

Semaine ATHENS

Ordonnancement

novembre 2016

E. BALLOT

Agenda

- L'ordonnancement : définition et formalisation
- Deux cas extrêmes : la gestion de projets et le réseau
- Ordonnancement des ateliers
 - Ordonnancement d'une machine
 - Critères d'ordonnancement
 - Ordonnancement de machines en parallèle
 - Ordonnancement en "Flow shop"
 - Ordonnancement en "Job shop"
- Les méthodes actuelles et leurs limites

Formalisation

	Tâches	Ressources
Espaces	θ	M
Relations	R(θ)	R(M)
	$\Re($	θ,Μ)

La gestion de projet

- Caractérisation :
 - Tâches θ_i (durée) et $R_j(\theta_i)$: contraintes d'enchaînement (antériorité)
 - Ressources : Pas ou peu prises en compte
- Problème :

On connaît les $R_i(\theta_i)$, calcul du temps de réalisation

- Domaines d'application :
 - Ingénierie, espace, programmes militaires,...

PERT

Le transport

- Caractérisation :
 - Tâches:?
 - Ressources : M_i (capacité) et $R(M_i)$ topologie réseau
- Problème:

On dispose d'un réseau $R_j(M_i)$, calcul de sa meilleure utilisation (flot saturant)

- Domaines d'application :
 - Electricité, Chimie, distribution d'eau,...

- Problème général : n tâches à accomplir, m ressources
- Existe t-il des manières préférentielles pour les réaliser?

• Diagramme de Gantt (1900)

Ordonnancement d'atelier

	1 machine		m machines	
Type	_	Parallèle	Flow shop	Job shop
Figures		$\longrightarrow \longrightarrow$	/- \	^ -
	$\longrightarrow \longrightarrow$	→ → →		- >
Caract.	Industrie lourde	Moyens standards	Grande série (gamme unique)	Petite et moy.
	Comple	séries Gammes ≠		
Cas	-Photocopieuse -Float (verre)	- caisses (supermaché) - tissage (textile)	ligned'assemblageautomobilebiens de consom.	- mécanique- aéronautique- PME

Ordonnancement d'une machine : le séquencement

- Hypothèses:
 - n tâches (jobs) disponibles à t = 0
 - Pas d'arrêt machine tant qu'il y a du travail
- Notations:

- Temps d'exécution connus
- Temps de changement de fabrication indépendants de la séquence
- Pas d'interruption de

- r_i date de disponibilité du job i
- t_i temps process du job i
- c_i date de fin de fabrication du job i
- d_i délai promis du job i

Mesure du temps de passage dans le système (flow time)

- Importance : réactivité & niveau d'en-cours
- Définition pour une opération i
 - Flow time (temps de cycle) :

$$F_i = c_i - r_i$$

- Caractérisation globale
 - Temps de cycle moyen :

$$\overline{F} = \frac{1}{n} \sum_{i=1}^{n} F_i$$

– Temps de cycle maxi :

$$F_{\max} = \max_{1 \le i \le n} (F_i)$$

- ..

Résultat sur le critère min(\overline{F})

- Problème combinatoire : n!
- Théorème :
 - Si $t_1 \le t_2 \le ... \le t_n$ alors on a le minimum de \overline{F}
- Illustration (*n*=20)

 $20! = 2,4.10^{18}$

Exemple de critères de retard

- Importance majeure : respect des délais
- Définitions pour une opération i
 - Retard algébrique (lateness) : $L_i = c_i d_i$
 - Retard réel (tardiness) : $T_i = \max(0, L_i)$
- Caractérisation globale
 - Retard algébrique moyen :
 - Retard réel moyen :
 - Nombre de retards :

— ...

$$\overline{L} = \frac{1}{n} \sum_{j=1}^{n} L_j$$

$$\overline{T} = \frac{1}{n} \sum_{i=1}^{n} T_j$$

$$N_T = \sum_{j=1}^{n} \delta(L_j); \frac{\delta(x) = 1 \text{ si } x > 0}{\delta(x) = 0 \text{ sinon}}$$

Résultats / critères usuels (1 machine)

