Integrating Random Effects in Deep Neural Networks

Giora Simchoni, Saharon Rosset

Yuankang Zhao

October 17, 2025

Why Linear Mixed Models?

The Problem: Correlated Data

Example: Student Test Scores

- 1,000 students, 50 schools
- Multiple tests per student
- Same school \rightarrow correlated

Standard Linear Regression

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + \varepsilon_{ij}$$

Assumes independence

Problems:

Standard errors too small \rightarrow False positives Invalid inference (wrong p-values) Ignores school-level effects

Standard Regression (Independence Assumption)

Reality: Clustered Data

Solution: Linear Mixed Models

Model dependence via random effects

Linear Mixed Model: Mathematical Framework

Model Specification

$$y_{ij} = \beta_0 + \beta_1 x_{ij} + b_j + \varepsilon_{ij}$$

Components:

- Fixed Effects: $\beta_0 + \beta_1 x_{ij}$
 - → Population trends (same for all)
- Random Effects: $b_j \sim \mathcal{N}(0, \sigma_b^2)$
 - → School-specific deviations
- Noise: $\varepsilon_{ij} \sim \mathcal{N}(0, \sigma_e^2)$
 - → Individual measurement error

Two Sources of Variance

- σ_b^2 : Between-school variance
- σ_e^2 : Within-school variance

Visual Example

Marginal Covariance

Same school: $Cov(y_{ij}, y_{i'j}) = \sigma_b^2$ (correlated)

Different schools: $Cov(y_{ij}, y_{i'j'}) = 0$ (in-

NLL and BLUP

In a typical LMM setting, $\mathbf{y} \in \mathbb{R}^n$ is modeled by:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{b} + \boldsymbol{\epsilon} \tag{1}$$

- \mathbf{X} : $n \times p$ fixed effects design matrix, $\boldsymbol{\beta} \in \mathbb{R}^p$: fixed effects
- **Z**: $n \times q$ random effects design matrix, $\mathbf{b} \sim \mathcal{N}(\mathbf{0}, \mathbf{D}(\psi))$: random effects
- $\epsilon \sim \mathcal{N}(0, \sigma_e^2 \mathbf{I})$: i.i.d. noise, $\text{cov}(\epsilon, \mathbf{b}) = 0$

Marginal distribution: $\mathbf{y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \mathbf{V}(\boldsymbol{\theta}))$ where $\mathbf{V}(\boldsymbol{\theta}) = \mathbf{Z}\mathbf{D}(\psi)\mathbf{Z}' + \sigma_e^2\mathbf{I}$ Negative Log-Likelihood (NLL) - for estimating $\boldsymbol{\beta}, \boldsymbol{\theta}$:

$$NLL(\beta, \theta | \mathbf{y}) = \frac{1}{2} (\mathbf{y} - \mathbf{X}\beta)' \mathbf{V}(\theta)^{-1} (\mathbf{y} - \mathbf{X}\beta) + \frac{1}{2} \log |\mathbf{V}(\theta)| + \frac{n}{2} \log 2\pi$$
 (2)

Best Linear Unbiased Predictor (BLUP):

$$\hat{\mathbf{b}} = \mathbf{D} \mathbf{Z}'_{tr} \mathbf{V}(\hat{\boldsymbol{\theta}})^{-1} \left(\mathbf{y}_{tr} - \mathbf{X}_{tr} \hat{\boldsymbol{\beta}} \right)$$
 (3)

 ${f b}$ are random variables to be *predicted*, not parameters to be *estimated*

Single Categorical Feature: Random Intercepts

Real-world example: Predicting blood pressure across different clinics

The idea: Each category (clinic) gets its own random "shift" (intercept)

$$y_{lj} = \underbrace{\beta_0 + \beta' \mathbf{x}_{lj}}_{\text{Fixed effects}} + \underbrace{b_j}_{\text{Random intercept}} + \epsilon_{lj}$$
for clinic j (4)

Setup:

- q clinics (categories)
- Each clinic has n_i patients
- $b_i \sim \mathcal{N}(0, \sigma_b^2)$ models clinic-specific effect

Why useful?

- Patients in same clinic are correlated
- "Borrows strength" across clinics
- Better than treating each clinic independently

Good news: Covariance matrix **V** is block-diagonal ⇒ efficient computation!

