

TEKNOFEST 2021 ROKET YARIŞMASI Orta İrtifa Kategorisi Kritik Tasarım Raporu (KTR) Sunuşu Albedo Roket Takımı

Takım Yapısı

Yarışma Roketi Genel Bilgiler

Yarışma Roketi Hakkında Genel Bilgiler

	Ölçü
Boy (mm):	2330
Çap (mm):	136
Roketin Kuru Ağırlığı (g):	16732
Yakıt Kütlesi (g):	4349
Motorun Kuru Ağırlığı (g):	2683
Faydalı Yük Ağırlığı (g):	4000
Toplam Kalkış Ağırlığı (g):	27764

Tahmin Edilen Uçuş Verileri ve Analizleri

	Ölçü
Kalkış İtki/Ağırlık Oranı:	1,65
Rampa Çıkış Hızı (m/s):	32,6
Stabilite (0.3 Mach için):	3,56
En büyük ivme (g):	8,90
En Yüksek Hız (m/s):	265
En Yüksek Mach Sayısı:	0,79
Tepe Noktası İrtifası (m):	3005

Motor Seçimleri

Birinci tercih :	Cesaroni M2020
İkinci tercih :	Cesaroni M2150

Open Rocket Genel Tasarım - 1

ÖTR - KTR Değişimler - 1

Değişim Konusu	ÖTR'de hangi sayfada	ÖTR'de içerik neydi ?	KTR'de içerik ne oldu ?	KTR'de hangi sayfada	Değişim Konusu	ÖTR'de hangi sayfada	ÖTR'de içerik neydi ?	KTR'de içerik ne oldu ?	KTR'de hangi sayfada
Entegrasyon Gövdesi Üretim Malzemesi	22	Karbonfiber	Fiberglass	56	Kapak #2, #3, #4 Çap Değişimi	-	Kapak #2 – 120mm Kapak #3, #4 – 122mm	Kapak #2, #3, #4 – 128mm	61
Entegrasyon Gövde B. Üretim Malzemesi	23	Alüminyum	Fiberglass	58	Motor Ön Kapağı Üretim Malzemesi ve Çapı	14	Alüminyum – 128mm	Fiberglass – 124mm	61 & 62
Kurtarma Mekanizması Tüpü Üretim Malzemesi	24	Alüminyum	Fiberglass	60	Motor Bloğu Uzunluğu	25	757mm	893mm	57
Kurtarma Mekanizması Tüpü Uzunluğu	24	195mm	100mm	59	Kapak #5 Üretim Malzemesi	14	Fiberglass	Alüminyum	62
Kapak #1 Uzunluğu ve Çapı	-	Uzunluğu: 5mm Çapı: 124mm	Uzunluğu: 10mm Çapı: 128mm	61	Aviyonik Tüp Çapı	24	124mm	128mm	59
Kapak #1 Üretim Malzemesi	14	Fiberglass	Alüminyum	62	Aviyonik, Faydalı Yük Sensör Değişimi	35 & 39	MPU 6050 sensörü var	MPU 6050 çıkartıldı	24 & 33
GPS Tipi Değişimi	39	Neo 7M	Neo 6M	21,24,33	İletişim Modülü Değişimi	35 & 39	xBee Pro S2C	xBee 3	33

ÖTR - KTR Değişimler - 2

Değişim Konusu	Yeni İçerik Konusu ?	KTR'deki İçerik Detayı ?	KTR'de Hangi Sayfada?
Yedek Aviyonik	OpenRocket tasarımına yedek aviyonik eklenmesi	Sistemde var olan yedek aviyonik OpenRocket programı üzerindeki tasarımda da gösterilmiştir.	4
Röle	Servo motor için röle eklenmesi	Kurtarma sistemlerini aktif etmek için kullanılan servo motor için röle eklendi.	43

3 Serbestlik Dereceli Uçuş Benzetimi

Ayrıca paylaşılmış olan 3-DOF KTR Raporu ile değerlendirme gerçekleştirilecektir.

Bu Sayfa boş bırakılacaktır.

Pdf formatında yüklenmiş raporun adı burada belirtilmelidir.

Şartnamenin 3.2.1.21 numaralı maddesi uyarısınca gerçekleştirilmelidir. Bu bölüm iki yansıyı geçmemelidir.

Bu bölümde şartnamede yer alan **3.2.1.19**, **3.2.1.20**, **3.2.1.21** ve **3.2.4.10** numaralı gereksinimlerin karşılanıp karşılanmadığı kontrol edilecektir.

Roketin Uçuş Süresince Yükseklik Zaman Grafiği

Uçuş Öncesi

- 1. Roket fırlatma bölgesine montaj edilmemiş halde taşınacaktır.
- Önceden denemesi yapılarak montajı belirlenen roketin takım üyelerinin tamamının birlikte çalışmasıyla montajı yapılacaktır.
- Roketin aviyonik sistemi montajlanmadan önce doğru çalışıp çalışmadığı kontrol edilecek, piller değiştirilecektir.
- 4. Aviyonik sistemin montajından sonra hakem altimetresi, ilgili hakemin gözetiminde roketteki aviyonik tüpün içine yerleştirilecektir.
- 5. Roket mekanik ekibi tarafından rampaya taşınacak ve rampaya yerleştirilecektir.

Uçuş Esnası

	Zaman (s)	İrtifa (m)	Hız (m/s)
Fırlatma	0	0	0
Rampa Tepesi	0,39	6	32,6
Burn Out	4,32	721,84	257,95
Tepe Noktası	24,84	3005	1
Paraşüt Açılması	171,41	599,55	15,25
Paraşüt Sonrası	252	0	7,38

Uçuş Sonrası

- Roket güvenli bir şekilde yere iniş yaptıktan sonra GPS verisinden yararlanılarak roketin konumu tespit edilecektir.
- 2. Kurtarma ekibi tespit edilen konuma gidip buzzer'ın sesiyle roketin yerini tespit edecek ve paraşütü söküp roketi araca yükleyecektir.
- 3. Roket fırlatma alanına getirildikten sonra sistemdeki verilerin kaydedildiği SD kart sökülüp içindeki veriler kontrol edilecektir.
- 4. Hakem altimetresi sökülerek hakem heyetine teslim edilecektir.
- 5. Roket taşımaya uygun şekilde sökülüp paraşütleri katlanarak taşımaya uygun hale getirilecektir.

İrtifa/Zaman Grafiği

Simulation 1

İvme/Zaman Grafiği

Simulation 1

Mach/Zaman Grafiği

ALT SİSTEM DETAY İÇERİKLERİ

Alt Sistem	Komponent	Malzeme	Üretim Yöntemi Adı	Çap (mm)	Cidar (mm)	Uzunluk (mm)	Adet
	Burun Konisi + Omuzluk	Fiberglass	Elle Yatırma	136	4	604	1
Gövde	Üst Gövde	Fiberglass	Elle Yatırma	136	4	900	1
Parçaları	Entegrasyon Gövdesi	Fiberglass	Elle Yatırma	136	4	50	1
	Alt Gövde	Fiberglass	Elle Yatırma	136	4	950	1
	Kanatçık	Alüminyum	Talaşlı İmalat	-	8	260	1
	Ana Paraşüt	Ripstop Naylon	Hazır Malzeme	3000	-	-	1
Paraşütler	Sürüklenme Paraşütü	Ripstop Naylon	Hazır Malzeme	800	-	-	1
	Faydalı Yük Paraşütü	Ripstop Naylon	Hazır Malzeme	1550	-	-	1

ALT SİSTEM DETAY İÇERİKLERİ

Alt Sistem	Komponent	Malzeme	Üretim Yöntemi Adı	Çap (mm)	Cidar (mm)	Uzunluk (mm)	Adet
	Kurtarma Mekanizması Tüpü	Fiberglass	Elle Yatırma	128	2	100	1
	Aviyonik Tüp	Fiberglass	Elle Yatırma	128	2	170	1
	Faydalı Yük Tüpü	Fiberglass	Elle Yatırma	128	3	180	1
	Entegrasyon Gövdesi Bağlayıcısı	Fiberglass	Elle Yatırma	128	2	195	1
	Burun Konisi Kapağı	Alüminyum	Talaşlı İmalat	122	10	-	1
Gövde İçi	Kapak	Alüminyum	Talaşlı İmalat	128	10	-	4
Yapısal Destekler	Motor Yatağı	Alüminyum	Talaşlı İmalat	80	2	757	1
	Motor Arka Kapağı	Fiberglass	Elle Yatırma	128	10	-	1
	Motor Ön Kapağı	Fiberglass	Elle Yatırma	124	10	-	1
	Merkezleme Halkası	Fiberglass	Elle Yatırma	128	48	11	2

Kurtarma Sistemi Mekanik Görünüm

Burun Konisi Kurtarma Mekanizması (Sürüklenme Paraşütü)

Faydalı Yük ve Ana Paraşüt Kurtarma Mekanizması

Paraşüt Çıkarma Sistemi

1	Yaylı Sistem	Barut	Karbondioksit Tüpü
	Sınırsız tasarıma sahiptir.	Roketi kurtarma şansı çok yüksektir.	Hazır olarak satın alınabiliyor.
ntajlar	Yapılan testlerde malzeme harcamadan tekrar tekrar test yapılabilir.	Maliyeti azdır.	Patlama sonucu ısı vermiyor. Soğuk gaz salınımı mevcut.
Avan	Sızdırmaz bir sisteme gerek yok.	Malzemeleri kolayca tedarik edilebiliye	· · · · · ·
1	Sistemde gaz olmadığı için gazı yönlendirmek zorunda olunmuyor.	Sistemi üretip hazır hale getirmek için fazla bir zaman ayırmaya gerek yok.	Sistem patladıktan sonra paraşüte ve paraşüt iplerine zarar vermez.
	Yaylı Sistem	Barut	Karbondioksit Tüpü
	Üretim öncesi kütle tahmini yapmak zordur.	Sistemin sızdırmazlığını sağlamak gerek.	Sistemin sızdırmazlığını sağlamak gerek.
ntajlar	Tasarımı ve hesaplaması dikkatle yapılmalıdır.	Şartlar gereği roketi, barutu en son entegre edilecek şekilde tasarlamalı.	Tüpler tek kullanımlık olduğundan maliyetlidir.
ezavan	Barutlu sisteme göre pahalıdır.	Güvenlik açısından risklidir.	Hazneler metalden üretildiği için roketin ağırlığını artırır.
De	Barutlu sisteme göre daha ağırdır.	lsı yaydığından paraşütü yakabilir.	Tüplerin oturacağı hazneler ve tüpü delecek parça için işlenilmesi gereken parçalara ihtiyaç olacak.

Kurtarma sistemi avantaj dezavantajları yan görülmektedir. arafta Yaylı mekanik sistem kullanılmasına karar Tasarlanan verilmiştir. rokette yaylı mekanik kullanılacak sistem büyük olmasının en sebebi sistemin güvenli olmasıdır. Belli bir gaza vön vermek zorunda kalmamak ve roketimize daha uygun olacağını düşündüğümüzden dolayı yaylı mekanik sistem kullanılacaktır.

