SURFACE TREATMENT AGENT FOR COPPER AND COPPER ALLOY

文地文》 著版文化 150 文化 15 AT

Patent number:

JP7079061

Publication date:

1995-03-20

Inventor:

MAKI YOSHIAKI; NAKAGAWA TOSHIKO; OUYA

MINORU; YAMANAMI MAKI; NAKAMURA SACHIKO

Applicant:

MEC KK

Classification:

- international:

C23F11/00; H05K3/28; C23F11/00; H05K3/28; (IPC1-

7): H05K3/28; C23F11/00

- european:

Application number: JP19930246194 19930907 Priority number(s): JP19930246194 19930907

Report a data error here

Abstract of JP7079061

PURPOSE:To provide aqueous surface treatment agent which can form an organic film whose solderability does not drop even after being exposed to high temperature, on the surface of copper or copper alloy. CONSTITUTION:At lest one kind among monocarboric acid including five or more pieces of carbonic atoms, dicarbolic acid including six or more pieces of carbolic atoms, and halogenocarboxylic acid including four or more pieces of carbolic atoms is mixed to a surface treatment agent containing benzimidazole compound, etc., and aqueous organic acid, etc.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-79061

(43) 公開日 平成7年(1995) 3月20日

(51) Int. Cl. 6

識別記号

FΙ

H05K 3/28 C23F 11/00 C

C 8414-4K

B 8414-4K

審査請求 未請求 請求項の数1 FD (全4頁)

(21) 出願番号	特願平5-246194	(71) 出願人 000114488
		メック株式会社
(22) 出願日	平成5年(1993)9月7日	兵庫県尼崎市東初島町1番地
	·	(72) 発明者 牧 善朗
		兵庫県尼崎市東初島町1番地 メック株式
		会社内
	_	
		(72) 発明者 中川 登志子
		兵庫県尼崎市東初島町1番地 メック株式
	·	会社内
		(72) 発明者 王谷 稔
	•	兵庫県尼崎市東初島町1番地 メック株式
		会社内
		(74)代理人 弁理士 萩野 平 (外3名)
		最終頁に続く

(54) 【発明の名称】銅および銅合金の表面処理剤

(57)【要約】

【目的】 銅および銅合金の表面に高温にさらされた後でもはんだ付け性が低下しない有機皮膜を形成しうる水溶性の表面処理剤を提供する。

【構成】 ベンゾイミダゾール化合物等と水溶性有機酸等とを含有する表面処理剤に、さらに5個以上の炭素原子を含むモノカルボン酸、6個以上の炭素原子を含むジカルボン酸および4個以上の炭素原子を含むハロゲン化カルボン酸のうちの少なくとも1種を配合した。

* (

10

【特許請求の範囲】

(A) ベンゾイミダゾール化合物、ナブ 【請求項1】 トイミダゾール化合物およびプリン化合物のうちの少な くとも一種、(B)水溶性有機酸、水溶性無機酸および 水溶性有機溶剤のうちの少なくとも一種ならびに(C) 5個以上の炭素原子を含むモノカルボン酸、6個以上の 炭素原子を含むジカルボン酸および4個以上の炭素原子 を含むハロゲン化カルボン酸のうちの少なくとも一種を 含有することを特徴とする銅および銅合金の表面処理 剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はプリント配線板の防錆剤 等として有用な銅および銅合金の表面処理剤に関する。 [0002]

【従来の技術】プリント配線板の銅からなる回路を防錆 し、はんだ付け性を保持する方法としては、回路を他金 属で覆う方法と有機皮膜で覆う方法とがあり、コスト、 表面の平滑性等の点から使い分けられている。

【0003】後者の方法に用いられる有機皮膜を形成す 20 る材料には、プリント配線板全体をコーティングするロ ジン系プレフラツクスと、選択的に銅回路部のみに化学 反応で皮膜を形成するアルキルイミダゾール系プレフラ ックスとがある。

【0004】ロジン系プレフラックスは、天然ロジン、 ロジンエステル、ロジン変性マレイン酸樹脂等を有機溶 剤に溶解させたものでプリント配線板全体を塗布、噴霧 または浸漬によって処理したのち、乾燥して皮膜を形成 する方法で使われる。しかしながら、この方法には、有 機溶剤が揮散するため作業環境および安全性に問題があ 30 る。このため、ドラフト等の排気手段を備える特別の装 置を必要とする。

