Suites numériques et limites

Suites arithmétiques et géométriques

Exercice 4.1

Le prix de vente d'une voiture commercialisée initialement en 1995 diminue tous les ans de la même valeur. En 2002, elle est affichée au prix de 13200 \in . On relève en 2006 un prix de vente de 11600 \in . On note v_n le prix de vente de ce modèle l'année (1995 + n) et on considère la suite (v_n).

- 1. Donner la nature de la suite (v_n) et en déterminer la raison.
- 2. Quel était le prix initial de vente en 1995?
- 3. À partir de quel année sera-t-il possible d'acquérir la voiture pour moins de 10000 €?
- 4. De début 1999 à fin 2010, un concessionnaire achète chaque année dix de ces modèles. Déterminer la somme totale dépensée pour acheter l'ensemble de ces véhicules.

Correction

- 1. Comme le prix de vente diminue tous les ans de la même valeur, la suite (v_n) est arithmétique $v_{n+1} = v_n + r = v_0 + nr$. On a $v_{11} = 11600$ et $v_7 = 13200$ donc la raison de la suite est $r = \frac{v_{11} v_7}{11 7} = \frac{11600 13200}{4} = -400$.
- 2. $v_0 = v_{n+1} nr \text{ donc } v_0 = 13200 7 \times (-400) = 16000 \in$
- 3. $v_n < 10000 \text{ ssi } v_0 + (n-1)r < 10000 \text{ ssi } n > \frac{10000 16000}{-400} = \frac{-6000}{-400} = 15$: à partir de 2010 il sera possible d'acquérir la voiture pour moins de $10\,000 \in$.

$$4. \ \ 10\left(v_4+v_5+\cdots+v_{15}\right) = 10\left[\sum_{k=0}^{15}v_k-\sum_{k=0}^{3}v_k\right] = 10\left[\left((15+1)v_0+r\frac{15(15+1)}{2}\right)-\left((3+1)v_0+r\frac{3(3+1)}{2}\right)\right] = 1464000$$

Exercice 4.2 (Lecture graphique, suite géométrique)

Soit (u_n) la suite représentée sur la figure ci-contre.

- 1. Déterminer graphiquement u_0 , u_1 , et u_2 .
- 2. En supposant que la nature de la suite est géométrique, en préciser la raison.
- 3. Exprimer u_n en fonction de n.
- 4. En déduire la valeur de u_{10} .
- 5. Calculer $S_{10} = u_0 + u_1 + ... + u_{10}$.

Correction

- 1. $u_0 = 8$, $u_1 = 4$, et $u_2 = 2$.
- 2. Une suite est géométrique de raison $q \in \mathbb{R}$ si $\frac{u_{n+1}}{u_n} = q$ pour tout $n \in \mathbb{N}$. Comme $\frac{u_2}{u_1} = \frac{u_1}{u_0} = \frac{1}{2}$, on en déduit que la suite est géométrique de raison 1/2, *i.e.* $u_{n+1} = u_n/2$.
- 3. $u_n = 2^{-1}u_{n-1} = 2^{-2}u_{n-2} = \dots = 2^{-n}u_0 = 8 \times 2^{-n} = 2^{3-n}$.
- 4. $u_{10} = 2^{3-10} = 1/2^7 \approx 0.0078125$.
- 5. $S_{10} = \sum_{n=0}^{10} u_n = 8 \times \frac{1 2^{-11}}{1 2^{-1}} = 15.9921875.$

Exercice 4.3

Au niveau de la mer, la pression atmosphérique est de $1013\,\mathrm{hPa}$ (hectopascals). On admet que la pression atmosphérique diminue de 1.25% à chaque élévation de $100\,\mathrm{m}$. On note pour les besoins de l'exercice P_n la pression en hectopascal à $100\,\mathrm{m}$ mètres d'altitude et on considère la suite numérique (P_n).

1. Déterminer les pressions P_0 , P_1 , et P_2 aux altitudes respectivement 0 m, 100 m et 200 m.

- 2. Exprimer la pression P_{n+1} à l'altitude 100n + 100 mètres en fonction de la pression P_n à l'altitude 100n mètres. En déduire la nature de la suite et sa raison.
- 3. Donner le terme général de la suite (P_n) .
- 4. Calculer la pression atmosphérique à 3200 m d'altitude.
- 5. Déterminer à partir de quelle altitude, à 100 m près, la pression atmosphérique devient inférieure à 600 hPa. Justifier par un encadrement.

