

 \sim AUC, Log Loss, RMSE, MAE, NDCG, MAP@ $n\sim$

▶ モデルの精度とは?

過去の蓄積データから予測モデルを構築し、蓄積データに対するモデルの精度は、評価指標(詳しくは後述)により測れる. しかし、未知の未来データに対しては、結果が出てからでないと確かめられない. また、未来の結果が出たとしても、蓄積データでの予測精度と未来データでの予測精度では、しばしば乖離が発生する. したがって、

モデルの精度 = 既知データでの予測精度 \times 乖離幅で考える必要がある.

▶ 精度評価方法

モデルが予測するものは, 個数, 分類, 順序などがあり, それらに対して, いくつかの評価指標が知られている. モデルの精度評価を正しく理解するには, 評価指標の正しい理解が必要不可欠である.

表1: 評価指標一覧

評価指標	予測対象	值域	見方
AUC	2群分類. 例:医療診断, 契約.	$0\sim 1$	値が大きい方が良い
Log Loss	3群以上の分類. 例:運転行動.	$0\sim\infty$	値が小さい方が良い
RMSE	個数. 例:売り上げ個数, 降水量.	$0\sim\infty$	値が小さい方が良い
MAE	個数. 例:売り上げ個数, 降水量.	0 ~ ∞	値が小さい方が良い
NDCG	順序. 例:検索結果, 商品推薦.	0 ~ 1	値が大きい方が良い
MAP@n	(2群分類) ⁿ ×順序. 例:購入商品.	$0 \sim \sum_{i=1}^{n} 1/k$	値が大きい方が良い

精度評価方法

モデルが予測するものは, 個数, 分類, 順序などがあり, それらに対して, いくつかの評価指標が知られている. モデルの精度評価を正しく理解するには, 評価指標の正しい理解が必要不可欠である.

表1: 評価指標一覧

評価指標	今回の講座で	値域	見方
AUC	2群分 使用する評価指標	$0\sim 1$	値が大きい方が良い
Log Loss	3群以上マンプスス・フェースエコェル・	$0\sim \infty$	値が小さい方が良い
RMSE	個数. 例:売り上げ個数, 降水量.	$0\sim \infty$	値が小さい方が良い
MAE	個数. 例:売り上げ個数 降水量	0 ~ ∞	値が小さい方が良い
NDCG	ここを見るだり ^{順序. 例:検索} ここを見るだり	0~1	値が大きい方が良い
MAP@n	(2群分類) ⁿ ×順 方 . 例: 購入商品.	$\sum_{i=1}^n 1/k$	値が大きい方が良い

モデルの精度評価(RMSE)

RMSE (Root Mean Squared Error)

RMSEとは, N = 予測対象数, $y_i =$ 実現値, $\hat{y}_i =$ 予測値として,

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2}$$

で定義される. 予測対象全てを誤差無しに当てることができれば, 値は0となる. 1ヶ所大きく外すと, 値はより大きくなる.

左図の赤い縦線の長さが、Modelの予測値と実現値の差を表しており、 $y_i - \hat{y}_i$ と対応している.

モデルの精度評価(分類)

▶ 分類の精度とは?

いま, 犬と猫の混合データがあり, データから犬か猫かを分類したい. 仮に, 体重で識別するモデルと, エサ代で識別するモデルを考える.

図3,4の場合,A,Bをそれぞれの閾値として分類する.なるべく2群の山が,重ならないようになるモデルの方が識別が出来ている.そこで,「重なり具合」から精度を評価することを考える.

モデルの精度評価(正解率と誤分類率)

> 正解率と誤分類率

「重なり具合」の指標の1つとして,正解率と誤分類率が考えられる.

正解率 = (予測対象の内, 正しく分類した割合)

誤分類率 = (予測対象の内, 誤って分類した割合)

表2: 予測データ1

番号	真の分類	体重[kg]	
1	犬	32.3	
2	犬	25.4	
3	犬	15.2	
4	猫	10.1	
5	犬	8.7	
6	猫	7.5	
7	犬	6.9	
8	猫	4.8	
9	猫	4.3	
10	猫	3.2	

予測 犬 犬 --- 10kg 猫

表2は10匹(犬5匹, 猫5匹)の予測対象データを体重の重い順に並べたものである. このとき, 10kgを閾値として**体重モデル(Model1)**を考えると,

正解率 = (3+4)/(5+5) = 0.7

誤分類率 = (1+2)/(5+5) = 0.3

と計算できる.

しかし, この正解率、誤分類率では モデルの精度を上手く説明できない.

モデルの精度評価(正解率と誤分類率)

▶ 極端なデータの誤分類率

極端に猫の件数が多い場合を考える. いま, 表2の猫の件数が, そのまま 100倍の件数になるデータを表3とする. このとき, 犬5匹, 猫500匹に対して, Model1と, 体重に関係なく**全てを猫と分類するモデル(Model2)**を考える.

