```
SHA-3 Derived Functions
  cSHAKE
  KMAC
  TupleHash
  ParallelHash
TupleHashXOF:
  Sample #1
Security Strength: 128-bits
Number of Tuples: 2
Tuple 1
  00 01 02
Tuple 2
  10 11 12 13 14 15
Requested output length is 256-bits
S (as a character string) is
  "(null)"
Encoded X[1]
  01 18 00 01 02
Encoded X[2]
  01 30 10 11 12 13 14 15
Encoded N
  01 48 54 75 70 6C 65 48 61 73 68
Encoded S
  01 00
bytepad data
  01 A8 01 48 54 75 70 6C 65 48 61 73 68 01 00 00
  00 00 00 00 00 00 00 00
About to Absorb data
State (in bytes)
```

Data to be absorbed

Xor'd state (in bytes)

After Permutation

19 EE 26 92 79 BC E2 ED EB 0E F8 9E 4B F8 84 AF DD AD F9 62 00 C6 C4 AC 6D D7 9F BD 11 CF B7 D1 5F 27 0D DA 8A 35 9B 05 48 BE 64 A7 57 D6 FC 33 29 BC 3C FD DE 4B 94 C4 47 E3 9C 9F 28 C9 01 0F 17 69 B5 BA 61 3F 1F 10 AA C6 AD 40 11 C5 7E 48 09 93 74 F9 27 4E C6 6C C0 13 0D D2 50 61 12 66 9B F8 F8 46 36 89 21 E9 5D CE 53 41 13 8E 06 F5 10 3F AB F5 52 8C F0 7C DF CE 8D E8 D9 D4 B4 D0 EE 68 24 9E 17 71 57 90 EB D3 11 52 C9 5C BC 62 D6 B0 E4 95 D2 1A 1A 20 47 42 1F D3 58 BD 45 BE

62 72 DD 3B 7D 4B B9 D3 A6 02 8A C6 9F 64 FE B3 43 1B D3 78 D4 C4 5F 6A 5A 43 58 2A F6 94 FE FF CA 44 68 B9 5C 3E F0 9E

about to call last of the absorb phase

_

About to Absorb data State (in bytes)

19 EE 26 92 79 BC E2 ED EB 0E F8 9E 4B F8 84 AF DD AD F9 62 00 C6 C4 AC 6D D7 9F BD 11 CF B7 D1 5F 27 0D DA 8A 35 9B 05 48 BE 64 A7 57 D6 FC 33 29 BC 3C FD DE 4B 94 C4 47 E3 9C 9F 28 C9 01 0F 17 69 B5 BA 61 3F 1F 10 AA C6 AD 40 11 C5 7E 48 09 93 74 F9 27 4E C6 6C C0 13 0D D2 50 61 12 66 9B F8 F8 46 36 89 21 E9 5D CE 53 41 13 8E 06 F5 10 3F AB F5 52 8C F0 7C DF CE 8D E8 D9 D4 B4 D0 EE 68 24 9E 17 71 57 90 EB D3 11 52 C9 5C BC 62 D6 B0 E4 95 D2 1A 1A 20 47 42 1F D3 58 BD 45 BE 62 72 DD 3B 7D 4B B9 D3 A6 02 8A C6 9F 64 FE B3 43 1B D3 78 D4 C4 5F 6A 5A 43 58 2A F6 94 FE FF CA 44 68 B9 5C 3E F0 9E

Data to be absorbed

Xor'd state (in bytes)

18 F6 26 93 7B BD D2 FD FA 1C EB 8A 5E F8 85 AB DD AD F9 62 00 C6 C4 AC 6D D7 9F BD 11 CF B7 D1 5F 27 0D DA 8A 35 9B 05 48 BE 64 A7 57 D6 FC 33 29 BC 3C FD DE 4B 94 C4 47 E3 9C 9F 28 C9 01 0F 17 69 B5 BA 61 3F 1F 10 AA C6 AD 40 11 C5 7E 48 09 93 74 F9 27 4E C6 6C C0 13 0D D2 50 61 12 66 9B F8 F8 46 36 89 21 E9 5D CE 53 41 13 8E 06 F5 10 3F AB F5 52 8C F0 7C DF CE 8D E8 D9 D4 B4 D0 EE 68 24 9E 17 71 57 90 EB D3 11 52 C9 5C BC 62 D6 B0 E4 95 D2 1A 1A 20 47 42 1F D3 58 BD 45 BE 62 72 DD 3B 7D 4B B9 53 A6 02 8A C6 9F 64 FE B3 43 1B D3 78 D4 C4 5F 6A 5A 43 58 2A F6 94 FE FF CA 44 68 B9 5C 3E F0 9E

