How do we walk? Hybrid holonomy concepts

ADS, April 2022

Motivation

1. Periodic motion with a twist...

2. Collaboration, internal vs. external

Some math

A bundle (E, π, M) with $\pi : E \to M$ surjective, fibers $F_p := \pi^{-1}(p)$

With some add-ons

- ▶ principal bundle: $F_p \approx G$ Lie group. (assume isomorphic to $(\mathbb{R}^n, +)$)
- make it hybrid

How it works

Internal configuration \implies many possible external configurations.

Example

Pendulum on a 1D cart:

$$E = \mathbb{R} \times S^1$$
, $M = S^1$

Hybrid case

$$(E_i, \pi_i, M_i, S_{ij}, D_{ij})$$
, with $D_{ij} = (\Delta_{ij}, \tilde{\Delta}_{ij})$

Example

1D walking robot: $E_1 = E_2 = \mathbb{R} \times S^1$, $M_1 = M_2 = S^1$, $S_{12} = S_{21} = \frac{\delta}{2}$, $\Delta_{12} = -Id$.

Connections

How can we quantify "movement"? velocities \in tangent spaces TM, TE.

- Specify a horizontal space H_xM such that $T_xM = H_xM \oplus V_xM$
- ▶ Specify an infinitesimal horizontal direction ω : $T_xM \to T_eG$.

$$\omega = g^{-1}dg + A(m,g)dm$$

Lifts

Internal ightarrow external motion according to ω

- 1. Smooth case $\tilde{\gamma}:[0,1]\to E$ such that $\pi(\tilde{\gamma})=\gamma$
- 2. Hybrid case $\tilde{\gamma}(t) = \gamma_{i(n)}(t)$ for $t \in (i(n), i(n+1))$ where $\gamma_{i(n)}(t)$ is the smooth lift through $\Delta_{i(n-1)i(n)}(\gamma(t_{i(n-1)}))$

Connections from constraints

Allowable motion directions and velocities are given by the constraints.

Example

Chaplygin sleigh:

- constraint: $\dot{y} \cos \theta \dot{x} \sin \theta = 0$
- ► Horizontal space $\xi = (\theta, x, y, \dot{\theta}, \dot{x}, \dot{y}) \in H_{\theta,x,y}$ if $\omega(\xi) = 0$ where $\omega = \cos \theta dy \sin \theta dx$

Holonomy group

- what is internal and external
- ▶ what can we change ✓
- ▶ how are we allowed to move ✓

The big question

How much movement can we generate in the total space, by periodic motion in the base space? \implies Find $Hol_m(\gamma)$.

Holonomic vs non-holonomic

Periodic motion in the base \implies net displacement in the fiber \iff

$$extit{Hol}_{m{m}} = \{ g_{\gamma} | \gamma : [0,1]
ightarrow M, g_{\gamma} = \tilde{\gamma}(1) - \tilde{\gamma}(0) \}$$

- No net movement \iff $Hol_m = 0 \iff$ holonomic systems <u>ex:</u> One leg robot: $\omega = dx - l \cos \theta d\theta$
- Positive displacement \iff $Hol_m \neq 0 \iff$ non-holonomic system

ex: Rolling coin: $\omega = dx - Rd\theta$

Hybrid holonomy

What is the holonomy group of a hybrid system?

$$\omega = g^{-1}dg + A(m,g)dm \implies g^{-1}dg(X_{hor}) = A(m,g)dm(X_{hor})$$

Some assumptions

- ightharpoonup A(m,g)dm = dF(m) exact
- ► G abelian
- \triangleright $S = \cap S_{ij} \subset M_i \ \forall \ i, \ \Delta_{ij} = Id.$

Smooth:

$$extstyle extstyle extstyle Hol_m = \int_{ ilde{\gamma}}^{1} g^{-1} dg = \int_{0}^{1} dF(\gamma'(t)) dt = F(\gamma(1)) - F(\gamma(0))$$

BUT γ is hybrid \implies sum all the individual parts

$$Hol_m = \sum_{k=0}^m F_{i(k)}(\gamma(t_{i(k+1)})^-) - F_{i(k)}(\gamma(t_{i(k)})^+)$$

Some remarks

- ▶ $\gamma(t_{(i(k))}) \in S \implies$ Holonomy only depends on what happens on the guard!
- No term includes tangent vectors of the lifted space
- ightharpoonup Exactness \iff holonomic \iff integrable
- Independent of the loop!

Taking the limit of a walking robot

- \blacktriangleright Variables: hip position x, angles of feet with the vertical θ , ϕ
- Structure of a hybrid bundle $E_1 = E_2 = \mathbb{R} \times S^1$, $M_1 = M_2 = S^1$, $S = \frac{\delta}{2}$, $\Delta(\frac{\delta}{2}) = -\frac{\delta}{2}$, $\tilde{\Delta}(x) = x$

Some more ingredients

► Connection coming from constraints: $\begin{cases} \dot{x} = I \cos \theta d\theta \\ \dot{x} = I \cos \phi d\phi \end{cases} \implies \omega_1 = dx - \cos \theta d\theta, \quad \omega_2 = dx - \cos \phi d\phi$

- ► Holonomy group for each leg individually = 0
- \blacktriangleright $\omega_{1,2}$ exact and $\cos\theta d\theta = d(\sin\theta)$, $\cos\phi d\phi = d(\sin\phi)$.

Question:

What is the holonomy group of the entire system?

Follow the recipe

- 1. Set a point in the base space $\theta = \delta/2$, $\phi = -\delta/2$
- 2. Pick a nice loop

$$\theta(t) = \begin{cases} \delta - 4\delta t, & \text{if } t < \frac{1}{2} \\ -\delta + 4\delta \left(t - \frac{1}{2}\right), & \text{if } t \ge \frac{1}{2} \end{cases}$$

and define
$$\gamma(t) = \begin{cases} \theta(t), & \text{if } t \leq \frac{1}{2} \\ -\theta(t)), & \text{if } t > \frac{1}{2} \end{cases}$$

Keep going...

- 3. Integrate to find the local holonomy $\Delta x = 4IN \sin \delta/2$, N = number of steps
- 4. Take limit keeping $N\delta/2 \rightarrow C$.
- 5. Result $\Delta x \rightarrow IC \iff$ infinitesimally dx = IdC.

The future

- ▶ A fully general hybrid system where $\Delta_{ij} \neq Id$
- ▶ How about the dynamics? Changes the admissible loops
- what if the forms are not exact?
- ▶ What if the Lie group is not abellian?
- Some cool applications Any ideas?