

Intro to Robotics with Raspberry Pi!

Section 1. General Concepts – Linux fundamentals

Outline

Linux Fundamentals

Getting Started with Linux

Desktop Environments and Shells

Remote Login with SSH

Remote Login with VNC

Navigating Linux and Using Python Within

Using Python on the Raspberry Pi

From the Mac OS Terminal

From VNC Using the LXTerminal

From VNC Using an IDE

Python Applications

Python Web Application Using Flask

Python Dataviz Application

Python Programs to Control Hardware

Blinking an LED

Blinking multiple LEDs

Getting Started with Linux

Desktop Environments and Shells

- A <u>desktop environment</u> is a collection of software that provides a standard look and feel: Mac OS, Windows, GNOME.
- A <u>shell</u> is a user interface for access to an operating system's services.
- Shells can either be <u>graphical</u> or <u>text-based</u>.
- OS X's **Terminal.app** allows us to access the system's text-based shell.

Example Uses of Text Shells

- Applications (programs) can be used via a graphical or text-based <u>shell</u>.
- A <u>terminal emulator</u> is an application that allows us to interact with the text-based shell.
- Commonly used programs inside a terminal emulator include:

```
say Hello Disney Interactive!

vi
ssh
wget
python
```

Remote Login with SSH

ssh

 Secure Shell (SSH) is an encrypted network protocol that allows remote login and other network services to operate securely over an unsecured network.

Both OS X and the Raspberry Pi OS have the necessary SSH programs installed.
 SSID: MAKERDEN

Remote Login with SSH

Using the Terminal app let's log in to our Raspberry Pi:

ssh pi@denbotNN.local

- pi is the name of the default user. Default password is raspberry.
- NN should be the number of your PyDen Bot!

Remote Login with SSH

- You're in! All the commands you now type are executed on the <u>Raspberry Pi</u>'s processor!
- Many of the programs we can use on our Mac's OS can also be run on the Raspberry Pi's OS.

```
ssh
wget
python
python filename.py
```

We can close the 'session' by entering:

exit

Remote Login with VNC

- Thankfully, we can also establish a GUI (Graphical User Interface)-based connection!
- Virtual Network Computing (VNC) is a graphical desktop sharing system that allows remote control another computer.
- Both OS X and the Raspberry Pi OS have the necessary VNC programs installed.
- On the terminal enter (ensure you're logged out of your Raspberry Pi!):

Remote Login with VNC

Inside the field enter your PyDen Bot name (e.g., denbot01.local:5901):

*5901 is the port where the Raspberry Pi listens for incoming VNC connections. Default password is **pidenbot**.

Linux Fundamentals

The Raspberry Pi OS (Raspbian) also has a <u>Terminal emulator</u>
 (LXTerminal) we can use!

Using Python in Raspbian

 An Integrated Development Environment for Python (IDLE) is pre-installed in Raspbian (though not used in this class (-:).

- We've got many options for writing and running Python scripts on the Pi.
 - 1. Connecting via **SSH** and using command-line tools (Mac OS Terminal).

```
cd ~/Makerden
nano hello_world.py
```

```
1 x1sc0 — pi@denbot01: ~/Makerden — ssh pi@denbot01.local
                          pi@denbot01: ~/Makerden — ssh pi@denbot01.local
[pi@denbot01:~/Makerden $ python hello_world.py
hello world!
pi@denbot01:~/Makerden $ ■
```

- We've got many options for writing and running Python scripts on the Pi.
 - 2. Connecting via **VNC** and using command-line tools (Raspbian Terminal).

```
cd ~/Makerden
```

nano hello_world.py

- We've got many options for writing and running Python scripts on the Pi.
 - 3. Connecting via VNC and using **Python IDE** (Raspbian).

We've got many options for writing and running Python scripts on the Pi.

4. Using iPython notebook server! (what we'll be using)

- iPython notebook will work with its own file format (extension .ipynb)
- Choose File → Download as → Python (.py) to convert.

