

Correction du TD d'Analyse de Fourier.

 $Modia:\,2022\text{--}2023$

Enseignants: Sadok Jerad, Mouhamad Jradeh.

Correction

Exercice 1

1.

Figure 1: Tracé de la fonction f de l'Exercice 1.

2. Calculons $\int_0^{\pi} f(t) \sin(nt) dt$.

$$\int_0^{\pi} f(t)\sin(nt) dt = \int_0^{\pi} \frac{t}{\pi} (1 - \frac{t^2}{\pi^2})\sin(nt) dt$$

$$= \int_0^{\pi} (\frac{1}{\pi n} - \frac{3t^2}{\pi^3 n})\cos(nt) dt$$

$$= \int_0^{\pi} \frac{6t}{\pi^3 n^2} \sin(nt) dt$$

$$= -\cos(n\pi) \frac{6}{\pi^2 n^3} - \int_0^{\pi} \frac{6}{\pi^3 n^3} \cos(nt) dt$$

$$= (-1)^{n+1} \frac{6}{\pi^2 n^3}.$$

Ou on intègre successivement par parties et on utilise le fait que $\int_0^\pi \cos(nt) \, dt = 0$. Or, $\int_{-\pi}^\pi f(t) \sin(nt) \, dt = 2 \int_0^\pi f(t) \sin(nt) \, dt$. Et vu que f est impaire, $\int_{-\pi}^\pi f(t) \cos(nt) \, dt = 0$.

$$\hat{f}(x) = \frac{1}{\pi} \sum_{i=1}^{n} 2 \int_{0}^{\pi} f(t) \sin(nt) dt \sin(nx) = \sum_{i=1}^{n} \underbrace{\frac{12(-1)^{n+1}}{\pi^{3} n^{3}}}_{h_{n}} \sin(nx).$$
 (1)

3. Comme f est continue sur le segment $[-3\pi, 3\pi]$, f est égale à sa série de Fourier. (Théorème de Dirichlet)

4.

Calculons $f\left(\frac{\pi}{2}\right)$ d'une part par sa série de Fourier \hat{f} et la définition de la fonction f.

$$\frac{3}{8} = f\left(\frac{\pi}{2}\right) = \sum_{n=1}^{\infty} \frac{12(-1)^{n+1}}{\pi^3 n^3} \sin\left(n\frac{\pi}{2}\right) = \sum_{n \text{ impaire}} \frac{12(-1)^{n+1}}{\pi^3 n^3} (-1)^{(n-1)/2}$$
$$= \sum_{n \text{ impaire}} \frac{12(-1)^{(n-1)/2}}{\pi^3 n^3}$$

Et donc on obtient alors,

$$\sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)^3} = \frac{\pi^3}{32}.$$

5. D'après la formule de Parseval, on obtient que

$$||f||^2 = \frac{1}{2} \sum_{n=1}^{\infty} b_n^2 = \sum_{n=1}^{+\infty} \frac{72}{\pi^6 n^6}.$$
 (2)

Ou b_n définie dans (1). Calculons $||f||^2$. Comme f est impaire, f^2 est paire, on obtient que:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)^2 dt = \frac{1}{\pi} \int_{0}^{\pi} f(t)^2 dt
= \int_{0}^{\pi} \frac{t^2}{\pi^3} \left(1 - \frac{t^2}{\pi^2} \right)^2 dt
= \int_{0}^{\pi} \frac{t^2}{\pi^3} - 2\frac{t^4}{\pi^5} + \frac{t^6}{\pi^7} dt
= \frac{1}{3\pi^3} \left[t^3 \right]_{0}^{\pi} - \frac{2}{5\pi^5} \left[t^5 \right]_{0}^{\pi} + \frac{1}{7\pi^7} \left[t^7 \right]_{0}^{\pi}
= \frac{8}{105}.$$
(3)

Des deux équations précédentes (3) et (2), on déduit que

$$\sum_{n=1}^{+\infty} \frac{1}{n^6} = \frac{\pi^6}{9*105} = \frac{\pi^6}{945}$$

Exercice 2 1.

