ପ୍ରଥମ ଅଧ୍ୟାୟ

ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ଓ ରାସାୟନିକ ସମୀକରଣ (CHEMICAL REACTIONS AND EQUATIONS)

ଦୈନନ୍ଦିନ ଜୀବନର କେତୋଟି ଘଟଣା କଥା ତଳେ ଲେଖାଯାଇଛି । ସେହି ଅବସ୍ଥାରେ କ'ଶ ହୁଏ ବିଚାର କର ।

- ଖରାଦିନେ କ୍ଷୀରକୁ ସାଧାରଣ ତାପମାତ୍ରାରେ ରଖ୍ଦେଲେ,
- ଲୁହା ତାଓ୍ୱା / କଡେଇ / କଣ୍ଟା ଆହ୍ରି ବାୟୁରେ ପଡି ରହିଲେ.
- ଅଙ୍ଗୁର ରହି ପଚିଗଲେ,
- ଖାଦ୍ୟ ରନ୍ଧା ହେଲାବେଳେ,
- ଖାଦ୍ୟ ହଳମ ହେଲାବେଳେ,
- ଆମ ଶ୍ୱାସକ୍ରିୟା ବେଳେ ।

ଉପରେ ଦିଆଯାଇଥିବା ସମୟ ଘଟଣାରେ ମୂଳ ପଦାର୍ଥର ପ୍ରକୃତି ଓ ନିଜସ୍ୱ ସଭାର କିଛି ହେଲେ ପରିବର୍ତ୍ତନ ଘଟିଥାଏ । ଆମେ ପୂର୍ବ ଶ୍ରେଣୀରେ ବୟୂର ଭୌତିକ ଓ ରାସାୟନିକ ପରିବର୍ତ୍ତନ ବିଷୟ ପତିଛୁ । ରାସାୟନିକ ପରିବର୍ତ୍ତନ ଘଟିଲେ ଆମେ ତା'କୁ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା କହୁ ।

ଏବେ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା କ'ଶ ତାହା ଜାଣିବା ପାଇଁ ତୁମ ମନରେ ଉତ୍କଣ୍ଠା ସୃଷ୍ଟି ହେଉଥିବ । ଆମେ କେମିତି ଜାଣିବା ଯେ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ଘଟିଛି ? ଏହି ସବୁ ପ୍ରଶ୍ନର ଉତ୍ତର ପାଇବା ପାଇଁ ଆସ, କେତୋଟି ପରୀକ୍ଷା କରିବା ।

ତ୍ରମ ପାଇଁ କାମ 1.1

ସତର୍କ ସୂଚନା – କାର୍ଯ୍ୟଟିକୁ ଶିକ୍ଷକଙ୍କର ସହାୟତାରେ କରାଯିବ । ଏହି ପରୀକ୍ଷା ସମୟରେ ଆଖିର ସୁରକ୍ଷା ପାଇଁ ଚଶମା ପିନ୍ଧିବା ଉଚିତ ।

 2 ସେମି ଲୟ ଏକ ମ୍ୟାଗ୍ନେସିୟମ୍ର ପଡଳା ପାତକୁ ବାଲିକାଗଜ ସାହାଯ୍ୟରେ ସଫାକର । ଏହାର ଏକ ପାର୍ଶ୍ୱକୁ ଚିମୁଟାରେ ଧରି ଅନ୍ୟ ପାର୍ଶ୍ୱକୁ ବର୍ଣ୍ଣର (Burner) କିୟା ସ୍ୱିରିଟ୍ ଲ୍ୟାମ୍ଫ୍ରେ ଜଳାଇ ଦିଅ ଏବଂ ପାଉଁଶ (Ash) କୁ ଏକ ଓ୍ୱାଚ୍ଗ୍ଲାସ୍ରେ ସଂଗ୍ରହ କର । ଆଖ୍ଠାରୁ ଯଥାସୟବ ଦୂରରେ ରଖି ମ୍ୟାଗ୍ନେସିୟମ୍ ପାତକୁ ଜଳାଇବ । କିପରି କରିବ ଏହା ଚିତ୍ର 1.1ରେ ଦେଖାଇ ଦିଆଯାଇଛି ।

ଚିତ୍ର 1.1 ବାୟୁରେ ମ୍ୟାଗ୍ନେସିୟମ୍ ପାତ ପ୍ରଜ୍ୱଳନ ଏବଂ ଓ୍ୱାଚ୍ଗ୍ଲାସ୍ରେ ମ୍ୟାଗ୍ନେସିୟମ୍ ଅକ୍ସାଇଡ୍ ସଂଗ୍ରହ

• ତୁମେ କ'ଣ ଦେଖୁଛ ?

ତୂମେ ନିଷ୍ଟୟ ଦେଖୁଛ ଯେ ମ୍ୟାଗ୍ନେସିୟମ୍ ପାତଟି ଅତି ଉଜ୍ଜ୍ୱଳ ଧଳାଶିଖା ସହିତ ଜଳୁଛି ଏବଂ ତାହା ଧଳା ଚୂର୍ଣ୍ଣରେ ପରିଶତ ହୋଇଯାଉଛି । ଏହି ଧଳା ଚୂର୍ଣ୍ଣ ହେଉଛି ମ୍ୟାଗ୍ନେସିୟମ୍ ଅକ୍ସାଇଡ୍ । ଏହା ମ୍ୟାଗ୍ନେସିୟମ୍ ଓ ବାୟୁରେ ଥିବା ଅକ୍ସିଜେନ୍ ମଧ୍ୟରେ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ହେତୁ ସୃଷ୍ଟି ହୁଏ ।

ତ୍ରମ ପାଇଁ କାମ : 1.2

- ଏକ ପରୀକ୍ଷାନଳୀରେ କିଛି ଲେଡ୍ନାଇଟ୍ରେଟ୍ର ଜଳୀୟ ଦ୍ବଣ ନିଅ ।
- ତହିଁରେ ପୋଟାସିୟମ୍ ଆୟୋଡାଇଡ୍ର ଜଳୀୟ ଦବଣ ମିଶାଅ ।
- ତୁମେ କ'ଶ ଦେଖୁଛ ?

ତୁମ ପାଇଁ କାମ : 1.3

- ଏକ କୋନିକାଲ୍ ଫ୍ଲାସ୍କ୍ କିୟା ଏକ ପରୀକ୍ଷାନଳୀରେ
 କିଛି ଜିଙ୍କ୍ଦାନା ନିଅ ।
- କିଛି ଲଘୁ ହାଇଡ୍ରୋକ୍ଲୋରିକ୍ ଏସିଡ୍ କିୟା ସଲ୍ଫ୍ୟୁରିକ୍
 ଏସିଡ୍ ସେଥିରେ ମିଶାଅ (ଚିତ୍ର 1.2) ।

ତି କୁ :--ଜିଙ୍କ୍ ଉପରେ ଲଘୁ ସଲ୍ଫ୍ୟୁରିକ୍ ଏସିଡ଼୍ର ପ୍ରତିକ୍ରିୟା ହେତୂ ହାଇଡୁୋକେନ୍ ଗ୍ୟାସ୍ ଉତ୍ପନ୍

ସାବଧାନ : ଏସିଡ୍କୁ ସାବଧାନ ହୋଇ ବ୍ୟବହାର କର ।

- ଜିଙ୍କ୍ଦାନାର ଚାରି ପାଖରେ କ'ଶ ଘଟୁଛି ଦେଖି ପାର୍ବଛ କି ?
- କୋନିକାଲ୍ଫ୍ଲାସ୍କ୍ କିୟା ପରୀକ୍ଷାନଳୀଟିକୁ ସ୍ୱର୍ଶ କର । ଏହାର ତାପମାତ୍ରାରେ କିଛି ପରିବର୍ତ୍ତନ ଘଟିଛି କି ?

ଉପରେ ଦିଆଯାଇଥିବା ଡିନୋଟି "ଡୁମ ପାଇଁ କାମ"ରେ ଯେଉଁ ପରିବର୍ତ୍ତନ ହେଲା ତାହା ରାସାୟନିକ ପତିକିୟା ଘଟିଛି କି ନାହିଁ ଜଣାଇଦେବ ।

- ଅବସ୍ଥାରେ ପରିବର୍ତ୍ତନ
- ରଙ୍ଗର ପରବର୍ତ୍ତନ
- ଗ୍ୟାସ୍ର ନିର୍ଗମନ
- ତାପମାତ୍ରାର ପରିବର୍ତ୍ତନ

ଚତୃଃପାର୍ଶ୍ୱରେ ଘଟୁଥିବା ବିଭିନ୍ନ ପରିବର୍ତ୍ତନକୁ ଲକ୍ଷ୍ୟ କଲେ ଆମେ ଜାଣିପାରିବା ଯେ ବିଭିନ୍ନ ପ୍ରକାରର ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ଘଟୁଛି । ଏହି ଅଧ୍ୟାୟରେ ସେଗୁଡିକର ପ୍ରତୀକାତ୍ମକ ଉପସ୍ଥାପନା କରି ସେ ସୟନ୍ଧରେ ଆମେ ଆଲୋଚନା କରିବା ।

1.1 ରାସାୟନିକ ସମୀକରଣ (Chemical Equations)

"ତୂମ ପାଇଁ କାମ : 1.1"କୁ ଏହିଭଳି ଭାବରେ ବର୍ତ୍ତନା କରାଯାଇପାରିବ – ଏକ ମ୍ୟାଗ୍ନେସିୟମ୍ ପାତକୁ ଅକ୍ସିଜେନ୍ ଉପସ୍ଥିତିରେ ଜାଳିଲେ ତାହା ମ୍ୟାଗ୍ନେସିୟମ୍ ଅକ୍ସାଇଡ୍ରେ ପରିଶତ ହୁଏ । ବାକ୍ୟ ରୂପରେ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାର ଏପରି ବର୍ତ୍ତନା ଅତି ଲୟା ହେଉଛି । ଏହାକୁ ଏକ କ୍ଷୁଦ୍ର ଓ ସଂକ୍ଷିପ୍ତ ରୂପରେ ଲେଖାଯାଇ ପାରିବ । ଏହା କରିବା ପାଇଁ ସବୁଠାରୁ ସହଜ ଉପାୟ ହେଉଛି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାକ୍ ଶବ୍ଦ-ସମୀକରଣରେ ଲେଖିବା ।

ଉପରୋକ୍ତ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ପାଇଁ ଶବ୍ଦ-ସମୀକରଣ ହେବ -

ମ୍ୟାଗ୍ନେସିୟମ୍
$$+$$
 ଅକ୍ସିଜେନ୍ o ମ୍ୟାଗ୍ନେସିୟମ୍ ଅକ୍ସାଇଡ୍ $($ ପ୍ରତିକାରକ $)$ (ଉତ୍ପାଦ $)$ (1.1)

ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା (1.1)ରେ ମ୍ୟାଗ୍ନେସିୟମ୍ ଓ ଅକ୍ସିଜେନ୍ର ରାସାୟନିକ ପରିବର୍ତ୍ତନ ଘଟିଛି । ସେଗୁଡିକ ହେଉଛି ପ୍ରତିକାରକ (Reactants) ଏବଂ ମ୍ୟାଗ୍ନେସିୟମ୍ ଅକ୍ସାଇଡ, ଯେଉଁ ନୂତନ ପଦାର୍ଥ ରୂପେ ଉତ୍ପନ୍ନ ହୋଇଛି, ସେଇଟି ହେଉଛି ଉତ୍ପାଦ (Product) ।

ଶବ୍ଦ-ସମୀକରଣରେ ପ୍ରତିକାରକଗୁଡିକ ବାମ ପାର୍ଶ୍ୱରେ (LHS) ଓ ଉତ୍ପାଦଗୁଡିକ ଦକ୍ଷିଣ ପାର୍ଶ୍ୱରେ (RHS) ଲେଖାଯାଏ । ପ୍ରତିକାରକ ଓ ଉତ୍ପାଦ ମଧ୍ୟରେ ଏକ ତୀର (→) ଚିହ୍ନ ଦିଆଯାଏ । ତୀରଟି ବାମରୁ ଡାହାଣକୁ ହୋଇଥାଏ ଏବଂ ଏହା ରାସାୟନିକ ପତିକ୍ରିୟାର ଦିଗ ନିର୍ଦ୍ଦେଶ କରେ ।

ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ଏକାଧିକ ପ୍ରତିକାରକ ଥିଲେ ସେଗୁଡିକ ମଧ୍ୟରେ ଯୁକ୍ତ (+) ଚିହ୍ନ ଦିଆଯାଏ । ସେହିଭଳି ଏକାଧିକ ଉତ୍ପାଦଗୁଡିକ ମଧ୍ୟରେ ଯୁକ୍ତ (+) ଚିହ୍ନ ଦିଆଯାଏ ।

1.1.1 ରାସାୟନିକ ସମୀକରଣ ଲେଖିବା ପ୍ରଣାଳୀ (Writing a Chemical Equation)

