test

December 10, 2022

- 1 Lab 04
- 1.1 Cross Validation
- $1.1.1 \quad 1-2$
- 1) Reuse the notebook from Lab 3 for the wine data. Make sure to
- * Reuse the same random seed throughout.
- * Use nearest neighbors
- 2) With using KFold to produce the data splits, implement cross validation. Make sure to store the predictions on each test fold and print the classification_report after having looped over all folds.

```
[]: from sklearn.datasets import load_wine
  from sklearn.neighbors import KNeighborsClassifier
  from sklearn.preprocessing import StandardScaler
  from sklearn.metrics import classification_report
  from sklearn.model_selection import KFold
  import numpy as np

x, y = load_wine(return_X_y = True) #split into features X and labels y
```

```
kf = KFold(n_splits=3, random_state=None, shuffle=True)

result_array = []
y_test_report = []

y_predict_report = []

for train_index, test_index in kf.split(x):
    x_train, x_test = x[train_index], x[test_index]
    y_train, y_test = y[train_index], y[test_index]
    y_test_report.extend(y_test)
    scaler = StandardScaler(copy=True)
    xTrain_scaled = scaler.fit_transform(x_train, y_train)
    minDis = KNeighborsClassifier(n_neighbors=7)
    minDis.fit(xTrain_scaled, y_train)
```

```
xTest_scaled = scaler.transform(x_test)
    y_predict_report.extend(minDis.predict(xTest_scaled))
    result_array.append(minDis.score(xTest_scaled, y_test))

print('Average score: ', np.mean(result_array))

## print the test reports
print('The classification report:\n')
print(classification_report(y_test_report, y_predict_report))
```

1.1.2 3-4

- 3) Try with k=3 and k=10 folds.
- 4) In order to interpret the results (and fix possible issues), take a close look at the KFold visualization from the User Guide (not based on the wine data!):

```
[]: kf = KFold(n_splits=10, random_state=None, shuffle=True)
     result_array = []
     y_test_report = []
     y_predict_report = []
     for train_index, test_index in kf.split(x):
         x_train, x_test = x[train_index],x[test_index]
         y_train, y_test = y[train_index], y[test_index]
         y_test_report.extend(y_test)
         scaler = StandardScaler(copy=True)
         xTrain_scaled = scaler.fit_transform(x_train, y_train)
         minDis = KNeighborsClassifier(n_neighbors=7)
         minDis.fit(xTrain_scaled, y_train)
         xTest_scaled = scaler.transform(x_test)
         y_predict_report.extend(minDis.predict(xTest_scaled))
         result_array.append(minDis.score(xTest_scaled, y_test))
     print('Average score: ', np.mean(result_array))
     ## print the test reports
     print('The classification report:\n')
     print(classification_report(y_test_report, y_predict_report))
```

Average score: 0.9663398692810456 The classification report:

	precision	recall	f1-score	support
0	0.95	1.00	0.98	59
1	1.00	0.92	0.96	71
2	0.94	1.00	0.97	48

accuracy			0.97	178
macro avg	0.96	0.97	0.97	178
weighted avg	0.97	0.97	0.97	178

Setting the shuffle parameter is very important since the classes are already ordered dataset

