# Quizlet

## **Biology Unit 2**

Study online at quizlet.com/\_95hh3e

| 1. Definitions                   | Habitat - The place where an organism lives.  Population - All the organisms of one species in a habitat  Community - All the different species in a habitat  Ecosystem - All the organisms living in a particular area and all the non-living (abiotic) conditions.                                                                                                                   |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. <b>Biodiversity</b>           | <ul> <li>The variety of different species of organisms on Earth, or within an ecosystem.</li> <li>High biodiversity ensures ecosystems are stable, as different species are dependent on each other for shelter and food (interdependent) to maintain the right physical environment</li> <li>Biodiversity can reduce through deforestation, pollution, and global warming.</li> </ul> |
| - Franciscomental con change the | Abjetic Festors                                                                                                                                                                                                                                                                                                                                                                        |

# 3. Environmental can change the population size and distribution

#### **Abiotic Factors**

- Sunlight (intensity) needed for Photosynthesis
- Temperature Optimum temperatures can differ
- pH
- Water
- Minerals
- Soil Type
- Salinity (salt levels)
- Toxic Chemicals build food chains through bioaccumulation; per stage, pesticide concentration increases (top of chain receives toxic dose)
- Fertilizers released into water bodies causing eutrophication and kills organisms.

#### **Biotic Factors**

- Food availability the more food, the more likely to survive and reproduce.
- Predators the less predators, the higher population as they are eaten less often.
- Competition organisms compete with each other for the same resources (both biotic and abiotic)
- Infections (pathogens) infections can cause a decrease in population.

#### 4. Food Chains



- start with a producer -> primary consumers -> secondary consumer -> tertiary consumers, quaternary, quinary, senary, septenary.
- Eventually die and eaten by decomposers (break down dead material and waste bacteria, fungi)
  - Each stage is a trophic level.

#### 5. Pyramids of Numbers



- Each bar shows the number of organism at the stage of the food chain.
  - Bottom bar is the organism at the bottom of the food chain.
- Each increase in trophic level, the number goes down (typically) as lots of food is needed from each stage to another.

#### 6. Pyramids of Biomass



Upright Pyramid of biomass in a Terrestrial Ecosystem

- Each bar shows the mass of living material at that stage of the food chain (how much they weight all together)
  - Biomass pyramids are usually in a pyramid shape.

#### 7. Pyramids of Energy Transfer



- Shows the energy transferred to each trophic level.
  - Always a pyramid shape.

#### 8. Energy Transfer

- Source of energy for almost everything comes from the Sun.
- Plants use energy from sun to make food (photosynthesis). The energy moves through the chain.
- Only about 10% of energy (found in biomass/growth) is transfered through each trophic level.

#### The energy is lost through:

- Some parts are indigestible and pass through the organisms as waste.
- A lot of energy is used in staying alive (MRS. H GREN excluding Growth)
- Most of the energy is transfered to surrounding by heat

#### 9. Food Webs



- All species are interdependent (if one species changes, it affects all the others)

- 10. Material recycle
- Materials that organisms need to survive (carbon, nitrogen) are recycles through biotic and abiotic components.
- They pass through both living organisms as well as things like air, rocks, soil, etc.

#### 11. Carbon Cycle



- There is a fixed amount of carbon in the world and are constantly recycled.
- Only one arrow going down from CO2 in the air; whole thing is powered by photosynthesis (to make carbohydrates, lipids, and proteins)
  - Eating passes down carbon compounds through food chains.
    - Respiration release CO2 into the air.
- Decomposers (bacteria, fungi) break down dead material into smaller molecules through enzyme catalysis.
  - Decomposers release CO2 by respiration.
  - Organisms can burn (combust) as fossil fuels and wood, releasing CO2 into the air.
  - Decomposition means habitats can be maintained as waste material are returned into soil, etc.



- Atmosphere is 78% nitrogen gas and is very unreactive so not directly used by plants or animals.
  - Needed for making proteins for growth.
  - Plants get nitrogen from soil such as nitrates.
  - Animals get proteins by eating plants or other animals.
- Nitrogen fixation process of turning Nitrogen gas into nitrogen compounds (that plants can use);
- Lightning has so much energy, it makes nitrogen react with oxygen in the air producing nitrates.
  - Nitrogen-Fixing Bacteria is soil and roots convert Nitrogen gas into nitrates.

