1. Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with probability density function

$$f_{X}(x) = f_{X}(x;\theta) = (\theta^{2} + \theta) x^{\theta-1}(1-x), \quad 0 < x < 1, \quad \theta > 0.$$

- a) Obtain a method of moments estimator of θ , $\widetilde{\theta}$.
- b) Suppose n = 6, and $x_1 = 0.3$, $x_2 = 0.5$, $x_3 = 0.6$, $x_4 = 0.65$, $x_5 = 0.75$, $x_6 = 0.8$. Find a method of moments estimate of θ .
- c) Is $\widetilde{\theta}$ an unbiased estimator of θ ? Justify your answer.
- d) Is $\widetilde{\theta}$ a consistent estimator of θ ? Justify your answer.
- e) Show that $\widetilde{\theta}$ is asymptotically normally distributed (as $n \to \infty$). Find the parameters.
- f) Obtain the maximum likelihood estimator of θ , $\hat{\theta}$.

That is, find $\hat{\theta} = \arg \max L(\theta) = \arg \max \ln L(\theta)$,

where
$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta)$$
.

"Hint": $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$;

- ② $\theta > 0$;
- 3 Since 0 < x < 1, $\ln x < 0$.
- g) Suppose n = 6, and $x_1 = 0.3$, $x_2 = 0.5$, $x_3 = 0.6$, $x_4 = 0.65$, $x_5 = 0.75$, $x_6 = 0.8$. Find the maximum likelihood estimate of θ .

- h) Let $Y_1 < Y_2 < ... < Y_n$ denote the corresponding order statistics. Find β so that $W_n = n^{\beta} Y_1$ converges in distribution. Find the limiting distribution of W_n .
- i) Find a sufficient statistic $Y = u(X_1, X_2, ..., X_n)$ for θ .

2. Let $\theta > 1$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x;\theta) = \frac{1}{x \ln \theta},$$
 $1 < x < \theta.$

- a) Obtain the maximum likelihood estimator of θ , $\hat{\theta}$.
- b) Is $\hat{\theta}$ an unbiased estimator of θ ?
- c) Is $\hat{\theta}$ a consistent estimator of θ ?
- d) Obtain a method of moments estimate for θ , $\widetilde{\theta}$.

Let $Y_1 < Y_2 < ... < Y_n$ denote the corresponding order statistics.

- e) Let $Z_n = n \ln Y_1$. Find the limiting distribution of Z_n .
- f) Let $W_n = n \ln \frac{\theta}{Y_n}$. Find the limiting distribution of W_n .

1. Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with probability density function

$$f_{X}(x) = f_{X}(x;\theta) = (\theta^{2} + \theta) x^{\theta - 1} (1 - x), \quad 0 < x < 1, \quad \theta > 0$$

a) Obtain a method of moments estimator of θ , $\widetilde{\theta}$.

$$E(X) = \int_{0}^{1} x \cdot (\theta^{2} + \theta) x^{\theta - 1} (1 - x) dx = (\theta^{2} + \theta) \cdot \int_{0}^{1} (x^{\theta} - x^{\theta + 1}) dx$$
$$= \theta \cdot (\theta + 1) \cdot \left(\frac{1}{\theta + 1} x^{\theta + 1} - \frac{1}{\theta + 2} x^{\theta + 2} \right) \Big|_{0}^{1} = \frac{\theta \cdot (\theta + 1)}{(\theta + 1) \cdot (\theta + 2)} = \frac{\theta}{\theta + 2}.$$

OR

Beta distribution,
$$\alpha = \theta$$
, $\beta = 2$. $\Rightarrow E(X) = \frac{\theta}{\theta + 2}$.

$$\frac{\widetilde{\theta}}{\widetilde{\theta} + 2} = \overline{X} \qquad \qquad \widetilde{\theta} = \overline{X} \cdot \left(\widetilde{\theta} + 2\right) \qquad \qquad \widetilde{\theta} - \widetilde{\theta} \, \overline{X} = 2\overline{X}$$

$$\Rightarrow \qquad \widetilde{\theta} = \frac{2\overline{X}}{1-\overline{X}}, \qquad \text{where } \overline{X} = \frac{1}{n} \cdot \sum_{i=1}^{n} X_i.$$

b) Suppose n = 6, and $x_1 = 0.3$, $x_2 = 0.5$, $x_3 = 0.6$, $x_4 = 0.65$, $x_5 = 0.75$, $x_6 = 0.8$. Find a method of moments estimate of θ .

