University of Udine
Department of Mathematics, Computer Science and Physics

NON-WELL-FOUNDED SET BASED MULTI-AGENT EPISTEMIC ACTION LANGUAGE

34th Italian Conference on Computational Logic

Francesco Fabiano, Idriss Riouak, Agostino Dovier and Enrico Pontelli

October 10, 2022

Overview

- 1. Multi-Agent Epistemic Planning
- 2. Kripke Structures
- 3. Possibilities
- 4. The action language $m\mathcal{A}^{\rho}$
- 5. Conclusions

Chapter 1

Multi-Agent Epistemic Planning

Introduction

Epistemic Reasoning

Reasoning not only about agents' *perception of the world* but also about agents' *knowledge* and/or *beliefs* of her and others' beliefs.

Introduction

Epistemic Reasoning

Reasoning not only about agents' *perception of the world* but also about agents' *knowledge* and/or *beliefs* of her and others' beliefs.

Multi-agent Epistemic Planning Problem **bolander2011epistemic**

Finding plans where the goals can refer to:

- the state of the world
- the knowledge and/or the beliefs of the agents

An Example

An Example

Initial State

- Snoopy and Charlie are looking while Lucy is ¬looking
- No one knows the coin position.

An Example

Goal State

- Charlie knows the coin position
- Lucy knows that Charlie knows the coin position
- Snoopy does not know anything about the plan execution

Challenges

An agent has to reason about his actions effects on

- The state of the world
- The agents' awareness of the environment
- The agents' awareness of other agents' actions
- The knowledge of other agents about his own

Notations

Given a set of agents \mathcal{AG}

Modal operator \mathbf{B}_{ag}

where $\mathsf{ag} \in \mathcal{AG}$

Models the beliefs of ag about the state of the world and/or about the beliefs of other agents.

Notations

Given a set of agents \mathcal{AG}

Modal operator \mathbf{B}_{ag}

where $\mathsf{ag} \in \mathcal{AG}$

Models the beliefs of ag about the state of the world and/or about the beliefs of other agents.

Group operator \mathbf{C}_{α}

where $\alpha\subseteq\mathcal{AG}$

Expresses the common belief of a group of agents.

Notations

Given a set of agents \mathcal{AG}

Modal operator \mathbf{B}_{ag}

where $\mathtt{ag} \in \mathcal{AG}$

Models the beliefs of ag about the state of the world and/or about the beliefs of other agents.

Group operator \mathbf{C}_{α}

where $\alpha \subseteq \mathcal{AG}$

Expresses the common belief of a group of agents.

Belief Formulae

Take into consideration *fluents* and/or agents' beliefs.

Example of Belief Formulae

Given

- $\mathcal{AG} = \{ \texttt{Snoopy}, \texttt{Charlie}, \texttt{Lucy} \}$
- $\mathcal{F} = \{ \mathtt{opened}, \mathtt{head}, \mathtt{looking_{ag}} \} \ \mathtt{ag} \in \mathcal{AG}$

$\mathsf{B}_{\mathtt{Snoopy}}\mathsf{B}_{\mathtt{Charlie}} egthinspace opened$

Snoopy believes that Charlie believes that the box is ¬opened.

Example of Belief Formulae

Given

- $\mathcal{AG} = \{ \texttt{Snoopy}, \texttt{Charlie}, \texttt{Lucy} \}$
- $\mathcal{F} = \{\mathtt{opened}, \mathtt{head}, \mathtt{looking_{ag}}\} \ \mathtt{ag} \in \mathcal{AG}$

$B_{\texttt{Snoopy}}B_{\texttt{Charlie}} \neg \texttt{opened}$

Snoopy believes that Charlie believes that the box is ¬opened.

$\mathbf{C}_{\alpha}(\neg \mathbf{B}_{\mathtt{Lucy}}\mathtt{heads} \wedge \neg \mathbf{B}_{\mathtt{Lucy}} \neg \mathtt{head})$

where $\alpha = \mathcal{AG}$

It is common knowledge that Lucy does not know whether the coin lies heads or tails up

Knowledge vs. Belief

- The modal operator B_{ag} represents the worlds' relation
- Different relation's properties imply different meaning for \boldsymbol{B}_{ag}

Knowledge vs. Belief

- The modal operator B_{ag} represents the worlds' relation
- Different relation's properties imply different meaning for B_{ag}
- Knowledge and Belief are characterized by a subset of the following axioms

Serial ((D)	and S	S5 ((K,T,4,5)	Axioms

Given the fluent formulae ϕ , ψ and the worlds i. i.

