Cascades and Fluctuations in an Economy with an Endogenous Production Network

Mathieu Taschereau-Dumouchel

Cornell University

August 2017

- Production in modern economies involves a complex network of producers supplying and demanding goods from each other
- The shape of this network
 - is an important determinant of how micro shocks aggregate into macro fluctuations
 - ▶ is also constantly changing in response to micro shocks
 - For instance, after a severe shock a producer might shut down which might lead its neighbors to shut down as well, etc...
 - Cascade of shutdowns that spreads through the network

This paper proposes a

- Production in modern economies involves a complex network of producers supplying and demanding goods from each other
- The shape of this network
 - is an important determinant of how micro shocks aggregate into macro fluctuations
 - is also constantly changing in response to micro shocks
 - For instance, after a severe shock a producer might shut down which might lead its neighbors to shut down as well, etc...
 - Cascade of shutdowns that spreads through the network

This paper proposes a

- Production in modern economies involves a complex network of producers supplying and demanding goods from each other
- The shape of this network
 - is an important determinant of how micro shocks aggregate into macro fluctuations
 - is also constantly changing in response to micro shocks
 - For instance, after a severe shock a producer might shut down which might lead its neighbors to shut down as well, etc...
 - Cascade of shutdowns that spreads through the network

This paper proposes a

- Production in modern economies involves a complex network of producers supplying and demanding goods from each other
- The shape of this network
 - is an important determinant of how micro shocks aggregate into macro fluctuations
 - is also constantly changing in response to micro shocks
 - For instance, after a severe shock a producer might shut down which might lead its neighbors to shut down as well, etc...
 - Cascade of shutdowns that spreads through the network

This paper proposes a

- Production in modern economies involves a complex network of producers supplying and demanding goods from each other
- The shape of this network
 - is an important determinant of how micro shocks aggregate into macro fluctuations
 - is also constantly changing in response to micro shocks
 - For instance, after a severe shock a producer might shut down which might lead its neighbors to shut down as well, etc...
 - Cascade of shutdowns that spreads through the network

This paper proposes a

Literature Review

- Endogenous network formation
 - ▶ Atalay et al (2011), Oberfield (2013), Carvalho and Voigtländer (2014)
- Network of sectors and fluctuations
 - Horvath (1998), Dupor (1999), Acemoglu et al (2012), Baqaee (2016), Acemoglu et al (2016), Lim (2017)
- Non-convex adjustments in networks
 - Bak, Chen, Woodford and Scheinkman (1993), Elliott, Golub and Jackson (2014)

I. Model

- There are n units of production (firm) indexed by $j \in \{1, \ldots, n\}$
 - Each unit produces a differentiated good
 - Differentiated goods can be used to
 - produce a final good

$$Y \equiv \left(\sum_{j=1}^{n} \left(y_{j}^{0}\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

- produce other differentiated goods
- Representative household
 - Consumes the final good
 - Supplies L units of labor inelastically

• Firm *j* produces good *j*

$$y_{j} = \frac{A}{\alpha^{\alpha} (1 - \alpha)^{1 - \alpha}} z_{j} \left(\sum_{i=1}^{n} x_{ij}^{\frac{\epsilon - 1}{\epsilon}} \right)^{\alpha \frac{\epsilon}{\epsilon - 1}} I_{j}^{1 - \alpha}$$

- Firm j can only use good i as input if there is a connection from firm i to j
 - $ightharpoonup \Omega_{ij} = 1$ if connection and $\Omega_{ij} = 0$ otherwise
 - A connection can be active or inactive
 - ightharpoonup Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost f in units of labor
 - lacksquare $heta_i = 1$ if j is operating and $heta_i = 0$ otherwise
 - \blacktriangleright Vector θ is endogenous

• Firm *j* produces good *j*

$$y_{j} = \frac{A}{\alpha^{\alpha} (1 - \alpha)^{1 - \alpha}} z_{j} \left(\sum_{i=1}^{n} x_{ij}^{\frac{\epsilon - 1}{\epsilon}} \right)^{\alpha \frac{\epsilon}{\epsilon - 1}} I_{j}^{1 - \alpha}$$

- Firm j can only use good i as input if there is a connection from firm i to j
 - $lackbox{ }\Omega_{ij}=1$ if connection and $\Omega_{ij}=0$ otherwise
 - A connection can be active or inactive
 - Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost f in units of labor
 - $\theta_i = 1$ if j is operating and $\theta_i = 0$ otherwise
 - Vector θ is endogenous

• Firm *j* produces good *j*

$$y_{j} = \frac{A}{\alpha^{\alpha} (1 - \alpha)^{1 - \alpha}} z_{j} \left(\sum_{i=1}^{n} \Omega_{ij} x_{ij}^{\frac{\epsilon - 1}{\epsilon}} \right)^{\alpha \frac{\epsilon}{\epsilon - 1}} I_{j}^{1 - \alpha}$$

