MARVIN FRITZ

Persönliche Daten

Ort, Datum der Geburt: Heilbronn, Deutschland | 28. Juli 1992

Adresse: Dietersheimer Straße 5, 80805 München Arbeitsadresse: Boltzmannstraße 3, 85748 Garching

Mobilnummer: +49 1601509154 Arbeitsnummer: +49 8928918441

E-MAIL: marvin.fritz@tum.de

WEBSEITE: https://www-m2.ma.tum.de/bin/view/Allgemeines/MarvinFritz

BILDUNGSWEG

2018–2022 | Promotion (Dr. Rer. Nat) Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN

Thema: Wohlgestelltheit von nichtlokalen und gemischtdimensionalen Phasenfeld-

modellen angewandt auf Tumorwachstum Betreuung: Prof. Dr. Barbara Wohlmuth

CUM LAUDE

2015–2017 | Master of Science in Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN

Thema: Die neuesten Existenzbeweise der Navier-Stokes-Gleichungen

Betreuung: Prof. Dr. Hans-Wilhelm Alt

Note: 1.2 (MAGNA CUM LAUDE)

2012–2015 | Bachelor of Science in Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN

Thesis: Zur Stabilität von relativen Gleichgewichtslösungen in der Wirbeldynamik

Advisor: Prof. Jürgen Scheurle

Note: 2.2

Arbeitserfahrung

SEIT 2018 | TECHNISCHE UNIVERSITÄT MÜNCHEN

Wissenschaftler am Lehrstuhl für numerische Mathematik

Analysis und numerische Untersuchung von nichtlinearen Evolutionslgleichungen

Jun.-Jul. 2018 | The University of Texas at Austin

Gastwissenschaftler am "Institute of Computational Engineering and

Sciences", eingeladen von Prof. J. Tinsley Oden

Analysis und numerische Untersuchung von Tumorwachstumsmodellen

2016–2017 | Technische Universität München

Studentische Hilfskraft

Tutor in Analysis und Lineare Algebra für Informatiker

MÄR.-APR. 2016 | SERLO EDUCATION, München

Praktikum

Erstellen einer Lernplattform für Schüler mithilfe von Javascript

Aug.-Sep. 2014 | Océ Printing Systems, Poing

Praktikum

Numerik der Nernst-Planck-Poisson Gleichung und Untersuchung der Evolution von

Flüssigtonern in elektrischen Feldern

STIPENDIEN UND AUSZEICHNUNGEN

Nov. 2020	Bester wissenschaftlicher Artikel in 2019 in M3AS ((World Scientific)

Jul. 2018 Herausragende studentische Leistung (Hurwitz-Gesellschaft)

2016–2017 Deutschlandstipendium

VERÖFFENTLICHUNGEN

2022 A 1D-0D-3D COUPLED MODEL FOR SIMULATING BLOOD FLOW AND TRANSPORT PROCESSES IN BREAST TISSUE

Koautoren: Tobias Köppl, J. Tinsley Oden, Andreas Wagner, Barbara Wohlmuth, Chengvue Wu

Status: International Journal for Numerical Methods in Biomedical Engineering Link: https://doi.org/10.1002/cnm.3612

2022 Time-fractional Cahn-Hilliard equation: Well-posedness, degeneracy, and numerical solutions

Koautoren: Mabel L. Rajendran, Barbara Wohlmuth Status: Computer & Mathematics with Applications Link: https://doi.org/10.1016/j.camwa.2022.01.002

2021 EQUIVALENCE BETWEEN A TIME-FRACTIONAL AND AN INTEGER-ORDER GRADIENT FLOW: THE MEMORY EFFECT REFLECTED IN THE ENERGY

Koautoren: Ustim Khristenko, Barbara Wohlmuth Status: Advances in Nonlinear Analysis (to appear) Link: https://arxiv.org/abs/2106.10985

2021 | Modeling and simulation of vascular tumors embedded in evolving capillary networks

Koautoren: Prashant K. Jha, Tobias Köppl, J. Tinsley Oden, Andreas Wagner, Barbara Wohlmuth

Zeitschrift: Computer Methods in Applied Mechanics and Engineering Link: https://doi.org/10.1016/j.cma.2021.113975

2020 On a subdiffusive tumour growth model with fractional time derivative

Koautoren: Christina Kuttler, Mabel L. Rajendran, Laura Scarabosio, Barbara Wohlmuth