Paraşüt Çıkarma Sistemi

Paraşüt Çıkarma Sisteminin Çalışma Prensibi :

- Servo motorun mili döndürmesiyle mil çentik noktasından boşa çıkar ve milin tuttuğu yay sistemi aktif hale gelir. Burun konisi kurtarma sistemi burun konisini çıkartır, faydalı yük ve ana paraşütte kullanılan kurtarma sistemi ise faydalı yük ve ana paraşüt kapaklarını açar.
- Üst gövde ve burun konisindeki mapalara şok kordonuyla bağlı olan sürüklenme paraşütü uygulanan kuvvetle roket dışına çıkar ve kurtarmanın ilk aşaması gerçekleşmiş olur.
- Faydalı yük tüpünde bulunan paraşüt ve faydalı yük; kapağın roket dışına fırlarken oluşturduğu çekme kuvveti yardımıyla roketin dışına çıkar. Faydalı yük tüpünde bulunan kapak faydalı yük paraşütüne bağlı olduğu için faydalı yükle birlikte kurtarılır.
- Ana paraşüt; kapağın roket dışına fırlarken oluşturduğu çekme kuvveti yardımıyla roketin dışına çıkar. Ana paraşüt kapağı ana paraşüte bağlı olduğu için roketle birlikte kurtarılır.
- Paraşüt ayrılmalarının nasıl gerçekleşeceği ile ilgili <u>Patlatılmış CAD Görüntüsü</u> aşağıdaki linkten ulaşılabilir durumdadır.
 - -> https://youtu.be/jBw2Wjx0eDA

Paraşüt Çıkarma Sistemi

<u>Kurtarma Sistemi Aktivasyonu:</u>

BMP180 basınç sensöründen gelen irtifa verisi istenilen değerlere ulaştığında servo motorlar yardımıyla ilk önce sürüklenme paraşütü sonra faydalı yük en son olarak da ana paraşüt mekanizması aktif olacaktır. Ana aviyoniğin sistemi çalıştırmaması durumunda yedek aviyonik bilgisayarı MPU 6050 ivme sensöründen gelen veriyi kullanarak sistemi aktif edecektir.

Parçanın işlevi:

- Sistemde 3 adet yay mekanizması bulunmaktadır.
- Birinci yay mekanizması burun konisinin açılıp sürüklenme paraşütünün dışarı çıkmasını sağlar.
- İkinci yay mekanizması faydalı yük kapağının açılmasını ve faydalı yükün bırakılmasını sağlar.
- Üçüncü yay mekanizması ana paraşüt kapağının açılmasını ve ana paraşütün dişarı fırlatılmasını sağlar.

Kurtarma Stratejisi ve Aşamaları:

- 1. Roket istenilen irtifaya (apogee) geldiğinde kurtarma mekanizması aktif olacaktır.
- 2. Kurtarma sistemi aktif olduktan sonra roket güvenli bir şekilde inişe geçer ve tahmini iniş bölgesine ulaşır. Roketin fırlatmadan itibaren canlı olarak konum takibi GPS sinyali ile yapılır.
- 3. Roket yere güvenli iniş yaptıktan sonra GPS verisinden yararlanılarak roketin konumu tespit edilir ve kurtarma ekibi yola çıkar.
- 4. Kurtarma ekibi tespit edilen konuma ulaşınca buzzerdan gelen ses ile roket ve faydalı yük bulunup kurtarılır.
- 5. Roket kurtarıldıktan sonra sistemin gücü kesilir. SD kart ve hakem altimetresi roketten sökülerek roket araca yüklenir.

Alt Sistemlerin İşlevi :

Kurtarma sisteminde bulunan servo motor yay mekanizmasının aktivasyonunda kullanır.

Paraşütler

Özellik		Kapsam Control						
Malzeme Bilgileri	:	Paraşütler ripstop naylon yani yırtılmaz bir yapıdan üretileceklerdir. Yırtılmaz yapı, üretimde kullanılan özel örgü tekniğiyle ortaya çıkar. Ripstop kumaşın örgüsünde iplikler, çapraz ve sıkı şekilde konumlanmıştır. Bu teknik, kumaş üzerinde minik kare desenler meydana getirir. Kare şeklindeki dokuma hücreleri, delinme gibi durumlarda deliğin büyümesini engeller. Günümüzde ripstop materyal pamuk, polyester, polyester- pamuk karşımı ve naylon- pamuk karışımı gibi çeşitli ipliklerden, farklı gramajlarda üretilebilmekte. Kumaşın sahip olduğu özellikler, üretimde kullanılan iplik türlerinden etkilenmektedir. Gerekli olduğunda bu kumaşa yanmazlık, anti statiklik gibi özellikler de kazandırılabilir.						
		Malzeme	Malzeme Cd Katsayısı Metrekare Ağırlığı					
		Yırtılmaz Kumaş (Naylon)	0,80	90 gram	2			
Üretim Yöntemleri	:	Paraşütlerin tamamının üretimi ripstop kumaştan yapılacaktır. Paraşüt tasarımımıza uygun ölçüler bulunması durumunda baraşütlerin hazır satın alınabilme durumu bulunmaktadır. Aksi halde gerekli ekipmanlarla üretimi yapılacaktır.						

Paraşüt	Paraşüt Rengi	Paraşütün Katlanmış Çapı	Paraşütün Açık Çapı	Kubbe Durumu	Düşüş Hızları
Ana Paraşüt	Kırmızı	110mm	3000mm	Yok	
Sürüklenme Paraşütü	Yeşil	85mm	1550mm	Yok	
Yük Paraşütü	Turuncu	65mm	800mm	Yok	

Paraşütler

Paraşüt düşüş hızları aşağıdaki formülle bulunabilmektedir.

$$v = \sqrt{\frac{8mg}{\rho \cdot C_d \cdot D^2 \cdot \pi}}$$

m = kütle [kg]
 g = yer çekimi ivmesi [m/s^2]
 ρ= hava yoğunluğu [kg/m^3]
 Cd= sürüklenme katsayısı
 D = paraşüt çapı [m]

Birim	Değerler	Birim	Değerler
m(roket)	27,764	Cd	0,80
m(yük)	4	D(ana)	3
g	9,81	D(sürüklenme)	1,55
ρ	1,225	D(yük)	0,80

Faydalı yük paraşütü için : 12.622 m/s

- Ana paraşüt için: 8.867 m/s
 Sürüklenme paraşütü için: 17.163 m/s
- Geriye kalan paraşüt bilgileri aşağıdaki görsellerde görülebilmektedir.

Paraşütler

NEO 6M GPS: Roketin ve faydalı yükün kurtarılması için gereken GPS verisini elde etmek için kullanılan modüldür.

Ardunio Nano: Sistemin kontrolcüsüdür.
Rokette ana, yedek ve faydalı yük aviyoniklerinde olmak üzere 3 adet bulunmaktadır.

<u>Buzzer(5V):</u> Rokette ve faydalı yükte olmak üzere 2 adet bulunmaktadır. Yere iniş geçekleştikten sonra ses yardımıyla roketin tespitinde kullanılacaktır.

<u>Xbee 3 : Roketin ve faydalı yükün yer üssü</u> ile iletişiminde kullanılacaktır.

MPU6050: Yedek aviyonik bilgisayar üzerinde bulunmaktadır. Ana bilgisayarın çalışmaması durumunda rokette bulunan kurtarma sistemlerini devreye sokacaktır.

BMP 180: Ana aviyonik bilgisayar üzerinde bulunmaktadır. Roketin irtifa verisini üretilmesinde kullanılan sensördür.

<u>Servo Motor:</u> Paraşütlerin açılması için kurulan sistemin aktivasyonunda kullanılmaktadır.

Kurtarma Sistemi Testler

- Paraşüt açma ve paraşüt fonksiyonellik testleri Pamukkale Üniversitesi Teknoloji Fakültesinde yapılacaktır.
- Paraşüt ama sistemi prototip olarak 3D yazıcıda çıkartılıp test işlemi gerçekleştirilecektir.
- Üretimi yapılan veya hazır alınan paraşüt farklı yüksekliklerden farklı ağırlıklarla test etmek amacıyla serbest bırakılacaktır.
- Yapılacak olan paraşüt açma ve paraşüt fonksiyonellik testleri doğrultusunda paraşüt açma için kullanılacak olan mekanizmanın yeterli olup olmadığı ve paraşütlerin yükü taşıyıp taşıyamayacağı gibi veriler elde edilecektir.
- Elde edilen bu verilerle kurtarma sisteminde ve paraşütlerde oluşabilecek sorunlar ön görülüp çözüm bulunacaktır.
- Testler yapıldıktan sonra videoları belirtilen platforma yüklenecek ve sistemin nasıl çalıştığı detaylı bir şekilde anlatılacaktır.

Komponent	Test Aralığı	
Paraşüt Açma Mekanizması Prototip Testi	22-27 Mayıs 2021	
Örnek Paraşüt Fonksiyonellik Testi	22-27 Mayıs 2021	
Paraşüt Açma Mekanizması Testi	25-26 Temmuz 2021	
Ana, Sürüklenme ve Yük Paraşütü Testi	27-29 Temmuz 2021	

Faydalı Yük Mekanik Görünüm

Faydalı Yük - Detay

Faydalı Yük Hangi Aşamada Nasıl Ayrılır ve Kütlesi Ne Kadar?

- Aviyonik bilgisayar üzerindeki sensörlerden alınan veriler aviyonik bilgisayarın koşul algoritmasındaki kriterlere ulaştığında servo motor çalıştırılır. Servo motor yayı tutan mili döndürerek yayı boşa çıkartır. Yay faydalı yük bloğunu iterek kapak açılır ve faydalı yük roketten dışarı fırlatılır.
- Faydalı yük sürüklenme paraşütü açıldıktan 5 saniye sonra fırlatılır.
- Faydalı yükün kütlesi 4000 gramdır.

Faydalı Yük Ayrılmanın Ardından Nasıl Bulunur?

 Faydalı yük üzerindeki GPS yardımıyla yer üssü uygulamasından konum tespiti yapılacak ve kurtarma ekibi tespit edilen konuma gidip buzzerdan çıkan ses yardımıyla yükü kurtaracaktır.

Faydalı Yük Üzerindeki Elektronik Sistem;

- Neo-6M GPS Modülü: Faydalı yükün konumunun tespit edilmesinde kullanılacaktır.
- Arduino Nano: Faydalı yük bilgisayarına bağlı modüllerin kontrolünü sağlar.
- xBee 3 Modülü: Faydalı yükün yer üssü ile iletişimini sağlar
- Buzzer : Faydalı yükün yere iniş yaptıktan sonra ses çıkartarak roketin konumunun tespitini kolaylaştırır.
- Pil : Sisteme enerji sağlar

Faydalı Yük Bilimsel Görev

<u>Termal Analizler:</u>

- Termal analiz ANSYS programında yapılmıştır.
- CAD programında tasarımı yapılan roket ANSYS programında çalıştırılabilecek uzantı olarak kaydedilir. ANSYS
 programında termal analiz bölümü açılır. ANSYS programında roket dosyası açılır ve model kısmından mesh
 uygulaması yapılır. Gerekli destek , sıcaklık ve istenilen veriler elendikten sonra tasarım çözülür ve sonuçlar
 görülür.
- ANSYS programında yapılan termal analiz linki aşağıdadır.
 - -> https://youtu.be/oZtpD0D5Tck
- Yukarıda videoda rokette oluşan sıcaklık değişimi , toplam ısı akışı , reaksiyonlara yer verilmiştir.
- Analiz yapılırken motor kısmı 150 °C, burun kısmı 100 °C alınmıştır.

