

Convolutional Neural Networks - 3D 데이터의 Convolution 연산

Convolutional neural network (CNN)

Convolution Layer

Overview

Fei-Fei Li & Justin Johnson & Serena Yeung 출처: cs231n_2017_lecture5 April 18, 2017

Convolution Layer

Overview

Fei-Fei Li & Justin Johnson & Serena Yeung

출처: cs231n_2017_lecture5 April 18, 2017

Convolution Layer

Overview

• For example, if we had 6 5x5x3 filters, we'll get 6 separate activation maps

Fei-Fei Li & Justin Johnson & Serena Yeung

출처: cs231n_2017_lecture5 April 18, 2017

Convolution Layer

Overview

• ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Fei-Fei Li & Justin Johnson & Serena Yeung

출처: cs231n_2017_lecture5 April 18, 2017

Deep Learning: CNN Visualization

Convolutional Neural Network (CNN) 이론

- CNN을 이용한 classification model 설계 시 주의사항
 - 일반적으로 CNN의 feature map을 평탄화 한 이후 fully connected layer에 입력함

LeNet-5 구조

LeNet-5 구조

- **C1** 훈련해야할 파라미터 개수: (가중치*입력맵개수 + 바이어스)*특성맵개수 = (5*5*1 + 1)*6 = 156
- **S2** 훈련해야할 파라미터 개수: (가중치 + 바이어스)*특성맵개수 = (1 + 1)*6 = 12
- **S4** 훈련해야할 파라미터 개수: (가중치 + 바이어스)*특성맵개수 = (1 + 1)*16 = 32
- **C5** 훈련해야할 파라미터 개수: (가중치*입력맵개수 + 바이어스)*특성맵 개수 = (5*5*16 + 1)*120 = 48120
- F6 훈련해야할 파라미터 개수: 연결개수 = (입력개수 + 바이어스)*출력개수 = (120 + 1)*84 = 10164

LeNet-5 C3

딥러닝 주요모델 구성요소

- Skip connection (ResNet, 2015)
- Dense connection (DenseNet, 2017)
- Channel attention (SENet, 2018)
- Bottleneck Layer
- 구성요소 적용 예시

딥러닝 모델 구성요소

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
 - 대용량의 이미지셋 (1000개의 클래스) 에 대한 이미지 분류 알고리즘 성능 평가 대회

우승 알고리즘의 분류 에러율(%)

Ref.: https://bskyvision.com/425

딥러닝 모델 구성요소

- Skip connection (ResNet, 2015)
- Dense connection (DenseNet, 2017)
- Channel attention (SENet, 2018)
- Bottleneck Layer
- 구성요소 적용 예시

- [CVPR 2015] Deep Residual Learning for Image Recognition (Kaiming He, Microsoft Research)
 - ImageNet dataset에 대해 20-layer, 56-layer 모델의 성능 비교
 - → 깊은 모델의 성능이 더 떨어지는 것을 확인

14

- [CVPR 2015] Deep Residual Learning for Image Recognition (Kaiming He, Microsoft Research)
 - 잔차 신호 (Residual)을 학습 하게 설계 함으로써 문제 해결 시도

15

- [CVPR 2015] ResNet (Kaiming He, Microsoft Research)
 - 3x3 convolution 2개, skip connection으로 구성된 Residual block 제안
 - 여러 개의 Residual block을 이용해 제안 기법인 ResNet을 구현

Residual block

Inference 진행 순서

[CVPR 2015] ResNet (Kaiming He, Microsoft Research) Inference가 진행됨에 따라 ➤ feature map의 width, height은 감소됨 ➤ feature map의 channel은 증가됨 3x3 conv. 512 Feature map size: 7x7x512 Feature map size: 112x112x64

- [CVPR 2015] ResNet (Kaiming He, Microsoft Research)
 - Convolution layer의 최종 출력은
 Global Average Pooling (GAP)을 통해
 Fully connected layer에 입력됨

- C: Channel
- ❖ W: Width
- ❖ H: Height
- GAP: Global Average Pooling

Ref.: cs231n.stanford.edu, Lecture 9

Skip Connection (ResNet)

- [CVPR 2015] ResNet (Kaiming He, Microsoft Research)
 - 2015년 ImageNet 대회에서는 여러 개의 Layer에 대해 실험한 결과를 제안함