- Firm j can only use good i as input if there is a connection from firm i to j
 - $lackbox{ }\Omega_{ij}=1$ if connection and $\Omega_{ij}=0$ otherwise
 - A connection can be active or inactive
 - Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost f in units of labor
 - $\theta_i = 1$ if j is operating and $\theta_i = 0$ otherwise
 - Vector θ is endogenous

Firm j produces good j

$$y_{j} = \frac{A}{\alpha^{\alpha} (1 - \alpha)^{1 - \alpha}} z_{j} \left(\sum_{i=1}^{n} \Omega_{ij} x_{ij}^{\frac{\epsilon - 1}{\epsilon}} \right)^{\alpha \frac{\epsilon}{\epsilon - 1}} I_{j}^{1 - \alpha}$$

- Firm j can only use good i as input if there is a connection from firm i to j
 - $lackbox{ }\Omega_{ij}=1$ if connection and $\Omega_{ij}=0$ otherwise
 - A connection can be active or inactive
 - Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost f in units of labor
 - $\theta_i = 1$ if j is operating and $\theta_i = 0$ otherwise
 - \triangleright Vector θ is endogenous

Firm j produces good j

$$y_{j} = \frac{A}{\alpha^{\alpha} (1 - \alpha)^{1 - \alpha}} z_{j} \theta_{j} \left(\sum_{i=1}^{n} \Omega_{ij} x_{ij}^{\frac{\epsilon - 1}{\epsilon}} \right)^{\alpha \frac{\epsilon}{\epsilon - 1}} I_{j}^{1 - \alpha}$$

- Firm j can only use good i as input if there is a connection from firm i to j
 - $lackbox{ }\Omega_{ij}=1$ if connection and $\Omega_{ij}=0$ otherwise
 - A connection can be active or inactive
 - Matrix Ω is exogenous
- A firm can only produce if it pays a fixed cost f in units of labor
 - $\theta_i = 1$ if j is operating and $\theta_i = 0$ otherwise
 - Vector θ is endogenous

Problem \mathcal{P}_{SP} of a social planner

$$\max_{\substack{y^0,x,l\\\theta\in\{0,1\}^n}}\left(\sum_{j=1}^n\left(y_j^0\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

subject to

1. a resource constraint for each good j

$$y_j^0 + \sum_{k=1}^n x_{jk} \le \frac{A}{\alpha^{\alpha} (1-\alpha)^{1-\alpha}} z_j \theta_j \left(\sum_{i=1}^n \Omega_{ij} x_{ij}^{\frac{\epsilon-1}{\epsilon}}\right)^{\alpha \frac{\epsilon}{\epsilon-1}} l_j^{1-\alpha}$$

2. a resource constraint on labor

$$\sum_{j=1}^{n} l_j + f \sum_{j=1}^{n} \theta_j \le L$$

Problem \mathcal{P}_{SP} of a social planner

$$\max_{\substack{y^0,x,l\\\theta\in\{0,1\}^n}}\left(\sum_{j=1}^n\left(y^0_j\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

subject to

1. a resource constraint for each good j

$$y_j^0 + \sum_{k=1}^n x_{jk} \le \frac{A}{\alpha^{\alpha} (1-\alpha)^{1-\alpha}} z_j \theta_j \left(\sum_{i=1}^n \Omega_{ij} x_{ij}^{\frac{\epsilon-1}{\epsilon}} \right)^{\alpha \frac{\epsilon}{\epsilon-1}} I_j^{1-\alpha}$$

2. a resource constraint on labor

$$\sum_{j=1}^{n} l_j + f \sum_{j=1}^{n} \theta_j \le L$$

Problem \mathcal{P}_{SP} of a social planner

$$\max_{\substack{y^0, x, I\\ \theta \in \{0, 1\}^n}} \left(\sum_{j=1}^n \left(y_j^0 \right)^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

subject to

1. a resource constraint for each good j (Lagrange multiplier: λ_j)

$$y_j^0 + \sum_{k=1}^n x_{jk} \leq \frac{A}{\alpha^{\alpha} (1-\alpha)^{1-\alpha}} z_j \theta_j \left(\sum_{i=1}^n \Omega_{ij} x_{ij}^{\frac{\epsilon-1}{\epsilon}} \right)^{\alpha \frac{\epsilon}{\epsilon-1}} I_j^{1-\alpha}$$

2. a resource constraint on labor (Lagrange multiplier: w)

$$\sum_{j=1}^{n} I_j + f \sum_{j=1}^{n} \theta_j \le L$$

II. Social Planner with Exogenous $\boldsymbol{\theta}$

Define $q_j = w/\lambda_j$

- From the FOCs, output is $(1 \alpha) y_j = q_j l_j$
- q_j is the labor productivity of firm j

Proposition 1

In the efficient allocation,

$$q_{j} = z_{j}\theta_{j}A\left(\sum_{i=1}^{n}\Omega_{ij}q_{i}^{\epsilon-1}\right)^{\frac{\alpha}{\epsilon-1}} \tag{1}$$

Furthermore, there is a unique vector q that satisfies (1).

