PCT/JP 03/08156

庁 PATENT OFFICE

26.06.03

28 DEC 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されて いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2002年 6月28日

REC'D 15 AUG 2003

出 Application Number:

特願2002-191056

WIPO

PCT

[ST. 10/C]:

[JP2002-191056]

出 願 Applicant(s):

東京応化工業株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

特許庁長官 Commissioner, Japan Patent Office 2003年 7月31日

【書類名】

特許願

【整理番号】

T01-02012

【あて先】

特許庁長官殿

【国際特許分類】

H01L 21/027

【発明者】

【住所又は居所】

神奈川県川崎市中原区中丸子150番地 東京応化工業

株式会社内

【氏名】

菅田 祥樹

【発明者】

【住所又は居所】

神奈川県川崎市中原区中丸子150番地 東京応化工業

株式会社内

【氏名】

金子 文武

【発明者】

【住所又は居所】

神奈川県川崎市中原区中丸子150番地 東京応化工業

株式会社内

【氏名】

立川 俊和

【特許出願人】

【識別番号】

000220239

【氏名又は名称】 東京応化工業株式会社

【代表者】

横田 晃

【代理人】

【識別番号】

100098800

【弁理士】

【氏名又は名称】

長谷川 洋子

【電話番号】

03-3669-0511

【手数料の表示】

【予納台帳番号】

056410

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書]

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 パターン微細化用被覆形成剤およびそれを用いた微細パターンの形成方法

【特許請求の範囲】

【請求項1】 ホトレジストパターンを有する基板上に被覆され、その熱収縮作用を利用してホトレジストパターン間隔を狭小せしめて微細パターンを形成するために使用される被覆形成剤であって、少なくとも(メタ)アクリルアミドを構成モノマーとして含む水溶性ポリマーを含有することを特徴とするパターン微細化用被覆形成剤。

【請求項2】 水溶性ポリマーが、(メタ) アクリルアミドと、アルキレングリコール系重合体、セルロース系誘導体、ビニル系重合体、アクリル系重合体、尿素系重合体、エポキシ系重合体、およびメラミン系重合体を構成するモノマー(ただし、アクリル系重合体を構成するモノマーは(メタ) アクリルアミド以外のものとする)の中から選ばれる少なくとも1種との共重合体である、請求項1記載のパターン微細化用被覆形成剤。

【請求項3】 水溶性ポリマーが、ポリ(メタ)アクリルアミドと、アルキレングリコール系重合体、セルロース系誘導体、ビニル系重合体、アクリル系重合体(ただしポリ(メタ)アクリルアミドを除く)、尿素系重合体、エポキシ系重合体、およびメラミン系重合体の中から選ばれる少なくとも1種の重合体との共重合体または混合物である、請求項1記載のパターン微細化用被覆形成剤。

【請求項4】 水溶性ポリマーが、(メタ)アクリルアミドと、アクリル系 重合体を構成するモノマーの中から選ばれる少なくとも1種との共重合体である 、請求項1または2記載のパターン微細化用被覆形成剤。

【請求項5】 水溶性ポリマーが、ポリ(メタ)アクリルアミドとアクリル系重合体との共重合体または混合物である、請求項1または3記載のパターン微細化用被覆形成剤。

【請求項6】 アクリル系重合体を構成するモノマーが(メタ)アクリル酸である、請求項2または4記載のパターン微細化用被覆形成剤。

【請求項7】 アクリル系重合体がポリ(メタ)アクリレートである、請求

【請求項8】 被覆形成剤が濃度3~50質量%の水溶液である、請求項1 ~7のいずれか1項に記載のパターン微細化用被覆形成剤。

【請求項9】 ホトレジストパターンを有する基板上に、請求項1~8のいずれかに記載のパターン微細化用被覆形成剤を被覆した後、熱処理により該被覆形成剤を熱収縮させ、その熱収縮作用を利用してホトレジストパターン間の間隔を狭小せしめ、次いで上記被覆形成剤を除去する工程を含む、微細パターンの形成方法。

