The Yamabe Problem

Xinran Yu

April 9th, 2021

Outline

- 1. The Yamabe Problem
- 2. Main Results
- 3. The model case: sphere
- 4. The subcritical solution
- 5. The test function estimate
- 6. Reference

Motivation

In 2D case

Uniformazation Theorem

Every simply connected Riemann surface S is conformally equivalent to

- the unit disk
- the complex plane
- or the Riemann sphere

Motivation

In 2D case

Uniformazation Theorem

Every simply connected Riemann surface S is conformally equivalent to

- the unit disk
- the complex plane
- or the Riemann sphere

The theorem is consequence of the fact that every Riemann surface has a conformal metric with constant Gaussian curvature.

In 2D case

Uniformazation Theorem

Every simply connected Riemann surface S is conformally equivalent to

- the unit disk
- the complex plane
- or the Riemann sphere

The theorem is consequence of the fact that every Riemann surface has a conformal metric with constant Gaussian curvature.

Definition

Two Riemannian metrics g and h are **conformal** if there exists positive function $f \in C^{\infty}(M)$ such that $h = e^{2f}g$.

For a general Riemannian manifold (M,g) with $\dim M \geq 3$, there are several choices of curvatures:

- Riemannian curvature tensor
- Ricci curvature
- scalar curvature

Question: Which curvature to choose?

For a general Riemannian manifold (M,g) with $\dim M \geq 3$, there are several choices of curvatures:

- Riemannian curvature tensor, n^4 components
- Ricci curvature, n^2 components
- scalar curvature, 1 component

Question: Which curvature to choose?

For a general Riemannian manifold (M,g) with $\dim M \geq 3$, there are several choices of curvatures:

- Riemannian curvature tensor, n^4 components
- Ricci curvature, n^2 components
- scalar curvature, 1 component

Question: Which curvature to choose?

The Yamabe Problem

Given a compact Riemannian manifold (M,g) with $n=\dim M\geq 3$, find a metric conformal to g with constant scalar curvature.

Yamabe's Approach to the Problem

Yamabe's Approach to the Problem

Given two metrics g and \tilde{g} , the transformation law between the scalar curvatures S and \tilde{S} ,

$$\tilde{S} = \varphi^{1-p}(a\Delta\varphi + S\varphi).$$

Here φ satisfies $\tilde{g}=\varphi^{p-2}g$ and $a=\frac{4(n-1)}{n-2},\,p=\frac{2n}{n-2}$ are constants.

Yamabe's Approach to the Problem

Given two metrics g and \tilde{g} , the transformation law between the scalar curvatures S and \tilde{S} ,

$$\tilde{S} = \varphi^{1-p}(\mathbf{a}\Delta\varphi + \mathbf{S}\varphi).$$

Here φ satisfies $\tilde{g} = \varphi^{p-2}g$ and $a = \frac{4(n-1)}{n-2}, p = \frac{2n}{n-2}$ are constants.

Define $\square=a\Delta+S$ and call it the **conformal Laplacian**. Let $\tilde{S}=\lambda=\mathrm{const.}$ Then

$$\Box \varphi = \lambda \varphi^{p-1}. \tag{*}$$

Equation (\star) is the Euler-Lagrange equation for the **Yamabe** functional

$$Q_g(\varphi) = \frac{\int_M a |\nabla \varphi|^2 + S\varphi^2 \, dV_g}{\left(\int_M |\varphi|^p \, dV_g\right)^{2/p}} = \frac{E(\varphi)}{\|\varphi\|_p^2}.$$

$$Q_g(\varphi) = \frac{\int_M a |\nabla \varphi|^2 + S\varphi^2 \, \mathrm{d}V_g}{\left(\int_M |\varphi|^p \, \mathrm{d}V_g\right)^{2/p}} = \frac{E(\varphi)}{\|\varphi\|_p^2}.$$

By Hölder's inequality $Q_g(\varphi)$ is bounded below so we can take the infimum

Definition

The **Yamabe invariant** is the constant

$$\lambda(M) = \inf\{Q_g(\varphi) \mid \varphi \in C^{\infty}(M) \text{ and positive}\}$$
$$= \inf\{Q_g(\varphi) \mid \varphi \in L_1^2(M)\}.$$

 $\lambda(M)$ is an invariant of the conformal class of (M,g).

Main Results

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

Main Results

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

Theorem B (Aubin)

If M has dimension $n \geq 6$ and M is not locally conformally flat, then $\lambda(M) < \lambda(S^n)$.

Theorem C (Schoen)

If M has dimension n=3,4,5 or M is locally conformally flat, then either $\lambda(M)<\lambda(S^n)$ or M is conformal to the n-sphere.

Definition

A map $F:(M,g)\to (N,h)$ is **conformal** if the induced metric F^*h is conformal to the original metric g on M. If F is a diffeomorphism, then we call F a **conformal diffeomorphism**.

Definition

A map $F:(M,g)\to (N,h)$ is **conformal** if the induced metric F^*h is conformal to the original metric q on M. If F is a diffeomorphism, then we call F a **conformal diffeomorphism**.

Example

The stereographic map $\sigma: S^n - \{N\} \to \mathbb{R}^n$ is a conformal diffeomorphism.

We can use this to construct the group of conformal diffeomorphisms of S^n . It is the group generated by rotations, $\sigma^{-1}\tau_{\nu}\sigma$ and $\sigma^{-1}\delta_{\alpha}\sigma$.

The Yamabe Problem on the Sphere

Let (S^n, \bar{g}) be the n-sphere with standard metric. The scalar curvature of \bar{g} is constant.

Let (S^n, \bar{q}) be the *n*-sphere with standard metric. The scalar curvature of \bar{g} is constant. So the Yamabe problem is solvable on the sphere. Moreover, one can prove the following.

Theorem

The Yamabe functional $Q_q(\varphi)$ on (S^n, \bar{g}) is minimized by constant multiples of \bar{g} and its images under conformal diffeomorphisms. These are the only metrics conformal to \bar{g} with constant scalar curvature.

An Upper Bound for $\lambda(M)$

Lemma (Aubin)

For any compact Riemannian manifold (M,g) of dimension $n\geq 3,\ \lambda(M)\leq \lambda(S^n)=\Lambda.$

An Upper Bound for $\lambda(M)$

Lemma (Aubin)

For any compact Riemannian manifold (M,g) of dimension $n \geq 3$, $\lambda(M) \leq \lambda(S^n) = \Lambda$.

Proof.

Step 1. Consider the function $\varphi = \eta \cdot u_{\alpha}(x)$ where

- η is a radical cut off function, such that $0 \le \eta \le 1$, and $\operatorname{supp} \eta = B_{2\epsilon}$;
- $u_{\alpha}(x) = \left(\frac{|x|^2 + \alpha^2}{\alpha}\right)^{(n-2)/2}$, u_{α} satisfies $a\|\nabla u_{\alpha}\|_2^2 = \Lambda \|u_{\alpha}\|_p^2$.

We can find an upper bound for $\int_{\mathbb{R}^n} a |\nabla \varphi|^2 dx$. Note that φ and η are radical, $\nabla = \partial_r$.

$$\begin{split} \int_{\mathbb{R}^n} a |\nabla \varphi|^2 \, \mathrm{d}x &= \int_{B_{2\epsilon}} (a\eta^2 |\nabla u_\alpha| + 2\alpha \eta u_\alpha < \nabla \eta, \nabla u_\alpha > + a u_\alpha^2 |\nabla \eta|^2) \, \mathrm{d}x \\ &\leq \int_{\mathbb{R}^n} a |\partial_r u_\alpha|^2 \, \mathrm{d}x + C \int_{B_{2\epsilon} - B_{\epsilon}} (u_\alpha |\partial_r u_\alpha| + u_\alpha^2) \, \mathrm{d}x \\ &\leq \Lambda \Big(\int_{B_{2\epsilon}} \varphi^p \, \mathrm{d}x \Big)^{2/p} + O(\alpha^{n-2}) \end{split}$$

The lase step is because $u_{\alpha} \leq \alpha^{(n-2)/2} \cdot r^{2-n}$ and $|\partial_r u_{\alpha}| \le (n-2)\alpha^{(n-2)/2} \cdot r^{1-n}$

$$\int_{B_{2\epsilon}} a |\nabla \varphi|^2 \, dV_g \le (1 + C\epsilon) (\Lambda ||\varphi||_p^2 + C\alpha^{n-2}),$$

and

$$Q_g(\varphi) = \frac{\int_M a |\nabla \varphi|^2 + S\varphi^2 \, dV_g}{\|\varphi\|_p^2} \le (1 + C\epsilon)(\Lambda + C\alpha).$$

Choosing ϵ and α small, then $\lambda(M) \leq \Lambda$.

Proof of Theorem A

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

• Direct approach: construct a minimizing sequence u_i , with $\|u_i\|_p=1$ such that $Q_g(u_i)\to \lambda(M)$.

