Material Requirements Planning (MRP) and ERP

14

PowerPoint presentation to accompany
Heizer and Render
Operations Management, Global Edition, Eleventh Edition
Principles of Operations Management, Global Edition, Ninth Edition

PowerPoint slides by Jeff Heyl

Outline

- Global Company Profile: Wheeled Coach
- Dependent Demand
- Dependent Inventory Model Requirements
- MRP Structure
- MRP Management

Outline - Continued

- Lot-Sizing Techniques
- Extensions of MRP
- MRP In Services
- Enterprise Resource Planning (ERP)

Learning Objectives

When you complete this chapter you should be able to:

- 1. **Develop** a product structure
- 2. Build a gross requirements plan
- 3. Build a net requirements plan
- **4. Determine** lot sizes for lot-for-lot, EOQ, and POQ

Learning Objectives

When you complete this chapter you should be able to:

- 5. Describe MRP II
- 6. **Describe** closed-loop MRP
- 7. Describe ERP

MRP for Wheeled Coach

- Largest manufacturer of ambulances in the world
- International competitor
- 12 major ambulance designs
 - ▶ 18,000 different inventory items
 - 6,000 manufactured parts
 - 12,000 purchased parts

MRP for Wheeled Coach

- Four Key Tasks
 - Material plan must meet both the requirements of the master schedule and the capabilities of the production facility
 - Plan must be executed as designed
 - Minimize inventory investment
 - Maintain excellent record integrity

Dependent Demand

For any product for which a schedule can be established, dependent demand techniques should be used

Dependent Demand

Benefits of MRP

- 1. Better response to customer orders
- 2. Faster response to market changes
- Improved utilization of facilities and labor
- 4. Reduced inventory levels

Dependent Demand

- The demand for one item is related to the demand for another item
- Given a quantity for the end item, the demand for all parts and components can be calculated
- In general, used whenever a schedule can be established for an item
- MRP is the common technique

Dependent Inventory Model Requirements

Effective use of dependent demand inventory models requires the following

- 1. Master production schedule
- 2. Specifications or bill of material
- 3. Inventory availability
- 4. Purchase orders outstanding
- Lead times

Master Production Schedule (MPS)

- Specifies what is to be made and when
- Must be in accordance with the aggregate production plan
- Inputs from financial plans, customer demand, engineering, supplier performance
- As the process moves from planning to execution, each step must be tested for feasibility
- The MPS is the result of the production planning process

Master Production Schedule (MPS)

- MPS is established in terms of specific products
- Schedule must be followed for a reasonable length of time
- The MPS is quite often fixed or frozen in the near term part of the plan
- The MPS is a rolling schedule
- The MPS is a statement of what is to be produced, not a forecast of demand

The Planning Process

The Planning Process

Figure 14.1

The Planning Process

Figure 14.1

Aggregate Production Plan

Figure 14.2

Months		Jan	uary		February					
Aggregate Plan (Shows the total quantity of amplifiers)	1,500				1,200					
Weeks	1	2	3	4	5	6	7	8		
Master Production Schedule (Shows the specific type and quantity of amplifier to be produced										
240-watt amplifier	100		100		100		100			
150-watt amplifier		500		500		450		450		
75-watt amplifier			300				100			

Master Production Schedule (MPS)

Can be expressed in any of the following terms:

- A customer order in a job shop (make-toorder) company
- 2. Modules in a repetitive (assemble-to-order or forecast) company
- An end item in a continuous (stock-toforecast) company

MPS Example

TABLE 14.1 Master Production Schedule for Chef John's Buffalo Chicken Mac & Cheese												
GROSS REQUIREMENTS FOR CHEF JOHN'S BUFFALO MAC & CHEESE												
Day	6	7	8	9	10	11	12	13	14	And so on		
Quantity	450		200	350	525		235	375				

- List of components, ingredients, and materials needed to make product
- Provides product structure
 - Items above given level are called parents
 - Items below given level are called components or children

BOM Example

BOM Example

For an order of 50 Awesome speaker kits

Part B: 2 x number of As =	(2)(50) =	100
----------------------------	-----------	-----

Part C:
$$3 \times 10^{-10} = 3 \times 10^{-10} = 15$$

$$+ 2 \times \text{number of Fs} = (2)(100) + (2)(300) = 800$$

$$+ 2 \times \text{number of Cs} = (2)(100) + (2)(150) = 500$$

Part F:
$$2 \times 10^{-2} = 2 \times 10$$

Part G: 1 x number of Fs =
$$(1)(300) = 300$$

$$G_{(1)}$$
 $G_{(2)}$

- Modular Bills
 - Modules are not final products but components that can be assembled into multiple end items
 - Can significantly simplify planning and scheduling

