

Fig.1

Fig.2

Fig.3

Fig.4

5

Tth	MutY	MEAWRKAKLDAWYEN-ARP PWR	—GE—	KDPRVVLSEVILLOOATRVEQALPYYRRFL	53
Hsa	MutY	CGDLAROPEEWLQASYYHLFRDVAEVTAFRGSELLSWDDE-KRDLPLRRAEDEMID	—GE—	—KRAYAVWSEVMLOJTOAVTINYTGWM	139
Spo	MutY	MSDSNHFDLHSYSTOLEVERFRESQIYQXT-KRLPWRKCEIPPSSESPLEDWEOPVORLYEVLYSEMLQOATRVETVKRYTKWM	—GE—	—RRAYAVWSEVMLOJTOAVTINYTGWM	88
Eco	MutY	MDASOFSAOQDWDWXYGRKTLPW	—ID—	—KTPYKWMSEVMLOJTOAVTIPYERFM	56
Eco	Endo	MNKAKRLEITTRTLEN-NPHPTT	—ELN—	—FSSPFELIAVLLSAQATDVSVNKATAKLY	55
Tth	MutY	54 ERFPTEKAIAASIE-EVLRWNGAGYYR-RAEHHLHLRSWEEL—PPSFAELR-GPGLGPYTAAVASIAFGERYAAV	—APR—	GNYVRVLSRLFARES	145
Hsa	MutY	140 QNWETLQDLASASLE-EVNQELWAGLYNS-IGRPLDEGAQKWEELGGHMPRAETLQLLPVGVGRYTAGAIASIAFGQATGVW	—APR—	GNYAVRLCVRRAIAGA	237
Spo	MutY	89 ETLPITKSCAAEYNTOMPLNSMGMFTY-FCKRTHOAGLHLAKLHPSEIPRTGDEWAKGIPGYGPTTAGAVLSIAWKOPTGIV	—APR—	GNYVTRVLSRALAIHS	187
Eco	MutY	57 ARFPYTDLIAAPLD-EVLUHNTLGLYTA—ARNLHKAAQATLHGKSKPTEFEVAA-ALPGYGRSTAGAISLSLGKHFIL	—APR—	GNYVRYVARYAVSG	153
Eco	Endo	56 PWANTPAAMLELGVE-GYKTYIKTIGLYNSAENITKTCRILLEQHNGEVPEDRALE-ALPGVGRKTANVNLNTAFGMPTAVY	—APR—	THIFRVCNRTQFAPG	153
Tth	MutY	146 -PK—EKEFEIAAOGI PEGVDPGVWNDALWEN GATVCLPKPRCGACPGAFORG	—KEAPGRYP—	#	
Hsa	MutY	238 DPSSTLVSQOINGLAQQLVDP-ARPGDENKDAWELGATVCTPORPLCSOPVYESLQRARVEQEQLLASGSLSGSPDVECAPNTGOCHICLPPSEPVID	—APR—	K	210
Spo	MutY	188 DCISKGKANALWKLANEVWDP-VRPGDENKDAWELGATCITPOSRCSCVCPUSEICKAYQ—EQNVFRDGNTIKYD—IEDVPCN-ICTDIPS—	—APR—	336	
Eco	MutY	154 WPGKKEVENKLNWSEQUTPA-VGVERENQAMIDLGAMICTSKPKCSLCQDQNGCIA	—APR—	K	276
Eco	Endo	154 -KN—VEQEEKLLKWP-AEFYKDCHW-LIHGRYTCIARKPRCGSCIJEDCEY	—APR—	P—K	225
Tth	MutY	* * *	—APR—	—APR—	205
Hsa	MutY	211 RRAK————EER—LYALVLLGRKG—VHLERIEGGR—FQGJYGVPLFPP—EELP—GREAAFGVRSS—	—APR—	—RP—L	266
Spo	MutY	337 OTLGV—VNFPRKASRKRPPREESSATCVLEOPGA—LGAQJLWVOPRNISQLAGIWEEPSWTN-EPSFOLORKALLQELQRWAGP—LPATHRLHL	—APR—	—RP—L	425
Eco	MutY	277 EDLONWWVARYVHPAKTKORE-EPALWIFOKTDPSIKEKFVTFKRSAGLLAGWDEPTIEFGOESIPKMDNAEFQKSIAOWISNDSESSLIKYQDSR	—APR—	—VTLSN—	375
Eco	Endo	226 OTL————PER—TGYFLLOH—EDEVLAQPSGEWGGLYCFPQFAD-EES—LROWLAQRO—	—APR—	—IAADNLTLQI	287
Tth	MutY	206 —K—EVYD	—APR—		
Hsa	MutY	267 GEVRHALTHRRLR—VYVR-GALWEGEGEDPKWKR—LPKLMERVKLRKLP	—APR—	—PLAH—	—AGWPLPDA
Spo	MutY	426 GEWHTFESHKLTYOYGIALEGOTPVTVYPPGARNLTOEEFTAATVSTAMKKVVERVYOGQFSTCMGSKRSQVSSECSRKKPMQGVLDNFRESHISTDAHS	—APR—	—ELGKMYRAALEIKKR—	—FKEPLTSARR
Eco	MutY	376 GRYLHESIIRKTSVHFYAIAS—PDIVTNEDFFMISOSDI.EHYGMC—	—APR—	—VTSLSN—	
Eco	Endo	288 TAFRHFSFHLD—MNPVSSFTGQMD—EGNALWNLNLAOP-PSVG—	—APR—	—LAAPVER—	—HOOLRTGAPY

