Introducing the Greenhouse Effect

EES 2110
Introduction to Climate Change
Jonathan Gilligan

Class #4: Wednesday, January 18 2023

Basic Principles from Friday

- Steady temperature means:
 - \(\text{Heat}_{\text{out}} = \text{Heat}_{\text{in}}\)
- Heat in:
 - Sunlight (shortwave)
 - Does not depend on temperature
- Heat out:
 - Emitted radiation (longwave)
 - Depends on temperature
- If \(\text{Heat}_{\text{out}} \neq \text{Heat}_{\text{in}}\),
 - Temperature rises or falls until \[\text{Heat}_{\text{out}} = \text{Heat}_{\text{in}}\]

Temperature of the Earth

Bare-Rock Model: No Atmosphere

A subtle point...

- Emissivity \(\varepsilon\) is fraction absorbed
- Albedo \(\alpha\) is fraction reflected
- For an opaque surface, \(\alpha + \varepsilon = 1\)
- So how is \(\alpha = 0.30\) and \(\varepsilon = 1.00\)?
- \(\alpha\) & \(\varepsilon\) are different for shortwave & longwave.
 - Shortwave: \(\alpha = 0.30\), \(\varepsilon = 0.70\)
 - Longwave: \(\alpha = 0.00\), \(\varepsilon = 1.00\)

Temperature of Earth (Bare Rock Model)

- 1. $(F_{\text{out}}) = F_{\text{in}}) (Heat flux balances)$
- 2. On average,

```
\Gamma_{\star} = \frac{(1 - \alpha)}{4} I_{\star}
```

- Why the factor of 4 in the denominator?
 - It's a geometric factor for the average intensity of sunlight.
- 3. $\{F_{\text{out}}\} = \text{varepsilon }$
- 4. Solve for \(T\): \[\begin{align*} I_{\text{solar}} &= 1350~\mathrm{W/m^2}\\ \alpha &= 0.30\\ \varepsilon &= 1\\ \sigma &= 5.67 \times \[\arge T = \sqrt[4] (\frac{1}{\text{solar}}) \ \text{\solar}\\ \t

Terrestrial Planets

	Earth	Mars	V
Distance from sun	1 AU	1.5 AU	0.
\(1 / \text{Distance}^2\)	1.00	0.44	
Solar constant	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	(2604~
Albedo	0.30	0.17	
\(T_{\text{bare rock}}\)	\(254~\mathrm{K}~(-2^\circ\mathrm{F})\)	\(216~\mathrm{K}~(-70^\circ\mathrm{F})\)	\(240~\n -27^\circ\
\ (T_{\text{surface}}\)	\(288~\mathrm{K}~(59^\circ\mathrm{F})\)	\(240~\mathrm{K}~(-28^\circ\mathrm{F})\)	\(700~\n 800^\circ\
\(\Delta_T\)	\(34~\mathrm{K}~(61^\circ\mathrm{F})\)	\(24~\mathrm{K}~(42^\circ\mathrm{F})\)	\(460~\n 828^\circ\

Oops! We forgot the atmosphere!

Does Earth look like a blackbody?

One-Layer Model of the Greenhouse Effect

Layer Model

Atmosphere Make simplifying assumptions:

- Perfectly transparent to shortwave light
 - Like a pane of glass: \(\varepsilon = 0\)
- Perfectly opaque to longwave light
 - Like a blackbody: \(\varepsilon = 1\)

Anything that transmits most shortwave and absorbs most longwave is a greenhouse gas

Balance of energy for earth system

- Always start analyzing from the top down
 - Look at energy balance at the boundary to space, above the top of the atmosphere.

Balance of energy for earth system

- At top of atmosphere: \(F_{\text{out}} = F_{\text{in}}\)
 \[\begin{align*} I_{\text{up, atmos}} &= I_{\text{in}} \quad \small{\text{(intensity of absorbed sunlight)}}\\ \varepsilon \sigma T_{\text{atmos}}^4 &= \frac{(1 \alpha) I_{\text{solar}}}{4} \end{align*} \]
- Aha! We can find \(T_{\text{atmos}}\)!
 \[T_{\text{atmos}} = \sqrt[4]{\frac{(1-\alpha)\,I_{\text{solar}}}}
 {4\varepsilon\sigma}} \]

Balance of energy for earth system

```
\[\large T_{\text{atmos}} = \sqrt[4]{\frac{(1-\alpha)\,I_{\text{solar}}} {4\varepsilon\sigma}}\]
```