ରାସାୟନିକ ସମୀକରଣକୁ ଉପସ୍ଥାପନ କରିବା ପାଇଁ ଅନ୍ୟ କିଛି ସଂକ୍ଷିପ୍ତ ଉପାୟ ଅଛି କି ? ଆମେ ଯଦି 'ଶବ୍ଦ' ବଦଳରେ ପ୍ରତିକାରକ ଓ ଉତ୍ପାଦଗୁଡିକର ରାସାୟନିକ ସଂକେତ ବ୍ୟବହାର କରି ସମୀକରଣଟିକୁ ଲେଖିବା, ତେବେ ସମୀକରଣଟି ଅଧିକ ସଂକ୍ଷିପ୍ତ, ତଥ୍ୟପୂର୍ଣ୍ଣ ଓ ବ୍ୟବହାର ଯୋଗ୍ୟ ହୋଇପାରିବ । ତେଣୁ ଏକ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାକୁ ରାସାୟନିକ ସମୀକରଣ ଦ୍ୱାରା ପ୍ରକାଶ କରାଯାଏ । ବାୟୁ ଉପସ୍ଥିତିରେ ମ୍ୟାଗ୍ନେସିୟମ୍ ପାତର ପ୍ରଜ୍ୱଳନ ପ୍ରକ୍ରିୟାକୁ ମନେ ପକାଅ । ଏହି ପ୍ରତିକ୍ରିୟାର ଶବ୍ଦ-ସମୀକରଣ (1.1)କୁ ପ୍ରତୀକ ଓ ସଂକେତ ବ୍ୟବହାର କରି ସମୀକରଣ (1.2) ଲେଖାଯାଇ ପାରିଚ –

$$Mg + O_2 \longrightarrow MgO..... (1.2)$$

ତୀର ଚିହ୍ନର ବାମପାର୍ଶ୍ୱ ଓ ଦକ୍ଷିଣପାର୍ଶ୍ୱର ପ୍ରତ୍ୟେକ ମୌଳିକର ପରମାଣୁ ସଂଖ୍ୟା ଅଲଗା ଅଲଗା ଗଣନା କର ଏବଂ ତୁଳନା କର । ପ୍ରତ୍ୟେକ ମୌଳିକର ପରମାଣୁ ସଂଖ୍ୟା ତୀର ଚିହ୍ନର ଉଭୟ ପାର୍ଶ୍ୱରେ ସମାନ ଅଛି କି ? ଯଦି ସମାନ ନାହିଁ ତେବେ ସମୀକରଣଟି ଅସମତୁଲ (Unbalanced), କାରଣ ଉଭୟ ପାର୍ଶ୍ୱର ବୟୁତ୍ୱ ସମାନ ନାହିଁ । ଏହା କେବଳ ପ୍ରତିକାରକ ଓ ଉତ୍ପାଦର ସୂଚନା ଦେଉଥିବାରୁ ସମୀକରଣକୁ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ପାଇଁ "ସୂଚକୀୟ ରାସାୟନିକ ସମୀକରଣ" (Skeletal Chemical Equation) କୁହାଯାଏ । ବାୟୁରେ ମ୍ୟାଗ୍ନେସିୟମ୍ ପ୍ରଜ୍ୱଳନ ପାଇଁ ସମୀକରଣ (1.2) ଏକ ସୂଚକୀୟ ରାସାୟନିକ ସମୀକରଣ ଅଟେ ।

1.1.2 ସମତୁଲ ରାସାୟନିକ ସମୀକରଣ (Balanced Chemical Equations)

ନବମ ଶ୍ରେଣୀରେ ତୁମେ ପଢିଥିବା ବୟୁତ୍ୱ ସଂରକ୍ଷଣ ନିୟମ (Law of conservation of mass) ମନେ ପକାଅ । ଏହି ନିୟମାନୁସାରେ, କୌଣସି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ବୟୁତ୍ୱର ସୃଷ୍ଟି କିୟା ବିନାଶ ଘଟେ ନାହିଁ । ଅର୍ଥାତ୍, କୌଣସି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ଉତ୍ପାଦରେ ଥିବା ମୌଳିକଗୁଡିକର ମୋଟ ବୟୁତ୍ୱ ପ୍ରତିକାରକରେ ଥିବା ମୌଳିକଗୁଡିକର ମୋଟ ବୟୁତ୍ୱ ସହିତ ନିଷ୍ଟୟ ସମାନ ରହିବ ।

ଅନ୍ୟ ପ୍ରକାରରେ କହିଲେ, ପ୍ରତ୍ୟେକ ମୌଳିକର ପରମାଣୁ ଗୁଡିକର ସଂଖ୍ୟା, ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ପୂର୍ବରୁ ଓ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ପରେ ସମାନ ରହିବ । ତେଣୁ ଆମକୁ ସୂଚକୀୟ ରାସାୟନିକ ସମୀକରଣକୁ ସମତୁଲ କରିବାକୁ ପଡିବ । ରାସାୟନିକ ସମୀକରଣ (1.2) ସମତୁଲ (Balanced) କି ? ଚାଲ, ରାସାୟନିକ ସମୀକରଣକୁ ସମତୁଲ କରିବା ପ୍ରଣାଳୀ ସୋପାନ କ୍ରମରେ ଆଲୋଚନା କରିବା ।

ତୁମ ପାଇଁ କାମ : 1.3ର ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାକୁ ଶବ୍ଦ-ସମୀକରଣରେ ଏହିପରି ଦର୍ଶାଯାଇପାରେ -

ଜିଙ୍କ୍ + ସଲ୍ଫୁଏରିକ୍ ଏସିଡ୍ ightarrow ଜିଙ୍କ୍ ସଲ୍ଫେଟ୍ + ହାଇଡ୍ରୋଜେନ୍

ଏହି ଶବ୍ଦ-ସମୀକରଣଟିକୁ ନିମ୍ନଲିଖିତ ରାସାୟନିକ ସମୀକରଣ ଭାବେ ଲେଖାଯାଇପାରେ -

$$Zn + H_2SO_4 \longrightarrow Zn SO_4 + H_2......$$
 (1.3)

ବର୍ତ୍ତମାନ ତୀର ଚିହ୍ନର ଉଭୟ ପାର୍ଶ୍ୱରେ ଥିବା ପ୍ରତ୍ୟେକ ମୌଳିକର ପରମାଣୁ ସଂଖ୍ୟା କଳନା କରିବା ।

ମୌଳିକ	ପ୍ରତିକାରକ ଗୁଡିକରେ ପରମାଣୁ ସଂଖ୍ୟା (ବାମପାର୍ଶ୍ୱ)	ଉତ୍ପାଦ ଗୁଡିକରେ ଥିବା ପରମାଣୁ ସଂଖ୍ୟା (ଦକ୍ଷିଣପାର୍ଶ୍ୱ)
Zn	1	1
Н	2	2
S	1	1
0	4	4

ଯେହେତୁ ତୀର ଚିହ୍ନର ଉଭୟ ପାର୍ଶ୍ୱରେ ପ୍ରତ୍ୟେକ ମୌଳିକର ପରମାଣୁ ଗୁଡିକର ସଂଖ୍ୟା ସମାନ ଅଛି, ସମୀକରଣ (1.3) ଏକ ସମତୁଲ ରାସାୟନିକ ସମୀକରଣ ଅଟେ ।

ନିମ୍ନଲିଖିତ ରାସାୟନିକ ସମୀକରଣକୁ ସମତୁଲ କରିବା ପାଇଁ ଚେଷ୍ଟା କରିବା –

$$Fe + H_2O \longrightarrow Fe_3O_4 + H_2...... (1.4)$$

ସୋପାନ-1 : ରାସାୟନିକ ସମୀକରଣକୁ ସମତୁଲ କରିବା ପାଇଁ ପ୍ରଥମେ ପ୍ରତ୍ୟେକ ସଂକେତର ଚତୁଃପାର୍ଣ୍ୱରେ ବାକ୍ୱ ଅଙ୍କନ କର । ସମୀକରଣକୁ ସମତୁଲ କରିବା ସମୟରେ ବାକ୍ୱ ମଧ୍ୟସ୍ଥ ଉପାଦାନ ଗୁଡିକର କୌଣସି ପରିବର୍ତ୍ତନ କର ନାହିଁ ।

$$\boxed{\text{Fe}} + \boxed{\text{H}_2\text{O}} \longrightarrow \boxed{\text{Fe}_3\text{O}_4} + \boxed{\text{H}_2} \dots (1.5)$$

ସୋପାନ-2 : ଅସମତୁଲ ସମୀକରଣ (1.5) ର ପ୍ରତିକାରକ ଓ ଉତ୍ପାଦଗୁଡିକରେ ଥିବା ପ୍ରତ୍ୟେକ ମୌଳିକର ପରମାଣୁ ସଂଖ୍ୟାର ଏକ ତାଲିକା ପ୍ରସ୍ତୁତ କର ।

ମୌଳିକ	ପ୍ରତିକାରକରେ ଥିବା	ଉତ୍ପାଦରେ ଥିବା
	ପରମାଣୁ ସଂଖ୍ୟା	ପରମାଣୁ ସଂଖ୍ୟା
Fe	1	3
Н	2	2
0	1	4

ସୋପାନ-3 : ସାଧାରଣତଃ ଅଧିକାଂଶ କ୍ଷେତ୍ରରେ ସମୀକରଣ ମଧ୍ୟରେ ଯେଉଁ ଯୌଗିକରେ ସର୍ବାଧିକ ସଂଖ୍ୟକ ପରମାଣୁ ଥାଏ, ସେହି ଯୌଗିକର ପରମାଣୁଗୁଡିକୁ ପ୍ରଥମେ ସମତୁଲ କରିବା ସୁବିଧାଜନକ ହୁଏ । ଏହି ଯୌଗିକଟି ପ୍ରତିକାରକ କିୟା ଉତ୍ପାଦ ହୋଇପାରେ । ଏହି ଯୌଗିକଟି ସର୍ବାଧିକ ପରମାଣୁ ଥିବା ମୌଳିକଟିକୁ ବାଛ ଓ ତାକୁ ପ୍ରଥମେ ସମତୁଲ କରିବା ପାଇଁ ଚେଷ୍ଟାକର । ଏହାକୁ ଅବଲୟନ କରି ଯୌଗିକ ${\rm Fe_3O_4}$ ଓ ଏଥିରେ ଥିବା ମୌଳିକ ଅକ୍ସିଜେନ୍ (O)କୁ ଆମେ ବାଛିବା । ଦକ୍ଷିଣ ପାର୍ଶ୍ୱରେ ଚାରୋଟି ଅକ୍ସିଜେନ୍ ପରମାଣୁ ଓ ବାମ ପାର୍ଶ୍ୱରେ କେବଳ ଗୋଟିଏ ଅକ୍ସିଜେନ୍ ପରମାଣୁ ଅଛି ।

ଅକ୍ସିଜେନ୍ ପରମାଣୁଗୁଡିକୁ ସମତୁଲ କରିବାକୁ -

ଅକ୍ସିଜେନ୍	ପ୍ରତିକାରକରେ	ଉତ୍ପାଦରେ
ପରମାଣୁ		
(i) ଆରୟରେ	1 (H ₂ ଠରେ)	4 (Fe ₃ O ₄ ରେ)
(ii) ସମତୁଲ କରିବାକୁ	1 × 4	4

ମନେରଖିବାକୁ ହେବ ଯେ ପରମାଣୁଗୁଡିକର ସଂଖ୍ୟାକୁ ସମାନ କରିବା ପାଇଁ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ସହିତ ସମ୍ପୃକ୍ତ ଯୌଗିକ ଓ ମୌଳିକଗୁଡିକର ସଂକେତକୁ (ଯାହାକି ବାକ୍ ମଧ୍ୟରେ ଅଛି) ଆମେ ପରିବର୍ତ୍ତନ କରି ପାରିବା ନାହିଁ I ଉଦାହରଣ ସ୍ୱରୂପ, ଅକ୍ସିକେନ୍ର ପରମାଣୁ ସଂଖ୍ୟାକୁ ସମାନ କରିବା ପାଇଁ ଆମେ ${\rm H_2O}$ ପୂର୍ବରେ '4' ଗୁଣାଙ୍କକୁ ${\rm 4H_2O}$ ଭାବରେ ଲେଖିପାରିବା କିନ୍ତୁ ${\rm H_2O_4}$ ବା $({\rm H_2O})_4$ ଭାବରେ ଲେଖି ପାରିବା ନାହିଁ ${\rm I}$ ବର୍ତ୍ତମାନ ଆଂଶିକ ଭାବରେ ସମତୁଲ ହୋଇଥିବା ସମୀକରଣଟି ହେଉଛି –

$$\boxed{\text{Fe} + 4 \boxed{\text{H}_2\text{O}} \longrightarrow \boxed{\text{Fe}_3\text{O}_4} + \boxed{\text{H}_2} \dots (1.6)}$$

ସୋପାନ-4 : ବର୍ତ୍ତମାନ ସୁଦ୍ଧା Fe ଓ Hର ପରମାଣୁ ସମତୁଲ ହୋଇନାହିଁ । ଏହି ଦୁଇଟି ମଧ୍ୟରୁ ଯେକୌଣସି ଗୋଟିଏକୁ ବାଛି ସମତୁଲ ପ୍ରକ୍ରିୟା ଆଗେଇ ନିଆଯାଇପାରେ । ଆସ, ଆଂଶିକ ଭାବରେ ସମତୁଲ ହୋଇଥିବା ସମୀକରଣରେ H ପରମାଣୁକୁ ପ୍ରଥମେ ସମତୁଲ କରିବା ।

H ପରମାଣୁକୁ ତୀର ଚିହ୍ନର ଉଭୟ ପଟରେ ସମାନ କରିବା ପାଇଁ, ଡାହାଣ ପଟରେ ଥିବା ହାଇଡ୍ରୋଜେନ୍ ଅଣୁ (H୍ର)କୁ 4 ଦ୍ୱାରା ଗୁଣନ କର ।

ହାଇଡ୍ରୋଜେନ୍ ପରମାଣୁ	ପ୍ରତିକାରକରେ	ଉତ୍ପାଦରେ
(i) ଆରୟରେ	8 (4H ₂ Oରେ)	2 (H₂ରେ)
(ii) ସମତୁଲ କରିବାକୁ	8	2 × 4

