Tipología y ciclo de vida. PRACTICA 2: LIMPIEZA Y VALIDACIÓN DE LOS DATOS

Edison Marcelo Muzo Oyana 2 de June, 2019

Contents

1	Descripción del dataset 1.2 Importancia y objetivos de los análisis	1 2
2.	Integración y selección de los datos de interés a analizar.	2
3.	Limpieza de los datos 3.1 Ceros o elementos vacíos	15
4.	Análisis de los datos. 4.1. Selección de los grupos de datos que se quieren analizar/comparar	36 38 41

1 Descripción del dataset

```
# Lectura de datos de entrenamiento y prueba.
data_path <- 'input'
train_file <- 'train.csv'
test_file <- 'test.csv'
gender_file <- 'gender_submission.csv'

train_data <- read.csv(paste(data_path, train_file, sep="/"), header = TRUE, stringsAsFactors = FALSE)
test_data <- read.csv(paste(data_path, test_file, sep="/"), header = TRUE, stringsAsFactors = FALSE)
#gender_data <- read.csv(paste(data_path, gender_file, sep="/"), header = TRUE, stringsAsFactors = FALSE)
# Conjunto de datos completo.
full_data <- bind_rows(train_data, test_data) # bind training & test_data</pre>
```

El conjunto de datos objeto de análisis se ha obtenido a partir Titanic que contiene datos sobre la supervivencia de pasajeros abordo del Titanic. Los datos se han dividido en dos grupos:

- 1. El conjunto de datos de entrenamiento (train.csv). Está constituido por 891 características (columnas) que presentan 12 pasajeros (filas o registros).
- 2. El conjunto de datos de pruebas (test.csv). Está constituido por 418 características (columnas) que presentan 11 pasajeros (filas o registros).

También se incluye un conjunto de predicciones (gender_submission.csv) que asumen que todos y solo las pasajeras mujeres sobreviven.

Los campos de este conjunto de datos son los siguientes:

Nombre de la Variable	Descripción	Valores
Survived	Survived (1) or died (0)	Survived (1) or died (0)
Pclass	Clase del Pasajero	1 = 1st, 2 = 2nd, 3 = 3rd
Name	Nombre del Pasajero	Caracteres
Sex	Sexo del Pasajero	female or male
Age	Edad del Pasajero	Numérico
SibSp	Número de hermanos / cónyuges a bordo	Numérico
Parch	Número de padres / hijos a bordo	Numérico
Ticket	Número del Ticket	Caracteres
Fare	Tarifa	Caracteres
Cabin	Cabina	Caracteres
Embarked	Puerto de embarque	C = Cherbourg, Q = Queenstown, S = Southampton

Para este trabajo se utilizan los **conjunto de datos entrenamiento** y **conjunto de datos pruebas** como un solo conjunto de datos. Por tanto, este conjunto de datos contiene 1309 registros y 12 características

Del análisis de los ficheros train.csv y test.csv podemos extraer la siguiente información:

- 1. Las columnas tienen nombres (nombres de las variables).
- 2. El separador de columnas es el carácter *coma* (,).
- 3. Las cadenas de caracteres están delimitadas por el carácter comilla doble (").
- 4. Algunas cadenas de caracteres tienen espacios en blanco al inicio y/o al final.
- 5. Los valores decimales tienen el separador decimal *punto* (.).
- 6. El resto de las columnas parecen ser números.

1.2 Importancia y objetivos de los análisis.

A partir de este conjunto de datos se plantea la problemática de determinar qué variables influyeron más sobre la supervivencia de los pasajeros abordo del Titanic. Además, se podrá proceder a crear modelos de aprendizaje automático que permitan predecir la supervivencia de una persona en función de sus características y contrastes de hipótesis que ayuden a identificar propiedades interesantes en las muestras que puedan ser inferidas con respecto a la población.

2. Integración y selección de los datos de interés a analizar.

En primer lugar, inspeccionamos el conjunto de datos sin ningún tipo de pre-procesamiento, para ello se utiliza la función sr().

```
# Visualizamos los datos cargados
str(full_data)
                    1309 obs. of 12 variables:
   'data.frame':
   $ PassengerId: int
                        1 2 3 4 5 6 7 8 9 10 ...
   $ Survived
                 : int
                        0 1 1 1 0 0 0 0 1 1 ...
   $ Pclass
                        3 1 3 1 3 3 1 3 3 2 ...
                 : int
##
   $ Name
                         "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)"
                 : chr
   $ Sex
                 : chr
                         "male" "female" "female" ...
##
                        22 38 26 35 35 NA 54 2 27 14 ...
   $ Age
                   num
                        1 1 0 1 0 0 0 3 0 1 ...
##
   $ SibSp
                 : int
                        0 0 0 0 0 0 0 1 2 0 ...
##
   $ Parch
                 : int
                         "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" ...
   $ Ticket
                 : chr
   $ Fare
##
                 : num
                        7.25 71.28 7.92 53.1 8.05 ...
##
   $ Cabin
                 : chr
                         "" "C85" "" "C123" ...
                        "S" "C" "S" "S" ...
   $ Embarked
                 : chr
```

De este conjunto de datos extraemos las siguientes conclusiones:

- 1. La característica PassengerId se puede eliminar del conjunto de datos ya que no contribuye a la supervivencia.
- 2. La característica Ticket también se puede eliminar del conjunto de datos ya que no parece contribuir a la supervivencia.
- 3. De la característica Name se puede extraer el título (por ejemplo, 'Miss', 'Mrs', etc) y el apellido de la familia y pueden aportar información adicional para determinar la supervivencia.
- 4. De la característica Cabina se pueden crear grupos según la letra inicial de la cabina y pueden aportar información adicional para determinar la supervivencia. En los casos que un valor tenga múltiples cabinas a proiri parecen compartir la misma letra y solo cambia el número de cambina, así que también nos quedamos con la primera letra.
- 5. De las características SibSp y Parch se puede combinar para obtener el tamaño de la familia y puede aportar información adicional para determinar la supervivencia.

El resto de características (Pclass,Sex,Age,SibSp,Parch,Fare y Embarked) del conjunto de datos serán considerados durante la realización de los análisis .

