Typy pamětí, struktura, základní parametry, optimalizace přístupu do paměti (cache)

- paměť
 - fyzické zařízení schopné ukládat data a následně s nimi pracovat
 - a. nevolatilní
 - data isou zachována i po ztrátě napájení
 - b. volatilní
 - data jsou po ztrátě napájení ztracena
- ROM (Read-Only Memory)
 - nevolatilní
 - obsah určen při výrobě, poté již nelze změnit
 - a PROM (Programmable ROM)
 - OTP (One Time Programmable)

 - data lze zapsat až po výrobě pouze jednou
 např. firmware, zdravotnické implantáty

 - b. EPROM (Erasable PROM)

 obsah Ize mazat pomocí UV záření

 programování pomocí vyššího napětí (12/25 V) než při napájení (5 V)

 c. EEPROM (Electrically Erasable PROM)
 - - obsah lze vymazat pomocí vysokého napětí nebo napětí na erase pinu
 vysoké rychlosti a hustota dat
 - - vyšší životnost než flash často přepisované hodnoty
 - např. mcu, hlasitost u TV
 - FLASH
 - - paměť dělená v buňkách
 - oproti EEPROM se nemusí přepisovat celá paměť
 - SLC, MLC, TLC, QLC (Single, Multiple, Triple, Quad Level Cell)
 - počet bitů v buňce
 - např. SD karty, USB flash disky, SSD
- RAM (Random Access Memory)
 - volatilní
 - přístup ke všem buňkám trvá stejnou dobu
 - SPD (Serial Presence Detect)
 - i čip, na kterém je uložena konfigurace RAM
 - a. SRAM (Static RAM)
 - každá paměťová buňka obsahuje 4 až 6 tranzistorů (bistabilní klopný obvod)
 - rychlejší (15-20 ns), dražší
 - použití jako cache, buffery, u mcu (kvůli možnosti podpory různých rychlostí)
 - b. DRAM (Dynamic RAM)
 - každá paměťová buňka obsahuje 1 tranzistor a 1 kondenzátor
 - uchovává data pomocí náboje na kondenzátoru
 - pro uchovávání dat vyžaduje periodický memory refresh
 - přečtení dat a následný zápis na stejné místo
 - pomalejší (60-70 ns), levnější
 - použití hlavně v operačních pamětech
 - c. SDRAM (Synchronous DRAM)
 - operace se provádí synchronně s CPU CLK
 snížení čekací doby CPU
 - □ zvýšení výkonu i. SDR (Single Data Rate)

 - □ reaguje na náběžnou hranu
 ii. DDR (*Double Data Rate*)

 - reaguje na náběžnou i sestupnou hranu
 GDDR (Graphics DDR)
 - ◆ DDR SDRAM určená speciálně pro práci s GPU □ typy zapojení:
 - ◆ SIMM (Single Inline Memory Module)
 - DIMM (Dual Inline Memory Module)
 - piny na obou stranách rozdělené
 - ♦ SO-DIMM (Small Outline DIMM)
 - menšínotebooky
 - iii. QDR (Quad Data Rate) □ současné čtení i zápis díky rozdílným CLK pro R/W
- cache
 - mezipaměť
 - malá, rychlá paměť 0
 - urychlení přístupu k často používaným datům
 - o oproti bufferu může cache data poskytovat opakovaně
 - CPU cache

 - SRAM
 každá další úroveň je o něco pomalejší, ale má větší kapacitu
 - při zkopírování
 - se vytvoří cache entry:
 - zkopírovaná dataumístění dat (tag)
 - před žádáním hlavní paměti se CPU podívá do cache, jestli je záznam podle ID nalezen (cache hit), nebo ne (cache miss)

 - i. plně asociativní
 v každém řádku uchován celý tag
 - pro každý řádek jeden komparátor (2ⁿ komparátorů)
 - neirvchleiší

 - ii. n-cestně asociativní

 rozdělení na tabulky
 - □ počet komparátorů = počet tabulek
 - nejpoužívanější
 - iii. přímo mapovaná
 - 1) n-cestně asociativní (n=1) => 1 tabulka

