받은 성적 100% **통과 점수:** 80% 이상

Neural Network Basics

최근 제출물 성적 100%

1.	What does a neuron compute?	1/1점
	A neuron computes a linear function (z = Wx + b) followed by an activation function	
	A neuron computes a function g that scales the input x linearly (Wx + b)	
	A neuron computes an activation function followed by a linear function (z = Wx + b)	
	A neuron computes the mean of all features before applying the output to an activation function	
2.	Which of these is the "Logistic Loss"?	1/1점
	$\bigcirc \ \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = \mid y^{(i)} - \hat{y}^{(i)} \mid$	
	$\bigcirc \ \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = max(0, y^{(i)} - \hat{y}^{(i)})$	
	$ \bigcirc \hspace{0.1in} \mathcal{L}^{(i)}(\hat{y}^{(i)},y^{(i)}) = -(y^{(i)}\log(\hat{y}^{(i)}) + (1-y^{(i)})\log(1-\hat{y}^{(i)})) $	
	$\bigcap \mathcal{L}^{(i)}(\hat{y}^{(i)}, y^{(i)}) = \mid y^{(i)} - \hat{y}^{(i)} \mid^2$	
	맞습니다 Correct, this is the logistic loss you've seen in lecture!	
3.	Suppose img is a (32,32,3) array, representing a 32x32 image with 3 color channels red, green and blue. How do you reshape this into a column vector?	1/1점
	x = img.reshape((1,32*32,*3))	
	x = img.reshape((32*32,3))	
	x = img.reshape((32*32*3,1))	
	X = img.reshape((3,32*32))	
	♥ 맞습니다	
4	Consider the two following random arrays a and b :	4/474
4.	a = np.random.randn(2,3) # a.shape = (2,3)	1/1점
	b = np.random.randn(2,1) # b.shape = (2,1)	
	c=a+b	
	What will be the shape of c ?	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	c.shape = (2, 3)	
	O c.shape = (2, 1)	
	C.shape = (3, 2)	
	Yes! This is broadcasting. b (column vector) is copied 3 times so that it can be summed to each column of a.	
5.	Consider the two following random arrays a and b :	1/1점
	$a = np.random.randn(4,3) \ \# \ a.shape = (4,3)$	
	b = np.random.randn(3,2) # b.shape = (3,2)	
	c = a * b	
	What will be the shape of c ?	
	C.shape = (3, 3)	
	C.shape = (4,2)	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	C.shape = (4, 3)	
	맞습니다 Indeed! In numpy the "*" operator indicates element-wise multiplication. It is different from "np.dot()". If you would try "c = np.dot(a,b)" you would get c.shape = (4, 2).	

What is the output J?
∫ = (b - 1) * (c + a)
∫ = a*b + b*c + a*c
$\int \int (c-1)^*(b+a)$
맞습니다 Yes. J = u + v - w = a*b + a*c - (b + c) = a * (b + c) - (b + c) = (a - 1) * (b + c).