表3: -	予測デ	ータ2

番号	真の分類	体重[kg]
1	犬	32.3
2	犬	25.4
3	犬	15.2
4~103	猫	10.1
104	犬	8.7
105~204	猫	7.5
205	犬	6.9
206~305	猫	4.8
306~405	猫	4.3
406~505	猫	3.2

Model1 Model2

- ・Model1の誤分類率: (100+2)/(500+5) ≒ 0.20
- ・Model2の誤分類率: (0+5)/(500+5) ≒ 0.01

以上の結果より, 誤分類率 を指標とすると, Model2の方 が20倍精度の良いことにな る.

→この場合は, 誤分類率は精度評価には使えない.

モデルの精度評価(混同行列)

➤ 混同行列(Confusion Matrix)

異なる数の2群を予測するモデルに対しての指標を考えるために**, 混同行列**を定義する. 混同行列は下記の4種類の値を行列にしたものである.

True Positive(TP) : 犬を犬と予測した数 False Negative(FN): 犬を猫と予測した数 False Positive(FP) : 猫を犬と予測した数

True Negative(TN): 猫を猫と予測した数

表4: 予測データ1(再掲)

真の分類 |体重[kg]| 予測 犬 32.3 1 犬 25.4 犬 2 3 15.2 4 猫 10.1 -10kg 犬 5 7.5 猫 6 6.9 7 犬 猫 4.8 猫 8 猫 4.3 9

表5: 予測データ1の混同行列

		予測		
	犬 猫		合計	
真の	犬	True Positive (TP)	False Negative (FN) 2	Positive (P) 5
分類	猫	False Positive (FP)	True Negative (TN)	Negative (N) 5

※ここでは、犬を予測したい対象(Positive)とする。

猫

10

▶ 適合率と再現率

適合率

予測の分類が犬のうち、真の分類も犬である割合: TP/(TP+FP)=0.75 犬の予測精度を評価

再現率

真の分類が犬のうち、予測の分類も犬である割合: TP/(TP+FN)=0.6 犬の取りこぼしを評価

表4: 予測データ1(再掲)

番号	真の分類	体重[kg]	予測
1	犬	32.3	
2	犬	25.4	犬
3	犬	15.2	
4	猫	10.1	-10kc
5	犬	8.7	TUKÇ
6	猫	7.5	
7	犬	6.9	x ±±
8	猫	4.8	猫
9	猫	4.3	
10	猫	3.2	\

表5: 予測データ1の混同行列

		予測		
	犬 猫		合計	
真 の	犬	True Positive (TP) 3	False Negative (FN) 2	Positive (P) 5
分類	猫	False Positive (FP) 1	True Negative (TN) 4	Negative (N) 5

※ここでは、犬を予測したい対象(Positive)とする。

▶ 極端なデータの適合率と再現率

先ほどと同様に,極端に猫の件数が多い場合を考える. 犬5匹, 猫500匹に対して, Model1と, **全てを猫と分類するモデル(Model2)**を考える.

表: 予測データ2(再掲) Model1 Model2

			_
番号	真の分類	体重[kg]	予
1	犬	32.3	
2	犬	25.4	
3	犬	15.2	
4~103	猫	10.1	
104	犬	8.7	
105~204	猫	7.5	
205	犬	6.9	
206~305	猫	4.8	
306~405	猫	4.3	
406~505	猫	3.2	•

	亨	列	測
3			
ŀ		犬	猫
2			,
L		10kg	
7		TUKG	
-			
)		猫	猫
8			
3			

Model1

		予測		
		犬	合計	
真	犬	True Positive	False Negative	Positive
の		3	2	5
分	猫	False Positive	True Negative	Negative
類)田	100	400	500

Model2

		予測の分類		
		犬猫		合計
真	犬	True Positive	False Negative	Positive
の		0	5	5
分	х±	False Positive	True Negative	Negative
類	猫	0	500	500

▶ 極端なデータの適合率と再現率

先ほどと同様に,極端に猫の件数が多い場合を考える. 犬5匹, 猫500匹に対して, Model1と, **全てを猫と分類するモデル(Model2)**を考える.

適合率		再現率
Model1	3/103 ÷ 0.02	3/5 = 0.6
Model2	算出不能(<mark>0</mark> /0)	0 /5 = 0

以上の結果より, 適合率は比較できず, 再現率はModel1が高くなる. 適合率, 再現率どちらを重視するかは, 問題により異なる.

Model1

		予測		
		合計		
真の分類	犬	True Positive	False Negative	Positive
		3	2	5
	x ++	False Positive	True Negative	Negative
	猫	100	400	500

Model2

予測の分類			の分類	
		合計		
真の	犬	True Positive 0	False Negative 5	Positive 5
分 類	猫	False Positive 0	True Negative 500	Negative 500

▶ 適合率と再現率の例

適合率と再現率はどちらを使えばよいかは、分析目的に依存する.

