# Traveltimes for global earthquake location and phase identification

# B. L. N. Kennett<sup>1</sup> and E. R. Engdahl<sup>2</sup>

<sup>1</sup>Research School of Earth Sciences, Australian National University, GPO Box 4, Canberra ACT 2601, Australia <sup>2</sup>National Earthquake Information Center, US Geological Survey, Denver Federal Center, Box 25046, MS 967, Denver, CO 80225, USA

Accepted 1990 December 3. Received 1990 November 24; in original form 1990 October 12

#### SUMMARY

Over the last three years, a major international effort has been made by the Sub-Commission on Earthquake Algorithms of the International Association of Seismology and the Physics of the Earth's Interior (IASPEI) to generate new global traveltime tables for seismic phases to update the tables of Jeffreys & Bullen (1940). The new tables are specifically designed for convenient computational use, with high-accuracy interpolation in both depth and range. The new *iasp91* traveltime tables are derived from a radially stratified velocity model which has been constructed so that the times for the major seismic phases are consistent with the reported times for events in the catalogue of the International Seismological Centre (ISC) for the period 1964–1987. The baseline for the *P*-wave traveltimes in the *iasp91* model has been adjusted to provide only a small bias in origin time for well-constrained events at the main nuclear testing sites around the world.

For P-waves at teleseismic distances, the new tables are about 0.7 s slower than the 1968 P-tables (Herrin 1968) and on average about 1.8–1.9 s faster than the Jeffreys & Bullen (1940) tables. For S-waves the teleseismic times lie between those of the JB tables and the results of Randall (1971).

Because the times for all phases are derived from the same velocity model, there is complete consistency between the traveltimes for different phases at different focal depths. The calculation scheme adopted for the new *iasp91* tables is that proposed by Buland & Chapman (1983). Tables of delay time as a function of slowness are stored for each traveltime branch, and interpolated using a specially designed tau spline which takes care of square-root singularities in the derivative of the traveltime curve at certain critical slownesses. With this representation, once the source depth is specified, it is straightforward to find the traveltime explicitly for a given epicentral distance. The computational cost is no higher than a conventional look-up table, but there is increased accuracy in constructing the traveltimes for a source at arbitrary depth. A further advantage over standard tables is that exactly the same procedure can be used for each phase. For a given source depth, it is therefore possible to generate very rapidly a comprehensive list of traveltimes and associated derivatives for the main seismic phases which could be observed at a given epicentral distance.

**Key words:** body waves, core phases, earthquake location, seismic phase identification, traveltimes.

### INTRODUCTION

The standard traveltime tables used by seismological agencies such as the National Earthquake Information Center (NEIC) in Golden, Colorado, USA and the International Seismological Centre (ISC) in Newbury, UK

are the Jeffreys & Bullen tables published in 1940. These tables were developed over the period 1930–1939 making use of reported arrival times of seismic phases at a sparse global network of stations, for which time keeping was frequently not reliable.

Although the limitations of these tables (Jeffreys & Bullen

430

1940), especially in the proper identification of later arriving core phases, have been recognized for some time, no other tables provide such a complete representation of the P, S and core phases. A major effort to improve P-wave traveltimes was made in 1968 based on the use of well-timed underground nuclear explosions as well as earthquakes (Herrin 1968). Subsequently a number of studies were made to try to improve knowledge of S times, either directly (Hales & Roberts 1970; Randall 1971) or via S-P differential times (Uhrhammer 1978).

The International Seismological Centre has built up a major database of the station readings used in establishing earthquake locations. This data set now extends over more than 20 years (1964–1988) with over 6 million arrival time readings at nearly 3000 seismic stations. This set of arrival times has been made available in digital form, originally on magnetic tape and recently for the period 1964–1987 on CD-ROM. Although the geographic distribution of stations is somewhat patchy and most sources occur in a limited number of seismic zones, the cumulative data set gives a good coverage of the interior of the Earth. The ISC data has played an important role in the development of recent earth models such as PREM (Dziewonski & Anderson 1981) and in studies of the lateral heterogeneity of the Earth (see e.g. Inoue et al. 1990).

With the extensive ISC data set, for a period where station time can be determined accurately, it is feasible to construct a set of traveltime tables for the major seismic phases with greater precision than Jeffreys & Bullen (1940) could attain. In 1987 the International Association of Seismology and the Physics of the Earth's Interior (IASPEI) requested its Subcommission on Earthquake Algorithms to propose a suitable set of traveltimes for use in global earthquake location. This paper describes the progress which has been made in the generation of such tables, and presents a set of summary tables for the main seismic phases. The primary form of the tables is a computational algorithm which is discussed in Appendix C.

# THE REPRESENTATION OF SEISMIC TRAVELTIMES

The traditional approach to the construction of traveltime tables has been to develop smoothed, empirical representations of the traveltime curves for events of a certain depth. It was to this end that Jeffreys (1932, 1939) developed the 'method of uniform reduction' which was an important ingredient in the success of the work of Jeffreys & Bullen (1940). Once the traveltimes for the main phases have been constructed, the smoothed traveltime curves can be inverted using the Wiechert-Herglotz method to generate a velocity model. The times for ancillary phases can then be found by direct calculation from the velocity model

The work of Jeffreys & Bullen was carried out entirely using hand-cranked calculators and, in consequence of the considerable labour involved, the traveltimes for the major phases are only tabulated for a limited number of depths. Interpolation in the Jeffreys & Bullen (1940) tables is therefore much more accurate in distance than in depth.

The major use of traveltime tables is in the location of earthquakes via computer algorithms, and so in constructing any new representation of the seismic traveltimes we must recognize that we should aim to optimize the ease of computational use. Summary printed tables provide a useful resource (especially for quick reference), but for seismogram interpretation it is highly desirable to have available a list of the characteristics of all the major phases at a given epicentral distance. Such information cannot readily be extracted from any current set of tables.

In order to achieve a consensus on an appropriate and practical representation for seismic traveltimes, the IASPEI Subcommission on Earthquake Algorithms held a workshop in October 1988 in Colorado, USA (Kennett 1988). This meeting brought together 15 participants from five countries with a wide range of expertise in earthquake location, traveltime calculation and studies of the Earth's interior.

After extensive discussion, general agreement was reached on the representation of the traveltimes by a radially stratified velocity structure to be constructed so that computed times would give as good a fit as possible to the teleseismic observations of P, S and core phases from the ISC catalogue. It should be stressed that such a velocity model is intended as a summary of seismic traveltimes and, because of the uneven geographic distribution of the ray paths sampled by the events in the ISC catalogue, will represent no simple average of the Earth. A major advantage of the use of traveltimes determined from an earth model is that the representation is consistent within and between different phases. In addition, for such a model, it is feasible to establish computationally effective means of both generating the traveltimes for selected phases for arbitrary source depth and range and also to display these in a form which is of considerable benefit to a seismic analyst.

In order to ensure that the specification of the traveltime tables is complete it is necessary to prescribe the interpolation procedure for the velocity model. There is also a need to provide a computationally efficient algorithm for access to the traveltime information for many phases for a given epicentral distance.

### THE FORM OF THE VELOCITY MODEL

The agreed style of the velocity model employed to represent the traveltimes was the radial polynomial representation introduced in the PEM models (Dziewonski, Hales & Lapwood 1975). The model should be isotropic and the order of the interpolating polynomial chosen to be the same for both P and S wavespeeds, the discontinuities in P and S velocities should also be taken at the same depth. The crust and mantle structures would be chosen to be representative of continental regions because the vast majority of seismic stations lie on the continents.

The form of the model has been based on the PEM-C model (Dziewonski et al. 1975). The crust consists of two uniform layers with discontinuities at 20 and 35 km depth. In the upper mantle zone down to 760 km deep, the velocities in each layer are represented by a linear gradient in radius. The major mantle discontinuities were set at 410 and 660 km depth to give general agreement with the work of Revenaugh & Jordan (1989) on S-wave reverberations in the mantle. Other discontinuities were allowed at 120 and 210 km, and a discontinuity in velocity gradient at 760 km to give a smooth transition into the lower mantle. Such a

Table 1. Parametrized velocity model iasp91.

x = normalised radius r/a (a = 6371 km)

| Depth<br>z km | Radius<br>r km | α<br>km/s                                                       | β<br>km/s                                                                                        |
|---------------|----------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 6371-5153.9   | 0-1217.1       | 11.24094<br>-4.09689 <i>x</i> <sup>2</sup>                      | 3.56454<br>-3.45241 <i>x</i> <sup>2</sup>                                                        |
| 5153.9-2889   | 1217.1-3482    | 10.03904<br>3.75665 <i>x</i><br>-13.67046 <i>x</i> <sup>2</sup> | 0                                                                                                |
| 2889-2740     | 3482-3631      | 14.49470<br>-1.47089 <i>x</i>                                   | 8.16616<br>-1.58206 <i>x</i>                                                                     |
| 2740-760      | 3631-5611      | $ 25.1486  -41.1538 x  +51.9932 x^2-26.6083 x^3$                | 12.9303<br>-21.2590 <i>x</i><br>+27.8988 <i>x</i> <sup>2</sup><br>-14.1080 <i>x</i> <sup>3</sup> |
| 760-660       | 5611-5711      | 25.96984<br>-16.93412 <i>x</i>                                  | 20.76890<br>-16.53147 <i>x</i>                                                                   |
| 660-410       | 5711-5961      | 29.38896<br>-21.40656 <i>x</i>                                  | 17.70732<br>-13.50652 <i>x</i>                                                                   |
| 410-210       | 5961-6161      | 30.78765<br>-23.25415 <i>x</i>                                  | 15.24213<br>-11.08552 <i>x</i>                                                                   |
| 210-120       | 6161-6251      | 25.41389<br>-17.69722 <i>x</i>                                  | 5.75020<br>-1.27420 <i>x</i>                                                                     |
| 120-35        | 6251-6336      | 8.78541<br>-0.74953 <i>x</i>                                    | 6.706231<br>-2.248585 <i>x</i>                                                                   |
| 35-20         | 6336-6351      | 6.50                                                            | 3.75                                                                                             |
| 20-0          | 6351-6371      | 5.80                                                            | 3.36                                                                                             |

parametrization is adequate to represent the traveltimes for distances out to 30° even though it does not contain the level of complexity of models generated by matching observed and theoretical seismograms.

The wavespeed distribution in the lower mantle is represented by a cubic in radius between 760 and 2740 km. The velocities in the lowermost mantle are taken as a linear gradient in radius down to the core mantle boundary. In the core and inner core the velocity functions are specified as quadratic polynomials in radius.

The specific form of the velocity model which has been generated to represent the teleseismic traveltimes is shown in Tables 1, 2 and Fig. 1. The radii adopted for the inner core and outer core were guided by recent inversions for radial earth structure from high-accuracy free oscillation data (G. Masters, personal communication).

# **CALCULATION OF TRAVELTIMES**

Traveltime tables designed for computer use need a compact but efficient form to minimize the computational cost of providing a specific piece of information. The currently used scheme in most global earthquake location procedures is to use a form of interpolation, in depth and range, in stored tables (Engdahl & Gunst 1966). This approach is very similar to the mode of working which would be adopted with the paper form of the Jeffreys & Bullen (1940) tables. Table interpolation requires a good deal of storage space since the traveltimes can be both discontinuous and multivalued as a function of range. In addition the

**Table 2.** P and S velocity values for model *iasp91* (100 km intervals).

| 6371.00                                                                                                                  | depth<br>km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | radius<br>km                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | α<br>km/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | β<br>km/s                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 35.00 6336.00 8.0400 4.4700<br>35.00 6336.00 6.5000 3.7500<br>20.00 6351.00 6.5000 3.7500<br>20.00 6351.00 5.8000 3.3500 | km 6371.00 6271.00 6271.00 6171.00 5571.00 5571.00 5571.00 5571.00 5571.00 5571.00 5471.00 5153.90 5153.90 5153.90 5153.90 5153.90 5153.90 5171.00 4671.00 4471.00 4471.00 4371.00 3871.00 3871.00 3871.00 3871.00 3871.00 3871.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 3171.00 | km 0. 100.000 200.000 300.000 400.000 600.000 600.000 1000.000 1100.000 1200.000 1200.000 1200.000 1200.000 1217.10 1300.000 1400.000 1500.000 2000.000 2000.000 2300.000 2300.000 2500.000 2500.000 2500.000 2500.000 2500.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 3100.000 | km/s  11.2409 11.23369 11.2319 11.2248 11.2046 11.157 11.2046 11.1763 11.1592 11.1400 11.1188 11.09514 10.2044 10.16203 10.0681 10.00681 10.00681 10.00681 10.00681 10.00681 10.00681 10.00681 10.16203 10.16503 9.8711 9.7062 9.61362 9.4082 9.2758 9.0496 8.7168 8.6303 8.4771 8.1504 8.0508 13.65664 13.65664 13.65664 13.65664 13.65664 13.65664 13.65664 13.65664 13.65664 13.65725 13.4531 13.2203 13.10558 10.27601 11.41726 11.57761 11.57761 11.57761 11.5756 11.0558 10.79000 9.56500 9.03000 8.1917 8.30000 8.1917 8.30000 8.1917 8.05000 | km/s 3.5645 3.56619 3.55639 3.55639 3.55329 3.55291 3.4956 3.4421 3.4421 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. |
|                                                                                                                          | 171.00<br>120.00<br>120.00<br>71.00<br>35.00<br>20.00<br>20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6200.00<br>6251.00<br>6251.00<br>6300.00<br>6336.00<br>6336.00<br>6351.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.1917<br>8.0500<br>8.0500<br>8.0442<br>8.0440<br>6.5000<br>6.5000<br>5.8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5102<br>4.5000<br>4.5000<br>4.4827<br>4.4700<br>3.7500<br>3.7500<br>3.3600                                   |

epicentral distance spans for a traveltime branch for a single phase vary with hypocentral depth, and the flexibility of interpolation procedures ends up being limited by the special treatment required for each phase.

The present tables have been designed ab initio with computational implementation as the primary goal and so



Figure 1. The iasp91 velocity model.

we have adopted the tau-integral method of traveltime computation introduced by Buland & Chapman (1983). This procedure features a unified treatment for all types of seismic phases. For computational efficiency the form of calculation is table based but, instead of saving traveltimes, the delay times (tau) are tabulated as a function of source depth and ray parameter. In these tables the slownesses defining each branch are constant with depth and the tau function is monotonic and single-valued for each traveltime branch. Direct manipulation of the delay time tables yields traveltime as an explicit function of range without any need for an iteration on slowness. Interpolation in depth is also achieved to high accuracy by retaining delay-time contributions for portions of the model. For a source depth which is not already tabulated, the delay-time table as a function of slowness can be rapidly produced by combining the appropriate partial tau contributions with a pre-existing tau-table. This procedure means that we can readily compute the traveltimes for each phase at a particular source depth. In the summary tables we have therefore shown the times for each phase for a range of source depths rather than just the surface focus times with a depth correction table.

Further details of the traveltime computation technique are presented in Appendix C.

# **TEST EVENTS**

The primary test of any proposed traveltime model is how well it performs in locating seismic events. The best measure of location errors is provided for events for which the location can be established by means other than by standard global location procedures. An effort has therefore been made to collect a set of events with a good geographic distribution across the globe and with well-constrained origin times and hypocentres. The events include explosions (mostly nuclear) and earthquakes which have been well located using local networks. A full list of the hypocentral parameters and magnitudes of the test events is presented in Appendix B.

A request for submission of test events was sent to a wide variety of seismolgoical observatories and agencies. The criteria for the selection of such events were as follows.

#### (a) For explosions

The events should be large enough to be recorded teleseismically  $(m_b \ge 5)$ , and as far as possible the origin times, locations, and source depths should be known exactly.

# (b) For earthquakes

The events should be impulsive simple sources well-recorded teleseismically. The origin times and hypocentres should be determined only with local network data and with a local structural model. Those local stations used should mostly be at near distances and reasonably well distributed in azimuth. If possible both P and S observations should be used. Unless the depth could be determined independently the local network data should include stations with direct P and S observations. The events should have origin times determined to better than  $0.5 \, \mathrm{s}$  and the absolute errors in the hypocentre should be less than  $5 \, \mathrm{km}$ . In order to enlarge the possible data set, some earthquakes with limited local network data, but with well-defined associated surface faulting, could also be included.

The initial response was somewhat slow but we have now built up a set of 83 earthquakes and 21 explosions with a reasonable distribution across the globe (see Figs 4 and 5). For each of these events, the use of local information should place stronger constraints on the depth of the event and the origin time than could be provided by teleseismic location alone. Although the majority of events are shallow, deeper focus events (>70 km) are represented from Alaska and Japan where dense local networks give close control. A full discussion of the test data set is provided by Engdahl & Buland (1991).

For each of the test events, as complete a set of traveltimes as possible was assembled using ISC data and additional phase contributions from contributors. The coverage for later phases is suprisingly good (see Fig. 6), and so it has proved possible to use the *P* readings to assess the performance of the new *iasp91* tables for location and the complete phase set as a check on the times of later phases.

# THE CONSTRUCTION OF THE IASPEI 1991 TABLES

Following the 1988 workshop of the IASPEI Subcommision on Earthquake Algorithms, several of the participants worked on different aspects of the traveltime problem. E. R. Engdahl began the task of collecting well-controlled event parameters and associated phase data for the test events. K. Toy and A. M. Dziewonski (later with A. Morelli) undertook the selection of teleseismic data from the ISC catalogue and the inversion to generate suitable earth models. B. L. N. Kennett worked on the generation of an upper mantle model and later with R. Buland on the refinement of the software for traveltime calculation and table construction.

At the IASPEI General Assembly in Istanbul in August

1989, a further workshop was held at which progress towards the construction of the traveltime tables was reviewed. Two preliminary earth models *iasp89* [a composite model by Kennett using lower mantle velocities from Toy (1989a) and the core velocities from the PEM-C model] and *md89ps* (Morelli & Dziewonski 1989) were circulated in mid-1989. This allowed testing of the computational techniques and also comparison of the traveltimes with the observations for the available test events. Morelli & Dziewonski (1989) and Toy (1989b) presented different procedures for data selection from the vast ISC data catalogue, designed to maximize the geographic coverage of source-receiver paths and to optimize phase association especially for the later phases. The details of this work will be published elsewhere.

The velocity models derived by Morelli & Dziewonski (1989) and Toy (1989b), including allowance for event relocation, are very close in the lower mantle and the principal differences lie in the form of the upper mantle. Toy used a preliminary upper mantle model generated by Kennett which was characterized by rather large velocity jumps at the 410 and 660 km discontinuities. Morelli & Dziewonski favoured an upper mantle with smaller jumps but higher gradients.

For teleseismic *P*-waves the times predicted by the two models were in quite close agreement, and both were closer to the 1968 tables (Herrin 1968) than the Jeffreys & Bullen (1940) tables, reflecting a shift in baseline of approximately 2s. For teleseismic *S* on the other hand, there was a noticeable offset between the times for the two models which hardly varied with distance.

Following the Istanbul workshop Kennett and Engdahl engaged in an iterative (and somewhat slowly converging) process to produce a final model. The form of the upper mantle velocity distribution was modified to represent a compromise between the styles of the *iasp89* and *md89ps* models and also to give a better fit to S times at shorter distances. Candidate velocity models were tested against an augmented set of test events and the influence of modifications in the velocity model were assessed.

Because the true origin time of earthquake sources are unknown there has always been some ambiguity in the absolute traveltimes which cannot be entirely eliminated by relocating events in the course of the inversion for velocity. A variation in the baseline for teleseismic traveltimes can be achieved with an adjustment of upper mantle velocities. A tilt of the traveltime distribution can be produced by maintaining the gradients in the lower mantle but varying the mean velocity in this zone.

The iterative development of the mantle velocity models was very revealing as to the nature of the hypocentral information provided for the test events and is discussed in more detail in Engdahl & Buland (1991). The final form of the velocity model *iasp91* (Tables 1, 2; Fig. 1) gives a very good fit indeed for the baseline provided by the subset of the test events consisting of nuclear explosions for which accurate origin times have been published (see Table 4).

# REPRESENTATION OF TRAVELTIMES THROUGH THE UPPER MANTLE

An important ingredient in any representation of the traveltimes of seismic waves for the location of earthquakes

is the set of times adopted to 30°. In this interval the seismic energy is returned from the crust, the uppermost mantle and the upper mantle transition zone. The velocity structures in these shallow zones are known to vary significantly with geographic location and so any 'average' description will inevitably be less effective than a regional model.

The approach followed by Jeffreys & Bullen (1940) was to build up the empirical traveltime tables by using data from those geographic regions where the source and station distribution provided sufficient data. Jeffreys (1970, section 3.101) gives a very clear account of the way in which the traveltimes for crustal and upper mantle paths were constructed.

The alternative procedure adopted for the 1968 P-tables (Herrin 1968) was to construct an artificial smooth model of the upper mantle whose times were representative of the central United States. As we have noted above, such a choice imposes a specific baseline on the teleseismic traveltimes.

Dziewonski & Anderson (1981, 1983) have derived summary traveltimes for surface focus at  $1^{\circ}$  intervals for both P- and S-waves from the ISC catalogues. In the 1983 study for P-waves these summary values include corrections for event relocation. The 1981 values for the S times did not allow for event relocation but with a 2s baseline reduction the traveltime at  $30^{\circ}$  could be brought into close correspondence with the smoothed tables of Hales & Roberts (1970) and the tables of Gogna, Jeffreys & Shimshoni (1980) for central Asian earthquakes. These summary times are displayed in Table 3 and have been used to constrain the upper mantle portion of the model  $iasp\,91$ , together with the teleseismic residual bias and origin time errors for the test event data set.

The velocity model for the upper mantle down to 760 km

Table 3. Summary times to 30°.

| Δ[°]         | P [s]         | S (s   |
|--------------|---------------|--------|
| 1.0          | 18.13         | 35.43  |
| 2.0          | 33.50         | 62.24  |
| 3.0          | 47.68         | 87.56  |
| 4.0          | 61.23         | 113.53 |
| 5.0          | <b>76</b> .01 | 136.84 |
| 6.0          | 90.25         | 161.86 |
| 7.0          | 103.16        | 186.34 |
| 8.0          | 118.16        | 211.75 |
| 9.0          | 130.32        | 235.9€ |
| 10.0         | 144.94        | 260.06 |
| 11.0         | 158.12        | 284.5€ |
| 12.0         | 172.56        | 308.44 |
| 13.0         | 185.18        | 334.24 |
| 14.0         | 199.12        | 358.24 |
| 15.0         | 212.11        | 383.15 |
| 16.0         | 225.12        | 407.46 |
| 17.0         | 238.15        | 432.11 |
| 18.0         | 250.78        | 456.23 |
| 19.0         | 262.45        | 478.60 |
| 20.0         | 273.66        | 501.75 |
| 21.0         | 284.31        | 522.26 |
| 22.0         | 294.80        | 542.03 |
| 23.0         | 305.14        | 560.62 |
| 24.0         | 315.18        | 577.93 |
| <b>25</b> .0 | 324.60        | 594.30 |
| 26.0         | 333.80        | 608.80 |
| 27.0         | 342.88        | 625.32 |
| 28.0         | 351.92        | 641.25 |
| 29.0         | 360.87        | 656.92 |
| 30.0         | 369.72        | 672.51 |
|              |               |        |

P values from Dziewonski & Anderson (1983)

S values from Dziewonski & Anderson (1981) reduced by 2 s baseline shift

was specified as constant layers in the crust and linear gradients in radius in the layers below. The traveltimes were therefore calculated using the analytic formulae due to Azbel & Yanovskaya (1972). The starting point for the construction of suitable velocity models was the PEM-C model of Dziewonski et al. (1975) with slight changes to the depths of discontinuities (pemca in Fig. 3). The summary traveltime data provide relatively weak constraints on the details of the velocity distribution and variety of styles of model give a similar level of fit to the data.

For *P*-waves, it was not necessary to introduce a low-velocity zone and at most a very weak discontinuity at 210 km could be sustained. The *iasp91* model gives a good match to the major changes in the slope of the traveltime curves (Fig. 2a).

For S-waves, it is less easy to fit the details of the summary traveltimes; this is likely to arise from difficulties in measuring S times and also considerable variability between regions. For example, Zielhuis (1988) reports up to 7s difference between paths in southern Europe and the Baltic Shield using ISC data, as well as indications of offsets

associated with low-velocity zones occurring over different distance ranges. The iasp91 model gives a satisfactory fit to the S-wave summary times (Fig. 2b). The model does not include a low-velocity zone for S (even though this was included in the starting model pemca). The summary times show only weak direct evidence for a low-velocity zone (probably due to averaging over different structures). Although most S models for the upper model include a low-velocity zone, the iasp91 model has the merit that there are no shadow zones for S for sources at any depth. As a result there are no holes in the traveltime curve.

The *iasp91* model has rather weak gradients down to 210 km and the computed times for *Sn* fit well with the summary times out to 18°. The general behaviour of the changes in the slope of the traveltime curve are also well matched. Around 22° the *PcP* traveltime curve cuts through the *S* branch and so there can be some difficulty with phase association in this interval.

The *iasp91* upper mantle model is plotted in Fig. 3 and compared with the starting model *pemca* and the isotropic version of PREM (Dziewonski & Anderson 1981) with a



Figure 2. Upper mantle traveltime behaviour for model iasp91 as a function of epicentral distance  $\Delta$ : (a) fit to P summary times, (b) fit to S summary times.



Figure 3. Comparison of *iasp91*, *pemca*, *premc* upper mantle velocity models.

superimposed continental crust (premc). The major differences are in the uppermost part of the models especially above the 210 km discontinuity; lateral heterogeneity is likely to be strongest in this zone. The iasp91 model has been constructed for the specific purpose of representing the 'average' observed traveltimes for P- and S-waves out to 30° as well as providing a tie to teleseismic times. Since the distribution of seismic sources and seismic recording stations is far from uniform, we must expect that such a model will include geographical bias, in addition to the constraints provided by a specific parametrization.