310 011	CITC	macme	Torritatae	Ψ,	Ψ	una	CITC	vvorias	Ξ,	J
D -	\mathcal{R}_{i}									

$$\mathsf{K} \left(\mathcal{R}_{\mathsf{i}} \varphi \wedge \mathcal{R}_{\mathsf{i}} (\varphi \Rightarrow \psi) \right) \Rightarrow \mathcal{R}_{\mathsf{i}} \psi$$

$$\mathcal{B} \mathcal{K}$$

$$\mathsf{K} \ (\mathcal{R}_{\mathtt{i}}\varphi \wedge \mathcal{R}_{\mathtt{i}}(\varphi \Rightarrow \psi)) \Rightarrow \mathcal{R}_{\mathtt{i}}\psi$$

$$T \mathcal{R}_{i} \varphi \Rightarrow \varphi$$

$$\mathcal{K}$$

4
$$\mathcal{R}_{i}\varphi \Rightarrow \mathcal{R}_{i}\mathcal{R}_{i}\varphi$$

$$\mathcal{B} \mathcal{K}$$

$$5 \neg \mathcal{R}_{i} \varphi \Rightarrow \mathcal{R}_{i} \neg \mathcal{R}_{i} \varphi$$

Chapter 2

Kripke Structures

Description

Pointed Kripke structure

A Pointed Kripke structure is a pair $(\langle S, \pi, \mathcal{R}_1, ..., \mathcal{R}_n \rangle, s_0)$, s.t.:

- S is a set of *worlds* and $s_0 \in S$
- $\pi: S \mapsto 2^{\mathcal{F}}$ associates an *interpretation* to each element of S
- for $1 \leq i \leq n, \; \mathcal{R}_i \subseteq S \times S$ is a binary relation over S

Description

Pointed Kripke structure

A Pointed Kripke structure is a pair $(\langle S, \pi, \mathcal{R}_1, ..., \mathcal{R}_n \rangle, s_0)$, s.t.:

- S is a set of *worlds* and $s_0 \in S$
- $\pi: S \mapsto 2^{\mathcal{F}}$ associates an *interpretation* to each element of S
- for $1 \leq i \leq n$, $\mathcal{R}_i \subseteq S \times S$ is a binary relation over S

Entailment

Let φ be a belief formula and (M,s) be a pointed Kripke structure:

Entailment w.r.t. a pointed Kripke structure

- $(M,s) \models \varphi$ if φ is a *fluent formula* and $\pi(s) \models \varphi$;

Entailment

Let φ be a belief formula and (M,s) be a pointed Kripke structure:

Entailment w.r.t. a pointed Kripke structure

- $(M,s) \models \varphi$ if φ is a *fluent formula* and $\pi(s) \models \varphi$;
- $(M,s) \models \mathbf{B}_{\mathbf{ag_i}} \varphi$ if \forall t: $(s,t) \in \mathcal{R}_i$ it holds that $(M,t) \models \varphi$;

Entailment

Let φ be a belief formula and (M,s) be a pointed Kripke structure:

Entailment w.r.t. a pointed Kripke structure

- $(M,s) \models \varphi$ if φ is a *fluent formula* and $\pi(s) \models \varphi$;
- $(M,s) \models \mathbf{B}_{\mathbf{ag_i}} \varphi$ if \forall t: $(s,t) \in \mathcal{R}_i$ it holds that $(M,t) \models \varphi$;
- $(M,s) \models \mathbf{E}_{\alpha} \varphi$ if $(M,s) \models \mathbf{B}_{\mathbf{ag_i}} \varphi$ for all $\mathbf{ag_i} \in \alpha$;
- $(M,s) \models \mathbf{C}_{\alpha} \varphi$ if $(M,s) \models \mathbf{E}_{\alpha}^{k} \varphi$ for every $k \geq 0$, where $\mathbf{E}_{\alpha}^{0} \varphi = \varphi$ and $\mathbf{E}_{\alpha}^{k+1} \varphi = \mathbf{E}_{\alpha} (\mathbf{E}_{\alpha}^{k} \varphi)$.