【請求項10】 熱処理を、基板上のホトレジストパターンに熱流動を起させない温度で加熱して行う、請求項9記載の微細パターンの形成方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明はホトリソグラフィ技術分野におけるパターン微細化用被覆形成剤およびそれを用いた微細パターンの形成方法に関する。さらに詳しくは、近年の半導体デバイスの集積化、微小化に対応し得るパターン微細化用被覆形成剤およびそれを用いた微細パターンの形成方法に関する。

[0002]

【従来の技術】

半導体デバイス、液晶デバイス等の電子部品の製造においては、基板にエッチングなどの処理を施すに際し、活性放射線に感応するいわゆる感放射線ホトレジストを用いて基板上に被膜(ホトレジスト層)を設け、次いでこれを活性放射線で選択的に照射して露光し、現像処理を行って、ホトレジスト層を選択的に溶解除去して基板上に画像パターン(ホトレジストパターン)を形成し、これを保護層(マスクパターン)として基板にホールパターン、トレンチパターン等のコンタクト用パターンなどの各種パターンを形成するホトリングラフィー技術が用いられている。

[0003]

近年、半導体デバイスの集積化、微小化の傾向が高まり、これらパターンの形

[0004]

このようなホトレジスト材料の面からの超微細化対応策に加え、パターン形成 方法の面からも、ホトレジスト材料のもつ解像度の限界を超える技術の研究・開 発が行われている。

[0005]

例えば、特開平5-166717号公報では、基板上に塗布したパターン形成 用レジストに抜きパターンを形成した後、該パターン形成用レジストとミキシン グするミキシング生成用レジストを基板全面に塗布した後、ベークして、ミキシング層をパターン形成用レジスト側壁~表面に形成し、前記ミキシング生成用レジストの非ミキシング部分を除去して、上記ミキシング層寸法分の微細化を図った抜きパターン形成方法が開示されている。また特開平5-241348号公報では、酸発生剤を含有するレジストパターンを形成した基板上に、酸の存在下で不溶化する樹脂を被着した後、熱処理し、前記樹脂にレジストから酸を拡散させて樹脂とレジストパターン界面付近に一定厚さのレジストを形成した後、現像して、酸の拡散がされていない樹脂部分を除去することにより、上記一定の厚さ寸法分の微細化を図ったパターン形成方法が開示されている。

[0006]

しかしながらこれらの方法は、レジストパターン側壁に形成される層の厚さのコントロールが難しく、ウェーハ面内の熱依存性が十数 n m/℃程度と大きく、現在の半導体デバイスの製造で用いられる加熱装置ではウェーハ面内を均一に保つことが非常に困難であり、パターン寸法のバラッキの発生が顕著にみられるという問題がある。

[0007]

一方、レジストパターンを熱処理等で流動化させパターン寸法を微細化する方

[0008]

これらの方法は、ウェーハ面内の熱依存性は数 n m / ℃程度であり、この点での問題点は少ないものの、熱処理によるレジストの変形・流動のコントロールが困難なため、ウェーハ面内で均一なレジストパターンを設けることが難しいという問題がある。

. [0009]

上記方法をさらに発展させた方法として、例えば特開平7-45510号公報では、基板上にレジストパターンを形成した後、基板上に前記レジストパターンの熱流動しすぎを防止するためのストッパとしての樹脂を形成し、次いで熱処理し、レジストを流動化させてパターン寸法を変化させた後、樹脂を除去して微細なパターンを形成する方法が開示されている。そして上記樹脂として、水溶性樹脂、具体的にはポリビニルアルコールを用いているが、ポリビニルアルコールは、水に対する溶解性が不十分なため、水洗で完全に除去することが難しく、良好なプロフィルのパターンの形成が難しく、また経時安定性の面でも必ずしも満足し得るものとはいえないことに加え、塗布性が良好でない等の問題があり、実用化に至っていない。

[0010]

