DỰ ĐOÁN LT GIẢI TÍCH 2

I-CHU'O'NG 1:

KHẢ VI:

1. **ĐN**

2. Hàm số u = f(x, y) được gọi là khả vi trong miền D nếu nó khả vi tại mọi điểm thuộc D.

2. ĐK CẦN

B. Điều kiện cần để hàm số khả vi

Định lý: Nếu f(x,y) khả vi tại (x_0,y_0) thì liên tục tại đó.

Chú ý: Hàm số liên tục tại một điểm có thể không khả vi tại điểm đó.

Định lý: Nếu f(x,y) khả vi tại (x_0,y_0) thì f có các ĐHR tại (x_0,y_0) và $A=f_x'(x_0,y_0), B=f_y'(x_0,y_0)$

Nhận xét: f(x,y) có thể có các ĐHR tại (x_0,y_0) nhưng không khả vi tại (x_0,y_0) .

3.ĐK ĐỦ

C. Điều kiện đủ để hàm số khả vi Định lý:

Nếu hàm số u=f(x,y) có các ĐHR $f_x'(x,y), f_y'(x,y)$ liên tục tại $M_0(x_0,y_0)$ thì f(x,y) khả vi tại M_0 .

4. CÁC CT HAY GẶP

E. Áp dụng vi phân để tính gần đúng

Giả sử hàm số f(x,y) khả vi tại (x_0,y_0) , ta có:

$$f(x_0 + \Delta x, y_0 + \Delta y) \approx f(x_0, y_0) + f'_x(x_0, y_0) \cdot \Delta x + f'_y(x_0, y_0) \cdot \Delta y$$
 (*)

d) Građiên

* Định nghĩa:

Građiên của f tại $M_{\scriptscriptstyle 0}$ là véctơ

$$(f'_x(M_0), f'_y(M_0), f'_z(M_0))$$

Kí hiệu là $\overline{\operatorname{grad}} f(M_0)$.

5. CỰC TRỊ

Định nghĩa:

- * Điểm mà tại đó các đạo hàm riêng của f bằng 0 gọi là điểm dừng của hàm số f.
- * Điểm dừng hoặc điểm mà tại đó <mark>các ĐHR của f không tồn tại</mark> gọi là điểm tới hạn của f.

Nhận xét:

Điểm cực trị của hàm số (nếu có) phải là điểm tới hạn.

-gradient

Nếu f khả vi tại M_0 thì

$$\frac{\partial f}{\partial \overline{l}}(M_0) = \overline{grad} f(M_0).\overline{l}_1$$

trong đó \vec{l}_1 là vécto đơn vị của \vec{l} .

6.MINMAX

Để tìm GTLN, GTNN của f trên D, ta

* Tìm giá trị của f tại các điểm tới hạn (và là điểm trong của D)

(các điểm có các đạo hàm riêng đồng thời = 0 hoặc không xác định)

- * Tìm GTLN, GTNN của f trên biên của D (tìm các điểm tới hạn trên biên của D và so sánh f tại các điểm đó)
- * So sánh các giá trị trên.

II-CHƯƠNG II

-> dễ lừa tích phân 2 lớp

c) Nhận xét:

Nếu f(x,y) liên tục trên miền đóng, bị chặn Dthì f khả tích trên D.

- 5°) Nếu $f(x,y) \le g(x,y)$ với $\forall (x,y) \in D$ thì $\iint_D f(x,y) dx dy \le \iint_D g(x,y) dx dy$
- 6°) Nếu $m \le f(x,y) \le M$ với $\forall (x,y) \in D$ thì $mS \le \iint_D f(x,y) dx dy \le MS$

$$3^{0}) \iint\limits_{D} \lambda f(x, y) \, dx dy = \lambda \iint\limits_{D} f(x, y) \, dx dy \qquad (\lambda \in \mathbb{R})$$

 ${\bf 4^0}$) Nếu D được chia thành 2 miền $D_{\! 1}, D_{\! 2}$ không dẫm lên nhau thì

$$\iint\limits_{D} f(x,y) dx dy = \iint\limits_{D_1} f(x,y) dx dy + \iint\limits_{D_2} f(x,y) dx dy$$

- * Nhận xét: Giả sử miền D có tính đối xứng qua trục Ox.
 - + Nếu biểu thức dưới dấu tích phân <mark>chẵn đối với *y*</mark>

(nghĩa là
$$f(x,y) = f(x,-y)$$
 với mọi $(x,y) \in D$)

thì
$$\iint_{D} f(x,y)dxdy = 2\iint_{D_1} f(x,y)dxdy$$
$$= 2\iint_{D_2} f(x,y)dxdy$$

 (D_1,D_2) lần lượt là nửa trên, nửa dưới của D)

+ Nếu biểu thức dưới dấu tích phân lẻ đối với y

(nghĩa là
$$f(x,y) = -f(x,-y)$$
 với mọi $(x,y) \in D$)

thì
$$\iint_D f(x,y) dx dy = 0.$$

-....

* Khối lượng bản phẳng là: $\frac{m}{n} = \iint_{D} \rho(x, y) dx dy$

-> tp 3 lớp tương tự

III- CHƯƠNG 3

Nếu hàm số f(x,y) liên tục trên AB và cung AB trơn thì f khả tích trên AB.

*)
$$\int_{AB} ds = l$$
 ($l: \text{Độ dài } AB$)

—> green chỉ áp dụng đường cong kín

$$\oint_{L} Pdx + Qdy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy$$

Hệ quả:

Nếu đường kín L là biên của miền D thì diện tích miền D là:

$$S = \frac{1}{2} \oint_{L} -y dx + x dy.$$

→ 4 tính chất quan trọng tp ko phụ thuộc vào đường

$$1^{0}$$
) $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$ $\forall (x, y) \in D$

- $\oint_{L} Pdx + Qdy = 0$ với mọi đường kín L nằm trong D (miền giới hạn bởi L cũng nằm trong D)
 - (3°) $\int_{AB} Pdx + Qdy$ chỉ phụ thuộc vào hai điểm A, B mà không phụ thuộc đường nối chúng $(\forall AB \subset D)$
 - 4^{0}) Biểu thức Pdx + Qdy là vi phân toàn phần của một hàm số u(x,y) nào đó trên D.

-> CT lấy tích phân

Nếu Pdx + Qdy là vi phân toàn phần của hàm số u(x,y) thì u(x,y) có thể xác định bởi công thức:

$$u(x,y) = \int_{x_0}^{x} P(x,y_0) dx + \int_{y_0}^{y} Q(x,y) dy + C$$
hoặc
$$u(x,y) = \int_{x_0}^{x} P(x,y) dx + \int_{y_0}^{y} Q(x_0,y) dy + C$$

-> LT mặt

- * Cho mặt S xác định bởi phương trình F(x,y,z)=0. Điểm $M_0 \in S$ được gọi là <mark>điểm chính quy</mark> nếu F_x', F_y', F_z' tại M_0 tồn tại và không đồng thời bằng 0. Điểm không chính quy gọi là điểm kì dị.
- * Pháp tuyến của mặt F(x,y,z)=0 tại M_0 có vectơ chỉ phương là: $\left(F_x'(M_0),F_y'(M_0),F_z'(M_0)\right)$.
- * Mặt S được gọi là trơn nếu nó liên tục, có pháp tuyến biến thiên liên tục (mọi điểm của S đều là điểm chính quy).

-> TP mặt loại I

* Khối lượng mặt S là: $m = \iint_S \rho(x, y, z) dS$

-> LT TRƯỜNG

b) Thông lượng

Cho trường vector $\overline{F}(x,y,z) = (P(x,y,z),Q(x,y,z),R(x,y,z))$ Thông lượng của trường vector \overline{F} qua mặt định hướng S là:

$$\iint_{S} P(x, y, z) dydz + Q(x, y, z) dzdx + R(x, y, z) dxdy$$

* **Lưu số** (hoàn lưu) của trường vector \overrightarrow{F} dọc theo AB hay c<mark>ông do lực \overrightarrow{F} sinh ra khi di chuyển chất điểm từ A đến B là:</mark>

$$\int_{AR} Pdx + Qdy + Rdz.$$

-> CHÚC AE THI TỐT