DESCRIEREA STATISTICĂ A DEZINTEGRĂRILOR RADIOACTIVE:

DISTRIBUȚIILE STATISTICE POISSON ȘI GAUSS

1. Scopul lucrarii

Scopul lucrării este verificarea experimentală a distribuţiilor statistice Poisson și Gauss - adică faptul că numărul de impulsuri înregistrate în intervale de timp identice de un contor Geiger-Müller aflat la o distantă fixată față de o sursă radioactivă cu timp de viață lung corespunde distribuţiei Poisson, care pentru un număr mare de dezintegrări se apropie de distribuţia Gauss.

2. Teoria lucrarii

Distribuția Poisson este o distribuție pentru evenimente cu variație discretă, fiind caracterizată, conform teoriei probabilităților, de funcția de probabilitate:

$$P(n,a) =$$

unde a este numit parametrul distribuţiei Poisson. Acesta are o dublă semnificaţie: 1) reprezintă valoarea medie a numărului de evenimente înregistrate în intervalul de timp ales a

= $\langle n \rangle$; 2) reprezintă dispersia sau pătratul deviației standard a distribuției Poisson, astfel deviația standard - incertitudinea - distribuției Poisson este egală cu rădăcina pătrată a valorii

medii, σ = , unde . Pentru studiul distribuţiei Poisson, parametrul a are valori mici (a ≤10). Distribuţia Gauss este o distribuţie pentru evenimente cu variaţie continuă; pentru valoarea medie a şi dispersia ; ea este caracterizată de funcţia de densitate de probabilitate:

$$P_G(x; a, \sigma) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \exp \left[-\frac{(x-a)^2}{2\sigma^2} \right]$$

Când parametrul a al distribuției Poisson are valori mari, distribuția Poisson trece (folosind formula Stirling și apoi o dezvoltare în serie Taylor) într-o distribuție (quasi)continuă, care este chiar distribuția Gauss de medie a și deviație standard σ = (altfel spus, pentru valori mari

ale mediei a, distribuția Poisson - distribuție discretă și asimetrică - tinde către o distribuție Gauss - distribuție continuă și simetrică).

3. Mod de lucru - Distributia Poisson

Se pornește programul phywe measure 4, şi se alege General configuration > "every 1000 şi se programează un număr de 1024 măsurători Se pornește achiziția datelor şi se urmăreşte înregistrarea acestora (după ce se schimbă maximul axei verticale a numărului de impulsuri S (#/s) la o valoare potrivită (20-30) Pentru un timp de numărare de 1s, când sursa de Am este la 2,0 cm de detectorul Geiger-Muller, numărul de particule α ce ajung într-un interval de timp dat la detector este mic (< 10; se recomandă reglarea distanței pentru un număr mediu de impulsuri în intervalul 3 - 5), iar distribuția este de tip Poisson. Se înregistrează măsurătorile numai după ce s-a obținut numărul (mediu) dorit de impulsuri (3 - 5).

4. Rezultate

timp = 1024 s

n	k_exp(n)	n*k_exp(n)	P(n)	k_thP(n)	P_G(n)	kth_G(n)
0	28	0	0.0218	22.411	0.038	39.743
1	81	81	0.0832	85.523	0.086	89.105
2	165	330	0.158	163.179	0.149	153.195
3	204	612	0.192	207.566	0.196	201.97
4	207	828	0.202	198.02	0.198	204.205
5	147	735	0.147	151.131	0.154	158.32
6	84	504	0.093	96.12	0.091	94.129
7	65	455	0.05	52.4	0.041	42.916
8	26	208	0.024	24.995	0.014	15.004
9	12	108	0.103	10.598	0.003	4.023
10	4	40	0.003	4.044	0.0008	0.827
11	3	33	0.001	1.403	0.00012	0.13
12	1	12	0.00043	0.446	0.00001	0.016
	N=1027	Σ= 3946	a=3.842			

timp = 500 s

n		n				
0	0.000	0.000	0.000000	0.000	0.0000000	0.000
1	0.000	0.000	0.000000	0.000	0.0000000	0.000
2	1.000	2.000	4.35835 ·	0.090	0.0004740	0.979
3	0.000	0.000	0.0002140	0.442	0.0010881	2.247

4	1.000	4.000	0.0007878	1.627	0.0023302	4.812
5	3.000	15.000	0.0023200	4.791	0.0046552	9.613
6	13.000	78.000	0.0056939	11.758	0.0086765	17.917
7	31.000	217.000	0.0119782	24.735	0.0150857	31.152
8	45.000	360.000	0.0220484	45.530	0.0244711	50.533
9	59.000	531.000	0.0360750	74.495	0.0370319	76.471
10	112.000	1120.000	0.0531225	109.698	0.0522803	107.959
11	136.000	1496.000	0.0711138	146.850	0.0688566	142.189
12	195.000	2340.000	0.0872650	180.204	0.0846043	174.708
13	209.000	2717.000	0.0988484	204.122	0.0969801	200.264
14	211.000	2954.000	0.1039709	214.700	0.1037089	214.159
15	220.000	3300.000	0.1020687	210.772	0.1034644	213.654
16	180.000	2880.000	0.0939380	193.982	0.0962958	198.851
17	174.000	2958.000	0.0813699	168.029	0.0836116	172.658
18	129.000	2322.000	0.0665675	137.462	0.0677283	139.859
19	106.000	2014.000	0.0515912	106.536	0.0511815	105.690
20	74.000	1480.000	0.0379854	78.440	0.0360828	74.511
21	61.000	1281.000	0.0266358	55.003	0.0237317	49.006
22	39.000	858.000	0.0178285	36.816	0.0145612	30.069
23	39.000	897.000	0.0114145	23.571	0.0083351	17.212
24	10.000	240.000	0.0070033	14.462	0.0044508	9.191
25	7.000	175.000	0.0041254	8.519	0.0022174	4.579
26	3.000	78.000	0.0023365	4.825	0.0010305	2.128
27	4.000	108.000	0.0012740	2.631	0.0004469	0.923
28	1.000	28.000	0.0006702	1.384	0.0001800	0.373
29	0.000	0.000	0.0003404	0.703	6.82809 ·	0.141
30	1.000	30.000	0.0003404	0.703	2.42131 ·	0.050
31	0.000	0.000	7.94189 ·	0.343	7.74818	0.030
32	1.000	32.000	3.63196 ·	0.104	2.42131	0.016
32	N = 2065.000	$\Sigma = 30515.00$	a = 14.777	0.075	2.42131	0.003

unde N , Σ , a = Σ/N

Frecvenţa teoretică de apariţie a evenimentului n este:

⁼ N · pentru o distribuţie Poisson şi

⁼ N · pentru o distribuţie Gauss.

