

Agenda

- 1. Logistics
- 2. Introduction
- 3. Use Case Explanation
- 4. Modeling

BREAK

- 5. Building the solution
- 6. Q & A

Logistics

WIFI Access:		
Restrooms:		
Chargers:		
Material for the workshop:	https://github.com/cskardon/gsummit2023	

Introduction

A short overview of the Neo4j Product

Labeled Property Graph Model Components

- Nodes
 - Represent objects in the graph
- Labels
 - Group nodes
 - Shape the domain
- Relationships
 - Relate nodes by type and direction
- Properties
 - Name-value pairs that can go on nodes and relationships
 - Can have indexes and composite indexes (types: String, Number, Long, Date, Spatial, byte and arrays of those)

Cypher: powerful and expressive query language

Cypher: Matching

neo4j

Neo4j Graph Data Science

Pop Quiz

Which of the coloured nodes would be considered the most "important"?

Graphs Contain Implicit Knowledge

- This is the most connected individual in the network. If important is now well you are personally known, you pick D.
- G has the highest closeness centrality (0.52)
 Information will disperse through the network more quickly through this individual. If you need to get a message out rapidly, choose G.
 - I has the highest betweenness centrality (0.59)

 This person is an efficient connector of other people.

 Risk of network disruption is higher if you lose this individual

neo4j

Better Predictions With Data You Already Have

- Traditional ML ignores network structure because it's difficult to extract
- Graphs use relationships to unlock otherwise unattainable predictions
- Add graphy data to existing ML pipelines to increase accuracy

Graph Algorithm Categories

Pathfinding & Search

Finds optimal paths or evaluates route availability and quality

Centrality / Importance

Determines the importance of distinct nodes in the network

Community Detection

Detects group clustering or partition

Estimates the likelihood of nodes forming a future relationship

Similarity

Evaluates how alike nodes are by neighbours and relationships

Embeddings & ML

Compute low-dimensional vector representations of nodes in a graph, and allow you to train supervised machine learning models

Available Algorithms (as of 2.3)

Pathfinding & Search

- · Delta-Stepping Single Source Shortest Path
- · Dijkstra Source-Target Shortest Path
- · Dijkstra Single Source Shortest Path
- A* Shortest Path
- · Yen's Shortest Path
- · Breadth First Search
- · Depth First Search
- Random Walk
- · Minimum Weight Spanning Tree
- Minimum Directed Steiner Tree
- Minimum Weight k-Spanning Tree

Link

Prediction

· All Pairs Shortest Path

Centrality / Importance

- Page Rank
- · Article Rank
- Eigenvector Centrality
- · Betweenness Centrality
- Degree Centrality
- · Closeness Centrality
- Harmonic Centrality
- Hyperlink Induced Topic Search (HITS)
- Influence Maximization

Similarity

- Adamic Adar
- · Common Neighbors
- Preferential Attachment
- · Resource Allocations
- · Same Community
- · Total Neighbors

- Node Similarity
- K-Nearest Neighbors (KNN)
- Cosine Similarity
- Euclidean Similarity
- Euclidean Distance Similarity
- Jaccard Similarity
- Overlap Similarity
- Pearson Similarity

- Louvain
- Label Propagation
- · Weakly Connected Components
- Triangle Count
- Local Clustering Coefficient
- K-1 Colouring
- Modularity Optimization
- K-Means Clustering
- Leiden
- Strongly Connected Components
- Speaker-Listener Label Propagation
- Approximate Maximum k-cut
- Conductance Metric
- Modularity Metrix

Embeddings & ML

- FastRP
- GraphSAGE
- Node2Vec
- HashGNN
- Node Classifaction Pipelines
- · Link Prediction Pipelines
- Node Regression Pipelines

Visualisation

Data Visualization with Neo4j Bloom

Neo4j's user-friendly graph database visualization, exploration and collaboration tool.

- Visually explore graphs
- Prototype faster
- Visualize and discover
- Easy for non-technical users

NeoDash - Dashboarding with Graph Data

Use Case Explanation

Digital Twin - An Overview

What is a **Digital Twin?**

A Digital Twin is a digital representation of a ... real-world physical product, system, or process ... that serves as the effectively indistinguishable digital counterpart of it for practical purposes, such as simulation, integration, testing, monitoring and maintenance.

It has been done before

- Challenge: Legacy technology could not section and analyse train journeys
- Solution: Neo4j Knowledge Graph
- Identify and avoid bottlenecks

EU Rail Network

Why do we need a Digital Twin?

Improved efficiency

Optimize operations and reduce costs by simulating different scenarios and making data-driven decisions.

Enhanced safety

Identify potential hazards and test safety measures to improve safety for passengers and employees.

Predictive maintenance

Monitor asset condition in real-time, predict maintenance needs, and increase asset lifespan.

Improved customer experience

Simulate disruptions and help proactively address issues to enhance the customer experience and increase satisfaction.

Modeling the solution

What is graph data modeling?

Collaborative effort where the application domain is analysed by **stakeholders** and **developers** to come up with the optimal model for use with Neo4j.

Who are the stakeholders?

- Business analysts
- Architects
- Managers
- Project leaders
- Data Scientists

Graph data modeling workflow

Modeling – Step 1

Domain knowledge – High level requirements

We've already got this!

