

POWER NETWORK PARAMETER METER N13

SERVICE MANUAL

POWER NETWORK PARAMETER METER - N13 SERVICE MANUAL

CONTENTS

١.	AFFLICATION AND FROFERINGS	J
2.	METER SET	4
3.	BASIC REQUIREMENTS - SAFETY INFORMATION	4
4.	ASSEMBLY	6
5.	METER DESCRIPTION	7
	5.1. Measured and calculated quantities by the meter	7
	5.2. Inputs, outputs, interface	8
	5.2.1 Current inputs	9
	5.2.2 Voltage inputs	9
	5.2.3 Analogue output	13
	5.2.4 Relay output	13
	5.2.5 Interface	13
6.	PROGRAMMING OF N13	14
	6.1. Frontal panel	14
	6.2. Messages after switching the supply off	14
	6.3. Description of the user's interface	15
	6.4. Accessible measuring quantities	
	6.5. Setting of the date and time	16
	6.6. Setting of meter parameters	
	6.7. Setting of meter output parameters	18
7.	RS-485 INTERFACE	22
8.	ERROR CODES	24
9.	TECHNICAL DATA	25
10.	EXECUTION CODES	28
11	MAINTENANCE AND GUARANTEE	29

1. APPLICATION and PROPERTIES

The N13 panel power network parameter meter is a digital instrument destined to measure all basic parameters in three-phase three-wire or three-phase four-wire, balanced or unbalanced electrical power networks, with the simultaneous display of measured quantities and the digital transmission of their values and their conversion into an analogue standard signal.

It can be employed in data acquisition networks or can be used as a single meter instead of many different meters used till now: ammeters, voltmeters, wattmeters, warmeters, frequency meters, phase meters and others. This parameter meter enables the control and optimization of power electronic devices, systems and industrial installation.

This parameter meter ensures the measurement of: rms voltage and current, active, reactive and apparent power, active, reactive and apparent energy, power factors, frequency, relative harmonics content of voltage and current, e.g. 15-minutes mean active power. Voltages and currents are multiplied by given voltage and current ratios of measuring transformers. Power and energy indications take into account the value of programmed rations.

The value of each measured quantity can be transmitted to the master system through the RS-485 interface. The LPCon program is destined for the configuration of the N13 meter. One must connect the meter through the PD10 converter, to the PC computer.

The value of each chosen quantity can be additionally transmitted by means of a standard current signal, the relay output can be used to signal exceedings of chosen quantities. Measurements are carried out by the sampling method of voltage and current signals.

2. METER SET

The meter set includes:

- N13 parameter meter	1 pc
- service manual	1 pc
- guarantee card	1 pc
- holders to fix the meter in the panel	2 pcs

3. BASIC REQUIREMENTS, SAFETY INFORMATION

Symbols located in this service manual mean:

WARNING

Warning of potential, hazardous situations. Especially important. One must acquaint with this before connecting the meter. The non-observance of notices marked by these symbols can occasion severe injuries of the personnel and the damage of the meter.

Designates a general useful note. If you observe it, handling of the meter is made easier. One must take note of this when the meter is working inconsistently to the expectations. Possible consequences if disregarded.

In the security scope the meter meets the requirements of the (EN 61010-1) standard

Remarks concerning the operator safety:

1. General

- The N13 parameter meter is destined to be mounted on a panel.
- Non-authorized removal of the required housing, inappropriate use, incorrect installation or operation creates the risk of injury to personnel or damage to equipment. For more detailed information please see the service manual.
- All operations concerning transport, installation, and commissioning as well
 as maintenance must be carried out by qualified, skilled personnel and
 national regulations for the prevention of accidents must be observed.
- According to this basic safety information, qualified, skilled personnel are
 persons who are familiar with the installation, assembly, commissioning, and
 operation of the product and who have qualifications necessary for their
 occupation.

2. Transport, storage

Please observe the notes on transport, storage and appropriate handling. Observe the climatic conditions given in Technical Data.

