# Modelos para el aprendizaje automático



# Introducción a las Redes Bayesianas

#### Bibliografía:

- Learning Bayesian Networks. Neapolitan, R. (2004). Prentice Hall
- Bayesian Networks in DM. Heckerman, D. DM&KD. 1,79-119. (1997)
- Redes Bayesianas. Sangüesa i Solé. UOC.

### Intro: Fórmula de Bayes



$$P(A / B) = \frac{P(B / A)P(A)}{P(B / A)P(A) + P(B / A^{c})P(A^{c})}$$

Esto dice que a partir de información de la ocurrencia de B si se dió o no A, podemos construir información acerca de la ocurrencia de A sabiendo que ocurrió B.

Este es el concepto básico para la inferencia que se usa en redes bayesianas.

# Método bayesiano para estimación de parámetros

Sea  $\theta$  un parámetro a estimar a partir de una muestra  $x_1$ ,  $x_2$ , ...,  $x_n$  proveniente de una distribución con densidad  $f(x \mid \theta)$ .

Sea  $\pi$  ( $\theta$ ) la densidad *a priori*  $\theta$ .

 $\pi^*(\theta \mid x_1, x_2, ..., x_n)$  es la distribución *a posteriori* que resulta

$$\pi^*(\theta / muestra) \propto L(\theta / x_1, x_2, ...x_n).\pi(\theta)$$

#### Comparando:

#### Estimación de máxima verosimilitud

- □ Provee justificación a muchos métodos de estimación 'intuitivos'
- MLE tiene buenas propiedades, se conoce la distribución asintótica

#### Estimación Bayesiana

- Incorpora conocimiento o información previa
- Requiere manejo computacional para hallar distribuciones posterioris (por ejemplo, MCMC: Metrópolis-Hasting, Gibbs, etc.)

## Redes Bayesianas (BN)

- Son estructuras gráficas-simbólicas para representar relaciones probabilísticas entre variables.
- Permiten definir modelos para diagnóstico (hallar P de la causa dados los síntomas) ó predicción (estando presente la causa, hallar P de los síntomas).
- Los nodos pueden se fuente de información u objeto de predicción, según sea la evidencia disponible.
- Se representan con un grafo DAG donde los nodos representan variables aleatorias y los arcos representan dependencias entre ellas.

### Modelos gráficos probabilísticos

Grafo DAG (*Directed Acyclic Graph* ): cuando no existen caminos dirigidos hacia un mismo nodo (o sea no puede volverse al mismo nodo).

Ejemplo: 4 variables dicotómicas relacionadas por el sig grafo:



Conocer estructuras de dependencia/indep nos permite reducir la información necesaria.

### Algunas definiciones previas

- Dado un conjunto de nodos *N*, un *grafo dirigido* en N es un conjunto de arcos (pares ordenados) definidos sobre los elementos de *N*.
- Camino dirigido: secuencia ordenada de nodos
- X es padre de Y sii existe arco de X →Y. En este caso Y es hijo de X.
  pa(X) = conjunto de padres de X
- X es antepasado o ascendiente de Z si existe un camino dirigido de X hasta Z. En ese caso Z es descendiente de X.
- X e Y son independientes condicionadas a Z si

$$P(X,Y / Z) = P(X / Z) P(Y / Z)$$

Notación: X <sup>⊥</sup> Y |Z

#### Definición

Una **Red Bayesiana** es un modelo gráfico probabilístico dado por

- un grafo DAG donde los nodos representan las variables y
- una distribución (conjunta) de probabilidades para las variables tal que se verifica la Condición de Markov:

Cada nodo es independiente de sus no descendientes (nd) dado el conjunto de sus padres. Esto es:

$$X^{\perp}$$
 nd(X) |pa(X)

Equivalentemente:

$$X \perp \{nd(X) - pa(X)\} \mid pa(X)$$

### Distribución conjunta en una RB

Si un DAG con una función de probabilidad conjunta satisface la condición de Markov (esto es, se tiene una BN) entonces vale:

$$P(x_1, x_2, ... x_n) = \prod_{i=1}^{n} P(x_i/pa(x_i))$$

Donde para los nodos raíz, P(X/pa(X)) = P(X)

¡Esto permite escribir la distribución conjunta en una red bayesiana!

Obs: para variables discretas o Normales vale también la recíproca: si la conjunta se factoriza según esta expresión, entonces se cumple la condición de Markov.

#### Ejemplo de BN (Neapolitan, pag 4):

Se propone la siguiente estructura de BN para las variables:



H: historia de fumador?

B: tiene bronquitis?

L: tiene cáncer de pulmón?

