Diseño e implementación de sustratos en algoritmo CRO-SL para la distribución de aerogeneradores

Antonio José Romero Barrera

INDICE

- 01 Introducción
- 02 Estado del arte
- 03 Marco teórico
- 04 Requisitos y datos
- 05 Herramienta desarrollada
- 06 Evaluación de resultados
- 07 Conclusiones y líneas futuras

APARTADO 01 INTRODUCCIÓN

Diseño e implementación de sustratos en algoritmo CRO-SL para la distribución de aerogeneradores

La Tierra alcanzó los 8.000 millones habitantes en 2022

Población en miles de millones

Quiero mejorar el funcionamiento y eficiencia de un parque eólico...

¿Cómo obtengo mayores valores de energía generada? ¿Dónde posiciono cada uno de los aerogeneradores? ¿Cómo simulo el funcionamiento aerodinámico de las turbinas eólicas?

Número total de posibles combinaciones de aerogeneradores (soluciones)

Configuración de 30x30 con 30 turbinas

Algoritmos metaheurísticos

Características y propiedades:

- Uso recomendado en problemas de optimización complejos que requieren gran magnitud de datos y operaciones.
- Basadas en los sucesos observados en los procesos de la naturaleza.
- No encuentran la mejor solución, pero sí una solución muy próxima a ella en tiempos asumibles.

SELECCIÓN DE METODOLOGÍA

Tabla de ponderación

Parámetros	CFD	Modelos de estela
Precisión	Alta	Media
Tiempo de ejecución	Muy elevado	Bajo (<1 seg.)
Capacidad de automatización	Baja	Alta
Necesidad de preprocesamiento de datos	Diseño CAD, mallado, cálculos de y+	Coordenadas de turbinas sobre un plano.
Equipamiento informático	Componentes de alta calidad	Estándar
Simplicidad jerárquica de programas	Necesidad de sincronizar varias herramientas	Se puede implementar en una única herramienta

APARTADO 02 ESTADO DEL ARTE

Diseño e implementación de sustratos en algoritmo CRO-SL para la distribución de aerogeneradores

RQ1: ÁMBITO DE USO

RQ2: MODIFICACIONES DEL ALGORITMO

RQ3: PUBLICACIONES POR AÑO

RQ4: COMUNIDAD INVESTIGADORA

APARTADO 03 MARCO TEÓRICO

Diseño e implementación de sustratos en algoritmo CRO-SL para la distribución de aerogeneradores

Modelos de estela

MODELO DE JENSEN

$$U_{x}(x) = U_{\infty} \cdot \left(1 - \frac{1 - \sqrt{1 - c_{T}}}{\sqrt{\sum \left(1 + \frac{2 k \cdot x}{D_{r}}\right)^{4}}}\right)$$

MODELO DE AINSLIE

$$U_{x}(x) = U_{\infty} \cdot \left(1 - \frac{1 - \sqrt{1 - c_{T}}}{\sum \left(1 + \frac{2 k \cdot x}{D_{r}}\right)^{4}}\right) \qquad U_{x}(r) = U_{\infty} - U_{def} = U_{\infty} \cdot \left(1 - \hat{\mathbf{U}}_{M} \cdot e^{-3.56 \left(\frac{r}{b \cdot D_{r}}\right)^{2}}\right)$$

MODELO DE LARSEN

$$U_{x}(x,r) = U_{\infty} \cdot \left(1 - \frac{(c_{T} \cdot A_{r} \cdot x^{-2})^{\frac{1}{3}}}{9} \cdot \left(r^{\frac{3}{2}} \cdot (3 c_{1}^{2} \cdot c_{T} \cdot A_{r} \cdot x)^{-\frac{1}{2}} - \left(\frac{35}{2\pi}\right)^{\frac{3}{10}} \cdot (3 c_{1}^{2})^{-\frac{1}{5}}\right)^{2}\right)$$

Modelo	Tiempo de ejecución en 20 iteraciones (s)	Tiempo de ejecución promedio por iteración (s)
Jensen	25.2272	1.2614
Larsen	32.2178	1.6109
Ainslie	28.3428	1.4171

Algoritmo Genético Básico (BGA)

Coral Reef Optimization (CRO)

Procesos reproductivos Reproducción sexual externa Sĺ Preparación de Mutación o Asentamiento de Condición de **LARVAS** configuración del Finalización Fragmentación colonia llena larvas arrecife Reproducción sexual interna Depredación NO

Coral Reef Optimization with Substrate Layers (CRO-SL)

Sustratos iniciales:

- BLXα (20%).
- MPx (20%).
- 2Px (20%).
- GM (40%).

