The Apollo LM state feedback assignment

Kjartan Halvorsen

November 11, 2022

The Apollo lunar module

The Apollo lunar module

The Apollo lunar module

Activity Which is the transfer function of the system?

1:
$$G(s) = \frac{\frac{g}{J}}{s^2}$$
 2: $G(s) = \frac{\frac{g}{J}}{s(s^2 + 1)}$ 3: $G(s) = \frac{\frac{g}{J}}{s^3}$

Plan

- 1. Obtain discrete-time pulse transfer function for the LM.
- 2. Convert transfer function to discrete-time state space model.
- 3. Design a state feedback controller $u(k) = Lx(k) + l_0r(k)$ to obtain good reference response.
- 4. Design an observer $\hat{x}(k+1) = A\hat{x}(k) + Bu(k) + K(y(k) C\hat{x}(k))$ and studying two cases: Slow observer vs fast observer.

1. Discretize the continuous-time model

$$G(s) = \frac{\frac{g}{J}}{s^3}$$

The idea is to sample the continuous-time system's response to a step input, in order to obtain a discrete approximation which is exact (at the sampling instants) for such an input signal.

Step-invariant sampling (zero order hold):
$$u(kh) = \begin{cases} 1, & k \ge 0 \\ 0, & k < 0 \end{cases}$$

2. Convert to discrete-time state space

Using, for instance, the observable canonical form

$$H(z) = \frac{b_1 z^{n-1} + \dots + b_{n-1} z + b_n}{z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n}$$

can be represented on state-space form as

$$x(k+1) = \begin{bmatrix} -a_1 & 1 & 0 & \cdots & 0 \\ -a_2 & 0 & 1 & \cdots & 0 \\ -a_3 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_n & 0 & 0 & \cdots & 0 \end{bmatrix} x(k) + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} x(k)$$

2. Convert to discrete-time state space

Using, for instance, the observable canonical form

$$H(z) = \frac{b_1 z^{n-1} + \dots + b_{n-1} z + b_n}{z^n + a_1 z^{n-1} + \dots + a_{n-1} z + a_n}$$

can be represented on state-space form as

$$x(k+1) = \begin{bmatrix} -a_1 & 1 & 0 & \cdots & 0 \\ -a_2 & 0 & 1 & \cdots & 0 \\ -a_3 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -a_n & 0 & 0 & \cdots & 0 \end{bmatrix} x(k) + \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ \vdots \\ b_n \end{bmatrix} u(k)$$

$$y(k) = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} x(k)$$

Activity Determine the discrete-time state-space model of the LM on observable canonical form