3. Limpieza de los datos

\$ Parch

El conjunto de datos (train + test) contiene 1309 registros y 12 variables. Los nombres de las características son: PassengerId, Survived, Pclass, Name, Sex, Age, SibSp, Parch, Ticket, Fare, Cabin, Embarked. Antes de comenzar con la tarea de la limpieza de los datos vamos a idetificar los **tipos de datos de variables**, para ello se puede usar las funciones str() o glimpse(). Para mostar esta información en forma de tabla que facilita el análisis, se utiliza la función sapply(dataset, class).

```
# Inspeccionamos la estructura del conjunto de datos
str(full data)
                    1309 obs. of 12 variables:
  'data.frame':
   $ PassengerId: int
                        1 2 3 4 5 6 7 8 9 10 ...
##
   $ Survived
                 : int
                        0 1 1 1 0 0 0 0 1 1 ...
   $ Pclass
                        3 1 3 1 3 3 1 3 3 2 ...
                 : int
   $ Name
                         "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)"
##
                 : chr
                         "male" "female" "female" "female" ...
##
   $ Sex
                 : chr
                        22 38 26 35 35 NA 54 2 27 14 ...
##
   $ Age
                 : num
                        1 1 0 1 0 0 0 3 0 1 ...
   $ SibSp
                 : int
##
                        0 0 0 0 0 0 0 1 2 0 ...
   $ Parch
                   int
                        "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" ...
##
   $ Ticket
                   chr
##
                        7.25 71.28 7.92 53.1 8.05 ...
   $ Fare
                         "" "C85" "" "C123" ...
##
   $ Cabin
                 : chr
                        "S" "C" "S" "S" ...
   $ Embarked
                 : chr
# Inspeccionamos el conjunto de datos
glimpse(full_data)
## Observations: 1,309
## Variables: 12
## $ PassengerId <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...
                 <int> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0,...
## $ Survived
## $ Pclass
                 <int> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3,...
## $ Name
                 <chr> "Braund, Mr. Owen Harris", "Cumings, Mrs. John Bra...
                 <chr> "male", "female", "female", "female", "male", "mal...
## $ Sex
## $ Age
                 <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58, 20, ...
## $ SibSp
                 <int> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4,...
```

<int> 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1,...

Variables	Clases
PassengerId	integer
Survived	integer
Pclass	integer
Name	character
Sex	character
Age	numeric
SibSp	integer
Parch	integer
Ticket	character
Fare	numeric
Cabin	character
Embarked	character

A la vista de los resultados anteriores se identifican las siguientes conversiones:

- La característica Survived debería ser un factor debido a que es cualitativa con dos valores: 1 y 0.
- La característica PClass debería ser un factor debido a que es cualitativa con tres valores: 1, 2 y 3.
- La característica Sex debería ser un factor debido a que es cualitativa con dos valores: male y female.
- La característica Embarked debería ser un factor debido a que es cualitativa con tres valores: C, Q, y S. Además, hay que cambiar los valores vacios a NA.
- En la característica Cabin hay que cambiar los valores vacios a NA.

Además, se requiere extraer información de las siguientes características:

- De la característica Name se extraer el título y el apellido de la familia.
- De la característica Cabina se extrae el grupo de la cabina.
- De las características SibSp y Parch se combinan para obtener el tamaño de la familia.

Conversiones

En primer lugar, convertimos a factores las características Survived, PClass, Sex y Embarked. Convertimos los valores vacíos a NA en las características Embarked y Cabin. Finalmente, visualizalos los tipos de las características para comprobar las conmversiones.

```
# Conversion a Factores
full_data$Survived <- as.factor(full_data$Survived)
full_data$Pclass <- as.factor(full_data$Pclass)
full_data$Sex <- as.factor(str_to_upper(str_trim(full_data$Sex)))
levels(full_data$Sex)

## [1] "FEMALE" "MALE"
levels(full_data$Sex) <- c("F", "M")
full_data$Embarked <- factor(full_data$Embarked, exclude = '')</pre>
```

```
# Conversion de vacios a NA.
full_data$Cabin <- str_trim(full_data$Cabin)</pre>
full_data$Cabin[full_data$Cabin == ''] <- NA
full_data$Ticket <- str_trim(full_data$Ticket)</pre>
full data$Ticket[full data$Ticket == ''] <- NA</pre>
# Mostratamos el resultado de las conversiones:
str(full_data)
## 'data.frame':
                   1309 obs. of 12 variables:
## $ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
## $ Survived : Factor w/ 2 levels "0","1": 1 2 2 2 1 1 1 1 2 2 ...
               : Factor w/ 3 levels "1","2","3": 3 1 3 1 3 3 1 3 3 2 ...
## $ Pclass
## $ Name
               : chr "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)"
                : Factor w/ 2 levels "F", "M": 2 1 1 1 2 2 2 2 1 1 ...
## $ Sex
## $ Age
                : num 22 38 26 35 35 NA 54 2 27 14 ...
## $ SibSp
                : int 1 1 0 1 0 0 0 3 0 1 ...
## $ Parch
                : int 000000120...
                : chr "A/5 21171" "PC 17599" "STON/O2. 3101282" "113803" ...
## $ Ticket
                : num 7.25 71.28 7.92 53.1 8.05 ...
## $ Fare
## $ Cabin
                : chr NA "C85" NA "C123" ...
## $ Embarked : Factor w/ 3 levels "C", "Q", "S": 3 1 3 3 3 2 3 3 3 1 ...
# Visualizamos la tabla
column_classes <- sapply(full_data, class)</pre>
data <- data.frame(Variables = names(column_classes)), Clases=unname(column_classes))</pre>
kable(data) %>%
   kable styling(bootstrap options = "striped", full width = F)
```

Variables	Clases
PassengerId	integer
Survived	factor
Pclass	factor
Name	character
Sex	factor
Age	numeric
SibSp	integer
Parch	integer
Ticket	character
Fare	numeric
Cabin	character
Embarked	factor

Después de estas tranformaciones tenemos las siguientes distribución de variables:

- Variables categoricas: Survived, Sex, Embarked, y Pclass.
- Variables numéricas continuas: Age, Fare.
- Varibales numéricas discretas: SibSp, Parch.
- Variables con caracteres: Name, Ticket y Cabin.
 - Name: Caracteres alfanuméricos.
 - Ticket: Mezcla de caracteres especiales y alfanuméricos.

- Cabin: Caracteres alfanuméricos.

