Physics 2321. Review for Exam I.

1. Chapter 21. Electric Charge.

- Unit: Coulomb
- Unit: C/s=1 Amp (for current, I)
- Charges come in discrete pieces; electrons, protons.
- Coulomb's Law: $F = \frac{1}{4\pi\epsilon_0} \frac{|q_1||q_2|}{r^2}$
- Shell theorems.

2. Chapter 21. Electric Fields.

- Definition: $\vec{E} = \frac{\vec{F}}{q_0}$
- Rules of Electric field lines.
- Field due to point charge: $\vec{E} = \frac{1}{4\pi\epsilon_0} \frac{|q|}{r^2}$
- Field above or below a Electric Dipole: $E = \frac{1}{2\pi\epsilon_0} \frac{p}{z^3}$ [SKIP]
 - Dipole moment: $\vec{p} = q\vec{a}$
 - Torque on Dipole: $\vec{\tau} = \vec{p} \times \vec{E}$
- Field Due to Continuous Charge Distributions.
 - Line charge, λ C/m.
 - Surface charge, σ C/m².
 - Volume charge, ρ C/m³.
 - Find $dq = \lambda ds$ or σdA or ρdV
 - Find dE
 - Integrate $E = \int_{allcharge} dE$

3. Chapter 22. Gauss' Law.

- $\oint \vec{E} \cdot d\vec{A} = \frac{q_{enc}}{\epsilon_0}$
- A Gaussian surface should be chosen to be parallel and/or perpendicular to the E-field. (But any surface obeys Gauss' Law.)
- Examples of E-fields we derived:
 - Near a uniformly charged sheet/plane: $E = \frac{\sigma}{2\epsilon_0}$
 - Near a conducting plate with σ the charge density on both sides: $E = \frac{\sigma}{\epsilon_0}$
 - Electric field outside spherical shell of total charge q: $E = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$

1

– Electric field near a line of charge: $E = \frac{\lambda}{2\pi\epsilon_0 r}$

4. Chapter 23. Electric Potential.

- Electric Potential Energy.
 - Relative $\Delta U = -W_{field}$
 - Absolute $U = -W_{\infty}$
 - Units: J
- Electric Potential, V.
 - Relative $\Delta V = -\frac{W_{field}}{q}$
 - Absolute $V = -\frac{W_{field,\infty}}{q}$
 - Units: J/C or N⋅m/C
- Finding Potential from \vec{E} .
 - $-\Delta V = V_f V_i = -\int_i^f \vec{E} \cdot d\vec{s}$
- Finding \vec{E} from Potential.
 - $-E_x = -\frac{\partial V}{\partial x}; E_y = -\frac{\partial V}{\partial y}; E_z = -\frac{\partial V}{\partial z}$
 - When \vec{E} is uniform, $E = -\frac{\Delta V}{\Delta s}$
 - Examples: Example 23-12 and Prob. 51.
- Potential Due to Point Charges
 - $-V = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^n \frac{q_i}{r_i}$
 - Examples: Ch. 23 Prob 28.
- Potential Due to continuous charge distributions
 - $-V_{tot} = \frac{1}{4\pi\epsilon_0} \int_{charge} \frac{dq}{r}$
- Potential Energy of an arrangement of Point Charges

2

- $-U_E = k \sum_{i=1,j>i}^n \frac{q_i q_j}{r_{ij}}$
- Examples: Ch. 23 Test Bank 2.