纳米光子学及其应用: 3-量子限域效应(引起光学效应)

相速度与群速度 P5 黑体辐射公式 波色爱因斯坦分布 P15 微观粒子不同维度的态密度 P16 玻尔半径、里德伯常数 P31 布洛赫波 P34 周期性势场中粒子的运动规律 P35 倒空间 P36 固体中的能带 P37

固体中的量子限域效应 P42 量子阱、量子线、量子点

限域效应

电子:几何尺度——电子德布罗意波长 激子:几何尺度——激子波尔半径

01

本讲内容:波的基本属性和量子力学粒子

- ▶ 波与色散曲线 P5
- ▶ 态密度 P10
- ▶波函数与薛定谔方程 P18
- ▶势场中的量子力学粒子 P21
 - ▶ 无限势垒
 - ▶ 有限势垒
 - ▶ 量子谐振子
 - 球对称中的粒子
 - 库仑势中的电子

周期结构中的电子与量子限域效应 P33

详细讨论量子力学粒子特性

04

课程内容

课程知识点

1. 研究内容

纳米光子学基础

电子与光子异同

纳米尺度下光与物质相互作用

2. 研究方法

计算方法: 电磁场数值模拟

特性描述: 近场光学 制备方法: 纳米加工 量子材料: 电子的限域引起光学效应

表面等离子体光学: 金属光学

光子晶体:周期性介质光学

亚波长共振: 在远场影响光传播和

偏振的周期性光学结构

超材料:人工设计电磁材料

02

1. 波与色散曲线

经典力学中的波

周期: $T = \frac{1}{-} =$

群速度: **V**g =

色散关系:波长(波数)与频率的关系

色散曲线 $\omega(k)$

光(电子、声子、水波)的色散

 $\frac{n^{n}n^{2}}{2ma^{2}}n^{2}$, (n=1,2,3,...)电子在有限深势阱 4. 电子在位置平方函数势场 $E_n = \hbar \omega (n + 1/2)$, where n = 0, 1, 2, ... $U(x) = U(x_0) + \frac{1}{2} \frac{d^2 U}{dx^2} (x - x_0)^2 + \cdots, \quad U(x) = \frac{1}{2} m\omega^2 x^2, \quad \Delta E = \hbar \omega \quad E_0 = \hbar \omega/2 \quad \text{Phonon};$ 电子在球形势场(中心无电荷) 简并度:(21+1) $\approx 5.292 \cdot 10^{-2} \text{ nm}$ $E^0 = \frac{e^2}{2a^0} \approx 13.60 \text{ eV},$ $E_n = -\frac{\mathrm{Ry}}{n^2}$ for E < 0

电子在周期性库仑势场

1. 自由电子色散曲线(自由空间)

电子在无限深势阱

Bloch Wave, 准动量守恒,能带,有效质量 $\frac{1}{m^*} = \frac{1}{h^2} \frac{d^2 E}{dk^2} = \frac{d^2 E}{dp^2} = \text{const}$

8. 电子在有限个周期库仑势场,固体中的量子限域效应,量子阱,量子线,量子点。

 $m_0 + M_0$

总结

- ▶ 态密度: 为某一能量(波矢)附近每单位能量(波矢) 区间里微观状态的数目,又叫做能(波矢)态密度。 在物理学中,具有同一能量的微观状态被称为简并的。
- ▶ 玻尔半径: 粒子最可能被发现(最低占据态)的距离
- ▶ 有效质量: 引入经典力学牛顿第二定律描述量子力学 粒子的一种近似。它近似认为电子受到原子核的周期 性势场(这个势场和晶格周期相同)以及其他电子势 场综合作用的结果。在数学处理上采用在能带极值点 处用泰勒展开,这样略去三阶及以上项。另外,有效 质量与能带形状、位置有关。有效质量把晶体中电子 准经典运动的加速度与外力直接联系起来。

50

03

06

相谏与群谏

Non-dispersive:

Frequency dispersion:

<mark>相速</mark>:振荡速度或等相位面速度(<mark>红点</mark>)

