Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Word representation

Word representation

```
V = [a, aaron, ..., zulu, <UNK>]
                       not capture similarity between words
   1-hot representation
Man
        Woman
                  King
                                  Apple
                         Queen
                                         Orange
(5391)
        (9853)
                                          (6257)
                         (7157)
                 (4914)
                                  (456)
```

V = 10,000

I want a glass of orange _____.

I want a glass of apple_____.

Featurized representation: word embedding

aspect	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)	
1 Gender			-0.95	0.97	0.00	0.01	
300 Royal	0.0	0.62	0.93	0.95	-0.01	0.00	
Age	0.03	0.62	0.7	0.69	0.03	-0.02	
Food	6.04	(D. D)	0.02	0.01	0.95	0.97	
: ا المحاد المحاد				I want	a glass of o	range juice	•
V olive verb	C 5391	e 9853		I want	a glass of a	pple <u> إلان لو</u> . Andrev	, w Ne

Visualizing word embeddings

Using word embeddings

Named entity recognition example

Andrew Ng

Transfer learning and word embeddings

large train set

- 1. Learn word embeddings from large text corpus. (1-100B words)
 - (Or download pre-trained embedding online.)
- 2. Transfer embedding to new task with smaller training set.

 (say, 100k words)

 → 10,000 → 300
 - 3. Optional: Continue to finetune the word embeddings with new data.

 Let large arount of training data

Properties of word embeddings

Analogies

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	Orange (6257)	
Gender	-1	1	-0.95	0.97	0.00	0.01	
Royal	0.01	0.02	0.93	0.95	-0.01	0.00	
Age	0.03	0.02	0.70	0.69	0.03	-0.02	
Food	0.09	0.01	0.02	0.01	0.95	0.97	
	@ 5391 @ man	e woman	2 0	eman - e	$\sim \sim $		
Mon -> Woman Ob King ->? Queen Cking - Equeen ~ [0]							
Cman - Cwoman & Cking - C?							

Analogies using word vectors

 $e_{man} - e_{woman} \approx e_{king} - e_{y} e_{\omega}$

300 D

ochoose vector most similar to exing-eman tewoman Find word wi arg max Sim (Qw, exing - eman + ewoman) 30-75%

Cosine similarity

$$\Rightarrow sim(e_w, e_{king} - e_{man} + e_{woman})$$

Man:Woman as Boy:Girl

Ottawa:Canada as Nairobi:Kenya

Big:Bigger as Tall:Taller

Yen:Japan as Ruble:Russia

Embedding matrix

In practice, use specialized function to look up an embedding.

> Embelling

Learning word embeddings

Other context/target pairs

Nearby 1 word

I want a glass of orange juice to go along with my cereal.

Context: Last 4 words.

4 words on left & right

Last 1 word

Context: Last 4 words.

A words on left & right

Orange ?

skip grom

Andrew Ng

Word2Vec

Skip-grams

I want a glass of orange juice to go along with my cereal.

Target juice Orange qlass Oronge

Model

1) randomly pick context words (treat common & rare words evenly) 2) randomly pick target word for the confext word (the closer to confext word, the more

chance to get picked as target)

Vocab size = 10,000k 3) train NN to predict target given context and learn embedating

Softman:
$$p(t|c) = \frac{e^{0\epsilon(e_c)}}{\sum_{j=1}^{10000} e^{0je_c}}$$

Andrew Ng

Problems with softmax classification

How to sample the context c?

Negative sampling

Defining a new learning problem

I want a glass of orange juice to go along with my cereal.

Model

Softmax:
$$p(t|c) = \frac{e^{\theta_t^T e_c}}{\sum_{j=1}^{10,000} e^{\theta_j^T e_c}}$$

$$\sum_{j=1}^{10,000} e^{\theta_j^T e_c}$$

Andrew Ng

target?

Selecting negative examples

orange king 0 orange book 0	/	4	
orange juice 1 orange king 0 orange book 0			
orange king 0 orange book 0	ontext word	target?	
orange king 0 orange book 0	<u> </u>	1	the, of, and,
orange book 0	range king	0	•
orange the		0	
	range the	0	
orange of 0		0	
frequency of word i	T	- frequency of word i	
$P(\omega)$	t	(6:)	
$\sum_{i=1}^{(0,000)} f(\omega_i)^{3/4}$	(3,00)	L(12)3/4	()
j=' ("")	je	1 (0-1)	1

GloVe word vectors

GloVe (global vectors for word representation)

I want a glass of orange juice to go along with my cereal.

Model

A note on the featurization view of word embeddings

0	0 01 011	8				L920	
	Man (5391)	Woman (9853)	O	•		(2000) 5 m/s	
` Gender	-1	1	-0.95	0.97	(7e w,1	
Royal	0.01	0.02	0.93	0.95	\leftarrow		
Age	0.03	0.02	0.70	0.69	4	gende	
Food	0.09	0.01	0.02	0.01		1. 9.71	
objective function no. of unique words in dictionary correct formula							
mini	mize ∑	$\sum_{i=1}^{10,000} \sum_{j=1}^{10} \sum_{i=1}^{10} \sum_{j=1}^{10} \sum_{j=1}^{10} \sum_{i=1}^{10} \sum_{j=1}^{10} \sum_{i=1}^{10} \sum_{j=1}^{10} \sum_{i=1}^{10} \sum_{j=1}^{10} \sum_{j=1}^{10} \sum_{i=1}^{10} \sum_{j=1}^{10} \sum_{i=1}^{10} \sum_{j=1}^{10} \sum_{j=1}^{10} \sum_{i=1}^{10} \sum_{j=1}^{10} \sum_{j=1}^{10}$	$f_{i=1}^{10,000} f$			$b_i - b_j' - \log X_{ij}$	
					- (DE	(A) (A) = 0; ATA = i And	

Sentiment classification

Sentiment classification problem

 $x \rightarrow y$

The dessert is excellent.

Service was quite slow.

Good for a quick meal, but nothing special.

Completely lacking in good taste, good service, and good ambience.

Simple sentiment classification model

Andrew Ng

RNN for sentiment classification Ltake order of words into account softmax $a^{<2>|}$ $|a^{<4>}|$ $a^{<3>}$ <10> e_{4427} e_{330} e_{1852} e_{4966} e_{3882} lacking ambience Completely in good obsent many-to-one

Debiasing word embeddings

The problem of bias in word embeddings

Man:Woman as King:Queen

Man:Computer_Programmer as Woman:Homemaker X

Father:Doctor as Mother: Nurse X

Word embeddings can reflect gender, ethnicity, age, sexual orientation, and other biases of the text used to train the model.

Addressing bias in word embeddings

1. Identify bias direction.

3. Equalize pairs.

-> gradnoth - gradbut }