1085 - All Possible Increasing Subsequences

An increasing subsequence from a sequence A_1 , A_2 ... A_n is defined by A_{i1} , A_{i2} ... A_{ik} , where the following properties hold

1.
$$i_1 < i_2 < i_3 < ... < i_k$$
 and

2.
$$A_{i1} < A_{i2} < A_{i3} < ... < A_{ik}$$

Now you are given a sequence, you have to find the number of all possible increasing subsequences.

Input

Input starts with an integer $T \leq 10$, denoting the number of test cases.

Each case contains an integer n ($1 \le n \le 10^5$) denoting the number of elements in the initial sequence. The next line will contain n integers separated by spaces, denoting the elements of the sequence. Each of these integers will be fit into a 32 bit signed integer.

Output

For each case of input, print the case number and the number of possible increasing subsequences modulo 1000000007.

Sample Input	Output for Sample Input
3	Case 1: 5
3	Case 2: 23
1 1 2	Case 3: 7
5	
1 2 1000 1000 1001	
3	
1 10 11	

Notes

- 1. For the first case, the increasing subsequences are (1), (1, 2), (1), (1, 2), 2.
- 2. Dataset is huge, use faster I/O methods.