Lecture 14

Oskar Idland

Part I

Atomic Structure

Looking at an atom with Z protons and N neutrons, we have the following Hamiltonian:

$$H = \sum_{i=1}^{N} \left(\underbrace{\frac{\vec{p}_i^2}{2m}}_{\text{kinetic energy}} - \underbrace{\frac{Ze^2}{4\pi\varepsilon_0 \, |\vec{r}_i|}}_{e-\text{ nucleus attraction}} \right) + \sum_{\substack{i,j \\ i\neq j}} \underbrace{\frac{1}{2} \frac{e^2}{4\pi\varepsilon_0 \, |\vec{r}_i - \vec{r}_j|}}_{e-e \text{ repulsion}}$$

0 Approximation

To simplify this we will ignore the electron-electron interaction (just because it is hard. You need a computer).

A hydrogen-like energy eigenstate of H_0 is:

$$|\psi_n\rangle = |n_1, l_1, m_1\rangle \otimes |n_2, l_2, m_2\rangle \otimes \cdots |n_n, l_n, m_n\rangle \otimes |m_{s_1}\rangle \otimes |m_{s_2}\rangle \otimes \cdots \otimes |m_{s_n}\rangle$$

$$H_0 |\psi_N\rangle \sum_{i=1}^{N} \frac{(-13 \text{ eV}) Z^2}{n_i^2}$$

As n_i^2 increases, we get an absolute lower energy. To find the lowest energieigenvalues we must focus on the lower n values. As electrons are fermions, the state needs to be antisymmetric under permutation of particle labels.

$$|\psi_2\rangle = |n_1, l_1, m_1\rangle \otimes |n_2, l_2, m_2\rangle \otimes |m_{s_1}\rangle \otimes |m_{s_2}\rangle - |n_2, l_2, m_2\rangle \otimes |n_1, l_1, m_1\rangle \otimes |m_{s_2}\rangle \otimes |m_{s_1}\rangle \otimes |m_{s_2}\rangle \otimes |m_{s_2}$$

We want the ground state to be as small (negative) as possible.

$$|\psi_2\rangle = |1,0,0\rangle \otimes |1,0,0\rangle \left(|m_{s_1}\rangle \otimes |m_{s_2}\rangle - |m_{s_2}\rangle \otimes |m_{s_1}\rangle \right)$$

and so $m_{s_1} \neq m_{s_2}$ for this to not be $|NULL\rangle$ aka the singlet state.

$$|\psi_3\rangle = |1,0,0\rangle \otimes |1,0,0\rangle \otimes |1,0,0\rangle \otimes |x_3\rangle$$

$$|x_{3}\rangle = |m_{s_{1}}\rangle \otimes |m_{s_{2}}\rangle \otimes |m_{s_{3}}\rangle - |m_{s_{2}}\rangle \otimes |m_{s_{1}}\rangle \otimes |m_{s_{3}}\rangle \otimes |m_{s_{3}}\rangle + |m_{s_{2}}\rangle \otimes |m_{s_{3}}\rangle \otimes |m_{s_{1}}\rangle - |m_{s_{1}}\rangle \otimes |m_{s_{2}}\rangle + |m_{s_{2}}\rangle \otimes |m_{s_{1}}\rangle \otimes |m_{s_{2}}\rangle - |m_{s_{3}}\rangle \otimes |m_{s_{2}}\rangle \otimes |m_{s_{1}}\rangle$$

No matter what spin we choose, we will always get $|NULL\rangle$. This is the Pauli exclusion principle. For N=3 we need n=2. When we do this, we must take into account the possible l and m values. We have the sates $|2,1,\pm 1\rangle$, $|2,1,0\rangle$, $|2,0,0\rangle$. With four states we can have 8 electrons. For each level n we have

$$2\sum_{l=0}^{n-1} (2l+1) = 2n^2$$

electrons with level n is a proper fermionic atomic state. Every time we were we have to increase n, the energy per particle will make a jump.

n	#	Predicted inert elements
1	2	$2 (H_e)$
2	8	$10 (N_e)$
3	18	$28 (N_i)$ Not an element
4	32	$60 (N_d)$ Not an element

We correct the electron-electron repulsion in an average way. When electrons are close, the potential is given by:

$$\frac{Ze^2}{2\pi\epsilon_0 r}$$

When far away the potential is given by:

$$\frac{e^2}{4\pi\epsilon_0 r}$$

We can use the shell notation to write down how many electron states we have.

$$(1s)^2(2s)^2(2p)^5$$

This shows that we have to electrons in the lowest shell, 2 in the next lowest and 5 in the third lowest. This does not tell us the m values we have to use as we have not filled out the entire 2p shell. The amount of electrons in a shell is given by 2(2l+1).

Shell	n+l		
1s	1		
2s 2p	2 3		
3s 3p	3 4		
4s 3d 4p	4 5 5		
5s 4d 5p	5 6 6		
6s 4f 5d 6p	6777		
7 50017	7000		

7s 5f 6d 7p | 7 8 8 8

Energy increase from left to right with higher n. Alternative ways to specify the groundstate:

Rotational Invariance

The groundstate can be specified by the quantum numbers for the total angular momentum \hat{J} , the total orbital angular momentum \hat{L} and the total spin \vec{S} .

$$ec{S} = \sum_{i=1}^N ec{s_i} \quad , \quad ec{L} = \sum_{i=1}^N ec{l_i} \quad , \quad ec{J} = ec{L} + ec{S}$$

A groundstate multiplet is denoted by:

$$^{2S+1}L_J$$
 , $L \in \underbrace{\{S, P, D, F, G, H, \ldots\}}_{l=0,1,2,3,4,5,5*}$

Example: He

He: $(1s)^2$, n = 1, l = 0. Two electrons with n = 1, l = 0, s = 1/2

total
$$S = \{0, 1\}$$
 , total $L = 0$, total $J \in \{0, 1\}$

Only S = L = J = 0 is possible: ${}^{1}S_{0}$

Example: C

C: $(1s)^2(2s)^2(2p)^2$. In general completely filled subshells have L=S=0, so here we only consider the outer 2p-subshell. There are 2 electrons in this subshell with n=2 and l=1

$$L \in \{0, 1, 2\}$$
 , $S \in \{0, 1\}$

We now consider the symmetries and look at the Clebsch-Gordan table. The allowed values must be antisymmetric

$_{\rm L}$	Symmetry	\mathbf{S}	Symmetries	$_{L,S}$	J	
0	+	0	-	0,0	0	$^{1}S_{0}$
1	-	1	0	1,0	1	${}^{3}P_{0}$ ${}^{2}P_{1}$
2	+			1,1	0,1,2	${}^{1}P_{1} {}^{3}P_{2} {}^{3}P_{1} {}^{3}P_{0} {}^{1}P_{1}$
				2,0	2	$^{3}D_{2}$ $^{3}D_{1}$ $^{3}D_{0}$

Hunds Rules

To find the lowest energy we use the following:

- 1. Highest S has the lowest energy \rightarrow 3 P_0 3P_1 3P_2
- 2. Highest L has the lowest energy \rightarrow 3P_0 3P_1
- 3. If the subshell has more than half filled, the