ŘADA PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXXIX/1990 ● ● ČÍSLO 4

#### V TOMTO SEŠITĚ

| Kdo nemá jasný cíl                                                                                 | 121                      |
|----------------------------------------------------------------------------------------------------|--------------------------|
| HLEDAČE KOVOVÝCH<br>PŘEDMĚTŮ a jiná zajímavá<br>zapojení                                           |                          |
| Detektory kovů<br>Detektor kovů s FET<br>Detektor kovů I až V<br>Vyzkoušejte sí detektor           | 122<br>123<br>124        |
| kovůHledač pokladů<br>Detektor kovů trochu                                                         | 127<br>128               |
| jinak<br>"Fázový" detektor kovů<br>Citlivý detektor kovů<br>Detektor kovů                          | 128<br>129<br>131        |
| Beachcomber<br>Citlivý hledač kovů                                                                 | 133<br>136               |
| Infračervené dálkové<br>ovládání<br>Mikrovlnné detektory                                           | 142<br>143               |
| Měření skutečné kapacity akumulátorů Infračervený telefon Detektory přiblížení Infračervená závora | 144<br>146<br>147<br>152 |
| Elektronická váha<br>Jednoduchý adaptor pro<br>měření kondenzátorů<br>Aplikace integrovaného       | 153<br>155               |
| obvodu 4046B<br>Signalizace výpadku<br>proudu                                                      | 155<br>159               |
| Inzerce                                                                                            | 160                      |

#### AMATÉRSKÉ RADIO ŘADA B

Vydává vydavatelství MAGNET-PRESS, s. p., Vladislavova 26, 135 66 Praha 1, tel. 26 06 51–7. Šéfredaktor L. Kalousek, OK1FAC. Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51–7. Šefredaktor L. Kalousek, OK1FAC. Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51–7. Inika 353, sekretářka linka 355. Ročně vyjde 6 čísel. Cena výtisku 6 Kčs, pololetní předplatné 18 Kčs. Rozšiřuje PNS, v jednotkách ozbrojených 3I vydavatelství NAŠE VOJSKO, administrace Vladislavova 26, Praha 1, Informace o předplatném podá a objednávky přijímá každá administrace PNS, pošta, doručovatel a předplatitelská střediska. Objednávky do zahraničí vyřizuje PNS – ústřední expedice a dovoz tisku Praha, administrace vývozu tisku, Kovpakova 26, 160 00 Praha 6. Tískne NAŠE VOJSKO, s. p., závod 08, 160 00 Praha 6, Vlastina ulice č. 889/23. Za původnost a správnost příspěvku odpovídá autor. Návštěvy v redakci a telefonické dotazy po 14. hodině. Číslo indexu 46 044 Toto číslo má vyjít podle plánu 2 8. 1990. © Vydavatelství MAGNET-PRESS.

# Kdo nemá jasný cíl, nemůže si k němu určit správnou cestu

V Evropě se koná ročně několik reprezentativních veletrhů, z nichž kromě hannoverského nejdůležitějším je asi veletrh ve Vídni, který je věnován především výpočetní technice, otázkám komunikací a kancelářské technice (včetně nábytku pro kanceláře a jiná pracoviště "administrativního" charakteru). Letošní vídeňský veletrh se konal na výstavišti vedle Prátru ve dnech 15. až 19. května a, jak neopomněly zdůraznit všechny sdělovací prostředky, proti všem dosavadním dosáhl několika nej-: na loňském jubilejním (tj. 20.) bylo 102 000 návštěvníků, letos 150 000, letošní celková "vystavovací" plocha byla větší než 50 tisíc m², poprvé byla zastoupena dálněvýchodní zem (9 vystavovatelů z Taiwanu), celkem vystavovalo 646 přímých vystavovatelů, z toho 59 ze zahraničí (to je oproti loňsku o 73 více).

Veletrh pod názvem "ifabo" skýtal skutečně téměř dokonalý přehled o současnému stavu na trhu těch výrobků, které patří do oblasti výpočetní techniky (počítače, tiskárny, monitory, nejrůznější doplňková zařízení, počítačové sítě apod.), komunikací (telefony, faxy, 900 MHz mobilní spojovací sítě, telexy, "dálkové" kopírovací přístroje atd.), vybavení kanceláří (i projektových kanceláří), kancelářského nábytku atd. včetně např. elektronických zápisníků, diktovacích přístrojů a mnohých dalších.

Popisovat jednotlivé výrobky by bylo nad síly i možnosti kohokoli, proto jen stručně několik postřehů. Hitem mezi procesory je v současné době nedostižný typ 80486, který sdružuje na jednom čipu CPU 386, aritmetické koprocesory 80387 a kontroler 80385, je řízen taktem 33 MHz. Ukazuje se však, že technické prostředky (hardware) jsou předmětem vývoje jen několika superfirem, předmětem zájmu pře-

vážné většiny malých a středních firem jsou programové prostředky (software), dovedené pro některé oblasti použití do neuvěřitelné dokonalosti a univerzálnosti i "speciálnosti". Zřejmou špičkou i v této oblasti je firma IBM, to bylo zřejmé jak podle poskytovaných informací, tak i vybavení její expozice. Pro mne osobně bylo hitem několik výrobků — kompaktních počítačů s obrazovkami monitorů z tekutých krystalů (tj. plochých), které vystavovaly japonské firmy.

Z ostatních výrobků byly zajímavé např. veřejné telefonní přístroje na kreditní karty (viz též 3. a 4. stranu obálky), nepřeberné množství kopírovacích přístrojů (i barevných, i "dálkových"), tiskárny pro barevné obrazy TV (Farbvideo-Printer), zkonstruované na teplotním principu, umožňující zaznamenat barevný obraz z videomagnetofonů, videokamer, počítačů a to buď na papír nebo fólii do maximálního rozměru 240×200 mm s rozlišovací schopností 1280 bodů × 912 řádků s vynikající barevnou věrností, rychlost tisku je asi 160 sekund. Uvedené údaje platí např. pro tiskárnu Mitsubishi CP 200E. Zajímavá je u tohoto přístroje i možnost připojit ho ke zdroji signálu, který může být řízen libovolným kmitočtem, neboť přístroj je opatřen tzv. autoskanovací funkcí, která umožňuje jeho samočinné přizpůsobení se např. libovolnému monitoru.

I když by se takto dalo popisovat prakticky nekonečné množství nejrůznějších přístrojů, není to s ohledem na rozsah ani možné, ani (snad) potřebné. Právě do Vídně je totiž možné si zajet i na jeden den, neboť cesta od hranic na místo konání veletrhu trvá něco přes jednu hodinu. Na dokreslení atmosféry veletrhu si však neodpustím několik poznámek. To, že nejste na veletrhu třeba v Brně, poznáte ihned podle toho, že asi 3 sekundy po tom, co se zastavíte u jakéhokoli exponátu, ozve se vám za



"Dálkové" kopírovací přístroje Infotec 6113, Canon FAX 270 dodává rakouská pošta na měsíční splátky přes 1000 S po dobu 24 měsíců. Přístroje instaluje a po celou dobu záruky (24 měsíců) i "opečovává"



zády zdvořilý dotaz (stereotypní) "mohu vám s něčím pomoci, přejete si nějaké další informace?" a milý mladík, ovládající nejméně tři světové řeči vás začne přesvědčovat, že výrobky jejich firmy jsou právě to, co potřebujete a o co byste se měl zajímat. Je to někdy až nepříjemné, neboť jste-li průměrný návštěvník, jemuž záleží na tom získat co největší přehled, ztrávíte spoustu času vysvětlováním, že nic zvláštního vás nepřinutilo zastavit se právě u té či oné firmy a že o nic z jejich výrobního programu nemáte speciální zájem. Naopak ovšem, máte-li o něco zájem, poskytnou vám tito zástupci firmy perfektní a vyčerpávající informace jak o technické, tak o ekonomické stránce výrobku. dokonalou dokumentaci (i s komentářem) a je-li to možné, přístroj předvedou - to vše jsem si ověřil osobně a přitom isem nepředstíral, že bych chtěl něco zakoupit - jen jsem se nezávazně ptal.

Zajímavá je např. i skutečnost, že se nepotvrdily prognózy ohledně nezaměstnanosti při zavádění výpočetní techniky, neboť i když se v Rakousku v letech 1986 až 1988 ušetřilo u velkých podniků díky výpočetní technice zhruba 22 000 pracovních míst, malé a střední podniky inzerovaly kolem 33 000 nabídek pracovních míst; přitom se však velmi značně zvýšila produktivita práce, exportní schopnost i sociální listoty

Že přitom poptávka po pracovních silách v oblasti elektroniky trvá, je možné zjistit z inzerátů např. v časopisu Computerwelt — samostatní programátoři, aplikační inženýři, obchodní manažeři, konstruktéři inženýři pro inovaci videotechniky atd. jsou stále žádáni a potřební.

Na závěr bych se chtěl vrátit k titulku tohoto úvodníku. Jde o citát z článku Dr. Rudolfa Harramacha, který pod názvem Umění komunikace vyšel v květnu v rakouských novinách (jímž tento manažér-poradce reagoval na některé chybné kroky rakouských i jiných výrobců jak v technické, tak i ekonomické oblasti), a který platí samozřejmě nejen v technice — budeme si i u nás umět v elektronice (a nejen v ní) stanovit jasný cíl a určit k němu správnou cestu? Chci věřit, že ano.

L. K.

P. S. Vydáte-li se do Vídně za nákupem součástek, můžeme podle vlastních zkušeností doporučit sympatický obchůdek na Gablenzgasse 3, firma N. G. Elektronic. Gablenzgasse je asi čtvrtá nebo pátá ulice vlevo z třídy Näubau Gürtel, která vede od západního nádraží (West Bahnhof) kolmo na Mariahilfer Strasse (nejznámější "nákupní" ulice Vídně).

# HLEDAČE KOVOVÝCH PŘEDMĚTŮ & JINÁ ZAJÍMAVÁ ZAPOJENÍ

#### V. Sekal a kol.

#### Detektory kovů

Obor detekce kovů je trvale předmětem zájmu potencionálních hledačů. Možnosti využití detektorů kovů v nejrůznějších oblastech, od archeologie přes průmyslové aplikace až po domácnosti a amatérské využití, jsou velmi široké. Na trzích, na nichž vyvolává zájem spotřebitelů odpovídající nabídku, se prodává řada typů detektorů, od nenáročných levných přístrojů až po výrobky využívající nejnovějších technologických možností – ty je však nutné také dobře zaplatit. Vzniká tak prostor pro různé amatérské konstrukce, publikované v časopisech. Stálý zájem o přístroje tohoto typu se projevuje i u nás. Případné zájemce je však třeba upozornit na některá úskalí v této oblasti.

V první řadě je nutné si uvědomit, že jde o složitou problematiku. To se zvlášť projevuje při posuzování a porovnávání výkonnosti a citlivosti různých přístrojů. Některé firemní i časopisecké údaje jsou z pochopitelných důvodů někdy více, někdy méně nadsazeny. Objektivně je však třeba uznat, že dosah detektoru kovů se velmi obtižně objektivně posuzuje, s ohledem na závislost indikace nejen na vzdálenosti kovového předmětu, jeho velikosti a zkušenosti operátora, ale také na řadě dalších činitelů, jako je materiál, tvar a orientace předmětu, vlastnosti prostředí, ve kterém je předmět uložen (mineralizace půdy), někdy i na době, po kterou je předmět v zemi uložen.

Romantické představy o snadných nálezech hrnců plných zlaťáků, které je možné s takovým zařízením najít, vezmu po prvních zkušenostech s přístrojem brzy za své. Teprve pak totiž takový zájemce zjistí, jak je nejen civilizovaná krajina, avšak i zdánlivá divočina doslova zamořena různými kovovými odpadky. A čím je přístroj citlivější, tím jich najdeme víc. Samozřejmě existují přístroje, které umožňují rozlišit železný předmět od neželezného, ale ani to problém neřeší. Hliníkových fólií je v zemi také dost. A při tom v každém místě, na němž přístroj něco indikuje, je třeba se přesvědčit o tom, co indikaci způsobilo. Vyžaduje to prostě slušnou dávku fandovství, aby člověk vydržel celý den v terénu s přístrojem, který je stále těžší a těžší. a radoval se z nálezu dejme tomu neplatného padesátihaléře nebo rezavého hřebíku. Celý problém je v tom, vědět kde hledat, nebo mít štěstí, ale to už je docela jiná otázka. Zanedbatelná nejsou při používání detektoru kovů ani hlediska ekologická a etická.

Z technického hlediska je možné dosud používané detektory rozdělit do pěti skupin: detektory BFO se záznějovým oscilátorem (Beat Frequency Oscillator), detektory IB s vyváženou indukčností (Induction Balance), detektory PI na základě impulsně indukční metody (Pulse Induction) a detektory založené na metodě rozladění a na principu protonového magnetometru. Uváděné zkratky nejsou samoúčelné, skutečně se v literatuře a v prospektech používají a je dobře znát jejich význam. Kromě uvedených zkratek se používá v souvislosti s hledačí kovů také označení VLF (Very Low Frequency – velmi nízký kmitočet) a další.

Metody vyžívající BFO a rozladění pracují na základě malých změn indukčnosti hledací cívky při blizkosti kovového předmětu, vyznačují se malou citlivostí. Detektory s impulsně indukční metodou mohou být velmi citlivé, jsou však technicky složité, jejich amatérská realizace je velmi obtížná. Protonový magnetometr může detekovat jen že-

lezné předměty, protože indikuje malé anomálie zemského magnetického pole.

Až dosud byla většína konstrukcí detektorů kovů pro amatérské použití založena na principu BFO. Byly zaznamenány různé pokusy o jejich zdokonalení a ty jsou také dále popsány. Skutečnost, že neumožňují rozlišit materiál detekovaných předmětů a některé další nevýhody vedly k tomu, že většina detektorů, používaných pro seriózní aplikace, používá metodu IB.

Dále bude uveden popis řady detektorů kovů, od nejjednodušších typů BFO, přes několik provedení atypických, až po složitější typy IB, které poskytují řadu zajímavých možností, a jsou na dobré technické úrovni. Doprovodné texty k jednotlivým přístrojům byly zpracovány podle podkladů autorů tak, aby podle nich bylo možné přístroje realizovat. Pozorný čtenář si jistě všimne, že některá tvrzení různých autorů si vzájemně odporují. To je třeba přičíst složitosti problematiky, o které jsme se již zmínili, a považovat to za pohledy z různých úhlů – a také za podněty pro vlastní experimenování, jemuž se vlastně nikdy nelze zcela vyhnout.

#### Detektor kovů s FET

Popisovaný přístroj charakterizuje značná citlivost a malé pořizovací náklady, používá záznějových princip (BFO).

Oba ościlátory, jejichž zázněj se vyhodnocuje, využívají tranzistorů, řízených elektrickým polem a pracují na 650 kHz. Tento kmitočet byl zvolen na základě zkoušek, které ukázaly, že až do přibližně 350 kHz je citlivost a hloubka dosahu pro poměrně malé předměty dosti malá a konstantní. Při kmitočtu oscilátoru 400 kHz se prudce zlepšuje funkce a tento jev pokračuje až do kmitočtu 1,3 MHz, při němž pak ztrácí účinnost stíně-

ní, zhovotené z opletení souosého (koaxiálního) kabelu. Na kmitočtu 650 kHz se dosahuje výborné citlivosti a snadného konečného nastavení. Tak, jak je přístroj navržen, umožňuje detekovat pěticent ve vzduchu na vzdálenost 152 mm, nebo v zemi na vzdálenost 76 mm popř. větší.

Předpokládejme, že oscilátory přístroje jsou naladěny na kmitočet 650,454 a 650,400 kHz. Po zpracování signálů obou kmitočtů ve směšovači s tranzistorem FET získáme na výstupu signály o kmitočtech 650,454 kHz, 650,400 kHz, 1300,854 kHz a 54 Hz, tedy o původních, součtovém a rozdílovém kmitočtu. Protože dále používáme jen slyšitelný signál 54 Hz, je před koncovým zesilovačem použíta dolní propust, která odstraní signály všech vyšších kmitočtů.

#### Popis zapojení

Schéma zapojení přístroje je na obr. 1. Když se L<sub>1</sub>, cívka, která tvoří hledací sondu, dostane do blízkosti kovového předmětu (na povrchu země nebo pod zemí), její indukčnost se mírně změní. Čím je předmět vzdálenější nebo hlouběji pod zemí, tím je změna menší. Předmět způsobí změnu kmitočtu oscilátoru řekněme 650,440 kHz. Nyní je tedy rozdíl obou kmitočtů 40 Hz. To znamená, že slyšitelný tón se změnil z 54 na 40 Hz—tím je indikováno přiblížení L<sub>1</sub> ke kovovému předmětu.

Detektor kovů se skládá ze dvou Colpittsových oscilátorů (obvody kolem T<sub>1</sub> a T<sub>2</sub>), které jsou oba naladěny pro práci v rozsahu 650 kHz. Oscilátory jsou v podstatě totožné s tím rozdílem, že jeden z nich používá jako indukčnost hledací cívku L<sub>1</sub>, druhý pak malou laditelnou cívku L<sub>2</sub>.

Při uvádění do provozu se  $C_1$  nastaví do střední polohy a  $L_2$  na nulový zázněj obou oscilátorů (stejný kmitočet). Změnou  $C_1$  se pak oscilátor s  $T_1$  rozladí z nulového zázněje, aby se dosáhlo slyšitelného záznějového kmitočtu. Všimněte si, že rezistor  $R_4$  v obvodu  $T_2$  má větší odpor než  $R_3$  v obvodu  $T_1$ . Protože u obvodu s  $T_1$  je oscilační výstupní napětí malé, je třeba oscilátor s  $T_2$  zatlumit, aby se výstupní napětí obou oscilátorů vzájemně příliš nelišila. To je důvod, proč má  $R_4$  větší odpor.

Základem funkce Colpittsova oscilátoru je dvojice kondenzátorů, které tvoří napěťový dělič, zapojený paralelně k cívce (C<sub>2</sub> a C<sub>3</sub> pro obvod s T<sub>1</sub>, C<sub>6</sub> a C<sub>7</sub> pro obvod s T<sub>2</sub>). Tyto kondenzátory a cívka v každém obvodu určují kmitočet oscilátorů. V obvodech oscilátorů je elektroda S tranzistorů řízených polem spojena se signálovou zemí. S ohledem na funkci děleného kondenzátoru je signál na dolním konci cívky posunut vzhledem k signálu na elektrodě D o 180°. Protože tranzistor invertuje signál o 180° a rezonanční obvod o dalších 180°, do řídicí elektrody FET se přivádí signál ve fázi, a tak se udržují oscilace.

Zvětšení kapacity kondenzátoru  $C_3$  nebo  $C_7$  zmenšuje velikost zpětné vazby do řídicí elektrody. Když se použije kondenzátor s příliš velkou kapacitou, nebude zpětná vazba stačit pro udržení oscilací. Kondenzátory s kapacitou 300 pF zvětší zpětnou vazbu a bezpečně zaručí oscilace, ale sinusovka nebude mít tak "čistý" průběh, jako např. s kondenzátorem 560 pF. Pro nejlepší celkovou funkci by poměr  $C_2$  k  $C_3$  (nebo  $C_6$  k  $C_7$ ) měl být asi 1:3. Ačkoli jsou  $T_1$  a  $T_2$  zdánlivě zapojeny jako emitorové sledovače s jednotkovým zesílením, na odporech rezistorů  $R_3$  a  $R_4$  příliš nezáleží, protože elektrody S jsou na "zpětnovazební zemi".

Směšovač s T<sub>3</sub> vytváří zázněje vysokofrekvenčních signálů a zajišťuje určité předzesílení záznějů pro zesilovač s IO<sub>1</sub>. Rezistor R<sub>8</sub> a kondenzátor C<sub>12</sub> tvoří dolní propust, která zabraňuje průniku vf signálů na vstup IO.

#### Konstrukce

Zhotovení detektoru kovů není nijak zvlášť obtížné. Pozornost je třeba věnovat zhotovení hledací cívky, která v tomto provedení vyžaduje poměrně jednoduché opracování dřeva. Protože vytvrzení použitého lepidla vyžaduje podle druhu několik hodin, je nejlépe začít při konstrukci přístroje zhotovením hledací cívky.

Z překližky o tloušťce 6 mm je třeba vyříznout dva kruhové kotouče o průměru 146 mm a jeden o průměru 127 mm. V označených středech vyvrtejte díry o ∅ 1,5 mm, které použijete pro vystředění v průběhu lepení. Kotouče slepte podle obr. 2.

Než lepidlo zatvrdne, navrhněte a osaďte desku s plošnými spoji. Pro IO<sub>1</sub> a podle možnosti i pro T<sub>1</sub> a T<sub>2</sub> použijte objímky. Zatím nezapojujte L<sub>1</sub> ani C<sub>2</sub>, ani nemontujte osazenou desku do nějaké skříňky. Jako C<sub>1</sub> byl použit otočný kondenzátor o standardní kapacitě 365 pF – jeho kapacita však byla zmenšena na 50 pF opatrným odstraněním všech rotorových desek kromě jediné.

Po vytvrzení lepidla se do sestavy kostry cívky L<sub>1</sub> vyřízne odlehčovací otvor ve tvaru D (viz obr. 2) a vyvrtají se díry pro vývody cívky a pájecí body. Díra pro nosnou trubku se vyvrtá pod úhlem asi 18°.

Hledací cívka, která má 20 závitů, se navine do drážky po obvodu tělesa cívky. Cívka však musí být stíněna, aby se zmenšil



Obr. 2. Cívka k detektoru kovů



vliv změn kapacity vinutí při přiblížení cívky k zemi. Jako stínění se použije měděné pletivo, opatrně stažené z kusu souosého kabelu. Potřebná délka je asi 61 cm. Toto opletení se upraví do plochého tvaru a uloží se na dno drážky tak, aby vznikl jeden závit, přerušený mezerou (délky asi 10 mm) mezi konci opletení

Do blízkosti díry pro nosnou trubku se zašroubují dva malé mosazné šrouby, ke kterým budou připájeny vývody. Na jeden konec stínění připájíte zapojovací drát, který protáhněte jednou z děr pro vývody a připájete jej k hlavě šroubu. Stínění se oddělí jednou vrstvou plastikové pásky.

Pro vlastní vinutí hledaci cívky se použije lakovaný drát o průměru 0,3 mm. Jeden konec cívky se vyvede uvedenou dírou a připojí k témuž šroubu jako stínění. Pak se do drážky navine 20 závitů. Druhý konec cívky se vyvede druhou dírou a připájí ke druhému šroubu. Závity cívky se pokryjí vrstvou tmelu nebo lepidla, aby se nemohly posouvat, čímž se zajistí stabilita nastavení L<sub>1</sub>.

Po vytvrzení tmelu se navine další vrstva plastikové pásky a do drážky se uloží další vrstva stínění, opět s mezerou 10 mm mezi konci, připojená kouskem drátu ke šroubu, ke kterému je již připojena vnitřní stínicí vrstva a jeden konec cívky. Po dokončení této části zkontrolujte, jestli jsou k jednomu šroubu připojeny tři vodiče a ke druhému jen jeden. Pro tepelnou izolaci se pak cívka ovine přes vnější stínění izolační pěnovou páskou, používanou pro těsnění oken.

Do díry pro vodicí tyč se zalepí epoxidovým lepidlem hliníková nosná trubka. Dírou o průměru odpovídajícímu souosému kabelu použitému k propojení cívky s krabičkou elektroniky se kabel připojený k cívce zavede dovnitř trubky, ze které vystupuje pak do krabičky. Použité konstrukční řešení musí zajistit potřebnou mechanickou stabilitu.

#### Uvedení do provozu

Pro správnou funkci přístroje je důležité, aby oba oscilátory byly nastaveny na stejný kmitočet. Pokud je to možné, je nejlépe každý oscilátor nastavit zvlášť čítačem. Pokud není čítač k dispozici, pak je možné použít standardní přijímač pro střední vlny, naladěný přibližně na 650 kHz, a podle něj nastavit postupně oba oscilátory. Nejprve se naladí hledací oscilátor s  $T_1$  a pak referenční oscilátor s  $T_2$  na stejný kmitočet naladěním cívky  $L_2$ . Když je oscilátor a rozhlasový přijímač naladění na stejný kmitočet, "slyšíte" pásmo ticha, způsobené přítomností nemodulované nosné.

Před použitím detektoru kovů vždy po zapnutí napájení několik minut počkejte, aby se parametry přístroje stabilizovaly. Nastavte C<sub>1</sub> na nulový zázněj a pak jej poněkud rozlaďte, aby byl z reproduktoru nebo sluchátek slyšet tón o nízkém kmitočtu. Při pohybu hledací cívkou nad kovovým předmětem by se měl tento kmitočet snižovat nebo zvyšovat, podle toho, na kterou stranu byl přístroj od nulového zázněje rozladěn.

Nakonec ještě praktickou poznámku: udržujte hlasitost signálu z reproduktoru co nejmenší pro prodloužení doby života baterií.

Závěrem ještě jednu poznámku. Při používání popsaného detektoru kovů si brzy uvědomíte, jak usnadňuje lokalizaci skrytých kovových předmětů. Vždy si však uvědomujte, že čím je předmět menší a čím je hlouběji, tím bude jeho lokalizace obtížnější. Při práci v hlučném prostředí používejte pro dosažení nejlepších výsledků sluchátka.

Popular Electronics leden 1980

#### Detektor kovů !

Popisovaný detektor kovů je založen na záznějovém principu a ke zlepšení citlivosti se využívá vyšší harmonické kmitočtu hledacího oscilátoru. Na první pohled se zdá, že použít tento princip pro praktickou konstrukci detektoru kovů je jednoduchá záležitost. K dosažení uspokojivých výsledků je však třeba překonat řadu problémů. Prvním takovým problémem je hledací cívka. Protože se vyhodnocují kmitočtové změny, přístroj reaguje jak na změny indukčnosti, způsobené blízkostí kovu (ale i teplotními vlivy), tak na změny kapacity. Vliv změn kapacity je možné minimalizovat použitím elektrostatického stínění. Není se při tom třeba obávat. že se zmenší citlivost. Vliv teplotních změn. na příklad při přechodu cívky ze slunce do stínu, je možné omezit vhodnou tepelnou izolací. Pro ověření vlivu velikosti cívky byla provedena řada zkoušek. Výsledky při detekování malé mince pro cívky o průměru 15, 20 a 25 cm jsou na obr. 3. Není je možné brát



Obr. 3. Detekce mincí (míry v palcích)

striktně, protože měření bylo velmi pracné, ale ukazují, co je možné očekávat. Je třeba si uvědomit, že

- změna kmitočtu je velmi malá,
- citlivost ve středu obou menších cívek je přibližně stejná, cívka o Ø 25 cm má již ve středu menší citlivost,
- čím větší je cívka, tím větší je citlivá oblast. To však nemusí být vždy výhodné, protože je třeba lokalizovat polohu hledaného předmětu, a menší cívka dává přesnější lokalizaci. Autor konstrukce zvolil cívku o průměru 15 cm.

Velikost, přesnějí řečeno nedostatečná velikost kmitočtové změny je jedním z hlavních problémů při konstrukci záznějového detektoru kovů. Jedním z velmi praktických řešení je nastavit kmitočty oscilátorů tak, aby kmitočtový rozdíl byl velmi malý, menší než 10 Hz. Při tomto nastavení již lze rozlišit změnu o jeden nebo dva Hz. Kdyby byl záznějový kmitočet nastaven např. na 250 Hz, stejnou změnu o 1 až 2 Hz by zaregistroval jen zkušený operátor. Protože však normální reproduktor nebo sluchátka nereprodukují tak nízké kmitočty, je třeba sinuso-



vý průběh převést na impulsy, které je pak možné reprodukovat.

Citlivost záznějového detektoru je možné dále zvětšit v zapojení podle blokového schématu na obr. 4. Hledací oscilátor je nastaven na kmitočet 125 kHz a jeho výstupní signál je upraven na pravoúhlý průběh, bohatý na podíl vyšších harmonických. Referenční oscilátor pak pracuje na kmitočtu 625 kHz, tj. na páté harmonické kmitočtu hledacího oscilátoru. Tak je každá změna kmitočtu hledacího oscilátoru znásobena pěti. Takovou změnu je možné sluchem snadno rozlišit. Bylo by možné použít i vyšší harmonické, je však třeba si uvědomit, že signál pravoúhlého průběhu obsahuje pouze liché harmonické, jejichž amplituda se rovná amplitudě základního průběhu, dělené pořadovým číslem harmonické.

#### Popis zapojení

Schéma detektoru kovů, založeného na výše uvedených úvahách, je na obr. 5. Zapojení oscilátorů s tranzistory v diferenčním zapojení bylo zvoleno s ohlédem na snadný návrh, potřebu dvou vývodů laděného obvodu a dobrou izolaci výstupu od laděného obvodu, takže kmitočeť oscilátoru není prakticky ovlivňován zátěží nebo signály na výstupu. Toto poslední hledisko je v této aplikaci zvláště důležité, protože záleží na tom, aby se vzájemně "strhávaly" kmitočty oscilátorů, když je kmitočtový rozdíl, nebo v tomto případě rozdíl harmonických kmitočtů, velmi malý. Hledací oscilátor používá trazistory  $T_1$  a  $T_2$  společně s  $L_1$ ,  $C_1$ ,  $C_2$  a  $C_3$ , které tvoří laděný obvod. Pravděpodobně bude třeba kapacitu kondenzátoru  $C_1$  vybrat, protože elektrostatické stínění a souosý kabel zavádějí do obvodu nedefinovanou paralelní kapacitu. Tato kapacita závisí na fyzické konstrukci cívky a použitých materiálech a je dosti proměnná. Hrubě se přístroj ladí kondenzátorem C2, C3 se používá pro jemné nastavení. Výstupní signál hledacího oscilátoru se odebírá z kolektoru T2 a vede do směšovače s T3. Záznějový oscilátor používá tranzistory  $T_5$  a  $T_6$ , jeho laděný obvod, rezonující na 625 kHz, tvoří  $L_2$  a  $C_8$ . Buzení pro bázi směšovače T3 se odebírá z kolektoru T<sub>4</sub>. Signál rozdílového kmitočtu se odebírá dolní propustí R<sub>9</sub> a C<sub>9</sub>, je zesilován operačním zesilovačem IO<sub>1</sub>, derivován a přiveden do báze tranzistoru T<sub>6</sub>, který budí sluchátka

Obr. 4. Blokové schéma zapojení

nebo reproduktor. Hlasitost je možné řídit proměnným rezistorem, zapojeným do série s výstupem.

#### Konstrukce

Konstrukce elektronické části není kritická. Deska se součástkami musí být umístěna ve stíněné krabičce, aby se naladění neovlivňovalo kapacitou ruky.

Velmi důležitá je konstrukce hledací cívky. Cívka musí být dostatečně robustní, aby odolala hrubému zacházení, a přiměřeně chráněná proti vlivům teploty a vlhkosti. Cívka má 45 závitů drátu o Ø 0,46 mm, které se navinou do kruhového tvaru o průměru 16 cm, vymezeného na nosném mezikruží hřebíčky. Toto nosné mezikruží je vyříznuto z překližky tloušťky 10 mm, vnitřní díra má průměr 150 mm, šířka mezikruží je 10 mm. Na vnějším obvodu je ponechán výstupek k upevnění desky na nosnou tyč. Navinutá cívka se neiprve zajistí ve čtvřech místech. hřebíčky se odstraní, a pak se celá cívka upevní ovinutím páskou na spodní straně mezikruží. Pak se cívka ovine vrstvou elektrostatického stínění (alobal) (s přerušením asi 10 mm), které se zajistí ovinutím cínovaným drátem, který bude použit jako vývod stínění. Následuje další vrstva pásky, vrstva pěnového polyuretanu a další vrstva pásky Pak se upevní cívka na nosnou tyč a opatří se nátěrem (bílou voděvzdornou barvou).

#### Nastavení

Prvním krokem je nastavit referenční oscilátor na správný kmitočet.

- Zkratujte hledací cívku (vyřadí se hledací oscilátor z činnosti).
- Zapněte přístroj a nastavte L2 jádrem tak, aby kmitočet referenčního oscilátoru byl 625 kHz. Pokud není k dispozici čítač, použijte přijímač na rozsahu středních-Stupnici přijímače nastavte na 625 kHz (480 m). Když je přijímač vybaven anténní zdířkou, umístěte anténu v blízkosti oscilátoru. Přístroj se musí takto nastavovat s deskou, elektroniky umístěnou v příslušné stíněné skříňce se sejmutým víčkem. Nalaďte obvod na maximální signál, jde však o nemodulovanou nosnou, proto je slyšet na přijímači ien charakteristický šum. Přítomnost signálu nosné lze zkontrolovat zkratováním cívky (šum zmizí). Dalším krokem je nastavení "hledacího" oscilátoru na správný kmitočet.



Odstraňte zkrat hledací cívky.

Nastavte ovládací prvky hrubého a jemného nastavení do střední polohy.

Zapojte jako C<sub>1</sub> kondenzátor 470 pF.

 Nastavte C<sub>2</sub> a zkontrolujte, je-li možné nastavit záznějový tón. Pokud je to třeba, je možné zvětšit C<sub>2</sub> až o 100 pF.

 Když je slyšet záznějový tón, zkontrolujte kmitočet hledacího oscilátoru následujícím způsobem:

a) zkratujte cívku referenčního osciláto-

 b) použijte přijímač v blízkosti hledací cívky a hledejte harmonické kmitočty hledacího oscilátoru, které by měly odpovídat kmitočtům, uvedeným v tabulce. Je velmi pravděpodobné, že budete moci identifikovat jen liché harmonické kmitočty.

| Harmonická | Kmitočet                        | Vlnová délka                  |
|------------|---------------------------------|-------------------------------|
| 5 6 7      | 625 kHz<br>750 kHz              | 480 m<br>400 m                |
| 8<br>9     | 875 kHz<br>1000 kHz<br>1125 kHz | 342,85 m<br>300 m<br>266.67 m |
| 10<br>11   | 1250 kHz<br>1375 kHz            | 240 m<br>218,18 m             |
| 12<br>13   | 1500 kHz<br>1625 kHz            | 200 m<br>184,615 m            |

Pokud jsou tyto kmitočty příliš blízko u sebe, hledací oscilátor pravděpodobně kmitá na 89,3 kHz. Zmenšete kapacitu kondenzátoru  $C_1$  a opakujte postup kontroly. Pokud je to možné, zvolte takovou kapacitu  $C_1$ , při níž se dosáhne správného kmitočtu při nastavení  $C_2$  do střední polohy. To pak dovolí vyrovnat případný drift, ke kterému může dlouhodobě dojít.

Wireless World duben 1977

#### Detektor kovů II

Fento přístroj pracuje na záznějovém principu na kmitočtech kolem 300 kHz. Jeho zapojení vychází z podkladů firmy RCA a je na obr. 6. Jak je vidět ze schématu, využívá se klasického principu.

#### Popis zapojení

Tranzistor T<sub>1</sub> tvoří referenční, pevný oscilátor. Je to bipolární tranzistor n-p-n, který osciluje díky zpětné vazbě mezi emitorem a kolektorem (kondenzátor C<sub>4</sub> s kapacitou 1 nF). V zapojení byly použity tři tranzistory n-p-n, napájené z baterie 9 V. Kostra je spojena s kladným pólem zdroje, a sem se také připojují všechna stínění.

T<sub>1</sub> je zapojen s laděnou cívkou L<sub>1</sub> v kolektorovém obvodu. K ní je paralelně zapojen kondenzátor C<sub>2</sub> o kapacitě 1,8 nF a proměnný kondenzátor 20 pF, C<sub>11</sub>. Jeho maximální kapacita však může být i větší, například 50

nebo 100 pF.



Indukčnost L<sub>1</sub> je 50 až 140 μH, změny se

dosahuje feritovým jádrem.

Emitor je polarizován rezistorem R<sub>3</sub>, připojeným k záporné sběrnici, v paralelní kombinaci s C<sub>3</sub>. Při použití uvedených odporů a kapacit je jmenovitá indukčnost L<sub>1</sub> asi 106 µH. Báze T<sub>1</sub> je polarizována rezistory R<sub>1</sub> a R<sub>2</sub> a blokována na záporný pól napájení kondenzátorem C<sub>1</sub> o kapacité 10 nF. Signál generovaný tímto oscilátorem se přivádí kondenzátorem C<sub>5</sub> na detekční diody D<sub>1</sub>, D<sub>2</sub> a odtud na tranzistor T<sub>3</sub>, který pracuje jako nízkofrekvenční zesilovač.

Rozlaďovaný oscilátor s tranzistorem  $T_2$  a cívkou  $L_2$ , která se používá jako hledací sonda, je zapojen shodně jako referenční oscilátor, ovšem provedení cívky  $L_2$  se podstatně liší. Při uvedených součástkách je její imenovitá indukčnost 200  $\mu$ H.

Signál tohoto oscilátoru je přiváděn na detektor kondenzátorem C<sub>6</sub> s kapacitou 3,9 nF. Za detektorem následuje nízkofrekvenční zesilovač s tranzistorem T<sub>3</sub>, jehož výstupním signálem se budí sluchátka.

#### Hledací cívka

V originálu byla popsána dvě provedení cívky – základní varianta a zjednodušená varianta. V základním provedení má cívka 12 závitů lakovaného drátu o průměru 0,5 mm. Protože cívka má kruhový tvar o průměru 300 mm, průměr každého závitu bude také 300 mm a bude tedy potřeba použít asi 12 metrů tohoto drátu. Cívka je uložena podle původních podkladů v měděné trubce o průměru 6,5 až 7 mm, stočené do kruhu o průměru 300 mm, jejíž konce jsou od sebe vzdáleny asi o 2 cm. Jeden konec drátu se postupně zasunuje do této trubky, po dokončení jednoho závitu se postupně zasouvá dále pro další závity.

Zjednodušená varianta vychází z toho, že není nutné použít pro stínění měděnou trubku. Podstatné je, aby byla použita stíněná cívka, kterou je možné naladit do pásma 300 kHz, o dostatečně velké ploše. Je možné použít i cívku pravoúhlého tvaru. Může

být například použita čtvercová cívka o délce strany 250 mm, jejíž kostra může být slepena z kartonu nebo dřeva. Po navinutí 12 metrů lakovaného drátu je ovšem třeba ovinout tuto sestavu hliníkovou fólií, přičemž toto stínění musí být v délce asi dvou centimetrů přerušeno, aby nevznikl závit nakrátko.

Konstrukční provedení není kritické a může být podobné jako u jiných přístrojů, pracujících na stejném principu. Obdobné je i uvedení přístroje do provozu a jeho používání.

HP č. 1441

#### Detektor kovů III

Popisovaný detektor kovů pracuje na záznějovém principu, funkci jeho obvodů je možné popsat podle schématu zapojení na obr. 7.

Funkcí rozlaďovaného oscilátoru je generovat signál o kmitočtu 1 MHz. Kmitočet tohoto signálu se má měnit, když se hledací cívka L<sub>1</sub>, zapojená do obvodu tohoto oscilátoru, přiblíží ke kovovému předmětu.

Základní charakteristikou tohoto rozlaďovaného oscilátoru by měla být kmitočtová stabilita s ohledem na změny teploty a jejich vliv na elektronické součástky, a změny způsobované vnějšími vlivy, vlivy prostředí a klimatu. Proto se v tomto obvodu používá FET T1, řízený varikapem D2, který je ovládán potenciometrem P1. Proto také musí být všechny kondenzátory v oscilačním obvodu velmi kvalitní, slídové nebo mylarové. Zenerova dioda D1 stabilizuje napájecí napětí rozlaďovaného oscilátoru. Kmitočet lze nastavovat kapacitním trimrem C2.

