Dirac dark matter, neutrino masses,

and dark baryogenesis

Diego Restrepo

Instituto de Física Universidad de Antioquia Phenomenology Group http://gfif.udea.edu.co

Focus on

arXiv:2205.05762 [PRD]

In collaboration with

Andrés Rivera (UdeA), Walter Tangarife (Loyola University Chicago)

Dark sectors

 $\mathcal{L} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + i \sum_{i} \chi_{i}^{\dagger} \mathcal{D} \chi_{i}$

$$\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}_{\lambda}$$
$$-h(\chi_{1}\chi_{2}\Phi + \text{h.c})$$

Anomalons: SM-singlet Dirac fermion dark matter $m_{\Psi} = h\langle \Phi \rangle$

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to \text{jets}$ Gauged Symmetry: $\mathcal{X} \to L$:

$$\alpha = 1,.$$

$$\alpha = 1, \dots N \rightarrow N > 4$$

 $\mathcal{L} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + i \sum_{i} \chi_{i}^{\dagger} \mathcal{D}_{\chi_{i}}$

$$-h(\chi_1\chi_2\Phi + h.c)$$

Anomalons: SM-singlet Dirac fermion dark matter $m_{\Psi} = h\langle \Phi \rangle$

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to \text{jets}$

 $\alpha = 1, \dots N \rightarrow N > 4$

 $\mathcal{L} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + i \sum_{i} \chi_{i}^{\dagger} \mathcal{D}_{\chi_{i}}$

$$-h(\chi_1\chi_2\Phi + h.c)$$

Anomalons: SM-singlet Dirac fermion dark matter $m_{\Psi} = h\langle \Phi \rangle$

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to \text{jets}$

 $\alpha = 1, \dots N \rightarrow N > 4$

Local $U(1)_{\mathcal{X}}$ $\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + i\sum_{i}\chi_{i}^{\dagger}\mathcal{D}\chi_{i}$

$$-y\left(\chi_1\chi_2S+\text{h.c}\right)$$

Anomalons: SM-singlet Dirac fermion

CP violation Yukawa y

Gauged Symmetry: $\mathcal{X} \to B$: $q\overline{q} \to Z' \to \text{jets}$

$$\alpha = 1, \dots N \rightarrow N > 4$$

Anomaly cancellation

Any local Abelian extension of the Standard Model can be reduced to a set of integers which must satisfy the gravitational anomaly, $[SO(1,3)]^2 U(1)_Y$, and the cubic anomaly, $[U(1)_X]^3$ conditions:

$$\sum_{\alpha=1}^{N} z_{\alpha} = 0, \qquad \sum_{\alpha=1}^{N} z_{\alpha}^{3} = 0, \qquad (1)$$

• From a list of N-2 integers, e.g., for N even

$$\mathbf{q} = [l_1, l_2, \cdots, l_n, k_1, k_2, \cdots, k_n], \qquad n = (N-2)/2.$$
 (2)

in the range [-m, m], build two vector-like solutions of N integers,

$$\mathbf{x} = [l_1, k_1, \dots k_n, -l_1, -k_1, \dots - k_n,]$$
 $\mathbf{y} = [0, 0, l_1, \dots l_n, -l_1, \dots - l_n]$ (3)

• From a list of N-2 integers, e.g., for N even

$$\mathbf{q} = [l_1, l_2, \cdots, l_n, k_1, k_2, \cdots, k_n], \qquad n = (N-2)/2.$$
 (2)

in the range [-m, m], build two vector-like solutions of N integers,

$$\mathbf{x} = [l_1, k_1, \dots k_n, -l_1, -k_1, \dots - k_n,]$$
 $\mathbf{y} = [0, 0, l_1, \dots l_n, -l_1, \dots - l_n]$ (3)

• Obtain a (some times) non vector-like solution with $z_{\text{max}} = 2m$

$$\mathbf{z} = \mathbf{x} \oplus \mathbf{y} = \left(\sum_{i=1}^{N} x_i y_i^2\right) \mathbf{x} + \left(\sum_{i=1}^{N} x_i^2 y_i\right) \mathbf{y},$$
 (4)

