

On the Downstream Performance of Compressed Word Embeddings

Avner May, Jian Zhang, Tri Dao, Christopher Ré Department of Computer Science, Stanford University {avnermay, zjian, trid, chrismre}@cs.stanford.edu

Overview

Word embeddings:

Important for strong NLP performance

Take a lot of memory

Common Solution: Compression (e.g., 32-bit → 1-bit)

Key question:

What determines the performance of downstream models trained with compressed word embeddings?

Contribution:

A new compression quality measure which

- Is theoretically related to downstream perf.
- Empirically correlates with downstream perf.
- Can efficiently identify compressed embeddings with strong downstream perf. w/o model training.

Motivating Observations

Observation #1

Existing metrics (e.g. PIP loss [1]) fail to explain relative downstream performance across compression methods.

Observation #2

A simple compression method (uniform quantization) can match more complex ones (e.g., DCCL [4], k-means [5]).

A New Quality Measure: The Eigenspace Overlap Score (EOS)

Definition Compressed Uncompressed Eigenspace embedding SVD embedding SVD overlap score

 $\tilde{X} = \tilde{U}\tilde{S}\tilde{V}^T$

Intuition:

- Span of **left singular vectors** determines linear regression predictions.
- EOS measures similarity between the compressed & uncompressed embeddings' left singular vectors.

Theoretical Results

Theorem 1 (informal): Generalization & EOS

For fixed design linear regression, if $\bar{y} \in \mathbb{R}^n$ is a random label vector in span(U), then

> **Test MSE** relative to uncompressed embedding

 $X = USV^T$

$$\mathbb{E}_{\bar{y}}\left[\mathcal{R}_{\bar{y}}(\tilde{X}) - \mathcal{R}_{\bar{y}}(X)\right] = \mathcal{O}\left(1 - \mathrm{EOS}(X, \tilde{X})\right).$$

The compressed embedding's model accuracy can be expressed in terms of EOS.

<u>Theorem 2 (informal): Uniform Quantization Bound</u>

Let \tilde{X} be a b-bit uniform quant. of X. To achieve EOS $\geq 1 - \epsilon$, \tilde{X} requires a logarithmic # of bits

$$b = \mathcal{O}\left(\log_2\left(\frac{1}{\sqrt{\epsilon}}\right)\right).$$

Uniform quantization can attain high EOS with low precision.

EOS for Compressed Embedding Selection

Idea: Use EOS to efficiently select between compressed embeddings.

EOS attains up to 2x lower selection error rate than next best measure.

Experiments

Correlation of EOS with Downstream Performance

Spearman rank correlation MNLI SQuAD Dataset

Embedding fastText BERT WordPiece PIP loss [1] 0.340.45 Δ [2] 0.440.86 $\Delta_{\rm max}$ [3] **EOS (Ours)** 0.920.91

EOS correlates strongly with downstream performance.

Uniform Quantization Performance

Uniform quantization matches the more complex methods.

Resources and References

<u>Resources</u>

arXiv: https://arxiv.org/abs/1909.01264 Code: https://github.com/HazyResearch/smallfry

References

[1] Yin and Shen. On the dimensionality of word embedding. NeurlPS, 2018.

[2] Avron et al. Random Fourier features for kernel ridge regression: Approximation bounds and statistical guarantees. ICML, 2017. [3] Zhang et al. Low-precision random Fourier features for memory-constrained kernel approximation. AISTATS, 2019.

[4] Shu and Nakayama. Compressing word embeddings via deep compositional code learning. ICLR, 2018 [5] Andrews. Compressing word embeddings. ICONIP, 2016.