

Cargador de Baterías Modular con Monitoreo Remoto

Autor:

Felipe Calcavecchia

Director:

Alejandro Permingeat (FIUBA)

Jurados:

Nombre y Apellido (1) (pertenencia (1))

Nombre y Apellido (2) (pertenencia (2))

Nombre y Apellido (3) (pertenencia (3))

${\rm \acute{I}ndice}$

$ m Registros \ de \ cambios \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $
Acta de constitución del proyecto
Descripción técnica-conceptual del Proyecto a realizar
Identificación y análisis de los interesados
1. Propósito del proyecto
2. Alcance del proyecto
3. Supuestos del proyecto
4. Requerimientos
5. Entregables principales del proyecto
6. Desglose del trabajo en tareas
7. Diagrama de Activity On Node
8. Diagrama de Gantt
9. Matriz de uso de recursos de materiales
10. Presupuesto detallado del proyecto
11. Matriz de asignación de responsabilidades
12. Gestión de riesgos
13. Gestión de la calidad
14. Comunicación del proyecto
15. Gestión de Compras
16. Seguimiento y control
17. Procesos de cierre

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
1.0	Creación del documento	27/06/2020
1.1	Se completó Propósito, Alcance, Supuestos, Requerimientos,	10/07/2020
	Entregables y Desglose del trabajo en taréas	
1.2	Se Hacen correcciones y se avanza hasta el punto 11	23/07/2020

Acta de constitución del proyecto

Buenos Aires, 27 de junio de 2020

Por medio de la presente se acuerda con el Ing. Felipe Calcavecchia que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Cargador de Baterías Modular con Monitoreo Remoto", consistirá esencialmente en el prototipo preliminar de una fuente utilizada como cargador y una placa de control que garantice la funcionalidad del mismo, y tendrá un presupuesto preliminar estimado de 670 hs de trabajo y \$845.619, con fecha de inicio 27 de junio de 2020 y fecha de presentación pública 5 de Agosto de 2021.

Se adjunta a esta acta la planificación inicial.

Ariel Lutenberg Director posgrado FIUBA Luis A. Rosende **proba** Baterías

Alejandro Permingeat Director del Trabajo Final

Nombre y Apellido (1) Jurado del Trabajo Final Nombre y Apellido (2) Jurado del Trabajo Final

Nombre y Apellido (3) Jurado del Trabajo Final

Descripción técnica-conceptual del Proyecto a realizar

Hoy en día las baterías de uso industrial constituyen una parte fundamental en sistemas de respaldo de alimentación, vehículos de tracción eléctrica y otros múltiples usos. Su elevado costo respecto de los dispositivos que alimentan, hacen que un buen uso y mantenimiento sea una cuestión a tener en cuenta a la hora de considerar su vida útil.

Todo esto lleva a la necesidad de desarrollar un cargador que asegure una carga adecuada (en tensión y corriente), de acuerdo al tipo de batería, a su estado de carga y a las condiciones ambientales que la rodean.

Si tenemos en cuenta que el mercado local ofrece algunos cargadores nacionales, la mayoría se basan en tecnologías antiguas. Por el lado de los importados, tecnológicamente mas avanzados, necesitan certificaciones aduaneras que elevan su precio.

Si bien la empresa produce cargadores, estos son un complemento en la comercialización de baterías para automóviles. Con este proyecto se pretende aumentar la presencia de la compañía en el segmento del mercado que corresponde a las baterías industriales expandiendo su modelo de negocio a otras áreas menos explotadas.

En la Figura 1 se puede observar el modelo Canvas de negocio.

Figura 1: Modelo Canvas de negocio

El presente proyecto se destaca en tres aspectos que le agregan valor, dos enfocados en el consumidor final y uno en el cliente.

En lo pertinente al consumidor final, y desde el punto de vista del hardware, se reemplazan los voluminosos y pesados transformadores por fuentes conmutadas de alta frecuencia, mas eficaces, pequeñas y livianas.