Característica Nombre (Name)

La variable nombre del pasajero podemos dividirla en variables significativas adicionales que pueden alimentar predicciones o ser usadas en la creación de nuevas variables adicionales. Por ejemplo, el título del pasajero está contenido dentro de la variable de nombre del pasajero (Por ejemplo, 'Mr', 'Miss') y podemos usar el apellido para representar a las familias.

```
# Grab title from passenger names
full_data$Title <- gsub('(.*, )|(\\..*)', '', full_data$Name)</pre>
# Show title counts by sex
table(full data$Sex, full data$Title)
##
                           Dr Jonkheer Lady Major Master Miss Mlle Mme
##
       Capt Col Don Dona
##
     F
                            1
                                      0
                                           1
                                                 0
                                                         0
                                                            260
                                                                   2
                                                                            0 197
                                                 2
##
     М
          1
                   1
                                      1
                                           0
                                                        61
                                                              0
                                                                   0
                                                                        0 757
##
        Ms Rev Sir the Countess
##
     F
                 0
##
             0
##
     М
             8
                 1
# Titles with very low cell counts to be combined to "rare" level
rare_title <- c('Dona', 'Lady', 'the Countess','Capt', 'Col', 'Don',</pre>
                 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer')
# Also reassign mlle, ms, and mme accordingly
full data$Title[full data$Title == 'Mlle']
                                                     <- 'Miss'
full data$Title[full data$Title == 'Ms']
                                                     <- 'Miss'
full_data$Title[full_data$Title == 'Mme']
                                                     <- 'Mrs'
full_data$Title[full_data$Title %in% rare_title] <- 'Rare Title'</pre>
# Conversion a factor
full data$Title <- as.factor(full data$Title)</pre>
# Show title counts by sex again
table(full_data$Sex, full_data$Title)
##
##
       Master Miss Mr Mrs Rare Title
##
            0
               264
                      0 198
                                     25
##
           61
                 0 757
# Finally, grab surname from passenger name
full_data$Surname <- sapply(full_data$Name,</pre>
                       function(x) strsplit(x, split = '[,.]')[[1]][1])
# Conversion a factor
full_data$Surname <- as.factor(full_data$Surname)</pre>
```

Característica Tamaño de a familia.

Podemos combinar los valores de las características SibSp y Parch para crear una característica discreta con el tamaño de la variable FsizeD.

```
# Create a family size variable including the passenger themselves
full_data$Fsize <- full_data$SibSp + full_data$Parch + 1</pre>
```

Visualizamos la posible relación entre el tamaño de la familia y la suervivencia.

```
# Use ggplot2 to visualize the relationship between family size & survival
ggplot(full_data[1:891,], aes(x = Fsize, fill = factor(Survived))) +
geom_bar(stat='count', position='dodge') +
scale_x_continuous(breaks=c(1:11)) +
labs(x = 'Family Size') +
theme_few()
```


Dado los resultados anteriores, podemos observar que hay una penalización de supervivencia para los solteros y aquellos con un tamaño de familia superior a 4. Se puede discretizar esta variable en tres niveles, lo que será útil ya que hay comparativamente menos familias grandes.

```
# Discretize family size
full_data$FsizeD[full_data$Fsize == 1] <- 'singleton'
full_data$FsizeD[full_data$Fsize < 5 & full_data$Fsize > 1] <- 'small'
full_data$FsizeD[full_data$Fsize > 4] <- 'large'

full_data$FsizeD <- as.factor(full_data$FsizeD)

# Show family size by survival using a mosaic plot
mosaicplot(table(full_data$FsizeD, full_data$Survived), main='Family Size by Survival', shade=TRUE)</pre>
```

Family Size by Survival

Característica Cabina (Cabin)

De la variable cabina (**Cabine**) podemos extrear alguna información potencialmente útil. Para ello se va discretizar esta variable según la primera letra de la cabina. Existen registros donde la cabina tiene múltiples valores pero a priori en estos casos la letra inicial de la cabina es la misma variando el número.

Característica Ticket

De la variable cabina (**Ticket**) podemos extrear alguna información potencialmente útil. Varios pasajeros estan asociados a un ticket. Para ello se va eliminar caracteres no alfanuméricos y se tranformarán en factores sus valores.

```
# Eliminamos el punto y la barra inclinada
full_data$Ticket <- gsub('\\.|/|\\s', "", full_data$Ticket)</pre>
```

```
# Convertimos en facto
full_data$Ticket <- as.factor(full_data$Ticket)</pre>
```

3.1 Ceros o elementos vacíos

Para analizar los datos Nulo e incompletos visualizamos un resumen de los variables:

```
summary(full_data)
```

```
PassengerId
##
                    Survived
                               Pclass
                                            Name
                                                            Sex
                               1:323
                                                            F:466
##
    Min.
          :
               1
                    0
                        :549
                                        Length: 1309
##
    1st Qu.: 328
                        :342
                               2:277
                                                            M:843
                    1
                                        Class : character
   Median: 655
                    NA's:418
                               3:709
                                        Mode :character
##
   Mean
          : 655
##
    3rd Qu.: 982
##
   Max.
           :1309
##
##
         Age
                         SibSp
                                           Parch
                                                            Ticket
           : 0.17
##
                            :0.0000
                                              :0.000
                                                        CA2343 : 11
    Min.
                     Min.
                                       Min.
    1st Qu.:21.00
                     1st Qu.:0.0000
                                       1st Qu.:0.000
                                                        1601
                                       Median :0.000
##
    Median :28.00
                     Median :0.0000
                                                        CA2144 :
                                                                   8
##
    Mean
           :29.88
                            :0.4989
                                       Mean
                                              :0.385
                                                        3101295:
                                                                   7
                     Mean
##
    3rd Qu.:39.00
                     3rd Qu.:1.0000
                                       3rd Qu.:0.000
                                                        347077 :
                                                                   7
##
    Max.
           :80.00
                     Max.
                            :8.0000
                                       Max.
                                              :9.000
                                                        347082 :
                                                                   7
    NA's
           :263
##
                                                        (Other):1261
##
         Fare
                          Cabin
                                           Embarked
                                                              Title
##
           : 0.000
   Min.
                       Length: 1309
                                           C
                                               :270
                                                                  : 61
                                                       Master
    1st Qu.: 7.896
                       Class : character
                                           Q
                                               :123
                                                       Miss
                                                                  :264
   Median: 14.454
                       Mode :character
                                               :914
                                                                  :757
##
                                           S
                                                       Mr
##
    Mean
           : 33.295
                                           NA's: 2
                                                       Mrs
                                                                  :198
##
    3rd Qu.: 31.275
                                                       Rare Title: 29
           :512.329
##
   Max.
##
    NA's
           :1
##
         Surname
                          Fsize
                                              FsizeD
                                                              Deck
##
   Andersson:
                11
                      Min.
                             : 1.000
                                        large
                                                  : 82
                                                         С
                                                                   94
  Sage
                      1st Qu.: 1.000
                                        singleton:790
                                                         В
                                                                   65
                 11
   Asplund
                 8
                      Median : 1.000
                                        small
                                                 :437
                                                         D
                                                                   46
             :
                             : 1.884
                                                         Ε
                                                                   41
## Goodwin
                  8
                      Mean
## Davies
                  7
                      3rd Qu.: 2.000
                                                                   22
                                                         Α
                                                         (Other):
##
    Brown
                  6
                      Max.
                             :11.000
                                                                   27
##
    (Other)
            :1258
                                                         NA's
                                                                :1014
# Visualizar numero de nulos en las variables.
mv_colnames <- colSums(is.na(full_data))</pre>
mv_colnames <- mv_colnames[mv_colnames > 0]
data <- data.frame(Variables = names(mv_colnames), Missing=unname(mv_colnames))</pre>
kable(data) %>%
    kable_styling(bootstrap_options = "striped", full_width = F)
```

