З ПРОГРАММИРОВАНИЕ ЦИКЛОВ С ИЗВЕСТНЫМ ЧИСЛОМ ПОВТОРЕНИЙ

Цель работы - овладение практическими навыками разработки, программирования циклического вычислительного процесса; освоение организации циклов с известным числом повторений; получение навыков в выборе и использовании операторов цикла.

3.1 Подготовка к лабораторной работе

При подготовке к лабораторной работе необходимо ознакомиться с организацией циклов, изучить операторы для реализации циклов с известным числом повторений.

3.2 Теоретические сведения

Инструкция **for** - это наиболее часто используемое средство организации цикла. Инструкция цикла for предназначена для многократного (циклического) выполнения одной инструкции или блока инструкций в зависимости от того, истинно заданное условие или нет. Цикл for имеет следующий формат:

for (инициализирующее выражение; условие; модифицирующее выражение) инструкция

Инициализирующее выражение может состоять из одного или нескольких разделённых запятой выражений, в том числе и объявлений переменных. Инициализирующее выражение обычно используется для установления начального значения переменных, управляющих циклом, и выполняется только один раз, независимо от числа повторений цикла.

Условие не заключается в круглые скобки. Оно может быть любым выражением (включая список выражений, разделённых запятой), значение которого после вычисления может быть приведено к логическому типу. Проверка условия всегда выполняется в начале каждого цикла. Это значит, что тело цикла может ни разу не выполниться, если условие сразу будет ложным.

Модифицирующее выражение также может состоять из списка выражений, разделённых запятой. Оно обеспечивает изменение переменных, управляющих циклом, после каждого выполнения тела цикла.

При получении управления инструкцией *for* схема работы цикла следующая:

- вычисляется инициализирующее выражение;
- вычисляется условие;
- если условие истинно (равно true), то выполняется простая инструкция или блок, составляющие тело цикла;
- вычисляется модифицирующее выражение и всё повторяется, начиная со второго пункта (вычисления условия);
- если условие ложно, то выполнение цикла for заканчивается и начинает выполняться следующая за циклом инструкция.

Пример Вычислить квадраты чисел от 1 до 9.

```
int main()
{
    int i, b;
    for (i = 1; i < 10; i++)
        b = i * i;
    return 0;
}</pre>
```

Задача 3.1. Вычислить значения у, соответствующие каждому значению х (xn≤x≤xk ,

$$y = \frac{\sqrt[3]{|a| - x^2 |\ln(2 + a^2 + x^4)}}{2}$$

шаг изменения x равен dx) по формуле

Вычислить среднее значение среди положительных элементов у, произведение ненулевых и количество отрицательных значений у. На экран выводить каждую вторую пару значений х и у. Контрольный расчёт провести при a=2.17, xn=-1.5, xk=0.5, dx=0.2.

```
#include <iostream>
#include <windows.h>
#include <math.h>
using namespace std;
int main()
{
 SetConsoleOutputCP(1251);
 cout<<"Введите XN, XK, DX: ";
 double X, XN, XK, DX,Y, S=0,K_Otr=0, O=0,P=1,a=2.17;
 cin>>XN>>XK>>DX;
 int i=0;
 cout<<"X"<<"
                     "<<"Y"<<\\n':
 for(X=XN; X\leq XK; X+=DX)
 {
       Y = pow(fabs(a-X*X)*log(2+a*a+pow(X,4)),1/3.0)/2;
                                         //количество вычисленных значений у
       // вывод каждой второй пары значений х и у.
       if (i % 2 ==0)
              cout<<X<<" "<<Y<<\\n';
       if (Y>0) {K_Otr++;S=S+Y;}//количество и сумма положительных значений у
                                         //произведение ненулевых значений у
       if (Y!=0) P=P*Y;
                                         //количество отрицательных значений у
       if (Y<0) O++;
 cout<<"среднее значение среди положительных элементов у ="<<S/K Otr<<'\n';
 cout << "произведение ненулевых = " << P << '\n';
 cout << "количество отрицательных значений у = " << 0 << '\n';
```