【発明が解決しようとする課題】

本発明は上記従来技術の不具合を解消しようとするものであり、被覆形成剤を 用いたパターンの微細化において、良好なプロフィルおよび現在の半導体デバイ スにおける要求特性を備えた微細パターンを得ることができる被覆形成剤、およ びこれを用いた微細パターン形成方法を提供することを目的とするものである。

[0011]

上記課題を解決するために本発明は、ホトレジストパターンを有する基板上に被覆され、その熱収縮作用を利用してホトレジストパターン間隔を狭小せしめて 微細パターンを形成するために使用される被覆形成剤であって、少なくとも(メ タ)アクリルアミドを構成モノマーとして含む水溶性ポリマーを含有することを 特徴とするパターン微細化用被覆形成剤を提供する。

[0012]

上記において、水溶性ポリマーが、(メタ)アクリルアミドと、アルキレングリコール系重合体、セルロース系誘導体、ビニル系重合体、アクリル系重合体、尿素系重合体、エポキシ系重合体、およびメラミン系重合体を構成するモノマー(ただし、アクリル系重合体を構成するモノマーは(メタ)アクリルアミド以外のものとする)の中から選ばれる少なくとも1種との共重合体、あるいは、ポリ(メタ)アクリルアミドと、アルキレングリコール系重合体、セルロース系誘導体、ビニル系重合体、アクリル系重合体(ただしポリ(メタ)アクリルアミドを除く)、尿素系重合体、エポキシ系重合体、およびメラミン系重合体の中から選ばれる少なくとも1種の重合体との共重合体または混合物であるのが好ましい。

[0013]

また本発明は、ホトレジストパターンを有する基板上に、上記パターン微細化 用被覆形成剤を被覆した後、熱処理により該被覆形成剤を熱収縮させ、その熱収 縮作用を利用してホトレジストパターン間の間隔を狭小せしめ、次いで上記被覆 形成剤を除去する工程を含む、微細パターンの形成方法を提供する。

[0014]

上記において、熱処理を、基板上のホトレジストパターンに熱流動を起させない温度で加熱して行うのが好ましい。

[0015]

【発明の実施の形態】

以下、本発明について詳述する。

[0016]

本発明のパターン微細化用被覆形成剤は、基板上に設けられたホトレジストパ

ターンの間に画定された、ホールパターン、トレンチパターンなどに代表される パターンを被覆するためのものであって、加熱による該被覆形成剤の熱収縮作用 によってホトレジストパターンを幅広・広大ならしめ、これにより上記ホトレジストパターン間に画定されるホールパターン、トレンチパターンなどのパターン の広さ、幅を狭小ならしめた後、当該被覆を完全に除去して、微小なパターンを 形成するために用いられるものである。

[0017]

かかる本発明のパターン微細化用被覆形成剤は、少なくとも(メタ)アクリル アミドを構成モノマーとして含む水溶性ポリマーを含有する。

[0018]

このような本発明に係る被覆形成剤の好ましい一態様としては、水溶性ポリマーが、(メタ)アクリルアミドと、アルキレングリコール系重合体、セルロース系誘導体、ビニル系重合体、アクリル系重合体、尿素系重合体、エポキシ系重合体、およびメラミン系重合体を構成するモノマー(ただし、アクリル系重合体を構成するモノマーは(メタ)アクリルアミド以外のものとする)の中から選ばれる少なくとも1種との共重合体である場合が挙げられる。

[0019]

アクリル系重合体を構成するモノマーとしては、例えば、アクリル酸、アクリル酸メチル、メタクリル酸、メタクリル酸メチル、N, Nージメチルアミノエチルメタクリレート、N, Nージエチルアミノエチルメタクリレート、N, Nージメチルアミノエチルアクリレート、アクリロイルモルホリン等が挙げられる。

[0020]

ビニル系重合体を構成するモノマーとしては、例えば、Nービニルピロリドン、ビニルイミダゾリジノン、酢酸ビニル等が挙げられる。

[0021]

セルロース系誘導体を構成するモノマーとしては、例えばヒドロキシプロピルメチルセルロースフタレート、ヒドロキシプロピルメチルセルロースアセテートフタレート、ヒドロキシプロピルメチルセルロースへキサヒドロフタレート、ヒドロキシプロピルメチルセルロースアセテートサクシネート、ヒドロキシプロピ

