Examen Réparti 2 : ARES 2010-2011

Durée totale: 2h00 Autorisé: Une feuille A4 manuscrite

Non autorisés: Autres documents, calculatrices, téléphones portables, PDA, etc.

Version X2-10c

Voici 3 feuilles recto/verso, contenant le sujet et les champs de réponse, que vous devrez exclusivement nous rendre en fin d'épreuve. Pour garantir l'anonymat, un numéro aléatoire vous sera fourni et devra être collé sur chacune des feuilles du sujet et sur la feuille d'émargement. Vous devez noter vos réponses directement sur ce sujet dans les cadres correspondants.

1 Couche réseau (7 points)

Dans cet exercice, nous vous proposons de concevoir un réseau d'entreprise comportant plusieurs LAN (réseaux locaux), de différentes tailles, connectés à Internet à l'aide d'un routeur d'accès. La topologie considérée est représentés sur la figure ci-dessous et les informations relatives aux sous-réseaux et aux équipements sont respectivement listées dans les deux tableaux qui suivent.

1.1 Adressage

Afin de créer un nouveau réseau pour l'équipe R&D d'une entreprise, on demande à l'administrateur principal de créer, pour les LAN. 4 sous-réseaux de tailles différentes à partir d'un bloc d'adresses similaire à une classe C (192.168.10.0/24). Les différentes spécifications demandées pour les sous-réseaux associées aux LAN sont indiqués dans le tableau de gauche.

Sous-réseaux (associés au LAN)	Nombre de machines (routeurs compris)
Lan A	4
Lan B	16
Lan C	16
Lan D	126

Machines	MachinesSous-réseauInterfacePcALan Aeth0		Adresse
PcA			première adresse d'interface
PcB	Lan B	eth0	première adresse d'interface
PcC	PcC Lan C		première adresse d'interface
PcD	Lan D	eth0	première adresse d'interface
R1	Lan B	eth1	dernière adresse d'interface
R1	Lan C	eth2	dernière adresse d'interface
R1	192.168.10.200/29	eth3	192.168.10.202
R2	Lan A	eth1	dernière adresse d'interface
R2	Lan D	eth2	dernière adresse d'interface
R2	192.168.10.200/29	eth3	192.168.10.203
R2	87.23.0.0/17	eth4	87.23.12.56

1. En fonction des spécifications indiquées dans le tableau de gauche, donnez l'adresse de réseau, le masque de sous-réseau,

1/11

5. De même, comme indiqué dans ce tableau, nous désirons attribuer aux routeurs (R1, R2) les dernières adresses (celles de valeur la plus grande) aux interfaces connectées aux différents sous-réseaux associés à des LAN. Donnez les adresses correspondantes pour chaque interface des routeurs connectés aux différents sous-réseaux LAN. 6. Quelle est la différence entre les adresses configurées sur les interfaces eth4 et eth1 de R2 1.2 Routage statique 1. Donnez la table de routage de R1 et R2 afin que l'interconnexion soit possible de bout en bout. Les tables de routage devront être formulées selon le format utilisé en TD. 2. Comment indiquer aux machines de bordures (PcA, PcB, PcC, PcD) l'accès pour communiquer avec toutes les machines extérieures. Donnez un exemple de cette fonctionnalité avec la commande route pour la machine PcA 2/11 Version X2-10c

l'adresse de diffusion (broadcast) pour tous les sous-réseaux associés aux LAN. Afin de réaliser votre plan d'adressage, vous

2. Après avoir attribué une plage d'adresses à chaque sous-réseau, indiquez la plage d'adresses libre. En quoi ces adresses

3. Donnez l'adresse de réseau, le masque de sous-réseaux, l'adresse de diffusion (broadcast) et le nombre total d'interfaces

4. Afin de tester le réseau, nous proposons d'attribuer la première adresse (celle de valeur la plus petite) de chaque sous-réseau associé à un LAN aux différentes machines (PcA, PcB, PcC, PcD) comme indiqué dans le tableau de droite précédent.

adressables des réseaux relatifs aux adresses suivantes : 87.23.34.12/17, 192.168.10.123/24, 192.168.10.200/29.

Master Informatique 1èreannée 1ersem.

Donnez les adresses correspondant à chaque machine.

peuvent être utiles?

devez partir de la plage d'adresses spécifiée précédement, soit 192.168.10/24.

Anonymat : Numéro à coller

2

Examen Réparti 2 : ARES 2010-2011

Durée totale: 2h00

Autorisé: Une feuille A4 manuscrite

Non autorisés: Autres documents, calculatrices, téléphones portables, PDA, etc.

