Использование функций, формул и вычислений в SAP BusinessObjects Web Intelligence

Авторские права

© 2011 SAP AG. Все права защищены.SAP, R/3, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP Business ByDesign и другие упомянутые здесь продукты и услуги SAP, а также соответствующие им логотипы являются торговыми марками или зарегистрированными торговыми марками SAP AG в Германии и других странах. Business Objects и логотип Business Objects, BusinessObjects, Crystal Reports, Crystal Decisions, Web Intelligence, Xcelsius и другие продукты упомянутые здесь продукты и услуги Business Objects, а также соответствующие им логотипы являются торговыми марками или зарегистрированными торговыми марками Business Objects S.A. в США и других странах. Business Objects является компанией SAP. Все другие указанные продукты и услуги являются торговыми марками соответствующих компаний. Данные, содержащиеся в этом документе, предназначены только для информационных целей. Характеристики продуктов, поставляемых в разные страны, могут изменяться. Эти материалы могут быть изменены без предварительного уведомления. Материалы предоставлены компанией SAP AG и ее дочерними компаниями ("SAP Group") исключительно в информационных целях, без представления гарантии любого вида. SAP Group не несет ответственности за ошибки или пропуски в настоящих материалах. Все гарантии по продуктам и услугам SAP Group оговариваются в специальных гарантийных документах, которые прилагаются к соответствующим продуктам и услугам, имеющим гарантию. Ничто изложенное в данном документе не должно трактоваться как предоставление дополнительных гарантий

2011-05-06

Глава 1	О данном руководстве	7
Глава 2	Использование стандартных и пользовательских вычислений	9
	Стандартные вычисления	10
	Использование формул для создания пользовательских вычислений	
	Использование переменных для упрощения формул	12
	Работа с функциями	14
	Включение функций в ячейки	14
	Синтаксис функций	14
	Примеры функций	
	Операторы функций и формул Web Intelligence	
Глава 3	Описание контекстов вычисления	25
	Что из себя представляют контексты вычислений	26
	Входной контекст	
	Выходной контекст	28
	Контексты вычислений по умолчанию	30
	Контексты по умолчанию в вертикальной таблице	31
	Контексты по умолчанию в горизонтальной таблице	
	Контексты по умолчанию в кросс-таблице	
	Контексты по умолчанию в разделе	
	Контексты по умолчанию в разбиении	
	Изменение контекста вычислений по умолчанию с расширенным синтаксисом	
	Операторы расширенного синтаксиса	37

	Ключевые слова с расширенным синтаксисом в приложении W Intelligence	
Глава 4	Вычисление значений с помощью интеллектуальных мер	53
	Определение интеллектуальной меры	54
	Наборы группировок и интеллектуальные меры	54
	Принципы управления Web Intelligence наборами для группировки	55
	Интеллектуальные меры и область анализа	56
	Интеллектуальные меры и язык SQL	57
	Наборы группировок и оператор UNION	57
	Интеллектуальные меры и формулы	60
	Интеллектуальные меры и измерения, содержащие формулы	60
	Интеллектуальные меры в формулах	60
	Интеллектуальные меры и фильтры	61
	Интеллектуальные показатели и фильтры для измерений	61
	Интеллектуальные меры и фильтры детализации	62
	Интеллектуальные меры и вложенные фильтры OR	62
Глава 5	Функции, операторы и ключевые слова Web Intelligence	65
	Функции Web Intelligence	66
	Функции агрегирования	66
	Символьные функции	98
	Функции даты и времени	118
	Data Provider functions	134
	Функции Документа	149
	Логические функции	158
	Числовые функции	168
	Дополнительные	.191
	Операторы функций и формул Web Intelligence	213
	Математические операторы	214

	Условные операторы	214
	Логические операторы	215
	Специальные операторы функций	218
	Операторы расширенного синтаксиса	227
	Ключевые слова с расширенным синтаксисом в приложении Wintelligence	
	Ключевое слово блока	232
	Ключевое слово "Тело"	234
	Ключевое слово "Разбиение"	235
	Ключевое слово Report	236
	Ключевое слово "Раздел"	238
	Округление и обрезание чисел с помощью Web Intelligence	239
Глава 6	Устранение ошибок в формулах Web Intelligence	243
	Сообщения об ошибках формул и информационные сообщения	я244
	#COMPUTATION	244
	#CONTEXT	244
	#DATASYNC	245
	#DIV/0	245
	#EXTERNAL	246
	#INCOMPATIBLE	246
	#MULTIVALUE	246
	#OVERFLOW	247
	#PARTIALRESULT	247
	#RANK	248
	#RECURSIVE	248
	#SECURITY	249
	#SYNTAX	249
	#TOREFRESH	249
	#UNAVAILABLE	250
	#ERROR	250

Глава 7	Сравнение значений с помощью функций Web Intelligence	251
	Сравнение значений с помощью функции Previous	252
	Сравнение значений с помощью функции RelativeValue	252
	Измерения срезов и функция RelativeValue	254
	Измерения срезов и разделы	256
	Порядок измерений срезов	258
	Сортировка измерений срезов	261
	Использование функции RelativeValue в кросс-таблицах	263
Приложени	еАДополнительная информация	265
Указатель		269

О данном руководстве

В руководстве Использование функций, формул и вычислений в SAP BusinessObjects Web Intelligence представлена подробная информация о расширенных возможностях вычислений в Web Intelligence. В нем также представлен указатель синтаксиса функций и операторов Web Intelligence.

В данном руководстве представлены общие сведения, без ссылок на интерфейс Web Intelligence. Чтобы получить информацию о работе с функциями, связанными с вычислениями, в документах Web Intelligence (например, о добавлении в отчет переменной или формулы), см. интерактивную справку или следующие руководства: Выполнение интерактивного анализа с помощью приложения SAP BusinessObjects Web Intelligence, Создание отчетов с помощью панели отчетов Java SAP BusinessObjects Web Intelligence и Создание отчетов с помощью SAP BusinessObjects Web Intelligence Rich Client.

Для получения информации о создании пользовательских функций для Web Intelligence см. руководство Элементы расширения SAP BusinessObjects Web Intelligence: создание пользовательских функций.

Использование стандартных и пользовательских вычислений Функции стандартных вычислений служат для выполнения быстрых вычислений с данными в отчетах Web Intelligence. Если возможности стандартных вычислений становятся недостаточными, можно использовать язык формул Web Intelligence для создания пользовательских вычислений.

Стандартные вычисления

Функции стандартных вычислений служат для выполнения быстрых вычислений с данными в отчетах Web Intelligence Существуют следующие стандартные вычисления:

Вычисление	Описание
Сумма	Вычисляет сумму выбранных данных.
Количество	Подсчитывает все строки для объекта меры или подсчитывает отдельные строки для объекта измерения или сведений.
Average	Вычисляет среднее значение для данных.
Минимум	Отображает минимальное значение среди выбранных данных.
Максимум	Отображает максимальное значение среди выбранных данных.

Вычисление	Описание	
	Отображает выбранные данные в виде процента от суммарного значения. Результаты вычисления процентов отображаются в таблице в дополнительном столбце или дополнительной строке.	
Процентное соотношение	Примечание: Значения в процентах вычисляются для выбранной меры по отношению к общим результатам для этой меры в таблице или в разрыве. Для вычисления процентного значения одной меры по отношению к другой мере необходимо создать формулу.	
По умолчанию	Применяет функцию агрегирования по умолчанию к стандартной мере или функцию агрегирования по базе данных для интеллектуальной меры.	

При применении стандартных вычислений к столбцу таблицы результат вычислений отображается в столбце в нижнем колонтитуле. Если с одним столбцом выполняется несколько вычислений, Web Intelligence добавляет нижний колонтитул для каждого из результатов вычислений.

Использование формул для создания пользовательских вычислений

Пользовательские вычисления позволяют добавлять дополнительные вычисления к отчету поверх основных объектов и стандартные вычисления, доступные в Web Intelligence.

Чтобы добавить пользовательское вычисление, необходимо создать формулу, которую Web Intelligence определит после запуска отчета. Формула может состоять из основных переменных отчета, функций, операторов и контекстов вычислений.

Пользовательское вычисление – это формула, которая состоит из объектов отчета, функций и операторов. В формулах содержится контекст вычисления, который может быть отображен при необходимости.

Пример: Отображение среднего дохода от каждой продажи

Если в отчете есть объекты "Доход от продаж" и "Проданное количество", необходимо добавить в отчет доход от каждой продажи. Для получения данного значения при вычислении [Доход от продаж] / [Проданное количество] выполняется деление дохода на количество проданных товаров, что дает величину дохода с каждого товара.

См. также

• Что из себя представляют контексты вычислений

Использование переменных для упрощения формул

Если формула сложная, можно использовать переменные, чтобы упростить ее. С помощью переменных можно разбить сложную формулу на управляемые части, чтобы облегчить ее чтение, а также сделать процесс создания формул менее подверженным ошибкам.

В формуле можно использовать ранее созданные переменные точно так же, как и остальные объекты отчета. Переменные отображаются в редакторе формул в папке "Переменные".

В формуле можно вводить имя переменной или перетаскивать переменную на панель инструментов "Формула", как и в случае с другими объектами отчета.

Пример: Создайте формулу, которая возвращает статистическую дисперсию

Дисперсия – это статистический термин. Дисперсия множества значений служит мерой рассеяния этих значений относительно их среднего. В приложении Web Intelligence есть функция Var(), которая вычисляет дисперсию за один шаг, но ручное вычисление дисперсии

дает хороший пример того, как можно упростить сложную формулу, используя переменные. Чтобы вычислить дисперсию вручную, необходимо выполнить следующие действия:

- вычислить среднее количество проданных товаров;
- вычислить разность между каждым количеством проданных товаров и средним значением, а затем возвести это значение в квадрат;
- сложить все полученные квадраты разностей;
- разделить итог на количество значений минус единица.

Предположим, есть отчет по количеству товаров, проданных за квартал, и в него требуется включить дисперсию. Если для упрощения не использовать переменные, формула будет выглядеть следующим образом:

```
Sum((([Quantity sold] - Average([Quantity sold] ForEach
  [Quarter]) In Report)*([Quantity sold] -
Average([Quantity sold] ForEach [Quarter]) In Report))
  In [Quarter])/(Count ([Quantity sold] ForEach
  [Quarter]) - 1)
```

Данная формула безусловно, является громоздкой. С помощью переменных можно упростить ее до формулы,

```
Sum ([Difference Squared])/[Number of Observations] -
1)
```

что гораздо легче воспринимать. Такой упрощенный вариант формулы дает представление более высокого уровня о том, что вычисляется в формуле, вместо того чтобы глубоко вникать в сбивающие с толку детали. Затем можно проверить формулы для переменных, на которые есть ссылки в формулах более высокого уровня, что даст более полное представление об их структуре.

Например, формула ссылается на переменную Difference Squared, которая, в свою очередь, ссылается на переменную Average Sold. Проанализировав формулы для переменных Difference Squared и Average sold, можно исследовать иерархическую структуру формулы и тем самым лучше понять механизм ее работы.

Работа с функциями

В пользовательском вычислении содержатся только объекты отчетов, например [Доход от продаж] / [Количество продаж]. В вычислениях, кроме объектов отчета, также могут содержаться функции.

Функция получает ноль или несколько значений в качестве входных данных и возвращает выходные данные на основе этих значений. Например, функция Sum суммирует все значения в мере и выводит результат. Формула Sum ([Доход от продаж]) выводит итог доходов от продаж. В данном случае входные данные функции — это мера "Доход от продаж", а выходные данные функций — сумма всех мер "Доход от продаж".

См. также

- Операторы функций и формул Web Intelligence
- Функции Web Intelligence

Включение функций в ячейки

Текст в ячейках отчета всегда начинается со знака "=". Буквенный текст отображается в кавычках, а формулы – без кавычек. Например, формула Average([Прибыль]) отображается в ячейке как =Average([Прибыль]). Текст "Средняя прибыль?" отображается как = "Средняя прибыль?"

В ячейке можно использовать только текст или смесь формул и текста, с помощью оператора "+". Если необходимо, чтобы перед средней прибылью в ячейке отображался текст "Средняя прибыль:", текст ячейки должен выглядеть следующим образом: ="Средняя прибыль: " + Average ([Прибыль])

Обратите внимание на пробел в конце текстовой строки, который позволяет отделить в ячейке текст от значения.

Синтаксис функций

Чтобы использовать функцию, необходимо знать ее имя, количество необходимых для нее входных переменных и типы данных этих

переменных. Также необходимо знать тип данных, который выводится функцией.

Например, функция Sum использует числовой объект в качестве входной переменной (например меру, отображающую доход от продаж) и выводит числовые данные (сумму всех значений объекта меры).

Ниже представлен синтаксис функции Abs:

```
num Abs(number)
```

Данный синтаксис говорит о том, что функция Abs использует только одно число в качестве входной переменной и возвращает число в качестве выходных данных.

При выборе функции в редакторе формул отображается ее синтаксис.

Примеры функций

Пример: Отображение входа приглашений с помощью функции UserResponse

В отчете содержатся сведения о доходах от продаж за год и квартал. Объект состояния также отображается в данных отчета, хотя в самом отчете он не отображается. Когда пользователь выполняет отчет, ему выводится приглашение и он должен выбрать состояние. Необходимо отобразить состояние, выбранное в заголовке отчета. Если поставщик данных называется eFashion, а текст в приглашении звучит "Выберите состояние", формула для заголовка выглядит следующим образом:

```
"Quarterly Revenues for " + UserResponse(
"eFashion"; "Choose a State")
```

Отчет выглядит следующим образом:

Keapran	THPS DOXOTH TO	a Voobhoăca
Year	Quarter	Sales revenu
201	Ø	\$25
201	Ω	\$24
201	03	\$10
201	(4	\$13
2001	Total	\$730.2
Year	Quarter	Sales revenu
2002	Ø	<u> </u>
700	Ø	\$25
2002	03	\$3
2002	QI	£13
2002	Total	\$11506
Har	Quarter	Sales revenu
203	Ø	\$25
203	02	\$5
2003	03	177
203	QI	\$25
2003	Total	\$11340

Пример: Вычисление процентного соотношения с помощью функции Percentage

В Web Intelligence функция Percentage используется для вычисления процентного соотношения. С помощью данной функции вычисляется процентное соотношение числа по отношению к окружающему контексту. Например, в следующей таблице отображаются доходы по годам и по кварталам. В столбце процентного соотношения содержится формула процентное соотношение ([Доход от продаж]).

Year	Quarter	Sales revenue	Percentage
2001	Q1	\$2 660 700	0,07
2001	Q2	\$2 279 003	0,06
2001	Q3	\$1 367 841	0,04
2001	Q4	\$1 788 580	0,05
2002	Q1	\$3 326 172	0,09
2002	Q2	\$2 840 651	0,08
2002	Q3	\$2 879 303	0,08
2002	Q4	\$4 186 120	0,12
2003	Q1	\$3 742 989	0,10
2003	Q2	\$4 006 718	0,11
2003	Q3	\$3 953 395	0,11
2003	Q4	\$3 356 041	0,09
		Сумма:	1

В данном случае формула вычисляет каждый доход как процентное соотношение общего дохода. Окружающий контекст – это общий доход; это единственная необходимая цифра дохода, кроме его разбиения по годам и кварталам в таблице.

Если отчет разделен на разделы по годам, окружающий контекст вне таблицы становится общим доходом в разделе.

Year	Quarter	Sales revenue	Percentage
2001	Q1	\$2 660 700	0,33
2001	Q2	\$2 279 003	0,28
2001	Q3	\$1 367 841	0,17
2001	Q4	\$1 788 580	0,22
		Сумма:	1

Если ячейка "Процентное соотношение" помещена вне таблицы, но внутри раздела, окружающий контекст становится общим доходом. В данном случае функция Percentage вычисляет общий доход для раздела в качестве процентного соотношения.

2001	0,22	
Year	Quarter	Sales revenue
2001	Q1	\$2 660 700
2001	Q2	\$2,279.003
2001	Q3	\$1 367 841
2001	Q4	\$ 1 788 580
2002	0,36	
Year	Quarter	Sales revenue
2002	Q1	\$3 326 172
2002	Q2	\$2 840 651
2002	Q3	\$2 879 303
2002	Q4	\$4 186 120

Пример: Вычисление процентного соотношения с помощью функции Sum

Можно усилить контроль над контекстом, в котором процентное соотношение вычисляется с помощью функции Sum, вместо функции Percentage. Если разделить одно число во множестве чисел на сумму этих чисел, то можно получить процентное соотношение итога; например, формула [Доход от продаж]/Sum([Доход от продаж]) представляет доход от продаж в качестве процентного соотношения от общего дохода.

В следующей таблице в столбце "Процентное соотношение итога" есть формула:

```
[Sales revenue] / (Sum([Sales revenue] In Report))
в столбце "Процентное соотношение года" также есть формула:

[Sales revenue] / (Sum([Sales revenue] In Section))
```

2001

Year	Quarter	Sales revenue	Percentage of Total	Percentage of Year
2001	Q1	\$2 660 700	0,07	0,33
2001	Q2	\$2 279 003	0,06	0,28
2001	Q3	\$1 367 841	0,04	0,17
2001	Q4	\$1 788 580	0,05	0,22

В данных формулах используются ключевые слова Report и Section расширенного синтаксиса, чтобы с помощью функции Sum можно было вычислять общий доход и годовой доход соответственно.

См. также

• Изменение контекста вычислений по умолчанию с расширенным синтаксисом

Упрощение формулы для дисперсии с помощью переменных

Дисперсия – это статистический термин. Дисперсия множества значений служит мерой рассеяния этих значений относительно их среднего. В приложении Web Intelligence есть функция Var(), которая вычисляет дисперсию за один шаг, но ручное вычисление дисперсии дает хороший пример того, как можно упростить сложную формулу, используя переменные. Чтобы вычислить дисперсию вручную, необходимо выполнить следующие действия:

- вычислить среднее количество проданных товаров;
- вычислить разность между каждым количеством проданных товаров и средним значением, а затем возвести это значение в квадрат;
- сложить все полученные квадраты разностей;
- разделить итог на количество значений минус единица.

Предположим, есть отчет по количеству товаров, проданных за квартал, и в него требуется включить дисперсию. Если для упрощения не

использовать переменные, формула будет выглядеть следующим образом:

```
Sum((([Quantity sold] - Average([Quantity sold] ForEach
  [Quarter]) In Report)*([Quantity sold] -
Average([Quantity sold] ForEach [Quarter]) In Report))
In [Quarter])/(Count ([Quantity sold] ForEach [Quarter])
  - 1)
```

безусловно, формула выглядит очень громоздкой.

Создание формулы для дисперсии

Создание формулы для дисперсии выполняется за несколько шагов. Эти несколько шагов можно свести к одному с помощью одной переменной. Необходимо создать следующие переменные:

- среднее количество проданных товаров;
- количество наблюдений (то есть количество отдельных значений количества проданных товаров);
- разность между наблюдением и средним значением, возведенная в квадрат;
- сумма этих квадратов разностей, разделенная на количество наблюдений минус единица

Формулы с переменными имеют следующий вид.

Переменная	Формула	
Average Sold	Average([Quantity Sold] In ([Quarter])) In Report	
Number of Observations	Count([Quantity Sold] In ([Quarter])) In Report	
Difference Squared	Power(([Quantity sold] – [Average Sold]);2)	
Отклонение	Sum([Difference Squared] In ([Quarter]))/([Number of Observations] – 1)	

Окончательная формула принимает вид

Sum ([Difference Squared])/[Number of Observations] - 1)

что гораздо легче воспринимать. Такой упрощенный вариант формулы дает представление более высокого уровня о том, что вычисляется в формуле, вместо того чтобы глубоко вникать в сбивающие с толку детали. Затем можно проверить формулы для переменных, на которые есть ссылки в формулах более высокого уровня, что даст более полное представление об их структуре.

Например, формула ссылается на переменную Difference Squared, которая, в свою очередь, ссылается на переменную Average Sold. Проанализировав формулы для переменных Difference Squared и Average sold, можно исследовать иерархическую структуру формулы и тем самым лучше понять механизм ее работы.

Операторы функций и формул Web Intelligence

Операторы связывают различные элементы формул. Формулы могут содержать математические, условные, логические, специальные функциональные операторы или операторы расширенного синтаксиса.

Математические операторы

Математические операторы знакомы по арифметическим вычислениям, выполняемым ежедневно. Это операторы сложения (+), вычитания (-), умножения (*), деления (/), которые позволяют выполнять математические операции в формуле. В формуле [Доход продаж] – [Издержки при продажах] содержится математический оператор вычитания.

Примечание:

При использовании с символьными строками оператор "+" ставится оператором конкатенации строк. А это значит, что он объединяет символьные строки. Например, формула "Иван" + "Иванов" возвращает значение "Иван Иванов".

Условные операторы

Условные операторы определяют тип сравнения двух значений.

Оператор	Описание
=	Равно
>	Больше
<	Меньше
>=	Больше или равно
<=	Меньше или равно
<	Не равно

Условные операторы используются с функцией If, например:

```
If [Revenue]>10000 Then "High" Else "Low"
```

которая возвращает значение "Высокая" для всех строк, в которых указанная прибыль больше или равна 10000, и значение "Низкая" для всех остальных строк.

Логические операторы

В приложении Web Intelligence используются следующие логические операторы: And, Or, Not, Between и Inlist. Логические операторы используются в булевых выражениях, возвращающих значения Истина или Ложь.

Контекстные операторы

Контекстные операторы образуют часть расширенного синтаксиса вычислений. Расширенный синтаксис позволяет определять, какие измерения будут учитываться формулой или мерой при вычислении.

Специальные операторы функций

Некоторые функции Web Intelligence могут использовать определенный набор операторов в качестве аргументов. Например, функция Previous может использовать оператор Self.

Аргументы всех функций заключаются в скобки:) и (. В функциях, работающих с несколькими параметрами, для их разделения используется знак ;.

Описание контекстов вычисления

Что из себя представляют контексты вычислений

Контекст вычисления – это данные, которые учитывает вычисление, чтобы сгенерировать результат. В Web Intelligence это значит, что значение, предоставленное мерой, определяется с помощью измерения, которое используется для вычисления меры.

В отчете содержится два вида объектов.

- Измерения представляют бизнес-данные, которые генерируют цифры. Филиалы магазина, года или регионы — это примеры данных измерений. Например, филиал магазина, год или регион могут генерировать доход. Можно говорить о доходе по магазину, году или региону.
- Меры это числовые данные, сгенерированные с помощью данных измерений. Примеры мер: доход и количество продаж. Например, можно говорить о количестве продаж в определенном магазине.

Меры также можно генерировать с помощью комбинаций данных измерений. Например, можно говорить о доходе, сгенерированном в определенном магазине в 2005 году.

Контекст вычисления меры состоит из двух компонентов:

- измерение или список измерений, которые определяют значение меры
- часть данных измерения, которая определяет значение меры

Контекст вычисления состоит из двух компонентов:

- Контекст ввода
- Контекст вывода

См. также

- Входной контекст
- Выходной контекст

Входной контекст

Входной контекст меры или формулы – это список измерений, которые подаются на вычисление.

Список измерений во входном контексте помещается внутри скобок функции, которая выводит значение. Список измерений также должен заключаться в скобки (даже если он содержит только одно измерение), а измерения должны разделяться точками с запятой.

Пример: Определение входного контекста

В отчете с разделами "Год" и блоком в каждом разделе со столбцами "Заказчик" и "Доход" входные контексты будут следующими.

Часть отчета	Входной контекст
Верхние колонтитулы разделов и нижние колонтитулы блоков	Год
Строки блока	"Год", "Заказчик"

Другими словами, в верхних колонтитулах разделов и нижних колонтитулах блоков выводится прибыль по годам, а в каждой строке блока – прибыль по годам и заказчику (прибыль, полученная от данного заказчика за рассматриваемый год).

При явном указании в формуле входные контексты будут следующими:

```
Sum ([Revenue] In ([Year]))
Sum ([Revenue] In ([Year]; [Customer]))
```

Таким образом, измерения во входном контексте оказываются внутри круглых скобок той функции (в данном случае – Sum), для которой указан входной контекст.

Выходной контекст

С помощью выходного контекста формула выводит значение, если она находится в нижнем колонтитуле блока с разбиением.

Пример: Определение выходного контекста

В следующем отчете отображена прибыль годам и по кварталам, с разбиением по году и минимальной прибылью, вычисленной по годам.

Year	Quarter	Sales revenue
2001	Q1	\$2 660 699,50
2001	Q2	\$2 279 003,00
2001	Q3	\$1 367 840,70
2001	Q4	\$1 788 580,40
2001		
	Минимум	\$1 367 840,70

Year	Quarter	Sales revenue
2002	Q1	\$3 326 172,20
2002	Q2	\$2 840 650,80
2002	Q3	\$2 879 303,00
2002	Q4	\$4 186 120,00
2002		
	Минимум	\$2 840 650,80

Year	Quarter	Sales revenue
2003	Q1	\$3 742 988,90
2003	Q2	\$4 006 717,50
2003	Q3	\$3 953 395,30
2003	Q4	\$3 356 041,10
2003		
	Минимум	: \$3 356 041,10

Что необходимо сделать, чтобы отобразить минимальный доход по годам в блоке с разбиением? Это можно осуществить, определив выходной контекст в формуле. В этом случае данная формула выглядит следующим образом.

Min ([Revenue]) In ([Year])

То есть выходной контекст отображается после круглых скобок функции, чей выходной контекст указывает пользователь. В данном случае с помощью выходного контекста Web Intelligence вычисляет минимальный доход за каждый год.

Если добавить дополнительный столбец с данной формулой в блок, результат будет выглядеть следующим образом.

Year	Quarter	Sales revenue	Min by Year
2001	Q1	\$2 660 699,50	\$1 367 840,70
2001	Q2	\$2 279 003,00	\$1 367 840,70
2001	Q3	\$1 367 840,70	\$1 367 840,70
2001	Q4	\$1 788 580,40	\$1 367 840,70
2002	Q1	\$3 326 172,20	\$2 840 650,80
2002	Q2	\$2 840 650,80	\$2 840 650,80
2002	Q3	\$2 879 303,00	\$2 840 650,80
2002	Q4	\$4 186 120,00	\$2 840 650,80
2003	Q1	\$3 742 988,90	\$3 356 041,10
2003	Q2	\$4 006 717,50	\$3 356 041,10
2003	Q3	\$3 953 395,30	\$3 356 041,10
2003	Q4	\$3 356 041,10	\$3 356 041,10

Можно увидеть, что в столбце "Минимум за каждый год" содержатся данные о минимальных доходах, которые отображаются в нижних колонтитулах разбиения предыдущего отчета.

Обратите внимание, что в данном примере выходной контекст не указан, так как это контекст по умолчанию (год, квартал) для блока. Другими словами, с помощью выходного контекста Web Intelligence определяет, какую прибыль по годам и кварталам следует выводить. Если включить все указанные входные и выходные формулы, данная формула выглядит следующим образом.

```
Min ([Sales Revenue] In([Year]; [Quarter])) In ([Year])
```

Проще говоря, с помощью данной формулы Web Intelligence "вычисляет доходы за каждый год и квартал, а потом выводит наименьшие объемы доходов каждый год"?

Что произойдет, если не определить выходной контекст в столбце "Минимум за год"? В этом случае данные цифры будут совпадать с цифрами в столбце "Доход от продаж". Причина Следует помнить, что

контекст по умолчанию в блоке содержит измерения в данном блоке. Минимальная прибыль за каждый год/квартал совпадает с обычной прибылью за каждый год/квартал, так как существует только один показатель прибыли для каждой комбинации "год/квартал".

Контексты вычислений по умолчанию

В зависимости от того, где поместить меру или формулу, Web Intelligence назначает контекст вычисления для меры по умолчанию.

Семантика мер изменяется динамически Это означает, что значения, возвращенные мерой, зависят от измерений, с которыми она связана. Данная комбинация измерений представляет контекст вычисления.

Web Intelligence связывает контекст по умолчанию с мерой, в зависимости от того, где она размещается. С помощью расширенного синтаксиса можно изменить контекст по умолчанию. Другими словами, можно определить набор измерений, который используется для создания меры. Это и есть определение контекста вычисления.

Пример: Контексты по умолчанию в отчете

В данном примере описывается контекст вычисления мер по умолчанию в простом отчете. В отчете отображается доход, созданный покупателями. Отчет разбит на разделы по годам.

2005	Bcero: 8000
------	-------------

Заказчик	Доход
Харрис	1000
Джонс	3000
Уолш	4000

Заказчик	Доход
Bcero:	8000

Всего в отчете: 8000

В таблице, указанной выше, содержится контекст вычисления мер в следующем отчете.

Мера	Значение	Контекст
Всего в отчете	20000	Итоговое значение общего дохода в отчете
Итоговое значение в верхнем колонтитуле	8000	Год
Итого по всем заказчи- кам	1000, 3000, 4000	Год; Заказчик
Итоговое значение в нижнем колонтитуле	8000	Год

См. также

- Что из себя представляют контексты вычислений
- Изменение контекста вычислений по умолчанию с расширенным синтаксисом

Контексты по умолчанию в вертикальной таблице

Вертикальная таблица — это стандартная таблица отчета с верхними колонтитулами сверху, данными, которые идут сверху вниз, и нижними колонтитулами внизу. Контексты по умолчанию в нижней таблице.

Если вычисление в	Входной контекст – это	Выходной контекст – это
Верхний колонтитул	Измерения и меры ис- пользуются для генери- рования содержимого блока.	Все данные агрегированы, функция вычисления возвращает единственное значение.
Содержимое блока	Измерения и меры используются для генерирования текущей стрики.	Идентично входному контексту.
Нижний колонтитул	Измерения и меры используются для генерирования содержимого блока.	Все данные агрегированы, функция вычисления возвращает единственное значение.

Пример: Контексты по умолчанию в вертикальной таблице

В следующем отчете отображены контексты по умолчанию в вертикальной таблице.