Sustratos añadidos:

- 1Px.
- PSO.
- WOA.

Particle Swarm Optimization (PSO)

División en grupos de partículas que conforman cada individuo

Ecuación de movimiento

$$v_{i+1} = w \cdot v_i + c_1 \cdot r_1 \cdot (x_p^{Best} - x_i) + c_2 \cdot r_2 \cdot (x_g^{Best} - x_i)$$
$$x_{i+1} = x_i + v_{i+1}$$

2 puntos de referencia que motivan el movimiento de las partículas:

- Mejor posición histórica personal (x_p^{Best}) .
- Mejor posición histórica de toda la población (x_g^{Best}) .

Whale Optimization Algorithm (WOA)

APARTADO 04 REQUISITOS Y DATOS

Diseño e implementación de sustratos en algoritmo CRO-SL para la distribución de aerogeneradores

Apartado 04 Requisitos y datos

Datos geométricos y ambientales

z (m)	D_r (m)	c_T	A _{terreno} (km²)	d_{sec} (m)	z_0 (m)	I_0
60	80	0.88	144	400	0.3	0.035

- (a) Curva de potencia real de AWEC-60.
- (b) Curva de potencia aproximada de AWEC-60.

APARTADO 05 HERRAMIENTA DESARROLLADA

Diseño e implementación de sustratos en algoritmo CRO-SL para la distribución de aerogeneradores

Operador 1Px mutativo como sustrato

Adaptación de PSO como sustrato: ajuste de hiperparámetros

COEFICIENTES	CONJUNTOS DE VALORES
Factor de inercia (ω)	[0.8, 1.0, 1.2]
Aceleración personal (c_1)	[0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5]
Aceleración social (c_2)	[0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5]

Coeficientes seleccionados:

$$[c_1, c_2, \omega] = [1.3, 1.0, 1.0]$$

Adaptación de PSO como sustrato: funcionamiento

Adaptación de WOA como sustrato

APARTADO 06 EVALUACIÓN DE RESULTADOS

Diseño e implementación de sustratos en algoritmo CRO-SL para la distribución de aerogeneradores

Valores de energía generada y rendimiento de las soluciones

Algoritmo	Modelo	Energía producida (kWh)	Rendimiento (%)
	Jensen	$7.7818 \cdot 10^7$	99.34
BGA	Larsen	$7.5273 \cdot 10^7$	95.93
	Ainslie	$7.7896 \cdot 10^7$	97.35
CRO-SL	Jensen	$7.7722 \cdot 10^7$	99.08
	Larsen	$7.4619 \cdot 10^7$	94.97
(4 sustratos)	Ainslie	$7.7882 \cdot 10^7$	97.13
CDO CI	Jensen	$7.7856 \cdot 10^7$	99.44
CRO-SL	Larsen	$7.6144 \cdot 10^7$	97.20
(7 sustratos)	Ainslie	$7.8004 \cdot 10^7$	99.05

Participación de sustratos en la obtención de la mejor larva por generación

Algoritmo	Modelo	BLXlpha	MPx	2Px	GM	1Px	PSO	WOA
	Jensen	385	265	305	55	-	-	-
CRO-SL (4 sustratos)	Larsen	354	290	316	40	-	-	-
(+ 303110103)	Ainslie	376	282	304	38	-	-	-
	Jensen	164	168	257	1	237	173	0
CRO-SL (7 sustratos)	Larsen	147	199	241	0	251	162	0
(7 Sustratos)	Ainslie	188	219	223	1	195	172	2

Producto cartesiano de las soluciones con los modelos de estela

Rendimiento del producto cartesiano de soluciones con modelos de estela SOLUCIÓN

Ц	
5	

	JENSEN	LARSEN	AINSLIE
JENSEN	99.44%	96.85%	92.26%
LARSEN	91.45%	97.20%	91.41%
AINSLIE	96.27%	86.99%	99.05%
RENDIMIENTO	95.88%	93.68%	94.24%