Varikap D<sub>2</sub> dovoluje jemně nastavit kmitočet oscilátoru a tím výšku (kmitočet) zázně-

jového tónu.

Výstup rozlaďovaného oscilátoru je připojen k řídicí elektrodě druhého FET, T<sub>2</sub>, který pracuje jako směšovač signálů rozlaďovaného a referenčního oscilátoru. Referenční oscilátor je řízen krystalem a používá se v něm tranzistor T<sub>3</sub>.

Referenční oscilátor ve schématu využívá běžného univerzálního tranzistoru T<sub>3</sub> a jeho kmitočet je stabilizován krystalem 1 MHz, zapojeným mezi bázi T<sub>3</sub> a zem. Pro správnou činnost není rozhodující, aby měl krystal jmenovitý kmitočet přesně 1 MHz.

#### Směšovač

Signál generovaný referenčním oscilátorem se odebírá z emitoru  $T_3$  a přivádí se na řídicí elektrodu směšovacího tranzistoru  $T_2$ 



Obr. 6. Detektor kovů II.

(FET). Záznějový kmitočet se odebírá z jeho výstupu a po průchodu dolní propustí C<sub>10</sub>, C<sub>11</sub> a R<sub>8</sub> se přivádí na vstup nízkofrekvenčního zesilovače.

#### Obvod zesilovače

Rozdílový signál, vznikající jako rozdíl kmitočtů obou oscilátorů, se přivádí na operační zesilovač IO1, který stačí vybudit běžná sluchátka středního výkonu.

Zesílení se reguluje potenciometrem P2, který dovoluje plynulou a účinnou změnu hlasitosti nízkofrekvenčního tónu, slyšitelného po přiblížení detektoru ke kovovému předmětu.

Výstup obvodu zesilovače je navržen pro monofonní sluchátka o impedanci 30 až 100 Ω.

#### Hledací sonda

Hledací sondu detektoru kovů tvoří cívka L<sub>1</sub>, navinutá na izolačním materiálu o průměru 90 až 100 mm. Na toto těleso cívky se navine 20 závitů měděného lakovaného drátu o průměru 0,3 mm, pokud je průměr přesně 100 mm, 21 závitů při průměru 95 mm nebo 22 závitů při průměru 90 mm. Pro připojení ke skříňce s elektrickými obvody se používá souosý kabel.

#### Konstrukce

Konstrukční provedení není kritické. Může být použita např. montáž součástek na desku s plošnými spoji. Odběr proudu ze zdroje je 20 až 30 mA. Nastavení je podobné již popsaným postupům. Totéž platí i pro používání přístroje.

Revista española de electrónica srpen-září 1986

#### Detektor kovů IV

Pro amatérskou stavbu byl zvolen jednoduchý princip BFO, který umožnil dosáhnout tří podstatných výhod: je třeba vinout jen jednu cívku, zhotovení přístroje s třemi integ-rovanými obvody CMOS je snadné, obsluha je velmi jednoduchá.

#### Popis zapojení

Zapojení hledače je na obr. 8. Čtyři dvouvstupová hradla NAND (obvody IO<sub>1</sub> a IO<sub>2</sub>, 4011) jsou použita pro sestavení oscilátorů. Hledací cívka tvoří indukčnost jednoho z oscilátorů, druhý oscilátor slouží jako referenční a používá cívku běžného mf filtru 455 kHz. Obvody oscilátorů mají velkou jakost, protože jsou vstupy CMOS obvodů zatěžovány jen velmi malou kapacitou.

Totožnė zapojení obou oscilátorů je výhodné v tom, že změny napájecího napěti

a teploty působí na oba oscilátory stejně, a tedy oba "driftují" ve stejném smyslu. Kmitočet oscilátoru s hledací cívkou je s uvedenými součástkami v rozmezí 80 až 120 kHz. Referenční oscilátor je naladěn na čtvřnásobek kmitočtu oscilátoru s hledací cívkou – užitečné je přitom použít měřič kmitočtu. Při změně konstrukce cívky může být užitečné naladit referenční oscilátor na šéstinásobek kmitočtu oscilátoru s hledací

Oba výstupy oscilátorů jsou přivedeny na klopný obvod D (obvod 4013). Hledací cívka dodává takt (hodinový vstup, vývod 3), referenční oscilátor je připojen na vstup D. Na výstupu Q (vývod 1) je signál podle obr. 9. Za



- 1 výstup z referenčního oscilátoru
- 2 výstup oscilátoru s hledací cívkou
- 3 výstup na IO3, vývod 1

výstup na sluchátka

Obr. 9. Diagram signálu

derivačním členem z  $C_{12}$  a  $R_5$  dostaneme signál, který je v piezoelektrickém sluchátku nebo sluchátku s velkou impedancí slyšitelný jako prskání.

Potenciometrem P<sub>1</sub> se nastaví zázněj asi 20 až 30 Hz. Při těchto nízkých kmitočtech se nejlépe vnímají i nejmenší kolísání kmitočtu. Když je indukčnost hledací cívky olvivněna kovem, zjistí se to okamžitě podle změny kmitočtu. Kmitočet se nastavuje tak, aby se tón při přiblížení k železu zvýšil.

#### Konstrukce

Největší potíží při stavbě tohoto detektoru kovů bude zhotovení hledací cívky. K tomu může být užitečné uvést několik pokynů. Zhotovení hledací cívky je v podstatě me-chanickým problémem. Použije se asi 30 m měděného lakovaného drátu (o průměru asi 0,5 mm) a zhotoví se kruhová cívka o vnitřním průměru 18 cm. Nejlépe je vyříznout z pěnového polystyrenu jádro o tomto průměru. Na ně se navine 50 závitů. Oba vývody cívky se vyvedou v těsné blízkosti (zkroucené)

Pak se kruhová cívka ovine dvěma vrstvami plastikové izolační pásky. Pak se navine jedna vrstva hliníkové fólie. Ta působí jako stínění proti kapacitě země, aniž by negativovlivňovala citlivost detektoru kovů. Vhodná k tomuto účelu je fólie Alobal, nastříhaná na pásky o šířce asi 2 cm. Tyto pásky se navinou na vrstvu izolační pásky. Začátek a konec tohoto vinutí se však nesmí dotýkat vznikl by tak zkratový závit, který by silně

ovlivnil citlivost hledací cívky.

Jeden z konců stínění se ovine holým pocínovaným drátem. Aby se dosáhlo dobrého kontaktu s fólií, je drát možné připájet. Vývod stínění se spojí s bližším koncem hledací cívky. Do tohoto bodu se připájí stínění kabelu, kterým je cívka připojena k destičce s elektronickými obvody. Nakonec se cívka ovine dvěma vrstvami izolační pásky.

Pro dosažení mechanické stability se použije držák hledací cívky, vyříznutý z překližky. Přiklížený dřevěný špalík slouží k upevnění držáku na dřevěnou hůl. Pro upevnění se samozřejmě nesmí použít žádné hřebíky, šrouby, ani jiné kovové části. Pak se na držák uloží cívka, a celek se ovine několika vrstvami plastikové izolační pásky aby se dosáhlo odolnosti proti stříkající vodě.

Po dokončení sestavy cívky s holí chybí již ,jen" elektronická část, kterou je však možné velmi snadno zhotovit na desce s plošnými spoji. Potenciometry pro jemné a hrubé nastavení a nastavení hlasitosti jsou upevněny na krytu skříňky. Jak již bylo uvedeno, k propojení hledací cívky a destičky s elektronickými obvody musí být použit stíněný kabel.

Funkschau 5/1984

#### Detektor kovů V

Činnost tohoto detektoru kovů je založena na skutečnosti, že vysokofrekvenční pole, generované hledací cívkou L1, vyvolává v blízkém kovovém předmětu vířivé proudy. Energie potřebná pro vytvoření těchto vířivých proudů se odebírá z oscilátoru, zapojeného s tranzistorem T2. Je to Colpittsův oscilátor, pracující na 140 kHz. Tento úbytek energie, která se v kovu mění v teplo, způsobuje zmenšení amplitudy oscilací.

#### Popis zapojení

Signál na kolektoru T2 (viz schéma na obr. 10) je usměrňován diodou D2, špičková hodnota je "uložena" na kondenzátoru C5. Všechny změny stejnosměrného napětí jsou zesílovány tranzistorem T<sub>3</sub>. Zvětšení napětí na kolektoru T<sub>3</sub>, způsobené detekcí kovu, způsobí, že výstup komparátoru s IO<sub>1</sub> se překlopí do kladné úrovně, protože jeho invertující vstup je v tom okamžiku držen kondenzátorem C<sub>8</sub> na zápornější úrovni, než jakou má neinvertující vstup. Nízkofrekvenční oscilátor s obvodem IO2, který byl předtím blokován diodou D<sub>3</sub>, nyní kmitá na 400 Hz a budí sluchátko.

Stabilita obvodu je zajišťována paralelním stabilizátorem s tranzistorem T<sub>1</sub>. Komparátor s IO<sub>1</sub> používá dosti neobvyklou metodu vyrovnání ofsetu, P<sub>1</sub>, aby se dosáhlo velkého rozsahu nastavení - to je třeba pro vyrovnání šumu, rušení a nestabilit, které se mohou v tomto velmi citlivém obvodu vyskytnout.

#### Použití a konstrukce

Protože obvod detekuje změny napětí, nikoli absolutní hodnoty, není třeba znovu nastavovat P<sub>1</sub>, když byl zpočátku nastaven. Kromě toho operátor nepotřebuje manipulovat žádnými nastavovacími prvky, a tak je používání přístroje velmi jednoduché. Operátor nepotřebuje žádné zvláštní zkušenosti pro zajištění mince v hloubce kolem 15 cm, nebo větších předmětů až v hloubce asi 90 cm.

Přístroj potřebuje po zapnutí pro ustálení pracovních podmínek 60 sekund. Když se do pole přístroje dostane kovový předmět, detekční signál trvá kolem 2 sekund, pak se přístroj přizpůsobí nové amplitudě signálu oscilátoru

Cívka L<sub>1</sub> je obdélníková o rozměrech asi





7,5 × 15 cm, navinutá 55 závity drátu o Ø 0,5 mm. Baterie typu 51 D vydrží kolem 20 hodin nepřetržitého provozu.

Obr. 10. Detektor kovů V.

#### Jednoduchý detektor kovů

Practical Electronics duben 1980

Toto zapojení pracuje s oscilátorem, který je rozlaďován přítomností kovu v blízkosti hledací cívky; rozladění se však nevyhodnocuje s použitím referenčního oscilátoru, jako u principu BFO, ale integrovaným obvodem pro fázový závěs.

#### Popis zapojení

Schéma zapojení na obr. 11 ukazuje laděný obvod C<sub>1</sub>, C<sub>2</sub> a L (hledací cívka), který určuje kmitočet oscliátoru s aktivním prvkem trouje krimicet oscialadu s aktivimi priveni T<sub>1</sub>. Zvolený princip funkce by mohl umožnit rozlíšení magnetických a nemagnetických kovů, protože magnetické kovy zvětšují indukčnost hledací cívky a tím snižují kmitočet, zatímco u nemagnetických je tomu naosk. Toto rozlíšených je vění prožek požíše vzdíra pak. Toto rozlišování je však možné realizovat jen na velmi nízkých kmitočtech, protože u nich se ještě neuplatňují ztráty, způsobované vířivými proudy. Nad 200 Hz se však efekt vířivých proudů zvětšuje a každý kov působí do určité míry jako ztrátový závit transformátoru, zmenšuje tak indukčnost hledací cívky a tím zvyšuje kmitočet. Protože při nízkých kmitočtech jsou cívky objemné a jejich vinutí je obtížné, byl zvolen kmitočet oscilátoru kolem 300 kHz. Při takovém kmitočtu stačí jako cívka jediný závit. Tento jediný závit musí mít průměr 44 cm a může být zhotoven z běžného souosého kabelu. jehož stínění je uprostřed přerušeno (viz obrázek).

Signál na "cívce" by měl být nejméně 500 mV (mezivrcholová velikost, tj. efekt. 170 mV), aby na kolektoru T<sub>1</sub> byl signál kolem 4 V (mezivrcholová velikost) a byl tak dostatečně buzen IO<sub>1</sub>. Integrovaný obvod 4046 pro smyčky s fázovým závěsem se v tomto zapojení používá jen jako převodník kmitočet/napětí. Aby bylo možné zachytit

i malé kmitočtové změny, obvod IO<sub>2</sub> pracuje jako rychlý zesilovač.

Přístroj se nastavuje takto: potenciometrem P<sub>1</sub> se nastaví střední kmitočet fázové smyčky; potenciometr se nastaví tak, aby měřidlo neukazovalo žádnou výchylku. Potenciometr P<sub>2</sub> lze používat k jemnému nastavení, když je potenciometrem P<sub>3</sub> nastavena velká citlivost. Na rozsah nastavení není možné usuzovat pouze z odporu rezistorů R<sub>12</sub> a P<sub>3</sub>. Protože přes R<sub>10</sub> a měřidlo vzniká kladná zpětná vzaba, je rozsah nastavení zesílení mnohem větší, než by se očekávalo. Kdyby se použilo měřidlo s jiným rozsahem, je nutné příslušně změnit nejen R<sub>10</sub>, ale také R<sub>9</sub> a R<sub>11</sub>.

Důležité pro hledání "pokladů" je uvědomit si, že velikost cívky ovlivňuje velikost předmětů, které je možné najít. S cívkou o průměru 44 cm přirozeně není možné najít jednotlivý pětihaléř. Kdyby se však cívka měla zmenšit, musel by se použít příslušně větší počet závitů.

Elektor 7-8/1985

#### Vyzkoušejte si detektor kovů

Detektor kovů podle schématu na obr. 12 pracuje se záznějovým principem. Toto další z řady zapojení pracuje na kmitočtu kolem 300 kHz a platí o něm to, co bylo uvedeno u podobných již popsaných zapojení. Zajímavé v této souvislosti je to, že se dodává ve formě stavebnice, a to ve dvou verzích. Tyto dvě verze se od sebe liší jen provedením hledací cívky. V levnější verzi se cívka navine prostě ná krabičku z plastické hmoty, ve které se stavebnice dodává (13 závitů ľakovaným drátem na rozměru 120 × 95 mm). Ve druhé verzi se používá dodávaná hotová cívka v podstatě čtvercového tvaru se zaoblenými rohy, provedená technologií ploš-ných spojů. Na desce se spoji jsou na horní straně po obvodu vytvořeny odleptáním fólie závity, na dolní straně fólie slouží jako elektrostatické stínění. To může být vhodnou inspirací pro případné experimentování i u jiných zapojení. A zdá se, že to není samoúčelné, protože obě verze používají stejnou elektronickou část, liší se tedy pouze provedením cívky. Jak je zřejmé z tabulky, provedení s cívkou na desce s plošnými spoji má téměř dvakrát větší citlivost:





Obr. 11. Jednoduchý detektor kovů

|                                                                   | verze 1 | verze 2 |
|-------------------------------------------------------------------|---------|---------|
| měděná vodovodní trubka (1/2")                                    | 90 mm   | 180 mm  |
| štípačky                                                          | 50 mm   | 100 mm  |
| holicí čepelka                                                    | 65 mm   | 90 mm   |
| mince 5 c                                                         | 50 mm   | 90 mm   |
| mince 2 c                                                         |         | 100 mm  |
| mince 20 c                                                        | 75 mm   | 125 mm  |
| nápojová plechovka 370 ml<br>(hliník)<br>pánské hodinky s kovovým | 125 mm  | 225 mm  |
| tahem                                                             | 50 mm   | 100 mm  |

Electronics Australia prosinec 1977

#### Hledač pokladů

V tomto článku je popsán další z kategorie jednoduchých přístrojů, založených na záznějovém principu, který je zdokonaleným provedením obdobného přístroje, který již byl před lety publikován. Zlepšení byla zaměřena na zlepšení mechanické konstrukce s ohledem na vyvážení přístroje v provozu, zvětšení maximální hlasitosti, stability přístroje a zlepšení hledací cívky. Původní oscilátory byly zaměněny za oscilátory typu Colpitts. Kromě toho byla podniknuta řada experimentů s volbou kmitočtu (a byl ponechán původní kmitočet kolem 130 kHz), s elektrostatickým stíněním, které na tomto kmitočtu nepřineslo významnější zlepšení, s použitím měřidla jako indikátoru (sluchová indikace je citlivější). Bylo podniknuto také několik experimentů s různými průměry hledací cívky. Bylo ověřeno, že čím větší je průměr cívky, tím větší je dosah pro větší předměty, ale současně se zmenšuje citlivost na malé předměty. Použitých 15 cm se považuje za nejlepší kompromis pro obecné použití, upozorňuje se na možnost použití výměnných cívek pro speciální aplikace

Zapojení konečné verze je na obr. 13.

nr

C<sub>1</sub> C<sub>2</sub>
11 11
2n 2n

#### Nastavení a provoz

Po nastavení na nejsilnější zázněj a naladění výšky tónu je přístroj připraven k provozu. Když jsou kmitočty oscilátorů velmi blízko u sebe, mohou se oscilátory vzájemně synchronizovat, "strhávat". U prototypu tento jev nastával při záznějovém kmitočtu kolem 20 Hz. Tuto nepříjemnost je možné kompenzovat použitím menších kapacit kondenzátorů  $C_6$  a  $C_7$ . Pokud jde o dosah, mince je možné obecně zjistit na vzdálenost 10 až 12 cm (podle velikosti mince). Velké předměty je možné zjistit až do vzdálenosti 30 cm. Do značné míry však při tom záleží na zkušenosti operátora.

Practical Wireless

#### Netypický detektor kovů

Tento detektor je založen na použití vyváženého indukčního můstku a pracuje se signálem nízkofrekvenčního kmitočtu. Indukční můstek se skládá ze dvou soustav cívek, které jsou vzájemně kolmé a tvoří vstupní a výstupní obvod nízkofrekvenčního zesilovače s velkým zesílením. Když jsou

203110Vacc 3 Verkyiii Zesiieriiiii. Kuy2 jso

1N914

BC109  $R_{9}$   $R_{12}$   $R_{13}$   $R_{14}$   $R_{15}$   $R_{$ 

Obr. 13. Hledač pokladů

10k

270

3×2N2926

VC,

Tranzistor  $T_1$  s připojenými součástkami tvoří hledací oscilátor, k němuž je hledací cívka připojena souosým kabelem. Tranzistor  $T_2$  s příslušnými součástkami tvoří referenční oscilátor s "dlouhovlnnou" cívkou  $L_2$  o indukčnosti kolem 2 mH s feritovým jádrem.

Tento oscilátor se ladí proměnným kondenzátorem 750 pF a feritovým jádrem cívky  $L_2$  v širokém kmitočtovém pásmu. Z kolektorů obou oscilátorů se signál přivádí přes kondenzátory C6 a C7 o malé kapacitě na detekční diodu, která dostává stejnosměrné předpětí přes rezistor R5. Odtud se signál přivádí na potenciometr k regulaci hlasitosti, nežádoucí vf složky téměř odstraňuje Ca. Výstup z regulátoru hlasitosti se přivádí na jednoduchý zesilovač s tranzistory T<sub>3</sub> a T<sub>4</sub>. Ve schématu není uveden odpor rezistoru R<sub>6</sub>. Ten je třeba vybrat podle použitého tranzistoru. Pro počáteční nastavení je možné použít 22 kΩ a konečný odpor vyzkoušet tak, aby se dosáhlo maximálního výstupního výkonu při rozumné spotřebě (menší než 20 mA). Celý obvod je napájen z baterie 9 V. Odběr proudu závisí na volbě R<sub>6</sub>, bude však pravdėpodobně v rozsahu 10 až 20 mA.

#### Konstrukce

Hledací cívka je navinuta na mezikruží, vyříznuté z překližky tloušťky 6 mm o průměru 15 cm, do drážky na vnějším obvodu je použito 60 závitů drátu o průměru 0,3 mm. Doporučuje se zpevnit vinutí epoxidovým tmelem. Nosná trubka se používá hliníková. Konstrukce elektronické části není kritická.

cívky konstrukčně řešeny tak, aby byly v poloze velmi blízké ideální kolmosti, není mezi nimi dostatečná indukční vazba, která by mohla zavést zpětnou vazbu v míře dostatečné pro rozkmitání zesilovače. Když se však sestava cívek dostane do blízkosti kovu, vyvážení je narušeno, vzniká zpětná vazba, zesilovač se rozkmitá a vzniká slyšitelný signál. Schéma přístroje je na obr. 14. V podstatě jde o nestabilní nízkofrekvenční zesilovač s velkým zesílením. Ze schématu je zřejmý způsob zapojení soustavy cívek.

Protože intenzita megnetického pole se vzdáleností se rychle zmenšuje a vliv kovového předmětu v tomto poli se rychle vytrácí se zmenšováním jeho velikosti, je velmi obtížné vyvinout zařízení, které by mohlo zjišťovat malé předměty na větší vzdálenost. U detektorů, které používají pro lokalizaci

konců cívky, je při daném počtu závitů a daném proudu cívkou pole v určité vzdálenosti v ose cívky závislé na jejím průměru. Čím větší je průměr, tím dále pole dosahuje. Čím však je větší průměr cívky, tím větší musí být předmět z kovu, aby vůbec pole mohl ovlivnit. U tohoto typu detektorů je tedy vždy třeba použít kompromis mezi velikostí předmětů, které mají být detekovány, a vzdáleností, ve které mají být detekovány.

Popsaný detektor zjistí hliníkový kroužek závěru nápojových plechovek, nebo sedmicentimetrový hřebík v hlubce 5 cm. Větší předměty, jako víko od popelnice, je možné zjistit v hloubce 50 cm. Detektor je citlivější na železné materiály, protože ty mají větší vliv na magnetické pole.

Při konstrukci elektrické části je třeba dbát na rozmístění součástí tak, aby zesilovač byl stabilní, aby se neuplatňovaly parazitní vazby mezi vstupem a výstupem zesilovače. Velmi důležité je konstrukce soupravy cívek. Hlavním materiálem pro její mechanickou stavbu je dřevo, výkres je na obr. 15. Při jejím zhotovení se kromě lakovaného drátu nepoužívá žádný kov. Všimněte si, že obě horizontální cívky mají nastavitelnou polohu, aby bylo možné nastavit minimální vazbu. Horizontální cívky mají 470 závitů, vertikální cívka má 870 závitů. Cívky jsou ke skříňce s elektronickým obvodem připojeny souosým kabelem, jak ukazuje schéma zapojení.

Popular Electronics unor 1969

#### Detektor kovů trochu jinak

Princip tohoto detektoru kovů nepatří mezi nejznámější. Jde o oscilátor s laděnou, lépe rozlaďovanou cívkou ve spojení s krystalovým filtrem, použitým pro vyhodnocení a indikaci změny kmitočtu. Je jednoduchý, citlivý a jeho stavba i používání je snadné.

#### Popis zapojení

Jak je zřejmé ze schématu na obr. 16, tranzistor T1, hledací cívka L1 a přidružené součástky tvoří Colpittsův oscilátor. Provozní kmitočet určují kondenzátory  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$  a indukčnost hledací cívky. Výstup oscilátoru je volně vázán z kolektoru  $T_1$  do báze  $T_2$  přes  $C_5$  a  $R_4$ . Tranzistor  $T_2$  pracuje jako emitorový sledovač s napěťovým zesílením menším než jedna. Z emitoru  $T_2$  se signál přivádí přes potenciometr  $P_1$  a krystal 1 MHz,  $X_1$ , do báze tranzistoru  $T_3$ .

Pracuje-li oscilátor v úzkém propustném pásmu X<sub>1</sub>, vf signál prochází krystalem (pracujícím v režimu sériové rezonance). Vf signál je pak usměrňován diodou D<sub>2</sub> a přechodem báze-emitor tranzistoru T<sub>3</sub>. Výsledná ss složka je zesilována tranzistorem T<sub>3</sub> a indikována miliampérmetrem.



Amatérske! AD 10 B/4



Obr. 15. Konstrukce cívky

#### 

Obr. 16. Detektor kovů trochu jinak

#### Popis činnosti

Podívejme se nyní, jak obvod pracuje jako citlivý detektor kovů. Předpokládejme, že v blízkosti hledací cívky není žádný kov a napájení je zapnuto. Nastavíme oscilátor na dolní kmitočtovou hranici propusti s krystalem a potenciometr P<sub>1</sub> nastavíme na výchylku ručky měřidla asi 0,2 mA.

Když se pak hledací cívka přiblíží ke kovovému předmětu, vzniknou v něm vířivé proudy. Tím se zmenší indukčnost cívky a zvýší se kmitočet oscilátoru. Krystalový filtr představuje pro signál mírně vyššího kmitočtu menší impedanci, na bázi tranzistoru T<sub>3</sub> se proto dostane větší množství vf energie, což znůsobí zvětšení výchvlky ručky měřidla

způsobí zvětšení výchylky ručky měřidla.
Pokud byl oscilátor nastaven na horní
kmitočtovou mezi krystalové propusti, pak
kovový předmět v blízkosti hledací cívky
způsobí zmenšení výchylky ručky měřidla.
Ale o tom až později.

S ohledem na stabilitu funkce musí být mechanická konstrukce pevná a stabilní.

#### Hledací cívka

Měděnou trubku o Ø 10 mm stočte do kruhu o průměru 26 cm, s mezerou asi 2,5 cm mezi oběma konci. Do této trubky se zasune šestižilový kabel tak, aby na obou koncích trubky přesahoval okraje trubky. Po odstranění izolace se žíly kabelu propojí tak, aby vznikla cívka o šesti závitech. Jeden konec měděného stínění se spojí s uzemněným koncem cívky, spojeným se stíněním souosého kabelu.

Hledací cívka se vloží mezi dva kruhy z překližky 6 mm o průměru 28 cm, takže je mechanicky chraněna.

#### Uvedení do provozu

Po dohotovení je možné přístroj zapnout a naladit. Hledací cívku umístíme tak, aby nebyla v blízkosti žádného kovového předmětu, zapneme napájení a potenciometr P1 nastavíme do polohy asi "1/8 otáčky" ve směru hodinových ručiček od začátku odporové dráhy. Ladicí kondenzátor C1 se nastaví do střední polohy. Pak pomalu otáčíme kapacitním trimrem C4, dokud se výchylka ručky měřidla zvětšuje; pokusíme se dosáhnout maxima indikace většího než polovina rozsahu měřidla a trimr v této poloze ponecháme. Pak se nastaví ladicí kondenzátor na výchylku ručky měřidla asi 0,2 mA.

S měřidlem stále ještě ukazujícím 0,2 mA zvolna přiblížíme hledací cívku ke kovovému předmětu. Když se výchylka ručky měřidla prudce zvětší, je detektor nastaven na nejcitlivější provozní režim. V něm oscilátor pracuje na dolní kmitočtové mezi ostré křivky krystalového filtru. Když se výchylka ručky měřidla při přiblížení cívky ke kovovému předmětu zmenší, oscilátor pracuje na horní kmitočtové mezi křivky filtru. V tomto režimu nebude přístroj tak citlivý.

#### Provoz

Vezměte přístroj do terénu a nastavte jej na nejcitlivější provozní režim. Když se cívka přiblíží k zemí, výchylka ručky měřidla se mírně zmenší. To je způsobeno vlivem země. Pro zmenšení tohoto jevu používejte cívku ve výšce 10 až 15 cm nad zemí.

Po určitých praktických zkušenostech zjistite, že provoz s nějvětší citlivostí odpovídá potenciometru P<sub>1</sub> otočeném téměř zcela proti smyslu otáčení hodinových ručiček a ladicím kondenzátorem C<sub>1</sub> nastaveném na malou výchylku ručky na stupnici.

Pro lokalizaci velkých předmětů v blízkosti povrchu země může být třeba nastavit obvod pro provoz s menší citlivostí. Nastavte potenciometr P<sub>1</sub> do krajní polohy ve směru otáčení hodinových ručiček a ladicí kondenzátor na plnou výchylku měřidla. Když se s hledací cívkou přiblížíte těsně ke kovoému předmětu, musí se výchylka ručky zmenšit. Pokud je tomu tak, je přístroj připraven pro hledání velkých předmětů.

Radio Electronics listopad 1967

#### "Fázový" detektor kovů

Navrhnout dnes nový detektor kovů není pro amatérského konstruktéra snadný úkol. Při návrhu popisovaného přístroje se vycházelo z těchto požadavků:

1. Neměl to být standardní, známý typ.

2. Neměl být ovlivňován vlivem země (bez použití speciálního stínění). Vliv země se u určitých typů detektorů projevuje změnou indikace, i když v zemi není přítomen žádný kov. Pro potlačení tohoto jevu musí být hledací cívka vhodně stíněna, nebo musí být udržována v konstantní vzdálenosti od země.

3. Konstrukce hledací cívky neměla být kritická, elektronické nastavování mělo být jednoduché a snadné.

4. Přístroj by měl být všestranně a jednoduše použitelný, s metodou indikace vhodnou i pro ty, kdo dost dobře nerozlišují malé změny výšky tónu.

5. Měl mít výkon nejméně takový, jako většina jednoduchých konstrukcí typu BFO

Po průzkumu všech možností se zdál jediným typem detektoru, který by mohl splňovat tyto požadavky, fázový detektor kovů na velmi nízkých kmitočtech. Jeho funkce je založena na detekci malých fázových změn signálu hledací cívky, ke kterým dochází, když se cívka přiblíží ke kovu. Velmi nízké kmitočty v oboru detektorů kovu obecně znamenají kmitočty na horním konci nízkofrekvenčního spektra, přičemž typickým kmitočtem je asi 17 kHz. Důvodem použití poměrně nízkých pracovních kmitočtů detektorů kovu je snaha zabránit problémům s vlivem země.

Praktické zkoušky s obvody fázového detektoru kovu byly povzbuzující a konečný návrh je velmi jednoduchý, ale efektivní. Pokud jde o výkon je jen poněkud horší, než u běžného detektoru IB. Větší citlivost ultracitlivých detektorů je stejně často nepoužitelná vzhledem k problémům s malými kousky železa nebo kovů v půdě.

S ohledem na poměrně jednoduchou konstrukci je výkon přístroje velmi dobrý. Zjistí minci 20 pencí na maximální vzdálenost kolem 60 až 80 mm. Větší kousky kovu je možné detekovat na větší vzdálenosti, velké mince je možné zjistit na 100 až 150 mm. Větší kusy kovu mohou být zjištěny až na maximální vzdálenosti kolem 500 mm. To jsou výsledky lepší než u většiny přístrojů s BFO, ale snad poněkud horší, než u některých jednoduchých přístrojů na principu IB. Tato konstrukce je však jednodušší a zvláště zhotovení cívky není náročné na přesnost. V tomto směru je tento přístroj méně kritický, než konstrukce typu BFO. Citlivost je jistě dostatečná pro dosažení dobrých výsledků. Je však třeba si uvědomit, že uváděné citlivosti byly zjištěny při zkouškách "ve vzduchu". Praktický výkon závisí na charakteristice půdy.

#### Popis zapojení

Blokové schéma na obr. 17 ukazuje základní uspořádání tohoto detektoru. Hledací cívka je ve skutečnosti uspořádána jako dvojitá a tvoří vlastně transformátor. Nízkofrekvenční oscilátor budí primární vinutí přes oddělovací stupeň. Úkolem tohoto oddělovacího stupně je zajistit, aby kov v blízkosti hledací cívky nezpůsoboval strhávání oscilátoru a neovlivňoval fázi jeho výstupního signálu. Oscilátor produkuje (víceméně) pravoúhlý signál.



Obr. 17. Blokové schéma fázového detektoru



Výstup ze sekundárního vinutí se přivádí do zesilovače s velkým zesílením a pak do spouštěného klopného obvodu. Výstupní signály nízkofrekvenčního oscilátoru klopného obvodu jsou pak dále zpracovávány v určitém druhu směšovacího obvodu. Tento směšovač ve skutečnosti tvoří hradlo typu EXCLUSIVE-OR-INVERT se dvěma vstupv. Hradia EXCLUSIVE-OR a EXCLUSIVE-OR-INVERT jsou pravděpodobně nejméně používané typy a někteří čtenáři možná nejsou seznámení s jejich funkcí. Obyčejné hradlo NOR má výstup, který předchází do stavu 0, když buď vstup 1 nebo (OR) vstup 2 přechází do stavu log. 1. Výstup přechází také do stavu log. 0, když jsou oba vstupy, 1 a (AND) 2 ve stavu log. 1. Hradlo EXCLUSIVE-NOR se liší od typu NOR pouze tím, že když jsou oba vstupy ve stavu log. 1, neprejde výstup do stavu log. 0.

V této aplikaci potřebujeme směšovací obvod, který by měnil fázové zpoždění na proporcionální výstupní napětí, protože výstupní signál sekundárního vinutí se mírně zpožďuje za vstupním signálem; při zavedení kovu do blízkosti hledací cívky se však fázové zpoždění zvětšuje (nebo zmenšuje) pro železné (nebo neželezné) kovy. Hradla typu EXCLUSIVE-OR a EXCLUSIVE-OR-INVERT se možná nezdají nejvhodnější jako fázové detektory, ve skutečnosti však v tomto režimu pracují velmi dobře. Průběhy na obr. 18 mohou pomoci při vysvětlení funkce



Obr. 18. Průběhy fázového detektoru EXOR

detektoru tohoto typu. Předpokládáme použití hradla EXCLUSIVE-OR.

Horní tři průběhy odpovídají průběhům, dosaženým při použití vstupních signálů, které jsou ve fázi. Oba vstupy hradla jsou ve stavu log. 0, pak jsou oba ve stavu log. 1, pak opět v 0, atd. Nikdy se nedosáhne stavu, kdy by vstupy byly v opačných stavech, a tak je výstup stále ve stavu log. 0. Prostřední soubor průběhů odpovídá zpoždění signálu na druhém vstupu proti prvnímu asi o 45°. Oba vstupy jsou tak nyní v opačných stavech dvakrát v každém cyklu, i když jen krátce. Výstup je ve stavu log. 1 po asi 25 % času, což dává střední výstupní napětí rovné jedné čtvrtině napájecího napětí. V dolním souboru průběhů bylo fázové napětí zpoždění zvětšeno na 90°. To prodlouží periodu, po kterou jsou vstupní signály v opačných sta-vech a způsobí prodloužení výstupních impulsů, které jsou stále ještě dva na jeden vstupní cykl. Střední výstupní napětí se zvětšuje na asi 50 % napětí zdroje. Když jsou vstupní signály vzájemně posunuty o 180°, oba signály jsou stále v opačných stavech

a výstup bude stále ve stavu log. 1.
Hradlo typu EXCLUSIVE-OR-INVERT je
prakticky hradlem EXCLUSIVE-OR s invertovaným výstupem. Proto můžeme použít
hradlo EXOR a za ním NAND.

Po filtraci výstupních impulsů (aby se dosáhlo výstupního signálu s přiměřeným zvlněním, rovnému střednímu výstupnímu napětí) se dosáhne požadovaného převodu fázového zpoždění na napětí. Fázové změny, způsobené i velkými kusy kovu v malé vzdálenosti od hledací cívky jsou však velmi malé. V nejlepším případě jde o několik stupňů a malé objekty vzdálené více než několik milimetrů od hledací cívky způsobí fázový posuv velikosti zlomku stupně. Proto je třeba použít pro buzení následujících obvodů stejnosměrný zesilovač o velkém zesílení, aby se dosáhlo dostatečně velkého signálu. V klidových podmínkách existuje dosti velké fázové zpoždění, které by způsobovalo velký klidový signál. Obvod proměnného předpětí ve stejnosměrném zesilovači umožňuje tento klidový výstupní signál vynu-

Výstupní obvody přístroje se používají pro generování tónu, jehož hlasitost se zvětšuje nebo zmenšuje při zjištění kovu. I lidé, kteří mají dobrý hudební sluch, obecně považují změnu hlasitosti za lépe rozlišitelnou než změnu výšky tónu. Výstup ze ss zesilovače může být použit pro buzení ručkového měřidla, pokud se tomuto způsobu indikace dá přednost. Zkušenost však ukazuje, že je třeba se soustředit na práci s hledací cívkou, což vede k tomu, že je používání vizuální indikace obtížné.

Používá se tónu o kmitočtu několika set Hz, získávaného obvodem děliče kmitočtu z nízkofrekvenčního oscilátoru. Tím se budí obvod přerušovače, produkující nízkofrekvenční signál o mezivrcholovém napětí, rovném výstupnímu napětí stejnosměrného zesilovače. Tento signál se přivádí do oddělovacího stupně, který napájí výstupní konektor. V tomto zapojení je možné použít krystalové sluchátko a většinu běžných sluchátek o větší impedanci.

Úplné schéma zapojení je na obr. 19. Jako nízkofrekvenční oscilátor se používá jednoduchý astabilní obvod s IO 555. Pracovní kmitočet obvodu je zhruba 16 kHz. Primární vinutí hledací cívky (L<sub>1</sub>) je buzeno oddělovacím stupněm (emitorový sledovač) s tranzistorem T<sub>1</sub>. Rezistor R<sub>3</sub> omezuje budicí proud na několik mA. Jak primární, tak i sekundární vinutí je opatřeno paralelně zapojenými kondenzátory pro "naladění", které jsou nutné pro dosažení "rozumné" citlivosti. IO<sub>2</sub> zesiluje výstupní signál ze sekundárního vinutí. Velké zesílení tohoto obvodu způsobuje značné ořezání výstupního signálu. P<sub>1</sub> se nastavuje tak, aby se dosáhlo výstupního signálu s vhodnou střídou.

Tento signál se zpracovává obvodem IO₃, což je hradlo CMOS EXCLUSIVE-OR-IN-VERT, které v tomto případě pracuje jako jednoduchý invertor. Obvod IO₃ь je hradlo EXCLUSIVE-OR-INVERT, pracující jako fá-

zový detektor, když je napájeno z výstupů IO<sub>1</sub> a IO<sub>3a</sub>. Jeho výstupní signál je filtrován a upraven na přiměřeně malou úroveň zvlnění dolní propustí, složenou z R<sub>6</sub> a C<sub>6</sub>. Obvod IO<sub>4</sub> pracuje jako stejnosměrný zesilovač s napěťovým zesílením asi 300 až 400. Byla dána přednost lepší stabilitě před velkou citlivostí. Pokud chcete dosáhnout větší citlivosti, je možné zvětšit odpor rezistoru Rz a (nebo) nahradit R<sub>8</sub> zkratovou spojkou. Uvědomte si však, že větší zesílení povede také k zesílení každého driftu a bude třeba častěji přístroj nastavovat. Také bude obtížnější přesné nastavení ovládacích prvků předpětí. Jde o ovládací prvky P<sub>2</sub> (jemné nastavení) a P<sub>3</sub> (hrubé nastavení). Kondenzátory C<sub>7</sub> slouží k další filtraci, zajišťující velmi malé zvlnění stejnosměrného výstupního signálu.

Jako dělič kmitočtu je použit obvod CMOS, lO<sub>5</sub>, typu 4040, který je dvanáctistupňový, v tomto obvodu se však využívá pouze pěti stupňů. To znamená dělení 32 a výstupní signál má tedy kmitočet 500 Hz. Tento signál se používá pro buzení spínacího tranzistoru T<sub>2</sub>, který přerušuje výstup obvodu lO<sub>4</sub>. P<sub>4</sub> tvoří kolektorovou zátěž T<sub>2</sub> a pracuje jako regulátor hlasitosti. Tranzistor T<sub>3</sub> zapojený jako emitorový sledovač pracuje jako výstupní obvod.

