Online: tuyensinh247.com

BẢNG ĐÁP ÁN

1.A	2.D	3.D	4.A	5.D	6.A	7.A	8.A	9.D	10.B
11.B	12.B	13.A	14.C	15.A	16.B	17.C	18.B	19.C	20.A
21.D	22.B	23.A	24.C	25.B	26.C	27.C	28.D	29.D	30.C
31.B	32.B	33.B	34.B	35.D	36.C	37.A	38.A	39.D	40.C
41.A	42.A	43.A	44.D	45.C	46.C	47.C	48.D	49.C	50.A

Câu 1:

+ Ta có: G là trọng tâm tam giác *BCD* nên:

$$\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{GA} + \overrightarrow{AB} + \overrightarrow{GA} + \overrightarrow{AC} + \overrightarrow{GA} + \overrightarrow{AD} = \vec{0}$$

$$\Leftrightarrow 3\overrightarrow{GA} + (\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}) = \overrightarrow{0}$$

$$\Leftrightarrow$$
 $(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}) = -3\overrightarrow{GA}$

$$\Leftrightarrow$$
 $(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}) = 3\overrightarrow{AG}$

$$\Longleftrightarrow \overrightarrow{AG} = \frac{1}{3} \left(\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} \right).$$

Chon A.

Câu 2:

$$\Rightarrow$$
 $(BC; SA) = (AD; SA) = SAD$

+ Vì khối chóp có tất cả các cạnh bằng a

 $\Rightarrow \Delta SAD$ là tam giác đều

$$\Rightarrow$$
 SAD = 60° . Chọn D.

Câu 3: +
$$y = x^4 + x \Rightarrow y' = 4x^3 + 1$$

+ Phương trình tiếp tuyến:
$$y = y'(x_0).(x-x_0) + y_0$$

+ Do tiếp tuyến vuông góc với $d: y = \frac{-1}{5}x$

$$\Rightarrow y'(x_0).\frac{-1}{5} = -1$$

$$\Leftrightarrow y'(x_0) = 5 \Rightarrow 4x_0^3 + 1 = 5 \Rightarrow x_0 = 1$$

$$\Rightarrow \begin{cases} y_0 = 2 \\ y'(x_0) = y'(1) = 5 \end{cases}$$

+ Phương trình đường tiếp tuyến là: $y = 5(x-1) + 2 \Leftrightarrow y = 5x-3$. Chọn <u>D.</u>

Câu 4: + Chọn a;b;c là các trục Ox;Oy;Oz, khi đó 3 đường thẳng a,b,c đôi một vuông góc với nhau nhưng không song song với nhau, vậy mệnh đề A sai. Chọn A.

Online: tuyensinh247.com

Câu 5: C1: +

$$I = \lim (3-n)\sqrt{\frac{n^2}{n^4 + 5}}$$

$$= \lim (3-n) \cdot \frac{n}{n^2} \cdot \sqrt{\frac{1}{1 + \frac{5}{n^4}}}$$

$$= \lim \left(\frac{3}{n} - 1\right) \cdot \sqrt{\frac{1}{1 + \frac{5}{n^4}}} = -1.1 = -1.$$

C2: Dùng máy tính cầm tay

B1: Nhập biểu thức vào máy tính

$$(3-\chi)\sqrt{\frac{\chi^2}{\chi^4+5}}$$
 Math

B2: Bấm CALC, cho $x = 10^9$

B3: Nhấn "=" thu được

$$(3-X) \sqrt{\frac{X^2}{X^4+5}} -0.9999999997$$

Vậy
$$I = \lim(3-n)\sqrt{\frac{n^2}{n^4+5}} = -1$$

Chon D.

Câu 6:

+ Tam giác ADC cân tại D và có một góc bằng 60° nên tam giác ACD là tam giác đều có đường cao

$$DO \Rightarrow DO = \frac{DA\sqrt{3}}{2} = \frac{2a.\sqrt{3}}{2} = a\sqrt{3}.$$

+ Góc SD và (ABCD) là SDO

+ Xét tam giác vuông SOD

$$\tan SDO = \frac{SO}{OD} = \frac{3a}{a\sqrt{3}} = \sqrt{3}.$$

$$\Rightarrow$$
 SDO = 60°. Chọn A.

Câu 7:

+ Gọi *I* là trung điểm của BC

+ Góc giữa (ABC) và (OBC) là góc $AIO = 45^{\circ}$

+ Xét tam giác vuông cân OBC: $OI = \frac{BC}{2} = \frac{a\sqrt{2}}{2}$.