ବର୍ତ୍ତମାନ ସମୀକରଣଟି ହେବ -

Fe +
$$4H_2O$$
 → Fe_3O_4 + $4H_2$ (1.7) ସୋପାନ-5 : ଉପର ସମୀକରଣଟିକୁ ଲକ୍ଷ୍ୟ କର ଏବଂ ତୃତୀୟ ମୌଳିକଟିକୁ ବାଛ । ଏପର୍ଯ୍ୟନ୍ତ ଏହା ସମତୁଲ ହୋଇ ନାହିଁ । ଏବେ କେବଳ ଗୋଟିଏ ମୌଳିକ ସମତୁଲ ହେବାକୁ ଅଛି ଏବଂ ସେଇଟି ହେଉଛି ଆଇରନ୍ (Fe) ।

ଆଇରନ୍ ପରମାଣୁ	ପ୍ରତିକାରକରେ	ଉତ୍ପାଦରେ
(i) ଆରନ୍ୟରେ	1 (Feରେ)	3 (Fe ₃ O ₄ ରେ)
(ii) ସମତୁଲ କରିବାକୁ	1×3	3

Feକୁ ସମାନ କରିବା ପାଇଁ ଆମେ ତିନୋଟି Fe ପରମାଣୁ ବାମ ପାର୍ଶ୍ୱରେ ନେବା ।

$$3 \overline{\text{Fe}} + 4 \overline{\text{H}_2\text{O}} \longrightarrow \overline{\text{Fe}_3\text{O}_4} + 4 \overline{\text{H}_2} \dots (1.8)$$

ସୋପାନ-6 : ସର୍ବଶେଷରେ, ଆମେ ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ ଥିବା ପ୍ରତ୍ୟେକ ମୌଳିକର ପରମାଣୁ ସଂଖ୍ୟାକୁ ଗଣି ସମତୁଲ ସମୀକରଣଟିର ସଠିକତା ଯାଞ୍ଚ କରିପାରିବା । ସମୀକରଣ (1.8)ର ଉଭୟ ପାର୍ଶ୍ୱରେ ମୌଳିକଗୁଡିକର ପରମାଣୁ ସଂଖ୍ୟା ସମାନ ହୋଇଯାଇଛି । ତେଣୁ, ବର୍ତ୍ତମାନ ଏହି ସମୀକରଣଟି ସମତୁଲ ହୋଇଛି । ବାକ୍ସୁଡିକୁ ଉଠାଇଦେଲେ ନିମ୍ନଲିଖିତ ସମତୁଲ ରାସାୟନିକ ସମୀକରଣ (1.9) ମିଳିବ ।

$$3Fe + 4 H_2O \longrightarrow Fe_3O_4 + 4H_2.... (1.9)$$

ସମୀକରଣଟିକୁ ସମତୁଲ କରିବା ପାଇଁ ପ୍ରତ୍ୟେକ ସୋପାନରେ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ମୌଳିକର ପରମାଣୁ ସଂଖ୍ୟାକୁ ଉଭୟ ପଟରେ ସମାନ କରାଯାଇ ଅନ୍ତିମ ସୋପାନରେ ସମତୁଲ ପ୍ରକ୍ରିୟା ସମ୍ପନ୍ନ ହୋଇଛି । ସମତୁଲ କରିବାର ଏହି ପଦ୍ଧତିକୁ ପରଖ-ନିରେଖ (Hit-and-trial) ପଦ୍ଧତି କୁହାଯାଏ ।

ସୋପାନ-7 : ଭୌଡିକ ଅବସ୍ଥା ପାଇଁ ପ୍ରତୀକର ସୂଚନା (Writing Symbols of Physical States)

ଉପରେ ଦିଆଯାଇଥିବା ସମତୁଲ ସମୀକରଣ (1.9)କୁ ମନୋଯୋଗ ସହ ନିରୀକ୍ଷଣ କର । ଏହି ସମୀକରଣଟି ପ୍ରତ୍ୟେକ ପ୍ରତିକାରକ ଓ ଉତ୍ପାଦର ଭୌତିକ ଅବସ୍ଥାଗୁଡିକ ବିଷୟରେ କିଛି ସୂଚନା ଦେଉଛି କି ? ଏହି ସମୀକରଣରେ ସେମାନଙ୍କର ଭୌତିକ ଅବସ୍ଥା ବିଷୟରେ କୌଣସି ସୂଚନା ଦିଆଯାଇନାହିଁ ।

ରାସାୟନିକ ସମୀକରଣକୁ ଅଧିକ ତଥ୍ୟମୂଳକ କରିବା ପାଇଁ ପ୍ରତିକାରକ ଓ ଉତ୍ପାଦଗୁଡିକର ରାସାୟନିକ ସଂକେତ ଲେଖାଯିବା ସହିତ ସେମାନଙ୍କର ଭୌତିକ ଅବସ୍ଥାଗୁଡିକୁ ଉଲ୍ଲେଖ କରାଯାଏ । ପ୍ରତିକାରକ ଓ ଉତ୍ପାଦଗୁଡିକର ଗ୍ୟାସୀୟ, ତରଳ, କଳୀୟ ଦ୍ରବଣ ଓ କଠିନ ଅବସ୍ଥା ଯଥାକ୍ରମେ (g), (l), (aq) ଓ (s) ସଂକେତନ ଦ୍ୱାରା ସୂଚାଇ ଦିଆଯାଏ । ଯଦି ପ୍ରତିକାରକ କିୟା ଉତ୍ପାଦ କଳରେ ଦ୍ରବୀଭୂତ ହୋଇଥାଏ, ତେବେ ସେହି ଦ୍ରବଣ ପାଇଁ ଆକ୍ସସ୍ (aqueous, aq) ଶବ୍ଦ ବ୍ୟବହାର କରାଯାଏ ।

ପ୍ରତିକାରକ ଓ ଉତ୍ପାଦଗୁଡିକର ଭୌତିକ ଅବସ୍ଥା ଦର୍ଶାଯାଇ ସମତୁଲ ସମୀକରଣ (1.9)ଟି ହେବ – $3Fe(s) + 4 \ H_2O(g) \ \rightarrow Fe_3O_4(s) + 4 \ H_2(g) \dots (1.10)$ ଏଠାରେ ଉଲ୍ଲେଖ କରାଯାଇପାରେ ଯେ ଏହି ପ୍ରତିକ୍ରିୟାରେ ଜଳକୁ ବାଷ୍ପ ଅବସ୍ଥାରେ ବ୍ୟବହାର କରାଯାଇଥିବାରୁ ଏହାକୁ ଦର୍ଶାଇବା ପାଇଁ ' H_2O ' ସହିତ (g) ପ୍ରତୀକ ବ୍ୟବହାର କରାଯାଇଛି ।

ସାଧାରଣତଃ, ଭୌତିକ ଅବସ୍ଥାଗୁଡ଼ିକୁ ଦର୍ଶାଇବାର ଆବଶ୍ୟକତା ନ ଥିଲେ ରାସାୟନିକ ସମୀକରଣରେ ସେଗୁଡ଼ିକୁ ଅନ୍ତର୍ଭୁକ୍ତ କରାଯାଇନଥାଏ ।

ବେଳେବେଳେ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ସମ୍ପାଦନ ପାଇଁ ତାପ, ଚାପ, ଉତ୍ପ୍ରେରକ ଇତ୍ୟାଦି ଭଳି ପ୍ରତିକ୍ରିୟାର ସର୍ତ୍ତଗୁଡିକୁ ସମୀକରଣ ମଧ୍ୟସ୍ଥ ତୀର ଚିହ୍ନ ଉପରେ କିୟା ତଳେ ଦର୍ଶାଯାଇଥାଏ । ଉଦାହରଣସ୍ୱରୂପ –

ଏହି ସୋପାନଗୁଡିକୁ ଅବଲୟନ କରି ଏହି ଅଧାୟରେ ଦିଆଯାଇଥିବା ସମୀକରଣ (1.2)କୁ ସମତ୍ରଲ କରି ପାରିବ କି ?

ପ୍ରଶ୍ର

- ମ୍ୟାଗ୍ନେସିୟମ୍ ପାତକୁ ବାୟୁରେ ଜଳାଇବା ପୂର୍ବରୁ କାହିଁକି ସଫାକରିବା ଉଚିତ ?
- ନିମ୍ନଲିଖ୍ଡ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାଗୁଡିକ ପାଇଁ ସମତୁଲ ସମୀକରଣ ଲେଖ ।
 - (i) ହାଇଡ୍ରୋକେନ୍ + କ୍ଲୋରିନ୍ \to ହାଇଡ୍ରୋକେନ୍ କ୍ଲୋରାଇଡ୍
 - (ii) ବେରିୟମ୍ କ୍ଲୋରାଇଡ୍ + ଏଲୁମିନିୟମ୍ ସଲ୍ଫେଟ୍ \to ବେରିୟମ୍ ସଲ୍ଫେଟ୍ + ଏଲୁମିନିୟମ୍ କ୍ଲୋରାଇଡ୍
- ନିମ୍ନଲିଖିତ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାଗୁଡିକ ପାଇଁ ଅବସ୍ଥା ପ୍ରତୀକ ସହିତ ସମତୂଲ ରାସାୟନିକ ସମୀକରଣ ଲେଖ ।
 - (i) ବେରିୟମ୍କୋରାଇଡ୍ ଓ ସୋଡିୟମ୍ ସଲ୍ଫେଟ୍ର କଳୀୟ ଦ୍ରବଣ ଦୁଇଟି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା କରି ଅଦ୍ରବଣୀୟ ବେରିୟମ୍ ସଲ୍ଫେଟ୍ ଓ ସୋଡିୟମ୍ କ୍ଲୋରାଇଡ୍ ଦ୍ରବଣ ପ୍ରଦାନ କରନ୍ତି ।
 - (ii) ସୋଡିୟମ୍ ହାଇଡ୍ରକ୍ସାଇଡ୍ର ଜଳୀୟ ଦ୍ରବଶ ହାଇଡ୍ରୋକ୍ଲୋରିକ୍ ଏସିଡ୍ର ଜଳୀୟ ଦ୍ରବଶ ସହିତ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା କରି ସୋଡିୟମ୍ କ୍ଲୋରାଇଡ୍ ଦ୍ରବଣ ଓ ଜଳ ଉତ୍ପନ୍ନ କରନ୍ତି ।

1.2 ବିଭିନ୍ନ ପ୍ରକାର ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା (Types of Chemical Reactions)

ଆଞ୍ଚେମାନେ ନବମ ଶ୍ରେଣୀରେ ପଢିଛୁ ଯେ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ସମୟରେ ଗୋଟିଏ ମୌଳିକର ପରମାଣୁଗୁଡିକ୍ ପରବର୍ତ୍ତିତ ହୁଏ ନାହିଁ କିୟା ପରମାଣୁଗୁଡିକ ଅନ୍ତର୍ଦ୍ଧାନ ହୋଇଯାଏ ନାହିଁ କିୟା ଅନ୍ୟ କେଉଁଠାରୁ ଆସି ଆବିର୍ଭୂତ ହୁଏ ନାହିଁ । ପ୍ରକୃତରେ, ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ପରମାଣୁଗୁଡିକ ମଧ୍ୟରେ ବନ୍ଧ ଭାଙ୍ଗି ଓ ବନ୍ଧ ଗଠନ ହୋଇ ନ୍ତନ

ପଦାର୍ଥଗୁଡିକ ଉତ୍ପନ୍ନ ହୁଏ । ପରମାଣୁଗୁଡିକ ମଧ୍ୟରେ ସୃଷ୍ଟି ହେଉଥିବା ବିଭିନ୍ନ ପ୍ରକାର ବନ୍ଧ ବିଷୟରେ ତୁମେ ତୃତୀୟ ଓ ଚତୁର୍ଥ ଅଧ୍ୟାୟରେ ପଢିବ ।

1.2.1 ସଂଶ୍ଳେଷଣ ପ୍ରତିକ୍ରିୟା (Combination Reaction)

ତୁମ ପାଇଁ କାମ : 1.4

- ଅଳ୍ପ ପରିମାଣର କ୍ୟାଲ୍ସିୟମ୍ ଅକ୍ସାଇଡ୍ କିୟା କଲିଚୂନ (Quick lime) ଏକ ବିକରରେ ନିଅ ।
- ଏଥିରେ ଧୀରେ ଧୀରେ ଜଳ ମିଶାଅ I
- ଚିତ୍ର 1.3 ରେ ଦର୍ଶାଯାଇଥିବା ଭଳି ବିକର୍ଟିକୁ ୟର୍ଶ କର ।
- ତାପମାତ୍ରାରେ କିଛି ପରିବର୍ତ୍ତନ ହେଉଥିବା ଅନୁଭବ କରୁଛ କି ?

କ୍ୟାଲ୍ସିୟମ୍ ଅକ୍ସାଇଡ଼୍ର କଳ ସହିତ ପ୍ରତିକ୍ରିୟା ହେତୁ ଶମିତ ଚୂନ (Slaked lime) ଉତ୍ପନ୍ନ

କ୍ୟାଲ୍ସିୟମ୍ ଅକ୍ସାଇଡ୍ର ଜଳ ସହିତ ତୀବ୍ର ପ୍ରତିକ୍ରିୟା ଘଟି ପ୍ରବୁର ପରିମାଣର ତାପ ନିର୍ଗତ ହେବା ସଙ୍ଗେ ସଙ୍ଗେ ଶମିତ ବୂନ (Slaked lime) ଉତ୍ପନ୍ନ ହୁଏ ।

$$CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(aq)......$$
 (1.13) କଲିଚୂନ ଶମିତ ଚୂନ (Quick lime) (Slaked lime)

ଏହି ପ୍ରତିକ୍ରିୟାରେ କ୍ୟାଲ୍ସିୟମ୍ ଅକ୍ସାଇଡ୍ ଓ କଳ ସଂଯୁକ୍ତ ହୋଇ ଏକମାତ୍ର ଉତ୍ପାଦ, କ୍ୟାଲ୍ସିୟମ୍ ହାଇଡ୍ରକ୍ସାଇଡ୍ ଉତ୍ପନ୍ନ ହୋଇଛି । ଏହା ଏକ ସଂଶ୍ଳେଷଣ ପ୍ରତିକ୍ରିୟା । ଯେଉଁ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ଦୁଇ ବା ଅଧିକ ପ୍ରତିକାରକ ସଂଯୁକ୍ତ ହୋଇ ଏକ ମାତ୍ର ଉତ୍ପାଦ ଉତ୍ପନ୍ନ ହୁଏ, ସେହି ପ୍ରତିକ୍ରିୟାକୁ ସଂଶ୍ଲେଷଣ ପ୍ରତିକ୍ରିୟା କୁହାଯାଏ ।

ଜାଣିଛ କି ?