Year	Quarter	Sales revenue	\$36387203
2001	Q1	\$2 660 700	\$2 660 699,50
2001	Q2	\$2 278 693	\$2 278 693,40
2001	Q3	\$1 367 841	\$1 367 840,70
2001	Q4	\$ 1 788 580	\$1 788 580,40
2002	Q1	\$3 326 172	\$3 326 172,20
2002	Q2	\$2 840 651	\$2 840 650,80
2002	Q3	\$2 879 303	\$2 879 303,00
2002	Q4	\$4 186 120	\$4 186 120,00
2003	Q1	\$3 742 989	\$3 742 988,90
2003	Q2	\$4 006 718	\$4 006 717,50
2003	Q3	\$3 953 395	\$3 953 395,30
2003	Q4	\$3 356 041	\$3 356 041,10
	Сумма:	\$36 387 203	

Контексты по умолчанию в горизонтальной таблице

Горизонтальная таблица выглядит как вертикальная, повернутая на 90 градусов. Верхние колонтитулы отображаются слева, данные идут слева направо, а нижние колонтитулы отображаются справа. Контексты по умолчанию для горизонтальной таблицы выглядят так же, как и для вертикальной.

Контексты по умолчанию в кросс-таблице

В кросс-таблице отображаются данные в виде матрицы с мерами, которые отображаются на пересечении измерений. Контексты по умолчанию в кросс-таблице.

Вычисление находит- ся в	Входной контекст – это	Выходной контекст – это
Верхний колонтитул	Измерения и меры используются для генерирования содержимого блока.	Все данные агрегируются, затем функция вычисления возвращает единственное значение.
Содержимое блока	Измерения и меры используются для генерирования содержимого блока.	Идентично входному контексту.
Нижний колонтитул	Измерения и меры используются для генерирования содержимого блока.	Все данные агрегируются, затем функция вычисления возвращает единственное значение.
Нижний колонтитул VBody	Измерения и меры используются для генерирования текущего столбца.	Все данные агрегируются, затем функция вычисления возвращает единственное значение.

Вычисление находится в	Входной контекст – это	Выходной контекст – это
Нижний колонтитул HBody	Измерения и меры используются для генерирования текущей строки.	Все данные агрегируются, затем функция вычисления возвращает единственное значение.
VFooter	Идентично нижнему ко- лонтитулу.	Все данные агрегируются, затем функция вычисления возвращает единственное значение.
HFooter	Идентично нижнему ко- лонтитулу.	Все данные агрегируются, затем функция вычисления возвращает единственное значение.

Пример: Контексты по умолчанию в кросс-таблице

В следующем отчете отображены контексты по умолчанию в кросс-таблице.

		FY2000	FY2000	FY2000	FY2000	1 115 730
		Q1	Q2	Q3	Q4	1 115 730
France	259 170	61 895	76 555	70 080	50 640	259 170
US	856 560	196 831	189 886	234 574	235 269	856 560
Сумма:	1 115 730	258 726	266 441	304 654	285 909	1 115 730

Контексты по умолчанию в разделе

Раздел состоит из верхнего колонтитула, текста сообщения и нижнего колонтитула. Контексты по умолчанию в разделе:

Вычисление находится в	Входной контекст – это	Выходной контекст – это
Тело	Измерения и меры в отчете отфильтрованы, чтобы ограничить данные до данных раздела.	Все данные агрегируются, затем функция вычисления возвращает единственное значение.

Пример: Контексты по умолчанию в разделе

В следующем отчете отображены контексты по умолчанию в кросс-таблице.

2001			8 096 123,60
Quarter		Sales revenue	
Q1		\$2 660 700	8 096 123,60
Q2		\$2 279 003	8 096 123,60
Q3		\$1 367 841	8 096 123,60
Q4		\$ 1 788 580	8 096 123,60
	Сумма:	\$8 096 123,60	
0000			40.000.040
2002			13 232 246
Quarter		Sales revenue	
Q1		\$3 326 172	13 232 246,00
Q2		\$2 840 651	13 232 246,00
Q3		\$2 879 303	13 232 246,00
Q4		\$4 186 120	13 232 246,00
	Сумма:	\$13 232 246,00	
2003			45 050 440 0
2003			15 059 142,80
Quarter		Sales revenue	
Q1		\$3 742 989	15 059 142,80
Q2		\$4 006 718	15 059 142,80
Q3		\$3 953 395	15 059 142,80
Q4		\$3 356 041	15 059 142,80
	Сумма:	\$15 059 142,80	

Контексты по умолчанию в разбиении

Разбиение состоит из верхнего колонтитула, текста сообщения и нижнего колонтитула. Контексты по умолчанию в разбиении:

Вычисление находится в	Входной контекст – это	Выходной контекст – это
Верхний колонтитул	Текущий экземпляр разбиения.	Все данные агрегируются, затем функция вычисления возвращает единственное значение.
Нижний колонтитул	Текущий экземпляр разбиения.	Все данные агрегируются, затем функция вычисления возвращает единственное значение.

Пример: Контексты по умолчанию в разбиении

В следующем отчете отображены контексты по умолчанию в разбиении:

Year	Quarter	\$8096123
	Q1	\$2 660 700
	Q2	\$2 279 003
	Q3	\$1 367 841
	Q4	\$1 788 580
2001		
	Сумма:	\$8 096 124
Year	Quarter	\$13232246

Year	Quarter	\$13232246
	Q1	\$3 326 172
	Q2	\$2 840 651
	Q3	\$2 879 303
	Q4	\$4 186 120
2002		
	Сумма:	\$13 232 246

Изменение контекста вычислений по умолчанию с расширенным синтаксисом

В расширенном синтаксисе используются операторы контекста, которые добавляются к формуле или мере для указания контекста вычислений. Контекст меры или формулы состоит из входного и выходного контекста.

Операторы расширенного синтаксиса

Контексты ввода и вывода задаются явным образом при помощи операторов контекста. В следующей таблице перечислены операторы контекста:

Оператор	Описание
In	Определяет подробный список измерений для использования в контексте.
ForEach	Добавляет измерения в контекст по умолчанию
ForAll	Убирает измерения из контекста по умолчанию

Операторы ForAll и ForEach могут оказаться полезными, когда в контексте по умолчанию содержится множество измерений. Часто может быть проще добавлять или удалять измерения из контекста с помощью операторов ForAll и ForEach, чем создавать список с использованием In.

Оператор In Context

Оператор In Context определяет измерения в контексте в явной форме.

Пример: Использование оператора In Context для определения измерений в контексте

В этом примере у нас есть отчет, в котором отображается "Год" и "Доход с продаж". В поставщике данных также содержится объект "Квартал", однако это измерение в блок не включено. Вместо этого, требуется включить дополнительный столбец для отображения максимального значения дохода за каждый квартал каждого года. Отчет выглядит следующим образом:

Year	Sales revenue	Max Quarterly Revenue
2001	\$8 096 123,60	\$2 660 699,50
2002	\$13 232 246,00	\$4 186 120,00
2003	\$15 059 142,80	\$4 006 717,50

Узнать откуда берутся значения в столбце "Максимальный доход за квартал" в этом блоке можно просмотрев этот блок в паре с блоком, содержащим измерение "Квартал":

Year	Quarter	Sales revenue
	Q1	\$2660700
	Q2	\$2279003
	Q3	\$1367841
	Q4	\$1788580
2001		
	Ma	жс.: 2660699.5

Year	Quarter	Sales revenue
	Q1	\$3326172
	Q2	\$2840651
	Q3	\$2879303
	Q4	\$4186120
2002		
	Макс.:	4186120

Year	Quarter		Sales revenue
	Q1		\$3742989
	Q2		\$4006718
	Q3		\$3953395
	Q4		\$3356041
2003			
		Макс.:	4006717.5

Столбец "Максимальный доход за квартал" содержит максимальные показатели дохода за каждый год. Например, К4 содержит значение максимального дохода в 2002 году, таким образом, "Максимальный доход за квартал" в строке 2002 года отобразит К4.

Использование оператора In, формула для "Максимального дохода за квартал"

```
Max ([Sales Revenue] In ([Year]; [Quarter])) In ([Year])
```

По этой формуле Web Intelligence рассчитывает максимальных доход с продаж для каждой пары "год/квартал", а затем выводит полученное значение по годам.

Примечание:

Так как по умолчанию контекстом для вывода является "Год", особым образом указывать контекст вывода в этой формуле не требуется.

Контекстный оператор ForEach

Оператор ForEach добавляет в контекст измерения.

Пример: Использование оператора ForEach для добавления измерений в контекст

В следующей таблице показан максимальный доход по каждому кварталу в отчете, который содержит измерение "Квартал", не включенное в блок:

Год	Доход от продаж	Максимальный квартальный доход
2001	8 096 123,60	2 660 699,50
2002	13 232 246,00	4 186 120,00
2003	15 059 142,80	4 006 717,50

Для столбца "Максимальный доход за квартал" можно создать формулу, которая не содержит оператор ForEach:

```
Max ([Sales Revenue] In ([Year]; [Quarter])) In ([Year])
```

Контекстный оператор "ForEach" позволяет добиться того же результата с помощью следующей формулы:

```
Max ([Sales Revenue] ForEach ([Quarter])) In ([Year])
```

Причина: Измерение "Год" является в блоке контекстом ввода по умолчанию. При использовании оператора "ForEach" измерение "Квартал" добавляется в контекст, в результате чего получается контекст ввода ([Год];[Квартал]).

Контекстный оператор ForAll

Контекстный оператор ForAll удаляет из контекста измерения.

Пример: Использование оператора ForAll для удаления измерений из контекста

Есть отчет, в котором отображается год, квартал и доход от продаж, и необходимо добавить столбец, в котором отображается суммарный доход по каждому году, как показано в следующем блоке:

Year	Quarter	Sales revenue	Yearly Total
2001	Q1	\$2 660 700	\$8 096 124
2001	Q2	\$2 279 003	\$8 096 124
2001	Q3	\$1 367 841	\$8 096 124
2001	Q4	\$1 788 580	\$8 096 124
2002	Q1	\$3 326 172	\$13 232 246
2002	Q2	\$2 840 651	\$13 232 246
2002	Q3	\$2 879 303	\$13 232 246
2002	Q4	\$4 186 120	\$13 232 246
2003	Q1	\$3 742 989	\$15 059 143
2003	Q2	\$4 006 718	\$15 059 143
2003	Q3	\$3 953 395	\$15 059 143
2003	Q4	\$3 356 041	\$15 059 143

Для суммирования доходов по годам контекстом ввода должен быть (Год); по умолчанию это (Год; Квартал). Поэтому необходимо удалить из контекста ввода квартал, указав в формуле ForAll ([Квартал]), что будет выглядеть следующим образом:

```
Sum([Sales Revenue] ForAll ([Quarter]))
```

Следует отметить, что для получения такого же результата можно использовать оператор "In". В данном случае формула будет выглядеть следующим образом:

```
Sum([Sales Revenue] In ([Year]))
```

В этой версии формулы в качестве контекста явно указан год, а не удаляется квартал, чтобы оставить год.

Ключевые слова с расширенным синтаксисом в приложении Web Intelligence

Ключевые слова с расширенным синтаксисом – это форма условного обозначения, которая позволяет обращаться к измерениям с расширенным синтаксисом без явного указания этих измерений. Это позволяет обеспечить создание неустаревающих отчетов; если в формулах не содержатся жестко запрограммированные ссылки на

измерения, то они будут оставаться действительными даже при добавлении измерений в отчет или удалении измерений из отчета.

Предусмотрено пять ключевых слов расширенного синтаксиса: Отчет, Раздел, Разбиение, Блок и Тело.

Ключевое слово Report

В следующей таблице приведены данные, на которые ссылается ключевое слово Report в зависимости от его местонахождения в отчете:

Если расположено в	Ссылается на эти данные
Блок	Все данные в отчете
Разбиение по блокам (верхний или нижний колонтитул)	Все данные в отчете
Раздел (верхний колонтитул, нижний колонтитул или данные за пределами блока)	Все данные в отчете
За пределами всех блоков или разделов	Все данные в отчете

Пример: Ключевое слово Report

В отчете содержатся сведения о доходах от продаж за год, и квартал. В отчете есть столбец "Сумма по отчету", в котором отображается сумма всех доходов из отчета.

Year	Quarter	Sales revenue	Report Total
2001	Q1	\$2 660 700	36 387 512.4
2001	Q2	\$2 279 003	36 387 512.4
2001	Q3	\$1 367 841	36 387 512.4
2001	Q4	\$1 788 580	36 387 512.4
2002	Q1	\$3 326 172	36 387 512.4
2002	Q2	\$2 840 651	36 387 512.4
2002	Q3	\$2 879 303	36 387 512.4
2002	Q4	\$4 186 120	36 387 512.4
2003	Q1	\$3 742 989	36 387 512.4
2003	Q.2	\$4 006 718	36 387 512.4
2003	Q3	\$3 953 395	36 387 512.4
2003	Q4	\$3 356 041	36 387 512.4

Формула для столбца "Сумма по отчету": Sum([Доходы от продаж]) In Report. Без ключевого слова Report в данном столбце воспроизводились бы цифры из столбца "Доходы от продаж", поскольку в нем использовался бы контекст вывода по умолчанию ([Год];[Квартал]).

Ключевое слово "Раздел"

В следующей таблице описываются данные, на которые ссылается ключевое слово "Раздел" в зависимости от его расположения в отчете:

Если расположено в	Ссылается на эти данные
Блок	Все данные в разделе
Разбиение по блокам (верхний или нижний колонтитул)	Все данные в разделе
Раздел (верхний колонтитул, нижний колонтитул или данные за пределами блока)	Все данные в разделе
За пределами всех блоков или разделов	Не применимо

Пример: Ключевое слово "Раздел"

В отчете отображаются объекты "Год", "Квартал" и "Доход с продаж".

2001	

Quarter	Sales revenue	Section Total
Q1	\$2 660 700	8 095 814
Q2	\$2 278 693	8 095 814
Q3	\$1 367 841	8 095 814
Q4	\$1 788 580	8 095 814

В этом отчете создан раздел на основе объекта "Год". В столбце "Итог раздела" записана формула:

```
Sum ([Sales Revenue]) In Section
```

Цифра в столбце "Итог раздела" обозначает совокупный доход за 2001 год, поскольку разбиение раздела выполнено в объекте "Год". При отсутствии ключевого слова "Раздел" в этом столбце будут дублироваться цифры из столбца "Доход с продаж", поскольку будет использоваться контекст вывода по умолчанию ([Год];[Квартал]).

Ключевое слово "Разбиение"

В следующей таблице описываются измерения, на которые ссылается ключевое слово "Разбиение" в зависимости от его расположения в отчете:

Если расположено в	Ссылается на эти данные
Блок	Данные в части блока, разделенные разбиением
Разбиение по блокам (верхний или нижний колонтитул)	Данные в части блока, разделенные разбиением
Раздел (верхний колонтитул, нижний колонтитул или данные за пределами блока)	Не применимо

Если расположено в	Ссылается на эти данные
За пределами всех блоков или разделов	Не применимо

Пример: Ключевое слово "Разбиение"

В отчете содержатся сведения о доходах от продаж за год, и квартал.

Үеаг	Quarter	Sales revenue	Break Total
2001	Q1	\$2 660 700	8 096 123.6
	Q2	\$2 279 003	8 096 123.6
	Q3	\$1 367 841	8 096 123.6
	Q4	\$1 788 580	8 096 123.6
2001			

В отчете содержится разбиение по объекту "Год". В столбце "Итог разбиения" записана формула:

При отсутствии ключевого слова "Разбиение" в этом столбце будут дублироваться цифры из столбца "Доход с продаж", поскольку будет использоваться контекст вывода по умолчанию ([Год];[Квартал]).

Ключевое слово блока

В следующей таблице описаны измерения, на которые ссылается ключевое слово блока, в зависимости от его местоположения в отчете; ключевое слово блока часто включает в себя те же данные, что и ключевое слово раздела. Вся разница заключается в том, что Блок принимает во внимание фильтры блока, а Раздел нет.

Если расположено в	Ссылается на эти данные
LEDOV	Данные во всем блоке, без учета разрывов, но с учетом фильтров

Если расположено в	Ссылается на эти данные
Разбиение по блокам (верхний или нижний колонтитул)	Данные во всем блоке, без учета разрывов, но с учетом фильтров
Раздел (верхний колонтитул, нижний колонтитул или данные за пределами блока)	Не применимо
За пределами всех блоков или разделов	Не применимо

Пример: Ключевое слово блока

В отчете содержатся сведения о доходах от продаж за год, и квартал. В этом отчете создан раздел на основе объекта "Год". Фильтры блока опускают показатели за третий и четвертый кварталы.

2001

Quarter	Sales revenue	First Half Average	Yearly Average
Q1	\$2 660 700	\$2 469 851.25	\$8 096 123.60
Q2	\$2 279 003	\$2 469 851.25	\$8 096 123.60
Сумма:	4 939 702.5		

2002

Quarter	Sales revenue	First Half Average	Yearly Average
Q1	\$3 326 172	\$3 083 411.50	\$13 232 246.00
Q2	\$2 840 651	\$3 083 411.50	\$13 232 246.00
Сумма:	6 166 823		

2003

Quarter	Sales revenue	First Half Average	Yearly Average
Q1	\$3 742 989	\$3 874 853.20	\$15 059 142.80
Q2	\$4 006 718	\$3 874 853.20	\$15 059 142.80
Сумма:	7 749 706.4		

В столбце "В среднем за год" присутствует формула.

Average([Sales revenue] In Section)

Формула также присутствует в столбце "В среднем за первое полугодие".

Average ([Sales revenue]) In Block

Можно проследить за тем, как ключевое слово блока учитывает фильтр блока.

Ключевое слово "Тело"

В следующей таблице описываются измерения, на которые ссылается ключевое слово "Тело" в зависимости от его расположения в отчете:

Если расположено в	Ссылается на эти данные
Блок	Данные в блоке
Разбиение по блокам (верхний или нижний колонтитул)	Данные в блоке
Раздел (верхний колонтитул, нижний колонтитул или данные за пределами блока)	Данные в разделе
За пределами всех блоков или разделов	Данные в отчете

Пример: Ключевое слово "Тело"

В отчете отображаются объекты "Год", "Квартал" и "Доход с продаж" с разбиением по объекту "Год". В отчете содержится раздел, основанный на объекте "Год", и разбиение по объекту "Квартал".

Год	Квартал	Доходы с про- даж	Тело
2001	К1	2 660 700	2 660 699,5
	K2	2 279 003	2 279 003
	КЗ	1 367 841	1 367 840,7
	К4	1 788 580	1 788 580,4
2001		8 096 123,6	

В строке "Тело" записана формула

```
Sum ([Sales Revenue]) In Body
```

Итоги в столбце "Тело" и "Доход с продаж" одинаковы, поскольку ключевое слово "Тело" относится к данным в блоке. Если удалить объект "Месяц", цифры в столбце "Блок" изменятся для обеспечения соответствия цифрам в столбце "Доход с продаж". Если формулу разместить в нижнем колонтитуле отчета, то будет вычисляться совокупный доход для блока.

Использование ключевых слов для обобщения отчетов

Ключевые слова расширенного синтаксиса защищают отчет от изменений. При явном определении данных (измерение определяется с помощью операторов In, ForEach или ForAll) отчеты могут возвращать непредвиденные данные, если добавлять или удалять измерения. Это показано в следующем примере.

Пример: Использование ключевого слова Report для отображения процентного соотношения

В данном примере в блоке содержатся объекты "Год", "Квартал" и "Доход от продаж". Необходимо отобразить доходы за каждый год и квартал, а также процентное соотношение общего дохода в отчете, который представляет каждый индивидуальный доход, как показано ниже.

Year	Quarter	Sales revenue	Percentage of Total
2001	Q1	\$2 660 700	7,31
2001	Q2	\$2 279 003	6,26
2001	Q3	\$1 367 841	3,76
2001	Q4	\$ 1 788 580	4,92
2002	Q1	\$3 326 172	9,14
2002	Q2	\$2 840 651	7,81
2002	Q3	\$2 879 303	7,91
2002	Q4	\$4 186 120	11,50
2003	Q1	\$3 742 989	10,29
2003	Q2	\$4 006 718	11,01
2003	Q3	\$3 953 395	10,86
2003	Q4	\$3 356 041	9,22
		Сумма:	100

Формула для столбца "Процентное соотношение общего дохода" выглядит следующим образом.

```
([Sales revenue] / (Sum([Sales revenue]) In Report)) *
100
```

В блоке ключевое слово Report включает в себя все данные в отчете, поэтому данная формула выглядит следующим образом.

```
([Sales revenue]/Sum([Sales revenue] ForAll
([Year]; [Quarter]))) * 100
```

С помощью данной формулы Web Intelligence удаляет объекты "Год" и "Квартал" в выходном контексте; другими словами, чтобы вычислить общий доход, так как в отчете нет других измерений. Затем в формуле каждый доход делится на общую сумму, чтобы найти его процентное соотношение от общего дохода.

Хотя в данной ситуации можно использовать оператор ForAl, предпочтительнее использовать ключевое слово Report. Причина Что произойдет, если добавить измерение "Месяц" в отчет позже? С помощью версии формулы, которая используется в ключевом слове Report, каждое процентное соотношение вычисляется правильно, но версия, которая определяет измерения "Год" и "Квартал", сейчас не является верной.

Year	Quarter	Month	Sales revenue	Percentage of Total
2001	Q1	1	\$1 003 541,20	26,13
2001	Q1	2	\$630 073,20	29,97
2001	Q1	3	\$1 027 085,10	27,12
2001	Q2	4	\$895 259,80	28,10
2001	Q2	5	\$865 615,10	24,30
2001	Q2	6	\$517 818,50	21,77
2001	Q3	7	\$525 903,50	20,42
2001	Q3	8	\$173 756,40	11,11
2001	Q3	9	\$668 180,80	16,45
2001	Q4	10	\$655 206,40	18,04
2001	Q4	11	\$484 024,20	18,55
2001	Q4	12	\$649 349,80	21,01
2002	Q1	1	\$1 335 401,90	34,77
2002	Q1	2	\$609 012,80	28,97
2002	Q1	3	\$1 381 757,50	36,49
2002	Q2	4	\$1 068 308,90	33,53
2002	Q2	5	\$1 081 884,80	30,38
2002	Q2	6	\$690 457,10	29,03
2002	Q3	7	\$801 954,70	31,14
2002	Q3	8	\$581 093,50	37,15
2002	Q3	9	\$1 496 254,80	36,84
2002	Q4	10	\$1 545 871,80	42,57
2002	Q4	11	\$1 081 915,30	41,47
2002	Q4	12	\$1 558 332,90	50,43
2003	Q1	1	\$1 501 366,70	39,09
2003	Q1	2	\$863 451,90	41,07
2003	Q1	3	\$1 378 170,30	36,39
2003	Q2	4	\$1 222 329,40	38,37
2003	Q2	5	\$1 614 147,30	45,32
2003	Q2	6	\$1 170 240,80	49,20
2003	Q3	7	\$1 247 313,50	48,44
2003	Q3	8	\$809 365,40	51,74
2003	Q3	9	\$1 896 716,40	46,70
2003	Q4	10	•	
2003	Q4	11	\$1 043 098,80	39,98
2003	Q4	12	\$882 642,20	28,56
			Сумма:	1 200

В чем причина? Проблема заключается в следующем.

Sum ([Sales Revenue] ForAll ([Year]; [Quarter))

Когда измерения "Год" и "Квартал" были единственными измерениями в отчете, это было эквивалентно общей сумме всех доходов. Как только было добавлено измерение "Месяц", данное выражение удалило объекты "Год" и "Квартал" из выходного контекста, но объект "Месяц" остапся.

Теперь формула включает "разбиение" по месяцу. Другими словами, в каждой строке, где у объекта "Месяц" значение 1, данное выражение означает "общий доход всех месяцев со значением 1s". В каждой строке, где у объекта "Месяц" значение 2, данное выражение означает "общий доход всех месяцев со значением 2s". В результате процентное соотношение не соответствует ожидаемому.

Вычисление значений с помощью интеллектуальных мер

Определение интеллектуальной меры

«Интеллектуальные меры» – это меры, значения которых вычисляются базой данных (реляционной или OLAP), лежащей в основе юниверса Web Intelligence, а не самим приложением Web Intelligence. Мера определяется в юниверсе интеллектуальной, когда ее данные агрегируются способом, который не поддерживается Web Intelligence.

Для возврата значений интеллектуальных мер Web Intelligence генерирует запрос для вычисления меры во всех контекстах вычисления, необходимых в отчете. При редактировании отчета эти контексты могут изменяться. В результате при каждом обновлении данных после изменения нужных контекстов Web Intelligence изменяет запрос.

Интеллектуальные меры ведут себя не так, как классические, поддерживающие основной набор функций агрегирования (Мах, Міп, Count, Sum, Average), которые Web Intelligence может вычислить во всех контекстах без помощи со стороны базы данных. Например, при создании запроса, содержащего измерения [Страна] и [Регион] и меру [Доход] (которая вычисляет сумму дохода), Web Intelligence исходно отображает страну, регион и доход в блоке. Если после этого из блока удалить регион, Web Intelligence сможет вычислить суммарный доход по каждой стране посредством сложения доходов по всем регионам страны.

Контексты вычислений представлены в генерируемых Web Intelligence запросах «наборами для группировки».

Наборы группировок и интеллектуальные меры

«Набор для группировки» представляет собой набор измерений, который генерирует результат для меры. Если Web Intelligence возвращает данные для интеллектуальной меры, созданный SQL включает в себя наборы для группировки для всех агрегирований данной меры, включенных в отчет.

Пример: Наборы для группировки в запросе

Запрос содержит измерения [Страна], [Регион], [Город] и интеллектуальная мера [Доход]. Эти объекты предполагают, что для вычисления дохода во всех возможных контекстах будут использованы следующие наборы группировок:

- Суммарное значение интеллектуальной меры
- значение интеллектуальной меры по (Страна, Регион, Город)
- значение интеллектуальной меры по (Страна, Город)
- значение интеллектуальной меры по (Город)
- значение интеллектуальной меры по (Регион, Город)
- значение интеллектуальной меры по (Регион)
- значение интеллектуальной меры по (Страна, Регион)
- значение интеллектуальной меры по (Страна)

Web Intelligence извлекает наборы для группировки с помощью onepatopa UNION в запросе. Если база данных не поддерживает UNION, Web Intelligence выполняет объединение самостоятельно.

Web Intelligence обновляет наборы для группировки согласно контекстам вычисления, необходимым для отчета, которые могут измениться в ответ на изменения в структуре отчета.

Принципы управления Web Intelligence наборами для группировки

При первом создании и выполнении запроса, включая интеллектуальные меры, Web Intelligence содержит наборы для группировки, необходимые для вычисления интеллектуальных мер на самом подробном уровне, подразумеваемом объектами запроса. Web Intelligence всегда включает в себя данный набор для группировки в SQL-запросе.

Например, при создании запроса, содержащего измерения [Страна], [Регион] и [Город] и интеллектуальную меру [Доход], Web Intelligence включает в себя набор для группировки (Страна, Регион, Город) в созданном SQL. данный набор для группировки всегда отображается в SQL. Web Intelligence добавляет и удаляет другие наборы для группировки в ответ на изменения отчета.

При удалении измерения [Город] из блока Web Intelligence потребуется набор для группировки (Страна, Регион), чтобы возвращать значения дохода. Данный набор для группировки еще не доступен в SQL-запросе, поэтому Web Intelligence отображает #TOREFRESH в ячейках [Доход]. При обновлении данных Web Intelligence может заменить #TOREFRESH на значения дохода.

Затем при замене измерения [Город] в блоке набор для группировки (Страна, Регион) больше не потребуется. Web Intelligence удаляет его из SQL-запроса и не учитывает его значения при следующем обновлении данных.

При каждом обновлении данных отчета Web Intelligence обновляет SQL-запрос, чтобы учитывать или не учитывать наборы для группировки, согласно контекстам вычислений, необходимым для отчета.

В определенных ситуациях Web Intelligence не может отобразить значение интеллектуальной меры. В данном случае Web Intelligence отображает #UNAVAILABLE в ячейках мер.

Интеллектуальные меры и область анализа

При создании запроса с областью анализа Web Intelligence создает изначальный набор для группировки, содержащий объекты результатов, но не объекты области. Web intelligence не создает все возможные наборы для группировки из комбинации объектов результатов и объектов области.

Пример: Запрос с областью анализа и интеллектуальная мера

Запрос содержит объекты результата [Страна] и [Доход]. В области анализа содержатся измерения [Регион] и [Город]. При выполнении запроса Web Intelligence извлекает набор для группировки (Страна) и отображает [Страна] и [Доход] в блоке.

Интеллектуальные меры и язык SQL

Наборы группировок и оператор UNION

Некоторые базы данных поддерживают наборы для группировки с оператором GROUPING SETS. Web Intelligence использует множество наборов результатов и оператор UNION, чтобы смоделировать эффект GROUPING SETS.

Пример: Наборы для группировки, извлеченные с помощью оператора UNION

В данном примере описывается запрос, содержащий измерения [Страна], [Регион], [Город] и интеллектуальную меру [Доход].

Примечание:

Для простоты, интеллектуальная мера вычисляет сумму. На практике интеллектуальная мера не требуется для данного агрегирования, поскольку юниверсы Web Intelligence поддерживают функцию Сумма.

При первом выполнении запроса набор для группировки представляет собой следующее: Страна, Регион, Город. Весь SQL-запрос возвращает данный набор для группировки, и необходимости в операторе UNION в SQL нет.

Если удалить измерение [Город] из таблицы, Web Intelligence потребуется набор для группировки (Страна, регион) для отображения дохода (отображается как #TOREFRESH). После обновления данных SQL выглядит следующим образом:

```
SELECT
SELECT
O AS GID,
country.country_name,
region.region_name,
NULL,
sum(city.revenue)
FROM
country,
region,
city
WHERE
```

```
( country.country id=region.country id
  AND (region.region id=city.region id
GROUP BY
  country.country name,
  region.region name
UNION
SELECT
 1 AS GID,
  country.country name,
 region.region name,
 city.city name,
 sum(city.revenue)
FROM
  country,
 region,
 city
WHERE
  ( country.country id=region.country id
  AND (region.region id=city.region id
GROUP BY
  country.country name,
  region.region name,
  city.city name
```

Каждый набор группировок представлен оператором SELECT и имеет свой собственный идентификатор (столбец GID). В наборы для группировки, которые не содержат полного набора измерений, входят пустые столбцы (SELECT ''), поскольку каждый оператор SELECT в запросе, включая UNION, должен иметь одинаковое количество столбцов.