F: tiene fatiga pulmonar?

C: RX de torax positivo?

# Si conocemos los parámetros (la distribución de las variables) y la estructura, tenemos la distribución conjunta



P(H,B,L,F,C) = P(H)P(B|H)P(L|H)P(C|L)P(F|B,L)

#### Cuestiones a resolver:

- Determinar la estructura de la red (aprendizaje estructural)
- Determinar la distribución conjunta de las variables involucradas (aprendizaje paramétrico)
- Una vez determinada la red, hacer inferencia para alguna variable conocidas las demás (propagación de la evidencia).

## Aprendizaje paramétrico

Se tienen las siguientes formas de estimar los parámetros para el caso de variables discretas:

$$\widehat{\theta}_{x_i|pa_i} = \frac{N(x_i, pa_i)}{N(pa_i)} \qquad \widetilde{\theta}_{x_i|pa_i} = \frac{\alpha(x_i, pa_i) + N(x_i, pa_i)}{\alpha(pa_i) + N(pa_i)}$$

**MLE** 

Bayesiano

Ambas son asintóticamente equivalentes

## Ejemplo

#### En este caso

$$P(\widehat{H} = 1) = \frac{\# casos (H = 1)}{\# total}$$

$$P(L = 1/H = 1) = \frac{\# casos (L = 1 \land H = 1)}{\# casos (H = 1)}$$

$$P(F = 1/b \land H) = \frac{\# casos (F = 1 \land b \land H)}{\# casos (b \land h)}$$

$$etc...$$



### Aprendizaje estructural

El primer paso para ajustar una RB es especificar su estructura. Esto puede hacerse basado en rutinas automáticas ó en juicio de expertos.

El aprendizaje automático consiste en inducir, a partir de los datos, una estructura. Esto es, determinar las relaciones de dependencia e independencia entre las variables.

Algunos paquetes de R permiten ajustar la estructura de la red (bnlearn).

### Redes Bayesianas para clasificación

Son ampliamente usadas por varias ventajas:

- fáciles de construír y entender
- la inferencia es sencilla
- son robustas a atributos irrelevantes

#### Clasificación con Redes Bayesianas

Supongamos un conjunto de variables C, A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub> las cuales pueden pensarse como

C: variable de clasificación

A<sub>i</sub>. atributos

#### ¿Cómo predecir C a partir de los atributos?

- □ buscar el valor de C que maximice  $P(A_1, A_2,.., A_n/C)$   $\rightarrow$  E. M.V
- □ buscar el valor de C que maximice las probabilidades a posteriori  $P(C / A_1, A_2, ..., A_n)$ , o equivalentemente,

Maximizar  $P(A_1, A_2, ..., A_n/C)^*P(C) \rightarrow E$ . Bayesiana

### Clasificador Naive Bayes

Asume independencia entre los atributos, condicionados a C, y una

estructura dada por:

**Entonces** 

$$P(A_1,..|C_i) = \prod_{k=1}^{n} P(a_k | C_i) = P(a_1 | C_i) \times P(a_2 | C_i) \times ... \times P(a_n | C_i)$$

Con lo que

$$P(C_i | A_1 A_2 \dots A_n) \propto \prod_{k=1}^n P(a_k | C_i) P(C_i)$$

La clasificación se hace maximizando esta última expresión.

#### Ejemplo Naïve Bayes:

Para una variable clasificatoria con n=4 atributos binarios:



#### Necesitamos conocer:

P(Ai =0 /C=0) y P(Ai =0 /C=1) para cada i=1..4

У

P(C=0) (la distribución a priori de C) y P(C=1)

Con eso, las probabilidades a posteriori son

 $P(C=1|A1=0,A2=0,..) \propto P(A1=0/C=1)...P(A4=0/C=1)P(C=1)$ 

#### Cómo estimar probabilidades desde los datos?

Para la distribución a priori:

$$P(C=c) = N_c/N$$

Para la condicional de cada atributo:

$$P(A_i \mid C) = |A_i| / N_c$$

- donde |A<sub>ic</sub>| es el nº de casos A<sub>i</sub> observados en la clase C
- □ N<sub>c</sub> es el nº de casos C observados

#### Alternativas para estimar los parámetros:

Máxima verosimilitud: 
$$P(A_i|C) = \frac{N_{ic}}{N_c}$$

Laplace: 
$$P(A_i|C) = \frac{N_{ic} + 1}{N_c + c}$$

#### Donde

Nc=cantidad de datos de la clase condicionante c= # categorías de Ai (por ejemplo, c=2 para atributo binario)

