Certificat Big Data Introduction to Numerical Optimization

Sixin Zhang with Ehouarn Simon

sixin.zhang@toulouse-inp.fr

Outline

- Introduction
 - Motivation
 - Preliminary knowledge
- Basic theory of optimization
- Optimization methods without constraint
- Basic theory of convex optimization
- Optimization methods with constraints

Reference

- J. Gergaud, S. Gratton, D. Ruiz. Optimisation numérique : aspects théoriques et algorithmes, Polycopié du cours d'Optimisation, ENSEEIHT - Sciences du numérique.
- M. Bierlaire. Introduction à l'optimisation différentiable, Presses polytechniques et universitaires romandes, 2006.
- J. Nocedal, S. Wright. Numerical Optimization, Springer Series in Operations Research, 2006.

Introduction: Optimization in real-world problems

- Predict dynamics of atmosphere and ocean
 - How to combine "optimally" the information from observation and model?

Introduction: Optimization in real-world problems

Machine learning

- Input vector: $x = (x_i)_{i < p} \in \mathbb{R}^p$
- Output value: $y = f(x, \boldsymbol{\alpha}, \boldsymbol{\beta}) \in \mathbb{R}$
- Supervised learning: optimize the parameters to fit observed data points

e.g. Observe
$$\{(x_n, y_n)\}_{n \leq N}$$

Objective:
$$\min_{\alpha,\beta} \frac{1}{N} \sum_{n \leq N} (y_n - f(x_n, \alpha, \beta))^2$$

Least-square optimization problem

Parameters

Wikistat: Réseaux de neurones

Introduction: Optimization in real-world problems

- Recommendation (film, music, book, etc)
 - Data: users provide ratings of products +/-/?
 - Format: (user,product,rating)
 - Question: predict unobserved ratings (?)
- A low-rank matrix model
 - Approximate the matrix R by a low-rank matrix R',
 - Let R'=PQ such that the rank(R') is small.

Objective:
$$\min_{P,Q} \sum_{(i,j)observed} (R_{i,j} - R'_{i,j})^2$$

Least-square optimization problem

Preliminary: Linear algebra

• **Definition:** Positive definite and semi-definite matrix

Let A be a symmetric matrix

- A is positive semi-definite if $\forall x \in \mathbb{R}^n, x^{\intercal}Ax \geq 0$
- A is positive definite if $\forall x \in \mathbb{R}^n, x \neq 0, x^{\intercal}Ax > 0$

Theorem: equivalent conditions

For a symmetric matrix A

- A is positive semi-definite iff all the eigenvalues of A are ≥ 0
- A is positive definite iff all the eigenvalues of A are > 0

Preliminary: Calculus

- Definition: Gradient of a real-valued differentiable function f(x)
 - In dimension 1

$$\forall x \in \mathbf{R}, f'(x) = \lim_{\delta \to 0} \frac{f(x+\delta) - f(x)}{\delta}$$

 $\Rightarrow \text{ If } \delta \approx 0, \text{ then } f(x+\delta) \approx f(x) + \delta f'(x)$

In dimension n

$$\forall x \in \mathbf{R}^n, h \in \mathbf{R}^n, \nabla f(x)^T h = \lim_{\delta \to 0} \frac{f(x+\delta h) - f(x)}{\delta}$$

$$\Rightarrow \text{ If } \delta \approx 0, \text{ then } f(x+\delta h) \approx f(x) + \delta \nabla f(x)^T h$$

 $Gradient: \nabla f(x)$

Preliminary: Calculus

What is the gradient of the following function?

$$f(x) = x^{\mathsf{T}} A x, \ x \in \mathbb{R}^n, \ A \text{ is symmetric}$$

solution:
$$\nabla f(x) = 2Ax$$

key step: $\frac{\partial f}{\partial x_k} = \frac{\partial}{\partial x_k} (\sum_{i,j} A_{i,j} x_i x_j)$
 $= \sum_{i,j} A_{i,j} \frac{\partial}{\partial x_k} (x_i x_j) = \sum_{i,j} A_{i,j} (\delta_{k=i} x_j + \delta_{k=j} x_i)$
 $= \sum_{j} A_{k,j} x_j + \sum_{i} A_{i,k} x_i$

