第四章 随机变量的数字特征

第二节 随机变量的方差与矩

- 方差的定义
- 离散型随机变量的方差
- 连续型随机变量的方差
- 方差的性质
- ■切比雪夫不等式
- 矩

一. 方差的定义

定义. 设X 是一个随机变量,若 $E[X - E(X)]^2$ 存在,则称 $D(X)=E[X-E(X)]^2$ 为 X 的方差。

 $\dot{\mathbf{L}} \wedge \sqrt{D(X)}$ 称为标准差或均方差。

记为: $\sigma(X) = \sqrt{D(X)}$

▲ D(X) 实际上是 X 的函数 $g(X) = (X - E(X))^2$ 的数学期望。

二. 离散型随机变量的方差

$$D(X) = E[X - E(X)]^2$$

1. 定义. 设离散型随机变量X 的分布律为:

如果级数 $\sum_{k=1}^{\infty} [x_k - E(X)]^2 p_k$ 绝对收敛,则称此级数为 X 的方差,记为:

$$D(X) = Var(X) = \sum_{k=1}^{\infty} [x_k - E(X)]^2 p_k$$

注 如果 $\sum_{k=1}^{\infty} [x_k - E(X)]^2 p_k$ 不绝对收敛,则称

D(X) 不存在.

2.几种常见分布的方差

$$D(X) = E[X - E(X)]^2$$

(1)
$$(0-1)$$
 分布 $E(X) = p$

$$=\sum_{k=1}^{\infty}(x_k-E(X))^2 p_k$$

$$D(\mathbf{V} - \mathbf{I}_{k}) - \mathbf{r}_{k}^{k} c^{(1-k)} \qquad \mathbf{I}_{k} - \mathbf{I}_{k}^{k} c^{(1-k)}$$

$$P(X=k)=p^kq^{(1-k)}$$
 $k=0,1.$ 0

$$D(X) = (0-p)^{2} \cdot q + (1-p)^{2} \cdot p = pq$$

$$X = \frac{X}{P} = \frac{Q}{Q} = \frac{X}{P} = \frac{Q}{Q} = \frac{Q}{Q}$$

(2) 二项分布
$$X \sim B(n, p)$$
, $E(X) = np$

$$P(X = k) = C_n^k p^k (1-p)^{n-k}, \quad k = 0,1,2 \cdots n$$

$$D(X) = \sum_{k=0}^{\infty} (k - np)^{2} C_{n}^{k} p^{k} (1 - p)^{n-k} = npq$$

(3) 泊松分布
$$X \sim P(\lambda)$$
 $E(X) = \lambda$

$$P(X=k) = \frac{\lambda^{k} e^{-\lambda}}{k!} \quad k = 0, 1, 2, \cdots$$

$$D(X) = \sum_{k=0}^{\infty} (k - \lambda)^2 \frac{\lambda^k e^{-\lambda}}{k!} = \lambda$$

重要公式

这是一个重要的经常使用的计算公式

$$D(X) = E(X^2) - [E(X)]^2$$

证明: $:: D(X) = E[X - E(X)]^2$

由数学期望的性质

因为数学 期望E(X) 是数

$$= E[X^{2} - 2X E(X) + (E(X))^{2}]$$

$$= E(X^{2}) - E[2X E(X)] + E[(E(X))^{2}]$$

$$= E(X^{2}) - 2E(X)E(X) + [E(X)]^{2}$$

$$=E(X^2)-[E(X)]^2$$

注: 这个公式给出了计算随机变量X的方差的公式, 同时也给出了数学期望与方差之间的关系。

例1 设
$$X \sim P(\lambda)$$
, 求 $D(X)$. $D(X) = E(X^2) - [E(X)]^2$

$$E(X) = \sum_{k=0}^{+\infty} k \cdot \frac{\lambda^k e^{-\lambda}}{k!} = \lambda e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda$$

$$E(X) = \sum_{k=0}^{+\infty} k \cdot \frac{\lambda^k e^{-\lambda}}{k!} = \lambda e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda$$

