

Physique

Classe: 4ème Informatiques

Résumé: Le multivibrateur

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Fiche méthode

- ✓ Un multivibrateur astable est un générateur autonome délivrant un signal périodique non sinusoïdal.
- ✓ Un montage de multivibrateur astable est constitué d'un comparateur dont la sortie est rebouclée son entrée inverseuse par un dipôle **RC**.
 - Les états haut et bas d'un multivibrateur astable dépendent essentiellement de $\tau = RC$
- ✓ Un comparateur de tension est un circuit qui délivre un signal électrique définie en sortie selon le signe et les valeurs des seuils de basculement.
- ✓ Un multivibrateur astable à **amplificateur opérationnel** ou à **inverseur(s) logique(s)**, est caractérisé par deux niveaux de la tension de sortie, une période et un rapport cyclique.
- ✓ La période T d'un multivibrateur astable s'écrit sous la forme : $\mathbf{T} = \mathbf{T_1} + \mathbf{T_2}$, où T_1 est la durée de son état haut et T_2 la durée de son état bas sur une période.
- ✓ Dans le cas d'un multivibrateur astable à AOP :

• <u>Etablir l'expression de ε :</u>

L'AOP est supposé idéal donc les courants d'entrée $\mathbf{i}^+=\mathbf{i}^-=0$.

Loi des nœuds en B: $\mathbf{i_1} = \mathbf{i_2} + \mathbf{i^+}$ or $\mathbf{i^+} = \mathbf{i^-} = 0$ d'où $\mathbf{i_1} = \mathbf{i_2}$

Loi des mailles :

Matière : Physique

***** Maille de sortie:
$$u_s-u_1-u_2=0 \Rightarrow u_s=u_2+u_1=R_2$$
. i_2+R_1 . $i_1=(R_2+R_1)$. $i_2=\frac{u_s}{R_1+R_2}$ (1)

* Maille d'entrée :
$$u_E(t) + \varepsilon - u_2 = 0 \Rightarrow \varepsilon = u_2 - u_E \Rightarrow \varepsilon = R_2 \cdot i_2 - u_E$$
 (2)

On remplace (1) dans (2):
$$\varepsilon = R_2 \cdot \frac{u_s}{R_1 + R_2} - u_E$$

- Si $\varepsilon > 0$, $u_s = +U_{sat}$
- Si $\varepsilon < 0$, $u_s = -U_{sat}$

D'après l'expression de ε en fonction de u_E , on remarque bien que lorsque la tension u_E augmente ε diminue.

Lorsque ϵ s'annule u_S bascule de $+U_{sat}$ à $-U_{sat}$ et la tension u_E qui annule ϵ s'appelle tension de basculement haut-bas notée U_{HB} .

On a

$$\mathbf{R}_{2}.\frac{U_{sat}}{R_{1}+R_{2}}-\mathbf{U}_{HB}=\mathbf{0} \implies \mathbf{U}_{HB}=\mathbf{R}_{2}.\frac{U_{sat}}{R_{1}+R_{2}}$$

Cas où uE augmente

Lorsque la tension \mathbf{u}_{E} diminue $\boldsymbol{\epsilon}$ augmente. Pour observer le basculement de la tension de sortie il faut que $\boldsymbol{\epsilon}$ change de signe donc au début de cette diminution de \mathbf{u}_{E}

on a
$$\varepsilon < 0 \implies R_2 \cdot \frac{u_s}{R_1 + R_2} - u_E < 0$$
 or $u_s = -U_{sat}$ donc $-R_2 \cdot \frac{U_{sat}}{R_1 + R_2} - u_E < 0$

Lorsque ϵ s'annule u_S bascule de $-U_{sat}$ à $+U_{sat}$ et la tension u_E qui annule ϵ s'appelle tension de basculement bas-haut notée U_{BH}

- R₂.
$$\frac{U_{sat}}{R_1+R_2}$$
 - $\mathbf{U}_{BH} = \mathbf{0} \Rightarrow \boxed{\mathbf{U}_{BH} = -\mathbf{R}_2 \cdot \frac{U_{sat}}{R_1+R_2}}$

Matière: Physique

Matière: Physique

Cas où uE diminue

Dans le cas d'un multivibrateur astable à une porte logique Trigger :

En technologie **CMOS**, une porte standard bascule à $\frac{u_{DD}}{2}$

Par exemple pour un inverseur :

❖ Si
$$u_{E < \frac{U_{DD}}{2}} \Rightarrow us = U_{DD}$$

❖ Si $u_{E > \frac{U_{DD}}{2}} \Rightarrow us = 0$

- Contrairement à une porte standard, une porte TRIGGER n'a pas 1 seuil de basculement, mais 2 seuils de basculement : U_{BH} et U_{HB} , tel que $U_{BH} < U_{HB}$
- Dans le cas d'un inverseur TRIGGER, les conditions de basculement de la sortie sont les suivantes:
 - Il faut que $u_E > U_{HB}$ pour que $u_S = 0$
 - Il faut que $u_E < U_{BH}$ pour que $u_S = U_{DD}$
- Symbole d'un TRIGGER inverseur :

Remarque : Les seuils U_{HB} et U_{BH} dépendent du circuit utilisé et de la tension d'alimentation.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

www.takiacademy.com

73.832.000