Scilab Textbook Companion for Solid State Electronic Devices by B. G. Streetman And S. K. Banerjee¹

Created by
Priyanka Jain
B.Tech + M.Tech Dual Degree
Electrical Engineering
IIT Bombay
College Teacher
Nil
Cross-Checked by

May 20, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Solid State Electronic Devices

Author: B. G. Streetman And S. K. Banerjee

Publisher: PHI Learning Pvt. Ltd., New Delhi

Edition: 6

Year: 2006

ISBN: 978-81-203-3020-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Crystal Properties and Growth of Semiconductors	6
2	Atoms and Electrons	9
3	Energy Bands and Charge Carriers in Semiconductors	10
4	Excess Carriers in Semiconductors	16
5	Junctions	21
6	Field Effect Transistors	25
7	Bipolar Junction Transistor	28
8	Optoelectronic Devices	30

List of Scilab Codes

Exa 1.1	Maximum packing fraction
Exa 1.2	planes and directions
Exa 1.3	Volume density of Silicon in lattice
Exa 1.4	Czochralski method for Silicon crystal growth
Exa 2.1	expectation of momentum
Exa 3.1	free electron momentum
Exa 3.2	E k Rleationship
Exa 3.3	radius of electron orbit
Exa 3.4	density of states effective mass
Exa 3.5	equilibrium hole concentration
Exa 3.6	conductivity effective mass
Exa 3.7	current and resistance in a Si bar
Exa 3.8	concentration and mobility of majority carrier 14
Exa 4.1	Excitation and band to band recombination leading to
	photoluminescence
Exa 4.2	decay of excess population for a carrier recombination 1'
Exa 4.3	steady state carrier generation
Exa 4.4	electron quasi fermi level position and carrier concen-
	tration
Exa 4.5	diffusion length and hole current
Exa 4.6	Haynes Shockley experiment
Exa 5.1	contact potential and fermi level position
Exa 5.2	electric field and charge density in junction 2
Exa 5.4	Current in forward and reverse biased pn junction 22
Exa 5.6	depletion capacitance
Exa 5.7	Heterojunctions
Exa 6.1	mos transistor
Exa 6.2	drain current in mosfet

Exa 6.3	ion implantation	27
Exa 7.1	steady state charge in transistor	28
Exa 7.4	bjt saturation current	28
Exa 8.2	solar cells	30
Exa 8.3	fibre optic communication	30

List of Figures

3.1	E k Rleationship	1.
4.1	decay of excess population for a carrier recombination	17
4.2	decay of excess population for a carrier recombination	18

Crystal Properties and Growth of Semiconductors

Scilab code Exa 1.1 Maximum packing fraction

Scilab code Exa 1.2 planes and directions

```
1 disp("The plane illustrated in Fig. 1-5 has intercepts at 2a, 4b and lc along the three
```

crystal axes. Taking the reciprocals of these
intercepts, we get 1/4, 1/2, and 1. These three
fractions have the same relationship to each
other as the integers 2,1, and 4 (obtained by
multiplying each fraction by 4). Thus the plane
can be referred to as a (214) plane. The only
exception is if the intercept is a fraction of
the lattice constant a. In that case, we do not
reduce it to the lowest set of integers.")

2 x = 0:0.05:2;
3 y = 0:0.1:4;
4 a=2;
5 b=4;
6 c=1;
7 deff('[z]=fs(x,y)', 'z = (1-(0.5*x)-(0.25*y))');

Scilab code Exa 1.3 Volume density of Silicon in lattice

8 //z = (1 - (0.5*x) - (0.25*y));

9 fplot3d(x,y,fs);

```
1 a = 5.43*10^-8; // lattice constant
2 d = (1+4*0.25)/(a*a); //areal density on (100) plane
3 n = 2*(6*0.5+8*0.125); //number of atoms per cube
4 V = n/(a*a*a); //volume density
5 disp("3)")
6 disp(a,"lattice constant (in cm)=")
7 disp(d,"areal density on (100) plane (in per cm square) =")
8 disp(V,"volume density (in per cm cube) =")
```