$$E(X^2) = \sum_{k=0}^{+\infty} k^2 \cdot \frac{\lambda^k e^{-\lambda}}{k!} = \sum_{k=0}^{+\infty} (k^2 - k + k) \cdot \frac{\lambda^k e^{-\lambda}}{k!}$$

$$= \sum_{k=0}^{+\infty} k(k-1) \cdot \frac{\lambda^k e^{-\lambda}}{k!} + \sum_{k=0}^{+\infty} k \cdot \frac{\lambda^k e^{-\lambda}}{k!}$$

$$=\lambda^{2}e^{-\lambda}\sum_{k=2}^{+\infty}\frac{\lambda^{k-2}}{(k-2)!}+\lambda=\lambda^{2}+\lambda$$

$$D(X) = E(X^{2}) - \left[E(X)\right]^{2} = \lambda$$

例2. 设随机变量 X 服随机从几何分布, 其分布律为:

$$P(x=k)=p(1-p)^{k-1}$$
, $k=1,2,\cdots$ 其中 无穷递缩等比求: $D(X)D(X)=E(X^2)-[E(X)]^2$ 级数收敛求和与式

解: 记 q = (1-p) $p\sum_{k=1}^{\infty} (k^2-k+k)q^{k-1}$ 求导交换次序

$$E(X) = \sum_{k=1}^{\infty} k p q^{k-1} = p \sum_{k=1}^{\infty} (q^k)' = p (\sum_{k=1}^{\infty} q^k)' = p (\frac{q}{1-q})' = \frac{1}{p}$$

$$E(X^{2}) = \sum_{k=1}^{\infty} k^{2} p q^{k-1} = p \left[\sum_{k=1}^{\infty} k(k-1) q^{k-1} + \sum_{k=1}^{\infty} k q^{k-1} \right]$$

$$= q p \left(\sum_{k=1}^{\infty} q^{k} \right)'' + E(X) = q p \left(\frac{q}{1-q} \right)'' + \frac{1}{p} = q p \frac{2}{(1-q)^{3}} + \frac{1}{p}$$

$$= \frac{2}{p^2} - \frac{1}{p} \qquad \text{ix:} \quad D(X) = E(X^2) - [E(X)]^2 = \frac{1}{p^2} - \frac{1}{p}$$

4

三. 连续型随机变量的方差

$$D(X) = E[X - E(X)]^2$$

1. 定义. 设连续型随机变量X 的概率密度为f(x)

如果
$$\int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$$
 绝对收敛,

则称此积分为 X 的方差,记为:

$$D(X) = Var(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$$

2. 几种常见分布的方差

(1). 均匀分布
$$E(X) = \frac{a+b}{2}$$

$$D(X) = \frac{(b-a)^2}{12}$$

设
$$X \sim U[a,b]$$
 $f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 &$ 其它
$$D(X) = \frac{(b-a)^2}{12} \end{cases}$$

$$D(X) = \int_{-\infty}^{+\infty} [x - \frac{a+b}{2}]^2 f(x) dx = \int_a^b [x - \frac{a+b}{2}]^2 \frac{1}{b-a} dx$$

$$D(X) = E(X^2) - [E(X)]^2$$

$$D(X) = \int_{-\infty}^{\infty} x^2 f(x) dx - [E(X)]^2 = \int_a^b x^2 \frac{1}{b-a} dx - (\frac{a+b}{2})^2$$

 $D(X) = E[X - E(X)]^2$

 $=\int_{-\infty}^{\infty} [x-E(X)]^2 f(x) dx$

(2). 指数分布
$$E(X) = \theta$$

$$D(X) = E[X - E(X)]^{2}$$

$$= \int_{-\infty}^{+\infty} [x - E(X)]^{2} f(x) dx$$

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}} & x > 0 \\ 0 & \text{其它} \end{cases}$$

$$\frac{D(X) = E(X^2) - [E(X)]^2}{\theta}$$

$$D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$$

$$= \int_{0}^{+\infty} (x-\theta)^{2} \cdot \frac{1}{\theta} e^{-\frac{x}{\theta}} dx = \theta^{2}$$

