2. Methods of computing Depreciation

2.1 Methods for Depreciation

- Methods Available: The following methods are available for computing and allocating the depreciable amount of an asset over its useful life –
 - (a) Straight Line Method or Fixed Instalment Method,
 - (b) Reducing Balance Method or Written Down Value (WDV) Method,
 - (c) Sum of Digits Method
 - (d) Machine Hour Method,
 - (e) Production Units Method,
 - (f) Depletion Method,
 - (g) Annuity Method, (not included CA Foundation syllabus)
 - (h) Sinking Fund Method (not included CA Foundation syllabus).

Note: Of the above, the first 2 methods viz. Straight Line and Reducing Balance Method are widely used.

- 2. Selection of method: The choice of a method is based on -
 - (a) The type of asset,
 - (b) Nature of its use, and
 - (c) Circumstances prevailing in the business.

Note:

- · A combination of more than one method may be used.
- Depreciable Assets not having any material value are fully depreciated in the year in which they are acquired.
- The Income Tax Rules prescribe the WDV Method (i.e. Reducing Balance Method), except in the case of an undertaking engaged in generation and distribution of power.

2.2 Straight Line Method (SLM) or Fixed Instalment Method

1. Meaning	Depreciable A	nethod, an equal or constant a asset, every year. If the useful life of the asset, the converse value.	25 1000000	
2 Formula	Straight Line	Straight Line (Cost Less Residual Value)		SLM Depreciation
2. Formula	Depreciation =	Depreciation = Useful Life SLM Deprn Rate = Cost of Asset		
3. Merits	(a) Easy to understand, simple to use, and gives accurate results in most cases. (b) Suitable for assets which generates equal utility during every year of its useful life.			
4. Demerits	 (a) As the life of the asset increases, its maintenance cost also increases. So, total expenditure to P&L A/c, i.e. Depreciation + Maintenance, will not be uniform in all years. (b) Value of the asset may be extinguished, whereas the asset may be physically available. 			
5. Example	Residual Value is • Depreciation	ased a machine costing ₹ 75 Lak ₹ 5 Lakhs. under Straight Line Method = $(75 - 1)$	mey ribns for each year.	Depresent Depresent

2.3 Reducing Balance Method or Written Down Value (WDV) Method

	(a) Depreciation Amount for each year is computed by applying a fixed percentage on the Opening Balance of the Asset (i.e. Diminishing Balance of the Asset.)
1. Meaning	(b) Reducing Balance refers to the Written Down Value of the Asset, i.e. value of the asset as reduced by the depreciation upto the previous year.
	(c) Depreciation Rate is computed such that at the end of the useful life of the asset, the cost of the asset will be equal to its Residual Value / Scrap Value / Break-up Value.

2. Formula	WDV Depreciation Rate = $1 - n\sqrt{\frac{\text{Residual.Value}}{\text{Cost.of.Asset}}}$, where n = Useful Life.
3. Merits	 (a) Annual Charge of depreciation reduces from year to year, such that the total expenditure to P&L A/c, i.e. Depreciation + Maintenance, will be uniform in all years. (b) The value of the asset will never be extinguished, as it happens in SLM Method. (c) Simple to use, and most suited for Plant, Machinery, Fixtures, etc.
4. Demerits	 (a) There is a danger that depreciation rate may be taken too low, in which case, the full depreciation may not be provided within the useful life of the asset. (b) If similar assets are grouped (i.e. called Block of Assets) and depreciation rate is applied on the WDV of the entire Block, there is a possibility that the residue (balance) of the asset may lie in the Asset Block A/c even after the asset has been scrapped. [Note: This difficulty can be overcome by maintaining an asset—wise Plant & Depreciation Register.]
5. Example	Arvind Ltd purchased a machine costing ₹ 5 Lakhs, and has ascertained its WDV rate as 16% p.a. The Depreciation amounts for the first five years will be as under –

