Microcontroller Lab Report 8086 programming Part 2a

Aaditya Prakash Kattekola Roll: 194201 ECE Section B

August 28, 2021

1 Question 1

1.1 Aim

Write an efficient assembly language program (minimum code length) for 8086 MP for a system has four inputs and four outputs. The four output bits represents the gray code equivalent of input binary number.

1.2 Program

1.2.1 Code

```
;ROLL => 194201
;GRAY CODE CONVERTER
MOV AX, 1011B ;NUMBER TO BE CONVERTED IS MOVED TO AX
MOV BX, AX
SHR AX, 01 ;SHIFT AX 1 BIT RIGHT
XOR AX, BX ; AX <- AX ^ BX
```

1.2.2 Emulator

HLT

Address (CS:0100, IP:0000)	Machine code	Instruction
01000	B8,0B,00	MOV AX, 0000BH
01003	8B, D8	MOV BX, AX
01005	D1, E8	SHR AX, 1
01007	33, C3	XOR AX, BX
01009	F4	HLT

1.3 Result

1.3.1 Input

AX: 1011B (B in HEX)

1.3.2 Expectation

 $AX \leftarrow AX \oplus BX;$ $1011B + 0101B \rightarrow 1110B \text{ or } 000EH \text{ in } AX$

1.3.3 Emulator

Figure 1: STACK Output for Q1

2 Question 2

2.1 Aim

Write a program for 8086 processor to generate the Fibonacci series (Each number in the Fibonacci series is the sum of the previous two numbers.)

2.2 Program

2.2.1 Code

```
;ROLL => 194201
;FINONACCI SEQUENCE
MOV AL, OOH ; FIRST TERM
MOV SI, OC900H ; ADDRESS WHERE TERMS WILL BE STORED
MOV [SI], AL ;STORE AT POINTER LOCATION
INC SI
INC AL
MOV [SI], AL;
MOV CL, O5H ; NUMBER OF STEPS
SUB CL, 02H ;2 TERMS ARE ALREADY PRESENT
FIB: MOV AL, [SI-1] ; MAKE AX THE PREV VALUE
ADD AL, [SI] ; ADD CURRENT VALUE TO PREV VALUE
INC SI
MOV [SI], AL
DEC CL
JNZ FIB
HLT
```

2.2.2 Emulator

Address (CS:0100, IP:0000)	Machine code	Instruction
01000	B0, 00	MOV AL, 00H
01002	BE, 00, C9	MOV SI, 0C900H
01005	88, 04	MOV [SI], AL
01007	46	INC SI
01008	FE, C0	INC AL
0100A	88, 04	MOV [SI], AL
0100C	B1, 05	MOV CL, 05H
0100E	80, E9, 02	SUB CL, 02H
01011	8A, 44, FF	MOV AL, [SI] - 01H
01014	02, 04	ADD AL, [SI]
01016	46	INC SI
01017	88, 04	MOV [SI], AL
01019	FE, C9	DEC CL
0101B	FE, C9	JNE 011H
0101D	F4	HLT

2.3 Result

2.3.1 Input

CL: 05H ;LENGTH OF FIBONACCI SERIES

2.3.2 Expectation

 $SI \leftarrow C900H$

 $[C900]: 00 \quad [C901]: 01$ $[SI+1] \leftarrow [SI] + [SI-1]$ $0100: C900 \quad 00 \quad 01 \quad 01 \quad 02 \quad 03$

2.3.3 Emulator

Figure 2: STACK Output for Q2

Figure 3: RAM Output for Q2