A Study of the Association Between Dietary Iron Intake and Coronary Heart Disease

PH241 Categorical Analysis – Spring 2015

Kurt Anthony, Paul Cho, Daniel Lee, Denise Shieh, Marina Wang

A Study of the Association Between Dietary Iron Intake and Risk of Coronary Heart Disease

Background

Our data derives from a case-control study conducted in Athens, Greece (study period: Jan 1990 to April 1991). The exposure studied is dietary iron intake measured from nutritional survey data and the outcome is coronary heart disease (CHD). There are 329 cases selected on the basis of clinical diagnosis of coronary heart disease and 570 controls selected from patients admitted around the same time period as the case for diseases unrelated to the exposure or outcome. Variables included in the dataset are the following: sex, age, estimated monthly iron intake (mg), and case/control status.

Research Question: What is the association between dietary iron intake and coronary heart disease?

Exposure

Dietary Iron Intake (mg/month)

Variable Type	Description of Iron Intake Categories (mg/month)
Binary	$x^* = 0 \rightarrow \le 300$ $x^* = 1 \rightarrow \ge 300$
Categorical	reference $\rightarrow <= 250$ $x_1 = 1 \rightarrow 251-300$ $x_2 = 1 \rightarrow 301-350$ $x_3 = 1 \rightarrow > 350$
Ordinal	$x = 0 \rightarrow \le 250$ $x = 1 \rightarrow 251-300$ $x = 2 \rightarrow 301-350$ $x = 3 \rightarrow \ge 350$

Outcome

Coronary Heart Disease

$$N = 899$$

Cases: 329 (w/ CHD)

Controls: 570 (w/o CHD)

Risk Factors of Interest

Sex

$$y = 0 \rightarrow male$$

 $y = 1 \rightarrow female$

Age

$$z = 0 \rightarrow < 60 \text{ years}$$

 $z = 1 \rightarrow >= 60 \text{ years}$

Table 1: Frequency of Cases and Controls by Each Risk Factor Category

		Cases (%)	Controls (%)
Sov	Female	45 (15.5%)	246 (84.5%)
Sex Male		284 (46.7%)	324 (53.3%)
Λαο	<60 years	153 (39.0%)	239 (61.0%)
Age	>= 60 years	176 (34.7%)	331 (65.3%)

•5

Log Odds Plots of CHD

Model Selection

Table 2: Model selection process and output

1 $log\left(\frac{p}{1-p}\right) = a$ a -0.550 0.069 <0.000 2 $log\left(\frac{p}{1-p}\right) = a + bx^*$ a -0.581 0.139 <0.000 3 $log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2$ b 0.061 0.100 0.100 0.100 0.063 0.658 0.060	e Max LL
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 -590.438
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 500 340
	-590.340
	1
	-585.487
	-383.487
(Ordinal) b 0.110 0.062 1.116 0.077 a -0.196 0.176 0.266 b ₁ 0.252 0.216 1.286 0.245 b ₂ -0.119 0.230 0.888 0.604	
$log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2$ $+ b_2x_2 + cy$ $a $	-588.863
$\log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2$ $+ b_2x_2 + cy$ $b_1 $	
$\log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2 \qquad \qquad b_1 \qquad 0.252 \qquad 0.216 \qquad 1.286 \qquad 0.245$ $+ b_2x_3 + cy \qquad \qquad b_2 \qquad -0.119 \qquad 0.230 \qquad 0.888 \qquad 0.604$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1)
T U2A2 T UY 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	-543.779
b ₃ 0.061 0.214 1.063 0.774	
c -1.558 0.186 0.211 <0.000	1
a 2.19 x 10 ⁻¹⁵ 0.200 1.000	kc <u>.</u>
$log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2$ $b_1 0.100 0.255 1.105 0.695$ $b_2 -0.445 0.270 0.641 0.095$	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 540 264
$+d_2(x_2*y)$ C -2.245 0.404 0.106 <0.000	1
$+ d_3(x_3 * y)$ d_1 0.491 0.529 1.634 0.353	<u> </u>
d ₂ 1.218 0.532 3.381 0.022	
d ₃ 1.159 0.569 3.188 0.042	