After Permutation

2F 10 3C D7 C3 23 20 35 34 95 C6 8D E1 A8 12 92

45 C6 32 5F 6F 2A 3D 60 8D 92 17 9C 96 E6 84 88 3A FA 64 C0 9E EC 71 C6 36 52 71 56 34 E7 C0 E5 EF 27 8C 0D E6 62 80 4A 28 4A 9F 7E 84 7F 37 B9 26 22 D7 EB 55 18 9A 3F 05 47 88 82 7E 82 A8 BC E3 6A FC DD 20 5C 2D 6D 0D 4B E0 4F 1D 7F 56 BC 57 CD D6 EC 30 7B 08 8C D9 76 4E 95 FA C7 76 FA 1C 2B 1C 09 18 AA D1 C4 16 2E A8 7A B9 7E 52 6D 24 D1 35 9E 39 4D 21 3A C4 74 6B E4 81 EC F0 1C 14 08 05 C9 13 BC 5F A5 F0 6E F6 81 67 03 9F A7 4B C3 BA 90 5F 67 EB 44 06 E4 54 8C 77 24 64 76 C9 52 FE E0 00 DE DF 5A 30 76 C5 6C 7E A7 B5 AA E6 38 D1 DF 85 1B 71 A8

Outval is

2F 10 3C D7 C3 23 20 35 34 95 C6 8D E1 A8 12 92 45 C6 32 5F 6F 2A 3D 60 8D 92 17 9C 96 E6 84 88

TupleHashXOF: Sample #2

Security Strength: 128-bits

Number of Tuples: 2

Tuple 1 00 01 02

Tuple 2

10 11 12 13 14 15

Requested output length is 256-bits

S (as a character string) is "My Tuple App"

, "F ' FF

Encoded X[1]

01 18 00 01 02

Encoded X[2]

01 30 10 11 12 13 14 15

Encoded N

01 48 54 75 70 6C 65 48 61 73 68

Encoded S

01 60 4D 79 20 54 75 70 6C 65 20 41 70 70

bytepad data

01 A8 01 48 54 75 70 6C 65 48 61 73 68 01 60 4D 79 20 54 75 70 6C 65 20 41 70 70 00 00 00 00 00

About to Absorb data

State (in bytes)

Data to be absorbed

Xor'd state (in bytes)

After Permutation

6F 92 C7 41 FD F3 22 6F A1 AC EB F5 AB D1 81 C3 AE 04 2B 5E C6 03 92 D3 16 B5 CC F5 6C 1E A4 B1 16 22 57 38 89 A7 7B BE B1 9D F1 3D 24 89 86 39 09 E7 EB EF 03 56 8A 96 39 C4 EC 06 A8 9E D4 02 6E 10 90 83 86 D4 D5 AD B2 00 84 89 36 F6 F2 66 A6 B0 93 0B 7B D2 52 13 C6 53 42 20 E5 25 92 21 9F 83 D0 A9 44 0C 70 4A F3 4D 3C 7A 33 B1 91 1D 51 FB EE 20 1C CC 57 F2 41 BC 2E AE C2 BF D0 A2 DB A5 0E D4 A9 84 E7 AA C1 B2 B7 E5 1C 93 5A 9E 7A F8 00 93 5B 6F FA 0E 8A DE 7B EA C7 11 29 AF BE C3 40 47 B1 8D CA 84 D3 47 9A 47 E7 43 52 36 7E 9B AE 6C 7C 97 BB 55 54 3F 2F 09 F7 76 FC E8 05 CC E4 F6 85 3F 2B 17

about to call last of the absorb phase

•

About to Absorb data State (in bytes)

6F 92 C7 41 FD F3 22 6F A1 AC EB F5 AB D1 81 C3 AE 04 2B 5E C6 03 92 D3 16 B5 CC F5 6C 1E A4 B1 16 22 57 38 89 A7 7B BE B1 9D F1 3D 24 89 86 39 09 E7 EB EF 03 56 8A 96 39 C4 EC 06 A8 9E D4 02 6E 10 90 83 86 D4 D5 AD B2 00 84 89 36 F6 F2 66 A6 B0 93 0B 7B D2 52 13 C6 53 42 20 E5 25 92 21 9F 83 D0 A9 44 0C 70 4A F3 4D 3C 7A 33 B1 91 1D 51 FB EE 20 1C CC 57 F2 41 BC 2E AE C2 BF D0 A2 DB A5 0E D4 A9 84 E7 AA C1 B2 B7 E5 1C 93 5A 9E 7A F8 00 93 5B 6F FA 0E 8A DE 7B EA C7 11 29 AF BE C3 40 47 B1 8D CA 84 D3 47 9A 47 E7 43 52 36 7E 9B AE 6C 7C 97 BB 55 54 3F 2F 09 F7 76 FC E8 05 CC E4 F6 85 3F 2B 17

