JLX240-00301-BN 使用说明书

(插接式 FPC)

目 录

序号	内 容 标 题	页码
1	概述	2
2	特点	2
3	外形及接口引脚功能	3~4
4	基本原理	4
5	技术参数	4~5
6	时序特性	5~6
7	指令功能及硬件接口与编程案例	7~末页

电话: 0755-29784961 Http://www.jlxlcd.cn 1

1. 概述

晶联讯电子专注于液晶屏及液晶模块的研发、制造。所生产 JLX240-00301 型 TFT 模块由于使 用方便、显示清晰,广泛应用于各种人机交流面板。

JLX**240-00301** 可以显示 320 列*240 行点阵彩色图片,或显示 20 个/行*15 行 16*16 点阵的汉 字,或显示40个/行*30行8*8点阵的英文、数字、符号。

2. JLX240-00301 图像型点阵 TFT 模块的特性

- 2.1结构轻、薄、带背光。
- 2.2 IC 采用 ST7789V, 功能强大, 稳定性好
- 2.3 显示内容:
 - ●320*240 点阵彩色图片;
 - ●可选用 32*32 点阵或其他点阵的图片来自编汉字,按照 32*32 点阵汉字来计算可显示 10 个字/行*7 行。
 - ●可选用 16*16 点阵或其他点阵的图片来自编汉字,按照 16*16 点阵汉字来计算可显示 20 个字/行*15 行。
- 2.4 指令功能强: 例如可以用指令控制显示内容顺时针旋转 90、逆时针旋转 90°或倒立竖放。

3. 外形尺寸及接口引脚功能

图 1. 带背光的 TFT 模块外形尺寸

模块的接口引脚功能

∇ H)) ∇ H \int I W	ヤークリ HC		
引线号	符号	名 称	功 能
1	GND	接地	OV
2	VDD	供电电源正极	供电电源正极
3	D7	I/0	数据总线 DB7
4	D6	I/0	数据总线 DB6
5	D5	I/0	数据总线 DB5
6	D4	I/0	数据总线 DB4
7	D3	I/0	数据总线 DB3
8	D2	I/0	数据总线 DB2
9	D1	I/0	数据总线 DB1
10	DO	I/0	数据总线 DBO
11	SDA	串行数据	串行数据
12	E(/RD)	读	读功能
13	R/W (/WR)	写	并口:写功能;串口:做为 RS 功能使用
14	DC (RS)	寄存器选择信号	并口: H:数据寄存器 L:指令寄存器;串口:串行时钟 SCK
15	CS	片选	低电平片选
16	RST	复位	低电平复位,复位完成后,回到高电平,TFT 模块开始工作
17	IM1	IM1	IM1=0 选择并口,IM1=1 选择串口
18	IM2	IM2	IM2=0 选择并口,IM2=1 选择串口
19	LEDA	背光电源正极	接 3.0V (接 3.3V 串 10 欧电阻,接 5.0V 串 51 欧电阻)
20	LEDK	背光电源负极	接 VSS

表 1: 模块的接口引脚功能

4. 基本原理

4. 1TFT 屏(LCD)

在 LCD 上排列着 320×240 点阵, 320 个列信号与驱动 IC 相连, 240 个行信号也与驱动 IC 相连, IC 邦定在 LCD 玻璃上(这种加工工艺叫 COG).

4.2 背光参数

该型号 TFT 模块带 LED 背光源。它的性能参数如下:

工作温度:-20∽+70°C; 存储温度:-30∽+80°C;

背光板是白色。

正常工作电流为: 32∽80mA (LED 灯数共 4 颗, 每颗灯是 10~20 mA)

工作电压: 3.0V (接 3.3V 串 10 欧电阻,接 5.0V 串 51 欧电阻)

5. 技术参数

5.1 最大极限参数(超过极限参数则会损坏 TFT 模块)

名称	符号		单位		
		最小			
电路电源	VDD - VSS	-0.3	3.0	3. 3	V
工作温度		-20		+70	$^{\circ}\mathbb{C}$

