(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 22. Juli 2004 (22.07.2004)

PCT

(10) Internationale Veröffentlichungsnummer

WO 2004/060860 A2 not Sk

(51) Internationale Patentklassifikation7:

C07D

(21) Internationales Aktenzeichen:

PCT/EP2003/014883

(22) Internationales Anmeldedatum:

24. Dezember 2003 (24.12.2003)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 103 00 109.3 7.

7. Januar 2003 (07.01.2003) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BAYER HEALTHCARE AG [DE/DE]; 51368 Leverkusen (DE).

(72) Erfinder; und

(75) Ersinder/Anmelder (nur für US): BETZ, Ulrich [DE/DE]; Im Johannistal 11, 42119 Wuppertal (DE). HEWLETT, Guy [GB/DE]; Krutscheider Weg 96, 42327 Wuppertal (DE). KLEYMANN, Gerald [DE/DE]; Leopoldshöherstr. 7, 32107 Bad-Salzuflen (DE). LAMPE, Thomas [DE/DE]; Karolingerstr. 93, 40223 Düsseldorf (DE) LIN, Tse-I [CN/DE]; In der Schlee 26, 41836 Hückelhoven (DE). NIKOLIC, Susanne [DE/DE]; Knippratherstr. 14, 40789 Monheim (DE). REEF-SCHLÄGER, Jürgen [DE/DE]; Nedderlandsweg 45, 26125 Oldenburg (DE). WUNBERG, Tobias [DE/DE]; Otto-Müller-Str. 39, 42699 Solingen (DE). ZIMMER-MANN, Holger [DE/DE]; Katernberger Schulweg 53, 42113 Wuppertal (DE). ZUMPE, Franz [DE/DE]; Hansastr. 20, 42109 Wuppertal (DE). BENDER, Wolfgang [DE/DE]; Kaulbachstr. 12, 42113 Wuppertal (DE).

HENNINGER, Kerstin [DE/DE]; Claudiusweg 7, 42115 Wuppertal (DE). JENSEN, Axel [DE/DE]; Hügelstr. 623, 42553 Velbert (DE). KELDENICH, Jörg [DE/DE]; Damaschkeweg 49, 42113 Wuppertal (DE). SCHOHE-LOOP, Rudolf [DE/DE]; Arndtstr. 10a, 42327 Wuppertal (DE).

- (74) Gemeinsamer Vertreter: BAYER HEALTHCARE AG; Law and Patents, Patents and Licensing, 51368 Leverkusen (DE).
- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO Patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

 ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

LeA 36269

- (54) Title: METHOD FOR INHIBITING THE REPLICATION OF HERPES VIRUSES
- (54) Bezeichnung: METHODE ZUR INHIBITION ZUR REPLIKATION VON HERPESVIREN
- (57) Abstract: The invention relates to a method for inhibiting the replication of herpes viruses, to methods for identifying compounds that inhibit the replication of herpes viruses with this method, to compounds with activity directed against herpes viruses, to methods for producing these compounds, and to the use thereof for producing medicaments used in the treatment of herpes infections.
- (57) Zusammenfassung: Die Erfindung betrifft eine Methode zur Inhibition der Replikation von Herpesviren, Verfahren zum Identifizieren von Verbindungen welche die Replikation von Herpesviren mit dieser Methode inhibiteren, Verbindungen mit Aktivität gegen Herpesviren, Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung von Herpes-Infektionen.

.

*

10/541886 JC14 Rec'd PCT/PTO 07 JUL 2005 PCT/EP2003/014883

Methode zur Inhibition der Replikation von Herpesviren

Die Erfindung betrifft eine Methode zur Inhibition der Replikation von Herpesviren, Verfahren zum Identifizieren von Verbindungen welche die Replikation von Herpesviren mit dieser Methode inhibieren, Verbindungen mit Aktivität gegen Herpesviren, Verfahren zu ihrer Herstellung sowie ihre Verwendung zur Herstellung von Arzneimitteln zur Behandlung von Herpes-Infektionen.

Die Familie der Herpesviren gliedert sich in die drei Sub-Familien Alpha-Herpesviren (z.B. Herpes simplex Virus Typ 1 und 2; HSV1 und HSV2), Beta-Herpesviren (z.B. Cytomegalievirus; HCMV) und Gamma-Herpesviren (z.B. Epstein-Barr Virus; EBV).

Infektionen mit Herpes-Viren manifestieren sich je nach Virustyp in Erkrankungen unterschiedlicher Organe wie der Haut, des lymphatischen Systems oder des zentralen Nervensystems.

Infektionen mit dem Beta-Herpesvirus HCMV erfolgen meist während der Kindheit und verlaufen in der Regel sub-klinisch. Die Durchseuchungsrate bei Erwachsenen ist daher weltweit sehr hoch (je nach untersuchter Population bis zu 90%).

Innerhalb der Familie der Herpesviren führt das Cytomegalievirus zur höchsten Sterblichkeitsrate unter immungeschwächten Patienten. Dies ist darauf zurückzuführen, dass Cytomegalieviren bei diesen Personen lebensbedrohende, generalisierte Erkrankungen, besonders Pneumonien verursachen.

Bei schwangeren Frauen können Infektionen mit HCMV schwere Schädigungen des Kindes zur Folge haben.

Die Viruspartikel der Herpesviren haben Durchmesser von ca. 150 bis 200 nm und setzen sich aus verschiedenen für das Virus essentiellen Strukturproteinen zusammen. Im Inneren der Partikel findet man das Virus-Core – eine fibrilläre Proteinmatrix, mit der das doppelsträngige, lineare DNA-Genom assoziiert ist. Das Core ist von einem ikosaedrischen Capsid umgeben, das aus 162 Capsomeren besteht. Das Hauptcapsidprotein (Major-Capsid-Protein, MCP) des humanen Cytomegalievirus wird als UL86 bezeichnet.

Das virale Protein UL80 wird zu mindestens drei verschiedenen Proteinen prozessiert, die bei der Kapsidreifung eine Rolle spielen. Die häufigste Form ist dabei das Assembly-Protein AP.

Die Bildung von Viruspartikeln - zunächst werden B-Kapside gebildet - wird kontrolliert von einem Vorläufer-Komplex aus UL86 und AP, der für die Translokation des MCP (UL86) in den Zellkern verantwortlich ist. Im Zellkern unterstützt AP die Bildung von Strukturen, die ein

internes Gerüst innerhalb der B-Capside bilden. In die fertigen B-Kapside wird die virale DNA verpackt, wobei AP aus den Viruspartikeln ausgeschleust wird. Die DNA-haltigen infektiösen Viruspartikel werden auch als C-Kapside bezeichnet.

Zur Prophylaxe einer HCMV-Infektion steht zur Zeit kein Impfstoff zur Verfügung. Für die Therapie der HCMV-Infektion wird hauptsächlich Ganciclovir eingesetzt, welches jedoch starke Nebenwirkungen verursacht.

Daraus ergibt sich ein lange bestehendes Bedürfnis nach einer verbesserten und vor allem verträglicheren HCMV-Therapie. Die Nachfrage nach einer verbesserten HCMV-Therapie wird zudem dadurch verstärkt, dass zum einen in zunehmendem Maße Organtransplantationen durchgeführt werden und außerdem die Zahl der HIV-Infizierten stetig steigt. Bei beiden Patientengruppen kann es aufgrund der Immunsuppression zu Komplikationen aufgrund einer HCMV-Reaktivierung oder HCMV-Infektion kommen. Daher ist hier eine verbesserte HCMV-Therapie dringend notwendig.

Eine bevorzugte Aufgabe der vorliegenden Anmeldung ist es, eine Methode aufzuzeigen, mit der die Replikation von Herpesviren inhibiert werden kann. Dies ist möglich durch Verbindungen, welche auf das Major Capsid Protein zielen und dabei die Bildung von C-Kapsiden, nicht aber von B-Kapsiden inhibieren. Viren, selektiert auf Resistenz gegen diese Verbindung zeigen eine oder mehrere Mutationen im für das Major Capsid Protein kodierenden Gen.

Eine weitere Aufgabe der vorliegenden Anmeldung ist es, ein Verfahren zur Identifizierung von Verbindungen mit diesem neuen Wirkmechanismus mit Aktivität gegen Herpesviren bereitzustellen.

Diese Aufgabe wird gelöst durch ein Verfahren, gekennzeichnet dadurch, dass

- a) das Major Capsid Protein oder ein oder mehrere Fragmente des Major Capsid Proteins mit Testverbindungen in Kontakt gebracht wird/werden und
- b) die Bindung der Testsubstanzen an das Major Capsid Protein bzw. Fragmente gemessen wird und
- c) solche Verbindungen ausgewählt werden, welche Bindung an das Major Capsid Protein bzw. Fragmente aufweisen.

Weiterhin kann diese Aufgabe auch gelöst werden durch ein Verfahren, gekennzeichnet dadurch, dass

- a) Herpesviren mit Testverbindungen in Kontakt gebracht werden,
- b) resistente Herpesviren ausgelesen werden,
- c) das für das Major Capsid Protein kodierende Gen dieser resistenten Herpesviren sequenziert und die resultierende Proteinsequenz des Major Capsid Proteins abgeleitet wird
- d) solche Verbindungen ausgewählt werden, bei denen resistente Herpesviren mit einer oder mehreren Aminosäuresubstitutionen im Major Capsid Protein auftreten.

Unter einem Verfahren zum Auswählen von Verbindungen mit Aktivität gegen Herpesviren wird im Rahmen der vorliegenden Erfindung ein Verfahren verstanden, bei dem neue oder an sich bekannte Verbindungen auf ihre Aktivität gegen Herpesviren untersucht werden.

Herpesviren sind hierbei beispielsweise Beta-Herpesviren, insbesondere das humane Cytomegalievirus, insbesondere die HCMV-Stämme Ad169 (ATCC VR-538) oder Davis (ATCC VR-807). Nicht bevorzugt ist die Verwendung des Stamms HCMV-Towne (ATCC VR-977), da dieser bereits eine Mutation im UL86 Gen trägt (P1189T), welche zu einer entsprechenden Resistenz gegen die nach dem hier beschriebenen Wirkmechanismus wirkenden Substanzen führt.

Überraschenderweise wurden Testverbindungen gefunden, welche sich durch einen einzigartigen Wirkmechanismus auszeichnen. Bei Kultivierung von HCMV unter Substanzdruck wird die Bildung von B-Capsiden zugelassen, wohingegen die Formierung von infektiösen C-Capsiden verhindert wird. Die Aufrechterhaltung der Bildung von B-Kapsiden unter der antiviralen Behandlung könnte insofern einen Vorteil darstellen, als dass B-Capside als Immunogen im Verlauf des viralen Replikationszyklus zunächst präsent bleiben, was sich zum Beispiel im Falle eines wiedererstarkten Immunsystems vorteilhaft für eine daraus resultierende spezifische Immunabwehrreaktion auswirken könnte.

Bei der Sequenzanalyse von Cytomegalieviren, die resistent gegenüber den Testverbindungen sind, wurden überraschenderweise nur Mutationen im Capsidprotein UL86 gefunden.

Da diese mutierten Viren unter Substanzdruck wachsen können, lässt sich daraus schließen, dass die Testsubstanz bei den sensitiven Wildtyp-Viren gerade an diesem Protein angreift. Elektronen-mikroskopische und molekularbiologische Untersuchungen zeigen, dass durch die Substanzen die Encapsidierung viraler DNA und damit die Bildung von C-Capsiden inhibiert wird. Nicht beeinträchtigt ist die Replikation der viralen DNA und die Bildung von DNA-freien unreifen Capsiden (B-Capsiden). Im Vergleich zu dem als HCMV-Medikament in der Klinik eingesetzten DNA-

Replikationsinhibitor Ganciclovir, erfolgt unter Einfluss der erfindungsgemäßen Substanzen keine Inhibition der DNA Synthese und Expression der späten HCMV Gene. Die in UL86 gefundenen Mutationen treten bevorzugt in zwei Bereichen auf. Der erste Bereich erstreckt sich von der Aminosäureposition 435 bis 689 und der zweite Bereich von Aminosäureposition 1189 bis 1338 (siehe Tabelle 2).

Die antivirale Wirkung kann zum einen durch direkte Interaktion der Substanz mit UL86 zustande kommen oder aber auch über einen indirekten Effekt auf UL86 wirken.

Nach diesem neuen und überraschenden Wirkmechanismus wirkende antivirale Substanzen können noch durch weitere Methoden erhalten werden, wie z.B. Molecular Modelling mit Hilfe der dreidimensionalen Struktur eines Major Capsid Proteins, Molecular Modelling ausgehend von bekannten UL86-Inhibitoren usw. Dabei handelt es sich um dem Fachmann wohlbekannte Methoden.

Über die Funktionen und Interaktionen von UL86 während der Kapsidreifung und DNA Verpackung ist wenig bekannt. (Wood et al., J.Virol, 1997, 71, 179-190).

Die zur Zeit erhältlichen Medikamente gegen HCMV sind aufgrund starker Nebenwirkungen nicht ideal. Hochdurchsatztestungen von großen Substanzbanken haben in der letzten Zeit zu Inhibitoren geführt, die an weiteren viralen Targets angreifen (Wathen, Rev Med Virol, 2002, 12, 167-178). Der hier beschriebene Wirkmechanismus zeigt eine überraschende neue Option auf, wie die Replikation von Herpesviren mit Hilfe von Verbindungen inhibiert werden kann.

Die Identifizierung von Major Capsid Protein bindenden Verbindungen kann geschehen durch Aufreinigung von Capsiden, rekombinante Expression von Major Capsid Protein oder Teil-fragmenten des Major Capsid Proteins und Messung von an das Protein bzw. Proteinfragment bindenden Substanzen (z.B. HPLC, Verdrängung fluoreszierender Peptide, Verdrängung von Aptameren, diverse spektroskopische Methoden etc.), welche dem Fachmann wohlbekannt sind.

Weiterhin ist die Identifizierung möglich durch folgendes Verfahren mit Testsubstanzen: Unter Testverbindungen werden solche Verbindungen verstanden, die auf ihre Aktivität gegen Herpesviren untersucht werden sollen. Dies können neue oder an sich bekannte Verbindungen sein. Diese werden mit den Herpesviren in Kontakt gebracht. Dies geschieht bevorzugterweise durch Kultivierung von HCMV in 384-well Gewebekulturplatten. Dazu werden suszeptible Zellen, bevorzugterweise humane Fibroblasten, in Gewebekulturgefäßen ausgesät. Bevorzugterweise werden 5 x 10³ Zellen pro well auf einer 96-well-Platte eingesetzt und mit HCMV infiziert (bevorzugterweise mit einer moi von 0,03).

Die Infektionen werden unter verschiedenen Substanzkonzentrationen (bevorzugterweise bei Konzentrationen von 0,005 bis 250 μM) kultiviert, bis in der Viruskontrolle ein deutlicher CPE zu erkennen ist (in der Regel nach 6 Tagen). Dann kann aus den anderen Substanzkonzentrationen der IC₅₀ bestimmt werden. Wirksame Substanzen zeichnen sich durch einen IC₅₀-Wert aus, der bevorzugterweise < 1µM ist und zudem einen SI > 10 aufweist.

Viren, die gegen wirksame Substanzen resistent sind, können wie folgt angezüchtet werden:

Bevorzugterweise erfolgt die Kultivierung von HCMV wiederum in 96-well Gewebekulturplatten. Dazu werden suszeptible Zellen, bevorzugterweise humane Fibroblasten, in Gewebekulturgefäßen ausgesät. Bevorzugterweise werden 5 x 10³ Zellen pro well auf einer 96-well-Platte eingesetzt und mit HCMV infiziert (bevorzugterweise mit einer moi von 0,03). Die Infektionen werden jetzt unter Substanzdruck kultiviert, der dem 10-fachen IC₅₀ Wert der Substanz entspricht.

Zellkulturen, die einen cytopathischen Effekt (CPE) vergleichbar einer Virusinfektion ohne Substanzdruck aufweisen, werden weiter analysiert, d.h. die Viren werden auf frischen Zellkulturen passagiert und weiter unter Substanzdruck kultiviert. Viren, die unter Substanzdruck weiter wachsen und einen RI (Resistenzindex) > 5 aufweisen, werden als resistente Viren bezeichnet.

Die DNA der resistenten Viren wird isoliert und anschließend wird die Nukleotidsequenz des für das MCP kodierenden Gens (UL86) bestimmt und mit der Sequenz des Ausgangsvirus (Wildtyp-Virus der gegenüber der Substanz sensitiv ist) verglichen. Resistente Viren, die Mutationen in der für das Major Capsid Protein (UL86) resultierenden Aminosäuresegeunz aufweisen, identifizieren eine Substanz, die als ULS6-Inhibitor eingesetzt werden kann.

In den meisten Screens zur Identifizierung von anti-HCMV Wirkstoffen wird der seit langem bekannte und sehr etablierte Laborstamm HCMV Towne verwendet. Nach dem erfindungsgemäßen Wirkmechanismus wirkende Substanzen sind hiermit nicht oder nur sehr schwer aufzufinden. Daher ist eine wichtige Methode zur Therapie und Prophylaxe von HCMV-Infektionen bisher völlig unberücksichtigt geblieben, welche in diesem Patent beschrieben wird. In Screens zur Identifizierung von anti-HCMV Wirkstoffen können Substanzen ausgewählt werden, welche die Replikation von HCMVTowne nicht oder nur unzureichen hemmen, aber die Replikation von HCMV Wildtyp Stämmen unterdrücken. Diese Wirkstoffe können dann zur Therapie und Prophylaxe von HCMV-Infektionen eingesetzt werden.

[A] Verbindungen der allgemeinen Formel (Ia).