ପ୍ରତିକ୍ରିୟା 1.13 ଦ୍ୱାରା ଉତ୍ପନ୍ନ ଶମିତ ଚୂନର ଦ୍ରବଣକୁ କାନ୍ଥ ଧଉଳାଇବା ପାଇଁ ବ୍ୟବହାର କରାଯାଏ । କ୍ୟାଲ୍ସିୟମ୍ ହାଇଡ୍ରକ୍ସାଇଡ୍ ବାୟୁରେ ଥିବା କାର୍ବନ୍ଡାଇଅକ୍ସାଇଡ୍ ସହିତ ଧୀରେ ଧୀରେ ପ୍ରତିକ୍ରିୟା କରି କାନ୍ଥ ଉପରେ କ୍ୟାଲ୍ସିୟମ୍ କାର୍ବୋନେଟ୍ର ଏକ ପତଳା ଆଞ୍ଚରଣ ସୃଷ୍ଟି କରେ । ଚୂନପାଣି ଲଗାଇବାର ଦୁଇ ତିନି ଦିନ ପରେ କ୍ୟାଲ୍ସିୟମ୍ କାର୍ବୋନେଟ୍ ସୃଷ୍ଟି ହୁଏ ଏବଂ କାନ୍ଥକୁ ଏକ ଧବଳ ଉଜ୍ଜଳତା ପ୍ରଦାନ କରେ । ମାର୍ବଲ୍ର ରାସାୟନିକ ସଂକେତ ମଧ୍ୟ CaCO୍ୟ ।

$$Ca(OH)_2(aq) + CO_2(g) \longrightarrow CaCO_3(s) + H_2O(l)......$$
 (1.14) (କ୍ୟାଲ୍ସିୟମ୍ ହାଇଡ୍ରକ୍ସାଇଡ୍) (କ୍ୟାଲ୍ସିୟମ୍ କାର୍ବୋନେଟ୍)

ସଂଶ୍ଳେଷଣ ପ୍ରତକ୍ରିୟାର ଆଉ କେତୋଟି ଉଦାହରଣ ଆଲୋଚନା କରିବା ।

(i) କୋଇଲାର ଦହନ

$$C(s) + O_2(g) \longrightarrow CO_2(g)......(1.15)$$

(ii) $H_2(g)$ ଓ $O_2(g)$ ରୁ ଜଳ (H_2O) ସୃଷ୍ଟି

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(I).....(1.16)$$

ସରଳ ଭାବେ ଆମେ କହି ପାରିବା ଯେ ଯେଉଁ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ଦୁଇ ବା ଅଧିକ ବସ୍ତୁ (ମୌଳିକ କିୟା ଯୌଗିକ) ସଂଯୁକ୍ତ ହୋଇ ଏକମାତ୍ର ଉତ୍ପାଦ ଉତ୍ପନ୍ନ ହୁଏ, ସେହି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାକୁ ସଂଶ୍ଳେଷଣ ପ୍ରତିକ୍ରିୟା କୁହାଯାଏ ।

"ତୁମ ପାଇଁ କାମ : 1.4"ରେ ଆମେ ଜାଶିଲେ ଯେ, ପ୍ରଚୁର ପରିମାଣର ତାପ ନିର୍ଗତ ହୋଇଥାଏ । ସେଥିପାଇଁ ପ୍ରତିକ୍ରିୟା ମିଶ୍ରଣଟି ଗରମ ହୋଇଯାଇଛି । ଯେଉଁ ପ୍ରତିକ୍ରିୟାରେ ଉତ୍ପାଦ ଉତ୍ପନ୍ନ ହେବା ସଙ୍ଗେ ସଙ୍ଗେ ତାପ ନିର୍ଗତ ହୋଇଥାଏ, ତାକୁ ତାପଉତ୍ପାଦୀ ବା ତାପଉତ୍ପାଦକ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା (Exothermic Chemical Reaction) କହନ୍ତି ।

ତାପଉତ୍ପାଦୀ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାର ଅନ୍ୟ କେତେକ ଉଦାହରଣ ହେଲା –

- (i) ପ୍ରାକୃତିକ ଗ୍ୟାସ୍ (Natural Gas)ର ଦହନ ${\rm CH_4(g)} + 2{\rm O_2(g)} \to {\rm CO_2(g)} + 2{\rm H_2O(g)}....\,(1.17)$
- (ii) କାଶିଛ କି ଶ୍ୱାସକ୍ରିୟା (Respiration) ଏକ ତାପଜପାଦୀ ରାସାୟନିକ ପତିକିୟା ?

ଆମେ ସମଞ୍ଚେ ଜାଶିଛୁ ଯେ ବଞ୍ଚରହିବା ପାଇଁ ଶକ୍ତି ଆବଶ୍ୟକ । ଖାଦ୍ୟରୁ ଆମେ ଏହି ଶକ୍ତି ପାଇଥାଉ । ପରିପାକ ପ୍ରକ୍ରିୟା (Digestion) ରେ ଖାଦ୍ୟ ସରଳତର ପଦାର୍ଥରେ ପରିଣତ ହୁଏ । ଉଦାହରଣସ୍ୱରୂପ, ଭାତ, ଆଳୁ ଓ ରୁଟିରେ ଶ୍ୱେତସାର (Carbohydrate) ରହିଛି । ପରିପାକପ୍ରକ୍ରିୟା ହେତୁ ଏହି ଶ୍ୱେତସାରରୁ ଗ୍ଲୁକୋକ୍ ($C_{\rm g}H_{12}O_{\rm g}$) ସୃଷ୍ଟି ହୁଏ । ଗ୍ଲୁକୋକ୍ ଆମ ଶରୀର କୋଷଗୁଡିକ ମଧ୍ୟରେ ଥିବା ଅକ୍ସିକେନ୍ ($O_{\rm g}$) ସହିତ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା କରେ ଏବଂ ଶରୀରକୁ ଶକ୍ତି ଯୋଗାଏ । ଏହି ପ୍ରତିକ୍ରିୟାର ଏକ ସ୍ୱତନ୍ତ୍ର ନାମ ହେଉଛି "ଶ୍ୟନ ପକ୍ରିୟା" (Respiration)

$$C_6H_{12}O_6(aq) + 6O_2(aq) \longrightarrow$$

 $6CO_2(aq) + 6H_2O(l) + energy......(1.18)$

(iii) ଉଦ୍ଭିଦ ଦ୍ରବ୍ୟର ବିଘଟନ ଘଟି ଖତ (Compost) ରେ ପରିଣତ ହେବା ମଧ୍ୟ ଏକ ତାପଉତ୍ପାଦୀ ପ୍ରତିକ୍ରିୟାର ଉଦାହରଣ ।

"ତୂମ ପାଇଁ କାମ : 1.1" ରେ ଘଟୁଥିବା ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ମଧ୍ୟରୁ ଯେଉଁ ପ୍ରତିକ୍ରିୟାରେ ଏକମାତ୍ର ଉତ୍ପାଦ ସୃଷ୍ଟି ହେବା ସଙ୍ଗେ ସଙ୍ଗେ ତାପ ନିର୍ଗତ ହୋଇଥାଏ ତାକୁ ଚିହ୍ନଟ କର ।

1.2.2 ବିଘଟନ ପ୍ରତିକ୍ରିୟା (Decomposition Reaction)

ତୁମ ପାଇଁ କାମ 1.5

ଏକ ଶୂଷ ୟୁଟନ ନଳୀ (Boiling tube) ରେ ପ୍ରାୟ
 2 ଗ୍ରାମ୍ ଫେରସ୍ ସଲ୍ଫେଟ୍ ୟଟିକ (Crystal)
 ନିଅ ।

- ଫେରସ୍ ସଲ୍ଫେଟ୍ ଷଟିକର ରଙ୍ଗକୁ ଲକ୍ଷ୍ୟ କର ।
- ଚିତ୍ର 1.4 ରେ ଦର୍ଶାଯାଇଥିବା ଭଳି ୟୁଟନ ନଳୀକୁ ବର୍ଷର କିୟା ଷ୍ଟିରିଟ୍ ଲ୍ୟାମ୍ପରେ ଗରମ କର ।
- ଗରମ କରି ସାରିଲା ପରେ ଷଟିକ ଗୁଡିକର ରଙ୍ଗକୁ ପର୍ଯ୍ୟବେକ୍ଷଣ କର ।

ତ ଓ ।... ଫେରସ୍ ସଲ୍ଫେଟ୍ ୟଟିକ ଥିବା ୟୁଟନ ନଳୀକୁ ଗରମ କରିବା ଏବଂ ଗନ୍ଧକୁ ଶୁଙ୍ଘିବାର ଠିକ୍ ପ୍ରଣାଳୀ

ଦେଖିପାରୁଛ କି – ଫେରସ୍ ସଲ୍ଫେଟ୍ ୟଟିକର ସବୁଜ ରଙ୍ଗ ବଦଳିଯାଇଛି ? ଜଳନ୍ତା ଗନ୍ଧକ (Sulphur)ର ଲାକ୍ଷଣିକ ଗନ୍ଧ ମଧ୍ୟ ତୂମେ ଶୁଙ୍ଘି ପାରୁଥିବ ।

$${}^{\circ}$$
 ତାପ ${}^{\circ}$ ${}^{\circ}$ Fe ${}_{2}$ O ${}_{3}$ (s) + SO ${}_{2}$ (g) + SO ${}_{3}$ (g)..... (1.19) (ଫେରସ୍ (ଫେରିକ୍ ସଲ୍ଫେଟ୍) ଅକ୍ସାଇଡ୍)

ଏହି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ତୁମେ ଲକ୍ଷ୍ୟ କରି ପାରୁଥିବ ଯେ ଗୋଟିଏ ମାତ୍ର ପ୍ରତିକାରକ ବିଘଟିତ ହୋଇ କିଛି ସରଳତର ଉତ୍ପାଦ ସୃଷ୍ଟି ହୋଇଛି । ଏହା ଏକ **ବିଘଟନ ପ୍ରତିକ୍ରିୟା** (Decomposition Reaction) । ଫେରସ୍ ସଲ୍ଫେଟ୍ ୟଟିକ (FeSO $_4$,7 H_2 O) ଉଉସ୍ତ ହେଲେ ଏହା ଜଳ ହରାଇଥାଏ ଏବଂ ୟଟିକଗୁଡିକର ରଙ୍ଗ ବଦଳିଯାଏ । ତା'ପରେ ଏହା ଫେରିକ୍ ଅକ୍ସାଇଡ୍ (Fe $_2$ O $_3$), ସଲ୍ଫର୍ଡାଇଅକ୍ସାଇଡ୍ (SO $_2$) ଏବଂ

ସଲ୍ଫର୍ଟ୍ରାଇଅକ୍ସାଇଡ୍ ($\mathrm{SO_3}$)କୁ ବିଘଟିତ ହୁଏ । $\mathrm{SO_2}$ ଓ $\mathrm{SO_3}$ ଗ୍ୟାସ୍ ହୋଇଥିବା ବେଳେ ଫେରିକ୍ ଅକ୍ସାଇଡ୍ ଏକ କଠିନ ପଦାର୍ଥ ।

ତାପ ପ୍ରୟୋଗ ହେତୁ କ୍ୟାଲ୍ସିୟମ୍ କାର୍ବୋନେଟ୍ର କ୍ୟାଲ୍ସିୟମ୍ ଅକ୍ସାଇଡ୍ ଓ କାର୍ବନ୍ଡାଇଅକ୍ସାଇଡ୍କୁ ବିଘଟନ ଏକ ଗୁରୁତ୍ପୂର୍ଣ୍ଣ ବିଘଟନ ପ୍ରତିକ୍ରିୟା । ଏହା ବିଭିନ୍ନ ଶିଳ୍ପରେ ପ୍ରୟୋଗ କରାଯାଇଥାଏ । କ୍ୟାଲ୍ସିୟସ୍ ଅକ୍ସାଇଡ୍କୁ ଚୂନ (Lime) କିୟା କଲିଚୂନ (Quick lime) କହନ୍ତି । ଏହାର ବହୁଳ ବ୍ୟବହାର ରହିଛି - ତନ୍ମଧ୍ୟରୁ ସିମେଣ୍ଟ ଉତ୍ପାଦନରେ ବ୍ୟବହାର ଗୋଟିଏ । ତାପ ପ୍ରୟୋଗ ଦ୍ୱାରା ଘଟୁଥିବା ବିଘଟନ ପ୍ରତିକ୍ରିୟାକୁ "ତାପୀୟ ବିଘଟନ" (Thermal Decomposition) କହନ୍ତି ।

$$CaCO_3(s) \xrightarrow{\mbox{O}|\Omega} CaO(s) + CO_2(g)......$$
 (1:20) (ଚୂନ ପଥର) (କଲି ଚୂନ)

