CORRIGÉ DES NOTES – TRIGONOMÉTRIE

Page 4

Exercice: a) $\frac{\sqrt{7}}{4}$ b) $\frac{5}{3}$ c) $\sqrt{3}$ d) $\frac{2\sqrt{3}}{3}$

e) 1

f) 30°

VRAI ou FAUX a) V

b) V c) F d) V e) V

f) F

Pages 7 et 8

Exercice 1: a) $\frac{8\pi}{3} \approx 8,38$ cm b) $\frac{7\pi}{5} \approx 4,4$ dm

Exercice 2: a) 4 rad

c) 1 rad

b) $\frac{1}{5}$ rad d) 2π rad

Exercice 3: a) $\frac{6}{\pi} \approx 1.91 \text{ m}$ b) $\frac{7}{12\pi} \approx 0.19 \text{ cm}$

j) $\frac{\pi}{2}$ rad k) $\frac{5\pi}{4}$ rad l) $\frac{61\pi}{90}$ rad

La calculatrice... $\sin(1 \text{ rad}) \approx 0.841 \quad \sin(1^\circ) \approx 0.017$

mais $cos(60^\circ) = \frac{1}{2}$ et $cos(\frac{\pi}{3}rad) = \frac{1}{2}$

Page 9

Exercice:

a) oui b) oui c) non d) non e) non f) oui

Pages 10 et 11 Série d'exercices sur les angles et longueurs d'arc

Exercice 1: a) -260 ° b) 460 °

Exercice 2: a)
$$-\frac{4\pi}{3}$$
 b) $\frac{8\pi}{3}$

Exercice 3: 5π cm

Exercice 4: 4π cm

Exercice 5: a) 18 cm b) 18 cm^2

Exercice 6: 20π cm

Exercice 7: 25 rad/sec.

Exercice 8: $-\frac{\pi}{30}$ rad

Page 13

 $\underline{\underline{Exercice\ 1}}:\ \theta\approx 1{,}18\ rad\ ou\ \theta\approx 67{,}38^{\circ}$

Exercice 2: a) oui b) non

Exercise 3: $P(\theta) = \left(\frac{1}{4}, \pm \frac{\sqrt{15}}{4}\right)$

Pages 15 et 16

<u>VRAI OU FAUX</u>: 1. Vrai

2. Faux : $\sin(-\theta) = -\sin(\theta)$

3. Vrai

4. Faux : $\cos(-\theta) = \cos(\theta)$

Exercice 1: a) IIIe b) IVe c) Ier

Exercice 2:

a)
$$\frac{3\pi}{4} < \theta < \frac{3\pi}{2}$$

c)
$$\theta \in \left[\frac{-7\pi}{6}, \frac{-\pi}{3}\right]$$

b)
$$\theta \in \left[\frac{-2\pi}{3}, \frac{\pi}{6} \right]$$

d)
$$\theta \in \left[\frac{-7\pi}{4}, \frac{-3\pi}{4} \right]$$

Exercice 3:

$$\sin\left(\frac{5\pi}{3}\right) = \frac{-\sqrt{3}}{2}$$

$$\cos(\pi) = -1$$

$$\sin\left(\frac{5\pi}{3}\right) = \frac{-\sqrt{3}}{2} \qquad \cos(\pi) = -1 \qquad \sin\left(\frac{-2\pi}{3}\right) = \frac{-\sqrt{3}}{2} \qquad \cos\left(\frac{-5\pi}{4}\right) = \frac{-\sqrt{2}}{2}$$

$$\cos\left(\frac{-5\pi}{4}\right) = \frac{-\sqrt{2}}{2}$$

$$\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3} \qquad \cot\left(\frac{5\pi}{6}\right) = -\sqrt{3}$$

$$\cot\left(\frac{5\pi}{6}\right) = -\sqrt{3}$$

$$sec(0) = 1$$

$$\sec(0) = 1 \qquad \cot(2\pi) = n.d.$$

$$\csc\left(\frac{-5\pi}{4}\right) = \sqrt{2}$$

$$\cos\left(\frac{-11\pi}{6}\right) = \frac{\sqrt{3}}{2}$$

$$\tan\left(\frac{-\pi}{2}\right) = n.d$$

$$\csc\left(\frac{-5\pi}{4}\right) = \sqrt{2} \qquad \cos\left(\frac{-11\pi}{6}\right) = \frac{\sqrt{3}}{2} \qquad \tan\left(\frac{-\pi}{2}\right) = n.d. \qquad \sec\left(\frac{-3\pi}{4}\right) = -\sqrt{2}$$

Exercice 4: Vérifiez vos calculs avec la calculatrice ©

Exercice 5:

$$\tan(\theta) > 0 \quad \forall \theta \in \left[\frac{\pi}{2}, \pi\right]$$
 Réponse : Faux

$$\cos\left(\frac{5\pi}{6}\right) = \sin\left(\frac{-5\pi}{3}\right)$$
 Réponse : Faux

Si
$$sec(\theta) < 0$$
 alors $cos(\theta) > 0$ Réponse : Faux

$$\tan\left(\frac{7\pi}{6}\right) = \cot\left(\frac{-2\pi}{3}\right)$$
 Réponse : Vrai

Exercice 6:

$$\sin\left(\frac{7\pi}{3}\right) = \frac{\sqrt{3}}{2} \qquad \cos(6\pi) = 1 \qquad \sin\left(\frac{-8\pi}{3}\right) = \frac{-\sqrt{3}}{2} \qquad \cos\left(\frac{-11\pi}{4}\right) = \frac{-\sqrt{2}}{2}$$

$$\tan\left(\frac{-8\pi}{2}\right) = 0 \qquad \sin\left(\frac{21\pi}{6}\right) = -1 \qquad \cos(100\pi) = 1 \qquad \sin\left(-\frac{25\pi}{2}\right) = -1$$

Page 18

Exercice: a)
$$\frac{5\pi}{4}$$
 rad b) 0 rad c) $\frac{\pi}{6}$ rad d) $\frac{\pi}{3}$ rad e) $\frac{\pi}{2}$ rad f) $\frac{5\pi}{6}$ rad

Page 21

Exercice: a) 2 sec.

- b) P₂
- c) P_0 de retour vers P_1
- d) $f = \frac{1}{2}$
- e) 11 fois

Page 22

#1 a)
$$p = 8$$
 unités

b)
$$f(23) = 0$$
 et $f(25) = -2$

#2 Codom
$$f = \left[-\frac{3}{2}, 2 \right]$$

#3 a)
$$g(29) = g(2+3p) = -1$$

b)
$$g(-21) = g(-21 + 2p) = 0$$

c)
$$g(1176) = g(1176 - 131p) = 0$$

#4 a)
$$h(31) = h(31-2p) = 0$$

b)
$$h(9) = h(9 - p) = 3$$

c)
$$h(-434) = h(-434 + 29p) = 0$$

d)
$$h(249) = h(249-17p) = 3$$
 e) $h(-6+12p) = 3$

e)
$$h(-6 + 12p) = 3$$

f)
$$h(1 + np) = 0$$

Page 25

Exercice 1:

1. Dom =
$$IR$$

2.
$$Codom = [0, 6]$$

3.
$$P = 4 \pi$$

4.
$$f = \frac{1}{4\pi}$$

5.
$$Max = 6$$

6.
$$Min = 0$$

7.
$$y = 3$$

8.
$$f(x) \ge 0 \forall x \in \mathbb{R}$$

9.
$$x \in [-\pi + 4\pi n, \pi + 4\pi n]$$
 $(n \in \mathbb{Z})$

10.
$$x = -\pi + 4\pi n$$

 $n \in \mathbb{Z}$

Page 26

Analyse de la fonction

- 1. Domaine : \underline{IR} 2. Codomaine : [-1, 1] 3. Période : $\underline{2\pi}$
- 4. $f(x) \ge 0 \forall x \in \left[-\frac{\pi}{2} + 2\pi n, \frac{\pi}{2} + 2\pi n \right]$

5.
$$f(x) \le 0 \forall x \in \left[\frac{\pi}{2} + 2\pi n, \frac{3\pi}{2} + 2\pi n\right]$$

6.
$$\forall x_1, x_2 \in [\pi + 2\pi n, 2\pi + 2\pi n] : x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

7.
$$\forall x_1, x_2 \in [0 + 2\pi n, \pi + 2\pi n] : x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

