

Recent results on the norm of localization operators

Candidato:

Federico Riccardi

Relatore:

Prof. F. Nicola

Laurea Magistrale in Ingegneria Matematica

■ **Problema**: elaborare un segnale, ad esempio una traccia audio, un'immagine, una misurazione di un sensore, ecc.;

- **Problema**: elaborare un segnale, ad esempio una traccia audio, un'immagine, una misurazione di un sensore, ecc.;
- Motivazioni: analizzare il segnale ed estrarne informazioni rilevanti, separare delle componenti, filtrare elementi non desiderati;

- **Problema**: elaborare un segnale, ad esempio una traccia audio, un'immagine, una misurazione di un sensore, ecc.;
- Motivazioni: analizzare il segnale ed estrarne informazioni rilevanti, separare delle componenti, filtrare elementi non desiderati;
- Come fare: trasformate, ad esempio la trasformata di Fourier 𝒯, trasformate tempo-frequenza, come la short-time Fourier transform, filtri, operatori di localizzazione.

Principi di indeterminazione

L'obiettivo di localizzare un segnale si scontra con un limite fondamentale, ovvero i *principi di indeterminazione*. Esistono numerosi principi di indeterminazione, ognuno espressione del seguente concetto:

una funzione non può essere troppo concentrata sia in tempo che in frequenza.

Esempio di funzione ben concentrata in tempo con trasformata poco concentrata in frequenza.

Esempio: principio di indeterminazione di Heisenberg

Principio di indeterminazione di Heisenberg

Sia $f \in L^2(\mathbb{R})$ con $||f||_2 = 1$ e siano $a, b \in \mathbb{R}$. Allora:

$$\left(\int_{\mathbb{R}} (t-a)^2 |f(t)|^2 dt\right)^{1/2} \left(\int_{\mathbb{R}} (\omega-b)^2 |\mathscr{F}f(\omega)|^2 d\omega\right)^{1/2} \geq \frac{1}{4\pi}. \tag{1}$$

Le funzioni che raggiungono l'uguaglianza sono solo le gaussiane.

Interpretazione: i due integrali si possono vedere come misure della concentrazione di f e $\mathscr{F}f$ vicino ai punti a e b, rispettivamente. Se una delle concentrazioni è "piccola", l'altra deve essere "grande".

Definizione

La short-time Fourier transform, in breve STFT, è una trasformata tempo-frequenza. Prima di definirla, dobbiamo introdurre gli operatori di traslazione e modulazione. Dati $x, \omega \in \mathbb{R}$ abbiamo:

$$T_x f(t) = f(t-x), \quad M_\omega f(t) = e^{2\pi i \omega t} f(t).$$

Definizione

La short-time Fourier transform, in breve STFT, è una trasformata tempo-frequenza. Prima di definirla, dobbiamo introdurre gli operatori di traslazione e modulazione. Dati $x, \omega \in \mathbb{R}$ abbiamo:

$$T_x f(t) = f(t-x), \quad M_\omega f(t) = e^{2\pi i \omega t} f(t).$$

Short-time Fourier transfrom

La short-time Fourier transform di una funzione $f \in L^2(\mathbb{R})$ rispetto alla finestra $\phi \in L^2(\mathbb{R})$ è data da:

$$\mathcal{V}_{\phi}f(x,\omega) = \langle f, M_{\omega}T_{x}\phi \rangle = \int_{\mathbb{R}} f(t)\overline{\phi(t-x)}e^{-2\pi i\omega t} dt.$$