Variables	Missing
Survived	418
Age	263
Fare	1
Cabin	1014
Embarked	2
Deck	1014

Las variables de interes que tienen valores perdidos ordendas de mayor a menor son: Cabin > Age > Embarked.

Característica Embarque

Visualizamos los datos que tienen valores perdidos en la variable Embarque (Embarked).

```
# Passengers 62 and 830 are missing Embarkment
miss_embark_index <- which(is.na(full_data$Embarked))
miss_embark <- full_data[miss_embark_index,]
miss_embark</pre>
```

```
##
       PassengerId Survived Pclass
                                                                          Name
## 62
                62
                          1
                                                           Icard, Miss. Amelie
## 830
               830
                          1
                                  1 Stone, Mrs. George Nelson (Martha Evelyn)
##
       Sex Age SibSp Parch Ticket Fare Cabin Embarked Title Surname Fsize
## 62
         F
           38
                         0 113572
                                     80
                                          B28
                                                  <NA> Miss
                                                                Icard
## 830
                         0 113572
         F
           62
                   0
                                     80
                                          B28
                                                   <NA>
                                                                Stone
                                                                          1
                                                          Mrs
          FsizeD Deck
## 62 singleton
## 830 singleton
```

Podemos inferir sus valores de embarque en función de los datos actuales que podamos imaginar que pueden ser relevantes: clase de pasajero y tarifa. Se observa que ambos pagaron \$ 80 y estaban en la clase 1.

```
# Get rid of our missing passenger IDs
embark_fare <- full_data %>%
   filter(!is.na(Embarked))

# Use ggplot2 to visualize embarkment, passenger class, & median fare
ggplot(embark_fare, aes(x = Embarked, y = Fare, fill = factor(Pclass))) +
   geom_boxplot() +
   geom_hline(aes(yintercept=80),
        colour='red', linetype='dashed', lwd=2) +
   scale_y_continuous(labels=dollar_format()) +
   theme_few()
```


Dado los resultados anteriores, se observa que la tarifa mediana para un pasajero de 1ra clase que sale de Charbourg ('C') coincide muy bien con los \$ 80 pagados por los pasajeros con valores perdidos en el embarque. Por tanto, podemos asignarles el vamore 'C'.

```
# Since their fare was $80 for 1st class, they most likely embarked from 'C'
full_data$Embarked[miss_embark_index] <- 'C'

# Comprobamos el resultado
sum(is.na(full_data$Embarked))</pre>
```

[1] 0

Característica Tarifa

Visualizamos los datos que tienen valores perdidos en la variable Tarifa (Fare).

```
# Show row 1044
miss_fare_index <- which(is.na(full_data$Fare))
miss_fare <- full_data[miss_fare_index,]
miss_fare</pre>
```

```
##
        PassengerId Survived Pclass
                                                    Name Sex Age SibSp Parch
## 1044
               1044
                         <NA>
                                                            M 60.5
                                                                       0
                                   3 Storey, Mr. Thomas
##
        Ticket Fare Cabin Embarked Title Surname Fsize
                                                             FsizeD Deck
## 1044
          3701
                 NA
                      <NA>
                                  S
                                        Mr
                                           Storey
                                                       1 singleton <NA>
```

El pasajero esta asignado a la tercera clase que partió de Southampton ("S"). Visualizamos las tarifas entre todos los demás que comparten su clase y embarque (n = 495).

```
# Get rid of our missing passenger IDs
pclass_embark <- full_data %>%
  filter(Pclass == '3' & Embarked == 'S')

ggplot(pclass_embark,
  aes(x = Fare)) +
  geom_density(fill = '#99d6ff', alpha=0.4) +
  geom_vline(aes(xintercept=median(Fare, na.rm=T)),
     colour='red', linetype='dashed', lwd=1) +
  scale_x_continuous(labels=dollar_format()) +
  theme_few()
```


Dado los resultados obtenidos, parece bastante razonable reemplazar el valor perdido de la tarifa por la mediana de su clase y embarque, que es de \$ 8.05.

```
# Replace missing fare value with median fare for class/embarkment
full_data$Fare[miss_fare_index] <- median(full_data[full_data$Pclass == '3' & full_data$Embarked == 'S'
# Comprobamos el resultado
sum(is.na(full_data$Fare))
## [1] 0
str(full_data)
## 'data.frame': 1309 obs. of 17 variables:
## $ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
## $ Survived : Factor w/ 2 levels "0","1": 1 2 2 2 1 1 1 1 2 2 ...</pre>
```

```
$ Pclass
                 : Factor w/ 3 levels "1", "2", "3": 3 1 3 1 3 3 1 3 3 2 ...
   $ Name
##
                 : chr "Braund, Mr. Owen Harris" "Cumings, Mrs. John Bradley (Florence Briggs Thayer)"
  $ Sex
                 : Factor w/ 2 levels "F", "M": 2 1 1 1 2 2 2 2 1 1 ...
##
                 : num 22 38 26 35 35 NA 54 2 27 14 ...
##
  $ Age
##
   $ SibSp
                 : int 1101000301...
                 : int 000000120 ...
##
  $ Parch
                 : Factor w/ 929 levels "110152","110413",...: 720 816 906 66 650 374 110 542 478 175 ...
   $ Ticket
##
   $ Fare
                 : num 7.25 71.28 7.92 53.1 8.05 ...
##
   $ Cabin
                 : chr NA "C85" NA "C123" ...
                : Factor w/ 3 levels "C", "Q", "S": 3 1 3 3 3 2 3 3 3 1 ...
##
  $ Embarked
  $ Title
                 : Factor w/ 5 levels "Master", "Miss", ...: 3 4 2 4 3 3 3 1 4 4 ...
                 : Factor w/ 875 levels "Abbing", "Abbott",..: 101 183 335 273 16 544 506 614 388 565 ...
##
  $ Surname
##
   $ Fsize
                 : num 2 2 1 2 1 1 1 5 3 2 ...
                 : Factor w/ 3 levels "large", "singleton", ...: 3 3 2 3 2 2 2 1 3 3 ...
## $ FsizeD
   $ Deck
                 : Factor w/ 8 levels "A", "B", "C", "D", ...: NA 3 NA 3 NA NA 5 NA NA NA ...
```