Hesaplamalı Akışkanlar Dinamiği Analizleri:

- Hesaplamalı Akışkanlar Dinamiği Analizleri ANSYS programında yapılmıştır.
- CAD programında tasarımı yapılan roket ANSYS programında çalıştırılabilecek uzantı olarak kaydedilir.
 ANSYS programında Fluid Flow (Fluent) bölümü açılır. Geometry kısmından akış analizinin yapılabileceği
 bir alan oluşturulur. ANSYS programında roket dosyası açılır ve model kısmından mesh uygulaması
 yapılır. Akış analizi için gerekli değerler ve istenilen veriler eklendikten sonra tasarım çözülür ve sonuçlar
 görülür.
- Analizlerle ilgili görseller bir sonraki sayfadaki gibidir.
- Öngörülen Yüzey Alanı = 0.046766914 m2
- Havanın yoğunluğu: 1,225 kg/m³ (Değişmediği kabul edilmektedir.)

• Yapılan analize ait değerler aşağıdaki görselden görülebilmektedir.

Roket yüzeyinde oluşan basınç aşağıdaki görselde görülebilmektedir.

• Yapılan analiz sonucu oluşan hız çizgileri aşağıdaki görselde görülebilmektedir.

Aviyonik Mekanik Görünüm

Aviyonik – Özet

Aviyonik kart ardunio nano ve ardunio ile uyumlu modüller kullanılarak tasarlanmıştır.

<u>Ana Aviyonik Bilgisayar</u> → BMP 180 Basınç sensörü ile ölçülen basınç verisi irtifa verisine dönüştürülerek kurtarma sistemini aktive edecek servo motorları sırasıyla çalıştırıcaktır.

Yedek Aviyonik Bilgisayar → Ana bilgisayarın çalışmaması durumunda MPU6050 Gyro sensöründen gelen ivme ve yönelim verileri kullanılarak kurtarma sistemini aktive edecek servo motorları belirlenen zaman aralıklarıyla çalıştıracaktır.

Devre Elemanları:

Adı	Kodu	Seçim Kriteri	Açıklama
BMP180 Dijital Hava Basıncı Sensörü	BMP 180	Kullanımının kolay olması ve yüksek irtifalarda hassas ölçümler yapabilmesinden dolayı tercih edilmiştir.	İrtifa ölçümü amacıyla kullanılmaktadır.
GY-GPS6MV2 Neo-6m GPS Modülü	NEO-6M	Uygun Fiyatı ve Yüksek kalitesinden dolayı tercih edilmiştir.	Roketin konum tespitinde kullanılacaktır.
Ardunio Nano	Ardunio Nano	Boyutunun küçük olması ve kolay kullanılır olmasından dolayı tercih edilmiştir.	Aviyonik sistemin kontrolcüsüdür.
Buzzer	Buzzer	Standart kalitedeki bir buzzer tercih edilmiştir.	Roket yere iniş yaptıktan sonra konum tespitinde kullanılacaktır.
Xbee 3 Pro İletişim Modülü	Xbee 3 pro	Uzun menzillerde kolay çalışması ve kullanım kolaylığından dolayı tercih edilmiştir.	Haberleşme modülü olarak kullanılacaktır.

Sistem Blok Diyagramı:

Kart Tasarımı:

Ana aviyonik bilgisayar üzerindeki devre elemanları:

- Neo 6M GPS
- BMP 180
- SD kart modülü
- Ardunio Nano
- Batarya
- Buzzer
- Xbee 3 pro RF

Aviyonik kartlar baskı devre olarak üretilecektir.

Algoritma:

Sistemi tetikleyecek parametreler:

Basınç verisi: Bu veri tipinin tercih edilme nedeni basınç verisinin diğer veri tiplerine kıyasla daha kullanışlı olması ve roketin kurtarma sistemini tetiklemede sıcaklık ve ivme verisine kıyasla daha güvenli olmasıdır.

Sıcaklık verisi: Sıcaklık verisi ile hassas irtifa verisi ölçümü yapılamayacağından bu veri tipi sistemde kullanılmayacaktır.

Ana Aviyonik – Detay/3

Kalman Filtresi Algoritması

Algoritmada görüldüğü üzere işlemler tek bir girdi ile yapılmaktadır. Bu sayede sadece yaptığımız ölçümü girdi olarak vermemiz yeterli olacaktır.

Sonraki adımda kovaryans değeri hesaplanır. Kovaryans değeri, bizim kalman kazancının bulması için kullanılır.

İlerleyen adımlarda yeni kovaryans değeri bulunur. Bu değer kaydedilir ve ileri ki döngülerde kullanılmak üzere kaydedilir.

Kalman kazancımız bizim çıkış değerimiz olur.

Devre Elemanları:

Adı	Kodu	Seçim Kriteri	Açıklama
Ardunio Nano	Ardunio Nano	Boyutunun küçük olması ve kolay kullanılır olmasından dolayı tercih edilmiştir.	Aviyonik sistemin kontrolcüsüdür.
Buzzer	Buzzer	Standart kalitedeki bir buzzer tercih edilmiştir.	Roket yere iniş yaptıktan sonra konum tespitinde kullanılacaktır.
MPU6050 6 Eksen İvme ve Gyro Sensörü	GY-521	3 eksenli gyro ve 3 eksenli açısal ivme değerlerini toplu alabildiğimiz için seçilmiştir.	Roketin hareketini algılamada kullanılacaktır.

Sistem Blok Diyagramı:

Kart Tasarımı:

Yedek aviyonik bilgisayar üzerindeki devre elemanları:

- Ardunio Nano
- Batarya
- Buzzer
- MPU 6050 İvme Sensörü

Aviyonik kartlar baskı devre olarak atölyede üretilecektir.

<u>Algoritma:</u>

Sistemi tetikleyecek parametreler:

<u>İvme verisi:</u> Bu veri tipinin tercih edilme sebebi ana aviyonikteki Basınç verisinde sıkıntı çıkması halinde tercih edilebilir en güvenli veri olması.

Gyro verisi: Gyro verisinin tercih edilme sebebi hem ivmeyi hem de gyro Verilerini tek sensör üzerinden kolayca alınabilir olması.

Veri Filtreleme Detayları:

Kullanılan Veri Filtreleme Yöntemi: Kalman Filtresi

Roketin uçuş sırasında uğrayacağı; titreşim, ivme, hava türbülansları gibi nedenlerden dolayı uçuş bilgisayarınızda bulunan sensörler anlık da olsa gerçekten uzak ölçümler yapabilirler. Sensörlerdeki ani değişimler yüzünden servoların erkenden çalışmaması için önce verilerin filtrelenmesi gerekir. Bu filtreleme için mühendisler tarafından sık kullanılan ve güvenilir olan kalman filtresini seçtik.

Ana – Yedek Aviyonik

<u>Ana – Yedek Aviyonik Bilgisayar Arasındaki Geçiş:</u>

- Ana aviyonik ve yedek aviyonik sistem arasında bir bağlantı olmayacak birbirinden bağımsız olarak çalışacaktır.
- Yedek aviyonik sistem ana aviyonik bilgisayarın görevine yerine getirmediği durumda otomatik olarak sistemi aktive edecektir.
- Bu şekilde ana aviyonik bilgisayarda meydana gelen bir kısa devreden yedek aviyonik bilgisayar etkilenmeyecektir.
- Aviyonik sistemlerin bataryaları ayrı olacaktır ve servo motorlar röle yardımıyla çalıştırılacaktır.

Aviyonik/İletişim

<u>iletişim:</u>

- Sistemde haberleşme için xBee 3 RF modülü tercih edilmiştir.
- Tercih edilme nedeni piyasada temin edebildiğimiz tek xBee modülü olmasıdır.
- Xbee 3 modülü yaptığımız Link Budget hesaplarına göre yeterlidir.
- İhtiyaca ve bütçe ye göre pro modülü tercih edilebilir yada farklı bir iletişim modülü ile değiştirilebilir.
- Xbee3 modülü kullandığımız antene göre değişmekle birlikte maksimum 2.4 Ghz bant hızında veri iletimi yapabilmektedir biz 900 Mhz bandında haberleşme yapacağız.

Aviyonik/Yer İstasyonu

12

<u>Yagi Anten (12 dBi 433 mhz)</u>: Sistemde Link Budget hesaplarının sonuçlarına göre bir anten tercihi yapılmıştır. İhtiyaca göre 25 dBi gücündeki antenle değiştirilecektir. Alıcı anteni olarak kullanılacaktır.

400-470MHz 3.3dBi RF anten: Yüksek verimliliğinden dolayı bu anten tercih edilmiştir. Roketin içinde ihtiyaç duyulan veri iletimi için kullanılacaktır.

Roket ve yer üssü arasındaki iletişim

Yer üssü programı C# dili ile tarafımızca programlanacaktır.

Aviyonik/Yer İstasyonu

Link Budget ve Power Budget:

<u>xBee 3:</u>

Güç Kayıpları:

Serbest uzay kaybı(m,mhz):109.6 dBm

İletim kaybı: 4 dBm verici: 1 dBm alıcı: 3 dBm

Atmosferik kayıp: 3 dBm tolerans aralığı bırakıldı.

Polarizasyon kaybı: 3 dBm.

Güç Kazançları:

Gönderici modül çıkış gücü: 8 dBm.

Alıcı anten kazancı: 12 dBi. (Yagi anten)

Verici anten kazancı: 3.3 dBi

Receiving Sensivity: -96.30 dBm

Xbee3 modülünün Receiving Sensivity değeri : -103 dBm

9V Alkalin pil kullanılacaktır. Ortalama 550mAh kapasitesi olan 9V alkalin pil sitem için gerekli gücü sağlayacaktır.

Kullanılacak pil sayısına yapılacak testler sonucunda karar verilecektir.

Not: Türkiye piyasasında bulabildiğimiz tek modül xBee3 modülü için xBee 3 e göre hesap yapılmıştır.

Parça İsmi	Adet	Besleme akımı (mA)	Toplam Besleme Akımı (mA)	Desteklenen Voltaj (V)	Güç Toplamı (W)
NEO-6M	1	10mA	10mA	3.3V	0.033W
BMP-180	1	5mA	5mA	3.3V	0.0165W
XBEE 3	1	17mA	17mA	3.3V	0.0561W
BUZZER	2	30mA	60mA	5V	0.3W
ARDUİNO NANO	2	40mA	80mA	5V	0.4W
MPU-6050	1	3.8mA	3.8mA	3.3V	0,01254 W

Toplam Güç	Güç yanması	Gerekli Giriş Gücü
0,83068W	0,83068W	1,66136W

Aviyonik Testler

Algoritma Testleri:

Ana aviyonik bilgisayar algoritma testi:

- Test Pamukkale üniversitesinde atölyede yapılacaktır.
- Aviyonik sistem protetip kurtarma sistemlerine bağlanarak BMP 180 sensörünün irtifa değişimiyle sistemi aktive etmesi test edilecek. Aynı zamanda GPS verisi ve buzzer da bu yöntemle test edilecektir.
- Test düzenekleri 2 adet farklı kurtarma sisteminden oluşmaktadır. Bu düzenekler mekanik yay mekanizması olup servo motor ile tetiklenecektir. Testte kullanılacak parçalar 3D Yazıcıdan plastik olarak üretilecektir.
- Bu testlerden elde edilen sonuçlara göre sensörlerin verimliliği ve algoritmanın ihtiyacı karşılayıp karşılayamamasına göre algoritma değişikliliği yapılacaktır.

Yedek aviyonik bilgisayar algoritma testi:

- Testler ana aviyonik bilgisayar testleriyle beraber aynı zamanda yapılacaktır.
- Yedek aviyonik sistem ana aviyonikle beraber çalıştırılacak BMP 180 sensörünün bağlantısı sökülerek çalışmaması durumu yaratılıp MPU 6050 sensörünün sistemi aktifleştirmesi test edilecektir.
- Yapılan testler ihtiyacı karşılayıp karşılayamamasına göre analiz edilip değerlendirilecektir.

