

FUNDAÇÃO DE APOIO À ESCOLA TÉCNICA FAETEC

FACULDADE DE ENSINO DE TECNOLOGIA DO ESTADO DO RIO DE JANEIRO FAETERJ

APOSTILA DE MATEMÁTICA BÁSICA

AUTOR: WAGNER ZANCO

Versão 1.0

RIO DE JANEIRO 2018

SUMÁRIO

1.	DEFIN	IÇÕES DE FUNÇÕES	3
1.1	1. No	ção Intuitiva	3
1.2	2. No	tação de Funções	4
1.3	3. Va	riação de Uma Função	5
1.4	4. Ta	xa Média de Variação	5
2.	FUNÇÂ	ÃO AFIM	7
2.1	l. Eq	uação do 1º Grau	8
2.2	2. De	terminando a Equação da Reta	9
3.	FUNÇÂ	ÁO DO 2º GRAU OU FUNÇÃO QUADRÁTICA	13
3.1	l. Gr	áfico de Uma Função	13
3.2	2. Ra	ízes ou Zeros de Uma Função Quadrática	13
3.3	3. Vé	rtice da Parábola	14
3.4	4. De	terminação dos Zeros da Função Por Meio da Soma e do Produto	16
4.	PROPO	RCIONALIDADE	18
4.1	l. Pro	oporcionalidade Direta	18
4.2	2. Pro	pporcionalidade Indireta	19
4.3	3. Pro	oporcionalidade Entre Potência de Variáveis	19
	4.3.1.	Função Potência Inteira de X.	20
	4.3.2.	Função Par	21
	4.3.3.	Função Ímpar	22
	4.3.4.	Funções Potência $y = xn$, em que n é um Número Natural Par	23
	4.3.5.	Funções Potência $y = xn$, em que n é um Número Natural Ímpar	23
	4.3.6.	Funções Potência $y = x - n$, em que n é um Número Natural Par	24
5.	NOVAS	S FUNÇÕES A PARTIR DE FUNÇÕES CONHECIDAS	26
6.	DEFIN	IÇÃO DE FUNÇÃO COM A TEORIA DOS CONJUNTOS	28
6.1	l Fu	nção Injetora ou Injetiva	29
6.2	2. Fu	nção Sobrejetora	31
6.3	3. Fu	nção Bijetora	33
7	FUNCÂ	AO INVERSA	35

1. DEFINIÇÕES DE FUNÇÕES

Dados dois conjuntos não vazios, uma função de A em B é uma relação que cada elemento de x de A faz corresponder um único elemento y de B.

1.1. Noção Intuitiva

Quando duas grandezas x e y estão relacionadas de tal modo que para cada valor de x fica determinado um único valor de y, dizemos que y é uma função de x.

As funções normalmente são representadas por expressões algébricas, por seus gráficos ou por palavras.

Exemplo 1.1: Altura em função da idade

Tabela 1: Altura em função da idade

Idade (meses)	0,0	1,0	2,0	2,5	3,5	4,5	6,0	7,0	8,0	9,0	12,0
Altura (cm)	46,0	46,0	49,5	51,5	54,5	57,0	60,0	62,7	65,5	67,5	73,0

As duas grandezas estão relacionadas: Altura de André, medida em centímetros e o tempo, medido em meses.

Em matemática, as funções representam relações de dependência. Neste caso, a altura de André é uma função do tempo.

Exemplo 1.2: Corrida de taxi

Bandeirada - R\$3,30 Quilômetro - R\$2,04

Se percorrermos 5 km, temos de pagar:

$$P = 3.30 + 5 \times 2.04 = 13.50$$

Neste caso, dizemos que o preço pago é uma função dos quilômetros rodados.

Exemplo 1.3: Queda livre

$$S = \frac{1}{2} \cdot g \cdot t^2$$

S =Espaço percorrido (m)

g = aceleração da gravidade (9,8 m/s)

t = Tempo decorrido (s)

No instante 3 s temos:

$$S(3) = \frac{1}{2}.9.8.3^2 = 4.5 \text{ metros}$$

Neste caso, o espaço percorrido é uma função do tempo.

Definição de Função: É uma relação de dependência entre duas grandezas que, para cada valor de *x* de uma, está associado um único valor de *y* da outra.

Domínio da Função: É o conjunto de valores que a primeira grandeza pode assumir.

Imagem da Função: É o conjunto de valores assumidos pela segunda variável.

Variável Independente: É o elemento genérico do domínio da função. Variável Dependente: É um elemento genérico da imagem da função.

No exemplo 1.1

$$D = \{0,0; 1,0; 2,0; 2,5; 3,5; 4,5; 6,0; 7,0; 8,0; 9,0; 12,0\}$$

$$I = \{46,0; 46,0; 49,5; 51,5; 54,5; 57,0; 60,0; 62,0; 65,5; 67,5; 73,0\}$$

Variável independente \rightarrow Tempo (t)

Variável dependente \rightarrow Altura (h)

1.2. Notação de Funções

Se f é uma função que associa valores de x de uma grandeza a valores de y de outra grandeza, dizemos que y = f(x). Neste caso, y é igual a f de x.

No exemplo 1.1, h é uma função de t, ou seja, h = f(t).

A forma de representação de uma função pode ser por tabela (exemplo 1.1), palavras (exemplo 1.2), fórmula (exemplo 1.3) ou por meio de gráficos.

Gráficos – A forma mais comum de se representar informações por meio de gráficos é a utilização do plano cartesiano. Neste caso, o gráfico de uma função é o subconjunto do plano cartesiano.

Exemplo 1.1:

Exemplo 1.2:

Exemplo 1.3:

1.3. Variação de Uma Função

Analisando a Tabela 1, vemos que André cresceu 2 cm entre 2,0 e 2,5 meses. Entre 2,5 e 4,5 meses, André cresceu 5,7-51,5=5,5 cm.

Esta diferença entre as alturas é chamada variação de altura. Utilizando a notação h = f(t), podemos escrever que

$$f(2,5) - f(2,0) = 51,5 - 49,5 = 2 cm$$

para uma variação de h em [2,0,2,5].

Assim,

$$\Delta h = f(b) - f(a)$$
 se $a \in b \in D$.

1.4. Taxa Média de Variação

O cálculo da taxa média de variação permite comparar a variação de uma função em intervalos distintos, por meio do cálculo da rapidez de variação em intervalos.

Em uma função y = f(x), podemos escrever que

$$\frac{variação\;de\;y}{variação\;de\;x} = \frac{\Delta y}{\Delta x} = variação\;média$$

No caso do André, podemos dizer que no intervalo [2,0, 2,5]

$$\frac{\Delta h}{\Delta t} = \frac{f(2,5) - f(2,0)}{2,5 - 2,0} = \frac{51,5 - 49,5}{2,5 - 2,0} = 4 \ cm \ / \ mes$$

E no intervalo [2,5, 4,5]

$$\frac{\Delta h}{\Delta t} = \frac{f(4.5) - f(2.5)}{4.5 - 2.5} = \frac{57.0 - 51.5}{4.5 - 2.5} = 2.75 \, cm \, / \, m\hat{e}s$$

Os cálculos acima expressam a velocidade de crescimento de André nos dois intervalos.