Tth (*Thermophilus* HB8), *Hsa* (*Homo sapiens*), *Spo* (*Schizosaccharomyces pombe*), *Eco* (*Escherichia coli*)
 # Residue essential for N-glycosidase activity * Residues constituting an iron-sulfur cluster
 (D)

Fig.6

Fig. 7

Fig.8

Fig.9

Fig.10

Fig.11

5' -[^{32}P]AGATCTTGACGGGGAAAYCCGAATTGGCGAACGTGGCGAG-3'
3' -AATCTAGAACTGCCCTTXXGGCTTAAGCCGTTGCACCGCTT-5'

X : G0, G, C, T Y : A, G

Fig.12

Fig.13

Fig.14

Motif I

RecJ_Tt	[73] KRIRVHGDY[A]GLTGTAILVRGLAALG [100]
RecJ_Ec	[73] TRIIVVGDF[A]GATSTALSVLAMRSLG [100]
RecJ_Aa	[56] KRIIIYGDY[V]GITGTAILYRVLKLLG [79]
RecJ_Hp	[47] TEILVVGDY[A]GVISSAIMAKFFESLN [74]
RecJ_Hi	[67] QKIVIVGDF[A]GATSTALSVLALRQLG [90]
PPX1_Sc	[29] TICVGNESAMSIASAITSYCQYIYN [52]
PRUNE_Dm	[37] HLVMGNESCLLSAVSAVTLAFVYAAASS [60]

Motif II

RecJ_Tt	[128] SDLFITV[CGITNHAE]RE [147]	[153] VEVIVT[TPGK] [165]
RecJ_Ec	[131] AQLIVTV[NGISSHAGVEH] [150]	[155] IPVIVT[LPGD] [165]
RecJ_Aa	[133] GDFLITV[NGTSAVEEIDQ] [152]	[154] LETVVI[NVPP] [164]
RecJ_Hp	[102] APLIITV[NGINAFAEARF] [121]	[126] YTLIIT[CLHH] [136]
RecJ_Hi	[126] VQLLMITV[NGVSSFDGVAF] [145]	[150] IRVLYT[LPPE] [151]
PPX1_Sc	[120] ELNSYLE[NNNDTPKNLKNY] [139]	[141] NVVGII[FDLQ] [153]
PRUNE_Dm	[87] PLVCEMM[CRARVALPRRY] [106]	[128] NVTEIL[RPLED] [140]