Short-time Fourier transform

Finestra gaussiana

Short-time Fourier transform

Finestra gaussiana

Per avere una buona risoluzione è necessario scegliere una finestra ben localizzata sia in tempo che in frequenza. Una scelta ottimale è quindi una finestra gaussiana normalizzata in \mathcal{L}^2

$$\varphi(t)=2^{1/4}e^{-\pi t^2}.$$

Definizione

Con la particolare scelta di finestra gaussiana normalizzata l'operatore $\mathcal{V}_{\varphi}:L^2(\mathbb{R})\to L^2(\mathbb{R}^2)$ diventa un'isometria e vale la seguente formula di inversione:

$$\mathcal{V}_{\varphi}^{*}\mathcal{V}_{\varphi}=I_{L^{2}(\mathbb{R})}.$$

Definizione

Con la particolare scelta di finestra gaussiana normalizzata l'operatore $\mathcal{V}_{\varphi}:L^2(\mathbb{R})\to L^2(\mathbb{R}^2)$ diventa un'isometria e vale la seguente formula di inversione:

$$\mathcal{V}_{\varphi}^{*}\mathcal{V}_{\varphi}=I_{L^{2}(\mathbb{R})}.$$

Questo suggerisce come definire un operatore di localizzazione:

$$f \in L^2(\mathbb{R})$$

Definizione

Con la particolare scelta di finestra gaussiana normalizzata l'operatore $\mathcal{V}_{\wp}:L^2(\mathbb{R}) o L^2(\mathbb{R}^2)$ diventa un'isometria e vale la seguente formula di inversione:

$$\mathcal{V}_{\varphi}^{*}\mathcal{V}_{\varphi}=I_{L^{2}(\mathbb{R})}.$$

Questo suggerisce come definire un operatore di localizzazione:

$$f \in L^2(\mathbb{R}) \mapsto \mathcal{V}_{\varphi} f \in L^2(\mathbb{R}^2)$$

Definizione

Con la particolare scelta di finestra gaussiana normalizzata l'operatore $\mathcal{V}_{\varphi}:L^2(\mathbb{R})\to L^2(\mathbb{R}^2)$ diventa un'isometria e vale la seguente formula di inversione:

$$\mathcal{V}_{\varphi}^*\mathcal{V}_{\varphi}=I_{L^2(\mathbb{R})}.$$

Questo suggerisce come definire un operatore di localizzazione:

$$f \in L^2(\mathbb{R}) \mapsto \mathcal{V}_{\varphi} f \in L^2(\mathbb{R}^2) \mapsto F \mathcal{V}_{\varphi} f \in L^2(\mathbb{R}^2)$$

Definizione

Con la particolare scelta di finestra gaussiana normalizzata l'operatore $\mathcal{V}_{\varphi}:L^2(\mathbb{R})\to L^2(\mathbb{R}^2)$ diventa un'isometria e vale la seguente formula di inversione:

$$\mathcal{V}_{\varphi}^*\mathcal{V}_{\varphi}=I_{L^2(\mathbb{R})}.$$

Questo suggerisce come definire un operatore di localizzazione:

$$f\in L^2(\mathbb{R})\mapsto \mathcal{V}_\varphi f\in L^2(\mathbb{R}^2)\mapsto F\mathcal{V}_\varphi f\in L^2(\mathbb{R}^2)\mapsto \mathcal{V}_\varphi^*F\mathcal{V}_\varphi f\in L^2(\mathbb{R})$$

Operatore di localizzazione in tempo-frequenza - Daubechies 1988

Data una finestra $F:\mathbb{R}^2\to\mathbb{C}$, l'operatore di localizzazione in tempo-frequenza con finestra φ e peso F è definito da

$$L_{F,\varphi} := \mathcal{V}_{\varphi}^* F \mathcal{V}_{\varphi} : L^2(\mathbb{R}) \to L^2(\mathbb{R}).$$

Proprietà

Le proprietà di $L_{F,\varphi}$ dipendono dalle caratteristiche della funzione peso F:

lacksquare se $F\in L^p(\mathbb{R}^2)$ con $p\in [1,+\infty]$ allora $L_{F,arphi}$ è limitato e $\|L_{F,arphi}\|\leq \|F\|_p$;

