CNN IMPROVEMENT

https://www.youtube.com/watch?v=KuXjwB4LzSA

Michał Binda, Karolina Mączka, Bogumiła Okrojek, Adrian Zaręba

Problemy

01

Badanie etykiet dwóch elementów na czarnym tle oraz relacji przestrzennej między nimi **02**

Badanie etykiet dwóch elementów na czarnym tle oraz relacji przestrzennej między nimi z dodaniem 500 zaszumowanych pikseli. Badanie etykiet dwóch elementów o różnych wielkościach na czarnym tle oraz relacji przestrzennej między nimi.

03

szumy

zwykły obrazek

zmiana rozmiarów

Metody

01 **02**

"zwykła" - architektura zdefiniowana przez Kevin Swingler i MandyBath

sieć RNA

sieć U-Net

03

Architektura standardowej sieci

Architektura RNA

Architektura RNA

Layer Type	Purpuse/output	Input Size	Output Size
FC1	processes: combined initial prediction and adaptation signal	(batch_size, 48)	(batch_size, 128)
FC2	processes: combined initial prediction and adaptation signal	(batch_size, 128)	(batch_size, 128)
FC Gamma	output: gamma parameters	(batch_size, 128)	(batch_size, 2, 64)
FC Beta	output: beta parameters	(batch_size, 128)	(batch_size, 2, 64)

$$\operatorname{FiLM}(\mathbf{x}_i; \gamma_i, \beta_i) = \gamma_i \odot \mathbf{x}_i + \beta_i$$

mechanizm działania warstwy FiLM (Feature-wise Linear Modulation)

- **zmienne x** aktywacje
- zmienne gamma i beta współczynniki obliczone przez pomocniczą sieć
- u nas 3 warstwy FiLM po każdym etapie z konwolucją

architektura sieci predykującej parametry wardtwy FiLM

adaptation signal: entropia predykcji

0.5 - 1.5 0.6 - 1.4

0.7 - 1.3

0.8 - 1.2.

0.9 - 1.1

	Standard	RNA
dwa obrazki na czarnym tle	0.6798	0.6824
szumy (największa różnica)	0.5761	0.6524
zmienione rozmiary skalowane w przedziale 0.6 - 1.4 (największa różnica)	0.2787	0.1475

ARCHITEKTURA U-NET

Testy

NIESTANDARDOWE ZASTOSOWANIE

U-NET

Powszechne zastosowania w segmentacji obrazów

Warstwa pośrednia

- Inspekcja domu (Ścieżka kurcząca / Enkoder):
- Szczegółowe notatki (Max Pooling):
- Plan renowacji (Warstwa pośrednia / Bottleneck):
- Renowacja (Ścieżka rozciągająca / Dekoder):
- Odwołanie się do oryginalnych planów (Połączenia skip):
- Końcowy efekt (Ostatnia warstwa):

Preprocessing

Skupialiśmy się wcześniej na usprawnianiu sieci przez dodanie metody.
Tym razem będzie to zastosowanie metody przed standardowym działaniem modelu.

Output vector: [00000010000000000010000]

Object 1 (Label, Position): (6, (0, 16))
Object 2 (Label, Position): (8, (27, 19))

, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0

Object 1 Label: 0, Object 2 Label: 7

Object 1 Label: 0, Predicted Label: 1
Object 2 Label: 6, Predicted Label: 1

Input Image Predicted Mask 1 (Red)

Object 1 at position (7, 23)

Object 1 saved at object_1.png with position (7, 23) Object 2 saved at object_2.png with position (27, 4)