Desde el lado del firmware de control, este, permite adaptarse a cada tipo de banco de baterías en forma particular. Además como aspecto innovador, se incorpora un monitoreo de cada una de las cargas que realiza y con esa información genera un log que permite hacer un análisis periódico

del estado de la batería y activar alarmas tempranas en caso de detectar alguna anomalía.

Por el lado del cliente, se beneficia al disminuir stock inmovilizado, teniendo un solo modelo de cargador modularizado y configurable, en vez de varios cargadores, uno por cada tipo de batería, simplificando su producción y ahorrando costos.

En la Figura 2 se muestra el diagrama en bloques del proyecto a realizar. Se observa que el cargador posee una disposición modular en la que admite 1, 2 ó 3 fuentes. Cada una puede aportar hasta 40 Amperes. Esto posiblita configurar el cargador para adaptarse a los requerimientos de los distintos tipos de baterías, abarcando las tensiones standards más utilizadas (12V, 24V, 36V y 48V) y corrientes de carga que pueden ir desde 1A hasta 120A.

La placa que controla al cargador contiene un microprocesador capaz de suministrar tres señales PWM independientes que manejan las tensiones de salidas de las tres fuentes, cinco canales ADC para leer sensores, un puerto con entradas/salidas digitales para el display, teclado, relés de alarma y otros accesorios como indicadores luminosos, ventiladores, etc, y por último una comunicacion serie para los módulos de WIFI y el reloj de tiempo real.

El firmware controla, en forma secuencial, cuatro etapas de carga:

Figura 2: Diagrama en bloques del sistema

- 1. CARGA A FONDO: Suministra aproximadamente el 80 % de la carga total, se realiza a corriente constante y se registra el tiempo de duración.
- 2. CARGA POR ABSORCIÓN: Le entrega el 20 % restante de carga y se realiza a tensión constante. Dura aproximadamente el mismo tiempo que la carga a Fondo.
- CARGA A FLOTE: Cuando finaliza la carga, se fija una tensión y corriente máxima de forma que la batería pueda quedar conectada al cargador indefinidamente sin provocar sobrecargas.
- 4. ECUALIZACIÓN: Cada un número determinado de cargas, se realiza este paso para equilibrar los elementos que conforman la batería. Se hace forzando una sobrecarga durante un tiempo controlado relativamente corto.

Las corrientes de las fuentes son medidas y comparadas con las de referencia, generando una señal de error que se usa para actuar sobre los PWM's formando un sistema de lazo cerrado que se controla por un algoritmo PID. Al finalizar la carga, se genera un registro identificando parámetros como, tensión, corriente, fecha y hora de inicio y finalización, Ampere-Hora suministrado, temperatura y cantidad de cargas realizadas. Estos datos sirven para llevar una "historia clínica" de la batería y verificar si existe alguna anomalía para activar las correspondientes alarmas.

Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Auspiciante Cliente Impulsor	Luis A. Rosende	proba Baterías	Dto. Ventas
Responsable	Felipe Calcavecchia	proba Instrumentos	Ing. Desarrollo
Equipo	Luca Calcavecchia	UTN-FRH	Alumno
Orientador	Alejandro Permingeat	FIUBA	Director Trabajo final
Usuario final	Empresas	-	-

- El Auspiciante, Cliente e Impulsor es el titular de **proba** Baterías y socio con el Responsable del proyecto en **proba** Instrumentos.
- El Equipo se encarga del diseño del gabinete y la documentación correspondiente.

1. Propósito del proyecto

El propósito de este proyecto es diseñar e implementar un prototipo funcional de un cargador de baterías modular, aplicando los conocimiento que se van adquiriendo en el curso. A su vez que esos conocimientos sirvan para ser incorporados como metodología de trabajo a futuros productos realizados en la empresa.

2. Alcance del proyecto

Este proyecto incluirá el diseño y construcción de un prototipo funcional de un cargador de baterías que conste de un sistema embebido formado por una placa, que interactúe con sus periféricos y controle las fuentes de carga. También se incluirá toda la documentación y archivos necesarios para su producción, así como también su manual de uso e instalación.