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5

in welcher

A über die Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist und

- A für Sauerstoff oder NR⁶ steht,
- E für Sauerstoff, CR⁹R¹⁰ oder NR⁷ steht,
- Y für Sauerstoff oder NR⁸ steht,

D und X gleich oder verschieden sind und jeweils für Sauerstoff oder Schwefel stehen,

G für Wasserstoff steht,

oder

G für C₆-C₁₀-Aryl steht, wobei C₆-C₁₀-Aryl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, Nitro, Cyano, C₁-C₆-Alkoxy, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl, Amino, mono- oder di-C₁-C₆-Alkylamino, mono- oder di-C₁-C₆-Alkylaminocarbonyl und C₁-C₆-Alkyl,

worin

C₁-C₆-Alkoxy, C₁-C₆-Alkoxycarbonyl, mono- oder di-C₁-C₆-Alkylamino, mono- oder di-C₁-C₆-Alkylaminocarbonyl oder C₁-C₆-Alkyl gegebenenfalls substituiert sein können mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl, mono- oder di-C₁-C₆-Alkylaminocarbonyl und C₆-C₁₀-Aryl,

G für C₆-C₁₀-Aryl steht, wobei C₆-C₁₀-Aryl gegebenenfalls substituiert sein kann mit Phenyl,

worin

Phenyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, C_1 - C_6 -Alkoxy, Amino, mono- oder di- C_1 - C_6 -Alkylamino, Hydroxycarbonyl, C_1 - C_6 -Alkoxycarbonyl, mono- oder di- C_1 - C_6 -Alkylaminocarbonyl und C_1 - C_6 -Alkyl,

worin

 C_1 - C_6 -Alkyl seinerseits gegebenenfalls substituiert sein kann mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Hydroxy, C_1 - C_6 -Alkoxy, Amino, mono- oder di- C_1 - C_6 -Alkylamino, Hydroxycarbonyl, C_1 - C_6 -Alkoxycarbonyl und mono- oder di- C_1 - C_6 -Alkylaminocarbonyl,

oder

G für C₆-C₁₀-Aryl steht, wobei C₆-C₁₀-Aryl gegebenenfalls substituiert sein kann mit Phenyl, worin

Phenyl gegebenenfalls substituiert sein kann mit C₅-C₆-Heteroaryl oder C₅-C₇-Heterocyclyl,

worin

C₅-C₆-Heteroaryl oder C₅-C₇-Heterocyclyl ihrerseits gegebenenfalls substituiert sein können mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und mono- oder di-C₁-C₆-Alkylaminocarbonyl,

oder

G für C₆-C₁₀-Aryl steht, wobei C₆-C₁₀-Aryl gegebenenfalls substituiert sein kann mit einer Gruppe der folgenden Formel

oder

WO 2004/060860

G für C₅-C₁₀-Heteroaryl oder C₅-C₇-Heterocyclyl steht, wobei C₅-C₁₀-Heteroaryl oder C₅-C₇-Heterocyclyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Halogen, Nitro, Cyano, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und mono- oder di-C₁-C₆-Alkylaminocarbonyl,

oder

- G für C₃-C₁₀-Cycloalkyl steht, wobei C₃-C₁₀-Cycloalkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Halogen, Nitro, Cyano, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und mono- oder di-C₁-C₆-Alkylaminocarbonyl,
- R¹, R², R³ und R⁴ gleich oder verschieden sind und jeweils für Wasserstoff, Amino, monooder di-C₁-C₆-Alkylamino, C₁-C₆-Alkylcarbonylamino, C₆-C₁₀-Aryl oder C₁-C₆-Alkyl, wobei C₁-C₆-Alkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Hydroxy, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, C₁-C₆-Alkylcarbonylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und mono- oder di-C₁-C₆-Alkylaminocarbonyl, stehen,

und

wobei C₆-C₁₀-Aryl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, C₁-C₆-Alkylcarbonylamino, Hydroxycarbonyl, C₁-C₆-Alkylaminocarbonyl und C₁-C₆-Alkyl,

worin

C₁-C₆-Alkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Hydroxy, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, C₁-C₆-Alkylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und mono- oder di-C₁-C₆-Alkylaminocarbonyl,

oder

R¹ und R² oder R³ und R⁴ bilden zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen C₃-C₆-Cycloalkyl-Ring, wobei der C₃-C₆-Cycloalkyl-Ring gegebenenfalls substituiert sein kann mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, C₁-C₆-Alkylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und mono- oder di-C₁-C₆-Alkylaminocarbonyl,

oder

- R¹ und R³ bilden zusammen mit den Kohlenstoffatomen, an die sie gebunden sind, einen C₃-C₆-Cycloalkyl-Ring, wobei der C₃-C₆-Cycloalkyl-Ring gegebenenfalls substituiert sein kann mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, C₁-C₆-Alkylcarbonylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und mono- oder di-C₁-C₆-Alkylaminocarbonyl,
- für Wasserstoff, Halogen, Hydroxy, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino oder C₁-C₆-Alkyl steht, wobei C₁-C₆-Alkoxy, mono- oder di-C₁-C₆-Alkylamino oder C₁-C₆-Alkyl gegebenenfalls substituiert sein können mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Hydroxy, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und mono- oder di-C₁-C₆-Alkylaminocarbonyl,
- R⁶, R⁷ und R⁸ gleich oder verschieden sind und jeweils für Wasserstoff oder C₁-C₆-Alkyl stehen, wobei C₁-C₆-Alkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Hydroxy, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, C₁-C₆-Alkylcarbonylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und mono- oder di-C₁-C₆-Alkylaminocarbonyl,
- R⁹ und R¹⁰ gleich oder verschieden sind und jeweils für Wasserstoff, NR¹¹R¹², OR¹³ oder C₁-C₆-Alkyl stehen, wobei C₁-C₆-Alkyl gegebenenfalls substituiert sein kann mit bis zu

drei Substituenten ausgewählt aus der Gruppe bestehend aus Hydroxy, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, C₁-C₆-Alkylcarbonylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und mono- oder di-C₁-C₆-Alkylaminocarbonyl,

R¹¹, R¹² und R¹³gleich oder verschieden sind und jeweils für Wasserstoff oder C₁-C₆-Alkyl stehen, wobei C₁-C₆-Alkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten ausgewählt aus der Gruppe bestehend aus Hydroxy, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, C₁-C₆-Alkylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und mono- oder di-C₁-C₆-Alkylaminocarbonyl,

sowie deren Tautomere, Stereoisomere, stereoisomere Gemische und deren pharmakologisch verträglichen Salze,

oder

[B] Verbindungen der Formel (Ib)

in welcher

der Rest -NHC(D)NHR² über eine der Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist,

X für -N(\mathbb{R}^6)- oder eine Gruppe

- D für Sauerstoff oder Schwefel steht,
- R¹ für C₆-C₁₀-Aryl oder C₁-C₆-Alkyl steht, wobei Alkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten unabhängig voneinander ausgewählt aus der Gruppe be-

stehend aus Hydroxy, C_1 - C_6 -Alkoxy, Amino, C_1 - C_6 -Alkylamino, C_1 - C_6 -Alkylamino, C_1 - C_6 -Alkylamino amino, Hydroxycarbonyl, C_1 - C_6 -Alkoxycarbonyl und C_1 - C_6 -Alkylamino arbonyl,

und

wobei Aryl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, C₁-C₆-Alkoxy, Amino, C₁-C₆-Alkylamino, C₁-C₆-Alkylcarbonylamino, Hydroxycarbonyl, C₁-C₆-Alkoxy-carbonyl, C₁-C₆-Alkylaminocarbonyl und C₁-C₆-Alkyl,

oder

- R¹ und R⁴ bilden zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen C₃-C₆-Cycloalkyl-Ring, wobei der Cycloalkyl-Ring gegebenenfalls substituiert sein kann mit bis zu drei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Amino, C₁-C₆-Alkylamino, C₁-C₆-Alkylcarbonylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und C₁-C₆-Alkylaminocarbonyl,
- R² für C₃-C₈-Cycloalkyl oder C₆-C₁₀-Aryl steht, wobei Aryl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, Nitro, Cyano, C₁-C₆-Alkoxy, Hydroxycarbonyl, C₁-C₆-Alkylamino, C₁-C₆-Alkylamino und C₁-C₆-Alkylamino und C₁-C₆-Alkylamino
- R³ für Wasserstoff oder C₁-C₆-Alkyl steht, wobei Alkyl gegebenenfalls substituiert sein kann mit bis zu zwei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus C₁-C₆-Alkoxy, Hydroxycarbonyl und C₁-C₆-Alkoxycarbonyl,
- für C₁-C₆-Alkyl steht, wobei Alkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Hydroxy, C₆-C₁₀-Aryl, C₁-C₆-Alkoxy, Amino, C₁-C₆-Alkylamino, C₁-C₆-Alkylaminocarbonyl, amino, Hydroxy-carbonyl, C₁-C₆-Alkoxycarbonyl und C₁-C₆-Alkylaminocarbonyl,

oder .

R⁴ für C₆-C₁₀-Aryl steht, wobei Aryl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, C₁-C₆-Alkoxy, Amino, C₁-C₆-Alkylamino, C₁-C₆-Alkylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl, C₁-C₆-Alkylaminocarbonyl und C₁-C₆-Alkyl,

- R⁵ für Wasserstoff, Halogen, Hydroxy, C₁-C₆-Alkoxy, Amino, C₁-C₆-Alkylamino oder C₁-C₆-Alkyl steht,
- R⁶ für C₆-C₁₀-Aryl, C₃-C₈-Cycloalkyl oder C₁-C₆-Alkyl steht, wobei Alkyl gegebenenfalls substituiert sein kann mit bis zu zwei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Hydroxy, C₆-C₁₀-Aryl, C₁-C₆-Alkoxy, Amino, C₁-C₆-Alkylamino, Hydroxycarbonyl und C₁-C₆-Alkoxycarbonyl,

und

wobei Cycloalkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Hydroxy, C₁-C₆-Alkyl, C₆-C₁₀-Aryl, C₁-C₆-Alkoxy, Amino, C₁-C₆-Alkylamino, Hydroxycarbonyl und C₁-C₆-Alkoxycarbonyl,

sowie deren Tautomere, Stereoisomere, stereoisomere Gemische und deren pharmakologisch verträglichen Salze.

Bevorzugt sind Verbindungen der allgemeinen Formel (Ia) worin

A über die Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist und

- A für NR⁶ steht,
- E für NR⁷ steht,
- Y für NR⁸ steht,

D und X für Sauerstoff stehen,

G für C₆-C₁₀-Aryl steht, wobei C₆-C₁₀-Aryl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten, die unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Hydroxy, Cyano und C₁-C₆-Alkyl,

worin

C₁-C₆-Alkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten von Halogen,

oder

G für C₅-C₆-Heteroaryl steht, wobei C₅-C₆-Heteroaryl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten, die unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen und C₁-C₃-Alkyl,

oder

- G für C_3 - C_{10} -Cycloalkyl steht, wobei C_3 - C_{10} -Cycloalkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten C_1 - C_6 -Alkyl,
- R¹, R² und R³ gleich oder verschieden sind und jeweils für Wasserstoff oder für C₁-C₃-Alkyl stehen,
- für Wasserstoff, C₆-C₁₀-Aryl oder C₁-C₆-Alkyl steht, wobei C₁-C₆-Alkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten, die unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Hydroxy, C₁-C₆-Alkoxy, Amino, mono-oder di-C₁-C₆-Alkylamino, C₁-C₆-Alkylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und mono- oder di-C₁-C₆-Alkylaminocarbonyl,

und

wobei C₆-C₁₀-Aryl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten, die unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Halogen, Hydroxy, C₁-C₆-Alkoxy und C₁-C₆-Alkyl,

wobei R1, R2, R3 und R4 nicht gleichzeitig Wasserstoff sind,

für Wasserstoff, Halogen, Hydroxy, Amino, mono- oder di-C₁-C₆-Alkylamino oder C₁-C₆-Alkyl steht, wobei C₁-C₆-Alkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten, die unabhängig voneinander ausgewählt werden aus der Gruppe bestehend aus Hydroxy, C₁-C₆-Alkoxy, Amino, mono- oder di-C₁-C₆-Alkylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und mono- oder di-C₁-C₆-Alkylaminocarbonyl,

R⁶, R⁷ und R⁸ für Wasserstoff stehen,

oder

Verbindungen der allgemeinen Formel (Ib) worin

der Rest -NHC(D)NHR² über eine der Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist,

X für $-N(R^6)$ - oder eine Gruppe

D für Sauerstoff steht,

R¹ für C₁-C₆-Alkyl steht, wobei Alkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Hydroxy, C₁-C₆-Alkoxy, Amino, C₁-C₆-Alkylamino, C₁-C₆-Alkylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und C₁-C₆-Alkylaminocarbonyl,

oder

- R¹ und R⁴ bilden zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, einen C₅-C₅-Cycloalkyl-Ring, wobei der Cycloalkyl-Ring gegebenenfalls substituiert sein kann mit bis zu drei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen, Hydroxy, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, Amino, C₁-C₆-Alkylamino, C₁-C₆-Alkylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und C₁-C₆-Alkylamino-carbonyl,
- R² für C₆-C₁₀-Aryl steht, wobei Aryl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Halogen oder C₁-C₆-Alkyl,
- R³ für Wasserstoff oder C₁-C₆-Alkyl steht, wobei Alkyl gegebenenfalls substituiert sein kann mit bis zu zwei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus C₁-C₆-Alkoxy, Hydroxycarbonyl und C₁-C₆-Alkoxycarbonyl,
- R⁴ für C₁-C₆-Alkyl steht, wobei Alkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus Hydroxy, Phenyl, C₁-C₆-Alkoxy, Amino, C₁-C₆-Alkylamino, C₁-C₆-Alkylcarbonylamino, Hydroxycarbonyl, C₁-C₆-Alkoxycarbonyl und C₁-C₆-Alkylaminocarbonyl,
- R⁵ für Wasserstoff, Halogen, Hydroxy, C₁-C₆-Alkoxy, Amino, C₁-C₆-Alkylamino oder C₁-C₆-Alkyl steht,
- R⁶ für C₃-C₈-Cycloalkyl oder C₁-C₆-Alkyl steht, wobei Alkyl gegebenenfalls substituiert sein kann mit bis zu zwei Substituenten unabhängig voneinander ausgewählt aus der Gruppe

bestehend aus Hydroxy, C_6 - C_{10} -Aryl, C_1 - C_6 -Alkoxy, Amino, C_1 - C_6 -Alkylamino, Hydroxy-carbonyl und C_1 - C_6 -Alkoxycarbonyl,

und

wobei Cycloalkyl gegebenenfalls substituiert sein kann mit bis zu drei Substituenten unabhängig voneinander ausgewählt aus der Gruppe bestehend aus C_1 - C_6 -Alkyl und C_1 - C_6 -Alkoxy.

Besonders bevorzugt sind

N-(2,4-Difluor phenyl)-N'-[3-(4,4-dimethyl-6-oxo-1,4,5,6-tetra hydro-3-pyridazinyl)-phenyl] harn-stoff

N-(2,5-Difluor phenyl)-N'-[3-(4,4-dimethyl-6-oxo-1,4,5,6-tetrahydro-3-pyridazinyl)-4-hydroxy-phenyl] harnstoff

 $N-[4-(\{[(3-Chlor-4-fluorphenyl)amino] carbonyl\} amino) phenyl] acetamid$

N-[4-({[(3-Chlor-4-fluorphenyl)amino]carbonyl}amino)phenyl]pentanamid

N-[3-({[(3-Chlor-4-fluorphenyl)amino]carbonyl}amino)phenyl]-1-butansulfonamid

1-(3-Chlor-4-fluor-phenyl)-3-[3-(4-isopropyl-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl)-phenyl] harn-stoff

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H
 H
 H
 H

1-(3-Chlor-4-fluor-phenyl)-3-[3-(4-cyclohexyl-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl)-phenyl]-harnstoff

N-(4-Chlor-2-methylphenyl)-N'-[3-(4,4-dimethyl-5-oxo-4,5-dihydro-1*H*-pyrazol-3-yl)phenyl]-harnstoff

Die erfindungsgemäßen Verbindungen können in Abhängigkeit von ihrer Struktur in stereoisomeren Formen (Enantiomere, Diastereomere) existieren. Die Erfindung betrifft deshalb die Enantiomeren oder Diastereomeren und ihre jeweiligen Mischungen. Aus solchen Mischungen von Enantiomeren und/oder Diastereomeren lassen sich die stereoisomer einheitlichen Bestandteile in bekannter Weise isolieren.

Die Erfindung betrifft in Abhängigkeit von der Struktur der Verbindungen auch Tautomere der Verbindungen.

Als <u>Salze</u> sind im Rahmen der Erfindung physiologisch unbedenkliche Salze der erfindungsgemäßen Verbindungen bevorzugt.

Physiologisch unbedenkliche Salze der Verbindungen (I) umfassen Säureadditionssalze von Mineralsäuren, Carbonsäuren und Sulfonsäuren, z.B. Salze der Chlorwasserstoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, Ethansulfonsäure, Toluolsulfonsäure, Benzolsulfonsäure, Naphthalindisulfonsäure, Essigsäure, Propionsäure, Milchsäure, Weinsäure, Äpfelsäure, Zitronensäure, Fumarsäure, Maleinsäure und Benzoesäure.

Physiologisch unbedenkliche Salze der Verbindungen (I) umfassen auch Salze üblicher Basen, wie beispielhaft und vorzugsweise Alkalimetallsalze (z.B. Natrium- und Kaliumsalze), Erdalkalisalze (z.B. Calcium- und Magnesiumsalze) und Ammoniumsalze, abgeleitet von Ammoniak oder organischen Aminen mit 1 bis 16 C-Atomen, wie beispielhaft und vorzugsweise Ethylamin, Diethylamin, Triethylamin, Ethyldiisopropylamin, Monoethanolamin, Diethanolamin, Triethanolamin, Dicyclohexylamin, Dimethylaminoethanol, Prokain, Dibenzylamin, N-Methylmorpholin, Dihydroabietylamin, Arginin, Lysin, Ethylendiamin und Methylpiperidin.

Als <u>Solvate</u> werden im Rahmen der Erfindung solche Formen der Verbindungen bezeichnet, welche in festem oder flüssigem Zustand durch Koordination mit Lösungsmittelmolekülen einen Komplex bilden. Hydrate sind eine spezielle Form der Solvate, bei denen die Koordination mit Wasser erfolgt.

Im Rahmen der vorliegenden Erfindung haben die Substituenten, soweit nicht anders spezifiziert, die folgende Bedeutung:

Alkyl per se und "Alk" und "Alkyl" in Alkoxy, Alkylamino, Alkylaminocarbonyl und Alkoxycarbonyl stehen für einen linearen oder verzweigten Alkylrest mit in der Regel 1 bis 6, vorzugsweise 1 bis 4, besonders bevorzugt 1 bis 3 Kohlenstoffatomen, beispielhaft und vorzugsweise für Methyl, Ethyl, n-Propyl, Isopropyl, tert.-Butyl, n-Pentyl und n-Hexyl.

