EECS151: Introduction to Digital Design and ICs

Lecture 10 - Pipelining, FPGAs

Bora Nikolić

Stalking the Elusive Computer But

to flow in the systems they developed. This short word conveniently covered a multitude or possible problems. In clos suggested that difficulties were small and could be easily corrected. IMM engineers who installed the ASSC Mark to Intervent University in 1944 tought the phrase to the staff there. Groze Murrary (hosper used the word with particular installation of the work. In 1947, when technicians building how. If computer as thorward allowers stalling to her work. In 1947, when technicians building how. If computer as thorward discovered a most in one of the relavy, they saved it as the figure a character saved to be place front. In the certy 1950, the term "bug" and "debug" or opplied to computer and computer programs, began to appear not only in computer.

Peggy Aldrich Kidwell, IEEE Annals of the History of Computi

Grace Murray Hopper
Logbook of the Mark II for 9/9/1947
Nikolić, Fall 2021
Berkeley

Review

- RISC-V ISA
 - Completed the datapath with B-, J-, U-instructions
- Control
 - Can be implemented as a ROM while prototyping
 - Synthesized as custom logic
- Pipelining to increase throughput
 - 5-stage pipeline example

Pipelining

Nikolii, Fed 2021 2 Berkeley 2000

Pipelined Control

- Control signals derived from instruction
 - As in single-cycle implementation
 - Information is stored in pipeline registers for use by later stages

Pipeline Hazards

Pipelining Hazards

A hazard is a situation that prevents starting the next instruction in the next clock cycle

1) Structural hazard

 A required resource is busy (e.g. needed in multiple stages)

2) Data hazard

- Data dependency between instructions
- Need to wait for previous instruction to complete its data read/write

Control hazard

• Flow of execution depends on previous instruction

Berkeley @000

Control Hazards

Observation

Berkeley @000

Berkeley @000

- If branch not taken, then instructions fetched sequentially after branch are correct
- If branch or jump taken, then need to flush incorrect instructions from pipeline by converting to NOPs

EECS151 L10 FPGA

Nikolić. Fall 2021

Kill Instructions after Branch if Taken

Reducing Branch Penalties

- Every taken branch in simple pipeline costs 2 'dead' cycles
- To improve performance, use "branch prediction" to guess which way branch will go earlier in pipeline
- Only flush pipeline if branch prediction was incorrect

EECS151 L10 FPGA

Nikolić, Fall 2021

Branch Prediction

Quiz: Hazards

 How many data hazards exist in the following sequence (assuming a 5-stage pipeline)?

add x3, x1, x2 or x5, x3, x4 add x2, x5, x3 lw x6, x2, 12 sw x1, x6, 36

Nikolić. Fall 2021

Berkeley @090

FPGAs: Overview

Field Programmable Gate Arrays (FPGAs)

- An integrated circuit designed to be configured by a customer or a designer after manufacturing, i.e., field programmable.
- The FPGA configuration is generally specified using a hardware description language, similar to that used for ASICs.
- Two dominant FPGA makers:
 - Xilinx
 - Altera (now Intel)

FPGA Overview

- · Basic idea:
 - Two dimensional array of logic blocks and flip-flops with means for the user to configure:
 - The function of each block
 - The interconnection between blocks
- Configurable Logic Blocks (CLBs)
 - FPGA's Functional Units
- Reconfigurable Interconnect
- Connecting CLBs together

Berkeley ©000

Berkeley @000

State-of-the-art Xilinx FPGAs

SPARTAN❖		VIRTEX?* KINTEX?* ARTIX?* SPARTAN?*		VIRTEX* KINTEX*			VIRTEX* KINTEX*			Virt	ex Ultr	a-scale	(
Device Name	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P	VU27P	VU29P	VU31P	VU33P	VU35P	VU37P	
System Logic Cells (K)	862	1,314	1,724	2,586	2,835	3,780	2,835	3,780	962	962	1,907	2,852	
CLB Flip-Flops (K)	788	1,201	1,576	2,364	2,592	3,456	2,592	3,456	879	879	1,743	2,607	
CLB LUTs (K)	394	601	788	1,182	1,296	1,728	1,296	1,728	440	440	872	1,304	
Max. Dist. RAM (Mb)	12.0	18.3	24.1	36.1	36.2	48.3	36.2	48.3	12.5	12.5	24.6	36.7	
Total Block RAM (Mb)	25.3	36.0	50.6	75.9	70.9	94.5	70.9	94.5	23.6	23.6	47.3	70.9	
UltraRAM (Mb)	90.0	132.2	180.0	270.0	270.0	360.0	270.0	360.0	90.0	90.0	180.0	270.0	
HBM DRAM (GB)	-	-	-		-	-	-		4	8	8	8	
HBM AXI Interfaces	-	-	-	-	-	-	-	-	32	32	32	32	
Clock Migmt Tiles (CMTs)	10	20	20	30	12	16	16	16	4	4	8	12	
DSP Slices	2,280	3,474	4,560	6,840	9,216	12,288	9,216	12,288	2,880	2,880	5,952	9,024	
Peak INT8 DSP (TOP/s)	7.1	10.8	14.2	21.3	28.7	38.3	28.7	38.3	8.9	8.9	18.6	28.1	
PCIe* Gen3 x16	2	4	4	6	3	4	1	1	0	0	1	2	
PCle Gen3 x16/Gen4 x8 / CCIX ⁽¹⁾	-	-	-		-	-	-	-	4	4	4	4	
150G Interlaken	3	4	6	9	6	8	6	8	0	0	2	4	
100G Ethernet w/ KR4 RS-FEC	3	4	6	9	9	12	11	15	2	2	5	8	
Max. Single-Ended HP I/Os	520	832	832	832	624	832	520	676	208	208	416	624	
GTY 32.75Gb/s Transceivers	40	80	80	120	96	128	32	32	32	32	64	96	
GTM 58Gb/s PAM4 Transceivers							32	48					
100G / 50G KP4 FEC							16/32	24/48					
Extended ⁽²⁾ -	1 - 2 - 2L -3	-1 -2 -2L -3	-1-2-2L-3	-1 -2 -2L -3	-1 -2 -2L -3	-1 -2 -21 -3	-1 -2 -2L -3	-1 -2 -2L-3	-1 -2 -2L -3	-1 -2 -2L-3	-1-2-2L-3	-1 -2 -2L -3	
Industrial	-1-2	-1 -2	-1-2	-1-2	-1 -2	-1-2	-1-2	-1 -2	-	-	-	-	

FPGA: CLBs

Configurable Logic Blocks (CLBs)

- Basic FPGA functional unit
- Implements both combinational and sequential logic
- Includes:
 - Look-up table
 - Register (Flip-Flop)
 - Multiplexers

Look-Up Table Implementation

- Implement truth table in small memories
 - SRAM/Latch arrays
 - "Latch" is actually a flip-flop
- n-bit LUT is implemented as a $2^n * 1$ memory:
 - ullet inputs choose one of 2^n memory locations.
 - memory locations (latches) are normally loaded with values from user's configuration bit stream.
 - Inputs to mux control are the CLB inputs.
- Result is a general purpose "logic gate".
 - n-LUT can implement any function of n inputs!

Look-Up Table Implementation

- An n-LUT is a direct implementation of a function truth-table.
- Each location holds the value of the function corresponding to one input combination.
- LUT size grows exponentially with #
 - \bullet 64 input LUT requires $2^{64} = 1.84 *$ 10^{19} bits storage.
 - 4-input ~ 8-input LUT

EECS151 L10 FPGA

Berkeley @000

Berkeley @000

Putting it all together ... a SLICEL.

The previous slides explain all SLICEL features.

About 50% of the are SLICELs.

The other slices are and have extra features.

33 Berkeley @000

Administrivia

- Homework 4 is due next Monday
 - No new homework this week
 - Homework 5 will be posted next week, due after the midterm
- Lab 5 this week
 - No lab next week
 - Lab 6 (last) after the midterm
- Midterm 1 on October 7, 7-8:30pm
 - You will be assigned a classroom

FPGA Interconnect

Configurable Interconnect

- Between rows and columns of CLBs are wiring channels.
- These are programable. Each wire can be connected in many ways.
- Switch Box:
 - Each interconnection has a transistor
 - Each switch is controlled by 1-bit configuration register.

35 Berkeley ⊚000

FPGA Features: BRAMs, DSP, AI

Diverse Resources on FPGA

Colors represent different types of resources:

Logic

Block RAM

DSPs

Clocking

Serial I/O + PCI

A routing fabric runs throughout the chip to wire everything together.

Virtex-5 Die Photo [Xilinx]

Berkeley ©000

Block RAM

- Block Random Access Memory
- Used for storing large amounts of data:
 - 18Kb or 36Kb
 - Configurable bitwidth
 - 2 read and write ports
- More recently
 - UltraRAM in UltraScale+ devices

DSP Slice

EECS151 L10 FPGA

Efficient implementation of multiply, add, bit-wise logical.

Berkeley ©000

39 Berkeley ⊚000

37 Berkeley ©000

EECS151 L10 FPGA

Al Engine

Versal Al Core

Berkeley ©000

State-of-the-art Xilinx FPGA Platform

• Versal (ACAP: Adaptive Compute Acceleration Platform)

Xilinx HotChips'2019

EECS151 L10 FPGA

Summary

- Pipelining increases throughput
 - Structural, control and data hazards exist
- - Configurable Logic Blocks (CLBs)
 - Look-Up Tables
 - Carry chain
 - - Switch boxes
- Modern FPGA Designs:

 \bullet FPGAs are widely used for hardware prototyping and accelerating key applications.

• Core FPGA building blocks:

Slices

• Flip-Flops

Configurable Interconnect

BRAMs, DSPs, and Al Engines