# a NASA facsimile reproduction

OF

REPRODUCED FROM MICROFORM

Best Available Copy Reproduced From

by the

DISTRIBUTION STATEMENT Scientific and Technical Information Facility Approved for Public Release Distribution Unlimited



FINAL REFORT June 1962

MATERIAL EVALUATION FOR A SUIERSON'S TRANSPORT PLANE

The state of the s

v. Weiss R. Sell C. Chave

for

National Aeronautics and Space Administration Washington, D. C. Office of Research Grants and Contracts
CODE BG

Contract No. NASr-43 Report Period: April 23, 1961-April 23, 1962

OTS PRICE

16.66gk MICROFILM & 2. CC No. XEROX

FINAL REPORT June 1962

### MATERIAL BVALUATION FOR A SUPERSONIC TRANSPORT PLANE

Ē

V. Weiss

R. Sell C. Chave This report was predicted under a species central. The conclusions and recommendative expressed are those of the Authority and not necessarily endorsed by the Sporsor. Republic of this report, or any portion there decline of this report, or any portion there west bear reference to the endpaint service.

## SYRRCUSE UNIVERSITY RESCRECH INSTITUTE

## DEPARTMENT OF CHEMICAL ENGINEERING AND METALLURGY

Approved by:

Sponsored by:

#### ABSTRACT

Supersonic Transport Plane conducted at Syracuse University during the period April 1961 through April 1962 is summarised in this report. The naterials investigated are shown in Table I. Experimental results are shown in the form of graphs where the tensile strength,0.2\$ yield strength, modulus of elasticity, elongation in percent, notch strength and the notch strength ratio are shown as a function of the test temperature. Evaluation of the alloys is also presented on the basis of notch strength ratio versus strength to density ratio. The titanium alloy Ti-6Al-4V annealed appears to be the most promising in this representation.

| TABLE OF CONTENTS                         |          |                |    |
|-------------------------------------------|----------|----------------|----|
|                                           | PAGE     |                | TA |
| INTRODUCTION                              | 1        | œi-            | н  |
| EXPERIMENTAL RESULTS                      | <b>‡</b> |                | Ħ  |
| AISI-301                                  | #        | W. J.          | H  |
| PH 1>-7 Mo                                | 7        | ~              | VI |
| T1-6A1-4V (RS-120A)                       | 6        |                | ΙΛ |
| T1-4A1-3M0-1V (RS-115)                    | 10       |                | ΙΛ |
| T1-5A1-2.75Cr-1.25Fe (RS-140)             | ដ        |                | ×  |
| NOTCH ROOT RADIUS CHANGES DURING EXPOSURE | टा       | 25 25.         | ×  |
| CONCLUSIONS                               | 13       | ge grandage    | Ħ  |
| REFERENCES                                | 14       | andre of the s | ×  |
| TABLES                                    | 15       |                |    |
| FIGURES                                   | 38       |                | ×  |

#### LIST OF TABLES

| TAHLES      |                                                              | PAGE    |
|-------------|--------------------------------------------------------------|---------|
| н           | MATERIALS                                                    | 15      |
| Ħ           | CHEMICAL ANALYSIS                                            | 16      |
| H           | NOTCH ROOT RADIUS CHANGES DURING EXPOSURE                    | 17      |
| IV, V       | TEST DATA AISI-301 COLD REDUCED 34\$                         | 18      |
| VI, VII     | TEST DATA AISI-301 COLD REDUCED 51\$                         | 50      |
| VIII, IX    | TEST DATA AISI-301 COLD REDUCED 60%                          | 25      |
| x, x        | TEST DATA PH 15-7 Ms RH 1050                                 | 24<br>5 |
| XII, XIII   | TEST DATA 2H 15-7 MG CH 900                                  | 56      |
| XIV, XV     | TEST DATA T1-6A1-4V (RS-120A) ANNEALED                       | 28      |
| xvI, xvII   | TEST DATA T1-6A1-4V (RS-120A) SOLUTION TREATED               |         |
|             | AND AGED                                                     | 30      |
| XVIII, XIX  | TEST DATA T1-4A1-3M0-1V (RS-115) ANNEALED                    | ×       |
| xx, xx      | TEST DATA T1-5A1-2.75Cr.1.25Fe (RS-140) ANNEALED             | 3.      |
| XXII, XXIII | XXII, XXIII TEST DATA T1-5A1-2.75Cr-1.25Fe (RS-140) SOLUTION |         |
|             | TREATED AND AGED                                             | 36      |

#### LIST OF FIGURES

| FIGURES |                                                     | PAGE          |
|---------|-----------------------------------------------------|---------------|
| 1       | SPECIMEN DESIGN                                     | 38            |
| 2, 3    | GRAPHIC DATA ALSI-301 COLD REDUCED 34≸              | 39            |
| 4,5     | GRAPHIC DATA AISI-301 COLD REDUCED 51≰              | 14            |
| 2 '9    | GRAPHIC DATA AISI-301 COLD REDUCED 60\$             | 43            |
| 6,8     | GRAPHIC DATA PH 15-7 Mo RH 1650                     | <del>1,</del> |
| 10, 11  | GRAPHIC DATA PH 15-7 Mo CH 900                      | 1.4           |
| ह, भ    | GRAPHIC DATA T1-6A1-4V (RS-120A) ANNEALED           | 61            |
| 14, 15  | GRAPHIC DATA T1-6A1-4V (RS-120A) SOLUTION TREATED   |               |
|         | AND ACED                                            | 13            |
| 16, 17  | GRAPHIC DATA T1-4A1-3M0-1V (RS-115) ANNEALED        | 53            |
| 18, 19  | GRAPHIC DATA T1-5A1-2.75Cr-1.25Fe (RS-140) ANNEALED | 55            |
| 20, 21  | GRAPHIC DATA T1-5A1-2.75Cr-1.25Fe (RS-140) SOLUTION |               |
|         | TREATED AND AGED                                    | 25            |
| 22, 23  | GRAPHIC DATA NOTCH STRENGTH RATIO VS STRENGTH/      |               |
|         | VITTERIOR                                           | ů             |

#### INTRODUCTION

This final report represents a summary of all data obtained to date at Syracuse University in the Screening Program of Materials being considered for a MACH III Transport Plane. During the course of this investigation three (3) quarterly progress reports have been submitted. (1, 2, 3) to date, data on five materials listed below have been investigated:

AISI-301 Stainless, 34%, 51% and 60% - Cold Reduction

PH 15-7 Mo, RH 1050 and CH 900

I1.-6A1-4V (RS 120A) Annealed, Solution Treated and Aged

T1-4A1-3Mo-1V (RS-115) Annealed

T1-5Al-2.75Cr-1.25Fe (RE-140) Annealed, Solution Treated and Aged The heat treating conditions and the chemical composition of these materials are listed in Tables I and II respectively.

The test program was primarily designed to provide a comparative evaluation of materials on the basis of tensile and notch tensile properties prior and subsequent to a 1,000 hour exposure under stress at 650P[(4)] The exposure stress was chosen on the basis of preliminary design information on the exposed under a stress of the airplane. Steels and super-alloys were exposed under a stress of 40 ksi, titanium alloys under a stress of 25 ksi. The test specimens are illustrated in Fig. 1. All sheet materials had a thickness of 0.025 in. The tensile specimen had a vidth of .375 in. the notch tensile specimen had a gross section width of 1 in. and a net section width of 0.705 in., the notch root radius being less than .001 in.

In addition, edge cracked specimens were tested for selected conditions in order to evaluate the influence of notch sharpness. Tensile tests and notch tensile tests were conducted at -110F, 75F, 350F, 650F and 800F, prior to exposure and at -110F, 75F and 650F subsequent to the above described 1,000 hour exposure under stress.

The tensile and notch tensile tests were conducted on a 60,000 lbs.

capacity Baldvin Universal Testing Machine equipped with a micro-former stress-strain recorder. For the tests at -lloF specimen, were immersed in a solution of dry ice and acetone, room temperature (75F) tests were conducted in air, for elevated temperature tests the specimen was tested inside a Marehall furnace. Stress-strain curves were obtained for all tests on smooth specimens to permit the detarmation of the modulus of elasticity and the .2% yield strength as a function of test temperature and exposure

The exposure treatmont was conducted in stress rupture machines converted for this purpose to accommodate two or three specimens within the constant temperature zone of the furnace.

