Lógica

Mauro Polenta Mora

Ejercicio 1

Consigna

Investigue cuáles de las siguientes proposiciones son tautologías.

- (a) $(\neg p \lor q) \leftrightarrow (q \to p)$
- (b) $(p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$
- (c) $\perp \rightarrow p$
- (d) $(p \to q) \lor (\neg p \to r)$

Resolución

Podemos trabajar con tablas de verdad para esta parte, porque estamos trabajando con letras proposicionales.

Parte (a)

Construyamos la tabla de verdad para verificar si efectivamente la proposición es tautología.

p	q	$ \neg p $	$(\neg p \lor q)$	$(q \rightarrow p)$	$\big \; ((\neg p \lor q) \leftrightarrow (q \to p)) \;$
0	0	1	1	1	1
0	1	1	1	0	0
1	0	0	0	1	0
1	1	0	1	1	1

Si tomamos una valuación v tal que v(p)=0 y v(q)=1 tenemos que $v((\neg p \lor q) \leftrightarrow (q \to p))=0$. Por lo que podemos concluir que $\not\models (\neg p \lor q) \leftrightarrow (q \to p)$

Parte (b)

Construyamos la tabla de verdad para verificar si efectivamente la proposición es tautología.

p	q	r	$(q \rightarrow r)$	$(p \to (q \to r))$	$(p \wedge q)$	$\big ((p \land q) \to r) \big $	$\big \; (p \to (q \to r)) \leftrightarrow ((p \land q) \to r)$
0	0	0	1	1	0	1	1
0	0	1	1	1	0	1	1
0	1	0	0	1	0	1	1
0	1	1	1	1	0	1	1
1	0	0	1	1	0	1	1
1	0	1	1	1	0	1	1
1	1	0	0	0	1	0	1
1	1	1	1	1	1	1	1

Con esto verificamos que efectivamente $\models ((p \rightarrow (q \rightarrow r)) \leftrightarrow ((p \land q) \rightarrow r))$

Parte (c)

Para este caso ni siquiera tenemos que hacer la tabla de verdad. Observemos que $v(\perp) = 0$ para toda valuación v por definición de valuación.

Usando la definición de valuación tenemos que:

$$\begin{split} v(\bot \to p) \\ &= (\text{definición de valuación}) \\ max\{1 - v(\bot), v(p)\} \\ &= (\text{definición de valuación}) \\ max\{1 - 0, v(p)\} \end{split}$$

Donde trivialmente se cumple que el valor es 1. Con lo que verificamos que efectivamente $\models (\bot \rightarrow p)$

Parte (d)

Construyamos la tabla de verdad para verificar si efectivamente la proposición es tautología.

p	q	r	$(p \rightarrow q)$	$ \neg p $	$(\neg p \to r)$	$\ \ (p \to q) \lor (\neg p \to r) \ $
0	0	0	1	1	0	1
0	0	1	1	1	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	1
1	0	0	0	0	1	1
1	0	1	0	0	1	1
1	1	0	1	0	1	1
1	1	1	1	0	1	1

Con esto verificamos que efectivamente $\models (p \rightarrow q) \lor (\neg p \rightarrow r)$