Knowing q we can solve for all other quantities easily.

Lemma 1

Aggregate output is

$$Y = Q\left(L - f\sum_{j=1}^{n}\theta_{j}\right)$$

where $Q \equiv \left(\sum_{j=1}^n q_j^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$ is aggregate labor productivity.

▶ Labor allocation

Planner's problem is now

$$\max_{\theta \in \{0,1\}^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j \theta_j A \left(\sum_{i=1}^n \Omega_{ij} q_i^{\epsilon-1} \right)^{\frac{\alpha}{\epsilon-1}}$$

Trade-off: making firm j produce $(\theta_j = 1)$

- increases labor productivity of the network (Q)
- ullet reduces the amount of labor into production $\left(L-f\sum_{j=1}^n heta_j
 ight)$

Planner's problem is now

$$\max_{\theta \in \{0,1\}^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j \theta_j A \left(\sum_{i=1}^n \Omega_{ij} q_i^{\epsilon-1} \right)^{\frac{\alpha}{\epsilon-1}}$$

Trade-off: making firm j produce $(\theta_i = 1)$

- increases labor productivity of the network (Q
- reduces the amount of labor into production $\left(L-f\sum_{j=1}^n \theta_j \right)$

Planner's problem is now

$$\max_{\theta \in \{0,1\}^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j \theta_j A \left(\sum_{i=1}^n \Omega_{ij} q_i^{\epsilon-1} \right)^{\frac{\alpha}{\epsilon-1}}$$

Trade-off: making firm j produce $(\theta_i = 1)$

- increases labor productivity of the network (Q)
- reduces the amount of labor into production $\left(L-f\sum_{j=1}^n \theta_j\right)$

Planner's problem is now

$$\max_{\theta \in \{0,1\}^n} Q \left(L - f \sum_{j=1}^n \theta_j \right)$$

with

$$q_j = z_j \theta_j A \left(\sum_{i=1}^n \Omega_{ij} q_i^{\epsilon-1} \right)^{\frac{\alpha}{\epsilon-1}}$$

Trade-off: making firm j produce ($\theta_i = 1$)

- increases labor productivity of the network (♥)
- reduces the amount of labor into production $\left(L-f\sum_{j=1}^n heta_j
 ight)$

"Very hard problem" (MINLP — NP Hard)

- The set $\theta \in \{0,1\}^n$ is not convex
- Objective function is not concave

Naive approach

- For any vector $heta \in \{0,1\}^n$ iterate on heta and evaluate the objective function
- 2" vectors heta to try $(pprox 10^6 ext{ configurations for 20 firms})$
- Impossible for n large

"Very hard problem" (MINLP — NP Hard)

- The set $\theta \in \{0,1\}^n$ is not convex
- Objective function is not concave

Naive approach

- ullet For any vector $heta \in \{0,1\}^n$ iterate on $extit{q}$ and evaluate the objective function
- 2^n vectors θ to try ($\approx 10^6$ configurations for 20 firms)
- Impossible for *n* large

Alternative approach

Solution approach: Find an alternative problem such that

- P1 The alternative problem is easy to solve
- P2 A solution to the alternative problem also solves \mathcal{P}_{SP}

Consider the relaxed and reshaped problem \mathcal{P}_{RR}

$$\max_{\theta \in \{0,1\}^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j \theta_j A \left(\sum_{i=1}^n \Omega_{ij} q_i^{\epsilon-1} \right)^{\frac{\alpha}{\epsilon-1}}$$

Parameters a>0 and $b\geq 0$ are reshaping constants

- Reshape the objective function away from optimum (i.e. when $0 < heta_j < 1$)
 - ▶ For a: if $\theta_j \in \{0,1\}$ then $\theta_i^a = \theta_j$
 - $\qquad \qquad \text{For } b \text{: } \{\theta_i = 0\} \Rightarrow \{q_i = 0\} \text{ and } \{\theta_i = 1\} \Rightarrow \left\{\theta_i^b q_i^{e-1} = q_i^{e-1}\right\}$
- Parameters such that P1 and P2 are satisfied

$$a = \frac{1}{\sigma - 1}$$
 and $b = 1 - \frac{\epsilon - 1}{\sigma - 1}$ (*)

Consider the <u>relaxed</u> and reshaped problem \mathcal{P}_{RR}

$$\max_{\theta \in [0,1]^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j \theta_j A \left(\sum_{i=1}^n \Omega_{ij} q_i^{\epsilon-1} \right)^{\frac{\alpha}{\epsilon-1}}$$

