

Departamento de Matemática

Guía 1 - Complementos Matemática II (MAT-022) Matrices

Problema 1. Considerar la matriz $B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Calcular B^2, B^3, B^4 .

Problema 2. Sean
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 0 \\ -1 & 4 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 2 & 2 & 2 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$.

Verifique que AB = AC. ¿Qué consecuencia obtiene de lo anterior?

Problema 3. ¿Qué condición(es) deben verificar a, b, c, d para que las matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ conmuten respecto al producto?

Problema 4. Si $A = (a_{ij})_{n \times n} = (i+j)_{n \times n}$ y $B = (b_{ij})_{n \times n} = (i-j)_{n \times n}$ calcular el término general de AB y BA.

Problema 5. Sea
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
. Demuestre por inducción que $\forall n \in \mathbb{N} : A^n = \begin{pmatrix} 1 & n & \frac{n(n-1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$.

Problema 6. Sea $X \in \mathcal{M}_{2\times 2}(\mathbb{R})$. Resuelva la ecuación $X^2 + X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Problema 7. Sean
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & 0 & -3 \\ -1 & -2 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 2 & -3 & 0 & 1 \\ 5 & -1 & -4 & 2 \\ -1 & 0 & 0 & 3 \end{pmatrix}$,

$$D = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}. \quad \text{Calcule } A + B, \quad 3A - 4B, \quad AC, \quad BD, \quad A^t, \quad C^t B^t.$$

Problema 8. Sean A, B matrices simétricas. Determine si las siguientes son o no simétricas:

(a)
$$A^2 - B^2$$
 (b) $(A + B)(A - B)$ (c) ABA

Problema 9. Sean A, B un matrices cuadradas $n \times n$. Probar que tr(AB) = tr(BA).

Problema 10. Dadas las matrices $A, B \in \mathcal{M}_{7\times 7}(\mathbb{R})$ tal que $\operatorname{tr} A^2 = \operatorname{tr} B^2 = 1$ y $(A - B)^2 = 3\mathbf{I}_7$, encuentre $\operatorname{tr}(BA)$.