8.
$$f(x) = 0 \forall x \in \left\{ \frac{\pi}{2} + \pi n \right\}$$

Exercice: Une infinité de règles possibles, dont: $f(x) = \sin\left(x + \frac{\pi}{2}\right)$

Page 27

Exemple:

Fonction	$f(x) = -\frac{3}{2}\sin\left(\pi x + \frac{\pi}{2}\right) - 4$	$g(x) = \cos(-x + \pi)$	
Règle (forme canonique) avec $b > 0$	$f(x) = -\frac{3}{2}\sin \pi \left(x + \frac{1}{2}\right) - 4$	$g(x) = \cos(x - \pi)$	
Amplitude	$\frac{3}{2}$	1	
Période	2	2π	
Déphasage	$-\frac{1}{2}$	π	

Page 28

$$f(x) = 3\sin\left(\frac{x}{2} - \pi\right) + 2$$

$$g(x) = \sin\left(-x - \frac{\pi}{2}\right) - \frac{1}{2}$$

Page 29

$$h(x) = -\frac{3}{2}\cos(-2x) - 4$$

$$* j(x) = \cos{-\left(\pi x + 5\pi\right)}$$

Pages 31 et 32

Exercice 2 : (d'autres réponses sont aussi acceptables pour chacune)

$$f(x) = \cos \frac{1}{2}(x) - 1.5$$
 ou $f(x) = \sin \frac{1}{2}(x + \pi) - 1.5$ ou $f(x) = -\sin \frac{1}{2}(x - \pi) - 1.5$

$$g(x) = -1.5\cos 2\left(x - \frac{\pi}{8}\right)$$
 ou $g(x) = 1.5\sin 2\left(x - \frac{3\pi}{8}\right)$ ou $g(x) = -1.5\sin 2\left(x + \frac{\pi}{8}\right)$

$$h(x) = \frac{5}{2}\cos\frac{\pi}{2}(x+1)+1$$
 ou $h(x) = -\frac{5}{2}\cos\frac{\pi}{2}(x-5)+1$ ou $h(x) = -\frac{5}{2}\sin\left(\frac{\pi}{2}x\right)+1$

Exercice 3:
$$f(x) = -4 \sin \pi (x - 1.5) - 1$$

Page 34

Exercice 1

Solutions:

$$x = \frac{5}{4} + 2n$$

$$x = \frac{7}{4} + 2n$$

$$(n \in Z)$$

b) $f(x) = -5\sin 2\pi(x-3) + 5$

Solutions:

$$x = \frac{13}{4} + n \quad \left(n \in Z \right)$$

d) $f(x) = 0.5 \sin(x - 6\pi) + \sqrt{3}$

Solutions:

 $x \in \emptyset$ car l'ordonnée moyenne est supérieure à l'amplitude.

e) La forme canonique est la même.

Solutions:

$$x = -1.5 + 3n$$

$$x = 1.01 + 3n$$

$$(n \in Z)$$

c) La forme canonique est la même.

Solutions:

$$x \in \left\{ \frac{-5\pi}{18}, \frac{-\pi}{18}, \frac{7\pi}{18}, \frac{11\pi}{18} \right\}$$

Exercice 2

a)
$$x \in \left[\frac{-\pi}{24} + \frac{\pi n}{2}, \frac{7\pi}{24} + \frac{\pi n}{2} \right] \quad (n \in \mathbb{Z})$$

b)
$$x \in \left[\frac{-\pi}{8} ; 0.61 \right] \cup \left[1.49 ; 2.7 \right] \cup \left[3.58 ; \frac{4\pi}{3} \right]$$

Page 38

Exercice 1

a) La forme canonique est la même.

Solutions:

$$x \in \left\{ \frac{-7\pi}{9}, \frac{-5\pi}{9}, \frac{-\pi}{9}, \frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9} \right\}$$

d) La forme canonique est la même.

Solutions:

$$x = \frac{11\pi}{12} + \frac{2\pi}{3}n$$

$$x = \frac{13\pi}{12} + \frac{2\pi}{3}n$$

$$(n \in Z)$$

Collège Regina Assumpta Mathématiques SN₅

Chapitre 5 Trigonométrie - Corrigé

b) La forme canonique est la même.

$$x \approx -7.37 + 6\pi n$$

$$x \approx 4.23 + 6\pi n$$

$$(n \in \mathbb{Z})$$

Solutions:

$$x \approx -0.21 + \frac{\pi}{6}n$$

$$x \approx 0.04 + \frac{\pi}{6}n$$

$$(n \in Z)$$

e) $f(x) = 7 \cos(12(x + 1/12)) - 0.4$

c) $f(x) = -2\cos 2(x+2.6) - \sqrt{3}$

f) La forme canonique est la même.

Solutions:

$$\begin{cases} x \approx -3.91 + \pi n \\ x \approx -1.29 + \pi n \end{cases} \quad (n \in Z)$$

Solutions:

$$x = \frac{\pi}{50} + \frac{\pi}{25}n \ \left(n \in Z\right)$$

Exercice 2:

a)
$$x \in [0, 4]$$

b)
$$x \in [-2,48 + \pi n, -0,38 + \pi n] \ (n \in \mathbb{Z})$$

Pages 41 à 45

Problème 1: a)
$$h(t) = -10\cos\left(\frac{2\pi}{3}t\right) + 12$$
 (autres réponses possibles)

- a) Pendant environ 2,66 minutes, soit 2 minutes et 39 secondes.
- Problème 2 : a) 40 lumières
- b) 3,05m
- c) 0,09m; 0,23m; 0,41m et 0,55m

Problème 3:

a)
$$f(x) = 45\cos(4\pi(x-1)) + 75$$
 $(0 \le x \le 2)$

b) 0,15 min.; 0,35 min.; 0,65 min.; 0,85 min.; 1,15 min.; 1,35 min.; 1,65 min.; 1,85 min.

Problème 4:

a)
$$f(x) = -12\cos\left(\frac{\pi}{2}(x-25)\right) + 24$$
 ou mieux encore $f(x) = -12\sin\left(\frac{\pi}{2}x\right) + 24$

- b) Il est passé 30 fois à une altitude de 35m.
- c) pendant 7,8 secondes

Problème 5:63cm

Problème 6:
$$f(x) = 11\sin\left(\frac{\pi}{6}x\right) + 120$$

Page 48

- #1 a) 0
- b) 1
- c) $-\sqrt{3}$
- d) 0
- e) $\frac{-\sqrt{3}}{3}$
- f) n.d.

- #2 a) II et IV
- b) I et III
- #3 a) Vrai (car π est la période de la fonction tangente de base)
- b) Faux

#4 $x = \pi n$ $(n \in \{1, 2, 3, 4\})$

Pages 49 et 50

Exercice 1:

Le croquis...

- 1. Domaine: $\left[0, 2\pi\right[\setminus \left\{\frac{\pi}{4} + \frac{\pi}{2}n\right\} \ (n \in \{0, 1, 2, 3\})\right]$
- 2. Abscisses qui annulent la fonction : $x = \frac{\pi}{8} + \frac{\pi}{2}n$ $(n \in \{0, 1, 2, 3\})$

3.
$$f \ge 0 \ \forall x \in \left[0, \frac{\pi}{8}\right] \cup \left[\frac{\pi}{4}, \frac{5\pi}{8}\right] \cup \left[\frac{3\pi}{4}, \frac{9\pi}{8}\right] \cup \left[\frac{5\pi}{4}, \frac{13\pi}{8}\right] \cup \left[\frac{7\pi}{4}, 2\pi\right]$$

- 4. Équations des asymptotes : $x = \frac{\pi}{4} + \frac{\pi}{2}n \quad (n \in \{0, 1, 2, 3\})$
- 5. Position des points d'inflexion : $\left(\frac{\pi}{2}n, 1\right) \quad \left(n \in \{0, 1, 2, 3\}\right)$

Exercice 2:
$$f(x) = \frac{-1}{2} \tan \left(\frac{1}{2} \left(x - \frac{\pi}{2} \right) \right) - 2$$

