Examen¹ la Geometrie II, seria 10, 22.06.2024

	Nume și prenume:	
	Grupa:	
1.	Considerăm \mathbb{R}^3 cu structura euclidiană canonică.	
a)	Decideți dacă punctele $M = (1, 1, 0), N = (0, -1, -4), P = (2, 1, -2), Q = (-1, 0, 1)$ formează un reper afin.	(0,5p)
b)	Scrieți ecuația unei drepte perpendiculare pe planul $\pi: 2x-3y+z+1=0$. Justificați răspunsul.	(0,5p)
c)	Folosind definiția normei ($ u ^2 = \langle u, u \rangle$, pentru orice $u \in \mathbb{R}^3$), demonstrați egalitatea paralelogramului: $ v + w ^2 + v - w ^2 = 2(v ^2 + w ^2)$, $\forall v, w \in \mathbb{R}^3$ vectori.	(0,5p)
d)	Eventual folosind egalitatea paralelogramului și formula cosinusului, determinați măsurile unghiurilor unui p gram $ABCD$ care respectă relația $\ AC\ ^2 \cdot \ BD\ ^2 = \ AB\ ^4 + \ AD\ ^4$.	aralelo- $(0,5p)$
2.	Considerăm \mathbb{R}^3 cu structura afină canonică și funcția $f:\mathbb{R}^3\to\mathbb{R}^3, f(x,y,z)=(2x+y-2z+3,-x+z,2z-1)$	3).
a)	Demonstrați că f este un izomorfism afin.	(0,5p)
b)	Determinați, dacă există, o dreaptă $d \subset \mathbb{R}^3$ astfel încât $f(d) = \{(2-t, t, t+1) \mid t \in \mathbb{R}\}.$	(0,5p)
	Demonstrați că mulțimea $\{P \in \mathbb{R}^3 \mid f(P) = P\}$ formează un subspațiu afin și determinați dimensiunea sa.	(0,5p)
d)	Există vreun produs scalar pe \mathbb{R}^3 în raport cu care f să devină izometrie? Justificați răspunsul.	(0,5p)
3.	Fie planul proiectiv $\mathbb{P}^2\mathbb{R}$ şi funcția $f: \mathbb{P}^2\mathbb{R} \to \mathbb{P}^2\mathbb{R}, f([X:Y:Z]) = [X+Z:Y-2Z:2Z].$	
		$(0,\!25p)$
		(0,75p)
	Fie dreapta proiectivă $d: Y - 2Z = 0$. Determinați mulțimea $d \cap f(d)$.	(0,5p)
	Determinați ecuația unei conice proiective nedegenerate $\Gamma \subset \mathbb{P}^2\mathbb{R}$ tangentă simultan la d și $f(d)$.	(0,5p)
4.	Citiți enunțul și demonstrația următoarei teoreme, apoi răspundeți pe scurt la cerințele ce urmează.	
	coremă: $Dacă\ Isom(\mathbb{R}^2)$ este grupul izometriilor spațiului euclidian $\mathbb{R}^2\ $ şi $G\leq Isom(\mathbb{R}^2)$ este un subgrup finit al săv	ı, atunc
ex	istă $n \ge 1$ astfel încât $G \simeq \mathbb{Z}_n$ sau $G \simeq D_n$, unde D_n este grupul diedral cu $2n$ elemente.	
	Demonstrație. Fie $G \leq \text{Isom}(\mathbb{R}^2)$ subgrup finit. Observăm întâi că G nu poate conține translații. Fie $P \in \mathbb{R}^2$ arbitrar. Considerăm punctul $P_0 = \frac{1}{ G } \sum_{h \in G} h(P)$. Atunci P_0 este un punct fix pentru orice $f \in G$ și, conju	(A) ıgând cu
o t	ranslație, putem presupune că $P_0 = 0$, originea lui \mathbb{R}^2 . Acum, de vreme ce $f(0) = 0$ pentru orice $f \in G$, rezultă că $G \leq O(2)$.	(B)
	Considerăm $G^+ = G \cap SO(2)$; prin definiție, G^+ este un subgrup al lui G format doar din rotații în jurul lui G . Fie	$ G^+ = n$
At	unci $G^+ \simeq \mathbb{Z}_n$. Dacă $G^+ = G$, demonstrația s-a încheiat. Dacă $G^+ \neq G$, atunci $[G:G^+] = 2$, deci pentru orice $s \in G \setminus G^+$, avem $G = \langle G \rangle$	(\mathbf{C})
de	unde deducem că $G \simeq D_n$.	(D)
a)	Explicați afirmația (A) $i.e.$ de ce G nu poate conține translații.	(0,25p)
b)	Explicați de ce P_0 este un punct fix pentru orice $f \in G$. Depinde P_0 de alegerea punctului P arbitrar?	(0,25p)
c)	Explicați ce rezultate demonstrate la curs sunt folosite în afirmația (B).	(0,5p)
d)	Explicați afirmațiile (C) și (D) <i>i.e.</i> de ce, în acele condiții, $G^+ \simeq \mathbb{Z}_n$ și, dacă $G^+ \neq G, G \simeq D_n$.	(0,5p)
	Definiție. În spațiul euclidian canonic \mathbb{R}^3 , dacă P este un punct neted (nesingular) al cuadricei Γ , atunci v imește vector normal la Γ în P dacă $\mathrm{Dir}(T_P\Gamma) = \langle v \rangle^{\perp}$. Pentru orice cuadrică netedă Γ , considerăm aplicația	$\in \mathbb{R}^3$ se
	$N_{\Gamma}:\Gamma \to \mathbb{P}^2\mathbb{R},\ N_{\Gamma}(P)=[v],\ \mathrm{unde}\ v$ este un vector normal la Γ în P .	
a)	Determinați un vector normal la cuadrica $\Gamma: 2x^2-y^2+z^2+2xz-4yz-2x+4=0$ în punctul $P=(1,2,0)$.	(0,25p)
		(0,25p)
c)	Scrieți ecuația unei cuadrice Γ pentru care N_{Γ} este surjectivă. Justificați răspunsul.	(0,5p)
d)	Descrieți (din punct de vedere topologic) imaginea aplicației N_{Γ} , în cazul în care $\Gamma=\mathcal{H}$ este un hiperbologic pânză.	oid cu o (0,5p)

¹Se acordă 1 punct din oficiu. **Justificați toate răspunsurile date**. Timp de lucru: 3 ore. Succes!