Aviyonik Testler

İletişim Testleri:

- İletişim testleri Pamukkale üniversitesinde açık alanda yapılacaktır.
- Alıcı modül Yagi antene bağlanılarak yüksek bir yere yerleştirilip aktif edilecektir. Verici sistem pil yardımıyla çalıştırılıp alıcıdan uzaklaşılacak sinyalin koptuğu yerde mesafe ölçümü yapılıp sistemin yeterliliği test edilecek.
- Test düzeneği 2 adet Xbee 3 Modülü 1 adet yagi anten 1 adet 470 MHz lik SMA antenden oluşmaktadır.
- Test de antenlerin ve modülün yeterliliği test edilecektir. Testin sonucuna göre modemlerde ve antende değişikliğe gidilecektir.

Komponent	Test Aralığı
Ana Aviyonik Algoritma ve Sensör Testleri	20-27 Mayıs 2021
Yedek Aviyonik Algoritma ve Sensör Testleri	20-27 Mayıs 2021
İletişim Testleri	20-27 Mayıs 2021
Kart Fonksiyonellik Testi	25-30 Haziran 2021

Burun Konisi Mekanik Görünüm

Burun Konisi – Detay

14

OpenRocket programı simülasyonları sonucu roketimizin stabilitesi ve hedeflenen irtifaya ulaşabilmesi için en uygun burun konisinin Haack Serisi olduğuna karar verildi. Burun konisinin uzunluğu 400mm, çapı 136mm ve et kalınlığı da 4mm olarak tasarlanmıştır. Omuzluğun uzunluğu 206mm, çapı 128mm ve et kalınlığı da 3mm olacak şekilde tasarlanmıştır. Şekil parametresi = 0,333 (C)'dir.

$$\theta = \arccos\left(1 - \frac{2x}{L}\right)$$
 , $y = \frac{R\sqrt{\theta - \frac{\sin(2\theta)}{2}} + C\sin^3\theta}{\sqrt{\pi}}$

LV-Haack için ;

- C = 1/3
- R = Yarıçap
- Y = Burun konisi ucundan L'ye kadar değişiklik gösteren herhangi bir x noktasının yarıçapıdır.
- θ = Burun konisi ucu ile dış çap arasındaki açı

Burun Konisi – Detay

15

Özellik			Kapsam							
Malzeme Bilgileri	÷	Cam elyaflar hafif ve dayanıklı malzemelerdir. Korozyona karşı oldukça dayanıklıdırlar. Paslanma olmaz ve uzun ömürlüdürler. Sıcaktan ve soğuktan etkilenmez. Farklı şekillerde ve renklerde üretilmeye uygundurlar. Bu sebeplerden dolayı cam elyaf kullanılmaya karar verilmiştir.		Yoğunluk Gerilme direnci Kopmada Uzama	2.44 g/cc 3310 MPa 4.8%	Esneklik Modülü Kayma modülü Poisson Oranı	68.9 MPa 29.1 GPa 0.183			
Üretim Yöntemleri	:	sebepleri öğrenilmesi ve uygulamasının elle yerleştirilen kumaşlara bir fırça ya	run konisi üretimi için elle yatırma yöntemi kullanılacaktır. Elle yatırma yönteminin bepleri öğrenilmesi ve uygulamasının kolay olması, malzeme temininin kolay olmasıdır. e yerleştirilen kumaşlara bir fırça yardımıyla reçine emdirilir. Reçine emdirilmiş kum aklığı altında veya farklı sıcaklık ve basınçlar altında kurumaya bırakılır. Bu yöntemde he moset reçine kullanılabilir.							

Kanatçık Mekanik Görünüm

Kanatçık – Detay

Trapezoidal fin set configuration \times Component name: Kanatçık General Fin tabs Override Appearance Comment Fin cross section: Rounded Number of fins: Thickness: Fin rotation: Fin cant: Component material: Aluminum (2,7 g/cm3) Root chord: Component finish: Tip chord: Regular paint (60 µm) Set for all Sweep length: Root Fillets Sweep angle: Fillet radius: 1 Fillet material: Position relative to: Bottom of the parent component ~ Aluminum (2,7 g/cm3) Split fins Convert to freeform Kapat Component mass: 2907 g

Kanatçık Kesiti

Kanatçık OpenRocket Bilgileri

Kanatçık tipi olarak "Rounded" seçilmiştir. Bu seçimin nedeni üretim konusunda kolaylık sağlaması, roketin istenilen irtifaya çıkabilmesi ve stabil bir şekilde hareketinin bu kanat tipiyle sağlanmış olmasıdır.

Kanatçık – Detay

15

Özellik		Kapsam Control								
Malzeme Bilgileri	÷	Alüminyum 2024 işlenebilirliği kolay ve yüzey kalitesi yetenekleri iyi olan, yüksek mukavemetli bir malzemedir. Uçak sanayi, savunma sanayi, askeri ekipmanlar vb. gibi alanlarda kullanılmaktadır.		Alüminyum 2024 Yoğunluk Çekme Direnci Brinell Sertliği Poisson Oranı	2.78 g/cc 483 MPa 120 0,33	Erime noktası Kesme Dayanımı Esneklik Modülü Kayma Modülü	502 - 638 °C 283 MPa 73.1 GPa 28 GPa			
Üretim Yöntemleri	·		anatçık tasarımı özgün üretim olmasından dolayı CAD çizimi çıkarılarak CNC kesim işleme aktarılmasıyla 8mm et alınlığındaki alüminyum levhadan üretimi yapılması planlanmaktadır.							

Gövde Parçaları & Gövde Montaj Parçaları (YAPISAL) Mekanik Görünüm

Yapısal – Gövde Parçaları

	Özellik			K	(apsam					
15	Malzeme Bilgileri		malzemelerdir. Korozyona karşı oldukça dayanıklıdırlar. Paslanma olmaz ve uzun ömürlüdürler. Sıcaktan ve soğuktan etkilenmez. Farklı şekillerde ve renklerde üretilmeye uygundurlar. Bu sebeplerden		Cam Elyaf Te	knik Özellikle	ri			
		:		Yoğunluk	2.44 g/cc	Esneklik Modülü	68.9 MPa			
				Gerilme direnci	3310 MPa	Kayma modülü	29.1 GPa			
			dolayı cam elyaf kullanılmaya karar verilmiştir.		Kopmada Uzama	4.8%	Poisson Oranı	0.183		
16	Üretim Yöntemleri	:	Üst Gövde, entegrasyon gövdesi ve alt gövde parçalarının üretimi için elle yatırma yöntemi kullanılacaktır. Ell yatırma yönteminin seçilme sebepleri öğrenilmesi ve uygulamasının kolay olması, malzeme temininin kola olmasıdır. Bir kalıba elle yerleştirilen kumaşlara bir fırça yardımıyla reçine emdirilir. Reçine emdirilmiş kumaşla oda sıcaklığı altında veya farklı sıcaklık ve basınçlar altında kurumaya bırakılır. Bu yöntemde herhangi bi termoset reçine kullanılabilir.							

• Üst gövde, entegrasyon gövdesi, alt gövde parçalarının üretim malzemeleri ve yöntemleri aynı olduğu için fazladan sayfa kullanmaya gerek duyulmamıştır. Üretim yöntemleri ve malzeme bilgileri tek sayfada anlatılmıştır. Kaydırma ayağı ve roket iç basıncının dengelenmesi için roket gövdesine açılan delikler CAD görüntüsü ve teknik resmin olduğu mekanik görünüm sayfasında görülebilmektedir. Gövdelerin et kalınlıkları kapak olan bölgedeki çıkıntılar ve kapak için olan kısmın et kalınlıkları yine mekanik görünüm sayfasında görülebilmektedir.

Entegrasyon Gövdesi Bağlayıcısı

Entegrasyon Gövdesi Bağlayıcısı

Motor Yatağı

893,00

2021 TEKNOFEST ROKET YARIŞMASI KRİTİK TASARIM RAPORU (KTR)

CISI	Özellik		Kapsam	Cam Elyaf Tekr	Cam Elyaf Teknik Özellikleri				
ağlayı	15		Cam elyaflar hafif ve dayanıklı malzemelerdir. Korozyona karşı oldukça dayanıklıdırlar. Paslanma olmaz ve uzun ömürlüdürler. Sıcaktan ve soğuktan	Yoğunluk	2.44 g/cc	Esnekli Modüli			
desi B	Malzeme Bilgileri	:	etkilenmez. Farklı şekillerde ve renklerde üretilmeye uygundurlar. Bu sebeplerden dolayı cam elyaf kullanılmaya karar verilmiştir.	Gerilme direnci	3310 MPa	Kayma modüli			
n Göve	16		Entegrasyon gövdesi bağlayıcısı parçasının üretimi için elle yatırma yöntemi kullanılacaktır. Elle yatırma yönteminin seçilme sebepleri öğrenilmesi ve	Kopmada Uzama	4.8%	Poissor Oranı			
syoi	Üretim Yöntemleri	:	uygulamasının kolay olması, malzeme temininin kolay olmasıdır. Bir kalıba elle yerleştirilen kumaşlara bir fırça yardımıyla reçine emdirilir. Reçine emdirilmiş	Alüminyum 2024 Teknik Özellikleri					
itegras	oretiin fonteimen		kumaşlar oda sıcaklığı altında veya farklı sıcaklık ve basınçlar altında kurumaya bırakılır. Bu yöntemde herhangi bir termoset reçine kullanılabilir.	Yoğunluk	2.78 g/cc	Erime noktası			
ığı En	Malzeme Bilgileri	:	Alüminyum 2024 işlenebilirliği kolay ve yüzey kalitesi yetenekleri iyi olan, yüksek mukavemetli bir malzemedir. Uçak sanayi, savunma sanayi, askeri	Çekme Direnci	483 MPa	Kesme Dayanımı			
Yata	17		ekipmanlar vb. gibi alanlarda kullanılmaktadır.	Brinell Sertliği	120	Esneklik Modülü			
tor		Motor yatağı tasarımı özgün üretim olmasından dolayı CAD çizimi çıkarılarak : CNC kesim işleme aktarılmasıyla 80mm çap, 893mm uzunluk ve 2mm et kalınlığındaki alüminyum borudan üretimi yapılması planlanmaktadır.		Poisson	0,33				
Mo	Üretim Yöntemleri			Oranı	0,33	Kayma Modülü			

Cam Elyaf Tek	nik Özelli	kleri	
Yoğunluk	2.44 g/co		68.9 MPa
Gerilme direnci	3310 MPa	,	29.1 GPa
Kopmada Uzama	4.8%	6 Poisson Oranı	0.183
Alüminyum 2	024 Tekni	k Özellikleri	
Yoğunluk	2.78 g/cc	Erime noktası	502 - 638 °C
Çekme Direnci	483 MPa	Kesme Dayanımı	283 MPa
Brinell Sertliği	120	Esneklik Modülü	73.1 GPa
Poisson	0,33	Kayma	28 GPa

Entegrasyon gövdesi bağlayıcısında bulunan et kalınlıkları, kapak olan bölgedeki çıkıntılar ve kapak için olan kısmın et kalınlıkları mekanik görünüm sayfasında görülebilmektedir.