3. Installation

- The meters must be installed according to the regulation and instructions given in this service manual.
- Ensure proper handling and avoid mechanical stress.
- Do not bend any components and do not change any insulation distances.
- Do not touch any electronic components and contacts.

- Meters contain electrostatically sensitive components, which can easily be damaged by inappropriate handling.
- Do not damage or destroy any electrical components since this might endanger your health!
- Before connecting the meter to the power, one must check the correctness of the mains cable connection.
- Before the removal of the meter housing, one must disconnect the supply and the measuring circuits.
- The removal of the housing during the guarantee period causes its cancellation.

4. ASSEMBLY

The N13 meter is adapted to be mounted into panels and cubicles by means of 2 holders according the fig.1.

The meter housing of $96 \times 96 \times 70.5$ mm dimensions is made of a sell-extinguishing plastics. At the rear side of the meter there are terminal strips which enable the connection of up to 2.5 mm^2 conductors.

One must prepare a $91^{+0.5} \times 91^{+0.5}$ mm hole in the panel which the thickness should not exceed 6 mm. The meter must be introduced from the panel front with the switched off supply. After its insertion, fix the meter by means of two holders.

Fig.1 NA13 meter dimensions

5. METER DESCRIPTION

5.1. Measured and calculated values by the meter

The N13 parameter meter enables the measurement and visualisation of over 30 power energy quantities:

Measured quantities	Single-phase parameters	Three-phase parameters
Phase voltages	U1, U2, U3	
Phase-to-phase voltages	U12, U23, U31	
Line currents	11, 12, 13	
Mean line current	1	
Active power	P1, P2, P3	Р
Reactive power (inductive, capacitive)	Q1, Q2, Q3	Q (QL, QC)
Apparent power	S1, S2, S3	S
Active energy (total, developped, received)		EnP (EnP_i, EnP_e)
Reactive energy (inductive, capacitive)		EnQ (EnQ_L, EnQ_C)
Apparent energy		EnS
Power factor cosφ	PF1, PF2, PF3	PF
Power factor tgφ	tg1, tg2, tg3	Tg
Current THD	THD_I1, THD_I2, THD_I3,	
Voltage THD	THD_U1, THD_U2, THD_U3,	
Frequency		F
15 minutes' mean active power		Pav
Current in the neutral wire		In

5.2. Inputs, outputs, Interface

5.2.1. Current inputs

All current inputs all galvanically insulated (internal current transformers). The value on current inputs is automatically calculated in relation to the introduced external current transformer ratio. Current inputs are defined in the order as 1 A or 5 A

5.2.2. Voltage inputs

The quantity on voltage inputs is automatically calculated in relation to the introduced external voltage transformer ratio. Voltage inputs are defined in the order as $3 \times 57.7/100 \text{ V}$. $3 \times 230/400 \text{ V}$ or $3 \times 400/690 \text{ V}$

Connection diagrams of the meter in a three-phase network

Fig. 2a Direct measurement in a three-phase network

Fig. 2b Semi-indirect measurement in a three-phase network

Fig. 2c Indirect measurement with the use of 2 current transformers and two or three voltage transformers in a three-phase network

Connection diagrams of the meter in a four-wire network

Fig. 3c Indirect measurement with the use of three current transformers and two or three voltage transformers in a four-wire network

5.2.3. Analogue outputs

We can convert quantities from the table 1 into a standard analogue current signal in the range - 20 mA...0...20 mA. The scaling of the measured quantity and also the value of the current signal are realised.

5.2.4. Relay output

The internal relay signals the exceeding state of programmed ranges of the chosen quantity.

Set of quantities for the analogue and relay output.