Scilab code Exa 1.4 Czochralski method for Silicon crystal growth

```
1 n = 10^16; // desired density of P atoms
```

```
2 k = 0.35;
3 1 = 5000; //initial load of Si in grams
4 w =31; //atomic weight of P
5 d = 2.33; //density of Si
6 i = n/k; //initial concentration of P in melt,
     assuming C(S)=kC(L)
7 V = 1/d; //volume of Si
8 N = i*V; //number of P atoms
9 W = N*w/(6.02*10^23)
10 disp("4.a)")
11 disp(n," desired density of P atoms (per cubic
     centimeter)=")
12 disp(i,"initial concentration of P in melt (in per
     cubic cm )=")
13 disp("4.b)")
14 disp(V, "Volume of Si (in cubic cm) =")
15 disp(N,"number of P atoms =")
16 disp(W, "weight of phosphorus to be added(in grams) =
```

Atoms and Electrons

Scilab code Exa 2.1 expectation of momentum

```
//j=complex(0,1);
//psi = A*exp(j*k*x);
disp("px = h_cross*k(x)");

disp("If we try to evaluate these integrals directly, we run into the problem that both numerator and denominator tend to infinity, because an ideal plane wave is strictly not a normalizable wave function. The trick to use is to choose the limits of integration from, say, -L/2 to +L/2 in a region of length L.The factor L cancels out in the numerator and denominator. Then we can consider L approaches infinity. For wave functions that are normalizable, such a mathematical trickdoes not have to be used.")
```

Energy Bands and Charge Carriers in Semiconductors

Scilab code Exa 3.1 free electron momentum

```
//j=complex(0,1);
//psi = U*exp(j*k*x);
disp("px = h_cross*k(x)");
multiple the second of the s
```

Scilab code Exa 3.2 E k Rleationship

Figure 3.1: E k Rleationship

```
1 //p = m*v
2 //p = h*k; //electron momentum, where h is constant
3 //E = 0.5*p*p/m
4 //E = 0.5*h*k*k/m; //electron energy
5 k = -10:0.01:10; //limits on wave vector k
6 E = k^2; // E is proportional to square of wave vector
7 plot(k,E)
```

Scilab code Exa 3.3 radius of electron orbit

```
1 n = 1;
2 epsilonr = 11.8; //relative dielectric constant for silicon
3 epsilon = 8.85*10^-12; //dielectric constant
4 m = 9.11*10^-31; //mass of electron
5 mn = 0.26*m; //for silicon
6 h = 6.63*10^-34;
7 q = 1.6*10^-19; //electronic charge
8 r = 10^10*(epsilonr*epsilon*h*h)/(mn*q*q*%pi); // radius in armstrong
9 disp(r, radius of electron orbit around donor (in armstrong) =")
10 disp("This is more than 4 lattice spacings a = 5.43 armstrong.")
```

Scilab code Exa 3.4 density of states effective mass

```
5 mn0 = mn/m;
6 disp(mn, "density of states effective mass (in kilogram)=")
7 disp(mn0, "density of states effective mass in proportion to mass of electron=")
```

Scilab code Exa 3.5 equilibrium hole concentration

Scilab code Exa 3.6 conductivity effective mass

```
1 m = 9.11*10^-31; //mass of electron
2 ml = 0.98*m;
3 mt = 0.19*m;
4 mninverse = (1/3) * ((1/ml)+(2/mt));
5 mn = 1/mninverse;
6 mn0 = mn/m;
7 disp(mn0, "Conductivity effective mass in proportion to mass of an electron =")
```

Scilab code Exa 3.7 current and resistance in a Si bar

```
1  un= 700;
2  q = 1.6*10^-19;
3  n0 = 10^17;
4  L = 0.1;
5  A = 10^-6;
6  V = 10;
7  sigma = q*un*n0;
8  rho = 1/sigma;
9  R = rho*L/A;
10  I = V/R;
11  disp(sigma, "Conductivity (in per ohm-cm)=")
12  disp(rho, "resistivity (in ohm-cm)=")
13  disp(R, "resistance (in ohm)=")
14  disp(I, "current (in ampere)=")
```