The entailment for the standard operators is defined as usual

Kripke Structures

Problems

- Solvers require high amount of memory
- In literature the states have been represented explicitly
- State comparison needs to find bisimilar states

Kripke Structures

Solutions

- Heuristics le2018efp

Solutions

- Heuristics le2018efp
- Symbolic representation of Kripke structures

Solutions

- Heuristics le2018efp
- Symbolic representation of Kripke structures
- Alternative representations

Chapter 3

Possibilities

Overview

- Introduced by Gerbrandy and Groeneveld Gerbrandy1997
- Used to represent multi-agent information change
- Based on non-well-founded sets
- Corresponds with a class of bisimilar Kripke structures gerbrandy1999bisimulations

Non-well-founded sets

Non-well-founded set Aczel1989-ACZNS-2

A set is *non-well-founded* (or *extraordinary*) when among its descents there are some which are infinite.

The non-well-founded set $\Omega = \{\Omega\}$

Formal Definition

Possibility Gerbrandy1997

Let $\mathcal{A}\mathcal{G}$ be a set of agents and \mathcal{F} a set of propositional variables:

- A possibility u is a function that assigns to each propositional variable $\mathbf{1} \in \mathcal{F}$ a truth value $\mathbf{u}(\mathbf{1}) \in \{0,1\}$ and to each agent $\mathbf{ag} \in \mathcal{AG}$ a set of possibilities $\mathbf{u}(\mathbf{ag}) = \sigma$.

Formal Definition

Possibility Gerbrandy1997

Let $\mathcal{A}\mathcal{G}$ be a set of agents and \mathcal{F} a set of propositional variables:

- A possibility u is a function that assigns to each propositional variable $1 \in \mathcal{F}$ a truth value $u(1) \in \{0,1\}$ and to each agent $ag \in \mathcal{AG}$ a set of possibilities $u(ag) = \sigma$.

Intuitively ...

- The possibility u is a possible interpretation of the world and of the agents' beliefs
- u(1) specifies the truth value of the literal 1
- u(ag) is the set of all the interpretations the agent ag considers possible in u

Considering a possibility

A possibility

Considering a possibility

Can be expressed as a system of equations

A possibility

Its system of equation

$$\begin{cases} \text{A} \} \\ \text{A} \} \\ \text{B} \end{cases} \begin{cases} \text{w}(p) = 1 & \text{w}(q) = 0 \\ \text{v}(p) = 1 & \text{v}(q) = 1 \\ \text{u}(p) = 0 & \text{u}(q) = 0 \\ \text{w}(\text{A}) = \{\text{v}\} & \text{w}(\text{B}) = \{\emptyset\} \\ \text{v}(\text{A}) = \{\text{v}\} & \text{v}(\text{B}) = \{\text{u}\} \\ \text{u}(\text{A}) = \{\emptyset\} & \text{u}(\text{B}) = \{\emptyset\} \end{cases}$$

Considering a possibility

Can be expressed as a *system of equations*Systems of equations have unique solutions

A possibility

Its system of equation

$$\begin{cases} \mathsf{w}(p) = 1 & \mathsf{w}(q) = 0 \\ \mathsf{v}(p) = 1 & \mathsf{v}(q) = 1 \\ \mathsf{u}(p) = 0 & \mathsf{u}(q) = 0 \\ \mathsf{w}(\mathbf{A}) = \{\mathsf{v}\} & \mathsf{w}(\mathbf{B}) = \{\emptyset\} \\ \mathsf{v}(\mathbf{A}) = \{\mathsf{v}\} & \mathsf{v}(\mathbf{B}) = \{\mathsf{u}\} \\ \mathsf{u}(\mathbf{A}) = \{\emptyset\} & \mathsf{u}(\mathbf{B}) = \{\emptyset\} \end{cases}$$

The solution

Can be expressed as a *system of equations*Systems of equations have unique solutions

The solution decorates a Kripke structure

A possibility

Its system of equation

$$\begin{cases} w(p) = 1 & w(q) = 0 \\ v(p) = 1 & v(q) = 1 \\ u(p) = 0 & u(q) = 0 \\ w(A) = \{v\} & w(B) = \{\emptyset\} \\ v(A) = \{v\} & v(B) = \{u\} \\ u(A) = \{\emptyset\} & u(B) = \{\emptyset\} \end{cases}$$

