THE LEVINSON-DURBIN ALGORITHM

The Levinson-Durbin algorithm is an order-recursive method for determining the solution to the set of linear equations

$$\mathbf{\Phi}_{\rho}\mathbf{a}_{\rho} = \mathbf{\Phi}_{\rho} \tag{A-1}$$

where Φ_p is a $p \times p$ Toeplitz matrix, \mathbf{a}_p is the vector of predictor coefficients expressed as

$$\mathbf{a}_p' = [a_{p1} \quad a_{p2} \quad \dots \quad a_{pp}]$$

and ϕ_p is a p-dimensional vector with elements

$$\mathbf{\phi}_p' = [\boldsymbol{\phi}(1) \quad \boldsymbol{\phi}(2) \quad \dots \quad \boldsymbol{\phi}(p)]$$

For a first-order (p = 1) predictor, we have the solution

$$\phi(0)a_{11} = \phi(1)$$

$$a_{11} = \phi(1)/\phi(0)$$
(A-2)

The residual mean square error (MSE) for the first-order predictor is

$$\mathcal{E}_1 = \phi(0) - a_{11}\phi(1)$$

$$= \phi(0) - a_{11}^2\phi(0)$$

$$= \phi(0)(1 - a_{11}^2)$$
(A-3)

In general, we may express the solution for the coefficients of an mth-order

predictor in terms of the coefficients of the (m-1)th-order predictor. Thus, we express \mathbf{a}_m as the sum of two vectors, namely,

$$\mathbf{a}_{m} = \begin{bmatrix} a_{m1} \\ a_{m2} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{m-1} \\ 0 \end{bmatrix} + \begin{bmatrix} \mathbf{d}_{m-1} \\ k_{m} \end{bmatrix}$$
(A-4)

where the vector \mathbf{d}_{m+1} and the scalar k_m are to be determined. Also, $\mathbf{\Phi}_m$ may be expressed as

$$\mathbf{\Phi}_{m} = \begin{bmatrix} \mathbf{\Phi}_{m-1} & \mathbf{\Phi}'_{m-1} \\ \mathbf{\Phi}'_{m-1} & \boldsymbol{\phi}(0) \end{bmatrix} \tag{A-5}$$

where ϕ'_{m-1} is just the vector ϕ_{m-1} in reverse order. Now

$$\left[\frac{\mathbf{\Phi}_{m-1} : \mathbf{\phi}'_{m-1}}{\mathbf{\phi}'_{m-1} : \mathbf{\phi}(0)}\right] \left(\left[\frac{\mathbf{a}_{m-1}}{0}\right] + \left[\frac{\mathbf{d}_{m-1}}{k_m}\right]\right) = \left[\frac{\mathbf{\phi}_{m-1}}{\mathbf{\phi}(m)}\right]$$
(A-6)

From (A-6), we obtain two equations. The first is the matrix equation

$$\mathbf{\Phi}_{m-1}\mathbf{a}_{m-1} + \mathbf{\Phi}_{m-1}\mathbf{d}_{m-1} + k_m \mathbf{\Phi}'_{m-1} = \mathbf{\Phi}_{m-1}$$
 (A-7)

But $\Phi_{m-1}\mathbf{a}_{m-1} = \Phi_{m-1}$. Hence, (A-7) simplifies to

$$\mathbf{\Phi}_{m-1}\mathbf{d}_{m-1} + k_m \mathbf{\Phi}_{m-1}^r = \mathbf{0}$$
 (A-8)

This equation has the solution

$$\mathbf{d}_{m-1} = -k_m \mathbf{\Phi}_{m-1}^{-1} \mathbf{\phi}_{m-1}^{\prime} \tag{A-9}$$

But ϕ_{m-1}^r is just ϕ_{m-1} in reverse order. Hence, the solution in (A-9) is simply \mathbf{a}_{m-1} in reverse order multiplied by $-k_m$. That is,

$$\mathbf{d}_{m-1} = -k_m \begin{bmatrix} a_{m-1,m-1} \\ a_{m-1,m-2} \\ \vdots \\ a_{m-1-1} \end{bmatrix}$$
(A-10)

The second equation obtained from (A-6) is the scalar equation

$$\mathbf{\Phi}_{m-1}^{\prime} \mathbf{a}_{m-1} + \mathbf{\Phi}_{m-1}^{\prime} \mathbf{d}_{m-1} + \phi(0) k_m = \phi(m)$$
 (A-11)

We eliminate \mathbf{d}_{m-1} from (A-11) by use of (A-10). The resulting equation gives us k_m . That is,

$$k_{m} = \frac{\phi(m) - \phi_{m-1}^{r'} \mathbf{a}_{m-1}}{\phi(0) - \phi_{m-1}^{r'} \Phi_{m-1}^{-1} \phi_{m-1}^{r'}}$$

$$= \frac{\phi(m) - \phi_{m-1}^{r'} \mathbf{a}_{m-1}}{\phi(0) - \mathbf{a}_{m-1}^{r} \phi_{m-1}}$$

$$= \frac{\phi(m) - \phi_{m-1}^{r'} \mathbf{a}_{m-1}}{\mathscr{E}_{m-1}}$$
(A-12)

where \mathscr{E}_{m+1} is the residual MSE given as

$$\mathscr{E}_{m-1} = \phi(0) - \mathbf{a}'_{m-1} \mathbf{\phi}_{m-1} \tag{A-13}$$

By substituting (A-10) for \mathbf{d}_{m-1} in (A-4), we obtain the order-recursive relation

$$a_{mk} = a_{m+1,k} - k_m a_{m-1,m-k}, \quad k = 1, 2, ..., m-1, \quad m = 1, 2, ..., p$$
 (A-14)

and

$$a_{mm} = k_m$$

The minimum MSE may also be computed recursively. We have

$$\mathscr{E}_m = \phi(0) - \sum_{k=1}^m a_{nk} \phi(k)$$
 (A-15)

Using (A-14) in (A-15), we obtain

$$\mathscr{E}_{m} = \phi(0) - \sum_{k=1}^{m-1} a_{m-1,k} \phi(k) - a_{mm} \left[\phi(m) - \sum_{k=1}^{m-1} a_{m-1,k,m-k} \phi(k) \right]$$
 (A-16)

But the term in square brackets in (A-16) is just the numerator of k_m in (A-12). Hence,

$$\mathcal{E}_{m} = \mathcal{E}_{m-1} - a_{mm}^{2} \mathcal{E}_{m-1}$$

$$= \mathcal{E}_{m-1} (1 - a_{mm}^{2})$$
(A-17)

ERROR PROBABILITY FOR MULTICHANNEL BINARY SIGNALS

In multichannel communication systems that employ binary signaling for transmitting information over the AWGN channel, the decision variable at the detector can be expressed as a special case of the general quadratic form

$$D = \sum_{k=1}^{L} (A|X_k|^2 + B|Y_k|^2 + CX_kY_k^* + C^*X_k^*Y_k)$$
 (B-1)

in complex-valued gaussian random variables. A, B, and C are constants; X_k and Y_k are a pair of correlated complex-valued gaussian random variables. For the channels considered, the L pairs $\{X_k, Y_k\}$ are mutually statistically independent and identically distributed.

The probability of error is the probability that D < 0. This probability is evaluated below.

The computation begins with the characteristic function, denoted by $\psi_D(jv)$, of the general quadratic form. The probability that D < 0, denoted here as the probability of error P_b , is

$$P_{\nu} = P(D < 0) = \int_{-\infty}^{0} p(D) dD$$
 (B-2)

where p(D), the probability density function of D, is related to $\psi_D(jv)$ by the Fourier transform, i.e.,

$$p(D) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi_D(jv) e^{-ivD} dv$$

Hence,

$$P_{b} = \int_{-\infty}^{0} dD \, \frac{1}{2\pi} \int_{-\infty}^{\infty} \psi_{D}(jv) e^{-jvD} \, dv$$
 (B-3)

Let us interchange the order of integration and carry out first the integration with respect to D. The result is

$$P_b = -\frac{1}{2\pi i} \int_{-\infty + j\epsilon}^{\infty + j\epsilon} \frac{\psi_D(jv)}{v} dv$$
 (B-4)

where a small positive number ε has been inserted in order to move the path of integration away from the singularity at v = 0 and which must be positive in order to allow for the interchange in the order of integration.

Since D is the sum of statistically independent random variables, the characteristic function of D factors into a product of L characteristic functions, with each function corresponding to the individual random variables d_k , where

$$d_k = A |X_k|^2 + B |Y_k|^2 + CX_k Y_k^* + C^* X_k^* Y_k$$

The characteristic function of d_i is

$$\phi_{d_k}(jv) = \frac{v_1 v_2}{(v + jv_1)(v - jv_2)} \exp\left[\frac{v_1 v_2(-v^2 \alpha_{1k} + jv\alpha_{2k})}{(v + jv_1)(v - jv_2)}\right]$$
(B-5)

where the parameters v_1 , v_2 , α_{1k} , and α_{2k} depend on the means \bar{X}_k and \bar{Y}_k and the second (central) moments μ_{xx} , μ_{yy} , and μ_{xy} of the complex-valued gaussian variables X_k and Y_k through the following definitions ($|C|^2 - AB > 0$):

$$v_{1} = \sqrt{w^{2} + \frac{1}{4(\mu_{xx}\mu_{yy} - |\mu_{xy}|^{2})(|C|^{2} - AB)}} - w$$

$$v_{2} = \sqrt{w^{2} + \frac{1}{4(\mu_{xx}\mu_{yy} - |\mu_{xy}|^{2})(|C|^{2} - AB)}} + w$$

$$w = \frac{A\mu_{xx} + B\mu_{yy} + C\mu_{xy}^{*} + C^{*}\mu_{xy}}{4(\mu_{xx}\mu_{yy} - |\mu_{xy}|^{2})(|C|^{2} - AB)}$$

$$\alpha_{1k} = 2(|C|^{2} - AB)(|\tilde{X}_{k}|^{2}\mu_{yy} + |\tilde{Y}_{k}|^{2}\mu_{xx} - \tilde{X}_{k}^{*}\tilde{Y}_{k}\mu_{xy} - \tilde{X}_{k}\tilde{Y}_{k}^{*}\mu_{xy}^{*})$$

$$\alpha_{2k} = A|\tilde{X}_{k}|^{2} + B|\tilde{Y}_{k}|^{2} + C\tilde{X}_{k}^{*}\tilde{Y}_{k}^{*} + C^{*}\tilde{X}_{k}\tilde{Y}_{k}^{*}$$

$$\mu_{xy} = \frac{1}{2}E[(X_{k} - \tilde{X}_{k})(Y_{k} - \tilde{Y}_{k})^{*}]$$
(B-6)

Now, as a result of the independence of the random variables d_k , the characteristic function of D is

$$\psi_{D}(jv) = \prod_{k=1}^{L} \psi_{d_{k}}(jv)$$

$$\psi_{D}(jv) = \frac{(v_{1}v_{2})^{L}}{(v + jv_{1})^{L}(v - jv_{2})^{L}} \exp\left[\frac{v_{1}v_{2}(jv\alpha_{2} - v^{2}\alpha_{1})}{(v + jv_{1})(v - jv_{2})}\right]$$
(B-7)

where

$$\alpha_1 = \sum_{k=1}^{L} \alpha_{1k}, \quad \alpha_2 = \sum_{k=1}^{L} \alpha_{2k}$$
 (B-8)

The result (B-7) is substituted for $\psi_D(jv)$ in (B-4), and we obtain

$$P_{b} = -\frac{(v_{1}v_{2})^{L}}{2\pi j} \int_{-\infty+\mu}^{\infty+\mu} \frac{dv}{v(v+jv_{1})^{L}(v-jv_{2})^{L}} \exp\left[\frac{v_{1}v_{2}(jv\alpha_{2}-v^{2}\alpha_{1})}{(v+jv_{1})(v-jv_{2})}\right]$$
(B-9)

This integral is evaluated as follows.

The first step is to express the exponential function in the form

$$\exp\left(-A_1 + \frac{jA_2}{v + jv_1} - \frac{jA_3}{v - jv_2}\right)$$

where one can easily verify that the constants A_1 , A_2 , and A_3 are given as

$$A_{1} = \alpha_{1}v_{1}v_{2}$$

$$A_{2} = \frac{v_{1}^{2}v_{2}}{v_{1} + v_{2}}(\alpha_{1}v_{1} + \alpha_{2})$$

$$A_{3} = \frac{v_{1}v_{2}^{2}}{v_{1} + v_{2}}(\alpha_{1}v_{2} - \alpha_{2})$$
(B-10)

Second, a conformal transformation is made from the ν plane onto the p plane via the change in variable

$$p = -\frac{v_1}{v_2} \frac{v - jv_2}{v + jv_1}$$
 (B-11)

In the p plane, the integral given by (B-9) becomes

$$P_b = \frac{\exp\left[v_1 v_2 (-2\alpha v_1 v_2 + \alpha_2 v_1 - \alpha_2 v_2)/(v_1 + v_2)^2\right]}{(1 + v_2/v_1)^{2L-1}} \frac{1}{2\pi i} \int_{\Gamma} f(p) dp$$
 (B-12)

where

$$f(p) = \frac{\left[1 + (v_2/v_1)p\right]^{2L-1}}{p^L(1-p)} \exp\left[\frac{A_2(v_2/v_1)}{v_1 + v_2}p + \frac{A_3(v_1/v_2)}{v_1 + v_2}\frac{1}{p}\right]$$
(B-13)

and Γ is a circular contour of radius less than unity that encloses the origin. The third step is to evaluate the integral

$$\frac{1}{2\pi j} \int_{\Gamma} f(p) dp = \frac{1}{2\pi j} \int_{\Gamma} \frac{(1 + (v_2/v_1)p)^{2L-1}}{p^L (1-p)} \times \exp\left[\frac{A_2(v_2/v_1)}{v_1 + v_2}p + \frac{A_3(v_1/v_2)}{v_1 + v_2}\frac{1}{p}\right] dp \tag{B-14}$$

In order to facilitate subsequent manipulations, the constants $a \ge 0$ and $b \ge 0$ are introduced and defined as follows:

$$\frac{1}{2}a^2 = \frac{A_3(v_1/v_2)}{v_1 + v_2}, \qquad \frac{1}{2}b^2 = \frac{A_2(v_2/v_1)}{v_1 + v_2}$$
(B-15)

Let us also expand the function $[1 + (v_2/v_1)p]^{2L-1}$ as a binomial series. As a result, we obtain

$$\frac{1}{2\pi i} \int_{\Gamma} f(p) dp = \sum_{k=0}^{2L-1} {2L-1 \choose k} \left(\frac{v_2}{v_1}\right)^k \times \frac{1}{2\pi i} \int_{\Gamma} \frac{p^k}{p^L (1-p)} \exp\left(\frac{\frac{1}{2}a^2}{p} + \frac{1}{2}b^2p\right) dp \tag{B-16}$$

The contour integral given in (B-16) is one representation of the Bessel function. It can be solved by making use of the relations

$$I_{n}(ab) = \begin{cases} \frac{1}{2\pi j} \left(\frac{a}{b}\right)^{n} \int_{\Gamma} \frac{1}{p^{n+1}} \exp\left(\frac{\frac{1}{2}a^{2}}{p} + \frac{1}{2}b^{2}p\right) dp \\ \frac{1}{2\pi j} \left(\frac{b}{a}\right)^{n} \int_{\Gamma} p^{n-1} \exp\left(\frac{\frac{1}{2}a^{2}}{p} + \frac{1}{2}b^{2}p\right) dp \end{cases}$$

where $I_n(x)$ is the *n*th order modified Bessel function of the first kind and the series representation of Marcum's Q function in terms of Bessel functions, i.e.,

$$Q_1(a,b) = \exp\left[-\frac{1}{2}(a^2+b^2)\right] + \sum_{n=0}^{\infty} \left(\frac{a}{b}\right)^n I_n(ab)$$

First, consider the case $0 \le k \le L - 2$ in (B-16). In this case, the resulting contour integral can be written in the form

$$\frac{1}{2\pi j} \int_{\Gamma} \frac{1}{p^{L-k}(1-p)} \exp\left(\frac{\frac{1}{2}a^2}{p} + \frac{1}{2}b^2p\right) dp = Q_1(a,b) \exp\left[\frac{1}{2}(a^2+b^2)\right] + \sum_{n=1}^{L-1-k} \left(\frac{b}{a}\right)^n I_n(ab)$$
(B-17)

Next, consider the term k = L - 1. The resulting contour integral can be expressed in terms of the Q function as follows:

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{1}{p(1-p)} \exp\left(\frac{\frac{1}{2}a^2}{p} + \frac{1}{2}b^2p\right) dp = Q_1(a,b) \exp\left[\frac{1}{2}(a^2 + b^2)\right]$$
 (B-18)

Finally, consider the case $L \le k \le 2L - 1$. We have

$$\frac{1}{2\pi j} \int_{\Gamma} \frac{p^{k-L}}{1-p} \exp\left(\frac{\frac{1}{2}a^2}{p} + \frac{1}{2}b^2p\right) dp$$

$$= \sum_{n=0}^{\infty} \frac{1}{2\pi j} \int_{\Gamma} p^{k-L+n} \exp\left(\frac{\frac{1}{2}a^2}{p} + \frac{1}{2}b^2p\right) dp$$

$$= \sum_{n=k+1-l}^{\infty} \left(\frac{a}{b}\right)^n I_n(ab) = Q_1(a,b) \exp\left[\frac{1}{2}(a^2 + b^2)\right] - \sum_{n=k+1-l}^{k-L} \left(\frac{a}{b}\right)^n I_n(ab) \quad (B-19)$$

Collecting the terms that are indicated on the right-hand side of (B-16) and using

† This contour integral is related to the generalized Marcum Q function, defined as

$$Q_m(a,b) = \int_0^\infty x(x/a)^{m-1} \exp\left[-\frac{1}{2}(x^2+a^2)\right] l_{m-1}(ax) \, dx, \quad m \ge 1$$

in the following manner:

$$Q_m(a,b) \exp\left[\frac{1}{2}(a^2+b^2)\right] = \frac{1}{2\pi i} \int_{\Gamma} \frac{1}{p^m(1-p)} \exp\left(\frac{\frac{1}{2}a^2}{p} + \frac{1}{2}b^2p\right) dp$$

the results given in (B-17)-(B-19), the following expression for the contour integral is obtained after some algebra:

$$\frac{1}{2\pi j} \int_{\Gamma} f(p) dp = \left(1 + \frac{v_2}{v_1}\right)^{2L-1} \left[\exp\left[\frac{1}{2}(a^2 + b^2)\right] Q_1(a, b) - I_0(ab)\right]
+ I_0(ab) \sum_{k=0}^{L-1} {2L-1 \choose k} \left(\frac{v_2}{v_1}\right)^k
+ \sum_{n=1}^{L-1} I_n(ab) \sum_{k=0}^{L-1-n} {2L-1 \choose k} \left[\left(\frac{b}{a}\right)^n \left(\frac{v_2}{v_1}\right)^k - \left(\frac{a}{b}\right)^n \left(\frac{v_2}{v_1}\right)^{2L-1-k}\right]$$
(B-20)

Equation (B-20) in conjunction with (B-12) gives the result for the probability of error. A further simplification results when one uses the following identity, which can easily be proved:

$$\exp\left[\frac{v_1v_2}{(v_1+v_2)^2}(-2\alpha_1v_1v_2+\alpha_2v_1-\alpha_2v_2)\right]=\exp\left[-\frac{1}{2}(a^2+b^2)\right]$$

Therefore, it follows that

$$P_{b} = Q_{1}(a, b) - I_{0}(ab) \exp\left[-\frac{1}{2}(a^{2} + b^{2})\right]$$

$$+ \frac{I_{0}(ab) \exp\left[-\frac{1}{2}(a^{2} + b^{2})\right]}{(1 + v_{2}/v_{1})^{2L-1}} \sum_{k=0}^{L-1} {2L-1 \choose k} \left(\frac{v_{2}}{v_{1}}\right)^{k} + \frac{\exp\left[-\frac{1}{2}(a^{2} + b^{2})\right]}{(1 + v_{2}/v_{1})^{2L-1}}$$

$$\times \sum_{n=1}^{L-1} I_{n}(ab) \sum_{k=0}^{L-1-n} {2L-1 \choose k}$$

$$\times \left[\left(\frac{b}{a}\right)^{n} \left(\frac{v_{2}}{v_{1}}\right)^{k} - \left(\frac{a}{b}\right)^{n} \left(\frac{v_{2}}{v_{1}}\right)^{2L-1-k} \right]$$

$$\times \left[\left(\frac{b}{a}\right)^{n} \left(\frac{v_{2}}{v_{1}}\right)^{k} - \left(\frac{a}{b}\right)^{n} \left(\frac{v_{2}}{v_{1}}\right)^{2L-1-k} \right]$$

$$(B-21)$$

$$P_{b} = Q_{1}(a, b) - \frac{v_{2}/v_{1}}{1 + v_{2}/v_{1}} I_{0}(ab) \exp\left[-\frac{1}{2}(a^{2} + b^{2})\right]$$

$$(L = 1)$$

This is the desired expression for the probability of error. It is now a simple matter to relate the parameters a and b to the moments of the pairs $\{X_k, Y_k\}$. Substituting for A_2 and A_3 from (B-10) into (B-15), we obtain

$$a = \left[\frac{2v_1^2 v_2 (\alpha_1 v_2 - \alpha_2)}{(v_1 + v_2)^2} \right]^{1/2}$$

$$b = \left[\frac{2v_1 v_2^2 (\alpha_1 v_1 + \alpha_2)}{(v_1 + v_2)^2} \right]^{1/2}$$
(B-22)

Since v_1 , v_2 , α_1 , and α_2 have been given in (B-6) and (B-8) directly in terms of the moments of the pairs X_k and Y_k , our task is completed.