5개의 모델에 대해 실험 결과를 제시

0		2007 (State - 201)							
layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer			
conv1	112×112	7×7, 64, stride 2							
	56×56	3×3 max pool, stride 2							
conv2_x		$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $			
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8 $			
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 23 $	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 36 $			
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \begin{bmatrix} 1 \times 1,512 \\ 3 \times 3,512 \\ 1 \times 1,2048 \end{bmatrix} \times 3 $			
2	1×1	average pool, 1000-d fc, softmax							
FLOPs		1.8×10^9	3.6×10^9	3.8×10^9 7.6×10^9		11.3×10^9			

각 모델에 대한 복잡도

딥러닝 모델 구성요소

- Skip connection (ResNet, 2015)
- Dense connection (DenseNet, 2017)
- Channel attention (SENet, 2018)
- Bottleneck Layer
- 구성요소 적용 예시

- [CVPR 2017] Densely Connected Convolutional Networks (Gao Huang, Cornell University)
 - 이전 Layer의 출력 feature map을 이후 layer에서 재사용

- [CVPR 2017] Densely Connected Convolutional Networks (Gao Huang, Cornell University)
 - 이전 Layer의 출력 feature map을 이후 layer에서 재사용
 - Layer가 깊어짐에 따라 파라미터의 개수가 증가함

- [CVPR 2017] Densely Connected Convolutional Networks (Gao Huang, Cornell University)
 - 여러 개의 Convolution layer를 가지는 Dense Block을 정의, Dense Block 들로 구성되는 DenseNet을 제안

DenseNet 네트워크 구조 예시

Dense Connection

Figure 1: A 5-layer dense block with a growth rate of k=4. Each layer takes all preceding feature-maps as input.

- [CVPR 2017] Densely Connected Convolutional Networks (Gao Huang, Cornell University)
 - ResNet보다 깊은 구조에 대해 학습을 진행

5개의 모델에 대해 실험 결과를 제시

-							
Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264		
Convolution	112×112		7×7 con	iv, stride 2			
Pooling	56 × 56		$3 \times 3 \max p$	oool, stride 2			
Dense Block	56 ~ 56	$[1 \times 1 \text{ conv}]$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$		
(1)	56 × 56	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \\ 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$		
Transition Layer	56×56		1×1	conv			
(1)	28×28		2 × 2 average	pool, stride 2			
Dense Block	20 20	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$		
(2)	28×28	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 12$				
Transition Layer	28×28	$1 \times 1 \text{ conv}$					
(2)	14 × 14		2 × 2 average	pool, stride 2			
Dense Block	14 × 14	$1 \times 1 \text{ conv}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix} \times 32$	$\left[\begin{array}{c} 1 \times 1 \text{ conv} \\ 3 \times 3 \text{ conv} \end{array}\right] \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$		
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 24$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 64$		
Transition Layer	14 × 14		1 × 1	conv			
(3)	7 × 7		2 × 2 average	pool, stride 2			
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}$		
(4)	/ × /	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 16$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 48$		
Classification	1 × 1		7×7 global	average pool			
Layer			1000D fully-cor	nnected, softmax			
		I.		HARMAN AND AND AND AND AND AND AND AND AND A			

딥러닝 모델 구성요소

- Skip connection (ResNet, 2015)
- Dense connection (DenseNet, 2017)
- Channel attention (SENet, 2018)
- Bottleneck Layer
- 구성요소 적용 예시

- [CVPR 2018] Squeeze-and-Excitation Networks
 - Feature map의 각 채널에 대해 중요도를 부여

- [CVPR 2018] Squeeze-and-Excitation Networks
 - 일반적으로 GAP를 통해 작아진 feature map에 대해 Fully connected layer 또는 1x1 convolution이 사용됨