Particulars	Year 1	Year 2	Year 3	Year 4	Year 5
Cost / Opg WDV	5,00,000	4,20,000	3,52,800	2,96,352	2,48,936
(–)Depreciation	5,00,000 ×16% = 80,000	4,20,000 ×16% = 67,200	3,52,800 ×16% = 56,448	2,96,352 ×16% = 47,416	2,48,936 ×16% = 39,830
Closing WDV	4,20,000	3,52,800	2,96,352	2,48,936	2,09,105

2.4 Sum of Digits of Years Method

1. Meaning	It is a variation of the WDV Method. Unde applying the following formula –	r this method, Depreciation Amount for each year is computed by	
2. Formula	Danus a a - Danus siable Amt v	No. of years of balance useful life (including current year)	
	Deprn p.a. = Depreciable Amt × -	Total of Digits of the Useful Life of the Asset (in years)	
3. Example	Arvind Ltd purchased a machine costing ₹ 78 Lakhs, having a useful life of 5 years, and estimated Scrap Value ₹ 3 Lakhs. Depreciation amounts for the five years will be –		

Here, sum of digits = (1 + 2 + 3 + 4 + 5) = 15. [Note: This can also be calculated as $[n \times (n+1)] \div 2$]

Particu	lars	Year 1	Year 2	Year 3	Year 4	Year 5
Depreciation for the year	Amount	75 ×5/15 = ₹ 25 Lakhs	75 ×4/15 = ₹ 20 Lakhs	75 ×3/15 = ₹ 15 Lakhs	75 ×2/15 = ₹ 10 Lakhs	75 ×1/15 = ₹ 5 Lakhs

Note: Depreciation is calculated on the Depreciable Amt, i.e. Cost less Residual Value = 78 - 3 = 75 Lakhs.

2.5 Machine Hour Method

1. Meaning	In this method, Depreciation is computed based on the number of Machine Hours (rather than years). So Depreciation Amount for each year is computed by applying the formula —			
2	Donus a Benuciable Aust v	No. of Machine Hours during the year		
2. Formula	Deprn p.a. = Depreciable Amt × Total Machine Hours during the entire useful life			
3. Example	Arvind Ltd purchased a machine costing ₹ 23 a useful life of 20,700 machine hours distribut • Years 1 to 3: 2,500 machine hours each, • Years 4 to 6: 2000 machine hours each, • Years 7 to 10: 1800 machine hours each,	and		
Constitution and the	In this case, Depreciation Amounts will be computed as under –			

- Depreciable Amount = Cost less Residual Value = ₹ 23,00,000 ₹ 2,30,000 = ₹ 20,70,000
- Total Machine Hours = $(3 \times 2500) + (3 \times 2000) + (4 \times 1800) = 20,700$ machine hours.
- Depreciation Amount for each of the years will be -

Particulars	Years 1 – 3	Year 4 – 6	Year 7 – 10
Depreciation Amount	20,70,000 ×2500 / 20700 = ₹ 2,50,000 p.a.		20,70,000 ×1800 / 20700 = ₹ 1,80,000 p.a.

2.6 Production Units Method of Depreciation

1. Meaning	In this method, Depreciation is computed based on the production / output quantity. So, Depreciation Amount for each year is computed by applying the formula —		
2. Formula	Donne n a Donnesiable Arek v	Production Quantity for the current year	
	Deprn p.a. = Depreciable Amt × Total Estimated Production Quantity from the Machine		
3. Example	Arvind Ltd purchased a machine costing ₹ expected to produce 10 Lakh units of output Years 1 & 2: 1,15,000 units each, Years 3 to 7: 1,00,000 units each, and Years 8 to 10: 90,000 units each. In this case, Depreciation Amounts will be of	Martined Peech Hadron (a)	

- Depreciable Amount = Cost less Residual Value = ₹ 25,00,000 ₹ 5,00,000 = ₹ 20,00,000
- Total Production Qtty = $(1,15,000 \times 2 \text{ yrs}) + (1,00,000 \times 5 \text{ yrs}) + (90,000 \times 3 \text{ yrs}) = 10,00,000 \text{ units.}$

Depreciation Amount for each of the years will be -

Years 1 – 2	Year 3 – 7	Year 8 – 10
₹ 20 Lakhs × 115000 / 10,00,000 =	₹ 20 Lakhs × 100000 / 10,00,000 =	₹ 20 Lakhs × 90000 / 10,00,000 =
₹ 2,30,000 p.a.	₹ 2,00,000 p.a.	₹ 1,80,000 p.a.