[0022]

アルキレングリコール系重合体を構成するモノマーとしては、例えば、エチレングリコール、プロピレングリコール等が挙げられる。

[0023]

尿素系重合体を構成するモノマーとしては、例えば、メチロール化尿素、ジメ チロール化尿素、エチレン尿素等が挙げられる。

[0024]

メラミン系重合体を構成するモノマーとしては、例えば、メトキシメチル化メ ラミン、メトキシメチル化イソブトキシメチル化メラミン、メトキシエチル化メ ラミン等が挙げられる。

[0025]

さらに、エポキシ系重合体を構成するモノマーの中で水溶性のものも用いることができる。

[0026]

中でも、アクリル系重合体を構成するモノマー、特には(メタ)アクリル酸が 、加熱処理時にホトレジストパターンの形状を維持しつつ、ホトレジストパター ン間隔の熱収縮率を大幅に向上させることができるという点から最も好ましい。 また経時安定性の向上の点からも好ましい。

[0027]

(メタ) アクリルアミドと上記各重合体を構成するモノマーとの共重合体は、 (メタ) アクリルアミドに対して該モノマーが 0. 1~30質量%、特には1~ 15質量%の割合となるように用いるのが好ましい。

[0028]

本発明に係る被覆形成剤の好ましい他の態様としては、水溶性ポリマーが、ポリ (メタ) アクリルアミドと、アルキレングリコール系重合体、セルロース系誘導体、ビニル系重合体、アクリル系重合体 (ただし、ポリ (メタ) アクリルアミ

[0029]

アルキレングリコール系重合体、セルロース系誘導体、ビニル系重合体、アクリル系重合体、尿素系重合体、エポキシ系重合体、およびメラミン系重合体は、 それぞれ、前述した各構成モノマーからなる重合体が好ましく用いられる。

[0030]

中でも、アクリル系重合体、特にはポリ(メタ)アクリレート(例えば、ポリ (メタ)アクリル酸など)が、加熱処理時にホトレジストパターンの形状を維持 しつつ、ホトレジストパターン間隔の熱収縮率を大幅に向上させることができる という点から最も好ましい。また経時安定性の向上の点からも好ましい。

[0031]

ポリ (メタ) アクリルアミドと上記各重合体との共重合体あるいは混合樹脂は、ポリ (メタ) アクリルアミドに対して該共重合体が 0. 1~30質量%、特には 1~15質量%の割合となるように用いるのが好ましい。

[0032]

なお、上記いずれの態様においても、経時安定性の向上は、pートルエンスルホン酸、ドデシルベンゼンスルホン酸等の酸性化合物を添加することにより解決することも可能である。

[0033]

本発明のパターン微細化用被覆形成剤には、不純物発生防止、 p H調整等の点から、所望により、さらに水溶性アミンを配合してもよい。

[0034]

かかる水溶性アミンとしては、25 $\mathbb C$ の水溶液における p K a (酸解離定数)が $7.5 \sim 13$ のアミン類が挙げられる。具体的には、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2-(2-rミノエトキシ)エタノール、N, N-ジメチルエタノールアミン、N, N-ジエチルエタノールアミン、N, N-ジブチルエタノールアミン、N-メチルエタノールアミン

[0035]

水溶性アミンを配合する場合、被覆形成剤(固形分)に対して $0.1 \sim 30$ 質量%程度の割合で配合するのが好ましく、特には $2 \sim 15$ 質量%程度である。0.1 質量%未満では経時による液の劣化が生じるおそれがあり、一方、30 質量%超ではホトレジストパターンの形状悪化を生じるおそれがある。

[0036]

また本発明のパターン微細化用被覆形成剤には、ホトレジストパターン寸法の 微細化、ディフェクトの発生抑制などの点から、所望により、さらに非アミン系 水溶性有機溶媒を配合してもよい。

[0037]