• From a list of N-2 integers, e.g., for N even

$$\mathbf{q} = [l_1, l_2, \cdots, l_n, k_1, k_2, \cdots, k_n], \qquad n = (N-2)/2.$$
 (2)

in the range [-m, m], build two vector-like solutions of N integers,

$$\mathbf{x} = [l_1, k_1, \dots k_n, -l_1, -k_1, \dots - k_n,] \qquad \mathbf{y} = [0, 0, l_1, \dots l_n, -l_1, \dots - l_n]$$
(3)

• Obtain a (some times) non vector-like solution with $z_{max} = 2m$

$$\mathbf{z} = \mathbf{x} \oplus \mathbf{y} = \left(\sum_{i=1}^{N} x_i y_i^2\right) \mathbf{x} + \left(\sum_{i=1}^{N} x_i^2 y_i\right) \mathbf{y},$$
 (4)

The parameter space to be explored with $z_{\rm max}=20~(m=10)$ has $96\,153$ non vector-like solutions

of
$$\mathbf{q}$$
 lists = $(2m+1)^{N-2}$ =
$$\begin{cases} 9261 \to 3 & N = 5 \\ 194841 \to 38 & N = 6 \\ \vdots & \vdots \\ 1.6 \times 10^{13} \to 65910 & N = 12 , \text{ instead } 10^{19} \end{cases}$$
 (5)

• From a list of N-2 integers, e.g., for N even

$$\mathbf{q} = [l_1, l_2, \cdots, l_n, k_1, k_2, \cdots, k_n], \qquad n = (N-2)/2.$$
 (2)

in the range [-m, m], build two vector-like solutions of N integers,

$$\mathbf{x} = [l_1, k_1, \dots k_n, -l_1, -k_1, \dots - k_n,] \qquad \mathbf{y} = [0, 0, l_1, \dots l_n, -l_1, \dots - l_n]$$
(3)

• Obtain a (some times) non vector-like solution with $z_{max} = 2m$

$$\mathbf{z} = \mathbf{x} \oplus \mathbf{y} = \left(\sum_{i=1}^{N} x_i y_i^2\right) \mathbf{x} + \left(\sum_{i=1}^{N} x_i^2 y_i\right) \mathbf{y},$$
(4)

The parameter space to be explored with $z_{\text{max}}=20~(m=10)$ has $96\,153$ non vector-like solutions

of
$$\mathbf{q}$$
 lists = $(2m+1)^{N-2} = \begin{cases} 9261 \to 3 & N = 5 \to [1, 5, -7, -8, 9] \\ 194841 \to 38 & N = 6 \\ \vdots & \vdots \\ 1.6 \times 10^{13} \to 65910 & N = 12, \text{ instead } 10^{19} \end{cases}$ (5)

Simplest secluded model with SM-singlet massive chiral fermions from SSB

$$\mathcal{L} = i\psi_i^{\dagger} \mathcal{D} \psi_i - \frac{1}{4} V_{\mu\nu} V^{\prime\mu\nu} + \sum_{i < j} h_{ij} \psi_i \psi_j \phi^{(*)} + \text{h.c}$$
 (6)

 $96\,153
ightarrow 5\,196$ multi-component DM (N = 8,12) ightarrow 28 with two Dirac-fermion DM

Simplest secluded model with SM-singlet massive chiral fermions from SSB

$$\mathcal{L} = i\psi_i^{\dagger} \mathcal{D} \psi_i - \frac{1}{4} V_{\mu\nu} V^{\prime\mu\nu} + \sum_{i < j} h_{ij} \psi_i \psi_j \phi^{(*)} + \text{h.c}$$
 (6)

 $96\,153
ightarrow 5\,196$ multi-component DM (N = 8,12) ightarrow 28 with two Dirac-fermion DM

$$z = [1, 2, 2, 4, -5, -5, -7, 8] \rightarrow \phi = 3 \rightarrow [(1, 2), (2, -5), (-5, 8), (4, -7)]$$
 (7)

