Unit 5 Calculations with numbers in exponential form

In this unit you will:

- perform calculations with numbers in exponential form
- explore the order of operations with numbers involving exponents, and square and cube roots
- solve problems involving numbers in exponential form.

Getting started Order of operations

Complete these calculations. Use the rules for the order of operations.

- 1. $11 \times 2 + 5 \times 8$
- 2. $11 \times (2 + 5) \times 8$
- 3. $25 \times 4 3$
- 4. $25 \times (4-3)$
- 5. $88 24 \div 8$
- 6. $(88-24) \div 8$
- 7. $12 \div 12 \times 4 + 218 \times 0$
- 8. $12 \div 12 \times (4 + 218) \times 0$

Key ideas

When expressions do not have exponents, the rules for the order of operations are:

- Simplify the operations inside the brackets first.
- Then do the multiplication and division operations. Work from left to right.
- Finally do the addition and subtraction. Work from left to right.

Activity 5.1 Order of calculations involving exponents

Is $(8-3)^2$ the same as 8^2-3^2 ?

Mthunzi and Gloria write down their solutions. Compare their solutions with your own.

I worked out the sum inside the brackets first. So $(8-3)^2 = 25$

$$(8-3)^2 = (8-3) \times (8-3)$$
$$= 5 \times 5$$
$$= 25$$

Gloria

$$8^2 - 3^2 = (8 \times 8) - (3 \times 3)$$

 $= 64 - 9$
 $= 55$

We know that $25 \neq 55$ so $(8-3)^2 \neq 8^2 - 3^2$

Key ideas

We need to add a new rule:

- Simplify the operations inside the brackets first.
- 2. Simplify all exponents. Work from left to right.
- 3. Then do the multiplication and division operations. Work from left to right.
- 4. Finally do the addition and subtraction. Work from left to right.

Worked example

Solve
$$(8-6)^3 \times 4^2 - 5$$

SOLUTION

$$(8-6)^3 \times 4^2 - 5$$

= $2^3 \times 4^2 - 5$
= $8 \times 16 - 5$
= $128 - 5$
= 123

Exercise 5.1 Calculations with exponents

- Evaluate the following pairs of expressions:
 - a) i) $(7+4)^2$

ii) $7^2 + 4^2$

b) i) $(10-5)^2$

- ii) $10^2 5^2$
- c) Are any of the pairs equal? Explain.
- Now evaluate the following pairs of expressions:
 - a) i) $(3 \times 2)^3$

ii) $3^3 \times 2^3$

b) i) $(9 \div 3)^2$

- ii) $9^2 \div 3^2$
- c) Are any of the pairs equal? Explain.
- Evaluate the following expressions. Use your new rules.
 - a) $(4-1)^2 \div 3$

- b) $(4^2 1^2) \div 3$
- c) $8 + (2 \times 5) \times 3^4 \div 9$
- d) $(8+2) \times 5 \times 3^4 \div 9$
- e) $(27 + 42) \div 3 5 \times 2^2$
- f) $75 (9 4)^2 \div 5$

Activity 5.2

Order of calculations involving roots

Is $\sqrt{16+9}$ the same as $\sqrt{16}+\sqrt{9}$? Mthunzi and Shaheeda write down their solutions as shown. Compare their solutions with your own.

I worked out each root and added them. So $\sqrt{16} + \sqrt{9} = 7$ I worked out the sum under the root sign first. I found that $\sqrt{16 + 9} = 5$

Mthunzi

$$\sqrt{16} + \sqrt{9} = 4 + 3$$
$$= 7$$

Shaheeda $\sqrt{16 + 9} = \sqrt{25}$

We know that $7 \neq 5$ so $\sqrt{16} + \sqrt{9} \neq \sqrt{16 + 9}$

Key ideas

- The root sign acts as a bracket to the expression under it.
- We need to add to our first and second rules:
 - Simplify the operations inside the brackets and under any root signs first.
 - Simplify all exponents. Work from left to right.
 - 3. Then do the multiplication and division operations. Work from left to right.
 - Finally do the addition and subtraction. Work from left to right.