- 1. $P_0 = 1013$, $P_1 = (1 1.25\%)P_0 = \frac{98.75}{100}P_0 = 1000.3375$ et $P_2 = 987.83328125$.
- 2. $P_{n+1} = \frac{98.75}{100} P_n$: il s'agit d'une suite géométrique de raison q = 0.9875 = 98.75%.
- 3. $P_n = P_0 q^n = 1013 \times (0.9875)^n$.
- 4. La pression atmosphérique à 3200 m d'altitude correspond à $P_{32}=1013\times(0.9875)^{32}=677.324496629$.
- 5. $P_n < 600 \text{ ssi } 1013 \times (0.9875)^n < 600 \text{ ssi } (0.9875)^n < \frac{600}{1013} \text{ ssi } n > \log_{0.9875}(\frac{600}{1013}) = \ln(\frac{600}{1013}) / \ln(0.9875) \simeq 41$. En effet, $P_{41} = 604.826375239$ et $P_{42} = 597.266045549$.

Calculs de limites

FEXERCICE 4.4 (Suite géométrique)

Étudier la convergence de la suite

$$\left(\frac{1-a^2}{1+a^2}\right)^n, \qquad a \in \mathbb{R}.$$

Correction

Il s'agit d'une suite géométrique de raison $q(x) = \frac{1-x}{1+x}$, avec $x = a^2 \ge 0$. On trace d'abord la fonction q pour $x \in \mathbb{R}^+$ et on la compare aux droites d'équation $q = \pm 1$.

- $\star u_n$ ne converge pas et ne possède pas de limite si q(a) < -1, c'est-à-dire pour aucun a réel.
- $\star u_n$ ne converge pas et possède deux valeurs d'adhérence 1 et -1 si q(a) = -1, c'est-à-dire pour aucun a réel.
- ★ u_n converge vers 0 si -1 < q(a) < 1, c'est-à-dire pour tout $a \ne 0$.
- ★ u_n est constante et converge vers 1 si q(a) = 1, c'est-à-dire si a = 0.
- ★ u_n est divergente et possède une limite égale à $+\infty$ si q(a) > 1, c'est-à-dire pour aucun a réel.

En résumé:

$$\lim_{n} u_n = \begin{cases} 0, & \text{si } a \neq 0, \\ 1, & \text{si } a = 0. \end{cases}$$

Exercice 4.5

Étudier la limite quand n tend vers $+\infty$ des suites de terme général :

a)
$$\frac{1}{n} + n^2 + 1$$

b)
$$\frac{2n}{n^3 + 1}$$

$$c) \quad \frac{n^2 - 1}{n + 1}$$

d)
$$\frac{n-(-1)^{n+1}}{n+(-1)^{n+1}}$$

e)
$$\frac{2n+(-1)^n}{5n+(-1)^{n+1}}$$

f)
$$\sqrt{n^5+3n}-n$$

g)
$$n - \sqrt{n^3 - 3n}$$

h)
$$n - \sqrt{n^2 - 3n}$$

i)
$$n^2 - \sqrt{n^4 - 2n}$$

j)
$$n^2 - \sqrt{n^4 - 2n^2}$$

$$k) \frac{\sin(n) + 2}{n + 3}$$

$$1) \quad \frac{\cos^5(\sqrt{n})}{n^2}$$

m)
$$\frac{n^3 + 5n}{5n^3 + \cos(n) + \frac{1}{n^2}}$$

n)
$$\frac{(-1)^n \arctan(n)}{n}$$

o)
$$\left(1+\frac{\pi}{n}\right)^n$$

p)
$$\left(1 - \frac{e}{n}\right)^n$$

a)
$$\frac{1}{n} + n^2 + 1 \xrightarrow[n \to +\infty]{} + \infty$$
,

b)
$$\frac{2n}{n^3+1} = \frac{2}{n^2+\frac{1}{n}} \xrightarrow[n \to +\infty]{} 0$$
,

c)
$$\frac{n^2-1}{n+1} = (n-1) \xrightarrow[n \to +\infty]{} +\infty$$
,

d)
$$\frac{n-(-1)^{n+1}}{n+(-1)^{n+1}} = \frac{1-\frac{(-1)^{n+1}}{n}}{1+\frac{(-1)^{n+1}}{n}} \xrightarrow[n \to +\infty]{} 1,$$