 $\sqrt{\varepsilon_0 \mu_0 \varepsilon_r \mu_r} = n = k$

群速:波包络的速度或等幅面的速度(绿点) $v_g = \frac{d\omega}{}$ 色散曲线 $\omega(k)$

非色散介质中,相速度=群速度

Wave dispersion 05 Phase speed & Group speed

相速与群速

以频率接近的两束平面光波构成的波包为例

$$E_1 = E_0 e^{\mathrm{i} \left[\left(k_0 - \Delta k/2 \right) x - \left(\omega_0 - \Delta \omega/2 \right) t \right]}, \ E_2 = E_0 e^{\mathrm{i} \left[\left(k_0 + \Delta k/2 \right) x - \left(\omega_0 + \Delta \omega/2 \right) t \right]},$$

 $\Delta k \ll k_0, \ \Delta \omega \ll \omega_0$

$$\begin{split} E &= E_1 + E_2 = E_0 e^{\mathrm{i} \left(k_0 x - \omega_0 t\right)} \left[e^{-\mathrm{i} \left(\frac{\Delta k}{2} x - \frac{\Delta \omega}{2} t\right)} + e^{\mathrm{i} \left(\frac{\Delta k}{2} x - \frac{\Delta \omega}{2} t\right)} \right] \\ &= 2 E_0 \mathrm{cos} \left(\frac{\Delta k}{2} x - \frac{\Delta \omega}{2} t\right) e^{\mathrm{i} \left(k_0 x - \omega_0 t\right)} \end{split}$$

调制的平面波!

07

 $\frac{\Delta k}{2}x - \frac{\Delta\omega}{2}t = C$

$$rac{\Delta k}{2}rac{\mathrm{d}x}{\mathrm{d}t} - rac{\Delta\omega}{2} = 0 \, \Rightarrow v_\mathrm{g} = rac{\Delta\omega}{\Delta k} = rac{\mathrm{d}\omega}{\mathrm{d}k} \qquad \quad k_0rac{\mathrm{d}x}{\mathrm{d}t} - \omega_0 = 0 \, \Rightarrow v_\mathrm{p} = rac{\omega_0}{k_0}$$

$$k_0 \frac{\mathrm{d}x}{\mathrm{d}t} - \omega_0 = 0 \implies v_\mathrm{p} = \frac{\omega_0}{k_0}$$

1. 波与色散曲线

色散曲线: $E = \frac{p^2}{2m} = \frac{\hbar^2 k^2}{2m}$

色散曲线: $\omega = ck$ 真空中 $\omega = ck/n(\omega)$ 介质中

Dispersion curve

绝缘介质、金属

2. 态密度

同理,对于二维(边长为L的正方形)、三维(边长为L的立方体)有:

 $k_x=n_xrac{\pi}{L},\;k_y=n_yrac{\pi}{L} \qquad \qquad k_x=n_xrac{\pi}{L},\;k_y=n_yrac{\pi}{L},\;k_z=n_zrac{\pi}{L}$ k取值:

k空间离散

单元长度

$$\pi$$

$$\Delta k_x = \Delta k_y = rac{\pi}{L}$$
 $\Delta k_x = \Delta k_y = \Delta k_z = rac{\pi}{L}$

单个模式k 空间体积:

$$V_k = rac{\pi^2}{L^2}$$

$$V_k = \frac{\pi^3}{7.3}$$

k - k + dk的状态数

2. 杰密度

对自由空间光, $\omega = ck$

考虑线偏振光的两种偏振方向,需要对态密度乘以2:

$$D(k)dk = \frac{k^2}{\pi^2}dk$$

$$\Rightarrow k^2 = \frac{\omega^2}{c^2}, dk = \frac{1}{c}d\omega$$

光子态密度:

$$D(\omega) = \frac{\omega^2}{\pi^2 c^3}$$

对自由空间电子,考虑电子自旋: $E=rac{p^2}{2m}=rac{\hbar^2k^2}{2m}$ $\Rightarrow k = \sqrt{\frac{2mE}{\hbar^2}}, dk = \frac{1}{\hbar} \sqrt{\frac{m}{2E}} dE, k = \frac{p}{\hbar}, dk = \frac{1}{\hbar} dp$

$$D^{e}(E)\!=rac{8\sqrt{2}\,\pi m^{rac{3}{2}}E^{rac{1}{2}}}{h^{3}}, \quad D^{e}(p)\!=rac{8\pi p^{2}}{h^{3}}$$

 $D(E)\!=\!rac{8\pi m^{rac{3}{2}}E^{rac{1}{2}}}{\sqrt{2}\,h^3},\quad D(p)\!=\!rac{4\pi p^2}{h^3}$

1. 波与色散曲线

电子、光子、声子、激子、表面等离激元极化子

经典力学中的波

周期:
$$T = \frac{1}{v} = \frac{2\pi}{\omega}$$
.

