Toric Hyperkähler Manifolds & the Equivariant Verlinde Formula First Year Annual Review

Ben Brown

University of Edinburgh

17th September 2019

Structure of the Talk

Introduction & Motivation

2 My Progress

Outlook

Toric Symplectic Manifolds

Definition

 (X^{2n}, ω) is a toric symplectic manifold if it is compact, connected, and equipped with an effective hamiltonian action of T^n , with moment map $\mu: X \to (\mathbb{R}^n)^*$.

Example

 $(\mathbb{CP}^2, \omega_{FS})$, with T^2 -action given by:

$$(t_1, t_2) \cdot [z_0 : z_1 : z_2] = [z_0 : t_1 z_1 : t_2 z_2].$$

Moment map $\mu: \mathbb{CP}^2 \to (\mathbb{R}^2)^*$ is:

$$\mu([z_0:z_1:z_2]) = \frac{1}{2} \left(\frac{|z_1|^2}{\|z\|^2}, \frac{|z_2|^2}{\|z\|^2} \right) + c, \qquad c \in (\mathbb{R}^2)^*.$$

Delzant Polytopes

Definition

 $\Delta \subset (\mathbb{R}^n)^*$ is a *Delzant polytope* if it is convex, simple, rational and smooth.

Delzant Construction

Remark

Given $(X^{2n}, \omega, T^n, \mu)$, the Atiyah, Guillemin-Sternberg convexity theorem asserts that $\mu(X^{2n}) = \Delta \subset (\mathbb{R}^n)^*$ is a Delzant polytope.

Theorem (Delzant)

$$\frac{(X^{2n},\omega,T^n,\mu)}{T^n\text{-}equivariance} \overset{1-1}{\longleftrightarrow} \frac{Delzant\ polytopes}{SL(n,\mathbb{Z}) \ltimes \mathbb{R}^n}$$

Question

So for a given $\Delta \subset (\mathbb{R}^d)^*$, what is the respective X_Δ ?

Delzant Construction

Let $u_i \in \mathbb{R}^d$ (i = 1, ..., n) be the inward-pointing normals to to facets of Δ , and define $\pi(e_i) = u_i$.

$$0 \longrightarrow \mathfrak{n} := \ker \pi \stackrel{i}{\longrightarrow} \mathbb{R}^n \stackrel{\pi}{\longrightarrow} \mathbb{R}^d \longrightarrow 0$$

Can dualise:

$$0 \longleftarrow \mathfrak{n}^* \xleftarrow{i^*} (\mathbb{R}^n)^* \xleftarrow{\pi^*} (\mathbb{R}^d)^* \longleftarrow 0$$

Or exponentiate:

$$0 \longrightarrow N \stackrel{i}{\longleftarrow} T^n \stackrel{\pi}{\longrightarrow} T^d \longrightarrow 0$$

Delzant Construction

$$0 \longrightarrow N \stackrel{i}{\longleftarrow} T^n \stackrel{\pi}{\longrightarrow} T^d \longrightarrow 0$$

 T^n acts diagonally on \mathbb{C}^n , with moment map:

$$J: \mathbb{C}^n \to (\mathbb{R}^n)^*, \qquad J(z) = \frac{1}{2} \sum_{i=1}^n (|z_i|^2 - \lambda_i) e_i, \quad \lambda \in (\mathbb{R}^n)^*.$$

N also acts on \mathbb{C}^n via inclusion, with moment map $i^* \circ J : \mathbb{C}^n \to \mathfrak{n}^*$.