Característica Edad

4

4

5

4

Age

Age

1 Age Deck

Deck

Deck

##

##

Finalmente, la variable Edad (**Age**) tiene bastantes valores perdidos. Para calcular los valores perdidos se utiliza un modelo de predicción de edades basado en otras variables.

```
## [1] ""
# Make variables factors into factors
# Set a random seed
set.seed(129)
# Perform mice imputation, excluding certain less-than-useful variables:
mice mod <- mice(full data[, !names(full data) %in% c('PassengerId', 'Name', 'Ticket', 'Cabin', 'Family', 'S
##
##
    iter imp variable
##
            Age
                 Deck
##
         2
                 Deck
     1
            Age
##
         3
     1
            Age
                 Deck
##
         4
     1
            Age
                 Deck
##
     1
         5
            Age
                 Deck
##
     2
         1
            Age
                 Deck
##
     2
         2
            Age
                 Deck
##
     2
         3 Age
                 Deck
##
     2
         4 Age
                 Deck
##
     2
         5
            Age
                 Deck
##
     3
         1
            Age
                 Deck
##
     3
         2
           Age
                 Deck
##
     3
         3 Age
                 Deck
##
     3
         4
            Age
                 Deck
##
     3
         5
                 Deck
            Age
##
     4
         1
            Age
                 Deck
##
     4
         2
            Age
                 Deck
##
     4
         3
                 Deck
            Age
```

```
##
     5
             Age
                   Deck
##
     5
          3
             Age
                   Deck
##
             Age
                   Deck
     5
##
          5
             Age
                   Deck
# Save the complete output
mice_output <- complete(mice_mod)</pre>
```

Comparamos los resultados de la distribución original de la edad con los del modelo.

11/11

```
## [1] ""

# Plot age distributions
par(mfrow=c(1,2))
hist(full_data$Age, freq=F, main='Age: Original Data',
    col='darkgreen', ylim=c(0,0.04))
hist(mice_output$Age, freq=F, main='Age: MICE Output',
    col='lightgreen', ylim=c(0,0.04))
```


Dado los resultados anteriores, se observa una leve mejora en la distribución. Por tanto, se remplaza los datos originales de la edad con los obtenidos con el modelo mice.

```
## [1] ""
# Replace Age variable from the mice model.
full_data$Age <- mice_output$Age</pre>
```

```
# Show new number of missing Age values
sum(is.na(full_data$Age))
```

[1] 0

3.2. Identificación y tratamiento de valores extremos

Los valores extremos o **outliers** son aquellos que parecen no ser congruentes sin los comparamos con el resto de los datos. Para identificarlos se representará un diagrama de caja por cada variable y ver qué valores distan mucho del rango intercuartílico (la caja), para ello se utilizará la función boxplots.stats().

Así, se mostrarán sólo los valores atípicos para variables cuantitativas: Age, Fare, SibSp, Parch, y Fsize.

```
# Visualizamos boxplot
boxplot(full_data$Age, main="Box plot", col="gray")
```

Box plot

boxplot.stats(full_data\$Age)\$out

```
## [1] 66.0 65.0 71.0 70.5 65.0 66.0 65.0 64.0 65.0 71.0 64.0 80.0 70.0 70.0 ## [15] 74.0 67.0 76.0 64.0 64.0 64.0 64.0
```

Para los resultados de la característica **Edad**, si si revisamos de forma aleatoria los datos de los pasajeros se comprueba que los valores extremos están un rango normal. Por ejemplo, ningúno es menor que cero o mayor que 100. Un pasajero con 100 años viajando es poco usual. Por tanto, son valores que perfectamente pueden darse.

```
# Visualizamos boxplot
boxplot(full_data$Fare, main="Box plot", col="gray")
```

Box plot

boxplot.stats(full data\$Fare)\$out

```
80.0000
                                                                83.4750
         71.2833 263.0000 146.5208 82.1708
                                              76.7292
##
##
         73.5000 263.0000 77.2875 247.5208
                                              73.5000
                                                      77.2875
                                                                79.2000
##
         66.6000 69.5500 69.5500 146.5208
                                              69.5500 113.2750
                                                                76.2917
    [15]
##
    [22]
         90.0000 83.4750
                           90.0000
                                    79.2000
                                              86.5000 512.3292
                                                                79.6500
##
    [29] 153.4625 135.6333
                           77.9583
                                    78.8500
                                              91.0792 151.5500 247.5208
    [36] 151.5500 110.8833 108.9000
##
                                    83.1583 262.3750 164.8667 134.5000
##
         69.5500 135.6333 153.4625 133.6500
                                              66.6000 134.5000 263.0000
    [43]
    [50]
         75.2500
                 69.3000 135.6333
                                    82.1708 211.5000 227.5250
                                                                73.5000
    [57] 120.0000 113.2750
##
                           90.0000 120.0000 263.0000 81.8583
                                                                89.1042
##
         91.0792 90.0000
                           78.2667 151.5500
                                              86.5000 108.9000
                                                                93.5000
##
    [71] 221.7792 106.4250
                           71.0000 106.4250 110.8833 227.5250
                                                                79.6500
                 79.6500 79.2000
                                    78.2667 153.4625 77.9583
##
    [78] 110.8833
                                                                69.3000
##
    [85]
         76.7292 73.5000 113.2750 133.6500
                                             73.5000 512.3292
                                                                76.7292
    [92] 211.3375 110.8833 227.5250 151.5500 227.5250 211.3375 512.3292
##
         78.8500 262.3750
                           71.0000
                                    86.5000 120.0000
                                                      77.9583 211.3375
  [106]
         79.2000 69.5500 120.0000
                                    93.5000
                                              80.0000
                                                      83.1583
##
                                                                69.5500
         89.1042 164.8667
                            69.5500
                                    83.1583
                                              82.2667 262.3750
   [113]
                                                                76.2917
  [120] 263.0000 262.3750 262.3750 263.0000 211.5000 211.5000 221.7792
         78.8500 221.7792 75.2417 151.5500 262.3750
  Γ127]
                                                      83.1583 221.7792
## [134]
         83.1583 83.1583 247.5208
                                    69.5500 134.5000 227.5250
                                                               73.5000
## [141] 164.8667 211.5000
                           71.2833
                                    75.2500 106.4250 134.5000 136.7792
## [148]
         75.2417 136.7792
                           82.2667
                                     81.8583 151.5500
                                                       93.5000 135.6333
                           79.2000
## [155] 146.5208 211.3375
                                     69.5500 512.3292
                                                       73.5000
                                                                69.5500
## [162] 69.5500 134.5000 81.8583 262.3750 93.5000
                                                      79.2000 164.8667
```

```
## [169] 211.5000 90.0000 108.9000
```

```
# Use ggplot2 to visualize Pclass, passenger class, & median fare
ggplot(full_data, aes(x = Pclass, y = Fare)) +
  geom_boxplot() +
  geom_hline(aes(yintercept=80),
    colour='red', linetype='dashed', lwd=2) +
  scale_y_continuous(labels=dollar_format()) +
  theme_few()
```