2. Calculons $\frac{1}{2\pi} \int_{-\pi}^{\pi} e^x e^{-inx} dx$.

$$\begin{split} \frac{1}{2\pi} \int_{-\pi}^{\pi} e^x e^{-inx} \, dx &= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{x-inx} \, dx \\ &= \frac{1}{2\pi (1-in)} [e^{x-inx}]_{-\pi}^{\pi} \\ &= \frac{(-1)^n \, (e^{\pi} - e^{-\pi})}{2\pi (1-in)} \\ &= \frac{(-1)^n \, (e^{\pi} - e^{-\pi}) \, (1+in)}{2\pi (1+n^2)} \end{split}$$

Figure 2: Tracé de la fonction f Exercice 2.

La série de Fourier \hat{f} s'écrit alors,

$$\hat{f}(x) = \frac{(e^{\pi} - e^{-\pi})}{2\pi} + \sum_{n=1}^{+\infty} \frac{(-1)^n (e^{\pi} - e^{-\pi})}{\pi (1 + n^2)} \left[\cos(nx) + \sin(nx) \right].$$

3. D'après la question précédente $c_n(f) = \frac{(-1)^n \left(e^{\pi} - e^{-\pi}\right)(1+in)}{2\pi(1+n^2)}$. Et donc

$$|c_n(f)|^2 = \frac{(e^{\pi} - e^{-\pi})^2}{4\pi^2(1+n^2)}$$

En utilisant la formule de Parseval

$$\sum_{n=-\infty}^{+\infty} |c_n(f)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)^2 dx$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-2x} dx$$

$$= \frac{e^{2\pi} - e^{-2\pi}}{4\pi} = \frac{(e^{\pi} - e^{-\pi})(e^{\pi} + e^{-\pi})}{4\pi}$$

En simplifiant par $\frac{e^{\pi}-e^{\pi}}{4\pi}$ des deux côtés, on obtient que

$$\sum_{n=-\infty}^{+\infty} \frac{(e^{\pi} - e^{-\pi})}{\pi (1+n^2)} = (e^{\pi} + e^{-\pi})$$
$$\frac{e^{\pi} - e^{-\pi}}{\pi} + 2\sum_{n=1}^{+\infty} \frac{(e^{\pi} - e^{-\pi})}{\pi (1+n^2)} = (e^{\pi} + e^{-\pi})$$

En isolant le terme en $\sum_{n=1}^{+\infty} \frac{1}{n^2+1}$,

$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + 1} = \frac{\pi(e^{\pi} + e^{-\pi})}{(e^{\pi} - e^{-\pi})} - \frac{1}{2}.$$

Autre méthode En utilisant le Théorème de Dirichlet généralisé, f admet des limites à droite et à gauche de π et la fonction dérivée admet aussi des limites à droite et à gauche de π . Alors, $\hat{f}(\pi) = \frac{f(\pi^+) + f(\pi^-)}{2}$. En développant l'expression de $\hat{f}(\pi)$

$$\frac{e^{\pi} + e^{-\pi}}{2} = \hat{f}(\pi) = \frac{(e^{\pi} - e^{-\pi})}{2\pi} + \sum_{n=1}^{+\infty} \frac{(e^{\pi} - e^{-\pi})}{\pi(1+n^2)}.$$

En isolant le terme en $\sum_{n=1}^{+\infty} \frac{1}{n^2+1}$,

$$\sum_{n=1}^{+\infty} \frac{1}{n^2 + 1} = \frac{\pi(e^{\pi} + e^{-\pi})}{(e^{\pi} - e^{-\pi})} - \frac{1}{2}.$$

4. Comme f est continue au voisinage de 0, Par le théorème de Dirichlet, $\hat{f}(0) = f(0)$. On obtient alors,

$$1 = \frac{(e^{\pi} - e^{-\pi})}{2\pi} + \sum_{n=1}^{+\infty} \frac{(-1)^n (e^{\pi} - e^{-\pi})}{\pi (1 + n^2)}.$$

En réarrangeant la dernière équation,

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{(1+n^2)} = \frac{\pi}{(e^{\pi} - e^{-\pi})} - \frac{1}{2}.$$

Exercice 3

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(t)e^{-int} dt$$

$$= \frac{1}{2\pi} \int_0^{\pi} e^{-int} dt$$

$$= \frac{1}{-2\pi i n} [e^{-int}]_0^{\pi}$$

$$= \frac{1}{2\pi i n} (1 - e^{-in\pi})$$

$$= \frac{1}{2\pi i n} (1 - (-1)^n).$$

Calculons $f \star f$.

