# Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

### Лабораторная работа №2 (Активный эксперимент идентификации нелинейной системы)

**Дисциплина**: Идентификация и диагностика СУ Вариант №12

| Выполнил студент гр. 13541/1 |           | Сми                                   | рнов М.И. |
|------------------------------|-----------|---------------------------------------|-----------|
| 1                            | (подпись) |                                       | •         |
| Руководитель                 | <u> </u>  | Саб                                   | онис С.С. |
|                              | (подпись) |                                       |           |
|                              |           | · · · · · · · · · · · · · · · · · · · | 2017 г.   |

### Содержание

| Задание                                                                                                                                                                                                                                                                                    | 3  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Решение                                                                                                                                                                                                                                                                                    | 5  |
| 1. Исследовать точность модели в зависимости от ее вида, предполагая, что входные величины не имеют погрешности.                                                                                                                                                                           | .5 |
| 1.1. Определить диапазон изменения переменных                                                                                                                                                                                                                                              | 5  |
| 1.2 Исследовать точность модели в зависимости от ее вида, предполагая, что входные величины не имеют погрешности.                                                                                                                                                                          | .5 |
| 1.3. Определить коэффициенты аппроксимирующего полинома (функция rstool);                                                                                                                                                                                                                  | 7  |
| 1.4. Сформировать тестовую случайную последовательность и проверить точность полученной модели по относительной погрешности, нормированной по значению идеальной модели                                                                                                                    | .8 |
| 2. Исследовать влияние количества экспериментов на получаемую относительную погрешность, построить зависимости значений относительной погрешности для каждой модели от количества экспериментов (повторить пункты 1.2 – 1.4 для различных значений количества экспериментов в плане NRUNS) |    |
| 3. Провести моделирование на стохастической системе, то есть исследовать точность каждой модели, предполагая, что обучение происходит при снятии значений входных данных с заданной инструментальной погрешностью                                                                          |    |
| Rubon 1                                                                                                                                                                                                                                                                                    | 1  |

#### Задание

#### Вариант №12:

| Функция модели                            | Инструментальная |  |
|-------------------------------------------|------------------|--|
|                                           | погрешность      |  |
| $y = -x + x \frac{x_2}{3} + 2x^3 x^4 x^5$ | 6%               |  |

Сформировать оптимальный D-план экспериментов для получения модели исследуемой системы с заданной точностью при различных условиях.

Модель задана формулой y = f(X).

Программа работы:

В работе рассматриваются следующие виды моделей:

linear – линейная,

interaction – линейная + попарные произведения,

purequadratic – квадратичная,

quadratic – квадратичная + попарные произведения.

- 1. Исследовать точность каждой модели, предполагая, что входные величины не имеют погрешности:
  - 1.1. Определить диапазон изменения переменных;
  - 1.2. Сформировать D-план (функция cordexch), используя минимально возможные значения параметра NRUNS (количество экспериментов);
  - 1.3. Определить коэффициенты аппроксимирующего полинома (функция rstool):
  - 1.4. Сформировать тестовую случайную последовательность и проверить точность полученной модели по относительной погрешности, нормированной по значению идеальной модели.
- 2. Исследовать влияние количества экспериментов на получаемую относительную погрешность, построить зависимости значений относительной погрешности для каждой модели от количества экспериментов (повторить пункты 1.2 1.4 для различных значений количества экспериментов в плане NRUNS).
- 3. Провести моделирование на стохастической системе, то есть исследовать точность каждой модели, предполагая, что обучение происходит при снятии значений входных данных с заданной инструментальной погрешностью:
  - 3.1. Определить диапазон изменения переменных;
  - 3.2. Сформировать D-план (функция cordexch), используя минимально возможные значения параметра NRUNS (количество экспериментов);

- 3.3. Определить коэффициенты аппроксимирующего полинома (функция rstool);
- 3.4. Сформировать тестовую случайную последовательность и проверить точность полученной модели по относительной погрешности, нормированной по значению идеальной модели.
- 4. Исследовать влияние количества экспериментов на получаемую относительную погрешность, построить зависимости значений относительной погрешности для каждой модели от количества экспериментов (повторить пункты 3.2 3.4 для различных значений количества экспериментов в плане NRUNS).

#### Решение

- 1. Исследовать точность модели в зависимости от ее вида, предполагая, что входные величины не имеют погрешности.
- 1.1. Определить диапазон изменения переменных.

$$x_1 \in [1;2]$$
;  $x_2 \in [2;3]$ ;  $x_3 \in [3;4]$ ;  $x_4 \in [4;5]$ ;  $x_5 \in [5;6]$ .