Critère	Algorithme constructif (opt.=*)	Règle
$Min(\overline{F})$	$t_1 \le t_2 \le \ldots \le t_n$ *	SPT
$\overline{\text{Min}(\overline{L})}$	idem car $\overline{L} = \overline{F} - \overline{D}$ *	SPT
$Min(L_{max})$	$d_1 \le d_2 \le \ldots \le d_n$ *	EDD
$Max(L_{min})$	d_1 - $t_1 \le d_2$ - $t_2 \le \ldots \le d_n$ - t_n *	MST
$Min(T_{max})$	$d_1 \le d_2 \le \ldots \le d_n \qquad \qquad *$	EDD
$Min(N_T)$	Hodgson (EDD puis l'algorithme)*	Ø
Cas général	Heuristique ou optimisation	Ø

L'ordonnancement de machines en parallèle (séquencement et allocation) Allocation paristech *

- Le temps de production *M* (makespan)
- On a n travaux sur m machines en // [n, m, //, M]
- Minimisation du makespan (M*)
 - Hypothèses : préemption possible et machines identiques

$$M^* = \max \left\{ \frac{1}{m} \sum_{j=1}^{n} t_j, \max_{j} \left[t_j \right] \right\}$$

L'ordonnancement en Flow Shop (m séquencements) [n,m,F,C]

- Problème combinatoire : (n!)^m
- Degrés de liberté supplémentaires : attentes possible des machines lors de permutations de tâches

Combinatoire : $[10,10,F,C] => 3,95 \cdot 10^{65}!$

- Méthodes de résolution
 - Optimisation :
 - Qualité de la solution / difficulté d'obtention
 - Difficultés de l'approche : des contraintes antagonistes...

- Heuristiques :
 - Application des règles SPT,...
 - Réactif
 - Pro actif

Méthodes de résolution du problème MINES * [n,m,J,C]

- Optimisation
 - Problème très difficile
 - Techniques
 - Séparation et évaluation progressives (MIP)
 - · Recuit simulé,
 - Génétique,...
 - Applications : réservées à quelques équipements lourds

Méthodes de résolution du problème [n,m,J,C]

- Ordonnancement <u>réactif</u> par règles de priorité
- Les faits
 - Il existe quelques solutions optimales dans le cas dune ou deux machines /hypothèses /critère
 - Il n'existe pas de solution générale : NP difficile
 - Principe des règles heuristiques :
 on applique ces règles optimales / une machine à
 un ensemble de machines
- Ambition : trouver un résultat satisfaisant / contraintes dans temps limité

E. BALLOT

Exemple d'un ordonnancement réactif par règles de priorité

Soit un atelier en « Job shop » de 3 machines

Les données de l'exemple

•8 produits

- Délais en heure

Produit 1 (36) Produit 2 (33) Produit 3 (49) Produit 4 (34) Produit 5 (66) Produit 6 (68) Produit 7 (60) Produit 8 (63)

Gamme

Produit	Op 1		Op 2		Op 3		Op 4		Op 5
	Machine	Tps	Machine	Tps	Machine	Tps	Machine	Tps	Machine Tps
Pdt 1	M 1	10	M2	3	М3	8	M 1	2	
Pdt 2	M 1	3	М3	10	M2	5			
Pdt 3	M2	9	М3	1	M2	2			
Pdt 4	М3	5	M 1	4	М3	3	M2	5	
Pdt 5	M 1	8	М3	4	M1	8			
Pdt 6	M2	5	М3	7	M1	2	M2	7	
Pdt 7	М3	7	M 1	3	M2	2	М3	4	M1 1
Pdt 8	M 1	4	M2	6					

Des résultats de l'exemple

	EDD	SPT	FIFO	•••
Utilisation	78%	90%	90%	
Retard maxi	0	15	16	
# retard	0	2	2	
L moyen	-16	-17	-14	
F moyen	37,5	35,8	39,37	
MakeSpan	59	51	51	
•••				

Utilisation des outils d'ordonnancement

La pratique de l'ordonnancement en atelier

- Important pour le délai et son respect
 - Un temps d'attente des articles important : 80% du temps de production (flow time).
- Un processus dynamique
 - Des nombreux aléas : pannes, commandes urgentes,... => perturbations de la solution
- La pratique courante : des règles de priorité sauf industrie lourde
- Des outils d'analyse :
 - Taux d'utilisation des machines
 - Niveaux d'en-cours
 - Histogrammes "avance/retard"

Conclusion

- Un problème extrêmement complexe
- Des résultats théoriques limités mais...
- ...qui constituent des outils pour construire les ordonnancements en atelier
- Des critères de performance antagonistes
- Mise en œuvre d'un compromis en liaison avec les outils de planification
- Dans un contexte soumis aux aléas!