Prova do teorema de Tychonoff com ênfase em teoria dos conjuntos

Bruno Félix Rezende Ribeiro oitofelix@ufu.br

FAMAT — Universidade Federal de Uberlândia

1 de outubro de 2017

Resumo

Neste trabalho demonstra-se o teorema de Tychonoff na sua forma mais geral para espaços topológicos quaisquer com ênfase em teoria dos conjuntos. Presume-se o lema de Zorn.

Index terms— Tychonoff Theorem, Set Theory, Topology

Definição 1 (Propriedade da Interseção Finita — PIF). Seja X um conjunto e $\mathcal{S} \subset \mathcal{P}(X)$. A coleção \mathcal{S} tem a propriedade da interseção finita se $\varnothing \notin \{\cap \mathcal{R}\}_{\mathcal{R} \subset \mathcal{S}}^{0 < |\mathcal{R}| < \infty}$.

Nota: a satisfação da PIF por S se denota por "PIF(S)".

Definição 2 (Ultrafiltro). Seja X um conjunto $e \mathcal{F} \subset \mathcal{G}(X)$. A coleção \mathcal{F} é um ultrafiltro de X se $\{\mathcal{G}\}_{\mathcal{F} \subset \mathcal{G} \subset \mathcal{G}(X)}^{PIF(\mathcal{G})} = \{\mathcal{F}\}$.

Nota: um ultrafiltro é portanto uma coleção PIF maximal segundo a inclusão de conjuntos.

Proposição 3. Seja \mathcal{F} um ultrafiltro de X. Então vale:

- (i) $\varnothing \notin \mathcal{F}$;
- (ii) $\{\cap A\}_{A\subset\mathcal{F}}^{0<|A|<\infty}\subset\mathcal{F};$
- (iii) $\{B \mid A \subset B\}_{B \subset X}^{A \in \mathcal{F}} \subset \mathcal{F};$
- (iv) $\{B \mid \varnothing \notin \{A \cap B\}_{A \in \mathcal{F}}\}_{B \subset X} \subset \mathcal{F};$

Demonstração. (i) Suponha por absurdo que $\varnothing \in \mathcal{F}$. Tome $A \subset \mathcal{F}$ tal que $0 < |A| < \infty$, satisfazendo $\varnothing \in A$. Claramente, $\cap A = \varnothing$ e portanto não é o caso que PIF (\mathcal{F}) , o que é absurdo.

- (ii) Seja $A \subset \mathcal{F}$ tal que $0 < |A| < \infty$. Tome $\mathcal{G} = \mathcal{F} \cup \{ \cap A \}$, e observe que PIF (\mathcal{G}). Logo, $\mathcal{G} = \mathcal{F}$ (pois $\mathcal{F} \subset \mathcal{G}$ e \mathcal{F} é maximal) e então $\cap A \in \mathcal{F}$.
- (iii) Seja $B \subset X$ e $A \in \mathcal{F}$ tal que $A \subset B$. Tome $\mathcal{G} = \mathcal{F} \cup \{B\}$, e observe que PIF (\mathcal{G}) . Logo, $\mathcal{G} = \mathcal{F}$ (pois $\mathcal{F} \subset \mathcal{G}$ e \mathcal{F} é maximal) e então $B \in \mathcal{F}$.
- (iv) Seja $B \subset X$ tal que para qualquer $A \in \mathcal{F}$, tem-se $A \cap B \neq \emptyset$. Tome $\mathcal{G} = \mathcal{F} \cup \{B\}$, e observe que PIF (\mathcal{G}) , pelo item (ii) e (1). Logo, $\mathcal{G} = \mathcal{F}$ (pois $\mathcal{F} \subset \mathcal{G}$ e \mathcal{F} é maximal) e então $B \in \mathcal{F}$.

Teorema 4 (Lema de Zorn). Todo conjunto não vazio, parcialmente ordenado e com limite superior para toda cadeia (subconjunto totalmente ordenado) tem elemento maximal.

Demonstração. Exercício para o leitor.

Nota: equivalente ao axioma da escolha.

Proposição 5. Sejam X um conjunto $e \mathcal{S} \subset \mathcal{D}(X)$ tal que $PIF(\mathcal{S})$. Então existe um ultrafiltro \mathcal{F} de X tal que $\mathcal{S} \subset \mathcal{F}$.