储存温度	-30	+80	$^{\circ}\mathbb{C}$

表 2: 最大极限参数

5.2 直流 (DC) 参数

名 称	符号	测试条件			单位	
			MIN	TYPE	MAX	
工作电压	VDD		2.4	_	3. 3	V
背光工作电压	VLED		2.9	3.0	3. 1	V
输入高电平	V _{IHC}	_	0.8xVDD	_	VDD	V
输入低电平	V _{ILC}	_	VSS	_	0.2xVDD	V
输出高电平	VOHC	$I_{OH} = -0.5 \text{mA}$	0.8xVDD	_	VDD	V
输出低电平	VOHC	$I_{OL} = -0.5 \text{mA}$	VSS	_	0.2xVDD	V
模块工作电流	$\mathbf{I}_{ ext{DD}}$	VDD = 3.3V	_		0.3	mA
背光工作电流	I LED	V LED=3. OV	32	60	80	mA

表 3: **直流(DC)参数**

6. 读写时序特性

图 2. 8080 时序图

6.1 时序要求 (AC 参数):

表 4.

项 目	符号	测试条件		极限值		单位
			MIN	TYPE	MAX	
地址保持时间	AO	Taht	10	_	_	
地址建立时间	AU	Tast	0	_	_	
芯片选择 " 高 " <mark>脉冲宽度</mark>		Тснw	0			

电话: 0755-29784961 Http://www.jlxlcd.cn 5

深圳市品联讯由子	TFT 模块	ILX240-00301-BN	际十	2020-05-27
/ **		11 X /4U=UU3U1=BN	H/V /IX •	/11/11-117-//

芯片选择建立时间(写)	CS	Tcs	15		
芯片选择建立时间(读)		Trcs	45		
芯片选择保持时间		Тсѕн	10		
写周期		Twc	66		ns
控制脉冲"高"持续时间	WR	Twrh	15		
控制脉冲"低"持续时间	WIL	Twrl	15		
芯片选择保持时间	RD	Тсѕн	10		
读周期	ΚD	Trc	160		
控制脉冲"高"持续时间		Trdh	90		
控制脉冲"低"持续时间		Trdl	45		
数据建立时间		Tost	10		
数据保持时间	D7-D0	Тонт	10		
读取时间	טע זע	Trat		40	
输出禁用时间		Торн	20	80	

VDD=3.3V Ta=25℃

6.2 电源启动后复位的时序要求(RESET CONDITION AFTER POWER UP):

图 3: 电源启动后复位的时序

表 5: 电源启动后复位的时序要求

VDD=3.3V, Ta = 25℃

		****** *******************************	~		,	
项 目	符号	测试条件			单位	
			MIN	TYPE	MAX	
复位时间	tr				120	ms
复位保持低电平的时间	trw	引脚: RES	10			us

7. 指令功能:

7.1 指令表

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
NOP	0	1	1	-	0	0	0	0	0	0	0	0	(00h)	No operation
SWRESET	0		1	-	0	0	0	0	0	0	0	1	(01h)	Software reset
	0	↑	1	-	0	0	0	0	0	1	0	0	(04h)	Read display ID
	1	1	↑	-	-	-	-	-	-	-	-	-		Dummy read
RDDID	1	1	↑	-	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10		ID1 read
	1	1	↑	-	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20		ID2 read
	1	1	↑	-	ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30		ID3 read
	0	•	1		0	0	0	0	1	0	0	1	(09h)	Read display
	U	←	-	ı	O	O	U	U	'	U	O	•	(0911)	status
	1	1	↑	1	1	ı	-	-	-	-	ı	1		Dummy read
RDDST	1	1	†	-	BSTON	MY	MX	MV	ML	RGB	МН	ST24		1
	1	1	↑	1	ST23	IFPF2	IFPF1	IFPF0	IDMON	PTLON	SLOUT	NORON		-
	1	1		-	ST15	ST14	INVON	ST12	ST11	DISON	TEON	GCS2		-
	1	1	↑	-	GCS1	GCS0	TEM	ST4	ST3	ST2	ST1	ST0		-
	0	→	1	-	0	0	0	0	1	0	1	0	(0Ah)	Read display
RDDPM	U	_	•	,	0	0	U	0	'	Ü	•	0	(UAII)	power
KDDFW	1	1	↑	-	-	1	-	-	-	-	-	-		Dummy read
	1	1	↑	-	BSTON	IDMON	PTLON	SLPOUT	NORON	DISON	0	0		
RDD	0	←	1	ı	0	0	0	0	1	0	1	1	(0Bh)	Read display
MADCTL	1	1	↑	ı	1	ı	-	-	-	-	ı	1		Dummy read
WADCIE	1	1	↑	ı	MY	MX	MV	ML	RGB	MH	0	0		-
	0	→	1	-	0	0	0	0	1	1	0	0	(0Ch)	Read display
RDD	U	_	'	,	U	0	U	U	'	'	0	U	(UCII)	pixel
COLMOD	1	1	↑	-	-	1	-	-	-	-	-	-		Dummy read
	1	1	↑	ı	0	D6	D5	D4	0	D2	D1	D0		-
	0	→	1	-	0	0	0	0	1	1	0	1	(0Dh)	Read display
RDDIM	0		'	_	U	Ü	Ů	Ü	'	'	Ü	'	(ODII)	image
Kobiwi	1	1	↑	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	↑	-	VSSON	0	INVON	0	0	GC2	GC1	GC0		-
RDDSM	0	←	1	-	0	0	0	0	1	1	1	0	(0Eh)	Read display
. LODOW			'	-	J				,	,		J	(ULII)	signal
	1	1	↑	-	-	ı	-	-	-	-	-	-		Dummy read

