

Distance Metric Recommendation for k-Means Clustering: A Meta-Learning Approach

Mark Edward M. Gonzales, Lorene C. Uy, Jacob Adrianne L. Sy & Macario O. Cordel, II {mark_gonzales, lorene_c_uy, jacob_adrianne_l_sy, macario.cordel}@dlsu.edu.ph De La Salle University, Manila, Philippines

Project Page

Distance Metric and Clustering

In centroid-based clustering algorithms,
 the distance metric is used to determine
 the cluster assignment of a data point

(Suarez, Garcia & Herrera, 2021; Quaddoura et al., 2020; Xing, Ng, Jordan & Russell, 2002)

Traditional Approaches to Distance Metric Selection

Theoretical

Requires deep expertise on the geometry of the dataset

Experimental

Demands a significant amount of time and resources

Meta-Learning

- "Learning to learn"
- A subfield of machine learning that explores the automatic recommendation of parameters and algorithms, as well as the improvement of their performance

(Lemke, Budka & Gabrys, 2013)

Contributions

- Dataset of datasets for meta-learning studies on clustering
- Meta-learning model for distance metric recommendation for k-means clustering using (1) general, (2) statistical,
 (3) information-theoretic, (4) structural, and (5) complexity meta-features
- Fine-grained analysis of meta-feature importance and effects

Dataset of Datasets

Data Collection

- 340 datasets
 - 195 from OpenML
 - 60 from UCI
 - 85 from Kaggle

		<u>, </u>		
META-LEARNII	NG MODEL FOR DIST	ANCE METRIC	RECOMMENDA	TION
	Evaluation and Fine	e-Grained Analy	/sis	

Study	Num. of Dataset Entries	Num. of Meta- Features	Meta-Target	
Pimentel & De Carvalho (2019)	57	46	Algorithm	
Jilling & Alvarez (2020)	135	25	Algorithm	
Pimentel & De Carvalho (2018)	219	19	Algorithm	
Muravyov et al. (2017)	200	19	Validation Index	
Pimentel & De Carvalho (2020)	219	145	Num. of Clusters	
Zhu et al. (2020)	199	41	Distance Metric	
Ours	340	52	Distance Metric	

Meta-Target Identification

 k-means clustering, coupled with a grid search over selected distance measures, was performed to label each dataset in the collection with the distance metric that optimizes the **Davies-Bouldin score**

$$\frac{1}{k} \sum_{i} \max_{j,j \neq i} \left\{ \frac{\frac{1}{n_i} \sum_{x \in C_i} d(x, c_i) + \frac{1}{n_j} \sum_{x \in C_j} d(x, c_j)}{d(c_i, c_j)} \right\}$$

Meta-Target Identification

Distance Metric	After Relabeling	
Chebyshev	139 (40.88%)	
Euclidean	122 (35.89%)	
Manhattan	79 (23.23%)	

Evaluation and Fine-Grained Analysis

Meta-Feature Extraction

- 52 meta-features
 - Combined from the works
 of Zhu et al. (2020), Vanschoren
 (2019), and Alcobaça et al. (2020)
 - Selected based on the applicability to unsupervised tasks

Meta-Feature Extraction

General

 Describe the dimensionality and size of the dataset (Vanschoren, 2019)

- Statistical

 Capture characteristics related to feature interdependence, normality, degree of discreteness, and noisiness (Vanschoren, 2019)

Evaluation and Fine-Grained Analysis

Meta-Feature Extraction

Information-Theoretic

 Quantify feature informativeness and interdependence (Vanschoren, 2019; Castiello et al., 2005)

- Structural

 Capture patterns and correlation information from the k-itemsets frequencies (Song et al., 2012)

Evaluation and Fine-Grained Analysis

Meta-Feature Extraction

Complexity

 Pertain to attributes related to the PCA dimensions (Lorena et al., 2019)