The solution

Relative Kripke Structure

Can be expressed as a system of equations

Systems of equations have unique solutions

The solution decorates a (Kripke structure)

A possibility

Its system of equation

$$\begin{cases} w(p) = 1 & w(q) = 0 \\ v(p) = 1 & v(q) = 1 \\ u(p) = 0 & u(q) = 0 \\ w(A) = \{v\} & w(B) = \{\emptyset\} \\ v(A) = \{v\} & v(B) = \{u\} \\ u(A) = \{\emptyset\} & u(B) = \{\emptyset\} \end{cases}$$

The solution

Relative Kripke Structure

Chapter 4

The action language mA^{ρ}

Overview

We introduce the action language mA^{ρ}

- Used to describe MEP problems
- Same syntax of the action language mA+ baral2015action
- As expressive as mA+
- Uses possibilities as states

The action language $m\mathcal{A}^{ ho}$

Actions

Three types of actions:

- Ontic: modifies some fluents of the world
Charlie opens the box

The action language $m\mathcal{A}^{\rho}$

Actions

- 0.5Ontic: modifies some fluents of the world
- Charlie *opens* the box
- Sensing: senses the true value of a fluent

Charlie peeks inside the box

Actions

Three types of actions:

- 0.5Ontic: modifies some fluents of the world
- Charlie *opens* the box
 - 0.5
- Sensing: senses the true value of a fluent Charlie *peeks* inside the box
- Announcement: announces the fluent to other agents
 Charlie announces the coin position

Observability Relations

An *execution* of an action might change or not an agents' belief accordingly to her degree of awareness

Action type	Full observers	Partial Observers	Oblivious
Ontic	✓		✓
Sensing	✓	✓	✓
Announcement	<u> </u>	✓	✓

Possibility as a state

In $m\mathcal{A}^{\rho}$ a state is encoded by a possibility where

- (agent, σ) represent the possibilities believed by agent
- If $\mathbf{f} \in \mathcal{F}$ is present then it is true

```
\label{eq:w} \begin{split} w &= \{ (\texttt{ag}, \{\texttt{w}, \texttt{w}'\}), (\texttt{C}, \{\texttt{v}, \texttt{v}'\}), \texttt{look(ag)}, \texttt{key(A)}, \texttt{opened}, \texttt{heads} \} \\ \text{0.8 where } \texttt{ag} &\in \{\texttt{A}, \texttt{B}\} \end{split}
```


Possibility as a state

In mA^{ρ} a state is encoded by a possibility where

- (agent, σ) represent the possibilities believed by agent
- If $\mathbf{f} \in \mathcal{F}$ is present then it is true

$$\label{eq:w} \begin{split} w &= \{ (\texttt{ag}, \{\texttt{w}, \texttt{w}'\}), (\texttt{C}, \{\texttt{v}, \texttt{v}'\}), \texttt{look(ag)}, \texttt{key(A)}, \texttt{opened}, \texttt{heads} \} \\ \text{0.8 where } \texttt{ag} &\in \{\texttt{A}, \texttt{B}\} \end{split}$$

```
\begin{cases} w &= \{(ag, \{w, w'\}), (C, \{v, v'\}), look(ag), key(A), opened, heads\} \\ w' &= \{(ag, \{w, w'\}), (C, \{v, v'\}), look(ag), key(A), opened\} \\ v &= \{(A, \{v, v'\}), (B, \{v, v'\}), (C, \{v, v'\}), look(ag), key(A), heads\} \\ v' &= \{(A, \{v, v'\}), (B, \{v, v'\}), (C, \{v, v'\}), look(ag), key(A)\} \end{cases} where ag \in \{A, B\}.
```


The action language $m\mathcal{A}^{ ho}$

State equality

- Possibilities captures classes of bisimilar Kripke structures
- Possibilities equality considers bisimilarity
- This help for the *visited states* problem in MEP

State equality

- Possibilities captures classes of bisimilar Kripke structures
- Possibilities equality considers bisimilarity
- This help for the visited states problem in MEP

$$r_1 = \{(A, \{s_0, s_1\}), (B, \{r_1\}), (C, \{r_1\}), look(C), key(A), opened, heads\}$$