【0005】そこで、作業環境や安全性の面で優れてい る水溶性のアルキルイミダゾール系プレフラックスを使 用したいという要望が高まってきている。しかしなが ら、アルキルイミダゾール系プレフラックスの皮膜に は、高温にさらされると変質し、はんだ付けの際に使用 されるポストフラツクスの作用を阻害し、はんだ付け性 を低下させるという欠点がある。

【0006】近年、プリント配線板上に電子部品を接合 40 する方法は表面実装法へと移行しており、回路は部品の 仮止めやクリームはんだのリフロー等で高温にさらされ る機会が多くなってきている。そのため高温にさらされ た後でもはんだ付け性が低下しない水溶性の表面処理剤 が要求されるようになってきている。

【0007】この要求に答えるべく開発されたものとし て、特開平3-124395号公報には、2位に水素原 子、アルキル基またはアリール基を有するベンゾイミダ ゾールを用いたプレフラックスが開示されている。

【発明が解決しようとする課題】

【0008】前記公報に記載のように、アルキルイミダー ゾール系プレフラックスの耐熱性を改善する努力がなさ れているが、満足し得るような性能が得られていないの が実情である。

【0009】本発明は、上記の点に鑑みてなされたもの であり、作業環境や安全面に優れ、耐熱性がさらに改良 された銅および銅合金の表面処理剤を提供することを目 的とする。

[0010]

【課題を解決するための手段】本発明者らは前記課題を 解決するべく種々検討を重ねた結果、ベンゾイミダゾー ル化合物、ナフトイミダゾール化合物およびプリン化合 物のうちの少なくとも一種を皮膜形成成分として含有す るプレフラックスに、特定の有機酸を配合することによ り、耐熱性のあるはんだ付け性にきわめて優れた皮膜を 銅表面に形成しうることを見出した。

【0011】すなわち、本発明は、(A) ベンゾイミダ ゾール化合物、ナフトイミダゾール化合物およびプリン 化合物のうちの少なくとも一種、(B)水溶性有機酸、 水溶性無機酸および水溶性有機溶剤のうちの少なくとも 一種ならびに (C) 5個以上の炭素原子を含むモノカル ボン酸、6個以上の炭素原子を含むジカルボン酸および 4個以上の炭素原子を含むハロゲン化カルボン酸のうち の少なくとも一種を含有することを特徴とする銅および 銅合金の表面処理剤に関する。

[0012]

【実施例】前記ベンゾイミダゾール化合物の具体例とし ては、例えばベンゾイミダゾール、2-フェニルベンゾ イミダゾール、2ートルイルベンゾイミダゾール、2ー フェニルー5-クロロベンゾイミダゾール、2-メチル ベンゾイミダゾール、2-エチルベンゾイミダゾール、 2-プロピルベンゾイミダゾール、2-(2'-エチル プロピル) ベンゾイミダゾール、2 - (フェニルメチ ル) ベンゾイミダゾール、2-(ジフェニルメチル) ベ ンゾイミダゾール、2-ジフェニルメチル-5-メチル ベンゾイミダゾール、2-(ナフチルメチル)ベンゾイ ミダゾール、2-ナフチルメチル-5-クロロベンゾイ ミダゾール、2-チエニルベンゾイミダゾール等があげ られる。

【0013】前記ナフトイミダゾール化合物の具体例と しては、例えばナフトイミダゾール、2-メチルナフト イミダゾール等があげられる。

【0014】前記プリン化合物の具体例としては、例え ば8-メチルプリン、6-ニトロ-8-プロピニルプリ ン、2-エチル-8-フェニルプリン、2,6-ジメチ ル-8-トリルプリン等があげられる。

【0015】本発明の表面処理剤中の前記(A)成分の 好ましい含有量は、溶媒に対する溶解性、分散性等によ り一概には規定できないが、通常0.1~5.0%(重

50 量%、以下同様)である。

【0,016】前記ペンソイミダソール化合物、ナフトイ ミダゾール化合物およびプリン化合物は一般に水に不溶 性である。本発明の表面処理剤の溶媒(分散媒)は主と して水であるので、ベンゾイミダゾール化合物等を水中 に安定に溶解または分散させるために、(B)成分の水 溶性有機酸、水溶性無機酸または水溶性有機溶剤が併用 される。