Scilab code Exa 3.8 concentration and mobility of majority carrier

```
1 w = 0.01;
2 w1 = w*10^-3
3 t = 10^{-3};
4 L = 0.5;
5 B = 10*10^{-5};
6 I = 10^{-3};
7 \text{ Vab} = -2 *10^{-3};
8 \text{ Vcd} = 0.1;
9 q = 1.6*10^-19;
10 q1 = q*10^-3
11 n0 = I*B/(q1*-Vab);
12 rho = (Vcd/I)/(L/w1);
13 u = 1/(rho*q*n0);
14 disp(n0, "electron concentration (in per cubic
      centimeter)=")
15 disp(rho, "resisitivity (in ohm-cm)=")
```

16 disp(u,"mobility (in square cm per volt-sec)=")

Excess Carriers in Semiconductors

Scilab code Exa 4.1 Excitation and band to band recombination leading to photoluminescence

```
1 t = 0.46 *10^-4;
2 hv = 2;
3 alpha = 5*10^4;
4 I0 = 10^-2;
5 It = I0*exp(-alpha*t);
6 Pabs = I0 - It;
7 f = (2-1.43)/2;
8 P = f*Pabs;
9 n = Pabs/(1.6*10^-19*hv);
10 disp(Pabs, "total energy absorbed per second (in watt )=")
11 disp(P, "amount of energy converted to heat per second (in watt)=")
12 disp(n, "number of photons per second given off form recombination events =")
```


Figure 4.1: decay of excess population for a carrier recombination

Scilab code Exa 4.2 decay of excess population for a carrier recombination

```
1 p0 = 10^15;
2 \text{ ni} = 10^6;
3 n0 = ni^2/p0;
4 disp(n0, "Minority electron concentration (in per
      cubic centimeter)=" )
5 dn = 10^14;
6 	 dp = 10^14;
7 tn = 10; //in nanoseconds
8 	 tp = tn;
9 t = 0:10:50;
10 del_n = dn*exp(-t/tn);
11 del_p = dp*exp(-t/tp);
12 p = p0 + del_p;
13 n = del_n; //since n0 is negligible
14 subplot (121);
15 plot(t,log(p));
16 plot(t, log(n));
17 subplot (122);
```


Figure 4.2: decay of excess population for a carrier recombination

```
18 plot(t,p);
19 plot(t,n);
```

Scilab code Exa 4.3 steady state carrier generation

```
1  n0 = 10^14;
2  ni = 1.5*10^10;
3  Tn = 2 *10^-6;
4  Tp = 2 *10^-6;
5  p = 2*10^13;
6  p0 = ni^2/n0;
7  disp(p0," hole concentration (per cubic centimeter)=")
```

Scilab code Exa 4.4 electron quasi fermi level position and carrier concentration

```
1  n0 = 10^14;
2  dn = 2*10^13;
3  n = n0+dn;
4  kT = 0.0259;
5  ni = 1.5*10^10;
6  Ei = kT*log(n0/ni);
7  Fn = Ei + kT*log(n/ni);
8  E = Fn-Ei;
9  disp(n, "steady state electron concentration=")
10  disp(Ei, "equilibrium Fermi level (in eV)=")
11  disp(E, "electron quasi Fermi level position(in eV)=")
```

Scilab code Exa 4.5 diffusion length and hole current

```
1 A = 0.5;
2 \text{ Na} = 10^17;
3 p0 = Na;
4 \text{ ni} = 1.5*10^10;
5 dp = 5*10^16;
6 x = 10^{-5};
7 \text{ up} = 500;
8 \text{ Tp} = 10^-10;
9 kT = 0.0259;
10 \quad q0 = 1;
11 q = 1.6*10^-19;
12 Dp = kT*up/q0;
13 Lp = sqrt(Dp*Tp);
14 p = p0 + dp*exp(-x/Lp);
15 E = kT*log(p/ni);
16 E0 = 1.1/2 + E;
17 Ip = q*A*Dp*dp*exp(-x/Lp)/Lp;
18 Qp = q*A*dp*Lp;
19 Qp0 = Qp*10^6;
20 disp(E0, "steady state separation between Fp and Ec (
```

```
in eV)=")
21 disp(Ip, "hole current (in ampere)=")
22 disp(Qp, "excess stored hole charge (in coulomb)=")
23 disp(Qp0, "excess stored hole charge (in micro-coulomb)=")
```