Outline

- Introduction
- Basic theory of Optimization
 - Problem definition, local and global optimum
 - Existence of optimum
- Optimization methods without constraint
- Basic theory of Convex optimization
- Optimization methods with constraints

Problem definition

Minimize a real-valued function f

$$(P) \quad \min_{x \in C} f(x) \qquad C \subset \mathbb{R}^n$$

- If C is empty, (P) has no solution.
- If C is finite, (P) has at least one solution.
- Next, consider non-empty C having infinite elements

Notion of local and global optimum (solution)

Definition (local and global optimum)

Existence of optimum: compact and closed case

Assume C is compact and non-empty

$$(P) \quad \min_{x \in C} f(x)$$

$$C \subset \mathbb{R}^n$$

Theorem

f is continuous on non-empty compact C \Longrightarrow (P) admits at least one solution.

Q: What if C is not compact?

e.g.
$$f(x) = 1/x$$
, $C = (0, \infty)$, $f(x) > 0$, no minimal solution exists on C .

Existence of optimum: compact and closed case

- Assume C is closed and non-empty
- Definition (coercive)

f is coercive if
$$f(x) \to \infty$$
 when $||x|| \to \infty$

Theorem

f is continuous on non-empty closed C and f is coercive \Longrightarrow (P) admits at least one solution

Q: $f(x) = \sin(x)x$, $C = [0, 10^{10}]$, does f(x) admit a minimal solution on C?

Outline

- Introduction
- Basic theory of Optimization
- Optimization methods without constraint
 - Optimality conditions
 - Numerical algorithms
 - Line search methods for global convergence
- Basic theory of convex optimization
- Optimization methods with constraints

Problem definition

Minimize a real-valued function f

$$(P_{sc})$$
 $\min_{x \in O} f(x)$ open set $O \subset \mathbb{R}^n$

Definition (local optimum)

We call x^* is a local optimum of f if

$$\exists \epsilon > 0, s.t. \forall x \in B(x^*, \epsilon), \quad f(x^*) \le f(x)$$

Note: B(x,r) is a open ball of radius r centered at x

Necessary conditions of optimality

Theorem: First-order necessary conditions

Let
$$x^* \in O$$
. Assume f is differentiable at x^* . Then x^* is a **local minimum** of $f \Longrightarrow \nabla f(x^*) = 0$

This condition is not true if O is not open (see optimization with constraints)

Definition: critical point

We call $x \in O$ is a **criticial point** of f if $\nabla f(x) = 0$

Necessary conditions of optimality

Theorem: Second-order necessary conditions

Let $x^* \in O$. Assume f is twice differentiable at x^* . Then x^* is a **local minimum** of $f \Longrightarrow \nabla^2 f(x^*)$ is positive semi-definite

• Positive semi-definite is necessary, but **not sufficient** e.g. $f(x) = x^3$, f'(0) = 0, $f''(0) \ge 0$, but 0 is not a local optimum

Sufficient conditions of optimality

Theorem: Second-order sufficient conditions

Let $x^* \in O$ such that $\nabla f(x^*) = 0$.

Assume f is twice differentiable at x^* , then

- If $\nabla^2 f(x^*)$ is positive definite $\Rightarrow x^*$ is a local minimum of f
- If f is twice differentiable over O, and

$$\exists \epsilon > 0 \text{ such that } B(x^*, \epsilon) \subset O, \text{ and } \forall x \in B(x^*, \epsilon),$$

 $\nabla^2 f(x) \text{ is positive semi-definite}$
 $\Rightarrow x^* \text{ is a local minimum of } f$

Analytical solutions

• Example: minimize a quadratic function

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} x^{\mathsf{T}} A x - b^{\mathsf{T}} x + c$$

with (symmetric) poisitive definite $A, b \in \mathbb{R}^n$, and $c \in \mathbb{R}$

This problem admits a unique solution

- Existence: f is continuous on \mathbb{R}^n (closed,non-empty), and coercive (due to A positive definite)
- Uniqueness: f is strictly convex on (convex) \mathbb{R}^n

The optimal solution x^* satisfies: $Ax^* = b$

Analytical solutions

- General strategy to solve (P_{sc}) $\min_{x \in O} f(x)$ open set $O \subset \mathbb{R}^n$
 - Demonstrate the existence (and uniqueness) of the solutions
 - Find critical points $\operatorname{Find} x^* \in O \text{ such that } \nabla f(x^*) = 0.$
 - Stop in some particular case
 e.g. f is convex on convex O: all the critical points are global optima
 - Search for local optima among all the critical points
 - Use second-order conditions Is $\nabla^2 f(x^*)$ positive definite?

Numerical solutions

- Beyond quadratic function, it is non-trivial to find analytical solutions.
- Numerical methods allow to
 - Find critical points
 - Linear system (Ax=b): matrix factorization (LU, Cholesky), iterative methods (steepest descent, conjugate gradient / CG)
 - Non-linear system: iterative methods (Newton, non-linear conjugate gradient)
 - Challenges: Cost and time of computations? Precision of solutions?
 Convergence? Find all critical points?

Numerical solutions

- Numerical methods allow to
 - Check optimality of critical points: study eigenvalues of Hessian
 - Iterative methods (QR, power method)
 - Challenges: Cost and time of computations? Precision of solutions? Convergence?
 - Consequently, in many cases, we can only find approximate critical points or local optima.
 - We shall study several classical numerical algorithms for this purpose.

Definition: Descent direction

Let $x \in O$. Assume f is differentiable at x. We say that d is a descent direction at x if $\nabla f(x)^{\intercal}d < 0$

Remark: It only makes sense to discuss descent directions at non-critical points

If
$$d = -\nabla f(x) \neq 0$$
, then
$$\nabla f(x)^* d = -\|\nabla f(x)\|^2 < 0.$$

=> Existence of steepest descent direction

Proposition: descent direction allows to decrease f

Assume f is continously differentiable on O. Let $x \in O$ and $d \in \mathbb{R}^n$. If d is a descent direction of f at x, then there exists $\eta > 0$ such that $\forall \alpha \in (0, \eta], \ x + \alpha d \in O$ and $f(x + \alpha d) < f(x)$

Base algorithm

- 1. Initialize $x = x_0$.
- 2. For $k = 0, 1, 2, \cdots$ do
- 3. Calculate a descent direction d_k such that $\nabla f(x_k)^{\intercal} d_k < 0$
- 4. Compute a step-size $\alpha_k > 0$
- 5. Update $x_{k+1} = x_k + \alpha_k d_k$
- 6. Check stopping criteria
- 7. Endfor
- Steepest descent direction $d_k = -\nabla f(x_k)$

- Search for step-sizes 4. Compute a step-size $\alpha_k > 0$
- Stopping criteria 6. Check stopping criteria
 - Gradient vanishing: $\|\nabla f(x_k)\| \le \epsilon_1(\|\nabla f(x_0)\| + \eta)$
 - Stagnation: $||x_{k+1} x_k|| \le \epsilon_2(||x_k|| + \eta)$
 - Maximal number of iterataions $K: k \leq K$.