1.2 Grid Search

$1.2.1 \quad 1-3$

- 1) Implement Grid Search in combination with cross validation.
- * Use the following parameters from the KNeighbors Classifier for the grid: n_neighbors and p . Select reasonable values for both.
- * Implement a for loop to iterate over all combinations of the grid:
- 2) Run the Grid Search and print the classification report for each parameter combination.
- 3) Which parameter combination performs best?

```
[]: from sklearn.model_selection import ParameterGrid
     n_neighbours = [2, 10]
     p = [1, 2]
     result_acb = {}
     for n_nei in n_neighbours:
         for p_ in p:
             kf = KFold(n_splits=10, random_state=None, shuffle=True)
             result_array = []
             result_acb[str(n_nei) + " / " + str(p_)] = {}
             result_acb[str(n_nei) + " / " + str(p_)]["Y_TEST"] = []
             result_acb[str(n_nei) + " / " + str(p_)]["Y_PREDICT"] = []
             result_acb[str(n_nei) + " / " + str(p_)]["Y_Score"] = []
             for train_index, test_index in kf.split(x):
                 x_train, x_test = x[train_index],x[test_index]
                 y_train, y_test = y[train_index], y[test_index]
                 result acb[str(n nei) + " / " + str(p )]["Y TEST"].extend(y test)
                 scaler = StandardScaler(copy=True)
                 xTrain_scaled = scaler.fit_transform(x_train, y_train)
                 minDis = KNeighborsClassifier(n_neighbors=n_nei, p=p_ )
```

```
minDis.fit(xTrain_scaled, y_train)
            xTest_scaled = scaler.transform(x_test)
            result_acb[str(n_nei) + " / " + str(p_)]["Y_PREDICT"].extend(minDis.
 →predict(xTest_scaled))
            result_acb[str(n_nei) + " / " + str(p_)]["Y_Score"].append(minDis.
 ⇒score(xTest scaled, y test))
## print the test reports
for parameters_in in result_acb.keys():
    print('Grid parameters:')
    print(parameters_in)
    print('Average score: ', np.mean(result_acb[parameters_in]["Y_Score"]))
    print(classification_report(result_acb[parameters_in]["Y_TEST"],__
 →result_acb[parameters_in]["Y_PREDICT"]))
Grid parameters:
2 / 1
Average score: 0.9663398692810456
             precision recall f1-score support
          0
                  0.92
                            1.00
                                      0.96
                                                  59
                  1.00
                                      0.96
          1
                           0.92
                                                  71
          2
                  0.98
                           1.00
                                      0.99
                                                  48
                                      0.97
                                                 178
   accuracy
  macro avg
                  0.97
                            0.97
                                      0.97
                                                 178
weighted avg
                  0.97
                            0.97
                                      0.97
                                                 178
Grid parameters:
2 / 2
Average score: 0.9493464052287581
             precision recall f1-score support
                  0.91
                            1.00
                                      0.95
                                                  59
          1
                  1.00
                            0.87
                                      0.93
                                                  71
                  0.94
                            1.00
                                      0.97
                                                  48
                                      0.95
                                                 178
   accuracy
                  0.95
                            0.96
                                      0.95
                                                 178
  macro avg
weighted avg
                  0.95
                            0.95
                                      0.95
                                                 178
Grid parameters:
```

10 / 1

Average score:	0.9830065	359477125		
	precision	recall	f1-score	support
0	0.95	1.00	0.98	59
1	1.00	0.96	0.98	71
2	1.00	1.00	1.00	48
accuracy			0.98	178
macro avg	0.98	0.99	0.98	178
weighted avg	0.98	0.98	0.98	178
Grid parameter	rs:			
10 / 2				
Average score:				
	precision	recall	f1-score	support
0	0.94	1.00	0.97	59
1	1.00	0.90	0.95	71
2	0.94	1.00	0.97	48

0.96

0.96

0.96

178

178

178

neighbour = 10 and manhattahn distance gets the best result

0.97

0.96

1.3 Combining Grid Search and Cross Validation

0.96

0.96

1.3.1 1 - 4

accuracy

macro avg

weighted avg

- 1) Carefully read the documentation of GridSearchCV, which combines the mechanisms of the grid search and the cross validation.
- 2) Reuse the kNeighborsClassifier and the ParameterGrid (check for correct naming).
- 3) Set the cross validation splitting strategy to k=10 folds.
- 4) Evaluate the results using GridSearchCV 's built-in methods.

```
[]: from sklearn.model_selection import GridSearchCV
  parameters = {"n_neighbors":[2,10], "p":[1,2]}
  kn = KNeighborsClassifier()
  clf = GridSearchCV(kn, parameters, cv = 10)
clf.fit(x,y)
```

```
print(clf.best_estimator_.score)
print("best score: ",clf.score(x,y))
```

<bound method ClassifierMixin.score of KNeighborsClassifier(n_neighbors=10,
p=1)>
best score: 0.8370786516853933

As we see the result is the same as we got in the previous task

1.3.2 5-6

- 5) Change the parameter scoring to use the F1 score for evaluation.
- 6) Find out how to store/access the best model parametrization.