Table 1

Qu	ıantity	Lower range value for outputs	Upper range value for outputs
Phase voltages	U1,U2,U3	1 V 930 kV	1 V 930 kV
Phase-to-phase voltages	9 U12, U23, U31	2 V 1,6 MV	2 V 1.6 MV
Phase currents	I1, I2, I3, I	0.01A 45 kA	0.01A 45 kA
Active power	P1, P2, P3, P	- 2200220 GW*	- 2200220 GW
Reactive power	Q1, Q2, Q3, Q	- 2200220 GVar*	- 2200220 GVar
Apparent powe	r S1, S2, S3, S	- 2200220 GVA*	-2200220 GVA
Power factor	PF1, PF2, PF3, PF	- 1.0001,000	- 1.0001.000
Power factor	tg1, tg2, tg3, tg	- 99.90 99.99	- 99.9099.99
Frequency	f	0. <u>20 100</u> Hz	0. <u>20 100</u> Hz

^{*} Multiplier **Giga** - is shown on the display simultaneously by lighting of the symbol **Kilo** and **Mega**

5.2.5. Interface

The meter can communicate with the main system by means of the RS-485 interface with the MODBUS transmission protocol.

The converter RS-485/RS-232 (e.g. PD10 type from LUMEL S.A.) or the RS-485 interface card is necessary to connect the meter with a computer

Fig. 4 Connection of meters with RS-485 interface to a PC.

Note: One can extend the network up to 247 devices.

After each 31 devices, one must install a PD51 repeater in series which enlarges the possibilities of the network by 31 successive address numbers and increases the installation distance by ca 1000 m.

6. PROGRAMMING OF N 13

6.1. Frontal panel

Fig. 5 Frontal panel

6.2. Messages after switching the supply on

After switching the supply on, the meter carries out the test of displays and displays the current version of the program.

Where: h.x.xx is the number of the current version of the program or the number of the custommade execution.

Fig. 6 Message after switching the supply on

Note: If at the moment of the start, the message UnCx (x = I,U,A) appears on the displays, one must contact an authorized service

6.3. Description of the user's interface

In the measuring mode, quantities are displayed according settled tables. The quantity in the tables and accessible parameters depend on the kind of connected power network. The pressure of the key (top) causes the transition between displayed single-phase quantities. The pressure of the key (left) causes the transition between displayed three-phase quantities.

The display of phase and phase-to-phase quantities is independent.

6.4. Accessible measuring quantities

Accessible phase quantities for a four-wire network

	Phase voltages	Phase currents	Phase active powers	Phase reactive power	Phase apparent powers	Active power factors	Reactive power to active power ratios	Phase-to-phase voltages	THD for phase voltages	THD for phase currents
L1	Ш	11	PI	Q1	51	PF1	TG1	U12	THDU1	THDI1
L2	U2	12	P2	Q2	52	PF2	TG2	U23	THDU2	THD12
L3	U3	13	P3	αз	53	PF3	TG3	U31	THDU3	THD13

Accessible phase quantities for a three-phase network.

	currents	voltages
L1	11	U12
L2	12	U23
L3	13	U31

Three-phase and mean quantities for 3 and 4-wire networks.

Mean current	Mean active power	Mean reactive power	Mean apparent power	Mean power factor	Reactive power to active ratio	Frequency	15 minutes' mean active power	Active energy	Reactive energy	Current in the neutral wire
1	Р	а	5	PF	TG	F	PRU	ENP	ENQ	IΝ

Fig. 7 Working modes of N13 parameter meter

Fig. 8 Setup menu

Settings

The entry into the programming mode proceeds through the holding of the (enter) key during ca. 3 s. The entry into the programming mode is protected by the access code. The code is introduced for all parameters. In case of lack of code the program transits at once in the programming option. The SET inscription (column 1) and symbols of each levels: T, S, O are displayed.