波数: $k = |\mathbf{k}| = \frac{2\pi}{1}$

德布罗意关系: $\mathbf{p} = \hbar \mathbf{k}$, $\lambda =$

电磁波

量子力学中的粒子

相速度: $v = \frac{\lambda}{T} = \lambda v = \frac{\omega}{k}$

德布罗意物质波

介质中: ? ? ? 金属、介质、、、

介质中: 半导体能带 E(k)

08

10

F2

相对论: $E^2 = (mc^2)^2 + (pc)^2$

Mechanic Wave & Quantum particle

2. 态密度

- <u>每一种波在有限空间或者有限范围(频率、波矢、波长)内模式数有限</u> 量子力学粒子被看作一种波,在有限空间,粒子存在有限数目的态 (State)
- 这些态是能量、动量、波长、波数的函数 D(k), D(E), D(p), $D(\lambda)$

限制在有限空间中稳定存在的波满足驻波条件

 $L=rac{1}{2}\lambda_n n \ (n=1,2,3,\cdots) \Rightarrow \ \lambda_n=rac{2L}{n}$

$$k_n=rac{2\pi}{\lambda_n}=rac{\pi}{L}n$$
 $(n=1,2,3,\cdots)$

每一个k,代表一种状态,在k空间占据的体积为:

$$V_{\scriptscriptstyle k} \! = \! \Delta k \! = \! rac{\pi}{L}$$

因此, k-k+dk区间的状态数为:

$$\frac{\mathrm{d}k}{V_k} = \frac{L}{\pi} \mathrm{d}k$$

Density of state (DOS), Reciprocal space

2. 态密度

单位体积、单位波数对应的态的数量称为<mark>态密度(k空间态密度</mark>),记为D(k)

一维:
$$D(k) dk = \frac{1}{\pi} dk$$
 $D_{1D}(k) = \frac{1}{\pi}$ 令 $L=1$ 二维: $D(k) dk = \frac{k}{2\pi} dk$ $D_{2D}(k) = \frac{k}{2\pi}$

三维:
$$D(k)dk = \frac{k^2}{2\pi^2}dk$$
 $D_{3D}(k) = \frac{k^2}{2\pi^2}$

$$D(\omega) = D(k) \frac{\mathrm{d}k}{\mathrm{d}\omega}, \ D(E) = D(k) \frac{\mathrm{d}k}{\mathrm{d}E}, \ D(p) = D(k) \frac{\mathrm{d}k}{\mathrm{d}p}, \ D(\lambda) = D(k) \frac{\mathrm{d}k}{\mathrm{d}\lambda}$$

思考题:周期性边界条件如何推导?

$$k_x\!=\!rac{2\pi}{L}n_x, \quad \Delta k_x\!=\!rac{2\pi}{L}$$
 ?

2. 杰密度

111

113

自由电子

电磁波

Density of state (DOS)

2. 态密度

在频率为 dω 能量密度: $U(\omega) d\omega = E(\omega) D(\omega) F(\omega) d\omega$

单个光子能量
$$E = \hbar \omega$$

态密度
$$D(\omega) = \frac{\omega^2}{\pi^2 c^3}$$

分布函数
$$F(\omega) = \left(\exp \frac{\hbar\omega}{\pi^2}c^3\right)$$

$$F(\omega) = \left(\exp{rac{\hbar\omega}{k_{
m B}T}} - 1
ight)^{-1}$$
 玻色-爱因斯坦分布函数

光子能量密度:

Density of state (DOS) **¥5**

3. 波函数与薛定谔方程

波动力学中的波函数:
$$\begin{cases} |\Psi(\xi)|^2 \mathrm{d}\xi = \Psi^*(\xi)\Psi(\xi)\mathrm{d}\xi \\ \int |\Psi(\xi)|^2 \mathrm{d}\xi = 1 \\ \Psi = a_1\Psi_1 + a_2\Psi_2, \end{cases}$$

