CSC 225 SPRING 2016 ALGORITHMS AND DATA STRUCTURES I ASSIGNMENT 1 UNIVERSITY OF VICTORIA

1. Indicate for each pair of expressions (A,B) in the table below, whether A is O or Ω of B. Your answer should be in the form of a "yes" or "no" in each box.

A	В	О	Ω
$\ (\log n)^3$	$\mid n \mid$		
$ 2n^2 + 4n $	$4n^2$		
n!	2^n		
$\parallel n^5$	n^4		
100	100000		
$\parallel n^2$	$(1.5)^n$		

- 2. Order the following list of functions by the big-Oh notation. All logarithms are to the base 2. $6n \log n$, $\log \log n$, 2^{100} , 2^{2^n} , $3n^{0.5}$, $4^{\log n}$, $(\log n)^2$, n^3 , $\sqrt{\log n}$, 4^n
- 3. Solve Problem 1.4.6 on Page 208 in the textbook. It asks you to give the order of growth (as a function of N) of the running times for three code fragments.
- 4. Prove by Induction:

$$\sum_{i=1}^{n} (2i - 1) = n^2 \quad \forall n \ge 1$$

5. Prove by Induction:

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1} \quad \forall n \ge 1$$

6. An Array A contains n-1 unique integers in the range [0,n-1]. That is, there is one number in this range that is not in A. Describe in pseudo-code an O(n)-time algorithm for finding that number. You are only allowed to use $O(\log n)$ bits of additional space besides the array A itself.

1