COMP6248 Lab 2 Exercise – PyTorch Autograd

Wei Chien Teoh (Eugene) wct1c16@soton.ac.uk

29 April 2021

Introduction

The results are seeded using torch.manual_seed(0) to provide reproducible results.

1 Implement matrix factorisation using gradient descent (take 2)

1.1 Implement gradient-based factorisation using PyTorch's AD

1.2 Factorise and compute reconstruction error on real data

The results for both gradient-based matrix factorisation (MF) and truncated SVD are shown below.

```
\label{eq:GDLoss} GD\ Loss = 15.228897094726562 Truncated Loss = 15.22883415222168
```

Both results are almost identical. GD factorisation performs gradient-based minimisation on the Frobenius norm. Truncated SVD directly performs low-rank approximation by reducing the SVD to rank 2.

1.3 Compare against PCA

The principle components computed by SVD, U_t and by MF, \hat{U} are illustrated in Fig. 1a and Fig. 1b respectively. \hat{U} is observed to be a rotated and scaled version of U_t . As such, maximising variance is analogous to minimising reconstruction error.

2 A simple MLP

2.1 Implement the MLP

(b) Matrix Factorisation

Figure 1: Projections of first two principle components.

2.2 Test the MLP

Table 1: Accuracies of repeated MLP training.

#	Training Accuracy	Validation Accuracy
0	0.92	0.88
1	0.66	0.66
2	0.92	0.88
3	0.71	0.70
4	0.92	0.88
5	0.92	0.88
6	0.88	0.82
7	0.95	0.88
8	0.85	0.90
9	0.77	0.72

Table 1 shows the results of the repeated MLP training. It is observed that bad random initialisation of weights and biases may majorly impact the accuracy. Examples of bad initialisation are experiments #1, #3 and #9. This may be caused by being stuck at a bad local minima or the vanishing gradient problem. The latter might be due to the weights being initialised between the values 0 to 1.