

Open-Minded

Hebbian Learning

Neuroinformatics Tutorial 5

Duc Duy Pham¹

¹Intelligent Systems, Faculty of Engineering, University of Duisburg-Essen, Germany

Content

- Revision: Mahalanobis Classifier
- Revision: Lecture
- Hebbian Learning

Content

- Revision: Mahalanobis Classifier
- Revision: Lecture
- Hebbian Learning

• What is the main idea of the Mahalanobis distance?

- What is the main idea of the Mahalanobis distance?
 - 1. Measure Manhatten distance in uncorrelated space
 - 2. Use Chomsky matrix to transform into uncorrelated space
 - 3. Use square root of Manhatten distance in uncorrelated space
 - 4. Measure euclidean distance in linearly uncorrelated space

- What is the main idea of the Mahalanobis distance?
 - 1. Measure Manhatten distance in uncorrelated space
 - 2. Use Chomsky matrix to transform into uncorrelated space
 - 3. Use square root of Manhatten distance in uncorrelated space
 - 4. Measure euclidean distance in linearly uncorrelated space

- What is the main idea of the Mahalanobis distance?
 - 1. Measure Manhatten distance in uncorrelated space
 - 2. Use Chomsky matrix to transform into uncorrelated space
 - 3. Use square root of Manhatten distance in uncorrelated space
 - 4. Measure euclidean distance in linearly uncorrelated space

Inverse Cholesky Transform

• What statement regarding the Mahalanobis distance is true?

- What statement regarding the Mahalanobis distance is true?
 - 1. It is the same as the likelihood
 - 2. It represents a probability distribution
 - 3. It is not the same as the likelihood
 - 4. It can be calculated for any data set

- What statement regarding the Mahalanobis distance is true?
 - 1. It is the same as the likelihood
 - 2. It represents a probability distribution
 - 3. It is not the same as the likelihood
 - 4. It can be calculated for any data set

- What statement regarding the Mahalanobis distance is true?
 - 1. It is the same as the likelihood
 - 2. It represents a probability distribution
 - 3. It is not the same as the likelihood
 - 4. It can be calculated for any data set

A: 1 B: 2

$$d(x,\mu) := \sqrt{(x-\mu)^T \Sigma^{-1} (x-\mu)}$$

 What do you need to calculate the Mahalanobis distance in practice?

- What do you need to calculate the Mahalanobis distance in practice?
 - 1. Chomsky Matrix
 - 2. Cholesky Matrix
 - 3. Class mean(s)
 - 4. Covariance Matrix

- What do you need to calculate the Mahalanobis distance in practice?
 - 1. Chomsky Matrix
 - 2. Cholesky Matrix
 - 3. Class mean(s)
 - 4. Covariance Matrix

- What do you need to calculate the Mahalanobis distance in practice?
 - 1. Chomsky Matrix
 - 2. Cholesky Matrix
 - 3. Class mean(s)
 - 4. Covariance Matrix

A: all B: 2,3,4

C: 3,4 D: 4

$$d(x,\mu) := \sqrt{(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

How can you use the Mahalanobis distance for classification?

- How can you use the Mahalanobis distance for classification?
 - 1. Estimate something similiar to feature likelihood
 - 2. Incorporation to McCulloch Pitts Neuron
 - 3. Choose class with least Mahalanobis distance to class mean
 - 4. Maximum A-Posteriori Classification

- How can you use the Mahalanobis distance for classification?
 - 1. Estimate something similiar to feature likelihood
 - 2. Incorporation to McCulloch Pitts Neuron
 - 3. Choose class with least Mahalanobis distance to class mean
 - 4. Maximum A-Posteriori Classification

- How can you use the Mahalanobis distance for classification?
 - 1. Estimate something similiar to feature likelihood
 - 2. Incorporation to McCulloch Pitts Neuron
 - 3. Choose class with least Mahalanobis distance to class mean
 - 4. Maximum A-Posteriori Classification

 How do you use the Mahalanobis distance for classification (step by step)?