Exercice 3:

a)
$$x = -1 + 2n \ (n \in Z)$$

b) Dom
$$f: IR \setminus \{x \mid x = -1 + 2n\} \ (n \in Z)$$

c)
$$f(0) = -\sqrt{3}$$
 et $f(\frac{1}{2}) = 3 - \sqrt{3}$ donc $y \in [-\sqrt{3}, 3 - \sqrt{3}]$

d)
$$x \approx 2.57 + 2n \ (n \in Z)$$

e)
$$x = \frac{7}{3} + 2n \ (n \in Z)$$

VRAI OU FAUX? L'énoncé est FAUX. Il devrait plutôt se lire :

$$Dom f = IR \setminus \left\{ \frac{\pi}{2b} + h + \frac{\pi n}{b} \right\} (n \in Z)$$

Pages 51 et 52

Exercice 1:
$$\csc^2(\theta) = \frac{1}{1 - \cos^2(\theta)}$$

Exercice 2:
$$\cot(\theta) = \frac{-t \cdot \sqrt{1-t^2}}{1-t^2}$$

DÉFI:
$$\sec \theta = -\sqrt{a^2 + 1}$$
 $\cot \theta = \frac{1}{a}$ $\csc \theta = -\frac{\sqrt{a^2 + 1}}{a}$ $\cos \theta = \frac{-\sqrt{a^2 + 1}}{a^2 + 1}$ $\sin \theta = \frac{-a\sqrt{a^2 + 1}}{a^2 + 1}$

Exercice 3: a) $\csc^2 x$ b) $\cos x$ c) $\cos^2 x$ d) $\csc^2(n)+1$ e) $\sin^2(t)+1$

Page 54

Exercice:

a)
$$\sec^2 a \cdot \cot^2 a - 1 = (\tan^2 a + 1) \cdot \cot^2 a - 1$$

 $= \tan^2 a \cdot \cot^2 a + \cot^2 a - 1$
 $= \tan^2 a \cdot \frac{1}{\tan^2 a} + \cot^2 a - 1$
 $= 1 + \cot^2 a - 1$
 $= \cot^2 a$

c)
$$\sec \theta - \cos \theta \cdot (\sec^2 \theta - 1) = \sec \theta - \cos \theta \cdot \sec^2 \theta + \cos \theta = \frac{1}{\cos \theta} - \cos \theta \cdot \frac{1}{\cos^2 \theta} + \cos \theta$$

$$= \frac{1}{\cos \theta} - \frac{1}{\cos \theta} + \cos \theta = \cos \theta$$

d)
$$\cos^4 r - \sin^4 r = (\cos^2 r + \sin^2 r) \cdot (\cos^2 r - \sin^2 r) = 1 \cdot (\cos^2 r - \sin^2 r) = \cos^2 r - \sin^2 r$$

= $(\cos r - \sin r) \cdot (\cos r + \sin r)$

e)
$$\frac{\tan \alpha}{\sec \alpha - 1} + \frac{\tan \alpha}{\sec \alpha + 1} = \frac{\tan \alpha \cdot (\sec \alpha + 1) + \tan \alpha \cdot (\sec \alpha - 1)}{(\sec \alpha - 1)(\sec \alpha + 1)} = \frac{\tan \alpha \cdot (\sec \alpha + 1 + \sec \alpha - 1)}{\sec^2 \alpha - 1}$$
$$= \frac{\tan \alpha \cdot (2 \sec \alpha)}{\tan^2 \alpha} = \frac{2 \sec \alpha}{\tan \alpha} = \frac{2}{\cos \alpha} \cdot \frac{\cos \alpha}{\sin \alpha} = \frac{2}{\sin \alpha} = 2 \csc \alpha$$

Page 56

Exercice: a) $\frac{\pi}{4}$ rad b) $\frac{-\pi}{3}$ rad c) $x = \frac{-1}{2}$

Pages 58 et 59

Exercices:

1. a) $x \in \left\{ \frac{-7\pi}{4}, \frac{-3\pi}{4}, \frac{\pi}{4}, \frac{5\pi}{4} \right\}$ b) $x \in \left\{ \frac{-3\pi}{2}, \frac{-\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2} \right\}$

2. a) $x = \frac{1}{2}$ b) $x = \frac{\pm \sqrt{3}}{3} (\cos^{-1} \frac{\sqrt{3}}{2} = \pm \frac{\pi}{6})$ c) $x = \sqrt{3}$

3. a) $x \in \left\{0, \frac{\pi}{2}, \pi, 2\pi\right\}$ b) $x \in \left\{\frac{\pi}{4}, \frac{\pi}{2}, \frac{5\pi}{4}, \frac{3\pi}{2}\right\}$

c) $x \in \left\{ \frac{2\pi}{3}, \frac{4\pi}{3} \right\}$ d) $x \in \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$

4. a) $x \in \left\{ \frac{3\pi}{2}, \frac{7\pi}{2} \right\}$ b) $x \in \{-2\pi, 0, 2\pi\}$

Pages 61 et 62

Exercice 1: a) $\frac{\sqrt{6}-\sqrt{2}}{4}$ b) $\sqrt{3}-2$ c) $\frac{-\sqrt{6}+\sqrt{2}}{4}$

Exercice 2:

- a) $\frac{-7\pi}{12}$ est à peine inférieur à $\frac{-\pi}{2}$ donc $\cos\left(\frac{-7\pi}{12}\right)$ est négatif et très près de 0.
- b) $\sin\left(\frac{-7\pi}{12}\right)$ est très près de -1.

c) $P\left(\frac{-7\pi}{12}\right) = \left(\frac{\sqrt{2} - \sqrt{6}}{4}, \frac{-\sqrt{6} - \sqrt{2}}{4}\right)$

Exercice 3: a) $\frac{84}{85}$ b) $\frac{-77}{85}$ c) $\frac{-24}{25}$ d) $\frac{7}{25}$

CORRIGÉ DES EXERCICES – TRIGONOMÉTRIE

Page 63: Trigonométrie des triangles

Exercice 1 : a)
$$\frac{\sqrt{7}}{4}$$
 b) $\frac{5\sqrt{61}}{61}$ c) $\frac{\sqrt{91}}{10}$

b)
$$\frac{5\sqrt{61}}{61}$$

c)
$$\frac{\sqrt{91}}{10}$$

Exercice 2: a)
$$\frac{\sqrt{3}}{2}$$
 b) $\frac{4\sqrt{17}}{17}$

b)
$$\frac{4\sqrt{17}}{17}$$

c)
$$\frac{1}{2}$$

Exercice 3: Environ 30,8°

Exercice 4:
$$\frac{20\sqrt{3}}{3}$$
 cm

Exercice 5:

a) 1)
$$m\angle A = 45^{\circ}$$
 2) $m\angle A = 45^{\circ}$ 3) $m\angle B = 30^{\circ}$ 4) $m\angle B = 30^{\circ}$

2)
$$m\angle A = 45^{\circ}$$

3)
$$m \angle B = 30^{\circ}$$

4)
$$m\angle B = 30^{\circ}$$

b) 1)
$$\sin(A) = \frac{\sqrt{2}}{2}$$
 2) $\sec(A) = \sqrt{2}$ 3) $\cos(B) = \frac{\sqrt{3}}{2}$ 4) $\sec(B) = \frac{2\sqrt{3}}{3}$

$$2) \sec(A) = \sqrt{2}$$

$$3) \cos(B) = \frac{\sqrt{3}}{2}$$

4)
$$\sec(B) = \frac{2\sqrt{3}}{3}$$

Exercice 6:
$$\sin A = \frac{2\sqrt{5}}{5}$$
 $\cos A = \frac{\sqrt{5}}{5}$ $\csc A = \frac{\sqrt{5}}{2}$ $\sec A = \sqrt{5}$ $\cot A = \frac{1}{2}$

Pages 64 à 67 : Le radian

Exercice 1:

a)
$$\frac{2\pi}{7}$$
 cm ≈ 0.9 cm

a)
$$\frac{2\pi}{7}$$
 cm ≈ 0.9 cm b) $\frac{25\pi}{18}$ cm ≈ 4.36 cm c) $\frac{4\pi}{3}$ m ≈ 4.19 m

c)
$$\frac{4\pi}{3}$$
 m ≈ 4.19 m

Exercice 2:

a)
$$\frac{3}{\pi}$$
 cm ≈ 0.95 cm

a)
$$\frac{3}{\pi}$$
 cm ≈ 0.95 cm b) $\frac{135}{11\pi}$ cm ≈ 3.91 cm c) $\frac{6}{7\pi}$ m ≈ 0.27 m

c)
$$\frac{6}{7\pi}$$
 m ≈ 0.27 m

Exercice 3:0,
$$\frac{\pi}{9}$$
, $\frac{2\pi}{9}$, $\frac{\pi}{3}$, $\frac{4\pi}{9}$, $\frac{5\pi}{9}$, $\frac{2\pi}{3}$, $\frac{7\pi}{9}$, $\frac{8\pi}{9}$, π

