

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC169702

1 of 86 Page:

FCC Radio Test Report FCC ID: 2ABES-KR2109

Original Grant

Report No. TB-FCC169702

Pathway Innovations and Technologies, Inc. **Applicant**

Equipment Under Test (EUT)

EUT Name Ultra10

Model No. : KR2109

Serial Model No. Ultra9, Ultra10, Ultra11, Ultra12, Ultra13, Ultra15, Ultra16

Brand Name : HoverCam : 2019-10-18 **Receipt Date**

: 2019-10-18 to 2019-11-25 **Test Date**

Issue Date 2020-01-02

: FCC Part 15, Subpart E (15.407) **Standards**

: ANSI C63.10: 2013 **Test Method**

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness

Engineer

Engineer

Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301

Page: 2 of 86

Contents

COL	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	
	1.7 Test Facility	
2.	TEST SUMMARY	10
3.	TEST EQUIPMENT	11
4.	CONDUCTED EMISSION TEST	12
	4.1 Test Standard and Limit	12
	4.2 Test Setup	12
	4.3 Test Procedure	13
	4.4 EUT Operating Mode	13
	4.5 Test Data	13
5.	RADIATED EMISSION TEST	14
	5.1 Test Standard and Limit	14
	5.2 Test Setup	15
	5.3 Test Procedure	
	5.4 EUT Operating Condition	17
	5.5 Test Data	
6.	BAND EDGE EMISSIONS	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	18
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Data	
7.	BANDWIDTH TEST	20
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	
8.	OUTPUT POWER TEST	
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	22

Page: 3 of 86

	8.4 EUT Operating Condition	22
	8.5 Test Date	
9.	POWER SPECTRAL DENSITY TEST	
	9.1 Test Standard and Limit	23
	9.2 Test Setup	23
	9.3 Test Procedure	
	9.4 EUT Operating Condition	24
	9.5 Test Data	24
10.	FREQUENCY STABILITY MEASUREMENT	
	10.1 Test Standard and Limit	25
	10.2 Test Setup	25
	10.3 Test Procedure	
	10.4 EUT Operating Condition	
	10.5 Test Data	
11.	ANTENNA REQUIREMENT	
	11.1 Standard Requirement	27
	11.2 Antenna Connected Construction	
	11.3 Result	
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	28
REM	MARK: ALL MODES AND CHANNELS HAVE BEEN TESTED AND ONLY LIS	TED WIFI
LINK	K MODE THAT IS WORST DATA	29
ATT	ACHMENT B RADIATED EMISSION TEST DATA	30
ATT.	ACHMENT C BAND EDGE EMISSIONS TEST DATA	33
ATT	ACHMENT D BANDWIDTH TEST DATA	63
ATT	ACHMENT E OUTPUT POWER TEST DATA	74
ATT	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	79

Page: 4 of 86

Revision History

Report No.	Version	Description	Issued Date
TB-FCC169702	Rev.01	Initial issue of report	2020-01-02
The state of the s		(103)	
		(10)	
3		TOWN CHILD	
4081			402
	D W	mn BY	
1087	anne		4000
		TOBY	
			Maria Para
		4087	The state of the s

5 of 86 Page:

1. General Information about EUT

1.1 Client Information

: Pathway Innovations and Technologies, Inc. **Applicant**

: 9985 Pacific Heights Blvd., Suite 100 San Diego, CA 92121, USA **Address**

: ShenZhen KerunVisual Technology Co., LTD. Manufacturer

Address : Unit A, F/11, Bldg.1, Senyang Electronic Technology Park, Tianliao

Community, Guangming High Tech Zone, Guangming New District,

Shenzhen, China 518132

1.2 General Description of EUT (Equipment Under Test)

EUT Name		Ultra10			
Models No.		KR2109,Ultra9,Ultra10,Ultra11,Ultra12,Ultra13,Ultra15,Ultra16			
Model Difference		All these models a the only difference	re in the same PCB, layout and electrical circuit is model No.		
	O	Operation Frequency:	U-NII-1: 5180MHz~5240MHz		
MOBY		RF Output Power:	U-NII-1-802.11 a:6.98dBm(Max)		
Product Description		Modulation Type:	802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM)		
TOBY		Bit Rate of Transmitter:	802.11a: 6/9/12/18/24/36/48/54 Mbps 802.11n: up to 150Mbps 802.11ac: at most 433.3 Mbps		
Power Supply		Input: AC 100-240 Output: DC 5V, 3A	AP045U-PD-CS502):		
Software Version		Android 7.1.2			
Hardware Version	:	V0.7			
Connecting I/O Port(S)		Please refer to the User's Manual			
Remark	: The adapter and antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.				

Manual.

Page: 6 of 86

Note: This Test Report is FCC Part 15, Subpart E(15.407) for 802.11a/n/ac, the test procedure follows the FCC KDB 789033 D02 General UNII Test Procedures New Rules V02r01. (1) Channel List:

5G Band 5150~5250 MHz (U-NII-1)								
Frequency Band Channel No. Frequency Channel No. Frequency								
	36	5180 MHz	44	5220 MHz				
5180~5240 MHz	38	5190 MHz	46	5230 MHz				
Band 1	40	5200 MHz	48	5240 MHz				
	42	5210 MHz						

Remark:

For 20 MHz Bandwidth, use channel 36, 40, 48.

For 40 MHz Bandwidth, use channel 38, 46.

For 80 MHz Bandwidth, use channel 42.

