Formule de algebră

Ecuația de gradul doi

- Ecuația $ax^2 + bx + c = 0$. Se calculează $\Delta = b^2 4ac$
 - Dacă $\Delta > 0$ atunci ecuația de gradul doi are două rădăcini reale diferite date de formula

$$x_1, x_2 = \frac{-b \pm \sqrt{\Delta}}{2a}$$

• Dacă $\Delta=0$ atunci ecuația de gradul doi are două rădăcini reale egale date de formula

$$x_1 = x_2 = -\frac{b}{2a}$$

• Dacă $\Delta < 0$ atunci ecuația de gradul doi are două rădăcini complexe diferite date de formula

$$x_1, x_2 = \frac{-b \pm i\sqrt{-\Delta}}{2a}$$

- $ax^2 + bx + c = a(x x_1)(x x_2)$
- Relațiile lui Viete pentru ecuația de gradul doi $ax^2 + bx + c = 0$:

$$\begin{cases} S = x_1 + x_2 = -\frac{b}{a} \\ P = x_1 \cdot x_2 = \frac{c}{a} \end{cases}$$

• Alte formule folositoare la ecuația de gradul doi:

$$x_1^2 + x_2^2 = S^2 - 2P$$

$$x_1^3 + x_2^3 = S^3 - 3SP$$

Funcția de gradul doi

$$f: \mathbf{R} \to \mathbf{R}$$

$$f(x) = ax^2 + bx + c$$

Graficul funcției de gradul doi este o parabolă cu varful in punctul $V\left(-\frac{b}{2a}, -\frac{\Delta}{4a}\right)$.

Dacă a>0 atunci parabola are ramurile indreptate in sus. In acest caz valoarea minimă a funcției este $f_{\min} = -\frac{\Delta}{4a}$ Dacă a<0 atunci parabola are ramurile indreptate in jos. In acest caz valoarea maximă a funcției este $f_{\max} = -\frac{\Delta}{4a}$

Progresii aritmetice

• Formula termenului general:

$$a_n = a_1 + (n-1) \cdot r$$

• Suma primilor n termeni ai unei progresii aritmetice este:

$$S_n = \frac{n(a_1 + a_n)}{2}$$

• Condiția ca trei numere a,b,c să fie termeni consecutivi ai unei progresii aritmetice este:

$$\frac{a+c}{2} = b$$

Progresii geometrice

• Formula termenului general:

$$b_n = b_1 \cdot q^{n-1}$$

Suma primilor n termeni ai unei progresii geometrice este:

$$S_n = \frac{b_1(q^n - 1)}{q - 1}$$

• Condiția ca trei numere a,b,c să fie termeni consecutivi ai unei progresii geometrice este:

$$b^2 = a \cdot c$$

Numere complexe

z = a + bi este forma algebrică a unui număr complex

 $z = r(\cos\theta + i\sin\theta)$ este forma trigonometrică a unui număr complex unde:

• $r = \sqrt{a^2 + b^2}$ este modulul numărului complex

• $\theta \in [0, 2\pi)$ este argumentul redus al numărului complex și se scoate din relația $tg\theta = \frac{b}{a}$

$$i^2 = -1$$
$$|a + bi| = \sqrt{a^2 + b^2}$$

$$\overline{z} = a - bi$$

Formula lui Moivre

$$(\cos\theta + i\sin\theta)^n = (\cos n\theta + i\sin n\theta)$$

Elemente de combinatorică

$$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$$

$$P_n = n!$$

$$A_n^k = \frac{n!}{(n-k)!}$$
 Calculează numărul de submulțimi ordonate cu k elemente ale unei mulțimi cu n elemente.

$$C_n^k = \frac{n!}{k!(n-k)!}$$
 Calculează numărul de submulțimi cu k elemente ale unei mulțimi cu n elemente.

Binomul lui Newton:

$$(a+b)^{n} = C_{n}^{0}a^{n} + C_{n}^{1}a^{n-1}b + C_{n}^{2}a^{n-2}b^{2} + \dots + C_{n}^{k}a^{n-k}b^{k} + \dots + C_{n}^{n}b^{n}$$

Formula termenului general din binomul lui Newton este $T_{k+1} = C_n^k a^{n-k} b^k$

Formule cu logaritmi

 $\log_a b$ există dacă $a > 0, a \ne 1, b > 0$

 $\log_a b = c \Leftrightarrow a^c = b$ Această echivalență transformă o egalitate cu logaritm intr-o egalitate fără logaritm

$$\log_a 1 = 0$$

$$\log_a a = 1$$

$$ln 1 = 0$$

$$ln e = 1$$

$$\lg 1 = 0$$

$$lg 10 = 1$$

$$\log_a A + \log_a B = \log_a (A \cdot B)$$

$$\log_a A - \log_a B = \log_a \left(\frac{A}{B}\right)$$

$$\log_a A^n = n \cdot \log_a A$$

$$\log_a b = \frac{\log_c b}{\log_c a}$$

$$\log_a b = \frac{1}{\log_b a}$$

Probabilitatea unui eveniment

Se calculează cu formula:

$$P(E) = \frac{nr. \ cazuri \ favorabile}{nr. \ total \ cazuri \ posibile}$$

Legi de compoziție

Fie M o mulțime nevidă pe care s-a dat o lege de compoziție notată *.

- Legea * este asociativă dacă (x*y)*z = x*(y*z) $\forall x, y, z \in M$
- Legea * este comutativă dacă x * y = y * x $\forall x, y \in M$
- Legea * are element neutru e dacă x*e=e*x=x $\forall x \in M$
- Un element $x \in M$ se numește simetrizabil dacă $\exists x' \in M$ astfel incât x * x' = x' * x = e

http://variante-mate.ro

Relațiile lui Viete pentru ecuația de gradul trei

Dacă $ax^3 + bx^2 + cx + d = 0$ are rădăcinile x_1, x_2, x_3 atunci avem:

$$\begin{cases} x_1 + x_2 + x_3 = -\frac{b}{a} \\ x_1 \cdot x_2 + x_1 \cdot x_3 + x_2 \cdot x_3 = \frac{c}{a} \\ x_1 \cdot x_2 \cdot x_3 = -\frac{d}{a} \end{cases}$$

Relațiile lui Viete pentru ecuația de gradul patru

Dacă $ax^4 + bx^3 + cx^2 + dx + e = 0$ are rădăcinile x_1, x_2, x_3, x_4 atunci avem:

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = -\frac{b}{a} \\ x_1 \cdot x_2 + x_1 \cdot x_3 + x_1 \cdot x_4 + x_2 \cdot x_3 + x_2 \cdot x_4 + x_3 \cdot x_4 = \frac{c}{a} \\ x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_4 + x_1 \cdot x_3 \cdot x_4 + x_2 \cdot x_3 \cdot x_4 = -\frac{d}{a} \\ x_1 \cdot x_2 \cdot x_3 \cdot x_4 = \frac{e}{a} \end{cases}$$