For detailed studies in a particular region it would be appropriate to use a regional upper mantle model. The requirements for introducing regionalization are discussed in Appendix D.

#### LOWER MANTLE AND CORE STRUCTURE

Although the path coverage in the upper mantle is rather variable because of the disposition of seismic source and recording stations, it improves significantly for paths in the lower mantle. We may therefore expect that the velocity model for both *P*- and *S*-waves in the lower mantle will begin to approximate a spherical average.

### P-waves

For P-waves, the principal constraint on mantle structure comes from the traveltimes of P-waves at teleseismic distances from 25° to 100°. Because P is a first arrival, it usually stands clear of the background noise for a reasonable size event, and so picking errors are not too large. For diffracted P beyond 95° the frequency and amplitude start to drop with range and the picking errors increase. The times for P for distances larger than 90° are not very sensitive to the details of the velocity near the core-mantle boundary. As a result the velocity gradient near the core-mantle boundary is not well constrained by traveltime data alone.

#### S-waves

For teleseismic S-waves the situation is less helpful. S-wave arrivals are lower frequency than P and have to be picked

against the background of the *P*-wave coda. As a result, the picking error can be significant and is probably often of the order of 1 s.

In addition, the S-wave traveltime curve is cut by a number of other phases and so it may not always be easy to recognize S. For surface focus events there is a cross over with ScP near 40°, and of less significance with PKiKP near 60° and SKiKP near 75°. However, the major complications come from the intersection of the S and SKS traveltime branches near 80°. Because the P-wave velocity in the core is higher than the S velocity in the mantle, the SKS-wave with a significant core leg can overtake S at the same epicentral distance. The traveltimes of S and SKS are quite close (within 3 s) over the distance span from 81° to 86°. As a result phase association using time alone is very difficult in this distance range. Hales & Roberts (1970) endeavoured to resolve the difference by exploiting the polarization properties of S and SKS (there should be no SH component to SKS because it has undergone conversion to P in the core).

The path coverage of the lower mantle S velocity available from the teleseismic S traveltimes is therefore not complete. Nevertheless, the S velocity gradients can be well determined over most of the mantle via the cubic-polynomial representation of the velocity distribution. The S times for the velocity model md89ps (Morelli & Dzeiwonski 1989) are significantly offset from iasp91, but the offset is almost constant and arises from a different baseline associated with upper mantle structure. The shapes of the lower mantle distributions are quite similar.

#### CORE PHASES

For P-waves, the core is a low-velocity zone and this leads to the strong PKP caustic near 144°. The path to the A point is the shallowest sampled by any of the PKP branches and leaves a zone of nearly 800 km unsampled by PKP below the core-mantle boundary. PKP does give good coverage of the deeper core from the BC branches beyond 145° and of the outermost zone of the inner core from the DF branch which is most frequently reported between 110° and 125° and beyond 145°.

The shadow zone in the upper part of the core would be filled in with PKKP and higher core multiples of the type PnKP but reporting of these phases is somewhat patchy. A further source of information comes from SKS which does sample the outer core, but which adds in the effect of any uncertainties in the S velocity distribution in the mantle.

The core-phase traveltimes must currently be regarded as providing cross-checks on the results of inversions of free oscillations of the Earth for P velocity structure (as e.g. Dziewonski et al. 1975). The structure of the inner core cannot be well resolved by traveltimes alone. The jump in P velocity at the inner core boundary adopted for iasp91 fits within the bounds derived by Cummins & Johnson (1989) from detailed amplitude studies.

#### MODEL TESTING

The construction of the *iasp91* velocity model has been based on the use of the ISC data base, but there is a long-recognized problem with possible errors in traveltimes.

These arise because, even after relocation of an event with a new velocity model, the origin times may well be in error. This error will propagate into the derived traveltimes. Also such errors may affect the procedure of phase association, which itself has to be based on a set of traveltimes. One measure of the error in absolute traveltime is the mean teleseismic residual estimated from the origin times and hypocentres provided by test event contributors.

The mean residual distribution in Fig. 4 shows general consistency in different regions. Some of the largest values are associated with earthquakes on oceanic islands (Hawaii, Iceland). Since the *iasp91* model has been constructed to have a continental crust, we would anticipate that there would be error introduced for shallow events in zones with rather different crustal and uppermost mantle structure. However, the errors are modest.

The patterns of the mean residuals reflect differences in the procedures used to generate the hypocentral information supplied for the test events. There is also a strong influence from the distribution of recording stations since the coverage of oceanic areas is limited.

We have mentioned above the difficulty of assigning a baseline from traveltime studies alone. Fortunately we have within the test events a subset of nuclear explosions for which independent information is available for the accurate origin time. The results for these well-calibrated events in the USA, USSR, Sahara and South Pacific are tabulated in Table 4. The mean teleseismic residual bias for the 14 events at the major test sites is  $0.02 \, \mathrm{s}$ , which is very encouraging indeed. If we include the five events away from the main test sites, the mean offset is still only  $0.08 \, \mathrm{s}$ . It would therefore appear that the baseline for the P times in the iasp 91 is in a satisfactory position.

The primary test of the *iasp91* tables is how well we are able to locate events where the hypocentral parameters are

well constrained. We have therefore used the traveltimes for the *iasp91* model to estimate the hypocentral parameters of the 104 events (83 earthquakes, 21 explosions). Because the amount of regional data is somewhat variable between events, we have chosen to use only teleseimic times and to constrain the depth of all the test events at the values supplied with the event (which are tabulated in Appendix B). The location procedure then follows the standard NEIC practice but with the substitution of the *iasp91* tables for the Jeffreys & Bullen (1940) tables.

With a constrained depth solution, we have two convenient measures of the accuracy of the locations generated with the *iasp91* model; these are:

- (a) the offset in origin time; and
- (b) the mislocation vector for the epicentre.

The test events provide a reasonable geographic coverage of the globe as can be seen from Fig. 5, in which we display the mislocation vectors for the *iasp91* model. For those events where control on the origin time is strong, i.e. most of the explosions and a number of earthquakes, the origin time bias (see Table 4) is generally quite small (1 s or less) and there is tendency for the mean residual to be of similar magnitude but opposite sign.

Within the Nevada test site in the USA and the Soviet test site in Eastern Kazakhstan, there are systematic variations in the location performance which can be correlated with the position of the events within the test sites.

The influence of station distribution is also significant for the mislocation vectors and it is interesting to note that the distribution in Fig. 5 is quite similar to that for the JB times (and for other candidate models). The mean length of the mislocation vectors is not a strong function of the velocity model and the 13.8 km value for *iasp91* is almost the same





Figure 4. Mean teleseismic residuals beyond  $25^{\circ}$  for test events using *iasp91* times. Plusses represent positive values and circles negative values. The scaling of the symbols is linear and the size of 1 s residuals is indicated (minimum symbol size  $\pm 0.25$  s).

Table 4. Location parameters for well-constrained explosions.

|               | Res.            |       | Orig time | Misloca | tion  |
|---------------|-----------------|-------|-----------|---------|-------|
|               |                 | > 25° | bias      | Azimuth | k m   |
| South Pacific |                 |       |           |         |       |
| 1954 02 28    | CASTLE BRAVO    | 0.00  | -0.06     | 296.5   | 7.42  |
| 1954 05 04    | CASTLE YANKEE   | -0.02 | -0.15     | 311.8   | 9.94  |
| 1958 06 28    | OAK             | -0.01 | -0.02     | 266.9   | 4.14  |
| Nevada Test S | iite            |       |           |         |       |
| 1963 09 13    | BILBY           | 0.10  | -0.42     | 1.9     | 13.10 |
| 1967 05 20    | COMMODORE       | 0.20  | -0.59     | 18.7    | 9.96  |
| 1968 01 19    | FAULTLESS       | 0.52  | -0.83     | 63.3    | 9.16  |
| 1968 04 26    | BOXCAR          | 0.19  | -0.59     | 36.2    | 11.55 |
| 1988 07 07    | ALAMO           | 0.44  | -0.91     | 33.1    | 12.99 |
| Alaska        |                 |       |           |         |       |
| 1971 11 06    | Cannikin        | -1.75 | 1.36      | 352.1   | 27.32 |
| Other U.S.A.  |                 |       |           |         |       |
| 1969 09 10    | RULISON (CO)    | 0.68  | -0.56     | 267.6   | 5.17  |
| 1973 05 17    | RIO BLANCO (CO) | 0.12  | -0.57     | 65.4    | 13.09 |
| 1967 12 10    | GASBUGGY (NM)   | 0.98  | -1.20     | 59.1    | 5.62  |
| 1965 07 15    | CHASE (VA)      | 1.26  | -1.46     | 22.0    | 11.61 |
| Sahara        |                 |       |           |         |       |
| 1963 10 20    |                 | 0.03  | -0.32     | 19.3    | 9.85  |
| 1965 02 27    |                 | 0.18  | -0.34     | 30.7    | 6.57  |
| E. Kazakh     |                 |       |           |         |       |
| 1969 11 30    |                 | -0.42 | 0.49      | 74.8    | 4.69  |
| 1971 04 25    |                 | -0.19 | 0.31      | 68.0    | 7.46  |
| 1972 08 16    |                 | -0.30 | 0.51      | 74.5    | 8.75  |
| 1972 11 02    |                 | -0.39 | 0.57      | 78.5    | 9.53  |
|               |                 |       |           |         |       |

as JB and less than the other models we have tried. A more detailed discussion of the location results for the test events will be presented in Engdahl & Buland (1991). The influence of the higher velocity slab for events in subduction zones shows up clearly, since the midlocation vectors point in the direction of subduction.

The arrival time data sets for the test events are rich in later phases and this enables us to supplement the location

results, which primarily depend on teleseismic P, with an assessment of the general performance of the iasp91 tables. In Fig. 6 we display the traveltime curves for the iasp91 model superimposed on the traveltimes for the 57655 phases reported for the test events (corrected to surface focus). The agreement between the observed and calculated times is very encouraging, especially for the later phases.

In Figs 7-9, we display more detailed comparisons for

Mislocation Vector - iasp91



Figure 5. Mislocation vectors at constrained depth for test events using iasp91 times and teleseismic arrivals.



Figure 6. Display of *iasp91* traveltimes superimposed on the times of phases for the test events corrected to surface focus.

important classes of arrivals. Fig. 7 shows the result for both P and S times out to 30°, covering the distance span for energy return from the upper mantle. It is in this distance range that we would anticipate the greatest level of regional variation and so significant deviations from the computed times could be expected. Nevertheless the correspondence between the complex traveltime curves for the upper mantle



Figure 7. Reduced time display (reduction slowness 19.0 s deg<sup>-1</sup>) for upper mantle phases from the test event data, corrected to surface focus, compared with *iasp91* times.

branches in the *iasp91* times, and the times from the test events is good for both *P*- and *S*-waves.

Teleseismic P- and S-wave times for the test events are compared to the iasp91 table results in Fig. 8. There is a tendency for the calculated P times to lie near the leading edge of the cloud of P observations. This may arise in part from observations of emergent phases and also to the



Figure 8. Reduced time display (reduction slowness  $6.84 \, \mathrm{s} \, \mathrm{deg}^{-1}$ ) for teleseismic P and S and associated phases for the test event data, corrected to surface focus, compared with  $iasp\,91$  times.



Figure 9. Time display for PKP phases from the test event data, corrected to surface focus, compared with iasp91 times.

difficulty of separating pP and P arrivals for shallow phases. A more likely explanation (Engdahl & Buland 1991) is that many of the origin times associated with earthquakes in the test event data set may have been estimated using the JB tables. For S, the reported phases are more sparse, but agree with the calculated times. The new tables also fit well with the other phases displayed in the time window of Fig. 8, especially for PcP, PP, ScP and ScS.

The final comparison in Fig. 9 is for the core phase *PKP* which is well represented for the test events. The DF branch is clear over the interval 110° to 130° and beyond 145°. The position of the B caustic predicted by the *iasp91* tables fits well with the observations, and the AB branch is also well constrained. The *PP* phase is less heavily represented but also agrees well with the theoretical predictions.

# COMPARISONS WITH OTHER TRAVELTIME TABLES

In Appendix A we present summary traveltime tables for the iasp91 velocity model for the phases P, PcP, PKP and S, ScS, SKS for a variety of source depths. Also in Appendix C we illustrate the output from the computational software developed for the new tables displaying many phases at a single epicentral distance. A direct comparison of the new tables against existing tabulations is presented in Figs 10 and 11.

### P-waves

In Fig. 10 we display the residuals from the *iasp91* tables, for the Jeffreys & Bullen (1940) tables and the 1968 *P*-tables (Herrin 1968) for surface focus events. As we would expect there is considerable variability out to 30° because neither of the other tables corresponds to the level of complexity of





Figure 10. P-wave time residuals for other traveltime tables relative to *iasp91*.

the *iasp91* model in the upper mantle transition zone. The Herrin model is completely smooth in the upper mantle, whilst the JB times correspond to a sharp change in velocity gradient near 400 km depth.

Beyond  $30^{\circ}$ , however, we see that the situation is more stable. The offset of the iasp91 tables from the Herrin (1968) tables varies by no more than 0.3 s over the entire range from  $30^{\circ}$  to  $95^{\circ}$ , with a mean of 0.7 s. The iasp91 tables for teleseismic P can therefore be regarded as roughly equivalent to the Herrin (1968) tables with a baseline shift of 0.7 s. The baseline for iasp91 is supported by the results from the well-located explosions from around the world in the test event data set.

The behaviour of the JB teleseismic residuals is more complex and suggests a difference in tilt as well as offset. The mean offset between the *iasp91* and JB times is approximately 1.85 s, which is close to the value of 2 s which has often been adopted as an empirical correction to the Jeffreys & Bullen (1940) tables.

### iasp91 S - residuals



Figure 11. S-wave time residuals for other traveltime tables relative to *iasp 91*.

440

The residuals of a number of S-wave traveltime tables with respect to the new iasp 91 tables are displayed in Fig. 11. We see that for teleseismic S there is general agreement between the different tables in a zone about 3s wide, at least out to the zone of interference between S and SKS near 80°. The agreement between the different S tables evaporates for ranges less than 30° where it is clear that there are very strong regional influences on S-wave times. The principal guide for the construction of the iasp91 times for S returns from the upper mantle was the Dziewonski & Anderson (1981) summary traveltimes derived from the ISC data base (see Table 3). These times appear to be more representative of tectonic zones than other regions. This bias is likely to arise from the preponderence of earthquakes and seismic recording stations in such tectonic zones. Randall's (1971) times derived using the same events as the 1968 P-tables (Herrin 1968) are just a little slower than iasp91 from 20° out. The S times for central Asian events reported by Gogna et al. (1980) are up to 8 s faster.

For the purpose of establishing a teleseismic baseline for S, the most interesting set of tables is that of Uhrhammer (1978). He read the S-P times for 11 events with the object of minimizing the influence of origin time errors; the S times plotted in Fig. 11 are those published for use with the Herrin (1968) P times. The rather oscillatory nature of the Uhrhammer residuals compared with the other curves is rather disconcerting but may arise from the limited number of events which were used in the construction of the traveltime table.

In the teleseismic interval the *iasp91* times are quite similar to JB (although the derivation was independent). There is a slight difference in slope from the tables of Hales & Roberts (1970) and Gogna *et al.* (1980). Although not displayed in Fig. 11, there is also a similar level of fit to the *SKS* times of Hales & Roberts (1970).

When we take account of the limitations of S observations, the *iasp 91* tables give a satisfactory representation of the observed behaviour.

### **DISCUSSION**

Jeffreys (1970, section 3.19) has indicated that he thought that it would not be feasible to make substantial improvements to the Jeffreys & Bullen (1940) tables for global location, but that there would be a need for regional tables. As discussed above the *iasp91* model has been constructed in a way which should make the inclusion of regional models for crustal and upper mantle structure reasonably easy. The requirements for the inclusion of regionalized structure in order to provide a satisfactory tie to the teleseismic times are discussed in Appendix D.

A weakness of the present inversions of traveltimes for mantle and core structure is that the constraints on a number of key phases are relatively weak. For example, observations of ScP and SKP would improve the tie between the P and S baselines. We hope that the iasp91 traveltimes will provide an effective description of the main later-arriving seismic phases, so that accurate phase associations can be made for the time picks reported by seismic observatories. Such improved association routines

coupled with current initiatives to collect more traveltime data for later phases (the ISOP project) should provide the information required for more refined traveltime inversion and the delineation of lateral heterogeneity. The strongest influence is likely to arise on the S velocity in the mantle and the P velocity in the core. The level of agreement between recent studies of the mantle P-wave velocities from traveltimes (e.g. Morelli & Dziewonski 1989; Inoue et al. 1990; this study) suggest that these are already well constrained.

The ideal procedure for determining earth structure from the ISC data set would be a simultaneous inversion for source location and velocity structure, but this would represent a formidable computational problem. In order to reduce local structural effects, data from many events are currently combined to produce composite rays with a time characteristic of the region. For a simultaneous inversion, this procedure would not be feasible and a full 3-D earth model would be required with each event treated separately.

## **ACKNOWLEDGMENTS**

The development of these iasp91 traveltime tables has involved many people and we are very appreciative of the help we have received. The contributions of the participants in the 1988 and 1989 workshops have been very valuable and have helped to shape the development of the tables. In particular we would like to thank Anton Hales; without his suggestions, probing questions and untiring enthusiasm it is unlikely that the project would have reached this point. Ray Buland has responded with equanimity to our requests for software modification and has produced a very powerful software package for traveltime computation. Lane Johnson provided considerable help in the early stages of work on the traveltimes for the upper mantle. Ken Toy, Andrea Morelli and Adam Dziewonski generated lower mantle and core models for the workshop at the IASPEI General Assembly in Turkey in 1989 but are not to blame for the final form of the tables. Mike Shimshoni offered useful criticisms of an earlier form of the traveltime tables. Rob van der Hilst undertook a major study of events in the northwest Pacific using a preliminary form of the velocity model which helped shape the final form of the model. We would also like to thank Unesco, IASPEI and the US Air Force Geophysical Laboratory for financial support towards the 1988 and 1989 workshops and the costs of producing the tables. Finally we would like to acknowledge our debt to Harold Jeffreys and Keith Bullen, whose painstaking and arduous work produced a magnificent set of traveltime tables which have served for 50 years.

#### REFERENCES

Azbel, I. Ya & Yanovskaya, T. B., 1972. Approximations of velocity distributions for calculations of P-wave times and amplitudes, Computational Seismology, ed. Keilis-Borok, V. I., Consultants Bureau, New York.

Bocharov, V. S., Zelentsev, A. & Mikhailov, V. N., 1989.
Characteristics of 96 underground nuclear explosions at the Semipalatinsk test site, Atomnaya Energiya, 67, 3 (in Russian).
Buland, R. & Chapman, C. H., 1983. The computation of seismic travel times, Bull. seism. Soc. Am., 73, 1271-1302.

Cummins, P. & Johnson, L. R., 1989. Short-period body wave

- constraints on properties of the Earth's inner core boundary, *J. geophys. Res.*, **93**, 9058-9074.
- Dzeiwonski, A. M. & Anderson, D. L., 1981. Preliminary Reference Earth Model, Phys. Earth planet Inter., 25, 297-356.
- Dzeiwonski, A. M. & Anderson, D. L., 1983. Travel times and station corrections for P waves at teleseismic distances, J. geophys. Res. 88, 3295-3314.
- Dziewonski, A. M., Hales, A. L. & Lapwood, E. R., 1975. Parametrically simple Earth models consistent with geophysical data, *Phys. Earth planet. Inter.*, 10, 12-48.
- Engdahl, E. R. & Gunst, R. H., 1966. Use of a high speed computer for the preliminary determination of earthquake epicentres, *Bull. seism. Soc. Am.*, **56**, 325-336.
- Engdahl, E. R. & Buland, R., 1991. Tests of seismic travel-time tables with well constrained hypocentres of earthquakes and explosions, *Geophys. J. Int.*, submitted.
- Gogna, M. L., Jeffreys, H. & Shimshoni, M., 1980. Seismic travel times from central Asian epicentres, Geophys. J. R. astr. Soc., 63, 577-599.
- Hales, A. L. & Roberts, J. L., 1970. The travel times of S and SKS, *Bull. seism. Soc. Am.*, **60**, 461-489.
- Herrin, E., 1968. Introduction to '1968 Seismological Tables for P-phases', Bull. seism. Soc. Am., 58, 1193-1195.
- Inoue, H., Fukao, Y., Tanabe, K. & Ogata, Y., 1990. Whole mantle P-wave travel time tomography, *Phys. Earth planet*. *Inter.*, 59, 294-328.
- Jeffreys, H., 1932. An alternative to the rejection of observations, *Proc R. Soc. Lond.*, A, 137, 78-87.
- Jeffreys, H., 1939. Theory of Probability, Oxford University Press,

- Oxford.
- Jeffreys, H., 1970. The Earth, 5th edn, Cambridge University Press, Cambridge.
- Jeffreys, H. & Bullen, K. E., 1940. Seismological Tables, British Association for the Advancement of Science, London.
- Kennett, B. L. N., 1988. Quakes to have better locations, EOS, Trans. Am. geophys. Un., 69, 1571.
- Morelli, A. & Dziewonski, A. M., 1989. Spherically symmetric Pand S-wave velocity models derived from ISC travel times, Abstracts 25th General Assembly IASPEI, Istanbul, Turkey.
- Randall, M. J., 1971. A revised travel-time table for S, Geophys. J. R. astr. Soc., 22, 229-234.
- Revenaugh, J. S. & Jordan, T. H., 1989. A study of mantle layering beneath the western Pacific, J. geophys. Res., 94, 5787-5813.
- Toy, K., 1989a. Tomographic analysis of ISC travel time data for Earth structure, *PhD thesis*, University of California, San Diego.
- Toy, K., 1989b. P- and S-wave lower-mantle and core seismic velocity models and station corrections from ISC travel time data, Abstracts 25th General Assembly IASPEI, Istanbul, Turkey.
- Uhrhammer, R., 1978. S-wave travel times for a spherically averaged earth, Geophys. J. R. astr. Soc., 55, 283-309.
- Vergino, E. S., 1989. Soviet test yields, EOS, Trans. Am. geophys. Un., 70, 1511.
- Zielhuis, A., 1988. A shear velocity model for Europe from ISC delay times, Proceedings of the 4th Workshop on the European Geotraverse Project, pp. 57-62, European Science Foundation, Strasbourg.

#### APPENDIX A

# Summary traveltime tables for the iasp91 model

We present here summary traveltime tables at 2° intervals for the phases P, PcP, PKPab, PKPbc, PKPdf and S, ScS, SKSac, SKSdf for a variety of source depths. These tables have been extracted from the output of the standard computational procedure described in Appendix C.

For each distance we display the traveltime for each of the depths as a value in minutes and seconds and beneath in italics the slowness  $(dT/d\Delta)$  for that distance.

These traveltime tables have been produced from the tau-spline routines by a computer routine which assembles the results for the requisite depths and then generates table formatting commands which allow the production of direct laserprinter output.

# Note added in proof

A more comprehensive set of traveltime tables (the *IASPEI 1991 Seismological Tables*) has also been prepared using the *iasp91* computational routines and is available from Bibliotech, ANUtech Pty Ltd, GPO Box 4, Canberra ACT 2601, Australia (A\$19 including postage and packing).

These extended tables present traveltimes at 1° sampling in range for body waves (for a wide range of depths), core phases and converted phases. Differential times for surface reflected phases (pP-P, sP-P, sS-S, pS-S) are also tabulated.

In addition, at 2° intervals the traveltimes and slowness are tabulated for a wide range of phases for source depths of 0 100, 300 and 600 km. Ellipticity corrections are provided for major phases.

Table A1. Summary traveltime tables.

| P  |          |                          |                          |                         | Depth of so             | ource [km]             |                         |                              |                        |
|----|----------|--------------------------|--------------------------|-------------------------|-------------------------|------------------------|-------------------------|------------------------------|------------------------|
|    | Δ        | 0.                       | 35.                      | 70.                     | 150.                    | 250.                   | 400.                    | 550.                         | 700.                   |
|    |          | m s                      | m s                      | m s                     | m s                     | m s                    | m s                     | m s                          | m s                    |
| (  | 0.0      | 0 00.00                  | 0 05.76                  | 0 10.11                 | 0 20.03                 | 0 32.11                | 0 49.32                 | 1 05.02                      | 1 19.70                |
|    | 2.0      | <i>19.17</i><br>0 35.03  | 0.00<br>0 31.27          | 0.00<br>0 31.62         | 0.00<br>0 35.08         | 0.00<br>0 42.42        | <i>0.00</i><br>0 55.91  | 0.00<br>1 09.62              | 0.00<br>1 23.13        |
|    |          | <i>13.75</i>             | 13.75                    | 13.46                   | 11.63                   | 9.01                   | 6.19                    | 4.43                         | <i>3.33</i>            |
| •  | 4.0      | 1 02.53<br><i>13.75</i>  | 0 58.77                  | 0 58.81                 | 1 00.20                 | 1 03.75                | 1 12.03                 | 1 21.79                      | 1 32.55                |
|    | 6.0      | 1 30.01                  | 13.75<br>1 26.25         | 13.65<br>1 26.14        | 13.06<br>1 26.65        | 11.72<br>1 28.08       | <i>9.48</i><br>1 32.56  | <i>7.46</i><br>1 38.54       | 5.93<br>1 46.23        |
|    |          | 13.74                    | 13.73                    | 13.67                   | 13.32                   | 12.46                  | 10.86                   | 9.10                         | 7.61                   |
| ;  | 8.0      | 1 57.47<br><i>13.7</i> 2 | 1 53.70<br><i>13.7</i> 2 | 1 53.47<br><i>13.66</i> | 1 53.33<br><i>13.34</i> | 1 53.24<br>12.65       | 1 54.92<br><i>11.41</i> | 1 57.65<br>9.90              | 2 02.49<br>8.55        |
| 1/ | 0.0      | 2 24.90                  | 2 21.12                  | 2 20.79                 | 2 19.93                 | 2 18.51                | 2 17.52                 | 2 17.84                      | 2 20.09                |
| 1. | u.u      | 13.70                    | 13.70                    | 13.65                   | 13.24                   | 12.59                  | 11.08                   | 2 17.8 <del>4</del><br>10.24 | 2 20.09<br>8.98        |
| 1: | 2.0      | 2 52.27                  | 2 48.48                  | 2 48.06                 | 2 46.19                 | 2 43.52                | 2 39.62                 | 2 38.44                      | 2 38.18                |
| 1. | 4.0      | <i>13.6</i> 8<br>3 19.59 | 13.67<br>3 15.79         | 13.62<br>3 14.95        | 13.00<br>3 11.81        | 12.40<br>3 08.06       | 11.01<br>3 01.54        | 10.33<br>2 59.09             | 9.08<br>2 56.34        |
|    |          | 13.65                    | 13.64                    | 13.12                   | 12.61                   | 12.13                  | 10.89                   | 10.30                        | 9.07                   |
| 10 | 6.0      | 3 46.38                  | 3 42.32                  | 3 40.66                 | 3 36.64                 | 3 30.73                | 3 23.17                 | 3 19.44                      | 3 14.44                |
| 1: | 8.0      | <i>12.92</i><br>4 11.58  | 12.81<br>4 07.34         | <i>12.57</i><br>4 04.98 | 12.22<br>3 59.15        | 10.97<br>3 52.52       | <i>10.73</i><br>3 44,43 | 9.19<br>3 37.77              | 9.03<br>3 32.42        |
|    |          | 12.33                    | 12.26                    | 11.00                   | 10.93                   | 10.81                  | 10.53                   | 9.14                         | 8.95                   |
| 20 | 0.0      | 4 34.10                  | 4 29.49                  | 4 26.83                 | 4 20.83                 | 4 13.93                | 4 04.34                 | 3 55.97                      | 3 50.24                |
|    |          | 10.90                    | 10.88                    | 10.84                   | <i>10.74</i>            | 10.59                  | 9.15                    | 9.06                         | 8.87                   |
| 2. | 2.0      | 4 55.71<br><i>10.70</i>  | 4 51.05<br><i>10.67</i>  | 4 48.31<br><i>10.62</i> | 4 42.09<br><i>10.50</i> | 4 33.89<br><i>9.14</i> | 4 22.56<br><i>9.07</i>  | 4 13.99<br><i>8.95</i>       | 4 07.92<br>8.81        |
| 2  | 4.0      | 5 16.31                  | 5 11.33                  | 5 08.08                 | 5 00.74                 | 4 52.08                | 4 40.60                 | 4 31.79                      | 4 25.48                |
| 3  | <i>c</i> | 9.14                     | 9.13<br>5.20.51          | 9.12                    | 9.09                    | 9.06                   | 8.96                    | 8.86                         | 8.74                   |
| 20 | 6.0      | 5 34.51<br>9.06          | 5 29.51<br><i>9.05</i>   | 5 26.24<br>9.03         | 5 18.83<br>8.99         | 5 10.08<br>8.93        | 4 58.42<br>8.86         | 4 49.44<br>8.79              | 4 42.87<br>8.65        |
| 2  | 8.0      | 5 52.50                  | 5 47.49                  | 5 44.18                 | 5 36.70                 | 5 27.85                | 5 16.08                 | 5 06.94                      | 5 00.08                |
|    |          | 8.93                     | 8.92                     | 8.91                    | 8.88                    | 8.85                   | <i>8.79</i>             | 8.70                         | 8.56                   |
| 30 | 0.0      | 6 10.27                  | 6 05.24                  | 6 01.92                 | 5 54.38                 | 5 45.48                | 5 33.58                 | 5 24.25                      | 5 17.09                |
| 3: | 2.0      | 8.85<br>6 27.89          | 8.84<br>6 22.85          | 8.83<br>6 19.50         | <i>8.81</i><br>6 11.92  | 8.77<br>6 02.93        | <i>8.70</i><br>5 50.89  | 8.60<br>5 41.34              | <i>8.45</i><br>5 33.89 |
|    |          | <i>8.77</i>              | <i>8.76</i>              | 8.75                    | 8.72                    | 8.68                   | 8.60                    | 8.49                         | 8.34                   |
| 34 | 4.0      | 6 45.34<br><i>8.67</i>   | 6 40.27                  | 6 36.90                 | 6 29.25                 | 6 20.18                | 6 07.97                 | 5 58.21                      | 5 50.46                |
| 3  | 6.0      | 7 02.57                  | 8.66<br>6 57.49          | 8.65<br>6 54.08         | <i>8.61</i><br>6 46.36  | 8.57<br>6 37.20        | 8.48<br>6 24.82         | <i>8.38</i><br>6 14.83       | 8.23<br>6 06.79        |
|    |          | 8.56                     | 8.55                     | 8.53                    | 8.50                    | 8.45                   | 8.36                    | 8.25                         | 8.11                   |
| 38 | 8.0      | 7 19.56<br>8.44          | 7 14.46<br><i>8.43</i>   | 7 11.02<br><i>8.41</i>  | 7 03.23<br><i>8.37</i>  | 6 53.97<br>8.32        | 6 41.42<br>8.23         | 6 31.21<br>8.12              | 6 22.89<br>7.99        |
| 4  | 0.0      | 7 36.30                  | 7 31.18                  | 7 27.71                 |                         | 7 10.48                |                         |                              |                        |
|    | υ.υ      | 7 30.30<br>8.30          | 8.29                     | 8.28                    | 7 19.85<br><i>8.24</i>  | 7 10.48<br>8.19        | 6 57.76<br>8.10         | 6 47.33<br><i>7.9</i> 9      | 6 38.73<br>7.86        |
| 42 | 2.0      | 7 52.78                  | 7 47.63                  | 7 44.13                 | 7 36.19                 | 7 26.73                | 7 13.83                 | 7 03.19                      | 6 54.32                |
| 4  | 4.0      | 8.17<br>8 08.98          | <i>8.16</i><br>8 03.81   | 8.14<br>8 00.28         | 8.10<br>7 52.26         | 8.06<br>7 42.70        | 7.97<br>7 29.63         | <i>7.86</i><br>7 18.78       | 7.73<br>7 09.66        |
| •  | 1.0      | 8.03                     | 8.02                     | 8.00                    | 7.97                    | 7.92                   | 7.83                    | 7.73                         | 7.60                   |
| 4  | 6.0      | 8 24.90                  | 8 19.71                  | 8 16.15                 | 8 08.06                 | 7 58.39                | 7 45.16                 | 7 34.10                      | 7 24.74                |
| 4  | 8.0      | 7.89<br>8 40.54          | 7.88<br>8 35.33          | 7.86<br>8 31.73         | 7.83<br>8 23.57         | 7.78<br>8 13.81        | <i>7.70</i><br>8 00.41  | 7.59<br>7 49.16              | 7.47<br>7 39.55        |
|    |          | 7.75                     | 7.74                     | 7.72                    | 7.68                    | 7.64                   | 7.55                    | 7 49.16<br>7.46              | 7 39.33<br>7.34        |
| 50 | 0.0      | 8 55.89                  | 8 50.66                  | 8 47.03                 | 8 38.80                 | 8 28.94                | 8 15.38                 | 8 03.94                      | 7 54.10                |
|    |          | 7.60                     | 7.59                     | 7.58                    | 7.54                    | 7.49                   | 7.42                    | 7.32                         | 7.21                   |

Table A1. (continued)

| P            |                          |                         |                         | Depth of so             | ource [km]              |                                |                         |                         |
|--------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--------------------------------|-------------------------|-------------------------|
| Δ            | 0.                       | 35.                     | 70.                     | 150.                    | 250.                    | 400.                           | 550.                    | 700.                    |
|              | m s                      | m s                     | m s                     | m s                     | m s                     | m s                            | m s                     | m s                     |
| 50.0         | 8 55.89                  | 8 50.66                 | 8 47.03                 | 8 38.80                 | 8 28.94                 | 8 15.38                        | 8 03.94                 | 7 54.10                 |
| 52.0         | <i>7.60</i><br>9 10.95   | <i>7.59</i><br>9 05.70  | <i>7.58</i><br>9 02.04  | <i>7.54</i><br>8 53.74  | <i>7.49</i><br>8 43.78  | 7.42<br>8 30.08                | <i>7.32</i><br>8 18.44  | 7.21<br>8 08.39         |
|              | 7.46                     | 7.45                    | 7.43                    | 7.40                    | 7.35                    | 7.28                           | 7.18                    | 7.08                    |
| 54.0         | 9 25.72                  | 9 20.45                 | 9 16.76                 | 9 08.39                 | 8 58.35                 | 8 44.49                        | 8 32.68                 | 8 22.41                 |
| 56.0         | <i>7.31</i><br>9 40.20   | <i>7.30</i><br>9 34.91  | <i>7.29</i><br>9 31.19  | <i>7.26</i><br>9 22.76  | <i>7.21</i><br>9 12.63  | 7.14<br>8 58.62                | 7.05<br>8 46.64         | 6.94<br>8 36.17         |
| 20.0         | 7.17                     | 7.16                    | 7.14                    | 7.11                    | 7.07                    | 7.00                           | 6.91                    | 6.81                    |
| 58.0         | 9 54.39                  | 9 49.08                 | 9 45.34                 | 9 36.84                 | 9 26.62                 | 9 12.48                        | 9 00.32                 | 8 49.65                 |
|              | 7.02                     | 7.01                    | 7.00                    | 6.97                    | 6.93                    | 6.86                           | 6.77                    | 6.68                    |
| 60.0         | 10 08.29                 | 10 02.96                | 9 59.19                 | 9 50.63                 | 9 40.33                 | 9 26.05                        | 9 13.73                 | 9 02.87                 |
| 62.0         | <i>6.</i> 88<br>10 21.90 | 6.87<br>10 16.55        | 6.86<br>10 12.76        | 6.82<br>10 04.13        | 6.78<br>9 53.76         | 6.72<br>9 39.34                | 6.64<br>9 26.86         | 6.54<br>9 15.82         |
| <b>02.</b> 0 | 6.73                     | 6.72                    | 6.71                    | 6.68                    | 6.64                    | 6.57                           | 6.50                    | 6.41                    |
| 64.0         | 10 35.22                 | 10 29.86                | 10 26.04                | 10 17.35                | 10 06.90                | 9 52.35                        | 9 39.72                 | 9 28.50                 |
| <i>((</i> )  | 6.59                     | 6.58                    | 6.57                    | 6.54<br>10 30.28        | 6.50                    | 6.43                           | 6.36<br>9 52.30         | 6.27<br>9 40.91         |
| 66.0         | 10 48.25<br><i>6.44</i>  | 10 42.87<br><i>6.43</i> | 10 39.02<br>6.42        | 6.39                    | 10 19.75<br><i>6.36</i> | 10 05.08<br><i>6.29</i>        | 9 32.30<br>6.22         | 6.14                    |
| 68.0         | 11 00.99                 | 10 55.59                | 10 51.72                | 10 42.92                | 10 32.32                | 10 17.52                       | 10 04.60                | 9 53.04                 |
|              | 6.30                     | 6.29                    | 6.28                    | 6.25                    | 6.21                    | <i>6.15</i>                    | 6.08                    | 6.00                    |
| 70.0         | 11 13.43                 | 11 08.02                | 11 04.12                | 10 55.27                | 10 44.59                | 10 29.68                       | 10 16.62                | 10 04.90                |
| 72.0         | 6.15                     | 6.14                    | 6.13                    | 6.10                    | 6.07                    | 6.01                           | 5.94                    | <i>5.86</i><br>10 16.48 |
| 72.0         | 11 25.59<br>6.00         | 11 20.15<br>5.99        | 11 16.24<br>5.98        | 11 07.33<br>5.96        | 10 56.58<br>5.92        | 10 41.55<br>5.86               | 10 28.35<br>5.80        | 5.72                    |
| 74.0         | 11 37.45                 | 11 32.00                | 11 28.06                | 11 19.10                | 11 08.28                | 10 53.14                       | 10 39.81                | 10 27.78                |
| 7.0          | 5.86                     | 5.85                    | 5.84                    | 5.81                    | 5.78                    | 5.72                           | 5.66                    | 5.58                    |
| 76.0         | 11 49.01<br><i>5.71</i>  | 11 43.54<br>5.70        | 11 39.58<br>5.69        | 11 30.57<br>5.66        | 11 19.69<br>5.63        | 11 04.44<br><i>5.57</i>        | 10 50.97<br>5.51        | 10 38.80<br>5.44        |
| 78.0         | 12 00.27                 | 11 54.79                | 11 50.81                | 11 41.75                | 11 30.80                | 11 15.44                       | 11 01.85                | 10 49.53                |
|              | 5.56                     | 5.55                    | 5.54                    | 5.51                    | 5.48                    | 5.43                           | 5.36                    | 5.29                    |
| 80.0         | 12 11.23                 | 12 05.73                | 12 01.73                | 11 52.62                | 11 41.61                | 11 26.14                       | 11 12.43                | 10 59.98                |
| 00.0         | 5.40                     | 5.40                    | 5.39                    | 5.36                    | 5.33                    | 5.28                           | 5.22                    | 5.15<br>11 10 12        |
| 82.0         | 12 21.88<br>5.25         | 12 16.37<br>5.24        | 12 12.35<br>5.23        | 12 03.20<br>5.21        | 11 52.12<br>5.18        | 11 36.55<br>5.13               | 11 22.72<br>5.07        | 11 10.12<br>5.00        |
| 84.0         | 12 32.23                 | 12 26.70                | 12 22.66                | 12 13.46                | 12 02.32                | 11 46.65                       | 11 32.70                | 11 19.98                |
|              | 5.09                     | 5.09                    | 5.07                    | 5.05                    | 5.02                    | 4.97                           | 4.92                    | 4.85                    |
| 86.0         | 12 42.26<br>4.94         | 12 36.72<br>4.93        | 12 32.66<br>4.93        | 12 23.41<br>4.91        | 12 12.22<br>4.87        | 11 <b>56.44</b><br><i>4.80</i> | 11 42.36<br><i>4.73</i> | 11 29.49<br>4.70        |
| 88.0         | 12 51.96                 | 12 46.40                | 12 42.31                | 12 33.01                | 12 21.75                | 12 05.89                       | 11 51.74                | 11 38.82                |
| -            | 4.74                     | 4.73                    | 4.73                    | 4.72                    | 4.70                    | 4.68                           | 4.66                    | 4.64                    |
| 90.0         | 13 01.35                 | 12 55.78                | 12 51.69                | 12 42.37                | 12 31.09                | 12 15.19                       | 12 01.01                | 11 48.05                |
|              | 4.66                     | 4.66                    | 4.66                    | 4.65                    | 4.64                    | 4.63                           | 4.61                    | 4.60                    |
| 92.0         | 13 10.62                 | 13 05.05                | 13 00.96<br><i>4.61</i> | 12 51.63<br><i>4.61</i> | 12 40.33<br><i>4.60</i> | 12 24.41<br><i>4.5</i> 9       | 12 10.20<br><i>4.57</i> | 11 57.21<br>4.55        |
| 94.0         | <i>4.61</i><br>13 19.81  | <i>4.61</i><br>13 14.24 | 13 10.14                | 13 00.80                | 12 49.49                | 12 33.54                       | 12 19.29                | 12 06.26                |
|              | 4.58                     | 4.57                    | 4.57                    | 4.57                    | 4.56                    | 4.54                           | 4.52                    | 4.49                    |
| 96.0         | 13 28.91                 | 13 23.34                | 13 19.23                | 13 09.87                | 12 58.54                | 12 42.55                       | 12 28.26                | 12 15.18                |
| 98.0         | 4.52<br>13 37.89         | <i>4.52</i><br>13 32.30 | <i>4.51</i><br>13 28.19 | <i>4.51</i><br>13 18.81 | <i>4.49</i><br>13 07.46 | <i>4.48</i><br>12 51.45        | <i>4.45</i><br>12 37.14 | 4.44<br>12 24.06        |
| 70.0         | 13 37.69<br>4.45         | 15 52.50<br>4.45        | 4.45                    | 4.44                    | 4.44                    | 4.44                           | 4.44                    | 4.44                    |
| 100.0        | 13 46.77                 | 13 41.18                | 13 37.07                | 13 27.69                | 13 16.34                | 13 00.33                       | 12 46.02                | 12 32.94                |
| 100.0        | 4.44                     | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                           | 4.44                    | 4.44                    |
|              |                          |                         |                         |                         |                         |                                |                         |                         |

Table A1. (continued)

| P     |                         |                         |                         | Depth of s              | ource [km]              |                         |                         |                         |
|-------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Δ     | 0.                      | 35.                     | 70.                     | 150.                    | 250.                    | 400.                    | 550.                    | 700.                    |
|       | m s                     | m s                     | m s                     | m s                     | m s                     | m s                     | m s                     | m s                     |
| 100.0 | 13 46.77                | 13 41.18                | 13 37.07                | 13 27.69                | 13 16.34                | 13 00.33                | 12 46.02                | 12 32.94                |
|       | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 102.0 | 13 55.64                | 13 50.06                | 13 45.94                | 13 36.57                | 13 25.21                | 13 09.21                | 12 54.90                | 12 41.82                |
| 1040  | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 104.0 | 14 04.52<br><i>4.44</i> | 13 58.94<br><i>4.44</i> | 13 54.82<br><i>4.44</i> | 13 45.45<br><i>4.44</i> | 13 34.09                | 13 18.08                | 13 03.78                | 12 50.69                |
| 106.0 | 14 13.40                | 14 07.82                | 14 03.70                | 13 <b>54.33</b>         | <i>4.44</i><br>13 42.97 | 4.44<br>13 26.96        | <i>4.44</i><br>13 12.65 | <i>4.44</i><br>12 59.57 |
| 100.0 | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 108.0 | 14 22.28                | 14 16.70                | 14 12.58                | 14 03.20                | 13 51.85                | 13 35.84                | 13 21.53                | 13 08.45                |
|       | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 110.0 | 14 31.16                | 14 25.57                | 14 21.46                | 14 12.08                | 14 00.73                | 13 44.72                | 13 30.41                | 13 17.33                |
|       | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 112.0 | 14 40.03                | 14 34.45                | 14 30.33                | 14 20.96                | 14 09.60                | 13 53.60                | 13 39.29                | 13 26.21                |
|       | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 114.0 | 14 48.91                | 14 43.33                | 14 39.21                | 14 29.84                | 14 18.48                | 14 02.47                | 13 48.17                | <b>13 35.08</b> .       |
| 11/0  | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 116.0 | 14 57.79<br>4.44        | 14 52.21                | 14 48.09                | 14 38.71                | 14 27.36                | 14 11.35                | 13 57.04                | 13 43.96                |
| 118.0 | 15 06.67                | <i>4.44</i><br>15 01.08 | <i>4.44</i><br>14 56.97 | <i>4.44</i><br>14 47.59 | <i>4.44</i><br>14 36.24 | 4.44<br>14 20.23        | 4.44<br>14 05.92        | 4.44<br>13 52.84        |
| 110.0 | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 14 20.23<br>4.44        | 14 03.92<br>4.44        | 15 52.04<br>4.44        |
| 120.0 | 15 15.54                | 15 09.96                | 15 05.84                | 14 56.47                | 14 45.12                | 14 29.11                | 14 14.80                | 14 01.72                |
|       | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 122.0 | 15 24.42                | 15 18.84                | 15 14.72                | 15 05.35                | 14 53.99                | 14 37.98                | 14 23.68                | 14 10.59                |
|       | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 124.0 | 15 33.30                | 15 27.72                | 15 23.60                | 15 14.23                | 15 02.87                | 14 46.86                | 14 32.55                | 14 19.47                |
| 126.0 | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 126.0 | 15 42.18<br><i>4.44</i> | 15 36.60                | 15 32.48<br><i>4.44</i> | 15 23.10                | 15 11.75                | 14 55.74                | 14 41.43                | 14 28.35                |
| 128.0 | 15 51.06                | <i>4.44</i><br>15 45.47 | 15 41.36                | <i>4.44</i><br>15 31.98 | 4.44<br>15 20.63        | <i>4.44</i><br>15 04.62 | <i>4.44</i><br>14 50.31 | 4.44<br>14 37.23        |
| 120.0 | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 130.0 | 15 59.93                | 15 54.35                | 15 50.23                | 15 40.86                | 15 29.50                | 15 13.50                | 14 59.19                | 14 46.11                |
| 130.0 | 4.44                    | 13 34.33<br>4.44        | 13 30.23<br>4.44        | 13 40.60<br>4.44        | 13 29.30<br>4.44        | 13 13.30<br>4.44        | 14 59.19<br>4.44        | 14 40.11<br>4.44        |
| 132.0 | 16 08.81                | 16 03.23                | 15 59.11                | 15 49.74                | 15 38.38                | 15 22.37                | 15 08.07                | 14 54.98                |
|       | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 134.0 | 16 17.69                | 16 12.11                | 16 07.99                | 15 58.62                | 15 47.26                | 15 31.25                | 15 16.94                | 15 03.86                |
|       | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 136.0 | 16 26.57                | 16 20.98                | 16 16.87                | 16 07.49                | 15 56.14                | 15 40.13                | 15 25.82                | 15 12.74                |
| 120.0 | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 138.0 | 16 35.44                | 16 29.86                | 16 25.74                | 16 16.37                | 16 05.02                | 15 49.01                | 15 34.70                | 15 21.62                |
|       | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |
| 140.0 | 16 44.32                | 16 38.74                | 16 34.62                | 16 25.25                | 16 13.89                | 15 57.88                | 15 43.58                | 15 30.49                |
|       | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    | 4.44                    |

Table A1. (continued)

