Problem 1 (7.26). Let M and N be finitely generated R-modules over a PID R. Compute $M \otimes_R N$. As a special case, if M is a finite abelian group with invariant factors s_1, \ldots, s_t (where as usual we assume that s_i divides s_{i+1}), show that $M \otimes_{\mathbb{Z}} M$ is a finite group of order $\prod_{j=1}^t s_j^{2t-2j+1}$.

Proof. By the structure theorem for finitely generated modules over a PID we have that

$$M \cong R^r \oplus R/(a_i) \oplus \cdots \oplus R/(a_m)$$

and

$$N \cong R^s \oplus R/(b_1) \oplus \cdots \oplus R/(b_n)$$

where $a_i|a_{i+1}$ and $b_i|b_{i+1}$ Then by Theorem 2.18 of Adkins' book the tensor $M \otimes_R N$ distributes over the direct sum. Together with $R/(a_i) \otimes_R R/(b_i) \cong R/(a_i+b_i)$ we get that

$$M \otimes_R N \cong \bigoplus_{0 < i \le m, 0 < j \le n} (R/(a_i + b_j)) \bigoplus_{0 < i \le m} (R/(a_i) \otimes_R R^t) \bigoplus_{0 < j \le n} (R^s \otimes_R R/(b_j))$$

If we let M be a finite abelian group with invariant factor decomposition

$$M \cong \bigoplus_{0 < i \le t} \mathbb{Z}_{s_i}$$

Then, from above, the tensor of M with itself is

$$M \otimes_{\mathbb{Z}} M \cong \bigoplus_{0 < i, j \le t} \mathbb{Z}_{\gcd(s_i, s_j)}$$

However since $s_i|s_j$ for $i \leq j$ we have that $\gcd(s_i,s_j)$. This will cause 2t-1 copies of \mathbb{Z}_{s_1} to appear, 2t-3 for \mathbb{Z}_{s_2} , and so on until we have only a single copy of \mathbb{Z}_{s_t} . Thus $M \otimes_{\mathbb{Z}} M$ will have order $\prod_{j=1}^t s_j^{2t-2j+1}$.

Problem 2 (7.30). (a) Let F be a field and K a field containing F. If $f(X) \in F[X]$, show that there is an isomorphism of K-algebras:

$$K \otimes_F (F[X]/\langle f(X)\rangle \cong K[X]/\langle f(X)\rangle)$$

(b) By choosing F, f(x), and K appropriately, find an example of two fields K and L containing F such that the F-algebra $K \otimes_F L$ has nilpotent elements.

Proof. (a) Define a map $\varphi: K \times F[x]/\langle g(x) \rangle \to K[x]/\langle g(x) \rangle$ via

$$\varphi(k, f) = kf$$

Now briefly verify that φ is F-middle linear

$$\varphi(ak, fb) = akfb = a\varphi(k, f)b$$

$$\varphi(k_1 + k_2, f) = k_1 f + k_2 f = \varphi(k_1, f) + \varphi(k_2, f)$$

$$\varphi(k, f_1 + f_2) = kf_1 + kf_2 = \varphi(k, f_1) + \varphi(k, f_2)$$

$$\varphi(ka, f) = kaf = \varphi(k, af)$$

Since φ is F-middle linear it induces a map $\widetilde{\varphi}: K \otimes_F F[x]/\langle g(x) \rangle \to K[x]/\langle g(x) \rangle$. Now define a map $\psi: K[x]/\langle g(x) \rangle \to K \otimes_F F[x]/\langle g(x) \rangle$ by $\psi(kx^i) = k \otimes x^i$ and extending linearly. We will now show that $\widetilde{\varphi}$ and ψ are inverses.

