文章编号:1001-9081(2004)06Z-0261-03

新型遗传模拟退火算法求解物流配送路径问题

阎 庆, 鲍沅律 (中国科学技术大学 自动化系,安徽 合肥 230027)

摘 要:文中提出了将遗传算法和模拟退火算法结合,并加入了记忆装置。根据这种想法设计了 一种有记忆功能的遗传模拟退火算法,并进行了试验计算。结果表明:用这种有记忆功能的遗传模拟 退火算法求解物流配送路径优化问题,可以在一定程度上解决一些问题,从而得到较高质量的解。

关键词:物流配送:遗传模拟退火算法:遗传算法:模拟退火算法:路径优化 中图分类号: TP301.6 文献标识码:A

1 引言

物流配送是现代化物流管理中的一个重要环节。它是指 按用户的定货要求,在配送中心进行分货、配货,并将配好的 货物及时送交收货人的活动。在物流配送业务中,存在许多 优化决策的问题。本文只讨论物流配送路径优化问题。物流 配送路径优化问题最早是在 1959 年由 Dantzig 和 Ramser 首 先提出的,即所谓的车辆路径问题 VRP[1]。它也是目前在物 流系统中较受关注的一个方面。它是指在客户需求位置已知 的情况下,确定车辆在各个客户间的行程路线,使得运输路线 最短或运输成本最低。VRP问题已经被证明是一个 NPhard 问题。也就是说当问题的规模较大时,很难得到全局最 优解或满意解。而且随着问题规模的增大,算法的计算时间 将以指数速度增加。因此研究的重点就转移到各种启发式算 法上。求解物流配送路径优化问题的方法有很多,常用的有 旅行商法、动态规划法、节约法、扫描法、分区配送法、方案评 价法等。而遗传算法的出现为求解物流配送路径优化问题提 供了新的工具。遗传算法[2]作为一种非数值并行算法,其思 想起源于生物遗传学适者生存的自然规律。它对优化对象既 不要求连续,也不要求可微,尤其适合求解 NP-hard 问题。到 目前为止,已经有很多人都曾利用遗传算法求解物流配送路 径优化问题并取得了一些研究成果。

物流配送路径优化问题的数学模型

物流配送路径优化问题一般可以这样描述:从某物流配 送中心用多辆配送车辆向多个客户送货。每个客户的位置和 货物需求量一定,每辆车的载重量一定,其一次配送的最大行 驶距离一定。要求合理安排车辆配送路线,使目标函数得到 最优。并满足以下条件:(1)每条配送路径上各客户需求量之 和不超过配送车辆的载重量;(2)每条配送路径的长度不超过 配送车辆一次配送的最大行驶距离;(3)每个客户的需求必须 满足,且只能由一辆配送车送货。

设配送中心需要向 & 个客户送货,每个客户的货物需求 量是 g_i ($i = 1, 2, \dots, k$), 每辆配送车的载重量是 g_i 且 $g_i < g_s$ 首先为了安排路线需要对要使用的车辆数有一个估计。在现 实情况中,货物装(卸)车越复杂,约束条件越多,一辆车的实 际载货量就越小。在本文中使用文献[5]的公式来确定需要

的车辆数:

$$m = \left[\sum_{i=1}^{k} g_{i}/aq\right] + 1$$

m 为所需车辆数,「]表示取整,a 为参数,0 < a < 1。约束 条件越多,货物装(卸)越复杂,a值越小。参考文献[2],取a为

下面建立此问题的数学模型: c_{ii} 表示点i到点j的运输成 本,如时间,路程,花费等。配送中心编号为 0,各客户编号为 $i(i = 1, 2, \dots, k)$,定义变量如下:

$$x_{ijs} = egin{cases} 1, & \leq s \text{ in } i \text{ who } j \ 0, & \leq m \end{cases}$$
 $y_{is} = egin{cases} 1, \text{点 } i \text{ 的货动任务由 } s \text{ 车完成} \ 0, & \leq m \end{cases}$