Proprietà

- lacksquare se $F\in L^p(\mathbb{R}^2)$ con $p\in [1,+\infty]$ allora $L_{F,arphi}$ è limitato e $\|L_{F,arphi}\|\leq \|F\|_p$;
- lacksquare se $F\in L^p(\mathbb{R}^2)$ con $p\in [1,+\infty)$ allora $L_{F,arphi}$ è compatto;

Proprietà

- se $F \in L^p(\mathbb{R}^2)$ con $p \in [1, +\infty]$ allora $L_{F,\varphi}$ è limitato e $\|L_{F,\varphi}\| \leq \|F\|_p$;
- lacksquare se $F\in L^p(\mathbb{R}^2)$ con $p\in [1,+\infty)$ allora $L_{F,arphi}$ è compatto;
- se $F \in L^2(\mathbb{R}^2)$ allora $L_{F,\varphi}$ è un operatore integrale di Hilbert-Schmidt e la sua norma di Hilbert-Schmidt è minore o uguale di $\|F\|_1$;

Proprietà

- se $F \in L^p(\mathbb{R}^2)$ con $p \in [1, +\infty]$ allora $L_{F,\varphi}$ è limitato e $\|L_{F,\varphi}\| \leq \|F\|_p$;
- \blacksquare se $F \in L^p(\mathbb{R}^2)$ con $p \in [1, +\infty)$ allora $L_{F,\varphi}$ è compatto;
- se $F \in L^2(\mathbb{R}^2)$ allora $L_{F,\varphi}$ è un operatore integrale di Hilbert-Schmidt e la sua norma di Hilbert-Schmidt è minore o uguale di $\|F\|_1$;
- ullet se $F\in L^1(\mathbb{R}^2)$ è un operatore di classe traccia;

Proprietà

- lacksquare se $F\in L^p(\mathbb{R}^2)$ con $p\in [1,+\infty]$ allora $L_{F,arphi}$ è limitato e $\|L_{F,arphi}\|\leq \|F\|_p$;
- \blacksquare se $F \in L^p(\mathbb{R}^2)$ con $p \in [1, +\infty)$ allora $L_{F,\varphi}$ è compatto;
- se $F \in L^2(\mathbb{R}^2)$ allora $L_{F,\varphi}$ è un operatore integrale di Hilbert-Schmidt e la sua norma di Hilbert-Schmidt è minore o uguale di $\|F\|_1$;
- ullet se $F\in L^1(\mathbb{R}^2)$ è un operatore di classe traccia;
- se F è radialmente simmetrica, ovvero $F(x,\omega)=\mathcal{F}(r^2)$ con $r^2=x^2+\omega^2$, le autofunzioni di $L_{F,\varphi}$ sono le funzioni di Hermite e i corrispondenti autovalori sono dati da

$$\lambda_k = \frac{1}{k!} \int_0^{+\infty} \mathcal{F}\left(\frac{s}{\pi}\right) s^k e^{-s} \, ds.$$

Disuguaglianza di Lieb

Oltre alle proprietà appena elencate, è interessante studiare il problema di trovare delle stime sharp per la norma degli operatori di localizzazione.

Disuguaglianza di Lieb

Oltre alle proprietà appena elencate, è interessante studiare il problema di trovare delle stime sharp per la norma degli operatori di localizzazione.

Disuguaglianza di Lieb - Lieb 1978

Sia $p\in (1,+\infty)$. Allora, per ogni $F\in L^p(\mathbb{R}^2)$ vale

$$||L_{F,\varphi}|| \le \left(\frac{p-1}{p}\right)^{\frac{p-1}{p}} ||F||_p, \tag{2}$$

con uguaglianza se e solo se ${\it F}$ è una gaussiana, eventualmente traslata e modulata.

Disuguaglianza di Faber-Krahn per la STFT

Alcuni risultati su questo problema sono stati ottenuti solo recentemente.

