Отчет по лабораторной работе
"Резонанс токов в параллельном контуре"
Выполнила Прохорова Ю.А.
Б04-906
Долгопрудный, МФТИ 2020

Цель работы:

Изучение параллельной цепи переменного тока, наблюдение резонанса токов.

Оборудование:

Лабораторный автотрансформатор (ЛАТР), разделительный понижающий трансформатор, ёмкость, дроссель с переменной индуктивностью, три амперметра, вольтметр, реостат, электронный осциллограф, омметр, мост переменного тока.

Теоретическая часть:

Рассмотрим вынужденные колебания в параллельном контуре, одна из ветвей которого содержит индуктивность L, а другая емкость C. Обозначим через r_l активное сопротивление катушки. Активным сопротивлением емкостной ветви контура обычно можно пренебречь. Рассмотрим установившиеся колебания в контуре, когда напряжение на нём меняется по гармоническому закону:

$$U = U_0 cos \Omega t, \qquad (1)$$

Введём обозначения для комплексных сопротивлений (импедансов) индуктивной и емкостной ветвей контура:

$$Z_L = r_l + i\Omega L$$
, (2) $_{\rm H}Z_c = \frac{1}{i\rho c}$, (3)

Тогда полный импеданс контура может быть найден по правилу сложения параллельных сопротивлений:

$$\frac{1}{Z} = \frac{1}{Z_L} + \frac{1}{Z_C} = \frac{1}{r_l + i\Omega L} + i\Omega C = \frac{1 - (\Omega/\omega_0)^2 + ir_l \Omega C}{r_l + i\Omega L}, \quad (4)$$

Реактивные сопротивления обеих ветвей контура при резонансе равны, введем обозначение

$$\rho = \omega_0 L = \frac{1}{\omega_0 C} = \sqrt{\frac{L}{C}}, \qquad (5)$$

Учитывая, что добротность контура Q может быть выражена через активное и реактивное сопротивления получаем:

$$Q = \frac{\omega_0 L}{r_l} = \frac{1}{\omega_0 r_l C} = \frac{\rho}{r_l}, \qquad (6)$$

получим еще одну удобную для расчётов резонансного сопротивления формулу:

$$R_{\rm pes} = Q\rho$$
, (7)

При резонансе значения токов $I_{{\rm pes}C}$, $I_{{\rm pes}L}$ и полного тока в контуре $I_{{\rm pes}}$ связаны с напряжением на контуре простыми соотношениями

$$I_{\text{pes}C} = U\omega_0 C = \frac{U}{\rho}, (8)$$

$$I_{\text{pes}L} = \frac{U}{\omega_0 L} = \frac{U}{\rho}, (9)$$

$$I_{\text{pes}} = \frac{U}{\rho \rho}, (10)$$

Из этих выражений видно, что при резонансе токи в индуктивной и ем- костной ветвях контура одинаковы и в Q раз больше тока в общей цепи:

$$Q = \frac{I_{\text{pe3},C}}{I_{\text{pe3}}} = \frac{I_{\text{pe3},L}}{I_{\text{pe3}}}$$
, (11)

В данной работе изучается параллельный контур, одна из ветвей которого содержит индуктивность L, другая — ёмкость C. Через r_l обозначено активное сопротивление катушки, которое включает в себя как чисто омическое сопротивление витков катушки, так и сопротивление, связанное с потерями энергии при перемагничивании сердечника катушки. Активным сопротивлением ёмкостной ветви контура можно пренебречь, т. к. используемый в работе конденсатор обладает малыми потерями.

Экспериментальная установка:

Рис. 1. Схема для исследования резонанса токов

Напряжение от сети (220 В, 50 Гц) с помощью ЛАТРа через понижающий трансформатор (Тр.) подаётся на параллельный контур, содержащий конденсатор ($C=120~\text{мк}\Phi$) и катушку, индуктивность которой зависит от глубины погружения сердечника. Полный ток в цепи измеряется с помощью многопредельного амперметра A1; для измерения токов в L- и C-ветвях используются два одинаковых амперметра A2 и A3; напряжение на контуре контролируется электронным вольтметром V. Последовательно с контуром включён резистор г — реостат с полным сопротивлением $\simeq 100~\text{Ом}$.

Ход работы:

1. Соберем схему согласно рисунку 1. Для 2 и 3 амперметров установим предел измерения 1A, для первого 0,5 A. Установим сердечник на минимальную отметку. На протяжении всего эксперимента будем сохранять напряжение постоянным, U=10B. Снимем зависимости токов на катушке, конденсаторе и общий ток цепи.

№	h, см	I, A	I_L , A	I_C , A
1	11,4	0,500	0,660	0,38
2	10,5	0,370	0,735	0,38
3	10,1	0,318	0,685	0,38
4	9,7	0,273	0,645	0,38
5	9,3	0,225	0,595	0,38
6	8,8	0,178	0,545	0,38
7	8,2	0,124	0,495	0,39
8	7,9	0,100	0,470	0,39
9	7,5	0,065	0,440	0,39
10	7,2	0,048	0,425	0,39
11	6,9	0,025	0,400	0,39
12	6,0	0,050	0,350	0,39
13	5,5	0,075	0,320	0,39
14	5,1	0,100	0,310	0,40
15	4,7	0,115	0,280	0,39
16	4,2	0,136	0,255	0,39
17	3,5	0,165	0,221	0,39
18	2,7	0,195	0,190	0,38
19	2,2	0,218	0,170	0,39
20	1,6	0,255	0,140	0,39

Таблица 1. Зависимости общего тока цепи, токов на катушке и конденсаторе.