Para los resultados de la característica **Tarifa**, si revisamos de forma aleatoria los datos de los pasajeros se comprueba que los valores extremos estan asociados a un mismo ticket en un clase de pasejero especifica. Mientras mejor es la clase y mayor es el número de pasajeros, más alta es la tarifa. Por tanto, son valores que perfectamente pueden darse.

```
boxplot(full_data$SibSp, main="Box plot", col="gray")
```

Box plot

boxplot.stats(full_data\$SibSp)\$out

boxplot(full_data\$Parch, main="Box plot", col="gray")

Box plot

boxplot.stats(full data\$Parch)\$out

Para los resultados de las características **Número de hermanos / cónyuges a bordo (SibSp)** y **Número de padres / hijos a bordo(Parch)**; si revisamos de forma aleatoria los datos de los pasajeros se comprueba que los valores extremos están un rango normal. Por ejemplo, ningúno es menor que cero o mayor que 15. Una familia con más de 20 indiviuos viajando junto es poco habitual. Por tanto, son valores que perfectamente pueden darse.

2.3. Exportación de los datos preprocesados

Volvemos a revisar las características un vez más.

summary(full_data)

```
Survived
     PassengerId
                                Pclass
                                            Name
                                                            Sex
                                1:323
                                        Length: 1309
                                                            F:466
##
    Min.
          :
               1
                        :549
##
    1st Qu.: 328
                    1
                        :342
                                2:277
                                        Class : character
                                                            M:843
                                        Mode
    Median: 655
                    NA's:418
                                3:709
                                              :character
```

```
: 655
##
    Mean
##
    3rd Qu.: 982
##
    Max.
            :1309
##
##
          Age
                          SibSp
                                             Parch
                                                               Ticket
##
            : 0.17
                              :0.0000
                                                 :0.000
                                                          CA2343 :
    Min.
                      Min.
                                         Min.
                                                                     11
                                         1st Qu.:0.000
    1st Qu.:21.00
                      1st Qu.:0.0000
##
                                                          1601
##
    Median :28.00
                      Median : 0.0000
                                         Median :0.000
                                                          CA2144:
                                                                       8
##
    Mean
            :29.74
                      Mean
                              :0.4989
                                         Mean
                                                 :0.385
                                                          3101295:
                                                                       7
##
    3rd Qu.:38.00
                      3rd Qu.:1.0000
                                         3rd Qu.:0.000
                                                          347077 :
                                                                       7
##
    Max.
            :80.00
                      Max.
                              :8.0000
                                         Max.
                                                :9.000
                                                          347082 :
##
                                                           (Other):1261
##
          Fare
                           Cabin
                                             Embarked
                                                               Title
                                                       Master
##
    Min.
              0.000
                        Length: 1309
                                             C:272
    1st Qu.:
              7.896
                        Class : character
                                             Q:123
                                                                  :264
##
                                                       Miss
##
    Median: 14.454
                        Mode :character
                                             S:914
                                                       Mr
                                                                   :757
##
    Mean
            : 33.276
                                                       Mrs
                                                                   :198
    3rd Qu.: 31.275
                                                       Rare Title: 29
##
    Max.
            :512.329
##
##
          Surname
                           Fsize
                                                FsizeD
                                                                 Deck
##
                                                            C
                                                                       94
    Andersson:
                 11
                       Min.
                               : 1.000
                                          large
                                                    : 82
                       1st Qu.: 1.000
##
    Sage
                                          singleton:790
                                                           В
                                                                       65
              :
                 11
                                                           D
##
    Asplund
              :
                  8
                       Median: 1.000
                                          small
                                                    :437
                                                                       46
                                                           Ε
##
    Goodwin
                  8
                       Mean
                               : 1.884
                                                                       41
##
    Davies
                  7
                       3rd Qu.: 2.000
                                                            Α
                                                                       22
##
                  6
                                                                       27
    Brown
                       Max.
                               :11.000
                                                            (Other):
              :1258
    (Other)
                                                           NA's
                                                                   :1014
```

De la información anterior se concluye:

- La variable PassengerId se puede eliminarse del conjunto de datos ya que no contribuye a la supervivencia.
- La variable Name se puede eliminar debido a que extraído su información en las caracteristicas Title y Surname.
- La variable Cabin se puede eliminar debido a que extraído su información en la Deck.
- La variable Fsize se puede eliminar debido a que uso como una combinación SibSp y Parch.

Se seleccionan las siguientes características: Age, Sex, SibSp, Parch, Pclass, Fare, Ticket, Title, Surname, Deck, y FSizeD.

```
# Seleccion de caracteristicas de interes
cleaning_full_data <- select(full_data, -PassengerId, -Name, -Cabin, -Fsize)</pre>
# Visualizamos los datos limpios:
summary(cleaning_full_data)
##
    Survived
               Pclass
                                      Age
                        Sex
                                                      SibSp
##
    0
        :549
                1:323
                        F:466
                                 Min.
                                        : 0.17
                                                         :0.0000
```

