PART A

Ordinary Differential Equations (ODEs)

CHAPTER 2

Second-Order Linear ODEs

A second-order ODE is called **linear** if it can be written

(1)
$$y'' + p(x)y' + q(x)y = r(x)$$

and **nonlinear** if it cannot be written in this form.

If $r(x) \equiv 0$ (that is, r(x) = 0 for all x considered; read "r(x) is identically zero"), then (1) reduces to

(2)
$$y'' + p(x)y' + q(x)y = 0$$

and is called **homogeneous**. If $r(x) \neq 0$, then (1) is called **nonhomogeneous**.

If the equation begins with, say, f(x)y'', then divide by f(x) to have the **standard form** (1) with y'' as the first term.

An example of a nonhomogeneous linear ODE is

$$y'' + 25y = e^{-x} \cos x,$$

and a homogeneous linear ODE is

$$xy'' + y' + xy = 0,$$

written in standard form

$$y'' + \frac{1}{x}y' + y = 0.$$

An example of a nonlinear ODE is

$$y''y + y'^2 = 0.$$

The functions p and q in (1) and (2) are called the **coefficients** of the ODEs.

Solutions are defined similarly as for first-order ODEs in Chap. 1.

A function

$$y = h(x)$$

is called a *solution* of a (linear or nonlinear) second-order ODE on some open interval I if h is defined and twice differentiable throughout that interval and is such that the ODE becomes an identity if we replace the unknown y by h, the derivative y' by h', and the second derivative y'' by h''.

Homogeneous Linear ODEs: Superposition Principle

Linear ODEs have a rich solution structure. For the homogeneous equation the backbone of this structure is the *superposition principle* or *linearity principle*, which says that we can obtain further solutions from given ones by adding them or by multiplying them with any constants. Of course, this is a great advantage of homogeneous linear ODEs.

Example 1 - Homogeneous Linear ODEs: Superposition of Solutions

The functions $y = \cos x$ and $y = \sin x$ are solutions of the homogeneous linear ODE

$$y'' + y = 0$$

for all x. We verify this by differentiation and substitution. We obtain $(\cos x)'' = -\cos x$; hence

$$y'' + y = (\cos x)'' + \cos x = -\cos x + \cos x = 0.$$

Similarly for $y = \sin x$ (verify!). We can go an important step further. We multiply $\cos x$ by any constant, for instance, 4.7, and $\sin x$ by, say, -2, and take the sum of the results, claiming that it is a solution. Indeed, differentiation and substitution gives

$$(4.7\cos x - 2\sin x)'' + (4.7\cos x - 2\sin x)$$

$$= -4.7 \cos x + 2 \sin x + 4.7 \cos x - 2 \sin x = 0.$$

Theorem 1

Fundamental Theorem for the Homogeneous Linear ODE (2)

For a homogeneous linear ODE (2), any linear combination of two solutions on an open interval I is again a solution of (2) on I. In particular, for such an equation, sums and constant multiples of solutions are again solutions.

(2)
$$y'' + py' + qy = 0$$

If y_1 and y_2 are solutions of (2) on I , then $y = c_1y_1 + c_2y_2$ is a solution of (2).

Don't forget that this highly important theorem holds for *homogeneous linear* ODEs only, but *does not hold* for nonhomogeneous linear or nonlinear ODEs.

Initial Value Problem. Basis. General Solution

For a second-order homogeneous linear ODE (2) an **initial value problem** consists of (2) and two **initial conditions**

(4)
$$y(x_0) = K_0, y'(x_0) = K_1.$$

These conditions prescribe given values K_0 and K_1 of the solution and its first derivative (the slope of its curve) at the same given $x = x_0$ in the open interval considered.

The conditions (4) are used to determine the two arbitrary constants c_1 and c_2 in a **general solution**

$$y = c_1 y_1 + c_2 y_2$$

of the ODE;

here, y_1 and y_2 are suitable solutions of the ODE.

This results in a unique solution, passing through the point (x_0, K_0) with K_1 as the tangent direction (the slope) at that point.

That solution is called a **particular solution** of the ODE (2).

