Chapter 2: Likelihood-based approach (Part 2)

A motivating example (Example 2.2)

- Let t_1, t_2, \dots, t_n be an IID sample from a distribution with density $f(t; \theta)$ for t > 0.
- Instead of observing t_i , we observe (y_i, δ_i) where

$$y_i = \begin{cases} t_i & \text{if } \delta_i = 1\\ c_i & \text{if } \delta_i = 0 \end{cases}$$

and

$$\delta_i = \left\{ \begin{array}{ll} 1 & \text{if } t_i \leq c_i \\ 0 & \text{if } t_i > c_i, \end{array} \right.$$

where c_i is a known censoring time for unit i.

• What is the joint density of (y_i, δ_i) ?

Marginal density is derived from the joint density

$$f(y_i, \delta_i) = \int f(y_i, \delta_i \mid \mathbf{t}_i) f(\mathbf{t}_i) d\mathbf{t}_i$$

• For $\delta_i = 1$: $t_i = y_i$ is observed

$$f(y_i, \delta_i = 1) = \int f(y_i \mid \delta_i = 1, t_i) P(\delta_i = 1 \mid t_i) f(t_i; \theta) dt_i$$

$$= \int I(t_i = y_i) P(\delta_i = 1 \mid t_i) f(t_i; \theta) dt_i$$

$$= P(\delta_i = 1 \mid y_i) f(y_i; \theta)$$

$$= f(y_i; \theta)$$

• For $\delta_i = 0$: $t_i > c_i = y_i$

$$f(y_i, \delta_i = 0) = \int f(y_i, \delta_i = 0 \mid \mathbf{t}_i) f(\mathbf{t}_i; \theta) d\mathbf{t}_i$$
$$= \int I(\mathbf{t}_i > c_i) f(\mathbf{t}_i; \theta) d\mathbf{t}_i$$
$$= P(T > c_i; \theta)$$

Section 2: Observed likelihood

Basic Setup

- **1** Let $\mathbf{y} = (y_1, y_2, \dots y_n)$ be a realization of random variable Y with density f(y).
- 2 Let δ_i be an indicator function defined by

$$\delta_i = \begin{cases} 1 & \text{if } y_i \text{ is observed} \\ 0 & \text{otherwise} \end{cases}$$

with density

$$f_2(\delta \mid y) = {\pi(y)}^{\delta} {1 - \pi(y)}^{1-\delta}$$

for $\delta = 0, 1$.

3 Thus, instead of observing (δ_i, y_i) directly, we observe $(\delta_i, y_{i,obs})$

$$y_{i,obs} = \begin{cases} y_i & \text{if } \delta_i = 1 \\ * & \text{if } \delta_i = 0. \end{cases}$$

4 What is the (marginal) density of $(y_{i,obs}, \delta_i)$?

Motivation (Change of variable technique or induced probability)

- ① Suppose that z is a random variable with density $f_Z(z)$.
- 2 Instead of observing **z** directly, we observe only y = y(z), where the mapping $z \mapsto y(z)$ is known.
- \odot The density of Y is

$$f_Y(y) = \int f_{Y|Z}(y \mid \mathbf{z}) f_Z(\mathbf{z}) d\mu(\mathbf{z}),$$

where $f_{Y|Z}(y \mid z) = I\{y = y(z)\}$. That is,

$$f_{Y}(y) = \int_{\mathcal{R}(y)} f_{Z}(z) d\mu(z)$$

with $\mathcal{R}(y) = \{z; y(z) = y\}.$

Remark

- Note that $P(Y \in B) = P(Z \in y^{-1}(B))$ where $y^{-1}(B) = \{z; y(z) \in B\}$
- Thus, the CDF of Y is

$$P(Y \le y) = P\{z; y(z) \le y\}$$

$$= \int_{\{z; y(z) \le y\}} f_Z(z) d\mu(z)$$

• The pdf is

$$f_Y(y) = \frac{d}{dy}P(Y \le y) = \int_{\{z; y(z)=y\}} f_Z(z)d\mu(z).$$

Example

- Suppose that Z is a discrete random variable with support $S_z = \{1, 2, 3, 4, 5\}$ with P(Z = z) = 1/5 for $z \in S_z$.
- Suppose that the mapping $z \mapsto y(z)$ is defined as

$$y(z) = \begin{cases} 1 & \text{if } z \in \{1, 2\} \\ 2 & \text{if } z \in \{3, 4, 5\}. \end{cases}$$

What is the marginal distribution of Y?