No queda incluido en el presente proyecto, el diseño y construcción de las fuentes, el diseño del gabinete y partes mecánicas. Tampoco incluye la implementación de una aplicación de software para la lectura remota del reporte de cargas. Solo se enviarán los datos crudos del log.

3. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Se dispondrá de la información de marketing de los posibles usuarios para analizar las funcionalidades del proyecto.
- 2. Se contará con los suficientes recursos económicos para la compra de todo el material necesario.
- 3. Se supone que los componentes a utilizar se consiguen localmente o que se dispone de todos los requisitos necesarios para su importación en caso de ser necesario.
- 4. Se supone que las fuentes a utilizar tienen el correspondiente certificado de seguridad eléctrica.
- 5. Se supone que los tiempos de importación están dentro de lo planificado.
- 6. Se supone que los tiempos de fabricación están dentro de lo planificado.
- 7. Se supone que se tendrá acceso a las instalaciones y elementos necesarios para realizar las pruebas de campo.
- 8. Debido a que las pruebas de campo son de larga duración, se dispondrá del tiempo necesario para usar las instalaciones sin restricciones.

4. Requerimientos

Los requerimientos del presente proyecto se establecieron luego de acordar con el cliente y muchos a sugerencia de posibles usuarios finales. Los mismos se describen a continuación en orden prioritario.

1. Requerimientos generales del proyecto

- 1.1. Fecha de entrega del proyecto terminado: 5 de Julio de 2021
- 1.2. El responsable asegura al cliente el know-how del proyecto.
- 1.3. Podrá alimentarse con línea de red monofásica o trifásica.
- 1.4. Deberá contemplar protecciones de alimentación atraves de llaves térmicas.

2. Requerimientos funcionales

2.1. Requerimientos de Hardware

- 2.1.1. El dispositivo debe contemplar un diseño modular.
- 2.1.2. El diseño modular debe permitir su reconfiguración.
- 2.1.3. Debe tener un teclado accesible para su configuración y manejo.

- 2.1.4. Debe poseer un display que permita visualizar la configuración y parámetros mensurables.
- 2.1.5. Debe poseer indicadores luminosos bien visibles.
- 2.1.6. Cada fuente debe tener su propio sensor de corriente.
- 2.1.7. El sensor de tensión es común a todas las fuentes.
- 2.1.8. Se agrega un botón de parada de emergencia.

2.2. Requerimientos de Firmware

- 2.2.1. Debe permitir configurar la tensión y corriente máxima de carga.
- 2.2.2. Debe permitir configurar los tiempos máximos para cada etapa de carga.
- 2.2.3. Debe guardar al menos dos configuraciones.
- 2.2.4. Tendrá que medir tensión, corriente y temperatura.
- 2.2.5. Tendrá que garantizar cuatro etapas de carga:
 - 2.2.5.1. Carga a Fondo.
 - 2.2.5.2. Carga por Absorción.
 - 2.2.5.3. Carga a Flote.
 - 2.2.5.4. Ecualización.
- 2.2.6. Tendrá un algoritmo que atienda al botón de parada de emergencia.
- 2.2.7. El control de carga se realizará por un algoritmo PID
- 2.2.8. Se registrará la fecha y hora de inicio y finalización de cada carga a través de un RTC.
- 2.2.9. Debe guardar las últimas mil cargas realizadas.
- 2.2.10. Con los datos recavados se podrá determinar anomalías y generar alarmas.
- 2.2.11. El registro de datos almacenados debe estar disponible para ser consultado remotamente.

3. Requerimientos no funcionales

- 3.1. Se deberá generar documentación:
 - 3.1.1. Esquemáticos eléctricos.
 - 3.1.2. Manual de instalación.
 - 3.1.3. Manual de uso.
- 3.2. Se contará con la correspondiente certificación eléctrica otorgada por un laboratorio habilitado para la importación de las fuentes de carga.
- 3.3. El grado de protección del sistema debe ser como mínimo IP50.
- 3.4. Se debe garantizar un servicio de post venta por al menos 5 años.