(2) Antenna information:

Ant.	Model Name	Antenna Type	BAND(MHz)	Gain (dBi)
2.4G&5G ANT	N/A	Wire Ant.	5150-5250	0.5

1.3 Block Diagram Showing the Configuration of System Tested

1.4 Description of Support Units

Equipment Information								
Name Model S/N Manufacturer Used "√"								
TV	24PFL3545/T3	Wj1a1405000189	PHILIPS	√				
Cable Information								
Number	Number Shielded Type Ferrite Core Length Note							

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test

Page: 7 of 86

system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

		F	or Conducted Test		
Final Test M	lode	Descrip	otion		
Mode 1		TX 802	.11a Mode		
		F	or Radiated Test		
Test Band Final Test Mode			Description		
HILL	Mod	e 2	TX Mode 802.11a Mode Channel 36/40/48		
	Mod	e 3	TX Mode 802.11n(HT20) Mode Channel 36/40/48		
LI NIII 4	Mod	e 4	TX Mode 802.11n(HT40) Mode Channel 38/46		
U-NII-1	Mod	e 5	TX Mode 802.11ac(VHT20) Mode Channel 36/40/48		
	Mod	e 6	TX Mode 802.11ac(VHT40) Mode Channel 38/46		
	Mod	e 7	TX Mode 802.11ac(VHT80) Mode Channel 42		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 8 802.11n (HT40) Mode: MCS 8

802.11ac(VHT20) Mode: MCS 1/Nss2 802.11ac(VHT40) Mode: MCS 1/Nss2 802.11ac(VHT80) Mode: MCS 1/Nss2

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

Page: 8 of 86

Test Software Version		RFTestTool.exe	Mary Mary					
U-NII-1								
Mode:	5180MHz	5200MHz	5240MHz					
IEEE 802.11a	60	60	60					
IEEE 802.11n (HT20)	65	65	65					
IEEE 802.11ac (VHT20)	65	65	65					
Mode:	5190MHz	5230MHz						
IEEE 802.11n (HT40)	65	65						
IEEE 802.11ac (VHT40)	65	65						
Mode:	5210 MHz							
IEEE 802.11ac (VHT80)	65							

Page: 9 of 86

1.7 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 10 of 86

2. Test Summary

	FCC Part 15 Subpart E(15.407)/RSS-210: 2010						
Standa	rd Section	Test Item	ludamant	Daysords			
FCC	IC	rest item	Judgment	Remark			
15.203	1	Antenna Requirement	PASS	N/A			
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A			
15.407(b)	RSS-GEN 7.2.2	Band Edge Emissions	PASS	N/A			
15.407(a)	RSS-24 A.9.2	26dB Bandwidth&99% Bandwidth	PASS	N/A			
15.407(e)	RSS-210 A.9.2	6dB Bandwidth(only for UNII-3)	PASS	N/A			
15.407(a)	RSS-210 A.9.2	Peak Output Power	PASS	N/A			
15.407(a)	RSS-210 A.9.2	Power Spectral Density	PASS	N/A			
15.407(b)	RSS-210 A.9.2	Transmitter Radiated Spurious Emission	PASS	N/A			
15.407(a)	RSS-210 A.9.2	Peak Excursion	PASS	N/A			
15.407(g)	RSS-210 A.9.2	Frequency Stability	PASS	N/A			

Note: (1)"/" for no requirement for this test item.(2)N/A is an abbreviation for Not Applicable.

(3)All tests were conducted using the adapter and antenna gain provided by the applicant, The laboratory tests only according to the information provided by the applicant.

Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted	MTS-8310	MWRFtest	V2.0.0.0
Measurement	10113-0310	ivivviciest	V2.U.U.U

Page: 11 of 86

3. Test Equipment

Conducted Emission	on Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 13, 2019	Jul. 12, 2020
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 13, 2019	Jul. 12, 2020
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 13, 2019	Jul. 12, 2020
LISN	Rohde & Schwarz	ENV216	101131	Jul. 13, 2019	Jul. 12, 2020
Radiation Emission	n Test				-
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	FSVR	1311.006K40-10 0945-DH	Feb. 10, 2019	Feb. 09, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.03, 2019	Mar. 02, 2020
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 13, 2019	Jul. 12, 2020
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Jul. 27, 2019	Jul. 26, 2020
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna Conducte	d Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 13, 2019	Jul. 12, 2020
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 13, 2019	Jul. 12, 2020
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 16, 2019	Sep. 15, 2020
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 16, 2019	Sep. 15, 2020
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 16, 2019	Sep. 15, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 16, 2019	Sep. 15, 2020
DE Dower Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 16, 2019	Sep. 15, 2020
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 16, 2019	Sep. 15, 2020
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 16, 2019	Sep. 15, 2020

Page: 12 of 86

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

Evenuency	Maximum RF Line Voltage (dBμV)	
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

Page: 13 of 86

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 14 of 86

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency (MHz)	Distance Me	ters(at 3m)
	Peak	Average
Above 1000	74	54

Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
	-27(Note 2)	68.2
100 (VI	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
	27(Note 2)	122.2

Page: 15 of 86

NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$\mathsf{E} = \frac{1000000\sqrt{30P}}{3}\,\mathsf{uV/m},\,\mathsf{where}\;\mathsf{P}\;\mathsf{is}\;\mathsf{the}\;\mathsf{eirp}\;\mathsf{(Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

5.2 Test Setup

Below 30MHz Test Setup

Page: 16 of 86

Below 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by

Report No.: TB-FCC169702 Page: 17 of 86

3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 86

6. Band Edge Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.407(b)

6.1.2 Test Limit

Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
	-27(Note 2)	68.2
	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
	27(Note 2)	122.2

NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

6.2 Test Setup

Page: 19 of 86

6.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Please refer to the Attachment C.

