unit-2assign-2

November 18, 2024

```
[1]: import pandas as pd

# Load the dataset
data = pd.read_csv("NvWCPg2u12Tza1js.csv")

# Preview the dataset
print(data.head())

# Summary statistics
print(data.describe())

# Check for missing values
print(data.isnull().sum())

Age Education Race Hisp MaritalStatus Nodeg \
0. 45 LessThanHighSchool NotBlack NotHispanic Married 1
```

	Age	Equa	Cation	no	ice	птар	Maritarstatu	s nodeg	\
0	45	LessThanHigh	School	NotBla	ıck	NotHispanic	Marrie	d 1	
1	21	Interm	ediate	NotBla	ıck	NotHispanic	NotMarrie	d 0	
2	38	High	School	NotBla	ıck	NotHispanic	Marrie	d 0	
3	48	LessThanHigh	School	NotBla	ıck	NotHispanic	Marrie	d 1	
4 18		${\tt LessThanHighSchool}$		NotBlack		NotHispanic	Marrie	d 1	
Earnings_1974 Earnings_1975 Earnings_1978									
0		21516.670	25243	.550	2	25564.670			
1		3175.971	5852	.565	1	13496.080			
2		23039.020	25130	.760	2	25564.670			
3		24994.370	25243	.550	2	25564.670			
4		1669.295	10727	.610		9860.869			
		Age		Nodeg	Ear	cnings_1974	Earnings_197	5 Earnin	gs_1978
CO	unt	15992.000000	15992.	000000	15	5992.000000	15992.00000	15992	.000000
me	an	33.225238	0.3	295835	14	1016.800304	13650.80337	6 14846	.659673
st	d	11.045216	0.	456432	9	9569.795893	9270.40322	5 9647	.391524
mi	n	16.000000	0.	000000		0.000000	0.00000	0 0	.000000
25	%	24.000000	0.	000000	4	1403.452250	4398.823000	5669	.298000
50	%	31.000000	0.	000000	15	5123.580000	14557.110000	16421	.975000
75	%	42.000000	1.	000000	23	3584.180000	22923.73750	25564	.670000
ma	X	55.000000	1.	000000	25	5862.320000	25243.550000	25564	.670000
Ag	е	0							
Ed	uacat	tion 0							

Race 0
Hisp 0
MaritalStatus 0
Nodeg 0
Earnings_1974 0
Earnings_1975 0
Earnings_1978 0
dtype: int64

```
[2]: import seaborn as sns
import matplotlib.pyplot as plt

# Plot pairwise relationships
sns.pairplot(data)
plt.show()
```



```
[8]: X = X.apply(pd.to numeric, errors='coerce') # Converts non-numeric values to
       \hookrightarrow NaN
      print(X.isnull().sum()) # Check for any NaN introduced
      X = X.fillna(0) # Replace NaN with O
                                       0
     Age
     Nodeg
                                       0
     Eduacation_Intermediate
                                       0
     Eduacation_LessThanHighSchool
                                       0
     Eduacation_PostGraduate
                                       0
     Eduacation_graduate
                                       0
                                       0
     Race_black
     Hisp_hispanic
                                       0
     MaritalStatus_NotMarried
     dtype: int64
[11]: from sklearn.model_selection import train_test_split
      # Prepare data
      # Replace 'Earnings_1978' with the desired target variable
      X = data.drop(['Earnings_1974', 'Earnings_1975', 'Earnings_1978'], axis=1)
      y = data['Earnings_1978'] # Use the appropriate column as the target variable
      # Split the dataset into training and testing sets
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,_
      ⇔random_state=42)
      # Display the shapes of the splits to verify
      print(f"X_train shape: {X_train.shape}")
      print(f"X_test shape: {X_test.shape}")
      print(f"y train shape: {y train.shape}")
      print(f"y_test shape: {y_test.shape}")
     X_train shape: (12793, 6)
     X test shape: (3199, 6)
     y_train shape: (12793,)
     y_test shape: (3199,)
[15]: import pandas as pd
      import numpy as np
      from sklearn.model_selection import train_test_split
      from sklearn.linear_model import LinearRegression
      # Step 1: Load and preprocess the data
      # Assuming `data` is already loaded
```

R-squared score: 0.09200104293622746

```
[17]: import joblib
y_pred = model.predict(X_test)
# Save the model
joblib.dump(model, 'linear_regression_model.pkl')

# Save predictions
predictions = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
predictions.to_csv('predictions.csv', index=False)
```