Technische Universität Ilmenau Institut für Mathematik

Prof. Dr. T. Böhme

BT, EIT, II, MIW, WSW, BTC, FZT, LA, MB, MTR, WIW

Mathematik 1 Übungsserie 14 (22.1.2024 - 26.1.2024)

Aufgabe 1:

- (*) Berechnen Sie die folgenden unbestimmten Integrale.

- (a) $\int (3\sin x + 4x^{-\frac{4}{3}})dx$, (b) $\int (2e^x + \frac{1}{1+x^2})dx$, (c) $\int 2^x dx$ (d) $\int (\cos x + 3x^2 4x^3)dx$, (e) $\int (\sqrt{x} + \frac{1}{(x-1)^2})dx$, (f) $\int (x^{-1} + \frac{1}{\sqrt{1-x^2}})dx$.

Aufgabe 2:

Berechnen Sie die folgenden Integrale, durch geeignete Erweiterung oder Kürzung des Integranden.

(a)
$$\int_{1}^{2} \frac{x^2 - 3x + 4}{\sqrt{x}} dx$$
,

(b)
$$\int_{0}^{1} \frac{dx}{\sqrt{x} - \sqrt{x+1}}$$
.

Aufgabe 3:

Berechnen Sie die folgenden unbestimmten Integrale durch partielle Integration oder Substitution.

(a) $\int xe^x dx$,

- (b)^(*) $\int x^2 e^x dx$, (c)^(*) $\int x \sin x dx$,
- (d) $\int \sin^2 x dx$,
- (e) $\int \sin x \cos(2x) dx$, (f) $\int e^{\sqrt{x}} dx$.

Aufgabe 4:

Berechnen Sie die folgenden unbestimmten Integrale durch Substitution.

- (a) $\int \frac{6}{1-3x} dx$, (b) $\int 3\sqrt{8x-4} dx$, (c) $(x)^{(*)} \int \frac{1}{\sqrt[3]{5x-7}} dx$, (d) $\int \frac{x}{\sqrt{x^2+8}} dx$, (e) $\int \frac{2x+4}{\sqrt{x^2+4x+7}} dx$, (f) $\int \frac{x^2}{x^3-7} dx$, (g) $\int \frac{\sin x}{\sqrt{5+\cos x}} dx$, (h) $\int (x^3+2x)\sqrt{x^2-1} dx$, (i) $\int (18x^3+3x)\sqrt{3x^4+x^2} dx$.

Aufgabe 5:

Berechnen Sie die unbestimmten Integrale mit Hilfe der angegebenen Substitution.

(a)
$$\int \sqrt{1-x^2} dx, \ x = \sin t,$$

(b)^(*)
$$\int \frac{1}{(1+x^2)^2} dx$$
, $x = \tan t$.

Aufgabe 6:

Berechnen Sie die folgenden bestimmten Integrale.

- (a) $\int_{\ln \frac{1}{a}}^{\ln a} e^t dt$ für a > 0 (b) $\int_{0}^{\pi} \sin x \cos x dx$, (c) $\int_{-1}^{1} |x^3| dx$,

- (d) $\int_{0}^{2\pi} \sin^2 x dx,$
- (e)^(*) $\int_{0}^{2\pi} \sin x \cos(2x) dx$, (f)^(*) $\int_{-1}^{2} e^{2x} + x^4 + \frac{1}{(x+5)^2} dx$.