ERROR PROBABILITIES FOR ADAPTIVE RECEPTION OF *M*-PHASE SIGNALS

In this appendix, we derive probabilities of error for two- and four-phase signaling over an L-diversity-branch time-invariant additive guassian noise channel and for M-phase signaling over an L-diversity-branch Rayleigh fading additive gaussian noise channel. Both channels corrupt the signaling waveforms transmitted through them by introducing additive white gaussian noise and an unknown or random multiplicative gain and phase shift in the transmitted signal. The receiver processing consists of cross-correlating the signal plus noise received over each diversity branch by a noisy reference signal, which is derived either from the previously received information-bearing signals or from the transmission and reception of a pilot signal, and adding the outputs from all L-diversity branches to form the decision variable.

C-1 MATHEMATICAL MODEL FOR AN *M*-PHASE SIGNALING COMMUNICATIONS SYSTEM

In the general case of M-phase signaling, the signaling waveforms at the transmitter are \dagger

$$s_n(t) = \operatorname{Re}\left[s_{ln}(t)e^{j2\pi f_c t}\right]$$

[†] The complex representation of real signals is used throughout. Complex conjugation is denoted by an asterisk.

where

$$s_{ln}(t) = g(t) \exp \left[j \frac{2\pi}{M} (n-1) \right], \quad n = 1, 2, ..., M, \quad 0 \le t \le T$$
 (C-1)

and T is the time duration of the signaling interval.

Consider the case in which one of these M waveforms is transmitted, for the duration of the signaling interval, over L channels. Assume that each of the channels corrupts the signaling waveform transmitted through it by introducing a multiplicative gain and phase shift, represented by the complex-valued number g_k , and an additive noise $z_k(t)$. Thus, when the transmitted waveform is $s_{ln}(t)$, the waveform received over the kth channel is

$$r_{tk}(t) = g_k s_m(t) + z_k(t), \quad 0 \le t \le T, \quad k = 1, 2, \dots, L$$
 (C-2)

The noises $\{z_k(t)\}$ are assumed to be sample functions of a stationary white gaussian random process with zero mean and autocorrelation function $\phi_z(\tau) = N_0 \delta(\tau)$, where N_0 is the value of the spectral density. These sample functions are assumed to be mutually statistically independent.

At the demodulator, $r_{tk}(t)$ is passed through a filter whose impulse response is matched to the waveform g(t). The output of this filter, sampled at time t = T, is denoted as

$$X_k = 2\mathscr{E}_{g_k} \exp\left[j\frac{2\pi}{M}(n-1)\right] + N_k \tag{C-3}$$

where $\mathscr E$ is the transmitted signal energy per channel and N_k is the noise sample from the kth filter. In order for the demodulator to decide which of the M phases was transmitted in the signaling interval $0 \le t \le T$, it attempts to undo the phase shift introduced by each channel. In practice, this is accomplished by multiplying the matched filter output X_k by the complex conjugate of an estimate \hat{g}_k of the channel gain and phase shift. The result is a weighted and phase-shifted sampled output from the kth-channel filter, which is then added to the weighted and phase-shifted sampled outputs from the other L-1 channel filters.

The estimate \hat{g}_k of the gain and phase shift of the kth channel is assumed to be derived either from the transmission of a pilot signal or by undoing the modulation on the information-bearing signals received in previous signaling intervals. As an example of the former, suppose that a pilot signal, denoted by $s_{pk}(t)$, $0 \le t \le T$, is transmitted over the kth channel for the purpose of measuring the channel gain and phase shift. The received waveform is

$$g_k s_{pk}(t) + z_{pk}(t), \quad 0 \le t \le T$$

where $z_{pk}(t)$ is a sample function of a stationary white gaussian random process with zero mean and autocorrelation function $\phi_p(\tau) = N_0 \delta(\tau)$. This signal plus noise is passed through a filter matched to $s_{pk}(t)$. The filter output is sampled at time t = T to yield the random variable $X_{pk} = 2\mathscr{E}_p g_k + N_{pk}$, where \mathscr{E}_p is the energy in the pilot signal, which is assumed to be identical for all channels, and N_{pk} is the additive noise sample. An estimate of g_k is obtained by properly normalizing X_{pk} , i.e., $\hat{g}_k = g_k + N_{pk}/2\mathscr{E}_p$.

On the other hand, an estimate of g_k can be obtained from the information-bearing signal as follows. If one knew the information component contained in the matched filter output then an estimate of g_k could be obtained by properly normalizing this

output. For example, the information component in the filter output given by (C-3) is $2\mathscr{E}_{g_k} \exp[j(2\pi/M)(n-1)]$, and hence, the estimate is

$$\hat{g}_{k} = \frac{X_{k}}{2\mathscr{E}} \exp\left[-j\frac{2\pi}{M}(n-1)\right] = g_{k} + \frac{N_{k}'}{2\mathscr{E}}$$

where $N'_k = N_k \exp\left[-j(2\pi/M)(n-1)\right]$ and the pdf of N'_k is identical to the pdf of N_k . An estimate that is obtained from the information-bearing signal in this manner is called a *clairvoyant estimate*. Although a physically realizable receiver does not possess such clairvoyance, it can approximate this estimate by employing a time delay of one signaling interval and by feeding back the estimate of the transmitted phase in the previous signaling interval.

Whether the estimate of g_k is obtained from a pilot signal or from the information-bearing signal, the estimate can be improved by extending the time interval over which it is formed to include several prior signaling intervals in a way that has been described by Price (1962a, b). As a result of extending the measurement interval, the signal-to-noise ratio in the estimate of g_k is increased. In the general case where the estimation interval is the infinite past, the normalized pilot signal estimate is

$$\hat{g}_k = g_k + \sum_{i=1}^{\infty} c_i N_{pki} / 2 \mathcal{E}_p \sum_{i=1}^{\infty} c_i$$
 (C-4)

where c_i is the weighting coefficient on the subestimate of g_k derived from the *i*th prior signal interval and N_{pki} is the sample of additive gaussian noise at the output of the filter matched to $s_{pk}(t)$ in the *i*th prior signaling interval. Similarly, the clairvoyant estimate that is obtained from the information-bearing signal by undoing the modulation over the infinite past is

$$\hat{g}_{k} = g_{k} + \sum_{i=1}^{\infty} c_{i} N_{ki} / 2 \mathscr{E} \sum_{i=1}^{\infty} c_{i}$$
 (C-5)

As indicated, the demodulator forms the product between \hat{g}_k^* and X_k and adds this to the products of the other L-1 channels. The random variable that results is

$$z = \sum_{k=1}^{L} X_k \hat{g}_k^* = \sum_{k=1}^{L} X_k Y_k^*$$

= $z_r + jz_i$ (C-6)

where, by definition, $Y_k = \hat{g}_k$, $z_r = \text{Re}(z)$, and $z_i = \text{Im}(z)$. The phase of z is the decision variable. This is simply

$$\theta = \tan^{-1}\left(\frac{z_i}{z_r}\right) = \tan^{-1}\left[\operatorname{Im}\left(\sum_{k=1}^{L} X_k Y_k^*\right) \middle/ \operatorname{Re}\left(\sum_{k=1}^{L} X_k Y_k^*\right)\right]$$
(C-7)

C-2 CHARACTERISTIC FUNCTION AND PROBABILITY DENSITY FUNCTION OF THE PHASE θ

The following derivation is based on the assumption that the transmitted signal phase is zero, i.e., n = 1. If desired, the pdf of θ conditional on any other transmitted signal phase can be obtained by translating $p(\theta)$ by the angle $2\pi(n-1)/M$. We also assume

that the complex-valued numbers $\{g_k\}$, which characterize the L channels, are mutually statistically independent and identically distributed zero-mean gaussian random variables. This characterization is appropriate for slowly Rayleigh fading channels. As a consequence, the rrandom variables (X_k, Y_k) are correlated, complex-valued, zero-mean, gaussian, and statistically independent, but identically distributed with any other pair (X_i, Y_i) .

The method that has been used in evaluating the probability density $p(\theta)$ in the general case of diversity reception is as follows. First, the characteristic function of the joint probability distribution function of z_i , and z_i , where z_i are two components that make up the decision variable θ_i is obtained. Second, the double Fourier transform of the characteristic function is performed and yields the density $p(z_i, z_i)$. Then the transformation

$$r = \sqrt{z_r^2 + z_i^2}, \qquad \theta = \tan^{-1} \left(\frac{z_i}{z_r} \right)$$
 (C-8)

yields the joint pdf of the envelope r and the phase θ . Finally, integration of this joint pdf over the random variable r yields the pdf of θ .

The joint characteristic function of the random variables z, and z, can be expressed in the form

$$\psi(jv_{1}, jv_{2}) = \left[\frac{\frac{4}{m_{xx}m_{yy}(1 - |\mu|^{2})}}{\left(v_{1} - j\frac{2|\mu|\cos\varepsilon}{\sqrt{m_{xx}m_{yy}(1 - |\mu|^{2})}}\right)^{2}} + \left(v_{2} - j\frac{2|\mu|\sin\varepsilon}{\sqrt{m_{xx}m_{yy}(1 - |\mu|^{2})}}\right)^{2} + \frac{4}{m_{xx}m_{yy}(1 - |\mu|^{2})^{2}} \right]^{L}$$
(C-9)

where, by definition,

$$m_{xx} = E(|X_k|^2)$$
 identical for all k
 $m_{yy} = E(|Y_k|^2)$ identical for all k
 $m_{xy} = E(X_k Y_k^*)$ identical for all k

$$\mu = \frac{m_{xy}}{\sqrt{m_{xx}m_{yy}}} = |\mu| e^{-\mu}$$
(C-10)

The result of Fourier-transforming the function $\psi(jv_1, jv_2)$ with respect to the variables v_1 and v_2 is

$$p(z_r, z_t) = \frac{(1 - |\mu|^2)^L}{(L - 1)!\pi 2^L} (\sqrt{z_r^2 + z_t^2})^{L - 1}$$

$$\times \exp[|\mu| (z_r \cos \varepsilon + z_t \sin \varepsilon)] K_{L - 1} (\sqrt{z_r^2 + z_t^2})$$
 (C-11)

where $K_n(x)$ is the modified Hankel function of order n. Then the transformation of random variables, as indicated in (C-8) yields the joint pdf of the envelope r and the phase θ in the form

$$p(r, \theta) = \frac{(1 - |\mu|^2)^L}{(L - 1)!\pi^2} r^L \exp\left[|\mu| r \cos(\theta - \varepsilon)\right] K_{L - 1}(r)$$
 (C-12)

Now, integration over the variable r yields the marginal pdf of the phase θ . We have evaluated the integral to obtain $p(\theta)$ in the form

$$p(\theta) = \frac{(-1)^{l-1} (1 - |\mu|^2)^L}{2\pi (L - 1)!} \left\{ \frac{\partial^{L-1}}{\partial b^{l-1}} \left[\frac{1}{b - |\mu|^2 \cos^2(\theta - \varepsilon)} + \frac{|\mu| \cos(\theta - \varepsilon)}{[b - |\mu|^2 \cos^2(\theta - \varepsilon)]^{3/2}} \cos^{-1} \left(-\frac{|\mu| \cos(\theta - \varepsilon)}{b^{1/2}} \right) \right] \right\}_{b=1}^{l}$$
(C-13)

In this equation, the notation

$$\left. \frac{\partial^L}{\partial b^L} f(b, \mu) \right|_{b=1}$$

denotes the Lth partial derivative of the function $f(b, \mu)$ evaluated at b = 1.

C-3 ERROR PROBABILITIES FOR SLOWLY RAYLEIGH FADING CHANNELS

In this section, the probability of a character error and the probability of a binary digit error are derived for M-phase signaling. The probabilities are evaluated via the probability density function and the probability distribution function of θ .

The Probability Distribution Function of the Phase In order to evaluate the probability of error, we need to evaluate the definite integral

$$P(\theta_1 \leq \theta \leq \theta_2) = \int_{\theta_1}^{\theta_2} p(\theta) d\theta$$

where θ_1 and θ_2 are limits of integration and $p(\theta)$ is given by (C-13). All subsequent calculations are made for a real cross-correlation coefficient μ . A real-valued μ implies that the signals have symmetric spectra. This is the usual situation encountered. Since a complex-valued μ causes a shift of ε in the pdf of θ , i.e., ε is simply a bias term, the results that are given for real μ can be altered in a trivial way to cover the more general case of complex-valued μ .

In the integration of $p(\theta)$, only the range $0 \le \theta \le \pi$ is considered, because $p(\theta)$ is an even function. Furthermore, the continuity of the integrand and its derivatives and the fact that the limits θ_1 and θ_2 are independent of b allow for the interchange of integration and differentiation. When this is done, the resulting integral can be evaluated quite readily and can be expressed as follows:

$$\int_{\theta_{1}}^{\theta_{2}} p(\theta) d\theta = \frac{(-1)^{L-1} (1 - \mu^{2})^{L}}{2\pi (L-1)!} \times \frac{\partial^{L-1}}{\partial b^{L-1}} \left\{ \frac{1}{b - \mu^{2}} \left[\frac{\mu \sqrt{1 - (b/\mu^{2} - 1)x^{2}}}{b^{1/2}} \cot^{-1} x \right] - \cot^{-1} \left(\frac{xb^{1/2}\mu}{\sqrt{1 - (b/\mu^{2} - 1)x^{2}}} \right) \right\}_{x_{1} \mid b = 1}^{x_{2}}$$
(C-14)

where, by definition,

$$x_i = \frac{-\mu \cos \theta_i}{\sqrt{b - \mu^2 \cos \theta_i}}, \quad i = 1, 2$$
 (C-15)

Probability of a Symbol Error The probability of a symbol error for any M-phase signaling system is

$$P_{M} = 2 \int_{\pi/M}^{\pi} p(\theta) \ d\theta$$

When (C-14) is evaluated at these two limits, the result is

$$P_{M} = \frac{(-1)^{L-1}(1-\mu^{2})^{L}}{\pi(L-1)!} \frac{\partial^{L-1}}{\partial b^{L-1}} \left\{ \frac{1}{b-\mu^{2}} \left[\frac{\pi}{M} (M-1) - \frac{\mu \sin(\pi/M)}{\sqrt{b-\mu^{2}\cos^{2}(\pi/M)}} \cot^{-1} \left(\frac{-\mu \cos(\pi/M)}{\sqrt{b-\mu^{2}\cos^{2}(\pi/M)}} \right) \right] \right\}_{L=1}$$
(C-16)

Probability of a Binary Digit Error First, let us consider two-phase signaling. In this case, the probability of a binary digit error is obtained by integrating the pdf $p(\theta)$ over the range $\frac{1}{2}\pi < \theta < 3\pi$. Since $p(\theta)$ is an even function and the signals are a priori equally likely, this probability can be written as

$$P_2 = 2 \int_{\pi/2}^{\pi} p(\theta) \ d\theta$$

It is easily verified that $\theta_1 = \frac{1}{2}\pi$ implies $x_1 = 0$ and $\theta_2 = \pi$ implies $x_2 = \mu/\sqrt{b-\mu^2}$. Thus,

$$P_2 = \frac{(-1)^{L-1}(1-\mu^2)^L}{2(L-1)!} \frac{\partial^{L-1}}{\partial b^{L-1}} \left[\frac{1}{b-\mu^2} - \frac{\mu}{b^{1/2}(b-\mu^2)} \right]_{b=1}$$
 (C-17)

After performing the differentiation indicated in (C-17) and evaluating the resulting function at b = 1, the probability of a binary digit error is obtained in the form

$$P_2 = \frac{1}{2} \left[1 - \mu \sum_{k=0}^{L-1} {2k \choose k} \left(\frac{1 - \mu^2}{4} \right)^k \right]$$
 (C-18)

Next, we consider the case of four-phase signaling in which a Gray code is used to map pairs of bits into phases. Assuming again that the transmitted signal is $s_{tt}(t)$, it is clear that a single error is committed when the received phase is $\frac{1}{4}\pi < \theta < \frac{3}{4}\pi$, and a double error is committed when the received phase is $\frac{3}{4}\pi < \theta < \pi$. That is, the probability of a binary digit error is

$$P_{4b} = \int_{\pi/4}^{3\pi/4} p(\theta) \, d\theta + 2 \int_{3\pi/4}^{\pi} p(\theta) \, d\theta \tag{C-19}$$

It is easily established from (C-14) and (C-19) that

$$P_{4b} = \frac{(-1)^{L-1}(1-\mu^2)^L}{2(L-1)!} \frac{\partial^{L-1}}{\partial b^{L-1}} \left[\frac{1}{b-\mu^2} - \frac{\mu}{(b-\mu^2)(2b-\mu^2)^{1/2}} \right]_{b=1}$$

Hence, the probability of a binary digit error for four-phase signaling is

$$P_{4b} = \frac{1}{2} \left[1 - \frac{\mu}{\sqrt{2 - \mu^2}} \sum_{k=0}^{L-1} {2k \choose k} \left(\frac{1 + \mu^2}{4 - 2\mu^2} \right)^k \right]$$
 (C-20)

Note that if one defines the quantity $\rho = \mu/\sqrt{2-\mu^2}$, the expression for P_{4b} in terms of ρ is

$$P_{4b} = \frac{1}{2} \left[1 - \rho \sum_{k=0}^{L-1} {2k \choose k} \left(\frac{1 - \rho^2}{4} \right)^k \right]$$
 (C-21)

In other words, P_{4b} has the same form as P_2 given in (C-18). Furthermore, note that ρ , just like μ , can be interpreted as a cross-correlation coefficient, since the range of ρ is $0 \le \rho \le 1$ for $0 \le \mu \le 1$. This simple fact will be used in Section C-4.

The above procedure for obtaining the bit error probability for an M-phase signal with a Gray code can be used to generate results for M = 8, 16, etc., as shown by Proakis (1968).

Evaluation of the Cross-Correlation Coefficient The expressions for the probabilities of error given above depend on a single parameter, namely, the cross-correlation coefficient μ . The clairvoyant estimate is given by (C-5), and the matched filter output, when signal waveform $s_{i1}(t)$ is transmitted, is $X_k = 2 \mathcal{E} g_k + N_k$. Hence, the cross-correlation coefficient is

$$\mu = \frac{\sqrt{v}}{\sqrt{(\bar{y}_{c}^{-1} + 1)(\bar{y}_{c}^{-1} + v)}}$$
 (C-22)

where, by definition,

$$\mathbf{v} = \left| \sum_{i=1}^{\infty} c_i \right|^2 / \sum_{i=1}^{\infty} |c_i|^2$$

$$\tilde{\gamma}_c = \frac{\mathscr{E}}{N_0} E(|\mathbf{g}_k|^2), \quad k = 1, 2, \dots, L$$
(C-23)

The parameter v represents the effective number of signaling intervals over which the estimate is formed, and $\bar{\gamma}_c$ is the average SNR per channel.

In the case of differential phase signaling, the weighting coefficients are $c_i = 1$, $c_i = 0$ for $i \neq 1$. Hence, v = 1 and $\mu = \bar{\gamma}_c / (1 + \bar{\gamma}_c)$.

When $v = \infty$, the estimate is perfect and

$$\lim_{v\to\infty}\mu=\sqrt{\frac{\bar{\gamma}_c}{\bar{\gamma}_c+1}}$$

Finally, in the case of a pilot signal estimate, given by (C-4) the cross-correlation coefficient is

$$\mu = \left[\left(1 + \frac{r+1}{r\bar{\gamma}_i} \right) \left(1 + \frac{r+1}{v\bar{\gamma}_i} \right) \right]^{-1/2}$$
 (C-24)

where, by definition,

$$\bar{\gamma}_{r} = \frac{\mathcal{E}_{r}}{N_{0}} E(|g_{k}|^{2})$$

$$\mathcal{E}_{t} = \mathcal{E} + \mathcal{E}_{p}$$

$$r = \mathcal{E}/\mathcal{E}_{n}$$

The values of μ given above are summarized in Table C-1.