A razão $\frac{variação}{variação} \frac{da}{altura}$ é chamada de Taxa Média de Variação de altura em relação ao tempo.

Seja y = f(x) uma função com domínio D. Se a e $b \in D$, a taxa média de variação de y correspondente a variação de x no intervalo [a,b] é definido por

$$\frac{variação \ de \ y}{variação \ de \ x} = \frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$

No Exemplo1.1, André, em seu primeiro ano de vida cresceu o tempo todo, ou seja, a taxa média de variação de sua altura foi sempre positiva, exceto no primeiro mês. A partir desta verificação, podemos dizer que uma função pode ser crescente ou decrescente.

Se a < b, então f(a) < f(b)

Se
$$a < b$$
, então $f(a) > f(b)$

Seja y = f(x) uma função com domínio D e $a,b \in D$:

- a) Se f é crescente em [a,b], então a taxa de variação neste intervalo é positiva, ou seja, $\frac{\Delta y}{\Lambda x} > 0$.
- b) Se f é decrescente em [a,b], então a taxa de variação neste intervalo é negativa, ou seja, $\frac{\Delta y}{\Delta x} < 0$.
- c) Se f é constante em [a,b], então a taxa de variação neste intervalo é nula, ou seja, $\frac{\Delta y}{\Delta x} = 0$.

2. FUNÇÃO AFIM

Funções afins são funções que possuem uma taxa de variação constante. Uma função afim é uma função que pode ser expressa matematicamente por

$$y = f(x) = ax + b$$

Em que x é a variável independente, enquanto a e b são constantes. A constante a é o coeficiente angular e a constante b é o coeficiente linear. A função representada pela equação acima também é chamada de função polinomial do 1° grau ou, simplesmente, função do primeiro grau.

Seja y = f(x) = ax + b uma função afim, com coeficientes $a \in b$. A taxa média de variação de f(x) é constante e igual a a em qualquer intervalo. Considere um intervalo qualquer [n,m].

$$\frac{\Delta y}{\Delta x} = \frac{f(m) - f(n)}{m - n} = \frac{(am + b) - (an + b)}{m - n} = \frac{am - an}{m - n} = \frac{a(m - n)}{m - n} = a$$

Seja y = f(x) uma função definida em um intervalo I, com taxa média de variação constante. Então f é uma função afim, ou seja, pode ser escrita como

$$y = f(x) = ax + b$$

Exemplo 2.1: Função afim

$$y = f(x) = 2x + 1$$

Veja que 2 é o coeficiente angular e 1 é o coeficiente linear. O coeficiente angular define a inclinação da reta em função do eixo x e o coeficiente linear define o ponto em que a reta atravessa o eixo x. Sabemos que a taxa de variação é 2 em qualquer intervalo do seu domínio. Montando o gráfico da função temos que

$$p = \sqrt{1^2 + 2^2} = \sqrt{5}$$

$$sen \ x = \frac{2}{\sqrt{5}} = 0.89$$

$$\cos x = \frac{1}{\sqrt{5}} = 0.44$$

$$x = 63.43^{\circ}$$

$$Tg \ x = \frac{\sec x}{\cos x} = \frac{0.89}{0.44} = 2$$

Observe que a tangente de α é a taxa média de variação de f, que por sua vez, é igual ao coeficiente angular a. Por isso dizemos que a é a inclinação ou o coeficiente angular da reta. Veja que a coincide coma taxa média de variação de y com relação a x, em qualquer intervalo.

Exemplo 2.2: Gráfico de y = ax + b

A interseção do gráfico f com o eixo y é o ponto (0,f(0)), que é igual a (0,b), pois

$$f(0)=a.0+b.$$

Para encontrarmos a interseção com o eixo x, temos de resolver a equação

$$ax + b = 0$$

Desta forma

$$x = \frac{-b}{a}$$

desde que $a \neq 0$.

O ponto do gráfico onde ele intercepta o eixo x também é chamado de raiz da função ou zero da função. Também podemos observar que o gráfico de f será crescente para a > 0 e decrescente para a < 0.

A função y = 2 é uma função afim que tem o coeficiente Angular nulo, ou seja, a = 0. Neste caso, y = 0. x + 2.

2.1. Equação do 1º Grau

Uma equação do 1° é toda equação que pode ser expressa da seguinte forma, na qual a e b são números reais e $a \neq 0$.

$$ax + b = 0$$

Uma função do 1º grau pode ter uma única solução, infinitas soluções ou não ter nenhuma solução.

Exemplo 2.1: Dê a solução das equações abaixo

a)
$$5x - 8 = 3x + 6$$

b) $4 + 2x = 10 - 2(3 - x)$
c) $4x - 5 = 4x + 1$

2.2. Determinando a Equação da Reta

A equação de uma reta que contém dois pontos conhecidos pode ser obtida calculando a sua taxa média de variação.

Exemplo 2.2: Dada a reta (0,3) e (-1,1), temos que

$$a = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{3 - 1}{0 - (-1)} = 2$$

Sabendo que uma reta possui uma taxa de variação constante, deduzimos que ela é uma função afim. Assim

$$y = ax + b$$

$$y = 2x + b$$

Na coordenada (0,3), temos que

$$3 = 2.0 + b$$

A equação da reta (0,3) e (-1,1), é dada por y=2x+3, a qual possui um coeficiente angular igual a 2. Isso significa que para cada unidade de x, o valor de y aumenta duas unidades.

