Paper Structure

Contents

1	Intr	roduction	2
2	Methods		
	2.1	Preprocessing	2
		2.1.1 Feature Engineering	2
		2.1.2 Feature Selection	2
		2.1.3 Price Distribution	2
	2.2	Models	3
		2.2.1 Classical Models	3
		2.2.2 Neural Network	3
3	Res	sults	3
	3.1	Predictive Performance	3
	3.2	Explanations and Interpretation	4
4	Cor	nclusion	4
5	App	pendix	4
6	Ref	rences	4

1 Introduction

2 Methods

2.1 Preprocessing

2.1.1 Feature Engineering

Images

• Discuss if figure of cnn examples can be moved to appendix

Reviews

- Description of Sentiment Analysis, stating procedure and results and including **Figure** with Wordcloud, either only English Words or Sideby-Side Wordclouds of English and Norwegian Words
- In addition: Language Detection to include the *number of different* languages and the fraction of norwegian languages and Analyzing the reviews lengths to include the median review length
- Since there are multiple reviews per apartment the results for each review were averaged for each apartment separately.

Others

- Optionally mention all other features that we added to the dataset
- All self-engineered features from images, from reviews and from existing metric variables were combined into a single dataframe as the foundation of all further analysis

2.1.2 Feature Selection

2.1.3 Price Distribution

• Discuss if figure of price distribution can be moved to appendix

2.2 Models

2.2.1 Classical Models

- serve as benchmark models to better evaluate performance of custom neural network
- selected with increasing degrees of complexity and corresponding decreasing degree of interpretability
- Focus on 4 models: LinearRegression, Ridge, RandomForest and HistGradientBoosting
- Describe Model Fitting process and hyperparameter tuning with Randomized Search Cross Validation

2.2.2 Neural Network

• Discuss if figure of dropout impact can be moved to appendix

3 Results

3.1 Predictive Performance

- Figure of performance comparison between selected classical models and neural network for given feature selector (e.g. RFE) and different number of selected features
- Interpret Differences in Training and Validation Performance between different models
- Interpret Differences in Performance for different number of selected features
- Compare Performance on Validation Set with Performance on Test Set for the best model of each class by means of a table
 - \Rightarrow Models whose hyperparameters were tuned on validation set generalize worse to test set, e.g. HistGradientBoosting, RandomForest and Ridge
- Include average predictions of top 2/3/4/5 models, where models are selected based on validation set performance and Test Set predictions

are averaged

• Potentially mention which models contributed to predictions on new, unseen dataset from challenge (only in presentation)

3.2 Explanations and Interpretation

• Discuss if coefficient plot can be moved to appendix

4 Conclusion

5 Appendix

- include link to repository with codebase to reproduce all findings
- include images of:

6 References