Lembar Jawaban Kalkulasi Neural Network

Pada lembar jawaban ini, kamu dapat menuliskan cara mengkalkulasikan nilainilai yang diminta pada arsitektur neural network sesuai soal, ya, semangat! 😄

Pertama, masukkan dulu nilai initial value dan randomnya ya ...

Initial Value

X 1	X ₂	X 3	α	Threshold	$Y_{d,6}$	
0,7	0,8	0,9	0,1	-1	0	

Initial Random

W 14	W ₁₅	W ₂₄	W ₂₅	W ₃₄	W ₃₅	W ₄₆	W ₅₆	θ4	θ_5	θ_6
0,5	0,6	0,3	1,1	-1	0,1	-1,1	-0,7	0,2	0,3	0,4

Jika sudah selesai, kita akan masuk ke langkah-langkah kalkulasi, sebagai berikut:

Forward Pass

Forward Pass merupakan hasil dari langkah 1 pada proses kalkulasi di challenge deck. Oleh karena itu kamu tuliskan langkah kalkulasi yang kamu lakukan untuk mencari nilai-nilai di bawah ini, ya 🙌

<u>Langkah 1: Menghitung output Neuron 4 (y_4), Neuron 5 (y_5), Neuron 6 (y_6), dan Error menggunakan sigmoid function</u>

$$\begin{array}{ll} Y_4 & = sigmoid \ (x_1 \, w_{14} + x_2 \, w_{24} + x_3 \, w_{34} - O_4) \\ & = 1 \, / \, [1 + e^{((0.7 \, \times \, 0.5\,) + \, (0.8 \, \times \, 0.3) \, + \, (0.9 \, \times \, -1) \, - \, 0.2)]} \\ & = 0.770 \\ Y_5 & = sigmoid \ (x_1 \, w_{15} + x_2 \, w_{25} + x_3 \, w_{35} - \Theta_5) \\ & = 1 \, / \, [1 + e^{((0.7 \, \times \, 0.6) \, + \, (0.8 \, \times \, 1.1) \, + \, (0.9 + 0.1) \, - \, 0.3)}] \\ & = 0.438 \\ Y_6 & = sigmoid \ (y_4 \, w_{46} + y_5 \, w_{56} - \Theta_6) \\ & = 1 \, / \, [1 + e^{((0.770 \, \times \, -1.1) \, + \, (0.438 \, \times \, -0.7) \, - \, 0.4))}] \\ & = 0,465 \end{array}$$

e =
$$y_{d,6} - y_6$$

= 0 - 0.465
= -0.465

Lalu isi rangkuman hasilnya di tabel ini ya ...

Y ₄	Y ₅	Y ₆	е	
0,770	0,438	0,465	-0,465	

Backward Pass

Sementara itu, nilai-nilai dari backward pass didapatkan dengan menjalankan langkah 2, 3, dan 4. Jangan lupa tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya 👍

<u>Langkah 2: Hitung error gradient untuk Neuron 6 di Output Layer dan weight corrections</u>

$$δ_6$$
= $y_6(1-y_6)e$

= 0,533 x (1-0,553) x -0,553

= -0,1366

 $∇_{46}$
= $α × y_4 × δ_6$

= 0,1 x 0,770 x (-0,1366)

= -0,0062

 $∇_{56}$
= $α × y_5 × δ_6$

= 0,1 x 0,438 x (-0,1366)

= -0,0060

 $∇_{6}$
= $α × (-1) × δ_6$

= 0,1 x (-1) x (-0,1366)

= 0,0137

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ_6	δ_6 ∇_{46}		∇θ ₆	
-0,1156	-0,0089	-0,0051	0,0116	

<u>Langkah 3: Hitung error gradients untuk Neuron 4 dan Neuron 5 di Middle</u> <u>Layer/Hidden Layer</u>

$$\delta_4 = \mathbf{y_4(1-y_4)} \times \delta_6 \times \mathbf{w_{46}}$$

$$= 0,770(1-0,770) \times (-0,1366)(-1,1)$$

= 0,0372

$$\delta_5 = y_5(1-y_5) \times \delta_6 \times w_{56}$$

$$= 0,438(1-0,438) \times (-0,1366)(-0,7)$$

= 0,0235

Lalu isi rangkuman hasilnya di tabel ini ya ...