"ଡୁମ ପାଇଁ କାମ : 1.6"ରେ ତାପୀୟ ବିଘଟନ ପ୍ରତିକ୍ରିୟାର ଅନ୍ୟ ଏକ ଉଦାହରଣ ଦିଆଯାଇଛି ।

ତୁମ ପାଇଁ କାମ : 1.6

- ପ୍ରାୟ 2 ଗ୍ରାମ୍ ଲେଡ୍ନାଇଟ୍ରେଟ୍ ବୂର୍ତ୍ତି ଏକ ୟୁଟନ ନଳୀରେ ନିଅ ।
- ୟୁଟନ ନଳୀଟିକୁ ଏକ ଚିମୁଟା (Tongs)ରେ ଧରି ଗରମ କର । କିପରି କରିବ ଚିତ୍ର 1.5ରେ ଦେଖାଯାଇଛି।
- କ'ଶ ଦେଖୁଛ ? ଯଦି କିଛି ପରିବର୍ତ୍ତନ ଲକ୍ଷ୍ୟ କରୁଛ,
 ସେଗୁଡିକୁ ଲେଖ୍ରଖ ।

ଲେଡ଼୍ ନାଇଟ୍ରେଟ୍କୁ ଗରମ କରିବା ଓ ନାଇଟ୍ରୋକେନ୍ ଡାଇଅକ୍ସାଇଡ୍ ଉତ୍ସର୍ଜନ ହେବା

ଦେଖିବ, ବାଦାମୀ ରଙ୍ଗର ଧୂମ ଉତ୍ସର୍ଜନ (Emission) ହେବ । ଏହି ଧୂମ ହେଉଛି ନାଇଟ୍ରୋଜେନ୍ ଡାଇଅକ୍ସାଇଡ୍ (NO_2) । ଏଠାରେ ଘଟୁଥିବା ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ହେଉଛି -

ପରୀକ୍ଷା କର ।

$$2Pb(NO_3)_2(s) \xrightarrow{\mbox{\odot}\mbox{\odot}} 2PbO(s) + 4NO_2(g) + O_2(g)...... (1.21)$$
 (ଲେଡ୍ନାଇଟ୍ରେଟ୍) (ଲେଡ୍ ଅକ୍ସାଇଡ୍) (ନାଇଟ୍ରୋଜେନ୍ (ଅକ୍ସିଜେନ୍) ଡାଇଅକ୍ସାଇଡ୍)

ଆସ, ତୁମ ପାଇଁ କାମ 1.7 ଓ 1.8ରେ ଆଉ କିଛି ବିଘଟନ ପ୍ରତିକ୍ରିୟା ସମ୍ପାଦନ କରିବା ।

ତୁମ ପାଇଁ କାମ : 1.7

- ଗୋଟିଏ ପ୍ଲାଷ୍ଟିକ୍ ମଗ୍ ନିଅ, ଏହାର ତଳ ପଟରେ ଦୁଇଟି କଣା କର ଏବଂ କଣାଥିବା ଦୁଇଟି ରବର ଠିପି ଏଥିରେ ଲଗାଅ । ଚିତ୍ର 1.6 ରେ ଦେଖାଯାଇଥିବା ଭଳି କାର୍ବନ୍ ଇଲେକ୍ଟ୍ରୋଡ୍ ଦୁଇଟିକୁ ଏହି ରବର ଠିପି ମଧ୍ୟରେ ପ୍ରବେଶ କରାଅ ।
- ଏହି ଇଲେକ୍ଟ୍ରୋଡ୍ ଦୁଇଟିକୁ ଗୋଟିଏ 6 ଭୋଲ୍ଟ୍ ବ୍ୟାଟେରୀ ସହିତ ସଂଯୋଗ କର ।
- ମଗ୍ଟିରେ କଳ ଭର୍ତ୍ତିକର ଯେପରିକି ଇଲେକ୍ଟ୍ରୋଡ୍ ଦୁଇଟି କଳରେ ବୁଡିରହିବ । କେତେ ଠୋପା ଲଘୁ ସଲ୍ଫ୍ୟୁରିକ୍ ଏସିଡ୍ ଜଳରେ ମିଶାଅ।
- କଳପୂର୍ଷ ଦୁଇଟି ପରୀକ୍ଷା ନଳୀ ନିଅ ଏବଂ ସେଗୁଡିକୁ କାର୍ବନ୍ ଇଲେକ୍ଟ୍ରୋଡ୍ ଦୁଇଟି ଉପରେ ଓଲଟାଇ ରଖ ।
- ସୁଇଚ୍ (Switch) ଟିପି ଉପକରଣ ମଧ୍ୟକୁ ବିଦ୍ୟୁତ୍ ପ୍ରବାହ ଆରୟ କର ଏବଂ ସେଥିରେ କ'ଣ ଘଟୁଛି ଦେଖବା ପାଇଁ କିଛି ସମୟ ଅପେକ୍ଷା କର ।
- ତୁମେ ଉଭୟ ଇଲେକ୍ଟ୍ରୋଡ୍ଠାରେ ପାଣି ଫୋଟକା ସୃଷ୍ଟି ହେଉଥିବା ଦେଖି ପାରିବ । ଏହି ଫୋଟକା-ଗୁଡିକ ପରୀକ୍ଷା ନଳୀ ମଧ୍ୟରୁ ଜଳକୁ ସ୍ଥାନାନ୍ତର କରୁଛି ।
- ଉଭୟ ପରୀକ୍ଷା ନଳୀ ଦୁଇଟିରେ ସଂଗୃହୀତ ହେଉଥିବା ଗ୍ୟାସ୍ର ଆୟତନ କୌଣସି ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ସମୟରେ ସମାନ କି ?

ସତର୍କ ସୂଚନା – ଏହି ପରୀକ୍ଷାଟି ଶିକ୍ଷକଙ୍କ ଦ୍ୱାରା ସତର୍କତା ଅବଲୟନ କରି କରାଯିବ ।

- ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ରରେ କ'ଣ ଘଟୁଛି ?
- ପ୍ରତ୍ୟେକ ପରୀକ୍ଷା ନଳୀରେ କେଉଁ ଗ୍ୟାସ୍ ଅଛି ?

ତୁମ ପାଇଁ କାମ : 1.8

- ପ୍ରାୟ 2 ଗ୍ରାମ୍ ସିଲ୍ଭର୍ କ୍ଲୋରାଇଡ୍ ଏକ ଚିନାମାଟି
 ଥାଳିଆରେ ନିଅ ।
- ଏହାର ରଙ୍ଗ କ'ଣ ?
- ଏହି ଚିନାମାଟି ଥାଳିଆକୁ କିଛି ସମୟ ପାଇଁ
 ସୂର୍ଯ୍ୟାଲୋକରେ ରଖ (ଚିତ୍ର 1.7) ।
- କିଛି ସମୟ ପରେ ସିଲ୍ଭର୍ କ୍ଲୋରାଇଡ୍ ରଙ୍ଗକୂ ପର୍ଯ୍ୟବେକ୍ଷଣ କର ।

ସିଲ୍ଭର କ୍ଲୋରାଇଡ୍ ସୂର୍ଯ୍ୟାଲୋକରେ ସିଲ୍ଭର୍ ଧାତୁରେ ପରିଶତ ହୋଇ ଧୂସର ହୋଇଯାଇଛି

ତୁମେ ଦେଖିବ ଯେ ସିଲ୍ଭର୍ କ୍ଲୋରାଇଡ୍ ସୂର୍ଯ୍ୟାଲୋକରେ ଧଳା ରଙ୍ଗରୁ ଧୂସର (Grey) ରଙ୍ଗରେ ପରିଣତ ହୋଇଛି । ସୂର୍ଯ୍ୟାଲୋକରେ ସିଲ୍ଭର୍ କ୍ଲୋରାଇଡ୍ର ବିଘଟନ ଘଟି ସିଲ୍ଭର୍ ଓ କ୍ଲୋରିନ୍ ଉପ୍ନ ହେଉଥିବା ଯୋଗୁଁ ଏପରି ହୋଇଛି ।

2 AgCl(s)
$$\stackrel{3}{\longrightarrow}$$
 2Ag(s) + Cl_2 (g)...... (1.22) ସିଲ୍ଭର୍ ବ୍ରୋମାଇଡ୍ର ମଧ୍ୟ ସେହି ପ୍ରକାର ପ୍ରତିକ୍ରିୟା ଘଟେ ।

ଉପର ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାଗୁଡିକୁ କଳାଧଳା ଫଟୋ ସଂକ୍ରାନ୍ତ କାର୍ଯ୍ୟ (Photography) ରେ ବ୍ୟବହାର କରାଯାଏ । ଏହି ସବୁ ବିଘଟନ ପ୍ରତିକ୍ରିୟା କେଉଁ ପ୍ରକାର ଶକ୍ତି ଦ୍ୱାରା ସଂଘଟିତ ହେଉଛି ?

ଆମେ ଦେଖିଲେ ଯେ ବିଘଟନ ପ୍ରତିକ୍ରିୟାଗୁଡିକ ପ୍ରତିକାରକ ଗୁଡିକର ବିଘଟନ ପାଇଁ ତାପ, ଆଲୋକ କିୟା ବିଦ୍ୟୁତ୍ ଶକ୍ତି ଆବଶ୍ୟକ କରିଥାନ୍ତି । ଯେଉଁ ସବୁ ପ୍ରତିକ୍ରିୟାରେ ଶକ୍ତି ଶୋଷିତ ହୋଇଥାଏ, ସେଗୁଡିକୁ ତାପଶୋଷୀ ବା ତାପଗ୍ରାହୀ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା (Endothermic chemical reaction) କୁହାଯାଏ । ନିମୁଲିଖିତ କାମଟି କର :

ଏକ ପରୀକ୍ଷା ନଳୀରେ ପ୍ରାୟ 2 ଗ୍ରାମ୍ ବେରିୟମ୍ ହାଇଡ୍ରକ୍ସାଇଡ୍ ନିଅ । ଏଥିରେ 1 ଗ୍ରାମ୍ ଏମୋନିୟମ୍ କ୍ଲୋରାଇଡ୍ ମିଶାଅ ଏବଂ ଗୋଟିଏ ଗ୍ଲାସ୍ରଡ୍ (Glass rod) ସାହାଯ୍ୟରେ ଘାଞ୍ଜି ଦିଅ । ହାତ ପାପୁଲିରେ ପରୀକ୍ଷା ନଳୀର ନିମ୍ନ ଭାଗକୁ ସ୍ପର୍ଶ କର । କ'ଣ ଅନୁଭବ କରୁଛ ? ଏହା ଏକ ତାପଉତ୍ପାଦୀ ନା ତାପଶୋଷୀ ପ୍ରତିକ୍ରିୟା ?

ପ୍ରଶ୍ର

- ପଦାର୍ଥ 'X'ର ଏକ ଦ୍ରବଣ କାନ୍ଥକୁ ଧଉଳାଇବା ପାଇଁ ବ୍ୟବହାର କରାଯାଇଛି ।
 - (କ) ପଦାର୍ଥ 'X'ର ନାମ କ'ଶ ଏବଂ ତା'ର ସଂକେତ ଲେଖ ।
 - (ଖ) ଜଳ ସହିତ ପଦାର୍ଥ 'X'ର ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାଟି ଲେଖ ।
- "ତୁମ ପାଇଁ କାମ : 1.7"ରେ ଗୋଟିଏ ପରୀକ୍ଷା ନଳୀରେ ସଂଗୃହୀତ ଗ୍ୟାସ୍ର ପରିମାଣ ଅନ୍ୟ ପରୀକ୍ଷା ନଳୀରେ ସଂଗୃହୀତ ଗ୍ୟାସ୍ ପରିମାଣର ଦୁଇଗୁଣ କାହିଁକି ? ଏହି ଦୁଇଟି ଗ୍ୟାସ୍ର ନାମ ଲେଖ ।

1.2.3 ବିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟା (Displacement Reaction)

ତୁମ ପାଇଁ କାମ 1.9

- ତିନୋଟି ଲୁହା କୡା ନିଅ ଏବଂ ସେଗୁଡିକୁ ବାଲିକାଗଜରେ ଘସି ସଫା କର ।
- A ଓ B ଚିହ୍ନିତ କରି ଦୁଇଟି ପରୀକ୍ଷାନଳୀ ନିଅ I ପ୍ରତ୍ୟେକ ପରୀକ୍ଷାନଳୀରେ ପ୍ରାୟ 10 ମିଲିଲିଟର କପର୍ସଲ୍ଫେଟ୍ ଦ୍ରବଣ ନିଅ I
- ଖଞିଏ ସୂତାରେ କଞ୍ଜା ଦୁଇଟିକୁ ବାଦ୍ଧ ଏବଂ ସାବଧାନତା ସହ ପରୀକ୍ଷାନଳୀ, Bରେ ଥିବା କପର୍ ସଲ୍ଫେଟ୍ ଦ୍ରବଣରେ ପ୍ରାୟ 20 ମିନିଟ୍ ପାଇଁ ବୁଡାଇ ରଖ [ଚିତ୍ର 1.8 (a)] । ତୁଳନା କରିବା ନିମନ୍ତେ ଗୋଟିଏ ଲୁହାକଞ୍ଜା ଅଲଗାରଖ ।
- 20 ମିନିଟ୍ ପରେ ଲୁହାକ୍ୟା ଦୁଇଟିକୁ କପର୍ ସଲ୍ଫେଟ୍ ଦ୍ରବଣରୁ ବାହାରକରିଆଣ ।

- ପରୀକ୍ଷାନଳୀ A ଓ B ରେ ଥିବା କପର୍ ସଲ୍ଫେଟ୍ ଦ୍ରବଣର ନୀଳ ରଙ୍ଗର ତୀବ୍ରତା ତୁଳନା କର [ଚିତ୍ର 1.8 (b)] I
- କପର୍ ସଲ୍ଫେଟ୍ ଦ୍ରବଣରେ ବୃଡାଯାଇଥିବା ଲୁହା କଞ୍ଜା ଦୂଇଟିର ରଙ୍ଗକୁ ଅଲଗା ରଖାଯାଇଥିବା ଲୁହା କଞ୍ଜାର ରଙ୍ଗ ସହିତ ମଧ୍ୟ ତୁଳନା କର [ଚିତ୍ର 1.8 (b)] ।

ଲୁହା କଣ୍ଟା ଟିକିଏ ବାଦାମୀରଙ୍ଗ ଧାରଣ କରିଛି ଏବଂ କପର୍ ସଲ୍ଫେଟ୍ ଦ୍ରବଶର ନୀଳରଙ୍ଗର ତୀବ୍ରତାରେ ହ୍ରାସ ଘଟିଛି: କାହିଁକି ?

