Act5_RegLogistica

Frida Cano

2023-10-17

Instrucciones

Librería

library(ISLR)

Trabaja con el set de datos Weekly, que forma parte de la librería ISLR. Este set de datos contiene información sobre el rendimiento porcentual semanal del índice bursátil S&P 500 entre los años 1990 y 2010. Se busca predecir el tendimiento (positivo o negativo) dependiendo del comportamiento previo de diversas variables de la bolsa bursátil S&P 500. Encuentra un modelo logístico para encontrar el mejor conjunto de predictores que auxilien a clasificar la dirección de cada observación.s

```
library(tidyverse)
## -- Attaching core tidyverse packages ---
                                                ----- tidyverse 2.0.0 --
## v dplyr
             1.1.3
                      v readr
                                  2.1.4
## v forcats
             1.0.0
                                  1.5.0
                       v stringr
             3.4.4
## v ggplot2
                      v tibble
                                  3.2.1
## v lubridate 1.9.3
                      v tidyr
                                  1.3.0
## v purrr
             1.0.2
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                   masks stats::lag()
```

i Use the conflicted package (http://conflicted.r-lib.org/) to force all conflicts to become error

Base de datos - Weekly

Se cuenta con un set de datos con 9 variables (8 numéricas y 1 categórica que será nuestra variable respuesta: Direction). Las variables Lag son los valores de mercado en semanas anteriores y el valor del día actual (Today). La variable volumen (Volume) se refiere al volumen de acciones

```
head(Weekly)
```

```
##
               Lag2
                     Lag3
                           Lag4
                                 Lag5
                                        Volume Today Direction
          Lag1
## 1 1990 0.816
              1.572 -3.936 -0.229 -3.484 0.1549760 -0.270
                                                        Down
Down
## 3 1990 -2.576 -0.270 0.816 1.572 -3.936 0.1598375
                                                          Uр
         3.514 -2.576 -0.270
                          0.816
                                1.572 0.1616300
                                                          Uр
         0.712 3.514 -2.576 -0.270 0.816 0.1537280
                                                          Uр
## 6 1990 1.178 0.712 3.514 -2.576 -0.270 0.1544440 -1.372
                                                        Down
glimpse(Weekly)
```

Rows: 1,089

```
## Columns: 9
               <dbl> 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, 1990, ~
## $ Year
## $ Lag1
               <dbl> 0.816, -0.270, -2.576, 3.514, 0.712, 1.178, -1.372, 0.807, 0~
               <dbl> 1.572, 0.816, -0.270, -2.576, 3.514, 0.712, 1.178, -1.372, 0~
## $ Lag2
               <dbl> -3.936, 1.572, 0.816, -0.270, -2.576, 3.514, 0.712, 1.178, -~
## $ Lag3
               <dbl> -0.229, -3.936, 1.572, 0.816, -0.270, -2.576, 3.514, 0.712, ~
## $ Lag4
## $ Lag5
               <dbl> -3.484, -0.229, -3.936, 1.572, 0.816, -0.270, -2.576, 3.514,~
               <dbl> 0.1549760, 0.1485740, 0.1598375, 0.1616300, 0.1537280, 0.154~
## $ Volume
## $ Today
               <dbl> -0.270, -2.576, 3.514, 0.712, 1.178, -1.372, 0.807, 0.041, 1~
## $ Direction <fct> Down, Down, Up, Up, Up, Down, Up, Up, Up, Down, Down, Up, Up~
```