Simplest secluded model with SM-singlet massive chiral fermions from SSB

$$\mathcal{L} = i\psi_i^{\dagger} \mathcal{D} \psi_i - \frac{1}{4} V_{\mu\nu} V^{\prime\mu\nu} + \sum_{i < j} h_{ij} \psi_i \psi_j \phi^{(*)} + \text{h.c}$$
 (6)

 $96\,153 o 5\,196$ multi-component DM (N=8,12) o 28 with two Dirac-fermion DM

$$\mathbf{z} = \begin{bmatrix} 1, 2, 2, 4, -5, -5, -7, 8 \end{bmatrix} \to \phi = 3 \to \begin{bmatrix} (1, 2), (2, -5), (-5, 8), (4, -7) \end{bmatrix}$$

$$1 \quad 2 \quad 2 \quad -5 \quad -5 \quad 8$$

$$1 \quad \begin{bmatrix} 0 & h_{(1,2)} & h_{(1,2)} & 0 & 0 & 0 \\ h_{(1,2)} & 0 & 0 & h_{(2,-5)} & h_{(2,-5)} & 0 \\ h_{(1,2)} & 0 & 0 & 0 & 0 & 0 \\ 0 & h_{(2,-5)} & 0 & 0 & 0 & h_{(-5,8)} \\ -5 & 0 & h_{(2,-5)} & 0 & 0 & 0 & h_{(-5,8)} \\ 0 & 0 & 0 & h_{(-5,8)} & h_{(-5,8)} & 0 \end{bmatrix} \Psi \phi^{(*)} + h_{(4,-7)} \psi_4 \psi_{-7} \phi^*$$

$$(8)$$

4

Standard model extended with $U(1)_{\mathcal{X}=L \text{ or } \mathbf{B}}$ gauge symmetry

Fields	$SU(2)_L$	$U(1)_Y$	$U(1)_{\mathcal{X}=\mathbf{B}}$ or \mathbf{L}
Q_i^{\dagger}	2	-1/6	Q
d_{Ri}	1	-1/2	d
u_{Ri}	1	+2/3	и
L_i^{\dagger}	2	+1/2	L
e_{Ri}	1	-1	e
Н	2	1/2	h = 0
χ_{α}	1	0	z_{α}
$(L'_L)^{\dagger}$	2	1/2	-x'
$L_R^{\prime\prime}$	2	-1/2	x''
e_R'	1	-1	x'
$\left(e_L^{\prime\prime} ight)^\dagger$	1	1	-x''
Ф	1	0	φ
S	1	0	5

Table 1: A minimal set of new fermion content: L = e = 0 for $\mathcal{X} = B$. Or Q = u = d = 0 for $\mathcal{X} = L$.

$$i = 1, 2, 3, \alpha = 1, 2, \dots, N'$$

Effective Dirac neutrino mass operator

$$\chi_1 \to \nu_{R1}, \cdots, \chi_{N_{\nu}} \to \nu_{RN_{\nu}}, \qquad 2 \le N_{\nu} \le 3,$$
 (9)

$$\mathcal{L}_{\mathrm{eff}} = h_{
u}^{lpha i} \; (
u_{Rlpha})^{\dagger} \; \epsilon_{\mathsf{a} \mathsf{b}} \; \mathsf{L}_{i}^{\mathsf{a}} \; \mathsf{H}^{\mathsf{b}} \left(rac{\Phi^{*}}{\Lambda}
ight)^{\delta} + \mathrm{H.c.}, \qquad \mathrm{with} \; i = 1, 2, 3 \,,$$

S is the complex singlet scalar responsible for the SSB of the anomaly-free gauge symmetry with D or X-charge

$$\phi = -(\nu + \mathbf{L})/\delta \,, \tag{10}$$

Anomaly cancellation I

The anomaly-cancellation conditions on $[SU(3)_c]^2 U(1)_X$, $[SU(2)_L]^2 U(1)_X$, $[U(1)_Y]^2 U(1)_X$, allow us to express three of the X-charges in terms of the others

$$\mathbf{u} = -\mathbf{e} - \frac{2}{3}\mathbf{L} - \frac{1}{9}(x' - x'') , \quad \mathbf{d} = \mathbf{e} + \frac{4}{3}\mathbf{L} - \frac{1}{9}(x' - x'') , \quad \mathbf{Q} = -\frac{1}{3}\mathbf{L} + \frac{1}{9}(x' - x'') ,$$
(11)

while the $[U(1)_X]^2 U(1)_Y$ anomaly condition reduces to

$$(e+L)(x'-x'')=0.$$
 (12)

