

Lecture 13: K Means Clustering

Recap

- Clustering properties & metrics
 - •Inertia (WCSS), Silhouette score, Dunn Index
- •Elbow plot, Silhouette plot

K-means clustering algorithm

K-Means Algorithm – Input and outputs

- •Input:
 - Set of data points xi
 - K
 - No labels
- •Output:
 - Grouping of data points into K clusters
 - A centroid for each group prototypical representation of the group

K = 2 (find two clusters)

Income

K = 2, Randomly assign cluster centers

Income

K = 2, Move each center to cluster's mean

Income

K = 2, Move each center to cluster's mean Income

Age

K = 2, Each point belongs to closest center Income

K = 2, Points don't change \rightarrow Converged Income

- Randomly select k points as centroids for k clusters
 - •J = 1 to k Centroids are Mu1 to muk
- •while (true):
 - for each point xi
 - find nearest centroid muj
 - assign the point xi to cluster j
 - for each cluster j = 1 to k
 - Update the centroid muj of each cluster (using points assigned to cluster j in previous step)
 - Stop when cluster assignments don't change (i.e. centroids don't change)

$$\forall j \in [1, k]$$

$$\arg\min_{j} D(x^{(i)}, \mu_j)$$

K-means

An unsupervised method. MacQueen, 1967 2) k groups are created by combining each individual at the nearest center.

new centers.

Interpreting K-means as Expectation Maximization

K-Means as EM: Steps 1& 2 Guess, Expect

Guessing step: Randomly guess k centroids

$$\mu_1,...\mu_j,...,\mu_k$$

- Expectation Step: Cluster assignment
 - •Assign datapoints to clusters whose centroids they are closest (closest = minimum distance)

 For every

$$\forall j \in [1,k] \quad \arg\min D(x^{(i)},\mu_j) \qquad \text{data point}$$

•Called expectation because we update our expectation on which cluster does the point belong

K-Means as EM: Step 3 Maximize

• Maximization Step: Set the mean of cluster data points as the new centroid

$$\mu_j = \frac{1}{|C_j|} \sum_{x \in C_j} x$$

- Called maximization because we maximize the fitness function defining cluster centers
- •Repeat E & M till convergence new $\mu_j = old$ μ_j

K-Means as EM algorithm steps rigorously

• Guessing step: Randomly guess k centroids

$$\mu_1,...\mu_j,...,\mu_k$$

Expectation Prep

$$\forall j \in [1, k] \qquad C_j = \{\} \quad \mu_{j_{new}} = \mu_{j_{old}}$$

• Expectation Step: Cluster assignment for each x(i)

$$C_j \leftarrow C_j + \{ \ \forall j \in [1,k] \ \arg\min_j D(x^{(i)},\mu_j) \ \}$$
 • Maximization Step: Set the new clusters

$$\mu_{j_{new}} = \frac{1}{|C_j|} \sum_{x \in C_j} x$$

•Go to Expectation Prep & loop if $\mu_{j_{new}} \neq \mu_{j_{old}}$

K-Means initialization

Impact of non-deterministic K-Means algorithm

- Might get wrong centroids & wrong clusters in every run
- K = 3 and random initialization

How to initialize initial centroids

- First centroid chosen randomly
- Centroids should be as far as possible from each other

Different initialization different results

- Random
 - We have been doing this
- •Kmeans++
 - Will cover next
- Naïve sharding
 - not covered

First centroid chosen randomly

Probability of next centroid selection proportional to

distance

X	Dist (x, c1)^2
(2,5)	
(-1,3)	Centroid
(-2,3)	
(3,1)	
(1,4)	
(4,1)	
(4,2)	
Total	

• Calculate all distances square from centroid

X	Dist (x, c1)^2
(2,5)	13
(-1,3)	Centroid
(-2,3)	1
(3,1)	20
(1,4)	5
(4,1)	29
(4,2)	26
Total	94

- Calculate all distances square from centroid
- Convert to probability

X	Dist (x, c1)^2	Prob	
(2,5)	13	13/94	
(-1,3)	Centroid	_	
(-2,3)	1	1/94	
(3,1)	20	20/94	
(1,4)	5	5/94	
(4,1)	29	29/94	
(4,2)	26	26/94	
Total	94		

- Sample from remaining points weighted by probabilities
- Find the minimum of distance from both centroids

X	Dist (x, c1)^2	Prob	Dist(x, c1, c2)^2
(2,5)	13	13/94	min(13,13)
(-1,3)	Centroid	_	_
(-2,3)	1	1/94	min(1,37)
(3,1)	20	20/94	min(20, 2)
(1,4)	5	5/94	min(5,13)
(4,1)	29	29/94	min(29,1)
(4,2)	26	26/94	Centroid
Total	94		Not min(94, 92), But 22

Normalize the probabilities again and do weighted sampling

Χ	Dist (x, c1)^2	Prob	Dist(x, c1, c2)^2	Prob
(2,5)	13	13/94	min(13,13)	13/22
(-1,3)	Centroid	_	_	-
(-2,3)	1	1/94	min(1,37)	1/22
(3,1)	20	20/94	min(20, 2)	2/22
(1,4)	5	5/94	min(5,13)	5/22
(4,1)	29	29/94	min(29,1)	1/22
(4,2)	26	26/94	Centroid	-
Total	94		Not min(94, 92), But 22	

K-Means limitations

K means limitations

- Oblong data cannot be clustered well
 - Recall nearest centroid classification

K means limitations

- Clustering every time when new data comes is hard
- Could use extracted centroids as model
 - Nearest Centroid from scratch without labels!!

K means decision boundary

Linear decision boundary

Handling outliers with K-Means

K-Means is sensitive to outliers

K-Means is sensitive to outliers

K-Means is sensitive to outliers

K-Means and scaling

K means limitations

- K-Means is sensitive to outliers
 - Clusters become bigger to accommodate outliers
- Can use statistical techniques or silhouette analysis

Handling outliers with K means & statistical analysis

- Statistical techniques to analyze each cluster
 - •IQR
 - 3 standard deviations

Handling outliers with K means & silhouette analysis

- Analyze Silhouette plots for outlier detection
 - Variation of score gives clues of outlier presence
 - Negative values are sure outliers
 - Values with score less than 0.4 are potential outliers