Alkoxy steht beispielhaft und vorzugsweise für Methoxy, Ethoxy, n-Propoxy, Isopropoxy, tert.-Butoxy, n-Pentoxy und n-Hexoxy.

<u>Alkylamino</u> steht für einen Alkylaminorest mit einem oder zwei (unabhängig voneinander gewählten) Alkylsubstituenten, beispielhaft und vorzugsweise für Methylamino, Ethylamino, n-Propylamino, Isopropylamino, tert.-Butylamino, n-Pentylamino, n-Hexylamino, N.N-Diethylamino, N-Ethyl-N-methylamino, N-Methyl-N-n-propylamino, N-Isopropyl-N-n-propylamino, N-tert.-Butyl-N-methylamino, N-Ethyl-N-n-pentylamino und N-n-Hexyl-N-methylamino.

Alkylaminocarbonyl steht für einen Alkylaminocarbonylrest mit einem oder zwei (unabhängig voneinander gewählten) Alkylsubstituenten, beispielhaft und vorzugsweise für Methylaminocarbonyl, Ethylaminocarbonyl, n-Propylaminocarbonyl, Isopropylaminocarbonyl, tert.-Butylaminocarbonyl, n-Pentylaminocarbonyl, n-Hexylaminocarbonyl, N.N-Dimethylaminocarbonyl, N.N-Diethylaminocarbonyl, N-Ethyl-N-methylaminocarbonyl, N-Methyl-N-n-propylaminocarbonyl, N-Isopropyl-N-n-propylaminocarbonyl, N-t-Butyl-N-methylaminocarbonyl, N-Ethyl-N-n-pentylamino-carbonyl und N-n-Hexyl-N-methylaminocarbonyl.

<u>Alkoxycarbonyl</u> steht beispielhaft und vorzugsweise für Methoxycarbonyl, Ethoxycarbonyl, n-Propoxycarbonyl, Isopropoxycarbonyl, tert.-Butoxycarbonyl, n-Pentoxycarbonyl und n-Hexoxycarbonyl.

Cycloalkyl steht für eine Cycloalkylgruppe mit in der Regel 3 bis 8, bevorzugt 5 bis 7 Kohlenstoffatomen, beispielhaft und vorzugsweise für Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclopent

cyclischen Rest mit in der Regel 6

Aryl steht für einen mono- bis tricyclischen aromatischen, carbocyclischen Rest mit in der Regel 6 bis 14 Kohlenstoffatomen; beispielhaft und vorzugsweise für Phenyl, Naphthyl und Phenanthrenyl.

5- bis 10-gliedriges Heteroaryl ("C₅-C₁₀-Heteroaryl") steht im Rahmen der Erfindung für 5- bis 10-gliedrige, Heteroatome enthaltende aromatische Ringe mit wenigstens einem aromatischen Ring, die 1 bis 4 Heteroatome enthalten können, die ausgewählt werden aus O, S und N. Heteroaryl kann seinerseits noch über C oder N substituiert sein. Beispielsweise seien genannt: Pyridyl, Furyl, Thienyl, Pyrrolyl, Imidazolyl, Pyrazolyl, Pyrazinyl, Pyrimidinyl, Pyridazinyl, Indolicenyl, Indolyl, Benzo[b]thienyl, Benzo[b]furyl, Indazolyl, Chinolyl, Isochinolyl, Naphthyridinyl, Chinazolinyl, etc.

Ein 5- bis 7-gliedriger gesättigter oder teilweise ungesättigter Heterocyclus ("C₅-C₇-Heterocyclyl") mit bis zu 3 Heteroatomen aus der Reihe S, N und/oder O steht im Rahmen der Erfindung im allgemeinen für einen mono- oder polycyclischen, vorzugsweise mono- oder bicyclischen Heterocyclus, der eine oder mehrere Doppelbindungen enthalten kann und der über ein Ringkohlenstoffatom oder ein Ringstickstoffatom verknüpft ist. Heterocyclyl kann seinerseits noch über C oder N substituiert sein. Beispielsweise seien genannt: Tetrahydrofuryl, Pyrrolidin-2-yl, Pyrrolidin-3-yl, Pyrrolinyl, Piperidinyl, Dihydropyridinyl, Piperazinyl, Morpholinyl, Azepinyl, Diazepinyl. Bevorzugt sind Piperidinyl, Morpholinyl und Pyrrolidinyl.

Halogen steht für Fluor, Chlor, Brom und Jod, bevorzugt Fluor und Chlor.

Die Verbindungen der Formel (Ia) und (Ib) sind bekannt oder lassen sich nach den folgenden Verfahren herstellen.

Bei Verfahren ·

[A] setzt man Verbindungen der allgemeinen Formel (IIa),

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{4}
 R^{5}
 R^{5}
 R^{4}
 R^{5}
 R^{5

in welcher.

A über die Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist und

R¹, R², R³, R⁴, R⁵, A, X und Y die oben angegebene Bedeutung aufweisen,

mit Verbindungen der allgemeinen Formel (IIIa),

$$D=C=N-G$$
 (IIIa)

in welcher

Dund G die oben angegebene Bedeutung aufweisen,

zu Verbindungen der allgemeinen Formel (Iaa),

in welcher

A über die Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist, und

R¹, R², R³, R⁴, R⁵, A, D, G, X und Y die oben angegebene Bedeutung aufweisen,

in inerten Lösungsmitteln, hierzu gehören Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder
Erdölfraktionen, oder andere Lösungsmittel wie Ethylacetat, Aceton, Dimethylformamid,
Dimethylacetamid, 2-Butanon, Dimethylsulfoxid, Acetonitril oder Pyridin, als Lösungsmittel sind bevorzugt Tetrahydrofuran oder Methylenchlorid, gegebenenfalls in Gegenwart
einer Base, wie beispielsweise Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder
Kaliumcarbonat, oder Kalium-tert.-butylat, oder andere Basen wie Natriumhydrid, DBU,
Triethylamin oder Diisopropylethylamin, bevorzugt Triethylamin, bevorzugt in einem

Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck, um.

Die Verbindungen der allgemeinen Formel (IIa) werden im Folgenden als (IIaa), (IIba) und (IIca) dargestellt.

Die Verbindungen der allgemeinen Formel (IIIa) sind bekannt oder lassen sich nach bekannten Verfahren aus den entsprechenden Edukten synthetisieren.

Bei Verfahren

[B] setzt man Verbindungen der allgemeinen Formel (IIa) mit Verbindungen der allgemeinen Formel (IVa),

$$\bigcup_{L^1 \in G} G \qquad (IVa)$$

in welcher

D, E und G die oben angegebene Bedeutung aufweisen, und

L¹ für p-Nitrophenyl oder Halogen, bevorzugt Brom oder Chlor, steht,

zu Verbindungen der allgemeinen Formel (Iaa),

in welcher

A über die Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist, und

R1, R2, R3, R4, R5, A, D, E, G, X und Y die oben angegebene Bedeutung aufweisen,

in inerten Lösungsmitteln, hierzu gehören Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder
Erdölfraktionen, oder andere Lösungsmittel wie Ethylacetat, Aceton, Dimethylformamid,
Dimethylacetamid, 2-Butanon, Acetonitril oder Pyridin, als Lösungsmittel sind bevorzugt
Tetrahydrofuran oder Methylenchlorid, gegebenenfalls in Gegenwart einer Base, wie
beispielsweise Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, oder
Kalium-tert.-butylat, oder andere Basen wie Natriumhydrid, DBU, Triethylamin oder
Diisopropylethylamin, bevorzugt Triethylamin, bevorzugt in einem Temperaturbereich
von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck, um.

Die Verbindungen der allgemeinen Formel (IVa) sind bekannt oder lassen sich nach bekannten Verfahren aus den entsprechenden Edukten synthetisieren.

Bei Verfahren

[C] setzt man Verbindungen der allgemeinen Formel (Va),

$$\begin{array}{c}
R^{1} \\
R^{2} \\
R^{3} \\
R^{4}
\end{array}$$

$$\begin{array}{c}
N \\
N = C = D
\end{array}$$
(Va)

in welcher

-NCD über die Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist, und R¹, R², R³, R⁴, R⁵, D, X und Y die oben angegebene Bedeutung aufweisen, mit Verbindungen der allgemeinen Formel (VIa),

$$H-M-G$$
 (VIa)

G die oben angegebene Bedeutung aufweist, und

M für Sauerstoff oder NR⁷ steht,

worin

R7 die oben angegebene Bedeutung aufweist,

zu Verbindungen der allgemeinen Formel (Iba),

in welcher

-NH-C(D)-M-G über die Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist, und R¹, R², R³, R⁴, R⁵, D, G, M, X und Y die oben angegebene Bedeutung aufweisen,

in inerten Lösungsmitteln, hierzu gehören Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Ethylacetat, Aceton, Dimethylformamid, Dimethylacetamid, 2-Butanon, Dimethylsulfoxid, Acetonitril oder Pyridin, als Lösungsmittel sind bevorzugt Tetrahydrofuran oder Methylenchlorid, gegebenenfalls in Gegenwart einer Base, wie beispielsweise Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, oder Kalium-tert.-butylat, oder andere Basen wie Natriumhydrid, DBU, Triethylamin oder Diisopropylethylamin, bevorzugt Triethylamin, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck, um.

Die Verbindungen der allgemeinen Formel (VIa) sind bekannt oder lassen sich nach bekannten Verfahren aus den entsprechenden Edukten synthetisieren.

Zur Herstellung der Verbindungen der allgemeinen Formel (IIaa),

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5

in welcher

NH₂ über die Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist und R¹, R², R³, R⁴, R⁵, X und Y die oben angegebene Bedeutung aufweisen, setzt man Verbindungen der allgemeinen Formel (VIIa),

$$R^{5}$$
 R^{4} R^{3} O $(VIIa)$

in welcher

NO₂ über die Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist und R¹, R², R³, R⁴ und R⁵ die oben angegebene Bedeutung aufweisen, im Falle, wenn für X Sauerstoff steht,

zunächst mit Hydrazin, Hydroxylamin oder einer Verbindung der allgemeinen Formel (VIIIa),

$$H_2N-N-R^8$$
 (VIII)

R^8 die oben angegebene Bedeutung aufweist,

um und reduziert anschließend die Nitrogruppe zur Aminogruppe. Diese beiden Reaktionen können in ein oder zwei Reaktionsschritten stattfinden.

Bei einem einstufigen Verfahren wird mit Hydrazin und mit Palladium auf Kohle gleichzeitig in inerten Lösungsmitteln, hierzu gehören Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol oder tert.-Butanol, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Dimethylacetamid, Acetonitril oder Pyridin, als Lösungsmittel sind bevorzugt Ethanol oder iso-Propanol, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck, umgesetzt.

Bei einem zweistufigen Verfahren wird zunächst mit Hydrazin, Hydroxylamin oder einer Verbindung der allgemeinen Formel (VIIIa) in inerten Lösungsmitteln, hierzu gehören Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol oder tert.-Butanol, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Dimethylformamid, Dimethylacetamid, Acetonitril oder Pyridin, als Lösungsmittel sind bevorzugt Ethanol oder iso-Propanol. bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck, umgesetzt.

In der zweiten Stufe wird mit Wasserstoffdonoren, bevorzugt Hydrazin oder Wasserstoff und mit Palladium auf Kohle, oder mit Zinndichlorid in inerten Lösungsmitteln, hierzu gehören Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol oder tert.-Butanol, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Ethylacetat, Dimethylformamid, Dimethylacetamid, Acetonitril oder Pyridin, als Lösungsmittel sind bevorzugt Ethanol, iso-Propanol oder im Falle von Zinndichlorid in Dimethylformamid, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck bis 3 bar, umgesetzt.

Im Falle, wenn für X Schwefel steht.

wird zunächst mit Hydrazin, Hydroxylamin oder einer Verbindung der allgemeinen Formel (VIIIa) umgesetzt, dann mit Lawesson-Reagenz der Sauerstoff gegen Schwefel ausgetauscht und anschließend die Nitrogruppe zur Aminogruppe reduziert.

In der ersten Stufe wird zunächst mit Hydrazin, Hydroxylamin oder einer Verbindung der allgemeinen Formel (VIIIa) in inerten Lösungsmitteln, hierzu gehören Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol oder tert.-Butanol, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Dimethylformamid, Dimethylacetamid, Acetonitril oder Pyridin, als Lösungsmittel sind bevorzugt Ethanol oder iso-Propanol, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck, umgesetzt.

In der zweiten Stufe wird mit Lawesson-Reagenz in inerten Lösungsmitteln, hierzu gehören Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Methyltert.-butylether, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Nitromethan, 1,2-Dimethoxyethan, Dimethylsulfoxid oder Pyridin, bevorzugt sind Toluol, Xylol oder Dioxan, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck, durchgeführt.

In der dritten Stufe wird mit Wasserstoffdonoren, bevorzugt Hydrazin oder Wasserstoff und mit Palladium auf Kohle, oder mit Zinndichlorid in inerten Lösungsmitteln, hierzu gehören Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol oder tert.-Butanol, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Dimethylformamid, Dimethylacetamid, Acetonitril oder Pyridin, als Lösungsmittel sind bevorzugt Ethanol, iso-Propanol oder im Falle von Zinndichlorid in Dimethylformamid, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck bis 3 bar, umgesetzt.

Verbindungen der allgemeinen Formel (VIIa) können in zwei verschiedenen Formen vorliegen. Im Verlaufe der Beschreibung der Verfahren wird nur die Offenkettige-Form gezeichnet.

Zur Herstellung der Verbindungen der allgemeinen Formel (IIba),

$$\begin{array}{c}
R^{1} \\
R^{2} \\
R^{3} \\
R^{4}
\end{array}$$
(IIba)

in welcher

NHR⁶ über die Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist und

R¹, R², R³, R⁴, R⁵, R⁶, X und Y die oben angegebene Bedeutung aufweisen,

setzt man Verbindungen der allgemeinen Formel (IIaa) mit Verbindungen der allgemeinen Formel (IXa),

$$L^2 - R^6$$
 (IXa)

in welcher

R⁶ die oben angegebene Bedeutung aufweist, und

L² für Halogen, bevorzugt Brom oder Iod, steht,

in inerten Lösungsmitteln, hierzu gehören Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen,

oder andere Lösungsmittel wie Dimethylformamid, Dimethylacetamid, Acetonitril oder Pyridin, als Lösungsmittel sind bevorzugt Tetradydrofuran oder Diethylether, gegebenenfalls in Gegenwart einer Base, wie beispielsweise Alkalihydroxide wie Natrium- oder Kaliumhydroxid, oder Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, oder Amide wie Natriumamid, Lithium-bis-(trimethylsilyl)amid, Lithiumdiisopropylamid, oder metallorganische Verbindungen wie Butyllithium oder Phenyllithium, oder andere Basen wie Natriumhydrid, DBU, Triethylamin oder Diisopropylethylamin, bevorzugt Diisopropylethylamin, Kalium-tert.-butylat oder DBU, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck, umgesetzt.

Die Verbindungen der allgemeinen Formel (IXa) sind bekannt oder lassen sich nach bekannten Verfahren aus den entsprechenden Edukten synthetisieren.

Zur Herstellung der Verbindungen der allgemeinen Formel (IIca),

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{5}
 R^{7}
 R^{7

in welcher

OH über die Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist und

R¹, R², R³, R⁴, R⁵, X und Y die oben angegebene Bedeutung aufweisen,

stellt man aus Verbindungen der allgemeinen Formel (IIaa) zunächst die Diazoniumverbindungen nach den dem Fachmann bekannten Methoden her und verkocht diese anschließend zu den Phenolen (vgl. Organikum, 17. Auflage, VEB Deutscher Verlag der Wissenschaften, Berlin, S. 543).

Zur Herstellung der Verbindungen der allgemeinen Formel (Va) werden Verbindungen der allgemeinen Formel (IIaa)

mit Chlorameisensäuretrichlormethylester

in inerten Lösungsmitteln, hierzu gehören Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Ethylacetat, Aceton, Dimethylformamid, Dimethylacetamid, 2-Butanon, Acetonitril oder Pyridin umgesetzt. Als Lösungsmittel sind bevorzugt Tetrahydrofuran oder Dichlormethan, gegebenenfalls in Gegenwart einer Base, wie beispielsweise 1,8-Bis-(dimethylamino)naphthalin, DBU, Triethylamin oder Diisopropylethylamin, bevorzugt 1,8-Bis-(dimethylamino)naphthalin, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck.

Zur Herstellung der Verbindungen der allgemeinen Formel (VIIa) setzt man Verbindungen der allgemeinen Formel (Xa),

$$R^{5}$$
 OH (Xa)

in welcher

R1, R2, R3, R4 und R5 die oben angegebene Bedeutung aufweisen,

mit rauchender Salpetersäure, konzentrierter Salpetersäure oder Nitriersäure bevorzugt in einem Temperaturbereich von -30°C bis 0°C bei Normaldruck, um.

Verbindungen der allgemeinen Formel (Xa) können in zwei verschiedenen Formen vorliegen. Im Verlaufe der Beschreibung der Verfahren wird nur die Offenkettige-Form gezeichnet.

$$R^{5}$$
 OH R^{4} R^{3} OH R^{5} R^{4} R^{3} (Xa) (Offenkettige-Form)

Zur Herstellung der Verbindungen der allgemeinen Formel (Xa) werden Verbindungen der allgemeinen Formel (XIa),

$$R^{1}$$
 R^{2}
 R^{3}
 R^{4}
 R^{4}
 R^{3}
 R^{4}

in welcher

R¹, R², R³ und R⁴ die oben angegebene Bedeutung aufweisen,

mit Verbindungen der allgemeinen Formel (XIIa),

in welcher

R⁵ die oben angegebene Bedeutung aufweist,

mit Lewissäuren, bevorzugt Aluminiumtrichlorid,

in inerten Lösungsmitteln, hierzu gehören Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetra-hydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Nitrobenzol, Hexan, Cyclohexan oder Erdölfraktionen, oder anderen Lösungsmittel wie Ethylacetat, Aceton, Dimethylformamid, Dimethylacetamid, 2-Butanon, Dimethylsulfoxid, Acetonitril oder Pyridin (als Lösungsmittel ist bevorzugt 1,2-Dichlorethan) bevorzugt in einem Temperaturbereich von -20 °C bis Raumtemperatur bei Normaldruck, umgesetzt.