Если добавляется новый блок, содержащий [Страна] и [Доход], в отчет, Web Intelligence потребуется набор для группировки (Страна). Теперь созданный SQL включает в себя три следующих набора для группировки:

```
SELECT

0 AS GID,
country.country_name,
region.region_name,
NULL,
sum(city.revenue)
FROM
country,
region,
city
```

```
WHERE
 ( country.country id=region.country id
 AND (region.region id=city.region id )
GROUP BY
  country.country name,
 region.region name
UNION
SELECT
 1 AS GID,
 country.country name,
 NULL,
 NULL,
 sum(city.revenue)
FROM
 country,
 city,
 region
WHERE
  ( country.country id=region.country id
 AND (region.region id=city.region id )
GROUP BY
 country.country name
UNION
SELECT
  2 AS GID,
 country.country name,
 region.region name,
  city.city name,
 sum(city.revenue)
FROM
  country,
 region,
 city
WHERE
  ( country.country id=region.country id )
 AND (region.region id=city.region id )
GROUP BY
  country.country name,
  region.region name,
city.city name
```

Интеллектуальные меры и формулы

Интеллектуальные меры и измерения, содержащие формулы

Если формула или переменная отображается как измерение в контексте вычисления интеллектуальной меры, и формула определяет набор для группировки, необходимый для меры, Web Intelligence не может отобразить значения для интеллектуальной меры. В этой ситуации Web Intelligence не может по формуле определить набор для группировки.

Например, отчет содержит переменную, Semester, с формулой

```
If [Quarter] = "Q1" or [Quarter] = "Q2" Then "H1" Else
"H2"
```

При размещении в блоке переменная Полугодие возвращает следующий результат:

Полугодие	Доход
H1	#UNAVAILABLE
H2	#UNAVAILABLE

Интеллектуальные меры в формулах

Web Intelligence может возвратить значение для интеллектуальной меры, если интеллектуальная мера включена в формулу, даже если для формулы требуется контекст вычисления, отличный от контекста, подразумеваемого положением формулы.

Например, отчет содержит следующий блок:

Страна	Регион	Доход
США	Север	10 000
США	Юг	15 000
США	Восток	14 000
США	Запад	12000

Если добавить дополнительный столбец в таблицу с формулой

[Revenue] ForAll ([Region])

Web Intelligence сначала возвратит #TOREFRESH, поскольку для формулы необходим набор для группировки (Страна). Формула исключает регионы из вычислений. При обновлении данных Web Intelligence добавляет набор для группировки (Страна) в запрос и отображает значения меры.

Интеллектуальные меры и фильтры

Интеллектуальные показатели и фильтры для измерений

Если фильтр применяется к измерению, от которого зависит интеллектуальное значение, но измерение не отображается явно в контексте вычисления меры, Web Intelligence не может вернуть значение для интеллектуальной меры и отображает #UNAVAILABLE.

Данная ситуация возникает, поскольку Web Intelligence не может вычислить влияние фильтра на значения меры. Единственным способом определить влияние является применение фильтра к запросу. Это порождает риск воздействия на другие отчеты, в основе которых лежит этот же запрос. В результате Web intelligence не применяет фильтр на уровне запроса.

Пример: Интеллектуальная мера и фильтр для измерения

Запрос содержит измерения [Страна] и [Регион] и интеллектуальную меру [Доход]. [Страна] и [Доход] отображаются в блоке. Если применяется фильтр, ограничивающий значения [Регион] параметрами "юго-восток" или "юго-запад", Web Intelligence отображает #UNAVAILABLE в ячейках [Доход].

Интеллектуальные меры и фильтры детализации

Как правило, Web Intelligence не может возвратить значения для интеллектуальных мер, если фильтр применен к измерению, которое влияет на вычисление меры. Измерения, отфильтрованные с помощью фильтров детализации, являются исключением из данного правила.

Пример: Фильтр детализации, влияющий на интеллектуальную меру

Блок содержит объекты [Страна] и [Доход]. Перейдите к [Страна], и Web Intelligence отобразит [Регион], [Доход] в блоке и переместит фильтр на [Страна] на панель детализации.

Для этого Web Intelligence добавляет набор для группировки (Страна, Регион) в запрос и извлекает все его данные, затем фильтрует их, чтобы вывести на экран только те регионы, которые содержатся в подвергающейся детализации стране. Системе Web Intelligence не требуется добавлять фильтр на уровне запроса, чтобы отфильтровать регионы по стране.

Интеллектуальные меры и вложенные фильтры OR

Вложенные фильтры OR (ИЛИ), в которых хотя бы одно из отфильтрованных измерений не отображается в блоке, порождают ошибку #UNAVAILBLE для интеллектуальной меры в блоке.

Пример:

- Фильтр [Страна] = "США" ИЛИ [Страна] = "Франция" порождает ошибку #UNAVAILABLE для интеллектуальной меры, использующей измерение [Страна], если [Страна] не отображается в блоке.
- Фильтр [Страна] = "США" ИЛИ [Год] = 2008 порождает ошибку #UNAVAILABLE для интеллектуальной меры, использующей измерения [Страна] и [Год], если [Страна] или [Год] не отображаются в блоке.

4 Вычисление значений с помощью интеллектуальных мер Интеллектуальные меры и фильтры

Функции, операторы и ключевые слова Web Intelligence

Функции Web Intelligence

B Web Intelligence функции подразделяются на следующие категории:

Категория	Описание
Агрегирование	Объединяют данные (например, суммируя или усредняя набор значе- ний)
Символьные	Оперируют со строками символов
Дата и время	Возвращают данные даты или вре- мени
Документ	Возвращают данные о документе
Поставщик данных	Возвращает данные о поставщике данных документа
Логические	Возвращают значения True или False
Числовой	Возвращают числовые данные
Разное	Функции, которые не попадают ни в одну из указанных выше категорий

Функции агрегирования

Average

Описание

Возвращает среднее значение показателя

Группа функций

Агрегирование

Синтаксис

num Average(measure[;IncludeEmpty])

Данные ввода

Параметр	Описание	Тип	Обязателен
показатель	Любой показатель	Показа- тель	Да
IncludeEmpty	Включать в вычисление пустые строки	Ключевое слово	Нет (Пустые строки по умолча- нию исключаются)

Примечания

- C функцией Average можно использовать операторы контекста расширенного синтаксиса.
- В качестве второго аргумента функции можно использовать IncludeEmpty. Если указать этот аргумент, то при вычислении функция будет учитывать пустые (нулевые) строки.

Примеры

Если для меры [Доходы от продаж] заданы значения 41569, 30500, 40000 и 50138, функция Average ([Доходы от продаж]) возвращает 405552.

См. также

• Оператор IncludeEmpty

Count

Описание

Возвращает количество значений в измерении или мере

Группа функций

Агрегирование

Синтаксис

integer
Count(dimension|measure[;IncludeEmpty][;Distinct|All])

Данные ввода

Пара- метр	Описание	Тип	Обяза- тельное
dhenionhease	Любое измерение или мера	Измере- ние или мера	Да
IndudeEmpty	Включает пустые значения в расчет	Ключе- вое сло- во	Нет
Distinct All	Включает только точные значения (по умолчанию для измерений) или все значения (по умолчанию для мер) в расчет	Ключе- вое сло- во	Нет

Примечания

- Можно использовать операторы контекста расширенного синтаксиса с функцией Count.
- В качестве второго аргумента функции можно использовать IncludeEmpty. С этим аргументом функция учитывает пустые строки при расчете.

• Параметр Distinct/All является дополнительным. Если этот параметр не указан, то по умолчанию значения следующие: Distinct для измерений и All для мер.

Примеры

Count ("Тест") возвращает 1

Count ([City]; Distinct) возвращает 5, если в списке городов есть 5 различных городов, даже если в списке более 5 строк из-за повторов.

Count ([City]; All) возвращает 10, если в списке городов есть 10 городов, даже если некоторые из них повторяются.

Count ([City]; IncludeEmpty) возвращает 6, если существует 5 городов и одна пустая строка в списке городов.

См. также

- Оператор IncludeEmpty
- Операторы Distinct/All

First

Описание

Возвращает первое значение из множества данных

Группа функций

Агрегирование

Синтаксис

input type First (измерение | мера)

Входные данные

Параметр	Описание	Тип	Обязательное
dimension measure	Любое измерение или мера	Измерение или мера	Да

Примечания

- При нахождении в нижнем колонтитуле разрыва функция First возвращает первое значение в разрыве.
- При нахождении в нижнем колонтитуле раздела функция First возвращает первое значение в разделе.

Примеры

При размещении в нижнем колонтитуле таблицы функция First([Доход]) возвращает первое значение [Доход] в этой таблице.

Интерполяция

Описание

Вычисляет пустые значения мер путем интерполяции

Группа функций

Числовой

Синтаксис

num

Interpolation(measure[;PointToPoint|Linear][;NotOnBreak][;Row|Col])

Данные ввода

Пара- метр	Описание	Тип	Обязателен
показа- тель	Любой показатель	Показа- тель	Да
Rifficer	 Метод интерполяции PointToPoint – двухточечная интерполяция Linear – линейная регрессия с интерполяцией методом наименьших квадратов 	Ключе- вое слово	Heт (PointToPoint — параметр по умол- чанию)
NdOrBeek	Предотвращает сброс вычисления функции при нахождении разбиений блоков или разделов.	Ключе- вое слово	Нет
Row Col	Устанавливает направление вычисления	Ключе- вое слово	Нет

Примечания

- Функция Interpolation особенно необходима при создании линейного графика с использованием меры, в которой содержатся отсутствующие значения. При использовании этой функции обеспечивается непрерывное построение графика без получения разорванных линий и точек.
- При использовании линейной регрессии с интерполяцией методом наименьших квадратов отсутствующие значения вычисляются с помощью линейного выражения f(x) = ax + b, которое позволяет получить линию, наиболее приближенную ко всем доступным значениям меры.
- При двухточечной интерполяции отсутствующие значения получаются путем вычисления значений линейной функции f(x) = ax + b, проходящей через две соседние с отсутствующими значениями точки.
- От порядка сортировки меры зависят значения, полученные с помощью функции Interpolation.

- Применение сортировки или ранжирования в формуле с функцией Interpolation недопустимо.
- В списке значений содержится только одно значение, и это значение используется в функции Interpolation для получения всех отсутствующих значений.
- Фильтры, примененные к интерполированной мере, могут повлиять на значения, выведенные функцией Interpolation, в зависимости от значений, к которым применяются фильтры.

Примеры

Interpolation([Значение]) возвращает следующие отсутствующие значения при использовании метода интерполяции "точка-точка" по умолчанию:

День	Значение	Interpolation([Значение])
Понедельник	12	12
Вторник	14	14
Среда		15
Четверг	16	16
Пятница		17
Суббота		18
Воскресенье	19	19

См. также

- Оператор Linear
- Оператор PointToPoint

Последний

Описание

Возвращает последнее значение в измерении или мере

Группа функций

Агрегирование

Синтаксис

input type Last(dimension|measure)

Ввод

Параметр	Описание	Тип	Обязательное
dimension measure	Любое измерение или мера	Измерение или мера	Да

Примечания

- При нахождении в нижнем колонтитуле разрыва функция Last возвращает последнее значение в разрыве.
- При нахождении в нижнем колонтитуле раздела функция Last возвращает последнее значение в разделе.

Примеры

При размещении в нижнем колонтитуле таблицы функция First([Доход]) возвращает первое значение [Доход] в этой таблице.

Max

Описание

Возвращает самое большое значение в измерении или мере

Группа функций

Агрегирование

Синтаксис

input type Max(dimension|measure)

Ввод

Параметр	Описание	Тип	Обязательное
dimension measure	Любое измерение или мера	Измерение или мера	Да

Примечания

Можно использовать контекстные операторы расширенного синтаксиса с функцией ${\tt Max}.$

Примеры

Если переменная "Доходы с продаж" имеет значения 3 000, 60 034 и 901 234, **Мах([Доходы с продаж])** возвращает 901 234.

Если переменная размера "Город" имеет значения "Абердин" и "Лондон", Мах ([Город]) возвращает "Лондон".

Median

Описание

Возвращает медиану (среднее число) меры

Группа функций

Агрегирование

Синтаксис

число Median (measure)

Данные ввода

Параметр	Описание	Тип	Обязателен
показатель	Любой показа- тель	Показатель	Да

Примечания

Если в наборе чисел четное количество значений, Median берет среднее от двух значений из середины.

Примеры

Median ([Доход]) возвращает 971 444, если [Доход] имеет значения 835 420, 971 444 и 147 966.

Min

Описание

Возвращает наименьшее значение в измерении или мере

Группа функций

Агрегирование

Синтаксис

any type Min(измерение|мера)

Входные данные

Параметр	Описание	Тип	Обязательное
dimension measure	Любое измерение или мера	Измерение или мера	Да

Примечания

С функцией Min можно использовать контекстные операторы расширенного синтаксиса.

Примеры

Если мера "Доход с продаж" содержит значения 3000, 60034 и 901234, функция Min([Доход от продаж]) возвращает 3000.

Если измерение "Город" содержит значения "Абердин" и "Лондон", функция Min ([Город]) возвращает "Абердин".

Mode

Описание

Возвращает наиболее часто встречающееся значение в наборе данных

Группа функций

Агрегирование

Синтаксис

input type Mode(dimension|measure)

Данные ввода

Параметр	Описание	Тип	Обязательное
dimension measure	Любое измерение или мера	Мера	Да

Примечания

• Функция Mode возвращает пустое значение, если во множестве данных не содержится значения, встречающегося чаще других значений.

Примеры

Функция Mode ([Доход]) возвращает значение 200, если объект [Доход] имеет значения 100, 200, 300, 200.

Mode ([Страна]) возвращает наиболее часто встречающееся значение в объекте [Страна].

Percentage

Описание

Выражает значение меры в процентном соотношении его внедренного контекста

Группа функций

Агрегирование

Синтаксис

num Percentage(measure[;Break][;Row|Col])

Данные ввода

Параметр	Описание	Тип	Обязателен
показатель	Любой показатель	Показатель	Да
Разрыв	Счета для разбиений таблиц	Ключевое сло- во	Нет
Row Col	Устанавливает направление вычисления	Ключевое сло- во	Нет

Примеры

В следующей таблице для столбца "Процентное соотношение" задана формула Percentage ([Доход от продаж])

Год	Доход с продаж	Процентное соотноше- ние
2001	1000	10
2002	5000	50
2003	4000	40
Сумма:	10000	100

По умолчанию присвоенный контекст — это мера итогового значения в таблице. Можно задать в функции учет разбиения таблицы с использованием дополнительного аргумента Break. В этом случае внедренный контекст по умолчанию становится разделом таблицы.

В следующей таблице для столбца "Процентное соотношение" задана формула Percentage ([Доход от продаж]; Break)

Год	Квартал	Доход с продаж	Процентное со- отношение
2001	К1	1000	10

	К2	2000	20
	К3	5000	50
	К4	2000	20
2001	Сумма:	10000	100

Год	Квартал	Доход с продаж	Процентное со- отношение
2002	К1	2000	20
	К2	2000	20
	К3	5000	50
	К4	1000	10
2002	Сумма:	10000	100

Функцию Percentage можно применять к строкам или столбцам; это можно сделать явно с помощью дополнительного аргумента Row|Col. Например, в следующей кросс-таблице столбец "Процентное соотношение" описан формулой Percentage ([Доход с про даж]; Row)

	К1	Про- цент- ное соот- ноше- ние	К2	Про- цент- ное соот- ноше- ние	К3	Про- цент- ное соот- ноше- ние	К4	Про- цент- ное со- отно- шение
2001	1000	10	2000	20	5000	50	2000	20
2002	2000	20	2000	20	5000	50	1000	10

Percentile

Описание

Возвращает процентиль nth меры

Группа функций

Числовой

Синтаксис

num Percentile(measure;percentile)

Ввод

Параметр	Описание	Тип	Обязателен
показатель	Любой показатель	Показатель	Да
процентиль	Процентное значение, выраженное десятичной дробью	Число	Да

Примечания

N-й процентиль — это число, которое больше или равно n% чисел из набора. N% выражается в форме 0,n.

Примеры

Ecли [мера] содержит множество значений (10;20;30;40;50), то Percentile([мера];0,3) возвращает 22, что больше или равно 30% чисел из множества.

Product

Описание

Умножает значения меры

Группа функций

Агрегирование

Синтаксис

num Product(measure)

Ввод

Параметр	Описание	Тип	Обязателен
показатель	Любой показа- тель	Показатель	Да

Примеры

Product ([Mepa]) возвращает 30, если [Mepa] имеет значения 2, 3, 5.

RunningAverage

Описание

Возвращает скользящее среднее значение меры

Группа функций

Агрегирование

Синтаксис

num

RunningAverage(measure[;Row|Col][;IncludeEmpty][;reset dims])

Данные ввода

Параметр	Описание	Тип	Обязателен
показатель	Любой показатель	Показатель	Да
Row Col	Устанавливает направление вычисления	Ключевое сло- во	Нет
IncludeEmpty	Включает пустые значения в расчет	Ключевое сло- во	Нет
reset_dims	Сбрасывает вычисление на указанные измерения	Список изме- рений	Нет

Примечания

- C функцией RunningAverage можно использовать операторы контекста расширенного синтаксиса.
- Направление расчета можно задать операторами Row и Col.
- Если применить сортировку к мере, на которую ссылается функция RunningAverage, в приложении Web Intelligence сначала применяется сортировка к мере, а затем вычисляется скользящее среднее.
- Измерения нужно всегда помещать в круглые скобки, даже если в списке измерений сброса присутствует только одно измерение.
- Измерения сброса в наборе должны разделяться двоеточиями.
- Функция RunningAverage не производит автоматический сброс среднего значения после разбиения блока или нового раздела.

Примеры

RunningAverage ([Доход]) возвращает результаты, приведенные в следующей таблице:

Страна	Курорт	Доход	Промежуточное среднее
США	Hawaiian Club	1 479 660	835 420
США	Bahamas Beach	971 444	1 225 552

Франция French Rivi	era 835 420	1 095 508
---------------------	-------------	-----------

RunningAverage([Доход];([Страна])) возвращает результаты, приведенные в следующей таблице:

Страна	Курорт	Доход	Промежуточное среднее
США	Hawaiian Club	1 479 660	835 420
США	Bahamas Beach	971 444	1 225 552
Франция	French Riviera	835 420	835 420

См. также

- Оператор IncludeEmpty
- Операторы Row/Col

RunningCount

Описание

Возвращает текущий счет набора чисел

Группа функций

Агрегирование

Синтаксис

num

RunningCount(dimension|measure[;Row|Col][;IncludeEmpty][;reset dims])

Данные ввода

Параметр	Описание	Тип	Обязатель- ное
dimension measure	Любое измерение или мера	Измерение или мера	Да
Row Col	Устанавливает направление вычисления	Ключевое сло- во	Нет
IncludeEmpty	Включает пустые значения в расчет	Ключевое сло- во	Нет
reset_dims	Сбрасывает вычисление на указанные измерения	Список изме- рений	Нет

Примечания

- Контекстные операторы расширенного синтаксиса можно использовать с функцией RunningCount.
- Направление расчета можно задать операторами Row и Col.
- Если применить сортировку к мере, на которую ссылается функция RunningCount, Web Intelligence сначала применяет сортировку к мере, а затем вычисляет текущий счет.
- Измерения нужно всегда помещать в круглые скобки, даже если в списке измерений сброса присутствует только одно измерение.
- Измерения сброса в наборе должны разделяться двоеточиями.
- Функция RunningCount не производит автоматического сброса счетчика после разбиения по блокам или создания нового раздела.

Примеры

RunningCount ([Доход]) возвращает эти результаты в следующей таблице:

Страна	Курорт	Доход	Промежуточное количество
США	Hawaiian Club	1 479 660	1
США	Bahamas Beach	971 444	2
Франция	French Riviera	835 420	3

RunningCount ([Доход]; ([Страна])) возвращает эти результаты в следующей таблице:

Страна	Курорт	Доход	Промежуточное количество
США	Hawaiian Club	1 479 660	1
США	Bahamas Beach	971 444	2
Франция	French Riviera	835 420	1

См. также

- Оператор IncludeEmpty
- Операторы Row/Col
- Оператор IncludeEmpty
- Оператор IncludeEmpty

RunningMax

Описание

Возвращает промежуточный максимум измерения или меры

Группа функций

Агрегирование

Синтаксис

input_type
RunningMax(dimension|measure[;Row|Col][;reset dims])

Данные ввода

Параметр	Описание	Тип	Обязатель- ное
dimension measure	Любое измерение или мера	Измерение или мера	Да
Row Col	Устанавливает направление вычисления	Ключевое сло- во	Нет
reset_dims	Сбрасывает вычисление на указанные измерения	Список изме- рений	Нет

Примечания

- С помощью функции RunningMax можно использовать операторы контекста расширенного синтаксиса.
- Направление вычисления можно задать с помощью операторов Row и Col.
- Если применить сортировку к мере, на которую ссылается функция RunningMax, Web Intelligence сначала применяет сортировку к мере, а затем вычисляет промежуточный максимум.
- Измерения нужно всегда помещать в круглые скобки, даже если в списке измерений сброса присутствует только одно измерение.
- Измерения сброса в наборе должны разделяться двоеточиями.
- Функция RunningMax не производит автоматического сброса максимума после разбиения блока или создания нового раздела.

Примеры

RunningMax([Доход]) возвращает результаты, приведенные в следующей таблице:

Страна	Курорт	Доход	Текущий макси-
			мум

Франция	French Riviera	835 420	835 420
США	Bahamas Beach	971 444	971 444
США	Hawaiian Club	1 479 660	1 479 660

См. также

- Оператор IncludeEmpty
- Операторы Row/Col

RunningMin

Описание

Возвращает промежуточный минимум измерения или меры

Группа функций

Агрегирование

Синтаксис

```
input type RunningMin (измерение | ме
pa; [Row|Col]; [reset dims])
```

Входные данные

Параметр	Описание	Тип	Обязатель- ный
dmension deta measure	Любое измерение или мера	Измерение или мера	Да
Row Col	Устанавливает направление вычисления	Ключевое сло- во	Нет
reset_dims	Сбрасывает вычисление на указанные измерения	Список изме- рений	Нет

Примечания

- C функцией RunningMin можно использовать контекстные операторы расширенного синтаксиса.
- Направление расчета можно задать операторами Row и Col.
- Если применить сортировку к мере, на которую ссылается функция RunningMin, в приложении Web Intelligence сначала применяется сортировка к мере, а затем вычисляется промежуточный минимум.
- Измерения нужно всегда помещать в круглые скобки, даже если в списке измерений сброса присутствует только одно измерение.
- Измерения сброса в наборе должны разделяться двоеточиями.
- Функция RunningMin не производит автоматический сброс минимума после разбиения блока или нового раздела.

Примеры

RunningMin([Доход]) возвращает результаты в виде таблицы, представленной ниже:

Страна	Курорт	Доход	Текущий макси- мум
Франция	French Riviera	835 420	835 420
США	Bahamas Beach	971 444	835 420
США	Hawaiian Club	1 479 660	835 420

См. также

- Оператор IncludeEmpty
- Операторы Row/Col

RunningProduct

Описание

Возвращает промежуточный продукт меры

Группа функций

Агрегирование

Синтаксис

num RunningProduct(measure[;Row|Col][;reset dims])

Данные ввода

Параметр	Описание	Тип	Обязателен
показатель	Любой показатель	Показатель	Да
Row Col	Устанавливает направление вычисления	Ключевое сло- во	Нет
reset_dims	Сбрасывает вычисление на указанные измерения	Список изме- рений	Нет

Примечания

- C помощью функции RunningProduct можно использовать контекстные операторы расширенного синтаксиса.
- Направление вычисления можно задать операторами Row и Col.
- Если применить сортировку к мере, на которую ссылается функция RunningProduct, Web Intelligence сначала применяет сортировку к мере, а затем вычисляет промежуточный максимум.
- Измерения нужно всегда помещать в круглые скобки, даже если в списке измерений сброса присутствует только одно измерение.

- Измерения сброса в наборе должны разделяться двоеточиями.
- Функция RunningProduct не производит автоматического сброса продукта после разбиения блока или создания нового раздела.

Примеры

RunningProduct([Количество гостей]) возвращает результаты, приведенные в следующей таблице:

Страна происхо- ждения	Город	Количество го- стей	Промежуточное произведение
Япония	Кобе	6	6
Япония	Осака	4	24
США	Чикаго	241	5 784

RunningProduct([Количество гостей]; ([Страна происхожде ния])) возвращает результаты, приведенные в следующей таблице:

Страна происхо- ждения	Город	Количество го- стей	Промежуточное произведение
Япония	Кобе	6	6
Япония	Осака	4	24
США	Чикаго	241	5 784

См. также

- Оператор IncludeEmpty
- Операторы Row/Col

RunningSum

Описание

Возвращает текущую сумму измерения

Группа функций

Агрегирование

Синтаксис

num RunningSum(measure[;Row|Col][;reset dims])

Данные ввода

Параметр	Описание	Тип	Обязателен
показатель	Любой показатель	Показатель	Да
Row Col	Устанавливает направление вычисления	Ключевое сло- во	Нет
reset_dims	Сбрасывает вычисление на указанные измерения	Список изме- рений	Нет

Примечания

- Функцию RunningSum можно использовать с контекстными операторами расширенного синтаксиса.
- Направление вычислений можно задать с помощью операторов Row и Col.
- Если к мере, на которую ссылается функция RunningSum применить сортировку, Web Intelligence сначала применяет сортировку, а затем рассчитывает промежуточную сумму.
- Измерения нужно всегда помещать в круглые скобки, даже если в списке измерений сброса присутствует только одно измерение.
- Измерения сброса в наборе должны разделяться двоеточиями.
- Функция RunningSum не производит автоматический сброс суммы после разбиения блока или создания нового раздела.

Пример

RunningSum([Доход]) возвращает результаты, приведенные в следующей таблице:

Страна	Курорт	Доход	Промежуточная сумма
Франция	French Riviera	835 420	835 420
США	Bahamas Beach	971 444	1 806 864
США	Hawaiian Club	1 479 660	3 286 524

RunningSum([Доход]; ([Страна])) возвращает результаты, приведенные в следующей таблице:

Страна	Курорт	Доход	Промежуточная сумма
Франция	French Riviera	835 420	835 420
США	Bahamas Beach	971 444	971 444
США	Hawaiian Club	1 479 660	2 451 104

См. также

- Оператор IncludeEmpty
- Операторы Row/Col

StdDev

Описание

Возвращает стандартное отклонение меры

Группа функций

Агрегирование

Синтаксис

num StdDev (мера)

Входные данные

Параметр	Описание	Тип	Обязателен
показатель	Любой показа- тель	Показатель	Да

Примечания

Среднеквадратичное отклонение – это мера статистической дисперсии во множестве чисел. Она вычисляется следующим образом:

- поиск среднего значения во множестве чисел
- вычитание среднего значения из каждого числа в множестве и возведение разности в квадрат
- сложение всех возведенных в квадрат разностей
- деление полученной сумма на (количество чисел во множестве 1).
- вычисление квадратного корня из результата.

Примеры

Если мера **содержит набор значений (2, 4, 6, 8)**, StdDev (мера) **возвращает 2,58**.

См. также

Var

StdDevP

Описание

Возвращает стандартное отклонение по совокупности для меры

Группа функций

Агрегирование

Синтаксис

num StdDevP(measure)

Ввод

Параметр	Описание	Тип	Обязателен
показатель	Любой показа- тель	Показатель	Да

Примечания

Среднеквадратичное отклонение по совокупности – это мера статистического разброса множества значений. Она вычисляется следующим образом:

- поиск среднего значения в наборе чисел;
- вычитание среднего значения из каждого числа в наборе и возведение разности в квадрат;
- сложение всех возведенных в квадрат разностей;
- полученная сумма делится на (количество чисел во наборе).
- вычисление квадратного корня из результата.

Функцию StdDevP можно использовать с операторами контекста расширенного синтаксиса.

Примеры

Если мера **содержит набор значений (2, 4, 6, 8)** StdDevP([мера]) вернет 2,24.

Sum

Описание

Возвращает сумму меры

Группа функций

Агрегирование

Синтаксис

num Sum (measure)

Ввод

Параметр	Описание	Тип	Обязателен
показатель	Любой показа- тель	Показатель	Да

Примечания

Можно использовать операторы контекста расширенного синтаксиса с функцией Sum.

Примеры

Если для меры "Доходы от продаж" заданы значения 2000, 3000, 4000 и 1000, функция Sum ([Доходы от продаж]) возвращает 10000.

Var

Описание

Возвращает отклонение для меры

Группа функций

Агрегирование

Синтаксис

num Var(measure)

Ввод

Параметр	Описание	Тип	Обязателен
показатель	Любой показа- тель	Показатель	Да

Примечания

Дисперсия – это мера статистического отклонения для множества чисел. Она вычисляется следующим образом:

- поиск среднего значения во множестве чисел
- вычитание среднего значения из каждого числа в множестве и возведение разности в квадрат
- сложение всех возведенных в квадрат разностей
- деление полученной сумма на (количество чисел во множестве

 1).

Дисперсия – это возведенное в квадрат значение среднеквадратичного отклонения.

Можно использовать операторов контекста расширенного синтаксиса с функцией Var.

Примеры

Если мера содержит набор значений (2, 4, 6, 8), Var ([мера]) возвращает 6,67.

См. также

StdDev

VarP

Описание

Возвращает отклонение по совокупности для меры

Группа функций

Агрегирование

Синтаксис

num VarP(measure)

Ввод

Параметр	Описание	Тип	Обязателен
показатель	Любой показа- тель	Показатель	Да

Примечания

Дисперсия генеральной совокупности – это мера статистического отклонения для множества чисел. Она вычисляется следующим образом:

- поиск среднего значения во множестве чисел
- вычитание среднего значения из каждого числа в множестве и возведение разности в квадрат
- сложение всех возведенных в квадрат разностей
- полученная сумма делится на (количество чисел во множестве)

Дисперсия генеральной совокупности – это возведенное в квадрат значение среднеквадратичного отклонения генеральной совокупности.

Можно использовать контекстные операторы расширенного синтаксиса c функцией VarP.

Примеры

Если мера **содержит набор значений (2, 4, 6, 8),** VarP([мера]) **возвращает** 5.

См. также

• StdDevP

Символьные функции

Asc

Описание

Возвращает код ASCII для символа

Группа функций

Символьные

Синтаксис

int Asc(строка)

Входные данные

Параметр	Описание	Тип	Обязательный
строка	Любая строка	Строка	Да

Примечания

Если строка содержит несколько символов, функция возвращает код ASCII для первого символа в строке.

Примеры

Asc ("A") возвращает 65.

Asc("ab") возвращает 97.

Asc([Страна]) возвращает 85, если значение измерения "Страна" равно "US".

