Loris Jautakas

July 29, 2023

Introduction 1

This note covers basic definitions and results of category theory. It mostly follows [riehl'2016], but also contains notes from [simmons'2011], as well as special topics from [nourani'2014].

Definition 1: Category

A category C consists of

- A class $\mathbf{Ob}(C)$ consisting of objects
- A class $\mathbf{Hom}(C)$ of morphisms.

Definition 2: Morphism

A morphism is any object that has a source object $A \in \mathbf{Ob}(C)$ and a target $B \in \mathbf{Ob}(C)$. Morphisms are sometimes called arrows.

If f is a morphism with source $A \in \mathbf{Ob}(C)$ and target $B \in \mathbf{Ob}(C)$, then this is usually written as $f: A \to B$.

- A binary operation $\circ: M \to M$, called composition, which satisfies:
 - 1. \circ is associative
 - 2. $\mathbf{Hom}(A)$ has an idenity morphism for every $A \in \mathbf{Ob}(C)$

Definition 3: Identity Morphism

For every object $A \in \mathbf{Ob}(C)$, there exists an identity morphism $1_A : A \to A$, such that for every morphism $f: A \to B$:

$$f \circ 1_A = f = 1_B \circ f \tag{1}$$

Example 1.1: Common Categories

- Set has objects consisting of all sets, and morphisms consisting of all functions between sets.
- Top has objects consisting of all topological spaces, and morphisms consisting of all continuous functions between these spaces.
- Group has objects consisting of all groups, and morphisms consisting of all homomorphisms between groups.
- \mathbf{Mod}_R for a fixed ring R (with identity), is the category of left R-modules and R-module homomorphisms. If R is a field, then we call this
- Graph has objects consisting of all graphs, and morphisms consisting of graph homomorphisms.
- Model_T for any language \mathcal{L} and first order \mathcal{L} -theory T is a category with objects as $[\mathcal{L}, T]$ structures (i.e. \mathcal{L} -structures \mathcal{M} that model T, so $\mathcal{M} \models T$).

Result 1: Unique Identity

Identity morphisms in a category are unique.

Proof. Consider an object A with two identity morphisms $f, g: A \to A$. Then note $f = f \circ g = g$. Thus f = g and identity morphisms are unique.

Definition 4: Hom Class

Let C be a category. Let $A, B \in ob(C)$ be two objects. Denote $C(A, B) = \{f \in \mathbf{Hom}(C) | f : A \to C \}$ B, i.e. the class containing all morphisms with source A and target B. This is called the Hom-class, and is sometimes written as $\mathbf{Hom}(A, B)$.

Definition 5: Isomorphism

A morphism $f: X \to Y$ is an isomorphism if and only if it is invertible, i.e there exists some $g: Y \to X$ such that:

$$g \circ f = 1_X$$

$$f \circ g = 1_Y$$

$$(2)$$

$$(3)$$

We then say two objects X, Y are isomorphic.

Definition 6: Endomorphism

An endomorphism is a morphism whose domain is the same as the codomain, i.e. $f: X \to X$ is an endomorphism. a set of all endomorphisms of an object X is denoted $\mathbf{End}(X)$.

Definition 7: Automorphism

A automorphism is a morphism which is both an isomorphism and an endomorphism.

Example 1.2: Category Isomorphisms

Note that morphisms are technically binary relations, (if they arent a set then they can be though of as a relation of a class) but this sometimes is not the right way of looking at them. This is true in the following example:

- 1. For any ring R, define the category C:
 - $\mathbf{Ob}(C) \stackrel{\mathrm{def}}{=} \mathbb{Z}_+$ • $\mathbf{Hom}(C) \stackrel{\text{def}}{=}$ the set of $C(n,m) = R^{n \times m}$, i.e. all n by m matrices.
 - $\circ \stackrel{\text{def}}{=} \text{matrix multiplication}$
 - To check this forms a category, note that:

• • is associative because matrix multiplication is associative

- Every object has an identity, namely for any $n \in \mathbf{Ob}(C)$ there is the $n \times n$ identity matrix
- I_n , which has the property that for any morphism $f: m \to n$ (i.e. for every $n \times m$ matrix) we have $I_n \circ f = f \circ I_m = f$.

Thus C is a category. Note that while technically $\mathbf{Hom}(C)$ consists of relations, (i.e. you have a relation for each

- $n \times m$ matrix) it is not productive to think of morphisms this way, so you should rather think
- of morphisms as some new object, i.e. an arrow. 2. For any monoid $\mathcal{M} = (M, *)$, define the category $C = \mathbf{B}_M$:

 - Ob(C) consists of some single object (could be anything, let's call it o)
 - For every monoid element $m \in M$, define a morphism $f_m : o \to o$.
 - Define \circ as the binary operation $f_m \circ f_n \mapsto f_{m*n}$.

Note that monoids have identity elements and associative binary operation.