Cours de base de donnéesé

chap 4

Dépendances fonctionnelles et normalisation

Par: Kamal BAL

Université AMOB de Bouira
Faculté des sciences et des sciences appliquées
Département d'informatique

https://sites.google.com/a/esi.dz/kamalbal

La normalisation d'un schéma relationnel

- L'objectif: construire un schéma de base de données cohérent.
- Un mauvais schéma logique peut conduire à un certain nombre d'anomalies pendant la phase d'exploitation de la base de donnée.
- Pour qu'un modèle relationnel soit **normalisé**, il faut qu'il respecte certaines contraintes appelées **les formes normales**.
- Les formes normales s'appuient sur la notion des dépendances fonctionnelles entre attributs

La normalisation d'un schéma relationnel

La construction d'un modèle E/A mais également du modèle relationnel correspondant, repose presque entièrement sur le concept de <u>dépendance</u> <u>fonctionnelle.</u>

C'est ce concept qui permet de passer d'un ensemble de propriétés non structuré à un modèle conceptuel des données formé d'entités et d'associations et au modèle relationnel correspondant

- Soit une relation R: R(A1,A2, ..., An)
- R est définit sur un les attributs A= {a1,a2, ..., an}
- Soient: X et Y des sous-ensembles de A.
- Y dépend fonctionnellement de X ou X détermine Y si, et seulement si:
 - Des valeurs identiques de X impliquent des valeurs identiques de Y.
 - A une valeur x de X correspond une et une seule valeur y de Y
- Notation : $X \rightarrow Y$

- Soit R(A, B, C) une relation.
- L'attribut B est dit fonctionnellement dépendant de l'attribut A si:
 - \blacksquare Etant donné : $\langle a_1, b_1, c_1 \rangle$ et $\langle a_2, b_2, c_2 \rangle \in \mathbb{R}$
 - \bullet Si $\mathbf{a}_1 = \mathbf{a}_2 \implies \mathbf{b}_1 = \mathbf{b}_2$
 - □ Ou encore, **A détermine B** si étant donné une valeur de **A**, il lui **correspond une seule** valeur unique de **B**.

ON NOTE $A \rightarrow B$

A: SOURCE de la DF ET B: Cible (BUT) de la DF

Exemple:

```
Produit(reference, designation, prix, qte_stock)
Contient les DF suivantes:
```

```
reference → designation
reference → prix, qte_stock
```

```
Evaluation (Matrivule, nom, prenom, niveau, module, note_dans_mdoule)
```

Contient les DF suivantes :

```
Matricule → nom, prenom, niveau
Matricule, module → note_dans_module
```

DF Elémentaire

DF élémentaire:

- X → A est une DF élémentaire si A est un attribut unique non inclus dans X et il n'existe pas de X' inclus dans X tel que X' → A
- \blacksquare **Ex**.
 - □ Ref produit → designation produit ;
 - N_commande, ref_produit quantité_commandée
 - N_commande, ref _produit designation_produit
 - □ (Non élémentaire) Car : ref _produit → designation_produit

DF Elémentaire

DF directe:

- X → A est une DF directe si elle ne peut être déduite par transitivité à partir d'autres DFs
- \blacksquare ie: Il n'existe pas un attribut B tel que :X \rightarrow B \rightarrow A

EX.

```
N_client → Nom_Client ; est directe
N_commande → N_Client ; est directe
N_commande → Nom_client; n'est pas Directe car
N_commande → N_Client → Nom_client
```

DF directe:

- X → A est une DF directe si elle ne peut être déduite par transitivité à partir d'autres DFs
- \blacksquare ie: Il n'existe pas un attribut B tel que :X \rightarrow B \rightarrow A
 - □ N_conducteur →Nom_Conducteur; N_permis → N_Cconducteur;
 - □ N_permis → Nom_Conducteur ; n'est pas une DF Directe car :

```
N_permis→ N_Cconducteur → Nom_Conducteur
```

Graphe des DFs

Graphe de dépendances fonctionnelles

- N°Série → Couleur
- N° Série \rightarrow Type, Marque
- N°Série, Conducteur → NB_heure_conduite

Exemple : Soit la relation suivante R de schéma

D / A D C D E

Λ (A, D, C, D, E).						
В	С	D	Е			
b1	c1	d1	e1			
b2	c2	d2	e1			
b1	c3	d3	e1			
b1	c4	d3	e1			
b2	c5	d1	e1			
	b1 b2 b1 b1	B C b1 c1 b2 c2 b1 c3 b1 c4	B C D b1 c1 d1 b2 c2 d2 b1 c3 d3 b1 c4 d3			

Les dépendances fonctionnelles satisfaites par R sont ????