Parameters a>0 and $b\geq0$ are reshaping constants

- Reshape the objective function *away* from optimum (i.e. when $0 < heta_j < 1$)
 - ▶ For a: if $\theta_j \in \{0,1\}$ then $\theta_i^a = \theta_j$
 - ▶ For b: $\{\theta_i = 0\} \Rightarrow \{q_i = 0\}$ and $\{\theta_i = 1\} \Rightarrow \left\{\theta_i^b q_i^{e-1} = q_i^{e-1}\right\}$
- Parameters such that P1 and P2 are satisfied

$$a = \frac{1}{\sigma - 1}$$
 and $b = 1 - \frac{\epsilon - 1}{\sigma - 1}$ (*)

Consider the <u>relaxed</u> and <u>reshaped</u> problem \mathcal{P}_{RR}

$$\max_{\theta \in [0,1]^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j \frac{\theta_j^a}{j} A \left(\sum_{i=1}^n \Omega_{ij} \frac{\theta_i^b}{q_i^e} q_i^{e-1} \right)^{\frac{\alpha}{\epsilon-1}}$$

Parameters a > 0 and $b \ge 0$ are reshaping constants

- Reshape the objective function away from optimum (i.e. when $0 < heta_j < 1$)
 - ▶ For a: if $\theta_j \in \{0,1\}$ then $\theta_j^a = \theta_j$
 - ▶ For b: $\{\theta_i = 0\} \Rightarrow \{q_i = 0\}$ and $\{\theta_i = 1\} \Rightarrow \left\{\theta_i^b q_i^{\epsilon 1} = q_i^{\epsilon 1}\right\}$
- Parameters such that P1 and P2 are satisfied

$$a = \frac{1}{\sigma - 1}$$
 and $b = 1 - \frac{\epsilon - 1}{\sigma - 1}$ (*)

Consider the <u>relaxed</u> and <u>reshaped</u> problem \mathcal{P}_{RR}

$$\max_{\theta \in [0,1]^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_{j} = z_{j} \theta_{j}^{a} A \left(\sum_{i=1}^{n} \Omega_{ij} \theta_{i}^{b} q_{i}^{\epsilon-1} \right)^{\frac{\alpha}{\epsilon-1}}$$

Parameters a > 0 and $b \ge 0$ are reshaping constants

- Reshape the objective function away from optimum (i.e. when $0 < \theta_i < 1$)
 - ▶ For a: if $\theta_j \in \{0,1\}$ then $\theta_j^a = \theta_j$
 - ▶ For b: $\{\theta_i = 0\} \Rightarrow \{q_i = 0\}$ and $\{\theta_i = 1\} \Rightarrow \left\{\theta_i^b q_i^{\epsilon 1} = q_i^{\epsilon 1}\right\}$
- Parameters such that P1 and P2 are satisfied

$$a = \frac{1}{\sigma - 1}$$
 and $b = 1 - \frac{\epsilon - 1}{\sigma - 1}$ (*)

Consider the <u>relaxed</u> and <u>reshaped</u> problem \mathcal{P}_{RR}

$$\max_{\theta \in [0,1]^n} Q\left(L - f \sum_{j=1}^n \theta_j\right)$$

with

$$q_j = z_j heta_j^a A \left(\sum_{i=1}^n \Omega_{ij} heta_i^b q_i^{\epsilon-1}
ight)^{rac{lpha}{\epsilon-1}}$$

Parameters a > 0 and $b \ge 0$ are reshaping constants

- Reshape the objective function away from optimum (i.e. when $0 < \theta_i < 1$)
 - ▶ For a: if $\theta_j \in \{0,1\}$ then $\theta_j^a = \theta_j$
 - ▶ For b: $\{\theta_i = 0\} \Rightarrow \{q_i = 0\}$ and $\{\theta_i = 1\} \Rightarrow \left\{\theta_i^b q_i^{\epsilon 1} = q_i^{\epsilon 1}\right\}$
- Parameters such that P1 and P2 are satisfied:

$$a = \frac{1}{\sigma - 1}$$
 and $b = 1 - \frac{\epsilon - 1}{\sigma - 1}$ (\star)

P1 The alternative problem \mathcal{P}_{RR} is easy to solve

Proposition 2

If $\Omega_{ij} = c_i d_j$ for some vectors c and d then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to \mathcal{P}_{RR} .

Proposition 3

Let $\sigma = \epsilon$ and suppose that f > 0 and $\overline{z} - \underline{z} > 0$ are not too big. If Ω is sufficiently connected, then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to \mathcal{P}_{RR} .

- Only provides sufficient conditions
- Later: Test the approach on thousands of economies

P1 The alternative problem \mathcal{P}_{RR} is easy to solve

Proposition 2

If $\Omega_{ij} = c_i d_j$ for some vectors c and d then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to \mathcal{P}_{RR} .

Proposition 3

Let $\sigma = \epsilon$ and suppose that f > 0 and $\overline{z} - \underline{z} > 0$ are not too big. If Ω is sufficiently connected, then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to \mathcal{P}_{RR} .