$$x_1 = 0.3$$
, $x_2 = 0.5$, $x_3 = 0.6$, $x_4 = 0.65$, $x_5 = 0.75$, $x_6 = 0.8$.

$$\overline{x} = 0.6.$$
 $\widetilde{\theta} = \frac{2\overline{x}}{1-\overline{x}} = 3.$

c) Is $\widetilde{\theta}$ an unbiased estimator of θ ? Justify your answer.

Consider
$$g(x) = \frac{2x}{1-x}$$
. Then $g(\overline{X}) = \widetilde{\theta}$, $g(\frac{\theta}{\theta+2}) = \theta$.

Also
$$g''(x) = \frac{4}{(1-x)^3} > 0$$
 for $0 < x < 1$, i.e., $g(x)$ is strictly convex.

By Jensen's Inequality,

$$\mathrm{E}\left(\,\widetilde{\theta}\,\right) = \mathrm{E}\left[\,g\left(\,\overline{\mathrm{X}}\,\right)\,\right] > g\left(\mathrm{E}\left(\,\overline{\mathrm{X}}\,\right)\,\right) = g\left(\,\mu_{\mathrm{X}}\,\right) = g\left(\,\frac{\theta}{\theta + 2}\,\right) = \theta.$$

Therefore, $\stackrel{\sim}{\theta}$ is NOT an unbiased estimator of θ .

d) Is $\widetilde{\theta}$ a consistent estimator of θ ? Justify your answer.

By WLLN,
$$\overline{X} \stackrel{P}{\to} E(X) = \frac{\theta}{\theta + 2}$$
.

Consider
$$g(x) = \frac{2x}{1-x}$$
. Then $g(x)$ is continuous at $\frac{\theta}{\theta+2}$.

$$g(\overline{X}) = \widetilde{\theta}$$
 $g(\frac{\theta}{\theta+2}) = \theta.$

$$\mathbf{X}_n \overset{P}{\to} a$$
, g is continuous at $a \Rightarrow g(\mathbf{X}_n) \overset{P}{\to} g(a)$

$$\Rightarrow$$
 $\widetilde{\theta} \stackrel{P}{\rightarrow} \theta$. $\widetilde{\theta}$ is a consistent estimator of θ .

e) Show that $\widetilde{\theta}$ is asymptotically normally distributed (as $n \to \infty$). Find the parameters.

Beta distribution,
$$\alpha = \theta$$
, $\beta = 2$. $\Rightarrow Var(X) = \frac{2\theta}{(\theta + 3)(\theta + 2)^2}$.

OR

$$E(X^{2}) = \int_{0}^{1} x^{2} \cdot (\theta^{2} + \theta) x^{\theta - 1} (1 - x) dx = (\theta^{2} + \theta) \cdot \int_{0}^{1} (x^{\theta + 1} - x^{\theta + 2}) dx$$
$$= \theta \cdot (\theta + 1) \cdot \left(\frac{1}{\theta + 2} x^{\theta + 2} - \frac{1}{\theta + 3} x^{\theta + 3} \right) \Big|_{0}^{1} = \frac{\theta \cdot (\theta + 1)}{(\theta + 2) \cdot (\theta + 3)}.$$

$$\operatorname{Var}(X) = \operatorname{E}(X^{2}) - \left[\operatorname{E}(X)\right]^{2} = \frac{\theta \cdot (\theta+1)}{(\theta+2) \cdot (\theta+3)} - \left(\frac{\theta}{\theta+2}\right)^{2} = \frac{2\theta}{(\theta+3)(\theta+2)^{2}}.$$

By CLT, $\sqrt{n}(\overline{X}-\mu)$ is approx. $N(0,\sigma^2)$ for large n.

$$g(x) = \frac{2x}{1-x}.$$

$$g'(x) = \frac{2}{(1-x)^2}.$$

$$g(\overline{X}) = \widetilde{\theta}$$

$$g(\frac{\theta}{0+2}) = \theta.$$

$$g'(\frac{\theta}{0+2}) = \frac{(\theta+2)^2}{2}.$$

By the Δ -method, $\sqrt{n} \left(g(\overline{X}) - g(\mu) \right) = \sqrt{n} \left(\widetilde{\theta} - \theta \right)$ is approx.