- Planning Bills
 - Also called "pseudo" or super bills
 - Created to assign an artificial parent to the BOM
 - Used to group subassemblies to reduce the number of items planned and scheduled
 - Used to create standard "kits" for production

- Phantom Bills
 - Describe subassemblies that exist only temporarily
 - Are part of another assembly and never go into inventory
- Low-Level Coding
 - Item is coded at the lowest level at which it occurs
 - BOMs are processed one level at a time

Accurate Inventory Records

- Accurate inventory records are absolutely required for MRP (or any dependent demand system) to operate correctly
- Generally MRP systems require more than 99% accuracy

Purchase Orders Outstanding

- A by-product of well-managed purchasing and inventory control department
- Outstanding purchase orders must accurately reflect quantities and scheduled receipts

Lead Times for Components

- The time required to purchase, produce, or assemble an item
 - For production the sum of the move, setup, and assembly or run times
 - For purchased items the time between the recognition of a need and when its available for production

TABLE 14.2

Lead Times for Awesome Speaker Kits (As)

COMPONENT	LEAD TIME
А	1 week
В	2 weeks
С	1 week
D	1 week
Е	2 week
F	3 weeks
G	2 weeks

Time-Phased Product Structure

Figure 14.3

MRP Structure

Figure 14.4

Determining Gross Requirements

- Starts with a production schedule for the end item – 50 units of Item A in week 8
- Using the lead time for the item, determine the week in which the order should be released a 1 week lead time means the order for 50 units should be released in week 7
- This step is often called "lead time offset" or "time phasing"

Determining Gross Requirements

- From the BOM, every Item A requires 2 Item Bs – 100 Item Bs are required in week 7 to satisfy the order release for Item A
- The lead time for the Item B is 2 weeks release an order for 100 units of Item B in week 5
- The timing and quantity for component requirements are determined by the order release of the parent(s)

Determining Gross Requirements

- The process continues through the entire BOM one level at a time – often called "explosion"
- By processing the BOM by level, items with multiple parents are only processed once, saving time and resources and reducing confusion
- Low-level coding ensures that each item appears at only one level in the BOM

Gross Requirements Plan

TABLE 14.3

Gross Material Requirements Plan for 50 Awesome Speaker Kits (As) with Order Release Dates Also Shown

		WEEK								
	1	2	3	4	5	6	7	8	LEAD TIME	
A. Required date								50		
Order release date							50		1 week	
B. Required date							100			
Order release date					100				2 weeks	
C. Required date							150			
Order release date						150			1 week	
E. Required date					200	300				
Order release date			200	300					2 weeks	
F. Required date						300				
Order release date			300						3 weeks	
D. Required date			600		200					
Order release date		600		200					1 week	
G. Required date			300							
Order release date	300								2 weeks	

Net Requir

ITEM	ON HAND	ITEM	ON HAND
Α	10	E	10
В	15	F	5
С	20	G	0
D	10		

Lot	Lead Time	On	Safety	Allo-	Low- Level	Item Identi-					We	ek			
Size	(weeks)	Hand	Stock	cated	Code	fication		1	2	3	4	5	6	7	8
Lot-	1	10	_	_	0	Α	Gross Requirements								50
for-	'	10				_ ^	Scheduled Receipts								- 50
Lot							Projected On Hand 10	10	10	10	10	10	10	10	10
							Net Requirements	-10	10	10	-10	-10	10	-10	40
							Planned Order Receipts								,40
							Planned Order Releases							40 🖍	
Lot-	2	15	_	_	1	В	Gross Requirements							80 ^A	
for-							Scheduled Receipts								
Lot							Projected On Hand 15	15	15	15	15	15	15	15	
							Net Requirements							65	
							Planned Order Receipts							-65	
							Planned Order Releases					65 💣			
Lot-	1	20	_	_	1	С	Gross Requirements							120 ^A	
for-							Scheduled Receipts							120	
Lot							Projected On Hand 20	20	20	20	20	20	20	20	
							Net Requirements							100	
							Planned Order Receipts							,100	
							Planned Order Releases						100		

