CSE 575 Statistical Machine Learning

Lecture 11 YooJung Choi Fall 2022

Recap: Soft-margin SVM

For better generalization, we may want to allow the classifier to *make* small mistakes in exchange for large margins

Recap: Soft-margin SVM

- Introducing slack variables $\xi_n \ge 0$:
 - $\xi_n = 0$: \mathbf{x}_n is correctly classified on the right side of margin boundary
 - $0 < \xi_n \le 1$: \mathbf{x}_n is correctly classified but on the wrong side of margin boundary (*margin violation*)
 - $\xi_n > 1$: \mathbf{x}_n is misclassified
- Intuition: we want the total slack to be small

Soft-margin SVM

• For a positive example \mathbf{x}_n :

$$\xi_n \ge 1 - (\mathbf{w}^T \mathbf{x}_n + b)$$

• For a negative example \mathbf{x}_n :

$$\xi_n \ge (\mathbf{w}^T \mathbf{x}_n + b) - (-1)$$

• Combining using t_n :

$$t_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 - \xi_n, \qquad \forall n$$

Soft-margin SVM

Dual formulation

$$\operatorname{argmin}_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n$$

$$\operatorname{argmax}_{\boldsymbol{a}} \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j t_i t_j k(\mathbf{x}_i, \mathbf{x}_j)$$

s.t.
$$t_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 1 - \xi_n \quad \forall n$$

 $\xi_n \ge 0 \ \forall n$

$$\sum_{n=1}^{N} a_n t_n = 0$$

s.t. $0 \le a_n \le C \ \forall n$

• Again, *support vectors* are \mathbf{x}_n such that $a_n > 0$. They are the examples that satisfy:

$$t_n(\mathbf{w}^T\mathbf{x}_n + b) = 1 - \xi_n$$

i.e. do not satisfy $t_n(\mathbf{w}^T\mathbf{x}_n + b) > 1$

Soft-margin SVM

$$\begin{aligned} & \operatorname{argmin}_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n \\ & \text{s.t.} \quad t_n(\mathbf{w}^T \mathbf{x}_n + b) \geq 1 - \xi_n \quad \forall n \\ & \xi_n \geq 0 \ \forall n \end{aligned}$$

Hinge loss

$$\begin{aligned} & \operatorname{argmin}_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^N \xi_n \\ & \text{s.t.} \quad t_n(\mathbf{w}^T \mathbf{x}_n + b) \geq 1 - \xi_n \quad \forall n \\ & \xi_n \geq 0 \ \forall n \end{aligned} \qquad \begin{aligned} & \operatorname{argmin}_{\mathbf{w},b} \frac{1}{n} \sum_{n=1}^N \xi_n + \lambda \|\mathbf{w}\|^2 \\ & \text{s.t.} \ \xi_n \geq 1 - t_n(\mathbf{w}^T \mathbf{x}_n + b) \ \forall n \\ & \xi_n \geq 0 \ \forall n \end{aligned}$$

$$\operatorname{argmin}_{\mathbf{w},b} \frac{1}{n} \sum_{n=1}^{N} \xi_n + \lambda \|\mathbf{w}\|^2 \quad \text{s. t. } \xi_n = \max(0, 1 - t_n(\mathbf{w}^T \mathbf{x}_n + b)) \ \forall n$$

SVM, linear regression, logistic regression

Midterm logistics

- Written exam, Wednesday 10/5, in-class
- Closed book. You may bring a single-page letter-sized cheat sheet (with your name on it).
- No computers. Basic calculator allowed.
- Topics:
 - Probability basics
 - MLE vs MAP parameters
 - Discrete / continuous Bayes classifier
 - Naïve Bayes classifier
 - Brief questions about regression and classification algorithms

Homework 1 solutions