Отчёт по лабораторной работе №1

Специальность: архитектура компьютеров

Ицков Андрей Станиславович

Содержание

1	Цель работы	5	
2	Задание	6	
3	Теоретическое введение	7	
4	Выполнение лабораторной работы	8	
	4.1 Создание виртуальной машины	. 8	
	4.2 После установки	. 9	
	4.2.1 Обновления	. 9	
	4.2.2 Повышение удобства работы. Отключение SELinux	. 10	
	4.2.3 Настройка раскладки клавиатуры	. 10	
	4.2.4 Автоматическое обновление	. 12	
	4.3 Установка программного обеспечения для создания документац:	ии 12	
	4.4 Домашнее задание	. 14	
5	Контрольные вопросы	16	
6	Выводы	18	
Сг	писок литературы 1		

Список иллюстраций

4.1	Настройки новой виртуальной машины
4.2	Установка ОС
4.3	Обновление пакетов
4.4	Отключение SELinux
4.5	Создание конфиг файла
4.6	Редактирование файла
4.7	Редактирование другого файла
4.8	Скачивание необходимых программ
4.9	Перенос файлов в необходимый каталог
4.10	Установка программы TexLive
4.11	Команда dmesg
4.12	Получение необходимой информации

Список таблиц

1 Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

2 Задание

- 1) Запуск VirtualBox и создание новой виртуальной машины (операционная система Linux, Fedora).
- 2) Настройка установки ОС. 3)Перезапуск виртуальной машины и установка драйверов для VirtualBox. 4)Подключение образа диска дополнений гостевой ОС. 5)Установка необходимого ПО для создания документации. 6)Выполнение домашнего задания.

3 Теоретическое введение

Операционная система - это комплекс взаимосвязанных программ, который действует как интерфейс между приложениями и пользователями с одной стороны и аппаратурой компьютера с другой стороны. VirtualBox - это специальное средство для виртуализации, позволяющее запускать операционную систему внутри другой. С помощью VirtualBox мы можем также настраивать сеть, обмениваться файлами и делать многое другое

4 Выполнение лабораторной работы

4.1 Создание виртуальной машины

1. Создадим новую виртуальную машину, задав имя, объем оперативной памяти, размер видеопамяти, объем диска и другие параметры по своему усмотрению. В качестве операционной системы выберем образ Fedora. (рис. 4.1)

Рис. 4.1: Настройки новой виртуальной машины

2. Начнем установку операционной системы, внеся перед этим необходимые для этого данные. Войдем в ОС под своей учетной записью. (рис. 4.2)

Рис. 4.2: Установка ОС

4.2 После установки

4.2.1 Обновления

3. В терминале через роль суперпользователя производим установку обновлений. (рис. 4.3)

Рис. 4.3: Обновление пакетов

4.2.2 Повышение удобства работы. Отключение SELinux

4. Установим программу tmux. (рис. 4.4) Запустим ее, затем через команду mc в терминале заходим в требуемый файл и отключаем SELinux, заменив в файле значение enforcing на permissive. Перезапустим виртуальную машину.

Рис. 4.4: Отключение SELinux

4.2.3 Настройка раскладки клавиатуры

5. Создадим конфиг файл. (рис. 4.5)

```
asitskov@vbox:-$ mkdir -p ~/.config/sway
asitskov@vbox:-$ mkdir -p ~/.config/sway/config.d
asitskov@vbox:-$ touch ~/.config/sway/config.d/95-system-keyboard-config.conf
asitskov@vbox:-$
```

Рис. 4.5: Создание конфиг файла

6. Отредактируем этот файл, подбирая значения под себя. Затем отредактируем еще один файл (/etc/X11/xorg.conf.d/00keyboard.conf) и перезагрузим машину. (рис. 4.6) (рис. 4.7)

Рис. 4.6: Редактирование файла

Рис. 4.7: Редактирование другого файла

4.2.4 Автоматическое обновление.

7. Устанавливаем ПО для автообновления. Снова редактируем конфигурационный файл, запускаем таймер.

4.3 Установка программного обеспечения для создания документации

8. Скачаем pandoc и pandoc-crossref из репозитория Гитхаб. (рис. 4.8)

Рис. 4.8: Скачивание необходимых программ

9. Перенесем необходимые файлы в необходимый каталог. (рис. 4.9)

Рис. 4.9: Перенос файлов в необходимый каталог

10. Установим дистрибутив TexLive. (рис. 4.10)