Exemple : Soit la relation suivante R de schéma

R (A, B, C, D, E).

A	В	С	D	E
a1	b1	c1	d1	e1
a1	b2	c2	d2	e1
α2	b1	c3	d3	e1
α2	b1	c4	d3	e1
α3	b2	c5	d1	e1

Les dépendances fonctionnelles satisfaites par R sont les suivantes ??? :

$$B \rightarrow E$$
; $C \rightarrow B$

$$C \rightarrow B$$

$$BD \rightarrow A$$

$$C \rightarrow A$$
;

$$C \rightarrow A$$
; $D \rightarrow E$; $C \rightarrow D$

$$C \rightarrow D$$

$$AB \rightarrow D$$
;

$$AD \rightarrow B$$
;

$$C \rightarrow E$$

- **Exemple :** Soit une relation R exprimant l'emploi du temps d'une école construite sur les attributs suivants :
 - **P** (professeur),
 - **H** (heure du cours),
 - **S** (Salle),
 - **C** (classe) et
 - **M** (matière).
 - La signification d'un n-uplet de cette relation est : Le professeur P enseigne la matière M à l'heure H dans la salle S à la classe C. Donnez la liste des dépendances fonctionnelles.
 - Solution :

```
P \rightarrow M; S,H \rightarrow M; S,H \rightarrow C; C,H \rightarrow S,M; ......
```

Propriétés des DFs: axiomes d'Armstrong

Axiomes d'Armstrong:

- □ Système de règles d'inférences définit par Armstrong en 1974 :
- Déduire d'autres DFs à partir des trois propriétés suivantes :

■ Transitivité:

- \square Si $X \rightarrow Y$, et $Y \rightarrow Z$, alors $X \rightarrow Z$
- Augmentation :
 - \square Si $X \rightarrow Y$, alors $XZ \rightarrow YZ$
 - pour tout groupe Z d'attributs appartenant au schéma de relation
- Réflexivité :
 - \square si X contient Y, alors X \rightarrow Y (ex. A \rightarrow A; AB \rightarrow A)
 - Y Í X alors $X \rightarrow Y$ (et donc $X \rightarrow X$)

Propriétés des DFs : axiomes d'Armstrong

A partir de ces trois axiomes de base, on peut déduire d'autres règles :

Union:

- \square si X \rightarrow Y et X \rightarrow Z, alors X \rightarrow YZ,
- **Pseudo-transitivité:**
 - \square si X \rightarrow Y et WY \rightarrow Z, alors WX \rightarrow Z,
- Décomposition :
 - \bullet si X \rightarrow Y et Z \subseteq Y, alors X \rightarrow Z.

Fermeture transitive

Fermeture transitive d'un ensemble de DFs:

- Soit **D**, un ensemble de DFs élémentaires,
- la fermeture transitive (D⁺) de D est l'ensemble des DFs de D enrichi de toutes les DFs élémentaires obtenues par transitivité
- Exemple :

Deux ensembles de DFs élémentaires sont équivalents s'ils ont la même fermeture transitive.

- La fermeture d'un ensemble d'attributs X:
 - La fermeture transitive d'un ensemble d'attributs X sous un ensemble F de DFs, notée (X)⁺ représente l'ensemble des attributs qui peuvent être déduits de X à partir de l'ensemble F des DFs.
 - \Box Ainsi, Y sera inclus dans $(X)^+$ ssi $X \to Y$.

- Calcul de la fermeture d'un ensemble d'attributs :
- a) initialiser (X) + à X,
- b) Chercher une df \boldsymbol{f} de F tel que : La partie gauche de \boldsymbol{f} inclus dans (X)+
- c) Ajouter les attributs de la partie gauche de f a (X)+
- d) Répéter les étapes b) et c) jusqu'à ce que (X) + n'évolue plus.

Exemple: :

- F = $\{A \rightarrow D; AB \rightarrow E ; BI \rightarrow E; CD \rightarrow I; E \rightarrow C\}.$
- Calculer la fermeture, sous F, de AE.

