published: 22 June 2021 doi: 10.3389/fnhum.2021.676992

Neurofeedback Training of Auditory Selective Attention Enhances Speech-In-Noise Perception

Subong Kim¹, Caroline Emory² and Inyong Choi^{2,3}*

¹ Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States,

² Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, United States, ³ Department of Otolaryngology – Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States

Training Paradigm

- 64 Channel EEG
- 2048 Hz
- Single-trial Feedback

- Down (+30 azimuth; male speaker)
- Up (-30 azimuth; female speaker)
- Noise (0 azimuth; water splash)
- 4 sessions
- 120 trials per session

Group Differences

Experimental Group

- No change in stimuli
- Single-trial decoding for up/down target via template-matching
- Visual feedback (object moving up or down)

Placebo Group

- One of the last 3 UP or 2 DOWN had a deviant/higher pitch (oddball)
- Subjects press number
- Behavioral feedback (Correct/Incorrect) is shown

Experimental Design – SiN Test

- California Consonant Test
- 100 monosyllabic consonant-vowel-consonant English words
- 8-talker babble noise
- Target = 65 dB SPL
- Noise either + 3 dB or -3 dB (randomly chosen 50 words).

Results – 1a

$$\mathrm{Accuracy}_i = \frac{B_i}{R_i}$$

$$\text{Average Accuracy} = \frac{1}{n} \sum_{i=1}^{n} \text{Accuracy}_i$$

:: Attend "Up" trials

: Attend "Down" trials

Results – 1b

Results – 2

Discussion Pointers

- Experimental Design
- Results
- Statistical Analysis
- Other comments