例) クレジットカードのデフォルト予測 あなたがクレジットカードのデフォルトを予測するとき、どのような予測 をするべきか?

再現率を重視する場合

- ・デフォルトする人の取りこぼしを評価.
- ・デフォルトする人をできるだけ検知したいときに使用.

適合率を重視する場合

- ・デフォルトする人の予測精度を評価.
- ・効率的にデフォルトする人を検知したいときに使用.

重視する指標を決め、条件付き指標(再現率が0.8を超える中でできるだけ 適合率を上げるなど)を使用することもある.

▶ 偽陽性率と真陽性率(引用: はじめてのパターン認識,第3章)

適合率や再現率は**閾値を設定する必要があり**、また**TNが考慮されていない**. それらを考慮した指標であるAUCを紹介する. まずは下記のように**偽 陽性率**と**真陽性率**を定義する.

真陽性率 = 犬の中で犬と正しく分類した割合,

偽陽性率 = **猫の中**で犬と誤分類した割合

表5: 予測データ1の混同行列

表4: 🗄	予測デー	-夕1(拝	[掲)
-------	------	-------	-----

	番号	真	の分	類	体重[kg]	予測	
	1		犬		32.3		
	2		犬		25.4	犬	
	3		犬		15.2		
	4		猫		10.1	101/6	
	5		犬		8.7	10kg	
	6 猫			7.5			
	7		犬		6.9	х++-	
	8	猫			4.8	猫	
	9		猫		4.3		
	10		猫		3.2		

		予測		
		犬	猫	合計
真の	犬	True Positive (TP)	False Negative (FN) 2	Positive (P) 5
分 類	猫	False Positive (FP)	True Negative (TN) 4	Negative (N) 5

- ·真陽性率: TP/P = 3/5 = 0.6
- · 偽陽性率: FP/N = 1/5 = 0.2

偽陽性率(偽)と真陽性率(真)は,両方とも片方の群のみから算出されるので,**2群の数が異なる場合でも有効な指標である**.

閾値を+∞から下げていき, 偽陽性率が増えずに真陽性率が増えれば2群 同士の「重なり合い」が少ない指標となる.

偽陽性率(偽)と真陽性率(真)は,両方とも片方の群のみから算出されるので,**2群の数が異なる場合でも有効な指標である**.

閾値を+∞から下げていき, 偽陽性率が増えずに真陽性率が増えれば2群 同士の「重なり合い」が少ない指標となる.

偽陽性率(偽)と真陽性率(真)は,両方とも片方の群のみから算出されるので,**2群の数が異なる場合でも有効な指標である**.

閾値を+∞から下げていき, 偽陽性率が増えずに真陽性率が増えれば2群 同士の「重なり合い」が少ない指標となる.

偽陽性率(偽)と真陽性率(真)は,両方とも片方の群のみから算出されるので,**2群の数が異なる場合でも有効な指標である**.

閾値を+∞から下げていき, 偽陽性率が増えずに真陽性率が増えれば2群 同士の「重なり合い」が少ない指標となる.

➤ ROC曲線の作成

先程の偽陽性率と真陽性率の変化をグラフで表したものを, ROC曲線(Receiver Operating Characteristic curve)と呼び, 横軸に偽陽性率, 縦軸に真陽性率をとり, 閾値を+∞から下げたときの変化を線分でつないだ曲線である.

表6: 予測データ1(再掲)

番号	真の分類	体重[kg]
1	犬	32.3
2	犬	25.4
3	犬	15.2
4	猫	10.1
5	犬	8.7
6	猫	7.5
7	犬	6.9
8	猫	4.8
9	猫	4.3
10	猫	3.2

表7: ROC曲線準備

番号	真の分類	体重[kg]	偽陽性率	真陽性率
1	犬	32.3	0.0	0.2
2	犬	25.4	0.0	0.4
3	犬	15.2	0.0	0.6
4	猫	10.1	0.2	0.6
5	犬	8.7	0.2	0.8
6	猫	7.5	0.4	0.8
7	犬	6.9	0.4	1.0
8	猫	4.8	0.6	1.0
9	猫	4.3	0.8	1.0
10	猫	3.2	1.0	1.0

➤ ROC曲線の作成

先程の偽陽性率と真陽性率の変化をグラフで表したものを, ROC曲線(Receiver Operating Characteristic curve)と呼び, 横軸に偽陽性率, 縦軸に真陽性率をとり, 閾値を+∞から下げたときの変化を線分でつないだ曲線である.