Net Requirements Plan

Lot-	2	10	_	_	2	Е	Gross Requirements					130 ^B	200°	
for-							Scheduled Receipts							
Lot							Projected On Hand 10	10	10	10	10	10		
							Net Requirements					120	200	
							Planned Order Receipts					-120_	200	
							Planned Order Releases			120	200			
	_	_				_	I							
Lot-	3	5	_	_	2	F	Gross Requirements						200°	
for-							Scheduled Receipts							
Lot							Projected On Hand 5	5	5	5	5	5	5	
							Net Requirements						195	
							Planned Order Receipts						-195	
							Planned Order Releases			195 -				
1 -4		40			_	_	Ouesa De muinomento			ooo F		130 ^B		
Lot-	1	10	_	_	3	D	Gross Requirements			390 ^F		1305		
for-							Scheduled Receipts	40	40	40				
Lot							Projected On Hand 10	10	10	10				
							Net Requirements			380		130		
							Planned Order Receipts			,380		/130		
							Planned Order Releases		380		130			
Lot-	2	0	_		3	G	Gross Requirements			195 ^F				
for-							Scheduled Receipts			190				
Lot										0				
Lot							Projected On Hand			195				
							Net Requirements							
							Planned Order Receipts			-195				
							Planned Order Releases	195	_					

Determining Net Requirements

- Starts with a production schedule for the end item – 50 units of Item A in week 8
- Because there are 10 Item As on hand, only 40 are actually required – (net requirement) = (gross requirement – on-hand inventory)
- ► The planned order receipt for Item A in week 8 is 40 units – 40 = 50 – 10

Determining Net Requirements

- Following the lead time offset procedure, the planned order release for Item A is now 40 units in week 7
- The gross requirement for Item B is now 80 units in week 7
- There are 15 units of Item B on hand, so the net requirement is 65 units in week 7
- A planned order receipt of 65 units in week 7 generates a planned order release of 65 units in week 5

Determining Net Requirements

- A planned order receipt of 65 units in week 7 generates a planned order release of 65 units in week 5
- The on-hand inventory record for Item B is updated to reflect the use of the 15 items in inventory and shows no on-hand inventory in week 8
- This is referred to as the Gross-to-Net calculation and is the third basic function of the MRP process

Gross Requirements Schedule

Net Requirements Plan

The logic of net requirements

MRP Planning Sheet

Lot Size	Lead Time	On Hand	Safety Stock	Allocated	Low- Level Code	Item ID			•	•	Per	riod			
					Code			- 1	2	3	4	5	6	/	8
1 ot	1	0	0	10	0	Z	Gross Requirements								80 90
Lot For	,			,,,			Scheduled Receipts								0
							Projected On Hand 0	0	0	0	0	0	0	0	0
Lot							Net Requirements								90
							Planned Order Receipts								90
							Planned Order Releases							90	

Figure 14.6

Safety Stock

- BOMs, inventory records, purchase and production quantities may not be perfect
- Consideration of safety stock may be prudent
- Should be minimized and ultimately eliminated
- Typically built into projected on-hand inventory

MRP Management

- MRP dynamics
 - Facilitates replanning when changes occur
 - System nervousness can result from too many changes
 - Time fences put limits on replanning
 - Pegging links each item to its parent allowing effective analysis of changes

MRP Management

- MRP limitations
 - MRP does not do detailed scheduling—it plans
 - Works best in product-focused, repetitive environments
 - Requires fixed lead time and infinite size time buckets

Lot-Sizing Techniques

- Lot-for-lot techniques order just what is required for production based on net requirements
 - May not always be feasible
 - If setup costs are high, lot-for-lot can be expensive
- Economic order quantity (EOQ)
 - EOQ expects a known constant demand and MRP systems often deal with unknown and variable demand

Lot-Sizing Techniques

- Periodic order quantity (POQ) orders quantity needed for a predetermined time period
 - Interval = EOQ / average demand per period
 - Order quantity set to cover the interval
 - Order quantity calculated when order is released
 - No extra inventory

Lot-Sizing Techniques

- Dynamic lot sizing techniques
 - Balance lot size and setup costs
 - Part period balancing (least total cost)
 - Least unit cost
 - Least period cost (Silver-Meal)
- Dynamic programming approach
 - Wagner-Whitin

Lot-for-Lot Example

WEEK		1	2	3	4	5	6	7	8	9	10
Gross requirements		35	30	40	0	10	40	30	0	30	55
Scheduled receipts											
Projected on hand	35	35	0	0	0	0	0	0	0	0	0
Net requirements		0	30	40	0	10	40	30	0	30	55
Planned order receipts			30	40		10	40	30		30	55
Planned order releases		30	40		10	40	30		30	55	

Holding cost = \$1/week; Setup cost = \$100; Lead time = 1 week

Lat far Lat Evample

No on-hand inventory is carried through the system Total holding cost = \$0

There are seven setups for this item in this plan Total ordering cost = $7 \times 100 = 700$

Projected on hand	35	35	0	0	0	0	0	0	0	0	0
Net requirements		0	30	40	0	10	40	30	0	30	55
Planned order receipts			30	40		10	40	30		30	55
Planned order releases		30	40		10	40	30		30	55	

