Graph Theory Research

Conor Shortt March 2020

Contents

1	Introduction	3
	1.1 GitHub Repository	3
2	Thompson's Construction 2.1 Example NFA's	4 5

1 Introduction

This document contains the research I have done as part of my Graph Theory Project. Our project involves writing a program in Python to execute regular expressions on strings using an algorithm known as Thompson's construction, named after the well-known computer scientist Ken Thompson.

Figure 1: NFA Example for regex a.b|b*

1.1 GitHub Repository

 $\cdot\ https://github.com/conorshortt123/graphtheory-project-repo$

2 Thompson's Construction

Figure 2: Ken Thompson

[1] [2] Thompson's construction algorithm, is a way of converting a regular expression into equivalent non-deterministic finite automaton. NFA's are used to match strings against regular expressions. This algorithm is credited to Ken Thompson but can also be called the McNaughton-Yamada-Thompson algorithm.

Regex and NFA's are two representations of formal languages. (A formal language in computer science consists of words whose letters are taken from an alphabet and are well formed according to a specific set of rules.) Text processors use regular expressions to describe advanced search patterns, NFA's are better suited for execution using a computer, therefore Thompson's algorithm has a practical interest in relation to executing regular expressions.

2.1 Example NFA's

Figure 3: NFA Example for regex b*

Figure 4: NFA Example for a concatenation regex

Figure 5: NFA Example for a Union regex

These are examples of NFA fragments. NFA fragments can be combined together to form larger NFA's.

Figure 3:

As you can see in figure 3, this is an example of an NFA fragment for the Kleene star. The Kleene star is a unary operator, it is widely used for regular expressions, which is the context in which it was introduced by Stephen Kleene to characterize certain automata, where it means "zero or more".

Figure 4:

In figure 4 is an example of an NFA fragment for a concatenation regular expression. Concatenation combines fragments so the NFA can use multiple operators.

Figure 5:

In figure 5 is an example of an NFA fragment for a union regular expression. The union operator acts as an OR gate, which will accept one of two different inputs.

References

- $[1] \ \ Ian \ McLoughlin. \ https://github.com/ianmcloughlin.$
- $[2] \ \ Wikipedia. \ https://en.wikipedia.org/wiki/thompson$