e)
$$\frac{2n + (-1)^n}{5n + (-1)^{n+1}} = \frac{2 + \frac{(-1)^n}{n}}{5 + \frac{(-1)^{n+1}}{n}} \xrightarrow[n \to +\infty]{} \frac{2}{5}$$

f)
$$\sqrt{n^5 + 3n} - n = n^{5/2} \left(\sqrt{1 + \frac{3}{n^4}} - \frac{1}{n^{3/2}} \right) \xrightarrow[n \to +\infty]{} + \infty,$$

g)
$$n - \sqrt{n^3 - 3n} = n^{3/2} \left(\frac{1}{n^{1/2}} - \sqrt{1 - \frac{3}{n^2}} \right) \xrightarrow[n \to +\infty]{} -\infty,$$

h)
$$\lim_{n \to +\infty} n - \sqrt{n^2 - 3n} = \lim_{n \to +\infty} n \left(1 - \sqrt{1 - \frac{3}{n}} \right) = \text{F.I. et } n - \sqrt{n^2 - 3n} = \frac{3}{n \left(1 + \sqrt{1 - \frac{3}{n}} \right)} \xrightarrow[n \to +\infty]{} \frac{3}{2},$$

i)
$$n^2 - \sqrt{n^4 - 2n} = \frac{n^4 - (n^4 - 2n)}{n^2 + \sqrt{n^4 - 2n}} = \frac{2n}{n^2 \left(1 + \sqrt{1 - \frac{2}{n^3}}\right)} = \frac{2}{n\left(1 + \sqrt{1 - \frac{2}{n^3}}\right)} \xrightarrow{n \to +\infty} 0,$$

j)
$$n^2 - \sqrt{n^4 - 2n^2} = \frac{n^4 - (n^4 - 2n^2)}{n^2 + \sqrt{n^4 - 2n^2}} = \frac{2n^2}{n^2 \left(1 + \sqrt{1 - \frac{2}{n^2}}\right)} = \frac{2}{1 + \sqrt{1 - \frac{2}{n^2}}} \xrightarrow{n \to +\infty} 1$$

k)
$$\frac{\sin(n) + 2}{n + 2} \xrightarrow{n \to +\infty} 0^+$$
 (théorème d'encadrement),

k)
$$\frac{\sin(n) + 2}{n + 3} \xrightarrow[n \to +\infty]{} 0^+$$
 (théorème d'encadrement), l) $\frac{\cos^5(\sqrt{n})}{n^2} \xrightarrow[n \to +\infty]{} 0$ (théorème d'encadrement),

m)
$$\frac{n^3 + 5n}{5n^3 + \cos(n) + \frac{1}{n^2}} = \frac{1 + \frac{5}{n^2}}{5 + \frac{\cos(n)}{n^3} + \frac{1}{n^5}} \xrightarrow[n \to +\infty]{} \frac{1}{5}$$
 (théorème d'encadrement),

n)
$$\frac{(-1)^n \arctan(n)}{n} \xrightarrow[n \to +\infty]{} 0$$
 (théorème d'encadrement car $-\frac{\pi}{2} < \arctan(n) < \frac{\pi}{2}$)

o)
$$\lim_{n \to +\infty} \left(1 + \frac{\pi}{n}\right)^n = e^{\pi},$$

p)
$$\lim_{n \to +\infty} \left(1 - \frac{e}{n}\right)^n = \lim_{n \to +\infty} \left(1 + \frac{-e}{n}\right)^n = e^{-e},$$

Exercice 4.6

Calculer, si elles existent, les limites suivantes :

$$\lim_{n \to +\infty} \frac{\sin\left(\frac{1}{n}\right)}{n}, \qquad \lim_{n \to +\infty} n \sin\left(\frac{1}{n}\right),$$

$$\lim_{n\to+\infty}\frac{\sin(n)}{n},$$

$$\lim_{n \to +\infty} n \sin(n).$$

Correction

$$\lim_{n \to +\infty} \frac{\sin\left(\frac{1}{n}\right)}{n} = \lim_{n \to +\infty} \frac{1}{n} \sin\left(\frac{1}{n}\right) = 0 \times 0 = 0,$$

$$\lim_{n \to +\infty} n \sin\left(\frac{1}{n}\right) = 1, \qquad \text{(limite fondamentale)}$$

