Econ 424/Amath 540 Descriptive Statistics for Financial Time Series

Eric Zivot

Updated; July 14, 2011

Covariance Stationarity

$$\{\ldots, X_1, \ldots, X_T, \ldots\} = \{X_t\}$$

is a covariance stationary stochastic process, and each X_t is identically distributed with unknown pdf f(x).

Recall,

$$E[X_t] = \mu \text{ indep of } t$$

$$\operatorname{var}(X_t) = \sigma^2 \text{ indep of } t$$

$$\operatorname{cov}(X_t, X_{t-j}) = \gamma_j \text{ indep of } t$$

$$\operatorname{cor}(X_t, X_{t-j}) = \rho_j \text{ indep of } t$$

Observed Sample:

$${X_1 = x_1, \dots, X_T = x_T} = {x_t}_{t=1}^T$$

are observations generated by the stochastic process

Descriptive Statistics

Data summaries (statistics) to describe certain features of the data, to learn about the unknown pdf, f(x), and to capture the observed dependencies in the data

Histograms

Goal: Describe the shape of the distribution of the data $\{x_t\}_{t=1}^T$

Hisogram Construction:

- 1. Order data from smallest to largest values
- 2. Divide range into N equally spaced bins

$$[-|-|-|\cdots|-|-|$$

- 3. Count number of observations in each bin
- 4. Create bar chart (optionally normalize area to equal 1)

R Functions

Function	Description
hist()	compute histogram
<pre>density()</pre>	compute smoothed histogram

Note: The density() function computes a smoothed (kernel density) estimate of the unknown pdf at the point x using the formula

$$\begin{split} \hat{f}(x) &= \frac{1}{Tb} \sum_{t=1}^{T} k \left(\frac{x - x_t}{b} \right) \\ k(\cdot) &= \text{kernel function} \\ b &= \text{bandwidth (smoothing) parameter} \end{split}$$

where $k(\cdot)$ is a pdf symmetric about zero (typically the standard normal distribution). See Ruppert Chapter 4 for details.

Empirical Quantiles/Percentiles

Percentiles:

For $\alpha \in [0,1]$, the $100 \times \alpha^{th}$ percentile (empirical quantile) of a sample of data is the data value \hat{q}_{α} such that $\alpha \cdot 100\%$ of the data are less than \hat{q}_{α} .

Quartiles

$$\hat{q}_{.25}=\,$$
 first quartile $\hat{q}_{.50}=\,$ second quartile (median) $\hat{q}_{.75}=\,$ third quartile $\hat{q}_{.75}-\hat{q}_{.25}=\,$ interquartile range (IQR)

R functions

Function	Description
sort()	sort elements of data vector
min()	compute minimum value of data vector
<pre>max()</pre>	compute maximum value of data vector
range()	compute min and max of a data vector
quantile()	compute empirical quantiles
median()	compute median
IQR()	compute inter-quartile range
summary()	compute summary statistics

Historical Value-at-Risk

Let $\{R_t\}_{t=1}^T$ denote a sample of T simple monthly returns on an investment, and let W_0 be the initial value of an investment. For $\alpha \in (0,1)$, the historical VaR_{α} is

$$\$W_0 \times \hat{q}_\alpha^R$$

$$\hat{q}_\alpha^R = \text{empirical } \alpha \cdot 100\% \text{ quantile of } \{R_t\}_{t=1}^T$$

Note: For continuously compounded returns $\{r_t\}_{t=1}^T$ use

$$\$W_0 \times (\exp(\hat{q}^r_\alpha) - 1)$$

$$\hat{q}^r_\alpha = \text{empirical } \alpha \cdot 100\% \text{ quantile of } \{r_t\}_{t=1}^T$$

Sample Statistics

Plug-In Principle: Estimate population quantities using sample statistics

Sample Average (Mean)

$$\frac{1}{T} \sum_{t=1}^{T} x_t = \bar{x} = \hat{\mu}_x$$

Sample Variance

$$\frac{1}{T-1} \sum_{t=1}^{T} (x_t - \bar{x})^2 = s_x^2 = \hat{\sigma}_x^2$$

Sample Standard Deviation

$$\sqrt{s_x^2} = s_x = \hat{\sigma}_x$$

Sample Skewness

$$\frac{1}{T-1} \sum_{t=1}^{T} (x_t - \bar{x})^3 / s_x^3 = \widehat{skew}$$

Sample Kurtosis

$$\frac{1}{T-1} \sum_{t=1}^{T} (x_t - \bar{x})^4 / s_x^4 = \widehat{kurt}$$

Sample Excess Kurtosis

$$\widehat{kurt}$$
 – 3

R Functions

Function	Package	Description
mean()	base	compute sample mean
<pre>colMeans()</pre>	base	compute column means of matrix
var()	stats	compute sample variance
sd()	stats	compute sample standard deviation
skewness()	Performance Analytics	compute sample skewness
<pre>kurtosis()</pre>	PerformanceAnalytics	compute sample excess kurtosis