【0017】前記水溶性有機酸としては、例えばギ酸、 酢酸、プロピオン酸、グリコール酸、n-酪酸、イソ酪 酸、アクリル酸、クロトン酸、イソクロトン酸、シュウ 10 酸、マロン酸、コハク酸、アジピン酸、マレイン酸、ア セチレンジカルボン酸、モノクロロ酢酸、トリクロロ酢 酸、モノブロモ酢酸、乳酸、オキシ酪酸、グリセリン 酸、酒石酸、リンゴ酸、クエン酸等があげられる。前記 水溶性無機酸としては、例えば塩酸、硫酸、硝酸、リン 酸等があげられる。前記水溶性有機溶剤としては、例え ばメタノール、エタノール、イソプロピルアルコール、 エチレングリコールモノメチルエーテル、エチレングリ コールモノエチルエーテル等があげられる。

【0018】前記(B)成分の含有量は、(A)成分を 20 処理剤中に安定に溶解または分散させうる量であり、そ の好ましい範囲は、(A)成分の種類、使用量等により 異なる。

【0019】本発明に用いる(C)成分である特定の有 機酸は、(B)成分の水溶性有機酸とは異なり、皮膜形 成性に関与する非極性部分を有する化合物である。この (C) 成分を併用することにより、耐熱性のあるはんだ 付け性にきわめて優れた皮膜を銅表面に形成することが できる。

【0020】前記5個以上の炭素原子を含むモノカルボ 30 ン酸の具体例としては、例えばn-吉草酸、1-メチル 酪酸、2-メチル酪酸、カプロン酸、エナント酸、カプ リル酸、trans-2-メチル-2-ペンテン酸、フ エニル酢酸、3-フェニル吉草酸、4-フェニル吉草 酸、安息香酸、ω-シクロヘキシルブチリックアシッ ド、αーナフタレン酢酸、ジフェニル酢酸等があげられ る。

【0021】前記6個以上の炭素原子を含むジカルボン 酸の具体例としては、例えばピメリン酸、スペリン酸、 2-n-プチルマロン酸、フタル酸等があげられる。

【0022】前記4個以上の炭素原子を含むハロゲン化 カルボン酸の具体例としては、例えば1-クロロプロピ オン酸、2-クロロプロピオン酸、2-クロロ酪酸、2 -クロロ吉草酸、2-クロロカプロン酸、2-クロロエ ナント酸、2-クロロカプリル酸、2-ブロモプロピオ ン酸、3-プロモプロピオン酸、2-ブロモ酪酸、4-ブロモ酪酸、2-ブロモ吉草酸、5-プロモ吉草酸、2 ープロモカプロン酸、6-プロモカプロン酸、2-プロ モエナント酸、7-プロモエナント酸、p-クロロフェ ニル酢酸、 p-プロモフェニル酢酸等があげられる。こ 50 カプロン酸を加えなかったほかは実施例1と同様にして

れらのハロゲン化カルボン酸は臭気の問題がなく、はん だ付け性を向上させる作用もあるのでとくに好ましい。

【0023】本発明の表面処理剤中の前記(C)成分の 好ましい含有量は、0.01~5%である。前記(C) 成分が少なすぎると耐熱性に優れた皮膜を形成すること が困難になり、特に2位の置換基の炭素原子数が少ない イミダゾール化合物を用いた場合にはその傾向が顕著に なる。また、(C)成分が多すぎると処理剤中に安定に 分散しにくくなる。

【0024】本発明の表面処理剤には、皮膜形成性、皮 膜の耐熱性等を向上させるために、例えば酢酸亜鉛、水 酸化亜鉛、硫化亜鉛、リン酸亜鉛、酸化亜鉛、塩化亜 鉛、酢酸鉛、水酸化鉛、塩化鉄、酸化鉄、塩化銅、酸化 銅、水酸化銅、臭化銅、リン酸銅、炭酸銅、酢酸銅、硫 酸銅、シュウ酸銅、ギ酸銅、酢酸ニッケル、硫化ニッケ ル等の金属化合物等を添加してもよく、さらに従来から 表面処理剤に使用されている種々の添加剤を、必要に応 じて添加してもよい。

【0025】本発明の表面処理剤を調製する方法に限定 はなく、例えば(A)成分と(B)成分とを混合して

(A) 成分の溶液または分散液を調製した後、 (C) 成 分と混合してもよく、(A)成分を(C)成分との塩に した後、(B)成分と混合して溶液または分散液を調製 してもよい。