Pro napájení přístroje je třeba použít velmi stabilní zdroj v rozsahu 9 až 15 V. Jedna baterie 9 V je nevhodná, protože by to vedlo ke zcela nevyhovující stabilité. Proto byly použity dvě baterie 9 V v sérii a monolitický stabilizátor napětí, který dává dobře stabilizované napájecí napětí 12 V. Celkový odběr proudu je asi 17 mA.

#### Konstrukce a nastavení

Elektronickou část lze sestavit na desce s plošnými spoji, jinak není mechanická konstrukce detektoru kritická. Doporučuje se věnovat pozornost mechanickému vyvážení, aby používání přístroje v praxi nebylo zbytečně namáhavé. Na rozdíl od jiných typů detektorů kovů může být u tohoto fázového detektoru použit v blízkosti hledací cívky kov. Lze proto použít kovovou nosnou trubku, upevněnou k hledací cívce kovovou objímkou. Kostra cívky byla zhotovena z překližky, střední část o rozměrech 140 × 100 mm, s čely 200 × 150 mm. Prirozměrech mární vinutí má 100 závitů lakovaným drátem o Ø 0,2 mm, sekundární vinutí 25 závitů stejným drátem. Vinutí nemusí být závit vedle závitu, závity by však měly být dobře "utaženy" (volné závity by mohly způsobovat falešnou indikaci). Vinutí jsou k elektronické části připojená stíněnými vodiči. Po vyzkoušení se doporučuje vinutí izolovat epoxidovou pryskyřicí.



Pokud máte možnost použít osciloskop, nastavte P<sub>1</sub> tak, aby výstup IO<sub>3b</sub> dával symetrické dvojice impulsů. Když to není možné, je třeba vyhledat takovou polohu P<sub>1</sub>, při níž se dosáhne nejlepších výsledků. Na štěstí není nastavení tohoto potenciometru kritické (zdá se, že nastavení zhruba do střední polohy dává uspokojivé výsledky).

Při používání přístroje nastavte P2 zhruba do střední polohy a knoflíkem potenciometru P<sub>3</sub> otočte zcela proti směru otáčení hodinových ruček. Při vhodném nastavení potenciometru hlasitosti pak otáčejte potenciometrem P3 ve směru hodinových ruček, dokud neuslyšíte ze sluchátek hlasitý tón. Pak nastavte P2 tak, aby se zmenšila hlasitost tónu na tichý, avšak zřetelně slyšitelný poslech. Umístění hledací cívky do blízkosti kovového předmětu by mělo způsobit změnu hlasitosti tónu - její zvětšení nebo zmenšení. Správně by měl být detektor nastaven tak, aby se hlasitost zvětšila pro neželezné kovy a zmenšila pro kovy s obsahem železa. Takové funkce se dosáhne, když jsou vinutí Tr<sub>1</sub> zapojena ve fázi. Je však také možné dát přednost tomu, aby zajímavé předměty (což většinou znamená neželezné kovy) způsobovaly zmenšení hlasitosti, protože malé zmenšení hlasitosti se lépe identifikuje, než malé zvětšení. Pak je možné zapojit vinutí L1 v opačné fázi (tj. jeden začátek vinutí uzemnit, začátek druhého vinutí použít jako živý vývod). Je to možné vyzkoušet obojím způsobem a tak zjistit, který z obou způsobů vám bude lépe vyhovovat.

Zajímavé je, že bylo zjištěno, že feritové tyčky a kousky železa měly opačný vliv, než většina ostatních kovů, avšak ocel (která se považuje za kov obsahující železo) obvykle nikoli. Pro optimální citlivost se musí udržovat takové nastavení potenciometru P<sub>2</sub>, aby tón ve sluchátkách byl v klidových podmínkách poměrně tichý. Mírný drift přístroje je nevyhnutelný – proto je třeba pro udržení optimální citlivosti občas nastavit potenciometr P<sub>2</sub>. Pokud zjistíte, že je třeba často nastavovat P<sub>2</sub> a P<sub>3</sub>, znamená to že jsou baterie téměř vyčerpány. Vliv země nezpůsobuje žádné problémy. Pokud v určité oblasti způsobuje půda stále malou výchylku přístroje, znamená to, že půda má vysoký obsah sloučenin kovů. Tento jev není tak vzácný, jak by se zdálo, a může občas hledání velmi ztížit.

Practical Electronics říjen 1988

#### Citlivý detektor kovů

Popisovaný přístroj (obr. 20) používá nejjednodušší techniku: detekuje změnu indukčnosti jediné hledací cívky. Jde o záznějový oscilátor (BFO), ve které je tato cívka sou-částí laděného obvodu oscilátoru. Výsledným signálem je zázněj, jehož kmitočet se rovná rozdílu kmitočtů obou oscilátorů a ten se vlivem kovového předmětu v blízkosti cívky mění. Hlavní předností tohoto typu detektoru je jednoduché zapojení a možnost dobrého zaměření. Většina dříve publikovaných konstrukcí byla málo citlivá a relativně nestabilní po naladění. Vtipné řešení směšování a několik dalších drobných zlepšení může tyto problémy překonat. Tento nový detektor, používající některá moderní zlepšení, prokázal podobnou citlivost jako detektor typu IB s vyváženou indukčností, přitom jeho sestavení a uvedení do chodu je snadnější.

#### Popis činnosti

Detektor má tři ovládací prvky: HRUBÉ nastavení kmitočtu, JEMNÉ nastavení kmitočtu a HLASITOST se spínačem. Ovládací prvek pro hrubé nastavení kmitočtu se používá pro počáteční nastavení kmitočtu hle-



Obr. 20. Citlivý detektor kovů

dacího oscilátoru a vyrovnání různých činitelů, ovlivňujících drift tohoto oscilátoru (převážně teplota a napětí baterie). Jemné nastavení kmitočtu se pak používá pro nastavení nízkého tónu, když je detektor umístěn nad zemí, což dovoluje kompenzovat vliv země na kmitočet hledacího oscilátoru. Regulátorem hlasitosti se nastavuje hlasitost výstupu z reproduktoru.

Při návrhu detektoru jde o dva hlavní problémy – kmitočtovou stabilitu obou oscilátorů a nepatrnou kmitočtovou změnu, kterou je nutné určit.

Hledací oscilátor, který byl nakonec použit, je výsledkem určitého experimentování. Nejdříve byl zkoušen oscilátor *LC* využívající hradel CMOS. Ten se ukázal méně stabilním, než se očekávalo, a navíc stejnosměrné řízení kmitočtu změnou napájecího napětí mělo nedostatky. Po řadě dalších experimentů jsme se rozhodli pro oscilátor s diskrétními součástkami, který pracoval podle naších představ.

Hledací cívka v zapojení, které bylo použito, tvoří indukčnost v Colpittsově oscilátoru. Cívka je pro zvětšení vf proudu umístěna v kolektorovém obvodu T<sub>1</sub>. Zpětná vazba je zavedena mezi kolektorem a emitorem, báze je spojena s vf zemí. Kapacita určující kmitočet je pro dosažení zpětné vazby rozdělena, a tvoří ji kondenzátory C<sub>2</sub> a C<sub>3</sub>. Při návrhu byla věnována velká pozornost dosažení základní kmitočtové stability tohoto oscilátoru. Jako C<sub>2</sub> a C<sub>3</sub> byly použity kvalitní polystyrenové kondenzátory. Mají teplotní činitel přibližně opačný, než ostatní tepelné vlivy, působící na kmitočet oscilátoru. Obecně je krátkodobá stabilita tohoto oscilátoru velmi dobrá.

Použité uspořádání oscilátoru přineslo velmi užitečnou výhodu – kmitočet oscilátoru lze stejnoměrně řídít ve velmi malém rozsahu. Změna předpětí báze tranzistoru způsobí změnu kapacity kolektor-báze. V tomto zapojení je kapacita kolektor-báze součástí celkové rozptylové kapacity, která určuje přesný kmitočet oscilací. Zvětšuje-li se proud báze, kapacita kolektor-báze se zmenšuje a kmitočet oscilátoru se zvyšuje. Tímto způsobem je možné měnit kmitočet oscilátoru v rozsahu kolem deseti procent. Kmitočet lze měnit dvěma ovládacími prvky, z nichž "jemné nastavení" dává změnu asi jedné desetiny "hrubého nastavení".

Hledací oscilátor je volně vázán kondenzátorem 47 pF s následujícím Schmittovým klopným obvodem CMOS a dvěma invertory, na jejichž výstupu je pravoúhlý signál. Volná vazba odděluje oscilátor od následujících obvodů a tak dále zlepšuje stabilitu hledacího oscilátoru.

Jako referenční oscilátor (vzhledem k potřebné stabilitě) byl použit krystalový oscilátor, i když se vyskytl názor, že kdyby se jako referenční oscilátor použil obyčejný oscilátor LC, měl by mít podobný drift jako hledací oscilátor, čímž by se mohl zmenšit celkový drift. Pro referenční oscilátor by bylo možné použít běžný mf transformátor 455 kHz. V praxi však mají oba drifty výrazně odlišné vlastnosti. Proto se ukázalo, že jako nejvhodnější je stabilní oscilátor s krystalem.

Referenční oscilátor je jednoduchého zapojení s invertorem, využívající jednoho hradla ze čtveřice hradel NAND (IO<sub>2</sub>). Má výstupní napětí pravoúhlého průběhu, které po průchodu dalšími třemi hradly v IO<sub>2</sub> budí obvod IO<sub>3</sub>, který pracuje jako dělička čtyřmi.

V originálu byl použit krystal 3,579545 MHz (subnosný chrominanční kmitočet NTSC), lze však použít libovolný krystal 3 až 4 MHz. Na výstupu IO<sub>3</sub> je kmitočet kolem 890 kHz (nebo podle použitého krystalu, referenční kmitočet). Přesný kmitočet není podstatný, pokud je stabilní.

Hledací oscilátor pracuje na kmitočtu o něco vyšším než je 100 kHz, tedy přibližně na jedné osmině referenčního kmitočtu.

Tajemství celkové citlivosti tohoto detektoru je v obvodu směšovače. Ten používá jednu část klopného obvodu 4013. Výstup z děliče signálu referenčního oscilátoru (na kmitočtu 890 kHz) se přivádí na vstup D obvodu  $IO_{4a}$ , výstup signálu hledacího oscilátoru, upravený na pravoúhlý průběh, se přivádí na vstup signálu hodinového kmitočtu. Když se hodinový kmitočet (tj. kmitočet hledacího oscilátoru) změní o 1 Hz, výstupní zázněj (z výstupu Q obvodu  $IO_{4a}$ ) se změní o 8 Hz, čímž se značně znásobí i nejmenší změny kmitočtu oscilátoru.

Výstupní signál ze směšovače se přivádí do jednoduchého nízkofrekvenčního zesilovače, který budí reproduktor. Vzájemné vazby mezi hledacím a referenčním oscilátorem musí být pečlivě odstraněny a ke směšovači musí být oba oscilátory připojeny přes oddělovací zesilovače, aby se zabránilo jejich vzájemnému ovlivňování, které by způsobilo nesprávnou funkci, zvláště při nastavení výstupního signálu s nízkými výstupními kmitočty. Byla proto použita důkladná filtrace napájecího napětí a oddělovací stupně pro každý oscilátor. Bylo také zjištěno, že je vhodné použít pro nízkofrekvenční zesilovač zvláštní baterii, aby se zabránilo ovlivňování činnosti oscilátorů velmi krátkými proudovými impulsy nízkofrekvenčního stupně.

#### Zapojení

Detektor kovů na principu záznějového oscilátoru používá dva oscilátory: velmi stabilní referenční oscilátor a hledací oscilátor. Jako hledací oscilátor se používá laděný obvod, který je navržen tak, aby byl ovlivněn přítomností kovů nebo minerálů, které se dostanou do jeho pole. Oba oscilátory jsou nastaveny tak, že kmitočet jednoho z nich je harmonickým násobkem druhého, a oba se pak přivádějí do směšovače. Když je hledací kmitočet nastaven tak, aby byl referenční kmitočet osminásobkem hledacího kmitočtu, výstup ze směšovače je nulový. Když se hledací kmitočet mírně změní, pak se na výstupu směšovače objeví signál, jehož kmitočet je rozdílem mezi oběma vstupními kmitočty. Tento rozdílový kmitočet se volí v rozsahu tónových kmitočtů.

Když se do blízkosti hledací cívky dostane kov nebo minerál, kmitočet oscilátoru se změní, což způsobí změnu kmitočtu výstupního kmitočtu směšovače. Změnu výšky tónu z reproduktoru je možné snadno roze-

znat.

Referenční oscilátor používá krystal, zapojený v obvodu oscilátoru CMOS, používajícího jedno hradlo (IO<sub>2a</sub>). Rezistor R<sub>6</sub> nastavuje hradlo do lineární pracovní oblasti. Hradla IO2b, c, d se používají jako oddělovací stupně, aby se zamezilo "strhávání" kmitočtu oscilátoru vnějšími vlivy a pro další tvarování výstupního pravoúhlého signálu. Dva klopné obvody (IO<sub>3</sub>) dělí referenční signál čtyřmi na 890 kHz.

Hledací oscilátor používá tranzistor v zapojení se společnou bází, s hledací cívkou zapojenou v kolektoru. Použití cívky v kolektoru zvětšuje intenzitu pole kolem cívky a tak umožňuje překonat určité ztráty vf signálu v půdě. Zpětná vazba je nastavena volbou poměru kapacity C2 k C3 mezi kolektorem a emitorem. Kapacita obou kondenzátorů určuje kmitočet oscilátoru. Báze je vysokofrekvenčně uzemněna kondenzátorem C<sub>4</sub>.

Změnou předpětí tranzistoru je možné změnit jeho vnitřní kapacity. Tím se změní i kmitočet oscilátoru, protože kapacity tranzistoru tvoří část rozptylových kapacit obvodu LC. Potenciometry P1 a P2 umožňují hrubě a jemně nastavit kmitočet. Rezistory R<sub>8</sub> a R<sub>9</sub> omezují maximální a minimální napětí na bázi, aby se zabránilo přetížení tranzistoru při vysazení oscilátoru.

Výstupní signál hledacího oscilátoru je přiváděn na Schmittův obvod s hradly IO<sub>1a</sub>, 1b. kde se tvaruje a dále prochází oddělovacími stupni IO<sub>1c, 1d</sub>. Signál hledacího kmitočtu se pak přivádí na směšovač.

Oba oscilátory jsou vzájemně odděleny i filtračními členy napájecího napětí (R1, C1

a  $R_5$ ,  $C_6$ ).

Směšovač používá polovinu dvojitého klopného obvodu D. Hledací i referenční signál jsou přiváděny na hodinový vstup, případně vstup D. Když jsou kmitočty obou oscilátorů přesně v poměru sudých harmonických (tj. 2., 4., 6. nebo v našem případě 8. harmonické), na výstupu D bude vždy stejná úroveň při každém hodinovém impulsu. Výstup ze směšovače na vývodu Q bude tedy stále stejný - žádné impulsy.

Když se však hledací kmitočet změní a vstupy D a hodinového signálu již nebudou v harmonickém vztahu (změní se vzájemně jejich fáze), po několika hodinových impulsech nebude stav vstupu D stejný – změní se stav výstupu. To vede k tomu, že na výstupu Q vzniká řada signálů pravoúhlého průběhu, jejichž kmitočet je osminásobkem kmitočtu hledacího oscilátoru.

Kondenzátory C8 a P2 tvoří derivační obvod, kterým se impulsy přivádějí do nízko-frekvenčního zesilovače s  $T_2$  při každé změně stavu na výstupu směšovače. Každý cyklus směšovače způsobí dva impulsy v reproduktoru. Kdvž se kmitočet hledacího oscilátoru změní o 8 Hz kmitočet signálu na výstupu směšovače se změní též o 8 Hz a v reproduktoru vznikne 8 impulsů.

#### Hledací cívka

Nejdůležitější charakteristickou vlastností hledací cívky je její velikost. Překvapující je, že, jak se zdá, skutečná indukčnost nemá velký vliv na citlivost. Čím větší je průměr cívky, tím větší je hloubka dosahu, ale zmenšuje se citlivost pro malé předměty. Obecně platí, že dosah je přibližně roven průměru hledací cívky, zatímco citlivost je zhruba úměrná třetí mocnině průměru předmětu (při vyjádření jako funkce průměrů hledací čívky). Citlivost je také nepřímo úměrná šesté mocnině vzdálenosti mezi cívkou a předmětem.

To všechno znamená, že kdvž se rozměr předmětu zmenší na polovinu, citlivost se změní na jednu osminu. A také, když vzdálenost zdvojnásobí, citlivost se zmenší na 1/64. Pak je snadné pochopit, proč všechny detektory kovů, určené pro hledání malých předmětů, používají malé cívky (Ø 150 až 300 mm), a téměř "klouzají" po povrchu terénu. Když se pro dosažení větší hloubky dosahu průměr hledací cívky zdvojnásobí, citlivost pro malé předměty se zmenší na jednu osminu.

Některé dražší detektory kovů zlepšují dosah při dodržení citlivosti použitím velmi složitého uspořádání cívek, kterým se dosahuje změny tvaru pole. Toho může být do určité míry dosaženo u detektoru BFO použi-

tím oválného tvaru cívky.

Byla použita kruhová cívka o průměru 150 mm, aby se dosáhlo dobré citlivosti pro malé předměty při dosahu kolem 100 až 150 mm, kterou je možné snadno zhotovit, přitom však zůstává dostatečné pole pro experimentování. Počítejte však s tím, že při zvětšení průměru cívky je nutné zmenšit počet závitů tak, aby kmitočet hledacího oscilátoru zůstal stejný (kolem 110 kHz). Při pohybu hledací cívky se mění kapacita

mezi cívkou a zemí a ostatními předměty. Tyto změny kapacity mohou způsobit posuvy kmitočtu oscilátoru, které úplně překryjí vliv změny indukčnosti, kterou požadujeme. Cívku je možné od těchto vlivů odstínit stíněním. To spočívá v našem případě v ovinutí cívky hliníkovou fólií, která však musí být jednom místě přerušena, aby nevznikl závit nakrátko. Toto stínění je připojeno k nulové napájecí sběrnici oscilátoru (0 V).

#### Konstrukce

Pro konstrukci byly použity běžně dostup-né mechanické a elektronické součásti, aby sestavení přístroje bylo co nejjednodušší zvláště pro začátečníky. Hledací cívka je umístěna v plastikové misce pod květináč o průměru 165 mm. Elektronická část byla vestavěna do krabičky z hliníkového plechu, upevněná na trubce, na jejímž druhém konci je upevněna hledací cívka. Může být použita trubka o průměru kolem 25 mm z plastického materiálu, o délce asi 850 mm, ohnutá asi 100 mm od konce asi o 60° (pro vytvoření držadla). Je také možné použít hliníkovou trubku, v tomto případě je však třeba vložit mezi konec trubky a hledací cívku vložku z izolačního materiálu, aby kov končil asi 200 až 250 mm od hledací cívky.

Hledací cívku navineme tak, aby ji bylo možné vložit dovnitř po obvodu misky, lakovaným drátem o Ø 0,4 mm, má 70 závitů. Nejlépe je použít přípravek z tvrdé lepenky,

"navinutý" do vnitřního průměru misky. Po navinutí se cívka zpevní ovinutím dvěma vrstvami izolační pásky, aby stínění bylo přerušeno v místě vývodů cívky, stínění se nakonec ovine měděným cínovaným vodičem se stoupáním asi 10 mm. Nakonec se cívka ovine dalšími dvěma vrstvami izolační pásky a vloží se a zalepí do misky.

#### Používání

Po dohotovení přístroje se detektor zapne, nastaví se hlasitosť, a při otáčení hrubým laděním má být slyšet řada záznějů, z nichž jeden je velmi silný. Ten se běžně používá, ostatní zázněje jsou liché násobky kmitočtu referenčního signálu v kombinaci s násobky kmitočtu hledacího oscilátoru. Některé z těchto slabších signálů však mohou být při detekci předmětů užitečnější, než silný signál.

Nastavte ovládací prvek jemného ladění do středu a hrubým laděním nastavte silný zázněj, přičemž hledací cívka je vzdálena od země. Při jejím přiblížení k zemi zjistíte změnu kmitočtu. Ten vyvolává vliv země, který se liší u různých druhů půd. Prvkem jemného nastavení se nastaví nízký tón a pohybem cívky nad terénem se vyhledávají kovové předměty. Kovový předmět způsobí jasně slyšitelnou změnu výšky tónu.

Ucho je citlivější na změny výšky tónu na nízkých kmitočtech, proto je nejlépe nastavit

jemné ladění na hluboký tón.

Teoreticky by se měl kmitočet hledacího oscilátoru zvýšit při detekci neželezného předmětu v dosahu hledací cívky a snížit při železném předmětu. V praxi to však tak docela neplatí, protože vířivé proudy v železných materiálech způsobují, že přístroj na ně reaguje podobně jako na neželezné materiálv. Při tom záleží také na tom, na kterou stranu nulového zázněje je hledací kmitočet nastaven

V běžném provozu se snažte pohybovat hledací hlavou v konstantní vzdálenosti od země, pravidelnými pohyby tak, aby byl prohledávaný terén pokryt co nejdokonaleji.

ETI březen 1980

#### Detektor kovů Beachcomber

Beachcomber je detektor kovů s možností rozlišit kovy železné a neželezné a s automatickým nulováním. Je vybaven i ovládacím prvkem pro potlačení vlivu země. Je citlivý a přesný - ideálně vhodný pro hledání mincí a drobných předmětů.

Detektor má šest ovládacích potenciometrů a dva přepínače. Zpočátku může být nezkušený operátor dosti zmaten, provoz je však pro zvládnutí techniky měření jednodu-

Nejprve se v krátkosti podívejme na to, jaké ovládací prvky přístroj má. Přední panel je rozdělen do tří oblastí – měřidla, nízkofrekvenční a nastavení režimu. Začněme oblastí "nastavení režimu", která obsahuje potenciometry rozlišení a potlačení. Těmi se ovládá stupeň rozlišení (diskriminace) kovů, případně potlačení vlivu země.

Režimy rozlišení nebo potlačení se volí páčkovým přepínačem, umístěným v rukojeti. Použitím tohoto přepínače, který používá mžikový kontakt, se také nuluje ručka měřidla. To nás přivádí k sekci měřidla na předním panelu, která obsahuje potenciometry\_,,nastavení zesílení" a "nastavení nuly". Funkce zesílení určuje citlivost měřidla (je také spojena se spínačem napájení).

Ovládací prvek pro nastavení nuly se používá pro přesné nastavení bodu, na který se vrací ručka měřidla (s nulou uprostřed stupnice) při vynulování. Ve většině případů se nastavuje tak, že se nastavuje do středu

stupnice. Jsou však určité důvody k tomu, že to není vždy ideální, avšak o tom více pozděii

Sekce nízkofrekvenční obsahuje regulátor hlasitosti a prvek pro nastavení prahové hodnoty. Hlasitost je jasná; nastavení prahové hodnoty určuje velikost výchylky ručky měřidla, při níž zazní zvukový signál. Kmitočet zvuku pak závisí na výchylce měřidla – čím větší výchylka ručky, tím vyšší kmitočet.

Posledním zbývajícím ovládacím prvkem je druhý přepínač. Tím se přístroj přepíná do automatického nebo "ručního" režimu. V "ručním" režimu se měřidlo nuluje použitím páčkového přepínače, jak již bylo popsáno. V automatickém režimu je měřidlo průběžně nulováno automaticky. Časová odezva této funkce je však tlumena tak, že měřidlo může zaregistrovat nález. Přechod ručky měřidla od nuly do plné výchylky proběhne přibližně za jednu sekundu.

#### Pracovní režimy

Ve schématu zapojení (obr. 21) je obvod oscilátoru vlevo od vysílací cívky. Vlivem indukční vazby se signál oscilátoru objevuje i na "přijímací" cívce. Všechny kovy, které se dostanou do magnetického pole cívky pak způsobí změnu amplitudy i fáze přijímaného signálu.

Přijímaný sígnál může být zpracován dvěma způsoby (podle toho, byl-li zvolen režim "rozlišení" nebo "potlačení"). V obou případech je však sígnál usměrněn a pak přiveden do obvodu buzení měřidla (ve schématu IO<sub>6a</sub>). Obvody v této části schématu se vztahují k ručnímu (manuálnímu) a automatickému nutování měřidla.

Po pravé straně této části schématu je nízkofrekvenční část zapojení, soustředěná kolem IO<sub>7</sub>.

#### Popis zapojení

Oscilátor signálu pro hledací cívku používá komplementární tranzistory T<sub>1</sub> a T<sub>2</sub>, které kmitají na kmitočtu kolem 9 kHz a produkují téměř sinusový mezivrcholový signál o napětí až 25 V.

Rezistory v bázích tranzistorů nejsou stejné – jeden z nich je  $4.7 \text{ k}\Omega$  namísto  $8.2 \text{ k}\Omega$ . To umožňuje, aby oscilátor pracoval i při menších napětích, než by bylo možné při dokonale symetrickém zapojení. Způsobená nesymetrie vysílaného signálu je jen mírná a nemá žádné nepříznivé důsledky.

Přestože signál oscilátoru je přiváděn také do smyčky fázového závěsu s obvodem 4046, nebudeme se nyní touto částí zapojení zabývat. Budeme se zatím věnovat přijímači části a jejímu zapojení. K dosažení nejúčinnější vazby signálu se vstupní přijímací cívkou při navrženém provozním kmitočtu je použit paralelní kondenzátor 0,22 μF. Tak se dosahuje jmenovitého mezivrcholového přijímaného signálu 70 mV.

Kondenzátor 22 nF a rezistor 1 kΩ tvoří článek *RC* (horní propust), přes který se přijímaný signál přivádí na obvod IO<sub>2a</sub>. Jmenovitý bod poklesu charakteristiky o 3 dB je kolem 8 kHz.

IO<sub>2a</sub> je operační zesilovač TL062 (BO62), zapojený jako neinvertující zesilovač se zesílením 34. Všechny operační zesilovače, použité v původním zapojení jsou TL062 (B062), což je verze dvojitého operačního zesilovače TL072 s malou spotřebou. Spotřeba je kolem 200 µA na jeden zesilovač (na rozdíl od 1,4 mA při použití TL072). Při šesti operačních zesilovačích v zapojení to jistě vede k nezanedbatelné úspoře baterií.

Když se do magnetického pole hledací hlavy s cívkami dostane kov, fáze přijímaného signálu se ve vztahu k vysilanému signálu změní. Tento jev je výraznější u kovů s obsahem železa, než u neželezných kovů. Pokud jde o amplitudu signálu, materiály obsahující železo způsobí její malé zmenšení, zatímco neželezné kovy její zvětšení. V některých případech je toto zvětšení dosti podstatné. Aby bylo možné využít těchto vlastností

Aby bylo možné využít těchto vlastností zapojení, v režimu "rozlišení" musí být zapojení citlivé jak na fázové, tak i amplitudové změny. To znamená, že přijímaný signál nemůže být jednoduše usměrněn a použit k přímému buzení měřidla. Namísto toho se zpracuje přerušováním, a dále se pracuje jen s polovinami průběhu. Pro určení fázových změn musí být k přerušování použit řidicí signál, který má stejný kmitočet jako přijímaný signál, ale je fázově nezávíslý. Toho se dosahuje dosti zajímavým způsobem.

Výstup obvodu IO<sub>2a</sub> (vývod 1) je připojen ke dvěma dalším integrovaným obvodům. Uvažujme nejprve IO<sub>3</sub>, čtveřici analogových spínačů. Každé ze čtyř "hradel" tohoto obvodu má vstup, výstup a řídicí vývod. Když je řídicí vývod v horní úrovni, má spoj vstup-výstup obvodu malou impedancí. Mezi vývody vstup-výstup mohou procházet signály obojí polarity. V přístroji jsou pro řízení výstupu IO<sub>2a</sub> použita dvě taková hradla.

Z těchto dvou hradel je ve vodivém stavu v daném okamžiku vždy jen jedno, podle toho, byl-li zvolen režím "rozlišení" nebo "potlačení". Obvod IO<sub>3a</sub> pracuje pří "rozlišení", IO<sub>3b</sub> při "potlačení". K řízení těchto dvou hradel se používá bistabílní klopný obvod, sestavený z obvodů IO<sub>4o</sub> a IO<sub>4d</sub>. Přepínač pro volbu režímu (S<sub>1a</sub>) má totiž mžikový kontakt, proto je třeba použít bístabilní klopný obvod.

Řídící vývody integrovaných obvodů IO₃a a IO₃b (vývody 6 a 12) jsou připojeny k bistabílnímu klopnému obvodu přes diody D₂ a D₃. Polarita těchto diod je taková, že klopný obvod může vypnout oba spínače CMOS, ale nemůže je sepnout. Tuto funkci musí splnit jiné obvody, připojené k řídicím vývodům spínačů CMOS.

V případě IO<sub>3a</sub> je stav "zapnuto" přepínače řízen integrovaným obvodem IO<sub>1</sub>, obvodem fázového závěsu 4046. Stav sepnutí přepínače je řízen konkrétně vývodem 4 – výstupem VCO obvodu IO<sub>1</sub>.

Obvod napětím řízeného oscilátoru VCO (Voltage Controlled Oscillator) je zapojen tak, že pracuje na stejném kmitočtu jako vysílací oscilátor. Musí však být schopen pracovat s odlišnými a nastavitelnými fázovými posuvy oproti vysílacímu oscilátoru. To je základní požadavek funkce "rozlišení" (diskriminace).

Obvod  $IO_1$  je propojen s výstupem vysílacího oscilátoru (vývod 14) atenuátorem RC, sestaveným z rezistoru 100 k $\Omega$  a kondenzátoru 47 pF. Tyto součástky zmenšují velikost signálu oscilátoru na úroveň, kterou může integrovaný obvod CMOS bezpečně zpracovat

Přijímaný vstupní signál a signál VCO se porovnávají v obvodu fázového komparátoru. V tomto obvodu vzniká chybové napětí, které se přivádí zpět na vstup VCO a mění jeho kmitočet tak, aby odpovídal vstupnímu signálu. Ve skutečnosti je chybové napětí řadou impulsů, jejichž šířka se mění v soula-



Obr. 21. Detektor kovů Beachcomber

du s rozdílem kmitočtů. Tyto impulsy jsou před přivedením na vstup VCO (vývod 9) filtrovány, takže chybové napětí je stejnosměrné.

V obvodu 4046 jsou ve skutečnosti k dispozici dva fázové komparátory. Porovnávají se vstupní signál a výstupní signál VCO. Když se používá fazový komparátor 2, pak VCO pracuje na stejném kmitočtu a ve stejné fázi jako vstupní signál. Fázový komparátor 1, který se používá v tomto obvodu, pouze udržuje oba signály na stejném kmitočtu a v konstantním fázovém vztahu. To však neznamená ve fázi (tj. fázový úhel 0°), ale v konstantním fázovém úhlu.

Ve skutečnosti bude fázový úhel 90°, když bude VCO pracovat ve středu svého kmitočtového pásma. Tento úhel se bude na okrajích kmitočtového pásma měnit na 180°.

Rozsah kmitočtů, ve kterém může VCO pracovat, není neomezený. Prakticky se pro nastavení určité meze používají vnější součástky. Kondenzátorem, připojeným mezi vývody 6 a 7 (v tomto případě 1200 pF) a rezistorem, zapojeným mezi vývod 11 a zem, se nastaví horní mez kmitočtu. V našem zapojení se jako regulátor používá kombinace rezistor 27 k $\Omega$  a potenciometr 100 k $\Omega$ . Další rezistor může být pro nastavení ještě nižší meze VCO zapojen mezi vývod 12 a zem, této možnosti však není v našem zapojení využito.

S uvedenými hodnotami součástek je horní mez VCO nastavena na méně než 10 kHz při potenciometru rozlišení nastaveném na maximální odpor. Tato mez se zvyšuje na přibližně 45 kHz při potenciometru nastave-

ném na minimální odpor.

Změna nastavení ovládacího prvku "rozlišení" způsobí posuv fáze výstupního signálu VCO vzhledem k signálu vysílacího oscilátoru. Protože výstup VCO také ovládá hradlování přijímaného signálu pomocí IO<sub>3a</sub>, máme tak možnost vzorkovat určité části průběhu přijímaného signálu. A to je základem provozního režimu "rozlišení".

Nyní se budeme zabývat obvodem "potlačení vlivu země". Ten je méně komplikovaný. Přijímaný signál je sice dále přerušován spínačem CMOS (IO<sub>3b</sub>), ale nevyužívá se fázové detekce. Režim "potlačení" je citlivý

pouze na amplitudové změny.

Řídicí signál je nyní odvozován z přijímaného signálu namísto ze signálu vysílaného. Operační zesilovač IO<sub>2b</sub> zpracuje výstupní signál obvodu IO<sub>2a</sub> se zesílením asi 370. Toto velké zesílení zaručuje, že výstupním signálem IO<sub>2b</sub> (vývod 7) je signál pravoúhlého průběhu, bez ohledu na to, že na výstupu IO<sub>2a</sub> je signál průběhu sinusového (vývod 1).

Přívedením výstupního signálu obvodu IO<sub>2b</sub> do filtru, skládajícího se z rezistoru 1,5 kΩ a kondenzátoru 2200 pF, se dosáhne mírného zpoždění spouštění obvodu

IO<sub>4a</sub>.

Výstupní signál pravoúhlého průběhu obvodu  $IO_{4a}$  se přes diodu  $D_1$  přivádí na kondenzátor o malé kapacitě (1800 pF). Použitá polarita  $D_1$  způsobí, že se na kondenzátor přivádějí pouze záporné impulsy. Při kladných impulsech má  $D_1$  předpětí v závěrném směru a kondenzátor se nabíjí přes rezistor  $1\,\mathrm{k}\Omega$  a potenciometr potlačení 25 k $\Omega$ . přes které je připojen ke kladnému pólu napájecího zdroje. Rychlost nabíjení závisí na nastavení potenciometru.

Průběh napětí na kondenzátoru se používá ke spouštění obvodu  ${\rm IO_{4b}}$ . To znamená, že na výstupu  ${\rm IO_{4b}}$  je řada kladných impulsů o době trvání, kterou určuje ovládací prvek "potlačení".

Výstup obvodu  $IO_{4b}$  je připojen přes rezistor  $47_k\Omega$  na řídicí vstup (vývod 12) obvodu  $IO_{3b}$ . Proto je hradlovacím signálem tohoto spinače CMOS. Je třeba si uvědomit, že tento hradlovací signál je účinný pouze v režimu potlačení ( $D_3$  je přitom polarizována v závěrném směru). Dioda  $D_3$  "drží" vývod 12 obvodu  $IO_{3b}$  v "horní" poloze, bez ohledu na stav výstupu obvodu  $IO_{4b}$ .

Rozsah, ve kterém může být režim "potlačení" v tomto přístroji používán, je omezen hledací cívkou. Cívka není stíněna a proto podléhá vlivům kapacity proti zemi. V některých situacích se pak objevuje jev, jako by cívka ztrácela indukční "charakteristiku" a obvod "potlačení" nemůže zajistit dosta-

tečnou kompenzaci.

Při stručném shrnutí jsme tedy v situaci, kdy pro obvod buzení měřidla může být použit signál, odvozený buď z fázově a amplitudově citlivého detektoru (IO<sub>3a</sub>), nebo pouze z amplitudového detektoru (IO<sub>3b</sub>) v případě zvolení režimu "potlačení".

Přerušovaný signál, odvozený z  $IO_3$ , je zesilován obvodem  $IO_{5a}$ . Je to jednoduchý invertující zesilovač se zesilením kolem 2,5. Jeho výstupní signál (vývod 7) se přivádí na kondenzátor přes diodu  $D_4$ . V tomto případě se používá kondenzátor 33 nF s paralelním vybíjecím rezistorem 47 k $\Omega$ , kterým se nastavuje "normální" úroveň na kondenzátoru (vhodné napětí).

Napětí, které vzniká na kondenzátoru 33 nF, nakonec určuje velikost výchylky ručky měřidla, musí však být předtím zesíleno. To je úkolem obvodu IO<sub>6a</sub>. Ten zajišťuje zesílení až 41 (podle nastavení potencio-

metru zesílení 1 MΩ).

Neinvertující vstup (vývod 5 operačního zesilovače IO<sub>6a</sub>) není připojen ke sběrnici 0 V, jak bychom to mohli běžně očekávat. Místo toho je referenční napětí pro tento vývod odvozeno z nulovacího obvodu měřida. Ten snímá velikost ofsetu na výstupu obvodu IO<sub>6a</sub> (a tedy na měřidle) pomocí obvodu IO<sub>5b</sub>.

Pro aktivování obvodu nulování měřidla je třeba použít spínač  $S_1$ . Jak jsme již uvedli, částí  $S_{1a}$  spínače se volí provozní režim, současně však  $S_{1b}$  vyvolá funkci obvodu nulování. Za předpokladu, že  $S_2$  je v poloze "ručně",  $S_{1b}$  pak připojí výstup obvodu  $IO_{5b}$  k neinvertujícímu vstupu  $IO_{6b}$  (vývod 3) a tím se nabije kondenzátor 0,1  $\mu$ F. Na výstupu  $IO_{6b}$  nyní vzniká ofset, úměrný velikosti ofsetu měřidla

Všimněte si také, že výstup obvodu IO<sub>6b</sub> je připojen zpět na vstup IO<sub>6a</sub>. Protože IO<sub>6a</sub> původně způsobil ofset měřidla, přivadí se nyní na jeho neinvertující vstup korekční napětí, které tento ofset přesně vykompen-

zuje. Měřidlo je tak vynulováno.

Protože IO<sub>6b</sub> má ná neinvertujícím vstupu připojen kondenzátor 100 nF, pracuje jako vzorkovací paměťový obvod (sample and hold). I po uvolnění spínače S<sub>1</sub> se korekční napětí na kondenzátoru 100 nF udržuje dál. Toto korekční napětí se ovšem uplatní jen v době sepnutí spínače S<sub>1</sub>. Každý ofset, který vznikne mimo dobu sepnutí S<sub>1</sub> způsobí výchylku ručky měřidla – až do té doby, než je spínač S<sub>1</sub> opět sepnut a obvod vynulován.

Tímto způsobem je možné okamžitě vynulovat všechny výchylky ručky měřidla způsobené změnami ovládacích prvků (jako je změna režimu), nebo podmínkami prostředí. Po vynulování je každá výchylka ručky měřidla známkou přítomnosti kovu v blizkosti

hledací cívky.

Až dosud jsme předpokládali, že S<sub>2</sub> je v poloze "nulování ručně". Kdyby byl S<sub>2</sub> přepnut do polohy "automaticky", nastaly by změny. Za prvé by byla přerušena cesta z IO<sub>5b</sub> k IO<sub>6b</sub> přes spínač S<sub>1</sub>. To zabrání aktivaci nulovacího mechanismu spínačem S<sub>1</sub>. Za druhé se vytvoří alternativní cesta od obvodu IO<sub>5b</sub> k obvodu IO<sub>6b</sub>. Tato cesta je

tvořena rezistorem 47 kΩ a kondenzátorem 100 nF. Tyto součástky nyní tvoří cestu pro nulovací signál, takže ten působí nepřetržitě.