Ⅱ基[®] 深圳市晶联讯电子 TFT 模块 JLX240-00301-BN

版本: 2020-05-27

WRX D17-8 D/CX RDX D7 D6 D3 D2 D1 D0 Instruction D5 D4 Hex Function **TEON** TEM 0 0 0 0 0 1 1 0 Read display 0 **†** 1 0 0 0 0 1 1 1 1 (0Fh) self-diagnostic **RDDSDR** result 1 1 Dummy read \uparrow 1 1 D7 D6 0 0 0 0 0 0 SLPIN 0 1 0 0 0 1 0 0 0 0 (10h) **†** Sleep in **SLPOUT** 0 1 0 0 0 0 0 (11h) 0 1 1 Sleep out **PTLON** 0 1 1 0 0 0 1 0 0 1 0 (12h) Partial mode on Partial off NORON 0 0 0 0 0 0 (13h) 1 1 1 1 (Normal) Display inversion (20h) **INVOFF** 0 1 1 0 0 1 0 0 0 0 0 Display inversion INVON 0 1 0 0 1 0 0 0 0 1 (21h) 1 on 0 1 0 0 0 0 0 0 (26h) Display inversion 1 1 1 **GAMSET** 1 1 0 0 0 0 GC3 GC2 GC1 GC₀ on DISPOFF 1 0 0 0 0 0 1 (28h)Display off DISPON 0 **†** 1 0 0 1 0 0 0 (29h) Display on _ 1 1 Column address 0 (2Ah) 1 1 set XS14 1 1 XS15 XS13 XS12 XS11 XS10 XS9 XS8 X address start: CASET 1 1 XS7 XS6 XS5 XS4 XS3 XS2 XS1 XS₀ $0 \le XS \le X$ 1 1 1 1 XE15 XE14 XE13 XE12 XE11 XE10 XE9 XE8 X address start: $S \le XE \le X$ XE5 1 1 XE7 XE6 XE4 XE3 XE2 XE₁ XE₀ 0 1 0 0 1 0 0 1 (2Bh) Row address set **†** 1 1 1 **YS15** YS14 **YS13** YS12 YS11 YS10 YS9 YS8 Y address start: **† RASET** 1 $0\!\leq\! YS\!\leq\! Y$ 1 **†** YS7 YS6 YS5 YS4 YS3 YS2 YS1 YS0 1 1 YE15 **YE14** YE13 YE12 1 YE11 YE₁₀ YE9 YE8 Y address start: YE5 1 1 YF7 YE6 YF4 YE3 YE2 YE1 YF0 $S \le YE \le Y$ 0 1 0 0 1 0 1 0 0 (2Ch) Memory write 1 D1[17:8] D1[7] D1[6] D1[5] D1[4] D1[3] D1[2] D1[1] D1[0] 1 1 1 **RAMWR** 1 Dx[17:8] Dx[7] Dx[6] Dx[5] Dx[4] Dx[3] Dx[2] Dx[1] Dx[0] Write data 1 1 Dn[17:8] Dn[7] Dn[6] Dn[5] Dn[3] Dn[1] 1 1 Dn[4] Dn[2] Dn[0] RAMRD 0 1 1 0 0 0 1 1 1 0 (2Eh) Memory read