C-4 ERROR PROBABILITIES FOR TIME-INVARIANT AND RICEAN FADING CHANNELS

In Section C-2, the complex-valued channel gains $\{g_k\}$ were characterized as zero-mean gaussian random variables, which is appropriate for Rayleigh fading channels. In this section, the channel gains $\{g_k\}$ are assumed to be nonzero-mean gaussian random variables. Estimates of the channel gains are formed by the demodulator and are used

TABLE C-1 RAYLEIGH FADING CHANNEL

Type of estimate	Cross-correlation coefficient μ
Clairvoyant estimate	
	$\sqrt{(\bar{\gamma}_c^{-1}+1)(\bar{\gamma}_c^{-1}+\nu)}$
Pilot signal estimate	$\frac{\sqrt{r\nu}}{(r+1)\sqrt{\left(\frac{1}{\bar{\gamma}_r} + \frac{r}{r+1}\right)\left(\frac{1}{\bar{\gamma}_r} + \frac{\nu}{r+1}\right)}}$
Differential phase signaling	$\frac{\bar{\gamma}_c}{\bar{\gamma}_c+1}$
Perfect estimate	$\sqrt{\frac{\overline{\gamma}_c}{\overline{\gamma}_c+1}}$

as described in Section C-1. Moreover, the decision variable θ is defined again by (C-7). However, in this case, the gaussian random variables X_k and Y_k , which denote the matched filter output and the estimate, respectively, for the kth channel, have nonzero means, which are denoted by \bar{X}_k and \bar{Y}_k . Furthermore, the second moments are

$$m_{xx} = E(|X_k - \bar{X}_k|^2)$$
 identical for all channels $m_{yy} = E(|Y_k - \bar{Y}_k|^2)$ identical for all channels $m_{xy} = E[(X_k - \bar{X}_k)(Y_k^* - \bar{Y}_k^*)]$ identical for all channels

and the normalized covariance is defined as

$$\mu = \frac{m_{xy}}{\sqrt{m_{xx}m_{yy}}}$$

Error probabilities are given below only for two- and four-phase signaling with this channel model. We are interested in the special case in which the fluctuating component of each of the channel gains $\{g_k\}$ is zero, so that the channels are time-invariant. If, in addition to this time invariance, the noises between the estimate and the matched filter output are uncorrelated then $\mu = 0$.

In the general case, the probability of error for two-phase signaling over L statistically independent channels characterized in the manner described above can be obtained from the results in Appendix B. In its most general form, the expression for the binary error rate is

$$P_{2} = Q_{1}(a, b) - I_{0}(a) \exp \left[-\frac{1}{2}(a^{2} + b^{2})\right]$$

$$+ \frac{I_{0}(ab) \exp \left[-\frac{1}{2}(a^{2} + b^{2})\right]}{\left[2/(1 - \mu)\right]^{2L - 1}} \sum_{k=0}^{L-1} {2L - 1 \choose k} \left(\frac{1 + \mu}{1 - \mu}\right)^{k}$$

$$+ \frac{\exp \left[-\frac{1}{2}(a^{2} + b^{2})\right]}{\left[2/(1 - \mu)\right]^{2L - 1}}$$

$$\times \sum_{k=1}^{L-1} I_{n}(ab) \sum_{k=0}^{L-1-n} {2L - 1 \choose k} \left[\left(\frac{b}{a}\right)^{n} \left(\frac{1 + \mu}{1 - \mu}\right)^{k} - \left(\frac{a}{b}\right)^{n} \left(\frac{1 + \mu}{1 - \mu}\right)^{2L - 1 - k}\right]$$

$$P_{2} = Q_{1}(a, b) - \frac{1}{2}(1 + \mu)I_{0}(ab) \exp \left[-\frac{1}{2}(a^{2} + b^{2})\right]$$

$$(L \ge 2)$$

where, by definition,

$$a = \left(\frac{1}{2} \sum_{k=1}^{L} \left| \frac{\bar{X}_k}{\sqrt{m_{xx}}} - \frac{\bar{Y}_k}{\sqrt{m_{yy}}} \right|^2 \right)^{1/2}$$

$$b = \left(\frac{1}{2} \sum_{k=1}^{L} \left| \frac{\bar{X}_k}{\sqrt{m_{xx}}} + \frac{\bar{Y}_k}{\sqrt{m_{yy}}} \right|^2 \right)^{1/2}$$

$$Q_1(a, b) = \int_b^{\infty} x \exp\left[-\frac{1}{2}(a^2 + x^2)\right] I_0(ax) dx$$
(C-26)

 $I_n(x)$ is the modified Bessel function of the first kind and of order n.

Let us evaluate the constants a and b when the channel is time-invariant, $\mu = 0$, and the channel gain and phase estimates are those given in Section C-1. Recall that when signal $s_1(t)$ is transmitted, the matched filter output is $X_k = 2\mathcal{E}g_k + N_k$. The clairvoyant estimate is given by (C-5). Hence, for this estimate, the moments are $\bar{X}_k = 2\mathcal{E}g_k$, $\bar{Y}_k = g_k$, $m_{xx} = 4\mathcal{E}N_0$, and $m_{yy} = N_0/\mathcal{E}v$, where \mathcal{E} is the signal energy, N_0 is the value of the noise spectral density, and v is defined in (C-23). Substitution of these moments into (C-26) results in the following expressions for a and b:

$$a = \sqrt{\frac{1}{2}\gamma_h} |\sqrt{v} - 1|$$

$$b = \sqrt{\frac{1}{2}\gamma_h} |\sqrt{v} + 1|$$

$$\gamma_h = \frac{\mathscr{E}}{N_0} \sum_{k=1}^{L} |g_k|^2$$
(C-27)

This is a result originally derived by Price (1962).

The probability of error for differential phase signaling can be obtained by setting v = 1 in (C-27).

Next, consider a pilot signal estimate. In this case, the estimate is given by (C-4) and the matched filter output is again $X_k = 2\mathcal{E}g_k + N_k$. When the moments are calculated and these are substituted into (C-26), the following expressions for a and b are obtained:

$$a = \sqrt{\frac{\gamma_r}{2}} \left| \sqrt{\frac{v}{r+1}} - \sqrt{\frac{r}{r+1}} \right|$$

$$b = \sqrt{\frac{\gamma_r}{2}} \left(\sqrt{\frac{v}{r+1}} + \sqrt{\frac{r}{r+1}} \right)$$
(C-28)

where

$$\gamma_{t} = \frac{\mathscr{E}_{t}}{N_{0}} \sum_{k=1}^{L} |g_{k}|^{2}$$

$$\mathscr{E}_{t} = \mathscr{E} + \mathscr{E}_{p}$$

$$r = \mathscr{E}/\mathscr{E}_{p}$$

Finally, we consider the probability of a binary digit error for four-phase signaling over a time-invariant channel for which the condition $\mu=0$ obtains. One approach that can be used to derive this error probability is to determine the pdf of θ and then to integrate this over the appropriate range of values of θ . Unfortunately, this approach proves to be intractable mathematically. Instead, a simpler, albeit roundabout, method may be used that involves the Laplace transform. In short, the integral in (14-4-14) of the text that relates the error probability $P_2(\gamma_b)$ in an AWGN channel to the error

TABLE C-2 TIME-INVARIANT CHANNEL

Type of estimate	а	b	
Two-phase signaling			
Clairvoyant estimate	$\sqrt{\frac{1}{2}\gamma_b} \sqrt{v}-1 $	$\sqrt{\frac{1}{2}\gamma_b}(\sqrt{v}+1)$	
Differential phase signaling	0	$\sqrt{2\gamma_b}$	
Pilot signal estimate	$\sqrt{\frac{\gamma_{t}}{2}} \left \sqrt{\frac{\mathbf{v}}{r+1}} - \sqrt{\frac{r}{r+1}} \right $	$\sqrt{\frac{\gamma_t}{2}} \left(\sqrt{\frac{v}{r+1}} + \sqrt{\frac{r}{r+1}} \right)$	
	Four-phase signalin	ıg	
Clairvoyant estimate	$ \frac{\sqrt{\frac{1}{2}\gamma_b}\left \sqrt{\nu+1+\sqrt{\nu^2+1}}\right }{-\sqrt{\nu+1-\sqrt{\nu^2+1}}} $	$\frac{\sqrt{\frac{1}{2}\gamma_{h}}\left(\sqrt{v+1}+\sqrt{v^{2}+1}\right)}{+\sqrt{v+1}-\sqrt{v^{2}+1}}$	
Differential phase signaling	$\sqrt{\frac{1}{2}\gamma_b}\left(\sqrt{2+\sqrt{2}}-\sqrt{2-\sqrt{2}}\right)$	$\sqrt{\frac{1}{2}\gamma_h}\left(\sqrt{2+\sqrt{2}}+\sqrt{2-\sqrt{2}}\right)$	
Pilot signal estimate	$\sqrt{\frac{\gamma_t}{4(r+1)}} \left \sqrt{v+r+\sqrt{v^2+r^2}} \right $	$\sqrt{\frac{\gamma_t}{4(r+1)}}\left(\sqrt{\gamma_t+r+\sqrt{\gamma_t^2+r^2}}\right)$	
	$-\sqrt{v+r-\sqrt{v^2+r^2}}$	$+\sqrt{v+r-\sqrt{v^2+r^2}}$	

probability P_2 in a Rayleigh fading channel is a Laplace transform. Since the bit error probabilities P_2 and P_{4b} for a Rayleigh fading channel, given by (C-18) and (C-21), respectively, have the same form but differ only in the correlation coefficient, it follows that the bit error probabilities for the time-invariant channel also have the same form. That is, (C-25) with $\mu=0$ is also the expression for the bit error probability of a four-phase signaling system with the parameters a and b modified to reflect the difference in the correlation coefficient. The detailed derivation may be found in the paper by Proakis (1968). The expressions for a and b are given in Table C-2.

SQUARE-ROOT FACTORIZATION

Consider the solution of the set of linear equations

$$\mathbf{R}_{N}\mathbf{C}_{N} = \mathbf{U}_{N} \tag{D-1}$$

where \mathbf{R}_N is an $N \times N$ positive-definite symmetric matrix, \mathbf{C}_N is an N-dimensional vector of coefficients to be determined, and \mathbf{U}_N is an arbitrary N-dimensional vector. The equations in (D-1) can be solved efficiently by expressing \mathbf{R}_N in the factored form

$$\mathbf{R}_{N} = \mathbf{S}_{N} \mathbf{D}_{N} \mathbf{S}_{N}^{\prime} \tag{D-2}$$

where S_N is a lower triangular matrix with elements $\{s_{ik}\}$ and D_N is a diagonal matrix with diagonal elements $\{d_k\}$. The diagonal elements of S_N are set to unity, i.e., $s_n = 1$. Then we have

$$r_{ij} = \sum_{k=1}^{i} s_{ik} d_k s_{jk}, \quad 1 \le j \le i-1, \quad i \ge 2$$

$$r_{11} = d_1$$
(D-3)

where $\{r_{ij}\}$ arte the elements of \mathbf{R}_N . Consequently, the elements $\{s_{ik}\}$ and $\{d_k\}$ are determined from (D-3) according to the equations

$$d_{1} = r_{11}$$

$$s_{ij}d_{j} = r_{ij} - \sum_{k=1}^{j-1} s_{ik}d_{k}s_{jk}, \quad 1 \le j \le i-1, \quad 2 \le i \le N$$

$$d_{i} = r_{ii} - \sum_{k=1}^{j-1} s_{ik}^{2}d_{k}, \quad 2 \le i \le N$$
(D-4)

Thus, (D-4) define S_N and D_N in terms of the elements of R_N .

897

The solution to (D-1) is performed in two steps. With (D-2) substituted into (D-1) we have

$$S_N D_N S_N' C_N = U_N$$

Let

$$\mathbf{Y}_{\mathbf{y}} = \mathbf{D}_{\mathbf{y}} \mathbf{S}_{\mathbf{y}}^{\prime} \mathbf{C}_{\mathbf{y}} \tag{D-5}$$

Then

$$\mathbf{S}_{N}\mathbf{Y}_{N}=\mathbf{U}_{N}\tag{D-6}$$

First we solve (D-6) for Y_N . Because of the triangular form of S_N , we have

$$y_1 = u_1$$

 $y_i = u_i - \sum_{i=1}^{i-1} s_{ii} y_i, \quad 2 \le i \le N$ (D-7)

Having obtained Y_N , the second step is to compute C_N . That is,

$$\mathbf{D}_{\mathbf{x}}\mathbf{S}_{\mathbf{y}}'\mathbf{C}_{\mathbf{x}} = \mathbf{Y}_{\mathbf{x}}$$
$$\mathbf{S}_{\mathbf{y}}'\mathbf{C}_{\mathbf{x}} = \mathbf{D}_{\mathbf{y}}^{\mathsf{T}}\mathbf{Y}_{\mathbf{x}}$$

Beginning with

$$c_N = y_N/d_N \tag{D-8}$$

the remaining coefficients of C_x are obtained recursively as follows:

$$c_i = \frac{v_i}{d_i} - \sum_{j=i+1}^{N} s_{ji}c_j, \quad 1 \le i \le N-1$$
 (D-9)

The number of multiplications and divisions required to perform the factorization of \mathbf{R}_N is proportional to N^3 . The number of multiplications and divisions required to compute \mathbf{C}_N once \mathbf{S}_N is determined, is proportional to N^2 . In contrast, when \mathbf{R}_N is Toeplitz the Levinson-Durbin algorithm should be used to determine the solution of (D-1), since the number of multiplications and divisions is proportional to N^2 . On the other hand, in a recursive least-squares formulation, \mathbf{S}_N and \mathbf{D}_N are not computed as in (D-3), but they are updated recursively. The update is accomplished with N^2 operations (multiplications and divisions). Then the solution for the vector \mathbf{C}_N follows the steps (D-5)-(D-9). Consequently, the computational burden of the recursive least-squares formulation is proportional to N^2 .

REFERENCES AND BIBLIOGRAPHY

- Abend, K. and Fritchman, B. D. (1970). "Statistical Detection for Communication Channels with Intersymbol Interference," *Proc. IEEE, pp.* 779–785, May.
- Abramson, N. (1963). Information Theory and Coding, McGraw-Hill, New York.
- Abramson, N. (1970). "The ALOHA System—Another Alternative for Computer Communications," 1970 Fall Joint Comput. Conf., AFIDS Conf. Proc., vol. 37, pp. 281–285, AFIPS Press, Montvale, N.J.
- Abramson, N. (1977). "The Throughput of Packet Broadcasting Channels," *IEEE Trans. Commun.*, vol. COM-25, pp. 117–128, January.
- Abramson, N. (1993). Multiple Access Communications, IEEE Press, New York.
- Adler, R. L., Coppersmith, D., and Hassner, M. (1983). "Algorithms for Sliding Block Codes," *IEEE Trans. Inform. Theory*, vol. IT-29, pp. 5–22, January.
- Al-Hussaini, E. and Al-Bassiouni (1985). "Performance of MRC Diversity Systems for the Detection of Signals with Nakagami Fading," *IEEE Trans. Commun.*, vol. COM-33, pp. 1315-1319, December.
- Altekar, S. A. and Beaulieu, N. C. (1993). "Upper Bounds on the Error Probability of Decision Feedback Equalization," *IEEE Trans. Inform. Theory*, vol. 1T-39, pp. 145-156, January.
- Anderberg, M. R. (1973). Cluster Analysis for Applications, Academic, New York.
- Anderson, J. B., Aulin, T., and Sundberg, C. W. (1986). Digital Phase Modulation, Plenum, New York.
- Anderson, R. R. and Salz, J. (1965). "Spectra of Digital FM," Bell Syst. Tech. J., vol. 44 pp. 1165-1189, July-August.
- Ash, R. B. (1965). Information Theory, Interscience, New York.
- Aulin, T. (1980), "Viterbi Detection of Continuous Phase Modulated Signals," Nat. Telecommun. Conf. Record., pp. 14.2.1–14.2.7, Houston, Texas, November.
- Aulin, T., Rydbeck, N., and Sundberg, C. W. (1981). "Continuous Phase Modulation—Part II: Partial Response Signaling," *IEEE Trans. Commun.*, vol. COM-29, pp. 210–225, March.
- Aulin, T. and Sundberg, C. W. (1981). "Continuous Phase Modulation—Part I: Full Response Signaling," IEEE Trans. Commun., vol. COM-29, pp. 196–209, March.
- Aulin, T. and Sundberg, C. W. (1982a). "On the Minimum Euclidean Distance for a Class of Signal Space Codes," IEEE Trans. Inform. Theory, vol. 1T-28, pp. 43-55, January.

- Aulin, T. and Sundberg, C. W. (1982b). "Minimum Euclidean Distance and Power Spectrum for a Class of Smoothed Phase Modulation Codes with Constant Envelope," *IEEE Trans. Commun.*, vol. COM-30, pp. 1721-1729, July.
- Aulin, T. and Sundberg, C. W. (1984). "CPM—An Efficient Constant Amplitude Modulation Scheme," Int. J. Satellite Commun., vol. 2, pp. 161-186.
- Austin, M. E. (1967). "Decision-Feedback Equalization for Digital Communication Over Dispersive Channels," MIT Lincoln Laboratory, Lexington, Mass., Tech. Report No. 437, August
- Barrow, B. (1963). "Diversity Combining of Fading Signals with Unequal Mean Strengths," IEEE Trans. Commun., Syst., vol. CS-11, pp. 73-78, March.
- Beaulieu, N. C. (1990). "An Infinite Series for the Computation of the Complementary Probability Distribution Function of a Sum of Independent Random Variables and Its Application to the Sum of Rayleigh Random Variables," *IEEE Trans. Commun.*, vol. COM-38, pp. 1463-1474, September.
- Beaulieu, N. C. and Abu-Dayya, A. A. (1991). "Analysis of Equal Gain Diversity on Nakagami Fading Channels," *IEEE Trans. Commun.*, vol. COM-39, pp. 225-234, February.
- Bekir, N. E., Scholtz, R. A., and Welch, L. R. (1978). "Partial-Period Correlation Properties of PN Sequences," 1978 Nat. Telecommun. Conf. Record, pp. 35.1.1-25.1.4, Birmingham, Alabama, November.
- Belfiore, C. A. and Park, J. H., Jr. (1979). "Decision-Feedback Equalization," *Proc. IEEE*, vol. 67, pp. 1143-1156, August.
- Bellini, J. (1986). "Bussgang Techniques for Blind Equalization," *Proc. GLOBECOM'86*, pp. 46.1.1-46.1.7, Houston, Texas, December.
- Bello, P. A. and Nelin, B. D. (1962a). "Predetection Diversity Combining with Selectivity Fading Channels," *IRE Trans. Commun. Syst.*, vol. CS-10, pp. 32-42, March.
- Bello, P. A. and Nelin, B. D. (1962b). "The Influence of Fading Spectrum on the Binary Error Probabilities of Incoherent and Differentially Coherent Matched Filter Receivers," IRE Trans. Commun. Syst., vol. CS-10, pp. 160-168, June.
- Bello, P. A. and Nelin, B. D. (1963). "The Effect of Frequency Selective Fading on the Binary Error Probabilities of Incoherent and Differentially Coherent Matched Filter Receivers," IEEE Trans. Commun. Syst., vol. CS-11, pp. 170-186, June.
- Bennett, W. R. and Davey, J. R. (1965). Data Transmission, McGraw-Hill, New York.
- Bennett, W. R. and Rice, S. O. (1963). "Spectral Density and Autocorrelation Functions Associated with Binary Frequency-Shift Keying," *Bell Syst. Tech. J.*, vol. 42, pp. 2355-2385, September.
- Benveniste, A. and Goursat, M. (1984). "Blind Equalizers," *IEEE Trans. Commun.*, vol. COM-32, pp. 871-883, August.
- Berger, T. (1971). Rate Distortion Theory, Prentice-Hall, Englewood Cliffs, N.J.
- Berger, T. and Tufts, D. W. (1967). "Optimum Pulse Amplitude Modulation, Part I: Transmitter-Receiver Design and Bounds from Information Theory," *IEEE Trans. Inform. Theory*, vol. IT-13, pp. 196-208.
- Bergmans, P. P. and Cover, T. M. (1974). "Cooperative Broadcasting," IEEE Trans. Inform. Theory, vol. IT-20, pp. 317-324, May.
- Berlekamp, E. R. (1968). Algebraic Coding Theory, McGraw-Hill, New York.
- Berlekamp, E. R. (1973). "Goppa Codes," IEEE Trans. Inform. Theory, vol. IT-19, pp. 590-592.
- Berlekamp, E. R. (1974). Key Papers in the Development of Coding Theory, IEEE Press, New York.
- Bierman, G. J. (1977). Factorization Methods for Discrete Sequential Estimation, Academic, New York.
- Biglieri, E., Divsalar, D., McLane, P. J., and Simon, M. K. (1991). Introduction to Trellis-Coded Modulation with Applications, Macmillan, New York.
- Bingham, J. A. C. (1990). "Multicarrier Modulation for Data Transmission: An Idea Whose Time Has Come," *IEEE Commun. Mag.*, vol. 28, pp. 5-14, May.

