PP GAUSS VÀ GAUSS-JORDAN GIẢI PT Ax = b

Hà Thị Ngọc Yến Hà nội, 3/2018

Bài toán

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Phương pháp Gauss

Ý tưởng:

- Quy trình thuận (QTT): Dùng phép khử dần ẩn khỏi các phương trình đề đưa ma trận bổ sung về dạng bậc thang.
- Quy trình nghịch (QTN): Dùng phép thế từ hệ bậc thang để tìm dần giá trị các ẩn.

PP Gauss – QTT

- B1: Khởi tạo i = 1; j = 1; $ind = [0,0,...,0]_{1 \times m}$
- B2: Kiểm tra nếu $a_{ij} \neq 0 \Rightarrow ind [i] = j \Rightarrow$ B3, trái lại thì sang B6
- B3: Nếu i=m thì kết thúc QTT Nếu không, thì sang B4
- B4: Cho k chạy từ i+1 đến m, thực hiện biến đổi $L_k \frac{a_{kj}}{a_{ij}} \times L_i \Longrightarrow L_k$

PP Gauss - QTT

- B5: Nếu j=n thì QTT kết thúc, trái lại $i=i+1; \ j=j+1 \Longrightarrow$ B2
- B6: Cho t = i + 1.
- B7: Kiểm tra nếu $a_{tj} \neq 0$ thì đổi chỗ 2 hàng t và i, và $ind\left[i\right] = j \Rightarrow$ B3, trái lại sang B8
- B8: Nếu t=m; j=n thì QTT kết thúc Nếu t=m; j< n thì $j=j+1\Longrightarrow$ B2, Nếu t< m thì $t=t+1\Longrightarrow$ B7

PP Gauss - QTN

Dành cho các bạn tự viết

Phương pháp Gauss - Jordan

Ý tưởng:

- Hạn chế sai số tính toán khi gặp các phép chia cho số gần 0 bằng cách chọn phần tử khử thích hợp
- Dùng phép khử ấn thứ k (tương ứng với cột có chứa phần tử khử) khỏi tất cả các hàng không chứa phần tử khử

Chọn phần tử khử

• Ưu tiên 1: Chọn $a^{(k)}_{pq}=1;2;4;5...$ để các phép chia

cho $a_{pq}^{\left(k\right)}$ không có sai số hoặc sai số nhỏ.

- U'u tiến 2: Chọn $a_{pq}^{(k)}$ sao cho $\left|a_{pq}^{(k)}\right|=\max_{i,j}\left|a_{ij}^{(k-1)}\right|$
- Chú ý: Phần tử khử thứ k được chọn từ các hàng và cột không chứa các phần tử khử đã chọn trước đó.

Quá trình khử

Cho t chạy từ 1 đến m, $t \neq p$, thực hiện phép biến đổi

$$L_t - \frac{a_{tq}}{a_{pq}} L_p \Longrightarrow L_t$$

Quá trình khử

$\int a_{11}$	a_{12}	•••	a_{1q}	•••	a_{1n}	b_1	a_{11}^1	a_{12}^{1}	•••	0	•••	a_{1n}^1	b_1^1
a_{21}	a_{22}	•••	a_{2q}	•••	a_{2n}	b_2	a_{21}^{1}	a_{22}^{1}	•••	0	•••	a_{2n}^{1}	b_2^1
	•	•••	•	•••		$\begin{vmatrix} \vdots \\ b_p \end{vmatrix} \Leftarrow$		•	•••	•	•••	•	•
a_{p1}	a_{p2}	•••	a_{pq}	•••	a_{pn}	b_p	a_{p1}	a_{p2}	•••	a_{pq}	•••	a_{pn}	b_p
•	•	•••	•	•	•	•		•	•••	•	•	•	•
$\lfloor a_{m1}$	a_{m2}	•••	a_{mq}	•••	a_{mn}	b_m	$\begin{bmatrix} a_{m1}^1 \end{bmatrix}$	a_{m2}^1	•••	0	•••	a_{mn}^{1}	b_m^1