ISOMORPHISM WRAPUP

PROPOSITION: Let $f: G \to H$ be a group homomorphism. Then f is an isomorphism if and only if f is bijective¹.

LEMMA: Let $f: G \to H$ be an isomorphism. Then for any $g \in G$, we have |g| = |f(g)|.

DEFINITION: A property \mathcal{P} of a group is an **isomorphism invariant** if whenever $G \cong H$ and \mathcal{P} holds for G, then \mathcal{P} also holds for H.

THEOREM: The following are isomorphism invariants:

- (1) The order of the group.
- (2) The set of orders of elements of the group.
- (3) Being abelian.
- (4) The order of the center of the group.
- (5) Being finitely generated.
- (1) Use the Theorem to show that none of the following groups are pairwise isomorphic:

$$S_3 \qquad S_4 \qquad \mathbb{Z}/6$$

Since $|S_3| = |\mathbb{Z}/6| = 6$ and $|S_4| = 24$, we have $S_3 \not\cong S_4$ and $\mathbb{Z}/6 \not\cong S_4$. Since $\mathbb{Z}/6$ is abelian and S_3 is not, we also have $\mathbb{Z}/6 \not\cong S_3$.

(2) Prove the Proposition.

Suppose that f is an isomorphism, so there is an inverse homomorphism $g: H \to G$. In particular, g is an inverse function to f, so f is bijective.

Conversely, suppose that f is a bijective homomorphism, and let f^{-1} be the inverse function. We claim that $f^{-1}: H \to G$ is a group homomorphism. Indeed, let $x, y \in H$. Since f is surjective, we can write x = f(a) and y = f(b). Then $f^{-1}(xy) = f^{-1}(f(a)f(b)) = f^{-1}(f(ab))$ since f is a homomorphism. Then $f^{-1}(xy) = ab = f^{-1}(a)f^{-1}(b)$ by definition of inverse function. Thus, f^{-1} is an inverse homomorphism to f, so f is an isomorphism.

- (3) Prove the Lemma.
- (4) Prove the Thoerem.

¹Reminder: by definition a function is **bijective** if it is injective and surjective (i.e. a one-to-one correspondence). It is a theorem from set theory that a function $f: X \to Y$ is bijective if and only if there exists an inverse function $g: Y \to X$.