51

	Davot statistique Résume théorique Lor a propri de toffreus
	$I(\emptyset) = II(\emptyset)$
	lor norme (garrence)
•	$V(\mu_1 T^2) = 1 \exp(-(x-\mu_1)^2/2T^2)$
	$F[N(u, \tau^2)] = \mu$; $F[N(0, 1)] = 0$ $Vor(N(u, \tau^2)] = \tau^2$ $Vor(N(u, \tau^2)) = \tau^2$ $Vor(N$
5	$\frac{\Gamma(z a)=1}{2\pi^2} \frac{\exp(-1(z-au))(z-au)}{2\pi^2} \frac{2\pi}{2\pi^2}$ Borne de Cromer et Rop $\frac{\operatorname{ECR}(a)=\Gamma(a)^{-1}}{2\pi^2}$
	Gamma Distribution $ \frac{1}{X} \sim \Gamma(X_1 \beta) = \chi^{X-1} e^{-\beta X} \beta^{X} R^{=1/0} \Gamma(X_1 \emptyset) = \chi^{K-1} e^{-\chi/0} $ $ \Gamma(X) \qquad \qquad 0^{K} \Gamma(K) $
	$\frac{\Gamma(x) = (x-1)!}{\text{Grame forms Var(\Gamma(x,\beta)) = x/\beta = x/\beta } = x/\beta = x/$

macot statistique verded 21/10/2022
Résumé Théorique définition experience
estimateur des moments / Comaments
moment d'ordre 1 [Eago: [X]= 1/n []=1 Xi
moment diadre n (E[Xin] = 1/n T = 1 Xin
loi de Bernoulli Be (K,p) = pk (1-p)1-K Y Ke(0,1)
E[Be(K,p)] = p
$Vor(Be(K_1p)) = pq = p(1-p)$
loi Exponernol $\mathcal{L}(x,\lambda) = \lambda e^{-\lambda x} \cdot 1 R^{+}(x) = \int (x_i \lambda) = (1 - e^{\lambda x}) \cdot 1 R^{+}(x)$
a charm a din to them I din I din - die the total
$E[\mathcal{E}(x,\lambda)] = \sqrt{\lambda}$; $E[\mathcal{E}(x,\lambda)] = 2/\lambda^2$
VOR(Ex, 21) = 1/22
0; X<0
bide Popero Po(x_10) = $x0^N$ $\forall x \ge 0 = f(x_10)$; $F(x_10) = 1 - (01x)^N$; $x \ge 0$
$\frac{\text{E[Pa(x,0)]} = \text{Na/(N-1)} \ \forall \ \text{N} = 1}{\text{Var}(\text{Pa(x,0)}) = (\text{a/(N-1)})^2 \ \text{N/(N-2)} \ \forall \ \text{N} = 2}{\text{N} = 1}$
tartimper with the start in 2
estimateur du risque maien en volair absolue
MA = F[0-0]= F[0-0]= +00 10-01 -(012)do
100
on our house a lade of 16-01/(015)00=0
Le risque est minimiser de VZ
attention par manipules le module il faut considéren les limits
eniral"

3	2
	STQQSSD/_/_
	mozor statistiqe dimende 23 Holor estimateur du risque quadratique IMVA = FE (0-87) = FE (0-87) = HO(0-87 + (012) do 012
	an dort minimiser le risque de 1+00 (0-ê)2 f(012) do=0 donc ê doit sanislaire dê 12
)	estimaters du maximum de vraisemblance au posterru MARP = ORGAMON / FOIZ (Ø IZ) / Il faut cheques si l'estimateur est dedons l'intervale correcte, si non on considere les l'imites de Ø
	organization := organization := (xes) to = tx) Yses (
	orgming fix:= argming fix:= (xes) fix) 45es)
	approche fréquentiste: paramètrers deterministes
	approche boyésieme: variables aléctrites
)	snirali