- "Training: "
 - Calculate mean for each class

- "Training: "
 - Calculate mean for each class
 - Calculate covariance matrix for each class

$$Cov(X_k) = \frac{1}{N_k} \sum_{i=1}^{N_k} (x_i - \mu_k) (x_i - \mu_k)^T$$

- "Training: "
 - Calculate mean for each class
 - Calculate covariance matrix for each class

$$Cov(X_k) = \frac{1}{N_k} \sum_{i=1}^{N_k} (x_i - \mu_k) (x_i - \mu_k)^T$$

Invert covariance matrices

- "Training: "
 - Calculate mean for each class
 - Calculate covariance matrix for each class

$$Cov(X_k) = \frac{1}{N_k} \sum_{i=1}^{N_k} (x_i - \mu_k) (x_i - \mu_k)^T$$

- Invert covariance matrices
- Inference:
 - Calculate Mahalanobis distance to each class mean
 - Choose class with least distance

Mahalanobis Classifier: Jupyter

Content

- Revision: Mahalanobis Classifier
- Revision: Lecture
- Hebbian Learning

- When are two sets $\mathcal{P}, \mathcal{N} \subset \mathbb{R}^n$ linearly separable?
 - 1. If you can fit a manifold in between both sets
 - 2. If you can fit a line in between both sets
 - 3. If you can fit a hypeplane in between both sets
 - 4. If you one set contains the other

- When are two sets $\mathcal{P}, \mathcal{N} \subset \mathbb{R}^n$ linearly separable?
 - 1. If you can fit a manifold in between both sets
 - 2. If you can fit a line in between both sets
 - 3. If you can fit a hypeplane in between both sets
 - 4. If you one set contains the other

- When are two sets $\mathcal{P}, \mathcal{N} \subset \mathbb{R}^n$ linearly separable?
 - 1. If you can fit a manifold in between both sets
 - 2. If you can fit a line in between both sets
 - 3. If you can fit a hypeplane in between both sets
 - 4. If you one set contains the other

• Formal definition of (absolute) linear separability of two sets $\mathcal{P}, \mathcal{N} \subset \mathbb{R}^n$ (must know!):

• Formal definition of (absolute) linear separability of two sets $\mathcal{P}, \mathcal{N} \subset \mathbb{R}^n$ (must know!):

• If there exist $(w_1, \dots w_n)^T \in \mathbb{R}^n, \Theta \in \mathbb{R}$

• Formal definition of (absolute) linear separability of two sets $\mathcal{P}, \mathcal{N} \subset \mathbb{R}^n$ (must know!):

• If there exist
$$(w_1, \dots w_n)^T \in \mathbb{R}^n, \Theta \in \mathbb{R}$$

such that
$$\sum_{i=1}^n w_i x_i \geq (>)\Theta \ \forall (x_1,\ldots,x_n)^T \in \mathcal{P}$$

• Formal definition of (absolute) linear separability of two sets $\mathcal{P}, \mathcal{N} \subset \mathbb{R}^n$ (must know!):

• If there exist
$$(w_1,\dots w_n)^T\in\mathbb{R}^n,\Theta\in\mathbb{R}$$
 such that $\sum_{i=1}^n w_ix_i\geq (>)\Theta\ \forall (x_1,\dots,x_n)^T\in\mathcal{P}$ and $\sum_{i=1}^n w_ix_i<\Theta\ \forall (x_1,\dots,x_n)^T\in\mathcal{N}$

• Interpretation of formulas

39

$$H_{w,\Theta} := \{x \in \mathbb{R}^n | w^T x = \Theta\}, w \in \mathbb{R}^n, \Theta \in \mathbb{R}$$

$$H_{w,\Theta} := \{ x \in \mathbb{R}^n | w^T x = \Theta \}, w \in \mathbb{R}^n, \Theta \in \mathbb{R}$$
$$\Rightarrow \Theta = ||w|| \cdot ||x|| \cdot \cos(\varphi)$$

$$H_{w,\Theta} := \{ x \in \mathbb{R}^n | w^T x = \Theta \}, w \in \mathbb{R}^n, \Theta \in \mathbb{R}$$