2

Voici 3 feuilles recto/verso, contenant le sujet et les champs de réponse, que vous devrez **exclusivement** nous rendre en fin d'épreuve. Pour garantir l'anonymat, un numéro aléatoire vous sera fourni et devra être collé sur **chacune** des feuilles du sujet et sur la feuille d'émargement. Vous devez noter vos réponses directement sur ce sujet dans les cadres correspondants.

2 Transport TCP (7 points)

Un émetteur **A** souhaite envoyer un fichier de 240 Koctets à un destinataire **B**. Nous nous intéressons dans cet exercice à l'évolution de la fenêtre d'émission au cours du temps. Pour cela, nous considérons les **RTT** successifs, tous d'une durée de 100 ms. Les autres hypothèses sont :

- RTO = 2 * RTT = 200 ms
- $\bullet \ \ \text{MSS} = 1 \ \text{Koctet}$
- La fenêtre de contrôle de flux a une taille constante et égale à 14 Koctets
- LimiteSS est initialisé à 8 Koctets
- $\bullet\,$ La phase de Slow-Start démarre avec une fenêtre de congestion ${\bf fenCong}$ de 1 MSS
- Les premiers octets de données sont envoyés avec le 3ème segment de l'établissement de connexion
- A prend l'initiative de la libération de la connexion TCP

au début	scénario	remarque	4	en raisonnant par RTT				en raisonnant par ACK		
du pas	scenario	remarque	limiteSS	fenCong	fenEffective	nb de segments envoyés	limiteSS	fenCong		
1		RTT du SYN SYN-ACK		non significatif		0				
2			8 Ko	SS: 1 MSS = 1 Ko	fenCong	1				
3				SS: 2 MSS = 2 Ko	fenCong	3				
4				SS: 4 MSS = 4 Ko	fenCong	7				
9				SS: 8 MSS = 8 Ko	fenCong	15				
6				CA: 9 MSS = 9 Ko	fenCong	24				
7				CA: 10 MSS = 10 Ko	fenCong	34				
8				CA: 11 MSS = 11 Ko	fenCong	45				
9	pendant le 9ème	pas, perte avec expiration	on RTO	CA: 12 MSS = 12 Ko	fenCong	57				
10	RTO a expiré		6 Ko (12 / 2)	SS: 1 MSS = 1 Ko	fenCong	58				
11				SS: 2 MSS = 2 Ko	fenCong	60				
12	!			SS: 4 MSS = 4 Ko	fenCong	64				
13				SS: 8 MSS = 8 Ko	fenCong	72		4+1+1+1/4	+ 1/4 = 6,5 car limite	
14				CA: 9 MSS = 9 Ko	fenCong	81		7,5		
15	pendant le 15èm	e pas, perte avec 3 ACK I	DUP	CA: 10 MSS = 10 Ko	fenCong	91		8,5		
16	il y a eu 3 ACK Di	JP	5 Ko (10 / 2)	CA: 5 MSS = 5 Ko	fenCong	96	4,25 Ko (8,5 / 2)	~ 4,96 car fen0	ong = limiteSS + 3 AC	
17	pendant le 17èm	e pas, 2 ACK DUP		CA: 6 MSS = 6 Ko	fenCong	102	7	~ 5,96		
18	il y a eu 2 ACK DI	JP et alors ???		CA: 7 MSS = 7 Ko	fenCong	109		~ 6,96		
19				CA: 8 MSS = 8 Ko	fenCong	117		~ 7,96		
20			7	CA: 9 MSS = 9 Ko	fenCong	126	9	~ 8,96		
21				CA: 10 MSS = 10 Ko	fenCong	136		~ 9,96		
22			5	CA: 11 MSS = 11 Ko	fenCong	147	0	~10,96		
23	1			CA: 12 MSS = 12 Ko	fenCong	159		~11,96		
24				CA: 13 MSS = 13 Ko	fenCong	172		~12,96		
25	il.		8	CA: 14 MSS = 14 Ko	fenCong	186	is .	~13,96		
26	i .			CA: 15 MSS = 15 Ko	fenFlux = 14 l	k 200		~15,96		
27	1			CA: 16 MSS = 16 Ko	fenFlux = 14 l	K 214		~15,96 + 15/16		
28				CA: 17 MSS = 17 Ko	fenFlux = 14 l	k 228		~16 + 15/16		
29				CA: 18 MSS = 18 MSS	fenFlux = 14 l	242 DONT 2 retransm.		~17 + 15/16		
30				envoi FIN et réception	FIN ACK					
2*MSI				envoi ACK et attente d	2*MSL					

Justifiez toutes vos réponses :

1. Quelles sont les valeurs de limiteSS et de fenCong suite à leur mise à jour après le 4ème RTT ?						

3/11

Version X2-10c

Master Informatique	1 ^{ère} ANNÉE	1^{er} SEM.
---------------------	------------------------	----------------------