Fact

 $X_{\Delta} := (i^* \circ J)^{-1}(0)/N$ is a toric symplectic manifold for the residual T^d -action, with Delzant polytope Δ , where

$$\Delta = \bigcap_{i=1}^{n} \{ y \in \mathbb{R}^d : \langle y, u_i \rangle \ge \lambda_i \text{ for all } i \}.$$

Geometric Quantisation

Question

For a (pre-quantum) line bundle \mathcal{L} over (X,ω) , can one find a canonical Hilbert space of (holomorphic) "wave-functions" $\mathcal{Q}(X)$ with

$$Q(X) = H^0(X, \mathcal{L})?$$

Conjecture ("Quantisation Commutes with Reduction")

If $X_0 = \mu^{-1}(0)/G$, then:

$$\mathcal{Q}(X)^G = \mathcal{Q}(X_0)$$

Further, if $X_{\alpha} = \mu^{-1}(\alpha)/G$:

$$\dim \mathcal{Q}(X_{\alpha}) = \mathrm{mult}(\alpha)$$

Theorem

For toric symplectic manifolds: dim $Q(X) = \#(\Delta \cap \mathbb{Z}^n)$

Example

 $X = \mathbb{C}^3$ and $\mathbb{CP}^2 = X_k = \mu^{-1}(k)/N$. For $s : \mathbb{C}^3 \to \mathbb{C}$ holomorphic, locally $s(z) = z_0^{j_0} z_1^{j_1} z_2^{j_2}$. For N-equivariance: $s(n \cdot z) = n^{j_0 + j_1 + j_2} s(z) \stackrel{?}{=} n \cdot s(z) = n^k s(z).$

True for $H^0(\mathbb{CP}^2, \mathcal{O}(k))$, and solution set:

$$\{(j_0, j_1, j_2) : \sum j_i = k\} \stackrel{1-1}{\leftrightarrow} \{(j_0, j_2) : j_0 + j_1 \le k\} \equiv (\Delta \cap \mathbb{Z}^2).$$

Remark

Case for $X = \mathbb{C}^4$ and $X_k = \mu^{-1}(k)/N \cong \mathbb{CP}^3$ very similar, with Delzant polytope $k\Delta \subset \mathbb{R}^3$ (Δ the standard 3-simplex).

$$\#(k\Delta \cap \mathbb{Z}^3) = \frac{(k+1)(k+2)(k+3)}{3!} = \frac{k^3}{6} + k^2 + \frac{11}{6}k + 1.$$

Fact

Let $M = \mathcal{M}_{flat}(\Sigma_2; SU(2))$, and \mathcal{L} be the determinant line bundle. Then:

$$\dim H^0(M, \mathcal{L}^{\otimes k}) = \#(k\Delta \cap \mathbb{Z}^3).$$

In fact, $M \cong \mathbb{CP}^3$, and the above equation is known as the Verlinde formula for M.

Question

What about the moduli space for Higgs bundle $\mathcal{M}_{\text{Higgs}}(\Sigma_g; G)$, which is non-compact?

It has $T^*\mathcal{M}_{\text{flat}}(\Sigma_g; G) \subset \mathcal{M}_{\text{Higgs}}(\Sigma_g; G)$ as an open and dense subset. As $\mathcal{M}_{\text{Higgs}}$ is non-compact, dim $\mathcal{Q}(\mathcal{M}_H) = \infty$. However \mathcal{M}_H admits a \mathbb{C}^* -action by scaling the Higgs fields, and $S^1 \subset \mathbb{C}^*$ has compact fixed point loci $\Longrightarrow \mathbb{C}^*$ -weight decomposition:

$$\mathcal{Q}(\mathcal{M}_H) = \bigoplus_{n>0} \mathcal{Q}(\mathcal{M}_H)_n.$$

Proposition

The equivariant Verlinde formula is a recipe for calculating the n^{th} graded part for dim $\mathcal{Q}(\mathcal{M}_{Hiags})$, i.e.

$$\dim_t H^0(\mathcal{M}_H, \mathcal{L}^k) = \sum_{n=0}^{\infty} \dim H_n^0(\mathcal{M}_H, \mathcal{L}^k) t^n.$$

In particular, the degree-0 (weight-0) part corresponds to the classical Verlinde formula.

Remark

There is also an equivariant Verlinde formula for *parabolic Higgs* bundles.