Rezistorem 47 k $\Omega$  a kondenzátorem 100 nF se vytváří zpoždění, takže při kovovém předmětu v blízkosti hledací cívky se ručka měřidla vychýlí asi na jednu sekundu, než začne nulování působit. Všimněte si, že když je hledací cívka držena déle než jednu sekundu (v tomto režimu) nad kovovým předmětem, ručka měřidla bude vynulována.

Nepříjemným důsledkem této charakteristiky je, že když se nyní odstraní kovový předmět, způsobí to "sekundární" výchylku ručky měřidla. Tato výchylka má opačný směr, než původní výchylka – jinými slovy, signál o přítomnosti kovu, který byl původně potlačen, je nyní krátkodobě registrován. Tomuto problému je možné se jednoduše vyhnout tím, že zajistíme, aby obvod neměl čas způsobit vynulování ručky měřidla v žádném případě při nálezu kovového předmětu.

Potenciometrem nulování měřidla 25 k $\Omega$  se nastavuje obvod, do kterého se ručka měřidla vrátí po vynulování. Změnou referenčního napětí, přiváděného na neinvertující vstup obvodu  $10_{5b}$  (vývod 3) se změní odezva obvodu na libovolný daný ofset. Nastavení je nutné dělat při sepnutém  $S_1$ , jinak změněný nulový bod není zřejmý, dokud se nesepne  $S_1$  znovu. Normálně se nulový bod nastavuje na nulovou výchylku ručky měřidla (střed stupnice), není to však v žádném případě nutné. Ručka měřidla může být "vynulována" do polohy vlevo od středu, nebo na plnou výchylku doleva. Tím by se dosáhlo většího rozlišení pro kovy v žádoucí oblasti.

Kromě toho je možné tímto způsobem dosáhnout, aby nízkofrekvenční část, která generuje kmitočet úměrný výchylce ručky měřidla, pracovala se zlepšenou rozlišovací

schopností.

Do schématu je zahrnut i spínač CMOS ( $IO_{3c}$ ) mezi výstupem  $IO_{6a}$  a měřidlem. Při běžném provozu zajišťuje rezistor 47 kΩ, připojený k řídlcímu vstupu tohoto spínače (vývod 5), že je  $IO_{3c}$  sepnut, tj. že má malý odpor mezi vývody 4a 3. To dovoluje běžnou funkci měřidla. Když se však sepne spínač zkoušky napětí baterie ( $S_3$ ), na vývodu 5 obvodu  $IO_{3c}$  je dolní mez napětí, spínač  $IO_{3c}$  je výpnut.

Současně S<sub>3</sub> zajistí propojení měřidla se zápornou větví napájecího napětí přes rezistor 68 kΩ. Měřidlo nyní měří záporné napájecí napětí ze zdroje. V přístroji není žádný obvod pro měření kladného napájecího napětí zdroje, odběr proudu je však v obou napájecích větvích stejný – to znamená, že se obě baterie vybíjejí stejně, stačí tedy měřit pouze napájecí napětí jedné polarity.

V původním přístroji byla výchylka ručky měřidla ±30 dílků. Při nových bateriích byla výchylka ručky asi 27 dílků. Když se při měření napětí zmenšila pod 20 dílků, bylo nutné baterie vyměnit. Jiná měřidla mohou mít jiné stupnice a budou vyžadovat kalibraci při známých referenčních napětích. Baterie je možné považovat za vybité, když se napětí zdroje, měřené za rezistory 150 Ω, zmenší na +4 V.

Zbývá popsat pouze nízkofrekvenční část zapojení. Ta je přiměřeně jednoduchá. Je založena na VCO s obvodem LM566 (IO<sub>7</sub>). Pro nastavení běžného provozního kmitočtu je třeba použít pouze dvě součástky, kondenzátor a rezistor. Jako kondenzátor byl zvolen 1 nF (připojený k vývodu 7) a rezistor 8,2 kΩ (připojený k vývodu 6). Řídicí napětí, připojené k vývodu 5, posouvá kmitočet v širokém rozsahu.

V tomto obvodu se řídicí napětí odebírá z výstupu obvodu IO<sub>6a</sub> a proto se mění úměrně s výchylkou ručky měřidla. Ovládací prvek prahového kmitočtu, potenciometr

25 kΩ, se používá pro kalibraci nízkofrekvenční části tak, aby nevznikal žádný zvuk, dokud není detekován kov. Při detekci kovu se ozývá zprvu jen tiché "tikání". S rostoucí výchylkou ručky se signál mění na "bručení" a konečně na silné bzučení. Obvod akustické detekce je nejcitlivější, když se ozývá

Protože integrovaný obvod LM566 nemůže budit reproduktor přímo, byl použit zesilovač výkonu. Skládá se z T<sub>3</sub> a T<sub>4</sub>. Budicí signál pro tyto tranzistory se odebírá z výstupu obvodu  $IO_7$  (vývod 3) a prochází přes potenciometr hlasitosti 25 k $\Omega$ .

V přístroji se počítá s použitím sluchátek. Konektor pro ně musí být zapojen tak, aby akustické měniče stereofonních sluchátek

byly zapojeny do série.

Kladná a záporná větev napájení jsou spojeny s příslušnými vývody baterií přes rezistory 150 Ω. Tyto rezistory byly použity hlavně proto, aby se zmenšilo napájecí napětí pro obvody CMOS. Při nových bateriích by celkové napájecí napětí mohlo dosáhnout 19 V, integrované obvody CMOS jsou však většinou navrženy pro maximalní napájecí napětí 15 V. S rezistory 150 Ω v zapojení se napájecí napětí zmenší na přibližně ±6,2 V a celkově na 12,4 V – což je bezpečně v rozsahu možností obvodů CMOS.

Rezistory 150 Ω také zmenšují odběr proudu, zvláště při nových bateriích; rezistory není možné vynechat nebo nahradit - ovládací prvek "rozlišení" by pak neměl

správný rozsah nastavení.

Nízkofrekvenční část zapojení je provozována s napájením přímo z báterií, neboť má při určitých pracovních režimech dosti velký odběr proudu. To by vedlo, kdybychom chtěli napájet nízkofrekvenční část přes rezistory, ke značnému kolísání napětí v ostatních obvodech přístroje.

#### Konstrukce a oživení

Součástky přístroje jsou sestaveny na desce s plošnými spoji. Pro funkci přístroje je velmi důležité provedení hledací hlavy s cívkami. Vysílací i přijímací cívka mají eliptický tvar a obě jsou umístěny dalšími osami elips rovnoběžně s přesahem asi 25 mm na čtvercové podložce o straně asi 150 mm. Jak již bylo uvedeno, hlava není stíněna. Důležitá je také správná polarita zapojení cívek. Protože původní pramen nabízí hotovou cívku ke koupi, neuvádí počty závitů. Bylo by možné použít cívku z následujícího popisu hledače s příslušnou úpravou.

Po zapojení všech součástek a připojovacích vodičů je možné začít s oživením přístroje. Před zapnutím napájecího napětí otočte ovládací prvky "rozlišení" a "potlače-ní" do krajní polohy proti smyslu otáčení hodinových ručiček, hlasitost na minimum, prahovou hodnotu na minimum, nastavení nuly zhruba do poloviny a S2 do polohy "ručně". Zapněte přístroj a nastavte zesílení asi do poloviny. Páčku spínače S<sub>1</sub> přepněte doleva – měřídlo by mělo ukázat výchylku. Otáčejte nastavením nuly, a zjistěte, reagu-je-li ručka měřidla. Pokud tomu tak není, jde o závadu.

Páčku spínače S<sub>1</sub> přeložte do druhé polohy a nastavte ovládací prvek "potlačení". Indikace měřidla by se měla změnit, když se ovládací prvek nastaví do krajní polohy. Pokud tomu tak není, zkuste nastavovat ovládací prvek "rozlišení". Když na to měřidlo reaguje, S1 je instalován opačně. Buď jej otočte, nebo zaměňte přívody napájecího

napětí.

. Za předpokladu, že přístroj zatím reagoval podle popisu, přepněte S, do prava a opakuj-te zkoušku nulování. Uvolněte přepínač a nastavujte ovládací prvek "rozlišení" opět kontrolujte výchylku ručky měřidla.

Pokud bylo dosud vše v pořádku, pak otočte potenciometrem hlasitosti na maximum a zvyšujte nastavení prahové hodnoty ("na doraz"). Akustický signál by se měl měnit od již zmíněného tikání až po hlasité pískání. V tomto stadiu je možné přístroj vyzkoušet i se sluchátky (při zasunutí konektoru se vnitřní reproduktor odpojí). Při používání sluchátek bude třeba zmenšit hlasitost.

Dále nastavte ovládací prvek "rozlišení" na maximum a vynulujte měřidlo (S<sub>1</sub> do prava). Položte minci na zem v místě, kde máte jistotu, že nejsou zakopány žádné kovové předměty. Když nemůžete zajistit tuto poslední podmínku, pak místo na zem položte minci na velkou lepenkovou krabici. Pohybujte hledací hlavou sem a tam nad mincí a stále zmenšujte vzdálenost, dokud se ručka měřidla nevýchýlí.

Podle nastaveného zesílení by se měla ručka měřidla začít vychylovat asi při vzdálenosti 2 až 15 cm. Zkuste změnit nastavení ovládacího prvku "rozlišení". Mince by mělà být stále registrována, i když při různých nastaveních "rozlišení" se může citlivost zmenšovat.

Místo mince použiite železný předmět podobných rozměrů. Při ovládacím prvku "rozlišení" na minimu by měl být zaregistrován kladnou výchylkou ručky, při maximu by měl být potlačen. Někde mezi těmito krajními polohami by měl být železný předmět zcela

ignorován

Nyní můžete vyzkoušet automatické nulování – přepnout Š<sub>2</sub> do polohy "automaticky" Opakujte zkoušku rozlišení s mincí, ale udržujte hledací hlavu nad ní v pohybu. Při každém přiblížení by se měla krátce ručka měřidla vychýlit. Nyní to zkuste s železným předmětem. Ručka bude mít dále zápornou výchylku – ale po ní bude následovat krátký "stínový" impuls v kladném směru. Tomu se nedá zabránit, při poměrně rychlém pohybu hledací hlavy bude však tento jev minimalizován.

Dřive, než vezmete přístroj do terénu, je třeba se s nim dobře seznámit. Získávejte praxi s mincemi, prsteny, korunkovými uzá-věry lahví, kroužky z hliníku od plechovek s pivem a dalšími předměty, se kterými se pravděpodobně v praxi setkáte. Ukládejte některé z nich do země do hloubky až 5 cm.

Existují některá důležitá omezení, která je třeba si uvědomit. Vzhledem k uspořádání cívek je tento přístroj vhodnější pro hledání malých předmětů, jako jsou mince. Ty mohou být detekovány obvykle s dobrou přesností, protože skutečnou "hledací oblastí" hlavy je úzký pás (ne více než 2,5 cm), který probíhá téměř po celé délce hlavy v místě přesahu cívek. Mimo tuto oblast jsou výsledky měření nerelevantní.

Ve skutečnosti jsou po obou stranách "živé oblasti" oblasti negativní detekce. Ty způsobí malou výchylku ručky měřidla

v opačném směru.

Pro typický nález tedy měřidlo reaguje nejprve malou "zápornou" výchylkou ručky, pak následuje velká "kladná" výchylka, po které následuje opět záporný výkyv. Tento přístroj není schopen rozlišit velké

železné předměty. Velkými v tomto případě rozumíme všechny předměty, které jsou podstatně větší, než "živá" oblast cívky. praxi to není podstatné omezení.

Pokud jde o mineralizovanou půdu, přístroj bude obecně pracovat s menší citlivostí. Nejhorším případem je mokrý písek na pláži. Je možné očekávat detekci jen velmi mělce uložených předmětů. Všimněte si, že tam, kde je půda mineralizována rovnoměrně (na rozdíl od kolísavé mineralizace) v režimu "rozlišení" se dosáhne mírného zlepšení citlivosti. Režim "potlačení" se používá hlavně tam, kde se charakter půdy mění s každým krokem.

#### Provozní pokyny

- 1. Přepínač Auto/Man do polohy Man (ručně).
- Hlasitost na maximum.
- Prahová hodnota na minimum.
- "Rozlišení" na maximum. "Potlačení" na minimum.
- Zapněte přístroj, ponechejte zisk na minimu.
- 7. Přepněte páčkový spínač doprava a podržte v této poloze.
- 8. Použijte ovládací prvek "nastavení nuly" k nastavení ručky do středu stupni-
- 9. Nastavte prahovou hodnotu tak, aby zvuk právě zanikl.
- Uvolněte páčkový spínač.
- 11. Položte na zem zkušební minci nebo předmět.
- 12. Pohybujte hledací hlavou ze strany na stranu a pomalu se přibližujte k minci.
- Vyměňte minci za ocelovou podložku, matici nebo podobný předmět.
- 14. Postupně zmenšujte nastavení ovládacího prvku "rozlišení" a opakujte postup pod bodem 12.
- 15. Přesuňte páčku spínače doleva.
- 16. Použijte opět minci a opakujte postup pod bodem 12, postupně měňte nastavení ovládacího prvku "potlačení". 17. Nahraďte mínci podložkou.
- 18. Opakuite 16.
- 19. Pokud se ručka měřidla odchýlí od nuly v průběhu činnosti, popsané u některého z těchto bodů (bez přítomnosti kovu), nastavte nulu (reset) přepnutím páčko-vého spínače (do prava v režimu "rozli-

šení", doleva při "potlačení").

To vám dá představu o reakcích přístroje, které můžete očekávat. Obecně je lépe dát přednost režimu "rozlišení" před režimem potlačení" protoče dáte mírozlišení". "potlačení", protože dává mírně větší citlivost. Vždy používejte nejmenší prakticky možné nastavení zesílení, v opačném případě se zvětšuje možnost chybné detekce. Jinak nezapomínejte přístroj vypínat v průběhu kopání, abyste šetřili baterie.

#### Odstraňování závad

Když přístroj odmítá spolupracovat a v zapojení nebo pájení není závada, je možné použít některý z uvedených postupů odstra-ňování závad. V první řadě, pokud máte osciloskop, je možné zkontrolovat průběhy v kontrolních bodech - výstupech IO3a a IO3b (obr. 22).



Obr. 22. Průběhy na osciloskopu

Když nezjistíte podobné průběhy, je to důvod k zamyšlení. Sinusový nebo pravoúhlý průběh signálu je nesprávný. Měl by tam být výrazně přerušovaný průběh. Když se zjistí pouze sinusovka, zřejmě chybí hradlovací signál. Je třeba zjistit, je-li tomu tak v obou režimech, "rozlišení" a "potlačení". Když je v kontrolním bodě jen signál pravoúhlého průběhu, pak se k integrovanému obvodu IO<sub>3</sub> nedostává žádný přijímaný signál. To může ukazovat na závadu v přijímacím obvodu nebo v oscilátoru.

Za předpokladu, že se v kontrolním bodě zjistí správný průběh, problém bude s největší pravděpodobností v obvodu nulování měřidla. To je možné nejsnadněji ověřit při odpojené přijímací cívce. Sepněte S<sub>1</sub> a změňte nastavení ovládacího prvku pro nastavení nuly.

Když přístroj nereaguje při sepnutí S<sub>1</sub>, zkontrolujte, jestli se na vývod 3 obvodu IO<sub>6b</sub> přivádí skutečně nějaké napětí. Pokud tomu tak není, postupujte zpět k IO<sub>5b</sub> (zpočátku vývod 1, pak vývod 2). Když S<sub>1</sub> způsobí výchylku ručky měřidla, ale nastavení nuly již nezmění, kontrolujte napětí na vývodu 3 obvodu IO<sub>5b</sub>. To by se mělo při nastavování nuly měnit.

Pokud máte jen multimetr, odpojte vysílací cívku. Napětí na vývodu 1 obvodu IO<sub>2a</sub> by nyní mělo být velmi blízké nule. Napětí v kontrolním bodě musí být v režimu "rozlišení" také 0 V. V režimu "potlačení" zkontrolujte, je-li napětí na vývovu 7 IO<sub>2b</sub> také rovno 0 V. Pokud je vývod 10 na dolní úrovni, pak se nedá v kontrolním bodě realizovat měření, které by mohlo vést k nějakému závěru.

Kdyby se vyskytly problémy při volbě nebo změně režimu, měřte napětí na vývodu 4 obvodu IO<sub>4c</sub>. To má být největší, když je zvoleno "potlačení", a má v této úrovni zůstat i po vypnutí S<sub>1</sub>. Když je zvolen režim "rozlišení", na vývodu 4 musí zůstat nejmenší napětí.

Electronics Australia prosinec 1984

#### Citlivý hledač kovů

Levné detektory kovů většinou zklamou v použití a dobré detektory jsou drahé. Sestavení přístroje podle tohoto článku vyžaduje hodné práce, a není to konstrukce, o kterou by se mohl pokoušet začátečník, i když je přístroj a postup zkoušení popsán tak, aby sestavení bylo co nejjednodušší.

Jak jsme již uvedli, existuje pět hlavních typů detektorů kovů: přístroje s BFO (záznějový oscilátor), s vyváženou indukčností, s impulsní indukční metodou, s metodou rozladění a magnetometr. Tento poslední princip využívá detekce malých anomálií intenzity zemského magnetického pole, ale pro hledání "pokladů" je zcela bezcenný, protože může detekovat pouze železné předměty. Přístroje s BFO a s rozladěním pracují na základě detekce malých změn indukčnosti hledací cívky, ke které dochází v přítomnosti kovového předmětu. Obě metody se vyznačují špatnou citlivostí, vyplývající z principu.

Detektory s impulsní indukční metodou jsou však něčím jiným; dobré jsou skutečně velmi citlivé a některé z nejdražších detektorů, které jsou v současné době k dispozici. jsou právě tohoto typu. Pracují tak, že vystavují zem výkonným magnetickým impulsům a mezi těmito impulsy přijímají signály odezvy, způsobené vířivými proudy, vznikajícími ve všech kovových předmětech, které jsou v magnetickém poli. Přes značnou citlivost mají však i nedostatky. Jejich spotřeba z baterií je značná s ohledem na výkon, potřebný pro impulsní vysílač, a jsou také extrémně citlivé i na malé železné předměty. Jejich používání je tedy v první řadě omezeno na prohledávání těch míst, kde je pravděpodobné, že předměty budou ukryty ve značné

hloubce, a kde je možné snadno a rychle vyhloubit i velké jámy. V některých lokalitách mohou být jejich uživatelé znechuceni častým hloubením velkých jam v tvrdé zemi pro nález rezavého hřebíku apod.

Proto se hledače s vyváženou indukčností staly standardními detektory pro všeobecné použití. Tyto přístroje mají v hledací hlavě dvě cívky, z nichž jedna je napájena signálem, který kolem ní vytváří střídavé magnetické pole. Druhá cívka je umístěna tak, že za normálních okolností je pole kolem ní vyváženo a na jejím výstupu není žádný elektrický signál. Kovový předmět, který se k cívkám přiblíží, naruší pole, což způsobí narušení vyvážení, a snímací cívka dodává určitý výstupní signál. Tento signál je možné zesílit a informovat operátora o "nálezu" řadou způsobů. Často se v jednoduchých detektorech používá signál se slyšitelnou modulací, výstup ze snímací cívky se pak zesiluje a demoduluje podobně jáko rozhlasový signál s amplitudovou modulací. Cívky mohou být uspořádány mnoha různými způsoby; většina detektorů, které jsou dnes k dispozici, používá však jeden ze způsobů, uvede-





Obr. 23. Cívky a jejich "záběr"

ných na obrázku. Obr. 23a ukazuje cívku se

"širokým záběrem", která se tak nazývá proto, že její nejcitlivější oblast (šrafovaná) zasahuje téměř přes celou cívku. Obr. 23b ukazuje cívky s "bodovým záběrem". Podle zkušenosti je bodový záběr lepší, protože cívky se širokým záběrem mají malou schopnost bodového zaměření, a mají tendenci vyvolávat falešné signály u železných předmětů, které jsou mimo střed, u mincí, které jsou na okraji hledací zóny apod. Řada nejlepších amerických přístrojů používá cívky pro bodové zaměření.

Skutečně dobrý detektor kovů musí však

mít i některé další vlastnosti. Jednou z nich je schopnost diskriminace (rozlišení) nežádoucího odpadu, jako je staniolový pápír, železné odpadky, atd. a žádaných předmětů. Dalším z těchto zdokonalení je nějaký způsob, jak vyloučit falešné signály, způsobené "vlivem země". Kapacitní efekty, způsobené zemí, je možné snadno vyloučit použitím Faradayova stínění kolem cívek, ale většina půd obsahuje určitý podíl oxidů železa, což vede k signálům, podobným jako při výskytu kousku magnetického materiálu. Pláže nasycené mořskou vodou jsou mírně vodivé, a to také způsobuje falešné signály, které vznikají na snímací cívce. Nějaký prostředek ke kompenzaci těchto jevů by tedy značně zlepšil funkci detektoru.

Na štěstí se signály z hledací cívky nemění pouze pokud jde o amplitudu; obsahující také informaci o posuvech fáze, které se výrazně liší podle typu předmětu, způsobujícího signál. S poměrně jednoduchým fázovým detektorem je proto možné navrhnout přístroj, který zcela potlačí vliv země, a může také, za předpokladu určité zkušenosti uživatele vyloučit většinu detekovaných odpadků, aniž by bylo nutné je vykopávat.

Pro úplnost si všimněme ještě několika zkratek a termínů, používaných výrobci hledačů kovů. Označení "VLF" znamená velmi nízké kmitočty (Very Low Frequency). Schopnost rozlišení (diskriminace) na základě fázové informace při objektech o malém průřezu, jako jsou fólie, závisí totiž na kmitočtu. Při vyšších kmitočtech způsobuje povrchový jev (skin-efekt), že taková diskriminace není účinná. Proto výrobci začali používat nižší kmitočty (existují i přístroje, pracující na kmitočtu okolo 2 kHz). To vedlo ke vzniku specifických problémů, protože ne tak nízkých kmitočtech není citlivost na mince ze slitin mědi a niklu již tak dobrá, a při konstrukci cívek vznikají problémy s jejich jakostí (Q). V současné době pracuje většina detektorů na kmitočtech mezi 10 a 20 kHz, při nichž je rozlišení ještě velmi dobré, ale nevznikají problémy s citlivostí a problémy

Označení "GEB" znamená vyvážení pro vyloučení země (Ground exclusion balance) a vztahuje se k fázově závislým prostředkům vyloučení vlivu půdy. Označení "TR" zna-mená "vysílač-přijímač" (transmitter-receiver), často se používá pro označení režimu "rozlišení" (diskriminace) a naznačuje, že přístroj pracuje v různých režimech s odlišnými kmitočty nebo s uspořádáním cívek tak tomu však není; jediné, čím se režimy odlišují, je referenční fáze. Není totiž možné vyloučit vliv země a současně pracovat v režímu "rozlišení", proto se běžně používá hledání v režimu GEB a při nálezu předmětu se před případným kopáním nález zkontroluje v režimu "rozlišení". Tímto způsobem je možné vyloučit např. kroužky od plechovek s pivem, ale přístroje, které mají tuto schopnost a jsou takto nastaveny, vyloučí také všechny mince ze slitiny mědí a niklu, menší než mince velikosti 10 penny. Je pravděpodobně lepší tyto kroužky tolerovat - někteří je však dokonce sbírají.

#### Skupinové zapojení

Obr. 24 ukazuje schematicky skupinové zapojení detektoru. Budicí oscilátor vytváří signál pro pole kolem hledací cívky a snímací hlava je umístěna tak, že má na svém výstupu signál pouze tehdy, když je toto pole narušeno kovovým předmětem. Pracovní kmitočet těchto stupňů je přibližně 15 kHz. Signály ze snímací cívky se zesilují, procházejí oddělovacím stupněm a pak se invertují tak, aby byla současně k dispozici jejich invertovaná a neinvertovaná verze. Ty se přiváději na dva vstupy elektronického přepínače, ovládaného referenčním signálem, odvozeným z budicího oscilátoru. Tento referenční signál však nejprve musí projít obvodem fázového posuvu, který může být



podle potřeby nastaven uživatelem. Výstup z přepínače pak prochází dolní aktivní propustí třetího řádu, jejíž mezní kmitočet je nastaven na 40 kHz, což vede prakticky k odstranění všech zbytků signálu 15 kHz, a zbývá pouze střední stejnosměrná úroveň.

Všechny objekty, způsobující signál, vyvolávají změny amplitudy i fáze přijímaného signálu, takže správným nastavením obvodu fázového posuvu je možné najit bod, ve kterém jsou tyto změny buď eliminovány, nebo způsobí jistý pokles stejnosměrné úrovně, což umožňuje vyloučit nežádoucí signály, způsobené půdou, fóliemi atd. Zpočátku většina podobných konstrukcí používala buď fázové detektory s impulsním vzorkováním, nebo se vstupní signál využíval pouze jednocestně. Použití invertoru a dvocestného přepínače však vyžaduje jen málo součástek navíc a značně zlepšuje poměr signálu k šumu, což nakonec vede k větší citlivosti.

Za filtrem se ss signál zesiluje. Protože nás zajímají pouze změny signálu, je třeba použít nějaký způsob kompenzace počáteční stále stejnosměrné úrovně. V jednoduchých přístrojích se používá ručně ovládachy prvek, ale potřeba znovunastavení po každém použití ovládacího prvku fáze – řekněme po přepnutí ze "země" – vede k tomu, že je žádoucí použít nějakou formu automatické kompenzace. Na většině komerčních přístrojů se pro nastavení na nulu používá tlačítko "tune" (ladění), které je třeba stisknout; přístroje vybavené tímto tlačítkem, mají však sklon k driftu (změna nastavení s časem).

Pokusy použít trvale pracující systémy nastavování nuly ukázaly, že ty vedou ke zmenšení celkové citiivosti, neboť používaná zapojení způsobují značné zpoždění odezvy na detekovaný objekt. Ve skutečností se obvod automatického ladění pokouší nastavit výstup na nulu současně s tím, jak se detekovaný objekt snaží způsobit zvětšení signálu na výstupu. Účinná filtrace signálu použítá v podobných zapojeních, však zajišťuje okamžitou odezvu na signál, takže může být použit takový systém ladění, na-

stavující nulu průběžně. To odstraňuje všechny problémy s driftem a dovoluje používat přístroj stále s maximální citlivostí, pokud se to požaduje. Přístroj je vybaven přepínačem nebo tlačítkem "paměti" (tune hold), kterým je možné zastavit funkci ladění při přesném zjišťování polohy nálezu nebo při "rozlišení".

Za stupněm automatického ladění a zesilovačem se signál přivádí na ručkové měřidlo s nulou uprostřed; ten má v režimu "rozlišení" "kladnou" výchylku při "špatných" nálezech. Pak se signál přivádí do dalšího zesilovače s ovládacím potenciometrem, nastavujícím bod, ve kterém nasazuje akustický výstupní signál. Výstupní signál tohoto zesilovače je ovšem stále ještě stejnosměrný, proto je přerušován nízkofrekvenčním oscilátorem a dává signál, který je třeba pouze zpracovat v koncovém stupni, aby mohl napájet reproduktor.

#### Popis zapojení

Úplné zapojení přístroje je na obr. 25. Tranzistor T<sub>1</sub> a přidružené součástky tvoří budicí oscilátor, který dodává velmi čistý sinusový signál o kmitočtu 15 kHz. Integrovaný obvod IO1 odděluje část tohoto signálu a obvod IO2 zavádí podle potřeby fázový posuv. V režimu "země" je k dispozici fázo-vý posuv asi – 10 až +40°, zatímco v režimu "rozlišení" a "pláž" je to asi 0 až – 170°. IO<sub>3</sub> pracuje jako komparátor. Tranzistor T<sub>2</sub> je předzesilovač přijímaného signálu a je zapo-jen jako zesilovač se společnou bází. Tento obvod a oscilátor jsou založeny na konstruk-cích, které byly použity v několika komerčně vyráběných přístrojích, protože jsou jedno-duché a dobře pracují. Přijímací cívka L₂ je neladěna; to společně s malou vstupní impedancí T2 zajišťuje předem stanovenou fázovou charakteristiku, potřebnou pro spolehlivou diskriminaci (rozlišení). Výstup T2 má velkou impedanci, takže IO4 pracuje jako oddělovač, zatímco IO<sub>5</sub> je invertor s jednot-kovým zesílením. Obvod IO<sub>6</sub> je zapojen jako elektronický přepínač analogového signálu. Obvody IO7 a IO8 tvoří společně dolní aktivní propust třetího řádu.

Obvod IO<sub>9</sub> pracuje jako stejnosměrný zesilovač a také jako stupeň automatického ladění (tune). Jeho funkci lze snadněji pochopit, když se nejprve považuje za obvyklý invertující zesilovač s operačním zesilovačem podle obr. 26. Když je na neinvertujícím



Obr. 26. Invertující operační zesilovač

vstupu 0 V, pak musí být na invertujícím vstupu také 0 V, takže když se na vstupní rezistor R<sub>vst</sub> přivede napětí, výstupní signál se změní tak, že se obnoví na invertujícím vstupu nulové napětí přes R<sub>f</sub>. Uvažujme nyní vliv umístění kondenzátoru v bodě "x". Když je výstup připojen přímo k invertujícímu vstupu, přejde na 0 V. Když se současně na R<sub>vst</sub> přivádí napětí, kondenzátor se nabije. Když se nyní výstup odpojí od invertujícího vstupu, zůstane na něm 0 V, protože kondenzátor si podrží náboj, potřebný pro odchylku vstupního napětí. Změna vstupního napětí se nyní projeví ve změně výstupního napětí, přičemž zesílení je dáno poměrem R<sub>I</sub>/R<sub>vst</sub>. Tímto způsobem je možné navrhnout zesilovač s pouze jedním operačním zesilovačem, který vyrovná velká vstupní ss napětí a přesto umožňuje značně ss zesílit velmi malé změny vstupního napětí.

Tranzistor T<sub>3</sub> vytváří v hlavním obvodu prostředek pro spojení výstupu s invertujícím vstupem. Výstupní signál je dělen rezistory R<sub>33</sub> a R<sub>34</sub> a přivádí se přes rezistor R<sub>31</sub>, takže rychlost nulování je poměrně pomalá, avšak nulování probíhá nepřetržitě, protože T<sub>3</sub> je otevřen. Když je však chyba nastavení příliš velká, jako tomu bude po přepnutí nebo při použití ovládacích prvků rozlišení, povedou diody D<sub>5</sub> nebo D<sub>6</sub> a značně urychlí rychlost nastavení. Diody D<sub>3</sub> a D<sub>4</sub> brání tomu, aby vzniklo předpětí na přechodu T<sub>3</sub>

v propustném směru.



Potenciometrem  $P_4$  se nastavuje mez  $IO_{10}$ . Běžně se nastavuje tak, že je výstup IO roven napětí zdroje. Při výskytu signálu se výstupní signál IO mění do kladných velikostí. Obvod  $IO_{11}$  je časovač 555, zapojený jako astabilní oscilátor, dávající velmi krátké (kolem 100 mikrosekund) záporné impulsy o kmitočtu kolem 400 Hz. Tranzistor  $T_5$  je tak otevřen a zavírá se pouze během těchto impulsů, takže za  $R_{40}$  je výstupní signál obvodu  $IO_{10}$  "rozsekán" na krátké kladné impulsy. To je ideální průběh pro vytvoření akustického signálu při ekonomické spotřebě proudů. Kontrola hlasitosti v takové konstrukci se většinou vyžaduje pouze pro omezení maximální úrovně generovaného zvuku, takže v tomto obvodu pracuje potenciometr  $P_5$  a tranzistor  $T_4$  jako nastavitelný

omezovač. Tímto způsobem se nezmenšuje citlivost přístroje, když je třeba pracovat se zmenšenou hlasitostí. Tranzistory  $T_6$  a  $T_7$  tvoří komplementární Darlingtonovu dvojici, jejíž proudové zesílení umožňuje, aby signál budil reproduktor nebo sluchátka.

#### Napájení přístroje

V přístroji se používají dva nezávislé zdroje. Většina obvodů je napájena ze dvou baterií typu 51 D v sérii nebo čtyř plochých baterií (co bude výhodnější), tj. 18 V, regulovaných obvodem kolem IO<sub>12</sub> a IO<sub>13</sub>. Při tolika operačních zesilovačích je mnohem snadnější uspořádat obvody kolem zdroje se středním vývodem tak, že referenční napětí (vytvořené Zenerovou diodou) je odděleno

obvodem IO<sub>13</sub>. Pak je zdvojeno obvodem IO<sub>12</sub> a tranzistory T<sub>8</sub> a T<sub>9</sub>, aby se dosáhlo stabilizovaného napájecího napětí o dvojnásobku Zenerova napětí, jmenovitě +11,2 V. Toto uspořádání bylo použito přednostně před integrovaným stabilizátorem, protože pracuje bezchybně až do doby, než se napětí baterie zmenší na velikost pouze o 0,1 V větší, než je výstupní napětí stabilizátoru. Většina integrovaných stabilizátorů vyžaduje rozdíl nejméně 2 V, což v praxi znamená, že se baterie musejí častěji vyměňovat. Celková proudová spotřeba všech obvodů je kolem 20 mA.

Výkon pro koncový stupeň pro reproduktor zabezpečuje nezávislá baterie 9 V, protože to je nejjednodušší způsob, jak zabránit potížím s odstraňováním vazeb v tomto vel-





mi citlivém obvodu. Baterie typu D 51 má mnohem menší rozměry, než filtrační kondenzátory, které by bylo jinak nutné použít; přitom stačí použít pouze jeden spínač napájecího zdroje, protože výstup neodebírá proud, není-li přítomen vstupní signál.

#### Konstrukce

Použijeme dvě desky s plošnými spoji, Protože jde o velmi "citlivé" obvody, může být výsledkem jakýchkoli změn značná nestabilital

Deska obsahující zdroj napájecího napětí, automatické ladění a výstup by měla být postavena jako první. protože zdroj napájecího napětí bude třeba použít pro zkoušení předřazené "vstupní" desky (obr. 27).

Sestavování začneme zapojením šesti propojek. Zapojte  $R_{45}$  až  $R_{48}$ ,  $C_{22}$  až  $C_{25}$ ,  $ZD_1$ ,  $T_8$ ,  $T_9$ ,  $IO_{12}$  a  $IO_{13}$ . Připojime-li baterii 18 V přes miliampérmetr na rozsahu 100 mA a rezistor 220  $\Omega$  v sérii, který omezí proud, pokud jsou v zapojení chyby. Je také vhodné používat tento rezistor v průběhu zkoušení obou desek. Po nabití elektrolytických kondenzátorů by se měl odebíraný proud ustálit asi na 5 mA. Zkontrolujme, je-li na  $C_{25}$  asi 11 V, na  $C_{24}$  asi 5.5 V. Tim je dokončena kontrola napájecího zdroje.

Pokračujme zapojením R<sub>40</sub> a R<sub>41</sub>, C<sub>19</sub> a C<sub>20</sub>, T<sub>6</sub> a T<sub>7</sub>. Připojíme reproduktor, zapojíme napájecí zdroj 9 V přes měřidlo 100 mA a rezistor 100 Ω, opět pro případ výskytu chyby v zapojení. Po nabití kondenzátorů se odebíraný proud zmenší na nulu. Dotyk prstu na R<sub>40</sub> a současně na kladný pól napájecího napětí způsobí praskání a indikaci odběru proudu. Zapojíme R<sub>42</sub> až R<sub>44</sub>, C<sub>21</sub>, T<sub>5</sub> a IO11 je časovač 555. Připojíme oba napájecí zdroje. Prst na kladném napětí 9 V a R<sub>40</sub> by měl způsobit výstupní tón 400 Hz, i když dosud možná o dosti malé hlasitosti. Pak můžeme vypustit rezistor 100 Ω z přívodu zdroje napájení 9 V v průběhu zkoušek, ale rezistor 220 Ω ve zdroji 18 V by měl být ponechán. Zapojíme T<sub>4</sub> a připojíme P<sub>5</sub>. Zapojíme zdroje napájení, dotkneme se prsty R<sub>40</sub> a kladného pólu zdroje 9 V a zkontrolujeme, je-li možné potenciometrem P5 řídit hlasitost.

Zapojíme R<sub>33</sub>, R<sub>34</sub>, R<sub>36</sub> až R<sub>39</sub>, C<sub>18</sub> a IO<sub>10</sub>. Nyní můžeme připojit P<sub>4</sub> a připojit napájení. Mělo by být možné potenciometrem P<sub>4</sub> zapínat postupně výstupní tón. Vstupní signál pro IO<sub>10</sub> je totiž v tomto stupní odebírán ve skutečnosti přes R<sub>33</sub> a R<sub>34</sub>, což poněkud zmenšuje jeho zesílení. Pokud na výstupu není žádný tón, zkontrolujeme, není-li hlasitost nastavena na minimum.

Potom zapojíme na tuto desku všechny zbývající součástky. Připojíme S<sub>2</sub>, P<sub>3</sub> a mě řidlo. Zkratujeme vstupní bod na střední vývod baterie. Připojíme napájení; ručka měřidla se má vrátit na nulu za několik sekund vlivem funkce automatického nastavení. Nastavíme P₄ těsně pod mez nasazení tónu. Dotkneme se jednou rukou kladného pólu baterie 18 V a rezistorem 10 MΩ, drženým v druhé ruce, horního konce R<sub>29</sub>. To by mělo způsobit krátké zaznění tónu a "kladnou" výchylku ručky měřidla, která se pak vrátí na nulu. Opakujeme tento postup při sepnutém S2 – zvuk a výchylka ručky měřidla by pak měla být stálá. Dotkneme-li se při sepnutém S2 některého z přívodů k baterii 18 V a dolního konce C<sub>17</sub>, měla by se vychýlit ručka měřidla vlevo či vpravo; plnou výchylku ručky je pak možné nastavit potenciometrem P<sub>6</sub>.

#### Hledací cívky

Je nejlépe začít navinutím hledacích cívek, které budeme potřebovat pro zkoušení vstupní desky s plošnými spoji v různých fázích oživování. Detektor používá cívky s bodovým záběrem z důvodů, které již byly vysvětleny; jejich zhotovení je poněkud ob-

tížnější, než u cívek se širokopásmovým záběrem, ale dosažené výsledky stojí za vynaložené úsilí. Sestava cívek je uložena na talíři o průměru 21 cm, zhotoveném z velmi lehké plastické hmoty (v originálu talíř z kempingové soupravy).

z kempingové soupravy). Vnitřek talíře je pečlivě zdrsněn smirkovým papírem, aby se usnadnilo přilnutí tmelu nebo lepidla.

Obě cívky jsou navinuty na šablonu zhotovenou s použitím hřebíků a vhodné desky. Větší, vysílací cívka je zhotovena s pěti hřebíky, rozmístěnými podle obr. 28, na kte-



Obr. 28. Konstrukce L1 a L2

ré se navine 60 závitů lakovaného měděného drátu o průměru 0,27 až 0,3 mm. Může být dočasně svázána několika závity drátu a sejmuta z hřebíků - je to nepohodlné, ale ne příliš obtížné - ohnuta do tvaru podle obrázku a těsně šroubovicově ovinuta holým velmi tenkým (např. 0,1 mm z běžné síťové dvoulinky) měděným pocínovaným drátem, s ponecháním smyčky v blízkosti vývodů, kterou je možné použít pro připojení. Pak se přes holý drát omotá pruh alobalu, vytvářeiící elektrostatické stínění, které se upevní dalším těsným ovinutím holým drátem. Potom cívku pevně omotáme izolačním páskem nejlépe z PVC. Obě vinutí (drátem i fólií) musí mít mezeru, protože kdyby toto stínění vytvářelo úplný závit po obvodu cívky znemožnilo by to její funkci.