2.	Après le 4ème RTT , combien d'octets de données ont été envoyés depuis le début de la connexion?						
3.	Quelles sont les valeurs de limiteSS et de fenCong suite à leur mise à jour après le 6ème RTT ?						
4.	Après le 6ème RTT , combien d'octets de données ont été envoyés depuis le début de la connexion?						
5.	Pendant le 9ème RTT , RTO a expiré. Que deviennent les valeurs de limiteSS et de fenCong ?						
6.	Pendant le 15ème RTT , 3 ACK dupliqués sont reçus par A. Que deviennent les valeurs de limiteSS et de fenCong ?						
7.	Pendant le 17ème RTT , 2 ACK dupliqués sont reçus par A. Que deviennent les valeurs de limiteSS et de fenCong ?						
8.	Combien de RTT aura-t-il fallu pour que B reçoive la totalité du fichier?						
9.	Quelle aura été la durée de vie totale de la connexion (du début de l'établissement de la connexion à la fin de la libération)?						

Master Informatique 1èreannée 1ersem.

Anonymat : Numéro à coller

UPNC SORBONNE UNIVERSITÉS

5/11 Version X2-10c

Master Informatique 1èreannée 1ersem.

Examen Réparti 2 : ARES 2010-2011

Durée totale: 2h00

Autorisé: Une feuille A4 manuscrite

Non autorisés: Autres documents, calculatrices, téléphones portables, PDA, etc.

3

Voici 3 feuilles recto/verso, contenant le sujet et les champs de réponse, que vous devrez **exclusivement** nous rendre en fin d'épreuve. Pour garantir l'anonymat, un numéro aléatoire vous sera fourni et devra être collé sur **chacune** des feuilles du sujet et sur la feuille d'émargement. Vous devez noter vos réponses directement sur ce sujet dans les cadres correspondants.

3	Application	P2P	(6	points)

Nous étudions les échanges réseau d'un système pair-à-pair (P2P) destiné à l'échange de fichiers. Dans ce système complètement distribué, un pair \mathbf{N} est virtuellement associé à 4 autres pairs appelés voisins. Ces voisins sont choisis comme étant les plus proches dans un ensemble de pairs connus par \mathbf{N} . Pour maintenir ce voisinage, \mathbf{N} dispose d'une liste de voisins potentiels (nous ne détaillerons pas comment cette liste est obtenue). Le choix des voisins est réalisé en fonction de leur proximité du pair \mathbf{N} .

La figure ci-dessus présente le pair N lors de la construction de son voisinage initial. En supposant qu'il ait la liste de tous les pairs, il doit prendre pour voisin $\boxed{22}$, $\boxed{31}$, $\boxed{33}$ et $\boxed{42}$ (ici, la relation de proximité est associée à la distance euclidienne dans un plan avec le repère orthonormé du graphe).

1.	Rappelez les diffé	érents délais	expérimentés	par ur	n message	envoyé	dans	le réseau.	Justifiez	lequel	peut-être	utilisé	pour
	calculer des distar	nces.											

Quel échange de messages simple pouvez-vous utiliser afin de déterminer la proximité d'un pair? Justifiez votre réponse en précisant ce que vous allez mesurer et pourquoi.

1	

3. Le mécanisme proposé repose-t-il sur un service de transport fiable? Si non, comment gérez-vous la fiabilité?

Chaque pair maintient une table des contenus globalement accessibles (contenus présents soit localement soit sur un autre pair) en précisant à quelle distance chaque contenu se situe (nombre de sauts nécessaires pour y accéder). La distribution de l'information relative aux contenus accessibles dans les pairs est réalisée en envoyant à ses voisins un vecteur des contenus avec les distances d'accès. A la réception d'un tel vecteur, les distances d'accès incluses dans le vecteur sont incrémentées de un, puis le pair récepteur met à jour sa table des contenus en indiquant les voisins permettant le plus court chemin vers ces contenus.

4. Sur la figure ci-dessus, combien d'étapes nécessite la découverte d'un contenu apparaissant en S par N? Explicitez le cheminement des requêtes concernant l'arrivée de cette information.

5. Que ce passe-t-il en cas de suppression du contenu précédent?

- 6. Quel principal problème pose le protocole utilisé?
- 7. Comment peut-on retrouver le pair disposant du contenu?

Une fois un pair choisi pour un contenu, le protocole HTTP est utilisé pour récupérer le fichier correspondant à celui-ci.

- 8. Quels sont les intérêts à utiliser ce protocole pour transférer le fichier de contenu?
- 9. Pour la récupération d'un fichier sur $\boxed{\underline{S}}$, quelles approches sont envisageables entre $\boxed{\underline{N}}$ et $\boxed{\underline{S}}$?

7/11 Version X2-10c

8/11 Version X2-10c

Ne pas rendre cette feuille Ne pas rendre cette feuille

Version X2-10c

11/11 Version X2-10c