République Algérienne Démocratique et Populaire الجمهوريـــة الجـزائريـة الديمـقراطيـة الشـعبية Ministère de l'Enseignement Supérieur et de la Recherche Scientifique وزارة التعليم العـالي و البحث العلـمي

المدرسة الوطنية العليا للإعلام الآلي Ecole nationale Supérieure d'Informatique

Rapport du TPANAD

Thème:

Analyse des Composants Principales

Réalisé par :MAHMAHI Anis
SID

Promotion: 2019-2024

Dataset choisie: "PV 1CS S1"

Comme étape initiale, il était obligé d'éliminer les trois derniers individus ayant bloqué l'année pour ne pas fausser les résultats de l'ACP.

On peut toujours les rajouter comme des individus supplémentaires à la fin de l'ACP.

Individu: 35

_		SYS1	RES1	ANUM	RO	ORG	IGL	THP	LANG1
	35	12.82	15.87	18.25	11.20	13.94	12.95	9.50	14.10

```
# Installation et importation des packages nécessaires
install.packages(c("FactoMineR", "factoextra"))
library("FactoMineR")
library("factoextra")
```

```
res <- PCA(my_data, graph = FALSE)
```

```
eig.val <- get_eigenvalue(res)
print(eig.val)
```

Valeur Propres	5.6700	0.684	0.3878	0.3233	0.3215	0.2809	0.1830	0.1485
Inertie (%)	70.875	8.558	4.8476	4.0418	4.0195	3.5117	2.2885	1.8571
Inertie Cum (%)	70.875	79.43	84.281	88.323	92.342	95.854	98.142	100.00

Figure 1: Inerties correspondantes aux valeurs propres

D'après la figure ci-dessus, on peut retenir seulement 4 composantes principales. 83.5% des informations contenues dans les données sont retenues par les 4 premières composantes principales.

var <- get_pca_var(res)
print(var\$cos2); print(var\$contrib); print(var\$coord)</pre>

	V1	ctr	cos2	V2	ctr	cos2	V3	ctr	cos2
SYS1	0.804	13.81	0.647	-0.231	6.113	0.053	0.227	8.147	0.051
	4959	263	2137	225	129	46504	13542	64069	59050
RES1	0.854	15.59	0.730	-0.113	1.484	0.012	-0.033	0.181	0.001
	8709	659	8043	9396	372	98223	87739	25165	14767
ANUM	0.773	12.76	0.597	-0.182	3.809	0.033	-0.072	0.821	0.005
	2448	035	9075	5378	776	32006	12628	57874	20220
RO	0.788	13.27	0.621	-0.258	7.624	0.066	0.013	0.029	0.000
	5822	158	8619	2317	522	68360	65487	44673	18645
ORG	0.690	10.16	0.476	0.462	24.42	0.213	-0.457	33.03	0.209
	1018	377	2405	2083	6942	63651	32921	08696	15000
IGL	0.809	13.99	0.655	0.160	2.952	0.025	-0.268	11.39	0.072
	8937	860	9278	7034	865	82557	63092	65690	16257
THP	0.810	14.02	0.657	-0.216	5.372	0.046	0.178	5.039	0.031
	6594	508	1687	7741	894	99100	62835	21497	90808
LANG1	0.546	6.371	0.298	0.649	48.21	0.421	0.511	41.35	0.261
	3905	40	5426	3764	5500	68975	71094	34285	84808

Nuage des Variables :

Cercle de Corrélation :

fviz_pca_var(res, col.var = "black")

Figure 2: Cercle de Corrélation du premier plan factoriel

La longueur du vecteur mesure la qualité de représentation des variables, et on remarque que RES1, LANG1, THP, SYS1 sont les variables les mieux représentées par le premier plan factoriel.

Axe 1: En considérant les variables dont : $C_{ab} \ge \frac{1}{P}$

fviz_contrib(res, choice = "var", axes = 1)

Figure 5: Contribution des variables sur l'axe 1

-	+
	RES1,THP,IGL,SYS1,RO,ANUM

Interprétation:

Axe 1, a un effet taille. Il mesure les notes des modules RES1, THP, IGL, SYS1, RO, ANUM.