かかる非アミン系水溶性有機溶媒としては、水と混和性のある非アミン系有機溶媒であればよく、例えばジメチルスルホキシド等のスルホキシド類;ジメチルスルホン、ジエチルスルホン、ビス(2ーヒドロキシエチル)スルホン、テトラメチレンスルホン等のスルホン類;N,Nージメチルホルムアミド、Nーメチルホルムアミド、Nージメチルアセトアミド、N,Nージエチルアセトアミド等のアミド類;Nーメチルー2ーピロリドン、Nーエ

チルー2-ピロリドン、N-プロピルー2-ピロリドン、N-ヒドロキシメチル -2-ピロリドン、N-ヒドロキシエチル-2-ピロリドン等のラクタム類;1 . 3ージメチルー2ーイミダゾリジノン、1, 3ージエチルー2ーイミダゾリジ ノン、1,3-ジイソプロピル-2-イミダゾリジノン等のイミダゾリジノン類 ; エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリ コールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレン グリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエー テルアセテート、ジエチレングリコール、ジエチレングリコールモノメチルエー テル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブ チルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテ ル、グリセリン、1,2-ブチレングリコール、1,3-ブチレングリコール、 - 2.3ーブチレングリコール等の多価アルコール類およびその誘導体が挙げられ る。中でも、ホトレジストパターン寸法の微細化、ディフェクト発生抑制の点か ら多価アルコール類およびその誘導体が好ましく、特にはグリセリンが好ましく 用いられる。非アミン系水溶性有機溶媒は1種または2種以上を用いることがで きる。

[0038]

非アミン系水溶性有機溶媒を配合する場合、水溶性ポリマーに対して0.1~30質量%程度の割合で配合するのが好ましく、特には0.5~15質量%程度である。上記配合量が0.1質量%未満ではディフェクト低減効果が低くなりがちであり、一方、30質量%超ではホトレジストパターンとの間でミキシング層を形成しがちとなり、好ましくない。

[0039]

被覆形成剤にはさらに、塗布均一性、面内均一性等の点から、所望により、界面活性剤を配合することができる。

[0040]

界面活性剤としては、N-アルキルピロリドン系界面活性剤、第4級アンモニウム塩系界面活性剤、およびポリオキシエチレンのリン酸エステル系界面活性剤などが挙げられる。

N-アルキルピロリドン系界面活性剤としては、下記一般式(I)

[0042]

$$\begin{bmatrix}
N \\
R_1
\end{bmatrix}$$
(I)

[0043]

(式中、R₁は炭素原子数6以上のアルキル基を示す) で表されるものが好ましい。

[0044]

かかるN-アルキルピロリドン系界面活性剤として、具体的には、N-ヘキシル-2-ピロリドン、N-ヘプチル-2-ピロリドン、N-オクチル-2-ピロリドン、Nーオクチル-2-ピロリドン、Nーデシル-2-ピロリドン、Nーデシル-2-ピロリドン、Nーデシル-2-ピロリドン、Nードデシル-2ーピロリドン、Nードデシル-2ーピロリドン、N-ドデシル-2ーピロリドン、N-トリデシル-2-ピロリドン、N-テトラデシル-2-ピロリドン、N-ペンタデシル-2-ピロリドン、N-ヘキサデシル-2-ピロリドン、N-ヘプタデシル-2-ピロリドン、N-オクタデシル-2-ピロリドン等が挙げられる。中でもN-オクチル-2-ピロリドン(「SURFADONE LP100」;ISP社製)が好ましく用いられる。

[0045]

第4級アンモニウム系界面活性剤としては、下記一般式(II)

[0046]

$$\begin{bmatrix} R_{2} \\ I \\ R_{3} - N - R_{5} \\ I \\ R_{4} \end{bmatrix}^{+} X^{-}$$
 (II)

[0047]

〔式中、 R_{2} 、 R_{3} 、 R_{4} 、 R_{5} はそれぞれ独立にアルキル基またはヒドロキシアルキル基を示し(ただし、そのうちの少なくとも1つは炭素原子数6以上のアルキ