## Ejemplo1: clasificando con Naive Bayes

| Nombre        | parición? | vuela? | vive en agua? | tiene piernas? | clase       |
|---------------|-----------|--------|---------------|----------------|-------------|
| human         | si        | no     | no            | si             | mamífero    |
| python        | no        | no     | no            | no             | no-mamífero |
| salmon        | no        | no     | si            | no             | no-mamífero |
| whale         | si        | no     | si            | no             | mamífero    |
| frog          | no        | no     | a veces       | si             | no-mamífero |
| komodo        | no        | no     | no            | si             | no-mamífero |
| bat           | si        | si     | no            | si             | mamífero    |
| pigeon        | no        | si     | no            | si             | no-mamífero |
| cat           | si        | no     | no            | si             | mamífero    |
| leopard shark | si        | no     | si            | no             | no-mamífero |
| turtle        | no        | no     | a veces       | si             | no-mamífero |
| penguin       | no        | no     | a veces       | si             | no-mamífero |
| porcupine     | si        | no     | no            | si             | mamífero    |
| eel           | no        | no     | si            | no             | no-mamífero |
| salamander    | no        | no     | a veces       | si             | no-mamífero |
| gila monster  | no        | no     | no            | si             | no-mamífero |
| platypus      | no        | no     | no            | si             | mamífero    |
| owl           | no        | si     | no            | si             | no-mamífero |
| dolphin       | si        | no     | si            | no             | mamífero    |
| eagle         | no        | si     | no            | si             | no-mamífero |

| caso | parición? | vuela? | vive en agua? | tiene piernas? | clase  |
|------|-----------|--------|---------------|----------------|--------|
|      | si        | no     | si            | no             | ?????? |

### Ejemplo1: clasificando con Naive Bayes

A: atributos observados

M: mamífero

N: no-mamífero

| caso | parición? | vuela? | vive en<br>agua? | tiene<br>piernas? | clase  |
|------|-----------|--------|------------------|-------------------|--------|
|      | si        | no     | si               | no                | ?????? |

$$P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A|N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

P(A|M)P(M) > P(A|N)P(N)

=> Se lo clasifica como mamífero

Cómo sería clasificar con MV???

## Ejemplo1: (cont)

Si se quita de la tabla la fila que corresponde a "bat", el murciélago, y los atributos observados fueran justamente los de este, se tendría que

$$P(A|M) = \frac{5}{6} \times \frac{0}{6} \times \frac{1}{6} \times \frac{1}{6} = 0$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0 \times \frac{6}{19} = 0$$

$$P(A|N)P(N) = 0.004 \times \frac{13}{19}$$

#### P(A|M)P(M) < P(A|N)P(N)

⇒Se lo clasifica como

#### NO mamífero!!!!

El problema es que hay pocos (ningún) dato en algún nivel de atributos. Sug: usar Laplace

### Propiedades de Naïve Bayes

#### Pros:

- Reduce significativamente el número de parámetros respecto a otras RB.
- Es robusto a puntos aislados.
- Es robusto a atributos irrelevantes.

#### **Contras:**

- El supuesto de independencia puede ser muy fuerte en algunos casos.
- ■Para datos esparsos, la probabilidad a posteriori es nula (como en el ejemplo anterior), y no permite tomar en cuenta las probabilidades de los otros atributos observados, produciendo a veces mala clasificación.
- El cálculo de la red es NP-hard, por lo que es muy difícil y posiblemente costoso.

Vamos a R

# Ejemplo: hipoteca con Naive Bayes



#### Conjunta:

(idem cada conjunto de valores posibles de las variables)

A-priori probabilities: Y 0 1 0.880024 0.119976

Conditional probabilities: malhist

Y no yes 0 0.94819359 0.05180641 1 0.76000000 0.24000000

auton

Y no yes 0 0.8936605 0.1063395 1 0.8350000 0.1650000

soltero

Y no yes 0 0.603272 0.396728 1 0.495000 0.505000 gasto rat rat.desem malhist auton soltero denegado

0.265 0.922 3.20 no no yes <mark>0</mark>

```
mod2 <- naiveBayes(denegado ~gasto+rat+rat.desem, data = dataTrain,laplace=0)

A-priori probabilities:
Y
0 1
0.880024 0.119976

Conditional probabilities:
gasto
Y [,1] [,2]
```

0 0.3223320 0.08225523 1 0.3918405 0.22898055 rat Y [,1] [,2] 0 5.227914e+11 8.259187e+12 1 4.087431e+12 2.142508e+13 rat.desem Y [,1] [,2] 0 2.988534 1.211648

1 3.000800 1.395574