Exercícios de fixação

2.1) Encontre uma equação para a reta que passe pelo ponto (2,-5) e

- a) Com inclinação de -3
- b) É paralela ao eixo x
- c) É paralela ao eixo y
- d) É paralela a reta 2x 4y = 3

a)

$$a = -3$$

 $y = -3x + b$
 $Em(2,-5)$
 $-5 = -3(2) + b$
 $b = 1$
 $y = -3x + 1$

b)
Se a reta é paralela ao eixo θ , então a = 0 y = 0x + b Em(2,-5) -5 = 0.(2) + b b = -5 y = 0x - 5

c) Se a reta é paralela ao eixo y, então x = 2. Isso que ela não é uma função.

d) É paralela a reta 2x - 4y = 3

$$2x - 3 = 4y$$

$$y = \frac{2x - 3}{4} = \frac{2x}{4} - \frac{-3}{4}$$

$$y = \frac{1}{2}x - \frac{3}{4}$$

$$a = \frac{1}{2}$$

$$y = \frac{1}{2}x + b$$

$$-5 = \frac{1}{2}(2) + b$$

$$b = -6$$

$$y = \frac{1}{2}x - 6$$
Se $y = 0$ em $y = \frac{1}{2}x - \frac{3}{4}$, temos que
$$0 = \frac{1}{2}x - \frac{3}{4}$$

$$x = \frac{3}{4} \cdot 2 = \frac{3}{2}$$

$$x = \frac{3}{2}$$

2.2) Dado o gráfico abaixo, defina a equação da reta

$$a = \frac{2 - (-1)}{4 - 3} = \frac{2 + 1}{1}$$

$$a = 3$$

$$y = ax + b$$

$$2 = 3(4) + b$$

$$b = -10$$

$$y = 3x - 10$$

Exercícios

- 2.3) Determine os zeros da função.
 - a) y = 5x + 2
 - b) y = -2x
 - c) $f(x) = \frac{x}{2} + 4$
- 2.4) Classifique cada uma das funções seguintes em crescente ou decrescente.
 - a) y = 4x + 6
 - b) f(x) = -x + 10
 - c) $y = (x + 2)^2 (x 1)^2$
- 2.5) (UFPI) A função real de variável real, definida por $f(x) = (3 2a) \cdot x + 2$, é crescente quando:
 - a) a > 0

 - b) $a < \frac{3}{2}$ c) $a = \frac{3}{2}$ d) $a > \frac{3}{2}$ e) a < 3
- 2.6) (FGV) O gráfico da função f(x) = mx + n passa pelos pontos (-1,3) e (2,7). O valor de m é:

 - a) $\frac{5}{3}$ b) $\frac{4}{3}$ c) 1 d) $\frac{3}{4}$ e) $\frac{3}{5}$
- 2.7) Qual o número cujo dobro somado com 5 é igual ao seu triplo menos 19?
- 2.8) O dobro de um número, mais cinco unidade é 27. Qual é este número?
- 2.9) O triplo de um número aumentado de sua terça parte é igual a 60. Que número é este?
- 2.10) Em um jardim há cisnes e coelhos, contando ao todo 58 cabeças e 178 pés. Quantos cisnes e coelhos há neste jardim?
- 2.11) Um atirado ganha 4 pontos por tiro acertado no alvo e paga a metade, por multa, cada vez que ele erra. Após 32 tiros, tinha 86 pontos. Calcule quantos tiros ele acertou.
- 2.12) Determine a equação da reta que passa pelos pontos (-1,0) e (0,2).

3. FUNÇÃO DO 2º GRAU OU FUNÇÃO QUADRÁTICA

Uma função $f: \mathbb{R} \to \mathbb{R}$ chama-se quadrática quando existem números reais a, b e c, com $a \neq 0$, tal que $f(x) = ax^2 + bx + c$ para todo $x \in \mathbb{R}$.

Exemplos

a)
$$f(x) = 3x^2 - 5x + 6$$

b)
$$g(x) = x^2 - 5x$$

c)
$$h(x) = 3x^2 + 6$$

3.1. Gráfico de Uma Função

O Gráfico de uma função do 2º grau é uma parábola. A concavidade da parábola depende do coeficiente *a*.

3.2. Raízes ou Zeros de Uma Função Quadrática

Raízes ou zeros de uma função são os valores de x que satisfazem a equação $ax^2 + bx + c = 0$, ou seja, corresponde aos pontos em que o gráfico da função intercepta o eixo x. As raízes de uma função do 2° grau podem ser encontradas pela fórmula de Báskara.

$$x = \frac{-b \pm \sqrt{b^2 - 4.a.c}}{2.a}$$

em que $\Delta = b^2 - 4$. a. c, também chamado de discriminante. O discriminante Δ determina o número de raízes de uma função do 2° grau, que pode ser:

a) $\Delta > 0$ - A função possui duas raízes reais e distintas, ou seja, o gráfico da função intercepta o eixo x em dois pontos distintos.

b) $\Delta = 0$ - A função possui duas raízes reais e iguais.

c) Δ < 0 A função não possui duas raízes reais, ou seja, o gráfico da função não intercepta o eixo x.

3.3. Vértice da Parábola

É o ponto de maior ou menor valor que a função $y = ax^2 + bx + c$ pode atingir.

Sendo x_v e y_v as coordenadas do vértice, tempo que

$$x_v = \frac{-b}{a}$$
$$y_v = \frac{-\Delta}{4a}$$

Se a < 0, (x_v, y_v) será o valor máximo e se a > 0, (x_v, y_v) será o valor mínimo.

Exemplo 3.1: Quais os coeficientes a,b,c das funções abaixo

a)
$$f(x) = 3x^2 - 4x + 2$$
 Resp: $a = 3$; $b = -4$; $c = 2$

b)
$$f(x) = x^2 + 3x$$
 Resp: $a = 1$; $b = +3$; $c = 0$

a)
$$f(x) = 3x^2 - 4x + 2$$
 Resp: $a = 3$; $b = -4$; $c = 2$
b) $f(x) = x^2 + 3x$ Resp: $a = 1$; $b = +3$; $c = 0$
c) $y = -x^2 - 5$ Resp: $a = -1$; $b = -5$; $c = 0$
d) $y = -2x^2$ Resp: $a = -2$; $b = 0$; $c = 0$

d)
$$y = -2x^2$$
 Resp: $a = -2$; $b = 0$; $c = 0$

Exemplo 3.2: Monte o gráfico da função

a)
$$f(x) = x^2 - 1$$
.

b)
$$f(x) = -x^2 + 2x$$

Exemplo 3.3: Determine os zeros da função

a)
$$f(x) = x^2 - 5x + 6$$

a)
$$f(x) = x^2 - 5x + 6$$

b) $f(x) = -x^2 + 7x - 12$
c) $f(x) = 3x^2 - 7x + 2$
d) $f(x) = x^2 - 4$
e) $f(x) = 3x^2 + 6$
f) $f(x) = x^2 + 3x$
g) $f(x) = -x^2 + 5x$