Aviyonik Tüp

Kurtarma Mekanizması Tüpü

Faydalı Yük Tüpü

Faydalı Yük Tüpü

Kurtarma Mekanizması Tüpü

Aviyonik Tüp

	Özellik			Kapsam					
15	Malzeme Bilgileri		malzemelerdir. Korozyona karşı oldukça dayanıklıdırlar. Paslanma olmaz ve uzun ömürlüdürler. Sıcaktan ve soğuktan	Yoğunluk	Teknik Özellikle 2.44 g/cc	Esneklik Modülü	68.9 MPa		
		•	etkilenmez. Farklı şekillerde ve renklerde üretilmeye uygundurlar. Bu sebeplerden dolayı cam elyaf kullanılmaya karar verilmiştir.	Gerilme direnci Kopmada Uzama	3310 MPa 4.8%	Kayma modülü Poisson Oranı	29.1 GPa 0.183		
16	Üretim Yöntemleri	:	Aviyonik tüp, kurtarma mekanizması tüpü ve fayokullanılacaktır. Elle yatırma yönteminin seçilme sektemininin kolay olmasıdır. Bir kalıba elle yerleştir emdirilmiş kumaşlar oda sıcaklığı altında veya farklı herhangi bir termoset reçine kullanılabilir.	pepleri öğre Filen kumaşl	nilmesi ve uygu ara bir fırça ya	ılamasının kol ardımıyla reçi	ay olması, ma ne emdirilir.	alzeme Reçine	

Aviyonik tüpte bulunması gereken iç basıncı dengeleyen delik parçaların mekanik ve teknik resim görüntülerinin olduğu sayfada görülebilmektedir. Kurtarma mekanizması tüpü ve faydalı yük tüpündeki kapaklar, et kalınlıkları ve kapaklar için olan çıkıntılar mekanik ve teknik resim görüntülerinin olduğu sayfada görülebilmektedir. Kapakların parçalara göre büyük gözükmesinin sebebi bu parçaların iç kısımda kalması ve kapakların dış gövde ve iç yapısal destek parçalarının tamamını kapsayacak şekilde tasarlanmasından dolayıdır.

Kapak #1, #2, #3, #4

Kapak #5 Burun Kapağı

Motor Ön Kapağı

Merkezleme Halkası

Motor Ön, Arka Kapağı ve

Alüminyum

	Özellik		Kapsam						
			·	Cam Elyaf Teknik Özellikleri					
kası	Malzeme Bilgileri	:	Cam elyaflar hafif ve dayanıklı malzemelerdir. Korozyona karşı oldukça dayanıklıdırlar. Paslanma olmaz ve uzun ömürlüdürler. Sıcaktan ve soğuktan etkilenmez. Farklı şekillerde ve renklerde üretilmeye uygundurlar. Bu	Yoğunluk	2.44 g/cc	Esneklik Modülü	68.9 MPa		
e Halk			sebeplerden dolayı cam elyaf kullanılmaya karar verilmiştir.	Gerilme direnci	3310 MPa	Kayma modülü	29.1 GPa		
ezlem	16	:	Motor ön, arka kapağı ve merkezleme halkası parçalarının üretimi için elle yatırma yöntemi kullanılacaktır. Elle yatırma yönteminin seçilme sebepleri	Kopmada Uzama	4.8%	Poisson Oranı	0.183		
o o., Jerkezl	Üretim Yöntemleri		öğrenilmesi ve uygulamasının kolay olması, malzeme temininin kolay olmasıdır. Bir kalıba elle yerleştirilen kumaşlara bir fırça yardımıyla reçine						
2			emdirilir. Reçine emdirilmiş kumaşlar oda sıcaklığı altında veya farklı sıcaklık ve	Alüminyum 2024 Teknik Özellikleri					
Mer			basınçlar altında kurumaya bırakılır. Bu yöntemde herhangi bir termoset reçine kullanılabilir.	Yoğunluk	2.78 g/cc	Erime noktası	502 - 638 °C		
ar	Malzeme Bilgileri			Çekme Direnci	483 MPa	Kesme Dayanımı	283 MPa		
pakla	17		ekipmanlar vb. gibi alanlarda kullanılmaktadır.	Brinell Sertliği	120	Esneklik Modülü	73.1 GPa		
Ka	Üretim Yöntemleri	:	#1, #2, #3, #4 numaralı kapaklar ve burun konisi kapağı CAD çizimleri çıkartılarak CNC kesim işleme aktarılmasıyla istenilen çap, uzunluk ve et kalınlığındaki alüminyum borudan üretimi yapılması planlanmaktadır.	Poisson Oranı	0,33	Kayma Modülü	28 GPa		

Ana Paraşüt Açılma Kapağı

Faydalı Yük Paraşütü Açılma Kapağı

	Özellik									
	Malzeme Bilgileri		malzemelerdir. Korozyona karşı oldukça dayanıklıdırlar. Paslanma olmaz ve uzun ömürlüdürler. Sıcaktan ve soğuktan etkilenmez. Farklı şekillerde ve renklerde üretilmeye uygundurlar. Bu sebeplerden		Cam Elyaf Teknik Özellikleri					
15		:		Yoğunluk	2.44 g/cc	Esneklik Modülü	68.9 MPa			
				Gerilme direnci	3310 MPa	Kayma modülü	29.1 GPa			
			dolayı cam elyaf kullanılmaya karar verilmiştir.	niimaya karar	Kopmada Uzama	4.8%	Poisson Oranı	0.183		
16	Üretim Yöntemleri	:	a paraşüt açılma kapağı ve faydalı yük paraşütü açılma kapağı parçalarının üretimi için elle yatırma yör llanılacaktır. Elle yatırma yönteminin seçilme sebepleri öğrenilmesi ve uygulamasının kolay olması, mala mininin kolay olmasıdır. Bir kalıba elle yerleştirilen kumaşlara bir fırça yardımıyla reçine emdirilir. Ro ndirilmiş kumaşlar oda sıcaklığı altında veya farklı sıcaklık ve basınçlar altında kurumaya bırakılır. Bu yönte rhangi bir termoset reçine kullanılabilir.							

• Ana paraşüt açılma kapağı ve faydalı yük paraşütü açılma kapağı parçaları üst gövde ve entegrasyon gövdesinin bulunduğu kısımlarda bir bütün gibi gözüküp ayrılma anında açılacağından yine gövdeyle aynı malzemeden imal edilecektir. Bu sayede dış yüzeydeki bütünlük sağlanmış olacaktır.

Özellik		Kapsam					
Malzeme Bilgileri	:	Paslanmaz çelikler manyetik değildirler ve ısıl işleme tabii	Paslanmaz Çelik Mekanik Özellikleri				
		tutulamazlar, süneklik özellikleri yüksektir, haddelemeyle sertleştirilebilirler ve mükemmel bir korozyon dayanımına, işlenebilirlik özelliğine ve kaynaklanabilirlik özelliğine sahiptirler.	Yoğunluk	8 g/cc	Erime noktası	1450°C	
			Kopma Mukavemeti	515 - 720 MPa	Akma Mukavemeti	210 MPa	
			Brinell Sertliği	201	Esneklik Modülü	193 GPa	
		Kum Kaliha Däküm (Darosa ila Kalinlama) Väntar	mi				
Üretim Yöntemleri	÷	Kum Kalıba Döküm (Derece ile Kalıplama) Yöntemi Alt derece sıkıştırıma levhası üzerine konur. Modelin alt derece yarısı derece içine yerleştirilir grafit veya kömür tozu püskürtülerek yüzeyin kalıp kumuna yapışması engellenir. Model üzerine 50-100 cm yükseklikten kalıp kumu serpilir ve sıkıştırılır. İşlem derece dolana kadar tekrarlanır ve sıkıştırılır. Derecenin üstü mastar ile sıyrılarak düzeltilir. Kalıp boşluğunda bulunan hava ve kalıp boşluğunun ergiyik metalle doldurulduğu sırada oluşan gazların çıkışını kolaylaştırmak için (modele yaklaşmadan) şişleme yapılır. Yani gaz çıkış kanalları açılır da diyebiliriz. Eğer modele yakın bir yerden bu işlemi yaparsak sıvı metalin bu boşluklardan dışarı çıkması durumu söz konusu olabilir bu da üretimin hatalı olmasına sebep olur. Bu işlemin ardından alt derece alt-üst yapılarak yani çevrilerek sıkıştırma levhası üzerine oturtulur. Aynı şekilde üst derece de modelin üst derece yarısı içerisine yerleştirilerek aynı şekilde hazırlanır. Sıvı metalir kalıp boşluğuna gireceği yatay yolluk spatula ile açılar. Son olarak var ise maçalar yerleştirilir. Dereceler 90° açı ile dikkat bir şekilde kapatılır. Böylelikle kalıp döküme hazır hale gelmiş olur.					

Yapısal – Gövde/Gövde İçi Yapısal Desteklerin Bağlantıları ve Ayrılma Bilgileri					
Parça	Parçanın nasıl bağlanacağı	Ayrılma olacak mı ?			
Entegrasyon Gövdesi Bağlayıcısı	Entegrasyon gövdesi bağlayıcısı 70mm'si alt gövde de 50mm'si entegrasyon gövdesinde geri kalanı üst gövde de kalacak şekilde vida yardımıyla sabitlenecektir.	Hayır			
Motor Yatağı	Motor yatağı kanatçık girinti hizasından başlayacak şekilde merkezleme halkalarının içine doğru yerleştirilip motor ön kapağı ve arka kapağından desteklenerek sabitlenecektir.	Hayır			
Aviyonik Tüp	Roket içerisindeki konumuna sıkı geçme şeklinde bağlantısı yapılacaktır.	Hayır			
Kurtarma Mekanizması Tüpü	Roket içerisindeki konumuna sıkı geçme şeklinde bağlantısı yapılacaktır.	Hayır			
Faydalı Yük Tüpü	Roket içerisindeki konumuna sıkı geçme şeklinde bağlantısı yapılacaktır.	Hayır			
#1, #2, #3, #4, #5, Motor Ön Kapağı ve Merkezleme Halkası	Kapaklar ve merkezleme halkaları roketteki olması gereken konumuna göre yerleştirilir ve vidalanarak sabitlenir. Merkezleme halkaları roket motorunu, kapaklar ise aviyonik tüp, kurtarma mekanizması tüpü, faydalı yük tüpü gibi parçaların tamamen hareketini engeller.	Hayır			
Motor Arka Kapağı	Motor arka kapağı motor yerleştirildikten sonra kapatılarak gövdenin et kalınlığından vidalanarak sabitlenir.	Hayır			
Ana Paraşüt Açılma Kapağı ve Faydalı Yük Paraşütü Açılma Kapağı	Faydalı yük tüpünün üstünde ve ana paraşütün üstünde kalacak konumda sıkı geçmeyle sabitlenir. Ayrıca ip/kordon yardımıyla paraşüt ipine de bağlı olacaklardır. Kurtarma sistemi aktif olduğunda kapağa vurdurarak açılmasını sağlar. Böylece paraşütü roket dışına çeken bir kuvvet oluşur.	Evet			
Мара	Mapalar gövdeye sabitlenmiş kapakların içine açılmış diş şeklinde ucuna diş açılır ve bağlantı sağlanır.	Hayır			

Motor Bölümü Mekanik Görünüm & Detay

Roket Motoru Bölümü Kesit Görünümü

Roket Motoru Bölümü CAD Görünümü

- Öncelikle merkezleme halkaları ve motor ön kapağı roketteki konumuna göre ölçülerek yerleştirilir.
- Yerleştirilen merkezleme halkaları ve motor ön kapağı vida yardımıyla roket gövdesine sabitlenir.
- Motor yatağı merkezleme halkaları arasına sıkı geçme şeklinde yerleştirilir.
- Roket motoru, motor yatağına yerleştirilir ve motor arka kapağı yerine yerleştirilerek vida yardımıyla sabitlenir. Böylece roket motorunun montajı tamamlanmış olur.

