ЛЕКЦИЯ 4

СИМЕТРИЧНИ ОПЕРАТОРИ

Определение. Нека $A=(\alpha_{ij})$ е квадратна матрица. Казваме, че тази матрица е симетрична, ако A'=A, т. е. $\alpha_{ij}=\alpha_{ji}$, за всички i и j.

Определение. Нека L е евклидово пространство и A е линеен оператор в L. Казваме, че този линеен оператор е симетричен, ако

$$(\mathcal{A}(x), y) = (x, \mathcal{A}(y))$$

за всички х, у.

Твърдение 1. Матрицата на симетричен линеен оператор в ортонормиран базис е симетрична.

Доказателство:

Нека e_1, e_2, \ldots, e_n е ортонормиран базис и

$$\mathcal{A}(e_1) = \alpha_{11}e_1 + \alpha_{12}e_2 + \dots + \alpha_{1n}e_n$$

$$\dots$$

$$\mathcal{A}(e_n) = \alpha_{n1}e_1 + \alpha_{n2}e_2 + \dots + \alpha_{nn}e_n$$

Тогава

$$(\mathcal{A}(e_i), e_j) = (\alpha_{i1}e_1 + \alpha_{i2}e_2 + \dots + \alpha_{in}e_n, e_j) =$$

= 0 + 0 + \dots + 0 + \alpha_{ij}(e_j, e_j) + 0 + 0 + \dots + 0 = \alpha_{ij}

И

$$(e_i, \mathcal{A}(e_j)) = (e_i, \alpha_{j1}e_1 + \alpha_{j2}e_2 + \dots + \alpha_{jn}e_n) =$$

= 0 + 0 + \dots + 0 + \alpha_{ji}(e_i, e_i) + 0 + 0 + \dots + 0 = \alpha_{ji}

Понеже $(\mathcal{A}(e_i), e_j) = (e_i, \mathcal{A}(e_j))$ имаме $\alpha_{ij} = \alpha_{ji}$ за всички i и j. Следователно матрицата на \mathcal{A} е симетрична.

Твърдение 2. Ако един линеен оператор има в ортонормиран базис симетрична матрица, тогава този оператор е симетричен.

Доказателство:

Нека e_1, e_2, \ldots, e_n е ортонормиран базис. Да разгледаме

$$x = \xi_1 e_1 + \xi_2 e_2 + \dots + \xi_n e_n$$
 if $y = \mu_1 e_1 + \mu_2 e_2 + \dots + \mu_n e_n$.

Ако

$$\mathcal{A}(x) = \alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n e_n \quad \text{if} \quad \mathcal{A}(y) = \beta_1 e_1 + \beta_2 e_2 + \dots + \beta_n e_n,$$

ТО

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = A \begin{pmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_n \end{pmatrix},$$

където A е матрица на оператора \mathcal{A} в базиса e_1, e_2, \ldots, e_n . Транспонираме това равенството и получаваме

$$(\alpha_1 \ \alpha_2 \dots \alpha_n) = (\xi_1 \ \xi_2 \dots \xi_n) A' \tag{1}$$

Имаме също, че

$$\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = A \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix}. \tag{2}$$

Понеже e_1, e_2, \ldots, e_n е ортонормиран базис

$$(\mathcal{A}(x), y) = (\alpha_1 \ \alpha_2 \dots \alpha_n) \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix} \stackrel{(1)}{=} (\xi_1 \ \xi_2 \dots \xi_n) A' \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix}$$

$$(x, \mathcal{A}(y)) = (\xi_1 \ \xi_2 \dots \xi_n) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} \stackrel{(2)}{=} (\xi_1 \ \xi_2 \dots \xi_n) A \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix}$$

От последните равенства и $A=A'\Rightarrow (\mathcal{A}(x),y)=(x,\mathcal{A}(y))\Rightarrow \mathcal{A}$ е симетричен.

Теорема 1. Нека A е симетрична матрица елементите на която са реални числа. Тогава всеки комплексен корен на характеристичния полином на A също е реално число.

Доказателство:

Нека $A = (a_{ij})$ е симетрична, т.е. $a_{ij} = a_{ji}$. Нека редът на A е n и β е комплексен корен на $f(\lambda) = \det(A - \lambda E)$.

Разглеждаме линейната квадратна хомогенна система:

$$(A - \beta E) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

От $\det(A - \beta E) = f(\beta) = 0$ следва, че системата има ненулево решение $(\alpha_1 \ \alpha_2 \dots \alpha_n)$, т. е. някое $\alpha_i \neq 0$.