で表されるものが好ましい。

[0048]

かかる第4級アンモニウム系界面活性剤として、具体的には、ドデシルトリメ チルアンモニウムヒドロキシド、トリデシルトリメチルアンモニウムヒドロキシ ド、テトラデシルトリメチルアンモニウムヒドロキシド、ペンタデシルトリメチ ルアンモニウムヒドロキシド、ヘキサデシルトリメチルアンモニウムヒドロキシ ド、ヘプタデシルトリメチルアンモニウムヒドロキシド、オクタデシルトリメチ ルアンモニウムヒドロキシド等が挙げられる。中でも、ヘキサデシルトリメチル アンモニウムヒドロキシドが好ましく用いられる。

[0049]

ポリオキシエチレンのリン酸エステル系界面活性剤としては、下記一般式(III)

[0050]

$$R_6O - (CH_2CH_2O)_n - P OH$$
OH
OH

[0051]

(式中、 R_6 は炭素原子数 $1\sim 1$ 0のアルキル基またはアルキルアリル基を示し; R_7 は水素原子または(CH_2CH_2O) R_6 (ここで R_6 は上記で定義したとおり)を示し;nは $1\sim 2$ 0の整数を示す)で示されるものが好ましい。

[0052]

かかるポリオキシエチレンのリン酸エステル系界面活性剤としては、具体的には「プライサーフA212E」、「プライサーフA210G」(以上、いずれも第一工業製薬(株)製)等として市販されているものを好適に用いることができる。

[0053]

[0054]

なお、本発明のパターン微細化用被覆形成剤は、上記したように溶媒として水を用いた水溶液として通常用いられるが、水とアルコール系溶媒との混合溶媒を用いることもできる。アルコール系溶媒としては、例えばメチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール等の1価アルコール等が挙げられる。これらのアルコール系溶媒は、水に対して30質量%程度を上限として混合して用いられる。

[0055]

本発明のパターン微細化用被覆形成剤は、ホトレジスト材料のもつ解像度の限界を超えるほどに解像性を向上させる効果を奏し、また基板面内におけるパターンのバラツキを是正して面内均一性を得ることができ、さらに、蛍光光の基板からの反射光等に起因するパターン形状の乱れ(ラフネス)を是正してプロフィルの良好なパターンを形成することができる。また格段に向上したパターン微細化効果が得られる。

[0056]

本発明に係る微細パターン形成方法は、ホトレジストパターンを有する基板上に、上記のパターン微細化用被覆形成剤を被覆した後、熱処理により該被覆形成剤を熱収縮させ、その熱収縮作用によりホトレジストパターン間の間隔を狭小せしめ、次いで上記被覆形成剤を除去する工程を含む。

[0057]

ホトレジストパターンを有する基板の作製は、特に限定されるものでなく、半 導体デバイス、液晶表示素子、磁気ヘッドあるいはマイクロレンズなどの製造に おいて用いられる常法により行うことができる。例えば、シリコンウェーハ等の 基板上に、化学増幅型等のホトレジスト用組成物を、スピンナーなどで塗布、乾

[0058]

なお、ホトレジストパターンの材料となるホトレジスト用組成物としては、特に限定されるものではなく、i、g線用ホトレジスト組成物、KrF、ArF、 F_2 等のエキシマレーザー用ホトレジスト組成物、さらにはEB(電子線)用ホトレジスト組成物等、広く一般的に用いられるホトレジスト組成物を用いることができる。

[0059]

a. 被覆形成剂塗布工程

次いで、このようなマスクパターンとしてのホトレジストパターンを有する基板上全面に亘って、パターン微細化用被覆形成剤を塗布し被覆する。なお、被覆形成剤を塗布した後に、80~100℃の温度で30~90秒間、基板にプリベークを施してもよい。

[0060]

被覆方法は従来の熱フロープロセスにおいて通常行われていた方法に従って行うことができる。すなわち、例えばスピンナー等により、上記パターン微細化用被覆形成剤の水溶液を基板上に塗布する。

