Effects of Interference on Wireless Mesh Networks: Pathologies and a Preliminary Solution

Yi Li, Lili Qiu, Yin Zhang, Ratul Mahajan Zifei Zhong, Gaurav Deshpande, Eric Rozner

University of Texas, Austin Microsoft Research

Wireless Mesh Networks

Can enable ubiquitous and cheap broadband access
Witnessing significant research and deployment
But early performance reports are disappointing
Anecdotal evidence suggests that routing is one contributor

This work

Empirically investigate performance issues in current routing method for wireless meshes

Find fundamental pathologies that stem from interference

Develop a routing methodology that systematically accounts for interference This paper is our first step

Routing and interference modeling in wireless mesh networks

Routing

Measure "link" cost and use least cost paths

Account for interference in rudimentary ways

Nodes can send as much as the MAC layer allows

Analytic interference models

Usually compute asymptotic bounds

Do not usually prescribe routing

Make simplistic assumptions about topology, traffic

Pathology 1: Severe performance degradation in the absence of rate feedback

More on Pathology 1

Hard to eliminate in the general case without systematically accounting for interference Changing MAC allocation, RTS/CTS, or TCP's congestion response don't suffice

Occurs in any topology in which the bottleneck is downstream

Even if all links are reliable

R D

Pathology 2: Poor path selection due to inaccurate quality estimation

Cost measurements ignore sender-side interference

Adding link costs to get path cost is a simplistic view of intra-flow interference

Our approach to routing

Goal: assign routing paths and rates to flows while systematically capturing the effects of interference

Divide the problem into two parts

- 1. Estimate flow rates that can be supported by a given set routing paths
- 2. Search over the space of routing patterns

Model-based flow rate computation

Input: topology, flow demands, routing paths

Output: sending rate of each flow

- Capture interference dependencies using an approximate Conflict Graph
 Cliques contain links that cannot send together
- Corpute Cx-min fair rate of each flow?

 using an iterative water and procedure CD

 Saturate one clique a time

A (simplified) example

	Flow demand unmet (met)			Clique capacity unused (used)	
	Flow 1	Flow 2	Flow 3	Clique 1	Clique 2
	1 (0)	2 (0)	0.5 (0)	1 (0)	1 (0)
α1 = 33%	0.67 (0.33)	1.33 (0.67)	0.33 (0.17)	0 (1)	0.5 (0.5)
$\alpha_2 = 100\%$			0 (0.5)		0.17 (0.83)

Throughput improvement when flows are limited to the computed rates

Testbed (21 nodes)

Simulation (25-node random topology)

Conclusions

Current wireless mesh routing protocols perform poorly in the face of interference

We propose a new model-based approach that systematically accounts for interference

Our flow rate computation method improves throughput by 50-100% in some cases

Future work: search over routing patterns to further improve performance