18 Topologische Eigenschaften von Prävarietäten

Lemma 42. Für einen topologischen Raum X und $U \subseteq X$ offen haben wir eine Bijektion

$$\{Y\subseteq U\ irred.\ abg.\}\longleftrightarrow \{Z\subseteq X\ irred.\ abg.\ mit\ Z\cap U\neq\emptyset\}$$

$$Y\longmapsto \overline{Y}\ (Abschluss\ in\ X)$$

$$Z\cap U\longleftrightarrow Z$$

Proof. Lemma 14: $Y \subseteq X$ irreduzibel $\Leftrightarrow \overline{Y} \subseteq X$ irreduzibel.

 $Y \subseteq U$ abgeschlossen $\Leftrightarrow \exists A \subset X$ abgeschlossen: $Y = U \cap A$.

$$\Rightarrow Y \subseteq \overline{Y} \subseteq A \Rightarrow Y = U \cap \overline{Y}$$

Y irreduzibel in $U \Rightarrow Y$ irreduzibel in X

 \Rightarrow (14) \overline{Y} irreduzibel

$$\Rightarrow Y \mapsto \overline{Y} \mapsto \overline{Y} \cap U = Y. \checkmark$$

 $\emptyset \neq \underbrace{Z \cap U}_{\text{irred. (S. 13v.)}} \subset Z$ damit dicht da Zirreduzibel (Satz 13.ii)

 \Rightarrow Abbildung \leftarrow wohldefiniert

$$\Rightarrow \overline{Z \cap U} = Z$$

Proposition 43. Sei (X, \mathcal{O}_X) eine Prävarietät.

 $\Rightarrow X$ noethersch (insbesondere quasikompakt) und irreduzibel.

Proof. Sei $X = \bigcup_{i=1}^n$ endliche eff. aff. Überdeckung und $X \supseteq Z_1 \supseteq Z_2 \supseteq \cdots$ eine absteigende Kette abgeschlossener Teilmengen.

$$\Rightarrow U_i \cap Z_1 \supseteq U_i \cap Z_2 \supseteq \cdots$$

 \Rightarrow abgeschlossene Teilmengen in U_i

 $\Rightarrow \forall i \ \exists n_i : U_i \cap Z_{n_i} = U_i \cap Z_{i+m}$. Setzen von $n := \max n_i$ liefert:

 $\forall i = 1, \dots, n \ \forall m \ge n: \ U_i \cap Z_m = U_i \cap Z_{m+1}$

 $\Rightarrow (Z_i)$ wird stationär da $Z_m = \bigcup U_i \cap Z_m$.

 $\Rightarrow X$ noethersch.

Zeige, X ist irreduzibel:

Sei $X = X_1 \cup \cdots \cup X_n$ die Zerlegung in irreduzibele Komponenten.

 $\mathbb{A} \ n \geq 2$

$$\Rightarrow \exists i_0 \in \{2, \dots, n\}: X_1 \cap X_{i_0} \neq \emptyset.$$
 (Andernfalls gilt: $X = X_1 \sqcup \underbrace{X \setminus X_1}_{=X_2 \cup \dots \cup X_n \text{ abg.}}$. Widerspruch zu

X zusammenhängend.)

Sei ohne Einschränkung $i_0 = 2$. Sei $x \in X_1 \cap X_2$, $x \in U \subset X$ offene affine Überdeckung (d.h. affine Varietät).

Uirreduzibel $\Rightarrow \overline{U}$ (Abschluss in $X) \subseteq X_j$ für ein $j \in \{1, \dots, n\}$

Jedoch: $x \in X_i \cap U \subseteq U$ irreduzibel ist $\overline{X_i \cap U} = X_i$, i = 1, 2 $\Rightarrow X_1, X_2 \subseteq X_j$. Widerspruch zu maximale Komponente.