$$f \star f(x) = \frac{1}{2\pi} \int_0^{2\pi} f(t)f(x-t) dt$$
$$= \frac{1}{2\pi} \int_0^{\pi} f(x-t) dt.$$

Si
$$x \in [0, \pi]$$
,

$$f \star f(x) = \frac{1}{2\pi} \int_0^x f(x-t) dt = \frac{x}{2\pi},$$

si $x \in [\pi, 2\pi]$,

$$f \star f(x) = \frac{1}{2\pi} \int_{x-\pi}^{\pi} f(x-t) dt = \frac{2\pi - x}{2\pi}.$$

Calculons $c_n(f \star f)$.

$$c_{n}(f \star f) = \frac{1}{2\pi} \int_{0}^{2\pi} (f \star f)(t)e^{-int} dt$$

$$= \frac{1}{2\pi} \left[\int_{0}^{\pi} \frac{t}{2\pi} e^{-int} dt + \int_{\pi}^{2\pi} \frac{2\pi - t}{2\pi} e^{-int} dt \right]$$

$$= \frac{1}{2\pi} \left[-\frac{e^{-in\pi}}{2in} + \int_{0}^{\pi} \frac{1}{2\pi in} e^{-int} dt + \frac{e^{-in\pi}}{2in} - \int_{\pi}^{2\pi} \frac{1}{2\pi in} e^{-int} dt \right]$$

$$= \frac{1}{2\pi} \left[\frac{1}{2\pi n^{2}} [e^{-int}]_{0}^{\pi} - \frac{1}{2\pi n^{2}} [e^{-int}]_{\pi}^{2\pi} \right]$$

$$= \frac{1}{4\pi^{2} n^{2}} [-1 + (-1)^{n} - 1 + (-1)^{n}]$$

$$= \frac{-1}{4\pi^{2} n^{2}} (1 - (-1)^{n})^{2} = c_{n}(f) \cdot c_{n}(f).$$

Exercise 4

1. Calculons $\int_0^{2\pi} f(t+a)e^{-int} dt$.

$$\int_0^{2\pi} f(t+a)e^{-int} dt = \int_a^{2\pi+a} f(u)e^{-in(u-a)} du$$

$$= e^{ina} \int_a^{2\pi+a} f(u)e^{-inu} du$$

$$= e^{ina} \int_0^{2\pi} f(u)e^{-inu} du$$

$$= 2\pi e^{ina} c_n(f).$$

On a utilisé le changement de variable u = t + a et le fait que l'intégrale entre a et $2\pi + a$ d'une fonction périodique de période 2π ne dépende pas de a.

2.

$$2\pi |e^{ina}c_n(f) - c_n(f)| = \left| \int_0^{2\pi} (f(t+a) - f(t))e^{-int} dt \right|$$

$$\leq \int_0^{2\pi} \left| (f(t+a) - f(t))e^{-int} \right| dt$$

$$\leq \int_0^{2\pi} C|a|^{\alpha} dt$$

$$\leq C2\pi |a|^{\alpha}.$$

Où on a utilisé le fait que $|e^{-int}|=1$ et la propriété que vérifie f. Pour $a = \frac{\pi}{n}$, La dernière équation donne,

$$2|c_n(f)| \le C \frac{\pi^{\alpha}}{n^{\alpha}}.$$

On obtient le résultat souhaité pour $M := \frac{C\pi^{\alpha}}{2}$.

Exercice 5

$$\begin{split} \hat{f}(\omega) &= \int_{-\infty}^{+\infty} f(t)e^{-i\omega t} \, dt \\ &= \int_{-\infty}^{+\infty} f(t)e^{-i\omega t} \, dt \\ &= \int_{-1}^{1} (1 - |t|)e^{-i\omega t} \, dt \\ &= \int_{-1}^{0} (1 + t)e^{-i\omega t} \, dt + \int_{0}^{1} (1 - t)e^{-i\omega t} \, dt \\ &= -\frac{1}{i\omega} + \frac{1}{i\omega} \int_{-1}^{0} e^{-i\omega t} \, dt + \frac{1}{i\omega} - \frac{1}{i\omega} \int_{0}^{1} e^{-i\omega t} \, dt \\ &= \frac{1}{\omega^{2}} \left[e^{-i\omega t} \right]_{-1}^{0} - \frac{1}{\omega^{2}} \left[e^{-i\omega t} \right]_{0}^{1} \\ &= \frac{2 - e^{i\omega} - e^{-i\omega}}{\omega^{2}} \\ &= \frac{2 - 2\cos(2\frac{\omega}{2})}{\omega^{2}} \\ &= \frac{4\sin^{2}\left(\frac{\omega}{2}\right)}{\omega^{2}} = \frac{\sin^{2}\left(\frac{\omega}{2}\right)}{\left(\frac{\omega}{2}\right)^{2}}. \end{split}$$