- Blahut, R. E. (1983). Theory and Practice of Error Control Codes, Addison-Wesley, Reading. Mass.
- Blahut, R. E. (1987). Principles and Practice of Information Theory, Addison-Wesley, Reading. Mass.
- Bose, R. C. and Ray-Chaudhuri, D. K. (1960a). "On a Class of Error Correcting Binary Group Codes," *Inform. Control*, vol. 3, pp. 68-79, March.
- Bose, R. C. and Ray-Chaudhuri, D. K. (1960b). "Further Results in Error Correcting Binary Group Codes," *Inform. Control*, vol. 3, pp. 279-290, September.
- Brennan, D. G. (1959). "Linear Diversity Combining Techniques," Proc. IRE., vol. 47, pp. +1075-1102.
- Busgang, J. J. (1952). "Crosscorrelation Functions of Amplitude-Distored Gaussian Signals," MIT RLE Tech. Report 216.
- Bucher, E. A. (1980). "Coding Options for Efficient Communications on Non-Stationary Channels." Rec. IEEE Int. Conf. Commun., pp. 4.1.1-4.1.7.
- Burton, H. O. (1969). "A Class of Asymptotically Optimal Burst Correcting Block Codes," *Proc. ICCC*. Boulder, Col., June.
- Buzo, A., Gray, A. H., Jr., Gray, R. M., and Markel, J. D. (1980). "Speech Coding Based Upon Vector Quantization." *IEEE Trans. Acoust., Speech, Signal Processing*, Vol. ASSP-28 pp. 562-574, October.
- Cahn, C. R. (1960). "Combined Digital Phase and Amplitude Modulation Communication Systems," IRE Trans. Commun. Syst., vol. CS-8, pp. 150-155, September.
- Calderbank, A. R. and Sloane, N. J. A. (1987). "New Trellis Codes Based on Lattices and Cosets," *IEEE Trans. Inform. Theory*, vol. IT-33, pp. 177-195, March.
- Campanella, S. J. and Robinson, G. S. (1971). "A Comparison of Orthogonal Transformations for Digital Speech Processing," IEEE Trans. Commun., vol. COM-19, pp. 1045-1049, December.
- Campopiano, C. N. and Glazer, B. G. (1962). "A Coherent Digital Amplitude and Phase Modulation Scheme," IRE Trans. Commun. Syst., vol. CS-10, pp. 90-95, June.
- Capetanakis, J. I. (1979). "Tree Algorithms for Packet Broadcast Channels," IEEE Trans. Inform. Theory. vol. IT-25, pp. 505-515, September.
- Caraiscos, C. and Liu, B. (1984). "A Roundoff Error Analysis of the LMS Adaptive Algorithm," IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-32, pp. 34-41, January.
- Carayannis, G., Manolakis, D. G., and Kalouptsidis, N. (1983). "A Fast Sequential Algorithm for Least-Squares Filtering and Prediction," *IEEE Trans. Acoust., Speech, Signal Processing*, Vol. ASSP-31, pp. 1394-1402, December.
- Carayannis, G. Manolakis, D. G., and Kalouptsidis, N. (1986). "A Unified View of Parametric Processing Algorithms for Prewindowed Signals," Signal Processing, vol. 10, pp. 335-368, June.
- Carleial, A. B. and Hellman, M. E. (1975). "Bistable Behavior of ALOHA-Type Systems," *IEEE Trans. Commun.*, vol. COM-23, pp. 401-410, April 1975.
- Carlson, A. B. (1975). Communication Systems, McGraw-Hill, New York.
- Chang, D. Y., Gersho, A., Ramamurthi, B., and Shohan, Y. (1984). "Fast Search Algorithms for Vector Quantization and Pattern Matching," Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, paper 9.11, San Diego, Calif., March.
- Chang, R. W. (1966). "Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission," Bell Syst. Tech. J., vol. 45, pp. 1775-1796, December.
- Charash, U. (1979). "Reception Through Nakagami Fading Multipath Channels with Random Delays," *IEEE Trans. Commun.*, vol. COM-27, pp. 657-670, April.
- Chase, D. (1972). "A Class of Algorithms for Decoding Block Codes With Channel Measurement Information," *IEEE Trans. Inform. Theory*, vol. IT-18, pp. 170-182, January.
- Chase, D. (1976). "Digital Signal Design Concepts for a Time-Varying Ricean Channel," *IEEE Trans. Commun.*, vol. COM-24, pp. 164-172, February.
- Chien, R. T. (1964). "Cyclic Decoding Procedures for BCH Codes," *IEEE Trans. Inform. Theory*, vol. IT-10, pp. 357-363, October.

- Chow, J. S., Tu, J. C., and Cioffi, J. M. (1991). "A Discrete Multitone Transceiver System for HDSL Applications," *IEEE J. Selected Areas Commun.*, vol. SAC-9, pp. 895-908, August.
- Chyi, G. T., Proakis, J. G., and Keller, C. M. (1988). "Diversity Selection/Combining Schemes with Excess Noise-Only Diversity Receptions Over a Rayleigh-Fading Multipath Channel." *Proc. Conf. Inform. Sci. Syst.*, Princeton University, Princeton, N.J. March.
- Cioffi, J. M. and Kailath, T. (1984). "Fast Recursive-Least Squares Transversal Filters for Adaptive Filtering," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 304-337, April.
- Cook, C. E., Ellersick, F. W., Milstein, L. B., and Schilling, D. L. (1983). Spread Spectrum Communications, IEEE Press, New York.
- Costas, J. P. (1956). "Synchronous Communications," *Proc. IRE*, vol. 44, pp. 1713-1718, December.
- Cover, T. M. (1972). "Broadcast Channels," *IEEE Trans. Inform. Theory*, vol. IT-18, pp. 2-14, January.
- Cramér, H. (1946). Mathematical Methods of Statistics, Princeton University Press, Princeton, N.J. Daut, D. G., Modestino, J. W., and Wismer, L. D. (1982). "New Short Constraint Length Convolutional Code Construction for Selected Rational Rates," IEEE Trans. Inform. Theory, vol. IT-28, pp. 793-799, September.
- Davenport, W. B., Jr. (1970). Probability and Random Processes, McGraw-Hill, New York.
- Davenport, W. B. Jr. and Root, W. L. (1958). Random Signals and Noise, McGraw-Hill, New York.
- Davisson, L. D. (1973). "Universal Noiseless Coding," IEEE Trans. Inform. Theory, vol. IT-19, pp. 783-795.
- Davisson, L. D., McEliece, R. J., Pursley, M. B., and Wallace, M. S. (1981). "Efficient Universal Noiselss Source Codes," IEEE Trans. Inform. Theory, vol. IT-27, pp. 269-279.
- deBuda, R. (1972). "Coherent Demodulation of Frequency Shift Keying with Low Deviation Ratio," *IEEE Trans. Commun.*, vol. COM-20, pp. 429-435, June.
- Deller, J. P., Proakis, J. G., and Hansen, H. L. (1993). Discrete-Time Processing of Speech Signals, MacMillan, New York.
- Ding, Z. (1990). Application Aspects of Blind Adaptive Equalizers in QAM Data Communications, Ph.D. Thesis, Department of Electrical Engineering, Cornell University.
- Ding, Z., Kennedy, R. A., Anderson, B. D. O., and Johnson, C. R. (1989). "Existence and Avoidance of III-Convergence of Godard Blind Equalizers in Data Communication Systems," Proc. 23rd Conf. on Inform. Sci. Systems, Baltimore, Md.
- Divsalar, D., Simon, M. K., and Yuen, J. H. (1987). "Trellis Coding with Asymmetric Modulation," *IEEE Trans. Commun.*, vol. COM-35, pp. 130-141, February.
- Divsalar, D. and Yuen, J. H. (1984). "Asymmetric MPSK for Trellis Codes," *Proc. GLOBECOM'84*, pp. 20.6.1-20.6.8, Atlanta, Georgia, November.
- Dixon, R. C. (1976). Spread Spectrum Techniques, IEEE Press, New York.
- Doelz, M. L., Heald, E. T., and Martin, D. L. (1957). "Binary Data Transmission Techniques for Linear Systems," Proc. IRE, vol. 45, pp. 656-661, May.
- Drouilhet, P. R., Jr. and Bernstein, S. L. (1969). "TATS—A Bandspread Modulation-Demodulation System for Multiple Access Tactical Satellite Communication," 1969 IEEE Electronics and Aersopace Systems (EASCON) Conv. Record, Washington, D.C., pp. 126-132, October 27-29.
- Duffy, F. P. and Tratcher, T. W. (1971). "Analog Transmission Performance on the Switched Telecommunications Network," Bell Syst. Tech. J., vol. 50, pp. 1311-1347, April.
- Durbin, J. (1959). "Efficient Estimation of Parameters in Moving-Average Models," Biometrika, vol. 46, parts 1 and 2, pp. 306-316.
- Duttweiler, D. L., Mazo, J. E., and Messerschmitt, D. G. (1974). "Error Propagation in Decision-Feedback Equalizers," IEEE Trans. Inform. Theory, vol. IT-20, pp. 490-497, July.
- Eleftheriou, E. and Falconer, D. D. (1987). "Adaptive Equalization Techniques for HF Channels," *IEEE J. Selected Areas Commun.*, vol. SAC-5 pp. 238-247, February.

- El Gamal, A. and Cover, T. M. (1980). "Multiple User Information Theory," *Proc. IEEE*, vol. 68, pp. 1466-1483, December.
- Elias, P. (1954). "Error-Free Coding," *IRE Trans. Inform. Theory*, vol. IT-4, pp. 29-37, September.
- Elias, P. (1955). "Coding for Noisy Channels," *IRE Convention Record*, vol. 3, part 4, 37-46.
- Esposito, R. (1967). "Error Probabilities for the Nakagami Channel," *IEEE Trans. Inform. Theory*, vol. 1T-13, pp. 145-148, January.
- Eyuboglu, V. M. (1988). "Detection of Coded Modulation Signals on Linear, Severely Distorted Channels Using Decision-Feedback Noise Prediction with Interleaving," *IEEE Trans. Commun.*, vol. COM-36, pp. 401-409, April.
- Falconer, D. D. (1976). "Jointly Adaptive Equalization and Carrier Recovery in Two-Dimensional Digital Communication Systems," Bell Syst. Tech. J., vol. 55, pp. 317-334, March.
- Falconer, D. D. and Ljung, L. (1978). "Application of Fast Kalman Estimation to Adaptive Equalization," *IEEE Trans. Commun.*, vol. COM-26, pp. 1439-1446, October.
- Falconer, D. D. and Salz, J. (1977). "Optimal Reception of Digital Data Over the Gaussian Channel with Unknown Delay and Phase Jitter," IEEE Trans. Inform. Theory, vol. IT-23, pp. 117-126, January.
- Fano, R. M. (1961). Transmission of Information, MIT Press, Cambridge, Mass.
- Fano, R. M. (1963). "A Heuristic Discussion of Probabilistic Coding," IEEE Trans. Inform. Theory, vol. IT-9, pp. 64-74, April.
- Feinstein, A. (1958). Foundations of Information Theory, McGraw-Hill, New York.
- Fire, P. (1959). "A Class of Multiple-Error-Correcting Binary Codes for Non-Independent Errors." Sylvania Report No. RSL-E-32, Sylvania Electronic Defense Laboratory, Mountain View, Calif., March.
- Flanagan, J. L., et al. (1979). "Speech Coding," *IEEE Trans. Commun.*, vol. COM-27, pp. 710-736, April.
- Forney, G. D., Jr. (1965). "One Decoding BCH Codes," *IEEE Trans. Inform. Theory*, vol. IT-11, pp. 549-557, October.
- Forney, G. D., Jr. (1966a). Concatenated Codes, MIT Press, Cambridge, Mass.
- Forney, G. D., Jr. (1966b). "Generalized Minimum Distance Decoding," *IEEE Trans. Inform. Theory*, vol. IT-12, pp. 125-131, April.
- Forney, G. D., Jr. (1968). "Exponential Error Bounds for Erasure, List, and Decision-Feedback Schemes," *IEEE Trans. Inform. Theory*, vol. IT-14, pp. 206-220, March.
- Forney, G. D., Jr. (1970a). "Coding and Its Application in Space Communications," *IEEE Spectrum*, vol. 7, pp. 47-58, June.
- Forney, G. D., Jr. (1970b). "Convolutional Codes I: Algebraic Structure," *IEEE Trans. Inform. Theory*, vol. IT-16, pp. 720-738, November.
- Forney, G. D., Jr. (1971). "Burst Correcting Codes for the Classic Bursty Channel," *IEEE Trans. Commun. Tech.*, vol. COM-19, pp. 772-781, October.
- Fomey, G. D., Jr. (1972). "Maximum-Likelihood Sequence Estimation of Digital Sequences in the Presence of Intersymbol Interference." *IEEE Trans. Inform. Theory*, vol. IT-18, pp. 363-378, May.
- Forney, G. D., Jr. (1974). "Convolutional Codes III: Sequential Decoding," *Inform. Control*, vol. 25, pp. 267-297, July.
- Forney, G. D., Jr. (1988). "Coset Codes I: Introduction and Geometrical Classification," IEEE Trans. Inform. Theory, vol. IT-34, pp. 671-680, September.
- Forney, G. D., Jr., Gallager, R. G., Lang, G. R., Longstaff, F. M., and Qureshi, S. U. (1984). "Efficient Modulation for Band-Limited Channels." *IEEE J. Selected Areas Commun.*, vol. SAC-2, pp. 632-647, September.
- Foschini, G. J. (1984). "Contrasting Performance of Faster-Binary Signaling with QAM," Bell Syst. Tech. J., vol. 63, pp. 1419-1445, October.
- Foschini, G. J. (1985). "Equalizing Without Altering or Detecting Data, Bell Syst. Tech. J., vol. 64, pp. 1885-1911, October.

- Foschini, G. J., Gitlin, R. D., and Weinstein, S. B. (1974). "Optimization of Two-Dimensional Signal Constellations in the Presence of Gaussian Noise," *IEEE Trans. Commun.*, vol. COM-22, pp. 28-38, January.
- Franaszek, P. A. (1968). "Sequence-State Coding for Digital Transmission," Bell Syst. Tech. J., vol. 27, p. 143.
- Franaszek, P. A. (1969). "On Synchronous Variable Length Coding for Discrete Noiseless Channels," *Inform. Control*, vol. 15, pp. 155-164.
- Franaszek, P. A. (1970). "Sequence-State Methods for Run-Length-Limited Coding," IBM J. Res. Dev., pp. 376-383, July.
- Franks, L. E. (1969). Signal Theory, Prentice-Hall, Englewood Cliff, N.J.
- Franks, L. E. (1983). "Carrier and Bit Synchronization in Data Communication—A Tutorial Review," *IEEE Trans. Commun.*, vol. COM-28, pp. 1107-1121, August.
- Franks, L. E. (1981). "Synchronization Subsystems: Analysis and Design," in Digital Communications, Satellite/Earth Station Engineering, K. Feher (ed.), Prentice-Hall, Englewood Cliffs, N.J.
- Fredricsson, S. (1975). "Pseudo-Randomness Properties of Binary Shift Register Sequences," *IEEE Trans. Inform. Theory*, vol. IT-21, pp. 115-120, January.
- Freiman, C. E. and Wyner, A. D. (1964). "Optimum Block Codes for Noiseless Input Restricted Channels," Inform. Control, vol. 7, pp. 398-415.
- Gaarder, N. T. (1971). "Signal Design for Fast-Fading Gaussian Channels," IEEE Trans. Inform. Theory, vol. 1T-17, pp. 247-256, May.
- Gabor, A. (1967). "Adaptive Coding for Self Clocking Recording," IEEE Trans. Electronic Comp. vol. EC-16, p. 866.
- Gallager, R. G. (1965). "Simple Derivation of the Coding Theorem and Some Applications," IEEE Trans. Inform. Theory, vol. IT-11, pp. 3-18, January.
- Gallager, R. G. (1968). Information Theory and Reliable Communication, Wiley, New York.
- Gardner, F. M. (1979). Phaselock Techniques, Wiley, New York.
- Gardner, W. A. (1984). "Learning Characteristics of Stochastic-Gradient Descent Algorithms: A General Study, Analysis, and Critique," Signal Processing, vol. 6, pp. 113-133, April.
- George, D. A., Bowen, R. R., and Storey, J. R. (1971). "An Adaptive Decision-Feedback Equalizer," *IEEE Trans. Commun. Tech.*, vol. COM-19, pp. 281-293, June.
- Gersho, A. (1982). "On the Structure of Vector Quantizers," *IEEE Trans. Inform. Theory*, vol. IT-28, pp. 157-166, March.
- Gersho, A. and Gray, R. M. (1992). Vector Quantization and Signal Compression, Kluwer Academic Publishers, Boston.
- Gersho, A. and Lawerence, V. B. (1984). "Multidimensional Signal Constellations for Voiceband Data Transmission," *IEEE J. Selected Areas Commun.*, vol. SAC-2, pp. 687-702, September.
- Gerst, I. and Diamond, J. (1961). "The Elimination of Intersymbol Interference by Input Pulse Shaping," Proc. IRE, vol. 53, July.
- Ghez, S., Verdu, S., and Schwartz, S. C. (1988). "Stability Properties of Slotted Aloha with Multipacket Reception Capability," *IEEE Trans. Autom. Control*, vol. 33, pp. 640-649, July.
- Ghosh, M. and Weber, C. L. (1991). "Maximum likelihood Blind Equalization," Proc. 1991 SPIE Conf., San Diego, Calif. July.
- Gilbert, E. N. (1952). "A Comparison of Signaling Alphabets," Bell Syst. Tech. J., vol. 31, pp. 504-522, May.
- Gilhousen, K. S., Jacobs, I. M., Podovani, R., Viterbi, A. J., Weaver, L. A., and Wheatley, G. E. III (1991). "On the Capacity of a Cellular CDMA System," *IEEE Trans. Vehicular Tech.*, vol. 40, pp. 303-312, May.
- Gitlin, R. D. Meadors, H. C., and Weinstein, S. B. (1982). "The Tap Leakage Algorithm: An Algorithm for the Stable Operation of a Digitally Implemented Fractionally Spaced, Adaptive Equalizer," Bell Syst. Tech. J., vol. 61, pp. 1817-1839, October.
- Gitlin, R. D. and Weinstein, S. B. (1979). "On the Required Tap-Weight Precision for Digitally Implemented Mean-Squared Equalizers," Bell Syst. Tech. J., vol. 58, pp. 301-321, February.

- Gitlin, R. D. and Weinstein, S. B. (1981). "Fractionally-Spaced Equalization: An Improved Digital Transversal Equalizer," *Bell Syst. Tech. J.*, vol. 60, pp. 275-296, February.
- Glave, F. E. (1972). "An Upper Bound on the Probability of Error due to Intersymbol Interference for Corrleated Digital Signals," *IEEE Trans. Inform. Theory*, vol. IT-18, pp. 356-362, May.
- Goblick, T. J., Jr. and Holsinger, J. L. (1967). "Analog Source Digitization: A Comparison of Theory and Practice." *IEEE Trans. Inform. Theory*, vol. IT-13, pp. 323-326, April.
- Godard, D. N. (1974). "Channel Equalization Using a Kalman Filter for Fast Data Transmission," IBM J. Res. Dev., vol. 18, pp. 267-273, May.
- Godard, D. N. (1980). "Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communications Systems," *IEEE Trans. Commun.*, vol. COM-28, pp. 1867-1875, November.
- Golay, M. J. E. (1949). "Note on Digital Coding," Proc. IRE, vol. 37, p. 657, June.
- Gold, R. (1967). "Optimal Binary Sequences for Spread Spectrum Multiplexing," IEEE Trans. Inform. Theory, vol. IT-13, pp. 619-621, October.
- Gold, R. (1968). "Maximal Recursive Sequences with 3-Valued Recursive Cross Correlation Functions," IEEE Trans. Inform. Theory, vol. IT-14, pp. 154-156, January.
- Golomb, S. W. (1967). Shift Register Sequences, Holden-Day, San Francisco, Calif.
- Goppa, V. D. (1970). "New Class of Linear Correcting Codes," Probl. Pereduch. Inform., vol. 6, pp. 24-30.
- Goppa, V. D. (1971). "Rational Presentation of Codes and (L, g)-Codes," Probl. Peredach. Inform., vol 7, pp. 41-49.
- Gray, R. M. (1975). "Sliding Block Source Coding," *IEEE Trans. Inform. Theory*, vol. JT 21, pp. 357-368, July.
- Gray, R. M. (1990). Source Coding Theory, Kluwer Academic Publishers, Boston.
- Greefkes, J. A. (1970). "A Digitally Companded Delta Modulation Modem for Speech Transmission," Proc. IEEE Int. Conf. on Commun. pp. 7.33-7.48, June.
- Green, P. E., Jr. (1962). "Radar Astronomy Measurement Techniques," MIT Lincoln Laboratory, Lexington, Mass., Tech. Report No. 282, December.
- Gronemeyer, S. A. and McBride, A. L. (1976). "MSK and Offset QPSK Modulation," *IEEE Trans. Commun.*, vol. COM-24, pp. 809-820, August.
- Gupta, S. C. (1975). "Phase-Locked Loops," Proc. IEEE, vol. 63, pp. 291-306, February.
- Hahn, P. M. (1962). "Theoretical Diversity Improvement in Multiple Frequency Shift Keying," IRE Trans. Commun. Syst., vol. CS-10, pp. 177-184, June.
- Hamming, R. W. (1950). "Error Detecting and Error Cortecting Codes," Bell Syst. Tech. J., vol. 29, pp. 147-160, April.
- Hamming, R. W. (1986). Coding and Information Theory, Prentice-Hall, Englewood Cliffs, N.J.
- Hancock, J. C. and Lucky, R. W. (1960). "Performance of Combined Amplitude and Phase-Modulated Communication Systems," IRE Trans. Commun. Syst., vol. CS-8, pp. 232-237, December.
- Hartley, R. V. (1928). "Transmission of Information," Bell Syst. Tech. J., vol. 7, p. 535.
- Hatzinakos, D. and Nikias, C. L. (1991). "Blind Equalization Using a Tricepstrum-Based Algorithm," *IEEE Trans. Commun.*, vol. COM-39, pp. 669-682, May.
- Hecht, M. and Guida, A. (1969). "Delay Modulation," Proc. IEEE, vol. 57, pp. 1314-1316, July.
- Heller, J. A. (1968). "Short Constraint Length Convolutional Codes," Jet Propulsion Laboratory, California Institue of Technology, Pasadena, Calif., Space Program Summary 37-54, vol. 3, pp. 171-174, December.
- Heller, J. A. (1975). "Feedback Decoding of Convolutional Codes," in Advances in Communication Systems, vol. 4, A. J. Viterbi (ed.), Academic, New York.
- Heller, J. A. and Jacobs, I. M. (1971). "Viterbi Decoding for Satellite and Space Communication." *IEEE Trans. Commun. Tech.*, vol. COM-19, pp. 835-848, October.
- Helstrom, C. W. (1955). "The Resolution of Signals in White Gaussian Noise," Proc. IRE, vol. 43, pp. 1111-1118, September.

