MTH 102A - Linear Algebra - 2015-16-II Semester

Arbind Kumar Lal *

P. Maximality

- Let $S \subseteq T$. We say S is a maximal subset of T having a property (P) if
- i) S has (P) and ii) no proper superset of S in T has (P).
- Let $T = \{2, 3, 4, 7, 8, 10, 12, 13, 14, 15\}$. Then a maximal subset of T of consecutive integers is $S = \{2, 3, 4\}$. Other maximal subsets are $\{7, 8\}, \{10\}, \{12, 13, 14, 15\}$. The subset $\{12, 13\}$ is not maximal. Why?
- $S \subseteq \mathbb{V}$ is called maximal lin.ind if
- i) S is lin.ind and ii) no proper super set of S is lin.ind.
- \bullet In $\mathbb{R}^3,$ the set $\{\mathbf{e}_1,\mathbf{e}_2\}$ is lin.ind but not maximal lin.ind.!!
- In \mathbb{R}^3 , the set $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is maximal lin.ind. !!
- Let $S \subseteq \mathbb{R}^n$ be lin.ind and |S| = n. Then S is maximal lin.ind.!!
- Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\} \subseteq \mathbb{R}^n$. Form the matrix A by taking \mathbf{v}_i 's as columns. Apply GJE: let A = ER, where R = RREF(A). Let $R(:, i_1), \dots, R(:, i_p)$ be the pivotal columns. Then $\{\mathbf{v}_{i_1}, \dots, \mathbf{v}_{i_p}\}$ is a maximal lin.ind subset of S.!!

P. Dimension

- A set $S \subseteq \mathbb{V}$ is maximal lin.ind if and only if $Ls(S) = \mathbb{V}$.!!
- \mathbb{V} is called finite dimensional if it has a finite subset S s.t. $Ls(S) = \mathbb{V}$.
- \mathbb{R}^n is finite dimensional as $\mathbb{R}^n = LS(\mathbf{e}_1, \dots, \mathbf{e}_n)$.
- Let $\mathbb{V} = Ls(S)$, |S| = k, $T \subseteq \mathbb{V}$ be lin.ind. We already know that $|T| \leq k$. Thus a maximal lin.ind subset of \mathbb{V} has at most k vectors in it.
- Th Let S, T be two finite maximal lin.ind subsets of \mathbb{V} . Then |S| = |T|.
- Po. As $LS(S) = \mathbb{V}$ and T is lin.ind, we get $|T| \leq |S|$. Similarly, $|S| \leq |T|$.
- Let $\mathbb{V} \neq \{\mathbf{0}\}$ be a VS and S be a maximal lin.ind subset. We call |S| the (algebraic) dimension $\dim(\mathbb{V})$ of \mathbb{V} . Convention: dimension of $\{\mathbf{0}\}$ is 0.

^{*}Indian Institute of Technology Kanpur

• Let $\mathbb{V} \neq \{0\}$ be a VS. Then a maximal lin.ind subset of \mathbb{V} is called the (Hamel) basis of \mathbb{V} . Note: basis of $\{0\}$ is not defined.

P. Minimal spanning set, Basis

• Let $\mathbb{V} \neq \{\mathbf{0}\}$. A set $S \subseteq \mathbb{V}$ is called minimal spanning if $LS(S) = \mathbb{V}$ and no proper subset of S spans \mathbb{V} .

Th Let $\mathbb{V} \neq \{0\}$ be a vector space. TFAE:

- 1) \mathcal{B} is a basis (maximal lin.ind set) of \mathbb{V} .
- 2) \mathcal{B} is lin.ind and it spans \mathbb{V} .
- 3) \mathcal{B} is a minimal spanning set of \mathbb{V} .

Po. 1) \Rightarrow 2): Basis \Rightarrow Lin. ind and Maximal \Rightarrow spans.

2) \Rightarrow 3): Let S be a lin.ind set that spans \mathbb{V} . Then, for any $\mathbf{x} \in S$, $\mathbf{x} \notin LS(S - \{\mathbf{x}\})$. Hence $LS(S - \{\mathbf{x}\}) \neq \mathbb{V}$.

3) \Rightarrow 1): Since \mathcal{B} spans \mathbb{V} , for any $\mathbf{x} \in \mathbb{V} \setminus \mathcal{B}$ we have $\mathcal{B} \cup \{\mathbf{x}\}$ is lin.dep. Assume that \mathcal{B} is lin.dep. Then there exists $\mathbf{v}, \mathbf{v}_1, \dots, \mathbf{v}_k \in \mathcal{B}$ s.t. $\mathbf{v} = \sum \alpha_i \mathbf{v}_i$. In that case $LS(\mathcal{B} \setminus \{\mathbf{v}\}) = LS(\mathcal{B}) = \mathbb{V}$, means \mathcal{B} is not minimal spanning.

Th Let \mathbb{V} have dimension n and $S \subseteq \mathbb{V}$ be lin.ind. Then there exists a basis $T \supseteq S$.

Po. If $LS(S) = \mathbb{V}$, then S is a basis. Otherwise, choose $\mathbf{x}_1 \in \mathbb{V} \setminus LS(S)$.

By earlier result, $S_1 = S \cup \{\mathbf{x}_1\}$ is lin.ind. Repeat the process. Process must stop as dimension is n. When it stops $LS(S_k) = \mathbb{V}$.

Th Let F be invertible and $A_{m \times n} = FB$. Then ROW(A) = ROW(B).

Po. As $A(i,:) = \sum_{j=1}^m f_{ij}B(j,:)$, $Row(A) \subseteq Row(B)$. As $A = F^{-1}R$, $Row(B) \subseteq Row(A)$.

Th $rank(A) = \dim row(A)$.

Po. GJE: R = FA. Nonzero rows of R are lin.ind due to the positions of pivots. Thus $RANK(R) = \dim ROW(R) = \dim ROW(A)$.

Th Let R = RREF(A) with the pivotal columns i_1, \ldots, i_k . Then columns i_1, \ldots, i_k of A form a basis for COL(A). Thus $\text{RANK } A = \dim \text{COL}(A)$.

Po. Note: $R(:, i_1), \ldots, R(:, i_k)$ are lin.ind and other columns in R are lin.comb of them. So $A(:, i_1), \ldots, A(:, i_k)$ are lin.ind (as F is invertible) and other columns in A are lin.comb of them. So the columns $A(:, i_1), \ldots, A(:, i_k)$ form a basis for COL(A).

Th $\operatorname{Rank}(A) = \dim \operatorname{Row}(A) = \dim \operatorname{Col}(A) = \operatorname{Rank}(A^t).$

Po. First two equality follow from earlier result. As $COL(A^t) = ROW(A)$, $RANK(A) = \dim ROW(A) = \dim COL(A^t) = RANK(A^t)$.

T/F Rows of A contain a basis of ROW(A). T.

- In GJE we called the pivotal columns 'basic columns'. Notice that they give us a 'basis' for the column space.
- Let $S \subseteq \mathbb{R}^n$ be lin.ind. Can you use GJE to extend S to a basis?
- Yes. Form the matrix $A_{n\times m}$ $(m \leq n)$ using the vectors in S as columns. Apply GJE: A = ER, where E is $n \times n$ and first m rows of R are nonzero. Extend R to $R' = [R \mid \mathbf{e}_{m+1} \quad \cdots \quad \mathbf{e}_n]$. Put A' = ER'. Columns of A' form the necessary extension.

Th Let RANK $A_{m \times n} = k$. Then the maximum order of a nonsingular submatrix of A is k.

Po. Delete nonbasic columns of A. Call it A_1 . Look at $B_{k\times m}=A_1^t$. It has rank k. So it has k basic columns. Delete the nonbasic ones. Call it B_1 . Look at $C_{k\times k}=B_1^t$. It is a submatrix of A of rank k. So $\det C \neq 0$.

Take a submatrix $D_{k+1\times k+1}$ of A. Assume det $D \neq 0$. Then columns of D are lin.ind. Extend each column of D (replace it with resp column of A). They still remain lin.ind. But this means RANK A > k.

A contradiction.

Cor Rank(A) = Rank (A^*) . !!

- Consider the VS \mathbb{F}^n over \mathbb{F} . The basis $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ is called the standard basis. Notice that dim $\mathbb{F}^n = n$.
- Let $\mathbb{V} = \mathbb{R}[x]$. Then $\{1, x, x^2, \dots\}$ is a basis.!!
- $\{1, x, x^2, \dots, x^n\}$ is a basis for $\mathbb{R}[x; n]$. So dim $\mathbb{R}[x; n] = n + 1$.
- Give a basis to show that dim $\mathcal{M}_{m,n}(\mathbb{R})$ is mn.!!

P. Rank-Nullity

Th[rank-nullity] dim NULL $A_{m \times n} = n - \text{RANK } A$.

Po. Imagine solving $A\mathbf{x} = \mathbf{0}$ by GJE. Let $\mathbf{x}_{i_1}, \dots, \mathbf{x}_{i_k}$ be the free variables. Put $\mathbf{x}_{i_1} = 1$, $\mathbf{x}_{i_2} = \dots = \mathbf{x}_{i_k} = 0$ to get a solution X_1 . Put $\mathbf{x}_{i_k} = 1$, $\mathbf{x}_{i_1} = \dots = \mathbf{x}_{i_{k-1}} = 0$ to get a solution X_k . We get k lin.ind solutions.

X_1	X_2		X_k
*	*		*
1	0		0
0	1		0
*	*	:	*
0	0		1

Let \mathbf{y} be any solution of $A\mathbf{x} = \mathbf{0}$. Put $\mathbf{z} = \mathbf{y} - \mathbf{y}_{i_1}X_1 - \cdots - \mathbf{y}_{i_k}X_k$. So $A\mathbf{z} = A\mathbf{y} - \mathbf{y}_{i_1}AX_1 - \cdots - \mathbf{y}_{i_k}AX_k = \mathbf{0}$. So, \mathbf{z} is a solution of $A\mathbf{x} = \mathbf{0}$ where each free variable is 0. Hence $\mathbf{z} = \mathbf{0}$. So y is a lin.comb of X_1, \ldots, X_k . So dim NULL A = k = n - RANK A.