

Stock Price Anomaly Detection & Forecasting

Cynthia Du

Statistical Deviations

Aug 25

Sep 8

Sep 22

Jun 30

2024

Jul 14

Jul 28

Aug 11

Date

Statistically an anomaly.... but is it actually?

Analyzing
Stock
Volatility

Hidden Markov Model

Used to identify market regimes + trends, good in detecting shifts in market behavior

State 0

Periods of low volatility and stable returns

Represents calm market / minimal price fluctuations

State 1

Periods of high returns or increased volatility

Indicates bullish trends or recovery phases with larger upward price movements.

State 2

Periods of high volatility or bearish activity / negative returns

Associated with sharp declines, corrections, or market uncertainty.

Volatility: degree of variation in a stock's price over certain period. High volatility indicates that the stock's price changes significantly over a shorter period

NVDA: Showcases distinct volatility patterns with most periods in high-return states (State 1) and bearish states (State 2). Risky but potential for high returns :) **AAPL**: Reflects relatively stable transitions with brief shifts to bearish states.

MSFT: Demonstrates consistency in low volatility states, with limited bearish activity. Most stable :0

STL Decomposition + ARIMA Forecasting

STL Decomposition

(Seasonal and Trend decomposition using Loess)

Decompose the time series into its components (seasonal, trend, and residual) and use the residuals to detect anomalies

Trend: Reflects the underlying movement over time, which is typically smooth.

Seasonal: Reflects short-term fluctuations that repeat over a fixed period (e.g., yearly, monthly, etc.).

Residual: Represents randomness or noise that cannot be explained by trend or seasonality.

ARIMA Forecasting

(Auto-Regressive Integrated Moving Average)

Used for time series forecasting

Captures three key components: **Auto-Regression (AR):** Incorporates dependence between an observation and a specified number of lagged observations.

Integration (I): Makes the time series stationary by differencing it (removing trends).

Moving Average (MA): Models the error of the time series as a linear combination of error terms from past observations.

STL Decomposition

ARIMA Forecasting

(Seasonal and Trend decomposition using (Auto-Regressive Integrated Moving # Forecasting with ARIMA (on the trend component) trend = result.trend.dropna() arima_model = ARIMA(trend, order=(1, 1, 1)) arima_fit = arima_model.fit() # Forecasting future values forecast_steps = pd.date_range(start=forecast_start_date, end=forecast_end_date, freq='B') forecast = arima_fit.get_forecast(len(forecast_steps)).predicted_mean forecast = pd.Series(forecast.values, index=forecast_steps) # Combine forecasted trend with the seasonal pattern (from the last cycle) seasonal_cycle = result.seasonal[-len(forecast):] forecast with seasonality = forecast + seasonal cycle.values forecast_with_seasonality = forecast_with_seasonality.loc[aapl_test.index]

seasonality.

error terms from past observations.

NVDA

AAPL

MSFT

Thank you!

Shoutout to the best mentor Justin and Bree for their help !!!