Рис. 4.10: Установка программы TexLive

4.4 Домашнее задание

- 11. Посмотрим порядок загрузки системы с помощью команды dmesg, (рис.
 - 4.11) получим необходимую информацию. (рис. 4.12)

```
\oplus
                              asitskov@vbox:~ — tmux
    0.000000] Linux version 6.13.5-100.fc40.x86_64 (mockbuild@b9b0a23be3e9426a9
9f3b39bb1dab6f2) (gcc (GCC) 14.2.1 20240912 (Red Hat 14.2.1-3), GNU ld version 2
.41-38.fc40) #1 SMP PREEMPT_DYNAMIC Thu Feb 27 15:10:07 UTC 2025
   0.000000] Command line: BOOT_IMAGE=(hd0,gpt2)/vmlinuz-6.13.5-100.fc40.x86_6
4 root=UUID=09214eea-0633-4f01-8640-d9d7cd586d4f ro rootflags=subvol=root rhgb q
    0.000000] BIOS-provided physical RAM map:
    0.000000] BIOS-e820: [mem 0x0000000000000000-0x0000000009fbff] usable
    0.000000] BIOS-e820: [mem 0x00000000009fc00-0x00000000009ffff] reserved
    0.000000] BIOS-e820: [mem 0x0000000000100000-0x00000000dffeffff] usable
    0.000000] BIOS-e820: [mem 0x00000000dfff0000-0x0000000dfffffff] ACPI data
    {\tt 0.000000]} \ \ {\tt BIOS-e820:} \ \ [{\tt mem} \ \ 0x0000000000fec00000-0x00000000fec00fff] \ \ reserved
    0.000000] BIOS-e820: [mem 0x00000000fee00000-0x00000000fee00fff] reserved
    0.000000] BIOS-e820: [mem 0x00000000fffc0000-0x00000000fffffffff] reserved
    0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000011fffffff] usable
    0.000000] NX (Execute Disable) protection: active
    0.000000] APIC: Static calls initialized
    0.000000] SMBIOS 2.5 present.
    0.000000] DMI: innotek GmbH VirtualBox/VirtualBox, BIOS VirtualBox 12/01/20
    0.000000] DMI: Memory slots populated: 0/0
```

Рис. 4.11: Команда dmesg

```
oot@vbox:~# dmesg | grep -i "CPU0"
[ 0.412507] smpboot: CPUS: 11th Gen Intel(R) Core(TM) i5-113567 @ 2.40GHz (family: 0x6, model: 0x8c, stepping: 0x1)
 oot@vbox:~# dmesg | grep -i "Memory available"
oot@vbox:~# dmesg | grep -i "Hypervisor detected"
  0.000000] Hypervisor detects.

octavbox:-# dmesg | grep -i "processor"
0.000009] tsc: Detected 2419.200 MHz processor
0.000009] tsc: Total of 1 processors activated (4838.40 BogoMIPS)
       0.000009] tsc: Detected ...
0.413935] smpboot: Total of 1 processors act
0.413935] Smpboot: Total of 1 processor Device)
  0.430764] ACPI: Added _OSI(Processor Device)
0.430765] ACPI: Added _OSI(Processor Aggregator Device)
0.430765] ACPI: Added _OSI(Processor Aggregator Device)
0.000000] DMI: Memory slots populated: 0/0
      0.016287] ACPI: Reserving FACS table memory at [mem 0xdfff00f0-0xdfff01e3]
0.016289] ACPI: Reserving FACS table memory at [mem 0xdfff0610-0xdfff2962]
       0.016289] ACPI: Reserving FACS table
                                                                           at [mem 0xdfff0200-0xdfff023f]
       0.016290] ACPI: Reserving FACS table memory
                                                                           at [mem 0xdfff0200-0xdfff023f]
       0.016290] ACPI: Reserving APIC table
                                                                           at [mem 0xdfff0240-0xdfff0293]
                                                                    emory at [mem 0xdfff02a0-0xdfff060b]
       0.016291] ACPI: Reserving SSDT table
       0.019627] Early
                                          node ranges
       0.139998] PM: hibernation: Registered nosave men
       0.140000] PM: hibernation: Registered nosave memo
                                                                                    ry: [mem 0x0009f000-0x0009
-
ffffl
```

Рис. 4.12: Получение необходимой информации

5 Контрольные вопросы

- 1) Какую информацию содержит учетная запись пользователя? Имя пользователя, зашифрованный пароль пользователя, индентификационный номер пользователя, индентификационный номер группы пользователя, домашний каталог пользователя, командный интерпретатор пользователя.
- 2) Укажите команды терминала и приведите примеры: -для получения справки по команде: man man cd -ддя перемещения по файловой системе: cd cd ~/Downloads - для просмотра содержимого каталога: ls ls ~ Downloads - для определения объема каталога: du du Downloads -для создания каталогов: mkdir mkdir ~ Downloads/New - для создания файлов: touch touch retouch для удаления каталогов: rm rm dir1 - для удаления файлов: rm -r rm -r text.txt - для задания определенных прав на файл или каталог: chmod + x chmod +x text.txt -для просмотра истории команд: history
- 3) Что такое файловая система? Приведите примеры с краткой характеристикой. Файловая система это часть операционной системы, назначение которой состоит в том, чтобы обеспечить пользователю удобный интерфейс при работе с данными, хранящимися на диске, и обеспечить совместное использование файлов несколькими пользователями и процессорами. Примеры файловых систем: Ext2, Ext3, Ext4 или Extended Felisystem стандартная файловая система для Linux. NTFS (New Technology File System): Стандартная файловая система для Windows.
- 4) Как посмотреть, какие файловые системы подмонтированы в ОС? Команда

mount

5) Как удалить зависший процесс? Команда kill

6 Выводы

В результате выполнения лабораторной работы мы приобрели навыки установки операционной системы на виртуальную машину, а также настройки минимально необходимых для дальнейшей работы сервисов.

Список литературы