Writing Python Programs On iPython Notebook

The Python Package Index (PyPI)

 The Python Package Index is a repository of software for the Python programming language.

https://pypi.python.org/pypi

PACKAGE INDEX

Package submission

List trove classifiers

Python 3 Packages

RSS (latest 40 updates) RSS (newest 40 packages)

List packages

PyPI Tutorial PyPI Security PyPI Support

Browse packages

» Package Index

search

PyPI - the Python Package Index

The Python Package Index is a repository of software for the Python programming language. There are currently 67937 packages here.

To contact the PyPI admins, please use the Support or Bug reports links.

Get Packages

To use a package from this index either "pip install package" (get pip) or download, unpack and "python setup.py install" it.

Package Authors

Submit packages with "python setup.py upload". The index hosts package docs. You may also use the web form. You must register. Testing? Use testpypi.

Infrastructure

To interoperate with the index use the <u>JSON</u>, <u>OAuth</u>, <u>XML-RPC</u> or <u>HTTP</u> interfaces. Use <u>local</u> <u>mirroring or caching</u> to make installation more robust.

PyPI Bug Reports PyPI Discussion PyPI Developer Info	
ABOUT	>>
NEWS	>>
DOCUMENTATION	>>
DOWNLOAD	>>
COMMUNITY	>>
FOUNDATION	>>
CORE DEVELOPMENT	>>

Updated	Package	Description
2015-10-21	toil 3.1.0a1.dev48	Pipeline management software for clusters.
2015-10-21	django-knob 1.1	A Django reusable application that performs remote configurations on multiple devices, distributing the operations using Celery.
2015-10-20	song2 0.1.0	Typesafe/Immutable schema for dict object
2015-10-20	django-influxdb-metrics 1.2.1	A reusable Django app that sends metrics about your project to InfluxDB
2015-10-20	luigi-monitor 0.2.2	Send summary messages of your Luigi jobs to Slack.
2015-10-20	flask-autorouter 0.1.1	a utility for generating flask URL routing
2015-10-20	django-templatetags 1.1	Custom template tags for notification
2015-10-20	djangorecipe 2.1.2	Buildout recipe for Django
2015-10-20	SciSalt 1.6.1	Tools to make scientific data analysis easier

The Python Package Index (PyPI)

• Let's install a couple of 3rd-party modules using the program pip.

```
sudo apt-get update && sudo apt-get install python-dev python-pip
sudo pip install flask matplotlib werkzeug itsdangerous jinja2
```

*These steps might've already been completed by your instructor (-:

Python Web Application Using Flask

 With the necessary modules installed, let's use them to build a simple <u>web</u> <u>application!</u>

Python Web Application Using Flask

 With the necessary modules installed, let's use them to build a simple <u>web</u> <u>application!</u>

Python Dataviz Application Using Matplotlib

 With the necessary modules installed, let's use them to <u>plot data</u> in a .csv file!

Python Dataviz Application Using Matplotlib

With the necessary modules installed, let's use them to <u>plot data</u> in a .csv file!

Writing Python Programs To Control Low-Level Hardware

Wiring Your First Circuit

Let's jump right into the deep-end and wire our first circuit!

Raspberry Pi2 GPIO Header

Pin#	NAME		NAME	Pin
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1, I2C)	00	DC Power 5v	04
05	GPIO03 (SCL1, I2C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)		(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)		(GPIO_GEN4) GPIO23	16
17	3.3v DC Power		(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	00	Ground	20
21	GPIO09 (SPI_MISO)		(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)		(SPI_CE0_N) GPIO08	24
25	Ground		(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06		GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19		GPIO16	36
37	GPIO26		GPIO20	38
39	Ground	00	GPIO21	40

Wiring Your First Circuit

Let's jump right into the deep-end and wire our first circuit!

Python LED Control Using RPi.GPIO

With the necessary modules installed, let's use them to <u>blink</u> an LED!

