ME579 - Final Project Proposal: Euler-Lagrange Drone Dynamics and Trajectory Control

Chunhua Ying

Objective

Understand the basics of quadcopter modeling and control, complete a self-coding program to achieve the drone dynamic and trajectory control. Finally, design a robust drone delivering task.

Content

- 1. Mathematical model of Euler-Lagrange drone dynamics in MATLAB.
- 2. Validation using the example case.

Figure 2: Control inputs ω_i

Figure 3: Positions x, y, and z

Figure 4: Angles ϕ , θ , and ψ

3. Trajectory control

Test:

Figure 14: Example of checkpoint flight pattern with external disturbances

Design:

- i) Pre-defined h_0 , h_d , W_0 , while P_0 as the delivering office station or vehicle position.
- ii) Input destination coordinates(customer apartment) P_1 and box weight W_{box} , achieving an safe drone delivering mission.