In the preparation of notch tensile specimens special attention was given to an exact measurement of the root radii both prior and subsequent to exposure. All specimens having notch root radii in excess of .001 in. were rejected. A Sonntag Universal Fatigue Testing Machine was converted to allow the manufacture of edge cracked specimens from a 10% starter notch. With the exception of Ti-5Al-2.75Cr-1.25Fe (RS 140) in the solution treated and aged condition cll materials were suitable to fatigue cracking by this method.

The following discussion of the experimental results includes all data obtained to date. Additional tests under the same program are now in progress on some materials contained in this report. The results will be discussed at a later date. In general the future effort consists of a continuation and amplification of the screening program. In the latter phase transition temperature studies are under way on Ti-6Al-iV, (Annealed, Solution Treated and Aged), PH 115-7 Mo, (RH 1050, CH 900) and Ti-8Al-1Mo-1V in the duplex annealed condition. The effect of exposure under stress on the ductile-to-brittle transition temperature will also be investigated on the more promising alloys. In addition a follow-on program is being initiated on wider specimens for the more promising alloys. A study on the effect of stress concentration factor in which specimens having various stress concentration factors between 1.5 and that corresponding to a natural crack has also been initiated.

#### EXPERIMENTAL RESULTS

(on notched and cracked specimens) and notch strength ratio (notch strength) $^\prime$ will be discussed separately. An overall comparison of the relative rating of all alloys will be given in the Conclusions. The data are presented as obtained and are represented by squares. Whenever data were obtained from tudinal properties are represented by open symbols, transverse properties an exposure treatment in which the specimen was subjected to the exposure properties obtained from smooth specimens such as tensile strength, 0.2% tensile strength, both taken at the test temperature indicated.) Longiand the properties obtained from notched specimens namely notch strength In the following discussion of the experimental results each alloy by solid symbols, properties prior to exposure by circles, properties offset yield strength, elongation in 2 in. and modulus of elasticity, s function of test temperature and fall generally in two categories: temperature of 650° only and not simultaneously subjected to a load subsequent to exposure by triangles. In some caset crack data were (no-load exposure) the data are represented by inverted triangles. AISI-301 (Tables IV through IX)

Three strength levels of this alloy were investigated as obtained by a 34%, a 51% and a 60% cold reduction, namely 175 ksi, 220 ksi and 225 ksi respectively. The results are presented in Figs. 2 to 7.

Fig. 2 shows the smooth properties of AISI-301 cold reduced 34%. | The teactile and vield strengths show a slight increase at all heat temperatures ->

of directionality causing lower transverse properties at all test termeratures,

but particul rity at -110F and at 75F. The elongation drops rapidly with
increasing test temperature from approximately 18% at -110F to less than 4%
at and above 350F. Adverse transverse properties are again observed below
350F. The exposure treatment causes a consideratic loss in elongation at
-110 and 75F in the transverse direction and at 75F in the longitudinal
direction. Specimens subjected to a no-losd exposure gave the same results
as those exposed under stress.

The notch properties of AISI-301, cold reduced 34% are illustrated in Fig. 3. The notch properties of AISI-301, cold reduced 34% are illustrated in Fig. 3. The notch strength continuously decreases with increasing test temperature. The transverse notch strength is generally 10% below the longitudinal notch strength. At -110F and at 75F exposure causes an increase in notch strength. No effect of exposure is observed at 650F and 800F.\
(No-load exposure yielded approximately the same results as exposure under stress. The results obtained from fatigue cracked specimens are identical to those obtained from sharply notched specimens. The notch strength ratio increases from -110F to 75F and subsequently decreases with increasing test terperature. Exposure inerally sauses a loss in notch strength ratio of 0.6 was observed at 650F subsequent to exposure in the transverse direction.

Fig. 4 shows the smooth properties of AISI-301 cold reduced 51%. Tensile, yield strength and elongation decrease with increasing test

and affect of comment of passing and

S Q\_

yield strength at all test temperatures both in the longitudinal and in the transverse direction. This increase is approximately 20%. The elongation again drops rapidly from 18% at -1.0F in the longitudinal direction to less than 4% at 75F in both the longitudinal and the transverse direction. The exposure treatment causes a more than 50% loss in the elongation at -110F. The tensile strength in the transverse direction is slightly higher at -110F but no effect of directionality is observed on the tensile strength for other test temperatures. The yield strength in the transverse direction at -110F as also considerably below that for the Longitudinal direction at -110F is also considerably below that for the longitudinal direction.

The notch properties are illustrated in Fig. 5. Transverse properties are always considerably below longitudinal properties, particularly at -110F and 75F where the notch strength in the transverse direction is almost 40\$ below the notch strength in the longitudinal direction. The notch strength ratio versus test temperature plot reflects the effect of the exposure treatment on the smooth properties. In all instances the notch strength ratio is decreased by the exposure treatment. The minimum notch strength ratio of .35 is observed at 650F subsequent to exposure in the transverse direction.

Fig. 6 shows the smooth properties of AISI-301 cold reduced 50%. The experimental results are similar to those obtained on AISI-301 cold reduced 51% in that both tensile and yield strength are increased by the exposure treatment, particularly at -110F and room temperature. The elongation in

2% at room temperature. The elongation in the transverse direction and in both test directions subsequent to exposure never exceeds 4% for any test temperature investigated.

Exposure has little effect but a marked difference exists between longitudinal and transverse properties, the latter being approximately 25¢ lower. The noting strength ratio also decreases with increasing test temperature and reflects the tensile properties as well as the directionality. Minimum notes strength ratios of 0.5 are observed at -110 and +650F subsequent to exposure when tested in the transverse direction. All test results obtained on fatigue cracked specimens of 301 stainless 34, 31 and 60% cold reduced agree with those obtained from machined notches

The results on PH 15-7 Mo in the condition RH 1050 are illustrated in Figs. 8 and 9. Toth tensile and yield strength continuously decrease with increasing test temperature. Exposure as well as direction of testing seem to have little effect on the tensile and yield properties. The elongation decreases from approximately 5% at -110 to a minimum of less than 3% at 350% then increases with test temperature to approximately 4%. Elongation shows both the effect of directionality as well as of exposure. In the region between 75% and 650% the elongation in the transverse direction is below that in the longitudinal direction. Exposure under stress seems to cause a slight increase in elongation of -110% and at 650% in the longitudinal direction while a loss is observed in the trans-

۱ ۵.۔

exposure indicate a loss in elongation at -110F in both directions and in the transverse direction at 75F.

The notch properties of PH 15-7 Mo. RH 1050, are illustrated in Fig. 9. Both the effects of exposure and directionality are observed, the notch strength in the transverse direction being always considerably below that in the longitudinal direction. A Sharp drop in ...otch strength due to exposure is observed at 75F. Notch strength data from fatigue cracked specimens lie slightly above those for machined notches at .110 and 75F.

No load exposure points were obtained at .100F and 75F. There appears to be little difference between the notch strength obtained prior to exposure and subsequent to a no load exposure. The notch strength ratio versus test temperature curves and show a minumer at \$\ell-110F\$ of approximately 0.4. This low notch strength ratio was observed at .110F in the transverse direction prior to exposure and subsequent to exposure, the longitudinal direction subsequent to a no load exposure.

The smooth properties of PH 15-7 Mb, in the condition CH 900 are represented in Fig. 10. To date only data prior to exposure are available. Both tensile strength and yield strength decrease with increasing testing temperature. Little effect of directionality is observed except a slight increase in the transverse elongation at -110F. Over the entire range of testing temperature the elengation did not exceed 4%. The notch data on PH 15-7 Mo in the condition of CH . No are represented in Fig. 11. Again

sharply with increasing testing temperature. Considerably lower notch stren, the values are observed in the transverse direction. This is reflected in the notch strength ratio values obtained namely .7 to .8 for the longitudinal direction and .35 to .45 for the transverse direction over the entire range of test temperatures investigated.

Specimens of PH 15-7 Mo both in the condition RH 1050 and CH 900 are now being exposed and the results on the effect of exposure on both notched and smooth qualities will be reported in the near future.

The experimental results of TI-6A1-4V (35-120A) in the annealed condition are illustrated in Figs. 12 and 13. Little effect of exposure treatment and directionality is noted on the tensile strength and the yield strength. The elongation within the range of test temperatures is between 6 and 13% showing a minimum of approximately 6% in the longitudinal direction frior to exposure at -110 and in the transverse direction prior to exposure at 800F. The notch strength, Fig. 13, decreases nearly linearly with increasing test temperature and again shows little effect of directionality or exposure. The notch strength ratio increases from approximately 0.8 at -110F to 1.0 at room temperature. The apparent susceptibility of this material to fatigue cracks should be emphasized. A minimum notch strength ratio .6 was observed on a fatigue crack specimen tested at -110F in the transverse direction.

