The Ising Partition Function: Zeros and Deterministic Approximation

Jingcheng Liu Alistair Sinclair Piyush Srivastava

University of California, Berkeley

Summer 2017

Spin systems (aka MRFs or graphical models)

We focus on two-state systems only:

- An undirected graph (or hypergraph) G = (V, E). Let n = |V|, m = |E|.
- Configuration: $\sigma \in \Sigma$, where $\Sigma := \{+, -\}^V$.
- Edge potentials: $\varphi_e: \Sigma \times \Sigma \times \cdots \times \Sigma \to \mathbb{C}$. W.l.o.g. $\varphi_e(-, \dots, -) = 1$.
- Vertex potentials: $\psi_{\nu}: \Sigma \to \mathbb{C}$. W.l.o.g. $\psi_{\nu}(+) = \lambda, \psi_{\nu}(-) = 1$.

Definition (Partition function)

$$\begin{split} Z_{G}^{\boldsymbol{\varphi}}(\lambda) &= \sum_{\boldsymbol{\sigma}: V \to \{+, -\}} \underbrace{\prod_{e \in E} \varphi_{e}(\boldsymbol{\sigma}\big|_{e}) \prod_{v \in V} \psi(\boldsymbol{\sigma}(v))}_{\text{weight of configuration } \boldsymbol{\sigma}} \\ &= \sum_{\boldsymbol{\sigma}: V \to \{+, -\}} \prod_{e \in E} \varphi_{e}(\boldsymbol{\sigma}\big|_{e}) \, \lambda^{|\{v: \boldsymbol{\sigma}(v) = +\}|} \end{split}$$

Example: Ising model on graphs

For $\beta, \lambda \in \mathbb{R}_+$,

- Configuration: $\sigma \in \{+, -\}^V$
- Edge potentials: $f_e = \begin{pmatrix} 1 & \beta \\ \beta & 1 \end{pmatrix}$ related to the "temperature"
- Vertex potentials: $f_{
 m v} = inom{\lambda}{1}$ "external field"

Ising model

$$Z_G^{\beta}(\lambda) = \sum_{S \subseteq V} \beta^{|E(S,V \setminus S)|} \lambda^{|S|}$$

A spin configuration with weight $\beta^3 \lambda^3$

- β < 1: Ferromagnetic; the model favors small cuts
- $\beta >$ 1: Anti-ferromagnetic; the model favors large cuts

Approximating the partition fucntion

We will be interested in multiplicative approximation of Z

Definition (Fully polynomial-time approximation scheme)

An FPTAS for a function $f(\cdot)$ is an algorithm with:

- Input: $\varepsilon > 0, \mathbf{x}$
- Output: $\widetilde{f(x)}$ such that $\left|f(x) \widetilde{f(x)}\right| \le \varepsilon |f(x)|$
- Running time: $poly(|\mathbf{x}|, 1/\varepsilon)$

© For self-reducible problems, this notion of approximability is robust.

Antiferromagnetic Ising model: fully understood

Theorem (Weitz, Sinclair-Srivastava-Thurley, Li-Lu-Yin, Sly-Sun, Galanis-Stefankovic-Vigoda)

For any $\beta > 1$, $\lambda > 0$, there is a threshold $\beta_c(\lambda, d)$ s.t.

- If $\beta < \beta_c(\lambda, d)$, then there is an FPTAS to approximate Z on graphs of maximum degree d; (Weitz's algorithm)
- If $\beta > \beta_c(\lambda, d)$, then it is NP-hard to approximate Z on d-regular graphs.

Remark

This threshold $\beta_c(\lambda, d)$ coincides with the threshold for uniqueness of the Gibbs measure on the infinite d-regular tree.

Ferromagnetic Ising model

There is also a uniqueness phase transition in the ferromagnetic regime, but there is no approximability transition:

Theorem (Jerrum-Sinclair 1993)

For $0 < \beta < 1$ and $\lambda > 0$, there exists a **randomized** MCMC algorithm (FPRAS) for approximating the partition function of the ferromagnetic Ising model on graphs.