Demonstração. Caso $X=\varnothing$ temos que $S=\mathcal{F}=\varnothing$. Suponha agora que $X\neq\varnothing$. Considere o conjunto, parcialmente ordenado pela inclusão,

$$\mathbb{E} = \{ \mathcal{F} \ | \ \mathcal{S} \subset \mathcal{F} \}_{\mathcal{F} \subset \mathcal{O}(X)}^{\mathrm{PIF}\,(\mathcal{F})} \neq \varnothing \ (\mathrm{pois} \ \mathcal{S} \in \mathbb{E}).$$

Prosseguimos para mostrar que que toda cadeia de \mathbb{E} é limitada superiormente em \mathbb{E} . Seja $\mathbb{C} \subset \mathbb{E}$ totalmente ordenado (uma cadeia em \mathbb{E}). Caso $\mathbb{C} = \varnothing$, o resultado segue trivialmente. Suponha então que $\mathbb{C} \neq \varnothing$. Afirmamos que \mathbb{C} é um limite superior de \mathbb{C} em \mathbb{E} . Primeiramente, note que dado $\mathcal{G} \in \mathbb{C}$, tem-se $\mathcal{G} \subset \mathbb{C}$. Agora, para provar que $\mathbb{C} \in \mathbb{E}$ basta mostrar que PIF (\mathbb{C}). Seja $\mathcal{G} \subset \mathbb{C}$, tal que $0 < |\mathcal{G}| < \infty$. Tome então $\mathcal{H} \in \{\mathcal{J}\}_{\mathcal{J} \in \mathbb{C}}^{\mathcal{G} \subset \mathcal{J}}$ e observe que como $\mathcal{H} \in \mathbb{C} \subset \mathbb{E}$, temos que PIF (\mathcal{H}). Dado então que $\mathcal{G} \subset \mathcal{H}$, temos $\mathbb{C} \subseteq \mathcal{G}$ e portanto PIF (\mathbb{C}). Pelo **lema de Zorn**, \mathbb{E} tem um elemento maximal \mathcal{F} . Segue pela definição de \mathbb{E} que \mathcal{F} é um ultrafiltro e $\mathcal{S} \subset \mathcal{F}$.

Definição 6 (Espaço Topológico). Sejam X um conjunto qualquer $e \tau \subset \mathcal{O}(X)$. O par (X, τ) é um espaço topológico se satisfaz

- (i) $X, \emptyset \in \tau$;
- (ii) $\{\cup B\}_{B\subset\tau}\subset\tau$;
- $(iii) \ \{\cap B\}_{B\subset \tau}^{|B|<\infty}\subset \tau;$

Nota: τ é chamado de "topologia" e seus elementos de "abertos".

Definição 7 (Base). Seja (X, τ) um espaço topológico. Um conjunto $B \subset \tau$ é uma base deste espaço se $\{\cup C\}_{C \subset B} = \tau$.

Nota: os elementos de B são chamados "abertos básicos".

Definição 8 (Sub-base). Seja (X, τ) um espaço topológico. Um conjunto $B \subset \tau$ é uma sub-base deste espaço se $\{\cap C\}_{C \subset B}^{|C| < \infty} \cup \{X\}$ é uma base do mesmo.

Definição 9 (Fecho). Sejam (X,τ) um espaço topológico e $S\subset X.$ O fecho de S é

$$\bar{S} = \left\{ x \in X \ \mid \ \varnothing \notin \{U \cap S\}_{x \in U \in \tau} \right\}.$$

Definição 10 (Compacidade). Um espaço topológico (X, τ) é compacto se

$$\varnothing \notin \left\{ \cap \{\bar{A}\}_{A \in \mathcal{S}} \mid PIF(\mathcal{S}) \right\}_{\mathcal{S} \subset \mathcal{O}(X)}^{|\mathcal{S}| > 0}.$$

Definição 11 (Produto Cartesiano). Sejam $I \neq \emptyset$ um conjunto e $\{X_i\}_{i \in I}$ uma coleção de conjuntos. O produto cartesiano desta coleção é dado por

$$\prod_{i \in I} X_i = \{f : I \to \bigcup \{X_i\}_{i \in I}\}_{i \in I}^{f(i) \in X_i} = \{(x_i)\}_{i \in I}^{x_i \in X_i}.$$

Definição 12 (Projeção). Para cada $i \in I$ função projeção do produto cartesiano da família $\{X_i\}_{i \in I}$ sobre o conjunto X_i é dada por

$$p_i: \prod_{i\in I} X_i \to X_i$$

$$f \to f(i).$$

Definição 13 (Topologia do Produto). Sejam $I \neq \emptyset$ um conjunto, $\{(X_i, \tau_i)\}_{i \in I}$ uma coleção de espaços topológicos, $X = \prod_{i \in I} X_i$ e τ a topologia cuja sub-base é $\{p_i^{-1}(U_i)\}_{i \in I}^{U_i \in \tau_i}$. Define-se o espaço topológico do produto cartesiano como (X, τ) .

