

Patrick C. Taylor

NASA Langley Research Center

Climate Science Branch

7 May 2015

patrick.c.taylor@nasa.gov

Picture Credit: NSIDC website

Acknowledgements: Seiji Kato, Kuan-Man Xu, Noel Baker, and Ming Cai

Average Monthly Arctic Sea Ice Extent September 1979 - 2013

Arctic Low Cloud Processes Large-scale vertical motion O.5-2 km O.5-2 km Supercooled Supercooled

Radiative Cooling

- Drives buoyant production of turbulence
- Forces direct condensation within inversion layer
- Requires minimum amount of cloud liquid water

Microphysics

· Liquid forms in updrafts and sometimes within the

Science Questions:

How do clouds respond to changes in sea ice?
What is the surface radiative forcing due to sea ice-cloud interactions?

The influence of the surface type on the cloud properties implies an interaction between clouds and sea ice that may significantly influence Arctic climate change.

Surface Layer

- Turbulence and q contributions can be weak or strong
- · Sink of atmospheric moisture due to ice precipitation
- Surface type (ocean, ice, land) influences interaction with cloud

Morrison et al. (2012; Nature Geoscience) Sea ice-Cloud Interaction: Some Modeling Evidence

Sea ice-Cloud Interaction: Some Observational Evidence

Significant correlation between cloud fraction and the sea ice extent in AUTUMN: larger cloud fraction over open water and lower cloud fraction over ice.

CALIPSO-CloudSAT-CERES MODIS (C3M) Merged Data Product (Kato et al. 2010)

Data contains footprint averaged

- Merged CALIPSO-CloudSAT vertical cloud property profiles (cloud fraction, LWC, IWC)
- 2. Computed vertical radiative flux profiles computed with CALIPSO and CloudSat derived cloud properties
- 3. Sea ice concentration (SSM/I)

Data are available from the NASA Langley ASDC: http://eosweb.larc.nasa.gov/

Atmospheric State Regimes (Barton et al. 2012)

Atmospheric state regimes determined using K-means cluster analysis.

High Stability (HS): 16 K < LTS < 24 K

Stable (S): LTS < 16 K

Very High Stability (VHS): LTS > 24 K

Uplift (UL): ω_{500} < -0.1 Pa s⁻¹

Compositing Method...

- (1) Determine the Atmospheric Regime of each satellite footprint using MERRA
- (2) Determine the instantaneous sea ice concentration from SSM/I retrieval

Arctic Clouds and Meteorological State

Low Cloud fraction vs. Sea ice Concentration

Low Cloud TWP vs. Sea Ice Concentration

Cloud TWP decreases with increasing sea ice

The magnitude of the TWP change with sea ice varies with season and atmospheric regime.

Boundary Layer Temperature Structure and Sea Ice Concentration

Higher LTS is associated with higher near surface stability.

Near surface stability increase with increased sea ice

CRE vs. Sea ice Concentration

```
LW_CRE=LWdn_all - LWdn_clr
SW_CRE=SWdn_all-SWdn_clr*(1-α)
Net_CRE=SW_CRE+LW_CRE
```

LW Surface Cloud Radiative Effect and Sea Ice Concentration

SW Surface Cloud Radiative Effect and Sea Ice Concentration

Decomposition using independent column approx.: LW_all=(1-N)*F_clr+N*F_cld Longwave

Summary and Conclusion

- -Arctic low cloud properties are sensitive to the atmospheric conditions: Cloud fraction, LWP, and IWP decrease with increased stability.
- -A statistically significant covariance between Arctic cloud properties and sea ice concentration are found in each regime and season: Cloud fraction, LWP, and TWP decrease with increased sea ice concentration.
- -Covariance between Arctic low cloud properties and sea ice concentration are also found to significantly influence the surface energy budget.
- "Negative Feedback" in Summer (SW CRE dominates)

 "Positive Feedback" in Fall and Winter (LW CRE dominates)

Zonal mean Surface Temperature Response (1% per year CO₂ increase)