#### Snímací cívka

Snímací cívka je zhotovena stejným způsobem. Obsahuje 200 závitů lakovaným měděným drátem o Ø 0,2 mm, navinutým na válci o průměru 10 cm. Na ni se umístí stínění podobně jako na vysílací cívku, opět s mezerou a omotané izolační páskou.

Nyní je možné upevnit vysílací cívku na talíř s použitím tmelu nebo lepidla. Cívku je nejlépe upevňovat postupně a fixovat ji např. kolíčky na prádlo a lepicí páskou. Do otvoru v horním talíři se zasune čtyřžilový stíněný kabel, vývody cívek se připojí ke stínění vodičů. Může být poněkud obtížné udržet vodiče "na místě" v průběhu vytvrzování pryskyřice. V tomto stadiu se snímací cívka ještě neupevňuje.

#### Deska vstupu a zpracování signálu

Sestavování desky podle obr. 29 začíná zapojením všech propojek. Pak zapojíme  $R_1$  až  $R_3$ ,  $C_1$ ,  $C_2$  a  $C_{26}$ ,  $D_1$  a  $T_1$ . Připojíme vysílací cívku a napájení z desky napájecího zdroje. Nadále přitom používáme rezistor v sérii se zdrojem 18 V pro případ, že by se v průběhu zkoušek vyskytla chyba. Nyní by měl pracovat vysílací oscilátor na kmitočtu mezi 15 a 16 kHz. Tuto i další část obvodů je možné zkontrolovat osciloskopem.

Dále zapojíme R<sub>4</sub> až R<sub>13</sub>, C<sub>3</sub> až C<sub>8</sub> a IO<sub>1</sub>. Připojíme napájení a zkontrolujeme, je-li ss výstupní napětí obvodu IO<sub>1</sub> (na vývodu *6*) 5,6 V. Zapojíme IO<sub>2</sub>, připojíme napájení a zkontrolujeme ss výstup IO<sub>2</sub>, je-li 5,6 V. Zapojíme IO<sub>3</sub>, připojíme P<sub>1</sub> mezi body I a J, P<sub>2</sub> mezi body G a H a zapojíme kousek drátu tak, aby bylo možné bod M zkratovat s body K nebo L a jeden z těchto zkratů realizujeme. V tomto okamžiku nezáleží na tom, který z nich to bude. Připojíme napájení a zkontrolujeme, je-li ss výstupní napětí obvodu IO3 (vývod 6) 5,6 V. Výstup IO2 by nyni měl být přepinán podle kmitočtu oscilátoru z kladného na záporné napětí, ale střední hodnota výstupu musi být 5,6 V. Zkontrolujeme, jestli nastavení potenciometru P1 (M zkratovaného na L) a P2 (M na K) způsobuje jen malý nebo žádný rozdíl výstupního napěti IO<sub>3</sub>.

Podle původního návrhu byly potencio-metry zapojeny přímo tak, jak jsou při této zkoušce, a k M, K a L byl zapojen dvoupólový přepinač. Tak se dosáhlo "potlačení zeme Po zaplščení" (B.) Při povojen průzkumu (P<sub>2</sub>) a "rozlišení" (P<sub>1</sub>). Při prvním průzkumu na pláži (písek) se však zjistilo, že "plážový efekt" bylo možné potlačit jen ovládacím prvkem "rozlišení"; tento efekt bylo možné předpokládat, protože pláže jsou obvykle vodivé. Zabranilo to však použití "rozlišení" pro identifikaci fólií. kterých se na většině pláži nachází značné množství. Pro překonání tohoto problému bylo přepínání upraveno tak, aby se ziskala třetí poloha, "pláž", v níž je P2 fakticky přepínán do obvodu "rozlišení" namísto "vyloučení země". Tak je potom možné používat potenciometr P2 pro potlačení falešných signálů, způsobených vlhkou pláží stejně jako zemí, zatímco může být opět používán pro kontrolu nálezů, jak bylo původně zamýšleno.

V montáži pokračujeme zapojením R<sub>14</sub> až R<sub>21</sub>, C<sub>9</sub> až C<sub>12</sub> a T<sub>2</sub>. Připojíme provizorně snímací cívku napájení a zkontrolujeme, je-li emitorové napětí T<sub>2</sub> přibližně o 0,6 V větší než záporné napájecí napětí. Zapojíme IO<sub>4</sub>, napájení a zkontrolujeme, je-li výstupní napětí IO<sub>4</sub> (na kolíku 6) 5,6 V. Zapojíme IO<sub>5</sub>, připojíme napájení, a zkontrolujeme, je-li výstupní napětí IO<sub>5</sub> polovinou napájecího napětí

Zapojíme R<sub>22</sub> až R<sub>28</sub> a C<sub>13</sub> až C<sub>15</sub>. Zapojíme IO<sub>6</sub> při dodržení zásad pro zachování s obvody CMOS. Umístíme snímací cívku do přibližné polohy na vysílací cívku, připojíme napájení a kontrolujeme měřicím přístrojem horní konec R<sub>22</sub>. Napětí tam má být v rozsahu 2 až 8 V a musí se měnit při změně nastavení P<sub>1</sub> nebo P<sub>2</sub> (podle toho, který je zvolen zkratováním M na K nebo L). Nastavíme polohu snímací cívky tak, aby se na horním konci R<sub>22</sub> dosáhlo 5,6 V. Dbáme na to, aby se stínění cívek vzájemně nedotýkala, i když jsou obě připojena ke stínění vodičů: když se dotýkají na obou stranách, může dojít k vytvoření "zkratovaného závitu" ve středu sestavy.

Zapojíme IO<sub>7</sub>, zkontrolujeme jeho výstupní napětí, je-li stejné jako napětí na horním konci R<sub>22</sub>, tj. 5,6 V. Zapojíme IO<sub>8</sub>. Zkontrolujeme, je-li na vývodu 6 obvodu IO<sub>7</sub> napětí 5,6 V; pokud tomu tak není, upravíme polohu cívky. Pak zkontrolujeme, je-li napětí 5,6 V také na výstupu IO<sub>8</sub>. Tím je sestavení desky vstupu a zpracování signálu dokonče-

#### Mechanická konstrukce

Dále je možné pokračovat zhotovením mechanických částí přístroje. Jsou zhotoveny převážně z plastikové instalační trubky a spojek. Součásti jsou jednoduše slepeny a zasunuty do sebe – tímto způsobem lze zhotovit velmi vhodné držadlo a nosnou tyč.

V důležitých místech trubky je použito vyztužení dřevěnou vložkou, aby se zabránilo jejímu sploštění při utažení procházejících svorníků. Hledací cívka je upevněna svorníkem, procházejícím oběma úhelníky a koncem trubky, s křídlovými maticemi po obou stranách, takže uživatel si může snadno upravit potřebný sklon cívky. Vše musí být z plastiku.

Elektronickou část je třeba umístit do ovládací skříňky. Její horní část musí být opatřena otvory pro měřidlo, potenciometry a přepínač v uspořádání podle obr. 30. V jedné z bočních stěn se vyvrtá soustava děr, na

kterou se pak upevní reproduktor. Čtyři šrouby, procházející základnou skříňky, slouží jako distanční sloupky, na kterých jsou nad sebou upevněny obě desky s plošnými spoji, nahoře je deska vstupu a zpracování signá-

Pro všechny spoje k deskám je nejvhodnější použít páskový kabel, připojený k nim ještě před vložením desek do skříňky. Barvy přislušných vodičů je vhodné si zaznamenat. Zásuvku pro sluchátko je možné použít podle přání. Rezistor "R" je třeba zvolit podle typu sluchátek, která se budou používat, v prototypu byl jako vhodný zjištěn odpor 100 Ω. Pro vývod z cívek byla použita 5pólová zástrčka.

#### Nastavení hledacích cívek

Když jsou zapojeny všechny součástky, nastává choulostivá závěrečná fáze prací: nastavení hledacích cívek. V průběhu této operace nesmějí být v blízkosti cívky kovové předměty. To je také vhodná příležitost pro upozornění, že přístroj může být ovlivněn vyzařováním řádkové časové základny televizorů soustavy s 625 řádky, takže pokud zjistíte rušení zvuku nebo zvukové impulsy









být zbytečně těžká.

Obr. 31. Pomocný měřicí přípravek 0

Obr. 30. Zapojení ovládání

2×GAZ51 KA206 výstup 104 C26 e

nutné, protože dokončená hlava by mohla

#### Konečné sestavení a zkoušky

Všechny součástky zapojené pro zkoušky mohou nyní být odstraněny a přístroj může být nakonec sestaven a vyzkoušen.

Po zapnutí by se měl přístroj za několik sekund sám vynulovat a ovládací prvek ladění je pak třeba nastavit těsně pod mez nasazení oscilačního tónu. Citlivost tohoto přístroje je značná; ve většině případů bude pravděpodobně třeba udržovat nastavení ovládacího prvku citlivosti někde kolem střední polohy. Při přepínači v poloze "zem" je možné najit polohu ovládacího prvku "zem", ve které přibližování a vzdalování hlavy od země nebude mít žádný vliv - na jedné straně od této polohy bude vliv země "kladný", na druhé straně "záporný", takže není obtížné tuto polohu najít. Nastavení tohoto ovládacího prvku na vlhkých plážích je stejné s tím rozdílem, že přepínač musí být poloze "pláž"

Po zjištění kovového předmětu je třeba přístroj přepnout do režimu "rozlišení" a určit charakter předmětu. V tomto režimu se projeví určitý vliv terénu, země, který závisí na prohledávaném terénu. Železné předměty způsobí "zápornou" odezvu při všech nastaveních ovládacího prvku "rozlišení" když se však nastavením zdůrazňuje činnosť "rozlišení", přístroj začne potlačovat malé kousky hliníkové fólie, pak větší kusy, tlusté fólie a konečně i kroužky od plechovek s pivem. Tento nedostatek mají všechny diskriminátory; schopnost potlačit indikaci železných odpadů a jiných fólií je bezesporu přínosem. Před dalším používáním přístroje se doporučuje určitá praxe s vybranými předměty – mincemi, hřebíky a kousky fólií atd. Tlačítko paměti ladění se uplatní při rozli-

šování a přesné lokalizaci nálezů.

Practical Electronics srpen - září 1980

#### Použité součástky

Rezistory (libovolné, miniaturní TR 212, TR 296, TR 191)

| R <sub>1</sub>                    | 10 kΩ                  |
|-----------------------------------|------------------------|
| R <sub>2</sub>                    | 15 kΩ                  |
| R <sub>3</sub>                    | 3,3 kΩ                 |
| R <sub>4</sub> , R <sub>5</sub>   | 10 kΩ                  |
| R <sub>6</sub> , R <sub>9</sub>   | 4,7 k $\Omega$         |
| R <sub>7</sub> , R <sub>8</sub>   | 10 kΩ                  |
| R <sub>10</sub>                   | 3,9 kΩ                 |
| R <sub>11</sub>                   | 2,2 kΩ                 |
| R <sub>12</sub>                   | 1 kΩ                   |
| R <sub>13</sub>                   | 100 kΩ                 |
| R <sub>14</sub>                   | 180 kΩ                 |
| R <sub>15</sub>                   | 22 kΩ                  |
| R <sub>16</sub>                   | 15 kΩ                  |
| R <sub>17</sub>                   | 100 kΩ                 |
| R <sub>18</sub>                   | $2,2~\mathrm{M}\Omega$ |
| R <sub>19</sub> , R <sub>20</sub> | 10 kΩ                  |

| H <sub>21</sub>                   | 4,7 KS2        |
|-----------------------------------|----------------|
| R <sub>22</sub> , R <sub>23</sub> | 33 kΩ          |
| R <sub>24</sub> , R <sub>25</sub> | 27 kΩ          |
| R <sub>26</sub> , R <sub>27</sub> | 39 kΩ          |
| R <sub>28</sub>                   | 22 kΩ          |
| 1 128<br>D                        | 10 kΩ          |
| R <sub>29</sub>                   | -              |
| R <sub>30</sub>                   | 100 kΩ         |
| R <sub>31</sub>                   | 1 ΜΩ           |
| R <sub>32</sub>                   | 22 kΩ          |
| R <sub>33</sub>                   | 220 kΩ         |
| R <sub>34</sub>                   | 22 kΩ          |
| R <sub>35</sub>                   | 10 kΩ          |
| R <sub>36</sub>                   | 270 kΩ         |
| D D                               | 220 kΩ         |
| R <sub>37</sub>                   |                |
| R <sub>38</sub>                   | 10 kΩ          |
| R <sub>39</sub>                   | 1 MΩ           |
| R <sub>40</sub>                   | 47 kΩ          |
| R <sub>41</sub>                   | 6,8 Ω          |
| R <sub>42</sub>                   | 470 kΩ         |
| R <sub>43</sub>                   | 22 kΩ          |
| R <sub>44</sub>                   | 33 kΩ          |
| R <sub>45</sub>                   | 2.7 kΩ         |
| N45                               | ,              |
| R <sub>46</sub> , R <sub>48</sub> | 10 kΩ          |
| R <sub>47</sub>                   | 4,7 k $\Omega$ |
|                                   |                |

Kondenzátory (keramické, není-li uvedeno iinak)

| C1 C2 C3 C4 AŽ C6 C7 C8 C9 C10 C11 C13, C14, C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 AŽ C26 | 47 nF<br>470 nF, TC 225<br>10 nF<br>1 nF<br>10 nF<br>100 nF<br>100 nF<br>100 nF<br>100 nF<br>100 nF<br>10 nF<br>1 nF<br>10 nF<br>47 μF, TF 026<br>4700 μF, TF 022<br>10 nF<br>4700 μF, TF 023<br>10 μF, TF 026<br>4700 μF, TF 026<br>4700 μF, TF 026<br>4700 μF, TF 026 |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24 - 20                                                                                     |                                                                                                                                                                                                                                                                         |

47 kΩ, log. P<sub>2</sub> P<sub>3</sub> 47 kΩ, log.  $1 M\Omega$ 100  $k\Omega$ 10 kΩ, log. se spínačem (S<sub>3</sub>) 10 kΩ, trimr

Potenciometry (libovolné typy)

Polovodičové součástky

| T <sub>1</sub> , T <sub>4</sub> T <sub>2</sub> , T <sub>5</sub> , T <sub>6</sub> , T <sub>8</sub> T <sub>3</sub> T <sub>7</sub> T <sub>9</sub> IO <sub>1</sub> , IO <sub>2</sub> , IO <sub>5</sub> , IO IO <sub>8</sub> , IO <sub>12</sub> , IO <sub>13</sub> IO <sub>3</sub> , IO <sub>4</sub> , IO <sub>9</sub> , IO <sub>16</sub> IO <sub>6</sub> IO <sub>11</sub> D <sub>1</sub> , D <sub>3</sub> až D <sub>8</sub> D <sub>9</sub> | MAA741   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Ostatní                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| L <sub>1</sub> , L <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                        | viz text |

amatérske AD

na výstupu přístroje, zkontrolujete nejdříve tuto možnost. Nastavení cívek není tak kritické, jako je tomu u běžného přístroje IB, optimální bod však existuje; pro přístroj typu GEB je to poloha, v níž se dosáhne ze snímací cívky maximálního zbytkového signálu na výstupu (a maximálního posuvu fáze). Běžné přístroje typu IB obvykle pracují nejlépe s mírnou odchylkou (ofsetem) od absolutní nuly. To ovšem není možné sledovat fázovým detektorem, vestavěným v přístroji samotném, takže je třeba improvizovat obvod podle obr. 31 a připojit jej k výstupu 104 (horní konec R<sub>19</sub>) a použít s univerzálním přístrojem na rozsahu 1 V, aby se usnadnilo nastavení na minimální výstupní signál. Místo tohoto přípravku můžeme použít osciloskop.

Nastavte P<sub>1</sub>, P<sub>2</sub> a P<sub>3</sub> do střední polohy. Přepněte do polohy "rozlišení" s zapněte. Měřidlo pro sledování amplitudy bude mít pravděpodobně plnou výchylku ručky. Pečli-vě nastavujte polohu snímací cívky, dokud se výstupní napětí nezmenší – může to vyžadovat určitou trpělivosť, protože pokud budete příliš spěchat, lze snadno posunout cívku až za "nulovou" polohu. Nezapomeňte udržovat stínění bez dotyku! Když již dosáhnete polohy cívek někde v blízkosti nuly, zkuste přibližovat kovové předměty

k cívce a sledujte při tom měřidlo s nulou uprostřed. Neželezné předměty (jako je měděná mince) by měly způsobiť zvětšení výchylky ručky, zatímco železné předměty (jako hřebík) způsobí zmenšení výchylky. Pokud se bude přístroj chovat opačně, je nutné přepólovat snímací cívku, a to buď jejím obrácením, nebo opačným zapojením jejích vývodů.

Po dosažení fáze zapojení spočívá další postup v nastavení snímací cívky do polohy, v níž se dosáhne absolutního minima výstupního napětí obvodu pro zkušební sledování amplitudy. K postupnému zpevnění cívky používáme pryskyřici, přičemž se po každém lepení znovu kontroluje nastavení. Ke konečnému jemnému nastavení může být přikročeno až je již pohyblivá jen malá část cívky.

Po dokončení nastavení polohy cívek může být na cívky nanesena vrstva pryskyřice, na kterou se položí vrstva skleněné tkaniny a další pryskyřice, čímž se dosáhne sestavy hledací hlavy, která je pohledná, pevná a plně vodotěsná. Pouze jedno upozornění: nepoužívejte více pryskyřice, než je Př<sub>1</sub> Př<sub>2</sub> S<sub>2</sub> měřidlo reproduktor 4 pakety, 3 polohy 1 paket, 3 polohy páčkový spínač 100-0-100 μA viz text Obr. 33. Vysílač dálkového ovládání



#### Infračervené dálkové ovládání

Infračervené dálkové ovládání se dnes stává běžnou součástí televizorů a videorekordérů, neboť umožňuje dálkově ovládat prakticky všechny funkće těchto přístrojů. Přesto se i dnes může uplatnit jednodušší verze takového ovládání, umožňující dálkově zapínat a vypínat čtyři různé spotřebiče. A to nejen pro ty, kdo jsou řekněme pohodlní, ale například může pomoci i invalidům. Popisovaný systém, jehož skupinové schéma je na obr. 32, je navržen jako čtyřkanálový, je tedy určen pro řízení čtyř zařízení: isou-li však některá zařízení dosťatečně prostorově vzdálena, je možné jedním kanálem řídit i několik zařízení, například dveře garáže a gramofon.

Na skupinovém schématu je přijímač i vysílač. Vysílač je poměrně jednoduchý, neobsahuje žádné IO, umožňuje dosáhnout při konstrukci malé váhy a malých rozměrů. Skládá se ze čtyř tlačítek, obvodu modulace nosného signálu, zesilovacího stupně a in-

fračervené diody LED.
Přijímač je poněkud složitější, skládá se z přijímací infračervené diody LED s následujícím zesilovačem, obvodu fázového závěsu a optické indikace, a konečně z klopných obvodů, ovládající relé.

Činnost vysílače je možné popsat podle schématu zapojení na obr. 33. Proces ovládání začíná stisknutím jednoho ze čtyř tlačítek Tl<sub>1</sub> až Tl<sub>4</sub> (nejlépe je použít tlačítka vhodná pro digitální techniku). Podle toho, které tlačítko se stiskne, zapojí se mezi vstup a výstup upraveného Franklinova oscilátoru obvod, složený z L<sub>1</sub> a C<sub>2</sub> nebo C<sub>3</sub>, C<sub>4</sub>, C<sub>5</sub>. Oscilátor se skládá z Darlingtonovy dvojice T<sub>1</sub>, T<sub>2</sub> a neinvertujícího zesilovače T<sub>3</sub>. Tranzistor T<sub>3</sub> také odděluje výstupní signál T<sub>2</sub>. Při sepnutí jednoho z kontaktů tlačítek Tl<sub>1</sub> až Tl<sub>4</sub> dostává tranzistor T<sub>1</sub> přes dělič napětí R<sub>1</sub> a R<sub>2</sub> až R<sub>5</sub> předpětí báze, odpovídající polovině provozního napájecího napětí. Kapacita kondenzátorů C<sub>2</sub> až C<sub>5</sub> při tom určuje kmitočet oscilátoru.

Po uplynutí času, nastaveného pomocí článku  $R_8$ ,  $C_6$ , se tranzistor  $T_4$  otevře, tím se také otevře tranzistor  $T_5$ .  $T_5$  zkratuje  $R_{10}$  a přestane kmitat oscilátor  $T_1$ ,  $T_2$ . V tomto okamžiku se také drasticky zmenší odběr proudu z asi 100 mA na 1 mA, což indikuje, že oscilátor pracuje. Ve schématu zapojení najdeme i určitou zvláštnost: antiparalelně zapojené diody  $D_1$  a  $D_2$ . Charakteristika diody  $D_2$  brání poklesu napětí na 0 V. Problém se tedy řeší paralelním zapojením cívky  $L_3$ , která blokuje parazitní kapacity a tím způsobí, že se napětí na přívodech diody  $D_2$  může zmenšit pod 0 V. Tím se dosáhne relativně symetrického výstupního signálu. Při stisknutí některého z tlačítek  $T_1$  až  $T_4$  se

rozsvítí dioda D<sub>1</sub> a indikuje, že infračervená dioda LED pracuje. Když dioda přestane svítit, nevede i dioda D<sub>1</sub>.

Vysílač je napájen baterií 9 V. Tato baterie by při proudové spotřebě v režimu vysílání dlouho nevydržela, proto ty tlačítka neměla zůstávat stisknuta zbytečně dlouho. Kromě toho nemá smysl se pokušet o ovládání dalšího zařízení, dokud nezhasne D<sub>1</sub>.

Schéma zapojení přijímače je na obr. 34. V tomto zapojení se nepoužívá žádný transformátor, proto je třeba dbát opatrnosti, protože zapojení je přímo spojeno se sítí. Pozor při experimentování s obvodem! Síťové napětí na můstkovém usměrňovači se usměrní a omezí diodou D<sub>4</sub> asi na 12 V. Rezistor R<sub>12</sub> omezuje proud odebíraný zapojením po zapnutí a C<sub>14</sub> pak svou impedancí určuje odběr v ustáleném stavu.

Stabilizované napětí 12 V se přivádí na stabilizátor  $IO_2$ , který dodává dalším obvodům napětí 8 V.

Funkci obvodu je možné nejlépe pochopit sledováním signálu, který je přijímán diodou D<sub>1</sub>. Cívka L<sub>1</sub> tvoří laděný obvod, přičemž kapacita kondenzátoru závisí na kanálu, na kterém má přijímač pracovat. V tabulce jsou uvedeny kapacity kondenzátorů C<sub>1</sub> a C<sub>10</sub> v různých kanálech:

| Kanál | C <sub>1</sub> | C <sub>10</sub> |
|-------|----------------|-----------------|
| 1     | 4,7 nF         | 12 nF           |
| 2     | 2,2 nF         | 10 nF           |
| 3     | 1 nF           | 6,8 nF          |
| 4     | 470 pF         | 4,7 nF          |

Dioda  $D_6$  určuje předpětí báze  $T_1$  na 4,7 V.  $C_2$  zajišťuje jeho filtraci. Výstupní signál  $T_1$  je zesilován tranzistorem  $T_2$  a pak přiváděn na  $IO_1$ . Tento obvod pracuje jako fázový závěs a dekóduje přicházející signály. Úkolem obvodu  $IO_1$  je generovat výstupní signál, když se na jeho vstup přivede signál, který se nachází v jeho pracovním kmitočtovém rozsahu. Střední kmitočet tohoto rozsahu se určuje hodnotami čtyř externích součástek. Když se tedy na vstup  $IO_1$  přivede signál, je

na výstupu (vývod 5) signál pravoúhlého průběhu o stejném kmitočtu jako na vstupu zesilovacího stupně. Správnou činnost zesilovače a fázového závěsu zajišťují dva filtrační obvody: L2 a C4 pro zesilovač a L3 a C6 pro IO<sub>1</sub>. Když je fázový závěs v činnosti, napětí na vývodu 8 se prudce zmenší. Tak vzniká signál, jehož sestupná i vzestupná hrana je zpožďována obvodem RC (R6, C7, popř. R<sub>5</sub>, C<sub>7</sub>), Hradlo NAND, IO<sub>3a</sub>, tento signál invertuje. Pak se signál používá jako taktovací signál pro bistabilní klopný obvod IO<sub>4</sub>. Je důležité, aby klopný obvod reagoval jen na tento impuls, protože řídí relé, produkující celou řadu rušivých impulsů. Proto je obvod R<sub>6</sub>, C<sub>7</sub> dimenzován také tak, aby byly rušivé vlivy potlačeny. Buzení relé klopným obvodem bylo použito proto, aby se dosáhlo spolehlivé funkce obvodu při síťovém rušení. Proto je také zapojení aktivováno přímo po zapnutí sítě. Kdyby to z nějakého důvodu nebylo vhodné, je třeba pouze odpojit rezistor Re od výstupu Q klopného obvodu a připojit je k výstupu Q

Hradla H<sub>2</sub> a H<sub>3</sub> indikují, jestli přijímač pracuje: připojená dioda LED (D<sub>3</sub>) svítí přibližně po dobu jedné sekundy. Tato dioda LED s předřadným rezistorem může být nahrazena piezoelektrickým bzučákem.

Stavba vysílače neklade žádné zvláštní nároky. Sestavenou destičku s plošnými spoji s baterií je možné vestavět do krabičky o rozměrech asi 60 × 120 × 15 mm. Infračervenou diodu LED je vhodné umístit na čelní stěnu krabičky.

Při stavbě přijímače je třeba dodržet určité zásady. Nejprve se připájejí součásti s vertikální montáží, pak objímky pro IO. Po usazení všech součástí se připájejí tři dráty, ke kterým se upevní stínicí plech výšky 2 cm (viz obr. 34). Kabel připojující fotodiodu D<sub>1</sub> nesmí být v žádném případě delší než asi 15 cm. Pokud chcete dosáhnout ovládání na větší vzdálenost LED, je možné před diodu umístit spojnou čočku.

Při nastavování, zvláště při experimentování s deskou, se doporučuje použít místo napájení ze sítě stejnosměrný zdroj kolem 10 V a připojit jej na Zenerovu diodu D<sub>4</sub> - je to totiž podstatně bezpečnější. Také pro vysílač je vhodné použít stejnosměrný síťový zdroj, ušetříme baterie. Při následujících zkouškách přemostíme R<sub>10</sub> kouskem drátu a tlačítko zvoleného kanálu přelepíme lepicí páskou (ve stisknutém stavu). Výhodná by také byla možnost použít dvoukanálový osciloskop. Zátěž není třeba při počátečním nastavení používat. Připojte přijímač pro kanál 1 na přívod 3 IO1, pro kanál 2 na přívod 5 obvodu IO1. Tak se dosáhne vstupního signálu 30 až 40 mV. Je k tomu třeba odpojit vysílací LED a přijímací diody a umístit oba moduly vzájemně ta, aby na sebe vzájemně působily cívka L3 ve vysílači a cívka L1 v přijímači. Tím se dosáhne již zmíněného





o stejném kmitočtu posunuté fázově o 90°. Kromě toho by měl být signal na vývodu 3 zcela stabilní. Čím přesněji je nastaven P<sub>1</sub>, tím lépe bude zapojení pracovat. Takto se nastaví všechny čtyři kanály přijímače. Když signál dosáhne 60 mV, relé má odpadnout. Pokud tomu tak není, něco není v pořádku.

Po dokončení nastavení se opět zapojí infračervené LED a fotodiody. Přemostění R<sub>10</sub> se odstraní a je možné připojit ke kontaktům zátěž Ž. Po krátké funkční zkoušce už můžete pohodlně usednout do křesla. Znovu však upozorňujeme na dodržování bezpečnostních opatření u přijímačů, které jsou <del>v p</del>rovozu spojeny se sítí.

Dosah různých vysílačů při zkouškách byl vždy větší, než 10 m. V řadě případů pracovaly i bez přímé viditelnosti (odrazem infračervených paprsků od stropu). Je však lépe používat vysílač v blízkosti ovládaného zařízení, aby se případně nezapnulo jiné zařízení - avšak to již ukáže praxe.

Elektor č. 11/1986

#### Mikrovlnné detektory

Elektromagnetické vlnění v centrimetrové nebo milimetrové oblasti se nazývá mikrovlnami, nachází stále rostoucí využití v nejrůznějších oblastech, od leteckých a dopravních radarů, přes směrové a družicové spoje až po mikrovinné trouby. Kromě technických předností, umožňujících realizovat velmi obtížné aplikace, mají však také určitou nevýpři větších intenzitách pole mohou škodit lidskému organismu.

V souvislosti s postupným vybavováním domácností mikrovlnnými troubami vzniká otázka, je-li používání těchto zařízení bezpečné. V čem vlastně případné nebezpečí spočívá, co neivíce ohrožuje? Jako zdroj mikrovlnného zařízení se používá magnetron. Je to speciální elektronka, ve které se jako zdroj elektronů používá válcová elektroda, a vnější magnety způsobují, že se elektrody pohybují po kruhové dráze v dutině, vytvářené katodou s rezonančními zářezy Při přeletu elektronů kolem těchto zářezů vznikají mikrovlny, které jsou vedeny do pracovního prostoru trouby. Tam vyvolává vf pole pohyby elektronů a molekul, jejichž energie závisí na rozdělení náboje molekul a počtu volných elektronů. Tím se vysvětluje, že se kapaliny (obsahující mnoho volných elektronů a dipólových molekul) ohřívají více než pevné nevodivé látky, jako sklo nebo

klad oko je tvořeno rosolovitou hmotou, sklivcem, která-je uzavřena v tkáni. V této tkáni je řada čidel bolesti a tepla, která oko chrání. Normální teplo prostupuje pokožkou a než se dostane dovnitř oka, je registrováno příslušnými čidly, jejichž signály způsobí, že se člověk od zdroje tepla vzdálí. Při ohřevu mikrovlnami je tomu však jinak. V tomto případě záření projde tkání a dojde k ohřevu sklivce. Teplotní čidla reagují až je pozdě, přirozený ochranný mechanismus je vyřazen, oko může být nenávratně poškozeno.

Není to však žádný důvod k panice, protože konstruktéři a výrobci těchto zářízení věnují maximální péči tomu, aby mikrovlnná energie z uzavřeného prostoru trouby neunikala. Dvířka přesně doléhají a navíc se používá zvláštní těsnění, které zamezuje úniku mikrovlnné energie kolem dvířek. Průhledové okénko je opatřeno kovovou síťkou, aby se zabránilo vyzařování okénkem. Dvířka jsou také vybavena spínačem, který při jejich otevření vypne napájení mikrovinného generátoru.

Známé Murphyho zákony však zajišťují, že reálný svět není dokonalý. Při nesprávném zacházení se mohou dvířka poškodit a případnou netěsností pak může mikrovlnná energie unikat. Takže pro klid svědomí by bylo vhodné mít možnosť kontroly případného úniku.

Do určité míry vyzařují všechny mikrovlnné trouby. Důležitá však je úroveň tohoto vyzařování. Bylo zjištěno, že za daných okolností je "bezpečným maximem" úroveň kolem 50 mW na cm². Jednoduchý detektor, který by umožnil zjistit úrovně kolem jedné desetiny až setiny uvedeného bezpečného maxima, by mohl poskytnout užitečné varování. Takové detektory se v zahraničí vyrá-bějí, mají však některé nedostatky. Kromé toho, že na našem trhu nejsou k dispozici, také není možné jednoduše zkontrolovat jejich funkci. V případě závady detektoru i při nebezpečném vyzařování ukazuje, že je vše

Následující dva příklady amatérské konstrukce detektorů mohou proto být užitečnými podněty. Schéma jednoduššího z nich je na obr. 35. Jde o púlvlnnou dipólovou anté-nu, vytvořenou na desce s plošnými spoji s rezonancí kolem 2540 MHz (což je pásmo, používané u většiny těchto zařízení), která se používá pro příjem mikrovlnné energie. Dopadající energie je usměrňována speciální extrémně rychlou diodou (D<sub>1</sub>). V příslušné půlvlně je katoda diody D1 kladnější proti



Obr. 35. Indikátor mikrovIn

anodě. Tyto kladné půlvínné impulsy se přianoce. Tyto kladne polymne inpulsy se provádějí přes vf tlumivky (meandry na obrazci plošných spojú na obr. 36)  $L_1$  a  $L_2$  na konclenzátor  $C_1$ , který se nabíjí. Měřidlo má citlivost na plnou výchylku 250 μA a používá se k měření napětí na C<sub>1</sub>. Citlivost měřidla je upravena na vhodnou míru sériovým rezistorem R<sub>1</sub> a paralelním rezistorem R<sub>2</sub>. Tlačítko Tl má v klidu kontakty sepnuté, R2 je tedy zapojen paralelně s měřidlem a zajišťuje citlivost pro vlastní měření. Při jeho stisknutí se citlivost zvětší asi desetkrát a v tomto stavu se provádí zkouška detektoru.

Výhodou této konstrukce je kromě jednoduchosti to, že je možné zkontrolovat provozuschopnost detektoru a dosáhnout tak věrohodnosti měření. Detektor je také na rozdíl od podobných komerčních detektorů vybaven měřidlem, umožňujícím posoudit úroveň vyzařování. Komerční detektory používají pro indikaci indikator LED.

Detektor je sestaven na desce s plošnými spoji, nemá skříňku. Deska je navržena tak, aby mohla být pohodlně držena v ruce. Protože se doporučuje zkušet parazitní vyzařování ve vzdálenosti asi 40 mm od mikrovlinné trouby, přesahuje "pracovní" konec desky o 40 mm anténu a detekční diodu. Tento konec desky so tedy prostě přiloží ke konirolovanému zařízení a není nutné vzdída a d

Jde tedy v podstatě o mikrovlnnou "tays talku". Byla navržena tal:, aby se dosáhlo plné výchylky měřidla při úrovní parazitusho vyzařování kolem 5 mW/cm² s tlačitkem v nestisknuté poloze. Je tedy možné datekovat vyzařování o úrovní dostatečně menší, než je "bezpečná" úroveň.

Konstrukce detektoru je jednoduchá, je však nutné použít desku s plošnými spoji podle uvedeného návrhu, jinak nelze dosáh-nout reprodukovatelných výsledků. Proto je také nutné použit jako materiál desky ví skelný laminát (nebo tellon), materiály se špatnými vf vlastnostmi jsou nepoužitelné. Měřidlo a tlačítko jsou upevněny na straně součástí. Diodu je nutné připájet do středu dipólu prakticky bez vývodů (obr. 36).



Obr. 36. Deska s plošnými spoji X238 pro indikátor mikrovln

Tlačítko: sepnuto – kontrola měřidla, nesepnuto – měří se záření; poloviční výchylka – nebezpečí plná výchylka – smrt!!

Použití detektoru je jednoduché. Při stisknutí tlačítka se vyzkouší funkce. Při pohybu detektoru kolem zkoušeného přístroje se ručka měřidla vychýlí na řadě míst. Zkuste také měřit s dipólem ve vertikální poloze. Pak se proces opakuje již bez stisknutí tlačítka. Patrně zjistíte ojedinělou výchylku v místech, kde předtím při zkoušení detektoru byly zjištěny největší výchylky. Pak je zkoušená mikrovlnná trouba v pořádku, za běžných okolností je výchylka menší než 0,5 mW//cm².

Závěrem ještě připomínka. Nezapomeňte při zkoušce umístit do trouby "zátěž", tedy potraviny nebo sklenici vody. Výrobci obecně doporučují, aby tato zařízení nebyla provozována v nezatíženém stavu, aby se nepoškodil magnetron.



Na obr. 37 je schéma zapojení obdobného, poněkud složitějšího přístroje. V tomto případě je mezi anténu a měřidlo zapojen neinvertující stejnosměrný operační zesilovač. Signál zachycený anténou je usměrňován diodou D<sub>1</sub> a filtrován kapacitou jejích vývodů a cívkami L<sub>1</sub> a L<sub>2</sub>. Následující operační zesilovač má zesílení asi 50 (poměr R<sub>2</sub>/ R<sub>3</sub>). Protože jde o operační zesilovač se vstupy MOSFET s velkou impedancí, nezatěžuje usměrňovací obvod s diodou D<sub>1</sub>. Aby se mohla "kapacita" diody vybíjet dostatečně rychle, je třeba na vstupu operačního zesilovače zapojit rezistor R, s odporem 10 MΩ. U destičkové baterie 9 V je vzhledem k poměrně velkému vnitřnímů odporu vždy vhodné použít paralelní kondenzátor, proto je v zapojení použit elektrolytický kondenzátor C2. Kondenzátor C1 (v obvodu kompenzace operačního zesilovače) s kapacitou 100 nF zajišťuje "dolnopropustný" charakter zesileni.



Obr. 37. Detektor mikrovlnného záření

Konstrukční provedení tohoto přístroje je poněkud odlišné od předcházejícího. Širokopásmový anténní dipól je sestaven ze dvou rovnostranných trojúhelníků z měděného plechu o straně 12 mm. Plechy jsou spojeny připájenou diodou a upevněny na cívkách s třemi závity drátu o Ø 0,5 mm na průměru 3 mm samonosně. Deska s plošnými spoji je na obr. 38. Je z oboustranně





Obr. 38. Deska s plošnými spoji X239 pro detektor mikrovlnného záření

plátovaného materiálu, součástky kromě anténní sestavy jsou připájeny ze strany obrazce, druhá strana je ponechána plná, kromě dvou děr pro připojení antény. Fólie druhé strany je spojena se zemí. Celek je umístěn s baterií a měřidlem 100 nebo 250 µA v malé krabičce.

Použití detektoru je podobné, jako u předcházejícího přístroje. Nevyžaduje žádné nastavování, činnost přístroje je nejlépe kontrolovat změřením nové mikrovlnné trouby. Pokud se měření údaje při opakovaných měřeních v průběhu let zvětšují, je třeba konzultovat s odborníkem.

A ještě upozornění. Tento detektor není v žádném případě vhodný pro "detekci" signálů radaru k měření rychlosti motorových vozidel. Na to je jeho zesílení příliš malé.

AEM prosinec 1985, Elektor listopad 1986

#### Měření skutečné kapacity akumulátorů

U každého akumulátoru výrobce udává jeho kapacitu v ampérhodinách nebo u menších v miliampérhodinách, ale tento údaj je mnohdy naprosto nepoužitelný. Akumulátor jednak stářím a nevhodným ošetřováním, nečistotou materiálu elektrod apod. časem ztrácí svou kapacitu, jednak údaj výrobce platí jen pro režim vybíjení určitým proudem, obvykle 1/10 udan**é** kapacity. Chceme-li akumulátor zatěžovat více nebo méně, nikdy nevíme, jak dlouho může dodávat potřebnou energii, a může se stát, že nám vypoví službu předčasně a zůstaneme bez zdroje. Platí to jak u niklokadmiových akumulátorů, se kterými pracujeme v přenosných zařízeních, tak i pro olověné akumulátory libovolné velikosti.