薛定谔方程:
$$\hat{H}\Psi=i\hbar\,rac{\partial\Psi}{\partial t}$$

不含时哈密顿量即为能量算符:
$$\hat{H}=-rac{\hbar^2}{2m}
abla^2+U(m{r})$$

静态问题:
$$\Psi(\xi,t) = \psi(\xi)\varphi(t)$$
 $\varphi(t) = \exp\left(-i\frac{E}{\hbar}t\right)$

本征值问题

 $\hat{H}\psi(\xi) = E\psi(\xi)$

固有值问题

18

波的基本属性和量子力学粒子

- 波长与色散曲线
- ▶ 态密度
- 波函数与薛定谔方程

▶ 势场中的量子力学粒子

- ▶ 无限势垒
- ▶ 有限势垒
- 量子谐振子
- 球对称势场中的粒子
- 库仑势中的电子
- ▶ 周期结构中的电子与量子限域效应

21

4.2 有限势垒中的量子力学粒子

- 1. 波函数扩展到经典禁区
- 2. 随着n增加波函数扩展增加
- 3. 色散曲线变为离散的点、线
- 4. 在势阱中发现粒子的几率总是 小于1,并且随能量增加而减小

势阱内的总态个数n满足:

$$E_n - U_0 < 0 \implies a\sqrt{2mU_0} > \pi\hbar(n-1).$$

n=1 该式总是成立,至少有一个态在势阱中

不同维度的态密度(微观粒子)

3. 波函数与薛定谔方程

对一维U势场中
$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + U_0\psi(x) = E\psi(x)$$
令: $k^2 = \frac{2m(E - U_0)}{\hbar^2}$

$$\frac{\mathrm{d}^2\psi(x)}{\mathrm{d}x^2} + k^2\psi(x) = 0$$

$$\psi(x) = A \exp(ikx) + B \exp(-ikx)$$
. 平面波

粒子性: 恒定势场中的德布罗意波长

$$\lambda = \frac{2\pi}{k} = \frac{2\pi\hbar}{\sqrt{2m(E - U_0)}}$$

 $E-U_0$ 对应粒子的动能

4.1 无限势场中的量子力学粒子

4.3 量子谐振子

A harmonic oscillator is a quantum particle moving in a field with potential being a square function of coordinate. In a one-dimensional problem this means (Fig. 2.5),

$$U(x) = \frac{1}{2}m\omega^2 x^2. {(2.81)}$$

The steady-state Schrödinger equation has the form, $k^2 = 2mE/\hbar^2$, $\lambda = m\omega/\hbar$

49

4.3 量子谐振子

- 量子谐振子模型在量子物理中非常重要。
- 可以作为对复杂的势分布在局域极小值的一种近似。
- 将势函数在极小值x。附近做级数展开

$$U(x) = U(x_0) + \frac{1}{2} \frac{d^2 U}{dx^2} (x - x_0)^2 + \cdots$$

- 忽略高阶项,和量子谐振子的势函数一致 $U(x) = \frac{1}{2}m\omega^2x^2$
- 晶体中原子的振动可以看做是在这种势能下的振动,这种振动的 量子称为声子。
- 晶格振动的能量永远不为零
- 轻原子He难以液化,永远不能形成固体

液氦: 4.2K

Ouantum harmonic oscillator

25

27

29

4.4 球对称势垒中的粒子

系统的状态由三个量子数表征:

n: 主量子数; l: 轨道量子数; m: 磁量子数

角动量满足:

$$L^2 = l(l+1)\hbar^2, l = 0, 1, 2, 3, \cdots$$

角动量 z 分量满足:

$$L_z = m\hbar, \ m = 0, \pm 1, \pm 2, \cdots, \pm l$$

对于确定的 l, 简并度 2l+1

系统的能量由势函数U(r)决定,考虑无限深球形势阱:

$$U(r) = \begin{cases} 0, & r \leq a \\ \infty, & r > a \end{cases}$$

对应的能量表达式为:

$$E_{nl}=rac{\chi_{nl}^2\hbar^2}{2ma^2}$$

 χ^2_{nl} 为球贝塞尔函数的根,n 表示第几个根,l 为对应的阶数

4.4 球对称势垒中的粒子

$$H=-rac{\hbar^{2}}{2m}
abla^{2}+U(r)$$
 $x=r\sin\theta\cosarphi$ $y=r\sin\theta\sinarphi$