Holding cost = \$1/week; Setup cost = \$100; Lead time = 1 week

EOQ Lot Size Example

WEEK		1	2	3	4	5	6	7	8	9	10
Gross requirements		35	30	40	0	10	40	30	0	30	55
Scheduled receipts											
Projected on hand	35	35	0	43	3	3	66	26	69	69	39
Net requirements		0	30	0	0	7	0	4	0	0	16
Planned order receipts			73			73		73			73
Planned order releases		73			73		73			73	

Holding cost = \$1/week; Setup cost = \$100; Lead time = 1 week Average weekly gross requirements = 27; EOQ = 73 units

EAA Cina Evamela

Annual demand D = 1,404

Holding cost = 375 units x \$1 (including 57 units on hand at end of week 10)

Ordering cost = $4 \times 100 = 400$

Total cost = \$375 + \$400 = \$775

Projected on hand	35	35	0	43	3	3	66	26	69	69	39
Net requirements		0	30	0	0	7	0	4	0	0	16
Planned order receipts			73			73		73			73
Planned order releases		73			73		73			73	

Holding cost = \$1/week; Setup cost = \$100; Lead time = 1 week Average weekly gross requirements = 27; EOQ = 73 units

POQ Lot Size Example

WEEK		1	2	3	4	5	6	7	8	9	10
Gross requirements		35	30	40	0	10	40	30	0	30	55
Scheduled receipts											
Projected on hand	35	35	0	40	0	0	70	30	0	0	55
Net requirements		0	30	0	0	10	0		0	55	0
Planned order receipts			70			80		0		85	0
Planned order releases		70			80				85		

EOQ = 73 units; Average weekly gross requirements = 27; POQ interval = $73/27 \approx 3$ weeks

DOO Lat Cina Evample

Setups =
$$3 \times $100 = $300$$

Holding cost = $(40 + 70 + 30 + 55)$ units $\times $1 = 195
Total cost = $$300 + $195 = 495

Projected on hand	35	35	0	40	0	0	70	30	0	0	55
Net requirements		0	30	0	0	10	0		0	55	0
Planned order receipts			70			80		0		85	0
Planned order releases		70			80				85		

EOQ = 73 units; Average weekly gross requirements = 27; POQ interval = $73/27 \approx 3$ weeks

Lot-Sizing Summary

For these three examples

		COSTS	
	SETUP	HOLDING	TOTAL
Lot-for-lot	\$700	\$0	\$700
EOQ	\$400	\$375	\$775
POQ	\$300	\$195	\$495

Wagner-Whitin would have yielded a plan with a total cost of \$455

Lot-Sizing Summary

In theory, lot sizes should be recomputed whenever there is a lot size or order quantity change

In practice, this results in system

nervousness and instability

Lot-for-lot should be used when low-cost setups can be achieved

Lot-Sizing Summary

- Lot sizes can be modified to allow for scrap, process constraints, and purchase lots
- Use lot-sizing with care as it can cause considerable distortion of requirements at lower levels of the BOM
- When setup costs are significant and demand is reasonably smooth, POQ or EOQ should give reasonable results

Extensions of MRP

- MRP II
- Closed-Loop MRP
- Capacity Planning

Material Requirements Planning II

- Requirement data can be enriched by other resources
- Generally called MRP II or Material Resource Planning
- Outputs can include scrap, packaging waste, effluent, carbon emissions

Data used by purchasing, production scheduling, capacity planning, inventory, warehouse management

Material Resource Planning

TABLE 14.4 Material Resource Pla	anning	(MRP II)						
				W	eeks			
	LT	5		6	7		8	
Computer	1						100	
Labor Hrs: .2 each							20	
Machine Hrs: .2 each							20	
Scrap: 1 ounce fiberglass each							6.25	lb
Payables: \$0 each							\$0	
PC Board (1 each)	2				100			
Labor Hrs: .15 each					15			
Machine Hrs: .1 each					10			
Scrap: .5 ounces copper each					3.125	lb		
Payables: raw material at \$5 each					\$500			
Processors (5 each)	4	500						
Labor Hrs: .2 each		100						
Machine Hrs: .2 each		100						
Scrap: .01 ounces of acid waste each		0.3125	lb					
Payables: processors at \$10 each		\$5,000						

Closed-Loop MRP System

Figure 14.7

Capacity Planning

- Feedback from the MRP system
- Load reports show resource requirements for work centers
- Work can be moved between work centers to smooth the load or bring it within capacity

