Collaborating Across Realities Analytical Lenses for Understanding Dyadic Collaboration in Transitional Interfaces

Jan-Henrik Schröder - Daniel Schacht -Niklas Peper - Anita Marie Hamurculu -Hans-Christian Jetter

University of Lübeck, Germa<mark>ny</mark>

CHI '23, April 23–28, 2023, Hamburg, Germany

Summary

- 1. Objectives Challenges Contributions
- 2. Related work and vocabulary
- 3. Study
- 4. Prototype
- 5. Results
- 6. Limitations & Conclusion

Objectives – Challenges - Contributions

Objectives:

- 1. Create a realistic task to study transition between modalities (AR, VR and screen).
- 2. Study transitions, collaboration and awareness.

Challenges:

- 1. Show importance of collaboration between transitional interfaces users.
- 2. Challenge of maintaining awareness and coherence in transitions in different locations.

Contributions:

- 1. TI prototype + study design on transition collaboration. Strategies of participants, perception of collaboration.
- 2. 4 lenses for collaboration

Vocabulary

(TI) Transitional Interfaces

« Cross-reality user interfaces. Freely move along reality-virtuality continuum during collaboration. »

(RCV) Reality-virtuality continuum

Switching between displays, input/output modalities, representation of data or functionality according to their preferences.

Co-context

Same context but don't see each other in real but see each other in "virtual proximal embodiments".

Cross-context

Separate by different context visible with "virtual distal embodiments".

Study

Goals:

- 1. Observe user behavior during a demanding collaborative activity
- 2. Identify recurring patterns and typical characteristics of the transitional collaboration.

Task:

- Collaborative spatial optimization problem.
- Objectif for participants to design the illumination of a factitious, urban park
- They could discover these animals when walking through to navigate the park --> increased the spatial complexity
- Time limit

Experiment:

- 34 participants.
- Sign-up by pairs so they know each other.
- Explanation 10min + task 45min + questionnaire (personal experience & Affinity for Technology Interaction (ATI)
 questionnaire) + interviews (shared experience to consolidate & clarify observations)

Prototype

Context "Reality":

PC + screen. Mini map of the park + location of other + score, bar charts, figures + pins

Context "Augmented Reality":

Hologram of the park + tablet to interact. Add lamps with gaze cursor and touch button on the tablet.

Context "Virtual Reality":

VR visualization of the park at night. First-person experience. Teleportation + actual walking. Adjust brightness. See nocturne animals.

Prototype

Distribution of information and **functionalities** chosen to motivate participants to use transitions between different context and observe collaborative and transitional behavior.

Awareness clue:

- where: each participant see the location of other and their context.
- what: edited or brushed artifacts are highlighted. Team's latest actions.
- who: no need with two participants but color to differentiate their actions.

Talk and listen natural but **no collaborative activities**.

Qualitative Data:

- 3 cameras + microphone + screen streamer → centralize
- Write notes for interviews

Quantitative Data:

- participants position in virtual park
- current context
- scores
- events (mark location, changing context, placing lamps, change brightness)
- post-study questionnaire (individual work + workload as a team + workspace awareness + personal information).

Data

Data Validation

Correlation between score and number of transition → benefices of the prototype.

Figure 7: Correlation of total score and number of transitions.

Team WorkLoad Questionnary (TWLQ) → high demand for team collaboration, especially communication & coordination demand.

Study prototype and tasks afforded sufficiently complex, meaningful, and realistic collaboration in TIs. Participants collaborated successfully and reported sufficient group awareness.

- Workspace awareness can be established in a TI
- 2. Simple designs of transitions and awareness cues can be sufficient
- 3. Verbal communication plays a critical role
- In some cases, users' arousal by and enjoyment of changing contexts could outweigh the physical and temporal demands of switching devices in Tls.

Data

Data Analysis

Two-step analysis:

- 1. Identified characteristic commonalities and differences in transitional collaboration between the dyads.
 - Experimenter's log :behavior, patterns, themes of collaboration
 - One observation = 1 stick note + 1 color = 1 categories
 - Update each day
 - Result: 11 clusters and 4 chosen for step 2
- 2. Used different metrics and visualizations to quantitatively substantiate a selection of four of the observations from step 1.

LENS #1: Understanding Place and Distance in Transitional Collaboration

Measure distance between participants inside virtual park.

$$d = \frac{d_{eucl}(P_1, P_2)}{d_{max}}$$

Use matrices with context-specific histograms showing distributions of the virtual Euclidean distance d as analytical tools.

X-axis = distance normalized

Y-axis = % time

Conclusion:

Co-context collaborative: stand close in the park, view artifacts together, work "loosely-coupled".

Cross-context: work "tightly coupled" --> smaller distance and tightly collaboration.

LENS #2: Temporal Patterns in Transitional Collaboration

Pattern:

- 1. Phase of exploration (strategies, functionalities, responsibilities): majority moved through contexts in parallel
- 2. Phase of coordinated work: different frequencies of transition and individual work

Figure 12: small multiples [39] of a **context time-diagram** representing the usage of contexts over time of each.

Frequency of transitions / number of transition.

Figure 12: Visual Lens #2: Contexts over time of all dyads together with the transition frequency f_{trans} and the duration of the initial co-context exploration phase t_{exp} (where applicable). The duration of t_{exp} is also highlighted in light gray.

LENS #3 : Group Use of Contexts

1 stay in a context + 1 switch between 2 others contexts -- > V + A/R to avoid time consumption OR R + A/V to have a global view.

Context triforce for notation and formalization of context's usage.

Nodes = context combinations Edges = transitions / thickness= quantity percentage

No difference between P1 & P2

Fast overview of preferred context combination, cocontext VS cross-context collaboration and frequently used transitions

Figure 14: Visual Lens #3: All context triforces showing group usages of our TI. See legend in the bottom right corner.

LENS #4: Individual Use of Contexts

- Two roles: one change and the other stay in a context. Voluntary or not.
- Two change frequently.
- Measure asymmetry: describe individual patterns.

Context triforce

Nodes = context Compare the 2 graph of triforce example D3 and D10 or D5 and D12.

Participant influence each other's usage patterns.

Need to considered individual behavior and group.

Figure 15: Visual Lens #4: Individual usages of our TI represented by our personal context graph and the ratio of r_{trans} of each dyad. See legend in the bottom right corner.

Limitations & Conclusion

Limitations

Observations limited to this specific task and design of this prototype

→ Should work on transitional collaboration in realwork tasks.

Limit with dyadic collaboration and three contexts

Quantitative Analyse

Interpret differently the data.

Qualitative Analyse

Calcul Euclidean distance is not necessary linked to close collaboration.

→ Better to study co-located, remote and hybrid collaboration

Conclusion

- Methodological contribution through transitional collaboration.
- Study collaborative behavior.
- New tools for analyzing transitional collaboration or evaluating TIs based on new metrics and visualizations.
- Task great for collaboration and awareness.
- Analytical lenses to identify and analyze various commonalities and differences between each dyads.
- Findings about TI design: affect performance of users and their perception of transitional collaboration.
- Role of awareness cues, verbal communication, task load and cost of device switching.