Exercice 4: L'horloge affichera 10h50

Exercice 5:

Rayon r	Longueur d'arc S	Mesure de l'angle θ
a) $\frac{25}{\pi}$	25 m	180°
b) <u>10 m</u>	30 m	3 rad
c) 15 m	45 m	3 rad
d) 18 m	<u>27π m</u>	270°
e) 22,5 m	<u>112,5 m</u>	5 rad
f) 16 m	96 m	<u>6</u> rad ou <u>≈ 343,77°</u>

Exercice 6: $\frac{25}{6}$ rad

Exercice 7: 2 rad

Exercice 8: $-\frac{41\pi}{6}$ rad

Exercice 9 : Le moteur tourne à une vitesse de $\frac{200 \pi}{3}$ rad/s

Exercice 10:

- a) 4188,8 secondes **donc** 1heure, 9 minutes et 48,8 secondes
- b) 38 772 km/h

Exercice 11:

La roue tourne de 47π rad en 20 secondes.

Pages 68 à 81 : Le cercle trigonométrique

Exercice 1:

a)
$$P\left(\frac{1}{3}, \frac{\pm 2\sqrt{2}}{3}\right)$$

b)
$$Q\left(\frac{\pm 4\sqrt{3}}{7}, \frac{1}{7}\right)$$

c)
$$R\left(0,3; \frac{\pm\sqrt{91}}{10}\right)$$

a)
$$P\left(\frac{1}{3}, \frac{\pm 2\sqrt{2}}{3}\right)$$
 b) $Q\left(\frac{\pm 4\sqrt{3}}{7}, \frac{1}{7}\right)$ c) $R\left(0,3; \frac{\pm \sqrt{91}}{10}\right)$ d) $S\left(-0,7; \frac{\pm \sqrt{51}}{10}\right)$

Exercice 2:

Exercice 3:

a)
$$\frac{7\pi}{4}$$
 rad, IV^e

b)
$$\frac{2\pi}{3}$$
 rad, II

c)
$$\approx 5.28$$
 rad, IV

a)
$$\frac{7\pi}{4}$$
 rad, IV^e b) $\frac{2\pi}{3}$ rad, II^e c) ≈ 5.28 rad, IV^e d) ≈ 4.67 rad, III^e

e)
$$\frac{7\pi}{4}$$
 rad, IV^e

f)
$$\frac{\pi}{2}$$
 rad,

Entre 2 quadrants

Exercice 4:

Exercice 5:

Exercice 6:

a)
$$\frac{4}{5}$$

b)
$$\frac{3}{5}$$

c)
$$\frac{2\sqrt{6}}{5}$$

$$d) \frac{-7\sqrt{6}}{12}$$

f)
$$\frac{-\sqrt{35}}{35}$$

Exercice 7:

a)
$$\frac{-3\pi}{2}$$
, $\frac{-\pi}{2}$, $\frac{\pi}{2}$, $\frac{3\pi}{2}$ b) -2π , $-\pi$, 0 , π , 2π

b)
$$-2\pi$$
 , $-\pi$, 0 , π , 2π

c)
$$\frac{-3\pi}{2}$$
, $\frac{-\pi}{2}$, $\frac{\pi}{2}$, $\frac{3\pi}{2}$ d) -2π , $-\pi$, 0 , π , 2π

d)
$$-2\pi$$
 , $-\pi$, 0 , π , 2π

Exercice 8 : La valeur exacte de l'expression est : $\frac{-3}{2} - \frac{2\sqrt{3}}{3}$

Exercice 9 : $sec(\pi - \theta) \approx 2,69$

(défi : la VRAIE réponse est $sec(\pi - \theta) \approx \pm 2,69...$ mais comment y arriver?)

Exercice 10: Faux car
$$\tan\left(\frac{3\pi}{4}\right) = -1$$
 et $-\cot\left(\frac{-\pi}{4}\right) = 1$

Exercice 11: L'aiguille s'est arrêtée à 15 h 05

Exercice 12:

Mesure de l'arc ou de l'angle en radians	Signe du cosinus et de la sécante	Signe du sinus et de la cosécante	Signe de la tangente et de la cotangente
$0 < \theta < \frac{\pi}{2}$	Positif	Positif	Positif
$\frac{\pi}{2} < \theta < \pi$	Négatif	Positif	Négatif
$\pi < \theta < \frac{3\pi}{2}$	Négatif	Négatif	Positif
$\frac{3\pi}{2} < \theta < 2\pi$	Positif	Négatif	Négatif

Exercice 13:

a) II

- b) IV
- c) I

d) III

- e) III
- f) IV
- g) II
- h) IV

i) II

j) I

- k) III
- 1) I

Exercice 14:

a)
$$P\left(\frac{7\pi}{3}\right)$$
 et $Q\left(\frac{\pi}{3}\right)$ **OUI**

d)
$$P\left(\frac{19\pi}{6}\right)$$
 et $Q\left(\frac{-7\pi}{6}\right)$ **NON**

b)
$$P\left(\frac{-3\pi}{4}\right)$$
 et $Q\left(\frac{5\pi}{4}\right)$ **QUI**

e)
$$P\left(\frac{-7\pi}{2}\right)$$
 et $Q\left(\frac{-\pi}{2}\right)$ **NON**

c)
$$P\left(\frac{9\pi}{2}\right)$$
 et $Q\left(\frac{11\pi}{2}\right)$ **NON**

f)
$$P\left(\frac{-13\pi}{3}\right)$$
 et $Q\left(\frac{11\pi}{3}\right)$ **OUI**

Exercice 15:

a)
$$\pm \frac{4}{5}$$

a)
$$\pm \frac{4}{5}$$
 b) $\pm \frac{\sqrt{15}}{4}$ c) $\pm \frac{\sqrt{11}}{6}$

c)
$$\pm \frac{\sqrt{11}}{6}$$

Exercice 16: a) $\frac{7}{12}\pi$ rad b) $\frac{35}{12}\pi$ cm

b)
$$\frac{35}{12}\pi$$
 cm

Exercice 17:

$$\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

$$\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)$$

$$\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right) \qquad \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \qquad \left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

$$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$$

$$\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

$$\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \qquad \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) \qquad \left(0, -1\right) \qquad \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$$

Exercice 18:

a)
$$\frac{11\pi}{3}$$

b)
$$\frac{9\pi}{2}$$

c)
$$-\frac{11\pi}{6}$$

d)
$$\frac{21\pi}{4}$$

Exercice 19:

a)
$$-\frac{\sqrt{7}}{4}$$

b)
$$\frac{\sqrt{3}}{2}$$

c)
$$-\frac{24}{25}$$

Exercice 20:

1.
$$P\left(\frac{11\pi}{6}\right)$$
 IV $\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$

2.
$$P\left(\frac{3\pi}{4}\right)$$
 II $\left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$

3.
$$P\left(\frac{\pi}{2}\right)$$
 Aucun $(0,1)$

4.
$$P\left(\frac{2\pi}{3}\right)$$
 II $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

5.
$$P\left(\frac{11\pi}{6}\right)$$
 IV $\left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$

6.
$$P\left(\frac{\pi}{4}\right)$$
 I $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$

7.
$$P\left(\frac{5\pi}{4}\right)$$
 III $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$

Exercice 21:

La combinaison est 18, 12, 40.

Exercice 22:

a)
$$P\left(\frac{4}{5}\right) \approx (0.6967; 0.7174)$$

b)
$$Q\left(\frac{-19}{10}\right) \approx (-0.3233; -0.9463)$$

c)
$$R(-12) \approx (0.8439 ; 0.5366)$$

d)
$$S(89^\circ) \approx (0.0174; 0.9998)$$

e)
$$T(89541\pi) = (-1, 0)$$

Exercice 23:

Plusieurs démonstrations possibles (qui seront montrées en classe...)

