CSP-X2023 山东小学组第二轮试题(下半场)

考试时间: 2023 年 10 月 22 日上午 10: 30--12: 00

题目名称	克隆机	代价
题目类型	传统型	传统型
子文件夹名	clone	cost
程序名称	clone.cpp	cost.cpp
输入文件名	clone.in	cost.in
输出文件名	clone.out	cost.out
测试点数量	10	10
每测试点时限	1秒	2秒
每测试点分值	10	10
内存限制	512M	512M

注意事项

- 1、 代码必须放在子文件夹内, 子文件夹名与题目英文名一致。 文件名(包括程序名和输入输出文件名) 必须使用英文小写。
- 2、 C++编译选项: -02-std=c++14。 C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、 若无特殊说明, 输入文件中同一行内的多个整数、 浮点数、 字符串等均使用一个空格分隔。 若无特殊说明, 结果比较方式为忽略行末空格、 文末回车后的全文比较。
- 4、选手提交的程序源文件不能大于 100KB。
- 5、程序使用的栈空间内存限制与题目的内存限制要求一致。

克隆机 (clone)

【题目描述】

有一台神奇的克隆机,可以克隆任何东西。将样品放进克隆机,可以克隆出一份一样的"复制品"。小明得到了 k 种珍贵的植物种子,依次用 A,B,C,D,...,Z 表示($1 \le k \le 26$)。一开始,每种植物种子只有 1 粒。

小明想利用克隆机克隆出更多种子。将一粒种子作为样品放进克隆机,就可以得到一粒克隆出来的相同的种子,这样一粒种子就变成了两粒种子。小明将 k 粒不同的种子按字母先后顺序排队,从 A 开始依次放入克隆机,每次把得到的两粒相同的种子(放入的 1 粒和克隆出来的 1 粒)放到队尾,这样不断的进行克隆。

例如,一共有7种不同的种子,依次用A,B,C,D,E,F,G表示。

第 1 粒种子 A 放进克隆机之前, 队列是: A, B, C, D, E, F, G。

第 1 粒种子 A 放进克隆机之后, 队列是: B, C, D, E, F, G, A, A。

第 3 粒种子 C 放进克隆机之前, 队列是: C, D, E, F, G, A, A, B, B 。

第 3 粒种子 C 放进克隆机之后, 队列是: D, E, F, G, A, A, B, B, C, C。

请问第 n 粒放进克隆机的是什么种子? 用 A, B, ..., Z 表示。

【输入格式】

输入文件名为 clone. in。

输入 1 行 2 个数字, k 和 n , 用空格隔开。

【输出格式】

输出文件名为 clone.out。

输出1个字符,代表第 n 粒放进克隆机的种子。

【样例1输入】

7 10

【样例1输出】

В

【样例1解释】

序号	1	2	3	4	5	6	7	8	9	10	11
种子	Α	В	С	D	Е	F	G	Α	Α	В	В

【样例2输入】

26 80

【样例2输出】

Α

【样例3输入】

15 689

【样例3输出】

G

【数据范围】

对于 50% 的数据, 1≤n≤10⁶;

代价 (cost)

【题目描述】

因为"黑发不知勤学早",于是小明成为了一名伟大的流水线工人,天天起早摸黑打螺丝。

这一天,小明所在的流水线生成了 n 件产品,其中第 i 号产品规格用一个正整数 a_i 表示。

所谓流水线,就是需要标准化。于是,小明想把这 n 件产品规格修整得全部相同。 小明手边有两种工具来进对产品进行修整,但是使用不同工具需要花费不同的代价, 小明可以进行以下操作任意次:

- 使用一次第一种工具花费 A 的代价将第 i 件产品的规格 a_i 修改成 a_i+1 (其中 $i \in [1,n]$)。
- 使用一次第二种工具花费 B 的代价将第 i 件产品的规格 a_i 修改成 a_i-1 (其中 $i \in [1,n]$)。

现在小明想要花费最少的代价将所有产品的规格都变得相同,于是他找到了自幼勤学苦练的你来帮忙。

你只需要计算出把所有产品调整为相同规格的最小代价即可。

【输入格式】

输入文件为 cost. in。

第一行三个正整数 n, A, B, 分别表示产品数量, 使用一次第一种工具的代价 A 和使用一次第二种工具的代价 B。

第二行 n 个正整数 $a_1, a_2, ..., a_n$ 表示每件产品的产品规格。

【输出格式】

输出文件为 cost.out。

一行一个整数表示最小的总代价。

【样例1输入】

3 1 1

1 2 5

【样例1输出】

4

【样例1解释】

两种操作的代价相等,所以把所有产品规格修改成 2 花费的代价最小,计算可得最小 代价为 4 (1 变为 2,5 变为 4,4 再变为 3,3 再变为 2,已经规格相同,共 4 次)。

【样例2输入】

3 1 100

1 2 5

【样例2输出】

7

【样例2解释】

因为二操作代价 B 太大, 所以把所有产品规格修改成 5 花费代价最小, 计算可得最小代价为 7 (用一操作, 1 变为 5 需要 4 次, 2 变为 5 需要 3 次, 共 7 次)。

【样例3输入】

3 2 5

99999999 999999999 999999999

【样例3输出】

0

【数据范围】

对于 30% 的数据, $1 \le n \le 10, 1 \le a_i \le 100, 1 \le A, B \le 10$;

对于 60% 的数据, $1 \le n \le 10^5$, $1 \le a_i \le 10^5$, $1 \le A$, $B \le 100$;

其中有 30% 的数据, A = B;

对于 100% 的数据, $1 \le n \le 10^5, 0 \le a_i \le 10^9, 1 \le A, B \le 1000$ 。