

```
tf1=9.2;% [mm] I section thickness on Top flange
bf1=110;% [mm] I section width on Top flange
tw=5.9;% [mm] I section thickness of Web
hw=201.6;% [mm] Height of web
tf2=9.2;% [mm] I section thickness on Bottom flange
bf2=110;% [mm] I section width on Bottom flange
ptf2=10;% [mm] Plate section thickness on Bottom flange
pbf2=80;% [mm] Plate section width on Bottom flange
```

Stress-Strain of materials

Steel Rebar: Stress-Strain Relationship (Curve strain hardening)

$$\begin{cases} \varepsilon_{s} \leq \varepsilon_{y} & f_{s} = E_{s}\varepsilon_{s} \\ \varepsilon_{y} < \varepsilon_{s} \leq \varepsilon_{sh} & f_{s} = F_{y} \\ \varepsilon_{sh} < \varepsilon_{s} \leq \varepsilon_{su} & f_{s} = F_{u} + (F_{u} - F_{y}) \left(\frac{\varepsilon_{su} - \varepsilon_{s}}{\varepsilon_{su} - \varepsilon_{sh}}\right)^{2} \end{cases}$$

Unconfined Concrete compressive: Stress-Strain Relationship

$$\begin{cases} \varepsilon_c < \varepsilon_{C0} & f_c = f_c \left[\left(\frac{2\varepsilon_c}{\varepsilon_{C0}} \right) - \left(\frac{\varepsilon_c}{\varepsilon_{C0}} \right)^2 \right] \\ \varepsilon_{C0} \le \varepsilon_c < \varepsilon_{cu} & f_c \left[1 - \left(\frac{0.15(\varepsilon_c - \varepsilon_{C0})}{\varepsilon_{cu} - \varepsilon_{C0}} \right) \right] \end{cases}$$

Unconfined Concrete Tensile: Stress-Strain Relationship

$$\begin{cases} \varepsilon_{s} \leq \varepsilon_{y} & f_{s} = E_{s}\varepsilon_{s} \\ \varepsilon_{y} < \varepsilon_{s} \leq \varepsilon_{sh} & f_{s} = F_{y} \\ \varepsilon_{sh} < \varepsilon_{s} \leq \varepsilon_{su} & f_{s} = F_{u} + (F_{u} - F_{y}) \left(\frac{\varepsilon_{su} - \varepsilon_{s}}{\varepsilon_{su} - \varepsilon_{sh}}\right)^{2} \end{cases}$$

Steel Section Properties:

fy =240;% [N/mm^2] Yield strength of steel section

Es =2e5;% [N/mm^2] Modulus of elasticity of steel section

fu=1.5*fy; % Ultimate steel stress

ey=fy/Es;% Yeild steel strain

esh=0.025;% Strain at steel strain-hardening

esu=0.35;% Ultimate steel strain

Esh=(fu-fy)/(esu-esh);

Concrete Properties:

fc =25;% [N/mm^2] Unconfined concrete strength

```
ecu=0.004;% Ultimate concrete strain
Ec=5000*sqrt(fc);
ec0=(2*fc)/Ec;
fct=-0.7*sqrt(fc);% Concrete tension stress
ect1=(2*fct)/Ec;ect2=(2.625*fct)/Ec;ect3=(9.292*fct)/Ec;% Concrete tension
Steel Reinforcing Properties:
fys =400;% Yield strength of steel reinforcing (N/mm^2)
Ess =2e5;% Modulus of elasticity of steel (N/mm^2)
fus=1.5*fys;% Ultimate steel stress
eys=fys/Ess;% Yeild steel strain
eshs=0.01;% Strain at steel strain-hardening
esus=0.09;% Ultimate steel strain
Eshs=(fus-fys)/(esus-eshs);
Analysis Report:
(+)Increment 1: It is converged in 10 iterations - strain: 0.00028 - x: 90.87 - Phi: 0.00308 - Moment: 92.27
(+)Increment 2: It is converged in 10 iterations - strain: 0.00037 - x: 91.30 - Phi: 0.00403 - Moment: 120.12
(+)Increment 3: It is converged in 21 iterations - strain: 0.00130 - x: 63.71 - Phi: 0.02042 - Moment: 198.44
(+)Increment 4: It is converged in 24 iterations - strain: 0.00160 - x: 59.55 - Phi: 0.02687 - Moment: 205.02
(+)Increment 5: It is converged in 30 iterations - strain: 0.00200 - x: 53.70 - Phi: 0.03724 - Moment: 207.28
(+)Increment 6: It is converged in 33 iterations - strain: 0.00240 - x: 50.57 - Phi: 0.04746 - Moment: 208.58
(+)Increment 7: It is converged in 36 iterations - strain: 0.00280 - x: 48.92 - Phi: 0.05724 - Moment: 209.51
(+)Increment 8: It is converged in 38 iterations - strain: 0.00320 - x: 47.96 - Phi: 0.06672 - Moment: 210.23
(+)Increment 9: It is converged in 41 iterations - strain: 0.00360 - x: 47.39 - Phi: 0.07597 - Moment: 210.82
(+)Increment 10: It is converged in 42 iterations - strain: 0.00400 - x: 47.03 - Phi: 0.08505 - Moment: 211.33
  ## Concrete Strain Reached to Ultimate Strain: 0.0040 ##
+========+
= Steel Section curve fitted =
 Curvature Moment
  (1/m) (kN.m)
   0 0
 0.0063 187.9370
 0.0850 211.3304
+======+
Elastic EI: 29946.32 (kN.m^2)
Plastic EI: 296.97 (kN.m^2)
Steel Material Ductility Rito: 14.00
Steel Section Ductility Rito: 13.55
Steel Section Over Strength Factor: 1.12
+=======+
=Steel Section Moment-Curvature=
  Curvature Moment
  (1/m) (kN.m)
 0.00000 0.000
 0.00308 92.274
 0.00403 120.122
 0.02042 198.441
 0.02687 205.024
 0.03724 207.279
 0.04746 208.578
 0.05724 209.506
 0.06672 210.227
 0.07597 210.822
 0.08505 211.330
+=======+
= Steel Section curve fitted =
```

Curvature Moment

(1/m) (kN.ı	m)		
0.0000	0.000)		
0.0063				
0.0850	211.33	30		
+=====	======		=====+	
+=====	======	=======		
Increme	nt Tops	strain Neut	eral axis(x) C	urvature Flextu
				=======================================
(i)			(1/m)	(kN.m^2)
	0.00028		0.003081	29946.32
2	0.00037	91.30	0.004025	29509.74
3	0.00130	63.71	0.020419	4777.26
4	0.00160	59.55	0.026870	1020.54
5	0.00200	53.70	0.037244	217.31
	0.00240	50.57	0.047457	127.26
	0.00280	48.92	0.057237	94.80
	0.00320	47.96	0.066718	76.05
9	0.00360	47.39	0.075967 0.085050	64.36 56.00
10	0.00400	47.03		