Die Verbindungen der allgemeinen Formel (XIa) und (XIIa) sind bekannt oder lassen sich nach bekannten Verfahren aus den entsprechenden Edukten synthetisieren.

Als alternativen Syntheseweg setzt man zur Herstellung der Verbindungen der allgemeinen Formel (Xaa), welches Verbindungen der allgemeinen Formel (Xa) sind, in denen

R² für Wasserstoff steht,

Verbindungen der allgemeinen Formel (XIIIaa),

$$R^{5}$$
 R^{4}
 R^{3}
 OR^{14}
 OR^{14}
 OR^{14}

in welcher

R¹, R³, R⁴ und R⁵ die oben angegebene Bedeutung aufweisen, und

R¹⁴ für (C₁-C₆)-Alkyl, bevorzugt Methyl und Ethyl, steht,

mit Basen, wie beispielsweise Alkalihydroxide wie Natrium-, Lithium- oder Kaliumhydroxid, oder Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, bevorzugt Natriumhydroxid, in inerten Lösungsmitteln, hierzu gehören Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetra-hydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol oder tert.-Butanol, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Dimethylformamid, Dimethylacetamid, Dimethylsulfoxid, Acetonitril oder Pyridin, oder Gemischen von Lösungsmitteln (als Lösungsmittel sind bevorzugt Tetrahydrofuran und/oder Methanol) bevorzugt in einem Temperaturbereich von 0°C bis Raumtemperatur bei Normaldruck, um:

Die Verbindungen der allgemeinen Formel (Xa) können auch analog zu dem für Verfahren der Verbindungen der allgemeinen Formel (Xaa) beschriebenen Syntheseweg aus den Verbindungen der allgemeinen Formel (XIIIa) hergestellt werden.

Zur Herstellung der Verbindungen der allgemeinen Formel (XIIIaa) setzt man Verbindungen der allgemeinen Formel (XIVa),

in welcher

R¹, R³, R⁴, R⁵ und R¹⁴ die oben angegebene Bedeutung aufweisen,

mit Tetrabutylammoniumfluorid

in inerten Lösungsmitteln, hierzu gehören Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetra-hydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol oder tert.-Butanol, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Nitromethan, Ethylacetat, Aceton, Dimethylformamid, Dimethylacetamid, 2-Butanon, Dimethylsulfoxid, Acetonitril oder Pyridin (als Lösungsmittel ist bevorzugt Tetrahydrofuran) bevorzugt in einem Temperaturbereich von 0°C bis Raumtemperatur bei Normaldruck um.

Zur Herstellung der Verbindungen der allgemeinen Formel (XIVa) setzt man Verbindungen der allgemeinen Formel (XVa),

in welcher

R⁵ die oben angegebene Bedeutung aufweist,

mit Verbindungen der allgemeinen Formel (XVIa),

in welcher

R1, R3, R4 und R14 die oben angegebene Bedeutung aufweisen,

in inerten Lösungsmitteln, hierzu gehören Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Ethylbenzol, Xylol, Toluol, Hexan, Heptan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Dimethylformamid, Dimethylacetamid, Acetonitril oder Pyridin, oder Gemische der Lösungsmittel, als Lösungsmittel sind bevorzugt Diethylether, Tetrahydrofuran, Heptan und/oder Ethylbenzol, gegebenenfalls in Gegenwart einer Base, wie beispielsweise Alkalihydroxide wie Natrium- oder Kaliumhydroxid, oder Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, oder Natrium- oder Kaliummethanolat, oder Natrium- oder Kaliumethanolat oder Kalium-tert.butylat, oder Amide wie Natriumamid, Lithium-bis-(trimethylsilyl)amid, Lithiumdiisopropylamid, oder metallorganische Verbindungen wie Butyllithium oder Phenyllithium, oder andere Basen wie Natriumhydrid, DBU, Triethylamin oder Diisopropylethylamin, bevorzugt Lithiumdiisopropylamid, bevorzugt in einem Temperaturbereich von -78°C bis Raumtemperatur bei Normaldruck, um.

Die Verbindungen der allgemeinen Formel (XVIa) sind bekannt oder lassen sich nach bekannten Verfahren aus den entsprechenden Edukten synthetisieren.

Zur Herstellung der Verbindungen der allgemeinen Formel (XVa) setzt man Verbindungen der allgemeinen Formel (XVIIa),

in welcher

R5 die oben angegebene Bedeutung aufweist,

mit Trimethylsilylcyanid und Zinkiodid

gegebenenfalls in inerten Lösungsmitteln, hierzu gehören Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Trichlorethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol oder tert.-Butanol, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Nitromethan, Ethylacetat, Aceton, Dimethylformamid, Dimethylacetamid, 2-Butanon, Dimethylsulfoxid, Acetonitril oder Pyridin (als Lösungsmittel bevorzugt ist Tetrahydrofuran) bevorzugt in einem Temperaturbereich von Raumtemperatur bis 100°C bei Normaldruck, um.

Die Verbindungen der allgemeinen Formel (XVIIa) sind bekannt oder lassen sich nach bekannten Verfahren aus den entsprechenden Edukten synthetisieren.

Zur Herstellung der Verbindungen der allgemeinen Formel (XIIIa),

$$R^{5} \longrightarrow R^{4} \longrightarrow R^{3} \longrightarrow R^{14}$$
 (XIIIa)

in welcher

 R^1 , R^2 , R^3 , R^4 , R^5 und R^{14} die oben angegebene Bedeutung aufweisen,

setzt man Verbindungen der allgemeinen Formel (XVIIIa),

in welcher

R³, R⁴ und R⁵ die oben angegebene Bedeutung aufweisen,

mit Verbindungen der allgemeinen Formel (XIXa),

$$-35 -$$

$$R^{2} \qquad R^{1} \qquad (XIXa)$$

in welcher

R1, R2 und R14 die oben angegebene Bedeutung aufweisen, und

L³ für Halogen, bevorzugt Brom oder Iod, steht,

in inerten Lösungsmitteln, hierzu gehören Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Ethylbenzol, Xylol, Toluol, als Lösungsmittel sind bevorzugt Tetrahydrofuran oder Toluol, gegebenenfalls in Gegenwart einer Base, wie beispielsweise Amide wie Natriumamid, Lithiumhexamethyldisilazid, Kaliumhexamethyldisilazid, Lithiumdiisopropylamid, oder andere Basen wie Natriumhydrid, DBU oder Diisopropylethylamin, bevorzugt Natriumamid, Lithiumhexamethyldisilazid, Kaliumhexamethyldisilazid oder Lithiumdiisopropylamid, bevorzugt in einem Temperaturbereich von -78°C bis Raumtemperatur bei Normaldruck, um.

Die Verbindungen der allgemeinen Formel (XVIIIa) und (XIXa) sind bekannt oder lassen sich nach bekannten Verfahren aus den entsprechenden Edukten synthetisieren (für (XVIIIa) vgl. M.R. Schneider, H. Ball, J. Med. Chem. 1986, 29, 75-79; Robl, et al., Synthesis 1991, 56; J. Org. Chem. 1996, 61, 607).

In einem alternativen Syntheseweg zur Herstellung der Verbindungen der allgemeinen Formel (IIaaa), welches Verbindungen der allgemeinen Formel (IIaa) sind, in denen

R1 und R2 für Wasserstoff stehen,

setzt man Verbindungen der allgemeinen Formel (XXa),

in welcher

R3, R4, R5 und R14 die oben angegebene Bedeutung aufweisen,

mit Hydrazin um. Die Umsetzung erfolgt analog der ersten Stufe des zweistufigen Verfahrens, das zur Herstellung der Verbindungen der allgemeinen Formel (IIaa) beschieben ist.

Zur Herstellung der Verbindungen der allgemeinen Formel (XXa), setzt man Verbindungen der allgemeinen Formel (XXIa),

$$\begin{array}{c|c}
R^{5} & OR^{14} \\
R^{4} & R^{3} & O
\end{array}$$
(XXIa)

in welcher

R³, R⁴, R⁵ und R¹⁴ die oben angegebene Bedeutung aufweisen,

mit Reduktionsmitteln um. Die Umsetzung erfolgt analog der zweiten Stufe des zweistufigen Verfahrens, das zur Herstellung der Verbindungen der allgemeinen Formel (IIaa) beschieben ist.

Zur Herstellung der Verbindungen der allgemeinen Formel (XXIa), setzt man Verbindungen der allgemeinen Formel (XXIIa),

$$R^{5}$$
 R^{4} R^{3} O OR^{14} O OR^{14} O

in welcher

R³, R⁴, R⁵ und R¹⁴ die oben angegebene Bedeutung aufweisen,

mit rauchender Salpetersäure, konzentrierter Salpetersäure oder Nitriersäure analog des Verfahrens, das zur Herstellung der Verbindungen der allgemeinen Formel (VIIa) beschieben ist, um.

Die Verbindungen der allgemeinen Formel (XXIIa) lassen sich nach dem für die Verbindungen der allgemeinen Formel (XIIIa) beschriebenen Verfahren aus den entsprechenden Edukten synthetisieren.

In einem alternativen Syntheseweg zur Herstellung der Verbindungen der allgemeinen Formel (XXIIIa), setzt man Verbindungen der allgemeinen Formel (XXIIIa),

in welcher

R3, R4, R5 und R14 die oben angegebene Bedeutung aufweisen,

und

R¹⁵ für Allyl oder Benzyl steht,

im Falle von Benzyl mit Reduktionsmitteln um. Die Umsetzung erfolgt analog der zweiten Stufe des zweistufigen Verfahrens, das zur Herstellung der Verbindungen der allgemeinen Formel (IIaa) beschieben ist.

Im Falle von Allyl wird ein Verfahren mit Tetrakistriphenylphosphinpalladium und N,N-Dimethylbarbitursäure verwendet, vergl. F. Garro-Helion, A. Merzouk, F. Guibe, J. Org. Chem. 1993, 58, 6109-6113.

Die Verbindungen der allgemeinen Formel (XXIIIa) lassen sich nach dem für die Verbindungen der allgemeinen Formel (XIIIa) beschreibenen Verfahren aus den entsprechenden Edukten synthetisieren.

Die oben beschriebenen Verfahren können durch die folgenden Formelschemata beispielhaft erläutert werden:

Schema 2:

Schema 3:

WO 2004/060860

Bei Verfahren

setzt man Verbindungen der allgemeinen Formel (IIb), [D]

in welcher

NH₂ über eine der Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist, und

X, R³ und R⁵ die oben angegebene Bedeutung haben,

nrit Verbindungen der Formel (IIIb)

in welcher R² und D die oben angegebene Bedeutung haben, umgesetzt werden.

Die Umsetzung erfolgt in inerten Lösungsmitteln, gegebenenfalls in Gegenwart einer Base, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck.

Inerte Lösungsmittel sind beispielsweise Halogenkohlenwasserstoffe wie Methylenchlorid, Trichlormethan, Tetrachlormethan, Tetrachlorethan, 1,2-Dichlorethan oder Trichlorethylen, Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Ethylacetat, Aceton, Dimethylformamid, Dimethylacetamid, 2-Butanon, Dimethylsulfoxid, Acetonitril oder Pyridin, bevorzugt sind Tetrahydrofuran oder Methylenchlorid.

Basen sind beispielsweise Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, oder Kalium-tert.-butylat, oder andere Basen wie Natriumhydrid, DBU, Triethylamin oder Diisopropylethylamin, bevorzugt sind Diisopropylethylamin und Triethylamin.

Die Verbindungen der Formel (IIIb) sind bekannt oder lassen sich nach bekannten Verfahren aus den entsprechenden Edukten synthetisieren.

Die Verbindungen der Formel (IIab), welche Verbindungen der Formel (IIb) darstellen, worin X für

steht, können hergestellt werden, indem Verbindungen der Formel (IVb)

in welcher

NO₂ über eine der Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist, und

R¹, R³, R⁴ und R⁵ die oben angegebene Bedeutung haben,

reduziert werden, z.B. mit Zinn(II)-chlorid oder Wasserstoff mit Palladium auf Kohle.

Die Umsetzung erfolgt in inerten Lösungsmitteln, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck bis 3 bar.

Inerte Lösungsmittel sind beispielsweise Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol oder tert.-Butanol, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Dimethylformamid, Dimethylacetamid, Acetonitril oder Pyridin, bevorzugt sind Ethanol, iso-Propanol oder im Falle von Zinndichlorid in Dimethylformamid.

Die Verbindungen der Formel (IVb) können hergestellt werden, indem Verbindungen der Formel (Vb)

$$CH_3O$$
 O R^1 R^4 NO_2 $(Vb),$

in welcher

NO2 über eine der Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist, und

R¹, R⁴ und R⁵ die oben angegebene Bedeutung haben,

mit Hydrazin oder einer Verbindung der allgemeinen Formel (VIb),

$$H_2N-N-R^3$$
 (VIb)

in welcher

R³ die oben angegebene Bedeutung aufweist, umgesetzt werden.

Die Umsetzung erfolgt in inerten Lösungsmitteln, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck.

Inerte Lösungsmittel sind beispielsweise Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether, Alkohole wie Methanol, Ethanol, n-Propanol, iso-Propanol, n-Butanol oder tert.-Butanol, Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Dimethylformamid, Dimethylacetamid, Acetonitril oder Pyridin, bevorzugt sind Ethanol oder iso-Propanol.

Die Verbindungen der Formel (VIb) sind bekannt oder lassen sich nach bekannten Verfahren aus den entsprechenden Edukten synthetisieren.

Die Verbindungen der Formel (Vb) können hergestellt werden, indem Verbindungen der Formel (VIIb)

$$\begin{array}{c|c}
CI \\
\hline
R^{5} & 2 \\
\hline
5 & 3
\end{array}$$
(VIIb)

in welcher

NO₂ über eine der Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist, und

R⁵ die oben angegebene Bedeutung hat,

mit Verbindungen der Formel (VIIIb)

$$R^4$$
 OCH₃ (VIIIb), OSi (CH₃)₃

worin R1 und R4 die oben angegebene Bedeutung haben,

in Gegenwart von Bortrifluoretherat umgesetzt werden.

Die Umsetzung erfolgt in inerten Lösungsmitteln, bevorzugt in einem Temperaturbereich von Raumtemperatur bis zum Rückfluss der Lösungsmittel bei Normaldruck.

Inerte Lösungsmittel sind beispielsweise Ether wie Diethylether, Methyl-tert.-butylether, 1,2-Dimethoxyethan, Dioxan, Tetrahydrofuran, Glykoldimethylether oder Diethylenglykoldimethylether,

Kohlenwasserstoffe wie Benzol, Xylol, Toluol, Hexan, Cyclohexan oder Erdölfraktionen, oder andere Lösungsmittel wie Dimethylacetamid, Acetonitril oder Pyridin, bevorzugt ist Diethylether.

Die Verbindungen der Formel (VIIb) sind bekannt oder können analog bekannten Verfahren hergestellt werden.

Die Verbindungen der Formel (VIIIb) sind bekannt oder können analog C. Ainsworth, F. Chen, Y.-N. Kuo, J. Organomet. Chem. 1972, 46, 59-71 hergestellt werden.

Die Verbindungen der Formel (IIbb), welche für Verbindungen der Formel (IIb) stehen, worin X für NR⁶ steht, können hergestellt werden, indem Verbindungen der Formel (IXb)

in welcher

NHC(O)CH3 über eine der Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist, und

R3, R5 und R6 die oben angegebene Bedeutung haben,

in Wasser in Gegenwart einer Base, bevorzugt bei 60°C bis zum Rückfluss des Wassers bei Normaldruck umgesetzt werden.

Basen sind beispielsweise Alkalihydroxide wie Natrium-, Lithium- oder Kaliumhydroxid, Alkalicarbonate wie Cäsiumcarbonat, Natrium- oder Kaliumcarbonat, bevorzugt ist Natriumhydroxid.

Die Verbindungen der Formel (IXb) können hergestellt werden, indem Verbindungen der Formel (Xb)

in welcher

NHC(O)CH₃ über eine der Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist, und R³ und R⁵ die oben angegebene Bedeutung haben,

mit Verbindungen der Formel (XIb)

in welcher R6 die oben angegebene Bedeutung hat,

nach dem für die Herstellung der Verbindungen der Formel (Ib) beschriebenen Verfahren umsetzt.

Die Verbindungen der Formel (XIb) sind bekannt oder können analog bekannten Verfahren hergestellt werden.

Die Verbindungen der Formel (Xb) können hergestellt werden, indem Verbindungen der Formel (XIIb)

in welcher

NHC(O)CH₃ über eine der Positionen 2, 3, 5 oder 6 an den Aromaten gebunden ist, und R⁵ die oben angegebene Bedeutung hat,

mit Verbindungen der Formel (XIIIb)

in welcher R3 die oben angegebene Bedeutung hat,

in einer reduktiven Aminierung nach dem Fachmann für reduktive Aminierungen bekannten Verfahren umgesetzt werden.

Die Verbindungen der Formeln (XIIb) und (XIIIb) sind bekannt oder können analog bekannten Verfahren hergestellt werden.

Die Herstellung der erfindungsgemäßen Verbindungen kann durch die folgenden Syntheseschemata 5-12 verdeutlicht werden.

Syntheseschemata:

Schema 5:

$$R^{5} \longrightarrow CI + H_{3}C \longrightarrow CH_{3} \longrightarrow CH_{3}$$

Schema 7: Alkylierungen der Pyrazolone

$$N = \frac{1}{N}$$
 $N = \frac{1}{N}$
 $N = \frac{1}{N}$

Schema 8: Reaktionen zum Anilin

$$\begin{array}{c} O \\ O \\ O \\ O \\ CH_3 \end{array} + \begin{array}{c} H_2N^{-NH_2} \\ OH_2 \end{array} \qquad \begin{array}{c} Pd/C \\ EtOH \end{array} \qquad \begin{array}{c} H \\ N^{-N} \\ NH_2 \end{array}$$

$$\begin{array}{c|c}
 & H \\
 & N-N \\
 & N-$$

Schema 9: Harnstoffsynthesen

Schema 10: Synthese der Hydrazincarboxamide

$$H_3C$$
 NH
 H_3
 $CI^ H_3C$
 NH
 H_3C
 NH
 H_3C
 NH
 H_3C
 NH
 H_3C
 NH
 H_3C
 NH

Schema 11: Synthese der 3-Aminotriazolone

Schema 12: Harnstoffsynthesen

Weitere erfindungsgemäße Verbindungen, die über den hier offenbarten Mechanismus wirken, sind in den internationalen Patentanmeldungen WO 03/097595 und WO 03/089421 beschrieben.

