

"Real World" Reinforcement Learning

CS4246/CS5446

Al Planning and Decision Making

Policy Search

Policy gradient, actor critic, correlated sampling

Policy Search

- A policy $\pi: S \to A$ is a mapping from state to action
- ullet Assume the policy is parametrized by some parameters heta
 - Dimensions of θ should be smaller than the number of states
- Often use: Q-function parameterized by θ to represent π

$$\pi(s) = \arg\max_{a} \hat{Q}_{\theta}(s, a)$$

ullet Policy search adjusts ullet to improve the policy

What problem can this representation pose when trying to optimize the policy?

- Idea:
 - Keep twiddling the policy as long as its performance improves, then stop

Intuition

- Policy search tries to find a good policy, e.g., represented as Q-function
 - Results in process that learns Q-functions
 - Q-learning with function approximation: find a value of θ such that \hat{Q}_{θ} is close to Q^* , the optimal Q-function
 - Policy search: find a value of θ that results in good policy
- Difference between good Q-function and optimal Q-function
 - Approximate Q-function defined by $\widehat{Q}_{\theta} = \frac{Q^*}{100}$ gives optimal performance, even though it is not at all close to Q^*

Stochastic Policy

For policy representation of the form:

$$\pi(s) = \arg\max_{a} \hat{Q}_{\theta}(s, a)$$

- Problem:
 - When actions are discrete, policy is a discontinuous function of θ
 - This makes gradient-based search difficult
- Stochastic policy:
 - $\pi_{\theta}(s,a)$ specifies the probability of selecting an action a in state s
 - E.g., Softmax function, with $\beta > 0$ modulating softness of the softmax:

Distribution of action: probability of selecting a in s

$$\pi_{\theta}(s,a) = \frac{e^{\beta \hat{Q}_{\theta}(s,a)}}{\sum_{a'} e^{\beta \hat{Q}_{\theta}(s,a')}}$$
 Differentiable function of θ

How to Improve Policy?

- Definition:
 - Let $\rho(\theta)$ be the policy value expected reward-to-go when π_{θ} is executed.
- For deterministic policy and deterministic environment:

Use gradient ascent or stochastic gradient ascent

- If $\rho(\theta)$ is differentiable: Take a step in the direction of the policy gradient vector $\nabla_{\theta}\rho(\theta)$ Look for the local optimum
- For stochastic environment and/or policy $\pi_{\theta}(s, a)$:
 - Obtain an unbiased estimate of the gradient at θ , $\nabla_{\theta}\rho(\theta)$ directly from results of trials executed at θ

Policy Gradient

• Consider: single action from single state s_0

$$\nabla_{\theta} \rho(\theta) = \nabla_{\theta} \sum_{a} R(s_0, a, s_0) \pi_{\theta}(s_0, a) = \sum_{a} R(s_0, a, s_0) \nabla_{\theta} \pi_{\theta}(s, a)$$

• Approximate the summation using samples generated from $\pi_{\theta}(s_0, a)$:

$$\nabla_{\theta} \rho(\theta) = \sum_{a} \pi_{\theta}(s_{0}, a) \cdot \frac{R(s_{0}, a, s_{0}) \nabla_{\theta} \pi_{\theta}(s, a)}{\pi_{\theta}(s_{0}, a)} \approx \frac{1}{N} \sum_{j=1}^{N} \frac{R(s_{0}, a_{j}, s_{0}) \nabla_{\theta} \pi_{\theta}(s_{0}, a_{j})}{\pi_{\theta}(s_{0}, a_{j})}$$

For sequential case, this generalizes to:

Sample using policy

$$\nabla_{\theta} \rho(\theta) \approx \frac{1}{N} \sum_{j=1}^{N} \frac{u_j(s) \nabla_{\theta} \pi_{\theta}(s, a_j)}{\pi_{\theta}(s, a_j)}$$

for each state s visited, where a_j is executed in s on the jth trial and $u_j(s)$ is the total reward received from state s onward in the jth trial.

