דף סיכום של סדרות וטורים

סדרות

$$(a_n)_{n=1}^{\infty} = \{a_1, a_2, a_3, \ldots\}.$$

 $a_n \leq M$

 $a_n \ge m$

סדרה היא רשימה מסודרת של מספרים ממשיים:

$a_1 = 1, a_2 = 1, a_3 = 1, \dots$	$a_n = 1$	סדרה קבועה:
$a_1 = 1, a_2 = 2, a_3 = 3, \dots$	$a_n = n$	
$a_1 = 1, a_2 = \frac{1}{2}, a_3 = \frac{1}{3}, \dots$	$a_n = \frac{1}{n}$	הסדרה ההרמונית:
$a_1 = -1, a_2 = 1, a_3 = -1, \dots$	$a_n = (-1)^n$	
$a_1 = -\frac{1}{2}, a_2 = \frac{1}{5}, a_3 = -\frac{1}{10}, \dots$	$a_n = \frac{(-1)^n}{n^2 + 1}$	

 $|a_n-L|<\epsilon$ מתקיים, n>N כך שלכל אכל אם לכל אם לכל ($(a_n)_{n=1}^\infty$ אם אם הוא הגבול אל הוא הגבול א $L = \lim_{n \to \infty} a_n$:סימון

> אם הגבול של (a_n) קיים אז אומרים כי הסדרה מתכנסת. אם הגבול של (a_n) לא קיים אז אומרים כי הסדרה מתבדרת.

מתבדרת
$$(-1)^n n$$
 מתבדרת $\lim_{n \to \infty} \frac{n}{n+1} = 1$ $\lim_{n \to \infty} \frac{1}{n} = 0$

יחידות של גבול: אם לסדרה קיים גבול אז הוא יחיד.

 $c\in\mathbb{R}$ ונתון $\lim_{n o\infty}b_n=B$, $\lim_{n o\infty}a_n=A$ אריתמטיקה / אשר גבולות: נתון סדרות מחון סדרות a_n,b_n אריתמטיקה

$$\lim_{n\to\infty} (c\cdot a_n) = c\cdot \lim_{n\to\infty} (a_n) = c\cdot A . 1$$

.
$$\lim_{n\to\infty} (a_n\pm b_n) = \lim_{n\to\infty} a_n \pm \lim_{n\to\infty} b_n = A\pm B$$
 .2

$$\lim_{n\to\infty}\left(a_n\cdot b_n\right)=\left(\lim_{n\to\infty}a_n\right)\cdot\left(\lim_{n\to\infty}b_n\right)=A\cdot B \ .3$$

$$\lim_{n \to \infty} \left(rac{a_n}{b_n}
ight) = rac{\lim\limits_{n \to \infty} a_n}{\lim\limits_{n \to \infty} b_n} = rac{A}{B}$$
 אם $B
eq 0$ (ולכן $B \neq 0$ עבור $B \neq 0$ עבור $B \neq 0$ אם 4.4

 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=L$ סדרות כך ש סדרות ($(c_n)_{n=1}^\infty$, $(b_n)_{n=1}^\infty$, $(a_n)_{n=1}^\infty$, $(a_n)_{n=1}^\infty$ (squeeze theorem) כלל הסנדוויץ' . $\lim_{n \to \infty} b_n = L$ אז $a_n \le b_n \le c_n$ מתקיים n > N אז רך שלכל אם קיים N

סדרות חסומות:

מתקיים n כך שלכל $M\in\mathbb{R}$ כיים קיים מלמעלה מתקיים מתקיים

תקרא חסם עליון של הסדרה. M

סומה מלמטה אם קיים $m\in\mathbb{R}$ כך שלכל n מתקיים $(a_n)_{n=1}^\infty$

תקרא חסם תחתון של הסדרה. m

 $|a_n| < K$ $(a_n)_{n=1}^\infty$ כך שלכל K>0 משומה אם היא חסומה מלמעלה וגם מלמטה. כלומר אם קיים כל מספר K כזה נקרא חסם מוחלט.

מונוטוניות:

מתקיים $n \geq N$ מונוטונית עולה אם קיים N כך שלכל מתקיים מונוטונית מונוטונית מונוטונית $a_{n+1} \geq a_n$

מתקיים $n \geq N$ מונוטונית עולה ממש אם קיים אם מונוטונית מונוטונית ($a_n)_{n=1}^\infty$ $.a_{n+1} > a_n$

מתקיים $n \geq N$ מונוטונית אם קיים אם מונוטונית מונוטונית ($a_n)_{n=1}^\infty$ $a_{n+1} \leq a_n$

 $.a_{n+1} < a_n$

מתקיים $n \geq N$ מונוטונית יורדת ממש אם קיים N כך שלכל מונוטונית מתקיים $(a_n)_{n=1}^\infty$