İkinci/Alternatif Motor Seçimi

Değişiklik Yapılan Parça	Yapılan Değişiklik	
Aviyonik Kurtarma Tüpü	Kaldırıldı. Destek Kapaklarla sağlanacak.	
Faydalı Yük Tüpü	Kaldırıldı. Destek kapaklarla sağlanacak	
Kapak #2	Kaldırıldı.	
Kapak #5	Uzunluğu 10mm'den 82 mm'ye çıkarıldı.	
Kanatçıklar	Yüksekliği 170mm'den 110mm'ye düşürüldü. Et kalınlığı 8mm'den 3mm'ye düşürüldü.	
Motor Yatağı	Motor yatağı malzemesi alüminyumdan fiberglassa döndürüldü.	
Kapak #1, #3, #4	Kapakların malzemesi alüminyumdan fiberglassa döndürüldü.	

Değişken	Birincil Motor	İkinci Motor
Kalkış İtki/Ağırlık Oranı:	1,65	0,74
Rampa Çıkış Hızı (m/s):	32,6	32,2
Stabilite (0.3 Mach için):	3,56	3,09
En büyük ivme (g):	8,90	9,94
En Yüksek Hız (m/s):	265	269
En Yüksek Mach Sayısı	0,79	0,80
Tepe Noktası İrtifası (m)	3005	2960

Roket Bütünleştirme Stratejisi

- Roketimiz burun konisi, üst gövde, entegrasyon gövdesi, alt gövde ve kanatçıklardan oluşmaktadır.
- Burun konisinin içine vida yardımıyla kapak konulacak. Vidayla sabitlenen kapağa mapa takılacaktır.
- Sürüklenme paraşütü burun konisinde yer alacaktır.
- Burun konisinin montajı üst gövdeye sıkı geçme yöntemiyle yapılacaktır.
- Faydalı yük tüpünün üst gövdeye sıkı geçme yöntemiyle montajı yapılacaktır.
- Üst gövde de faydalı yük tüpünün sağına ve soluna alüminyum kapak takılacaktır. Kapaklar vida yardımıyla gövdeye sabitlecektir. Böylece faydalı yük tüpünün hareketi engellenmiş olacaktır.
- Faydalı yük tüpünün sağında ve solunda yer alan kapaklara mapa takılacaktır.
- Paraşütler şok kordonları yardımıyla kapaklardaki mapalara bağlanacaklardır.
- Burun konisinin açılıp sürüklenme paraşütünün aktif hale gelmesi için rokette bulunan kurtarma sistemi üst gövdenin ön kısmına burun konisini açacak şekilde konumlandırılıp cıvata yardımıyla sabitlecektir.

Roket Bütünleştirme Stratejisi

- Faydalı yük kapağı için boş bırakılan kısımdan faydalı yük ve yük paraşütü serbest bir şekilde konulacak, faydalı yükün dışarı çıkabilmesi için kapağın açılmasını sağlayacak kurtarma sistemi cıvata yardımıyla gövdeye sabitlenecektir.
- Faydalı yük ve ana paraşüt için tasarlanan kurtarma sistemlerinin gövdesi bağlı oldukları tüpe kaynaklama yöntemiyle de sabitlenebilir.
- Faydalı yük tüpü kapağı açılabilmesi için sıkı geçme yöntemiyle rokete sabitlenecek ve bir yandan da yük paraşütüne bağlı olacaktır. Kapak yük ve yük paraşütü ile birlikte inecektir.
- Aviyonik tüpün hareketini engellemek için tüpün sağına bir kapak ve tüp yerleştirildikten sonra soluna başka bir kapak vida yardımıyla sabitlecektir.
- Aviyonik sistem dışarda aviyonik tüpe yerleştirilecek ve aviyonik tüp üst gövdeye sıkı geçme yöntemiyle sabitlenecektir.
- Entegrasyon gövdesi, entegrasyon gövdesi bağlayıcısına 70mm arka gövde de kalacak şekilde cıvata yardımıyla bağlanacaktır.

Roket Bütünleştirme Stratejisi

- Entegrasyon gövdesi bağlayıcısı 70mm'si arka gövde de, 50mm'si entegrasyon gövdesinde ve gerisi üst gövdede olacak şekilde vida yardımıyla birbirlerine sabitlenecek ve bütünlüğü sağlayacaktır.
- Merkezleme halkaları olması gerektikleri konuma göre alt gövdeye vida yardımıyla sabitlecektir.
- Motor yatağı alt gövdenin kanatçık kısmından 10mm içeride kalacak şekilde yerleştirilecektir.
- Motor yatağının bittiği yere bir kapak vida yardımıyla sabitlenecek ve motor yatağının hareketi engellenmiş olacaktır.
- Motor ön kapağına yerleştirilen mapaya şok kordonu yardımıyla ana paraşüt bağlanacaktır.
- Ana paraşüt kapağından paraşüt yerleştirildikten sonra yine sıkı geçme yöntemiyle kapak sabitlecektir ve yine faydalı yük paraşüt kapağındaki gibi ana paraşüt ipine bağlı olacaktır.
- Kanatçıklar alt gövdedeki yerlerine oturtulacak ve kaynaklama yöntemiyle gövdeye sabitlenecektir.
- Motor, motor yatağına yerleştirilecek ve bağlantıları yapılacaktır.

Roket Bütünleştirme Stratejisi

- Alt gövde, entegrasyon gövdesi bağlayıcısına vida yardımıyla sabitlecektir.
- Motor ve motor yatağının düşmemesi için tasarlanan motor arka kapağı yerine yerleştirilerek gövdeye vida yardımıyla sabitlecektir.
- AltimeterTwo cihazı ana paraşüt kapağı çıkartılarak kurtarma mekanizması tüpünde bulunan kurtarma mekanizmasın kenarında kalan boş bir alana yapıştırılarak montaj edilir.
- Roketimizde <u>kara barut</u> kullanılmayacaktır.
- Roketin montajına ait <u>Patlatılmış CAD Görüntüsü</u> aşağıdaki linkten ulaşılabilir durumdadır.
 - -> https://youtu.be/wLDkd2YchRU
- Roketin montajına ait video aşağıdaki linkten ulaşılabilir durumdadır.
 - -> https://youtu.be/E5W9ZTqhHkE

Roket Bütünleştirme Stratejisi

Roketin Genel Yapısı

- Burun konisi üst gövdeye sıkı geçme yöntemiyle bağlanacaktır.
- Üst gövde ve alt gövdenin bağlantıları entegrasyon gövdesi ve entegrasyon gövde bağlayıcısı yardımıyla yapılacaktır.
 Entegrasyon gövde bağlayıcısına 70mm'lik kısmı alt gövdede kalacak şekilde boşluk bırakılarak entegrasyon gövdesi montajı cıvata yardımıyla yapılacaktır. Entegrasyon gövdesine montajı yapılan entegrasyon gövdesi bağlayıcısının soluna üst, sağına alt gövde yerleştirilecek ve vida yardımıyla montajı yapılacaktır.
- Kanatçıklar alt gövdedeki yerlerine oturtturularak gövdeye kaynaklama yöntemi ile montajı tamamlanacaktır.

Yapısal Analizler

Yapısal/Mekanik Mukavemet Analizleri:

- Yapısal/Mekanik Mukavemet Analizleri ANSYS programında yapılmıştır.
- CAD programında tasarımı yapılan roket ANSYS programında çalıştırılabilecek uzantı olarak kaydedilir. ANSYS
 programında statik analiz bölümü açılır. ANSYS programında roket dosyası açılır ve model kısmından mesh
 uygulaması yapılır. Gerekli destek, kuvvet ve istenilen veriler eklendikten sonra tasarım çözülür ve sonuçlar
 görülür.
- ANSYS programında yapılan yapısal/mekanik mukavemet analizi linki aşağıdadır.
 - -> https://youtu.be/PIS5 rR4H4U
- Yukarıdaki videoda rokette oluşan toplam deformasyon, von-Mises gerilmesi, maksimum ve minimum asal gerilmelere yer verilmiştir.
- Analiz yapılırken maksimum ivme baz alınmıştır.

Yapısal Analizler

• Parça üretimleri yapılmadan önce parçalar sanal ortamda analiz edilecektir.

Komponent	Analiz Tarihi	Komponent	Analiz Tarihi
Burun Konisi	13 Haziran 2021	Faydalı Yük Tüpü	18 Haziran 2021
Üst Gövde	14 Haziran 2021	Kurtarma Mekanizması Tüpü	19 Haziran 2021
Entegrasyon Gövdesi	15 Haziran 2021	Aviyonik Tüpü	19 Haziran 2021
Alt Gövde	16 Haziran 2021	Мара	20 Haziran 2021
Kanatçık	17 Haziran 2021	Cıvata, Vida vb.	20 Haziran 2021
Motor Yatağı	18 Haziran 2021	Entegrasyon Gövdesi Bağlayıcısı	21 Haziran 2021

Yapısal Testler

- Yapısal/Mekanik mukavemet testi kapsamında basma deneyi, çekme deneyi, düşme deneyleri yapılacaktır.
- Roket gövdesinde ve gövde içi parçaların üretiminde kullanılacak olan fiberglass ve alüminyum malzemelerin testleri Pamukkale Üniversitesi, Teknoloji Fakültesi laboratuvarlarında gerçekleştirilecektir.
- Testler 22-27 Mayıs 2021 tarihleri arasında yapılacak olup youtube platformuna yüklenecektir.

Basma Testi:

Basma deneyi universal cihazlarda yapılır ve iki basma kafası arasına yerleştirilen numuneye sabit hızla artan bir basma yükü uygulanır. Yapılan basma testinden alınacak malzemenin verilerle akma mukavemeti, basma kuvveti. elastisite modülü, % birim şekil değişimi, % kesit değişimi gibi veriler elde edilecektir. Elde edilen verilere göre üretimi planlanır.

Eğilme Testi:

İki desteğe serbest olarak oturtulan, genellikle daire veya dikdörtgen kesitli düz bir deney parçasının yön değiştirmeksizin ortasına bir kuvvet uygulandığında oluşan biçim değiştirmesiyle yapılan bir deneydir. Eğilme gerilmesi hesabı, eğilme mukavemeti hesabı, akma mukavemeti, maksimum şekil değiştirme, elastisite modülü gibi veriler elde edilir. Elde edilen verilere göre üretimi planlanır.

Düşme Testi:

Gerçek dünyadaki etkilerin öğeyi nasıl etkileyeceğini simüle edilecek, bir ürünü hükümet, endüstri veya şirket standartlarına uygunluğu açısından değerlendirilecek, etkilenen öğenin performansı hakkında ayrıntılı veriler elde edilecektir. Test numunenin farklı şartlar altında farklı yüksekliklerden yere bırakılmasıyla gerçekleşecektir. Düşme sırasında maruz kalacağı kuvvet görülecek ve üretimi bu verilere göre planlanacaktır.