Char

Описание

Возвращает символ, связанный с кодом ASCII

Группа функций

Символьные

Синтаксис

string Char(ascii code)

Ввод

Параметр	Описание	Тип	Требуется
ascii_code	Код ASCII	Число	Да

Примечания

Если число десятичное, данная функция игнорирует десятичную часть.

Например

s

Char (123) возвращает "{".

Concatenation

Описание

Соединяет две символьных строки

Группа функций

Символьные

Синтаксис

строка Concatenation (первая строка; вторая строка)

Ввод

Параметр	Описание	Тип	Требуется
первая_строка	Первая строка	Строка	Да
вторая_строка	Вторая строка	Строка	Да

Примечания

Для соединения строк также можно использовать оператор "+".

"Первый" + "Второй" возвращает "Первый Второй".

"Первый" + "Второй" + "Третий" возвращает "Первый Второй Третий".

Примеры

Concatenation ("Первый"; "Второй") возвращает "Первый Второй".

Concatenation ("Первый"; Concatenation ("Второй"; "Третий")) возвращает "Первый Второй Третий".

Fill

Описание

Создает строку путем повторения строки n раз

Группа функций

Символьные

Синтаксис

string Fill(repeating string; num repeats)

Входные данные

Параметр	Описание	Тип	Обязательный
repeating_string	Повторяющаяся строка	Строка	Да
num_repeats	Количество повторений	Число	Да

Примеры

Fill ("Нью-Йорк"; 2) возвращает "Нью-Йорк Нью-Йорк".

FormatDate

Описание

Форматирует дату в соответствии с указанным форматом

Группа функций

Символьные

Синтаксис

строка FormatDate (дата ; format string)

Ввод

Параметр	Описание	Тип	Обязатель- ный
дата	Дата в формате	Дата	Да
format_string	Формат, который будет применен к числу	Строка	Да

Примечания

- Формат вывода зависит от формата даты, примененного к ячейке.
- Форматирование цвета строк (например: [Красный], [Синий] и т. д.) нельзя применять к FormatDate.

Примеры

FormatDate (CurrentDate(); "dd/MM/yyyy") возвращает "15/12/2005", если текущая дата — 15 декабря 2005 года.

FormatNumber

Описание

Форматирует число согласно указанному формату

Группа функций

Символьные

Синтаксис

string FormatNumber (число; format string)

Входные данные

Параметр	Описание	Тип	Обязательный
число	Число для форматирования	Число	Да
format_string	Формат, который будет применен к числу	Строка	Да

Примечания

- Формат вывода зависит от числового формата ячейки.
- Строки цветового форматирования (например, [Красный], [Голубой] и так далее) применить к функции FormatNumber невозможно.

Примеры

FormatNumber([Доход];"#,##.00") возвращает 835 420,00, если [Доход] равен 835 420.

HTMLEncode

Описание

Применяет к строке правила преобразования HTML

Группа функций

Символьные

Синтаксис

строка HTMLEncode (html)

Ввод

Параметр	Описание	Тип	Обязательный
html	Строка HTML	Строка	Да

Примеры

HTMLEncode ("http://www.businessobjects.com") возвращает "http%3A%2F%2Fwww%2Ebusinessobjects%2Ecom".

InitCap

Описание

Делает заглавной первую букву строки

Группа функций

Символьные

Синтаксис

строка InitCap(строка)

Ввод

Параметр	Описание	Тип	Обязатель- ный
строка	Строка для преобразования в заглавные буквы	Строка	Да

Примеры

InitCap("мы исходим из той очевидной истины") возвращает "Мы исходим из той очевидной истины".

Left

Описание

Возвращает крайние левые символы строки

Группа функций

Символьные

Синтаксис

строка Left(string; num chars)

Ввод

Параметр	Описание		Обязатель- ный
строка	Строка ввода	строка	Да
num_chars	Количество символов слева, которые следует вернуть	число	Да

Примеры

Left ([Страна]; 2) возвращает "Фр", если [Страна] - "Франция"

LeftPad

Описание

Заполняет строку слева другой строкой

Группа функций

Символьные

Синтаксис

string LeftPad(padded string;length;left string)

Ввод

Параметр	Описание	Тип	Обязатель- ный
padded_string	Исходная строка	Строка	Да
длина	Длина выходной строки	Число	Да
left_string	Строка для добавления слева от padded_string	Строка	Да

Примечания

- **Если** длина **меньше**, **чем общая длина** left_string **и** padded string, left string **сокращается**.
- Если длина меньше или равна длине padded_string, функция возвращает padded_string.
- Если длина больше, чем общая длина padded_string и left_string, left_string повторяется или частично повторяется достаточное количество раз, чтобы заполнить длину.

Примеры

LeftPad("Йорк";8;"Нью-") возвращает "Нью-Йорк" LeftPad("Йорк";6;"Нью") возвращает "Нью-Йорк" LeftPad("Йорк";11;"Нью") возвращает "Нью Нью-Йорк" LeftPad("Нью"; 2; "Йорк") возвращает "Нью".

LeftTrim

Описание

Удаляет начальные пробелы из строки

Группа функций

Символьные

Синтаксис

string LeftTrim(trimmed string)

Входные данные

Параметр	Описание	Тип	Требуемая
trimmed_string	Строка для усечения	Строка	Да

Примеры

Функция LeftTrim([Страна]) возвращает "Франция", если [Страна] имеет значение " Франция".

Length

Описание

Возвращает число символов в строке

Группа функций

Символьные

Синтаксис

int Length (строка)

Входные данные

Параметр	Описание	Тип	Обязательный
строка	Входная строка	Строка	Да

Примеры

Функция Length ([Фамилия]) возвращает 6, если для объекта [Фамилия] задано значение"Иванов".

Lower

Описание

Преобразует строку в нижний регистр

Группа функций

Символьные

Синтаксис

string Lower (строка)

Входные данные

Параметр	Описание	Тип	Обязательный
строка	Строка, преобразуемая в нижний регистр	Строка	Да

Примеры

Функция Lower ("Нью-Йорк") возвращает "нью-йорк".

Match

Описание

Определяет соответствие строки шаблону

Группа функций

Символьные

Синтаксис

bool Match(test string;pattern)

Ввод

Параметр	Описание	Тип	Требуемая
test_string	Строка для проверки соответствия образцу текста	строка	Да
образец	Строка	образца тек- ста	Да

Примечания

• Образец содержать символы подстановки "*" (заменяет набор любых символов) или "?" (заменяет один символ).

Примеры

Match ([Страна]; "Ф*") возвращает значение True, если [Страна] -"Франция".

Match ([Страна]; "?Ш?") возвращает значение True, если [Страна] -

Match ("Нью-Йорк"; "П*") возвращает значение False

Pos

Описание

Возвращает начальную позицию текстового шаблона в строке

Группа функций

Символьные

Синтаксис

int Pos(test string;pattern)

Ввод

Параметр	Описание	Тип	Требуемая
test_string	Строка для проверки вхождения в нее образца текста	строка	Да
образец	Строка	образца тек- ста	Да

Примечания

• Если образец встречается больше одного раза, Pos возвращает позицию первого экземпляра.

Примеры

```
Pos("Нью-Йорк"; "Нью") возвращает 1
Pos("Нью-Йорк, Нью-Йорк"; "Нью") возвращает 1.
Pos ("Нью-Йорк"; "Йорк") возвращает 5.
```

Описание

Заменяет часть строки другой строкой

Группа функций

Символьные

Синтаксис

строка Replace (replace in; replaced string; replace with)

Ввод

Параметр	Описание	Тип	Требуемый
replace_in	Строка, в которой заменяется текст	строка	Да
replaced_string	Заменяемый текст	строка	Да
replace_with	Текст, который заменяет replaced_string	строка	Да

Примеры

Replace("Нью-ЙОРК"; "ОРК"; "орк") возвращает "Нью-Йорк".

Right

Описание

Возвращает самые правые символы из строки

Группа функций

Символьные

Синтаксис

string Right (строка; num chars)

Входные данные

Параметр	Описание	Тип	Обязатель- ный
строка	Любая строка	строка	Да
num_chars	Количество символов справа, которые следует возвратить	число	Да

Примеры

Функция Right ([Страна]; 2) возвращает "ия", если объект [Страна] имеет значение "Франция".

RightPad

Описание

Заполняет строку справа другой строкой

Группа функций

Символьные

Синтаксис

string RightPad(padded string;length;right string)

Ввод

Параметр	Описание	Тип	Обязатель- ный
padded_string	Исходная строка	Строка	Да
длина	Длина выходной строки	Число	Да
right_string	Строка для добавления справа от padded_string	Строка	Да

Примечания

- **Если** длина **меньше**, **чем общая длина** right_string **и** padded string, right string **сокращается**.
- Если длина меньше или равна длине padded_string, функция возвращает padded string.
- Если длина больше, чем общая длина padded_string и right_string, right_string повторяется или частично повторяется достаточное количество раз, чтобы заполнить всю длину строки.

Примеры

```
RightPad("Нью-";8;"Йорк") возвращает "Нью-Йорк"
RightPad("Нью-"; 6;"Йорк") возвращает "Нью-Йо"
RightPad("Нью-";11;"Йорк") возвращает "Нью-ЙоркЙор"
RightPad("Нью-";2;"Йорк") возвращает "Нью".
```

RightTrim

Описание

Удаляет пробелы на конце строки

Группа функций

Символьные

Синтаксис

строка RightTrim(trimmed string)

Ввод

Параметр	Описание	Тип	Требуемая
trimmed_string	Строка для усечения	Строка	Да

Примеры

RightTrim([Страна]) возвращает "Франция", если [Страна] -"Франция ".

Substr

Описание

Возвращает часть строки

Группа функций

Символьные

Синтаксис

строка SubStr (строка; начало; длина)

Входные данные

Параметр	Описание	Тип	Обязательный
строка	Любая строка	Строка	Да
начало	Начальная позиция из- влеченной строки	Число	Да
длина	Длина извлеченной строки	Число	Да

Примеры

SubStr ("Великобритания";1;5) возвращает "Велик". SubStr ("Великобритания"; 7; 7) возвращает "Британия".

Trim

Описание

Удаляет в начале и конце строки

Группа функций

Символьные

Синтаксис

строка Trim(trimmed string)

Ввод

Параметр	Описание	Тип	Обязательный
строка	Строка для удале- ния	Строка	Да

Примеры

Trim (" Великобритания ") возвращает "Великобритания".

Upper

Описание

Преобразует строку символов в верхний регистр

Группа функций

Символьные

Синтаксис

string Upper(string)

Вводимые данные

Параметр	Описание	Тип	Обязательный
строка	Строка для преобразования	Строка	Да

Примеры

Upper ("Нью-Йорк") возвращает "НЬЮ-ЙОРК".

Описание

Применяет к строке правила кодировки URL

Группа функций

Символьные

Синтаксис

строка UrlEncode (html)

Входные данные

Параметр	Описание		Обязатель- ный
html	URL-адрес, который необ- ходимо закодировать	Строка	Да

Примеры

UrlEncode ("http://www.businessobjects.com") возвращает "http%3A%2F%2Fwww%2Ebusinessobjects%2Ecom".

WordCap

Описание

Перевод первых букв всех слов в строке в верхний регистр

Группа функций

Символьные

Синтаксис

строка WordCap(string)

ввод

Параметр	Описание	Тип	Обязатель- ный
строка	Строка, которую необходимо перевести в верхний регистр	Строка	Да

Примеры

WordCap("Доход с продаж за март") возвращает "Доход С Продаж За Март".

Функции даты и времени

CurrentDate

Описание

Возвращает текущую дату, отформатированную в соответствии с национальными установками

Группа функций

Дата и время

Синтаксис

дата CurrentDate()

Примеры

CurrentDate() возвращает 10 сентября 2002 года, если дата — 10 сентября 2002 года.

CurrentTime

Описание

Возвращает текущее время, отформатированное в соответствии с национальными установками

Группа функций

Дата и время

Синтаксис

время CurrentTime()

Примеры

CurrentTime возвращает 11:15, если текущее время 11:15.

DayName

Описание

Возвращает название дня в дате

Группа функций

Дата и время

Синтаксис

строка DayName (дата)

Ввод

Параметр	Описание	Тип	Обязательный
дата	Входная дата	Дата	Да

Примеры

рауNате ([Дата резервирования]) возвращает "Суббота", если дата в [Дата резервирования] – 15 декабря 2001 года (которая приходится на субботу).

Примечание

Дата на входе должна быть представлена переменной. Прямое указание даты, например DayName ("07/15/2001"), не допускается.

DayNumberOfMonth

Описание

Возвращает номер дня в месяце

Группа функций

Дата и время

Синтаксис

int DayNumberOfMonth(дата)

Входные данные

Параметр	Описание	Тип	Обязательный
дата	Входная дата	Дата	Да

Примеры

DayNumberOfMonth([Дата резервирования]) возвращает 15, если в [Дата сохранения] стоит 15 декабря 2001.

DayNumberOfWeek

Описание

Возвращает номер дня в неделе

Группа функций

Дата и время

Синтаксис

целое число DayNumberOfWeek(дата)

Ввод

Параметр	Описание	Тип	Обязательный
дата	Входная дата	Дата	Да

Примечания

Первым днем недели в Web Intelligence считается понедельник.

Примеры

DayNumberOfWeek([Дата резервирования]) возвращает 1, если дата в [Дата резервирования] — 2 мая 2005 года (понедельник).

DayNumberOfYear

Описание

Возвращает номер дня в году

Группа функций

Дата и время

Синтаксис

int DayNumberOfYear(дата)

Входные данные

Параметр	Описание	Тип	Обязательный
дата	Входная дата	Дата	Да

Примеры

DayNumberOfYear([Дата резервирования]) возвращает 349, если в качестве значения параметра [Дата резервирования] установлено 15 декабря 2001.

DaysBetween

Описание

Возвращает количество дней между двумя датами

Группа функций

Дата и время

Синтаксис

int DaysBetween(first date; last date)

Входные данные

Параметр	Описание	Тип	Обязательный
first_date	Первая дата	Дата	Да
last_date	Последняя дата	Дата	Да

Примеры

DaysBetween([Дата продажи]; [Дата выставления счета]) возвращает 2, если [Дата продажи] – 15 декабря 2001 г., а [Дата выставления счета] – 17 декабря 2001 г.

LastDayOfMonth

Описание

Возвращает дату последнего дня в месяце

Группа функций

Дата и время

Синтаксис

дата LastDayOfMonth(дата)

Ввод

Параметр	Описание	Тип	Обязательный
дата	Любая дата в месяце	Дата	Да

Примеры

LastDayOfMonth([Дата продажи]) возвращает 31 декабря 2005 года, если [Дата продажи] равна 11 декабря 2005 года.

LastDayOfWeek

Описание

Возвращает дату последнего дня недели

Группа функций

Дата и время

Синтаксис

date LastDayOfWeek(дата)

Входные данные

Параметр	Описание	Тип	Обязательный
дата	Любая дата неде- ли	Дата	Да

Примечания

Первым днем недели в Web Intelligence считается понедельник.

Примеры

Функция LastDayOfWeek([Дата продажи]) возвращает 15 мая 2005 года (воскресенье), если [Дата продажи] имеет значение 11 мая 2005 года.

Month

Описание

Возвращает название месяца в дате

Группа функций

Дата и время

Синтаксис

string Month (дата)

Входные данные

Параметр	Описание	Тип	Обязательный
дата	Входная дата	Дата	Да

Примеры

Функция Month ([Дата резервирования]) возвращает "Декабрь", когда [Дата резервирования] – 15 декабря 2005 г.

MonthNumberOfYear

Описание

Возвращает номер месяца в дате

Группа функций

Дата и время

Синтаксис

int MonthNumberOfYear(дата)

Входные данные

Параметр	Описание	Тип	Обязательный
дата	Любая дата в го- ду	Дата	Да

Пример

Функция MonthNumberOfYear([Дата бронирования]) возвращает 12, если [Дата бронирования] — 15 декабря 2005 г.

MonthsBetween

Описание

Возвращает количество месяцев между двумя датами

Группа функций

Дата и время

Синтаксис

int MonthsBetween(first date; last date)

Входные данные

Параметр	Описание	Тип	Обязательный
first_date	Первая дата	Дата	Да
last_date	Последняя дата	Дата	Да

Примеры

Функция MonthsBetween ([Дата продажи]; [Дата выставления счета]) возвращает 1, если [Дата продажи] имеет значение 2 декабря 2005 г., а [Дата выставления счета] имеет значение 2 января 2006 г.

Quarter

Описание

Возвращает номер квартала в дате

Группа функций

Дата и время

Синтаксис

int Quarter (дата)

Входные данные

Параметр	Описание	Тип	Обязательный
дата	Любая дата в квартале	Дата	Да

Примеры

Формула Quarter ([Дата резервирования]) возвращает значение 4, если дата в переменной [Дата резервирования] равна 15 декабря 2005 года.

RelativeDate

Описание

Возвращает дату, отстоящую от другой даты

Группа функций

Дата и время

Синтаксис

дата RelativeDate(start date; num days)

Ввод

Параметр	Описание	Тип	Обязательный
start_date	Начальная дата	Дата	Да
num_days	Количество дней от начальной даты	Число	Да

Примечания

Параметр num_days может быть отрицательным, чтобы возвращать дату, ранее чем start date.

Примеры

RelativeDate[Дата резервирования]; 2) возвращает 17 декабря 2005 года, если для объекта [Дата резервирования] установлено значение 15 декабря 2005 года.

RelativeDate[Дата резервирования]; -3) возвращает 9 января 2007 года, если [Дата резервирования] - 12 января 2007 года.

Описание

Измерение времени TimeDim позволяет строить оси времени на основе объекта юниверса типа данных. Измерение Timedim возвращает данные для дат, задаваемых первым параметром, за периоды времени, задаваемые вторым параметром. Для периодов, не содержащих данных, возвращается первый день периода. Это позволяет построить полную ось для любого заданного периода. Такой подход гарантирует следующее:

- На оси сохраняется естественный порядок дат и времени (сначала идут самые старые объекты, за ними более новые).
- На оси будут представлены все периоды, заключенные между минимальной и максимальной датой текущего контекста.

Группа функций

Дата и время

Синтаксис

TimeDim([Date Type]; Period Type)

Данные ввода

Пара- метр	Описание	Тип	Обязате- лен
Тип даты	Объект даты для отчета, например InvoiceDate.	Дата	Да
Тип пери- ода	Период для результатов. Может иметь следующие значения: DayPeriod MonthPeriod QuarterPeriod YearPeriod Если значение не выбрано, по умолчанию используется значение DayPeriod.	Дата	Дополни- тельно

Приведенные выше функции необходимо использовать совместно со следующими функциями:

- DayName
- DayNumberOfMonth
- DayNumberOfWeek
- DayNumberOfYear
- Month
- MonthNumberOfYear
- Квартал
- Год
- FormatDate

Пример

В первой таблице приведены данные, относящиеся к датам. В приведенных ниже примерах запросов показан порядок интерпретации результатов.

Дата счета-фактуры	Доход
1/3/00	31607
1/8/00	31244
7/3/00	38154

3aπpoc DayName (TimeDim ([Invoice Date] ; QuarterPeriod) возвращает значения за каждый день из приведенной выше таблицы.

Дата счета-фактуры	Доход
1/3/00	31607
1/8/00	31244
4/1/00	
7/3/00	38154

Необходимо отформатировать результаты функции timedim с помощью функции Quarter. Результаты, возвращаемые функцией Quarter (Q1, Q2...), формируют следующую таблицу результатов:

Дата счета-фактуры	Доход
K1	62851
K2	
К3	38154

ToDate

Описание

Возвращает символьную строку, отформатированную в соответствии с форматом даты

Группа функций

Дата и время

Синтаксис

date ToDate(date string; format)

Ввод

Параметр	Описание	Тип	Обязательный
date_string	Дата для форма- тирования	строка	Да
формат	Формат даты	строка	Да

Примеры

ToDate ("15/12/2002"; "dd/MM/уууу") возвращает 15/12/2002.

Week

Описание

Возвращает номер недели в году

Группа функций

Дата и время

Синтаксис

int Week (дата)

Данные ввода

Параметр	Описание	Тип	Обязательный
дата	Входная дата	Дата	Да

Примеры

Week ([Дата бронирования]) возвращает 1, когда [Дата бронирования] – 4 января 2004 г. (первая неделя 2004 года).

Year

Описание

Возвращает год в дате

Группа функций

Дата и время

Синтаксис

int Year(date)

Данные ввода

Параметр	Описание	Тип	Обязательный
дата	Входная дата	Дата	Да

Примеры

Year ([Дата записи]) возвращает 2005, если дата [Дата записи] -15 декабря 2005.

Data Provider functions

Connection

Описание

Возвращает параметры соединения базы данных, используемого поставщиком данных

Группа функций

Источник данных

Синтаксис

string Connection (dp)

Входные данные

Параметр	Описание	Тип	Обязательный
dp	Поставщик дан-	Поставщик дан-	Да
	ных	ных	

Примечания

- Имя поставщика данных необходимо указывать в квадратных скобках.
- По соображениям безопасности вывод этой функции не содержит имя хоста базы данных, а также имя и пароль пользователя.

DataProvider

Описание

Возвращает имя поставщика данных, в котором содержится объект отчета

Группа функций

Источник данных

Синтаксис

строка DataProvider(obj)

Ввод

Параметр	Описание	Тип	Обязательный
об.	Объект отчета	Объект отчета	Да

Примеры

DataProvider([Общий доход]) возвращает "Продажи", если мера [Общий доход] содержится в поставщике данных "Продажи".

DataProviderKeyDate

Описание

Возвращает ключевую дату поставщика данных

Группа функций

Источник данных

Синтаксис

дата DataProviderKeyDate(dp)

Данные ввода

Параметр	Описание	Тип	Обязательный
dp	Поставщик дан- ных	Поставщик дан- ных	Да

Примечания

- Имя поставщика данных необходимо указывать в квадратных скобках.
- Возвращенная ключевая дата форматируется в соответствии с языковым стандартом документа.

Примеры

DataProviderKeyDate([Продажи]) возвращает 3 августа 2007 года, если ключевая дата для поставщика данных продаж — 3 августа 2007 года.

DataProviderKeyDateCaption

Описание

Возвращает заголовок ключевой даты поставщика данных

Группа функций

Источник данных

Синтаксис

string DataProviderKeyDateCaption(dp)

Входные данные

Параметр	Описание	Тип	Обязательный
dp	Поставщик дан- ных	Поставщик дан- ных	Да

Примечания

Имя поставщика данных необходимо указывать в квадратных скобках.

Примеры

DataProviderKeyDateCaption([Продажи]) возвращает "Текущая календарная дата", если в заголовке ключевой даты поставщика данных "Продажи" стоит "Текущая календарная дата".

DataProviderSQL

Описание

Возвращает SQL, созданный поставщиком данных

Группа функций

Источник данных

Синтаксис

string DataProviderSQL(dp)

Входные данные

Параметр	Описание	Тип	Обязательный
dp	Поставщик дан- ных	Поставщик дан- ных	Да

Примечания

Имя поставщика данных необходимо указывать в квадратных скобках.

Примеры

DataProviderSQL([Запрос 1]) возвращает "SELECT country.country_name FROM country", если код SQL для поставщика данных указан как "SELECT country.country_name FROM country".

DataProviderType

Описание

Возвращает тип поставщика данных

Группа функций

Источник данных

Синтаксис

строка DataProviderType (dp)

Ввод

Параметр	Описание	Тип	Обязательный
dp	Поставщик дан- ных	Поставщик дан- ных	Да

Примечания

- DataProviderType возвращает "Юниверс" для поставщиков данных юниверса или "Персональные данные" для поставщиков персональных данных.
- Имя поставщика данных необходимо указывать в квадратных скобках.

Примеры

DataProviderType([Продажи]) возвращает "Юниверс", если поставщик данных "Продажи" основан на юниверсе.

IsPromptAnswered

Описание

Определяет, был ли получен ответ на приглашение

Группа функций

Источник данных

Синтаксис

bool IsPromptAnswered([dp;]prompt string)

Данные ввода

Параметр	Описание	Тип	Обязатель- ный
dp	Поставщик данных, содержащий приглашение	Поставщик данных	Нет
prompt_string	Текст приглашения	Строка	Да

Примечания

Имя поставщика данных необходимо указывать в квадратных скобках.

Примеры

Функция IsPromptAnswered ("Выберите город") возвращает значение True, если на запрос на ввод данных с текстом "Выберите город", был получен ответ.

Функция IsPromptAnswered ([Продажи]; "Выберите город") возвращает значение True, если на запрос на ввод данных с текстом "Выберите город" в поставщике данных [Продажи] был получен ответ.

LastExecutionDate

Описание

Возвращает дату последнего обновления поставщика данных

Группа функций

Источник данных

Синтаксис

дата LastExecutionDate(dp)

Данные ввода

Параметр	Описание	Тип	Обязательный
dp	Поставщик дан- ных	Поставщик дан- ных	Да

Примечания

- Если в отчете содержится только один поставщик данных, параметр dp можно пропустить
- Имя поставщика данных необходимо указывать в квадратных скобках.
- Можно использовать функцию DataProvider для предоставления ссылки на поставщика данных.

Примеры

LastExecutionDate ([Запрос продаж]) возвращает "4/3/2002", если поставщик данных "Запрос продаж" последний раз обновлялся 4 марта 2002 года.

См. также

DataProvider

LastExecutionDuration

Описание

Возвращает время последнего обновления поставщика данных в секундах

Группа функций

Источник данных

Синтаксис

num LastExecutionDuration(dp)

Входные данные

Параметр	Описание	Тип	Обязательный
dp	Поставщик дан- ных	Поставщик дан- ных	Да

Примечания

Имя поставщика данных необходимо указывать в квадратных скобках.

Примеры

Функция LastExecutionDuration([Продажи]) возвращает 3, если поставщик данных "Продажи" затратил 3 секунды на возврат данных во время его последнего запуска.

LastExecutionTime

Описание

Возвращает время последнего обновления поставщика данных

Группа функций

Источник данных

Синтаксис

time LastExecutionTime(dp)

Входные данные

Параметр	Описание	Тип	Обязательный
dp	Поставщик дан- ных	Поставщик дан- ных	Да

Примечания

- Если в отчете содержится только один поставщик данных, параметр dp можно опустить.
- Функцию DataProvider можно использовать для указания ссылки на поставщик данных.
- Имя поставщика данных необходимо указывать в квадратных скобках.

Примеры

Функция LastExecutionTime([Запрос продаж]) возвращает "14:48:00", если последнее обновление поставщика данных "Запрос продаж" производилось в 14:48:00.

См. также

DataProvider

NumberOfDataProvider

Описание

Возвращает количество поставщиков данных в отчете

Группа функций

Источник данных

Синтаксис

int NumberOfDataProviders()

Примеры

Функция NumberOfDataProviders() возвращает 2, если в отчете указаны два поставщика данных.

NumberOfRows

Описание

Возвращает количество строк в поставщике данных

Группа функций

Источник данных

Синтаксис

int NumberOfRows (dp)

Ввод

Параметр	Описание	Тип	Обязательный
dp	Поставщик дан- ных	Поставщик дан- ных	Да

Примечания

- Имя поставщика данных необходимо указывать в квадратных скобках.
- Можно использовать функцию DataProvider для предоставления ссылки на поставщика данных.

Примеры

NumberOfRows ([Запрос 1]) возвращает 10, если в поставщике данных "Запрос 1" содержится 10 строк.

См. также

DataProvider

RefValueDate

Описание

Возвращает справочные данные, используемые для отслеживания данных

Группа функций

Источник данных

Синтаксис

дата RefValueDate()

Примеры

Функция RefValueDate() возвращает значение 15 декабря 2008 г., если опорная дата — 15 декабря 2008 г.

RefValueUserReponse

Описание

Возвращает ответ на запрос на ввод данных, когда опорные данные были текущими данными

Группа функций

Источник данных

Синтаксис

string RefValueUserResponse([dp;]prompt_string[;Index])

Данные ввода

Пара- метр	Описание	Тип	Обяза- тельный
dp	Поставщик данных	Постав- щик дан- ных	Нет
prompt_string	Текст приглашения	Строка	Да
Index	Указывает функции на то, что необходимо возвращать основные ключи базы данных для значений приглашения	1	Нет

Примечания

- Эта функция возвращает пустую строку, если отслеживание данных не включено.
- Имя поставщика данных необходимо указывать в квадратных скобках.
- Для указания ссылки на поставщик данных можно использовать функцию DataProvider.
- При выборе более одного значения для ответа на приглашение функция возвращает строку, состоящую из списка значений (или основных ключей, если указан оператор Index), разделенных между собой точками с запятой.

Примеры

RefValueUserResponse ("Какой город?") возвращает "Лос-Анджелес", если в поле "Какой город?" было указано "Лос Анджелес" запрос на ввод данных в момент времени, когда опорные данные были текущими.

RefValueUserResponse ([Запрос продаж]; "Какой город?") возвращает "Лос-Анджелес", если в поле "Какой город?" было указано "Лос Анджелес" запрос на ввод данных в поставщике данных "Запрос продаж" в момент времени, когда опорные данные были текущими.

UniverseName

Описание

Возвращает имя юниверса, на котором основан поставщик данных

Группа функций

Источник данных

Синтаксис

строка UniverseName (dp)

Ввод

Параметр	Описание	Тип	Обязательный
dp	Поставщик дан- ных	Поставщик дан- ных	Да

Примечания

- В приложении Web Intelligence выполняется автоматическое обновление имен поставщиков данных в формуле. Если в приведенном выше примере присвоить имя поставщику данных K1, формула будет записана как UniverseName (K1).
- Имя поставщика данных необходимо указывать в квадратных скобках.
- Можно использовать функцию DataProvider для предоставления ссылки на поставщика данных.

Примеры

UniverseName ([Запрос 1]) возвращает "eFashion", если поставщик данных основан на юниверсе eFashion.

См. также

DataProvider

UserResponse

Описание

Возвращает ответ на запрос

Группа функций

Источник данных

Синтаксис

string UserResponse([dp;]prompt string[;Index])

Данные ввода

Пара- метр	Описание	Тип	Обяза- тельный
dp	Поставщик данных	Постав- щик дан- ных	Нет
prompt_string	Текст приглашения	Строка	Да
Index	Указывает функции на то, что необходимо возвращать основные ключи базы данных для значений приглашения	Ключе- вое сло- во	Нет

Примечания

- Имя поставщика данных необходимо указывать в квадратных скобках.
- Функцию DataProvider можно использовать для указания ссылки на поставщика данных.
- При выборе нескольких значений для ответа на приглашение функция возвращает строку, состоящую из списка значений (или основных ключей, если указан оператор Index), разделенных между собой точкой с запятой.

