

Durée : 2h Téléphone portable et documents interdits. Calculatrice autorisée.

Les résultats numériques doivent être justifiés en détaillant les calculs. Vous devez donner pour chaque question une **phrase de conclusion en Français**.

EXERCICE 1. On suppose que l'âge auquel apparaissent les premiers mots de vocabulaire chez l'enfant suit la loi normale de moyenne 12 mois et d'écart-type 2,5 mois.

- 1.1) Identifier la population, la variable, son type et son/ses paramètre(s).
- 1.2) Quelle est la proportion d'enfants pour lesquels les premiers mots apparaissent avant 9 mois ?
- 1.3) Déterminer l'âge au-dessus duquel 2% des enfants prononcent leurs premiers mots.

CORRECTION.

1.1)

- Population $\mathcal{P} : \{ \text{Enfants} \}$.
- Variable quantitative $X = \text{"âge d'apparition (en mois) des premiers mots de vocabulaire"}$.
- 2 paramètres connus : moyenne $\mu = 12$ et écart-type $\sigma = 2,5$.

- 1.2) Commençons par rappeler que $Z = (X - 12)/2,5$ suit la loi normale centrée/réduite. On cherche à calculer

$$\begin{aligned} P(X \leq 9) &= P\left(\frac{X - 12}{2,5} \leq \frac{9 - 12}{2,5}\right) \\ &= P(Z \leq -1,2) \\ &= F(-1,2) = 1 - F(1,2) = 1 - 0,8849 = 0,1151. \end{aligned}$$

Chez environ 11,5% des enfants les premiers mots apparaissent avant 9 mois.

- 1.3) On recherche le quantile d'ordre 0,98, noté $q_{0,98}$, pour la variable X . D'après la formule du cours,

$$q_{0,98} = \sigma \times z_{0,98} + \mu, \text{ soit } q_{0,98} = 2,5 \times z_{0,98} + 12,$$

où $z_{0,98}$ est le quantile de la loi normale centrée/réduite. D'après la table, il vaut environ 2,05, et donc $q_{0,98} = 17,125$.

Chez 2% des enfants, les premiers mots apparaissent après 17,1 mois.

EXERCICE 2. Dans le cadre d'une étude sur la santé au travail, on a interrogé au hasard 500 salariés de différents secteurs et de différentes régions de France. 145 d'entre eux déclarent avoir déjà subi un harcèlement moral au travail.

- 2.1) Identifier la population, la variable, son type et son/ses paramètre(s).
- 2.2) Donner une estimation ponctuelle de la proportion de salariés ayant déjà subi un harcèlement moral au travail.
- 2.3) Donner une estimation de cette proportion par un intervalle de confiance à 90%.
- 2.4) Si avec les mêmes données on calculait un intervalle de confiance à 95%, serait-il plus grand ou plus petit que celui trouvé à la question précédente ? (justifier sans calcul.)

CORRECTION.

2.1)

- Population $\mathcal{P} : \{ \text{Salariés en France} \}$.
- Variable qualitative $X = \text{"a déjà subi un harcèlement moral"}$
- 1 paramètre : proportion de la modalité "oui".

2.2) On estime p par la fréquence observée de "oui" $f = 145/500 = 0,29$.
 2.3) On a tout d'abord $n = 500 \geq 30$. L'estimation par intervalle à 90% est donnée par

$$\begin{aligned}\text{IC}_{0,90}(p) &= \left[f \pm z_{0,95} \frac{\sqrt{f(1-f)}}{\sqrt{n}} \right], \\ &= \left[0,29 \pm 1,645 \frac{\sqrt{0,29 \times 0,71}}{\sqrt{500}} \right], \\ &= [0,29 \pm 0,033] = [0,257; 0,323].\end{aligned}$$

Il nous reste à vérifier a posteriori les conditions sur f_i, f_s . Par exemple, $n f_i = 500 \times 0,257 = 128,5$, les trois autres sont également vérifiées.

L'estimation de p par intervalle à 90% est donc l'intervalle $[0,257; 0,323]$.

2.4) Dans l'intervalle obtenu à la question précédente, il suffirait de remplacer $1,645$ par $z_{0,975} = 1,96$ qui est plus grand. On obtiendrait donc un intervalle plus grand.

EXERCICE 3. En vue de réaliser un programme de rééducation, des chercheurs ont soumis un questionnaire de neuropsychologie cognitive à 150 enfants dyslexiques tirés au sort. Le questionnaire comporte 20 questions et les chercheurs ont recueilli pour chaque enfant dyslexique le nombre x_i de bonnes réponses. Les résultats ainsi récoltés sont tels que :

$$\sum x_i = 1502, \quad \sum x_i^2 = 19486.$$

3.1) Identifier la population, la variable, son type et son/ses paramètre(s).
 3.2) Donner une estimation ponctuelle du nombre moyen de bonnes réponses dans la population étudiée.
 3.3) Donner une estimation ponctuelle de l'écart-type de la variable.
 3.4) Estimer le nombre moyen de bonnes réponses dans la population par un intervalle de confiance au niveau 99%.
 3.5) Quelle est la marge d'erreur dans l'estimation du nombre moyen de bonnes réponses au niveau 99% ?

CORRECTION.