. מונוטונית אם היא מונוטונית עולה או יורדת $(a_n)_{n=1}^\infty$

מונוטונית ממש או יורדת ממש או היא מונוטונית עולה ממש או יורדת ממש. $(a_n)_{n=1}^\infty$

$$.2^{n-1} \leq n! \leq n^n$$
 $:n \geq 1$ לכל $.2^n \leq n! \leq n^n$ $:n \geq 3$ לכל לכל לכל אי

$$.2^n \le n! \le n^n$$
 : $n \ge 3$ לכל

גבול של סדרה שווה לגבול של הפונקציה:

. שלם. $a_n=f(n)$ סדרה ו- $a_n=f(n)$ כאשר כאשר $\lim_{n\to\infty}a_n=L$ אז ווה $\lim_{x\to\infty}f(x)=L$ פונקציה. אם $f:[1,\infty)\to\mathbb{R}$

מונוטוניות של סדרה והפוקנציה:

תהי $a_n=f(n)$ אז גם (עולה או מונוטונית (עולה f(x) מונוטונית פונקציה. אם $f:[1,\infty) o \mathbb{R}$ יורדת בהתאמה).

אם סדרה מתכנסת אז היא חסומה.

אם סדרה חסומה ומונוטונית אז היא מתכנסת.

$$\lim_{n o\infty}a_n=0 \quad\Leftrightarrow\quad \lim_{n o\infty}|a_n|=0 \qquad \qquad :0$$
 כדרה שואפת ל- 0 אם ורק אם הערך מוחלט שואף ל- 0

סדרות שימושיות:

L מתכנסת למספר סופי	חסומה	מונוטונית	יורדת	עולה	סדרה
√ ←	×	✓	✓	√	$a_n = 1$
× ←	×	√	×	✓	$a_n = n$
√ ←	✓	✓	√	×	$a_n = \frac{1}{n}$
× ←	✓	×	×	×	$a_n = (-1)^n$
× ←	√	×	×	×	$a_n = \frac{(-1)^n}{n^1 + 1}$
√ ←	√	✓	×	√	$a_n = 1 - \frac{1}{n}$

סדרה. הפרש ו- d -ו איבר הראשון ו- $a_n=a_1+(n-1)d$ הפרש הסדרה. סדרה חשבונית:

$$\sum\limits_{n=1}^{N}a_{n}=rac{1}{2}\left(a_{1}+a_{N}
ight)=rac{1}{2}\left(2a_{1}+\left(N-1
ight)d
ight).$$
 כנום של סדרה חשבונית:

סדרה. מנת הסדרה מנדסית: a_1 כאשר מ a_2 כאשר מיבר מנת מנת הסדרה מנדסית:

$$\sum\limits_{n=1}^{N}a_{n}=rac{a_{1}\left(1-q^{N}
ight)}{1-q}.$$
 יסכום של סדרה חנדסית:

$$\sum\limits_{n=1}^{\infty}a_1q^{n-1}=\lim\limits_{N o\infty}rac{a_1(1-q^N)}{1-q}=egin{cases} lpha$$
תכבדר $rac{a_1}{1-q} & |q|>1 \ rac{a_1}{1-q} & |q|<1 \end{cases}$

טורים חיוביים

 $\displaystyle\lim_{n o\infty}a_n=0$ אזי מתכנס, אזי הכרחי להתכנסות טור: אם הטור אם הטור להתכנסות הכרחי

$$\displaystyle \sum_{k=1}^{\infty} a_k$$
 אז הטור או $\displaystyle \lim_{n o \infty} a_n
eq 0$ אם טור: אם תנאי מספיק להתבדרות אור:

:0 -אם ורק אם הערך מוחלט שואף ל- סדרה שואפת ל-

$$\lim_{n \to \infty} a_n = 0 \quad \Leftrightarrow \quad \lim_{n \to \infty} |a_n| = 0$$

אריתמטיקה / חשבון של טורים:

. מתכנס אז
$$\sum\limits_{n=1}^{\infty}c\cdot a_n$$
 מתכנס אז מתכנס . $c
eq 0\in\mathbb{R}$

אם
$$\sum\limits_{n=1}^{\infty}c\cdot a_n$$
 מתבדר אז $\sum\limits_{n=1}^{\infty}a_n$

$$\sum_{n=1}^{\infty} c \cdot a_n = c \cdot \sum_{n=1}^{\infty} a_n.$$

אם
$$\sum\limits_{n=1}^{\infty}\left(a_{n}+b_{n}
ight)$$
 אז מתכנסים, אז $\sum\limits_{n=1}^{\infty}b_{n}$ -ו $\sum\limits_{n=1}^{\infty}a_{n}$

$$\sum\limits_{n=1}^{\infty}\left(a_{n}+b_{n}
ight)=\sum\limits_{n=1}^{\infty}a_{n}+\sum\limits_{n=1}^{\infty}b_{n}$$
. מתקיים