表6: 予測データ1(再掲)

番号	真の分類	体重[kg]
1	犬	32.3
2	犬	25.4
3	犬	15.2
4	猫	10.1
5	犬	8.7
6	猫	7.5
7	犬	6.9
8	猫	4.8
9	猫	4.3
10	猫	3.2

偽陽性率 = 0/5 = 0

番号	真の分類	体重[kg]	偽陽性率	真陽性率
1	犬	32.3	0.0	0.2
2	犬	25.4	0.0	0.4
3	犬	15.2	0.0	0.6
4	猫	10.1	0.2	0.6
5	犬	8.7	0.2	0.8
6	猫	7.5	0.4	0.8
7	犬	6.9	0.4	1.0
8	猫	4.8	0.6	1.0
9	猫	4.3	0.8	1.0
10	猫	3.2	1.0	1.0

➤ ROC曲線の作成

先程の偽陽性率と真陽性率の変化をグラフで表したものを, ROC曲線(Receiver Operating Characteristic curve)と呼び, 横軸に偽陽性率, 縦軸に真陽性率をとり, 閾値を+∞から下げたときの変化を線分でつないだ曲線である.

表6:	予測データ	タ1(再掲)	-
番号	真の分類	体重[kg]	•
1	犬	32.3	
2	犬	25.4	
3	犬	15.2	
4	猫	10.1	
5	犬	8.7	
6	猫	7.5	
7	犬	6.9	
8	猫	4.8	
9	猫	4.3	
10	猫	3.2	

 	0/		=	0	
真	陽				
=	1/	5	=	0.	2)

為限性茲

番号	真の分類	₹/: ROC⊞ 体重[kg]	偽陽性率	真陽性率
1	犬	32.3	0.0	0.2
2	犬	25.4	0.0	0.4
3	犬	15.2	0.0	0.6
4	猫	10.1	0.2	0.6
5	犬	8.7	0.2	0.8
6	猫	7.5	0.4	0.8
7	犬	6.9	0.4	1.0
8	猫	4.8	0.6	1.0
9	猫	4.3	0.8	1.0
10	猫	3.2	1.0	1.0

マ・ロヘク出物が生

➤ ROC曲線の作成

先程の偽陽性率と真陽性率の変化をグラフで表したものを, ROC曲線(Receiver Operating Characteristic curve)と呼び, 横軸に偽陽性率, 縦軸に真陽性率をとり, 閾値を+∞から下げたときの変化を線分でつないだ曲線である.

10.	יאיי ר	7 1(11)0)
番号	真の分類	体重[kg]
1	犬	32.3
2	犬	25.4
3	犬	15.2
4	猫	10.1
5	犬	8.7
6	猫	7.5
7	犬	6.9
8	猫	4.8
9	猫	4.3
10	猫	3.2

偽陽性率 = 0/5 = 0

番号	真の分類	体重[kg]	偽陽性率	真陽性率
1	犬	32.3	0.0	0.2
2	犬	25.4	0.0	0.4
3	犬	15.2	0.0	0.6
4	猫	10.1	0.2	0.6
5	犬	8.7	0.2	0.8
6	猫	7.5	0.4	0.8
7	犬	6.9	0.4	1.0
8	猫	4.8	0.6	1.0
9	猫	4.3	0.8	1.0
10	猫	3.2	1.0	1.0

➤ ROC曲線の作成

先程の偽陽性率と真陽性率の変化をグラフで表したものを, ROC曲線(Receiver Operating Characteristic curve)と呼び, 横軸に偽陽性率, 縦軸に真陽性率をとり, 閾値を+∞から下げたときの変化を線分でつないだ曲線である.

表6: 予測データ1(再掲)

番号	真	の分	類	体重[kg]	
1		犬		32.3	
2		犬		25.4	
3		犬		15.2	
4	猫			10.1	
5	犬			8.7	
6	猫			7.5	
7	犬			6.9	
8	猫			4.8	
9	猫			4.3	
10		猫		3.2	

偽陽性率 = 0/5 = 0

番号	真の分類	体重[kg]	偽陽性率	真陽性率
1	犬	32.3	0.0	0.2
2	犬	25.4	0.0	0.4
3	犬	15.2	0.0	0.6
4	猫	10.1	0.2	0.6
5	犬	8.7	0.2	0.8
6	猫	7.5	0.4	0.8
7	犬	6.9	0.4	1.0
8	猫	4.8	0.6	1.0
9	猫	4.3	0.8	1.0
10	猫	3.2	1.0	1.0

➤ ROC曲線の作成

先程の偽陽性率と真陽性率の変化をグラフで表したものを, ROC曲線(Receiver Operating Characteristic curve)と呼び, 横軸に偽陽性率, 縦軸に真陽性率をとり, 閾値を+∞から下げたときの変化を線分でつないだ曲線である.

