Lambda calcul - elemente de bază

Funcții

Fie
$$f, g: X \to Y$$
, $f(x) = x^2 - 1$, $g(x) = (x - 1)(x + 1)$
extensional egale: $f(x) = g(x)$, $\forall x \in X$. (DA)
intensional egale: sunt definite de aceeasi formulă. (NU)

Termeni lambda

$$\begin{array}{ccc} \mathbf{M},\,\mathbf{N} ::= \mathbf{x} & (variabil\check{a}) \\ & | \, (MN) & (aplicare) \\ & | \, (\lambda x.M) & (abstractizare) \end{array}$$

Convenții

1. aplicarea e asociativă la stânga:

$$f \quad x \quad y \quad z = ((f \quad x) \quad y) \quad z$$

2. corpul abstractizării se extinde la dreapta:

$$\lambda x.M N = \lambda x.(M N)$$

3. mai mulți λ se comprimă:

$$\lambda xyz.M = \lambda x.\lambda y.\lambda z.M$$

Variabile

Exemplu: $\lambda x.N$

- 1. operator de legare(binder): λ_{--}
- 2. variabilă de legare(binding): x
- 3. domeniu de legare a lui x: N
- 4. termen fără variabile libere: închis/combinator

Exemplu: $M \equiv (\lambda x.xy)(\lambda y.yz)$

- 1. Multimea variabilelor legate: $\{x, y\}$
- 2. Mulțimea variabilelor libere (FV(M)): $\{y, z\}$

Obs. FV(x) = x

$$FV(M N) = FV(M) \cup FV(N)$$

$$FV(\lambda x.M) = FV(M) \setminus x$$

α -echivalența

Substitutii

$$[Variabil\breve{a}]$$
 (x[u/x] = u) sau (y[u/x] = y, dacă x \neq y) $[Aplicare]$ (M N)[u/x] = (M[u/x] N[u/x]) $[Abstractizare]$

$$\lambda y.t[u/x] = \begin{cases} \lambda y.(t[u/x]), \ y \neq x, \ y \notin FV(u) \\ \lambda y'.(t\langle y'/y \rangle[u/x]), \ y \neq x, \ y \in FV(u) \end{cases}$$

Lambda calcul - β -reductii

- β -redex: termen de forma $(\lambda x.M) N$
- Redusul redex-ului $(\lambda x.M)N: M[N/x]$
- Forma normală: un lambda termen fără redex-uri
- Daca \exists N în forma normală a.î. M \longrightarrow_{β} N \Rightarrow M e slab normalizabil.
- Dacă ∄ reduceri infinite care încep din M ⇒ M e puternic normalizabil.
- Algoritm: reducem lambda termeni prin găsirea unui subtermen care e redex, îl înlocuim cu redusul său și ciclăm până nu mai sunt redex-uri.

β -reducții

$$(\beta) \qquad \overline{(\lambda x.M)N \to_{\beta} M[N/x]}$$

$$(cong_1) \qquad \frac{M \to_{\beta} M'}{MN \to_{\beta} M'N}$$

$$(cong_2) \qquad \frac{N \to_{\beta} N'}{MN \to_{\beta} MN'}$$

$$(\xi) \qquad \frac{M \to_{\beta} M'}{\lambda x.M \to_{\beta} \lambda x.M'}$$

Exemplu:

$$(\lambda x.y) ((\underline{\lambda z.zz}) (\lambda w.w)) \longrightarrow_{\beta} (\lambda x.y) ((zz)[\lambda w.w/z])$$

$$\equiv (\lambda x.y) ((z[\lambda w.w/z]) (z[\lambda w.w/z])$$

$$\equiv (\lambda x.y) ((\underline{\lambda w.w}) (\lambda w.w))$$

$$\longrightarrow_{\beta} (\underline{\lambda x.y}) (\underline{\lambda w.w})$$

$$\xrightarrow{\vee_{\beta}} (\underline{\lambda x.y}) (\underline{\lambda w.w})$$

Observații:

- o reducerea unui redex poate crea/șterge redex-uri
- o găsirea unei forme normale depinde de ordinea reducerii redex-urilor

Teorema Church-Rosser

Dacă M \longrightarrow_{β} M1 și M \longrightarrow_{β} M2 atunci există M' astfel încât M1 \longrightarrow_{β} M' și M2 \longrightarrow_{β} M'.

Consecință:

 $\overline{\text{Un }\lambda\text{-termen}}$ are cel mult o β-formă normală (modulo α-echivalență).