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1	D1[17:8]	D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]		
	1	1	1	Dx[17:8]	Dx[7]	Dx[6]	Dx[5]	Dx[4]	Dx[3]	Dx[2]	Dx[1]	Dx[0]		Read data
	1	1	1	Dn[17:8]	Dn[7]	Dn[6]	Dn[5]	Dn[4]	Dn[3]	Dn[2]	Dn[1]	Dn[0]		
	0		1		0	0	1	1	0	0	0	0	(30h)	Partial sart/end
	U	1		-	U	U	'	'	U	U	U	U	(3011)	address set
	1	1	1	-	PSL15	PSL14	PSL13	PSL12	PSL11	PSL10	PSL9	PSL8		Partial start
PTLAR	1	↑	1	-	PSL7	PSL6	PSL5	PSL4	PSL3	PSL2	PSL1	PSL0		address: (0,
					1 327	1 020	1 020	1 024	1 020	1 322	1 OLI	1 320		1,2,P)
	1	1	1	-	PEL15	PEL14	PEL13	PEL12	PEL11	PEL10	PEL9	PEL8		Partial end
	1	1	1	_	PEL7	PEL6	PEL5	PEL4	PEL3	PEL2	PEL1	PEL0		address (0, 1,2,
		'												3, , P)
	0	1	1	-	0	0	1	1	0	0	1	1	(33h)	Vertical scrolling
		Ċ											` '	definition
	1	1	1	-	TFA15	TFA14	TFA13	TFA12	TFA11	TFA10	TFA9	TFA8		
VSCRDEF	1	1	1	-	TFA7	TFA6	TFA5	TFA4	TFA3	TFA2	TFA1	TFA0		
	1	1	1	-	VSA15	VSA14	VSA13	VSA12	VSA11	VSA10	VSA9	VSA8		
	1	1	1	-	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0		
	1	1	1	-	BFA15	BFA14	BFA13	BFA12	BFA11	BFA10	BFA9	BFA8		
	1	1	1	-	BFA7	BFA6	BFA5	BFA4	BFA3	BFA2	BFA1	BFA0		
TEOFF	0	1	1	_	0	0	1	1	0	1	0	0	(34h)	Tearing effect
	Ů	'											(0)	line off
TEON	0	1	1	_	0	0	1	1	0	1	0	1	(35h)	Tearing effect
								-					(221)	line on
	1	1	1	-	-	-	-	-	-	-	-	TEM		
	0	1	1	_	0	0	1	1	0	1	1	0	(36h)	Memory data
MADCTL		'									-	_	(22)	access control
	1	1	1	-	MY	MX	MV	ML	RGB	0	0	0		-
	0	↑	1	_	0	0	1	1	0	1	1	1	(37h)	Vertical scrolling
VSCRSADD	Ĺ	,			-		·	-					(3.1.1.)	start address
	1	1	1	-	VSP15	VSP14	VSP13	VSP12	VSP11	VSP10	VSP9	VSP8		
	1	1	1	-	VSP7	VSP6	VSP5	VSP4	VSP3	VSP2	VSP1	VSP0		
IDMOFF	0	1	1	-	0	0	1	1	1	0	0	0	(38h)	Idle mode off
IDMON	0	1	1	-	0	0	1	1	1	0	0	1	(39h)	Idle mode on