Exercice 24:

La valeur exacte de l'expression est : $2 + \frac{\sqrt{2}}{2} + \frac{2\sqrt{3}}{3}$ ou $\frac{12 + 3\sqrt{2} + 4\sqrt{3}}{6}$

Exercice 25:

$$\sin(\theta) = \pm \frac{3\sqrt{634}}{634}$$
 $\cos(\theta) = \pm \frac{25\sqrt{634}}{634}$ $\csc(\theta) = \pm \frac{\sqrt{634}}{3}$ $\sec(\theta) = \pm \frac{\sqrt{634}}{25}$ $\cot(\theta) = \frac{25}{3}$

Exercice 26:

Les coordonnées de
$$P\left(\frac{7\pi}{2} - \theta\right)$$
 sont $\left(-b, -a\right)$

Exercice 27:

Le rayon devrait être de 12 cm.

Exercice 28:

L'inclinaison est d'environ 41,19°.

Pages 82 et 83 : Tracé des fonctions sinusoïdales transformées

$$f(x) = -2\sin\frac{1}{3}\left(x + \frac{\pi}{2}\right) - 1$$

$$g(x) = 3\cos 0.5(x - \pi) + 1$$

$$h(x) = \frac{-3}{2} \sin\left(\frac{-1}{2}\left(x - \frac{\pi}{2}\right)\right) + \frac{3}{2}$$

$$j(x) = \cos -2(x - \pi) + 3$$

Pages 84 à 98 : Les fonctions sinusoïdales

#1. L'affirmation b est fausse : elle est vraie seulement si k = 0

L'affirmation c est fausse : elle est vraie seulement $\operatorname{si} f(11) = \max(f)$ ou $\operatorname{si} f(11) = \min(f)$

- #2. C'est le graphique A.
- #3. a) Faux b) Vrai c) Faux d) Vrai
- #4. Les affirmations sont toutes vraies!

#5.
$$f(x) = \frac{1}{3}\cos(2\pi(x-2)) - 2$$

#6. a)
$$(0, 1)$$
 b) $(1, 0)$ c) $\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$

c)
$$\left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

#7. a)
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$, $\frac{13\pi}{6}$, $\frac{17\pi}{6}$ b) $\frac{5\pi}{6}$, $\frac{7\pi}{6}$, $\frac{17\pi}{6}$, $\frac{19\pi}{6}$ c) $\frac{\pi}{4}$, $\frac{5\pi}{4}$, $\frac{9\pi}{4}$, $\frac{13\pi}{4}$

b)
$$\frac{5\pi}{6}$$
, $\frac{7\pi}{6}$, $\frac{17\pi}{6}$, $\frac{19\pi}{6}$

c)
$$\frac{\pi}{4}$$
, $\frac{5\pi}{4}$, $\frac{9\pi}{4}$, $\frac{13\pi}{4}$

d)
$$\frac{3\pi}{4}$$
, $\frac{7\pi}{4}$, $\frac{11\pi}{4}$, $\frac{15\pi}{4}$

d)
$$\frac{3\pi}{4}$$
, $\frac{7\pi}{4}$, $\frac{11\pi}{4}$, $\frac{15\pi}{4}$ e) $\frac{7\pi}{6}$, $\frac{11\pi}{6}$, $\frac{19\pi}{6}$, $\frac{23\pi}{6}$

g)
$$\frac{\pi}{2}$$
, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$, $\frac{7\pi}{2}$ h) 0, π , 2π , 3π , 4π i) 0, π , 2π , 3π , 4π

h) 0,
$$\pi$$
, 2π , 3π , 4π

i)
$$0, \pi, 2\pi, 3\pi, 4\pi$$

#8. d

#9. d

#10.
$$f(x) = 4\sin\left(\frac{4}{3}\left(x + \frac{\pi}{4}\right)\right)$$
 ou $f(x) = 4\cos\left(\frac{4}{3}\left(x - \frac{\pi}{8}\right)\right)$

#11. a)
$$x \approx 4.17 + 2\pi n$$
 et $x \approx 5.25 + 2\pi n$ $(n \in \mathbb{Z})$

b)
$$x \approx 4.94 + 2\pi n$$
 et $x \approx 7.63 + 2\pi n$ $(n \in \mathbb{Z})$

#13. Tous les énoncés sont vrais.

#14.

a)
$$f(8) = 1$$

a)
$$f(8) = 1$$
 b) $f(14) = -1$ c) $f(26) = 3$ d) $f(50) = 3$

c)
$$f(26) = 3$$

$$d) f(50) = 3$$

#15. a)
$$f(x) = -3 \cdot \sin \frac{\pi}{4}(x+5) + 1$$
 b) $a = -3$ $h = -5$ $b = \frac{\pi}{4}$ $k = 1$

b)
$$a = -3$$
 $h = -5$ $b = \frac{\pi}{4}$ $k = 1$

- #16. a) la fonction f n'a pas de zéros car k > A
 - b) la fonction t ne possède qu'un seul zéro par cycle
- #17. a) 4 maximums pendant la première heure (à 6, 22, 38 et 54 minutes)
 - b) 3 minimums pendant la première heure (à 14, 30 et 46 minutes)

#18. a)

b) environ 0,39 minute ou exactement 23,5 secondes.

#19. Une infinité de réponses possibles; par exemple :

$$f(x) = 2\cos\left(\frac{1}{2}\left(x - \frac{\pi}{2}\right)\right) + 1$$

$$f(x) = -2\sin\left(\frac{1}{2}\left(x - \frac{3\pi}{2}\right)\right) + 1$$

$$f(x) = 2\sin\left(\frac{1}{2}\left(x - \frac{\pi}{2}\right)\right) + 1$$

$$f(x) = -2\cos\left(\frac{1}{2}\left(x - \frac{5\pi}{2}\right)\right) + 1$$

#20. a)
$$\frac{1382,3}{2\pi} \approx 220$$
 cycles/s ou 220 Hz

b) $g(t) = 5 \sin 5529, 2(t-25)$, soit un son de 880 Hz

Pages 99 à 105 : Recherche de règle – fonctions sinusoïdales

Situation 1

 $T(x) = 120\sin(120\pi x)$, où T représente la tension (V) et x le temps (s)

Situation 2
$$b = \pm \frac{2\pi}{5}$$

Situation 3

a)

b)
$$h(t) = 2\cos\left(\frac{\pi}{3}t\right) + 1$$
, où *h* représente la hauteur (m) et *t* le temps (s)

Situation 4

b)
$$h(t) = \frac{37}{20}\cos\left(\frac{\pi}{6}(t+1)\right) + \frac{269}{60}$$
, où t représente le temps (en mois) écoulé depuis le 21 janvier

Situation 5

$$f(t) = -45\cos\left(\frac{2\pi}{11}t\right) + 45$$

Situation 6

a) $f(t) = 57,5\cos\left(\frac{\pi}{5}t\right) + 125,5$ où t représente le temps écoulé depuis 1990 (en années)

b) environ 79 lièvres

Situation 7

a)
$$T(x) = 24 \cos \frac{\pi}{12}(x-14) + 24$$
, où T représente la température (°C) et x l'heure

b)
$$T_{\text{max}} = 48^{\circ}\text{C}$$
 et $T_{\text{min}} = 0^{\circ}\text{C}$

c) 2 h

d) 1)
$$\approx 3.22$$
°C 2) ≈ 44.78 °C 3) ≈ 40.97 °C 4) ≈ 17.79 °C

Situation 8

$$g(x) = -2\cos\frac{\pi}{2}x + 1$$

Situation 9

- a) $d(t) = -13\cos 2\pi t + 18$, où d représente la distance (mm) et t le temps (h)
- b) $d(t) = -8\cos\frac{\pi}{6}t + 18$, où d représente la distance (mm) et t le temps (h)

Situation 10

La valeur de l'action

- $V(t) = 15 \sin \frac{2\pi}{9} (t-1) + 35$, où V représente la valeur (\$) et t le temps (mois)
- a) environ 25,36\$ b) pendant environ 6 mois (6,07 pour être plus précis!)