Data to be absorbed

Xor'd state (in bytes)

6E 8A C7 40 FF F2 12 7F B0 BE F8 E1 BE D1 80 C7 AE 04 2B 5E C6 03 92 D3 16 B5 CC F5 6C 1E A4 B1 16 22 57 38 89 A7 7B BE B1 9D F1 3D 24 89 86 39 09 E7 EB EF 03 56 8A 96 39 C4 EC 06 A8 9E D4 02 6E 10 90 83 86 D4 D5 AD B2 00 84 89 36 F6 F2 66 A6 B0 93 0B 7B D2 52 13 C6 53 42 20 E5 25 92 21

9F 83 D0 A9 44 0C 70 4A F3 4D 3C 7A 33 B1 91 1D 51 FB EE 20 1C CC 57 F2 41 BC 2E AE C2 BF D0 A2 DB A5 0E D4 A9 84 E7 AA C1 B2 B7 E5 1C 93 5A 9E 7A F8 00 93 5B 6F FA 0E 8A DE 7B EA C7 11 29 AF BE C3 40 47 B1 8D CA 04 D3 47 9A 47 E7 43 52 36 7E 9B AE 6C 7C 97 BB 55 54 3F 2F 09 F7 76 FC E8 05 CC E4 F6 85 3F 2B 17

After Permutation

3F C8 AD 69 45 31 28 29 28 59 A1 8B 6C 67 D7 AD 85 F0 1B 32 81 5E 22 CE 83 9C 49 EC 37 4E 9B 9A 41 3B EA BD 8F 84 CD 94 9C 52 FE 39 47 83 5F FD 07 D3 55 6F 48 9F 87 82 54 34 9A 0E 07 55 94 34 3E 5B EF BC 81 FB 96 C5 59 21 59 8B 64 1E A9 08 42 87 37 40 C0 09 92 CD 6F B4 90 02 4E 14 D2 2D 55 8E 8D 44 70 0F 1C FD A1 11 D9 02 AE DB 08 8D 08 17 31 04 11 AB D9 CC 52 C6 70 16 EB 1A 11 02 D0 8E 49 69 1C 52 07 15 A8 78 24 97 F2 72 AF 96 8E 00 2D 43 26 61 42 DA 73 00 CB 29 08 E2 11 B2 CA B5 77 09 46 57 C7 C7 78 63 01 10 E6 EA DF 1F 5C 74 A1 44 85 DB 28 CC 7E F3 2D CF 8F 1E 10 7A 4A FC 82 80 A0 90 E1 2E

Outval is

3F C8 AD 69 45 31 28 29 28 59 A1 8B 6C 67 D7 AD 85 F0 1B 32 81 5E 22 CE 83 9C 49 EC 37 4E 9B 9A

TupleHashXOF: Sample #3

Security Strength: 128-bits

Number of Tuples: 3

Tuple 1 00 01 02

Tuple 2 10 11 12 13 14 15

Tuple 3 20 21 22 23 24 25 26 27 28

Requested output length is 256-bits

S (as a character string) is "My Tuple App"

Encoded X[1] 01 18 00 01 02

```
Encoded X[2]
 01 30 10 11 12 13 14 15
Encoded X[3]
 01 48 20 21 22 23 24 25 26 27 28
Encoded N
 01 48 54 75 70 6C 65 48 61 73 68
Encoded S
 01 60 4D 79 20 54 75 70 6C 65 20 41 70 70
bytepad data
 01 A8 01 48 54 75 70 6C 65 48 61 73 68 01 60 4D
 79 20 54 75 70 6C 65 20 41 70 70 00 00 00 00 00
 00 00 00 00 00 00 00 00
About to Absorb data
State (in bytes)
 00 00 00 00 00 00 00 00
Data to be absorbed
 01 A8 01 48 54 75 70 6C 65 48 61 73 68 01 60 4D
 79 20 54 75 70 6C 65 20 41 70 70 00 00 00 00 00
 00 00 00 00 00 00 00 00
Xor'd state (in bytes)
```

After Permutation

6F 92 C7 41 FD F3 22 6F A1 AC EB F5 AB D1 81 C3
AE 04 2B 5E C6 03 92 D3 16 B5 CC F5 6C 1E A4 B1
16 22 57 38 89 A7 7B BE B1 9D F1 3D 24 89 86 39
09 E7 EB EF 03 56 8A 96 39 C4 EC 06 A8 9E D4 02
6E 10 90 83 86 D4 D5 AD B2 00 84 89 36 F6 F2 66
A6 B0 93 0B 7B D2 52 13 C6 53 42 20 E5 25 92 21
9F 83 D0 A9 44 0C 70 4A F3 4D 3C 7A 33 B1 91 1D
51 FB EE 20 1C CC 57 F2 41 BC 2E AE C2 BF D0 A2
DB A5 0E D4 A9 84 E7 AA C1 B2 B7 E5 1C 93 5A 9E
7A F8 00 93 5B 6F FA 0E 8A DE 7B EA C7 11 29 AF
BE C3 40 47 B1 8D CA 84 D3 47 9A 47 E7 43 52 36
7E 9B AE 6C 7C 97 BB 55 54 3F 2F 09 F7 76 FC E8
05 CC E4 F6 85 3F 2B 17

about to call last of the absorb phase

-

About to Absorb data

State (in bytes)