Yapısal Testler

Komponent	Test Aralığı	Komponent	Test Aralığı
Burun Konisi	15-16 Temmuz 2021	Faydalı Yük Tüpü	27-28 Temmuz 2021
Üst Gövde	17-18 Temmuz 2021	Kurtarma Mekanizması Tüpü	29 Temmuz 2021
Entegrasyon Gövdesi	19 Temmuz 2021	Aviyonik Tüpü	25-26 Mayıs 2021
Alt Gövde	20-21 Temmuz 2021	Мара	31 Temmuz 2021
Kanatçık	22-23 Temmuz 2021	Cıvata, Vida vb.	31 Temmuz – 1 Ağustos 2021
Motor Yatağı	23-24 Mayıs 2021	Entegrasyon Gövdesi Bağlayıcısı	2 Ağustos 2021
Gövde İçi Kapaklar	25 Temmuz 2021	Paraşüt Kapakları	26 Temmuz 2021
Alüminyum Malzeme	21 Mayıs 2021	Fiberglass Malzeme	22 Mayıs 2021

Kütle Bütçesi

Alt Sistem İsmi	Komponent	Kütle (gram)	Malzeme	Adet
	Burun Konisi	856	Fiberglass	1
	Omuzluk	445	Fiberglass	1
Burun	Şok Kordonu	2,58	Elastik Kordon	1
	Sürüklenme Paraşütü	137	Yırtılmaz Naylon	1
	Burun Konisi Kapağı	316	Alüminyum	1
	Gövde	2762	Fiberglass	1
	Faydalı Yük Tüpü	392	Fiberglass	1
	Yük Paraşütü	49,2	Yırtılmaz Naylon	1
	aydalı Yük + Yük Bilgisayaı	4000+50	Paslanmaz Çelik	1
	Şok Kordonu	3,5	Örgülü Naylon	1
Üst Gövde	Kapak	347 (Adet)	Alüminyum	4
USI Govae	Aviyonik Tüpü	249	Fiberlgass	1
	urtarma Mekanizması Tüp	146	Fiberglass	1
	ikey Kurtarma Mekanizma	110 (Adet)	Fiberglass	2
	atay Kurtarma Mekanizma	150	Fiberglass	1
	Şok Kordonu	3,5	Örgülü Naylon	1
	Mapalar	50 (Adet)	Paslanmaz Çelik	4

Kütle Bütçesi

Kütle Bütçesi

Alt Sistem İsmi	Komponent	Kütle (gram)	Malzeme	Adet		
	Aviyonik	150	?	1		
Assistantit	Yedek Aviyonik	50	?	1		
Aviyonik	Altimetre	50	?	1		
	Batarya	300	?	1		
	Gövde	153	Fiberglass	1		
Entagrasyon Cövdasi	Gövde Bağlayıcısı	286	Fiberglass	1		
Entegrasyon Gövdesi	Ana Paraşüt	531	Yırtılmaz Naylon	1		
	Şok Kordonu	56 Tubular Naylo		1		
	Gövde	2915	Fiberglass	1		
	Merkezleme Halkası	160 (Adet)	Fiberglass	2		
Alt Gövde	Motor Ön Kapağı	223	Fiberglass	1		
	Motor Arka Kapağı	238	Fiberglass	1		
	Kanatçık	726,75 (Adet)	Alüminyum	4		
Motor Bölümü	Motor Yatağı	1182	Alüminyum	1		
Motor Bölümü	Motor	7032 ?		1		
Toplan	n Kütle	27764				
OpenRoc	ket Kütle		27764			

Kütle Bütçesi

Optimizasyona Tabii Gereksinimler

Gereksinim	Tasarım Seçenekleri	Optimizasyon Kriteri - 1	Optimizasyon Kriteri - 2	Sonuç ve Tasarıma Etkisi
Gövde Malzemesi Seçimi	Fiberglass / Karbonfiber	Kütle (kg) (5830-5,610)	Hız (m/s) (265-267)	Roketin ulaşması gereken irtifayı geçtiği için burun konisindeki kapak uzunluğu 7mm arttırıldı.
Burun Konisi Seçimi	Haack Series/Ogive	Kütle (kg) (1,301-1,264)	Şekil Parametresi (0,333-1)	Roketin kütlesinde azalma olduğundan roket hızı ve ulaştığı irtifa artmıştır. Dengelemek için burun konisi kapağı 1mm arttırılmıştır.
Motor Yatağı Malzeme Seçimi	Alüminyum/Fiberglass	Kütle (kg) (1,182-0,779)	Stabilite (3,56-3,62)	Roket kütlesinde azalma olduğundan dolayı roketin hızında ve ulaşması gereken irtifada artış gözlemlenmiştir. Roketteki aviyonik, faydalı yük tüpü ve kurtarma mekanizması tüpü malzemesi fiberglass malzemeden alüminyum malzemeye çevrilmiş ve roket dengelenmiştir.
Merkezleme Halkası, Entegrasyon Gövde Bağlayıcısı, Aviyonik, Faydalı Yük ve Kurtarma Mekanizması Tüpü, Motor Kapakları Malzeme Seçimi	Fiberglass/Karbonfiber	Hız (m/s) (265-266)	Stabilite (3,56-3,57)	Roket ağırlığının azalmasından dolayı roket hızında ve ulaştığı irtifada bir miktar artış yaşanmıştır fakat tasarımda düzenleme yapma zorunluluğu yoktur. Yapılmak istenmesi durumunda burun konisindeki kapağın uzunluğu 2mm arttırılarak eski dengesine dönebilir.

Optimizasyona Tabii Gereksinimler

Gereksinim	Tasarım Seçenekleri	Optimizasyon Kriteri - 1	Optimizasyon Kriteri - 2	Sonuç ve Tasarıma Etkisi
Kanatçığın Et Kalınlığı	8mm/7mm	Kütle (kg) (2,907-2,547)	Hız (m/s) (265-269)	Roketin ulaşması gereken irtifayı geçtiği için aviyonik, faydalı yük, kurtarma mekanizması tüpleri ve entegrasyon gövdesi bağlayıcısı malzemesi fiberglass yerine alüminyum yapılıp dengeleme sağlanmıştır.
Kanatçık Malzeme Seçimi	Alüminyum/Fiberglass	Kütle (kg) (2,907-2,000)	Stabilite (3,56-3,76)	Roketin kütlesinde azalma olduğundan dolayı roketin hızında ve ulaşması gereken irtifada artış gözlemlenmiştir. Roketi dengelemek için aviyonik, kurtarma mekanizması, faydalı yük tüpü, motor kapakları ve merkezleme halkaları malzemeleri fiberglass yerine alüminyum yapılmıştır.
Burun Konisi Malzeme Seçimi	Fiberglass/Karbonfiber	Kütle (kg) (1,301-1,252)	Stabilite (3,56-3,55)	Roket ağırlığının azalmasından dolayı roket hızında ve ulaştığı irtifada bir miktar artış yaşanmıştır fakat tasarımda düzenleme yapma zorunluluğu yoktur. Yapılmak istenmesi durumunda faydalı yük 50 gram arttırılarak dengelemesi sağlanabilir.
Üst Gövde deki Kapakların Malzeme Seçimi	Alüminyum/Fiberglass	Hız (m/s) (265-270)	Stabilite (3,56-3,50)	Roketin kütlesinde azalma olduğu için roket hızında ve ulaşması gereken irtifada artış gözlemlenmiştir. Faydalı yük ağırlığı 425 gram arttırılarak roket dengesi sağlanmıştır.

2021 TEKNOFEST ROKET YARIŞMASI KRİTİK TASARIM RAPORU (KTR)

Kontrol Listesi

NO	Gereksinim Madde No.	Gereksinim	Karşılama Durumu	KTR Slayt No	Açıklama
1	3.1.11.	Takımlar en az dört (4) en fazla altı (6) kişiden oluşmalıdır.		2	
2	3.1.13.	Her takımın yarışmaya bir (1) danışmanla katılması zorunludur. Takım danışmanı ile ilgili özellikler 3.1.26 no'lu maddede yer almaktadır.		2	3.1.26 no'lu maddede yer alan Takım danışmanı ile ilgili özellikler ilgili kriterlere uygundur.
3	3.1.21.	Takımlar; Proje Planı, Proje Bütçesi, Kontrol Listesi, Görevli Personel Listesi (Takım Danışmanı dâhil olacak şekilde) hazırlamalıdır.		2	
4	3.2.9.10.	İkinci kademenin tekil olarak statik marjininin de asgari iki (2) olması gerekmektedir.		4	
5	4.2.8	Gövde, burun, elektronik kart vb. gibi tüm sistemlerin nerede, nasıl ve hangi malzemeler ile üretileceğinin bilgisi detaylı olarak verilmelidir.		13-14	
6	3.2.2.	KURTARMA SISTEMI GEREKSINIMLERI		15-16-17-18-19- 20-21-22	

Kontrol Listesi

NO	Gereksinim Madde No.	Gereksinim	Karşılama Durumu	KTR Slayt No	Açıklama
7	3.2.3	Faydalı Yük Gereksinimleri		23-24-25	
8	3.2.6	Aviyonik Gereksinimleri		31-32-33-34-35- 36-37-38-39-40- 41-42-43-44-45- 46-47-48	Şartnamede yer alan 3.2.6.12 ile ilgili maddedeki kullanılan link bütçesi ve modül tercihi yapılmıştır fakat piyasada bulabildiğimiz bir modüle göre yapılmıştır bu yüzden değişme ihtimali vardır. Bu durum raporda 44 ve 46 numaralı sayfalarda belirtilmiştir.
9	4.2.6	Detaylı Bilgisayar Destekli Tasarımların (İng. CAD), kullanılan CAD programı üzerinden entegrasyon videolarının hazırlanması gerekmektedir. Raporda yazan ya da yazmayan her detay CAD tasarımında gösterilmeli ve anlatılmalıdır.		23-31-49-52-55- 57-59-61-63-65- 68-70-71-72-73-74	•
10	4.1.6	Hata Modları ve Etkileri Analizi ile sonuçları da ÖTR'de sunulacaktır (Takımların Hata Modları ve Etkileri Analizi çalışmalarını yapabilmeleri için şablon dokümanlar internet sitesi üzerinden paylaşılacaktır).		86-87-88	

Öge/ Fonksiyon	Fonksiyon Tanımı	Hata Türü	Hata Nedeni	Ömür/ Görev Evresi	Hat	a Etkisi	Hata Tespit Yöntemi	Mevcut Tasa	rım Kontrolleri	Alınan Tedbirler	Şiddet Puanı (S)
_		Tanımlanmış		Hatanın	Yerel Etki	Son Etki	Söz konusu	Önleyici (P)	Tespit Edici (D)	Hata oluştuktan	
	•	_		gözlemlendiği			görev		,	sonra hatanın	başarımı ve
süreç	esi için	_	_	ömür/ görev			evresinde	Hata türünü	Hatanın tespit	etkisini ortadan	Değerlendir
adımı	gereken		•	evresi nedir?			hatanın	ve/veya hata	edilmesini	kaldıran ya da	me Komitesi
nedir?	nedir?/	nedir?	r/olaylar				tespiti ne	nedenini	sağlayan mevcut	-	beklentileri
	Fonksiyon		nelerdir?				şekilde	engelleyen	kontroller	tedbirleri	açısından bu
	tanımı						olmakta?	mevcut	nelerdir?	nelerdir?	etki ne
	nedir?							kontroller			derece
								nelerdir?			önemlidir?
	Enerjiyi	Kopması,	Keskin bir	Taşıma	Enerjiyi	Roketin	Görsel	Kabloları daha	Multimetre ile	Kablolara özel	
	iletmek	aşınması	kenar		iletememe	fonksiyonları	muayene	dikkatli bir	akım kontrolü	bir giriş yaparak	
Kablo			tarafından		si	nın doğru		şekilde	yapmak	onları güvenli bir	. 7
			bir kuvvete			çalışamaması		yerleştirmek		yerden geçirmek	
			maruz								
			kalması								
	Dış	Soket	Yüksek	Uçuş	Görevini	Kurtarma	Görsel	Sensörlerin	Uçuş öncesi yer	Jelatinle	
	dünyadaki	bağlantısının	_		yerine	sisteminin ve	muayene,	lehim	testleri	kaplamak	
Sensörler	verileri	kopması	şok		getiremem	istenilen	Telemetre	bağlantıları			7
	ölçüp		seviyeleri		esi	verilerin	verileri	sağlamlaştırılır			
	sanala					alınamaması					
	aktarması										

