Devoir à la maison n°02 : corrigé

SOLUTION 1.

1. a. Pour tout $x \in \mathbb{R}$,

$$f_n(x) = \sum_{k=0}^{n} {n \choose k} x^k 1^{n-k} = \sum_{k=0}^{n} {n \choose k} x^k$$

b. D'une part, pour tout $x \in \mathbb{R}$,

$$f_n'(x) = n(1+x)^{n-1}$$

et d'autre part, pour tout $x \in \mathbb{R}$,

$$f_n'(x) = \sum_{k=0}^n k \binom{n}{k} x^{k-1}$$

On a donc

$$f'_n(1) = 2^{n-1}n = \sum_{k=0}^n k \binom{n}{k}$$

c. D'une part, pour tout $x \in \mathbb{R}$,

$$f_n''(x) = n(n-1)(1+x)^{n-2}$$

et d'autre part, pour tout $x \in \mathbb{R}$,

$$f_n''(x) = \sum_{k=0}^n k(k-1) \binom{n}{k} x^{k-2}$$

On a donc

$$f_n''(1) = 2^{n-2}n(n-1) = \sum_{k=0}^n k(k-1) \binom{n}{k}$$

d. Puisque pour tout $k \in \mathbb{N}$, $k^2 = k(k-1) + k$,

$$\sum_{k=0}^{n} k^{2} \binom{n}{k} = \sum_{k=0}^{n} k(k-1) \binom{n}{k} + \sum_{k=0}^{n} k \binom{n}{k} = 2^{n-2} n(n-1) + 2n - 1n = 2^{n-2} n(n+1)$$

2. a. Pour tout $x \in \mathbb{R}$,

$$\begin{split} g_n(x) &= \sum_{k=0}^n \binom{n}{k} x^k + \sum_{k=0}^n \binom{n}{k} (-x)^k \\ &= \sum_{0 \le 2k \le n} \binom{n}{2k} x^{2k} + \sum_{0 \le 2+1} \binom{n}{2k+1} x^{2k+1} + \sum_{0 \le 2k \le n} \binom{n}{2k} (-x)^{2k} + \sum_{0 \le 2+1} \binom{n}{2k+1} (-x)^{2k+1} \\ &= \sum_{0 \le 2k \le n} \binom{n}{2k} x^{2k} + \sum_{0 \le 2+1} \binom{n}{2k+1} x^{2k+1} + \sum_{0 \le 2k \le n} \binom{n}{2k} x^{2k} - \sum_{0 \le 2+1} \binom{n}{2k+1} x^{2k+1} \\ &= 2 \sum_{0 \le 2k \le n} \binom{n}{2k} x^{2k} \\ &= 2 \sum_{0 \le 2k \le n} \binom{n}{2k} x^{2k} \end{split}$$

b. D'une part, pour tout $x \in \mathbb{R}$,

$$g'_n(x) = n(1+x)^{n-1} - n(1-x)^{n-1}$$

et d'autre part, pour tout $x \in \mathbb{R}$,

$$g'_n(x) = 2 \sum_{0 \le 2k \le n} 2k \binom{n}{2k} x^{2k-1} = 4 \sum_{0 \le 2k \le n} k \binom{n}{2k} x^{2k-1}$$

On a donc

$$g'_n(1) = 2^{n-1}n = 4\sum_{0 \le 2k \le n} k \binom{n}{2k}$$

Ainsi
$$\sum_{0 \le n \le n} k \binom{n}{2k} = 2^{n-3} n$$
.

c. D'une part, pour tout $x \in \mathbb{R}$,

$$g_n''(x) = n(n-1)(1+x)^{n-2} + n(n-1)(1-x)^{n-2}$$

et d'autre part, pour tout $x \in \mathbb{R}$,

$$g_n''(x) = 2 \sum_{0 \le 2k \le n} 2k(2k-1) \binom{n}{2k} x^{2k-2}$$

On a donc

$$g_n''(1) = 2^{n-2} n(n-1) = \sum_{0 \le 2k \le n} 4k(2k-1) \binom{n}{2k}$$

Puisque pour tout $k \in \mathbb{N}$, $k^2 = \frac{4k(2k-1)}{8} + \frac{k}{2}$,

$$\begin{split} \sum_{0 \leqslant 2k \leqslant n} k^2 \binom{n}{2k} &= \frac{1}{4} \sum_{0 \leqslant 2k \leqslant n} 2k(2k-1) \binom{n}{2k} + \frac{1}{2} \sum_{0 \leqslant 2k \leqslant n} k \binom{n}{2k} \\ &= \frac{2^{n-2} n(n-1)}{8} + \frac{2^{n-3} n}{2} = 2^{n-5} n(n+1) \end{split}$$

SOLUTION 2.