3.1)
 – Population $\mathcal{P} : \{ \text{Enfants dyslexiques} \}$.
 – Variable quantitative $X = \text{"Nombre de bonnes réponses au questionnaire"}$
 – 2 paramètres inconnus : moyenne μ et écart-type σ .
 3.2) On estime la moyenne μ par la moyenne observée $\bar{x} = 1502/150 \approx 10,01$.
 3.3) Commençons par calculer la variance observée :

$$s^2 = \frac{\sum x_i^2}{n} - (\bar{x})^2 = \frac{19486}{150} - (10,01)^2 = 29,7.$$

La variance corrigée vaut donc $s^{*2} = \frac{n}{n-1} s^2 = \frac{150}{149} 29,7 \approx 29,9$.

Finalement, on estime l'écart-type σ par l'écart-type corrigé $s^* = \sqrt{s^{*2}} \approx 5,47$.

3.4) Puisque $n = 150 \geq 30$, l'estimation par intervalle à 99% est donnée par

$$\begin{aligned}\text{IC}_{0,99}(\mu) &= \left[\bar{x} \pm z_{0,995} \frac{s^*}{\sqrt{n}} \right], \\ &= \left[10,01 \pm 2,57 \frac{5,47}{\sqrt{150}} \right], \\ &= [10,01 \pm 1,15] = [8,86; 11,16],\end{aligned}$$

on trouve en effet dans la table que $z_{0,995} \approx 2,57$.

Donc l'estimation de μ par intervalle à 99% est l'intervalle $[8, 86; 11, 16]$.

3.5) La marge d'erreur est la demi-longueur de l'intervalle obtenu à la question précédente, elle vaut donc 1,15.

EXERCICE 4. L'inventaire de Padoue est un questionnaire portant sur les troubles obsessionnels du comportement (TOC). Chez les adultes dépressifs, le score obtenu à ce questionnaire a pour moyenne 84 avec un écart-type de 35. Des chercheurs s'intéressent alors aux scores moyens observés dans les échantillons de taille 75.

- 4.1) Identifier la population, la variable, son type et son/ses paramètre(s).
- 4.2) Caractériser la distribution de la moyenne empirique du score à l'inventaire de Padoue sur les échantillons de taille 75 (forme et valeur(s) de son/ses paramètre(s)).
- 4.3) Quelle est la probabilité d'observer sur un échantillon de taille 75 un score moyen inférieur à 90 ?
- 4.4) En dessous de quelle valeur se trouvent 95 % des scores moyens observés sur les échantillons de taille 75 ?
- 4.5) Au dessus de quelle valeur se trouvent 95 % des scores moyens observés sur les échantillons de taille 75 ?
- 4.6) Pour quelle proportion d'échantillons observe-t-on un score moyen compris entre les deux valeurs déterminées aux questions 4.4 et 4.5 ?

CORRECTION.

4.1)

- Population $\mathcal{P} : \{ \text{Adultes dépressifs} \}$.
- Variable quantitative $X = \text{"Score à l'inventaire de Padoue"}$
- 2 paramètres connus : moyenne $\mu = 84$ et écart-type $\sigma = 35$.

4.2) On s'intéresse à la moyenne empirique \bar{X}_n obtenue sur un échantillon tiré au sort de taille $n = 75$. D'après le cours, puisque $n \geq 30$,

$$\bar{X}_n \xrightarrow{\text{approx.}} \mathcal{N}\left(\mu; \frac{\sigma}{\sqrt{n}}\right) = \mathcal{N}\left(84; \frac{35}{\sqrt{75}}\right) = \mathcal{N}(84; 4,04).$$

Donc la forme de \bar{X}_n est la loi normale, sa moyenne est 84 et son écart-type est 4,04 (soit une variance de 16,3).

4.3) La variable $Z = (\bar{X}_n - 84)/4,04$ suit la loi normale centrée/réduite. On cherche à calculer

$$\begin{aligned} P(\bar{X}_n \leq 90) &= P\left(\frac{\bar{X}_n - 84}{4,04} \leq \frac{90 - 84}{4,04}\right) \\ &= P(Z \leq 1,49) = F(1,49) = 0,9319. \end{aligned}$$

Environ 93% des échantillons de taille $n = 75$ donnent un score moyen inférieur ou égal à 90.

4.4) On cherche le quantile d'ordre 0,95, noté $q_{0,95}$ pour une loi normale $\mathcal{N}(84; 4,04)$. D'après la formule du cours, il se calcule de la façon suivante :

$$q_{0,95} = 4,04 \times z_{0,95} + 84.$$

On trouve dans la table que $z_{0,95} \approx 1,645$, donc $q_{0,95} \approx 90,6$.

Donc 95% des échantillons de taille $n = 75$ donnent un score moyen inférieur ou égal à 90,6 (c'est bien sûr très proche de la réponse obtenue à la question précédente).

4.5) On cherche le quantile d'ordre 0,05, il s'obtient de façon similaire :

$$q_{0,05} = 4,04 \times z_{0,05} + 84 = 4,04 \times (-z_{0,95}) + 84,$$

(on a appliqué la formule $z_{1-\alpha} = -z_\alpha$ avec $\alpha = 0,95$). On trouve $q_{0,05} \approx 77,4$.

Donc 95% des échantillons de taille $n = 75$ donnent un score moyen supérieur ou égal à 77,4.

4.6) Faisons un schéma qui résume les deux questions précédentes :

Nous avons montré que 5% des valeurs de \bar{X}_n sont en-dessous de 77, 4, et que 5% sont au-dessus de 90, 6.

On en déduit que $100 - 5 - 5 = 90\%$ des échantillons donnent une moyenne empirique comprise entre 77, 4 et 90, 6.