【0026】以上のような本発明の表面処理剤を銅また は銅合金に接触させることにより、その表面に耐熱性、 はんだ付けに優れた有機皮膜を形成することができる。

【0027】以下の実施例、比較例により本発明をさら に具体的に説明する。

【0028】実施例1

2-フェニルベンゾイミダゾール0.5gを酢酸3gに 加え、均一に混合した。これを塩化第二銅0.05gを 添加した水100gに加え、さらにカプロン酸0.1g を加えてよく撹拌し、処理液を調製した。

【0029】1cm×5cm×0.3mmの銅板を脱脂 し、水洗し、ついでマイクロエッチング剤(メック

(株) 製のメックブライトCB-801) に30℃で1 分間浸漬し、さらに水洗して表面を清浄にした試験片を 準備した。この試験片を前記処理液にて40℃、1分間 40 の条件で浸漬処理し、銅表面に撥水性皮膜を形成した。 その後水洗、乾燥した。得られた試験片を200℃で1 0分間加熱したが、銅表面にはほとんど変色が見られな かった。さらにこの加熱後の試験片に超低残渣タイプの ポストフラックス (メック (株) 製のAP-4640) を塗布し、表面張力法(メニスコグラフ法)によりはん だ濡れ性試験を行なった。試験結果を表1に示す。な お、t1およびt2は、いずれも値が小さいほどはんだ 濡れ性がよいことを示す。

【0030】比較例1

16

処理液を調製した。得られた処理液を用いて実施例1と 同様に試験片を処理したが、銅表面に撥水性皮膜は全く 形成されなかった。また200℃、10分間の加熱で は、銅表面は赤紫色~金色に激しく変色した。得られた 試験片のはんだ濡れ性試験の結果を表1に示す。

【0031】実施例2

2-トルイルベンゾイミダゾール0.5gを酢酸3gに 加え、均一に混合した。これを塩化第二銅0.05gを 添加した水100gに加え、さらに2-ブロモプロピオ ン酸 0.5gを加えてよく撹拌し、処理液を調製した。 得られた処理液を用いて実施例1と同様に試験片を処理 し、銅表面に撥水性皮膜を形成した。また200℃、1 0分間の加熱では、銅表面にはほとんど変色が見られな かった。得られた試験片のはんだ濡れ性試験の結果を表 1 に示す。

【0032】比較例2

2-ブロモプロピオン酸を加えなかったほかは実施例1 と同様にして処理液を調製した。得られた処理液を用い て実施例1と同様に試験片を処理したが、銅表面に撥水 性皮膜は全く形成されなかった。また200℃、10分 20 間の加熱では、銅表面は赤紫色〜銀色に激しく変色し た。得られた試験片のはんだ濡れ性試験の結果を表1に 示す。

【0033】実施例3

2-フェニル-5-クロロベンゾイミダゾール0.5g を酢酸4gに加え、均一に混合した。これを塩化第二銅 0. 05gを添加した水100gに加え、さらに4-フ エニル吉草酸 0.2 gを加えてよく撹拌し、処理液を調 製した。得られた処理液を用いて実施例1と同様に試験 片を処理し、銅表面に撥水性皮膜を形成した。また20 30 を奏する。 0℃、10分間の加熱では、銅表面にはほとんど変色が

見られなかった。得られた試験片のはんだ濡れ性試験の 結果を表1に示す。

【0034】比較例3

4-フェニル吉草酸を加えなかったほかは実施例1と同 様にして処理液を調製した。得られた処理液を用いて実 施例1と同様に試験片を処理したが、銅表面に撥水性皮 膜は全く形成されなかった。また200℃、10分間の 加熱では、銅表面は赤紫色〜銀色に激しく変色した。得 られた試験片のはんだ濡れ性試験の結果を表1に示す。

10 [0035]

【表1】

±±+ 101 33 □	はんだ濡れ性(秒)		
実施例番号	t ₁	t 2	
実施例1	0.38	1.01	
比較例 1	ぬれず	ぬれず	
実施例 2	0.36	1.03	
比較例 2	ぬれず	ぬれず	
実施例3	0.35	1.10	
比較例3	0.82	3.60	

[0036]

【発明の効果】本発明の表面処理剤は、耐熱性に優れ、 高温にさらされた後でもはんだ付け性が非常に良好な皮 膜を銅または銅合金の表面に形成しうるため、プリント 配線板に電子部品を表面実装する際に、特に顕著な効果

フロントページの続き

(72) 発明者 山並 摩紀

兵庫県尼崎市東初島町1番地 メック株式 会社内

(72) 発明者 中村 幸子

兵庫県尼崎市東初島町1番地 メック株式 会社内