(3). 正态分布 设:
$$X \sim N(\mu, \sigma^2)$$

(3). 正态分布 设:
$$X \sim N(\mu, \sigma^2)$$
 $D(X) = E[X - E(X)]^2$ $= \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx$ $f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$ $E(X) = \mu$

$$D(X) = E[X - E(X)]^{2}$$

$$= \int_{-\infty}^{+\infty} [x - E(X)]^{2} f(x) dx$$

$$E(X) = \mu$$

则:
$$D(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$

$$z = \frac{x - \mu}{\sigma} = \int_{-\infty}^{+\infty} (x - \mu)^2 \cdot \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \sigma^2 z^2 \frac{1}{\sigma} e^{\frac{z^2}{2}} \sigma dz = \frac{\sigma^2}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} z^2 e^{-\frac{z^2}{2}} dz$$

$$= \frac{\sigma^2}{\sqrt{2\pi}} \left[-z e^{-\frac{z^2}{2}} \Big|_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty} e^{-\frac{z^2}{2}} dz \right] = \frac{\sigma^2}{\sqrt{2\pi}} \cdot \sqrt{2\pi} = \sigma^2$$

四. 方差的性质 $D(X) = E[X - E(X)]^2 = E(X^2) - [E(X)]^2$

- 1. 若 c是常数,则: D(c) = 0
- 2. 若 c 是常数,X 是随机变量,则: $D(cX) = c^2 D(X)$

证明:
$$D(cX) = E[(cX)^2] - [E(cX)]^2$$

$$= E(c^2X^2) - [cE(X)]^2$$

$$= c^2E(X^2) - c^2[E(X)]^2$$

$$= c^2[E(X^2) - (E(X))^2] = c^2D(X)$$

3. 若X,Y是相互独立的随机变量,则:

$$D(X+Y) = D(X) + D(Y)$$

证明:
$$D(X+Y) = E[(X+Y)-E(X+Y)]^2$$

由方差定义

注: 此性质可推广到任意有限多个相互独立的随机 变量之和的情形。

4. D(X) = 0的充分必要条件是: P(X = c) = 1 可用切比雪夫不等式证明, 略。

方差的性质

1.
$$D(c) = 0$$

2.
$$D(cX) = c^2 D(X)$$

3. 若X,Y相互独立,则:

$$D(X+Y)=D(X)+D(Y)$$

4. $D(X) = 0 \longrightarrow P(X = c) = 1$

$$D(X) = E(X^2) - [E(X)]^2$$

期望的性质

$$E(c) = c$$

$$E(cX) = cE(X)$$

$$E(X+Y) = E(X) + E(Y)$$

$$X,Y$$
独立,则

$$E(XY) = E(X)E(Y)$$

例3 设 $X \sim B(n, p)$,求D(X).

解引入随机变量 X_1, X_2, \dots, X_n

$$X_1, X_2, \dots, X_n$$

$$X_i = \begin{cases} 1, & \text{第} i 次试验事件 A 发生 \\ 0, & \text{第} i 次试验事件 A 发生 \end{cases}$$

$$D(X_i) = p(1-p)$$
 $i = 1, 2, \dots, n$

$$X_1, X_2, \dots, X_n$$
相互独立, $X = \sum_{i=1}^{n} X_i$

4 X,Y独立, $X \sim N(1,2), Y \sim N(-1,1) \longrightarrow P\{2X>Y\}$

解
$$P{2X > Y} = P{2X - Y > 0}$$
 2X-Y 服从什么分布?