Примеры

UserResponse ("Какой город?") возвращает "Лос-Анджелес", если в поле запросов "Какой город?" было указано "Лос-Анджелес".

UserResponse ([Запрос продаж]; "Какой город?") возвращает "Лос-Анджелес", если в поле "Какой город?" было указано "Лос Анжелес" приглашения в поставщике данных "Запрос продаж".

UserResponse ([Запрос продаж]; "Какой город?"; Индекс) возвращает 23, если в поле запросов "Какой город" было указано "Лос-Анджелес" в поставщике данных "Запрос продаж", а первичный ключ значения "Лос-Анджелес" в базе данных — 23.

Функции Документа

DocumentAuthor

Описание

Возвращает регистрационное имя создателя документа в приложении InfoView

Группа функций

Документ

Синтаксис

строка DocumentAuthor()

Примеры

DocumentAuthor() возвращает "gkn", если регистрационное имя автора документа — "gkn".

DocumentCreationDate

Описание

Возвращает дату создания документа

Группа функций

Документ

Синтаксис

дата DocumentCreationDate()

Примеры

DocumentCreationDate() возвращает 15 декабря 2008 года, если документ был создан 15 декабря 2008 года.

DocumentCreationTime

Описание

Возвращает время создания документа.

Группа функций

Документ

Синтаксис

время DocumentCreationTime()

Примеры

DocumentCreationTime() возвращает 11:15, если документ создан в 11:15.

DocumentDate

Описание

Возвращает дату последнего сохранения документа

Группа функций

Документ

Синтаксис

дата DocumentDate()

Примеры

DocumentDate() возвращает 8 августа 2005 года, если документ был в последний раз сохранен 8 августа 2005 года.

DocumentName

Описание

Возвращает имя документа

Группа функций

Документ

Синтаксис

строка DocumentName()

Примеры

DocumentName () возвращает "Отчет о продажах", если документ назван "Отчет о продажах".

DocumentPartiallyRefreshed

Описание

Определяет, обновлен ли документ частично.

Группа функций

Документ

Синтаксис

логическое значение DocumentPartiallyRefreshed()

Примечания

DocumentPartiallyRefreshed() возвращает логическое значение, которое можно использовать в функции If.

Примеры

DocumentPartiallyRefreshed() возвращает значение True, если документ обновлен частично.

DocumentTime

Описание

Возвращает время последнего сохранения документа

Группа функций

Документ

Синтаксис

время DocumentTime()

Примечания

Формат возвращаемого времени зависит от формата ячейки.

Например

DocumentTime() возвращает 15:45, если документ был последний раз сохранен в 15:45.

DrillFilters

Описание

Возвращает фильтры детализации, примененные к документу или объекту в режиме детализации

Группа функций

Документ

Синтаксис

строка DrillFilters(obj|separator)

Ввод

Параметр	Описание	Тип	Обязательный
об.	Объект отчета	Объект отчета	Необходим obj или separator
разделитель	Разделитель филь- тров детализации	Строка	Необходим obj или separator

Примечания

- Можно вставить DrillFilters напрямую, вставив ячейку DrillFilters, без необходимости ввода формулы вручную.
- Если объект не указан, функция возвращает значения всех фильтров детализации, примененных к документу.

Примеры

DrillFilters () возвращает "США", если в документе применен фильтр детализации, допускающий в объекте [Страна] только значение" США".

DrillFilters () возвращает "США – 1999", если в документе применен фильтр, допускающий в объекте [Страна] только значение "США" и в объекте [Год] только значение "1999"

DrillFilters ("/") возвращает "США / 1999", если в документе применены фильтры, допускающие в объекте [Страна] только значение "США" и в объекте [Год] только значение "1999"

DrillFilters ([Квартал]) возвращает "КЗ", если в документе применен фильтр детализации, допускающий в объекте [Квартал] только значение "КЗ"

PromptSummary

Описание

Возвращает текст запроса и ответ пользователя на все запросы на ввод данных в документе

Группа функций

Документ

Синтаксис

```
string PromptSummary()
```

Примеры

QuerySummary() возвращает сведения о всех запросах на ввод данных в документе.

Примерный вывод:

```
Enter Quantity Sold: 5000
Enter value(s) for State (optional): California,
```

```
Texas, Utah
Enter Customer (optional):
```

QuerySummary

Описание

Возвращает информацию о запросах в документе

Группа функций

Документ

Синтаксис

```
строка QuerySummary([dp])
```

Ввод

Параметр	Описание	Тип	Обязательный
dp	Поставщик дан- ных	Поставщик дан- ных	Нет

Примечания

• Имя поставщика данных необходимо указывать в квадратных скобках.

Примеры

QuerySummary () возвращает сведения о всех запросах в документе.

QuerySummary([Запрос 1]) возвращает сведения о запросах, основанных на поставщике данных [Запрос 1].

Пример вывода:

```
Query 1:
    Universe: eFashion
    Last execution time: 1s
```

```
NB of rows: 34500
        Result objects: State, Year, Sales Revenue
        Scope of analysis: State, City, Year, Quarter,
Mont.h
        Filters:
         (State inlist{"US"; "France"; }
         And (Sales Revenue Greater Than 1000000
         Or Sales Revenue Less Than 10000))
       Query 2:
        Source file: D:\Data\datacar.xls
        Result objects: State, Year, Sales Revenue
```

ReportFilter

Описание

Возвращает фильтры, примененные к объекту или отчету

Группа функций

Документ

Синтаксис

string ReportFilter(объект)

Входные данные

Параметр	Описание	Тип	Обязательный
об.	Объект отчета	Объект отчета	Да

Примеры

Функция ReportFilter ([Страна]) возвращает значение "США", если для объекта "Страна" задан фильтр отчета, которым допускаются только значения "США".

ReportFilterSummary

Описание

Возвращает общие сведения о фильтрах отчета в документе или отчете

Группа функций

Документ

Синтаксис

```
string ReportFilterSummary(report name)
```

Данные ввода

Параметр	Описание	Тип	Обязательное
report_name	Имя отчета	Строка	Нет

Примечания

Если параметр report_name **опущен**, **функция** ReportFilterSummary возвращает общие сведения обо всех фильтрах отчетов в документе.

Примеры

Функция ReportFilterSummary() возвращает сведения обо всех фильтрах отчетов в документе.

Функция ReportFilterSummary("Report1") возвращает сведения обо всех фильтрах отчетов в отчете "Отчет1".

Пример вывода:

```
Filters on Report1:
        (Sales Revenue Greater Than 1000000
        Or (Sales Revenue Less Than 3000))
    Filters on Section on City:
        (City InList{"Los Angeles";"San Diego";})
    Ranking Filter:
```

(Top 10 & Bottom 10 [Customer] Based on [Sales Revenue] (Count))

Логические функции

Even

Описание

Определяет, является ли число четным

Группа функций

Погические

Синтаксис

bool Even (число)

Входные данные

Параметр	Описание	Тип	Обязательный
число	Любое число	Число	Да

Примечания

- Функция Even возвращает булево значение, которое можно использовать в функции If.
- Если функция Even размещена в столбце, в приложении Web Intelligence возвращаемое значение преобразуется в целое число (1=истина; 0=ложь). Это число можно отформатировать с помощью формата булева числа.

Примеры

Even (4) возвращает значение True.

Even (3) возвращает значение False.

Even (23, 2) возвращает значение False.

Even (-4) возвращает значение True.

Even (-2,2) возвращает значение False.

IsDate

Описание

Определяет, является ли значение датой

Группа функций

Логические

Синтаксис

bool IsDate(obj)

Ввод

Параметр	Описание	Тип	Обязательный
объект	Любой объект отчета	Объект отчета	Да

Примечания

- IsDate возвращает булево значение, которое можно использовать в функции If.
- Если поместить функцию IsDate() в столбец, приложение Web Intelligence преобразует введенное значение в целое число (1=истина; 0=ложь). Потом это число можно форматировать с использованием формата булевых чисел.

Примеры

IsDate([Reservation Date]) возвращает значение True, если [Дата бронирования] является датой.

If (IsDate([Дата бронирования]) Then "Дата" Else "Не дата" возвращает "Дата", если [Дата бронирования] — это дата.

См. также

• If...Then...Else

IsError

Описание

Определяет, возвращает ли объект ошибку

Группа функций

Логические

Синтаксис

bool IsError (объект)

Входные данные

Параметр	Описание	Тип	Обязательный
объект	Любой объект отчета	Объект отчета	Да

Примечания

- Функция IsError возвращает булево значение, которое можно использовать в функции If.
- Если поместить функцию IsError непосредственно в столбец, в приложении Web Intelligence возвращаемое значение будет преобразовано в целое. Для этого числа можно использовать формат булева числа.

Примеры

Функция IsError([Доход]) возвращает значение False, если переменная [Доход] не возвращает ошибку.

Функция IsError ([Среднее число гостей]) возвращает значение True, если переменная [Среднее число гостей] возвращает ошибку деления на ноль (#DIV/0).

Функция If IsError([Среднее число гостей]) Then "Ошибка" Else "Нет ошибок" возвращает значение "Ошибка", если переменная [Среднее число гостей] возвращает ошибку деления на ноль (#DIV/0).

См. также

• If...Then...Else

IsLogical

Описание

Определяет, является ли значение булевым

Группа функций

Логические

Синтаксис

bool IsLogical (объект)

Входные данные

Параметр	Описание	Тип	Обязательный
объект	Любой объект отчета	Объект отчета	Да

Примечания

- Функция IsLogical возвращает булево значение, которое можно использовать в функции If.
- Если поместить функцию IsLogical непосредственно в столбец, в приложении Web Intelligence возвращаемое значение будет преобразовано в целое. Для этого числа можно использовать формат булева числа.

Примеры

Функция IsLogical(IsString([Страна])) возвращает значение True.

Функция IsLogical ([Страна]) возвращает значение False, если страна возвращает какой-либо тип данных, отличный от булева.

Функция If IsLogical(IsDate([Страна])) Then "Булев" Else "Не булев" возвращает "Булев".

См. также

• If...Then...Else

IsNull

Описание

Определяет, является ли значение неопределенным

Группа функций

Логические

Синтаксис

bool IsNull(obj)

Ввод

Параметр	Описание	Тип	Обязательный
объект	Любой объект отчета	Объект отчета	Да

Примечания

• IsNull возвращает логическое значение, которое можно использовать в функции If.

• Если поместить IsNull прямо в столбец, Web Intelligence преобразует возвращаемое значение в целое. Для этого числа можно использовать параметр булевого числа.

Примеры

IsNull([Доход]) возвращает значение False, если переменная [Доход] не является неопределенным значением.

IsNull([Гостей в среднем]) возвращает значение True, если переменная [Гостей в среднем] не является неопределенным значением.

См. также

• If...Then...Else

IsNumber

Описание

Определяет, является ли значение числом

Группа функций

Логические

Синтаксис

bool IsNumber(obj)

Ввод

Параметр	Описание	Тип	Обязательный
объект	Любой объект отчета	Объект отчета	Да

Примечания

• IsNumbe возвращает булево значение, которое можно использовать в функции If.

• Если вставить функцию IsNumber непосредственно в столбец, Web Intelligence преобразует возвращаемое значение в целое. Позже это число можно форматировать с использованием формата булева числа.

Примеры

IsNumber([Доход]) возвращает значение True, если переменная [Доход] является числом.

IsNumber ([Имя клиента]) возвращает значение False, если переменная [Имя клиента] не является числом.

If IsNumber([Имя клиента]) Then "Число" Else "Не число" возвращает "Не число", если переменная [Имя клиента] не является числом.

См. также

• If...Then...Else

IsString

Описание

Определяет, является ли значение строкой

Группа функций

Логические

Синтаксис

bool IsString (объект)

Входные данные

Параметр	Описание	Тип	Обязательный
объект	Любой объект отчета	Объект отчета	Да

Примечания

- Функция IsString возвращает булево значение, которое можно использовать в функции If.
- Если функция IsString размещена в столбце, в приложении Web Intelligence возвращаемое значение преобразуется в целое число. Для этого числа можно использовать формат булева числа.

Примеры

Функция IsString([Доход]) возвращает значение False, если переменная [Доход] не является строкой.

Функция IsString([Имя покупателя]) возвращает значение True, если переменная [Имя покупателя] является строкой.

Функция If IsString([Имя покупателя]) Then "Строка" Else "Не строка" возвращает значение "Строка", если переменная [Имя покупателя] является строкой.

См. также

If...Then...Else

IsTime

Описание

Определяет, является ли переменная переменной времени

Группа функций

Логические

Синтаксис

bool IsTime (obj)

Ввод

Параметр	Описание	Тип	Обязательный
объект	Любой объект отчета	Объект отчета	Да

Примечания

- IsTime возвращает булево значение, которое можно использовать в функции If.
- Если поместить IsTime прямо в столбец, Web Intelligence преобразует возвращаемое значение в целое. Для этого числа можно использовать параметр булевого числа.

Примеры

IsTime ([Срок резервации]) возвращает значение True, если переменная [Срок резервации] является переменной времени. .

IsTime ([Гостей в среднем]) возвращает значение False, если переменная [Гостей в среднем] не является переменной времени.

If IsTime([Гостей в среднем]) Then "Время" Else "Не время" возвращает "Не время", если переменная [Гостей в среднем] не является переменной времени.

См. также

If...Then...Else

bbO

Описание

Определяет, является ли число нечетным

Группа функций

Логические

Синтаксис

bool Odd(number)

Ввод

Параметр	Описание	Тип	Обязательный
число	Любое число	Число	Да

Примечания

- Odd возвращает булево значение, которое можно использовать в функции If.
- Если поместить odd непосредственно в столбец, Web Intelligence преобразует возвращаемое значение в целое. Для этого числа можно использовать форматирование булевого числа.
- Odd опускает дробные части десятичных чисел.

Примеры

- Odd (5) возвращает значение True.
- Odd (4) возвращает значение False.
- Odd (23.2) возвращает значение True.
- Odd (24.2) возвращает значение True.
- Odd (-23.2) возвращает значение True.
- Odd (-24.2) возвращает значение True.

См. также

• If...Then...Else

Числовые функции

Abs

Описание

Возвращает абсолютное значение числа

Группа функций

Числовой

Синтаксис

num Abs (number)

Данные ввода

Параметр	Описание	Тип	Обязательный
число	Любое число	Число	Да

Примеры

Abs (25) возвращает 25.

Abs (-11) возвращает 11.

Ceil

Описание

Возвращает число, округленное до ближайшего целого числа

Группа функций

Числовой

Синтаксис

num Ceil (число)

Данные ввода

Параметр	Описание	Тип	Обязательный
число	Любое число	Число	Да

Примеры

Ceil(2.4) возвращает 3.

Ceil(3.1) возвращает 4.

Сеі1 (-3.1) возвращает -3.

Cos

Описание

Возвращает косинус угла

Группа функций

Числовой

Синтаксис

num Cos(угол)

Входные данные

Параметр	Описание	Тип	Обязательный
угол	Угол в радианах	Число	Да

Примеры

Cos (180) возвращает -0.6.

EuroConvertFrom

Описание

Конвертирует сумму в евро в другую валюту

Группа функций

Числовой

Синтаксис

число EuroConvertFrom(euro amount; curr code; round level)

Ввод

Параметр	Описание	Тип	Обязатель- ный
euro_amount	Сумма в евро	Число	Да
curr_code	Код ISO для целевой валюты	Строка	Да
round_level	Количество десятичных разрядов, до которых округляется результат	Число	Да

Примечания

Код валюты должен соответствовать коду одной из 12 валют ЕС, курс которых был зафиксирован по отношению к евро перед их отменой в

январе 2002 года. Если это не выполняется, функция возвращает ошибку: #ERROR. Валюты:

BEF	Бельгийский франк
DEM	Немецкая марка
GRD	Греческая драхма
ESP	Испанская песета
FRF	Французский франк
IEP	Ирландский фунт
ITL	Итальянская лира
LUF	Люксембургский франк
NLG	Голландский гульден
ATS	Австрийский шиллинг
PTS	Португальский эскудо
FIM	Финская марка

Примеры

EuroConvertFrom (1000; "FRF"; 2) возвращает 6559,57.

EuroConvertFrom(1000;"FRF";1) возвращает 6559,60.

EuroConvertFrom(1000.04;"DEM";2) возвращает 1955,83.

EuroConvertFrom(1000.04; "DEM"; 1) возвращает 1955,80.

См. также

• Округление и обрезание чисел с помощью Web Intelligence

EuroConvertTo

Описание

Преобразует сумму в евро

Группа функций

Числовой

Синтаксис

num EuroConvertTo(noneuro amount;curr code;round level)

Входные данные

Параметр	Описание	Тип	Обязатель- ный
noneuro_amount	Сумма в валюте, отличной от евро	Число	Да
curr_code	Код ISO валюты, отличной от евро	Строка	Да
round_level	Количество десятичных разрядов, до которых округляется результат	Число	Да

Пример

```
EuroConvertTo(6559; "FRF"; 2) возвращает 999,91.

EuroConvertTo(6559; "FRF"; 1) возвращает 999,90.

EuroConvertTo(1955; "DEM"; 2) возвращает 999,58.

EuroConvertTo(1955; "DEM"; 1) возвращает 999,60.
```

Примечание

Код валюты должен соответствовать коду одной из 12 валют EC, курс которых был зафиксирован по отношению к евро перед их отменой в январе 2002 года. Если это не выполняется, функция возвращает ошибку: #ERROR. Валюты:

BEF	Бельгийский франк
DEM	Немецкая марка
GRD	Греческая драхма
ESP	Испанская песета
FRF	Французский франк
IEP	Ирландский фунт
ITL	Итальянская лира
LUF	Люксембургский франк
NLG	Голландский гульден
ATS	Австрийский шиллинг
PTS	Португальский эскудо
FIM	Финская марка

См. также

• Округление и обрезание чисел с помощью Web Intelligence

EuroFromRoundError

Описание

Возвращает ошибку округления при преобразовании из евро

Группа функций

Числовой

Синтаксис

num EuroFromRoundError(euro amount;curr code;round level)

Входные данные

Параметр	Описание	Тип	Обязатель- ный
euro_amount	Сумма в евро	Число	Да
curr_code	Код ISO для целевой валюты	Строка	Да
round_level	Количество десятичных разрядов, до которых округляется результат	Число	Да

Вывод

Ошибка округления при вычислениях

Примеры

EuroFromRoundErr (1000; "FRF"; 2) возвращает 0. (Нет разницы между неокругленным преобразованием и преобразованием, округленным до 2 десятичных разрядов.)

EuroFromRoundErr (1000; "FRF"; 1) возвращает 0,03. (Неокругленное преобразование – 6559,57. Преобразование, округленное до 1 десятичного разряда, равно 6559,60. Ошибка округления составляет 0,03.)

EuroFromRoundErr (1000; "DEM"; 2) возвращает 0. (Нет разницы между неокругленным преобразованием и преобразованием, округленным до 2 десятичных разрядов.)

EuroFromRoundErr (1000; "DEM"; 1) возвращает -0,01. (Неокругленное преобразование – 1955,83. Преобразование, округленное до 1 десятичного разряда, 1995,80. Ошибка округления составляет -0,03.)

Примечание

Код валюты должен соответствовать коду одной из 12 валют ЕС, курс которых был зафиксирован по отношению к евро перед их отменой в

январе 2002 года. Если это не выполняется, функция возвращает ошибку: #ERROR. Валюты:

BEF	Бельгийский франк	
DEM	Немецкая марка	
GRD	Греческая драхма	
ESP	Испанская песета	
FRF	Французский франк	
IEP	Ирландский фунт	
ITL	Итальянская лира	
LUF	Люксембургский франк	
NLG	Голландский гульден	
ATS	Австрийский шиллинг	
PTS	Португальский эскудо	
FIM	Финская марка	

См. также

• Округление и обрезание чисел с помощью Web Intelligence

EuroToRoundError

Описание

Возвращает ошибку округления при конвертации в евро

Группа функций

Числовой

Синтаксис

число
EuroToRoundError(noneuro amount; curr code; round level)

Данные ввода

Параметр	Описание		Обязатель- ный
noneuro_amount	Сумма в валюте, отличной от евро	Число	Да
curr_code	Код ISO валюты, отличной от евро	Строка	Да
round_level	Количество десятичных разрядов, до которых округляется результат	Число	Да

Примеры

EuroToRoundErr (6559; "FRF"; 2) возвращает 0. (Нет разницы между неокругленной конвертацией и конвертацией, округленной до 2 десятичных знаков.)

EuroToRoundErr (6559; "FRF"; 1) возвращает -0.01. (Неокругленная конвертация — 999,91. Конвертация, округленная до 1 десятичного знака — 999,90. Ошибка округления — -0,01).

EuroToRoundErr (1955; "DEM"; 2) возвращает 0. (Нет разницы между неокругленной конвертацией и конвертацией, округленной до 2 десятичных знаков.)

EuroToRoundErr (1955; "DEM"; 1) возвращает 0,02. (Неокругленная конвертация — 999,58. Конвертация, округленная до 1 десятичного знака — 999,60. Ошибка округления — 0,02).

Примечание

Код валюты должен соответствовать коду одной из 12 валют EC, курс которых был зафиксирован по отношению к евро перед их отменой в январе 2002 года. Если это не выполняется, функция возвращает ошибку: #ERROR. Валюты:

BEF	Бельгийский франк
-----	-------------------

DEM	Немецкая марка	
GRD	Греческая драхма	
ESP	Испанская песета	
FRF	Французский франк	
IEP	Ирландский фунт	
ITL	Итальянская лира	
LUF	Люксембургский франк	
NLG	Голландский гульден	
ATS	Австрийский шиллинг	
PTS	Португальский эскудо	
FIM	Финская марка	

См. также

• Округление и обрезание чисел с помощью Web Intelligence

Exp

Описание

Возвращает значение экспоненциальной функции (число е, возведенное в указанную степень)

Группа функций

Чисповой

Синтаксис

num Exp(степень)

Входные данные

Параметр	Описание	Тип	Обязательный
степень	Степень	Число	Да

Примечания

Экспоненциальная функция вычисляется путем возведения константы е (2,718...) в степень.

Примеры

Exp (2, 2) возвращает 9,03.

Fact

Описание

Возвращает факториал числа

Группа функций

Числовой

Синтаксис

int Fact (число)

Входные данные

Параметр	Описание	Тип	Обязательный
число	Любое число	Число	Да

Примечания

Факториал числа – это произведение всех целых чисел от 1 до этого числа.

Примеры

Fact (4) возвращает 24.

Fact (5, 9) возвращает 120.

Floor

Описание

Возвращает число, округленное до ближайшего целого числа

Группа функций

Числовой

Синтаксис

целое число Floor(число)

Ввод

Параметр	Описание	Тип	Обязательный
число	Любое число	Число	Да

Пример

Floor (24.4) возвращает 24.

Ln

Описание

Возвращает натуральный логарифм числа

Группа функций

Числовой

Синтаксис

num Ln(число)

Входные данные

Параметр	Описание	Тип	Обязательный
число	Любое число	Число	Да

Примеры

Функция Ln (10) возвращает 2.

Log

Описание

Возвращает логарифм числа по указанному основанию

Группа функций

Числовой

Синтаксис

num Log(number;base)

Данные ввода

Параметр	Описание	Тип	Обязательный
число	Любое число	Число	Да
основание	Основание лога- рифма	Число	Да

Примеры

Log (125;5) возвращает 3.

Log₁₀

Описание

Возвращает логарифм по основанию 10 для числа

Группа функций

Числовой

Синтаксис

num Log10 (number)

Ввод

введенное_число	Число
-----------------	-------

Примеры

Log10 (100) возвращает 2.

Mod

Описание

Возвращает остаток от деления двух чисел

Группа функций

Числовой

Синтаксис

num Mod(dividend; divisor)

Ввод

Параметр	Описание	Тип	Обязательный
делимое	Делимое	Число	Да
делитель	Делитель	Число	Да

Примеры

Mod(10;4) возвращает 2.

Mod (10,2;4,2) возвращает 1,8

Power

Описание

Возвращает число, возведенное в степень

Группа функций

Числовой

Синтаксис

num Power (число; степень)

Входные данные

Параметр	Описание	Тип	Обязательный
число	Число, возводи- мое в степень	Число	Да
степень	Степень	Число	Да

Пример

Формула Power (10;2) возвращает 100.

Rank

Описание

Ранжирует меру по измерениям

Группа функций

Числовой

Синтаксис

int Rank(measure;[ranking dims][;Top|Bottom][;reset dims])

Данные ввода

Пара- метр	Описание	Тип	Обязате- лен
мера	Мера для ранжирования	Мера	Да
rankin <u>g</u> dims	Измерения, используемые для ранжирования меры	Список измере- ний	Нет
Пер- вые/по- следние	Устанавливает порядок ранжирования: • Тор — по убыванию • Воttom — по возрастанию	Ключе- вое сло- во	Нет (Тор по умол- чанию)
reset_dims	Измерения, которые сбрасывают ранжирование	Список измере- ний	Нет

Примечания

Если не указаны измерения для ранжирования, Web Intelligence использует контекст вычисления по умолчанию, чтобы вычислить ранжирование.

- Измерения необходимо всегда помещать в круглые скобки, даже если в списке ранжирования или измерений сброса присутствует только одно измерение.
- Указываемые наборы ранжирования или измерений сброса должны разделяться точкой с запятой.
- По умолчанию ранжирование сбрасывается при переходе к разделу или разрыву блока.

Примеры

В следующей таблице ранжирование задается функцией Rank([Доxoд]; ([Страна])):

	Доход	Ранжирование
Франция	835 420	2
США	2 451 104	1

В следующей таблице ранжирование задается функцией Rank ([До ход]; ([Страна]); Bottom). Аргумент Bottom означает, что ранжирование мер происходит в порядке убывания.

Страна	Доход	Ранжирование
Франция	835 420	1
США	2 451 104	2

В следующей таблице ранжирование задается функцией Rank([Доход]; ([Страна]; [Курорт])):

Страна	Курорт	Доход	Ранжирование
Франция	French Riviera	835 420	3
США	Bahamas Beach	971 444	2
США	Hawaiian Club	1 479 660	1

В следующей таблице ранжирование задается функцией Rank ([До ход]; ([Страна]; [Год]); ([Страна])). Ранжирование сбрасывается на измерении страны.

Страна	Год	Доход	Ранжирование
Франция	FY1998	295 940	1
Франция	FY1999	280 310	2
Франция	FY2000	259 170	3
США	FY1998	767 614	3
США	FY1999	826 930	2
США	FY2000	856 560	1

См. также

• Операторы Bottom/Top

Round

Описание

Округляет число

Группа функций

Чисповой

Синтаксис

num Round (number; round level)

Ввод

Параметр	Описание	Тип	Обязатель- ный
число	Округляемое число	Число	Да
round_level	Количество десятичных знаков, до которого округляется число	Число	Да

Примеры

Round (9.44;1) возвращает 9.4.

Round (9.45;1) возвращает 9.5.

Round (9.45; 0) возвращает 9.

Round (9.45;-1) возвращает 10.

Round (4.45;-1) возвращает 0.

См. также

• Округление и обрезание чисел с помощью Web Intelligence

Sign

Описание

Возвращает знак числа

Группа функций

Числовой

Синтаксис

int Sign(number)

Ввод

Параметр	Описание	Тип	Обязательный
число	Любое число	Число	Да

Примечания

Знак возвращает 1, если число является отрицательным, 0 если число равно нулю, 1 если число является положительным.

Примеры

Знак (3) возвращает 1.

Знак (27.5) возвращает 1.

Sin

Описание

Возвращает синус угла

Группа функций

Чисповой

Синтаксис

num Sin(angle)

Ввод

Параметр	Описание	Тип	Обязательный
угол	Угол в радианах	Число	Да

Пример

Sin (234542) возвращает -0,116992.

Sqrt

Описание

Возвращает квадратный корень из числа

Группа функций

Числовой

Синтаксис

num Sqrt(number)

Ввод

Параметр	Описание	Тип	Обязательный
число	Любое число	Число	Да

Например

Sqrt (25) возвращает 5.

Tan

Описание

Возвращает тангенс угла

Группа функций

Числовой

Синтаксис

num Tan(angle)

Ввод

Параметр	Описание	Тип	Обязательный
угол	Угол в радианах	Число	Да

Примеры

Tan (90) возвращает -2.

ToNumber

Описание

Преобразует строку в число

Группа функций

Числовой

Синтаксис

num ToNumber(string)

Ввод

Параметр	Описание	Тип	Обязательный
строка	Число в качестве строки	Строка	Да

Примечания

Если строка **не является числом**, функция ToNumber возвращает #ERROR.

Примеры

ToNumber ("45") возвращает 45.

Truncate

Описание

Обрезает число

Группа функций

Числовой

Синтаксис

num Truncate(number;truncate level)

Ввод

Параметр	Описание	Тип	Обязатель- ный
число	Округляемое число	Число	Да
truncate_level	Количество знаков после запятой, до которого обрезается число	Число	Да

Примечания

Например

Truncate (3,423; 2) возвращает 3,42.

См. также

• Округление и обрезание чисел с помощью Web Intelligence

BlockName

Описание

Возвращает имя блока

Группа функций

Разное

Синтаксис

строка BlockName()

Примеры

BlockName () возвращает "Блок 1", если он помещен в блок под названием "Блок 1".

ColumnNumber

Описание

Возвращает порядковый номер столбца

Группа функций

Разное

Синтаксис

int ColumnNumber()

Примеры

ColumnNumber () возвращает 2, если данная формула помещена во второй столбец таблицы.

CurrentUser

Описание

Возвращает параметры входа в InfoView для текущего пользователя

Группа функций

Разное

Синтаксис

строка CurrentUser()

Примеры

CurrentUser() возвращает "gkn", если текущее регистрационное имя пользователя InfoView — "gkn".

ForceMerge

Описание

Включает синхронизированные измерения в вычисления мер, если эти измерения не содержатся в контексте вычисления меры

Группа функций

Разное

Синтаксис

num ForceMerge(measure)

Данные ввода

Параметр	Описание	Тип	Обязателен
показатель	Любой показа- тель	Показатель	Да

Вывод

Результат вычисления с учетом синхронизированных измерений

Примечания

- ForceMerge возвращает значение #HEOДHO3HAЧHO, если функция применяется к интеллектуальной мере, поскольку набора для группировки, необходимого для вычисления интеллектуальной меры, не существует.
- Функция ForceMerge в приложении Web Intelligence аналогична функции Multicube приложения BusinessObjects/Desktop Intelligence.