Example 4 – Solve the Initial Value Problem y'' + y = 0, y(0) = 3.0, y'(0) = -0.5.

$$y'' + y = 0$$
, $y(0) = 3.0$, $y'(0) = -0.5$.

and we take

Solution. Step 1. General solution. The functions cos x and sin x are solutions of the ODE (by Example 1),

Fig. 29. Particular solution and initial tangent in Example 4

$$y = c_1 \cos x + c_2 \sin x.$$

This will turn out to be a general solution as defined below.

Step 2. Particular solution. We need the derivative $y' = -c_1 \sin x + c_2 \cos x$. From this and the initial values we obtain, since $\cos 0 = 1$ and $\sin 0 = 0$,

$$y(0) = c_1 = 3.0$$
 and $y'(0) = c_2 = -0.5$.

This gives as the solution of our initial value problem the particular solution

$$y = 3.0\cos x - 0.5\sin x.$$

Figure 29 shows that at x = 0 it has the value 3.0 and the slope -0.5, so that its tangent intersects the x-axis at x = 3.0/0.5 = 6.0. (The scales on the axes differ!)

Observation. Our choice of y_1 and y_2 was general enough to satisfy both initial conditions. Now let us take instead two proportional solutions $y_1 = \cos x$ and $y_2 = k \cos x$, so that $y_1/y_2 = 1/k = \text{const.}$ Then we can write $y = c_1y_1 + c_2y_2$ in the form $y = c_1 \cos x + c_2(k \cos x) = C \cos x$ where $C = c_1 + c_2 k$.

No longer able to satisfy two initial conditions with only one arbitrary constant C. Consequently, in defining the concept of a general solution, we must exclude proportionality.

Definition

General Solution, Basis, Particular Solution

A **general solution** of an ODE (2) on an open interval I is a solution (5) in which y_1 and y_2 are solutions of (2) on I that are not proportional, and c_1 and c_2 are arbitrary constants. These y_1 , y_2 are called a **basis** (or a **fundamental system**) of solutions of (2) on I.

A **particular solution** of (2) on I is obtained if we assign specific values to c_1 and c_2 in (5).

Furthermore, as usual, y_1 and y_2 are called *proportional* on I if for all x on I,

(6) (a)
$$y_1 = ky_2$$
 or (b) $y_2 = ly_1$

where k and l are numbers, zero or not. (Note that (a) implies (b) if and only if $k \neq 0$).

Two functions y_1 and y_2 are called **linearly independent** on an interval I where they are defined if

(7)
$$k_1y_1(x) + k_2y_2(x) = 0$$
 everywhere on *I* implies $k_1 = 0$ and $k_2 = 0$.

And y_1 and y_2 are called **linearly dependent** on I if (7) also holds for some constants k_1 , k_2 not both zero.

Then, if $k_1 \neq 0$ or $k_2 \neq 0$, we can divide and see that y_1 and y_2 are proportional,

 $y_1 = -\frac{k_2}{k_1} y_2$ or $y_2 = -\frac{k_1}{k_2} y_1$.

In contrast, in the case of linear *independence* these functions are not proportional because then we cannot divide in (7). This gives the following definition. (See next slide.)

Definition

Basis (Reformulated)

A **basis** of solutions of (2) on an open interval *I* is a pair of linearly independent solutions of (2) on *I*.

Example 6 - Basis, General Solution, Particular Solution

Verify by substitution that $y_1 = e^x$ and $y_2 = e^{-x}$ are solutions of the ODE y'' - y = 0. Then solve the initial value problem

$$y'' - y = 0$$
, $y(0) = 6$, $y'(0) = -2$.

Solution. $(e^x)'' - e^x = 0$ and $(e^{-x})'' - e^{-x} = 0$ show that e^x and e^{-x} are solutions. They are not proportional, $e^x/e^{-x} = e^{2x} \neq \text{const.}$ Hence e^x , e^{-x} form a basis for all x. We now write down the corresponding general solution and its derivative and equate their values at 0 to the given initial conditions,

$$y = c_1 e^x + c_2 e^{-x}$$
, $y' = c_1 e^x - c_2 e^{-x}$, $y(0) = c_1 + c_2 = 6$, $y'(0) = c_1 - c_2 = -2$.

By addition and subtraction, $c_1 = 2$, $c_2 = 4$, so that the *answer* is $y = 2e^x + 4e^{-x}$. This is the particular solution satisfying the two initial conditions.

