Exercise 1

TMA4300 Computer Intensive Statistical Models

Mads Adrian Simonsen, William Scott Grundeland Olsen

26 januar, 2021

Problem A: Stochastic simulation by the probability integral transform and bivariate techniques

1.

Let $X \sim \text{Exp}(\lambda)$, with the cdf

$$F_X(x) = 1 - e^{-\lambda x}, \quad x \ge 0.$$

Then the random variable $Y := F_X(X)$ has a Uniform (0,1) distribution. The probability integral transform becomes

$$Y = 1 - e^{-\lambda X} \Leftrightarrow X = -\frac{1}{\lambda} \log(1 - Y). \tag{1}$$

Thus, we sample Y from $\operatorname{runif}()$ and transform it using (1), to sample from the exponential distribution. Figure 1 shows one million samples drawn from the $\operatorname{generate_from_exp}()$ function defined in the code chunk below.

```
set.seed(123)
generate_from_exp <- function(n, rate = 1) {</pre>
  Y <- runif(n)
  X <- -(1 / rate) * log(1 - Y)
}
# sample
n <- 1000000 # One million samples
lambda <- 4.32
x <- generate_from_exp(n, rate = lambda)
# plot
hist(x,
  breaks
           = 80,
  probability = TRUE,
          = c(0, 2)
curve(dexp(x, rate = lambda),
  add = TRUE,
 lwd = 2,
  col = "red"
```


Figure 1: Normalized histogram of one million samples drawn from the exponential distribution, together with the theoretical pdf, with $\lambda=4.32$.

2.
(a)
(b)
3.
(a)
(b)
(c)
4.
5
Problem B: The gamma distribution
1.
(a)
(b)
2.
(a)
(b)
3.
(a)
(b)
4.
5.
(a)
(b)
Problem C: Monte Carlo integration and variance reduction
1.
2.
3.
(a)
(b)
Problem D: Rejection sampling and importance sampling
1.
2.
3.
4. 3