Motif IV

RecJ_Tt	[209] YADLAAGV[TIA]VAP[LG]WG [228]	[386] DLLLRY[KEAAGFAM] [402]
RecJ_Ec	[226] LLDLVALGTV[V]VPLDAN [245]	[421] GMMILKF[AMAAGLSL] [438]
RecJ_Aa	[215] FLDLVALG[L]A[YMPVNPV] [234]	[404] DMFLKW[DKAMGLTL] [420]
RecJ_Hp	[189] LLCLAGVATIA[MMPI]TFF [208]	[372] SLLLGY[RQACGLSV] [388]
RecJ_Hi	[219] LLDLVALGTV[V]VPLDQN [238]	[415] NMILKF[AMAAGLSI] [431]
PPX1_Sc	[191] IALLLMGA[IL]TSNMRRK [210]	
PRUNE_Dm	[183] VAQLLHATIVL[TIN]FAPA [202]	

Specific motif

Tt : *Thermus thermophilus* HB8, Ec : *Escherichia coli*, Aa : *Aquifex aeolicus*,
 Hp : *Helicobacter pylori*, Hi : *Haemophilus influenzae* Rd,
 Sc : *Saccharomyces cerevisiae*, Dm : *Drosophila melanogaster*

Fig.15

Fig.16

Fig. 17

Substrate DNA : 49-mer ssDNA

5'-ACTACTTGGTACACTGACGCGAGCACGCAGGAGCTATTCCAGTGCGCA-3'

Fig.18

Fig.19

Fig.20

Fig.21

Substrate DNA : Etheno-labeled bovine thymus ssDNA (ϵ DNA)

Fig.22

Fig.23

Fig.24

Fig.25

Fig.26

Fig.27

Multiple sequence alignment of Tth, Eco, Ppu, Bsu, Mtu, and Dra proteins. The alignment shows conservation of amino acids across the sequences, with identical residues in black boxes and similar residues in grey boxes. The proteins are aligned from positions 1 to 360.

Tth: *Thermus thermophilus* HB8

Eco: *Escherichia coli*

Ppu: *Pseudomonas putida*

Bsu: *Bacillus subtilis*

Mtu: *Mycobacterium tuberculosis*

Dra: *Deinococcus radiodurans*

Fig.28

Fig.29

Fig.30

Fig.31

Repair of Entire Genome

Transcription-Coupled Repair

Fig.32

Fig.33

UvrB- β

TRCF- β

Fig.34

UvrB- β 154 RNLVVERGKPYPREVLLERLLELGYQRNDI 184
 TRCF- β 86 WRLLLEVGRAYPREALLSRLLKLGYAR--- 113
 * . * * . * * * * * * * *

UvrB- β 185 DLSPGRFRAKGEVLETIFPAYETEPIRVELF 215
 TRCF- β 114 DED---YRVLGEVVELG-----EVRLLEFF 148
 * . * * * . * . * . * *

UvrB- β 216 GDEVERISQVHPVTG-ERLRELPG----- 236
 TRCF- β 149 GDELERLVVRGEERRRHVLLPKPGKAEGFT 163
 *** . * * *

UvrB- β 237 ---FVLFP 242
 TRCF- β 164 SKKVLHEPG 172
 . **

* Identical amino acid residues
 . Homologous amino acid residues

Fig.35

Fig.36

Fig.37

Fig.38

Fig.39

Sensorgram

Analytical Results

	$K_d (\times 10^{-6} \text{ M})$		$k_{\text{on}} (\times 10^5 \text{ M}^{-1}\text{s}^{-1})$		$k_{\text{off}} (\times 10^{-1} \text{ s}^{-1})$	
	- ATP	+ ATP	- ATP	+ ATP	- ATP	+ ATP
UvrB- β	2.6	0.4	2.0	1.5	5.2	0.6
TRCF- β	1.3	0.5	1.0	1.5	1.3	0.7