Page 105 : Fonction tangente transformée

Exercice:
$$f(x) = -2\sqrt{3} \tan\left(\frac{\pi}{6}(x+2)\right) + 5$$

Pages 106 à 110 : Les identités trigonométriques

Exercice 1:

- a) $\sin^2 t$ b) $\tan^2 a$ c) $\cos^2 t$ d) $-\cot^2 r$ e) 1 f) 1

- g) $\cos^2 r$ h) 1 i) $\sec x$ j) $\sec t$

- k) $\csc x$ l) $\cot^2 a$

- m) $\cos n$ n) $\cos^2 r$ o) $\sin^2 \theta$ p) $\csc a$

Exercice 2:

- a) $\sin^2 x$ b) $\cot^2 r$ c) $\cos^2 a$

Exercice 3:

- a) > b) < c) > d) < e) > f) >

Exercice 4:

a) II

b) II

c) III

d) IV

e) I

f) IV

Exercice 5: a)
$$\cos t = \frac{\sqrt{7}}{4}$$
 b) $\tan t = \frac{3\sqrt{7}}{7}$

b)
$$\tan t = \frac{3\sqrt{7}}{7}$$

Exercice 6: a)
$$\sin t = \frac{-5}{13}$$
 b) $\tan t = \frac{5}{12}$

b)
$$\tan t = \frac{5}{12}$$

Exercice 7: a)
$$\cos t = \frac{-4}{5}$$
 b) $\cot t = \frac{-4}{3}$

b)
$$\cot t = \frac{-4}{3}$$

Exercice 8: a)
$$\csc t = -2$$
 b) $\cos t = \pm \frac{\sqrt{3}}{2}$

b)
$$\cos t = \pm \frac{\sqrt{3}}{2}$$

Exercice 9:
$$\sec t = \frac{-5}{3}$$

Exercice 10:
$$\sin a = \frac{-\sqrt{5}}{5}$$

Exercice 11 :
$$\cot x = -\sqrt{3}$$

Exercice 12:
$$\csc a = \frac{4\sqrt{7}}{7}$$

Exercice 13:
$$\sin \theta = \frac{2\sqrt{2}}{3}$$

Exercice 14:
$$\sec t = \frac{-4\sqrt{15}}{15}$$

Exercice 15:

a)
$$\sin t = \pm \sqrt{1 - \cos^2 t}$$

a)
$$\sin t = \pm \sqrt{1 - \cos^2 t}$$
 b) $\csc t = \frac{\pm \sqrt{1 - \cos^2 t}}{1 - \cos^2 t}$

c)
$$\sec t = \frac{1}{\cos t}$$

d)
$$\tan t = \frac{\pm \sqrt{1 - \cos^2 t}}{\cos t}$$

d)
$$\tan t = \frac{\pm \sqrt{1 - \cos^2 t}}{\cos t}$$
 e) $\cot t = \frac{\pm \cos t \sqrt{1 - \cos^2 t}}{1 - \cos^2 t}$

Exercice 16:

a)
$$\cot a = \frac{1}{\tan a}$$

b)
$$\sec a = \pm \sqrt{\tan^2 a + 1}$$

c)
$$\cos a = \frac{\pm \sqrt{\tan^2 a + 1}}{\tan^2 a + 1}$$

d)
$$\csc a = \frac{\pm \sqrt{\tan^2 a + 1}}{\tan a}$$

c)
$$\cos a = \frac{\pm \sqrt{\tan^2 a + 1}}{\tan^2 a + 1}$$
 d) $\csc a = \frac{\pm \sqrt{\tan^2 a + 1}}{\tan a}$ e) $\sin a = \frac{\pm \tan a \sqrt{\tan^2 a + 1}}{\tan^2 a + 1}$

Exercice 17: a)
$$\sec t = \frac{1}{a}$$
 b) $\sin t = \pm \sqrt{1 - a^2}$

$$b) \sin t = \pm \sqrt{1 - a^2}$$

Exercice 18: a)
$$\cot r = \frac{1}{b}$$
 b) $\csc r = \frac{\sqrt{1+b^2}}{b}$ c) $\sin r = \frac{b\sqrt{1+b^2}}{1+b^2}$

b)
$$\csc r = \frac{\sqrt{1 + b^2}}{b}$$

c)
$$\sin r = \frac{b\sqrt{1+b^2}}{1+b^2}$$

Pages 110 à 115 : Démonstrations d'identités

1.
$$1 - \sin \theta \cdot \cos \theta \cdot \tan \theta = 1 - \sin \theta \cdot \cos \theta \cdot \frac{\sin \theta}{\cos \theta} = 1 - \sin \theta \cdot \sin \theta = 1 - \sin^2 \theta = \cos^2 \theta$$

2.
$$\sin\theta \cdot \sec\theta \cdot \tan\theta + 1 = \sin\theta \cdot \frac{1}{\cos\theta} \cdot \frac{\sin\theta}{\cos\theta} + 1 = \frac{\sin\theta}{\cos\theta} \cdot \frac{\sin\theta}{\cos\theta} + 1 = \tan^2\theta + 1 = \sec^2\theta$$

3.
$$\cos \theta \cdot (\sec \theta - \sin \theta \cdot \cot \theta) = \cos \theta \cdot \left(\frac{1}{\cos \theta} - \sin \theta \cdot \frac{\cos \theta}{\sin \theta}\right) = \cos \theta \cdot \left(\frac{1}{\cos \theta} - \cos \theta\right)$$

$$= \cos \theta \cdot \left(\frac{1 - \cos^2 \theta}{\cos \theta}\right) = \cos \theta \left(\frac{\sin^2 \theta}{\cos \theta}\right) = \sin^2 \theta$$

4.
$$\cos \alpha - \cos \alpha \cdot \cot \alpha = \frac{1}{\sin \alpha} - \cos \alpha \cdot \frac{\cos \alpha}{\sin \alpha} = \frac{1}{\sin \alpha} - \frac{\cos^2 \alpha}{\sin \alpha} = \frac{1 - \cos^2 \alpha}{\sin \alpha} = \frac{\sin^2 \alpha}{\sin \alpha}$$

$$= \sin \alpha$$

5.
$$\sin^2 t + \tan^2 t = (1 - \cos^2 t) + (\sec^2 t - 1) = -\cos^2 t + \sec^2 t = \sec^2 t - \cos^2 t$$

$$6. \qquad \frac{\sin\beta}{\tan\beta} + \frac{\cos\beta}{\cot\beta} = \frac{\sin\beta}{\left(\frac{\sin\beta}{\cos\beta}\right)} + \frac{\cos\beta}{\left(\frac{\cos\beta}{\sin\beta}\right)} = \sin\beta \cdot \frac{\cos\beta}{\sin\beta} + \cos\beta \cdot \frac{\sin\beta}{\cos\beta} = \sin\beta + \cos\beta$$

7.
$$\frac{\cot^2 \delta - \cos^2 \delta}{\cos^2 \delta} = \frac{\cot^2 \delta}{\cos^2 \delta} - \frac{\cos^2 \delta}{\cos^2 \delta} = \frac{\cot^2 \delta}{\cos^2 \delta} - 1 = \frac{\left(\frac{\cos^2 \delta}{\sin^2 \delta}\right)}{\cos^2 \delta} - 1$$
$$= \frac{\cos^2 \delta}{\sin^2 \delta} \cdot \frac{1}{\cos^2 \delta} - 1 = \frac{1}{\sin^2 \delta} - 1 = \csc^2 \delta - 1 = \cot^2 \delta$$

8.
$$\sec^2 A + \csc^2 A = \frac{1}{\cos^2 A} + \frac{1}{\sin^2 A} = \frac{\sin^2 A + \cos^2 A}{\cos^2 A \cdot \sin^2 A} = \frac{1}{\cos^2 A \cdot \sin^2 A}$$
$$= \frac{1}{\cos^2 A} \cdot \frac{1}{\sin^2 A} = \sec^2 A \cdot \csc^2 A$$

9.
$$\sec \sigma - \cos \sigma = \frac{1}{\cos \sigma} - \cos \sigma = \frac{1 - \cos^2 \sigma}{\cos \sigma} = \frac{\sin^2 \sigma}{\cos \sigma} = \sin \sigma \cdot \frac{\sin \sigma}{\cos \sigma} = \sin \sigma \cdot \tan \sigma$$

10.
$$\frac{\sin \alpha + \sin \alpha \cdot \tan^{2} \alpha}{\sec \alpha} = \frac{\sin \alpha + \sin \alpha \cdot (\sec^{2} \alpha - 1)}{\sec \alpha} = \frac{\sin \alpha + \sin \alpha \cdot \sec^{2} \alpha - \sin \alpha}{\sec \alpha}$$
$$= \frac{\sin \alpha \cdot \sec^{2} \alpha}{\sec \alpha} = \sin \alpha \cdot \sec \alpha = \sin \alpha \cdot \frac{1}{\cos \alpha} = \frac{\sin \alpha}{\cos \alpha} = \tan \alpha$$