5. Entregables principales del proyecto

- Plan de trabajo
- Memoria del proyecto
- Prototipo funcional
- Diagrama esquemático
- Manual de instalación
- Manual de uso
- Código fuente

6. Desglose del trabajo en tareas

1. Planificación del proyecto (30hs)

- 1.1. Definición de requerimientos con el cliente (15hs)
- 1.2. Confección del plan de trabajo (15hs)

2. Investigación preliminar (65hs)

- 2.1. Información sobre la competencia (5hs)
- 2.2. Análisis técnico-económico (10hs)
- 2.3. Análisis comparativo para determinar que microprocesador usar (10hs)
- 2.4. Investigación sobre los periféricos a utilizar (15hs)
- 2.5. Estudio de los datasheet de los periféricos elegidos (25hs)

3. Desarrollo del Hardware (100hs)

- 3.1. Diseño del diagrama esquemático (30hs)
- 3.2. Diseño del diagrama de conexión (20hs)
- 3.3. Diseño de los PCB's preliminares (30hs)
- 3.4. Armado de los PCB's (10hs)
- 3.5. Ensamblado del prototipo inicial (10hs)

4. Desarrollo del Firmware (250hs)

- 4.1. Definición de funciones a realizar (30hs)
- 4.2. Modularización del código
 - 4.2.1. Módulo de inicialización (10hs)
 - 4.2.2. Módulo de teclado (10hs)
 - 4.2.3. Módulo del menú y presentación (30hs)
 - 4.2.4. Módulo de configuración (40hs)
 - 4.2.5. Módulo de adquisición de datos (25hs)
 - 4.2.6. Módulo PID de control (20hs)
 - 4.2.7. Módulo de comunicación con periféricos (30hs)
 - 4.2.8. Módulo para guardar los registros (20hs)
 - 4.2.9. Módulo de diagnóstico y alarmas (35hs)

5. Vereficación y validación (130hs)

- 5.1. Integración del sistema (40hs)
- 5.2. Pruebas de campo (40hs)
- 5.3. Correcciones de los PCB's (10hs)
- 5.4. Búsqueda de posibles bugs (30hs)
- 5.5. Ensamblado final del prototipo (10hs)

6. Proceso de cierre (95hs)

- 6.1. Elaboración de la documentación y manuales (20hs)
- 6.2. Elaboración de la memoria técnica (60hs)
- 6.3. Preparación de la presentación final (15hs)

Cantidad total de horas: (670 hs)

7. Diagrama de Activity On Node

Camino crítico t = 475 hs

Figura 3: Diagrama en Activity on Node

8. Diagrama de Gantt

	Nombre	Duración	Inicio	Fin	Predecesoras
0	□ Gantt_Cargador	205días	29/06/2020	09/04/2021	
1	Comienzo	0día	29/06/2020	29/06/2020	
2	□ 1. Planificación del proyecto	25días	29/06/2020	31/07/2020	
3	1.1. Definición de requerimientos	5días	29/06/2020	03/07/2020	1
4	1.2. Confección plan de trabajo	20días	06/07/2020	31/07/2020	3
5	□ 2. Investigación preliminar	20días	03/08/2020	28/08/2020	
6	2.1. Investigación de la competencia	5días	03/08/2020	07/08/2020	4
7	2.2. Análisis técnico económico	5días	10/08/2020	14/08/2020	6,4
8	2.3. Determinar microprocesador	5días	17/08/2020	21/08/2020	7
9	2.4. Definir periféricos	5días	17/08/2020	21/08/2020	7
10	2.5. Estudio de datasheet	5días	24/08/2020	28/08/2020	8,9
11	□ 3. Diseño del hardware	39dias	31/08/2020	22/10/2020	
12	3.1. Diseño diagrama esquemático	5días	31/08/2020	04/09/2020	10
13	3.2. Diseño diagrama de conexión	5días	07/09/2020	11/09/2020	12
14	3.3. Diseño de PCB	5días	14/09/2020	18/09/2020	13
15	3.4. Armado PCB	5días	08/10/2020	14/10/2020	14
16	3.5. Ensamblado del prototipo	6días	15/10/2020	22/10/2020	14,15
17	□ 4. Diseño del firmware	62días	26/08/2020	19/11/2020	
18	4.1. Definición de funciones del firmware	7días	26/08/2020	03/09/2020	9
19	4.2. Desarrollo del firmware	50días	11/09/2020	19/11/2020	18
20	□ 5. Verificación y validación	54días	20/11/2020	03/02/2021	
21	5.1. Integración del sistema	10días	20/11/2020	03/12/2020	16,19
22	5.2. Pruebas de campo	10días	04/12/2020	17/12/2020	21
23	5.3. Correcciones PCB	5días	18/12/2020	24/12/2020	22
24	5.4. Búsqueda de bugs	8días	18/01/2021	27/01/2021	23
25	5.5. Ensamblado final	5días	28/01/2021	03/02/2021	24
26	6. Proceso de cierre	45días	08/02/2021	09/04/2021	
27	6.1.Documentación y manuales	15días	08/02/2021	26/02/2021	25
28	6.2. Memoria técnica	15días	01/03/2021	19/03/2021	27
29	6.3. Presentación final	15días	22/03/2021	09/04/2021	28
30	Fin	0día	09/04/2021	09/04/2021	25,29

