Graph Theory winter term 2013

Problem sheet 3

Due date: **November 13, 12:00 am**. Discussion of solutions: November 15.

Let G = (V, E) be a graph. Then we define:

- The diameter of G is the length of a longest shortest path in G (counted by number of edges). That is, if $\operatorname{dist}(u,v)$ denotes the distance of two vertices u and v in G, then the diameter of G is given by $\max_{u,v\in V}\operatorname{dist}(u,v)$. The diameter of a disconnected graph is defined to be infinity.
- The graph G is called Hamiltonian if there exists a cycle in G that contains all vertices of G. Such a cycle is then called a Hamiltonian cycle.
- The girth of G is the length of a shortest cycle in G. The girth of an acyclic graph is defined to be infinity.
- The chromatic index of G, denoted by $\chi'(G)$, is the minimum number of colors needed to color the edges of G so that no two edges of the same color have a common endpoint. Such colorings are also called *proper edge-colorings of* G.

Problem 9. 5 points

Find order, size, girth and diameter of the following graphs and figure out whether they are Hamiltonian: Q_n for all integer $n \ge 1$, $K_{m,n}$ for all integer $m, n \ge 1$, Petersen's graph. Justify your answer.

hypercube Q_3

complete bipartite graph $K_{4,3}$

Petersen graph

Problem 10. 5 points

For a natural number $n \geq 2$ let G be the graph of order 2n + 1 obtained from $K_{n,n}$ by subdividing an edge by a vertex. Show that $\chi'(G) = \Delta(G) + 1 = n + 1$ but $\chi'(G - e) = \Delta(G - e) = n$ for every edge e of G.

Problem 11. 5 points

For each integer k > 1 construct a k-regular graph with no 1-factor. Justify your answer.

Problem 12. 5 points

Let G be a graph on 2n vertices with all degrees at least n. Prove that G has a 1-factor.

Open Problem.

Is every Eulerian graph on n vertices the edge-disjoint union of at most $\frac{1}{2}(n-1)$ cycles?