Entailment

Let $\varphi, \varphi_1, \varphi_2$ be beliefs formula and u be a possibility

Entailment w.r.t. possibilities

```
- u \models 1 \text{ if } u(1) = 1;
```


Entailment

Let $\varphi, \varphi_1, \varphi_2$ be beliefs formula and u be a possibility

Entailment w.r.t. possibilities

- $u \models 1$ if u(1) = 1;
- $\mathbf{u} \models \mathbf{B}_{\mathbf{ag}} \varphi$ if for each $\mathbf{v} \in \mathbf{u}(\mathbf{ag})$, $\mathbf{v} \models \varphi$;

Entailment

Let $\varphi, \varphi_1, \varphi_2$ be beliefs formula and u be a possibility

Entailment w.r.t. possibilities

- $u \models 1$ if u(1) = 1;
- $u \models \mathbf{B}_{ag}\varphi$ if for each $v \in u(ag)$, $v \models \varphi$;
- $u \models \mathbf{E}_{\alpha} \varphi$ if $u \models \mathbf{B}_{ag} \varphi$ for all $ag \in \alpha$;
- $\mathbf{u} \models \mathbf{C}_{\alpha} \varphi$ if $\mathbf{u} \models \mathbf{E}_{\alpha}^{k} \varphi$ for every $k \geq 0$, where $\mathbf{E}_{\alpha}^{0} \varphi = \varphi$ and $\mathbf{E}_{\alpha}^{k+1} \varphi = \mathbf{E}_{\alpha} (\mathbf{E}_{\alpha}^{k} \varphi)$.

The entailment for the standard operators is defined as usual

Ontic Actions

Φ_D for Ontic Actions

$$\Phi_D: \mathcal{AI} \times \Sigma \to \Sigma \cup \{\emptyset\}$$

Let a be an *ontic action* instance, u a possibility and 1 be f or $\neg f$

$$\Phi_D(a, u) = \emptyset$$
 if a is not executable in u

$$\Phi_D(a, u) = v$$
 if a *modifies* the literals \in caused(a)

Where v is

$$\begin{cases} v(1) = u(1) & \text{if } 1 \notin \mathsf{caused}(\mathsf{a}) \\ v(1) = \mathsf{caused}(\mathsf{a})[1] & \text{if } 1 \in \mathsf{caused}(\mathsf{a}) \end{cases}$$

$$|\operatorname{v}(\mathtt{l}) = \operatorname{\mathsf{caused}}(\mathtt{a})[\mathtt{l}] \quad \text{ if } \mathtt{l} \in \operatorname{\mathsf{caused}}(\mathtt{a})$$

and

$$\begin{cases} v(\mathtt{ag}) = \mathsf{u}(\mathtt{ag}) & \text{if } \mathtt{ag} \in \mathcal{O}_D \\ v(\mathtt{ag}) = \bigcup_{\mathsf{w} \in \mathsf{u}(\mathtt{ag})} \Phi_D(\mathtt{a}, \mathsf{w}) & \text{if } \mathtt{ag} \in \mathcal{F}_D \end{cases}$$

$$ig (\mathsf{v}(\mathsf{ag}) = igcup_{\mathsf{w} \in \mathsf{u}(\mathsf{ag})} \Phi_D(\mathsf{a},\mathsf{w}) \quad \text{ if } \mathsf{ag} \in F_D$$

Sensing Actions

Φ_D for Sensing Actions

$$\Phi_D: \mathcal{AI} \times \Sigma \to \Sigma \cup \{\emptyset\}$$

Let a be an $sensing \ action$ instance, and u a possibility and 1 be f or $\neg f$

$$\Phi_D(a, u) = \emptyset$$
 if a is not executable in u $\Phi_D(a, u) = v$ if the literal 1 is sensed

Where v is

$$\begin{cases} \emptyset & \text{if sensed(a)[1]} \neq \text{u(1)} \\ \text{v(ag)} = \text{u(ag)} & \text{if ag} \in O_D \\ \text{v(ag)} = \bigcup_{w \in \text{u(ag)}} \Phi_D(\text{a}, \text{w}) & \text{if ag} \in F_D \\ \text{v(ag)} = \bigcup_{w \in \text{u(ag)}} (\Phi_D(\text{a}, \text{w}) \cup \Phi_D(\neg \text{a}, \text{w})) & \text{if ag} \in P_D \end{cases}$$