c)
$$f(x) = 3x^2 - 7x + 2$$

$$f(x) = x^2 - 4$$

e)
$$f(x) = 3x^2 + 6$$

$$f(x) = x^2 + 3x$$

$$g) f(x) = -x^2 + 5x$$

a)
$$f(x) = x^2 - 5x + 6$$

$$\Delta = 5^{2} - 4.(1).(6)$$

$$\Delta = 25 - 24$$

$$\Delta = 1$$

$$x = \frac{-(-5) \pm \sqrt{1}}{2.1}$$

$$x = \frac{5 \pm 1}{2}$$

$$x_1 = 3 e x_2 = 2$$

b)
$$f(x) = -x^2 + 7x - 12$$

$$\Delta = +7^{2} - 4.(-1).(12)$$

$$\Delta = 49 - 48$$

$$\Delta = 1$$

$$x = \frac{-(7) \pm \sqrt{1}}{2.(-1)}$$

$$x = \frac{7 \pm 1}{2}$$

$$x_1 = 4 e x_2 = 3$$

c)
$$f(x) = 3x^2 - 7x + 2$$

$$\Delta = -7^2 - 4.(3).(2)$$

$$\Delta = 49 - 24$$

$$\Delta = 25$$

$$x = \frac{-(-7) \pm \sqrt{25}}{\frac{2.3}{6}}$$

$$x = \frac{7 \pm 5}{6}$$

$$x_1 = 2ex_2 = \frac{1}{3}$$

d)
$$f(x) = x^2 - 4$$

 $x^2 - 4 = 0$
 $x^2 = 4$
 $x = \pm \sqrt{4}$
 $x_1 = 2 e x_2 = -2$

e)
$$f(x) = x^2 + 6$$

$$-3x^2 + 6 = 0$$

$$x^2 = \frac{-6}{-3}$$

$$x = \pm \sqrt{2}$$

$$x_1 = \sqrt{2} e x_2 = -\sqrt{2}$$

$$-3x^{2} + 6 = 0$$

$$x^{2} = \frac{-6}{-3}$$

$$x = \pm\sqrt{2}$$

$$x_{1} = \sqrt{2} e x_{2} = -\sqrt{2}$$

g)
$$f(x) = -x^2 + 5x$$

 $-x^2 + 5x = 0$
 $x(-x + 5) = 0$

Um dos termos é zero. Para confirmar, igualamos os dois termos a zero

$$x_1 = 0$$

$$-x_2 + 5 = 0$$

$$x_2 = 5$$

$$x_1 = 0 e x_2 = 5$$

$$f) f(x) = -3x^2 + 3x$$

$$-3x^2 + 3x = 0$$
$$x(3x + 3) = 0$$

Um dos termos é zero. Para confirmar, igualamos os dois termos a zero

$$x_1 = 0$$
 $x_2 + 3 = 0$
 $x_2 = -3$

$$x_1 = 0 e x_2 = -3$$

3.4. Determinação dos Zeros da Função Por Meio da Soma e do Produto

Dada a função $f(x) = ax^2 + bx + c$, é possível encontrar as raízes da função por meio da soma e do produto das raízes da seguinte forma

$$x_1 + x_2 = \frac{-b}{a} e x_1 \cdot x_2 = \frac{c}{a}$$

Exemplo 3.4: Encontre as raízes da função por meio da soma e do produto das raízes.

a)
$$f(x) = x^2 - 3x + 2$$

b)
$$f(x) = x^2 - 2x - 15$$

c)
$$f(x) = -x^2 + 6x - 8$$

d)
$$f(x) = 2x^2 - 6x - 8$$

a)
$$f(x) = x^2 - 3x + 2$$

$$x_1 + x_2 = \frac{-(-3)}{1} = 3$$

$$x_1 \cdot x_2 = \frac{2}{1} = 2$$

Sendo assim, os valores cuja soma é 3 e o produto é 2 são os valores 2 e 1. Desta forma

$$x_1 = 2 e x_2 = 1$$

c)
$$-x^2 + 6x - 8$$

$$x_1 + x_2 = \frac{-(6)}{-1} = 6$$

$$x_1 \cdot x_2 = \frac{-8}{-1} = 8$$

Os valores cuja soma é 6 e o produto é 8 são os valores -3 e 5. Desta forma

$$x_1 = 2 e x_2 = 4$$

b)
$$f(x) = x^2 - 2x - 15$$

$$x_1 + x_2 = \frac{-(-2)}{1} = 2$$

$$x_1 \cdot x_2 = \frac{-15}{1} = 15$$

Os valores cuja soma é -2 e o produto é 15 são os valores -3 e 5. Desta forma

$$x_1 = -3 e x_2 = 5$$

d)
$$2x^2 - 6x - 8$$

$$x_1 + x_2 = \frac{-(-6)}{2} = 3$$

$$x_1 \cdot x_2 = \frac{-8}{2} = 4$$

Os valores cuja soma é 6 e o produto é 8 são os valores -3 e 5. Desta forma

$$x_1 = 2 e x_2 = 4$$

Exercícios

- 3.1) Encontre o valor de $f(x) = x^2 + 3x 10 \text{ par } f(0)$.
- 3.2) Encontre as raízes da função $f(x) = 5x^2 + 15x$
- 3.3) Uma bola, ao ser chutada por um goleiro em um tiro de meta, em uma partida de futebol, teve a sua trajetória descrita pela equação $h(t) = -2t^2 + 8t$ $(t \ge 0)$, em que t tempo medido em segundos e h(t) é a altura, em metros, da bola no instante t. Determine, após o chute:
 - a) Instante em que a bola retornará ao solo?
 - b) Altura atingida pela bola?

3.4) Aplicando a fórmula de Báskara, resolva as seguintes equações:

a)
$$3x^2 - 7x + 4 = 0$$

b)
$$9y^2 - 12y + 4 = 0$$

c)
$$5x^2 + 3x + 5 = 0$$

- 3.5) Determine os valores de k para que a equação $2x^2 + 4x + 5k = 0$ tenha raízes reais e distintas.
- 3.6) Calcule o valor de p na equação $x^2 (p + 5)x + 36 = 0$ de modo que as raízes sejam reais e iguais.
- 3.7) resolva a equação $x^2 + \frac{5x}{2} \frac{3}{2} = 0$.
- 3.8) identifique os coeficientes da equação e diga se ela é completa ou não.

a)
$$5x^2 - 3x - 2 = 0$$

b)
$$3x^2 + 55$$

c)
$$x^2 - 6x$$

d)
$$x^2 - 10x + 25$$

- 3.9) Se você multiplicar um número real *x* por ele mesmo e do resultado subtrair 14, você vai obter o quíntuplo do número *x*. Qual é esse número?
- 3.10) O número -3 é a raiz da equação $x^2 7x 2c = 0$. Nessas condições, determine o valor do coeficiente c.

4. PROPORCIONALIDADE

A proporcionalidade pode definir a forma como duas grandezas (ou variáveis) interagem entre si. A proporcionalidade pode ser direta ou indireta

4.1. Proporcionalidade Direta

Dizemos que uma variável é diretamente proporcional a outra se existir uma constante k, tal que

$$y = k.x$$

em que k é a constante de proporcionalidade.

A relação entre grandezas diretamente proporcionais é uma função linear expressa na forma

$$y = ax + b$$

em que a é a constante de proporcionalidade e b = 0.

Ao comprarmos mais de uma laranja, com preço de k reais por unidade, o valor y a ser pago é

$$y = k.x$$

em que x é número de laranjas.