- Just like bare rock model!
- We call this the **skin temperature**

The Atmosphere as Earth's Skin

- The atmosphere is like a thin skin around the planet
 - Proportionally, it's like the skin on a peach
- The whole atmosphere emits longwave radiation, at every altitude
 - For simplicity, we sometimes pretend that all the radiation comes from a single thin layer, and call this the "skin".


```
Atmosphere: \(\text{Heat}_{\text{in}} = \text{Heat}_{\text{out}}\)
```

\[\begin{align*} \color{red}{I_{\text{up,ground}}} &= \color{blue}{I_{\text{up,atm}}} + \color{darkgreen} \[I_{\text{down,atm}}}\\ \end{align*} \]

Atmosphere: heat in = heat out.

\[\begin{align*} \color{red}{I_{\text{up,ground}}} &=
\color{blue}{I_{\text{up,atm}}} + \color{darkgreen}
{I_{\text{down,atm}}}\\ \color{blue}{I_{\text{up,atm}}} &=
\color{darkgreen}{I_{\text{down,atm}}} = \varepsilon
\sigma \color{darkcyan}{T^4_{\text{atm}}}\\ \end{align*} \]

Atmosphere: heat in = heat out.

\[\begin{align*} \color{red}{I_{\text{up,ground}}} &=
\color{blue}{I_{\text{up,atm}}} + \color{darkgreen}
{I_{\text{down,atm}}}\\ \color{blue}{I_{\text{up,atm}}} &=
\color{darkgreen}{I_{\text{down,atm}}} = \varepsilon
\sigma \color{darkcyan}{T^4_{\text{atm}}}\\ \color{red}
{I_{\text{up,ground}}} &= \varepsilon \sigma \color{red}
{T^4_{\text{ground}}}\\ \end{align*} \]

Atmosphere: heat in = heat out.

\[\begin{align*} \color{red}{I_{\text{up,ground}}} &= \color{blue}{I_{\text{up,atm}}} + \color{darkgreen} \{I_{\text{down,atm}}}\\ \color{blue}{I_{\text{up,atm}}} &= \color{darkgreen}{I_{\text{down,atm}}} = \varepsilon \sigma \color{darkcyan}{T^4_{\text{atm}}}\\ \color{red} \{I_{\text{ground}}}\\ \varepsilon \sigma \color{red} \{T^4_{\text{ground}}}\\ \varepsilon \sigma \color{red} \{T^4_{\text{ground}}}\\ \varepsilon \sigma \color{red} \\ \text{ground}}\\ \varepsilon \sigma \color{red} \\ \text{ground}\}\\ \\ \varepsilon \sigma \color{darkcyan}\{T^4_{\text{atm}}\}\\ \\ \end{align*} \\]

Boundary to space $\frac{(1-\alpha)\,I_{\rm solar}}{4}$ $I_{\rm up, \, atmosphere}$ $I_{\rm down, \, atmosphere}$ $I_{\rm up, \, ground}$ Earth

Principles:

- Start at the top.
- For each layer, \(\text{Heat}_{\text{out, up}} = \text{Heat}_{\text{out, down}}\)
- Each layer balances \(\text{Heat}_{\text{in, total}} = \text{Heat}_{\text{out, total}}\)
 - Each layer has uniform temperature:
 - The top and bottom of the layer have the same temperature.
 - So the intensity emitted from the top and bottom is the same.
- The bottom layer of the atmosphere tells us \(\text{Heat}_{\text{up, qround}}\)
- Get ground temperature from \(\text{Heat}_{\text{up, ground}}\)

Finish the problem

```
\[\begin{align} \varepsilon \sigma \color{red}
\{T_{\text{ground}}^4\} &= 2 \varepsilon \sigma
\color{\darkcyan}{\text{\atm}}^4\\ \color{\red}
\{T_{\text{ground}}^4\} &= 2 \color{\darkcyan}
\{T_{\text{\atm}}^4\\ \color{\darkcyan}\}
\{T_{\text{\atm}}^4\\ \color{\red}{\text{\ground}}\} &= \sqrt[4]\{2\\, \color{\darkcyan}{\text{\atm}}\\ &= 1.19
\\color{\darkcyan}{\text{\atm}}\ \end{\align} \]
```

- Skin temp: \({\color{darkcyan}T_{\text{atm}}} = {\color{darkcyan}T_{\text{skin}}} = {\color{darkcyan}T_{\text{bare rock}}} = {\color{darkcyan}254~K}\)
- Ground temp (1-layer): \({\color{red}T_{\text{ground}}} = \sqrt[4]{2} {\color{darkcyan}T_{\text{atm}}} = {\color{red}302~K}\)

Note: These numbers are slightly different from what's in the book. Don't worry about that.