Figura 4: Tabla de tareas

Figura 5: Diagrama de Gantt

9. Matriz de uso de recursos de materiales

Código	Nombre de la tarea				
WBS	Nombre de la tarea	PC	Placa PCB	Prototipo	Laboratorio
1.	Planificación del proyecto				
1.1.	Definición requerimientos	15 hs			
1.2.	Plan de trabajo	15 hs			
2.	Investigación preliminar				
2.1.	Info de la competencia	5 hs			
2.2.	A. técnico-económico	10 hs			
2.3.	Determinar microprocesador	10 hs			
2.4.	Determinar periféricos	15 hs			
2.5.	Estudio datasheet	25 hs			
3.	Desarrollo del hardware				
3.1.	Diseño Esquemático	30 hs			
3.2.	Diseño diagrama conexión	20 hs			
3.3.	Diseño PCB	30 hs			
3.4.	Armado PCB				10 hs
3.5.	Ensamblado del prototipo				10 hs
4.	Desarrollo del firmware				
4.1.	Funciones del firmware	30 hs			
4.2.	Modularización del código	185 hs	30 hs		5 hs
5.	Verificación y validación				
5.1.	Integración del sistema	5 hs	10hs	20 hs	5 hs
5.2.	Prueba de campo				40 hs
5.3.	Corrección PCB	5 hs	5 hs		
5.4.	Búsqueda de bugs	20 hs	10 hs		
5.5.	Ensamble final			10 hs	
6.	Proceso de cierre				
6.1.	Documentación y manuales	20 hs			
6.2.	Memoria técnica	60 hs			
6.3.	Presentación final	15 hs			
	Totales	515 hs	55 hs	$30 \mathrm{hs}$	70 hs

- PC: Computadora con las aplicaciones necesarias para el diseño del hardware y firmware.
- Placa PCB: placa de circuito impreso funcional con microprocesador y periféricos.
- Prototipo: Placa de control integrada al hardware del cargador
- Laboratorio: Espacio físico con instrumental de medición.

10. Presupuesto detallado del proyecto

COSTOS DIRECTOS								
Descripción	Cantidad	Valor unitario	Valor total					
Fuentes de carga	3	\$ 26.950	\$ 80.850					
PCB	2	\$ 4.620	\$ 9.240					
Sensor de corriente	3	\$ 924	\$ 2.772					
Sensor de tenperatura	2	\$ 153	\$ 306					
Pantalla LCD	2	\$ 1.155	\$ 2.310					
Placa de evaluación	1	\$ 2.541	\$ 2.541					
Módulo WIFI	2	\$ 800	\$ 800					
Componentes electrónicos varios (*)	1	\$ 3.000	\$ 3.000					
Electricidad y conexionado (*)	1	\$ 2.500	\$ 2.500					
Honorario profecional	670 hs	\$ 750	\$ 502.500					
SUBTOTAL			\$ 605.969					
COSTOS IND	IRECTOS							
Descripción	Cantidad	Valor unitario	Valor total					
Servicios y alquileres	10	\$ 7.500	\$ 75.000					
Baterías para pruebas de campo	4	\$ 19.000	\$ 76.000					
Gastos de aduana e importación	1	\$ 34.650	\$ 34.650					
Certificaciones para la importación	1	\$ 54.000	\$ 54.000					
SUBTOTAL			\$ 239.650					
		TOTAL	\$ 845.619					