Decomposers - break down proteins (in rotting plants and animals) and urea (in waste) into ammonia (nitrogen compound) forming ammonium ions in soil.

Nitrifying Bacteria - turn ammonium ions in to nitrates (nitrification).

Nitrogen-Fixing Bacteria - turn Nitrogen Gas into nitrogen compounds that plants can use.

Denitrifying Bacteria - turn nitrates back into Nitrogen Gas.

Some bacteria live in soil or in nodules on plant roots.

# **Quizlet**

# Biology Unit 2 - part 2

### Terms in this set (14)

| Carbon Monoxide (CO)                    | <ul> <li>Produced when fossil fuels are burnt without enough air supply.</li> <li>Released in car emissions, however modern cars are fitted with catalytic converters turning CO into CO2</li> <li>It combines with haemoglobin in Red Blood Cells and prevents them from carrying oxygen (poisonous)</li> </ul>                                                                        |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acid Pain (Sulfur Diovido SO2)          | <ul> <li>Produced when burning fossil fuels (sulfur impurities in fossil fuels)</li> <li>Internal Combustion engines (cars) and power stations are the main causes</li> <li>Gas mixes with rain clouds forming dilute sulfuric acid</li> <li>This falls as acid rain</li> </ul>                                                                                                         |
| Acid Rain (Sulfur Dioxide - SO2)        | <ul> <li>Cause lake to become acidic; organisms sensitive to changes in pH cannot survive in acidic conditions, and many plants and animals die (effect on ecosystem)</li> <li>Acid rain damages leaves and release toxic substances from soil, making it difficult for trees to take in nutrients (killing trees).</li> </ul>                                                          |
| Greenhouse Effect                       | <ul> <li>Short wave radiation from the sun enters atmosphere.</li> <li>Earth surface absorbs some energy, and some is reflected as long wave radiation.</li> <li>Gases in atmosphere absorb heat (infrared energy) and re-radiate into all directions including earth.</li> </ul>                                                                                                       |
| Global Warming (type of Climate Change) | <ul> <li>Human activity is increasing the amount of Greenhouse Gases in the atmosphere.</li> <li>As a result, more heat is being trapped in the atmosphere than needed.</li> <li>This can lead to things like extreme weather, rising sea levels, and flooding (melting polar ice caps).</li> <li>Furthermore can cause habitat loss, affecting food chains and crop growth.</li> </ul> |
| Methane (CH4)                           | <ul><li>Produced naturally: rotting plants, etc</li><li>Produced by rice growing and cattle rearing.</li></ul>                                                                                                                                                                                                                                                                          |

## Biology Unit 2 - part 2

## - Produced by humans: car exhausts, industrial processes, burning fossil fuels, etc Carbon Dioxide (CO2) - Deforestation for timber (logging), and clearing land for farming and housing; affect Carbon Dioxide level in atmosphere. - Released naturally by bacteria in soil and ocean Nitrous Oxide (N2O) - Released more from soil after fertilizer use - Released from vehicle engines and industry - released by aerosol sprays and fridges. (old leaking fridges) CFC's (powerful greenhouse gasses) - Most countries do not produce them as they damage the ozone layer which prevents UV rays from reaching earth. - Another Greenhouse gas Water Vapour (non-human) - Happens naturally through cycle of evaporation and condensation - Nitrates and Phosphates used on fields as mineral fertilizers - After raining, they are easily leached (washed) into rivers and lakes. - This causes algae to grow fast (algal bloom) and blocks light from entering water. - Plant cannot photosynthesize (due to lack of light) and die. - Microorganisms feeding on dead plants increase in number and use Eutrophication all the oxygen in the water. - Organisms needing oxygen (fish, etc) die. - When trees are removed, the nutrients in the soil gets leached (washed) away but do not get replaced (leaves take up nutrients and Leaching return them after they die). - This causes the soil to become infertile. - Trees take CO2 through photosynthesis and store carbon in the wood, releasing it after it dies and decomposes. - When they are cut down and burned, lots of carbon is released into Disturbing balance of CO2 and Oxygen the atmosphere, disturbing the carbon cycle (contributes to global warming) - Less trees means less photosynthesis and less oxygen, causing oxygen levels in the atmosphere to fall. - Removing trees (holding the soil together) makes it easier for soil to Soil Erosion be washed away by rain (erosion) leaving infertile ground. - Process of water evaporation & plant transpiration (trees) Evapotranspiration - When trees are cut down, evapotranspiration is reduced making local climate drier.