Deformable Part Models (DPMs) for Human Detection

Guangzhen Zhou 周光朕

gzzhou11@fudan.edu.cn

9/29/2014

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. PAMI, 2010.

P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, 2008.

http://www.cs.berkeley.edu/~rbg/latent/

Introduction

- What is human detection
- Human detection algorithms
- Problems in video
- Consider

DPMs

- About DPM
- How it works: detection
- Performance
- How to get: training

Discuss

- Shortness
- Methods[5]

What is human detection

What is human detection

train

detect

Human detection algorithms

Using rigid templates: HOG+SVM

[3](CVPR2005)

Using bag of features: SIFT, Texture, LBP, Colour,

[4](IJCV2006)

Human detection algorithms(cont.)

Bag of features: like "bag of words" in text retrieval

take features as words, use cluster methods

Human detection algorithms(cont.)

HOG: use distribution of local intensity gradient or edge direction represent local object appearance and shape

Human detection algorithms(cont.)

average gradient image over training data

positive

negative

Problems in video

occlusion

diversity

deformation

Consider

Previous methods are not effective enough

Rigid template: lose the deformation information

Bag of features: lose structured information

Consider(cont.)

Apply the winner of PASCAL VOC 2007,2008,2009

challenge

----DPM

About DPM

- A kind of model
- 1.combine "deformation" and "part"
- 2.contain some other models

About DPM(cont.)

"deformation": deformable template model

"part": part-based model

Deformable Part Models | About DPM | Guangzhen Zhou | gzzhou11@fudan.edu.cn

About DPM(cont.)

1973: pictorial structures

2005: parts with a deformable configuration, like spring

2010: enrich model in 1973 with star-structured model (add a root filter)

About DPM(cont.)

- a root filter + some (parts filter + spatial model)
- Parts filter at twice resolution of the root filter

Deformable Part Models | About DPM |

Guangzhen Zhou | gzzhou11@fudan.edu.cn

How it works: detection

How it works: detection

- 1.input data
- 2.extract features
- 3.matching the model with feature map
- 4.get and threshold the score of matching

$$score(M, x) = score(root, x) + \sum_{p \in \{parts\}} \max_{y} [score(p, y) - loss(p, x, y)]$$

DPMs - How it works: detection (19)

Features

choose: (18+9) orientations + 4 normalizations = 31-d

18: contrast sensitive; 9: constrast insensitive

for sake of all categories

DPMs - How it works: detection (20)

Features(cont.)

HOG features pyramids

Figure 2. The HOG feature pyramid and an object hypothesis defined in terms of a placement of the root filter (near the top of the pyramid) and the part filters (near the bottom of the pyramid).

DPMs - How it works: detection (21)

Filters

rectanglar templates specify weights for subwindows of a **HOG** pyramid

```
F: w×h filter;
```

F': concatenating weight vectors in F in raw-major order

H: a HOG pyramid

p=(x,y,l): cell in the l-th level(position)

score of F at p: $F' \cdot \Phi(H,p,w,h)$

DPMs - How it works: detection (22)

Deformable Parts

the total model

A root filter FO

n parts Pi

- A filter Fi
- An anchor vi (2-d)
- quadratic func coefficients di (4-d; for defomation cost) a bias term b
- An object hypothesis

Position of root and parts z = (p0,...,pn)

$$pi = (xi, yi, li)$$

Hypothesis: parts are twice the resolution of root

DPMs - How it works: detection (23)

Deformable Parts(cont.)

Score of a placement

$$score(p_0,...,p_n) = \sum_{i=0}^{n} F_i' \varphi(H,p_i) - \sum_{i=1}^{n} d_i \varphi_d(dx_i, dy_i) + b$$

$$(dx_i, dy_i) = (x_i, y_i) - (2(x_0, y_0) + v_i)$$

$$\varphi_d(dx_i, dy_i) = (dx, dy, dx^2, dy^2)$$

in dot product: $\beta \cdot \Psi(H, z)$, where:

$$\beta = (F_0', ..., F_n', d_1, ..., d_n, b)$$

$$\psi(H, z) = (\varphi(H, p_0), ..., \varphi(H, p_n), -\varphi_d(dx_1, dy_1), ..., -\varphi_d(dx_1, dy_1), 1)$$

DPMs - How it works: detection 24,

Matching

$$score(p_0) = \max_{p_1,...,p_n} score(p_0,...,p_n)$$

$$R_{i,l}(x,y) = F_i' \cdot \varphi(H,(x,y,l))$$

$$D_{i,l}(x,y) = \max_{dx,dy} (R_{i,l}(x+dx,y+dy) - d_i \cdot \varphi_d(dx,dy))$$

$$score(x_0, y_0, p_0) = R_{0,l_0}(x_0, y_0) + \sum_{i=1}^{n} D_{i,l_0-\lambda}(2(x_0, y_0) + v_i) + b$$

$$P_{i,l}(x, y) = \underset{dx, dy}{\operatorname{arg\,max}} D_{i,l}(x, y)$$

DPMs - How it works: detection (25)

Mixture Models

model with m components, M = (M1,...,Mn)

$$z' = (p_0, ..., p_{n_c})$$

$$\beta = (\beta_1, ..., \beta_m)$$

$$\psi(H,z) = (0,...,0,\varphi(H,z'),0,...,0)$$

DPMs - How it works: detection (26)

Mixture Models(cont.)