$$\lim_{n \to +\infty} \frac{\sin(n)}{n} = 0, \qquad \text{(th\'eor\`eme d'encadrement)}$$

$$\lim_{n \to +\infty} n \sin(n) \text{ n'existe pas}$$

En effet, considérons les deux sous-suites $n=\frac{\pi}{2}+2k\pi$ et $n=\frac{3\pi}{2}+2k\pi$ $(n\to+\infty$ ssi $k\to+\infty)$

$$\left(\frac{\pi}{2} + 2k\pi\right) \sin\left(\frac{\pi}{2} + 2k\pi\right) = \left(\frac{\pi}{2} + 2k\pi\right) \xrightarrow[k \to +\infty]{} + \infty,$$

$$\left(\frac{3\pi}{2} + 2k\pi\right) \sin\left(\frac{3\pi}{2} + 2k\pi\right) = -\left(\frac{\pi}{2} + 2k\pi\right) \xrightarrow[k \to +\infty]{} - \infty.$$

Exercice 4.7

Calculer, si elles existent, les limites suivantes :

a)
$$\lim_{n \to +\infty} n^2 \left(1 - \cos \left(\frac{2}{n} \right) \right)$$
,

b)
$$\lim_{n \to +\infty} n^2 \left(1 - \cos \frac{2}{\sqrt{n}} \right)$$
,

c)
$$\lim_{n \to +\infty} n \left(1 - \cos \left(\frac{2}{n} \right) \right)$$
,

d)
$$\lim_{n \to +\infty} \left(1 + \frac{2}{n}\right)^n$$
,

e)
$$\lim_{n \to +\infty} \left(1 + \frac{2}{\sqrt{n}}\right)^n$$
,

f)
$$\lim_{n \to +\infty} \left(1 + \frac{2}{n}\right)^{\sqrt{n}}$$
,

g)
$$\lim_{n \to +\infty} \left(1 + \frac{(-1)^n}{n}\right)^n,$$

h)
$$\lim_{n \to +\infty} \left(1 + \frac{3}{n}\right)^{4n}$$
,

a)
$$\lim_{n \to +\infty} n^2 \left(1 - \cos\left(\frac{2}{n}\right) \right) = \lim_{n \to +\infty} 4 \left(\frac{n}{2}\right)^2 \left(1 - \cos\left(\frac{1}{n/2}\right) \right) = 2,$$

b)
$$\lim_{n \to +\infty} n^2 \left(1 - \cos \frac{2}{\sqrt{n}} \right) = \lim_{n \to +\infty} (4n) n \left(1 - \cos \frac{2}{\sqrt{n}} \right) = +\infty$$

c)
$$\lim_{n \to +\infty} n \left(1 - \cos\left(\frac{2}{n}\right)\right) = \lim_{n \to +\infty} \frac{4}{n} n^2 \left(1 - \cos\left(\frac{2}{n}\right)\right) = 0$$
,

d)
$$\lim_{n \to +\infty} \left(1 + \frac{2}{n}\right)^{\sqrt{n}} = \lim_{n \to +\infty} \left(\left(1 + \frac{2}{n}\right)^n\right)^{\frac{1}{\sqrt{n}}} = 1$$
,

e)
$$\lim_{n \to +\infty} \left(1 + \frac{(-1)^n}{n}\right)^n$$
 n'existe pas car la suite extraite constituée par les termes d'indices paire converge vers e et la suite extraite constituée par les termes d'indices impaire converge vers e^{-1} ,

f)
$$\lim_{n \to +\infty} \left(1 + \frac{3}{n}\right)^{4n} = \lim_{n \to +\infty} \left(\left(1 + \frac{1}{n/3}\right)^{n/3}\right)^{4 \times 3} = e^{12}$$
,

Exercice 4.8

Calculer, si elles existent, les limites des suites $(u_n)_{n\in\mathbb{N}^*}$ suivantes, en supposant que pour tout n dans \mathbb{N}^* on a :

