概率论与数理统计 第七章: 参数估计 (parameter estimation)

李立颖 (lily@sustech.edu.cn)

南方科技大学数学系

2023 秋季

内容大纲I

- 点估计
 - 矩估计
 - 求总体矩
 - △ 样本矩代替总体矩
 - ◎ 求矩估计量
 - 最大似然估计

- 评价标准
 - 无偏性 $\mathbb{E}\hat{\theta} = \theta$.
 - 有效性 $Var(\hat{\theta}_1) \leq Var(\hat{\theta}_2)$.
 - 相合性 $\lim_{n\to\infty} P(|\hat{\theta}_n \theta| \ge \varepsilon) = 0.$

内容大纲II

- 区间估计
 - 双侧:

• 単正态总体
$$\mathcal{N}(\mu, \sigma^2)$$
: $\left(\bar{X} \pm \frac{\sigma}{\sqrt{n}} u_{1-\alpha/2}\right) \left(\sigma^2$ 己知), $\left(\bar{X} \pm \frac{S}{\sqrt{n}} t_{1-\alpha/2}(n-1)\right) \left(\sigma^2 + \frac{s}{\sqrt{n}}\right)$
• σ^2 : $\left(\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}\right)$.

- 双正态总体 $\mathcal{N}(\mu_1, \sigma_1^2)$, $\mathcal{N}(\mu_2, \sigma_2^2)$.
- 单侧置信区间.

- ① 点估计 (Point estimation)
 - 引言
 - 矩估计
 - 最大似然估计法
 - 小结与作业
- ② 估计量的评价标准
- 区间估计 (Interval estimation)

4 / 77

综述

数理统计问题

如何选取样本来对总体的种种统计特征作出判断.

参数估计问题

知道随机变量 (总体) 的分布类型, 但确切的形式不知道, 根据样本来估计总体的参数, 这类问题称为参数估计 (parametric estimation)

参数估计的类型

点估计、区间估计

李立颖 (数学系) 概统第七章: 参数估计 2023 秋 (概统 7 班) 5 / 77

参数 θ 的估计量

设总体的分布函数为 $F(x;\theta)$ (θ 未知), X_1,\ldots,X_n 为样本, 构造一个统计量 $\hat{\theta}=\hat{\theta}(X_1,\ldots,X_n)$ 来估计参数 θ , 则称 $\hat{\theta}(X_1,\ldots,X_n)$ 为参数 θ 的估计量. 将样本观测值 x_1,\ldots,x_n 代入 $\hat{\theta}(X_1,\ldots,X_n)$, 得到的值 $\hat{\theta}(x_1,\ldots,x_n)$ 称为参数 θ 的估计值

点估计 (point estimation))

如果构造一个统计量 $\hat{\theta}(X_1,\ldots,X_n)$ 来作为参数 θ 的估计量, 则称为 <mark>参数 θ 的点估计</mark>.

区间估计 (interval estimation)

如果构造两个统计量 $\hat{\theta}_1(X_1,\ldots,X_n)$, $\hat{\theta}_2(X_1,\ldots,X_n)$, 而用 $(\hat{\theta}_1,\hat{\theta}_2)$ 来作为参数 θ 可能取值范围的估计, 称为**参数** θ **的区间估计**.

实例

某工厂生产了一大批产品, 从中随机抽检了 n 件产品, 发现有 k 件次品. 如何估计整批产品的次品率 p?

分析

从该批产品中任取一件. 令

$$X = \begin{cases} 1, & \text{该产品为次品,} \\ 0, & \text{该产品为好品.} \end{cases}$$

则 $X \sim \text{Bin}(1,p)$ 为总体, 按题设, 从总体 X 抽取了一个样本 X_1,\ldots,X_n . 现要根据抽 检结果, 对未知参数 p 的大小进行推断. 由大教律有

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{k}{n} \to p, \quad n \to \infty.$$

因此当 n 较大时, \bar{X} 与 p 的 "差别" 应该较小. 故可用 $\hat{p} = \bar{X}$ 作为 p 的估计.

实例

从某厂生产的一批器件中随机抽取 10 件, 测得其寿命值 (小时) 分别为

1010, 980, 975, 1050, 1100, 990, 1020, 1150, 1210, 960.

试问怎样估计该批器件的平均寿命?

分析

一般地, 整批产品寿命 $X \sim \mathcal{N}(\mu, \sigma^2)$. 按题设, 从总体 X 抽取了一个容量为 10 的样本. 现要根据抽检结果, 对未知参数 μ 的大小进行推断.

$$\mathbb{E}\bar{X} = \mu, \quad \operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}.$$

因此, X 与 μ 的 "差别" 应该较小. 故器件的平均寿命估计值为

$$\hat{\mu} = \frac{1}{10} \sum_{i=1}^{10} x_i = 1044.5.$$

点估计问题的一般提法

设总体 $X \sim F(x; \theta_1, \theta_2, \dots, \theta_m)$, 其中 F 的函数形式为已知, $\theta_1, \theta_2, \dots, \theta_m$ 为未知参数, X_1, \dots, X_n 为来自总体 X 的样本. 若记 $\theta = (\theta_1, \theta_2, \dots, \theta_m)$, 则总体分布可记为 $X \sim F(x; \theta)$.

 θ 的取值范围称为参数空间, 记为 Θ .

参数空间的例子

- 设总体 $X \sim \pi(\lambda)$, 则参数空间为 $\Theta = \{\lambda \mid \lambda > 0\}$.
- 设总体 $X \sim \mathcal{N}(\mu, \sigma^2)$, 则参数空间为 $\Theta = \{(\mu, \sigma^2) \mid \mu \in \mathbb{R}, \sigma > 0\}$ (形参空间)
- 设某课程的考试成绩总体 $X \sim \mathcal{N}(\mu, \sigma^2)$, 则参数空间为 $\Theta = \{(\mu, \sigma^2) \mid \mu \in [0, 100], \ \sigma \in (0, 100)\}$. (实参空间)

参数推断问题: F 的函数形式已知, 推断未知参数 θ .

 θ 的点估计 构造一个统计量 $\hat{\theta}(X_1,\ldots,X_n)$, 用统计量观察值 $\hat{\theta}(x_1,\ldots,x_n)$ 作为未知参数 θ 的估计值. **二重性**: $\hat{\theta}(X_1,\ldots,X_n)$ 为 θ 的估计量, $\hat{\theta}(x_1,\ldots,x_n)$ 为 θ 的估计值.

用 $\hat{\theta}(X_1,\ldots,X_n)$ 估计 θ 的直观要求

- 估计的误差应较小
- 当 n 较大时, 估计的精度应较高

对"误差"、"精度"不同的解释, 有不同的估计方法.

常用的点估计方法

- 矩估计法 (Method of moments)
- 最大似然估计法 (Maximum likelihood)
- 最小二乘估计 (Least squares)

10 / 77

设总体 $X \sim F(x; \theta_1, \dots, \theta_m)$, 其中 $\theta_1, \dots, \theta_m$ 为未知参数, X_1, \dots, X_n 为来自总体 X的样本. 设下列总体矩 $\alpha_k = \mathbb{E}X^k$, k = 1, 2, ..., m 都存在.

由大数律
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k \to \mathbb{E} X^k = \alpha_k$$
. 因此

$$A_k \approx \alpha_k = \mathbb{E}X^k = \int_{-\infty}^{\infty} x^k dF(x; \theta_1, \dots, \theta_m) := \alpha_k(\theta_1, \dots, \theta_m).$$

求解方程组

$$\begin{cases} \alpha_1(\theta_1, \dots, \theta_m) = A_1, \\ \alpha_2(\theta_1, \dots, \theta_m) = A_2, \\ \dots \\ \alpha_m(\theta_1, \dots, \theta_m) = A_m \end{cases} \Rightarrow \begin{cases} \hat{\theta}_1 = \hat{\theta}_1(A_1, \dots, A_m), \\ \hat{\theta}_2 = \hat{\theta}_2(A_1, \dots, A_m), \\ \dots \\ \hat{\theta}_m = \hat{\theta}_m(A_1, \dots, A_m). \end{cases}$$

上面的 = 号其实是 \approx ! 我们这里做了一个近似.

例: 均匀分布

设总体 X 在 [a,b] 上服从均匀分布, a,b 未知. X_1,\ldots,X_n 是来自 X 的样本. 试求 a,b 的矩估计量.