Zeitschrift: IMA Journal of Applied Mathematics Link: https://doi.org/10.1093/imamat/hxab009

2020 Analysis of a new multispecies tumor growth model coupling 3D phasefields with a 1D vascular network

Koautoren: Prashant K. Jha, Tobias Köppl, J. Tinsley Oden, Barbara Wohlmuth Zeitschrift: Nonlinear Analysis: Real World Applications Link: https://doi.org/10.1016/j.nonrwa.2021.103331

2019 LOCAL AND NONLOCAL PHASE-FIELD MODELS OF TUMOR GROWTH AND INVASION DUE TO ECM DEGRADATION

Koautoren: Ernesto Lima, Vanja Nikolic, J. Tinsley Oden, Barbara Wohlmuth Zeitschrift: Mathematical Models and Methods in Applied Sciences Link: https://doi.org/10.1142/S0218202519500519

2019 On the unsteady Darcy-Forchheimer-Brinkman equation in local and nonlocal tumor growth models

Koautoren: Ernesto Lima, J. Tinsley Oden, Barbara Wohlmuth Zeitschrift: Mathematical Models and Methods in Applied Sciences

Link: https://doi.org/10.1142/S0218202519500325

2018 | Well-Posedness and Numerical Treatment of the Blackstock Equation in Nonlinear Acoustics

Koautoren: Vanja Nikolic, Barbara Wohlmuth

Zeitschrift: Mathematical Models and Methods in Applied Sciences

Link: https://doi.org/10.1142/S0218202518500550

Vorträge und Konferenzen

Jul. 2021 | 16th U.S. National Congress on Computational Mechanics

CHICAGO MARRIOTT DOWNTOWN MAGNIFICENT MILE

Vortrag: Phase field models of the growth of tumors embedded in an evolving vascular

network: Dynamic 1D-3D models of angiogenesis

Jul. 2021 VI ECCOMAS Young investigators conference 2021

Universitat Politecnica de Valencia

Vortrag: Analysis of a mixed-dimensional tumor growth model

Mar. 2021 | SIAM Conference on Computational Science and Engineering

FORT WORTH CONVENTION CENTER

Vortrag: Analysis of the time-fractional Cahn-Hilliard equation

Aug. 2020 | SMB (Society for Mathematical Biology) 2020 Annual Meeting

Universität Heidelberg

Poster: Analysis of a multispecies tumor growth models coupling 3D phase-fields with a 1D $\,$

vascular network

Mar. 2020 | International Workshop on Recent Developments in Modelling,

Analysis and Simulation of Processes in Porous Media Friedrich-Alexander-Universität Erlangen-Nürnberg

Vortrag: On the unsteady Darcy–Forchheimer–Brinkman equation in tumor growth models

Nov. 2017 | Oberseminar Angewandte Analysis

TECHNISCHE UNIVERSITÄT DORTMUND

Vortrag: Zur Lösbarkeit der 3D Navier-Stokes Gleichungen

Aug. 2017 | Oberseminar Simulation and Uncertainty Quantification

TECHNICAL UNIVERSITY OF MUNICH

Vortrag: On the Solvability of the 3D Navier-Stokes Equations

Betreute Abschlussarbeiten

2021 | R. Koch (Bachelorarbeit)

Thema: Zur numerischen Diskretisierung der zeitfraktionalen Lotka-Volterra Gleichung

2021 | N. Nebulishvili (Masterarbeit)

Thema: Zur Lattice-Boltzmann Methode angewandt auf die zeitfraktionale Cahn-Hilliard Gleichung

2020 | C. Feistner (Bachelorarbeit)

Thema: Zeitintegrationsmethoden für die Cahn-Hilliard Gleichung

2019 | L.-M. Kauck (Seminarvortrag)

Thema: Komplexes Newtonverfahren

2019 | P. A. Wolfmeier (Seminarvortrag)

Thema: Stetige aber nirgendwo differenzierbare Funktionen

Informatik-Kenntnisse

 ${\tt C/C++}, \, {\rm R}, \, {\rm PYTHON}, \, {\tt MATLAB}, \, {\tt LATEX}, \, {\rm FENICS}, \, {\tt libMesh}$

Sprache

DEUTSCH (C2), ENGLISCH (B2+/C1), SPANISCH (A2), LATEIN (Latinum)

 $\underset{(\text{typeset in } L\!MT_{\!E\!X})}{\text{Move that }} \mathcal{F}$