Реализация алгоритма подготовки произвольного начального состояния системы кубитов с учетом ограничений современных квантовых компьютеров

выполнил: СТУДЕНТ ГРУППЫ 382003_3

ивлев А.Д.

НАУЧНЫЙ РУКОВОДИТЕЛЬ: К.Т.Н., ДОЦЕНТ

мееров и.б.

Постановка задачи

- 1. Разработка алгоритма построения квантовой схемы, выполняющей перевод системы кубитов в произвольное заданное начальное состояние
- 2. Разработка симулятора идеального квантового компьютера
- 3. Реализация алгоритма аппроксимации произвольного унитарного оператора
- 4. Рассмотрение влияния ограничений современных квантовых компьютеров на построение квантовых схем и адаптация вышеописанных алгоритмов под структуру квантовых компьютеров облачной платформы IBM Quantum
- 5. Выполнение экспериментов, оценивающих точность работы полученных схем, с использованием симулятора идеального квантового компьютера и квантовых компьютеров IBM

Симулятор идеального квантового компьютера

Состояние квантового компьютера описывается комплексным нормированным вектором длины 2^N , где N — количество кубитов.

Базовые операции исполняемые на квантовом компьютере традиционно называют квантовыми гейтами. Они задаются некоторыми унитарными матрицами.

Нулевой кубит считаем младшим. Квантовые схемы построены придерживаясь синтаксиса QASM (Quantum Assembly Language)

$$(I \otimes U)|\psi\rangle = \begin{pmatrix} u_1 & u_2 & 0 & 0 \\ u_3 & u_4 & 0 & 0 \\ 0 & 0 & u_1 & u_2 \\ 0 & 0 & u_3 & u_4 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} = \begin{pmatrix} u_1\psi_1 + u_2\psi_2 \\ u_3\psi_1 + u_4\psi_2 \\ u_1\psi_3 + u_2\psi_4 \\ u_3\psi_3 + u_4\psi_4 \end{pmatrix}$$
(1)

1 и 2 строки результирующего вектора состояния будут получены путём преобразования $U\begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$

3 и 4 строки из
$$U \begin{pmatrix} \psi_3 \\ \psi_4 \end{pmatrix}$$

Алгоритм подготовки начального состояния системы кубитов

Необходимо построить квантовую схему, которая задаёт унитарное преобразование U, которое переводит исходное состояние $|0\rangle^{\otimes N}$ (все кубиты в состоянии 0) в желаемое $|\psi\rangle$, то есть $U|0\rangle^{\otimes N}=|\psi\rangle$.

Разделим первую часть алгоритма на N итераций. Задача і-й итерации распределить значения из первой половины на весь под вектор из 2^i значений.

Сведём задачу итерации к переходу пар из состояния (c, 0) к (a, b).

$$Ry(\varphi) = \begin{pmatrix} \cos(\frac{\varphi}{2}) & -\sin(\frac{\varphi}{2}) \\ \sin(\frac{\varphi}{2}) & \cos(\frac{\varphi}{2}) \end{pmatrix}$$
(2)

$$\binom{1}{0} \to \binom{a}{b} \mid \binom{a}{b} \atop 0 \atop 0 \end{pmatrix} \to \binom{a'}{b} \atop c \atop 0 \end{pmatrix} \mid \binom{a}{b} \atop 0 \atop 0 \end{pmatrix} \to \binom{a'}{b'} \atop c \atop d$$
 (3)

Общий вид схемы подготовки вектора модулей начального состояния системы из двух кубитов

Алгоритм подготовки начального состояния системы кубитов

Определим углы φ для применения гейтов $Ry(\varphi)$.

При расмотрении отдельных пар получим $\varphi = 2\arccos(\frac{a}{c})$ при $c \neq 0$ ($\varphi = 0$ при c = 0), где $c = \sqrt{a^2 + b^2}$.

Добавим фазу к полученному вектору модулей с помощью гейта Rz.

У данного алгоритма большая теоретическая сложность $O(2^N)$ в худшем случае, но при этом он обеспечивает высокую точность.

$$\begin{pmatrix}
\cos(\frac{\varphi}{2}) & -\sin(\frac{\varphi}{2}) \\
\sin(\frac{\varphi}{2}) & \cos(\frac{\varphi}{2})
\end{pmatrix}
\begin{pmatrix}
c \\
0
\end{pmatrix} = \begin{pmatrix}
a \\
b
\end{pmatrix} (4)$$

$$Rz(\varphi) = \begin{pmatrix} e^{-i\varphi/2} & 0\\ 0 & e^{i\varphi/2} \end{pmatrix}$$
 (5)

Схема блока последней итерации алгоритма подготовки начального состояния системы из двух кубитов

Аппроксимация произвольного унитарного оператора

Аппроксимируем произвольный унитарный оператор U размера $2^n \times 2^n$ конечной квантовой схемой на основе конечного набора базовых гейтов.

