Predicting National Park Traffic

Jonathon Bowyer

Metis Project #2

Goal and Motivation

 Given historical data about park attendance, predict future attendance

- National Park Services (NPS) needs to plan for traffic
 - Inform decisions about when to close a park for maintenance
 - Plan how many employees are needed at any given point in the year

Inform visitors how busy they can expect the park to be

Data and Data Manipulation

- Data on 51 National Parks
- Parks have per-month visitors since at least 1979 through April 2018
 - n = (39*12 + 4) * 51 = ~24,000
- Created variables representing:
 - LSTYRTOTAL = total yearly visitors at that park from the prior year
 - Baseline weight of how big/trafficked the park is
 - CHTYR = prior year's traffic growth rate at that park
 - Growth rate

Model

- Linear regression to estimate the traffic
 - The data appear to meet the Gauss-Markov assumptions
 - The features will have a linear relationship with the output
 - Data is the full set of what we're interested in, not a biased sampling
 - A large number of observations
 - The others we check after running the model, and appear to be satisfied

```
y, X = patsy.dmatrices('VISITORS ~ LSTYRTOTAL + CHTYR + MONTH', data=np_df, return_type="dataframe")
```

Model Output

Dep. Varial	ble:	VISITOR	S I	R-squared:			
Мос	del:	OL	S Adj. I	Adj. R-squar		0.952	
Method: Leas		st Square	es	F-statistic: 3.8		37e+04	
Date: Fri, 20		0 Jul 201	8 Prob (F	Prob (F-statistic):			
Time:		09:47:0	4 Log-	Log-Likelihood:		i : 2472.5	
No. Observations:		2515	i4	AIC:		-4917.	
Df Residuals:		2514	0	BIC:		-4803.	
Df Model:		1	3				
Covariance Type: nonrobust							
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	-0.7836	0.005	-161.798	0.000	-0.793	-0.774	
LSTYRTOTAL	0.0990	0.002	56.300	0.000	0.096	0.102	
CHTYR	0.0020	0.002	0.798	0.425	-0.003	0.007	
FEB	-0.0417	0.007	-6.095	0.000	-0.055	-0.028	
MAR	-0.0064	0.007	-0.937	0.349	-0.020	0.007	
APR	0.0492	0.007	7.224	0.000	0.036	0.063	
MAY	0.4563	0.007	67.042	0.000	0.443	0.470	
JUN	1.3765	0.007	202.247	0.000	1.363	1.390	
JUL	2.5123	0.007	369.134	0.000	2.499	2.526	
AUG	2.7613	0.007	405.714	0.000	2.748	2.775	
SEP	1.5024	0.007	220.740	0.000	1.489	1.516	
ОСТ	0.6153	0.007	90.404	0.000	0.602	0.629	
NOV	0.1931	0.007	28.370	0.000	0.180	0.206	
DEC	-0.0088	0.007	-1.298	0.194	-0.022	0.005	

Omnibus:	7478.317	Durbin-Watson:	1.522
Prob(Omnibus):	0.000	Jarque-Bera (JB):	55021.738
Skew:	1.232	Prob(JB):	0.00
Kurtosis:	9.814	Cond. No.	13.1

- P statistics look quite good, could perhaps drop growth indicator
- Coefficients for Yearly Total and Change in Year Total have the right sign
- Cross Validation
 - Time series data, split data before and after a certain year
 - Across multiple CVs, Adj R² for predictions ranged from .95 to .97
 - Higher MSE for train than test, not overfitting!

Model Validation

Conclusions and Recommendations

- Visitation can be predicted relatively accurately
- Coefficients for months, especially sans normalization, are useful to interpret for trends

FEB	-4077.9494
MAR	-623.2494
APR	4803.7103
MAY	4.458e+04
JUN	1.345e+05
JUL	2.455e+05
AUG	2.698e+05
SEP	1.468e+05
OCT	6.012e+04
NOV	1.886e+04
DEC	-863.5118

- Generally, we want to do maintenance and have low staff in January, February, March or December
- Need the most staff in the summer months (matches intuition)

Future Work

- If desired, work is highly iterable for various other park sites (National Historic Sites, National Monuments, and so forth)
 - Could help with similar problems in these sites
 - Planning days to do maintenance
 - Employee staffing
 - Consumer desire to plan around traffic
- Incorporate more features, especially weather data
 - Suggested variables: monthly highs and lows, and days with precipitation
 - Beware multicollinearity with Month variable
- Investigate middle clustering of predictions

Appendix

- More on data exploration
- More on transformation choices
- Normalized predictions vs actuals
- Calculating percentage and actual error, MSE

Data Exploration

VISITORS	1	0.93	0.098	0.022	0.13	-0.031
SMLY	0.93	1	0.11	0.02	0.048	0.01
LSTYRTOTAL	0.098	0.11	1	0.52	0.43	-0.19
CHTYR	0.022	0.02	0.52	1	0.067	0.058
TOTAL	0.13	0.048	0.43	0.067	1	-0.25
Year	-0.031	0.01	-0.19	0.058	-0.25	1
,	VISITORS	SMLY	LSTYRTOTAL	CHTYR	TOTAL	Year

1.00

0.75

0.50

0.25

0.00

Data Exploration Continued

Months might need transformation:

- Linear (Months 1-12) but non-linear relationship: Adj R2 of .857
- Polynomial to fit: Adj R² of .866
- Dummies to capture month-by-month effect: Adj R2 of .952

Normalized Validations

Calculating percentage + actual errors, MSE

```
In [75]: np.mean(abs(y pred2 - y test2)/y test2)
                             0.769318
        Out[75]: VISITORS
                 dtype: float64
        In [83]: np.median(abs(y_pred2 - y_test2)/y_test2)
        Out[83]: 0.15529121892923237
        In [76]: np.mean(abs(y_test2 - y_pred2))
        Out[76]: VISITORS
                            14030.788567
                 dtype: float64
        In [87]: np.median(abs(y test2 - y pred2))
        Out[87]: 9385.969390615282
train_error = mean_squared_error(y_train2, lr.predict(X_train2))
test error = mean squared error(y test2, y pred2)
mean error = mean squared error(y train2, y mean2)
print(train error)
print(test error)
print(mean error)
513532607.12683654
373874271.64138234
9687755710.36165
```

Model Validations

- High Adjusted R²
- Cross Validation
 - Time series data, split data before and after a certain year
 - Across multiple CVs, Adj R² for predictions ranged from .95 to .97
 - Percentage difference in predicted and actual visitors (nonnormalized)
 - Mean is 77%, might have outliers
 - Median is 15%
- High MSE (hundreds of millions), but we're working with large numbers
 - Just guessing the mean produces an MSE in tens of billions
 - Train error actually larger than test error, definitely not overfitting