Rayo de Electrones: Bitácora de Laboratorio

Sebastian Rodríguez, Laura Torres, Julian Avila

Universidad Distrital Francisco José de Caldas

July 9, 2025

Objetivo del Montaje Experimental

Meta Principal

Demostrar la deflexión de un haz de electrones bajo la influencia de campos magnéticos generados por pares de bobinas de Helmholtz.

- Estudiar la dinámica del haz en configuraciones de campo uniforme y de gradiente.
- Analizar las figuras resultantes en una pantalla fluorescente.
- Comparar los resultados experimentales con las predicciones teóricas del electromagnetismo clásico.

Componentes Clave del Montaje

Cañón de Electrones (Leibold):

- Genera un haz de electrones colimado.
- Potencial de aceleración: $V_{acc} \approx 3.1 \,\mathrm{kV} 4.3 \,\mathrm{kV}$.

Tubo de Rayos Catódicos (Leibold):

Cámara de vacío donde viaja el haz de electrones.

Pares de Bobinas de Helmholtz (Leibold):

- Dos pares coaxiales alimentados por fuentes de corriente variable $(I \le 2 \text{ A})$.
- Parámetros aproximados: Radio $R \approx 6.5\,\mathrm{cm}$, número de vueltas por bobina $N \approx 320$.

• Fuentes de Corriente Variable:

• Controlan la magnitud del campo magnético ($I \leq 3 \, A$).

Pantalla Fluorescente:

Visualiza la trayectoria y deflexión del haz.

Disposición Experimental

Figure: Montaje experimental.

- El cañón de electrones se alinea para que el haz pase por el centro de las bobinas de Helmholtz.
- Los dos pares de bobinas son coaxiales, con su eje coincidiendo con la trayectoria inicial del haz.

Configuraciones de Bobinas y Campo Magnético

1. Configuración de Helmholtz (Campo Aditivo)

- **Descripción:** La corriente fluye en la misma dirección en ambas bobinas de un par.
- Campo Magnético: Produce un campo \vec{B} uniforme y aditivo en la región central, paralelo al eje.
- Efecto en el Haz: Un campo uniforme perpendicular a la velocidad \vec{v} del electrón causa una deflexión circular, gobernada por la fuerza de Lorentz $\vec{F}_L = q(\vec{v} \times \vec{B})$.

2. Configuración Anti-Helmholtz (Campo de Gradiente)

- Descripción: La corriente se invierte en una de las bobinas del par.
- Campo Magnético: Crea un campo con un fuerte gradiente $(\nabla \vec{B})$ en la región central. El campo es nulo en el punto medio.
- Efecto en el Haz: Genera fuerzas variables, resultando en patrones de deflexión complejos y efectos de enfoque/desenfoque.

Funcionamiento y Observaciones Iniciales

- Las fuentes de corriente variable permiten ajustar la magnitud del campo magnético.
- Se aplicaron señales de corriente sinusoidales, de rampa y cuadradas, con frecuencias $f < 100 \, \text{Hz}$.
- La interacción del haz de electrones con el campo magnético resultante produjo patrones luminosos en la pantalla.
- Se observaron figuras dinámicas, semejantes a las figuras de Lissajous pero con variaciones temporales debidas a la modulación del campo magnético.

Análisis de la Interacción de Espín (Justificación de su Descarte)

El electrón, como partícula cuántica con espín s=1/2, posee un momento dipolar magnético intrínseco $\vec{\mu}$. Esto podría generar una fuerza adicional si el campo magnético no es uniforme. La fuerza de Stern-Gerlach es $\vec{F}_{spin} = \nabla(\vec{\mu} \cdot \vec{B})$.

Conclusión

Esta fuerza es despreciable por dos razones fundamentales.

1. Comparación de Magnitudes

- En campos uniformes (Helmholtz), $\nabla \vec{B} = 0$, por lo que $\vec{F}_{spin} \equiv 0$.
- En campos de gradiente (Anti-Helmholtz), el cociente de fuerzas es:

$$\frac{|\vec{F}_{spin}|}{|\vec{F}_{Lorentz}|} \approx 10^{-11}$$

La fuerza de Lorentz es 11 órdenes de magnitud mayor.

2. Efecto de la Precesión de Larmor

- El momento magnético $\vec{\mu}$ precesa alrededor de la dirección de \vec{B} con la frecuencia de Larmor ω_L .
- La fuerza \vec{F}_{spin} depende de la orientación instantánea de $\vec{\mu}$ y, por lo tanto, oscila rápidamente.
- El efecto neto de esta fuerza oscilante sobre la trayectoria macroscópica se promedia a cero.

Conclusión: Es físicamente justificable y computacionalmente necesario ignorar la interacción de espín y tratar al electrón como una carga clásica.

Resultados: Campo Uniforme (Configuración Helmholtz)

Observaciones

Se generaron trayectorias cerradas y estables en la pantalla, conocidas como **figuras de Lissajous**.

- Validación: La topología de estas figuras se correlacionó directamente con los parámetros de control de las corrientes de alimentación.
- El cociente de frecuencias enteras (ω_1/ω_2) determinó el número de lóbulos a lo largo de cada eje.
- La diferencia de fase (ϕ) controló la apertura y simetría de la trayectoria, transicionando desde líneas diagonales $(\phi=0)$ a elipses o círculos $(\phi=\pi/2)$.