От $\beta \in \mathbb{C}$ имаме, че коефициентите на тази система също ще са комплексни числа. Следователно нейните решения също са комплексни числа. Поради това $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{C}$ и някое $\alpha_i \neq 0$. Имаме

$$(A - \beta E) \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \Rightarrow A \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \beta \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Умножаваме двете страни на последното равенство с реда $(\overline{\alpha}_1, \ \overline{\alpha}_2, \dots, \ \overline{\alpha}_n)$ от ляво, където $\overline{\alpha}_i$ е комплексно спрегнатото на α_i . Получаваме:

$$(\overline{\alpha}_{1}, \ \overline{\alpha}_{2}, \dots, \ \overline{\alpha}_{n}) A \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{pmatrix} = \beta (\overline{\alpha}_{1}, \ \overline{\alpha}_{2}, \dots, \ \overline{\alpha}_{n}) \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{pmatrix} = \beta (\overline{\alpha}_{1} \alpha_{1} + \overline{\alpha}_{2} \alpha_{2} + \dots + \overline{\alpha}_{n} \alpha_{n}) = \beta (|\alpha_{1}|^{2} + |\alpha_{2}|^{2} + \dots + |\alpha_{n}|^{2})$$

Тъй като някое $\alpha_i \neq 0$ имаме $\Delta \neq 0$ и $\beta = \frac{\gamma}{\Delta}$.

Понеже $\Delta \in \mathbb{R}$, за да докажем, че β е реално трябва да се провери, че $\gamma \in \mathbb{R}$.

Съгласно лемата от първата лекция имаме $\gamma = \sum a_{ij} \overline{\alpha}_i \alpha_j$. Разглеждаме комплексно спрегнатото

$$\overline{\gamma} = \sum_{i,j} \overline{a}_{ij} \overline{\overline{\alpha}}_i \overline{\alpha}_j = \sum_{i,j} a_{ij} \alpha_i \overline{\alpha}_j.$$

Виждаме, че $\overline{\gamma}$ и γ се състоят от всевъзможните произведения $\overline{\alpha}_i \alpha_j$ със съответен коефициент. Коефициентът пред $\overline{\alpha}_i \alpha_j$ в γ е a_{ij} , а коефициентът пред $\overline{\alpha}_i \alpha_j$ в $\overline{\gamma}$ е a_{ji} . Понеже матрицата A е симетрична, следва $\gamma = \overline{\gamma}$. Поради това $\gamma \in \mathbb{R}$ и $\beta \in \mathbb{R}$.

Следствие 1. Нека A е симетрична матрица, елементите на която са реални числа. Тогава корените на нейния характеристичен полином $f_A(\lambda)$ са реални числа.

Доказателство:

Ясно е, че коефициентите на $f_A(\lambda)$ са реални числа. Съгласно Основната теорема на алгебрата (Теорема на Д'Аламбер), която ще докажем в следващите лекции, корените на $f_A(\lambda)$ са комплексни числа (вж. Следствие 2. на тази теорема). Поради това от Теорема 1. следва, че корените на $f_A(\lambda)$ са реални числа.

Теорема 2. Нека L е крайномерно ненулево евклидово пространство. Всеки симетричен оператор в L има собствени вектори, които образуват ортонормиран базис на L. В този базис матрицата на оператора е диагонална и числата по главния диагонал са собствените стойности на базисните вектори.

Доказателство:

Нека \mathcal{A} е симетричен оператор в L

Индукция по $n = \dim L$.

База: $n = 1 \Rightarrow L = \{\lambda u \mid u \neq 0\}.$

В тази ситуация всеки ненулев вектор от L е собствен вектор на разглеждания оператор. Поради това ако изберем вектор u да има дължина 1, тогава този вектор ще образува ортонормиран базис и ще бъде собствен. С това базата е доказана.

Нека $n \geq 2$. В ортонормиран базис матрицата на симетричния линеен оператор е симетрична. Следователно (от Следствие 1.) корените на характеристичния полином ще бъдат реални. Тъй като тези корени принадлежат на основното поле, те ще бъдат собствени стойности. Поради това съществува $\lambda_1 \in \mathbb{R}$ — собствена стойност на разглеждания линеен оператор. Нека e_1 е съответния собствен вектор, т. е. $\mathcal{A}(e_1) = \lambda_1 e_1$. Тъй като ако един вектор е собствен, то и след като го нормираме отново получаваме собствен вектор със същата собствена стойност, можем да предположим, че $|e_1| = 1$.