| PcP          |                        |                          |                        | Depth of so            | ource [km]              |                        |                         |                        |
|--------------|------------------------|--------------------------|------------------------|------------------------|-------------------------|------------------------|-------------------------|------------------------|
| Δ            | 0.                     | 35.                      | 70.                    | 150.                   | 250.                    | 400.                   | 550.                    | 700.                   |
|              | m s                    | m s                      | m s                    | m s                    | m s                     | m s                    | m s                     | m s                    |
| 0.0          | 8 31.28                | 8 25.52                  | 8 21.17                | 8 11.25                | 7 59.17                 | 7 41.96                | 7 26.26                 | 7 11.58                |
| 2.0          | 0.00<br>8 31.47        | 0.00<br>8 25.72          | 0.00<br>8 21.37        | 0.00<br>8 11.45        | 0.00<br>7 <b>59.3</b> 7 | 0.00<br>7 42.16        | 0.00<br>7 <b>26.4</b> 6 | 0.00<br>7 11.79        |
| 2.0          | 0.19                   | 0.19                     | 0.19                   | 0.19                   | 0.19                    | 0.20                   | 0.20                    | 0.20                   |
| 4.0          | 8 32.05                | 8 26.29                  | 8 21.94                | 8 12.03                | 7 59.95                 | 7 42.75                | 7 27.06                 | 7 12.40                |
|              | <i>0.38</i><br>8 33.01 | 0.38<br>8 27.26          | <i>0.38</i><br>8 22.91 | <i>0.39</i><br>8 12.99 | <i>0.39</i><br>8 00.93  | 0.40<br>7 43.74        | 0.40                    | 0.41                   |
| 6.0          | 8 33.01<br>0.57        | 8 21.20<br>0.57          | 0.58                   | 0 12.99<br>0.58        | 0.58                    | 1 43.14<br>0.59        | 7 28.06<br>0.60         | 7 13.41<br><i>0.61</i> |
| 8.0          | 8 34.35                | 8 28.60                  | 8 24.25                | 8 14.34                | 8 02.29                 | 7 45.11                | 7 29.45                 | 7 14.83                |
|              | 0.76                   | 0.76                     | 0.77                   | 0.77                   | 0.77                    | 0.78                   | 0.79                    | 0.81                   |
| 10.0         | 8 36.06                | 8 30.31                  | 8 25.97                | 8 16.07                | 8 04.03                 | 7 46.87                | 7 31.23                 | 7 16.64                |
| 12.0         | 0.95<br>8 38.14        | 0.95<br>8 32.40          | 0.95<br>8 28.06        | 0.96<br>8 18.17        | 0.96<br>8 06.14         | 0.98<br>7 49.01        | 0.99<br>7 33.40         | 1.00<br>7 18.83        |
| 12.0         | 0 36.14<br>1.13        | 6 32.40<br>1.13          | 0 20.00<br>1.14        | 0 10.17<br>1.14        | 8 00.14<br>1.15         | 1.16                   | 1.18                    | 1.20                   |
| 14.0         | 8 40.59                | 8 34.85                  | 8 30.52                | 8 20.64                | 8 08.63                 | 7 51.52                | 7 35.94                 | 7 21.41                |
| 160          | 1.31                   | 1.32                     | 1.32                   | 1.32                   | 1.33                    | 1.35                   | 136                     | 1.38                   |
| 16.0         | 8 43.39<br>1.49        | 8 37.66<br>1.49          | 8 33.33<br>1.50        | 8 23.47<br>1.50        | 8 11.47<br><i>1.51</i>  | 7 54.40<br>1.53        | 7 38.85<br>1 <i>55</i>  | 7 24.37<br>1.57        |
| 18.0         | 8 46.54                | 8 40.81                  | 8 36.49                | 8 26.65                | 8 14.67                 | 7 57.63                | 7 42.13                 | 7 27.68                |
|              | 1.66                   | 1.66                     | 1.67                   | 1.67                   | 1.69                    | 1.70                   | 1.72                    | 1.75                   |
| 20.0         | 8 50.04                | 8 44.31                  | 8 40.00                | 8 30.17                | 8 18.21                 | 8 01.21                | 7 45.74                 | 7 31.35                |
| 22.0         | 1.83<br>8 53.86        | <i>1.83</i><br>8 48.14   | 1.84                   | 1.84<br>8 34.02        | 1.86                    | 1.87<br>8 05.12        | 1.89<br>7 49.70         | 1.92                   |
| 22.0         | o 33.60<br>1.99        | 6 46.14<br><i>1.99</i>   | 8 43.83<br>2.00        | 8 34.02<br>2.01        | 8 22.08<br>2.02         | 2.04                   | 7 49.70<br>2.06         | 7 35.36<br>2.09        |
| 24.0         | 8 58.00                | 8 52.28                  | 8 47.99                | 8 38.19                | 8 26.28                 | 8 09.36                | 7 53.99                 | 7 39.70                |
| <b>A</b> ( 0 | 2.15                   | 2.15                     | 2.16                   | 2.16                   | 2.18                    | 2.20                   | 2.22                    | 2.25                   |
| 26.0         | 9 02.45<br>2.30        | 8 56.74<br>2.30          | 8 52.45<br>2.31        | 8 42.67<br>2.32        | 8 30.79<br>2.33         | 8 13.91<br>2.35        | 7 58.58<br>2.38         | 7 44.35<br>2.40        |
| 28.0         | 9 07.20                | 9 01.50                  | 8 57.21                | 8 47.46                | 8 35.60                 | 8 18.76                | 8 03.48                 | 7 49.31                |
|              | 2.45                   | 2.45                     | 2.45                   | 2.46                   | 2.48                    | 2.50                   | 2.52                    | 2.55                   |
| 30.0         | 9 12.23                | 9 06.54                  | 9 02.26                | 8 52.53                | 8 40.69                 | 8 23.90                | 8 08.68                 | 7 54.56                |
| 22.0         | 2.59                   | 2.59                     | 2.60                   | 2.61                   | 2.62                    | 2.64<br>8 29.31        | 2.66                    | 2.69                   |
| 32.0         | 9 17.55<br>2.72        | 9 11.85<br>2.72          | 9 07.59<br>2.73        | 8 57.87<br>2.74        | 8 46.06<br>2.75         | 8 29.31<br>2.78        | 8 14.14<br>2.80         | 8 00.09<br>2.83        |
| 34.0         | 9 23.12                | 9 17.44                  | 9 13.18                | 9 03.48                | 8 51.70                 | 8 34.99                | 8 19.87                 | 8 05.88                |
| 26.0         | 2.85                   | 2.85                     | 2.86                   | 2.87                   | 2.88                    | 2.90                   | 2.93                    | 2.96                   |
| 36.0         | 9 28.95<br>2.97        | 9 23.27<br>2.98          | 9 19.02<br>2.98        | 9 09.34<br>2.99        | 8 57.59<br>3.00         | 8 40.92<br>3.03        | 8 25.85<br>3.05         | 8 11.92<br>3.08        |
| 38.0         | 9 35.01                | 9 29.34                  | 9 25.10                | 9 15.44                | 9 03.71                 | 8 47.09                | 8 32.07                 | 8 18.19                |
|              | 3.09                   | 3.09                     | 3.10                   | 3.11                   | 3.12                    | 3.14                   | 3.17                    | 3.20                   |
| 40.0         | 9 41.30                | 9 35.64                  | 9 31.40                | 9 21.77                | 9 10.06                 | 8 53.48                | 8 38.52                 | 8 24.70                |
| 42.0         | 3.20                   | 3.20<br>9 42.15          | 3.21<br>0.27.02        | 3.22                   | 3.23                    | 3.25                   | 3.28                    | 3.30                   |
| 42.0         | 9 47.81<br>3.31        | 9 42.13<br>3.31          | 9 37.93<br><i>3.31</i> | 9 28.31<br>3.32        | 9 16.63<br><i>3.34</i>  | 9 00.09<br>3.36        | 8 45.17<br><i>3.3</i> 8 | 8 31.41<br><i>3.41</i> |
| 44.0         | 9 54.52                | 9 48.87                  | 9 44.65                | 9 35.05                | 9 23.40                 | 9 06.90                | 8 52.03                 | 8 38.32                |
| 44.0         | 3.40                   | 3.41                     | 3.41                   | 3.42                   | 3.43                    | 3.45                   | 3.48                    | 3.50                   |
| 46.0         | 10 01.43<br>3.50       | 9 55.78<br>3 <i>.</i> 50 | 9 51.57<br><i>3.51</i> | 9 41.99<br><i>3.51</i> | 9 30.36<br>3.53         | 9 13.90<br><i>3.55</i> | 8 59.08<br><i>3.57</i>  | 8 45.41<br>3.59        |
| 48.0         | 10 08.51               | 10 02.87                 | 9 58.67                | 9 49.10                | 9 37.49                 | 9 21.07                | 9 06.30                 | 8 52.69                |
|              | 3.59                   | 3.59                     | 3.59                   | 3.60                   | 3.61                    | 3.63                   | 3.65                    | 3.68                   |
| 50.0         | 10 15.76               | 10 10.13                 | 10 05.93               | 9 56.38                | 9 44.80                 | 9 28.42                | 9 13.68                 | 9 00.12                |
|              | 3.67                   | 3.67                     | 3.67                   | 3.68                   | 3.69                    | 3.71                   | 3.73                    | 3.76                   |

Table A1. (continued)

| PcP  |                         |                         |                         | Depth of se              | ource [km]              |                         |                         |                          |
|------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|--------------------------|
| Δ    | 0.                      | 35.                     | 70.                     | 150.                     | 250.                    | 400.                    | 550.                    | 700.                     |
|      | m s                     | m s                     | m s                     | m s                      | m s                     | m s                     | m s                     | m s                      |
| 50.0 | 10 15.76                | 10 10.13                | 10 05.93                | 9 56.38                  | 9 44.80                 | 9 28.42                 | 9 13.68                 | 9 00.12                  |
| 52.0 | <i>3.67</i><br>10 23.18 | <i>3.67</i><br>10 17.55 | 3.67<br>10 13.36        | <i>3.6</i> 8<br>10 03.83 | <i>3.69</i><br>9 52.26  | <i>3.71</i><br>9 35.91  | 3.73<br>9 21.22         | <i>3.76</i><br>9 07.70   |
|      | 3.74                    | 3.75                    | 3.75                    | 3.76                     | 3.77                    | 3.79                    | 3.81                    | 3.83                     |
| 54.0 | 10 30.74                | 10 25.11<br>3.82        | 10 20.93<br>3.82        | 10 11.42<br>3.83         | 9 59.87<br>3.84         | 9 43.56<br>3.86         | 9 28.90<br><i>3.87</i>  | 9 15.43<br>3.90          |
| 56.0 | 3.82<br>10 38.44        | 10 32.82                | 10 28.65                | 10 19.14                 | 3.64<br>10 07.62        | 9 51.33                 | 9 36.71                 | 9 23.28                  |
|      | <i>3.88</i>             | 3.89                    | 3.89                    | 3.90                     | 3.90                    | 3.92                    | 3.94                    | 3.96                     |
| 58.0 | 10 46.27<br>3.95        | 10 40.65<br>3.95        | 10 36.49<br><i>3.95</i> | 10 27.00<br>3.96         | 10 15.49<br>3.97        | 9 59.23<br><i>3.98</i>  | 9 44.65<br>4.00         | 9 31.26<br><i>4.01</i>   |
| 60.0 | 10 54.22                | 10 48.61                | 10 44.44                | 10 34.97                 | 10 23.48                | 10 07.25                | 9 52.70                 | 9 39.34                  |
| OU.U | 4.00                    | 10 46.01<br>4.01        | 4.01                    | 4.01                     | 4.02                    | 4.03                    | 4.05                    | 4.07                     |
| 62.0 | 11 02.28                | 10 56.67                | 10 52.51                | 10 43.05                 | 10 31.57                | 10 15.37                | 10 00.85                | 9 47.53                  |
| 64.0 | 4.06<br>11 10.44        | <i>4.06</i><br>11 04.83 | 4.06<br>11 00.68        | 4.07<br>10 51.23         | 4.07<br>10 39.77        | 4.09<br>10 23.59        | 4.10<br>10 09.10        | <i>4.12</i><br>9 55.80   |
| 04.0 | 4.10                    | 4.11                    | 4.11                    | 4.11                     | 4.12                    | 4.13                    | 4.15                    | 4.16                     |
| 66.0 | 11 18.70                | 11 13.09                | 11 08.94                | 10 59.50                 | 10 48.06                | 10 31.90                | 10 17.43                | 10 04.17                 |
| 68.0 | <i>4.15</i><br>11 27.04 | <i>4.15</i><br>11 21,43 | <i>4.15</i><br>11 17.29 | <i>4.16</i><br>11 07.86  | <i>4.16</i><br>10 56.42 | 4.18<br>10 40.29        | <i>4.19</i><br>10 25.84 | 4.20<br>10 12.60         |
| -    | 4.19                    | 4.19                    | 4.19                    | 4.20                     | 4.20                    | 4.21                    | 4.22                    | 4.24                     |
| 70.0 | 11 35.45                | 11 29.85                | 11 25.71                | 11 16.29                 | 11 04.87                | 10 48.75                | 10 34.32                | 10 21.11                 |
| 72.0 | 4.23                    | <i>4.23</i><br>11 38.34 | <i>4.23</i><br>11 34.21 | <i>4.23</i><br>11 24.79  | <i>4.24</i><br>11 13.38 | <i>4.25</i><br>10 57.28 | 4.26<br>10 42.87        | <i>4.27</i><br>10 29.68  |
| 72.0 | 11 43.94<br>4.26        | 11 38.34<br>4.26        | 4.26                    | 4.27                     | 11 13.36<br>4.27        | 10 37.28<br>4.28        | 10 42.87<br>4.29        | 10 29.06<br>4.30         |
| 74.0 | 11 52.49                | 11 46.89                | 11 42.76                | 11 33.35                 | 11 21.95                | 11 05.86                | 10 51.47                | 10 38.30                 |
| 76.0 | 4.29<br>12 01.09        | <i>4.29</i><br>11 55.50 | <i>4.29</i><br>11 51.37 | <i>4.30</i><br>11 41.97  | <i>4.30</i><br>11 30.57 | <i>4.31</i><br>11 14.50 | 4.32<br>11 00,13        | <i>4.32</i><br>10 46.97  |
| 70.0 | 4.32                    | 4.32                    | 4.32                    | 4.32                     | 4.32                    | 4.33                    | 4.34                    | 4.35                     |
| 78.0 | 12 09.75                | 12 04.16                | 12 00.03                | 11 50.63                 | 11 39.25                | 11 23.19                | 11 08.83                | 10 55.69                 |
|      | 4.34                    | 4.34                    | 4.34                    | 4.34                     | 4.35                    | 4.35                    | 4.36                    | 4.37                     |
| 80.0 | 12 18.45<br><i>4.36</i> | 12 12.86<br><i>4.36</i> | 12 08.73<br>4.36        | 11 59.34<br><i>4.36</i>  | 11 47.96<br><i>4.37</i> | 11 31.91<br><i>4.37</i> | 11 17.56<br>4.38        | 11 04.44<br><i>4.3</i> 8 |
| 82.0 | 12 27.19                | 12 21.60                | 12 17.47                | 12 08.09                 | 11 56.71                | 11 40.67                | 11 26.33                | 11 13.22                 |
| 040  | 4.38                    | 4.38                    | 4.38                    | 4.38                     | 4.38                    | 439                     | 4.39                    | 4.40                     |
| 84.0 | 12 35.96<br><i>4.39</i> | 12 30.37<br><i>4.39</i> | 12 26.25<br>4.39        | 12 16.86<br>4.40         | 12 05.49<br>4.40        | 11 49.46<br><i>4.40</i> | 11 35.13<br><i>4.41</i> | 11 22.03<br>4.41         |
| 86.0 | 12 44.75                | 12 39.17                | 12 35.05                | 12 25.67                 | 12 14.30                | 11 58.28                | 11 43.95                | 11 30.85                 |
| 88.0 | <i>4.41</i><br>12 53.58 | 4.41<br>12 47.99        | <i>4.41</i><br>12 43.87 | <i>4.41</i><br>12 34.49  | 4.41<br>12 23.13        | <i>4.41</i><br>12 07.11 | 4.42<br>11 52.79        | 4.42<br>11 39.70         |
| 00.0 | 12 33.36<br>4.42        | 4.42                    | 4.42                    | 4.42                     | 4.42                    | 4.42                    | 4.42                    | 4.43                     |
| 90.0 | 13 02.42                | 12 56.83                | 12 52.71                | 12 43.34                 | 12 31.98                | 12 15.96                | 12 01.65                | 11 48.56                 |
|      | 4.42                    | 4.43                    | 4.43                    | 4.43                     | 4.43                    | 4.43                    | 4.43                    | 4.43                     |
| 92.0 | 13 11.27<br>4.43        | 13 05.69<br><i>4.43</i> | 13 01.57<br>4.43        | 12 52.19<br>4.43         | 12 40.84<br><i>4.43</i> | 12 24.83<br><i>4.43</i> | 12 10.51<br>4.43        | 11 57.43<br>4.44         |
| 94.0 | 13 20.14                | 13 14.56                | 13 10.44                | 13 01.06                 | 4.43<br>12 49.71        | 12 33.70                | 4.43<br>12 19.39        | 12 06.30                 |
|      | 4.43                    | 4.43                    | 4.43                    | 4.44                     | 4.44                    | 4.44                    | 4.44                    | 4.44                     |
| 96.0 | 13 29.01<br>4.44        | 13 23.43<br>4.44        | 13 19.31<br><i>4.44</i> | 13 09.94<br><i>4.44</i>  | 12 58.58<br><i>4.44</i> | 12 42.57<br>4.44        | 12 28.27<br>4.44        |                          |
| 98.0 | 13 37.89                | 13 32.31                | 13 28.19                | 7.77                     | 7.77                    | 7.77                    | 7.77                    |                          |
|      | 4.44                    | 4.44                    | 4.44                    |                          |                         |                         |                         |                          |

Table A1. (continued)

| PKPab |                  |                  |                  | Depth of se      | ource [km] |                  |                  |          |
|-------|------------------|------------------|------------------|------------------|------------|------------------|------------------|----------|
| Δ     | 0.               | 35.              | 70.              | 150.             | 250.       | 400.             | 550.             | 700.     |
|       | m s              | m s              | m s              | m s              | m s        | m s              | m s              | m s      |
| 146.0 | 19 41.54         | 19 35.91         | 19 31.74         | 19 22.24         | 19 10.72   | 18 54.45         | 18 39.87         | 18 26.50 |
| 146.0 | 19 41.34<br>3.87 | 19 33.91<br>3.87 | 19 31.74<br>3.88 | 19 22.24<br>3.91 | 3.93       | 16 34.43<br>3.97 | 16 39.67<br>4.01 | 4.06     |
| 148.0 | 19 49.45         | 19 43.83         | 19 39.67         | 19 30.21         | 19 18.73   | 19 02.53         | 18 48.01         | 18 34.71 |
| 140.0 | 4.03             | 4.03             | 4.04             | 4.05             | 4.07       | 4.09             | 4.12             | 4.15     |
| 150.0 | 19 57.61         | 19 52.00         | 19 47.85         | 19 38.41         | 19 26.96   | 19 10.80         | 18 56.33         | 18 43.08 |
| 150.0 | 4.13             | 4.13             | 4.14             | 4.14             | 4.16       | 4.18             | 4.20             | 4.22     |
| 152.0 | 20 05.94         | 20 00.34         | 19 56.20         | 19 46.77         | 19 35.34   | 19 19.22         | 19 04.78         | 18 51.57 |
| 102.0 | 4.20             | 4.20             | 4.20             | 4.21             | 4.22       | 4.24             | 4.25             | 4.27     |
| 154.0 | 20 14.40         | 20 08.80         | 20 04.67         | 19 55.25         | 19 43.84   | 19 27.74         | 19 13.33         | 19 00.15 |
|       | 4.26             | 4.26             | 4.26             | 4.26             | 4.27       | 4.28             | 4.30             | 4.31     |
| 156.0 | 20 22.95         | 20 17.36         | 20 13.23         | 20 03.82         | 19 52.42   | 19 36.34         | 19 21.96         | 19 08.80 |
|       | 4.30             | 4.30             | 4.30             | 4.30             | 4.31       | 4.32             | 4.33             | 4.34     |
| 158.0 | 20 31.58         | 20 25.99         | 20 21.86         | 20 12.46         | 20 01.07   | 19 45.01         | 19 30.65         | 19 17.51 |
|       | 4.33             | 4.33             | 4.33             | 4.34             | 4.34       | 4.35             | 4.36             | 4.37     |
| 160.0 | 20 40.27         | 20 34.68         | 20 30.56         | 20 21.16         | 20 09.78   | 19 53.74         | 19 39.39         | 19 26.26 |
|       | 4.36             | 4.36             | 4.36             | 4.36             | 4.37       | 4.37             | 4.38             | 4.39     |
| 162.0 | 20 49.01         | 20 43.42         | 20 39.30         | 20 29.91         | 20 18.54   | 20 02.50         | 19 48.16         | 19 35.05 |
|       | 4.38             | 4.38             | 4.38             | 4.38             | 4.39       | 4.39             | 4.40             | 4.40     |
| 164.0 | 20 57.79         | 20 52.20         | 20 48.08         | 20 38.70         | 20 27.33   | 20 11.30         | 19 56.97         | 19 43.87 |
|       | 4.40             | 4.40             | 4.40             | 4.40             | 4.40       | 4.41             | 4.41             | 4.41     |
| 166.0 | 21 06.60         | 21 01.01         | 20 56.89         | 20 47.51         | 20 36.15   | 20 20.12         | 20 05.80         | 19 52.71 |
|       | 4.41             | 4.41             | 4.41             | 4.41             | 4.41       | 4.42             | 4.42             | 4.42     |
| 168.0 | 21 15.43         | 21 09.84         | 21 05.72         | 20 56.35         | 20 44.99   | 20 28.97         | 20 14.65         | 20 01.56 |
|       | 4.42             | 4.42             | 4.42             | 4.42             | 4.42       | 4.43             | 4.43             | 4.43     |
| 170.0 | 21 24.28         | 21 18.69         | 21 14.58         | 21 05.20         | 20 53.84   | 20 37.83         | 20 23.52         | 20 10.43 |
| 4=- 0 | 4.43             | 4.43             | 4.43             | 4.43             | 4.43       | 4.43             | 4.43             | 4.43     |
| 172.0 | 21 33.14         | 21 27.56         | 21 23.44         | 21 14.06         | 21 02.71   | 20 46.70         | 20 32.39         | 20 19.31 |
| 154.0 | 4.43             | 4.43             | 4.43             | 4.43             | 4.43       | 4.44             | 4.44             | 4.44     |
| 174.0 | 21 42.01         | 21 36.43         | 21 32.31         | 21 22.94         | 21 11.58   | 20 55.57         | 20 41.26         | 20 28.18 |
|       | 4.44             | 4.44             | 4.44             | 4.44             | 4.44       | 4.44             | 4.44             | 4.44     |
| 176.0 | 21 50.89         | 21 45.31         | 21 41.19         | 21 31.81         | 21 20.46   | 20 55.57         | 20 41.26         | 20 28.18 |
|       | 4.44             | 4.44             | 4.44             | 4.44             | 4.44       | 4.44             | 4.44             | 4.44     |
| 178.0 | 21 50.89         | 21 45.31         | 21 41.19         | 21 31.81         | 21 20.46   | 20 55.57         | 20 41.26         | 20 28.18 |
| 100.0 | 4.44             | 4.44             | 4.44             | 4.44             | 4.44       | 4.44             | 4.44             | 4.44     |
| 180.0 | 21 50.89         | 21 45.31         | 21 41.19         | 21 31.81         | 21 20.46   | 20 55.57         | 20 41.26         | 20 28.18 |
|       | 4.44             | 4.44             | 4.44             | 4.44             | 4.44       | 4.44             | 4.44             | 4.44     |
|       |                  |                  |                  |                  |            |                  |                  |          |

| PKPbc |          |              |          | Depth of s | ource [km] |          |          |          |
|-------|----------|--------------|----------|------------|------------|----------|----------|----------|
| Δ     | 0.       | 35.          | 70.      | 150.       | 250.       | 400.     | 550.     | 700.     |
|       | m s      | m s          | m s      | m s        | m s        | m s      | m s      | m s      |
| 146.0 | 19 40.79 | 19 35.11     | 19 30.87 | 19 21.20   | 19 09.45   | 18 52.76 | 18 37.64 | 18 23.61 |
|       | 3.07     | 3.06         | 3.05     | 3.02       | 2.99       | 2.94     | 2.88     | 2.83     |
| 148.0 | 19 46.63 | 19 40.94     | 19 36.68 | 19 26.97   | 19 15.16   | 18 58.39 | 18 43.18 | 18 29.04 |
|       | 2.79     | 2.78         | 2.77     | 2.76       | 2.73       | 2.70     | 2.66     | 2.62     |
| 150.0 | 19 51.98 | 19 46.28     | 19 42.00 | 19 32.26   | 19 20.41   | 19 03.58 | 18 48.29 | 18 34.08 |
|       | 2.57     | 2.56         | 2.56     | 2.54       | 2.53       | 2.50     | 2.46     | 2.43     |
| 152.0 | 19 56.92 | 19 51.21     | 19 46.92 | 19 37.15   | 19 25.27   | 19 08.38 | 18 53.04 | 18 38.77 |
|       | 2.38     | 2. <i>37</i> | 2.37     | 2.35       | 2.34       | 2.31     | 2.29     | 2.26     |
| 154.0 | 20 01.49 | 19 55.77     | 19 51.48 | 19 41.69   | 19 29.78   | 19 12.84 | 18 57.45 | 18 43.12 |
|       | 2.20     | 2.20         | 2.19     | 2.18       | 2.17       | 2.15     | 2.12     | 2.09     |
|       |          |              |          |            |            |          |          |          |

Table A1. (continued)