Задача 3.2. Ввести с клавиатуры 10 чисел, найти сумму всех чисел, минимальное значение, количество нечетных чисел.

```
#include "iostream"
#include "windows.h"
using namespace std;
int main()
{

SetConsoleOutputCP(1251);
int Min, Sum = 0, Neg = 0, n;
cout << "Введите 10 чисел:\n";
for (int i = 1; i <= 10; ++i)
{

int n;
cin >> n;
```

```
//найти минимальное значение
                if (i == 1)
                        Min = n;
                else
                        if (n < Min)
                                          Min = n;
                Sum += n; //подсчёт суммы всех введённых чисел
                if (n % 2 != 0) Neg += 1; //подсчёт количества нечетных чисел
        }
       cout << "Сумма 10 введённых чисел: " << Sum << "\n";
       cout << "Минимальное значение: " << Min << "\n";
       cout << "Нечетных чисел: " << Neg << "\n";
       return 0;
}
📧 Консоль отладки Microsoft Visual Studio
 Консоль отмеж.
едите 10 чисел:
-3 5 7 2 8 6 8 -9 10
мма 10 введённых чисел: 35
```

3.3 Варианты заданий

Написать и отладить программу в соответствии с вариантом из табл. 3.1.

Таблица 3.1

	таолица э		
№	ЗАДАНИЕ		
вари			
анта			
1	Вычислить значения z, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг		
	$\sqrt[4]{x^3} + ax$		
	$z = \frac{\sqrt[4]{x^3 + ax}}{\ln \sqrt{x^2 + 44}}$		
	изменения х равен dx) по формуле $\ln \sqrt{x} + 4,4$		
	Вычислить максимальное значение среди z ∈ [15, 20]. На экран выводить		
	каждую пятую пару значений х и z. Контрольный расчёт провести при а=5.27,		
	$x_n=1, x_k=10, dx=0.1.$		
2	Вычислить значения z, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг		
	$\sqrt[3]{x^4} + (a-4)x$		
	$z = \frac{\sqrt[3]{x^4 + (a-4)x}}{\sin(x) + \cos(x^2) + 3}$		
	is menerial x puber dx) no populysie		
	Вычислить максимальное по модулю значение z при х∈[-10,3]. На экран		
	выводить каждую третью пару значений х и z. Контрольный расчёт провести при $a=5.27, x_n=-10, x_k=10, dx=0.1.$		
3	Вычислить значения у, соответствующие каждому значению х ($x_n \le x \le x_k$, шаг		
3	· · · · · · · · · · · · · · · · · · ·		
	$y = \frac{\sqrt{ a+x^2 \cdot \ln(a^2+3.4)}}{2}$		
	изменения x равен dx) по формуле 2		
	Вычислить сумму, произведение и количество положительных значений у. На		
	экран выводить каждую вторую пару значений х и у. Контрольный		
	расчёт провести при a=2.17, x _n =-1.5, x _k =1.5, dx=0.2.		
4	Вычислить значения z, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг		
	$\sqrt[3]{x} + \sin(\alpha x)$		
	$z = \frac{\sqrt[3]{x + \sin(ax)}}{\ln(a^4 + 2.65)}$		
	изменения х равен dx) по формуле $\ln(a^4+2,65)$.		
	Определить среднее арифметическое положительных значений z. На экран		
	1 , 1 ,		