- Normally...
- In this case we've talked about the Domain
- You will have the knowledge of your own Domain

Modeling – Step 2

Sample Data

Get Sample Data

Static Rail Network*

- Sections of lines
 - Length,
 - Speed
- Operational Points (Stations etc)
 - Geolocation information,
- Points of Interest (POI) along lines

Operational Points (OP) - Data Explanation

- id (string): The identifier of the OP
- extralabel (string): The type of the OP (Station, Switch, Border Point...)
- name (string): The name of the OP
- latitude (float): The latitude of the OP
- longtitude (float): The longitude of the OP

Section Length Data

- **source** (**string**): The identifier of the *start* OP for the section
- target (string): The identifier of the end OP for the section
- **sectionlength (float)**: The distince (in Kilometers) of the section

Section Speed Data

- **source** (**string**): The identifier of the *start* OP for the section
- target (string): The identifier of the end OP for the section
- trackspeed (float): The maximum speed allowed on that section

Point of Interest (POI) Data

- CITY (string): The name of the City the POI is in, or close to
- POI_DESCRIPTION (string): A short description of of the POI
- LINK_FOTO (string): A link to a picture of the POI
- LINK_WEBSITE (string): A link to a web page about the POI
- LAT (float): The latitude of the POI
- LONG (float): The Longitude of the POI

Modeling - Step 3

Domain Questions

Data Modeling – Example Domain Questions

- 1. What is the route from Operational Point X to Operational Point Y?
 - What's the quickest way to get a repair crew from Technical Services to a given Switch?
- 2. What is an alternative route if an Operational Point on a route is closed?
 - A Switch is broken and we need to reroute Trains.
- 3. How many routes are affected if I need to upgrade an Operational Point?
 - A Switch needs to be upgraded to support the network
- 4. What POIs are along a route?
 - ° Can we make revenue from referral commissions? Find busier routes during tourism season?

Modeling – Step 4

Identifying entities and connections

Identify Entities from Questions

Entities are the **nouns** in the domain questions:

1. What **ingredients** are used in a **recipe**?

2. Who is married to this **person**?

- The generic *nouns* often become labels in the model
- Use domain knowledge deciding how to further group or differentiate entities

Identify Connections between Entities

Connections are the **verbs** in the domain questions:

What ingredients are used in a recipe?

Who is married to this person?

Using our Questions – Question 1

- What is the route from Operational Point X to Operational Point Y?
 - What's the quickest way to get a repair crew from Technical Services to a given Switch?
- 2. What is an alternative route if an Operational Point on a Section is closed?
 - A Switch is broken and we need to reroute Trains
- 3. How many routes are affected if I need to upgrade an Operational Point?
 - A Switch needs to be upgraded to support the network
- 4. What POIs are near Station Operational Points on a Section?
 - Can we make revenue from referral commissions? Find busier routes during tourism season?

Using our Questions - Question 1 - Model

- 1. What is the route from Operational Point X to Operational Point Y?
 - What's the quickest way to get a repair crew from Technical Services to a given Switch?

Using our Questions – Question 2

- What is the route from Operational Point X to Operational Point Y?
 - What's the quickest way to get a repair crew from Technical Services to a given Switch?
- 2. What is an alternative route if an Operational Point on a Section is closed?
 - A Switch is broken and we need to reroute Trains
- 3. How many routes are affected if I need to upgrade an Operational Point?
 - A Switch needs to be upgraded to support the network
- 4. What POIs are near Station Operational Points on a Section?
 - Can we make revenue from referral commissions? Find busier routes during tourism season?

Using our Questions – Question 2 – Model

- 2. What is an alternative route if an Operational Point on a Section is closed?
 - A Switch is broken and we need to reroute Trains

Using our Questions – Question 3

- 1. What is the route from Operational Point X to Operational Point Y?
 - What's the quickest way to get a repair crew from Technical Services to a given Switch?
- 2. What is an alternative route if an Operational Point on a Section is closed?
 - A Switch is broken and we need to reroute Trains
- 3. How many routes are affected if I need to upgrade an Operational Point?
 - A Switch needs to be upgraded to support the network
- 4. What POIs are near Station Operational Points on a Section?
 - Can we make revenue from referral commissions? Find busier routes during tourism season?

Using our Questions – Question 3 – Model

- 3. How many routes are affected if I need to upgrade an Operational Point?
 - A Switch needs to be upgraded to support the network

Using our Questions - Question 4

- 1. What is the route from Operational Point X to Operational Point Y?
 - What's the quickest way to get a repair crew from Technical Services to a given Switch?
- 2. What is an alternative route if an Operational Point on a Section is closed?
 - A Switch is broken and we need to reroute Trains
- 3. How many routes are affected if I need to upgrade an Operational Point?
 - A Switch needs to be upgraded to support the network
- 4. What POIs are near Station Operational Points on a Section?
 - Can we make revenue from referral commissions? Find busier routes during tourism season?

Using our Questions - Question 4 - Model

- 4. What POIs are near Station Operational Points on a Section?
 - ° Can we make revenue from referral commissions? Find busier routes during tourism season?

Before we go further – Environment for later

- Neo4j Desktop
- Sandbox

Before we go further - Sandbox Login

- Create a sandbox for later
- https://sandbox.neo4j.com/

Before we go further – Blank Sandbox

- https://sandbox.neo4j.com/
- Create a 'Blank Sandbox'

Workshop

Examples

- Go to the Neo4j Sandbox you created earlier (or Desktop!)
 - https://sandbox.neo4j.com/
- 'Open with Browser'

Get the code

- Open the Github page:
- https://github.com/cskardon/gsummit2023

Visualisation - Bloom

Bloom - Desktop

Open Bloom

Bloom - Sandbox

Open Bloom

Bloom – Import Perspective

Visualisation - NeoDash

NeoDash

- Open NeoDash:
 - http://neodash.graphapp.io/

NeoDash - Desktop

- Host: localhost
- User: neo4j
- Password: YOURS!

NeoDash - Sandbox

- Open Sandbox
- Get connection details

NeoDash - Import Dashboard

- Create New Dashboard
- Import from Source files

Q & A