| DVCD 16 | · · · · · · · · · · · · · · · · · · · |                          |                          | Danish of a             |                         |                         |                         |                         |
|---------|---------------------------------------|--------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| PKPdf   | •                                     | 25                       | 70                       | Depth of s              |                         | 400.                    | 550.                    | 700.                    |
| Δ       | 0.                                    | 35.                      | 70.                      | 150.                    | 250.                    |                         |                         |                         |
| 1140    | m s<br>18 40.84                       | m s<br>18 35.11          | m s<br>18 30.81          | m s<br>18 20.98         | m s<br>18 09.03         | m s<br>17 52.04         | m s<br>17 36.59         | m s<br>17 22.20         |
| 114.0   | 16 40.64<br>1.91                      | 16 33.11<br>1.91         | 1.91                     | 18 20.98                | 191                     | 1.91                    | 1.91                    | 1.91                    |
| 116.0   | 18 44.67                              | 18 38.94                 | 18 34.64                 | 18 24.81                | 18 12.86                | 17 55.87                | 17 40.42                | 17 26.03                |
| 118.0   | <i>1.91</i><br>18 48.50               | 1.91<br>18 42.77         | 1.91<br>18 38.46         | <i>1.91</i><br>18 28.64 | 1.91<br>18 16.69        | 1.91<br>17 59.70        | 1.91<br>17 44.25        | 1.91<br>17 29.85        |
| 110.0   | 1.91                                  | 1.91                     | 1.91                     | 1.91                    | 1.91                    | 1.91                    | 1.91                    | 1.91                    |
| 120.0   | 18 52.32                              | 18 46.60                 | 18 42.29                 | 18 32.47                | 18 20.52                | 18 03.53                | 17 48.07<br><i>1.91</i> | 17 33.68<br><i>1.91</i> |
| 122.0   | <i>1.91</i><br>18 56.14               | 1.91<br>18 50.42         | <i>1.91</i><br>18 46.11  | <i>1.91</i><br>18 36.29 | 1.91<br>18 24.34        | 1.91<br>18 07.34        | 17 51.89                | 17 37.49                |
|         | 1.91                                  | 1.91                     | 1.91                     | 1.91                    | 1.91                    | 1.91                    | 1.91                    | 1.91                    |
| 124.0   | 18 59.96                              | 18 54.23                 | 18 49.92                 | 18 40.10                | 18 28.15                | 18 11.16                | 17 55.70                | 17 41.30                |
| 126.0   | 1.90<br>19 03.76                      | 1.90<br>18 58.04         | 1.90<br>18 53.73         | 1.90<br>18 43.90        | 1.90<br>18 31.95        | <i>1.90</i><br>18 14.96 | 1.90<br>17 59.50        | 1.90<br>17 45.10        |
|         | 1.90                                  | 1.90                     | 1.90                     | 1.90                    | 1.90                    | 1.90                    | 1.90                    | 1.90                    |
| 128.0   | 19 07.55                              | 19 01.83                 | 18 57.52                 | 18 47.69                | 18 35.74                | 18 18.75                | 18 03.29                | 17 48.89                |
| 130.0   | 1.89<br>19 11.33                      | 1.89<br>19 05.61         | 1.89<br>19 01.29         | 1.89<br>18 51.47        | 1.89<br>18 39.52        | 1.89<br>18 22.52        | 1.89<br>18 07.05        | 1.89<br>17 52.65        |
|         | 1.88                                  | 1.88                     | 1.88                     | 1.88                    | 1.88                    | 1.88                    | 1.88                    | 1.88                    |
| 132.0   | 19 15.09<br><i>1.87</i>               | 19 09.36<br><i>1.87</i>  | 19 05.05<br>1.87         | 18 55.22<br>1.87        | 18 43.27<br>1.87        | 18 26.27<br>1.87        | 18 10.80<br>1.87        | 17 56.40<br><i>1.87</i> |
| 134.0   | 19 18.82                              | 19 13.09                 | 19 08.78                 | 18 58.95                | 18 47.00                | 18 29.99                | 18 14.52                | 18 00.11                |
| 134.0   | 19 10.02                              | 1.86                     | 1.86                     | 1.86                    | 1.86                    | 18 29.99                | 1.85                    | 1.85                    |
| 136.0   | 19 22.52                              | 19 16.80                 | 19 12.48                 | 19 02.65                | 18 50.69                | 18 33.69                | 18 18.21                | 18 03.80                |
| 138.0   | 1.84<br>19 26.19                      | 1.84<br>19 20.46         | 1.84<br>19 16.15         | 1.84<br>19 06.31        | 1.84<br>18 54.35        | 1.84<br>18 37.34        | 1.83<br>18 21.86        | 1.83<br>18 07.44        |
|         | 1.82                                  | 1.82                     | 1.82                     | 1.82                    | 1.82                    | 1.82                    | 1.81                    | 1.81                    |
| 140.0   | 19 29.80<br><i>1.79</i>               | 19 24.08<br><i>1.7</i> 9 | 19 19.76<br><i>1.7</i> 9 | 19 09.93<br>1.79        | 18 57.96<br><i>1.79</i> | 18 40.94<br><i>1.79</i> | 18 25.46<br>1.78        | 18 11.03<br>1.78        |
| 142.0   | 19 33.36                              | 19 27.63                 | 19 23.32                 | 19 13.48                | 19 01.51                | 18 44.49                | 18 28.99                | 18 14.55                |
|         | 1.76                                  | 1.76                     | 1.76                     | 1.76                    | 1.76                    | 1.75                    | 1.75                    | 1.75                    |
| 144.0   | 19 36.85                              | 19 31.12                 | 19 26.81                 | 19 16.97                | 19 04.99                | 18 47.96                | 18 32.45                | 18 18.00                |
| 146.0   | 1.73<br>19 40.26                      | 1.73<br>19 34.53         | 1.72<br>19 30.21         | 1.72<br>19 20.37        | 1.72<br>19 08.39        | 1.72<br>18 51.34        | 1.71<br>18 35.83        | 1.71<br>18 21.37        |
|         | 1.68                                  | 1.68                     | 1.68                     | 1.68                    | 1.67                    | 1.67                    | 1.66                    | 1.66                    |
| 148.0   | 19 43.57                              | 19 37.84                 | 19 33.52                 | 19 23.67                | 19 11.68                | 18 54.63                | 18 39.10                | 18 24.62                |
| 150.0   | 1.63<br>19 46.77                      | 1.63<br>19 41.03         | 1.62<br>19 36.71         | 1.62<br>19 26.85        | 1.62<br>19 14.86        | 1.61<br>18 57.79        | 1.61<br>18 42.25        | 1.60<br>18 27.76        |
|         | 157                                   | 1.56                     | 1.56                     | 1.56                    | 156                     | 1.55                    | 1.54                    | 1.53                    |
| 152.0   | 19 49.83<br><i>1 50</i>               | 19 44.09<br><i>1.49</i>  | 19 39.76<br><i>1.4</i> 9 | 19 29.90<br>1.49        | 19 17.90<br>1.49        | 19 00.82<br>1.48        | 18 45.27<br><i>1.47</i> | 18 30.76<br>1.46        |
| 154.0   | 19 52.74                              | 19 47.00                 | 19 42.67                 | 19 32.80                | 19 20.80                | 19 03.70                | 18 48.13                | 18 33.60                |
| 134.0   | 1.42                                  | 1947.00                  | 19 42.07                 | 19 32.60                | 19 20.80                | 19 03.70                | 1.39                    | 18 33.00                |
| 156.0   | 19 55.49                              | 19 49.75                 | 19 45.41                 | 19 35.54                | 19 23.52                | 19 06.42                | 18 50.83                | 18 36.29                |
| 158.0   | 1.33<br>19 58.06                      | 1.33<br>19 52.31         | 1.33<br>19 47.98         | 1.33<br>19 38.10        | 1.32<br>19 26.07        | 1 <i>31</i><br>19 08.95 | 1.30<br>18 53.35        | 1.30<br>18 38.79        |
|         | 1.24                                  | 1.24                     | 1.24                     | 1.23                    | 1.23                    | 1.22                    | 1.21                    | 1.20                    |
| 160.0   | 20 00.43                              | 19 54.69                 | 19 50.35                 | 19 40.47                | 19 28.43                | 19 11.30                | 18 55.68                | 18 41.10                |
| 162.0   | 1.14<br>20 02.61                      | 1.14<br>19 56.86         | 1.14<br>19 52.52         | 1.13<br>19 42.63        | 1.13<br>19 30.59        | 1.12<br>19 13.44        | 1.12<br>18 57.81        | 1.11<br>18 43.21        |
|         | 1.04                                  | 1.03                     | 1.03                     | 1.03                    | 1.03                    | 1.02                    | 1.01                    | 1.01                    |
| 164.0   | 20 04.58                              | 19 58.83                 | 19 54.49                 | 19 44.59                | 19 32.54                | 19 15.38                | 18 59.73                | 18 45.12                |
|         | 0.93                                  | 0.93                     | 0.93                     | 0.92                    | 0.92                    | 0.92                    | 0.91                    | 0.90                    |

Table A1. (continued)

| <b>PKPdf</b> |          |          |          | Depth of s | ource [km] |          |          |          |
|--------------|----------|----------|----------|------------|------------|----------|----------|----------|
| Δ            | 0.       | 35.      | 70.      | 150.       | 250.       | 400.     | 550.     | 700.     |
|              | m s      | m s      | m s      | m s        | m s        | m s      | m s      | m s      |
| 164.0        | 20 04.58 | 19 58.83 | 19 54.49 | 19 44.59   | 19 32.54   | 19 15.38 | 18 59.73 | 18 45.12 |
|              | 0.93     | 0.93     | 0.93     | 0.92       | 0.92       | 0.92     | 0.91     | 0.90     |
| 166.0        | 20 06.32 | 20 00.57 | 19 56.23 | 19 46.33   | 19 34.27   | 19 17.10 | 19 01.44 | 18 46.81 |
|              | 0.82     | 0.82     | 0.82     | 0.81       | 0.81       | 0.81     | 0.80     | 0.79     |
| 168.0        | 20 07.85 | 20 02.10 | 19 57.75 | 19 47.84   | 19 35.78   | 19 18.60 | 19 02.93 | 18 48.29 |
|              | 0.71     | 0.70     | 0.70     | 0.70       | 0.70       | 0.69     | 0.69     | 0.68     |
| 170.0        | 20 09.15 | 20 03.39 | 19 59.05 | 19 49.13   | 19 37.07   | 19 19.88 | 19 04.20 | 18 49.55 |
|              | 0.59     | 0.59     | 0.59     | 0.59       | 0.58       | 0.58     | 0.58     | 0.57     |
| 172.0        | 20 10.21 | 20 04.46 | 20 00.11 | 19 50.19   | 19 38.12   | 19 20.93 | 19 05.24 | 18 50.58 |
|              | 0.47     | 0.47     | 0.47     | 0.47       | 0.47       | 0.47     | 0.46     | 0.46     |
| 174.0        | 20 11.04 | 20 05.29 | 20 00.94 | 19 51.02   | 19 38.94   | 19 21.74 | 19 06.05 | 18 51.38 |
|              | 0.36     | 0.36     | 0.36     | 0.35       | 0.35       | 0.35     | 0.35     | 0.34     |
| 176.0        | 20 11.64 | 20 05.88 | 20 01.53 | 19 51.61   | 19 39.53   | 19 22,33 | 19 06.63 | 18 51.96 |
|              | 0.24     | 0.24     | 0.24     | 0.24       | 0.24       | 0.23     | 0.23     | 0.23     |
| 178.0        | 20 12.00 | 20 06.24 | 20 01.89 | 19 51.97   | 19 39.89   | 19 22.68 | 19 06.98 | 18 52.30 |
|              | 0.12     | 0.12     | 0.12     | 0.12       | 0.12       | 0.12     | 0.12     | 0.12     |
| 180.0        | 20 12.12 | 20 06.36 | 20 02.01 | 19 52.09   | 19 40.01   | 19 22.80 | 19 07.09 | 18 52.42 |
|              | 0.00     | 0.00     | 0.00     | 0.00       | 0.00       | 0.00     | 0.00     | 0.00     |

Table A1. (continued)

| S    |                          |                          |                                 | Depth of s                | ource [km]               |                                 |                          |                         |
|------|--------------------------|--------------------------|---------------------------------|---------------------------|--------------------------|---------------------------------|--------------------------|-------------------------|
| Δ    | 0.                       | 35.                      | 70.                             | 150.                      | 250.                     | 400.                            | 550.                     | 700.                    |
|      | m s                      | m s                      | m s                             | m s                       | m s                      | m s                             | m s                      | m s                     |
| 0.0  | 0 00.00                  | 0 09.95                  | 0 17.77                         | 0 35.57                   | 0 57.64                  | 1 29.42                         | 1 58.31                  | 2 25.04                 |
| 2.0  | <i>33.09</i><br>1 01.73  | 0.01<br>0 55.60          | 0.00<br>0 56.21                 | 0.00<br>1 02.46           | 0.00<br>1 16.25          | 0.00<br>1 41.43                 | 0.00<br>2 06.72          | 0.00<br>2 31.29         |
|      | 24.74                    | 24.73                    | 24.17                           | 20.82                     | 16.26                    | 11.27                           | 8.10                     | 6.08                    |
| 4.0  | 1 51.19                  | 1 45.05                  | 1 45.03                         | 1 47.49                   | 1 54.82                  | 2 10.82                         | 2 28.96                  | 2 48.49                 |
| 6.0  | 24.72<br>2 40.59         | <i>24.71</i><br>2 34.44  | 24.51<br>2 34.09                | <i>23.43</i><br>2 34.96   | 21.24<br>2 39.01         | <i>17.31</i><br>2 48.41         | 13.65<br>2 59.63         | 10.83<br>3 13.46        |
|      | 24.68                    | 24.67                    | 24.53                           | 23.93                     | 22.68                    | 19.91                           | 16.68                    | 13.88                   |
| 8.0  | 3 29.91                  | 3 23.73                  | 3 23.12                         | 3 22.99                   | 3 24.94                  | 3 29.48                         | 3 34.67                  | 3 43.11                 |
|      | 24.63                    | 24.62                    | 24.49                           | 24.07                     | 23.17                    | 21.01                           | 18.16                    | 15.58                   |
| 10.0 | 4 19.10<br>24.56         | 4 12.90<br>24.55         | 4 12.05<br>24.43                | 4 11.17<br>24.10          | 4 11.43<br>23.26         | 4 11.36<br>20.46                | 4 11.72<br><i>18.78</i>  | 4 15.09<br><i>16.25</i> |
| 12.0 | 5 08.14                  | 5 01.90                  | 5 00.83                         | 4 59.34                   | 4 57.78                  | 4 52.13                         | 4 49.48                  | 4 47.75                 |
|      | 24.48                    | 24.46                    | 24.34                           | 24.07                     | 23.05                    | 20.30                           | 18.93                    | 16.34                   |
| 14.0 | 5 56.99<br>24.37         | 5 50.71<br>24.34         | 5 49.42<br>24.25                | 5 47.44<br>24.02          | 5 43.50<br>22.65         | 5 32.46<br>20.02                | 5 27.27<br>18.82         | 5 20.33<br><i>16.22</i> |
| 16.0 | 6 45.62                  | 6 39.29                  | 6 37.86                         | 6 35.31                   | 6 26.48                  | 6 12.14                         | 6 03.10                  | 5 52.55                 |
|      | 24.26                    | 24.25                    | 24.18                           | 23.01                     | 20.18                    | 19.64                           | 16.51                    | 15.92                   |
| 18.0 | 7 34.06<br>24.18         | 7 27.71<br>24.17         | 7 26.13<br>24.09                | 7 18.48<br>20.09          | 7 06.47<br>19.79         | 6 <b>5</b> 0.95<br><i>19.17</i> | 6 35.87<br><i>16.25</i>  | 6 24.25<br>15.80        |
| 20.0 |                          |                          |                                 |                           |                          |                                 |                          |                         |
| 20.0 | 8 20.86<br>20.05         | 8 13.18<br><i>19.99</i>  | 8 08.59<br><i>19.90</i>         | 7 58.24<br>19.64          | 7 45.56<br>19.28         | 7 24.87<br>16.27                | 7 07.99<br>15.86         | 6 55.77<br><i>15.73</i> |
| 22.0 | 9 00.49                  | 8 52.68                  | 8 47.87                         | 8 35.27                   | 8 19.16                  | 7 57.00                         | 7 39.61                  | 7 27.16                 |
| 24.0 | 19.55                    | 19.48                    | 19.35                           | 16.33                     | 16.20                    | 15.86                           | 15.76                    | 15.66                   |
| 24.0 | 9 35.41<br><i>16.20</i>  | 9 26.88<br><i>16.17</i>  | 9 20.97<br><i>16.11</i>         | 9 07.54<br><i>15.88</i>   | 8 51.09<br><i>15.82</i>  | 8 28.61<br><i>15.76</i>         | 8 11.07<br><i>15.70</i>  | 7 58.40<br><i>15.57</i> |
| 26.0 | 10 07.31                 | 9 58.71                  | 9 52.71                         | 9 39.18                   | 9 22.65                  | 9 00.06                         | 8 42.39                  | 8 29.42                 |
| 10 A | 15.82                    | 15.81                    | 15.80                           | 15.77                     | 15.74                    | 15.69<br>0.21.29                | 15.62                    | 15.45                   |
| 28.0 | 10 38.86<br><i>15.74</i> | 10 30.25<br><i>15.73</i> | 10 24.23<br><i>15.7</i> 2       | 10 10.65<br><i>15.70</i>  | 9 54.06<br><i>15.67</i>  | 9 31.38<br><i>15.61</i>         | 9 13.51<br><i>15.50</i>  | 9 00.21<br><i>15.32</i> |
| 30.0 | 11 10.27                 | 11 01.64                 | 10 55.60                        | 10 41.98                  | 10 25.32                 | 10 02.48                        | 9 44.38                  | 9 30.72                 |
| 50.0 | 15.67                    | 15.66                    | 15.65                           | 15.62                     | 15.57                    | 15.49                           | 15.37                    | 15.18                   |
| 32.0 | 11 41.51                 | 11 32.86                 | 11 26.80                        | 11 13.10                  | 10 56.35                 | 10 33.34                        | 10 14.98                 | 10 00.93                |
| 34.0 | <i>15.57</i><br>12 12.52 | 15.56<br>12 03.85        | <i>15.54</i><br>11 <b>57.75</b> | <i>15.50</i><br>11 43.98  | <i>15.45</i><br>11 27.11 | <i>15.36</i><br>11 03.90        | 15.23<br>10 45.28        | 15.03<br>10 30.83       |
| 54.0 | 15.44                    | 15.43                    | 15.41                           | 15.37                     | 15.31                    | 15.21                           | 15.07                    | 10 30.83                |
| 36.0 | 12 43.26                 | 12 34.56                 | 12 28.43                        | 12 14.56                  | 11 57.57                 | 11 34.15                        | 11 15.25                 | 11 00.40                |
| 38.0 | 15.30<br>13 13.69        | 15.28<br>13 04.96        | 15.26<br>12 58.79               | 15.22<br>12 44.83         | <i>15.15</i><br>12 27.71 | <i>15.04</i><br>12 04.07        | <i>14.90</i><br>11 44.86 | 14.70<br>11 29.62       |
| 50.0 | 15.13                    | 15.12                    | 15.10                           | 15.05                     | 14.98                    | 14.87                           | 14.72                    | 14.52                   |
| 40.0 | 13 43.79                 | 13 35.03                 | 13 28.81                        | 13 14.75                  | 12 57.50                 | 12 33.62                        | 12 14.12                 | 11 58.48                |
|      | 14.96                    | 14.94                    | 14.92                           | 14.87                     | 14.80                    | 14.69                           | 14.53                    | 14.34                   |
| 42.0 | 14 13.52                 | 14 04.73                 | 13 58.47                        | 13 44.30                  | 13 26.91                 | 13 02.80                        | 12 43.00                 | 12 26.96                |
| 44.0 | <i>14.77</i><br>14 42.87 | 14.76<br>14 34.05        | <i>14.73</i><br>14 27.74        | <i>14.6</i> 8<br>14 13.47 | <i>14.61</i><br>13 55.94 | 14.49<br>13 31.60               | <i>14.34</i><br>13 11.49 | 14.15<br>12 55.07       |
|      | 14.58                    | 14.56                    | 14.54                           | 14.49                     | 14.42                    | 14.30                           | 14.15                    | 13.96                   |
| 46.0 | 15 11.84                 | 15 02.98                 | 14 56.63                        | 14 42.24                  | 14 24.57                 | 13 59.99                        | 13 39.59                 | 13 22.79                |
| 48.0 | <i>14.38</i><br>15 40.39 | <i>14.36</i><br>15 31.50 | <i>14.34</i><br>15 25.10        | <i>14.29</i><br>15 10.61  | 14.22<br>14 52.80        | 14.10<br>14 27.98               | 13.95<br>14 07.28        | 13.76<br>13 50.11       |
| **** | 14.17                    | 14.16                    | 14.13                           | 14.08                     | 14.01                    | 13.89                           | 13.74                    | 13.56                   |
| 50.0 | 16 08.53                 | 15 59.61                 | 15 53.16                        | 15 38.56                  | 15 20.61                 | 14 55.55                        | 14 34.56                 | 14 17.03                |
|      | 13.96                    | 13.95                    | 13.92                           | 13.87                     | 13.80                    | 13.68                           | 13.54                    | 13.36                   |

Table A1. (continued)

| S          |                   |                   |                          | Depth of s               | ource [km]               |                          |                          |                   |
|------------|-------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------|
| Δ          | 0.                | 35.               | 70.                      | 150.                     | 250.                     | 400.                     | 550.                     | 700.              |
|            | m s               | m s               | m s                      | m s                      | m s                      | m s                      | m s                      | m s               |
| 50.0       |                   | 15 59.61          | 15 53.16                 | 15 38.56                 | 15 20.61                 | 14 55.55                 | 14 34.56                 | 14 17.03          |
|            | 13.96             | 13.95             | 13.92                    | 13.87                    | 13.80                    | 13.68                    | 13.54                    | 13.36             |
| 52.0       |                   | 16 27.29          | 16 <b>20.79</b>          | 16 06.09                 | 15 47.99                 | 15 22.71                 | 15 01.43                 | 14 43.55          |
| <b>710</b> | 13.75             | 13.73             | 13.71                    | 13.65                    | 13.59                    | 13.47                    | 13.33                    | 13.16             |
| 54.0       |                   | 16 54.54          | 16 48.00                 | 16 33.18                 | 16 14.95                 | 15 49.44                 | 15 27.88                 | 15 09.66          |
| 56.0       | 13.53<br>17 30.37 | 13.52<br>17 21.35 | <i>13.49</i><br>17 14.77 | 13.44                    | 13.37                    | 13.26                    | 13.12                    | 12.95             |
| 30.0       | 17 30.37          | 17 21.33          | 17 14.77                 | 16 59.85<br><i>13.22</i> | 16 41.48<br><i>13.16</i> | 16 15.74<br><i>13.04</i> | 15 53.91<br><i>12.91</i> | 15 35.35          |
| 58.0       |                   | 17 47.73          | 17 41.10                 | 17 26.08                 | 17 07.57                 | 16 41.61                 | 16 19.51                 | 12.74<br>16 00.62 |
| •          | 13.09             | 13.08             | 13.05                    | 13.00                    | 12.94                    | 12.83                    | 12.69                    | 12.53             |
| 60.0       |                   | 18 13.66          | 18 06.98                 | 17 51.86                 | 17 33.22                 | 17 07.04                 |                          |                   |
| 00.0       | 12.87             | 12.85             | 12.83                    | 17 31.80                 | 17 33.22                 | 17 07.04                 | 16 44.68<br><i>12.48</i> | 16 25.48          |
| 62.0       |                   | 18 39.14          | 18 32.42                 | 18 17.20                 | 17 58.43                 | 17 32.04                 | 17 09.42                 | 12.32<br>16 49.90 |
| 02.0       | 12.64             | 12.63             | 12.61                    | 12.56                    | 12.49                    | 12.39                    | 12.26                    | 10 49.90          |
| 64.0       |                   | 19 04.17          | 18 57.41                 | 18 42.09                 | 18 23.19                 | 17 56.59                 | 17 33.72                 | 17 13.90          |
|            | 12.42             | 12.40             | 12.38                    | 12.33                    | 12.27                    | 12.16                    | 12.04                    | 11.89             |
| 66.0       | 19 37.92          | 19 28.74          | 19 21.94                 | 19 06.52                 | 18 47.50                 | 18 20.69                 | 17 57.57                 | 17 37.46          |
|            | 12.19             | 12.17             | 12.15                    | 12.10                    | 12.04                    | 11.94                    | 11.82                    | 11.67             |
| 68.0       |                   | 19 52.86          | 19 46.02                 | 19 30.50                 | 19 11.36                 | 18 44.35                 | 18 20.99                 | 18 00.58          |
|            | 11.96             | 11.94             | 11.92                    | 11.88                    | 11.81                    | 11.71                    | 11.59                    | 11.45             |
| 70.0       |                   | 20 16.52          | 20 09.63                 | 19 54.02                 | 19 34.76                 | 19 07.55                 | 18 43.94                 | 18 23.26          |
|            | 11.73             | 11.71             | 11.69                    | 11.65                    | 11.58                    | <i>11.4</i> 8            | 11.37                    | 11.23             |
| 72.0       |                   | 20 39.70          | 20 32.78                 | 20 17.08                 | 19 57.69                 | 19 30.28                 | 19 06.45                 | 18 45.49          |
| 740        | 11.49             | 11.48             | 11.45                    | 11.41                    | 11.35                    | 11.25                    | 11.14                    | 11.00             |
| 74.0       |                   | 21 02.42          | 20 55.46                 | 20 39.66                 | 20 20.16                 | 19 52.56                 | 19 28.49                 | 19 07.27          |
| 76.0       | 11.25<br>21 33.98 | 11.24<br>21 24.65 | 11.22<br>21 17.66        | 11.17<br>21 01.77        | 11.12<br>20 42.15        | 11.02<br>20 14.36        | <i>10.91</i><br>19 50.07 | 10.77<br>19 28.58 |
| 70.0       | 11.01             | 11.00             | 10.98                    | 10.93                    | 10.88                    | 20 14.30<br>10.78        | 19 30.07                 | 19 26.36          |
| 78.0       |                   | 21 46.41          | 21 39.37                 | 21 23.40                 | 21 03.67                 | 20 35.69                 | 20 11.17                 | 19 49.42          |
|            | 10.77             | 10.76             | 10.74                    | 10.69                    | 10.64                    | 10.54                    | 10.43                    | 10.30             |
| 80.0       | 22 17.05          | 22 07.67          | 22 00.60                 | 21 44.53                 | 21 24.69                 | 20 56.52                 | 20 31.79                 | 20 09.79          |
| 00.0       | 10.52             | 10.51             | 10.49                    | 10.44                    | 10.39                    | 20 30.32<br>10.30        | 10.19                    | 10.06             |
| 82.0       |                   | 22 28.43          | 22 21.32                 | 22 05.17                 | 21 45.22                 | 21 16.87                 | 20 51.92                 | 20 29.66          |
|            | 10.27             | 10.26             | 10.24                    | 10.19                    | 10.14                    | 10.05                    | 9.94                     | 9.81              |
| 84.0       |                   | 22 48.69          | 22 41.54                 | 22 25.30                 | 22 05.24                 | 21 36.71                 | 21 11.54                 | 20 49.03          |
|            | 10.01             | 10.00             | 9.98                     | 9.94                     | 9.88                     | <i>9.7</i> 9             | 9.68                     | 9.56              |
| 86.0       |                   | 23 08.42          | 23 01.23                 | 22 44.91                 | 22 24.73                 | 21 56.02                 | 21 30.65                 | 21 07.90          |
| 00.0       | 9.74              | 9.73              | 9.71                     | 9.67                     | 9.62                     | 9.53                     | 9.42                     | 9.30              |
| 88.0       |                   | 23 27.61          | 23 20.39                 | 23 03.99                 | 22 43.70                 | 22 14.81                 | 21 49.23                 | 21 26.24          |
|            | 9.48              | 9.46              | 9.44                     | 9.40                     | 9.35                     | 9.26                     | 9.15                     | 9.04              |
| 90.0       |                   | 23 46.26          | 23 39.00                 | 23 22.52                 | 23 02.12                 | 22 33.06                 | 22 07.27                 | 21 44.03          |
|            | 9.20              | 9.19              | 9.17                     | 9.13                     | 9.07                     | 8.99                     | 8.88                     | 8.77              |
| 92.0       |                   | 24 04.35          | 23 57.06                 | 23 40.49                 | 23 19.98                 | 22 50.75                 | 22 24.80                 | 22 01.45          |
| 040        | 8.9 <i>1</i>      | 8.90              | 8.88                     | 8.84                     | 8.78                     | 8.73                     | 8.69                     | 8.66              |
| 94.0       |                   | 24 21.90          | 24 14.59                 | 23 57.97                 | 23 37.41                 | 23 08.11                 | 22 42.09                 | 22 18.64          |
| 96.0       | 8.70<br>24 48.78  | 8.70<br>24 39.20  | 8.69<br>24 31.87         | 8.68<br>24 15.22         | 8.66<br>23 54.62         | 8.63<br>23 25.24         | 8.59<br>22 59.11         | 8.52<br>22 35.52  |
| 70.0       | 8.60              | 24 39.20<br>8.59  | 24 31.67<br>8.58         | 24 13.22<br>8.56         | 25 54.02<br>8.53         | 23 23.24<br>8.48         | 22 39.11<br>8.43         | 22 33.32<br>8.36  |
| 98.0       |                   | 24 56.22          | 24 48.87                 | 24 32.17                 | 24 11.51                 | 23 42.03                 | 23 15.81                 | 22 52.17          |
| 20.0       | 8.43              | 8.43              | 8.42                     | 8.39                     | 8.36                     | 8.32                     | 8.32                     | 8.32              |
| 100.0      |                   | 25 12.93          | 25 05.57                 | 24 48.85                 | 24 28.17                 | 23 58.68                 |                          |                   |
| *00.0      | 23 22.32<br>8.32  | 23 12.93<br>8.32  | 23 03.37<br>8.32         | 24 46.65<br>8.32         | 24 28.17<br>8.32         | 23 38.08<br>8.32         | 23 32.46<br>8.32         | 23 08.82<br>8.32  |
|            | 0.72              | 0.52              | 0.32                     | 0.32                     | 0.34                     | 0.32                     | 0.34                     | 6.32              |

