PUCP

FACULTAD DE CIENCIAS SOCIALES

MATEMÁTICAS PARA ECONOMISTAS

PRÁCTICA CALIFICADA 1

PROFESOR: JORGE R. CHÁVEZ

JEFES DE PRÁCTICA: JOAQUÍN RIVADENERYA & MARCELO GALLARDO

SEMESTRE 2022-2

FECHA 06-09-2022

OBSERVACIÓN Puede usar sus apuntes de clases.

1. (6 puntos)

Explicando sus respuestas, diga si las siguientes afirmaciones son verdaderas (V) o falsas (F).

- **1.1)** Si $x = (-\sqrt{5}, 0, \sqrt{5}, \sqrt{5})$ entonces ||x|| = 5
- **1.2)** El punto (1,1) pertenece a la bola abierta $\mathcal{B}((2,1);2)$
- **1.3)** $\mathcal{B}(x_0, r) \subset \mathcal{B}(x_0, 2r)$.

2. (6 puntos)

Dados los bienes de consumo X_1 y X_2 , considere el conjunto de presupuesto Δ :

$$\Delta = \{(x_1, x_2) \in \mathbb{R}^2_{++}: \ 0 \le x_1 \le 2, \ 0 \le x_2 \le 2, \ x_2 \le 2 - x_1\}.$$

- **2.1)** Verifique si los puntos A = (1,1) y B = (3/2,3/2) son canastas factibles
- **2.2)** Si los puntos C y D son canastas factibles, ¿se puede afirmar que (2/5)C + (3/5)D es una canasta factible? Explique su respuesta.
- 2.3) Si las preferencias del consumidor son monótonas, ¿dónde se encuentra la canasta que le proporciona al consumidor la mayor satisfacción? Explique su respuesta.

3) (8 puntos)

Considere la relación de preferencias \succeq sobre \mathbb{R}^2_{++} definida por

$$(x_1, x_2) \succeq (y_1, y_2) \iff x_1 + x_2 \ge y_1 + y_2$$
.

3.1) De acuerdo con esta relación de preferencias, ¿qué relación existe entre A = (2, 1) y B = (1, 3)?

- **3.2)** Determine el conjunto de indiferencia del punto $P = (2,1), I_{(2,1)}$
- 3.3) Determine el contorno superior del punto P,\overline{C}_P
- ${\bf 3.4)}$ ¿Es convexa la relación de preferencias? Explique su respuesta.

OPCIONAL (3 puntos). Fecha de entrega: hasta las 23 horas del 7-9-2022

- 1. Resuelva completamente la PC 1.
- 2. Con respecto a la relación de preferencias del ejercicio No 3, ¿existe una función de utilidad que represente a la relación de preferencias? Explique su respuesta y, en caso afirmativo, proponga una función de utilidad.
- 3. Usando la definición, pruebe que una bola abierta en \mathbb{R}^2 es un conjunto convexo.