Рис. 2 Зависимости общего тока цепи, токов на катушке и конденсаторе от положения сердечника катушки индуктивности.

2. С помощью моста и мультиметра измерим резонансную индуктивность катушки и активное сопротивление катушки соответственно при частоте 50Гц и 1кГц.

ν, Гц	r_L , Ом	L, мГн	
50	4,1	69,4	
1000	34,8	61,7	

3. Оценим добротность контура через отношение токов:

$$Q = Q_c = \frac{I_{Cpe3}}{I_{pe3}} = \frac{0.4}{0.025} = 16 \approx Q_L = \frac{I_{Lpe3}}{I_{pe3}} = \frac{0.391}{0.025} = 15.64$$

4. Оценим резонансное сопротивление контура:

$$R_{\text{pe3}} = \frac{U_0}{I_{\text{pe3}}} = \frac{10}{0,025} = 400 \text{ Om}$$

5. Оценим $R_{\text{рез}}$ через L, C, r_L :

$$R_{\rm pe3} = \frac{L}{Cr_L}$$
 при ${\sf v}=50$ Гц $R_{\rm pe3} = \frac{61,15\cdot10^{-3}}{120\cdot10^{-6}\cdot35,9} = 14,2$ Ом при ${\sf v}=1$ кГц $R_{\rm pe3} = \frac{254\cdot10^{-6}}{120\cdot10^{-6}\cdot1,84} = 1,15$ Ом

6. Рассчитаем L_{pe_3} через С и ω_0 при $\nu_0=50$ Гц:

$$L_{
m pes} = rac{1}{C \cdot \omega_0^2} = rac{1}{120 \cdot 10^{-6} \cdot 4\pi^2 \cdot 2500} = 84,3$$
м Γ н.

7. Рассчитаем r_L через C и Q при $v_0 = 50$ Γ ц:

$$r_L = \frac{1}{Q\omega_0 C} = \frac{1}{16 \cdot 2\pi \cdot 50 \cdot 120 \cdot 10}$$

8. Рассчитаем $L_{\text{peз}}$ через U и $I_{L_{\text{peз}}}$:

$$L_{
m pes} = rac{U_0}{\omega_0 I_{
m Lpes}} = rac{10}{2\pi \cdot 50 \cdot 0.4} = 79,6 \,\,{
m M}$$
Гн

9. Построим векторную диаграмму и рассчитаем r_L и $L_{\rm pes}$:

$$r_L = rac{U_{L ext{akT}}}{I_{L ext{pe3}}} = ext{1,6 Om}$$
 $L_{ ext{pe3}} = rac{U_{L ext{peak}}}{\Omega \cdot L}$

Рис. 3 Векторная диаграмма токов при резонансе

10. Сведем результаты в таблицу:

Q	<i>R</i> _{рез} , Ом		Оммет	Мост Е7-	$f(\omega_0;C;Q)$	$f(U;I_L)_{\text{pes}}$	Векторная
			p	8)		диаграмм
							a
		r_L ,	$2,5\pm0,1$	4,84	$1,7\pm0,2$	-	1,6
16	14,2	Ом		$\pm 0,01$			
<u>±</u> 2	<u>±</u> 0,3	L_{pes} ,	-	69,4 <u>±</u> 01	84 <u>+</u> 2	80 <u>±</u> 8	79,4
		мΓн					

11. Для расчетов погрешностей:

$$\sigma_{parametr} = \sqrt{\sum_{1}^{n} (\frac{\sigma_{x}}{x})^{2}}$$

$$\sigma_{parametr} = \sqrt{\frac{1}{n} \sum_{1}^{n} (x - \langle x \rangle)^{2}}$$

Вывод:

резонанс токов происходит, когда собственная частота совпадает с частотой переменного тока. В резонансе сопротивление контура становится максимальным, ток генератора соответственно минимальным. Если бы контур был идеальным, то начавшиеся колебания продолжались бы непрерывно без затухания и не требовалось бы энергии от генератора на их поддержание.

Мост переменного тока измеряет импеданс, который складывается из реактивного и активного сопротивлений, а омметром мы измерили только активное. Отсюда расхождение значений.

Для добротности имеет значение потери энергии, которые происходят из-за активного сопротивления.

При расчёте ёмкости через $f(U_{pes}, I_{L,pes})$ считается, что напряжение генератора совпадает с напряжением контура, что может быть неверно при большом внутреннем сопротивлении генератора. Также индуктивность меняется зависимо от частоты сигнала, поэтому различны результаты между добротностью и показаниями с моста переменного тока.

Метод векторных диаграмм также даёт ошибку из-за приближённости во время вычислений в нём.