Gradient descent algorithm: Quadratic example

Quadratic function

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} x^{\mathsf{T}} A x - b^{\mathsf{T}} x + c$$

with (symmetric) poisitive definite $A, b \in \mathbb{R}^n$, and $c \in \mathbb{R}$

Steepest descent direction
$$d_k = -\nabla f(x_k) = -(Ax_k - b)$$

Optimal step size:
$$\min_{\alpha} \phi(\alpha) = f(x_k + \alpha d_k)$$

$$\phi'(\alpha) = \nabla f(x_k + \alpha d_k)^{\mathsf{T}} d_k = 0 \Leftrightarrow \alpha = \frac{d_k^{\mathsf{T}} d_k}{d_k^{\mathsf{T}} A d_k}$$

$$\phi''(\alpha) = d_k^{\mathsf{T}} \nabla^2 f(x_k + \alpha d_k) d_k = d_k^{\mathsf{T}} A d_k > 0 \quad \text{if} \quad d_k \neq 0$$

Quadratic example

Steepest descent with optimal step-size

- 1. Initialize $x = x_0$.
- 2. For $k = 0, 1, 2, \cdots$ do
- 3. Calculate $d_k = b Ax_k$
- 4. Compute step-size $\alpha_k = \frac{d_k^{\mathsf{T}} d_k}{d_k^{\mathsf{T}} A d_k}$ 5. Update $x_{k+1} = x_k + \alpha_k d_k$
- 6. Check stopping criteria
- 7. Endfor

Quadratic example

- Some properties
 - $\forall k = 0, 1, 2, \dots, d_k$ is orthogonal to d_{k+1}
 - If $x^* x_0 = \beta u$ where u is a eigenvector of A then the algorithm converges in one step
 - Very slow convergence (need many steps) if

$$\kappa_2(A) = \frac{\lambda_{\max}(A)}{\lambda_{\min}(A)}$$
 is large

 $\kappa_2(A)$: condition number of A

Quadratic example

Newton's Method: a faster method than Steepest GD

• Application of the Newton method to find a root of an equation

$$\nabla f(x) = 0$$

• Let $x_k \in \mathbb{R}^n$. Assume m is a local approximation of f near x_k ,

$$m(x) = f(x_k) + \nabla f(x_k)^{\mathsf{T}}(x - x_k) + \frac{1}{2}(x - x_k)^{\mathsf{T}}\nabla^2 f(x_k)(x - x_k)$$

If $\nabla^2 f(x_k)$ is positive definite, then the minimum of m is

$$x^* = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k)$$

Descent direction $d_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$

Newton's Method

- Basic idea (assume positive definite Hessian)
 - 1. Initialize $x = x_0$.
 - 2. For $k = 0, 1, 2, \cdots$ do
 - 3. Calculate a descent direction $d_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$
 - 4. Set the step-size $\alpha_k = 1$ (constant step-size version)
 - 5. Update $x_{k+1} = x_k + \alpha_k d_k$
 - 6. Check stopping criteria
 - 7. Endfor
 - In practice, find d_k by solving $\nabla^2 f(x_k) d_k = -\nabla f(x_k)$ by CG.

Example: Convergence of Newton's method?

A non-linear least-square problem

Estimate parameters of enzyme kinetics in biology (Michaelis-Menten kinetics model)

$$V(S) = V_{\max} \frac{S}{K_m + S}$$

Use p observations (S,V(S)) at S = S_i, i=1,...,p
$$\min_{(V_{\max},K_m)\in\mathbb{R}^2} f(V_{\max},K_m) = \frac{1}{2}\sum_{i=1}^p (V(S_i) - V_{\max}\frac{S_i}{K_m + S_i})^2$$

Apply Newton's method to minimize f

Example: Convergence of Newton's method?

• Convergence : initialization $x_0 = [40,5]$

Non-linear least-square problem

Problem

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||F(x)||^2$$

with $F: \mathbb{R}^n \to \mathbb{R}^p$ continuously differentiable on \mathbb{R}^n .