Worked example

How do we solve a problem like $\sqrt{65-16}\times 3^2-(12\div 4)$?

SOLUTION

$$\sqrt{65-16} \times 3^2 - (12 \div 4)$$

= $\sqrt{49} \times 3^2 - 3$
= $7 \times 9 - 3$

$$= 63 - 3$$

$$= 60$$

Exercise 5.2 Roots and exponents

Evaluate the following pairs of expressions:

a) i)
$$\sqrt{144 + 25}$$

ii)
$$\sqrt{144} + \sqrt{25}$$

ii)
$$\sqrt{169} - \sqrt{25}$$

- c) Are any of the pairs equal? Explain.
- Evaluate the following pairs of expressions:

a) i)
$$\sqrt{9 \times 4}$$

ii)
$$\sqrt{9} \times \sqrt{4}$$

b) i)
$$\sqrt[3]{64 \div 8}$$

ii)
$$\sqrt[3]{64} \div \sqrt[3]{8}$$

- c) Are any of the pairs equal? Explain.
- Use your new rules to evaluate the following expressions:

a)
$$10 \times \sqrt{16} - \sqrt{4}$$

b)
$$10 \times (\sqrt{16} - \sqrt{4})$$

c)
$$(5 \times 2)^2 - \sqrt{61 + 3}$$

c)
$$(5 \times 2)^2 - \sqrt{61+3}$$
 d) $(4 \times 3)^2 - 9 \times \sqrt[3]{59+5}$

e)
$$\sqrt[3]{125} \times 3^2 + 10$$

f)
$$(2^4 - 12) \times (\sqrt[3]{27} + 7)$$

- For each of the following:
 - i) write the expression in exponential form ii) calculate the answers.
 - a) $3 \times 3 \times 3 + 2 \times 2$
- **b)** $(4 \times 4 + 3 \times 3 \times 3 \times 3 + 3) \div (2 \times 2 \times 5)$
- c) $5 \times 5 \times 5 + 5 \times 5 \times 7 + 7 \times 7^2$
- What is the difference between:
 - a) 10^3 and 3×10
- b) 6^4 and 4×6 c) 3^5 and 5×3 .
- Find the value:
 - a) 5+5+5+5
- b) 5⁴

c) $3 \times 5 + 2 \times 5$

- d) $5 \times 5 \times 5 \times 5$
- e) 5 × 4

Summary

- If you have a calculator, check to see if it has √ and ³√ keys. Use these to work out square and cube roots.
- The order of operations when working with exponents and roots:
 - Simplify the operations inside the brackets and under any root signs first.
 - Simplify all exponents. Work from left to right.
 - Then do the multiplication and division operations. Work from left to right.
 - Finally do the addition and subtraction. Work from left to right.

Check what you know 0

- 1. $\sqrt{16} \sqrt{4}$ is equal to:
 - a) $\sqrt{20}$
- c) $\sqrt{12}$
- d) 2

- 2. $\sqrt{12}$ is equal to:
 - a) $\sqrt{6} + \sqrt{6}$
- b) 6
- c) $\sqrt{3\times4}$
- d) 4

- Calculate:
 - a) $3^2 + 4^2$
- b) $5^3 10^2$
- d) $5^3 9^2$
- e) $8^2 \div 4^2$
- c) $10^2 \div 2^2$
 - f) $3^2 1^6 + 2^3$

- Evaluate:
 - a) $\sqrt{49} + \sqrt{9} + 4^2$
 - c) $\sqrt{25} + 2^2 \times (5^2 \div 5)$
 - e) $\sqrt[3]{8} \times 4^2 + 18$

- b) $(\sqrt{49} + \sqrt{9}) + 4^2$
- d) $(6 \times 5)^2 \div 3^2 \times \sqrt[3]{25+2}$
- f) $(2^5 22) \times (\sqrt[3]{27} + 7)$