Домашнее задание от 49-ого дня карантина

Задача 19.4.(б) Найти собственные значения и собственные векторы оператора

$$Ax(t) = \int_{-\pi}^{\pi} \cos(s+t)x(s)ds,$$

действующего в пространстве $C[-\pi,\,\pi].$

Решение:

$$Ax(t) = \cos(t) \int_{-\pi}^{\pi} \cos(s)x(s)ds - \sin(t) \int_{-\pi}^{\pi} \sin(s)x(s)ds = \lambda x(t)$$

Если $\lambda = 0$, то собственными векторами являются все элементы, ортогональные к $\sin(t)$ и $\cos(t)$ в смысле скалярного произведения в L_2 .

При $\lambda \neq 0$ нужно искать решение в виде линейной комбинации $x(t) = c_1 \sin(t) + c_2 \cos(t)$ Приравнивая коэффициенты в обеих частях уравнения, получаем

$$\begin{cases} c_1 \pi = -\lambda c_1 \\ c_2 \pi = \lambda c_2 \end{cases}$$

Здесь возможны всего два случая:

- 1. $c_1 = 0$, тогда $\lambda = \pi$, и собственный вектор $x(t) = \cos(t)$.
- 2. $c_2 = 0, \ \lambda = -\pi,$ собственный вектор $x(t) = \sin(t)$.

Задача 19.5. Найти собственные значения и собственные векторы оператора Ax(t) = x''(t), действующего в пространстве $C[0, \pi]$, если область определения имеет вид

- 1. $D(A) = \{x(\cdot) \in C[0, \pi] : x''(\cdot) \in C[0, \pi], \ x(0) = x(\pi) = 0\}$
- 2. $D(A) = \{x(\cdot) \in C[0, \pi] : x''(\cdot) \in C[0, \pi], x'(0) = x'(\pi) = 0\}$
- 3. $D(A) = \{x(\cdot) \in C[0, \pi] : x''(\cdot) \in C[0, \pi], \ x(0) = x(\pi), \ x'(0) = x'(\pi) \}$

Pemenue: Если $\lambda > 0$, то решением уравнения

$$x''(t) = \lambda x(t)$$

является функция $x(t) = e^{\sqrt{\lambda}t}$, которая не удовлетворяет краевым условиям, поэтому будем рассматривать $\lambda \leqslant 0$. В этом случае решениями являются функции $\cos(\sqrt{\lambda}t)$, $\sin(\sqrt{\lambda}t)$. Из краевых условий получаем

- 1. $\lambda = -k^2$, $x(t) = \sin(k\lambda)$, k = 1, 2, ...
- 2. $\lambda = -k^2$, $x(t) = \cos(k\lambda)$, k = 0, 1, 2, ...
- 3. $\lambda = -4k^2$, $x(t) = \sin(2k\lambda)$, $x(t) = \cos(2k\lambda)$, k = 1, 2, ...

Задача 19.13. Пусть $A \in \mathcal{L}(X)$. Может ли $R_{\lambda}(A) = (A - \lambda I)^{-1}$ быть вполне непрерывным? *Решение:* Резольвента является непрерывным оператором, поэтому в конечномерных пространствах, где непрерывность эквивалентна полной непрерывности, утверждение выполнено.

В случае бесконечномерного пространства заметим, что, в силу принципа Банаха об открытости, образ открытого единичного шара при действии непрерывного оператора открыт, а значит, содержит в себе шар некоторого радиуса, не являющийся предкомпактом в бесконечномерном банаховом пространстве. Образ замкнутого единичного шара тогда содержит в себе непредкомпактное множество, и потому сам не является предкомпактным.

Таким образом, R_{λ} вполне непрерывен в том и только том случае, когда пространство конечномерно.

Задача 19.14. Рассмотрим в C[0, 1] оператор Ax(t) = tx(t). Доказать, что $\sigma(A) = [0, 1]$ и ни одна из точек спектра не является собственным значением.

Решение: Так как $\|A\|=1$, получаем $\sigma(A)\subset [-1,\,1]$. Уравнение $(A-\lambda I)x=y$ принимает вид:

$$(t - \lambda)x(t) = y(t),$$

отсюда при $\lambda < 0$ оператор непрерывно обратим, и

$$(A - \lambda I)^{-1}y(t) = \frac{y(t)}{t - \lambda}.$$

При $\lambda \geqslant 0$ этот оператор разрывен, и потому $\sigma(A) = [0, 1]$.

В спектре отсутствуют собственные значения, поскольку уравнение

$$tx(t) = \lambda x(t)$$

имеет лишь нулевое решение в классе непрерывных функций.

Задача 19.18. В $C[0,\,1]$ задан оператор $Ax(t)=\int\limits_0^tx(\tau)d\tau.$ Найти $\sigma(A),\,\,R_\lambda(A).$

Pewenue: Так как $||A||=1, \ \sigma(A)\subset [-1,1].$ Уравнение $(A-\lambda I)x=y$ эквивалентно

$$\int_{0}^{t} x(\tau)d\tau = \lambda x(t) + y(t)$$

Так как левая часть непрерывно дифференцируема, обозначая $z(t) = \lambda x(t) + y(t)$ и дифференцируя обе части, находим

$$x(t) = \dot{z}(t).$$

При $\lambda \neq 0$ получаем линейное дифференциальное уравнение

$$\dot{z}(t) + \frac{z(t)}{\lambda} - \frac{y(t)}{\lambda} = 0,$$

решение которого находится по формуле Коши. Учитывая z(0) = 0, получаем

$$z(t) = \frac{1}{\lambda} \int_{0}^{t} e^{\frac{1}{\lambda}(\tau - t)} y(\tau) d\tau,$$

откуда

$$x(t) = \frac{1}{\lambda^2} \int_0^t e^{\frac{1}{\lambda}(\tau - t)} y(\tau) d\tau - \frac{1}{\lambda} y(t).$$

Очевидно, что этот оператор непрерывен, и потому $[-1, 1] \setminus \{0\} \subset \rho(A)$. Но так как спектр непрерывного оператора непуст, то он состоит из единственной точки $\sigma(A) = \{0\}$.