Spherical coordinates

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \varphi^2}$$

采用分离变量法求解薛定谔方程,令 $\varPsi=R(r)\varTheta(\theta)\varPhi(\varphi),\ R(r)=rac{u(r)}{r}$

解的形式为: $\Psi_{n,l,m} = rac{u_{n,l}(r)}{r} Y_{lm}(heta,arphi)$

 $Y_{lm}(\theta,\varphi)$ 为球贝塞尔函数

u(r) 满足方程:

$$-rac{\hbar^2}{2m}rac{\mathrm{d}^2 u}{\mathrm{d}r^2} + iggl[U(r) + rac{\hbar^2}{2mr^2}l(l+1)iggr]u = Eu$$

Degenerate state

26

4.4 球对称势垒中的粒子

l=0,1,2,3 对应字母标记 s, p, d, f除了量子数n, l, m外,考虑电子自旋,引入s: 自旋量子数

4.5 库仑势场中的电子

球对称势, 氢原子, 其它:

原子中的电子 固体中的杂质中心 晶体中的激子

量子点中的电子

对于 n=1, l=0 的1s态,波函数具有球对称性,且 a^0 是找到电子概率最大

 $H = -rac{\hbar^2}{2M_0}
abla_{\mathrm{p}}^2 - rac{\hbar^2}{2m_0}
abla_{\mathrm{e}}^2 - rac{e^2}{|oldsymbol{r}_{\mathrm{p}} - oldsymbol{r}_{\mathrm{e}}|}$

的壳层半径。这个球近似为真实的原子,该半径称为玻尔半径 考虑最简单的原子: 氢原子。两体问题, 对应的哈密顿量:

Degenerate state

28

4.5 库仑势场中的电子

一个电子同具有相同电荷量带正电的粒子间的库仑势为:

$$U(r) = -\frac{e^2}{r}$$

对应波函数的径向部分满足方程:

 $\left[\frac{\mathrm{d}^2}{\mathrm{d}\rho^2} + \varepsilon + \frac{2}{\rho} - \frac{l(l+1)}{\rho^2}\right]\!u(\rho) = 0$

其中引入了无量纲的长度和能量:

$$ho=rac{r}{a^0}, \;\; arepsilon=rac{E}{E^0}$$

其中 a⁰ 和 E⁰ 分别称为单位原子长度和单位原子能量:

$$a^0 = 4\pi \varepsilon_0 \frac{\hbar^2}{m_0 e^2} \approx 5.292 \times 10^{-2} \text{ nm}$$

能级满足:

$$E^0 = rac{e^2}{2a^0} pprox 13.6 \,\, \mathrm{eV}
onumber \ arepsilon = -rac{1}{(n_r + l + 1)^2} = -rac{1}{n^2}$$

n 油系数节占数

 $M=m_0+M_0,\; \mu=rac{m_0M_0}{m_0+M_0}$

 $m{r} = m{r}_{\! ext{p}} - m{r}_{\! ext{e}}, \; m{R} = rac{m_0 m{r}_{\! ext{e}} - M_0 m{r}_{\! ext{p}}}{m_0 + M_0}$

 m_0 电子静质量, M_0 中心质子质量

引入相对坐标 r 和质心坐标 R:

引入总质量和约化质量:

哈密顿量可改写为:

$$\mathbf{H} = -\frac{\hbar^2}{2M}\nabla_R^2 - \frac{\hbar^2}{2\mu}\nabla_r^2 - \frac{e^2}{r}.$$

30

4.5 库仑势场中的电子

Ry 里德伯常数 -最低能量状态的离化能 a_B 氢原子的玻尔半径

库伦势场—电子/空穴在纳米晶的建模 氢原子模型—纳米晶中的激子的建模

自由空间量子力学粒子运动规律

受限空间量子力学粒子运动规律

周期势场中量子力学粒子运动规律

波的基本属性和量子力学粒子

- ▶ 波长与色散曲线
- ▶ 态密度
- 波函数与薛定谔方程
- 势场中的量子力学粒子
 - ▶ 无限势垒
 - ▶ 有限势垒
 - ▶ 量子谐振子
 - 球对称势场中的粒子
 - 库仑势中的电子
- ▶ 周期结构中的电子与量子限域效应

布洛赫波

薛定谔方程: $-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\psi(x) + U(x)\psi(x) = E\psi(x)$ $\psi(x) = e^{ikx} u_k(x), \ u_k(x) = u_k(x)$ 周期势场: U(x) = U(x + a)

