Control Synthesis of Nonlinear Sampled Switched Systems using Euler's Method

SNR'17, Uppsala

Adrien Le Coënt¹, Florian De Vuyst¹, Ludovic Chamoin², Laurent Fribourg³

April 22, 2017

¹CMLA - ENS Cachan

²LMT - ENS Cachan

³LSV - CNRS - ENS Cachan

Introduction

Framework

- Framework of the switched control systems: one selects the working modes of the system over time, every mode is described by ordinary differential equations (ODEs)
- The tools we used:
 - Tiling (space discretization)
 - Zonotopes (symbolic representation of sets)
 - Validated simulation
- The tools we introduce:
 - A new error bound for the explicit Euler scheme
 - Associated set based computations using balls

Outline

- Switched systems
- 2 Numerical integration
- 3 Euler approximate solutions
- 4 Control synthesis

Outline

- Switched systems
- 2 Numerical integration
- 3 Euler approximate solutions
- 4 Control synthesis

Switched systems

A continuous switched system

$$\dot{x}(t) = f_{\sigma(t)}(x(t))$$

- state $x(t) \in \mathbb{R}^n$
- finite set of (switched) modes $U = \{1, \dots, N\}$
- state dependent rule σ which associates a mode $u \in U$ to a state x(t)

We focus on sampled switched systems:

given a sampling period $\tau > 0$, switchings will occur at times τ , 2τ , ...

$$\begin{pmatrix} \dot{T}_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f \mathbf{u_1} & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} - \alpha_f \mathbf{u_2} \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f \mathbf{u_1} \\ \alpha_{e2} T_e + \alpha_f T_f \mathbf{u_2} \end{pmatrix}.$$

$$\begin{pmatrix} \dot{T}_1 \\ T_2 \end{pmatrix} = \begin{pmatrix} -\alpha_{21} - \alpha_{e1} - \alpha_f \mathbf{u_1} & \alpha_{21} \\ \alpha_{12} & -\alpha_{12} - \alpha_{e2} - \alpha_f \mathbf{u_2} \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix} + \begin{pmatrix} \alpha_{e1} T_e + \alpha_f T_f \mathbf{u_1} \\ \alpha_{e2} T_e + \alpha_f T_f \mathbf{u_2} \end{pmatrix}.$$

 $\blacksquare \ \, \mathsf{Modes:} \ \, \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \ \, \mathsf{;} \ \, \mathsf{sampling} \ \, \mathsf{period} \ \, \tau$

$$T_1(t+\tau) = f_1(T_1(t), T_2(t), u_1)$$

 $T_2(t+\tau) = f_2(T_1(t), T_2(t), u_2)$

$$T_1(t+\tau) = f_1(T_1(t), T_2(t), u_1)$$

 $T_2(t+\tau) = f_2(T_1(t), T_2(t), u_2)$

- A pattern π is a finite sequence of modes, e.g. $\begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$T_1(t+\tau) = f_1(T_1(t), T_2(t), u_1)$$

$$T_2(t+\tau) = f_2(T_1(t), T_2(t), u_2)$$

- $\qquad \text{Modes: } \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{ ; sampling period } \tau$
- A pattern π is a finite sequence of modes, e.g. $\begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- A state dependent control consists in selecting at each τ a mode (or a pattern) according to the current value of the state.

Control Synthesis Problem

Being given a recurrence set R and a safety set S, we consider the state-dependent control problem of synthesizing σ :

At each sampling time t, find the appropriate switched mode $u \in U$ according to the current value of x, such that

Recurrence: after some steps of time, the state returns into R with safety in S

Outline

- 1 Switched systems
- 2 Numerical integration
- 3 Euler approximate solutions
- 4 Control synthesis

Numerical integration, reachability analysis

- Classical (non guaranteed) methods: Euler, Runge-Kutta, implicit, explicit schemes...
- Guaranteed reachability analysis: Enclosing solutions, error bounding, additional hypotheses
- State-of-the-art:
 - Monotone, ISS, incrementally stable systems [Girard, Sontag, Zamani, Tabuada...]
 - Reachability analysis using zonotopes [Dang, Girard, Althoff...]
 - Validated simulation, guaranteed integration [Moore, Lohner, Bertz, Makino, Nedialkov, Jackson, Corliss, Chen, Ábrahám, Sankaranarayanan, Taha, Chapoutot,...]
 - Ellipsoid methods [Kurzhanski, Varaiya, Dang...]
 - Sensitivity Analysis [Donzé, Maler...]