$$N\left(0, \left(\frac{\left(\theta+2\right)^2}{2}\right)^2 \frac{2\theta}{\left(\theta+3\right)\left(\theta+2\right)^2}\right) = N\left(0, \frac{\theta(\theta+2)^2}{2(\theta+3)}\right) \text{ for large } n.$$

For large n, $\widetilde{\theta}$ is approximately $N\left(\theta, \frac{\theta(\theta+2)^2}{2(\theta+3)n}\right)$.

f) Obtain the maximum likelihood estimator of θ , $\hat{\theta}$.

That is, find
$$\hat{\theta} = \arg \max L(\theta) = \arg \max \ln L(\theta)$$
,

where
$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta)$$
.

$$\bigcirc \frac{-b \pm \sqrt{b^2 - 4ac}}{2a};$$

- ② $\theta > 0$:
- 3 Since 0 < x < 1, $\ln x < 0$.

$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta)$$

$$= \left(\theta^2 + \theta\right)^n \left(\prod_{i=1}^n x_i\right)^{\theta-1} \prod_{i=1}^n (1 - x_i).$$

$$\ln L(\theta) = n \ln(\theta^2 + \theta) + (\theta - 1) \sum_{i=1}^{n} \ln x_i + \sum_{i=1}^{n} \ln(1 - x_i)$$

$$\left(\ln L(\theta)\right)' = \frac{2n\theta + n}{\theta^2 + \theta} + \sum_{i=1}^{n} \ln x_i = 0.$$

$$\Rightarrow \qquad \qquad \sum \hat{\theta}^2 + (2n + \Sigma) \hat{\theta} + n = 0, \qquad \text{where } \Sigma = \sum_{i=1}^n \ln X_i.$$

$$\Rightarrow \qquad \hat{\theta} = \frac{-2n - \Sigma \pm \sqrt{\left(2n + \Sigma\right)^2 - 4\Sigma n}}{2\Sigma} = \frac{2n + \Sigma \pm \sqrt{4n^2 + \Sigma^2}}{-2\Sigma}.$$

Since
$$0 < x < 1$$
, $\ln x < 0$. $\Rightarrow \quad \Sigma < 0$.

$$\Rightarrow (2n+\Sigma)^2 = 4n^2 + 4n\Sigma + \Sigma^2 < 4n^2 + \Sigma^2.$$

$$\Rightarrow \qquad |2n+\Sigma| < \sqrt{4n^2+\Sigma^2}.$$

$$\Rightarrow \qquad \text{Since } \theta > 0, \qquad \hat{\theta} = \frac{2n + \Sigma + \sqrt{4n^2 + \Sigma^2}}{-2\Sigma},$$
 where $\Sigma = \sum_{i=1}^n \ln X_i$.

g) Suppose n = 6, and $x_1 = 0.3$, $x_2 = 0.5$, $x_3 = 0.6$, $x_4 = 0.65$, $x_5 = 0.75$, $x_6 = 0.8$. Find the maximum likelihood estimate of θ .

$$\Sigma = \sum_{i=1}^{n} \ln X_i \approx -3.349554.$$
 $\hat{\theta} \approx 3.151.$

h) Let $Y_1 < Y_2 < ... < Y_n$ denote the corresponding order statistics. Find β so that $W_n = n^{\beta} Y_1$ converges in distribution. Find the limiting distribution of W_n .

$$F_{X}(x) = \int_{0}^{x} (\theta^{2} + \theta) y^{\theta - 1} (1 - y) dy = \theta \cdot (\theta + 1) \cdot \int_{0}^{x} (y^{\theta - 1} - y^{\theta}) dy$$
$$= (\theta + 1) x^{\theta} - \theta x^{\theta + 1}, \qquad 0 < x < 1.$$

$$F_{Y_1}(x) = P(\min X_i \le x) = 1 - (1 - F(x))^n = 1 - (1 - (\theta + 1)x^{\theta} + \theta x^{\theta + 1})^n,$$

$$0 < x < 1.$$

$$\begin{aligned} \mathbf{F}_{\mathbf{W}_{n}}(w) &= \mathbf{P}(\mathbf{W}_{n} \leq w) = \mathbf{P}(\mathbf{Y}_{1} \leq \frac{w}{n^{\beta}}) \\ &= 1 - \left(1 - (\theta + 1) \cdot \frac{w^{\theta}}{n^{\beta \theta}} + \theta \cdot \frac{w^{\theta + 1}}{n^{\beta(\theta + 1)}}\right)^{n}, \qquad 0 < w < n^{\beta}. \end{aligned}$$