Table A1. (continued)

| S            |                  |                  |                  | Depth of s                   | ource [km]       |                  |                  |                         |
|--------------|------------------|------------------|------------------|------------------------------|------------------|------------------|------------------|-------------------------|
| Δ            | 0.               | 35.              | 70.              | 150.                         | 250.             | 400.             | 550.             | 700.                    |
|              | m s              | m s              | m s              | m s                          | m s              | m s              | m s              | m s                     |
| 100.0        | 25 22.52         | 25 12.93         | 25 05.57         | 24 48.85                     | 24 28.17         | 23 58.68         | 23 32.46         | 23 08.82                |
| 1000         | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
| 102.0        | 25 39.17<br>8.32 | 25 29.57<br>8.32 | 25 22.21<br>8.32 | 25 05.49<br>8.32             | 24 44.81<br>8.32 | 24 15.33<br>8.32 | 23 49.11<br>8.32 | 23 25.46<br>8.32        |
| 104.0        | 25 55.82         | 25 46.22         | 25 38.86         | 25 22.14                     | 25 01.46         | 24 31.97         | 24 05.75         | 23 42.11                |
| 10440        | 832              | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
| 106.0        | 26 12.46         | 26 02.86         | 25 55.51         | 25 38.79                     | 25 18.11         | 24 48.62         | 24 22.40         | 23 58.76                |
| 440.0        | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
| 108.0        | 26 29.11         | 26 19.51         | 26 12.15         | 25 55.43                     | 25 34.75         | 25 05.27         | 24 39.05         | 24 15.40                |
|              | 8.32             | 8.32             | 8.32             | <i>8.32</i>                  | 8.32             | 8.32             | 8.32             | 8.32                    |
| 110.0        | 26 45.76         | 26 36.16         | 26 28.80         | 26 12.08                     | 25 51.40         | 25 21.91         | 24 55.69         | 24 32.05                |
| 112.0        | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
| 112.0        | 27 02.40<br>8.32 | 26 52.80<br>8.32 | 26 45.44<br>8.32 | 26 28.73<br>8.32             | 26 08.05<br>8.32 | 25 38.56<br>8.32 | 25 12.34<br>8.32 | 24 48.70<br>8.32        |
| 114.0        | 27 19.05         | 27 09.45         | 27 02.09         | 26 45.37                     | 26 24.69         | 25 55.21         | 25 28.99         | 25 05.34                |
| 22410        | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
| 116.0        | 27 35.70         | 27 26.10         | 27 18.74         | 27 02.02                     | 26 41.34         | 26 11.85         | 25 45.63         | 25 21.99                |
|              | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
| 118.0        | 27 52.34         | 27 42.74         | 27 35.38         | 27 18.67                     | 26 57.99         | 26 28.50         | 26 02.28         | 25 38.64                |
|              | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
| 120.0        | 28 08.99         | 27 59.39         | 27 52.03         | 27 35.31                     | 27 14.63         | 26 45.14         | 26 18.93         | 25 55.28                |
| 4000         | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
| 122.0        | 28 25.64         | 28 16.04         | 28 08.68         | 27 51.96                     | 27 31.28         | 27 01.79         | 26 35.57         | 26 11.93                |
| 124.0        | 8.32<br>28 42.28 | 8.32<br>28 32.68 | 8.32<br>28 25.32 | 8.32<br>28 08.60             | 8.32<br>27 47.93 | 8.32<br>27 18.44 | 8.32<br>26 52.22 | 8.32<br>26 28.58        |
| 127.0        | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
| 126.0        | 28 58.93         | 28 49.33         | 28 41.97         | 28 25.25                     | 28 04.57         | 27 35.08         | 27 08.87         | 26 45.22                |
|              | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | <i>8.32</i>      | 8.32             | 8.32                    |
| 128.0        | 29 15.57         | 29 05.98         | 28 58.62         | 28 41.90                     | 28 21.22         | 27 51.73         | 27 25.51         | 27 01.87                |
|              | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
| 130.0        | 29 32.22         | 29 22.62         | 29 15.26         | 28 58.54                     | 28 37.87         | 28 08.38         | 27 42.16         | 27 18.52                |
|              | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
| 132.0        | 29 48.87         | 29 39.27         | 29 31.91         | 29 15.19                     | 28 54.51         | 28 25.02         | 27 58.81         | 27 35.16                |
| 134.0        | 8.32<br>30 05.51 | 8.32<br>29 55.92 | 8.32<br>29 48.56 | 8.32<br>29 31.84             | 8.32<br>29 11.16 | 8.32<br>28 41.67 | 8.32<br>28 15.45 | <i>8.32</i><br>27 51.81 |
| 134.0        | 8.32             | 29 33.92<br>8.32 | 29 46.30<br>8.32 | 29 31.0 <del>4</del><br>8.32 | 8.32             | 28 41.07<br>8.32 | 20 13.43<br>8.32 | 8.32                    |
| 136.0        | 30 22.16         | 30 12.56         | 30 05.20         | 29 48.48                     | 29 27.80         | 28 58.32         | 28 32.10         | 28 08.46                |
|              | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
| 138.0        | 30 38.81         | 30 29.21         | 30 21.85         | 30 05.13                     | 29 44.45         | 29 14.96         | 28 48.74         | 28 25.10                |
|              | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
| <b>140.0</b> | 30 55.45         | 30 45.86         | 30 38.50         | 30 21.78                     | 30 01.10         | 29 31.61         | 29 05.39         | 28 41.75                |
|              | 8.32             | 8.32             | 8.32             | 8.32                         | 8.32             | 8.32             | 8.32             | 8.32                    |
|              |                  |                  |                  |                              |                  |                  |                  |                         |

Table A1. (continued)

| ScS  |                         |                                 |                         | Depth of s              | ource [km]              |                         |                         |                         |
|------|-------------------------|---------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Δ    | 0.                      | 35.                             | 70.                     | 150.                    | 250.                    | 400.                    | 550.                    | 700.                    |
|      | m s                     | m s                             | m s                     | m s                     | m s                     | m s                     | m s                     | m s                     |
| 0.0  | 15 35.57                | 15 25.62                        | 15 17.80                | 15 00.01                | 14 37.93                | 14 06.16                | 13 37.26                | 13 10.53                |
| 2.0  | 0.00<br>15 35.93        | 0.00<br>15 25.98                | 0.00<br>15 18.16        | 0.00<br>15 00.36        | 0.00<br>14 38.29        | 0.00<br>14 06.52        | 0.00<br>13 37.63        | 0.00<br>13 10.91        |
| 2.0  | <b>0.35</b>             | 0.35                            | 0.36                    | 0.36                    | 0.36                    | 0.37                    | 0.37                    | 0.38                    |
| 4.0  | 15 36.99                | 15 27.04                        | 15 19.22                | 15 01.44                | 14 39.37                | 14 07.61                | 13 38.74                | 13 12.03                |
| 6.0  | <i>0.71</i><br>15 38.76 | <i>0.71</i><br>15 <b>28.8</b> 1 | 0.71<br>15 21.00        | 0.71<br>15 03.22        | 0.72<br>14 41.17        | <i>0.73</i><br>14 09.43 | <i>0.74</i><br>13 40.58 | 0.75<br>13 13.90        |
|      | 1.06                    | 1.06                            | 1.06                    | 1.07                    | 1.08                    | 1.09                    | 1.10                    | 1.12                    |
| 8.0  | 15 41.22<br><i>1.41</i> | 15 31.28<br><i>1.41</i>         | 15 23.47<br>1.41        | 15 05.71<br>1.42        | 14 43.67<br>1.43        | 14 11.96<br><i>1.45</i> | 13 43.15<br>1.47        | 13 16.51<br>1.49        |
| 10.0 |                         |                                 |                         |                         | 14 46.88                | 14 15.21                | 13 46.44                | 13 19.85                |
| 10.0 | 15 44.38<br><i>1.75</i> | 15 34.45<br>1.75                | 15 26.65<br>1.76        | 15 08.90<br>1.77        | 14 40.00<br>1.78        | 14 15.21<br>1.80        | 1.82                    | 13 19.83                |
| 12.0 | 15 48.22                | 15 38.29                        | 15 30.50                | 15 12.77                | 14 50.78                | 14 19.16                | 13 50.43                | 13 23.91                |
| 14.0 | 2.09<br>15 52.74        | 2.09<br>15 42.81                | 2.10<br>15 35.03        | 2.11<br>15 17.33        | 2.12<br>14 55.37        | 2.15<br>14 23.79        | 2.17<br>13 55.13        | 2.21<br>13 28.67        |
| 14.0 | 2.42                    | 2.43                            | 2.43                    | 2.44                    | 2.46                    | 2.49                    | 2.52                    | 2.55                    |
| 16.0 | 15 57.91                | 15 47.99                        | 15 40.22                | 15 22.54                | 15 00.62                | 14 29.09                | 14 00.50                | 13 34.12                |
| 18.0 | 2.75<br>16 03.72        | 2.75<br>15 53.82                | 2.76<br>15 46.06        | 2.77<br>15 28.41        | 2.79<br>15 06.52        | 2.82<br>14 35.06        | 2.85<br>14 06.53        | 2.89<br>13 40.24        |
| 20.0 | 3.07                    | 3.07                            | 3.08                    | 3.09                    | 3.11                    | 3.14                    | 3.18                    | 3.22                    |
| 20.0 | 16 10.16                | 16 00.27                        | 15 52.52                | 15 34.90                | 15 13.06                | 14 41.66                | 14 13.22                | 13 47.01                |
| 22.0 | 3.38                    | 3.38                            | 3.39                    | 3.40                    | 3.42                    | 3.46                    | 3.50                    | 3.55                    |
| 22.0 | 16 17.22<br>3.68        | 16 07.33<br>3.68                | 15 59.60<br>3.69        | 15 42.01<br><i>3.70</i> | 15 20.21<br>3.73        | 14 48.88<br><i>3.76</i> | 14 20.52<br>3.81        | 13 54.42<br>3.86        |
| 24.0 | 16 24.86                | 16 14.99                        | 16 07.27                | 15 49.72                | 15 27.96                | 14 56.71                | 14 28.43                | 14 02.43                |
| 26.0 | <i>3.97</i><br>16 33.08 | 3.97<br>16 23.22                | 3.98<br>16 15.52        | 4.00                    | 4.02<br>15 36.28        | <i>4.06</i><br>15 05.11 | 4.10<br>14 36.93        | <i>4.16</i><br>14 11.03 |
| 20.0 | 10 33.06<br>4.25        | 4.26                            | 4.26                    | 15 58.00<br>4.28        | 13 30.26<br>4.30        | 15 05.11<br>4.34        | 14 30.93<br>4.39        | 4.44                    |
| 28.0 | 16 41.85                | 16 32.00                        | 16 24.31                | 16 06.83                | 15 45.17                | 15 14.07                | 14 45.98                | 14 20.19                |
|      | 4.52                    | 4.53                            | 4.53                    | 4.55                    | 4.58                    | 4.62                    | 4.66                    | 4.72                    |
| 30.0 | 16 51.15                | 16 41.31                        | 16 33.64                | 16 16.20                | 15 54.58                | 15 23.57                | 14 55.58                | 14 29.90                |
| 32.0 | <i>4.78</i><br>17 00.96 | <i>4.79</i><br>16 51.14         | 4.80<br>16 43.49        | 4.81<br>16 26.08        | 4.84<br>16 04.51        | 4.88<br>15 33.58        | <i>4.93</i><br>15 05.68 | 4.98<br>14 40.12        |
|      | 5.03                    | 5.04                            | 5.05                    | 5.06                    | 5.09                    | <i>5.13</i>             | 5.18                    | 5.23                    |
| 34.0 | 17 11.27<br>5.27        | 17 01.45<br>5.28                | 16 53.82<br>5.28        | 16 36.45<br><i>5.30</i> | 16 14.93<br><i>5.33</i> | 15 44.08<br><i>5.37</i> | 15 16.28<br>5.42        | 14 50.83<br>5.47        |
| 36.0 | 17 22.04                | 17 12.24                        | 17 04.62                | 16 47.29                | 16 25.82                | 15 55.05                | 15 27.34                | 15 02.00                |
| 20.0 | 5.50                    | 5.51                            | 5.51                    | 5.53                    | 5.56                    | 5.60                    | 5.65                    | 5.70                    |
| 38.0 | 17 33.25<br>5.72        | 17 23.47<br>5.72                | 17 15.86<br>5.73        | 16 58.57<br>5.75        | 16 37.15<br>5.77        | 16 06.46<br>5.81        | 15 38.85<br>5.86        | 15 13.62<br>5.92        |
| 40.0 | 17 44.89                | 17 35.12                        | 17 27.53                | 17 10.28                | 16 48.91                | 16 18.30                | 15 50.78                | 15 25.66                |
|      | 5.92                    | 5.93                            | <i>5.94</i>             | 5.96                    | 5.98                    | 6.02                    | 6.07                    | 6.12                    |
| 42.0 | 17 56.94                | 17 47.18                        | 17 39.60                | 17 22.39                | 17 01.06                | 16 30.54                | 16 03.11                | 15 38.10                |
| 44.0 | 6.12<br>18 09.37        | 6.12<br>17 59.62                | 6.13<br>17 52.06        | <i>6.15</i><br>17 34.88 | <i>6.18</i><br>17 13.60 | <i>6.21</i><br>16 43.15 | 6.26<br>16 15.81        | <i>6.31</i><br>15 50.90 |
|      | 6.30                    | 6.31                            | 6.32                    | 6.34                    | 6.36                    | 6.40                    | 6.44                    | 6.49                    |
| 46.0 | 18 22.15                | 18 12.41                        | 18 04.87                | 17 47.73                | 17 26.50                | 16 56.12                | 16 28.87                | 16 04.06                |
| 48.0 | <i>6.48</i><br>18 35.28 | 6.49<br>18 25.55                | <i>6.49</i><br>18 18.03 | 6 <i>51</i><br>18 00.91 | 6.53<br>17 39.73        | <i>6.57</i><br>17 09.42 | <i>6.61</i><br>16 42.26 | 6.66<br>16 17.55        |
|      | 6.65                    | 6.65                            | 6.66                    | 6.68                    | 6.70                    | 6.73                    | 6.77                    | 6.82                    |
| 50.0 | 18 48.73                | 18 39.02                        | 18 31.50                | 18 14.42                | 17 53.28                | 17 23.04                | 16 55.96                | 16 31.34                |
|      | 6.80                    | 6.81                            | 6.81                    | 6.83                    | 6.85                    | 6.89                    | 6.92                    | 6.97                    |

Table A1. (continued)

| ScS         |                         |                         |                                 | Depth of so             | ource [km]              |                         |                         |                         |
|-------------|-------------------------|-------------------------|---------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| Δ           | 0.                      | 35.                     | 70.                             | 150.                    | 250.                    | 400.                    | 550.                    | 700.                    |
|             | m s                     | m s                     | m s                             | m s                     | m s                     | m s                     | m s                     | m s                     |
| 50.0        | 18 48.73                | 18 39.02                | 18 31.50                        | 18 14.42                | 17 53.28                | 17 23.04                | 16 55.96                | 16 31.34                |
| 52.0        | <i>6.80</i><br>19 02.48 | <i>6.81</i><br>18 52.78 | <i>6.81</i><br>18 45.28         | 6.83<br>18 28.23        | 6.85<br>18 07.12        | 6.89<br>17 36.95        | 6.92<br>17 09.95        | 6.97<br>16 45.42        |
| 32.0        | 6.95                    | 6.95                    | 6.96                            | 6.97                    | 6.99                    | 7.03                    | 7.07                    | 7.11                    |
| 54.0        | 19 16.52                | 19 06.82                | 18 59.33                        | 18 42.31                | 18 21.25                | 17 51.14                | 17 24.21                | 16 59.77                |
| F. ( A      | 7.08                    | 7.09                    | 7.09<br>19 13.65                | 7.11<br>18 56.66        | <i>7.13</i><br>18 35.64 | <i>7.16</i><br>18 05.59 | <i>7.20</i><br>17 38.73 | <i>7.24</i><br>17 14.37 |
| 56.0        | 19 30.81<br><i>7.21</i> | 19 21.13<br>7.22        | 7.22                            | 7.24                    | 7.26                    | 7.28                    | 7.32                    | 7.36                    |
| 58.0        | 19 45.36                | 19 35.68                | 19 28.22                        | 19 11.25                | 18 50.26                | 18 20.27                | 17 53.48                | 17 29.19                |
|             | 7.33                    | 7.34                    | 7.34                            | 7.35                    | 7.37                    | 7.40                    | 7.43                    | 7.47                    |
| 60.0        | 20 00.13                | 19 50.46                | 19 43.01                        | 19 26.07                | 19 05.11                | 18 35.18                | 18 08.45                | 17 44.23                |
| 62.0        | 7.44<br>20 15.12        | 7.45<br>20 05.46        | <i>7.45</i><br>19 <b>58</b> .01 | <i>7.46</i><br>19 41.10 | <i>7.48</i><br>19 20.17 | <i>7.51</i><br>18 50.29 | 7 <i>54</i><br>18 23.62 | 7.57<br>17 59.47        |
| 02.0        | 7.54                    | 20 05.40<br>7.55        | 7.55                            | 7.56                    | 7.58                    | 7.60                    | 7.63                    | 7.66                    |
| 64.0        | 20 30.30                | 20 20.65                | 20 13.21                        | 19 56.32                | 19 35.43                | 19 05.59                | 18 38.97                | 18 14.89                |
| <i>((</i> ) | 7.64                    | 7.64                    | 7.65                            | 7.66<br>20 11.72        | 7.67<br>19 50.85        | 7.69<br>19 21.06        | 7.72<br>18 54.49        | 7.75<br>18 30.47        |
| 66.0        | 20 45.67<br>7.72        | 20 36.02<br>7.73        | 20 28.59<br>7.73                | 20 11.72<br>7.74        | 19 30.63<br>7.76        | 7.78                    | 7.80                    | 7.83                    |
| 68.0        | 21 01.20                | 20 51.56                | 20 44.14                        | 20 27.29                | 20 06.44                | 19 36.69                | 19 10.17                | 18 46.20                |
|             | 7.80                    | 7.81                    | 7.81                            | 7.82                    | 7.83                    | 7.85                    | 7.88                    | 7.90                    |
| 70.0        | 21 16.88                | 21 07.25                | 20 59.84                        | 20 43.01                | 20 22.18                | 19 52.47                | 19 25.99                | 19 02.07                |
| <b>50.0</b> | 7.88                    | 7.88                    | 7.88                            | 7.89                    | 7.90                    | 7.92                    | 7.94                    | 7.97<br>19 18.06        |
| 72.0        | 21 32.70<br>7.94        | 21 23.07<br>7.95        | 21 15.67<br>7.95                | 20 58.86<br>7.96        | 20 38.06<br>7.97        | 20 08.37<br>7.98        | 19 41.94<br>8.00        | 8.02                    |
| 74.0        | 21 48.65                | 21 39.03                | 21 31.63                        | 21 14.83                | 20 54.05                | 20 24.40                | 19 58.00                | 19 34.16                |
|             | 8.00                    | 8.01                    | 8.01                            | 8.02                    | 8.02                    | 8.04                    | 8.06                    | 8.08                    |
| 76.0        | 22 04.71<br>8.06        | 21 55.09<br>8.06        | 21 47.70<br>8.06                | 21 30.92<br>8.07        | 21 10.15<br>8.08        | 20 40.53<br>8.09        | 20 14.16<br>8.10        | 19 50.36<br>8.12        |
| 78.0        | 22 20.88                | 22 11.26                | 22 03.88                        | 21 47.10                | 21 26.35                | 20 56.76                | 20 30.42                | 20 06.64                |
|             | 8.10                    | 8.11                    | 8.11                            | 8.12                    | 8.12                    | 8.14                    | 8.15                    | 8.16                    |
| 80.0        | 22 37.13                | 22 27.52                | 22 20.14                        | 22 03.38                | 21 42.64                | 21 13.07                | 20 46.75                | 20 23.01                |
|             | 8.15                    | 8.15                    | 8.15                            | 8.16                    | 8.16                    | 8.17                    | 8.19                    | 8.20                    |
| 82.0        | 22 53.47<br>8.19        | 22 43.86<br>8.19        | 22 36.48<br>8.19                | 22 19.73<br><i>8.19</i> | 21 59.00<br>8.20        | 21 29.45<br>8.21        | 21 03.16<br>8.22        | 20 39.43<br>8.23        |
| 84.0        | 23 09.87                | 23 00.26                | 22 52.89                        | 22 36.15                | 22 15.43                | 21 45.89                | 21 19.62                | 20 55.92                |
|             | 8.22                    | 8.22                    | 8.22                            | 8.22                    | 8.23                    | 8.24                    | 8.24                    | 8.26                    |
| 86.0        | 23 26.33                | 23 16.73                | 23 09.36                        | 22 52.62                | 22 31.92<br>8.26        | 22 02.39<br>8.26        | 21 36.13<br>8.27        | 21 12.45<br>8.28        |
| 88.0        | 8.24<br>23 42.85        | 8.25<br>23 33.24        | 8.25<br>23 25.88                | 8.25<br>23 09.14        | 22 48.45                | 22 18.94                | 21 52.69                | 21 29.02                |
| 00.0        | 8.27                    | 8.27                    | 8.27                            | 8.27                    | 8.28                    | 8.28                    | 8.29                    | 8.29                    |
| 90.0        | 23 59.40                | 23 49.80                | 23 42.44                        | 23 25.71                | 23 05.02                | 22 35.51                | 22 09.28                | 21 45.62                |
|             | 8.29                    | 8.29                    | 8.29                            | 8.29                    | 8.29                    | 8.30                    | 8.30                    | 831                     |
| 92.0        | 24 15.99                | 24 06.39                | 23 59.03                        | 23 42.30                | 23 21.62                | 22 52.12<br><i>8.31</i> | 22 25.89<br><i>8.31</i> | 22 02.24<br><i>8.31</i> |
| 94.0        | 8.30<br>24 32.60        | 8.30<br>24 23.00        | 8.30<br>24 15.64                | 8.30<br>23 58.92        | 8.31<br>23 38.24        | 23 08.75                | 22 42.53                | 22 18.88                |
|             | <b>8.31</b>             | 8.31                    | 8.31                            | 8.31                    | <i>8.31</i>             | 8.32                    | 8.32                    | 8.32                    |
| 96.0        | 24 49.23                | 24 39.64                | 24 32.28                        | 24 15.56                | 23 54.88                | 23 25.39                | 22 59.17                |                         |
| 98.0        | 8.32<br>25 05.88        | 8.32<br>24 56.28        | 8.32<br>24 48.92                | 8.32<br>24 32.20        | 8.32<br>24 11.52        | 8.32                    | 8.32                    |                         |
| ₹0.U        | 8.32                    | 8.32                    | 8.32                            | 8.32                    | 8.32                    |                         |                         |                         |
|             |                         |                         |                                 |                         |                         |                         |                         |                         |