Find a Basis If One Solution Is Known. Reduction of Order

It happens quite often that one solution can be found by inspection or in some other way.

Then a second linearly independent solution can be obtained by solving a first-order ODE.

This is called the method of **reduction of order**.

We first show how this method works in an example and then in general.

EXAMPLE 7

Reduction of Order If a Solution Is Known. Basis

Find a basis of solutions of the ODE

$$(x^2 - x)y'' - xy' + y = 0.$$

Solution. (See next slide.)

EXAMPLE 7 (continued)

Solution.

Inspection shows that $y_1 = x$ is a solution because $y'_1 = 1$ and $y''_1 = 0$, so that the first term vanishes identically and the second and third terms cancel. The idea of the method is to substitute

$$y = uy_1 = ux$$
, $y' = u'x + u$, $y'' = u''x + 2u'$

into the ODE. This gives

$$(x^2 - x)(u''x + 2u') - x(u'x + u) + ux = 0.$$

ux and -xu cancel and we are left with the following ODE, which we divide by x, order, and simplify,

$$(x^2 - x)(u''x + 2u') - x^2u' = 0, (x^2 - x)u'' + (x - 2)u' = 0.$$

EXAMPLE 7 (continued)

Solution. (continued 1)

This ODE is of first order in v = u', namely, $(x^2 - x)v' + (x - 2)v = 0$. Separation of variables and integration gives

$$\frac{dv}{v} = -\frac{x-2}{x^2-x}dx = \left(\frac{1}{x-1} - \frac{2}{x}\right)dx,$$

$$\ln |v| = \ln |x-1| - 2 \ln |x| = \ln \frac{|x-1|}{x^2}$$
.

(continued)

EXAMPLE 7 (continued)

Solution. (continued 2)

We need no constant of integration because we want to obtain a particular solution; similarly in the next integration. Taking exponents and integrating again, we obtain

$$v = \frac{x-1}{x^2} = \frac{1}{x} - \frac{1}{x^2}, \quad u = \int v \, dx = \ln|x| + \frac{1}{x}$$

hence $y_2 = ux = x \ln |x| + 1$. Since $y_1 = x$ and $y_2 = x \ln |x| + 1$ are linearly independent (their quotient is not constant), we have obtained a basis of solutions, valid for all positive x.

Reduction of order to a homogeneous linear ODE

(2)
$$y'' + p(x)y' + q(x)y = 0$$
. \leftarrow ODE in standard form

Assume a solution y_1 to be known and want to find a basis. For this we need a second linearly independent solution y_2 . To get y_2 , we substitute

$$y = y_2 = uy_1$$
, $y' = y_2' = u'y_1 + uy_1'$, $y'' = y_2'' = u''y_1 + 2u'y_1' + uy_1''$
into (2). This gives

(8)
$$u''y_1 + 2u'y_1' + uy_1'' + p(u'y_1 + uy_1') + quy_1 = 0.$$

Collecting terms in u'', u', and u, we have

$$u''y_1 + u'(2y_1' + py_1) + u(y_1'' + py_1' + qy_1) = 0.$$

Now comes the main point. Since y_1 is a solution of (2), the expression in the last parentheses is zero. Hence u is gone, and we are left with an ODE in u' and u''. We divide this remaining ODE by y_1 and set u' = U, u'' = U',

$$u'' + u' \frac{2y_1' + py_1}{y_1} = 0$$
, thus $U' + \left(\frac{2y_1'}{y_1} + p\right)U = 0$.

This is the desired first-order ODE, the reduced ODE. Separation of variables and integration gives

$$\frac{dU}{U} = -\left(\frac{2y_1'}{y_1} + p\right)dx \quad \text{and} \quad \ln|U| = -2\ln|y_1| - \int p \, dx.$$

By taking exponents we finally obtain

(9)
$$U = \frac{1}{y_1^2} e^{-\int p \, dx}.$$

Here U = u', so that $u = \int U dx$. Hence the desired second solution is

$$y_2 = y_1 u = y_1 \int U \, dx.$$

The quotient $y_2/y_1 = u = \int U dx$ cannot be constant (since U > 0), so that y_1 and y_2 form a basis of solutions.