11.
$$\frac{\left(\sin\theta+1\right)\left(\csc\theta-1\right)}{\sin\theta} = \frac{\left(\sin\theta+1\right)\left(\frac{1}{\sin\theta}-1\right)}{\sin\theta} = \frac{1-\sin\theta+\frac{1}{\sin\theta}-1}{\sin\theta} = \frac{-\sin\theta+\frac{1}{\sin\theta}}{\sin\theta}$$
$$= -1 + \frac{1}{\sin^2\theta} = -1 + \csc^2\theta = \csc^2\theta - 1 = \cot^2\theta$$

12.
$$(\tan \beta + \cot \alpha \beta) (\sin \beta + \cos \beta) = \left(\frac{\sin \beta}{\cos \beta} + \frac{\cos \beta}{\sin \beta}\right) (\sin \beta + \cos \beta)$$

$$= \left(\frac{\sin^2 \beta + \cos^2 \beta}{\cos \beta \cdot \sin \beta}\right) (\sin \beta + \cos \beta)$$

$$= \left(\frac{1}{\cos \beta \cdot \sin \beta}\right) (\sin \beta + \cos \beta)$$

$$= \frac{\sin \beta}{\cos \beta \cdot \sin \beta} + \frac{\cos \beta}{\cos \beta \cdot \sin \beta} = \frac{1}{\cos \beta} + \frac{1}{\sin \beta}$$

$$= \sec \beta + \csc \beta$$

13.
$$(\tan \alpha + \cot \alpha)^2 = \left(\frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha}\right)^2 = \left(\frac{\sin^2 \alpha + \cos^2 \alpha}{\cos \alpha \cdot \sin \alpha}\right)^2 = \left(\frac{1}{\cos \alpha \cdot \sin \alpha}\right)^2$$
$$= \left(\frac{1}{\cos \alpha} \cdot \frac{1}{\sin \alpha}\right)^2 = \frac{1}{\cos^2 \alpha} \cdot \frac{1}{\sin^2 \alpha} = \sec^2 \alpha \cdot \csc^2 \alpha$$

14.
$$\frac{1}{1+\tan^2\theta} + \frac{1}{1+\cot^2\theta} = \frac{1}{\sec^2\theta} + \frac{1}{\csc^2\theta} = \cos^2\theta + \sin^2\theta = 1$$

15.
$$\frac{\sin\beta}{1-\cos\beta} = \frac{\sin\beta}{1-\cos\beta} \cdot \frac{1+\cos\beta}{1+\cos\beta} = \frac{\sin\beta+\sin\beta\cdot\cos\beta}{(1-\cos\beta)(1+\cos\beta)} = \frac{\sin\beta+\sin\beta\cdot\cos\beta}{1-\cos^2\beta}$$
$$= \frac{\sin\beta+\sin\beta\cdot\cos\beta}{\sin^2\beta} = \frac{\sin\beta\cdot(1+\cos\beta)}{\sin^2\beta} = \frac{1+\cos\beta}{\sin\beta}$$

16.
$$\frac{\sin \theta}{1 - \cos \theta} - \frac{\sin \theta}{1 + \cos \theta} = \frac{\sin \theta \cdot (1 + \cos \theta) - \sin \theta \cdot (1 - \cos \theta)}{(1 - \cos \theta)(1 + \cos \theta)} =$$

$$= \frac{\sin \theta + \sin \theta \cdot \cos \theta - \sin \theta + \sin \theta \cdot \cos \theta}{(1 - \cos \theta)(1 + \cos \theta)} = \frac{2\sin \theta \cdot \cos \theta}{(1 - \cos \theta)(1 + \cos \theta)} = \frac{2\sin \theta \cdot \cos \theta}{1 - \cos^2 \theta} = \frac{2\cos \theta}{\sin^2 \theta} = 2\cot \theta$$

17.
$$\frac{\cos^2 \mu}{1-\sin \mu} = \frac{1-\sin^2 \mu}{1-\sin \mu} = \frac{(1+\sin \mu)(1-\sin \mu)}{1-\sin \mu} = 1+\sin \mu$$

18.
$$(\tan x - \cot x) \sin x \cdot \cos x = \left(\frac{\sin x}{\cos x} - \frac{\cos x}{\sin x}\right) \sin x \cdot \cos x = \frac{\sin^2 x \cdot \cos x}{\cos x} - \frac{\sin x \cdot \cos^2 x}{\sin x}$$

= $\sin^2 x - \cos^2 x = (\sin x + \cos x)(\sin x - \cos x)$

19.
$$\frac{\tan^2 \gamma}{1 + \tan^2 \gamma} \cdot \frac{1 + \cot^2 \gamma}{\cot^2 \gamma} = \frac{\tan^2 \gamma + 1}{\cot^2 \gamma + 1} = \frac{\sec^2 \gamma}{\csc^2 \gamma} = \frac{\left(\frac{1}{\cos^2 \gamma}\right)}{\left(\frac{1}{\sin^2 \gamma}\right)} = \frac{1}{\cos^2 \gamma} \cdot \frac{\sin^2 \gamma}{1} = \tan^2 \gamma$$

20.
$$\frac{1}{1-\cos b} + \frac{1}{1+\cos b} = \frac{1+\cos b + 1 - \cos b}{(1-\cos b)(1+\cos b)} = \frac{2}{(1-\cos b)(1+\cos b)} = \frac{2}{1-\cos^2 b} = \frac{2}{\sin^2 b}$$
$$= 2 \cdot \frac{1}{\sin^2 b} = 2 \csc^2 b$$

Pages 116 à 120 : Les réciproques

- 1. a) $\frac{\pi}{6}$ b) $\frac{\pi}{3}$ c) $\frac{\pi}{4}$ d) $\frac{\pi}{4}$ e) $\frac{\pi}{4}$ f) $\frac{\pi}{3}$

- 2. a) V b) F c) V d) F e) V

- 3. a) V b) V c) F d) V e) V

- 4. a) $\frac{\sqrt{2}}{2}$ b) $\frac{\sqrt{3}}{2}$ c) $\frac{-\sqrt{3}}{2}$ d) $\frac{-1}{2}$ e) -1

- f) Non
- g) 0 h) $\sqrt{3}$

5. a) -1 b)
$$\frac{\sqrt{3}}{2}$$
 c) $\frac{\sqrt{3}}{2}$

b)
$$\frac{\sqrt{3}}{2}$$

c)
$$\frac{\sqrt{3}}{2}$$

6. a) 1 b)
$$2\pi$$

7. a)
$$\frac{\pi}{3}$$

c)
$$\frac{\pi}{6}$$

e)
$$\frac{\pi}{2}$$

f)
$$\frac{\sqrt{2}}{2}$$

g)
$$\frac{1}{2}$$

*h)
$$\frac{4}{5}$$

8. a)
$$\approx 0.5742$$
 b) ≈ -1.28 c) ≈ 0.7886

b)
$$\approx -1.28$$

c)
$$\approx 0.7886$$

d) impossible e)
$$\approx 0.1563$$

g)
$$\approx$$
 -2,3116

g)
$$\approx$$
 -2,3116 h) 0,3211 i) \approx 1,57 ou $\frac{\pi}{2}$

10. a)
$$[-1, 1]$$

b)
$$\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$

d) croissante sur
$$\begin{bmatrix} -1, 1 \end{bmatrix}$$
 e) $\frac{-\pi}{2}$

e)
$$\frac{-\pi}{2}$$

f)
$$\frac{\pi}{2}$$

11.
$$a$$
) – b) + c) +

$$c) +$$

12. a)
$$\frac{1}{2}$$
 b) $\frac{\sqrt{3}}{2}$ c) $\frac{-\sqrt{2}}{2}$

b)
$$\frac{\sqrt{3}}{2}$$

c)
$$\frac{-\sqrt{2}}{2}$$

13. a)
$$\approx \pm 0.7563$$
 b) $\approx \pm 0.9924$ c) $\approx \pm 0.8987$ d) $\approx \pm 0.8358$

c)
$$\approx +0.8987$$

d)
$$\approx \pm 0.8358$$

14. Non, car les valeurs négatives de cosinus seraient omises et de plus, ce ne serait pas une fonction.

15. a)
$$t \approx -0.66$$

15. a)
$$t \approx -0.66$$
 b) $(\approx 0.7880 ; \approx -0.6157)$

c)
$$s \approx 2,48$$

16. a)
$$\frac{3}{2}$$

16. a)
$$\frac{3}{2}$$
 b) 2 c) $\frac{6-\sqrt{3}}{6}$

17. a)
$$\approx 43.0^{\circ}$$

17. a)
$$\approx 43.0^{\circ}$$
 b) (≈ 0.7314 ; ≈ 0.682)