Toric Hyperkähler Manifolds & Compactification Hyperkähler Analogues

Complexification analogy for toric symplectic manifolds are hypertoric manifolds: consider $M = T^*\mathbb{C}^n$ with induced linear G-action from \mathbb{C}^n , and moment map $\mu: \mathbb{C}^n \to \mathfrak{g}^*$. Action is hyperhamiltonian with hyperkähler moment map $\mu_{HK} := \mu_{\mathbb{R}} \oplus \mu_{\mathbb{C}} : T^*\mathbb{C}^n \to \mathfrak{g}^* \oplus \mathfrak{g}_{\mathbb{C}}^*$, where:

$$\mu_{\mathbb{R}}(z, w) = \mu(z) - \mu(w), \qquad \mu_{\mathbb{C}}(z, w)(v) = w(\hat{v}_z),$$

with $w \in T_z^*\mathbb{C}^n$, $v \in \mathfrak{g}_{\mathbb{C}}$, and $\hat{v}_z \in T_z\mathbb{C}^n$ induced.

Definition

For $\alpha \in Z(\mathfrak{g}^*)$:

$$M := (\mu_{\mathbb{R}}^{-1}(\alpha) \cap \mu_{\mathbb{C}}^{-1}(0))/G$$

is the hyperkähler analogue to the Kähler $X = \mu^{-1}(\alpha)/G$.

Toric Hyperkähler Manifolds & Compactification Toric Hyperkähler Manifolds

Let $X = \mu^{-1}(\alpha)/N$ be a symplectic toric manifold with a residual $T^d = T^n/N$ action from the Delzant construction.

Definition

A toric hyperkähler manifold M is the hyperkähler analogue to the Kähler quotient X.

Explicitly:

$$M = (\mu_{\mathbb{R}}^{-1}(\alpha) \cap \mu_{\mathbb{C}}^{-1}(0))/N,$$

and, if $i^*(r_1, ..., r_n) = \alpha$ and $(\partial_i)_{i=1}^n$ is a basis for $(\mathbb{R}^d)^* = \ker i^*$, we get residual moment maps:

$$\phi_{\mathbb{R}}[z,w] = \frac{1}{2} \sum_{i=1}^{n} (|z_i|^2 - |w_i|^2 - r_i) \partial_i, \qquad \phi_{\mathbb{C}}[z,w] = \sum_{i=1}^{n} (z_i w_i) \partial_i.$$

Ben Brown

Toric Hyperkähler Manifolds & Compactification The Extended Core

Definition

The set

$$\mathcal{E} := \phi_{\mathbb{C}}^{-1}(0) = \{ [z, w] \in M : z_i w_i = 0 \}$$

is called the *extended core* of M.

For each $A \subseteq \{1, \ldots, n\}$, \mathcal{E} breaks up into components:

$$\mathcal{E}_A = \{ [z, w] \in M : w_i = 0 \text{ if } i \in A, \text{ and } z_i = 0 \notin A \},$$

with image

$$\Delta_A := \phi_{\mathbb{R}}(\mathcal{E}_A) = \bigcap_{i \in A} F_i \cap \bigcap_{i \notin A} G_i,$$

for

$$F_i = \{ y \in (\mathbb{R}^d)^* : \langle y, u_i \rangle + r_i \ge 0 \}, \quad G_i = \{ y \in (\mathbb{R}^d)^* : \langle y, u_i \rangle + r_i \le 0 \}.$$

Toric Hyperkähler Manifolds & Compactification Example, $T^*\mathbb{CP}^2$

Toric Hyperkähler Manifolds & Compactification Residual Circle Action

$$S^1\text{-action:} \qquad \hbar \cdot [z,w] = [z,\hbar w], \qquad \hbar \in S^1.$$

Descends to \mathcal{E} and, on each \mathcal{E}_A , acts as a subgroup of T^n . On \mathcal{E}_A :

$$[z, \hbar w] = [\hbar^{-1}z_1, \dots, \hbar^{-1}z_n; w] = [\hbar_1 z_1, \dots, \hbar_n z_n; w],$$

with

$$\hbar_i := \begin{cases} \hbar^{-1}, & \text{if } i \in A, \\ 1, & \text{if } i \notin A. \end{cases}$$