解

由

$$\begin{cases} \mu_1 = \mathbb{E}X = \frac{a+b}{2}, \\ \mu_2 = \mathbb{E}X^2 = \frac{(b-a)^2}{12} + \frac{(a+b)^2}{4}, \end{cases}$$

解得 $a=\mu_1-\sqrt{3(\mu_2-\mu_1^2)}$, $b=\mu_1+\sqrt{3(\mu_2-\mu_1^2)}$. 分别以 A_1,A_2 代替 μ_1,μ_2 , 得到 a,b 的矩估计量分别为

$$\hat{a} = A_1 - \sqrt{3(A_2 - A_1^2)} = \bar{X} - \sqrt{\frac{3}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2},$$

$$\hat{b} = A_1 + \sqrt{3(A_2 - A_1^2)} = \bar{X} + \sqrt{\frac{3}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2}.$$

例: 均值与方差

设总体 X 的均值 $\mu=\mathbb{E}X$, 方差 $\sigma^2=\mathrm{Var}(X)$ 都存在. X_1,\ldots,X_n 为总体样本, 求未知 参数 μ,σ^2 的矩估计.

解

由

$$\begin{cases} \mu_1 = \mathbb{E}X = \mu, \\ \mu_2 = \mathbb{E}X^2 = \mu^2 + \sigma^2. \end{cases}$$

得矩估计

$$\hat{\mu} = A_1 = \frac{1}{n} \sum_{i=1}^{n} X_i,$$

$$\hat{\sigma}^2 = A_2 - A_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2 = \frac{n-1}{n} S^2 := \tilde{S}^2.$$

称 \hat{S}^2 为 修正的样本方差.

当 X 服从正态分布时, $\hat{\mu}$, $\hat{\sigma}^2$ 服从什么分布?

例题

设总体有均值 μ 与方差 σ^2 , 今有样本观察值

 $-1.20,\ 0.82,\ 0.12,\ 0.45,\ -0.85,\ -0.30.$

 $\bar{x} \mu 与 \sigma^2$ 的矩估计值.

解

$$\hat{\mu} = -0.16, \quad \hat{\sigma}^2 \approx 0.5.$$

例: 泊松分布

设 $X_1, ..., X_n$ 为总体 $X \sim \pi(\lambda)$, $\lambda > 0$ 的样本. 求未知参数 λ 的矩估计.

总体一阶矩和样本一阶矩分别为 $\mathbb{E}X=\lambda, \bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$. 因此 λ 的矩估计为 $\hat{\lambda}=\bar{X}$.

例: 指数分布

设 X_1,\ldots,X_n 为总体 $X\sim \frac{1}{\theta}e^{-x/\theta}\mathbb{1}_{x>0},\,\theta>0$ 的样本. 求未知参数 θ 的矩估计.

总体一阶矩和样本一阶矩分别为
$$\mathbb{E}X=\theta$$
, $\bar{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$. 令 $\bar{X}=\theta$, 求得 θ 的矩估计为 $\hat{\theta}=\bar{X}$.

样本均值 \bar{X} 是总体均值 $\mu := \mathbb{E}X$ 的矩估计.

15 / 77

例

设有一批灯管, 其寿命为 $X \sim \text{Exp}(\lambda)$. 从中随机抽取 11 只, 其寿命数据为 110, 184, 145, 122, 165, 143, 78, 129, 62, 130, 168.

用矩估计法估计 λ 的值.

解

由
$$\mu_1 = \mathbb{E}X = \frac{1}{\lambda}$$
,得 $\lambda = \frac{1}{\mu_1}$. 用 $A_1 = \bar{X}$ 代替 μ_1 ,得参数 λ 的矩估计量为 $\hat{\lambda} = \frac{1}{\bar{X}}$,而 $\bar{X} = \frac{110 + 184 + 145 + 122 + 165 + 143 + 78 + 129 + 62 + 130 + 168}{11} \approx 130.55$.

故 $\hat{\lambda} = 1/130.55 \approx 0.0077$.

例

设 X_1,\ldots,X_n 为来自总体 $X\sim \mathrm{Bin}(m,p)$ 的样本, $p\in (0,1)$. 求未知参数 p 的矩估计.

解

总体一阶矩为
$$\mathbb{E}X=mp$$
, 样本一阶矩为 $\bar{X}=\frac{1}{n}\sum^{n}X_{i}$. 令 $mp=\bar{X}$, 求得 p 的矩估计为

$$\hat{p} = \frac{\bar{X}}{m}.$$

小结

不管总体 X 服从何种分布, 总体期望和方差的矩估计量分别为样本平均和样本 2 阶中心距:

$$\hat{\mu} = \bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

约定

若 $\hat{\theta}$ 是未知参数 θ 的矩估计, 则 $g(\theta)$ 的矩估计为 $g(\hat{\theta})$.

实际问题

有两个射手,一人的命中率为 0.9, 另一人的命中率为 0.1, 现在他们中的一个向目标射击了一发,结果命中了,估计是谁射击的?

最大似然思想

一般说, 事件 A 发生的概率与参数 $\theta \in \Theta$ 有关, θ 取值不同, 则 P(A) 也不同. 因而应记事件 A 发生的概率为 $P(A \mid \theta)$. 若 A 发生了, 则认为此时的 θ 值应是在 Θ 中使 $P(A \mid \theta)$ 达到最大的那一个. 这就是**最大似然思想**.

李立颎 (数学系) 概统第七章: 参数估计 2023 秋 (概统 7 班)

19 / 77

Fisher 的最大似然思想

一个随机试验有很多可能结果, 如果在一次试验中, 某结果发生了, 则认为该结果 (事件) 发生的可能性最大.

例

老战士与一新同学一同进行射击训练, 每人打了一枪, 结果有一枪中靶. 试问这一枪是谁打中的?

分析

按照 Fisher 的最大似然思想, 应该认为是老战士打中的较合理.

例

一袋中有红、白两颜色的球若干, 只知道两种球的比例为 4:1, 但不知道哪种颜色的球占 3. 现从中任取一球, 结果为白色. 问袋中哪种颜色的球较多?

20 / 77

分析

按照 Fisher 的最大似然思想, 应该认为袋中白球较多.

离散型随机变量模型

设总体 X 为离散型随机变量, 它的分布律为

$$P(X = x) = p(x; \theta), \quad \theta \in \Theta.$$

现有样本观察值 x_1, \ldots, x_n .

最大似然估计

考虑样本的似然函数

$$L(\theta) = \mathsf{P}(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^n p(x_i; \theta).$$

求得 $L(\theta)$ 的最大值点 $\hat{\theta}(x_1,\ldots,x_n)$, 称为 θ 的最大似然估计值, 称 $\hat{\theta}(X_1,\ldots,X_n)$ 为 θ 的最大似然估计量.

连续型情形

用密度函数代替 $p(x;\theta)$.

设
$$X_1, \ldots, X_n$$
 是总体 $X \sim f(x; \theta)$ 的样本 (f) 为频率函数或密度函数). 令

$$L(\theta) = L(\theta; X_1, \dots, X_n) = \prod_{i=1}^n f(X_i; \theta),$$

称 $L(\theta)$ 为 (以然函数. 若存在统计量 $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ 使得

$$L(\hat{\theta}) = \max_{\theta \in \Theta} L(\theta; X_1, \dots, X_n),$$

则称 $\hat{\theta}(X_1,\ldots,X_n)$ 为 θ 的**最大似然估计 (Maximum Likelihood Estimation, MLE),** $\hat{\theta}(x_1,\ldots,x_n)$ 为**最大似然估计值**.

最大似然估计法的一般步骤

- (1) 构造似然函数 $L(\theta) = f(x_1, \dots, x_n; \theta) = \prod p(x_i; \theta)$. p: 频率函数或密度函数.
- (2) 取自然对数: $\log L(\theta) = \sum_{i=1}^{n} \ln p(x_i; \theta)$.
- (3) 令 $\frac{d \log L}{d\theta} = 0$ 求最大值.

设 $X \sim \text{Bin}(1,p)$. X_1,\ldots,X_n 是来自 X 的一个样本. 试求参数 p 的最大似然估计量.