- Only provides sufficient conditions
- Later: Test the approach on thousands of economies

P1 The alternative problem \mathcal{P}_{RR} is easy to solve

Proposition 2

If $\Omega_{ij} = c_i d_j$ for some vectors c and d then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to \mathcal{P}_{RR} .

Proposition 3

Let $\sigma=\epsilon$ and suppose that f>0 and $\overline{z}-\underline{z}>0$ are not too big. If Ω is sufficiently connected, then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to \mathcal{P}_{RR} .

- Only provides sufficient conditions
- Later: Test the approach on thousands of economies

P1 The alternative problem \mathcal{P}_{RR} is easy to solve

Proposition 2

If $\Omega_{ij} = c_i d_j$ for some vectors c and d then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to \mathcal{P}_{RR} .

Proposition 3

Let $\sigma=\epsilon$ and suppose that f>0 and $\overline{z}-\underline{z}>0$ are not too big. If Ω is sufficiently connected, then the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to \mathcal{P}_{RR} .

- Only provides sufficient conditions
- Later: Test the approach on thousands of economies

P2 A solution to the alternative problem \mathcal{P}_{RR} also solves \mathcal{P}_{SP}

Proposition 4

If $heta^*$ solves \mathcal{P}_{RR} and that $heta_i^* \in \{0,1\}$ for all j, then $heta^*$ also solves \mathcal{P}_{SP}

Solution θ^* to \mathcal{P}_{RR} is such that $\theta_j^* \in \{0,1\}$ for all j (P2) if

- the (*) condition is satisfied
- there are many firms
- the network is sufficiently connected

P2 A solution to the alternative problem \mathcal{P}_{RR} also solves \mathcal{P}_{SP}

Proposition 4

If θ^* solves \mathcal{P}_{RR} and that $\theta_j^* \in \{0,1\}$ for all j, then θ^* also solves \mathcal{P}_{SP} .

Solution θ^* to \mathcal{P}_{RR} is such that $\theta_j^* \in \{0,1\}$ for all j (P2) if

- the (*) condition is satisfied
- there are many firms
- the network is sufficiently connected

P2 A solution to the alternative problem \mathcal{P}_{RR} also solves \mathcal{P}_{SP}

Proposition 4

If θ^* solves \mathcal{P}_{RR} and that $\theta_j^* \in \{0,1\}$ for all j, then θ^* also solves \mathcal{P}_{SP} .

Solution θ^* to \mathcal{P}_{RR} is such that $\theta_j^* \in \{0,1\}$ for all j (P2) if

- the (*) condition is satisfied
- there are many firms
- the network is sufficiently connected

▶ Details

Example with n=2

Relaxed problem without reshaping

$$V(\theta) = Q(\theta) \left(L - f \sum_{j=1}^{n} \theta_{j} \right) \text{ with } q_{j} = z_{j} \theta_{j} A \left(\sum_{i=1}^{n} \Omega_{ij} q_{i}^{\epsilon - 1} \right)^{\frac{\alpha}{\epsilon - 1}}$$

Problem: V is not concave

- ⇒ First-order conditions are not sufficient
- ⇒ Numerical algorithm can get stuck in local maxima

Example with n = 2

Relaxed problem with reshaping

$$V\left(\theta\right) = Q\left(\theta\right)\left(L - f\sum_{i=1}^{n}\theta_{j}\right) \text{ with } q_{j} = z_{j}\theta_{j}^{\frac{1}{\sigma-1}}A\left(\sum_{i=1}^{n}\Omega_{ij}\theta_{i}^{1 - \frac{\epsilon-1}{\sigma-1}}q_{i}^{\epsilon-1}\right)^{\frac{\alpha}{\epsilon-1}}$$

Problem: V is now (quasi) concave

- ⇒ First-order conditions are necessary and sufficient
- ⇒ Numerical algorithm converges to global maximum

Testing the approach on small networks

For small networks we can solve \mathcal{P}_{SP} directly by trying all possible vectors θ

Comparing approaches for a million different economies:

	Number of firms n			
	8	10	12	14
A. With reshaping				
Firms with correct θ_i	99.9%	99.9%	99.9%	99.8%
Error in output Y	0.00039%	0.00081%	0.00174%	0.00171%
B. Without reshaping				
Firms with correct θ_j	84.3%	83.2%	82.3%	81.3%
Error in output Y	0.84%	0.89%	0.93%	0.98%

Notes: Parameters $f \in \{0.05/n, 0.1/n, 0.15/n\}$, $\sigma_z \in \{0.34, 0.39, 0.44\}$, $\alpha \in \{0.45, 0.5, 0.55\}$, $\sigma \in \{4, 6, 8\}$ and $\epsilon \in \{4, 6, 8\}$. For each combination of parameters 1000 different economies are created. For each economy, productivity is drawn from $\log(z_k) \sim \operatorname{iid} \mathcal{N}(0, \sigma_z)$ and Ω is drawn randomly such that each link Ω_{ij} exists with some probability such that a firm has on average five possible incoming connections. A network is kept in the sample only if the first-order conditions give a solution in which θ hits the bounds.

