ESTUDIOS GENERALES CIENCIAS

J-001-4] N [1/000[

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

Fundamentos de Cálculo

Examen Parcial Semestre Académico 2019 - 2

Horario: Todos.

Duración: 180 mínutos.

Elaborado por todos los profesores.

ADVERTENCIAS:

- Todo dispositivo electrónico (teléfono, tableta, computadora u otro) deberá permanecer apagado durante la evaluación.
- Coloque todo aquello que no sean útiles de uso autorizado durante la evaluación en la parte delantera del aula, por ejemplo, mochila, maletín, cartera o similar, y procure que contenga todas sus propiedades. La apropiada identificación de las pertenencias es su
- Si se detecta omisión a los dos puntos anteriores, la evaluación será considerada nula y podrá conllevar el inicio de un procedimiento disciplinario en determinados casos
- Es su responsabilidad tomar las precauciones necesarias para no requerir la utilización de servicios higiénicos: durante la evaluación, no podrá acceder a ellos, de tener alguna emergencia comunicárselo a su jefe de práctica.
- En caso de que el tipo de evaluación permita el uso de calculadoras, estas no podrán ser programables.
- Quienes deseen retirarse del aula y dar por concluida su evaluación no lo podrán hacer dentro de la primera mitad del tiempo de duración destinado a ella.

 $oldsymbol{\chi}$. Determine el mayor dominio posible de la función f cuya regla de correspondencia es

(3 pt) -

$$f(x) = \frac{\sqrt{|x^2 - 4| + 3x}}{x^2 - |x + 1|}.$$

2. La función $f: \mathbb{R} \to \mathbb{R}$ satisface las siguientes condiciones:

(5 pt)

f es una función impar.

Para $x \in]2, +\infty[$, f(x) es de la forma $f(x) = \frac{b-x}{cx+d}$, con b, c y d constantes.

Las rectas $L_1: x=2$ y $L_2: y=-1$ son asíntotas de la gráfica de f. f(3)=0. x=-2 y=1

$$f(3) = 0.$$
 $\chi = -2$ $y = 1$

Si
$$0 < x \le 2$$
 entonces $f(x) = (1-x)^{1/3}$.

Encuentre la regla de correspondencia y esboce la gráfica de la función f.

 β . Dadas las funciones f y g definidas por

$$f(x) = x - x|x - 5|, x \ge 1, \quad y \quad g(x) = \begin{cases} \sqrt{9 - x^2} + 2, & \text{si } -3 \le x < -2, \\ \frac{1}{x^2}, & \text{si } -2 \le x \le -1. \end{cases}$$

 $oldsymbol{lpha}$ Esboce la gráfica y encuentre el rango de \widehat{f} .

(1.5 pt)

Halle el dominio y la regla de correspondencia de la función $f \circ g$.

(1.5 pt)

 \not Encuentre el rango de $f \circ g$.

(1 pt)

¿La función g es creciente en el intervalo [-3, -2]?

(1 pt)

 $oldsymbol{\mathcal{A}}$. La regla de correspondencia de la función f es dada por

$$f(x) = 1 - \sqrt{x^2 + 2x - a},$$

donde a es una constante. Se sabe que el dominio de f es el mayor posible.

(1 pt)Esboce la gráfica de f cuando a = -2.

(1 pt)Esboce la gráfica de f cuando a = 5.

(1 pt)

5. Analice la verdad o falsedad de las siguientes afirmaciones.

a) Si $f:\mathbb{R} \to \mathbb{R}$ es una función par y también es una función impar entonces f es una función cons-(1 pt)tante.

b) Si f es una función impar con dominio $\mathbb R$ entonces $f\circ f$ es una función impar. (1 pt)

Si la función $f:]0, +\infty[\to \mathbb{R}$ es una función creciente y 0 no pertenece al rango de f, entonces la (1 pt)función $\frac{1}{f}$ es decreciente.

Sea $f(x) = -2x^4 + ax^3 + bx^2 + cx + d$, $x \in \mathbb{R}$, con a, b, c y d constantes. Si las únicas raíces reales (1 pt) de f son -1, 0 y 2, entonces f(1) > 0.

San Miguel, 14 de octubre de 2019.

Enemos
$$\int (-x) = \int (-x) \int \frac{1}{2} \int (-x) = \int (-$$