Definition: Jacobian

$$J_F(x) = \frac{\partial F}{\partial x} \in \mathbb{R}^{p \times n}$$

Let $J_F(x)$ be the Jacobian matrix of F evaluated at x

- $f(x+d) = f(x) + J_F(x)d + o(||d||)$
- $J_F(x)$ is continuous on \mathbb{R}^n

Gauss-Newton method

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||F(x)||^2$$

 For a non-linear least-square problem, Hessian can be approximated by the Jacobian near global optimum by

$$\nabla^2 f(x_k) \approx J_F(x_k)^{\mathsf{T}} J_F(x_k)$$

- Newton method → Gauss-Newton method
- 3. Calculate a descent direction $d_k = -(J_F(x_k)^{\intercal}J_F(x_k))^{-1}\nabla f(x_k)$
 - In practice, find d_k by solving $J_F(x_k)^{\intercal}J_F(x_k)d_k = -\nabla f(x_k)$

Gauss-Newton method

• Interpretation: Linearization of F near x_k

$$(P_k) \quad \min_{d \in \mathbb{R}^n} g_k(d) = \frac{1}{2} ||F(x_k) + J_F(x_k)d||^2$$

- \bullet (P_k) is a quadratic problem
- (P_k) optimal solution results in the Gauss-Newton direction

Optimal
$$d_k$$
: $J_F(x_k)^{\intercal}J_F(x_k)d_k = -J_F(x_k)^{\intercal}F(x_k) = -\nabla f(x_k)$

• If rank $J_F(x_k)$ is n, then (P_k) admits a unique solution

Globalization of descent methods

Problem: achieve global convergence to critical points

 $\forall x_0 \in O$, the sequence (x_k) converges towards to a critical point of f

- Classical strategies
 - Line search: find suitable step size α_k
 - Trust-region methods

Line search

Idea: search along descent direction to minimize f

If d is a descent direction of f at x, then there exists $\eta > 0$ such that $\forall \alpha \in (0, \eta], \ x + \alpha d \in O \ \text{and} \ f(x + \alpha d) < f(x)$

Line search: naive strategy

Given a direction d, compute α such that $f(x + \alpha d) < f(x)$

Base algorithm with line search

- 1. Initialize $x = x_0$.
- 2. For $k = 0, 1, 2, \cdots$ do
- 3. Calculate a descent direction d_k such that $\nabla f(x_k)d_k < 0$
- 4. Compute a step-size α_k such that $f(x_k + \alpha_k d_k) < f(x_k)$
- 5. Update $x_{k+1} = x_k + \alpha_k d_k$
- 6. Check stopping criteria
- 7. Endfor

- A decreasing sequence is not always optimal
- Example $f(x) = x^2$
 - 1. Initialize $x = x_0 = 2$.
 - 2. For $k = 0, 1, 2, \cdots$ do
 - 3. Calculate a descent direction $d_k = -1$
 - 4. Compute a step-size $\alpha_k = 2^{-(k+1)}$
 - 5. Update $x_{k+1} = x_k + \alpha_k d_k$
 - 6. Check stopping criteria
 - 7. Endfor

$$x_k = 1 + 2^{-k} \to 1$$

1 is not a critical point of f

Use Wolfe conditions for global convergence

Let $\beta_1 \in (0,1)$, $\beta_2 \in (\beta_1,1)$ and d be a descent direction of f at x. We say $\alpha > 0$ satisfies Wolfe conditions if:

- Sufficient decrease: $f(x + \alpha d) \leq f(x) + \beta_1 \alpha \nabla f(x)^{\mathsf{T}} d$
- Sufficient progress: $\nabla f(x + \alpha d)^{\mathsf{T}} d \geq \beta_2 \nabla f(x)^{\mathsf{T}} d$
- For a descent direction: $\nabla f(x)^{\intercal}d < 0$

Theorem: existence of a suitable step-size

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a differentiable function, $x \in \mathbb{R}^n$ and d is a descent direction. Assume f is bounded below along d, $\exists c \in R, \forall \alpha \geq 0, f(x + \alpha d) \geq c$

