Function (HKMO Classified Questions by topics)

1983 FG8.3

若
$$f(x) = x^2$$
,以 x 表示 $f(x) - f(x-1)$ 。

If $f(x) = x^2$, then express f(x) - f(x - 1) in terms of x.

1985 FI3.3

若
$$f(x) = x - 2$$
, $F(x, y) = y^2 + x$,且 $c = F(3, f(16))$,求 c 的值。

If f(x) = x - 2, $F(x, y) = y^2 + x$ and c = F(3, f(16)), find the value of c.

1987 FI3.4

若
$$f(y) = 2y^2 + 8y - 1$$
, 求 $f(4) \circ If f(y) = 2y^2 + 8y - 1$, find $f(4)$.

1987 FI5.2

若
$$f(y) = 4 \sin y^{\circ}$$
,且 $f(1950) = b$,求 b 的值。

If $f(y) = 4 \sin y^{\circ}$ and f(1950) = b, find the value of b.

1988 FI1.1

若
$$N(t) = 100 \times 18^t$$
, 且 $P = N(0)$, 求 P 的值。

If $N(t) = 100 \times 18^t$ and P = N(0), find the value of P.

1988 FI4.1

若
$$f(t) = 2 - \frac{t}{3}$$
,且 $f(a) = -4$,求 $a \circ \text{If } f(t) = 2 - \frac{t}{3}$, and $f(a) = -4$, find a .

1989 HI12

函數
$$F$$
 定義為 $F(x) = \begin{cases} 2x+1, & \text{if } x \leq 3 \\ 3x^2, & \text{if } x > 3 \end{cases}$ 。求 $F(F(3))$ 的值。

F is a function defined by $F(x) = \begin{cases} 2x+1, & \text{if } x \le 3 \\ 3x^2, & \text{if } x > 3 \end{cases}$. Find the value of F(F(3)).

1990 HI3 2013 FI3.2 2015 FI4.3

若
$$f(a) = a - 2$$
,且 $F(a, b) = a + b^2$,求 $F(3, f(4))$ 的值。

If f(a) = a - 2 and $F(a, b) = a + b^2$, find the value of F(3, f(4)).

1995 HI2

已知
$$f\left(\frac{1}{x}\right) = \frac{x}{1-x^2}$$
 , 求 $f(2)$ 的值。

Given that $f\left(\frac{1}{x}\right) = \frac{x}{1-x^2}$, find the value of f(2).

1995 FI1.3

已知
$$f(x) = px^3 + qx + 5$$
 且 $f(-7) = \sqrt{2} \times 3\sqrt{2} + 1$ 。若 $c = f(7)$,求 c 的值。

It is given that $f(x) = px^3 + qx + 5$ and $f(-7) = \sqrt{2} \times 3\sqrt{2} + 1$.

Find the value of c, if c = f(7).

1995 FI2.2

若
$$f(t) = 3 \times 52^t$$
 且 $v = f(0)$ 。求 v 的值。

If $f(t) = 3 \times 52^t$ and y = f(0), find the value of y.

1996 HI2

已知
$$f\left(\frac{1+x}{x}\right) = \frac{x^2+1}{x^2} + \frac{1}{x}$$
 , 求 $f(x^3)$ 的值。

If
$$f\left(\frac{1+x}{x}\right) = \frac{x^2+1}{x^2} + \frac{1}{x}$$
, find the value of $f(x^3)$.

1996 FI5.2

린슈마
$$f(x) = \frac{3}{8}x^2(81)^{-\frac{1}{x}}$$
 주마 $g(x) = 4\log_{10}(14x) - 2\log_{10}49$ °

求
$$b = f\{g[16(1-\frac{11}{16})]\}$$
 的值。

It is given that $f(x) = \frac{3}{8}x^2(81)^{-\frac{1}{x}}$ and $g(x) = 4 \log_{10}(14x) - 2 \log_{10}49$.

Find the value of $b = f\{g[16(1 - \frac{11}{16})]\}$.

