### 제7장: 딥러닝 최적화와 모형진단

#### Soyoung Park

Pusan National University Department of Statistics soyoung@pusan.ac.kr

## 최적화와 딥러닝 모형진단

1

2

3

4

출력층과 손실함수 - 회귀(regression)

#### 분류에서의 정밀도

- Sensitivity(민감도), True positive rate, Recall
- Specificity(특이도), True negative rate
- False positive rate(FRP) = 1- Specificity
- Accuracy
- Precision
- Error Rate

<sup>1</sup>https://losskatsu.github.io/machine-learning/stat-roc-curve

#### ROC curve



<sup>&</sup>lt;sup>2</sup>https://en.wikipedia.org/wiki/Receiver\_operating\_characteristic

## 출력층의 활성함수, 손실함수, 정밀도

표 3-1 출력층의 활성함수, 손실함수, 그리고 정밀도

| 목적   | 출력층의<br>활성함수 | 손실함수                                            | 정밀도                         |
|------|--------------|-------------------------------------------------|-----------------------------|
| 회귀   | 항등           | MSE 또는 SSE                                      | MSE, MAE, MAPE              |
| 이항분류 | sigmoid      | binary crossentropy                             | accuracy, precision, recall |
| 다항분류 | softmax      | binary crossentropy<br>categorical crossentropy | accuray, precision, recall  |

## 학습률과 모수최신화



그림 3-1 손실함수의 최적화

12 / 33

#### 역전파의 과정

- 1 모수의 초기를 임의로 부여하고, 딥러닝의 모형구조대로 차례로 움직여 손실함수를 구한다 (입력층  $\rightarrow$  은닉층  $\rightarrow$  출력층
- 2 손실함수의 최소화를 위한 미분을 역순으로 진행해 모수를 최신화한다 ( 출력층 → 은닉층 → 입력층)
- 3 위의 과정을반복해 최적의 모수를 구한다 (과대적합 발생하기 전까지)

역전파의 과정 - (1) 순전파 (forward propagation)

역전파의 과정 - (1) 순전파 (forward propagation)

역전파의 과정 - (1) 순전파 (forward propagation)

## 최적화알고리즘

#### Learning rate



 $<sup>^3</sup> https://angeloyeo.github.io/2020/08/16/gradient\_descent.html$ 

### 기울기하강법(Gradient Descent)

- 전체data로부터 계산된 손실함수를 최소화하는 과정
- 손실함수가 convex함수이고, 국소최소값(local minimum)이 존재하지 않을 때 매우 유용하며 우수한 성능을 보임
- 그러나, 딥러닝 손실함수는 하나 이상의 국소최소값이 존재 할뿐만아니라, 안장점 (saddle point)이 존재하여 기울기 하강법은 일반적으로 적절하지 않음

## (1) 배치 경사 하강법 (Batch Gradient Descent)



4https://skyil.tistory.com/68

### (1) 배치 경사 하강법 (Batch Gradient Descent)





### (2) 확률적 경사 하강법 (Stochastic Gradient Descent)







<sup>6</sup>https://truman.tistory.com/164

## (3) 미니 배치 경사 하강법 (Mini-Batch Gradient Descent)



<sup>&</sup>lt;sup>7</sup>https://skyil.tistory.com/68

### (4) 모멘텀 (Momentum)

$$v_i = av_{i-1} + v_i \bigtriangledown f(x_i)x_{i+1} = x_i + v_i$$





<sup>8</sup>https://east-rain.github.io/docs/Deep%20Learning/basic% 20deeplearning/optimization.html

### 그외 알고리즘..

- Adagradoptimizer
- Rprop 최적화
- RMSprop
- AdaDelta
- Adam (Adaptive moment)
- Nesterov
- Nadam(Nesterov adam)

### 딥러닝 모형의 진단과 일반화



그림 3-4 학습데이터와 검증데이터의 손실함수와 정밀도