Homework 2 - Solutions Problems (not review questions) : 4.2, 4.3, 4.16, 4.19, 4.41, 4.56, 4.60, 4.61 Extra problem (not graded): 4.66

Figure P4.2

- 4.2 Refer to Fig. P4.2.
- (a) Diode is conducting, thus

$$V = -3 \text{ V}$$

$$I = \frac{+3 - (-3)}{10 \text{ k}\Omega} = 0.6 \text{ mA}$$

(b) Diode is reverse biased, thus

$$I = 0$$

$$V = +3 \text{ V}$$

(c) Diode is conducting, thus

$$V = +3 \text{ V}$$

$$I = \frac{+3 - (-3)}{10 \text{ k}\Omega} = 0.6 \text{ mA}$$

(d) Diode is reverse biased, thus

$$I = 0$$

$$V = -3 \text{ V}$$

4.16

 $egin{array}{llll} V & {\sf RED} & {\sf GREEN} \\ 3 {\sf V} & {\sf ON} & {\sf OFF} & -D_1 \ {\sf conducts} \\ 0 & {\sf OFF} & {\sf OFF} & -{\sf No \ current \ flows} \\ -3 {\sf V} & {\sf OFF} & {\sf ON} & -D_2 \ {\sf conducts} \\ \end{array}$

Figure P4.16

4.19
$$I_1 = I_S e^{0.7/V_T} = 10^{-3}$$

$$i_2 = I_S e^{0.5/V_T}$$

$$\frac{i_2}{i_1} = \frac{i_2}{10^{-3}} = e^{\frac{0.5 - 0.7}{0.025}}$$

$$i_2 = 0.335 \,\mu\text{A}$$

4.41

(a)

(c)

$$V = -3 + 0.7 = -2.3 \text{ V}$$

$$I = \frac{3 + 2.3}{10}$$

$$= 0.53 \text{ mA}$$

(b)

$$V = 3 - 0.7 = 2.3 \text{ V}$$

$$I = \frac{2.3 + 3}{10} = 0.53 \text{ mA}$$

(d)

$$I = 0 A$$

$$V = 3 - I(10) = 3 \text{ V}$$

$$I = 0 A$$

$$V = -3 \text{ V}$$

= 8.39 mA

$$\therefore R = \frac{5 - 1.5}{8.39 \text{ mA}} = 417 \Omega$$

Use a small-signal model to find voltage ΔV_O when the value of the load resistor, R_L , changes:

$$r_d = \frac{V_T}{I_D} = \frac{0.025}{7.39} = 3.4 \,\Omega$$

When load is disconnected, all the current *I* flows through the diode. Thus

$$\Delta I_D = 1 \text{ mA}$$

$$\Delta V_O = \Delta I_D \times 2r_d$$

$$= 1 \times 2 \times 3.4$$

$$= 6.8 \text{ mV}$$

With
$$R_L = 1 \text{ k}\Omega$$
,

$$I_L \simeq \frac{1.5 \text{ V}}{1} = 1.5 \text{ mA}$$

$$\Delta I_L = 0.5 \text{ mA}$$

$$\Delta I_D = -0.5 \text{ mA}$$

$$\Delta V_O = -0.5 \times 2 \times 3.4$$

$$= -3.4 \text{ mV}$$

With
$$R_L = 750 \Omega$$
,

$$I_L \simeq \frac{1.5}{0.75} = 2 \text{ mA}$$

$$\Delta I_L = 1 \text{ mA}$$

$$\Delta I_D = -1 \text{ mA}$$

$$\Delta V_0 = -1 \times 2 \times 3.4$$

$$= -6.8 \text{ mV}$$

With
$$R_L = 500 \Omega$$
,

$$I_L \simeq \frac{1.5}{0.5} = 3 \text{ mA}$$

$$\Delta I_L = 2.0 \text{ mA}$$

$$\Delta I_D = -2.0 \text{ mA}$$

$$\Delta V_0 = -2 \times 2 \times 3.4$$

$$= -13.6 \text{ mV}$$

4.56

Diode has 0.7 V drop at 1 mA current

$$V_0 = 1.5 \text{ V}$$
 when $R_L = 1.5 \text{ k}\Omega$

$$I_D = I_S e^{V/V_T}$$

$$1 \times 10^{-3} = I_S e^{0.7/0.025}$$

$$\Rightarrow I_S = 6.91 \times 10^{-16} \text{ A}$$

Voltage drop across each diode = $\frac{1.5}{2}$ = 0.75 V.