En utilisant la formule de Parseval,

$$\int_{-\infty}^{+\infty} f(t)^2 dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(\omega)^2 d\omega.$$

En calculant $\int_{-\infty}^{+\infty} f(t)^2 dt$

$$\int_{-\infty}^{+\infty} f(t)^2 dt = 2 \int_{0}^{1} (1-t)^2 dt = \frac{2}{3}.$$

Alors

$$\int_{-\infty}^{+\infty} \frac{\sin^4\left(\frac{\omega}{2}\right)}{\left(\frac{\omega}{2}\right)^4} d\omega = \frac{4\pi}{3}.$$

Par changement de variable et en utilisant le caractère paire de $\frac{\sin(x)^4}{x^4}$ On obtient alors, $\int_0^{+\infty} \frac{\sin^4(x)}{x^4} d\omega = \frac{\pi}{3}$.

Exercice 6

1.

$$\begin{split} \hat{f}(\omega) &= \int_{-\infty}^{\infty} f(t)e^{-i\omega t} \, dt \\ &= \int_{-\infty}^{\infty} e^{-i\omega t - \alpha|t|} \, dt \\ &= \int_{-\infty}^{0} e^{-i\omega t + \alpha t} \, dt + \int_{0}^{\infty} e^{-i\omega t - \alpha t} \, dt \\ &= \frac{1}{-i\omega + \alpha} \left[e^{-i\omega t + \alpha t} \right]_{-\infty}^{0} + \frac{1}{-i\omega - \alpha} \left[e^{-i\omega t - \alpha t} \right]_{0}^{+\infty} \\ &= \frac{1}{-i\omega + \alpha} - \frac{1}{-i\omega - \alpha} \\ &= \frac{-2\alpha}{-\omega^2 - \alpha^2} \\ &= \frac{2\alpha}{\omega^2 + \alpha^2}. \end{split}$$

2. En utilisant la formule de Transformé de Fourier inverse pour $\alpha=1$

$$e^{-|t|} = \mathcal{F}^{-1}\left(\frac{2}{\omega^2 + 1}\right)(t) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{1}{\omega^2 + 1} e^{i\omega t} d\omega,$$

et donc $\mathcal{F}\left(\frac{1}{1+\omega^2}\right)(t) = \pi e^{-|t|}$.

3. Soit $t \geq 0$.

$$f \star f(t) = \int_{-\infty}^{+\infty} f(u)f(t-u) du$$

$$= \int_{-\infty}^{+\infty} e^{-\alpha|u|} e^{-\alpha|t-u|} du$$

$$= \int_{-\infty}^{+\infty} e^{-\alpha|u|} e^{-\alpha|t-u|} du$$

$$= \int_{-\infty}^{0} e^{\alpha u} e^{\alpha(u-t)} du + \int_{0}^{t} e^{-\alpha u} e^{\alpha(u-t)} du + \int_{t}^{+\infty} e^{-\alpha u} e^{\alpha(t-u)} du$$

$$= \frac{e^{-\alpha t}}{2\alpha} + e^{-\alpha t} t + \frac{e^{-\alpha t}}{2\alpha}$$

$$= e^{-\alpha t} \left(\frac{1}{\alpha} + t\right).$$

Pour $t \leq 0$,

$$f \star f(t) = \int_{-\infty}^{+\infty} f(u)f(t-u) du$$

$$= \int_{-\infty}^{+\infty} e^{-\alpha|u|} e^{-\alpha|t-u|} du$$

$$= \int_{-\infty}^{+\infty} e^{-\alpha|u|} e^{-\alpha|t-u|} du$$

$$= \int_{-\infty}^{t} e^{\alpha u} e^{\alpha(u-t)} du + \int_{t}^{0} e^{-\alpha u} e^{\alpha(t-u)} du + \int_{0}^{+\infty} e^{-\alpha u} e^{\alpha(t-u)} du$$

$$= \frac{e^{\alpha t}}{2} - e^{\alpha t} t + \frac{e^{\alpha t}}{2}$$

$$= e^{\alpha t} \left(\frac{1}{\alpha} - t\right).$$

et donc pour $\alpha = 1$, $f \star f(t) = e^{-|t|}(1+|t|)$. Or

$$\mathcal{F}(f \star f)(\omega) = \mathcal{F}(f)(\omega) \cdot \mathcal{F}(f)(\omega) = \frac{4}{(\omega^2 + 1)^2},$$

En utilisant la formule de transformée inverse sur $f \star f$,

$$e^{-|t|}(1+|t|) = \mathcal{F}^{-1}\left(\frac{4}{(\omega^2+1)^2}\right) = \frac{2}{\pi} \int_{-\infty}^{+\infty} \frac{e^{i\omega t}}{(\omega^2+1)^2} d\omega.$$

Et donc $\mathcal{F}\left(\frac{1}{(1+x^2)^2}\right)(t) = \frac{\pi e^{-|t|}}{2}(1+|t|).$

4. On a $\frac{x}{(1+x^2)^2} = -\frac{1}{2} \left(\frac{1}{1+x^2}\right)'$. Et comme $\frac{1}{1+x^2}$ et $\frac{x}{(1+x^2)^2}$ sont intégrables, on peut appliquer la formule de la transformée de Fourier de la dérivée (On peut la prouver facilement par une intégration par partie cf: Exercice 7)

$$\mathcal{F}\left(\frac{x}{(1+x)^2}\right)(t) = -\frac{it\pi e^{-|t|}}{2}.$$

Exercice 6

1. Par récurrence pour p=0, comme f est dans $L^1(\mathbb{R})$, la fonction \hat{f} est continue. Supposons que \hat{f} est de classe \mathscr{C}^p et que $\hat{f}^{(k)}=\hat{g}_k, 0\leq k\leq p$ avec $g_k=(-ix)^kf(x)$. Montrons que f est de classe \mathscr{C}^{p+1} et que $\hat{f}^{(p+1)}=(-ix)^{p+1}f(x)$.

Par hypothèse de récurrence,

$$\hat{f}^{(p)}(\xi) = \int_{-\infty}^{+\infty} (-ix)^p e^{-ix\xi} f(x) dx.$$

Soit $\phi(x,\xi) = (-ix)^p e^{-ix\xi} f(x)$. ϕ est dérivable par rapport à ξ et $\frac{\partial \phi}{\partial \xi} = (-ix)^{p+1} e^{-ix\xi} f(x)$. Et,

$$|(-ix)^{p+1}e^{-ix\xi}f(x)| \le |x^{p+1}f(x)|.$$

Comme $f \in \mathscr{C}^0(\mathbb{R})$, $|x^{p+1}f|$ est intégrable au voisinage de zéro. Et comme $|x^{p+1}f(x)| = \mathcal{O}\left(\frac{1}{x^2}\right)$ (Par hypothèse), $x^{p+1}f$ est intégrable sur \mathbb{R} . Par le théorème de dérivation sous signe intégrale, $\hat{f}^{(p)}$ est dérivable et

$$\hat{f}^{(p+1)}(\xi) = \int_{-\infty}^{+\infty} (-ix)^{p+1} e^{-ix\xi} f(x) \, dx.$$

Alors, par récurrence, pour tout $p \in \mathbb{N}$, $\hat{f} \in \mathscr{C}^p(\mathbb{R})$.

2. Pour k=0, le résultat est vérifié. Par réccurence, supposons le résultat vrai pour $\widehat{f^{(k)}}$ et montrons le résultat de $\widehat{f^{(k+1)}}$. Comme

$$f^{k}(x) - f^{k}(0) = \int_{0}^{x} f^{(k+1)}(t) dt.$$

Comme $f^{(k+1)} \in L^1(\mathbb{R})$ (par hypothèse), $f^k(x)$ admet des limites en $+\infty$ et $-\infty$ dénotées respectivement l_1 et l_2 . Or $f^{(k)} \in L^1(\mathbb{R})$, donc $l_1 = l_2 = 0$. Calculons $\widehat{f^{(k+1)}}$

$$\int_{-\infty}^{+\infty} f^{(k+1)}(x)e^{-ix\xi} dx = \left[f^{(k)}e^{-ix\xi} \right]_{-\infty}^{+\infty} + i\xi \int_{-\infty}^{+\infty} f^{(k)}e^{-ix\xi} dx$$

$$= i\xi \int_{-\infty}^{+\infty} f^{(k)}e^{-ix\xi} dx$$

$$= \int_{-\infty}^{+\infty} (i\xi)^k f(x)e^{-ix\xi} dx$$

$$= (i\xi)^{k+1} \hat{f}.$$

3. Vu que pour tout $p,q \in \mathbb{N}$, $\sup_{x \in \mathbb{R}} |x^p f^{(q)}(x)| < +\infty$, $f^{(q)}$ est dans $\mathcal{S}(\mathbb{R})$. Soit g(x) = P(x)f(x). Clairement, $g \in \mathscr{C}^{\infty}$. On peut facilement

montrer par récurrence que $g^{(p)}(x) = Q_p(x)R_p(f)(x)$. Ou Q et R sont deux polynômes. Par les hypothèses que vérifient $f, g \in \mathcal{S}(\mathbb{R})$.

4. Comme pour tout $p, q \in \mathbb{N}$, $\sup_{x \in \mathbb{R}} |x^p f^{(q)}(x)| < +\infty$. Par la première question, $\hat{f} \in \mathscr{C}^{\infty}(\mathbb{R})$. Soit $p, k \in \mathbb{N}$. En utilisant la deuxième question et la première question,

$$(i\xi)^k \hat{f}^{(p)} = (i\xi)^k \hat{g}_p = \widehat{g_p^{(k)}}.$$

Avec $g_p(x) = (-ix)^p f(x)$. Vu que $g_p^{(k)} \in \mathcal{S}(\mathbb{R})$ (i.e : Dérivée kème d'un produit de polynômes et d'une fonction f dans $\mathcal{S}(\mathbb{R})$), alors

$$\exists M, M' > 0, |g_p^{(k)}(x)| \le \min(M, \frac{M'}{x^2}).$$

Et donc

$$|(i\xi)^k \hat{f}^{(p)}(\xi)| = \left| \int_{-\infty}^{+\infty} e^{-i\xi x} g_p^{(k)}(x) \, dx \right|$$

$$\leq \int_{-1}^1 |g_p^{(k)}(x)| \, dx + \int_{-\infty}^{-1} |g_p^{(k)}(x)| \, dx + \int_{1}^{+\infty} |g_p^{(k)}(x)| \, dx$$

$$\leq \int_{-1}^1 M \, dx + \int_{-\infty}^{-1} \frac{M'}{x^2} \, dx + \int_{1}^{+\infty} \frac{M'}{x^2} \, dx$$

$$\leq 2M + 2M' < +\infty.$$

Et donc

$$\forall p, k \in \mathbb{N}, \sup_{\xi \in \mathbb{R}} |(i\xi)^k \hat{f}^{(p)}| < +\infty.$$

Et comme on a démontré que $\hat{f} \in \mathscr{C}^{\infty}(\mathbb{R}), \ \hat{f} \in \mathcal{S}(\mathbb{R}).$

5. Soit $\psi_a(x) = e^{-ax^2}$. ψ_a vérifie

$$\psi_a'(x) = -2axe^{-ax^2} = -2ax\psi_a(x). \tag{4}$$

Comme $\psi'_a \in L^1(\mathbb{R})$ et $\sup_{x \in \mathbb{R}} |x\psi_a(x)| < +\infty$, en prenant la transformée de Fourier dans (4) et en appliquant les formules de la première et deuxième questions

$$\widehat{\psi_a'(x)} = -2\widehat{ax\psi_a}(x)$$

$$i\xi\widehat{\psi_a}(\xi) = \frac{2a}{i} - \widehat{ix\psi_a}(x)$$

$$-\frac{\xi}{2a}\widehat{\psi_a}(\xi) = \left(\widehat{\psi_a}\right)'(\xi)$$

Et comme

$$\widehat{\psi_a}(0) = \int_{-\infty}^{+\infty} e^{-ax^2} \, dx = \sqrt{\frac{\pi}{a}}.$$