Deterministic approximation is currently known only up to the uniqueness threshold:

Theorem (Zhang, Liang and Bai 2011

For $\frac{\Delta-1}{\Delta+1} < \beta < 1$ and $\lambda > 0$, there exists an FPTAS for approximating the partition function of the ferromagnetic Ising model on graphs of maximum degree Δ .

The presence of the uniqueness phase transition is an obstacle to *decay of correlations*, but not an obstacle to approximability

Ferromagnetic Ising model

There is also a uniqueness phase transition in the ferromagnetic regime, but there is no approximability transition:

Theorem (Jerrum-Sinclair 1993)

For $0 < \beta < 1$ and $\lambda > 0$, there exists a **randomized** MCMC algorithm (FPRAS) for approximating the partition function of the ferromagnetic Ising model on graphs.

Deterministic approximation is currently known only up to the uniqueness threshold:

Theorem (Zhang, Liang and Bai 2011)

For $\frac{\Delta-1}{\Delta+1} < \beta < 1$ and $\lambda > 0$, there exists an FPTAS for approximating the partition function of the ferromagnetic Ising model on graphs of maximum degree Δ .

The presence of the uniqueness phase transition is an obstacle to *decay of correlations*, but not an obstacle to approximability

6 / 27

Zeros of partition functions

Instead of making use of the uniqueness property, we appeal to the classical notion of phase transition, as zeros of the partition function:

Theorem (Lee-Yang 1952)

For $0 < \beta \le 1$, the zeros of $Z_G^{\beta}(\lambda)$ (viewed as a polynomial in λ) satisfy $|\lambda| = 1$.

 $Z^{\beta}(\lambda)$ is zero-free except on the unit circle in complex plane

Our results

Theorem

Fix any $\Delta > 0$. There is a FPTAS for the Ising partition function $Z_G^{\beta}(\lambda)$ in all graphs G of maximum degree Δ for all edge activities $-1 \leq \beta \leq 1$ and all (possibly complex) vertex activities λ with $|\lambda| \neq 1$.

Remark

This is the first deterministic FPTAS for (almost) the whole range of β , λ . We can also allow edge-dependent activities β_e provided all of them lie in [-1,1].

Our results (cont'd)

Definition (Ising Model on Hypergraphs)

$$Z_H^{\beta}(\lambda) = \sum_{S \subseteq V} \beta^{|E(S,V \setminus S)|} \lambda^{|S|}.$$

Theorem (Lee-Yang Theorem for Hypergraphs)

Let H=(V,E) be a hypergraph with maximum hyperedge size $k \geq 3$. Then all the zeros of the Ising model partition function $Z_H^{\beta}(\lambda)$ lie on the unit circle if and only if the edge activity β lies in the range

$$-\frac{1}{2^{k-1}-1} \le \beta \le \frac{1}{2^{k-1}\cos^{k-1}\left(\frac{\pi}{k-1}\right)+1}.$$

9 / 27

Our results (cont'd)

In combination with our Lee-Yang theorem for hypergraphs:

Theorem

Fix any $\Delta>0$ and $k\geq 3$. There is an FPTAS for the Ising partition function $Z_H^\beta(\lambda)$ in all hypergraphs H of maximum degree Δ and maximum edge size k, for all edge activities β such that

$$-\frac{1}{2^{k-1}-1} \le \beta \le \frac{1}{2^{k-1}\cos^{k-1}\left(\frac{\pi}{k-1}\right)+1}$$

and all vertex activities $|\lambda| \neq 1$.