$$: E(2X-Y) = 2E(X) - E(Y) = 3$$

$$: Z = 2X - Y \sim N(3,9)$$

$$D(2X-Y) = 2^2D(X) + D(Y) = 9$$

$$\therefore P(2X - Y > 0) = 1 - P\{2X - Y \le 0\} = 1 - P(\frac{Z - 3}{3} \le \frac{0 - 3}{3})$$
$$= 1 - \Phi\left(\frac{0 - 3}{3}\right) = 1 - \Phi(-1) = 1 - \left(1 - \Phi(1)\right) = \Phi(1)$$

$$X \sim N(\mu_{1}, \sigma_{1}^{2}), Y \sim N(\mu_{2}, \sigma_{2}^{2}) \qquad X + Y \sim N(\mu_{1} + \mu_{2}, \sigma_{1}^{2} + \sigma_{2}^{2})$$

$$X_{i} \sim N(\mu_{i}, \sigma_{i}^{2}) \qquad i = 1, 2, 3, \cdots n$$

$$k_{1}X_{1} + k_{2}X_{2} + \cdots + k_{n}X_{n}$$

$$\sim N(k_{1}\mu_{1} + k_{2}\mu_{2} + \cdots + k_{n}\mu_{n}, k_{1}^{2}\sigma_{1}^{2} + k_{2}^{2}\sigma_{2}^{2} + \cdots + k_{n}^{2}\sigma_{n}^{2})$$

例5
$$X_1, X_2, \dots, X_9$$
独立同 $N(2, (0.05)^2)$ 分布

$$X = X_1 + X_2 + \dots + X_9$$

若使
$$P\{|X-18| < a\} \ge 0.99$$
, a 至少为多少?

解 易知
$$X \sim N(18, (0.15)^2)$$

$$P\{|X-18| < a\} = P\left\{-\frac{a}{0.15} < \frac{X-18}{0.15} < \frac{a}{0.15}\right\}$$

$$=2\Phi\left(\frac{a}{0.15}\right)-1 \geq 0.99$$

$$\longrightarrow \Phi\left(\frac{a}{0.15}\right) \ge 0.995 \longrightarrow a \ge 0.387$$

例6 X,Y独立同 $N\left(0,\frac{1}{2}\right)$ 分布 D(|X-Y|) $X \sim N(\mu_1,\sigma_1^2)$ $Y \sim N(\mu_2,\sigma_2^2)$ $Z = X + Y \sim N(\mu_1 + \mu_2,\sigma_1^2 + \sigma_2^2)$

则
$$Z \sim N(0,1) \rightarrow E(|Z|), E(|Z|^2)$$

$$D(X) = E(X^2) - [E(X)]^2$$

$$E(|Z|) = \int_{-\infty}^{+\infty} |x| f_Z(x) dx$$

$$D(|Z|) = E(|Z|^2) - (E(|Z|))^2$$

$$= \int_{-\infty}^{+\infty} |x| \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$$

$$= \frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} x e^{-\frac{x^2}{2}} dx = \frac{2}{\sqrt{2\pi}} \int_{0}^{+\infty} e^{-\frac{x^2}{2}} d\left(\frac{x^2}{2}\right) = \sqrt{\frac{2}{\pi}}$$

$$E(|Z|^{2}) = E(Z^{2}) = D(Z) + [E(Z)]^{2} = 1$$

$$\therefore D(|X-Y|) = D(|Z|) = E(|Z|^{2}) - (E(|Z|))^{2} = 1 - \frac{2}{\pi}$$

4

概率统计4-2

五. 切比雪夫不等式

设随机变量X具有数学期望 $E(X) = \mu$, 方差 $D(X) = \sigma^2$.

则对任意正数 $\varepsilon > 0$

不等式:
$$P\{|X-\mu|\geq \varepsilon\}\leq \frac{\sigma^2}{\varepsilon^2}$$
 成立。

称其为切比雪夫不等式

切比雪夫不等式(chebysev)的另一形式:

$$P(|X-\mu|<\varepsilon)\geq 1-\frac{\sigma^2}{\varepsilon^2}$$

例7 已知正常男性成人血液中,每一毫升白细胞数平均是7300,均方差是700.利用切比雪夫不等式估计每毫升白细胞数在5200~9400之间的概率.