1997 HI4

設
$$x = \frac{1}{x}$$
 , 求 $\frac{x^2 + 2x - 3}{x - 1} \div \frac{x + 5}{x^2 + 3x - 6}$ 的值。

Let $x = \frac{1}{x}$, find the value of $\frac{x^2 + 2x - 3}{x - 1} \div \frac{x + 5}{x^2 + 3x - 6}$.

1997 FG3.2

已知
$$f(x) = \frac{1}{3}x^3 - 2x^2 + \frac{2}{3}x^3 + 3x^2 + 5x + 7 - 4x \circ 若 f(-2) = b$$
 , 求 b 的值。

It is given that $f(x) = \frac{1}{3}x^3 - 2x^2 + \frac{2}{3}x^3 + 3x^2 + 5x + 7 - 4x$.

If f(-2) = b, find the value of b.

2003 HI1

設 f 是一函數,使對所有整數 m 及 n,f(m) 是整數及 f(mn) = f(m) f(n)。 已知當 9 > m > n 時,f(m) > f(n),且 f(2) = 3 及 f(6) > 22,求 f(3) 的值。 Let f be a function such that for all integers m and n, f(m) is an integer and f(mn) = f(m) f(n). It is given that f(m) > f(n) when 9 > m > n, f(2) = 3 and f(6) > 22, find the value of f(3).

Function (HKMO Classified Questions by topics)

2003 FG3.1

Let f be a function such that f(1) = 1 and for any integers m and n,

$$f(m+n) = f(m) + f(n) + mn$$
. If $a = \frac{f(2003)}{6}$, find the value of a .

2004 FG4.1

若
$$f(x) = \frac{4^x}{4^x + 2}$$
 及 $P = f\left(\frac{1}{1001}\right) + f\left(\frac{2}{1001}\right) + \dots + f\left(\frac{1000}{1001}\right)$,求 P 的值。

If $f(x) = \frac{4^x}{4^x + 2}$ and $P = f\left(\frac{1}{1001}\right) + f\left(\frac{2}{1001}\right) + \dots + f\left(\frac{1000}{1001}\right)$,

find the value of P.

2006 FG2.2

設
$$f(x) = px^7 + qx^3 + rx - 5$$
 , 其中 $p \cdot q$ 及 r 是實數。 若 $f(-6) = 3$ 及 $z = f(6)$, 求 z 的值。

Let $f(x) = px^7 + qx^3 + rx - 5$, where p, q and r are real numbers.

If f(-6) = 3 and z = f(6), find the value of z.

2010 FI3.3

若 c 是一奇數及 f(f(f(c))) = 18, 求 c 的最小值。

Let
$$f(x) = \begin{cases} x+5 & \text{if } x \text{ is an odd integer} \\ \frac{x}{2} & \text{if } x \text{ is an even integer} \end{cases}$$
.

If c is an odd integer and f(f(f(c))) = 18, find the least value of c.

2010 FI3.4

設
$$f\left(\frac{x}{3}\right) = x^2 + x + 1$$
。若 d 為所有滿足 $f(3x) = 21$ 的 x 之和,求 d 的值。

Let
$$f\left(\frac{x}{3}\right) = x^2 + x + 1$$
.

If d is the sum of all x for which f(3x) = 21, find the value of d.

2010 FIS.4

已知
$$f(x) = px^6 + qx^4 + 3x - \sqrt{2}$$
 , 且 $p \cdot q$ 為非零實數。

若
$$d = f(-4) - f(4)$$
, 求 d 的值。

Given that $f(x) = px^6 + qx^4 + 3x - \sqrt{2}$, and p, q are non-zero real numbers. If d = f(-4) - f(4), find the value of d.