第一布里渊区: $-\frac{\pi}{a} < k < \frac{\pi}{a}$

第二布里渊区: $-\frac{2\pi}{a} < k < -\frac{\pi}{a}$, $\frac{\pi}{a} < k < \frac{2\pi}{a}$

在布里渊区中心和边界

 $k_n = \frac{\pi}{a}n; \quad n = \pm 1, \pm 2, \pm 3, \dots$

dE(p)

 $E(k) = E_0 + (k - k_0) \left. \frac{dE}{dk} \right|_{k=k_0} + \frac{1}{2} (k - k_0)^2 \left. \frac{d^2 E}{dk^2} \right|_k$

$$k(k) = \frac{1}{2}k^2 \frac{d^2 E}{dk^2}\Big|_{k=0}$$
 $\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E}{dk^2} \equiv \frac{d^2 E}{dp^2} = c$

 $\psi(\mathbf{r}) = e^{i\mathbf{k} \cdot \mathbf{r}} u_k(\mathbf{r}), \ u_k(\mathbf{r}) = u_k(\mathbf{r} + \mathbf{T})$

Bloch Wave

33

34

周期势场中的粒子运动规律

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{\mathrm{d}^2 E}{\mathrm{d}k^2} \equiv \frac{\mathrm{d}^2 E}{\mathrm{d}p^2} = \text{const}$$

$$E = \frac{p^2}{2m}$$

位于周期势场中的粒子"质量"可以"重"或"轻"于其位于自由空间 甚至是负质量(粒子动量在外加势场中减小)例如:势垒,传递给晶体中正离子

- ▶ 粒子在周期势场中的运动用调制的平面波描述
- ▶ 粒子态用准动量描述,相隔一个倒格矢的动量是等效的
- 能量谱具有间隙的准连续带
- 无外力作用下, 周期势场中的粒子显示准自由运动
- 外力作用下,粒子行为用有效质量描述即质量重整化

倒空间

$$m{b}_1 = rac{2\pi}{V_0} m{a}_2 imes m{a}_3, \ m{b}_2 = rac{2\pi}{V_0} m{a}_1 imes m{a}_3, \ m{b}_3 = rac{2\pi}{V_0} m{a}_2 imes m{a}_1$$

$$V_0 = \boldsymbol{a}_1 \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3)$$

面心立方

一维周期势场中:波矢相差 $2n\pi/a$ 的态是等效的 三维周期势场中:波矢差值为倒空间格子矢量是等效的

$$m_{ij}^{*-1} = rac{1}{\hbar^2} rac{\partial^2 E}{\partial k_i \partial k_j}$$
 二阶张量 $m_{ij}^* = m_{ji}^*$ $m_{ij}^* \mathbf{a} = \mathbf{F}$

面心立方第一布里渊区

Reciprocal Space

36

38

固体中能带

存在未完全填充的能带:导体 满带不导电: 半导体绝缘体 实际材料能带结构复杂,有效 质量不是常数

重要的物理事件往往发生在导 带底与价带顶附近, 可以近似 用恒定有效质量描述。

实际能带:三维

作图:沿高对称点连线展开为一维

直接带隙

间接带隙

Splitting of atomic energy levels into bands \odot **(P)** N = 3

Formation of energy bands: Let's consider, a solid made up of a substance that involves only one type of atomic

* Indirect-gap materials

37

35

Crystals of group IV elements			Crystals of III-V compounds		
Crystal	Band gap energy $E_{\rm g}$	Light wavelength corresponding to $E_{\rm g}$	Crystal	Band gap energy $E_{\rm g}$	Light wavelength corresponding to E_8
Si*	1.14 eV	1.1 μm	GaN	3.50 eV	354 nm
Ge*	0.67 eV	1.85 µm	GaP*	2.26 eV	550 nm
			GaAs	1.43 eV	870 nm
			InAs	0.42 eV	2.95 µm
			InSb	0.18 eV	6.9 μm
Crystals of II-VI compounds			Crystals of I-VII compounds		
Crystal	Band gap energy $E_{\rm g}$	Light wavelength corresponding to $E_{\rm g}$	Crystal	Band gap energy $E_{\rm g}$	Light wavelength corresponding to E_g
ZnS	3.68 eV	337 nm	LiF	12 eV	100 nm
ZnSe	2.80 eV	440 nm	NaCl	>4 eV	<300 nm
ZnTe	2.25 eV	550 nm	CuCl	3.2 eV	390 nm
CdS	2.58 eV	480 nm	CuBr	2.9 eV	420 nm
CdSe	1.84 eV	670 nm	Crystals of IV–VI compounds		
CdTe	1.6 eV	770 nm	PbS	0.41 eV	3.0 µm
НεТе	0.15 eV	8.2 um	PbSe	0.28 eV	4.4 um

