Technische Universität Berlin

Fakultät II - Institut für Mathematik

LinAlg - Team

Lineare Algebra für Ingenieure

Wiederholungsaufgaben zur Klausurvorbereitung - 1. Blatt

Achtung: Diese Aufgaben lassen keine Rückschlüsse auf die Aufgaben in der Klausur zu!

1. Aufgabe. Gegeben seien die Matrix
$$A := \begin{bmatrix} -2 & -4 & 3 & 0 & 6 \\ 3 & 6 & 2 & 0 & 4 \\ 1 & 2 & 1 & 0 & 3 \end{bmatrix} \in \mathbb{R}^{3,5}$$
 und der Vektor $\vec{b} := \begin{bmatrix} -6 \\ 9 \\ 4 \end{bmatrix}$.

- (a) Bestimmen Sie die Lösungsmenge des LGSs $A\vec{x} = \vec{b}$.
- (b) Gibt es einen Vektor \vec{c} , so dass das LGS $A\vec{x} = \vec{c}$ genau eine Lösung hat?
- (c) Bestimmen Sie eine Basis des Kerns von A.
- (d) Bestimmen Sie eine Basis des Bildes von A.
- (e) Ist die Abbildung $A: \mathbb{R}^5 \to \mathbb{R}^3; \vec{x} \mapsto A\vec{x}$ injektiv / surjektiv / bijektiv?

2. Aufgabe. Gegeben seien die Vektoren
$$\vec{v}_1 := \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \vec{v}_2 := \begin{bmatrix} -1 \\ -2 \\ 2 \end{bmatrix}$$
 in dem euklidischen Raum \mathbb{R}^3

ausgestattet mit dem Standardskalarprodukt und dessen assoziierter Norm.

- (a) Sind \vec{v}_1 und \vec{v}_2 orthogonal zueinander?
- (b) Warum bilden \vec{v}_1 und \vec{v}_2 keine Basis des \mathbb{R}^3 ?
- (c) Wählen Sie einen Vektor \vec{v}_3 so, dass $\mathcal{B} := \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ eine Basis des \mathbb{R}^3 ist.
- (d) Wenden Sie das Gram-Schmidt-Verfahren auf die Basis \mathcal{B} an, um \mathcal{B} in eine Orthonormalbasis \mathcal{B}_{ONB} zu überführen.
- (e) Bestimmen Sie den Koordinatenvektor von $\begin{bmatrix} 5 \\ -2 \\ 3 \end{bmatrix}$ bzgl. \mathcal{B}_{ONB} .
- (f) Bestimmen Sie eine QR-Zerlegung der Matrix $[\vec{v_1} \ \vec{v_2} \ \vec{v_3}]$.
- **3.** Aufgabe. Entscheiden Sie, ob die folgenden Mengen Teilräume des $\mathbb{R}^{2,2}$ sind.

$$\text{(a) } M_1 := \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \in \mathbb{R}^{2,2} \mid \det \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] = 0 \right\}$$

(b)
$$M_2:=\left\{\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\in\mathbb{R}^{2,2}\mid\det\left[\begin{array}{cc}a&d\\2&3\end{array}\right]=0\right\}$$

(c)
$$M_3 := \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{R}^{2,2} \mid ad = 1 \right\}$$