表6: 予測データ1(再掲)

番号	真の分類			体重[kg]	
1		犬		32.3	
2		犬		25.4	
3		犬		15.2	
4		猫		10.1	
5	犬			8.7	
6	猫			7.5	
7	犬			6.9	
8	猫			4.8	
9	猫			4.3	
10		猫		3.2	

偽陽性率 = 1,5 = 0.2

番号	真の分類	体重[kg]	偽陽性率	真陽性率
1	犬	32.3	0.0	0.2
2	犬	25.4	0.0	0.4
3	犬	15.2	0.0	0.6
4	猫	10.1	0.2	0.6
5	犬	8.7	0.2	0.8
6	猫	7.5	0.4	0.8
7	犬	6.9	0.4	1.0
8	猫	4.8	0.6	1.0
9	猫	4.3	0.8	1.0
10	猫	3.2	1.0	1.0

➤ ROC曲線の作成

先程の偽陽性率と真陽性率の変化をグラフで表したものを, ROC曲線(Receiver Operating Characteristic curve)と呼び, 横軸に偽陽性率, 縦軸に真陽性率をとり, 閾値を+∞から下げたときの変化を線分でつないだ曲線である.

表6: 予測データ1(再掲)

180.	J.,	バンノ		<u>/ T(L2)@/</u>	,
番号	真	の分	類	体重[kg]	•
1		犬		32.3	
2		犬		25.4	
3		犬		15.2	
4		猫		10.1	
5		犬		8.7	
6	猫			7.5	
7	犬			6.9	
8	猫			4.8	
9	猫			4.3	
10		猫		3.2	

偽陽性率 = 1,5 = 0.2

番号	真の分類	体重[kg]	偽陽性率	真陽性率
1	犬	32.3	0.0	0.2
2	犬	25.4	0.0	0.4
3	犬	15.2	0.0	0.6
4	猫	10.1	0.2	0.6
5	犬	8.7	0.2	0.8
6	猫	7.5	0.4	0.8
7	犬	6.9	0.4	1.0
8	猫	4.8	0.6	1.0
9	猫	4.3	0.8	1.0
10	猫	3.2	1.0	1.0

➤ ROC曲線の作成

先程の偽陽性率と真陽性率の変化をグラフで表したものを, ROC曲線(Receiver Operating Characteristic curve)と呼び, 横軸に偽陽性率, 縦軸に真陽性率をとり, 閾値を+∞から下げたときの変化を線分でつないだ曲線である.

表6: 予測データ1(再掲) _

	10.				<u> </u>
1	番号	真	の分	類	体重[kg]
	1		犬		32.3
	2		犬		25.4
	3		犬		15.2
	4		猫		10.1
	5		犬		8.7
	6		猫		7.5
	7		犬		6.9
	8		猫		4.8
	9		猫		4.3
	10		猫		3.2

偽陽性率

$$=2/5 = 0.4$$

番号	真の分類	体重[kg]	偽陽性率	真陽性率
1	犬	32.3	0.0	0.2
2	犬	25.4	0.0	0.4
3	犬	15.2	0.0	0.6
4	猫	10.1	0.2	0.6
5	犬	8.7	0.2	0.8
6	猫	7.5	0.4	0.8
7	犬	6.9	0.4	1.0
8	猫	4.8	0.6	1.0
9	猫	4.3	0.8	1.0
10	猫	3.2	1.0	1.0

➤ ROC曲線の作成

先程の偽陽性率と真陽性率の変化をグラフで表したものを, ROC曲線(Receiver Operating Characteristic curve)と呼び, 横軸に偽陽性率, 縦軸に真陽性率をとり, 閾値を+∞から下げたときの変化を線分でつないだ曲線である.

表6: 予測データ1(再掲) .

	180.	コ・バデュン .			\ \(\frac{1}{1} \frac{1}{1} \frac{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac
	番号	真	の分	類	体重[kg]
	1		犬		32.3
	2		犬		25.4
	3		犬		15.2
	4		猫		10.1
	5		犬		8.7
	6		猫		7.5
_	7		犬		6.9
	8		猫		4.8
	9		猫		4.3
	10		猫		3.2

偽陽性率

$$=2/5 = 0.4$$

番号	真の分類	体重[kg]	偽陽性率	真陽性率
1	犬	32.3	0.0	0.2
2	犬	25.4	0.0	0.4
3	犬	15.2	0.0	0.6
4	猫	10.1	0.2	0.6
5	犬	8.7	0.2	0.8
6	猫	7.5	0.4	0.8
7	犬	6.9	0.4	1.0
8	猫	4.8	0.6	1.0
9	猫	4.3	0.8	1.0
10	猫	3.2	1.0	1.0

➤ ROC曲線の作成

先程の偽陽性率と真陽性率の変化をグラフで表したものを, ROC曲線(Receiver Operating Characteristic curve)と呼び, 横軸に偽陽性率, 縦軸に真陽性率をとり, 閾値を+∞から下げたときの変化を線分でつないだ曲線である.