		1 1		1	D2S	8	
	(")	а	-0.951	0.176		<0.0001	
	$log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2 + b_3x_3 + cz$	b ₁	0.456	0.205	1.577	0.026	
7	(1-p)	b ₂	0.087	0.219	1.091	0.690	-584.266
	$+ b_3 x_3 + cz$	b ₃	0.534	0.202	1.705	0.008	
		С	0.221	0.141	1.247	0.118	
		a	-0.762	0.229		0.001	
	$log(\frac{p}{q}) = q + h_1 r_1 + h_2 r_2$	b_1	0.382	0.289	1.465	0.187	
	$log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2 + b_3x_3 + cz$	b ₂	-0.294	0.307	0.745	0.339	
	$+b_3x_3+cz$	b ₃	0.284	0.280	1.329	0.311	
8	$+d_1(x_1*z)$	С	-0.121	0.313	0.886	0.698	-581.950
	$+ d_2(x_2 * z) + d_3(x_3 * z)$	d ₁	0.089	0.410	1.093	0.829	
	1 43 (43 - 2)	d ₂	0.793	0.439	2.210	0.071	
		d ₃	0.498	0.406	1.646	0.219	
	$log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2 + b_3x_3 + cy$	а	-0.071	0.185		0.700	
	$(1-p)=a+b_1x_1+b_2x_2$	b_1	0.216	0.223	1.241	0.332	
	$+b_3x_3+cy$	b ₂	-0.373	0.259	0.688	0.149	
9	$+d_2(x_2*y)$	b ₃	-0.111	0.229	0.894	0.628	-540.699
	$+d_3(x_3*y)$	С	-1.972	0.261	0.139	<0.001	73337647
		d ₂	0.945	0.434	2.574	0.030	
		d ₃	0.886	0.478	2.426	0.064	

Overall Likelihood Ratio Tests:

Model I (restricted)	Model II	LR Test	P-value
$\log\left(\frac{p}{1-p}\right) = a$	Model 2b: $log\left(\frac{p}{1-p}\right) = a + bx$	0.20	0.658
$\log\left(\frac{p}{1-p}\right) = a$	$\log\left(\frac{p}{1-p}\right) = a + b_1 x_1 + b_2 x_2 + b_3 x_3$	9.90	0.019
$\log\left(\frac{p}{1-p}\right) = a$	$\log\left(\frac{p}{1-p}\right) = a + bx^*$	3.15	0.076

Likelihood Ratio Test Assessing Interaction Between Iron and Sex

Model I (restricted)	Model II	LR Test	P-value
$\log\left(\frac{p}{1-p}\right) = a + b_1 x_1 + b_2 x_2 + b_3 x_3 + cy$	$log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2 + b_3x_3 + cy + d_1(x_1 * y) + d_2(x_2 * y) + d_3(x_3 * y)$	7.03	0.0709

Likelihood Ratio Test Assessing Interaction Between Iron and Age

Model I (restricted)	Model II	LR Test	p-value
$\log\left(\frac{p}{1-p}\right) = a + b_1 x_1 + b_2 x_2 + b_3 x_3 + cz$	$log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2 + b_3x_3 + cz + d_1(x_1 * z) + d_2(x_2 * z) + d_3(x_3 * z)$	4.63	0.2008

Likelihood Ratio Test Comparing Model 8 and 9

Model I (restricted)	Model II	LR Test	p-value
$log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2 + b_3x_3 + cy + d_2(x_2 * y) + d_3(x_3 * y)$	$log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2 + b_3x_3 + cy + d_1(x_1 * y) + d_2(x_2 * y) + d_3(x_3 * y)$	0.87	0.351

Log Odds Plots of CHD by Sex

Selected Model

$$\log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2 + b_3x_3 + cy + d_2(x_2 * y) + d_3(x_3 * y)$$

