Ideally, the programming language best suited for the task at hand will be selected. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Whatever the approach to development may be, the final program must satisfy some fundamental properties. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Use of a static code analysis tool can help detect some possible problems. Programmable devices have existed for centuries. Machine code was the language of early programs, written in the instruction set of the particular machine, often in binary notation. Programs were mostly entered using punched cards or paper tape. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Some of these factors include: The presentation aspects of this (such as indents, line breaks, color highlighting, and so on) are often handled by the source code editor, but the content aspects reflect the programmer's talent and skills. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. While these are sometimes considered programming, often the term software development is used for this larger overall process – with the terms programming, implementation, and coding reserved for the writing and editing of code per se. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute.

Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Text editors were also developed that allowed changes and corrections to be made much more easily than with punched cards. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Assembly languages were soon developed that let the programmer specify instruction in a text format (e.g., ADD X, TOTAL), with abbreviations for each operation code and meaningful names for specifying addresses. Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. In 1206, the Arab engineer Al-Jazari invented a programmable drum machine where a musical mechanical automaton could be made to play different rhythms and drum patterns, via pegs and cams. While these are sometimes considered programming, often the term software development is used for this larger overall process - with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code.