example

DPMs - How it works: detection 27

Bounding box prediction

- use the part filter locations to fix the root filter location
- input: root width & each loaction
- output: bounding box prediction

DPMs - How it works: detection (28)

Non-Maximum Suppression

▲ After thresholding score, sort all scores

always choose the unchosen detection with highest score and ignore those bounding box is no less than 50% covered by a chosen one

DPMs - How it works: detection (29)

Contextual Information

aim: rescore the result to distinguish tp from fp

- (D1,....,Dk): results of different categories in one image
- (B, s): B = (x1, y1, x2, y2), s = score
- k-d c(I) = $(\sigma(s1),...,\sigma(sk))$ be contextual information of image I
- 25-d feature vector $g = (\sigma(s), x_1, y_1, x_2, y_2, c(I))$

DPMs - How it works: detection (30)

Contextual Information(cont.)

use: score g with category-specific classifier to obtain a new score

train: run current classfier in dataset with given bounding box, judge result tp or fp by if there's significant cover with given bbox

Deformable Part Models | Performance | Guangzhen Zhou | gzzhou11@fudan.edu.cn

Deformable Part Models | Performance | Guangzhen Zhou | gzzhou11@fudan.edu.cn

How to get: training

binary classification problem

D = (<x1, y1>, . . . , <xn, yn>) yi:label, { -1, 1} xi: HOG pyramid H(xi) & range of valid placement Z(xi)

require bounding box for positive xi root filter must overlap b-box ≥50%

Latent SVM

- classifier scores an example x use: $f_{\beta}(x) = \max_{z \in Z(x)} \beta \cdot \varphi(x, z)$
- Z(x): set of possible latent values for x

like SVM, learn β by minimizing:

$$L_D(\beta) = \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^n \max(0, 1 - y_i f_\beta(x_i))$$

D is the dataset

Semi-convexity

- maximum of some convex functions is convex
- In f_β(x): linear in β , thus convex
- max(0, 1-yif_β(xi)): hinge loss, only when yi=-1, convex

if Z(xi) has only one possible latent value, $f_{\beta}(xi)$ ->linear, thus, the hinge loss is convex.

Optimization

let:

- Zp: specify latent value for each pos. example
- D(Zp): derived from D according Zp

$$L_D(\beta) = \min_{Z_p} L_D(\beta, Z_p) = \min_{Z_p} L_{D(Z_p)}(\beta)$$

Optimization(cont.)

- Relabel positive examples: Optimize L_D(β, Z_p) over Z_p by selecting the highest scoring latent value for each positive example,
 z_i = argmax_{z∈Z(xi)} β · Φ(x_i, z).
- Optimize beta: Optimize L_D(β, Z_p) over β by solving the convex optimization problem defined by L_{D(Z_p)}(β).
- step2 can be done by quadratic programming or stochastic gradent descent

Data-mining hard examples

what is "hard examples"?

$$\begin{split} H(\beta,D) &= \{\langle x,y\rangle \in D \mid yf_{\beta}(x) < 1\}. \\ E(\beta,D) &= \{\langle x,y\rangle \in D \mid yf_{\beta}(x) > 1\}. \\ H(\beta,D) &= \{(i,\Phi(x_i,z_i)) \mid \\ z_i &= \underset{z \in Z(x_i)}{\operatorname{argmax}} \beta \cdot \Phi(x_i,z) \text{ and } y_i(\beta \cdot \Phi(x_i,z_i)) < 1\} \end{split}$$

aim: collect hard examples as incorrectly classfied examples from a previous model to enhance the model

Learning

```
Data:
   Positive examples P = \{(I_1, B_1), \dots, (I_n, B_n)\}
   Negative images N = \{J_1, \ldots, J_m\}
   Initial model \beta
   Result: New model \beta
\mathbf{1} F_n := \emptyset
2 for relabel := 1 to num-relabel do
       F_n := \emptyset
       for i := 1 to n do
4
           Add detect-best (\beta, I_i, B_i) to F_p
5
       end
6
       for datamine := 1 to num-datamine do
           for j := 1 to m do
8
               if |F_n| \geq memory-limit then break
               Add detect-all (\beta, J_i, -(1+\delta)) to F_n
10
           end
11
           \beta := \operatorname{gradient-descent}(F_p \cup F_n)
12
           Remove (i, v) with \beta \cdot v < -(1 + \delta) from F_n
13
       end
14
15 end
```

Shortness

For the demo images given in section DPM - Performance, the size and detection time is below

1003×563	998×565	1002×562	1001×563
8.005s	8.012s	8.008s	8.736s

- so the speed of DPM for human detection is very slow!
- For the project: trained model may not be suitable enough

Methods[5]

- Pyramids of templates(model)
- Cascades: first root(rough), then parts(fine)
- Vector quantization
-
- For video concern: cascades with parts of a frame (ROI)

- [1] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan.Object detection with discriminatively trained part-based models. PAMI,2010.
- [2] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale, deformable part model. In CVPR, 2008.
- [3] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, pages I: 886–893, 2005.
- [4] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, "Local features and kernels for classification of texture and object categories: A comprehensive study," International Journal of Computer Vision, vol. 73, no. 2, pp. 213-238, June 2007.
- [5] Mohammad Amin Sadeghi, David Forsyth. 30Hz Object Detection with DPM V5. ECCV,2014.

Thank you! Q&A