$$\Rightarrow \Theta = ||w|| \cdot ||x|| \cdot \cos(\varphi)$$

$$\Rightarrow ||x|| \cdot \cos(\varphi) = \frac{\Theta}{||w||}$$

$$H_{w,\Theta} := \{ x \in \mathbb{R}^n | w^T x = \Theta \}, w \in \mathbb{R}^n, \Theta \in \mathbb{R}$$

$$\Rightarrow \Theta = ||w|| \cdot ||x|| \cdot \cos(\varphi)$$

$$\Rightarrow ||x|| \cdot \cos(\varphi) = \frac{\Theta}{||w||}$$

and

• Formal definition of (absolute) linear separability of two sets $\mathcal{P}, \mathcal{N} \subset \mathbb{R}^n$ (must know!):

 $\sum_{i=1}^n w_i x_i < \Theta \ \forall (x_1, \dots, x_n)^T \in \mathcal{N}$

• If there exist
$$(w_1,\ldots w_n)^T\in\mathbb{R}^n,\Theta\in\mathbb{R}$$
 such that $\sum_{i=1}^n w_i x_i\geq (>)\Theta \ \forall (x_1,\ldots,x_n)^T\in\mathcal{P}$

• What is the formal definition of a Rosenblatt Perceptron?

- What is the formal definition of a Rosenblatt Perceptron?
 - 1. Real input vector

$$(x_1,\ldots,x_n)^T \in \mathbb{R}^n$$

- What is the formal definition of a Rosenblatt Perceptron?
 - 1. Real input vector
 - 2. Real weights

$$(x_1, \dots, x_n)^T \in \mathbb{R}^n$$

 $(w_1, \dots, w_n)^T \in \mathbb{R}^n$

- What is the formal definition of a Rosenblatt Perceptron?
 - 1. Real input vector
 - 2. Real weights
 - 3. Propagation function is linear associator

$$(x_1, \dots, x_n)^T \in \mathbb{R}^n$$

 $(w_1, \dots, w_n)^T \in \mathbb{R}^n$

$$\sum_{i=1}^{n} w_i x_i$$

- What is the formal definition of a Rosenblatt Perceptron?
 - 1. Real input vector
 - 2. Real weights
 - 3. Propagation function is linear associator
 - 4. Real Threshold

$$(x_1, \dots, x_n)^T \in \mathbb{R}^n$$

 $(w_1, \dots, w_n)^T \in \mathbb{R}^n$

$$\sum_{i=1}^{n} w_i x_i$$

$$\Theta \in \mathbb{R}$$

- What is the formal definition of a Rosenblatt Perceptron?
 - Real input vector
 - 2. Real weights
 - 3. Propagation function is linear associator
 - 4. Real Threshold
 - 5. Activation function is step function

$$(x_1, \dots, x_n)^T \in \mathbb{R}^n$$

 $(w_1, \dots, w_n)^T \in \mathbb{R}^n$

$$\sum_{i=1}^{n} w_i x_i$$

$$\Theta \in \mathbb{R}$$

$$y := f_a := \begin{cases} 1 & if \sum_{i=1}^n w_i x_i \ge \Theta \\ 0 & else \end{cases}$$

Reformulation of step function

$$x_0 = 1$$
$$w_0 = -\Theta$$

Reformulation of step function

$$x_0 = 1$$
$$w_0 = -\Theta$$

$$y := f_a := \begin{cases} 1 & if \sum_{i=0}^n w_i x_i \ge 0 \\ 0 & else \end{cases}$$

Reformulation of step function

$$x_0 = 1$$
$$w_0 = -\Theta$$

$$y := f_a := \begin{cases} 1 & if \sum_{i=0}^n w_i x_i \ge 0 \\ -1 & else \end{cases}$$

Scheme of Artificial Neuron

 $f_p|f_a$ wird oft weggelassen, wenn aus dem Zusammenhang klar.

• Which statements regarding Rosenblatt Perceptron and McCulloch Pitts Neuron are true?