A razão entre as grandezas preço (y) e o número de laranjas (x) é sempre constante e igual a k (preço por unidade). Esta relação é chamada proporcionalidade direta.

4.2. Proporcionalidade Indireta

Há situações em que uma grandeza é proporcional ao recíproco o inverso da outra. Esta relação de proporcionalidade pode ser expressa por

$$y = \frac{k}{x}$$

Neste caso, dizemos que as variáveis são inversamente proporcionais, sendo k a constante de proporcionalidade. A equação $y + \frac{k}{x}$ também pode ser expressa da forma

$$y = k.x^{-1}$$

Exemplo 4.1: A função $y = x^{-1}$ e seu gráfico

$$D = \{x \in \mathbb{R} \mid x \neq 0\}$$

Se
$$x > 0 \rightarrow \frac{1}{x} > 0$$

Se
$$x < 0 \rightarrow \frac{1}{x} < 0$$

Isso significa dizer que o gráfico da função situa-se no primeiro e no terceiro quadrantes. Esta curva é chamada hipérbole.

4.3. Proporcionalidade Entre Potência de Variáveis

Há relações de dependência entre duas variáveis em que a proporcionalidade acontece entre uma das variáveis e a potência da outra.

Exemplo 4.2: Queda livre

A queda livre de um corpo é descrita pela função $s=\frac{1}{2}$. g. Veja que a variável s é proporcional a potência quadrada de t, com a constante de proporcionalidade igual a $k=\frac{1}{2}$. g. Assim,

$$s = k.t^2$$

4.3.1. Função Potência Inteira de X.

Uma função y = f(x) é uma função potência inteira de x se é proporcional a uma potência inteira constante de x, ou seja, se

$$y = f(x) = ax^p$$
.

em que a é uma constante e p é o expoente (um inteiro).

Exemplo 4.3: Gráfico da função $y = x^2$

Observe na figura que a parte do gráfico que está no primeiro quadrante parece sebrepor-se à do segundo quadrante se dobrarmos o plano cartesiano ao longo do eixo θy . Quando isso acontece, dizemos que o gráfico é simétrico em relação ao eixo θy .

O Exemplo 4.1 apresentou o gráfico da função $y=x^{-1}$, o qual pode ser visto na figura abaixo.

Observe que se dobrarmos o plano cartesiano ao longo do eixo θ y e depois ao longo do eixo θ x, o ramo da hipérbole no 1º quadrante parece sobrepor-se ao ramo da hipérbole do 3º quadrante. Quando isso acontece, dizemos que o gráfico é simétrico em relação à origem.

4.3.2. Função Par

Dois pontos P e Q são simétricos em relação ao eixo 0y se a reta PQ é perpendicular ao eixo 0y e ambos os pontos são equidistantes do eixo. Em coordenadas, temos que se P = (a,b), então Q = (-a,b).

Vejamos a função $y = x^2$.

Veja que os pontos $(-a,a^2)$ e (a,a^2) são simétricos em relação ao eixo 0y. Essa relação representa outra característica algébrica de $y=x^2$, a qual define uma classe de funções denominada **funções pares**.

Dizemos que f é uma **função par** se f(x) = f(-x), para qualquer $x \in D$. Uma função par tem o seu gráfico simétrico ao eixo 0y.

4.3.3. Função Ímpar

Vejamos a função $y = x^{-1}$. Observe no gráfico que os pontos M e N são simétricos em relação à origem.

Dois pontos M e N são simétricos em relação à origem, se e somente se, a origem é o ponto médio do segmento de reta MN.

Funções como $y = x^{-1}$, que satisfazem a condição f(-a) = -f(a) são denominadas **funções ímpares**. Uma **função ímpar** tem o seu gráfico simétrico em relação à origem.

Exemplo 4.4: A função $y = x^{-3}$ e seu gráfico

A função $y = x^{-3}$ é uma função ímpar. Ela tem domínio \mathbb{R} e f(x) = 0 se e somente se x = 0. Se x > 0, então $x^3 > 0$. Se x < 0, então $x^3 < 0$.

4.3.4. Funções Potência $y = x^n$, em que n é um Número Natural Par

Funções potência $y = x^n$, em que N é um número natural par são funções pares, ou seja, seus gráficos são simétricos em relação ao eixo 0y. Independente do valor de N, o gráfico situa-se no 1° e no 2° quadrantes.

4.3.5. Funções Potência $y = x^n$, em que n é um Número Natural Ímpar

Funções potência $y = x^n$, em que n é um número natural ímpar são funções ímpares, ou seja, seus gráficos são simétricos em relação à origem. Independente do valor de n, o gráfico situa-se no 1° e no 3° quadrantes.

4.3.6. Funções Potência $y = x^{-n}$, em que n é um Número Natural Par

O gráfico de tais funções se assemelha ao gráfico da função $y = x^{-1}$. Além de serem funções ímpares, a discussão sobre o comportamento da função para valores de x muito pequenos e muito grandes é idêntica a de $y = x^{-1}$.

Exercícios

- 4.1) Quando uma pessoa compra um tecido (de largura constante), ela paga um preço *P* que depende do comprimento *L* adquirido. Suponha que 1 m de tecido custasse R\$50,00.
 - a) Completar a tabela deste exercício com os valores de *P* correspondentes aos de *L* indicados.

L(m)	<i>P</i> (R\$)
1	50
2	
3	
4	

- b) Ao duplicar o valor de *L*, o valor de *P* duplicou?
- c) E ao triplicar o valor de *L*?
- d) Então, que tipo de relação existe entre P e L?
- 4.2) Com relação à tabela do exercício anterior:
 - a) Dividir cada valor de P pelo correspondente valor de L. O quociente P/L varia ou é constante?
 - b) Qual o valor da constante de proporcionalidade *K* entre *P* e *L*?
 - c) Como podemos expressar matematicamente a relação entre P e L?
- 4.3) Como você sabe, o volume V de um balão de borracha é tanto maior quanto maior for seu raio R. Medindo os valores V e R para diversos balões, encontramos que:
 - quando R = 10 cm, temos $V = 4.2 \ litros$
 - quando R = 20 cm, temos $V = 33.4 \ litros$

- quando R = 30 cm, temos V = 113 litros.
- a) Se o raio de um balão é duplicado, o seu volume duplica?
- b) E se o raio for triplicado, o volume triplica?
- c) Podemos dizer que V e R são diretamente proporcionais?
- 4.4) Uma pessoa verifica que entre duas grandezas X e Y existe a seguinte relação matemática: Y = 4X.
 - a) Podemos dizer que *Y* é diretamente proporcional a *X*?
 - b) Se o valor de X passar de X = 2 para X = 10, por qual fator será multiplicado o valor de Y?
 - c) Qual o valor da constante de proporcionalidade entre *Y* e *X*?
 - d) Qual é a forma do gráfico Y vs X?
 - e) Qual é o coeficiente angular deste gráfico?
- 4.5) Observando a tabela abaixo, responder:

X	Y
1	30
2	15
3	10
4	
5	

- a) Quando o valor de X é duplicado, por quanto fica dividido o valor de Y?
- b) E quando o valor de X é triplicado, o que acontece com o valor de Y?
- c) Então que tipo de relação existe entre Y e X?
- d) Construir o gráfico Y vs X, usando os valores da tabela anterior.
- e) Como se denomina a curva que você obteve?
- 4.6) Diga se é diretamente ou inversamente proporcional:
 - a) Número de pessoas em um churrasco e a quantidade (gramas) que cada pessoa poderá consumir.
 - b) A área de um retângulo e o seu comprimento, sendo a largura constante.
 - c) Número de erros em uma prova e a nota obtida.
 - d) Número de operários e o tempo necessário para eles construírem uma casa.
 - e) Quantidade de alimento e o número de dias que poderá sobreviver um náufrago.
- 4.7) Monte o gráfico das funções e classifique-as como função par ou ímpar
 - a) $y = x^{-3}$
 - b) $y = x^{3}$
 - c) $y = x^{-2}$
 - d) $v = x^2$
- 4.8) Quando a função é simétrica em relação ou eixo 0y?

- 4.9) Quando a função é simétrica em relação ao eixo 0x?
- 4.10) O que define uma função como par ou ímpar?

5. NOVAS FUNÇÕES A PARTIR DE FUNÇÕES CONHECIDAS

Sejam f e g funções com domínio D. Definimos as funções soma, subtração, multiplicação e quociente de f e g como:

$$(f+g)(x) = f(x) + g(x)$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, \text{ para } x \text{ em } D, \text{ tal que } g(x) \neq 0$$

A função $s = \frac{1}{2} \cdot g \cdot t^2$, pode ser interpretada como o produto da função $f(t) = \frac{1}{2} \cdot g$ por h(t), sendo f(t) uma função constante.

5.1 Função Composta

Definimos função composta $g \circ f$ como a função com domínio D1, tal que $g \circ f(x) = g(f(x))$, para qualquer x pertencente a D1.

A função composta pode ser interpretada como a coordenação de ações ou comandos.

$$x \to f(x) \to g(f(x))$$

O primeiro comando consiste na ação interna e o segundo, na ação externa de g.

Exemplo 5.1: Como escrever a função $y = (x - 3)^4$ como a composta de duas funções $f \in g$?

$$f(x) = x + 3 = u$$

 $g(u) = u^4 = f(x)^4$

Neste caso

$$(g \circ f)(x)$$

Exemplo 4.2: Para $f(x) = x - 2 e g(x) = x^3 + 1$, temos

$$(f \circ g)(x) = f(g(x)) = f(x^3 + 1) = (x^3 + 1) - 2$$

 $(g \circ f)(x) = g(f(x)) = g(x - 2) = (x - 2)^3 + 1$

Para calcular $(g \circ f)(0)$, temos que

$$(g \circ f)(0) = g(f(0)) = (0-2)^3 + 1 = -8 + 1 = 7$$

Para calcular $(f \circ g)(0)$, temos que

$$(f \circ g)(0) = f(g(0) = (0^3 + 1) - 2 = 1 - 2 = -1$$

Exercícios

Sejam as funções $f(x) = x^2 - 1 e g(x) = 3x + 2$, determine: 5.1)

- a) f(g(2))
- b) g(f(2))
- c) g(f(x))
- Sejam as funções f(x) = 2x 3 e $(f \circ g)(x) = x^2 1$, determine g(2). 5.2)
- Seja $f(x) = x^2 + 2x + 1$ e g(x) = -2x 1, determine f(g(x)) e g(f(x)). 5.3)
- Sejam f e g duas funções reais, tal que f(g(x) = -10x 13 e g(x) = 2x +5.5) 3. Determine f(x).
- Se $f(x) = \frac{1}{x}$, calcule a composta f(f(x)). 5.6)
- Se $f(t) = t^2 e g(t) = t 2$, determine: 5.7)
 - a) f(g(2))
 - b) g(f(2))
 - c) f(g(u)), sendo g(u) = u 2
 - d) g(t 1)

5.8) (Cefet – PR) Se $f(x) = x^5$ e g(x) = x - 1, a função composta f(g(x)) será igual a:

- a) $x^5 + x 1$
- b) $x^6 x^5$
- c) $x^6 5x^5 + 10x^4 10x^3 + 5x^2 5x + 1$ d) $x^5 5x^4 + 10x^3 10x^2 + 5x 1$
- e) $x^5 5x^4 10x^3 10x^2 5x 1$

5.9) (Acafe – SC) Dadas as funções reais f(x) = 2x - 6 e g(x) = ax + b, se f(g(x)) = ax + b12x + 8, o valor de a + b é:

- a) 10
- b) 13
- c) 12
- d) 20

5.10) (METODISTA) Sabendo que f(g(x)) = 3x - 7 e f(x) = x/3 - 2, então :

- a) g(x) = 9x 15
- b) g(x) = 9x + 15
- c) g(x) = 15x 9
- d) g(x) = 15x + 9
- e) g(x) = 9x 5

6. DEFINIÇÃO DE FUNÇÃO COM A TEORIA DOS CONJUNTOS

Toda função tem associada a ela três elementos. São eles o domínio, o contradomínio e a imagem da função. O domínio da função é o conjunto de partida e o contradomínio é o conjunto de chegada. O conjunto imagem, que é um subconjunto do contradomínio, contém os elementos do contradomínio que possuem correspondente no domínio. Esta correspondência obedece à lei de formação da função.

A figura abaixo mostra o conceito de função utilizando a teoria dos conjuntos. O conjunto A, o conjunto de partida, é o domínio da função. O conjunto B, o conjunto de chegada, é o contradomínio da função. Os elementos de B, que possuem correspondente em A, formam o conjunto imagem da função.

O f representa a lei de correspondência da função, que vai definir como cada elemento do domínio da função chegou ao seu correspondente no contradomínio da função. Uma forma de representar uma função é mostrada abaixo. Dizemos f de A em B, sendo A o domínio e B o contradomínio da função.

$$f: A \rightarrow B$$

- Cada elemento do domínio da função tem um único correspondente no contradomínio da função.
- Cada elemento do contradomínio pode ter mais de um correspondente no domínio da função
- O conjunto imagem pode ser um subconjunto do contradomínio, ou seja, $Im(f) \subset B$.
- O conjunto imagem pode ser igual ao conjunto contradomínio da função, ou seja, Im(f) = B.

As três condições citadas acima são mostradas na figura abaixo.