Validated Numerical Methods for IVPs for ODEs

[Moore, 1966]

For $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$, we consider the IVP for ODEs

$$\dot{y}(t) = f(y(t))$$

We denote the solution by $y(t, t_0, y_0)$.

For an interval $[y_0]$, $y(t; t_0, [y_0]) = \{y(t; t_0, y_0) | y_0 \in [y_0]\}.$

Our goal is to find interval vectors $[y_j]$ that are guaranteed to contain $y(t; t_0, [y_0])$ at the points $t_0 < t_1 < \cdots < t_N = \tau$.

Taylor Series Methods for IVPs for ODEs

[Moore, 1966]

Suppose that we have computed $[y_j]$ at t_j , such that $y(t_j; t_0, [y_0]) \subseteq [y_j]$. We advance the solution by using two algorithms.

Algorithm I

- validates existence and uniqueness of the solution $[t_j, t_l j + 1]$
- lacksquare computes an a priori enclosure $[\widetilde{y}_j]$ such that

$$y(t; t_j, [y_j]) \subseteq [\tilde{y}_j]$$
 for $t \in [t_j, t_{j+1}]$.

Algorithm II computes a tighter enclosure $[y_{i+1}]$ of $y(t_{i+1}; t_0, [y_0])$.

Outline

- 1 Switched systems
- 2 Numerical integration
- 3 Euler approximate solutions
- 4 Control synthesis

Hypotheses

(H0) (Lipschitz): for all $j \in U$, there exists a constant $L_j > 0$ such that:

$$||f_j(y)-f_j(x)|| \leq L_j ||y-x|| \quad \forall x,y \in S.$$

(H1) (One-sided Lipschitz/Strong monotony): for all $j \in U$, there exists a constant $\lambda_j \in \mathbb{R}$ such that

$$\langle f_j(y) - f_j(x), y - x \rangle \leq \lambda_j ||y - x||^2 \quad \forall x, y \in T,$$

Let us define the constants: C_j for all $j \in U$:

$$C_j = \sup_{x \in S} L_j \|f_j(x)\|$$
 for all $j \in U$.

NB: constants computed by constrained optimization.

Computation of the constants

Computation of L_j , C_j , λ_j $(j \in U)$ realized with constrained optimization algorithms, applied on the following optimization problems:

Constant L_j :

$$L_{j} = \sup_{x,y \in S, \ x \neq y} \frac{\|f_{j}(y) - f_{j}(x)\|}{\|y - x\|}$$

■ Constant *C_i*:

$$C_j = \sup_{x \in S} L_j ||f_j(x)||$$

Constant λ_i :

$$\lambda_j = \sup_{x,y \in T, x \neq y} \frac{\langle f_j(y) - f_j(x), y - x \rangle}{\|y - x\|^2}$$

Notations

We will denote by $\phi_j(t; x^0)$ the solution at time t of the system:

$$\dot{x}(t) = f_j(x(t)),$$

$$x(0) = x^0.$$

Given an initial point $\tilde{x}^0 \in S$ and a mode $j \in U$, we define the following "linear approximate solution" $\tilde{\phi}_j(t; \tilde{x}^0)$ for t on $[0, \tau]$ by:

$$\tilde{\phi}_j(t;\tilde{x}^0) = \tilde{x}^0 + tf_j(\tilde{x}^0).$$

NB: approximation by forward Euler scheme

Main result

Theorem

Given a sampled switched system satisfying (H0-H1), consider a point \tilde{x}^0 and a positive real δ . We have, for all $x^0 \in B(\tilde{x}^0, \delta)$, $t \in [0, \tau]$ and $j \in U$: $\phi_j(t; x^0) \in B(\tilde{\phi}_j(t; \tilde{x}^0), \delta_j(t))$. with