Prediction for clinic j: $\hat{b}_i = \frac{n_j \hat{\sigma}_b^2}{\hat{\sigma}^2 + n_i \hat{\sigma}^2} (\bar{y}_{tr:i} - \text{predicted mean})$ Integrating Random Effects in Deep Neural Networks

Multiple Categorical Features

Real-world example: Movie ratings with director and genre effects

The idea: Multiple sources of correlation in the data **Setup:**

- Feature 1: Director $(q_1 \text{ levels})$
- Feature 2: Genre $(q_2 \text{ levels})$
- Feature 3: Actor (q₃ levels)
- :
- Feature K: ... $(q_K \text{ levels})$

Model:

- Each feature gets random effect
- Total: $M = \sum_{k} q_{k}$ random effects
- Can model correlations between features

Uncorrelated case: Each feature has its own variance

$$\mathbf{V}(\theta) = \underbrace{\sigma_{b_1}^2 \mathbf{Z}_1 \mathbf{Z}_1'}_{\text{Director}} + \underbrace{\sigma_{b_2}^2 \mathbf{Z}_2 \mathbf{Z}_2'}_{\text{Genre}} + \cdots + \underbrace{\sigma_{b_K}^2 \mathbf{Z}_K \mathbf{Z}_K'}_{\text{Feature K}} + \sigma_e^2 \mathbf{I}_n$$
 (5)

Longitudinal Data: Repeated Measures

Real-world example: Patient health tracked over multiple hospital visits

The idea: Each subject has their own trajectory over time

$$y_{lj} = \underbrace{\beta_0 + \beta' \mathbf{x}_{lj}}_{\text{Fixed effects}} + \underbrace{b_{0,j}}_{\substack{\text{Random} \\ \text{intercept}}} + \underbrace{b_{1,j} \cdot t_{lj}}_{\substack{\text{Random} \\ \text{slope}}} + \underbrace{b_{2,j} \cdot t_{lj}^2}_{\substack{\text{Random} \\ \text{curvature}}} + \epsilon_{lj}$$
 (6)

Components:

- $b_{0,j}$: Each subject's baseline
- ullet $b_{1,j}$: Each subject's trend
- $b_{2,j}$: Each subject's acceleration
- All $\sim \mathcal{N}(0, \sigma_{b,k}^2)$

Example:

- Patient A: high baseline, steep decline
- Patient B: low baseline, gradual improvement
- Model captures individual differences

Good news: If sorted by subject, **V** is block-diagonal ⇒ efficient!

Common in EMR data: short, irregular time series per patient

Visualizing Covariance Structures

Single Categorical

$$\mathbf{V} = \sigma_b^2 \mathbf{Z} \mathbf{Z}' + \sigma_e^2 \mathbf{I}$$

Why this structure?

- Same clinic ⇒ correlated
- Different clinics ⇒ independent
 - Block-diagonal

Multiple Categorical

$$\mathbf{V} = \sum_k \sigma_{b_k}^2 \mathbf{Z}_k \mathbf{Z}_k' + \sigma_e^2 \mathbf{I}$$

Why this structure?

- ullet Share director \Rightarrow correlated
- ullet Share genre \Rightarrow correlated
- ullet Overlapping \Rightarrow NOT block-diag

Longitudinal

 $oldsymbol{V}$ with random slope

Why this structure?

- ullet Same subject \Rightarrow correlated
- Different subjects ⇒ independent
 - Block-diagonal (if sorted)

Key for LMMNN: Block-diagonal \Rightarrow invert block-by-block \Rightarrow mini-batch SGD works naturally Not block-diagonal \Rightarrow mini-batch approximation needed

Spatial Data: Geographic Correlations

Real-world example: Air pollution levels across different locations

The idea: Nearby locations are more similar than distant ones

$$y(s) = \underbrace{\mu(\mathbf{x}, s)}_{\text{Deterministic part}} + \underbrace{e(s)}_{\text{Spatial random effect}} + \epsilon \tag{7}$$

Key principle: Correlation decays with distance

Covariance
$$(s_i, s_j) = \tau^2 \cdot \exp\left(-\frac{\operatorname{distance}_{ij}^2}{2I^2}\right)$$
 (8)

- τ^2 : overall variance
- I²: how fast correlation decays
- Small I ⇒ only very close locations correlated
- Large / ⇒ distant locations still correlated
 House prices: Id
 Challenge: V is dense (not sparse) ⇒ computationally expensive!