6F 92 C7 41 FD F3 22 6F A1 AC EB F5 AB D1 81 C3 AE 04 2B 5E C6 03 92 D3 16 B5 CC F5 6C 1E A4 B1 16 22 57 38 89 A7 7B BE B1 9D F1 3D 24 89 86 39 09 E7 EB EF 03 56 8A 96 39 C4 EC 06 A8 9E D4 02 6E 10 90 83 86 D4 D5 AD B2 00 84 89 36 F6 F2 66 A6 B0 93 0B 7B D2 52 13 C6 53 42 20 E5 25 92 21 9F 83 D0 A9 44 0C 70 4A F3 4D 3C 7A 33 B1 91 1D 51 FB EE 20 1C CC 57 F2 41 BC 2E AE C2 BF D0 A2 DB A5 0E D4 A9 84 E7 AA C1 B2 B7 E5 1C 93 5A 9E 7A F8 00 93 5B 6F FA 0E 8A DE 7B EA C7 11 29 AF BE C3 40 47 B1 8D CA 84 D3 47 9A 47 E7 43 52 36 7E 9B AE 6C 7C 97 BB 55 54 3F 2F 09 F7 76 FC E8 05 CC E4 F6 85 3F 2B 17

Data to be absorbed

Xor'd state (in bytes)

6E 8A C7 40 FF F2 12 7F B0 BE F8 E1 BE D0 C9 E3 8F 26 08 7A E3 25 B5 FB 16 B4 C8 F5 6C 1E A4 B1 16 22 57 38 89 A7 7B BE B1 9D F1 3D 24 89 86 39 09 E7 EB EF 03 56 8A 96 39 C4 EC 06 A8 9E D4 02 6E 10 90 83 86 D4 D5 AD B2 00 84 89 36 F6 F2 66 A6 B0 93 0B 7B D2 52 13 C6 53 42 20 E5 25 92 21 9F 83 D0 A9 44 0C 70 4A F3 4D 3C 7A 33 B1 91 1D 51 FB EE 20 1C CC 57 F2 41 BC 2E AE C2 BF D0 A2 DB A5 0E D4 A9 84 E7 AA C1 B2 B7 E5 1C 93 5A 9E 7A F8 00 93 5B 6F FA 0E 8A DE 7B EA C7 11 29 AF BE C3 40 47 B1 8D CA 04 D3 47 9A 47 E7 43 52 36 7E 9B AE 6C 7C 97 BB 55 54 3F 2F 09 F7 76 FC E8 05 CC E4 F6 85 3F 2B 17

After Permutation

90 0F E1 6C AD 09 8D 28 E7 4D 63 2E D8 52 F9 9D AA B7 F7 DF 4D 99 E7 75 65 78 85 B4 BF 76 D6 F8 07 4B 9C 2E AF 01 28 95 C2 6B E8 60 1E FE 02 90 8F 7B D4 19 AC 13 A5 0D 75 4B 9C A3 89 29 AC 3C 51 45 86 C4 E7 B8 67 45 97 A1 16 7B BD F7 74 4A 8D 8F 2A 56 77 44 17 5A 84 B0 7E D2 F9 06 39 9B AA 60 D4 0A 2A 6E B0 3C 08 40 AB 8F 6B B9 2C 86 47 AD C5 0D 18 3C A4 6A D3 29 C6 FB F7 3B 26 C9 26 6F 1A 89 25 57 9E F5 17 29 69 2F 56 D1 95 A1 FE E9 7D 73 71 3F D5 5B 31 8A 73 AB CA 03 58 B6 6A 47 11 2C 25 65 55 B6 21 47 FD F7 79 25 E6 FA 34 87 35 4F 64 5E 6F 68 C3 51 2B 7B 49 7A 9A A8 8C F3 5E 5A 76 3D 31 4F

