Workshop 3: Functions and modules

FIE463: Numerical Methods in Macroeconomics and Finance using Python

Richard Foltyn NHH Norwegian School of Economics

January 30, 2025

See GitHub repository for notebooks and data:

https://github.com/richardfoltyn/FIE463-V25

Exercise 1: Standard deviation of a sequence of numbers

The standard deviation σ characterizes the dispersion of a sequence of data (x_1, x_2, \dots, x_N) around its mean \overline{x} . It is computed as the square root of the variance σ^2 , defined as

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} \left(x_i - \overline{x} \right)^2$$

where N is the number of elements (we ignore the degrees-of-freedom correction), and the mean \overline{x} is defined as

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

The above formula for the variance can be rewritten as

$$\sigma^2 = \left(\frac{1}{N} \sum_{i=1}^{N} x_i^2\right) - \overline{x}^2$$

This suggests the following algorithm to compute the standard deviation:

- 1. Compute the mean $\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$
- 2. Compute the mean of squares $S = \frac{1}{N} \sum_{i=1}^{N} x_i^2$
- 3. Compute the variance $\sigma^2 = S \overline{x}^2$
- 4. Compute the standard deviation $\sigma = \sqrt{\sigma^2}$

In this exercise, you are asked to implement the above algorithm and compare your function with NumPy's implementation np.std().

1. Create a module my_stats.py and add the function

```
def my_std(x):
    """
    Compute and return the standard deviation of the sequence x.
```

which implements the above algorithm to compute the standard deviation of a given sequence x (this could be a tuple, list, array, etc.). Your implementation should *only use built-in functions* such as len(), sum(), and sqrt() from the math module.

- 2. Import this function into the Jupyter notebook. Using an array of 11 elements which are uniformly spaced on the interval [0, 10], confirm that your function returns the same value as np.std().
- 3. Benchmark your implementation against np.std() for three different arrays with 11, 101, and 10001 elements which are uniformly spaced on the interval [0, 10].

Hint: Use the cell magic %timeit to time the execution of a statement.

Exercise 2: Locating maximum values

In this exercise, you are asked to write a function that returns the position of the largest element from a given sequence (list, tuple, array, etc.).

- 1. Write a function my_argmax() that takes as argument a sequence and returns the (first) index where the maximum value is located. Only use built-in functionality in your implementation (no NumPy).
- 2. Create an array with 101 values constructed using the sine function,

```
arr = np.sin(np.linspace(0.0, np.pi, 101))
and use it to test your function.
```

3. Compare the result returned by your function to NumPy's implementation np.argmax().

Exercise 3: Two-period consumption-savings problem

This exercise asks you to find the utility-maximizing consumption levels using grid search, an algorithm that evaluates all possible alternatives from a given set (the "grid") to locate the maximum.

Consider the following standard consumption-savings problem over two periods with lifetime utility $U(c_1, c_2)$ given by

$$\max_{c_1, c_2} U(c_1, c_2) = u(c_1) + \beta u(c_2)$$
s.t. $c_1 + \frac{c_2}{1+r} = w$
 $c_1 \ge 0, c_2 \ge 0$

where β is the discount factor, r is the interest rate, w is initial wealth, (c_1, c_2) is the optimal consumption allocation to be determined. The second line is the budget constraint which ensures that the chosen consumption bundle (c_1, c_2) is feasible. The per-period CRRA utility function u(c) is given by

$$u(c) = \begin{cases} \frac{c^{1-\gamma}}{1-\gamma} & \text{if } \gamma \neq 1\\ \log(c) & \text{if } \gamma = 1 \end{cases}$$

where γ is the coefficient of relative risk aversion (RRA) and $\log(\bullet)$ denotes the natural logarithm.

- 1. Write a function util(x, gamma) which evaluates the per-period utility u(c) for a given consumption level c and the parameter γ . Make sure to take into account the log case!
 - Hint: You can use the np.log() function from NumPy to compute the natural logarithm.
- 2. Write a function util_life(c_1, c_2, beta, gamma) which uses util() from above to compute the lifetime utility $U(c_1, c_2)$ for given consumption levels (c_1, c_2) and parameters.
- 3. Assume that r = 0.04, $\beta = 0.96$, $\gamma = 1$, and w = 1.
 - Create a candidate array (grid) of period-1 consumption levels with 100 grid points with are uniformly spaced on the on the interval $[10^{-5}, w]$.
 - Compute the implied array of period-2 consumption levels from the budget constraint.

- Given these candidate consumption levels, use the function $util_life()$ you wrote earlier to evaluate lifetime utility for each bundle of consumption levels (c_1, c_2) .
- 4. Use the function np.argmax() to locale the index at which lifetime utility is maximized. Print the maximizing consumption levels (c_1,c_2) as well as the associated maximized utility level.