Examples:

- Weather: neighboring cities similar
- Disease: local outbreaks
- House prices: location matters

From LMM to LMMNN: The Key Idea

Standard LMM: Only linear relationships

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}\mathbf{b} + \boldsymbol{\epsilon} \tag{9}$$

LMMNN: Replace with neural networks

$$\mathbf{y} = \underbrace{f(\mathbf{X})}_{\text{DNN for fixed}} + \underbrace{g(\mathbf{Z})\mathbf{b}}_{\text{DNN for random}} + \epsilon \tag{10}$$

Flexibility:

- f, g: any DNN (MLP, CNN, RNN)
- Can be same or different
- g can be identity: $g(\mathbf{Z}) = \mathbf{Z}$

Examples:

- f: MLP for tabular data
- g = identity for categorical
- g: embedding for spatial

Best of both worlds: DNN flexibility + Principled correlation handling

LMMNN Visualization

Figure 1: Schematic description of LMMNN using a simple deep MLP for fitting f and g, and combining outputs with the NLL loss layer, in a single-stage training.

LMMNN Training: NLL Loss with Mini-batch SGD

Modified NLL loss:

$$NLL(f, g, \boldsymbol{\theta}|\mathbf{y}) = \frac{1}{2}(\mathbf{y} - f(\mathbf{X}))'\mathbf{V}^{-1}(\mathbf{y} - f(\mathbf{X})) + \frac{1}{2}\log|\mathbf{V}| + \frac{n}{2}\log 2\pi$$
 (11)

where $\mathbf{V}(g, \theta) = g(\mathbf{Z})\mathbf{D}(\psi)g(\mathbf{Z})' + \sigma_e^2\mathbf{I}_n$

Challenge: Large $n \Rightarrow$ inverting $n \times n$ matrix **V** is infeasible!

Solution: Mini-batch approximation (batch size $m \ll n$)

$$NLL_{\xi} = \frac{1}{2} (\mathbf{y}_{\xi} - f(\mathbf{X}_{\xi}))' \mathbf{V}_{\xi}^{-1} (\mathbf{y}_{\xi} - f(\mathbf{X}_{\xi})) + \frac{1}{2} \log |\mathbf{V}_{\xi}| + \frac{m}{2} \log 2\pi$$
 (12)

- Invert small $m \times m$ sub-matrix \mathbf{V}_{ε} instead of full $n \times n$ matrix
- ullet Variance components $oldsymbol{ heta} = [\sigma_e^2, \psi]$ are learnable parameters
- Use standard backpropagation + SGD

Key innovation: "Inversion in parts" enables scalability

LMMNN Prediction: Modified BLUP

Training: Optimize f, g, and θ using mini-batch NLL on $(\mathbf{X}_{tr}, \mathbf{Z}_{tr}, \mathbf{y}_{tr})$

Prediction on test set:

$$\hat{\mathbf{y}}_{te} = \underbrace{\hat{f}(\mathbf{X}_{te})}_{\text{Eixed effects}} + \underbrace{\hat{g}(\mathbf{Z}_{te})\hat{\mathbf{b}}}_{\text{Bandom effects}}$$
(13)

Modified BLUP:

$$\hat{\mathbf{b}} = \mathbf{D}(\hat{\psi})\hat{g}(\mathbf{Z}_{tr})'\mathbf{V}(\hat{g},\hat{\theta})^{-1}\left(\mathbf{y}_{tr} - \hat{f}(\mathbf{X}_{tr})\right)$$
(14)

Implementation Strategies

- Single categorical (g = identity): Use closed-form BLUP, no inversion needed
- ullet Multiple categorical / Longitudinal: Sparse $V \Rightarrow$ solve linear system efficiently
- **Spatial** (dense V, large n): Use sampling approximation or inducing points

Advantage: Prediction only requires ONE matrix inversion (at test time), not at every training iteration!

Why Does Mini-batch SGD Work?

