Reference number: 285744-1-4 Page 1 of 21



# Test Report



# INTENTIONAL RADIATOR TESTS ACCORDING TO FCC PART 15 C

Equipment Under Test:

Sports vehicles OBD diagnostic dongle

Model:

**OBD-micro** 

Manufacturer:

Compo USA Inc.

Suite 106

1301 Wake Forest Rd RALEIGH, NC 27604

USA

Customer:

Componentality Oy

Äyritie 12 A

FI-01510 VANTAA

**FINLAND** 

FCC Rule Part:

15.247: 2015

IC Rule Part:

RSS-247, Issue 1, 2015

RSS-GEN Issue 4, 2014

KDB:

Guidance for Performing Compliance

Measurements on Digital Transmission Systems (DTS) Operating Under §15.247 (June 9, 2015)

Date:

31 August 2017

Date:

31 August 2017

Issued by:

Emil Haverinen Testing Engineer Checked by:

Rauno Rèdo Testing Engineer





| PRODUCT DESCRIPTION                                                | 3  |
|--------------------------------------------------------------------|----|
| Equipment Under Test (EUT)                                         | 3  |
| Description of the EUT                                             | 3  |
| Ratings and declarations                                           |    |
| Power Supply                                                       | 3  |
| Mechanical Size of the EUT                                         | 3  |
| Samples                                                            | 3  |
|                                                                    |    |
| GENERAL REMARKS                                                    | 4  |
| Disclaimer                                                         | 4  |
|                                                                    |    |
| SUMMARY OF TESTING                                                 | 5  |
| EUT Test Conditions During Testing                                 | 5  |
|                                                                    |    |
| TEST RESULTS                                                       | 6  |
| Maximum Peak Conducted Output Power                                | 6  |
| Transmitter Radiated Spurious Emissions 9 kHz – 26500 MHz          |    |
| Transmitter Band Edge Measurement and Conducted Spurious Emissions | 11 |
| 6 dB Bandwidth of the Channel                                      |    |
| Power Spectral Density                                             | 17 |
| 99% Occupied Bandwidth                                             | 19 |
|                                                                    |    |
| TEST EQUIPMENT                                                     | 21 |





#### **Equipment Under Test (EUT)**

Model: OBD-micro

Type: Sports vehicles OBD diagnostic dongle

Serial no:

FCC ID: 2AJ3M-MSSDK IC: 22034-MSSDK

### **Description of the EUT**

The EUT is a diagnostics tool to be used for vehicle diagnostics. Vehicle information, fault codes and other parameters are sent via Bluetooth Low Energy connection when asked from the EUT to the smart device which has the OBD software installed. The EUT is powered from vehicle's battery.

#### Classification of the device

| Fixed device                                 |             |
|----------------------------------------------|-------------|
| Mobile Device (Human body distance > 20cm)   | $\boxtimes$ |
| Portable Device (Human body distance < 20cm) |             |

# **Modifications Incorporated in the EUT**

The EUT was tested without its plastic enclosure. Debug/programming pins and cables of the device were still attached for controlling the radio.

#### Ratings and declarations

Operating Frequency Range (OFR): 2402 - 2480 MHz

Channels: 40 Channel separation: 2 MHz

99% Channel bandwidth: 1.531827130 MHz (ch mid)

Effective conducted power: -10.64 dBm
Transmission technique: DSSS
Modulation: GFSK
Integral Antenna gain: 1 dBi

# **Power Supply**

Operating voltage range: 12 VDC (tested with 3.3 V provided by programming device, 12 V is

regulated before it enters the RF chip)

#### **Mechanical Size of the EUT**

Height: 18.5 mm Width: 18.7 mm Length: 35.4 mm

#### Samples

Two samples were used in the testing. Normal commercial sample with integral antenna for radiated emissions and a sample with integral antenna removed and replaced with  $50\Omega$  coaxial cable and SMA-connector for conducted RF tests. During the tests the EUT was set into continuous transmit and was set to the channel under test. Normal test modulation and maximum transmit power was used in all tests. No modifications were done during the tests.





