CS 346 Class Notes

Mark Lindberg

Mar 7, 2016

Last Time:

5.3 Message Authentication using Hash functions.

"Hash and Mac" paradigm.

Construction 5.5:

 $\Pi = (\mathsf{Mac}, \mathsf{Vrfy})$. A fixed-length MAC for messages of length $\ell(n)$.

 $\Pi_H = (\mathsf{Gen}_H, H)$. A hash function with output length $\ell(n)$.

Construct Mac: $\Pi' = (Gen', Mac', Vrfy')$.

Gen': Run Gen_H to get s. Also get random n-bit k. Key is (s, k).

 $\mathsf{Mac}'_{s,k}(m) = \mathsf{Mac}_k(H^s(m)).$

 $\mathsf{Vrfy}_{s,k}'(m) = \mathsf{Vrfy}_k(H^s(m),t).$

This Time:

Theorem 5.6: If Π is secure and Π_H is collision resistant, then Π' is secure.

Proof: Let \mathcal{A}' be an arbitrary PPT adversary in the Mac-forge_{\mathcal{A}',Π'}(n) experiment.

Split the \mathcal{A}' successes into "Type I" and "Type II".

 \mathcal{A}' succeeds if it produces (m,t), such that $m \notin Q$ (set of messages \mathcal{A}' has previously made oracle calls on), and $\mathsf{Vrfy}'_{s,k}(m,t) = 1$. From Vrfy' definition, $\mathsf{Vrfy}_k(H^s(m),t) = 1$.

Note that Pr[A' succeeds] = Pr[A' has Type I success] + Pr[A' has Type II success].

Type I: $H^s(m) = H^s(m')$ for some $m' \in Q$.

Type II: Otherwise.

Type I breaks collision resistance of Π_H . We can then relate Type II to breaking Π 's security.

Type I:

To prove: Pr[A' has Type I success] is negl:

Construct a PPT adversary \mathcal{A}_H in Hash-coll_{\mathcal{A},Π}(n) that simulates \mathcal{A}' .

 \mathcal{A}_H gets s and outputs m, m'. It succeeds iff $m \neq m'$ and $H^s(m) = H^s(m')$.

To simulate \mathcal{A}' . \mathcal{A}' calls oracle $\mathsf{Mac}'_{k,s}(m) = \mathsf{Mac}_k(H^s(m))$ at outset, \mathcal{A}_H generates a random n-bit k when \mathcal{A}' outputs (m,t).

If \mathcal{A}' does not have a Type I success, \mathcal{A}_H outputs arbitrary messages.

Otherwise, output m, m' such that $H^s(m) = H^s(m')$ and $m' \in Q$.

Type II:

To prove: Pr[A' has Type II success] is negl.

Construct a PPT adversary \mathcal{A} for $\mathsf{Mac}\text{-}\mathsf{forge}_{A,\Pi}(n)$. \mathcal{A} simulates \mathcal{A}' .

To simulate a call to $\operatorname{\mathsf{Mac}}_{s,k}'(m) = \operatorname{\mathsf{Mac}}_k(H^s(m))$.

Oracle of \mathcal{A}' Oracle of \mathcal{A}

At outset, \mathcal{A} run $\mathsf{Gen}_H(1^n)$ to get s. When \mathcal{A}' outputs m, t, if \mathcal{A}' does not get a Type II success, give an arbitrary output.

Otherwise, \mathcal{A} outputs $(H^s(m), t)$. This will pass Vrfy. Note that $H^s(m) \neq H^s(m')$ for any $m' \neq m$, $m, m' \in Q$, because it's a Type II success, and therefore cannot be a Type I success.

Done!

HMAC construction!

Um, I took a picture. That thing was ridiculous.

Generic birthday attacks on Hash functions.

THE BIRTHDAY PARADOX IS NOT A FREAKING PARADOX, DANGIT.

On a hash function with $\ell(n)$ -bit output strings, $O(2^{\frac{\ell(n)}{2}})$ evaluations are sufficient to find a collision with good probability.

Analysis: Assume idealized Hash function (worst case), n bins, throw balls into random bins until we have a collision. Expected time, $\Theta(\sqrt{n})$. Hehehe. This is mathematically provable, and makes perfect sense probabilistically, and there is no paradox. Period. *sigh*

Constant space birthday attack: Pick an IV, and keep hashing the output, and try to see when it loops on itself.

There's a solution to this. Huh.