- 1.2 Исследовать точность модели в зависимости от ее вида, предполагая, что входные величины не имеют погрешности.
  - 1) linear

$$P = a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 + a_5x_5 + a_6$$

2) interaction

$$P = a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_5 + a_6 + a_7 x_1 x_2 + a_8 x_1 x_3 + a_9 x_1 x_4 + \\ + a_{10} x_1 x_5 + a_{11} x_2 x_3 + a_{12} x_2 x_4 + a_{13} x_2 x_5 + a_{14} x_3 x_4 + a_{15} x_3 x_5 + a_{16} x_4 x_5$$

3) quadratic

$$\begin{split} P &= a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_5 + a_6 + a_7 x_1 x_2 + a_8 x_1 x_3 + a_9 x_1 x_4 + \\ &+ a_{10} x_1 x_5 + a_{11} x_2 x_3 + a_{12} x_2 x_4 + a_{13} x_2 x_5 + a_{14} x_3 x_4 + a_{15} x_3 x_5 + a_{16} x_4 x_5 + \\ &+ a_{17} x_1^2 + a_{18} x_2^2 + a_{10} x_3^2 + a_{20} x_4^2 + a_{21} x_5^2 \end{split}$$

4) purequadratic

$$P = a_1 x_1 + a_2 x_2 + a_3 x_3 + a_4 x_4 + a_5 x_5 + a_6 + a_7 x_1^2 + a_8 x_2^2 + a_0 x_3^2 + a_{10} x_4^2 + a_{11} x_5^2$$

Число этапов моделирования для различных типов моделей соответствует числу коэффициентов в аппроксимирующем полиноме:

- linear − 6;
- interaction 16;
- quadratic 21;
- purequadratic 11.

Матрицы S D-оптимального плана:

```
-1 -1 -1 1
        -1
             -1
                 1
   1
                       -1
s int =
             -1
   -1
        1
                  -1
            1
1
                      1
    1
                  -1
        -1
                  -1
    1
        1
                       -1
                      1
    1
         1
             -1
                  1
                       1
    1
        -1
             -1
                  1
             1
   1
        1
                  1
                       1
        1
   -1
             -1
                  1
                       1
        1
   1
             -1
                  1
                       -1
        -1
   -1
             -1
                  1
                       -1
            1
   1
        -1
                  1
                       -1
       1
             1
                  1
                       -1
   -1
   1
                       1
        1
             -1
                  -1
   -1
        -1
             -1
                  -1
                       1
   -1
        -1
             1
                  1
                       1
   1
        -1
             -1
                  -1
                       -1
   -1
        1
             1
                  -1
                       1
S_pquad =
   0
            0
        -1
                  -1
                      -1
   -1
        1
            0
                  1
                      0
   0
        -1
             -1
                  1
                       1
        -1
             -1
                       0
                  0
   -1
   -1
             -1
        0
                  1
                       -1
             1
                       0
   0
        0
                  0
                       0
    0
        0
             -1
                  0
   1
         1
             -1
                        1
                  -1
    1
         0
                       0
             0
                  1
            0
                       1
   -1
         0
                  0
   1
         1
             0
                  0
                       -1
S_quad =
  0
                  -1
                      1
        -1
             -1
   1
        0
             -1
                  1
                       1
             1
                  1
   -1
        1
                       -1
   1
             1
                  1
                       -1
        ^{-1}
                       1
   1
        ^{-1}
             1
                  -1
   1
        -1
             -1
                  -1
                       -1
   -1
        1
             -1
                  -1
                       -1
    0
         0
             1
                  0
                       0
                       1
   -1
         1
             1
                  -1
                      0
   -1
        0
             -1
                  -1
   1
       1
             -1
                  -1
                       1
   1
        1
             -1
                  1
                      -1
                      0
   1
        -1
             -1
                  1
   -1
        -1
             1
                  1
                       1
   1
        1
             1
                  1
                       1
   -1
        1
                       1
             -1
                  1
   -1
        -1
             1
                  -1
                       -1
   -1
        -1
             0
                  0
                       1
   0
        0
             0
                       0
                  1
        -1
   -1
             -1
                  1
                       ^{-1}
   1
        1
             1
                  -1
                       -1
```