+Ta có: OA = OI. tan $45 = \frac{a\sqrt{2}}{2}$. Chọn <u>A.</u>

Câu 8: + Gọi các số hạng của dãy là: $u_n (n \in \mathbb{N}^*)$. Ta có:

$$\begin{cases} u_1 + u_2 + u_3 + u_4 = S_4 = 0 \\ u_1 + u_2 + u_3 = S_3 = 3 \end{cases} \Rightarrow u_4 = S_4 - S_3 = -3. \text{ Chọn } \underline{\mathbf{A}}.$$

Câu 9:

+ Ta có:
$$DB / / D'B'$$
 nên: $(DB; A'D') = (D'B'; A'D') = A'D'B' = 45^{\circ}$. Chọn D.

Câu 10: + Ta có: Vì $x \rightarrow 1^+ \Rightarrow x > 1 \Leftrightarrow 1-x < 0$

$$+ I = \lim_{x \to 1^+} \frac{3x+2}{1-x} = \frac{3.1+2}{so\ am} = \frac{5}{so\ am} = -\infty.$$

C2: Dùng máy tính cầm tay

B1: Nhập biểu thức vào máy

B2: Bấm CALC cho X = 1+0,0000000001

B3: Nhấn "="được kết quả

Vậy
$$I = \lim_{x \to 1^+} \frac{3x + 2}{1 - x} = -\infty$$
 Chọn B.

Câu 11:

Gọi G là trọng tâm của tam giác BCD, do tứ diện ABCD là tứ diện đều nên: $AG \perp (BCD)$.

$$\Rightarrow (AB;(BCD)) = ABG.$$

Ta có:
$$BG = \frac{BD\sqrt{3}}{3} = \frac{AB\sqrt{3}}{3}$$
.

$$\Rightarrow \cos ABG = \frac{BG}{AB} = \frac{AB\sqrt{3}}{3} = \frac{\sqrt{3}}{3}.$$

Chọn B.

Câu 12: +
$$y = 3x^3 + x^2 + 1$$

+ Ta có: $y' = 9x^2 + 2x$. Khi đó bất phương trình $y' \le 0$ sẽ trở thành:

$$9x^2 + 2x \le 0 \Leftrightarrow x(9x+2) \le 0 \Leftrightarrow \frac{-2}{9} \le x \le 0$$
. Chọn B.

Câu 13: + Ta có:
$$\lim_{x \to -\infty} (4x^2 - 5x^3 + 1) = \lim_{x \to -\infty} (-5x^3) = +\infty.$$

+ C2: Dùng máy tính cầm tay:

B1: Nhập biểu thức vào máy

B2: Bấm CALC cho
$$X = -10^9$$

B3: Nhấn "=" thu được

Vậy
$$\lim_{x\to-\infty} (4x^2 - 5x^3 + 1) = +\infty$$
. Chọn A.

Câu 14: + Ta có:
$$\begin{cases} \lim_{x \to 4} f(x) = \lim_{x \to 4} \frac{-x^2 + 3x + 4}{x - 4} = \lim_{x \to 4} \frac{-(x - 4)(x + 1)}{x - 4} = \lim_{x \to 4} -(x + 1) = -5 \\ f(4) = 3 + 4m \end{cases}$$

+ Để hàm số liên tục tại x = 4 thì: $\lim_{x \to 4} f(x) = f(4) \Leftrightarrow -5 = 3 + 4m \Leftrightarrow m = -2$. Chọn <u>C.</u>

Câu 15: +
$$I = \lim \frac{(2-3n)^2(n-4)}{(n+1)^3} = \lim \frac{(\frac{2}{n}-3)^2(1-\frac{4}{n})}{(1+\frac{1}{n})^3} = \frac{(-3)^2.1}{1^3} = 9.$$

C2: Dùng máy tính cầm tay

B1: Nhập biểu thức vào máy

B2: Bấm CALC cho $X = 10^9$

B3: Nhấn "=" thu được

Vậy
$$I = \lim_{n \to \infty} \frac{(2-3n)^2(n-4)}{(n+1)^3} = 9$$
. Chọn A.

Câu 16:

+ Ta có:
$$\begin{cases} BC \perp AB \ (\Delta ABC \perp tai \ B) \\ BC \perp SA \ (SA \perp (ABC) \supset BC) \end{cases} \Rightarrow BC \perp (SAB).$$

Chọn B.

Online: tuyensinh247.com

Câu 17:

+ Gọi M là trung điểm của CD, ta có:

$$OM \perp CD$$
.