2.7 Depletion Method of Depreciation

1. Meaning	(a) Depletion means reduction or exhaustion.(b) This method is used in the case of Mines, Quarries, Oil Well, etc. containing only a certain estimated quantity of resources / products.		
	(c) Depreciation Amount for each year is computed by applying the formula –		
2. Formula	Quantity of Mineral / Oil extracted during current year		
2. Formula	Deprn p.a. = Depreciable Amt × Total Estimated Quantity from the Mine / Quarry / Well		
3. Example	Arvind Ltd took a quarry on lease by paying ₹ 75 Lakhs. As per technical estimate, the total quantity of mineral deposit is 1,00,000 tonnes. The extraction pattern is given below — • Year 1: 6,000 tonnes, • Years 2 to 5: 15,000 tonnes each, and • Years 6 & 7: 17,000 tonnes each. In this case, Depreciation Amounts will be computed as under —		

Depreciation Amount for each of the years will be -

Year 1	Year 2 – 5	Year 6 – 7
₹ 75 Lakhs × 6,000 / 1,00,000 = ₹ 4,50,000	₹ 75 Lakhs × 15,000 / 1,00,000 =	₹ 75 Lakhs × 17,000 / 1,00,000 =
	₹ 11,25,000 p.a.	₹ 12,75,000 p.a.

2.8 Suitability of different methods of Depreciation

Method		Suitability	
1.	Straight Line Method	Used for assets of specified useful life, e.g. Machinery, Building, Furniture.	
2.	WDV Method	Used commonly for Machinery, Plant, Fixtures, etc.	
3.	Sum of Digits Method	Used as a variation of WDV Method.	
4.	Machine Hour Method	Used for Machines whose lifetime can be measured in terms of hours of operation (and not in terms of years)	

Method 5. Production Units Method Used for Machin		Suitability	
		Used for Machines producing product of uniform specifications.	
6.	Depletion Method	Used in the case of Mines, Quarries, Oil Well, etc. containing only a certain quantity of product / output.	
7.	Annuity Method (not included CA Foundation syllabus)	Used for writing off the amounts paid for long lease which involves considerable capital outlay.	
8.	Sinking Fund Method (not included CA Foundation syllabus)	Used when the amount required for replacement is invested specifically in outside securities.	

2.9 Accounting Entries for Depreciation

Depreciation can be recorded in the books of account, under 2 approaches, which are described below -

	Method	Method 1 Asset Credit Method	Method 2 Provision for Depreciation Method
1.	Journal Entry	(a) Depreciation A/c Dr. To Fixed Asset A/c (b) Profit and Loss A/c Dr. To Depreciation A/c.	Profit and Loss A/c Dr. To Provision for Depreciation A/c.
2.	Provision for Depre- ciation A/c	There is no Provision for Depreciation Account at all.	Depreciation for each year is credited to Provision for Depreciation A/c, which shows the Accumulated Depreciation on the Asset.
3.	Effect on Asset A/c	Asset A/c is shown at Historical Cost less Depreciation. So, balance in Asset A/c is reduced year after year.	Asset is shown in the books at Original Cost. Net Book Value = Original Cost less Accumulated Depreciation thereon.

Note: The above schemes are applicable to SLM and WDV Methods. The same treatment is also applicable under – (a) Sum of Digits, (b) Machine Hours, (c) Production Units, and (d) Depletion Methods.