Примеры

ForceMerge ([Доход]) возвращает значение объекта [Доход] с учетом всех синхронизированных измерений, которые не отображаются в одном блоке с мерой [Доход].

GetContentLocale

Описание

Возвращает языковой стандарт данных, содержащихся в документе (языковой стандарт документа)

Группа функций

Разное

Синтаксис

строка GetContentLocale()

Примечания

Языковой стандарт используется для форматирования данных в документе Web Intelligence.

Примеры

Функция GetContentLocale() возвращает "fr_FR", если в качестве языкового стандарта документа установлен "Французский (Франция)".

GetDominantPreferredViewingLocale

Описание

Возвращает основной языковой стандарт в группе предпочтительного языкового стандарта для просмотра, выбранного пользователем

Группа функций

Разное

Синтаксис

string GetDominantPreferredViewingLocale()

Примечания

- Каждая группа связанных языковых стандартов имеет основной языковой стандарт, используемый в качестве базового для всех остальных языковых стандартов в данной группе. Например, английский (США) ("en_US") является основным языковым стандартом в группе стандартов английского языка. Английский (Новая Зеландия) также входит в эту группу.
- В Руководстве к диспетиеру переводов перечислены все основные предпочтительные языковые стандарты для просмотра.

Примеры

Функция GetDominantPreferredViewingLocale возвращает "en_US", если в качестве предпочтительного языкового стандарта для просмотра установлен "Английский (Новая Зеландия)".

См. также

GetPreferredViewingLocale

GetLocale

Описание

Возвращает пользовательский языковой стандарт, применяемый для форматирования интерфейса Web Intelligence (языковой стандарт продукта)

Группа функций

Разное

Синтаксис

строка GetLocale()

Примечания

Языковой стандарт продукта – это языковой стандарт, используемый для отображения пользовательского интерфейса Web Intelligence (например, элементов меню и текста кнопок).

Примеры

Функция GetLocale() возвращает "en_US", если в качестве пользовательского языкового стандарта продукта установлен "Английский (США)".

GetLocalized

Описание

Возвращает локализованную строку в соответствии с предпочтительным языковым стандартом для просмотра, выбранным пользователем.

Синтаксис

string GetLocalized(string[;comment])

Данные ввода

Параметр	Описание	Тип	Обязатель- ный
строка	Строка для перевода	строка	Да
comment	Комментарий, добавляе- мый переводчиками	строка	Нет

Примечания

- Параметр string может быть строкой в любой формуле Web Intelligence (например, в ячейке, сообщении сигнализатора или определении переменной).
- При создании отчета можно использовать параметр comment для ввода дополнительной информации, помогающей переводчикам перевести строку. Этот комментарий появляется вместе со строкой в инструменте "Диспетчер переводов", используемом переводчиками для перевода отчетов Web Intelligence.
- Каждая пара строка + комментарий создает отдельную строку для перевода в инструменте "Диспетчер переводов". В результате GetLocalized("Итого по продукту"; "Максимум 20 симво лов") и GetLocalized("Итого по продукту"; "Использовать не более 20 символов") могут возвращать различные переводы.

Примеры

Функция GetLocalized ("Итого для всех продуктов") возвращает перевод на французский язык строки "Итого для всех продуктов", если в качестве предпочтительного языкового стандарта для просмотра установлен "fr FR".

Функция GetLocalized ("Итого для всех продуктов", "Старай тесь не использовать больше 20 символов") возвращает перевод на немецкий язык строки "Итого для всех продуктов", если в качестве предпочтительного языкового стандарта для просмотра установлен "de_DE". Эта функция также сообщает переводчику отчета, что не

рекомендуется использовать больше 20 символов при переводе этой строки.

См. также

GetPreferredViewingLocale

GetPreferredViewingLocale

Описание

Возвращает пользовательский предпочтительный языковой стандарт для просмотра данных в документе (предпочтительный языковой стандарт для просмотра)

Группа функций

Разное

Синтаксис

string GetPreferredViewingLocale()

Примеры

Функция GetPreferredViewingLocale возвращает "en_US", если в качестве предпочтительного языкового стандарта для просмотра установлен "Английский (США)".

См. также

- GetLocalized
- GetDominantPreferredViewingLocale

If...Then...Else

Описание

Возвращает значение в зависимости от того, является ли значение выражения истиной или ложью

Группа функций

Разное

Синтаксис

If bool value Then true value [Else false value]

Данные ввода

Параметр	Описание	Тип	Требуемое
bool_value	Логическое значение	Логическое значение	Да
true_value	Возвращаемое значение, если bool_value имеет значение True	Любой	Да
false_value	Возвращаемое значение, если bool_value имеет значение False	Любой	Да, если Else вклю- чено

Примечания

- true value и false value могут смешивать типы данных.
- Можно использовать операторы логических выражений And, Between, InList, Or и Not с функцией If.
- Также можно использовать вложенные условия If, задействовав конструкцию ElseIf. Синтаксическая конструкция:

```
If test_value Then true_value [Else false_value|ElseIf
  test_value Then true_value [Else
false value...]]
```

• Web Intelligence также поддерживает синтаксическую конструкцию If (bool_value; true_value; false_value).

Примеры

If [Доход с продаж]>1000000 Then "Высокий доход" возвращает "Высокий доход" только для тех рядов, где значение дохода превышает 1 000 000.

Іf [Доход с продаж] >1000000 Then "Высокий доход" Else [Доход] возвращает "Высокий доход" для всех рядов, где значение дохода превышает 1 000 000, для всех остальных рядов просто выводится значение дохода.

Іf [Доход с продаж]>1000000 Then "Высокий доход" Else "Низкий доход" возвращает "Высокий доход" для всех рядов, где значение дохода превышает 1 000 000 и "Низкий доход" для рядов, где значение дохода не достигает 1 000 000.

Іf [Доход с продаж]>1000000 Then "Высокий доход" Elself [Доход с продаж] > 800000 Then "Средний доход" Else "Низкий доход" возвращает "Высокий доход" для рядов, где значение дохода превышает 1 000 000, "Средний доход" для рядов, где значение дохода находится в пределах 800 000 и 1 000 000 и "Низкий доход" во всех остальных случаях.

См. также

- If
- Оператор ""u""
- Оператор Between
- Оператор Inlist
- Оператор ""или""
- Оператор отрицания

If

Описание

Возвращает значение в зависимости от того, является ли значение выражения истиной или ложью

Группа функций

Разное

Синтаксис

If(bool value;true value;false value)

Данные ввода

Параметр	Описание	Тип	Требуемое
bool_value	Логическое значение	Логическое значение	Да
true_value	Возвращаемое значение, если bool_value имеет значение True	Любой	Да
false_value	Возвращаемое значение, если bool_value имеет значение False	Любой	Да

Примечания

- В параметрах true_value и false_value можно смешивать типы данных
- Условия If можно вкладывать в другие условия путем замены параметра false value дополнительными условиями If.

If (bool value; true value; If (bool value; true value; false value | If...))

• В приложении Web Intelligence также поддерживается синтаксическая конструкция If...Then...Else.

Примеры

Функция If ([Доход с продаж]>1000000; "Высокий доход"; "Низкий доход") возвращает "Высокий доход" для всех строк, где значение дохода превышает 1 000 000, и "Низкий доход" для тех строк, где значение дохода не достигает 1 000 000.

Функция If ([Доход с продаж]>1000000; "Высокий доход"; [До ход]) возвращает "Высокий доход" для всех строк, где значение дохода превышает 1 000 000, для всех остальных строк просто выводится значение дохода.

См. также

• If...Then...Else

LineNumber

Описание

Возвращает номер строки в таблице

Группа функций

Разное

Синтаксис

int LineNumber()

Примечания

Нумерация строк таблицы начинается с заголовка, который является строкой за номером 1.

Примеры

LineNumber () возвращает 2, если функция отображается на второй строке в таблице.

NameOf

Описание

Возвращает имя объекта

Группа функций

Разное

Синтаксис

string NameOf(объект)

Входные данные

Параметр	Описание	Тип	Обязательный
объект	Любой объект отчета	Объект отчета	Да

Примечания

В приложении Web Intelligence функция NameOf используется в заголовках столбцов и строк в отчетах.

Примеры

Функция NameOf([Дата бронирования]) возвращает "Дата бронирования".

NoFilter

Описание

Игнорирует фильтры при вычислении значения

Группа функций

Разное

Синтаксис

input type NoFilter(obj[;All|Drill])

Данные ввода

Пара- метр	Описание	Тип	Обяза- тельный
объект	Любой объект отчета	Объект отчета	Да
All Drill	 Нет указанного ключевого слова – игнорировать отчет и блокировать фильтры All – игнорировать все фильтры Drill – игнорировать фильтры отчета и фильтры детализации 	Ключе- вое сло- во	Нет

Примечания

- NoFilter (obj; Drill) не работает в режиме детализации запроса, т. к. фильтры детализации добавляются в запрос, но не применяются для фильтра данных отчета.
- Если работа в режиме детализации завершена, а фильтры детализации остались активны, они становятся фильтрами отчета и могут изменять значения любых выражений, на которые распространяется действие функции NoFilter(obj;Drill).

Примеры

Если поместить функцию NoFilter (Sum ([Доходы с продаж])) в нижний колонтитул блока, она возвращает суммарный объем доходов с продаж по всем рядам блока, даже если применяемый фильтр исключает некоторые ряды из блока.

Функция NoFilter (Sum ([Доходы с продаж]); All) возвращает общий объем доходов с продаж для всех стран, включая Францию, несмотря на то, что применяемый фильтр исключает Францию из отчета.

Функция NoFilter(Sum([Доходы с продаж]); Drill) возвращает общий объем доходов с продаж для всех стран, игнорируя при этом фильтр детализации по размеру страны.

NumberOfPages

Описание

Возвращает количество страниц в отчете

Группа функций

Разное

Синтаксис

integer NumberOfPages()

Примеры

Примеры NumberOfDataPages () возвращает 2, если в отчете содержатся две страницы.

Page

Описание

Возвращает номер текущей страницы в отчете.

Группа функций

Разное

Синтаксис

целое Page()

Например

Page () возвращает 2, если отображается на второй странице отчета.

Previous

Описание

Возвращает предыдущее значение объекта

Группа функций

Разное

Синтаксис

input type Previous (dimension | measure | Self[; reset dims][; offset][; NoNull])

Данные ввода

Пара- метр	Описание	Тип	Обяза- тельный
измере- ние ме- pa Self	Измерение или мера, чье предыдущее значение возвращает функция, или ключевое слово Self	Измерение, мера или ключевое слово	Да
reset_dims	Список измерений, используемых для сброса вычислений	Список изме- рений	Нет
смеще- ние	Указывает значение измерения или меры, то есть строки со смещением, предшествующие текущей строке	Целое	Нет (по умолча- нию 1)
NoNull	Указывает функции на то, что необходимо возвращать первое ненулевое значение, начиная со смещения	Ключевое слово	Нет

Примечания

По умолчанию смещение равно 1. Previous ([Revenue];1) и Previous ([Revenue]) функционально одно и то же.

- В случае включения аргумента NoNull, Web Intelligence возвращает первое ненулевое значение объекта, начиная с ячейки строк смеще ния, предшествующих текущей строке и отсчитанных в обратном направлении.
- С функцией Previous (Предыдущее) можно использовать контекстные операторы расширенного синтаксиса
- Оператор SELF позволяет обращаться к предыдущему значению ячейки, если ее содержимое не является объектом отчета.
- Измерения нужно всегда помещать в круглые скобки, даже если в списке измерений сброса присутствует только одно измерение.
- Измерения сброса в наборе должны разделяться двоеточиями.
- Web Intelligence применяет функцию Previous после применения всех фильтров отчетов, разделов и блоков.
- Нельзя применять фильтры к формуле, в которой используется функция Previous.
- Web Intelligence применяет функцию Previous после применения всех сортировок.
- Нельзя применять сортировку к формуле, в которой используется функция Previous.
- Если функция Previous применяется к мере, а мера возвращает неопределенное значение, функция Previous возвращает неопределенное значение, даже если в предыдущей строке возвращается значение.
- При помещении за пределами верхнего или нижнего колонтитула разрыва функция Previous игнорирует разрывы.
- Если функция Previous помещена в нижний колонтитул разрыва, то она возвращает значение из предыдущего экземпляра нижнего колонтитула.
- Web Intelligence сбрасывает Previous в каждом разделе отчета.
- При использовании в кросс-таблице, функция Previous не обрабатывает последнее значение в строке как предыдущее значение для первого значения в следующей строке.

Примеры

Previous ([Country];1) возвращает следующие значения в следующей таблице:

Страна	Доход	Предыдущий
--------	-------	------------

США	5 000 000	
Великобритания	2 000 000	США
Франция	2 100 000	Великобритания

Previous ([Revenue]) возвращает следующие значения в следующей таблице:

Страна	Доход	Предыдущий
США	5 000 000	
Великобритания	2 000 000	5 000 000
Франция	2 100 000	2 000 000

Previous ([Revenue]; ([Country]) возвращает следующие значения в следующей таблице:

Страна	Регион	Доход	Предыдущий
США	Север	5 000 000	
	Юг	7 000 000	5 000 000
Великобритания	Север	3 000 000	
	Юг	4 000 000	3 000 000

Previous ([Revenue]) возвращает следующие значения в следующей кросс-таблице:

	2004	Предыдущий	2005	Предыдущий
США	5 000 000		6 000 000	5 000 000

Великобрита ния	2 000 000	2 500 000	2 000 000
Франция	3 000 000	2 000 000	3 000 000

Previous ([Revenue]) возвращает следующие значения в следующей таблице с разделением по [Странам]:

Страна	Регион	Доход	Предыдущий
США	Север	5 000 000	
	Юг	7 000 000	5 000 000
США		12 000 000	

Страна	Регион	Доход	Предыдущий
Великобритания	Север	3 000 000	7 000 000
	Юг	4 000 000	3 000 000
Великобритания		7 000 000	12 000 000

Previous ([Revenue]); 2; NoNull) возвращает следующие значения в следующей таблице:

Год	Квартал	Доход	Предыдущий
2008	К1	500	
2008	K2		
2008	КЗ	400	500
2008	К4	700	500

2008	К1	300	400
2008	К2		700
2008	К3		300
2008	К4	200	300

2*Previous (Self) возвращает последовательность 2, 4, 6, 8, 10...

См. также

- Сравнение значений с помощью функции Previous
- Оператор Self

RefValue

Описание

Возвращает опорное значение для объекта отчета, когда включено отслеживание данных

Группа функций

Разное

Синтаксис

input type RefValue(obj)

Примеры

RefValue([Самый эффективный регион]) возвращает "Юго-запад", если значение переменной [Самый эффективный регион] в опорных данных равно "Юго-запад".

RefValue([Доход]) возвращает 1000, если значение меры [Доход] в опорных данных равно 1000.

RelativeValue

Описание

Возвращает предыдущие или последующие значения объекта

Группа функций

Разное

Синтаксис

input_type
RelativeValue(measure|detail;slicing dims;offset)

Данные ввода

Пара- метр	Описание	Тип	Обяза- тельный
measure detail	Любая мера или деталь измерения в блоке	Мера или деталь	Да
slicing_dims	Измерения, которые служат контекстом вычислений	Список измере- ний	Да
смеще- ние	Указывает значение меры или детали, которая является строкой смещения, удаленной из текущей строки	Целое	Да

Примечания

- Объект должен быть мерой или деталью измерения, доступной в блоке.
- Порядок сортировки списка значений измерений срезов используется для определения выходных данных функции.

Порядок сортировки определяется двумя факторами: сортировки, которые применяются для измерений срезов, и порядок, в котором измерения срезов перечислены в функции.

- Измерение, которое используется как основной элемент раздела может быть указано как измерение срезов.
- Все измерения срезов должны быть представлены в блоке или в заголовке раздела блока, где находится функция. Если измерение срезов затем удаляется из блока, функция возвращает ошибку #COMPUTATION.
- Если смещение превышает количество строк в списке значений измерения срезов, функция возвращает нулевое значение.
- RelativeValue невозможно использовать рекурсивно.
- Необходимо всегда заключать измерения в круглые скобки, даже если в списке измерений срезов есть только одно измерение.

Примеры

Столбец Relative Value в таблице ниже содержит следующую формулу.

RelativeValue	([Porronuo].	/[V02x])	· _ 1 \
Retalitvevatue	Trkevenuer:	(Trear)	$z - \perp$

Год	Квартал	Продавец	Доход	RelativeValue
2007	К1	Смит	1000	
2007	К2	Джонс	2000	
2007	К3	Уилсон	1500	
2007	К4	Харрис	3000	
2008	К1	Смит	4000	1000
2008	К2	Джонс	3400	2000
2008	К3	Уилсон	2000	1500
2008	К4	Харрис	1700	3000

Для получения подробной информации о RelativeValue см. главу "Сравнение значений с помощью функций Web Intelligence" руководства Использование функций, формул и вычислений в SAP BusinessObjects Web Intelligence или см. ссылку в конце этого раздела.

См. также

- #COMPUTATION
- Сравнение значений с помощью функции Relative Value

ReportName

Описание

Возвращает имя отчета

Группа функций

Разное

Синтаксис

строка ReportName()

Примеры

Функция ReportName () возвращает значение "Отчет о продажах", если находится в отчете под названием "Отчет о продажах".

RowIndex

Описание

Возвращает номер строки

Группа функций

Разное

Синтаксис

integer RowIndex()

Примечания

- Нумерация строк начинается с 0.
- Функция RowIndex возвращает значение #MULTIVALUE при ее размещении в верхнем или нижнем колонтитуле таблицы.

Примеры

Функция RowIndex возвращает 0, если расположена в первой строке таблицы.

UniqueNameOf

Описание

Возвращает уникальное имя объекта

Группа функций

Разное

Синтаксис

строка UniqueNameOf(obj)

Ввод

Параметр	Описание	Тип	Обязательный
объект	Любой объект отчета	Объект отчета	Да

Примеры

UniqueNameOf ([Дата сохранения]) возвращает "Дата сохранения".

Операторы функций и формул Web Intelligence

Операторы связывают различные элементы формул. Формулы могут содержать математические, условные, логические, специальные функциональные операторы или операторы расширенного синтаксиса.

Математические операторы

Математические операторы знакомы по арифметическим вычислениям, выполняемым ежедневно. Это операторы сложения (+), вычитания (-), умножения (*), деления (/), которые позволяют выполнять математические операции в формуле. В формуле [Доход продаж] – [Издержки при продажах] содержится математический оператор вычитания.

Примечание:

При использовании с символьными строками оператор "+" ставится оператором конкатенации строк. А это значит, что он объединяет символьные строки. Например, формула "Иван" + "Иванов" возвращает значение "Иван Иванов".

Условные операторы

Условные операторы определяют тип сравнения двух значений.

Оператор	Описание
=	Равно
>	Больше
<	Меньше
>=	Больше или равно
<=	Меньше или равно
<>	Не равно

Условные операторы используются с функцией If, например:

If [Revenue]>10000 Then "High" Else "Low"

которая возвращает значение "Высокая" для всех строк, в которых указанная прибыль больше или равна 10000, и значение "Низкая" для всех остальных строк.

Логические операторы

В приложении Web Intelligence используются следующие логические операторы: And, Or, Not, Between и Inlist. Логические операторы используются в булевых выражениях, возвращающих значения Истина или Ложь.

Оператор ""и""

Описание

Оператор And связывает булевы значения. Если все булевы значения, связанные оператором And, возвращают значение True, то комбинация всех значений также будет возвращать значение True.

Синтаксис

```
bool_value And bool_value [And bool_value...]
```

Примеры

Функция If [Курорт] = "Багамский пляж" And [Доход]>100000 Then "Высокий доход с Багамских островов" возвращает значение "Высокий доход с Багамских островов", если выполнено условие [Курорт] = "Багамский пляж" And [Доход]>100000.

Оператор ""или""

Описание

Оператор от связывает булевы значения. Если одно любое булево значение, связанное оператором от, возвращает значение True, совокупность всех значений также возвращает значение True.

Синтаксис

bool value Or bool value [Or bool value...]

Примеры

If [Курорт] = "Багамский пляж" Or [Курорт]="Гавайский клуб" Then "США" Else "Франция" возвращает "США", если [Курорт]="Багамский пляж" или "Гавайский клуб" или, в противном случае, возвращает "Франция".

Оператор отрицания

Описание

Оператор Not возвращает значение, противоположное логическому.

Синтаксис

bool Not(bool value)

Примеры

If Not([Страна] = "США") Then "Не США" возвращает "Не США", если [Страна] имеет значение, отличное от "США".

Оператор Between

Описание

Oператор Between определяет, заключено ли значение переменной между двумя значениями.

Синтаксис

bool Between (first value; second value)

Примечания

- Функция Between используется вместе с функцией If и оператором Where.
- Поскольку языковой стандарт форматирования документа может повлиять на порядок сортировки данных, изменение языкового стандарта может повлиять на результат, возвращаемый оператором Between. (Языковой стандарт форматирования документов устанавливается на вкладке Предпочтительные параметры документов Web Intelligence в InfoView.)

Примеры

Функция If [Доход] Between (800000; 900000) Then "Средний доход" возвращает значение "Средний доход", если [Доход] заключен между 800000 и 900000.

Функция [Доход от продаж] Between (10000;20000) возвращает значение True, если доход от продаж находится между 10000 и 20000.

Функция If ([Доход от продаж] Between (200000;500000); "Средний доход"; "Низкий/Высокий доход") возвращает значение "Средний доход", если [Доход от продаж] составляет 300000.

См. также

- If...Then...Else
- Оператор Where

Оператор Inlist

Описание

Onepatop Inlist определяет, принадлежит ли значение списку значений.

Синтаксис

bool test value Inlist(value list)

Примечания

Именно комбинация test_value + InList возвращает булево значение, а не только один оператор InList.

Примеры

If Not ([Страна] InList("Англия"; "Шотландия"; "Уэльс")) Then "Не Британия" Else "Британия" возвращает "Не Британия", если [Страна] не совпадает с "Англия", "Шотландия" или "Уэльс" или, в противном случае, возвращает "Британия".

If [Курорт] InList("Багамский пляж"; "Гавайский клуб") Then "Курорт США" возвращает "Курорт США", если [Курорт] совпадает с "Багамский пляж" или "Гавайский клуб".

См. также

- If...Then...Else
- Оператор Where

Специальные операторы функций

Некоторые функции Web Intelligence могут использовать определенный набор операторов в качестве аргументов. Например, функция Previous может использовать оператор Self.

Аргументы всех функций заключаются в скобки:) и (. В функциях, работающих с несколькими параметрами, для их разделения используется знак ;.

Оператор All

Oператор All указывает функции NoFilter игнорировать все фильтры, а также указывает функции Count подсчитывать все значения, в том числе повторяющиеся.

См. также

- Count
- Операторы Distinct/All

- NoFilter
- Операторы All/Drill

Операторы All/Drill

Описание

С помощью операторов All/Drill можно определить, какие фильтры игнорирует функция NoFilter.

- He задано NoFilter игнорирует фильтры отчета и блока
- All NoFilter игнорирует все фильтры
- Drill NoFilter игнорирует фильтры отчета и фильтры детализации

Операторы Bottom/Top

Описание

Операторы Bottom/Тор указывают функции Rank, ранжировать в порядке убывания или возрастания.

- Тор ранжирует в порядке убывания
- Bottom ранжирует в порядке возрастания

Примеры

Rank([Доход];([Страна]); Тор ранжирует страны по доходу от высокого до низкого.

См. также

Rank

Оператор Break

Описание

Оператор Break указывает функции Percentage, что необходимо учитывать разбиения таблиц.

Примеры

Формула Percentage ([Доход]) возвращает следующий результат в данной таблице (процентные соотношения вычисляются на основе общего значения дохода в блоке):

Год	Квартал	Доход	Процентное соот- ношение
2005	К1	10000	10%
2005	K2	20000	20%
2006	К1	30000	30%
2006	K2	40000	40%

Формула Percentage ([Доход]; Break) возвращает следующий результат в данной таблице (процентные соотношения вычисляются на основе общего значения дохода в каждой части блока):

Год	Квартал	Доход	Процентное соот- ношение
2005	К1	10000	33,3%
2005	К2	20000	66,6%

2006	К1	30000	42.9%
2006	K2	40000	57.1%

См. также

Percentage

Операторы Distinct/All

Oператоры Distinct/All сообщают функции Count, каким образом следует подсчитывать число значений: учитывать только различные или учитывать все

Примеры

```
Count([Доход]; Distinct) возвращает 3, если [Доход] имеет значения (5;5;6;4)
```

Count([Доход]; All) возвращает 4, если [Доход] имеет значения (5;5;6;4)

См. также

Count

Оператор IncludeEmpty

Описание

Onepatop IncludeEmpty указывает некоторым функциям агрегирования на необходимость включать пустые значения в вычисления.

Примеры

Формула Average([Доход]; IncludeEmpty) возвращает 3 при следующих значениях переменной [Доход]: 5; 3; <пусто>; 4.

См. также

- Average
- Count
- RunningAverage
- RunningCount

Оператор Index

Описание

Oператор Index указывает функциям UserResponse и RefValueUserResponse возвращать основной ключ базы данных ответа на запрос ввода данных.

См. также

- UserResponse
- RefValueUserReponse

Оператор Linear

Описание

С помощью оператора Линейный можно использовать в функции Интер поляция линейную регрессию с интерполяцией методом наименьших квадратов для получения отсутствующих значений мер.

При использовании линейной регрессии с интерполяцией методом наименьших квадратов отсутствующие значения вычисляются с помощью линейного выражения f(x) = ax + b, которое позволяет получить линию, наиболее приближенную ко всем доступным значениям меры.

См. также

• Интерполяция

Оператор NoNull

Описание

С помощью оператора NoNull функция Previous игнорирует нулевые значения.

С помощью оператора NoNull функция Previous возвращает первое ненулевое значение объекта, обнаруженного при отсчете в обратном направлении, начиная со строк смещения ячеек перед текущей строкой.

См. также

• Previous

Оператор NotOnBreak

Описание

С помощью оператора NotOnBreak функция Interpolation игнорирует разбиения разделов и блоков.

См. также

• Интерполяция

Оператор PointToPoint

Описание

С помощью оператора PointToPoint функция Interpolation использует двухточечную интерполяцию для получения отсутствующих значений мер.

При двухточечной интерполяции отсутствующие значения получаются путем вычисления значений линейной функции f(x) = ax + b, проходящей через две соседние с отсутствующими значениями точки.

См. также

• Интерполяция

Операторы Row/Col

Описание

Операторы Row/Col устанавливают направление вычисления следующих функций: Percentage, RunningAverage, RunningCount, RunningMax, RunningMin, RunningProduct, RunningSum.

Примечания

При использовании оператора ROW Web Intelligence вычисляет каждое значение в строке в виде процента от общего значения всех строк во внедренном контексте. При использовании оператора COL Web Intelligence вычисляет каждое значение в столбце в виде процента от общего значения всех столбцов во внедренном контексте.

В кросс-таблице Web Intelligence по умолчанию вычисляет значение в каждой ячейке в виде процента от суммарного значения в кросс-таблице. При использовании оператора ROW Web Intelligence вычисляет значения в строках в виде процента от суммарного значения для строки. При использовании оператора COL Web Intelligence вычисляет значения в столбцах в виде процента от суммарного значения для столбца.

Примеры

В кросс-таблице Percentage ([Mepa]) дает следующий результат:

Мера	Процентное соот- ношение	Мера	Процентное соот- ношение
100	10%	500	50%
200	20%	200	20%

Percentage ([Mepa]; ROW) дает следующий результат:

Мера	Процентное соот- ношение	Мера	Процентное соот- ношение
100	16,7%	500	83,3%
200	50%	200	50%

Percentage ([Mepa]; COL) дает следующий результат:

Мера	Процентное соот- ношение	Мера	Процентное соот- ношение
100	33,3%	500	83,3%
200	66,6%	200	16,7%

При использовании оператора ROW (по умолчанию) Web Intelligence вычисляет суммарный промежуточный результат по строкам. При использовании оператора COL Web Intelligence вычисляет суммарный промежуточный результат по столбцам.

B кросс-таблице функции RunningSum([Measure]) и RunningSum([Measure]; Row) дают следующие результаты:

Мера	RunningSum	Мера	RunningSum
100	100	200	300
400	700	250	950

В кросс-таблице Percentage ([Mepa]) дает следующий результат:

Мера	RunningSum	Мера	RunningSum
100	100	200	700
400	500	250	950

См. также

- Percentage
- RunningAverage
- RunningCount
- RunningMax
- RunningMin
- RunningProduct
- RunningSum

Оператор Self

Описание

Указывает функции Previous на предыдущую ячейку, если она не содержит объект отчета.

Примеры

5 + Previous (Self) возвращает последовательность 5, 10, 15, 20, 25, 30...

1 + 0.5 * Previous (Self) возвращает последовательность 1, 1.5, 1.75, 1.88...

См. также

• Previous

Оператор Where

Описание

Oператор Where ограничивает данные, используемые для вычисления меры.

Примеры

Формулой Average ([Доход с продаж]) Where ([Страна] = "США") вычисляется средний доход с продаж для страны "США".

Формулой Average ([Доход с продаж]) Where ([Страна] = "США" От [Страна] = "Франция") вычисляется средний доход с продаж для страны "США" или "Франция".

Формулой [Доход] Where (Not ([Страна] Inlist ("США"; "Франция"))) вычисляется доход для стран, отличных от "США" и "Франция".

Переменная [Высокий доход] описана формулой [Доход] Where [Доход > 500000]. При размещении в блок переменной [Высокий доход] отображаются только значения дохода, превышающие 500000. При помещении в нижний колонтитул в нижней части столбца [Высокий доход], формула Average ([Высокий доход]) возвращает среднее значение всех доходов, превышающих 500000.

См. также

- Оператор ""и""
- Оператор Between
- Оператор Inlist
- Оператор ""или""
- Оператор отрицания

Операторы расширенного синтаксиса

Контексты ввода и вывода задаются явным образом при помощи операторов контекста. В следующей таблице перечислены операторы контекста:

Оператор	Описание
In	Определяет подробный список измерений для использования в контексте.