1 :342 2:277 M:843 1st Qu.:21.00 1st Qu.:0.0000 ## NA's:418 3:709 Median :28.00 Median :0.0000 ## Mean :29.74 Mean :0.4989 ## 3rd Qu.:38.00 3rd Qu.:1.0000 ## :8.0000 Max. :80.00 Max. ## ## Parch Ticket Fare Embarked

```
##
   1st Qu.:0.000
                     1601 :
                                8
                                    1st Qu.: 7.896
                                                        Q:123
##
   Median :0.000
                     CA2144 :
                                8
                                    Median: 14.454
                                                        S:914
                     3101295:
##
   Mean
           :0.385
                                7
                                    Mean
                                            : 33.276
##
    3rd Qu.:0.000
                     347077 :
                                7
                                     3rd Qu.: 31.275
           :9.000
                     347082 :
##
   {\tt Max.}
                                7
                                    Max.
                                            :512.329
##
                     (Other):1261
##
           Title
                           Surname
                                              FsizeD
                                                              Deck
##
              : 61
                      Andersson: 11
                                                  : 82
                                                                   94
   Master
                                        large
                                                         C
##
   Miss
               :264
                      Sage
                                  11
                                        singleton:790
                                                         В
                                                                    65
##
   {\tt Mr}
              :757
                      Asplund
                                    8
                                        small
                                                  :437
                                                         D
                                                                   46
                               :
              :198
                                                         Ε
##
   Mrs
                      Goodwin
                                    8
                                                                   41
##
   Rare Title: 29
                      Davies
                                    7
                                                                   22
                                                         Α
##
                      Brown
                                    6
                                                         (Other): 27
##
                      (Other) :1258
                                                         NA's
                                                                 :1014
# Split the data back into a train set and a test set
cleaning_train_data <- cleaning_full_data[1:nrow(train_data),]</pre>
cleaning_test_data <- cleaning_full_data[(nrow(train_data) + 1):nrow(full_data),]</pre>
# Exportación de los datos limpios en .csv
output_path <- 'output'
cleaning_train_file <- 'cleaning_train.csv'</pre>
cleaning_test_file <- 'cleaning_test.csv'</pre>
cleaning_test_file <- 'cleaning_full.csv'</pre>
write.csv(cleaning_train_data, paste(output_path, cleaning_train_file, sep = '/'), quote = FALSE, row.n
write.csv(cleaning_test_data, paste(output_path, cleaning_test_file, sep = '/'), quote = FALSE, row.nam
write.csv(cleaning_full_data, paste(output_path, cleaning_test_file, sep = '/'), quote = FALSE, row.nam
```

: 0.000

Min.

C:272

Dividimos el conjunto de datos limpio en dos conjuntos:

- El conjunto de datos de entrenamiento limpio se almacena en el fichero cleaning_train.csv y está constituido por 891 características y 12 pasajeros.
- El conjunto de datos de pruebas limpio se almacena en el fichero cleaning_full.csv y está constituido por 418 características y 11 pasajeros.

4. Análisis de los datos.

:0.000

##

Min.

CA2343 : 11

4.1. Selección de los grupos de datos que se quieren analizar/comparar

Para esta apartado solamente se consideranlos datos del conjunto de entrenamiento debido a que tiene el campo _Supervivencia__ con valores.

```
# Inspeccionamos los datos de entrenamiento.
str(cleaning_train_data)
  'data.frame':
                    891 obs. of 13 variables:
   $ Survived: Factor w/ 2 levels "0","1": 1 2 2 2 1 1 1 1 2 2 ...
   $ Pclass : Factor w/ 3 levels "1", "2", "3": 3 1 3 1 3 3 1 3 3 2 ...
##
   $ Sex
              : Factor w/ 2 levels "F", "M": 2 1 1 1 2 2 2 2 1 1 ...
   $ Age
              : num 22 38 26 35 35 26 54 2 27 14 ...
##
   $ SibSp
              : int
                     1 1 0 1 0 0 0 3 0 1 ...
##
   $ Parch
              : int
                     0 0 0 0 0 0 0 1 2 0 ...
## $ Ticket : Factor w/ 929 levels "110152", "110413",...: 720 816 906 66 650 374 110 542 478 175 ...
```

```
## $ Fare : num 7.25 71.28 7.92 53.1 8.05 ...
## $ Embarked: Factor w/ 3 levels "C","Q","S": 3 1 3 3 3 2 3 3 3 1 ...
## $ Title : Factor w/ 5 levels "Master","Miss",..: 3 4 2 4 3 3 3 1 4 4 ...
## $ Surname : Factor w/ 875 levels "Abbing","Abbott",..: 101 183 335 273 16 544 506 614 388 565 ...
## $ FsizeD : Factor w/ 3 levels "large","singleton",..: 3 3 2 3 2 2 2 1 3 3 ...
## $ Deck : Factor w/ 8 levels "A","B","C","D",..: NA 3 NA 3 NA NA 5 NA NA NA ...
```

De las caracteristicas del conjunto de de entrenamiento nos interesa analizar las variables cuantitativas Agey Fare; y las variables cuantitativas Sex, Pclass, Title, FSizeD y Deck. En principio descartaremos las variables cuantitativas SibSp yParch debido a que estan discretizadas en la variable cuantitativa FSizeD; y también las variables Ticket y Surname debido a que tienen demasiados valores.

Para analizar estas variables empleareamos diagramas de histogramas para las variables cuantitativas y diagramas de barras para las variables cualitativas en función de la supervivencia.

```
#filtered_mydate <- select(mydata, Age, SibSp, Parch, Fare)

ggplot(cleaning_train_data, aes(x = Fare, fill = Survived)) +
    geom_histogram() +
    theme_few()</pre>
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
ggplot(cleaning_train_data, aes(x = Age, fill = Survived)) +
    geom_histogram() +
    theme_few()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
ggplot(cleaning_train_data, aes(x = Sex, fill = Survived)) +
    geom_bar(position=position_dodge()) +
    theme_few()
```



```
ggplot(cleaning_train_data, aes(x = Pclass, fill = Survived)) +
   geom_bar(position=position_dodge()) +
   theme_few()
```



```
ggplot(cleaning_train_data, aes(x = Title, fill = Survived)) +
  geom_bar(position=position_dodge()) +
  theme_few()
```



```
ggplot(cleaning_train_data, aes(x = FsizeD, fill = Survived)) +
  geom_bar(position=position_dodge()) +
  theme_few()
```



```
ggplot(cleaning_train_data, aes(x = Deck, fill = Survived)) +
  geom_bar(position=position_dodge()) +
  theme_few()
```



```
ggplot(cleaning_train_data, aes(x = Embarked, fill = Survived)) +
  geom_bar(position=position_dodge()) +
  theme_few()
```