Recall the challenge: mini-batch approximation:

$$NLL_{\xi} = \frac{1}{2} (\mathbf{y}_{\xi} - f(\mathbf{X}_{\xi}))' \mathbf{V}_{\xi}^{-1} (\mathbf{y}_{\xi} - f(\mathbf{X}_{\xi})) + \frac{1}{2} \log |\mathbf{V}_{\xi}|$$
 (15)

Invert \mathbf{V}_{ξ} (size $m \times m$) instead of sub-matrix of \mathbf{V}^{-1} (from full $n \times n$)

The question: Is this valid? Does it converge?

Three Justifications

- lacktriangle When lacksquare is block-diagonal \Rightarrow gradient decomposes exactly
- **②** When \mathbf{V} is approximately block-diagonal \Rightarrow good approximation
- 3 Theoretical convergence guarantees (Chen et al. 2020)

Key insight: Block-diagonal structure (exact or approximate) makes "inversion in parts" mathematically sound

Block-diagonal Case: Gradient Decomposes Exactly

Key observation: When $V(\theta)$ is block-diagonal, the gradient naturally decomposes!

Example: Random intercepts model (single categorical, q levels)

- ullet $\mathbf{V}(oldsymbol{ heta}) = \sigma_b^2 \mathbf{Z} \mathbf{Z}' + \sigma_e^2 \mathbf{I} = \mathrm{diag}(\mathbf{V}_1, \dots, \mathbf{V}_q)$
- ullet Each block $old V_j$ corresponds to one category (size $n_j imes n_j$)

Consequence: NLL and its gradient decompose as sums

$$NLL = \sum_{j=1}^{q} \left[\frac{1}{2} (\mathbf{y}_j - f(\mathbf{X}_j))' \mathbf{V}_j^{-1} (\mathbf{y}_j - f(\mathbf{X}_j)) + \frac{1}{2} \log |\mathbf{V}_j| \right]$$
(16)

$$\frac{\partial \mathsf{NLL}}{\partial \boldsymbol{\theta}} = \sum_{j=1}^{q} \frac{\partial \mathsf{NLL}_{j}}{\partial \boldsymbol{\theta}} \tag{17}$$

Implication: If batch size $m = n_j$ and we sample by category \Rightarrow computing gradient on mini-batch = computing true gradient! No approximation needed.

Approximate Block-diagonal Structure

Figure: A LMMNN simulation with 5 uncorrelated categorical features each with q=1000 and $\sigma_{b_j}^2=j$ for $j=1,\ldots,5$. n=100000, $\sigma_e^2=1$, there are p=10 fixed features in X and f(X) and network architecture are as described in Section 5.1. From top to bottom: $\sigma_{b_j}^2$ estimates, $\sigma_{b_j}^2$ gradients and NLL through epochs. The experiment was repeated five times, and the five results are shown as light lines, bold lines are average. Left: g(Z)=Z, Right: g(Z)=ZW, where W is a 5,000 \times 500 random

Approximate Block-diagonal Structure

Problem: Many cases are NOT exactly block-diagonal:

- Multiple categorical features (overlapping patterns)
- Spatial data (nearby locations correlated)

Key insight: In practice, V is often approximately block-diagonal

Evidence from simulations:

Figure 2 shows K=5 categorical features with q=1000 each, n=100K

- Variance estimates converge
- Gradients approach zero
- NLL decreases

Works even when $g(\mathbf{Z}) \neq \mathbf{Z}!$

Theoretical connection:

Bickel & Levina (2008): Banding covariance matrices

- Set distant correlations to zero
- Form of regularization
- Bounds on $\|\mathbf{B}_k(\mathbf{\Sigma}) \mathbf{\Sigma}\|$
- Ideal when data is sorted

Mini-batch SGD implicitly does this!

Practical takeaway: Mini-batch approximation works well empirically, even without exact block-diagonal structure

Evidence from Real Data: Figure 3 - UK Biobank

Experiment: Visualize covariance matrix $V(\theta)$ on real data **Dataset:** Sample of n = 1000 UK Biobank cancer patients

Spatial Model (Left)

- RE: Patient location on UK map
- q = 900 unique locations
- RBF kernel: $\sigma_{b_0}^2 = \sigma_{b_1}^2 = 1$

Multiple Categorical (Right)

- 5 categorical REs: diagnosis (338), operation (304), treatment (211), cancer type (151), histology (104)
- $\sigma_{h_k}^2 = k \text{ for } k = 1, ..., 5$

Implication: Real-world **V** matrices exhibit approximate block-diagonal or banded structure, even when not theoretically block-diagonal ⇒ Mini-batch approximation is effective. ■

PCA Sorting in Figure 3: Purpose and Necessity

Purpose: Visualization technique to reveal covariance structure

Procedure:

Spatial: PCA on distance matrix \rightarrow sort by PC1 Categorical: PCA on $\mathbf{V}(\theta) \rightarrow$ sort by PC1

Why PC1? Captures dominant structure, groups similar observations

Effect:

With: Block patterns visible

Without: Appears random

Is Sorting Required?