6.5. Setting of the date and time

Mode: time

Table 2

Parameter name	Default value	Change range
Year		2002 2082
Month		1 12
Day		1 31
Hour		0 23
Minute		0 59

After entry into the SETUP procedure we choose the **t** mode by means of the key (top) and accept by means of the key (**enter**)

у	У	у	У			h	h
		m	m	→		m	m
		d	d	(enter)		S	S

Where:

yyyy - year mm - month dd - dav

hh - hour mm - minutes ss - seconds We settle values by means of keys (top) and (left): i.e. we choose the position of the decimal number with the key (left) and the value of the number with the key (top). The active position is signalled by the cursor. The value is accepted by the key (enter) or cancelled by pressing (ESC).

After the parameter dd (day), the successive pressure causes the transition to set hours and minutes.

The second counter is reset to zero after the minutes, after a successive pressure of the key (enter). For a precise measurement of time one must wait till the full minute and press (enter).

6.6. Setting of meter parameters

Mode: Parameters - setup

Table 3

Parameter name	Displayed quantity	Assumptive quantity	Change range
Default setting	dEF	N	Y/n
Input	3 - 4	4	3 4
Current transformer ratio	tr_I	1	1 9000
Voltage transformer ratio	tr_U	1	1 4000
Cancellation of mean power	PA_0	n	Y/n
Mean power interval (min)	PA_t	15	15, 30, 60
Mean power synchronization	PA_S	N	Y/n
Display brightness	brt	15	015
Change of the access code	SECU	0000	0000 9999

The entry into the Parameter mode is protected by the access code, if it is different from zero. In case of the code 0000, the inquiry about the password is omitted.

If the access code is different from zero and the user does not introduce the correct code, only the review of parameters is possible. In case of introducing a value over the range, after accepting, the value is set on the upper limit range.

6.7. Setting of meter output parameters

Mode: Output

	Parameter name	Displayed quantity	Assumpti- ve value	Range change
	Address of the meter in the network 1)	Addr	1	0 247
	Baud rate [kbd]	bAUd	19.2 k	4800 9600 19200
	Mode of the protocol	trYb	OFF	OFF A8n1 A7E1 A7o1 r8n2 r8E1 r8o1
	Quantity on the relay output 1)	A_n	OFF	Tab. 5
Relay output	Switch-on value in % of the nominal range	A_on	101.0	- 120.00120.0
Relay	Switch-off value in % of the nominal range	A_of	99.0	- 120.00120.0
	Delay in the alarm action [s]	A_dt	0	0 100
	Quantity on the continuous output 1)	Ao_n	OFF	Tab. 5
output	Lower value of the input range in % of the nominal range	AoIL	0	- 120.00120.0
Analogue output	Upper value of the input range in % of the nominal range	AoIH	100	- 120.00120.0
A	Lower value of the output range (mA)	AoOL	4	- 20020
	Upper value of the output range (mA)	AoOH	20	- 20020
	Energy Cancelation	En_0	0	Y/n

¹⁾ In case of the off or zero quantity value in these quantities, other common output parameters will not be displayed.

Table 4

Outputs are active if a value different from zero (off) was assigned to them. Relay and analogue outputs are not connected with the displayed quantities on the page. In case of negative numbers the introduction of minus follows after the cursor transition on the position 4 (thousands' number) and pressing the key (top).

Example of programming:

Set the continuous output on the input range 180... 220 V of the U1 voltage on the output range $4\dots 20$ mA.

Check the percentage participation of the signal in the whole nominal range. E.g. $230/400 \ \text{V}$

$$x1 = \frac{180 \text{ V} \cdot 100\%}{230 \text{ V}}$$
 $x2 = \frac{220 \text{ V} \cdot 100\%}{230 \text{ V}}$

X1 = 78% of the input range.

X2 = 96% of the input range

We assign U1 for the Ao_n parameter

AoIL = 78

AoIH = 96

AoOL = 4

AoOH = 20

In case of using external transformers, ratios are taken in consideration in the calculation formula.

