## Examen Orninario de Junio Cirso 2006-2007 de Señales Digitales

## Nombre: D.N.I.:

- 1. Determine la respuesta impulsional y la respuesta al escalón unidad de los sistemas descritos por las siguientes ecuaciones en diferencias:
  - y(n) = 0.6y(n-1) 0.08y(n-2) + x(n)
  - y(n) = 0.7y(n-1) 0.1y(n-2) + 2x(n) x(n-2)
- 2. Demuestre que la secuencia de Fibonacci se puede entender como la respuesta del sistema descrito por la ecuación en diferencias y(n) = y(n-1) + y(n-2) + x(n). A continuación determine h(n) usando las técnicas de la transformada Z.
- 3. La figura P4.7-1 muestra un modelo simple de canal de comunicaciones multitrayecto. Suponga que  $S_c(t)$  es de banda limitada, es decir, que  $S_c(j\Omega)$  vale cero para  $|\Omega| \ge \pi/T$ y que  $x_c(t)$  se muestrea con un periodo de muestreo T obteniéndo la secuencia  $x[n] = x_c(nT)$ .
  - Determine la transformada de Fourier de  $x_c(t)$  y la transformada de Fourier de x[n] en función de  $S_c(j\Omega)$ .
  - Se desea simular el sistema multitrayecto mediante un sistema en tiempo discreto escogiendo  $H(e^{j\omega})$  en la figura 2 de forma que la salida sea  $r[n] = x_c(nT)$  cuando la entrada sea  $s[n] = s_c(nT)$ . Determine  $H(e^{j\omega})$  en funcio de T y de  $\tau_d$ .
  - Determine la respuesta al impulso h[n] en la figura 2 cuando i)  $\tau_d = T$  y ii)  $\tau_d = T/2$ .



- 4. Filtros ranura, filtros peine y filtros pasa todo.
- 5. Diseñe un filtro digital paso bajo en tiempo discreto que verifique las siguientes propiedades a la frecuencia de muestreo de  $10^4$  muestras/s:
  - La ganancia  $|H(e^{j\Omega})|$  debe de diferir de la unidad menos de un factor de  $\pm 0.01$  en la banda  $0 \le \Omega \le 2\pi(2000)$ .
  - La ganancia  $|H(e^{j\Omega})| \leq 0.001$  en la banda de frecuencias  $2\pi(3000) \geq \Omega$ .
  - A) Diseñe el filtro mediante la técnica de ventanas.
  - B) Disñe el filtro mediante la transformación bilineal partiendo del filtro analógico de Butterword.
  - C) Compare ambos diseños y justifique razonadamente las ventajas e inconvenientes de cada uno.