解

设 $x_1, ..., x_n$ 是对应于 $X_1, ..., X_n$ 的一个样本值. 因为 X 的分布律是 $P(X = x) = p^x (1 - p)^{1-x}$, x = 0, 1, 所以似然函数及对数似然函数为

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i}, \quad \log L(p) = \ln p \cdot \sum_{i=1}^{n} x_i + (n - \sum_{i=1}^{n} x_i) \ln(1-p).$$

由

$$\frac{d}{dp}\ln L(p) = \frac{\sum_{i=1}^{n} x_i}{p} - \frac{n - \sum_{i=1}^{n} x_i}{1 - p} = 0,$$

得最大似然估计值及最大似然估计量为

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}, \quad \hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i = \bar{X},$$

设总体服从指数分布 $f(x;\theta)=\frac{1}{\theta}e^{-x/\theta}\cdot\mathbb{1}_{\{x>0\}}$. X_1,\ldots,X_n 是来自于总体的样本, 求 θ 的最大似然估计.

解

似然函数为

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\theta} e^{-\frac{X_i}{\theta}} = \theta^{-n} e^{-\frac{1}{\theta} \sum_{i=1}^{n} X_i}.$$

由对数似然方程

$$\frac{d \ln L(\theta)}{d \theta} = -\frac{n}{\theta} + \frac{n \bar{X}}{\theta^2} = 0$$

得 θ 的最大似然估计 $\hat{\theta} = \bar{X}$.

例: 正态分布

设 $X \sim \mathcal{N}(\mu, \sigma^2)$, μ, σ^2 为未知参数, x_1, \ldots, x_n 是样本 X 的一个样本值. 求 μ, σ^2 的最 | 大似然估计值.

解

$$X$$
 的概率密度为 $f(x;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$. 则似然函数为

$$L(\mu, \sigma^2) = (2\pi)^{-n/2} \sigma^{-n} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2}.$$

对数似然函数为 $\ln L = -\frac{n}{2}\ln(2\pi) - \frac{n}{2}\ln\sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(x_i - \mu)^2$. 解对数似然方程得

$$\begin{cases} \frac{\partial}{\partial \mu} \ln L = \frac{1}{\sigma^2} \left[\sum_{i=1}^n x_i - n\mu \right] = 0, \\ \frac{\partial}{\partial \sigma^2} \ln L = -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (x_i - \mu)^2 = 0 \end{cases} \Rightarrow \begin{cases} \hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i = \bar{x}, \\ \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2. \end{cases}$$

设 X_1,\ldots,X_n 为来自均匀分布总体 $X\sim \mathrm{U}[a,b],\,a< b$ 的样本. 求参数 a,b 的最大似然估计.

解

似然函数为

$$L(a,b) = \frac{1}{(b-a)^n}, \quad a \le X_{\min}, X_{\max} \le b.$$

显然, 对于任意满足上述条件的 a,b, 有

$$L(a,b) = \frac{1}{(b-a)^n} \le \frac{1}{(X_{\text{max}} - X_{\text{min}})^n}.$$

因此 a,b 的最大似然估计就是 $\hat{a} = \min_{1 \leq i \leq n} X_i, \hat{b} = \max_{1 \leq i \leq n} X_i.$

例题

设 X 的概率密度函数为

$$f(x;\theta) = \mathbb{1}_{(0,1)}(x) \cdot \sqrt{\theta} x^{\sqrt{\theta}-1}$$

 X_1, X_2, \ldots, X_n 是样本, 求 θ 的极大似然估计量.

解

似然函数及对数似然函数为

$$L(\theta) = \theta^{\frac{n}{2}} \left(\prod_{i=1}^{n} x_i \right)^{\sqrt{\theta} - 1}, \quad \ln L(\theta) = \frac{n}{2} \ln \theta + (\sqrt{\theta} - 1) \sum_{i=1}^{n} \ln x_i.$$

求解对数似然方程得

$$\frac{d\ln L(\theta)}{d\theta} = \frac{n}{2} \frac{1}{\theta} + \frac{1}{2\sqrt{\theta}} \sum_{i=1}^{n} \ln x_i = 0 \quad \Rightarrow \quad \sqrt{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln x_i}.$$

因此
$$\theta$$
 的极大似然估计量为 $\hat{\theta} = \frac{n^2}{\left[\sum_{i=1}^n \ln X_i\right]^2}.$

参数点估计

矩估计三步法

- □ 求总体矩.
- ② 样本矩代替总体矩.
- ③ 求出矩估计量 (矩估计值).

最大似然估计法三步法

- 求 (对数) 似然函数.
- ② 列出 (对数) 似然方程组.
- ③ 求 (对数) 似然函数的最大值点.

李立颖 (数学系) 概统第七章: 参数估计 2023 秋 (概统 7 班)

28 / 77

- P218: 5 (a) (b) (c)
- 补充题
 - 设总体 X 具有密度函数

$$f(x;\theta) = \begin{cases} \frac{2}{\theta^2}(\theta - x), & 0 < x < \theta, \\ 0, & \sharp \widehat{c}. \end{cases}$$

 X_1, \ldots, X_n 是样本, 求 θ 的矩估计.

- ② 设总体X 的密度函数 (或频率函数) 如下, X_1, \ldots, X_n 为样本, 求下列情况下 θ 的最大似然估计.
 - (1) $p(x;\theta) = \frac{\theta^x}{x!} e^{-\theta}, x = 0, 1, 2, \dots (\theta > 0).$
 - (2) $f(x;\theta) = \theta \alpha x^{\alpha-1} e^{-\theta x^{\alpha}}, x > 0 (\alpha 己知).$
- ◎ 设总体 X 具有密度函数

$$f(x;\theta) = \begin{cases} \theta(1-x)^{\theta-1}, & 0 \le x \le 1, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

 X_1, \ldots, X_n 是其样本. 求 θ 的矩估计及最大似然估计.

- ① 点估计 (Point estimation)
- ② 估计量的评价标准
 - 引言
 - 无偏性
 - 有效性
 - 相合性 (一致性)
 - 作业
- ③ 区间估计 (Interval estimation)

例

设 X_1, \ldots, X_n 为均匀分布总体 $X \sim \mathrm{U}(a,b)$ 的样本, 按矩估计法, 求得 a,b 的点估计分 别为

引言

$$\hat{a} = \bar{X} - \sqrt{3}\tilde{S}, \quad \hat{b} = \bar{X} + \sqrt{3}\tilde{S}.$$

按最大似然估计法, 求得 a,b 的点估计分别为

$$\hat{a} = \min_{1 \le i \le n} X_i, \quad \hat{b} = \max_{1 \le i \le n} X_i.$$

例

设 X_1, \ldots, X_n 为来自 Poisson 分布总体 $X \sim \pi(\lambda)$ 样本, 因为

$$\mathbb{E}X = \operatorname{Var}(X) = \lambda,$$

所以 $\hat{\lambda}_1 = \bar{X}$. $\hat{\lambda}_2 = \tilde{S}^2$ 都可以作为未知参数 λ 的矩估计.

问题

用什么标准来评价和选择同一参数的不同的点估计量?无偏性,有效性,相合性

设总体 $X \sim F(x;\theta)$, $\theta \in \Theta$, Θ 为参数空间。设 X_1, \ldots, X_n 为总体 X 的样本, $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ 为未知参数 θ 的点估计。 $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ 也是一个随机变量,会在真值附近"波动"。

定义

若估计量 $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ 的数学期望存在, 且 $\forall \theta \in \Theta$ 有

$$\mathbb{E}_{\theta}\hat{\theta} = \theta,$$

则称 $\hat{\theta}$ 为 θ 的**无偏估计**, 否则称**有偏估计**.

称 $b_n(\hat{\theta}) = \mathbb{E}_{\theta} \hat{\theta} - \theta$ 为估计量 $\hat{\theta}$ 的偏差 (偏).

- $b_n(\hat{\theta}) \neq 0$, 则 $\hat{\theta} \neq \theta$ 的有偏估计.
- 若 $\lim_{n\to\infty} b_n(\hat{\theta}) = 0$, 则称 $\hat{\theta}$ 为 θ 的<mark>渐近无偏估计</mark>.

期望和方差

例

无论 X 服从什么分布, 若 $\mu:=\mathbb{E}X$, $\sigma^2:=\mathrm{Var}(X)$ 都存在, 则 $\hat{\mu}=\bar{X}$, $\hat{\sigma}^2=S^2$ 分别是 μ,σ^2 的无偏估计.

证明

我们有

$$\mathbb{E}\hat{\mu} = \mathbb{E}\frac{1}{n}\sum_{i=1}^{n} X_i = \mu,$$

$$\mathbb{E}\hat{\sigma}^2 = \mathbb{E}\frac{1}{n-1}\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sigma^2$$

$$\tilde{S}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2 = \frac{n-1}{n} S^2, \quad \mathbb{E}\tilde{S}^2 = \frac{n-1}{n} \mathbb{E}S^2 = \frac{n-1}{n} \sigma^2 \to \sigma^2.$$

因此修正样本方差 \hat{S}^2 是 σ^2 的**渐近无偏估计**.

正态分布的方差和期望估计

设 X_1, \ldots, X_n 为来自总体 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的样本, 则 μ 的矩估计和最大似然估计 $\hat{\mu} = \bar{X} \neq \mu$ 的无偏估计. 而 σ^2 的矩估计和最大似然估计

$$\hat{\sigma}^2 = \tilde{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

是 σ^2 的有偏估计或渐近无偏估计.

$$\sigma^2$$
 的无偏估计是

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}.$$

李立颖 (数学系) 概统第七章: 参数估计 34 / 77

例

设总体 X 的 k 阶矩 $\mu_k=\mathbb{E}X^k$, $k\geq 1$ 存在, 又设 X_1,\ldots,X_n 是 X 的一个样本. 试证明不论总体服从什么分布, k 阶样本矩 $A_k=\frac{1}{n}\sum_{i=1}^nX_i^k$ 是 k 阶总体矩 μ_k 的无偏估计量.

证明

 X_1, \ldots, X_n 与 X 同分布, 因此

$$\mathbb{E}X_i^k = \mathbb{E}X^k = \mu_k, \quad k = 1, 2, \dots, n.$$

由期望的线性性,有

$$\mathbb{E}A_k = \frac{1}{n} \sum_{i=1}^n \mathbb{E}X_i^k = \mu_k.$$

例题

设 X_1, \ldots, X_n 为总体 $X \sim \mathrm{U}(0,\theta)$ 的样本, 试讨论 θ 的矩估计 $\hat{\theta}_M$ 和最大似然估计 $\hat{\theta}_L$ 的无偏性.

解

由
$$\mathbb{E}X = \frac{\theta}{2}$$
, 令 $\bar{X} = \frac{\theta}{2}$, 得 θ 的矩估计为 $\hat{\theta}_M = 2\bar{X}$. 于是

$$\mathbb{E}\hat{\theta}_M = 2\mathbb{E}\bar{X} = 2\mathbb{E}X = 2 \cdot \frac{\theta}{2} = \theta,$$

因此 $\hat{\theta}_M$ 是 θ 的无偏估计.

 θ 的最大似然估计是 $\hat{\theta}_L = \max_i X_i$, 其密度函数为

$$f_{\max}(z) = nf(z)[F(z)]^{n-1} = \frac{n}{\theta} \cdot \left(\frac{z}{\theta}\right)^{n-1}$$
, $0 < z < \theta$. 因此

$$\mathbb{E}\hat{\theta}_L = \int_0^\theta z \cdot \frac{n}{\theta} \cdot \left(\frac{z}{\theta}\right)^{n-1} dz = \frac{n}{n+1}\theta < \theta.$$

所以 $\hat{\theta}_L = X_{(n)}$ 是 θ 的有偏估计 (渐近无偏估计). 经修正后 $\hat{\theta} = \frac{n+1}{n} \hat{\theta}_L = \frac{n+1}{n} X_{(n)}$ 是 θ 的无偏估计.

设总体 X 服从指数分布, 其概率密度为

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, & x > 0, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

其中参数 $\theta>0$ 为未知, 又设 X_1,\ldots,X_n 是来自 X 的样本, 试证 \bar{X} 和 $nZ=n\min(X_1,\ldots,X_n)$ 都是 θ 的无偏估计量.

证

因为 $\mathbb{E}\bar{X}=\mathbb{E}X=\theta$, 所以 $\bar{X}=\theta$ 的无偏估计量. 而 $Z=\min(X_1,\ldots,X_n)$ 具有概率密度

$$f_{\min}(x;\theta) = \begin{cases} \frac{n}{\theta} e^{-nx/\theta}, & x > 0, \\ 0, & \sharp \dot{\mathcal{C}}. \end{cases}$$

故知 $\mathbb{E}Z = \frac{\theta}{n}$, $\mathbb{E}(nZ) = \theta$. 即 nZ 也是参数 θ 的无偏估计量.

无偏性的实际意义

- 在工程技术中: 称 $\mathbb{E}\hat{\theta} \theta$ 为系统误差.
- 在经济活动中: 无偏性反映了商业行为的公平性.
- 在竞技评分中: 无偏性反映了评分的公正性

问题

在什么情况下, 无偏性才有意义?

无偏性只有在大量试验的情况下才有意义.

设 X_1, \ldots, X_n 为总体 $X \sim \pi(\lambda)$ 的样本

$$\mathbb{E}X = \text{Var}(X) = \lambda, \quad \mathbb{E}\bar{X} = \lambda, \quad \mathbb{E}S^2 = \text{Var}(X) = \lambda,$$

故 $\hat{\lambda}_1 = \bar{X}$, $\hat{\lambda}_2 = S^2$ 都是 λ 的无偏估计.

更进一步,对任意常数 c,统计量

$$\hat{\lambda} = c\hat{\lambda}_1 + (1-c)\hat{\lambda}_2 = c\bar{X} + (1-c)S^2$$

都是 λ 的无偏估计.

定义

设 X_1,\ldots,X_n 是总体 $X\sim F(x;\theta)$, $\theta\in\Theta$ 的样本. 假设 $\hat{\theta}_1$, $\hat{\theta}_2$ 都是无偏估计. 即 $\mathbb{E}_{\theta}\hat{\theta}_1=\mathbb{E}_{\theta}\hat{\theta}_2=\theta$, $\theta\in\Theta$. 若对任意 $\theta\in\Theta$ 有 $\mathrm{Var}(\hat{\theta}_1)\leq\mathrm{Var}(\hat{\theta}_2)$, 则称 $\hat{\theta}_1$ 较 $\hat{\theta}_2$ 有效.

例子

设总体 X 服从指数分布, 其概率密度为

$$f(x,\theta) = \begin{cases} \frac{1}{\theta} e^{-x/\theta}, & x > 0, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

其中参数 $\theta > 0$ 未知. 又设 X_1, \ldots, X_n 是来自于 X 的样本, 则 \overline{X} 和 $nZ = n \min(X_1, \dots, X_n)$ 都是 θ 的无偏估计量. 试证 n > 1 时, \bar{X} 比 nZ 有效.

证明

由于 $Var(X) = \theta^2$, 故有 $Var(\bar{X}) = \frac{\theta^2}{n}$. 再者, 由于 $Var(Z) = \frac{\theta^2}{n^2}$, $Var(nZ) = \theta^2$. 当 n > 1 时, $Var(\bar{X}) < Var(nZ)$, 故 \bar{X} 比 nZ 有效.

例子

设 X_1,\ldots,X_n 为总体 $X\sim \mathrm{U}(0,\theta)$ ($\theta>0$) 的样本. 试讨论的两个无偏估计 $\hat{\theta}_M=2\bar{X}$, $\hat{\theta}=\frac{n+1}{n}X_{(n)}$ 的有效性.

解

$$\operatorname{Var}_{\theta}(\hat{\theta}_{M}) = 4 \cdot \operatorname{Var}_{\theta}(\bar{X}) = 4 \cdot \frac{\operatorname{Var}_{\theta}(X)}{n} = 4 \cdot \frac{\theta^{2}}{12n} = \frac{\theta^{2}}{3n}.$$

$$\operatorname{Var}_{\theta}(\hat{\theta}) = \frac{(n+1)^{2}}{n^{2}} \operatorname{Var}_{\theta}(X_{(n)})$$

$$= \frac{(n+1)^{2}}{n^{2}} \int_{0}^{\theta} \left(z - \frac{n}{n+1}\theta\right)^{2} \frac{n}{\theta} \left(\frac{z}{\theta}\right)^{n-1} dz = \frac{\theta^{2}}{n(n+2)}.$$

当 n > 1 时, $\forall \theta > 0$ 有 $\operatorname{Var}_{\theta}(\hat{\theta}) < \operatorname{Var}_{\theta}(\hat{\theta}_{M})$, 故 $\hat{\theta}$ 较 $\hat{\theta}_{M}$ 有效.

问题

设 $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ 是未知参数 θ 的点估计. 当 n 增加时, 怎样评价 $\hat{\theta}$ 是一个 "好" 的估计?

分析

当样本容量 n 增加时, 样本 X_1, \ldots, X_n 包含未知参数 θ 的信息也越多, 此时估计应越 "精确"

问题

由于 $\hat{\theta}$ 是随机变量. 怎样描述估计的精确性?