Et donc $\widehat{\psi}_a(\xi) = \sqrt{\frac{\pi}{a}} e^{-\frac{\xi^2}{4a}}$,

$$\int_{-\infty}^{+\infty} \widehat{\psi_a}(\xi) \, d\xi = \sqrt{\frac{\pi}{a}} \int_{-\infty}^{+\infty} e^{-\frac{\xi^2}{4a}} \, d\xi = \sqrt{\frac{\pi}{a}} \sqrt{4a\pi} = 2\pi.$$

6.a

$$\begin{split} \int_{-\infty}^{+\infty} e^{ix\xi} \hat{f}(\xi) \Phi(\xi) \, d\xi &= \int_{-\infty}^{+\infty} e^{ix\xi} \int_{-\infty}^{+\infty} e^{-iy\xi} f(y) \, dy \, \Phi(\xi) \, d\xi \\ &= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-iy\xi + ix\xi} f(y) \, dy \right) \Phi(\xi) \, d\xi \\ &= \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} e^{-iy\xi + ix\xi} \Phi(\xi) \, d\xi \right) f(y) \, dy \\ &= \int_{-\infty}^{+\infty} \hat{\Phi}(y - x) f(y) \, dy \\ &= \int_{-\infty}^{+\infty} \hat{\Phi}(y) f(y + x) \, dy. \end{split}$$

Où on a utilisé le Théorème de Fubini pour invertir les deux intégrales. Vérifions que les conditions du théorème sont valides. Comme,

$$|e^{-iy\xi+ix\xi}f(y)\Phi(\xi)| \le |f(y)||\Phi(\xi)|$$

Et comme $f \in \mathcal{S}(\mathbb{R})$ et $\Phi \in \mathcal{S}(\mathbb{R})$, $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} |f(y)| |\Phi(\xi)| dy d\xi < \infty$. (f continue et $f(x) = \mathcal{O}(\frac{1}{x^2})$ en l'infini de même pour Φ .)

6.b Remplaçons $\Phi(t)$ par $\Phi_0(\epsilon t)$ dans l'égalité de la dernière question.

$$\int_{-\infty}^{+\infty} e^{ix\xi} \hat{f}(\xi) \Phi_0(\epsilon \xi) d\xi = \int_{-\infty}^{+\infty} \widehat{\Phi_0(\epsilon t)}(y) f(y+x) dy = \int_{-\infty}^{+\infty} \frac{1}{\epsilon} \widehat{\Phi_0}(\frac{y}{\epsilon}) f(y+x) dy$$
(5)

La dernière égalité vient d'un simple changement de variable dans la transformé de Fourier de $\widehat{\Phi_0(\epsilon t)}$. (propriété de contraction du domaine de la transformée de Fourier).

Soit $\epsilon_1 > 0$. Φ est continue en 0, il existe $\epsilon > 0$ tel que $\forall \xi \in [-\sqrt{\epsilon}, \sqrt{\epsilon}], |\Phi(\xi) - \Phi(0)| \le \epsilon_1$ et dénotons

$$M = \sup_{\xi \in \mathbb{R}} |\Phi_0(\xi) - \Phi_0(0)| \tag{6}$$

 $M<+\infty$ car $\Phi_0\in\mathcal{S}(\mathbb{R})$. Étudions la limite de $\int_{-\infty}^{+\infty}e^{ix\xi}\hat{f}(\xi)\Phi_0(\epsilon\xi)\,d\xi$ quand $\epsilon\to 0$. En divisant l'intégrale en 3 morceaux et en utilisant la continuité de Φ en 0 et la définition de M,

$$\left| \int_{-\infty}^{+\infty} e^{ix\xi} \hat{f}(\xi) (\Phi_0(\epsilon\xi) - \Phi_0(0)) d\xi \right| \leq \left| \int_{-\frac{1}{\sqrt{\epsilon}}}^{\frac{1}{\sqrt{\epsilon}}} e^{ix\xi} \hat{f}(\xi) (\Phi_0(\epsilon\xi) - \Phi_0(0)) d\xi \right|$$

$$+ \left| \int_{-\infty}^{-\frac{1}{\sqrt{\epsilon}}} e^{ix\xi} \hat{f}(\xi) (\Phi_0(\epsilon\xi) - \Phi_0(0)) d\xi \right|$$

$$+ \left| \int_{\frac{1}{\sqrt{\epsilon}}}^{+\infty} e^{ix\xi} \hat{f}(\xi) (\Phi_0(\epsilon\xi) - \Phi_0(0)) d\xi \right|$$