- Helstrom, C. W. (1968). Statistical Theory of Signal Detection, Pergamon, London.
- Helstrom, C. W. (1991). Probability and Stochastic Processes for Engineers, Macmillan, New York.
- Hildebrand, F. B. (1960). Methods of Applied Mathematics, Prentice-Hall, Englewood Cliffs, N.J.
- Hirosaki, B. (1981). "An Orthogonality Multiplexed QAM System Using the Discrete Fourier Transform," *IEEE Trans. Commun.*, vol. COM-29, pp. 982-989, July.
- Hirosaki, B., Hasegawa. S., and Sabato, A. (1986). "Advanced Group-Band Modern Using Orthogonally Multiplexed QAM Techniques," IEEE Trans. Commun., vol. COM-34, pp. 587-592, June.
- Ho. E. Y. and Yeh, Y. S. (1970). "A New Approach for Evaluating the Error Probability in the Presence of Intersymbol Interference and Additive Gaussian Noise," Bell Syst. Tech. J., vol. 49, pp. 2249–2265, November.
- Hocquenghem, A. (1959). "Codes Correcteurs d'Erreurs," Chiffres, vol. 2, pp. 147-156.
- Holmes, J. K. (1982). Coherent Spread Spectrum Systems, Wiley-Interscience, New York.
- Horwood, D. and Gagliardi, R. (1975). "Signal Design for Digital Multiple Access Communications," IEEE Trans. Commun., vol. COM-23, pp. 378-383, March.
- Hsu, F. M. (1982). "Square-Root Kalman Filtering for High-Speed Data Received over Fading Dispersive HF Channels," *IEEE Trans. Inform. Theory*, vol. IT-28, pp. 753-763, September.
- Huffman, D. A. (1952). "A Method for the Construction of Minimum Redundancy Codes," Proc. IRE, vol. 40, pp. 1098-1101, September.
- Hui, J. Y. N. (1984). "Throughput Analysis for Code Division Multiple Accessing of the Spread Spectrum Channel," IEEE J. Selected Areas Commun., vol. SAC-2, pp. 482-486, July.
- Immink, K. A. S. (1990). "Runlength-Limited Sequences," Proc. IEEE, vol. 78, pp. 1745-1759, November.
- Itakura, F. (1975). "Minimum Prediction Residual Principle Applied to Speech Recognition." IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-23, pp. 67-72, February.
- Itakura, F. and Saito, S. (1968). "Analysis Synthesis Telephony Based on the Maximum-Likelihood Methods," Proc. 6th Int. Congr. Acoust., Tokyo, Japan, pp. C17-C20.
- Jacobs, I. M. (1974). "Practial Applications of Coding," IEEE Trans. Inform. Theory, vol. IT-20, pp. 305-310, May.
- Jacoby, G. V. (1977). "A New Look-Ahead Code for Increased Data Density," IEEE Trans. Magnetics, vol. MAG-13, 1202-1204.
- Jayant, N. S. (1970). "Adaptive Delta Modulation with a One-Bit Memory," Bell Syst. Tech. J., pp. 321-342, March.
- Jayant, N. S. (1974). "Digital Coding of Speech Waveforms: PCM, DPCM, and DM Quantizers," Proc. IEEE, vol. 62, pp. 611-632, May.
- Jayant, N. S. (1976). Waveform Quantization and Coding. IEEE Press, New York.
- Jayant, N. S. and Noll, P. (1984). Digital Coding of Waveforms, Prentice-Hall. Englewood Cliffs.
 N.J.
- Jelinek, F. (1968). Probabilistic Information Theory, McGraw-Hill, New York.
- Jelinek, F. (1969). "Fast Sequential Decoding Algorithm Using a Stack," IBM J. Res. Dev., vol. 13, pp. 675-685, November.
- Johnson, C. R. (1991). "Admissibility in Blind Adaptive Channel Equalization," IEEE Control Syst. Mag., pp. 3-15, January.
- Jones, S. K., Cavin, R. K. and Reed, W. M. (1982). "Analysis of Error-Gradient Adaptive Linear Equalizers for a Class of Stationary-Dependent Processes," *IEEE Trans. Inform. Theory*, vol. IT-28, pp. 318-329, March.
- Jordan, K. L. Jr. (1966). "The Performance of Sequential Decoding in Conjunction with Efficient Modulation," IEEE Trans. Commun. Syst., vol. CS-14, pp. 283-287, June.
- Justesen, J. (1972). "A Class of Constructive Asymptotically Good Algebraic Codes," IEEE Trans. Inform. Theory, vol. IT-18, pp. 652-656, September.
- Kailath, T. (1960). "Correlation Detection of Signals Perturbed by a Random Channel," IRE Trans. Inform. Theory, vol. IT-6. pp. 361-366, June.

- Kailath, T. (1961). "Channel Characterization: Time-Variant Dispersive Channels, In Lectures on Communication System Theory, Chap. 6, E. Baghdady (ed.), McGraw-Hill, New York.
- Kalet, I. (1989). "The Multitone Channel," *IEEE Trans. Commun.*, vol. COM-37, pp. 119-124, February.
- Karabed, R. and Siegel, P. H. (1991). "Matched-Spectral Null Codes for Partial-Response Channels," *IEEE Trans. Inform. Theory*, vol. IT-37, pp. 818-855, May.
- Kasami, T. (1966). "Weight Distribution Formula for Some Class of Cyclic Codes," Coordinated Science Laboratory, University of Illinois, Urbana, Ill., Tech. Report No. R-285, April.
- Kaye, A. R. and George, D. A. (1970). "Transmission of Multiplexed PAM Signals over Multiple Channel and Diversity Systems," IEEE Trans. Commun., vol. COM-18, pp. 520-525, October.
- Kelly, E. J., Reed, I. S., and Root, W. L. (1960). "The Detection of Radar Echoes in Noise, Pt. I." J. SIAM, vol. 8, pp. 309-341, September.
- Kleinrock, L. and Tobagi, F. A. (1975). "Packet Switching in Radio Channels: Part I—Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteristics," *IEEE Trans. Commun.*, vol. COM-23, pp. 1400-1416, December.
- Kobayashi, H. (1971). "Simultaneous Adaptive Estimation and Decision Algorithm for Carrier Modulated Data Transmission Systems," *IEEE Trans. Commun. Tech.*, vol. COM-19, pp. 268-280, June.
- Kotelnikov, V. A. (1947). "The Theory of Optimum Noise Immunity," Ph.D. Dissertation, Molotov Energy Institute, Moscow. [Translated by R. A. Silverman, McGraw-Hill, New York.]
- Kretzmer, E. R. (1966). "Generalization of a Technique for Binary Data Communication," *IEEE Trans. Commun. Tech.*, vol. COM-14, pp. 67-68, February.
- Larsen, K. J. (1973). "Short Convolutional Codes with Maximal Free Distance for Rates 1/2, 1/3, and 1/4," *IEEE Trans. Inform. Theory*, vol. IT-19, pp. 371-372, May.
- Lender, A. (1963). "The Duobinary Technique for High Speed Data Transmission," AIEE Trans. Commun. Electronics, vol. 82, pp. 214-218.
- Leon-Garcia, A. (1994). Probability and Random Processes for Electrical Engineering, Addison-Wesley, Reading, Mass.
- Levinson, N. (1947). "The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction," J. Math. and Phys., vol. 25, pp. 261-278.
- Lin, S. and Costello, D. J., Jr. (1983). Error Control Coding: Fundamentals and Applications, Prentice-Hall, Englewood Cliffs, N.J.
- Linde, Y., Buzo, A., and Gray, R. M. (1980). "An Algorithm for Vector Quantizer Design." *IEEE Trans. Commun.* vol. COM-28, pp. 84-95, January.
- Lindell, G. (1985). "On Coded Continuous Phase Modulation," Ph.D. Dissertation, Telecommunication Theory, University of Lund, Lund, Sweden, May.
- Lindholm, J. H. (1968). "An Analysis of the Pseudo-Randomness Properties of Subsequences of Long m-Sequences," *IEEE Trans. Inform. Theory*, vol. IT-14, pp. 569-576, July.
- Lindsey, W. C. (1964). "Error Probabilities for Ricean Fading Multichannel Reception of Binary and N-Ary Signals," *IEEE Trans. Inform. Theory*, vol. IT-10, pp. 339-350, October.
- Lindsey, W. C. (1972). Synchronization Systems in Communications, Prentice-Hall, Englewood Cliffs, N.J.
- Lindsey, W. C. and Chie, C. M. (1981). "A Survey of Digital Phase-Locked Loops," Proc. IEEE, vol. 69, pp. 410-432.
- Lindsey, W. C. and Simon, M. K. (1973). Telecommunication Systems Engineering, Prentice-Hall, Englewood Cliffs, N.J.
- Ling, F. (1988). "Convergence Characteristics of LMS and LS Adaptive Algorithms for Signals with Rank-Deficient Correlation Matrices," Proc. Int. Conf. Acoust., Speech, Signal Processing, New York, 25.D.4.7, April.
- Ling, F., Manolakis, D. G., and Proakis, J. G. (1986a). "Finite Word-Length Effects in Recursive Least Squares Algorithms with Application to Adaptive Equalization," Annales des Telecommunications, vol. 41, pp. 1-9, May-June.

- Ling, F., Manolakis, D. G., and Proakis, J. G. (1986b). "Numerically Robust Least-Squares Lattice-Ladder Alghorithms with Direct Updating of the Reflection Coefficients," *IEEE Trans. Acoust., Speech, Signal Processing.* vol. ASSP-34, pp. 837-845, August.
- Ling, F. and Proakis, J. G. (1982). "Generalized Least Squares Lattice and Its Applications to DFE," Proc. 1982, IEEE Int. Conf. on Acoustics, Speech, Signal Processing, Paris, France, May.
- Ling, F. and Proakis, J. G. (1984a), "Numerical Accuracy and Stability: Two Problems of Adaptive Estimation Algorithms Caused by Round-Off Error," *Proc. Int. Conf. Acoust., Speech, Signal Processing*, pp. 30.3.1~30.3.4, San Diego, Calif., March.
- Ling, F. and Proakis, J. G. (1984b). "Nonstationary Learning Characteristics of Least Squares Adaptive Estimation Algorithms," *Proc. Int. Conf. Acoust., Speech, Signal Processing*, pp. 3.7.1-3.7.4, San Diego, Calif., March.
- Ling, F. and Proakis, J. G. (1984c). "A Generalized Multichannel Least-Squares Lattice Algorithm with Sequential Processing Stages," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp. 381-389, April.
- Ling, F. and Proakis, J. G. (1985). "Adaptive Lattice Decision-Feedback Equalizers—Their Performance and Application to Time-Variant Multipath Channels," IEEE Trans. Commun., vol. COM-33, pp. 348-356, April.
- Ling, F. and Proakis, J. G. (1986). "A Recursive Modified Gram-Schmidt Algorithm," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 829-836, August.
- Ling, F. and Quershi, S. U. H. (1986). "Lattice Predictive Decision-Feedback Equalizer for Digital Communication Over Fading Multipath Channels," Proc. GLOBECOM '86, Houston, Texas, December.
- Ljung, S. and Ljung, L. (1985). "Error Propagation Properties of Recursive Least-Squares Adaptation Algorithms," Automatica, vol. 21, pp. 159-167.
- Lloyd, S. P. (1982). "Least Squares Quantization in PCM," IEEE Trans. Inform. Theory, vol. IT-28, pp. 129-137, March.
- Loeve, M. (1955). Probability Theory, Van Nostrand, Princeton, N.J.
- Long, G., Ling, F., and Proakis, J. G. (1987). "Adaptive Transversal Filters with Delayed Coefficient Adaptation," Proc. Int. Conf. Acoust., Speech, Signal Processing, Dallas, Texas, March.
- Long, G., Ling, F., and Proakis, J. G. (1988a). "Fractionally-Spaced Equalizers Based on Singular-Value Decomposition," Proc. Int. Conf. Acoust., Speech, Signal Processing, New York, 25.D.4.10, April.
- Long, G., Ling, F., and Proakis, J. G. (1988b). "Applications of Fractionally-Spaced Decision-Feedback Equalizers to HF Fading Channels," Proc. MILCOM, San Diego, Calif., October.
- Long, G., Ling, F., and Proakis, J. G. (1989). "The LMS Algorithm with Delayed Coefficient Adaptation, "IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-37, October.
- Lucky, R. W. (1965). "Automatic Equalization for Digital Communications, Bell Syst. Tech. J., vol. 44, pp. 547-588, April.
- Lucky, R. W. (1966). "Techniques for Adaptive Equalization of Digital Communication," Bell Syst. Tech. J., vol. 45, pp. 255-286.
- Lucky, R. W. and Hancock, J. C. (1962). "On the Optimum Performance of N-ary Systems Having Two Degrees of Freedom," IRE Trans. Commun. Syst., vol. CS-10, pp. 185-192, June.
- Lucky, R. W., Salz, J., and Weldon, E. J., Jr. (1968). Principles of Data Communication, McGraw-Hill, New York.
- Lugannani, R. (1969). "Intersymbol Interference and Probability of Error in Digital Systems," *IEEE Trans. Inform. Theory*, vol. IT-15, pp. 682-688, November.
- Lundgren, C. W. and Rummler, W. D. (1979). "Digital Radio Outage Due to Selective Fading—Observation vs. Prediction from Laboratory Simulation," Bell Syst. Tech. J., vol. 58, pp. 1074-1100, May-June.
- Lupas, R. and Verdu, S. (1989). "Linear Multiuser Detectors for Synchronous Code-Division Multiple-Access Channels," *IEEE Trans. Inform. Theory*, vol. IT-35, pp. 123-136, January.

- Lupas, R. and Verdu, S. (1990). "Near-Far Resistance of Multiuser Detectors in Asynchronous Channels," *IEEE Trans. Commun.*, vol. COM-38, pp. 496-508, April.
- MacKenchnie, L. R. (1973). "Maximum Likelihood Receivers for Channels Having Memory," Ph.D. Dissertation, Department of Electrical Engineering, University of Notre Dame, Notre Dame, Ind., January.
- MacWilliams, F. J. and Sloane, J. J. (1977). The Theory of Error Correcting Codes, North Holland, New York.
- Magee, F. R. and Proakis, J. G. (1973). "Adaptive Maximum-Likelihood Sequence Estimation for Digital Signaling in the Presence of Intersymbol Interference," *IEEE Trans. Inform. Theory*, vol. IT-19, pp. 120-124, January.
- Makhoul, J. (1978). "A Class of All-Zero Lattice Digital Filters: Properties and Applications," *IEEE Trans. Acoust., Speech, Signal Processing*, vol. ASSP-26, pp. 304-314, August.
- Makhoul, J., Roucos, S., and Gish, H. (1985). "Vector Quantization in Speech Coding," Proc. IEEE, vol. 73, pp. 1551-1587, November.
- Martin, D. R. and McAdam, P. L. (1980). "Convolutional Code Performance with Optimal Jamming," Conf. Rec. Int. Conf. Commun., pp. 4.3.1-4.3.7, May.
- Massey, J. L. (1963). Threshold Decoding, MIT Press, Cambridge, Mass.
- Massey, J. L. (1965). "Step-by-Step Decoding of the BCH Codes," *IEEE Trans. Inform. Theory*, vol. IT-11, pp. 580-585, October.
- Massey, J. L. (1988). "Some New Approaches to Random Access Communications," Performance 87, pp. 551-569. [Reprinted 1993 in Multiple Access Communications, N. Abramson (ed.), IEEE Press, New York.]
- Massey, J. L. and Sain, M. (1968). "Inverses of Linear Sequential Circuits," *IEEE Trans. Comput.*, vol. C-17, pp. 330-337, April.
- Matis, K. R. and Modestino, J. W. (1982). "Reduced-State Soft-Decision Trellis Decoding of Linear Block Codes," IEEE Trans. Inform. Theory, vol. IT-28, pp. 61-68, January.
- Max, J. (1960). "Quantizing for Minimum Distortion," *IRE Trans. Inform. Theory*, vol. IT-6, pp. 7-12, March.
- Mazo, J. E. (1975). "Faster-Than-Nyquist Signaling," Bell Syst. Tech. J., vol. 54, pp. 1451-1462, October.
- Mazo, J. E. (1979). "On the Independence Theory of Equalizer Convergence," *Bell Syst. Tech. J.*, vol. 58, pp. 963-993, May.
- McMahon, M. A. (1984). The Making of a Profession—A Century of Electrical Engineering in America, IEEE Press, New York.
- Mengali, U. (1977). "Joint Phase and Timing Acquisition in Data Transmission," *IEEE Trans. Commun.*, vol. COM-25, pp. 1174-1185, October.
- Meyers, M. H. and Franks, L. E. (1980). "Joint Carrier Phase and Symbol Timing for PAM Systems," *IEEE Trans. Commun.*, vol. COM-28, pp. 1121-1129, August.
- Meyr, H. and Ascheid, G. (1990). Synchronization in Digital Communications, Wiley Interscience, New York.
- Miller, K. S. (1964). Multidimensional Gaussian Distributions, Wiley, New York.
- Millman, S. (ed.) (1984). A History of Engineering and Science in the Bell System—Communication Sciences (1925-1980), AT&T Bell Laboratoreis.
- Miyagaki, Y., Morinaga, N., and Namekawa, T. (1978). "Error Probability Characteristics for CPSK Signal Through m-Distributed Fading Channel," IEEE Trans. Commun., vol. COM-26, pp. 88-100, January.
- Monsen, P. (1971). "Feedback Equalization for Fading Dispersive Channels," *IEEE Trans. Inform. Theory*, vol. IT-17, pp. 56-64, January.
- Morf, M. (1977). "Ladder Forms in Estimation and System Identification," Proc. 11th Annual Asilomar Conf. on Circuits, Systems and Computers, Monterey, Calif., Nov. 7-9.
- Morf, M., Dickinson, B., Kailath, T., and Vieira, A. (1977). "Efficient Solution of Covariance Equations for Linear Prediction," *IEEE Trans. Acoust., Speech, Signal Processing*, vol. ASSP-25, pp. 429-433, October.
- Morf, M. and Lee, D. (1979). "Recursive Lest Squares Ladder Forms for Fast Parameter

- Tracking," Proc. 1978 IEEE Conf. on Decision and Control, San Diego, Calif., pp. 1362-1367, January 12.
- Morf, M., Lee, D., Nickolls, J. and Vieira, A. (1977). "A Classification of Algorithms for ARMA Models and Ladder Realizations," Proc. 1977 IEEE Int. Conf on Acoustics, Speech, Signal Processing, Hartford, Conn., pp. 13-19, May.
- Morf, M., Vieira, A., and Lee, D. (1977). "Ladder Forms for Identification and Speech Processing," *Proc. 1977 IEEE Conf. on Decision and Control*, New Orleans, La, pp. 1074-1078, December.
- Mueller, K. H. and Muller, M. S. (1976). "Timing Recovery in Digital Synchronous Data Receivers," *IEEE Trans. Commun.*, vol. COM-24, pp. 516-531, May.
- Muller, D. E. (1954). "Application of Boolean Algebra' to Switching Circuit Design and to Error Detection," IRE Trans. Electronic Comput., vol. EC-3, pp. 6-12, September.
- Mulligan, M. G. (1988). "Multi-Amplitude Continuous Phase Modulation with Convolutional Coding," Ph.D. Dissertation, Department of Electrical and Computer Engineering, Northeastern University, June.
- Nakagami, M. (1960). "The m-Distribution—A General Formula of Intensity Distribution of Rapid Fading," in Statistical Methods of Radio Wave Propagation, W. C. Hoffman (ed.), pp. 3-36, Pergamon Press, New York.
- Natali, F. D. and Walbesser, W. J. (1969). "Phase-Locked Loop Detection of Binary PSK Signals Utilizing Decision Feedback," *IEEE Trans. Aerospace Electronic Syst.*, vol. AES-5, pp. 83-90, January.
- Neyman, J. and Pearson, E. S. (1933). "On the Problem of the Most Efficient Tests of Statistical Hypotheses," *Phil. Trans. Roy. Soc. London, Series A*, vol. 231, 289-337.
- North, D. O. (1943). "An Analysis of the Factors Which Determine Signal/Noise Discrimination in Pulse-Carrier Systems," RCA Tech. Report No. 6 PTR-6C.
- Nyquist, H. (1924). "Certain Factors Affecting Telegraph Speed," Bell Syst. Tech. J., vol. 3, pp. 324.
- Nyquist, H. (1928). "Certain Topics in Telegraph Transmission Theory," AIEE Trans., vol. 47, pp. 617-644.
- Odenwalder, J. P. (1970). "Optimal Decoding of Convolutional Codes," Ph.D. Dissertation, Department of Systems Sciences, School of Engineering and Applied Sciences, University of California, Los Angeles.
- Odenwalder, J. P. (1976). "Dual-k Convolutional Codes for Noncoherently Demodulated Channels," Proc. Int. Telemetering Conf. vol. 12, pp. 165-174, September.
- Olsen, J. D. (1977). "Nonlinear Binary Sequences with Asymptotically Optimum Periodic Cross Correlation," Ph.D. Dissertation, University of Southern California, December.
- Omura, J. (1971). "Optimal Receiver Design for Convolutional Codes and Channels with Memory Via Control Theoretical Concepts," Inform. Sci., vol. 3, pp. 243-266.
- Omura, J. K. and Levitt, B. K. (1982). "Code Error Probability Evaluation for Antijam Communication Systems," *IEEE Trans. Commun.*, vol. COM-30, pp. 896-903, May.
- Osborne, W. P. and Luntz, M. B. (1974). "Coherent and Noncoherent Detection of CPFSK," *IEEE Trans. Commun.*, vol. COM-22, pp. 1023-1036, August.
- Paaske, E. (1974). "Short Binary Convolutional Codes with Maximal Free Distance for Rates 2/3 and 3/4," IEEE Trans. Inform. Theory, vol. IT-20, pp. 683-689, September.
- Paez, M. D. and Glisson, T. H. (1972). "Minimum Mean Squared Error Quantization in Speech PCM and DPCM Systems," IEEE Trans. Commun., vol. COM-20, pp. 225-230, April.
- Pahlavan, K. (1985). "Wireless Communications for Office Information Networks," IEEE Commun. Mag., vol. 23, pp. 18-27, June.
- Papoulis, A. (1984). Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York.
- Paul, D. B. (1983). "An 800 bps Adaptive Vector Quantization Vocoder Using a Preceptual Distance Measure," Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Boston, Mass, pp. 73-76, April.
- Pearson, K., (1965). Tables of the Incomplete Γ-Function, Cambridge University Press, London.