Page: 20 of 86

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.407

7.1.2 Test Limit

FCC Part 15 Subpart C(15.407)/RSS-210		
Test Item Limit Frequency Range (MHz)		
26 Bandwidth	N/A	5150~5250
6 dB Bandwidth	>500kHz	5725~5850

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The setting of the spectrum analyser as below:

26dB Bandwidth Test		
Spectrum Parameters	Setting	
Attenuation	Auto	
Span	>26 dB Bandwidth	
RBW	Approximately 1% of the emission bandwidth	
VBW	VBW>RBW	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

Page: 21 of 86

6dB Bandwidth Test		
Spectrum Parameters	Setting	
Attenuation	Auto	
Span	>6 dB Bandwidth	
RBW	100 kHz	
VBW	VBW>=3*RBW	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	
	99% Occupied Bandwidth Test	
Spectrum Parameters	Setting	
Attenuation	Auto	
RBW	1% to 5% of the OBW	
VBW	≥ 3RBW	
Detector	Peak	
Trace	Max Hold	

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

7.5 Test Data

Please refer to the Attachment D.

Page: 22 of 86

8. Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.407 (a)

8.1.2 Test Limit

FCC Part 15 Subpart E(15.407)/RSS-210			
Test Item Limit Frequency Range(MH			
Conducted Output Power	Fixed: 1 Watt (30dBm) Mobile and Portable: 250mW (24dBm)	5150~5250	
	1 Watt (30dBm)	5725~5850	

8.2 Test Setup

8.3 Test Procedure

The measurement is according to section 3 of KDB 789033 D02 General UNII Test Procedures New Rules V02r01

The EUT was connected to RF power meter via a broadband power sensor as show the block above.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

8.5 Test Date

Please refer to the Attachment E.

Page: 23 of 86

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.407 (a)

9.1.2 Test Limit

FCC Part 15 Subpart E(15.407)		
Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	Other than Mobile and Portable : 17dBm/MHz Mobile and Portable : 11dBm/MHz	5150~5250
	30dBm/500kHz	5725~5850

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
 - (2) Set analyser centre frequency to transmitting frequency.
 - (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.

(4) Set the RBW to: 1 MHz(5) Set the VBW to: 3 MHz

(6) Detector: RMS(7) Trace: Max Hold(7) Sweep time: auto

- (8) Trace average at least 100 traces in power averaging.
- (9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

Page: 24 of 86

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

9.5 Test Data

Please refer to the Attachment F.

Page: 25 of 86

10. Frequency Stability Measurement

10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.407

10.1.2 Test Limit

FCC Part 15 Subpart C(15.407)		
Test Item	Frequency Range(MHz)	
The state of the s	Specified in the user's manual, the transmitter	5150~5250
Peak Excursion Measurement	center frequency tolerance shall be ±20	THE THE PARTY OF T
	ppm maximum for the 5 GHz band (IEEE 802.11n	5725~5850
	specification)	

10.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
 - (2) Set analyser centre frequency to transmitting frequency.
 - (3) Set the span to encompass the entire emissions bandwidth (EBW) of the signal.
 - (4) Set the RBW to: 10 kHz, VBW=10 kHz with peak detector and maxhold settings.
 - (5) The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
 - (6) Extreme temperature is 0°C~50°C

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in continuously un-modulation transmitting mode.

Page: 26 of 86

10.5 Test Data

Please refer to the Attachment G.

Page: 27 of 86

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is (5150MHz-5250MHz: 0.5dBi), and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.3 Result

The EUT antenna is a Wire Antenna. It complies with the standard requirement.

Antenna Type	
☐Permanent attached antenna	The same
⊠Unique connector antenna	GU S
☐Professional installation anten	na

Page: 28 of 86

Attachment A-- Conducted Emission Test Data

Page: 29 of 86

Temperature:	25 ℃		Relative H	lumidity:	55%	133	
Test Voltage:	AC 120V/60 H	Z	130				TA
Terminal:	Neutral	133		MAG		a W	
Test Mode:	TX 802.11a M	ode CH36					
Remark:	Only worse ca	se is repor	rted				
Remark: 90.0 dBuV -10 0.150 No. Mk. Freq MHz 1 0.1940 2 0.1940 3 0.2700 4 0.2700 5 0.9780 6 0.9780 7 1.9100 8 1.9100 9 6.0460 10 6.0460 11 16.5060 12 * 16.5060 *:Maximum data x:0ver	0.5 Reading Level dBuV 0. 32.08 0. 19.47 0. 25.74 0. 14.93 0. 22.98 0. 13.73 0. 19.56 0. 10.42 0. 24.72 0. 15.68 0. 32.60 0. 24.95	the shape of the state of the s	My Market	5 Limit dBuV 63.86 53.86 61.12 51.12 56.00 46.00 56.00 60.00 50.00	-24.70 -25.68 -26.49 -23.27 -22.52 -26.62 -25.76 -25.44 -24.48 -17.42	\	peak AVG
*:Maximum data x:Over		orrect Fac	ctor				

Remark: All modes and channels have been tested and only listed WiFi link mode that is worst data

Page: 30 of 86

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Tempera	ature:	25	$^{\circ}$		(I) F	Relative Hu	midity:	55%		
Test Vol	tage:	AC	120V/	60Hz			9			
Ant. Pol		Hor	izonta	1000				18	100	61
Test Mo	de:	TX	802.1	1a Mod	de 5180MH:	z (U-NII-1)	AROL			U
Remark	:	Onl	y wors	se case	e is reported	b				
80.0 dBu\	//m									
							(RF)	FCC 15C :	3M Radiation Margin -6	
			-				3		5	S X
						Y Y	/ \ \ \ \ \ \		X	
30	1					m		Lynney.	1	
	X				Munh	Amy -	V"	4.4.N. A.	~~ Ц _{М~} ДЛУ~ 1	
www	~~/ \	mound	marken,	mmo	Marana	<u>'</u>				
-20										
30.000	40 50	60 7	'0 D	alia a	(MHz)		300 400	500	600 700	1000.000
No. N	∕lk. Fr	eq.		ading vel	Correct Factor	Measure ment	Limi	t (Over	
	M	Hz	dE	Bu∨	dB/m	dBuV/m	dBu\	//m	dB	Detector
1	52.2	079	44	.51	-23.49	21.02	40.0	00 -	18.98	QP
2	251.1	1804	52	.84	-17.16	35.68	46.0	00 -	10.32	QP
3	337.2	2155	54	.89	-14.99	39.90	46.0	00	-6.10	QP
4	401.8	3385	48	3.61	-12.26	36.35	46.0	00	-9.65	QP
5	750.1	1083	44	.32	-6.57	37.75	46.0	00	-8.25	QP
6 *	881.4	1067	46	5.50	-4.31	42.19	46.0	00	-3.81	QP
*:Maximu	m data x:0	Over lim	it !:ov	er margir	<u> </u>					
	_	_			. —					
Emissio	n Level=	Read	I Leve	el+ Co	rrect Facto	r				

Page: 31 of 86

Temperature:	25 °C	C	R	elative Humi	dity: 5	5%	TITE
Test Voltage:	AC 1	20V/60Hz	33		110		
Ant. Pol.	Verti	cal		11		1333	
Test Mode:	TX 8	02.11a Mod	e 5180MHz	(U-NII-1)			MI
Remark:	Only	worse case	is reported				
80.0 dBuV/m							
					(RF)FCC 1	5C 3M Radiation	
				3		Margin -6	 H
1				<u> </u>	\	4 5 X X	6
30 X			2 X				
	< 1	when he	ym Myrthu	Y WAR	Mund	الممماا	
Jhw"	W	" Yw"	, w	Pr.117			
20							
30.000 40 50	60 70	80	(MHz)	300	400 5	600 600 700	1000.00
No. Mk. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	лоц. ИНz	dBuV		dBuV/m	dBuV/m	dB	Detecto
			dB/m				
	9948	53.97	-22.24	31.73	40.00	-8.27	QP
	.2368	47.52	-20.62	26.90	43.50	-16.60	QP
3 * 325	.5958	54.75	-15.37	39.38	46.00	-6.62	QP
4 528	.2458	44.43	-9.77	34.66	46.00	-11.34	QP
5 750	.1083	40.99	-6.57	34.42	46.00	-11.58	QP
6 881	.4067	43.05	-4.31	38.74	46.00	-7.26	QP
			_				
*:Maximum data	x:Over limit	!:over margin					
mission Leve	l= Read	l evel+ Cor	rect Factor	•			

Page: 32 of 86

Above 1GHz

Test Mode: U-NII 1 & 802.11ac(VHT20) Mode

	90, 40		icst it	loue. U-INI	5180MHz	11ac(v1	1120) 1000	ie –		<u> </u>
						ion Level				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AVG reading (dBµV)	Correction Factor (dB/m)		AVG (dBµV/m)	Peak limit (dBμV/m)	AVG limit	Peak Margin (dB)	AVG Margin (dB)
10360	Н	45.73	33.04	15.60	61.33	48.64	68.3	54	-6.97	-5.36
15540	Н	42.67	27.16	19.05	61.72	46.21	68.3	54	-6.58	-7.79
M'A	Н	- TIM		- V		- TI				(
10360	٧	44.81	32.17	15.57	60.39	47.74	68.3	54	-7.91	-6.26
15540	٧	38.51	23.06	19.05	57.56	42.11	68.3	54	-10.74	-11.89
37-	٧	(-1 1)								
					5200MHz					
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AVG reading (dBμV)	Correction Factor (dB/m)	Peak (dBµV/m)	ion Level AVG (dBμV/m)	Peak limit (dBμV/m)	AVG limit (dBμV/m)	Peak Margin (dB)	AVG Margin (dB)
10400	Н	45.68	33.06	15.66	61.34	48.72	68.3	54	-6.96	-5.28
15600	Н	39.80	25.82	19.13	58.93	44.95	68.3	54	-9.37	-9.05
	Н				T ([VI.
10400	٧	44.66	31.92	15.66	60.32	47.58	68.3	54	-7.98	-6.42
15600	٧	39.05	23.99	19.13	58.18	43.12	68.3	54	-10.12	-10.88
	٧			U	4					27
					5240MHz					
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AVG reading (dBµV)	Correction Factor (dB/m)	Peak (dBµV/m)	ion Level AVG (dBµV/m)	Peak limit (dBμV/m)	AVG limit (dBμV/m)	Peak Margin (dB)	AVG Margin (dB)
10480	Н	44.99	34.32	15.79	60.78	50.11	68.3	54	-7.52	-3.89
15720	Н	39.63	26.03	19.42	59.05	45.45	68.3	54	-9.25	-8.55
4117	Н			-			1313-		02	
10480	٧	44.49	32.19	15.79	60.28	47.98	68.3	54	-8.02	-6.02
15720	٧	36.57	26.17	19.42	55.99	45.59	68.3	54	-12.31	-8.41
	V	//							2017	

Note:

- 1. Emission Level= Read Level+ Correct Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 4. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 5. All modes are tested, showing only the worst patterns in the report.

Report No.: TB-FCC169702 Page: 33 of 86

Attachment C-- Band Edge Emissions Test Data

(1) Radiation Test a/n(20)/ac(VHT20)

Page: 34 of 86

Tem	peratu	re:	25	$^{\circ}$ C			R	elativ	e Hun	nidity:	55°	%		13)
Tes	t Volta	je:	AC	120V/6	0Hz	33			CM	100			All	Jac.
Ant	. Pol.		Vert	ical				8.0		6	M	13.5		2
Tes	t Mode	:	TX 8	302.11	a Mod	le 518	30 MH	z (U-N	VII-1)					
Ren	nark:		TX 8	302.11a	a Mod	le 518	30~52	40 M⊢	łz (U-N	VII-1) C	H Lov	W		
110.0	dBuV/m													_
												ž Ž		
												, X	٦	
													1	1
										(RF) FCC	PART 1	5.407 (PEAI	K)	-
60										1,,	E) ECC D	DT 15C A	vet	-
										× × ·		ART 15C (A	,va)	_
ŀ		 	+-											
ŀ														1
-														1
0.0 500	03.000 502	3.00 50	043.00	5063.00	508	3.00	5103.00	5123	3.00 5	143.00	5163.00)	5203.00	_ MH
				Rea	dina	Co	rrect	Mea	asure-					
N	o. Mk	Fre	eq.	Lev			actor		ent	Lin	nit	Over		
		MH	Iz	dBı	uV	dE	B/m	dB	uV/m	dBu	ıV/m	dB	Dete	ecto
1		5150.	000	42.	75		2.41	55	5.16	68	.30	-13.14	4 pe	eal
2		5150.	000	36.	93	12	2.41	49	9.34	54	.00	-4.66	6 A\	VG
		E470	3.500 83.49		12.46		95.95		— Fundamental Frequency			pe	eal	
3	X	5178.	500	00.	10									

Page: 35 of 86

Page: 36 of 86

Page: 37 of 86

Report No.: TB-FCC169702 Page: 38 of 86

Temperature: **Relative Humidity:** 25 ℃ 55% Test Voltage: AC 120V/60Hz Ant. Pol. Vertical Test Mode: TX 802.11n(20) Mode 5180 MHz (U-NII-1) TX 802.11 n(20) Mode 5180~5240 MHz (U-NII-1) CH Low Remark: 110.0 dBuV/m (RF) FCC PART 15.407 (PEAK 60 X (RF) FCC/PART 15C AVG 10.0 5005.000 5025.00 5165.00 5205.00 MHz 5045.00 5065.00 5085.00 5105.00 5125.00 5145.00

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5150.000	43.10	12.41	55.51	68.30	-12.79	peak
2		5150.000	35.86	12.41	48.27	54.00	-5.73	AVG
3	X	5178.500	80.98	12.46	93.44	 Fundamental	Frequency	peak
4	*	5178.500	75.66	12.46	88.12	– Fundamental	Frequency	AVG

Emission Level= Read Level+ Correct Factor

Report No.: TB-FCC169702 Page: 39 of 86

Ten	nperati	ıre:	25 °C	C			R	elativ	e Hur	nidity	: 5	55%		
Tes	t Volta	ge:	AC 1	20V/	60Hz	33			CHI	M. K.			A. D.	
Ant	. Pol.		Horiz	zonta				D'E			FI	1,37		Ą
Tes	t Mode	:	TX 8	02.1	1n(20)	Mode 5	240	MHz	(U-NII	l-1)	63		AB.	
Ren	nark:		TX 8	02.1	1 n(20)	Mode 5	180	~524	0 MHz	z (U-N	II-1)	CH High		
120.0	0 dBuV/π	1												7
)		1 ×												
		2 X	7											
70										(BF) FC	CC PART	15.407 (PEAK	()	
	~/									3	(RF) FC	C PART 15C (A)	VG)	
										4 ×				
20.0														
52	210.000 52	30.00 5	250.00	5270.			10.00	5330		5350.00	5370).00	5410.00	MHz
N	o. Mk		•	Le	ading evel	Corre Fact		m	sure- ent	Lir	mit	Over		
		MH			Bu∨	dB/m		dB	uV/m	dB	uV/m	dB	Dete	ctor
1	X	5238.	500	92	2.24	12.5	7	10	4.81	Fund	dament	tal Frequency		ak
2	×	5239.0	000	79	9.98	12.5	7	92	2.55	Fund	dament	tal Frequency	A۱	/G
3		5350.0	000	40).72	12.78	3	53	3.50	68	3.30	-14.80) pe	ak
4		5350.0	000	30).96	12.78	3	43	3.74	54	4.00	-10.26	6 A\	/G
Emi	ission	Level=	Read	Leve	el+ Cor	rect Fa	ctor							

Report No.: TB-FCC169702 Page: 40 of 86

Page: 41 of 86

Report No.: TB-FCC169702 Page: 42 of 86

Temperature:25 °CRelative Humidity:55%Test Voltage:AC 120V/60HzAnt. Pol.VerticalTest Mode:TX 802.11ac(VHT20) Mode 5180 MHz (U-NII-1)

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5150.000	40.75	12.41	53.16	68.30	-15.14	peak
2		5150.000	34.84	12.41	47.25	54.00	-6.75	AVG
3	*	5179.000	76.38	12.47	88.85	Fundamental	Frequency	AVG
4	Χ	5179.500	83.39	12.47	95.86	Fundamental	Frequency	peak

Emission Level= Read Level+ Correct Factor

Page: 43 of 86

Page: 44 of 86

Page: 45 of 86

n(40)/ac(VHT40)

