三角形與三角函數公式定理

沈威宇

2024年11月2日

第一章 三角形公式定理

一、 勾股/畢氏/商高定理

$$(\angle C = 90^{\circ}) \iff (a^2 + b^2 = c^2)$$

Proof. 趙爽勾股圓方圖證明法:

其中四個三角形的短股為 a、長股為 b、斜邊為 c。

$$4\frac{ab}{2} + (b-a)^2 = c$$
$$a^2 + b^2 = c^2$$

二、 三角形全等與 SSA 型性質:

令:已知兩三角形一對應位置之邊長相等稱 S,已知兩三角形一對應位置之角之角度相等稱 A,S 相鄰表示鄰邊,A 相鄰表示鄰角,S 與 A 相鄰表示邊與其一側的角,當 A 為直角得稱 R,R 之鄰邊得稱 H。

- 1. 三角形的全等性質有 SSS imes SAS imes AAS imes ASA imes RHS,當兩三角形符合以上任一條件時,知兩三角形全等。
- 2. SSA 型的討論:若已知 $a \cdot b \cdot \angle A \circ$
 - $\angle A$ 為銳角,令 C 到 \overrightarrow{AB} 的距離為 $h = b \sin A$,則:
 - b<h: 無解

- b=h: **唯一**解
- b>h: 兩解
- ∠A 為鈍角,則:
 - a b: 無解
 - a>b: **唯一解**

三、 九點圓與歐拉線

$$M_a,\,M_b,\,M_c,\,h_a,\,h_b,\,h_c,\,rac{A+H}{2},\,rac{B+H}{2},\,rac{B+H}{2}$$
必共圓,該圓稱九點圓

對於九點圓圓周 $\mathscr O$ 與圓心 $\mathscr O$ 均符合: $\mathscr O=\frac{O+H}{2}$

 \mathcal{O} , O, G, H 共線, 該線稱歐拉線

 ΔABC 是等腰三角形 \iff I在歐拉線上

費爾巴哈定理 (Feuerbach's theorem): 九點圓與三個旁切圓均外切,與內切圓內切(內切圓在內)。

$$\mathscr{O} = \frac{O}{2}$$

四、 正弦定理

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$

Proof.

$$\sin A = \frac{\overline{Ch_c}}{a}$$

$$\sin B = \frac{\overline{Ch_c}}{b}$$

 $2R\sin A = a$

Proof. 作 O。若 ΔABC 為直角三角形,觀察可證。

若 ΔABC 非直角三角形,以 BC 為一股,令斜邊在 \overrightarrow{BO} 上,作一直角三角形 BCD,其中 D=2O-B。

若 $\triangle ABC$ 為銳角三角形,根據圓周定理可知, $\angle D = \angle BAC$,得證。

若 $\triangle ABC$ 為鈍角三角形,根據根據圓內接四邊形對角互補定理可知, $\angle D = \pi - \angle A$,得證。 \Box

凸四邊形面積 $=\frac{1}{2}$ 對角線相乘 $\times \sin$ 兩對角線夾角

五、 投影定理

$$a = b \cos C + c \cos B$$

六、 餘弦定理

$$a^2 = b^2 + c^2 - 2bc\cos A$$

Proof. 根據投影定理:

$$c = a\cos B + b\cos A$$

兩邊同乘 c:

$$c^2 = ac\cos B + bc\cos A$$

同理:

$$a^2 = ac\cos B + ab\cos C$$

$$c^2 = bc\cos A + ab\cos C$$

$$c^2 = a^2 - ab\cos C + b^2 - ab\cos C = a^2 + b^2 - 2ab\cos C$$

平行四邊形定理:平行四邊形四邊長平方和等於兩對角線平方和 三角形中線公式: $\overline{AB}^2+\overline{AC}^2=2\Big(\overline{AM_a}^2+\overline{BM_a}^2\Big)$