E.g. *TrU 230 = 100%

Table 5

Item	Symbol	Unit	Quantity name
1	U1	V	Voltage of L1 phase
2	I1	Α	Current of L1 phase
3	P1	W	Active power of L1 phase
4	q1	Var	Reactive power of L1 phase
5	S1	VA	Apparent power of L1 phase
6	PF1		Active power factor of L1 phase
7	tG1		Ratio of reactive to active power of L1 phase
8	U2	V	Voltage of L2 phase
9	12	Α	Current of L2 phase
10	P2	W	Active power of L2 phase
11	q2	Var	Reactive power of L2 phase
12	S2	VA	Apparent power of L2 phase
13	PF2		Active power factor of L2 phase
14	tG2		Ratio of reactive to active power of L2 phase
15	U3	V	Voltage of L3 phase
16	13	Α	Current of L3 phase
17	P3	W	Active power of L3 phase
18	q3	Var	Reactive power of L3 phase
19	S3	VA	Apparent power of L3 phase
20	PF3		Active power factor of L3 phase
21	tG3		Ratio of reactive to active power of L3 phase
22	I	Α	Mean phase current
23	Р	W	Mean 3-phase power
24	q	Var	Reactive 3-phase power
25	S	VA	Apparent 3-phase power
26	PF		Mean active power factor
27	tG		Mean ratio of reactive to active power
28	F	Hz	Frequency
29	U12	V	L1- L2 phase-to-phase voltage
30	U23	V	L2- L3 phase-to-phase voltage
31	U31	V	L3- L1 phase-to-phase voltage
32	PAr	W	Mean power (e.g. 15 min.)

7. RS-485 INTERFACE

In executions with interface the meter has the possibility to communicate with a PC through the RS-485 line.

In the N13 meter, data are inserted in 16 and 32-bit registers.

Process variables and meter parameters are placed in the address space of registers in a way depending on the type of the variable value. In the 16-bit register, bits are numbered from the youngest to the oldest (b0-b15). 32-bit registers include numbers of the float type in the IEEE-745 standard.

The register map is divided into the following areas.

Address range	Value type	Description
4000 - 4021	Integer (16 bit)	Value inserted in one 16-bit register. The register description is included in the table 6. Registers for recording and readout.
7000 - 7068	Float (32 bit)	The value is placed in two succesive 16-bit registers. Registers are only for readout.
		Value inserted in one 32-bit register. The register description is included in the table 7. Registers for readout.

Table 6

lt.	Address	Symbol	Range	Description		
1	4000	Tr_I	1 9000	Ratio of the current transformer		
2	4001	Tr_U	1 4000	Ratio of the voltage transformer		
3	4002	3-4	0,1	Choice of network type: 3 or 4-wire		
4	4003	P_A0	0,1	0,1 Cancellation of mean power		
5	4004	P_AU	0,1,2,3	Interval of mean power O-off,		
				1-15; 2-30; 3-60		
6	4005	P_AS	0,1	Synchronization with RTC		
7	4006	brt	015	Display brightness		
8	4007	A_n	0,133	Quantity on the relay output		
9	4008	A_on	- 1200120	Lower switch-on value		

Table 6 (continuation)

10	4009	A_oF	- 1200120	Upper switch on value
11	4010	A_dt	0100	Delay of the alarm switch on
12	4011	Ao_n	0,133	Quantity on the analogue output
13	4012	AoIL	- 1200120	Lower threshold of the input quantity
14	4013	AoIH	- 1200120	Upper threshold of the input quantity
15	4014	AoOL	- 20020	Lower threshold of the output scaling [mA]
16	4015	AoOH	- 20020	Upper threshold of the output scaling [mA]
17	4016	YeAr	2002 2084	Year
18	4017	MonDay		Month*100 + day
19	4018	HourMin		Time in the format Hour*100 + minutes
20	4019	ALm		State of the relay output
21	4020	En_0	0. 1	Cancellation of watt-hour meters