No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		5150.000	48.93	12.41	61.34	68.30	-6.96	peak
2		5150.000	34.28	12.41	46.69	54.00	-7.31	AVG
3	X	5184.000	86.01	12.48	98.49	- Fundamental F	requency	peak
4	*	5192.000	73.86	12.48	86.34	- Fundamental F	requency	AVG

Emission Level= Read Level+ Correct Factor

Report No.: TB-FCC169702 Page: 46 of 86

Page: 47 of 86

Report No.: TB-FCC169702 Page: 48 of 86

lemp	eratı	ure:	25	$^{\circ}$				Relativ	e Hun	nidity	: 55	%		
Test Voltage: AC 120V/60Hz							CHI	J. F.			Alle			
Ant. F	Pol.		Vert	tical				18.5				19.9		A.
Test I	Mode) :	TX	802.1	11n (4	40) Mo	de 523	0 MHz	(U-NI	I-1)				
Rema	ark:		TX	802.1	11n (4	40) Mo	de 519	0~523	0 MHz	z (U-N	II-1) CI	H High		
110.0	dBuV/n	1												_
			1											
			×											
			2 X											
H										(RF) FC	C PART 1	5.407 (PEAI	g	-
60	-										RF),FCC P	ART 15C (A	VG)	+
	لمسه				~						X 3			
											×			
0.0														
	000 52	215.00 5	235.00	5255	5.00	5275.00	5295.0	0 5315	5.00 5	335.00	5355.00)	5395.00	MH
				Re	adin	g Co	orrect	Mea	sure-					
No.	Mk	. Fre	eq.		evel		actor	me	ent	Lin	nit	Over		
		MH	Z	d	BuV	d	B/m	dBu	uV/m	dBu	ıV/m	dB	Dete	ecto
1	*	5231.	500	8	5.90	12	2.56	98	3.46	Funda	mental F	requency	pe	ak
2	Χ	5232.	000	73	3.51	12	2.56	86	5.07	– Funda	mental F	requency	A۱	/G
3		5350.	000	32	2.38	12	2.78	45	5.16	54	.00	-8.84	A۱	۷G
4		5350.	000	38	8.53	1:	2.78	51	.31	68	.30	-16.9	9 Pe	ak
		5555.		-				0.			.50	10.0		-

Page: 49 of 86

Page: 50 of 86

Page: 51 of 86

Report No.: TB-FCC169702 Page: 52 of 86

Temperatur	e:	25 ℃			R	elativ	e Hum	idity:	55%		P
Test Voltage	e :	AC 120	V/60H	lz			CHI	1016		Alla	
Ant. Pol.	,	Vertical	167			2.0			11/27		è.
Test Mode:		TX 802.11ac(VHT40) Mode 5230 MHz (U-NII-1)									
Remark:		TX 802	. 11ac	(VHT40) Mode	e 5190	~5230	MHz (U	J-NII-1) CH	l High	
110.0 dBuV/m											1
	:	1 × 2									
		2 X									ĺ
								(RF) FCC P	ART 15.407 (PE	AK)	
60								(BE)	FCC PART 15C	(AVG)	
			\						3 X		
									*		
10.0 5192.000 5212	.00 523	2.00 52	52.00	5272.00	5292.00	5312	2.00 53	332.00 5	352.00	5392.00	 MHz
		D	eadin	na Co	orrect	Mos	asure-				_
No. Mk.	Fred		Level		actor		ent	Limit	t Over	٢	
	MHz		dBuV	d	B/m	dB	uV/m	dBuV	/m dB	Detec	tor
1 X	5232.0	00	81.76	12	2.56	94	1.32	Fundame	ental Frequency	y pea	ak
2 *	5232.5	00	73.71	12	2.56	86	3.27	Fundame	ental Frequency	y AV	G
3	5350.0	00	37.13	12	2.78	49	9.91	68.3	30 -18.3	9 pea	ak
4	5350.0	00	31.41	12	2.78	44	1.19	54.0	00 -9.8	1 AV	G
				Correct							

Page: 53 of 86

ac(80)

Page: 54 of 86

ıem	emperature: 25 °C						Relative Humidity: 55%						
Test	Volta	ge:	AC	120V/6	30Hz	(66)			1) Property		Ann		
Ant.	Pol.		Vert	Vertical									
Test	Mode) :	TX	802.11 ac(80) Mode 5210MHz (U-NII-1)									
Rem	nark:		N/A				-						
110.0 	dBuV/n	1											
									_				
									4 ×				
									3				
									- V., -	RT 15.407 (PEAK	n		
									(III) TOO TA	13.401 (12.40	,		
60						1 ×			(RF) I	FCC PART 15C AV	/G)		
						2 -X					~~~~		
_													
10.0													
506	9.000 50	089.00 5	109.00	5129.0	D 51	49.00 516	9.00 !	5189.00	5209.00 52	229.00	5269.00 M		
Νo	. Mk	. Fre	n	Read	_	Correct Facto		easure- ment	Limit	Over			
	. IVIIX					racio	' '	mem			Detect		
		ML	7	dBi	ıV.			dBuV//m	dBu\//r	m dB			
		MH		dBu		dB/m		dBuV/m	dBuV/r		Detect		
1		5150.	000	44.	40	12.41	,	56.81	68.30	-11.49	pea		
1		5150. 5150.	000	44. 35.	40 84	12.41 12.41	,	56.81 48.25		-11.49	pea AV0		
1 2 3	*	5150.	000	44.	40 84	12.41	,	56.81	68.30 54.00	-11.49	pea		

