1 BIAS-VARIANCE TRADEOFF

$$\begin{split} \mathbf{E}(\theta - \widehat{\theta})^2 &= \mathbf{E}(\theta - \mathbb{E}\widehat{\theta} + \mathbb{E}\widehat{\theta} - \widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 - 2\mathbf{E}\{(\theta - \mathbb{E}\widehat{\theta})(\widehat{\theta} - \mathbb{E}\widehat{\theta})\} + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 - 2(\theta - \mathbb{E}\widehat{\theta})\mathbf{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta}) + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \\ &= \mathbb{E}(\theta - \mathbb{E}\widehat{\theta})^2 + \mathbb{E}(\widehat{\theta} - \mathbb{E}\widehat{\theta})^2 \\ &= \mathbf{Bias}(\widehat{\theta})^2 + \text{Variance}(\widehat{\theta}) \end{split}$$

2 Cross Validation

Iteration								
Obs	1	2	3	4		n		
1	valid	train	train	train		train		
2	train	valid	train	train		train		
3	train	train	valid	train		train		
4	train	train	train	valid		train		
n	train	train				valid		
MSE	MSE₁	MSE ₂	MSE ₃	MSE₄		MSE		

LOOCV test error: $CV_{(n)} = \frac{1}{n} \sum_{i} MSE_{i}$

Iteration									
Obs	1	2	3	4		k			
1	valid	train	train	train		train)			
2	valid	train	train	train		train > fold 1			
3	valid	train	train	train		train)			
4	train	valid	train	train		train			
<i>n</i> − 2	train	train				valid)			
<i>n</i> − 1	train	train				valid \rangle fold k			
n	train	train				valid)			
MSE	MSE₁	MSE ₂	MSE ₃	MSE ₄		$\overline{MSE_k}$			

K-Fold: $CV_{(k)}=\sum_b \frac{n_b}{n} MSE_b$ where n_b is the total observations in the b-th fold, and n is the total observations in the entire dataset. Suppose the

fitted values can be written $\hat{Y} = HY$. The leave-one-out-cross-validation error is

$$R_{LOOCV} = \frac{1}{n} \sum_{i=1}^{n} \left(Y_i - \widehat{Y}_{(-i)} \right)^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{Y_i - \widehat{Y}_i}{1 - H_{ii}} \right)^2$$

where H_{ii} is the i-th diagonal entry. This is the case for least squares and regularized multiple regression:

$$H = X \left(X^T X \right)^{-1} X^T \text{ or } H = X \left(X^T X + \lambda I \right)^{-1} X^T$$

3 TREE

Tree Build: (1) Cycle through predictors X_k for $k=1,\ldots,p$. For each X_k :

- (Quantitative X_k) Consider cutpoints s (unique values of X_k) that divide up the region into two parts:

$$R_1(k,s) = \{i \mid X_{ik} < s\}$$
 and $R_2(k,s) = \{i \mid X_{ik} \ge s\}$

- Evaluate (for regression trees):

$$Q_k(s) = \sum_{i:i \in R_1(k,s)} (y_i - \bar{y}_{R_1})^2 + \sum_{i:i \in R_2(k,s)} (y_i - \bar{y}_{R_2})^2$$

Find the value of s that minimizes $Q_k(s)$. Call this s_k .

(2) Find the predictor X_k with the minimum $Q_1(s_1), Q_2(s_2), \ldots, Q_p(s_p)$. Make the first binary partition along predictor X_k at cut point s_k . Cost-complexity pruning:

$$C(T) = \sum_{m=1}^{|T|} \sum_{i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

 $\alpha=0$ implies the full tree, Larger α implies higher penalty for complexity of model. With increasing α :

(1) Grow a big tree on a training set. (2) Obtain a nested set of subtrees $T_L \subset \cdots \subset T_2 \subset T_1 \subset T$ corresponding to a sequence of α values. (3)

Use K -fold cross-validation to identify the subtree that does best.

Classification Tree Impurity measures: Define node proportion of class k:
$$\widehat{p}_{mk} = \frac{1}{N_m} \sum_{x_i \in R_m} I\left(y_i = k\right)$$
 and $k(m) = \arg\max_k \widehat{p}_{mk}$

- Misclassification error: $1-\widehat{p}_{mk(m)}$

- Gini index:
$$\sum_{k=1}^{K} \widehat{p}_{mk} \left(1 - \widehat{p}_{mk}\right)$$

- Entropy:
$$-\sum_{k=1}^K \widehat{p}_{mk} \log \widehat{p}_{mk}$$

Bagging

Regression trees: Create B bootstrap samples, grow tree (without pruning) using each \widehat{f}^{*1} , \widehat{f}^{*2} , ... \widehat{f}^{*B} . For prediction at x , we take an average:

$$\widehat{f}_{bag}(x) = \frac{1}{B} \sum_{b=1}^{B} \widehat{f}^{*b}(x)$$

Classification trees: $\widehat{f}_{\text{bag}}(x)$ is decided by majority vote.

OOB Estimation: For each bagged tree, we can make predictions for the OOB observations. At the end, we can aggregate over all predictions for the i-th observation to arrive at a OOB prediction \widehat{y}_i . We can compute prediction error based on these OOB predictions $\widehat{y}_1,\ldots,\widehat{y}_n$.

Random Forests:

- (1) For b=1 to B:
 - (a) Draw a bootstrap sample Z^* of size n from the training data
- (b) Grow a random-forest tree T_b to the bootstrapped data, recursively repeating following steps, until minimum node size reached: i. Select m variables at random from the p variables ii. Pick the best variable/split-point among the m iii. Split the node into two children nodes

(2) Output the ensemble fo trees $\{T_b\}_{b=1}^B.$ To make a prediction at a new point x :

Regression: Average $\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$

Classification: Majority vote of the individual trees

4 PCA

Algorithm (1) Center the data: $x_i\mapsto x_i-\frac{1}{n}\sum_{j=1}^n x_j=x_i-\bar{x}$ (2) Compute

the
$$d \times d$$
 sample covariance $S = \frac{1}{n} \sum_{i=1}^n x_i x_i^T.$ Note that $\frac{1}{n} \sum_i \left(x_{ij} - \bar{x}\right)^2$

is the sample variance of j th coordinate of data.(3) Find the first k eigenvectors of S $,\phi_1,\ldots,\phi_k\in {\mbox{\bf R}}^d, \quad S\phi_j = \lambda_j\phi_j$ (4) Project the data onto those k vectors: $x_i\mapsto \bar x+\left(\phi_1^Tx_i\right)\phi_1+\ldots+\left(\phi_k^Tx_i\right)\phi_k$

PCA is an unsupervised method

- Finds directions of greatest variation in the data
- The directions are called the principal vectors; the weightings on the vectors are called the principal components
- The first few vectors may be interpretable
- Orthogonality makes interpretation difficult for the higher components
- Can be used for visualization or dimensionality reduction