```
In [1]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
          import seaborn as sns
         from wordcloud import WordCloud
In [2]: data = pd.read_csv("amazon.csv")
In [3]: data.head(5)
Out[3]:
                                              reviewText Positive
          0 This is a one of the best apps acording to a b...
                                                                  1
          1 This is a pretty good version of the game for ...
                                                                  1
              this is a really cool game. there are a bunch ...
                                                                  1
          3
              This is a silly game and can be frustrating, b...
                                                                  1
              This is a terrific game on any pad. Hrs of fun...
                                                                  1
```

Initial Observations

```
In [4]: df = data.copy()
In [5]:
        df.shape
Out[5]: (20000, 2)
        # We have 20000 rows and 2 columns
In [6]:
        df.nunique()
In [7]:
                      20000
Out[7]: reviewText
        Positive
        dtype: int64
In [8]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 20000 entries, 0 to 19999
       Data columns (total 2 columns):
        # Column
                       Non-Null Count Dtype
            reviewText 20000 non-null object
            Positive
                       20000 non-null int64
       dtypes: int64(1), object(1)
       memory usage: 312.6+ KB
In [9]: df.describe()
```

Out[9]:		Positive		
	count	20000.000000		
	mean	0.761650		
	std	0.426085		
	min	0.000000		
	25%	1.000000		
	50%	1.000000		
	75%	1.000000		
	max	1.000000		

Text(0.8057581117653374, -0.7488350054079725, 'Negative')])

Word Cloud

```
In [12]: positive_reviews = ' '.join(df[df['Positive'] == 1]['reviewText'])
    negative_reviews = ' '.join(df[df['Positive'] == 0]['reviewText'])

In [13]: wordcloud = WordCloud(width=800, height=400, background_color='white').generate(pos plt.figure(figsize=(10, 5))
    plt.imshow(wordcloud, interpolation='bilinear')
    plt.axis('off')
    plt.title("Positive Reviews")
    plt.show()
```

Positive Reviews


```
In [14]: wordcloud = WordCloud(width=800, height=400, background_color='white').generate(neg
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.title("Negative Reviews")
plt.show()
```


Data Preprocessing

Null Handling

```
In [15]: df.isna().sum()
```

Out[15]: reviewText @

Positive 0 dtype: int64

Text Preprocessing

```
In [16]: df["reviewText"][0]
Out[16]: 'This is a one of the best apps according to a bunch of people and I agree it has b ombs eggs pigs TNT king pigs and realustic stuff'
In [17]: from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer import plotly.express as px import string
```

In [18]: stopwords.fileids()

```
Out[18]: ['arabic',
           'azerbaijani',
           'basque',
           'bengali',
           'catalan',
           'chinese',
           'danish',
           'dutch',
           'english',
           'finnish',
           'french',
           'german',
           'greek',
           'hebrew',
           'hinglish',
           'hungarian',
           'indonesian',
           'italian',
           'kazakh',
           'nepali',
           'norwegian',
           'portuguese',
           'romanian',
           'russian',
           'slovene',
           'spanish',
           'swedish',
           'tajik',
           'turkish']
In [19]: stopword = stopwords.words("English")
In [20]: punctuation = string.punctuation
In [21]: def preprocess_text(text):
              preprocess_punctuation = "".join([char for char in text if char not in punctuat
              preprocess_stopword = [char for char in preprocess_punctuation.split() if char.
              return preprocess_stopword
In [22]: df["reviewText"] = df["reviewText"].apply(preprocess_text)
In [23]: df.head()
```

Out[23]:		reviewText	Positive
	0	[one, best, apps, acording, bunch, people, agr	1
	1	[pretty, good, version, game, free, LOTS, diff	1
	2	[really, cool, game, bunch, levels, find, gold	1
	3	[silly, game, frustrating, lots, fun, definite	1
	4	[terrific, game, pad, Hrs, fun, grandkids, lov	1

Text Normalization/Scaling

```
In [24]: lemmatizer = WordNetLemmatizer()
In [25]: df["reviewText"][0]
Out[25]: ['one',
           'best',
           'apps',
           'acording',
           'bunch',
           'people',
           'agree',
           'bombs',
           'eggs',
           'pigs',
           'TNT',
           'king',
           'pigs',
           'realustic',
           'stuff']
In [26]: def normalize_data(text):
             normalized_text = ' '.join([lemmatizer.lemmatize(word) for word in text])
              return normalized_text
In [27]: df["reviewText"] = df["reviewText"].apply(normalize_data)
In [28]: df.head()
```