+ Tam giác SCD cân tại S nên: $SM \perp CD$.

$$\Rightarrow ((SCD); (ABCD)) = SMO.$$

+ OM là đường trung bình của tam giác ACD

nên:
$$OM = \frac{AD}{2} = \frac{a}{2}$$
.

$$\Rightarrow \tan SMO = \frac{SO}{MO} = \sqrt{3}$$
.

$$\Rightarrow$$
 SMO = 60°. Chọn C.

Câu 18: + Gọi ba số đó là a;b;c (ba số đôi một khác nhau); gọi d là công sai của cấp số cộng, dựa vào giả thiết đề bài ta thu được hệ sau:

+ Vì a,b,c tạo thành cấp số nhân $\Rightarrow a.c = b^2$

+ a là số hạng thứ 1 của CSC $\Rightarrow a = u_1$

+ b là số hạng thứ 9 của CSC \Rightarrow $b = u_9 = u_1 + 8d = a + 8d$

+ c là số hạng thứ 21 của CSC \Rightarrow $c = u_{21} = u_1 + 20d = a + 20d$

+ Vì số hạng đầu của 2 cấp số là $8 \Rightarrow a = u_1 = 8$

$$\begin{cases} b^{2} = ac \\ b = a + 8d \\ c = a + 20d \\ a = 8 \end{cases} \Leftrightarrow \begin{cases} b^{2} = 8c \\ b = 8 + 8d \\ c = 8 + 20d \\ a = 8 \end{cases} \Leftrightarrow \begin{cases} (8+8d)^{2} = 8.(8+20d) \\ b = 8 + 8d \\ c = 8 + 20d \\ a = 8 \end{cases} \Leftrightarrow \begin{cases} 2d^{2} + 4d + 2 = 2 + 5d \\ b = 8 + 8d \\ c = 8 + 20d \\ a = 8 \end{cases} \Leftrightarrow \begin{cases} d = 0 \\ d = \frac{1}{2} \\ b = 8 + 8d \\ c = 8 + 20d \\ a = 8 \end{cases}$$

+ Với $d = 0 \Rightarrow a = b = c = 8$. Loại do ba số không khác nhau.

+ Với $d = \frac{1}{2} \Rightarrow a = 8; b = 12; c = 18$. Khi đó công bội của cấp số nhân là: $\frac{12}{8} = \frac{3}{2}$. Chọn <u>B.</u>

Câu 19: + Đường thẳng Δ vuông góc với mặt phẳng (P) khi và chỉ khi Δ vuông góc với ít nhất 2 đường thẳng phân biệt không song song với nhau nằm trong (P).

+ Vậy khi Δ vuông góc với mọi đường thẳng nằm trong mặt phẳng (P) thì Δ vuông góc với (P). Chọn \underline{C} .

Câu 20: + Ta có: $f'(x) = 3x^2$. Khi đó hệ số góc của tiếp tuyến tại điểm có hoành độ bằng 2 là:

$$k = f'(2) = 3.2^2 = 12$$
. Chọn A.

Câu 21: + Ta có: $((2x^2 + 1)^3)' = 3.(2x^2 + 1)'.(2x^2 + 1)^2 = 12x.(2x^2 + 1)^2$.

+ Dùng máy tính cầm tay:

Cho $x = 2 \Rightarrow 12x(2x^2 + 1)^2 = 12.2(2.2^2 + 1)^2 = 1944$

$$\frac{d}{dx}((2x^2+1)^3)|_{x=\frac{1}{2}}$$
1944

Thử đáp án D, nhập hàm số và cho x = 2

Chọn D.

Câu 22: C1: + Ta có:
$$y' = \frac{(2x+1)'(x-1)-(x-1)'(2x+1)}{(x-1)^2} = \frac{2(x-1)-(2x+1)}{(x-1)^2} = -\frac{3}{(x-1)^2}$$
.

C2: Dùng công thức nhanh:
$$y = \frac{ax+b}{cx+d} \Rightarrow y' = \frac{ad-bc}{(cx+d)^2}$$

$$y = \frac{2x+1}{x-1} \Rightarrow y' = \frac{2\cdot(-1)-1\cdot 1}{(x-1)^2} = \frac{-3}{(x-1)^2}$$

C3: Dùng máy tính cầm tay:

+ Bấm Shift + , nhập hàm số $y = \frac{2x+1}{x-1}$ và cho x = 2

$$\frac{\frac{d}{dx}\left(\frac{2X+1}{X-1}\right)|_{x=2}}{\frac{d}{dx}\left(\frac{2X+1}{X-1}\right)|_{x=2}}$$

+ Lấy x = 2 thay vào 4 đáp án. Thấy đáp án B: $\frac{-3}{(x-1)^2} = \frac{-3}{(2-1)^2} = -3$. Chọn <u>B.</u>