Then

- $\forall \beta_1 \in (0,1), \exists \eta > 0 \text{ s.t. sufficient descrease cond. holds if } \alpha \in (0,\eta)$
- $\forall \beta_1 \in (0,1), \forall \beta_2 \in (\beta_1,1), \exists \alpha > 0 \text{ s.t. Wolfe conditions hold}$

Theorem: global convergence

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continously differentiable function

- f is bounded below
- $x \mapsto \nabla f(x)$ is Lipschitz continuous

Then the gradient descent algorithm with line search which satisfies Wolfe conditions at each step results in

$$\lim_{k \to \infty} \nabla f(x_k) = 0 \qquad \text{or} \quad \lim_{k \to \infty} \frac{\nabla f(x_k)^{\mathsf{T}} d_k}{\|\nabla f(x_k)^{\mathsf{T}}\| \|d_k\|} = 0$$

Backtracking line search

Input: x, descent direction d, $\beta_1 \in (0,1)$, $\rho \in (0,1)$

- 1. Initialize $\alpha_0 > 0$
- 2. For $k = 0, 1, 2, \cdots$ do
- 3. If α_k verifies the first Wolfe condition, stop
- 4. Calculate $\alpha_{k+1} = \rho \alpha_k$
- 5. Endfor
- This approach is simple, and it requires no gradients of f.
- But the second Wolfe condition is not always true.

Backtracking line search

• Sufficient decrease: $f(x + \alpha d) \leq f(x) + \beta_1 \alpha \nabla f(x)^{\mathsf{T}} d$

Advanced method of line search

Bi-section line search with Wolfe conditions

Input: x, descent direction d, $\beta_1 \in (0,1)$, $\beta_2 \in (\beta_1,1)$

- 1. Initialize $\alpha_0 > 0$, a = 0, $b = \infty$
- 2. For $k = 0, 1, 2, \cdots$ do
- 3. If α_k satisfies the Wolfe conditions, stop
- 4. If α_k does not satisfy the first Wolfe condition,

$$b = \alpha_k, \alpha_{k+1} = \frac{b+a}{2}$$

else (α_k does not satisfy the second Wolfe condition),

6. Endfor
$$a = \alpha_k, \alpha_{k+1} = \begin{cases} 2a \text{ if } b = \infty \\ \frac{a+b}{2} \text{ if } b < \infty \end{cases}$$

Outline

- Introduction
- Basic theory of Optimization
- Optimization methods without constraint
- Basic theory of Convex optimization
 - Notion of convex set and convex function
 - Existence of optimum, optimality condition
- Optimization methods with constraints

- Definition: Convex set
 - Let E be a vector space. A subset C of E is **convex** if

$$\forall (x,y) \in C^2, \forall \alpha \in [0,1], \alpha x + (1-\alpha)y \in C$$

- In other words, the line connecting x and y is also in the set C
- Definition: Convex function
 - Let f be a function: C \rightarrow R. It is convex in a **convex** domain C if $\forall (x,y) \in C^2, \forall \alpha \in [0,1],$

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$

Geometric interpretation

$$\forall (x,y) \in C^2, f(y) - f(x) \ge f'(x)(y-x)$$

- Definition: Strictly convex function
 - Let f be a function: $C \rightarrow R$. It is **strictly convex** in convex C if

$$\forall (x,y) \in C^2, x \neq y, \forall \alpha \in [0,1],$$
$$f(\alpha x + (1-\alpha)y) < \alpha f(x) + (1-\alpha)f(y)$$

- If f is strictly convex, then f is convex
- If f is convex on an open set C, then f is also continuous on C.

Theorem: Convexity and first-order derivative

Let $\Omega \in E$ be an open set in a normed vector space E and $C \in \Omega$ is a convex subset of Ω .