表6: 予測データ1(再掲)

120.	٠,٠	バリノ	-	7 T(++10)	_
番号	真	の分	類	体重[kg]	
1		犬		32.3	
2		犬		25.4	
3		犬		15.2	
4		猫		10.1	
5		犬		8.7	
6		猫		7.5	
7		犬		6.9	
8		猫		4.8	
9		猫		4.3	
10		猫		3.2	
	番号 1 2 3 4 5 6 7 8	番号 真 1 2 3 3 4 5 5 5 5 6 7 7 8 9 9	番号 真の分 1 犬 2 犬 3 犬 4 猫 5 犬 6 猫 7 犬 8 猫 9 猫	番号 真の分類 1	番号 真の分類 体重[kg] 1 犬 32.3 2 犬 ス 25.4 3 犬 15.2 4 猫 10.1 5 犬 8.7 6 猫 7.5 7 犬 6.9 8 猫 4.8

偽陽性率

$$=3/5 = 0.6$$

番号	真の分類	体重[kg]	偽陽性率	真陽性率
1	犬	32.3	0.0	0.2
2	犬	25.4	0.0	0.4
3	犬	15.2	0.0	0.6
4	猫	10.1	0.2	0.6
5	犬	8.7	0.2	0.8
6	猫	7.5	0.4	0.8
7	犬	6.9	0.4	1.0
8	猫	4.8	0.6	1.0
9	猫	4.3	8.0	1.0
10	猫	3.2	1.0	1.0

➤ ROC曲線の作成

先程の偽陽性率と真陽性率の変化をグラフで表したものを, ROC曲線(Receiver Operating Characteristic curve)と呼び, 横軸に偽陽性率, 縦軸に真陽性率をとり, 閾値を+∞から下げたときの変化を線分でつないだ曲線である.

表6: 予測データ1(再掲)

番号	真	の分	類	体重[kg]	/
1		犬		32.3	
2		犬		25.4	
3		犬		15.2	
4		猫		10.1	
5		犬		8.7	
6		猫		7.5	
7		犬		6.9	
8		猫		4.8	
9		猫		4.3	
10		猫		3.2	

偽陽性率

番号	真の分類	体重[kg]	偽陽性率	真陽性率
1	犬	32.3	0.0	0.2
2	犬	25.4	0.0	0.4
3	犬	15.2	0.0	0.6
4	猫	10.1	0.2	0.6
5	犬	8.7	0.2	0.8
6	猫	7.5	0.4	0.8
7	犬	6.9	0.4	1.0
8	猫	4.8	0.6	1.0
9	猫	4.3	0.8	1.0
10	猫	3.2	1.0	1.0

➤ ROC曲線の作成

先程の偽陽性率と真陽性率の変化をグラフで表したものを, ROC曲線(Receiver Operating Characteristic curve)と呼び, 横軸に偽陽性率, 縦軸に真陽性率をとり, 閾値を+∞から下げたときの変化を線分でつないだ曲線である.

表6: 予測データ1(再掲)

番号	真	の分	類	体重[kg]	
1		犬		32.3	
2		犬		25.4	
3		犬		15.2	
4		猫		10.1	
5		犬		8.7	
6		猫		7.5	
7		犬		6.9	
8		猫		4.8	
9		猫		4.3	
10		猫		3.2	_

偽陽性率

$$=555 = (1.0)$$

番号	真の分類	体重[kg]	偽陽性率	真陽性率
1	犬	32.3	0.0	0.2
2	犬	25.4	0.0	0.4
3	犬	15.2	0.0	0.6
4	猫	10.1	0.2	0.6
5	犬	8.7	0.2	0.8
6	猫	7.5	0.4	0.8
7	犬	6.9	0.4	1.0
8	猫	4.8	0.6	1.0
9	猫	4.3	0.8	1.0
10	猫	3.2	1.0	1.0

表7をプロットすると図6の様に階段の形の曲線が出来る. また, 2群が重なることなく完全に分類された場合は, 図7の様になり, ランダム分類された場合は, 図8の様になる.

➤ AUCの定義

ROC曲線下の面積をAUC値とする.

したがって、図6のAUCは、

 $AUC = 0.2 \times 0.6 + 0.2 \times 0.8 + 0.6 \times 1.0 = 0.88$

> AUCの比較1

ここで, 先ほど誤分類率では出来なかった, モデルの精度評価に戻る. 極端に猫に偏った予測データ2のROC曲線は, 予測データ1と一致する. したがって, AUCの値も**一致する**ので, 群の偏りによらず安定な精度評価が出来ている.