• if
$$\lambda_j = 0$$
: $\delta_j(t) = \left(\delta^2 e^t + C_j^2(-t^2 - 2t + 2(e^t - 1))\right)^{\frac{1}{2}}$

• if
$$\lambda_j > 0$$
: $\delta_j(t) = \left(\delta^2 e^{3\lambda_j t} + \frac{C_j^2}{3\lambda_j^2} \left(-t^2 - \frac{2t}{3\lambda_j} + \frac{2}{9\lambda_j^2} \left(e^{3\lambda_j t} - 1\right)\right)\right)^{\frac{1}{2}}$

Application to guaranteed integration

Sketch of the proof

Error equation

$$\frac{d}{dt}(x(t)-\tilde{x}(t))=\left(f_j(x(t))-f_j(\tilde{x}^0)\right),\,$$

Transformation into a differential inequality

$$\frac{1}{2} \frac{d}{dt} (\|x(t) - \tilde{x}(t)\|^{2}) = \langle f_{j}(x(t)) - f_{j}(\tilde{x}^{0}), x(t) - \tilde{x}(t) \rangle
\leq \langle f_{j}(x(t)) - f_{j}(\tilde{x}(t)), x(t) - \tilde{x}(t) \rangle +
\|f_{j}(\tilde{x}(t)) - f_{j}(\tilde{x}^{0})\| \|x(t) - \tilde{x}(t)\|
\leq \lambda_{j} \|x(t) - \tilde{x}(t)\|^{2} + L_{j}t \|f_{j}(\tilde{x}^{0})\| \|x(t) - \tilde{x}(t)\|$$

Then integration of the differential inequality, knowing that

$$||x(t) - \tilde{x}(t)|| \le \frac{1}{2} \left(\alpha ||x(t) - \tilde{x}(t)||^2 + \frac{1}{\alpha} \right)$$
 for $\alpha > 0$

Application to guaranteed integration

Given a sampled switched system satisfying (H0-H1), consider a point $\tilde{x}^0 \in S$, a real $\delta > 0$ and a mode $j \in U$ such that:

- $1 B(\tilde{x}^0, \delta) \subseteq S,$
- $B(\tilde{\phi}_j(\tau; \tilde{x}^0), \delta_j(\tau)) \subseteq S$, and
- $\frac{d^2(\delta_j(t))}{dt^2} > 0 \text{ for all } t \in [0, \tau].$

Then we have, for all $x^0 \in B(\tilde{x}^0, \delta)$ and $t \in [0, \tau]$: $\phi_j(t; x^0) \in S$.

Convexity of the trajectories

Example of a DC-DC converter:

The dynamics is given by the equation $\dot{x}(t) = A_{\sigma(t)}x(t) + B_{\sigma(t)}$ with $\sigma(t) \in U = \{1, 2\}$. The two modes are given by the matrices:

$$A_1 = \begin{pmatrix} -\frac{r_I}{x_I} & 0\\ 0 & -\frac{1}{x_c} \frac{1}{r_0 + r_c} \end{pmatrix} \quad B_1 = \begin{pmatrix} \frac{v_s}{x_I} \\ 0 \end{pmatrix}$$

$$A_{2} = \begin{pmatrix} -\frac{1}{x_{l}} \left(r_{l} + \frac{r_{0} \cdot r_{c}}{r_{0} + r_{c}} \right) & -\frac{1}{x_{l}} \frac{r_{0}}{r_{0} + r_{c}} \\ \frac{1}{x_{c}} \frac{r_{0}}{r_{0} + r_{c}} & -\frac{1}{x_{c}} \frac{r_{0}}{r_{0} + r_{c}} \end{pmatrix} \quad B_{2} = \begin{pmatrix} \frac{v_{s}}{x_{l}} \\ 0 \end{pmatrix}$$

with $x_c = 70$, $x_l = 3$, $r_c = 0.005$, $r_l = 0.05$, $r_0 = 1$, $v_s = 1$.