Outval is

90 0F E1 6C AD 09 8D 28 E7 4D 63 2E D8 52 F9 9D AA B7 F7 DF 4D 99 E7 75 65 78 85 B4 BF 76 D6 F8

TupleHashXOF: Sample #4

Security Strength: 256-bits

Number of Tuples: 2

Tuple 1

```
00 01 02
```

```
Tuple 2
 10 11 12 13 14 15
Requested output length is 512-bits
S (as a character string) is
 "(null)"
Encoded X[1]
 01 18 00 01 02
Encoded X[2]
 01 30 10 11 12 13 14 15
Encoded N
 01 48 54 75 70 6C 65 48 61 73 68
Encoded S
 01 00
bytepad data
 01 88 01 48 54 75 70 6C 65 48 61 73 68 01 00 00
 00 00 00 00 00 00 00 00
About to Absorb data
State (in bytes)
 00 00 00 00 00 00 00 00
Data to be absorbed
 01 88 01 48 54 75 70 6C 65 48 61 73 68 01 00 00
```

00 00 00 00 00 00 00 00

Xor'd state (in bytes)

01 88 01 48 54 75 70 6C 65 48 61 73 68 01 00 00 00 00 00 00 00 00 00 00

After Permutation

B4 53 E2 7F 89 F4 DD 43 11 02 47 7E A9 1F 15 CF C8 AC 83 90 41 26 B7 05 1A 4D D1 DA 41 66 5F B5 22 41 B5 5F 8F B4 63 23 94 88 74 86 AD C2 A6 EC 49 6D 5A 58 0A 7A F0 AA 76 B5 40 3E 35 67 2E 1C BC A7 78 D7 E6 69 7B AC CD 9D 25 77 9A E7 E6 2C 41 AD FA 64 A8 48 1F 56 81 19 EA 5A 32 2A AA 0C F6 EB 75 57 42 60 BB 99 67 A3 E2 67 AC D4 F5 C2 28 B4 30 54 B9 FD C4 9A 06 59 2C 5B CD 4D E6 A2 44 09 C6 30 DC 72 9C 9A 71 65 05 1F D2 D5 E6 A9 C5 E7 4F 99 69 DE 51 E9 50 16 48 8E DA 08 E1 D8 96 18 52 33 C0 57 67 D9 15 D0 E7 E3 A7 71 76 0E 7A 02 01 2D 5F EE A8 22 57 8E D2 0A 7E 74 4C 9C 5B 01 31 26 A8 B0 66 B4

about to call last of the absorb phase

About to Absorb data State (in bytes)

B4 53 E2 7F 89 F4 DD 43 11 02 47 7E A9 1F 15 CF C8 AC 83 90 41 26 B7 05 1A 4D D1 DA 41 66 5F B5 22 41 B5 5F 8F B4 63 23 94 88 74 86 AD C2 A6 EC 49 6D 5A 58 0A 7A F0 AA 76 B5 40 3E 35 67 2E 1C BC A7 78 D7 E6 69 7B AC CD 9D 25 77 9A E7 E6 2C 41 AD FA 64 A8 48 1F 56 81 19 EA 5A 32 2A AA 0C F6 EB 75 57 42 60 BB 99 67 A3 E2 67 AC D4 F5 C2 28 B4 30 54 B9 FD C4 9A 06 59 2C 5B CD 4D E6 A2 44 09 C6 30 DC 72 9C 9A 71 65 05 1F D2 D5 E6 A9 C5 E7 4F 99 69 DE 51 E9 50 16 48 8E DA 08 E1 D8 96 18 52 33 C0 57 67 D9 15 D0 E7 E3 A7 71 76 0E

7A 02 01 2D 5F EE A8 22 57 8E D2 0A 7E 74 4C 9C 5B 01 31 26 A8 B0 66 B4

Data to be absorbed

Xor'd state (in bytes)

B5 4B E2 7E 8B F5 ED 53 00 10 54 6A BC 1F 14 CB C8 AC 83 90 41 26 B7 05 1A 4D D1 DA 41 66 5F B5 22 41 B5 5F 8F B4 63 23 94 88 74 86 AD C2 A6 EC 49 6D 5A 58 0A 7A F0 AA 76 B5 40 3E 35 67 2E 1C BC A7 78 D7 E6 69 7B AC CD 9D 25 77 9A E7 E6 2C 41 AD FA 64 A8 48 1F 56 81 19 EA 5A 32 2A AA 0C F6 EB 75 57 42 60 BB 99 67 A3 E2 67 AC D4 F5 C2 28 B4 30 54 B9 FD C4 9A 06 59 2C 5B CD 4D E6 A2 44 09 C6 30 DC 72 9C 1A 71 65 05 1F D2 D5 E6 A9 C5 E7 4F 99 69 DE 51 E9 50 16 48 8E DA 08 E1 D8 96 18 52 33 C0 57 67 D9 15 D0 E7 E3 A7 71 76 0E 7A 02 01 2D 5F EE A8 22 57 8E D2 0A 7E 74 4C 9C 5B 01 31 26 A8 B0 66 B4

