Week 9 Day 1

Favorite Vector Space

Make sure you know your neighbors' names. Then take 2 minutes to discuss:

If you had to choose a favorite vector space, which would you choose? Why? Does your answer change if you weren't allowed to choose \mathbb{R}^n for any n?

Orthogonality

1. Which of the following vectors in \mathbb{R}^2 is orthogonal to (1,1)?

- (A) (-1, 1)
- (B) (1, -1)
- (C) (-1, -1)
- (D) None of the above OR more than one of the above.

2. On \mathbb{P}_2 , consider the inner product

$$\langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1).$$

Which of the following polynomials q is orthogonal to $p(t) = t^2$?

- (A) q(t) = 1
- (B) q(t) = t
- (C) $q(t) = 1 t^2$
- (D) None of the above OR more than one of the above

3. Which of the following is an orthogonal basis for \mathbb{R}^3 ?

- (A) (1,0,0), (0,1,0), (0,0,1)
- (B) (1, 1, 1), (-1, 1, 0), (-1, 0, 1)
- (C) (1, 1, 1), (-1, 1, 0), (-1, -1, 2)
- (D) None of the above OR more than one of the above.

4. $\mathscr{B} = \{(1,1,1), (-1,1,0), (-1,-1,2)\}$ is an orthogonal basis for \mathbb{R}^3 . For $\mathbf{v} = (1,0,0)$, find $[\mathbf{v}]_{\mathscr{B}}$.

5. On \mathbb{P}_2 , consider the inner product

$$\langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1).$$

Is $\mathscr{B} = \{1 - t^2, t, t^2\}$ an orthogonal basis for \mathbb{P}_2 ? What is $[1 + t + t^2]_{\mathscr{B}}$?