Resumen de los datos

summary(Weekly)

```
##
        Year
                       Lag1
                                         Lag2
                                                            Lag3
   Min.
          :1990
                       :-18.1950
                                           :-18.1950
                                                              :-18.1950
                  Min.
                                     Min.
                                                       Min.
                  1st Qu.: -1.1540
                                     1st Qu.: -1.1540
                                                       1st Qu.: -1.1580
   1st Qu.:1995
   Median:2000
                  Median : 0.2410
                                    Median : 0.2410
                                                       Median : 0.2410
##
  Mean
          :2000
                       : 0.1506
                                           : 0.1511
                  Mean
                                    Mean
                                                       Mean
                                                             : 0.1472
   3rd Qu.:2005
                  3rd Qu.: 1.4050
                                     3rd Qu.: 1.4090
                                                       3rd Qu.: 1.4090
                         : 12.0260
##
   Max.
          :2010
                  Max.
                                           : 12.0260
                                                       Max.
                                                              : 12.0260
                                    \mathtt{Max}.
##
        Lag4
                           Lag5
                                            Volume
                                                              Today
##
  \mathtt{Min}.
          :-18.1950
                      Min.
                             :-18.1950
                                        Min.
                                               :0.08747
                                                          Min.
                                                                 :-18.1950
   1st Qu.: -1.1580
                     1st Qu.: -1.1660
                                        1st Qu.:0.33202
                                                          1st Qu.: -1.1540
                                                          Median: 0.2410
## Median: 0.2380
                      Median : 0.2340
                                        Median :1.00268
## Mean
         : 0.1458
                     Mean : 0.1399
                                        Mean
                                               :1.57462
                                                          Mean
                                                                : 0.1499
## 3rd Qu.: 1.4090
                                        3rd Qu.:2.05373
                      3rd Qu.: 1.4050
                                                          3rd Qu.: 1.4050
## Max.
         : 12.0260
                     Max. : 12.0260
                                        Max.
                                               :9.32821
                                                          Max. : 12.0260
##
   Direction
##
   Down: 484
   Up :605
##
##
##
##
##
pairs(Weekly)
```


Modelo logístico

Modelo logístico con todas las variables menos la variable "Today". Calculo de los intervalos de confianza para las β_i . Detección de las variables que influyen y no influyen en el modelo. Interpretación del efecto de la variables en los odds (momios).

#

```
modelo.log.m <- glm(Direction ~ . -Today, data= Weekly, family = binomial)
summary(modelo.log.m)</pre>
```

```
##
## Call:
## glm(formula = Direction ~ . - Today, family = binomial, data = Weekly)
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 17.225822
                         37.890522
                                      0.455
                                               0.6494
                                     -0.448
                                               0.6545
## Year
               -0.008500
                           0.018991
## Lag1
               -0.040688
                           0.026447
                                     -1.538
                                               0.1239
                0.059449
                           0.026970
                                      2.204
                                               0.0275 *
## Lag2
               -0.015478
                           0.026703
                                     -0.580
                                               0.5622
## Lag3
               -0.027316
                           0.026485
                                     -1.031
                                               0.3024
## Lag4
## Lag5
               -0.014022
                           0.026409
                                     -0.531
                                               0.5955
## Volume
                0.003256
                           0.068836
                                      0.047
                                               0.9623
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
##
  (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 1496.2 on 1088
                                       degrees of freedom
##
## Residual deviance: 1486.2 on 1081 degrees of freedom
## AIC: 1502.2
##
## Number of Fisher Scoring iterations: 4
```

```
contrasts(Direction)
##
       Uр
## Down 0
## Up
confint(object = modelo.log.m, level = 0.95)
## Waiting for profiling to be done...
##
                       2.5 %
                                  97.5 %
## (Intercept) -56.985558236 91.66680901
               -0.045809580 0.02869546
## Year
                -0.092972584 0.01093101
## Lag1
## Lag2
                0.007001418 0.11291264
## Lag3
                -0.068140141 0.03671410
## Lag4
                -0.079519582 0.02453326
## Lag5
                -0.066090145 0.03762099
## Volume
                -0.131576309 0.13884038
```

Se visualiza que la varibale $\mathbf{Lag2}$ tiene un p-valor de 0.027, lo que indica que es significativa a un nivel de significancia del 0.05 (5%) (ya que: 0.0275 < 0.05). Por lo tanto consideraremos dicha variable como variable significativa y la utilizaremos para los siguientes ejercicios.

Variables significativas

```
# Gráfico de las variables significativas (boxplot), ejemplo: Lag2):
ggplot(data = Weekly, mapping = aes(x = Direction, y = Lag2)) + geom_boxplot(aes(color = Direction)) +
```



```
## Division de la datos en conjunto de entrenamiento
# Training: observaciones desde 1990 hasta 2008
datos.entrenamiento <- (Year < 2009)
# Test: observaciones de 2009 y 2010
datos.test <- Weekly[!datos.entrenamiento, ]</pre>
# Verifica:
nrow(datos.entrenamiento) + nrow(datos.test)
## integer(0)
# Ajuste del modelo logístico con variables significativas
modelo.log.s <- glm(Direction ~ Lag2, data = Weekly,
family = binomial, subset = datos.entrenamiento)
summary(modelo.log.s)
##
## Call:
## glm(formula = Direction ~ Lag2, family = binomial, data = Weekly,
       subset = datos.entrenamiento)
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 0.20326 0.06428
                                    3.162 0.00157 **
              0.05810
                           0.02870
                                     2.024 0.04298 *
## Lag2
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 1354.7 on 984 degrees of freedom
## Residual deviance: 1350.5 on 983 degrees of freedom
## AIC: 1354.5
##
## Number of Fisher Scoring iterations: 4
```