Confirmación

Esta correspondencia directa validó el modelo de campo uniforme como una excelente aproximación para describir la dinámica macroscópica del haz en campos cruzados.

Resultados: Campo de Gradiente (Configuración Anti-Helmholtz)

Observaciones

Se produjeron patrones radiales. El haz no trazaba una curva, sino que convergía a un punto central y se expandía hacia afuera periódicamente.

- Se observó una pulsación rítmica del haz.
- El radio máximo del patrón circular en la pantalla fue proporcional a la amplitud de la corriente.
- La frecuencia de pulsación coincidió con la frecuencia de alimentación de la corriente.

Confirmación

Este comportamiento es una manifestación visual directa del efecto de **enfoque** (colapso del haz) y **desenfoque** (expansión) predicho por el modelo cuadrupolar, confirmando la capacidad de estos campos para manipular la sección transversal del haz.

Resultados: Configuración Mixta y División del Haz

Configuración Híbrida

Un par de bobinas en modo Helmholtz (campo uniforme \vec{B}_x) y el otro en modo Anti-Helmholtz (campo de gradiente ∇B_v).

Resultado Más Sorprendente

El haz de electrones, en lugar de curvarse o expandirse, **osciló de forma estable entre dos posiciones discretas y bien definidas**. Parecía como si la pantalla presentara dos atractores estables para la trayectoria.

- **Semejanza Visual:** Esta división del haz evoca visualmente el patrón obtenido en el histórico experimento de Stern-Gerlach.
- Distinción Crucial: Sin embargo, es fundamental enfatizar que la física subyacente no corresponde a una separación de estados de espín.
- Mecanismo Postulado: La compleja topología del campo magnético mixto probablemente crea un potencial con dos mínimos locales, guiando al haz a saltar entre estas dos trayectorias estables a la frecuencia de los campos.

Discusión: ¿Análogo Clásico vs. Efecto Cuántico?

Análisis Riguroso

El fenómeno observado es un fascinante análogo clásico del experimento de Stern-Gerlach (SG), pero es de naturaleza puramente clásica y no debe ser categorizado como un efecto SG.

Analizaremos tres diferencias fundamentales:

- Naturaleza de la Fuerza Dominante
- Campos Dinámicos (AC) vs. Estáticos (DC)
- Separación Clásica vs. Cuantizada

Discusión 1: Naturaleza de la Fuerza Dominante

Experimento SG Original

- Utiliza partículas neutras (e.g., átomos de plata) para aislar la interacción entre el momento dipolar magnético y el gradiente de campo.
- La fuerza responsable de la separación es la fuerza de Stern-Gerlach: $\vec{F}_{SG} = \nabla(\vec{\mu} \cdot \vec{B})$.

Nuestro Experimento

- La partícula es un **electrón**, que tiene carga e.
- Como se demostró cuantitativamente, la fuerza de Lorentz que actúa sobre la carga del electrón es aproximadamente 10¹¹ veces mayor que cualquier posible fuerza sobre su espín.

$$|\vec{F}_{Lorentz}| \gg |\vec{F}_{spin}|$$

 Conclusión: La dinámica observada es resultado casi exclusivo de la fuerza de Lorentz. La división no se origina por una interacción de espín.

Discusión 2: Campos Dinámicos (AC) vs. Estáticos (DC)

Experimento SG Canónico

- Requiere un campo magnético estático (DC) con un gradiente espacial muy pronunciado y constante en el tiempo.
- La separación producida es, por tanto, estática: los átomos se desvían permanentemente hacia una de dos trayectorias.

Nuestro Montaje

- Se basa fundamentalmente en campos **dinámicos (AC)** que oscilan a una frecuencia de $f \approx 50-60\,\mathrm{Hz}$.
- El patrón observado no es una separación estática, sino una oscilación del haz entre dos puntos.
- El electrón no elige una de dos trayectorias fijas; es guiado alternativamente a una posición y luego a la otra por los campos variables en el tiempo.

Discusión 3: Separación Clásica vs. Cuantizada

Separación en el Experimento SG

- Es una manifestación directa de la cuantización del espacio.
- Para una partícula de espín-1/2, solo existen dos proyecciones de espín posibles $(\pm \hbar/2)$, resultando en exactamente dos haces.
- La magnitud de esta separación depende de constantes fundamentales.

Separación en Nuestro Experimento

- La posición de los dos puntos observados no está fijada por constantes fundamentales.
- Depende de parámetros clásicos y continuamente ajustables: geometría de la bobina, amplitud y frecuencia de la corriente, y energía inicial del haz.
- Se postula que la topología del campo mixto crea un potencial efectivo con dos mínimos locales. La posición de estos mínimos puede modificarse alterando voltajes y corrientes, lo cual sería imposible en una verdadera división cuántica.

Conclusión

Fenómeno Observado

El fenómeno de división del haz es un extraordinario **análogo clásico** del experimento de Stern-Gerlach.

- Demuestra cómo la ingeniería compleja de campos electromagnéticos clásicos y dependientes del tiempo puede generar un comportamiento que simula visualmente un resultado cuántico.
- Lejos de ser una medida de espín, es un testimonio de la riqueza de la dinámica no lineal en el electromagnetismo clásico.
- La "división" es una oscilación forzada entre dos puntos de estabilidad dinámica, controlados por parámetros externos, y no una manifestación de la cuantización del momento angular intrínseco.