Approximationsalgorithmen

Wintersemester 2019/2020

Dr. Annamaria Kovacs Dipl-Math. Mahyar Behdju

Aufgabe 2.1. (4 Punkte)

Wir definieren das Kantenfärbungsproblem min-Edge-Color:

Eingabe: ein ungerichteter Graph G = (V, E)

Aufgabe: Färbe die Kanten von G mit der minimalen Anzahl verschiedener Farben, sodass keine

zwei Kanten derselben Farbe einen gemeinsamen Endknoten besitzen.

Sei OPT(G) die minimale Anzahl der verschiedenen Farben, die für eine Kantenfärbung von G nötig sind. Zeige, dass ein Greedy-Algorithmus existiert, der jeden Eingabegraphen G mit höchstens $2 \cdot OPT(G)-1$ verschiedenen Farben färbt. Begründe die Korrektheit der Lösung.

Aufgabe 2.2. (4 + 2 Punkte)

Bestimme den genauen Approximationsfaktor für die folgenden Greedy-Algorithmen für das Intervall-Scheduling-Problem. Analysiere hierfür jeweils die obere und die untere Schranke.

- a) Ein Greedy-Algorithmus, der erst die Jobs aufsteigend nach ihrer Dauer sortiert und anschließend jeweils den nächsten Job in die Lösung aufnimmt, wenn dieser mit den bislang aufgenommenen Jobs nicht kollidiert.
- b) Ein Greedy-Algorithmus, der erst die Jobs absteigend nach ihren Endpunkten sortiert und anschließend jeweils den nächsten Job in die Lösung aufnimmt, wenn dieser mit den bislang aufgenommenen Jobs nicht kollidiert.

Bitte wenden!

Aufgabe 2.3.

(4 Punkte + 4 Bonuspunkte)

Gegeben seien n Kugeln in r verschiedenen Farben: k_1 Kugeln in Farbe 1, k_2 Kugeln in Farbe 2 usw., sodass $\sum_{i=1}^{r} k_i = n$. Sei weiter k < r ein Teiler von n.

- a) Bestimme einen Greedy-Algorithmus, der die n Kugeln so in $\frac{n}{k}$ Teilmengen mit jeweils k Kugeln zerlegt (falls dies möglich ist), dass die Kugeln in jeder Teilmenge paarweise verschiedene Farben haben. Bestimme (ohne Beweis) auch die genaue notwendige Bedingung, sodass eine solche Zerlegung möglich ist.
- b) (Bonus) Beweise durch Induktion über $\frac{n}{k}$, dass die notwendige Bedingung aus Teil a) hinreichend ist und der Algorithmus eine Zerlegung mit den geforderten Eigenschaften ausgibt.

Aufgabe 2.4. (5 Punkte)

Gibt es eine Euler-Tour und/oder einen Hamilton-Kreis im abgebildeten Graphen? Falls ja, bestimme eine Lösung; falls nein, gib eine **kurze** Begründung.