1-Layer Model Summary

- When shortwave radiation hits surface:
 - Fraction \(\alpha\) is *reflected*.
 - Fraction \(1 \alpha\) is absorbed.
- When **longwave radiation** hits surface or layer of atmosphere:
 - 100% is *absorbed*.
- When radiation is absorbed:
 - It transforms from radiative energy to thermal energy.
 - It stops behaving like *radiation*.
 - It becomes *vibrations of the molecules* in the dirt, water, or atmosphere.
- Separately from radiation being absorbed:
 - **Thermal radiation** is emitted from hot objects.
- Greenhouse effect is not longwave radiation **reflecting** off atmosphere
 - Longwave radiation is absorbed by atmosphere
 - Radiation changes into thermal energy in air molecules.
 - Air molecules get *hotter*.
 - Later, air molecules give off thermal radiation
 - This radiation is *different* to the radiation they absorbed.

Solving Layer Model Problems

General Principles:

Start at the top and work down:

- 1. Balance budget at boundary to space
 - Get "skin temperature" (top layer)
- 2. Balance budget at top layer of atmosphere
 - Get temp. of next layer down (2nd from top)
- 3. Balance budget at next layer of atmosphere
 - Get temp. of next layer down (3rd from top)
- 4. ...
- 5. Balance budget at bottom layer of atmosphere
 - This gives surface (ground) temperature.

As long as the albedo and the solar constant don't change, **the skin temperature is always the same** for all models: 254 K.

— *Understanding the Forecast*, p. 25.

"Balance the Budget" \(\text{Heat}_{\text{in}} = \text{Heat}_{\text{out}}\)

- Nature balances the budget automatically.
- We use this fact to find the ground temperature.
- If you know that \(\text{Heat}_{\text{in}} = \text{Heat}_{\text{out}}\), you can figure out the intensities you don't know.
- If you know the intensity of heat going out of something, you know its temperature.

Terrestrial Planets

Earth, Mars, Venus

	Earth	Mars	
\(\text{Solar constant}\)	\	\	
	$(1350\sim \mathbb{W}/\mathbb{W}^{1})$	$(600~\mathrm{mathrm}{W}/\mathrm{mathrm}{m}^2)$	(2604~\mathrr
\(\text{Albedo}\)	\(0.30\)	\(0.17\)	
\(T_{\text{radiative}}\)	\(254~\mathrm{K}\)	\(216~\mathrm{K}\)	\(240~
\	\(288~\mathrm{K}\)	\(240~\mathrm{K}\)	\(700~
(\text{Actual}~T_{\text{surface}}\)			
One-Layer \(T_{\text{surface}}\)	\(302~\mathrm{K}\)	\(257~\mathrm{K}\)	\(286~

Vocabulary note:

- "radiative temperature"
- "skin temperature"
- "bare rock temperature"

all mean the same thing.

Earth, Mars, Venus

	Earth	Mars	
\(\text{Solar constant}\)	\	\	
	(1350~\mathrm{W}/\mathrm{m}^2\)	(600~\mathrm{W}/\mathrm{m}^2\)	(26
\(\text{Albedo}\)	\(0.30\)	\(0.17\)	
\(T_{\text{radiative}}\)	\(254~\mathrm{K}\)	\(216~\mathrm{K}\)	
\	\(288~\mathrm{K}\)	\(240~\mathrm{K}\)	
(\text{Actual}~T_{\text{surface}}\)			
One-Layer \(T_{\text{surface}}\)	\(302~\mathrm{K}\)	\(257~\mathrm{K}\)	
Difference	\(14~\mathrm{K}\)	\(17~\mathrm{K}\)	

One-layer model works pretty well for Earth.

Slightly worse for Mars

Terribly for Venus.

Earth, Mars, Venus

	Earth	Mars	
\(\text{Solar constant}\)	\	\	
	(1350~\mathrm{W}/\mathrm{m}^2\)	(600~\mathrm{W}/\mathrm{m}^2\)	(26
\(\text{Albedo}\)	\(0.30\)	\(0.17\)	
\(T_{\text{radiative}}\)	\(254~\mathrm{K}\)	\(216~\mathrm{K}\)	
\	\(288~\mathrm{K}\)	\(240~\mathrm{K}\)	
(\text{Actual}~T_{\text{surface}}\)			
One-Layer \(T_{\text{surface}}\)	\(302~\mathrm{K}\)	\(257~\mathrm{K}\)	
Difference	\(14~\mathrm{K}\)	\(17~\mathrm{K}\)	
Atmospheric pressure	\(1013~\text{mb}\)	\(6~\text{mb}\)	

1013 mb is Earth's average air pressure at sea-level

- 1-layer model: The atmosphere is like a thin layer that absorbs 100% of longwave radiation.
- Not quite true for Earth. Some longwave radiation gets through to space.
- Mars's atmosphere is so thin, it's less opaque than Earth's.
- Venus's atmosphere is so thick, it's like many layers.