Εργασία 4

Ερώτημα 1ο

Αρχικά ορίζουμε ο πεδίο της Ι, που περιέχει τα αντικείμενα της εικόνας δηλαδή:

• | I | = {TheMouse,TheGruffalo}.

Για τα σύμβολα σταθερών, η Ι κάνει τις εξής αντιστοιχίσεις :

• LittleMouse I = TheMouse , Gruffalo I = TheGruffalo

Η Ι αντιστοιχίζει στο μοναδιαίο σύμβολο κατηγορήματος Animal, τις ακόλουθες μοναδιαίες σχέσεις:

• {<TheMouse>} και {<TheGruffalo>}

Η Ι αντιστοιχίζει στο δυαδικό σύμβολο κατηγορήματος Follows, τις ακόλουθη δυαδική σχέση:

• {<TheMouse>, <TheGruffalo>}

Για τον τύπο φ1, από τον ορισμό της ικανοποίησης έχουμε:

• |= I Animal(LittleMouse)[s] $\alpha vv < \bar{s}$ (LittleMouse)> ϵ Animal

Όμως:

- s(LittleMouse) = LittleMouse ^I = TheMouse
- Animal $^{\mathbf{I}}$ = TheMouse

Άρα το παραπάνω ισχύει και συνεπώς ο φ1 ικανοποιείται από την Ι.

Ομοίως για τον τύπο φ2, από τον ορισμό της ικανοποίησης έχουμε:

• |= I Animal(Gruffalo)[s] $\alpha vv < \bar{s}(Gruffalo) > \epsilon$ Animal

Όμως:

- $\bar{s}(Gruffalo) = Gruffalo^{I} = TheGruffalo$
- Animal I = TheGruffalo

Άρα το παραπάνω ισχύει και συνεπώς ο φ2 ικανοποιείται από την Ι.

Για τον τύπο φ3, από τον ορισμό της ικανοποίησης έχουμε:

• $|= I (\exists x)(\exists y)(Animal(x) \land Animal(y) \land Follows(x,y))$ ανν υπάρχει dx, dy $\in |I| |= I (\exists x)(\exists y)$ (Animal(x) $\land Animal(y) \land Follows(x,y))[s (x \lor dx, y \lor dy)],$

το οποίο ισχύει αν υπάρχουν x και y που ικανοποιούν την πρόταση. Τα προηγούμενα ισχύουν όπως και το Follows(x,y), αφού υπάρχουν x και y που να το ικανοποιούν. Συνεπώς ο φ3 ικανοποιείται από την I.

Για τον τύπο φ4, από τον ορισμό της ικανοποίησης έχουμε:

• $|= I (\forall x)(\forall y)(Animal(x) \land Animal(y) => Follows(x,y))$ ανν για κάθε dx, dy $\in |I| |= I (\forall x) (\forall y)(Animal(x) \land Animal(y) => Follows(x,y))[s (x|dx, y|dy)].$

Για το πεδίο Ι έχουμε τις εξής δυνατές περιπτώσεις σχετικά με την ανάθεση τιμών στις μεταβλητές x και y :

- $x = \text{TheMouse } \kappa \alpha \iota \ y = \text{TheGarffalo}$
- $x = \text{TheMouse } \kappa \alpha i \ y = \text{TheMouse}$
- $x = \text{TheGarffalo } \kappa \alpha \iota \ y = \text{TheGarffalo}$
- x = TheGarffalo και y = TheMouse

Παρατηρούμε πως το Follows(x,y) είναι αληθές μόνο στην 3η περίπτωση, αφού στην εικόνα φαίνεται αυστηρά πως το TheGarffalo ακολουθεί το TheMouse και όχι το αντίστροφο, συνεπώς ο φ4 δεν ικανοποιείται από την Ι.

