

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

(Empowered Autonomous Institute Affiliated to University of Mumbai)
[Knowledge is Nectar]

Department of Computer Engineering

Course – Data Analytics Open Elective

	-
UID	2021300126
Name	Pranay Singhvi
Class and Batch	TE Computer Engineering - Batch A
Date	13-01-2024
Lab #	3
Aim	To perform Hypothesis testing t test,z test, p value /ANOVA test
Data Set	https://www.kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009
Purpose	To test different hypothesis on the given dataset
Code	Null Hypothesis (H ₀): The mean alcohol content is the same for high-quality and low-quality wines. Alternative Hypothesis (H ₁): There is a significant difference in the mean alcohol content between high-quality and low-quality wines. **Example data: alcohol content for high and low-quality wines high_quality_alcohol = dfidf('Quality'] == 'High']('alcohol') low_quality_alcohol = dfidf('Quality'] == 'Wo']['alcohol'] **Calculate t-statistic** mean_diff = np.mean(high_quality_alcohol) - np.mean(low_quality_alcohol)

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

(Empowered Autonomous Institute Affiliated to University of Mumbai)
[Knowledge is Nectar]

Department of Computer Engineering

Z test:

Null Hypothesis (H_0): The mean pH of the wines is equal to a standard pH value of 3. Alternative Hypothesis (H_1): The mean pH of the wines is significantly different from the standard pH value.

```
# Null hypothesis: Mean pH is equal to a standard value (e.g., 3.0)
   null_mean = 3.31111
   population_std = np.std(df['pH'])
   print(np.mean(df['pH']))
   # Calculate z-statistic
   z_statistic = (np.mean(df['pH']) - null_mean) / (population_std / np.sqrt(len(df['pH'])))
   alpha = 0.05
   critical_value = norm.ppf(1 - alpha / 2)
   print("Critical value:", critical_value)
   print("Z-statistic:", z_statistic)
   # Make a decision
   if abs(z_statistic) > critical_value:
     print("Reject the null hypothesis")
      print("Fail to reject the null hypothesis")
 √ 0.0s
3.3111131957473416
Critical value: 1.959963984540054
Z-statistic: 0.0008279865643324429
Fail to reject the null hypothesis
```

P Test

Null Hypothesis (H_0): There is no association between chlorides and wine quality. Alternative Hypothesis (H_1): There is a significant association between chlorides and wine quality.

```
# Calculate observed proportion of success
observed_proportion = np.sum(df["quality"]) / len(df["quality"])

# Calculate expected proportion under null hypothesis
expected_proportion = np.sum(df["chlorides"]) / len(df["chlorides"])

# Calculate chi-square statistic
chi_square_statistic = ((observed_proportion - expected_proportion) ** 2) / expected_proportion

# Degrees of freedom (for a 1-sample proportion test)
degrees_of_freedom = 1

# Calculate p-value
p_value = 1 - chi_square_statistic
print("P-value", p_value)

# Make a decision
if p_value < 0.05:
    print("Reject the null hypothesis")
else:
    print("Fail to reject the null hypothesis")

V 0.0s

P-value: -350.9800008169624
Reject the null hypothesis
```


BHARATIYA VIDYA BHAVAN'S SARDAR PATEL INSTITUTE OF TECHNOLOGY

(Empowered Autonomous Institute Affiliated to University of Mumbai)
[Knowledge is Nectar]

Department of Computer Engineering

ANOVA:

Null Hypothesis (H_0): The mean alcohol content is the same across all wine quality ratings. Alternative Hypothesis (H_1): At least one wine quality rating has a different mean alcohol content.

Conclusion

In conclusion, I have learnt to test a hypothesis using different method like t Test, z test and ANOVA