For $j_A: S^1|_{\mathcal{E}_A} \hookrightarrow T^n$, its moment map is

$$\Phi_A[z,w] = -\left\langle \mu_{\mathbb{R}}[z,w], \sum_{i \in A} u_i \right\rangle.$$

Toric Hyperkähler Manifolds & Compactification Compactification via Symplectic Cutting

Globally $\Phi[z, w] = \frac{1}{2} ||w||^2$ is proper; can "compactify" M: let S^1 act on $M \times \mathbb{C}$ diagonally. Moment map:

$$\mu_{\text{cut}}: M \times \mathbb{C} \to \mathbb{R}, \qquad ([z, w], \xi) \mapsto \Phi[z, w] + \frac{1}{2} |\xi|^2.$$

Resulting in:

$$M_{\epsilon} := \mu_{\mathrm{cut}}^{-1}(\epsilon)/S^1 \cong \{ m \in M : \Phi(m) < \epsilon \} \sqcup \Phi^{-1}(\epsilon)/S^1$$

On each component $\mathcal{E}_A^{(\epsilon)} := \mathcal{E}_A \cap M_{\epsilon}$, we find that:

$$\phi_{\mathbb{R}}(\mathcal{E}_{A}^{(\epsilon)}) = \Delta_{A} \cap \{ v \in (\mathbb{R}^{d})^{*} : \langle v, \sum_{i \in A} u_{i} \rangle \leq \epsilon \}$$

Toric Hyperkähler Manifolds & Compactification Example for $T^*\mathbb{CP}^2$

Toric Hyperkähler Manifolds & Compactification

Example for $T^*\mathbb{CP}^3$

Recall:
$$G = SU(2), \quad G_{\mathbb{C}} = SL(2, \mathbb{C}), \quad g = 2,$$

and $\mathcal{M}_{\text{Higgs}}(\Sigma_2; SU(2)) \cong T^*\mathbb{CP}^3.$

Example

For "large enough k":

$$\dim \mathcal{Q}(\mathcal{M}_{\text{Higgs}}(\Sigma_2; G, k)) = \frac{1}{6}k^3 + k^2 + \frac{11}{6}k + 1$$
$$+ \left(\frac{1}{2}k^3 + 3k^2 - \frac{1}{2}k - 3\right)t$$
$$+ (k^3 + 8k^2 - 3k + 6)t^2 + \dots$$

The degree-0 part is our classical Verlinde formula for \mathbb{CP}^3 .

There are many striking analogies between hypertoric varieties and Higgs moduli spaces:

Hypertoric Varieties, M	Higgs Bundle Moduli, $\mathcal{M}_{\mathrm{Higgs}}$
\mathbb{C}^* -action	Hitchin \mathbb{C}^* -action
$\Phi[z,w] = \frac{1}{2} w ^2$, perfect Morse	$\mu(\mathcal{E}, \phi) = \ \phi\ _{L^2}^2$, perfect Morse
$T^*X \subset M$ open, dense	$T^*\mathcal{M}_{\mathrm{flat}} \subset \mathcal{M}_H$ open, dense
$X = \Phi^{-1}(0)$ core,	$\mu^{-1}(0) = \mathcal{M}_{\text{flat}}$ "nilpotent cone"
deformation retract of M	deformation retract of \mathcal{M}_H

Outlook

Goals for the Future

Goal (for now)

Find a combinatorial method to calculate

$$\dim \mathcal{Q}(M)_n$$
, for $\mathcal{Q}(M) = \bigoplus_{n>0} \mathcal{Q}(M)_n$,

with M a hypertoric manifold, which should coincide with the equivariant Verlinde formula for our toy model

$$M = \mathcal{M}_{Hiqqs}(\Sigma_2; SU(2)) \cong T^*\mathbb{CP}^3.$$

Question

- What about for more complicated hypertoric varieties, e.g. non-convex core, orbifolds, etc.
- Consider other Higgs bundle moduli spaces, e.g. $g \ge 2$, $G \ne SU(2)$, etc.

Outlook

Fin.

The End.