Nota: Neste contexto τ também é chamado de topologia de Tychonoff.

Teorema 14 (Tychonoff). Sejam $I \neq \emptyset$ um conjunto e $\{(X_i, \tau_i)\}_{i \in I}$ uma coleção de espaços topológicos compactos. Então, o espaço topológico de seu produto cartesiano é compacto.

Demonstração. Seja (X, τ) o espaço topológico do produto cartesiano em questão. Seja $\mathcal{S} \subset \mathcal{P}(X)$ tal que $S \neq \emptyset$ e PIF (\mathcal{S}) . Pela Proposição 5 existe um ultrafiltro \mathcal{F} de X tal que $\mathcal{S} \subset \mathcal{F}$. Para cada $i \in I$ considere o conjunto $\mathcal{F}_i = \{p_i(A)\}_{A \in \mathcal{F}} \subset \mathcal{P}(X_i)$. Provaremos que PIF (\mathcal{F}_i) . Seja $\mathcal{G}_i \subset \mathcal{F}_i$, tal que $0 < |\mathcal{G}_i| < \infty$. Portanto, existe $\mathcal{G} \subset \mathcal{F}$, tal que $0 < |\mathcal{G}| < \infty$, satisfazendo $\mathcal{G}_i = \{p_i(A)\}_{A \in \mathcal{G}}$. Como PIF (\mathcal{F}) , então $\cap \mathcal{G} \neq \emptyset$. Portanto $\cap \mathcal{G}_i \neq \emptyset$ (pois $p_i(\cap \mathcal{G}) \subset \cap \mathcal{G}_i$) e logo PIF (\mathcal{F}_i) . Visto que X_i é compacto, temos que existe

$$x_i \in \cap \{\bar{A}\}_{A \in \mathcal{F}_i} \stackrel{\text{(1)}}{=} \cap \{\overline{p_i(A)}\}_{A \in \mathcal{F}} \neq \varnothing.$$

Portanto, para todo $A \in \mathcal{F}$, temos

$$x_i \in \overline{p_i(A)} = \{x \in X_i \mid \varnothing \notin \{U \cap p_i(A)\}_{x \in U \in \tau_i}\}.$$

Logo, para todo $U \in \tau_i$, com $x_i \in U$, vale $U \cap p_i(A) \neq^{(2)} \emptyset$. Tome $x = (x_i) \in X$ (uso implícito do axioma da escolha). Provemos que $x \in \cap \{\bar{A}\}_{A \in \mathcal{S}}$. Seja $U \in \tau$ tal que $x \in U$. Pela definição da topologia do produto, existe um conjunto básico V tal que $x \in V \subset U$, onde

$$V = \bigcap \{ p_{i_k}^{-1}(U_k) \mid U_k \in \tau_{i_k} \}_{k \in \{1, \dots, n\}}^{\{i_1, \dots, i_n\} \subset I}.$$

Observe que, por (1), para todo $k \in \{1,\ldots,n\}$, tem-se $x_{i_k} \in \cap \{\overline{p_{i_k}(A)}\}_{A \in \mathcal{F}}$. Dado que $x \in p_{i_k}^{-1}(U_k)$ (pois $x \in V$), temos que $x_{i_k} \in U_k$. Por (2), para todo $A \in \mathcal{F}$, tem-se $U_k \cap p_{i_k}(A) \neq \varnothing$ e logo $p_{i_k}^{-1}(U_k) \cap A \neq \varnothing$ (pois $p_{i_k}^{-1}(U_k \cap p_{i_k}(A)) \subset p_{i_k}^{-1}(U_k) \cap A$). Pela $Proposiç\~ao$ (3.iv), temos $B = \{p_{i_k}^{-1}(U_k)\}_{k \in \{1,\ldots,n\}} \subset \mathcal{F}$, e ent\~ao pela $Proposiç\~ao$ (3.ii) chegamos a $V = \cap B \in \mathcal{F}$. Por (3) e pela $Proposiç\~ao$ (3.iii), concluímos que $U \in \mathcal{F}$. Em particular, $U \cap A \neq \varnothing$ para todo $A \in \mathcal{S} \subset \mathcal{F}$. Logo, $x \in \cap \{\bar{A}\}_{A \in \mathcal{S}}$ e portanto X, τ é compacto.