"ତୂମ ପାଇଁ କାମ : 1.9"ରେ ନିମ୍ନଲିଖିତ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ଘଟିଛି –

ଚିତ୍ର 1.8 (a) ଲୁହାକ୍ୟା କପର୍ ସଲ୍ଫେଟ୍ ଦ୍ରବଣ ମଧ୍ୟରେ ବୂଡ଼ିଛି ।

ପରୀକ୍ଷା ପୂର୍ବରୁ ଓ ପରୀକ୍ଷା ପରେ ଲୁହାକଣା ଓ କପରସଲ୍ଫେଟ୍ ଦ୍ରବଣ ମଧ୍ୟରେ ତୁଳନା

$$Fe(s) + CuSO_4(aq) \longrightarrow FeSO_4(aq) + Cu(s).....(1.24)$$
 (କପର୍ସଲ୍ଫେଟ୍) (ଆଇରନ୍ସଲ୍ଫେଟ୍)

ଏହି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ଆଇରନ୍ (Fe) ଅନ୍ୟ ଏକ ମୌଳିକ କପର୍ (Cu)କୁ କପର୍ ସଲଫେଟ୍ ଦ୍ରବଣରୁ ଅପସାରଣ କରିଛି ବା ବିସ୍ଥାପନ କରିଛି । ଏହି ପ୍ରତିକ୍ରିୟାକୁ ବିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟା (Displacement reaction)

କୁହାଯାଏ । ଯେଉଁ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ଗୋଟିଏ ମୌଳିକ କୌଣସି ଏକ ଯୌଗିକର ମୌଳିକକୁ ଅପସାରଣ କରେ, ସେହି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାକୁ ବିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟା କୁହାଯାଏ ।

ବିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟାର ଅନ୍ୟ କେତେକ ଉଦାହରଣ ହେଉଛି -

$$Zn(s)$$
 + $CuSO_4(aq)$ \longrightarrow $ZnSO_4(aq)$ + $Cu(s)$ (1.25) (କପର୍ ସଲ୍ଫେଟ୍) (ଜିଙ୍କ୍ ସଲ୍ଫେଟ୍)

Pb(s) + $CuCl_2(aq)$ \longrightarrow $PbCl_2(aq)$ + $Cu(s)$ (1.26) (କପର୍ କ୍ଲୋରାଇଡ୍) (ଲେଡ୍ କ୍ଲୋରାଇଡ୍)

କିଙ୍କ୍ ଓ ଲେଡ୍ କପର୍ଠାରୁ ଅଧିକ ପ୍ରତିକ୍ରିୟାଶୀଳ ମୌଳିକ । ସେଗୁଡିକ କପର୍ ଯୌଗିକରୁ କପର୍ ଅପସାରଣ କରନ୍ତି ।

1.2.4 ଦ୍ୱୈତ ବିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟା (Double Displacement Reaction)

ତୁମ ପାଇଁ କାମ : 1.10

- ଏକ ପରୀକ୍ଷାନଳୀରେ ପ୍ରାୟ 3 ମିଲିଲି ସୋଡିୟମ୍
 ସଲ୍ଫେଟ୍ ଦ୍ରବଣ ନିଅ ।
- ଅନ୍ୟ ଏକ ପରୀକ୍ଷା ନଳୀରେ ପ୍ରାୟ 3 ମିଲିଲି ବେରିୟମ୍ କ୍ଲୋରାଇଡ୍ ଦ୍ରବଶ ନିଅ ।
- ଦୁଇଟି ଦ୍ରବଣକୁ ମିଶାଇ ଦିଅ (ଚିତ୍ର 1.9) l
- କ'ଣ ଦେଖୁଛ ?

ବେରିୟମ୍ ସଲ୍ଫେଟ୍ ଓ ସୋଡ଼ିୟମ୍ କ୍ଲୋରାଇଡ଼୍ ଉତ୍ନ

ତୂମେ ଦେଖୁଥିବ ଯେ ଏକ ଧଳା ପଦାର୍ଥ ସୃଷ୍ଟି ହୋଇଛି । ଏହା କଳରେ ଦ୍ରବଶୀୟ ନୁହେଁ । ଉତ୍ପନ୍ନ ହୋଇଥିବା ଏହି ଅଦ୍ରବଶୀୟ ପଦାର୍ଥକୁ ଅବକ୍ଷେପ କହନ୍ତି । ଯେଉଁ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ଅବକ୍ଷେପ ସୃଷ୍ଟି ହୁଏ ତାକୁ ଅବକ୍ଷେପଣ ପ୍ରତିକ୍ରିୟା (Precipitation reaction) କହନ୍ତି ।

Na
$$_2$$
SO $_4$ (aq) + BaCI $_2$ (aq) \longrightarrow (ସୋଡିୟମ୍ (ବେରିୟମ୍ ସଲ୍ଫେଟ୍) କ୍ଲୋରାଇଡ଼୍)

ଏହା କିପରି ଘଟିଛି ? SO_4^{2-} ଓ Ba^{2+} ମଧ୍ୟରେ ପ୍ରତିକ୍ରିୟା ହେତୁ ଧଳା ଅବକ୍ଷେପ, $BaSO_4$ ଉପ୍ନ, ହୋଇଛି । ଅନ୍ୟ ଉତ୍ପାଦଟି ହେଉଛି ସୋଡିୟମ୍ କ୍ଲୋରାଇଡ୍ (NaCI), ଯାହାକି ଦ୍ରବଣ ମଧ୍ୟରେ ଅଛି, କାରଣ NaCI କଳରେ ଦ୍ରବଣୀୟ । ଏହିପରି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ପ୍ରତିକାରକ ଦୁଇଟି ମଧ୍ୟରେ ଆୟନ ବିନିମୟ ଘଟିଥାଏ । ସେହି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାକ୍ ଦ୍ୱେତ ବିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟା (Double displacement reaction) କହନ୍ତି ।

ତୁମ ପାଇଁ କାମ : 1.2 ମନେପକାଅ ଯେଉଁଥିରେ ତୁମେ ଲେଡ୍ ନାଇଟ୍ରେଟ୍ ଦ୍ରବଣ ସହିତ ପୋଟାସିୟମ୍ ଆୟୋଡାଇଡ୍ ଦ୍ରବଣ ମିଶାଇଥିଲ ।

- (i) ଉତ୍ପନ୍ନ ହୋଇଥିବା ଅବକ୍ଷେପର ରଙ୍ଗ କ'ଣ ଥିଲା ? ଅବକ୍ଷେପିତ ଯୌଗିକର ନାମ କହିପାରିବ କି ?
- (ii) ଏହି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ପାଇଁ ସମତୁଲ ରାସାୟନିକ ସମୀକରଣଟି ଲେଖ ।
- (iii) ଏହା କ'ଣ ଏକ ଦ୍ୱିତ ବିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟା ?

1.2.5 ଜାରଣ ଓ ବିଜାରଣ (Oxidation and Reduction)

ତୁମ ପାଇଁ କାମ : 1.11

- ଏକ ଚିନାମାଟି ଥାଳିଆରେ ପ୍ରାୟ 1 ଗ୍ରାମ୍ କପର୍ ଗୁଷ ନେଇ ଗରମ କର ।
- କ'ଣ ଦେଖୁଛ ?

କପର୍ ଗୁଣ୍ଡର ଚାରିପଟରେ କପର୍ (II) ଅକ୍ସାଇଡ୍ର ଏକ କଳା ଆୟରଣ ସୃଷ୍ଟି ହୋଇଛି । ଏହି କଳା ପଦାର୍ଥଟି କାହିଁକି ସୃଷ୍ଟି ହେଲା ?

ଏହାର କାରଣ ହେଉଛି, ଅକ୍ସିକେନ୍ର କପର୍ ସହିତ ସଂଯୋଗ ଘଟି କପର୍ ଅକ୍ସାଇଡ୍ ଉତ୍ପନ୍ନ ହୋଇଛି ।

ଚିତ୍ର 1.10 କପର ଅକ୍ସାଇଡ୍କ କପର୍ର ଜାରଣ

2 Cu + O₂
$$\xrightarrow{\text{ତାପ}}$$
 2CuO...... (1.28)

ଯଦି ହାଇଡ୍ରୋଜେନ୍ ଗ୍ୟାସ୍କୁ ଏହି ଉତ୍ତପ୍ତ ପଦାର୍ଥ (CuO) ଉପରେ ପ୍ରବାହିତ କରାଯାଏ, ତେବେ ବିପରୀତ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ଘଟି କଳା ଆଞ୍ଚରଣଟି ବାଦାମୀ ରଙ୍ଗରେ ପରିଣତ ହୁଏ ଓ କପର୍ ମିଳିଥାଏ ।

$$CuO + H_2 \xrightarrow{ \Theta \mid \Omega } Cu + H_2O...... (1.29)$$

ଯଦି ଏକ ପଦାର୍ଥ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ସମୟରେ ଅକ୍ସିକେନ୍ ଲାଭ କରେ, ତେବେ ପଦାର୍ଥଟି କାରିତ (Oxidised) ହେଲା ବୋଲି କୁହାଯିବ । କିନ୍ତୁ ଯଦି ପଦାର୍ଥଟି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ସମୟରେ ଅକ୍ସିକେନ୍ ହରାଇଥାଏ, ତେବେ ତାହା ବିଜାରିତ (Reduced) ହେଲା ବୋଲି କୁହାଯିବ ।

ଏହି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା 1.29 ସମୟରେ, କପର୍ (॥) ଅକ୍ସାଇଡ୍ ଅକ୍ସିଜେନ୍ ହରାଉଛି ଏବଂ ବିଜାରିତ ହେଉଛି । ହାଇଡ୍ରୋଜେନ୍ ଅକ୍ସିଜେନ୍ ଲାଭ କରୁଛି ଏବଂ ଜାରିତ ହେଉଛି । ଅନ୍ୟ ଭାବେ ପ୍ରକାଶ କଲେ, କୌଣସି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ସମୟରେ ଗୋଟିଏ ପ୍ରତିକାରକ ଜାରିତ ହେଉଥିଲେ ଅନ୍ୟ ପ୍ରତିକାରକଟି ବିଜାରିତ ହୁଏ । ଏହି ପ୍ରକାର ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାକୁ ଜାରଣ-ବିଜାରଣ ପ୍ରତିକ୍ରିୟା (Oxidation-reduction reaction) ବା ବିଜାରଣ-ଜାରଣ ପ୍ରତିକ୍ରିୟା (Redox reaction) କହନ୍ତି ।

ବିଜାରଣ-ଜାରଣ ପ୍ରତିକ୍ରିୟାର ଅନ୍ୟ କେତେକ ଉଦାହରଣ -

$$ZnO + C \longrightarrow Zn + CO......(1.31)$$

 $MnO_2 + 4HCI \longrightarrow MnCl_2 + 2H_2O + Cl_2.. (1.32)$

ପ୍ରତିକ୍ରିୟା 1.31ରେ କାର୍ବନ୍ (C), COକୁ ଜାରିତ ହୋଇଛି ଏବଂ ZnO, Znକୁ ବିଜାରିତ ହୋଇଛି । ପ୍ରତିକ୍ରିୟା 1.32ରେ HCI, CI $_2$ କୁ ଜାରିତ ହୋଇଥିବା ବେଳେ MnO $_2$, MnCI $_2$ କୁ ବିଜାରିତ ହୋଇଛି ।

ଉପରେ ଦର୍ଶ । ଯାଇଥିବା ଉଦାହରଣ ଗୁଡିକରୁ ଆୟେମାନେ କହିପାରିବା ଯେ ଯଦି ଗୋଟିଏ ପଦାର୍ଥ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ସମୟରେ ଅକ୍ସିକେନ୍ ଗ୍ରହଣ କରେ କିୟା ହାଇଡ୍ରୋକେନ୍ ହରାଏ, ତେବେ ପଦାର୍ଥଟି ଜାରିତ ହୁଏ । କିନ୍ତୁ ଯଦି ପଦାର୍ଥଟି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ସମୟରେ ଅକ୍ସିକେନ୍ ହରାଏ କିୟା ହାଇଡ୍ରୋକେନ୍ ଗ୍ରହଣ କରେ, ତେବେ ପଦାର୍ଥଟି ବିଜାରିତ ହୁଏ ।

ତୁମ ପାଇଁ କାମ : 1.1 ଟିକିଏ ମନେପକାଅ, ଯେଉଁଠାରେ ମ୍ୟାଗ୍ନେସିୟମ୍ ପାତ ବାୟୁ (ଅକ୍ସିକେନ୍)ରେ ଉଜ୍ଜ୍ୱଳ ଭାବରେ କଳି ଏକ ଧଳା ପଦାର୍ଥ, ମ୍ୟାଗ୍ନେସିୟମ୍ ଅକ୍ସାଇଡ୍କୁ ପରିବର୍ତ୍ତିତ ହୋଇଛି । ଏହି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ମ୍ୟାଗ୍ନେସିୟମ୍ କାରିତ ହୋଇଛି ନା ବିକାରିତ ହୋଇଛି ?