**General remarks** 



#### **Disclaimer**

This document is issued by the Company under its General Conditions of service accessible at <a href="http://www.sgs.com/terms\_and\_conditions.htm">http://www.sgs.com/terms\_and\_conditions.htm</a>. attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. This document cannot be reproduced except in full, without prior approval of the Company.

Reference number: 285744-1-4

**Summary of Testing** 



# **SUMMARY OF TESTING**

| Test Specification                   | Description of Test                                                        | Result            |
|--------------------------------------|----------------------------------------------------------------------------|-------------------|
| §15.207(a) / RSS-GEN 8.8             | Conducted Emissions on Power Supply Lines                                  | N/A <sup>(1</sup> |
| §15.247(b)(3) / RSS-247 5.4(4)       | Maximum Peak Conducted Output Power                                        | PASS              |
| §15.247(a)(2) / RSS-247 5.2(1)       | 6 dB Bandwidth                                                             | PASS              |
| §15.247(e) / RSS-247 5.2(2)          | Power Spectral Density                                                     | PASS              |
| RSS-GEN 6.6                          | 99% Occupied Bandwidth                                                     | PASS              |
| §15.247(d) / RSS-247 5.5             | 100 kHz Bandwidth of Frequency Band Edges and Conducted Spurious Emissions | PASS              |
| §15.209(a), §15.247(d) / RSS-247 5.5 | Radiated Emissions Within The Restricted Bands                             | PASS              |

<sup>1)</sup> The EUT is powered from the vehicle battery.

# **EUT Test Conditions During Testing**

The EUT was in continuous transmit mode during all the tests. The EUT was configured into wanted channel under the test using special software.

Following channels were used during the tests when the hopping was stopped:

Channel Low (Ch 0) = 2402 MHz

Channel Mid (Ch 19) = 2440 MHz

Channel High (Ch 39) = 2480 MHz

# **Test Facility**

|             | Testing Location / address:     | SGS Fimko Ltd      |
|-------------|---------------------------------|--------------------|
|             | FCC registration number: 90598  | Särkiniementie 3   |
|             |                                 | FI-00210, HELSINKI |
|             |                                 | FINLAND            |
| $\boxtimes$ | Testing Location / address:     | SGS Fimko Ltd      |
|             | FCC registration number: 178986 | Karakaarenkuja 4   |
|             | Industry Canada registration    | FI-02610, ESPOO    |
|             | number: <b>8708A-2</b>          | FINLAND            |

**Maximum Peak Conducted Output Power** 





#### **TEST RESULTS**

# **Maximum Peak Conducted Output Power**

**Standard:** ANSI C63.10 (2013)

Tested by: EHA

**Date:** 2 September 2016

Temperature:  $22 \,^{\circ}\text{C}$  Humidity:  $53 \,^{\circ}$ 

Measurement uncertainty:  $\pm 2.87 dB$  Level of confidence 95 % (k = 2)

FCC Rule: 15.247(b)(3)

RSS-247 5.4(4)

For systems using digital modulation in the 2400-2483.5 MHz bands the limit is 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power.

Measurements were made using averaging power meter.

#### Results:

Table 1: Maximum average conducted output power

| Channel | Conducted Power [dBm] | Limit [dBm] | Margin [dBm] | Result |
|---------|-----------------------|-------------|--------------|--------|
| Low     | -10.64                | 30          | 40.64        | PASS   |
| Mid     | -11.63                | 30          | 41.63        | PASS   |
| High    | -12.69                | 30          | 42.69        | PASS   |





# Transmitter Radiated Spurious Emissions 9 kHz - 26500 MHz

**Standard:** ANSI C63.10 (2013)

Tested by: EHA

Date: 2 September 2016

23 August 2017

**Temperature:** 21 - 22 °C **Humidity:** 43 - 53 %

**Measurement uncertainty:**  $\pm 4.51 \text{ dB}$  Level of confidence 95 % (k = 2)

FCC Rule: 15.247(d), 15.209(a)

RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

The correction factor in the final result table contains the sum of the transducers (antenna + amplifier + cables).