Derivation for the marginal density of (y_{obs}, δ)

1 The joint density for $\mathbf{z} = (\mathbf{y}, \delta)$ is

$$f(y,\delta) = f_1(y) f_2(\delta \mid y)$$

where $f_1(y)$ is the density of y and $f_2(\delta \mid y)$ is the conditional density of δ conditional on y and is given by $f_2(\delta \mid y) = \{\pi(y)\}^{\delta} \{1 - \pi(y)\}^{1-\delta}$, where $\pi(y) = \Pr(\delta = 1 \mid y)$.

- 2 Instead of observing $\mathbf{z} = (y, \delta)$ directly, we observe only $(y_{\mathrm{obs}}, \delta)$ where $y_{\mathrm{obs}} = y_{\mathrm{obs}}(y, \delta)$ and the mapping $(y, \delta) \mapsto y_{\mathrm{obs}}$ is known.
- **3** The (marginal) density of $(y_{\rm obs}, \delta)$ is

$$f(y_{\text{obs}}, \delta) = \int P(y_{\text{obs}}, \delta \mid y, \delta) f(y, \delta) d\mu(y) = \left\{ f(y_{\text{obs}}, \delta) \right\}^{\delta} \left\{ \int f(y, \delta) dy \right\}^{1-\delta},$$

where

$$P(y_{\text{obs}}, \delta \mid y, \delta) = \begin{cases} I(y_{\text{obs}} = y) & \text{if } \delta = 1\\ 1 & \text{if } \delta = 0 \end{cases}$$

4□▶ 4□▶ 4 Ē ▶ 4 Ē ▶ ☐ 900

Ch 2 (P2) 8/

Likelihood under missing data (=Observed likelihood)

The observed likelihood is the likelihood obtained from the marginal density of $(y_{i,obs}, \delta_i)$, $i = 1, 2, \dots, n$, and can be written as, under the IID setup,

$$L_{\text{obs}}(\boldsymbol{\theta}) = \prod_{\delta_{i}=1} [f_{1}(y_{i};\boldsymbol{\theta}) f_{2}(\delta_{i} \mid y_{i})] \times \prod_{\delta_{i}=0} \left[\int f_{1}(y_{i};\boldsymbol{\theta}) f_{2}(\delta_{i} \mid y_{i}) dy_{i} \right]$$

$$= \prod_{\delta_{i}=1} [f_{1}(y_{i};\boldsymbol{\theta}) \pi(y_{i})] \times \prod_{\delta_{i}=0} \left[\int f_{1}(y;\boldsymbol{\theta}) \{1 - \pi(y)\} dy \right]$$

$$= C \prod_{\delta_{i}=1} f_{1}(y_{i};\boldsymbol{\theta}) \times \prod_{\delta_{i}=0} \left[\int f_{1}(y;\boldsymbol{\theta}) \{1 - \pi(y)\} dy \right]$$

If $\pi(y)$ has an unknown parameter such that $\pi(y) = \pi(y; \phi)$ for some ϕ , the observed likelihood is

$$L_{\mathrm{obs}}\left(\boldsymbol{\theta}, \boldsymbol{\phi}\right) = \prod_{\delta := 1} \left[f_{1}\left(y_{i}; \boldsymbol{\theta}\right) \pi\left(y_{i}; \boldsymbol{\phi}\right)\right] \times \prod_{\delta := 0} \left[\int f_{1}\left(y; \boldsymbol{\theta}\right) \left\{1 - \pi\left(y; \boldsymbol{\phi}\right)\right\} dy\right].$$

<□ > <□ > < ≣ > < ≣ > < ∃ > < ⊘

Example 2.1 (Censored regression model, or Tobit model)

$$z_{i} = x'_{i}\beta + \epsilon_{i} \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)$$
$$y_{i} = \begin{cases} z_{i} & \text{if } z_{i} > 0\\ 0 & \text{if } z_{i} \leq 0. \end{cases}$$

The observed log-likelihood is

$$\ell_{\mathrm{obs}}\left(\beta,\sigma^{2}\right) = -\frac{1}{2}\sum_{\mathbf{y}_{i}>0}\left[\ln2\pi + \ln\sigma^{2} + \frac{\left(\mathbf{y}_{i} - \mathbf{x}_{i}'\boldsymbol{\beta}\right)^{2}}{\sigma^{2}}\right] + \sum_{\mathbf{y}_{i}=0}\ln\left[1 - \Phi\left(\frac{\mathbf{x}_{i}'\boldsymbol{\beta}}{\sigma}\right)\right]$$

where $\Phi(x)$ is the cdf of the standard normal distribution.