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

Direct approach: construct a minimizing sequence u_i , with $||u_i||_p = 1$ such that $Q_q(u_i) \to \lambda(M)$. This does not work: Although $\varphi = \lim u_i \in L^2_1(M)$, there is no guarantee for $\|\varphi\|_p \neq 0$, because the inclusion $L_1^2 \subset L^p$ is not compact.

Proof of Theorem A

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

- Direct approach: construct a minimizing sequence u_i , with $\|u_i\|_p=1$ such that $Q_g(u_i)\to \lambda(M)$. This does not work: Although $\varphi=\lim u_i\in L^2_1(M)$, there is no guarantee for $\|\varphi\|_p\neq 0$, because the inclusion $L^2_1\subset L^p$ is not compact.
- Instead we seek for a subcritical solution.

Proof of Theorem A

Theorem A (Yamabe, Trudinger, Aubin)

For any compact manifold M with $\lambda(M) < \lambda(S^n)$, the Yamabe problem is solvable.

- Direct approach: construct a minimizing sequence u_i , with $||u_i||_p = 1$ such that $Q_g(u_i) \to \lambda(M)$. This does not work: Although $\varphi = \lim u_i \in L^2_1(M)$, there is no guarantee for $||\varphi||_p \neq 0$, because the inclusion $L^2_1 \subset L^p$ is not compact.
- Instead we seek for a subcritical solution. The following equation is call subcritical equation

$$\Box \varphi = \lambda_s \, \varphi^{s-1}. \tag{\star'}$$

$$1 \quad s-1 \quad p-1 \qquad \infty$$

$$Q^s(\varphi) = \frac{E(\varphi)}{\|\varphi\|_s^2}, \, \lambda_s = \inf\{Q^s(\varphi) : \varphi \in C^\infty(M)\}.$$

Proof of Thm A.

Step 1. For $2 \le s < p$, there exists a smooth positive solution φ_s to the subcritical equation, with $Q^s(\varphi_s) = \lambda_s$ and $\|\varphi_s\|_s = 1$.

Step 1. For $2 \le s < p$, there exists a smooth positive solution φ_s to the subcritical equation, with $Q^s(\varphi_s) = \lambda_s$ and $\|\varphi_s\|_s = 1$.

Similar as the direct approach before, we pick a minimizing sequence. This time the inclusion $L_1^2 \subset L^s$ is compact.

Proof of Thm A.

Step 1. For $2 \le s < p$, there exists a smooth positive solution φ_s to the subcritical equation, with $Q^s(\varphi_s) = \lambda_s$ and $\|\varphi_s\|_s = 1$.

Similar as the direct approach before, we pick a minimizing sequence. This time the inclusion $L_1^2 \subset L^s$ is compact.

Step 2. If $\int_M \mathrm{d} V_g = 1$, then for $2 \le s \le p$, $|\lambda_s|$ is non-increasing and if $\lambda(M) \ge 0$, λ_s is continuous from the left.

Proof of Thm A.

Step 1. For $2 \le s < p$, there exists a smooth positive solution φ_s to the subcritical equation, with $Q^s(\varphi_s) = \lambda_s$ and $\|\varphi_s\|_s = 1$.

Similar as the direct approach before, we pick a minimizing sequence. This time the inclusion $L_1^2 \subset L^s$ is compact.

Step 2. If $\int_M \mathrm{d} V_g = 1$, then for $2 \le s \le p$, $|\lambda_s|$ is non-increasing and if $\lambda(M) \ge 0$, λ_s is continuous from the left.

We can multiply the metric g by a constant, so that the volume is always 1. Since $E(u)=\int_M a|\nabla u|^2+Su^2\,\mathrm{d}V_g$ does not depend on s,

$$Q^{s}(u)\|u\|_{s}^{2} = Q^{s'}(u)\|u\|_{s'}^{2}.$$

If $s \leq s'$, then $||u||_s \leq ||u||_{s'} \implies Q^{s'}(u) \leq Q^s(u)$ and thus $|\lambda_s|$ is non-increasing.

If $\lambda_s < 0$ for some s then we can choose a smooth function u, such that $Q^s(u) < 0$, then $Q^{s'}(u) < 0$ for all s', and thus $\lambda_{s'} < 0.$

If we assueme $\lambda(M) \geq 0$, then $\lambda_s \geq 0$ for $2 \leq s \leq p$.