Ερώτημα 2

- $mgu = \{u / F(v), x / G(F(v))\}$
- $mgu = \{x_1 / G(H(A,B), H(A,B)), x_2 / H(A,B), x_3 / H(A,B), x_5 / B, x_4 / B\}$
- $mgu = \{x_{i+1} / F(F..._{(i)}(x_0), F..._{(i)}(x_0)), y_{i+1} / F(F..._{(i)}(x_0), F..._{(i)}(x_0))\}$

Ερώτημα 3α

- Member (Kostakis, DNT) Λ Member (Giorgakis, DNT) Λ Member (Doroula, DNT)
- $(\forall x)((Member(x,DNT) \land \neg Right(x)) => Liberal(x))$
- $(\forall x)((Right(x) \Rightarrow \neg Likes(x,Socialism)))$
- $(\forall x)(\neg Likes(x,Capitalism) => \neg Liberal(x))$
- $(\forall x)((\text{Likes (Giorgakis},x) => \neg \text{Likes (Kostakis},x)) \land ((\neg \text{Likes (Giorgakis},x) => \text{Likes (Kostakis},x)))$
- Likes (Giorgakis, Socialism) \(\Likes \) (Giorgakis, Capitalism)

Ερώτημα 3β

Μετατροπή σε CFN (Απαλοιφή Συνεπαγωγών && Μετακίνηση Άρνησης Προς τα μέσα)

- i. Member (Kostakis, DNT) A Member (Giorgakis, DNT) A Member (Doroula, DNT)
- ii. $(\forall x)(\neg Member(x,DNT) \lor Right(x) \lor Liberal(x))$
- iii. $(\forall x)((\neg Right(x) \lor \neg Likes(x,Socialism))$

- iv. $(\forall x)$ (Likes (x,Capitalism) $\lor \neg$ Liberal (x))
- v. $(\forall x)(\neg Likes (Giorgakis,x) \lor \neg Likes (Kostakis,x)) \land (Likes (Giorgakis,x) \lor Likes (Kostakis,x))$
- vi. Likes (Giorgakis, Socialism) A Likes (Giorgakis, Capitalism)

Μετατροπή σε CFN (Προτυποποίηση Μεταβλητών)

- i. Member (Kostakis, DNT) \(\Lambda \) Member (Giorgakis, DNT) \(\Lambda \) Member (Doroula, DNT)
- ii. $(\forall x_1)(\neg Member(x_1,DNT) \lor Right(x_1) \lor Liberal(x_1))$
- iii. $(\forall x_2)((\neg Right(x_2) \lor \neg Likes(x_2,Socialism))$
- iv. $(\forall x_3)$ (Likes $(x_3, Capitalism) \lor \neg Liberal <math>(x_3)$)
- v. $(\forall x_4)(\neg \text{Likes (Giorgakis}, x_4) \lor \neg \text{Likes (Kostakis}, x_4)) \land (\text{Likes (Giorgakis}, x_4) \lor \text{Likes}$ (Kostakis, x_4))
- vi. Likes (Giorgakis, Socialism) A Likes (Giorgakis, Capitalism)

Μετατροπή σε CFN (Αφαίρεση καθολικών ποσοδεικτών)

- i. Member (Kostakis, DNT) A Member (Giorgakis, DNT) A Member (Doroula, DNT)
- ii. (\neg Member (x_1 ,DNT) V Right (x_1) V Liberal (x_1))
- iii. (\neg Right (x₂) $\lor \neg$ Likes (x₂,Socialism))
- iv. (Likes (x_3 ,Capitalism) \vee ¬Liberal (x_3))
- v. $(\neg Likes (Giorgakis, x_4) \lor \neg Likes (Kostakis, x_4)) \land (Likes (Giorgakis, x_4) \lor Likes (Kostakis, x_4))$
- vi. Likes (Giorgakis, Socialism) A Likes (Giorgakis, Capitalism)

Μετατροπή σε CFN (Κατανομή V ως προς Λ)

- i. Member (Kostakis, DNT), Member (Giorgakis, DNT), Member (Doroula, DNT)
- ii. \neg Member (x₁,DNT) V Right (x₁) V Liberal (x₁)
- iii. \neg Right (x₂) $\lor \neg$ Likes (x₂,Socialism)
- iv. Likes (x₃,Capitalism) V ¬Liberal (x₃)
- v. ¬Likes (Giorgakis,x4) V ¬Likes (Kostakis,x4), Likes (Giorgakis,x4) V Likes (Kostakis,x4)
- vi. Likes (Giorgakis, Socialism), Likes (Giorgakis, Capitalism)

Για το vi) έχουμε:

• $\varphi = \text{Member } (x, DNT) \land \text{Liberal } (x) \land \neg \text{Right } (x)$

Η άρνηση της πρότασης που θέλουμε να αποδείξουμε είναι η εξής:

• $\neg \phi = \neg (Member (x,DNT) \land Liberal (x) \land \neg Right (x)) => \neg Member (x,DNT) \lor \neg Liberal (x) \lor Right (x)$

 \neg Member (x,DNT) $\lor \neg$ Liberal (x) $\lor \lor$ Right (x)

 \neg Member (x,DNT) V Right (x) V Liberal (x)

Member $(x,DNT) \ V \ Right (x)$

 \neg Right (x) $\lor \neg$ Likes (x,Socialism)

 \neg Member (x,DNT) $\lor \neg$ Likes (x,Socialism)

Member (Giorgakis, DNT) V Likes (Giorgakis, Socialism)

Ø

Ερώτημα 3γ:

Θα χρησιμοποιήσουμε το παρακάτω σύνολο προτάσεων:

- i. Member (Giorgakis, DNT)
- ii. Likes (Giorgakis, Socialism)
- iii. \neg Member (x₁,DNT) V Right (x₁) V Liberal (x₁)
- iv. \neg Right (x₂) $\lor \neg$ Likes (x₂,Socialism)
- v. Ans(z) V ¬Member (z,DNT) V ¬Liberal (z) V Right (z)

από (i) και (iii) με MGU {x₁/ Giorgakis}, έχουμε:

• Right (Giorgakis) V Liberal (Giorgakis)

από (ii) και (iv) με MGU {x₂ / Giorgakis}, έχουμε:

¬Right (Giorgakis) (1)

από τα 2 προηγούμενα έχουμε, έχουμε:

• Liberal (Giorgakis) (2)

από (1), (2), (i), (v) με MGU $\{z \mid Giorgakis\}$ έχουμε:

• Ans (Giorgakis)

άρα το μέλος του ΔΝΤ που έχει την ιδιότητα που παριστάνει η φ είναι ο Γιωργάκης.

Ερώτημα 4α:

- A) $(\forall x)(\forall s)(\forall t)$ (In(x, s) \land In(x, t) \Rightarrow In(x, Intersection(s, t)))
 - $(\forall x)(\forall s)(\forall t) \text{ In}(x, s) \land \text{ In}(x, t) => \text{In}(x, \text{Intersection}(s, t)) \land \text{ In}(x, \text{Intersection}(s, t)) => \text{In}(x, s) \land \text{ In}(x, t)$
 - $(\forall x)(\forall s)(\forall t) \neg (In(x, s) \land In(x, t)) \lor In(x, Intersection(s, t)) \land \neg (In(x, Intersection(s, t))) \lor (In(x, s) \land In(x, t))$
 - $(\forall x)(\forall s)(\forall t) (\neg In(x, s) \lor \neg In(x, t) \lor In(x, Intersection(s, t))) \land (\neg In(x, Intersection(s, t)) \lor (In(x, s) \land In(x, t)))$
 - $(\forall x)(\forall s)(\forall t) (\neg In(x_1, s_1) \lor \neg In(x_1, t_1) \lor In(x_1, Intersection(s_1, t_1))) \land (\neg In(x_1, Intersection(s_1, t_1))) \lor (In(x_1, s_1) \land In(x_1, t_1))))$
 - $(\neg \text{In}(x_1, s_1) \lor \neg \text{In}(x_1, t_1) \lor \text{In}(x_1, \text{Intersection}(s_1, t_1))) \land (\neg \text{In}(x_1, \text{Intersection}(s_1, t_1)) \lor (\text{In}(x_1, s_1) \land \text{In}(x_1, t_1))))$
 - $(\neg \text{In}(x_1,s_1) \lor \neg \text{In}(x_1,t_1) \lor \text{In}(x_1, \text{Intersection}(s_1,t_1))) \land (\neg \text{In}(x_1, \text{Intersection}(s_1,t_1)) \lor \text{In}(x_1,s_1)) \land (\neg \text{In}(x_1, \text{Intersection}(s_1,t_1)) \lor \text{In}(x_1,t_1))$
 - $\neg \text{In}(x_1,s_1) \lor \neg \text{In}(x_1,t_1) \lor \text{In}(x_1, \text{Intersection}(s_1,t_1))$, $\neg \text{In}(x_1, \text{Intersection}(s_1,t_1)) \lor \text{In}(x_1,s_1)$, $\neg \text{In}(x_1, \text{Intersection}(s_1,t_1)) \lor \text{In}(x_1,t_1)$
- A) $(\forall s)(\forall t)((\forall x) (In(x,s) \Rightarrow In(x,t)) \Rightarrow SubsetOf(s,t))$
 - $(\forall s)(\forall t) (\neg((\forall x) (\neg(In(x, s)) \lor In(x, t))) \lor SubsetOf(s,t))$
 - $(\forall s)(\forall t) ((\exists x) (In(x,s) \land \neg In(x,t)) \lor SubsetOf(s,t))$
 - $(\forall s)(\forall t) ((\exists x) (In(x_2,s_2) \land \neg In(x_2,t_2)) \lor SubsetOf(s_2,t_2))$
 - $(\forall s)(\forall t) (In(F(s_2,t_2),s_2) \land \neg In(F(s_2,t_2),t_2)) \lor SubsetOf(s_2,t_2)$
 - $(In(F(s_2,t_2),s_2) \land \neg In(F(s_2,t_2),t_2)) \lor SubsetOf(s_2,t_2)$
 - $(\operatorname{In}(F(s_2,t_2),s_2) \vee \operatorname{SubsetOf}(s_2,t_2)) \wedge (\neg \operatorname{In}(F(s_2,t_2),t_2) \vee \operatorname{SubsetOf}(s_2,t_2))$
 - $In(F(s_2,t_2),s_2) \lor SubsetOf(s_2,t_2)$, $\neg In(F(s_2,t_2),t_2) \lor SubsetOf(s_2,t_2)$
- C) $(\forall s)(\forall t)$ SubsetOf(Intersection(s,t), s)
 - \neg ((\forall s)(\forall t) SubsetOf(Intersection(s,t), s))
 - $(\exists s)(\exists t) \neg SubsetOf(Intersection(s,t), s)$
 - $(\exists s)(\exists t) \neg SubsetOf(Intersection(S,T), S)$
 - ¬ SubsetOf(Intersection(S,T), S)