Ch 2 (P2) 10 / 21

Proof

Multivariate extension

Basic Setup

- Let $\mathbf{y} = (y_1, \dots, y_p)$ be a *p*-dimensional random vector with probability density function $f(\mathbf{y}; \boldsymbol{\theta})$.
- Let $\mathbf{y}_1, \dots, \mathbf{y}_n$ be n independent realizations of \mathbf{y} from $f(\mathbf{y}; \boldsymbol{\theta})$. (IID sample)
- Let δ_{ij} be the response indicator function of y_{ij} with $\delta_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } y_{ij} \text{ is observed} \\ 0 & \text{otherwise.} \end{array} \right.$
- $\delta_i = (\delta_{i1}, \dots, \delta_{ip})$: *p*-dimensional random vector with density $P(\delta \mid \mathbf{y})$ assuming $P(\delta \mid \mathbf{y}) = P(\delta \mid \mathbf{y}; \phi)$ for some ϕ .
- Let $(\mathbf{y}_{i,\mathrm{obs}},\mathbf{y}_{i,\mathrm{mis}})$ be the observed part and missing part of \mathbf{y}_i , respectively.

Observed Likelihood for multivariate Y case

Under IID setup: The observed likelihood is

$$L_{\text{obs}}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \prod_{i=1}^{n} \left[\int f(\mathbf{y}_{i}; \boldsymbol{\theta}) P(\boldsymbol{\delta}_{i} | \mathbf{y}_{i}; \boldsymbol{\phi}) d\mathbf{y}_{i, \text{mis}} \right],$$

where it is understood that, if $\mathbf{y}_i = \mathbf{y}_{i,\mathrm{obs}}$ and $\mathbf{y}_{i,\mathrm{mis}}$ is empty then there is nothing to integrate out.

• In the special case of scalar y, the observed likelihood is

$$L_{\text{obs}}(\boldsymbol{\theta}, \boldsymbol{\phi}) = \prod_{\delta_i=1} \left[f(y_i; \boldsymbol{\theta}) \pi(y_i; \boldsymbol{\phi}) \right] \times \prod_{\delta_i=0} \left[\int f(y; \boldsymbol{\theta}) \left\{ 1 - \pi(y; \boldsymbol{\phi}) \right\} dy \right],$$

where $\pi(y; \phi) = P(\delta = 1|y; \phi)$.

Ch 2 (P2) 13/2

Missing At Random

Definition: Missing At Random (MAR)

 $P(\delta \mid y)$ is the density of the conditional distribution of δ given y. Let $y_{obs} = y_{obs}(y, \delta)$ where

$$y_{i,obs} = \begin{cases} y_i & \text{if } \delta_i = 1 \\ * & \text{if } \delta_i = 0. \end{cases}$$

The response mechanism is MAR if $P(\delta \mid \mathbf{y}_1) = P(\delta \mid \mathbf{y}_2)$ { or $P(\delta \mid \mathbf{y}_{obs})$ for all \mathbf{y}_1 and \mathbf{y}_2 satisfying $\mathbf{y}_{obs}(\mathbf{y}_1, \delta) = \mathbf{y}_{obs}(\mathbf{y}_2, \delta)$.

- MAR: the response mechanism $P(\delta \mid \mathbf{y})$ depends on \mathbf{y} only through \mathbf{y}_{obs} .
- Let $\mathbf{y} = (\mathbf{y}_{obs}, \mathbf{y}_{mis})$. By Bayes theorem,

$$\mathsf{P}\left(\mathbf{y}_{\textit{mis}} \mid \mathbf{y}_{\textit{obs}}, \delta\right) = \frac{\mathsf{P}(\delta \mid \mathbf{y}_{\textit{mis}}, \mathbf{y}_{\textit{obs}})}{\mathsf{P}(\delta \mid \mathbf{y}_{\textit{obs}})} \mathsf{P}\left(\mathbf{y}_{\textit{mis}} \mid \mathbf{y}_{\textit{obs}}\right).$$

- MAR: $P(\mathbf{y}_{\textit{mis}} \mid \mathbf{y}_{\textit{obs}}, \delta) = P(\mathbf{y}_{\textit{mis}} \mid \mathbf{y}_{\textit{obs}})$. That is, $\mathbf{y}_{\textit{mis}} \perp \delta \mid \mathbf{y}_{\textit{obs}}$.
- MAR: the conditional independence of δ and \mathbf{y}_{mis} given \mathbf{y}_{obs}

Remark

- MCAR (Missing Completely at random): $P(\delta \mid \mathbf{y})$ does not depend on \mathbf{y} .
- MAR (Missing at random): $P(\delta \mid \mathbf{y}) = P(\delta \mid \mathbf{y}_{obs})$
- NMAR (Not Missing at random): $P(\delta \mid \mathbf{y}) \neq P(\delta \mid \mathbf{y}_{obs})$
- Thus, MCAR is a special case of MAR.