Out[28]:		reviewText	Positive
	0	one best apps acording bunch people agree bomb	1
	1	pretty good version game free LOTS different I	1
	2	really cool game bunch level find golden egg s	1
	3	silly game frustrating lot fun definitely reco	1
	4	terrific game pad Hrs fun grandkids love Great	1

Vectorization

```
In [29]: from sklearn.feature_extraction.text import TfidfVectorizer
In [30]: vectorizer = TfidfVectorizer()
In [31]: X = vectorizer.fit_transform(df["reviewText"])
y = df["Positive"]
In [32]: X.shape
Out[32]: (20000, 22617)
```

Data Spliting

```
In [33]: from sklearn.model_selection import train_test_split
In [34]: xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.3, random_state=4
In [35]: xtrain.shape
Out[35]: (14000, 22617)
```

Model Training

```
In [36]: from sklearn.naive_bayes import MultinomialNB, BernoulliNB # naive bayes classifier
    from sklearn.linear_model import LogisticRegression
    import sklearn.metrics as mt

In [37]: mnbNB = MultinomialNB()
    berNB = BernoulliNB()
    lr = LogisticRegression()
In [38]: models = [mnbNB, berNB, lr]
```

```
In [39]: def train_models(X_train,y_train, models):
             for model in models:
                 model.fit(X_train,y_train)
                 print(f"{model} : {mt.accuracy_score(y_train, model.predict(X_train))}")
In [40]: train_models(xtrain,ytrain,models)
        MultinomialNB(): 0.8077857142857143
        BernoulliNB(): 0.9132857142857143
        LogisticRegression(): 0.9223571428571429
```

Model Evaluation

```
In [41]: def evaluate_model(X_test, y_test, models):
             y_predicted_list = []
             accuracy_scores = []
             for model in models:
                 prediction = model.predict(X_test)
                 y_predicted_list.append(prediction)
                 accuracy_scores.append(mt.accuracy_score(y_test,prediction))
             for idx, prediction in enumerate(y_predicted_list):
                 print(f"{models[idx]}")
                 print()
                 print("Test Accuracy Score: ",accuracy_scores[idx])
                 print(mt.classification_report(y_test,prediction))
                 print("-----
             return accuracy_scores, y_predicted_list
```

In [42]: | accuracy_scores, predictions = evaluate_model(xtest,ytest,models)

Test	Accuracy	/ Score·	0.7873333333333333
1636	Accui acy	, 50016.	0./0/000000000000000

	precision	recall	f1-score	support	
0	0.91	0.11	0.19	1411	
1	0.78	1.00	0.88	4589	
accuracy			0.79	6000	
macro avg	0.85	0.55	0.53	6000	
weighted avg	0.81	0.79	0.72	6000	
BernoulliNB()					

Test Accuracy Score: 0.8635

	precision	recall	f1-score	support	
0	0.80	0.56	0.66	1411	
1	0.88	0.96	0.91	4589	
accuracy			0.86	6000	
macro avg	0.84	0.76	0.79	6000	
weighted avg	0.86	0.86	0.85	6000	

LogisticRegression()

	precision	recall	f1-score	support
0	0.86	0.60	0.71	1411
	0.89	0.97	0.93	4589
accuracy	0.03	0.57	0.88	6000
macro avg	0.88	0.79	0.82	6000
weighted avg	0.88	0.88	0.88	6000

By analyzing the classification reports above, we can see that Logistic Regression has the best accuracy with 88%.

Accuracy Comparison

```
In [43]: plt.bar(['MultinomialNB','BernoulliNB','LogisticRegression'], accuracy_scores)
```

Out[43]: <BarContainer object of 3 artists>

Multinomial Naive Bayes:

- **Test Accuracy Score:** 78.73%
- Precision-Recall-F1 Score:
 - Class 0: Precision 91%, Recall 11%, F1-Score 19%
 - Class 1: Precision 78%, Recall 100%, F1-Score 88%

An interesting start with a good overall accuracy, though there's room for improvement in predicting Class 0.