Оператор	Описание
ForEach	Добавляет измерения в контекст по умолчанию
ForAll	Убирает измерения из контекста по умолчанию

Операторы ForAll и ForEach могут оказаться полезными, когда в контексте по умолчанию содержится множество измерений. Часто может быть проще добавлять или удалять измерения из контекста с помощью операторов ForAll и ForEach, чем создавать список с использованием In.

Оператор In Context

Оператор In Context определяет измерения в контексте в явной форме.

Пример: Использование оператора In Context для определения измерений в контексте

В этом примере у нас есть отчет, в котором отображается "Год" и "Доход с продаж". В поставщике данных также содержится объект "Квартал", однако это измерение в блок не включено. Вместо этого, требуется включить дополнительный столбец для отображения максимального значения дохода за каждый квартал каждого года. Отчет выглядит следующим образом:

Year	Sales revenue	Max Quarterly Revenue
2001	\$8 096 123,60	\$2 660 699,50
2002	\$13 232 246,00	\$4 186 120,00
2003	\$15 059 142,80	\$4 006 717,50

Узнать откуда берутся значения в столбце "Максимальный доход за квартал" в этом блоке можно просмотрев этот блок в паре с блоком, содержащим измерение "Квартал":

Year	Quarter	Sales revenue
	Q1	\$2660700
	Q2	\$2279003
	Q3	\$1367841
	Q4	\$1788580
2001		
	Ma	акс.: 2660699.

Year	Quarter	Sales revenue
	Q1	\$3326172
	Q2	\$2840651
	Q3	\$2879303
	Q4	\$4186120
2002		
	Макс.:	4186120

Year	Quarter	Sales revenue
	Q1	\$3742989
	Q2	\$4006718
	Q3	\$3953398
	Q4	\$335604
2003		
	Ma	акс.: 4006717.

Столбец "Максимальный доход за квартал" содержит максимальные показатели дохода за каждый год. Например, К4 содержит значение максимального дохода в 2002 году, таким образом, "Максимальный доход за квартал" в строке 2002 года отобразит К4.

Использование оператора In, формула для "Максимального дохода за квартал"

```
Max ([Sales Revenue] In ([Year]; [Quarter])) In ([Year])
```

По этой формуле Web Intelligence рассчитывает максимальных доход с продаж для каждой пары "год/квартал", а затем выводит полученное значение по годам.

Примечание:

Так как по умолчанию контекстом для вывода является "Год", особым образом указывать контекст вывода в этой формуле не требуется.

Контекстный оператор ForEach

Оператор ForEach добавляет в контекст измерения.

Пример: Использование оператора ForEach для добавления измерений в контекст

В следующей таблице показан максимальный доход по каждому кварталу в отчете, который содержит измерение "Квартал", не включенное в блок:

Год	Доход от продаж	Максимальный квартальный доход
2001	8 096 123,60	2 660 699,50
2002	13 232 246,00	4 186 120,00
2003	15 059 142,80	4 006 717,50

Для столбца "Максимальный доход за квартал" можно создать формулу, которая не содержит оператор ForEach:

```
Max ([Sales Revenue] In ([Year]; [Quarter])) In ([Year])
```

Контекстный оператор "ForEach" позволяет добиться того же результата с помощью следующей формулы:

```
Max ([Sales Revenue] ForEach ([Quarter])) In ([Year])
```

Причина: Измерение "Год" является в блоке контекстом ввода по умолчанию. При использовании оператора "ForEach" измерение "Квартал" добавляется в контекст, в результате чего получается контекст ввода ([Год];[Квартал]).

Контекстный оператор ForAll

Контекстный оператор ForAll удаляет из контекста измерения.

Пример: Использование оператора ForAll для удаления измерений из контекста

Есть отчет, в котором отображается год, квартал и доход от продаж, и необходимо добавить столбец, в котором отображается суммарный доход по каждому году, как показано в следующем блоке:

Year	Quarter	Sales revenue	Yearly Total
2001	Q1	\$2 660 700	\$8 096 124
2001	Q2	\$2 279 003	\$8 096 124
2001	Q3	\$1 367 841	\$8 096 124
2001	Q4	\$1 788 580	\$8 096 124
2002	Q1	\$3 326 172	\$13 232 246
2002	Q2	\$2 840 651	\$13 232 246
2002	Q3	\$2 879 303	\$13 232 246
2002	Q4	\$4 186 120	\$13 232 246
2003	Q1	\$3 742 989	\$15 059 143
2003	Q2	\$4 006 718	\$15 059 143
2003	Q3	\$3 953 395	\$15 059 143
2003	Q4	\$3 356 041	\$15 059 143

Для суммирования доходов по годам контекстом ввода должен быть (Год); по умолчанию это (Год; Квартал). Поэтому необходимо удалить из контекста ввода квартал, указав в формуле ForAll ([Квартал]), что будет выглядеть следующим образом:

```
Sum([Sales Revenue] ForAll ([Quarter]))
```

Следует отметить, что для получения такого же результата можно использовать оператор "In". В данном случае формула будет выглядеть следующим образом:

```
Sum([Sales Revenue] In ([Year]))
```

В этой версии формулы в качестве контекста явно указан год, а не удаляется квартал, чтобы оставить год.

Ключевые слова с расширенным синтаксисом в приложении Web Intelligence

Ключевые слова с расширенным синтаксисом — это форма условного обозначения, которая позволяет обращаться к измерениям с расширенным синтаксисом без явного указания этих измерений. Это позволяет обеспечить создание неустаревающих отчетов; если в формулах не содержатся жестко запрограммированные ссылки на измерения, то они будут оставаться действительными даже при добавлении измерений в отчет или удалении измерений из отчета.

Предусмотрено пять ключевых слов расширенного синтаксиса: Отчет, Раздел, Разбиение, Блок и Тело.

Ключевое слово блока

В следующей таблице описаны измерения, на которые ссылается ключевое слово блока, в зависимости от его местоположения в отчете; ключевое слово блока часто включает в себя те же данные, что и ключевое слово раздела. Вся разница заключается в том, что Блок принимает во внимание фильтры блока, а Раздел нет.

Если расположено в	Ссылается на эти данные
Блок	Данные во всем блоке, без учета разрывов, но с учетом фильтров
Разбиение по блокам (верхний или нижний колонтитул)	Данные во всем блоке, без учета разрывов, но с учетом фильтров
Раздел (верхний колонтитул, нижний колонтитул или данные за пределами блока)	Не применимо
За пределами всех блоков или разделов	Не применимо

Пример: Ключевое слово блока

В отчете содержатся сведения о доходах от продаж за год, и квартал. В этом отчете создан раздел на основе объекта "Год". Фильтры блока опускают показатели за третий и четвертый кварталы.

2001

Quarter	Sales revenue	First Half Average	Yearly Average
Q1	\$2 660 700	\$2 469 851.25	\$8 096 123.60
Q2	\$2 279 003	\$2 469 851.25	\$8 096 123.60
Сумма:	4 939 702.5		

2002

Quarter	Sales revenue	First Half Average	Yearly Average
Q1	\$3 326 172	\$3 083 411.50	\$13 232 246.00
Q2	\$2 840 651	\$3 083 411.50	\$13 232 246.00
Сумма:	6 166 823		

2003

Quarter	Sales revenue	First Half Average	Yearly Average
Q1	\$3 742 989	\$3 874 853.20	\$15 059 142.80
Q2	\$4 006 718	\$3 874 853.20	\$15 059 142.80
Сумма:	7 749 706.4		

В столбце "В среднем за год" присутствует формула.

Average([Sales revenue] In Section)

Формула также присутствует в столбце "В среднем за первое полугодие".

Average ([Sales revenue]) In Block

Можно проследить за тем, как ключевое слово блока учитывает фильтр блока.

Ключевое слово "Тело"

В следующей таблице описываются измерения, на которые ссылается ключевое слово "Тело" в зависимости от его расположения в отчете:

Если расположено в	Ссылается на эти данные
Блок	Данные в блоке
Разбиение по блокам (верхний или нижний колонтитул)	Данные в блоке
Раздел (верхний колонтитул, нижний колонтитул или данные за пределами блока)	Данные в разделе
За пределами всех блоков или разделов	Данные в отчете

Пример: Ключевое слово "Тело"

В отчете отображаются объекты "Год", "Квартал" и "Доход с продаж" с разбиением по объекту "Год". В отчете содержится раздел, основанный на объекте "Год", и разбиение по объекту "Квартал".

Год	Квартал	Доходы с про- даж	Тело
2001	К1	2 660 700	2 660 699,5
	K2	2 279 003	2 279 003
	КЗ	1 367 841	1 367 840,7
	K4	1 788 580	1 788 580,4
2001		8 096 123,6	

В строке "Тело" записана формула

```
Sum ([Sales Revenue]) In Body
```

Итоги в столбце "Тело" и "Доход с продаж" одинаковы, поскольку ключевое слово "Тело" относится к данным в блоке. Если удалить объект "Месяц", цифры в столбце "Блок" изменятся для обеспечения соответствия цифрам в столбце "Доход с продаж". Если формулу разместить в нижнем колонтитуле отчета, то будет вычисляться совокупный доход для блока.

Ключевое слово "Разбиение"

В следующей таблице описываются измерения, на которые ссылается ключевое слово "Разбиение" в зависимости от его расположения в отчете:

Если расположено в	Ссылается на эти данные
Блок	Данные в части блока, разделенные разбиением
Разбиение по блокам (верхний или нижний колонтитул)	Данные в части блока, разделенные разбиением
Раздел (верхний колонтитул, нижний колонтитул или данные за пределами блока)	Не применимо

Если расположено в	Ссылается на эти данные
За пределами всех блоков или разделов	Не применимо

Пример: Ключевое слово "Разбиение"

В отчете содержатся сведения о доходах от продаж за год, и квартал.

Year	Quarter	Sales revenue	Break Total
2001	Q1	\$2 660 700	8 096 123.6
	Q2	\$2 279 003	8 096 123.6
	Q3	\$1 367 841	8 096 123.6
	Q4	\$1 788 580	8 096 123.6
2001			

В отчете содержится разбиение по объекту "Год". В столбце "Итог разбиения" записана формула:

При отсутствии ключевого слова "Разбиение" в этом столбце будут дублироваться цифры из столбца "Доход с продаж", поскольку будет использоваться контекст вывода по умолчанию ([Год];[Квартал]).

Ключевое слово Report

В следующей таблице приведены данные, на которые ссылается ключевое слово Report в зависимости от его местонахождения в отчете:

Если расположено в	Ссылается на эти данные
Блок	Все данные в отчете
Разбиение по блокам (верхний или нижний колонтитул)	Все данные в отчете

Если расположено в	Ссылается на эти данные
Раздел (верхний колонтитул, нижний колонтитул или данные за пределами блока)	Все данные в отчете
За пределами всех блоков или разделов	Все данные в отчете

Пример: Ключевое слово Report

В отчете содержатся сведения о доходах от продаж за год, и квартал. В отчете есть столбец "Сумма по отчету", в котором отображается сумма всех доходов из отчета.

Year	Quarter	Sales revenue	Report Total
2001	Q1	\$2 660 700	36 387 512.4
2001	Q2	\$2 279 003	36 387 512.4
2001	Q3	\$1 367 841	36 387 512.4
2001	Q4	\$1 788 580	36 387 512.4
2002	Q1	\$3 326 172	36 387 512.4
2002	Q2	\$2 840 651	36 387 512.4
2002	Q.3	\$2 879 303	36 387 512.4
2002	Q4	\$4 186 120	36 387 512.4
2003	Q1	\$3 742 989	36 387 512.4
2003	Q2	\$4 006 718	36 387 512.4
2003	Q.3	\$3 953 395	36 387 512.4
2003	Q4	\$3 356 041	36 387 512.4

Формула для столбца "Сумма по отчету": Sum([Доходы от продаж]) In Report. Без ключевого слова Report в данном столбце воспроизводились бы цифры из столбца "Доходы от продаж", поскольку в нем использовался бы контекст вывода по умолчанию ([Год];[Квартал]).

Ключевое слово "Раздел"

В следующей таблице описываются данные, на которые ссылается ключевое слово "Раздел" в зависимости от его расположения в отчете:

Если расположено в	Ссылается на эти данные
Блок	Все данные в разделе
Разбиение по блокам (верхний или нижний колонтитул)	Все данные в разделе
Раздел (верхний колонтитул, нижний колонтитул или данные за пределами блока)	Все данные в разделе
За пределами всех блоков или разделов	Не применимо

Пример: Ключевое слово "Раздел"

В отчете отображаются объекты "Год", "Квартал" и "Доход с продаж".

2001

Quarter	Sales revenue	Section Total
Q1	\$2 660 700	8 095 814
Q2	\$ 2 278 693	8 095 814
Q3	\$ 1 367 841	8 095 814
Q4	\$ 1 788 580	8 095 814

В этом отчете создан раздел на основе объекта "Год". В столбце "Итог раздела" записана формула:

Sum ([Sales Revenue]) In Section

Цифра в столбце "Итог раздела" обозначает совокупный доход за 2001 год, поскольку разбиение раздела выполнено в объекте "Год". При отсутствии ключевого слова "Раздел" в этом столбце будут

дублироваться цифры из столбца "Доход с продаж", поскольку будет использоваться контекст вывода по умолчанию ([Год];[Квартал]).

Округление и обрезание чисел с помощью Web Intelligence

Некоторые функции Web Intelligence содержат параметр, определяющий, до какого уровня функция округляет или обрезает возвращаемое значение. Этот параметр принимает целое число, которое должно быть больше, меньше или равно 0.

Параметр	Описание
> 0	Эта функция округляет или обрезает до десятичных знаков <параметра>.
	Примеры.
	Round(3,13; 1) возвращает 3,1
	Round (3, 157; 2) возвращает 3,16
0	Эта функция округляет или обрезает до ближайшего целого числа
	Примеры.
	Truncate(3,7; 0) возвращает 3
	Truncate(4,164; 0) возвращает 4
< 0	Эта функция округляет или обрезает до ближайшего числа 10 (параметр = -1), 100 (параметр = -2), 1000 (параметр = -3) и так далее.
	Примеры.
	Round(123,76; -1) возвращает 120
	Round(459,9; -2) возвращает 500
	Truncate(1600; -3) возвращает 1000

Примечание:

Числа представляются в виде двойных значений и имеют точность до шестнадцатой цифры.

См. также

- Round
- Truncate
- EuroConvertTo
- EuroConvertFrom
- EuroFromRoundError

• EuroToRoundError

Устранение ошибок в формулах Web Intelligence

Сообщения об ошибках формул и информационные сообщения

В некоторых случаях формулой Web Intelligence не может быть возвращено значение, поэтому появляется сообщение об ошибке или информационное сообщение, которое начинается с символа "#". Сообщение появляется в ячейке, в которой размещена формула.

#COMPUTATION

Сообщение об ошибке #COMPUTATION выводится в том случае, когда измерение со срезами, указанное в качестве параметра функции RelativeValue, более не доступно в контексте вычислений того блока, в котором эта функция расположена.

Сообщение об ошибке #COMPUTATION также связано с неправильным использованием контекстных операторов в формуле. Для получения дополнительной информации см. руководство Использование функций, формул и вычислений в SAP BusinessObjects Web Intelligence.

См. также

RelativeValue

#CONTEXT

#CONTEXT отображается в мере, если мера имеет несуществующий контекст вычисления.

Сообщение об ошибке #CONTEXT относится к сообщениям об ошибках #INCOMPATIBLE и #DATASYNC, которые отображаются в измерениях в случае, когда блок содержит несуществующий контекст вычисления.

В случае #INCOMPATIBLE контекст не существует по причине несовместимости измерений; в случае #DATASYNC контекст не существует потому, что измерения получены из нескольких несинхронизированных поставщиков данных.

Пример: Несуществующий контекст вычисления в запросе

Если блок, в основе которого лежит юниверс "Island Resorts Marketing", содержит объекты "Год резервирования" и "Доход", сообщение об ошибке #CONTEXT отображается потому, что невозможно агрегировать доход по году резервирования. (Резервирования еще не сгенерировали ни один доход).

#DATASYNC

Сообщение #DATASYNC появляется при размещении измерения от другого поставщика данных в блок, в котором содержатся измерения от отличных поставщиков данных, и два поставщика данных не синхронизированы в объединенном измерении. Сообщение #DATASYNC появляется во всех измерениях в блоке. а сообщение #CONTEXT – в мерах.

Пример: Измерения от разных поставщиков данных в блоке

Если в отчете, основанном на Юниверсе Island Resorts Marketing, содержатся поставщики данных с объектами (Год. Доход) и (Квартал). в блоке с объектами Год. Квартал и Доход отображается сообщение #DATASYNC в столбцах Год и Квартал, поскольку два поставщика данных не синхронизированы в объединенном измерении.

#DIV/0

Сообщение #ДЕЛЕНИЕ/О появляется, если в формуле выполняется попытка деления числа на ноль, что математически не представляется возможным. Ноль никогда не может являться делителем.

Пример: Определение дохода для одного объекта

В отчете отображаются доходы с продаж, число проданных объектов и доход, полученный с продажи одного объекта (который вычисляется путем деления дохода с продаж на число проданных объектов).

Для квартала отсутствует доход с продаж; в столбце дохода с продажи одного элемента появляется сообщение #ДЕЛЕНИЕ/0 для этого квартала, поскольку в формуле была предпринята попытка деления на ноль; т.е. деление дохода на нулевое число проданных объектов.

#EXTERNAL

Ошибка #EXTERNAL возникает в случае, когда формула ссылается на внешнюю функцию, недоступную в Web Intelligence.

#INCOMPATIBLE

#INCOMPATIBLE – сообщение о наличии несовместимых объектов в бпоке.

Пример: Несовместимые объекты в запросе

Если блок, в основе которого лежит юниверс Island Resorts Marketing (Маркетинг островных курортов), содержит измерения "Год" и "Год бронирования", в столбцах, в которых содержатся эти измерения, отображается сообщение #INCOMPATIBLE, поскольку эти объекты несовместимы.

#MULTIVALUE

Сообщение #НЕОДНОЗНАЧНО появляется при размещении формулы, которая возвращает несколько значений в ячейку, для которой предусмотрен вывод только одного значения.

Пример: Многозначность в ячейке

В отчет с объектами "Страна", "Курорт" и "Доход" добавляется ячейка с формулой [Доход] ForEach ([Страна]). В этой ячейке отображается сообщение #НЕОДНОЗНАЧНО, поскольку для объекта "Страна" в отчете заданы два значения: "США" и "Франция".

В одной ячейке невозможно одновременно отобразить доходы для США и Франции. В ячейке с доходом, расположенной за пределами таблицы, можно только определенным образом агрегировать доходы, указанные в таблице (например путем сложения или нахождения среднего значения).

Если в отчете выполнено разбиение на разделы по объекту "Страна", формула является правильной, если помещена в раздел, поскольку в одном разделе задано только одно значение для объекта "Страна". Однако за пределами раздела формула будет возвращать #НЕОДНОЗНАЧНО

#OVERFLOW

Сообщение #ПЕРЕПОЛНЕНИЕ появляется, если в результате вычисления было получено слишком большое значение, которое не может быть обработано приложением Web Intelligence. Это значение в экспоненциальном представлении имеет вид 1,7Е308 (1,7 с 307 нолями).

#PARTIALRESULT

Сообщение #PARTIALRESULT появляется, если приложению Web Intelligence не удалось извлечь все строки, связанные с объектом отчета.

Если сообщение #PARTIALRESULT появляется в отчете слишком часто и при наличии подходящих прав доступа, измените свойство запроса "Максимальное количество извлекаемых строк", чтобы разрешить приложению Web Intelligence извлечение дополнительных данных. Если отсутствуют права на изменение запроса, обратитесь к администратору Business Objects.

Если в отчете содержатся интеллектуальные меры, предпочтительнее настроить отображение сообщения #PARTIALRESULT. поскольку при использовании интеллектуальных мер в приложении Web Intelligence извлекаются большие объемы данных, чем при использовании классических мер.

#RANK

Сообщение об ошибке #RANK возникает при попытке ранжирования данных, в основе которых лежит объект, зависящий от порядка значений. (От порядка значений зависят объекты, использующие функцию Previous() или любую функцию промежуточного агрегирования.) Ранжирование приводит к тому, что эти объекты пересчитывают свои значения, в результате чего изменяется ранжирование — это приводит к возникновению циклической зависимости. Такая зависимость может возникать при использовании диалогового окна "Ранг" для создания ранжирования или при использовании функции Rank().

Пример: Ранжирование по промежуточному среднему предыдущих значений

Если выполняется попытка ранжирования блока по столбцу, который содержит функцию Previous() или любую функцию промежуточного среднего, ошибку #RANK возвращает весь блок.

#RECURSIVE

#RECURSIVE – сообщение о том, что Web Intelligence не удалось произвести расчет из-за наличия циклической зависимости.

Пример: Использование функции NumberOfPages()

Если поместить функцию NumberOfPages() в ячейку с установленными свойствами "Автоматический подбор высоты" или "Автоматический подбор ширины", Web Intelligence возвратит #RECURSIVE, так как в этом случае возникает циклическая зависимость. Web Intelligence необходимо знать точный размер отчета до того, как можно будет вернуть значение функции, но размер ячейки (который влияет на размер отчета) определяется содержимым ячейки.

#SECURITY

Ошибка #SECURITY возникает при попытке использования функции, для которой у пользователя нет прав защиты.

Пример: Использование функции DataProviderSQL()

Если пользователь, у которого нет прав просмотра поставщика данных SQL, размещает в ячейке функцию DataProviderSQL(), в ячейке отображается сообщение #SECURITY.

#SYNTAX

Ошибка #SYNTAX возникает в случае, когда формула ссылается на объект, который больше не существует в отчете.

Пример: Ссылка на несуществующий объект

Есть отчет, в котором исходно отображался доход от продаж по годам и кварталам, с дополнительным столбцом, в котором отображалась разница между доходом и средним доходом за год. Это значение представлено переменной "Разница со средним за год".

Если из отчета удалить переменную "Разница со средним за год", в столбце, в котором она находилась, возвращается ошибка #SYNTAX.

#TOREFRESH

#TOREFRESH – сообщение о том, что в ячейках, использующих интеллектуальные меры, возвращаемое ими значение не поддерживается. Такая ситуация имеет место, когда в поставщике данных недоступен «набор для группировки», содержащий значение.

Ошибка #TOREFRESH устраняется посредством обновления данных.

#UNAVAILABLE

Ошибка #UNAVAILABLE возникает в случае, когда Web Intelligence не может вычислить значение интеллектуальной меры.

Эта ситуация возникает в случае, когда Web Intelligence не может отобразить значения в отфильтрованной интеллектуальной мере без применения фильтра к запросу. Поскольку это порождает риск воздействия на другие отчеты, в основе которых лежит этот же запрос, Web Intelligence не применяет фильтр запроса.

#ERROR

#ERROR – сообщение об ошибке по умолчанию, которое отображается при возникновении ситуации, которой не присвоено никакое другое сообщение об ошибке.

Сравнение значений с помощью функций Web Intelligence

Сравнение значений с помощью функции Previous

Функция Previous возвращает предыдущее значение выражения для сравнения. Возвращенное значение зависит от макета отчета.

Для использования расширенных возможностей сравнения применяйте функцию RelativeValue. RelativeValue возвращает предыдущее или последующее значение выражения для сравнения. Возвращенное значение не зависит от макета отчета.

См. также

- Previous
- RelativeValue
- Сравнение значений с помощью функции Relative Value

Сравнение значений с помощью функции RelativeValue

Функция RelativeValue возвращает значения выражения для сравнения. Функция возвращает данные значения независимо от макета отчета.

Bo время использования функции RelativeValue необходимо указать следующие данные.

- Выражение, чье значение для сравнения необходимо найти (должно быть мерой или объектом-описанием измерения, доступными в блоке)
- Список «измерений срезов»
- Смешение

В данной функции используются измерения срезов, смещение и «измерения вложенных осей» (которые применяются измерениями срезов) для возврата значения для сравнения. Измерения вложенных осей – это все остальные измерения в контексте вычислений, не считая измерений срезов.

Выражаясь в общих чертах, функция RelativeValue возвращает значение выражения в строку, которая в списке значений измерений срезов является строкой смещения, удаленной из текущей строки, и в которой измерения вложенных осей такие же, как и в текущей строке.

Примечание:

Все измерения срезов должны находится в контексте вычислений блока, куда помещена функция. Если измерение среза впоследствии удалить, функция возвращает #COMPUTATION.

Пример:

В следующем примере в столбце Relative Value содержится следующая формула.

RelativeValue([Revenue];([Year]);-1)

- Выражение [Доход];
- Измерение среза [Год];
- Смещение равно минус единице (функция сразу возвращает предыдущее значение в списке).

Год	Квартал	Продавец	Доход	RelativeValue
2007	К1	Смит	1000	
2007	К2	Джонс	2000	
2007	К3	Уилсон	1500	
2007	К4	Харрис	3000	
2008	K1	Смит	4000	1000
2008	К2	Джонс	3400	2000
2008	К3	Уилсон	2000	1500
2008	К4	Харрис	1700	3000

Формула, выраженная бизнес-вопросом, указывает Web Intelligence, что необходимо возвратить прибыль, полученную одним продавцом в таком же квартале предыдущего года.

С помощью формулы, выраженной вычислением при помощи слов, Web Intelligence возвращает значение [Прибыль] (выражение) в строку, где значение [Год] (измерение среза) является предыдущим значением списка значений объекта [Год], и где значения [Квартал] и [Продавец] (измерения вложенных осей) совпадают со значениями в текущей строке.

См. также

RelativeValue

Измерения срезов и функция RelativeValue

В функции RelativeValue список значений измерений срезов используется для поиска сравнимой строки. Данная функция возвращает значение для сравнения с выражением, указанным в функции, находящейся за смещение строк от списка измерений срезов.

В результате порядок сортировки измерений срезов является решающим в определении выходных данных функции.

Пример: Несколько измерений срезов

В указанной ниже таблице столбец Relative Value содержит следующую формулу:

RelativeValue([Revenue];([Year];[Quarter]);-1)

- Выражение [Доход];
- Измерения срезов ([Год];[Квартал]);
- Смещение равно минус единице (функция сразу возвращает предыдущее значение в списке).

Год	Квартал	Продавец	Доход	RelativeValue
2007	К1	Смит	1000	
2007	К2	Смит	2000	
2007	К3	Смит	1500	
2007	К4	Смит	3000*	

Год	Квартал	Продавец	Доход	RelativeValue
2007	К1	Джонс	4000	
2007	К2	Джонс	3400	
2007	К3	Джонс	2000	
2007	К4	Джонс	1700	
2008	К1	Смит	5000**	3000*
2008	К2	Смит	3000***	5000**
2008	К3	Смит	2700****	3000***
2008	K4	Смит	6800	2700****

Формула, выраженная бизнес-вопросом, указывает Web Intelligence, что необходимо отобразить прибыль, полученную одним продавцом в предыдущем квартале.

Формула, выраженная в виде вычисления в словах, указывает Web Intelligence, что необходимо возвратить значение [Прибыль] в строку, где значения [Год] и [Квартал] представляют предыдущее значение в списке значений ([Год];[Квартал]), и где значение [Продавец] совпадает со значением в текущей строке.

Чтобы найти значение прибыли для сравнения, в Web Intelligence используется список значений измерений срезов.

Год	Квартал	
2007	К1	
2007	К2	
2007	КЗ	
2007	K4	*
2008	К1	**

Год	Квартал	
2008	К2	***
2008	К3	****
2008	K4	

Порядок сортировки в измерениях срезов определяет выходные данные функции. Знак "*" в таблицах отображает порядок сортировки.

См. также

RelativeValue

Измерения срезов и разделы

Измерение среза может находится в основной ячейке раздела отчета.

Пример:

В указанной ниже таблице столбец Relative Value содержит следующую формулу:

RelativeValue([Revenue];([Year];[Quarter]);-1)

2007

Квартал	Продавец	Доход	RelativeValue
K1	Смит	1000	
K2	Смит	2000	
К3	Смит	1500	
K4	Смит	3000*	
K1	Джонс	4000	

Квартал	Продавец	Доход	RelativeValue
K2	Джонс	3400	
КЗ	Джонс	2000	
K4	Джонс	1700	

2008

Квартал	Продавец	Доход	RelativeValue
K1	Смит	5000**	3000*
K2	Смит	3000***	5000**
КЗ	Смит	2700****	3000***
K4	Смит	6800	2700****

Чтобы найти значение прибыли для сравнения, в Web Intelligence используется список значений измерений срезов.

Год	Квартал	
2007	К1	
2007	К2	
2007	КЗ	
2007	K4	*
2008	К1	**
2008	К2	***
2008	КЗ	****
2008	K4	

Порядок сортировки в измерениях срезов определяет выходные данные функции. Знак "*" в таблицах отображает порядок сортировки.

См. также

RelativeValue

Порядок измерений срезов

Так как порядок сортировки списка значений измерений срезов определяет выходные данные функции RelativeValue, порядок, в котором указываются измерения срезов, влияет на выходные данные функции.

Пример: Порядок измерений срезов

В указанной ниже таблице столбец Relative Value содержит следующую формулу:

RelativeValue([Revenue];([Year];[Quarter]);-1)

Год	Квартал	Продавец	Доход	RelativeValue
2007	K1	Смит	1000	
2007	К2	Смит	2000	
2007	К3	Смит	1500	
2007	K4	Смит	3000*	
2007	К1	Джонс	4000	
2007	К2	Джонс	3400	
2007	К3	Джонс	2000	
2007	К4	Джонс	1700	
2008	К1	Смит	5000**	3000*

Год	Квартал	Продавец	Доход	RelativeValue
2008	К2	Смит	3000***	5000**
2008	К3	Смит	2700****	3000***
2008	К4	Смит	6800	2700****

Формула, выраженная бизнес-вопросом, указывает Web Intelligence, что необходимо отобразить прибыль, полученную одним продавцом в предыдущем квартале.

Порядок сортировки измерений срезов выглядит следующим образом.

Год	Квартал	
2007	К1	
2007	К2	
2007	КЗ	
2007	K4	*
2008	К1	**
2008	K2	***
2008	КЗ	****
2008	K4	

Название функции изменяется на:

```
RelativeValue([Revenue];([Quarter];[Year]);-1)
```

Порядок сортировки измерений срезов становится следующим.

Квартал	Год	
K1	2007	*
K1	2008	**
K2	2007	***
K2	2008	****
КЗ	2007	****
КЗ	2008	*****
K4	2007	*****
K4	2008	*****

Порядок сортировки оказывает следующее влияние на результат функции.