七、 三角形面積定理

$$\begin{split} \Delta ABC &= \frac{1}{2}a \cdot \overline{Ah_a} \\ &= \frac{1}{2}ab \sin C \\ &= \sqrt{s(s-a)(s-b)(s-c)} \quad (海龍 \text{ (Heron)} \ \triangle \vec{\Lambda}) \\ &= \frac{abc}{4R} \\ &= rs \\ &= \frac{1}{\sqrt{\left(\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}\right)\left(-\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}\right)\left(\frac{1}{h_a} - \frac{1}{h_b} + \frac{1}{h_c}\right)\left(\frac{1}{h_a} + \frac{1}{h_b} - \frac{1}{h_c}\right)} \\ &= \frac{2}{3}\overline{BM_b} \cdot \overline{CM_c} \sqrt{\left|\frac{1 - \left(\overline{AM_a}^2 + \overline{BM_b}^2 + \overline{CM_c}^2\right)^2}{4\overline{BM_b}^2 \overline{CM_c}^2}\right|} \\ &= \frac{1}{2}\sqrt{\overline{AB}^2}\overline{AC}^2 - \left(\overline{AB} \cdot \overline{AC}\right)^2 \\ &= \frac{1}{2}\left|\overline{AB} \times \overline{AC}\right| \end{split}$$

八、 重心相關定理

$$G$$
 為三中線交點
$$\overline{AG} = 2\overline{GM_A}$$

$$G = \frac{A+B+C}{3}$$

九、 外心相關定理

$$\overline{OA} = \overline{OB} = \overline{OC} = R$$

$$O = \frac{a^2A + b^2B + c^2C}{a^2 + b^2 + c^2}$$
 O 為三邊中垂線交點

$$\begin{split} \Delta OAB : \Delta OBC : \Delta OCA &= \sin 2C : \sin 2A : \sin 2B \\ \overrightarrow{AO} \cdot \overrightarrow{AB} &= \frac{1}{2} \overrightarrow{AB}^2 \\ \frac{1}{2} \angle AOB &= \angle C \vee \pi - \angle C \end{split}$$

十、 内心相關定理

I 與三邊均相切

十一、 垂心相關定理

$$H \triangleq \frac{\tan A \cdot A + \tan B \cdot B + \tan C \cdot C}{\tan A + \tan B + \tan C}$$

$$\overrightarrow{AH} \cdot \overrightarrow{AB} = \overrightarrow{AH} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AC} = \frac{1}{2} \left(\overrightarrow{AC^2} + \overrightarrow{AB^2} - \overrightarrow{BC^2} \right)$$

$$\frac{1}{2} \left(\overrightarrow{AC^2} + \overrightarrow{AB^2} - \overrightarrow{AC^2} \right)$$

$$\frac{1}{2} \left(\overrightarrow{AC^2} + \overrightarrow{AC^2} - \overrightarrow{AC^2} \right)$$

$$\frac{1}{$$

十二、 西瓦定理(Ceva theorem)

令西瓦線段指各頂點與其對邊或對邊延長線連接而成的直線段。

三角形 ΔABC 的西瓦線段 \overrightarrow{AD} 、 \overrightarrow{BE} 、 \overrightarrow{CF} :

 \overrightarrow{AD} 、 \overrightarrow{BE} 、 \overrightarrow{CF} 交於一點 \iff $\frac{\overline{BD}}{\overline{DC}} \cdot \frac{\overline{CE}}{\overline{EA}} \cdot \frac{\overline{AF}}{\overline{FB}} = 1 \implies D$ 、E、F中有零或二個點不在 ΔABC 邊上口訣:頂分頂分頂

十三、 孟氏定理 (Menelaus' theorem)

一直線與 $\triangle ABC$ 的邊 $BC \cdot CA \cdot AB$ 或其延長線分別交於 $L \cdot M \cdot N$:

口訣:頂分頂分頂分頂

十四、 角平分線定理

已知: ΔABC 中 $\angle B < \angle C$; D 在 \overline{BC} 上 ; E 在 \overline{BC} 上且不在 \overline{BC} 上。内角平分線定理及逆定理: $\angle BAD = \angle DAC \Leftrightarrow \frac{DB}{DC} = \frac{AB}{AC}$

外角平分線定理及逆定理: $\angle CAE = \pi - \angle BAE \Leftrightarrow \frac{EB}{EC} = \frac{AB}{AC}$

十五、 角平分線長定理

$$\overline{A\mathscr{B}_a} = \frac{bc\sin A}{(b+c)\sin\left(\frac{A}{2}\right)}$$

第二章 三角函數公式定理

一、 尤拉公式

$$e^{i\theta} = \cos \theta + i \sin \theta$$
$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$
$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$$

二、 正切萬能公式

$$\sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$
$$\cos \theta = \frac{1 - \tan^2 \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}}$$
$$\tan \theta = \frac{2 \tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}}$$