表8: 予測データ2(再掲)

番号	真の分類	体重[kg]
1	犬	32.3
2	犬	25.4
3	犬	15.2
4~103	猫	10.1
104	犬	8.7
105~204	猫	7.5
205	犬	6.9
206~305	猫	4.8
306~405	猫	4.3
406~505	猫	3.2

計算例: 偽陽性率 = 100/500 = 0.2

真陽性率 = 3/5 = 0.6

番号	真の分類	体重[kg]	偽陽性率	真陽性率
1	犬	32.3	0.0	0.2
2	犬	25.4	0.0	0.4
3	犬	15.2	0.0	0.6
4~103	猫	10.1	0.2	0.6
104	犬	8.7	0.2	0.8
105~204	猫	7.5	0.4	0.8
205	犬	6.9	0.4	1.0
206~305	猫	4.8	0.6	1.0
306~405	猫	4.3	0.8	1.0
406~505	猫	3.2	1.0	1.0

モデルの精度評価(AUC) ⑥

AUCの比較2

次に,全てを猫と分類するモデルの精度評価を行う.いま,全てを猫 と分類するモデルのAUCは, 予測データ1も予測データ2も0.5である. なぜならば、表10の様に猫フラグを全てに立てているのと同じことで、 全てのデータが同時に閾値を超えるので $,(0,0)\rightarrow(1,1)$ となる.

表10: 猫フラグ

番号	真の分類	猫フラグ
1	犬	1
2	犬	1
3	犬	1
4~103	猫	1
104	犬	1
105~204	猫	1
205	犬	1
206~305	猫	1
306~405	猫	1
406~505	猫	1

表11: ROC曲線準備

閾値	偽陽性率	真陽性率
+∞ ~ 1	0.0	0.0
1未満	1.0	1.0

AUC = 0.5

図9: ROC曲線(全猫)

➤ AUCの比較3

誤分類率とAUCの値を,予測データ1と予測データ2ごとにまとめる.

表12: 精度評価比較(予測データ1)

予測データ1		モデル		
		体重モデル	全て猫と分類する	
			モデル	
指	誤分類率	0.3	0.5	
標	AUC	0.88	0.5	

表13: 精度評価比較(予測データ2)

予測データ2		モデル			
		仕手 てご!!	全て猫と分類する		
		体重モデル	モデル		
指	誤分類率	0.2	0.01		
標	AUC	0.88	0.5		

表12, 表13を比べると, AUCは安定して精度評価を行っていることが分かる. したがって, 2群分類モデルの精度評価はAUCが有用である.

データの偏りに左右されないことを要求する背景の1つとして, 医療診断が挙げられる. 健康な人の群と, 健康でない人の群に分類する場合に, どうしても健康でない人の群は少なくなる. このとき, 医療診断の精度を正しく評価する上でAUCが使われている.

> AUCの比較3

誤分類率とAUCの値を,予測データ1と予測データ2ごとにまとめる.

表12: 精度評価比較(予測データ1)

表13: 精度評価比較(予測データ2)

		モデル				モデル	
予測	データ1	体重モデル	全て猫と分類する モデル	予測表	データ2	体重モデル	全て猫と分類する モデル
指	誤分類率	0.3	0.5	指	誤分類率	0.2	0.01
標	AUC	0.88	0.5	標	AUC	0.88	0.5

表12, 表13を比べると, AUCは安定して精度評価を行っていることが分かる. したがって, 2群分類モデルの精度評価はAUCが有用である.

データの偏りに左右されないことを要求する背景の1つとして, 医療診断が挙げられる. 健康な人の群と, 健康でない人の群に分類する場合に, どうしても健康でない人の群は少なくなる. このとき, 医療診断の精度を正しく評価する上でAUCが使われている.

- ➤ AUCの性質(引用: はじめてのパターン認識,章末問題3.3)
 AUCの値がランダム分類の0.5を下回った,AUCの値を上げるにはどうすれば良いか?
 - → 現在の結果と逆の分類にすれば良い(犬→猫, 猫→犬). 2群分類において, 全てを不正解にするには, 全てを当てないといけないからである.
- ➤ AUCの計算
 Python, RともにいつくつかAUCを計算するパッケージがある.
 - ✓ 第2回のサンプルプログラム内で計算する

~補足資料~

補足資料(混同行列)①

ightharpoonless <math>
ightharpoonless 混同行列(引用: はじめてのパターン認識, 第3章) 2群分類では, 対象xが1つの群に属しているか否かを考えれば良く, 属していると予測する集合をp(陽性:positive), 属していないと予測する集合をn(陰性:negative)とする.

表14: 混同行列(Confusion Matrix)

		予測の		
		p	n	合計
真の	p^*	True Positive (TP)	False Negative (FN)	P = TP + FN
分類	n^*	False Positive (FP)	True Negative (TN)	N = FP + TN

補足資料(混同行列)②

▶ 記号の整理と評価値(引用: はじめてのパターン認識,第3章)

表15: 記号の定義1

記号	定義		
p^*	実際は群に属している集合.		
n^*	実際は群に属していない集合.		
Р	p*の件数.		
N	n*の件数.		