Representación gráfica del modelo

El modelo devuelve las predicciones del logarítmo de Odds. La predicción se debe convertir en probabilidad. Eso se logra con el comando 'predict' y el 'type="response"'.

```
# Vector con nuevos valores interpolados en el rango del predictor Lag2:
nuevos_puntos <- seq(from = min(Weekly$Lag2), to = max(Weekly$Lag2),
by = 0.5)</pre>
```

Predicción de los nuevos puntos según el modelo con el comando predict() se calcula la probabilidad de que la variable respuesta pertenezca al nivel de referencia (en este caso "Up").

```
predicciones <- predict(modelo.log.s, newdata = data.frame(Lag2 =
nuevos_puntos),se.fit = TRUE, type = "response")</pre>
```

Límites de los intervalos de confianza:

```
# Limites del intervalo de confianza (95%) de las predicciones
CI_inferior <- predicciones$fit - 1.96 * predicciones$se.fit
CI_superior <- predicciones$fit + 1.96 * predicciones$se.fit</pre>
```

```
# Matriz de datos con los nuevos puntos y sus predicciones
datos_curva <- data.frame(Lag2 = nuevos_puntos, probabilidad =
predicciones$fit, CI.inferior = CI_inferior, CI.superior = CI_superior)</pre>
```

Codificacion 0,1 de la variable respuesta direction

```
Weekly$Direction <- ifelse(Weekly$Direction == "Down", yes = 0, no = 1)
```

```
ggplot(Weekly, aes(x = Lag2, y = Direction)) +
geom_point(aes(color = as.factor(Direction)), shape = "I", size = 3) +
geom_line(data = datos_curva, aes(y = probabilidad), color = "firebrick") +
geom_line(data = datos_curva, aes(y = CI.superior), linetype = "dashed") +
geom_line(data = datos_curva, aes(y = CI.inferior), linetype = "dashed") +
labs(title = "Modelo logístico Direction ~ Lag2", y = "P(Direction = Up |
Lag2)", x = "Lag2") +
scale_color_manual(labels = c("Down", "Up"), values = c("blue", "red")) +
guides(color=guide_legend("Direction")) +
theme(plot.title = element_text(hjust = 0.5)) +
theme_bw()
```

Modelo logístico Direction ~ Lag2

Evaluación del modelo

Chi cuadrada: Se evalúa la significancia del modelo con predictores con respecto al modelo nulo ("Residual deviance" vs "Null deviance"). Si valor p es menor que alfa será significativo.

```
anova(modelo.log.s, test ='Chisq')

## Analysis of Deviance Table
##
## Model: binomial, link: logit
```

```
##
## Response: Direction
## Terms added sequentially (first to last)
##
##
##
        Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                           984
                                   1354.7
## Lag2 1
             4.1666
                           983
                                   1350.5 0.04123 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Cálculo de las predicciones correctas así como de los falsos negativos y positivos. Normalmente se usa un
límite de 0.5.
# Cálculo de la probabilidad predicha por el modelo con los datos de test
prob.modelo <- predict(modelo.log.s, newdata = datos.test, type = "response")</pre>
# Vector de elementos "Down"
pred.modelo <- rep("Down", length(prob.modelo))</pre>
# Sustitución de "Down" por "Up" si la p > 0.5
pred.modelo[prob.modelo > 0.5] <- "Up"</pre>
Direction.0910 = Direction[!datos.entrenamiento]
# Matriz de confusión
matriz.confusion <- table(pred.modelo, Direction.0910)</pre>
matriz.confusion
##
              Direction.0910
## pred.modelo Down Up
##
          Down
                  9 5
##
                 34 56
          Up
library(vcd)
## Loading required package: grid
## Attaching package: 'vcd'
## The following object is masked from 'package:ISLR':
##
##
       Hitters
mosaic(matriz.confusion, shade = T, colorize = T,
gp = gpar(fill = matrix(c("green3", "red2", "red2", "green3"), 2, 2)))
```


[1] 0.625

La matriz de confusión muestra el número de casos clasificados como Verdaderos Positivos, Verdaderos Negativos, Falsos Positivos y Falsos Negativos. En este caso vemos que el número de falsos positivos en donde el modelo predice que es \mathbf{Up} cuando realmente es \mathbf{Down} es bastante alto.