Xp Orbs

U Minecraftu, za svaki zadatak koji igrač dovrši, igrač je nagrađen određenim brojem iskustvenih bodova u obliku zelenih kugli, pri čemu svaka kugla nagrađuje igrača različitim brojem iskustvenih bodova na temelju svoje veličine.

Kugla veličine i nagrađuje igrača sa xp_i iskustvenih bodova. Gdje se xp definira na sljedeći način:

- $xp_1 = 1$;
- $xp_i = prev_prime(2 \cdot xp_{i-1})$, gdje je $prev_prime(a)$ najveći prosti broj koji je manji ili jednak broju a. Na primjer, $prev_prime(16) = 13$ i $prev_prime(23) = 23$.

Na primjer, prve 8 veličina kugli nagrađuju igrača sa: 1, 2, 3, 5, 7, 13, 23 i 43 iskustvenih bodova, redom.

Notch, tvorac Minecrafta, osmislio je da bilo koji broj nenegativnih iskustvenih bodova može biti razbijen kao zbroj iskustava nagrađenih kuglama na sljedeći način (gdje \oplus predstavlja spajanje niza):

- Neka dec(a) bude niz koji predstavlja razbijanje a iskustvenih bodova kao zbroj iskustava nagrađenih kuglama;
- dec(0) = [] (prazan niz)
- $dec(a)=[xp_{max}]\oplus dec(a-xp_{max})$, gdje je xp_{max} najveći element u xp takav da je $xp_{max}\leq a$. Na primjer, razbijanje broja 11 je dec(11)=[7,3,1], a razbijanje broja 15 je dec(15)=[13,2]. Također, definirao je cnt(a) kao dužinu niza dec(a), stoga cnt(11)=3 i cnt(15)=2.

Notch želi znati odgovor na q upita sljedećeg oblika:

$$ullet \ l,r-$$
 pronađite zbroj $rac{l}{cnt(l)}+rac{l+1}{cnt(l+1)}+\ldots+rac{r-1}{cnt(r-1)}+rac{r}{cnt(r)}$

Ulaz

Prva linija sadrži jedan cijeli broj koji predstavlja broj upita q. Svaka od sljedećih q linija sadrži par cijelih brojeva. i-ta od ovih linija opisuje i-ti upit: l_i i r_i .

Izlaz

Izlaz sadrži q linija. i-ta od ovih linija sadrži jedan cijeli broj koji predstavlja odgovor na i-ti upit.

Napomena o ispisivanju izlaza. Neka je razlomak $\frac{x}{y}$ odgovor na upit. Kako biste ga ispisali, trebate ispisati jedan cijeli broj koji predstavlja produkt $x \cdot mod_inv(y) \ mod \ 998 \ 244 \ 353$, gdje se $mod_inv(y)$ definira kao $mod_inv(y) = y^{998 \ 244 \ 351} \ mod \ 998 \ 244 \ 353$.

Napomena o modularnoj aritmetici. Također, imajte na umu sljedeće:

- Ako su dva razlomka $\frac{a}{b}$ i $\frac{c}{d}$ jednaki, njihov modularni zbroj se može lako izračunati kao: $(a \cdot mod\ inv(b) + c \cdot mod\ inv(d))\ mod\ 998\ 244\ 353;$
- $(a \cdot mod_inv(b) + c \cdot mod_inv(d)) \ mod \ 998 \ 244 \ 353;$ Ako su dva razlomka $\frac{a}{b}$ i $\frac{c}{d}$ jednaki, tada vrijedi $a \cdot mod_inv(b) \ mod \ 998 \ 244 \ 353 = c \cdot mod_inv(d) \ mod \ 998 \ 244 \ 353.$

Ograničenja

- $1 \le q \le 5 \cdot 10^4$
- $1 \le l_i \le r_i \le 10^{12}$

Podzadaci

#	Bodovi	Ograničenja
1	18	$0 \leq r_i - l_i < 100$
2	65	$1 \leq l_i \leq r_i \leq 10^8$
3	17	Bez dodatnih ograničenja.

Primjeri

Primjer ulaza #1

5 12

1 1000000

Primjer izlaza #1

166374097 439931963

Primjer ulaza #2

```
5
11 15
5 14
3 10
12 20
7 19
```

Primjer izlaza #2

```
166374096
166374117
499122210
499122249
665496322
```

Objašnjenje

Za prvi upit u prvom primjeru, odgovor, počevši sans=0, može se izračunati na sljedeći način:

$$\begin{array}{l} \bullet \ \ dec(5) = [5] \rightarrow ans \ += \frac{5}{1} \\ \bullet \ \ dec(6) = [5,1] \rightarrow ans \ += \frac{6}{2} \\ \bullet \ \ dec(7) = [7] \rightarrow ans \ += \frac{7}{1} \\ \bullet \ \ dec(8) = [7,1] \rightarrow ans \ += \frac{8}{2} \\ \bullet \ \ dec(9) = [7,2] \rightarrow ans \ += \frac{9}{2} \\ \bullet \ \ dec(10) = [7,3] \rightarrow ans \ += \frac{10}{2} \\ \bullet \ \ dec(11) = [7,3,1] \rightarrow ans \ += \frac{11}{3} \\ \bullet \ \ dec(12) = [7,5] \rightarrow ans \ += \frac{12}{2} \end{array}$$

Ukupna suma je $ans=\frac{229}{6}$ i izlaz je: $229\cdot mod\ inv(6)\ mod\ 998\ 244\ 353=229\cdot 166\ 374\ 059\ mod\ 998\ 244\ 353=166\ 374\ 097.$