表16: 記号の定義2

記号	定義		
TP	$p^*をp^*と予測した件数.$		
FN	$p^*をn^*と予測した件数.$		
TN	$n^*をn^*と予測した件数.$		
FP	$n^*をp^*と予測した件数.$		

表17: 良く使用される評価値

名前	意味	定義
偽陽性率	$m{n}^*$ の中で $m{p}^*$ と誤予測した割合.	FP/N
真陽性率	p^* の中 で正しく p^* と予測した割合.	TP/P
適合率(Pr)	p^* と予測した中で実際に p^* である割合.	TP/(TP+FP)
再現率(R)	予測対象外も含めた $p^*(=:p^*_{all})$ のうち, p^* と予測できた割合.	TP/P_all
正確度	正しく予測できた割合.	(TP+TN)/(P+N)
F値(F尺度)	適合率と再現率の調和平均(詳しくは補足資料1).	2/(1/Pr+1/R)

補足資料(適合率と再現率, ROC曲線)

▶ 適合率と再現率の関係

適合率と再現率は二律背反の関係(トレードオフ)であることが分かる.

適合率:=TP/(TP+FP)

再現率:=TP/ p_{all}^*

 p_{all}^* の件数は定数なので, 再現率を上げるため, TPを増やそうとpを大きくするとFPも増える可能性があり, 結果的に適合率は下がる.

➤ ROC曲線の作成

例えば、Model1が2群 $(p^*$:契約, n^* :非契約)に対して p^* に属する確率を出すとする. このとき, Xを予測するデータ集合とすると, $X \in X$ に対して,

Model1(
$$x$$
) = y_1 (y_1 :スコア)

とかける. いま, 契約スコアの降順でデータを並べ, 上のデータから順に閾値を超える様に, 閾値を下げていく, 各閾値ごとに閾値を超えるデータを p^* (契約)として偽陽性率と真陽性率を計算し, 横軸を偽陽性率, 縦軸を真陽性率として, グラフにしたものがROC曲線である.

補足資料(MAE)

➤ MAE (Mean Absolute Error)

MAEとは, N = 予測対象数, $y_i =$ 実現値, $\hat{y}_i =$ 予測値として,

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

で定義される. 予測対象全てを誤差無しに当てることができれば, スコアは0となり, モデルの誤差の平均を推し量れる.

補足資料(NDCG)

NDCG (Normalized Discounted Cumulated Gain)
NDCGとは、何かワードをWEB検索する例を考えると、k=表示する検索結果数、 $rel_i=$ 表示i番目のWEBページ満足度として、

$$NDCG_k = \frac{DCG_k}{IDCG_k}, \quad DCG_k = \sum_{i=1}^k \frac{2^{rel_{i-1}}}{\log_2(i+1)},$$

 $IDCG_k = DCG_k$ 最大スコア(満足度の高い順に検索結果を表示)

で定義される.満足度の高い順に検索結果を表示できれば,最大スコアの1となり,0に近づくほど精度が悪くなる.

✓ 具体例

表2: 検索結果表示順序と満足度

WEBページ	<i>i</i> :表示順序	rel _{i:} 満足度	
Α	1	5	
В	3	4	
С	2	3	

$$DCG_{k} = \frac{2^{5}-1}{\log_{2}(1+1)} + \frac{2^{4}-1}{\log_{2}(3+1)} + \frac{2^{3}-1}{\log_{2}(2+1)} = 42.916$$

$$IDCG_{k} = \frac{2^{5}-1}{\log_{2}(1+1)} + \frac{2^{4}-1}{\log_{2}(2+1)} + \frac{2^{3}-1}{\log_{2}(3+1)} = 43.964$$

$$NDCG_{k} = \frac{DCG_{k}}{IDCG_{k}} = 0.976$$

補足資料(MAP@n)

➤ MAP@n (Mean Average Precision)

MAP@nとは,最大n個の商品推薦の例を考えると,U =予測対象人数, $p_u(k) =$ ユーザuにおいてk番目までの当たり確率,h =予測した商品数,m =ユーザuが実際に購入した商品数として,

MAP@n =
$$\frac{1}{U} \sum_{u=1}^{U} \left(\frac{1}{\min(m,n)} \sum_{k=1}^{\min(h,n)} P_u(k) \right)$$

m=0のとき,

$$\frac{1}{\min(m,n)} \sum_{k=1}^{\min(h,n)} P_u(k) = 0$$

で定義される. 最大スコアは $\sum_{k=1}^{n} 1/k$ (標準化された場合は1).

補足資料(Log Loss)

Log Loss

Log Lossとは、3群以上の分類に用いられることが多く、N= 予測対象数、M= 分類する群数、 $y_{ij}=$ i番目の対象が真にj番目の群のとき1、そうでないとき0、 $p_{ij}=$ i番目の対象がj番目の群である予測確率として、

$$LogLoss = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{M} y_{ij} \log(p_{ij})$$

で定義される.0に近いほど良いスコアである.

引用,参考文献

[1] 平井有三:はじめてのパターン認識, 2012年, 森北出版株式会社

[2] 石田基広: Rで学ぶデータ・プログラミング入門, 2012年, 共立出版