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
COLMOD	0	↑	1	-	0	0	1	1	1	0	1	0	(3Ah)	Interface pixel
	1	1	1	-	0	D6	D5	D4	0	D2	D1	D0		Interface format
	0	1	1	-	0	0	1	1	1	1	0	0	(3Ch)	Memory write continue
RAMWRC	1	1	1	D1[17:8]	D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]		
	1	1	1	Dx[17:8]	Dx[7]	Dx[6]	Dx[5]	Dx[4]	Dx[3]	Dx[2]	Dx[1]	Dx[0]		Write data
	1	1	1	Dn[17:8]	Dn[7]	Dn[6]	Dn[5]	Dn[4]	Dn[3]	Dn[2]	Dn[1]	Dn[0]		
	0	1	1	-	0	0	1	1	1	1	1	0	(3Eh)	Memory read continue
RAMRDC	1	1	1	-	-	-	-	-	-	-	-	-		Dummy Read
NAMINDE	1	1	1	D1[17:8]	D1[7]	D1[6]	D1[5]	D1[4]	D1[3]	D1[2]	D1[1]	D1[0]		
	1	1	1	Dx[17:8]	Dx[7]	Dx[6]	Dx[5]	Dx[4]	Dx[3]	Dx[2]	Dx[1]	Dx[0]		
	1	1	1	Dn[17:8]	Dn[7]	Dn[6]	Dn[5]	Dn[4]	Dn[3]	Dn[2]	Dn[1]	Dn[0]		
	0	1	1	-	0	1	0	0	0	1	0	0	(44h)	Set tear scanline
TESCAN	1	1	1	-	N15	N14	N13	N12	N11	N10	N9	N8		
	1	1	1	-	N7	N6	N5	N4	N3	N2	N1	N0		
	0	1	1	-	0	1	0	0	0	1	0	1	(45h)	Get scanline
RDTESCAN	1	1	1	-	-	-	-	-	-	-	-	-		Dummy Read
The recording	1	1	1	-	-	-	-	-	-	-	N9	N8		
	1	1	1	-	N7	N6	N5	N4	N3	N2	N1	N0		
WDDIeby	0	1	1	-	0	1	0	1	0	0	0	1	(51h)	Write display
WRDISBV	1	1	1	-	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0		brightness
RDDISBV	0	1	1	-	0	1	0	1	0	0	1	0	(52h)	Read display
KDDISBV	1	1	↑	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1	-	DBV7	DBV6	DBV5	DBV4	DBV3	DBV2	DBV1	DBV0		
WRCTRLD	0	1	1	-	0	1	0	1	0	0	1	1	(53h)	Write CTRL display
	1	1	1	-	0	0	BCTRL	0	DD	BL	0	0		
RDCTRLD	0	1	1	-	0	1	0	1	0	1	0	0	(54h)	Read CTRL value dsiplay
	1	1	↑	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	↑	-	0	0	BCTRL	0	DD	BL	0	0		

■■■■ 深圳市晶联讯电子 TFT 模块 JLX240-00301-BN 版本: 2020-05-27

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
														Write content
WRCACE														adaptive
	0	1	1	-	0	1	0	1	0	1	0	1	(55h)	brightness
														control and Color
														enhancemnet
	1	↑	1	-	CECTRL	0	CE1	CE0	0	0	C1	C0		
														Read content
	0	↑	1	_	0	1	0	1	0	1	1	0	(56h)	adaptive
RDCABC	0	-	'	-	0	'	0	'	0	'	'	0	(3011)	brightness
RDCABC														control
	1	1	↑	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	↑	-	0	CECTRL	0	0	0	0	C1	C0		
														Write CABC
WRCABCMB	0	1	1	-	0	1	0	1	1	1	1	0	(5Eh)	minimum
														brightness
	1	1	1	-	CMB7	CMB6	CMB5	CMB4	CMB3	CMB2	CMB1	CMB0		
														Read CABC
	0	1	1	-	0	1	0	1	1	1	1	1	(5Fh)	minimum
RDCABCMB														brightness
	1	1	1	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	↑	-	CMB7	CMB6	CMB5	CMB4	CMB3	CMB2	CMB1	CMB0		
														Read Automatic
														Brightness
	0	1	1	-	0	1	1	0	1	0	0	0	(68h)	Control
RDABCSDR														Self-Diagnostic
No no obt														Result
	1	1	↑	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	↑	-	D7	D6	0	0	0	0	0	0		-
RDID1	0		1	-	1	1	0	1	1	0	1	0	(DAh)	Read ID1
	1	1	↑	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	↑	-	ID17	ID16	ID15	ID14	ID13	ID12	ID11	ID10		Read parameter
	0	1	1	-	1	1	0	1	1	0	1	1	(DBh)	Read ID2
RDID2	1	1	↑	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1	-	ID27	ID26	ID25	ID24	ID23	ID22	ID21	ID20		Read parameter
RDID3	0		1	-	1	1	0	1	1	1	0	0	(DCh)	Read ID3

