Задача A. Просто RSQ

Имя входного файла: rsq.in
Имя выходного файла: rsq.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Вам дан массив, необходимо отвечать на запросы получения суммы на отрезке и изменения одного элемента массива.

Формат входного файла

Входной файл в первой строке содержит два числа n ($1 \le n \le 10^5$) — размер массива и m ($1 \le m \le 10^5$) — колличество запросов. Во второй строке задано начальное состояние массива a_1, a_2, \ldots, a_n ($-10^5 \le a_i \le 10^5$).

Далее идет m строк с запросами вида t x y $(0 \leqslant t \leqslant 1)$. Если t = 0, тогда на запрос нужно вывести сумму элементов массива с индексами от x до y (в данном случае $1 \leqslant x \leqslant y \leqslant n$). Если t = 1 тогда надо присвоить элементу массива с индексом x значение y (в это случае $1 \leqslant x \leqslant n, -10^5 \leqslant y \leqslant 10^5$).

Формат выходного файла

На каждый запрос суммы отрезка выведите одно число в новой строке - запрашиваеммая сумма.

Примеры

rsq.in	rsq.out
5 3	15
1 2 3 4 5	0
0 1 5	
1 1 -14	
0 1 5	
8 2	-3
7 3 -10 4 1 2 5 -6	8
0 2 4	
0 5 7	

Задача В. Звёзды

Имя входного файла: stars.in
Имя выходного файла: stars.out
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Вася любит наблюдать за звёздами. Но следить за всем небом сразу ему тяжело. Поэтому он наблюдает только за частью пространства, ограниченной кубом размером $n \times n \times n$. Этот куб поделён на маленькие кубики размером $1 \times 1 \times 1$. Во время его наблюдений могут происходить следующие события:

- 1. В каком-то кубике появляются или исчезают несколько звёзд.
- 2. К нему может заглянуть его друг Петя и поинтересоваться, сколько видно звёзд в части пространства, состоящей из нескольких кубиков.

Формат входного файла

Первая строка входного файла содержит натуральное число $1 \le n \le 128$. Координаты кубиков — целые числа от 0 до n-1. Далее следуют записи о происходивших событиях по одной в строке. В начале строки записано число m. Если m равно:

- 1, то за ним следуют четыре числа x, y, z ($0 \le x, y, z < N$) и k ($-20000 \le k \le 20000$) координаты кубика и величина, на которую в нём изменилось количество видимых звёзд;
- 2, то за ним следуют шесть чисел x_1 , y_1 , z_1 , x_2 , y_2 , z_2 ($0 \leqslant x_1 \leqslant x_2 < N$, $0 \leqslant y_1 \leqslant y_2 < N$, $0 \leqslant z_1 \leqslant z_2 < N$), которые означают, что Петя попросил подсчитать количество звёзд в кубиках (x,y,z) из области: $x_1 \leqslant x \leqslant x_2$, $y_1 \leqslant y \leqslant y_2$, $z_1 \leqslant z \leqslant z_2$;
- 3, то это означает, что Васе надоело наблюдать за звёздами и отвечать на вопросы Пети. Эта запись встречается во входном файле только один раз и будет последней записью.

Количество записей во входном файле не больше 100 002.

Формат выходного файла

Для каждого Петиного вопроса выведите на отдельной строке одно число— искомое количество звёзд.

Пример

stars.in	stars.out
2	0
2 1 1 1 1 1 1	1
1 0 0 0 1	4
1 0 1 0 3	2
200000	
200010	
1 0 1 0 -2	
2 0 0 0 1 1 1	
3	

Задача С. Количество инверсий

Имя входного файла: inverse.in Имя выходного файла: inverse.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Напишите программу, которая для заданного массива $A = \langle a_1, a_2, \dots, a_n \rangle$ находит количество пар (i,j) таких, что i < j и $a_i > a_j$.

Формат входного файла

Первая строка входного файла содержит натуральное число n ($1 \le n \le 50\,000$) — количество элементов массива. Вторая строка содержит n попарно различных элементов массива A.

Формат выходного файла

В выходной файл выведите одно число — ответ на задачу.

Примеры

inverse.in	inverse.out
4	0
1 2 4 5	
4	6
5 4 2 1	

Задача D. Обновление не отрезке

Имя входного файла: segmentupdate.in Имя выходного файла: segmentupdate.out

Ограничение по времени: 4 секунды Ограничение по памяти: 256 мегабайт

Дано n чисел. Поступают q запросов двух типов:

- 1. Прибавить число x на отрезке [l, r].
- 2. Узнать значение a[i].

Формат входного файла

В первой строке заданы два числа - $1 \le n \le 10^6$ и $1 \le q \le 10^6$.

Во второй строке дано n чисел $-10^9 \le a_1, a_2, ..., a_n \le 10^9$.

 ${\bf B}$ следующих q строках заданы запросы.

Первое число t в каждой строке обозначает тип запроса.

Если t=1, то затем даны 3 числа l,r,x: $1 \le l \le r \le n, -10^3 \le x \le 10^3$.

Если t=2, то затем дано 1 число i: $1\leq i\leq n.$

Формат выходного файла

На каждый запрос второго типа выведите ответ в отдельной строке.

Примеры

segmentupdate.in	segmentupdate.out
6 7	2
5 -6 11 2 3 8	0
2 4	24
1 2 4 6	17
2 2	
1 1 3 -2	
1 2 5 9	
2 3	
2 4	