Peak values of emissions below 1000 MHz measured for reference as well as transmitter fundamental.

| Frequency range [MHz] | Limit [μV/m] | Limit [dBμV/m] | Detector   |
|-----------------------|--------------|----------------|------------|
| 30 - 80               | 100          | 40.0           | Quasi-peak |
| 88 - 216              | 150          | 43.5           | Quasi-peak |
| 216 - 960             | 200          | 46.0           | Quasi-peak |
| 960 - 1000            | 500          | 53.9           | Quasi-peak |
| Above 1000            | 500          | 53.9           | Average    |
| Above 1000            | 5000         | 73.9           | Peak       |

#### Low channel

Table 2: Quasi-peak results (ch low)

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth (deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|---------------|---------------|----------------|-------------------|
| 35.848000          | 9.8                   | 1000.0                | 120.000            | 246.0          | ٧            | 200.0         | 13.5          | 30.2           | 40.0              |

Table 3: Peak results (ch low)

| Frequency<br>(MHz) | MaxPeak<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height (cm) | Polarization | Azimuth (deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|-------------|--------------|---------------|---------------|----------------|-------------------|
| 35.848000          | 16.1                | 1000.0                | 120.000            | 246.0       | V            | 200.0         | 13.5          | -              | -                 |
| 2390.000000        | 50.3                | 1000.0                | 1000.000           | 166.0       | Н            | 223.0         | 3.0           | 23.6           | 73.9              |
| 2400.000000        | 54.2                | 1000.0                | 1000.000           | 166.0       | Н            | 223.0         | 3.0           | 19.7           | 73.9              |
| 2402.250000        | 81.8                | 1000.0                | 1000.000           | 166.0       | Н            | 220.0         | 3.0           | -              | -                 |
| 4803.950000        | 66.9                | 1000.0                | 1000.000           | 150.0       | Н            | 230.0         | 6.2           | 7.0            | 73.9              |
| 17112.25000        | 60.6                | 1000.0                | 1000.000           | 382.0       | V            | 246.0         | 24.0          | 13.3           | 73.9              |





Table 4: Average results (ch low)

| Frequency<br>(MHz) | Average<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height (cm) | Polarization | Azimuth (deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|-------------|--------------|---------------|---------------|----------------|-------------------|
| 2390.000000        | 35.8                | 1000.0                | 1000.000           | 166.0       | Н            | 223.0         | 3.0           | 18.1           | 53.9              |
| 2400.000000        | 36.4                | 1000.0                | 1000.000           | 166.0       | Н            | 223.0         | 3.0           | 17.5           | 53.9              |
| 2402.050000        | 77.4                | 1000.0                | 1000.000           | 166.0       | Н            | 223.0         | 3.0           | -              | -                 |
| 4803.950000        | 50.1                | 1000.0                | 1000.000           | 150.0       | Н            | 230.0         | 6.2           | 3.8            | 53.9              |
| 17096.75000        | 47.2                | 1000.0                | 1000.000           | 311.0       | Н            | 26.0          | 24.0          | 6.7            | 53.9              |
| 21423.95000        | 36.7                | 1000.0                | 1000.000           | 400.0       | ٧            | 268.0         | 21.1          | 17.2           | 53.9              |
| 23517.20000        | 38.2                | 1000.0                | 1000.000           | 400.0       | ٧            | 253.0         | 24.2          | 15.7           | 53.9              |
| 26495.55000        | 37.5                | 1000.0                | 1000.000           | 340.0       | V            | 333.0         | 26.2          | 16.4           | 53.9              |

# Middle channel

Table 5: Quasi-peak results (ch mid)

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height (cm) | Polarization | Azimuth (deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|-----------------------|-----------------------|--------------------|-------------|--------------|---------------|---------------|----------------|-------------------|
| 938.271000         | 26.6                  | 1000.0                | 120.000            | 190.0       | Н            | 15.0          | 27.6          | 19.4           | 46.0              |