V návodu budeme hovořit o NiCd akumulátorech (pro olověné akumulátory zásady platí také, jen vybíjecí odpory a vybíjecí napětí musíme přizpůsobit) od kapacity 225 mAh až do 5 Ah. Můžeme zkoušet akumulátory od jednoho do desetì článků, tj. do

Čerstvě nabitý článek NiCd má napětí až 1,4 V, "stáním" nebo vybíjením se napětí zmenšuje až na 1 V (i méně). Tento stav považujeme za úplné vybítí článku. Tedy při zkoušení budeme vybíjet baterie na 1 V na článek a zvolíme si takový proud, jakým v provozu buderne baterie zatěžovat. Přistroj při zahájení vybíjení zapne hodiny, po celou dobu vybíjení udržuje téměř konstantní vybíjecí proud a při zmenšení napětí na 1 V na článek vybíjení zastaví, vypnou se hodiny, na kterých zjistíme dobu vybíjení tak dostaneme objektivní a pravdivý údaje o skutečné kapacitě akumulátoru při vybíjení daným proudem.

Na obr. 39 je zdroj pro přístroj. Protože



Obr. 39. Zdroi

napětí akumulátoru může být až 14 V, potřebujeme napájecí napětí 15 V. Abychom mohli zkoušet i jeden článek, komparátor musíme napájet i záporným napětím, proto zdroj dává i napětí –5 V – na jeho přesné velikosti vůbec nezáleží. V kladné části zdroje bude hlavním spotřebičem proudu relé, v záporné části spotřeba nepřekročí 20 mA. Transformátor postačí s příkonem 3 až 5 VA, libovolného tvaru se sekundárním vinutím 12 V.

Zapojení vybíjecího obvodu je na obr. 40 Obvod pracuje takto:

Operační zesilovač je zapojen jako komparátor, porovnává napětí zkoušeného akumulátoru s napětím na jeho neinvertujícím vstupu. Toto referenční napětí lze měnit přepínačem podle počtu článků akumulátoru (poloha přepínače 1 až 10, R<sub>1</sub> až R<sub>10</sub>, simuluje vybité baterie 1 až 10 V). Bude-li napětí zkoušené baterie na invertujícím vstupu operačního zesilovače větší, než imitované napětí vybité baterie, výstupní napětí operačního zesilovače otevírá tranzistor T1, relé bude přitaženo, jeho kontakty re<sub>1</sub> spínají vybíjecí obvod. Proud přes měřidlo řídíme drátovým potenciometrem P, kterým nastavíme otevírání výkonového tranzistoru T2 Zátěží je regulovatelný výkonový drátový proměnný rezistor R, jehož odpor nastavíme podle požadovaného vybíjecího proudu. Kontakty re<sub>2</sub> relé spínají elektrické hodiny, které měří dobu vybíjení. Hodiny mohou být synchronní nebo síťové (kontakty re<sub>2</sub> v tomto případě spínají síť). Můžeme použít i nějaké elektrické hodiny na baterie, které jsou vždy po několika minutách natahovány motorkem nebo elektromagnetem. Tyto hodiny jsou obvykle napájeny monočlánkem. Podle obr 41 monočlánek nahradíme kondenzátorem s velkou kapacitou na větší napětí. Náboj kondenzátoru spolehlivě dodá motorku nebo elektromagnetu potřebný impuls k natažení péra a kondenzátor přes dělič nabíjíme bez

Vybíjecí proud zkoušeného akumulátoru nastavíme podle toho, jakým proudem aku-



Obr. 41. Zdroj k elektrickým hodinám



Obr. 40. Automatické vybíjení akumulátoru

mulátor obvykle zatěžujeme. Nezapomeneme předem nastavit přepínačem počet článků akumulátoru. Je třeba si uvědomit, že akumulátor v celku má takovou kapacitu, jako jeho nejhorší článek, tzn. bude-li z deseti článků jeden vadný, výsledek měření bude falešný. Vadný článek během vybíjení poznáme i tak, že bude mít podstatně menší

napětí, než ostatní

Vybíjením se napětí akumulátoru zmenšuje, když se zmenší na 1 V na článek, komparátor mění stav na svém výstupu, relé odpadne, odpojí vybíjecí obvod, zastaví měření času, tedy nemůže dojit k hlubokému vybití baterie. Na hodinách zjistíme čas a tím i skutečnou kapacitu akumulátoru při daném vybíjecím proudu. Zařízení nemusíme hlídat, měření proběhne spolehlivě i v naší nepřítomnosti.

Dělič R<sub>1</sub> až R<sub>10</sub> imituje vybitý stav baterie tím, že přepínačem Př nastavíme na R<sub>11</sub> napětí 1,2 až 10 V, podle počtu článků akumulátoru. Dělič počítáme podle vzorce:

$$U = 15 \frac{R_2}{R_1 + R_2}$$

$$U(R_1 + R_2) = 15$$

$$UR_1 = 15R_2 - (UR_2)$$

$$R_1 = \frac{102 - (R_2U)}{U}$$

kde U je napětí na dolním členu děliče, 15 V je kladné napětí zdroje,  $R_1$  je horní člen děliče ( $R_1$  až  $R_{10}$ ) a  $R_2/R_{11}$  je dolní člen děliče.

Při napájecím napětí 15 V a odporu 6,8 k $\Omega$  rezistoru R<sub>11</sub> budou: R<sub>1</sub> – 95k2, R<sub>2</sub> – 44k2, R<sub>3</sub> – 27k2, R<sub>4</sub> – 18k7, R<sub>5</sub> – 13k6, R<sub>6</sub> – 10k2, R<sub>7</sub> – 7k77, R<sub>8</sub> – 5k95, R<sub>9</sub> – 4k53, R<sub>10</sub> – 3k4.

Dolní člen děliče R<sub>11</sub> zůstává tedy 6,8 kΩ. Protože na "nějakých milivoltech" nezáleží, na přepínač můžeme připojit rezistory s přibližnými odpory, nebo trimry, které při napájecím napětí 15 V nastavíme tak, aby na rezistortu R<sub>11</sub> bylo napětí 1 až 10 V.

Ve vzorku se ukázalo výhodným, dát jednoduchý voltmetr paralelně ke zkoušenému
akumulátoru pro neustálou kontrolu napětí.
Spínací kontakty relé si zvolíme podle typu
akumulátorů, aby snášely případné větší
proudy. Ve vzorku bylo použito relé LUN se
zesílenými kontakty. Pro měření proudu byl
použit ampérmetr s rozsahem 2 A, ale ukázalo se, že malé proudy lze na měřidle
špatně číst, tak bylo měřidlo vyměněno za
měřidlo s rozsahem 500 mA. Tranzistor





montújeme na chladič, podle jeho zesílení možné bude třeba změnit i odpor potenciometru P (který použijeme drátový). Vybíjecí rezistor R byl použit regulovatelný posuvný typ TR 621 (až 624) – 15 W na keramickém tělesu.

Zvláštní funkci má kontakt re3 a tlačítko Tl. Bez nich, když se napětí článků zmenší na 1 V, se komparátor překlopí, relé odpadne, ale napětí na článku bez zatížení se zvětší nad 1 V, komparátor opět sepne relé, zatížením se napětí článku opět zmenší, relé znovu odpadne a tento děj se neustále opakuje a relé kmitá. Proto na začátku vybíjení přístroj nastartujeme tlačítkem TI, relé bude napájeno přes vlastní kontakty. Když se napětí článků zmenší, relé odpadne a zůstane v této poloze, i když se napětí nezatížených článků zvětší.

Hodiny - pokud jsou napájeny podle obr. 3 - zapojíme několik sekund po nastartování, aby kondenzátor C mohl být nabit bez

zátěže

Celé zařízení bylo umístěno na dvou deskách s plošnými spoji. Na jedné je zdroj, na druhé vybíjecí obvod. Celá konstrukce je závislá na použitých součástkách, velikosti relé, měřidel apod. Zařízení pro tento účel prodává fa Conrad za 125 DM (je zdokonaleno vestavěnými digitálními hodinami s displejem z tekutých krystalů, ale vybíjecí proud se dá regulovat jen ve skocích, a nikoli plynule).

#### Infračervený telefon

Tento námět je určen spíše těm, kdo rádi experimentují, něž těm, kdo mají zájem o hotový výrobek pro určitou aplikaci. Jde o zdokonalenou verzi tak zvaného světelného pojítka, které se skládá z vysílače (svítilny se žárovkou, jejíž světlo je modulováno vstupním nízkofrekvenčním signálem) a přijímače (obvod fotočlánku, ovládající nízkofrekvenční zesilovač). Popisovaná zdokonalená verze se od standardního řešení liší především tím, že používá infračervené světlo. Výstup vysílače neobsahuje složky viditelného spektra, a proto spojení mezi vysílačem a přijímačem je nenápadné. Nejde samozřejmě o žádnou převratnou novinku, podobné vojenské systémy jsou používány již nejméně dvacet let. Výhody tohoto spojení pro vojenskou oblast, jako je nenápadnost, odolnost proti rušení a odposlechu, mohou být zajímavé i pro soukromé uživatele.

Popisovaný systém dosahuje s jednoduchým optickým systémem spojení na nejméně 40 m. Dosah každého komunikačního systému používajícího k přenosu světelného záření závisí na použité optice, podobně jako dosah rádiového spojení závisí na použitých anténách. Nastavéní optiky je velmi kritické. To je velmi nepříjemný aspekt infračerveného spojení, ale právě tato směrovost umožňuje dosáhnout použitelného dosahu

a zajistit soukromý charakter spojení. Funkce systému je v případě světelného telefonu omezena (setrvačností žárovky) na jednoduchý provoz AM. Infračervený systém, který používá jako vysílací prvek diodu LED, může použít kmitočty až 50 kHz i vyšší, což umožní použít jednoduchou rnodulaci FM. To značně zjednoduší problémy s rušením světelnými zdroji, napájenými ze sitě, nebo jinými zdroji infračerveného záření.

Na obr. 42 je blokové zapojení pojítka. Jednodušší je část vysílací, která nejprve zesiluje signál z mikrofonu (efektivní napětí asi 1 mV). Proto je před modulátorem zařazen dvoustupňový zesilovač. Obvod nastavení zesílení umožňuje nastavit modulační úroveň. Používaný mikrofon je dynamický, o malé impedanci (300 až 600 Ω). Bylo by samozřejmě možné přepínat reproduktor přijímače do funkce mikrofonu, jako je tomu u většiny levných systémů interkomů, ale vedlo by to ke značnému zhoršení "nízkofrekvenční" kvality přenosu, proto je nutné dát přednost použití vhodného mikrofonu.

Jako modulátor se používá napětím řízený oscilátor, na jehož řídicí vstup je připojen nízkofrekvenční modulační signál. Výstupní kmitočet VCO, který byl použit, se na rozdíl od většiny typů zvětšuje se zmenšujícím se řídicim napětím, a zmenšuje se při jeho zvětšování. To však pro funkci systému nemá praktický význam. Výstupní signál VCO však nastačí budit infračervenou diodou LED, ta je proto buzena koncovým stupněm s velmi malou výstupní impedancí.

V části přijímače se jako infračervený detektor používá obyčejný fototranzistor. Ačkoli se fototranzistory běžně považují za vhodné pouze pro aplikace ve viditelném spektru, podobně jako většina opticky citlivých prvků mají vrchol charakteristiky v infračervené části světelného spektra.

Protože výstupní signál detektoru má extrémně malou úroveň, spíše v oblasti mikrovoltů než milivoltů, je třeba před demodulátorem použít obvod s velkým zesílením. To zajišťuje laděný zesilovač a následující dva stupně širokopásmového zesílení. Laděný zesilovač nemá příliš selektivní charakteristiku, ale zajišťuje dostatečný útlum na nízkých kmitočtech, odpovídajících síťovému kmitočtu a ostatním zdrojům rušení. Zeslabení signálů vysokých kmitočtů pomáhá řešit otázku stability zesilovače.

Za zesílovačem následuje Schmittův klopný obvod, který dodává výstupní signál pra-voúhlého průběhu pro buzení demodulátoru. Když zesilovač dodává pouze šum pozadí, signál není dostatečný pro vybuzení klopného obvodu a na výstupu tedy není žádný signál. To vede k podobnému jevu, jaký vykazuje obvod umlčovače šumu, takže úroveň šumu ve stavu bez signálu je malá.

Jako demodulátor se používá obvod s fázovým závěsem, který se skládá z fázového detektoru, dolní propusti a napětím řízeného oscilátoru (VCO). Obvod je zapojen tak, že fázový detektor přes dolní propust dodává řídicí napětí VCO, a toto napětí závisí na fázi a kmitočtovém rozdílu mezi vstupním signálem a výstupem VCO. To způsobí, že VCO je "zavěšen" na stejném kmitočtu, jako má vstupní signál a je s ním ve fázi. V tomto případě nás však nezajímá výstupní signál VCO, ale řídicí napětí. To se zvětšuje a zmenšuje se změnami kmitočtu vstupního signálu a tím se tyto změny převádějí zpět na původní nízkofrekvenční signál.

Demodulovaný nízkofrekvenční signál se přes regulátor hlasitosti přivádí na vstup nízkofrekvenčního zesilovače, na jehož vý-

stupu je zapojen reproduktor.

K optické části je třeba uvést, že i když většina optických součástek je opatřena vestavěnými čočkami, jsou pro provoz s dostatečným dosahem zcela nedostatečné. Stačí však použít jednoduchý optický systém, uvedený na obr. 43. Světelný výstup LED je zaostřen do úzkého svazku plankonvexní čočkou. Obrázek samozřejmě ukazuje poněkud idealizovanou situaci, v praxi bude mít svazek paprsků určitý rozptyl. To poněkud zmenší dosah systému, značně to však usnadní jeho nastavení. Druhá plankonvexní čočka v přijímači soustřeďuje záření z vysílače na fototranzistor. Vzdálenost mezi optickou součástkóu a čočkou má být přibližně rovna ohniskové vzdálenosti, což bylo v popisovaném případě 80 mm. Na optické kvalitě použitých čoček příliš nezáleží.

Zapojení vysílače je na obr. 44. Tranzistor T<sub>1</sub> pracuje jako mikrofonní předzesilovač v zapojení se společným emitorem. Výstup z T<sub>1</sub> se přivádí přes potenciometr řízení zesílení P1 na druhý stupeň zesilovače, T2 VCO je zapojen s obvodem 555 (IO₁), který zajišťuje dobrou funkci při malých nákladech. Zapojení je standardní astabilní multivibrátor s 555, jehož střední kmitočet je nastavitelný potenciometrem P2. Potenciometr se nastavuje tak, aby byl vysílač naladěn na střed propustného pásma přijímače.

Bez modulace obvod kmitá v závislosti na nepřetržitém nabíjení časovacího kondenzátoru C6 na dvě třetiny napájecího napětí a následujícím jeho vybíjením na jednu třetinu napětí zdroje. Horní mezní napětí je možné měnit externím napětím, přivedeným na vývod 5, přičemž zvětšení mezního napětí způsobí, že nabíjení a vybíjení C<sub>6</sub> trvá déle, což vede ke snížení provozního kmitočtu. Zmenšení mezního napětí vede k opačnému jevu. Tak se pouhým připojením nízkofrekvenčního signálu na vývod 5 obvodu IO<sub>1</sub> dosahuje požadované kmitočtové modulace. Pro hovorové spojení se nepožadují kmitočty nad 3 kHz, pro pokles charakteristiky nad tímto kmitočtem se používá kondenzátor C7. To vede k mírnému zlepšení poměru signálu k šumu.

IO1 dává možost použít dosti velký budicí proud, koncový zesilovač však dovolí spolehlivější nastavení proudu LED. V tomto případě pracuje jako zesilovač tranzistor T3, který je zapojen jako spínací se společným emitorem. Rezistor R<sub>10</sub> nastavuje proud diodou LED nad 100 mA, střední proud LED je však jen asi 60 mA. Proudová spotřeba celého zapojení je o něco větší - kolem 80 mA. To dovoluje provoz z baterií, je však třeba baterii sestavit z článků o dostatečně velké kapacitě, nejlépe z akumulátorů NiCd.

Zapojení **přijímače**, který je poněkud složitější než vysílač, je na obr. 45. T4 je fototranzistor, u kterého se využívá závislosti odporu přechodu mezi koléktorem a emitorem na světle. Všimněte si, že báze T4 není zapoiena.

Laděný zesilovač s tranzistorem T5 používá laděný obvod, sestavený z L<sub>1</sub> a C<sub>11</sub>. Rezonanční kmitočet je pevně nastaven na přibližně 50 kHz. Výstup z T5 se přivádí na druhý zesilovací stupeň s tranzistorem T<sub>6</sub>. Jeho vstupní impedance je poněkud zvětšena emitorovým rezistorem R<sub>16</sub>, takže příliš nezatěžuje láděný obvod. Laděný obvod má i tak dosti širokou charakteristiku, což je důležité, protože zdvih nosné může být značný. T<sub>7</sub> je zapojen jako třetí zesilovací stupeň, dioda D<sub>2</sub> zabraňuje jeho přetížení při příjmu silného signálu.

IO2 pracuje jako Schmittův klopný obvod. Jeho oba vstupy jsou spojeny s výstupním napětím tranzistoru T<sub>7</sub>, do cesty k invertujícímu vstupu je však zahrnut filtr (R<sub>19</sub>, C<sub>15</sub>). To způsobuje, že vysokofrekvenční výstupní signál z T7 se přivádí na neinvertující vstup, nedostává se však na invertující vstup. Na výstupu obvodu IO2 je tedy "oříznutý" vstup-





100p 56k Cz 100<sub>J</sub>u R12 10k 102 10. 10k 3.9 C<sub>15</sub> R<sub>22</sub> 640 1N4148

Obr. 45. Přijímač optického spoje

ní signál a R, zavádí určitou hysterezi, což vede k tomu, že obvod pracuje jako jednoduchý omezovač šumu.

Demodulátor se smyčkou fázového závěsu je zapojen s obvodem IO3, typu CMOS 4046. Jakó časovací součásti ve VCO se používají C<sub>16</sub> a R<sub>22</sub>, R<sub>25</sub> a C<sub>17</sub> se používají jako dolní propust. Demodulovaný nízkofrekvenční signál se odebírá z dolní propusti přes integrovaný oddělovací stupeň sledovače s diskrétním zatěžovacím rezistorem R<sub>23</sub>. R<sub>26</sub> a C<sub>19</sub> tvoří jednoduchou dolní propust, která přispívá ke zlepšení poměru signálu k šumu, P3 je potenciometr nastavení hlasitosti. Odtud se pak signál přivádí do jednoduchého výkonového zesilovače s IO<sub>4</sub>, který odevzdává do reproduktoru výkon asi 100 mW, což je však pro tuto aplikaci dostatečné.

Konstrukční provedení z elektrického hlediska není kritické, je však si třeba uvědomit, že přijímač obsahuje zesilovač s velkým zesílením, a při rozmisťování součástek je tedy třeba zamezit vlivu zpětné rozptylové vazby a následné nestabilitě. Mechanické provedení je poněkud složitější, protože je třeba respektovat zákony optiky. Prvky citlivé na světlo musí být umístěny v ohnisku čoček a při nastavování je třeba mít možnost nejen měnit vzdálenost prvků, ale posouvat ie i do stran. Ideální by samozřejmě bylo, posouvat je mechanicky. Jednodušším ře-šením však je ponechat poněkud delší vývody, aby tak mohl být prvek opatrně nastaven do optimální polohy.

Nastavení přístroje se začíná při potenciometru P2 v obou přístrojích nastaveném do střední polohy. Protože však vysílač i přijímač jsou značně směrové, systém nebude téměř jistě pracovat, dokud nebude opticky nastaven s přiměřenou přesností. Obě jednotky je možné zhruba nastavit při pohledu na přední stěnu přístroje ze vzdálenosti asi jednoho metru, kdy má být viditelný zvětšený obraz citlivých prvků ve středu čoček, jinak je třeba upravit jejich polohu.

Pro elektrické nastavení přístroje je třeba jednotky nastavit vzájemně tak, aby nebyly optimálně zaměřeny, a dosáhlo se v obou přijímačích slabého signálu a malého poměru signálu k šumu v obou směrech. Potenciometr v obou přístrojích se pak nastaví tak, aby se dosáhlo nejmenší možné úrovně šumu v svstému.

Optické nastavení jednocestného systému není příliš obtížné, protože přijímač

může být použit jako detektor signálu pro určení přesného směru paprsku z vysílače, takže je možné potřebně korigovat zaměření na cíl. Přijímač se umístí do paprsku vysílače a zaměří se na dosažení optimálního výsledku. U obousměrného systému je to poněkud složitější, protože nastavení jednoho přístroje na maximální příjem zhorší nastavení vysílací části přístroje.

Pravděpodobně nejsnadnější možností řešení je použít jednoduché zapojení podle obr. 46, které pracuje jako detektor paprsku



Obr. 46. Detektor pro indikaci

(LED D<sub>4</sub> se rozsvítí, když se D<sub>1</sub> dostane do infračerveného paprsku). To umožní přesně zaměřit každý z vysílačů na protější jednotku s minimálním experimentováním. Pak se nastaví optimální poloha fototranzistorů pro optimalizaci výsledků, nesmí se však při tom změnit poloha přístroje

Uvedené zapojení je možné dále zlepšovat. Jednou z možností je používat k buzení vysílací diody LED krátké impulsy namísto signálu pravoúhlého průběhu. To umožní používat velmi velký proud LED, při poměru šířky impulsu k mezeře kolem 1 ku 10 však musí střední hodnota proudu diodou zůstat v rozsahu dovolené velikosti. Při tom se ovšem uplatní i některé nevýhody, jako například zmenšení výstupního signálu na základním kmitočtu a zvětšený výkon harmonických. Aby bylo možné plně využít výkonu krátkých impulsů, musí mít zesilovač v přijímači dostatečnou šířku pásma a místo laděného zesilovače tedy bude třeba použít zesilovač širokopásmový. Pro dosažení dobrých výsledků může mít také význam tvarování impulsů ve vztahu ke smyčce fázového závěsu, nebo použití monostabilního klopného obvodu.

Pravděpodobně největší prostor pro experimentování je v oblasti optiky. Žřejmá je možnost použít před fototranzistorem infračervený filtr. To by vyloučilo šum, způsobovaný zdroji viditelného světla a značně zlepšilo výsledky, zvláště při provozu za mezních podmínek. Výkon vysílače a citlivost přijíma-če je možné zlepšit použitím čoček o delší ohniskové vzdálenosti a větším průměru. Při použití větší čočky v přijímači se může zvět-šit plocha, na kterou je promítán paprsek. Pak může být dosaženo lepších výsledků použitím křemíkové fotodiody s větší citlivou plochou. Užitečným doplňkém přístroje by také byl optický záměřovač, dovolující rychlé a snadné znovunastavení systému. S vhodným optickým systémem je možné dosáhnout spojení na několik set metrů.

Practical Electronics č. 9/1986

#### Detektory přiblížení

V řadě elektronických aplikací se požaduje možnost zjistit přítomnost osoby nebo předmětu v určitém prostoru. Není to jen u zabezpečovacích zařízení, ale i u systémů automatického rozsvěcování, automatického vypnutí stroje, v oblasti fotografování atd. Možností řešení tohoto problému je známa celá řada, některé isou však dosti zastaralé. iiné vyžadují využití vyspělé elektroniky, což bývá mimo "akční rádius" elektronických fandů. Přesto však zbývá řada systémů, které nás mohou zajímat.

Jedním z nejstarších systémů je systém, jehož blokové schéma je na obr. 47, který se používal například pro reklamní účely (rozsvícení výlohy obchodu). Jádrem tohoto zapojení je oscilátor LC, vybavený možností přesně řídit kladnou zpětnou vazbu. Stupeň zpětné vazby se nastaví tak, aby se právě jen udržely oscilace obvodu. Vlivem přiblížení osoby nebo předmětu pak oscilace vysadí, což se využije pro příslušnou operaci nebo indikaci. Jeden konec laděného obvodu musí být spojen se zemí. To neznamená spojení se zemním vodičem detektoru, ale skutečné uzemění. U síťových zařízení stačí spojení s nulovým kolíkem. U bateriového



Obr. 47. Blokové zapojení detektoru přiblížení

napájení je třeba použít podobné zemnění, jak je známe například z techniky příjmu na krátkých vlnách. Pokud není ani to možné, lze použít i náhradní nebo umělou "zem" ale o tom až později. Jako čidlo se používá anténa, připojená k živému konci laděného obvodu. Může to být kus drátu, podle zkušeností se však dosahuje daleko lepší citlivosti s použitím vodivé plochy (plech nebo fólie). Přístroj v takovém uspořádání pracuje spolehlivě, i když jen na dosti omezenou vzdálenost. Dá se předpokládat, že existuje více názorů na to, co se stane při přiblížení osoby těsně k anténě, ale všeobecně přijímané vysvětlení předpokládá, že se zvětší kapacita mezi anténou a zemí a to proto, že tělo osoby je uzemněno (nebo působí jako "minizem"). Tím se mírně zatlumuje laděný obvod, takže nastavená úroveň zpětné vazby iiž nestačí pro udržení oscilací. Zbytek zapojení jen zajišťuje převod stavu "vysazení oscilací" na sepnutí relé.

Výstupní signál oscilátoru se nejprve přivádí do oddělovacího zesilovače. Pro dosažení rozumné úrovně citlivosti systému je velmi důležité, aby oscilátor byl jen velmi málo zatěžován. Výstupní signál z oddělovacího zesilovače se přivádí na detektor a filtr a v klidovém stavu jde o kladné napětí. Když však oscilace vysadí, výstupní signál se rychle zmenší na nulu. Následující invertor/ zesilovač invertuje vstupní signál, takže výstupní signál je v klidovém stavu v nule a přechází do kladné velikosti při aktivaci zařízení. Podle požadovaného jevu se pak používají spínací nebo rozpínací kontakty relé.

Zapojení detektoru tohoto typu je na obr. 48. Jak je zřejmé, tento typ detektoru může

Dalši emitorový sledovač s T2 pracuje jako oddělovací zesilovač. Výstupní signál z T<sub>2</sub> se přivádí přes C<sub>6</sub> na standardní usměrňovač s diodami D1 a D2 a filtr. Oscilátor pracuje na kmitočtu několika stovek kHz a poměrně malé kapacity kondenzátorů C<sub>6</sub> a C<sub>7</sub> jsou více než dostatečné. T<sub>3</sub> pracuje jako invertor/zesilovač; tento jednoduchý spínač se společným emitorem je za normálních okolností sepnut, vypíná se však při přerušení oscilací. Jeho kolektorové napětí se pak zvětší až na úroveň téměř plného kladného napájecího napětí. Tranzistor T4 je spínačem relé. Spíná při vypnutí T3, protože relé tvoří jeho kolektorovou zátěž. Dioda D<sub>3</sub> je běžně používaná ochranná dioda, potlačující záporné špičky napětí, vznikající při vypnutí proudu v cívce relé.

Dosažené výsledky ukazují, že i když je indukčnost cívky  $L_2$  specifikována na 470  $\mu$ H, lze použít cívku s libovolnou indukčností v rozmezí od 220  $\mu$ H do 2,2 mH při zhruba stejných výsledcích. Cívka nemusí mít velkou jakost Q, je možné použít i vf tlumivku. Potenciometr  $P_1$  musí být nastaven velice přesně, proto je nutné použít několikaotáčkový trimr. Běžný potenciometr by totiž nemusel mít dostatečnou rozlišovací schopnost pro uspokojivou funkci. Relé je libovolně pro 6 V, odpor cívky má asi 200  $\Omega$  nebo více. Jeho kontakty musí odpovídat předpokládaně aplikaci.

I když je možné napájet systém z baterie, při seriózních aplikacích se doporučuje dobře stabilizovaný síťový zdroj. Větší změny napájecího napětí totiž mohou vyřadit přístroj z činnosti, nebo způsobit falešný poplach. Proudová spotřeba v klidovém stavu je kolem 5 mA, při aktivaci relé dosahuje až 30 mA (podle odporu cívky relé).

Při napájení přístroje ze šítě sé předpokládá, že záporný pól zdroje se připojí k zemnímu vodiči sítě a bude také zemí pro laděný obvod. Obvod je možné používat i bez "země", ale jeho chování pak bude poněkud nepředvídatelné, obecně se tím zmenší citivost. Často lze dosáhnout dobrých výsledků použitím "umělé" země, může to být prostě jen kovová deska pod přístrojem.

Jako anténu je možné použít kus drátu, pak však i po pečlivém nastavení P<sub>1</sub> bude



Obr. 48. Detektor přiblížení

být velmi jednoduchý a nevyžaduje použít nákladné součástky. Oscilátor používá jako laděný obvod cívku L1 se sériovými kondenzátory C3 a C4. Tranzistor T1 pracuje jako emitorový sledovač a laděný obvod je připojen k jeho bázi kondenzátorem C2. Výstup zesilovače je spojen s odbočkou kapacitního děliče kondenzátorem C<sub>5</sub>. Emitorový sledovač má obecně napěťové zesílení o něco menší než jedna. Na laděném obvodu se však při rozkmitání oscilátoru poněkud zvětší napětí a emitorový sledovač zajišťuje dostatečný proudový získ. To dovoluje intenzívní oscilace. Na výstupu zesilovače je zapojen potenciometr P1 jako proměnný atenuátor. V praxi se nastavuje tak, aby se právě ještě udržely oscilace.

ztěží dosaženo dosahu většího, než několika milimetrů. Daleko lepších výsledků je možné dosáhnout s použitím vodivé plochy, jako je hliniková fólie nebo deska plátovaného laminátu. Dobré výsledky dává plocha o rozměrech 300 × 150 mm nebo větší. Anténa musí být samozřejmě dobře izolovaná od země.

Tento typ detektoru přiblížení je typickým zařízením s krátkým dosahem. Autor dosáhl největšího dosahu kolem 400 mm. I to však vyžaduje dosti velkou anténu a pečlivé nastavení P<sub>1</sub>. Tento typ detektoru může být například použit pro zjištění osoby za oknem nebo za dveřmi, tedy dříve, než vnikne do střeženého prostoru.

000

Komu se popsaný přístroj zdá příliš primitivní a zastaralý, může zkusit využít ultrazvuk. Toho se nejčastěji využívá na principu Dopplerova principu pro detekci pohybu, může být ovšem použit na "radarovém" principu odrazu, nebo podobně jako infračervené záření na principu přerušení paprsku. Aplikace s využitím odrazu je zajímavá pro malý a střední dosah. I když má obecně menší dosah než detektor Dopplerova typu, má v určitých aplikacích některé výhody.

Pravděpodobně největším nedostatkem ultrazvukového Dopplerova detektoru je to, že je v některých ohledech příliš citlivý. Ve skutečnosti indikuje ne přítomnost objektu, ale jeho pohyb. Tato poplachová zařízení, jak se zdá, mohou detekovat zcela malé objekty, jako třeba můry a další druhy hmyzu, které vlétnou do chráněného prostoru. Detektor radarového typu detekuje vlny, které jsou odráženy zpět směrem k přijímači, a malé objekty prostě neodrazí dostatečné množství energie, které by mohlo být detekováno, zvláště na větší vzdálenosti. To vede k daleko větší spolehlivosti na úkor menšího dosahu a menší chráněné oblasti.

Zvláštní přednosti vykazuje ultrazvukový radar proti typu s Dopplerovým posuvem při použití v exteriéru. Kdo se pokusil použit detektor Dopplerova typu v exteriéru, zná velmi dobře problémy, které se vyskytují. Falešné poplachy může způsobit nejen létající hmyz, ale také turbulence vzduchu, působená větrem. A také padající kroupy, déšť, sníh i poletující listí. Ani detektor radarového typu není zcela imunní proti těmto vlivům, obecně se však zdá, že je odolněiší.

Ultrazvukový radar pracuje nejlépe v exteriéru, kde není příliš mnoho předmětů, které by v klidových podmínkách odrážely ultrazvukové vlny. V interiérech je řada předmětů, způsobující odrazy, jako nábytek, stěny, strop atd. Nejde o to, že by systém v interiéru nepracoval, spíše jde o omezení dosahu. Citlivost systému musí být zmenšena tak, aby nenastával trvalý poplach.

Pro realizaci ultrazvukového detektoru radarového typu není třeba používat nic zvláště složitého, jak je zřejmé z blokového schématu na obr. 49. Oscilátor 40 kHz budí standardní piezokeramický měnič, používaný v ultrazvukových systémech dálkového ovládání. Tak je vysílán nepřetržitý ultrazvukový signál a v přítomnosti vhodného objektu se určitá část tohoto signálu odráží zpět na ultrazvukový mikrofon. Tím je opět standardní ultrazvukový měnič, určený pro dálkové ovládání.

Ultrazvukové dálkové ovládání má obvykle dosah 12 až 15 m, tak velkého dosahu však není možné tímto zapojením dosáhnout. V systému dálkového ovládání totiž signál pracuje pouze mezi místem vysílání a místem příjmu, v popisovaném systému se však po odrazu musí vrátit zpět do místa vyslání. To znamená, že i při odrazu se 100% účinností se dosáhne jen polovičního dosahu, a to je v praxi nutné počítat s tím, že značná část signálu bude absorbována. Je tedy pravděpodobně nutné počítat s dosahem kolem čtyř až pěti metrů (při vhodném objektu). To v řadě aplikací stačí, v přijímači je však nutné použít velké zesílení. V popisované konstrukci je napěťové zesílení asi 90 dB, zajišťuje je dvoustupňový zesilovač. Důležitá je regulace mezi oběma stupni, protože pro dosažení dobrého dosahu je nutné použít co největší zesílení, které však nesmí dosáhnout bodu, za kterým při normální úrovni odrazů přístroj zůstává trvale v aktivovaném stavu.

Výstupní signál druhého zesilovacího stupně se přivádí na usměrňovač a filtr. Získaný kladný stejnosměrný signál se přivádí na vstup klopného obvodu, na jehož výstupu je velké kladné napětí, když výstupní napětí filtru překročí určitou mezní úroveň. Výstupní signál klopného obvodu spíná pomocí jednoduchého spínacího obvodu relé.



Obr. 49. Blokové zapojení ultrazvukového "radaru"

Schéma zapojení vysílače a přijímače je na obr. 50 a 51. Vysílač používá obvod CMOS 4047, který je zapojen v astabilním kmitajícím režimu. Jeho výstupy Q a Q budí ultrazvukový měnič signály v protifázi, čímž se dosahuje většího výstupního napětí. Potenciometrem P2 je možné nastavit kmitočet výstupního signálu na optimální účinnost ultrazvukového měniče



Obr. 50. Ultrazvukový vysílač

Popisovaný přístroj je dokladem univerzálnosti využívání počítačů. Je určen pro použis počítači typu Commodore 64, VIC-20 a BBC model B, případně dalšími, u nichž má uživatel přístup k portu B adapteru interfeisu 6522 VIA (versatile interface adaptor) nebo 6526 CIA (complex interface adaptor) Počítače se využívá přímo jako generátoru napájecího signálu ultrazvukového měniče vysílače, a to na základě možnosti dělit hodinový kmitočet celým číslem v rozsahu od 1 do 65535. Poměr dělení se určuje zápisem hodnot do dvou osmibitových čítačů/registrů

Blokové schéma systému je na obr. 52. Ukazuje, že vysílací část je založena pouze na využití počítače, vlastní detektor poměrjednoduše zpracuje přijímané signály, které pak předává k vyhodnocení a zajištění dalších požadovaných poplachových funkcí opět počítači. Výstupní signál přijímacího měniče je malý, proto následují dva zesilovací stupně se ziskem 40 dB (každý). Pak se

přijímač



Na vstupu přijímače jsou dva zesilovací stupně, mezi kterými je zapojen potenciometr P<sub>1</sub> pro nastavení zesílení. Výstupní signál tranzistoru T<sub>2</sub> se přivádí na běžný usměrňovač a filtr. Operační zesilovač IO<sub>1</sub> je zapojen jako komparátor. Rezistory R<sub>7</sub> a R<sub>8</sub> nastavují referenční napětí na invertujícím vstupu na něco málo přes 2 V. Když se toto napětí překročí, výstupní napětí se mění na kladné. Tranzistor T<sub>3</sub> pak sepne relé.

Při realizaci je třeba brát v úvahu poměrně velké napěťové zesílení a velkou šířku pásma zesilovače v přijímači. Kromě toho jsou vstupní a výstupní signál zesilovače ve fázi. Rozmístění součástek tedy musí zajistit minimální vazbu mezi vstupem a výstupem zesilovače. Oba ultrazvukové měniče jsou upevněny s odstupem 75 až 100 mm, přímé vazby mezi vysílačem a přijímačem není třeba se zvlášť obávat s ohledem na jejich výrazně směrovou charakteristiku.

Potenciometr P2 je třeba nastavit na dobrou účinnost systému, měření napětí na C5 je jednoduchým, ale účinným způsobem měření intenzity přijímaného signálu. Pak stačí nastavit P2 na maximální napětí při potenciometru P<sub>1</sub> nastaveném na "rozumnou" velikost napětí (vyhovující je 0,5 až 3 V). Zařízení se umisťuje tak, aby měniče směřovaly do poměrně otevřeného prostoru. Při umístění asi metr nad podlahou a zaměření do prázdného prostoru je možné detekovat osobu na vzdálenost několika metrů. Pro optimální výsledky je třeba potenciometr P1 nastavit těsně před bod aktivace detektoru.

(Practical Electronics 8/1988)



Ultrazvukový detektor pohybu s využitím Dopplerova principu může být zkonstruován také pro používání nebo využití počítače.

používá běžný detektor AM pro získání přijímané nízkofrekvenční modulace. Tento signál se dále zesiluje a přivádí na klopný obvod, kde je upraven na standardní logickou úroveň 5 V. Výstup tvoří série krátkých impulsů, které by sice mohly být zpracovány počítačem, ale při používání programu BA-SIC, který je poměrně pomalý, by impulsy mohly být špatně zpracovány. Proto se používá poměrně jednoduchý obvod pro prodloužení impulsů, aby mohlo být dosaženo spolehlivějších výsledků.

Uživateľský port počítače má několik digitálních vstupů. Který z nich bude použit způsob zpracování záleží na konkrétní

aplikaci. Při využití ve funkci poplachového zařízení může počítač generovat poplachový signál při aktivování zařízení, nebo může zapnout relé, spouštějící sirénu. V navrhovaném přístrojí nebylo třeba používat obvody časového zpoždění při příchodu a odchodu obsluhy, protože tato zpoždění je možné jednoduše realizovat v programu, kam je možné zahrnout i další zdokonalení, k omezení nebezpečí falešných programů je možné spustit zvukový signál jen tehdy, bude-li např. systém reagovat čtyřikrát v průběhu pěti sekund.

Funkci zapojení je možné popsat podle schématu na obr. 53. Měnič LS vysílače je napájen z příslušného vývodu uživatelského portu. Měnič MIC přijímače je podobně jako měnič vysílače piezoelektrický. a přijímací měnič bývají často stejné. MIC je připojen přímo do báze T<sub>4</sub>, který pracuje jako zesilovač s velkým zesílením. Výstupní signál se přivádí vazebním kondenzátorem Co na vstup následujícího stejného zesilovače.

Přes kondenzátor C<sub>8</sub> se přivádí výstupní signál T<sub>3</sub> na konvenční detektor AM, jehož výstupní signál se pak zesiluje třetím zesilovačem s T<sub>2</sub>. Kondenzátor C<sub>5</sub> silně zeslabuje signály středních a vyšších nízkofrekven-čních kmitočtů, to však nezmenšuje citlivost zařízení, protože výstup detektoru tyto kmitočty neobsahuje. Filtrace dolní propustí (pomocí C<sub>5</sub>) přispívá k zamezení případné nestability a možnému rušení počítačem.

IO<sub>1</sub> pracuje jako napěťový komparátor. Invertující vstup je připojen ke klidovému napětí na kolektoru T2 přes rezistor R4, C4 filtruje všechny krátkodobé změny tohoto napětí. Neinvertující vstup je také napájen z kolektoru T2, ale přes napěťový dělič R2, R<sub>3</sub>. Proto je na neinvertujícím vstupu menší napětí než na invertujícím, na výstupu IO1 je tedy v klidovém stavu nulové napětí.

