Table 1: Signal Yields for various model points for $m_{\gamma\gamma} > 2$ TeV

Model Points	S + B	S
$d_u = 1.1, \Lambda_u = 2.750 \text{TeV}$	27.42	12.055
$d_u = 1.1, \Lambda_u = 2.875 \text{TeV}$	23.34	7.98
$d_u = 1.1, \Lambda_u = 3.000 \text{TeV}$	19.81	4.45
$d_u = 1.5, \Lambda_u = 1.750 \text{TeV}$	57.60	42.23
$d_u = 1.5, \Lambda_u = 2.250 \text{TeV}$	25.64	10.27
$d_u = 1.5, \Lambda_u = 2.500 \text{TeV}$	20.20	4.83
$d_u = 1.9, \Lambda_u = 2.000 \text{TeV}$	50.46	35.1
$d_u = 1.9, \Lambda_u = 2.500 \text{TeV}$	24.64	9.27
$d_u = 1.9, \Lambda_u = 3.000 \text{TeV}$	19.89	4.53

^{*} Here we are assuming that $n_{obs}=B=15.36$. The $95CL_s$ upper limit for S+B is at 24.7 (S=9.7). With this simple counting experiment we can exclude with 95% confidence model points which have S>9.7. Without accounting for systematic uncertainties, we can exclude the following: $d_u=1.9:\Lambda_u<2500,\ d_u=1.9:\Lambda_u<2500,\ d_u=1.5:\Lambda_u<2250,\ d_u=1.1:\Lambda_u<2875.$