2011 HG5

已知
$$f(x) = \frac{4^x}{4^x + 2}$$
,其中 x 是實數。

求
$$f\left(\frac{1}{2011}\right) + f\left(\frac{2}{2011}\right) + f\left(\frac{3}{2011}\right) + \dots + f\left(\frac{2009}{2011}\right) + f\left(\frac{2010}{2011}\right)$$
 的值。

Given that $f(x) = \frac{4^x}{4^x + 2}$, where x is a real number, find the value of

$$f\left(\frac{1}{2011}\right)+f\left(\frac{2}{2011}\right)+f\left(\frac{3}{2011}\right)+\dots+f\left(\frac{2009}{2011}\right)+f\left(\frac{2010}{2011}\right).$$

2012 FI2.2

若
$$f(x) = \frac{25^x}{25^x + 5}$$
 及 $Q = f\left(\frac{1}{25}\right) + f\left(\frac{2}{25}\right) + \dots + f\left(\frac{24}{25}\right)$,求 Q 的值。

If
$$f(x) = \frac{25^x}{25^x + 5}$$
 and $Q = f\left(\frac{1}{25}\right) + f\left(\frac{2}{25}\right) + \dots + f\left(\frac{24}{25}\right)$, find the value of Q .

2012 FI4.3

設 f 為為一函數並滿足以下條件:

- (i) 對所有正整數 n, f(n) 必為整數;
- (ii) f(2) = 2;
- (iii) 對所有正整數 m 及 n, f(mn) = f(m)f(n)及
- (iv) 當 m > n, f(m) > f(n)。

若 C = f(12), 求 C 的值。

Let f be a function satisfying the following conditions:

- (i) f(n) is an integer for every positive integer n;
- (ii) f(2) = 2;
- (iii) f(mn) = f(m)f(n) for all positive integers m and n and
- (iv) f(m) > f(n) if m > n.

If C = f(12), find the value of C.

Function (HKMO Classified Questions by topics)

2013 FI4.1

設實函數 f(x)對於所有實數 x 及 y 滿足 $f(xy) = f(x) \cdot f(y)$, 且 $f(0) \neq 0$ 。 求 a = f(1)的值。

Let f(x) be a real value function that satisfies $f(xy) = f(x) \cdot f(y)$ for all real numbers x and y and $f(0) \neq 0$. Find the value of a = f(1).

2015 FI1.3

設實函數 f(x) 對於所有實數 x 及 y 满足 f(xy) = f(x) f(y),且 f(1) < 1。 \bar{x} $\gamma = f(90) + 10$ 的值。

Suppose that the real function f(x) satisfies f(xy) = f(x) f(y) for all real numbers x and y, and f(1) < 1. Determine the value of $\gamma = f(90) + 10$.

2017 HI8

已知 ②
$$= 1 \times 2 \times 3 \times 4$$
,③ $= 2 \times 3 \times 4 \times 5$,④ $= 3 \times 4 \times 5 \times 6$,…

及
$$\frac{1}{(15)} - \frac{1}{(17)} = \frac{1}{(17)} \times A$$
 , 求 A 的值。

Given that $② = 1 \times 2 \times 3 \times 4$, $③ = 2 \times 3 \times 4 \times 5$, $④ = 3 \times 4 \times 5 \times 6$, ...

and $\frac{1}{(\overline{15})} - \frac{1}{(\overline{17})} = \frac{1}{(\overline{17})} \times A$, find the value of A.

2018 HI4

對任意非零實數
$$x$$
 , 函數 $f(x)$ 有以下特性: $2f(x)+f(\frac{1}{x})=11x+4$ 。

設 S 為所有滿足於 f(x) = 2018 的根之和。求 S 之值。

For any non-zero real number x, the function f(x) has the following property:

 $2f(x)+f(\frac{1}{x})=11x+4$. Let S be the sum of all roots satisfying the equation

f(x) = 2018. Find the value of S.

2019 HG5

已知
$$f(x)-2f\left(\frac{1}{x}\right)=x$$
 , 其中 $x \neq 0$ 。 設 y 為滿足方程 $f(x)=1$ 的 x 的最大

值。求y的值。

Given that $f(x) - 2f(\frac{1}{x}) = x$, where $x \ne 0$. Let y be the maximum value of x property $f(x) + f(x-1) = x^2$.

that satisfies the equation f(x) = 1. Find the value of y.