Disuguaglianza di Faber-Krahn per la STFT - Nicola e Tilli 2022

Sia $\Omega\subset\mathbb{R}^2$ un insieme misurabile di misura finita. Allora, indicando con $L_{\Omega,\varphi}$ l'operatore di localizzazione con peso pari alla funzione indicatrice di Ω , si ha:

$$||L_{\Omega,\varphi}|| \leq 1 - e^{-|\Omega|},$$

con uguaglianza se e solo se Ω è una palla.

Risultati recenti: $F \in L^p \cap L^\infty$

Grazie al risultato precedente è possibile trattare il caso in cui il peso F sia generico e non solo una funzione indicatrice. In questa direzione, in [Nicola e Tilli 2023] è stato studiato il seguente problema:

trovare
$$C>0$$
 tale che $\|L_{F,\varphi}\|\leq C$ per ogni F che soddisfa $\|F\|_{\infty}\leq A$ e $\|F\|_{p}\leq B$,

dove $p \in [1, +\infty)$, $A \in (0, +\infty]$ e $B \in (0, +\infty)$ (con la condizione aggiuntiva $A < +\infty$ se p = 1). Presentiamo il risultato nel caso p > 1.

Risultati recenti: $F \in L^p \cap L^\infty$

Teorema - Nicola e Tilli 2023

Sia $p \in (1, +\infty)$ e sia $F \in L^p(\mathbb{R}^2) \cap L^\infty(\mathbb{R}^2)$. Allora:

1 se $||F||_p/||F||_\infty \le (p-1)/p$ la stima (2) resta ottimale;

Risultati recenti: $F \in L^p \cap L^\infty$

Teorema - Nicola e Tilli 2023

Sia $p \in (1, +\infty)$ e sia $F \in L^p(\mathbb{R}^2) \cap L^\infty(\mathbb{R}^2)$. Allora:

- I se $||F||_p/||F||_\infty \le (p-1)/p$ la stima (2) resta ottimale;
- 2 se $||F||_p/||F||_{\infty} > (p-1)/p$ allora

$$||L_{F,\varphi}|| \le ||F||_{\infty} \left(1 - \frac{e^{(p-1)/p - (||F||_p/||F||_{\infty})^p}}{p}\right),$$

con uguaglianza se e solo se F è (a meno di traslazioni e modulazioni) una gaussiana troncata in alto, ovvero della forma

$$F(x,\omega) = \min\{\lambda e^{-\frac{\pi}{p-1}(x^2+\omega^2)}, A\}.$$

per qualche $\lambda > A$.

Risultati recenti: $F \in L^p \cap L^q$

Nella mia tesi ho considerato l'analogo problema con due vincoli di tipo L^p :

trovare
$$C>0$$
 tale che $\|L_{F,\varphi}\|\leq C$ per ogni F che soddisfa $\|F\|_p\leq A$ e $\|F\|_q\leq B$,

dove
$$p, q \in (1, +\infty)$$
, $A, B \in (0, +\infty)$.

Risultati recenti: $F \in L^p \cap L^q$

Teorema

Siano $p,q\in(1,+\infty)$ e sia $F\in L^p(\mathbb{R}^2)\cap L^q(\mathbb{R}^2)$. Allora esistono due costanti $c_1 < c_2$, che dipendono solo da $p \in q$, tali che:

I se $||F||_q/||F||_p \le c_1$ o se $||F||_q/||F||_p \ge c_2$, la stima (2) resta ottimale, con $p \in q$ rispettivamente.

