Razões de verossimilhanças

- Intervalos de confiança e testes;
- Razões de verossimilhanças

<u>Intervalos de confiança ≡ testes</u>

De posse de um intervalo de confiança, podemos testar hipóteses sobre uma função dos parâmetros, $g(\theta)$, como mostra o seguinte teorema:

Teorema 27 (Intervalos de confiança e testes são equivalentes)

Suponha que dispomos de dados $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ com f.d.p. comum $f(x \mid \theta)$, e estamos interessados em testar as hipóteses:

$$H_0: g(\theta)=g_0,$$

$$H_1: g(\theta) \neq g_0,$$

de modo que existe um teste δ_{g_0} com nível α_0 destas hipóteses. Para cada $\mathbf{X} = \mathbf{x}$, defina

$$w(x) = \{g_0 : \delta_{g_0} \text{ não rejeita } H_0 \text{ dado que } X = x\}.$$

Fazendo o nível de confiança do intervalo $\gamma=1-lpha_0$, temos

$$\Pr(g(\theta_0) \in w(\mathbf{X}) \mid \theta = \theta_0) \ge \gamma, \ \forall \theta_0 \in \Omega.$$

Prova: Notar que $\Pr(\delta_{g_0} \text{ não rejeita } H_0 \mid \theta = \theta_0) \geq \alpha_0 = 1 - \gamma \text{ e concluir que } w(\boldsymbol{X})$ é uma região de crítica para δ_{g_0} . Ver Teorema 9.1.1 de DeGroot.

Conjunto de confiança

O conjunto w(X) definido acima pode ser entendido como um conjunto de confiança para $g(\theta)$.

Definição 49 (Conjunto de confiança)

Se um conjunto aleatório w(X) satisfaz

$$\Pr\left(g(\theta_0) \in w(\boldsymbol{X}) \mid \theta = \theta_0\right) \geq \gamma,$$

para todo $\theta_0 \in \Omega$, então chamamos w(X) de um **conjunto de confiança** para $g(\theta)$.

Isso nos leva ao seguinte teorema

Teorema 28 (Testando hipóteses a partir de conjuntos de confiança)

Suponha que dispomos de dados $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ com f.d.p. comum $f(x \mid \theta)$ e que $w(\mathbf{X})$ é um conjunto de confiança para uma função de interesse $g(\theta)$. Então para todo valor g_0 assumido por $g(\theta)$ existe um teste δ_{g_0} , de nível α_0 que rejeita $H_0: g(\theta) = g_0$ se e somente se $g(\theta_0) = g_0 \notin w(\mathbf{X})$.

Prova: Trivial. Ver DeGroot, Teorema 9.1.2.

Vamos aplicar os conceitos discutidos ao caso Normal com variância conhecida.

Exemplo 21 (Teste para média da Normal com variância conhecida)

Suponha que $X = \{X_1, X_2, ..., X_n\}$ formam uma amostra aleatória de uma distribuição Normal com média μ e variância σ^2 , conhecida. Considere testar a hipótese

$$H_0: \mu = \mu_0,$$

$$H_1: \mu \neq \mu_0.$$

Seja $\alpha_0 = 1 - \gamma$. Lembre-se de que o teste de tamanho α_0 , δ_{μ_0} é rejeitar H_0 se $|\bar{X}_n - \mu_0| \ge c$, $c := \Phi^{-1} (1 - \alpha_0/2) \sigma \sqrt{n}$. Esta última desigualdade pode ser manipulada algebricamente para obter o intervalo de confiança exato

$$(A(\mathbf{X}), B(\mathbf{X})) = (\bar{X}_n - c, \bar{X}_n + c),$$

de modo que $Pr(A(X) < \mu_0 < B(X)|\mu = \mu_0) = \gamma$.

Da mesma forma que intervalos de confiança podem ser uni- ou bilaterais. Considere testar a hipótese

$$H_0: g(\theta) \geq g_0,$$

$$H_1: g(\theta) < g_0.$$

Podemos testar esta hipótese a partir de um intervalo de confiança da forma $I_l = (A(X), \infty)$: se $g(\theta) \notin I_l$ então rejeitamos H_0 .

Considere testar

$$H_0: \theta \in \Omega_0$$
,

$$H_1: \theta \in \Omega_1$$
.

Em certas situações, podemos utilizar a função de verossimilhança para quantificar a evidência em favor de H_0 .

Definição 50 (Teste de razão de verossimilhanças)

A estatística

$$\Lambda(\mathbf{x}) = \frac{\sup_{\theta \in \Omega_{\mathbf{0}}} f_n(\mathbf{x} \mid \theta)}{\sup_{\theta \in \Omega} f_n(\mathbf{x} \mid \theta)},$$

é chamada uma **estatística de razão de verossimilhanças**. Um **um teste de razão de verossimilhanças**, δ_k é um teste que rejeita H_0 se $\Lambda(x) \leq k$ para uma constante k.

Teste de razão de verossimilhanças para a binomial

Exemplo 22 (Teste de razão de verossimilhanças para uma hipótese simples)

Suponha que $X_1, X_2, ..., X_n$ são uma amostra aleatória de uma distribuição Bernoulli com parâmetro p. Assim, temos $Y = \sum_{i=1}^n X_i$ e Y Binomial(n, p). Considere testar a hipótese $H_0: p = p_0, H_1: p \neq p0$. Depois de observamos Y = y, a função de verossimilhança é

$$f(x \mid p) = \Pr(Y = y \mid p) = \binom{n}{y} p^{y} (1-p)^{n-y}.$$

Como neste exemplo $\Omega_0 = \{p_0\}$ e $\Omega_1 = (0,1) \setminus \{p_0\}$,

$$\Lambda(x) = \frac{p_0^y (1 - p_0)^{n-y}}{\sup_{p \in (0,1)} p^y (1 - p)^{n-y}}.$$

O supremo no denominador é atingido no EMV, $\hat{p} = y/n$, de modo que

$$\Lambda(x) = \left(\frac{np_0}{y}\right)^y \left(\frac{n(1-p_0)}{n-y}\right)^{n-y}.$$

Para mais detalhes, ver código no repositório do curso.

Um teorema útil

Sob certas condições de regularidade, podemos fazer afirmações sobre a distribuição assintótica de $\log \Lambda(X)$.

Teorema 29 (Distribuição assintótica da estatística de razão de verossimilhanças)

Suponha que temos um espaço de parâmetros com k coordenadas, $\theta = (\theta_1, \theta_2, \dots, \theta_k)$ e desejamos testar a hipótese (simples) da forma

$$H_0: heta_j = heta_0^j, \ H_1: heta_j
eq heta_0^j, j = 1, 2, ..., k.$$

Então, sob condições de regularidade, temos que

$$-2\log\Lambda(x)\stackrel{d}{\to}\chi^2(k),$$

à medida que $n \to \infty$.

Prova: Avançada, não será dada aqui. Ver Teorema 9.1.4 de DeGroot. Para a demonstração, ver Teorema 7.125 de Schervish (1995).

Leitura recomendada

- De Groot seção 9.1;
- * Schervish (1995), capítulos 4.5.5 e 7.5 .
- * Casella & Berger (2002), seção 8.2.
- Próxima aula: De Groot, seção 9.5;
- Exercícios recomendados
 - De Groot, seção 9.1: exercicios 3, 8 e 13.