$$a) u_n > \ln n$$

$$b) \ \frac{1}{n+1} \le u_n \le$$

$$d)\ u_n=\sqrt[n]{n}$$

$$e) \ u_n = \ln n + \sin(n)$$

$$f) u_n = \sin \frac{n\pi}{3}$$

$$g) u_n = \frac{n}{e} + \frac{1}{e^n}$$

$$h) u_n = \frac{n}{n+1} \ln n$$

$$i) u_n = \frac{n^2}{n!}$$

$$j) \ u_n = \frac{(2n)!}{n!}$$

e)
$$u_n = \ln n + \sin(n)$$
 f) $u_n = \sin \frac{n\pi}{3}$ g) $u_n = \frac{n}{e} + \frac{1}{e^n}$
i) $u_n = \frac{n^2}{n!}$ j) $u_n = \frac{(2n)!}{n!}$ k) $u_n = \frac{n\sin(n)}{n^2 + 1}$

$$l) u_n = \frac{n + (-1)^n}{3n - (-1)^n}$$

$$m) \ u_n = \frac{n^2}{n^2 + 1}$$

$$n) \ u_n = (-1)^n \frac{n^2}{n^2 + 1}$$

m)
$$u_n = \frac{n^2}{n^2 + 1}$$

n) $u_n = (-1)^n \frac{n^2}{n^2 + 1}$
o) $u_n = \sqrt{3n + 1} - \sqrt{2n + 1}$

$$p) \ u_n = \sin\left(\pi + \frac{\pi}{n}\right)$$

Correction

a)
$$u_n \to +\infty$$
 car $\ln n \to +\infty$ (théorème d'encadrement)

b)
$$u_n \to 1$$
 car $\frac{1}{n+1} \to 1$ et $\frac{1}{n} \le u_n \le$ (théorème d'encadrement)

c)
$$u_n \to \ell \le 1$$
 car u_n est monotone croissante et majorée par 2 donc $\ell \le \lim_n (1 + \frac{1}{n}) = 1$

d)
$$u_n = \sqrt[n]{n} = \exp(\frac{\ln n}{n}) \to \exp(0) = 1$$

e)
$$u_n = \ln(n) + \sin(n) \rightarrow +\infty$$
 car $(\ln(n) - 1) \le u_n \le (\ln(n) + 1)$ et $(\ln(n) \pm 1) \rightarrow +\infty$ (théorème d'encadrement)

f)
$$u_n = \sin \frac{n\pi}{3}$$
 n'existe pas car la suite extraite $u_{3n} = \sin(n\pi) = 0$ et la suite extraite $u_{6n+1} = \sin(2n\pi + \pi/3) = \sqrt{3}/2$

g)
$$u_n \to +\infty$$

h)
$$u_n = \frac{\ln n}{1 + \frac{1}{n}} \rightarrow +\infty$$

i)
$$u_n > 0$$
 et $\frac{u_{n+1}}{u_n} = \frac{(n+1)^2 n!}{(n+1)! n^2} = \frac{n+1}{n^2} < 1$ pour $n > 2$; comme $u_n \setminus$ et $u_n > 0$ alors $u_n \to \ell \ge 0$. Sinon on peut utiliser directement le critère du rapport : $\frac{u_{n+1}}{u_n} = \frac{n+1}{n^2} \to 0$ donc $u_n \to 0$.

j)
$$u_n = (2n)(2n-1)\cdots(2n-n+1) \to +\infty$$

k)
$$u_n \to 0$$
 car $\frac{-n}{n^2+1} \le \frac{n\sin(n)}{n^2+1} \le \frac{n}{n^2+1}$ et $\pm \frac{n}{n^2+1} \to 0$ (théorème d'encadrement)

1)
$$u_n \to \frac{1}{3} \operatorname{car} \frac{n-1}{3n+1} \le \frac{n+(-1)^n}{3n-(-1)^n} \le \frac{n+1}{3n-1}$$
 et $\lim_n \frac{n-1}{3n+1} = \lim_n \frac{n+1}{3n-1} = \frac{1}{3}$

m)
$$u_n \rightarrow 1$$

n) Cette suite ne converge pas car la sous-suite u_{2n} tend vers 1 tandis que la sous-suite u_{2n+1} tend vers -1

$$0) \quad \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} (\sqrt{3n+1} - \sqrt{2n+1}) \frac{\sqrt{3n+1} + \sqrt{2n+1}}{\sqrt{3n+1} + \sqrt{2n+1}} = \lim_{n \to +\infty} \frac{(3n+1) - (2n+1)}{\sqrt{3n+1} + \sqrt{2n+1}} = \lim_{n \to +\infty} \frac{1}{\sqrt{\frac{3n+1}{n^2}} + \sqrt{\frac{2n+1}{n^2}}} = +\infty$$

p)
$$\lim_{n \to +\infty} \sin\left(\pi + \frac{\pi}{n}\right) = 0$$

Exercice 4.9

Le segment AB de longueur 1 est subdivisé en n segments égaux et sur chacun d'eux on construit un triangle rectangle isocèle comme indiqué sur la figure ci-dessous. On obtient une ligne de segments de longueur $L=2n\ell$. Montrer que L ne tend pas vers 1 lorsque n tend vers $+\infty$ même si elle tend à se confondre avec le segment AB. Vers quelle valeur tend-elle?