2019 FI4.2

假設有一函數 f(x),對於任何整數 x 及任何整數 $y \neq 0$,

均满足
$$f\left(\frac{x}{y}\right) = f(x) - f(y)$$
 和 $f(2) = -1 \circ 若 \beta = f\left(\frac{5}{80}\right)$,求 β 的值。

Suppose that there exists a function f(x), defined for all integers x and for all

integers
$$y \ne 0$$
, such that $f\left(\frac{x}{y}\right) = f(x) - f(y)$ and $f(2) = -1$. If $\beta = f\left(\frac{5}{80}\right)$,

determine the value of β .

2019 FG4.2

對所有的正整數 n,設某一個函數 F(n) 有如下定義:

$$F(1) = 0$$
,

當 $n \ge 2$,

如果 n 只能被 2 整除而不能被 3 整除,則 F(n) = F(n-1) + 2;

如果 n 只能被 3 整除而不能被 2 整除,則 F(n) = F(n-1) + 3;

如果 n 既能被 2 整除而又能被 3 整除,則 F(n) = F(n-1) + 4;

如果 n 既不能被 2 整除而又不能被 3 整除,則 F(n) = F(n-1)。

若 β = F(4000),求 β 的值。

For all positive integers n, suppose there exists a function F(n) defined as follows:

$$F(1)=0,$$

for all $n \ge 2$.

F(n) = F(n-1) + 2 if 2 divides n but 3 does not divide n;

F(n) = F(n-1) + 3 if 3 divides n but 2 does not divide n;

F(n) = F(n-1) + 4 if 2 and 3 both divide n;

F(n) = F(n-1) if neither 2 nor 3 divides n.

If $\beta = F(4000)$, determine the value of β .

2021 P1Q14

對任意實數 x,函數 f(x)有以下性質 $f(x) + f(x-1) = x^2$ 。若 f(19) = 94,

求 f(94)的值。For each real number x, the function f(x) has the following

2023 FI4.2

若
$$f(a) = a - 2$$
,且 $F(a, b) = b^2 + a + 1$ 及 β = $F(3, f(4))$,求 β 的值。

If
$$f(a) = a - 2$$
, $F(a, b) = b^2 + a + 1$ and $\beta = F(3, f(4))$, find the value of β .

設 f(x) 為函數並滿足 $f(x) + f\left(-\frac{1}{x-1}\right) = \frac{2x}{3} + \frac{5}{3} + f\left(1 - \frac{1}{x}\right), x \neq 0, 1$ 。

求 f(-1)的值。

Let f(x) be a function such that $f(x)+f(-\frac{1}{x-1})=\frac{2x}{3}+\frac{5}{3}+f(1-\frac{1}{x}), x \neq 0, 1.$

Find the value of f(-1).

Answers

Allsweis				
1983 FG8.3	1985 FI3.3	1987 FI3.4	1987 FI5.2	1988 FI1.1
2x - 1	199	63	2	100
1988 FI4.1 18	1989 HI12 147	1990 HI3 2013 FI3.2 2015 FI4.3 7	1995 HI2 $\frac{2}{3}$	1995 FI1.3 3
1995 FI2.2	1996 HI2	1996 FI5.2	1997 HI4	1997 FG3.2
3	$x^6 - x^3 + 1$	2	-4	1
2003 HI1	2003 FG3.1	2004 FG4.1	2006 FG2.2	2010 FI3.3
8	334501	500	-13	21
2010 FI3.4 $-\frac{1}{9}$	2010 FIS.4 -24	2011 HG5 1005	2012 FI2.2 12	2012 FI4.3 12
2013 F4.1 1	2015 FI1.3 10	$ \begin{array}{r} 2017 \text{ HI8} \\ \hline 22 \\ \hline 35 \end{array} $	2018 HG4 275	2019 HG5 -1
2019 FI4.2	2019 FG4.2	2021 P1Q14	2023 FI4.2	2023 FG3.3
4	7333	4561	8	2