Ερώτημα 4β:

από ¬ SubsetOf(Intersection(S,T), S) και ¬ In(F(s₂,t₂),t₂) V SubsetOf(s₂,t₂) προκύπτει :

• \neg In(F(Intersection(S,T),S), S), $\mu\epsilon$ mgu {s₂ / Intersection(S,T), t₂ / S} (1)

από ¬ SubsetOf(Intersection(S,T), S) και In(F(s₂,t₂),s₂) V SubsetOf(s₂,t₂) προκύπτει :

• In(F(Intersection(S,T),S), Intersection(S,T)), $\mu\epsilon$ mgu {s₂ / Intersection(S,T), t₂ / S} (2)

από ¬ $In(x_1, Intersection(s_1,t_1))$ V $In(x_1, s_1)$ και (2) προκύπτει :

• In(F(Intersection(S,T),S), S), $\mu \epsilon \text{ mgu } \{x_1 / \text{F(Intersection(S,T), } s_1 / \text{S}, t_1 / \text{T}\} \}$ (3)

από (3) και (1): Ø

Ερώτημα 5α: [Έχει υλοποιηθεί σε prolog (αρχείο q5.pl).]

Ακολουθόντας forward chaining προκύπτει:

Ερώτημα 5β:

Ερώτημα 7α :

- Member (Maria) Λ Member (Giannis) Λ Member (Giorgos) Λ Member (Eleni)
- Married (Giannis, Maria)
- Brother (Giorgos, Maria)
- $(\forall x)(\forall y)($ (Member $(x) \land Married (x,y) => Member <math>(y)) \lor (Member (y) \land Married (y,x) => Member <math>(x))$)

Μετατροπή σε CFN (Απαλοιφή Συνεπαγωγών && Μετακίνηση Άρνησης Προς τα μέσα)

- Member (Maria) Λ Member (Giannis) Λ Member (Giorgos) Λ Member (Eleni)
- Married (Giannis, Maria)
- Brother (Giorgos, Maria)
- $(\forall x)(\forall y)((\neg Member (x) \lor \neg Married (x,y) \lor Member (y)) \land (\neg Member (y) \lor \neg Married (x,y) \lor Member (x)))$

Μετατροπή σε CFN (Προτυποποίηση Μεταβλητών)