Die erfindungsgemäßen Verbindungen zeigen ein nicht vorhersehbares, wertvolles pharmakologisches und pharmakokinetisches Wirkspektrum.

Sie eignen sich daher zur Verwendung als Arzneimittel zur Behandlung und/oder Prophylaxe von Krankheiten bei Menschen und Tieren.

Sie zeichnen sich als UL86-Inhibitoren aus.

Die erfindungsgemäßen Verbindungen können aufgrund ihrer pharmakologischen Eigenschaften allein oder in Kombination mit anderen Wirkstoffen zur Behandlung und/oder Prävention von Herpesinfektionen, insbesondere von Infektionen mit dem humanen Cytomegalievirus (HCMV) eingesetzt werden.

Weiterer Gegenstand der vorliegenden Erfindung sind Arzneimittel, die mindestens eine erfindungsgemäße Verbindung, vorzugsweise zusammen mit einem oder mehreren pharmakolo-

gisch unbedenklichen Hilfs- oder Trägerstoffen enthalten, sowie deren Verwendung zu den zuvor genannten Zwecken.

Der Wirkstoff kann systemisch und/oder lokal wirken. Zu diesem Zweck kann er auf geeignete Weise appliziert werden, wie z.B. oral, parenteral, pulmonal, nasal, sublingual, lingual, buccal, rectal, transdermal, conjunctival, otisch oder als Implantat.

Für diese Applikationswege kann der Wirkstoff in geeigneten Applikationsformen verabreicht werden.

Für die orale Applikation eignen sich bekannte, den Wirkstoff schnell und/oder modifiziert abgebende Applikationsformen, wie z.B. Tabletten (nicht überzogene sowie überzogene Tabletten, z.B. mit magensaftresistenten Überzüge versehene Tabletten oder Filmtabletten), Kapseln, Dragees, Granulate, Pellets, Pulver, Emulsionen, Suspensionen, Lösungen und Aerosole.

Die parenterale Applikation kann unter Umgehung eines Resorptionsschrittes geschehen (intravenös, intraarteriell, intrakardial, intraspinal oder intralumbal) oder unter Einschaltung einer Resorption (intramuskulär, subcutan, intracutan, percutan, oder intraperitoneal). Für die parenterale Applikation eignen sich als Applikationsformen u.a. Injektions- und Infusionszubereitungen in Form von Lösungen, Suspensionen, Emulsionen, Lyophilisaten und sterilen Pulvern.

Für die sonstigen Applikationswege eignen sich z.B. Inhalationsarzneiformen (u.a. Pulverinhalatoren, Nebulizer), Nasentropfen / -lösungen, Sprays; lingual, sublingual oder buccal zu applizierende Tabletten oder Kapseln, Suppositorien, Ohren- und Augen-präparationen, Vaginalkapseln, wässrige Suspensionen (Lotionen, Schüttelmixturen), lipophile Suspensionen, Salben, Cremes, Milch, Pasten, Streupuder oder Implantate.

Die Wirkstoffe können in an sich bekannter Weise in die angeführten Applikationsformen überführt werden. Dies geschieht unter Verwendung inerter nichttoxischer, pharmazeutisch geeigneter Hilfsstoffe. Hierzu zählen u.a. Trägerstoffe (z.B. mikrokristalline Cellulose), Lösungsmittel (z.B. flüssige Polyethylenglycole), Emulgatoren (z.B. Natriumdodecylsulfat), Dispergiermittel (z.B. Polyvinylpyrrolidon), synthetische und natürliche Biopolymere (z.B. Albumin), Stabilisatoren (z.B. Antioxidantien wie Ascorbinsäure), Farbstoffe (z.B. anorganische Pigmente wie Eisenoxide) oder Geschmacks- und / oder Geruchskorrigentien.

Im Allgemeinen hat es sich als vorteilhaft erwiesen, bei parenteraler Applikation Mengen von etwa 0.001 bis 10 mg/kg, vorzugsweise etwa 0.01 bis 5 mg/kg Körpergewicht zur Erzielung wirk-

samer Ergebnisse zu verabreichen. Bei oraler Applikation beträgt die Menge etwa 0.01 bis 25 mg/kg, vorzugsweise etwa 0.1 bis 10 mg/kg Körpergewicht.

Trotzdem kann es gegebenenfalls erforderlich sein, von den genannten Mengen abzuweichen, und zwar in Abhängigkeit von Körpergewicht, Applikationsweg, individuellem Verhalten gegenüber dem Wirkstoff, Art der Zubereitung und Zeitpunkt bzw. Intervall, zu welchem die Applikation erfolgt. So kann es in einigen Fällen ausreichend sein, mit weniger als der vorgenannten Mindestmenge auszukommen, während in anderen Fällen die genannte obere Grenze überschritten werden muss. Im Falle der Applikation größerer Mengen kann es empfehlenswert sein, diese in mehreren Einzelgaben über den Tag zu verteilen.

Die Prozentangaben in den folgenden Tests und Beispielen sind, sofern nicht anders angegeben, Gewichtsprozente; Teile sind Gewichtsteile. Lösungsmittelverhältnisse, Verdünnungsverhältnisse und Konzentrationsangaben von flüssig/flüssig-Lösungen beziehen sich jeweils auf das Volumen.

A. Beispiele

Boc Butoxycarbonyl

DC Dünnschichtchromatographie

DCI direkte chemische Ionisation (bei MS)

DCM Dichlormethan

DIEA N,N-Diisopropylethylamin

DMSO Dimethylsulfoxid

DMF Dimethylformamid

d. Th. der Theorie

EE Ethylacetat (Essigsäureethylester)

ESI Elektrospray-Ionisation (bei MS)

Fp. Schmelzpunkt

h Stunde

HPLC Hochdruck-, Hochleistungsflüssigchromatographie

LC-MS Flüssigchromatographie-gekoppelte Massenspektroskopie

MS Massenspektroskopie

moi Multiplicity of infection

NMR Kernresonanzspektroskopie

RP-HPLC Reverse Phase HPLC

RT Raumtemperatur

R_f Retentions index (bei DC)

R_t Retentionszeit (bei HPLC)

SI Selektivitätsindex

THF Tetrahydrofuran

HPLC- und LCMS-Methoden:

Methode 1 (LCMS): Instrument: Micromass Quattro LCZ, HP1100; Säule: Symmetry C18, 50 mm x 2.1 mm, 3.5 μm; Eluent A: Acetonitril + 0.1% Ameisensäure, Eluent B: Wasser + 0.1% Ameisensäure; Gradient: 0.0min 10%A → 4.0min 90%A → 6.0min 90%A; Ofen: 40°C; Fluss: 0.5ml/min; UV-Detektion: 208-400 nm.

Methode 2 (HPLC): Instrument: Finnigan MAT 900S, TSP: P4000,AS3000, UV3000HR; Säule: Symmetry C 18, 150 mm x 2.1 mm, 5.0 μm; Eluent C: Wasser, Eluent B: Wasser + 0.3g 35%ige Salzsäure, Eluent A: Acetonitril; Gradient: 0.0min 2%A → 2.5min 95%A → 5min 95%A; Ofen: 70 °C; Fluss: 1.2ml/min; UV-Detektion: 210 nm.

Methode 3: Säule: Kromasil C18 60*2, L-R Temperatur: 30°C, Fluss = 0.75 mlmin⁻¹, Eluent: A = 0.005 M HClO₄, B = Acetonitril, Gradient: \rightarrow 0.5 min 98 %A \rightarrow 4.5 min 10 %A \rightarrow 6.5 min 10 %A

Ausgangsverbindungen

Allgemeine Arbeitsvorschrift [A]:

Synthese von TMS-Cyanhydrinen

Unter einer Argonatmosphäre werden in einem ausgeheizten 100 ml Dreihalskolben 55 mmol Trimethylsilylcyanid mit einer Spatelspitze wasserfreiem Zinkiodid versetzt. Bei RT werden 50 mmol der flüssigen Aldehyde langsam (exotherme Reaktion) zugetropft (feste Aldehyde werden bei 60°C als Feststoff portionsweise zugegeben). Die erhaltene braune Reaktionsmischung wird für 7-8 Stunden auf 95°C erwärmt. Danach wird das Produkt im Hochvakuum mit Hilfe eines Kugelrohrofens destilliert. Die dabei erhaltenen farblosen oder leicht gelben Flüssigkeiten werden ohne weitere Reinigung für die nächsten Umsetzungen verwendet.

Nach dieser Vorschrift wird folgende Verbindung hergestellt :

Beispiel 1A

Phenyl[(trimethylsilyl)oxy]acetonitril

Ausgehend von 5.63 g (55 mmol) Trimethylsilylcyanid werden mit 5.31 g (50 mmol) Benzaldehyd 8.80 g (86% d. Th.) Produkt erhalten.

HPLC (Methode 3): $R_t = 3.38 \text{ min}$

MS (DCI): $m/z = 223 (M+NH_4)^{+}$

Allgemeine Arbeitsvorschrift [B]:

Umsetzung von TMS-Cyanhydrinen mit 3-Methyl-2-butensäuremethylester

1 eq. des entsprechenden TMS-Cyanhydrins wird in einem ausgeheizten 250 ml Dreihalskolben unter Argon in absolutem Diethylether gelöst und die erhaltene Lösung auf –78°C abgekühlt. Dazu werden 1.05 eq. 2 M LDA-Lösung in THF/Heptan/Ethylbenzol innerhalb von 30 min zugetropft. Man lässt noch 30 min bei dieser Temperatur rühren bevor 1 eq. 3-Methyl-2-butensäuremethylester, gelöst in wenig absolutem Diethylether, zugetropft wird. Innerhalb von 5 Stunden lässt man auf 0°C bis 10°C erwärmen. Daraufhin wird gesättigte Ammoniumchloridlösung zugegeben und 10 min gerührt. Die Phasen werden getrennt und die etherische Phase noch 2x mit gesättigter Ammoniumchloridlösung gewaschen. Nach Trocknung über Magnesiumsulfat und Filtration wird das Lösungsmittel am Rotationsverdampfer entfernt und man erhält das Produkt, das ohne weitere Reinigung für den nächsten Syntheseschritt eingesetzt wird.

Nach dieser Vorschrift wird folgende Verbindung hergestellt:

Beispiel 2A

WO 2004/060860

4-Cyano-3,3-dimethyl-4-phenyl-4-[(trimethylsilyl)oxy]butansäuremethylester

Ausgehend von 8.80 g (43 mmol) Phenyl[(trimethylsilyl)oxy]acetonitril werden, nach Deprotonierung mit 22.5 ml 2 M LDA-Lösung, mit 5.04 g (43 mmol) 3-Methyl-2-butensäuremethylester 13.69 g (67% d. Th.) der Titelverbindung als Rohprodukt erhalten.

HPLC (Methode 3): $R_t = 5.53 \text{ min}$

MS (DCI): $m/z = 337 (M+NH_4)^+$

Allgemeine Arbeitsvorschrift [C]:

Desilylierung mit Hilfe von TBAF

1 eq. der Butansäuremethylesterderivate wird unter einer Argonatmosphäre in absolutem THF (0.25 M) gelöst und auf 0°C abgekühlt. Bei dieser Temperatur werden 1.1 eq. einer 1 M TBAF-Lösung in THF langsam zugetropft. Man lässt noch 3 Stunden rühren, gibt dann Wasser zu und extrahiert 3x mit Dichlormethan. Nach Trocknung über Magnesiumsulfat, Filtration und Entfernung des Lösungsmittels wird säulenchromatographisch (Kieselgel: Laufmittel Cyclohexan/Ethylacetat = 85:15) oder mittels Kugelrohrdestillation gereinigt.

Nach dieser Vorschrift wird folgende Verbindung hergestellt:

Beispiel 3A

3,3-Dimethyl-4-oxo-4-phenylbutansäuremethylester

Ausgehend von 13.44 g (42 mmol) 4-Cyano-3,3-dimethyl-4-phenyl-4-[(trimethylsilyl)oxy]-butansäuremethylester werden mit 46.3 ml (46.3 mmol) einer 1 M TBAF-Lösung 6.54 g (62 % d. Th.) der Titelverbindung als Rohprodukt erhalten.

HPLC (Methode 3): $R_1 = 4.25 \text{ min}$

MS (DCI): $m/z = 238 (M+NH_4)^{+}$

Alternative Synthesemethode:

48.4 ml (24.20 mmol; 0.5 M Lösung in Toluol) Kaliumhexamethyldisilazid werden in 30 ml Tetrahydrofuran gelöst und bei –78°C mit 3.26 g (22 mmol) Isobutyrophenon in 10 ml Tetrahydrofuran versetzt. Nach 2 Stunden werden 4.04 g (26.40 mmol) Bromessigsäuremethylester dazugegeben. Nach weiteren 2 Stunden wird mit 50 ml 1N Salzsäure versetzt. Anschließend wird mit Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden mit Wasser und gesättigter Natriumchlorid-Lösung gewaschen, mit Magnesiumsulfat getrocknet und das Lösungsmittel entfernt. Nach präparativer Normal-Phasen-HPLC (Säule: Kieselgel, Fluss: 150ml/min, Eluent: iso-Hexan/Essigsäureethylester = 9:1) erhält man die Zielverbindung in einer Ausbeute von 26 %.

HPLC (Methode 3) $R_t = 4.60 \text{ min}$

MS (DCI/NH₃): $m/z = 238 (M+NH_4)^+$

Allgemeine Arbeitsvorschrift [D]:

Esterverseifung

Der zu verseifende Ester wird in einem THF/Methanol-Gemisch (1:1) gelöst und die Lösung auf 0°C abgekühlt. Bei dieser Temperatur werden 2 eq. 1 N Natronlauge langsam zugetropft. Nach beendeter Reaktion (Reaktionskontrolle mittels DC) werden jeweils gleiche Anteile einer 1N Natronlauge und Dichlormethan zugegeben. Die organische Phase wird zweimal mit 1 N Natronlauge extrahiert. Anschließend werden die vereinigten wässrigen Phasen mit konzentrierter Salzsäure angesäuert und das Produkt dreimal mit Dichlormethan extrahiert. Nach Trocknung über Natriumsulfat, Filtration und Verdampfen des Lösungsmittels wird das Produkt erhalten und ohne weitere Aufreinigung für den nächsten Syntheseschritt verwendet.

Nach dieser Vorschrift wird folgende Verbindung hergestellt:

Beispiel 4A

5-Hydroxy-4,4-dimethyl-5-phenyldihydro-2(3H)-furanon

Ausgehend von 6.52 g (29.6 mmol) 3,3-Dimethyl-4-oxo-4-phenylbutansäuremethylester werden 5.20 g (83% d. Th.) Produkt erhalten.

HPLC (Methode 3): R_t = 3.88 min

MS (DCI): $m/z = 224 (M+NH_4)^{+}$

Beispiel 5A

5-Hydroxy-4,4-dimethyl-5-(3-nitrophenyl)dihydro-2(3*H*)-furanon und 5-Hydroxy-4,4-dimethyl-5-(4-nitrophenyl)dihydro-2(3*H*)-furanon

Rauchende Salpetersäure (12 ml) wird in einem Kolben unter Argon auf -15°C abgekühlt. Bei dieser Temperatur werden 5 g (24.5 mmol) 5-Hydroxy-4,4-dimethyl-5-phenyldihydro-2(3*H*)-furanon als Feststoff portionsweise zugegeben. Es wird noch eine halbe Stunde bei -15°C nachgerührt, dann auf Eis gegossen und dreimal mit Dichlormethan extrahiert. Die vereinigten Extrakte werden über Magnesiumsulfat getrocknet. Reinigung erfolgt mittels Säulenchromatographie (Dichlormethan-Methanol 97:3). Es werden 6.23 g eines Produktgemisches der Titelverbindungen als Rohprodukt erhalten.

HPLC (Methode 3): $R_t = 4.06 \text{ min}$

MS (DCI): $m/z = 269 (M+NH_4)^+$

Beispiel 6A

6-(3-Aminophenyl)-5,5-dimethyl-4,5-dihydro-3(2*H*)-pyridazinon und 6-(4-Aminophenyl)-5,5-dimethyl-4,5-dihydro-3(2*H*)-pyridazinon

2.98 g (11.9 mmol) eines Gemisches aus 5-Hydroxy-4,4-dimethyl-5-(3-nitrophenyl)dihydro-2(3H)-furanon und 5-Hydroxy-4,4-dimethyl-5-(4-nitrophenyl)dihydro-2(3H)-furanon werden in 40 ml Ethanol bei RT gelöst und mit 8.91 g (178 mmol) Hydrazinmonohydrat versetzt. Daraufhin werden 300 mg Palladium/Kohle (10 Gew.-%) zugegeben und die Reaktionsmischung 20 Stunden zum Rückfluss erhitzt. Anschließend wird heiß über Celite filtriert, mit heißem Ethanol nachgewaschen und zur Trockene eingeengt. Aus Ethanol wird kristallisiert. Man erhält 1.09 g (34 % d. Th.) eines Produktgemisches mit 80 % meta- und 20 % para-Produkt. Erneute Kristallisation aus der Mutterlauge ergibt 1.03 g (30 % d. Th.) eines Produktgemisches mit 74 % para- und 26 % meta-Produkt. Die beiden Fraktionen werden vereinigt und an einer präparativen HPLC (Methode 12) in das para- und meta-Produkt getrennt.

HPLC (Methode 3): $R_t = 2.53 \text{ min (para)}$, bzw. 2.83 min (meta)

MS (EI): $m/z = 217 (M)^{+}$

Beispiel 7A

4-(2-Cyano-5-nitrophenyl)-3,3-dimethyl-4-oxobutansäure

Die Herstellung von 4-(2-Cyano-5-nitrophenyl)-3,3-dimethyl-4-oxobutansäure erfolgt aus 4-(2-Fluor-5-nitrophenyl)-3,3-dimethyl-4-oxobutansäure in Anlehnung an die Literatur *Heterocycles* 1987, 26, 1227 und *Synth. Commun.* 1985, 15, 479.