Smoothing Tactics

Overlapping

- Sends part of the work to following operations before the entire lot is complete
- Reduces lead time

2. Operations splitting

- Sends the lot to two different machines for the same operation
- Shorter throughput time but increased setup costs

3. Order or lot splitting

Breaking up the order into smaller lots and running part earlier (or later) in the schedule

Order Splitting

- Develop a capacity plan for a work cell at Wiz Products
- There are 12 hours available each day
- Each order requires 1 hour

Day	1	2	3	4	5
Orders	10	14	13	10	14

Order Splitting

DAY	UNITS ORDERED	CAPACITY REQUIRED (HOURS)	CAPACITY AVAILABLE (HOURS)	UTILIZATION: OVER/ (UNDER) (HOURS)	PRODUCTION PLANNER'S ACTION	NEW PRODUCTION SCHEDULE
1	10	10	12	(2)		12
2	14	14	12	2	Split order: move 2 units to day 1	12
3	13	13	12	1	Split order: move one unit to day 6 or request overtime	13
4	10	10	12	(2)		12
5	14	14	12	2	Split order: move 2 units to day 4	12
	61					

Order Splitting

Figure 14.8

MRP in Services

- Some services or service items are directly linked to demand for other services
- These can be treated as dependent demand services or items
 - Restaurants
 - Hospitals
 - Hotels

MRP in Services

MRP in Services

(b) BILL OF MATERIALS

Production Specifications	Buffalo C	hicken Mad	& Chees	e (6 portio	ns)
Ingredients	Quantity	Measure	Unit Cost	Total Cost	Labor Hrs.
Elbow Macaroni (large, uncooked)	20.00	OZ.	\$ 0.09	\$ 1.80	
Cheese-Pepper Jack (grated)	10.00	OZ.	0.17	1.70	
Mac and Cheese Base (from refrigerator)	32.00	OZ.	0.80	25.60	
Milk	4.00	OZ.	0.03	0.12	
Smoked Pulled Chicken	2.00	lb.	2.90	5.80	
Buffalo Sauce	8.00	OZ.	0.09	0.72	
Blue Cheese Crumbles	4.00	OZ.	0.19	0.76	
Scallions	2.00	OZ.	0.18	0.36	
					0.2 hrs

Distribution Resource Planning (DRP)

Using dependent demand techniques through the supply chain

- Expected demand or sales forecasts become gross requirements
- All other levels are computed
- DRP pulls inventory through the system
- Small and frequent replenishments

Enterprise Resource Planning (ERP)

- An extension of the MRP system to tie in customers and suppliers
 - Allows automation and integration of many business processes
 - 2. Shares common data bases and business practices
 - 3. Produces information in real time
- Coordinates business from supplier evaluation to customer invoicing

Enterprise Resource Planning (ERP)

- ERP modules include
 - Basic MRP
 - Finance
 - Human resources
 - Supply chain management (SCM)
 - Customer relationship management (CRM)
 - Sustainability

Figure 14.10

ERP and MRP

Figure 14.10

ERP and MRP

Figure 14.10

ERP and MRP

Enterprise Resource Planning (ERP)

- ERP systems have the potential to
 - Reduce transaction costs
 - Increase the speed and accuracy of information
- Facilitates a strategic emphasis on JIT systems and supply chain integration
- Can be expensive and time-consuming to install

SAP's ERP Modules

CASH TO CASH

Covers all financial related activity:

Accounts receivable

Accounts payable

General ledger

Treasury

lger Cash management
Asset management

PROMOTE TO DELIVER

Covers front-end customer-oriented activities:

Marketing

Quote and order processing

Transportation

Documentation and labeling

After sales service

Warranty and guarantees

DESIGN TO MANUFACTURE

Covers internal production activities:

Design engineering

Production engineering

Plant maintenance

Shop floor reporting

Contract/project management

Subcontractor management

RECRUIT TO RETIRE

Covers all HR- and payroll-oriented activity:

Time and attendance

Payroll

Travel and expenses

PROCURE TO PAY

Covers sourcing activities:

Vendor sourcing

Purchase requisitioning

Purchase ordering

Purchase contracts

Inbound logistics

Supplier invoicing/matching

Supplier payment/

settlement

Supplier performance

DOCK TO DISPATCH

Covers internal inventory management:

Warehousing

Distribution planning

Forecasting

Replenishment planning

Physical inventory Material handling

Figure 14.11 _{14 - 79}

ERP in the Service Sector

- ERP systems have been developed for health care, government, retail stores, hotels, and financial services
- Also called efficient consumer response (ECR) systems
- Objective is to tie sales to buying, inventory, logistics, and production

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Printed in the United States of America.