(弱) 相合性

设 $\hat{\theta}_n = \hat{\theta}(X_1, \dots, X_n)$ 是未知参数 θ 的点估计. 若 $\forall \theta \in \Theta$ 满足

$$\hat{\theta}_n \stackrel{\mathsf{P}_\theta}{\to} \theta, \ n \to \infty, \quad \dot{\mathfrak{K}} \quad \lim_{n \to \infty} \mathsf{P}_\theta(|\hat{\theta}_n - \theta| \ge \varepsilon) = 0, \ \forall \varepsilon > 0,$$

则称 $\hat{\theta}_n$ 是 θ 的(弱) 相合估计.

无论总体 X 服从什么分布, 若 $\mu:=\mathbb{E}X$, $\sigma^2=\mathrm{Var}(X)$ 都存在, 则 $\hat{\mu}=\bar{X}$, $\hat{\sigma}^2=S^2$ 分别是 μ,σ^2 的相合估计.

证

由 (辛钦) 大数律知,

$$\begin{split} \bar{X} &= \frac{1}{n} \sum_{i=1}^n X_i \overset{\mathsf{P}}{\to} \mu, \quad n \to \infty. \\ S^2 &= \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 \\ &= \frac{1}{n-1} \Big[\sum_{i=1}^n X_i^2 - n \bar{X}^2 \Big] \\ &\overset{\mathsf{P}}{\to} \mathbb{E} X^2 - \mu^2 = \sigma^2. \end{split}$$

关于相合估计的一般结论

- 由辛钦大数定律知, θ 的矩估计 $\hat{\theta}$ 是相合估计.
- \bullet θ 的最大似然估计 $\hat{\theta}$ 一般也是相合估计
- θ 的相合估计不一定是无偏估计, 例如 $\hat{S}^2 = \frac{n-1}{n}S^2$.
- 若 $\hat{\theta}$ 是 θ 的无偏估计,则由切比雪夫不等式有

$$P(|\hat{\theta} - \theta| \ge \varepsilon) \le \frac{Var(\hat{\theta})}{\varepsilon^2}.$$

故 $\lim_{n\to\infty} \text{Var}(\hat{\theta}) = 0$ 时, $\hat{\theta}$ 是 θ 的相合估计 (充分条件).

例题

设 X_1, \ldots, X_n 是总体 $X \sim \text{Bin}(n, p), p \in (0, 1)$ 的样本. 求未知参数 p 的最大似然估计 \hat{p} , 并验证 \hat{p} 是无偏估计与相合估计.

解

似然函数为

$$L(p) = \prod_{i=1}^{n} {m \choose x_i} p^{x_i} (1-p)^{m-x_i} = \left[\prod_{i=1}^{n} {m \choose x_i} \right] \cdot p^{n\bar{X}} (1-p)^{mn-n\bar{X}}.$$

求解似然方程得

$$\frac{\partial \ln L}{\partial p} = \frac{n\bar{X}}{p} - \frac{mn - n\bar{X}}{1 - p} = 0 \quad \Rightarrow \quad \hat{p} = \frac{\bar{X}}{m}.$$

我们有 \hat{p} 是p的无偏与相合估计,因为

$$\begin{split} \mathbb{E} \hat{p} &= \frac{\mathbb{E} \bar{X}}{m} = \frac{mp}{m} = p \\ \hat{p} &= \frac{\bar{X}}{m} \overset{\mathrm{P}}{\to} \frac{mp}{p}, \quad n \to \infty. \end{split}$$

① 设总体 $X \sim \mathcal{N}(\mu, \sigma^2)$, X_1, \ldots, X_n 为样本, 试求 k 使得

$$\hat{\sigma}^2 = \frac{1}{k} \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$$

为 σ^2 的无偏估计.

- ② 设从均值 μ , 方差为 $\sigma^2 > 0$ 的总体中, 分别抽取容量为 n_1 , n_2 的两个独立样本. \bar{X}_1 和 \bar{X}_2 分别为两样本的均值. 试证: 对于任意的 a+b=1, $Y=a\bar{X}_1+b\bar{X}_2$ 都是 μ 的无偏估计, 并确定常数 a,b 使得 Var(Y) 最小.
- ◎ 设总体 X 服从参数为 1/θ 的指数分布,即概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

这里 $\theta > 0$ 是参数.

- (1) 证明: \bar{X} 和 $n \cdot \min(X_1, ..., X_n)$ 都是 θ 的无偏估计.
- (2) 比较两个随机变量的有效性.

- ① 点估计 (Point estimation)
- ② 估计量的评价标准
- ③ 区间估计 (Interval estimation)
 - 引言
 - 区间估计的概念
 - 单正态总体参数的区间估计
 - 双正态总体参数的区间估计
 - 单侧置信区间
 - 小结与作业

李立颖(数学系) 概统第七章: 参数估计 2023 秋 (概统 7 班)

χ^2 -分布

设 X_1, X_2, \ldots, X_n 是来自于总体 $X \sim \mathcal{N}(0,1)$ 的样本, 令

$$\chi^2 = X_1^1 + X_2^2 + \dots + X_n^2,$$

则称 χ^2 服从**自由度为** n **的** χ^2 -分布, 记为 $\chi^2 \sim \chi^2(n)$.

t-分布

设 $X \sim \mathcal{N}(0,1)$, $Y \sim \chi^2(n)$, 且 X,Y 相互独立. 令 $T = \frac{X}{\sqrt{Y/n}}$, 称 T 服从**自由度为** n

的 t-分布, 记为 $T \sim t(n)$.

F-分布

设 $U \sim \chi^2(n_1)$, $V \sim \chi^2(n_2)$, 且 U, V 相互独立, 令 $F = \frac{U/n_1}{V/n_2}$, 称 F 服从自由度为 (n_1, n_2) 的 F-分布, 记为 $F \sim F(n_1, n_2)$.

抽样定理回顾I

定理一

设 $X_1, X_2, ..., X_n$ 是来自总体 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的样本, 则

$$\bar{X} = \frac{X_1 + \dots + X_n}{n} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}).$$

定理二 (Fisher 引理)

设 X_1, \ldots, X_n 是总体 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的样本, \bar{X}, S^2 分别为样本均值和样本方差, 则

- $\bullet \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$
- \bar{X} , S^2 相互独立.

定理三

设 $X_1, ..., X_n$ 是总体 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的样本. \bar{X}, S^2 分别为样本均值和样本方差, 则

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1).$$

抽样定理回顾Ⅱ

定理四

设 X_1,\ldots,X_{n_1} 是总体 $\mathcal{N}(\mu_1,\sigma_1^2)$ 的样本, Y_1,Y_2,\ldots,Y_{n_2} 是总体 $Y\sim\mathcal{N}(\mu_2,\sigma_2^2)$ 的样本, 且两样本相互独立. 记两样本方差分别为 S_1^2,S_2^2 , 则

$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1).$$

定理五

设 X_1,\ldots,X_{n_1} 是总体 $\mathcal{N}(\mu_1,\sigma_1^2)$ 的样本, Y_1,Y_2,\ldots,Y_{n_2} 是总体 $Y\sim\mathcal{N}(\mu_2,\sigma_2^2)$ 的样本, 且两样本相互独立. 记两样本均值和样本方差分别为 $\bar{X},\bar{Y},S_1^2,S_2^2$, 则

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2),$$

其中
$$S_{\omega}^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$
, $S_{\omega} = \sqrt{S_{\omega}^2}$.

点估计的局限性

思考

设 $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$ 是未知参数 θ 的点估计.

- 用 $\hat{\theta}$ 估计 θ 的精度有多高?
- 用 $\hat{\theta}$ 估计 θ 的可信度有多高?
- 未知参数 θ 落在什么范围内?

可见估计未知参数的范围比未知参数的点估计更有应用价值

估计未知参数范围的实例

- 对目标位置、经济数据等预测: 给出一个预测范围
- 天气预报中对明天气温的估计: 最低气温与最高气温
- 工程中对钢材或水泥用量估计: 100 吨至 110 吨之间
- 破案时对犯罪嫌疑人身高估计: 165 cm 170 cm.

李立颖 (数学系) 概统第七章: 参数估计 2023 秋 (概统 7 班) 51/77

点估计方法的局限 ||

怎样估计未知参数的范围?

分析

设有两个统计量 $\hat{\theta}_1$, $\hat{\theta}_2$ 满足 $\hat{\theta}_1 < \hat{\theta}_2$. 若

$$\theta \in (\hat{\theta}_1, \hat{\theta}_2),$$

则随机区间 $(\hat{\theta}_1, \hat{\theta}_2)$ 可作为未知参数 θ 的"范围估计".

