

Our Goal

 Build a reliable and accurate model that can assist healthcare professionals in early diagnosis and management of diabetes.

Our Approach

 The model will be trained on preprocessed data, and its performance will be evaluated using various metrics such as accuracy, confusion matrix, classification report, ROC curve, and cross-validation.

Sections

- 1. Data Overview
- 2. Data Analyzing and Preprocessing
- 3. Model Selection
- 4. Model Evaluation and Comparison
- 5. Conclusion and Real World Application

Dataset Overview

1	Age	16 - 90
2	Sex	Male / Female
3	Polyuria	Yes / No
4	Polydipsia	Yes / No
5	Sudden weight loss	Yes / No
6	Weakness	Yes / No
7	Polyphagia	Yes / No
8	Genital thrush	Yes / No
9	Visual blurring	Yes / No
10	Itching	Yes / No
11	Irritability	Yes / No
12	Delayed healing	Yes / No
13	Partial paresis	Yes / No
14	Muscle stiness	Yes / No
15	Alopecia	Yes / No
16	Obesity	Yes / No
18	Class	Positive / Negative

Dataset Overview

1	Age	16 - 90
2	Sex	Male / Female
3	Polyuria	Yes / No
4	Polydipsia	Yes / No
5	Sudden weight loss	Yes / No
6	Weakness	Yes / No
7	Polyphagia	Yes / No
8	Genital thrush	Yes / No
9	Visual blurring	Yes / No
10	Itching	Yes / No
11	Irritability	Yes / No
12	Delayed healing	Yes / No
13	Partial paresis	Yes / No
14	Muscle stiness	Yes / No
15	Alopecia	Yes / No
16	Obesity	Yes / No
18	Class	Positive / Negative

<class 'pandas.core.frame.DataFrame'> RangeIndex: 520 entries, 0 to 519 Data columns (total 17 columns): Column Dtype Non-Null Count Age 520 non-null int64 object Gender 520 non-null Polyuria 520 non-null object Polydipsia 520 non-null object 70 sudden weight loss 520 non-null object weakness 520 non-null object 60-Polyphagia 520 non-null object Genital thrush 520 non-null object visual blurring 520 non-null object Itching 520 non-null object object Irritability 520 non-null delayed healing 520 non-null object partial paresis 520 non-null object 30 muscle stiffness 520 non-null object Alopecia 520 non-null object 20. Obesity 520 non-null object class 520 non-null object dtypes: int64(1), object(16) memory usage: 69.2+ KB

Dataset Overview

1	Age	16 - 90
2	Sex	Male / Female
3	Polyuria	Yes / No
4	Polydipsia	Yes / No
5	Sudden weight loss	Yes / No
6	Weakness	Yes / No
7	Polyphagia	Yes / No
8	Genital thrush	Yes / No
9	Visual blurring	Yes / No
10	Itching	Yes / No
11	Irritability	Yes / No
12	Delayed healing	Yes / No
13	Partial paresis	Yes / No
14	Muscle stiness	Yes / No
15	Alopecia	Yes / No
16	Obesity	Yes / No
18	Class	Positive / Negative

Correlation Matrix

Encoded	X Value:				
[[0.324	32432 0.	1.	1.	0.	0.
1.	1.	0.	0.	1.	1.
0.	1.	0.	1.	0.	0.
1.	1.	0.	0.	1.	1.
0.	0.	1.	0.	1.	0.
1.]				
[0.5675	6757 0.	1.	1.	0.	1.
0.	1.	0.	0.	1.	1.
0.	1.	0.	0.	1.	1.
0.	1.	0.	1.	0.	0.
1.	1.	0.	0.	1.	1.
0.]				
[0.3378	3784 0.	1.	0.	1.	1.
0.	1.	0.	0.	1.	0.
1.	1.	0.	1.	0.	0.
1.	1.	0.	0.	1.	1.
0.	0.	1.	0.	1.	1.
0.	11				

-0.25

Model Selection

A. Train Test Split

- 80% Training Set
- 20% Testing Set

B. Models

- Logistic Regression (Baseline model)
- Support Vector Machine Classification Linear Kernel
- Support Vector Machine Classification Polynomial Kernel

Model Selection: Accuracy

1. Logistic Regression

Model Accuracy with 1000 max_iters for lr: 0.9230769230769231

- 1. SVM Classification
 - a. "Linear" kernel, choose C=4
 - b. "Polynomial" kernel, choose C=1

Model accuracy score with linear, C = 4, with the value of: 0.9423 Model accuracy score with polynomial, C = 1:, with the value of: 0.9904

Model Evaluation

- 1. Confusion Matrix
- 2. Classification Report
- 3. ROC_AUC Curve
- 4. Cross-Validation
- 5. KFold Validation (k = 10)

Confusion Matrix

Logistic Regression (max_iter=1000)

True Positives(TP) = 28
True Negatives(TN) = 68
False Positives(FP) = 5
False Negatives(FN) = 3

SVM Classifier (kernel: linear, C=4)

True Positives(TP) = 30
True Negatives(TN) = 68
False Positives(FP) = 3
False Negatives(FN) = 3

SVM Classifier (kernel: polynomial, C=1)

True Positives(TP) = 32
True Negatives(TN) = 71
False Positives(FP) = 1
False Negatives(FN) = 0

Classification Reports

Classification Report for Logistic Regression	Classification	Report	for	Logistic	Regression
---	----------------	--------	-----	----------	------------

	precision	recall	f1-score	support
Negative	0.90	0.85	0.88	33
Positive	0.93	0.96	0.94	71
accuracy			0.92	104
macro avg	0.92	0.90	0.91	104
weighted avg	0.92	0.92	0.92	104

Classification Report for Linear SVM:

	precision	recall	f1-score	support		
Negative	0.91	0.91	0.91	33		
Positive	0.96	0.96	0.96	71		
accuracy			0.94	104		
macro avg	0.93	0.93	0.93	104		
weighted avg	0.94	0.94	0.94	104		
Classification Person for Polymenial CIN.						
Classification Report for Polynomial SVM:						
	nrecision	recall	f1_score	support		

	precision	recall	f1-score	support
Negative	0.97	0.97	0.97	33
Positive	0.99	0.99	0.99	71
accuracy			0.98	104
macro avg	0.98	0.98	0.98	104
weighted avg	0.98	0.98	0.98	104

ROC_AUC: Logistic Regression vs. SVC

Margin of the decision boundary C: cost parameter Linear SVC: C = 4, Polyn SVC: C = 1

Cross-Validation Evaluation

10-fold Cross-Validation

10-Fold Cross-Validation, shuffle data

Reference

- [1] Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press, New York, NY, USA.
- [2] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
- [3] Travis E. Oliphant. 2006. A guide to NumPy, USA: Trelgol Publishing.
- [4] Wes McKinney. 2010. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference (SciPy 2010). 51 56.
- [5] John D. Hunter. 2007. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering 9, 3 (2007), 90-95.
- [6] Michael Waskom, Olga Botvinnik, Paul Hobson, Saulius Lukauskas, Emmanuelle Gouillart, Andreas Mueller, ... Alistair Miles. (2017). seaborn: v0.8.1 (February 2017). Zenodo. http://doi.org/10.5281/zenodo.883859
- [7] OpenAI. (2020). GPT-3.5. https://openai.com/blog/gpt-3-5-billion-parameters/
- [8] David Newman, 2008. Bag of Words Data Set. UCI Machine Learning Repository, California, USA. https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

Q&A?