Assume $f: \Omega \to \mathbb{R}$ is differentiable on Ω , then we have

• f is **convex** on C if and only if

$$\forall (x,y) \in C^2, f(y) - f(x) \ge f'(x)(y-x)$$

• f is **strictly convex** on C if and only if

$$\forall (x,y) \in C^2, x \neq y, f(y) - f(x) > f'(x)(y-x)$$

Theorem: Convexity and second-order derivative

Let $\Omega \in E$ be an open set in \mathbb{R}^n and $C \in \Omega$ be a convex subset of Ω . Assume $f: \Omega \to \mathbb{R}$ is twice differentiable on Ω , then we have

• f is convex on C if and only if

$$\forall (x,y) \in C^2, f''(x)(y-x,y-x) \ge 0$$

Equivalent condition when $C = E = \mathbb{R}^n$

$$\forall (x,h) \in (\mathbb{R}^n)^2, f''(x)(h,h) = h^{\mathsf{T}} \nabla^2 f(x) h \ge 0$$

Hessian matrix $\nabla^2 f(x)$ is positive semi-definite.

Existence of optimum: convex case

Theorem (convex f)

$$(P) \quad \min_{x \in C} f(x) \quad C \subset \mathbb{R}^n$$

Assume C is a convex subset of \mathbb{R}^n , and f is convex on C, then the solution set of (P) is either empty or convex.

Theorem (strictly convex f)

Assume C is a convex subset of \mathbb{R}^n , and f is strictly convex on C, then the solution set of (P) has at most one element.

Sufficient conditions of optimality

Theorem: First-order conditions

Let
$$x^* \in O$$
. Assume $O \subset \mathbb{R}^n$ is open and convex, f is convex on O and differentiable at x^* . Then $\nabla f(x^*) = 0 \Longrightarrow x^*$ is a **global minimum** of f

Remark: this is very particular as f is convex.

Outline

- Introduction
- Basic theory of Optimization
- Optimization methods without constraint
- Basic theory of Convex optimization
- Optimization methods with constraints
 - Optimality conditions
 - Numerical algorithms

Optimization methods with constraints

Minimize a real-valued function under a constraint set

$$(P) \quad \min_{x \in C} f(x) \quad C \subset \mathbb{R}^n$$

- Various forms of constraints
 - C is a closed set def. by equality or inequality equations

$$C = \{ x \in \mathbb{R}^n | h(x) = 0, g(x) \le 0 \}$$

• C is an open set, and f is differentiable on \mathbb{R}^n , then x^* is a local optimum of $(P)\Rightarrow \nabla f(x^*)=0$ Not true for a closed C

Necessary conditions of optimality

Definition: tangent direction

Let $x \in C \subset \mathbb{R}^n$. $d \in \mathbb{R}^n$ is a **tangent direction** of C at x if there exists a sequence $(\alpha_k, d_k) \in \mathbb{R}^+ \times \mathbb{R}^n$ such that

$$\forall k \in \mathbb{N}, \quad x_k = x + \alpha_k d_k \in C$$
 $d_k \to d, \quad k \to \infty$
 $\alpha_k \to 0, \quad k \to \infty$

Example x

Not a tangent direction

Necessary conditions of optimality

Definition: tangent cone

Let $x \in C \subset \mathbb{R}^n$. The **tangent cone** T(C, x) of C at x is the set of all the tangent directions of C at x.

Theorem: local optimality and tangent cone

Let f be a differentiable function on \mathbb{R}^n . If $x^* \in C$ is a local optimum of (P), then $\forall d \in T(C, x^*), \nabla f(x^*)^{\intercal} d \geq 0$

Necessary conditions of optimality

• **Special case**: C is convex

Let f be a differentiable function on \mathbb{R}^n and C be a convex set. If $x^* \in C$ is a local optimum of (P), then

$$\forall x \in C, \nabla f(x^*)^{\mathsf{T}}(x - x^*) \ge 0$$

Equality constraints

• Consider (P_h) $\min_{x \in C} f(x)$ $C = \{x \in \mathbb{R}^n | h(x) = 0\}$

- Specified by a **vector-valued function** $h:\mathbb{R}^n o \mathbb{R}^p$
- Example

Qualifications of constraints: when a tangent cone T(C,x) equals to

$$\{d \in \mathbb{R}^n | \nabla h(x)^{\mathsf{T}} d = 0\}$$

How to solve optimization with equality constraints?