(*) Valores aproximados

11. Matriz de asignación de responsabilidades

G/ I:	l	Nombres y roles del proyecto						
Código WBS	Nombre de la tarea	Responsable	Orientador	Equipo	Cliente			
WDS		Felipe Calcavecchia	Alejandro Permingeat	Luca Calcavecchia	Luis A. Rosende			
1.	Planificación del proyecto							
1.1.	Definición requerimientos	P	I	S	P / A			
1.2.	Plan de trabajo	Р	C / A	S	I			
2.	Investigación preliminar							
2.1.	Info de la competencia	Р	-	S	С			
2.2.	A. técnico-económico	S	-	-	P			
2.3.	Determinar microprocesador	P	A	-	I			
2.4.	Determinar periféricos	P / A	С	-	-			
2.5.	Estudio datasheet	P	-	-	-			
3.	Desarrollo del hardware							
3.1.	Diseño Esquemático	Р	S	-	-			
3.2.	Diseño diagrama conexión	P	-	С	-			
3.3.	Diseño PCB	P / A	С	S	I			
3.4.	Armado PCB	P	I	-	I			
3.5.	Ensamblado del prototipo	P	I	S	I			
4.	Desarrollo del firmware							
4.1.	Funciones del firmware	Р	С	-	-			
4.2.	Modularización del código	P	C / A	-	-			
5.	Verificación y validación							
5.1.	Integración del sistema	Р	A	S	I			
5.2.	Prueba de campo	Р	I	S	A			
5.3.	Corrección PCB	P / A	I	-	-			
5.4.	Búsqueda de bugs	P	С	-	-			
5.5.	Ensamble final	P	I	P	A			
6.	Proceso de cierre							
6.1.	Documentación y manuales	Р	С	S	A			
6.2.	Memoria técnica	P	A	-	I			
6.3.	Presentación final	P	A	-	I			

Referencias:

- P = Responsabilidad Primaria
- S = Responsabilidad Secundaria
- A = Aprobación
- I = Informado
- C = Consultado

12. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).
 - Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

	α	•		/(d)	
_	~~	TION	idad		١.
_	\sim	2 N CT 1	luau	10	ι.

• Ocurrencia (O):

Riesgo 3:

- Severidad (S):
- Ocurrencia (O):

b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: Plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: Plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: Plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación)

13. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: Copiar acá el requerimiento.
 Verificación y validación:
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente:
 Detallar

 Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido:
 Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, etc.

14. Comunicación del proyecto

El plan de comunicación del proyecto es el siguiente:

PLAN DE COMUNICACIÓN DEL PROYECTO							
¿Qué comunicar? Audiencia Propósito Frecuencia Método de comunicac. Responsa							

15. Gestión de Compras

En caso de tener que comprar elementos o contratar servicios: a) Explique con qué criterios elegiría a un proveedor. b) Redacte el Statement of Work correspondiente.

16. Seguimiento y control

Para cada tarea del proyecto establecer la frecuencia y los indicadores con los se seguirá su avance y quién será el responsable de hacer dicho seguimiento y a quién debe comunicarse la situación (en concordancia con el Plan de Comunicación del proyecto).

El indicador de avance tiene que ser algo medible, mejor incluso si se puede medir en % de avance. Por ejemplo,se pueden indicar en esta columna cosas como "cantidad de conexiones ruteadeas" o "cantidad de funciones implementadas", pero no algo genérico y ambiguo como "%", porque el lector no sabe porcentaje de qué cosa.

	SEGUIMIENTO DE AVANCE							
Tarea	del	Indicador de	Frecuencia	Resp. de se-	Persona a ser	Método	de	
WBS		avance	de reporte	guimiento	informada	comunic.		

17. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se utilizaron, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.