Announcement Actions

Φ_D for Announcement Actions $\Phi_D: \mathcal{AI} \times \Sigma \to \Sigma \cup \{\emptyset\}$

$$\Phi_D: \mathcal{AI} \times \Sigma \to \Sigma \cup \{\emptyset\}$$

Let a be an *announcement action* instance, and u a possibility.

$$\Phi_D(a, u) = \emptyset$$
 if a is not executable in u $\Phi_D(a, u) = v$ if the fluent formula ϕ is announced

Where v is

$$\begin{cases} \emptyset & \text{if } u \not\models \phi \\ v(\mathtt{ag}) = \mathsf{u}(\mathtt{ag}) & \text{if } \mathtt{ag} \in \mathcal{O}_D \\ v(\mathtt{ag}) = \bigcup_{\mathsf{w} \in \mathsf{u}(\mathtt{ag})} \Phi_D(\mathtt{a}, \mathsf{w}) & \text{if } \mathtt{ag} \in \mathcal{F}_D \\ v(\mathtt{ag}) = \bigcup_{\mathsf{w} \in \mathsf{u}(\mathtt{ag})} (\Phi_D(\mathtt{a}, \mathsf{w}) \cup \Phi_D(\neg \mathtt{a}, \mathsf{w})) & \text{if } \mathtt{ag} \in \mathcal{P}_D \end{cases}$$

Chapter 5

Conclusions

Conclusions

- Exploited an *alternative* to the *Kripke structures* as states representation
- Used possibilities to define a stronger concept of states equality
- Possibilities helps in *reducing* the search-space dimension
- Defined a new action language for the MEP problem

Future works

- We started *implementing* a planner for $m\mathcal{A}^{
 ho}$
- Exploit more set-based operations: especially for the entailment of group operators
- Formalize the concept of *non-consistent belief* for $m\mathcal{A}^{
 ho}$
- Consider other *alternatives* to Kripke structures, e.g., OBDDs

The end

Thank You for the attention

Conclusions Future works

References I

$$\begin{cases} u &= \{(\mathsf{ag}, \{\mathsf{u}, \mathsf{u}'\}),\\ &= \mathsf{look}(\mathsf{ag}), \mathsf{key}(\mathtt{A}), \mathsf{heads} \} \\ u' &= \{(\mathsf{ag}, \{\mathsf{u}, \mathsf{u}'\}),\\ &= \mathsf{look}(\mathsf{ag}), \mathsf{key}(\mathtt{A}) \} \end{cases}$$

where $ag \in \{A, B, C\}$

The initial state

$$\begin{cases} v &= \{(\texttt{ag}, \{v, v'\}), \texttt{look}(\texttt{A}),\\ & \texttt{look}(\texttt{B}), \texttt{key}(\texttt{A}), \texttt{heads} \} \\ v' &= \{(\texttt{ag}, \{v, v'\}),\\ & \texttt{look}(\texttt{A}), \texttt{look}(\texttt{B}), \texttt{key}(\texttt{A}) \} \end{cases}$$
 where $\texttt{ag} \in \{\texttt{A}, \texttt{B}, \texttt{C}\}$

where $ag \in \{A,B,C\}$

Execution of $distract(C)\langle A \rangle$


```
\begin{cases} w &= \{(ag,\{w,w'\}),(C,\{v,v'\}),\\ & look(ag),key(A),opened,heads\} \\ w' &= \{(ag,\{w,w'\}),(C,\{v,v'\}),\\ & look(ag),key(A),opened\} \end{cases} where v,v', are defined as before.
```

where $ag \in \{A,B\}$

$$M_3[\pi](r_0) = \{look(ag), key(A), opened, heads\}$$

 $M_3[\pi](r_1) = \{look(ag), key(A), opened\}$
 $M_3[\pi](p_0) = M_1[\pi](p_0)$

 $M_3[\pi](p_1) = M_1[\pi](p_1)$

$$\begin{cases} z &= \{(A,\{z\}),(B,\{z,z'\})(C,\{v,v'\}),\\ & \text{look(ag)}, \text{key(A)}, \text{opened}, \text{heads} \} \\ z' &= \{(A,\{z'\}),(B,\{z,z'\})(C,\{v,v'\}),\\ & \text{look(ag)}, \text{key(A)}, \text{opened}, \} \end{cases}$$

where the possibilities v, v' are defined as before.

where $ag \in \{A,B\}$