The errors come from

- · firms that are particularly isolated
- two θ configurations with almost same output

Testing the approach on large networks

For large networks we cannot solve \mathcal{P}_{SP} directly by trying all possible vectors θ

• After all the 1-deviations θ are exhausted:

	With reshaping	Without reshaping
Firms with correct θ_j	99.8%	72.1%
Error in output Y	0.00028%	0.69647%

Notes: Simulations of 200 different networks Ω and productivity vectors z that satisfy the properties of the calibrated economy.

Very few "obvious errors" in the allocation found by the approach

IV. Economic Forces at Work

- Impact of operating 2 on the incentives to operate 1 and 3
 - \triangleright Operating 3 leads to a larger q_3 because 2 is operating
 - \triangleright Operating 1 increases q_2 because 2 is operating
- Complementarity between operating decisions of nearby firm

- Impact of operating 2 on the incentives to operate 1 and 3
 - ▶ Operating 3 leads to a larger q_3 because 2 is operating
 - \triangleright Operating 1 increases q_2 because 2 is operating
- Complementarity between operating decisions of nearby firm

- Impact of operating 2 on the incentives to operate 1 and 3
 - ▶ Operating 3 leads to a larger q_3 because 2 is operating
 - \triangleright Operating 1 increases q_2 because 2 is operating
- Complementarity between operating decisions of nearby firms

- Impact of operating 2 on the incentives to operate 1 and 3
 - ▶ Operating 3 leads to a larger q_3 because 2 is operating
 - ▶ Operating 1 increases q_2 because 2 is operating
- Complementarity between operating decisions of nearby firms

- Impact of operating 2 on the incentives to operate 1 and 3
 - ▶ Operating 3 leads to a larger q_3 because 2 is operating
 - \triangleright Operating 1 increases q_2 because 2 is operating
- Complementarity between operating decisions of nearby firms

Complementarities lead to clustering

V. Quantitative Exploration

Network data

- Two datasets that cover the U.S. economy
 - ► Cohen and Frazzini (2008) and Atalay et al (2011)
 - ▶ Both rely on Compustat data
 - Public firms must self-report customers that purchase more than 10% of sales
 - Use fuzzy-text matching algorithms and manual matching to build networks
 - Cover 1980 to 2004 and 1976 to 2009 respectively

Parameters

Parameters from the literature

- $\alpha = 0.5$ to fit the share of intermediate (Jorgenson et al 1987, Jones 2011)
- $\sigma = \epsilon = 6$ average of estimates (Broda et al 2006)
 - **Proposition** Robustness with smaller ϵ in the paper
- $\log{(z_{it})} \sim \mathcal{N}\left(0, 0.39^2\right)$ from Bartelsman et al (2013)
- $f \times n = 5\%$ to fit employment in management occupations
- Calibrate n = 3000 to match number of active firms in Atalay et al (2011)

Unobserved network Ω :

- Pick to match the observed in-degree distribution
- ullet Generate thousands of such Ω 's and report averages

Parameters from the literature

- $\alpha = 0.5$ to fit the share of intermediate (Jorgenson et al 1987, Jones 2011)
- $\sigma = \epsilon = 6$ average of estimates (Broda et al 2006)
 - ightharpoonup Robustness with smaller ϵ in the paper
- $\log{(z_{it})} \sim \mathcal{N}(0, 0.39^2)$ from Bartelsman et al (2013)
- $f \times n = 5\%$ to fit employment in management occupations
- Calibrate n = 3000 to match number of active firms in Atalay et al (2011)

Unobserved network Ω :

- Pick to match the observed in-degree distribution
- ullet Generate thousands of such Ω 's and report averages

▶ In-degree

Shape of the network

What types of network does the planner choose?

- Compare optimal networks to completely random networks
- Differences highlights how efficient allocation shapes the network

	Optimal networks	Random networks
A. Power law shape parameters		
In-degree	1.43	1.48
Out-degree	1.37	1.48
B. Measures of proximity		
Clustering coefficient	0.027	0.018
Average distance between firms	2.26	2.64

Efficient allocation features

- More highly connected firms
- More clustering of firms

Def. clust. coeff.

Firm-level distributions

In the efficient allocation:

• Selection: Low productivity firms do not operate

• Magnification: High productivity firms benefit from clustering

Because of the optimal organization of the network

- Distributions are positively skewed ..
- ... and have fatter tails

Firm-level distributions

In the efficient allocation:

• Selection: Low productivity firms do not operate

• Magnification: High productivity firms benefit from clustering

	Labor prod. q	Employment I
A. Optimal network		
Standard deviation	0.29	1.24
Skewness	0.39	0.85
Excess kurtosis	0.57	0.39
B. Random network		
Standard deviation	0.44	2.21
Skewness	-0.03	-0.05
Excess kurtosis	0.01	-0.06

Because of the optimal organization of the network

- Distributions are positively skewed ...
- ... and have fatter tails

Firm-level distributions

In the efficient allocation:

• Selection: Low productivity firms do not operate

• Magnification: High productivity firms benefit from clustering

	Labor prod. q	Employment /
A. Optimal network		
Standard deviation	0.29	1.24
Skewness	0.39	0.85
Excess kurtosis	0.57	0.39
B. Random network		
Standard deviation	0.44	2.21
Skewness	-0.03	-0.05
Excess kurtosis	0.01	-0.06

Because of the optimal organization of the network

- Distributions are positively skewed ...
- ... and have fatter tails

Cascades of shutdowns

Because of the complementarities between firms

- Exit of a firm makes it more likely that its neighbors exit as well ...
- ... which incentivizes the second neighbors to exit as well ...
- •

Cascades of shutdowns

Because of the complementarities between firms

- Exit of a firm makes it more likely that its neighbors exit as well ...
- ... which incentivizes the second neighbors to exit as well ...

• ..

Magnitude of shock necessary to make a firm exit varies

	Probability of firm shut down after 1 std shock
All firms	92%
High out-degree firms	20%
High in-degree firms	56%

Implications:

 Highly-connected firms are hard to topple but upon shutting down they create large cascades

Magnitude of shock necessary to make a firm exit varies

	Probability of firm shut down after 1 std shock
All firms	92%
High out-degree firms	20%
High in-degree firms	56%

Implications:

 Highly-connected firms are hard to topple but upon shutting down they create large cascades

The shape of the network changes with the business cycle

	Correlation with output			
	Model	Data		
		CF (2008)	AHRS (2011)	
A. Power law shape parameters				
In-degree	-0.10	-0.10	-0.21	
Out-degree	-0.31	-0.24	-0.13	
B. Clustering coefficient	0.47	0.70	0.15	

Implications

 Recessions are periods with fewer highly-connected firms and in which clustering activity around most productive firms is costly

The shape of the network changes with the business cycle

	Correlation with output			
	Model	Data		
		CF (2008)	AHRS (2011)	
A. Power law shape parameters				
In-degree	-0.10	-0.10	-0.21	
Out-degree	-0.31	-0.24	-0.13	
B. Clustering coefficient	0.47	0.70	0.15	

Implications:

 Recessions are periods with fewer highly-connected firms and in which clustering activity around most productive firms is costly

Aggregate fluctuations

Size of fluctuations

$$Y = Q\left(L - f\sum_{j}\theta_{j}\right)$$

Table: Standard deviation of aggregates

	Output Y	Labor Prod. <i>Q</i>	Prod. labor $L - f \sum_{j} \theta_{j}$
Optimal network	0.039	0.039	0.0014
Fixed network	0.054	0.054	0

Implications

 Substantially smaller fluctuations in optimal network economy comes from the reorganization of network after shocks

Size of fluctuations

$$Y = Q\left(L - f\sum_{j}\theta_{j}\right)$$

Table: Standard deviation of aggregates

	Output Y	Labor Prod. <i>Q</i>	Prod. labor $L - f \sum_{j} \theta_{j}$
Optimal network	0.039	0.039	0.0014
Fixed network	0.054	0.054	0

Implications:

 Substantially smaller fluctuations in optimal network economy comes from the reorganization of network after shocks

Intuition

A given network θ^k is a function that maps $z \to Y_k(z)$

Intuition

A given network θ^k is a function that maps $z o Y_k\left(z\right)$

A given network θ^k is a function that maps $z \to Y_k(z)$

A given network θ^k is a function that maps $z \to Y_k(z)$

From extreme value theory

$$\mathsf{Var}\left(Y
ight) = \mathsf{Var}\left(\max_{k \in \{1,\dots,2^n\}} Y_k
ight)$$

declines rapidly with n

Conclusion

Additional results in the paper:

- Impact of position in the network on firm-level characteristics
- Endogenous skewness in distribution of employment, productivity, output

Summary

- Theory of network formation and aggregate fluctuations
- Propose an approach to solve these hard problems easily
- The optimal allocation features
 - Clustering of activity
 - Cascades of shutdowns/restarts
- Optimal network substantially limit the size of fluctuation

Conclusion

Additional results in the paper:

- Impact of position in the network on firm-level characteristics
- Endogenous skewness in distribution of employment, productivity, output

Summary

- Theory of network formation and aggregate fluctuations
- Propose an approach to solve these hard problems easily
- The optimal allocation features
 - Clustering of activity
 - Cascades of shutdowns/restarts
- · Optimal network substantially limit the size of fluctuations

Labor allocation

Lemma 2

The optimal labor allocation satisfies

$$I = (1 - \alpha) \underbrace{[I_n - \alpha \Gamma]^{-1}}_{(1)} \underbrace{\left(\frac{q}{Q}\right)}_{(2)}^{\circ (\sigma - 1)} \left(L - f \sum_{j=1}^n \theta_j\right)$$

where I_n is the identity matrix and where Γ is an $n \times n$ matrix where $\Gamma_{jk} = \frac{\Omega_{jk}q_j^{\epsilon-1}}{\sum_{l=1}^n \Omega_{lk}q_i^{\epsilon-1}}$ captures the importance of j as a supplier to k.

Determinants of I_i

- (1) Importance of j as a supplier
 - ▶ Leontief inverse $([I_n \alpha \Gamma]^{-1} = I_n + \alpha \Gamma + (\alpha \Gamma)^2 + ...)$
- (2) Relative efficiency

Reshaping

Intuition:

• First-order condition on θ_j :

Marginal Benefit
$$(\theta_j, F(\theta))$$
 – Marginal Cost $(\theta_j, G(\theta)) = \bar{\mu}_j - \underline{\mu}_j$

- ullet Under (\star) the marginal benefit of $heta_j$ only depends on $heta_j$ through aggregates
- For large connected network F and G are independent of θ_j

Reshaping

Intuition:

• First-order condition on θ_i :

Marginal Benefit
$$(X_i, F(\theta))$$
 – Marginal Cost $(X_i, G(\theta)) = \bar{\mu}_i - \underline{\mu}_i$

- Under (\star) the marginal benefit of θ_i only depends on θ_i through aggregates
- For large connected network F and G are independent of θ_i

Reshaping

Intuition:

• First-order condition on θ_j :

Marginal Benefit (
$$(\chi, \mathcal{F}(\mathcal{U}))$$
 – Marginal Cost ($(\chi, \mathcal{F}(\mathcal{U}))$ = $\bar{\mu}_j - \underline{\mu}_j$

- Under (\star) the marginal benefit of θ_i only depends on θ_i through aggregates
- For large connected network F and G are independent of θ_i

Details of reshaping

Simpler to consider

$$\mathcal{P}'_{RD}: \max_{\theta \in [0,1]^n, q} \left(\sum_{j=1}^n q_j^{\sigma-1} \right)^{\frac{1}{\sigma-1}} \left(L - f \sum_{j=1}^n \theta_j \right)$$

$$q_j \le A z_j \theta_j^{\mathfrak{g}} A B_j^{\alpha}$$
 (LM: β_j)

where $B_j = \left(\sum_{i=1}^n \Omega_{ij} \theta_i^b q_i^{\epsilon-1}\right)^{\frac{1}{\epsilon-1}}$.

First order condition with respect to θ_k :

$$\frac{\partial q_k}{\partial \theta_k} \frac{\partial Q}{\partial q_k} \left(L - f \sum_{j=1}^n \theta_j \right) - fQ + \sum_{j=1}^n \beta_j \left(\frac{\partial q_k}{\partial \theta_k} \frac{\partial B_j}{\partial q_k} + \frac{\partial B_j}{\partial \theta_k} \right) \frac{\partial q_j}{\partial B_j} = \overline{\mu}_k - \underline{\mu}_k$$

The terms are

$$\frac{\partial q_k}{\partial \theta_k} \frac{\partial Q}{\partial q_k} = z_k a \theta_k^{a-1} A B_k^{\alpha} \times \left(z_k \theta_k^a A B_k^{\alpha} \right)^{\sigma-2} Q^{2-\sigma}$$

$$\frac{\partial q_k}{\partial \theta_k} \frac{\partial B_j}{\partial q_k} + \frac{\partial B_j}{\partial \theta_k} = B_j \theta_k^{b-1} \Omega_{kj} \left(\frac{z_k \theta_k^a A B_k^{\alpha}}{B_j} \right)^{\epsilon-1} \left(a + \frac{b}{\epsilon - 1} \right)$$

Distribution of in-degree

Figure: Distribution of the number of suppliers and the number of customers

In-degree power law shape parameter

- Calibration: 1.43
- Data: 1.37 (Cohen and Frazzini, 2008) and 1.3 (Atalay et al, 2011)

Figure: Distribution of in-degree and out-degree in Bernard et al (2015)

Figure: Distribution of in-degree in Atalay et al (2011)

Clustering coefficient

- Triplet: three connected nodes (might be overlapping)
- Triangles: three fully connected nodes (3 triplets)

 $Clustering \ coefficient = \frac{3 \times number \ of \ triangles}{number \ of \ triplets}$

∢ Return

Firm-level distributions

Figure: Distributions of log(q)

▼ return

Figure: $\alpha = 0.75$

◀ return

Figure: $\epsilon = 3$

✓ return

	Probability of firm shutdown		
	Benchmark	$\alpha = 0.75$	$\epsilon = 3$
All firms	92%	82%	32%
High out-degree firms	20%	8%	0%
High in-degree firms	56%	19%	15%