Http://www.jlxlcd.cn 电话: 0755-29784961

」L×® 深圳市晶联讯电子 TFT 模块 JL<u>X240-00301-BN</u> 版本: 2020-05-27

Instruction	D/CX	WRX	RDX	D17-8	D7	D6	D5	D4	D3	D2	D1	D0	Hex	Function
	1	1	↑	-	-	-	-	-	-	-	-	-		Dummy read
	1	1	1		ID37	ID36	ID35	ID34	ID33	ID32	ID31	ID30		Read parameter

7.2 初始化方法

用户所编的显示程序,开始必须进行初始化,否则模块无法正常显示,过程请参考程序

点亮液晶模块的步骤

硬件准备:

开发板(或专门设计的主板)、单片 机、电源、连接线、仿真器或程序下 载器(又名烧录器)

根据说明书正确地与开发板连接,连 接的线包括:液晶模块电源线、背光电源线、10端口(接口) 10端口包括: 并口时: CS、RESET 、 RW、E、RS、DO--D7, 串口时: CS、SCLK、SDA、RESET、RS

编写软件

背光给合适的直流电可以点亮,但液晶 屏里面没有程序,只给电不能让液晶屏显示(我们通常说"点亮"),程序须另外编写,并烧录(下载)到单片机里 液晶模块才能工作。

7.3 原理图

7.3 原连图			
20PIN			
GND	1	VSS	
	2	VDD	
VDD	3	D7	
D7	4	D6	
D6	5	D5	
D5			
D4	6	D4	
D3	7	D3	
D2	8	D2	
D1	9	D1	
D0	10	D0	$\{\mathbf{R}\}$
SDA	11		W
	12	RD	
RD W	13	WR	
WR	14	RS	
DC	15	CS	
CS	16	RST	
RST	17	VSS	
IM1	18	VSS	
IM2	19	3.0V	
LEDA			
LEDK	20	VSS	
CODDI			
20PIN			

7.4程序

TFT 模块与 MPU(以 8051 系列单片机为例)接口图如下:

图 4. 并行接口

```
#include <reg51.h>
#include <chinese_code.h>
```

```
//液晶屏 IC 所需要的信号线的接口定义
sbit DCO=P3^2;
                  //RS(A0)
sbit WR0=P3^1;
                  //R/W
sbit RDO=P3<sup>0</sup>;
                  //CS
sbit CSO=P3<sup>5</sup>;
sbit reset=P3^4;
                 //RES
sbit key=P2^0; //P2.0 口与 GND 之间接一个按键
void transfer_command(int com1)
    CSO = 0;
   DCO = 0;
    RD0 = 1;
    P1=com1;
    WRO = 0;
    delay_us(1);
    WRO = 1;
    CS0 = 1;
}
void transfer_data(int datal)
  CSO = 0;
    DC0 = 1;
    RD0 = 1;
    P1=data1;
    WRO = 0;
    WRO = 1;
    CS0 = 1;
```

```
//连写2个字节(即16位)数据到LCD模块
void transfer_data_16(uint data_16bit)
    transfer_data(data_16bit>>8);
    transfer_data(data_16bit);
void delay(long i)
    int j, k;
    for (j=0; j < i; j++)
    for (k=0; k<110; k++);
void delay_us(long i)
    int j, k;
    for (j=0; j< i; j++);
    for (k=0; k<1; k++);
void Switch()
 repeat:
    if (key==1) goto repeat;
    else delay(1000);
   if (key) goto repeat;
    else ;
void lcd_initial()
    reset=0;
    delay(200);
    reset=1;
    delay(200);
//****** Start Initial Sequence ******//
                               -display and color format setting-
    transfer_command(0x36);
                               //行扫描顺序及 RGB, 列扫描顺序, 横放/竖放
    transfer_data(0x00);
    transfer_data(0x48);
                               //显示功能设置: 列/行 显示顺序
    transfer_command(0xB6);
    transfer_data(0x0A);
```



```
transfer_command(0xe1);
    transfer_data(0xd0);
    transfer_data(0x00);
    transfer_data(0x02);
    transfer_data(0x07);
    transfer_data(0x0a);
    transfer_data(0x28);
    transfer_data(0x31);
    transfer_data(0x54);
    transfer_data(0x47);
    transfer data(0x0e);
    transfer_data(0x1c);
    transfer_data(0x17);
    transfer_data(0x1b);
    transfer_data(0x1e);
    transfer_command(0x11);
                             //退出睡眠
    delay(200);
    transfer_command(0x29);
                             //打开显示
//定义窗口坐标: 开始坐标 (XS, YS)以及窗口大小 (x_total, y_total)
void lcd_address(int XS, int YS, int x_total, int y_total)
    int XE, YE;
    XE=XS+x_total-1;
    YE=YS+y_total-1;
                              // 设置 X 开始及结束的地址
    transfer_command(0x2a);
    transfer_data_16(XS); // X 开始地址(16位)
    transfer_data_16(XE); // X 结束地址(16位)
    transfer_command(0x2b);
                              // 设置 Y 开始及结束的地址
    transfer_data_16(YS); // Y 开始地址(16位)
    transfer_data_16(YE); // Y 结束地址(16位)
    transfer_command(0x2c);
                             // 写数据开始
void mono_transfer_data_16(int mono_data,int font_color,int back_color)
    int i;
    for (i=0; i<8; i++)
        if(mono_data&0x80)
             transfer_data_16(font_color);
                                           //当数据是1时,显示字体颜色
```

```
else
              transfer_data_16(back_color); //当数据是0时,显示底色
         mono\_data <<=1;
//全屏显示一种颜色
void display_color(int color_data)
    int i, j;
    1cd_address(0, 0, 240, 320);
    for (i=0; i<240; i++)
         for (j=0; j<320; j++)
              transfer_data_16(color_data);
void display_black(void)
    int i, j, k;
   transfer_command(0x2c);
    for(i=0;i<240;i++)
         transfer_data_16(0xffff);
    for (i=0; i<318; i++)
         for (k=0; k<1; k++)
              transfer_data_16(0xffff);
         for(j=0;j<238;j++)
              transfer_data_16(0x0000);
         for (k=0; k<1; k++)
              transfer_data_16(0xffff);
```

```
for (i=0; i<320; i++)
          transfer_data_16(0xffff);
//显示 8x16 点阵的字符串
void disp_string_8x16(int x, int y, char *text, int font_color, int back_color)
     int i=0, j, k;
     while(text[i]>0x00)
          if((text[i] >= 0x20) \&\&(text[i] <= 0x7e))
              j=text[i]-0x20;
              lcd_address(x, y, 8, 16);
              for (k=0; k<16; k++)
                   mono_transfer_data_16(ascii_table_8x16[j*16+k], font_color, back_color);
//?a??"ascii_table_8x16[]"?a??êy×é?ú"ASCII_TABLE_5X8_8X16_horizontal.h"à?
              X^{+=8};
          else
void display_string_16x16(int x, int y, uchar *text, int font_color, int back_color)
     uchar i, j, k;
     uint address;
     j = 0;
     while (text[j] != '\0')
                                                            //'\0'字符串结束标志
          i = 0;
         address = 1;
         while(Chinese_horizontal_text_16x16[i] > 0x7e) // >0x7f 即说明不是 ASCII 码字符
              if(Chinese_horizontal_text_16x16[i] == text[j])
                   if(Chinese\_horizontal\_text\_16x16[i + 1] == text[j + 1])
                        address = i * 16;
```

```
break;
              i += 2;
         if(y > 320)
              y=0;
              x+=16;
          if(address != 1)// 显示汉字
              lcd_address(x, y, 16, 16);
              for (i=0; i<2; i++)
                   for (k = 0; k < 16; k++)
                   mono_transfer_data_16(Chinese_horizontal_code_16x16[address], font_color, back_color);
                   address++;
               j+=2;
         else
                            //显示空白字符
              lcd_address(x, y, 16, 16);
              for (i = 0; i < 2; i++)
              for (k = 0; k < 16; k++)
              mono_transfer_data_16(0x00, font_color, back_color);
              j+=2;
         x = x + 16;
//显示 32x32 点阵的单色的图像
void disp_32x32(int x, int y, char *dp, int font_color, int back_color)
     int i, j;
     1cd_address(x, y, 32, 32);
```

```
深圳市晶联讯电子
                                         TFT 模块
                                                          JLX240-00301-BN
    for (i=0; i<32; i++)
         for (j=0; j<4; j++)
             mono_transfer_data_16(*dp, font_color, back_color);
             dp++;
//显示一幅彩图
void display_image(int x, int y, uchar *dp)
    uchar i, j, k=0;
    1cd_address(x, y, 120, 160);
    for (i=0; i<120; i++)
         for (j=0; j<160; j++)
             transfer_data(*dp);
                                              //传一个像素的图片数据的高位
             dp++;
                                              //传一个像素的图片数据的低位
             transfer_data(*dp);
             dp++;
void main(void)
    lcd initial();
    while(1)
         display_color(blue);
         disp_32x32(40+32*0, 8, jing_32x32, white, blue);
         disp_32x32(40+32*1, 8, lian_32x32, white, blue);
         disp_32x32(40+32*2, 8, xun_32x32, white, blue);
         disp_32x32(40+32*3, 8, dian_32x32, white, blue);
         disp_32x32(40+32*4, 8, zi_32x32, white, blue);
         display_string_16x16(24,56, "深圳市晶联讯电子有限公司", white, blue);
         display_string_16x16(48,88,"型号",white,blue);
         disp_string_8x16(80,88,":JLX240-00301-BN", white, blue);
         display_string_16x16(48,120,"视窗", white, blue);
```