Correction

Le segment AB de longueur 1 est subdivisé en n segments égaux de longueur $\frac{1}{n}$ donc $\ell = \frac{1}{\sqrt{2}n}$. Alors $L(n) = 2n\ell(n) = \sqrt{2}$ pour tout n et $\lim_{n\to+\infty} L(n) = \sqrt{2}$.

Suites récurrentes

Exercice 4.10 (Suite récurrente)

Étudier la suite (u_n) définie par

$$\left\{ \begin{array}{ll} u_0 & \text{donn\'e,} \\ u_{n+1} = \varphi(u_n) & \forall \, n \in \mathbb{N}, \end{array} \right.$$

avec

a)
$$u_0 > 1$$
 et $u_{n+1} = 2 - \frac{1}{u_n}$

b)
$$1 \le u_0 < 2$$
 et $u_{n+1} = \sqrt{2 + u_n}$ c) $u_0 > 2$ et $u_{n+1} = u_n^2 + 1$

c)
$$u_0 > 2$$
 et $u_{n+1} = u_n^2 + 1$

Correction

a) Suite bornée. Par récurrence :

* $u_0 > 1$;

* soit $u_n > 1$, alors $u_{n+1} = 2 - \frac{1}{u_n} > 2 - 1 = 1$.

Monotonie. Puisque $u_n > 1$ pour tout $n \in \mathbb{N}$, on a $u_{n+1} - u_n = 2 - \frac{1}{u_n} - u_n = -\frac{(u_n - 1)^2}{u_n} < 0$, autrement dit la suite u_n est monotone décroissante.

Convergence. Étant une suite monotone décroissante vérifiant $u_n > 1$ pour tout $n \in \mathbb{N}$, alors elle converge et $\lim u_n = 1$ $\ell \geq 1$.

Limite. En passant à la limite dans la définition, on a $\ell = 2 - \frac{1}{\ell}$ d'où $\ell = 1$.

b) Suite bornée. Par récurrence :

 \star on a bien $1 \le u_0 < 2$;

★ montrons que, pour $k \in \mathbb{N}$ fixé, si $1 < u_k < 2$ alors $1 < u_{k+1} < 2$:

$$1 < u_k < 2 \Longrightarrow 3 < 2 + u_k < 4 \Longrightarrow \sqrt{3} < \sqrt{2 + u_k} < 2 \Longrightarrow 1 < \sqrt{2 + u_k} < 2 \Longrightarrow 1 < u_{k+1} < 2.$$

Monotonie. Pour tout $n \in \mathbb{N}$ on a

$$u_{n+1} - u_n = \sqrt{2 + u_n} - u_n = \frac{2 + u_n - u_n^2}{\sqrt{2 + u_n} + u_n} = -\frac{(u_n + 1)(u_n - 2)}{\sqrt{2 + u_n} + u_n} > 0$$

car $1 < u_n < 2$ pour tout $n \in \mathbb{N}$, autrement dit la suite u_n est monotone croissante.

Convergence. $(u_n)_{n\in\mathbb{N}}$ est une suite monotone croissante et majorée. Elle est donc convergente. Notons ℓ sa limite

Candidates limites. La limite vérifie $\ell = \sqrt{2+\ell}$ ce qui implique $(\ell+1)(\ell-2) = 0$. Comme $\ell \in]1;2]$ on a donc $\ell = 2$.

c) Suite bornée. Par récurrence :

* $u_0 > 2$;

* soit $u_n > 2$, alors $u_{n+1} = u_n^2 + 1 > 5$.

Candidates limites. Soit $\ell = \lim u_n$ avec $\ell \in \mathbb{R}$. Alors, en passant à la limite dans la définition, on a $\ell = \ell^2 + 1$ qui n'a pas de solution réelle : la suite est alors divergente.