δ4	δ_5
0,0225	0,0199

Langkah 4: Hitung weight corrections

$$\nabla W_{14} = \boldsymbol{\alpha} \times \mathbf{x_1} \times \boldsymbol{\delta_4}$$

$$= 0.1 \times 0.7 \times 0.0225$$

= 0,0016

$$\nabla W_{24} = \boldsymbol{\alpha} \times \mathbf{x_2} \times \boldsymbol{\delta_4}$$

$$= 0.1 \times 0.8 \times 0.0225$$

= 0,0018

$$\nabla W_{34} = \boldsymbol{\alpha} \times \mathbf{X_3} \times \boldsymbol{\delta_4}$$

$$= 0.1 \times 0.9 \times 0.0225$$

= 0,0020

$$\nabla \theta_4 = \boldsymbol{\alpha} \times (-1) \times \boldsymbol{\delta_4}$$

$$= 0.1 \times (-1) \times 0.0225$$

= -0,0023

$$\nabla W_{15} = \boldsymbol{\alpha} \times \mathbf{x_1} \times \boldsymbol{\delta_5}$$

$$= 0.1 \times 0.7 \times 0.0199$$

= 0,0014

$$\nabla W_{25} = \alpha \times \mathbf{x_2} \times \mathbf{\delta_5}$$
= 0,1 × 0,8 × 0,0199
= 0,0016
 $\nabla W_{35} = \alpha \times \mathbf{x_3} \times \mathbf{\delta_5}$
= 0,1 × 0,9 × 0,0199
= 0,0018
 $\nabla \theta_5 = \alpha \times (-1) \times \mathbf{\delta_5}$

= -0,0020

Lalu isi rangkuman hasilnya di tabel ini ya ...

 $= 0.1 \times (-1) \times 0.0199$

∇w ₁₄	∇w ₂₄	∇w ₃₄	∇θ4	∇w 15	∇w ₂₅	∇w ₃₅	∇θ₅
0,0016	0,0018	0,0020	-0,0023	0,0014	0,0016	0,0018	-0,0020

Backward Pass

Last but not least, adalah nilai-nilai dari updated weight didapatkan dengan menjalankan langkah nomor 5. Seperti biasa, tuliskan proses dan hasil kalkulasinya pada tempat yang telah disediakan di bawah, ya 🖔

Langkah 5: Hitung semua weights dan theta pada arsitektur yang telah diperbarui

$$W_{14} = W_{14} + \Delta W_{14}$$

$$= 0.5 + 0.0016$$

$$= 0.5016$$

$$W_{15} = W_{15} + \Delta W_{15}$$

$$= 0.6 + 0.0014$$

$$= 0.6014$$

$$W_{24} = W_{24} + \Delta W_{24}$$

$$= 0.3 + 0.0018$$

$$= 0.3018$$

$$W_{25} = W_{25} + \Delta W_{24}$$

$$= 1.1 + 0.0018$$

= 1.1016

$$W_{34} = W_{34} + \Delta W_{34}$$

$$= -1 + 0.0020$$

= -0.9980

$$W_{35} = W_{35} + \Delta W_{35}$$

= 0.1018

$$\theta_4 = \theta_4 + \Delta W_{\theta 4}$$

$$= 0.2 + -0.0023$$

= 0.1977

$$\theta_5 = \theta_5 + \Delta W_{\theta 5}$$

$$= 0.3 + -0.0020$$

= 0.2980

$$\theta_6 = \theta_6 + \Delta \theta_6$$

$$= 0.4 + 0.0116$$

= 0.4116

Lalu isi rangkuman hasilnya di tabel ini ya ...

W 14	W 15	W ₂₄	W ₂₅	W 34	W 35	Θ4	Θ ₅	Θ ₆
0,5016	0,6014	0,3018	1,1016	-0,9980	0,1018	0,1977	0,2980	0,4116

Hore, kamu sudah menyelesaikan satu dari tiga proyek challenge, semoga mendapatkan hasil yang maksimal dan selamat bersenang-senang-