For Figure 3: Yes (visualization)

For LMMNN: NO!

Algorithm works unsorted

Figure 2: converges without sorting

May help efficiency, not mandatory

Sorting = visualization tool, not algorithmic requirement

Theoretical Guarantees (Brief Overview)

Question: Can we prove convergence for non-block-diagonal cases?

Answer: Yes! Using results from Chen et al. (2020) on stochastic GP optimization

Key Result: Convergence of Full Gradient (Theorem 1)

Under certain conditions (exponential eigendecay of kernel), the full gradient magnitude is bounded:

$$\|\nabla \mathsf{NLL}(\boldsymbol{\theta}^K)\|_2^2 \le C\left(\frac{G^2}{K} + m^{-\frac{1}{2} + \epsilon}\right) \tag{18}$$

where K = number of SGD iterations, m = batch size

What this means: As training progresses $(K \to \infty)$, gradient $\to 0 \Rightarrow$ convergence!

Applicability:

- Spatial data: RBF kernel has exponential eigendecay
- Multiple categorical: Each $\mathbf{Z}_k\mathbf{Z}_k'$ has fast eigendecay (Appendix 1)

Related Methods: Categorical Features in DNNs (4.1)

- 1. One-Hot Encoding (OHE)
 - Create q binary columns: $\mathbf{Z}_{ij} = 1$ if obs i has level j, else 0
 - Feed directly into network as wide sparse input
 - + Simple, no learning needed Memory explodes for large q

2. Entity Embeddings

- ullet Learn lookup table ${f E} \in \mathbb{R}^{q imes d}$ $(d \ll q, ext{ e.g., } d = 50)$
- For level j: retrieve row \mathbf{E}_j as dense embedding vector
- Train embedding jointly with network using task loss (e.g., MSE)
- ullet + Compact representation Must retrain for each task, dimension q imes d may be a problem

3. MeNets (Xiong et al. 2019)

- Model: $y = f(\mathbf{X})\beta + f(\mathbf{X})\mathbf{b}$ where $\mathbf{b} \sim \mathcal{N}(0, \mathbf{D})$
- **E-step:** Update $\hat{\beta}$, $\hat{\mathbf{b}}$ via SGD with MSE loss
- M-step: Update $\hat{\theta}$ via NLL loss
- + Statistical foundation inverte all q levels $n_i * n_i$ matrix, only diagonal $\mathbf{D} \times \mathbb{R} \times$

DeepGLMM (Tran et al. 2020): Model Setup

Context: Handling longitudinal/temporal data with repeated measures in DNNs

Data structure:

- Subject i measured at same set of times t_1, \ldots, t_T (balanced design)
- Response y_{i,t_i} can be continuous or discrete (GLM framework)

Key idea: Learn features from DNN, then add random slopes for each feature

Model formulation:

Extract m features from last hidden layer via DNN $z_{it:j} = z(x_{it:j}), j = 1, ..., m$ Then, for each subject i, add random intercept a_{i0} and random slopes a_{ii}

$$g(\mu_{it}) = \beta_0 + a_{i0} + (\beta_1 + a_{i1})z_{it;1} + \dots + (\beta_m + a_{im})z_{it;m} = f(x_{it}^{(1)}, w, \beta^{(1)})$$
(19)

where $g(\cdot)$ is link function (e.g., identity for regression, logit for classification)

Further can be rewritten as:

$$g(\mu_{it}) = f(\mathbf{x}_{it}^{(1)}, \mathbf{w}, \boldsymbol{\beta}^{(1)}) + (\boldsymbol{\beta}^{(2)} + \mathbf{a}_i)' \mathbf{x}_{it}^{(2)}$$
(20)

where $\mathbf{x}^{(1)} = \text{fixed features (nonlinear)}, \mathbf{x}^{(2)} = \text{random features (linear)}$ Integrating Random Effects in Deep Neural Networks