Influencia de matriz de desniveles

Algoritmo	Solución	Energía producida con relieve (kWh)	Energía producida sin relieve (kWh)
	Jensen	7.773 7 · 10^7	7.773 6 · 10^7
BGA	Larsen	7.74 99 · 10^7	$7.7736 \cdot 10^7$
	Ainslie	$7.7935 \cdot 10^7$	$7.7896 \cdot 10^7$
	Jensen	$7.7658 \cdot 10^7$	7.765 6 · 10^7
CRO-SL	Larsen	$7.7184 \cdot 10^7$	$7.7182 \cdot 10^7$
(4 sustratos)	Ainslie	$7.7925 \cdot 10^7$	$7.7882 \cdot 10^7$
CRO-SL (7 sustratos)	Jensen	7.782 9 · 10^7	$7.7828 \cdot 10^7$
	Larsen	$7.7526 \cdot 10^7$	$7.7524 \cdot 10^7$
	Ainslie	$7.8005 \cdot 10^7$	$7.8004 \cdot 10^7$

Soluciones analizadas con modelo de estela de Ainslie

Influencia de matriz de longitud de rugosidad

Algoritmo	Solución	Energía producida con rugosidad variable (kWh)	Energía producida con rugosidad constante (kWh)
	Jensen	$7.5866 \cdot 10^7$	$7.7818 \cdot 10^7$
BGA	Larsen	$7.7256 \cdot 10^7$	$7.7444 \cdot 10^7$
	Ainslie	$7.$ 5477 \cdot 10^{7}	$7.7678 \cdot 10^7$
CDO SI	Jensen	$7.7023 \cdot 10^7$	$7.7722 \cdot 10^7$
CRO-SL	Larsen	$7.6644 \cdot 10^7$	$7.7244 \cdot 10^7$
(4 sustratos)	Ainslie	$7.7422 \cdot 10^7$	7.7 547 $\cdot 10^7$
	Jensen	7.7 547 $\cdot 10^7$	$7.7856 \cdot 10^7$
CRO-SL	Larsen	$7.6153 \cdot 10^7$	$7.7722 \cdot 10^7$
(7 sustratos)	Ainslie	$7.7499 \cdot 10^7$	$7.7606 \cdot 10^7$

Soluciones analizadas con modelo de estela de Jensen

APARTADO 07 CONCLUSIONES Y LÍNEAS FUTURAS

Diseño e implementación de sustratos en algoritmo CRO-SL para la distribución de aerogeneradores

El uso de los 3 nuevos sustratos aumenta la velocidad de crecimiento de la función de fitness

2 Sustratos 1Px, PSO y WOA mejoran los resultados del CRO-SL

Limitación en el uso de las funciones de relieve y rugosidad

IMPACTO SOCIAL, ECONÓMICO Y MEDIOAMBIENTAL

OBJETIVO	META ESPECÍFICA	DESCRIPCIÓN
	ODS 7.1	De aquí a 2030, garantizar el acceso universal a servicios energéticos asequibles, fiables y modernos.
ODS 7: Garantizar el acceso a una energía	ODS 7.2	De aquí a 2030, aumentar considerablemente la proporción de energía renovable en el conjunto de fuentes energéticas.
asequible, segura, sostenible y moderna.	ODS 7.3	De aquí a 2030, duplicar la tasa mundial de mejora de la eficiencia energética.
Sostemble y moderna.	ODS 7.b	De aquí a 2030, ampliar la infraestructura y mejorar la tecnología para prestar servicios energéticos modernos y sostenibles para todos los países en desarrollo.
ODS 8: Promover el crecimiento económico inclusivo y sostenible, el empleo y el trabajo decente para todos.	ODS 8.4	Mejorar progresivamente, de aquí a 2030, la producción y consumo eficientes de los recursos mundiales y procurar desvincular el crecimiento económico de la degradación del medio ambiente, conforme al Marco Decenal de Programas sobre modalidades de Consumo y Producción Sostenibles, empezando por los países desarrollados.
ODS 12: Garantizar modalidades de consumo y producción sostenibles.	ODS 12.2	De aquí a 2030, lograr la gestión sostenible y el uso eficiente de los recursos naturales.

OBJETIVOS DE DESARROLLO SOSTENIBLE (ODS)

ODS 7: Garantizar el acceso a una energía asequible, segura, sostenible y moderna ODS 8: Promover el crecimiento económico inclusivo y sostenible, el empleo y el trabajo decente para todos

ODS 12:
Garantizar
modalidades de
consumo y
producción
sostenibles

- Uso de CFD en la metodología metaheurística de optimización de la distribución de turbinas eólicas.
- Uso de turbinas eólicas en el ámbito del sector de la defensa.
- Estudio del orden de mantenimiento de las turbinas para minimizar las pérdidas por las estelas.
- Realización de modelos de estela orientados a predecir el déficit de velocidades en atmósfera marciana.
- Estudio de parámetros del CRO que permitan su ejecución en tiempos menores.

MUCHAS GRACIAS!