After Permutation

03 DE D4 61 0E D6 45 0A 1E 3F 8B C4 49 51 D1 4F BC 38 4A B0 EF E5 7B 00 0D F6 B6 DF 5A AE 7C D5 68 E7 73 77 DA F1 3F 37 EC 75 CF 5F C5 98 B6 84 1D 51 DD 20 7C 99 1C D4 5D 21 0B A6 0A C5 2E B9 DA 7D 23 08 05 98 6D 65 89 10 F7 12 4A D1 F3 5A 1D C4 31 35 92 CE BD EC D5 1B 10 0B B5 53 64 C2 E6 3F AC 75 84 9E FC BF 31 34 44 6E 2C CB 09 6D 9D ED F0 74 FD 7B FB 34 1A 6D 95 44 9F 4A F6 3F 2F 96 81 03 2A 2F 16 58 DE B1 B9 88 38 41 70 96 9A 35 C7 E9 0A F7 48 7E 30 11 67 06 95 6D B4 DE E6 59 BB 52 5F 8E B1 00 55 FB 2C 58 03 31 04 1D E1 B5 6A 8A 2B 69 14 10 0B 88 CC 15 F3 93 C2 E5 05 A8 D0 13 B6 A6 BC 59

Outval is

03 DE D4 61 0E D6 45 0A 1E 3F 8B C4 49 51 D1 4F BC 38 4A B0 EF E5 7B 00 0D F6 B6 DF 5A AE 7C D5 68 E7 73 77 DA F1 3F 37 EC 75 CF 5F C5 98 B6 84 1D 51 DD 20 7C 99 1C D4 5D 21 0B A6 0A C5 2E B9

```
TupleHashXOF:
  Sample #5
Security Strength: 256-bits
Number of Tuples: 2
Tuple 1
  00 01 02
Tuple 2
  10 11 12 13 14 15
Requested output length is 512-bits
S (as a character string) is
  "My Tuple App"
Encoded X[1]
  01 18 00 01 02
Encoded X[2]
  01 30 10 11 12 13 14 15
Encoded N
  01 48 54 75 70 6C 65 48 61 73 68
Encoded S
  01 60 4D 79 20 54 75 70 6C 65 20 41 70 70
bytepad data
  01 88 01 48 54 75 70 6C 65 48 61 73 68 01 60 4D
  79 20 54 75 70 6C 65 20 41 70 70 00 00 00 00 00
  00 00 00 00 00 00 00 00
About to Absorb data
State (in bytes)
```

Data to be absorbed

Xor'd state (in bytes)

After Permutation

4E 7C C8 AC 2E 83 E3 88 4C 43 37 EC 42 5E 1C 9B 02 9F 24 F7 50 37 44 01 73 B3 B2 E9 88 F7 D8 95 34 78 47 27 BA 02 6D 16 3F E1 23 BD 74 58 75 F6 5F 81 94 87 75 4A CA BC C5 60 9B 58 55 2E 02 75 24 E0 D2 C0 D0 CD 3C 3D 29 D1 26 BD 50 AA DC 86 CB E1 17 49 87 4B FC 47 9E 38 9A 8A EE 33 19 37 2A C5 43 68 EC 7A 55 E0 91 25 7E C8 D3 C8 AC D4 ED CA 61 97 A6 D5 C1 2D 53 F4 AD 05 5D 2E 13 32 DF 96 5E ED C6 4F 36 C1 1C B8 DD 4B A9 FD FB EF B1 D2 DF D5 2A E6 0A 75 B8 F7 42 05 25 61 71 8F E5 E3 A9 C7 54 83 F2 F2 74 F0 D0 03 D6 72 EF 64 DB F8 6F 0E E4 31 63 29 3C DA F6 E5 FE CD 80 47 52 E3 C5 1B 25 AA D6 81

about to call last of the absorb phase

About to Absorb data State (in bytes) 4E 7C C8 AC 2E 83 E3 88 4C 43 37 EC 42 5E 1C 9B 02 9F 24 F7 50 37 44 01 73 B3 B2 E9 88 F7 D8 95 34 78 47 27 BA 02 6D 16 3F E1 23 BD 74 58 75 F6 5F 81 94 87 75 4A CA BC C5 60 9B 58 55 2E 02 75 24 E0 D2 C0 D0 CD 3C 3D 29 D1 26 BD 50 AA DC 86 CB E1 17 49 87 4B FC 47 9E 38 9A 8A EE 33 19 37 2A C5 43 68 EC 7A 55 E0 91 25 7E C8 D3 C8 AC D4 ED CA 61 97 A6 D5 C1 2D 53 F4 AD 05 5D 2E 13 32 DF 96 5E ED C6 4F 36 C1 1C B8 DD 4B A9 FD FB EF B1 D2 DF D5 2A E6 0A 75 B8 F7 42 05 25 61 71 8F E5 E3 A9 C7 54 83 F2 F2 74 F0 D0 03 D6 72 EF 64 DB F8 6F 0E E4 31 63 29 3C DA F6 E5 FE CD 80 47 52 E3 C5 1B 25 AA D6 81

