A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 4EN

Bookmark

Show all steps: ON

Problem

Let *G* be a finite group, and *K* a *p*-Sylow subgroup of *G*. Let *X* be the set of all the conjugates of *K*. See Exercise M2. If C_1 , $C_2 \in X$, let $C_1 \sim C_2$ iff $C_1 = aC_2a^{-l}$ for some $\alpha \in K$

Use parts 2 and 3 to prove that the number of elements in X is $k_p + 1$, for some integer k.

Step-by-step solution

Step 1 of 3

Assume that G is a finite group and K a p-Sylow subgroup of G. Consider the set X as the set of all the conjugates of K. Define an equivalence relation as:

If $C_1, C_2 \in X$, let $C_1 \approx C_2$ if and only if $C_1 = aC_2a^{-1}$ for some $a \in K$.

Objective is to prove that the number of elements in X is kp+1, for some integer k.

Comment

Step 2 of 3

(1) The number	er of elements in $[C]$ is either 1 or a power of p .	
	ally one single element class, that is, the only class with a single element is $[K]$.	
Now, by using equivalence c	low, by using the equivalence relation, one have partitioned the order of X into some quivalence classes of size p^i , for some integer i , with exactly one class of size 1. This size o lass is of identity class, $p^0 = 1$.	
From this argu	ment, it implies that the number of elements in X is one more than a multiple of	
Comment		
Comment	Step 3 of 3	
	Step 3 of 3	