum of the eigenvalues of the matrix. If the eigenvalues of A are λ , and the eigenvalues of B are μ .
- Consider $A \in M_{mm}$

$$tr(A \otimes B) = tr\left(\begin{pmatrix} a_{11}B & \dots & a_{1m}B \\ \vdots & & \vdots \\ a_{m1}B & \dots & a_{mm}B \end{pmatrix}\right)$$

$$= \sum_{m=1}^{M} tr(a_{mm}B)$$

$$= \sum_{m=1}^{M} a_{mm} \cdot tr(B)$$

$$= tr(A) \cdot tr(B)$$

j)

- Since the determinant of a matrix is the product of the eigenvalues of the matrix, $det(A \otimes B) = \prod_{i=1}^{nm} \lambda_i$, where λ_i are the eigenvalues of $A \otimes B$. Let $\lambda_i = \alpha_j \cdot \beta_k$, where α_j is an eigenvalue of A and β_k is an eigenvalue of B.
- Proof:

$$det(A \otimes B) = \prod_{i=1}^{nm} \lambda_i = \prod_{j=1}^m \prod_{k=1}^n (\alpha_j \beta_k)$$
$$= (\prod_{j=1}^m \alpha_j^n) (\prod_{k=1}^n \beta_k^m)$$
$$= det(A)^n det(B)^m$$

• Worked with Sherry Zhang.