Axe 2 : En considérant les variable dont : $C_{ab} \ge \frac{1}{P}$

fviz_contrib(res, choice = "var", axes = 2)

Figure 6: Contribution des variables sur l'axe 2

-	+
	ORG, LANG 1

Interprétation :

Axe 2, a un effet taille. Il mesure les notes des modules ORG, LANG 1.

Axe 3: En considérant les variable dont : $C_{ab} \ge \frac{1}{P}$

fviz_contrib(res, choice = "var", axes = 3)

Figure 6: Contribution des variables sur l'axe 3

-	+
ORG	LANG 1

Interprétation :

Axe 3 est un axe d'opposition, il oppose les notes des modules ORG aux notes de LANG 1.

Axe 4 : En considérant les variable dont : $C_{ab} \ge \frac{1}{P}$

fviz_contrib(res, choice = "var", axes = 4)

Figure 6: Contribution des variables sur l'axe 3

-	+
SYS1	ANUM

Interprétation:

Axe 4 est un axe d'opposition, il oppose les notes des modules ANUM aux notes de SYS 1.

Nuage des individus:

Figure 3: Nuage des Individus

Figure 4: Qualité de représentation de chaque individu

Les individus centrés (proches de l'origine) sont mal-représentés . On note que les individus similaires sont proches entre eux.

Interprétation de l'individu n°35 :

Premier Plan:

Pour interpréter l'individu $n^{\circ}35$, il est bien de l'isoler pour voir son abscisse et sa coordonnée.

D'après la figure 5, on remarque qu'il est mal-représenté dans le premier plan factoriel car il est très proche de l'origine et il a un cos2 très petit.

Figure 5: Qualité de représentation d'individu n° 35 dans le premier plan.

```
plot(res, choix = "ind", cex=1, select = 35, axes = c(1,3), xlim = c(-7, 7), ylim = c(-2, 2),)
```


Figure 6: Biplot de l'individu n°35 dans le 1er plan factoriel

Interprétation:

On remarque que l'individu n°35 est mal-représenté dans le 2eme axe (ordonné très proche de l'origine).

Sur l'axe 1, on peut dire qu'il se situe pas très proche ni trop loin de l'origine donc il est moyen à bon dans RES1, THP, IGL, SYS1, RO, ANUM.

	SYS1	RES1	ANUM	RO	IGL	THP
35	12.82	15.87	18.25	11.20	12.95	9.50

Deuxième plan factoriel : constitué de (Dim 1,Dim 3).

D'après la figure 7, on remarque que l'individu $n^{\circ}35$ est très bien représenté sur l'axe 3.

Figure 7: Biplot de l'individu n°35 dans le deuxième plan factoriel

Interprétation:

L'individu n°35 a une ordonnée importante donc il est bon en ORG mais pas grande que celle de n°100, 92 par exemple, et cela ne veut dire pas que ces individus sont mieux que n°35 en ORG, mais ils sont plus mauvais en LANG 1 que n°35 parce que cet axe oppose simultanément ORG au LANG 1, et c'est pour ca 35 s'est situé un peu plus haut que ces individus.

	ORG	LANG 1
35	13.94	14.10
100	10.70	7.63

92 12.84	11.37
----------	-------

Troisième plan factoriel: constitué de (Dim 1,Dim 4).

D'après la figure 8, on remarque que l'individu $n^{\circ}35$ est très bien représenté sur l'axe 4.

Figure 8: Biplot de l'individu n°35 dans le troisième plan factoriel

Interprétation:

L'individu n°35 a une ordonnée importante donc il est bon en ANUM mais pas grande que celle de n°34 par exemple, et cela ne veut dire pas qu'il mieux que n°35 en ANUM, mais il est plus mauvais en SYS 1 que n°35 parce que cet axe oppose simultanément ANUM au SYS1, et c'est pour ca 35 s'est situé un peu plus bas.

	ANUM	SYS1
35	18.25	12.28
34	17.25	10.68