Figs. 14 and 15 show the smooth and notch properties of Ti-6Al-4V (RS-120A) in the solution treated and aged condition. Tensile and yield strength decreases with increasing test temperature snowing no effect of exposure or directionality. Exposure causes a significant loss in

(T

elongation of specimens tested in the transverse direction, especially at -11CF and 75F, where the elongation is reduced from approximately 7% prior to exposure to approximately 2% subsequent to exposure. No-load exposure data fall between the data obtained prior to exposure and subsequent to exposure under stregg.

The notch properties, Fig. 15, show an increase in notch trength and notch strength ratio with testing temperature between -110F and 350F with a subsequent decrease with further increase in temperature. The effect of exposure and test direction is negligible, especially with respect to the notch strength ratio, as compared to the effect of test temperature. The minimum notch strength ratio .4 was observed on a faticue crack specimen tested at -110F in the transverse direction.

Ti-4Al-3Mo-1V (RS 115) (Tables XVIII and XIX)

Figs. 16 and 17 show the smooth and notched properties obtained on TI-4A1-3M0-1V (RS-115) in the annealed condition. To date tests have only been performed on the material prior to exposure. Forth tensile and yield strength gradually decrease with increasing test temperature. No effect of directionality is observed. The elongation increases from 4\$ to -110 to approximately 3\$ at 200F and subsequently decreases again to approximately 3\$ at 800F. The elongation measured in the transverse firection is lower than that measured in the longitudinal direction at 350F and 800F.

Ine notch properties Fig. 17, increase between -110 and 230F and subsequently decrease with increasing testing temperature. Little effect of directionality is observed. The notch strength ratio increases through-

beyong unity at and above 200F. Specimens of this alloy are now being exposed and the results will be reported in the near inture.

II-5AL-2.75Gr-1.25Fe (RS-140) (Tables XX through XXIII)

Figs. 18 and 19 show the smooth and notch properties of Ti-5Al-2.75Cr-1.25Fe (RS-140) in the annealed condition. The tensile strength and the .2\$ yield strength, Fig. 18, continuously decrease with increasing test temperature and show little effect of directionality and exposure. The elongation varies between 5 and 14\$ having a minimum at -11JF and 600F in the longitudinal direction.

The notch strength Fig. 19, increases between -110F and 75F where it reaches a maximum and then decreases nearly linearly as the test temperatures increase to 800F. The effect of directionality only observed at 75F, where the specimens tested in the transverse direction show slightly higher notch strength values. The exposure treatment seems to have little effect on the notch strength. The notch strength ratio increases from approximately .7 to 1.0 between -110F and 75F and recains nearly constant or above 1.0 as the \*est temperature is further increased to 800F. Little effect of exposure is noted.

Figs. 20 and 21 show the tensile and notch tensile properties obtained on RS-140 in the solution treated and aged condition. A general decrease in tensile and yield strength coupled with a slight increase in elongation is observed with increasing testing temperature from -110F to 800F, Fig. 20. No effect, of exposure or directionality is observed on the tensile strength or yield strength. Minimum elongation values of approximately 2% are observed both in the longitudinal and transverse direction prior to sub-

sequent to exposure at -110F. The Gradual increase in elongation with increasing test terrerature is less for specimens subjected to the exposure treatment. The notch properties between -110 and 800F are shown in Fig. 21.

The notch strength increases continuously with increasing testing temperature. Exposure causes a considerable reduction in notch properties at -110 and 75F. Minumum notch strength ratio of .2 observed on specimens tested both in the longitudinal and transverse direction subsequent to exposure at -110F. Only at testing temperatures above 350F does s notch etrength ratio exceed .6 for all conditions tested.

The effect of the exposure treatment on the notch geometry was determined on selected specimens of Ti-6Al-4V, solution treated and aged and PH 15-7 Mo, RH 1050. The results are shown in Table III. A slight increase in notch root radius was observed in one Ti-6Al-4V (transverse) specimen and both PH 15-7 Mo specimens. This increase is between 0.00015 and 0.00025 in. reflecting a maximum plastic strain at the notch root of 40 (Ti-6Al-4V transverse) and 25 (PH 15-7 Mo) percent. One specimen of Ti-6Al-4V tested in the longitudinal direction showed no reasurable change in notch root radius during exposure.

#### CONCLUSIONS

A summary of all experimental data is presented in 74gs. 22 and 23 with the notch strength ratio plotted as a function of the strength to density ratio. This presentation facilitates an easy interpretation of the data with respect to aircraft desirability as expressed by the strength to density ratio and fracture toughness as expressed by the notch strength ratio. Of the materials tested subsequent to exposure the titanium alloy Ti-6Al-4V in the annealed condition seems to be the most promising. Other alloys that warrant further studies at the present time are RS-14O in the annealed condition and RS-115 in the annealed condition. Recent communication with TMCA has indicated that the titanium alloy Ti-8Al-8Mo-1V in the duplex annealed condition might show promising results with respect to the tentative selection criteria indicated. This alloy will be included in the screening program at Syracuse University.

On the basis of poor notin strength values the following alloys investigated to date must be considered unacceptable (these alloys show notin strongth ratio of .4 or less in any of the conditions investigated)

AISI-301 - 51%, PH 15-7 No - 2H 900, RS-140, solution treated and aget.

#### REPERENCES

- Sell, R. J., Chave, C. and Weiss, V., "Material Evaluation For a Mach III Transport Plane", Report No. 873-617-QP1, NASA (1961).
- Sell, R. J., Chare, C. and Weiss, V., "Material Evaluation For a Mach III Transport Plane", Report No. 873-6111-QP2, NASA (1961).

ď

m

- Sell, R. J., Chave, C. and Weiss, V., "Material Evaluation For a Mach III Transport Plane", Report No. 873-622-483, NASA (1962).
- . Minutes of First Meeting, Special Committee on Materials Research for Supersonic Transports, NASA, Washington, D. C., May 1961.

TABLE

#### MATERIALS

| OY                         | CONTINUE                                                                                                                         |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 107-18                     | Cold Reduced 34%                                                                                                                 |
| 7.06-19                    | 7-124 Reduced 51.5                                                                                                               |
| Z1:-15                     | Cold Reduced 50%                                                                                                                 |
| 15-7 No                    | RH 1050 (1750F for 10 minutes air society of 75F in 1 hour, -110F for 22 hours, air warmed to 75F, 1050F for 1 hour, air societ) |
| ow last                    | CE 900 (Solution treated, aged I hour at 900%, air cooled)                                                                       |
| -6al-LV (RS-LPCA)          | Arrieated                                                                                                                        |
|                            | Solution treated and aged 4 hours at 92%, air cooled                                                                             |
| 4.43rio-17 (RS-1.5)        | Annealed                                                                                                                         |
| SALES TOUR LARSE (RS-LAO)  | Annealed                                                                                                                         |
| SALL PSCRETE SERVE (BS-11) | Solution treated and aged your torm                                                                                              |

| Balance  | 1,30    |          | 110.0    | οι <b>•</b> ≤ |               |               | οτ•ε    |        |               |                |            |               | 050,0          | PEPUBLIC<br>3930017                |
|----------|---------|----------|----------|---------------|---------------|---------------|---------|--------|---------------|----------------|------------|---------------|----------------|------------------------------------|
| BALANCE  |         | £00°0    | 100*0    | οε•η          | ś0 <b>°</b> 1 | 9 <b>1°</b> £ |         |        |               |                |            |               | T£0 <b>°</b> 0 | 3930SeS<br>Bepublic                |
| DALLANCE | 81,0    |          | 0*015    | 0 <b>1°</b> 9 | 01*11         |               |         |        |               |                |            |               | 7£0°0          | 3630569<br>KEENBLIC                |
|          | PALANCE |          | to.o     | st't          |               | 5°511         | 11E*ST  | 7.20   | 06.0          | 9 <b>1</b> 0.0 | STO*0      | 2 <b>5</b> °0 | 70 <b>.</b> 0  | 33302SS<br>KELNETIC                |
|          | PALANCE |          |          |               |               |               | sr.ri   | τε•1   | 95 <b>°</b> 0 | €to*0          | 670°0      | ηε•τ          | <b>90°</b> 0   | AMERICAN STEEL<br>& WIRE<br>340006 |
| MINVEL   | IRON    | NEDORCZH | MITROGEN | ALUMINUM      | VANADIUM      | MUNECETION    | сняскам | HICKEL | SILICON       | SULPHUR        | PHOSPHOR"S | MANGANESE     | CARBON         | яяттачиг<br>языкии та              |