[0061]

b. 熱処理(熱収縮)工程

次いで熱処理を行って、被覆形成剤からなる塗膜を熱収縮させる。この塗膜の 熱収縮力の影響を受けて、該塗膜に接するホトレジストパターンの寸法が、塗膜 の熱収縮相当分大きくなり、ホトレジストパターンが幅広・広大となり、ホトレ ジストパターン間の間隔が狭められる。このホトレジストパターン間の間隔は、 すなわち、最終的に得られるパターンの径や幅を規定することから、これにより

[0062]

加熱温度は、被覆形成剤からなる塗膜の熱収縮を起こし得る温度であって、パターンの微細化を行うに十分な温度であれば、特に限定されるものでないが、ホトレジストパターンに熱流動を起させない温度で加熱するのが好ましい。ホトレジストパターンに熱流動を起させない温度とは、被覆形成剤からなる塗膜の形成がされてなく、ホトレジストパターンだけを形成した基板を加熱した場合、該ホトレジストパターンに寸法変化を生じさせない温度をいう。このような温度での加熱処理により、プロフィルの良好な微細パターンの形成をより一層効果的に行うことができ、また特にウェーハ面内におけるデューティ(Duty)比、すなわちウェーハ面内におけるパターン間隔に対する依存性を小さくすることができる等の点において極めて効果的である。

[0063]

本発明では、ホトレジスト材料よりも低い軟化点をもつ被覆形成剤材料が好ましく用いられる。

[0064]

現在のホトリソグラフィー技術において用いられる種々のホトレジスト組成物の軟化点を考慮すると、好ましい加熱処理は通常、80~160℃程度の温度範囲で、ただしホトレジストが熱流動を起さない温度で、30~90秒間程度行われる。

[0065]

c. 被覆形成剤除去工程

この後、パターン上に残留する被覆形成剤からなる塗膜は、水系溶剤、好ましくは純水により10~60秒間洗浄することにより除去する。なお、水除去に先立ち、所望によりアルカリ水溶液(例えば、テトラメチルアンモニウムヒドロキシド(TMAH)、コリンなど)で除去処理をしてもよい。本発明に係る被覆形成剤は、水での洗浄除去が容易で、かつ、基板およびホトレジストパターンから完全に除去することができる。

そして基板上に、幅広・広大となったホトレジストパターンの間に画定された 、微小化されたパターンを有する基板が得られる。

[0067]

本発明により得られる微細パターンは、これまでの方法によって得られる解像 限界よりもより微細なパターンサイズを有するとともに、良好なプロフィルを有 し、所要の要求特性を十分に満足し得る物性を備えたものである。

[0068]

なお、上記a.~c.工程を複数回、繰返して行ってもよい。このようにa.~c.工程を複数回繰返すことにより、ホトレジストパターンを徐々に幅広・広大とすることができる。また被覆形成剤として、ポリ(メタ)アクリルアミドを構成成分として含む水溶性ポリマーを含有したものを用いることにより、複数回の水洗除去作業においても、その都度完全に被覆形成剤を除去することができることから、厚膜のホトレジストパターンを有する基板を用いた場合でも、パターン崩れや変形を生じることなく、良好なプロフィルの微細パターンを形成することができる。

[0069]

本発明が適用される技術分野としては、半導体分野に限られず、広く液晶表示素子、磁気ヘッド製造、さらにはマイクロレンズ製造等に用いることが可能である。

[0070]

【実施例】

次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例に よってなんら限定されるものではない。なお、配合量は特記しない限り質量%で ある。

[0071]

(実施例1)

アクリルアミドとアクリル酸のコポリマー (アクリルアミド:アクリル酸=1:2 (重合比)) 6.37g、トリエタノールアミン0.57g、およびポリオ

[0072]

一方、基板上にポジ型ホトレジストである「TArF-7a-52 EM」(東京応化工業 (株) 製)を回転塗布し、115 \mathbb{C} で 90 秒間ベーク処理し、膜厚 0.40μ m のホトレジスト層を形成した。