$$\leq \int_{-\frac{1}{\sqrt{\epsilon}}}^{\frac{1}{\sqrt{\epsilon}}} \left| \hat{f}(\xi) (\Phi_0(\epsilon\xi) - \Phi_0(0)) \right| d\xi$$

$$+ \int_{-\infty}^{-\frac{1}{\sqrt{\epsilon}}} \left| \hat{f}(\xi) (\Phi_0(\epsilon\xi) - \Phi_0(0)) \right| d\xi$$

$$+ \int_{\frac{1}{\sqrt{\epsilon}}}^{+\infty} \left| \hat{f}(\xi) (\Phi_0(\epsilon\xi) - \Phi_0(0)) \right| d\xi$$

$$\leq \epsilon_1 \int_{-\frac{1}{\sqrt{\epsilon}}}^{\frac{1}{\sqrt{\epsilon}}} \left| \hat{f}(\xi) \right| d\xi$$

$$+ M \int_{-\infty}^{-\frac{1}{\sqrt{\epsilon}}} \left| \hat{f}(\xi) \right| d\xi$$

$$\leq \epsilon_1 \int_{-\infty}^{+\infty} \left| \hat{f}(\xi) \right| d\xi$$

$$+ M \int_{-\infty}^{-\frac{1}{\sqrt{\epsilon}}} \left| \hat{f}(\xi) \right| d\xi$$

$$+ M \int_{-\infty}^{+\infty} \left| \hat{f}(\xi) \right| d\xi$$

Et comme \hat{f} est intégrable sur \mathbb{R} , $\int_{-\infty}^{-\frac{1}{\sqrt{\epsilon}}} |\hat{f}(\xi)| d\xi$ et $\int_{\frac{1}{\sqrt{\epsilon}}}^{+\infty} |\hat{f}(\xi)| d\xi$ tendent vers 0 quand $\epsilon \to 0$. Et donc pour ϵ suffisamment petit, (7) devient

$$\left| \int_{-\infty}^{+\infty} e^{ix\xi} \hat{f}(\xi) (\Phi_0(\epsilon\xi) - \Phi_0(0)) d\xi \right| \le 3\epsilon_1 \int_{-\infty}^{+\infty} |\hat{f}(\xi)|.$$

Et donc

$$\int_{-\infty}^{+\infty} e^{ix\xi} \hat{f}(\xi) \Phi_0(\epsilon\xi) d\xi \to \Phi_0(0) \int_{-\infty}^{+\infty} e^{ix\xi} \hat{f}(\xi) d\xi, \ \epsilon \to 0.$$
 (8)

Calculons la limite de $\int_{-\infty}^{+\infty} \frac{1}{\epsilon} \widehat{\Phi}_0(\frac{y}{\epsilon}) f(y+x) dy$ quand ϵ tend vers 0. Comme

$$\int_{-\infty}^{+\infty} \frac{1}{\epsilon} \widehat{\Phi_0}(\frac{y}{\epsilon}) f(y+x) \, dy = \int_{-\infty}^{+\infty} \widehat{\Phi_0}(u) f(\epsilon u + x) \, du,$$

par un raisonnement similaire que précédemment et en utilisant le fait que f est continue en x et bornée sur \mathbb{R} et que $\hat{\Phi}$ est intégrable sur \mathbb{R} (car $\hat{\Phi}$, $f \in \mathcal{S}(\mathbb{R})$), on peut montrer que

$$\int_{-\infty}^{+\infty} \widehat{\Phi_0}(u) f(\epsilon u + x) \, du = f(x) \int_{-\infty}^{+\infty} \widehat{\Phi_0}(u) \, du. \tag{9}$$

En injectant (9) et (8) dans (5), on obtient le résultat souhaité.

6.c On choisit $\Phi_0(t)=e^{-t^2}$, et en utilisant les résultats de la question précédente et de la question 5 pour calculer $\int_{-\infty}^{+\infty} \widehat{\Phi_0}(u) du$, on obtient que

$$\int_{-\infty}^{\infty} e^{ix\xi} \widehat{f}(\xi) d\xi = f(x) \int_{-\infty}^{+\infty} \widehat{\Phi_0}(u) du = f(x) 2\pi$$

En réarrangent la dernière équation, on obtient le résultat souhaité (La formule de la transformée de Fourier inverse pour $f \in \mathcal{S}(\mathbb{R})$).