

Escola Secundária Frei Heitor Pinto

Curso Profissional: Programador/a de Informática

PSD - 10.º ano: UFCD 0810 - Programação em C/C++ - avançada

Ficha de Trabalho 6

Ano letivo 21/22

Vetores e apontadores

- a) O nome de um vetor é igual ao endereço do 1º elemento (o seu menor endereço), isto é, se v for um vetor $\mathbf{v} = \mathbf{k} \mathbf{v}[\mathbf{0}]$;
- b) Se o nome de um vetor é um endereço então o nome de um vetor é um apontador para o 1º elemento desse vetor (no entanto, não pode ser alterado durante a execução do programa a que pertence, apontando sempre para o 1.º elemento);
- c) Tendo em conta a) e b) concluímos que se i é o i-ésimo elemento do vetor v então:
 - \triangleright &v[i] é equivalente a v + i, para obter o endereço do i-ésimo elemento;
 - \triangleright v[i] é equivalente a *(v + i), para obter o conteúdo armazenado na i-ésima posição.

Apontadores para vetores

Suponhamos que tínhamos as seguintes declarações:

int $v[3] = \{10, 20, 30\};$

int *ptr;

para colocar o ponteiro ptr a apontar para o 1.º elemento de v fazemos:

ptr=&v[0]; ou ptr=v;

printf (%d %d\n",v[0],*ptr); /* output: **10 10** */

Modos de aceder ao valor 30

ν[2]	Valor existente na posição de índice 2 do vetor		
*(ptr+2)	ptr contém o endereço do 1º valor, se adicionarmos 2, obtemos o endereço do valor		
	30. Para obter o valor basta usar o operador * (valor apontado por)		
*(v+2)	Se $v==\&v[0]$ usa-se a mesma estratégia do exemplo anterior		
ptr[2]	O endereçamento de elementos através de parêntesis retos pode ser realizado		
	também por apontadores, como se de um vetor se tratasse		

EXERCÍCIOS:

1- Supõe o seguinte esquema que corresponde à seguinte declaração

Completa o seguinte quadro colocando as expressões que dão como resultado o conteúdo da coluna valor

Usando s	Usando ptr	Valor
		ʻr'
		100
		101
		500

2- Escreve um programa que mostre uma string no ecrã pela ordem que foi introduzida e pela ordem contrária. Deves usar um apontador para a string para percorrer a mesma.

Apontadores de apontadores

Uma vez que os apontadores ocupam espaço em memória, é possível obter a sua posição através do operador &

Sintaxe:

tipo **pr;

Sendo:

ptr o nome da variável do tipo apontador de apontador

tipo* o tipo de variável para a qual apontará (um apontador)

* o operador conteúdo indica que ptr é uma variável do tipo apontador

(...e assim sucessivamente, sem qualquer limitação de asteriscos)

Exemplificação (resumo):


```
#include<stdio.h>
main()
{
int x=5, *px=&x, **ppx=&px; /*px aponta para x e ppx aponta para px*/
printf("x= %d &x= %d\n", x, &x);
printf("x= %d &x= %d\n", *px, px);
printf("x= %d &x= %d\n", **ppx, *ppx);
```

Expressão	Tipo	Valor	Descrição
×	int	5	Valor de x
рх	int*	1000	Endereço de x
*px	int	5	Valor apontado por px
ррх	int**	1002	Endereço de px
ррх	Int	1000	Valor apontado por ppx
**ppx	int	5	Valor apontado pelo endereço apontado por ppx

