CS37300 PURDUE UNIVERSITY DEC 1, 2023

DATA MINING

FAIRNESS

From the book "Fairness and Machine Learning"

EXAMPLE: AMAZON SAME-DAY DELIVERY

- 2016 study found dissimilarities in demographic racial make up of the places where it was offered
- Amazon insists the system is data-driven, no explicit use of race as a predictor
- Looking beyond intent: looking at discrimination and impact
- Impact analogy: click driven optimization can lead to echo chambers

MACHINE LEARNING LOOP

Image from "fairness and ML"

STATE OF SOCIETY: INHERENT DISPARITIES EXISTING IN THE SYSTEM

Image from "fairness and ML"

EXAMPLE: "STREET BUMP"

- Project by city of Boston to read smart phone sensors to pinpoint location of potholes
- Still biased towards people that own costlier smart phones
- ML systems rely on data collection, and the people component is almost impossible to overlook

CHALLENGES WITH MEASUREMENT

- 2017 NYT article about "Blacks and Hispanics are more underrepresented in colleges than in 1980s"
- Based on self-reporting of race
- "Multiracial" was introduced as a category only in 2008
- The study ignored this category, and its impact on reporting

MEASUREMENT: DEFINING THE TARGET VARIABLE

- Some cases are easy: click or no click
- Some cases are not that hard: movie ratings
- Some cases can be really hard: how do you define a "good employee", or a "successful student"
 - What's a good metric for a sales manager or a professor's promotion?
 - Every such decision impacts the employee's behavior

FROM DATA TO MODELS

- Stereotyped Correlation
- Causation
 - Statistical tools to test for causation using "interventions"
 - Would this applicant be still rejected if everything else remaining the same, the race was different?

A CASE AGAINST AUTOMATED DECISION MAKING

- In short: Al is not "there" yet
- Limited interpretability: spurious correlations
- Lack of inductive reasoning on handling unseen cases
- Un-representative data
- Definitions of targets
- Incentives propagate pre-existing "biases"
- Liability issues? If a self-driving truck crashes due to a software issue, who is responsible?

GOALS OF A PREDICTIVE SYSTEM

- Examples:
 - Criminal Justice: predict probability of a repeat crime, or set policies to reduce the number of people to be detained without endangering public safety, or probability of failure to show up at a hearing
 - University admissions: probability of "success" of an admitted candidate
 - Social planner: Benevolent social welfare or reform
 - Omitted pay off bias

FAIRNESS BUCKETS

- Human biases in decision making
- Data biases: predictive models will predict/reproduce unfair patterns
 - What is the population? e.g. for loan applications, it is inherently people who are short on money. There may be unfairness within the process that exist for such a biased sample of the population

From: "Prediction-Based Decisions and Fairness:

A Catalogue of Choices, Assumptions, and Definitions

DATA BIASES

- Selective labels problem
- Differential systematic measurement errors
 - Error is greater for some groups because of lack of proper "documented" measurements.
 - Immigrant lending example
 - Re-arrest probability not accounting the bias in decision to arrest in the first place
- Societal non-statistical biases

FIXING BIASES

- Preprocess the data to remove biases
- Regularize the learning mechanism
 - Modelling choices e.g. choose more interpretable models
- Post-process the learnt model
 - Interpretability is important

PROTECTED GROUPS

- "Sensitive" features with groupings into advatanged vs disadvantaged groups
- Goal: Uniformity in outcome across the protected features
- Example: Posterior prediction probabilities are equal across groups.

CLASSIFICATION FAIRNESS: EQUAL PREDICTION OUTCOME

- But score may include protected attributes
 - Solution: "protect" or remove these attributes from score calculation

• Equal accuracy check: For a protected binary attribute X_p with D as the prediction: $P(D=y\,|\,X_p=0)=P(D=y\,|\,X_p=1)$

CONFUSION MATRIX

	Y=1	Y=0	P(Y=1 D)	P(Y=0 D)
D=1	True Positive (TP)	False Positive (FP)	P(Y=1 D=1): Positive Predictive Value (PPV)	P(Y=0 D=0): False Discovery Rate (FDR)
D=0	False Negative (FN)	True Negative (TN)	P(Y=1 D=0): False Omission Rate (FOR)	P(Y=0 D=0): Negative Predictive Value (NPR)
P(D=1 Y)	P(D=1 Y=1): True Positive Rate (TPR)	P(D=1 Y=0): False Positive Rate (FPR)		
P(D=0 Y)	P(D=0 Y=1): False Negative Rate (FNR)	P(D=0 Y=0): True Negative rate (TNR)		P(D=Y): Accuracy

Example Checks: TPR=FNR => $D \perp X_p \mid Y = 1$ (Equal opportunity).

 $D\perp X_p \,|\, Y$ Equalized odds. "Similar people treated similarly".

 $Y \perp X_p \mid D$ Sufficiency

From: "Prediction-Based Decisions and Fairness: A Catalogue of Choices, Assumptions, and Definitions

PARITY ACROSS GROUPS

- AUC parity
- Balance for classes (negative vs positive)
- Calibration within groups

LACK OF HARMONY AMONG MEASURES

- The various definitions or constraints may not agree with each other
- COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) too deployed in criminal justice settings
 - Satisfies equal PPV. Those who were classified as high risk, the proportion of defendants re-arrested is approx equal regardless of race
 - Fails FPR: Defendants who did not get re-arrested, black defendants were twice as likely to be classified as high-risk
- Theoretical analyses have shown provable disagreement between some of these measures

EXAMPLE: FAIR FEATURE SELECTION

- Partition the features into non-overlapping groups.
- Can select only upto ki features group i.
 - Contrast with "can select k features out of d"
- Can employ greedy-like algorithms

PROCEDURAL FAIRNESS

- Based on perceived human notions of fairness rather than that of outcome
- Example: Feature selection based on what features are perceived fair
- In some cases can be enumerated as constraints, resulting in a constrained optimization problem.
- Example: Lets U_S be set of users that think feature S is fair.

$$h(\mathsf{T}) \coloneqq 1 - \frac{\left|\bigcap_{s \in \mathsf{T}} \mathcal{U}_s\right|}{|\mathcal{U}|}$$