Meta-Learning Model

Meta-Learning Model

- Input: Vector of meta-features
- Output: Distance metric

Training (70%)

Test (30%)

Random forest

- Bagging makes it robust to noise and overfitting (Fawagreh et al., 2014)
- Known to perform well on small datasets (Ibrahim & Carman, 2014)

Meta-Learning Model

- Hyperparameter tuning

- Grid search
- Five-fold stratified cross-validation
- Maximize accuracy (micro-F1)

Addressing class imbalance

- SMOTE (Chawla et al., 2002)
- Borderline SMOTE (Han et al., 2005)
- ADASYN (He et al., 2008)

Model Evaluation

	SMOTE	Borderline SMOTE	ADASYN
Accuracy (Micro-F1)	63.73%	70.59%	65.69%
Macro-F1	60.29%	67.86%	63.01%
Macro-Precision	60.78%	67.95%	63.06%
Macro-Recall	60.32%	67.92%	63.10%

Number of trees: 50

Splitting criterion: Gini

Maximum depth: 15

Minimum number of samples

to be a leaf node: 3

Minimum number of samples to split an internal node: 2

Number of features to consider

at each split: \log_2 of the number

of features

Warm start: True

Minimum impurity decrease: 0.0

Complexity parameter α for minimal cost-complexity pruning: 0.0

Feature Importance

Global Feature Importance

 Average of the absolute values of the SHAP value per feature across the dataset

$$g(z') = \phi_0 + \sum_{j=1}^{M} \phi_j z'_j$$

$$I_j = \frac{1}{N} \sum_{i=1}^{N} |\phi_j^{(i)}|$$

GitHub

Global Feature Importance

- Top 5 Meta-Features
 - Sparsity_u
 - Number of Binary Attributes
 - Shannon's Entropy_µ
 - Variance
 - Eigenvalues_σ
- These meta-features, except
 Shannon's entropy_µ, have not
 been considered in prior studies

Chebyshev Distance

Euclidean Distance

Aside from their high global contribution, the sparsity $_{\mu}$ and the number of binary attributes are consistently among the top five meta-features with the highest importance relative to each of the three distance measures

Manhattan Distance

Chebyshev Distance

Euclidean Distance

The sparsity is a measure of discreteness. Let n be the number of instances in the dataset and $\phi(a)$ be the number of distinct values under attribute a

Manhattan Distance

$$\frac{1}{n-1}\left(\frac{n}{\phi(a)}-1\right)$$

Feature Effects

Chebyshev Distance

Euclidean Distance

Manhattan Distance

Feature Selection

	All 52 Meta-Features	Top 25 Meta-Features
Accuracy (Micro-F1)	70.59%	71.57%
Macro-F1	67.86%	68.06%
Macro-Precision	67.95%	68.77%
Macro-Recall	67.92%	67.92%

Top 25 Meta-Features

All 52 Meta-Features

Misclassifications

- Most misclassifications were instances under Manhattan distance that were incorrectly classified under Euclidean distance
- While borderline SMOTE was applied in an attempt to address the problem of class imbalance, this result may be reflective of the underrepresentation of Manhattan distance in the dataset

Hypothesis Testing

Distance Metric Selection	Mean Recommendation Accuracy
Recommended (Ours)	83.60%
Fixed – Chebyshev	47.02%
Fixed – Euclidean	57.46%
Fixed – Manhattan	45.56%
Random	52.15%

Recommendation Accuracy (RA)

 Compares the clustering quality relative to the bestand worst-performing distance metrics (Zhu et al., 2020)

$$RA = \frac{DBS_{\text{rec}} - DBS_{\text{worst}}}{DBS_{\text{best}} - DBS_{\text{worst}}}$$

Scott-Knott Effect Size Difference Test (Tantithamthavorn et al., 2017)

The mean RA of using our meta-learning model is significantly different from the mean RA of using fixed or random distance metric selection methods

