1 Search

BFS, DFS, UCS, A*. For A* to work, the heuristic gotta be admissible (heuristic is always less than or equal to true cost to the end) and consistent (cost from a to b is c, $h(a)-h(b) \le c$). TODO: If available space, add tree/graph search

2 CS

Represent problems as constraint graphs; nodes are variables, edges are constraints. Can solve with backtracking search (DFS, try assigning variables until you run into a contradiction, backtrack, can be implemented recursively), forward checking (when a variable is assigned, check consistency of all arcs from unassigned variables to newly assigned variable), arc constistency (if a variable X loses a value in its domain of possible values when checking arc consistency, check all of its neighbors). An arc from unassigned X to assigned Y (i.e. $X \to Y$) is consistent iff for every $x \in X$, there is some $y \in Y$ which could be assigned without violating a constraint; when checking consistency, delete invalid assignments from X.

3 Adversarial Search

4 Utilities

Utility of a lottery: expectation value of lottery

5 MDPs

Markov property: action outcomes depend only on the current state. An MDP is defined by: a set of states $s \in S$, a set of actions $a \in A$, a transition function T(s, a, s'), a reward function R(s, a, s'), a start state s_0 , and maybe a terminal state. For model-based methods, we want an optimal policy $\pi^* : S \to A$.

Instead of measuring overall return R for a trajectory, prefer sooner rewards, so use discount factor γ . This also ensures that discounted returns are finite even for infinite states.

We have 2 relevant values for a policy π :

V(s) = expected utility starting in s and acting according to π

 $Q(s,a)=\exp$ util. at s, taking action a, and acting according to π

For optimal policy π^* , these are V^* and Q^* . Because V^* and Q^* represent values for the optimal policy π^* , we can derive recursive formulas from them known as the Bellman equations:

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \Big(R(s,a,s') + \gamma V^{*}(s') \Big)$$

$$\implies V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left(R(s, a, s') + \gamma V^*(s') \right)$$

$$\implies Q^*(s,a) = \sum_{s'} T(s,a,s') \Big(R(s,a,s') + \gamma \max_{a} Q^*(s,a) \Big)$$

Policy stuff

Value iteration: Start with $V_0(s)=0$: no time steps left means an expected reward sum of zero. Given a vector of $V_k(s)$ values, do one step of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \Big(R(s, a, s') + \gamma V_k(s') \Big)$$

Repeat until convergence.

Policy evaluation: Do policy iteration, except instead of doing argmax over all a from a given state, do $\pi(a)$ based on policy π .

Policy extraction: Assume you have optimal values $V^*(s)$. Then, to compute actions from these values, just do a one-step expectimax over possible actions from given state.

Policy iteration: repeat policy evaluation and policy extraction until convergence.

- RL
- 7 Bayes Net
- 8 HMMs
- 9 Particle Filters
- 10 Decision Networks
- 11 Naive Bayes
- 12 Perceptrons
- 13 Clustering
- 14 Deep Learning