[0073]

該ホトレジスト層に対して、露光装置(「Nikon S-302」;ニコン (株)製)を用いて露光処理し、100 \mathbb{C} にて90 秒間加熱処理を施し、2.3 8 質量% TMAH (テトラメチルアンモニウムヒドロキシド)水溶液を用いて現像処理してホトレジストパターンを形成した。このホトレジストパターンの形成により、パターン径161.0 nmのホールパターンを形成した。

[0074]

、次に、このホールパターン上に、上記被覆形成剤を塗布し、150 \mathbb{C} で60 \mathbb{N} 間加熱処理し、該ホールパターンの微細化処理を行った。続いて23 \mathbb{C} で純水を用いて被覆形成剤を除去した。そのときのホールパターンのパターン径は121 \mathbb{N} \mathbb

[0075]

(実施例2)

ポリアクリルアミドとポリアクリレートの混合樹脂(アクリルアミド:ポリアクリレート=1:2(質量比))6.40g、トリエタノールアミン0.54g、およびポリオキシエチレンのリン酸エステル系界面活性剤(「プライサーフA210G」;第一工業製薬(株)製)0.06gを水93gに溶解して被覆形成剤を調製した。

[0076]

次いで、実施例1と同様にして形成したホールパターン(パターン径161. 0 nm)上に、当該被覆形成剤を塗布し、150℃で60秒間加熱処理し、該ホールパターンの微細化処理を行った。続いて23℃で純水を用いて被覆形成剤を

[0077]

(比較例1)

ビニルピロリドンとアクリル酸のコポリマー(ビニルピロリドン: アクリル酸 =1:2 (重合比))6.37g、トリエタノールアミン0.57g、およびポリオキシエチレンのリン酸エステル系界面活性剤(「プライサーフ A210G」;第一工業製薬(株)製)0.06gを水93gに溶解して被覆形成剤を調製した。

[0078]

次いで、実施例1と同様にして形成したホールパターン(パターン径161. 0 nm)上に、当該被覆形成剤を塗布し、150℃で60秒間加熱処理し、該ホールパターンの微細化処理を行った。続いて23℃で純水を用いて被覆形成剤を除去した。そのときのホールパターンのパターン径は138.6 nmであった。

[0079]

【発明の効果】

以上詳述したように本発明によれば、ホトレジストパターンを有する基板上に被覆形成剤を設け、これを熱処理して被覆形成剤を熱収縮させ、該被覆形成剤の熱収縮力を利用してホトレジストパターン間隔を狭め、次いで上記塗膜を除去する微細パターンの形成方法を利用した技術において、被覆形成剤に少なくとも(メタ)アクリルアミドを構成モノマーとして含む水溶性ポリマーを配合することにより、加熱処理による被覆形成剤の熱収縮率を大幅に向上させることができ、格段のパターン微細化効果が得られる。

【要約】

【課題】 被覆形成剤を用いたパターンの微細化において、加熱処理時における 被覆形成剤の熱収縮率を格段に向上させ、良好なプロフィルおよび現在の半導体 デバイスにおける要求特性を備えた微細パターンを得ることができる被覆形成剤 、およびこれを用いた微細パターン形成方法を提供する。

【解決手段】 ホトレジストパターンを有する基板上に被覆され、その熱収縮作用を利用してホトレジストパターン間隔を狭小せしめて微細パターンを形成するために使用される被覆形成剤であって、少なくとも(メタ)アクリルアミドを構成モノマーとして含む水溶性ポリマーを含有することを特徴とするパターン微細化用被覆形成剤、および該被覆形成剤を用いた微細パターンの形成方法。

【選択図】 なし

認定・付加情報

特許出願の番号 特願2002-191056

受付番号 50200955631

書類名 特許願

担当官 第五担当上席 0094

作成日 平成14年 7月 1日

<認定情報・付加情報>

【提出日】 平成14年 6月28日

出願人履歴情報

識別番号

[000220239]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所氏 名

神奈川県川崎市中原区中丸子150番地

東京応化工業株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.