Při aktivování přístroje se stav změní, protože se díky filtraci udržuje na invertujícím vstupu téměř konstantní napětí. Napětí na neinvertujícím vstupu se mění v souladu s modulačním signálem, při kladných špič-kách bude větší než napětí na invertujícím vstupu, což způsobí kladné impulsy na výstupu. Tyto impulsy rychle nabíjejí C3, protože vnitřní impedance jejich zdroje je poměrně malá. Naproti tomu se C<sub>3</sub> vybíjí pouze přes poměrně velkou impedancí bázového obvodu tranzistoru T1. Tím se impulsy integrují a vzniká signál, způsobující aktivaci přístroje. Tranzistor T1 je zapojen jako emitorový sledovač (pracuje jako oddělovací zesilováč). Celé zapojení vyžaduje napájení 5 V a má spotřebu pouze 5 mA. Pro napájení je možné použít uživatelský port počítače.



Obr. 52. Blokové zapojení detektoru pro počítač



B/4 (Amatérike: ADIO)

Zkoušení a používání závisí na typu použitého počítače. Z registrů uživatelského portu se v této aplikaci používá pomocný řídicí registr, dva osmibitové čítače, časovač, registr směru dat a periferní registr. Registr směru dat se používá pro nastavení datových vedení PB0 až PB7 jako vstupů nebo jako výstupů. PB7 budí měnič vysílače a musí tedy být nastaveno jako výstup, PB0 však musí být nastaveno jako vstup pro sledování výstupu čidla. Nastavení bitu registru směru dat na 1 označuje příslušné vedení jako výstup, 0 pak určuje vstup. (Hodnota 128 nastaví PB7 jako výstup, ostatní jako vstupy.) Časovač je řízen dvěma nejvýznamnějšími bity pomocného řídicího registru. Ty musí být oba nastaveny na 1, aby výstup PB7 byl v režimu astabilních kmitů (hodnota 128)

Pro počítač Commodore 64, který přichází v našich podmínkách nejčastěji v úvahu, uvádíme adresy registrů uživatelského por-

| 77 |
|----|
| 79 |
| 82 |
| 83 |
| 91 |
|    |

Registr řízení B zhruba odpovídá pomocnému řídicímu registru u ostatních počítačů. Bit 0 řídicího registru B se nastaví do log. 1 pro aktivování časovače B, bit 1 se nastaví do log. 1 pro aktivování výstupu na PB7 (a automaticky nastavuje PB7 jako výstup) a bit 2 se nastaví do log. 1 pro dosažení pravoúhlého výstupního signálu, jinak by byl signál impulsní. Bit 3 se nastaví do log. 0 pro trvalou funkci, jinak by byla jednorázová a bit 4 se nastaví do log. 1 pro naplnění časovače. Bity 5 a 6 se nastaví do log. 0 pro uvedení časovače B do režimu, ve kterém přijímá vstupní signál ze systémových hodin, bit 7 je v tomto případě neplatný. To dává pro zápis do řídicího registru celkovou hodnotu 23. Zkušební program pro počítač Commodore pak vypadá takto: 10 POKE 56582,13

10 POKE 56582,13 20 POKE 56583,0 30 POKE 56591,23 40 PRINT PEEK (56577) AND 1 50 GOTO 40

Practical Electronics 2/1986



Kdo nemá počítač a chtěl by přesto vyzkoušet zajímavé zařízení s poměrně velkým dosahem, vhodné pro použití v místnostech i volném terénu, má také možnost. Zařízení je založeno na tom, že kolem antény oscilátoru v pásmu UHF vzniká elektromagnetické pole, které se vstupem osoby poruší, protože tělo absorbuje část energie pole. Spotřebuje se tedy určitá energie navíc a protože je anténa připojena přímo k oscilátoru, změní se pracovní podmínky oscilátoru a také proud, který je odebírán ze zdroje. A právě tato změna se detekuje a používá pro sepnutí relé.

V reálných podmínkách je elektromagnetické pole vytvořené anténou velmi složité, zvláště při použití v interiéru. Při pohybu osoby v tomto poli se absorpce zvětšuje a zmenšuje v závislosti na změně polohy ve vzdálenosti, odpovídající čtvrtvlnám kmitočtu oscilátoru. Při pohybu osoby v elekromagnetickém poli v kmitočtovém pásmu 500 MHz je délka čtvrtvlny pouze 15 cm.

Blokové schéma přístroje je na obr. 54. Změny proudu oscilátoru jsou nejprve zpracovány aktivní dolní propustí, která nemá



Obr. 54. Blokové schéma indikátoru



žádné zesílení pro ss složku a značné zesílení do několika Hz, které se pak zmenšuje. Pak následuje pasívní dolní propust, zlepšující potlačení síťového brumu 50 Hz. Dále pak obvod komparátoru sleduje, jestli změny pracovních podmínek oscilátoru překročí určitou úroveň, která se nastavuje ovládacím členem "citlivost". Když změny překročí nastavenou úroveň, sepne relé. Mez citlivosti je možné nastavitbuď tak, aby byl zjištěn pohyb ve větší vzdálenosti, nebo tak, aby byl registrován pohyb jen v těsné blízkosti.

Obvod (obr. 55) je poměrně jednoduchý a nevyžaduje použít speciální součástky. Tranzistory T<sub>1</sub> a T<sub>2</sub> tvoří dvojčinný oscilátor na kmitočtu kolem 470 MHz. Rezonanční obvod L<sub>1</sub>, C<sub>1</sub> je zapojen mezi oba kolektory. Celková spotřeba je 40 až 50 mW, výstupní výkon je pravděpodobně menší než polovina tohoto údaje. Je to tedy velmi malý výkon, přesto je možné v interiéru zjistit pohyb v dosahu kolem 10 m.

Laděný obvod je realizován na desce s plošnými spoji podobně, jak je to běžné v TV technice. Émitory T<sub>1</sub> a T<sub>2</sub> isou spojeny a napájeny ze zdroje konstantního proudu, sestaveného z T<sub>3</sub>, D<sub>1</sub>, D<sub>2</sub>, R<sub>5</sub> a R<sub>7</sub>. Diody D<sub>1</sub> a D<sub>2</sub> zajišťují pevné předpětí pro bázi T<sub>3</sub> asi 1,4 V. Jsou napájeny proudem, přiváděným z napájecí sběrnice +12 V přes rezistor R7. Protože napětí báze-emitor T<sub>3</sub> je asi 0,65 V na rezistoru R<sub>5</sub> je napětí kolem 0,75 V, což vede ke kolektorovému proudu přibližně 5 mA. Kladné napětí se do obvodu oscilátoru přivádí přes "cívku", vyleptanou na desce s plošnými spoji. Přívod je blokován kondenzátorem  $C_6$ , emitory  $T_1$  a  $T_2$  jsou blokovány kondenzátory  $C_4$  a  $C_5$ . Anténa může být připojena k laděnému obvodu podél jednoho z ramen L<sub>1</sub>. To může být vhodné pro nastavení požadovaného dosahu

Při vstupu osoby do pole oscilátoru se změní pracovní podmínky oscilátoru. Protože proud je konstantní, změní se napětí na kolektoru T<sub>3</sub> a tím i napětí mezi kolektorem a emitorem T<sub>1</sub> a T<sub>2</sub>. Toto napětí se při pohybu osoby zvětšuje a zmenšuje. Když je osoba poměrně vzdálena, tento jev je nevýrazný, při větší blízkosti je podstatně výraznější. Změna napětí na kolektoru T<sub>3</sub> je kapacitně vázána na neinvertující vstup operačního zesilovače IO<sub>1</sub> kondenzátorem C<sub>8</sub>; R<sub>6</sub>, C<sub>7</sub> zajišťují filtraci. Tento obvod pracuje jako aktivní filtr. Aby nebylo nutné používat pro

napájení kladné a záporné napětí, rezistory  $R_8$  a  $R_9$  udržují napětí neinvertujícího vstupu  $IO_1$  na polovině napájecího napětí. Obvod zpětné vazby tvoří  $R_{10}$ ,  $R_{11}$ ,  $R_{12}$  a  $C_9$ ,  $C_{10}$ . Výstup tohoto obvodu se přivádí přes pasívní dolní propust  $R_{14}$ ,  $C_{12}$  na komparátor  $IO_2$ . Ovládacím prvkem pro nastavení citlivosti,  $P_1$ , se na neinvertujícím vstupu nastaví ss napětí v rozsahu 5,7 až 6,3 V. Když se signál na invertujícím vstupu zmenší pod úroveň, přednastavenou na neinvertujícím vstupu, výstupní napětí  $IO_2$  se zvětší z nuly na velikost přibližně napájecího napětí. Tím se otevře  $T_4$  a jeho kolektorový proud sepne relé.

Zenerova dioda mezi výstupem  $IO_2$  a bází  $T_4$  zajišťuje, aby v klidových podmínkách nebylo relé stále sepnuto. Dioda  $D_3$  brání falešnému spínání, které by mohlo být způsobeno zmenšením napájecího napětí při sepnutí relé.

Konstrukce tohoto projektu je snadná s použitím desky s plošnými spoji (obr. 56), přesto je však třeba upozornit na některé zásady. Všechny součásti oscilátoru musí být "usazeny" těsně na desku, aby jejich vývody měly minimální délku. Po pečlivém zapájení všech součástek a propojek hotovou desku zkontroluite. Před zkouškou funkce nechte stabilizovat pracovní režim obvodu po dobu nejméně jedné minuty. Pak zkuste pohybem ruky v blízkosti antény dosáhnout sepnutí relé. Pokud se zapojení nechová podle očekávání, zkontrolujte nejprve přívod napájecího napětí, pak napájecí napětí obou IO (vývody 4 a 7). Kontrolujte napětí na  $R_5$  (0,65 až 0,75 V). Pokud při tom zjistíte závady, vypněte zdroj a najděte chybu. Když je napájecí napětí IO2 v pořádku, ale chybí na IO1, zkontrolujte polaritu diody D<sub>3</sub>. Teprve po ověření základní funkce uložte přístroj do plastikové skříňky a umístěte na vhodné místo (v místnosti například vysoko na stěně, na stropě, uprostřed místnosti, nebo v blízkosti dveří). Anténa může být teleskopická, změnou její délky je možné ovlivnit citlivost zařízení. Doporučuji začít s anténou délky kolem 15 cm, pečlivě nastavit potenciometr citlivosti tak, aby relé sepnulo a pak jej mírně vrátit tak, aby relé odpadlo. Ověřte citlivost, případně dosah, a pokud nestačí, opakujte tento postup s delší anténou. Obecně platí, že s delší anténou je možné dosáhnout větší citlivosti. Tak s anté-





Obr. 56. Deska s plošnými spoji X240 pro indikátor přiblížení

nou o délce kolem 40 cm bylo možné ve velké místnosti zjistit pohyb na vzdálenost 10 metrů.

Australian Electronics Monthly prosinec 1988

Proti dosud popsaným systémům detektorů přiblížení nebo pohybu mohou existovat určité námitky, ať se již týkají toho, že je lze jednoduše "odhalit", nebo i případného rušení v nejbližším okolí. Moderní technika však nabízí zcela pasívní systém ochrany, který lze jen velmi obtížně odhalit. Je založen na pasívním infračerveném detektoru, registrujícím změny teploty v chráněném prostoru, způsobené pohybujícím se tělem osoby. Bohužel jejich realizace vyžaduje použít některé součástky (vlastní detektor a speciální čočky), které jsou zahraničního původu a nejsou u nás běžně k dispozici.

Detektory jsou vyrobeny z plátku speciálního keramického materiálu, opatřeného elektrodami na obou stranách. Efekt, na kterém jsou založeny, připomíná piezoelektrický efekt, používaný u krystalových mikrofonů a přenosek, ale napětí, které vzniká na elektrodách, není vyvoláno mechanickým ohybem materiálu, ale vlivem teploty. Plátek nebo čip z keramického materiálu je velmi tenký, aby se dosáhlo rozumové časově odezvy, ale to v tomto případě znamená pokles horního mezního kmitočtu -6 dB někde v oblasti 3 Hz! Výstupní impedance je velmi velká a prakticky používané prvky se dodávají s vestavěným oddělovacím zesilovačem, používajícím sledovač se společnou řídicí elektrodou. Vstupní rezistor tohoto zesilovače odvádí náboj vznikající na vlastním čidle, a to omezuje dolní mezní kmitočet (typicky na 0,2 Hz při poklesu

Vzhledem k této velmi omezené šířce pásma nemohou tyto "pyrosenzory" spolehlivě detekovat statický infračervený zdroj a musí proto být používány v nějaké formě detektoru pohybu.

Blokové schéma takového zařízení je na obr. 57. Pyrosenzor se používá s nějakou čočkou, která je obvykle Fresnerova typu, a rozděluje sledovanou oblast do střídajících



Obr. 57. Blokové schéma zařízení s pyrosenzorem

se zón s velkou a malou citlivostí. Když se někdo pohybuje z jedné zóny do ďruhé, způsobí to změny výstupního napětí senzoru a aktivuje zařízení. Jako alternativu lze použít konvexní čočku, která vymezí úzký koridor s velkou citlivostí. Třetím, velmi efektivním typem čočky, je Fresnelova čočka "záclonového" typu. Vytváří dvě oblasti s velkou citlivostí, které jsou umístěny blízko sebe. Výsledek se podobá neviditelné zácloně, kterou je možné použít pro rozdělení místnosti na dvě části. Kdokoli projde touto "záclonou", spustí zařízení. Od použití konvexní čočky se liší tím, že v horizontálním směru má sice úzkou charakteristiku, ale ve vertikálním směru velký "zorný" úhel. U čidel s paprskovou charakteristikou je třeba použít několik paprsků nad sebou, aby nebylo možné je překonat překročením nebo podlezením. Záclonová čočka dává vynikající pokrytí od podlahy až po strop (ovšem s výjimkou v blízkosti čočky).

Použité elektronické zapojení je velmi jednoduché. Výstupní signál pyrosenzoru, který 
je velmi malý, se přivádí do dvoustupňového 
zesilovače s velkým zesílením. Filtrace 
s charakterem dolní propusti minimalizuje 
problémy se šumem – vlastní šum pyrosenzoru je však příčnou omezení maximálního 
výkonu zařízení. Některé senzory používají 
dvojici prvků, zapojených v protifázi, takže 
snímaný šum pozadí má tendenci se vyrušit. 
Přechází-li naproti tomu přes citlivé prvky 
infračervený signál, nejprve vzniká signál 
jedné polarity a potom opačné, takže mezivrcholové výstupní napětí je dvojnásobné.

Výstupní signál ze zesilovače se přivádí do okénkového diskriminátoru. Za "normálních" okolností zůstává výstupní napětí v rozmezí "okénka", při detekci pohybu však "normální" hranice překročí a výstupní napětí okénkového komparátoru se mění na kladné a jednoduchým budicím stupněm se sepne relé.

Praktické schéma zapojení je na obr. 58. Rezistor  $R_1$  je zatěžovacím odporem zdrojového sledovače v pyrosenzoru  $IO_1$ . Obvody  $IO_2$ ,  $IO_3$  tvoří dvoustupňový nízkofrekvenční zesilovač s velkým zesílením, kapacity kondenzátorů byly zvoleny tak, aby se dosáhlo potřebného rozšíření charakteristiky v oblasti nízkých kmitočtů. Kondenzátor  $C_5$  odfiltruje signály vyšších kmitočtů.  $IO_4$  pracuje jako okénkový diskriminátor, potenciometr  $P_1$  používá pro "otevírání" a "zavírání" okénka. Úzké okénko dává větší citlivostí. Nastavení příliš úzkého okénka však způsobuje náchylnost zařízení k falešným poplachům. Potenska



Obr. 58. Indikátor s pyrosenzorem

ciometrem P<sub>1</sub> je třeba nastavit nejužší okénko, které ještě dává spolehlivé výsledky, což vyžaduje určité experimentování.

Pyrosenzor SBAO2 je uložen v pouzdru typu TO-99 se třemi vývody. Je to typ s dvojitým prvkem a pro běžné použití se upevňuje tak, že obdélníkové okénko je v horizontální poloze. Autor důrazně doporučuje používat čočky, které byly speciálně navrženy pro tento typ aplikací, protože jak se zdá, běžné čočky se zdají být zcela nepoužitelné. V této aplikaci se pracuje s velmi dlouhou vlnovou délkou (asi od 7 do 12 mikronů) a na těchto vlnových délkách se zdají být obyčejné čočky nepropustné, nebo jednoduše propouštějí infračervené záření, aniž by se paprsek ohýbal. V Anglii jsou k dispozici dvě levné Fresnelovy čočky, určené pro používání s pyrosenzory, a to CE 24 a CE 26. První z nich má široký úhel pokrytí, druhá je čočka se "záclonovou" charakteristikou. S použitím čočky CE 24 je možné dosáhnout dosahu kolem 10 m, s čočkou CE 26 by mělo být možné dosáhnout nejméně trojnásobného dosahu. Vertikálně má pole pokrytí úhel 100°, v horizontálním směru má však dvě maxima citlivosti o šířce 2°, která mají vzájemný odstup také 2°. V aplikacích, kde je tato charakteristika vhodná, se s čočkou tohoto typu dosahuje udivujících výsledků.

Tyto čočky jsou dodávány ve formě ploché plastikové destičky, která je ohebná, a správné zakřivení zajišťují příslušné upevňovací prvky. Montáž není příliš obtížná, malé nepřesnosti nemají na funkci významnější vliv. Pasívní infrasenzory jsou dosti odolné proti náhodnému spouštění, potíže však může působit turbulence vzduchu v blízkosti senzoru. Čočka typu CE 24 se mosí použít při širším rozměru orientovaném horizontálně, ale CE 26 musí být orientována vertikálně.

Pasívní infračervené detektory dosahují vysokého výkonu, je třeba si však uvědomit, že podobně, jako některé další popsané detektory, jsou detektory pohybu. Jsou citlivé pouze na osoby, které se pohybují v jejich "zorném úhlu". Protože detekují změny teploty, nezjistí objekt, který nevyzařuje dostatečné množství tepla. To je často výhodné, protože to zabrání falešným poplachům.

Základní součástky, potřebné pro konstrukci popisovaného zařízení, nejsou běžně na trhu. V Anglii je dodává firma Chartland Electronics Ltd., Twinoaks, Cobham, Surey. To platí pro pyrosenzor SBA02 a čočky CE 24 a CE 26. To uvádíme jen pro úplnost a nikoli proto, že bychom podceňovali vynalézavost a schopnosti improvizace naších čtenářů.

Practical Electronics 8/1988

# Infračervená závora

Tímto názvem se běžně označují zabezpečovací zařízení, která spustí poplach při přerušení svazku infračervených paprsků. Zpočátku se používala převážně v profesionálních zařízeních (a ve filmech). Použití moderních součástek umožnilo jednak zvětšit původní krátký dosah, jednak zjednodušit zapojení tak, že může být nastaveno a používáno i v neprofesionálních podmínkách. Popisované zapojení se používá jako součást existujícího zabezpečovacího zařízení. Může dosáhnout dosahu nejméně deset metrů a jednoduchou změnou odporu jednoho rezistoru lze zvětšit výstupní výkon vysílače pro dosah 50 m i více.

Blokové schéma zařízení je na obr. 59. Používá se impulsní modulace infračervené-



Obr. 60. Infračervený vysílač

jako astabilní multivibrátor, nejde však o zcela standardní zapojení, protože byla použita dioda D<sub>1</sub>. Činnost tohoto obvodu je založena na nabíjení kondenzátoru C2 přes R1 a R2 na dvě třetiny napájecího napětí. V průběhu této doby je výstupní signál na vývodu 3 maximální. Pak se náboj na C2 vybíjí přes R2 a integrovaný spínací tranzistor v integrovaném obvodu, dokud se napětí na C2 nezmenší na jednu třetinu napájecího napětí. Tento cyklus se pak opakuje. Výstupní napětí IO1 je průběhu vybíjení minimální. Při standardním zapojení obvodu 555 je doba, po kterou je výstupní signál v maximu, delší než doba v minimu, protože C<sub>2</sub> se nabíjí přes oba tranzistory R1 a R2, ale vybíjí se pouze přes R<sub>2</sub>. To je však opak toho, co potřebujeme, protože pak by dioda LED byla zapnuta po déle než 50 % doby cyklu (místo asi 10 %, jak to potřebujeme). Jednoduše lze tento



Obr. 59. Blokové schéma infračervené závory

ho paprsku o dosti vysokém opakovacím kmitočtu (1 až 100 kHz). Infračervená dioda LED je buzena z impulsního generátoru přes koncový zesilovač, který dodává dostatečně velký proud. Budicí signál nemá zpravidla pravoúhlý průběh, ale používá se krátkých impulsů. Vedou k tomu podobné důvody jako u infračerveného telefonu.

Na vstupu přijímače mohou být použitv různé součástky citlivé na světlo v infračer-vené oblasti spektra. Nejběžněji se v této aplikaci používají fotodiody s velkou aktivní plochou, protože mají nejen vhodnou citlivost, ale také dostatečnou šířku pásma. I to je velmi důležité, neboť i když se bude používat opakovací kmitočet impulsů kolem 10 kHz, je si třeba uvědomit, že vyšší harmonické kmitočtu impulsů vyžadují pro dobrý přenos a využití energie z vysílače šířku kmitočtového pásma alespoň desetkrát větší. Je třeba použít zesílení, protože výstupní signál diody je velmi malý. Zesílený signál se usměrňuje a filtruje, aby se získalo stejnosměrné napětí, zhruba přímo úměrné intenzitě přijímaného signálu. Dokud není svazek přerušen, tento obvod dodává značně velké stejnosměrné napětí. Tímto napětím je buzen stejnosměrný zesilovač, na jehož výstupu je zapojeno relé. Při přerušení infračerveného paprsku relé odpadá a spíná poplachový okruh. Pokud jde o optický systém, o jeho provedení a nastavování a vliv na dosah systému platí téměř beze zbytku to, co bylo uvedeno u infračerveného telefonu.

Ve vysílači je pouze několik součástek, jak je zřejmé ze zapojení na obr. 60. Základem zapojení je IO<sub>1</sub> typu 555, v originálu ve verzi s malou spotřebou (CMOS), protože zařízení bylo konstruováno pro použití s bateriovým napájením. I když je při menší spotřebě aplikace zařízení univerzálnější, není to samozřejmě podmínkou. Obvod je zapojen

problém řešit použitím diody  $D_1$ , která přemosťuje  $R_2$  v průběhu nabíjení v každém cyklu. Doba nabíjení je tak řízena rezistorem  $R_1$ , doba vybíjení rezistorem  $R_2$ . Při volbě odporu rezistoru  $R_2$  tak, aby byl desetkrát větší než odpor rezistoru  $R_1$ , se tak dosáhne požadovaného průběhu s poměrem 1 ku 10. Oscilátor pracuje na kmitočtu kolem 3 kHz.

Jako T<sub>1</sub> byl v původní konstrukci použit tranzistor typu VMOS, který nevyžaduje velký budicí proud. Tím se dosahuje (kromě malé spotřeby oscilátoru) odběru proudu z baterií jen o málo většího, než je střední proud diodu LED (kolem 1 mA) což s jednou sadou baterií dovoluje nepřetržitý provoz déle než měsic. V řadě aplikací to však není kritické.

Zapojení přijímače je na obr. 61. D<sub>3</sub> je dioda detektoru, která je obráceně polarizována rezistorem R<sub>4</sub>. Diodou D<sub>3</sub> protéká malý proud, jehož úroveň závisí na intenzitě infračerveného záření, dopadajícího na D3. Impulsy infračervené energie z vysílače proto způsobují průchod malých proudových impulsů rezistorem R4 a diodou D3, což způsobuje malé napěťové změny, přiváděné kondenzátorem C₄ na vstup zesilovače s velkým zesílením. Je to běžný třístupňový zesilovač se střídavou vazbou. Není třeba využít plného zesílení všech tří stupňů, proto se rezistorem R<sub>12</sub> zavádí silná záporná vazba do T<sub>4</sub>, zmenšující celkové zesílení na potřebnou velikost. I tak je obvyklý napěťový zisk větší než 80 dB (zesílení 10 000). Dioda detektoru záření je opatřena infračerveným filtrem, což zjednodušuje problémy s rušivými vlivy okolních zdrojů světla. Vazební kondenzátory v zesilovači mají tak malou kapacitu, aby se nepřenášela složka 100 Hz, vznikající infračervené oblasti v žárovkách.

Zapojení obsahuje výstup pro sluchátka, usnadňující sledování signálu krystalovými

Obr. 61. Infračervený přijímač (D<sub>s</sub> má být pólována obráceně)



nebo jinými sluchátky s velkou impedancí. To je vhodné zvláště pro nastavování systému.

Výstupní signál z T<sub>4</sub> se přivádí na běžný usměrňovač a filtr. Kapacita kondenzátoru C<sub>9</sub> řídí dobu, za kterou po přerušení paprsku odpadne relé, a tato doba musí být jen zlomky sekundy, aby tak relé odpadlo vždy dříve, než osoba, která paprsek přerušila, opustí místo přerušení, a paprsek se obnoví. Na druhé straně by však příliš krátká doba mohla vést ke zmenšení spolehlivosti zařízení. Dobrým kompromisem se zdá být 100 ms.

Přijímač v této koncepci není možné navrhnout s velmi malou klidovou spotřebou proudu, protože relé zůstává sepnuto po většinu provozní doby, kromě krátkých okamžiků přerušení paprsku. Je však možné použít relé s velmi malou spotřebou. Celková spotřeba zařízení pak může být kolem 10 mA.

Konstrukční provedení není kritické, mělo by však být nenápadné, aby přístroj mohl plnit svou základní funkci. Před použitím je třeba zařízení vyzkoušet nejprve na krátkou vzdálenost s ohledem na jeho značnou směrovost. Při tom je vhodné využít možnosti kontroly pomocí sluchátek. Je možné dosáhnout provozního dosahu většího než 10 m, a ten lze dále zvětšit zmenšením odporu rezistoru R3. Jeho odpor může být zmenšen až na 4,7  $\Omega$ , přičemž se dosahuje proudu impulsu až 500 mA. Tím se ovšem značně zvětší spotřeba vysílače (až na 50 mA), proto by neměl být odpor rezistoru T3 menší než to skutečně vyžaduje konkrétní aplikace.

Everyday Electronics září 1986

#### Elektronická váha

Možná že také máte někde doma starý hloubkový reproduktor z dob před nástupem techniky HiFi, na který se zbytečně práší. Tohoto reproduktoru můžete využít dnes např. ke konstrukci elektronické váhy. Důvod pro použití tohoto neobvyklého stavebního materiálu lze snadno objasnit. Většina elektronických vah je založena na principu elektromagnetické kompenzace síly. Přitom se využívá toho, že síla působící na vodič v magnetickém poli je úměrná protékajícímu proudu. Když se tedy zavěsí vzduchová cívka do mezery v trvalém magnetu a spojí s miskou vah, dosáhneme toho, co potřebujeme. Pak je řada na elektronice, aby zvětšila proud cívkou tak, aby se cívka opět vrátila do své původní polohy.

Aby tento systém dobře pracoval, musí být reproduktor schopen velkého zdvihu, a kromě toho jeho cívka musí vydržet zatížení několika W. Kromě toho nesmí být jeho membrána příliš malá, aby se její zatížení mohlo lépe rozložit. Potřeba poměrně velkého zatížení reproduktoru souvisí s tím, že se používá k "buzení" reproduktoru stejnosměrný proud, při němž se membrána reproduktoru neochlazuje kmitáním, jako v běžném provozu. Z těchto požadavků pak vychází možnost použít v praxi pouze hloubkový reproduktor.

Reproduktor je nezbytné upravit, není to však příliš obtížné. Nejprve je třeba odstranit kryt proti prachu ve středu kónusu membrány, aby se dosáhlo volného přístupu k magnetu a jeho vzduchové mezeře. Je třeba ovšem dbát na to, aby se do vzduchové mezery nedostalo nic, co tam nepatří (piliny), protože to by mohlo značně zkreslovat vý sledky vážení. Do středu střední části trvalého magnetu upevněte přilepením vidlicovou světelnou závoru, nebo její improvizovanou náhradu. V podstatě jde o diodu LED, která slouží jako zdroj světla, dopadajícího na fototranzistor nebo fotodiodu, vzdálenost těchto součástek je asi 4 až 5 mm tak, aby do mezery mezi nimi mohl zasahovat šroub M3, spojený s membránou, a tak indikovat dosažení přesně stejné polohy. Pak se připájejí čtyři vývody světelné závory a přilepí se na kónus membrány, přičemž musí vytvářet malou smyčku, dovolující potřebný zdvih

membrány. S lepidlem zacházejte opatrně, aby se nedostalo do vzduchové mezery. Konce drátů se vyvedou otvorem v membráně ven, a připájejí se na pájecí lištu reproduktoru, aby byly přístupné zvenku, případ-ně se upevní na koš reproduktoru. Pak se podle rozměrů reproduktoru vyříznou nejlépe z plastické hmoty dva kruhové kotouče. Menší kotouč se zalepí tak, aby "seděl" dosti blízko nad magnetem, ve středu ho opatříme otvorem. Tento otvor slouží k upevnění nastavovacího šroubu. Druhý kotouč tvoří podložku pro misku vah a je upevněn ve výši okraje membrány. Také tento kotouč je opatřen ve středu malým otvorem, aby bylo možné po sestavení šroubovákem otáčet nastavovacím šroubem. Pod otvorem v menším kotouči je přilepena matice M3, která slouží jako závit pro nastavovací šroub. Aby byla síla, vyvozovaná hmotností použitého závaží, přenášena přímo na cívku, je mezi dolním a horním kotoučem vlepena distanční trubka z lepenky nebo z plastické hmoty. Podle potřeby a přání je možné mezi oba kotouče vlepit ještě třetí, aby se dosáhlo větší tuhosti membrány. Tyto kotouče mimo jiné také zajišťují vystředění trubky. Horní kotouč se zalepí společně s trubkou a okrajem membrány

Obr. 62 ukazuje celkovou sestavu přístroje i s krytem. Kryt zahrnuje také konstrukční úpravu, která zajišťuje zabrzdění horního kotouče společné s miskou vah. Při velkých zátěžích se totiž může stát, že regulační elektronika vyrovná rozdíl zatížení při zvednutí závaží příliš pomalu a miska vah by mohla "vystřelit" nebo by se mohl poškodit reproduktor. Všeobecně je lépe vestavět váhu společně s elektronickou částí do těsného krytu, protože pak je reproduktor lépe tlumen

Celá elektronická část se skládá ze dvou větších celků, měřicí a regulační elektroniky (viz obr. 63) a indikační elektroniky (obr. 64). Regulační elektronika obsahuje obvod ke snímání měřené veličiny a obvod regulace proudu. Vstupní signál vzniká ve světelné





Obr. 62. Úprava reproduktoru

závoře při zasunutí nastavovacího šroubu do světelného paprsku. Obvod regulace proudu se skládá z integrovaného regulátoru (A<sub>2</sub>) a proporcionálního regulátoru (A<sub>3</sub>). Integrační regulátor je zapojen jako integrátor. integrující příslušné vstupní signály a vytvářející jejich střední hodnotu. Proporcionální regulátor tvoří zesilovač, jehož zesílení je možné nastavit potenciometrem ve zpětnovazební větvi. Potenciometrem P<sub>2</sub> se nastavuje poměr mezi proporcionálním a integračním podílem. Oba tyto potenciometry musí být později nastaveny tak, aby regulační okruh byl právě pod hranicí kmitání. V praxi to znamená, že může být slyšitelný vysoký tón, nesmí to však být tón hluboký. V tomto problému také velmí pomůže, když má reproduktor málo možností kmitat, to znamená, když je vestavěn do krytu. Na konci regulačního obvodu jsou zapojeny oba výkonové tranzistory.

Rezistor R<sub>19</sub> se používá k měření proudu cívkou reproduktoru. Aby byl proud co nejméně teplotně závislý, je vhodné navinout tento rezistor z konstantanového drátu svépomocí. Zesilovač A4 zesiluje měřenou veličinu asi čtyřikrát. Je zapojen jako diferenční zesilovač, protože k měřicímu napětí je třeba ještě přičíst pevné napětí (4,5 V vztaženo ke kostře), aby indikace netrpěla problémy potlačení soufázových signálů. Aby se předešlo potížím, způsobujícím chyby měření vlivem přechodových odporů při poměrně velkém proudu cívkou reproduktoru, musí být rezistor R<sub>10</sub> umístěn co nejblíže spoje rezistoru R<sub>19</sub> s kostrou.

Obvod A5 je zapojen jako vzorkovací a paměťový obvod, umožňující odečíst hmotnost tara (hmotnosť obalu zboží). Váhu je možné s položeným obalem tlačítkem tara vynulovat. Přímo po zapnutí je kondenzátor C7 nenabitý, napětí na neinvertujícím vstupu operačního zesilovače A<sub>5</sub> je tedy rovno napětí v uzlu R<sub>14</sub>/R<sub>15</sub>, a je 4,7 V vztaženo ke kostře, plus 80 mV (úbytek napětí na R<sub>15</sub>). Těchto 80 mV způsobí, že při indikaci 0 V (měřeno mezi výstupy A<sub>4</sub> a A<sub>5</sub>) musí cívkou reproduktoru protékat klidový proud přibližně 40 mA. Tento klidový proud je možné nastavit nastavovacím šroubem. Při sepnutí S<sub>2</sub> se indikace nastaví na nulu a váha je "vytárována". V tomto případě se kondenzátor C7 nabije výstupním napětím operačního zesilovače A<sub>4</sub>. S použitím tlačítka tara je možné elektronickou váhu použít jako "dovažovací" váhu - přiroženě při tom nesmí celková hmotnost přesáhnout 500 gramů. Vzorkovací a paměťový obvod neďokáže bohužel "udržet" naměřenou hmotnost nekonečně dlouhou dobu. To je způsobeno malým proudem zesilovače A5 a případnými svodovými proudy kondenzátoru C7. Na rozsahu 200 g se indikace změní po asi 30 sekundách až 1 minutě, na rozsahu 500 g to trvá podstatně déle. To znamená pracovat při malých zatíženích rychle, aby byla zachována přesnost výsledku vážení.

Oba měřicí rozsahy se přepínají přepínačem. Rozsah 200 gramů je sice přesnější, před každým měřením by se však měl pří-stroj vynulovat tlačítkem. Protože fototranzistor ve světelné závoře je teplotně závislý a celé zařízení se proudem cívkou reproduktoru může dosti ohřát, nezůstává nastavení klidového proudu vždy konstantní. Na rozsah 500 gramů lze přístroj přepnout napěťovým děličem R<sub>16</sub> až R<sub>18</sub>. Rozsah 500 g je méně citlivý, proto na něm také nejsou žádné problémy s nastavením nuly

Pro digitální indikaci je možné použít digitální měřicí modul vlastní konstrukce tak, jak byl použit v originálním popisu zařízení, nebo některý z běžně vyráběných univerzálních měřicích modulů, jako je i digitální měřicí modul TESLA ADM 2000. Obr. 64 ukazuje zapojení modulu vlastní konstrukce, který je možné s použitím dostupných součástí poměrně snadno sestavit. Pro buzení displeje se používá známý obvod 7106. Rezistor R<sub>5</sub> a kondenzátor C<sub>2</sub> určují kmitočet vlastního oscilátoru. Při uvedených hodnotách je to

přibližně 45 kHz. Z toho je také odvozován

měřicí cyklus (tři měření za sekundu). Integrátor pro použitý systém měření je zapojen s R<sub>6</sub> a C<sub>5</sub>, C<sub>4</sub> je kondenzátor automatického nulování. Při správném dimenzování displej ukazuje při zkratování vstupů přesně "000" C<sub>3</sub> slouží jako nabíjecí kondenzátor pro referenční napětí v průběhu automatického nastavování nuly. Integrovaný obvod obsahuje teplotně velmi stabilní zdroj referenčního napětí. Referenční napětí je typicky 2,8 V a je připojeno mezi vývody 1  $(+U_B)$  a 32 (COMMON). Z tohoto napětí se odvozuje reference pro integrátor. Požadovaná "plná výchylka" na displeji odpovídá přesně dvoj-násobku referenčního napětí. Například, má-li být plná výchylka 200 mV, je referenční napětí 100 mV. Potenciometrem P1 se toto napětí nastaví na vstup REF HI. Rezistory děliče R<sub>7</sub>/R<sub>8</sub> se dělí vstupní napětí mezi vývody IN LO a IN HI. P<sub>1</sub> slouží také k nastavení vstupní citlivosti. Jako referenční závaží pro toto nastavení je možné použít například o něco méně než 200 gramů cukru (kostky cukru jsou také velmi vhodné pro kontrolu linearity). Když se "ocejchuje" rozsah 200 gramů, bude pak dostatečně přesný i rozsah 500 g.

Síťový napájecí zdroj může dodávat proud až 1,5 A, musí proto být dobře chlazen. Skutečně odebíraný proud se může poněkud měnit podle typu reproduktoru. Rezistorem R3 je možné nastavit výstupní napětí. Při odporu 1 kΩ je to 14 V. Tímto napětím je také určen maximální proud, který může protékat cívkou reproduktoru, zvolený tak, aby při zatížení váhy hmotností 500 gramů nebyl proud ještě omezován. Součástkami R<sub>1</sub>, D<sub>1</sub> a D<sub>2</sub> se na jedné straně získává napájecí napětí pro digitální indikaci, na druhé straně umělý střed pro operační zesilovače. Tento bod má ve vztahu ke kostře napětí 4,7 V. Napětí 9,5 V pro A<sub>5</sub> je možné odebírat z bodu CDP obvodu displeje. Toto omezení je nezbytné, aby na vstupu obvodu displeje nevznikalo přepětí.

Nastavování začíná nastavením proporcionálního a integračního regulátoru. Jak již bylo uvedeno, není to zcela jednoduché, protože systém (reproduktor) v závislosti na různém zatížení může kmitat. Proto je třeba při nastavování zkontrolovat celý rozsah vážení v krocích po 50 g, aby se zjistilo, jestli přístroj kmitá či nikoli. To je možné velmi snadno zjistit na výstupu A1. Všeobecně platí: čím větší je proporcionální podíl, tím větší je sklon ke kmitání při malém zatížení; čím větší je podíl integrační, tím je kmitání systému při velkém zatížení pravděpodobněiší.

Pokud se nedaří najít vůbec žádný stacionární stav, musí být systém zatlumen malým





závažím, nebo vestavěn do těsného krytu. Nastavovací šroub uvnitř reproduktoru je určen pro nastavení klidové polohy membrány, a měl by být nastaven tak, aby se membrána při zapnutí poněkud nadzvedla a protékal malý klidový proud od 10 do 50 mA.

Oba rozsahy měření se nastavují potenciometrem P<sub>1</sub>. Pro přesné nastavení je třeba použít normální závaží. Nejvhodnější je vy půjčit si sadu závaží, jiné náhradní metody s použitím kostek cukru je možné použít pro orientační ověření funkce; pro cejchování měřicího zařízení, jako je elektronická váha, však nemají dostatečnou přesnost.