Table 6: Peak results (ch mid)

| Frequency<br>(MHz) | MaxPeak<br>(dBμV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth (deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|---------------|---------------|----------------|-------------------|
| 938.271000         | 32.8                | 1000.0                | 120.000            | 190.0          | Н            | 15.0          | 27.6          | -              | -                 |
| 2440.050000        | 80.0                | 1000.0                | 1000.000           | 166.0          | Н            | 223.0         | 2.9           | -              | -                 |
| 4879.600000        | 63.2                | 1000.0                | 1000.000           | 150.0          | Н            | 230.0         | 6.3           | 10.7           | 73.9              |
| 17105.45000        | 60.2                | 1000.0                | 1000.000           | 150.0          | V            | 64.0          | 24.1          | 13.7           | 73.9              |

Table 7: Average results (ch mid)

| Frequency<br>(MHz) | Average<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height (cm) | Polarization | Azimuth (deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|-------------|--------------|---------------|---------------|----------------|-------------------|
| 2439.900000        | 75.6                | 1000.0                | 1000.000           | 166.0       | Н            | 223.0         | 2.9           | -              | -                 |
| 4880.050000        | 50.6                | 1000.0                | 1000.000           | 150.0       | Н            | 231.0         | 6.3           | 3.3            | 53.9              |
| 17185.55000        | 47.5                | 1000.0                | 1000.000           | 150.0       | ٧            | 131.0         | 23.9          | 6.4            | 53.9              |
| 22423.40000        | 36.5                | 1000.0                | 1000.000           | 392.0       | ٧            | 357.0         | 22.6          | 17.4           | 53.9              |
| 24429.55000        | 38.1                | 1000.0                | 1000.000           | 400.0       | Н            | 50.0          | 23.6          | 15.8           | 53.9              |
| 26495.65000        | 37.4                | 1000.0                | 1000.000           | 340.0       | V            | 169.0         | 26.2          | 16.5           | 53.9              |

**Transmitter Radiated Spurious Emissions** 

Reference number: 285744-1-4



# **High channel**

Table 8: Quasi-peak results (ch high)

| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth (deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|-----------------------|-----------------------|--------------------|----------------|--------------|---------------|---------------|----------------|-------------------|
| 32.399000          | 11.9                  | 1000.0                | 120.000            | 100.0          | ٧            | 198.0         | 13.1          | 28.1           | 40.0              |
| 47.321000          | 17.1                  | 1000.0                | 120.000            | 100.0          | ٧            | 180.0         | 14.6          | 22.9           | 40.0              |
| 82.278000          | 7.2                   | 1000.0                | 120.000            | 100.0          | ٧            | 180.0         | 9.4           | 32.8           | 40.0              |
| 944.973000         | 26.7                  | 1000.0                | 120.000            | 275.0          | Н            | 148.0         | 27.7          | 19.3           | 46.0              |

Table 9: Peak results (ch high)

| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height (cm) | Polarization | Azimuth (deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|-------------|--------------|---------------|---------------|----------------|-------------------|
| 32.399000          | 35.6                | 1000.0                | 120.000            | 100.0       | V            | 198.0         | 13.1          | -              | -                 |
| 47.321000          | 38.5                | 1000.0                | 120.000            | 100.0       | V            | 350.0         | 14.6          | -              | -                 |
| 82.278000          | 28.8                | 1000.0                | 120.000            | 100.0       | V            | 180.0         | 9.4           | -              | -                 |
| 944.973000         | 32.8                | 1000.0                | 120.000            | 275.0       | Н            | 148.0         | 27.7          | -              | -                 |
| 2480.250000        | 77.6                | 1000.0                | 1000.000           | 150.0       | Н            | 219.0         | 3.1           | -              | -                 |
| 2490.300000        | 49.6                | 1000.0                | 1000.000           | 150.0       | Н            | 6.0           | 3.2           | 24.3           | 73.9              |
| 4960.350000        | 58.5                | 1000.0                | 1000.000           | 150.0       | Н            | 123.0         | 6.3           | 15.4           | 73.9              |

