Problem 15.

Peter Kagey

OEIS sequence A261865 describes "a(n) is the least $k \in \mathbb{N}$ such that some multiple of $\sqrt{k} \in (n, n+1)$." Clearly the asymptotic density of 2 in the sequence is $1/\sqrt{2}$.

Figure 1: An illustration of a(n) for $n \in \{1, 2, ..., 23\}$.

Question. Let $S_{\alpha} \subset \mathbb{N}$ denote the squarefree integers strictly less than α . Is the asymptotic density of squarefree j given by

$$\frac{1}{\sqrt{j}} \prod_{s \in S_j} \left(1 - \frac{1}{\sqrt{s}} \right) ?$$

Related.

- 1. Is there an algorithm to construct a value of n such that a(n) > K for any specified K? (Perhaps using best Diophantine approximations or something?)
- 2. What is the asymptotic growth of the records?
- 3. Given some α what is the expected value of the smallest n such that $S_{\alpha} \subset \{a(1), \ldots, a(n)\}$?
- 4. This sequence uses the "base sequence" of $\{\sqrt{1}, \sqrt{2}, \sqrt{3}, \ldots\}$. On what other base sequences is this construction interesting?