Strategii de evaluare

Strategia normală: leftmost-outermost

M1, M2 redex-uriM1 = subtermen M2 \rightarrow M1 nu e viitorul redex ales

$Strategia\ aplicativ\Breve{a}:\ leftmost-innermost$

M1, M2 redex-uriM1 = subtermen M2 \rightarrow M2 nu e viitorul redex ales

 $Strategia\ call-by-name$ - strategia normală fără a face reduceri în corpul unei $\lambda-abstractizări.$

$$(\lambda x.succ x) ((\lambda y.succ y) 3) \longrightarrow_{\beta} succ ((\lambda y.succ y) 3)$$

$$\longrightarrow_{\beta} succ (succ 3)$$

$$\rightarrow succ 4$$

$$\rightarrow 5$$

 $\label{eq:strategia} \textit{Strategia call-by-value} \text{ - strategia aplicativă fără a face reduceri în corpul unei } \lambda - abstractizări.$

$$(\lambda x.succ x) ((\lambda y.succ y) 3) \longrightarrow_{\beta} (\lambda x.succ x) (succ 3)$$

$$\rightarrow (\lambda x.succ x) 4$$

$$\rightarrow_{\beta} succ 4$$

$$\rightarrow 5$$

Expresivitatea λ -calculului

Booleeni

 $T \triangleq \lambda xy.x \qquad \text{if } \triangleq \lambda \text{btf.b t f} \qquad \text{or } \triangleq \lambda xy.\text{if x T y}$ $F \triangleq \lambda xy.y \qquad \text{not } \triangleq \lambda x.\text{if x F T} \qquad \text{and } \triangleq \lambda xy.\text{if x y F}$

Numere naturale

Numeralul Church $\bar{n} \triangleq \lambda \text{fx.} f^n x$ Succ $\triangleq \lambda \text{nfx.f (n f x)} \implies \text{Succ } \bar{n} = \overline{n+1}$ add $\triangleq \lambda \text{mn.m Succ n} \qquad \text{mul } \triangleq \lambda \text{mn.m (add n)}$ $\exp \triangleq \lambda \text{mn.m (mul n)} \qquad \text{isZero } \triangleq \lambda \text{nxy.n } (\lambda z.y) x$

Puncte fixe

F, M sunt λ -termeni F M = $_{\beta}$ M este punct fix al lui F

În λ -calcul fără tipuri, orice termen are punct fix. Combinator de puncte fixe = termen închis care construieste un punct fix pe un termen arbitrar.

- Curry: $Y \triangleq \lambda y.(\lambda x.y (x x)) (\lambda x.y (x x))$
- Turing: $\Theta \triangleq (\lambda xy.y (x x y)) (\lambda xy.y (x x y))$

fact $\triangleq Y \ F \ [Y \ F \ e \ punct fix pentru \ F]$ fact $\triangleq Y(\lambda \text{fn.if (isZero n) } (\bar{1}) \ (\text{mul n (f(pred n)))})$

Lambda calcul cu tipuri simple

Mulțimea tuturor tipurilor simple T este definită prin $T = V \mid T \to T$, unde $V = \{\alpha, \beta, \gamma, ...\}$ este o mulțime infinită de tipuri variabilă.

Exemplu:

- 0/
- $((\gamma \to \alpha) \to (\alpha \to (\beta \to \gamma)))$

[Tipul variabilă] Dacă $\alpha \in V$, atunci $\alpha \in T$. [Tipul săgeată] Dacă $\delta, \tau \in T$, atunci $(\delta \to \tau) \in T$. [paranteze asociative la dreapta]

[Variabilă] $x : \delta$.

[Aplicare] Dacă $M: \delta \to \tau \text{ si } N: \delta \Rightarrow M N: \tau.$

[Abstractizare] Dacă $x : \delta, M : \tau \Rightarrow \lambda x.M : \delta \rightarrow \tau$.

Dacă \exists un tip δ a.î. $M : \delta \Rightarrow M$ are tip (e typeable).

Convenții

- 1. y x poate avea un tip doar dacă y are un tip săgeată de forma $\delta \to \tau$ și tipul lui x se potrivește cu tipul domeniu δ . Astfel, y x: τ .
- 2. Termenul x x nu poate avea nici un tip.
 - a. apariția I: x : $\delta \to \tau$.
 - b. aparația II: x : δ .

Cum orice variabilă are un unic tip, ar trebui ca $\delta \to \tau \equiv \delta$, ceea ce este imposibil.

Lambda calcul - tipuri

Lambda calcul fără tipuri

nu se specifică tipul niciunei expresii

nu se specifică domeniul/codomeniul functiilor

Lambda calcul cu tipuri simple

se specifică mereu tipul oricărei expresii

nu se poate aplica o funcție unui argument care are alt tip față de domeniul funcției

expresiile de forma f(f) sunt eliminate

Lambda calcul cu tipuri polimorfice

se poate specifica că o expresie are tipul X \to X, fără a specifica cine de fapt este X

Sistem de deducție pentru Church $\lambda \rightarrow$

Multimea λ -termenilor cu pre-tipuri Λ_T :

$$\Lambda_T = x \mid \Lambda_T \Lambda_T \mid \lambda x : T.\Lambda_T$$

- O afirmație este o expresie de forma $M: \delta$, unde $M \in \Lambda_T$ si $\delta \in T$.
- În această afirmatie, M se numeste subject.
- O declaratie este o afirmatie de forma $x : \delta$.
- Un context Γ este o listă de declarații cu subiecți diferiti.
- O judecată este o expresie de forma $\Gamma \vdash M : \delta$.