- Member (Maria) Λ Member (Giannis) Λ Member (Giorgos) Λ Member (Eleni)
- Married (Giannis, Maria)
- Brother (Giorgos, Maria)
- $(\forall x_1)(\forall y_1)((\neg \text{ Member } (x_1) \lor \neg \text{ Married } (x_1,y_1) \lor \text{ Member } (y_1)) \land (\neg \text{ Member } (y_1) \lor \neg \text{ Married } (x_1,y_1) \lor \text{ Member } (x_1)))$

Μετατροπή σε CFN (Αφαίρεση καθολικών ποσοδεικτών)

- Member (Maria) Λ Member (Giannis) Λ Member (Giorgos) Λ Member (Eleni)
- Married (Giannis, Maria)
- Brother (Giorgos, Maria)
- (\neg Member (x_1) $\lor \neg$ Married (x_1,y_1) \lor Member (y_1)) \land (\neg Member (y_1) $\lor \neg$ Married (x_1,y_1) \lor Member (x_1))

Μετατροπή σε CFN (Κατανομή V ως προς Λ)

- Member (Maria)
- Member (Giannis)
- Member (Giorgos)
- Member (Eleni)
- Married (Giannis, Maria)
- Brother (Giorgos, Eleni)
- \neg Member $(x_1) \lor \neg$ Married $(x_1,y_1) \lor$ Member (y_1)
- \neg Member (y₁) $\lor \neg$ Married (x₁,y₁) \lor Member (x₁)

Έχουμε:

• $\varphi = \neg$ Married (Eleni, X)

Η άρνηση της πρότασης που θέλουμε να αποδείξουμε είναι η εξής:

• $\neg \varphi = Married (Eleni, X)$

Ερώτημα 7β:

Married (Eleni, X)
$$\neg$$
 Member (Eleni) $\lor \neg$ Married (X, Eleni) \lor Member (X) Member (X)

όπου το X μπορεί να είναι οποιοδήποτε μέλος του club (Maria, Giannis, Giorgos, Eleni) άρα KB ≠ φ.

Ερώτημα 7γ:

Για να εξασφαλίσουμε το ότι η Ελένη δεν είναι παντρεμένη θα πρέπει να προσθέσουμε τις εξής επιπλέον προτάσεις FOL:

- Woman (Eleni)
- Woman (Maria)
- Man (Giorgos)
- Man (Giannis)
- $(\forall x)(\forall y)$ Brother $(x,y) \Rightarrow \neg$ Married (x,y)
- $(\forall x)(\forall y)(\forall z)$ Married $(x,z) = \neg$ Married (x,y)
- $(\forall x)(\forall y)$ Woman(x) V Woman $(y) = \neg$ Married (x,y)
- $(\forall x)(\forall y) \text{ Man}(x) \lor \text{Man}(y) => \neg \text{ Married } (x,y)$

Ερώτημα 8:

• $(\exists x)(P(x) \land Q(x)) \Rightarrow (\exists x)P(x) \land (\exists x)Q(x)$

Έστω $(\exists x)(P(x) \land Q(x))$ για κάποιο c θα ισχύει $P(c) \land Q(c)$. Αν η P(c) είναι αληθής τότε και η $(\exists x)P(x)$ είναι αληθής. Ταυτόχρονα αν η Q(c) είναι αληθής τότε και η $(\exists x)Q(x)$ είναι αληθής. Άρα και η $(\exists x)P(x) \land (\exists x)Q(x)$ θα είναι αληθής.

Άρα η πρόταση, ισχύει.

• { Συνέχεια στην επόμενη σελίδα }

• $(\exists x)P(x) \land (\exists x)Q(x) \Rightarrow (\exists x)(P(x) \land Q(x))$

Έστω $U = N^*$. Έστω P(x) = o x είναι θετικός αριθμός και Q(x) = o x είναι αρνητικός αριθμός. Η $(\exists x)P(x)$ Λ $(\exists x)Q(x)$ δηλώνει πως θετικοί και αρνητικοί αριθμοί, το οποίο είναι αληθές. Η $(\exists x)(P(x) \Lambda Q(x))$ υπάρχει αριθμός ο οποίος είναι και θετικός και αρνητικός, το οποίο είναι ψευδές. Άρα η πρόταση, δεν ισχύει.