Table 7

lt.	Register address	Symbol	Unit	Quantity name			
1	7500	U ₁	٧	L1 phase voltage			
2	7501	l ₁	Α	L1 phase current			
3	7502	P ₁	W	L1 phase active power			
4	7503	Q 1	Var	L1 phase reactive power			
5	7504	S ₁	VA	L1 phase apparent power			
6	7505	PF ₁		Active power factor of L1 phase			
7	7506	tG ₁		Ratio of reactive to active power of L1 phase			
8	7507	U ₂	٧	L2 phase voltage			
9	7508	l ₂	Α	L2 phase current			
10	7509	P ₂	W	L2 phase active power			
11	7510	q2	Var	L2 phase reactive power			
12	7511	S ₂	VA	L2 phase apparent power			
13	7512	PF ₂		L2 Active power factor of L2 phase			
14	7513	tG ₂		Ratio of reactive to active power of L2 phase			

Table 7 (continuation)

15	7514	U ₃	V	L3 phase voltage			
16	7515	l ₃	Α	L3 phase current			
17	7516	P ₃	W	L3 phase active power			
18	7517	q 3	Var	L3 phase reactive power			
19	7518	S ₃	VA	L3 phase apparent power			
20	7519	PF ₃		Active power factor of L3 phase			
21	7520	TG ₃		Ratio of reactive to active power of L2 phase			
22	7521			reserved			
23	7522		Α	Mean phase current			
24	7523	Р	W	Active 3-phase power			
25	7524	q	Var	Reactive three-phase power			
26	7525	S	VA	Apparent three-phase power			
27	7526	PF		Mean active power factor			
28	7527	tG		Mean ratio of active to reactiver power			
29	7528	Freq	Hz	Frequency			
30	7529	U12	V	L1-L2 phase-to-phase voltage			
31	7530	U23	V	L2-L3 phase-to-phase voltage			
32	7531	U31	V	L3-L1 phase-to-phase voltage			
33	7532			reserved			
34	7533	Pav	W	Mean power (e.g. 15 minutes)			
35	7534			Date: Day, Month			
36	7535			Year			
37	7536			Time: Hour, Minute			
38	7537			Seconds			
39	7538	EnP	Wh	Active energy			
40	7539	EnQ	Varh	Reactive energy			
41	7540	EnS	VAh	Apparent energy			
42	7541	THD U1	%	THD for phase voltage L1			
43	7542	THD U2	%	THD for phase voltage L2			
44	7543	THD U3	%	THD for phase voltage L3			
45	7544	THD I1	%	THD for phase current L1			

Table 7 (continuation)

46	7545	THD I2	%	THD for phase current L2
47	7544	THD 13	%	THD for phase current L3
4872	75477571	H1H25 (U1)	%	Harmonics of phase voltage L1
7397	75727596	H1H25 (U2)	%	Harmonics of phase voltage L2
98122	75977621	H1H25 (U3)	%	Harmonics of phase voltage L3
123149	76227646	H1H25 (I1)	%	Harmonics of phase current L1
150174	76477671	H1H25 (I2)	%	Harmonics of phase current L2
175198	76727696	H1H25 (I3)	%	Harmonics of phase current L3
199	7697	In	Α	Current in the neutral wire
200	7698 EnP_i		Wh	Consumed active energy
201	7699 EnP_e		Wh	Returned active energy
202	7700	EnQ_L	varh	Inductive reactive energy
203	7701	EnQ_C	varh	Capacity reactive energy
204	7702	Q_L	var	Inductive reactive power
205	7703	Q_C	var	Capacitive reactive power

8. ERROR CODES

Messages about errors can appear during the meter work. The causes of these errors are presented below:

Err - when the voltage or current is too small during the measurement:

```
\begin{array}{lll} Pf_{i}\;, t\phi_{i} & below\; 7\%\; U_{n},\; I_{n} \\ f & below\; 7\%\; U_{n} \\ \\ THD\; U & U_{n} < U_{n} - 10\%U_{n},\; lub\; U_{n} > U_{n} + 12\%U_{n}, \\ 55\; Hz < f < 45\; Hz \\ \\ THD\; I & I < 10\%\; I_{n} \\ \end{array}
```

• The full time interval of the Pau power averaging is not expired.