Beispiel 8A

6-(2-Hydroxy-5-nitrophenyl)-5,5-dimethyl-4,5-dihydro-3(2H)-pyridazinon

In 400 ml Ethanol werden 26.00 g (94.12 mmol) 4-(2-Cyano-5-nitrophenyl)-3,3-dimethyl-4-oxobutansäure gelöst und unter Rückfluss 47.12 g (941.19 mmol) Hydrazinhydrat zugetropft. Es wird 5 h in der Siedehitze gerührt und anschließend die Lösung bis auf 100 ml eingeengt. Der Rückstand wird mit Wasser versetzt und das Volumen auf 200 ml eingeengt. Anschließend werden die Kristalle abgesaugt und mit Wasser und Diethylether gewaschen. Nach Trocknen im Vakuum werden 20.03 g (81 % d. Th.) Produkt erhalten.

HPLC (Methode 3): $R_t = 3.50 \text{ min}$

MS (DCI/NH₃): $m/z = 281 (M+NH_4)^{+}$.

Beispiel 9A

6-(5-Amino-2-hydroxyphenyl)-5,5-dimethyl-4,5-dihydro-3(2H)-pyridazinon

In 150 ml Ethanol werden 3.00 g (11.40 mmol) 6-(2-Hydroxy-5-nitrophenyl)-5,5-dimethyl-4,5-dihydro-3(2H)-pyridazinon gelöst und mit 0.30 g Palladium/Kohle (10 %) versetzt. In der Siede-

hitze werden 5.70 g (113.96 mmol) Hydrazinhydrat zugetropft. Nach 18 h Rühren unter Rückfluss wird das Lösungsmittel entfernt und der ölige Rückstand aus Diethylether kristallisiert. Es wird mit Wasser verrührt und die Kristalle abgesaugt. Nach Waschen mit Diethylether wird im Vakuum getrocknet. Es werden 1.84 g (69 % d. Th.) Produkt erhalten.

HPLC (Methode 3): $R_t = 2.30 \text{ min}$

MS (ESI pos): $m/z = 234 (M+H)^{+}$.

Beispiel 10A

tert-Butyl 4-({[(3-chlor-4-fluorphenyl)amino]carbonyl}amino)phenylcarbamat

Zu einer mit Argon überschichteten, Suspension von 2.70 g (12.96 mmol) 4-(tert- Butoxy-carbonyl-amino)anilin in 50ml Dichlormethan werden bei RT 2.34 g (13.61 mmol) 3-Chlor-4-fluorphenylisocyanat zugegeben. Es fällt sofort ein Niederschlag aus. Nachträglich werden noch 20 ml Dichlormethan zugegeben.

Nach einer Rührzeit von 30 min (DC1 Cyclohexan/Ethylacetat 1:1) wird der Niederschlag abgesaugt und mit Pentan gewaschen (DC2 Cyclohexan/Ethylacetat 1:1). Das Produkt wird bei 50°C am Rotationsverdampfer vorgetrocknet, bevor es im Hochvakuum getrocknet wird.

Man erhält 4.5g (90% d. Th.) Produkt.

R_f-Wert (Cyclohexan/Ethylacetat 1:1): 0.42

HPLC (Methode 1): $R_t = 4.43 \text{ min}$

Beispiel 11A

N-(4-Aminophenyl)-N'-(3-chlor-4-fluorphenyl)harnstoff

Eine Suspension von 4.53 g (11.93 mmol) Beispiel 10A in 50 ml 4N Chlorwasserstoff/Dioxan wird 2h unter Argon bei RT gerührt (DC1 Dichlormethan/Methanol 100:5). Der entstehende Niederschlag wird abgesaugt, mit Dioxan und Diethylether gewaschen (DC2 Dichlormethan/Methanol/Ammoniak 9:1:0.1). Das Produkt wird bei 50°C vorgetrocknet, bevor es im Hochvakuum getrocknet wird.

Man erhält 3.5g (quant.) Produkt.

R_f Wert (Dichlormethan/Methanol/Ammoniak 9:1:0.1): 0.59

HPLC (Methode 1): $R_t = 2.56min$

Beispiel 12A

tert-Butyl 3-({[(3-chlor-4-fluorphenyl)amino]carbonyl}amino)phenylcarbamat

Zu einer Lösung von 3.00 g (14.41 mmol) 3-(tert-Butoxycarbonyl-amino)anilin in 50 ml Dichlormethan wird 2.59 g (15.13 mmol) 3-Chlor-4-fluorphenylisocyanat zugegeben. Es fällt nach wenigen Minuten ein Niederschlag aus. Es wird noch 2h bei RT gerührt (DC1 Cyclohexan/Ethylacetat 1:1).

Der Niederschlag wird abgesaugt, mit Dichlormethan und Diisopropylether gewaschen (DC2 Cyclohexan/Ethylacetat 1:1) und im Hochvakuum getrocknet.

R_FWert (Cyclohexan/Ethylacetat 1:1): 0.63

HPLC (Methode 2): $R_t = 2.95min$

Beispiel 13A

N-(3-Aminophenyl)-N'-(3-chlor-4-fluorphenyl)harnstoff

Eine Suspension von 5.00 g (13.16 mmol) Beispiel 12A in 100ml 4N Chlorwasserstoff/Dioxan wird 17h bei RT gerührt (DC1 Dichlormethan/Methanol 100:5). Der Feststoff wird abgesaugt, mit Dioxan und Diethylether gewaschen (DC2 Dichlormethan/Methanol 100:5) und im Hochvakuum 2 Tage getrocknet.

Man erhält 4.6g (quant.) Produkt.

Rr-Wert (Dichlormethan/Methanol 100:5): 0.14

HPLC (Methode 1): $R_t = 3.01min$

Allgemeine Arbeitsvorschrift [E]:

Synthese von β-Ketoestern (analog Vorschrift von M. H. Stefaniak, F. Tinardon, J. D. Wallis, Synlett 1997, 677-678).

Unter einer Argonatmosphäre werden in einem ausgeheizten 500 ml Dreihalskolben 1 Äquivalent des entsprechend substituierten 3-Nitrobenzoesäurechlorids in absolutem Diethylether (0.25 M Lösung) gelöst und mit 1 Äquivalent 1-Methoxy-2-methyl-1-trimethylsiloxypropen (C. Ainsworth, F. Chen, Y.-N. Kuo, J. Organomet. Chem. 1972, 46, 59-71) versetzt. Nach Zugabe von einem Äquivalent (gegebenenfalls 3 Äquivalenten) Bortrifluorid-Diethylether-Komplex wird 24 Stunden zum Rückfluss erhitzt. Nach Erkalten der Reaktionsmischung wird jeweils einmal mit 1N Natronlauge, Wasser und gesättigter Kochsalzlösung gewaschen. Die organische Phase wird über Magnesiumsulfat getrocknet. Nach Filtration und Entfernung des Lösungsmittels erfolgt säulenchromatographische Reinigung des Rohproduktes (Kieselgel: Cyclohexan-Essigsäure-ethylester 9:1).

Beispiel 14A

2,2-Dimethyl-3-(3-nitrophenyl)-3-oxopropansäuremethylester

Ausgehend von 10 g (53.9 mmol) 3-Nitrobenzoesäurechlorid werden mit 9.40 g (53.9 mmol) 1-Methoxy-2-methyl-1-trimethylsiloxypropen und 7.65 g (53.9 mmol) Bortrifluorid-Diethylether-Komplex 4.93 g (25 % d. Th) Produkt erhalten.

HPLC (Methode 3): $R_t = 4.49 \text{ min}$

MS (DCI): $m/z = 269 (M+NH_4)^{+}$

Allgemeine Arbeitsvorschrift [F]: Pyrazolonsynthesen

1 Äquivalent des β-Ketoesters wird zusammen mit 5 Äquivalenten Hydrazinhydrat in Ethanol (0.23 M Lösung) für 4 Stunden zum Rückfluss erhitzt. Dabei fällt das Reaktionsprodukt entweder aus der Reaktionsmischung aus oder wird nach Entfernung eines Teils des Lösungsmittels mit Wasser und Cyclohexan ausgefällt. Der Niederschlag wird abgesaugt, mit Diethylether gewaschen und dann im Vakuum getrocknet.

Beispiel 15A

4,4-Dimethyl-5-(3-nitrophenyl)-2,4-dihydro-3*H*-pyrazol-3-on

Ausgehend von 8.53 g (34 mmol) 2,2-Dimethyl-3-(3-nitrophenyl)-3-oxopropansäure-methylester werden mit 8.50 g (170 mmol) Hydrazinhydrat 6.63 g (83 % d. Th.) Produkt erhalten.

Fp.: 164.6°C

HPLC (Methode 3): $R_t = 3.99 \text{ min}$

MS (DCI): $m/z = 251 (M+NH_4)^{+}$

Allgemeine Arbeitsvorschrift [G]: Katalytische Hydrierung der Nitrogruppe am Aromaten

20 mmol der zu hydrierenden Substanz werden in 100 ml entgastem Methanol gelöst und dann unter Argon mit 250 mg Palladium auf Aktivkohle versetzt. Unter einer Wasserstoffatmosphäre (Normaldruck) wird so lange hydriert bis DC-Kontrolle vollständigen Umsatz anzeigt. Danach wird über Kieselgur abgesaugt, das Filtrat eingeengt, der Rückstand im Vakuum getrocknet und ohne weitere Reinigung weiterverarbeitet.

Beispiel 16A

4,4-Dimethyl-5-(3-aminophenyl)-2,4-dihydro-3H-pyrazol-3-on

Ausgehend von 4.60 g (19.2 mmol) 4,4-Dimethyl-5-(3-nitrophenyl)-2,4-dihydro-3*H*-pyrazol-3-on werden 3.66 g (91 % d. Th.) Produkt erhalten.

HPLC (Methode 3): $R_t = 3.04 \text{ min}$

MS (ESIpos): $m/z = 204 (M+H)^{+}$

Allgemeine Arbeitsvorschrift [H]: Synthese der Hydrazincarboxamide

1 Äquivalent von 2-[3-(Acetylamino)benzoyl]hydraziniumchlorid wird in Dichlormethan vorgelegt (0.15 M Lösung) und zusammen mit 2 Äquivalenten Diisopropylethylamin und 1 Äquivalent des entsprechenden Isocyanates 16 Stunden bei Raumtemperatur gerührt. Der entstandene Niederschlag wird abgesaugt, mit Diethylether gewaschen und im Vakuum getrocknet. Das Rohprodukt wird daraufhin direkt weiter umgesetzt.

Beispiel 17A

WO 2004/060860

2-[3-(Acetylamino)benzoyl]-N-isopropylhydrazincarboxamid

7.00 g (30.48 mmol) 2-[3-(Acetylamino)benzoyl]hydraziniumchlorid werden mit 7.88 g (60.96 mmol) Diisopropylethylamin und 2.59 g (30.48 mmol) Isopropylisocyanat umgesetzt. Das Rohprodukt wird daraufhin direkt weiter umgesetzt.

HPLC (Methode 3): $R_t = 2.95 \text{ min}$

Beispiel 18A

2-[3-(Acetylamino)benzoyl]-N-cyclohexylhydrazincarboxamid

7.00 g (30.48 mmol) 2-[3-(Acetylamino)benzoyl]hydraziniumchlorid werden mit 7.88 g (60.96 mmol) Diisopropylethylamin und 3.82 g (30.48 mmol) Cyclohexylisocyanat umgesetzt. Das Rohprodukt wird daraufhin direkt weiter umgesetzt.

HPLC (Methode 3): $R_t = 3.46 \text{ min}$

Allgemeine Arbeitvorschrift [1]: Synthese der 3-Aminotriazolone

1 Äquivalent des entsprechenden Hydrazincarboxamids wird in 1 N Natronlauge gelöst (0.16 M Lösung) und mit 6.15 Äquivalenten Natriumhydroxid versetzt. Man lässt 48 Stunden bei 100°C

rühren. Die Reaktionslösung wird mit Salzsäure auf pH 7 eingestellt, der entstandene Niederschlag wird abgesaugt, mit Wasser gewaschen und im Vakuum getrocknet.

Beispiel 19A

5-(3-Aminophenyl)-4-isopropyl-2,4-dihydro-3H-1,2,4-triazol-3-on

Ausgehend von 6.06 g (32.55 mmol) 2-[3-(Acetylamino)benzoyl]-N-isopropyl-hydrazincarboxamid (roh) und 8.00 g (200.02 mmol) Natriumhydroxid in 200 ml 1 N Natronlauge werden 2.81 g (40 % d. Th.) Produkt erhalten.

HPLC (Methode 3): $R_t = 2.76 \text{ min}$

Beispiel 20A

5-(3-Aminophenyl)-4-cyclohexyl-2,4-dihydro-3H-1,2,4-triazol-3-on

Ausgehend von 7.43 g (32.55 mmol) 2-[3-(Acetylamino)benzoyl]-N-cyclohexyl-hydrazincarboxamid (roh) und 8.00 g (200.02 mmol) Natriumhydroxid in 200 ml 1 N Natronlauge werden 5.59 g (66 % d. Th.) Produkt erhalten.

HPLC (Methode 3): $R_t = 3.31 \text{ min}$

Beschreibung der Abbildung

Fig. 1: Fig. 1 zeigt die Aminosäuresequenz des Wildtyp HCMV UL86 Proteins (Acc.-No. P16729, SEQ ID NO: 1)

Ausführungsbeispiele

Beispiel 1

N-(2,4-Difluor phenyl)-N-[3-(4,4-dimethyl-6-oxo-1,4,5,6-tetra hydro-3-pyridazinyl) phenyl] harmstoff

Bei Raumtemperatur werden 50 mg (0.23 mmol) 6-(3-Aminophenyl)-5,5-dimethyl-4,5-dihydro-3(2H)-pyridazinon mit 2 ml abs. THF versetzt und anschließend werden 71.4 mg (0.46 mmol) 2,4-Difluorphenylisocyanat zugegeben. Anfangs löst sich das 6-(3-Aminophenyl)-5,5-dimethyl-4,5-dihydro-3(2H)-pyridazinon nicht vollständig. Erst nach Zugabe des Isocyanates erhält man nach kurzer Zeit eine klare gelbe Lösung, aus der jedoch rasch ein weißer Niederschlag ausfällt. Man lässt über Nacht rühren und filtriert dann den Niederschlag ab. Mit Diethylether wird nachgewaschen und der weiße Feststoff im Vakuum getrocknet. Es werden 46.4 mg (54 % d. Th.) Produkt erhalten.

Fp.: 213°C

¹H-NMR (200 MHz, DMSO): δ = 1.16 (s, 6H), 2.35 (s, 2H), 6.97-7.11 (m, 2H), 7.25-7.39 (m, 3H), 7.65 (s, 1H), 7.99-8.17 (m, 1H), 8.50 (s, br 1H), 9.12 (s, br 1 H), 10.99 (s, 1H).

HPLC (Methode 3): $R_t = 4.12 \text{ min}$

MS (ESIpos): $m/z = 373 (M+H)^{+}$

Beispiel 2

N-(2,5-Difluorphenyl)-N'-[3-(4,4-dimethyl-6-oxo-1,4,5,6-tetrahydro-3-pyridazinyl)-4-hydroxyphenyl]harnstoff

Die Synthese erfolgt analog zu Beispiel 1 aus den entsprechenden Edukten.

HPLC (Methode 3): $R_t = 4.00 \text{ min}$

MS (ESIpos): $m/z = 389 (M+H)^{+}$

Beispiel 3

N-[4-({[(3-Chlor-4-fluorphenyl)amino]carbonyl}amino)phenyl]acetamid

Die Verbindung ist bei der Firma Salor (Deisenhofen, Deutschland, Art.-Nr. S90,580-1) käuflich zu erwerben.

Beispiel 4

N-[4-({[(3-Chlor-4-fluorphenyl)amino]carbonyl}amino)phenyl]pentanamid

$$H_3C$$

O

N

N

N

CI

Zu einer Lösung von 100.0 mg (0.358 mmol) Beispiel 11A in 5 ml DMF werden 70.7 mg (0.894 mmol) Pyridin und 64.7 mg (0.536 mmol) Pentanoylchlorid zugegeben. Es wird 18h bei RT gerührt. Nach Zugabe von Wasser fällt ein weißer Niederschlag aus, der abgesaugt und mit Wasser

und Pentan gewaschen wird. Das Produkt wird im Hochvakuum getrocknet. Man erhält 62 mg (80% d. Th.) Produkt.

R_f (Cyclohexan/Ethylacetat 1:3): 0.44

HPLC (Methode 2): $R_t = 2.61 \text{ min}$

¹H-NMR (300MHz, d₆-DMSO): δ = 9.72 (s, 1H, NH), 8.79 (s, 1H, NH), 8.62 (s, 1H, NH), 7.83-7.74 (m, 1H, C₆H₃ClF), 7.55-7.32 (m, 4H, p-C₆H₄), 7.32-7.25 (m, 2H, C₆H₃ClF), 2.27 (t, 2H, CH₂), 1.58 (q, 2H, CH₂), 1.32 (sext, 2H, CH₂), 0.90 (t, 3H, CH₃).

Beispiel 5

N-[3-({[(3-Chlor-4-fluorphenyl)amino]carbonyl}amino)phenyl]-1-butansulfonamid

Zu einer Lösung von 200.0 mg (0.715 mmol) Beispiel 13A in einem Gemisch aus 2 ml DMF und 5 ml THF werden 169.7 mg (2.145 mmol) Pyridin und 168.0 mg (1.073 mmol) 1-Butansulfonylchlorid zugegeben. Es wird über Nacht bei RT gerührt. Nach Zugabe von Wasser fällt kein Niederschlag aus. Die Mischung wird im Vakuum eingeengt. Das Produkt wird über HPLC gereinigt (RP18-Säule; Laufmittel: Acetonitril-Wasser, Gradient 15:85->85:15). Man erhält 51 mg (18% d. Th.) Produkt.

R_f (Cyclohexan/Ethylacetat 1:2): 0.51

HPLC (Methode 1): $R_t = 4.28 \text{ min}$

¹H-NMR (300MHz, d₆-DMSO): δ = 9.74 (s, 1H, NH), 8.85 (s, 1H, NH), 8.78 (s, 1H, NH), 7.83-7.76 (m, 1H, C₆H₃CIF), 7.38-7.27 (m, 3H, m-C₆H₄, C₆H₃CIF), 7.24-7.18 (m, 2H, m-C₆H₄), 6.87-6.78 (m, 1H, m-C₆H₄), 3.08 (t, 2H, CH₂); 1.65 (q, 2H, CH₂), 1.35 (sext, 2H, CH₂), 0.83 (t, 3H, CH₃).