1.3 ଦୈନନ୍ଦିନ ଜୀବନରେ ଜାରଣ ପ୍ରତିକ୍ରିୟାର ପ୍ରଭାବ ପର୍ଯ୍ୟବେକ୍ଷଣ କରିଛ କି ? (Have you observed the effects of oxidation reactions in everyday life?)

1.3.1 ସଂକ୍ଷାରଣ (Corrosion)

ତୁମେ ନିଷ୍ଟୟ ଦେଖିଥିବ ଯେ ଏକ ଲୌହ ନିର୍ମିତ ଦ୍ରବ୍ୟ ନୂତନ ଅବସ୍ଥାରେ ଉଜ୍ଜ୍ୱଳ ଓ ମସ୍ପଣ ହୋଇଥାଏ । କିନ୍ତୁ ଏହା ଯଦି କିଛି ଦିନ ପାଇଁ ବାହାରେ ପଡିରହେ, ତେବେ ତା'ଉପରେ ଏକ ଲୋହିତ-ବାଦାମୀ ରଙ୍ଗର ପ୍ରଲେପ ମାଡିଯାଏ । ଏହି ପ୍ରାକୃତିକ ପ୍ରକିୟାକୁ "ଲୁହାରେ କଳଙ୍କି ଲାଗିବା" ବୋଲି ସାଧାରଣତଃ କହନ୍ତି । ଏଭଳି ଭାବରେ ଅନ୍ୟ କେତେକ ଧାତୁ ମଧ୍ୟ ସେମାନଙ୍କର ଦୀପ୍ତି ହରାଇଥାନ୍ତି । କପର ଓ ସିଲ୍ଭର୍ ଉପରେ ମାଡିଯାଇଥିବା ଆୟରଣର ରଙ୍ଗକୁ ଲକ୍ଷ୍ୟକରିଛ କି ? ଯେତେବେଳେ ଏକ ଧାତୁ ତାକୁ ଘେରି ରହିଥିବା ଉପାଦାନଗୁଡିକ (ଯଥା - ଜଳୀୟ ବାଷ୍ଟ, ଅମ୍ଲ ଇତ୍ୟାଦି) ସହିତ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା କରେ, ସେତେବେଳେ ଧାତୁଟିର ଧୀରେ ଧୀରେ କ୍ଷୟ ଘଟେ । ଏହି ପ୍ରକ୍ରିୟାକୁ ସଂକ୍ଷାରଣ ବା କ୍ରମକ୍ଷୟ (Corrosion) କୁହାଯାଏ । ସିଲ୍ଭର୍ ଉପରେ ପଡୁଥିବା କଳା ଆୟରଣ ଓ କପର୍ ଉପରେ ପଡୁଥିବା ସବୁଳ୍ଚ ଆୟରଣ ହେଉଛି ସଂକ୍ଷାରଣର ଉଦାହରଣ ।

ସଂକ୍ଷାରଣ ହେତୁ ମଟରଗାଡି, ପୋଲ, ଲୁହାବାଡ, ଜାହାଜ ଏବଂ ଧାତୁ ନିର୍ମିତ ସମୟ ବୟୁ, ବିଶେଷ କରି ଲୌହ ନିର୍ମିତ ବୟୁଗୁଡିକର କ୍ଷୟ ଘଟିଥାଏ । ଲୁହାର ସଂକ୍ଷାରଣ ଏକ ଗୁରୁତର ସମସ୍ୟା । ନଷ୍ଟ ହୋଇ ଯାଇଥିବା ଲୁହା ଜିନିଷଗୁଡିକୁ ବଦଳାଇବା ପାଇଁ ପ୍ରତିବର୍ଷ ପ୍ରଚୁର ଅର୍ଥ ବ୍ୟୟ ହେଉଛି । ତୃତୀୟ ଅଧ୍ୟାୟରେ ସଂକ୍ଷାରଣ ବିଷୟରେ ତୃମେ ଅଧିକ ପଢିବ ।

1.3.2 ସଢା ଅବସ୍ଥା (Rancidity)

ବହୁତ ଦିନ ରହିଯାଇଥିବା ଖାଦ୍ୟ ପଦାର୍ଥକୁ ତୁମେ କେବେ ଶୁଙ୍ଘିଛ କିୟା ଚାଖିଛ କି ?

ବହୁତ ଦିନ ଧରି ରହିଯାଇଥିବା ଚର୍ବି ଏବଂ ତେଲ ବାୟୁ ସଂଷ୍କର୍ଶରେ ଆସି ଜାରିତ ହୋଇଯାଏ । ଫଳରେ ତା'ର ଗନ୍ଧ ଓ ସ୍ୱାଦ ବଦଳି ଯାଏ । ତହିଁରୁ ରହଣିଆ ଗନ୍ଧ ବାହାରୁଛି ବୋଲି ଆମେ କହୁଁ । ଯେଉଁ ପଦାର୍ଥ ଜାରଣକୁ ନିରୋଧ କରେ ତାକୁ ପ୍ରତିଜାରକ (Antioxidant) କହନ୍ତି । ଖାଦ୍ୟସାମଗ୍ରୀରେ ସାଧାରଣତଃ ପ୍ରତିଜାରକକୁ ମିଶାଇ ସେଗୁଡିକୁ (ଖାଦ୍ୟ ସାମଗ୍ରୀକୁ) ବହୁତ ଦିନ ପର୍ଯ୍ୟନ୍ତ ସଂରକ୍ଷଣ କରାଯାଏ । ବାୟୁରୋଧୀ ପାତ୍ର (Air-tight container)ରେ ଖାଦ୍ୟପଦାର୍ଥ ରଖିଲେ ଜାରଣ ପ୍ରକ୍ରିୟା ମଧ୍ୟ ମନ୍ଦୃର ହୁଏ । ଫଳରେ ସେଗୁଡିକର ସଂରକ୍ଷଣ ସହଜ ହୁଏ । ତୁମେ ଜାଣିଛ କି-ଚିପ୍ସ ଉପାଦନକାରୀମାନେ ଜାରଣକୁ ପ୍ରତିହତ କରିବା

ପାଇଁ ଚିପ୍ସ ଖୋଳ ମଧ୍ୟକୁ ନାଇଟ୍ରୋଜେନ୍ ଭଳି ଗ୍ୟାସ୍ ପୂରାଇଥାନ୍ତି ?

ପ୍ରଶ୍ର

- ଗୋଟିଏ ଲୁହା କ୍ୟାକୁ କପର୍ସଲ୍ଫେଟ୍ ଦ୍ରବଶରେ ବୁଡାଇଲେ, ଦ୍ରବଶର ରଙ୍ଗରେ ପରିବର୍ତ୍ତନ ଘଟେ କାହିଁକି ?
- ଡୁମ ପାଇଁ କାମ : 1.10ର ଉଦାହରଣ ଭିନ୍ନ ଅନ୍ୟ ଏକ ଦ୍ୱିତ ବିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟା ପାଇଁ ଉଦାହରଣ ଦିଅ ।
- ନିମ୍ନଲିଖିତ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାଗୁଡିକରେ କେଉଁ ଗୁଡିକ ଜାରିତ ହୋଇଛି ଏବଂ କେଉଁଗୁଡିକ ବିଜାରିତ ହୋଇଛି ତାହା ସୂଚାଅ ।
 - (i) $4Na(s) + O_2(g) \longrightarrow 2Na_2O(s)$
 - (ii) $CuO(s) + H_2(g) \longrightarrow Cu(s) + H_2O(l)$

କ'ଣ ଶିଖିଲ :

- ଏକ ସମ୍ପୂର୍ଷ ରାସାୟନିକ ସମୀକରଣ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାର ପ୍ରତିକାରକ, ଉତ୍ପାଦ ଓ ସେମାନଙ୍କର ଭୌତିକ ଅବସ୍ଥାଗୁଡିକୁ ପ୍ରତୀକାତ୍ମକ ଭାବରେ ବର୍ଷନା କରେ ।
- ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ଏକ ରାସାୟନିକ ସମୀକରଣ ସମତୁଲ ହେବା ପାଇଁ ସମ୍ପୃକ୍ତ ପ୍ରତ୍ୟେକ ମୌଳିକର ପରମାଣୁ ସଂଖ୍ୟା ସମୀକରଣର ପ୍ରତିକାରକ ପାର୍ଶ୍ୱରେ ଓ ଉତ୍ପାଦ ପାର୍ଶ୍ୱରେ ସମାନ ହୁଏ । ସମୀକରଣଗୁଡିକ ସର୍ବଦା ସମତୁଲ ହେବା ବିଧେୟ ।
- ସଂଖ୍ଲେଷଣ ପ୍ରତିକ୍ରିୟାରେ ଦୁଇ ବା ଅଧିକ ପଦାର୍ଥ ମିଳିତ ହୋଇ ଗୋଟିଏ ମାତ୍ର ନୂତନ ପଦାର୍ଥ ଉତ୍ପନ୍ନ କରଛି ।
- ବିଘଟନ ବା ବିଶ୍ଲେଷଣ ପ୍ରତିକ୍ରିୟା ସଂଶ୍ଲେଷଣ ପ୍ରତିକ୍ରିୟାର ବିପରୀତ । ଏକ ବିଘଟନ ପ୍ରତିକ୍ରିୟାରେ, ଗୋଟିଏ ମାତ୍ର ପଦାର୍ଥ ବିଘଟିତ ହୋଇ ଦୁଇ ବା ଅଧିକ ପଦାର୍ଥ ପ୍ରଦାନ କରେ ।

- ଯେଉଁ ପ୍ରତିକ୍ରିୟାରେ ଉତ୍ପାଦ ଉତ୍ପନ୍ନ ହେବା ସହିତ ତାପ ନିର୍ଗତ ହୁଏ, ତାହାକୁ ତାପଉତ୍ପାଦୀ ରାସାୟନିକ ପତିକିୟା କହନ୍ତି ।
- ଯେଉଁ ପ୍ରତିକ୍ରିୟାରେ ଶକ୍ତି ଶୋଷିତ ହୋଇଥାଏ,
 ତାହାକୁ ତାପଶୋଷୀ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା କହନ୍ତି ।
- ଗୋଟିଏ ମୌଳିକ କୌଣସି ଏକ ଯୌଗିକର ମୌଳିକଟିକୁ ଅପସାରଣ କଲେ ବିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟା ଘଟେ ।
- ଦ୍ୱେତ ବିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟାରେ ଦୁଇଟି ଭିନ୍ନ ଭିନ୍ନ ପରମାଣୁ ମଧ୍ୟରେ କିୟା ପରମାଣୁ ସମୂହ ବିଶିଷ୍ଟ

- ଭିନ୍ନ ଭିନ୍ନ ଗ୍ରୁପ (ଆୟନ) ମଧ୍ୟରେ ଅଦଳବଦଳ ଘଟେ ।
- ଅବଷେପଣ ପ୍ରତିକ୍ରିୟା ଅଦ୍ରାବ୍ୟ ଲବଣ ଉତ୍ପନ୍ନ କରେ ।
- ଆହୁରି ମଧ୍ୟ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାରେ ପ୍ରତିକାରକ ଅକ୍ସିଜେନ୍ କିୟା ହାଇଡ୍ରୋଜେନ୍ ଗ୍ରହଣ କରି ପାରେ କିୟା ହରାଇ ପାରେ I ଜାରଣ ପ୍ରତିକ୍ରିୟାରେ ପ୍ରତିକାରକ ଅକ୍ସିଜେନ୍ ଗ୍ରହଣ କରେ କିୟା ହାଇଡ୍ରୋଜେନ୍ ହରାଏ I କିନ୍ତୁ ବିଜାରଣ ପ୍ରତିକ୍ରିୟାରେ ପ୍ରତିକାରକ ଅକ୍ସିଜେନ୍ ହରାଏ କିୟା ହାଇଡ୍ରୋଜେନ୍ ଗ୍ରହଣ କରେ I

୍ ପ୍ରଶ୍ନାବଳୀ

1. ନିମ୍ନରେ ଦର୍ଶାଯାଇଥିବା ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ସୟନ୍ଧରେ କେଉଁ ଉକ୍ତିଗୁଡିକ ଠିକ୍ ନୁହେଁ ?

$$2PbO(s) + C(s) \longrightarrow 2Pb(s) + CO_{2}(g)$$

- (a) ଲେଡ୍ (Pb) ବିଜାରିତ ହେଉଛି ।
- (b) କାର୍ବନ୍ ଡାଇଅକ୍ସାଇଡ୍ (CO₂) ଜାରିତ ହେଉଛି ।
- (c) କାର୍ବନ୍ (C) ଜାରିତ ହେଉଛି ।
- (d) ଲେଡ୍ ଅକ୍ସାଇଡ୍ (PbO) ବିଜାରିତ ହେଉଛି ।
 - (i) (a) 3 (b)
 - (ii) (a) (c)
 - (iii) (a), (b) ³ (c)
 - (iv) ସମୟ ଉକ୍ତି
- 2. $\operatorname{Fe_2O_3} + 2\operatorname{Al} \longrightarrow \operatorname{Al_2O_3} + 2\operatorname{Fe}$ ଉପରେ ଦିଆଯାଇଥିବା ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାଟି ଏକ
 - (a) ସଂଶ୍ଲେଷଣ ପ୍ରତିକ୍ରିୟା
 - (b) ଦ୍ୱୈତ ବିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟା
 - (c) ବିଘଟନ ପ୍ରତିକ୍ରିୟା
 - (d) ବିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟା

- 3. ଲଘୁ ହାଇଡ୍ରୋକ୍ଲୋରିକ୍ ଏସିଡ୍କୁ ଲୁହାଗୁଣ୍ଡରେ ମିଶାଇଲେ କ'ଶ ଘଟେ ? ଠିକ୍ ଉତ୍ତରରେ ଟିକ୍ (\checkmark) ଚିହ୍ନ ଦିଅ ।
 - (a) ହାଇତ୍ରୋଜେନ୍ ଗ୍ୟାସ୍ ଓ ଆଇରନ୍ କ୍ଲୋରାଇଡ୍ ଉତ୍ପନ୍ନ ହୁଏ I
 - (b) କ୍ଲୋରିନ୍ ଗ୍ୟାସ୍ ଓ ଆଇରନ୍ ହାଇଡ୍ରକ୍ସାଇଡ୍ ଉତ୍ପନ୍ନ ହୁଏ I
 - (c) କୌଣସି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ଘଟେ ନାହିଁ ।
 - (d) ଲୌହ ଲବଣ ଓ ଜଳ ଉତ୍ପନ୍ନ ହୁଏ I
- 4. ଏକ ସମତୁଲ ରାସାୟନିକ ସମୀକରଣ କ'ଣ ? ରାସାୟନିକ ସମୀକରଣଗୁଡିକ କାହିଁକି ସମତୁଲ ହେବା ଉଚିତ ?
- 5. ନିମ୍ନଲିଖିତ ଉକ୍ତିଗୁଡିକୁ ରାସାୟନିକ ସମୀକରଣରେ ଲେଖି ସେଗୁଡିକ ସମତୁଲ କର ।
 - (a) ହାଇଡ୍ରୋଜେନ୍ ଗ୍ୟାସ୍ ନାଇଟ୍ରୋଜେନ୍ ସହିତ ମିଳିତ ହେଲେ ଏମୋନିଆ ହୁଏ ।
 - (b) ହାଇଡ୍ରୋଜେନ୍ ସଲ୍ଫାଇଡ୍ ଗ୍ୟାସ୍ ବାୟୁରେ ଜଳିଲେ ଜଳ ଓ ସଲ୍ଫର୍ଡାଇଅକ୍ସାଇଡ୍ ହୁଏ ।
 - (c) ବେରିୟମ୍ କ୍ଲୋରାଇଡ୍ ଓ ଏଲୁମିନିୟମ୍ ସଲ୍ଫେଟ୍ ଦ୍ରବଣର ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ହେଲେ ବେରିୟମ୍ ସଲ୍ଫେଟ୍ର ଅବକ୍ଷେପ ଏବଂ ଏଲୁମିନିୟମ୍ କ୍ଲୋରାଇଡ୍ ଦ୍ରବଣ ମିଳେ ।
 - (d) ପୋଟାସିୟମ୍ କଳ ସହିତ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା କରି ପୋଟାସିୟମ୍ ହାଇଡ୍ରକ୍ସାଇଡ୍ ଓ ହାଇଡ୍ରୋଜେନ୍ ଗ୍ୟାସ୍ ଉତ୍ପନ୍ନ କରେ ।
- 6. ନିମ୍ନଲିଖିତ ରାସାୟନିକ ସମୀକରଣଗୁଡିକୁ ସମତୁଲ କର ।
 - (a) $HNO_3 + Ca(OH)_2 \longrightarrow Ca(NO_3)_2 + H_2O$
 - (b) NaOH + $H_2SO_4 \longrightarrow Na_2SO_4 + H_2O$
 - (c) $NaCI + AgNO_3 \longrightarrow AgCI + NaNO_3$
 - (d) $BaCl_2 + H_2SO_4 \longrightarrow BaSO_4 + HCI$
- 7. ନିମ୍ନଲିଖିତ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାଗୁଡିକ ପାଇଁ ସମତ୍ରଲ ରାସାୟନିକ ସମୀକରଣ ଲେଖ ।
 - (a) କ୍ୟାଲ୍ସିୟମ୍ ହାଇଡ୍ରକ୍ସାଇଡ୍ + କାର୍ବନ୍ ଡାଇଅକ୍ସାଇଡ୍ \longrightarrow କ୍ୟାଲ୍ସିୟମ୍ କାର୍ବୋନେଟ୍ + ଜଳ
 - (b) ଜିଙ୍କ୍ + ସିଲ୍ଭର୍ ନାଇଟ୍ରେଟ୍ \longrightarrow ଜିଙ୍କ୍ ନାଇଟ୍ରେଟ୍ + ସିଲ୍ଭର୍
 - (c) ଏଲୁମିନିୟମ୍ + କପର୍ କ୍ଲୋରାଇଡ୍ \longrightarrow ଏଲୁମିନିୟମ୍ କ୍ଲୋରାଇଡ୍ + କପର
 - (d) ବେରିୟମ୍ କ୍ଲୋରାଇଡ୍ + ପୋଟାସିୟମ୍ ସଲ୍ଫେଟ୍ \longrightarrow ବେରିୟମ୍ ସଲ୍ଫେଟ୍ + ପୋଟାସିୟମ୍ କ୍ଲୋରାଇଡ୍
- 8. ନିମ୍ନଲିଖିତ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାଗୁଡିକ ପାଇଁ ସମତୂଲ ରାସାୟନିକ ସମୀକରଣ ଲେଖ ଏବଂ ସେଗୁଡିକ କେଉଁ ପ୍ରକାରର ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ସୂଚାଅ ।
 - (a) ଆଇରନ୍ ସଲ୍ଫାଇଡ୍(କଠିନ) + ସଲ୍ଫ୍ୟୁରିକ୍ଏସିଡ୍(ଜଳୀୟ) \longrightarrow ଆଇରନ୍ ସଲ୍ଫେଟ୍(ଜଳୀୟ) + ହାଇଡ୍ରୋଜେନ୍ ସଲ୍ଫାଇଡ୍ (ଗ୍ୟାସ୍)
 - (b) ଜିଙ୍କ୍ କାର୍ବୋନେଟ୍(କଠିନ) \longrightarrow ଜିଙ୍କ୍ ଅକ୍ସାଇଡ୍(କଠିନ) + କାର୍ବନ୍ ଡାଇଅକ୍ସାଇଡ୍(ଗ୍ୟାସ୍)
 - (c) ହାଇଡ୍ରୋଜେନ୍(ଗ୍ୟାସ୍) + କ୍ଲୋରିନ୍(ଗ୍ୟାସ୍) ----- ହାଇଡ୍ରୋଜେନ୍ କ୍ଲୋରାଇଡ୍(ଗ୍ୟାସ୍)
 - (d) ମ୍ୟାଗ୍ନେସିୟମ୍(କଠିନ) + ହାଇଡ୍ରୋକ୍ଲୋରିକ୍ ଏସିଡ୍(ଜଳୀୟ) → ମ୍ୟାଗ୍ନେସିୟମ୍ କ୍ଲୋରାଇଡ୍(ଜଳୀୟ) + ହାଇଡ୍ରୋଜେନ୍(ଗ୍ୟାସ୍)

- 9. ତାପଉତ୍ପାଦୀ ଓ ତାପଶୋଷୀ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା କହିଲେ କ'ଶ ବୃଝ ? ଉଦାହରଣ ଦିଅ I
- 10. ଶ୍ୱାସକ୍ରିୟାକୁ କାହିଁକି ଏକ ତାପଉତ୍ପାଦୀ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ଭାବରେ ଧରାଯାଇଥାଏ ? ବୁଝାଅ ।
- 11. ବିଘଟନ ପ୍ରତିକ୍ରିୟାକୁ କାହିଁକି ସଂଶ୍ଳେଷଣ ପ୍ରତିକ୍ରିୟାର ବିପରୀତ ବୋଲି କୁହାଯାଏ ? ଏହି ଦୁଇଟି ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ପାଇଁ ରାସାୟନିକ ସମୀକରଣ ଲେଖ ।
- 12. ତାପ, ଆଲୋକ କିୟା ବିଦ୍ୟୁତ୍ ଶକ୍ତି ପ୍ରୟୋଗ ଦ୍ୱାରା ସମ୍ପାଦିତ ହେଉଥିବା ପ୍ରତ୍ୟେକ ବିଘଟନ ପ୍ରତିକ୍ରିୟା ପାଇଁ ରାସାୟନିକ ସମୀକରଣ ଲେଖ ।
- 13. ବିସ୍ଥାପନ ଓ ଦ୍ୱିତ ବିସ୍ଥାପନ ପ୍ରତିକ୍ରିୟା ମଧ୍ୟରେ ପାର୍ଥକ୍ୟ କ'ଶ ? ଏହି ଦୂଇ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ପାଇଁ ରାସାୟନିକ ସମୀକରଣ ଲେଖ ।
- 14. ସିଲ୍ଭର୍ ଶୋଧନରେ, କପର୍ ଧାତୁ ଦ୍ୱାରା ସିଲ୍ଭର୍ ନାଇଟ୍ରେଟ୍ ଦ୍ରବଣରୁ ସିଲ୍ଭର୍କୁ ଅପସାରଣ କରି ସିଲ୍ଭର୍ ନିଷ୍କାସନ କରାଯାଏ । ଏହା ସହିତ ସମ୍ପୃକ୍ତ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାଟିକୁ ଲେଖ ।
- 15. ଅବକ୍ଷେପଣ ପ୍ରତିକ୍ରିୟା କହିଲେ କ'ଣ ବୁଝ ? ଉଦାହରଣ ଦେଇ ବୁଝାଅ।
- 16. ଅକ୍ସିଜେନ୍ ଗ୍ରହଣ ଓ ଅକ୍ସିଜେନ୍ ପରିହାର ଦୃଷ୍ଟିରୁ ନିମ୍ନଲିଖିତ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟା ଦୁଇଟିକୁ ବୁଝାଅ । ପ୍ରତ୍ୟେକ ପାଇଁ ଦୂଇଟି ଲେଖାଏଁ ଉଦାହରଣ ଦିଅ ।
 - (a) ଜାରଣ
 - (b) ବିଜାରଣ
- 17. ଏକ ଉଜ୍ଜ୍ୱଳ ବାଦାମୀ ବର୍ତ୍ତର ମୌଳିକ 'X'କୁ ଗରମ କଲେ କଳା ହୋଇଯାଏ । ମୌଳିକ 'X' ଏବଂ ସୃଷ୍ଟି ହୋଇଥିବା କଳା ଯୌଗିକର ନାମ ଲେଖ ।
- 18. ଲୌହ ନିର୍ମିତ ପଦାର୍ଥଗୁଡିକ ଉପରେ ଆମେ କାହିଁକି ରଙ୍ଗ ଲଗାଇଥାଉଁ ?
- 19. ତିଳ ଓ ଚର୍ବିଯୁକ୍ତ ଖାଦ୍ୟସାମଗ୍ରୀ ଥିବା ଡବା ମଧ୍ୟରେ ନାଇଟ୍ରୋଜେନ୍ ଗ୍ୟାସ୍ କାହିଁକି ପ୍ରବେଶ କରାଯାଇଥାଏ ?
- 20. ପ୍ରତ୍ୟେକ ପାଇଁ ଉଦାହରଣ ଦେଇ ନିମ୍ନଲିଖିତ ପ୍ରତିକ୍ରିୟାକୁ ବୁଝାଅ ।
 - (a) ସଂକ୍ଷାରଣ (Corrosion)
 - (b) ରହଣିଆ ଅବସ୍ଥା (Rancidity)

ମିଳିମିଶି କରିବା

ନିମ୍ନଲିଖ୍ତ କାମଗୁଡିକୁ କର I

- ଚାରୋଟି ବିକର୍ ନିଅ ଏବଂ ସେଗୁଡିକୁ A, B, C ଓ D ଭାବରେ ନାମାଙ୍କିତ କର I
- 25 ମିଲିଲି ଲେଖାଏଁ ଜଳ A, B ଓ C ବିକର୍ରେ ଏବଂ କପର୍ ସଲ୍ଫେଟ୍ ଦ୍ରବଣ D ବିକର୍ରେ ରଖ ।
- ଏହି ବିକର୍ଗୁଡିକରେ ଥିବା ପ୍ରତ୍ୟେକ ତରଳର ତାପମାତ୍ରା ମାପ ଏବଂ ଲେଖିରଖ ।
- ଦୁଇ ଚାମଚ (Spatula) ଲେଖାଏଁ ପୋଟାସିୟମ୍ ସଲ୍ଫେଟ୍, ଏମୋନିୟମ୍ ନାଇଟ୍ରେଟ୍, ନିର୍ଜଳ କପର୍ ସଲ୍ଫେଟ୍ ଏବଂ
 ସରୁ ଲୁହାଗୁଞ ଯଥାକ୍ରମେ A, B, C ଓ D ବିକର୍ରେ ମିଶାଅ ଏବଂ ପ୍ରତ୍ୟେକ ମିଶ୍ରଣକୁ ଘାଞ୍ଜି ଦିଅ ।
- ସର୍ବ ଶେଷରେ ପ୍ରତ୍ୟେକ ମିଶ୍ରଣର ତାପମାତ୍ରା ମାପ ଏବଂ ଲେଖିରଖ ।
 କେଉଁ ରାସାୟନିକ ପ୍ରତିକ୍ରିୟାଗୁଡିକ ତାପଉତ୍ପାଦୀ ଏବଂ କେଉଁଗୁଡିକ ତାପଶୋଷୀ ନିର୍ଣ୍ଣୟ କର ।

COC