CLEMSON UNIVERSITY, SCHOOL OF COMPUTING CPSC 3500 FOUNDATIONS OF COMPUTER SCIENCE

Assignment 1: Languages, Induction, Recursion

Return by 11:59pm 9/12/2019

Problem 1 5%

The language *Balanced* over $\Sigma = \{(,)\}$ is defined recursively as follows

- 1. $\Lambda \in Balanced$.
- 2. $\forall x, y \in Balanced$, both xy and (x) are elements of Balanced.

A prefix of a string x is a substring of x that occurs at the beginning of x. Prove by induction that a string x belongs to this language if and only if (iff) the statement B(x) is true.

B(x): x contains equal numbers of left and right parentheses, and no prefix of x contains more right than left.

Reminder for this and all following assignments: if you need to prove the "iff" statement, i.e., $X \iff Y$, you need to prove both directions, namely, "given X, prove that Y follows from X ($X \implies Y$)", and "given Y, prove that X follows from Y ($X \iff Y$)".

Problem 2 5%

Complete proof of claim about the reverse function (see Lecture 3).

Problem 3 5%

Finite language is a language with finite number of strings in it, i.e., there exist exactly k strings in this language such that $k \in \mathbb{N}$ and $k \neq \infty$. For a finite language L, let |L| denote the number of elements of L. For example, $|\{\Lambda, a, ababb\}| = 3$. (Do not mix up with the length |x| of a string x.) The statement $|L_1L_2| = |L_1||L_2|$ says that the number of strings in the concatenation L_1L_2 is the same as the product of the two numbers $|L_1|$ and $|L_2|$. Is this always true? If so, prove, and if not, find two finite languages $L_1, L_2 \subseteq \{a, b\}^*$ such that $|L_1L_2| \neq |L_1||L_2|$.

Problem 4 5%

We proved in class that if L_1 , and L_2 are subsets of $\{a,b\}^*$ then $L_1^* \cup L_2^* \subseteq (L_1 \cup L_2)^*$. Show that $L_1^* \cup L_2^* \neq (L_1 \cup L_2)^*$.

Problem 5 5%

Find an example of languages L_1 and L_2 for which neither of L_1 , L_2 is a subset of the other, but $L_1^* \cup L_2^* = (L_1 \cup L_2)^*$. Prove the correctness of your example.

Problem 6 10%

Given language $L = \{yy | y \in \{a, b\}^*\}$. L can be represented as a concatenation

$$L = L\{\Lambda\} = \{\Lambda\}L$$

like any language. Can you express L as $L = L_1L_2$, where $L_1 \neq \{\Lambda\}$, and $L_2 \neq \{\Lambda\}$? Prove your answer.

Problem 7 5%

Each case below gives a recursive definition of $L \subseteq \{a, b\}^*$. Give a simple nonrecursive definition of L in each case. Example: $a \in L$; $\forall x \in L$ $ax \in L$ can be defined as "The set of all non-empty strings that do not contain b."

- 1. $a \in L$; $\forall x \in L \ xa, xb \in L$
- 2. $a \in L$; $\forall x \in L \ bx, xb \in L$
- 3. $a \in L$; $\forall x \in L$ $ax, xb \in L$
- 4. $a \in L$; $\forall x \in L \ xb, xa, bx \in L$
- 5. $a \in L$; $\forall x \in L \ xb, ax, bx \in L$
- 6. $a \in L$; $\forall x \in L \ xb, xba \in L$

Problem 8 5%

Suppose that Σ is an alphabet, and that $f: \Sigma^* \to \Sigma^*$ has the property that $f(\sigma) = \sigma$ for every $\sigma \in \Sigma$ and f(xy) = f(x) f(y) for every $x, y \in \Sigma^*$. Prove that for every $x \in \Sigma^*$, f(x) = x.

Problem 9 15%

In each case below, find a recursive definition for the language L and prove that it is correct.

- 1. $L = \{a^i b^j | j \ge 2i\}$
- 2. $L = \{a^i b^j | j \le 2i\}$

Problem 10 10%

Suppose $L \subseteq \{a, b\}^*$ is defined as follows: $\Lambda \in L$; for every x and y in L, the strings axb, bxa, and xy are in L. Show that L = AEqB, the language of all strings x in $\{a, b\}^*$ satisfying $n_a(x) = n_b(x)$.

Problem 11 10%

Let L_1 , L_2 , and L_3 be languages over some alphabet. In each case below, two languages are given. Say what the relationship is between them. (Are they always equal? If not, is one always a subset of the other?) Give reasons for your answers, including counterexamples if appropriate.

- 1. $L_1(L_2 \cap L_3)$, $L_1L_2 \cap L_1L_3$
- 2. $L_1^* \cap L_2^*$, $(L_1 \cap L_2)^*$
- 3. $L_1^*L_2^*$, $(L_1L_2)^*$

Problem 12 10%

For $x \in EXPR$ defined in class, $n_a(x)$ denotes the number of a's in the string, and we will use $n_{op}(x)$ to stand for the number of operators in x (the number of occurrences of + or *). Show that for every $x \in EXPR$, $n_a(x) = 1 + n_{op}(x)$.

Problem 13 10%

Show using induction that for every $x \in \{a, b\}^*$ such that x begins with a and ends with b, x contains the substring ab.