First $\widetilde{\varphi} \circ \psi$

$$\widetilde{\varphi} \circ \psi(\sum a_i x^i) = \widetilde{\varphi}(\sum a_i \otimes x^i)$$

$$= \sum a_i x^i$$

Then for $\psi \circ \widetilde{\varphi}$

$$\psi \circ \widetilde{\varphi}(k \otimes \sum a_i x^i) = \psi \circ \widetilde{\varphi}(\sum k \otimes a_i x^i)$$

$$= \psi(\sum \widetilde{\varphi}(k \otimes a_i x^i))$$

$$= \psi(\sum k a_i x^i)$$

$$= \sum \psi(k a_i x^i)$$

$$= \sum k a_i \otimes x^i$$

$$= \sum k \otimes a_i x^i$$

Since $\widetilde{\varphi}$ has an inverse it is indeed an isomorphism. Which shows that $K \otimes_F F[x]/\langle g(x) \rangle$ is isomorphic to $K[x]/\langle g(x) \rangle$.

(b) Let F be rational functions of t with coefficients in \mathbb{Z}_2 . Then let K be the splitting field of $x^2 - t$. Then in $K \otimes_F K$ the element $t^{1/2} \otimes 1 + 1 \otimes t^{1/2}$ is zero when squared making it an idempotent.

Problem 3 (7.31). Let F be a field. Show that $F[X,Y] \cong F[X] \otimes_F F[Y]$ where the isomorphism is an isomorphism of F-algebras.

Proof. Define $\varphi: F[x] \times F[y] \to F[x] \times F[y]$ via

$$\varphi(\sum_{i} a_i x^i, \sum_{j} b_j x^j) = \sum_{i,j} a_i b_j x^i y^j$$

Since we are in a polynomial ring over a field it follows that φ is F-middle linear. As such there is a map $\widetilde{\varphi}: F[x] \otimes F[y] \to F[x,y]$ that mimics φ .

Now define $\psi: F[x,y] \to F[x] \otimes F[y]$ via $\psi(cx^iy^j) = c(x^i \otimes y^j)$ and extending linearly. We will now show that $\widetilde{\varphi}$ and ψ are inverses. Since both of these maps are linear we only need to verify them on either cx^iy^j and $a_ix^i \otimes b_jy^j$.

First for $\widetilde{\varphi} \circ \psi$ we have

$$\begin{split} \widetilde{\varphi} \circ \psi(cx^i y^j) &= \widetilde{\varphi}(c(x^i \otimes y^j)) \\ &= \widetilde{\varphi}(cx^i \otimes y^j) \\ &= cx^i y^j \end{split}$$

Then for $\psi \circ \widetilde{\varphi}$

$$\psi \circ \widetilde{\varphi}(a_i x^i \otimes b_j y^j) = \psi(a_i b_j x^i y^j)$$
$$= a_i b_j (x^i \otimes y^j)$$
$$= a_i x^i \otimes b_i y^j$$

Thus $\widetilde{\varphi}$ is an isomorphism which shows that F[x,y] is isomorphic to $F[x] \otimes F[y]$.

Problem 4 (7.34). Let F be a field, V and W finite-dimensional vector spaces over F, and let $T \in End_F(V), S \in End(W)$.

- (a) If α is an eigenvalue of S and β is an eigenvalue of T, show that the product $\alpha\beta$ is an eigenvalue of $S \otimes T$.
- (b) If S and T are diagonalizable, show that $S \otimes T$ is diagonalizable.

Proof.

Problem 5 (10.4.3). Show that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ and $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ are both left \mathbb{R} modules but are not isomorphic as \mathbb{R} -modules.

Proof. The complex numbers can be given the bimodule structures (\mathbb{R}, \mathbb{R}) , (\mathbb{R}, \mathbb{C}) , and (\mathbb{C}, \mathbb{R}) by left and right multiplication from the correct field. As such both of the above tensors can be given be given a left \mathbb{R} -module structure.

To show they are not isomorphic consider that in $\mathbb{C} \otimes_{\mathbb{C}} \mathbb{C}$ we have $1 \otimes 1 = i^4 \otimes i^4 = i \otimes -i$. However in $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} 1 \otimes 1$ has an equivalence class that is entirely real since only real numbers can travel between the sides of the tensor. As such the two cannot be isomorphic.