Page 121: Résolution d'équations «extrêmes»

1. a)
$$x \in \left\{ \frac{7\pi}{6}, \frac{11\pi}{6} \right\}$$

b)
$$x \in \left\{ \frac{\pi}{2}, \frac{3\pi}{2} \right\}$$

$$c) \quad x \in \left\{ \frac{2\pi}{3} , \frac{4\pi}{3} \right\}$$

2. a)
$$x = \frac{\pi}{2}$$

b)
$$x \in \left\{ \frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8} \right\}$$
 c) $x \in \emptyset$

c)
$$x \in \emptyset$$

3. a)
$$x \in \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$$
 b) $x \in \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$ c) $x \in \left\{ \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3} \right\}$

b)
$$x \in \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$$

c)
$$x \in \left\{ \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3} \right\}$$

4. a)
$$\left\{ x \in IR \mid x = \frac{\pi}{3} + \pi n , n \in Z \right\}$$

a)
$$\left\{ x \in IR \mid x = \frac{\pi}{3} + \pi n , n \in Z \right\}$$
 b) $\left\{ x \in IR \mid x = \frac{2\pi}{3} + 2\pi n \text{ ou } x = \frac{4\pi}{3} + 2\pi n \text{ } n \in Z \right\}$

c)
$$\left\{ x \in IR \mid x = \frac{3\pi}{2} + 2\pi n , n \in Z \right\}$$

5. a)
$$\left\{ x \in IR \mid x = \frac{\pi}{4} + \pi n , n \in Z \right\}$$
 b) $\left\{ x \in IR \mid x = \frac{7\pi}{12} + \pi n , n \in Z \right\}$

b)
$$\left\{ x \in IR \mid x = \frac{7\pi}{12} + \pi n , n \in Z \right\}$$

c)
$$\left\{ x \in IR \mid x = \frac{2\pi}{3} + 4\pi n \text{ ou } x = \frac{4\pi}{3} + 4\pi n \text{ } n \in Z \right\}$$

6. a)
$$x \in \left\{ \frac{\pi}{6}, \frac{5\pi}{6} \right\}$$

b)
$$x \in \left\{ \frac{\pi}{6}, \frac{7\pi}{6} \right\}$$

c)
$$x = \pi$$

d)
$$x \in \emptyset$$

7. a)
$$\pm \frac{\sqrt{3}}{2}$$

c) 0 d) -1 e) 1 f)
$$\frac{-1}{2}$$

8. a)
$$x \in \left\{0, \pi, \frac{3\pi}{2}, 2\pi\right\}$$
 b) $x \in \left\{\frac{\pi}{3}, \pi, \frac{5\pi}{3}\right\}$ c) $x \in \left\{\frac{\pi}{4}, \frac{\pi}{2}, \frac{5\pi}{4}, \frac{3\pi}{2}\right\}$

b)
$$x \in \left\{ \frac{\pi}{3}, \pi, \frac{5\pi}{3} \right\}$$

c)
$$x \in \left\{ \frac{\pi}{4}, \frac{\pi}{2}, \frac{5\pi}{4}, \frac{3\pi}{2} \right\}$$

9. a)
$$\{x \in IR \mid x = \pi n, n \in Z\}$$

a)
$$\{x \in IR \mid x = \pi n, n \in Z\}$$
 b) $\{x \in IR \mid x = \frac{\pi}{2} + 2\pi n, n \in Z\}$

c)
$$\left\{ x \in IR \mid x = \frac{2\pi}{3} + 2\pi n \text{ ou } x = \frac{4\pi}{3} + 2\pi n \text{ } n \in Z \right\}$$

10. a)
$$x \in \left\{ \frac{\pi}{6}, \frac{5\pi}{6} \right\}$$

b)
$$x \in \{0, 2\pi\}$$

c)
$$x \in \left\{ \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$$

d)
$$x \in \{0, \pi, 2\pi\}$$

e)
$$x \in \left\{0, \frac{\pi}{4}, \frac{3\pi}{4}, \pi, \frac{5\pi}{4}, \frac{7\pi}{4}, 2\pi\right\}$$
 f) $x \in \left\{\frac{\pi}{2}, \frac{3\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4}\right\}$

f)
$$x \in \left\{ \frac{\pi}{2}, \frac{3\pi}{4}, \frac{3\pi}{2}, \frac{7\pi}{4} \right\}$$

11. a)
$$\{t \in IR \mid t = \pi n, n \in Z\}$$

11. a)
$$\{t \in IR \mid t = \pi n, n \in Z\}$$
 b) $\{t \in IR \mid t = \frac{\pi}{2} + \pi n \text{ ou } t = \frac{7\pi}{6} + 2\pi n \text{ ou } t = \frac{11\pi}{6} + 2\pi n \text{ } n \in Z\}$

12. a)
$$\left\{-2\pi, \frac{-5\pi}{4}, -\pi, \frac{-\pi}{4}, 0\right\}$$

b)
$$\left\{ \frac{-5\pi}{6}, \frac{-\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6} \right\}$$

b)
$$\left\{ \frac{-5\pi}{6}, \frac{-\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6} \right\}$$
 c) $\left\{ \frac{-3\pi}{2}, -\pi, \frac{-\pi}{2}, \frac{\pi}{2}, \pi \right\}$ d) $\left\{ \frac{-5\pi}{6}, \frac{-\pi}{2}, \frac{-\pi}{6}, \frac{\pi}{2} \right\}$

d)
$$\left\{ \frac{-5\pi}{6}, \frac{-\pi}{2}, \frac{-\pi}{6}, \frac{\pi}{2} \right\}$$

13. a)
$$\left\{ t \in IR \mid t = \pi n \text{ ou } t = \frac{\pi}{3} + 2\pi n \text{ ou } t = \frac{5\pi}{3} + 2\pi n \text{ } n \in Z \right\}$$

b)
$$\left\{ t \in IR \mid t = \pi n \text{ ou } t = \frac{\pi}{2} + 2\pi n \text{ } n \in Z \right\}$$

c)
$$\left\{ t \in IR \mid t = \frac{\pi}{4} + \pi n , n \in Z \right\}$$

d)
$$\{t \in IR \mid t = 2\pi n, n \in Z\}$$

e)
$$\left\{ t \in IR \mid t = \frac{7\pi}{6} + 2\pi n \text{ ou } t = \frac{\pi}{2} + 2\pi n \text{ ou } t = \frac{11\pi}{6} + 2\pi n \text{ } n \in Z \right\}$$

f)
$$\left\{ t \in IR \mid t = \frac{\pi}{3} + \pi n \text{ ou } t = \frac{2\pi}{3} + \pi n \text{ } n \in Z \right\}$$

Page 124: Les derniers exercices du chapitre!

1. a)
$$\frac{1}{\sec^2 \theta} + \frac{1}{\csc^2 \theta} = \cos^2 \theta + \sin^2 \theta = 1$$

b)
$$\tan^2 x - \sin^2 x = \frac{\sin^2 x}{\cos^2 x} - \sin^2 x = \sin^2 x \cdot \left(\frac{1}{\cos^2 x} - 1\right) = \sin^2 x \cdot (\sec^2 x - 1) = \sin^2 x \cdot \tan^2 x$$

c)
$$\frac{2\cos^2\theta - \cos\theta - 1}{\cos\theta - 1} = \frac{(2\cos\theta + 1) \cdot (\cos\theta - 1)}{\cos\theta - 1} = 2\cos\theta + 1$$
$$= 2\left(\frac{1}{\sec\theta}\right) + 1 = \frac{2}{\sec\theta} + \frac{\sec\theta}{\sec\theta} = \frac{\sec\theta + 2}{\sec\theta}$$

2. a)
$$x = \frac{\pi}{3} - 1 + 2\pi n$$
 ou $x = \frac{2\pi}{3} - 1 + 2\pi n$, $n \in \mathbb{Z}$

b)
$$t = -\sqrt{3} - \frac{1}{3}$$