Solution :

- au départ, (AE) + = AE,
- A \rightarrow D permet d'ajouter D : (AE)+ = AED,
- E \rightarrow C permet d'ajouter C : (AE)+ = AEDC,
- CD \rightarrow I permet d'ajouter I : (AE)+ = AEDCI.

Calcul de la fermeture d'un ensemble d'attributs :

- a) initialiser $(X) + \hat{a} X$,
- b) Chercher une df f de F tel que :

 La partie gauche de f inclus dans (X) +
- c) Ajouter les attributs de la partie gauche de f a (X)+
- d) Répéter les étapes b) et c) jusqu'à ce que (X)+ n'évolue plus.
- Exemple: :
 - $F = \{A \rightarrow D; AB \rightarrow E; BI \rightarrow E; CD \rightarrow I; E \rightarrow C \}.$
 - Calculer la fermeture, sous F, de BE
- Solution:
 - au départ, (BE)+ = BE,
 - E \rightarrow C permet d'ajouter C : (BE)+ = BEC.

Couverture minimale d'un ensemble de DFs

- Soit un ensemble de dépendances fonctionnelles élémentaires F pour un ensemble d'attributs A,
- **CM(F)** est une couverture minimale de F si
 - Toute DF f de F n'est pas redondante (F-f n'est pas équivalant à F)
 - Toute DF élémentaire de A est dans la fermeture transitive F+

C'est le sous ensemble minimale de DFs permettant de générer toutes les autres DFs.

$$CM(F) += F +$$

Il n'existe pas $F' \subseteq CM(F)$ tel que : F' + = F +

Tout ensemble de DFs élémentaires a une couverture minimale – Cette couverture peut ne pas être unique.

Couverture minimale

Exemple

```
    □ F = {
    □ NV → Type;
    □ Type → Marque;
    □ NV → Couleur;
    □ NV → Couleur;
    □ NV → Marque;
    □ NV → Puiss;
    □ Type, Marque) → Rabais;
    □ NV → Rabais;
    □ NV → Rabais;
    □ NV → Rabais;
    □ Type, → Rabais;
    □ Type, → Rabais;
```

DF redondante

- □ Soit **F** un ensemble de DFs
- □ Une DF $f: (X \rightarrow Y)$ est redondante dans F SSI:
- $\mathbf{Y} \in \mathbf{X}^+ \text{ sous } \mathbf{F} \{\mathbf{f}\}$

Exemple:

- □ A \rightarrow C est redondante car C \subseteq A⁺ sous F-(A \rightarrow C)

Couverture minimale: Algorithme

Soit **F**: un ensemble de DFs élémentaires sur un ensemble d'attribut **A**

```
Début
CM(F) = F // l'ensemble des DFs
Eclater les parties droites des DF
   Remplacer X\rightarrow A1, A2, ..., Ak Par: X\rightarrow A1; X\rightarrow A2; ; X\rightarrow Ak;
Pour chaque DF f (X \rightarrow A)
       Calculer (X) + Sous (F-{f})// couverture de X Sous
       (F-{f})
       Si A \in (X) + alors CM(F) = CM(F) - f
Fin pour
Retourner CM(F);
Fin
```

Les DFs et la notion de clé

- DF et notion de clé
- Soit R (A1, A2, ..., An) une relation, X un ensemble d'attributs inclus dans {A1, A2, ..., An} est une clé de R si
 - $\mathbf{X} \rightarrow \mathbf{A} \mathbf{1} \mathbf{A} \mathbf{2} \dots \mathbf{A} \mathbf{n}$
 - Il n'existe pas Y inclus dans X, tel que Y → A1 A2 ... An

- □ X est une clé alors :
 - $(X)^+ = \{A1, A2, ..., An\}$
 - $\neg \exists X' \subseteq X / (X') + = \{A1, A2, ..., An\}$

Les DFs et la notion de clé

Comment calculer une clé d'une relation?

Calcule une clé **K** d'un schéma relationnel **R** sur un ensemble d'attributs **U** avec un ensemble de DFs **F**:

Debut

- \square K := U; {l'ensemble de tout les attributs}
- □ Tant que \exists un attribut $A \in K$ tel que K- $\{A\}$ \rightarrow U faire
 - $K := K \{A\};$
- □ Fin tant que

Fin

Il existe d'autres algorithmes capables de calculer l'ensemble des clés possibles pour un schéma R.