解:设每毫升白细胞数为 X $P(|X-\mu|<\varepsilon)\geq 1-\frac{\sigma^2}{\varepsilon^2}$ 依题意, $E(X)=7300,\ D(X)=700^2$

现求: $P(5200 \le X \le 9400) = ?$

 $P(5200 - 7300 \le X - 7300 \le 9400 - 7300)$

 $= P(-2100 \le X - E(X) \le 2100)$

$$= P(|X - E(X)| \le 2100) \ge 1 - \frac{700^2}{2100^2} = 1 - \frac{1}{9} = \frac{8}{9}$$

每毫升白细胞数在5200~9400之间的概率不小于8/9.

六.矩

矩是随机变量的更为广泛的一种数字特征,前面介绍的数学期望及方差都是某种矩.

定义: 设X和Y是随机变量

- (1). 若 $E(X^k)$ 存在,则称它为X的k 阶原点矩, 简称 k 阶矩。 $k = 1, 2, \cdots$
- (2). 若 $E\{[X-E(X)]^k\}$ 存在, $k=1,2,\cdots$ 则称它为X的k 阶中心矩。
- (3). 若 $E(X^kY^l)$ 存在, $k,l=1,2,\cdots$ 则称它为 X和 Y的 k+l 阶混合矩。

- (1). 若 $E(X^k)$ 存在,则称它为X的k 阶原点矩,
- (2). 若 $E\{[X-E(X)]^k\}$ 存在, $k=1,2,\cdots$ 则称它为X的k 阶中心矩。
- (3). 若 $E(X^kY^l)$ 存在,k,l=1,2,... 则称它为 X和 Y的 k+l 阶混合矩。
- (4). 若 $E\{[X-E(X)]^k[Y-E(Y)]^l\}$ 存在, $k,l=1,2,\cdots$ 则称它为X和Y的 k+l 阶混合中心矩。
- 注: E(X) 是随机变量 X 的一阶原点矩; D(X) 是随机变量 X 的二阶中心矩; cov(X,Y) 是X和Y的二阶混合中心矩。

	•
73	

随机变量的数字特征

		离散型随机变量	连续型随机变量
	X	$E(X) = \sum_{k=1}^{\infty} x_k p_k$	$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$
=	D(X) $E[X-E(X)]$	$D(X) = \sum_{k=1}^{\infty} (x_k - E(X))^2 p_k$	$D(X) = \int_{-\infty}^{+\infty} (x - E(X))^2 f(x) dx$
	Y=g(X)	E(Y) = E[g(X)]	E(Y) = E[g(X)]
	g连续	$=\sum_{k=1}^{\infty}g(x_k)p_k$	$=\int_{-\infty}^{+\infty}g(x)f(x)dx$
4	Z = g(X,Y)	E(Z) = E[g(X,Y)]	E(Z) = E[g(X,Y)]
_	g连续	$= \sum_{j=1}^{n} \sum_{i=1}^{n} g(x_i, y_j) p_{ij}$	$=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy$
_	E(X)性质	E(c) = c $E(cX) = cE(X)$ X,Y独立 $E(XY) = E(X)$	

总结

几种常见分布的数学期望和方差

	概率	分布	E(X)	D(X)
	(0-1)分布	$X \sim B(1, p)$	p	pq
离散型	二项分布	$X \sim B(n, p)$	np	npq
型	泊松分布	$X \sim P(\lambda)$	λ	λ
⊁	均匀分布	$X \sim U(a,b)$	(a+b)/2	$(b-a)^2/12$
连续型	指数分布	$X \sim Exp(\theta)$	heta	$oldsymbol{ heta}^2$
尘	正态分布	$X \sim N(\mu, \sigma^2)$	μ	σ^2

小结

随机变量的数字特征

$$E(X)$$
性质
$$E(c) = c \quad E(cX) = cE(X) \quad E(X+Y) = E(X) + E(Y)$$
 X,Y 独立
$$E(XY) = E(X)E(Y)$$

$$D(X)$$
性质
$$D(X) = E(X^2) - [E(X)]^2 \quad D(c) = 0 \quad D(cX) = c^2D(X)$$
 X,Y 独立,
$$D(X+Y) = D(X) + D(Y) \quad D(X) = 0 \longrightarrow P(X=c) = 1$$

