1 Operations on Continuous Functions

Theorem 1 (Composition). If f is continuous at x_0 and g is continuous at $f(x_0)$, then $g \circ f$ is continuous at x_0 .

Proof. Let (x_n) be a sequence with $x_n \to x_0$. By continuity of f:

$$f(x_n) \to f(x_0)$$
.

By continuity of g:

$$g(f(x_n)) \to g(f(x_0)).$$

Thus $(g \circ f)(x_n) \to (g \circ f)(x_0)$, so $g \circ f$ is continuous at x_0 .

Theorem 2. If f and g are continuous at x_0 , then $\max(f,g)$ is continuous at x_0 .

Proof. We have the identity:

$$\max(f,g) = \frac{1}{2}(f+g) + \frac{1}{2}|f-g|.$$

Since f and g are continuous at x_0 , so are f+g and f-g. The absolute value function is continuous, so |f-g| is continuous. Therefore, $\max(f,g)$ is continuous at x_0 .

2 Inverse Functions

Theorem 3. Let f be a continuous strictly increasing function on some interval I. Then f(I) = J is an interval. Let $f^{-1}: J \to I$ be the inverse of f.

Proof. Since f is strictly increasing and continuous, it is one-to-one, and by the Intermediate Value Theorem, its image J = f(I) is an interval.

For any $y \in J$, there exists a unique $x \in I$ such that f(x) = y. Define $f^{-1}(y) = x$.

To show f^{-1} is strictly increasing: let $y_1, y_2 \in J$ with $y_1 > y_2$, and let $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$. If $x_1 \leq x_2$, then since f is strictly increasing, $f(x_1) \leq f(x_2)$, i.e., $y_1 \leq y_2$, which is a contradiction. Hence $x_1 > x_2$, so f^{-1} is strictly increasing.

The continuity of f^{-1} follows from the fact that the inverse of a continuous strictly monotone function on an interval is continuous.

3 Characterization of One-to-One Continuous Functions

Theorem 4. Let f be a one-to-one continuous function on an interval I. Then f is strictly monotonic (either strictly increasing or strictly decreasing).

Proof. Here one-to-one means: $f(x) = f(x') \Rightarrow x = x'$.

Suppose f is not strictly monotonic. Then there exist a < b < c in I such that either:

- 1. $f(b) < \min\{f(a), f(c)\}\$, or
- 2. $f(b) > \max\{f(a), f(c)\}.$

In either case, by the Intermediate Value Theorem, f takes some value twice, contradicting injectivity. Hence f must be strictly monotonic.

4 Uniform Continuity

Definition 1. Let $S \subseteq dom(f)$. The function f is **continuous on** S if for every $x_0 \in S$ and every $\epsilon > 0$, there exists $\delta > 0$ such that for all $x \in S$ with $|x - x_0| < \delta$, we have $|f(x) - f(x_0)| < \epsilon$.

Here, δ may depend on both ϵ and x_0 .

Definition 2. A function f is uniformly continuous on S if for every $\epsilon > 0$, there exists $\delta > 0$ such that for all $x, x' \in S$ with $|x - x'| < \delta$, we have $|f(x) - f(x')| < \epsilon$.

Here, δ depends only on ϵ , not on the particular points in S.

Example. The function $f(x) = \frac{1}{x}$ on (0,1) is continuous but not uniformly continuous.

Theorem 5. If f is continuous on [a,b] (where $a,b \in \mathbb{R}$), then f is uniformly continuous on [a,b].

Proof. Suppose for contradiction that f is not uniformly continuous on [a,b]. Then there exists $\epsilon_0 > 0$ such that for every $n \in \mathbb{N}$, there exist $x_n, y_n \in [a,b]$ with:

$$|x_n - y_n| < \frac{1}{n}$$
 but $|f(x_n) - f(y_n)| \ge \epsilon_0$.

By Bolzano-Weierstrass, there exists a convergent subsequence $(x_{n_k}) \to x_0 \in [a,b]$. Since $|x_{n_k} - y_{n_k}| < \frac{1}{n_k}$, we also have $y_{n_k} \to x_0$.

By continuity:

$$\lim_{k \to \infty} f(x_{n_k}) = f(x_0) = \lim_{k \to \infty} f(y_{n_k}).$$

But this contradicts $|f(x_{n_k}) - f(y_{n_k})| \ge \epsilon_0$ for all k.