Derivation: REINFORCE*1

 Alternately, for sequential case, policy gradient by sample approximation generalizes to

$$\nabla_{\theta} \rho(\theta) = \nabla_{\theta} \sum_{\tau} p_{\theta}(\tau) u(\tau)$$

We want to find the θ that maximizes the value of $\sum_{\tau} p_{\theta}(\tau) u(\tau)$

Where, τ is the trajectory generated by the policy and $u(\tau)$ is the sum of rewards from trajectory τ

Using the policy gradient theorem¹ this can be written as:

$$abla_{\theta} \rho(\theta) \propto \sum_{s} p_{\pi_{\theta}}(s) \sum_{a} \nabla_{\theta} \pi_{\theta}(s, a) \hat{Q}_{\pi_{\theta}}(s, a)$$
Q-function at that state

Gradient of policy

1-Sutton & Barto Section 13.2

States generated by policy

Derivation: REINFORCE*2

Sample using policy

We can approximate the gradient using sampling

$$\nabla_{\theta} \rho(\theta) \propto \sum_{s} p_{\pi_{\theta}}(s) \sum_{a} \frac{\pi_{\theta}(s, a) \nabla_{\theta} \pi_{\theta}(s, a) \hat{Q}_{\pi_{\theta}}(s, a)}{\pi_{\theta}(s, a)}$$

$$\approx \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{n_{i}} \frac{\nabla_{\theta} \pi_{\theta}(s_{ij}, a_{ij}) u_{i}(s_{ij})}{\pi_{\theta}(s_{ij}, a_{ij})}$$
i: trial, j: seq within trial

• Where, a_{ij} is executed in s_{ij} on the $j^{\rm th}$ step of the $i^{\rm th}$ trial and $u_i(s_{ij})$ is the total reward (return) received from the $j^{\rm th}$ step onward in the $i^{\rm th}$ trial

REINFORCE

• Using an online update, we get the REINFORCE algorithm:

$$\theta_{j+1} = \theta_j + \alpha u_j \frac{\nabla_{\theta} \pi_{\theta}(s, a_j)}{\pi_{\theta}(s, a_i)}$$

• Using the identity:

$$\nabla_{\theta} \ln \pi_{\theta}(s, a_j) = \frac{\nabla_{\theta} \pi_{\theta}(s, a_j)}{\pi_{\theta}(s, a_j)}$$

Rewriting:

$$\theta_{j+1} = \theta_j + \alpha \, u_j \, \nabla_\theta \ln \pi_\theta(s, a_j)$$

Ref: SB Section 13.3 Original ref: Williams, R. 1992

Variance reduction using a Baseline

We estimate

$$\nabla_{\theta}\rho(\theta) = \sum_{s} p_{\pi_{\theta}}(s) \sum_{a} \nabla_{\theta}\pi_{\theta}\big(s,a_{j}\big) \hat{Q}_{\pi_{\theta}}(s,a) \quad \text{Lower variance}$$
• This is the same as
$$\sum_{s} p_{\pi_{\theta}}(s) \sum_{a} \nabla_{\theta}\pi_{\theta}\big(s,a_{j}\big) \Big(\hat{Q}_{\pi_{\theta}}(s,a) - B(s)\Big) \quad \text{Sum to 1}$$
 For any function $B(s)$ because
$$\sum_{a} \nabla_{\theta}\pi_{\theta}\big(s,a_{j}\big) B(s) = B(s) \nabla_{\theta} \sum_{a} \pi_{\theta}\big(s,a_{j}\big) = B(s) \nabla_{\theta} 1 = 0$$

Variance reduction using a Baseline

- Using a baseline function B(s) can reduce variance
- Natural choice: estimated $\widehat{U}_{\pi_{\theta}}(s)$
- The function $A_{\pi_{\theta}}(s,a) = \widehat{Q}_{\pi_{\theta}}(s,a) \widehat{U}_{\pi_{\theta}}(s)$ is called the advantage function

Figure 13.1 Sutton & Barto

Actor-Critic

- In policy search, a gradient step to update parameters w (to differentiate from the policy parameters) for the utility (value) function estimator is usually also done
 - To estimate both utility (value) and policy
- This is one form of actor-critic method
 - Learn a policy (actor) that takes action
 - Simultaneously, learn a utility (value) or Q-function that is used *only* for evaluation (critic)