9. TECHNICAL DATA

Measuring ranges and admissible basic errors are presented in the table $8\,$

Table 8

Measured quantity	Range	Basic error	Remarks		
U _i voltage	57.7/100 V (Ku=1) 230/400 V (Ku=1) 400/ 690 V (Ku =1) dla Ku≠11,6 MV	± (0.2% m.v.+0.1% range)	Ku = 14000 (max 1.6 MV)		
l _i current	1.000 A (Ki=1) 5.000 A (Ki=1) dla Ki≠145 kA	± (0.2% m.v.+0.1% range)	Ki = 19000 (max 45 kA)		
P _i active power P _{AV} mean active power Active energy EnP	0.0 999.9 W for Ku≠1, Ki≠1 (-)220 GW	± (0.5% m.v.+0.2% range)			
S _i apparent power Apparent energy EnS	0.0999.9 VA for Ku≠1, Ki≠1 220 GVA	± (0.5% m.v.+0.2% range)			
Q _i reactive power Reactive energy EnQ	0.0 999.9 Var for Ku≠1, Ki≠1 (-)220 GVar	± (0.5% m.v.+0.2% range)			
Pf _i active power factor	- 1.000.001.000	± 1% m.v. ±2c	Pf=Power factor=P/S		
tφi factor (ratio of reactive power to active power)	- 99.9099.9	± 1% m.v. ±2c	error in the range - 99.9099.9		
f frequency	20.0 500.0 Hz	± 0.5% m.v.			
THD Ui, THD Ii	0.5100%	± 5% m.v. ±2c	-10%Un <un <<br="">12%Un I_n > 10% I_n 47 52 Hz</un>		

Where: Ku - voltage transformer ratio

Ki - current transformer ratio

m.v. - measured value

c - less significant display digit

Power consumption:

- supply circuit ≤ 12 VA - voltage circuit ≤ 0.5 VA - current circuit ≤ 0.1 VA

Supply 85...250 V d.c. or a.c., 40...400 Hz

Display field: 4 x 4 LED digits, 10 mm high,

red or green displays

Outputs:

- analogue output 1 analogue programmed output:

-20... 0...+20 mA accuracy: 0.2%

- relay output 1 relay output, voltageless make

contacts load capacity: 250 V a.c./ 0.5 A a.c.

Serial interface RS-485

Transmission protocol MODBUS ASCII and RTU

Meter reaction to decays

and supply recovery data and meter state preservation

during supply decays, (battery support), work continuation after

supply recovery

Protection degree ensured by the housing:

- frontal side IP 40- terminal side IP 10Weight 400 q

Overall dimensions $96 \times 96 \times 70.5 \text{ mm}$

Panel cut-out dimensions 91+0.5 × 91+0.5

Reference conditions and nominal operating conditions:

- Input signal: $0...\underline{0.02...1.2}$ In, $0...\underline{0.02...1.2}$ Un, for voltage, current,

frequency, power

0...0.02...1.2 In, 0...0.07...1.2 Un, for Pf and t φ factors, frequency 15...45...65...500 Hz sinusoidal current (THD \leq 8%)

- power factor - 1...0...1 - ambient temperature 0...23...55°C

- relative air humidity 25...95% (no condensation)

- storage temperature - 20...70°C

- supply 85... 253 V d.c. or a.c. 40... 400 Hz

- admissible peak factor:

- current 2
- voltage 2

- external magnetic field 0...40...400 A/m

- short duration overload (5 sec):

- voltage inputs 2 Un (max.1000 V)

current inputs
working position
warm-up time
5 minutes

Additional errors in % of the basic error:

- from frequency of input signals < 50%

- from ambient temperature changes < 50%/10°C

Electromagnetic compatibility:

- immunity acc. EN 61000-6-2

Safety requirements: acc. EN 61010-1

- insulation ensured by the housing dual
- insulation between circuits basic
- installation category III
- pollution degree 2

- maximal working voltage in relation to earth 600 V a.c.