Data to be absorbed

Xor'd state (in bytes)

4F 64 C8 AD 2C 82 D3 98 5D 51 24 F8 57 5E 1D 9F 02 9F 24 F7 50 37 44 01 73 B3 B2 E9 88 F7 D8 95 34 78 47 27 BA 02 6D 16 3F E1 23 BD 74 58 75 F6 5F 81 94 87 75 4A CA BC C5 60 9B 58 55 2E 02 75 24 E0 D2 C0 D0 CD 3C 3D 29 D1 26 BD 50 AA DC 86 CB E1 17 49 87 4B FC 47 9E 38 9A 8A EE 33 19 37 2A C5 43 68 EC 7A 55 E0 91 25 7E C8 D3 C8 AC D4 ED CA 61 97 A6 D5 C1 2D 53 F4 AD 05 5D 2E 13 32 DF 96 5E ED C6 4F 36 41 1C B8 DD 4B A9 FD FB EF B1 D2 DF D5 2A E6 0A 75 B8 F7 42 05 25 61 71 8F E5 E3 A9 C7 54 83 F2 F2 74 F0 D0 03 D6 72 EF 64 DB F8 6F 0E E4 31 63 29 3C DA F6 E5 FE CD 80 47 52 E3 C5 1B 25 AA D6 81

After Permutation

64 83 CB 3C 99 52 EB 20 E8 30 AF 47 85 85 1F C5 97 EE 3B F9 3B B7 60 2C 0E F6 A6 5D 74 1A EC A7 E6 3C 3B 12 89 81 AA 05 C6 D2 74 38 C7 9D 27 54 BB 1B 71 91 F1 25 D6 62 0F CA 12 CE 65 8B 24 42 F3 FA 29 3C B6 E7 3E 23 25 89 F0 08 1E B7 65 F9 5E CC FB E5 3F F9 A3 BC A8 9B 43 85 BF 93 23 CD 24 02 A4 80 95 8D C3 9C C9 C8 6B 7D 4D 22 C7 16 4E 44 DA E6 E1 70 D9 82 8D 13 21 F4 73 E2 A5 4C 1F 1A 11 3A 15 3D ED B6 47 41 33 63 B5 D2 47 9E

FF 5B B5 18 FB DE 98 54 8B 93 11 74 1E 91 05 D1 33 E4 1B 3A 2A 59 1E C1 1E 01 6F 35 81 34 2C 1A 62 63 F3 7C D9 53 49 A1 A3 40 4B 77 C6 BE 39 EA F6 0D F4 C4 4B 1A BC B9

Outval is

64 83 CB 3C 99 52 EB 20 E8 30 AF 47 85 85 1F C5 97 EE 3B F9 3B B7 60 2C 0E F6 A6 5D 74 1A EC A7 E6 3C 3B 12 89 81 AA 05 C6 D2 74 38 C7 9D 27 54 BB 1B 71 91 F1 25 D6 62 0F CA 12 CE 65 8B 24 42

TupleHashXOF:

Sample #6

Security Strength: 256-bits

Number of Tuples: 3

Tuple 1

00 01 02

Tuple 2

10 11 12 13 14 15

Tuple 3

20 21 22 23 24 25 26 27 28

Requested output length is 512-bits

S (as a character string) is "My Tuple App"

Encoded X[1]

01 18 00 01 02

Encoded X[2]

01 30 10 11 12 13 14 15

Encoded X[3]

01 48 20 21 22 23 24 25 26 27 28

Encoded N

01 48 54 75 70 6C 65 48 61 73 68

Encoded S

01 60 4D 79 20 54 75 70 6C 65 20 41 70 70

bytepad data

01 88 01 48 54 75 70 6C 65 48 61 73 68 01 60 4D

79 20 54 75 70 6C 65 20 41 70 70 00 00 00 00 00

About to Absorb data

State (in bytes)

 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00<

Data to be absorbed

Xor'd state (in bytes)

After Permutation

4E 7C C8 AC 2E 83 E3 88 4C 43 37 EC 42 5E 1C 9B 02 9F 24 F7 50 37 44 01 73 B3 B2 E9 88 F7 D8 95 34 78 47 27 BA 02 6D 16 3F E1 23 BD 74 58 75 F6