Öge/ Fonksiyon	Fonksiyon Tanımı	Hata Türü	Hata Nedeni	Ömür/ Görev Evresi	Hata	Etkisi	Hata Tespit Yöntemi	Mevcut Tasarın	n Kontrolleri	Alınan Tedbirler	Şiddet Puanı (S)
Cıvata	İki parçayı birbirine bağlamak	Cıvatanın paslanması	Yüksek neme maruziyet	Depolama , Taşıma	Cıvatanın mukavemeti nin azalması	Roketin yapısal bütünlüğünü yitirmesi	Görsel muayene	Rokette kullanılan cıvataların korozyona dayanıklı malzeme ile kaplanması	Nem testi yapılması	ikinci bir bağlantı elemanının aynı yapısal parçaların bağlantısı için kullanılması	
Uçuş Bilgisayarı	Uçuş verilerinin analiz edilmesi ve görev komutlarının oluşturulması		Yüksek titreşim ve şok seviyeleri	Uçuş	UB yazılımının çalıştırılama ması	Görev adımlarının başarılı bir şekilde gerçekleştirile memesi	Telemetre verileri	Uçuşta beklenen titreşim ve şok seviyelerinde çalışabilecek UB seçimi	Uçuş öncesi yer testleri	Yedek UB kullanımı	10
Batarya	Aviyoniklere güç sağlanması	Arayüzde temassızlık sonucu bataryanın güç aktarımı yapamaması	Montaj hatası ve uçuş titreşimi	Uçuş	çalışmaması	Görev komutlarının üretimememe si ve roket ile iletişim kurulamaması	Aviyonik güç kontrolü ve Telemetre veriler	Kilit mekanizmalı konektör seçimi	Uçuş öncesi yer testleri	Besleme hattı yedeklenmesi	7

Öge/ Fonksiyon	Fonksiyon Tanımı	Hata Türü	Hata Nedeni	Ömür/ Görev Evresi	Hata	Etkisi	Hata Tespit Yöntemi	Mevcut Tasarın	n Kontrolleri	Alınan Tedbirler	Şiddet Puanı (S)
Faydalı yük ayırma mekanizm ası	Faydalı Yük'ün istenen koşullarda sistemden ayrılması	İstemsiz Faydalı Yük ayrılması	Hatalı sinyal iletim	Uçuş	Faydalı Yük'ün yanlış irtifada sistemden ayrılması		Telemetre verileri	Faydalı Yük ayrılma koşullarının uçuş algoritmasında birkaç defa kontrol edilmesi	Algoritma hata koşullarının yerde test edilmesi	Hatalı ayrılma sonrası Faydalı Yük'ün sistem dışına nominal bir şekilde çıkıp paraşütün açılmasına olanak verecek şekilde yerleştirilmesi	7
Kurtarma mekanizm ası	Roketi kurtarmak	Sistemin aviyonik tarafından tetiklenmem esi	Hatalı sinyal iletim, iletim hattında kopukluk, sistem arızası	Uçuş, kurtarma	Sistemin açılmaması	Roket çakılması	Ölçüm muayene, görsel muayene	Yedek aviyonik ile ana aviyonik bilgisayarın birbirinden bağımsız çalışması	Algoritma hata koşullarının yerde test edilmesi	Yedek aviyonik bilgisayarın aktif olması	10

Öge/ Fonksiyon	Fonksiyon Tanımı	Hata Türü	Hata Nedeni	Ömür/ Görev Evresi	Hata	a Etkisi	Hata Tespit Yöntemi	Mevcut Tasarın	n Kontrolleri	Alınan Tedbirler	Şiddet Puanı (S)
	Roketi uçurmak	memesi	Yakıtın yetersiz olması, motor yapısı içerisinde anormal durumlar olması		çalışmaması	Roketin hiç havalanmama sı veya hedef olan tepe noktasına çıkamaması	Görsel muayene	Yer üstünde motora yeteceği miktarda yakıt koymak	Yer üstünde yakıt kontrolü yapılması	Yedek motora sahip olmak	10
kanadının	Rokete bir stabilite kazandırmak	atamaz			kopup düşmesi	Rokete yüklenen görev sonrası güvenli inişin tehlikeye girmesi	Görsel muayene, Ölçüm muayene	Roketin kanatlarını alüminyumdan yapmak	Uçuş öncesi kanatlara kuvvet uygulayıp sağlamlığını test etmek	Yedek kanatlara sahip olmak	10

Proje Plani

	10.Mar	26.Mar	11.Nis	27.Nis	13 May	29.May	14.Haz	30.Haz	15 Tam	30.Tem
Burun Konisi Analizi	10.10101	20.19101	TT.1412	27.INI3	13.ividy	23.ividy	14.1102	30.1182	13.16111	30.16111
Üst Gövde Analizi										
Entegrasyon Gövdesi Analizi										
Alt Gövde Analizi										
Kanatçık Analizi										
Motor Yatağı Analizi										
Faydalı Yük Tüpü Analizi						1				
Kurtarma Mekanizması Tüpü										
Analizi										
Aviyonik Tüpü Analizi										
Mapa Analizi										
Cıvata, Vida vb. Analiz										
Entegrasyon Gövdesi										
Bağlayıcısı Analizi										
Paraşüt Açma Mekanizması										
Prototip Testi										
Örnek Paraşüt Fonksiyonellik										
Testi										
Paraşüt Açma Mekanizması										
Testi										
Ana, Sürüklenme ve Yük										
Paraşütü Testi										

		10.Mar	26.Mar	11.Nis	27.Nis	13.May	29.May	14.Haz	30.Haz	15.Tem	30.Tem	15.Ağu
	Burun Konisi Testi											
	Üst Gövde Testi											
	Entegrasyon Gövdesi Testi											
	Alt Gövde Testi											
	Kanatçık Testi											
	Motor Yatağı Testi											
	Gövde İçi Kapak Testi											
	Alüminyum Malzeme Testi											
	Faydalı Yük Tüpü Testi											
K	urtarma Mekanizması Tüpü											
	Testi											
	Aviyonik Tüpü Testi											
	Mapa Testi											
	Cıvata, Vida vb. Testi											
	Entegrasyon Gövdesi											
	Bağlayıcısı Testi											
	Paraşüt Kapakları Testi											
	Fiberglass Malzeme Testi											
	Ana Aviyonik Algoritma ve											
	Sensör Testleri							_				
Y	edek Aviyonik Algoritma ve											
	Sensör Testleri											
	İletişim Testleri											
	Kart Fonksiyonellik Testi											

Bütçe

Ürün	Malzeme	Adet	Fiyat (₺)
Мара	Dövülmüş Çelik	4	90
Paraşüt Kumaşı	Yırtılmaz Naylon	1	650
Paraşüt İpi (6mm)	Elastik Kordon	1	40
Paraşüt İpi (12mm)	Elastik Kordon	1	110
Üst Gövde + Alt Gövde	Fiberglass	1+1	1.440,36
Entegrasyon Gövdesi	Fiberglass	1	55,61
Yapıştırıcı	Epoksi (250g)	3	360
Burun Konisi	Fiberglass	1	406,18
Faydalı Yük	Paslanmaz Çelik	1	160
Şok Kordonu	Elastik Kordon	4	110
Motor Yatağı	Alüminyum	1	602,78
Kanatçık	Alüminyum	4	403,92
Mekanizma Tüpü + E. G. Bağlayıcısı	Fiberglass	1+1	273,7
Aviyonik ve Yük Tüpü	Fiberglass	1+1	339,31
Motor Ön Kapağı + Motor Arka Kapağı + Merkezleme Halkaları	Fiberglass	1+1+2	184,20

Bütçe

Ürün	Malzeme	Adet	Fiyat
Kapak	Alüminyum	5	147,36
Ardunio Nano	-	3	394,74
Micro SD kart ve modülü	-	1	57,71
NEO-6M GPS Modülü	-	2	260,2
BMP 280	-	1	32,46
MPU 6050	-	1	33
xBee 3 Pro	-	4	1.797,52
Duracell 9V Alkalin 9V Pil	-	8	144
Epoksi (Duratek DTE 1200 ve Sertleştirici (Duratek DTS 1151)	-	4	1280
Servo Motor	-	4	602,72
Kablo	-	1 rulo	40
Yay	-	3	300
Servo Motor Kablosu (JST)	-	10m	80
Prototip Test Giderleri (Kurtarma Sistemi, Paraşüt ve Yapısal Testler)	-	-	750

Bütçe

Ürün	Malzeme	Adet	Fiyat
Roket Ulaşım Giderleri	-	-	1500
Ulaşım Giderleri ve Diğer	-	-	1150
Toplam		13.975,77	

Referanslar

Referans	Link
1	https://modelroket.com/model-roketlerde-kurtarma-sistemleri/
2	https://www.isbu.com.tr/blog/icerik/ripstop-kumas-nedir#:~:text=%C4%B0ngilizce%20bir%20s%C3%B6zc%C3%BCk%20olan%20%22ripstop,%C3%A7apraz%20ve%20s%C4%B1k%C4%B1%20%C5%9Fekilde%20konumlanm%C4%B1%C5%9Ft%C4%B1r.
3	https://www.youtube.com/watch?v=3ndJBjMAw6g&t=3046s
4	https://productimages.hepsiburada.net/s/29/375/10279547699250.jpg
5	https://productimages.hepsiburada.net/s/19/375/9824841498674.jpg
6	https://www.pcboard.ca/image/cache/catalog/products/buzzers/piezo-buzzer/piezo-buzzer-01-800x800.jpg
7	https://www.robotistan.com/xbee-3-modul-ufl-anten-34056-92-B.jpg
8	https://st2.myideasoft.com/shop/dt/63/myassets/products/293/mpu6050-sensor.jpg?revision=1540787072
9	https://www.robotistan.com/bmp180-dijital-hava-basinci-sensoru-31513-17-O.jpg
10	https://www.motorobit.com/urun/mg995-tower-pro-servo-motor-360-derece
11	TZfyyNDD_OWRah_Eq8RgiffqHOkTym_gUqhBV8J1jpoFd04eOqwXVSiW0j0J8bJE2MQdhgG971rGC1xg8QsplOFhY-HGoPV7HXiWrlsd (512×218)
	(googleusercontent.com)
12	https://images.esellerpro.com/2272/I/495/9/S43-0151P01WL.jpg
13	https://www.direnc.net/400mhz-470mhz-rf-anten-3-3dbi-173mm-sma-male-rf-antenler-linx-42596-16-B.png

Referanslar

Referans	Link
14	https://tr.wikipedia.org/wiki/Burun_konisi_tasarımı#Haack_serisi
15	http://www.matweb.com/search/DataSheet.aspx?MatGUID=8f9003366c9044bdb91bcd86e1fa6e42
16	https://malzemebilimi.net/elyaf-takviyeli-kompozit-malzemelerde-el-yatirma-yontemi.html
17	http://www.matweb.com/search/DataSheet.aspx?MatGUID=57483b4d782940faaf12964a1821fb61
18	https://bircelik.com/tr/kategori/304-1-4301-
19	https://malzemebilimi.net/kum-kaliba-dokum-derece-ile-kaliplama-yontemi.html