Год	Квартал	Продавец	Доход	RelativeValue
2007	К1	Смит	1000*	
2007	К2	Смит	2000***	
2007	К3	Смит	1500****	
2007	K4	Смит	3000*****	
2007	K1	Джонс	4000	
2007	К2	Джонс	3400	
2007	К3	Джонс	2000	
2007	K4	Джонс	1700	
2008	К1	Смит	5000**	1000*

Год	Квартал	Продавец	Доход	RelativeValue
2008	К2	Смит	3000****	2000***
2008	К3	Смит	2700*****	1500****
2008	К4	Смит	6800******	3000*****

Формула, выраженная бизнес-вопросом, указывает Web Intelligence, что необходимо отобразить прибыль, полученную одним продавцом в предыдущем квартале.

Изменение в порядке сортировки измерения среза изменяет смысл формулы. Знак "*" в таблицах означает порядок сортировки

См. также

RelativeValue

Сортировка измерений срезов

Так как порядок сортировки списка значений измерений срезов определяет выходные данные функции, сортировка, применяемая к измерению в измерениях срезов, влияет на выходные данные функции.

Пример: Пользовательская сортировка, применяемая к измерению среза

В указанной ниже таблице столбец Relative Value содержит следующую формулу:

```
RelativeValue([Revenue];([Year];[Quarter]);-1)
```

Пользовательская сортировка (К1, К2, К4, К3) применяется к [Квартал], предоставляя следующие результаты для функции.

Год	Квартал	Продавец	Доход	RelativeValue
2007	K1	Смит	1000	
2007	К2	Смит	2000	
2007	K4	Смит	3000	
2007	К3	Смит	1500*	
2007	K1	Джонс	4000	
2007	К2	Джонс	3400	
2007	K4	Джонс	1700	
2007	К3	Джонс	2000	
2008	K1	Смит	5000**	1500*
2008	К2	Смит	3000***	5000**
2008	K4	Смит	6800****	3000***
2008	К3	Смит	2700	6800****

Отсортированный список измерений срезов выглядит следующим образом.

Год	Квартал	
2007	К1	
2007	К2	
2007	К4	
2007	КЗ	*
2008	К1	**
2008	К2	***
2008	K4	****
2008	КЗ	

Знак "*" в таблицах отображает порядок сортировки.

См. также

RelativeValue

Использование функции RelativeValue в кросс-таблицах

Функция RelativeValue работает в кросс-таблицах точно так же, как и в вертикальных таблицах. Размещение данных в кросс-таблицах не влияет на выходные данные функции.

См. также

RelativeValue

Дополнительная информация

Дополнительная информация

Источник информации	Местоположение
Информация о продуктах SAP BusinessObjects	http://www.sap.com
	Перейдите к http://help.sap.com/businessobjects/ и на боковой панели «BusinessObjects Overview» выберите All Products.
	Справочный портал SAP предоставляет доступ к актуальной документации по всем продуктам SAP BusinessObjects и их развертыванию. Можно загрузить документы в формате PDF или устанавливаемые HTML-библиотеки.
Справочный портал SAP	Некоторые руководства находятся на веб-сайте SAP Service Marketplace и недоступны на справочном портале SAP. На данном портале перечислены эти руководства и даны соответствующие ссылки на SAP Service Marketplace. Клиенты, заключившие соглашение о техническом обслуживании, получают идентификатор авторизованного пользователя для доступа к этому вебсайту. Для получения идентификатора обратитесь к представителю службы поддержки пользователей.

Источник информации	Местоположение
SAP Service Marketplace	 http://service.sap.com/bosap-support > Документация Руководства по установке: https://service.sap.com/bosap-instguides Примечания к выпуску: http://service.sap.com/releasenotes На веб-сайте SAP Service Marketplace содержатся некоторые руководства по установке, модернизации, миграции и развертыванию, а также примечания к версия и документация по поддерживаемым платформам. Клиенты, заключившие соглашение о техническом обслуживании, получают идентификатор авторизованного пользователя для доступа к этому веб-сайту. Для получения идентификатора обратитесь к представителю службы поддержки пользователей. Если вас перенаправили на веб-сайт SAP Service Marketplace со справочного портала SAP, с помощью меню в навигационной панели слева перейдите в категорию, содержащую нужные вам документы.
Docupedia	https://cw.sdn.sap.com/cw/community/docupedia Docupedia предоставляет дополнительные ресурсы документации, объединенную среду для создания контента и интерактивный канал обратной связи.
Ресурсы разработчика	https://boc.sdn.sap.com/ https://www.sdn.sap.com/irj/sdn/businessobjects-sdklibrary
Статьи SAP BusinessObjects в сети сообщества SAP	https://www.sdn.sap.com/irj/boc/businessobjects-articles Подобные статьи ранее назывались технической доку ментацией.

Источник информации	Местоположение
Примечания	https://service.sap.com/notes Эти примечания ранее назывались статьями базы знаний.
Форумы в сети сообщества SAP	https://www.sdn.sap.com/irj/scn/forums
Обучение	http://www.sap.com/services/education Мы можем предложить обучающий пакет, соответствующий вашим потребностям и предпочтительным формам обучения — от классических занятий в классах до специализированных курсов eLearning.
Интерактивная служба под- держки пользователей	http://service.sap.com/bosap-support На портале службы поддержки SAP представлены сведения о программах и услугах поддержки. Здесь также содержатся ссылки на самую разнообразную техническую информацию и множество файлов для загрузки. Клиенты, заключившие соглашение о техническом обслуживании, получают идентификатор авторизованного пользователя для доступа к этому вебсайту. Для получения идентификатора обратитесь к представителю службы поддержки пользователей.
Консалтинговые услуги	http://www.sap.com/services/bysubject/businessobjectsconsulting Наши консультанты готовы оказывать вам поддержку на всех этапах – от начального анализа до развертыва ния системы. Советы экспертов можно найти, например, в темах, посвященных относительным и многомерным базам данных, возможностям подключения, средствам разработки баз данных и технологии встраивания с индивидуальными настройками.

I	булевы значения <i>((продолжение))</i> проверка 197, 199
InfoView	p
отображение регистрационного имени автора документов 149	В
	валюты
S	преобразование между европейскими валютами 170, 172
SQL 137	вертикальные таблицы
и группирование множеств 54, 55 и наборы группировок 54	контексты вычислений по умолчанию в 31
и обновление данных 55	входной контекст
оператор GROUPING SETS 57	определенный 27
оператор UNION 54, 57	выходной контекст
	определенные 28
Т	вычисление абсолютного значения числа 168
TimeDim 129	вычисление дисперсии 96
	вычисление дисперсии генеральной совокупности 97
U	вычисление квадратного корня 188
UBI	вычисление косинуса 169
URL-adpeca	вычисление логарифма по основанию 10 181
применение правил кодировки к 117	вычисление логарифма по основанию n 180
	вычисление максимального значения 73
Б	вычисление медианы 74
	вычисление минимального значения 75
блоки	вычисление моды 76
отображение имен 191	вычисление натурального логарифма 179
булевы выражения	вычисление ошибок округления 173, 175
возвращение противоположного 216	вычисление произведения 80
связывание с помощью оператора And	вычисление промежуточного количества 83
215	вычисление промежуточного максимума 85
булевы значения	вычисление промежуточного минимума 87
определение 161	

вычисление промежуточного произведения 89	документы <i>((продолжение))</i> отображение времени последнего
вычисление процентиля 80	сохранения 152
вычисление процентного выражения 15, 77	отображение даты последнего
вычисление синуса угла 187	сохранения 151
вычисление скользящего среднего 81	отображение даты создания 150
вычисление среднего значения 66	отображение имени 151
вычисление среднеквадратического	просмотр запросов в 155
отклонения 92	Pro a Pro Pro
вычисление среднеквадратического	E
отклонения генеральной совокупности 94	E
вычисление суммы 95	евро
вычисление тангенса 188	преобразование в 172
вычисление текущей суммы 91	преобразование из 170
вычисление факториала 178	европейские валюты
вычисление экспоненциальной функции 177	преобразование между 170, 172
вычисления	просоразование шелду тте, тте
пользовательские 10	
стандартные 10	3
	завершающие пробелы
Γ	удаление из строк символов 113
	запросы
горизонтальные таблицы	просмотр сводки 155
контексты вычислений по умолчанию в	значения
33	округление 239
группирование множеств	подсчет 68, 83
управление в Web Intelligence 55	сравнение с помощью RelativeValue 252,
	254, 256, 258, 261, 263
Д	сравнение с помощью функции Previous
	252
данные	усечение 239
обновление 55	значения времени
даты	определение 165
вычисление относительных дат 128	значения меры
идентификация 159	интерполяция 70, 223
форматирование 102, 131	
диаграммы	И
отображение имен 191	•
дисперсия 96	идентификация дат 159
дисперсия генеральной совокупности 97	идентификация чисел 163
документы	
отображение автора 149	

измерения	ключевое слово блока 45, 232
добавление к контексту вычисления 39,	ключевое слово отчета 42, 236
230	ключевое слово раздела 43, 238
и группирование множеств 60	ключевые слова
и сообщение об ошибке #DATASYNC 245	Блок 45, 232
и сообщение об ошибке #INCOMPATIBLE	ключевые слова расширенного
246	синтаксиса 41, 232
измерения среза 252, 254	Отчет 42, 48, 236
удаление из контекста вычисления 40,	Разбиение 44, 235
230	Раздел 43, 238
указание в контексте вычислений 37, 228	создание отчетов, общих с 48
измерения среза 252	Тело 47, 234
влияние порядка сортировки 254, 258, 261	ключевые слова расширенного синтаксиса 41, 232
и разделы 256	использование вместе с функцией
порядок 258	Average 45, 232
интеллектуальные меры	использование вместе с функцией Sum
и наборы группировок 54	42, 43, 44, 47, 234, 235, 236, 238
и область анализа 56	создание отчетов, общих с 48
и операторы контекста 60	коды ASCII 98
и переменные 60	возвращение символов, связанных с 99
и сообщение об ошибке	конечные пробелы
#PARTIALRESULT 247	удаление из строк символов 115
и сообщение об ошибке #TOREFRESH	конкатенация строк символов 21, 100, 214
249	контекстные операторы 22
и сообщение об ошибке #UNAVAILABLE	контексты вычислений
250	входной контекст 26, 27
и стандартные вычисления 10	выходной контекст 26, 28
и фильтры детализации 62	изменение с расширенным синтаксисом
и формулы 60	30
невозможность вычисления 250	определенные 26
определенные 54	по умолчанию 30
интеллектуальные показатели	контексты вычислений по умолчанию
влияние фильтров на 61	в вертикальных таблицах 31
интерполяция значений меры 70, 223	в горизонтальных таблицах 33
	в кросс-таблицах 33
К	в разбиениях 36
IX.	в разделах 34
квадратный корень 188	изменение с расширенным синтаксисом
ключевое слово "Разбиение" 44, 235	37
ключевое слово Body 47, 234	контексты расчета
ключевое слово Report 48	и интеллектуальные меры 60

косинус 169 начальные пробелы кросс-таблицы удаление из строк символов 107, 115 и функция Relative Value 263 нечетные числа контексты вычислений по умолчанию в определение 158, 166 33 номера страниц отображение в отчетах 204 Л O логарифмы 179, 180, 181 логарифмы по основанию 10 181 область анализа логарифмы по основанию n 180 и интеллектуальные меры 56 логические операторы 22, 215 и наборы группировок 56 логические функции обновление данных 55 описание 66 объединение строк символов 21, 100, 214 объекты отображение имени 213 M просмотр фильтров по 156 округление значений 239 максимальные значения округление чисел 168 вычисление промежуточного максимума оператор Аll 202, 218, 219, 221 оператор And 22, 215 математические операторы 21, 214 оператор Between 22, 215, 216 медиана 74 оператор Bottom 183, 219 меры оператор Break 220 возвращение последующих значений 210 оператор СоІ 81, 85, 87, 89, 91, 224 возвращение предыдущих значений 210 оператор Distinct 221 и контексты вычислений по умолчанию оператор Drill 202, 219 30 оператор ForAll 40, 48, 230 минимальные значения оператор ForEach 39, 230 вычисление промежуточного минимума оператор In 37, 228 87 оператор IncludeEmpty 221 мода 76 оператор Inlist 22, 215 оператор InList 217 н оператор Linear 70, 222 оператор NoNull 205, 223 наборы группировок 54 оператор Not 22, 215, 216 и область анализа 56 оператор NotOnBreak 70, 223 и оператор UNION 57 оператор Ог 22, 215 определенные 54 оператор PointToPoint 70, 223 пример управления 57 оператор Row 81, 85, 87, 89, 91, 224 натуральные логарифмы 179 оператор Self 205, 226 оператор Тор 183, 219

оператор UNION 57	определение нечетных чисел 158, 166
оператор Where 226	определение ошибок 160
оператор ИЛИ 215	определение пустых значений 162
оператор Индекс 148	определение строк 164
операторы	определение четных чисел 158, 166
All 202, 218, 219, 221	основной предпочтительный языковой
And 22, 215	стандарт для просмотра
Between 22, 215, 216	отображение 194
Bottom 183, 219	отдельные ячейки
Break 220	и сообщение об ошибке #MULTIVALUE
Col 81, 83, 85, 87, 89, 91, 224	246
Distinct 221	отображение автора документов 149
Drill 202, 219	отображение времени последнего
ForAll 40, 48, 230	сохранения документа 152
ForEach 39, 230	отображение даты последнего сохранения
In 37, 228	документа 151
IncludeEmpty 83, 221	отображение даты создания документов 150
InList 22, 215, 217	отображение имен диаграмм 191
Linear 70, 222	отображение имен объектов отчетов 201
NoNull 205, 223	отображение имен таблиц 191
Not 22, 215, 216	отображение имен юниверсов 147
NotOnBreak 70, 223	отображение количества страниц в отчете
Or 22, 215	204
PointToPoint 70, 223	отображение номера строки 212
Row 81, 83, 85, 87, 89, 91, 224	отображение номеров столбцов 191
Self 205, 226	отображение номеров страниц 204
Where 226	отображение основного предпочтительного
зависящие от функций 23, 218	языкового стандарта для просмотра 194
зависящие от функций операторы 23, 218	отображение откликов на приглашения 148
ИЛИ 215	отображение предпочтительного языкового
Индекс 148, 222	стандарта для просмотра 197
контекст 22	отображение синтаксиса функций 14
логический 22, 215	отображение языкового стандарта документа
математические 21, 214	193
оператор Index 222	отображение языкового стандарта продукта
определенные 21, 213	195
Сверху 183, 219	отчеты
условные 22, 214	отображение имен объектов в 201
опорные данные	отображение количества страниц в 204
возвращение даты 145	отображение номеров страниц в 204
определение булевых значений 161	просмотр имен 212
определение значений времени 165	

ошибки	P
определение 160	
ошибки округления 173, 175	разбиения
	контексты вычислений по умолчанию в
П	36
***	разделы
переменные	и измерения среза 256
и интеллектуальные меры 60	и функция RelativeValue 256
упрощение формул с 12, 19	контексты вычислений по умолчанию в
подсчет значений 83	34
подсчет строк в таблицах 201	разные функции
показатели	описание 66
определение интеллектуальных мер 54	ранжирование
пользовательские вычисления 10	и функции промежуточного агрегирования
использование формул для построения	248
11	ранжирование данных 183
порядок сортировки	расширенный синтаксис 22
и измерения среза 254, 258, 261	изменение контекста вычислений по
поставщики данных 143	умолчанию с 37
отображение имени юниверса 147	ключевое слово Block 45, 232
отображение количества строк в 144	ключевое слово Body 47, 234
просмотр кода SQL, сгенерированного	ключевое слово Break 44, 235
137	ключевое слово Report 42, 48, 236
Предпочтительный языковой стандарт для	ключевое слово Section 43, 238
просмотра	оператор ForAll 37, 40, 227, 230
отображение 197	оператор ForEach 37, 39, 227, 230 оператор In 37, 227, 228
преобразование в евро 172	Редактор формул
преобразование из евро 170	отображение синтаксиса функций в 14
приглашения	Руководство "Использование функций,
отображение откликов на 15, 145, 148	формул и вычислений"
проверка булевых значений 197, 199	сведения 8
произведения	сведения о
вычисление промежуточного	
произведения 89	C
промежуточное количество 83	•
процентиль 80	свойства запроса
пустые значения	Максимальное количество извлекаемых
определение 162	строк 247
	СИМВОЛЫ
	возвращение кодов ASCII 98
	отображение из кодов ASCII 99

символьные функции описание 66 синтаксис функций как в Web Intelligence отображается 14 пример 14 синус 187	сообщения об ошибках ((продолжение)) #OVERFLOW 247 #PARTIALRESULT 247 #RANK 248 #RECURSIVE 248 #SECURITY 249
создание пользовательских вычислений с	#SYNTAX 249
помощью формул 11	#TOREFRESH 55, 60, 249
сообщение об ошибке #COMPUTATION 210,	#UNAVAILABLE 61, 250
244	сообщения об ошибках в формулах 244
сообщение об ошибке #CONTEXT 244, 245	сортировки
сообщение об ошибке #DATASYNC 244, 245 сообщение об ошибке #ERROR 170, 172,	и измерения среза 254, 258, 261 сравнение значений с помощью RelativeValue
173, 175, 189, 250	252, 254, 256, 258, 261, 263
сообщение об ошибке #EXTERNAL 246 сообщение об ошибке #INCOMPATIBLE 244,	сравнение значений с помощью функции Previous 252
245, 246	среднее
сообщение об ошибке #MULTIVALUE 212,	вычисление скользящего среднего 81
246	среднеквадратическое отклонение 92
сообщение об ошибке #OVERFLOW 247	среднеквадратическое отклонение
сообщение об ошибке #PARTIALRESULT 247	генеральной совокупности 94
и интеллектуальные меры 247	стандартное вычисление функции Average
сообщение об ошибке #RANK 248	10
сообщение об ошибке #RECURSIVE 248	стандартное вычисление функции Count 10
сообщение об ошибке #SECURITY 249 сообщение об ошибке #SYNTAX 249	стандартное вычисление функции Default 10
сообщение об ошибке #TOREFRESH 55, 60,	стандартное вычисление функции Maximum 10
249 и интеллектуальные меры 249	стандартное вычисление функции Minimum 10
сообщение об ошибке #UNAVAILABLE 61, 250	стандартное вычисление функции Percentage
и интеллектуальные меры 250	стандартное вычисление функции Sum 10
сообщение об ошибке #ДЕЛЕНИЕ/0 245	стандартные вычисления 10
сообщения об ошибках	столбцы
#COMPUTATION 210, 244	отображение номеров 191
#CONTEXT 244, 245	страницы
#DATASYNC 244, 245	отображение количества в отчетах 204
#DIV/0 245	строки
#ERRPR 170, 172, 173, 175, 189, 250	определение 164
#EXTERNAL 246	отображение количества в поставщике
#INCOMPATIBLE 244, 245, 246	данных 144
#MULTIVALUE 212, 246	отображение номера строки 212

строки ((продолжение))	упрощение формул с помощью переменных
подсчет в таблицах 201	12, 19
подсчет всех значений 218	усечение значений 239
подсчет различных значений 218	условие IfThenElse 197
строки символов	условные операторы 22, 214
возврат самых левых символов 105	
возвращение самых правых символов 111	Φ
вычисление длины 107	факториал 178
замена частей 111	фильтры
заполнение другими строками 106, 112	блок 157
извлечение разделов из 114	детализация 219
объединение/конкатенация 21, 100, 214	и интеллектуальные меры 62
перевод в верхний регистр 116	на измерения 61
перевод в верхний регистр всех первых	отображение всех значений 218
букв в 117	отображение фильтров детализации 218
перевод в верхний регистр первых букв	отчет 156, 157, 219
117	раздел 157
перевод в числа 189	фильтры детализации 62
перевод первой буквы в верхний регистр	фильтры детализации 219
104	и интеллектуальные меры 62
повторение 101	игнорирование 219
преобразование в нижний регистр 108	отображение 218
применение правил кодировки URL к 117	фильтры для измерений
соответствие шаблону 109	влияние на интеллектуальные показатели
удаление конечных пробелов из 113, 115	61
удаление начальных пробелов из 107,	фильтры отчета 156, 219
115	игнорирование 219
	просмотр сводки 157
Τ	форматирование чисел 103
_	формулы
габлицы	и интеллектуальные меры 60
вертикальная 31	интеллектуальные меры в 60
горизонтальная 33	использование операторов в 21, 213
отображение имен 191	создание пользовательских вычислений
подсчет строк в 201	с помощью 11
гангенсы 188	сообщения об ошибках, сгенерированные 244
У	упрощение с переменными 12, 19
	функции
умножение чисел 80, 89	Abs 168
	Asc 98

функции ((продолжение)) функции ((продолжение)) Average 45, 66, 221, 232 FormatNumber 103 BlockName 191 GetContentLocale 193 Ceil 168 GetDominantPreferredViewingLocale 194 Char 99 GetLocale 195 ColumnNumber 191 GetLocalized 195 Concatenation 100 GetPreferredViewingLocale 197 Cos 169 HTMLEncode 104 Count 68, 218, 221 If 22, 199, 214 CurrentDate 118 InitCap 104 CurrentTime 119 IsDate 159 CurrentUser 192 IsError 160 DataProvider 134 IsLogical 161 DataProviderKeyDate 135 IsNull 162 DataProviderKeyDateCaption 136 IsNumber 163 DataProviderSQL 137 IsPromptAnswered 139 DataProviderType 138 IsString 164 DavName 119 IsTime 165 DayNumberOfMonth 120 Last 73 DayNumberOfWeek 121 LastDayOfMonth 123 DayNumberOfYear 122 LastDayOfWeek 124 DaysBetween 122 LastExecutionDate 140 DocumentAuthor 149 LastExecutionDuration 141 DocumentCreationDate 150 Left 105 LeftPad 106 DocumentCreationTime 150 DocumentDate 151 LeftTrim 107 DocumentName 151 Length 107 DocumentPartiallvRefreshed 152 LineNumber 201 DocumentTime 152 In 179 DrillFilters 153 Log 180 EuroConvertFrom 170, 239 Log10 181 EuroConvertTo 172, 239 Lower 108 EuroFromRoundError 173, 239 Match 109 EuroToRoundError 175, 239 Max 39, 73, 230 Median 74 Even 158 Min 75 Exp 177 Fact 178 Mod 181 Fill 101 Mode 76 First 69 Month 125 MonthNumberOfYear 125 Floor 179

MonthsBetween 126 NameOf 201

ForceMerge 192

FormatDate 102

функции ((продолжение)) NoFilter 202, 218, 219 NumberOfDataProviders 143 NumberOfPages 204, 248 NumberOfRows 144 Odd 166 Page 204 Percentage 15, 77, 220, 224 Percentile 80 Pos 110 Power 182 Previous 205, 223, 226, 248, 252 Product 80 PromptSummary 154 Quarter 127 QuerySummary 155 RefValue 209 RefValueDate 145 RefValueDate 145 RefValueUserResponse 145, 222 RelativeValue 210, 244, 252, 256, 258, 261, 263 Replace 111 ReportFilter 156 ReportFilterSummary 157 ReportName 212 Right 111 RightPad 112 RightPad 112 RightTrim 113 Round 185, 239 Rowlndex 212 RunningAverage 81, 221, 224 RunningCount 83, 221, 224 RunningMin 87, 224 RunningSum 91, 224 Sign 186 Sin 187 Sqrt 188 StdDev 92 StdDevP 94	функции ((продолжение)) Substr 114 Sum 15, 40, 42, 43, 44, 47, 48, 95, 230, 234, 235, 236, 238 Tan 188 ToDate 131 ToNumber 189 Trim 115 Truncate 190, 239 UniqueNameOf 213 UniverseName 147 Upper 116 URLEncode 117 UserResponse 15, 222 Var 96 VarP 97 Week 132 WordCap 117 Year 133 Включение в ячейки 14 Интерполяция 70, 222, 223 категории 66 определенные 14 ОтветПользователя 148 примеры 15 Ранжирование 183, 219 синтаксис функций 14 смесь с текстом в ячейках 14 соединение 134 функция DocumentCreationDate 150 функция DocumentCreationTlme 150 функция GetPreferredViewingLocale 197 функция Interpolation 223 функция RunningAverage 224 функция RunningAverage 224 функция RunningMax 224 функция RunningMax 224 функция RunningProduct 224 функция RunningProduct 224 функция RunningProduct 224 функция RunningSum 224
StdDev 92 StdDevP 94	функция Кипппідбині 224 функция Sum 95
StdDevP 94	функция Sum 95
·	
Sqrt 188	
Sin 187	функция RunningMin 87, 224
•	функция RunningMax 224
•	
	• •
•	
	• •
<u> </u>	• • •
•	,
•	· · · · · · · · · · · · · · · · · · ·
ReportFilterSummary 157	примеры 15
ReportFilter 156	ОтветПользователя 148
Replace 111	определенные 14
263	категории 66
•	
	·
	•
<u> </u>	Trim 115
Page 204	ToNumber 189
Odd 166	ToDate 131
NumberOfRows 144	Tan 188
NumberOfPages 204, 248	234, 235, 236, 238
	Sum 15, 40, 42, 43, 44, 47, 48, 95, 230,
NoFilter 202, 218, 219	Substr 114

функции агрегирования функция DocumentTime 152 описание 66 функция DrillFilter 153 функции даты и времени функция EuroConvertFrom 170. 239 описание 66 функция EuroConvertTo 172, 239 функции для поставщиков данных функция EuroFromRoundError 173, 239 функция EuroToRoundError 175, 239 описание 66 функция Even 158 функции документов описание 66 функция Ехр 177 функции промежуточного агрегирования функция Fact 178 и ранжирование 248 функция Fill 101 и сообщение об ошибке #RANK 248 функция First 69 функция Abs 168 функция Floor 179 функция Asc 98 функция ForceMerge 192 функция FormatDate 102 функция Average 66, 221 функция FormatNumber 103 использование вместе с ключевыми функция GetContentLocale 193 словами расширенного синтаксиса функция GetDominantPreferredViewingLocale 45, 232 функция BlockName 191 194 функция СеіІ 168 функция GetLocale 195 функция Char 99 функция GetLocalized 195 функция ColumnNumber 191 функция HTMLEncode 104 функция Concatenation 100 функция If 22, 199, 214 функция Connection 134 функция InitCap 104 функция Соз 169 функция Interpolation 222, 223 функция IsDate 159 функция Count 68, 218, 221 функция CurrentDate 118 функция IsError 160 функция CurrentTime 119 функция IsLogical 161 функция CurrentUser 192 функция IsNull 162 функция DataProvider 134 функция IsNumber 163 функция DataProviderKeyDate 135 функция IsPromptAnswered 139 функция DataProviderKeyDateCaption 136 функция IsString 164 функция DataProviderSQL 137 функция IsTime 165 функция DataProviderType 138 dvнкция Last 73 функция DayName 119 функция LastDayOfMonth 123 функция DayNumberOfMonth 120 функция LastDayOfWeek 124 функция DayNumberOfWeek 121 функция LastExecutionDate 140 функция DayNumberOfYear 122 функция LastExecutionDuration 141 функция DaysBetween 122 функция LastExecutionTime 142 функция DocumentAuthor 149 функция Left 105 функция DocumentDate 151 функция LeftPad 106 функция DocumentName 151 функция LeftTrim 107 функция DocumentPartiallyRefreshed 152 функция Length 107

функция LineNumber 201	функция RelativeValue 210
функция Ln 179	и измерения среза 254, 256, 261
функция Log 180	и кросс-таблицы 263
функция Log10 181	и разделы 256
функция Lower 108	и сообщение об ошибке #COMPUTATION
функция Match 109	244
функция Мах 73	сравнение значений с помощью 252, 254,
использование с операторами контекста	256, 258, 261, 263
39, 230	функция Replace 111
функция Median 74	функция ReportFilter 156
функция Min 75	функция ReportFilterSummary 157
функция Mod 181	функция ReportName 212
функция Mode 76	функция Right 111
функция Month 125	функция RightPad 112
функция MonthNumberOfYear 125	функция RightTrim 113
функция MonthsBetween 126	функция Round 185, 239
функция NameOf 201	функция RowIndex 212
функция NoFilter 202, 218, 219	функция RunningAverage 81, 221
функция NumberOfDataProviders 143	функция RunningCount 83, 221
функция NumberOfPages 204	функция RunningMax 85
и сообщение об ошибке #RECURSIVE	функция RunningProduct 89
248	функция RunningSum 91
функция NumberOfRows 144	функция Sign 186
функция Odd 166	функция Sin 187
функция Page 204	функция Sqrt 188
функция Percentage 15, 77	функция StdDev 92
функция Percentile 80	функция StdDevP 94
функция Pos 110	функция Substr 114
функция Power 182	функция Sum 15
функция Previous 205, 223, 226	использование вместе с ключевыми
и сообщение об ошибке #RANK 248	словами расширенного синтаксиса
сравнение значений с помощью 252	42, 43, 44, 47, 48, 234, 235, 236, 238
функция Product 80	использование с операторами контекста
функция PromptSummary 154	40, 230
функция Quarter 127	функция Tan 188
функция QuerySummary 155	функция ToDate 131
функция Rank 183, 219	функция ToNumber 189
функция RefValue 209	функция Trim 115
функция RefValueDate 145	функция Truncate 190, 239
функция RefValueUserResponse 145, 222	функция UniqueNameOf 213
функция RelativeDate 128	функция UniverseName 147
	функция Upper 116

функция URLEncode 117 функция UserResponse 15, 148, 222 функция Var 96	числовые функции описание 66
функция VarP 97 функция Week 132 функция WordCap 117 функция Year 133 функция интерполяции 70	экспоненциальная функция 177 Ю
Ч четные числа идентификация 158, 166	юниверсы отображение имен 147
числа возведение в степень 182 вычисление модуля 181 деление 181 идентификация 163 модуль 181 округление 168, 185 округление с недостатком 179 округление чисел 185 округление чисел с недостатком 179 определение четности/нечетности 158, 166 перевод строк символов в 189 умножение 80, 89 усечение 190 усечение чисел 190 форматирование 103	Языковой стандарт документа отображение 193 Языковой стандарт продукта отображение 195 языковые стандарты отображение основного предпочтительного языкового стандарта для просмотра 194 отображение языкового стандарта документа 193 отображение языкового стандарта продукта 195 ячейки включая текст в 14 включение функций в ячейки 14