Допълваме вектора e_1 до базис e_1, f_2, \ldots, f_n на L. Този базис го ортогонализираме по метода на Грам-Шмид и получаваме e_1, f'_2, \ldots, f'_n ортогонален базис на L. Нормираме векторите от този базис и получаваме e_1, e'_2, \ldots, e'_n ортонормиран базис.

Нека L_1 е линейната обвивка на векторите e_2', \ldots, e_n' , т.е. $L_1 = \ell(e_2', \ldots, e_n') = \{\lambda_2 e_2' + \cdots + \lambda_n e_n'\}$. Понеже e_2', \ldots, e_n' са линейно независими $\Rightarrow \dim L_1 = n-1$.

Ще докажем следната характеристика на L_1 :

$$(*) x \in L_1 \Leftrightarrow (x, e_1) = 0.$$

1) Нека $x \in L_1 \Rightarrow x = \xi_2 e_2' + \dots + \xi_n e_n'$. Понеже $(e_i', e_1) = 0, i = 2, \dots n$.

$$(x, e_1) = (\xi_2 e'_2 + \dots + \xi_n e'_n, e_1) = 0$$

2) Нека $(x,e_1)=0$ и $x=\xi_1e_1+\xi_2e_2'+\cdots+\xi_ne_n'$. Тогава

$$(x, e_1) = (\xi_1 e_1 + \xi_2 e'_2 + \dots + \xi_n e'_n, e_1) = \xi_1(e_1, e_1) = \xi_1$$

 $\Rightarrow \xi_1 = 0, \text{ r. e. } x \in L_1$

Разглеждаме $x \in L_1$. Тогава

$$(x, \mathcal{A}(e_1)) = (x, \lambda_1 e_1) = \lambda_1(x, e_1) \stackrel{(*)}{=} 0.$$

Понеже $(x, \mathcal{A}(e_1)) = (\mathcal{A}(x), e_1)$, имаме $(\mathcal{A}(x), e_1) = 0$. Съгласно (*) $\mathcal{A}(x) \in L_1$.

И така ако $x \in L_1$, тогава $\mathcal{A}(x) \in L_1$. Това ни дава право да разглеждаме \mathcal{A} като линеен оператор в подпространството L_1 . Разбира се, ограничението на \mathcal{A} върху L_1 също е симетричен оператор.

Тъй като dim $L_1 = n - 1$, за ограничението на \mathcal{A} върху L_1 можем да приложим индуктивната хипотеза, и да направим извода, че съществува ортонормиран базис e_2, \ldots, e_n в L_1 от собствени вектори на \mathcal{A} , т. е.

$$\mathcal{A}(e_i) = \lambda_i e_i, \quad i = 2, \dots, n$$
$$(e_i, e_j) = \delta_{ij}$$

Понеже още $|e_1|=1$ и $A(e_1)=\lambda_1e_1$, за да докажем, че e_1, e_2, \ldots, e_n е търсения базис, остава да изясним, че e_1 е ортогонален на останалите.

Понеже $e_i \in L_1, i = 2, ..., n$ от (*) следва $(e_i, e_1) = 0, i = 2, ..., n$.

С това първото твърдение на теоремата е доказано. Второто твърдение следва от равенствата $\mathcal{A}(e_i) = \lambda_i e_i, i = 1, \ldots, n$.

Следствие 2. За всяка симетрична матрица A, елементите на която са реални числа, съществува ортогонална матрица T такава, че T'AT да е диагонална, като по диагонала са корените на характеристичния полином на A.

Доказателство:

Нека A е квадратна матрица от n-ти ред и A = A'. Нека L е евклидово пространство и $\dim L = n$. Разглеждаме ортонормирания базис e_1, e_2, \ldots, e_n на L. Дефинираме линейния оператор \mathcal{A} като линеен оператор, матрицата на който в базиса e_1, e_2, \ldots, e_n е дадената матрица A. (Миналия семестър доказахме, че такъв оператор съществува и той е единствен.) Съгласно **Твърдение 2** \mathcal{A} е симетричен. От **Теорема 2** следва, че съществува ортонормиран базис $e_1^*, e_2^*, \ldots, e_n^*$ от собствени вектори, т. е. $A(e_i^*) = \lambda_i e_i^*$.

В този базис матрицата на линейния оператор е

$$A^* = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

Знаем, че $A^* = T^{-1}AT$, където T е матрицата на прехода от базиса e_1 , e_2, \ldots, e_n към базиса $e_1^*, e_2^*, \ldots, e_n^*$. Съгласно **Твърдение 1** матрицата T е ортогонална, т. е. $T^{-1} = T'$. Поради това имаме

$$A^* = T'AT$$