- Peebles, P. Z. (1987). Probability, Random Variables, and Random Signal Principles, McGraw-Hill, New York.
- Peterson, W. W. (1960). "Encoding and Error-Correction Procedures for Bose-Chaudhuri Codes," IRE Trans. Inform. Theory, vol. IT-6, pp. 459-470, September.
- Peterson, W. W. and Weldon, E. J., Jr. (1972). Error-Correcting Codes, 2d ed., MIT Press. Cambridge. Mass.
- Picci, G. and Prati, G. (1987). "Blind Equalization and Carrier Recovery Using a Stopand-Go Decision Directed Algorithm," *IEEE Trans. Commun.*, vol. COM-35, pp. 877-887. September.
- Picinbono, B. (1978). "Adaptive Signal Processing for Detection and Communication," in Communication Systems and Random Process Theory, J. K. Skwirzynski (ed.), Sijthoff & Nordhoff, Alphen aan den Rijn, The Netherlands.
- Pickholtz, R. L., Schilling, D. L., and Milstein, L. B. (1982). "Theory of Spread Spectrum Communications—A Tutorial," *IEEE Trans. Commun.*, vol. COM-30, pp. 855–884, May.
- Pieper, J. F., Proakis, J. G., Reed, R. R., and Wolf, J. K. (1978). "Design of Efficient Coding and Modulation for a Rayleigh Fading Channel," *IEEE Trans. Inform. Theory*, vol. IT-24, pp. 457-468, July.
- Pierce, J. N. (1958). "Theoretical Diversity Improvement in Frequency-Shift Keying," Proc. IRE. vol. 46, pp. 903-910, May.
- Pierce, J. N. and Stein, S. (1960). "Multiple Diversity with Non-Independent Fading," Proc. IRE, vol. 48, pp. 89-104, January.
- Plotkin, M. (1960). "Binary Codes with Specified Minimum Distance," *IRE Trans. Inform. Theory*, vol. IT-6, pp. 445-450, September.
- Poor, H. V. and Verdu, S. (1988). "Single-User Detectors for Multiuser Channels," *IEEE Trans. Commun.*, vol. 36, pp. 50-60, January.
- Price, R. (1954). "The Detection of Signals Perturbed by Scatter and Noise," IRE Trans. Inform. Theory, vol. PGIT-4, pp. 163-170, September.
- Price, R. (1956). "Optimum Detection of Random Signals in Noise, with Application to Scatter-Multipath Communication," IRE Trans. Inform. Theory, vol. IT-2, pp. 125-135, December.
- Price, R. (1962a). "Error Probabalities for Adaptive Multichannel Reception of Binary Signals," MIT Lincoln Laboratory, Lexington, Mass., Tech. Report No. 258, July.
- Price, R. (1962b). "Error Probabilities for Adaptive Multichannel Reception of Binary Signals," *IRE Trans. Inform. Theory*, vol. IT-8, pp. 305-316, September.
- Price, R. (1972). "Nonlinearly Feedback-Equalized PAM vs. Capacity," *Proc. 1972 IEEE Int. Conf. on Commun. Philadelphia, Penn.*, pp. 22.12–22.17, June.
- Price, R. and Green, P. E., Jr. (1958). "A Communication Technique for Multipath Channels," Proc. IRE, vol. 46, pp. 555-570, March.
- Price, R. and Green, P. E., Jr. (1960). "Signal Processing in Radar Astronomy—Communication via Fluctuating Multipath Media," MIT Lincoln Laboratory, Lexington, Mass., Tech. Report No. 234, October.
- Proakis. J. G. (1968). "Probabilities of Error for Adaptive Reception of M-Phase Signals," *IEEE Trans. Commun. Tech.*, vol. COM-16, pp. 71-81, February.
- Proakis, J. G. (1975). "Advances in Equalization for Intersymbol Interference," in *Advances in Communication Systems*, vol. 4. A. J. Viterbi (ed.), Academic, New York.
- Proakis, J. G., Drouilhet, P. R., Jr., and Price, R. (1964). "Performance of Coherent Detection Systems Using Decision-Directed Channel Measurement," *IEEE Trans. Commun. Syst.*, vol. CS-12, pp. 54-63, March.
- Proakis, J. G. and Ling, F. (1984). "Recursive Least Squares Algorithms for Adaptive Equalization of Time-Variant Multipath Channels." *Proc. Int. Conf. Commun.* Amsterdam, The Netherlands, May.
- Proakis, J. G. and Manolakis, D. G. (1988). Introduction to Digital Processing, Macmillan, New York.
- Proakis, J. G. and Miller, J. H. (1969). "Adaptive Receiver for Digital Signaling through

- Channels with Intersymbol Interference," *IEEE Trans. Inform. Theory*, vol. IT-15, pp. 484-497, July.
- Proakis, J. G. and Rahman, I. (1979). "Performance of Concatenated Dual-k Codes on a Rayleigh Fading Channel with a Bandwidth Constraint," *IEEE Trans. Commun.*, vol. COM-27, pp. 801-806, May.
- Pursley, M. B. (1979). "On the Mean-Square Partial Correlation of Periodic Sequences," *Proc.* 1979 Conf. Inform. Science and Systems, Johns Hopkins University, Baltimore, Md., pp. 377-379, March.
- Qureshi, S. U. H. (1976). "Timing Recovery for Equalized Partial Response Systems," *IEEE Trans. Commun.*, vol. COM-24, pp. 1326-1331, December.
- Qureshi, S. U. H. (1985). "Adaptive Equalization," Proc. IEEE, vol. 53, pp. 1349-1387, September.
- Qureshi, S. U. H. and Forney, G. D., Jr. (1977). "Performance and Properties of a T/2 Equalizer," Natl. Telecom. Conf. Record, pp. 11.1.1-11.1.14, Los Angeles, Calif., December.
- Rabiner, L. R. and Schafer, R. W. (1978). Digital Processing of Speech Signals, Prentice-Hall, Englewood Cliffs, N.J.
- Raheli, R., Polydoros, A., and Tzou, C.-K. (1995). "The Principle of Per-Survivor Processing: A General Approach to Approximate and Adaptive MLSE," *IEEE Trans. Commun.*, vol. COM-43 (to appear).
- Rahman, I. (1981). "Bandwidth Constrained Signal Design for Digital Communication over Rayleigh Fading Channels and Partial Band Interference Channels," Ph.D. Dissertation, Department of Electrical Engineering, Northeastern University, Boston, Mass.
- Ramsey, J. L. (1970). "Realization of Optimum Interleavers," IEEE Trans. Inform. Theory, vol. IT-16, pp. 338-345.
- Reed, I. S. (1954). "A Class of Multiple-Error Correcting Codes and the Decoding Scheme," IRE Trans. Inform., vol. IT-4, pp. 38-49, September.
- Reed, I. S. and Solomon, G. (1960). "Polynomial Codes Over Certain Finite Fields," SIAM J., vol. 8, pp. 300-304, June.
- Rizos, A. D., Proakis, J. G., and Nguyen, T. Q. (1994). "Comparison of DFT and Cosine Modulated Filter Banks in Multicarrier Modulation," Proc. Globecom '94, pp. 687-691, San Francisco. Calif., November.
- Roberts, L. G. (1975). "Aloha Packet System with and without Slots and Capture," Comp. Commun. Rev., vol. 5, pp. 28-42, April.
- Roucos, S., Schwartz, R., and Makhoul, J. (1982). "Segment Quantization for Very-Low-Rate Speech Coding," Proc. Int. Conf. Acoust., Speech, Signal Processing, Paris, France, pp. 1565-569, May.
- Rowe, H. E. and Prabhu, V. K. (1975). "Power Spectrum of a Digital Frequency Modulation Signal," Bell Syst. Tech. J., vol. 54, pp. 1095-1125, July-August.
- Rummler, W. D. (1979). "A New Selective Fading Model: Application to Propagation Data," Bell Syst. Tech. J., vol. 58, pp. 1037-1071, May-June.
- Ryder, J. D. and Fink, D. G. (1984). Engineers and Electronics, IEEE Press, New York.
- Saltzberg, B. R. (1967). "Performance of an Efficient Parallel Data Transmission System," *IEEE Trans. Commun.*, vol. COM-15, pp. 805-811, December.
- Saltzberg, B. R. (1968). "Intersymbol Interference Error Bounds with Application to Ideal Bandlimited Signaling," *IEEE Trans. Inform. Theory*, vol. IT-14, pp. 563-568, July.
- Salz, J. (1973). "Optimum Mean-Square Decision Feedback Equalization," Bell Syst. Tech. J., vol. 52, pp. 1341-1373, October.
- Salz, J., Sheehan, J. R., and Paris, D. J. (1971). "Data Transmission by Cominbed AM and PM," Bell Syst. Tech. J., vol. 50, pp. 2399-2419, September.
- Sarwate, D. V. and Pursley, M. B. (1980). "Crosscorrelation Properties of Pseudorandom and Related Sequences," *Proc. IEEE*, vol. 68, pp. 593-619, May.
- Sato, Y. (1975). "A Method of Self-Recovering Equalization for Multilevel Amplitude-Modulation Systems," *IEEE Trans. Commun.*, vol. COM-23, pp. 679-682, June.
- Sato, Y. et al. (1986). "Blind Suppression of Time Dependency and its Extension to Multi-Dimensional Equalization," Proc. ICC'86, pp. 46.4.1-46.4.5.

- Satorius, E. H. and Alexander, S. T. (1979). "Channel Equalization Using Adaptive Lattice Algorithms," *IEEE Trans. Commun.*, vol. COM-27, pp. 899-905, June.
- Satorius, E. H. and Pack, J. D. (1981). "Application of Least Squares Lattice Algorithms to Adaptive Equalization," *IEEE Trans. Commun.*, vol. COM-29, pp. 136-142, February.
- Savage, J. E. (1966). "Sequential Decoding—The Computation Problem," *Bell Syst. Tech. J.*, vol. 45, pp. 149-176, January.
- Scholtz, R. A. (1977). "The Spread Spectrum Concept," IEEE Trans. Commun., vol. COM-25, pp. 748-755, August.
- Scholtz, R. A. (1979). "Optimal CDMA Codes," 1979 Nat. Telecommun. Conf. Rec., Washington, D.C., pp. 54.2.1-54.2.4, November.
- Scholtz, R. A. (1982). "The Origins of Spread Spectrum," *IEEE Trans. Commun.*, vol. COM-30, pp. 822-854, May.
- Schonhoff, T. A. (1976). "Symbol Error Probabilities for M-ary CPFSK: Coherent and Noncoherent Detection," *IEEE Trans. Commun.*, vol. COM-24, pp. 644-652, June.
- Seshadri, N. (1994). "Joint Data and Channel Estimation Using Fast Blind Trellis Search Techniques," *IEEE Trans. Commun.*, vol. COM-42, pp. 1000-1011, March.
- Shalvi, O. and Weinstein, E. (1990). "New Criteria for Blind Equalization of Nonminimum Phase Systems Channels," *IEEE Trans. Inform. Theory*, vol. IT-36, pp. 312-321, March.
- Shannon, C. E. (1948a). "A Mathematical Theory of Communication," Bell Syst. Tech. J., vol. 27, pp. 379-423, July.
- Shannon, C. E. (1948b). "A Mathematical Theory of Communication," Bell Syst. Tech. J., vol. 27, pp. 623-656, October.
- Shannon, C. E. (1949). "Communication in the Presence of Noise," *Proc. IRE*, vol. 37, pp. 10-21, January.
- Shannon, C. E. (1959a). "Coding Theorems for a Discrete Source with a Fidelity Criterion," IRE Nat. Conv. Rec., pt. 4, pp. 142-163, March.
- Shannon, C. E. (1959b). "Probability of Error for Optimal Codes in a Gaussian Channel," Bell Syst. Tech. J., vol. 38, pp. 611-656, May.
- Shannon, C. E., Gallager, R. G., and Berlekamp, E. R. (1967). "Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels, I and II," *Inform. Control.*, vol. 10. pp. 65-103, January; pp. 527-552, May.
- Shimbo, O. and Celebiler, M. (1971). "The Probability of Error due to Intersymbol Interference and Gaussian Noise in Digital Communication Systems," *IEEE Trans. Commun. Tech.*, vol. COM-19, pp. 113-119, April.
- Simon, M. K. and Divsalar, D. (1985). "Combined Trellis Coding with Asymmetric MPSK Modulation," JPL Publ. 85-24, Pasadena, Calif, May.
- Simon, M. K., Omura, J. K., Scholtz, R. A., and Levitt, B. K. (1985). Spread Spectrum Communications Vol. 1, 11, 111, Computer Science Press, Rockville, Md.
- Simon, M. K. and Smith, J. G. (1973). "Hexagonal Multiple Phase-and-Amplitude-Shift Keyed Signal Sets," IEEE Trans. Commun., vol. COM-21, pp. 1108-1115, October.
- Slepian, D. (1956). "A Class of Binary Signaling Alphabets," Bell Syst. Tech. J., vol. 35, pp. 203-234, January.
- Slepian, D. (1974). Key Papers in the Development of Information Theory, IEEE Press, New York.
 Slepian, D. and Wolf, J. K. (1973). "A Coding Theorem for Multiple Access Channels with Correlated Sources," Bell Syst. Tech. J., vol. 52, pp. 1037-1076.
- Sloane, N. J. A. and Wyner, A. D. (1993). The Collected Papers of Shannon, IEEE Press, New York.
- Slock, D. T. M. and Kailath, T. (1988). "Numerically Stable Fast Recursive Least-Squares Transversal Filters," Proc. Int. Conf. Acoust., Speech, Signal Processing, pp. 1365-1368, New York, April.
- Smith, J. W. (1965). "The Joint Optimization of Transmitted Signal and Receiving Filter for Data Transmission Systems," Bell Syst. Tech. J., vol. 44, pp. 1921-1942, December.
- Stenbit, J. P. (1964). "Table of Generators for BCH Codes," *IEEE Trans. Inform. Theory*, vol. IT-10, pp. 390-391, October.

- Stiffler, J. J. (1971). Theory of Synchronous Communications, Prentice-Hall, Englewood Cliffs, N.J. Sundberg, C. E. (1986). "Continuous Phase Modulation," IEEE Commun. Mag., vol. 24, pp. 25-38, April.
- Suzuki, H. (1977). "A Statistical Model for Urban Multipath Channels with Random Delay," *IEEE Trans. Commun.*, vol. COM-25, pp. 673-680, July.
- Tang, D. L. and Bahl, L. R. (1970). "Block Codes for a Class of Constrained Noiseless Channels," Inform. Control, vol. 17, pp. 436–461.
- Titsworth, R. C. and Welch, L. R. (1961). "Power Spectra of Signals Modulated by Random and Pseudorandom Sequences," *IPL Tech. Rep.* 32-140, October 10.
- Thomas, C. M., Weidner, M. Y., and Durrani, S. H. (1974). "Digital Amplitude-Phase-Keying with M-ary Alphabets," *IEEE Trans. Commun.*, vol. COM-22, pp. 168-180, February.
- Tong, L. Xu, G., and Kailath, T. (1994). "Blind Identification and Equalization Based on Second-Order Statistics," IEEE Trans. Inform. Theory, vol. 1T-40, pp. 340-349, March.
- Tufts, D. W. (1965). "Nyquist's Problem—The Joint Optimization of Transmitter and Receiver in Pulse Amplitude Modulation," *Proc. IEEE*, vol. 53, pp. 248-259, March.
- Turin, G. L. (1961). "On Optimal Diversity Reception," *IRE Trans. Inform. Theory*, vol. IT-7, pp. 154-166, July.
- Turin, G. L. (1962). "On Optimal Diversity Reception II," *IRE Trans. Commun. Syst.*, vol. CS-12, pp. 22-31, March.
- Turin, G. L. et al. (1972). "Simulation of Urban Vehicle Monitoring Systems," *IEEE Trans. Vehicular Tech.*, pp. 9-16, February.
- Tzannes, M. A., Tzannes, M. C., Proakis, J. G., and Heller, P. N. (1994). "DMT Systems, DWMT Systems and Digital Filter Banks," Proc. Int. Conf. Commun., pp. 311-315, New Orleans, Louisiana, May 1-5.
- Ungerboeck, G. (1972). "Theory on the Speed of Convergence in Adaptive Equalizers for Digital Communication," *IBM J. Res. Dev.*, vol. 16, pp. 546-555, November.
- Ungerboeck, G. (1974). "Adaptive Maximum-Likelihood Receiver for Carrier-Modulated Data-Transmission Systems," *IEEE Trans. Commun.*, vol. COM-22, pp. 624-636, May.
- Ungerboeck, G. (1976). "Fractional Tap-Spacing Equalizer and Consequences for Clock Recovery in Data Modems," *IEEE Trans. Commun.*, vol. COM-24, pp. 856-864, August.
- Ungerboeck, G. (1982). "Channel Coding with Multilevel/Phase Signals," IEEE Trans. Inform. Theory, vol. IT-28, pp. 55-67, January.
- Ungerboeck, G. (1987). "Trellis-Coded Modulation with Redundant Signal Sets, Parts I and II," IEEE Commun. Mag., vol. 25. pp. 5-21, February.
- Ungerboeck, G. and Csajka, I. (1976). "On Improving Data-Link Performance by Increasing the Channel Alphabet and Introducing Sequence Coding, 1976 Int. Conf. Inform. Theory, Ronneby, Sweden, June.
- Vaidyanathan, P. P. (1993). Multirate Systems and Filter Banks, Prentice-Hall, Englewood Cliffs,
- Van Etten, W. (1975). "An Optimum Linear Receiver for Multiple Channel Digital Transmission Systems," *IEEE Trans. Commun.*, vol. COM-23, pp. 828-834, August.
- Van Etten, W. (1976). "Maximum Likelihood Receiver for Multiple Channel Transmission Systems," IEEE Trans. Commun., vol. COM-24, pp. 276-283, February.
- Van Trees, H. L. (1968). Detection, Estimation, and Modulation Theory, Part I, Wiley, New York.
 Varsharmov, R. R. (1957). "Estimate of the Number of Signals in Error Correcting Codes,"
 Doklady Akad. Nauk, S.S.S.R., vol. 117, pp. 739-741.
- Verdu, S. (1986a). "Minimum Probability of Error for Asynchronous Gaussian Multiple-Access Channels;" *IEEE Trans. Inform. Theory*, vol. IT-32, pp. 85-96, January.
- Verdu, S. (1986b). "Multiple-Access Channels with Point-Process Observation: Optimum Demodulation," IEEE Trans. Inform. Theory, vol. IT-32, pp. 642-651, September.
- Verdu, S. (1986c). "Optimum Multiuser Asymptotic Efficiency," *IEEE Trans. Commun.*, vol. COM-34, pp. 890-897, September.
- Verdu, S. (1989). "Recent Progress in Multiuser Detection," Advances in Communications and Signal Processing, Springer-Verlag, Berlin. [Reprinted in Multiple Access Communications. N. Abramson (ed.), IEEE Press, New York.]

- Viterbi, A. J. (1966). Principles of Coherent Communication, McGraw-Hill, New York.
- Viterbi, A. J. (1967). "Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm," *IEEE Trans. Inform. Theory*, vol. IT-13, pp. 260-269, April.
- Viterbi, A. J. (1969). "Error Bounds for White Gaussian and Other Very Noisy Memoryless Channels with Generalized Decision Regions," *IEEE Trans. Inform. Theory*, vol. 1T-15, pp. 279-287, March.
- Viterbi, A. J. (1971). "Convolutional Codes and Their Performance in Communication Systems," *IEEE Trans. Commun. Tech.*, vol. COM-19, pp. 751-772, October.
- Viterbi, A. J. (1978). "A Processing Satellite Transponder for Multiple Access by Low-Rate Mobile Users," Proc. Fourth Int. Conf. on Digital Satellite Communications, Montreal, Canada, pp. 166-174, October.
- Viterbi, A. J. (1979). "Spread Spectrum Communication—Myths and Realities," *IEEE Commun. Mag.*, vol. 17, pp. 11-18, May.
- Viterbi, A. J. (1985). "When Not to Spread Spectrum—A Sequel," *IEEE Commun. Mag.*, vol. 23, pp. 12-17, April.
- Viterbi, A. J. and Jacobs, I. M. (1975). "Advances in Coding and Modulation for Noncoherent Channels Affected by Fading. Partial Band, and Multiple-Access Interference," in Advances in Communication Systems, vol. 4, A. J. Viterbi (ed.), Academic, New York.
- Viterbi, A. J. and Omura, J. K. (1979). Principles of Digital Communication and Coding, McGraw-Hill, New York.
- Wainberg, S. and Wolf, J. K. (1970). "Subsequences of Pseudo-Random Sequences," IEEE Trans. Commun. Tech., vol. COM-18, pp. 606-612, October.
- Wainberg, S. and Wolf, J. K. (1973). "Algebraic Decoding of Block Codes Over a q-ary Input, Q-ary Output Channel, Q > q," Inform. Control, vol. 22, pp. 232-247, April.
- Wald, A. (1947). Sequential Analysis, Wiley, New York.
- Ward, R. B. (1965). "Acquisition of Pseudonoise Signals by Sequential Estimation," *IEEE Trans. Commun. Tech.*, vol. COM-13, pp. 474-483, December.
- Ward, R. B. and Yiu, K. P. (1977). "Acquisition of Pseudonoise Signals by Recursion-Aided Sequential Estimation," *IEEE Trans. Commun.*, vol. COM-25, pp. 784-794, August.
- Weber, W. J., III, Stanton, P. H., and Sumida, J. T. (1978). "A Bandwidth Compressive Modulation System Using Multi-Amplitude Minimum-Shift Keying (MAMSK)," *IEEE Trans. Commun.*, vol. COM-26, pp. 543-551, May.
- Wei, L. F. (1984a). "Rotationally Invariant Convolutional Channel Coding with Expanded Signal Space, Part I: 180°," *IEEE J. Selected Areas Commun.*, vol. SAC-2, pp. 659-671, September.
- Wei, L. F. (1984b). "Rotationally Invariant Convolutional Channel Coding with Expanded Signal Space, Part II: Nonlinear Codes," IEEE J. Selected Areas Commun., vol. SAC-2, pp. 672-686, September.
- Wei, L. F. (1987). "Trellis-Coded Modulation with Multi-Dimensional Constellations," IEEE Trans. Inform. Theory, vol. IT-33, pp. 483-501, July.
- Weinstein, S. B. and Ebert, P. M. (1971). "Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform," *IEEE Trans. Commun.*, vol. COM-19, pp. 628-634, October.
- Welch, L. R. (1974). "Lower Bounds on the Maximum Cross Correlation of Signals," *IEEE Trans. Inform. Theory*, vol. IT-20, pp. 397-399, May.
- Weldon, E. J., Jr. (1971). "Decoding Binary Block Codes on Q-ary Output Channels," *IEEE Trans. Inform. Theory*, vol. IT-17, pp. 713-718, November.
- Widrow, B. (1966). "Adaptive Filters, I: Fundamentals," Stanford Electronics Laboratory, Stanford University, Stanford, Calif., Tech Report No. 6764-6, December.
- Widrow, B. (1970). "Adaptive Filters," Aspects of Network and System Theory, R. E. Kalman and N. DeClaris (eds.), Holt, Rinehart and Winston, New York.
- Widrow, B. and Hoff, M. E., Jr. (1960). "Adaptive Switching Circuits," IRE WESCON Conv. Rec., pt. 4, pp. 96-104.
- Widrow, B. et al. (1975). "Adaptive Noise Cancelling: Principles and Applications," *Proc. IEEE*, vol. 63, pp. 1692-1716, December.

- Wiener, N. (1949). The Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineering Applications, Wiley, New York (reprint of original work published as an MIT Radiation Laboratory Report in 1942).
- Wintz, P. A. (1972). "Transform Picture Coding," Proc. IEEE, vol. 60, pp. 880-920, July.
- Wolf, J. K. (1978). "Efficient Maximum Likelihood Decoding of Linear Block Codes Using a Trellis," *IEEE Trans. Inform. Theory*, vol. IT-24, pp. 76-81, January.
- Wozencraft, J. M. (1957). "Sequential Decoding for Reliable Communication," IRE Nat. Conv. Rec., vol. 5, pt. 2, pp. 11-25.
- Wozencraft, J. M. and Jacobs, I. M. (1965). Principles of Communication Engineering, Wiley, New York.
- Wozencraft, J. M. and Kennedy, R. S. (1966). "Modulation and Demodulation for Probabilistic Decoding," *IEEE Trans. Inform. Theory*, vol. IT-12, pp. 291-297, July.
- Wozencraft, J. M. and Rieffen, B. (1961). Sequential Decoding, MIT Press, Cambridge, Mass.
- Wyner, A. D. (1965). "Capacity of the Band-Limited Gaussian Channel," Bull. Syst. Tech. J., vol. 45, pp. 359-371, March.
- Xie, Z., Rushforth, C. K., and Short, R. T. (1990a). "Multiuser Signal Detection Using Sequential Decoding," *IEEE Trans. Commun.*, vol. COM-38, pp. 578-583, May.
- Xie, Z., Short, R. T., and Rushforth, C. K. (1990b). "A Family of Suboptimum Detectors for Coherent Multiuser Communications," *IEEE J. Selected Areas Commun.*, vol. SAC-8, pp. 683-690, May.
- Yao, K. (1972). "On Minimum Average Probability of Error Expression for Binary Pulse-Communication System with Intersymbol Interference," *IEEE Trans. Inform. Theory*, vol. IT-18, pp. 528-531, July.
- Yao, K. and Tobin, R. M. (1976). "Moment Space Upper and Lower Error Bounds for Digital Systems with Intersymbol Interference," *IEEE Trans. Inform. Theory.* vol. IT-22, pp. 65-74, January.
- Yue, O. (1983). "Spread Spectrum Mobile Radio 1977-1982," IEEE Trans. Vehicular Tech., vol. VT-32, pp. 98-105, February.
- Zelinski, P. and Noll, P. (1977). "Adaptive Transform Coding of Speech Signals," *IEEE Trans. Acoustics, Speech, Signal Processing*, vol. ASSP-25, pp. 299-309, August.
- Zervas, E., Proakis, J. G., and Eyuboglu, V. (1991). "A Quantized Channel Approach to Blind Equalization," *Proc. ICC'91*, Chicago, II, June.
- Zhang, X. and Brady, D. (1993). "Soft-Decision Multistage Detection of Asynchronous AWGN Channels," *Proc. 31st Allerton Conf. on Commun., Contr., Comp.* Allerton, Il., October.
- Zhou, K. and Proakis, J. G. (1988). "Coded Reduced-Bandwidth QAM with Decision-Feedback Equalization," Conf. Rec. IEEE Int. Conf. Commun., Philadelphia, Penn., pp. 12.6.1-12.6.5, June.
- Zhou, K., Proakis, J. G., and Ling, F. (1987). "Decision-Feedback Equalization of Fading Dispersive Channels with Trellis-Coded Modulation," *Int. Conf. Commun. Tech.*, Nanjing, China, November.
- Zhou, K., Proakis, J. G., and Ling, F. (1990). "Decision-Feedback Equalization of Time-Dispersive Channels with Coded Modulation," *IEEE Trans. Commun.*, vol. COM-38, pp. 18-24, January.
- Ziemer, R. E. and Peterson, R. L. (1985). Digital Communications and Spread Spectrum Systems, Macmillan, New York.
- Zigangirov, K. S. (1966). "Some Sequential Decoding Procedures," *Probl. Peredach. Inform.*, vol. 2, pp. 13-25.
- Ziv, J. (1985). "Universal Quantization," IEEE Trans. Inform. Theory, vol. 31, pp. 344-347.
- Ziv, J. and Lempel, A. (1977). "A Universal Algorithm for Sequential Data Compression," *IEEE Trans. Inform. Theory*, vol. IT-23, pp. 337-343.
- Ziv, J. and Lempel, A. (1978). "Compression of Individual Sequences via Variable-Rate Coding," IEEE Trans. Inform. Theory, vol. IT-24, pp. 530-536.
- Zvonar, Z. and Brady, D. (1995). "Differentially Coherent Multiuser Detection in Asynchronous CDMA Flat Rayleigh Fading Channels," *IEEE Trans. Commun.*, vol. COM-43, to appear.

INDEX

Adaptive equalization, 636-676 Adaptive equalizers, 636-676 (See also Equalizers) blind, 664-675	Antenna: beamwidth, 317 effective area, 316
decision-feedback, 621-625, 649-650	effective radiated power, 316
linear, 584–601, 648–649	illumination efficiency factor, 317
baseband, 648	A posteriori probability, 21
passband, 648-649	A priori probability, 21
maximum likelihood sequence estimator, 607-616, 652-654	Autocorrelation function, 64
Adaptive transform coding, 137	at output of linear system, 68-70
Algorithm:	of cyclostationary process, 75-76
•	Autocovariance function, 64
Constant-modulus, 670	Automotic gain control (AGC), 336
Godard, 670–673	Average power density spectrum, 77
Huffman, 99–103	Averages, 33-37
K means, 122	central moments, 33
Lempel-Ziv, 106-108	characteristic function, 35-37
Levinson-Durbin, 128, 139, 879-881	for sum of statistically independent random
LMS (MSE), 639–642	variables, 36
recursive least-squares (RLS), 654-664	correlation, 34
RLS (fast), 660	covariance, 34
RLS (Kalman), 656-658	covariance matrix, 34
RLS lattice, 660-664	expected value (mean), 33
RLS square-root, 660	joint moments, 34
stochastic gradient, 668	of stochastic processes, 64-67
zero-forcing, 637-638	variance, 33
Amplitude distortion, 535	AWGN (additive white Gaussian noise) channel, 233-
Analog sources, 82	234
quantization of, 108-125	204
optimum, 113	Band-limited channels, 534-540 (See also Channels)
scalar, 113-118	Bandpass signals, 152-157
vector, 118	complex envelope of, 159
sampling of, 72–73	envelope of, 155

Bandpass signals (Cont.):	Block codes (Cont.):
phase of, 155	Hadamard, 422-423
quadrature components, 155	Hamming, 421-422
Bandpass system, 157-159	hard-decision decoding, 445-456
response of, 157-159	linear, 413-468
Bandwidth efficiency, 283-284	maximum-distance-separable, 461
Bandwidth expansion factor, 444, 807	message polynomial, 424
Baseband signals, 176	minimum distance bounds, 461-464
delay modulation, 188	Elias, 463
Miller, 188	Gilbert-Varsharmov, 463
NRZ, 187	Hamming, 462
NRZI, 187	Plotkin, 462
power spectra of, 220-223	nonbinary, 464–468
Baudot code, 13	nonsystematic, 418
Bayes' theorem, 21	null space, 416
BCH (Bose-Chaudhuri-Hocquenghem) codes, 435-436	parity-check matrix, 419
Bibliography, 899-916	parity polynomial, 426
Binary symmetric channel (BSC), 381	perfect, 453
capacity of, 381	•
transition probability, 376–377	quasi-perfect, 454 rate, 2, 414
Binomial distribution, 37-38	
Biorthogonal signals, 183	reciprocal polynomial, 426
Bit interval, 174	Reed-Solomon, 464–466
Blind equalization, 664–675	shortened, 421
constant modulus algorithm, 670	soft-decision decoding, 436–445
Godard algorithm, 670-673	standard array, 447
joint data and channel estimation, 667–668	syndrome, 449-451
	systematic, 418
maximum-likelihood algorithms, 664-667	Block length, 414
stochastic gradient algorithms, 668-669	Burst errors, 469
with second-order moments, 673-675 Block codes, 413-468	Burst error correction capability, 469
binary, 4	Capacity (see Channel capacity)
concatenated, 467–468	Carrier, 159
cyclic, 423–436	Carrier phase estimation
Bose-Chaudhuri-Hocquenghem (BCH), 435-436	Costas loop, 355-356
encoders for, 430–435	decision-directed, 347-350
generator polynomial for, 437–438	ML methods, 339-341
Golay, 433	nondecision directed, 350-358
Hamming, 433	phase-locked loop, 341-346
maximum-length shift-register (MLSR), 433-435	squaring loop, 353–355
table of MLSR connections, 435	Carrier recovery, 336-358
dual code, 426	Canchy-Schwartz inequality, 165
equivalent, 418	Central limit theorem, 61-62
error correction capability, 451-452	Central moments, 33
error detection capability, 451-452	Channel:
extended, 420	additive white gaussian noise (AWGN), 233-234
fixed-weight, 414	band-limited, 534-540
generator matrix, 417	binary symmetric, 375-376
generator polynomial, 424	cap acity, 380-386
Golay, 423, 433	AWGN, 381-386
extended, 423	band limited AWGN, 383-386
generator polynomial of, 433	DMC, 376-377
performance on AWGN channel, 454-455	infinite bandwidth AWGN, 385
weight distribution, 423	coherence bandwidth, 764

Channel (Cont.):	Channel (Cont.):
coherence time, 765	Ricean fading, 761
cutoff rate, 394	scattering function, 766
for system design, 400-406	spread factor, 771
discrete memoryless (DMC), 376-377	table, 772
discrete-time model, 586-588	storage, 10
distortion, 534-540	underspread, 771
amplitude, 535	underwater acoustic, 9
envelope delay, 535	wireless, 5
frequency offset, 538	wireline, 4
impulse noise, 538	Channel encoder, 2
nonlinear, 537	Channel reliability function, 389
phase jitter, 535	Characteristic function, 35-37
squared-error, 108	of binomial, 38
thermal noise, 538	of chi-square, 42-44
Distortion-rate function, 110	of gaussian, 41
Doppler power spectrum, 765	of multivariate gaussian, 49–52
Doppler spread, 765	<u>-</u>
encoder, 1-2	of uniform, 39
code rate, 2, 414	Chebyshev inequality, 52–54
	Chernoff bound, 53–57
code word, 2	for BSC, 455
fading multipath: characterization of, 759–769	for Rayleigh fading channel, 792-794
correlation functions for, 763-767	Chi-square distribution, 41-45
impulse response, 760–761	central, 42-43
models for, 767–769	noncentral, 42-44
transfer function, 763	Code division multiple access (CDMA)
fiber optic, 5	asynchronous, 852-854
frequency nonselective, 764, 772–795	effective SNR, 861
digital signaling over, 772-795	efficiency of, 861
frequency selective, 764, 798–806	optimum receiver for, 851-854
digital signaling over, 795-806	suboptimum detectors for, 854-861
error rate for, 798–806	decorrelating, 855-857
RAKE demodulator for, 797–806	MMSE, 858-859
tap weight estimation of, 801-803	performance, 859
tapped delay line model of, 795-797	single user, 854
microwave LOS, 767-769	synchronous, 851-852
models for, 11-13, 375-380	Code rate, 2
additive noise, 11	Code word, 2
binary symmetric, 375-376	fixed length, 94
discrete memoryless, 376-377	variable length (Huffman), 96-103
discrete-time, 586-588	Coded modulation, 511–526
linear filter, 11	Codes:
linear, time-variant filter, 12	source:
waveform, 378-380	
multipath spread, 763	instantaneously decodable, 96
Nakagami fading, 762	uniquely decodable, 96
overspread, 771	(See also Block codes; Convolutional codes)
Rayleigh fading, 761	Coding:
binary signaling over, 772-776	entropy, 97, 117
coded waveforms for, 806–832	for AWGN channel: block codes, 413-468
	convolutional codes, 470-511
cutoff rate for, 825–832	for BSC (see Block codes; Convolutional codes
frequency nonselective, 764	for Rayleigh fading channel, 806-832
M-ary orthogonal signaling over, 787–792	concatenated, 814-825
multiphase signaling over, 785-787	constant-weight codes, 814-825

Coding (Cont.):	Convolutional codes (Cont.):
for Rayleigh fading channel (Cont.):	catastrophic error propagation, 482
convolutional codes, 811-814	concatenated, 492, 499-500
cutoff rate, 825-829	constraint length, 470
linear block codes, 808-814	decoding, 483-486
trellis codes, 830-832	Fano algorithm, 500-503
Huffman (entropy), 96-103	feedback, 505-506
noiseless, 93-108	sequential, 500-502
speech, 143-144	stack algorithm, 503-504
Coding gain, 441, 507, 733	Viterbi, 483-486
Compandor, 127	distance properties of, 492-496
Comparison of digital modulation, 282-284	dual-k, 492499
Complementary error function, 40	encoder, 470-478
Complete orthonormal functions, 165-168	generators, 471-472
Complex envelope, 155	hard-decision decoding, 489-492
of narrowband process, 155	minimum free distance, 479
Computational cutoff rate, 503	nonbinary, 492-499
(See also cutoff rate)	optimum decoding of, 483-485
Concatenated block codes, 467-468	performance on AGWN channel, 486-492
Concatenated convolutional codes, 449-500	performance on BSC, 489-491
Conditional cdf (cumulative distribution function), 26-28	performance on Rayleigh fading channel, 811-814
Conditional pdf (probability density function), 25	quantized metrics, 508-510
Conditional probability, 20	soft-decision decoding, 486-489
Consistent estimate (see Estimate)	state diagram, 474–477
Constraint length, 470	table of generators for maximum free distance, 493–497
Continuous-phase frequency-shift keying (CPFSK), 190-	transfer function, 477–480
191	tree diagram, 472
performance of, 284-301	trellis diagram, 473
power density spectrum of, 209-219	Correlation demodulator, 234–238
representation of, 284-285	metrics for, 246
Continuous-phase modulation (CPM), 191-203	Correlative state vector, 286
demodulation:	Coset, 447
maximum-likelihood sequence estimation, 284-289	
multiamplitude, 200-203	Coset leader, 447
multi- <i>h</i> , 295	Covariance, 34
performance of, 290-296	Covariance function, 65
symbol-by-symbol, 296–300	Cross-correlation function, 65
full response, 192	Cross-power density spectrum, 68
minimum-shift keying (MSK), 196-199	Cumulative distribution function (cdf), 23
modulation index, 191	Cutoff rate, 394
multiamplitude, 200–203	comparison with channel capacity, 399-400
multi-h, 295	for binary coded signals, 396
	for M-ary input, M-ary output vector channel, 403
partial response, 192	for multiamplitude signals, 397-399
phase cylinder, 195	for noncoherentt channel, 405-406
phase trees of, 192	for q-ary input Q-ary output channel, 400-401
power spectrum of, 209-219	system design with, 400-406
representation of, 190–196	CW jamming, 706
signal space diagram for, 199-200	Cyclic codes (see Block codes, cyclic)
state trellis, 196	Cyclostationary process, 75-76, 205
trellis of, 195	
Continuously variable slope delta modulation (CVSD),	
135	Data compression, 1
Convolutional codes, 470-511	Data translation codes, 566
applications of, 506~511	Decision-feedback equalizer (see Equalizers, decision-
binary, 470–476	feedback)

Decoding of block codes:	Demodulation/Detection (Cont.):
for fading channels: hard-decision, 811	noncoherent (Cont.):
soft-decision, 808-811	optimum, 302-312
hard-decision, 445-456	symbol-by-symbol, 254-256
bounds on performance for BSC, 452-455	Differential encoding, 187
Chernoff bound, 455	Differential entropy, 92
syndrome, 449-451	Differential phase-shift keying (DPSK),
table lookup method, 447-448	274–278
soft-decision, 436-445	Digital communication system model, 1-3
bounds on performance for AWGN, 440-443	Digital modulator, 2
comparison with hard-decision decoding,	Direct sequence (see Spread spectrum signals)
456-461	Discrete memoryless channel (DMC), 376-377
Decoding of convolutional codes:	Discrete random variable, 23
for fading channel, performance, 811-814	Distance (see Block codes; Convolutional codes,
feedback, 505-506	minimum free distance)
hard-decision, 489-492	Distortion (See also Channel distortion):
performance on AWGN channel, 486-492	from quantization, 113–125
performance on BSC, 489-491	granular noise, 134
sequential, 500-502	slope overload, 134
soft decision, 486-489	Distortion rate function, 110
stack algorithm, 503-504	Distributions (see Probability distributions)
Viterbi algorithm, 483–486	Diversity:
Delay distortion, 535	antenna, 777
Delay power spectrum, 762	
Delta modulation (see Source, encoding)	frequency, 777
Demodulation/Detection	performance of, 777–795
carrier recovery for, 337–358	polarization, 778
Costas loop, 355–356	RAKE, 778
decision-directed, 347–350	time, 777
	Double-sideband modulation, 176
ML methods, 339–341	DPCM (Differential pulse code modulation) (see Source.
non-decision-directed, 350-358	encoding)
squaring PLL, 353-355	DPSK (differential phase-shift keying), 274-278
coherent:	Dual code, 426
of binary signals, 257–260	Dual-k codes, 492-499
of biorthogonal signals, 264-266	Duobinary signal, 548–549
comparison of, 282–284	
of DPSK signals, 274-278	Early-late gate synchronizer, 362-365
of equicorrelated signals, 266	Effective antenna area, 316
of M-ary binary coded signals, 266-267	Effective radiated power, 316
optimum, 244–257	Eigenvalue, 164
of orthogonal signals, 260-264	Eigenvector, 164
of PAM signals, 267-269	Elias bound, 461–463
of PSK signals, 269–274	Encoding (see Block codes; Conventional codes)
of QAM signals, 278–282	Energy, 156
correlation-type, 234-238	Ensemble averages, 64-65
of CPFSK, 284-289	Entropy, 88
performance, 289-301	conditional, 88
for intersymbol interference, 584-627	differential, 92
matched filter-type, 238-244	discrete memoryless sources, 94–103
maximum-likelihood, 244–254	discrete stationary sources, 103-106
maximum likelihood sequence, 249-254	Entropy coding, 96, 117
noncoherent, 302-313	
of binary signals, 302-308	Envelope, 155
of M-ary orthogonal signals, 308–312	Envelope detection, 306
multichannel, 680–686	Equalizers (See also Adaptive equalizers) decision-feedback, 621-627, 649-650