特点

- $\hat{\theta}_2 \hat{\theta}_1$ 小. 则估计精度高、可信度低
- $\hat{\theta}_2 \hat{\theta}_1$ 大,则可信度高、估计精度低

问题

如何平衡估计精度与可信度?

置信区间

定义

设总体 $X \sim F(x;\theta), \theta \in \Theta$. 对任意 $\alpha \in (0,1)$, 若存在两个统计量 $\theta = \theta(X_1,\ldots,X_n)$, $\bar{\theta} = \bar{\theta}(X_1, \dots, X_n), \, \theta \leq \bar{\theta}$ 使得对于任意 $\theta \in \Theta$ 有

$$\mathsf{P}_{\theta}(\underline{\theta} \le \theta \le \overline{\theta}) \ge 1 - \alpha,$$

则称随机区间 $(heta,ar{ heta})$ 为 heta 的置信水平为 1-lpha 的置信区间, $heta,ar{ heta}$ 分别称为置信下限和置 信上限.

注

- 置信水平也称为置信度,通常 α 较小.1-α 较大.
- 对于连续型总体, 则取 $P(\theta < \theta < \bar{\theta}) = 1 \alpha$.
- 对于离散型总体, 则取 $P(\theta \le \theta \le \bar{\theta})$ 尽可能接近 $1-\alpha$.
- 现今的区间估计理论是由原籍波兰的美国统计学家奈曼 (J.Neyman) 于 20 世纪 30 年代建立起来的.
- 求区间估计一般方法: 依据波动理论的枢轴变量法.

李立颖 (数学系) 2023 秋 (概統 7 班) 概统第七章: 参数估计

设 X_1,\ldots,X_n 为来自于总体 $X\sim \mathcal{N}(\mu,1)$ 的样本, 试求未知参数 μ 的置信水平为 $1-\alpha$ 的置信区间.

分析

μ 的置信区间 $\Leftrightarrow μ$ 所在的 "范围".

由最大似然思想: μ 看似"最像" $\bar{\mu}$, 由无偏估计理论: \bar{X} 应在 μ 附近"波动". 因此, μ 所在范围应该是以 \bar{X} 为中心的"随机区间".

解

 μ 置信度为 $1-\alpha$ 的置信区间应满足

$$P(\bar{X} - c < \mu < \bar{X} + c) = 1 - \alpha,$$

其中 α 为待定常数. 注意到 $\overline{\mathbf{Vin}}$ $\frac{\bar{X}-\mu}{1/\sqrt{n}}\sim\mathcal{N}(0,1)$, 因此

$$\mathsf{P}(\sqrt{n}|\bar{X}-\mu| < u_{1-\alpha/2}) = 1 - \alpha \quad \Rightarrow \quad \mathsf{P}\Big(\mu \in (\bar{X} - \frac{u_{1-\alpha/2}}{\sqrt{n}}, \bar{X} + \frac{u_{1-\alpha/2}}{\sqrt{n}})\Big) = 1 - \alpha.$$

如何理解"置信度"与"置信区间"?

取 n=16, $\alpha=0.05$, 则 $u_{1-\alpha/2}=u_{0.975}=1.96$, 于是 μ 的置信水平为 0.95 的一个置信 区间为

$$(\bar{X} - 0.49, \bar{X} + 0.49).$$

问题

- $(\bar{X} 0.49, \bar{X} + 0.49)$ 是否一定包含真值 μ ?
- 置信度 $1-\alpha=0.95$ 的实际含意是什么?

以上分析的可信度为 $1-\alpha=95\%$, 即若反复抽样 100 次, 则包含真值 μ 的区间 $(\bar{X} - 0.49, \bar{X} + 0.49)$ 约有 95 个, 不包含 μ 的区间大约只有 5 个.

置信区间的估计精度问题

由枢轴法, μ 的置信区间满足 $P(\bar{X} - \frac{u_{1-\alpha/2}}{\sqrt{n}} < \mu < \bar{X} + \frac{u_{1-\alpha/2}}{\sqrt{n}}) = 1 - \alpha$.

置信区间不唯一! 我们也可以选择

$$P(\bar{X} - \frac{u_{1-3\alpha/4}}{\sqrt{n}} < \mu < \bar{X} + \frac{u_{1-\alpha/4}}{\sqrt{n}}) = 1 - \alpha.$$

区间长度长,则估计精度低,区间长度短,则估计精度高.

怎样选择置信区间

在保证置信水平不变的条件下, 尽可能缩短置信区间的长度, 从而提高估计精度. 通常采用"两边面积相等"原则确定分位点

> 李立颖 (数学系) 概统第七章: 参数估计 2023 秋 (概统 7 班)

设 X_1, \ldots, X_n 为来自于总体 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的样本, 试求未知参数 μ 的置信水平为 $1-\alpha$ 的置信区间. (注意 σ^2 未知!)

解

 $ar{X}$ 是 μ 的最大似然估计和无偏估计, 且 $\dfrac{ar{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$, 我们把它作为枢轴量, 因此 μ 的置信度为 $1-\alpha$ 的置信区间由下式确定

$$\mathsf{P}\Big(\frac{|\bar{X} - \mu|}{S/\sqrt{n}} < t_{1-\alpha/2}(n-1)\Big) = 1 - \alpha.$$

故 μ 的置信水平为 $1-\alpha$ 的置信区间为

$$\left(\bar{X} - \frac{S}{\sqrt{n}} t_{1-\alpha/2}(n-1), \bar{X} + \frac{S}{\sqrt{n}} t_{1-\alpha/2}(n-1)\right) := \left(\bar{X} \pm \frac{S}{\sqrt{n}} t_{1-\alpha/2}(n-1)\right).$$

求未知参数置信区间的一般过程

设 θ 是待估计的未知参数, φ 是其它的未知参数

- 求出 θ , φ 的较好的点估计.
- 构造样本函数/枢轴量 (一般运用抽样分布定理)

$$T = T(\hat{\theta}, \theta, \hat{\varphi}) \sim f(x).$$

• 对于给定的置信水平 $1-\alpha$ 由 f(x) 确定两个分位点 $x_{1-\alpha/2}, x_{\alpha/2}$ 使得

$$P(x_{\alpha/2} < T(\theta, \hat{\theta}, \hat{\varphi}) < x_{1-\alpha/2}) = 1 - \alpha.$$

或等价地, $P(\theta < \theta < \bar{\theta}) = 1 - \alpha$.

• θ 的置信区间为 $(\theta, \bar{\theta})$.

例题

用雷达测得匀速飞行的巡航导弹 5 个速度数据,

设雷达速度测量值 $X \sim \mathcal{N}(\mu, \sigma^2)$, 且雷达没有系统误差. 求巡航导弹飞行速度的置信区 间, $\alpha = 0.05$.

解

由枢轴法可求得 μ 的 $1-\alpha$ 的置信区间是

$$\left(\bar{X} - \frac{S}{\sqrt{n}}t_{1-\alpha/2}(n-1), \bar{X} + \frac{S}{\sqrt{n}}t_{1-\alpha/2}(n-1)\right).$$

由
$$n=5$$
, $\alpha=0.05$, $t_{1-\alpha/2}(n-1)=t_{0.975}(4)=2.7765$, $\bar{x}=759$, $s=11.94$, $\frac{s}{\sqrt{n}}t_{0.975(4)}=14.83$. 故巡航导弹飞行速度 μ 的 95% 置信度的置信区间是

$$(\bar{x} - 14.83, \bar{x} + 14.83) = (744.17, 773.83).$$

例题

设 X_1,\ldots,X_n 为总体 $X\sim\mathcal{N}(\mu,\sigma^2)$ 的样本, μ,σ^2 均未知. 求 σ^2 的置信水平为 $1-\alpha$ 的置信区间.

分析

 S^2 是 σ^2 一个具有良好性质的估计:

- $S^2 \not\in \sigma^2$ 的无偏估计 (最小方差无偏估计)
- S^2/σ^2 在常数 1 附近波动, $\Rightarrow (n-1)S^2/\sigma^2 \sim \chi^2(n-1)$ 在常数 (n-1) 附近波动.

解

取
$$(n-1)S^2/\sigma^2$$
 作为枢轴量, 我们有

$$\mathsf{P}\bigg(\chi_{\alpha/2}^2(n-1) < \frac{(n-1)S^2}{\sigma^2} < \chi_{1-\alpha/2}^2(n-1)\bigg) = 1 - \alpha.$$

故 σ^2 的置信水平为 $1-\alpha$ 的置信区间为 $\left(\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}\right)$.