	выводить все значения x и z. Контрольный расчёт провести при a=5.27, x _n =1,		
	$x_k=10, dx=1.$		
5 Вычислить значения t, соответствующие каждому значению x (x _n ≤x≤x ₁			
	$t = \sin(ax) + \sqrt[3]{a+x} - e^x$		
	изменения х равен dx) по формуле		
	Вычислить сумму отрицательных значений t, произведение ненулевых t,		
	количество положительных значений t. На экран выводить каждую вторую пару		
	значений x и t . Контрольный расчёт провести при $a=1.23$, $x_n=2.5$, $x_k=8.5$, $dx=0.2$.		
6	Вычислить значения z, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг		
	$z = \frac{x^2 \cdot \sqrt[3]{\sin(a+x)^2}}{a}$		
	изменения х равен dx) по формуле а .		
	$F = \prod_{z} z + \sum_{z} z$		
	z = 1 $z = 1$ $z = 1$ $z = 1$ $z = 1$ На экран выводить каждую вторую пару		
	значений х и z.		
	Контрольный расчёт провести при $a=1.12$, $x_n=3$, $x_k=9$, $dx=0.6$.		
7	Вычислить значения t, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг		
	$e^a + \sqrt{\frac{a}{a+x}}$		
	$t = \frac{e^a + \sqrt{a + x}}{\sin(x) + 2}$ изменения х равен dx) по формуле		
	1 / 11 2		
	Вычислить сумму значений t <a, t,="" th="" всех="" значений="" количество<="" произведение=""></a,>		
	неотрицательных t. На экран выводить каждую третью пару значений x и t.		
8	Контрольный расчёт провести при $a=7.27$, $x_n=2$, $x_k=4$, $dx=0.1$.		
0	Вычислить значения t, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг		
	$t = \sqrt{\frac{a+x}{\cos(b+x)+10}} \cdot \sin(a+x^3)$		
	изменения х равен dx) по формуле $\cos(b+x)+10^{-\sin(a+x)}$.		
	Вычислить количество отрицательных значений х. Определить максимальное		
	значение среди вычисленных значений t. Контрольный расчёт провести при		
	$a=6.13, b=3.22, x_n=2, x_k=7, dx=0.5$. На экран выводить каждую вторую пару		
	значений х и t.		
9	Вычислить значения у, соответствующие каждому значению $x (x_n \le x \le x_k)$, шаг		
	$\cos(a^2) + \sin x \cdot \sqrt{x}$		
	$y = \frac{\cos(a^2) + \sin x \cdot \sqrt[3]{x}}{a^2}$		
	изменения х равен dx) по формуле .		
	Определить максимальное значение у и среднее арифметическое значение		
10			
10			
	$z=\frac{3}{2}$ $\frac{tg(a-x)}{a-x}$		
	$4,35+\sin(a+x)$		
	Определить разницу между максимальным и минимальным по модулям		
	значениями z.		
	На экран выводить каждую четвертую пару значений х и z. Контрольный расчёт		
	провести при $a=2.94$, $x_n=1.5$, $x_k=5.5$, $dx=0.2$.		
10	среди отрицательных элементов у. На экран выводить каждую третью пару значений х и у. Контрольный расчёт провести при а=4.98, x_n =-10, x_k =10, dx =2.5. Вычислить значения z, соответствующие каждому значению x (x_n		

	$\sqrt{(a^2+2ab+x)}$
изменения х равен dx) по формуле	$2 - \frac{1}{\cos(a+x)^2 + e^x}$
and the second of the second o	×

Определить минимальное значение среди значений z>0, максимальное среди

Контрольный расчёт провести при a=1.23, b=8.13, $x_n=3$, $x_k=10$, dx=0.7. На экран выводить каждую вторую пару значений х и z.

12 Вычислить значения t, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг

$$t = \frac{e^{a+x}}{\sin(a+x)+2.36}$$

изменения x равен dx) по формуле

Вычислить сумму значений t, произведение положительных значений t, количество t>a. На экран выводить каждую третью пару значений x и t. Контрольный расчёт провести при a=1.7, $x_n=-2$, $x_k=4$, dx=0.2.

Вычислить значения у, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг 13

$$y = \frac{\sqrt[3]{|a| - x^2 |\ln(2 + a^2 + x^4)}}{2}$$

изменения x равен dx) по формуле

Вычислить сумму всех значений у, количество ненулевых и произведение отрицательных значений у. На экран выводить каждую третью пару значений х и у. Контрольный расчёт провести при a=3.17, $x_n=-4.5$, $x_k=0.5$, dx=0.3.

14 Вычислить значения z, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг

щие каждому значению х (
$$x_n \le x \le x_k$$
 , ша
$$z = \frac{\sqrt[3]{x^4 + ax}}{\sin(13, 2 + x)}$$
. Определить

изменения x равен dx) по формуле

среднее арифметическое вычисленных z. Найти количество z>a. На экран выводить каждую четвертую пару значений х и z. Контрольный расчёт провести при a=5.27, $x_n=1$, $x_k=10$, dx=1.

15 Вычислить значения t, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг

$$t = \frac{|a - b\sqrt[3]{x}|}{\cos(b) + \sin(a) - 12}$$
. Определить

изменения x равен dx) по формуле

 $F = \frac{\sum t}{\prod t}$. На экран выводить каждую вторую пару значений х и t. " — польести при а=3.5, b=6.8, х_п=-3, х_k=3, dx=0.5.

Контрольный расчёт провести при a=3.5, b=6.8, $x_n=-3$, $x_k=3$, dx=0.5.