6.1 Função Injetora ou Injetiva

Uma função $f: A \to B$ é injetora quando elementos diferentes de A são transformados em elementos diferentes de B. Sendo assim, se $x_1 \neq x_2$ em A, então $f(x_1) \neq f(x_2)$ em B.

Seja uma função f, tal que dois elementos diferentes do domínio leva ao mesmo elemento do contradomínio. Neste caso, a função não é injetora.

Exemplo 6.1: Seja $f: \mathbb{R} \to \mathbb{R}$, tal que $f(x) = x^2 + 1$

$$f(2) = 2^2 + 1 = 5$$

$$f(-2) = (-2)^2 + 1 = 5$$

Neste caso, f(x) não é uma função injetora.

Exemplo 6.2: Seja f(x) = 3x

$$f(1) = 3.1 = 3$$

 $f(-1) = 3.(-1) = -3$

Neste caso, f(x) é uma função injetora.

Para determinar se uma função é injetora, podemos analisar o gráfico da função. Linhas imaginárias só podem tocar o gráfico de uma função injetora uma única vez. Podemos observar no gráfico da função f(x) = 3x, mostrado abaixo, que uma linha horizontal (em vermelho) só intercepta o gráfico uma única vez, por isso ela é injetora.

Exemplo 6.3: Identifique se a função é injetora.

a)
$$f(x) = x^2$$

b)
$$f(x) = x^{-2} + 1$$

$$c) f(x) = x^{-3}$$

d)
$$f(x) = x^3$$

a) A função não é injetora

c) A função é injetora

b) A função não é injetora

d) A função é injetora

Exercício

6.1) Defina se a função é ou não injetora

a)
$$f: \mathbb{R} \to \mathbb{R}$$
, tal que $f(x) = 3x + 1$

b)
$$f: \mathbb{R} \to \mathbb{R}$$
, tal que $f(x) = \frac{x^2}{2}$

c)
$$f: \mathbb{R}_+ \to \mathbb{R}$$
, tal que $f(x) = \frac{x^2}{2}$ (Obs.: \mathbb{R}_+ são os reais positivos, incluindo 0)

6.2. Função Sobrejetora

Uma função $f: A \to B$ é sobrejetora quando todo elemento $y \in B$ é a imagem de um $x \in A$, ou seja, Im(f) = B. A figura abaixo mostra o conceito. Observe que o conjunto contradomínio é igual ao conjunto imagem da função. Em outras palavras, todos os elementos do contradomínio fazem parte do conjunto imagem da função.

$$B = \{a, b\} = Im(f)$$

$$B = \{a, b, c\} \neq Im(f)$$

$$A \qquad f \qquad B$$

$$\bullet \qquad \bullet \qquad \bullet$$

$$\bullet \qquad \bullet \qquad$$

Exemplo 6.4: Seja a função $f: \mathbb{R} \to \mathbb{R}$, tal que f(x) = x + 3, determine se ela é sobrejetora.

A função é sobrejetora porque $B = \mathbb{R} = Im(f(x))$. Em outras palavras, para cada elemento x do domínio da função, existe um elemento y no contradomínio, dado por y = f(x) = x + 3, que faz parte do conjunto imagem da função.

Exemplo 6.5: Seja a função $f: \mathbb{R} \to \mathbb{R}$, tal que $f(x) = x^2 + 2x$, determine se ela é sobrejetora.

A função não é sobrejetora porque $B = \mathbb{R} \neq Im(f(x))$. Neste caso, podemos afirmar que $\{x \in \mathbb{R}\}$ e $\{y \in \mathbb{R} \mid y \geq -1\}$, ou seja, y só pode assumir valores igual ou maior que -1.

Exemplo 6.6: Seja a função $f: \mathbb{R} \to \mathbb{R}$, tal que $f(x) = x^3$, determine se ela é sobrejetora.

A função é sobrejetora porque $B = \mathbb{R} = Im(f(x))$. Em outras palavras, para cada elemento x do domínio da função, existe um elemento y no contradomínio, dado por $y = f(x) = x^3$, que faz parte do conjunto imagem da função.

Exemplo 6.7: Seja a função $f: \mathbb{R}_+^* \to \mathbb{R}_+$, tal que f(x) = 2x, determine se ela é sobrejetora.

Obs.: \mathbb{R}_+^* (reais positivos, exceto o 0).

A função não é sobrejetora porque $B = \mathbb{R}_+ \neq Im(f(x))$. Observe que o 0 faz parte do contradomínio, mas não faz parte da imagem da função.

Exemplo 6.8: Dado o gráfico da função $f: \mathbb{R}_+ \to \mathbb{R}_+$, determine se função f é injetora e sobrejetora.

A função f é injetora, uma vez que $x_1 \neq x_2$ faz com que $f(x_1) \neq f(x_2)$.

A função não é sobrejetora, uma vez que Im(f) = [0,8] e o conjunto contradomínio $CD = \mathbb{R}_+$. Sendo assim, $Im(f) \neq CD$.

6.3. Função Bijetora

Uma função $f: A \to B$ é bijetora se ela for simultaneamente injetora e sobrejetora. A função é injetora se $x_1 \neq x_2$ faz com que $f(x_1) \neq f(x_2)$. A função é sobrejetora se , Im(f) = CD.

Exemplo 6.9: Seja $f: \mathbb{R}^* \to \mathbb{R}$, tal que f(x) = 4x. Determine se ela é bijetora.

A função não é bijetora, uma vez que o contradomínio da função ao inclui o 0, mas a imagem da função não inclui 0. Sendo assim, $Im(f) \neq CD$. Isso significa que a função não é sobrejetora. Todavia, a função é injetora uma vez que para $x_1 \neq x_2$ temos $f(x_1) \neq f(x_2)$.

Exemplo 6.10: Seja $f: \mathbb{R} \to \mathbb{R}_+$, tal que $f(x) = x^2$. Determine se ela é bijetora.

A função não é injetora, pois possui simetria com o eixo θy . No entanto, a função é sobrejetora porque Im(f) = CD, compostos por todos os reais positivos, incluindo o θ .

Exemplo 6.11: Seja $f: \mathbb{R} \to \mathbb{R}$, tal que f(x) = x - 1. Determine se ela é bijetora.

A função é injetora porque cada elemento do domínio corresponde a um único elemento do contradomínio. A função é sobrejetora porque Im(f) = CD. Sendo assim, ela é bijetora.

Exercícios

6.2) Verifique se a função é injetora, sobrejetora ou injetora.

a) $f: A \rightarrow B$

a)
$$f: A \rightarrow B$$

A

 $f: B$

B

 $f: A \rightarrow B$
 $f: B$
 $f: A \rightarrow B$
 $f: B$
 $f: B$
 $f: A \rightarrow B$

c) $f: A \rightarrow B$

d)
$$f: \{0,1,2\} \to \mathbb{N}$$
, dada por $f(x) = x + 1$

e) $f: [0,4] \to [0,5]$

6.3) Determine se a função é injetora, sobrejetora ou bijetora.