- Previously: x' = x''
- We choose instead (h = 0):

$$e = -L, (13)$$

so that (*L* is still a free parameter)

$$Q = -u = -d = -\frac{1}{3}L + \frac{1}{9}(x' - x''). \tag{14}$$

If $B = 0 \rightarrow U(1)_L$

Anomaly cancellation II

The gravitational anomaly, $[SO(1,3)]^2 U(1)_Y$, and the cubic anomaly, $[U(1)_X]^3$, can be written as the following system of Diophantine equations, respectively,

$$\sum_{\alpha=1}^{N} z_{\alpha} = 0, \qquad \sum_{\alpha=1}^{N} z_{\alpha}^{3} = 0, \qquad (15)$$

where N = N' + 5 and

$$z_{N'+1} = -x',$$
 $z_{N'+2+i} = L, \quad i = 1, 2, 3$ (16)

-

$$9Q = -\sum_{\alpha=N'+1}^{N'+5} z_{\alpha} = -x' + x'' + L + L + L, \qquad (17)$$

$$Q = 0 \gg U(1)_L$$

$U(1)_{B}$ selection

•
$$L = 0$$

$$(5,5,-3,-2,1,-6)$$

$U(1)_{\mathbb{B}}$ selection

- L = 0
- Effective neutrino mass: $\phi = -\nu = -5$

$$(5,5,-3,-2,1,-6)$$

$U(1)_{\mathbf{B}}$ selection

- L = 0
- Effective neutrino mass: $\phi = -\nu = -5$
- Electroweak-scale vector-like fermions:

$$(L'_L)^{\dagger} L''_R \Phi^* \to x' = -1, \ x'' = 6$$

$$(5,5,-3,-2, 1,-6)$$

$U(1)_{\mathbb{B}}$ selection

- L = 0
- Effective neutrino mass: $\phi = -\nu = -5$
- Electroweak-scale vector-like fermions:

$$(L'_L)^{\dagger} L''_R \Phi^* \to x' = -1, \ x'' = 6$$

• Dirac-fermionic DM: $(\chi_L)^{\dagger} \chi_R'' \Phi^* \rightarrow z_3 = -3, \ z_4 = -2$

$$(5,5,-3,-2,1,-6)$$

$U(1)_{\mathbf{B}}$ selection

- L = 0
- Effective neutrino mass: $\phi = -\nu = -5$
- Electroweak-scale vector-like fermions:

$$(L'_I)^{\dagger} L''_R \Phi^* \to x' = -1, \ x'' = 6$$

- Dirac-fermionic DM: $(\chi_L)^{\dagger} \chi_R'' \Phi^* \rightarrow z_3 = -3, \ z_4 = -2$
- 959 solutions from \sim 400,000

(5,5,-3,-2,1,-6)

Scotogenic realization

Any realization which does not affect anomaly cancellation is allowed

Scotogenic realization

Any realization which does not affect anomaly cancellation is allowed

Scotogenic realization

Any realization which does not affect anomaly cancellation is allowed

i is allowed				
Field	$SU(2)_L$	$U(1)_Y$	$U(1)_B$	
u _{Ri}	1	2/3	u = 1/3	
d_{Ri}	1	-1/3	d = 1/3	
$(Q_i)^{\dagger}$	2	-1/6	Q = -1/3	
$(L_i)^{\dagger}$	2	1/2	L=0	
e_R	1	-1	e = 0	
$(L'_L)^{\dagger}$	2	1/2	-x' = -3/5	
e'_R	1	-1	x' = 3/5	
$L_R^{\prime\prime}$	2	-1/2	x'' = 18/5	
$\left(e_L^{\prime\prime} ight)^\dagger$	1	1	-x'' = -18/5	
$ u_{R,1}$	1	0	-3	
$\nu_{R,2}$	1	0	-3	
XR	1	0	6/5	
$(\chi_L)^{\dagger}$	1	0	9/5	
Н	2	1/2	0	
S	1	0	3	
Ф	1	0	3	
σ_{lpha}^-	1	1	3/5	
σ'_{α}^{-}	1	-1	-12/5	

