```
from sklearn import datasets
iris = datasets.load iris()
x = iris.data
y = iris.target
print(x.shape)
print(y.shape)
\rightarrow (150, 4)
     (150,)
from sklearn.model selection import train test split
x train,x test,y train,y test = train test split(x,y,random state=42)
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
    (112, 4)
     (112,)
     (38, 4)
     (38,)
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# list of kernel to try
kernels = ['linear','poly','rbf','sigmoid']
accuracies = []
for kernel in kernels:
    svm = SVC(kernel=kernel,random state=42)
    svm.fit(x train,y train)
    prediction = svm.predict(x_test)
    print(f"kernel: {kernel}")
    acc=accuracy_score(y_test,prediction)
    accuracies.append(acc)
    print(f"accuracy: {acc}")
    print("classification report:\n",classification_report(y_test,prediction))
    print("confusion metrics:\n",confusion_matrix(y_test,prediction))
    print('\n\n')
→ kernel: linear
    accuracy: 1.0
    classification report:
                                 recall f1-score
                    precision
                                                     support
                0
                        1.00
                                  1.00
                                             1.00
                                                         15
                1
                        1.00
                                  1.00
                                             1.00
                                                         11
```

```
2
                   1.00
                              1.00
                                        1.00
                                                    12
                                        1.00
                                                    38
    accuracy
                   1.00
                              1.00
                                        1.00
                                                    38
   macro avg
                                        1.00
                                                    38
weighted avg
                   1.00
                              1.00
confusion metrics:
 [[15 0 0]
```

kernel: poly

[ 0 11 0] [ 0 0 12]]

accuracy: 0.9736842105263158

classification report:

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| Θ            | 1.00      | 1.00   | 1.00     | 15      |
| 1            | 1.00      | 0.91   | 0.95     | 11      |
| 2            | 0.92      | 1.00   | 0.96     | 12      |
| accuracy     |           |        | 0.97     | 38      |
| macro avg    | 0.97      | 0.97   | 0.97     | 38      |
| weighted avg | 0.98      | 0.97   | 0.97     | 38      |

confusion metrics:

[[15 0 0] [ 0 10 1] [ 0 0 12]]

kernel: rbf accuracy: 1.0

classification report:

|                                       | precision            | recall               | f1-score             | support        |
|---------------------------------------|----------------------|----------------------|----------------------|----------------|
| 0<br>1<br>2                           | 1.00<br>1.00<br>1.00 | 1.00<br>1.00<br>1.00 | 1.00<br>1.00<br>1.00 | 15<br>11<br>12 |
| accuracy<br>macro avg<br>weighted avg | 1.00<br>1.00         | 1.00<br>1.00         | 1.00<br>1.00<br>1.00 | 38<br>38<br>38 |

confusion metrics:
 [[15 0 0]
 [ 0 11 0]

[ 0 0 1211

```
#plotting accuracies for comparison
import matplotlib.pyplot as plt
plt.figure(figsize=(8,5))
plt.bar(kernels,accuracies,color=['skyblue','lightgreen','lightcoral','lightgrey'])
plt.title("Comparison of SVM kernels")
plt.xlabel('Kernel')
plt.ylabel('Accuracy')
plt.show()
```

**→** 



