

General Description

The FS276, a 1-chip composed of hall sensor and output coil drivers, applied to a 2-phase DC motor. The high sensitivity of Hall effect sensor is suitable for motors from mini-type CPU coolers to blowers and DC fans. Typical operation current is 0.4A and operating voltage range is from $3.0V \sim 20V$.

Using few external components, FS276, a high performance integrated IC, is designed for a 2-phase DC motor circuit. The circuit diagram of the typical application example is as below.

Features

· 1 chip hall sensor/drivers

Wide operating voltage range: 3.0V~20V

Output sink current up to 0.4A

Package: TO-92SP-4

TO-92SP-4

Typical Application Circuit

Functional Block Diagram

MARK VIEW

PIN DESCRIPTION

NAME	NO.	STATUS	DESCRIPTION
VCC	1	Р	IC Power Supply
NO	2	0	Coil driver output It is low state during the N magnetic field.
so	3	0	Coil driver output It is low state during the S magnetic field.
GND	4	Р	IC Ground

Absolute Maximun Ratings (at Ta = 25 °C)	
Zener Breakdown Voltage (Vz)	35V
NO/SO Pin Voltage(off)	30V
VCC Pin Voltage	20V
Peak Sink Current (Io)	
Peak Current	1A≦ 100us
Hold Current	600mA
Continuous Current	400mA
Power Dissipation	
Ta=25 °C	700mW
Ta=95 °C	450mW
Thermal Resistance	
Θ _{ja} =	0.15 °C/mW
Operating Temperature Range	-20 $^{\circ}$ C to +85 $^{\circ}$ C
Storage Temperature Range	-65 °C to +150 °C
Junction Temperature	+150 °C
Lead Temperature (Soldering, 10 sec)	+260 °C

DC Electrical Characteristics (at Ta = 25 °C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operating Voltage	V _{CC}	No use pin is open (Fig1)	3	-	20	٧
Quiescent Supply current		No use pin is open V_{cc} : 3V to 20V (Fig1)	1	18	20	mA
Output Leakage current	I _{leak}	Vcc=12V, Vce=20V	-	<0.1	10	uA
NO/SO Saturation Voltage	V_{SAT}	Io = 400mA	-	400	800	mV

AC Eletrical Characteristics

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Rise time	(t _r)	RL=100ohm(5w) CL=20pF (Fig1)	0.1		0.3	uS
Fall time	(t_f)	RL=100ohm(5w) CL=20pF (Fig1)	100		180	nS

Magnetic Characteristics (1mT = 10Gauss)

_						
FS276LF-A	$Ta = -20^{\circ}C \text{ to } +85^{\circ}C$					
Parameter	Symbal	Min.	Тур	Max.	Unit	
Operate Point	Вор	+5		+60	Gauss	
Release Point	Brp	-60		-5	Gauss	
Hysteresis	Bhys		60		Gauss	
FS276LF-Bu	$Ta = -20^{\circ}C \text{ to } +85^{\circ}C$					
Parameter	Symbal	Min.	Тур	Max.	Unit	
Operate Point	Вор			+80	Gauss	
Release Point	Brp	-80			Gauss	
Hysteresis	Bhys		60		Gauss	
FS276LF-C	Ta = -20°C to +85°C					
Parameter	Symbal	Min.	Тур	Max.	Unit	
Operate Point	Вор			+100	Gauss	
Release Point	Brp	-100			Gauss	
Hysteresis	Bhys		60		Gauss	

FS276 Magnetic Hysteresis Characteristics

Test Circuits:

Fig 1

Typical Characteristics

Function Descriptions HALL SENSOR LOCATION

The Fig 2 is the hall sensor location, where marks the IC number. The best sensitivity, which can be intensified as much as possible, depends on the vertical distance and position between magnetic pole and the hall sensor (Fig 3). For the single-phase motor, this design is very important.

		UNIT
Х	1.75	mm
Υ	1.35	mm

Fig 2 FS276 Hall Sensor Location

Fig 3 Magnetic Distribution and Z-axis position

Application Note

The Example of Typical Application Circuit

Fig 4 is the example of typical application circuit. The red, yellow, and black wires are the input points of the motor system: red, the input of power supply; yellow, the output of FG; black, the ground signal. R_C is an external pull-up resistance for the use of measuring FG signal. In view of the design, the value of R_C could be decided by the transistor saturation voltage (V_{CN}) , sink current (I_C) , and off-level voltage (V_C) .

The formula is:
$$R_C = \frac{V_C - V_{ON}}{I_C}$$

For example:

 V_C = +5V for TTL level.

I_C = 10mA at 0.2V saturation voltage

The safety value of R_C = 470

D1 is the reverse protection diode. As if the red and black wires reversely connect with the power source, the current will flow through the ground via IC and coils L1 and L2 to power supply. Under such kind of circumstances, the IC and coils are easy to be burned out. Therefore, D1, the reverse protection diode, is necessary for the design. However, D1 will also cause an extra voltage drop on the supply voltage.

C1 is a capacitor to reduce the ripple noise caused during the transient of the output stages. The volume of the ripple noise depends on the coil impedance and characteristics.

Fig 4 Application Circuit

Package Outline (LEAD FREE) Unit:mm

Packing Specifications BAG & BOX DIMENSION

PACKING QUANTITY SPECIFICATIONS

1000 EA/1 BAG 25 BAGS/1 INSIDE BOX

4 INSIDE BOXES/1 CARTON

Label Specification

BAG LEBAL, INSIDE BOX & CARTON LABEL

ORDER INFORMATION

Part Number	Operating Temperature	Package	Description
FS276LF-A	-20°C to 85 °C	TO-92SP-4	±60G (B)
FS276LF-Bu	-20°C to 85°C	TO-92SP-4	±08G (B)
FS276LF-C	-20°C to 85°C	TO-92SP-4	±100G (B)