22 / 28

Simulation: Single Categorical Feature

Setup:

- n = 100K observations, single categorical RE with $q \in \{100, 1000, 10000\}$ levels
- RE variance $\sigma_b^2 \in \{0.1, 1, 10\}$, noise $\sigma_e^2 = 1$ (27 scenarios \times 5 repeats)
- Level sizes: Poisson(30) normalized (Pareto-like distribution)
- Fixed features: p = 10 from U(-1, 1)
- Nonlinear model: $y = (X_1 + \dots + X_{10}) \cos(X_1 + \dots + X_{10}) + 2X_1X_2 + g(\mathbf{Z})\mathbf{b} + \epsilon$
- Three g transforms: (1) Identity, (2) Linear $\mathbf{ZW}_{q \times 0.1q}$, (3) Nonlinear $\mathbf{ZW} * \cos(\mathbf{ZW})$
- Network: 4 layers (100-50-25-12 neurons), ReLU, 25% dropout, batch=100
- Competitors: Ignore, OHE, Embeddings, Ime4, MeNets

	$g(\mathbf{Z})$	σ_b^2	q	OHE	Embed.	LIMIMININ
Koy Posults (Tost MSE)	Identity	10	10^{4}	2.37	2.12	1.29
Key Results (Test MSE):	Linear	10	10^{4}	81.3	153.5	13.9
	Nonlinear	10	10^{4}	36.3	90.7	14 1

Findings: LMMNN best in all scenarios, especially high q, high σ_b^2 , complex g

Simulation: Multiple Categorical Features

Setup:

- n = 100K observations, K = 3 uncorrelated categorical REs
- Cardinalities: $q_1 = 1000, q_2 = 2000, q_3 = 3000 \text{ (total } M = 6000 \text{ REs)}$
- Variances: $[\sigma_{b_1}^2,\sigma_{b_2}^2,\sigma_{b_3}^2]\in\{0.3,3.0\}$ (8 combinations), $\sigma_e^2=1$
- Same nonlinear f as 5.1.1: $(X_1 + \cdots + X_{10}) \cos(\cdots) + 2X_1X_2$
- Three g transforms: Identity, Linear, Nonlinear (24 scenarios \times 5 repeats)
- Same MLP architecture: 4 layers (100-50-25-12), batch=100
- Key challenge: $\mathbf{V}(\theta) = \sum_k \sigma_{b_k}^2 \mathbf{Z}_k \mathbf{Z}_k' + \sigma_e^2 \mathbf{I}$ is NOT block-diagonal
- Competitors: Ignore, OHE, Embeddings, Ime4 (MeNets N/A)

	$g(\mathbf{Z})$	$[\sigma_{b_1}^2, \sigma_{b_2}^2, \sigma_{b_3}^2]$	OHE	Embed.	lme4	LMMNN
Key Results (Test MSE):	Identity	[3.0, 3.0, 3.0]	2.17	1.92	3.07	1.17
	Linear	[3.0, 3.0, 3.0]	23.7	31.4	3.25	2.50

Findings: LMMNN handles overlapping correlations; gap widens with complexity, (2) 1

Simulation: Longitudinal Data

Setup:

- n = 100K observations, q = 10K subjects, variable n_i measurements per subject
- Time points: equally spaced in [0,1], max 6 measurements
- Model: $y_{ij} = f(x_{ij}) + b_{0,j} + b_{1,j}t_{ij} + b_{2,j}t_{ii}^2 + \epsilon_{ij}$
- Random effects: intercept + slope + quadratic with correlations $\rho_{01} = \rho_{02} = 0.3$
- Variances: $[\sigma_{b_0}^2, \sigma_{b_1}^2, \sigma_{b_2}^2] \in \{0.3, 3.0\}$ (8 combinations), $\sigma_e^2 = 1$
- Two evaluation modes:
 - Random: Standard 80/20 random split
 - Future: Train on earliest 80%, test on latest 20% (temporal extrapolation)
- Same MLP (100-50-25-12), batch=100; LSTM: 5 neurons (grid-searched)
- Key: $V(\theta)$ is block-diagonal (one block per subject)

