

İhsan Doğramacı Bilkent University CS-464

Homework 1

Tuğberk Dikmen 21802480

Question 1)

1.1)

From Box 1, we have a $\frac{2}{3}$ chance of picking a fair blue coin and a $\frac{1}{3}$ chance of picking an unfair yellow coin.

From Box 2, we have a $\frac{1}{2}$ chance of picking a fair blue coin and a $\frac{1}{2}$ chance of picking an unfair red coin.

The probability of getting heads twice in a row (HH) from a fair coin is $(1/2)^2$ and from the unfair yellow and red coins are $(1/4)^2$ and $(1/10)^2$.

- Total probability:

$$P(HH) = \frac{1}{2} * \frac{2}{3} * (1/2)^{2} + \frac{1}{2} * \frac{1}{3} * (1/4)^{2} + \frac{1}{2} * \frac{1}{2} * (1/2)^{2} + \frac{1}{2} * \frac{1}{2} * (1/10)^{2}$$

$$P(HH) = 0.15875$$

1.2)

- Can be solved using Bayes' theorem:

P(Fair|HH) =
$$\frac{P(HH|Fair)*P(Fair)}{P(HH)}$$
P(Fair) = $\frac{1}{2}$ * $\frac{2}{3}$ + $\frac{1}{2}$ * $\frac{1}{2}$
P(HH|Fair) = $(\frac{1}{2})^2$

$$P(Fair|HH) = 0.91864$$

1.3)

- Bayes' theorem:

$$P(Red|HH) = \frac{P(HH|Red)*P(Red)}{P(HH)}$$

$$P(Red) = \frac{1}{2} * \frac{1}{2}$$

$$P(HH|Red) = (1/10)^{2}$$

$$P(Red|HH) = 0.01575$$

Question 2)

2.1)

MLE for μ

- Probability Density Function (PDF) of Normal Distribution:

$$f(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

- Likelihood Function:

$$L(\mu, \sigma) = \Pi i = 1 \text{ to } n f(x_i; \mu, \sigma)$$

- Log-Likelihood Function:

$$log L(\mu, \sigma = \Sigma i = 1 to n f(x_i; \mu, \sigma)$$

- MLE of μ :

Differentiate the log-likelihood with respect to \(\mu\), set to zero and solve:

$$\widehat{\mu} MLE = \frac{1}{n} \Sigma i = 1 \text{ to } n f(x_i)$$

2.2)

MAP Estimate of µ

- Prior Distribution (Exponential) for μ:

$$f(\mu; \lambda) = \lambda e^{-\lambda \mu}$$
 for μ bigger than or equals to 0

- MAP Estimate:

Multiply likelihood by the prior and maximize:

$$\hat{\mu}$$
MAP = argmax μ $L(\mu, \sigma)^* f(\mu; \lambda)$

- Finding MAP:

Involves solving a more complex equation, requiring calculus, considering both the likelihood and the prior distribution.

2.3)

Probability and Likelihood for a New Data Point

- Given:

$$\mu = 1$$
 and $\sigma = 1$

- Probability Density Function (PDF):

$$f(x; 1, 1) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{-(x-1)2}{2\sigma^2}}$$

- Density at $x_{n+1} = 1$:

Approximately 0.399

- Likelihood of $x_{n+1} = 2$:

Approximately 0.242

Question 3)

3.1)

- 1. Class Distribution Percentages:
 - Business: 22.48% in the training set, 24.24% in the test set.
 - Entertainment: 17.03% in the training set, 18.31% in the test set.
 - Politics: 19.12% in the training set, 17.59% in the test set.
 - Sport: 22.60% in the training set, 24.06% in the test set.
 - Tech: 18.76% in the training set, 15.80% in the test set.

Training Set Class Distribution

Training Set Class Distribution

2. Prior Probability of Each Class:

- Business (0): 22.48%

- Entertainment (1): 17.03%

- Politics (2): 19.12%

- Sport (3): 22.60%

- Tech (4): 18.76%

These are the probabilities of a randomly selected document being of each class type.

3. Balance of the Training Set:

- The training set is relatively balanced with each class having a percentage between approximately 17% and 23%. A perfectly balanced set is not essential, but severe imbalance can lead to model bias towards more common classes. The current balance is unlikely to cause significant bias.
- 4. Occurrences of "alien" and "thunder" in 'Tech' News:
- 5. Estimators for the Parameters of the Multinomial Naive Bayes Model:

$$-\theta_{j|y=k} = \frac{T_{j,y=k}}{\sum_{j=1}^{j} to |V| T_{j,y=k}}$$
 estimates the probability of word j in class y=k.

- $\pi_{v=k} = \frac{N_{yk}}{N}$ estimates the prior probability of class y=k.
- $T_{j,y=k}$ is the number of times word j appears in documents of class y=k, including multiple occurrences.
 - N_{yk} is the number of documents in class y=k.
 - N is the total number of documents.

Unsmoothed Multinomial Naive Bayes Accuracy: 0.242					
Confusion Matrix Predicted (COLUMN) Actual (ROW)	0				
0	135				
1	102				
2 3	98 134				
4	88				
Smoothed Multinomial Naive Bayes Accuracy: 0.975					
Confusion Matrix Predicted (COLUMN) Actual (ROW)	0	1	2	3	4
0	131	0	2	0	2
1	0	96	1	0	5
2 3	1 0	0 0	96 1	0 133	1 0
4	1	0	ō	0	87
Bernoulli Naive Bayes Accuracy: 0.966					
Confusion Matrix Predicted (COLUMN) Actual (ROW)	0	1	2	3	4
0	132		2	0	1
1	3	96	1	0	2
2 3	4 0	0 0	94 0	0 134	0 0
4	4	2	0	134	82