- [CVPR 2018] Squeeze-and-Excitation Networks
 - 기존에 제안된 모델들에 대해 Channel attention을 적용하여 결과 제시

	re-implementation			SENet			
	top-1 err.	top-5 err.	GFLOPs	top-1 err.	top-5 err.	GFLOPs	
ResNet-50 [13]	24.80	7.48	3.86	$23.29_{(1.51)}$	$6.62_{(0.86)}$	3.87	
ResNet-101 [13]	23.17	6.52	7.58	$22.38_{(0.79)}$	$6.07_{(0.45)}$	7.60	
ResNet-152 [13]	22.42	6.34	11.30	$21.57_{(0.85)}$	$5.73_{(0.61)}$	11.32	
ResNeXt-50 [19]	22.11	5.90	4.24	$21.10_{(1.01)}$	$5.49_{(0.41)}$	4.25	
ResNeXt-101 [19]	21.18	5.57	7.99	$20.70_{(0.48)}$	$5.01_{(0.56)}$	8.00	
VGG-16 [11]	27.02	8.81	15.47	25.22 _(1.80)	$7.70_{(1.11)}$	15.48	
BN-Inception [6]	25.38	7.89	2.03	$24.23_{(1.15)}$	$7.14_{(0.75)}$	2.04	
Inception-ResNet-v2 [21]	20.37	5.21	11.75	$19.80_{(0.57)}$	$4.79_{(0.42)}$	11.76	

Channel attention을 통한 성능 향상

- [CVPR 2018] Squeeze-and-Excitation Networks
 - 기존에 제안된 모델들에 대해 Channel attention을 적용하여 결과 제시

	re-implementation			SENet		
	top-1 err.	top-5 err.	GFLOPs	top-1 err.	top-5 err.	GFLOPs
ResNet-50 [13]	24.80	7.48	3.86	$23.29_{(1.51)}$	$6.62_{(0.86)}$	3.87
ResNet-101 [13]	23.17	6.52	7.58	$22.38_{(0.79)}$	$6.07_{(0.45)}$	7.60
ResNet-152 [13]	22.42	6.34	11.30	$21.57_{(0.85)}$	$5.73_{(0.61)}$	11.32
ResNeXt-50 [19]	22.11	5.90	4.24	21.10(1.01)	5.49(0.41)	4.25
ResNeXt-101 [19]	21.18	5.57	7.99	$20.70_{(0.48)}$	$5.01_{(0.56)}$	8.00
VGG-16 [11]	27.02	8.81	15.47	25.22(1.80)	$7.70_{(1.11)}$	15.48
BN-Inception [6]	25.38	7.89	2.03	24.23(1.15)	$7.14_{(0.75)}$	2.04
Inception-ResNet-v2 [21]	20.37	5.21	11.75	$19.80_{(0.57)}$	$4.79_{(0.42)}$	11.76
				(0.01)	(0.12)	

복잡도는 거의 증가되지 않음

딥러닝 모델 구성요소

- Skip connection (ResNet, 2015)
- Dense connection (DenseNet, 2017)
- Channel attention (SENet, 2018)
- Bottleneck Layer
- 구성요소 적용 예시

Bottleneck Layer

■ 1x1 컨볼루션 사용 → feature map의 개수를 줄이는 목적으로 사용

- \checkmark Memory: [(5 x 5 x 480) + 1] x 48 + (14 x 14 x 48)
- ✓ 연산횟수: (14 x 14 x 48) x (5 x 5 x 480) = 약 112.9M

- Memory: $[(1 \times 1 \times 480) + 1] \times 16 + [(5 \times 5 \times 16) + 1] \times 48 + (14 \times 14 \times 16) + (14 \times 14 \times 48)$
- ✓ 연산횟수: (14 x 14 x 16)*(1 x 1 x 480) + (14 x 14 x 48)*(5 x 5 x 16) = 약 5.3M

딥러닝 모델 구성요소

- Skip connection (ResNet, 2015)
- Dense connection (DenseNet, 2017)
- Channel attention (SENet, 2018)
- Bottleneck Layer
- 구성요소 적용 예시

딥러닝 모델 구성요소 - 구성요소 적용 예시

- [CVPR 2016] Accurate Image Super-Resolution Using Very Deep Convolutional Networks (VDSR)
 - 3x3 Convolution 20개 사용, SR 분야에 대해 최초로 Residual Learning 적용

Interpolation된 image 입력 (Bi-cubic)

딥러닝 모델 구성요소 - 구성요소 적용 예시

- [CVPR 2017] Image Super-Resolution Using Dense Skip Connections (SR-DenseNet)
 - Dense connection을 이용해 Dense block 8의 출력 단은 1,000개 이상의 feature map을 사용