Equalizers (Cont.):	Estimate (Cont.):
decision-feedback (Cont.):	unbiased, 367
adaptive, 649–652	Estimate of phase (See also Carrier phase estimation)
examples of performance, 622-623	clairvoyant, 889
of trellis-coded signals, 650-652	pilot signal, 889
minimum MSE, 622	Estimation, maximum-likelihood sequence (MLSE), 249-
predictive form, 626-627	254
linear, 601-620, 648-649	Estimation:
adaptive, 636-644	maximum likelihood, 334-335
convergence of MSE algorithm, 642-644	of carrier phase, 337-358
error probability, 613-617	of signal parameters, 333-335
examples of performance, 613-617	of symbol timing, 358-365
excess MSE, 644-648	of symbol timing and carrier phase, 365-371
fractionally spaced, 617-620	performance of, 367-370
LMS (MSE) algorithm, 639-642	Euclidean:
limit on step size, 645-646	distance, 251
mean-square error (MSE) criterion, 607-620	weight, 595
minimum MSE, 610-611	Events, 18
output SNR for, 605, 610	intersection of, 19
peak distortion, 602	joint, 19
peak distortion criterion, 602-607	mutually exclusive, 19
zero-forcing, 603-604, 637-638	null, 19
maximum-likelihood sequence estimation, 584-586,	probability of, 19
589-593, 607-616	union of, 19
self-recovering (blind), 644-675	Excess bandwidth, 546
with trellis-coded modulation, 650-652	Excess MSE, 644-648
using the Viterbi algorithm, 589-593	Expected value, 33
channel estimator for, 652-654	Expurgated codes, 816-817
performance of, 593-601	Extended code, 420
Equivalent codes, 418	Extension field, 415
Equivalent lowpass impulse response, 157-158	Eye pattern, 541
Equivalent lowpass signal, 155	, , , , , , , , , , , , , , , , , , ,
Equivocation, 90	
Error function, 40	
Error probability:	Fading channels, 8, 758-839 (See also Channels)
coherent demodulation:	Feedback decoding, 505-506
binary coded, 266-267	FH spread spectrum signals (see Spread spectrum signals)
for binary signals, 257–260	Filter:
for DPSK, 274-278	integrator, 238
for M-ary biorthogonal, 264-265	matched, 239
for M-ary equicorrelated, 266	Folded spectrum, 606
for M-ary orthogonal, 260-263	Follower jammer, 731
for M-ary PAM, 267-269	Fourier transform, 35
for PSK, 269–274	Free euclidian distance, 517
for QAM, 278-282	Free-space path loss, 317
union bound for, 263-264	Frequency diversity, 777
multichannel, 680-686	Frequency division multiple access (FDMA), 842-844
noncoherent demodulation, 301-313	Frequency-hopped (FH) spread spectrum (see Spread
for binary signsls, 301-308	spectrum signals)
for M-ary orthogonal, 308~312	Frequency-shift keying (FSK), 181–183, 190–191
Estimate:	continuous-phase (CPFSK): performance of, 284–301
biased, 367	power density spectrum of, 213–217
consistent, 59, 368	representation of, 190–191
efficient, 368	Functions of random variables, 28–32

Galois field, 415	Jacobian, 32
Gamma function, 42	Jamming margin, 707
Gaussian distribution, 39-41	Joint cdf (cumulative distribution function), 25
multivariate, 49-52	Joint pdf (probabiltiy density function), 25
Gaussian noise, 11	Joint processes, 65
Gaussian random process, 65	·
Gaussian random variables, linear transformation of,	Kalman (RLS) algorithm, 656-658
50-52	fast, 660
Generator matrix, 417	Kasami sequences, 729
Generator polynomial, 424	Kraft inequality, 97-98
Gilbert-Varsharmov bound, 463	
Golay codes, 423, 433	Laplace probability density function, 56
extended, 423	Lattice:
generator polynomial of, 433	filter, 660-664
performance on AWGN channel, 454-455	recursive least-squares, 664
Gold sequences, 727	Law of large numbers (weak), 59
Gram-Schmidt procedure, 167-173	Least favorable pdf, 305
Granular noise, 134	Least-squares algorithms, 654-664
Gray encoding, 175	Lempel-Ziv algorithm, 106-108
	Levinson-Durbin algorithm, 128, 139, 879-881
	Likelihood ratio, 304
Hadamard codes, 422-423, 817-821	Line codes, 566
Hamming bound on minimum distance, 462	Linear codes (see Block codes, linear;
Hamming codes, 421–422, 433	Convolutional codes)
Hamming distance, 415	Linear equalization (see Equalizers, linear)
Hard-decision decoding:	Linear-feedback shift-register, maximal length, 433-435,
block codes, 445-456	724–727
convolutional codes, 489-492	Linear prediction, 128-130, 138-144, 660-664
Hilbert transform, 154	backward, 661-662
Huffman coding, 96-103	forward, 661-662
	residuals, 663
	Linear predictive coding (LPC):
Illumination efficiency factor, 317	speech, 138-144
Impulse noise, 538	Linear time-invariant system, 68-69
Impulse response, 68	response to stochastic input, 68-72
Independent events, 21	Linear transformation of random variables, 28-29, 50-52
Independent random variables, 28	Link budget analysis, 316–319
Inforamtion, 84–85	Link margin, 319
equivocation, 90	Lloyd-Max quantizer, 113
measure of, 84-91	Lowpass signal, 155
mutual, 84	Lowpass system, 157
average, 87	Low probability of intercept, 696, 715–716
self-, 85	, , , , , , , , , , , , , , , , , , ,
average (entropy), 88	Magnetic recording, 567-568
sequence, 3, 83	normalized density, 567
Interleaving, 468-470	Majority logic decoder, 506
block, 469	Mapping by set partitioning, 512
convolutional, 470	Marginal probability density, 26
Intersymbol interference, 536–537	Marcum's Q-function, 44
controlled (see Partial response signals)	Markov chain, 189
discrete-time model for, 586-589	transition probability matrix of, 189
equivalent white noise filter model, 588	Matched filter, 238–244
optimum demodulator for, 584-593	Maximal ratio combining, 779
Inverse filter, 603	performance of, 780–782

Maximum a posteriori probability (MAP)	Modulation codes (Cont.):
criterion, 245, 254-257	run-length limited (Cont.):
Maximum free distance codes, tables of, 492-496	fixed rate, 572
Maximum length shift-register codes, 433-435, 724-727	state dependent, 571
Maximum likelihood:	state independent, 571
parameter estimation, 333-335, 339-341	Modulator:
for carrier phase, 339-341	binary, 2
for joint carrier and symbol, 365–367	digital, 2
for symbol timing, 358–364	M-ary, 2
performance of, 367-370	Moments, 33
Maximum-likelihood criterion, 245-246	Morse Code, 13
Maximum-likelihood receiver, 233-257	Multicarrier communications
Maximum-likelihood sequence estimation (MLSE), 249-	capacity of, 687-689
254	FFT-based system, 689-692
Mean-square error (MSE) criterion, 607-617	Multichannel communications, 680-686
Mean value, 33	with binary signals, 682-684
Microwave LOS channel, 768-769	with M-ary orthogonal signals, 684-686
Miller code, 188, 575	Multipath channels, 8, 758–839
Minimum distance:	Multipath intensity profile, 762
bounds on, 461-464	Multipath spread, 763
definition, 416	Multiple access methods, 840-849
Euclidean, 173	capacity of, 843–849
Hamming, 416	CDMA, 843, 849~862
Minimum-shift keying (MSK), 196-199	FDMA, 842
power spectrum of, 213–219	random access, 962-872
Models:	TDMA, 842
channel, 375-386	
source, 82-84, 93-95	Multivariate gaussian distribution 40, 52
Modified duobinary signal, 549–550	Multivariate gaussian distribution, 49-52
Modulation:	Mutual information, 84
binary, 257–260	average, 87–88
biorthogonal, 264–266	Mutually exclusive events, 18
comparison of, 282–284	Monandia de Constante de Consta
continuous-phase FSK (CPFSK), 190-191	Narrowband interference, 704–706
power spectrum, 213–219	Narrowband process, 152
DPSK, 274–278	carrier frequency of, 153
equicorrelated (simplex), 266	Narrowband signal, 152
index, 191	Noise:
linear, 174–186	gaussian, 162
	white, 162–163
power spectrum of, 204–209	Noisy channel coding theorem, 386-387
M-ary orthogonal, 260–264	Noncoherent combining loss 683-684
multichannel, 680-686 nonlinear, 190-203	Nonlinear distortion, 537
•	Nonlinear modulation, 190
offset QPSK, 198	Nonstationary stochastic process, 63
PAM (ASK), 267–269	Norm, 165
PSK, 269–274	Normal equations, 128
QAM, 278–282	Normal random variables (see Gaussian distribution)
Modulation codes, 566-576 (See also Partial response	Null event, 18
signals)	Null space, 416
capacity of, 569	Nyquist criterion, 542-547
Miller code, 573	Nyquist rate, 14, 72
NRZ, 574	
NRZ1, 566, 568, 574–575	Offset quadrature PSK (OQPSK), 198
run-length limited, 568-576	On-off signalling (OOK), 321

Optimum demodulation: (see Demodulation/Detection)	Probability distributions (Cont.):
Orthogonal signals, 165-166	gamma, 43
Orthogonality principle, mean-square estimation, 608	gaussian, 39-41
Orthonormal:	multivariate gaussian, 49-52
expansion, 165-173	Nakagami, 48–49
functions, 165-166	Rayleigh, 45-46
	Rice, 47–48
Parity check, 417	uniform, 39
matrix, 419	Probability transition matrix, 377
Parity polynomial, 426	Processing gain, 707
Partial-band interference, 734-741	Pseudo-noise (PN) sequences:
Partial response signals, 548-560	autocorrelation function, 725-726
duobinary, 548-549	generation via shift register, 724-729
error probability of, 562-565	Gold, 727
modified duobinary, 549	Kasami, 729
precoding for, 551-555	maximal-length, 725-726
Partial-time (pulsed) jamming, 717-724	peak cross-correlation, 726–727
Peak distortion criterion, 602-607	preferred, 727
Peak frequency deviation, 190	
Perfect codes, 453–454	(See also Spread spectrum signals)
Periodically stationary, wide sense, 75-76, 205	Pulse amplitude modulation (PAM), 174-176, 267-269
Phase jitter, 538	Pulse code modulation (PCM), 125-133
Phase-locked loop (PLL), 341-346	adaptive (ADPCM), 131–133
Costas, 355–356	differential (DPCM), 127-129
decision-directed, 347-350	Pulsed interference, 717
M-law type, 356-358	effect on error rate performance, 717-724
non-decision-directed, 350–351	
square-law type, 353–355	Quadrature amplitude modulation (QAM), 178-180,
Phase-shift keying (PSK), 177–178, 269–274	278-282
adaptive reception of, 887–896	Quadrature components, 155
pdf of phase, 270-271	of narrowband process, 155-156
performance for AWGN channel, 271-274	properties of, 161-162
performance for Rayleigh fading channel, 780–787,	Quantization, 108-125
887-894	block, 118-125
Plotkin bound on minimum distance, 462	optimization (Lloyd-Max), 113-118
Power density spectrum, 67–68, 204–223	scalar, 113118
at output of linear system, 69	vector, 118-125
of digitally modulated size 1, 204, 202	Quantization error, 125-133
of digitally modulated signals, 204-223 Prediction (see Linear prediction)	Quasiperfect codes, 454
Preferred sequences, 727	
Prefix condition, 96	Raised cosine spectrum, 546
Probability:	excess bandwidth, 546
· · · ·	rolloff parameter, 546
a priori, 21	RAKE correlator, 797-798
a posteriori, 21	RAKE receiver:
conditional, 20, 26-28	for binary antipodal signals, 798-803
of events, 18	for binary orthogonal signals, 801-802
joint, 19, 25–26	for DPSK signals, 804
Probability density function (pdf), 24	for noncoherent detection of orthogonal signals, 805
Probability distribution function, 23	RAKE matched filter, 799-800
Probability distributions, 37–52	Random access, 862-872
binomíal, 37–38	ALOHA, 863–867
chi-square, 41–45	carrier sense, 867–872
central, 42-43	with collision detection, 868
noncentral, 42-44	non persistent, 868
	• • • • • • • • • • • • • • • • • • • •

Random access (Cont.):	Sampling theorem, 72-73
carrier sense (Cont.):	Scattering function, 766
1-persistent, 869	Self-information, 85
p-persistent, 869	average (entropy), 88
offered channel traffic, 864	Sequential decoding, 501-503
slotted ALOHA, 864	Set partitioning, 512
throughput, 865-867	Shannon limit, 264
unslotted, 864	Shortened code, 421
Random coding, 390–400	Signal constellations:
binary coded signals, 390-397	PAM, 174-176
multiamplitude signals, 397-399	PSK, 177-178
Random Processes (see Stochastic processes)	QAM, 178–180
Random variables, 22–28	Signal design, 540-576
function of, 28–32	for band-limited channel, 540-551
multiple, 25	for channels with distortion, 557-560
orthogonal, 35	for no intersymbol interference, 540-547
single, 22–24	with partial response pulses, 548-551
statistically independent, 28	with raised cosine spectral pulse, 546-547
sums of, 58–63	Signal-to-noise ratio (SNR), 258
central limit theorem, 61-62	Signals:
transformation of, 28–32	bandpass, 152-157
Jacobian of, 32	baseband, 176, 186-189
linear, 28, 32, 49–52	binary antipodal, 257
uncorrelated, 34	binary coded, 266-267
Rate:	binary orthogonal, 258
code, 2, 414	biorthogonal, 183-184, 264-266
of encoded information (see Source encoding)	carrier of, 159
Rate distortion function, 108-113	characterization of, 152-163
of bandlimited gaussian source, 112	complex envelope of, 155
of memoryless gaussian source, 109-110	digitally modulated, 173-209
table of, 112	cyclostationary, 204-206
Rayleigh distribution, 45–46	representation of, 173-202
Rayleigh fading (see Channel, fading multipath; Channel,	spectral characteristics of, 202-223
Rayleigh fading)	discrete-time, 74-76
Reciprocal polynomial, 426	energy of, 156
Recursive least squares (RLS) algorithms, 654-664	envelope of, 155
fast RLS, 660	equivalent lowpass, 155
RLS Kalman, 656–660	lowpass, 155
RLS lattice, 660–664	M-ary orthogonal, 181–183
Reed-Solomon codes, 464–466	multiamplitude, 174-176
References, 899–916	multidimensional, 180-181
Reflection coefficients, 140	multiphase, 177-178
Regenerative repeaters, 314–316	пагrowband, 152
Residuals, 663	optimum demodulation of, 233-257
Rice distribution, 47~48	quadrature amplitude modulated (QAM), 178-180
Ricean fading channel, 761	quadrature components of, 155-156
Run-length limited codes, 568–576	properties of, 161-162
fixed rate, 572	simplex, 184, 266
state dependent, 571	speech, 143-144
state independent, 571	stochastic, 62-77, 159-163
Sample function 42	autocorrelation of, 64, 68-70, 75-76
Sample function, 63 Sample mean, 58	autocovariance, 64
	bandbass stationary, 159-163
Sample space, 17–18	cross correlation of, 65

Signals (Cont.):	Spread spectrum signals (Cont.):
stochastic (Cont.):	direct sequence (Cont.):
ensemble averages of, 64-65	demodulation of, 701-702
power density spectrum, 67-68, 204-223	performance of, 702-712
properties of quadrature components, 161-162	with pulse interference, 717-724
white noise, 162–163	examples of DS, 712-717
Signature sequence, 843	frequency-hopped (FH), 729-743
Simplex signals, 266	block hopping, 731
Single-sideband modulation, 176	follower jammer for, 731
Skin depth, 9	performance of, 732-734
Slope overload distortion, 134	with partial-band interference, 734, 741
Slope overload distortion, 134	hybrid combinations, 743-744
Soft decision decoding:	for low-probability of intercept (LPI), 696, 715-716
block codes, 436–445	for multipath channels, 795–806
convolutional codes, 486–489	synchronization of, 744–752
Source:	time-hopped (TH), 743
analog, 82-83	tracking of, 748
binary, 83	uncoded PN, 708
discrete memoryless (DMS), 82-83	
discrete stationary, 103–106	Spread spectrum system model, 697–698
endoding, 93–144	Square-law detection, 306
adaptive DM, 135-136	Square-root factorization, 660, 897–898
adaptive DPCM, 131–133	Staggered quadrature PSK (SQPSK), 198
adaptive DCM, 131–133	State diagram, 196, 474–477
•	Stationary stochastic processes, 63-64
delta modulation (DM), 133–136	strict-sense, 63–64
differential pulse code modulation (DPCM), 127–129	wide-sense, 64
discrete memoryless, 94–103	Statistical averages, 64-67
Huffman, 99–103	Steepest-descent (gradient) algorithm, 639-642
Lempel-Ziv, 106-108	Stochastic process, 62–72, 159–163
linear predictive coding (LPC), 138–142	cyclostationary, 75–76
pulse code modulation (PCM), 125-127	discrete-time, 74–76
models, 82–84	narrowband, 159
speech, 143–144	nonstationary, 63
spectral, 136–138	strict-sense stationary, 63-64
waveform, 125-144	wide-sense stationary, 64
Source coding, 82–144	Storage channel, 10
Spaced-frequency, spaced-time correlation function, 763	Strict-sense stationary, 63-64
Spectrum:	Subband coding, 137
of CPFSK and CPM, 209-219	Symbol interval, 174
of digital signals, 203-223	Synchronization:
of linear modulation, 204-209	carrier, 337-358
of signals with memory, 220-223	effect of noise, 343-346
Spread factor, 771	for multiphase signals, 356-358
table of, 771	with Costas loop, 355-356
Spread spectrum multiple access (SSMA), 716	with decision-feedback loop, 347-350
Spread spectrum signals:	with phase-locked loop (PLL), 341–346
acquisition of, 774-748	with squaring loop, 353–355
for antijamming, 712-715	of spread spectrum signals, 744–752
for code division mutliple access (CDMA), 696, 716-	sliding correlator, 747
717, 741–743	•
concatenated codes for, 711-712, 740-741	symbol, 336–337 Syndrome, 446
direct sequence, 697-700	
applications of, 712-717	Syndrome decoding, 446~451
coding for, 710–712	System, linear, 68–72
The state of the s	autocorrelation function at output, 69

928 INDEX

System, linear (Cont.): bandpass, response of, 157-159 power density spectrum at output, 69-70 Systematic code, 418

Tail probability bounds, 53-57 Chebyshev inequality, 53-54 Chernoff bound, 54-57 TATS (tactical transmission system), 741-743 Telegraphy, 13 Telephone channels, 4, 563-538 Thermal noise, 3, 11 Threshold decoder, 506 Time diversity, 777 Time division multiple access (TDMA), 842-844 Toeplitz matrix, 879 Transfer function: of convolutional code, 477-483 of linear system, 68-72 Transformation of random variables, 29-32, 49-52 Transition probabilities, 189 Transition probability matrix, 189 for channel, 375-378 for delay modulation, 189-190 Tree diagram, 192-195, 471-472 Trellis-coded modulation, 511-526 free Euclidean distance, 517 subset decoding, 519 tables of coding gains for, 522-523 Trellis diagram, 473

Uncorrelated random variables, 34 Uniform distribution, 39

Union bound, 263-264, 387-389 Union of events, 18 Uniquely decodable, 96 Universal source coding, 106

Variable-length encoding, 95-103 Variance, 33 Vector space, 163-165 Vector quantization, 118-125 Viterbi algorithm, 251, 287-289, 483-486 Vocal tract, 141-143 Voltage-controlled oscillator (VCO), 341-343

Weak law of targe numbers, 59 Weight:
of code word, 414
distribution, 414
for Golay, 423
Welch bound, 728
White noise, 162-163
Whitening filter, 587-588
Wide-sense stationary, 64
Wiener filter, 14

Yule-Walker equations, 128

Z transform, 587 Zero-forcing equalizer, 602-605 Zero-forcing filter, 603-604