#### 1.3. Определить коэффициенты аппроксимирующего полинома (функция rstool);

| beta_lin = | beta_pquad = |
|------------|--------------|
| -388.5030  | 6.6917       |
| 2.9284     | -10.8003     |
| 4.1499     | 53.8829      |
| 49.9115    | 64.1713      |
| 40.1848    | -31.5209     |
| 34.8960    | -75.2220     |
|            | 6.7110       |
| beta_int = | -10.3994     |
| 154.6667   | -2.2011      |
| -7.6667    | 7.7727       |
| 1.3333     | 9.7727       |
| -47.0000   |              |
| -35.3333   | beta_quad =  |
| -28.6667   | 232.3387     |
| 3.3333     | -5.8605      |
| 0.3333     | 0.9238       |
| 0.3333     | -49.6926     |
| 0.3333     | -54.7307     |
| -0.3333    | -40.2805     |
| -0.3333    | 2.9197       |
| -0.3333    | -0.0340      |
| 10.6667    | 0.0340       |
| 8.6667     | 0.1314       |
| 6.6667     | 0.0340       |
|            | -0.0340      |
|            | -0.1314      |
|            | 10.9197      |
|            | 9.0170       |
|            | 6.9830       |
|            | 0.9130       |
|            | -0.4962      |
|            | -0.0831      |
|            | 1.8498       |
|            | 0.8081       |
| ı          | ı            |

### 1.4. Сформировать тестовую случайную последовательность и проверить точность полученной модели по относительной погрешности, нормированной по значению идеальной модели.

Оценка точности аппроксимации вычисляется по следующей формуле:

$$\varepsilon = \max_{i=1..N} \frac{y_{_M}(X_i) - y(X_i)}{y(X_i)}.$$

где X—случайно сформированный тестовый вектор, выборка N = 10000.

2. Исследовать влияние количества экспериментов на получаемую относительную погрешность, построить зависимости значений относительной погрешности для каждой модели от количества экспериментов (повторить пункты 1.2-1.4 для различных значений количества экспериментов в плане NRUNS).

Модель: linear

| NRUNS | 6      | 10     | 20     | 40     |
|-------|--------|--------|--------|--------|
| Eps   | 0.0067 | 0.0064 | 0.0070 | 0.0073 |

Модель: interaction

| NRUNS | 16     | 25     | 50     | 100    |
|-------|--------|--------|--------|--------|
| Eps   | 0.0021 | 0.0023 | 0.0024 | 0.0028 |

Модель: purequadratic

| NRUNS | 11     | 20     | 40     | 80     |
|-------|--------|--------|--------|--------|
| Eps   | 0.0064 | 0.0064 | 0.0066 | 0.0069 |

Модель: quadratic

| NRUNS | 21      | 30      | 60      | 120     |
|-------|---------|---------|---------|---------|
| Eps   | 0.00079 | 0.00077 | 0.00079 | 0.00084 |



## 3. Провести моделирование на стохастической системе, то есть исследовать точность каждой модели, предполагая, что обучение происходит при снятии значений входных данных с заданной инструментальной погрешностью.

Стохастическая система моделируется путем добавления к рассчитанным значениям случайной составляющей с равномерным распределением в диапазоне: [-0.06\*Xn; 0.06\*Xn] в соответствии с заданным значением инструментальной погрешности 6%.

Модель: linear

| NRUNS | 6      | 10     | 20     | 40     |
|-------|--------|--------|--------|--------|
| Eps   | 0.0190 | 0.0087 | 0.0113 | 0.0072 |

Модель: interaction

| NRUNS | 16     | 25     | 50     | 100    |
|-------|--------|--------|--------|--------|
| Eps   | 0.0032 | 0.0030 | 0.0032 | 0.0031 |

Модель: purequadratic

| NRUNS | 11     | 20     | 40     | 80     |
|-------|--------|--------|--------|--------|
| Eps   | 0.0104 | 0.0107 | 0.0092 | 0.0064 |

Модель: quadratic

| NRUNS | 21     | 30     | 60     | 120     |
|-------|--------|--------|--------|---------|
| Eps   | 0.0023 | 0.0023 | 0.0011 | 0.00093 |



#### Вывод

Наибольшую точность при моделировании обеспечивает модель quadratic, это объясняется тем, что полином, использующийся при вычислениях, имеет более высокий порядок, по сравнению с остальными. При добавлении к измерениям инструментальной погрешности точность моделирования ухудшается, повысить точность можно увеличением числа экспериментов NRUNS.