Sampling Distributions

Stat 250

Click here for PDF version

Roadmap

Inferential statistics relies on understanding the distribution of the statistic of interest

- 1. Permutation tests: estimated the distribution of the test statistic by making H_0 true and then using permutation resampling (Chapter 3)
- 2. Estimation: estimate the distribution of a statistic without assuming a specific parameter value
- Appeal to probability (Chapter 4)
- Simulate the sampling process from the population (Chapter 4)
- Simulate the process using bootstrap resampling (Chapter 5)

Example

Let
$$T = \sum_{i=1}^{n} X_i$$
 where $X_i \overset{iid}{\sim} Exp(\lambda)$. Find the

sampling distribution of T.

Recall:

- PDF of $X \sim Exp(\lambda)$: $f(x) = \lambda e^{-\lambda x}, x \ge 0$
- Moment generating function: $M_X(t) = \frac{\lambda}{\lambda t}$

Example

Let X_1, X_2, \dots, X_n be i.i.d. $Exp(\lambda)$ with PDF $f(x) = \lambda e^{-\lambda}, \lambda > 0, x > 0.$

Find the PDF of $X_{\min} = \min(X_1, X_2, \dots, X_n)$.

Let $T = median\{X_1, X_2, ..., X_{10}\}$ where $X_i \stackrel{iid}{\sim} Beta(5, 2)$.

Beta PDF

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

$$0 \le x \le 1; \alpha > 0, \beta > 0$$

- Draw 10,000 samples of size n=10 from Beta(5, 2)
- Calculate the median for each simulated sample


```
# Set seed for reproducibility
set.seed(492017)
N < -10^4
medians <- numeric(N)</pre>
for(i in seq len(N)) {
  # Draw sample of size 10 from Beta(5, 2)
  draws \leftarrow rbeta(n = 10, shape1 = 5, shape2 = 2)
  # Calculate + store the median
  medians[i] <- median(draws)</pre>
```

We can calculate the mean, standard error, and probabilities from simulations

```
# Mean of sampling distribution
mean(medians)
## [1] 0.7318108
# Standard error of sampling distribution
sd(medians)
## [1] 0.06300146
# Probability of an event from sampling distribution
mean(medians <= 0.6)</pre>
## [1] 0.0247
```

Central Limit Theorem

Let X_1, \ldots, X_n be i.i.d. samples from a χ_3^2 distribution.

Population

$$n = 10$$

$$n = 20$$

$$n = 40$$

$$n = 80$$

Continuity correction

Let X_1, \ldots, X_n be i.i.d. samples from a Bin(n=10,p=0.75) distribution.

Population

$$n = 10$$

$$n = 20$$

$$n = 40$$

$$n = 80$$

I		