Bernoulli Naive Bayes:

- Test Accuracy Score: 86.35%
- Precision-Recall-F1 Score:
 - Class 0: Precision 80%, Recall 56%, F1-Score 66%
 - Class 1: Precision 88%, Recall 96%, F1-Score 91%

Bernoulli Naive Bayes exhibits strong performance, particularly in correctly identifying instances of Class 1.

Logistic Regression:

• Test Accuracy Score: 88.43%

• Precision-Recall-F1 Score:

- Class 0: Precision 86%, Recall 60%, F1-Score 71%
- Class 1: Precision 89%, Recall 97%, F1-Score 93%

Logistic Regression takes the lead with the highest accuracy and robust performance across both classes.

Insights:

- Multinomial Naive Bayes shows potential but may benefit from additional optimization, especially in predicting Class 0.
- Bernoulli Naive Bayes excels in predicting Class 1, indicating its effectiveness in capturing relevant patterns.
- Logistic Regression emerges as a strong contender, offering high accuracy and balanced performance.

Confusion Matrix

```
In [44]: sns.heatmap(mt.confusion_matrix(ytest, predictions[0]),annot= True,fmt="d",yticklab
plt.title("MultinomialNB")
plt.xlabel('Predicted')
plt.ylabel('Actual')
```

Out[44]: Text(50.7222222222214, 0.5, 'Actual')


```
In [45]: sns.heatmap(mt.confusion_matrix(ytest, predictions[1]),annot= True,fmt="d",yticklab
    plt.title("BernoulliNB")
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
```

Out[45]: Text(50.7222222222214, 0.5, 'Actual')


```
In [46]: sns.heatmap(mt.confusion_matrix(ytest, predictions[2]),annot= True,fmt="d",yticklab
    plt.title("LogisticRegression")
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
```

Out[46]: Text(50.7222222222214, 0.5, 'Actual')

Multinomial Naive Bayes:

True Positives (TP): 4575
True Negatives (TN): 149
False Positives (FP): 1262
False Negatives (FN): 14

Observations:

- The model performs well in correctly predicting Class 1 (heart attack occurrence) with a high True Positive count.
- However, it struggles in predicting instances of Class 0, as indicated by the low True Negative count and a relatively high False Positive count.

Bernoulli Naive Bayes:

True Positives (TP): 4397
True Negatives (TN): 784
False Positives (FP): 627
False Negatives (FN): 192

Observations:

- The model shows a strong ability to predict both Class 0 and Class 1, with high counts in both True Positives and True Negatives.
- The False Positive count is relatively low, indicating a good balance between precision and recall.

Logistic Regression:

True Positives (TP): 4454
True Negatives (TN): 852
False Positives (FP): 559
False Negatives (FN): 135

Observations:

- Logistic Regression demonstrates a balanced performance in predicting both classes, with high counts in both True Positives and True Negatives.
- The False Positive count is relatively low, contributing to the model's high precision and accuracy.

Roc Auc Curve

```
In [50]: mt.RocCurveDisplay.from_predictions(ytest, predictions[0])
   plt.plot([0,1],[0,1])
   plt.title("MultinomialNB")
   plt.show()
```



```
In [51]: mt.RocCurveDisplay.from_predictions(ytest, predictions[1])
  plt.plot([0,1],[0,1])
  plt.title("BernoulliNB")
  plt.show()
```



```
In [52]: mt.RocCurveDisplay.from_predictions(ytest, predictions[2])
  plt.plot([0,1],[0,1])
  plt.title("LogisticRegression")
  plt.show()
```


The Logistic Regression Model performs better compared to other two models in ROC AUC Curve with a coverage of 79% percent.

Summary:

- All three models perform well in predicting Class 1 (heart attack occurrence), with high True Positive counts.
- Multinomial Naive Bayes struggles more with predicting instances of Class 0, while
 Bernoulli Naive Bayes and Logistic Regression demonstrate better balance in predicting both classes.
- Logistic Regression stands out with the highest overall accuracy and balanced performance across both class

Recommendations:

- For Multinomial Naive Bayes, consider addressing the imbalance in predicting Class 0 through further optimization or sampling techniques.
- Continue fine-tuning hyperparameters and exploring feature engineering for all models to improve overall performance. es.

In []: