

Agenda

- Define the problem
- Obtain the data
- Explore the data
- Model the data
- Evaluate the model
- Respond to the problem

Optimizing Evacuation Routes using Real-Time Traffic Information

Define the Problem

Get to safety as fast as possible.

- Many current GIS and navigation systems do not rely on real-time data.
- Real time road closures or damaged roads, power outages and other blocked routes may affect traffic lights, travel time, travel safety and more.

Define the Problem

Leverage social media, news feeds and other datasets to search for any of these conditions and identify if and where they exist in a specific location (street, neighborhood, city etc.)

Where to base our model?

Where to base our model?

Where to base our model?

"Problem: Use tweets to classify if a road in the Miami area is closed in real-time

Our solution

Gather all Maimi tweets

Collect posts from news/traffic over 1 week.

Process and Model

Test and fine-tune classifier on one road, apply to the rest.

Find new route

Use optimization to produce fastest path upon closure of a road.

Data Gathering: scrape twitter, FL511

https://twitter.com/fl511_southeast?lang=e

- Used GetOldTweets3 module written by Mottl
- Most accurate and all encompassing source of traffic
- Used highway status to create target variable

Follow

FL511 Southeast

@fl511_southeast

511 #traffic info for Southeast Florida provided by @MyFDOT. Know before you go, don't tweet & drive. #SEFL #Miami #FtLauderdale #Broward #PalmBeach

367 Following **7,545** Followers

Not followed by anyone you're following

Tweets & replies Media Likes

FL511 Southeast @fl511_southeast · 13m

Updated: Planned construction in Broward on Pines Blvd east at 136th Ave, right lane blocked. Last updated at...fl511.com/EventDetails/B...

Time-sensitive Scraping

- Pulled all tweets posted in or around Miami from July 24 to July 30, 2019
- Gathered maximum tweets available: 80,000 tweets every day, for eight days.
- Pulled tweets from Miami local news sites over the past year.
- Found better results from all tweets than from news site's tweets.

Modeling

- Focused on 6 major roadways, looking at each direction independently
- Looked at 2 corpuses: all tweets in an hour and news sites only in an hour
- Hyperparameters for every road model tuned based on I-95 North performance; test accuracy average performance
- Support Vector Classification had the best accuracy

Model Goal

INPUT

time	tweets
2019-07-28 11:00:00+00:00	That look good I need one https://www.facebook
2019-07-28 12:00:00+00:00	OH. Now I understand. And no.Divers agree loca
2019-07-28 13:00:00+00:00	I just spit out my coffee. This is real.Awww s
2019-07-28 14:00:00+00:00	This week, Henry joins Kevin on Management Con
2019-07-28 15:00:00+00:00	Same principle. COM over the back leg. Watch h

time	I-95 North	I-95 South	95 Express North	95 Express South	I-195 East	I-195 West	
30-07-2019, 07 PM	1	0	0	0	0	0	
30-07-2019, 08 PM	1	0	0	0	0	0	
30-07-2019, 09 PM	1) (1		0	0	0	
30-07-2019, 10 PM	1) (1		0	0	0	
30-07-2019, 11 PM	1) (1		0	0	0	

All Tweets: ngram_range=(2,5)

	Avg	Best	Worst
Road	-	I-95 North	US-1 South
Baseline Accuracy	0.73	0.69	0.73
Train Accuracy Improvement	0.23	0.31	0.20
Test Accuracy Improvement	0.07	0.21	-0.03

Model Performances

News Tweets: ngram_range=(4,8)

	Avg	Best	Worst
Road	-	I-95 North	SR 836 East
Baseline Accuracy	0.73	0.52	0.73
Train Accuracy Improvement	0.15	0.31	0.14
Test Accuracy Improvement	-0.01	0.13	-0.10

ROC Curves

All Tweets

Word Use Frequency

News Site Tweets

All Tweets

Word Use Frequency

News Site Tweets

Optimization

We can now predict when a road is closed in real-time

Let's form an evacuation plan

Choose highways as they have more lanes and higher speed limits

Also consider map coverage and direction of evacuation

Optimization

Optimization

Maximum Flow Problem

https://en.wikipedia.org/wiki/Maximum flow problem

Linear Program - Can be solved with Simplex Method

Ford-Fulkerson Algorithm: Allows solves maximum flow optimally (Proof of optimality - Max Flow Min Cut Theorem: https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem)

Very computationally efficient - Worst case is O(nlog^3n) time, but in practice much faster, https://cs.idc.ac.il/~smozes/msms-planar-flow.pdf