Actor-Critic

- REINFORCE: Uses a Monte Carlo estimate of the advantage function, which has a higher variance
- For the TD method, the advantage function is:

$$\widehat{Q}_{\pi_{\theta}}(s,a) - \widehat{U}_{\pi_{\theta}}(s) = E[r + \gamma \widehat{U}_{\pi_{\theta}}(s')] - \widehat{U}_{\pi_{\theta}}(s)$$

• Using utility (value) function estimator $\widehat{U}(s,w)$ with parameter w, TD-type update becomes:

 $\theta_{j+1} = \theta_j + \alpha \nabla_{\theta} \ln \pi_{\theta}(s_j, a_j) \left(r_j + \gamma \widehat{U}(s_{j+1}, w) - \widehat{U}(s_j, w) \right)$

• It is common to use multiple steps of rewards instead of one step:

$$r_j + \gamma r_{j+1} + \gamma^2 r_{j+2} + \dots + \gamma^k \widehat{U}(s_{j+k} + w)$$

Correlated Sampling

Improve performance of policy search

- Given environment simulator with repeatable random-number sequences
- Generate a number of experiences in advance, and check the policies with the same set of experiences
- Eliminate errors due to actual experiences encountered

Main idea:

 No. of random sequences required to ensure value of every policy is well estimated depends only on complexity of policy space, and not on complexity of underlying domain

• Example:

PEGASUS: for stable autonomous helicopter flighted (Ng and Jordan 2000)

Other Recent RL Approaches

- Policy Search
 - Trust Region Policy Optimization
 - Proximal Policy Optimization
 - GGPC
- Actor Critic
 - SAC
 - A2C
 - A3C

- Reward shaping
- Hierarchical reinforcement learning
- Apprenticeship learning
 - Imitation learning
 - Inverse reinforcement learning
- Etc.

Human Factors in Reinforcement Learning

- Complexity and uncertainty in real-world settings
 - COVID-19 pandemic response and recovery
 - MARS exploration
- Some promising trends
 - Hierarchical reinforcement learning
 - Apprenticeship reinforcement learning
 - Inverse Reinforcement learning
 - Imitation learning
 - Human experience and expertise as guides and constraints
 - Reward shaping
 - Priority sweeping
 - Heuristic functions
 - Mixed-initiative, responsible reinforcement learning (to be invented)

OpenAl Five Beat Top Human Players at Dota 2

- OpenAI vs human players
 - Policy gradient (Proximal Policy Optimization) with Recurrent neural networks (LSTM)
 - Beat human world champion Dota2 team (April 2019)

Video: https://www.youtube.com/watch?v=eHipy_j29Xw

Homework

- Readings:
 - RN: 23.4.1, 23.4.2, 23.4.3, 23.5
- References:
 - SB: Chapter 13
 - [SB] Sutton, R. S. and A. G. Barto. Reinforcement Learning: An introduction. 2nd ed. MIT Press, 2018, 2020
 [Book website: http://incompleteideas.net/book/the-book.html]
 [e-Book for personal use: http://incompleteideas.net/book/RLbook2020.pdf]
- Online resources on reinforcement learning:
 - Silver, D. Lectures on Reinforcement Learning. 2015; Available from: https://www.davidsilver.uk/teaching/.

References

(Journal articles publicly available online or through NUS Library e-Resources)

- Deep reinforcement learning (DeepMind series):
 - DQN: Mnih, V., et al., Human-level control through deep reinforcement learning. Nature, 2015. 518(7540): p. 529-533.
 - AlphaGo: Silver, D., et al., Mastering the game of Go with deep neural networks and tree search. Nature, 2016. 529: p. 484+.
 - AlphaGo Zero: Silver, D., et al., Mastering the game of Go without human knowledge. Nature, 2017. 550: p. 354+.
 - MuZero: Schrittwieser, J., et al., *Mastering Atari, Go, chess and shogi by planning with a learned model.* Nature, 2020. **588**(7839): p. 604-609.
- Policy optimization (search)
 - Schulman, J., et al., Trust Region Policy Optimization, in Proceedings of the 32nd International Conference on Machine Learning, B. Francis and B. David, Editors. 2015, PMLR: Proceedings of Machine Learning Research. p. 1889--1897.
 - Schulman, J., et al., Proximal Policy Optimization Algorithms. CoRR, 2017. abs/1707.06347. Accessible from: http://arxiv.org/abs/1707.06347