Solution sets of linear systems

Section 1.5 Learning Objectives:

- 1. Describe solution sets of homogeneous and non-homogeneous systems in parametric forms.
- 2. Relate solution sets of homogeneous and non-homogeneous systems as geometric translations of each other.

1 Homogeneous linear systems

Definition: A homogeneous system is of the form

$$A\mathbf{x} = \mathbf{0}$$
.

Recall: We always have the **trivial** solution x = 0.

The homogeneous system $A\mathbf{x} = \mathbf{0}$ has non-trivial solutions if and only if the system has free variables.

Example 1. Determine the solution set of $A\mathbf{x} = \mathbf{0}$ where

$$A = \left(\begin{array}{ccccc} 1 & 5 & 2 & -6 & 9 & 0 \\ 0 & 0 & 1 & -7 & 4 & -8 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right).$$

Take-away: We have seen that the solution set of a homogeneous system can always be written as the span of a collection of vectors:

 $\mathbf{x} =$

This is called a **parametric vector equation** or **parametric vector form** of the solution since we can get all the solutions by simply plugging in different scalars c_i .

2 Non-homogeneous linear systems

Definition: A non-homogeneous system is of the form

 $A\mathbf{x} = \mathbf{b}$

for $\mathbf{b} \neq \mathbf{0}$.

Luckily, the same approach we just used still works! There will just be one small difference.

Example 2. Find all solutions of $A\mathbf{x} = \mathbf{b}$ where

$$A = \left(\begin{array}{rrr} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{array}\right)$$

and

$$\mathbf{b} = \begin{pmatrix} 7 \\ -1 \\ -4 \end{pmatrix}.$$

Take-away: If the non-homogeneous system $A\mathbf{x} = \mathbf{b}$ is solvable, then its solution set is of the form

 $\mathbf{x} =$

where c_i are scalars.

Example 3. Suppose that \mathbf{p} is a particular solution of $A\mathbf{x} = \mathbf{b}$, so that $A\mathbf{p} = \mathbf{b}$. If \mathbf{v}_h is a solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$, then what equation does $\mathbf{p} + \mathbf{v}_h$ solve?

Theorem: If $A\mathbf{x} = \mathbf{b}$ is consistent for some given \mathbf{b} , and \mathbf{p} is some vector satisfying $A\mathbf{p} = \mathbf{b}$, then the solution set of $A\mathbf{x} = \mathbf{b}$ consists of all vectors of the form $\mathbf{x} = \mathbf{p} + \mathbf{v}$ where \mathbf{v} is a solution of the homogeneous equation $A\mathbf{x} = \mathbf{0}$.

Geometrically: We can think of solutions of homogeneous equations as say a line or plane through the origin (since we know **0** must be a solution). Then, solutions of the non-homogeneous system are the same line or plane but translated or shifted by the vector **p**.

Algorithm to determine the solution set of a matrix equation:

- 1. Row reduce the associated augmented matrix to RREF.
- 2. Express the basic variables in terms of free variables.
- 3. Write the solutions \mathbf{x} as a vector whose entries depend on the free variables.
- 4. Decompose and factor \mathbf{x} into a linear combination of vectors with weights comprised of free variables.

Example 4. Suppose A is a 3×3 matrix and $\mathbf{y} \in \mathbb{R}^3$ is such that $A\mathbf{x} = \mathbf{y}$ does not have a solution. Does there exist a vector $\mathbf{z} \in \mathbb{R}^3$ so that $A\mathbf{x} = \mathbf{z}$ has a unique solution?
Example 5. The following equations describe planes in \mathbb{R}^3 . Describe their intersection.
$x_1 + 4x_2 - 5x_3 = 0$
$2x_1 - x_2 + 8x_3 = 9.$