Our results (cont'd)

Recall

$$Z_G^{oldsymbol{arphi}}(\lambda) = \sum_{oldsymbol{\sigma}: V
ightarrow \{+,-\}} \prod_{e \in E} arphi_e ig(oldsymbol{\sigma}ig|_eig) \, \lambda^{|\{v:oldsymbol{\sigma}(v)=+\}|}$$

Together with Suzuki-Fisher 1971 (Lee-Yang theorem for general ferromagnetic 2-spin models):

Theorem

Fix any $\Delta>0$ and $k\geq 2$ and a family of edge activities $\boldsymbol{\varphi}=\{\varphi_e\}$ satisfying

- symmetry: $\varphi_e(\sigma) = \overline{\varphi_e(-\sigma)}$;
- "ferromagnetism": $|\varphi_e(+,\cdots,+)| \geq \frac{1}{4} \sum_{\sigma \in \{+,-\}^V} |\varphi_e(\sigma)|$.

Then there exists an FPTAS for the partition function $Z_H^{\varphi}(\lambda)$ in all hypergraphs H of maximum degree Δ and maximum edge size k for all vertex activities $\lambda \in \mathbb{C}$ such that $|\lambda| \neq 1$.

Overview

- Approximate counting, sampling and motivations
- Our results
- Proof sketch of our FPTAS
- 4 Lee-Yang theorem

Approximation via the log-partition function

Theorem (Barvinok, Barvinok and Soberon)

For a zero free region, $\log Z$ can be approximated to within $\pm \varepsilon$ by its k-th order Taylor series, for $k = O(\log(n/\varepsilon))$.

To make use of the analyticity of $\log Z$

- Taylor expansion of $\log Z$ around $\lambda = 0$
- ullet By Lee-Yang theorem, $|\lambda| < 1$ is zero free
- The first k terms of the Taylor series require the first k + 1 coefficients of Z

$$Z_G^{\beta}(\lambda) = \sum_{i=0}^n \left(\sum_{\substack{S \subseteq V \\ |S|=i}} \beta^{|E(S,\overline{S})|} \right) \lambda^i,$$

$$\log Z = \sum_{i=0}^{k-1} \frac{\lambda^i}{i!} \left(\frac{\mathrm{d}^i}{\mathrm{d}\lambda^i} \log Z \Big|_{\lambda=0} \right) + \cdots$$

Naively, computing the first k coefficients of Z takes time $O(n^k) \implies$ quasi-polynomial time algorithm

Computing coefficients of Z

Theorem (Patel and Regts)

If the first k coefficients can be represented as a sum over induced subgraphs, one can compute them in time $\Delta^{O(k)} = \text{poly}(n/\varepsilon)$ for graphs of bounded degree Δ . In particular, for the Ising model, if $\lambda = 1$ and $|\beta - 1| < 0.34/\Delta$, there is an FPTAS.

For graphs of maximum degree Δ :

- the number of labeled *induced subgraphs* of size k is $O(n^k)$
- the number of labeled *connected* induced subgraphs of size k is at most $n(e\Delta)^k$

Main idea: reduce a sum over all induced subgraphs to sum over connected induced subgraphs.

 \odot The Ising model, when viewed as a polynomial in λ , is **not** a sum over induced subgraphs.

Insects in graphs

Main idea: Generalize the notion of *induced subgraphs* to *induced sub-insects*. Recall the Ising partition function:

$$Z_G^{\beta}(\lambda) = \sum_{S \subseteq V} \beta^{|E(S,V \setminus S)|} \lambda^{|S|}.$$

Given a configuration σ , let S be the set of vertices assigned +-spins:

The coefficient $\beta^{|E(S,V\setminus S)|}$ of a configuration depends only on the *induced sub-insect* $G^+[S]$

Insects in hypergraphs

Recall that w.l.o.g $\varphi_e(-,\cdots,-)=1$.

$$Z_{H}^{\varphi}(\lambda) = \sum_{\sigma: V \to \{+, -\}} \prod_{e \in E} \varphi_{e}(\sigma|_{e}) \lambda^{|\{v: \sigma(v) = +\}|} = \sum_{S \subseteq V} \prod_{e: e \cap S \neq \emptyset} \varphi_{e}(S) \lambda^{|S|}.$$

The coefficient $\prod_{e:e\cap S\neq\emptyset} \varphi_e(\sigma|_e)$ of a configuration depends only on the induced sub-insect $H^+[S]$

Note: the number of labeled *connected* sub-insects of size t is at most $n(e\Delta k)^t$.