best value for n_neighbors parameter: 10
best value for p parameter: 1

1.4 Homework

Extend the grid with a parameter for switching the scaling of the data on/off. Then, for each test run made so far, enter the cross validation results in your table. Those values are more robust and reliable than those obtained from a single run.

```
ValueError
                                          Traceback (most recent call last)
/tmp/ipykernel_8436/2862377156.py in <module>
      6 clf = GridSearchCV(kn, parameters, cv = 10, scoring = "f1_weighted")
----> 8 clf.fit(x,y)
      9 estimator = clf.best_estimator_
     10 print("best value for n_neighbors parameter: ",estimator.
→get_params()['n_neighbors'])
~/.local/lib/python3.8/site-packages/sklearn/model_selection/_search.py inu
→fit(self, X, y, groups, **fit_params)
    889
                        return results
    890
--> 891
                    self. run search(evaluate candidates)
    892
    893
                    # multimetric is determined here because in the case of a_{\sqcup}
⇔callable
~/.local/lib/python3.8/site-packages/sklearn/model_selection/_search.py in_
→_run_search(self, evaluate_candidates)
            def _run_search(self, evaluate_candidates):
   1390
   1391
                """Search all candidates in param_grid"""
                evaluate candidates(ParameterGrid(self.param grid))
-> 1392
   1393
   1394
~/.local/lib/python3.8/site-packages/sklearn/model selection/ search.py in___
→evaluate_candidates(candidate_params, cv, more_results)
    836
                            )
    837
--> 838
                        out = parallel(
    839
                            delayed(_fit_and_score)(
    840
                                clone(base_estimator),
~/.local/lib/python3.8/site-packages/joblib/parallel.py in __call__(self,_
⇒iterable)
   1041
                    # remaining jobs.
                    self._iterating = False
   1042
-> 1043
                    if self.dispatch_one_batch(iterator):
   1044
                        self._iterating = self._original_iterator is not None
   1045
~/.local/lib/python3.8/site-packages/joblib/parallel.py in⊔
→dispatch_one_batch(self, iterator)
    859
                        return False
```

```
860
                    else:
--> 861
                        self._dispatch(tasks)
    862
                        return True
    863
~/.local/lib/python3.8/site-packages/joblib/parallel.py in _dispatch(self, batc)
                with self. lock:
                    job_idx = len(self._jobs)
    778
--> 779
                    job = self._backend.apply_async(batch, callback=cb)
                    # A job can complete so quickly than its callback is
    780
    781
                    # called before we get here, causing self. jobs to
~/.local/lib/python3.8/site-packages/joblib/_parallel_backends.py in_
→apply_async(self, func, callback)
            def apply_async(self, func, callback=None):
    206
                """Schedule a func to be run"""
    207
--> 208
                result = ImmediateResult(func)
    209
                if callback:
    210
                    callback(result)
~/.local/lib/python3.8/site-packages/joblib/_parallel_backends.py in_
→ init (self, batch)
                # Don't delay the application, to avoid keeping the input
    570
    571
                # arguments in memory
--> 572
                self.results = batch()
    573
    574
            def get(self):
~/.local/lib/python3.8/site-packages/joblib/parallel.py in _call (self)
    260
                # change the default number of processes to -1
                with parallel_backend(self._backend, n_jobs=self._n_jobs):
    261
--> 262
                    return [func(*args, **kwargs)
                            for func, args, kwargs in self.items]
    263
    264
~/.local/lib/python3.8/site-packages/joblib/parallel.py in <listcomp>(.0)
                # change the default number of processes to -1
    260
    261
                with parallel_backend(self._backend, n_jobs=self._n_jobs):
--> 262
                    return [func(*args, **kwargs)
    263
                            for func, args, kwargs in self.items]
    264
~/.local/lib/python3.8/site-packages/sklearn/utils/fixes.py in call (self, __
→*args, **kwargs)
    209
            def __call__(self, *args, **kwargs):
    210
                with config_context(**self.config):
--> 211
                    return self.function(*args, **kwargs)
```

```
212
    213
~/.local/lib/python3.8/site-packages/sklearn/model_selection/_validation.py in_
→_fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, u

→fit_params, return_train_score, return_parameters, return_n_test_samples, u

→return_times, return_estimator, split_progress, candidate_progress, u
 →error_score)
    667
                        cloned_parameters[k] = clone(v, safe=False)
    668
--> 669
                   estimator = estimator.set_params(**cloned_parameters)
    670
    671
              start_time = time.time()
~/.local/lib/python3.8/site-packages/sklearn/base.py in set_params(self,_
 →**params)
    238
                        key, delim, sub_key = key.partition("__")
                        if key not in valid_params:
    239
--> 240
                             raise ValueError(
                                  "Invalid parameter %s for estimator %s. "
    241
    242
                                  "Check the list of available parameters "
ValueError: Invalid parameter scale_with_mean for estimator_
 →KNeighborsClassifier(n_neighbors=2, p=1). Check the list of available u
 →parameters with `estimator.get_params().keys()`.
```