例有一大批糖果. 现从中随机地取 16 袋, 称得重量 (以克计) 如下

508, 499, 503, 504, 510, 497, 512, 505, 493, 496, 506, 502, 509, 496.

设袋装糖果的重量近似地服从正态分布, 试求总体标准差 σ 的置信水平为 0.95 的置信区 间.

解

接已知有 $\alpha/2=0.025$, $1-\alpha/2=0.975$, n-1=15, s=6.2022. 查表得 $\chi^2_{0.025}(15)=27.488$, $\chi^2_{0.975}(15)=6.262$. 于是

$$\frac{\sqrt{n-1}s}{\sqrt{\chi_{\alpha/2}^2(n-1)}} = 4.58, \quad \frac{\sqrt{n-1}s}{\sqrt{\chi_{1-\alpha/2}^2(n-1)}} = 9.60.$$

所以标准差 σ 的一个置信水平为 0.95 的置信区间为 (4.58, 9.60).

单正态总体均值和方差的均值估计

假设置信水平为 $1-\alpha$.

• 方差已知. 对均值的区间估计

$$\left(\bar{X} \pm u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}\right).$$

• 方差未知. 对均值的区间估计

$$\left(\bar{X} \pm \frac{S}{\sqrt{n}} \cdot t_{1-\alpha/2}(n-1)\right).$$

• 均值未知. 对方差的区间估计

$$\left(\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}\right).$$

设研究对象的某指标 $X \sim \mathcal{N}(\cdot, \cdot)$.

如果外界条件发生了变化,则要研究外界条件的变化,是否对该指标产生了影响.

工艺改变、原料不同、设备变化、人员变更

分析

设变化前指标 $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$, 变化后指标 $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$. 若外界条件的变化对指标产生影响, 则应反映在下述参数的改变上:

$$\mu_1 - \mu_2, \quad \frac{\sigma_1^2}{\sigma_2^2}.$$

故有必要求 $\mu_1 - \mu_2$, $\frac{\sigma_1^2}{\sigma_2^2}$ 的区间估计.

设 X_1, \ldots, X_{n_1} 为来自正态总体 $X \sim \mathcal{N}(\mu_1, \sigma_1^2)$ 的样本, Y_1, \ldots, Y_{n_2} 为来自正态总体 $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ 的样本, 两样本独立, σ_1^2 , σ_2^2 为已知. 求 $\mu_1 - \mu_2$ 的置信水平为 $1 - \alpha$ 的置信区间.

解

 \bar{X} , \bar{Y} 分别是 μ_1 , μ_2 的最大似然估计和无偏估计, 由题设条件有,

$$\bar{X} - \bar{Y} \sim \mathcal{N}(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}) \quad \Rightarrow \quad \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim \mathcal{N}(0, 1).$$

因此, $\mu_1 - \mu_2$ 的置信水平为 $1 - \alpha$ 的置信区间为

$$\left((\bar{X} - \bar{Y}) - u_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, (\bar{X} - \bar{Y}) + u_{1-\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \right).$$

设 $X_1, ..., X_{n_1}$ 为来自正态总体 $X \sim \mathcal{N}(\mu_1, \sigma^2)$ 的样本, $Y_1, ..., Y_{n_2}$ 为来自正态总体 $Y \sim \mathcal{N}(\mu_2, \sigma^2)$ 的样本, 两样本独立, μ_1, μ_2, σ^2 为未知. 求 $\mu_1 - \mu_2$ 的置信水平为 $1 - \alpha$ 的置信区间.

分析

 \bar{X} , \bar{Y} 分别是 μ_1, μ_2 的最大似然估计和无偏估计.

$$S_{\omega}^{2} = \frac{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}{n_{1} + n_{2} - 2} = \frac{\sum_{i=1}^{n_{1}} (X_{i} - \bar{X})^{2} + \sum_{i=1}^{n_{2}} (Y_{i} - \bar{Y})^{2}}{n_{1} + n_{2} - 2}.$$

是 σ^2 的无偏估计.

解

因为
$$\frac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{S_\omega\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}}\sim t(n_1+n_2-2)$$
. 故 $\mu_1-\mu_2$ 的置信水平为 $1-\alpha$ 的置信区

间为

$$(\bar{X} - \bar{Y}) \pm t_{1-\alpha/2}(n_1 + n_2 - 2)S_{\omega}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
.

例

为提高某一化学生产过程的得率, 采用一种新的催化剂, 为慎重起见, 在实验工厂先进行 试验, 设采用原来的催化剂进行了 n=8 次试验, 又采用新的催化剂进行了 m=8 次试 验, 分别得到得率的平均值 $\bar{x}_1 = 91.73$, $\bar{x}_2 = 93.75$, 样本方差 $s_1^2 = 3.89$, $s_2^2 = 4.03$, 假 设两总体都服从正态分布, 且方差相等, 两样本独立, 试求两总体均值差 $\mu_1 - \mu_2$ 的一个 置信水平为 0.95 的置信区间.

解

已知 $\mu_1 - \mu_2$ 的一个置信水平为 $1 - \alpha$ 的置信区间为

$$\left((\bar{x}_1 - \bar{x}_2) \pm t_{\alpha/2}(n + m - 2)S_\omega \sqrt{\frac{1}{n} + \frac{1}{m}}\right).$$

由于 $1-\alpha=0.95$, $\alpha/2=0.025$, n=8, m=8, n+m-2=14, $t_{0.025}(14)=2.1448$, $s_{\omega}^{2} = (7 \times 3.89 + 7 \times 4.02)/14 = 3.96, s_{\omega} = 1.9887.$ 所以两总体均值差 $\mu_{1} - \mu_{2}$ 的一个 置信水平为 0.95 的置信区间是

$$\left((\bar{x}_1 - \bar{x}_2) \pm t_{0.025}(n + m - 2)s_\omega \sqrt{\frac{1}{8} + \frac{1}{8}}\right) = (-2.02 \pm 2.13) = (-4.15, 0.11).$$

例

设 X_1,\ldots,X_{n_1} 为来自正态总体 $X\sim\mathcal{N}(\mu_1,\sigma_1^2)$ 的样本, Y_1,\ldots,Y_{n_2} 为来自正态总体 $Y \sim \mathcal{N}(\mu_2, \sigma_2^2)$ 的样本, 两样本独立. $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2$ 均未知. 求 σ_1^2/σ_2^2 的置信水平为 $1-\alpha$ 的置信区间.

$$S_1^2$$
, S_2^2 分别是 σ_1^2 , σ_2^2 的无偏估计, 由题设条件及抽样分布定理有

$$\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1).$$

故 σ_1^2/σ_2^2 的置信水平为 $1-\alpha$ 的置信区间为

$$\left(\frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{1-\alpha/2}(n_1-1,n_2-1)}, \frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{\alpha/2}(n_1-1,n_2-1)} \right)$$
 (数学系) 概統第七章: 參數估计 2023 秋 (根

研究由机器 A 和机器 B 生产的钢管的内径, 随机抽取机器 A 生产的管子 18 只. 抽取机 器 B 生产的管子 13 只, 测得样本方差分别为 $s_1^2 = 0.34 (\text{mm}^2) s_2^2 = 0.29 (\text{mm}^2)$ 设两样 本相互独立, 且设由机器 A、机器 B 生产的管子的内径分别服从正态分布 $\mathcal{N}(\mu_1,\sigma_1^2)$, $\mathcal{N}(\mu_2, \sigma_2^2)$, 这里 μ_i, σ_i^2 , i = 1, 2, 均未知. 试求方差比 σ_1^2/σ_2^2 的一个置信水平为 0.90 的 置信区间.

解

在下式中取
$$n = 18$$
, $s_1^2 = 0.34$, $m = 13$, $s_2^2 = 0.29$, $\alpha = 10$

$$\left(\frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{1-\alpha/2}(n-1,m-1)}, \frac{S_1^2}{S_2^2} \cdot \frac{1}{F_{\alpha/2}(n-1,m-1)}\right).$$

查表得
$$F_{\alpha/2}(n-1,m-1)=2.59$$
, $F_{1-\alpha/2}(n-1,m-1)=\frac{1}{2.38}$. 于是

$$\frac{s_1^2}{s_2^2} \cdot \frac{1}{F_{\alpha/2}(n-1,m-1)} = \frac{0.34}{0.29} \times \frac{1}{2.59} = 0.45, \quad \frac{s_1^2}{s_2^2} \cdot \frac{1}{F_{1-\alpha/2}(n-1,m-1)} = \frac{0.34}{0.29} \times 2.38 \times$$

所以 σ_1^2/σ_2^2 的一个置信水平为 0.90 的置信区间为 (0.49, 2.79).