Jingcheng Liu (UC Berkeley) The Ising Partition Function Summer 2017

16 / 27

Reducing to a connected sub-insect count

Let r_1, \dots, r_n be the complex zeros of $Z_G^{\varphi}(\lambda)$:

$$Z_G^{\varphi}(\lambda) = \prod_{i=1}^n (1 - \lambda/r_i) = \sum_{i=0}^n (-1)^i e_i(G) \lambda^i,$$

Review of our goal:

- To compute the Taylor series of $\log Z$, we need the coefficients $e_i(G)$
- $e_i(G)$ is the elementary symmetric polynomial evaluated at $(\frac{1}{r_1}, \cdots, \frac{1}{r_n})$
- From the definition of *Z*.

$$e_i(G) = (-1)^i \sum_{\substack{S \subseteq V \\ |S|=i}} \prod_{e: e \cap S \neq \emptyset} \varphi_e(S)$$

• Notice that $e_i(G)$ is a weighted sub-insect count, but not necessarily connected

Instead, we consider a related quantity: the t-th power sum given by $p_t = \sum_{i=1}^n 1/r_i^t$

Jingcheng Liu (UC Berkeley) The Ising Partition Function Summer 2017

17 / 27

Reducing to a connected sub-insect count (cont'd)

Let $p_t = \sum_{i=1}^n 1/r_i^t$ be the *t*-th power sum. By Newton's identities:

$$p_t = \sum_{i=1}^{t-1} (-1)^{i-1} p_{t-i} e_i + (-1)^{t-1} t e_t.$$

Proof sketch

- Recall that e_i is a weighted sub-insect count
- Lemma: product of weighted sub-insect counts is also a weighted sub-insect count
- Thus p_t is also a weighted sub-insect count
- ullet Notice that p_t is additive in the sense that $p_t(G_1 \cup G_2) = p_t(G_1) + p_t(G_2)$
- Lemma: a weighted sub-insect count is additive iff it is a connected sub-insect count
- Thus p_t is supported only on *connected* sub-insects up to size t.

Jingcheng Liu (UC Berkeley)

Summary of FPTAS for $Z_G^{\beta}(\lambda)$

Taylor approximation:

- Since $Z_G^{\beta}(\lambda) = \lambda^n \cdot Z_G^{\beta}(1/\lambda)$, w.l.o.g. $|\lambda| < 1$
- To get a $(1 \pm \varepsilon)$ multiplicative approximation of Z, it suffices to get a $\pm \frac{\varepsilon}{4}$ additive approximation of $\log Z$ (by standard complex analysis)
- By Barvinok et. al., the *t*-th order Taylor series of $\log Z$ around $\lambda=0$ is a $\pm \varepsilon$ approximation for $t=O(\log(n/\varepsilon))$ at any point λ such that $B(0,|\lambda|)$ is a zero-free region
- ullet By the Lee-Yang theorem, there are no zeros of Z in $|\lambda| < 1$

Summary of FPTAS for $Z_G^{\beta}(\lambda)$

Computing coefficients by reducing to a connected sum:

- The *t*-th order Taylor series of $\log Z$ depends only on the first t+1 coefficients
- Recall that $Z_G^{\beta}(\lambda) = \sum_{i=0}^n (-1)^i e_i(G) \lambda^i$, e_i is the *i*-th coefficient
- \bullet e_t can be computed using Newton's identities given p_t
- p_t can be computed efficiently by enumerating over *connected* sub-insects for $t = O(\log(n/\varepsilon))$

Overview

- Approximate counting, sampling and motivations
- Proof sketch of our FPTAS
- 4 Lee-Yang theorem

Lee-Yang theorem

Definition (Lee-Yang property)

A multilinear polynomial P is said to have the *Lee-Yang property*, denoted by $P \in LY$, if $P(\lambda_1, \dots, \lambda_n) \neq 0$ for any $\lambda_1, \dots, \lambda_n$ such that $|\lambda_i| \geq 1$ for all i, and $|\lambda_i| > 1$ for some i.

