

The MADEin4 project

LTM-CNRS contribution (collaboration with STMicroelectronics)

New Industry 4.0 metrology approaches driven by predictive in line control requirements :

At the frontier between academic studies and industrial world

Bernard Pelissier (LTM), Delphine Le Cunf (ST), Maxime Besacier (LTM), Jean Hervé Tortai (LTM)

February 16th 2021
Technology Unites Global Summit

Technology Unites Global Summit

LTM

(Laboratoire des Technologies de la Microelectronique) Grenoble – France

- □ CNRS UGA (Grenoble Alpes University) Academic Research lab benefiting of industrial clean room access (hosted in CEA-LETI environment)
- ☐ Technological research performed on state of the art 200 and 300mm tools, in close collaboration with industrials like ST
- ☐ Research lab dedicated to micro- & nanotechnologies:
 - Advanced materials, Nanomaterials and Integration
 - > Plasma etching processes for nanoelectronics and emerging devices
 - Advanced Lithography
 - Micro and nanotechnologies for Health
- ☐ Around 90 people including ~30 Ph.D. students

STMicroelectronics

More than ~10,000 employees in France

3 manufacturing sites

7 R&D sites

2 sales/marketing sites

STMicroelectronics @Crolles, France

Local stakeholders

Universities, SME, local ecosystem CEA/Leti, Soitec...

Industry 4.0 context

Advanced technology nodes → Technology Diversification Key Enabler → Increase productivity

GET MORE out of what we already get from metrology steps

GET MORE

- 1) Increase Knowledge (MADEin4 booster 1) → New parameter
- New materials intoduced in fab to support technology diversification
- New characteristics needed for direct analysis inline
- Mutualise metrology techniques to get new information

2) Increase Robustness (MADEin4 booster 1) → New approach for Hybridization

- Benefit from different sources of metrology techniques to get more accurate measurements
- Use proper smart algorithm based on NN to enhance quality from combinaison of inline raw signal and collected data

3) Go Faster (MADEin4 booster 2) → New approach for process deviation

- Model based techniques are very time and ressources consuming
- Model less approach is now needed even at R&D phase when structures and materials are not fully defined

Use of unique metrology tool set based on versatile and powerful Hybrid Lab techniques implemented on an Inline 300mm platform.

Close collaboration with ST-C to ensure the inline compatibility of the solutions

LTM's 'IMPACT' Inline 300mm platform advanced specifications for Madeln4

- XPS
 - √ pAR-XPS (parallel angle resolved XPS)
 - ✓ Angles from 20° to 80° without sample tilt
 - ✓ Spot size 20 to 400µm
 - ✓ Ion beam Ar etching for abrasion
- Ellipsometry
 - ✓ IR to V-UV : 12 μ m (0,1 eV) to 145 nm (8,55 eV)
 - ✓ IR Polarimetry
 - ✓ Azimutal rotation
 - √ Sample heating (up to 450°C)
- Photolum / Raman
 - ✓ Based on Labram HR (best in class Raman system)
 - ✓ IR to UV (3 lasers : 355nm / 532nm / 1064 nm)
 - ✓ Confocal measurements (depth resolution)
 - ✓ Spatial resolution < 3µm</p>

Specific 300mm vacuum carrier with Industrial compatible design

LTM actions in MadeIn4 In line with Booster 1 & Booster 2

- 1) Hybridation between XPS and several optical techniques (Ellipsometry, Raman, ...) for ultra-thin film metrology
- 2) Robustness improvement of metrology standards accuracy through CD-SAXS measurements in partnership with LETI AI based approach
- 3) Ellipsometry / Polarimetry for fast critical errors detections in large surfaces 3D patterns
 Very fast model less approach

Robust bandgap & wide range optical constants n,k determination

Actual limitations:

- Ellipsometry: Small energy range and E_q value is dependent on the model used
- > XPS-ELS: Lack of precision in baseline leading to an overestimation of Eg the value

GOAL: Combine XPS-ELS and Ellipsometry for a robust and wide-energy range (up to 30eV) optical characterization method

Extended range of use of the Hybrid model Bandgap determination

Robust technique, still valid with a bandgap outside the range of ellipsometry or XPS only

Good agreement for bandgap, n and k determination even with the lack of data

- ✓ SiON
- ✓ SnO2
- ✓ HfON
- ✓ SiGe

Materials under investigation:

- GST
- MoOx
- AZO

Booster 1 - Hybrid model 2 : Artificial Neural Networks (NN) for dimensional metrology Maxime Besacier (LTM) – Jerôme Reche & Patrice Gergaud (LETI)

Based on different metrology tools: OCD, CDSEM, CD-AFM, CDSAXS with samples from LETI

Goal: improve the robustness of results, reduce the measurement uncertainties

Methodology steps:

Create a simulated data base depending on the experimental uncertainties of metrology techniques to train
 and validate the NN.

- Design a NN with input, hidden and output layers.
- Analysis of the NN model performances.
- Convergence tests of the NN model
- Optimization of model architectures

Artificial Neural Networks (NN) for dimensional metrology

All data

...15000

- Virtual samples: lines (H = 50nm, CD = 20nm, SWA = 90°)
- Data base for training and validation steps: 14x15000 data
 - 14 = 11 virtual values & 3 « true » values: virtual values are built such as:
 - data_{virtual} = data_{true} + data_{true} x rand() x uncertainty_{technique}

Comparison of the predicted values of H, Cd and Swa by the network vs their true values. The validation set was 20 % of overall data set.

Next steps:

- virtual data coming from modeling of experimental responses
- analysis of data from measurements already carried out
- using of optimized NN model to address sample measurements

leti

Example of convergence test (loss vs nb of iteration) for different size of data base

Booster 2 : Predictive Fast in-line process deviation characterization and compensation using optical techniques

- ☐ Step and repeat measurements scenario for ellipsometry acquisition
 - Mapping of the whole wafer
 - Using raw data of Ellipsometry acquisition
 - Generation of Ellipsometry images by interpolation
 - Detection of the inhomogeneous stress of SiN layers on <u>product</u> wafer
 - Sensitivity demonstrated
 - Validation using PWG cartography
 - Detection of striation of colored resists at the die level
 - Sensitivity and validation demonstrated
 - Implementation of Raster mode
 - Once aberration corrected, fast scanning
 - Machine Learning for prediction of errors
 - Prediction efficiency of 96%

Without

Model less ellipsometry

PWG

Al automatic detection

96% of efficiency

Machine Learning method for the detection of faults from Mueller ellipsometry

- Rigorous modeling using RCWA scatterometry codes
 - LTM algorithms upgraded to 3D conical
 - Capable to handle various azimuthal angles
 - Validity code verified using published data

De Martino A, Foldyna M, Novikova T, Cattelan D, Barritault P, Licitra C, Hazart J, Foucher J, Bogeat F (2008) Proc SPIE 6922:69221P. doi:10.1117/12.772 721

Published results (Martino and al)

25.0% 20.0% ž 15.0%

v=0.99991x

R²=0.99956

340 360 Predicted Height (nm)

Histogram of width errors

LTM results using same data

Machine Learning method

CNN

Prediction

Y=1.00002x +R2=0.99997 0 480 ! Predicted Width (nm) Histogram of width errors

0.02 0.04 0.06 0.08 0.10 0.12 0.14 Errors (%)

Synthetic data

Stacking of Mueller data Training set (60%), Validation (20%), Test (10%) **Demonstrated for synthetic case Next: real case**

Prediction results by the CNN and error histogram