10. EXECUTION CODES AND ORDERING WAY

Table 10

	_				_	_	
NETWORK PARAMETER METER N13 -	X.	X.	X.	Χ.	Χ.	XX.	Χ
Input current In: 1 A (X/1)	2						
Input phase/phase-to-phase voltage Un: 3 × 57.7/100 V		2 3					
Current analogue output: without analogue output with a programmed output - 20 + 20 mA							
Digital output: without interface with RS-485 interface							
Display: red digitsgreen digits							
Kind of execution: standardcustom-made							
Acceptance test: without an extra quality inspection certificate with an extra quality inspection certificate acc user's agreement**							7

^{*} After agreeing by the manufacturer

^{**} The execution numbering will be made by the manufacturer.

Coding example:

The N13 2 2 1 1 2 00 7 code means:

input range: 5 A, input voltage: $3 \times 230/400$ V, with a programmed current analogue output: - 20... 20 mA, RS-485 interface, green digits, standard execution, with an extra quality inspection certificate.

11. MAINTENANCE AND GUARANTEE

The N13 parameter meter does not require any periodical maintenance. In case of some incorrect unit operations:

From the shipping date, during the period given in the annexed guarantee card.

One should take the instrument down from the installation and return it to the Manufacturer's Quality Control Dept.

If the instrument has been used in compliance with the instructions, the Manufacturer guarantees to repair it free of charge.

2. After the guarantee period:

One should turn over the instrument to repair in a certified service workshop. The disassembling of the housing causes the cancellation of the granted guarantee.

Spare parts are available for the period of ten years from the date of purchase.

The Manufacturer's policy is one of continuous improvement and we reserve the right to make changes in design and specifications of any products as engineering advances or necessity requires and revise the above specification without notice.

SALES PROGRAM

- DIGITAL and BARGRAPH PANEL METERS
- MEASURING TRANSDUCERS
- ANALOG PANEL METERS (DIN INSTRUMENTS)
- ANALOG and DIGITAL CLAMP-ON METERS
- INDUSTRIAL and HOUSEHOLD CONTROLLERS
- CHART AND PAPERLESS RECORDERS
- POWER CONTROL UNITS and INVERTERS
- WATT-HOUR METERS
- AUTOMOTIVE DASHBOARD INDICATORS
- ACCESSORIES FOR MEASURING INSTRUMENTS (SHUNTS)
- MEASURING SYSTEMS (ENERGY, HEAT, CONTROL)
- CUSTOM-MADE MEASURING ELECTRONIC DEVICES.

WE ALSO OFFER OUR SERVICES IN THE PRODUCTION OF:

- ALUMINIUM ALLOY PRESSURE CASTINGS
- PRECISION ENGINEERING AND THERMOPLASTICS PARTS
- PRESSURE CASTING DIES AND OTHER TOOLS
- VARIOUS ELECTRONIC SUB-ASSEMBLIES (MSD TECHNOLOGY)

QUALITY PROCEDURES:

According to ISO 9001 and ISO 14001 international requirements.

All our instruments have CE mark.

For more information, please write to or phone our Export

N13-07C

Lubuskie Zakłady Aparatów Elektrycznych LUMEL S.A.

ul. Sulechowska 1, 65-022 Zielona Góra, Poland

Tel.: (48-68) 3295 100 (exchange)

Fax: (48-68) 3295 101 e-mail:lumel@lumel.com.pl http://www.lumel.com.pl

Export Department:

Tel.: (48-68) 329 53 02 or 53 04

Fax: (48-68) 325 40 91 e-mail: export@lumel.com.pl

MEASUREMENT CONTROL RECORDING