Risultati recenti: $F \in L^p \cap L^q$

Teorema

Siano $p, q \in (1, +\infty)$ e sia $F \in L^p(\mathbb{R}^2) \cap L^q(\mathbb{R}^2)$. Allora esistono due costanti $c_1 < c_2$, che dipendono solo da p e q, tali che:

2 se $c_1 < ||F||_q / ||F||_p < c_2$ allora

$$||L_{F,\varphi}|| \le T - \lambda_1 T^p/p - \lambda_2 T^q/q, \tag{3}$$

dove $\lambda_1, \lambda_2 > 0$ sono univocamente determinati da

$$p \int_0^{+\infty} t^{p-1} u(t) dt = A^p, \quad q \int_0^{+\infty} t^{q-1} u(t) dt = B^q,$$

con $u(t) = \max\{-\log(\lambda_1 t^{p-1} + \lambda_2 t^{q-1}), 0\}$ e T>0 tale che $\lambda_1 T^{p-1} + \lambda_2 T^{q-1} = 1$. Infine, l'uguaglianza in (3) si ha se e solo se F è (a meno di traslazioni e modulazioni) radialmente simmetrica e ha u come funzione di distribuzione.

Idea della dimostrazione nel secondo regime

Il primo passo viene suggerito da un teorema presente in [Nicola e Tilli 2023].

Teorema

Data $F \in L^p(\mathbb{R}^2)$ con $p \in [1, +\infty)$ e indicando con $\mu(t) = |\{|F| > t\}|$ la funzione di distribuzione di |F|, si ha

$$\|L_{F,\varphi}\| \leq \int_0^{+\infty} (1-e^{-\mu(t)}) dt,$$

con uguaglianza se e solo se F è (a meno di traslazioni) radialmente simmetrica.

Questo ci indica che è necessario trovare stime sharp per il membro destro.

Idea della dimostrazione nel secondo regime

Il problema variazionale per la funzione di distribuzione, dopo un'opportuna traduzione dei vincoli di integrabilità, è il seguente:

$$\sup_{v\in\mathcal{C}}\int_0^{+\infty} (1-e^{-v(t)})\,dt$$

dove \mathcal{C} è l'insieme dell funzioni $v:(0,+\infty)\to [0,+\infty)$ decrescenti e che soddisfano i vincoli

$$\rho\int_0^{+\infty}t^{p-1}v(t)\,dt\leq A^p,\quad q\int_0^{+\infty}t^{q-1}v(t)\,dt\leq B^q.$$

Idea della dimostrazione nel secondo regime

 Una volta dimostrata l'esistenza di soluzioni per il problema variazionale, si dimostra che le funzioni estremali sono della forma

$$u(t) = egin{cases} -\log\left(\lambda_1 t^{p-1} + \lambda_2 t^{q-1}
ight) & t \in (0,M) \ 0 & t \in (M,+\infty) \end{cases}$$

per qualche M>0 e $\lambda_1,\lambda_2\in\mathbb{R}$.

Esempio di funzione estremale.

Idea della dimostrazione nel secondo regime

• Gli ultimi step prevedono di dimostrare che gli estremali sono continui e che devono raggiungere l'uguaglianza nei vincoli. Questo permette poi di dimostrare che λ_1, λ_2 sono entrambi positivi e univocamente determinati.

Idea della dimostrazione nel secondo regime

- Gli ultimi step prevedono di dimostrare che gli estremali sono continui e che devono raggiungere l'uguaglianza nei vincoli. Questo permette poi di dimostrare che λ_1, λ_2 sono entrambi positivi e univocamente determinati.
- Una volta determinata la funzione di distribuzione *u* ottimale, è semplice ricostruire *F* tramite riarrangiamento.

Funzioni peso ottimali nel caso $A=B=1,\ p=1.5,\ q$ variabile

Bibliografia I

- I. Daubechies. "Time-frequency localization operators: a geometric phase space approach". In: IEEE Transactions on Information Theory 34.4 (1988), pp. 605-612.
- E. H. Lieb. "Proof of an entropy conjecture of Wehrl". In: Communications in Mathematical Physics 62.1 (1978), pp. 35-41.
- F. Nicola and P. Tilli. "The Faber-Krahn inequality for the short-time Fourier transform". In: Inventiones mathematicae 230.1 (2022), pp. 1–30.
- F. Nicola and P. Tilli. "The norm of time-frequency localization operators". In: Transactions of the American Mathematical Society (to appear) (2023).

Grazie per l'attenzione