Table A1. (continued)

| SKSac       |                         |                         |                         | Depth of se             | ource [km]       |                                  |                         |                         |
|-------------|-------------------------|-------------------------|-------------------------|-------------------------|------------------|----------------------------------|-------------------------|-------------------------|
| Δ           | 0.                      | 35.                     | 70.                     | 150.                    | 250.             | 400.                             | 550.                    | 700.                    |
|             | m s                     | m s                     | m s                     | m s                     | m s              | m s                              | m s                     | m s                     |
| 64.0        | 20 30.27                | 20 20.62                | 20 13.18                | 19 56.27                | 19 35.35         | 19 05.46                         | 18 38.77                | 18 14.57                |
| 66.0        | 7.59<br>20 45.44        | <i>7.59</i><br>20 35.78 | 7.59<br>20 28.34        | 7.59<br>20 11.43        | 7.59<br>19 50.51 | <i>7.5</i> 8<br>19 <b>2</b> 0.61 | <i>7.58</i><br>18 53.91 | <i>7.57</i><br>18 29.70 |
|             | 7.58                    | <i>7.</i> 58            | 7.58                    | 7.58                    | 7.57             | 7.57                             | 7.56                    | 7.55                    |
| 68.0        | 21 00.58<br><i>7.56</i> | 20 50.92<br>7.56        | 20 43.48<br><i>7.56</i> | 20 26.56<br>7.55        | 20 05.63<br>7.55 | 19 35.72<br><i>7.54</i>          | 19 09.00<br><i>7.53</i> | 18 44.76<br>7.51        |
| 70.0        | 21 15.67                | 21 06.01                | 20 58.56                | 20 41.64                | 20 20.69         | 19 50.76                         | 19 24.01                | 18 59.74                |
| <b>50.0</b> | 7.53                    | 7.53                    | 7.52                    | 7.52                    | 751              | 7.50                             | 7.48<br>19 38.90        | <i>7.46</i><br>19 14.58 |
| 72.0        | 21 30.67<br>7.47        | 21 21.01<br>7.47        | 21 13.55<br>7.47        | 20 56.62<br>7.46        | 20 35.66<br>7.45 | 20 05.70<br>7.43                 | 19 36.90<br>7.41        | 19 14.36<br>7.37        |
| 74.0        | 21 45.55                | 21 35.88                | 21 28.42                | 21 11.46                | 20 50.47         | 20 20.47                         | 19 53.62                | 19 29.21                |
|             | 7.40                    | 7.39                    | 7.39                    | 7.38                    | 7.36             | 7.34                             | 7.30                    | 7.26                    |
| 76.0        | 22 00.24<br>7.29        | 21 50.56<br>7.28        | 21 43.09<br>7.28        | 21 26.11<br>7.26        | 21 05.08<br>7.24 | 20 35.01<br>7.21                 | 20 08.09<br>7.16        | 19 43.59<br>7.11        |
| 78.0        | 22 14.67                | 22 04.98                | 21 57.50                | 21 40.48                | 21 19.41         | 20 49.27                         | 20 22.25                | 19 57.63                |
| 90.0        | 7.14                    | <i>7.14</i><br>22 19.07 | 7.13<br>22 11.57        | 7.11<br>21 54.52        | 7.08<br>21 33.39 | 7.04<br>21 03.16                 | 6.99<br>20 36.03        | 6.93<br>20 11.29        |
| 80.0        | 22 28.78<br>6.96        | 22 19.07<br>6.95        | 6.94                    | 6.92                    | 6.89             | 6.85                             | 20 30.03<br>6.79        | 6.73                    |
| 82.0        | 22 42.50                | 22 32.78                | 22 25.26                | 22 08.15                | 21 46.97         | 21 16.64                         | 20 49.40                | 20 24.54                |
|             | 6.75                    | 6.75                    | 6.74                    | 6.71                    | 6.68             | 6.64                             | 6.58                    | 651                     |
| 84.0        | 22 55.78<br>6.53        | 22 46.05<br>6.53        | 22 38.51<br><i>6.51</i> | 22 21.36<br><i>6.49</i> | 22 00.12<br>6.46 | 21 29.69<br>6.42                 | 21 02.34<br><i>6.36</i> | 20 37.35<br><i>6.30</i> |
| 86.0        | 23 08.62                | 22 58.87                | 22 51.31                | 22 34.12                | 22 12.82         | 21 42.31                         | 21 14.85                | 20 49.74                |
| 00.0        | 631                     | 6.30                    | 6.29                    | 6.27                    | 6.24<br>22 25.09 | 6.20<br>21 54.49                 | 6.15<br>21 26.93        | 6.09<br>21 01.71        |
| 88.0        | 23 21.02<br>6.09        | 23 11.25<br>6.08        | 23 03.68<br>6.07        | 22 46.44<br>6.05        | 6.03             | 5.98                             | 21 20.93<br>5.94        | 5.88                    |
| 90.0        | 23 32.98                | 23 23.20                | 23 15.61                | 22 58.34                | 22 36.93         | 22 06.25                         | 21 38.60                | 21 13.27                |
| 92.0        | 5.87<br>23 44.52        | <i>5.87</i><br>23 34.73 | 5.86<br>23 27.12        | 5.84<br>23 09.81        | 5.82<br>22 48.36 | 5.78<br>22 17.60                 | <i>5.73</i><br>21 49.87 | 5.68<br>21 24.44        |
| 72.0        | 5.67                    | 5.66                    | 5.65                    | 5.64                    | 5.61             | 5.58                             | 5.54                    | 5.49                    |
| 94.0        | 23 55.65                | 23 45.85                | 23 38.23                | 23 20.89                | 22 59.39         | 22 28.56                         | 22 00.75                | 21 35.24                |
| 07.0        | 5.47                    | 5.46                    | 5.46                    | 5.44                    | 5.42<br>23 10.04 | <i>5.39</i><br>22 39.15          | <i>5.35</i><br>22 11.26 | <i>5.30</i><br>21 45.67 |
| 96.0        | 24 06.40<br>5.28        | 23 56.59<br>5.27        | 23 48.95<br>5.27        | 23 31.58<br>5.25        | 5.23             | 5.20                             | 5.17                    | 5.13                    |
| 98.0        | 24 16.78                | 24 06.95                | 23 59.30                | 23 41.90                | 23 20.33         | 22 49.38                         | 22 21.42                | 21 55.75                |
| 100.0       | 5.10<br>24 26.79        | 5.09<br>24 16.96        | 5.09<br>24 09.30        | 5.07<br>23 51.87        | 5.05<br>23 30.27 | 5.03<br>22 59.26                 | 4.99<br>22 31.24        | 4.96<br>22 05.50        |
|             | 4.92                    | 4.92                    | 4.91                    | 4.90                    | 4.88             | 4.86                             | 4.82                    | 4.79                    |
| 102.0       | 24 36.46                | 24 26.63<br>4.75        | 24 18.95<br><i>4.74</i> | 24 01.50<br><i>4.73</i> | 23 39.86<br>4.72 | 23 08.80<br>4.69                 | 22 40.72<br>4.66        | 22 14.92<br>4.63        |
| 1040        | 4.75                    | 24 35.96                | 24 28.28                | 24 10.80                | 23 49.13         | 23 18.02                         | 22 49.89                | 22 24.02                |
| 104.0       | 24 45.80<br><i>4.59</i> | 24 33.90<br>4.59        | 24 20.20<br>4.58        | 24 10.60<br>4.57        | 25 49.15<br>4.55 | 25 16.02<br>4.53                 | 4.51                    | 4.47                    |
| 106.0       | 24 54.82                | 24 44.97                | 24 37.28                | 24 19.78                | 23 58.09         | 23 26.93                         | 22 58.75                | 22 32.82                |
| 108.0       | 4.43<br>25 03.54        | <i>4.43</i><br>24 53.68 | 4.42<br>24 45.97        | 4.41<br>24 28.46        | 4.40<br>24 06.74 | <i>4.38</i><br>23 35.54          | <i>4.35</i><br>23 07.31 | <i>4.33</i><br>22 41.33 |
|             | 4.28                    | 4.28                    | 4.27                    | 4.26                    | 4.25             | 4.23                             | 4.21                    | 4.18                    |
| 110.0       | 25 11.95                | 25 02.08                | 24 54.37                | 24 36.84                | 24 15.09         | 23 43.86                         | 23 15.58<br>4.07        | 22 49.55                |
| 112.0       | 4.13<br>25 20.08        | 4.13<br>25 10.20        | 4.13<br>25 02.49        | 4.12<br>24 44.93        | 4.11<br>24 23.17 | 4.09<br>23 51.90                 | 23 23.58                | 4.04<br>22 57.50        |
|             | 3.99                    | 3.99                    | 3.99                    | 3.98                    | 3.97             | 3.95                             | 3.93                    | 3.91                    |
| 114.0       | 25 27.92                | 25 18.05                | 25 10.32                | 24 52.75                | 24 30.96         | 23 59.66                         | 23 31.30                | 23 05.18                |
|             | 3.86                    | 3.85                    | 3.85                    | 3.84                    | 3.83             | 3.81                             | 3.79                    | 3.77                    |

Table A1. (continued)

| SKSac |                          |                          |                          | Depth of s               | ource [km]               |                          |                          |                          |
|-------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Δ     | 0.                       | 35.                      | 70.                      | 150.                     | 250.                     | 400.                     | 550.                     | 700.                     |
|       | m s                      | m s                      | m s                      | m s                      | m s                      | m s                      | m s                      | m s                      |
| 114.0 | 25 27.92                 | 25 18.05                 | 25 10.32                 | 24 52.75                 | 24 30.96                 | 23 59.66                 | 23 31.30                 | 23 05.18                 |
| 116.0 | 3.86<br>25 35.50         | 3.85<br>25 25.61         | 3.85<br>25 17.88         | 3.84<br>25 00.30         | 3.83<br>24 38.49         | <i>3.81</i><br>24 07.15  | 3.79<br>23 38.76         | 3.77<br>23 12.60         |
| 118.0 | 3.72<br>25 42.80         | 3.72<br>25 32.92         | 3.71<br>25 25.18         | 3.71<br>25 07.58         | 3.70<br>24 45.75         | 3.68<br>24 14.39         | 3.66<br>23 45.96         | 3.64<br>23 19.76         |
|       | 3.59                     | 3.59                     | 3.58                     | 3.58                     | 3.57                     | 3.55                     | 3.54                     | 3.52                     |
| 120.0 | 25 49.85<br><i>3.46</i>  | 25 39.96<br>3.46         | 25 32.22<br>3.45         | 25 14.60<br>3.45         | 24 52.76<br>3.44         | 24 21.36<br>3.43         | 23 52.90<br>3.41         | 23 26.66                 |
| 122.0 | 25 56.65                 | 25 46.75                 | 25 39.00                 | 25 21.38                 | 24 59.52                 | 24 28.09                 | 23 59.60                 | 3.39<br>23 33.33         |
|       | 3.34                     | 3.33                     | 3.33                     | 3.32                     | 3.32                     | 3.30                     | 3.29                     | 3.27                     |
| 124.0 | 26 03.19<br>3.21         | 25 53.29<br><i>3.21</i>  | 25 45.54                 | 25 27.90<br>3.20         | 25 06.03<br>3.19         | 24 34.58                 | 24 06.06                 | 23 39.75                 |
| 126.0 | 26 09.50                 | 25 59.59                 | <i>3.21</i><br>25 51.84  | 25 34.19                 | 25 12.29                 | 3.18<br>24 40.82         | <i>3.17</i><br>24 12.27  | 3.15<br>23 45.94         |
| 120 0 | 3.09                     | 3.09                     | 3.09                     | 3.08                     | 3.08                     | 3.06                     | 3.05                     | 3.04                     |
| 128.0 | 26 15.56<br>2.97         | 26 05.66<br>2.97         | 25 57.90<br>2.97         | 25 40.23<br>2.96         | 25 18.33<br>2.96         | 24 46.83<br>2.95         | 24 18.26<br>2.93         | 23 51.89<br>2.92         |
| 130.0 | 26 21.40                 | 26 11.49                 | 26 03.72                 | 25 46.05                 | 25 24.13                 | 24 52.61                 | 24 24.02                 | 23 57.62                 |
| 132.0 | 2.86<br>26 27.00<br>2.74 | 2.86<br>26 17.09<br>2.74 | 2.86<br>26 09.32<br>2.74 | 2.85<br>25 51.63<br>2.74 | 2.84<br>25 29.70<br>2.73 | 2.83<br>24 58.17<br>2.72 | 2.82<br>24 29.55<br>2.71 | 2.81<br>24 03.13<br>2.70 |
| 134.0 | 26 32.38                 | 26 22.46                 | 26 14.69                 | 25 57.00 -               | 25 35.05                 | 25 03.50                 | 24 34.86                 | 24 08.41                 |
| 136.0 | 2.63<br>26 37.53         | 2.63<br>26 27.61         | 2.63<br>26 19.83         | 2.62<br>26 02.14         | 2.62<br>25 40.18         | 2.61<br>25 08.61         | 2.60<br>24 39.95         | 2.59<br>24 13.48         |
|       | 2.52                     | 2.52                     | 2.52                     | 2.52                     | 2 <i>51</i>              | 2.50                     | 2.49                     | 2.48                     |
| 138.0 | 26 42.47<br>2.41         | 26 32.55<br>2.41         | 26 24.76<br>2.41         | 26 07.06<br>2.41         | 25 45.09<br>2.40         | 25 13.50<br>2.39         | 24 44.82<br>2.38         | 24 18.33<br>2.37         |
| 140.0 | 26 47.19<br>2.31         | 26 37.26<br>2.30         | 26 29.48<br>2.30         | 26 11.76<br>2.30         | 25 49.79<br>2.29         | 25 18.18<br>2.29         | 24 49.48<br>2.28         | 24 22.97                 |
| 142.0 | 26 51.69<br>2.20         | 26 41.76<br>2.20         | 26 33.98<br>2.20         | 26 16.25<br>2.19         | 25 54.27<br>2.19         | 25 22.65<br>2.18         | 24 53.93<br>2.17         | 2.27<br>24 27.40<br>2.16 |
| 144.0 | 26 55.98<br>2.09         | 26 46.05<br>2.09         | 26 38.26<br>2.09         | 26 20.53<br>2.09         | 25 58.54<br>2.08         | 25 26.90<br>2.07         | 24 53.93<br>2.17         | 24 27.40<br>2.16         |

Table A1. (continued)

| SKSdf |                         |                  |                         | Depth of s              | source [km]             |                          |                         |                  |
|-------|-------------------------|------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|------------------|
| Δ     | 0.                      | 35.              | 70.                     | 150.                    | 250.                    | 400.                     | 550.                    | 700.             |
|       | m s                     | m s              | m s                     | m s                     | m s                     | m s                      | m s                     | m s              |
| 104.0 | 25 35.15                | 25 25.22         | 25 17.42<br><i>1.91</i> | 24 59.68<br>1.91        | 24 37.68<br>1.91        | 24 06.02<br>1.91         | 23 37.26<br>1.91        | 23 10.69<br>1.91 |
| 106.0 | 1.91<br>25 38.98        | 1.91<br>25 29.05 | 25 21.25                | 25 03.51                | 24 41.51                | 24 09.85                 | 23 41.09                | 23 14.52         |
| 100.0 | 1.91                    | 1.91             | 1.91                    | 1.91                    | 1.91                    | 1.91                     | 1.91                    | 1.91             |
| 108.0 | 25 42.81<br>1.91        | 25 32.88<br>1.91 | 25 25.08<br>1.91        | 25 07.34<br>1 <i>91</i> | 24 45.34<br>1.91        | 24 13.68<br>1.91         | 23 44.92<br>1.91        | 23 18.34<br>1.91 |
| 110.0 | 25 46.63                | 25 36.70         | 25 28.91                | 25 11.16                | 24 49.16                | 24 17.50                 | 23 48.74                | 23 22.17         |
| 112.0 | 1.91<br>25 50.46        | 1.91<br>25 40.52 | 1.91<br>25 32.73        | 1.91<br>25 14.99        | 1.91<br>24 52.98        | 1.91<br>24 21.32         | 1.91<br>23 52.56        | 1.91<br>23 25.99 |
| 11200 | 1.91                    | 1.91             | 1.91                    | 1.91                    | 1.91                    | 1.91                     | 1.91                    | 1.91             |
| 114.0 | 25 54.27                | 25 44.33         | 25 36.54                | 25 18.80                | 24 56.79                | 24 25.13                 | 23 56.37                | 23 29.80         |
| 116.0 | 1.90<br>25 58.07        | 1.90<br>25 48.14 | 1.90<br>25 40.34        | 1 <i>90</i><br>25 22.60 | 1.90<br>25 00.60        | 1.90<br>24 28.94         | 1.90<br>24 00.18        | 1.90<br>23 33.60 |
|       | 1.90                    | 1.90             | 1.90                    | 1.90                    | 1.90                    | 1.90                     | 1.90                    | 1.90             |
| 118.0 | 26 01.87                | 25 51.93         | 25 44.14                | 25 26.39                | 25 04.39                | 24 32.73                 | 24 03.97                | 23 37.39         |
| 120.0 | 1.89<br>26 05.64        | 1.89<br>25 55.71 | 1.89<br>25 47.91        | 1.89<br>25 30.17        | 1.89<br>25 08.16        | 1.89<br>24 36.50         | 1.89<br>24 07.74        | 1.89<br>23 41.16 |
|       | 1.88                    | 1.88             | 1.88                    | 1.88                    | 1.88                    | 1.88                     | 1.88                    | 1.88             |
| 122.0 | 26 09.40<br>1.87        | 25 59.47<br>1.87 | 25 51.67<br>1.87        | 25 33.93<br>1.87        | 25 11.92<br>1.87        | 24 40.26<br>1.87         | 24 11.49<br>1.87        | 23 44.91<br>1.87 |
| 124.0 | 26 13.14                | 26 03.20         | 25 55.41                | 25 37.66                | 25 15.65                | 24 43.99                 | 24 15.22                | 23 48.64         |
|       | 1.86                    | 1.86             | 1.86                    | <i>1.</i> 86            | 1.86                    | 1.86                     | 1.86                    | 1.86             |
| 126.0 | 26 16.84<br>1.85        | 26 06.91<br>1.85 | 25 59.11<br>1.85        | 25 41.37<br>1.85        | 25 19.36<br>1.84        | 24 47.69<br>1.84         | 24 18.92<br>1.84        | 23 52.34<br>1.84 |
| 128.0 | 26 20.52                | 26 10.58         | 26 02.78                | 25 45.04                | 25 23.03                | 24 51.36                 | 24 22.59                | 23 56.00         |
| 130.0 | 1.83<br>26 24.15        | 1.83<br>26 14.21 | 1.83<br>26 06.41        | 1.83<br>25 48.67        | 1.83<br>25 26.65        | 1.82<br>24 54.98         | 1.82<br>24 26.21        | 1.82<br>23 59.62 |
| 130.0 | 1.80                    | 1.80             | 1.80                    | 23 46.67<br>1.80        | 23 20.03<br>1.80        | 24 <i>5</i> 4.36<br>1.80 | 1.80                    | 1.80             |
| 132.0 | 26 27.73                | 26 17.79         | 26 09.99                | 25 52.25                | 25 30.23                | 24 58.56                 | 24 29.78                | 24 03.18         |
| 1240  | 1.78                    | 1.78             | 1.78                    | 1.78                    | 1.77                    | 1.77                     | 1.77                    | 1.77             |
| 134.0 | 26 31.25<br>1.75        | 26 21.32<br>1.75 | 26 13.52<br>1.75        | 25 55.77<br>1.74        | 25 33.75<br>1.74        | 25 02.07<br>1.74         | 24 33.29<br>1.74        | 24 06.69<br>1.74 |
| 136.0 | 26 34.71                | 26 24.77         | 26 16.97                | 25 59.22                | 25 37.20                | 25 05.52                 | 24 36.73                | 24 10.12         |
| 138.0 | 1.71<br>26 38.08        | 1.71<br>26 28.15 | 1.71<br>26 20.34        | 1.71<br>26 02.59        | 1.71<br>25 40.57        | 1.70<br>25 08.88         | 1.70<br>24 40.09        | 1.70<br>24 13.48 |
|       | 1.67                    | 1.67             | 1.67                    | 1.66                    | 1.66                    | 1.66                     | 1.66                    | 1.65             |
| 140.0 | 26 41.37<br>1.62        | 26 31.43<br>1.62 | 26 23.63<br>1.62        | 26 05.87<br>1.62        | 25 43.85<br>1.62        | 25 12.16<br>1.61         | 24 43.36<br>1.61        | 24 16.74<br>1.61 |
| 142.0 | 26 44.56                | 26 34.62         | 26 26.81                | 26 09.06                | 25 47.03                | 25 15.33                 | 24 46.53                | 24 19.90         |
|       | 1.57                    | 1.57             | 1.57                    | 1.56                    | 1.56                    | 1.56                     | 1.56                    | 1.55             |
| 144.0 | 26 47.63                | 26 37.69         | 26 29.89                | 26 12.13                | 25 50.09                | 25 18.39                 | 24 49.58                | 24 22.95         |
| 146.0 | 1 <i>51</i><br>26 50.59 | 1.51<br>26 40.65 | 1.51<br>26 32.84        | 1.51<br>26 15.08        | 1 <i>50</i><br>25 53.04 | 1.50<br>25 21.33         | 1.50<br>24 52.52        | 1.49<br>24 25.87 |
|       | 1.45                    | 1.45             | 1.45                    | 1.44                    | 1.44                    | 1.44                     | 1.43                    | 1.43             |
| 148.0 | 26 53.41<br>1.38        | 26 43.47<br>1.38 | 26 35.66<br>1.38        | 26 17.90<br>1.38        | 25 55.86<br>1.37        | 25 24.14<br><i>1.37</i>  | 24 55.32<br>1.37        | 24 28.67<br>1.36 |
| 150.0 | 26 56.10                | 26 46.15         | 26 38.35                | 26 20.58                | 25 58.53                | 25 26.81                 | 24 57.98                | 24 31.32         |
| 152.0 | 1.31<br>26 58.64        | 1.31<br>26 48.69 | 1.31<br>26 40.89        | 1.30<br>26 23.11        | 1.30<br>26 01.07        | 1.30<br>25 29.34         | 1 <i>30</i><br>25 00.50 | 1.29<br>24 33.84 |
|       | 1.23                    | 1.23             | 1.23                    | 1.23                    | 1.23                    | 1.23                     | 1.22                    | 1.22             |
| 154.0 | 27 01.03                | 26 51.08         | 26 43.27                | 26 25.50                | 26 03.45                | 25 31.71                 | 25 02.87                | 24 36.19         |
|       | 1.15                    | 1.15             | 1.15                    | 1.15                    | 1.15                    | 1.15                     | 1.14                    | 1.14             |

Table A1. (continued)

| SKSdf |          |          |          | Depth of s        | ource [km] |          |          |          |
|-------|----------|----------|----------|-------------------|------------|----------|----------|----------|
| Δ     | 0.       | 35.      | 70.      | 150.              | 250.       | 400.     | 550.     | 700.     |
|       | m s      | m s      | m s      | m s               | m s        | m s      | m s      | m s      |
| 154.0 | 27 01.03 | 26 51.08 | 26 43.27 | 26 25.50          | 26 03.45   | 25 31.71 | 25 02.87 | 24 36.19 |
|       | 1.15     | 1.15     | 1.15     | 1.15              | 1.15       | 1.15     | 1.14     | 1.14     |
| 156.0 | 27 03.26 | 26 53.31 | 26 45.50 | 26 27.72          | 26 05.67   | 25 33.93 | 25 05.08 | 24 38.40 |
|       | 1.07     | 1.07     | 1.07     | 1.07              | 1.07       | 1.07     | 1.06     | 1.06     |
| 158.0 | 27 05.32 | 26 55.38 | 26 47.56 | 26 29.78          | 26 07.73   | 25 35.98 | 25 07.12 | 24 40.44 |
|       | 0.99     | 0.99     | 0.99     | 0.99              | 0.99       | 0.99     | 0.98     | 0.98     |
| 160.0 | 27 07.22 | 26 57.27 | 26 49.46 | 26 31.68          | 26 09.62   | 25 37.87 | 25 09.00 | 24 42.31 |
|       | 0.91     | 0.91     | 0.91     | 0.90              | 0.90       | 0.90     | 0.90     | 0.89     |
| 162.0 | 27 08.95 | 26 59.00 | 26 51.19 | 26 33.40          | 26 11.34   | 25 39.58 | 25 10.72 | 24 44.01 |
|       | 0.82     | 0.82     | 0.82     | 0.82              | 0.82       | 0.81     | 0.81     | 0.81     |
| 164.0 | 27 10.50 | 27 00.55 | 26 52.74 | 26 34.95          | 26 12.88   | 25 41.13 | 25 12.25 | 24 45.55 |
|       | 0.73     | 0.73     | 0.73     | 0.73              | 0.73       | 0.73     | 0.73     | 0.72     |
| 166.0 | 27 11.88 | 27 01.93 | 26 54.11 | 26 36.32          | 26 14.25   | 25 42.49 | 25 13.61 | 24 46.90 |
|       | 0.64     | 0.64     | 0.64     | 0.64              | 0.64       | 0.64     | 0.64     | 0.63     |
| 168.0 | 27 13.07 | 27 03.12 | 26 55.31 | 26 37.52          | 26 15.45   | 25 43.68 | 25 14.80 | 24 48.08 |
|       | 0.55     | 0.55     | 0.55     | 0.55              | 0.55       | 0.55     | 0.55     | 0.55     |
| 170.0 | 27 14.09 | 27 04.14 | 26 56.32 | 26 38.53          | 26 16.46   | 25 44.69 | 25 15.80 | 24 49.08 |
|       | 0.46     | 0.46     | 0.46     | 0.46              | 0.46       | 0.46     | 0.46     | 0.46     |
| 172.0 | 27 14.92 | 27 04.97 | 26 57.15 | 26 39.36          | 26 17.29   | 25 45.52 | 25 16.63 | 24 49.90 |
|       | 0.37     | 0.37     | 0.37     | <sub>.</sub> 0.37 | 0.37       | 0.37     | 0.37     | 0.37     |
| 174.0 | 27 15.57 | 27 05.62 | 26 57.80 | 26 40.01          | 26 17.93   | 25 46.16 | 25 17.27 | 24 50.54 |
|       | 0.28     | 0.28     | 0.28     | 0.28              | 0.28       | 0.28     | 0.28     | 0.27     |
| 176.0 | 27 16.04 | 27 06.08 | 26 58.26 | 26 40.47          | 26 18.39   | 25 46.62 | 25 17.73 | 24 51.00 |
|       | 0.19     | 0.19     | 0.19     | 0.19              | 0.19       | 0.18     | 0.18     | 0.18     |
| 178.0 | 27 16.31 | 27 06.36 | 26 58.54 | 26 40.75          | 26 18.67   | 25 46.90 | 25 18.00 | 24 51.28 |
|       | 0.09     | 0.09     | 0.09     | 0.09              | 0.09       | 0.09     | 0.09     | 0.09     |
| 180.0 | 27 16.41 | 27 06.45 | 26 58.64 | 26 40.84          | 26 18.76   | 25 46.99 | 25 18.10 | 24 51.37 |
|       | 0.00     | 0.00     | 0.00     | 0.00              | 0.00       | 0.00     | 0.00     | 0.00     |

# iasp91 0 km source



Figure A1. Traveltime curves for the iasp 91 model for surface focus.

# iasp91 200 km source



Figure A2. Traveltime curves for the iasp91 model for 200 km focal depth.

# iasp91 600 km source



Figure A3. Traveltime curves for the iasp91 model for 600 km focal depth.