Problem 6 (10.4.5). Let A be a finite abelian group of order n and let p^k be the largest power of a prime p dividing n. Prove that $\mathbb{Z}/p^k\mathbb{Z} \otimes_{\mathbb{Z}} A$ is isomorphic to the Sylow p-subgroup of A.

Proof. Let $Syl_p(A)$ denote the Sylow p-subgroup of A. Then by theorem 2.18 from Adkins' we have that

$$\mathbb{Z}_{p^k} \otimes_{\mathbb{Z}} A \cong \bigoplus_{q \ prime} \mathbb{Z}_{p^k} \otimes_{\mathbb{Z}} Syl_q(A)$$

Now we will show that $\mathbb{Z}_{p^k} \otimes_{\mathbb{Z}} Syl_q(A)$ is zero when $q \neq p$ and is isomorphic to $Syl_p(A)$ otherwise.

Problem 7 (10.4.10). Suppose R is commutative and $N \cong \mathbb{R}^n$ is a free R-module of rank n with R-module basis e_1, \ldots, e_n .

(a) For any nonzero R-module M show that every element of $M \otimes N$ can be written uniquely in the form $\sum_{i=1}^{n} m_i \otimes e_i$ where $m_i \in M$. Deduce that if $\sum_{i=1}^{n} m_i \otimes e_i = 0$ in $M \otimes N$ then $m_i = 0$ for $i = 1, \ldots, n$.

(b) Show that if $\sum m_i \otimes n_i = 0$ in $M \otimes N$ where the n_i are merely assumed to be R-linearly independent then it is not necessarily true that all the m_i are 0. [Consider $R = \mathbb{Z}, n = 1, M = \mathbb{Z}/2\mathbb{Z}$, and the element $1 \otimes 2$.]
\square
Problem 8 (10.4.24). Prove that the extension of scalars from \mathbb{Z} to the Gaussian integers $\mathbb{Z}[i]$ of the ring \mathbb{R} is isomorphic to \mathbb{C} as a ring: $\mathbb{Z}[i] \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{C}$ as rings.
\square
Problem 9 (10.4.27). (a) Write down a formula for the multiplication of two elements $a \cdot 1 + b \cdot e_2 + c \cdot e_3 + d \cdot e_4$ and $a' \cdot 1 + b' \cdot e_2 + c' \cdot e_3 + d' \cdot e_4$ in the example $A = \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ following proposition 21 (where $1 = 1 \otimes 1$ is the identity of A).
(b) Let $\epsilon_1 = \frac{1}{2}(1 \otimes 1 + i \otimes i)$ and $\epsilon_2 = \frac{1}{2}(1 \otimes 1 - i \otimes i)$. Show that $\epsilon_1 \epsilon_2 = 0$, $\epsilon_1 + \epsilon_2 = 1$, and $\epsilon_j^2 = \epsilon_j$ for $j = 1, 2$ (ϵ_1 and ϵ_2 are called orthogonal idempotents in A). Deduce that A is isomorphic as a ring to the direct product of two principle ideals: $A \cong A\epsilon_1 \times A\epsilon_2$ (cf. Exercise 1, Section 7.6).
(c) Prove that the map $\varphi : \mathbb{C} \otimes \mathbb{C} \to \mathbb{C} \times \mathbb{C}$ by $\varphi(z_1, z_2) = (z_1 z_2, z_1 \bar{z_2})$, where $\bar{z_2}$ denotes the complex conjugate of z_2 , is an \mathbb{R} -bilinear map.
(d) Let Φ be the \mathbb{R} -module homomorphism from A to $\mathbb{C} \times \mathbb{C}$ obtained from φ in (c). Show that $\Phi(\epsilon_1) = (0,1)$ and $\Phi(\epsilon_2) = (1,0)$. Show also that Φ is \mathbb{C} -linear, where the action of \mathbb{C} is on the left tensor factor in A and on both factors in $\mathbb{C} \times \mathbb{C}$. Deduce that Φ is surjective. Show that Φ is a \mathbb{C} -algebra isomorphism.
\square