De las gráficas anteriores se concluye que las características Age,Sex, Fare y Pclass parecen tener influyen en la supervivencia. Por tanto, compararemos como la edad y el sexo influyen en la supervicencia.

```
# Mostramos la relacion entre la Edad y la Supervivencia según el sexo del pasajero
ggplot(cleaning_train_data, aes(Age, fill = Survived)) +
  geom_histogram() +
  facet_grid(.~Sex) +
  theme_few()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# Mostramos la relacion entre la Edad y la Supervivencia según la clase del pasajero
ggplot(cleaning_train_data, aes(Age, fill = Survived)) +
  geom_histogram() +
  facet_grid(.~Pclass) +
  theme_few()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# Mostramos la relacion entre la Edad y la Supervivencia según la clase del pasajero
ggplot(cleaning_train_data, aes(Fare, fill = Survived)) +
  geom_histogram() +
  facet_grid(.~Sex) +
  theme_few()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# Mostramos la relacion entre la Edad y la Supervivencia según la clase del pasajero
ggplot(cleaning_train_data, aes(Fare, fill = Survived)) +
  geom_histogram() +
  facet_grid(.~Pclass) +
  theme_few()
```

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# Mostramos la relacion entre el Tamaño de la familia y la Supervivencia según el sexo del pasajero
ggplot(cleaning_train_data, aes(x = FsizeD, fill = Survived)) +
  geom_bar(position=position_dodge()) +
  facet_grid(.~Sex) +
  theme_few()
```



```
# Mostramos la relacion entre el Embarque y la Supervivencia según el sexo del pasajero
ggplot(cleaning_train_data, aes(Embarked, fill = Survived)) +
  geom_bar(position=position_dodge()) +
  facet_grid(.~Sex) +
  theme_few()
```



```
# Mostramos la relacion entre la Cubierta y la Supervivencia según el sexo del pasajero
ggplot(cleaning_train_data, aes(Deck, fill = Survived)) +
  geom_bar(position=position_dodge()) +
  facet_grid(.~Sex) +
  theme_few()
```


4.2. Comprobación de la normalidad y homogeneidad de la varianza.

Para revisar si las variables pueden ser candidatas a la normalización miramos las graficas de quantile-quantile plot y el histograma.

```
par(mfrow=c(2,2))
for(i in 1:ncol(cleaning_train_data[,i])) {
    if (is.numeric(cleaning_train_data[,i])) {
        qqnorm(cleaning_train_data[,i],main = paste("Normal Q-Q Plot for ",colnames(cleaning_train_data)[i]
        qqline(cleaning_train_data[,i],col="red")
        hist(cleaning_train_data[,i],
            main=paste("Histogram for ", colnames(cleaning_train_data)[i]),
        xlab=colnames(cleaning_train_data)[i], freq = FALSE)
    }
}
```


Histogram for SibSp

Histogram for Parch


```
alpha = 0.05
col.names = colnames(cleaning_train_data)
for (i in 1:ncol(cleaning_train_data)) {
   if (i == 1) cat("Variables que no siguen una distribución normal:\n")
   if (is.integer(cleaning_train_data[,i]) | is.numeric(cleaning_train_data[,i])) {
      p_val = ad.test(cleaning_train_data[,i])$p.value
      if (p_val < alpha) {
            # Format output
            if (i < ncol(cleaning_train_data) - 1) cat(", ")
            if (i \%% 3 == 0) cat("\n")
            }
    }
}</pre>
```

```
## Variables que no siguen una distribución normal:
## , , ,
## ,
```

4.3. Aplicación de pruebas estadísticas para comparar los grupos de datos.

En primer lugar, procedemos a realizar un análisis de correlación entre las distintas variables para determinar cuáles de ellas ejercen una mayor influencia sobre la supervivencia.

```
# Calculamos la correlacion
cleaning_train_data$Survived <- as.numeric(cleaning_train_data$Survived)
cleaning_train_data$Pclass <- as.numeric(cleaning_train_data$Pclass)</pre>
```

```
cleaning_train_data$Ticket <- as.numeric(cleaning_train_data$Ticket)</pre>
cleaning_train_data$Sex <- as.numeric(cleaning_train_data$Sex)</pre>
cleaning_train_data$Embarked <- as.numeric(cleaning_train_data$Embarked)</pre>
cleaning_train_data$Title <- as.numeric(cleaning_train_data$Title)</pre>
cleaning_train_data$Surname <- as.numeric(cleaning_train_data$Surname)</pre>
cleaning_train_data$FsizeD <- as.numeric(cleaning_train_data$FsizeD)</pre>
#cleaning_train_data$Deck <- as.numeric(cleaning_train_data$Deck)</pre>
cleaning_train_data <- select_if(cleaning_train_data, is.numeric)</pre>
cormat <- round(cor(cleaning_train_data),2)</pre>
head(cormat)
            Survived Pclass
                            Sex
                                    Age SibSp Parch Ticket Fare Embarked
## Survived 1.00 -0.34 -0.54 -0.07 -0.04 0.08 -0.17 0.26
                                                                    -0.17
## Pclass
              -0.34 1.00 0.13 -0.36 0.08 0.02 0.32 -0.55
                                                                     0.17
              -0.54 0.13 1.00 0.11 -0.11 -0.25 0.06 -0.18
## Sex
                                                                     0.12
## Age
              -0.07 -0.36 0.11 1.00 -0.30 -0.21 -0.10 0.09
                                                                    -0.02
              -0.04 0.08 -0.11 -0.30 1.00 0.41 0.07 0.16
## SibSp
                                                                   0.07
               0.08
                     0.02 -0.25 -0.21 0.41 1.00 0.02 0.22
## Parch
                                                                   0.04
##
            Title Surname FsizeD
## Survived -0.07 -0.06
                          0.28
## Pclass -0.18
                     0.05 - 0.25
## Sex
            0.06
                     0.02 -0.17
                    0.03 0.03
           0.49
## Age
## SibSp
           -0.21 -0.02 -0.15
           -0.12 -0.04 -0.06
## Parch
melted cormat <- melt(cormat)</pre>
head(melted_cormat)
##
         Var1
                 Var2 value
## 1 Survived Survived 1.00
## 2
      Pclass Survived -0.34
## 3
         Sex Survived -0.54
## 4
          Age Survived -0.07
## 5
       SibSp Survived -0.04
       Parch Survived 0.08
ggplot(data = melted_cormat, aes(Var2, Var1, fill = value))+
 geom tile(color = "white")+
 scale_fill_gradient2(low = "blue", high = "red", mid = "white",
   midpoint = 0, limit = c(-1,1), space = "Lab",
  name="Pearson\nCorrelation") +
  theme minimal()+
 theme(axis.text.x = element_text(angle = 45, vjust = 1,
    size = 12, hjust = 1))+
 coord_fixed()
```


ggpairs(cleaning_train_data)

- 5. Representación de los resultados a partir de tablas y gráficas.
- 6. Resolución del problema.