Theoretical Computer Science Cheat Sheet Number Theory The Chinese remainder theorem: There exists a number C such that: $C \equiv r_1 \mod m_1$: : : $C \equiv r_n \mod m_n$ if m_i and m_j are relatively prime for $i \neq j$. Euler's function: $\phi(x)$ is the number of positive integers less than x relatively prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then $\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$ Euler's theorem: If a and b are relatively prime then $1 \equiv a^{\phi(b)} \bmod b.$ Fermat's theorem: $1 \equiv a^{p-1} \bmod p$. The Euclidean algorithm: if a > b are integers then $gcd(a, b) = gcd(a \mod b, b).$ If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x $S(x) = \sum_{d|x} d = \prod_{i=1}^{n} \frac{p_i^{e_i+1} - 1}{p_i - 1}.$ Perfect Numbers: x is an even perfect number iff $x = 2^{n-1}(2^n-1)$ and 2^n-1 is prime. Wilson's theorem: n is a prime iff $(n-1)! \equiv -1 \mod n$. Möbius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (-1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes.} \end{cases}$ $G(a) = \sum_{d|a} F(d),$ then $\nabla u(d)G\left(\frac{a}{2}\right)$

$F(a) = \sum_{d a} \mu(d)G\left(\frac{1}{d}\right).$
Prime numbers:
Prime numbers: $p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$
$+O\left(\frac{n}{\ln n}\right),$
$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$
$+O\left(\frac{n}{(\ln n)^4}\right).$

Definitions: Repair Theory		
1	tex to itself.	V
Directed	Each edge has a direction.	c(
Simple	Graph with no loops or	G
1	multi-edges.	d
Walk	A sequence $v_0e_1v_1\dots e_\ell v_\ell$.	Δ
Trail	A walk with distinct edges.	δ
Path	A trail with distinct	χ
	vertices.	χ
Connected	A graph where there exists	G
	a path between any two	K
	vertices.	K
Component	A maximal connected	r(
	subgraph.	
Tree	A connected acyclic graph.	P
$Free \ tree$	A tree with no root.	(:
DAG	Directed acyclic graph.	(.
Eulerian	Graph with a trail visiting	
	each edge exactly once.	C
Hamiltonian	1 0	(3
	each vertex exactly once.	\dot{y}
Cut	A set of edges whose re-	x
	moval increases the num-	D
	ber of components.	m
Cut-set	A minimal cut.	
Cut edge	A size 1 cut.	
k-Connected	9 1	
	the removal of any $k-1$]
	vertices.	<i>p</i>
r-Tough	$\forall S \subseteq V, S \neq \emptyset$ we have	A
	$k \cdot c(G - S) \le S .$	a
k- $Regular$	A graph where all vertices	
	have degree k .	
k-Factor	A k-regular spanning	A
N.F. , 1 .	subgraph.	
Matching	A set of edges, no two of	
<i>C</i> 1.	which are adjacent.	
Clique	A set of vertices, all of	
т 1 ,	which are adjacent.	
Ind. set	A set of vertices, none of	
T.7	which are adjacent.	
Vertex cover		т.
DI :	cover all edges.	
Planar graph	A graph which can be em-	a
	beded in the plane.	

willest are adjacent.	(
Vertex cover A set of vertices which	
cover all edges.	Line
Planar graph A graph which can be em-	and
beded in the plane.	
Plane graph An embedding of a planar	
$\operatorname{graph}.$	
$\sum_{v \in V} \deg(v) = 2m.$	Area
If G is planar then $n - m + f = 2$, so	If I ha
$f \le 2n - 4, m \le 3n - 6.$	it is b
Any planar graph has a vertex with de-	shoule

Notation:		
E(G)	Edge set	
V(G)	Vertex set	
c(G)	Number of components	
G[S]	Induced subgraph	
$\deg(v)$	Degree of v	
$\Delta(G)$	Maximum degree	
$\delta(G)$	Minimum degree	
$\chi(G)$	Chromatic number	
$\chi_E(G)$	Edge chromatic number	
G^c	Complement graph	
K_n	Complete graph	
K_{n_1,n_2}	Complete bipartite graph	
$\mathrm{r}(k,\ell)$	Ramsey number	

Geometry Projective coordinates: triples (x, y, z), not all x, y and z zero. $(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$ Cartesian Projective (x,y)(x, y, 1)

$$(x, y)$$
 $(x, y, 1)$
 $y = mx + b$ $(m, -1, b)$
 $x = c$ $(1, 0, -c)$
Distance formula L_{c} a

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$

$$\left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p},$$

$$\lim_{p \to \infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$$

Area of triangle $(x_0, y_0), (x_1, y_1)$ and (x_2, y_2) :

$$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}.$$

Angle formed by three points:

$$(x_{2}, y_{2})$$

$$(0, 0) \quad \ell_{1} \quad (x_{1}, y_{1})$$

$$\cos \theta = \frac{(x_{1}, y_{1}) \cdot (x_{2}, y_{2})}{\ell_{1}\ell_{2}}.$$

through two points (x_0, y_0) (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

a of circle, volume of sphere:

$$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$$

ave seen farther than others, because I have stood on the shoulders of giants.

Issac Newton