Konstrukce zařízení bude z možností, které budou k dispozici. Při vestavění do dřevěného krvtu se sešikmeným předním panelem vypadá přístroj velmi elegantně. Reproduktor je zespodu přišroubován na horní stěnu krytu, ve které samozřejmě předem vyřízneme potřebnou díru pro misku na vážené předměty. Jako misku můžeme použít např. víčko větší dózy. V krytu jsou upevněný dorazy ze dřevá, které membráně nedovolují žádné nekontrolované pohyby. Kryt je dostatečně velký pro vestavění elektronické části. Přitom je třeba dbát na dobré chlazené IO4 a T2. Nejvhodnější je upevnit obě tyto součástky s příslušnými chladiči na zadní stěnu krytu zvenku. Displej a přepínače jsou vestavěny do sešikmeného předního panelu. Tak se dá pohodlně číst měřený údaj na displeji. A pak už je možné začít s vážením: dopisy, dávkování potravin při vaření a pečení, prostě všechno až do 500 gramů.

Elektor 10/1989

#### Jednoduchý adaptor pro měření kondenzátorů

Základní myšlenkou tohoto přípravku je možnost jeho zasunutí do libovolného digitálního nebo analogového multimetru, který se tím změní na měřič kapacity. Umožňuje pak měřit libovolné neznámé kapacity od 3,3 pF do 2000 µF ve dvou rozsazích. Na prvním rozsahu se kapacita čte v pikofaradech, na druhém v nanofaradech. Adaptor se může používat i k měření polarizovaných kondenzátorů, jako jsou hliníkové a tantalové elektrolytické kondenzátory, stejně tak k měření běžných nepolarizovaných typů.

Tato přídavná jednotka je velmi malá a konstrukčně je řešena pro zasunutí do zdířek pro banánky na rozteči 19 mm, jak se běžně používají u většiny multimetrů. Používá se pouze jeden páčkový třípolohový přepínač se střední polohou vypnuto. Při měření není třeba žádné nastavování. Vývody neznámého kondenzátoru se prostě zasunou do objímky adaptoru, přepne se buď na rozsah pF nebo nF a na multimetru se přečte

kapacita.

Multimetr je přitom nastaven na standardní rozsah pro měření odporu. Jedinou komplikací je to, že indikaci multimetru v ohmech je nutné dělit deseti, aby platil údaj v pF nebo nF (podle zvoleného rozsahu). Takže údai odporu 1 MΩ na rozsahu LÓW odpovídá 100 000 pF, tj. 0,1  $\mu$ F. Údaj 1 k $\Omega$  na stejném rozsahu odpovídá kapacitě 100 pF, zatímco na rozsahu HIGH by odpovídal kapacitě 100 nF neboli 0.1 uF.

Základem obvodu je integrovaný obvod 74HC132 se čtveřící klopných obvodů Schmittova typu s dvouvstupovými hradly NAND. První z nich, IO<sub>1a</sub> je zapojen jako relaxační oscilátor, jehož kmitočet závisí na kapacitě Cx neznámého kondenzátoru, zapojeného mezi vstupní vývod 1 a zem.

Výstup oscilátoru se přivádí do obvodu IO<sub>1b</sub>, který společně s IO<sub>1c</sub> tvoří monostabilní klopný obvod. Ten převádí výstupní signál oscilátoru na řadu úzkých impulsů konstantní šířky, avšak s pracovním cyklem (poměr značka/mezera) proporcionálním kapacitě Cx měřeného kondenzátoru. Tyto impulsy jsou tvarovány a invertovány oddělovacím stupněm lO<sub>1d</sub> a používány pro spínání T<sub>1</sub> typu MOSFET.

Multimetr nastavený na měření odporu je zapojen mezi elektrody G a D tranzistoru T přes ochranný rezistor. Na vstupu multimetru je také paralelně zapojen bipolární kondenzátor 2,2 µF, který se uplatňuje jako integrační (společně s proudovým zdrojem měřidla). V důsledku toho se integrovaný (nebo "střední") odpor, měřený multimetrem, stává úměrným pracovnímu cyklu spínání T<sub>1</sub> a tím také kapacitě měřeného kondenzátoru Cx.

Efektivní odpor mezi vývody multimetru se mění od téměř 22 Ω (odpor ochranného rezistoru) až téměř do nekonečna, jistě do mnoha megaohmů při velké kapacitě Cx měřeného kondenzátoru. Ačkoli se tento způsob měření kapacity může zdát poněkud neortodoxní a nepřímý, byl pečlivě navržen a může dávat velmi přesné výsledky. Částí tajemství úspěchu je MOSFET T1 (dosáhlo se skutečně rychlého spínání a velmi malého odporu v sepnutém stavu)

Všimněte si, že vzhledem k funkci obvodu je na kondenzátoru v průběhu měření malá steinosměrná složka - střední hodnota oscilačního napětí na vstupu IO<sub>1a</sub>; ta je asi 2,5 V (s vyznačenou polaritou). V důsledku toho mohou být zcela přesně měřeny elektrolytické kondenzátory za předpokladu, že jsou připojeny záporným vývodem k zemi.

Jediným druhem kondenzátorů, který může způsobovat značné chyby měření, jsou elektrolytické kondezátory s velkou kapacitou a velkým svodem. V extrémním případě může svod dokonce způsobit vysazení oscilací IO1a. Takové kondenzátory se ovšem obtížně měří i jinými způsoby a vyplatí se je vyhodit.

Druhá deska přepínače přepíná dva rozsahy měření přepnutím dvou různých zpětnovazebních rezistorů v oscilátoru. Kapacitní trimr 2 až 10 pF je určen ke kompenzaci rozptylových kapacit, které by jinak ovlivnily přesnost při velmi malých kapacitách.

Potenciometr 2,2 kΩ nastavující paralelní odpor na vstupu IO<sub>1c</sub> se používá ke kalibraci rozsahu jemným nastavením šířky impulsu monostabilního multivibrátoru. Vyšší rozsah se kalibruje odporovým trimrem, který tvoří část odporu zpětné vazby oscilátoru.

101-74HC132 70p muttimetru 41-#20210p R<sub>1</sub> 102  $R_3$ Ī 2µ2 high + 820 high tant VN10KM KA206 78L05

Obr. 65. Adaptor pro měření kondenzátorů

K napájení se používá destičková baterie 9 V typu 51 D, s třípólovým stabilizátorem 78L05, dodávajícím napájecí napětí 5 V pro

Konstrukce je umístěna na desce s plošnými spoji o rozměrech 25 × 66 mm, na které jsou umístěny všechny součástky, kromě baterie. Při pájení je třeba dodržet běžné zásady pro práci se součástkami MOS, aby se nepoškodily statickým nábojem.

Nastavení adaptoru je poměrně jednoduché. Po sestavení zasuňte přípravek do multimetru, nastaveného na vhodný rozsah měření ohmů (zpočátku při 1 MΩ pro plný rozsah). Pak se přepne přepínač na nižší rozsah, připojí se na vstup kondenzátor 0,1 µF přednostně co nejpřesnější. Pak by mělo být možné nastavit odporový trimr 2,2 kΩ tak, aby byl na displeji údaj 1 MΩ, odpovídající správné měřené kapacitě 100 000 pF. Pokud se vyskytnou potíže s dosažením správného údaje, bude možná třeba zmenšit odpor pevného rezistoru v sérii s odporovým trimrem 2,2 kΩ. Pro všechny čtyři pevné rezistory jsou s přesností 1 %. doporučovány rezistory

Pak vyjměte kondenzátor 0,1 µF, připojte kondenzátor 10 pF (keramický nebo styrof-lexový, pokud možno co nejpřesnější). Přepněte multimetr ns nižší rozsah, na němž je možné přesně přečíst 100 Ω, a nastavte kapacitní trimr tak, aby byl tento údaj na displeji. Nakonec připojte opět kondenzátor 0,1 µF, přepněte přepínač na vyšší rozsah, nastavte rozsah multimetru podle potřeby tak, aby bylo možné přesně přečíst údaj 1000 Ω a nastavte odporový trimr tak, aby se dosáhlo tohoto údaje. Tím je dokončena kalibrace adaptoru.

Electronics Australia 8/1988

#### Aplikace integrovaného obvodu 4046B

Integrovaný obvod 4046B je aktivní prvek pro obvody s fázovým závěsem (PLL - Phase Locked Loop) vynikajících vlastností, který je vyroben technologií CMOS. Vestavěný napětím řízený oscilátor (VCO) zvládne poměr kmitočtů 1:1 000 000, přičemž horní kmitočtová mez je kolem 1 MHz. Na obr. 66 je blokové schéma a popis vývodů integrovaného obvodu, který je uložen v pouzdře DIL o 16 vývodech.

Obvod 4046 obsahuje dva odlišné konstruované fázové detektory, poměrně složitý



Obr. 66. Blokově schéma obvodu 4046

VCO, Zenerovu diodu a budič, zapojený jako sledovač (emitorový sledovač s tranzistorem FET). Fázový detektor 1 je jednoduchý typ s hradlem EX OR. Má dobré vlastnosti pokud jde o potlačení šumu, musí však být buzen symetrickými pravoúhlými signály (na vývodech 3 a 14). Fázový detektor 2 pracuje se spouštěním náběhem signálu, dává k dispozici třístavový výstup, může být buzen nesymetrickým signálem, přivedeným na vývody 3 a 14. Má velkou šířku pásma synchronizovaných kmitočtů, má však horší potlačení šumu.

Vstup VCO má extrémně velkou vstupní impedanci (vývod 9), oscilátor proto může být buzen ze zdroje s velkou impedancí. Vestavěný sledovač umožňuje pozorovat, nebo dále zpracovávat řídicí napětí, přivedené na vývod 9, i mimo vlastní obvod, aniž by byl přitom zatěžován zdroj řídicího napětí. Vstup blokování (inhibit) na vývodu 5 je normálně na úrovni *U*<sub>SS</sub>, takže výstupní sig-nály VCO a zdrojového sledovače se dostávají na příslušné výstupy. Obě tyto cesty signálu se rozpojí, když se na vývod 5 přivede signál o úrovni log. 1. Zenerovo napětí diody, vestavěné mezi vývody 8 a 15, je 5,2 V. Tuto diodu je možné např. využít pro obvody stabilizace napětí.

Příklady použití IO 4046B pro napětím

řízené oscilátory (VCO) jsou na obr. 67 až



Obr. 67. Generátor 200 Hz až 2 kHz

75. Na obr. 67 je nejjednodušší zapojení: vývod 9 je připojen pevně k úrovní log. 1 a obvod pracuje jako oscilátor pravoúhlého signálu, jehož výstupní kmitočet je možné měnit potenciometrem P<sub>1</sub> v poměru 1:10. Výstup VCO (vývod 4) integrovaného obvodu je přímo propojen se vstupem fázového detektoru (vývod 3). Když se vývod 3 nezapojí a zůstane volný, osciluje fázový detektor asi na 20 MHz, takže výstupní signál VCO je přeložen vf signálem.

Obr. 68 ukazuje, jak je možné 4046B využít jako širokopásmového VCO. Hodnoty



Obr. 68. Širokopásmový generátor VCO

součástek R1 a C1 určují maximální kmitočet; z potenciometru P<sub>1</sub> se na vývod 9 přivádí řídicí napětí, kterým se nastavuje kmitočet výstupního signálu. Když je napětí na vývodu 9 rovno 0 V, klesá kmitočet téméř na nulu (několik cyklů za minutu). Efektivní rozsah řídicího napětí pro vývod 9 se pohybuje od 1 V nad potenciálem "země" až po 1 V pod napájecím napětím. Na počátku a na konci odporové dráhy potenciometru se proto kmitočet výstupního signálu nemění. V tomto zapojení je možné měnit kmitočet téměř od nuly do 1,4 kHz.

Mrtvé úhly natočení P<sub>1</sub> (konec a začátek odporové dráhy) je možné odstranit tím, že se do série s přívody poenciometru P1 zapojí křemíkové diody (obr. 69). Toto zapojení se



Obr. 69. Generátor VCO

dále vyznačuje tím, že minimální provozní kmitočet je snížen na nulu, a to doplněním rezistoru R2 s velkým odporem mezi vývod 12 a kladné napájecí napětí. V tomto zapojení je třeba v praxi počítat s tím, že když se kmitočet nastaví na nulu, pak na výstupu VCO je buď úroveň log. 0 nebo log. 1 (a to

Zapojení na obr. 70 ukazuje, jak je možné použít rezistor připojený na vývod 12 k na-



Obr. 70. Generátor VCO 60 Hz až 1,4 kHz

stavení minimálního provozního kmitočtu VCO s omezeným pásmem. Minimální kmitočet je určen volbou C1 a R2, maximální kmitočet je dán kapacitou kondenzátoru C1 a paralelní kombinací R<sub>1</sub> a R<sub>2</sub>.

Zapojení na obr. 71 je alternativní verzí

VCO s omezením pásma, maximální kmito-



Obr. 71. VCO

čet závisí na R<sub>1</sub> a C<sub>1</sub>, a minimální je určen kapacitou kondenzátoru C<sub>1</sub> a kombinací R<sub>1</sub> R<sub>2</sub>. Při vhodném dimenzování R<sub>1</sub> a R<sub>2</sub> může poměr změny kmitočtů dosáhnout téměř každé hodnoty mezi 1:1 až téměř 1:∞.

Obvod VCO je možné také použít pro generování dvou signálů pravoúhlého tvaru, které jsou vzájemně v protifázi tím, že se propojí výstup VCO se vstupem fázového detektoru a vstup signálů (vývod 14) se připojí na úroveň log. 1. Výstupní signál, který je v protifázi s výstupním signálem VCO, může být odebírán na vývodu 2 (obr. 72). Toto zapojení používá vesta-věné hradlo EX OR (fázový detektor 1).

Zapojení VCO s obvodem 4046B může být vypínáno signálem na vývodu 5, takže vznikne klíčovaný VCO. Vypnutí VCO se dosáhne tím, že se na vývod 5 přivede



Obr. 72. Dvojitý generátor VCO

úroveň log. 1. Tak je možné VCO zapínat a vypínat vnějším signálem. Obr. 73 ukazuje, jak lze VCO zapínat ručně. Z následující-



Obr. 73. Ruční vypínání generátoru VCO

ho obrázku (obr. 74) je zřejmé, jak je možné, VCO zapínat elektronicky s použitím vnější-ho invertoru (hradlo CMOS typu 4011B).



Obr. 74. VCO s invertorem

Pokud není požadován výstupní signál v protifázi, je možné použít ke klíčování také hradlo EX OR, vestavěné v integrovaném obvodu (viz obr. 75).



Obr. 75. VCO s EXOR

Jak jsme již uvedli, obvod 4046B je univerzálním stavebním prvkem, zajímavým pro řadu speciálních aplikací generátorů signálu pravoúhlého průběhu. Na obr. 76 až 78 je uvedeno několik takových zapojení.

Zapojení na obr. 76 je jednoduchý generátor pravoúhlého signálu, klíčovaný kmitočtovým posuvem (FSK - Frequency Shift



Obr. 76. FSK generátor 1,2 až 2,4 kHz

Keyed). Při uvedených součástkách toto zapojení generuje výstupní signál o kmitočtu 2,4 kHz, když je na vývod 9 přiveden signál o úrovni log. 1. Tento kmitočet se změní na 1,2 kHz, když se do stejného místa přivede signál log. 0. Vyšší kmitočet je určován odporem rezistoru  $R_2$  a kapacitou kondenzátoru  $C_1$ , nižší kmitočet součástkami  $C_1$  a  $R_2 + R_3$ . Změnou hodnot těchto součástek je možné dosáhnout jiných výstupních kmitočtů.

Obr. 77 ukazuje zapojení generátoru signálu pravoúhlého tvaru o kmitočtu 220 kHz který pak sleduje, za předpokladu, že vstupní signál, přivedený na vývod 14, má amplitudu mezi úrovněmi log. 0 a log. 1. V tomto zapojení (stejně jako v následujících) je použit širokopásmový detektor 2, takže mohou být detekovány signály s libovolnou střídou, které leží ve výše uvedeném kmitočtovém rozsahu. Součástky R2, R3, C2 se používají jako filtr sample and hold, jehož součástky určují časové konstanty při závěsu na signál. Provozní kmitočet VCO je určován volbou R1, C1 a napětím přivedeným na vývod 9. Celkový rozsah VCO (a tím také rozsah

tohoto chování využívá tak, že oba výstupní signály se přivádějí na dva vstupy hradla NOR. Když je obvod PLL "zavěšen", je výstup obvodu IO<sub>1a</sub> stále ve stavu log. 0, takže na výstupu hradla IO<sub>1b</sub>, zapojeného jako invertor, je stále log. 1 a indikační dloda LED se rozsvítí. V nezavěšeném stavu generuje IO<sub>1a</sub> řadu kladných impulsů, které nabíjejí kondenzátor C<sub>1</sub> přes kombinaci D<sub>1</sub>, R<sub>1</sub>. Na výstupu IO<sub>1b</sub> je pak log. 0 a dioda LED se nerozsvítí.

Obr. 81 ukazuje, jak je možné zkombinovat zapojení PLL s indikátorem pro dosažení





Obr. 81, Nf detektor

s kmitočtovou modulací. V tomto zapojení se používá vestavěná Zenerova dioda obvodu 4046B (vývod 15) ke stabilizaci napájecího napětí pro operační zesilovač. Tento operační zesilovač je zapojen jako "střídavý" invertující zesilovač se zesílením 20. Dělič napětí  $R_2$ ,  $R_3$  přivádí na neinvertující vstup operačního zesilovače (vývod 3) napětí asi 2,6 V  $(0,5 \times U_Z)$ , takže na jeho výstupu (vývod 6) je klidové napětí 2,6 V, na něž je přeložen vstupní signál, zesílený o činitel 20. Výstup operačního zesilovače je spojen s řídicím vstupem VCO (vývod 9) obvodu 4046B, přičemž součástky  $C_3$ ,  $R_6$  byly zvoleny tak, že 10 generuje na výstupu signál nosného kmitočtu 220 kHz, který je kmitočtově modulován.

Obr. 78 ukazuje možnost využití VCO s IO 4046B jako širokopásmového univerzálního taktovacího generátoru, jehož výstupní pra-

zachycení a závěsu) sahá od kmitočtu VCO, generovaného při řídicím napětí na vývodu 9, rovnajícím se nule, až po kmitočet, odevzdávaný při řídicím napětí  $U_{\rm DD}$  rovnajícím se napájecímu napětí.

Na obr. 80 je jednoduchý, ale velmi užitečný detektor zavěšení, který může být použit ve spojení s právě popsaným zapojením. Ve

 $\begin{cases} v_{y}^{i}vod 1 & 1/4 | O_{1b} \\ v_{y}^{i}vod 2 & 1/4 | O_{1e} \\ 1/4 | O_{1e} & 1/4 | O_{1e}$ 

Obr. 80. "Závěsný" detektor

Obr. 78. Univerzální širokopásmový generátor



voúhlý signál může mít kmitočet ve třech rozsazích, přepínaných přepínačem (možný celkový rozsah 0,5 Hz až 500 kHz). Tento jednoduchý, ale velmi užitečný zkušební přípravek, má dva výstupy v protifázi. Tento VCO může být provozován jako volnoběžný nebo klíčovaný.

V následujících odstavcích budou popsány některé praktické aplikace PLL s obvodem 4046B. Na obr. 79 je zapojení obvodu 4046B jako širokopásmového sledovače signálu, který zachytí každý vstupní signál v kmitočtovém pásmu 100 Hz až 100 kHz, smyčce fázového závěsu generuje výstup každého fázového komparátoru řadu impulsů, jejichž šířka je úměrná časovému posuvu mezi oběma vstupními signály. Výstup fázového komparátoru 1 je v klidovém stavu ve stavu log. 0, výstup fázového komparátoru 2 je ve stavu log. 1. Na těchto úrovních jsou přeloženy výstupní impulsy. Když je obvod fázového závěsu zavěšen, jsou oba výstupní signály zrcadlově symetrické. Mimo synchronizaci jsou signály vzájemně zcela rozdílné

V detektoru zavěšení podle obr. 80 se

Obr. 79. Širokopásmový sledovač signálu PLL.



funkce přesného úzkopásmového "tónového spínače". Maximální kmitočet VCO určují kombinace R<sub>1</sub>, C<sub>1</sub>, minimální kmitočet je určován kombinací R<sub>1</sub>, R<sub>2</sub>, C<sub>1</sub>. S uvedenými součástkami je kmitočtový rozsah asi 1,8 kHz až 2,2 kHz. K závěsu obvodu PLL proto dojde jen při vstupních signálech v tomto kmitočtovém rozsahu. Na výstupu zapojení je za běžných okolností log. 0, při výskytu příslušného vstupního signálu přechází výstup do stavu log. 1.

Aplikace obvodu 4046B zakončíme dvěma praktickými zapojeními kmitočtových násobičů. Zapojení podle obr. 82 pracuje jako



Obr. 82. Násobič 100

násobič kmitočtu s konstantním činitelem násobení 100. Vstupní signál o kmitočtu mezi 1 Hz a 150 Hz se převede na výstupní signál o kmitočtu mezi 100 Hz a 15 kHz, takže je pro jeho měření možné např. použít běžný čítač kmitočtu o měřicím intervalu s (případně 0,1 s). Obvod typu CMOS 4518B, použitý v tomto zapojení, obsahuje dva desítkové čítače/děliče, které byly pro dosažení poměru dělení 1:100 zapojeny do série.

Zapojení na obr. 83 pracuje jako jednoduchý kmitočtový syntezátor. Je napájen přesným vstupním signálem 1 kHz, řízeným krystalem. Na výstupu je možné odebírat signál, jehož kmitočet je celočíselným násobkem (v rozsahu x1 až x9)vstupního kmitočtu. Obvod 4017B je v této aplikaci používán jako programovatelný čítač s poměřem dělení 1:n. Nahradí-li se obvod 4017B celým řetězcem programovatelných čítačů, je mož-



Obr. 83. Kmitočtový syntezátor

né tímto způsobem realizovat syntezátor s maximálním výstupním kmitočtem 1 MHz.

Kromě popsaného obvodu 4046B se vyrábí řada dalších obvodů, určených pro podobné aplikace. Tak např. firma Signetics vyrábí kompletní řadu obvodů PLL. Třemi nejznámějšími členy této řady jsou: univerzální obvod PLL NE565, poměrně jednoduchý obvod použitelný pro četné aplikace demodulátorů; funkční generátor NE566 pro generátory a konečně tonový dekodér NE567, speciální prvek PLL pro řešení dekódovacích a spínacích problémů.

Obvod NE565 je konvenční integrovaný obvod pro PLL, který může přímo zpracovávat signály v kmitočtovém rozsahu od 0,001 Hz do 500 kHz, uložený v pouzdru DlL 14. Rozmístění vývodů je na obr. 84. Na obr. 85 je vnitřní blokové zapojení obvodu i některé další vnější součásti, používané při jeho aplikaci. Jak je z blokového schématu vidět, IO sdružuje VCO, fázový detektor, zesilovač a dolní propust.



Obr. 84. Zapojení NE565

Obvod NE565 se odlišuje od výše popsaného obvodu 4046B tím, že jeho řídicí vstup VCO je připojen přes vnitřní rezistor (3,6 k $\Omega$ ) na výstup zesilovače, takže vnější ovládání není možné. Proto je tento obvod velmi



Obr. 86. Základní zapojení s NE565

vhodný pro úkoly demodulace a sledování signálů, na rozdíl od 4046B však není použitelný jako univerzální generátor signálů.

Na obr. 86 je základní zapojení kmitočtového demodulátoru, vlastně sledovače signálu, který pracuje se symetrickým napájením (±6 V), V běžných aplikacích se signál, který má být demodulován nebo sledován, připojuje na vývod 2 fázového detektoru; nepoužívaný vstup (vývod 3) se spojí s kostrou. Výstup VCO (vývod 4) je spojen se vstupem fázového detektoru (vývod 5). Pro doplnění obvodu regulace fáze je kmitočet fovolného chodu VCO nastaven obvodem RC, připojeným na vývody 8 a 9 tak, aby odpovídal střednímu kmitočtu vstupního signálu.

Za uvedených podmínek se může kmitočet VCO "zavěsit" na kmitočet vstupního signálu, protože zesílený signál fázového komparátoru – který se také používá k řízení



Obr. 87. Výstupní signály NE565

vstupu VCO – je přímo úměrný rozdílu mezi kmitočtem vstupního signálu a kmitočtem VCO. Zvýší-li se vstupní kmitočet nad kmitočet VCO, zvětší se i výstupní napětí detektoru. Současně je VCO řízen tak, že se kmitočet výstupního signálu snižuje, až dojde k závěsu.

V praxi se obvod "zavěsí" s malým časovým zpožděním, které je způsobeno kondenzátorem  $C_2$ , zapojeným mezi vývody 7a 10 a vnitřním rezistorem 3,6 k $\Omega$ . VCO se zavěsí na základní kmitočet vstupního signálu i tehdy, je-li kmitočtově modulovaný vstupní signál zašuměn a generuje čistý výstupní signál na vývodech 4, případně 5 a na vývodu 7 je k dispozici demodulovaný signál FM. Pro zvětšení stability je třeba v praxi zapojit mezi vývody 7 a 8 kondenzátor s poměrně malou kapacitou (asi 1 nF).

Pro informaci jsou v tabulce shrnuty nejdůležitější parametry a charakteristiky obvodu 565. IO se běžně provozuje se symetrickým napájecím napětím, které musí být v rozsahu ±5 V až ±12 V. Může však být napájen i asymetrickým napájecím napětím 10 až 24 V.

| Parametr                                                                                                                                                                                                          | metr Údaje při napájení ±6 V |                                                             | V                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------|--------------------------|
|                                                                                                                                                                                                                   | min.                         | typ.                                                        | max.                     |
| Napájecí napětí<br>Vstupní impedance<br>Vstupní citlivost ( <i>U</i> <sub>ef</sub> )                                                                                                                              | ±5 V<br>5 kΩ<br>10 mV        | 10 kΩ<br>1 mV                                               | ±12 V                    |
| VCO<br>Maximální kmitočet<br>Teplotní drift<br>Závislost na napájecím napětí                                                                                                                                      |                              | 500 kHz<br>330 ppm/°C<br>0,2 %/V                            | 1,5 %∕V                  |
| <b>"Trojúhelníkový" výstup</b><br>Výstupní amplituda ( <i>U</i> <sub>mv</sub> )<br>Odchylka linearity                                                                                                             | -                            | 2,4 V<br>0,5 %                                              | 3 V                      |
| "Pravoúhlý" výstup<br>Výstupní napětí log. 1<br>Výstupní napětí log. 0<br>Doba náběhu<br>Doba doběhu<br>Výstupní proud (zdroj)                                                                                    | +4,9 V<br>5 mA               | +5,2 V<br>-0,2 V<br>20 ns<br>50 ns<br>10 mA                 | +0,2 V                   |
| Výstup demodulátoru Výstupní úroveň (vývod 7) Maximální zdvih napětí ( $U_{mv}$ ) Napěťový zdvih při 10% FM ( $U_{mv}$ ) Harmonické zkreslení Výstupní impedance Ofsetové napětí (vývody $6$ a $7$ ) Potlačení AM | 4,0 V<br>200 mV              | 4,5 V<br>2 V<br>300 mV<br>0,4 %<br>3,6 kΩ<br>50 mV<br>40 dB | 5,0 V<br>1,5 %<br>200 mV |

 $U_{\rm mv}$  -- mezivrcholové napětí



Obr. 85. Vnitřní zapojení NE565



Amatérske AD 10 B/4

# KIKUSUI Oscilloscopes

Superior in Quality, first class in Performance!

Phoenix Praha A.S., Ing. Havliček, Tel.: (2) 69 22 906, 43 32 01,

*elainco* 

Vstupy fázového detektoru mají typickou vstupní impedanci 10 k $\Omega$ , obvod se může "zavěsit" při amplitudě vstupního signálu větší než 1 mV. Vstupní signály se přivádějí střídavou vazbou, mohou však být také vázány stejnosměrně, pokud stejnosměrné odpory, zatěžující vývody 2 a 3, budou stejné a nevyskytuje-li se rozdíl stejnosměrného napětí mezi oběma vstupy.

Interní VCO obvodu je velmi stabilní, širokopásmový typ (typický teplotní drift 300 ppm/°C, závislost na napájecím napětí 0,2 %/V), který má vynikající linearitu závislosti výstupního kmitočtu na řídicím napětí (typická odchylka linearity 0,5 %). Na vývodu 4 může být odebírán signál pravoúhlého průběhu s kompatibilitou TTL a typickými dobami náběhu a doběhu 20, příp. 50 ns, na vývodu 9 je vyveden extrémně lineární signál trojúhelníkovitého průběhu. Obr. 87 ukazuje typické průběhy výstupního signálu při napájecím napětí ±6 V.

napajecim napeti ±6 V. Kmitočet  $f_O$  volného chodu je určován rezistorem R, připojeným mezi vývody 8 a 10  $(U_+)$  a kondenzátorem C připojeným mezi vývody 9 a 1  $(U_-)$ . Matematicky je určen rovnicí  $f_O = 0,3/RC$ ; kmitočet vyjde v kHz, když se dosadí R v kΩ a C v μF. Rezistor R může mít libovolný odpor mezi 2 až 20 kΩ, optimální je asi 4 kΩ. Kondenzátor C může mít libovolnou kapacitu. Pokud jde o rozsah zavěšení, obvod NE565 se zavěsí na každý vstupní signál, jehož kmitočet leží v rozsahu ±60 % od kmitočtu volného chodu  $f_O$ .

Demodulovaný výstupní signál se odebírá z vývodu 7. Na vývodu 6 je stejnosměrné napětí přibližně rovné stejnosměrnému napětí na vývodu 7. Když se mezi vývody 6 a 7 zapojí rezistor, je možné zesilení výstupního zesilovače IO redukovat, přičemž se stejnosměrná úroveň na výstupu změní pouze nepatrně. Tak je možné zmenšit rozsah zavěšení až na ±20 % f<sub>O</sub>. Kmitočet f<sub>O</sub> volného chodu se tím změní pouze

nepatrně.

V zařízeních pro přenos dat je značně rozšířeno používání signálů s kmitočtovým posuvem (FSK – Frequency Shift Keying). Vysílač dat přitom převádí binární signály na trvalý "dvoutónový" signál nosného kmitočtu. Datový signál o úrovni log. 1 je reprezentován nf signálem o určitém kmitočtu, datový signál o úrovni log. 0 je reprezentován nf signálem o jiném kmitočtu. V přijímači se dvoutónový nosný signál převádí "tónovým přepínačem" (nebo dekodérem FSK) zpět na binární signál.

Schéma zapojení na obr. 88 uvádí, jak je možné použít obvod NE565 jako dekodér FSK pro oba vstupní signály kmitočtů 1070 Hz/1270 Hz. Když se na vstupu objeví signál, regulační obvod "provede závěs" a sleduje signál včetně kmitočtových změn s odpovídající změnou stejnosměrného napětí na výstupu. Filtrační kondenzátor brání překmitům výstupního signálu. Pro potlačení zbytkových složek signálu nosného kmitočtu se používá třístupňový filtr RC. Mezní kmitočet filtru je přibližně uprostřed mezi maximální přenosovou rychlostí (300 Bd, popř. 150 Hz) a dvojnásobkem kmitočtu vstupního signálu (kolem 2200 Hz). Výstupní signál filtru se převádí připojeným napěťovým komparátorem (LM311), zapojeným mezi výstup a vývod 6, na úrovně TTL. Kmitočet volného chodu VCO se nastaví potenciometrem P1 tak, aby při vstupním signálu o kmitočtu 1070 Hz vznikal na výstupu malý kladný signál.

Zapojení vstupů ve schématu na obr. 88 je možné považovat za typické, když je vstupní signál přeložen na stejnosměrném napětí, a proto není možné přímo připojit IO. Oba vstupy obvodu NE565 jsou spojeny se zemí rezistory o stejnosměrném odporu.

Elrad 2/1989

#### Signalizace výpadku proudu

Na obr. 88 je zapojení obvodu, který spíná relé tehdy, když protéká obvodem



Obr. 88. Signalizace výpadku proudu

střídavy proud. Je-li tento proud z jakéholtoli důvodu přerušen, relé odpadá a jeho kontakty mohou sloužit k indikaci stavu. Obvod se tedy může použít např. pro signalizaci správné funkce automaticky spínaných spotřebičů jako jsou topení, vodárny, chladicí zařízení nebo k signalizaci vypnutí spotřebičů např. v bytě. V posledním případě ovšem signalizace selhává právě při používání automaticky spínaných spotřebičů. Kon-

taktů relé lze využít pro samočinné spínání akustické signalizace při výpadku důležitých zařízení jako vodního čerpadla u ústředního topení s použitím záložního zdroje signalizace, nebo u vzájemně závislých spotřebičů např. zesilovač – gramofon, zesilovač – televizor atd. Použitím několika takových obvodů lze prostřednictvím vzájemné závislosti kontaktů relé určit i např. nadřazenost jednotlivých akustických spotřebičů při připojování vstupů k zesilovači nebo k reproduktorům.

Princip je následující: průtokem sledovaného proudu diodami D<sub>1</sub> a D<sub>2</sub> vzniká úbytek napětí o velikosti asi 0,5 V, který jednou půlperiodou spíná tranzistor T. Tranzistorem proteče proud v obvodu kondenzátoru C<sub>1</sub>, relé a diod v části můstku (v Graetzově zapojení). Opačná půlperioda kondenzátor C<sub>1</sub> vybíjí v obvodu relé, zbývajících diod v můstku a diody D<sub>3</sub>. Kondenzátor C<sub>2</sub> filtruje napětí na relé, aby nekmitaly kontakty a aby se relé nespínalo rušivými náhodnými impulsy.

Upozorňuji, že jsou všechny součástky galvanicky spojeny se sítí!

#### POZOR!

Protože po určitých nejasnostech se situace ve výrobě a prodeji desek s plošnými spoji pro konstrukce z AR řady A i B opět "normalizovala", Ize desky s plošnými spoji pod objednacími čísly, která jsou uvedena u každého obrázku, objednat nejmeně na dvou adresách, a to:

sách, a to:

Družstvo Pokrok, Žilina, Košická 4, PSČ 011 38, nebo GP elektronika, Fučíkova 7, 927 01 Šala, tel. 0706/4444. Proto doplňujeme i označení desek z AR B3/90: předzesilovač (str. 98) – X232, zdroj (str. 100) – X233, převodník (obr. 93) – X234, 16kanálové běžící světlo (str. 116) – X235. V objednávce je vhodné uvést kromě

V objednávce je vhodné uvést kromě označení desky i číslo a ročník AR, v němž byla deska se spoji uveřejněna a název konstrukce, pro níž deska slouží.

Instruments

World Leading Measurement Technology for Telecommunications

Phoenix Praha A.S., Ing. Havliček, Tel.: (2) 43 32 01, 69 22 906

elsinco

# Divadlo pracujících v Mostě prodá

2 ks barevných videorekordérů systému VCR, typ MTV 50, výrobce UNITRA PLR licence GRUNDIG

oba rok výroby 1983.

NEPOUŽÍVANÉ – ke každému kompletní servisní manuál + 1 kazeta VCR – cena za 1 ks – 3000 Kčs.

Informace: Divadlo pracujících v Mostě, tel. 79 62 43, linka 12 – Jiří Henžl.

### **INZERCE**



Inzerci přijímá osobně a poštou vydavatelství MAGNET-PRESS, inzertní oddělení (inzerce ARB), Vladislavova 26, 113 66 Praha 1, tel. 26 06 51–9 linka 294. Uzávěrka tohoto čísla byla 31. 5. 1990, do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu, jinak inzerát neuveřejníme. Text inzerátu pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti před-

#### **PRODEJ**

**BFQ69** (170), BFG65 (170), Siemens BFT 97 F=1,8 dB/500 MHz (130), BFT96 (80), BFT66

(130), BFR90, 91 (60), kúpim koax. kábel 200 m. P. Poremba, Clementisova 12, 040 14 Košice. **Stavebnici mikropočítače** plán 80 A (2000). M. Sojková, Ježkova 1343, 708 00 Ostrava 8 Poruba.

BFG65 (170), BFQ69 (160). BFT66 (140), BFT96 (80), BFR90 (35), BFR91 (40), BFR96 (40), BB405 (45), BF961 (20), BF 963 (35), BF964 (25), BF244 (20), BF245 (20), BF199 (20), BD 239 (50), BD240 (50), TLO82 (35), TLO84 (50), TLO74 (50), SL1451 (1400), SL1452 (1400), Z. Oborný, Horní Domaslavice 160, 739 38 Dobrá 7.

**U806D** (85), C520D (105). M. Lhotský, Gottwaldova 470, 431 51 Klášterec nad Ohří.

Počítač Commodore 128C, datenrecorder 1530 (10500), diskdrive 1541 (7000), monitor Philips RGB – zelený (5000), tiskárna Seikosha SP180VC (7500), orig. program Superbase 128 s něm. man. (500), dig. multimetr Monacor (2800), walkman Sanyo s radiem (1700). I jednotlivě. V. Průša, K lučinám 12, 130 00 Praha 3, tel. 82 73 20

**BFG65** (155), BFQ69 (140), BFR90, 91, 96 (32, 33, 35), BFT66 (140), BB405 (40). D. Cienciala, 739 38 Soběšice 181.

**U806D** (120), U807D (120), C520D (120), VQE12 (100), VQE22 (100), VQB73 (25). Ker. filtr 10,7 MHz (40), 6,5 MHz (40). J. Povejšil, Tyršova 611, 251 64 Mnichovice.

#### KOUPĚ

Osciloskopickou obrazovku B7S2 a prodám osciloskopickou obrazovku 6LO11 včetně rastru před obrazovku (350), krystal 10,7 MHz (50), M. Brachaczek, 739 34 Šenov u Ostravy č. 537.

#### RŮZNÉ

Kdo zapůjčí nebo poskytne schéma tranzistorového přijímače Philips FM – AM de Luxe, type L 6X38T/02 a Philips type 22 RL 165/02 R. Čestně vrátím nebo zaplatím. Ing. J. Solín, Dibrova 18/3, 911 01 Trenčín.

# Dm servis

Školská 3 110 00 Praha 1 Tel. (02) 29 93 94 29 81 10

Ceny dohodou!

Pro soukromníky i organizace!

## OTESTUJEME NASTAVÍME OPRAVÍME

Floppy diskové mechaniky

5,25"; 3,5"

### POZOR! BURZA NÁPADOV

Vážení priatelia,

Závody výpočtovej techniky š. p. Banská Bystrica v snahe zúžitkovať technické nápady čo najširšieho okruhu odborníkov, vyhlasuje **BURZU NÁPADOV.**Do burzy je možné prihlásiť:

- konkrétne technické rešenia zaujímavé pre malospotrebiteľov,
- konkrétne technické rešenia s určením pre organizácie,
- myšlienky, nápady pre rozšírenie sortimentu trhu o atraktívne výrobky,
- návrhy na rozšírenie úžitkových vlastností výrobkov,
- programové produkty pre personálne počítače typu XT/AT. Návrhy je možné orientovať do všetkých oblastí využitia, pričom brať na zreteľ, že ZVT š. p. Banská Bystrica má na dobrej úrovni vybudované technológie v oblasti:
  - mechanická predvýroba,
  - povrchové úpravy,
  - výroba dosiek plošných spojov,
  - elektronická montáž.

#### Spôsob finančného vysporiadania:

Autori technických nápadov budú odmeňovaní podielovo dohodnutým percentom z realizovanej produkcie.

V prípade odbytovateľnosti na devízové trhy, autori budú odmeňovaní v devízoch

Prihlášky posielajte na adresu:

ZVT š. p. B. Bystrica Obchodná politika Zvolenská cesta 14 975 32 Banská Bystrica