Parcial 1 Analisis Numérico

Cristian Camilo Contreras Borja

Punto1

- En cada uno de los siguientes ejercicios implemente en R o Python el algoritmo necesario que permita calular el número mínimo de operaciones requeridas para resolver el problema, una gráfica de n versus numero de operaciones y evaluar el error relativo, en cada caso
- c) Algoritmo que le permita sumar los primeros números naturales al cuadrado. Imprima varias pruebas, para diferentes valores de n y evalue el error relativo porcentual para cuando n = 4,5, 10 y el error en cada valor es de 0.1

```
#@author: cristian
def funcion(n):
   iter=0
  error=0.1
  result=0
  suma=0
  while(iter<=n):
        num=iter*iter
        suma=suma+num
        iter=iter+1
  print("N(equivale a la cantidad de naturales a sumar):",n)
  print("Solucion", suma)
  errorrela=(error/suma)*100
  print("Error Relativo", errorrela)
  print("iteraciones",iter)
funcion(10)
```

```
Error Relativo 0.333333333333333337
iteraciones 5

N(equivale a la cantidad de naturales a sumar): 5
Solucion 55
Error Relativo 0.181818181818182
iteraciones 6

N(equivale a la cantidad de naturales a sumar): 10
Solucion 385
Error Relativo 0.025974025974025976
iteraciones 11
```

N(equivale a la cantidad de naturales a sumar): 4

Solucion 30

• Grafica n vs iteraciones

			N	Iteraciones		
			5	5 6		
			10	11		
	N vs Iteraciones					
	12					
nes	10					
teraciones	8					
	6					
	4					
	2					
	0 0	2	4	N 6	8 10	12

Punto 2

- 2. Para cada uno de los siguientes ejercicios: utilice el algoritmo señalado para encontrar la intersección entre $f(x)=x^2$ y g(x)=1+cosx, en el intervalo [1,2] con $E<10^{-9}$, determinar el número de iteraciones realizadas,una grafica que evidencie el tipo de convergencia del método, debe expresarla en notación O()
 - Cogido(Python)

```
#Cristian Contreras
import math
import decimal
import matplotlib.pyplot as plot
x = []
y = []
def funcion(fun,xn,xn1,tol):
    it = 0
    error = 0.1
    x0=xn
    x1=xn1
    while(it<100 and error>tol):
        if((fun(x1)-fun(x0))==0):
            break
        x2 = x1 - fun(x1)*((x1-x0)/(fun(x1)-fun(x0)))
        error = abs((fun(x2)-fun(x1)/fun(x2)))
        y.append(error)
        it= it+1
        x.append(it)
        x0=x1
        x1=x2
        print(x2,error)
    print("Respuesta Final:",fun(x2),error)
def fun(x):
    vcos = math.cos(x)
    return x**2 - vcos
funcion(fun, 2.0, 1.0, 10**-9)
     0.8838105387976174 2.9821681254759715
     0.8292379144270658 12.03210784441618
     0.8242966689403904 31.150041659095052
     0.8241327825561032 349.53861203451606
     0.8241323123459798 10821.020225786595
     0.8241323123025224 932473.0
     0.8241323123025224 1.0
     Respuesta Final: -1.1102230246251565e-16 1.0
```

Se realizaron 7 iteraciones.

• Grafica error vs iteraciones

La convergencia del método a infinito en caso de no encontrar el resultado pero al momento de encontrarlo vuelve a converger a 0.