Scilab code Exa 4.6 Haynes Shockley experiment

```
1 l = 1;
2 d = 0.95;
3 E0 = 2;
4 t = 0.25*10^-3;
5 dt = 117*10^-6;
6 up = (d/t)/(E0/1);
7 Dp = dt^2*d^2/(16*t^3);
8 C = Dp/up;
9 kT = 0.0259;
10 disp(up,"hole mobility (in square cm per Volt-second)=")
11 disp(Dp,"diffusion coefficient (in square cm per second)=")
12 disp(C,"Diffisuion coefficient/Hole mobility (in volts) = ")
13 disp("Verified according to Einstein Relation")
```

Junctions

Scilab code Exa 5.1 contact potential and fermi level position

```
Na = 10^18;
Nd = 5*10^15;
ni = 1.5*10^10;
kT = 0.0259;
E1 = kT*log(Na/ni);
QV1 = E1+E2;
qV2 = kT*log(Na*Nd/ni^2);
disp(E1, "Fermi level position in p region (in eV)=")
disp(E2, "Fermi level position in n region (in eV)=")
disp(qV1, "Contact potential (in eV)=")
disp(qV2, "Contact potential (in eV)=")
disp(qV2, "Contact potential (in eV)=")
disp("Contact potential value verified")
```

Scilab code Exa 5.2 electric field and charge density in junction

```
1 Na = 10<sup>18</sup>;
2 Nd = 5*10<sup>15</sup>;
```

```
3 \text{ ni} = 1.5*10^10;
4 kT = 0.0259;
5 \text{ epsilon0} = 8.85*10^-14;
6 \text{ epsilon} = 11.8;
7 q = 1.6*10^-19;
8 E1 = kT*log(Na/ni);
9 E2 = kT*log(Nd/ni);
10 \text{ qV1} = \text{E1} + \text{E2};
11 qV2 = kT*log(Na*Nd/ni^2);
12 d = 10*10^-4; //in centimetre
13 A = \%pi*d^2/4;
14 W = sqrt(2*epsilon*epsilon0*qV1/q *(Na^-1 + Nd^-1));
15 \text{ xn0} = W/(1+(Nd/Na));
16 \text{ xp0} = W/(1+(Na/Nd));
17 Q = q*A*xn0*Nd;
18 E0 = -q*xn0*Nd/(epsilon*epsilon0);
19 disp(W*10^4," width of the transition region (in
      micron)=")
20 disp(xn0*10^4," penetration of the space charge
      region into the n material (in micron)=")
21 disp(xp0*10^4, "penetration of the space charge
      region into the p material (in micron)=")
22 disp(Q," total uncompensated charge (in coulomb)=")
23 disp(E0, "maximum electric field(in V per cm)=")
```

Scilab code Exa 5.4 Current in forward and reverse biased pn junction

```
1 A = 10^-4;
2 kT = 0.0259;
3 ni = 1.5*10^10;
4 q = 1.6*10^-19;
5 q0 = 1;
6 Na = 10^17;
7 Nd = 10^15;
8 Tn = 10^-7;
```

```
9 \text{ Tp} = 10^-5;
10 \text{ upp} = 200;
11 \text{ unn} = 1300;
12 \text{ unp} = 700;
13 \text{ upn} = 450;
14 \text{ V1} = 0.5;
15 \quad V2 = -0.5;
16 pn = ni^2/Nd;
17 \text{ np} = \text{ni}^2/\text{Na};
18 Dp = kT*upn/q0;
19 Dn = kT*unp/q0;
20 \text{ Lp = } \text{sqrt(Dp*Tp)};
21 Ln = sqrt(Dn*Tn);
22 I1 = q*A*((Dp*pn/Lp)+(Dn*np/Ln))*(exp(q0*V1/kT)-1);
23 I2 = -q*A*((Dp*pn/Lp)+(Dn*np/Ln));
24 disp(pn, "hole concentration (per cubic centmeter)=")
25 disp(np," electron concentration (per cubic centmeter
      )=")
26 disp(Dp, "diffusion coefficient on n side(in square
      centimter per second)=")
27 disp(Dn," diffusion coefficient on p side(in square
      centimter per second)=")
  disp(I1*10^6, "current at forward bias (in
      microampere)=")
29 disp(I2*10^6, "current at reverse bias (in
      microampere)=")
```