- a) $f: \mathbb{R} \to \mathbb{R}$, tal que f(x) = 2x + 1
- b) $f: \mathbb{R} \to \mathbb{R}_+$, tal que $f(x) = 1 x^2$
- c) $f: \mathbb{R}^* \to \mathbb{R}^*$, tal que $f(x) = \frac{1}{x}$
- d) $f: \mathbb{R} \to \mathbb{R}$, tal que $f(x) = x^3$

7. FUNÇÃO INVERSA

Seja f(x) = 2x + 1, com $A = \{0, 1, 2\}$; $B = \{1, 3, 5\}$. Podemos deduzir que a função é injetora, sobrejetora e, consequentemente, bijetora. A função é injetora porque existe um elemento do domínio para cada elemento do contradomínio. A função também é sobrejetora porque Im(f) = CD. Sabemos que uma função é bijetora quando ela é injetora e sobrejetora.

Seja $f(x) = \frac{x-1}{2}$, temos que

$$f(1) = \frac{1-1}{2} = 0$$

$$f(3) = \frac{3-1}{2} = 1$$

$$f(5) = \frac{5-1}{2} = 2$$

Diante do exposto, podemos afirmar que a função $f(x) = \frac{x-1}{2}$ é a função inversa de f(x) = 2x + 1.

A função inversa de f(x) pode ser representada por $f^{-1}(x)$. Assim, dizemos que a função f(x) = 2x + 1 tem como função inversa a função $f^{-1}(x) = \frac{x-1}{2}$.

É importante ressaltar que somente funções bijetoras admitem funções inversas. Da mesma forma, o f^{-1} é apenas uma notação que indica que ela é uma função reversa.

Para saber se uma função possui a função inversa, temos de utilizar cada elemento da imagem da função original como elemento do domínio da função inversa e chegar ao mesmo elemento do domínio da função original. Em outras palavras, se $f: A \to B$, a sua função reversa faz o caminho inverso, ou seja, $f^{-1}: B \to A$. A figura a seguir ilustra a ideia.

A figura acima mostra que $D(f) = Im(f^{-1})$. Isso significa que o domínio da função original é igual a imagem da sua função inversa. Da mesma forma $D(f^{-1}) = Im(f)$.

Para obter a função inversa de uma função temos de substituir x por y e isolar y não função.

Exemplo 7.1: Dada a função f(x) = 3x + 4, determine a sua função inversa.

$$y = 3x + 4$$

Ao substituir x por y, temos

$$x = 3y + 4$$

Isolando y

$$y = \frac{x-4}{3}$$

Assim, a função inversa de f(x) = 3x + 4 tem como função inversa a função $f^{-1}(x) = \frac{x-4}{3}$.

$$f(3) = 3.3 + 4 = 13$$
 $f(6) = 3.6 + 4 = 22$ $f(7) = 3.7 + 4 = 25$ $f^{-1}(13) = \frac{13 - 4}{3} = 3$ $f^{-1}(22) = \frac{22 - 4}{3} = 6$ $f^{-1}(25) = \frac{25 - 4}{3} = 7$

Exemplo 7.2: Determine a função inversa da função

a)
$$f(x) = \frac{3x+2}{2x}$$

b)
$$f(x) = \frac{x+1}{3}$$

$$c) f(x) = x^2 + 2x$$

a)
$$y = \frac{3x+2}{2x}$$

$$x = \frac{3y+2}{2y}$$
$$2yx = 3y+2$$
$$2yx - 3y = 2$$
$$y(2x - 3) = 2$$

$$y = \frac{2}{2x - 3}$$
$$f^{-1}(x) = \frac{2}{2x - 3}$$

b)
$$y = \frac{x+1}{3}$$

$$x = \frac{y+1}{3}$$
$$3x = y+1$$
$$y = 3x-1$$
$$f^{-1}(x) = 3x-1$$

c) A função $f(x) = x^2 + 2x$ não possui inversa porque ela não é uma função bijetora.

Exercícios

7.1) Nas funções bijetoras abaixo, de \mathbb{R} em \mathbb{R} , obtenha a lei de correspondência que define a função inversa.

$$a) f(x) = 2x + 3$$

b)
$$g(x)^{\frac{4x-1}{3}}$$

c)
$$h(x) = 3x^2 + 2$$

- 7.2) Seja a função bijetora $f: \mathbb{R} \{2\} \to \mathbb{R} \{1\}$, definida por $f(x) = \frac{x+1}{x-2}$. Qual a função inversa de f?
- 7.3) Obtenha a função inversa das seguintes funções:

a)
$$f: \mathbb{R} - \{3\} \to \mathbb{R} - \{1\}$$

$$f(x) = \frac{x+3}{x-3}$$

b)
$$f: \mathbb{R} - \{3\} \to \mathbb{R} - \{3\}$$

$$f(x) = \frac{3x+2}{x-3}$$

7.4) Seja a função $f: \mathbb{R} - \{-2\} \to \mathbb{R} - \{4\}$, definida por $f(x) = \frac{4x+3}{x+2}$. Qual o valor do domínio de f^{-1} com imagem 5?

Gabarito:

7.1a
$$f^{-1}(x) = \frac{x-3}{2}$$

7.1b $g^{-1}(x) = \frac{3x+1}{4}$
7.1c $h^{-1}(x) = \sqrt[2]{x-2}$

7.2 É a função f^{-1} , $de \mathbb{R} - \{1\} \ em \mathbb{R} - \{2\}$, definida por

$$f^{-1}(x) = \frac{2x+1}{x-1}.$$

7.3a
$$f^{-1}: \mathbb{R} - \{1\} \to \mathbb{R} - \{3\}$$

 $f^{-1}(x) = \frac{3x+3}{x-1}$
7.3b $f^{-1}: \mathbb{R} - \{3\} \to \mathbb{R} - \{3\}$
 $f^{-1}(x) = \frac{3x+2}{x-3}$
7.4 17/7

8.

REFERÊNCIAS

Pinto M. M. F. "Fundamentos da Matemática". Belo Horizonte: Editora UFMG, 2011.

Giongo. I. M. et al. Atividades Envolvendo Proporcionalidade Direta e Inversa. Baixado de https://www.univates.br/ppgece/media/materiais-didaticos/2012/ Atividades-envolvendo-proporcionalidade-direta-e-inversa.pdf. acessado em 14/08/2018.

Mundo da Educação. Exercícios sobre Função Composta. Disponível em https://exercicios.mundoeducacao.bol.uol.com.br/exercicios-matematica/exercicios-sobrefunção -composta.htm. Último acesso em 15/08/2018.

Professor Ferretto. https://plataforma.professorferretto.com.br/entrada/index#/. Último acesso em 17/08/2018.