5F 81 94 87 75 4A CA BC C5 60 9B 58 55 2E 02 75 24 E0 D2 C0 D0 CD 3C 3D 29 D1 26 BD 50 AA DC 86 CB E1 17 49 87 4B FC 47 9E 38 9A 8A EE 33 19 37 2A C5 43 68 EC 7A 55 E0 91 25 7E C8 D3 C8 AC D4 ED CA 61 97 A6 D5 C1 2D 53 F4 AD 05 5D 2E 13 32 DF 96 5E ED C6 4F 36 C1 1C B8 DD 4B A9 FD FB EF B1 D2 DF D5 2A E6 0A 75 B8 F7 42 05 25 61 71 8F E5 E3 A9 C7 54 83 F2 F2 74 F0 D0 03 D6 72 EF 64 DB F8 6F 0E E4 31 63 29 3C DA F6 E5 FE CD 80 47 52 E3 C5 1B 25 AA D6 81

about to call last of the absorb phase

About to Absorb data State (in bytes)

4E 7C C8 AC 2E 83 E3 88 4C 43 37 EC 42 5E 1C 9B 02 9F 24 F7 50 37 44 01 73 B3 B2 E9 88 F7 D8 95 34 78 47 27 BA 02 6D 16 3F E1 23 BD 74 58 75 F6 5F 81 94 87 75 4A CA BC C5 60 9B 58 55 2E 02 75 24 E0 D2 C0 D0 CD 3C 3D 29 D1 26 BD 50 AA DC 86 CB E1 17 49 87 4B FC 47 9E 38 9A 8A EE 33 19 37 2A C5 43 68 EC 7A 55 E0 91 25 7E C8 D3 C8 AC D4 ED CA 61 97 A6 D5 C1 2D 53 F4 AD 05 5D 2E 13 32 DF 96 5E ED C6 4F 36 C1 1C B8 DD 4B A9 FD FB EF B1 D2 DF D5 2A E6 0A 75 B8 F7 42 05 25 61 71 8F E5 E3 A9 C7 54 83 F2 F2 74 F0 D0 03 D6 72 EF 64 DB F8 6F 0E E4 31 63 29 3C DA F6 E5 FE CD 80 47 52 E3 C5 1B 25 AA D6 81

Data to be absorbed

Xor'd state (in bytes)

4F 64 C8 AD 2C 82 D3 98 5D 51 24 F8 57 5F 54 BB 23 BD 07 D3 75 11 63 29 73 B2 B6 E9 88 F7 D8 95 34 78 47 27 BA 02 6D 16 3F E1 23 BD 74 58 75 F6 5F 81 94 87 75 4A CA BC C5 60 9B 58 55 2E 02 75 24 E0 D2 C0 D0 CD 3C 3D 29 D1 26 BD 50 AA DC 86 CB E1 17 49 87 4B FC 47 9E 38 9A 8A EE 33 19 37 2A C5 43 68 EC 7A 55 E0 91 25 7E C8 D3 C8 AC D4 ED CA 61 97 A6 D5 C1 2D 53 F4 AD 05 5D 2E 13 32 DF 96 5E ED C6 4F 36 41 1C B8 DD 4B A9 FD FB EF

B1 D2 DF D5 2A E6 0A 75 B8 F7 42 05 25 61 71 8F E5 E3 A9 C7 54 83 F2 F2 74 F0 D0 03 D6 72 EF 64 DB F8 6F 0E E4 31 63 29 3C DA F6 E5 FE CD 80 47 52 E3 C5 1B 25 AA D6 81

After Permutation

OC 59 B1 14 64 F2 33 6C 34 66 3E D5 1B 2B 95 0B EC 74 36 10 85 6F 36 C2 8D 1D 08 8D 8A 24 46 28 4D D0 98 30 A6 A1 78 DC 75 23 76 19 9F AE 93 5D 86 CF DE E5 91 3D 49 22 DF D3 69 B6 6A 53 C8 97 D8 BC DF 4E FE 75 82 41 65 06 B8 16 DD 1A 50 4D 36 17 CD C7 AA 3C 93 FD 4E E0 4E 15 FF 6D A6 D2 34 79 71 0D BD C0 1C 65 EE BE 2B F0 3C EA AD 4D 1E ED 99 6A BF B9 BE 93 9B 9F D7 73 F5 A2 59 59 28 54 6A E2 57 10 C4 33 FD 3B A8 4E 1B EC D5 4C E3 70 AB 7F 50 A8 54 88 7A F8 65 D9 FB 85 6D 0B 50 4E DC EF 60 A4 8A B6 6C 57 3A 16 D0 69 CC 96 70 5E 24 81 78 A7 3C 24 DA EC 95 57 76 C7 F3 32 11 73 E3 A9 7B 7B 96 B1

Outval is

0C 59 B1 14 64 F2 33 6C 34 66 3E D5 1B 2B 95 0B EC 74 36 10 85 6F 36 C2 8D 1D 08 8D 8A 24 46 28 4D D0 98 30 A6 A1 78 DC 75 23 76 19 9F AE 93 5D 86 CF DE E5 91 3D 49 22 DF D3 69 B6 6A 53 C8 97