Allgemeine Arbeitsvorschrift [J]: Harnstoffe

1 Äquivalent des Anilins wird in THF vorgelegt (0.14 M Lösung) und mit 1 Äquivalent des entsprechenden Isocyanates versetzt. Die Lösung wird 1 Stunde bei Raumtemperatur geschüttelt.

Das Lösungsmittel wird im Vakuum entfernt und das Produkt mittels präparativer HPLC gereinigt (CromSil C 18, 250x30, Fluss: 50 ml/min, Laufzeit: 38 min, Detektion bei 210 nm, Gradient: 10% Acetonitril (3 min)->90 % Acetonitril (31 min)->90 % Acetonitril (34 min)->10 % Acetonitril (34.01 min)).

Die Beispiele 6 und 7 können nach der allgemeinen Synthesemethode [J] hergestellt werden.

Beispiel	Struktur	Molekular-	MS	HPLC	HPLC-
		gewicht	(ESI+)	R _t [min]	Methode
			m/z		
6	H ₃ C H H ₃ C CI H H H	389.82	390	4.25	3
7	O H N N N N N CI H H	429.88	430	4.61	3

Beispiel 8

N-(4-Chlor-2-methylphenyl)-N'-[3-(4,4-dimethyl-5-oxo-4,5-dihydro-1*H*-pyrazol-3-yl)phenyl]harnstoff

46.2 mg (0.28 mmol) 4-Chlor-2-methylphenylisocyanat werden mit einer Lösung von 40 mg 5-(3-Aminophenyl)-4,4-dimethyl-2,4-dihydro-3*H*-pyrazol-3-on in 1 ml Essigsäureethylester und 0.2 ml

Tetrahydrofuran versetzt und über Nacht bei Raumtemperatur gerührt. Dabei beobachtet man die Bildung eines weißen Niederschlags.

Aufarbeitung: Die Reaktionsmischung wird eingeengt und der erhaltene Rückstand nach Aufnahme in DMSO mittels RP-HPLC gereinigt. So erhält man 42 mg (58 % d.Th.) Produkt.

Fp.: 226.8°C

HPLC (Methode 3): $R_t = 4.33 \text{ min}$

MS (ESIpos): $m/z = 371 (M+H)^{+}$

¹H-NMR (200 MHz, DMSO): $\delta = 1.37$ (s, 6H), 2.25 (s, 3H), 7.21 (dd, 1H), 7.28 (d, 1H), 7.35-7.46 (m, 3H), 7.88 (d, 1H), 8.02 (s br, 1H), 8.11 (s br, 1H), 9.23 (s br, 1H), 11.54 (s br, 1H)

B. Bewertung der physiologischen Wirksamkeit

Die *in vitro*-Wirkung der erfindungsgemäßen Verbindungen kann im folgenden Assay gezeigt werden:

Virusanzucht:

Humanes Cytomegalievirus (HCMV), Stamm DavisSmith (ATCC VR807) oder AD169 (ATCC VR538), wird *in vitro* auf humanen embryonalen Vorhautfibroblasten (NHDF-Zellen) angezüchtet. Nach Infektion der NHDF-Zellen mit einer Multiplizität der Infektion (M.O.I) von 0,01 werden die virusinfizierten Zellen 5-10 Tage später geerntet und in Gegenwart von Minimal Essential Medium (MEM), 10 % foetalem Kälberserum (FKS) mit 10 % DMSO bei -80°C aufbewahrt. Zur Herstellung eines zellfreien Stocks wird nur der Zellkulturüberstand abgenommen und direkt bei -80°C eingefroren. Nach serieller Verdünnung der virusinfizierten Zellen oder des Zellkulturüberstandes der virusinfizierten Zellen (zellfreies Virus) in Zehnerschritten erfolgt die Titerbestimmung auf 24-Well-Platten konfluenter NHDF-Zellen nach Vitalfärbung mit Neutralrot.

Anti-HCMV- (Anti-Humanes Cytomegalo-Virus) Zytopathogenitätstests

Die Testverbindungen werden als 50 millimolare (mM) Lösungen in Dimethysulfoxid (DMSO) eingesetzt. Ganciclovir[®], Foscarnet[®] und Cidofovir[®] dienen als Referenzverbindungen. Nach der Zugabe von jeweils 2 μl der 50, 5, 0,5 und 0,05 mM DMSO-Stammlösungen zu je 98 μl Zellkulturmedium in der Reihe 2 A-H in Doppelbestimmung werden 1:2-Verdünnungen mit je 50 μl Medium bis zur Reihe 11 der 96-Well-Platte durchgeführt. Die Wells in den Reihen 1 und 12 enthalten je 50 μl Medium. In die Wells werden dann je 150 μl einer Suspension von 1 x 10⁴

Zellen (humane Vorhautfibroblasten [NHDF]) pipettiert (Reihe 1 = Zellkontrolle) bzw. in die Reihen 2-12 ein Gemisch von HCMV-infizierten und nichtinfizierten NHDF-Zellen (M.O.I. = 0,001 - 0,002), d.h. 1-2 infizierte Zellen auf 1000 nicht-infizierte Zellen. Die Reihe 12 (ohne Substanz) dient als Viruskontrolle. Die End-Testkonzentrationen liegen bei 250 - 0,0005 μΜ. Die Platten werden 6 Tage bei 37°C / 5 % CO₂ inkubiert, d.h. bis in den Viruskontrollen alle Zellen infiziert sind (100 % cytopathogener Effekt [CPE]). Die Wells werden dann durch Zugabe eines Gemisches von Formalin und Giemsa's Farbstoff fixiert und gefärbt (30 Minuten), mit aqua bidest. gewaschen und im Trockenschrank bei 50°C getrocknet. Danach werden die Platten mit einem Overhead-Mikroskop (Plaque Multiplier der Firma Technomara) visuell ausgewertet. Für die erfindungsgemäßen Substanzen ergaben sich die in Tabelle 1 aufgeführten IC₅₀-Werte:

Tabelle 1: Antivirale Wirksamkeit in vitro

Beispiel	IC50[μM]	SI
1	1	125
2	0,4	325
3	0,5	40
4	0,08	750
5	0,14	70
6	0,4	150
7	1,5	30
8	0,6	30

Selektion und Analyse von resistenten Mutanten

Dazu werden NHDF-Zellen in Gewebekulturgefäßen ausgesät. 5 x 10³ Zellen pro well werden in 96-well-Platten ausgesät und mit zellfreiem HCMV AD169 infiziert mit einer moi von 0,03. Die Infektionen werden unter Substanzdruck kultiviert, der dem 10-fachen IC50 Wert der Substanz entspricht. Bevorzugterweise werden 30-100 wie beschrieben beimpfter 96-well-Platten angesetzt. Wells, die einen cytopathischen Effekt (CPE) vergleichbar einer Virusinfektion ohne Substanzdruck aufweisen, werden weiter analysiert, d.h. der die Viren enthaltende Wellinhalt (Zellen und Zellkulturüberstand) wird auf frischen Zellkulturen passagiert und weiter unter Substanzdruck kultiviert. Schließlich werden, wie oben beschrieben, Virenstocks hergestellt und eingefroren. Nach serieller Verdünnung der virusinfizierten Zellen oder des Zellkulturüberstandes der virusinfizierten Zellen in Zehnerschritten erfolgt die Titerbestimmung auf 24-Well-Platten konfluenter

Bestimmung der UL86-Sequenz

Die wie oben beschrieben selektierten HCMVAD169 Mutanten werden in vitro auf humanen embryonalen Vorhautfibroblasten (NHDF-Zellen) unter Substanzdruck (10x IC₅₀ HCMVAD169) angezüchtet. Nach Infektion der NHDF-Zellen mit einer Multiplizität der Infektion (M.O.I) von 0,01 werden die virusinfizierten Zellen 5-10 Tage später geerntet und es erfolgt eine Isolierung der Gesamt-DNA aus diesen Zellen mit Hilfe von etablierten Standardmethoden (z.B. Phenolextraktion und Ethanolpräzipitation). Qiagen Sequencing Services (Qiagen, Hilden) bestimmte nach Amplifikation des viralen UL86 Gens mittels PCR, die DNA-Sequenz, welche dann in Proteinsequenz umgeschrieben wurde. Im Vergleich zum Ausgangsstamm HCMV AD169 konnten bei den resistenten Viren die in Tabelle 2 dargestellten Abweichungen in der Proteinsequenz des Major Capsid Proteins (UL86) festgestellt werden. Die IC₅₀-Werte [μΜ] diverser Substanzen bei diesen Mutanten im Vergleich zum Ausgangsstamm sind ebenfalls angegeben. (n.d. = nicht gemessen). Die auf UL86 einwirkenden Substanzen zeigen bei den UL86-Mutanten eine stark verringerte Wirksamkeit, wohingegen der DNA-Replikationsinhibitor Ganciclovir als Kontrolle unverändert wirksam ist. Je nach Art der Substanz führen bestimmte Mutationen zu einer verschieden stark ausgeprägten Resistenz. Die Fälle, bei denen ein >10x erhöhter IC₅₀-Wert festgestellt werden konnte sind fett und unterstrichen dargestellt.

Die Eignung der erfindungsgemäßen Verbindungen zur Behandlung von HCMV Infektionen kann im folgenden Tiermodell untersucht werden:

Tabelle 2: HCMV-Stämme mit Mutationen in UL86 und ihre Empfindlichkeit gegenüber diversen HCMV-UL86-Inhibitoren im Vergleich zum Wildtyp HCMV-AD169

IC 50 [µM]	HCMV AD169-Klon mit Mutation in UL86												
Substanz	Wildtyp	R435C	D441N	D563N	P586T	V601M	R682H	A689T	P1189T	Q1223R	A1226T	E1320Q	K1338N
Ganciclovir	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1	1,5	<u>20</u>	<u>>125</u>	4	20	20	6	>125	20	<u>>125</u>	>125	<u>>125</u>
2	0,4	0,5	1,5	<u>6</u>	2	3	3	1	>125	<u>6</u>	<u>>125</u>	13	<u>>125</u>
3	0,5	>20	>20	>20	>20	>20	>20	>20	>20	>20	<u>>20</u>	>20	>20
4	80,0	>60	0,5	1	0,5	0,5	0,5	0,5	2	1	0,8	. <u>2</u>	<u>>60</u>
5	0,14	<u>ē</u>	n.d.	1,4	8,0	1,5	n.d.	0,4	n.d.	1,4	n.d.	9	<u>>9</u>
7	1,5	3	n.d.	<u>16</u>	7,6	12	n.d.	4,5	n.d.	12	n.d.	24	<u>15</u>
8	0,6	1,3	n.d.	<u>>21</u>	· <u>>21</u>	<u>>21</u>	n.d.	>21	n.d.	>21	n.d.	>21	>21

HCMV Xenograft-Gelfoam®-Modell

Tiere:

3-4 Wochen alte weibliche immundefiziente Mäuse (16-18 g), Fox Chase SCID oder Fox Chase SCID-NOD oder SCID-beige werden von kommerziellen Züchtern (Bomholtgaard, Jackson, USA) bezogen. Die Tiere werden unter sterilen Bedingungen (einschließlich Streu und Futter) in Isolatoren gehalten.

Vorbereitung der Schwämme, Transplantation, Behandlung und Auswertung:

1x1x1 cm große Kollagenschwämme (Gelfoam[®]; Fa. Peasel & Lorey, Best.-Nr. 407534; K.T. Chong et al., Abstracts of 39th Interscience Conference on Antimicrobial Agents and Chemotherapy, 1999, S. 439) werden zunächst mit Phosphat-gepufferter Saline (PBS) benetzt, die eingeschlossenen Luftblasen durch Entgasen entfernt und dann in MEM + 10 % FKS aufbewahrt. 1 x 10⁶ virusinfizierte NHDF-Zellen (Infektion mit HCMV-Davis oder HCMV AD169 M.O.I = 0.03) werden 3 Stunden nach Infektion abgelöst und in 20 µl MEM, 10 % FKS auf einen feuchten Schwamm getropft. 12-13 Stunden später werden die infizierten Schwämme mit 25 µl PBS / 0.1 % BSA / 1 mM DTT mit 5 ng/ul basic Fibroblast Growth Factor (bFGF) inkubiert. Zur Transplanwerden immundefizienten Mäuse mit Avertin oder mit einer tation die Ketamin/Xylazin/Azepromazin Mischung narkotisiert, das Rückenfell mit Hilfe eines Rasierers entfernt, die Oberhaut 1-2 cm geöffnet, entlastet und die feuchten Schwämme unter die Rückenhaut transplantiert. Die Operationswunde wird mit Gewebekleber verschlossen. 6 Stunden nach der Transplantation werden die Mäuse zum ersten Mal behandelt (am Tag der Operation wird

einmal behandelt). An den folgenden Tagen wird über einen Zeitraum von 8 Tagen dreimal täglich (7.00 Uhr und 14.00 Uhr und 19.00 Uhr), zweimal täglich (8 Uhr und 18 Uhr) oder einmal täglich (14 Uhr) peroral mit Substanz behandelt. Die Tagesdosis beträgt 3 oder 10 oder 30 oder 60 oder 100 mg/kg Körpergewicht, das Applikationsvolumen 10 ml/kg Körpergewicht. Die Formulierung der Substanzen erfolgt in Form einer 0,5 %igen Tylosesuspension mit 2 % DMSO oder einer 0,5 %igen Tylosesuspension. 9 Tage nach Transplantation und 16 Stunden nach der letzten Substanzapplikation werden die Tiere schmerzlos getötet und der Schwamm entnommen. Die virusinfizierten Zellen werden durch Kollagenaseverdau (330 U/ 1,5 ml) aus dem Schwamm freigesetzt und in Gegenwart von MEM, 10 % foetalem Kälberserum, 10 % DMSO bei -140°C aufbewahrt. Die Auswertung erfolgt nach serieller Verdünnung der virusinfizierten Zellen in Zehnerschritten durch Titerbestimmung auf 24-Well-Platten konfluenter NHDF-Zellen nach Vitalfärbung mit Neutralrot. Ermittelt wird die Anzahl infektiöser Viruspartikel nach Substanzbehandlung im Vergleich zur placebobehandelten Kontrollgruppe. Für die erfindungsgemäßen Substanzen ergaben sich die in Tabelle 3 aufgeführten ungefähren Ergebnisse:

Tabelle 3: Antivirale Wirksamkeit in vivo

Beispiel	ED50 [mg/kg/Tag]
1	50
2	45
4	70

C. Ausführungsbeispiele für pharmazeutische Zusammensetzungen

Die erfindungsgemäßen Verbindungen können folgendermaßen in pharmazeutische Zubereitungen überführt werden:

Tablette:

Zusammensetzung:

100 mg der Verbindung von Beispiel 1, 50 mg Lactose (Monohydrat), 50 mg Maisstärke (nativ), 10 mg Polyvinylpyrolidon (PVP 25) (Fa. BASF, Ludwigshafen, Deutschland) und 2 mg Magnesiumstearat.

Tablettengewicht 212 mg. Durchmesser 8 mm, Wölbungsradius 12 mm.

Herstellung:

Die Mischung aus Wirkstoff, Lactose und Stärke wird mit einer 5 %igen Lösung (m/m) des PVPs in Wasser granuliert. Das Granulat wird nach dem Trocknen mit dem Magnesiumstearat für 5 min. gemischt. Diese Mischung wird mit einer üblichen Tablettenpresse verpresst (Format der Tablette siehe oben). Als Richtwert für die Verpressung wird eine Presskraft von 15 kN verwendet.

Oral applizierbare Suspension:

Zusammensetzung:

1000 mg der Verbindung von Beispiel 1, 1000 mg Ethanol (96%), 400 mg Rhodigel (Xanthan gum der Fa. FMC, Pennsylvania, USA) und 99 g Wasser.

Einer Einzeldosis von 100 mg der erfindungsgemäßen Verbindung entsprechen 10 ml orale Suspension.

Herstellung:

Das Rhodigel wird in Ethanol suspendiert, der Wirkstoff wird der Suspension zugefügt. Unter Rühren erfolgt die Zugabe des Wassers. Bis zum Abschluss der Quellung des Rhodigels wird ca. 6h gerührt.

Patentansprüche

- 1. Verfahren zur Identifikation von Verbindungen mit anti-Herpesvirusaktivität, dadurch gekennzeichnet, dass
 - i) das Major Capsid Protein oder ein oder mehrere Fragmente des Major Capsid Proteins mit Testverbindungen in Kontakt gebracht wird und
 - ii) die Bindung der Testsubstanzen an das Major Capsid Protein bzw. die Fragmente gemessen wird und
 - solche Verbindungen ausgewählt werden, welche Bindung an das Major Capsid Protein bzw. die Fragmente aufweisen.
- 2. Verfahren nach Anspruch 1, wobei das Herpesvirus ein Humanes Cytomegalievirus (HCMV) ist.
- 3. Verfahren zum Auswählen von Verbindungen mit anti-Herpesvirus-Aktivität, gekennzeichnet dadurch, dass
 - i) Herpesviren mit Testverbindungen in Kontakt gebracht werden,
 - ii) resistente Herpesviren ausgelesen werden,
 - iii) das für das Major Capsid Protein kodierende Gen dieser resistenten Herpesviren sequenziert und die resultierende Proteinsequenz des Major Capsid Proteins abgeleitet wird, und
 - iv) solche Verbindungen ausgewählt werden, bei denen resistente Herpesviren mit einer oder mehreren Aminosäuresubstitutionen im Major-Capsid-Protein auftreten.
- 4. Verfahren nach Anspruch 3, wobei das Herpesvirus ein Humanes Cytomegalievirus (HCMV) ist.
- 5. Verwendung von einem oder mehreren Stoffen, die an das virale Major Capsid Protein binden, zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Infektionen durch Herpesviren.
- 6. Verwendung gemäss Anspruch 5, wobei es sich bei dem Herpesvirus um Humane Cytomegalieviren (HCMV) handelt.