Note: Use the R function apply(), to apply functions over rows or columns of a matrix or data.frame

Empirical Cumulative Distribution Function

Recall, the CDF of a random variable \boldsymbol{X} is

$$F_X(x) = \Pr(X \le x)$$

The empirical CDF of a random sample is

$$\hat{F}_X(x) = \frac{1}{n} (\#x_i \le x)$$

$$= \frac{\text{number of } x_i \text{ values } \le x}{\text{sample size}}$$

How to compute and plot $\hat{F}_X(x)$ for a sample $\{x_1,\ldots,x_n\}$

- ullet Sort data from smallest to largest values: $\{x_{(1)},\ldots,x_{(n)}\}$
- ullet Plot $\hat{F}_X(x)$ against sorted data $\{x_{(1)},\ldots,x_{(n)}\}$
- Use the R function ecdf()

Note: $x_{(1)}, \ldots, x_{(n)}$ are called the *order statistics*. In particular, $x_{(1)} = \min(x_1, \ldots, x_n)$ and $x_{(n)} = \max(x_1, \ldots, x_n)$.

Comparing Empirical CDF to Normal Distribution

Question: Does observed data come from a normal distribution?

• Standardize data to have zero mean and variance one

$$z_i = \frac{x_i - \bar{x}}{s_x}$$

- ullet Sort standardized data from smallest to largest values: $\{z_{(1)},\ldots,z_{(n)}\}$
- ullet Compute standard normal CDF at each sorted value: $\Phi(z_{(i)})$
- ullet Plot $\hat{F}_X(x)$ and $\Phi(z_{(i)})$ against sorted data

Quantile-Quantile (QQ) Plots

A QQ plot is useful for comparing your data with the quantiles of a distribution (usually the normal distribution) that you think is appropriate for your data. You interpret the QQ plot in the following way:

- If the points fall close to a straight line, your conjectured distribution is appropriate
- If the points do not fall close to a straight line, your conjectured distribution is not appropriate and you should consider a different distribution

R functions

Function	Description
qqnorm()	QQ-plot against normal distribution
qqline()	draw straight line on QQ-plot

Outliers

- Extremely large or small values are called "outliers"
- Outliers can greatly influence the values of common descriptive statistics. In particular, the sample mean, variance, standard deviation, skewness and kurtosis
- Percentile measures are more robust to outliers: outliers do not greatly influence these measures

Moderate Outlier

$$\begin{split} \hat{q}_{.75} + 1.5 \cdot IQR &< x < \hat{q}_{.75} + 3 \cdot IQR \\ \hat{q}_{.25} - 3 \cdot IQR &< x < \hat{q}_{.25} - 1.5 \cdot IQR \end{split}$$

Extreme Outlier

$$x > \hat{q}_{.75} + 3 \cdot IQR$$
$$x < \hat{q}_{.25} - 3 \cdot IQR$$

Boxplots

A box plot displays the locations of the basic features of the distribution of one-dimensional data—the median, the upper and lower quartiles, outer fences that indicate the extent of your data beyond the quartiles, and outliers, if any.

R function

Bivariate Descriptive Statistics

$$\{\ldots,(X_1,Y_1),(X_2,Y_2),\ldots(X_T,Y_T),\ldots\}=\{(X_t,Y_t)\}$$

covariance stationary bivariate stochastic process with realized values

$$\{(x_1, y_1), (x_2, y_2), \dots (x_T, y_T)\} = \{(x_t, y_t)\}_{t=1}^T$$

Scatterplot

XY plot of bivariate data
R functions: plot(), pairs()

Sample Covariance

$$\frac{1}{T-1} \sum_{t=1}^{T} (x_t - \bar{x})(y_t - \bar{y}) = s_{xy} = \hat{\sigma}_{xy}$$

Sample Correlation

$$\frac{s_{xy}}{s_x s_y} = r_{xy} = \hat{\rho}_{xy}$$

R functions

Function	Description
var()	compute sample variance matrix
cor()	compute sample correlation matrix

Time Series Descriptive Statistics

Sample Autocovariance

$$\hat{\gamma}_j = \frac{1}{T-1} \sum_{t=j+1}^{T} (x_t - \bar{x})(x_{t-j} - \bar{x}), \ j = 1, 2, \dots$$

Sample Autocorrelation

$$\hat{
ho}_j = rac{\hat{\gamma}_j}{\hat{\sigma}^2}, \ j = 1, 2, \dots$$

Sample Autocorrelation Function (SACF)

Plot $\hat{\rho}_j$ against j

R functions

Function	Description
acf()	compute and plot sample autocorrelations
<pre>acf.plot()</pre>	plot sample autocorrelations