#### APPENDIX B

### Hypocentral parameters for test events

The following table summarizes the hypocentral information supplied by contributors for the 104 test events. The 83 earthquakes are shown first and then the 21 explosions. For those explosions marked with an asterisk the location has been derived as if the event were an earthquake. In the other cases the hypocentral information is not derived from seismological data. For the explosions in Eastern Kazakh, the hypocentral parameters were taken from data recently published in the Soviet Union (Bocharov, Zelentsov & Mikhailov 1989—translated in Vergino 1989)

Table B1. Hypocentral information for test events.

```
Earthquakes:
 Date
1973 04 26
1983 11 16
                                           Lat. Long.
19.903 ~155.13
19.419 ~155.453
19.362 ~155.083
                                                                      Depth
                     20 26 30.6
16 12 58.57
03 27 03.90
                                                                                  5.9 Kalapana (Hawaii,USA)
6.3 Kaoiki (Hawaii,USA)
5.8 (Hawaii,USA)
                                                                        12.5
 1989
 1984 05 06
                     19 54 49.00
                                            51.364 -176.604
                                                                        37.0
                                                                                   5.7 Adak (Alaska, USA)
                                           60.296 -152.973
                     08 46 58.59
01 02 09.31
                                                                                  5.6 Redoubt (Alaska, USA)
5.7 Sutton (Alaska, USA)
         02 07
                                                                      137.7
 1988
                                           60.296 -152.973
61.824 -148.975
60.979 -147.320
60.180 -141.250
62.187 -124.242
         08 14
 1984
                                                                                  6.2 Columbia Bay (Alaska, USA)
6.0 St. Elias (Alaska, USA)
 1983 09 07
                     10 22 05.00
                                                                        30.0
         06
              28
 1983
                     03 25 17.15
                                                                        13.4
                                                                                  6.4 Nahanni (Canada)
5.9 Saguenay (Canada)
5.7 Miramichi (Canada)
 1985
                     05 16 02.4
                                                                          6.0
 1988
                     23 46 04.5
                                            48.117 -71.183
                     23 46 04.3
12 53 51.7
08 35 15.09
06 09 27.18
23 56 57.83
11 55 39.94
 1982
         01 09
05 16
                                           47.0 -66.6
48.794 -123.340
                                                                                  5.2 Gulf Islands (Canada)
5.1 Elk Lake (WA,USA)
5.6 Eureka (CA,USA)
                                                                        62.0
                                           46.351 -122.238
40.418 -124.406
37.468 -121.694
         02
07
              14
31
                                                                        8.5
17.7
 1981
 1987
                                                                                  5.6 Eureka (CA,USA)
5.4 Mt. Lewis (CA,USA)
5.6 Morgan Hill (CA,USA)
5.3 Coyote Lake (CA,USA)
5.2 Hollister (CA,USA)
6.1 Coalinga (CA,USA)
6.0 Coalinga (CA,USA)
6.0 Chalfont Valley (CA,USA)
6.0 Chalfont (CA,USA)
 1986 03 31
1984 04 24
1979 08 06
                     21 15
17 05
                               18.74
22.39
                                           37.311 -121.679
37.114 -121.496
 1986
                                51.08
                                            36.809
                     23 42 38.15
02 39 54.07
 1983 05 02
1983 07 22
                                            36.232 -120.310
36.240 -120.409
                                                                        10.0
 1983 07 22
1986 07 21
1987 10 01
1986 07 08
1987 11 24
                     14 42 19.47
09 20 44.44
13 15 56.54
                                            34.049 -118.081
                                                                        14.4
                                                                                   5.8 Whittier (CA, USA)
                                                       -116.610
                                                                                  5.8 Palm Springs (CA, USA)
6.0 Superstition Hills (C
                                            33.999
                                                                         11.7
                     13 15 56.54
14 06 06.79
                                                                                                                         (CA, USA)
 1983 10 28
1983 10 07
                                            43.968 -113.899
                                                                        16.0
                                                                                   6.2 Borah Peak (ID, USA)
                     10 18
                                46.32
                                            43.946
                                                         -74.252
                                                                                   5.1 Goodnow (NY, USA)
                                                                          7.8
                                                         -83.937
                                                                                         Sharpsburg (KY, USA)
                     17 49 24.71
12 08 57.86
 1986
1987
         10 10
03 21
                                            13.650
                                                         -89.200
                                                                         10.9
                                                                                   5.0 El Salvador
                                            8.725
12.128
                                                         -83.582
-59.970
                                                                         35.1
                                                                                   5.3 Costa Rica
                     13 57
14 53
10 41
                               44.6
59.9
36.72
                                                                         60.0
                                                                                   5.3 Eastern Caribbean
 1985 03 16
1985 03 17
                                          17.066
-32.735
                                                         -62.379
-71.778
                                                                         15.8
                                                                                   6.1 Eastern Caribbean
                                                                         23.2
                                                                                   5.8 Chile
                                                         -67.977
-19.779
-45.053
              25
25
13
                     17 20
11 31
18 54
 1988
1987
                               54.35
54.70
14.89
                                                                                   5.3 Argentina
5.7 Vatnafjoll (Iceland)
         05
07
                                            63.909
25.771
  1985
                                                                                   5.0 North Atlantic Ridge
                                                                          6.4
                               28.91
52.20
                     14 06
02 35
19 27
                                            61.933
38.140
39.840
  1989
          01 23
02 25
                                                                                  5.5 Norway
5.7 Greece
5.8 Greece
                                                                         26.2
 1981
1982
                                                           23.080
24.470
                                                                        6.0
15.0
          01
                     12 41
14 38
10 14
  1983
          01
                                                           20.230
                                                                          6.0
                                                                                         Greece
  1984
1989
                               28.30
35.2
                                           40.090
                                                           21.610
26.752
                                                                          4.0
                                                                                  5.2 Greece
5.5 Welkom (South Africa)
  1983
                                                           42.10
                                                                         15.0
                                                                                   6.0 Turkey
  1986
1984
1985
                     08 44
10 01
          05 13
03 04
                                00.8
                                            41.45
                                                           43.70
45.48
                                                                         10.0
                                                                                  5.5 Turkey-USSR
5.2 Caucasus (USSR)
                                                                         25.0
                                33.6
                                                           54.80
                                                                         20.0
                                                                                   6.0 Iran
                     12 12
05 44
20 28
  1983
1984
          03 14
02 22
                               44.4
                                                                                  5.2 Turkmen (USSR)
5.9 Turkmen (USSR)
                                            39.30
                                                           54.60
                                                                         10.0
                                            39.34
                                                           54.07
                                                                         15.0
15.0
                                                           63.36
                                                                                   6.4 Uzbek (USSR)
              25
26
                     23 49
20 22
                               31.5
19.7
                                            40.37 39.25
  1986
          03
                                                           63.65
                                                                         15.0
                                                                                   5.2
                                                                                         Uzbek
                                                                                                    (USSR)
  1984
          10
                                                           71.26
                                                                         15.0
                                                                                   5.9
                                                                                         Tajik
Tajik
                                                                                                    (USSR)
  1985
                                                                         10.0
                                                                                   5.8
                                                                                                    (USSR)
 1977 12 25
1986 04 26
                     16 18 51.36
07 35 14.88
                                            38.967
32.212
                                                           70.601
76.281
                                                                        2.9
                                                                                   5.0 Garm (USSR)
                                                                                   5.5 India
 1985 08 23
1975 02 04
                                                                         20.0
                                                                                   6.2 Xinjiang (China)
                     11 36 05.93
                                            40.567
                                                         122.764
                                                                                  7.3 Haicheng (China)
                                                                                  6.3 Urakawa-Oki (Japan)
5.7 Urakawa-Oki (Japan)
 1982
1982
                     02
10
                         32 06.00
22 35.25
                                           42.156
42.228
                                                        142.531
142.600
                                                                        27.4
24.3
                                                                                         Urakawa-Oki
 1983
                                                                                         Tottori (Japan)
                               55.94
                                           35,420
                                                         133.920
                                                                        10.6
                                                                                  5.4
                         03 42.20
14 45.82
 1983
1987
         07 01
01 09
                                           36.893
                                                        141.190
141.764
                                                                        43.4
                                                                                  5.5 Tohuku (Japan)
                     06
                                           39.832
                                                                                  6.4
                                                                                         Tohuku (Japan)
                                                         140.105
 1983 02
                                           35.993
                                                                                         Kanto-Tokai
                     03
01
23
 1983
1984
         08 08
04 06
                         47
09
                                           35.536
35.123
                                                         139.046
138.601
                                                                                  5.8 Kanto-Tokai
5.1 Kanto-Tokai
                                                                                                              (Japan)
                               58.6
                                                                        18.1
                               03.8
                                                                                                              (Japan)
 1984
         09
                               49.1
                                            35.807
                                                                                   6.0
                                                                                         Kanto-Tokai
                                                                        71.6
         10 04
11 22
                          25 52.3
41 44.5
                                           35.910
34.616
                                                        140.112
139.446
 1985
                                                                                         Kanto-Tokai
                                                                                                              (Japan)
 1986
1987
                                                                                  5.8
                                                                                         Kanto-Tokai
                                                                                                              (Japan)
         12
                     02 08
                                           35.372
                                                         140.519
                                                                        47.3
                                                                                   6.0 Kanto-Tokai
        03 17
02 19
03 06
03 17
                     20
12
                          34 30.1
27 10.5
39 44.7
                                           35.668
36.049
                                                         139.626
139.905
                                                                                  5.4 Kanto-Tokai
5.5 Kanto-Tokai
 1988
                                                                        90.5
                                                                                                              (Japan)
 1989
                                                                                                              (Japan)
                     14
 1989
                                           35.706
                                                         140.666
                                                                                   5.9 Kanto-Tokai
                     07 11 26.7
00 27 48.9
22 40 40.7
                                                                                  5.6 Sakhalin Island (USSR)
6.1 Kuril Islands (USSR)
6.0 Kuril Islands (USSR)
                                           51.55
43.82
                                                        142.41
147.42
                                                                        20.0
 1983
         03 10
                                                                        40.0
  1983
         01 04
                                            45.55
                                                         151.39
                                                                        35.0
 1983
         0.1
              05
                     02 01
                               01.0
                                           54.73
                                                        162.92
163.72
                                                                        20.0
                                                                                         Kamchatka (USSR)
                               39.4
                                                                                  5.8 Kamchatka (USSR)
```

#### Table B1. (continued)

```
1984 12 28
1986 05 02
1985 09 10
1986 05 20
                                                                          7.5 Kamchatka (USSR)
                   10 37 50.5
10 30 02.9
                                       55.07
                                                                 20.0
                                                                          5.9 Kamchatka (USSR)
                       26 04.8
25 49.58
                                       60.50
24.082
                                                   168.86
121.592
                                                                 15.0
15.8
                                                                          5.6 Siberia (USSR)
                                                                          6.1 Taiwan
 1968 10 14
                    02 58 50.3
                                                                           6.8 Meckering (Australia)
 1988 01 22
1986 12 13
1984 06 24
                                                                   6.5
                                                   133.878
167.625
                                                                          6.1 Tennant Creek (Australia)5.4 Vanuatu Islands
                                     -19.817
                   00 35 59.5
                   18 31
13 29
                                     -18.109
                        31 50.86
                                                    170.64
                                                                           5.6 Macaulay (New Zealand)
Explosions:
    Date
1958 06 28
1954 02 28
1954 05 04
                                                   Long.
162.108
165.274
                                                                  Depth
                                                                           mb
                      Time
                   19 30 00.1
18 45 00.00
18 10 00.10
                                       11.608
11.691
                                                                                 OAK
                                                                                        (Eniwetok, USA)
                                                                   0.0
                                                                                 CASTLE BRAVO (Bikini, USA)
                                        11.666
                                                    165.387
                                                                                 CASTLE YANKEE (Bikini, USA)
                                                                           6.5 CANNIKIN (Alaska, USA)
6.3 FAULTLESS (NV, USA)
 1971 11 06
1968 01 19
1968 04 26
                   22 00 00.06
18 15 00.1
15 00 00.10
                                        51.472 179.107
38.634 -116.215
                                        37.295
                                                                   0.0
                                                                           6.3
                                                                                BOXCAR (NV, USA)
                   15 05 30.07
17 00 00.10
                                        37.252 -116.377
37.060 -116.022
                                                                   0.0
                                                                                ALAMO (NV, USA)
BILBY (NV, USA)
  1988 07 07
                                                                           5.6
                                                                   0.0
 1963 09 13
1967 05 20
                                                                           5.8
                    15 00 00.20
                                        37.130
                                                  -116.064
                                                                   0.0
                                                                           5.9
                                                                                 COMMODORE (NV, USA)
                                                                                 RULISON (CO, USA)
  1969 09 10
                   21 00 00.10
16 00 00.00
                                        39.406 -107.948
39.793 -108.366
                                                                           5.3
 1973 05 17
1967 12 10
                                                                                 RIO BLANCO (CO, USA)
                    19 30
                                                                                 GASBUGGY (NM, USA)
                             00.10
                                        36.678
                                                  -107.208
  1965 07 15
                    14 16 08.10
13 00 00.1
11 30 00.0
                                                    -74.352
5.039
5.031
                                                                                 CHASE (VA, USA)
Sahara (Algeria)
                                        37.197
24.036
                                                                   0.0
                                                                           5.0
 1963 10 20
1965 02 27
                                        24.059
73.45
66.420
                                                                                 Sahara (Algeria)
                                                      54.80
78.580
                                                                   0.0
                                                                                 Novaya Zemlya (USSR)
         12 04
                    05 19 52.8
                                                                           5.9
                                                                                  (USSR)
                                                                   0.0
                                                                           5.3
 *1988 08 22
                    16 19 57.60
                    03 32 59.7
03 32 59.9
03 16 59.80
  1969 11 30
                                        49.924
                                                      78.956
                                                                           6.0
                                                                                 Kazakh
  1971 04 25
1972 08 16
                                        49.769
                                                      78.034
78.059
                                                                   0.3
                                                                           5.9 Kazakh
                                                                                             (USSR)
                                                                           5.0
                                                                                 Kazakh
                    01 27
                             00.2
                                        49.927
                                                      78.758
  1972 11 02
```

## APPENDIX C

#### Calculation of traveltimes

The calculation scheme used to generate the traveltimes for a given distance for the iasp91 model was developed by Buland & Chapman (1983)—this paper will be subsequently denoted by BC83. This technique is based on the properties of the delay time  $\tau$  as a function of slowness p.

For slowness (ray parameter) p, the delay time

$$\tau(p) = T(p) - pX(p),\tag{C1}$$

where T(p) is the traveltime and X(p) is the corresponding range. If we seek the traveltime corresponding to a specified distance x, it is convenient to introduce the theta function

$$\theta(p, x) = \tau(p) + px = T(p) + p[x - X(p)].$$
 (C2)

The stationary points of  $\theta(p, x)$  as a function of slowness p correspond to geometrical arrivals at the distance x, i.e.

$$\frac{\partial \theta(p, x)}{\partial p}\Big|_{p_x} = 0$$
 when  $x = X(p_x)$ . (C3)

This property is exploited by Buland & Chapman, who introduce a novel form of spline representation for the  $\tau(p)$  behaviour of a traveltime branch. Consider a tau branch which is sampled at the N slowness values

$$p_0 < p_1 < \dots < p_{N-1} = p_{end};$$
 (C4)

then a  $\tau$ -spline approximation which takes care of the square root singularity in the derivatives of  $\tau(p)$  at the highest slowness  $p_{end}$  is

$$\tau(p) = a_i + b_i(p_{\text{end}} - p) + c_i(p_{\text{end}} - p)^2 + d_i(p_{\text{end}} - p)^{3/2},$$

$$p_i \le p_{i+1}. \quad (C5)$$

The details of the construction of such  $\tau$ -splines are given in the Appendix to BC83. The range X(p) can be constructed

from (C5) by taking the derivative with respect to p:

$$X(p) = -\tau'(p) = b_i + 2c_i(p_{\text{end}} - p) + (3/2)d_i(p_{\text{end}} - p)^{1/2},$$
  
$$p_i \le p \le p_{i+1}. \quad (C6)$$

The extrema of the theta function, which define the geometrical arrivals at x occur when

$$2c_i(p_{end} - p) + (3/2)d_i(p_{end} - p)^{1/2} + (b_i - x) = 0,$$
 (C7)

which is a quadratic in  $(p_{end} - p)^{1/2}$ . Once the geometric slowness  $p_x$  has been determined by solving (C7) we can construct the traveltime at x by combining the results from (C5) and (C6):

$$T(x) = \tau(p_x) + p_x X(p_x). \tag{C8}$$

This process may appear quite complex, but has the advantage of yielding traveltime as an explicit function of range. The calculations can be performed very rapidly and are competitive with standard table look-up. However, there is the major advantage that once the  $\tau(p)$  distribution has been constructed for a particular phase, exactly the same procedure is to be applied for all phases.

The first stage in the construction of the requisite tau tables is the discretization of the slowness domain and also the establishment of a set of depths between which the tau integrals over the velocity model will be calculated. It is convenient to sample the model at the discrete slowness grid used in the representation of the tau branches. In this discretization certain critical slownesses must be sampled exactly. These are the slownesses just above and below each first-order discontinuity, the slowness at any discontinuity in velocity gradient and local slowness extrema. The discretization between critical point is arranged so that the range for the tau branch is sampled at approximately equal intervals.

The calculation of the  $\tau(p)$  distribution along each branch is carried out by summing the analytic results for segments of the model represented as linear slowness gradients BC83

(equation 42). The basic organization of the tau tables for the *iasp91* model is similar to that described for PEMC in BC83. The values for a surface source are calculated for the full range of ray parameters, and also the  $\tau$ -segments for upgoing waves for each of the discrete depths which are likely to be of interest (down to 760 km). It is convenient to divide the surface tau results into mantle, core and inner core contributions. The full range of upgoing, downgoing and surface reflected phases can then be assembled by suitable addition and subtraction of segments. For example for a source at depth, the  $\tau(p)$  for the downgoing S phase can be constructed by subtracting the appropriate upgoing  $\tau$  values from those for a surface source. The  $\tau(p)$  values for sS, on the other hand, are to be found by adding the upgoing values to the surface source  $\tau$  values.

In this way it has been possible to build up appropriate  $\tau(p)$  tables for a wide selection of the main seismic phases. Table C1 presents sample outputs from the traveltime routine for a source at 300 km depth and epicentral distances of 50° and 150°. These results show the power of the calculation scheme in handling triplications (e.g. in PP,

SS at 50° and PKP at 150°) and also in providing the full range of information for each phase which might be needed for earthquake location work.

#### APPENDIX D

#### Introduction of regionalization

The style of the *iasp91* velocity model was chosen to be such as to facilitate the replacement of the crust and upper mantle portion of the model with a structure more representative of a particular region. The simplest way to make such a change is to select one of the upper mantle discontinuities and to replace the velocities above this level.

However, such a substitution has to be undertaken with some care if the entire pattern of teleseismic arrivals is not to be disrupted. As discussed in Appendix C, the technique we have employed for the calculation of traveltimes is based on  $\tau(p)$  tabulations. By changing the shallow velocity model, the times in the regional zone can be modified and

Table C1. Phase information at selected distances.

Source depth (km): 300

| 3-3    | ٠,       |                  | + : 1 - X          |          |                | Jm / JD                | am / ab                |
|--------|----------|------------------|--------------------|----------|----------------|------------------------|------------------------|
| delta  | ₩        | code             | time(s)            | ٠ - '    | min s)         | dT/dD                  | dT/dh                  |
| 50.00  | 1        | P                | 504.25             | 8        | 24.25          | 7.47E+00               | -9.20E-02              |
|        | 2        | pP_              | 567.26             | 9        | 27.26          | 7.74E+00               | 9.00E-02               |
|        | 3<br>4   | PcP<br>sP        | 579.21             | 9        | 39.21<br>0.95  | 3.70E+00               | -1.11E-01              |
|        | 5        | PP               | 600.95<br>622.56   | 10<br>10 | 22.56          | 7.67E+00<br>9.04E+00   | 2.01E-01<br>-7.84E-02  |
|        | ě        | PP               | 629.21             | 10       | 29.21          | 1.00E+01               | -6.67E-02              |
|        | 7        | ScP              | 785.39             | 13       | 5.39           | 4.30E+00               | -2.10E-01              |
|        | 8        | PcS              | 816.74             | 13       | 36.74          | 4.31E+00               | -1.09E-01              |
|        | 9        | S                | 911.98             | 15       | 11.98          | 1.38E+01               | -1.70E-01              |
|        | 10       | PKiKP            | 983.93             | 16       | 23.93          | 1.06E+00               | -1.15E-01              |
|        | 11<br>12 | sS<br>pPKiKP     | 1024.69<br>1059.64 | 17<br>17 | 4.69<br>39.64  | 1.42E+01<br>1.05E+00   | 1.67E-01<br>1.15E-01   |
|        | 13       | Scs              | 1062.98            | 17       | 42.98          | 6.86E+00               | -2.04E-01              |
|        | 14       | sPKiKP           | 1090.15            | 18       | 10.15          | 1.05E+00               | 2.14E-01               |
|        | 15       | SS               | 1130.58            | 18       | 50.58          | 1.58E+01               | -1.53E-01              |
|        | 16       | SS               | 1149.73            | 19       | 9.73           | 1.80E+01               | -1.30E-01              |
|        | 17<br>18 | SKiKP<br>PKKPdf  | 1166.98<br>1847.12 | 19<br>30 | 26.98<br>47.12 | 1.11E+00<br>-1.09E+00  | -2.13E-01<br>-1.15E-01 |
|        | 19       | SKKPdf           | 2030.13            | 33       | 50.13          | -1.04E+00              | -2.14E-01              |
|        | 20       | PKKSdf           | 2060.64            | 34       | 20.64          | -1.04E+00              | -1.15E-01              |
|        | 21       | SKKSdf           | 2243.53            | 37       | 23.53          | -9.97E-01              | -2.14E-01              |
|        | 22       | P'P'df           | 2350.49            | 39       | 10.49          | -1.37E+00              | -1.15E-01              |
|        | 23       | P'P'bc<br>P'P'ab | 2369.77            | 39       | 29.77          | -2.09E+00              | -1.14E-01              |
|        | 24<br>25 | S'S'df           | 2401.28<br>3175.96 | 40<br>52 | 1.28<br>55.96  | -4.29E+00<br>-1.11E+00 | -1.09E-01<br>-2.13E-01 |
|        |          | 5 5 GI           | 3173.30            | 32       | 55.50          | 1.115,00               | 2.135 01               |
| delta  | #        | code             | time(s)            | (        | min s)         | dT/dD                  | dT/dh                  |
| 150.00 | 1        | PKPdf            | 1149.05            | 19       | 9.05           | 1.55E+00               | -1.15E-01              |
|        | 2        | PKPbc            | 1154.67            | 19       | 14.67          | 2.52E+00               | -1.13E-01              |
|        | 3<br>4   | PKiKP<br>PKPab   | 1155.78<br>1161.44 | 19<br>19 | 15.78<br>21.44 | 2.07E+00<br>4.16E+00   | -1.14E-01<br>-1.09E-01 |
|        | 5        | pPKPdf           | 1224.48            | 20       | 24.48          | 1.58E+00               | 1.15E-01               |
|        | 6        | pPKPbc           | 1229.25            | 20       | 29.25          | 2.62E+00               | 1.13E-01               |
|        | 7        | pPKiKP           | 1230.83            | 20       | 30.83          | 2.07E+00               | 1.14E-01               |
|        | 8        | pPKPab           | 1233.81            | 20       | 33.81          | 4.09E+00               | 1.09E-01               |
|        | 9<br>10  | sPKPdf<br>sPKPbc | 1255.06<br>1260.03 | 20<br>21 | 55.06<br>0.03  | 1.57E+00<br>2.60E+00   | 2.13E-01<br>2.12E-01   |
|        | 11       | sPKiKP           | 1261.49            | 21       | 1.49           | 2.07E+00               | 2.13E-01               |
|        | 12       | sPKPab           | 1265.08            | 21       | 5.08           | 4.11E+00               | 2.10E-01               |
|        | 13       | SKPdf            | 1333.35            | 22       | 13.35          | 1.43E+00               | -2.13E-01              |
|        | 14       | PKSdf            | 1363.91            | 22       | 43.91          | 1.42E+00               | -1.15E-01              |
|        | 15<br>16 | PP<br>SKSdf      | 1372.11<br>1547.76 | 22<br>25 | 52.11<br>47.76 | 5.73E+00<br>1.30E+00   | -1.02E-01<br>-2.13E-01 |
|        | 17       | pSKSdf           | 1653.89            | 27       | 33.89          | 1.32E+00               | 1.15E-01               |
|        | 18       | PKKPdf           | 1677.93            | 27       | 57.93          | -1.91E+00              | -1.14E-01              |
|        | 19       | sSKSdf           | 1684.43            | 28       | 4.43           | 1.31E+00               | 2.13E-01               |
|        | 20       | SKKSac           | 1751.57            | 29       | 11.57          | 5.52E+00               | -2.07E-01              |
|        | 21<br>22 | SKKPdf           | 1864.02<br>1894.65 | 31<br>31 | 4.02<br>34.65  | -1.91E+00<br>-1.91E+00 | -2.13E-01<br>-1.14E-01 |
|        | 23       | SKKSac           | 2026.13            | 33       | 46.13          | -3.70E+00              | -2.11E-01              |
|        | 24       | SKKSdf           | 2080.74            | 34       | 40.74          | -1.91E+00              | -2.13E-01              |
|        | 25       | SS               | 2504.71            | 41       | 44.71          | 1.10E+01               | -1.87E-01              |
|        | 26       | S'S'ac           | 2560.51            | 42       | 40.51          | 7.32E+00               | -2.02E-01              |
|        | 27<br>28 | S'S'ac<br>S'S'df | 2913.42<br>3005.91 | 48<br>50 | 33.42<br>5.91  | -4.49E+00<br>-1.92E+00 | -2.10E-01<br>-2.13E-01 |
|        | _ 5      | 5 5 41           | 5005.91            | 50       | J. J.          | 1,925.00               | 2.135 01               |

this is equivalent to modifying the  $\tau(p)$  values for large slownesses. If the *iasp91* times at teleseismic distances are to be maintained, then the  $\tau(p)$  values for the new structure should match those for *iasp91* for all slownesses *less* than the critical slowness for the underside of the discontinuity which marks the base of the section of modified velocity model.

Alternatively, the new portion of the velocity model could be devised to give a specific offset from the  $\tau(p)$  behaviour for *iasp91*. This procedure would force an advance or a retardation of the traveltimes to telseismic distances from a particular source region. In this way one could, for example,

impose and oceanic crust and uppermost mantle on the 'continental' model *iasp91*.

Such an approach to regionalization is well adapted to describing the behaviour of the traveltimes across a broad zone. In regions of strong lateral heterogeneity, it will probably prove necessary to devise ways in which a 3-D local structure can be graded into a 1-D model at depth. Buland & Chapman (1983) have indicated how the method of traveltime calculation based on the extrema of the theta function, which has been employed to generate the *iasp91* tables, can be extended to laterally varying media.