Вычислить значения t, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг 16

$$t = \frac{\sqrt[3]{ax}}{5 + \cos(a) + e^x}$$

 $t = \frac{\sqrt[3]{ax}}{5 + \cos(a) + e^x}$. Вычислить сумму изменения x равен dx) по формуле положительных значений t, произведение отрицательных t, количество всех значений t. На экран выводить каждую вторую пару значений x и t. Контрольный расчёт провести при a=1.23, $x_n=-0.5$, $x_k=0.5$, dx=0.1.

17 Вычислить значения z, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг

$$z = \frac{\sqrt[3]{\frac{1}{7+x^2}}}{14,5 + \log{(a^2+3)}}$$
. Вычислить

$$F = \prod z + \sum z$$

На экран выводить каждую третью пару значений х и z. Контрольный расчёт провести при a=2.62, $x_n=-3$, $x_k=3$, dx=0.6.

Вычислить значения t, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг 18 $t = \frac{a + \sqrt[3]{x}}{a^7 + \ln(a + x)}$. Вычислить сумму

изменения x равен dx) по формуле значений t>=a, произведение всех значений t, количество отрицательных t. На экран выводить каждую вторую пару значений х и t. Контрольный расчёт провести при a=3.72, $x_n=-1$, $x_k=3$, dx=0.2.

19 Вычислить значения t, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг

$$t = (a+b)^2 \sqrt{\frac{a+x}{\sin(b+x)+1.1}}$$

изменения x равен dx) по формуле

Вычислить количество отрицательных значений х. Определить минимальное значение среди вычисленных значений t. На экран выводить каждую вторую пару значений х и t. Контрольный расчёт провести при a=6.13, b=3.42, $x_n=-2$, $x_k=3$, dx=0.5.

20 Вычислить значения у, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг

$$y = \frac{a^2 + b\sqrt[3]{x}}{3.56 + \sin(a+b) + e^x}$$

изменения x равен dx) по формуле

Определить максимальное значение у и среднее значение среди положительных элементов у. На экран выводить каждую третью пару значений х и у. Контрольный расчёт провести при a=2.89, b=14,34, $x_n=-50$, $x_k=50$, dx=2.5.

21 Вычислить значения z, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг

$$z = a \cdot \sqrt[5]{\frac{ax^7}{\cos(a^3) + 1.31}}$$
. Определить

изменения x равен dx) по формуле

разницу между минимальным и максимальным значениями z. На экран выводить каждую вторую пару значений х и z. Контрольный расчёт провести при а=2.94, $x_n=1.5, x_k=5.5, dx=0.4.$

22 Вычислить значения z, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг

$$z = \frac{\sqrt[3]{(a^2 - 2 ab + x)}}{5,55 + (a+b)^2 + e^x}$$
. Определить

изменения x равен dx) по формуле минимальное значение среди значений $z \le 0$, максимальное среди z > 0. На экран выводить каждую вторую пару значений х и z. Контрольный расчёт провести при a=4.32, b=8.13, $x_n=-3$, $x_k=4$, dx=0.7.

23 Вычислить значения z, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг

	изменения х равен dx) по формуле z=sin(cos(x)). Определить сумму значений z>x и произведение z≤x. На экран выводить каждую третью пару значений x и z. Контрольный расчёт провести при x _n =-π, x _k =-π, dx=π/10.
24	Вычислить значения у, соответствующие каждому значению x ($x_n \le x \le x_k$, шаг изменения x равен dx) по формуле $y = e^{\cos(x^3)}$. Определить максимальное среди
	значений у>х и минимальное среди у<=х. На экран выводить каждую третью пару значений х и у. Контрольный расчёт провести при $x_n=-\pi$, $x_k=-\pi$, $dx=\pi/20$.

1.1 Контрольные вопросы

- 1. Для чего предназначена инструкция for?
- 2. Какой формат имеет цикл **for**?
- 3. Когда выполняется проверка условия?
- 4. Может ли тело цикла не выполниться ни разу?
- 5. Для чего используется модифицирующее выражение?
- 6. Сколько раз выполняется инициализирующее выражение?
- 7. Опишите схему работы цикла **for.**
- 8. Когда выполнение цикла **for** заканчивается и начинает выполняться следующая за циклом инструкция?
 - 9. Как написать бесконечный цикл for?