disp_string_8x16(80,120,":36.7x48.9mm",white,blue); display_string_16x16(48,152,"驱动",white,blue); disp_string_8x16(80,152,"IC:ST7789V",white,blue);

```
display_string_16x16(0,184,"经营宗旨: 制造高品质产品及服务",white,blue);
display_string_16x16(0,216,"质量方针: 客户至上,质量保证",white,blue);
display_string_16x16(79,236,"持续改进,服务到位",white,blue);
display_string_16x16(0,270,"经营目标: 做最好的液晶模块厂家",white,blue);
display_string_16x16(79,292,"做客户信得过的企业",white,blue);
Switch();

display_image(0,0,pic1);
display_image(120,0,pic1);
display_image(120,160,pic1);
display_image(120,160,pic1);
Switch();

display_color(0xf800);
Switch();
display_color(0x07e0);
Switch();
```


7.5 串口原理图:

20PIN			
	1	VSS	
GND ·	2	3.3V	
VDD ·	3		
D7 ·	4		
D6 ·	5		
D5 ·	6		
D4 ·	7		
D3 ·			
D2 ·	8		
D1 ·	9		
$\overline{\mathrm{D0}}$	10	~~ .	
SDA ·	11	SDA	
RD ·	12		KK.
WR	13	RS	
	14	SCK	
DC ·	15	CS	
CS ·	16	RST	
RST ·	17	3.3V	
IM1 ·	18	3.3V	
IM2	19	3.0V	
LEDA ·	20	VSS	
LEDK ·	20	100	
20PIN			

7.6程序举例:

串行接口

液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:

cs1=1;

}

图 8. 串行接口

```
串行程序与并行,只是接口定义、写数据和命令不一样,其它都一样
#include <STC15F2K60S2. H>
#include <chinese_code.h>
//液晶屏 IC 所需要的信号线的接口定义
sbit cs1=P1^1;
                 //CS
sbit reset=P1<sup>0</sup>; //RST
sbit rs=P3^0;
                //RS
sbit sclk=P3<sup>2</sup>;
                //SCK
sbit sid=P3^1;
               //SDA
sbit key=P2^0;
                      //P2.0 口与 GND 之间接一个按键
/*写指令到 LCD 模块*/
void transfer_command(int data1)
{
    char i;
    cs1=0:
    rs=0;
    for (i=0; i<8; i++)
    {
        sclk=0;
        if (data1&0x80) sid=1;
        else sid=0;
        sclk=1:
        data1=data1<<=1;
    }
```

```
/*写数据到 LCD 模块*/
void transfer_data(int data1)
     char i;
     cs1=0;
     rs=1;
     for (i=0; i<8; i++)
         sclk=0;
         if (data1&0x80) sid=1;
         else sid=0;
         sclk=1;
         data1=data1<<=1;
    }
     cs1=1;
}
```