三、 二倍角公式

$$\sin 2\theta = 2\sin\theta\cos\theta$$
$$\cos 2\theta = 1 - 2\sin^2\theta$$
$$= 2\cos^2\theta - 1$$
$$= \cos^2\theta - \sin^2\theta$$

四、 半角公式與平方化倍角公式

$$\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$$

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

$$\tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta}$$

$$\tan \frac{\theta}{2} = \frac{\sin \theta}{1 + \cos \theta}$$

$$= \frac{1 - \cos \theta}{\sin \theta}$$

$$= \frac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta}$$

$$= \csc \theta - \cot \theta$$

五、 三倍角公式

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$
$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$
$$\tan 3\theta = \frac{3\tan \theta - \tan^3 \theta}{1 - 3\tan^2 \theta}$$

六、 和差角公式

$$\sin(\alpha + \beta) = \sin\alpha \cos\beta + \cos\alpha \sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cos\beta - \cos\alpha \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$$

$$\tan(\alpha + \beta) = \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \tan\beta}$$

$$\tan(\alpha - \beta) = \frac{\tan\alpha - \tan\beta}{1 + \tan\alpha \tan\beta}$$

$$\cot(\alpha + \beta) = \frac{\cot\alpha \cot\beta - 1}{\cot\alpha + \cot\beta}$$

$$\cot(\alpha - \beta) = \frac{\cot\alpha \cot\beta - 1}{\cot\alpha + \cot\beta}$$

$$\sec(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{-\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\sec(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha + \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha + \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta + \csc\alpha \csc\beta}$$

$$\csc(\alpha - \beta) = \frac{\sec\alpha \sec\beta \csc\alpha \csc\beta}{\sec\alpha \sec\beta - \csc\alpha \csc\beta}$$

七、 平方關係

$$\sin^2 \theta = \frac{\tan^2 \theta}{1 + \tan^2 \theta} = 1 - \cos^2 \theta$$
$$\cos^2 \theta = \frac{1}{1 + \tan^2 \theta} = 1 - \sin^2 \theta$$
$$\tan^2 \theta = \frac{1 - \cos^2 \theta}{\cos^2 \theta} = \frac{\sin^2 \theta}{1 - \sin^2 \theta}$$

八、 三角形内角正弦公式

$$\alpha + \beta + \gamma = \pi \iff \tan \alpha + \tan \beta + \tan \gamma = \tan \alpha \cdot \tan \beta \cdot \tan \gamma$$

九、 正餘弦函數疊合公式定理

$$(a\sin\theta + b\cos\theta)^2 \le a^2 + b^2, \quad a, b \in \mathbb{R}$$

$$a\sin x + b\cos x$$

$$= \sqrt{a^2 + b^2}\sin\left(x + \tan^{-1}\left(\frac{b}{a}\right)\right)$$

$$= \sqrt{a^2 + b^2}\cos\left(x - \tan^{-1}\left(\frac{a}{b}\right)\right)$$

十、 和差化積

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$
$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

十一、 積化和差

$$2\sin\alpha\cos\beta = \sin(\alpha + \beta) + \sin(\alpha - \beta)$$
$$2\cos\alpha\sin\beta = \sin(\alpha + \beta) - \sin(\alpha - \beta)$$
$$2\cos\alpha\cos\beta = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$
$$2\sin\alpha\sin\beta = -\cos(\alpha + \beta) + \cos(\alpha - \beta)$$

十二、 單位圓定理

$$0 \le x \le 1, \ 0 \le y \le 1, \ x^2 + y^2 = a, \ \theta = \sin^{-1} x + \sin^{-1} y, \ \phi = \cos^{-1} x + \cos^{-1} y$$

$$\Rightarrow \begin{cases} a > 1 \iff \theta > \frac{\pi}{2} \iff \phi > \frac{\pi}{2} \\ a = 1 \iff \theta = \frac{\pi}{2} \iff \phi = \frac{\pi}{2} \\ a < 1 \iff \theta < \frac{\pi}{2} \iff \phi < \frac{\pi}{2} \end{cases}$$

十三、 高次方降次

$$\sin^4 \theta + \cos^4 \theta = 1 - 2\sin^2 \cos^2 \theta$$
$$\sin^4 \theta - \cos^4 \theta = \sin^2 \theta - \cos^2 \theta$$
$$\sin^6 \theta + \cos^6 \theta = 1 - 3\sin^2 \cos^2 \theta$$