Introductory Applied Machine Learning, Tutorial Number 4

School of Informatics, University of Edinburgh, Instructors: Chris Williams, Oisin Mac Aodha, Hiroshi Shimodaira

September 2020

1. Consider a SVM with a linear kernel run on the following data set

- (a) Using your intuition, what weight vector do you think will result from training an SVM on this data set?
- (b) Plot the data and the decision boundary of the weight vector you have chosen.
- (c) Which are the support vectors? What is the margin of this classifier?
- 2. You want to fit a mixture model with two Gaussians a and b to the following set of numbers:

- (a) If you were to do the procedure manually (leveraging human intuition), what would be the means μ_a and μ_b of the two Gaussians, and the mixing parameters p_a and p_b ?
- (b) Now you want to fit the mixture model in a completely automatic fashion, where you start with a random setting of all parameters and learn them using the EM algorithm. Suppose that the initial random setting of parameters is as follows: $\mu_a = -10$, $\mu_b = -20$, $\sigma_a^2 = \sigma_b^2 = 1$, and $p_a = p_b = 0.5$. Run the EM algorithm for a single iteration to determine the parameter values μ_a , μ_b , p_a and p_b (you do not need to compute the variances σ_a^2 and σ_b^2). For your convenience, the EM update equations involving Gaussian a are provided below, equations for Gaussian b are obtained by replacing a with b as appropriate:

$$p(x_i|a) = \frac{1}{\sqrt{2\pi\sigma_a^2}} \exp\left(-\frac{(x_i - \mu_a)^2}{2\sigma_a^2}\right)$$

$$a_i = P(a|x_i) = \frac{p(x_i|a)p_a}{p(x_i|a)p_a + p(x_i|b)p_b}$$

$$\mu_a = \frac{a_1x_1 + a_2x_2 + \dots + a_nx_n}{a_1 + a_2 + \dots + a_n}$$

$$\sigma_a^2 = \frac{a_1(x_1 - \mu_a)^2 + \dots + a_n(x_n - \mu_a)^2}{a_1 + a_2 + \dots + a_n}$$
 $p_a = (a_1 + a_2 + \dots + a_n)/n$

(c) If you continue running EM, are the parameter values μ_1 , μ_2 , p_1 and p_2 guaranteed to converge to the values you computed in the first part of this question? Why or why not?