The definition of λ_s gives, $\forall \epsilon > 0$, $\exists u \in C^{\infty}(M)$ such that $Q^s(u) < \lambda_s + \epsilon$. Since $\|u\|_s$ is continuous as a function of s, when $s' \leq s$ and s' close to s,

$$\lambda_{s'} \le Q^{s'}(u) < \lambda_s + 2\epsilon.$$

So λ_s is continuous from the left.

Step 3. Suppose $\lambda(M) < \Lambda$, and let φ_s be the subcritical solution. Then there exists C > 0, s_0 and r with s_0 such that $\|\varphi_s\|_r \leq C$ for all $s \geq s_0$.

Step 3. Suppose $\lambda(M) < \Lambda$, and let φ_s be the subcritical solution. Then there exists C > 0, s_0 and r with s_0 such that $\|\varphi_s\|_r \leq C$ for all $s \geq s_0$.

For $\delta > 0$ and $w = \varphi_s^{1+\delta}$, the sharp Sobolev inequality and Hölder's inequality imply

$$||w||_p^2 \le (1+\epsilon) \frac{(1+\delta)^2}{1+2\delta} \cdot \frac{\lambda_s}{\Lambda} \cdot ||\varphi_s||_{(s-2)n/2}^{s-2} \cdot ||w||_p^2 + C'_{\epsilon} \cdot ||w||_2^2.$$

We need $\lambda(M) < \Lambda$ to choose δ and ϵ , so that $||w||_n^2 \le C||w||_2^2$. Then

$$||w||_2 = 1 \implies ||w||_p = ||\varphi_s^{1+\delta}||_{p(1+\delta)}^{1+\delta} \le \tilde{C}.$$

Step 4. As $s \to p$, there is a subsequence of subcritical solutions that converges uniformly. So the limiting function φ is the solution of $\Box \varphi = \lambda(M) \varphi^{p-1}$.

Step 4. As $s \to p$, there is a subsequence of subcritical solutions that converges uniformly. So the limiting function φ is the solution of $\Box \varphi = \lambda(M) \varphi^{p-1}$.

The functions $\{\varphi_s\}$ are uniformly bounded in $L^r(M)$, and thus in $C^{2,\alpha}(M)$. Apply Arzela-Ascoli Theorem, to obtain a subsequence in C^2 that converges to $\varphi \in C^2(M)$.

One can check that φ solves the equation above (needs Step 2), and $\varphi \in C^{\infty}(M)$ (ellptic regularity).

In Step 3, we assumed $\lambda \geq 0$. The fact that $\Lambda = \lambda(S^n) > 0$ completes the proof.

Remarks on Theorem B and C

Theorem B (Aubin)

If M has dimension $n \geq 6$ and M is not locally conformally flat, then $\lambda(M) < \lambda(S^n)$.

Theorem C (Schoen)

If M has dimension n=3,4,5 or M is locally conformally flat, then either $\lambda(M)<\lambda(S^n)$ or M is conformal to the n-sphere.

If M has dimension $n \geq 6$ and M is not locally conformally flat, then $\lambda(M) < \lambda(S^n)$.

In this case the estimation of $E(\varphi)$ gives:

$$E(\varphi) = \begin{cases} \Lambda \|\varphi\|_p^2 - C|W(P)|^2 \alpha^4 + o(\alpha^{-k-1}) & n > 6\\ \Lambda \|\varphi\|_p^2 - C|W(P)|^2 \alpha^4 \ln(1/\alpha) + O(\alpha^{-4}) & n = 6 \end{cases}$$

If M is not locally conformally flat, then there exists $P\in M$ with $|W(P)|^2>0$, so $\lambda(M)<\Lambda.$

Theorem C (Schoen)

If M has dimension n=3,4,5 or M is locally conformally flat, then either $\lambda(M)<\lambda(S^n)$ or M is conformal to the n-sphere.

In this case the estimation of $E(\varphi)$ gives:

$$E(\varphi) = \begin{cases} \Lambda \|\varphi\|_p^2 - C\mu\alpha^{-k} + O(\alpha^{-k-1}) & n \neq 6 \text{ or } M \text{ conformally flat } \\ \Lambda \|\varphi\|_p^2 - C\mu\alpha^{-4}\ln\alpha + O(\alpha^{-4}) & n = 6 \end{cases}$$

If the distortion $\mu > 0$ and $\lambda(M) > 0$, then $\lambda(M) < \Lambda$.

Reference

Lee, J. M. and Parker, T. H. (1987) 'The Yamabe Problem', Bulletin of the American Mathematical Society, 17(1), pp. 37-91. doi: 10.1090/S0273-0979-1987-15514-5.