State graphs

Constraints on Input Labels for Every State Sk

- 1. If I_i and I_j are any pair of input labels on arcs exiting state S_k , then I_iI_j = 0 if $i \neq j$.
- 2. If n arcs exit state S_k and the n arcs have input labels I_1 , I_2 , ..., I_n , respectively, then $I_1 + I_2 + ... + I_n = 1$.

1. state table

shows what the output is and what the next state is, for each input combination and each state.

2. state diagram (or state graph)

a graphical representation of the system behavior, showing for each input combination and each state what the output is and what the next state is

Table 6.1 A state table.

Present	Next		
state	x = 0	x = 1	Output
A	A	В	0
В	A	C	0
C	A	D	0
D	A	D	1

Figure 6.3 A state diagram.

Notation the present state q the next state q^* , q^{\dagger} , $q(t+\Delta)$ Next state?

what will be stored in memory after this clock transition

Timing trace for the Table 6.1

Table 6.1 A state table.

Present	Next		
state	x = 0	x = 1	Output
A	A	В	0
В	A	C	0
C	A	D	0
D	A	D	1

Figure 6.3 A state diagram.

Trace 6.2 Trace with state

х	0	1	1	0	1	1	1	0	0	1	0	1	1	1	1	1	0	0			
q	7	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	D	\boldsymbol{A}	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{A}	\boldsymbol{B}	C	D	D	D	\boldsymbol{A}	\boldsymbol{A}	?	
z	?	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	1	0	0	0	0

Terminology once more

State: 메모리에 저장되어 있는 2진수 값.

State table: PS와 각 입력조합에 대하여 출력과 NS를 나타낸 도표 (NS: 다음 클럭 후 메모리에 저장될 값)

State diagram or state graph: 상태표를 그림으로 나타낸 것.

Table 5.1 A sample state table.

	(7 *		z
q	x = 0	<i>x</i> = 1	x = 0	<i>x</i> = 1
Α	Α	В	0	0
В	С	В	1	0
С	Α	D	0	0
D	С	C	0	0

Figure 5.3 A state diagram.

Sequential system is often called as *state machine* or *finite state machine*(FSM)

Flip-flop

- D, JK, SR, T
- clocked binary storage device
- rising (leading)-edge triggered or falling (or trailing)-edge triggered

Figure 5.6 Trailing-edge triggered flip flop timing.

D Flip-flop

Figure 6.7 *D* flip-flop diagrams.

Figure 6.8 *D* flip flop state diagram.

Timing diagram of DFF

Preset and clear

Figure 6.13 Flip flop with clear and preset inputs.

Table 6.3 D flip flop with clear and preset inputs behavioral table.

PRE'	CLR'	D	q	q*	
0 1	1 0	X X	X X	1 0	static immediate
0	0	Χ	Χ	_	not allowed
1	1	0	0	0	
1	1	0	1	0	clocked
1	1	1	0	1	(as before)
1	1	1	1	1	

Figure 6.14 Time for flip flop with clear and preset.

S/RFF

Figure 6.16 SR flip flop timing diagram. Figure 6.15 Clock SR flip flop state diagram. CLR' 10 00 01 00 s SR0 10 R 01 q

TFF

J/K FF

Analysis of sequential systems

From state machine to state table or state diagram

Figure 6.21 A D flip flop *Moore* model circuit.

Table 6.7a Partial state table

	q *	q* q*						
q_1q_2	x = 0	x = 1	z					
0 0	0	1	1					
0 1	0	1	0					
10	1	1	1					
1 1	0	0	0					

Table 6.7b Complete state table

	q* q*					
$q_{1}q_{2}$	x = 0	x = 1	z			
0.0	0 0	1 0	1			
0 1	0.0	1 0	0			
10	10	1 1	1			
1 1	0 0	0 1	0			

Figure 6.22 A Moore state diagram.

Figure 6.23 A Moore model circuit.

Outline of state table.

	A *	B*	
A B	x = 0	<i>x</i> = 1	z
0 0			0
0 1			1
1 0			1
1 1			1

Table 6.8a State table with first two entries.

	A*	B*	
A B	x = 0	<i>x</i> = 1	z
0 0	0 1		0
0 1	0 0		1
1 0			1
1 1			1

$$A B = 0 0, x = 0 \rightarrow J_A = K_A = 0 \text{ and } J_B = K_B = 1$$

$$AB = 01$$
, $x = 0 \rightarrow J_A = K_A = 0$ and $J_B = K_B = 1$

$$J_A = x \quad K_A = xB'$$

$$J_B = K_B = x + A'$$

$$z = A + B$$

Table 6.8b State table with A^* entered.

	A *		
A B	x = 0	<i>x</i> = 1	z
0 0	0	1	0
0 1	0	1	1
1 0	1	0	1
1 1	1	1	1

 Table 6.8c
 Completed state table.

	A *		
A B	x = 0	<i>x</i> = 1	z
0 0	0 1	1 1	0
0 1	0 0	1 0	1
1 0	1 0	0 1	1
1 1	1 1	1 0	1

Figure 6.25 State diagram for Table 6.8.

Timing trace 6.3 Trace for Table 6.8.

x A B	0 0 → 0	0	1 0 0	0 1 1	1 1 1	1 1 0	0 0 1	0 0	1
Z	↓ <mark>○</mark>	1	0	1	1	1	1	0	1

Check the timing diagram in Fig. 6.24

Figure 6.24 Timing diagram for Table 6.8.

Figure 6.25 State diagram for Table 6.8.

An Example: A Mealy machine

Figure 6.26

1. Logic equation

$$D_1 = xq_1 + xq_2$$

$$D_2 = xq_1'q_2'$$

$$z = xq_1$$

$$q_1^* = xq_1 + xq_2$$
$$q_2^* = xq_1'q_2'$$

2. State table

	q*		z	
q	x = 0	<i>x</i> = 1	x = 0	x = 1
0 0	0 0	0 1	0	0
0.1	0 0	1 0	0	0
1 0	0 0	1 0	0	1
1 1	0 0	1 0	0	1

Table 6.9

3. State diagram

4. Read the state diagram

- CE 6의 해. (3개의 연속된 1을 체크)
- state "11" is unreachable
- 3 states problem
- 초기화를 하지 않아도 처음 0 이 입력된 후 정상 동작

5. Simulation results: timing diagram

Glitch in the output <-- Mealy machine