- Verwendung von einem oder mehreren durch Ansprüche 3 oder 4 identifizierten Stoffe zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Infektionen durch Herpesviren.
- 8. Verwendung gemäss Anspruch 7, wobei es sich bei dem Herpesvirus um das Humane Cytomegalievirus (HCMV) handelt.
- 9. Verwendung gemäss einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass der oder die darin verwendeten Stoffe die Bildung nicht-infektiöser B-Kapside, nicht aber die Bildung infektiöser C-Kapside zulassen.
- 10. Verwendung von einem oder mehreren Stoffen, die die Bildung nicht-infektiöser B-Kapside, nicht aber die Bildung infektiöser C-Kapside zulassen, zur Herstellung eines Arzneimittels zur Behandlung und/oder Prophylaxe von Infektionen durch Humane Cytomegalieviren (HCMV).
- 11. Verwendung gemäss einem der Ansprüche 5 bis 6 oder 9 bis 10, dadurch gekennzeichnet, dass gegenüber dem verwendeten Stoff bzw. den verwendeten Stoffen resistente Viren eine oder mehrere Mutationen in der Aminosäuresequenz des Major Capsid Proteins aufweisen.
- 12. Verwendung gemäss einem der Ansprüche 6, 8, 9 oder 10 dadurch gekennzeichnet, dass eine oder mehrere Mutationen im UL86 Protein an einer oder mehrerer der folgenden Positionen zur Resistenz gegenüber den Substanzen führt:
 - R435C, D441N, Y522C, D563N, P586T, V601M, R682H, A689T (Cluster 1); P1189T, P1189S, Q1223R, A1226T, E1320Q, K1338N (Cluster 2).
- 13. Verwendung gemäss Anspruch 12, wobei es sich um eine oder mehrere Mutationen zwischen den Aminosäuren 400 und 700 bzw. 1150 und 1370 handelt.
- 14. Verfahren zur Inhibition der Replikation von Herpesviren durch Substanzen, welche auf das Major Capsid Protein einwirken.
- 15. Verfahren nach Anspruch 14, wobei die Bildung von C-Kapsiden, nicht aber von B-Kapsiden inhibiert wird.
- 16. Verfahren nach 14 oder 15, wobei es sich bei dem Herpesvirus um ein Humanes Cytomegalievirus handelt.

- 17. Verwendung von Substanzen, welche die Replikation von HCMVTowne nicht oder nur unzureichen hemmen und die Replikation von HCMV Wildtyp Stämmen hemmen, zur Herstellung von Arzneimitteln zur Therapie und Prophylaxe von HCMV-Infektionen.
- 18. Arzneimittel, hergestellt nach einem der Verfahren gemäss der Ansprüche 5 bis 17.
- 19. Verbindung der Formel

20. Verbindung der Formel

21. Verbindung der Formel

22. Verbindung der Formel

zur Behandlung und/oder Prophylaxe von Krankheiten.

1/1 -

Fig. 1:

MENWSALELLPKVGIPTDFLTHVKTSAGEEMFEALRIYYGDDPERYNI HFEAIFGTFCNRLEWVYFLTSGLAAAAHAIKFHDLNKLTTGKMLFHVO **VPRVASGAGLPTSRQTTIMVTKYSEKSPITIPFELSAACLTYLRETFE** GTILDKILNVEAMHTVLRALKNTADAMERGLIHSFLQTLLRKAPPYFV VOTLVENATLARQALNRIQRSNILQSFKAKMLATLFLLNRTRDRDYVL KFLTRLAEAATDSILDNPTTYTTSSGAKISGVMVSTANVMQIIMSLLS SHITKETVSAPATYGNFVLSPENAVTAISYHSILADFNSYKAHLTSGQ PHLPNDSLSQAGAHSLTPLSMDVIRLGEKTVIMENLRRVYKNTDTKDP LERNVDLTFFFPVGLYLPEDRGYTTVESKVKLNDTVRNALPTTAYLLN RDRAVQKIDFVDALKTLCHPVLHEPAPCLQTFTERGPPSEPAMQRLLE CRFQQEPMGGAARRIPHFYRVRREVPRTVNEMKQDFVVTDFYKVGNIT LYTELHPFFDFTHCQENSETVALCTPRIVIGNLPDGLAPGPFHELRTW EIMEHMRLRPPPDYEETLRLFKTTVTSPNYPELCYLVDVLVHGNVDAF LLIRTFVARCIVNMFHTROLLVFAHSYALVTLIAEHLADGALPPQLLF HYRNLVAVLRLVTRISALPGLNNGQLAEEPLSAYVNALHDHRLWPPFV THLPRNMEGVQVVADRQPLNPANIEARHHGVSDVPRLGAMDADEPLFV DDYRATDDEWTLQKVFYLCLMPAMTNNRACGLGLNLKTLLVDLFYRPA FLLMPAATAVSTSGTTSKESTSGVTPEDSIAAQRQAVGEMLTELVEDV ATDAHTPLLQACRELFLAVQFVGEHVKVLEVRAPLDHAQRQGLPDFIS RQHVLYNGCCVVTAPKTLIEYSLPVPFHRFYSNPTICAALSDDIKRYV TEFPHYHRHDGGFPLPTAFAHEYHNWLRSPFSRYSATCPNVLHSVMTL AAMLYKISPVSLVLQTKAHIHPGFALTAVRTDTFEVDMLLYSGKSCTS VIINNPIVTKEERDISTTYHVTONINTVDMGLGYTSNTCVAYVNRVRT DMGVRVQDLFRVFPMNVYRHDEVDRWIRHAAGVERPQLLDTETISMLT FGSMSERNAAATVHGQKAACELILTPVTMDVNYFKIPNNPRGRASCML AVDPYDTEAATKAIYDHREADAOTFAATHNPWASQAGCLSDVLYNTRH RERLGYNSKFYSPCAQYFNTEEIIAANKTLFKTIDEYLLRAKDCIRGD TDTQYVCVEGTEQLIENPCRLTOEALPILSTTTLALMETKLKGGAGAF ATSETHFGNYVVGEIIPLOOSMLFNS

WO 2004/060860

1

SEQUENCE LISTING

210

. د د	OLIVE			vG											
<11	.0>	Baye	∍r Ào	B, BI	iC .		,				, -				
<12	0>	Meth	ode	zur	Inhi	biti	ion d	ier F	Repli	kati	on v	on I	Herpe	svir	en
<13	0> '	Le A	36	269									-		
<16	0>	1								•					
<17	0>	Pate	ntIn	ver	sion	. 3.1			•						
<21	0>	1		•				٠							
<21		1370													
<21		PRT	- 1-	•											
						•									
<21	3>	numa	n cy	COME	garo	viru	s								
<40	0.	,											,		•
_		7.55	Т~~	Cox	. או -	T		¥			4 11 -	** 3			_
1 .	014	. Asii	ııp		AIG	. Deu	GIU	Den		PIO	гÀг	vai	Gly		PT
	Δεν	Dhe	T. . 233	5 _.	uic	77-7	T	mb	10				Glu	15	
	иор	2110	20			val	цуs	25	Ser	Ald	СТА	GIU		Met	Pn
Glu	Ala	Leu		Tle	Тут	Tvr	G) v		A cro	Dro	GI.	7.~~	30 Tyr	7.52	т 3
		35	;-5			- 7	40	тэр	veh	PIO		A19	IYL	ASII	.11
His	Phe		Ala	Ile	Phe	Glv		Phe	Cvs	Asn	Ara		Glu	TYY	Va.
	50					55			٠,٢٠		60		014		
Tyr	Phe	Leu	Thr	Ser	Gly	Leu	Ala	Ala	Ala	Ala		Ala	Ile	Lvs	Ph
65					70		•			75				•	80
His	Asp	Ĺeu	Asn	Lys	Leu	Thr	Thr	Gly.	Lys	Met	Leu	Phe	His	Val	Gli
				85					90					95	
Val	Pro	Arg	Val	Ala	Ser	Gly	Ala	Gly	Leu	Pro	Thr	Ser	Arg	Gln	Th
			100				٠,	105				•	110		
Thr	Ile	Met	Val	Thr	Lys	Tyr	Ser	Glu	Lys	ser	Pro	·Ile	Thr	Ile	Pro
		115					120					125			
Phe		Leu	Ser	Ala	Ala		Leu	Thr	Tyr	Leu	Arg	Glu	Thr	Phe	Glı
	130		_	_		135	•				140				
	Thr	TIE	Leu	Asp		Ile	Leu	Asn	Val		Ala	Met	His	Thr	
145	7 ~~~	- [[T	7	150	m >				155		_		·	160
ъец	Arg	Ala	neu	165	ASI	Inr	Ата	Asp	170	Met	GIu	Arg	Gly	Leu 175	
His	Ser	Phe	Leu	Gln	Thr	Leu	Leu	Arg	Lys	Ala	Pro	Pro	Tyr	Phe	٧a]
		•	180					185					190		
Val	Gln	Thr	Leu	Val	Glu	Asn	Ala	Thr	Leu	Ala	Arg	Gln	Ala	Leu	Asr
		195					200			•		205			
Arg	Ile	Gln	Arg	Ser	Asn	Ile	Leu	Gln	Ser	Phe	Lys	Ala	Lys	Met	Lev

215

220

Ala Thr Leu Phe Leu Leu Asn Arg Thr Arg Asp Arg Asp Tyr Val Leu 230. 235 225. Lys Phe Leu Thr Arg Leu Ala Glu Ala Ala Thr Asp Ser Ile Leu Asp 250 Asn Pro Thr Thr Tyr Thr Thr Ser Ser Gly Ala Lys Ile Ser Gly Val 260 265 Met Val Ser Thr Ala Asn Val Met Gln Ile Ile Met Ser Leu Leu Ser 280 Ser His Ile Thr Lys Glu Thr Val Ser Ala Pro Ala Thr Tyr Gly Asn 295 300 Phe Val Leu Ser Pro Glu Asn Ala Val Thr Ala Ile Ser Tyr His Ser 310 315 Ile Leu Ala Asp Phe Asn Ser Tyr Lys Ala His Leu Thr Ser Gly Gln 325 330 Pro His Leu Pro Asn Asp Ser Leu Ser Gln Ala Gly Ala His Ser Leu 345 Thr Pro Leu Ser Met Asp Val Ile Arg Leu Gly Glu Lys Thr Val Ile 360 Met Glu Asn Leu Arg Arg Val Tyr Lys Asn Thr Asp Thr Lys Asp Pro 375 Leu Glu Arg Asn Val Asp Leu Thr Phe Phe Phe Pro Val Gly Leu Tyr 390 395 Leu Pro Glu Asp Arg Gly Tyr Thr Thr Val Glu Ser Lys Val Lys Leu 410 Asn Asp Thr Val Arg Asn Ala Leu Pro Thr Thr Ala Tyr Leu Leu Asn 425 420 Arq Asp Arg Ala Val Gln Lys Ile Asp Phe Val Asp Ala Leu Lys Thr 440 Leu Cys His Pro Val Leu His Glu Pro Ala Pro Cys Leu Gln Thr Phe 455 Thr Glu Arg Gly Pro Pro Ser Glu Pro Ala Met Gln Arg Leu Leu Glu 470 475 Cys Arq Phe Gln Glu Pro Met Gly Gly Ala Ala Arg Arg Ile Pro 490 His Phe Tyr Arg Val Arg Glu Val Pro Arg Thr Val Asn Glu Met 505 Lys Gln Asp Phe Val Val Thr Asp Phe Tyr Lys Val Gly Asn Ile Thr 525 520 Leu Tyr Thr Glu Leu His Pro Phe Phe Asp Phe Thr His Cys Gln Glu 535 Asn Ser Glu Thr Val Ala Leu Cys Thr Pro Arg Ile Val Ile Gly Asn 555 550 Leu Pro Asp Gly Leu Ala Pro Gly Pro Phe His Glu Leu Arg Thr Trp 570 Glu Ile Met Glu His Met Arg Leu Arg Pro Pro Pro Asp Tyr Glu Glu . 580 585 590

Thr	Leu	Arg		Phe	Lys	.Thr		Val	Thr	Ser	Pro			Pro	Gl
		595					.600					605			
Leu	Cys 610	Tyr	Leu	Val	Asp	Val 615		Val	His		Asn 620		Asp	Ala	Ph
Leu	Leu	Ile	Arg	Thr	Phe			Arg	Cys		•		Met	Phe	Hi
625					630				•	635					64
Thr	Arg	Gln	Leu	Leu	Val	Phe	Ala	His	Ser	Tyr	Ala	Leu	Val	Thr	.Le
				645					650					655	
Ile	Ala	Glu	His	Leu	Ala	Asp	Gly	Ala	Leu	Pro	Pro	Gln	Leu	Leu	Phe
			660					665					670		
His	Tyr	Arg	Asn	Leu	Val	Ala		Leu	Arg	Leu	Val	Thr	Arg	Ile	Se
		675	٠.	_	_	_	680					685			
АТА		Pro	GIY	Leu				Gln	Leu			Glu	Pro	Leu	Sei
- וג	690	77-7	7 ~~	ת ל ת		695		772 -	2		700				
705	ıyı	Val	AŞII	ALG	710	HIS	Asp	HIS	Arg		Trp	Pro	Pro	Pne	
	His	Leu	Pro	Ara	•	Met	Glu	G] v	V=1	715 Gln	 Val	T7=1	: מות	700	720
			110	725	11011	1100	·	Gry	730	GIII	vai	Vai	AIG	735	₩ī
Gln	Pro	Leu [.]	Asn	Pro	Ala	Asn	Ile	Glu		Arq	His	His	Glv		Ser
	,		740					745		5			750		
Asp	Val	Pro	Arg	Leu	Gly	Ala	Met	Asp	Ala	Asp	Glu	Pro	Leu	Phe	Va]
•		.755					760					765			
Asp	Asp	Tyr	Arg	Ala	Thr	Asp	Asp	Glu	Trp	Thr	Leu	Gln	Lys	Val	Phe
	770				•	775					780				
ryr	Leu	Cys	Leu	Met	Pro	Ala	Met	Thr	Asn	Asn	Arg	Ala	Cys	Gly	Leu
785					790		•			795					800
Зlу	Leu	Asn	Leu		Thr	Leu	Leu	Val	Asp	Leu	Phe	Tyr	Arg	Pro	Ala
				805					810					815	
Phe	Leu	Leu		Pro	Ala	Ala	Thr		Val		Thr	Ser		Thr	
	T	G1	820	m>	0	~3		825	_			_	830		
oer.	пÀг	Glu 835	ser	Inr	ser	GIY		Thr	Pro	GIu	Asp		Ile	Ala	Ala
21 n	7.70		בומ	17= T	G] v	C1.,	840 Mot	T 0	m)n ee	C1	T	845	G3	·	77~ 7
	850	Gln	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V41	GLY	855	Mec	пеп	TIII	GIU	860	Vai	GIU	Asp	vai
4la		Asp	Ala	His	Thr		Leu	Len	Gln	Ala		Ara	Glu	Len	Phe
365		-			870	0		200	0111	875	Cyb	7112		Deu	880
Leu	Ala	Val	Gln	Pĥe	Val	Gly	Glu	His	Val		Val	Leu	Glu	Val	
				885	·				890	•				895	_
Ala	Pro	Leu	Asp	His	Ala	Gln	Arg	Gln	Gly	Leu	Pro	Asp	Phe	Ile	Ser
		٠.	900					905					910		
rg	Gln	His	Val	Leu	Tyr	Asn	Gly	Cys	Cys	Val	Val	Thr	Ala	Pro	Lys
		915					920					925	•		
hr	Leu	Ile	Glu	Tyr	Ser	Leu	Pro	Val	Pro	Phe	His	Arg	Phe	Tyr	Ser
	930					935			•		940			•	
	Pro	Thr	Ile			Ala	Leu	Ser	Asp	Asp	Ile	Lys	Arg	Tyr	Val
45					950					055					060

- Thr Glu Phe Pro His Tyr His Arg His Asp Gly Gly Phe Pro Leu Pro Thr Ala Phe Ala His Glu Tyr His Asn Trp Leu Arg Ser Pro Phe Ser Arg Tyr Ser Ala Thr Cys Pro Asn Val Leu His Ser Val Met Thr Leu Ala Ala Met Leu Tyr Lys Ile Ser Pro Val Ser Leu Val Leu Gln Thr Lys Ala His Ile His Pro Gly Phe Ala Leu Thr Ala Val Arg Thr Asp Thr Phe Glu Val Asp Met Leu Leu Tyr Ser Gly Lys Ser Cys Thr Ser Val Ile Ile Asn Asn Pro Ile Val Thr Lys Glu Glu Arg Asp Ile Ser Thr Thr Tyr His Val Thr Gln Asn Ile Asn Thr Val Asp Met Gly Leu Gly Tyr Thr Ser Asn Thr Cys Val Ala Tyr Val Asn Arg Val Arg Thr Asp Met Gly Val Arg Val Gln Asp Leu Phe Arg Val Phe Pro Met Asn Val Tyr Arg His Asp Glu Val Asp Arg Trp Ile Arg His Ala Ala Gly Val Glu Arg Pro Gln Leu Leu Asp Thr Glu Thr Ile Ser Met Leu Thr Phe Gly Ser Met Ser Glu Arg Asn Ala Ala Thr Val His Gly Gln Lys Ala Ala Cys Glu Leu Ile Leu Thr Pro Val Thr Met Asp Val Asn Tyr Phe Lys Ile I185 Pro Asn Asn Pro Arg Gly Arg Ala Ser Cys Met Leu Ala Val Asp Pro Tyr Asp Thr Glu Ala Ala Thr Lys Ala Ile Tyr Asp His Arg Glu Ala Asp Ala Gln Thr Phe Ala Ala Thr His Asn Pro Trp Ala Ser Gln Ala Gly Cys Leu Ser Asp Val Leu Tyr Asn Thr Arg His Arg Glu Arg Leu Gly Tyr Asn Ser Lys Phe Tyr Ser Pro Cys Ala

					_									
Gln	Leu	Ile	Glu	Asn.	Pro	Cys	Arg	Leu	Thr	Gln	Glu	Ala	Leu	Pro
	1310		٠			1315					1320			
Ile	Leu	Ser	Thr	Thr	Thr	Leu	Ala	Leu	Met	Glu	Thr	Lys	Leu	Lys
	1325					1330					1335			
Gly	Gly	Ala	Gly	Ala	Phe	Ala .	Thr	Ser	Glu	Thr	His	Phe	Gly.	Asn
	1340					1345					1350			
Tyr	Val	Val	Gly	Glu	Ile	Ile	Pro	Leu	Gln	Gln	Ser	Met	Leu	Phe
	1355					1360					1365			
Asn	Ser													
•	1370													