得到的数学模型如下所示:

$$\min_{k} Z = \sum_{i=0}^{k} \sum_{j=0}^{k} \sum_{s=1}^{m} c_{ij} x_{ijs}$$
 (1)

$$\sum_{i=1}^{k} g_i y_{is} \le q \qquad s = 1, 2, \cdots, m$$
 (2)

$$\sum_{i=0}^{k} g_{i} y_{is} \leq q \qquad s = 1, 2, \dots, m$$

$$\sum_{s=1}^{m} y_{is} = \begin{cases} 1 & i = 1, 2, \dots, k \\ m & i = 0 \end{cases}$$
(3)

$$\sum_{s=1}^{k} x_{ijs} = y_{js} \qquad i = 0$$

$$\sum_{i=0}^{k} x_{ijs} = y_{js} \qquad j = 1, \dots, k; s = 1, 2, \dots, m$$

$$\sum_{i=1}^{k} x_{ijs} = y_{is} \qquad i = 0, 1, \dots, k; s = 1, 2, \dots, m$$
(5)

$$\sum_{i=1}^{k} x_{ijs} = y_{is} \qquad i = 0, 1, \dots, k; s = 1, 2, \dots, m$$
 (5)

$$x_{iis} = 0$$
 或 1 $i, j = 0, 1, \dots, k; s = 1, 2, \dots m$ (6)

上述模型中,式(2) 为汽车容量约束;式(3) 保证了每个 客户的运输任务仅由一辆车完成,而所以运输任务则由m辆 车协同完成:式(4)和式(5)限制了到达和离开某一客户的汽 车有且仅有一辆。

路径优化问题的有记忆的遗传模拟退火算法

针对遗传算法的一些不足,作者将模拟退火算法与之结 合,并加入了记忆装置,从而构造了物流配送路径优化问题的 一种有记忆功能的遗传模拟退火算法。该算法的特点是扩大 了原有遗传算法的搜索邻域,在一定概率控制下暂时接受一 些恶化解。同时利用记忆装置保证了在一定终止条件下所得 的最终解至少是搜索过程中曾得到所有解中的最优解。该算 法通过在常规的遗传算法基础上加入模拟退火算子和记忆装 置而得到。

步骤1 给定群体规模 $max pop \cdot k = 0$: 初始温度 $t_k = t_0$. 产生初始群体 pop(k); 对初始群体计算目标值 f(i),找出使 函数 $f_i(t_k)$ 最小的染色体 i 和这个函数值 $f_i(t_k)$ 最小的染色体 i

其中, $f_i(t_k)$ 为状态 i 在温度为 t_k 时的目标值 $i \in$ pop(k),即当代群体中的一个染色体。

步骤 2 若满足结束条件则停止计算,输出最优染色体 i^* 和最优解 f^* :否则,在群体 pop(k) 的每一个染色体 $i \in$ pop(k) 的邻域中随机选取一个状态 $j \in N(i)$,按模拟退火中 的接受概率:

$$A_{ii} = \min \left\{ 1, \exp \left(-\frac{f_i(t_k) - f_i(t_k)}{t_k} \right) \right\}$$

接受或拒绝j,其中 $f_i(t_k)$, $f_i(t_k)$ 分别为状态i,j 的目标 值。这一阶段共需 maxpop 次迭代以选出新群体 newpop1。

步骤 3 在 newpop1(k+1) 中计算适应度函数:

$$f_i(t_k) = \exp\left\{-\frac{f_i(t_k) - f_{\min}}{t_k}\right\}$$

其中, f_{min} 是 new pop1(k+1) 中的最小值。由适应度函 数决定的概率分布从 new pop1 中随机选 max pop 个染色体形 成种群 newbob2。

步骤 4 按遗传算法的常规方法对 new pop 2 进行交叉得 到 cross pop,再变异得到 mut pop。

步骤 5 令 pop(k+1) = mutpop,对 pop(k+1) 计算 $f_i(t_k)$,找出使函数 $f_i(t_k)$ 最小的染色体 i 和这个函数值 f_i 如 果 $f < f^*$,则令 $i^* = i$, $f^* = f$, $t_{k+1} = a \times t_k$, k = k+1,返 回步骤2。

3.1 染色体结构

出于表示简单,计算机处理方便的目的,对于 VRP 问题 的遗传算法编码通常都采用自然数编码。上节数学模型的解 向量可编成一条长度为 k+m+1 的染色体 $(0,i_1,i_2,\cdots,i_s,0)$ $i_i, \dots i_k, 0, \dots, 0, i_b, \dots, i_a, 0$ 。在整条染色体中,自然数 i_i 表示 第i个客户。0 的数目为m+1个,代表配送中心,并把自然数 编码分为 m 段,形成 m 个子路径,表示由 m 辆车完成所有运 输任务。这样的染色体编码可以解释为:第一辆车从配送中心 出发,经过 i_1,i_2,\cdots,i_s 客户后回到配送中心,形成了子路径 1:第2辆车也从配送中心出发,途经 i_i ,…, i_i 客户后回到配送 中心,形成子路径2.m 辆车依次出发,完成所有运输任务,构 成 m 条子路径。如染色体 0123045067890 表示由三辆车完成 9 个客户的运输任务的路径安排:

11.7

子路径 2:配送中心 → 客户 4 → 客户 5 → 配送中心 子路径 3:配送中心 → 客户 6 → 客户 7 → 客户 8 → 客户 9→配送中心

3.2 遗传群体初始化

为了使算法收敛到全局最优,遗传群体应具有一定的规 模。但为了保证计算效率,群体规模也不能太大。一般取群体 规模取值在10到100之间。在初始化染色体时,先生成 k 个客 户的一个全排列,再将m+1个0随机插入排列中。需要注意 的是必须有两个 () 被安排在排列的头和尾,并且在排列中不 能有连续的2个0。这样构成一条满足问题需要的染色体。针 对此染色体,随机选择两个位置上的元素进行交换,并用算法 对其调整,使其成为新的满足要求的染色体。交换若干次,直 至生成满足群体规模数的染色体。

3.3 计算适应度函数

这里使用文献[3]的方法,将容量约束式(2)转为运输成 本的一部分,运输成本变为.

$$Z = \sum_{i=0}^{k} \sum_{i=0}^{k} \sum_{s=0}^{m} c_{ij} x_{ijs} + M \sum_{s=1}^{m} \max \left(\sum_{i=0}^{k} g_{i} y_{is} - q, 0 \right)$$

其中M为一很大的正数,表示当一辆车的货运量超过其 最大载重量时的惩罚系数。M应趋向于无穷大。考虑到计算机 处理的问题,参考文献[6],取 M 为 1000000。将此运输成本函 数作为目标函数。适应度函数采用一种加速适应度函数 $f_i(t_k) = \exp\left\{-\frac{f_i(t_k) - f_{min}}{4}\right\}$ 。这种适应度函数加速性能比

较好,可以迅速改进适应度的值,缩短算法运行时间。

3.4 交叉算子

将每代种群的染色体中适应度最大的染色体直接复制, 进入下一代。种群中其他染色体按其适应度的概率分布,采用 轮盘赌的方法,产生子代。这样既保证了最优者可生存至下一 代,又保证了其余染色体可按生存竞争的方法生成子代,使得 算法可收敛到全局最优。选中的染色体按一定的概率 — 交叉 率,产生子代。文献[7]认为交叉率在 $[0.6] \sim [0.8]$ 之间,算法进 化效果较好.

由于车辆路径问题的条件约束,如果采用简单的交叉算 子,将可能产生大量的不可行解。因此这里采用文献[6]的交 叉算子,这种改进的交叉算子,避免非可行解的产生,具体做

- (1) 随机产生交叉位,如果在交叉位的外侧两端的父代 基因都是 0 的话,则对父代进行简单交叉:如果交叉位的外侧 两端的父代基因不为 () 的话,则将左交叉位向左移,直至移动 到左交叉位的左端基因为 0 时停止。以左交叉位为起点,继续 向右移动右交叉位,直至右交叉位的右端基因为0为止。这样 就保证了父代染色体都用1条子路径来进行交叉。
- (2) 经过第(1) 步操作,子代中仍会产生访问同一客户 2 次的情况,需要对子代进行整理。在子代中选择那些具有重复 情况的自然数,如果该自然数并非在交叉位内的话,则删除 之。子代如存在未访问到某一客户的情况,则在染色体的交叉 位外补上该客户对应的自然数。
- (3) 经过第(2) 步的操作,如果产生了某一子路径为空的 情况,即染色体中含有2个连续的0,须继续进行第3步操作。 将其中的1个0与染色体其他位上的客户自然码进行交换。对 该客户自然码的要求是该码的前一位与后一位均不为 0。本 步操作可放在对子代的变异后进行。

如有父代 1:015604027680,父代 2:071086402350。使 用上述算法,对父代1选定交叉位8,11,对父代2选定交叉 位 5,7。经过第 1 步计算,得子代 1:01560408640 和子代 2:0710273802350。使用算法的第2步,整理子代1和子代 2。得到子代 1;012537008640 和子代 2:014027380560。子 代1中存在2个连续的0,对其进行第3步操作。最后得到子 代1:012507308640。

3.5 变异算子

交叉产生的子代依一定概率 — 变异率发生变异。变异的 策略是随机交换2个基因的位置。在变异后,需要用交叉算子 的第3步操作整理子代,以保证可行性。

3.6 结束条件

当算法的当前进化代数大于预先设定的 N 时,算法结束。

3.7 邻域结构

每个染色体的邻域包括任意交换其两个基因所产生的所 有染色体。

3.8 衰减函数

 $t_{b+1} = a \times t_b$

4 实验分析

实验初始数据取自参考文献[6]。

实验 1,随机生成 1 个有 8 个门店的 VRP 问题 , 初始数据 如下 .