		$[\sigma_{b_0}^2, \sigma_{b_1}^2, \sigma_{b_2}^2]$				
Key Results (Test MSE):	Random	[3.0, 3.0, 3.0]	1.88	4.55	5.10	1.29
	Future	[3.0, 3.0, 3.0]	2.25	5.47	4.82	1.47

Findings: LMMNN superior in both modes: LSTM overfits short sequences Findings: LMMNN superior in both modes: LSTM overfits short sequences Yuankang Zhao

Real Data: Multiple Categorical Features

Datasets: 5 real-world tabular datasets with K = 2 to 5 high-cardinality categorical features

Dataset	n, K, p	Categorical features (levels)	Target y
lmdb	86K, 2, 159	Director (38K), Movie type (1.7K)	Movie score (1-10)
News	81K, 2, 176	Source (5.4K), Title (72K)	FB shares (log)
InstEval	73K, 3, 3	Student (2.9K), Teacher (1.1K), Dept (14)	Teacher rating (1-5)
Spotify	28K, 4, 14	Artist (10K), Album (22K), Playlist (2.3K), Subgenre (553)	Danceability (0-1)
UKB-blood	42K, 5, 19	Treatment (1.1K), Operation (2.0K), Diagnosis (2.1K), Cancer type (446), Histology (359)	Triglycerides (mmol/L)

Setup: MLP (2 layers: 10-3 neurons), 5-fold CV, batch=100, early stopping

Results (Mean Test MSE):

Dataset `	Ignore	OHE	Embeddings	lme4	LMMNN
lmdb	1.44	_	1.26	0.99	0.97
News	3.22	_	1.89	1.80	1.81
InstEval	1.77	1.48	1.50	1.45	1.45
Spotify	0.015	_	0.016	0.011	0.009
UKB-blood	0.88	1.01	1.04	0.88	0.86

Real Data: Longitudinal & Repeated Measures

Datasets: 3 longitudinal datasets with varying time series lengths

Dataset	n, q, p	Structure	Target y
Rossmann	33K, 1.1K, 23	1.1K stores, 25-31 monthly measurements (2013-2015)	Total sales (\$100K)
AUimport	125K, 5K, 8	5K commodities, 1-29 yearly measurements (1988-2016)	Total import (log \$)
UKB-SBP	528K, 469K, 50	469K patients, 1-4 measurements at different ages (38-83)	Systolic BP (×100)

Setup: Random intercept + slope (+ quadratic for Rossmann/AUimport), two modes

Dataset	Ignore	OHE	Embed.	lme4	LSTM	LMMNN
Rossmann	.179 (.01)	.052 (.01)	.052 (.01)	.013 (.00)	.505 (.01)	.010 (.00)
AUimport	7.78 (.70)	4.91 (.30)	3.35 (.45)	0.72(.01)	8.44 (.35)	0.71(.01)
UKB SBP	.0321 (.00)	-	.0327 (.00)	.0310 (.00)	-	.0307(.00)
		1	Mode: Futu	re		
Rossmann	.215 (.01)	.067 (.01)	.087 (.02)	.026 (.00)	.336 (.00)	.020 (.00)
AU Import	7.69 (.48)	5.60 (1.22)	3.70 (.12)	1.77 (.00)	11.7 (1.1)	1.48 (.02)
UKB SBP	.0387 (.00)	_ ` `	.0396 (.00)	.0383 (.00)	_ ` `	.0379 (.00)

Summary: LMMNN - Bridging Statistical Rigor and Deep Learning

The Problem

- Modern DNNs assume independence
- Real data has correlations:
 - Categorical (schools, doctors)
 - Temporal (patients over time)
 - Spatial (geographic locations)
- Standard approaches fail or don't scale

The Solution: LMMNN

$$\mathbf{y} = \underbrace{f(\mathbf{X})}_{\mathsf{DNN}} + \underbrace{g(\mathbf{Z})\mathbf{b}}_{\mathsf{Random effects}} + \epsilon$$

- Nonlinear fixed effects via DNNs
- Principled correlation handling via

Key Innovation

- **Training:** Invert small $m \times m$ matrices instead of full $n \times n$
- Theory: Block-diagonal (exact or approximate) structure justifies mini-batch approximation
- Prediction: One matrix inversion at test time

Empirical Results

- ✓ Outperforms OHE, embeddings, MeNets, LSTM
- ✓ Handles multiple covariance structures
- ✓ Scales to 100K+ observations, 10K+ac