11.2.3 Probability Distributions

State Probability Distributions:

Consider a Markov chain $\{X_n, n=0,1,2,\dots\}$, where $X_n\in S=\{1,2,\dots,r\}$. Suppose that we know the probability distribution of X_0 . More specifically, define the row vector $\pi^{(0)}$ as

$$\pi^{(0)} = [P(X_0 = 1) \quad P(X_0 = 2) \quad \cdots \quad P(X_0 = r)].$$

How can we obtain the probability distribution of X_1 , X_2 , \cdots ? We can use the law of total probability. More specifically, for any $j \in S$, we can write

$$egin{aligned} P(X_1 = j) &= \sum_{k=1}^r P(X_1 = j | X_0 = k) P(X_0 = k) \ &= \sum_{k=1}^r p_{kj} P(X_0 = k). \end{aligned}$$

If we generally define

$$\pi^{(n)} = [P(X_n = 1) \quad P(X_n = 2) \quad \cdots \quad P(X_n = r)],$$

we can rewrite the above result in the form of matrix multiplication

$$\pi^{(1)} = \pi^{(0)} P$$

where P is the state transition matrix. Similarly, we can write

$$\pi^{(2)} = \pi^{(1)}P = \pi^{(0)}P^2$$
.

More generally, we can write

$$\pi^{(n+1)} = \pi^{(n)} P$$
, for $n = 0, 1, 2, \cdots$; $\pi^{(n)} = \pi^{(0)} P^n$, for $n = 0, 1, 2, \cdots$.

Example 11.5

Consider a system that can be in one of two possible states, $S = \{0, 1\}$. In particular, suppose that the transition matrix is given by

$$P=egin{bmatrix} rac{1}{2} & rac{1}{2} \ rac{1}{3} & rac{2}{3} \end{bmatrix}.$$

Suppose that the system is in state 0 at time n = 0, i.e., $X_0 = 0$.

- a. Draw the state transition diagram.
- b. Find the probability that the system is in state 1 at time n=3.

Solution

a. The state transition diagram is shown in Figure 11.8.

Figure 11.8 - A state transition diagram.

b. Here, we know

$$\pi^{(0)} = [P(X_0 = 0) \quad P(X_0 = 1)]$$

= $[1 \quad 0].$

Thus,

$$\begin{split} \pi^{(3)} &= \pi^{(0)} P^3 \\ &= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{3} & \frac{2}{3} \end{bmatrix}^3 \\ &= \begin{bmatrix} \frac{29}{72} & \frac{43}{72} \end{bmatrix}. \end{split}$$

Thus, the probability that the system is in state 1 at time n=3 is $\frac{43}{72}$.