0

TARE III
Notch Root Radius Changes During Exposure

| MATERIAL                                                                                                   | exposure         | ALTER<br>EXPOSURE | CHANGE  |  |
|------------------------------------------------------------------------------------------------------------|------------------|-------------------|---------|--|
| -6al-Ly (RS-120A)<br>Slution Treated and Aged<br>Spcc. No. AYI25B ( Long. )<br>Spcc. No. AYI22B ( Trans. ) | 0.0005<br>0.0005 | 0.2005            | 0.0002  |  |
| n 15-7 KJ<br>Spec. No. EYLTA ( Long. )<br>Spec. No. EYLTA ( Trans. )                                       | 0,0010<br>0,0011 | 0.00125           | 0,00025 |  |

TABLE IV

Material-AISI-301

SMOOTH SPECIMENS

Elong. Mod. of Percent Elas. (in 1.5") E-10<sup>c</sup>PSI

0.2% Yield Strength KSI

Tensile Strength KSI

Test Temp

CONFITION
Express 650°F Te.
1300 Hrs. Temp
No No Load

Unex-

Material-AISI-301 34\$ Cold Reduction

TABLE V

NOTCH SPECIMENS

| Exposed 650°F   Notes, and the strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CONDITION                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unex- Exposed 650°F posed 1000 Hrs. |
| 110   183   172.6   187.4   187.4   187.4   187.4   187.4   187.4   187.4   187.5   187.4   187.5   187.4   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5   187.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +                                   |
| X X X 350 117.5<br>X X X 75 118.6<br>650 117.5<br>X X 75 118.4.5<br>110.5<br>X X X 75 118.7.4<br>110.164.5<br>X X 75 116.5<br>X X X 75 116.5<br>X X 75 116.5<br>110.5<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>150.0<br>15 |                                     |
| X X 75 137.5  X X 75 110.5  X X X 75 126  X X X 75 126  X X X 75 110.164.5  X X 75 116.5  X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |
| X X 75 194.5  X X 100 194.5  X X X 656 120  X X X 75 110 164.5  X X 75 116.5  X X 800 110.5  X X 75 116.5  X X 75 117.5  X X 75 119.5  X X 75 110 119.5  X X 100 110 110 110 110 110 110 110 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |
| X X 7.75 650 126 X X X 7.10 220 X X X 7.5 126 X X 7.5 110 164.5 X X 7.5 110 164.5 X X 800 130 X X 800 130 X X 7.5 110.5 X X 7.5 110.5 X X X 7.5 110.5 X X X 7.5 110.5 X 1.5 110.5 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |
| x x x -110 164.5 126 x x x x -110 164.5 126 x x x 200 x 200 x x x 200 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ××                                  |
| X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |
| x -110 164.5 x -110 164.5 x -110 164.5 x -110 167.5 x -150 130 x -110 190 x -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ××                                  |
| X 75 167.5 X 75 167.5 X 850 1.00.5 X 860 1.00.5 X 75 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                   |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
| 350 1-6  X 350 102-9  SX X 75 110-5  WW 108  X X 77 172  X X 75 172  X X 75 172  X X 75 187  X X 75 180  X X X X 75 180  X X X X 75 180  X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |
| x x 650 110.5<br>880 110.5<br>880 98<br>x 7.7 1.72<br>-110 119.5<br>x 7.7 1.87<br>x 7.7 1.87<br>x 7.5 1.87<br>x 8.650 10.5<br>x 7.5 1.87<br>x 8.50 10.5<br>x 7.5 1.87<br>x 8.50 10.5<br>x 7.5 1.87<br>x 8.50 10.5<br>x 8.50 10.5<br>x 1.75 1.87<br>x 1                                                                                                                                                                                                                                  |                                     |
| x x 650 110.5<br>x x 75 172<br>x 75 172<br>-110 118.4<br>-110 118.4<br>-110 118.5<br>x 75 190<br>x 75 190<br>x 75 190<br>x 650 96.2<br>650 102<br>x 75 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                     |
| X X 75 98 98 98 172 172 172 172 190 187. ↑ 187 190 187. ↑ 187 190 187 187 187 187 187 187 187 187 187 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |
| x x -110 1172<br>x x -110 1195<br>x 75 1195<br>x 75 1197<br>x 650 26.2<br>x 650 100<br>x x 650 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |
| x -110 1190<br>x 75 190<br>x 75 187<br>x 650 96.2<br>x x 650 1002<br>x x 1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                   |
| X 75 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | **                                  |
| x 650 96.2<br>x 650 1002<br>x x 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | < ×                                 |
| x x 200 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × >                                 |
| ֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                     |

23.50 23.50 23.50 25.50 25.50 25.50 25.50 25.50

21.2 21.0 20.4 25.2 21.2 21.2 3.0 3.3 3.3 23.2 23.2 3.1

155.5 166.7 161.7 151.5 123.5 184 114.9

211.5 211.5 211.5 166.5 166.5 177.8 166.5 153 134.5 204 204 163.6

\*\*\*\*

×××

25.0 25.1 22.8 22.8 25.0 25.0 25.0

20.1 13.9 3.4 3.6 5.6 7.0 8.39 8.39

127 143.7 149 126.5 117 171 140 177

212.5 182.6 1.1 1.7 152.5 158.5 142 210.1 201 169.2 216

-110 350 650 650 800 -110 75 650 -110

××××××

 $\times \times$ 

 $\times \times \times$ 

TABLE VI Material-AISI-301 51% Cold Reduction

SNEWI SPECIMENS

| Strength -10 <sup>3</sup> tr<br>Density (Density =<br>0.286 lbs ) | 781.5<br>725.2<br>727.3<br>727.3<br>5067.8<br>909.1<br>909.1<br>979.0                                | 832.2<br>748.3<br>736.0<br>713.3<br>604.9<br>901.5<br>972.0<br>933.4   |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Mod. of<br>Elas<br>E-lo <sup>6</sup> PSI                          | 23.5<br>23.5<br>23.5<br>25.1<br>25.1<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5 | 88.33.33.33.44.53.33.33.33.33.33.33.33.33.33.33.33.33.                 |
| Elong.<br>Percent<br>(in 1.5")                                    | 18.0<br>2.3<br>2.6<br>6.3<br>6.3<br>11.47<br>10.0                                                    | 111.4<br>20.2.4<br>5.0.3<br>5.0.3<br>1.6.7                             |
| 0.2%<br>Yield<br>Strength<br>KSI                                  | 215<br>211.5<br>188.5<br>188.5<br>1167<br>1167<br>254<br>254<br>254<br>261.5<br>261.5<br>261.5       | 196.5<br>194<br>187.5<br>17.8<br>145.2<br>246.5<br>226.5<br>246.5      |
| Tensile 0.2%<br>Strength Yield<br>KSI Stren                       | 223.5<br>216<br>208<br>208<br>1191<br>1165<br>260<br>280<br>280<br>265                               | 238<br>210.5<br>210.5<br>200.4<br>17.3<br>27.5<br>26.6<br>27.8<br>27.8 |
| Test<br>Terp                                                      | 011-<br>350<br>850<br>650<br>650<br>110<br>650<br>75                                                 | -110<br>350<br>650<br>650<br>110<br>650<br>110<br>650<br>110           |
|                                                                   | жж                                                                                                   | ××                                                                     |
| CONDITION Exposed 650°P 1000 Hrs. 40 No                           | ×××                                                                                                  | ×××                                                                    |
| Unex-<br>posed                                                    | ****                                                                                                 | ****                                                                   |