司一族内,随原子序数 内增加,带隙减小 高原子序数,库伦屏蔽)

不同族间,共价键到 8子键 离子键—强库伦势场)

自由空间量子力学粒子运动规律

态密度

受限空间量子力学粒子运动规律

库伦势场中导出玻尔半径

周期势场中量子力学粒子运动规律

有效质量

量子阱、量子线、量子点

41

固体中的量子限域效应

量子阱
$$\psi(\mathbf{r}) = \sqrt{\frac{2}{L_x L_y L_z}} \sin(k_n z) \exp(i \mathbf{k}_{xy} \cdot \mathbf{r}), \ k_n = \frac{\pi}{L_z} n, \quad n = 1, 2, 3, \dots$$
$$E = \frac{\hbar^2 k_{xy}^2}{2m_e^*} + \frac{\pi^2 \hbar^2}{2m_e^* L_z^2} n^2, \quad n = 1, 2, 3, \dots$$

量子线
$$\psi(\mathbf{r}) = 2\sqrt{\frac{1}{L_x L_y L_z}} \sin\left(k_n^{(z)}z\right) \sin\left(k_m^{(y)}y\right) \exp(ik_x x)$$
$$k_n^{(z)} = \frac{\pi}{L_z}n, \quad n = 1, 2, 3, \dots, \qquad k_m^{(y)} = \frac{\pi}{L_y}m, \quad m = 1, 2, 3, \dots$$
$$E = \frac{\hbar^2 k_x^2}{2m_e^*} + \frac{\pi^2 \hbar^2}{2m_e^* L_z^2} n^2 + \frac{\pi^2 \hbar^2}{2m_e^* L_y^2} m^2, \quad n = 1, 2, 3, \dots, m = 1, 2, 3, \dots$$

$$E = \frac{\pi^2 \hbar^2}{2m_e^* L^2} (n^2 + m^2 + \ell^2), \quad n, m, \ell = 1, 2, 3, \dots$$

443

量子阱,量子线,量子点

Electron density of states in a quantum well, in a quantum wire and calculated probabilities for optical transitions in a realistic GaAs quantum dot with size 10 nm. Data for GaAs dots are taken from Ref. [20].

46

量子线

 $G=\frac{e}{\pi \hbar}$. 量子电导率:

固体中的量子限域效应

电子:几何尺度--电子德布罗意波长 激子:几何尺度——激子波尔半径

假定电子的动能用温度度量 $k_{
m B}T=rac{p^2}{2m_{
m e}^*},\;p=rac{h}{\lambda_{
m e}}$ 电子的德布罗意波长 $\lambda_{\rm e} = \frac{h}{\sqrt{2m_{\rm e}^*k_{\rm B}T}}$

different semiconductor crystals						
Material	Electron mass	Electron de Broglie wavelength $\lambda_e \; (nm)$	Lattice constant a _L (nm)			
SiC	$0.41 m_0$	11	0.308			
Si	$0.08 m_0$	26	0.543			
GaAs	$0.067 m_0$	28	0.564			
Ge	$0.19 m_0$	16	0.564			
ZnSe	$0.15 m_0$	19	0.567			
InSb	$0.014 m_0$	62	0.647			
CdTe	$0.1 m_0$	23	0.647			
In vacuum	m_0	7.3				

真空中室温下具有热振动能的电子德布罗意波长 $\lambda_e=7.3~\mathrm{nm}$

不同维度的态密度(微观粒子)

自由空间 2维空间 体材料 量子阱

44

1维空间

量子线

量子阱

A heterostructure containing a narrow-band quantum well between two crystalline materials with wider band gaps (left) and the corresponding potential profile for an electron.

47

量子点

液相合成的胶体量子点

气相制备的量子点 GaN Quantum dot on AlN buffer layer