Likelihood factorization theorem

Theorem 2.4 (Rubin, 1976)

 $P_{\phi}(\delta|\mathbf{y})$ is the joint density of δ given \mathbf{y} and $f_{\theta}(\mathbf{y})$ is the joint density of \mathbf{y} . Under conditions

- **1** the parameters θ and ϕ are distinct and
- MAR condition holds,

the observed likelihood can be written as

$$L_{obs}(\theta, \phi) = L_1(\theta)L_2(\phi),$$

and the MLE of θ can be obtained by maximizing $L_1(\theta)$.

Thus, we do not have to specify the model for response mechanism. The response mechanism is called ignorable if the above likelihood factorization holds.

Ch 2 (P2) 16/2

Proof

Example 2.3

- Bivariate data (x_i, y_i) with pdf $f(x, y) = f_1(y \mid x)f_2(x)$.
- x_i is always observed and y_i is subject to missingness.
- Assume that the response status variable δ_i of y_i satisfies

$$P\left(\delta_{i}=1\mid x_{i},y_{i}\right)=\pi\left(x_{i},y_{i};\phi\right)$$

for some function $\pi(\cdot)$ of known form.

- Let θ be the parameter of interest in the regression model $f_1(y \mid x; \theta)$. Let α be the parameter in the marginal distribution of x, denoted by $f_2(x_i; \alpha)$.
- Three parameters
 - θ : parameter of interest
 - α and ϕ : nuisance parameter

Example 2.3 (Cont'd)

Observed likelihood

$$L_{obs}(\theta, \alpha, \phi) = \left[\prod_{\delta_{i}=1} f_{1}(y_{i} \mid x_{i}; \theta) f_{2}(x_{i}; \alpha) \pi(x_{i}, y_{i}; \phi) \right]$$

$$\times \left[\prod_{\delta_{i}=0} \int f_{1}(y \mid x_{i}; \theta) f_{2}(x_{i}; \alpha) \{1 - \pi(x_{i}, y; \phi)\} dy \right]$$

$$= L_{1}(\theta, \phi) \times L_{2}(\alpha)$$

where $L_2(\alpha) = \prod_{i=1}^n f_2(x_i; \alpha)$.

• Thus, we can safely ignore the marginal distribution of x if x is completely observed.

Ch 2 (P2) 19/2

Example 2.3 (Cont'd)

• If $\pi(x, y; \phi) = \pi(x; \phi)$ does not depend on y, then MAR holds and

$$L_1\left(\theta,\phi\right) = L_{1a}\left(\theta\right) \times L_{1b}\left(\phi\right)$$

where

$$L_{1a}\left(\boldsymbol{\theta}\right) = \prod_{\delta_i=1} f_1\left(y_i \mid x_i; \boldsymbol{\theta}\right)$$

and

$$L_{1b}\left(\boldsymbol{\phi}\right) = \prod_{\delta_{i}=1} \pi\left(x_{i}; \boldsymbol{\phi}\right) \times \prod_{\delta_{i}=0} \left\{1 - \pi\left(x_{i}; \boldsymbol{\phi}\right)\right\}$$

• Thus, under MAR, the MLE of θ can be obtained by maximizing $L_{1a}(\theta)$, which is obtained by ignoring the missing part of the data.

4□ > 4□ > 4 = > 4 = > = 90

Ch 2 (P2) 20 /

Remark (on Example 2.3)

 Instead of y_i subject to missingness, if x_i is subject to missingness, then the observed likelihood becomes

$$L_{\text{obs}}(\theta, \phi, \alpha) = \left[\prod_{\delta_{i}=1} f_{1}(y_{i} \mid x_{i}; \theta) f_{2}(x_{i}; \alpha) \pi(x_{i}, y_{i}; \phi) \right]$$

$$\times \left[\prod_{\delta_{i}=0} \int f_{1}(y_{i} \mid x; \theta) f_{2}(x; \alpha) \{1 - \pi(x, y_{i}; \phi)\} dx \right]$$

$$\neq L_{1}(\theta, \phi) \times L_{2}(\alpha).$$

• If $\pi(x, y; \phi)$ does not depend on x, then

$$L_{\mathrm{obs}}\left(oldsymbol{ heta}, oldsymbol{lpha}, oldsymbol{\phi}
ight) = L_{1}\left(oldsymbol{ heta}, oldsymbol{lpha}
ight) imes L_{2}\left(oldsymbol{\phi}
ight)$$

and MAR holds. Although we are not interested in the marginal distribution of x, we still need to specify the model for the marginal distribution of x.

Ch 2 (P2) 21 / 2

REFERENCES

Rubin, D. B. (1976), 'Inference and missing data', Biometrika 63, 581-590.