表 1 试验 1 初始数据

 门店	配送中心	门店 1	门店 2	门店 3	门店 4	门店 5	门店 6	门店 7	门店 8
位置	(31,9)	(76, 38)	(77, 16)	(90,82)	(60,74)	(76,86)	(11,31)	(29,90)	(10,60)
需求量	0	2.46	0.41	2.16	2.27	1.83	3.76	2.54	2.39

根据各仓库的需求量,计算出需要的汽车数: m=[17.82/(0.85*8)]+1=3,文献[6]采用传统的遗传算法的各算子,并对其中的交叉算子进行了改造,取群体规模为20,进化代数为50,应用此程序他费时3s得到的结果为:

子路径 1:0→8→7→4→0

子路径 2:0→6→0

子路径 3:0→5→1→2→3→0

运输距离成本:476.29

而我们的算法在上面的算法中加入了一个模拟退火算

子,取初始退火温度为 10,衰减系数取 0.85 使用第三节所述 算法步骤,在奔腾四的计算机上计算,耗时 2s,得结果如下:

子路径 1:0→6→0

子路径 $2:0\rightarrow2\rightarrow1\rightarrow3\rightarrow5\rightarrow0$

子路径 $3:0 \to 8 \to 7 \to 4 \to 0$

运输距离成本:476.290507

进化代数为:20

实验 2,随机生成 1 个有 20 个门店的 VRP 问题,初始数据如下.

表 2 试验 2 初始数据

门店	配送中心	门店 1	门店 2	门店 3	门店 4	门店 5	门店 6	门店 7	门店8	门店 9	门店 10
位置	(52,4)	(15,49)	(0,61)	(51,15)	(25,71)	(38, 62)	(35,45)	(100,41)	(10,52)	(26,79)	(87,7)
需求量	0	1.64	1.31	1.43V 3.38	1.13	3.773.48	0.39	0.24	1.03		

续表 2

一门店	门店 11	门店 12	门店 13	门店 14	门店 15	门店 16	门店 17	门店 18	门店 19	门店 20
位置	(24,89)	(19, 25)	(20,99)	(73,91)	(100,95)	(7,73)	(69,86)	(24,3)	(66,14)	(9,30)
需求量	0.24	2.60	1.00	0.65	0.58	2.56	2.69	3.26	2.97	

计算得:需 6 辆车。用文献[6]的算法取群体规模 100,进化代数分别设为 20,50,100,得到的结果不同:

表 3 原来算法的结果

实验	1	2	3
进化代数	20	50	100
运输成本	1153.12	964.48	908.44

而采用本文的算法,初始退火温度取 10,衰减系数取 0. 85,在奔腾四的计算机上计算,则结果如下:

表 4 本算法的结果

实验	1	2	3		
进化代数	20	50	100		
运输成本	1153.96	963.67	906.29		

从以上两个实验可以看出:采用本文中所述的算法,要得到相同的结果可以缩短进化代数,从而节约运算时间。而采用相同的进化代数,虽然在进化代数较少时对结果的改进并不明显,但随着进化代数的增加,必然得到更好的结果。

5 结束语

本文使用文献[6]中比较合理的交叉算子和变异算子,采

用自然数编码将模拟退火算法与传统的遗传算法相结合,用来求解物流系统中车辆路径问题。这种算法所需的进化代数明显减少,获得了较好的结果。实验结果表明此算法在解决诸如车辆路径问题这类 NP-hard 问题确实可行,并有较好的性能。而且随着问题规模的增大,这种缩短进化代数的效果将更加明显。

参考文献

- [1] 郭耀煌,李军著. 车辆优化调度[M]. 成都:成都科技大学,
- [2] 邢文训,谢金星. 现代优化计算方法[M]. 北京:清华大学出版 社,1999. 140.
- [3] 郎茂祥. 物流配送车辆调度问题的模型和算法研究[D]. 北京: 北方交诵大学 2002.
- [4] 郎茂祥,胡思继. 用混和遗传算法求解物流配送路径优化问题的研究[J]. 中国管理科学,2002,10(5):51-56.
- [5] 李军,谢秉磊,郭耀煌.非满载车辆调度问题的遗传算法[J].系统工程理论与实践,2000,20(3):235-239.
- [7] 姜大立,杨西龙,杜文,等.车辆路径问题的遗传算法研究[J]. 系统工程理论与实践,1999 19(6):40-45.