λ_1	-0.014215	
λ_2	0.142474	
C_1	6.7126×10^{-5}	
C_2	2.6229×10^{-2}	

Convexity of the trajectories

Example of a DC-DC converter:

$$\lambda_1 = -0.014215$$

$$\lambda_2 = 0.142474$$

Application to guaranteed integration

Application to guaranteed integration

A simple rotation:

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} x$$

We have: $\lambda = 0$, C = 4.2, L = 1

Initial radius: 0.1 Time step: 0.005

Outline

- 1 Switched systems
- 2 Numerical integration
- 3 Euler approximate solutions
- 4 Control synthesis

Control synthesis

Validated simulation vs Euler

Building ventilation

[Meyer, Nazarpour, Girard, Witrant, 2014]

Dynamics of a four-room apartment:

$$\frac{dT_i}{dt} = \sum_{j \in \mathcal{N}^*} a_{ij} (T_j - T_i) + \delta_{s_i} b_i (T_{s_i}^4 - T_i^4) + c_i \max \left(0, \frac{V_i - V_i^*}{\bar{V}_i - V_i^*}\right) (T_u - T_i).$$

$$\mathcal{N}^* = \{1, 2, 3, 4, u, o, c\}$$

Control inputs: V_1 and V_4 can take the values 0V or 3.5V, and V_2 and V_3 can take the values 0V or 3V

 \Rightarrow 16 switching modes

Building ventilation

	Euler	DynIBEX	
R	$[20, 22]^4$		
S	$[19, 23]^4$		
au	30		
Time subsampling	No		
Complete control	Yes	Yes	
$\max_{j=1,\dots,16} \lambda_j$	-6.30×10^{-3}		
$\max_{j=1,,16} C_j$	4.18×10^{-6}		
Number of balls/tiles	4096	252	
Pattern length	1	1	
CPU time	63 seconds	249 seconds	

Building ventilation

Two-tank system

The behavior of x_1 is given by $\dot{x}_1 = -x_1 - 2$ when the tank 1 valve is closed, and $\dot{x}_1 = -x_1 + 3$ when it is open. Likewise, x_2 is driven by $\dot{x}_2 = x_1$ when the tank 2 valve is closed and $\dot{x}_2 = x_1 - x_2 - 5$ when it is open.

Two-tank system

	Euler	DynIBEX
R	[-1.5, 2.5]	\times [-0.5, 1.5]
S	[-3, 3]	\times [-3, 3]
au	0.2	
Time subsampling	au/10	
Complete control	Yes	Yes
λ_1	0.20711	
λ_2	-0.50000	
λ_3	0.20711	
λ_4	-0.50000	
C_1	11.662	
C_2	28.917	
C_3	13.416	
C_4	32.804	
Number of balls/tiles	64	10
Pattern length	6	6
CPU time	58 seconds	246 seconds

Comparison with state-of-the-art

	Euler	Dynlbex
Lotka-Volterra	fail	✓
Van der Pol	fail	✓
DC-DC	fail	✓
4-room	~	✓
2-tank	~	✓
helicopter	✓	✓

Advantages and limits

- Advantages:
 - Computationally very cheap
 - Only one punctual evaluations of f by step
 - No numerical integration
 - Easy implementation
- Limits:
 - Can lack precision when $\lambda > 0$
 - Can require sub-sampling
 - No perturbations (yet)

Conclusions and future work

Conclusions:

- Guaranteed control of nonlinear switched systems
- Use of a simple forward Euler method
- New error bound
- Easy implementation

Future work:

- Perturbations
- Extension to compositional/distributed synthesis