Table 10: Average results (ch high)

| Frequency<br>(MHz) | Average<br>(dBµV/m) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Polarization | Azimuth (deg) | Corr.<br>(dB) | Margin<br>(dB) | Limit<br>(dBµV/m) |
|--------------------|---------------------|-----------------------|--------------------|----------------|--------------|---------------|---------------|----------------|-------------------|
| 2480.050000        | 73.0                | 1000.0                | 1000.000           | 150.0          | Н            | 218.0         | 3.1           | -              | -                 |
| 2492.700000        | 35.8                | 1000.0                | 1000.000           | 150.0          | Н            | 35.0          | 3.3           | 18.1           | 53.9              |
| 4959.950000        | 49.1                | 1000.0                | 1000.000           | 150.0          | Н            | 122.0         | 6.3           | 4.8            | 53.9              |
| 20438.85000        | 36.1                | 1000.0                | 1000.000           | 400.0          | V            | 168.0         | 19.7          | 17.8           | 53.9              |
| 24856.20000        | 36.9                | 1000.0                | 1000.000           | 366.0          | Н            | 214.0         | 23.3          | 17.0           | 53.9              |

# **Radiated Band Edge results**

FCC Part 15 Class B Spurious Emission 1-18GHz 3m



Figure 1: Radiated Band Edge measurement graph (ch low)



FCC Part 15 Class B Electric Field Strength 3 m PK [..\EMI radiated\]
FCC Part 15 Class B Electric Field Strength 3 m AV [..\EMI radiated\]
Preview Result 1-PK+ [Preview Result 1.Result:1]
Preview Result 2-AVG [Preview Result 2.Result:2]
Final Result 1-PK+ [Final Result 1.Result:1]
Final Result 2-AVG [Final Result 2.Result:1]

Figure 2: Radiated Band Edge measurement graph (ch high)

Reference number: 285744-1-4



# **Transmitter Band Edge Measurement and Conducted Spurious Emissions**

# Transmitter Band Edge Measurement and Conducted Spurious Emissions

**Standard:** ANSI C63.10 (2013)

Tested by: EHA

Date: 2 September 2016

Temperature: $22 \,^{\circ}\text{C}$ Humidity: $53 \,^{\circ}$ 

Measurement uncertainty:  $\pm 2.87 \text{ dB}$  Level of confidence 95 % (k = 2)

FCC Rule: 15.247(d), 15.209(a)

RSS-247 5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.205(c)).

Table 11: Band edge attenuation

| Band Edge Attenuation |                 |  |  |  |  |
|-----------------------|-----------------|--|--|--|--|
| Lower Band Edge       | Upper Band Edge |  |  |  |  |
| -40.56 dBc            | -45.89 dBc      |  |  |  |  |
| Limit: -20dBc         |                 |  |  |  |  |

Table 12: Conducted spurious emissions channel low

| Frequency [MHz] | Level [dBm] | Limit [dBm] | Margin [dB] | Result  |
|-----------------|-------------|-------------|-------------|---------|
| 91.88           | -57.24      | -30.72      | -26.52      | PASS    |
| 2399.89         | -50.88      | -30.72      | -20.16      | PASS    |
| 2402.00         | -10.72      | ı           | ı           | Carrier |
| 3802.03         | -65.77      | -30.72      | -35.05      | PASS    |
| 4803.74         | -42.60      | -30.72      | -11.88      | PASS    |
| 7206.76         | -60.78      | -30.72      | -30.07      | PASS    |
| 12518.09        | -59.17      | -30.72      | -28.46      | PASS    |
| 15836.27        | -56.87      | -30.72      | -26.15      | PASS    |
| 16225.51        | -54.76      | -30.72      | -24.04      | PASS    |
| 19169.82        | -57.09      | -30.72      | -26.38      | PASS    |
| 24839.36        | -56.82      | -30.72      | -26.10      | PASS    |
| 25575.58        | -55.96      | -30.72      | -25.24      | PASS    |