1. On trouve

$$a_0 = 1$$
 $a_1 = 1$ $a_2 = 2$ $a_3 = 5$ $a_4 = 14$ $S_0 = 1$ $S_1 = 2$ $S_2 = 5$ $S_3 = 14$ $S_4 = 42$

On remarque que $S_n = a_{n+1}$ pour $n \in \{0, 1, 2, 3\}$.

2. Soit $n \in \mathbb{N}$. On effectue le changement d'indice l = n - k de sorte que

$$T_n = \sum_{l=0}^{n} (n-l)a_{n-l}a_l = \sum_{k=0}^{n} (n-k)a_k a_{n-k}$$

Ainsi

$$2T_n = \sum_{k=0}^{n} k a_k a_{n-k} + \sum_{k=0}^{n} (n-k) a_k a_{n-k} = \sum_{k=0}^{n} (k+n-k) a_k a_{n-k} = nS_n$$

3. Soit $n \in \mathbb{N}$.

$$(n+2)a_{n+1} = \binom{2n+2}{n+1} = \frac{(2n+2)!}{(n+1)!^2} = \frac{(2n+2)(2n+1)(2n)!}{(n+1)^2 n!^2} = \frac{2(2n+1)(2n)!}{(n+1)n!^2} = 2(2n+1)a_n$$

4. Soit $n \in \mathbb{N}$.

$$\begin{split} \mathbf{S}_{n+1} + \mathbf{T}_{n+1} &= \sum_{k=0}^{n+1} a_k a_{n+1-k} + \sum_{k=0}^{n+1} k a_k a_{n+1-k} \\ &= \sum_{k=0}^{n+1} (k+1) a_k a_{n+1-k} \\ &= a_0 a_{n+1} + \sum_{k=1}^{n+1} (k+1) a_k a_{n+1-k} \\ &= a_{n+1} + \sum_{k=0}^{n} (k+2) a_{k+1} a_{a_{n}-k} \end{split}$$

Or pour tout $k \in \mathbb{N}$, $(k+2)a_{k+1} = 2(2k+1)a_k$ d'après la question 3 donc

$$S_{n+1} + T_{n+1} = a_{n+1} + 2\sum_{k=0}^{n} (2k+1)a_k a_{n-k}$$

$$= a_{n+1} + 4\sum_{k=0}^{n} k a_k a_{n-k} + 2\sum_{k=0}^{n} a_k a_{n-k}$$

$$= a_{n+1} + 4T_n + 2S_n$$

Or on a vu à la question 2 que $2T_n = nS_n$ donc

$$S_{n+1} + T_{n+1} = a_{n+1} + 2nS_n + 2S_n = a_{n+1} + 2(n+1)S_n$$

D'après la question 2, $2T_{n+1} = (n+1)S_{n+1}$ donc

$$S_{n+1} + T_{n+1} = S_{n+1} + \frac{n+1}{2}S_{n+1} = \frac{n+3}{2}S_{n+1}$$

On en déduit que

$$\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)S_n$$

5. D'après la question 1, $S_0 = a_1 = 1$. Supposons maintenant que $S_n = a_{n+1}$ pour un certain $n \in \mathbb{N}$. D'après la question précédente, $\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)S_n$. Or on a supposé que $S_n = a_{n+1}$ donc

$$\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)a_{n+1} = (2n+3)a_{n+1}$$

Or d'après la question 3, $(n+3)a_{n+2} = 2(2n+3)a_{n+1}$ donc

$$\frac{n+3}{2}S_{n+1} = \frac{n+3}{2}a_{n+2}$$

puis $S_{n+1}=a_{n+2}$ puisque $\frac{n+3}{2}\neq 0$. Par récurrence, $S_n=a_{n+1}$ pour tout $n\in\mathbb{N}$.

6. Tout d'abord $a_0 = 1$ est un entier naturel. Supposons qu'il existe $n \in \mathbb{N}$ tels que a_0, a_1, \ldots, a_n soient des entiers naturels. Alors S_n est également un entier naturel en tant que somme de produits de ces derniers entiers naturels. Puisque $a_{n+1} = S_n$, a_{n+1} est également un entier naturel. Par récurrence forte, a_n est donc un entier naturel pour tout $n \in \mathbb{N}$.