Подбор оптимальных параметров будет происходить, как решение задачи оптимизации: $\min_{p} ||U - M(p)||$, где M(p) — матрица параметризованной схемы с набором параметров p — соответственно, и используется норма Фробениуса.

Универсальная шаблонная схема

Ограничения современных квантовых компьютеров

Рассмотрим квантовые компьютеры, находящиеся в открытом доступе через сервис IBM Quantum:

- Базовый набор гейтов ECR, I, Rz, SX, X
- Неполная топология
- Средние значения ошибок для ibm_sherbrooke (на 13.05.2024): ECR 7.432e-3, SX 2.279e-4, ошибка считывания 1.180e-2

Топология квантового компьютера ibm_sherbrooke

Адаптация алгоритма подготовки начального состояния под квантовые компьютеры IBM

Алгоритм подготовки начального состояния использовал гейты X, H, Ry, Rz, CNOT. Аппроксимируем данный набор с помощью гейтов ECR, I, Rz, SX, X, используемых на квантовых машинах IBM.

Для этого применим алгоритм аппроксимации произвольного унитарного оператора. Данный подход увеличит размер схемы в несколько раз.

Схемы гейтов H, Ry, CNOT в новом базисном наборе

Адаптация алгоритма подготовки начального состояния под квантовые компьютеры IBM

Пусть два кубита a, b соединяет цепочка из n-1 кубитов (a \neq t следовательно n \neq 0). Для удобства перенумеруем все кубиты цепочки от a = 0, до b = n. Тогда алгоритм CNOT(0, n):

- Если n = 1, то CNOT(0, 1) и алгоритм завершается
- Последовательно применяем CNOT между ближайшим кубитами в цепочке, начиная с 0 и заканчивая п
- Проводим обратные действия предыдущему шагу, исключая CNOT(n-1, n) и CNOT(0, 1).
- Один раз повторяем предыдущие два шага, для возврата состояний промежуточных кубитов в исходные

Такой подход будет использовать 4(n-1) гейтов CNOT, при n≥2.

Пример гейта CNOT между 0 и 3 кубитом

Результаты экспериментов на идеальном квантовом компьютере

Для аппроксимирующего алгоритма точность оценивается в виде: $||U-M||_F$, где U-желаемая унитарная матрица, а M- матрица аппроксимирующей схемы.

Аналогично для алгоритма подготовки начального состояния: $||\psi - V||_2$, где ψ — желаемый вектор состояния, а — V — вектор полученный после применения схемы.

Кол-во кубитов∖повторений	1	2	3	4	5	6	7	8
1	0.426	1.203e-8	7.857e-9	-	-	-	-	-
2	1.427	0.895	0.145	4.062e-8	2.499e-8	-	-	-
3	3.06	2.641	2.325	1.62	1.389	0.954	0.481	3.28e-6

Средняя точность аппроксимации в зависимости от количества кубитов и повторений шаблонной схемы

Количество кубитов	1	2	3	4	5	6
Точность с фазой	0.747	1.055e-15	2.092e-14	2.237e-13	1.721e-12	1.145e-11
Точность без фазы	1.586e-16	8.941e -16	2.119e-14	2.255e-13	1.734e-12	1.123e-11

Средняя точность подготовки начального состояния в зависимости от количества кубитов

Количество кубитов	1	2	3
Явный алгоритм	0.818	1.15e-15	2.153e-14
Аппроксимация	0.818	1.41e-08	4.54e-07

Сравнение точности явного алгоритма подготовки начального состояния и схемы его аппроксимирующей

Результаты на квантовом компьютере IBM

Все эксперименты были произведены на квантовом компьютере ibm_sherbrooke, с количеством измерений 4096.

Ввиду невозможности отследить эволюцию квантового оператора на реальной системе, будем оценивать погрешность самым простым способом, то есть нормой разницы результатов при применении гейта к нулевому начальному состоянию, поделённую на количество измерений.

Симулятор	Квантовый компьютер	Погрешность
[3310, 786]	[3269, 827]	0.014
[1554, 2542]	[1548, 2548]	0.002
[2755, 1341]	[2692, 1404]	0.021
[1603, 214, 1676, 603]	[1662, 235, 1520, 679]	0.044
[2057, 2039]	[2068, 2028]	0,004
[2059, 0, 0, 2037]	[2162, 90, 54, 1790]	0,071

Результаты экспериментов алгоритма аппроксимации произвольного унитарного оператора

Симулятор	Квантовый компьютер	Погрешность
[2017, 2079]	[1982, 2114]	0.012
[2067, 0, 0, 2029]	[2035, 111, 124, 1826]	0.065

Результаты экспериментов алгоритма подготовки произвольного начального состояния системы кубитов