Monotonie. Puisque $u_n > 2$ pour tout $n \in \mathbb{N}$, on a $u_{n+1} - u_n = u_n^2 - u_n + 1 > u_n^2 - 2u_n + 1 = (u_n - 1)^2 > 0$, autrement dit la suite u_n est monotone croissante.

Convergence. Étant une suite monotone croissante qui diverge, on conclut que $\lim u_n = +\infty$

Exercice 4.11 (Suite récurrente)

Soit $a \in \mathbb{R}$, a > 0. Soit $(u_n)_{n \in \mathbb{N}}$ la suite récurrente définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$ $u_{n+1} = \frac{a+1+u_n}{a}$. On pose $v_n := \frac{a+1+u_n}{a}$ $u_{n+1} - u_n$ pour tout $n \in \mathbb{N}$ et $s_n := \sum_{k=0}^{k=n-1} v_k$ pour tout $n \in \mathbb{N}$.

- 1. Exprimer v_n en fonction de v_{n-1} . En déduire qu'il existe une valeur a_0 de a (à préciser) pour laquelle $(v_n)_{n\in\mathbb{N}}$ est une suite constante.
- 2. Montrer que pour tout $a \neq a_0$, la suite (v_n) est une suite géométrique dont on donnera la raison.
- 3. Calculer $\lim_n s_n$ en fonction des valeurs de a.
- 4. Montrer que $u_n = 1 + s_n \ \forall n \in \mathbb{N}^*$. En déduire $\lim_n u_n$ en fonction des valeurs de a.

Correction

1. Pour tout $n \in \mathbb{N}$ on a

$$v_n = u_{n+1} - u_n = \frac{a+1+u_n}{a} - \frac{a+1+u_{n-1}}{a} = \frac{u_n - u_{n-1}}{a} = \frac{v_{n-1}}{a}.$$

On trouve la suite

$$\begin{cases} v_0=u_1-u_0=\frac{a+1+1}{a}-1=\frac{2}{a},\\ v_{n+1}=\frac{v_n}{a}. \end{cases}$$
 On en déduit que la suite $(v_n)_{n\in\mathbb{N}}$ est une suite constante égale à 2 lorsque $a=1=:a_0.$

2. Pour tout $a \neq a_0$

$$v_n = \frac{v_{n-1}}{a} = \frac{v_{n-2}}{a^2} = \dots = \frac{v_0}{a^n} = 2a^{-n}$$

donc la suite (v_n) est une suite géométrique de raison 1/a.

3. On sait que si $w_{n+1} = qw_n$ pour tout $q \in \mathbb{R}^*$, alors $w_n = w_0 q^n$ et

$$\sum_{k=0}^{n} w_k = w_0 \sum_{k=0}^{n} q^k = \begin{cases} w_0 \frac{1 - q^{n+1}}{1 - q}, & \text{si } q \neq 1 \\ w_0(n+1) & \text{si } q = 1 \end{cases}$$

donc ici

$$s_n = \sum_{k=0}^{n-1} \nu_k = \nu_0 \sum_{k=0}^{n-1} a^{-k} = \begin{cases} \frac{2}{a} \frac{1 - a^{-n}}{1 - a^{-1}}, & \text{si } a \neq 1 \\ 2n, & \text{si } a = 1 \end{cases} = \begin{cases} \frac{2}{a^n} \frac{a^n - 1}{a - 1}, & \text{si } a \neq 1, \\ 2n, & \text{si } a = 1. \end{cases}$$

Par conséquent

$$\lim_{n} s_{n} = \begin{cases} +\infty & \text{si } a = 1, \\ \frac{2}{a-1} & \text{si } a > 1, \\ +\infty & \text{si } 0 < a < 1. \end{cases}$$

4. On a

$$s_n = \sum_{k=0}^{n-1} v_k = v_0 \sum_{k=0}^{n-1} u_{k+1} - u_k = u_1 - u_0 + u_2 - u_1 + \dots + u_n - u_{n-1} = u_n - u_0 = u_n - 1$$

donc $u_n = 1 + s_n \ \forall n \in \mathbb{N}^*$. Alors

$$\lim_{n} u_{n} = 1 + \lim_{n} s_{n} = \begin{cases} +\infty & \text{si } a = 1, \\ \frac{a+1}{a-1} & \text{si } a > 1, \\ +\infty & \text{si } 0 < a < 1. \end{cases}$$

Exercice 4.12

On sait que \sqrt{a} désigne le nombre positif dont le carré vaut a. Cette écriture n'as de sens que si a est positif. Pourtant on peut donner un sens au nombre b qui s'écrit

$$b = \sqrt{-\frac{1}{4} + \sqrt{-\frac{1}{4} + \sqrt{-\frac{1}{4} + \sqrt{-\frac{1}{4} + \dots}}}}$$

Lequel et que vaut *b*?