$$\therefore I_D = I_S e^{V/V_T} = 6.91 \times 10^{-16} \times e^{0.75/0.025}$$

$$= 7.38 \text{ mA}$$

4.60 (a) Three 6.8-V zeners provide $3 \times 6.8 = 20.4$ V with $3 \times 10 = 30$ - Ω resistance. Neglecting R, we have

Load regulation = -30 mV/mA.

(b) For 5.1-V zeners we use 4 diodes to provide 20.4 V with $4 \times 30 = 120 - \Omega$ resistance.

Load regulation = -120 mV/mA

For part (b) of our problem the zener resistance of the diodes was 25 Ohm. Therefor the total zener resisitance would have been 100 Ohm and the load regulation -120 mV/mA.

4.61

From the small-signal model we obtain

$$\frac{\Delta v_O}{\Delta v_S} = \frac{8}{8+82} = \frac{8}{90}$$

Now $\Delta v_S = 1.0 \text{ V}.$

$$\therefore \Delta v_O = \frac{8}{90} \Delta v_S = \frac{8}{90} \times 1.0$$

= 88.9 mV

4.66 (a)
$$V_{ZT} = V_{Z0} + r_z I_{ZT}$$

$$10 = V_{Z0} + 7(0.025)$$

$$\Rightarrow V_{Z0} = 9.825 \text{ V}$$

(b) The minimum zener current of 5 mA occurs when $I_L = 20$ mA and V_S is at its minimum of 20(1 - 0.25) = 15 V. See the circuit below:

$$R \le \frac{15 - V_{Z0}}{20 + 5}$$

where we have used the minimum value of V_S , the maximum value of load current, and the minimum required value of zener diode current, and we assumed that at this current $V_Z \simeq V_{Z0}$. Thus,

$$R \le \frac{15 - 9.825 + 7}{25}$$

 $\leq 207 \Omega$.

∴ use
$$R = 207 \Omega$$

(c) Line regulation =
$$\frac{7}{207 + 7} = 33 \frac{\text{mV}}{\text{V}}$$

 $\pm 25\%$ change in $v_S \equiv \pm 5 \text{ V}$

 V_0 changes by $\pm 5 \times 33 = \pm 0.165$ mV

corresponding to
$$\frac{\pm 0.165}{10} \times 100 = \pm 1.65\%$$

(d) Load regulation = $-(r_Z \parallel R)$

$$= -(7 \parallel 207) = -6.77 \Omega$$

or -6.77 V/A

$$\Delta V_O = -6.77 \times 20 \text{ mA} = -135.4 \text{ mV}$$

corresponding to
$$-\frac{0.1354}{10} \times 100 = -1.35\%$$

(e) The maximum zener current occurs at no load $I_L=0$ and the supply at its largest value of

$$20 + \frac{1}{4}(20) = 25 \text{ V}.$$

$$V_{\rm Z} = V_{\rm Z0} + r_{\rm Z}I_{\rm Z}$$

$$= 9.825 + 7 \times \frac{25 - V_Z}{207}$$

$$207V_Z = 207 (9.825) + 7 (25) - 7V_Z$$

$$\Rightarrow V_Z = 10.32 \text{ V}$$

$$I_{Zmax} = \frac{25 - 10.32}{0.207} = 70.9 \text{ mA}$$

$$P_Z = 10.32 \times 70.9$$

$$= 732 \text{ mW}$$