Câu 23: + Ta có:

$$\lim_{n} u_{n}$$

$$= \lim_{n} \left(\sqrt{n^{2} + an - 3} - \sqrt{n^{2} + n} \right)$$

$$= \lim_{n} \frac{n^{2} + an - 3 - (n^{2} + n)}{\sqrt{n^{2} + an - 3} + \sqrt{n^{2} + n}}$$

$$= \lim_{n} \frac{(a - 1)n - 3}{\sqrt{n^{2} + an - 3} + \sqrt{n^{2} + n}}$$

$$= \lim_{n} \frac{a - 1 - \frac{3}{n}}{\sqrt{1 + \frac{a}{n} - \frac{3}{n^{2}}} + \sqrt{1 + \frac{1}{n}}}$$

$$= \frac{a - 1}{\sqrt{1 + \sqrt{1}}} = \frac{a - 1}{2}.$$

+ Để giới hạn của dãy số $\lim u_n = 3$ thì: $\frac{a-1}{2} = 3 \Leftrightarrow a = 7$. Chọn <u>A.</u>

Câu 24: + Xét dãy số $u_n = 5 - 3n$, ta có: $u_{n+1} - u_n = 5 - 3(n+1) - (5 - 3n) = -3$ là hằng số. Vậy dãy số $u_n = 5 - 3n$ là một cấp số cộng.

C2: Dùng máy tính cầm tay, chức năng Mode + 7, cho
$$\begin{cases} Start = 1 \\ End = 10 \end{cases}$$

$$Step = 1$$

Rồi thử từng đáp án

Thử đáp án A:

⇒ Không phải CSC

Thử đáp án C:

⇒ Cấp số cộng. Chọn C.

Câu 25: + Cả 4 hàm số đều lớn hơn 0 khi $n \in N^*$ nên cả 4 hàm số đều bị chặn dưới.

+ Xét các hàm số ở ba đáp án A,C,D, ta có:

$$\lim \left(3^{n}-2\right) = +\infty; \lim \left(\frac{n^{2}+2}{n+3}\right) = +\infty; \lim \left(n^{2}+1\right) = +\infty$$

Suy ra ba dãy số ở các đáp án A;C;D không bị chặn trên:

+ Xét đáp án B:

-Ta có:
$$u_n = \frac{2n+7}{n+3} < \frac{3n+9}{n+3} = 3 \forall n \in \mathbb{N}^*$$
 nên dãy số $u_n = \frac{2n+7}{n+3}$ chặn trên.

Vậy dãy số
$$u_n = \frac{2n+7}{n+3}$$
 bị chặn.

C2: Dùng máy tính cầm tay, chức năng Mode + 7, cho
$$\begin{cases} Start = 1 \\ End = 10 \end{cases}$$

$$Step = 1$$

Thử từng đáp án

Thử đáp án A: \Rightarrow dãy số trên giá trị không thể vượt quá 3 nên bị chặn trên \Rightarrow **Chọn B**.

Câu 26: + Xét dãy số $u_n = 2n - 3$: Ta có:

$$u_{n+1} - u_n = \lceil 2(n+1) - 3 \rceil - (2n-3) = 2 > 0 \Rightarrow u_{n+1} > u_n \forall x \in \mathbb{N}^*.$$

Vậy dãy số $u_n = 2n - 3$ là dãy số tăng.

C2: Dùng máy tính cầm tay, chức năng Mode + 7, cho $\begin{cases} Start = 1 \\ End = 10 \end{cases}$ Step = 1

Câu 27: + Một đường thẳng d nằm trong mặt này, vuông góc với mặt kia ⇒ Mặt này vuông góc mặt kia. Chọn C.

Câu 28: + Dễ thấy dãy số $\begin{cases} u_1 = 5 \\ u_{n+1} = 3u_n, \forall n \in \mathbb{N}^* \end{cases}$ là cấp số nhân với số hạng đầu bằng 5; công bội bằng 3.

Chọn D.

Câu 29: + Qua một điểm và một đường thẳng trong không gian chỉ xác định duy nhất một mặt phẳng đi qua điểm đã cho và vuông góc với đường thẳng. Chọn <u>D.</u>

Câu 30:

+ Tứ giác ABCD là hình thoi nên: $BD \perp AC$.

+ Tam giác SBD cân tại S nên: $SO \perp BD$.

$$\Rightarrow BD \perp (SAC)$$

$$\Rightarrow$$
 BD \perp SA; BD \perp SC.

Vậy đáp án C sai do tam giác SAC cân tại S nên góc bên không thể bằng 90° . Chọn C.