Electroweak baryogenesis

Problems

- Standard model (SM) $m_h \sim$ 40 GeV. \bigcirc
- Beyond the SM: Source of CP contains fields charged under SM
 - ightarrow too large electric dipole moments 😩

Dark sectors

- Inert SM-singlet complex scalar field which acquires vev with temperature to have strong electroweak phase transition 😊
- CP violation (CPV) triggered in dark sectors through SM gauge singlets
 - → CPV Yukawa between SM-singlet complex scalar and SM-singlet quiral fermions \(\to\)

Anomalons:

DM

Method to find $\Sigma n=0$, $\Sigma n^3=0$ solutions 1905.13729 [PRL] Costa...

Anomalons:

Multicomponent DM

Scotogenic neutrino masses

hep-ph/0601225 [PRL→PRD] Ma

Dark sector baryogenesis

Baryogenesis

CP violation occurs in the dark sector and is transmitted to SM sector by the new Z' gauge boson.

- High scale fields: Φ , $(\langle \Phi \rangle \to L'_L, L''_R, e'_L, e''_R$: EW-scale vector-like anomalons)
- Electroweak scale (EW) fields: $Z'_{\mu}, S, \chi_L, \chi_R$
- CP-violation

$$\mathcal{L}_{\mathsf{Dirac}\;\mathsf{DM}} = h\left(\chi_{L}\right)^{\dagger} \chi_{R} \Phi^{*} + y\left(\chi_{L}\right)^{\dagger} \chi_{R} S^{*} + \mathsf{h.c}\,, \qquad y \in \mathbb{C}$$
$$\supset \left(m_{\chi} + |y| \,\mathsf{e}^{i\theta} \,|S|\right) \left(\chi_{L}\right)^{\dagger} \chi_{R} + \mathsf{h.c}\,.$$

• CP-violation Portal

$$\mathcal{L}_{\text{anomalous}} \supset g' Z'_{\mu} \left[3\bar{\chi}_L \gamma^{\mu} \chi_L - 2\bar{\chi}_R \gamma^{\mu} \chi_R + \bar{Q}_i \gamma^{\mu} Q_i + \bar{q}_{Ri} \gamma^{\mu} q_{Ri} \right]$$

• Strong electroweak phase transition (EWPT) portal

$$\mathcal{L}_{\mathsf{first}}$$
 order EWPT $\supset -\lambda_{SH}H^{\dagger}HS^{*}S$.

$$h = H/\sqrt{2}$$
, $s = |S|$ with vevs: $v(T)$ and $w(T)$ such that $v(T_c) = w(T_c)$

$$V_T(h,s) = \frac{\lambda_H v_c^4}{4} \left(\frac{h^2}{v_c^2} + \frac{s^2}{w_c^2} - 1 \right)^2 + \frac{\lambda_H v_c^2}{m_{s,c}^2 w_{0,c}^4} h^2 s^2 + (T^2 - T_c^2) (c_h h^2 + c_s s^2), \quad (18)$$

$$c_h = \frac{1}{48} \left(9g_2^2 + 3g_1^2 + 12y_t^2 + 24\lambda_H + \lambda_{HS} \right), \quad c_s = \frac{1}{12} \left(3\lambda_S + 2\lambda_{HS} \right).$$
 (19)

$$h = H/\sqrt{2}$$
, $s = |S|$ with vevs: $v(T)$ and $w(T)$ such that $v(T_c) = w(T_c)$