Page: 55 of 86

Temperature:			25	\mathbb{C}		R	Relative H	lumidity:	55	5%		
Test	Volta	ge:	AC	120V/60	Hz			Min			All he	
Ant.	Pol.		Hor	izontal			2.0		M	1:33		
Test	Mode) :	TX	TX 802.11 ac(80) Mode 5210MHz (U-NII-1)								
Ren	nark:		N/A		B		CAL					
110.0	dBuV/m	1										
				2								
				x								
			1 X									
			- √.									
ŀ								(RF) FCC	PART :	15.407 (PEAK)		
60					\longrightarrow			(Al	F) FCC	PART 15C AS	(G)	
)				1					4		
										×		
10.0												
516	6.000 51	86.00 52	206.00	5226.00	5246.00	5266.00	5286.00	5306.00	5326.0	00	5366.00 MI	
				Readi	_	orrect	Measu					
No). Mk	. Fre	q.	Leve	el F	actor	ment	Limi	ıt	Over		
		MH	Z	dBuV	′ (dB/m	dBuV/r	m dBu\	//m	dB	Detecto	
1	*	5212.	500	69.56	6 1	2.52	82.08	B Funda	menta	I Frequency	AVG	
2	Χ	5216.	500	82.8	7 1	2.52	95.39	9 Funda	menta	I Frequency	peak	
		5350.0	ากก	40.49	9 1	2.78	53.2	7 68.	30	-15.03	peak	
3		5550.0	JUU									

Page: 56 of 86

Report No.: TB-FCC169702 Page: 57 of 86

(2) Conducted Test

Page: 58 of 86

Page: 59 of 86

25 ℃	Relative Humidity:	55%					
AC 120V/60Hz	MUDE						
TX 802.11ac(VHT20) mode(U-NII-1) / 5180 ~ 5240MHz CH Low-5180MHz							
TX 802.11ac(VHT20) mode(U-NII-1) / 5180 ~ 5240MHz CH High-5240MHz							
The EUT is programed in con	tinuously transmitting m	ode					
	AC 120V/60Hz TX 802.11ac(VHT20) mode(L TX 802.11ac(VHT20) mode(L	AC 120V/60Hz TX 802.11ac(VHT20) mode(U-NII-1) / 5180 ~ 5240MH					

Page: 60 of 86

Page: 61 of 86

				MIM I I							
	Temperature:	25 ℃	Relative Humidity:	55%							
	Test Voltage:	AC 120V/60Hz	AC 120V/60Hz								
- JAN -	Test Mode:	TX 802.11ac(VHT40) mode(U-NII-1) / 5190 ~ 5230MHz CH Low-5190MHz									
		TX 802.11ac(VHT40) mode(U-NII-1) / 5190 ~ 5230MHz CH High-5230MHz									
	Remark:	The EUT is programed in continuously transmitting mode									

Report No.: TB-FCC169702 Page: 62 of 86

Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60Hz							
Test Mode:	TX 802.11 ac(VHT80) Mo	TX 802.11 ac(VHT80) Mode 5210MHz (U-NII-1)						
Remark:	The EUT is programed in continuously transmitting mode							

Page: 63 of 86

Attachment D-- Bandwidth Test Data

Temperature:	25 °C	Relative Humidity:	55%						
Test Voltage:	AC 120V/60Hz								
Test Mode:	TX 802.11a Mode (U	TX 802.11a Mode (U-NII-1)							
Channel	Frequency	26dB Bandwidth	99% Bandwidth						
Chainlei	(MHz)	(MHz)	(MHz)						
36	5180	21 693	17 1770						

Channel	Frequency	26dB Bandwidth	99% Bandwidth
	(MHz)	(MHz)	(MHz)
36	5180	21.693	17.1770
40	5200	21.662	17.1405
48	5240	21.716	17.1187

802.11a Mode

5180 MHz

Page: 64 of 86

Page: 65 of 86

Temperature:	25	5 °C	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz			
Test Mode:	TX 802.11n(HT20) Mode (U-NII-1)			
Channel		Frequency	26dB Bandwidth	99% Bandwidth
		(MHz)	(MHz)	(MHz)
36		5180	21.546	18.1380
40		5200	22.030	18.1996
48		5240	21.914	18.1678
902 44p/HT20\ Mode				

802.11n(HT20) Mode

5180 MHz

Page: 66 of 86

Page: 67 of 86

Temperature:	25	5 °C	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz			
Test Mode:	TX 802.11ac(VHT20) Mode (U-NII-1)			
Channel		Frequency	26dB Bandwidth	99% Bandwidth
		(MHz)	(MHz)	(MHz)
36		5180	21.651	18.1723
40		5200	21.641	18.1181
48		5240	21.736	18.1623
802 11ac(VHT20) Mode				

802.11ac(VHT20) Mode

5180 MHz

Page: 68 of 86

Page: 69 of 86

Temperature:	25 ℃	Relative Humidity:	55%	
Test Voltage:	AC 120V/60Hz			
Test Mode:	TX 802.11N(HT40) Mode (U-NII-1)			
Channel	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)	
38	5190	41.305	36.7426	
46	5230	41.439	36.6299	

802.11N(HT40) Mode

5190 MHz

Page: 70 of 86

71 of 86 Page:

Temperature:	25 ℃	Relative Humidity:	55%	
Test Voltage:	AC 120V/60Hz			
Test Mode:	TX 802.11ac(VHT40) Mode (U-NII-1)			
Channel	Frequency	26dB Bandwidth	99% Bandwidth	
	(MHz)	(MHz)	(MHz)	
38	5190	41.203	36.7372	
46	5230	41.286	36.6898	
802.11ac(VHT40) Mode				