• Introduce Lagrange multiplier λ

$$L : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}$$
$$(x,\lambda) \mapsto f(x) + \lambda^{\mathsf{T}} h(x)$$

Theorem (KKT, Karush-Kuhn-Tucker)

For the problem (P_h) , if the following conditions hold

- f and h are continuously differentiable near x^*
- x^* is a local optimum of (P_h)
- $\bullet \ T(C, x^*) = \{ d \in \mathbb{R}^n | \nabla h(x^*)^{\mathsf{T}} d = 0 \}$

then
$$\exists \lambda^* \in \mathbb{R}^p \text{ s.t. } \nabla_x L(x^*, \lambda^*) = 0, h(x^*) = 0$$

Example

Quadratic problem with affine constraints

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} x^{\mathsf{T}} A x - b^{\mathsf{T}} x + c \quad \text{s.t. } Ex = d$$

where A is a positive definite matrix, E has full rank $p \leq n$

This problem has a unique solution

Existence: f is continuous and coercive on closed and non-empty C.

Uniquenes: f is strictly convex $(\forall x \in \mathbb{R}^n, \nabla^2 f(x) = A)$ on convex C.

The solution x^* satisfies a linear system:

$$Ax^* + E^{\mathsf{T}}\lambda^* = b, \quad Ex^* = d$$

Second-order optimality conditions

Theorem (KKT, Karush-Kuhn-Tucker)

For the problem (P_h) , if the following conditions hold

- f and h are **twice** continuously differentiable near x^*
- x^* is a local optimum of (P_h)
- $\bullet \ T(C, x^*) = \{ d \in \mathbb{R}^n | \nabla h(x^*)^{\intercal} d = 0 \}$

then
$$\exists \lambda^* \in \mathbb{R}^p$$
 s.t. $\nabla_x L(x^*, \lambda^*) = 0, h(x^*) = 0, \text{and}$ $\forall d \in T(C, x^*), \quad d^{\mathsf{T}} \nabla^2_{xx} L(x^*, \lambda^*) d \geq 0$

Sufficient optimality conditions

- Special case: Affine constraints and convex f
 - affine: h(x) = Ex d
- Theorem: sufficient conditions

For the problem (P_h) , if the following conditions hold

- f is convex on C, h is affine
- f is continuously differentiable near x^*

Then x^* is a local (global) optimum of (P_h)

$$\iff \exists \lambda^* \in \mathbb{R}^p \text{ s.t. } \nabla_x L(x^*, \lambda^*) = 0, h(x^*) = 0$$

Analytical solution: general idea

- Assume f and h are differentiable
 - Demonstrate the existence and unicity of the solutions of (P_c)
 - Find solutions by solving

$$\nabla_x L(x^*, \lambda^*) = 0, h(x^*) = 0$$

- Check constraint qualifications
- Stop in some particular cases
 - If h is affine and f is convex
- Find other solutions and check the second order optimality condition

$$\forall d \in T(C, x^*), \quad d^{\mathsf{T}} \nabla^2_{xx} L(x^*, \lambda^*) d \ge 0$$

Numerical solution

- Basic idea: transform a problem with constraints into a problem without constraints, by adding penalties
- Lagrange method (a max-min game):

$$\max_{\lambda} \min_{x} f(x) + \lambda^{\mathsf{T}} h(x)$$

Minimal of x does not always exist: add a quadratic penalty (ADMM method)

$$f(x) + \lambda^{\mathsf{T}} h(x) + \frac{\mu}{2} ||h(x)||^2$$

$$\mu > 0$$
: encourage that $h(x) \approx 0$

Other Idea: what if using only the quadratic penalty?