Scilab code Exa 5.6 depletion capacitance

```
1 A = 10^-4;

2 kT = 0.0259;

3 ni = 1.5*10^10;

4 q = 1.6*10^-19;

5 Na = 10^17;

6 Nd = 10^15;
```

```
7 epsilon0 = 8.85*10^-14;
8 epsilon = 11.8;
9 E1 = kT*log(Na/ni);
10 E2 = kT*log(Nd/ni);
11 V0 = E1+E2;
12 V = -4;
13 Cj = sqrt(epsilon*epsilon0)*A*sqrt(q*Nd*Na/(2*(V0-V)*(Na+Nd)));
14 disp(V0,"V0 (in volt)=")
15 disp(Cj,"total depletion constant (in farad)=")
```

Scilab code Exa 5.7 Heterojunctions

```
1 dEtg = 1.85;
2 band_gap = 1.43; //for GaAs-AlGaAs system
3 dEg = dEtg - band_gap;
4 dEc = dEg*2/3;
5 dEv = dEg/3;
6 disp(dEc, "Conduction band offset(in eV) =")
7 disp(dEv, "Valence band offset(in eV) =")
```

Field Effect Transistors

Scilab code Exa 6.1 mos transistor

```
1 kT = 0.0259;
2 \text{ ni} = 1.5*10^10;
3 q = 1.6*10^-19;
4 q0 = 1;
 5 = 8.85*10^-14;
6 \text{ epsilon} = 11.8;
7 \text{ epsiloni} = 3.9;
8 \text{ Na} = 5*10^15;
9 d = 10^-6;
10 Qi = 4*10^10*q;
11 Vf = kT*log(Na/ni)/q0;
12 Wm = 2*sqrt(epsilon*epsilon0*Vf/(q*Na));
13 \text{ Vms} = -0.95;
14 Ci = epsiloni*epsilon0/d;
15 Vfb = Vms - (Qi/Ci);
16 \text{ Qd} = -q*Na*Wm;
17 Vt = Vfb-Qd/Ci+2*Vf;
18 Cd = epsilon*epsilon0/Wm;
19 Cmin = Ci*Cd/(Ci+Cd);
20 \operatorname{disp}(\operatorname{Vf}, \operatorname{Phi}(F) \text{ (in eV)=")}
21 disp(Wm*10^4, "W(m) (in micron)=")
```

```
disp(Qi, "effective interface charge (in coulomb per square cm)=")
disp(Ci*10^6, "C(i) (in microfarad per square cm)=")
disp(Vfb, "V(fb)(in V)=")
disp(Qd, "Q(d)(in coulomb per square cm)=")
disp(Vt, "V(T) (in V)=")
disp(Cd*10^6, "C(d) (in microfarad per square cm)=")
disp(Cmin, "C(min) (in farad per square cm)=")
```

Scilab code Exa 6.2 drain current in mosfet

```
1 kT = 0.0259;
2 \text{ ni} = 1.5*10^10;
3 q = 1.6*10^-19;
4 q0 = 1;
5 \text{ epsilon0} = 8.85*10^-14;
6 \text{ epsilon} = 11.8;
7 \text{ epsiloni} = 3.9;
8 \text{ Na} = 5*10^15;
9 d = 10^-6;
10 \text{ Vt} = 0.6;
11 Z = 25*10^-4;
12 L = 10^{-4};
13 \text{ Vg1} = 5;
14 \text{ Vd1} = 0.1;
15 \text{ Vg2=3};
16 \text{ Vd2=5};
17 Vdsat = Vg2-Vt;
18 \text{ Vd3=7};
19 \text{ un = } 200;
20 Ci = epsiloni*epsilon0/d;
21 Id1 = (Z*un*Ci/L)*((Vg1-Vt)*Vd1-0.5*Vd1^2); //linear
        region
22 \text{ Id2} = (Z*un*Ci/L)*((Vg2-Vt)*Vdsat-0.5*Vdsat^2); //
       saturation region
```