Câu 31: +
$$u_4 = 7 \Leftrightarrow u_1 + 3d = 7 \Leftrightarrow 1 + 3d = 7 \Leftrightarrow d = 2$$

+ Tổng 10 số hạng đầu tiên của cấp số cộng là:

$$S_{10} = \frac{n.(2u_1 + (n-1)d)}{2} = \frac{10.(2+9.2)}{2} = 100.$$
 Chọn B.

Câu 32:

+ Ta có:
$$\begin{cases} AC \perp SA \\ AB \perp SA \end{cases}$$
 nên:

$$((SAC);(SAB)) = gocBAC.$$

Mà tam giác ABC cân tại B nên số đo góc của góc bên BAC phải nhỏ hơn 90° .

Vậy hai mặt phẳng (SAC); (SAB) không vuông góc với nhau.

Chon B.

Online: tuyensinh247.com

Câu 33: + Ta có: $\lim u_n = 0$ thì $\lim |u_n| = 0$ nên mệnh đề B đúng.

+ Mệnh đề A;D sai vì chưa suy ra được dấu của $\lim u_n$ còn mệnh đề C sai vì nếu a âm thì mệnh đề sai.

Chọn B.

Câu 34:

+ Ta có:
$$\begin{cases} CB \perp AB \\ CB \perp SA \end{cases} \Rightarrow CB \perp (SAB).$$
$$\Rightarrow goc(SC;(SAB)) = gocCSB = \alpha.$$

$$\Rightarrow \tan \alpha = \frac{BC}{SB} = \frac{BC}{\sqrt{SA^2 + AB^2}} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow \alpha = 30^{\circ}$$
. Chọn B.

Câu 35: + Ta có:
$$f'(x) = (x^3 + 2x)' = 3x^2 + 2$$
.

C2: Dùng máy tính cầm tay, nhưng nói thật câu này dễ quá làm tay cho nhanh. Chọn D.

Câu 36: + Gọi u_1 ; d lần lượt là số hạng đầu tiên và công sai của cấp số cộng

+ Vì là dãy tăng
$$\Rightarrow d > 0$$
.

$$\Rightarrow u_1 + u_2 + u_3 = 12 \Leftrightarrow u_1 + (u_1 + d) + (u_1 + 2d) = 12 \Leftrightarrow 3u_1 + 3d = 12 \Leftrightarrow u_1 + d = 4$$

+ Tích các số hạng bằng 29

$$\Rightarrow u_1.u_2.u_3 = 12 \Leftrightarrow u_1.(u_1+d).(u_1+2d) = 12$$

$$\begin{cases} d > 0 \\ u_1 + d = 4 \\ u_1 \cdot (u_1 + d)(u_1 + 2d) = 28 \end{cases} \Leftrightarrow \begin{cases} d > 0 \\ u_1 = 4 - d \\ u_1 \cdot (u_1 + d)(u_1 + 2d) = 28 \end{cases}$$

+ Thế $u_1 = 4 - d$ vào phương trình thứ ba ta suy ra:

$$(4-d)(4-d+d)(4-d+2d) = 28 \Leftrightarrow 16-d^2 = 7 \Leftrightarrow d^2 = 9 \Leftrightarrow d = 3(dod > 0).$$

Chọn C.

Câu 37:

+ Gọi d là đường thẳng qua S song song với BC;DA.

Khi đó
$$d = (SAD) \cap (SBC)(1)$$
.

+ Ta có: $SA \perp AD$ mà AD//d nên: $SA \perp d(2)$.

+ Ta có:
$$\begin{cases} SA \perp BC \\ AB \perp BC \end{cases} \Rightarrow BC \perp (SAB) \Rightarrow BC \perp SB.$$

Mà BC//d nên $SB \perp d(3)$.

Từ (1);(2) và (3) ta suy ra góc giữa hai mặt phẳng (SAD) và (SBC) bằng góc ASB và bằng 45° do tam

giác SAB vuông cân tại A. Chọn A.

+ Tại
$$x = 1$$
 ta có:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (3x - 2) = 1$$

$$f(1)=1^2+4=5$$

$$\Rightarrow \lim_{x \to 1^{-}} f(x) \neq f(1)$$

C2: Dùng máy tính cầm tay, tử đáp án D

B1: Nhập biểu thức vào máy

B2: Bấm CALC cho $X = 10^9$

B3: Nhấn "=" thu được

Vậy
$$\lim \frac{n+4}{3n^2+5n} = 0$$
. Chọn D.