If
$$\beta = \frac{1}{\theta}$$
,
$$F_{W_n}(w) = 1 - \left(1 - (\theta + 1) \cdot \frac{w^{\theta}}{n} + \theta \cdot \frac{w^{\theta + 1}}{n^{(\theta + 1)/\theta}}\right)^n,$$
$$0 < w < n^{\beta}.$$
$$F_{\infty}(w) = \lim_{n \to \infty} F_{W_n}(w) = 1 - e^{-(\theta + 1)w^{\theta}}, \qquad w > 0,$$
$$\text{since } \frac{\theta + 1}{\alpha} > 1.$$

If
$$\beta < \frac{1}{\theta}$$
, $F_{\infty}(w) = \lim_{n \to \infty} F_{W_n}(w) = 1$, $w > 0$, since $\beta \theta < 1$.

Then $W_n \xrightarrow{D} 0$, and thus $W_n \xrightarrow{P} 0$.

If
$$\beta > \frac{1}{\theta}$$
, $F_{\infty}(w) = \lim_{n \to \infty} F_{W_n}(w) = 0$, $w > 0$.
since $1 < \beta \theta < \beta (\theta + 1)$.

Then W_n does not have a limiting distribution.

"Goldilocks" $\beta = \frac{1}{\theta}$.

Limiting distribution:
$$F_{\infty}(w) = 1 - e^{-(\theta+1)w^{\theta}}, \qquad w > 0,$$

$$f_{\infty}(w) = (\theta^2 + \theta) \cdot w^{\theta-1} \cdot e^{-(\theta+1)w^{\theta}}, \qquad w > 0,$$

Weibull distribution.

i) Find a sufficient statistic $Y = u(X_1, X_2, ..., X_n)$ for θ .

$$f(x_1, x_2, \dots x_n; \theta) = f(x_1; \theta) f(x_2; \theta) \dots f(x_n; \theta)$$
$$= \left(\theta^2 + \theta\right)^n \left(\prod_{i=1}^n x_i\right)^{\theta - 1} \prod_{i=1}^n (1 - x_i).$$

By Factorization Theorem, $Y = \prod_{i=1}^{n} X_i$ is a sufficient statistic for θ .

OR

$$f(x;\lambda) = \exp\{(\theta-1)\cdot \ln x + \ln(\theta^2 + \theta) + \ln(1-x)\}. \qquad \Rightarrow \qquad K(x) = \ln x.$$

$$\Rightarrow$$
 Y = $\sum_{i=1}^{n}$ K(X_i) = $\sum_{i=1}^{n}$ ln X_i is a sufficient statistic for λ.

2. Let $\theta > 1$ and let X_1, X_2, \dots, X_n be a random sample from the distribution with probability density function

$$f(x;\theta) = \frac{1}{x \ln \theta}, \qquad 1 < x < \theta.$$

Obtain the maximum likelihood estimator of θ , $\hat{\theta}$. a)

Likelihood function:

$$L(\theta) = \prod_{i=1}^{n} \left(\frac{1}{X_i \ln \theta} \right) = \frac{1}{(\ln \theta)^n} \cdot \prod_{i=1}^{n} \frac{1}{X_i},$$

$$\theta > \max X_i$$
,

$$L(\theta) = 0,$$

$$\theta < \max X_i$$
.

$$\hat{\theta} = \max X_i$$
.

Is $\hat{\theta}$ an unbiased estimator of θ ? b)

Since
$$P(\max X_i < \theta) = 1$$
, $E(\max X_i) < \theta$.

$$E(\max X_i) < \theta$$

$$\Rightarrow$$
 $\hat{\theta}$ is NOT an unbiased estimator for θ .