$$V_T(h,s) = \frac{\lambda_H v_c^4}{4} \left(\frac{h^2}{v_c^2} + \frac{s^2}{w_c^2} - 1 \right)^2 + \frac{\lambda_H v_c^2}{m_{s,c}^2 w_{0,c}^4} h^2 s^2 + (T^2 - T_c^2) (c_h h^2 + c_s s^2), \quad (18)$$

$$c_h = \frac{1}{48} \left(9g_2^2 + 3g_1^2 + 12y_t^2 + 24\lambda_H + \lambda_{HS} \right) , \quad c_s = \frac{1}{12} \left(3\lambda_S + 2\lambda_{HS} \right) . \tag{19}$$

$$h = H/\sqrt{2}$$
, $s = |S|$ with vevs: $v(T)$ and $w(T)$ such that $v(T_c) = w(T_c)$

$$V_T(h,s) = \frac{\lambda_H v_c^4}{4} \left(\frac{h^2}{v_c^2} + \frac{s^2}{w_c^2} - 1 \right)^2 + \frac{\lambda_H v_c^2}{m_{s,c}^2 w_{0,c}^4} h^2 s^2 + (T^2 - T_c^2) (c_h h^2 + c_s s^2), \quad (18)$$

$$c_h = \frac{1}{48} \left(9g_2^2 + 3g_1^2 + 12y_t^2 + 24\lambda_H + \lambda_{HS} \right), \quad c_s = \frac{1}{12} \left(3\lambda_S + 2\lambda_{HS} \right).$$
 (19)

$$h = H/\sqrt{2}$$
, $s = |S|$ with vevs: $v(T)$ and $w(T)$ such that $v(T_c) = w(T_c)$

$$V_T(h,s) = \frac{\lambda_H v_c^4}{4} \left(\frac{h^2}{v_c^2} + \frac{s^2}{w_c^2} - 1 \right)^2 + \frac{\lambda_H v_c^2}{m_{s,c}^2 w_{0,c}^4} h^2 s^2 + (T^2 - T_c^2) (c_h h^2 + c_s s^2), \quad (18)$$

$$c_h = \frac{1}{48} \left(9g_2^2 + 3g_1^2 + 12y_t^2 + 24\lambda_H + \lambda_{HS} \right) , \quad c_s = \frac{1}{12} \left(3\lambda_S + 2\lambda_{HS} \right) . \tag{19}$$

CP assymetry generation i

Using the thin wall approximantion for the nucleation bubbles, we use the ansatz in which the space dependence of the fields is given by

$$h(z) = \frac{1}{2}v(T_n)(1-\tanh(z/L_w)), \qquad s(z) = \frac{1}{2}w_0(T_n)(1+\tanh(z/L_w)),$$

where z is the direction normal to the wall and L_w is the wall width.

The nucleation temperature, T_n , is defined by the condition

$$\exp(-S_3/T_n) = \frac{3}{4\pi} \left(\frac{H(T_n)}{T_n}\right)^4 \left(\frac{2\pi T_n}{S_3}\right)^{\frac{3}{2}},$$

where S_3 is the Euclidean action of the bubble and H(T) is the Hubble rate.

Boltzmann equation i

$$egin{align} \xi_i(z) &\equiv \mu_i(z)/T = 6\left(n_i - \overline{n}_i
ight)/T^3, \ &-D_L \xi_{\chi_L}'' - v_w \xi_{\chi_L}' + \Gamma_L (\xi_{\chi_L} - \xi_{\chi_R}) = S_{\mathcal{LP}}, \end{aligned}$$

where D_L is the diffusion constant for χ_L , which is related to the scattering rate Γ_L by

$$D_{L} = \frac{3x+2}{x^{2}+3x+2} \frac{1}{3\Gamma_{L}}, \qquad x \equiv m_{\chi}/T$$
 (20)

and

$$S_{QP} = -\frac{\lambda}{2} \frac{v_w D_L}{\frac{3x+2}{x^2+3x+2} T} \frac{(1-x)e^{-x} + x^2 E_1(x)}{4m_\chi^2 K_2(x)} \frac{m_\chi w_0(T_n) \lambda \left(-2 + \cosh\left(\frac{2z}{L_w}\right)\right) \sin\theta}{L_w^3 \cosh^4\left(\frac{z}{L_w}\right)}, \quad (21)$$

where v_w is the wall's velocity $E_1(x)$ is the error function and $K_2(x)$ is the modified Bessel function of the second kind. $\mathbf{y} = \lambda e^{i\theta - i\pi/2}$