Scilab code Exa 6.3 ion implantation

```
1 q = 1.6*10^-19;
2 q0 = 1;
3 = 8.85*10^-14;
4 \text{ epsilon} = 11.8;
5 \text{ epsiloni} = 3.9;
6 d = 10^-6;
7 \text{ Vt1} = -1.1;
8 \text{ Vt2} = -0.5;
9 I = 10^-5;
10 A = 650;
11 Ci = epsiloni*epsilon0/d;
12 Fb = (Vt2-Vt1)*Ci/q;
13 t = Fb*q*A/I;
14 disp(Ci*10^6, "C(i) (in microfarad per square cm)=")
15 disp(Fb, "boron ion dose required (in per square cm)=
16 disp(t, "implant time (in second)=")
```

Bipolar Junction Transistor

Scilab code Exa 7.1 steady state charge in transistor

```
1  tp = 10^-5;
2  ts = 10^-7;
3  ib = 10^-4;
4  ic = 10^-2;
5  Qn = ic*ts;
6  Qp = ib*tp;
7  disp(Qp, "steady state charge due to excess holes (in coulomb)=")
8  disp(Qn, "steady state charge due to excess electrons (in coulomb)=")
```

Scilab code Exa 7.4 bjt saturation current

```
1 A=10^-4;

2 q = 1.6*10^-19;

3 kT = 0.0259;

4 Wb = 10^-4;

5 ni = 1.5*10^10;
```

```
6 \text{ Na} = 10^17;
7 \text{ Tn} = 10^{-7};
8 \text{ upe} = 200;
9 une=700;
10 \text{ Nd} = 10^{15};
11 Tp=10^-5;
12 unb=1300;
13 upb=450;
14 \text{ Veb} = 0.3;
15 \text{ Vcb} = -40;
16 \text{ pn} = \text{ni}^2/\text{Nd};
17 Dp = upb*kT;
18 Lp = sqrt(Dp*Tp);
19 Ies = q*A*Dp*pn/Lp*(csch(Wb/Lp)+tanh(Wb/Lp));
20 dpe = pn*exp(Veb/kT);
21 Ib = q*A*Dp*dpe/Lp*tanh(Wb/2*Lp);
22 Ib1 = q*A*Wb*dpe/(2*Tp);
23 Dn = kT*une;
24 \text{ Ln} = \text{sqrt}(Dn*Tn);
25 \quad \text{gamma1} = (1+((Dn*Lp*Nd)/(Dp*Ln*Na))*tanh(Wb/Lp))^-1;
26 B = sech(Wb/Lp);
27 alpha = B*gamma1;
28 \text{ beta1} = \text{alpha}/(1-\text{alpha});
29 disp(pn," hole concentration (in per cubic centimeter
      )=")
30 disp(Dp,"Dp (in sqaure centimeter per second)=")
31 disp(Lp*10,"Lp(in micrometer) =")
32 disp(dpe, "dp(E)(in per cubic centimeter) =")
33 disp(Ies,"I(ES) (in ampere)=")
34 disp(Ib1,"I(B) (in ampere)=")
35 disp(Dn,"Dn (in sqaure centimeter per second)=")
36 disp(Ln*10,"Ln (in micrometer)=")
37 disp(gamma1, "gamma =")
38 \text{ disp}(B, "B =")
39 disp(alpha, "alpha =")
40 disp(beta1,"beta =")
```

Optoelectronic Devices

Scilab code Exa 8.2 solar cells

```
1  Isc=100;
2  Voc=0.8;
3  ff = 0.7;
4  Pmax = ff*Isc*Voc;
5  disp(Pmax,"maximum power delivered(in miliwatt)=")
```

Scilab code Exa 8.3 fibre optic communication

```
1 wavelength = 0.68;
2 Eg = 1.24/wavelength;
3 disp(Eg,"band gap (in eV)=")
4 disp("From Fig, 3-6, we get Al(0.32)Ga(0.68)As. From Fig. 8-11, we get GaAs(0.68)P(0.32)")
```