supply and drainage pipes. In canals the trapezoidal section is that which experience has almost universally established as the best wherever canals are carried through ordinary earth, and the rectangular section is only adopted when the sides are composed of coherent matter such as rock or masonry. The semicircular section for an open channel would not approximate to the shapes usually adopted in canals, but it may be worth remarking that the outline of the catenary of greatest area approaches more nearly to such shapes.

IV. "On the Heating Effects of Electric Currents. No. III." By W. H. PREECE, F.R.S. Received March 15, 1888.

I have taken a great deal of pains to verify the dimensions of the currents, as detailed in my paper read on December 22, 1887, required to fuse different wires of such thicknesses that the law

$$C = ad^{3/2}$$

is strictly followed; and I submit the following as the final values of the constant "a" for the different metals:—

	Inches.	Centimetres.	Millimetres.
Copper	10,244	2,530	80.0
Aluminium	$7,\!585$	1,873	59.2
Platinum	$5,\!172$	$1,\!277$	40.4
German silver	$5,\!230$	1,292	40.8
Platinoid	4,750	1,173	37.1
Iron	3,148	777.4	24.6
Tin	1,642	405.5	12.8
Alloy (lead and tin 2 to 1)	1,318	325.5	10.3
Lead	1,379	340.6	10.8

With these constants I have calculated the two following tables, which I hope will be found of some use and value:—

Table showing the Current in Ampères required to Fuse Wires of Various Sizes and Materials.

	Lead. $a = 1379$.	31 · 20 22 · 32 14 · 50 9 · 419 6 · 461 4 · 499 2 · 483 1 · 904 1 · 548
	Tin-lead alloy. $\alpha = 1318$.	29.82 21.34 13.86 9.002 6.175 6.175 8.183 2.373 1.620 1.479
	$\mathrm{Tin.}$ $a = 1642.$	37 .15 26 .58 17 .27 111 .22 7 .692 6 .337 8 .965 2 .956 2 .267 1 .843
	$ \frac{\text{Iron.}}{\alpha = 3148.} $	71.22 50.96 33.10 21.50 14.75 10.27 7.602 5.667 4.347 8.533
	Platinoid. $\alpha = 4750$.	107 5 76 90 49 95 32 44 22 25 11 50 11 47 8 55 6 55 6 58
$C = ad^{3/2}$.	Ger. Silver. $a = 5230$.	118 : 3 84 · 68 54 · 99 35 · 72 24 · 50 17 · 06 12 · 63 9 · 7 · 222 5 · 870
= O	Platinum. $\alpha = 5172$.	117 · 0 83 · 73 54 · 37 35 · 33 24 · 23 16 · 88 12 · 49 9 · 311 7 · 142 5 · 805
	Aluminium. $a = 7585$.	171.6 122.8 79.75 51.81 85.53 24.75 18.82 13.66 10.47 8 512
	Copper. $a = 10,244$.	231 ·8 165 ·8 107 ·7 69 ·97 48 ·00 33 ·43 24 ·74 18 ·14 11 ·15
	d ³ 1 ² .	0.022627 0.016191 0.010516 0.006831 0.004685 0.002415 0.002416 0.001801 0.001821
	Diameter. Inches.	0.080 0.064 0.048 0.036 0.028 0.018 0.0124 0.0124
	No. S.W.G.	14 16 22 22 24 24 28 30 32

Table giving the Diameters of Wires of Various Materials which will be Fused by a Current of Given Strength.

		Lead. $a = 1379.$	0.0081	0.0128	0.0168	0.0203	0.0236	0.0375	0.0491	0.0595	$0690 \cdot 0$	6240.0	0.0864	0.0944	0.1021	0.1095	0.1237	0.1371	0.1499	0.1621	0.1739	0.1964	0.2176	0.2379	0.2573	0.2760	0.2986	0.3203	0.3413	0 .3617
		Tin-lead alloy. $a = 1318$.	0.0083	0.0132	0.0173	0.0510	0 .0243	980.0	0.020	0.0613	0.0711	0.0803	0680.0	0.0973	0.1052	0.1129	0.1275	0.1413	0.1544	0.1671	0.1792	0 .2024	0.2243	0.2452	0.2652	0.2845	0.3077	0.3301	0.3518	0.3728
		Tin. $a = 1642$.	0.0072	0.0113	0.0149	0.0181	0.0210	0.0334	0.0437	0.0529	0.0614	0.0694	6940.0	0.0840	6060.0	0.0975	0.1101	0.1220	0.1334	0.1443	0.1548	0.1748	0.1937	0.2118	0.2291	0.2457	6.2658	0.2851	0.3038	0.3220
	·se		0 · 0047	0.0074	2600-0	0.0117	0.0136	0.0216	0.0283	0.0343	0.0398	0.0420	0.0498	0.0545	6820.0	0.0632	0.0714	0.0791	0.0864	0 · 0935	0.1003	0.1133	0.1255	0.1372	0.1484	0.1592	0.1722	0.1848	0.1969	0 .2086
<u>n</u>	Diameter in inches.	Platinoid. $a = 4750$.	0 .0035	0.0056	0.0074	6800.0	0.0104	0.0164	0.0215	0.0261	0 -0303	0.0342	0.0379	0.0414	0.0448	0.0480	0.0542	0 0601	0 -0657	0.0711	0.0762	0.0861	0.0954	0.1043	0 ·1128	0.1210	0.1309	0 · 1404	0.1497	0.1586
$u = \begin{pmatrix} - \\ a \end{pmatrix}$	Di	Ger. Silver. $a = 5230$.	0 .0033	0 .0053	6900.0	0.0084	2600.0	0.0154	0.0202	0.0245	0.0284	0.0320	0.0356	0.0388	0.0420	0.0450	0.0509	0.0564	0.0616	2990.0	0.0715	8080.0	0.0895	0 .0978	0.1058	0.1135	0.1228	0.1317	0.1404	0 ·1487
		Platinum. $a = 5172$.	0.0033	0 .0053	0.000	0.0084	8600.0	0.0155	0.0203	0.0246	0.0286	0.0323	0.0358	0.0391	0.0423	0.0454	0.0513	0.0568	0 .0621	0.0672	0.020	0.0814	0.000	9860.0	0.1066	0.1144	0.1237	0.1327	0.1414	0.1498
		Aluminium. $a = 7585$.	0.0026	0.0041	0.0054	0 .0065	9400.0	0.0120	0.0158	0.0191	0.0222	0.0220	0.0277	0.0303	0.0328	0.0352	0 -0397	0.0440	0.0481	0.0520	0.0558	0.0630	8690.0	0.0763	0.0856	9880.0	0 .0958	0.1028	0.1095	0.1161
		Copper. $a = 10,244$.	0.0021	0.0034	0.0044	0.0053	0.0062	8600.0	0.0129	0.0156	0.0181	0.0205	0.0227	0.0248	0 .0268	0.0288	0.0325	0980.0	0.0394	0.0426	0.0457	0.0516	0.0572	0.0625	9490.0	0.0725	0.0784	0.0841	2680.0	0 :0920
	Cumont in	ampères.	1	23	က	4	10	10	15	20	25	30	35	40	45	20	09	70	80	06	100	120	140	160	180	200	225	250	275	300

YOL. XLIV.