Misure di Volume

J. B. d'Alembert, B. Cavalieri, A. Einstein 10 novembre 2015

1 Teoria

Il **volume** di un corpo è la misura dello spazio occupato da esso.

In questa relazione andremo a misurare indirettamente il volume di alcuni oggetti; in particolare calcoleremo il volume di due cubi ed un parallelepipedo rettangolo a partire dalla misura dei loro spigoli, e di una sfera a partire dalla misura del diametro.

Per la misure di queste grandezze ci serviremo di un calibro universale a nonio, illustrato in Fig. 1. Esso è composto dalle seguenti parti:

Figura 1: Calibro universale a nonio.

- 1. **becchi esterni**: per larghezze o diametri esterni;
- 2. **becchi interni**: per larghezze o diametri interni;
- 3. **asta**: per misure di profondità;
- 4. **scala principale**: per misure millimetriche;
- 5. **nonio**: per misurare le frazioni di millimetro;
- 6. **freno**: per il bloccaggio.

Per la lettura del calibro, avendo ben posizionato l'oggetto tra i becchi esterni, si guarda quale tacca della scala principale è *immediatamente precedente* alla tacca che denota

lo 0 sul nonio. Il valore di tale tacca è la misura precisa al millimetro. In seguito si determina quale tacca del nonio corrisponde con la maggior precisione ad una tacca della scala principale; tale valore sul nonio corrisponderà alla frazione di millimetro da aggiungere alla misura precedente.

Le formule per il volume che andremo ad utilizzare saranno le seguenti:

- cubo di spigolo ℓ : $V = \ell^3$
- parallelepipedo rettangolo di spigoli a, b e c: V = abc
- sfera di raggio r e diametro d=2r: $V=\frac{4}{3}\pi r^3=\frac{1}{6}\pi d^3$

2 Misure

Tutte le misure sono state svolte utilizzando un calibro universale a nonio ventesimale, la cui sensibilità è di 0.005 cm. I valori ottenuti sono i seguenti

solido	grandezza	misura (cm)				
cubo 1	ℓ_1	1.245	1.255	1.250	1.255	1.250