- Which statements regarding Rosenblatt Perceptron and McCulloch Pitts Neuron are true?
 - 1. The McCulloch Pitts Neuron can process real valued input
 - 2. The Rosenblatt Perceptron can process real valued input
 - 3. Both neuron models have inhibiting and excitatory edges
 - 4. The Rosenblatt Perceptron can model McColloch Pitts Neurons

- Which statements regarding Rosenblatt Perceptron and McCulloch Pitts Neuron are true?
 - 1. The McCulloch Pitts Neuron can process real valued input
 - 2. The Rosenblatt Perceptron can process real valued input
 - 3. Both neuron models have inhibiting and excitatory edges
 - 4. The Rosenblatt Perceptron can model McColloch Pitts Neurons

A:	all	B:	1,2,4
C:	2	D:	2,4

- Which statements regarding Rosenblatt Perceptron and McCulloch Pitts Neuron are true?
 - 1. The McCulloch Pitts Neuron can process real valued input
 - 2. The Rosenblatt Perceptron can process real valued input
 - 3. Both neuron models have inhibiting and excitatory edges
 - 4. The Rosenblatt Perceptron can model McCulloch Pitts Neurons

A: all B: 1,2,4

C: 2 D: 2,4

 How can you use a Rosenblatt Perceptron to represent a McCulloch Pitts Neuron?

How can you use a Rosenblatt Perceptron to represent a McCulloch Pitts Neuron?

 x_1

How can you use a Rosenblatt Perceptron to represent a McCulloch Pitts Neuron?

 x_1

How can you use a Rosenblatt Perceptron to represent a McCulloch Pitts Neuron?

How can you use a Rosenblatt Perceptron to represent a McCulloch Pitts Neuron?

• How can you use a Rosenblatt Perceptron to represent a

McCulloch Pitts Neuron?

Content

- Revision: Mahalanobis Classifier
- Revision: Lecture
- Hebbian Learning

Hebbian Learning

- Postulated by Donald Olding Hebb in 1949
- Foundation of many learning rules

lly

Hebbian Learning

- Postulated by Donald Olding Hebb in 1949
- Foundation of many learning rules
- Idea:
 - If neuron j receives a signal from neuron i and both neurons are strongly activated, then the connection of j and i should be strong!

Hebbian Learning

- Postulated by Donald Olding Hebb in 1949
- Foundation of many learning rules
- Idea:
 - If neuron j receives a signal from neuron i and both neurons are strongly activated, then the connection of j and i should be strong!
 - In artificial neural networks the strength og the connection is usually represented by the edge weight

Calculation of propagated value

$$h_1 = \sum_{i=0}^{3} w_{i1} x_i$$

$$h_2 = \sum_{i=0}^3 w_{i2} x_i$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad W = \begin{bmatrix} w_{01} & w_{02} \\ w_{11} & w_{12} \\ w_{21} & w_{22} \\ w_{31} & w_{32} \end{bmatrix}$$

$$\begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = W^T \cdot x$$

- Given:
 - Outputs of previous neurons (can also be input neurons)

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme: input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme : input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme: input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$
- Weights in between all neurons

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme : input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$
- Weights in between all neurons
- Learning rate α

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme : input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$
- Weights in between all neurons
- Learning rate α
- Learning Rule:
 - Update weights by comparing similarity of outputs

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme : input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$
- Weights in between all neurons
- Learning rate α
- Learning Rule:
 - Update weights by comparing similarity of outputs
 - $\Delta w_{i,j} := \alpha \cdot x_i \cdot h_j$

- Given:
 - Outputs of previous neurons (can also be input neurons)
 - In case of scheme : input neurons, i.e:

$$x_0, x_1, x_2, \dots x_n \in \{-1, 1\}$$

- Output of current neurons
- In case of scheme: h_1 , $h_2 \in \{-1, 1\}$
- Weights in between all neurons
- Learning rate α
- Learning Rule:
 - Update weights by comparing similarity of outputs
 - $\Delta w_{i,j} := \alpha \cdot x_i \cdot h_j$
 - $w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$