# **Transmitter Band Edge Measurement and Conducted Spurious Emissions**

Table 13: Conducted spurious emissions channel mid

| Frequency [MHz] | Level [dBm] | Limit [dBm] | Margin [dB] | Result  |
|-----------------|-------------|-------------|-------------|---------|
| 91.85           | -56.71      | -31.06      | -25.65      | PASS    |
| 2128.69         | -66.07      | -31.06      | -35.01      | PASS    |
| 2439.98         | -11.06      | -           | -           | Carrier |
| 3982.40         | -65.76      | -31.06      | -34.70      | PASS    |
| 4879.39         | -47.21      | -31.06      | -16.15      | PASS    |
| 7320.01         | -54.95      | -31.06      | -23.89      | PASS    |
| 12497.38        | -58.93      | -31.06      | -27.87      | PASS    |
| 15833.74        | -57.03      | -31.06      | -25.97      | PASS    |
| 16105.14        | -55.68      | -31.06      | -24.61      | PASS    |
| 21208.35        | -56.62      | -31.06      | -25.56      | PASS    |
| 24428.94        | -56.59      | -31.06      | -25.53      | PASS    |
| 25009.87        | -56.41      | -31.06      | -25.35      | PASS    |

Table 14: Conducted spurious emissions channel high

| Frequency [MHz] | Level [dBm] | Limit [dBc] | Margin [dB] | Result  |
|-----------------|-------------|-------------|-------------|---------|
| 91.91           | -57.10      | -31.05      | -26.05      | PASS    |
| 1978.37         | -67.99      | -31.05      | -36.93      | PASS    |
| 2479.99         | -11.05      | -           | -           | Carrier |
| 2499.26         | -51.85      | -31.05      | -20.79      | PASS    |
| 4960.02         | -49.17      | -31.05      | -18.12      | PASS    |
| 7440.00         | -54.01      | -31.05      | -22.95      | PASS    |
| 12444.31        | -59.13      | -31.05      | -28.08      | PASS    |
| 15848.83        | -56.37      | -31.05      | -25.31      | PASS    |
| 16158.67        | -55.71      | -31.05      | -24.65      | PASS    |
| 19147.70        | -57.29      | -31.05      | -26.23      | PASS    |
| 24405.97        | -56.43      | -31.05      | -25.38      | PASS    |
| 25579.29        | -55.96      | -31.05      | -24.90      | PASS    |



# **Transmitter Band Edge Measurement and Conducted Spurious Emissions**



Figure 3: Lower Band Edge



Upper Band Edge. Figure 4:



# **Transmitter Band Edge Measurement and Conducted Spurious Emissions**



Figure 5: Conducted Spurious Emissions 30 - 26500 MHz channel low



Figure 6: Conducted Spurious Emissions 30 - 26500 MHz channel mid



Figure 7: Conducted Spurious Emissions 30 - 26500 MHz channel high

6 dB Bandwidth of the Channel



#### 6 dB Bandwidth of the Channel

**Standard:** ANSI C63.10 (2013)

Tested by: EHA

Date: 2 September 2016

Temperature: 22 °C Humidity: 53 %

FCC Rule: 15.247(a)(2)

RSS-247 5.2(1)

#### Results:

Table 15: 6 dB bandwidth test results

| Channel | 6 dB BW [kHz] | Minimum limit<br>[kHz] |
|---------|---------------|------------------------|
| Low     | 699.15        |                        |
| Mid     | 702.32        | 500                    |
| High    | 706.85        |                        |



Figure 8: 6 dB bandwidth channel low





Figure 9: 6 dB bandwidth channel mid



Figure 10: 6 dB bandwidth channel high



# **Power Spectral Density**

**Standard:** ANSI C63.10 (2013)

Tested by: EHA

Date: 2 September 2016

Temperature: 22 °C Humidity: 53 %

FCC Rule: 15.247(e) RSS-247 5.2(2)

