Sunday, 19 July 2020 11:39 PM

C Nia	Tonic	Details
S.No 1.	Topic Project Goal	Details This Reacher project is as part of Udacity Nanodegree - Al Deep Reinforcement Learning Expert and aims to develop an Al Agent - "a double-jointed arm" - move to target location in Continuous space using Policy-based 'Actor-critic' Methods using Deep Neural Networks.
		From https://github.com/SENC/AIReacher/blob/master/README.md
2.	Scope	Develop an Al Agent using 'actor-critic' methods - which should learn the best policy to maximize its rewards by taking best actions in the given continuous environment
		 Goal The environment is considered solved, when the average (over 100 episodes) of those average scores is at least +30. Decided to solve the First Version Option 1: The task is episodic and the Agent must get an average score of +30 over 100 consecutive episodes
3.	Purpose	One of the primary goal of Al is to solve complex tasks in high dimensional, sensory inputs. Though Deep Q Network (DQN) proved to be high performance on many Atari video games but handles well in discrete and low-dimensional action spaces. DQN can't applied directly to continuous domain since the core part to find the action that maximizes the action-value function.
4.	Solution Approach -Policy based Methods	 This project aims to build a model-free, off-policy actor-critic [Deterministic Policy - action-value] algorithm using deep function approximators that can learn policies in continuous space DDPG Paper: https://arxiv.org/abs/1509.02971 Policy Gradients - An alternative to the familiar DQN (Value based method) and aims to make it perform well in continuous state space. Off-policy algorithm - Essential to learn in mini-batches rather than Online
		 Develop 'Actor-Critic' agent uses Function approximation to learn a policy (action) and value function Have 2 Neural Networks One for an Actor - Takes stats information as an input and actions distribution as an output Take the action to move to next state and check the reward (Experience) and using TD estimate of the reward to predict the Critic's estimate for the next state
		 Next one for a Critic - Takes states as input and state value function of Policy as output. ■ Learn to evaluate the state value function Vπ using TD estimate
		To calculate the advantage function and train the actor using this value. So ideally train the actor using the calculated advantages as a baseline. Instead of having baseline using TD estimate, can use Bootstrapping to reduce the variance
		 Bootstrapping - generalization of a TD and Monte-Carlo estimates TD is one step bootstrapping and MC is infinite bootstrapping Mainly to reduce biasness and variances under controlled & fast convergence
		 Like DQN, have 'Replay Memory' - a digital memory to store past experiences and correlates set of actions -REINFORCE- to choose actions which mostly yields positive rewards Randomly collect experiences from the Replay Memory in to Mini-batches so the experiences may not be in same correlation as Replay Memory to train the Network successfully Buffer size can be large so allowing the algorithm to benefit from learning across a set of uncorrelated transitions Little change in 'Actor-critic' when using DDPG- to approximate the maximizer over the Q value of next state instead of baseline to train the value
		DQN Network
		State $Q(s, "up")$, E.g2.18 $Q(s, "down")$, E.g. 8.45
		Q(s, "left"), E.g. 3.51 $max(-2.18, 8.45, 3.51, -3.78, 9.12) = 9.12$ $Q(s, "right")$, E.g3.78
		Q(s, "jump(50cm)")
		Play (k) This is one of the problems DOPG solves. Image source: Udacity DRLND
		#1 In Actor NN: used to approximate the maximizer - an optimal best policy (action) deterministically - so the Critic learns to evaluate the optimal policy - Action-Value function for the best action Approximate the Maximizer - to calculate the new target value for training the action value function
		Q(s, μ (s ; θμ);θ Q)
		DDPG
		$S \longrightarrow \mu(s; heta_{\mu})$ $Q(s, \mu(s; heta_{\mu}); \; heta_Q)$
		Image source: Udacity DRLND
		Regular/local network - UpToDate network since training is done here but target network used to predict the stabilize strain #2 Soft Target updates: Weight of the target network are updated by having them slowly track the learned networks to improve the stability of learning
5.	Algorithm	Deep deterministic Policy Gradient
		Published as a conference paper at ICLR 2016

Source code Details 1. **Nn_model.py** -Convolutional Neural Network model with 3 layer architecture Having constructor to initialize seed and Input, Output and Hidden layers Feedforward function to Neuron activation using Relu function to make output 0 or >0 [y = max(0, x)] and method to reset the weights #Test to create the instance of AiAgent
reacherAI = AiAgent(state_size,action_size,random_seed=9)
print(reacherAI.actor_local)
print(reacherAI.critic_local) (fc1): Linear(in_features=33, out_features=24, bias=True)
(fc2): Linear(in_features=24, out_features=48, bias=True)
(fc3): Linear(in_features=48, out_features=4, bias=True) (fcs1): Linear(in_features=33, out_features=24, bias=True)
(fc2): Linear(in_features=28, out_features=48, bias=True)
(fc3): Linear(in_features=48, out_features=1, bias=True) 2. **DDPG: Agent.py**: Agent to have properties and functions covering • local and Target networks , · soft update, Noise for exploration
 Replay Memory for Experience Replay • step, act, reset , learn functions S.No Activity Core 1. Initialize local and target network for both Actor Deep CNN - 3 Layers Initialize replay memory based on Buffer size, Mini Recall Experience Batch and seed Get Next_Action and Qvalue to
Q_targets = r + y * critic_target(next_state,
actor_target(next_state)) Call "Learn " Function when actor.step : Core 3. Algo - Update Policy and Value params based on experiences where: actor_target(state) -> action critic_target(state, action) -> Q-value From the Memory , take random set of experiences and predict target based on current states and reward Get the Next_action from action_target and caluclate Q_target Value for given (s,a) Basically , update the weights of Actor and Critic Network targeting minimize the loss with Current Compute Q target from current reward vs Expected Result • Compute the Critic Loss by Qexpected - Qtarget Smooth copy of local to target network Stable Learning 3. Continuous Control.ipynb - Python Notebook covers all the Code and detailed executed report Libraries , Environment and Agent initialization , DDPG , Rewards summary and plot
 Checkpoint_actor30.pth - saved model weights for Actor 5. Checkpoint critic30.pth - saved model weights for Critic rnings: Sampling from standard Normal distribution is so important and improved training process and correction on actions clip btw -1 to 1 Ideas for future work 1. Work on Option 2 and try parallel learning PPO Solve a more difficult continuous control environment
 where the goal is to teach a creature with four legs to walk forward without falling. Ref https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Learning-Environment-Examples.md#crawler 10. In Simple A BIG THANKS TO UDACITY TEAM!!