TAME VII
Material-AISI-301
51% Cold Reduction

| Notch<br>Strength<br>Ratio                      | 1.060<br>0.993<br>0.731<br>0.731<br>0.734<br>0.978<br>0.912<br>0.850<br>0.470 | 0.739<br>0.718<br>0.762<br>0.715<br>0.610<br>0.613<br>0.502<br>0.601<br>0.771<br>0.556<br>0.556<br>0.536<br>0.536<br>0.536<br>0.536<br>0.540<br>0.540<br>0.540<br>0.540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notch<br>Strength<br>KSI                        | 237<br>214.5.<br>152<br>123<br>121.1<br>207<br>237<br>237<br>237<br>240       | 176<br>171<br>163<br>153<br>153<br>128.5<br>129<br>109.2<br>104.2<br>105.1<br>147.5<br>147.5<br>147.5<br>147.5<br>170.5<br>77.7<br>78.2<br>78.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test<br>Temp<br>°F                              | -110<br>175<br>1350<br>650<br>650<br>175<br>-110<br>75<br>650<br>-110         | -110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110 |
| Natural<br>Crack                                | ×                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Noten<br><0.0.1                                 | ****                                                                          | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TION<br>650°F<br>Hrs.<br>No<br>Load             | ××                                                                            | ××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CONDITION EXPOSE 650°F 1000 [FE. 40 No KSI Load | ×××                                                                           | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Unex-                                           | ****                                                                          | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rolling                                         | начаначанач                                                                   | E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Material-AISI-301 50% Cold Reduction NOTICE SPECIMENS

TABLE IX

|          |                                         |                  | Flong. Percent (in 1.5")                                         |
|----------|-----------------------------------------|------------------|------------------------------------------------------------------|
| TADE VIL | Material-AISI-301<br>60% Cold Reduction | ECIMENS          | 0.2%<br>Yield<br>Strength<br>KSI                                 |
| 787      | Material-AISI-301<br>60% Cold Reductio  | SMOOTH SPECIMENS | Test Tensile 0.2%<br>Trup. Strength Yield<br>F XSI Streng<br>KSI |
|          |                                         |                  | Test<br>Tesp.                                                    |
|          |                                         |                  | CONDITION Exposed 650°F 1000 Hrs. 40 No                          |
|          |                                         |                  | CONT<br>1000<br>40<br>KSI                                        |
|          |                                         |                  |                                                                  |

Strength 103in Density (Density = 0.286 lbs / in 3 )

Mod. of Elas, E-10<sup>6</sup>PSI

Unex-posed

| Notch<br>Strength<br>Ratio | 0.981<br>0.924<br>0.745<br>0.774<br>1.004<br>1.008<br>0.923<br>0.910<br>0.510<br>0.911                                    | 0.769<br>0.723<br>0.668<br>0.540<br>0.540<br>0.533<br>0.698<br>0.698<br>0.466<br>0.466<br>0.466<br>0.461<br>0.491                                                   |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notch<br>Strength<br>KSI   | 226.5<br>206.5<br>159.5<br>139.5<br>137.<br>231.5<br>206.2<br>248.5<br>248.5<br>228.5<br>250.2<br>250.2<br>250.2<br>250.2 | 184.5<br>1073.5<br>1146.2<br>1221.5<br>1221.5<br>1206.2<br>106.2<br>106.2<br>106.2<br>109.5<br>107.5<br>134.2<br>134.2<br>138.2<br>138.2<br>139.5<br>139.5<br>177.5 |
| Test<br>Temp<br>F          | 75<br>356<br>858<br>858<br>850<br>1110<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175              |                                                                                                                                                                     |
| Natural<br>Grack           | ×××                                                                                                                       | ×××                                                                                                                                                                 |
| Moten<br><0.001            | ****                                                                                                                      | *****                                                                                                                                                               |
| OFF<br>Cad                 | ××                                                                                                                        | ×                                                                                                                                                                   |
| EX<br>TO<br>TO<br>KSI      | ×××                                                                                                                       | ****                                                                                                                                                                |
| Unex-<br>vosed             | ****                                                                                                                      | ****                                                                                                                                                                |
| Rolling<br>Directi         | ныңычыыныны                                                                                                               | 343888888888888888888888888888888888888                                                                                                                             |
|                            | T.                                                                                                                        |                                                                                                                                                                     |

807.7 746.5 746.5 680.1 610.1 972.0 940.6 755.2 993.0

25.1 22.5 22.5 22.9 20.9 26.3 25.65 27.15

10.7 2.4 3.3 3.3 1.67 11.33 4.68

206 222.5 207.5 180 166.7 276.3 275.5 276

233.5 223.5 213.5 274.5 274.5 276.5 216 284 288

350 350 650 800 -110 75 650

×××

\*\*\*\*

××

839.2 776.3 766.7 664.3 729.0 642.7 642.7 642.7 71014.0 940.6 713.3

205.5 210 203.5 175.5 181 160 28 28 259.5 270 264

240 222 225 190 183.8 183.8 290 269 269 288

75 350 650 650 650 650 800 -110 75 75

×××××××

××

×××

TABLE X

Materiai-FH 15-7 Mo Heat Treatment RH 1050

SMOOTH SPECIMENS

|                                                                |                                                                                | *                                                                                     |
|----------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Strength_103in<br>Density<br>(Density =<br>0.266 lbs )<br>in 3 | 787.0<br>6643.4<br>610.1<br>610.1<br>837.5<br>772.6<br>642.6<br>837.5<br>776.2 | 310.5<br>736.5<br>673.3<br>673.3<br>673.3<br>743.7<br>772.5<br>783.4<br>783.4         |
| Mod. of<br>Elas,<br>E-lo <sup>6</sup> PSI                      | 30.2<br>24.5<br>25.7<br>21.0<br>21.0<br>27.3<br>27.3<br>27.8<br>29.35<br>26.4  | 29.35<br>27.75<br>27.75<br>23.1<br>29.5<br>30.6<br>30.6<br>31.6<br>29.35              |
| Elong.<br>Percent<br>(in l.5")                                 | 7.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4                                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                |
| 0.2%<br>Yield<br>Strength<br>KSI                               | 212<br>196.5<br>186.5<br>180<br>159.5<br>139<br>226.5<br>211<br>167<br>227     | 219<br>197.5<br>182.5<br>161.<br>141.<br>141.<br>209.<br>172.<br>209.<br>209.<br>210. |
| Tensile<br>Strength<br>KSI                                     | 218<br>201<br>18#<br>169<br>23-2<br>214<br>178<br>232<br>214<br>215            | 224.5<br>204<br>186.5<br>170<br>152<br>230<br>214<br>176.8<br>234                     |
| Test<br>Terp.                                                  | 350<br>350<br>860<br>110<br>75<br>650<br>110<br>75                             | 150<br>110<br>110<br>110<br>110<br>110                                                |
| CONDITION: Exposed 650°F 1000 Hrs. "3 No KSI Load              | ××                                                                             | ××                                                                                    |
| Exposec<br>1000<br>400<br>KSI                                  | ×××                                                                            | ×××                                                                                   |
| Unex-<br>posed                                                 | ****                                                                           | ****                                                                                  |

TAFIE XI Material-PH 15-7 Mo Heat Treatment FH 1050

|           | Notch<br>Strength | Ratio     | 0.921             | 0.9.1      | 3.826        | 0.557  | 0.453 | 0.941 | 0.827       | 0.51 | 0.388      | 0.745 | 0.706    | 0 0   | 0.647 | 0 0          |     | 10.0   | 0.646      | 0.42 | 0.43   | 0.57 | 0.65        | 9.0  | 0.395        |
|-----------|-------------------|-----------|-------------------|------------|--------------|--------|-------|-------|-------------|------|------------|-------|----------|-------|-------|--------------|-----|--------|------------|------|--------|------|-------------|------|--------------|
|           | Notch<br>Strength | KSI       | 139               | 155        | 150          | 196.5  | 105.2 | 167.5 | 1.8.5       | 116  | තිබී       | 152   | 144      | 143   | 110   | 125          | 134 | 1.44.5 | 145        | 98   | 100    | 122  | 116.5       | 2011 | 92.5         |
|           | Test<br>Te:.p     | ;         | -110              | 350<br>650 | 800          | -110   | -110  | 65c   | -110        | -110 | 617        | 75    | 7.       | 350   | 650   | 650          | 3 2 | -18    | ٠<br>ا     | -110 | -110   | 75   | U. 1        | 650  | -11.0<br>27. |
| τ         | tura              | _         |                   |            | ×            | ××     |       |       |             |      |            |       |          |       |       |              |     | ×      | ××         | <    |        |      |             |      |              |
|           | Notch<br><0.001   |           | ××                | ××         | ×            |        | ××    | < ×   | ××          | >    | < × :      | × ×   | < ×      | ×     | < ×   | ×            | × > | <      |            | >    | < ×    | ×    | ×           | ××   | **           |
| LON       | 650°F             |           |                   |            |              |        |       |       | ××          |      |            |       |          |       |       |              |     |        | ,          |      |        |      |             |      | ×            |
| CONDITION | Exposed<br>1000   | 40<br>KSI |                   |            |              |        | ×     | ××    |             |      |            |       |          |       |       |              |     |        |            | >    | < ×    | ×    | ×           | ××   |              |
|           | Unex-             |           | ××                | ××         | :×>          | < × >  | ۷     |       |             | ;    | ××         | ××    | < ×      | ×     | ××    | ×            | ×   | × ×    | ××         | ×    |        |      |             |      |              |
|           | itoe:             |           | ,1 <sub>p</sub> 2 | ын         | <b>∔</b> ⊢ + | , [, [ | ı ⊷.  | a e   | . <b></b> ⊦ | 1    | <b>⊢</b> ⊢ | H     | <u>-</u> | · E · | }     | , <u>F</u> ( | E-  | F+ E   | . <u>L</u> | Fil  | i, 4 L | 1 1  | <b>F</b> -1 | Ŀ÷   | ·<br>        |