指标的分类

- 寿命、收入、生产率、射击命中率等越大越好
- 次品率、杂质含量、事故次数等越小越好

定义

 $\forall 0 < \alpha < 1$, 若存在统计量 $\theta = \theta(X_1, \ldots, X_n)$ 满足 $\forall \theta \in \Theta$, 有

$$\mathsf{P}(\underline{\theta} < \theta) = 1 - \alpha,$$

则称 (θ, ∞) 为 θ 的置信水平为 $1 - \alpha$ 的单侧置信区间 称 θ 为单侧置信下限. 若存在统计量 $\bar{\theta} = \bar{\theta}(X_1, \dots, X_n)$ 满足 $\forall \theta \in \Theta$, 有

$$\mathsf{P}(\theta < \bar{\theta}) = 1 - \alpha,$$

则称 $(-\infty, \bar{\theta})$ 为 θ 的置信水平为 $1-\alpha$ 的单侧置信区间 称 $\bar{\theta}$ 为单侧置信上限.

设 X_1, \ldots, X_n 为总体 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的样本, μ, σ^2 均未知. 求 μ 的置信水平为 $1 - \alpha$ 的单侧置信下限.

解

 \bar{X} , S^2 分别是 μ , σ^2 的无偏估计, 且

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1) \quad \Rightarrow \quad \mu = \bar{X} - \frac{S}{\sqrt{n}}t(n-1).$$

故 μ 的置信水平为 $1-\alpha$ 的单侧置信下限为 $\underline{\mu}=\bar{X}-\frac{S}{\sqrt{n}}t_{1-\alpha}(n-1)$.

单侧置信上限: $\bar{\mu} = \bar{X} + \frac{S}{\sqrt{n}} t_{1-\alpha} (n-1)$.

例

从一批电子元件中随机取 5 个进行寿命试验, 测得寿命数据 (单位: 小时) 如下 1050, 1100, 1130, 1250, 1280.

设寿命 $X \sim \mathcal{N}(\mu, \sigma^2)$, 试求 μ 的置信水平为 95% 单侧置信下限.

解

$$\underline{\mu} = \bar{X} - \frac{S}{\sqrt{n}} t_{1-\alpha} (n-1).$$

由题给数据, 算得 $\bar{x}=1160, s^2=9950, n=5, 1-\alpha=0.95, t_{0.95}(4)=2.1318.$ 故 μ 的 置信水平为 95% 的单侧置信下限为

$$\underline{\mu} = 1160 - \frac{\sqrt{9950}}{\sqrt{5}} \times 2.1318 = 1065.$$

例

设 X_1, \ldots, X_n 为总体 $X \sim \mathcal{N}(\mu, \sigma^2)$ 的样本, μ , σ^2 均未知. 求 σ^2 的置信水平为 $1 - \alpha$ 的单侧置信限.

解

 S^2 是 σ^2 的无偏估计, 且

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) \quad \Rightarrow \quad \sigma^2 \sim \frac{(n-1)S^2}{\chi^2(n-1)}.$$

故 σ^2 的置信水平为 $1-\alpha$ 的单侧置信下、上限分别为

$$\underline{\sigma}^2 = \frac{(n-1)S^2}{\chi_{1-\alpha}^2(n-1)}, \quad \bar{\sigma}^2 = \frac{(n-1)S^2}{\chi_{\alpha}^2(n-1)}.$$

大样本下非正态总体参数的区间估计

例

设 X_1,\ldots,X_n 为来自总体 X 的样本, 且 $\mathbb{E}X=\mu$, $\mathrm{Var}(X)=\sigma^2$ 均存在, 求 μ 的置信水平为 $1-\alpha$ 的置信区间.

解

由中心极限定理, 当 n 充分大时有

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \approx \mathcal{N}(0, 1).$$

若 σ^2 未知, 因 $S^2 \to \sigma^2$, $n \to \infty$, 则有

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \approx \mathcal{N}(0, 1).$$

从而求得 μ 的置信水平为 $1-\alpha$ 的近似置信区间为 $\left(X\pm\frac{S}{\sqrt{n}}u_{1-\frac{\alpha}{2}}\right)$.

注:上述置信区间的近似程度不仅取决于 n 的大小, 还取决于总体的分布.

李立颖 (数学系) 概统第七章: 参数估计 2023 秋 (概统 7 班)

例

设 X_1, \ldots, X_n 为来自总体 $X \sim \text{Bin}(1, p)$ 的样本, 求未知参数 p 的置信水平为 $1 - \alpha$ 的 置信区间.

解

 $\mathbb{E}X = p$. 于是由前面的近似结果, 当 n 充分大时, p 的置信水平为 $1 - \alpha$ 的近似置信区 间为

$$\left(X \pm \frac{S}{\sqrt{n}} u_{1-\frac{\alpha}{2}}\right).$$

注

我们也可以用

$$\frac{\bar{X} - p}{\sqrt{p(1-p)/n}} \approx \mathcal{N}(0,1)$$

反解出 p. 但此时 p 的方程较为复杂.

区间估计: 小结

- 区间估计的背景、概念、估计精度.
- 求解区间估计的一般过程: 基于波动理论的枢轴变量法及直观求解.
- 单正态总体的未知参数区间估计 (三类)
- 双正态总体的未知参数区间估计 (三类)
- 单侧置信区间

几点说明

- 参数 θ 的置信水平为 $1-\alpha$ 的置信区间 (θ_1,θ_2) 表示该区间有 $100(1-\alpha)\%$ 的可能性包含总体参数 θ 的真值.
- 不同的置信水平, 参数 θ 的置信区间不同.
- 置信区间越小, 估计越精确, 但置信水平会降低; 相反, 置信水平越大, 估计越可靠, 但精确度会降低, 置信区间会较长. 一般: 对于固定的样本容量, 不能同时做到精确 度高 (置信区间小), 可靠程度也高 $(1-\alpha t)$. 如果不降低可靠性, 而要缩小估计范围, 则必须增大样本容量, 增加抽样成本.

作业

- ① 设某种清漆的 9 个样品, 其干燥时间 (单位: h) 分别为 6.0, 5.7, 5.8, 6.5, 7.0, 6.3, 5.6, 6.1, 5.0. 设干燥时间 $X \sim \mathcal{N}(\mu, \sigma^2)$. 在下面两种情况下: $\sigma = 0.6(h)$; σ 未知, 求 μ 的置信水平为 0.95 的置信区间.
- 有一大批糖果. 现从中随机地取 16 袋, 称得重量 (以克计) 如下: 506, 508, 499, 503, 504, 510, 497, 512, 514, 505, 493, 496, 506, 502, 509, 496.

设袋装糖果的重量近似地服从正态分布, 试求:

- (1) 总体均值 μ 的置信水平为 0.95 的置信区间.
- (2) 总体标准差 σ 的置信水平为 0.95 的置信区间.
- ⑤ 为比较 I,II 两种型号步枪子弹的枪口速度,随机地取 I 型子弹 10 发,得到枪口速度的平均值为 $\bar{x}_1=500({\rm m/s})$,方差 $s_1^2=1.10({\rm m/s})$,随机地取 II 型子弹 20 发,得到枪口速度的平均值为 $\bar{x}_2=496({\rm m/s})$,方差 $s_2^2=1.20({\rm m/s})$.假设两总体都可认为近似地服从正态分布.且生产过程可认为方差相等.求两总体均值差 $\mu_1-\mu_2$ 的置信水平为 0.95 的置信区间.
- 研究由机器 A 和机器 B 生产的钢管的内径, 随机地抽取机器 A 生产的钢管 18 只, 测得样本方差 $s_1^2=0.34(\text{mm}^2)$, 随机地取机器 B 生产的钢管 13 只, 测得样本方差 $s_2^2=0.29(\text{mm}^2)$. 设两样本相互独立, 且设由机器 A 和机器 B 生产的钢管的内径分别服从正态分布 $\mathcal{N}(\mu_1,\sigma_1^2)$, $\mathcal{N}(\mu_2,\sigma_2^2)$, 这里 μ_i , σ_i^2 , i=1,2, 均未知. 试求方差比 σ_1^2/σ_2^2 的置信水平为 0.90 的置信区间.