Câu 40: + Ta có:
$$I = \lim_{x \to -\infty} \frac{\sqrt{x^2 + 5x}}{2x - 1} = \lim_{x \to -\infty} \frac{\frac{\sqrt{x^2 + 5x}}{-x}}{\frac{2x - 1}{-x}} = \lim_{x \to -\infty} \frac{\sqrt{1 + \frac{5}{x}}}{-2 + \frac{1}{x}} = \frac{1}{-2}.$$

C2: Dùng máy tính cầm tay

B1: Nhập biểu thức vào máy

B2: Bấm CALC cho $X = -10^9$

B3: Nhấn "=" thu được

$$\frac{\sqrt{x^2+5x}}{2x-1}$$
-0.4999999985

Vậy
$$I = \lim_{x \to \infty} \frac{\sqrt{x^2 + 5x}}{2x - 1} = \frac{-1}{2}$$
. Chọn C.

Câu 41:

+ Gọi K là trung điểm của AB;H là hình chiếu vuông góc của K xuống SB.

+ Ta có : AKCD là hình vuông nên: $CK \perp AB$. Mà $(ABCD) \perp (SAB)$ nên: $CK \perp (SAB)$

$$\Rightarrow$$
 CK \perp SB; KH \perp SB

$$\Rightarrow$$
 (CKH) \perp SB

$$\Rightarrow$$
 CH \perp HB

+ Khi đó góc α là góc *CHK*.

$$\Rightarrow \tan \alpha = \frac{CK}{KH}$$
.

Ta có: AKCD là hình vuông nên CK = a.

$$\triangle SAB \sim \triangle KHB \Rightarrow \frac{KH}{SA} = \frac{KB}{SB}$$

$$\Rightarrow KH = \frac{KB.SA}{SB} = \frac{a.2a}{2\sqrt{2}a} = \frac{a\sqrt{2}}{2}.$$

$$\Rightarrow \tan \alpha = \frac{CK}{KH} = \frac{a}{a\sqrt{2}} = \sqrt{2}$$
. Chọn A.

Câu 42: + Phân tích: Giới hạn này có tử có mẫu, mà mẫu lại bằng 0 như vậy tỉ lệ cao là dạng vô định. Nhưng dạng vô định lại cho kết quả bằng 1 số, chứng tỏ tử và mẫu phải có nhân tử chung để triệu tiêu vô định

+ Nhận thấy mẫu có 1 nghiệm $x = -1 \Rightarrow \text{Tử cũng phải có nghiệm } x = -1$

+ Thay
$$x = -1$$
 vào tử $\Rightarrow 1 - a + b = 0 \Leftrightarrow b = a - 1$

+ Mặt khác:
$$\lim_{x \to -1} \frac{x^2 + ax + b}{x + 1} = \lim_{x \to -1} \frac{x^2 + ax + a - 1}{x + 1} = \lim_{x \to -1} \frac{(x + 1) \cdot (x - 1 + a)}{x + 1} = \lim_{x \to -1} (x - 1 + a) = a - 2$$

Mà
$$\lim_{x \to -1} \frac{x^2 + ax + b}{x + 1} = 3$$

$$\Rightarrow a-2=3$$

$$\Leftrightarrow a = 5$$

$$\Rightarrow b = 4$$

Vậy a+b=9. Chọn A.

Câu 43: C1: + Ta có:
$$\lim_{x \to -\infty} \left(\sqrt{4x^2 + 3x + 1} + mx \right) = \lim_{x \to -\infty} \frac{\left(4 - m^2 \right) x^2 + 3x + 1}{\sqrt{4x^2 + 3x + 1} - mx} = \lim_{x \to -\infty} \frac{-\left(4 - m^2 \right) x - 3 - \frac{1}{x}}{\sqrt{4 + \frac{3}{x} + \frac{1}{x^2}} + m}.$$

+ Khi đó để giới hạn trên tiến đến +∞ thì:

$$\lim_{x \to -\infty} \frac{-\left(4 - m^2\right)x}{2 + m} = +\infty \Leftrightarrow \frac{4 - m^2}{2 + m} > 0 \Leftrightarrow \frac{\left(2 - m\right)\left(2 + m\right)}{2 + m} > 0 \Leftrightarrow m < 2$$

C2: Thứ
$$m = 3$$
, tính $\lim_{x \to -\infty} \left(\sqrt{4x^2 + 3x + 1} + 3x \right)$

$$\sqrt{4X^2 + 3X + 1} + 3X$$
 -1×10^{10}

Kết quả bằng $-1.10^{10} = -\infty \Rightarrow \text{Loại}$

Thử m=1, tính $\lim_{x\to-\infty} \left(\sqrt{4x^2 + 3x + 1} + x \right)$

Kết quả bằng
$$+\infty \Rightarrow$$
 Đúng

Thử $m=2$, tính $\lim_{x\to\infty} \left(\sqrt{4x^2+3x+1}+2x\right)$

$$\sqrt{4\chi^2+3\chi+1}+2\chi$$

$$-\frac{3}{4}$$

Kết quả bằng $\frac{-3}{4} \Rightarrow$ Loại, Chon A.