Scott-Knott Effect Size Difference Test (Tantithamthavorn et al., 2017)

Our meta-learning model has the lowest standard error of the mean at 0.0344

Euclidean: 0.0448 | Manhattan: 0.0454 | Random: 0.0461 | Chebyshev: 0.0482

Conclusion

GitHub

Conclusion

- We explored the use of (1) general, (2) statistical, (3) information-theoretic, (4) structural, and (5) complexity meta-features in building a random forest model that automatically recommends a distance metric for k-means clustering
- The model registered an accuracy of **70.59**%
- Limiting the feature set to only the **top 25 most important meta-features** increased the accuracy to **71.57%** (+0.98%)

Conclusion

- The fine-grained analysis using SHAP showed that the mean of the sparsity registered the highest feature importance globally
- While the prediction of the minority class (Manhattan) posed a difficulty despite the application of borderline SMOTE, the recommendation accuracy of the built meta-learning model is significantly higher compared to using fixed and randomly chosen distance metrics

Distance Metric Recommendation for k-Means Clustering: A Meta-Learning Approach

Mark Edward M. Gonzales, Lorene C. Uy, Jacob Adrianne L. Sy & Macario O. Cordel, II {mark_gonzales, lorene_c_uy, jacob_adrianne_l_sy, macario.cordel}@dlsu.edu.ph De La Salle University, Manila, Philippines

Project Page

Category	No. of Meta-reatures		
		Abbreviation	Description
General	5	Attr-to-Inst Ratio	Ratio between the number of attributes and instances [26]
	V2	Inst-to-Attr Ratio	Ratio between the number of instances and attributes [27]
		Num Attr	Number of attributes [28]
		Num Binary Attr	Number of binary attributes [28]
		Num Instances	Number of instances [28]
Statistical	32	Canonical Corr †	Canonical correlations of data [29]
, and a second		Correlation †	Absolute value of the correlation of distinct dataset column pairs [30]
		Covariance †	Absolute value of the covariance of distinct dataset attribute pairs [30]
		Eigenvalues †	Eigenvalues of covariance matrix from dataset [31]
		IQ Range †	Interquartile range (IQR) of each attribute [32]
- 2		Kurtosis †	Kurtosis of each attribute [28]
1		Median Abs Dev †	Median Absolute Deviation (MAD) adjusted by a factor [31]
	1	Mean †	Mean value of each attribute [33]
		Median †	Median value from each attribute [33]
		Num Correlated Attr	Number of distinct highly correlated pair of attributes [34]
	Num Outliers	Number of attributes with at least one outlier value [35]	
	SD †	Standard deviation of each attribute [33]	
	l'	Skewness †	Skewness for each attribute [28]
		Sparsity †	(Possibly normalized) sparsity metric [‡] for each attribute [34]
		Trimmed Mean †	Trimmed mean of each attribute [33]
	1	Variance †	Variance of each attribute [30]
Information-	2	Concentration Coeff †	Concentration coefficient of each pair of distinct attributes [36]
V 27 27 27 27 27 27 27 27 27 27 27 27 27	2		
Theoretic	10	Shannon's Entropy	Shannon's entropy for each predictive attribute [28]
Structural 10	10	1-Itemset Min, Q1, Q2, Q3, Max	Minimum, first quartile, second quartile, third quartile, and maximum of one itemset meta-feature [37]
		2-Itemset Min, Q1, Q2, Q3, Max	Minimum, first quartile, second quartile,
1		2-iteliset Will, Q1, Q2, Q3, Max	third quartile, and maximum of two itemset meta-feature [37]
Complexity	3	Ave Num Feat per PCA Dim	Average number of features per PCA dimension [38]
Complexity	,	Ave Num PCA Dim per Point	Average number of PCA dimensions per points [38]
		PCA-to-Orig Dim Ratio	Ratio of the PCA dimension to the original dimension [38]
	and the second s		

Meta-Features

Category No. of Meta-Features