Handwritten Alphabet Recognition

Objective

To build a CNN model which can detect hand written alphabet.

Data Description

The dataset used for this project is a CSV file named 'A_Z Handwritten Data.csv' that contain the information of 372450 gray scale image of alphabets in 28x28 pixel each in which first column is the alphabet encoded in integer from 0 to 25.

Dataset source: https://www.kaggle.com/datasets/sachinpatel21/az-handwritten-alphabets-in-csv-format

Data Distribution & its sample

Data Preprocessing

• To deal with imbalance of data, Near-Miss algorithm were used to balance the dataset

```
In [12]: from imblearn.under_sampling import NearMiss
In [13]: nM = NearMiss()
X_data, y_data = nM.fit_resample(df, y)
```

· Dataset after resampling

• Output were encoded into nominal order using kereas.utils

- Dataset were also normalized by dividing them with 255
- At last, dataset were split into train and test data with test size of 20% using sklearn.model_selection having final shape of dataset as follow

Model Building

• CNN sequential model was built with following Architecture.

Model: "sequential_2"

Layer (type)	Output Shape	Param #
conv2d_2 (Conv2D)	(None, 28, 28, 64)	1664
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 14, 14, 64)	0
conv2d_3 (Conv2D)	(None, 14, 14, 128)	204928
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 7, 7, 128)	0
flatten_1 (Flatten)	(None, 6272)	0
dense_2 (Dense)	(None, 128)	802944
dense_3 (Dense)	(None, 26)	3354
======================================		
None		

Code of the architecture

CNN Model

```
In [43]: import keras
    from keras.models import Sequential
    from tensorflow.keras.optimizers import Adam
    from keras.layers import Conv2D, MaxPool2D, Flatten, Dense

In [46]: model = Sequential()
    model.add(Conv2D(64, (5, 5), input_shape= (28, 28, 1), activation='relu', padding= 'same')) # using 64 filter of (5, 5) grid
    model.add(MaxPool2D(pool_size=(2, 2), padding= 'same'))
    model.add(Conv2D(128, (5, 5), input_shape= (28, 28, 1), activation='relu', padding= 'same'))
    model.add(MaxPool2D(pool_size=(2, 2), padding= 'same'))
    model.add(Flatten())
    model.add(Dense(128, activation='relu'))
    model.add(Dense(num_classes, activation='softmax'))
    model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
    print(model.summary())
```

Results

- Accuracy of the CNN model on test data: 98.54%
- Accuracy of the CNN model on train data: 99.59%
- Accuracy of the CNN model on overall data: 99.53%

• Plot of training loss and validation loss

Plot of training accuracy and validation accuracy

Conclusion

The CNN model for hand written alphabet recognition was build using keras library which gives the accuracy of 99%.

Team Details

Group 8

Name	Branch	Semester/Year
PINTU RAJ	Information Technology	5 th Sem/3 rd year
AYUSH KUMAR	Information Technology	5 th Sem/3 rd year
GAUTAM KUMAR PANDEY	Information Technology	5 th Sem/3 rd year