Transfer DM assymetry to SM quarks

The chiral particle give rise to a non-zero $U(1)_B$ charge density in the proximity of the wall. This results in a Z' background that couples to the SM fields with $U(1)_B$ charge,

$$\langle Z'_0(z) \rangle = \frac{g_B (q_{\chi_L} - q_{\chi_R}) T_n^3}{6 M_{Z'}} \int_{-\infty}^{\infty} dz_1 \, \xi_{\chi_L}(z_1) \, e^{-M_{Z'}|z-z_1|} \,,$$

which generates a chemical potential for the SM quarks,

$$\mu_Q(z) = \mu_{d_R,u_R}(z) = 3 \times \frac{5}{9} \times g_B \langle Z_0'(z) \rangle.$$

This chemical potential sources a thermal-equilibrium asymmetry in the quarks, $\Delta n_O^{\rm EQ}(z) \sim T_n^2 \mu_O(z)$.

From [1]

If the Z' is sufficiently light, it mediates a long range force that extends into the region outside the bubble wall with unbroken electroweak symmetry.

Finally, the baryon-number asymmetry is then given by

$$n_B \,=\, rac{\Gamma_{
m sph}}{v_W} \int_0^\infty {
m d}\, z \, n_Q^{
m EQ}(z) \, \exp\left(-rac{\Gamma_{
m sph}}{v_W} \, z
ight) \,,$$

where Γ_{sph} is the sphaleron rate. The baryon-to-photon-number ratio is then obtained by

$$\eta_B = \frac{n_B}{s(T_n)}, \quad s(T) \equiv \frac{2\pi^2}{45} g_{*S}(T) T^3,$$

where $g_{*S}(T)$ is the effective number of relativistic degrees of freedom.

Our goal is to find what regions of the parameter space yield

$$0.82 \times 10^{-10} < \eta_B < 0.92 \times 10^{-10} \,. \tag{22}$$

https://github.com/anferivera/DarkBariogenesis

- SARAH→SPheno→MicroMegas
- η_B calculation code
- Python notebook with the scan

arXiv:1810.08055

Ten Simple Rules for Reproducible Research in Jupyter Notebook Fernando Pérez, et al

[...] In this paper, we address several questions about reproducibility [...] Combined with software repositories and open source licensing, notebooks are powerful tools for transparent, collaborative, reproducible, and reusable data analyses.

Results

We vary the typical Dirac-fermion DM parameter space and for each point that satisfy neutrino oscillation data, relic density and DM direct detection constraints. For each point we ...

Parameter	Range
θ	$(-\pi/2,\pi/2)$
$w_0(T_n)/{\rm GeV}$	100 - 500
$T_n/{ m GeV}$	100 - 200
$L_w/{ m GeV^{-1}}$	$1/T_n - 10/T_n$
V_W	0.05 - 0.5

Table 2: Scan ranges for the free parameters that are involved in the baryogenesis mechanism.

Black points: Dirac neutrinos with proper DM and baryon assymetry

Conclusions

A $U(1)_B$ is presented as an example of models where all new fermions required to cancel out the anomalies are used to solve phenomenological problems of the standard model (SM):

- EW-scale fermion vector-like doublets and iso-singlet charged singlets, in conjunction
 with right-handed neutrinos with repeated Abelian charges, participate in the generation
 of small neutrino masses through the Dirac-dark Zee mechanism
- The other SM-singlets are used to explain the dark matter in the universe, while their coupling to an inert singlet scalar is the source of the *CP* violation.

In the presence of a strong first-order electroweak phase transition, this "dark" CP violation allows for successful electroweak baryogenesis by using long range force mediated by a sufficiently light Z' which transfers the assymmetry from the Dark sector into the SM.