Introduisons la suite récurrente de premier terme $u_0 > \frac{1}{4}$ telle que $u_{n+1} = \sqrt{u_n - \frac{1}{4}}$.

Suite minorée. On montre par récurrence que $u_n > \frac{1}{4}$ pour tout $n \in \mathbb{N}$: on a bien $u_0 > \frac{1}{4}$; montrons que si $u_k > \frac{1}{4}$ alors $u_{k+1} > \frac{1}{4}$. On a

$$u_{k+1} > \frac{1}{4} \iff \sqrt{u_k - \frac{1}{4}} > -\frac{1}{4} \iff u_k \ge \frac{1}{4}.$$

Monotonie. Pour tout $n \in \mathbb{N}$ on a

$$u_{n+1} - u_n = \sqrt{u_n - \frac{1}{4}} - u_n = \frac{u_n - \frac{1}{4} - u_n^2}{\sqrt{u_n - \frac{1}{4}} + u_n} = \frac{-\frac{1}{4}(2u_n - 1)^2}{\sqrt{u_n - \frac{1}{4}} + u_n} \le 0$$

pour tout $n \in \mathbb{N}$.

Convergence. (u_n) est une suite monotone décroissante et minorée. Elle est donc convergente et b est sa limite.

Limite. La suite (u_{n+1}) tend vers b et la suite $f(u_n)$ tend vers f(b). La limite vérifie donc

$$b = \sqrt{b - \frac{1}{4}}.$$

On a donc $b = \frac{1}{2}$.

Avancé

Exercice 4.13

Donner l'exemple

- 1. d'une suite bornée et sans limite;
- 2. d'une suite non bornée ayant une limite;
- 3. d'une suite non bornée et sans limite;
- 4. de deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telle que (u_n) converge et (v_n) diverge et (u_nv_n) diverge;
- 5. de deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telle que (u_n) converge et (v_n) diverge et (u_nv_n) converge;
- 6. de deux suites bornées $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telle que (u_n) ne converge pas, (v_n) ne converge pas, mais (u_nv_n) converge.

Correction

1. $u_n = (-1)^n$, $u_n = \sin(n)$; 2. $u_n = n$, $u_n = n\sin(n)$; 3. $u_n = (-1)^n n\sin(n)$; 4. $u_n = 1/n$ et $v_n = n^2$; $u_n = n^{\alpha}$ avec $\alpha < 0$, $v_n = n^{\beta}$ avec $\beta > 0$ et $\alpha + \beta > 0$; 5. $u_n = 1/n^2$ et $v_n = n$; $u_n = n^{\alpha}$ avec $\alpha < 0$, $v_n = n^{\beta}$ avec $\beta > 0$ et $\alpha + \beta < 0$; 6. $u_n = v_n = (-1)^n$.

Exercice 4.14

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans $\mathbb{R}\cup\{-\infty\}\cup\{+\infty\}$. Pour chacune des assertions (1) à (4) suivantes, associer celle des phrases (a) à (d) qui signifie la même chose (On donnera les correspondances sans justifier).

- (1) $\forall n \in \mathbb{N}, \exists M \in \mathbb{R}, u_n \geq M$
- (2) $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, u_n \geq M$
- (3) $\exists n \in \mathbb{N}, \forall M \in \mathbb{R}, u_n \geq M$
- (4) $\forall M \in \mathbb{R}, \exists n \in \mathbb{N}, u_n \geq M$

- (a) "La suite $(u_n)_{n\in\mathbb{N}}$ prend (au moins) une fois la valeur $+\infty$."
- (b) "La suite $(u_n)_{n\in\mathbb{N}}$ ne prend jamais la valeur $-\infty$."
- (c) "La suite $(u_n)_{n\in\mathbb{N}}$ n'est pas bornée supérieurement"
- (d) "La suite $(u_n)_{n\in\mathbb{N}}$ est bornée inférieurement par M."

Correction

(1)-(b), (2)-(d), (3)-(a), (4)-(c).