#### Results:

Table 16: Power spectral density test results

| Channel | PSD dBm/10 kHz | Maximum limit<br>[dBm/3kHz] |
|---------|----------------|-----------------------------|
| Low     | -17.61         |                             |
| Mid     | -18.04         | +8.00                       |
| High    | -16.91         |                             |



Figure 11: Power spectral density channel low





Figure 12: Power spectral density channel mid



Figure 13: Power spectral density channel high



# 99% Occupied Bandwidth

Standard: RSS-GEN (2014)

Tested by: EHA

Date: 2 September 2016

Temperature: 22 °C Humidity: 53 %

#### **RSS-GEN 6.6**

Table 17: 99% occupied bandwidth test results

| Channel | Limit | 99 % BW [MHz] | Result |
|---------|-------|---------------|--------|
| Low     | -     | 1.330427174   | PASS   |
| Mid     | -     | 1.531827130   | PASS   |
| High    | -     | 1.440267492   | PASS   |



Figure 14: 99% OBW channel low





Figure 15: 99% OBW channel mid



Figure 16: 99% OBW channel high



# **TEST EQUIPMENT**

| Equipment                       | Manufacturer              | Туре                     | Inv or serial | Prev Calib               | Next Calib               |
|---------------------------------|---------------------------|--------------------------|---------------|--------------------------|--------------------------|
| MONITORING ANTENNA              | A.H. SYSTEMS              | SAS-200/518              | inv:7873      | -                        | -                        |
| MONITORING<br>SPECTRUM ANALYZER | AGILENT                   | E7405A                   | inv:9746      | 2016-01-07               | 2018-01-07               |
| ANTENNA MAST                    | MATURO                    | TAM 4.0E                 | inv:10181     | -                        | -                        |
| TURNTABLE                       | MATURO                    | DS430<br>UPGRADED        | inv:10182     | -                        | -                        |
| MAST & TURNTABLE CONTROLLER     | MATURO                    | NCD                      | inv:10183     | -                        | -                        |
| PREAMPLIFIER                    | ALC MICROWAWE             | AWB-2018-40-08           | sn:14         | 2016-08-30               | 2017-08-30               |
| PREAMPLIFIER                    | MERCURY SYSTEMS           | ALS1826-41-12            | -             | 2016-09-02               | 2017-09-02               |
| TEST SOFTWARE                   | ROHDE & SCHWARZ           | EMC-32                   | -             | -                        | -                        |
| EMI TEST RECEIVER               | ROHDE & SCHWARZ           | ESU 26                   | inv:8453      | 2016-06-10<br>2017-07-10 | 2017-06-10<br>2018-07-10 |
| SIGNAL ANALYZER                 | ROHDE & SCHWARZ           | FSV40                    | inv:9093      | 2016-06-10               | 2017-06-10               |
| ANTENNA                         | SCHWARZBECK               | VULB 9168                | inv:8911      | 2014-11-04               | 2016-11-04               |
| ANTENNA                         | EMCO                      | 3117                     | inv:7293      | 2016-03-16               | 2018-03-06               |
| ANTENNA                         | EMCO                      | 3160-09                  | inv:7294      | 2016-03-16               | 2017-03-16               |
| ANTENNA                         | ROHDE & SCHWARZ           | HFH2-Z2 ,<br>335.4711.52 | inv:8013      | 2016-08-29               | 2018-08-29               |
| HIGH PASS FILTER                | WAINWRIGHT                | WHKX4.0/18G-<br>10SS     | sn:10         | 2016-01-22               | 2017-01-22               |
| ATTENUATOR 10 dB                | HUBER & SUHNER            | 6610.19.AA               | sn:7          | 2016-02-02               | 2017-02-02               |
| AC POWER SOURCE                 | CALIFORNIA<br>INSTRUMENTS | 5001 iX Series II        | inv:7826      | -                        | -                        |

All used measurement equipment was calibrated (if required).