Kết quả bằng $\frac{-3}{4}$ \Rightarrow Loại. **Chọn A**.

Câu 44:

+ Gọi O là tâm đáy, SO cắt MN tại I; AI cắt SC tại P.

+ Ta có:
$$\begin{cases} SA \perp BC \\ AB \perp BC \end{cases} \Rightarrow BC \perp (SAB) \Rightarrow (SBC) \perp (SAB).$$

Mà
$$AM \perp SB = \{M\}$$
 nên: $AM \perp (SBC)$

$$\Rightarrow$$
 AM \perp SC

Chứng minh tương tự ta suy ra: $AN \perp SC$

 \Rightarrow $(AMN) \perp SC$ hay P là hình chiếu của S lên (AMN).

Khi đó số đo α của góc giữa mặt phẳng (AMN) và

đường thẳng SB bằng góc SMP.

$$\Rightarrow \sin \alpha = \frac{SP}{SM}.$$

Ta có:
$$SM = \frac{SA^2}{SB} = \frac{SA^2}{\sqrt{SA^2 + AB^2}} = \frac{2a\sqrt{3}}{3}.$$

Ta có: do $SP \perp (AMPN)$ nên $\Delta SAC \approx \Delta SPA$

$$\Rightarrow \frac{SP}{SA} = \frac{SA}{SC} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow SP = \frac{SA}{\sqrt{2}} = a.$$

$$\Rightarrow \sin \alpha = \frac{SP}{SM} = \frac{a}{2a\sqrt{3}} = \frac{\sqrt{3}}{2}.$$

$$\Rightarrow \alpha = 60^{\circ}$$
. Chọn D.

Câu 45: +
$$\lim_{x\to 2} \frac{f(x)-15}{x-2} = 3$$

+ Thay
$$x = 2$$
 vào tử $\Rightarrow f(2) - 15 = 0 \Leftrightarrow f(2) = 15$

+ Khi đó ta có:

$$\lim_{x \to 2} \frac{f(x) - 15}{(x^2 - 4)(\sqrt{2}f(x) + 6 + 3)}$$

$$= \lim_{x \to 2} \frac{f(x) - 15}{(x - 2)(x + 2)(\sqrt{2f(x) + 6} + 3)}$$

$$= \lim_{x \to 2} \frac{f(x) - 15}{x - 2} \cdot \lim_{x \to 2} \frac{1}{(x + 2)(\sqrt{2f(x) + 6} + 3)}$$

$$=3.\lim_{x\to 2}\frac{1}{(2+2)(\sqrt{2.f(2)+6}+3)}=\frac{1}{12}.$$

Chọn C.

Câu 46: + Ta có: $y' = x^2 + 2(2m+1)x - m$. Để $y' \ge 0$ với mọi $x \in \mathbb{R}$ thì:

$$\Delta' = (2m+1)^2 + m \le 0 \Leftrightarrow 4m^2 + 5m + 1 \le 0 \Leftrightarrow (4m+1)(m+1) \le 0 \Leftrightarrow -1 \le m \le \frac{-1}{4}.$$
 Chọn C.

Câu 47: + Hai tiếp tuyến xong xong với nhau tức hệ số góc của hai tiếp tuyến bằng nhau, khi đó ta có:

$$f'(x_1) = f'(x_2) \Leftrightarrow \frac{-3}{(2x_1 - 1)^2} = \frac{-3}{(2x_2 - 1)^2} \Leftrightarrow (2x_1 - 1)^2 = (2x_2 - 1)^2 \Leftrightarrow \begin{bmatrix} 2x_1 - 1 = 2x_2 - 1 \\ 2x_1 - 1 = -2x_2 + 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 = x_2(L) \\ x_1 = 1 - x_2 \end{bmatrix}.$$

+ Ta có:

$$AB = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{(x_1 - x_2)^2 + \left(\frac{x_1 + 1}{2x_1 - 1} - \frac{x_2 + 1}{2x_2 - 1}\right)^2} = \sqrt{(x_1 - x_2)^2 + \left(\frac{3(x_1 - x_2)}{(2x_1 - 1)(2x_2 - 1)}\right)^2}$$

+ Để AB đạt giá trị nhỏ nhất thì: $(x_1 - x_2)^2 + \left(\frac{3(x_1 - x_2)}{(2x_1 - 1)(2x_2 - 1)}\right)^2$ nhỏ nhất với $x_1 = 1 - x_2$:

Ta có:
$$(x_1 - x_2)^2 + \left(\frac{3(x_1 - x_2)}{(2x_1 - 1)(2x_2 - 1)}\right)^2$$

$$= (1 - x_2 - x_2)^2 + 9\left(\frac{(1 - x_2 - x_2)}{(2(1 - x_2) - 1)(2x_2 - 1)}\right)^2$$

$$= (2x_2 - 1)^2 + \frac{9}{(2x_2 - 1)^2}$$

+ Theo BĐT Cauchy:
$$(2x_2 - 1)^2 + \frac{9}{(2x_2 - 1)^2} \ge 2\sqrt{(2x_2 - 1)^2 \cdot \frac{9}{(2x_2 - 1)^2}} = 6$$

Khi đó độ dài nhỏ nhất của đoạn AB là: $\sqrt{6}$. Chọn C.

Câu 48: + Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại hai điểm có hoành độ bằng 2 có dạng:

$$y = f'(2)(x-2) + f(2) = [f'(2)].x + [f(2)-2f'(2)]$$

Mà tiếp tuyến có ptr: y = 3x - 3

Đồng nhất hệ số
$$\Rightarrow$$

$$\begin{cases} f'(2) = 3 \\ f(2) - 2f'(2) = -3 \end{cases} \Rightarrow \begin{cases} f(2) = 3 \\ f'(2) = 3 \end{cases}$$

+ Đặt
$$g(x) = x^2 f(x)$$

$$\Rightarrow g'(x) = \left[x^2 f(x)\right]' = 2xf(x) + f'(x).x^2$$

$$\Rightarrow \begin{cases} g(2) = 2^{2}.f(2) = 12\\ g'(2) = 2.2f(2) + f'(2).2^{2} = 24 \end{cases}$$

Khi đó tiếp tuyến của đồ thị hàm số $y = x^2 f(x)$ tại điểm có hoành độ bằng 2 có phương trình là:

$$y = 24(x-2)+12$$
 hay $y = 24x-36$. Chọn D.

Câu 49: C1: + Ta có:

$$\frac{1}{n^2} + \frac{3}{n^2} + \frac{5}{n^2} + \dots + \frac{2n+1}{n^2} = \frac{(1+2+4+\dots+2n)+n}{n^2} = \frac{2(1+2+\dots+n)+n}{n^2} = \frac{2\frac{n(n+1)}{2}+n}{n^2} = \frac{n^2+2n}{n^2}.$$

$$\Rightarrow I = \lim\left(\frac{1}{n^2} + \frac{3}{n^2} + \frac{5}{n^2} + \dots + \frac{2n+1}{n^2}\right) = \lim\frac{n^2+2n}{n^2} = \lim\frac{1+\frac{2}{n}}{1} = 1.$$

C2: Dùng máy tính cầm tay

$$I = \lim \left(\frac{1}{n^2} + \frac{3}{n^2} + \frac{5}{n^2} + \dots + \frac{2n+1}{n^2} \right) = \lim \left(\frac{1+3+5+\dots+2n+1}{n^2} \right)$$

+ Cho $n = 100$

Tính tử: Bấm Shift + , nhập như sau:

$$\sum_{X=1}^{100} (2X+1)$$
10200

Tính mẫu: $n^2 = 100^2 = 10000$

Vậy
$$\lim = \frac{10200}{10000} = 1,02$$
. Chọn C.

Câu 50: + Ta có:
$$f'(x) = (\sqrt{x^2 + 2x})' = \frac{2x + 2}{2\sqrt{x^2 + 2x}} = \frac{x + 1}{\sqrt{x^2 + 2x}}$$

+ Bất phương trình $f'(x) \ge f(x)$ tương đương với $\frac{x+1}{\sqrt{x^2+2x}} \ge \sqrt{x^2+2x}$.

DKXD:
$$x^2 + 2x > 0 \Leftrightarrow \begin{bmatrix} x > 0 \\ x < -2 \end{bmatrix}$$

$$+\frac{x+1}{\sqrt{x^2+2x}} \ge \sqrt{x^2+2x} \Leftrightarrow x+1 \ge x^2+2x \Leftrightarrow x^2+x-1 \le 0 \Leftrightarrow \frac{-1-\sqrt{5}}{2} \le x \le \frac{-1+\sqrt{5}}{2}.$$

Kết hợp với điều kiện xác định ta suy ra: $0 < x \le \frac{-1 + \sqrt{5}}{2}$.

Khi đó số nghiệm nguyên của bất phương trình là 0. **Chọn** <u>A.</u>