Листок 18

Семинарские задачи

Задача 18.1. Вычислите интегралы

a)
$$\int \frac{dx}{1+x^3}$$
; 6) $\int \frac{3x^2-x+2}{(1+x^2)^2(x-1)}dx$.

Метод Остроградского

Пусть $\deg P < \deg Q$ и пусть $Q(x) = Q_1(x)Q_2(x)$, где $Q_1 := \mathrm{HOД}\ (Q,Q')$ (т.е. многочлен Q_2 имеет все те же корни, что и Q только кратности 1). Тогда

$$\int \frac{P(x)}{Q(x)} dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} dx,$$

где $\deg P_j < \deg Q_j, j = 1, 2.$

Задача 18.2. Вычислите методом Остроградского интеграл $\int \frac{x-1}{(x^2+x+1)^2} dx$.

Задача 18.3. Применяя различные методы рационализации, сведите следующие интегралы к интегралам от рациональных функций и вычислите и

a)
$$\int \frac{dx}{\sin x + 2\cos x + 6}$$
; 6) $\int \frac{dx}{1 + \cos^2 x}$; B) $\int \frac{\sin x}{2\sin x + 3\cos x} dx$; r) $\int \frac{\sqrt{x} + 1}{x^2 - \sqrt{x}} dx$; $\int \frac{dx}{\sqrt{(x-1)^3(x+2)^5}}$.

Задача 18.4. Получите рекуррентную формулу для вычисления интеграла

$$I_n = \int \sin^n x dx.$$

Домашние задачи

Задача 18.5 (ДЗ). Вычислите следующие интегралы от рациональных функций:

дача 18.5 (ДЗ). Вычислите следующие интегралы от рациональных функций:
a)
$$\int \frac{dx}{x(x+1)(x+2)}$$
; 6) $\int \frac{x^2+5x+4}{x^4+5x^2+4}dx$; в) $\int \frac{x^2+3x-2}{(x-1)(x^2+x+1)^2}dx$; г) $\int \frac{dx}{x(x^3+1)^2}$.

Задача 18.6 (ДЗ). Применяя различные методы рационализации, сведите следующие интегра-

лы к интегралам от рациональных функций и вычислите их:

a)
$$\int \frac{dx}{3+\sin x}$$
; 6) $\int \frac{dx}{2\sin x+3\cos x+5}$; B) $\int \frac{dx}{2\sin^2 x+3\cos^2 x}$; г) $\int \frac{\cos x}{\sin x-5\cos x}dx$;

д) $\int \frac{dx}{\sqrt[3]{(x+1)^2(x-1)^7}}$.

Задача 18.7 (ДЗ). Получите рекуррентную формулу для вычисления интеграла

$$I_n = \int \frac{dx}{\sin^n x}.$$

Дополнительные задачи

Задача 18.8 (Доп.). Известно, что $a_0 + \frac{a_1}{2} + \frac{a_2}{3} + \ldots + \frac{a_n}{n+1} = 0$. Докажите, что многочлен $a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ имеет хотя бы один корень на отрезке [0,1].

Задача 18.9 (Доп.). Вычислите интеграл

а)
$$\int \frac{x^7}{(x^4+1)^2} dx$$
; б) $\int \frac{x^2-1}{x^4+x^2+1} dx$; в) $\int \frac{\cos x}{\cos^2 x - 5\cos x + 6} dx$; г) $\int \frac{\sin 2x}{\sin^4 x + \cos^4 x} dx$; д) $\int \frac{dx}{\sqrt{x}(1+\sqrt[3]{x})}$; е) $\int \sqrt{\frac{x+1}{x-1}} dx$; ж) $\int \frac{x^4+1}{x^6+1} dx$.