5190 MHz

Page: 72 of 86

Page: 73 of 86

emperature	:	25 ℃			Relat	tive Humidity	': 55°	%
est Voltage:		AC 120)V/60H:	z		WALL		
est Mode:		TX 802	2.11ac(\	/HT80)	Mode (U-	NII-1)	CAN I	
Channe	N.		Frequ	ency	26 d	B Bandwidth	9	9% Bandwidth
Cilaiiii	7 1		(MF	łz)		(MHz)		(MHz)
42			521	10		81.831		75.6849
			8	02.11ac	(VHT80)	Mode	•	
* Agi	ilent							
Ref 15	dDm		Λ++	ten 25 dB				
#Peak	шып			en 25 db				
Log 10								<u> </u>
dB/	Cent	or or						
Onsi		00000	00 GH:	7				←
1				_				
	J.2 10							hama
1	J.2 IX							Manada
1	J.2 10							
1 dB							St	pan 100 MHz
1 dB Center	5.21 GH W 1 MH:	Z		#\	/BW 3 MHz	\$		pan 100 MHz ps (401 pts)
1 dB Center #Res B	5.21 GH W 1 MH:	Z	width	#\	/BW 3 MHz		Sweep 4 m	99.00 %
1 dB Center #Res B	5.21 GH W 1 MH:	z z I Band	width 6849 N		/BW 3 MHz		Sweep 4 m	ns (401 pts)

Page: 74 of 86

Attachment E-- Output Power Test Data

Temperature	: 25 ℃	25 °C Relative Humidity: 55%			55%	5%	
Test Voltage:	AC 120V	AC 120V/60Hz					
		U-N	III-1				
		Test Data					
Test Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total I	Power Bm)	Limit (dBm)	
	5180	6.98	0	6.9	98		
802.11a	5200	6.95	0	6.9	95		
	5240	6.96	0	6.9	96		
000 44	5180	6.86	0	6.8	86		
802.11n (HT20)	5200	6.91	0	6.9	91		
	5240	6.92	0	6.9	92		
802.11ac (VHT20) 802.11n	5180	6.84	0	6.8	84	24	
	5200	6.83	0	6.8	83		
	5240	6.86	0	6.8	86		
	5190	6.79	0	6.	79		
(HT40)	5230	6.81	0	6.8	81		
802.11 ac(VHT40)	5190	6.76	0	6.	76		
	5230	6.80	0	6.8	80		
802.11 ac(VHT80)	5210	6.81	0	6.8	81		
	1	Result:	PASS		 		

	Test Mode	Duty cycle
CHIL	802.11 a	
	802.11 n(HT20)	
II NIII 1	802.11 ac(VHT20)	>000/
U-NII-1	802.11 n(HT40)	>98%
	802.11 ac(VHT40)	
	802.11 ac(VHT80)	

Report No.: TB-FCC169702 Page: 75 of 86

Page: 76 of 86

Page: 77 of 86

Page: 78 of 86

79 of 86

Attachment F-- Power Spectral Density Test Data

Temperature:	25 ℃	Relative Humidity:	55%	
Test Voltage:	AC 120V/60Hz	GILL DE		
		U-NII-1		
	Frequency (MHz)	Test Data	Limit	
Test Mode		Power Density (dBm/MHz)	(dBm/MHz)	
	5180	-7.099	_	
802.11a	5200	-7.352		
	5240	-8.075		
802.11n (HT20)	5180	-9.296	11	
	5200	-9.288		
	5240	-8.195		
	5180	-7.437		
802.11ac (HT20)	5200	-7.123		
	5240	-8.043		
802.11n (HT40)	5190	-10.600		
	5230	-11.260		
802.11ac(40)	5190	-10.700		
	5230	-11.010		
802.11ac(80)	5210	-14.030		
	Re	sult: PASS		

Page: 80 of 86

Page: 81 of 86

82 of 86 Page: 802.11 ac(20) 5180 MHz 🔆 Agilent

#VBW 3 MHz

Report No.: TB-FCC169702 Page: 83 of 86

Report No.: TB-FCC169702 Page: 84 of 86

802.11 ac(40) 5190 MHz 🔆 Agilent Mkr1 5.19825 GHz -10.7 dBm Ref 15 dBm #Avg Log 10 dB/ Offst 1 dB Atten 25 dB ġ. Marker 5.198250000 GHz -10.7 dBm Center 5.19 GHz #Res BW 1 MHz Span 60 MHz Sweep 4.08 ms (401 pts) #VBW 3 MHz 802.11 ac(40) 5230 MHz * Agilent Mkr1 5.23510 GHz -11.01 dBm Ref 15 dBm #Avg Log 10 dB/ Offst 1 dB Atten 25 dB Marker 5.235100000 GHz PAvg -11.01 dBm 100 M1 S2 S3 FC AA Center 5.23 GHz #Res BW 1 MHz Span 60 MHz Sweep 4.08 ms (401 pts) #VBW 3 MHz

Page: 85 of 86

Page: 86 of 86

Attachment G-- Frequency Stability Measurement Test Data

801.11a U-NII-1: 5180 MHz Voltage vs. Frequency Stability			
240	5179.9900		
120	5179.9300		
100	5179.9300		
Max. Deviation (MHz)	0.07		
Max. Deviation (ppm)	13.51		
Temperature vs. F	requency Stability		
Temperature (℃)	Measurement Frequency (MHz)		
0	5179.9800		
10	5179.9600		
20	5179.9300		
30	5179.9300		
40	5179.9500		
50	5179.9300		
Max. Deviation (MHz)	0.07		
Max. Deviation (ppm)	13.51		
Limit (ppm)	20		
Result	Pass		

Remark: Worst case at 802.11a U-NII-1 low channel

----END OF REPORT----