Q3 (20 points)

Q3(20 points). Apply SAS to work on the following sample data.

x_1	x_2	y
1.43	2.79	1.23
7.90	5.59	6.12
-3.40	3.58	-1.90
52.87	9.73	44.61
54.39	9.32	41.28
4.70	0.13	10.56
39.68	8.91	34.78
21.75	7.03	16.57
12.62	6.46	10.09
-1.85	2.97	2.01

 $\alpha = 0.01$ Find the following information from the SAS output.

1. Fit the data to linear regression model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \epsilon$.

- a. (3 points)Specify the least squares point estimators on your output.
- b. (3 points)Implement an F-test for a portion of the model: $H_0: \beta_2 = \beta_3 = 0$, $H_a:$ at least one of β_2, β_3 is not 0. Specify the test statistic $F(x_2, x_2^2|x_1)$ value and P-value on your output, and make conclusion.
- c. (4 points)Code to display $\tilde{X}'\tilde{X}$, $(\tilde{X}'\tilde{X})^{-1}$, $\tilde{X}'\tilde{y}$, $\tilde{y}'\tilde{y}$, specify these matrices/vectors/numbers on your output.
- d. (3 points)Implement a Durbin-Watson test for first-order autocorrelation test (H₀: no autocorrelation, H_a: positive autocorrelation). Specify the value of the test statistic and P-value on your output and give the conclusion.
- e. (2 points) Use the "Residual by Regressors for y" panel of the regression model output to validate the constant variance assumption.
- f. (2 points) Calculate the prediction of y_0 for $x_{01} = 10, x_{02} = 5$.
- 2 (3 points) Fit the data to linear regression model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 * x_2 + \epsilon$, compare this with the above model (in sub-question 1.) using multiple coefficients of determination R^2 .

Time left Hide
4 days, 22 hours