TABLE XII

Material-PH 15-7 Mo Heat Treatment CH 900

#### SMOOTH SPECIMENS

|           | TRC:          | NOTALIBRO  |               |                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                        | - |
|-----------|---------------|------------|---------------|-------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|---|
| Unex-     | Expose<br>100 | ſω,        | Test<br>Tesp. | Test Tensile 0.2%<br>Temp. Strength Mield | 0.2%<br>Yield   | Elong.<br>Percent                                                                                                                                                                                                                                                                                                                                                                                                   |          |                        |   |
| posed     | TSX           | No<br>Load | (x.           | °F KSI Stren                              | Strength<br>KSI | (in i.5")                                                                                                                                                                                                                                                                                                                                                                                                           | E-10°PSI | (Density = 0.286 lbs ) |   |
| ×         |               |            | -110          | 304                                       | 305             | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.9     | 1097.4                 |   |
| × >       |               |            | 75            | 283.9                                     | 27.2            | ر<br>در د                                                                                                                                                                                                                                                                                                                                                                                                           | 28.9     | 1024.9                 |   |
| < ×<      |               |            | 650           | 224                                       | 217.5           | 1.34                                                                                                                                                                                                                                                                                                                                                                                                                | 25.9     | 638.6                  | - |
| ×         |               |            | 800           | 201                                       |                 | 2.3+                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 725.é                  |   |
| <b>34</b> |               |            |               |                                           | 2911            | 3.67                                                                                                                                                                                                                                                                                                                                                                                                                | :<br>K   | 1108.3                 | - |
| ×         |               |            |               |                                           | 32.2            | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                | * X      | 1054.1                 |   |
| ××        |               |            | 550<br>650    | 230                                       | 200             | 4. 4.<br>4. 4.<br>4.<br>4. 4.<br>4.<br>4. 4.<br>4. 4.<br>4.<br>4. 4.<br>4.<br>4. 4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4 | 33.4     | 851.9                  | - |
| ×         |               |            |               |                                           | 205.5           | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                 | 30.6     | 2.1%.                  |   |
| •         |               |            |               |                                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                        |   |

#### TABLE XIII

Material-PH 15-7 Mo Heat Treatment CH900

| COMPUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          |                                           |                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------|-------------------------------------------|-------------------------------------------------------------------------------------------|
| Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mote:<br>Strength              | Fatio    | 0.837<br>0.837<br>0.193<br>0.714<br>0.741 | 0.411<br>0.438<br>0.438<br>0.438<br>0.422<br>0.422<br>0.422<br>0.423<br>0.437<br>0.337    |
| Direction  Direction  Direction  Direction  Direction  Direction  Direction  Clack  Not  Load  Clack  Natural  Clack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Notch<br>Stren <sub>s</sub> th | KSI      | 236<br>229<br>225<br>1.7<br>166<br>156    | 126.3<br>127.5<br>128<br>1128<br>113.5<br>103.5<br>96<br>96<br>97.5                       |
| Direction  OONDITION  Dosed Cycor Farposed 6500° F  Dosed Lood Hrs Not Charles  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Test<br>Temp                   | [1,<br>0 | -11.<br>75.<br>350.<br>650.<br>860.       | 11.<br>-11.<br>-11.<br>-15.<br>-75.<br>-75.<br>-75.<br>-75.<br>-75.<br>-75.<br>-75.<br>-7 |
| OOMDITION  OOMDITION  The color of the color |                                |          |                                           |                                                                                           |
| notboarid ××××××××××××××××××××××××××××××××××××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Noten<br><0.001                |          | ****                                      | *****                                                                                     |
| notboarid ××××××××××××××××××××××××××××××××××××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 650°F                          | No       |                                           |                                                                                           |
| Direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CONDITION TO THE               |          |                                           |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unex-                          | 200      | ****                                      | ***                                                                                       |
| Sulfing 'the Property of the P |                                |          | паныны                                    | for the fire Ees the Firebox for the fire                                                 |

#### TABLE XIV

Material-Ti-6Al-4V (RS-120A) Heat Ireatment Annealed

#### SMOOTH SPECIMENS

| Strength_103in<br>Density =<br>0.160 lbs<br>tn3           | 1065.6<br>843.7<br>721.9<br>631.3<br>571.3<br>1081.3<br>917.5<br>628.1 | 1059.4<br>912.5<br>7.1.9<br>673<br>625.0<br>1093.7<br>950.0  |
|-----------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|
| Mod. of<br>Elas.<br>E-10 <sup>o</sup> PSI                 | 20.1<br>15.8<br>16.55<br>14.2<br>13.5<br>16.55<br>17.1                 | 17.7<br>18.3<br>17.4<br>15.1<br>15.3<br>19.35<br>14.05       |
| Elong.<br>Percent<br>(1n 1.5")                            | 6.35<br>19.7<br>19.36<br>8.7<br>19.03<br>11.3                          | 12.6<br>13.0<br>10.38<br>6.35<br>15.35<br>12.5<br>7.03       |
| 0.2%<br>Yield<br>Strength<br>KSI                          | 163.5<br>124.5<br>102.5<br>76<br>75.4<br>163<br>135<br>80.5            | 159<br>136<br>110.5<br>89.7<br>83.6<br>166.3<br>140<br>93.8  |
| Test Tensile 0.2%<br>Temp. Strength Mield<br>°F KSI Stren | 170.5<br>135<br>115.5<br>110.4<br>91.4<br>1173<br>146.8                | 169.5<br>146<br>123.5<br>100.8<br>100<br>175<br>152<br>111.2 |
| Test<br>Temp.                                             | -110<br>75<br>350<br>650<br>880<br>-110<br>75<br>650                   | 75<br>350<br>650<br>800<br>-110<br>75<br>650                 |
| CONDITION Exposed 650°F 100 Hrs. 25 No K31 Load           |                                                                        |                                                              |
| CON<br>Expose<br>1.00<br>2.5<br>KSI                       | ×××                                                                    | ×××                                                          |
| Unex-<br>posed                                            | ****                                                                   | ****                                                         |

#### Material-Ti-6Al-4V (RS-120A) Heat Treatment Annealed TABLE XV

NOTICH SPECIMENS

| Notch<br>Strength<br>Ratio             | 0.831<br>1.016<br>1.022<br>1.0380<br>0.804<br>0.804<br>0.721<br>0.721<br>0.721 | 0.774<br>0.734<br>0.734<br>1.003<br>1.1028<br>1.1028<br>1.103<br>0.937<br>0.635<br>0.635<br>0.635<br>0.635<br>0.931<br>0.931<br>0.931<br>0.931<br>0.931 |
|----------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notch<br>Strength<br>KSI               | 136.6<br>137.2<br>118.9<br>99.9<br>94.5<br>137<br>123<br>134.5<br>137.6        | 131.2<br>137.2<br>142.9<br>152.9<br>107.5<br>107.5<br>106<br>106<br>106<br>108<br>108<br>140.2<br>140.2<br>140.2<br>140.2<br>140.2<br>140.2             |
| Test<br>Temp                           | -110<br>350<br>650<br>650<br>800<br>-110<br>-110<br>-15<br>-15<br>650          | 1-15<br>338<br>338<br>338<br>338<br>338<br>338<br>338<br>338<br>338<br>33                                                                               |
| Natural<br>Crack                       | ×××                                                                            | ×××                                                                                                                                                     |
| Notch<br><0.001                        | ****                                                                           | ****                                                                                                                                                    |
| CONDITION posed 650°F 1000 Hrs No      |                                                                                |                                                                                                                                                         |
| CONDI-<br>Exposed<br>1000<br>25<br>KSI | ×××                                                                            | ****                                                                                                                                                    |
| Unex-<br>posed                         | *****                                                                          | *****                                                                                                                                                   |
| Nolling<br>Direction                   | - 프립크리리리리리리리                                                                   | हा हुन                                                                                                              |

TAME IVI

Material-IN-GAL-4V (RS-120A) Heat Treatment Solution Treated, Aged 4 Hrs. 935F

SMENTOGAS HINCHS

| ŀ     |                                       |                                       |                                                              |                                                                |                                                                    |                                                                                              |                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|---------------------------------------|---------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unex- | CONDI<br>Exposed<br>1000<br>40<br>KEI | FION<br>650°F<br>Hours.<br>Ho<br>Losd | Test<br>Temp.                                                | Tensile<br>Strength<br>KSI                                     | 0.2%<br>Yield<br>Strength<br>KSI                                   | Elong.<br>Percent<br>(in 1.5")                                                               | Mod. of<br>Elas,<br>E-lo <sup>o</sup> PSI                              | Strength_103in Density (Density = 0.160 lbs   1n3   1n |
| ****  | ***                                   | ××                                    | -110<br>350<br>650<br>650<br>-110<br>75<br>75                | 197.5<br>171<br>145.8<br>126.3<br>121<br>199<br>171.5<br>131.3 | 182.5<br>1155<br>118.5<br>97.4<br>92.9<br>165.5<br>101.<br>151.5   | 6.03<br>6.03<br>6.02<br>6.02<br>6.03<br>6.03<br>6.03<br>6.03<br>6.03<br>6.03<br>6.03<br>6.03 | 15.8<br>18.0<br>15.55<br>15.3<br>16.3<br>17.7<br>14.25<br>15.6<br>15.6 | 1234.4<br>1068.7<br>911.3<br>769.4<br>769.4<br>107.5<br>107.9<br>800.6<br>1031.3<br>1012.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ****  | ×××                                   | ××                                    | -110<br>75<br>350<br>650<br>880<br>-110<br>75<br>650<br>-110 | 208<br>164.2<br>143.6<br>127.3<br>206<br>105<br>133.2<br>2.9   | 194.5<br>151.5<br>120<br>120<br>104.7<br>95.9<br>190<br>108<br>108 | 7.0<br>6.38<br>5.38<br>5.30<br>6.50<br>6.60<br>6.33                                          | 17.7<br>15.1<br>15.1<br>17.4<br>10.3<br>18.3<br>13.5<br>17.1           | 1300.0<br>1026.3<br>1026.3<br>645.0<br>795.5<br>1287.5<br>1031.3<br>133.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### TABLE XVII

Material-TY-6Al-4V (RS-120A) Heat Treatment Solution Treated, aged 4 Hrs. 335F

| do + ob   | Strength          | Ratio     | 0.565<br>0.760<br>0.926<br>0.926<br>0.559<br>0.564<br>0.714<br>0.765           | 0.498<br>0.163<br>0.773<br>0.773<br>0.981<br>0.917<br>0.910<br>0.917<br>0.178<br>0.758<br>0.758<br>0.758<br>0.758                        |
|-----------|-------------------|-----------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|           | ength             | KSI       | 111.5<br>130<br>135<br>117<br>103.8<br>116.5<br>111.5<br>122<br>112.5<br>112.5 |                                                                                                                                          |
|           | Tenp              | [IL,      | -110<br>650<br>650<br>880<br>110<br>-110<br>75                                 | 110<br>175<br>175<br>175<br>175<br>175<br>175<br>110<br>110<br>110<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175 |
| У         | <br> Tac <br> Tac | 0         | ×××                                                                            | ×××                                                                                                                                      |
|           | Notch<br><0.001   |           | ****                                                                           | · ××××××××× ××××××                                                                                                                       |
| TON       | 650°F<br>Hrs.     |           |                                                                                | ×                                                                                                                                        |
| CONDITION | Exposed<br>1000   | 25<br>KSI | ж ж :                                                                          | × ×××××                                                                                                                                  |
|           | Unex-             |           | ****                                                                           | *****                                                                                                                                    |
|           | taoe.             |           | нчччччччч                                                                      | 거 하면 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다                                                                                                 |

TABLE IVIII

Naterial-Ti-4A1-3Mo-1V (RS-115)

#### SMOOTH SPECIMENS

|       | CNO            |                           |               |                                           |                 |                   |                  |                                                         |
|-------|----------------|---------------------------|---------------|-------------------------------------------|-----------------|-------------------|------------------|---------------------------------------------------------|
| Unex- | Expose<br>1000 | Exposed 650°F<br>1000 Hrs | Test<br>Temp. | Test Tensile 0.2%<br>Temp. Strength Yield | 0.2%<br>Yield   | Elong.<br>Percent | Mod. of<br>Elas, | Strength_10 <sup>5</sup> in                             |
| posed | 25<br>KSI      | %o<br>Load                | [14<br>0      | ISX                                       | Strength<br>KSI | (in 1.5")         |                  | (Density = $0.163 \frac{1 \text{ bs}}{1 \text{ n}^3}$ ) |
| ×     |                |                           |               | 164                                       | 154.5           | 5.02              | 16.4             | 1.906.1                                                 |
| ×     |                |                           |               | 134.5                                     | 127             | 8.7               | 15.05            | 825.2                                                   |
| ×     |                |                           |               | 115.5                                     | 7.76            | 9.7               | 14.6             | 708.6                                                   |
| ××    |                |                           | 0,00          | 95.5                                      | 76.2            | 4.69              | 14.35            | 585.9                                                   |
| €     |                |                           |               |                                           |                 |                   |                  |                                                         |
| *>    |                |                           | ٠ <u>۲</u> ٠  | 164.5                                     | 158             | 4.10<br>8.38      | 5.0              | 1009.2                                                  |
| < ×   |                |                           | 350           |                                           | 105             | 6.05              | 17.2             | 2,96.0                                                  |
| ×     |                |                           | 650           |                                           | 1.6.            | 60.4              | 11.85            | 573.0                                                   |
| ×     |                |                           | 800           |                                           | 72              | 5.68              | 16.2             | 6.646                                                   |

## TARLE XIX Material-Ti..4Al-3Mo-1V (RS-115) Heat Treatment Annealed

| Notch<br>Strength<br>Ratio                      | 0.756<br>0.951<br>1.089<br>1.089<br>1.121<br>0.634<br>0.634<br>0.977<br>1.082<br>1.083<br>1.112<br>1.102<br>1.102<br>0.632<br>0.632 |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Notch<br>Stre<br>KSI                            | 124<br>128<br>104<br>97<br>97<br>101<br>115.6<br>103<br>118.5<br>118.5<br>119.6<br>119.6<br>119.6<br>119.6<br>119.6                 |
| Test<br>Temp                                    | 110<br>336<br>886<br>886<br>110<br>110<br>175<br>175<br>175<br>175<br>175<br>175<br>175<br>175                                      |
| Matural                                         | *** ***                                                                                                                             |
| Notch<br><0.001                                 | ****                                                                                                                                |
| od 650°F<br>1000 hrs<br>No<br>No                |                                                                                                                                     |
| CONDITION Exposed 650°F 1000 hrs 25 No KSI Load |                                                                                                                                     |
| Unex-                                           | ******                                                                                                                              |
| Rolling                                         | чачачачая выненивнения                                                                                                              |

TABLE XX

Material-II-5A1-2.75Cr-1.25 Fe (RS-140) Reat Treatment Annealed

#### SMOOTH SPECIMENS

| Strength 103m<br>Density<br>(Density =<br>0.163 lbs<br>in 3 | 1036.8<br>895.7<br>725.8<br>668.7<br>584.0<br>1006.1<br>1006.1<br>739.3<br>739.3<br>739.3<br>739.3<br>739.3   |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Mod. of<br>Elas,<br>E-10 <sup>6</sup> PSI                   | 16.85<br>17.15<br>15.55<br>15.35<br>15.35<br>16.6<br>15.8<br>15.8<br>15.6<br>15.6<br>17.1                     |
| Elong.<br>Percent<br>(in 1.5")                              | 6.0<br>13.6<br>9.38<br>7.08<br>12.85<br>13.05<br>13.05<br>13.18<br>13.18                                      |
| 0.2%<br>Held<br>Strength<br>KSI                             | 165.5<br>132<br>100.8<br>85.3<br>79.7<br>153<br>132.5<br>99.7<br>85.9<br>(3.5                                 |
| Test Tensile 0.2%<br>Temp. Strength Teld<br>F<br>KSI KSI    | 169<br>146<br>1116.3<br>109<br>95.2<br>164<br>12.5<br>106<br>95.6                                             |
| Test<br>Temp.                                               | 110<br>350<br>860<br>860<br>110<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 |
| CONDITION Exposed 650°F 1000 Hrs. 25 No                     |                                                                                                               |
| Exposed<br>1000<br>25<br>KSI                                | ×                                                                                                             |
| Unex-<br>posed                                              | ****                                                                                                          |

