

AMENDMENT

IN THE CLAIMS:

Please amend the claims as follows:

1. (Currently amended) A benzopyrone ~~compounds, its features includes~~ compound having the general formula (I):

wherein:

A is selected from CH or N;

B is selected from O or S; O, or S; NR₉; R₉ is selected from H or C₁-C₁₂alkyl

R₁ and R₂ are respectively selected from H, C₁-C₁₂ alkyl or C₁-C₁₂ haloalkyl;

R₃ is selected from H, C₁-C₁₂ alkyl, C₁-C₁₂ haloalkyl or C₁-C₁₂ alkoxy;

R₄, R₅, R₆, R₇, and R₈ may be the same or different, selected from H, halo, CN, NO₂, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₁-C₁₂ haloalkyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkylthio, C₁-C₁₂ alkylsulfonyl, C₁-C₁₂ alkylcarbonyl, C₁-C₁₂ alkoxyC₁-C₁₂alkyl, C₁-C₁₂ alkoxy carbonyl, C₁-C₁₂ alkoxy carbonyl C₁-C₁₂ alkyl, C₁-C₁₂ haloalkoxyC₁-C₁₂ alkyl, or amino C₁-C₁₂alkyl in which amino is substituted with 0-2 C₁-C₁₂ alkyl, 0-3 substituted groups of aryl, aryloxyl, arylC₁-C₁₂ alkyl, arylC₁-C₁₂ alkoxy, aryloxyC₁-C₁₂ alkyl, arylC₁-C₁₂ alkoxyC₁-C₁₂ alkyl, heteroaryl, heteroarylC₁-C₁₂ alkyl, or heteroarylC₁-C₁₂ alkoxy, the 0-3 substituted groups may be selected from halo, NO₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy or C₁-C₆ alkoxyC₁-C₆ alkyl, and the groups having general formula as follows:

,

wherein:

R₁₀ and R₁₁ are selected from H, C₁-C₁₂ alkyl, aryl or aryl C₁-C₁₂ alkyl; ~~when R₃, R₄, R₅, R₆, R₇, and R₈ are all H, B is not NR₉,~~

R₅ is selected from H, halo, CN, NO₂, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₁-C₁₂ haloalkyl, C₁-C₁₂ alkylcarbonyl, C₁-C₁₂ alkoxyC₁-C₁₂ alkyl, C₁-C₁₂ alkoxy carbonyl, C₁-C₁₂ alkoxy carbonyl C₁-C₁₂ alkyl, C₁-C₁₂ haloalkoxyC₁-C₁₂ alkyl, or amino C₁-C₁₂ alkyl in which amino is substituted with 0-2 C₁-C₁₂ alkyl, 0-3 substituted groups of aryl, arylC₁-C₁₂ alkyl, aryloxyC₁-C₁₂ alkyl, arylC₁-C₁₂ alkoxyC₁-C₁₂ alkyl, heteroaryl or heteroarylC₁-C₁₂ alkyl, the 0-3 substituted groups may be selected from halo, NO₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy or C₁-C₆ alkoxyC₁-C₆ alkyl, and the groups having general formula as follows:

wherein:

R₁₀ and R₁₁ are selected from H, C₁-C₁₂ alkyl, aryl or aryl C₁-C₁₂ alkyl; and its stereoisomer.

2. (Currently amended) The benzopyrone compound according to the claim 1, ~~characterized in that wherein general formula (I) wherein:~~

A is selected from CH or N;

B is selected from O or S; O, or S NR₉; R₉ is selected from H or C₁-C₆ alkyl;

R₁ and R₂ are respectively selected from H, C₁-C₆ alkyl or C₁-C₆ haloalkyl;

R₃ is selected from H, C₁-C₆ alkyl, C₁-C₆ haloalkyl or C₁-C₆ alkoxy;

R₄, ~~R₅, R₆, R₇, and R₈~~ may be the same or different, selected from H, halo, CN, NO₂, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio, C₁-C₆ alkylsulfonyl, C₁-C₆ alkylcarbonyl, C₁-C₆ alkoxyC₁-C₆ alkyl, C₁-C₆ alkoxy carbonyl, C₁-C₆ alkoxy carbonylC₁-C₆ alkyl, C₁-C₆ haloalkoxyC₁-C₆ alkyl, or amino C₁-C₆ alkyl in which amino is substituted with 0-2 C₁-C₁₂ alkyl, 0-3 substituted groups of aryl, aryloxy, arylC₁-C₆ alkyl, arylC₁-C₆ alkoxy, aryloxyC₁-C₆ alkyl, arylC₁-C₆ alkoxyC₁-C₆ alkyl, heteroaryl, heteroarylC₁-C₆ alkyl, heteroarylC₁-C₆ alkoxy, the 0-3 substituted groups may be

selected from halo, NO₂, C₁-C₂ alkyl, C₁-C₂ haloalkyl, C₁-C₂ alkoxy or C₁-C₂ alkoxyC₁-C₂ alkyl, and groups having formula as follows:

wherein:

R₁₀ and R₁₁ are respectively selected from H, C₁-C₆ alkyl, aryl or arylC₁-C₆ alkyl; ~~when R₂, R₄, R₅, R₆, R₇, R₈ are all H, B is not NR₉~~

R₅ is selected from H, halo, CN, NO₂, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₂-C₆ alkynyl, C₁-C₆ haloalkyl, C₁-C₆ alkylcarbonyl, C₁-C₆ alkoxyC₁-C₆ alkyl, C₁-C₆ alkoxy carbonyl, C₁-C₆ alkoxy carbonylC₁-C₆ alkyl, C₁-C₆ haloalkoxyC₁-C₆ alkyl, or amino C₁-C₆ alkyl in which amino is substituted with 0-2 C₁-C₁₂ alkyl, 0-3 substituted groups of aryl, arylC₁-C₆ alkyl, aryloxyC₁-C₆ alkyl, arylC₁-C₆ alkoxyC₁-C₆ alkyl, heteroaryl, heteroarylC₁-C₆ alkyl, the 0-3 substituted groups may be selected from halo, NO₂, C₁-C₂ alkyl, C₁-C₂ haloalkyl, C₁-C₂ alkoxy or C₁-C₂ alkoxyC₁-C₂ alkyl, and groups having formula as follows:

wherein:

R₁₀ and R₁₁ are respectively selected from H, C₁-C₆ alkyl, aryl or arylC₁-C₆ alkyl.

3. (Currently amended) The benzopyrone compound according to the claim 2, characterized in that wherein general formula (I) wherein:

A is selected from CH or N;

B is selected from O or NH;

R₁ and R₂ are respectively selected from methyl;

R₃ is selected from H or methyl;

R₄, ~~R₅~~, R₆, R₇, and R₈ may be the same or different, respectively selected from H, halo, CN, NO₂, C₁-C₆ alkyl, C₂-C₆ alkenyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy, C₁-C₆ alkylcarbonyl,

C_1-C_6 alkoxy C_1-C_6 alkyl, C_1-C_6 alkoxycarbonyl, C_1-C_6 alkoxycarbonyl C_1-C_3 alkyl, C_1-C_3 haloalkoxy C_1-C_3 alkyl, or amino C_1-C_3 alkyl in which amino is substituted with 0-2 C_1-C_3 alkyl, phenyl, phenoxy, phenyl C_1-C_2 alkyl, phenyl C_1-C_2 alkoxy, phenoxy C_1-C_2 alkyl, phenylmethyl, phenylmethoxyl, or phenylmethoxy C_1-C_2 alkyl substituted with 0-2 halo, NO_2 , C_1-C_2 alkyl, C_1-C_2 haloalkyl, C_1-C_2 alkoxy or C_1-C_2 alkoxy C_1-C_2 alkyl, and the substituted group having general formula as follows:

,

wherein:

R_{10} and R_{11} are respectively selected from H or C_1-C_6 alkyl; ~~when $R_3, R_4, R_5, R_6, R_7,$~~ and ~~R_8 are all H, B is not NH~~

R_5 is selected from H, halo, CN, NO_2 , C_1-C_6 alkyl, C_2-C_6 alkenyl, C_1-C_6 haloalkyl, C_1-C_6 alkylcarbonyl, C_1-C_6 alkoxy C_1-C_6 alkyl, C_1-C_6 alkoxycarbonyl, C_1-C_6 alkoxycarbonyl C_1-C_3 alkyl, C_1-C_3 haloalkoxy C_1-C_3 alkyl, or amino C_1-C_3 alkyl in which amino is substituted with 0-2 C_1-C_3 alkyl, phenyl, phenyl C_1-C_2 alkyl, phenoxy C_1-C_2 alkyl, phenylmethyl or phenylmethoxy C_1-C_2 alkyl substituted with 0-2 halo, NO_2 , C_1-C_2 alkyl, C_1-C_2 haloalkyl, C_1-C_2 alkoxy or C_1-C_2 alkoxy C_1-C_2 alkyl, and the substituted group having general formula as follows:

wherein:

R_{10} and R_{11} are respectively selected from H or C_1-C_6 alkyl.

4. (Currently amended) The benzopyrone compound according to the claim 3, ~~characterized in that wherein general formula (I) wherein:~~

A is selected from CH or N;

B is selected from O or NH;

R_1 and R_2 are selected from methyl;

R_3 is selected from H or methyl;

R_4 , R_5 , R_6 , R_7 , and R_8 may be the same or different, respectively selected from H, Cl, Br, F, CN, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkylcarbonyl, C₁-C₆ alkoxy, C₁-C₆ alkoxyC₁-C₃ alkyl, C₁-C₃ haloalkoxyC₁-C₃ alkyl, amino C₁-C₃alkyl in which amino is substituted with 0-2 C₁-C₃ alkyl, phenyl, phenoxy, phenylmethyl, phenylmethoxyl, substituted with 0-2 halo, NO₂, C₁-C₂ alkyl, C₁-C₂ haloalkyl, C₁-C₂ alkoxy or C₁-C₂ alkoxyC₁-C₂ alkyl, and the substituted groups having general formula as follows:

wherein:

R_{10} and R_{11} are selected from methyl; ~~when R_3 , R_4 , R_5 , R_6 , R_7 , R_8 are all H, B is not NH~~

R_5 is selected from H, Cl, Br, F, CN, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkylcarbonyl, C₁-C₆ alkoxyC₁-C₃ alkyl, C₁-C₃ haloalkoxyC₁-C₃ alkyl, amino C₁-C₃alkyl in which amino is substituted with 0-2 C₁-C₃ alkyl, phenyl, phenoxy, phenylmethyl, substituted with 0-2 halo, NO₂, C₁-C₂ alkyl, C₁-C₂ haloalkyl, C₁-C₂ alkoxy or C₁-C₂ alkoxyC₁-C₂ alkyl, and the substituted groups having general formula as follows:

wherein:

R_{10} and R_{11} are selected from methyl.

5. (Currently amended) A preparation method of method for preparing a benzopyrone compounds, characterized in that: The compound of general formula (I) is prepared by reaction of which comprises reacting a Benzylhalide compound having general formula (II) (⊖) with a 7-OH-benzopyrone compound having general formula (III) (⊖) at the present of in the presence of a base:

wherein:

Z is leaving group selected from Cl or Br;

A is selected from CH or N;

B is selected from O or S O, or S NR₉; R₉ is selected from H or C₁-C₁₂ alkyl;

R₁ and R₂ are respectively selected from H, C₁-C₁₂ alkyl or C₁-C₁₂ haloalkyl;

R₃ is selected from H, C₁-C₁₂ alkyl, C₁-C₁₂ haloalkyl or C₁-C₁₂ alkoxy;

R₄, R₅, R₆, R₇, and R₈ may be the same or different, respectively selected from H, halo, CN, NO₂, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₁-C₁₂ haloalkyl, C₁-C₁₂ alkoxy, C₁-C₁₂ alkylthio, C₁-C₁₂ alkylsulfonyl, C₁-C₁₂ alkylcarbonyl, C₁-C₁₂ alkoxyC₁-C₁₂ alkyl, C₁-C₁₂ alkoxycarbonyl, C₁-C₁₂ alkoxycarbonylC₁-C₁₂ alkyl, C₁-C₁₂ haloalkoxyC₁-C₁₂ alkyl,

or amino C₁-C₁₂alkyl in which amino is substituted with 0-2 C₁-C₁₂ alkyl; 0-3 substituted groups of aryl, aryloxyl, arylC₁-C₁₂ alkyl, arylC₁-C₁₂ alkoxy, aryloxy C₁-C₁₂ alkyl, arylC₁-C₁₂ alkoxyC₁-C₁₂ alkyl, heteroaryl, heteroarylC₁-C₁₂ alkyl, or heteroaryl C₁-C₁₂alkoxyl, the 0-3 substituted groups may be selected from halo, NO₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆alkoxy or C₁-C₆ alkoxyC₁-C₆ alkyl, and the groups having general formula as follows:

wherein:

R₁₀ and R₁₁ are selected from H, C₁-C₁₂ alkyl, aryl or aryl C₁-C₁₂ alkyl; when R₂, R₄, R₅, R₆, R₇, and R₈ are all H, B is not NR₉

R₅ is selected from H, halo, CN, NO₂, C₁-C₁₂ alkyl, C₂-C₁₂ alkenyl, C₂-C₁₂ alkynyl, C₁-C₁₂ haloalkyl, C₁-C₁₂ alkylcarbonyl, C₁-C₁₂ alkoxyC₁-C₁₂ alkyl, C₁-C₁₂ alkoxycarbonyl, C₁-C₁₂ alkoxycarbonyl C₁-C₁₂ alkyl, C₁-C₁₂ haloalkoxyC₁-C₁₂ alkyl, or amino C₁-C₁₂alkyl in

which amino is substituted with 0-2 C₁-C₁₂ alkyl, 0-3 substituted groups of aryl, arylC₁-C₁₂ alkyl, aryloxyC₁-C₁₂ alkyl, arylC₁-C₁₂ alkoxyC₁-C₁₂ alkyl, heteroaryl or heteroarylC₁-C₁₂ alkyl, the 0-3 substituted groups may be selected from halo, NO₂, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₁-C₆ alkoxy or C₁-C₆ alkoxyC₁-C₆ alkyl, and the groups having general formula as follows:

wherein:

R₁₀ and R₁₁ are selected from H, C₁-C₁₂ alkyl, aryl or aryl C₁-C₁₂ alkyl.

6-8. (Canceled)

9. (New) A method of controlling insects which comprises applying the compound according to claim 1 to a plant.

10. (New) A method of controlling fungi which comprises applying the compound according to claim 1 to a plant.

11. (New) A fungicidal or insecticidal composition comprising the compound of claim 1 as an active ingredient, wherein the weight percentage of the active ingredient in the composition is from 0.1% to 99%.