Is $\hat{\theta}$ a consistent estimator of θ ? c)

$$F_X(x) = \int_{-\infty}^{x} f_X(y) dy = \int_{1}^{x} \frac{1}{y \ln \theta} dy = \frac{\ln x}{\ln \theta},$$

$$1 < x < \theta$$
.

$$F_{\max X_i}(x) = [F_X(x)]^n = \left[\frac{\ln x}{\ln \theta}\right]^n,$$
 $1 < x < \theta.$

Let
$$\varepsilon > 0$$
. $P(\hat{\theta} \ge \theta + \varepsilon) = 0$.

If
$$\varepsilon \ge \theta - 1$$
, $P(\hat{\theta} \le \theta - \varepsilon) = 0$.

If
$$0 < \varepsilon < \theta - 1$$
,

$$P(\hat{\theta} \leq \theta - \varepsilon) = F_{\max X_i}(\theta - \varepsilon) = \left[\frac{\ln(\theta - \varepsilon)}{\ln \theta}\right]^n \to 0 \quad \text{as} \quad n \to \infty.$$

$$\Rightarrow \quad P(|\hat{\theta} - \theta| \ge \varepsilon) \to 0 \quad \text{as} \quad n \to \infty, \quad \text{and} \quad \hat{\theta} \overset{P}{\to} \theta.$$

d) Obtain a method of moments estimate for θ , $\widetilde{\theta}$.

$$E(X) = \int_{1}^{\theta} x \cdot \frac{1}{x \ln \theta} dx = \frac{\theta - 1}{\ln \theta}.$$

$$\overline{X} = \frac{\widetilde{\theta} - 1}{\ln \widetilde{\theta}}$$
 CANNOT be solved algebraically for $\widetilde{\theta}$.

$\frac{\widetilde{\theta}-1}{\widetilde{\theta}}$	$\widetilde{\Theta}$
$\ln \widetilde{\Theta}$	
1.5	2.144033
2.0	3.512862
2.5	5.046970
3.0	6.711441
3.5	8.483382
4.0	10.346652
4.5	12.289269
5.0	14.301995

Let $Y_1 < Y_2 < ... < Y_n$ denote the corresponding order statistics.

e) Let
$$Z_n = n \ln Y_1$$
. Find the limiting distribution of Z_n .

$$F_X(x) = \int_{-\infty}^{x} f_X(y) dy = \int_{1}^{x} \frac{1}{y \ln \theta} dy = \frac{\ln x}{\ln \theta}, \qquad 1 < x < \theta.$$

$$F_{Y_1}(x) = F_{\min X_i}(x) = 1 - [1 - F_X(x)]^n = 1 - \left[1 - \frac{\ln x}{\ln \theta}\right]^n,$$
 $1 < x < \theta.$

$$F_{Z_n}(z) = P(Y_1 \le e^{z/n}) = 1 - \left(1 - \frac{z}{n \ln \theta}\right)^n, \qquad 0 < z < n \ln \theta.$$

$$F_{\infty}(z) = \lim_{n \to \infty} F_{Z_n}(z) = 1 - e^{-z/\ln \theta}, \qquad 0 < z < \infty.$$

 $Z_n \xrightarrow{D}$ Exponential distribution with mean $\ln \theta$.

f) Let
$$W_n = n \ln \frac{\theta}{Y_n}$$
. Find the limiting distribution of W_n .

$$F_X(x) = \frac{\ln x}{\ln \theta},$$
 $1 < x < \theta.$

$$F_{Y_n}(x) = F_{\max X_i}(x) = [F_X(x)]^n = \left[\frac{\ln x}{\ln \theta}\right]^n, \quad 1 < x < \theta.$$

$$F_{W_n}(w) = P(Y_n \ge \theta e^{-w/n}) = 1 - F_{Y_n}(\theta e^{-w/n}) = 1 - \left(1 - \frac{w}{n \ln \theta}\right)^n,$$

$$0 \le w \le n \ln \theta.$$

$$F_{\infty}(w) = \lim_{n \to \infty} F_{W_n}(w) = 1 - e^{-w/\ln \theta}, \qquad 0 < w < \infty.$$

 $W_n \xrightarrow{D}$ Exponential distribution with mean $\ln \theta$.