Pearson χ² Goodness of Fit

Disease status

		# CHD (# Expected)	# No CHD (# Expected)	Total
	1	9 (10.8)	85 (83.2)	94
	2	13 (11.2)	68 (69.8)	81
	3	14 (14)	61 (61)	75
Covariate Pattern	4	9 (9)	32 (32)	41
	5	50 (50)	78 (78)	128
	6	100 (100)	120 (120)	220
	7	50 (48.2)	50 (51.8)	100
	8	84 (85.8)	76 (74.2)	160
Total		329	570	899

Tota

$$\chi^2_{\text{Poorson}} = .87$$
 p-value = .3518

Results

In the process of model selection, we fitted the exposure variable, iron, in binary, categorical, and ordinal forms. To assess the association between iron intake and CHD, we calculated the chi-square test statistics for the overall likelihood ratio tests comparing model 1 (the simple model with constant odds of CHD) with models 2, 3, and 4, respectively. The likelihood ratio test comparing models 1 and 3 was the only test that yielded a significant result with p-value = 0.019. Thus, we reject the null hypothesis (nested model) in favor of the full model in which iron is coded as a categorical variable.

We assessed age and sex as possible confounders and/or effect modifiers. A comparison of the odds ratios for each of the indicator variables for iron in models 3 and 5 showed a substantial decrease (>10%) in the model controlling for sex. However, a comparison of the odds ratios for each of the indicator variables for iron in models 3 and 7 did not show a significant difference when controlling for age. Likelihood ratio tests comparing models 5 and 6 assessed sex as an effect modifier of the relationship between iron and CHD. The resulting test statistic was significant (p-value = 0.0709) and suggests that there is a multiplicative interaction between sex and iron. The likelihood ratio tests comparing models 7 and 8 assessed age as an effect modifier in of the relationship between iron and CHD. The resulting test statistic was not significant (p-value = 0.2008), suggesting that there is no interaction between age and iron.

•13

Further, we examined the significance of the coefficients for the interaction between iron and sex for model 6 and removed the interaction term for d₁, where the p-value (0.353) was insignificant. We then then performed the likelihood ratio test comparing model 9 (without d₁) and model 6 (with all interaction terms), which yielded a p-value of 0.351, suggesting that the nested model (model 9) adequately fits our data.

The Pearson chi-square goodness-of-fit test for our selected model resulted in a p-value of 0.3518, which is insignificant. Thus, the frequency distribution of our data does not deviate significantly from that of the expected values from our model. In other words, our selected model is a reasonable overall fit for our data and is represented here:

Final Model

$$\log\left(\frac{p}{1-p}\right) = a + b_1x_1 + b_2x_2 + b_3x_3 + cy + d_2(x_2 * y) + d_3(x_3 * y)$$

Table 3: Odds ratios comparing each iron intake level to the baseline (level x = 0) amongst men and women.

	Males [95%CI]	Females [95%CI]
OR comparing iron level 1 to baseline	1.241 [0.802, 1.921]	1.241 [0.802, 1.921]
OR comparing iron level 2 to baseline	0.688 [0.414, 1.143]	1.772 [0.824, 3.808]
OR comparing iron level 3 to baseline	0.895 [0.571, 1.402]	2.171 [0.890, 5.296]

Conclusion

The model with iron consumption as a categorical variable fits better than those with iron consumption as binary or ordinal variables. There is evidence that sex is both a confounder and effect modifier of the association between iron consumption and CHD; however, the interaction is not significant for the second iron consumption level (251-300 mg/month). There is no evidence for confounding or effect modification by age of this relationship. Iron consumption at any level is not significantly associated with CHD after controlling for sex. We observe in the log odds plots and odds ratio tables that women's CHD odds increases linearly as iron consumption increases, but there is not a linear trend for men.

Reference

Tzonou A, Lagiou P, Trichopoulou A, Tsoutsos V, Trichopoulos D. Dietary iron and coronary heart disease risk: a study from Greece. Am J Epidemiol. 1998;147(2):161-6.