Definition (Multivariate Ising model)

$$Z_G^{\vec{\beta}}(\lambda_1, \cdots, \lambda_n) = \sum_{S \subseteq V} \prod_{e \in E(S, \overline{S})} \beta_e \prod_{i \in S} \lambda_i$$

Theorem (Lee-Yang Theorem 1952)

If $0 < \beta_e < 1$, then $Z_G^{\vec{\beta}}(\lambda_1, \dots, \lambda_n)$ has the Lee-Yang property.

Asano's proof of the Lee-Yang theorem

Asano's proof of the Lee-Yang theorem

Asano's proof of the Lee-Yang theorem

What about hypergraphs? The above scheme is very general except:

- LY holds for each hyperedge
- LY is preserved under contraction

Characterizing Lee-Yang theorems for symmetric polynomials

Lemma (Criterion for Lee-Yang property)

Given a multilinear polynomial $P(z_1, z_2, ..., z_n)$, define multilinear polynomials A_j and B_j in the variables $z_1, ..., z_{j-1}, z_{j+1}, ..., z_n$ such that

$$P = A_j z_j + B_j$$

If P is symmetric, i.e., $P(z) = \prod_{i=1}^n z_i \cdot \overline{P(1/z)}$, then $P \in LY$ if and only if $A_j \in LY$ for all j.

- For a single hyperedge: LY for one of the leading coefficients A_j implies LY for a hyperedge.
- For contraction: LY for the disjoint union implies that LY for all the leading coefficients.

Lee-Yang theorem on a single hyperedge

The leading coefficients A_i

Recall that $Z = A_j z_j + B_j$,

 $A_3 = z_1 z_2 + \beta z_1 + \beta z_2 + \beta$ in a hyperedge of size 3.

More generally, $A_j \in \mathrm{LY}$ (that is, $A_j = 0$ for $|z_i| \geq 1$) is equivalent to

$$\frac{1}{eta} = 1 - \prod_{\substack{i=1 \ i
eq j}}^k \left(1 + \frac{1}{z_i}\right).$$

This characterizes the range in our theorem:

$$-\frac{1}{2^{k-1}-1} \le \beta \le \frac{1}{2^{k-1}\cos^{k-1}\left(\frac{\pi}{k-1}\right)+1}.$$

Asano contraction

As an contraction: suppose that $Az_1z_2 + Bz_1 + Cz_2 + D \in LY$, need to show $Az + D \in LY$.

- $Az_1z_2 + Bz_1 + Cz_2 + D \neq 0$ for $|z_1|, |z_2| > 1$
- $Az^2 + (B+C)z + D = 0$ only if $|z| \le 1$
- $\left|\frac{D}{A}\right| \le 1$, using Vieta's formula for product of zeros
- By our lemma, $A \in LY$, so $A \neq 0$. Thus Az + D = 0 only if $|z| = \left| \frac{D}{A} \right| \leq 1$
- $Az + D \in LY$

Discussions and Open problems

Open problem

What about $\lambda = 1$?

- There are zeros arbitrarily close to $\lambda = 1$ at low temperature
- Our algorithm works for all $|\beta| \le 1$. FPTAS for $\lambda = 1$ and $-1 < \beta < 0$ would give FPTAS for counting perfect matchings in general (non-bipartite) graphs

Open problem

Connections of locations of zeros, and algorithms such as MCMC and the correlation decay approach?

- Jerrum-Sinclair's MCMC works in subgraphs world instead of the spins world, which by Lee-Yang theorem is real-rooted
- Analog of Griffiths inequality for the self-avoiding walk tree

Jingcheng Liu (UC Berkeley) The Ising Partition Function Summer 2017 27 / 27