Sistem de deducție pentru Church $\lambda \rightarrow$

$$\frac{1}{\Gamma \vdash x : \sigma} \operatorname{dacă} x : \sigma \in \Gamma (var)$$

$$\frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash M N : \tau} (app)$$

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x : \sigma. M) : \sigma \to \tau}$$
 (abs)

Exemplu:

- 1) $y: \alpha \to \beta$
- 2) $z:\alpha$

 $\lambda y.\lambda z.yz$ are tipul $(\alpha \to \beta) \to \alpha \to \beta$ în contextul vid.

1.
$$y: \alpha \to \beta, z: \alpha \vdash y: \alpha \to \beta$$
 (var)

2.
$$y: \alpha \to \beta, z: \alpha \vdash z: \alpha$$
 (var)

3.
$$y: \alpha \to \beta, z: \alpha \vdash (yz):\beta$$
 (app) cu 1 și 2

4.
$$y: \alpha \to \beta \vdash (\lambda z: \alpha, yz): \alpha \to \beta$$
 (abs) cu 3

5. $\emptyset \vdash (\lambda y : \alpha \rightarrow \beta, \lambda z : \alpha, yz) : (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \beta$ (abs) cu 4

Probleme decidabile

Type-checking: se verifică posibilitatea de găsire a unei derivări pentru $[context \vdash term : type]$.

Well-typedness (Typability): se verifică dacă un termen este legal $[? \vdash term : ?]$.

Type Assignment: se găsește tipul când contextul este dat $[context \vdash term : ?]$.

Term Finding: având un context și un tip anumit, se verifică dacă există un termen cu acel tip, în contextul dat. $[context \vdash ? : type]$.

Alte tipuri

Multimea tipurilor

 $\mathbf{T} = \mathbf{V} \mid \mathbf{T} \to \mathbf{T} \mid Unit \mid Void \mid \mathbf{T} \times \mathbf{T} \mid \mathbf{T} + \mathbf{T}$ Multimea $\lambda\text{-termenilor}$ cu pre-tipuri Λ_T :

$$\begin{split} \Lambda_T = x \mid \Lambda_T \; \Lambda_T \mid \lambda x : \; \text{T.} \Lambda_T \mid unit \mid <& \Lambda_T, \Lambda_T > \\ \mid fst \Lambda_T \mid snd \; \Lambda_T \mid Left \; \Lambda_T \mid Right \; \Lambda_T \\ \mid case \; \Lambda_T \; of \; \Lambda_T; \; \Lambda_T \end{split}$$

Teoria tipurilor	Logica
tipuri	formule
termeni	demonstrații
inhabitation a tipului δ	demonstrație a lui δ
tipul produs	conjucție
tipul funcție	implicație
tipul sumă	disjuncție
tipul void	false
tipul unit	true

Church-typing

Tip unic explicit stabilit pentru fiecare variabilă

Exemplu: Tipul expresiei (λ zu.z) (y x) - ?, știind că: 1)x : $\alpha \to \alpha$ 2)y : ($\alpha \to \alpha$) $\to \beta$ 3)z : β 4)u : γ

- Aplicare (1) si (2) \Rightarrow (5): y x : β .
- Abstractizare (4) si (3) \Rightarrow (6): $\lambda u.z : \gamma \rightarrow \beta$.
- Abstractizare (3) si (6) \Rightarrow (7): $\lambda zu.z: \beta \rightarrow \gamma \rightarrow \beta$.
- Aplicare (7) și (5) \Rightarrow ($\lambda zu.z$) (y x) : $\gamma \rightarrow \beta$.

Curry-typing

Nu se prescrie un tip pentru fiecare variabilă

Exemplu: Tipul expresiei $M = (\lambda zu.z)$ (y x)

- M e o aplicare $\Rightarrow \lambda \mathbf{zu.z}:\, \mathbf{A} \rightarrow \mathbf{B}, \; y \; x:\, \mathbf{A}, \, \mathbf{M}: \mathbf{B}.$
- $\lambda zu.z : A \rightarrow B \Rightarrow z : A i \lambda u.z : B$.
- \bullet B e tipul unei abstractizări \Rightarrow u : C și z : D.
- \bullet y x e o aplicare \Rightarrow y : E \rightarrow F, x : E și y x : F.
- $\bullet \ z : A \ si \ z : D, \ y \ x : A \ si \ y \ x : F \Rightarrow A \equiv F.$

Astfel se obține schema generală:

$$x:E \quad y:E \to A \quad z:A \quad u:C \quad M:C \to A$$

Se pot considera și tipuri reale în schema de mai sus: $x: \beta \quad y: \beta \to \alpha \quad z: \alpha \quad u: \delta \quad M: \delta \to \alpha$