Conjecture C. Let p be an odd prime. If $\ell_0 \geq 3$, then there is a generator g of \mathbb{F}_p^{\times} such that the diagonal equation

$$(2) g^2 X^{\ell_0} + gY^{\ell_0} + 1 = 0$$

is solvable over \mathbb{F}_p .

The formulation in Conjecture \mathbb{C} has the advantage that the number of \mathbb{F}_p -rational solutions to Equation (2) can be computed in terms of certain character sums which have been well studied in number theory. By establishing valid cases in Conjecture \mathbb{C} we also obtain the cases where Conjecture \mathbb{B} as well as Conjecture \mathbb{A} are true. Therefore, by studying the solvability of Equation (2) over \mathbb{F}_p , we are able to provide new results to the construction of optimal CACs.

Motivated by Conjecture \mathbb{C} instead of working on the diagonal equations as (2) over the prime field \mathbb{F}_p and the specific exponent ℓ_0 , we will look at general situations by taking the base field to be a finite extension of \mathbb{F}_p and the exponent in the equation is allowed to be more general than ℓ_0 . Let q be a prime power and ℓ be a proper divisor of q-1. We consider the solvability of the following diagonal equation

$$g^2 X^{\ell} + g Y^{\ell} + 1 = 0$$

over a finite field \mathbb{F}_q of q elements, where g is a generator of the multiplicative group \mathbb{F}_q^{\times} of \mathbb{F}_q . In view of Conjecture \mathbb{C} we're interested in whether or not there exists a generator g such that Equation (3) has a \mathbb{F}_q -rational solution. However, the answer can be false for divisors of q-1 other than ℓ_0 . For example, in the case where $(q,\ell)=(13,6),(23,11)$ there does not exist any generator of \mathbb{F}_q^{\times} such that (3) has a \mathbb{F}_q -rational solution. On the other hand, as a consequence of our main result below, Equation (3) does have a \mathbb{F}_q -rational solution for some generator g of \mathbb{F}_q^{\times} provided that $q \geq 19$ if $\ell = 6$ and $q \geq 322$ if $\ell = 11$. Our first main result is to give a lower bound for q such that Equation (3) has a \mathbb{F}_q -rational solution for some generator g of \mathbb{F}_q^{\times} .

Theorem A (= Theorem 4.3). Let q be a prime power and let ℓ be a proper divisor of q-1. If

$$q \ge (2^{\omega(\ell)}(\ell - 3 - \delta) + 2)^2 - 2$$

where $\omega(\ell)$ is the number of distinct prime divisors of ℓ and

$$\delta = \begin{cases} 1 & if 4 \mid \ell, \\ 0 & otherwise, \end{cases}$$

then there is a generator g of \mathbb{F}_q^{\times} such that Equation (3) is solvable over \mathbb{F}_q .

Remark 1.2. It follows from the Hasse-Weil bound (see Theorem 1) that the number of \mathbb{F}_q -rational solutions to Equation (3) is bounded below by $q+1-2\mathfrak{g}_\ell\sqrt{q}$ where $\mathfrak{g}_\ell=(\ell-1)(\ell-2)/2$ is the genus of the curve defined by (3) over \mathbb{F}_q . As a result, Equation (3) has a \mathbb{F}_q -rational solution for any $g\in\mathbb{F}_q^\times$ provided that $q>(\ell-1)^2(\ell-2)^2$. It is reasonable to expect that this lower bound can be improved under the weaker condition given in