#### TABLE XXI

Material-Ti-5Al-2.750r-1.25Fe (RS-140) Heat Treatment Annealed

| т                                     |                                                                   |                                                                                                                            |
|---------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Notch<br>Strength<br>Ratio            | 0.804<br>0.931<br>1.076<br>1.050<br>042<br>0.0883                 | 0.756<br>0.806<br>0.806<br>0.806<br>0.010<br>0.102<br>0.102<br>0.102<br>0.103<br>0.046<br>0.709<br>0.046<br>0.046          |
| Notch<br>Strength<br>KSI              | 136<br>136<br>127.4<br>113.5<br>100<br>125.5<br>115<br>129<br>131 | 124<br>132.2<br>146<br>146<br>1146<br>126.5<br>113.6<br>118.2<br>114.5<br>114<br>106<br>116.4<br>114.8<br>114.8            |
| Test<br>Temp<br>°F                    | -110<br>75<br>350<br>650<br>850<br>-110<br>-110<br>75<br>75       | -110<br>-110<br>75<br>350<br>350<br>650<br>650<br>650<br>650<br>110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-110<br>-11 |
| Natural<br>Crack                      | ×××                                                               | ×××                                                                                                                        |
| Notch<br><0.001                       | ****                                                              | ******                                                                                                                     |
| TPION<br>1 650°F<br>Hrs.<br>No        |                                                                   |                                                                                                                            |
| CONDITION Exposed 650 1000 Hrs. 25 No | ××                                                                | ××××                                                                                                                       |
| Unex-<br>posed                        | ****                                                              | ****                                                                                                                       |
| Rolling                               | нчнчччччч                                                         | ***************************************                                                                                    |

TABLE IXII

Material-Ti-5Al-2.75Cr-1.25Fe (RS-140) Heat Treatzent Solution Treated, Aged 900F Ghrs.

SHOOTH SPECIMENS

|                | CHU              |               |       |                                     |                          |                      |          |                                      |
|----------------|------------------|---------------|-------|-------------------------------------|--------------------------|----------------------|----------|--------------------------------------|
|                | Errose           | Errosed 650°F | Test  | Tensile                             | 0.2%                     | Elong.               | Mod. cf  | Strength-1031n                       |
| Unex-<br>posed | 100<br>25<br>KSI | 1000 Hrs.     | Terp. | Strength Yield<br>KSI Streng<br>KSI | Yield<br>Strength<br>KSI | Percent<br>(in 1.5") | E-106psi | Density<br>(Density =<br>0.163 lbs ) |
| ××             |                  |               |       | 206<br>171                          | 179.5                    | 1.67                 | 16.3     | 1263.8<br>1049.0                     |
| <b>Set</b>     |                  |               | 350   | 158                                 | 118.5                    | 6.25                 | 17-75    | 969.3                                |
| _              |                  |               | _     | 151                                 | 115.5                    | 0.0                  | 14.15    | 926.3                                |
| _              |                  |               |       | 148.5                               | 100                      | 0.0                  | 16.9     | 911.0                                |
|                |                  | 1             | දි    | 110.5                               | 83                       | 9.03                 | 9.27     | 6777.9                               |
|                |                  | ×             | -110  | 205                                 | 170.5                    | 10.4                 | 20.01    | 1257.6                               |
|                | ;                | ×             | ۸ :   | 20,00                               | 140.5                    | 8 6                  | 10.05    | 1000.9                               |
|                | ×                |               | 211   |                                     | 103                      | TO:2                 | 1767     | 1.00                                 |
|                | ×                |               | 0     | ō                                   | T+ン・フ                    | 3.01                 | T2.4     | 1.0001                               |
|                | ×                |               | 929   | 145                                 | 66                       | 5-35                 | 14.15    | 5.683                                |
|                |                  |               | -110  | 506                                 | 181                      | 3.34                 | 17.4     | 1263.8                               |
|                |                  |               | 75    | 176.5                               | 153                      | 5,35                 | 16.9     | 1082.5                               |
| . >            |                  |               | 350   | 150                                 | 118.5                    | 6.22                 | 20.6     | 2000                                 |
|                |                  |               | 650   | 134                                 | 2.46                     | 6.48                 | 9.0%     | 822.0                                |
| ×              |                  |               | _     | 113.6                               | 86.1                     | 3.38                 | 11.0     | 6.969                                |
|                |                  | ×             |       | 213                                 | 182                      | 3.01                 | 17.5     | 1,306.7                              |
|                |                  | ×             |       | 134                                 | 154                      | 6.36                 | 16.9     | 1128.8                               |
|                | ×                |               | -110  | 202                                 | 180.5                    | 2.34                 | 17.5     | 12:39.3                              |
|                | ×                |               | 22    | 176.5                               | 153.5                    | 2.34                 | 17.2     | 1082.8                               |
|                | ×                |               | 650   | 142                                 | 100                      | 5-35                 | 15.4     | 871.2                                |

TABLE XXIII

Material-Ti-5Al-2.75Cr-1.25Fe (FS-140) Heat Treatment Solution Treated, Aged 900F 6Hrs.

| Notch<br>Strength.<br>Ratio |                                                | 0.437<br>0.546<br>0.737<br>0.882<br>1.172<br>0.190<br>0.326<br>0.318 | 0.437<br>0.529<br>0.529<br>0.529<br>0.535<br>0.767<br>0.980<br>1.157<br>0.980<br>0.244<br>0.333<br>0.244<br>0.441<br>0.445                      |
|-----------------------------|------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Notch<br>Strength<br>KSI    |                                                | 90<br>93.4<br>116.5<br>131<br>129.5<br>39<br>58<br>42.3<br>65.4      | 90<br>97.5<br>97.5<br>97.5<br>111.5<br>111.5<br>1131.5<br>1131.5<br>1131.5<br>64.0<br>64.0<br>77.8<br>77.8                                      |
| Test<br>Teup<br>°F          |                                                | 75<br>350<br>650<br>650<br>650<br>110<br>75<br>75<br>75<br>650       | -110<br>75<br>75<br>350<br>850<br>650<br>650<br>650<br>650<br>110<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75 |
| Natural<br>Crack            |                                                |                                                                      |                                                                                                                                                 |
| Notch<br><0.301             |                                                | *****                                                                | *****                                                                                                                                           |
| CONDITTION                  | Exposed 650°F<br>1000 Hrs<br>25 No<br>KST Load | ××                                                                   | ××                                                                                                                                              |
|                             | Exposed<br>1000<br>25<br>KST                   | ×××                                                                  | жжжж                                                                                                                                            |
|                             | Unex-<br>poseú                                 | ****                                                                 | ****                                                                                                                                            |
| Rolling                     |                                                | принанана                                                            | ######################################                                                                                                          |



































1

£5

FIG. 6 THE WEEDT OF TENTING TELFLARA, AGO ON THE TENDELLA STRENGTH, THE TODICIS OF ELASTICITY AND THE ELONATION IN PERCENT OF AIST - 301 OCLD REDUCED 60%. MAIRIAL TESTED PRIOR TO EXPOSITE AND IN THE EXPOSED CONDITION.

13

ERRATA SHEET

PINAL REPORT - JUNE 62 NASA CONTRACT NO. NASE-43





FINAL REPORT— JUNE 62 NASA CONTRACT NO. NAST-413 ERRATA SHEET



3

.....

SICHSAIICH IN FERGENT OF PH 1.-7 No III SCHIIICH GR-920.



123 - STONESPIZE HOTO

124 - STONESPIZE

125 - STONESPIZE

126 - STONESPIZE

127 - STONESPIZE

127 - STONESPIZE

127 - STONESPIZE

128 - STONESPIZE

129 - STONESPIZE

120 - S

THE YIND STREMENT, THE FUNCTION OF BLACKLAS ATTEMED.
SLONGATION IN PERCENT OF TI-GAL-LW (RG-120-A) ATTEMED.
MATERIAL TESTED PRICR TO EXPOSITE AND IN THE EXPOSED CONDITION.

19

