Hochschule für Angewandte	Bachelor	Online-Praktikum
Wissenschaften Hamburg	Elektro- und Informationstechnik	Zustandsregelung

Übungstag:			
Prof. DrIng.	Florian Wenck		
ZTP2virtual	Ball-Wippe-System: Simulation, regelungstech- nische Eigenschaften, Normalformen		

Inhalt der Versuchsbeschreibung

- 1. Einführung
- 2. Lernziele
- 3. Simulation der Regelstrecke
- 4. Analyse regelungstechnischer Eigenschaften
- 5. Normalformen des Zustandsraummodells
- 6. Vorbereitung

1. Einführung

In diesem Praktikumsversuch sollen am Ball-Wippe-System verschiedene Simulationen durchgeführt, sowie die regelungstechnischen Eigenschaften Stabilität, Steuerbarkeit und Beobachtbarkeit untersucht werden. Zusätzlich soll das im ersten Versuch implementierte Zustandsraummodell des Ball-Wippe-Systems in verschiedene Normalformen transformiert werden.

2. Lernziele

- Simulation eines linearen zeitinvarianten Systems
- Nutzung von Matlab/Simulink-Funktionen für Eingrößensysteme
- Untersuchung regelungstechnischer Eigenschaften von Eingrößensystemen
- Umsetzung von Zustandsraum-Transformationen

3. Simulation der Regelstrecke

In diesem Versuchsteil soll die linearisierte Regelstrecke sowohl in Matlab als auch in Simulink simuliert und das Verhalten ohne Regler untersucht werden.

1) Geben Sie eine Anfangsauslenkung $x_0^T \neq [0\ 0\ 0\ 0]$ vor und stellen Sie am Eingang eine Kraft von u=0 N ein. Simulieren Sie die sich ergebene Eigenbewegung des Systems und bewerten Sie anhand dieser die Zustandsstabilität des Systems. Vergleichen Sie Ihr Ergebnis aus Matlab mit dem Ergebnis aus Simulink.

Hochschule für Angewandte	Bachelor	Online-Praktikum
Wissenschaften Hamburg	Elektro- und Informationstechnik	Zustandsregelung

2) Geben Sie nun einen Anfangszustand von $x_0^T = [0\ 0\ 0\ 0]$ vor und beaufschlagen Sie den Eingang sprungförmig mit einer Kraft von 1 N. Simulieren Sie die sich ergebene Übergangsfunktion und bewerten Sie anhand dieser das System auf Eingangs-Ausgangs-Stabilität. Vergleichen Sie Ihr Ergebnis aus Matlab mit dem Ergebnis aus Simulink.

4. Analyse regelungstechnischer Eigenschaften

Für den Entwurf von Zustandsreglern und Beobachtern muss die Regelstrecke bestimmte Voraussetzungen erfüllen. In diesem Versuchsteil sollen deshalb die regelungstechnischen Eigenschaften des Ball-Wippe-Systems mit Hilfe von Matlab untersucht werden.

- 1) Überprüfen Sie, ob das Ball-Wippe-System vollständig steuerbar ist. Bewerten Sie Ihre berechnete Lösung in Bezug auf den Signalflussgrafen des Systems.
- 2) Überprüfen Sie, ob das Ball-Wippe-System vollständig beobachtbar ist. Bewerten Sie Ihre berechnete Lösung in Bezug auf den Signalflussgrafen des Systems.
- 3) Prüfen Sie das Ball-Wippe-System auf Zustandsstabilität und vergleichen Sie Ihr berechnetes Ergebnis mit der Simulation aus Aufgabe 3.
- 4) Berechnen Sie die Übertragungsfunktion in Polynomform und beurteilen Sie daran durch einen "Quick-Check" (durch hingucken) die E/A-Stabilität.
- 5) Berechnen Sie die Pole der Übertragungsfunktion und verifizieren Sie so die Aussage zur E/A-Stabilität aus Aufgabenteil 4.4). Überprüfen Sie außerdem, ob die Regelstrecke integrales Verhalten aufweist.

5. Normalformen des Zustandsraummodells

Das Zustandsraummodell des Ball-Wippe-Systems soll abschließend mittels Matlab in verschiedene Normalformen transformiert werden.

- Berechnen Sie die Eigenvektoren und transformieren Sie das Zustandsraummodell in die kanonische Normalform. Versuchen Sie beide Vorgehensweisen bzgl. des enthaltenen konjugiert komplexen Eigenwertpaares umzusetzen.
- 2) Transformieren Sie das Zustandsraummodell mit Hilfe der bekannten Transformationsmatrix in die Regelungsnormalform. Vergleichen Sie das charakteristische Polynom mit dem Nenner der Übertragungsfunktion aus Aufgabenteil 4.4).
- 3) Berechnen Sie das Zustandsraummodell in Beobachtungsnormalform, einmal mit Hilfe der bekannten Transformationsmatrix und einmal über die Dualität zur Regelungsnormalform.

6. Vorbereitung

Skizzieren Sie den Signalflussgrafen für das Zustandsraummodell vom ersten Praktikumstermin. Ergänzen Sie dabei die Zahlenwerte an den Kanten durch ihre Einheiten.