אם הטור מתכנס אז החלט). מתכנס אז $\sum\limits_{n=1}^{\infty}a_{n}$ מתכנס אז מתכנס אם $\sum\limits_{n=1}^{\infty}|a_{n}|$

מבחן האינטגרל להתכנסות של טורים חיוביים:

 $x \geq 1$ אם חיובית ומונוטונית יורדת לכל חיובית ומונוטונית

$$\int_{1}^{\infty} dx f(x) \le S \le \int_{1}^{\infty} dx f(x) + f(1)$$

$$\int_1^\infty dx\,f(x) \leq S \leq \int_1^\infty dx\,f(x) + f(1)$$
 מתכנס אז $S = \sum\limits_{k=1}^\infty f(k)$ מתכנס אז $\int_1^\infty dx\,f(x)$ אם $\int_1^\infty dx\,f(x)$ מתבדר אז $\int_1^\infty f(k)$ מתבדר אז $\int_1^\infty dx\,f(x)$

התכנסות של טור ההרמוניה הכללי:

$$\sum_{n=0}^{\infty} rac{1}{n^k} egin{cases} k>1 & k>1 \ k\leq 1 \end{cases}$$
 מתבדר

$$a_n \geq k$$
 לכל $a_n \leq b_n$ יהיו היו סדרות חיוביות כך ש- $\sum_{n=1}^\infty a_n$ מתכנס אז היו $\sum_{n=1}^\infty b_n$ מתכנס.

. אם
$$\sum\limits_{n=1}^{\infty}b_n$$
 מתבדר אז $\sum\limits_{n=1}^{\infty}a_n$ אם

מבחן השוואה הגבולי: $\lim_{n\to\infty}\frac{a_n}{b_n}=L\neq 0 \,\,\text{-w.}$ סופי. סדרות חיוביות כך ש b_n , a_n יהיו יהיו

,אז
$$\sum\limits_{n=1}^{\infty}b_n$$
 מתכנס אם ורק אם מתכנס $\sum\limits_{n=1}^{\infty}a_n$ אז

. מתבדר אס
$$\sum\limits_{n=1}^{\infty}b_n$$
 אס ורק אס מתבדר $\sum\limits_{n=1}^{\infty}a_n$ -ו

$$q=\lim_{n o\infty}rac{a_{n+1}}{a_n}$$
 וקיים הגבול ו $\sum_{k=0}^\infty a_k$ מבחן דלמבר: נתון הטור

. אם q = 1 המבחן לא נותן תשובה q > 1 הטור מתסנס. אם q < 1 אם

$$q=\lim_{n o\infty}\left(a_n
ight)^{1/n}$$
 מבחן קושי: נתון הטור $\sum_{k=0}^\infty a_k$ וקיים הגבול

אם q=1 המבחן לא נותן תשובה. q>1 הטור מתסנס. אם q<1

התכנסות של טורים כלליים: $\sum_{k=1}^\infty a_k \text{ מתכנס, ואומרים שהטור} \sum_{k=1}^\infty a_k מתכנס אז ואומרים שהטור <math>\sum_{k=1}^\infty a_k$ מתכנס אז ואומרים שהטור אם ואומרים שהטור ואומרים שהטורים שהטור ואומרים שהטורים שהטורי

.(Leibinz) אם $\sum\limits_{k=1}^\infty a_k$ ע"י מבחן את הטור וויש להמשיך וויש ווי $\lim\limits_{n \to \infty} |a_n| = 0$ אם מתבדר אבל $\sum\limits_{k=1}^\infty |a_k|$

.(conditionally convergent) מתכנס בתנאי $\sum\limits_{n=1}^\infty a_n$ מתכנס, אומרים שהטור $\sum\limits_{n=1}^\infty a_n$ מתבדר אבל הטור $\sum\limits_{n=1}^\infty a_n$

: נתון טור מחליף סימן $\sum\limits_{n=1}^{\infty}(-1)^{n+1}a_n$ אם הסדרה את התנאים הבאים: (Leibniz) מבחן לייבניץ ($\lim\limits_{n\to\infty}a_n=0$ (3) מונוטונית יורדת, $\{a_n\}$ (2) $\{a_n\}$ (2) מונוטונית יורדת, (3)

טור חזקות

 $\sum_{n=1}^{\infty}a_{n}x^{n}$ טור חזקות הוא טור מצורה:

-R < x < R לכל מתכנסות: לכל טור חזקות אבורו עבורו הטור אייוס לכל לכל רדיוס התכנסות:

x < -R ומתבדר לכל x > R

 $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$ נוסחת דלמבר לרדיוס התכנסות:

 $R = \lim_{n \to \infty} \left(\frac{1}{a_{-}}\right)^{1/n}.$ נוסחת קושי לרדיוס התכנסות: