Linear Programming

STATISTICS 186

Last week?

- Linear Programming!
- Touched on Shadow Prices
 - Amount of profit per additional unit of resource available
 - Two methods to calculate it
 - Definition
 - Constructing table
- Use shadow prices to help us finding lowest selling price if we were given a special offer on another product

Today?

- What happens when there are changes to the objective function
- In context
 - What happens if we can buy units from another producer to complete an order
 - What will be the optimal number of units to produce?

Example 1

- Assume demand
 - Product A: 200 units
 - Product B: 150 units
- Products can now be bought in at a price that will yield profit • Product A: R1.50 per unit P = 1.5A + 1B

 - Product B: R1.00 per unit

$$P = 1.5A + 1B$$

- Constraints do not change
- Question: What are the number of items that needs to be produced and the number which has to be bought in of both products such that contribution will be maximised

Step 1: Set up Differential Contribution Table

- First row current objective function
- Second row outside contribution function
- Last row will be the difference of the columns
- First column will be the first product
- Second column will be the second product

$$P = 2.5A + 2B$$

$$P = 1.5A + 1B$$

Step 1 – Set up Differential Contribution Table

$$P = 2.5A + 2B$$

$$P = 1.5A + 1B$$

	Product A	Product B
Current contribution	R2.00	R2.50
Outside contribution	R1.50	R1.00
Differential contribution	R0.50	R1.50

New objective function: P = 0.5A + 1.5B

Step 2 – Obtain optimum solution given new objective function

New objective function

$$P = 0.5A + 1.5B$$

Constraints remain the same

$$6A + 12B \le 1200$$

 $10A + 6B \le 1200$
 $3B \le 270$

Graphically represent constraints and objective function (Lecture 1 & 2)

Step 2 – Obtain optimum solution given new objective function

- Note that new optimum solution is different than before
- Now intersection between lines
- \bullet 6A + 12B = 1200 and 3B = 270
- Set up simultaneous equations and solve

Obtain

Amount that needs to be produced internally – rest must be bought in

Step 3 – Set up table of contribution

- First two rows will be related to internal production
- Last two rows will be related to external purchase
- First column will be amount of units bought/produced
- Second column will be amount of contribution
- Third column will be total

Step 3 – Set up table of contribution

Obtained	as solution	from new	objective function	

Profit per unit produced

Product	Internal Production	Contribution	Total
Α	20	2.00	40
В	90	2.50	225
	External purchase		
Α	180 = (200 -20)	1.50	270
В	60 = (150 – 90)	1.00	60
			R595

Demand – Internal Production

Profit per unit bought

Optional Exercise

- If original optimal solution was produced with the rest of the demand bought what will the total consumption be?
- Total consumption in last slide R595
- Set up table

Optional Exercise

Product	Internal Production	Contribution	Total
Α	85	2.00	170
В	57	2.50	142.50
	External purchase		
A	115 = (200 -85)	1.50	172.50
В	93 = (150 – 57)	1.00	93
			R578

R578 < R595