EJERCICIOS

El estadístico Chi-cuadrado y contrastes asociados

Tomado de:

www.ugr.es/~analisisdedatos/webcurso/leccion/leccion3/ejercicios.ppt

EJERCICIO 1

Un investigador quiere estudiar si hay asociación entre la práctica deportiva y la sensación de bienestar. Extrae una muestra aleatoria de 100 sujetos. Los datos aparecen a continuación.

Sensación de	Práctica deportiva		Total
Bienestar	Sí	no	
Sí	20	25	45
No	10	45	55
Total	30	70	100

Contraste la hipótesis de independencia entre bienestar y práctica de deporte (alfa = 0,01).

Sensación de	Práctica deportiva		Total
Bienestar	Sí	no	
Sí	20	25	45
No	10	45	55
Total	30	70	100

Calculemos las frecuencias esperadas: $e_{ij} = \frac{f_{i.}f_{.j}}{n}$

$$e_{ij} = \frac{f_{i.}f_{.j}}{n}$$

Sensación de bienestar	Práctica deportiva		
	Sí	No	
Sí	(45x30)/100= 13,5	(45x70)/100= 31,5	
No	(55x30)/100= 16,5	(55x70)/100= 38,5	

Calculemos Chi-cuadrado:
$$\chi^2_{\rm exp} = \sum_i \sum_j \frac{(f_{ij} - e_{ij})^2}{e_{ij}}$$

- 1) Hagamos otra tabla, donde restamos a las frecuencias absolutas las frecuencias esperadas.
- 2) Este valor elevado al cuadrado.
- 3) Dividido por la frecuencia esperadas.

Sensación de bienestar	Práctica deportiva	
	Sí	No
Sí	3,1296	1,3413
No	2,5606	1,0974

$$\chi_{\rm exp}^2 = 3{,}1296 + 1{,}3413 + 2{,}5606 + 1{,}0974 = 8{,}13$$

Tenemos:
$$\chi^2_{\rm exp} = 8.13$$

Ahora calculemos el valor de la tabla Chi-cuadrado

1) grados de libertad, son:

$$K = (número de fila-1)x(número de columnas-1)$$

= $(2-1)x(2-1) = 1$

- 2) El valor alfa 0,01
- 3) El valor que buscamos

$$\chi_{g.l.;\alpha}^2 = \chi_{1;0,01}^2 = 6,63$$

$$\chi^2_{\rm exp} = 8.13$$

$$\chi_{g.l.;\alpha}^2 = \chi_{1;0,01}^2 = 6,63$$

Por tanto:

$$\chi^2_{\rm exp} > \chi^2_{1;0,01}$$

SIGNIFICADO: Las variables no son independientes

SIGNIFICADO en el ejemplo: La practica deportiva y la sensación de bienestar estás asociadas.

EJERCICIO 2

Se desea estudiar hasta qué punto existe relación entre el tiempo de residencia de inmigrantes en España y su percepción de integración. Se dispone de una muestra pequeña de 230 inmigrantes a los que se les evaluó en ambas variables obteniéndose la siguiente tabla de frecuencias observadas. ¿Confirman estos datos la hipótesis planteada con un nivel de confianza del 95%?

Tiempo de residencia	Grado de integración		Total
	Bajo	Alto	
Más tiempo	40	90	130
Menos tiempo	90	10	100
Total	130	100	230

Tiempo de residencia	Grado de integración		Total
	Bajo	Alto	
Más tiempo	40	90	130
Menos tiempo	90	10	100
Total	130	100	230

Calculemos las frecuencias esperadas: $e_{ij} = \frac{f_{i.}f_{.j}}{n}$

$$e_{ij} = \frac{f_{i.}f_{.j}}{n}$$

Tiempo de	Grado de integración	
residencia	Bajo	Alto
Más tiempo	(130x130)/230= 73,4783	(130x100)/230= 56,5217
Menos tiempo	(100x130)/230= 56,5217	(100x100)/230= 43,478

Calculemos Chi-cuadrado:
$$\chi^2_{\rm exp} = \sum_i \sum_j \frac{(f_{ij} - e_{ij})^2}{e_{ij}}$$

- 1) Hagamos otra tabla, donde restamos a las frecuencias absolutas las frecuencias esperadas.
- 2) Este valor elevado al cuadrado.
- 3) Dividido por la frecuencia esperadas.

Sensación de bienestar	Práctica deportiva		
	Sí	No	
Sí	15,2534	19,8294	
No	19,8294	25,778	

$$\chi_{\rm exp}^2 = 15,2534 + 19,8294 + 19,8294 + 25,778 = 80,69$$

Tenemos:
$$\chi^2_{\rm exp} = 80,69$$

Ahora calculemos el valor de la tabla Chi-cuadrado

1) grados de libertad, son:

$$K = (número de fila-1)x(número de columnas-1)$$

= $(2-1)x(2-1) = 1$

- 2) El valor alfa 0,05
- 3) El valor que buscamos

$$\chi_{g.l.;\alpha}^2 = \chi_{1;0,05}^2 = 3,84$$

$$\chi^2_{\rm exp} = 80,69$$

$$\chi_{g.l.;\alpha}^2 = \chi_{1;0,05}^2 = 3,84$$

Por tanto:

$$\chi^2_{\rm exp} > \chi^2_{1;0,01}$$

SIGNIFICADO: Las variables no son independientes

SIGNIFICADO en el ejemplo: El tiempo de residencia y el grado de integración estás asociadas.

Entendiendo esto estamos listos para abordar el Análisis de Correspondencias