

Applying Gaussian Low Pass & High Pass filters

```
from scipy.ndimage import gaussian_filter

X_train = np.array([gaussian_filter(image, sigma = 1) for image in X_train])
X_test = np.array([gaussian_filter(image, sigma = 1) for image in X_test])
```

```
X_train = np.array([image - gaussian_filter(image, sigma = 1) for image in X_train])
X_test = np.array([image - gaussian_filter(image, sigma = 1) for image in X_test])
```

Takes average over the nearby pixels (sigma = # of contributing pixels)

High Pass

Low Pass

RGB

Grey

High Pass

Low Pass

Grey

RGB

Averaging | cv.blur

```
X_train = np.array([cv2.blur(image, (3,3)) for image in X_train])
X_test = np.array([cv2.blur(image, (3,3)) for image in X_test])
```

```
X_train = np.array([image - cv2.blur(image, (3,3)) for image in X_train])
X_test = np.array([image - cv2.blur(image, (3,3)) for image in X_test])
```

Convolutes an image with a normalized box filter of specified size

$$K = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

gaussian_filter

frog truck truck automobile deer automobile bird ship horse

cv2.blur

gaussian_filter

cv2.blur

Original

High Pass

Low Pass

Accuracy: 0.7815 Loss: 0.6574

Accuracy: 0.6684 Loss: 0.9668

Accuracy: 0.7389 Loss: 0.7620

Accuracy: 0.7782 Loss: 0.6643

Accuracy: 0.6949 Loss: 0.9119

Accuracy: 0.7482 Loss: 0.7404

RGB

Grey

GREYSCALE

Original

High Pass

Low Pass

	High Pass Greyscale Network Confusion Matrix										
i	airplane	682	16	55	31	44	7	15	27	88	35
	automobile airplane	13	852	4	4	6	6	3	1	17	94
1	pird	78	6	418	71	213	93	48	40	17	16
8	cat	22	20	41		120	155	56	58	19	48
ual	deer	33	6	35	43	681	31	32	99	9	31
Actual	gob	8	8	30	145	90	591	17	89	5	17
	frog	22	28	21	65	156	26	631	16	16	19
1	horse	9	3	18	33	71	60	5	766	7	28
	ship	92	49	13	13	14	5	9	9	726	70
	truck	12	63	3	10	9	1	4	12	28	858
		airplane a	automobile	bird	cat	_{deer} Pred	_{dog} icted	frog	horse	ship	truck

Low Pass Greyscale Network Confusion Matrix												
airplane	762	12	57	14	35	6	10	8	65	31		
automobile airplane	14	846	4	4	6	1	16	0	17	92		
bird	55	5		44	112	37	61	13	16	1		
cat	26	7	89	532	92	102	83	29	15	25		
ual	10	3	91	35	745	19	60	29	7	1		
Actual dog der	8	5	75	185	67		46	41	16	7		
frog	6	7	49	50	31	7	828	0	13	9		
horse	16	3	48	39	87	36	10	741	7	13		
ship	30	17	13	16	14	2	9	3	880	16		
fruck	27	61	5	17	8	4	11	9	21	837		
	airplane automobile bird cat deer dog frog horse ship truck Predicted											

RGB

Original

High Pass

Low Pass

	High Pass Color Network Confusion Matrix											
airplane	669	11	65	14	47	5	23	16	125	25		
automobile airplane	16	801	3	9	5	5	16	4	48	93		
pid	61	4	473	57	192	67	85	29	25	7		
ŧ	19	4	58	459	134	135	105	45	26	15		
Actual g deer	15	3	44	29	742	29	50	59	16	13		
Acl	10	2	58	164	93	534	31	85	15	8		
frog	14	6	26	61	100	14	753	4	18	4		
horse	8	0	23	31	107	52	14	750	9	6		
ship	65	19	18	11	10	3	12	8	829	25		
fruck	18	42	10	12	10	3	6	14	47	838		
	airplane a	automobile	bird	cat	deer Pred	dog icted	frog	horse	ship	truck		

	Low Pass Color Network Confusion Matrix											
airplane	808	18	28	14	13	1	4	6	69	39		
automobile airplane	6	915	4	9	1	2	4	0	12	47		
pid	77	6	641	45	101	42	50	21	11	6		
ŧĕ	28	10	81	571	60	132	58	28	16	16		
Actual	32	3	75	58	722	25	35	41	5	4		
Aci dog	21	3	62	180	47	608	19	46	5	9		
frog	12	9	53	53	44	16	794	5	7	7		
horse	19	4	42	46	56	45	4	770	3	11		
ship	54	27	11	8	5	5	4	2	863	21		
fruck	29	104	9	17	6	6	3	10	16	800		
airplane automobile bird cat deer dog frog horse ship Predicted									ship	truck		

FFT

Image Processing in the Frequency Domain

The **Fourier Transform** is used to decompose an image into its sine and cosine

components.

Theory

- A Fast Fourier Transform (FFT) is used for calculation of 2D Discrete Fourier Transform (DFT) which is used to find the frequency domain.
- When working with image data, the edge points represent the high frequencies, since the amplitude of a signal varies drastically at that point.

Mask size

Changing mask size allows for regulation of the filtered frequencies, basically controls the range of frequencies that are removed. All values either inside or outside the desired radius are zeroed.

Original Image

Low-pass filtered image

High-pass filtered image

Why is it useful?

- Frequency domain gives you control over the whole images, where you can enhance (eg edges) and suppress (eg smooth shadow) different characteristics of the image very easily.
- Frequency domain has a established suit of processes and tools that be borrowed directly from signal processing in other domains.
- Some tools used for even image recognition such as correlation, convolution etc are much simpler and computationally cheaper in frequency domain.

More FT fun facts

The dot product of x and y within the Fourier domain is the convolution of the Fourier domains of x and y.

In 2D, the Fourier operation costs $O(N^2 \log N^2)=O(N^2 \log N)$. Usually, the filter $w \in \mathbb{R}^n \times \mathbb{R}^$

Researchers have reported significant reductions in training time ($55s \rightarrow 0.4s!!!$) with an improved $O(N^2K^2) \rightarrow O(N^2 \log N)$ convolution step.

$$x * y = F_N(F_N^{-1}(x) \bullet F_N^{-1}(y))$$