A Karush-Kuhn-Tucker Example

It's only for very simple problems that we can use the Karush-Kuhn-Tucker conditions to solve a nonlinear programming problem. Consider the following problem:

maximize
$$f(x,y) = xy$$

subject to $x + y^2 \le 2$
 $x, y \ge 0$

Note that the feasible region is bounded, so a global maximum must exist: a continuous function on a closed and bounded set has a maximum there.

We write the constraints as $g_1(x,y) = x + y^2 \le 2$, $g_2(x,y) = -x \le 0$, $g_3(x,y) = -y \le 0$. Thus the KKT conditions can be written as

$$y - \lambda_1 + \lambda_2 = 0$$

$$x - 2y\lambda_1 + \lambda_3 = 0$$
Assignment Project Exam Help
$$\lambda_3 y = 0$$

$$https://p, y, x_1, y_2, y_3 = 0$$

In each of the "complementary slackness" equations $\lambda_i(b_i - g_i(x_1, \ldots, x_n)) = 0$, at least one of the two actors must be 0. With a such conditions there would potentially be 2^n possible cases to consider. However, with some thought we might be able to reduce that considerably.

- Case 1: Suppose $\lambda_1 = 0$. Then the first KKT condition says $y + \lambda_2 = 0$ and the second says $x + \lambda_3 = 0$. Since each term is nonnegative, the only way that can happen is if $x = y = \lambda_2 = \lambda_3 = 0$. Indeed, the KKT conditions are satisfied when $x = y = \lambda_1 = \lambda_2 = \lambda_3 = 0$ (although clearly this is not a local maximum since f(0,0) = 0 while f(x,y) > 0 at points in the interior of the feasible region).
- Case 2: Suppose $x + y^2 = 2$. Now at least one of $x = 2 y^2$ and y must be positive.
 - Case 2a: Suppose x > 0. Then $\lambda_2 = 0$. The first KKT condition says $\lambda_1 = y$. The second KKT condition then says $x 2y\lambda_1 + \lambda_3 = 2 3y^2 + \lambda_3 = 0$, so $3y^2 = 2 + \lambda_3 > 0$, and $\lambda_3 = 0$. Thus $y = \sqrt{2/3}$, and x = 2 2/3 = 4/3. Again all the KKT conditions are satisfied.
 - Case 2b: Suppose x = 0, i.e. $y = \sqrt{2}$. Since y > 0 we have $\lambda_3 = 0$. From the second KKT condition we must have $\lambda_1 = 0$. But that takes us back to Case 1.

We conclude there are only two candidates for a local max: (0,0) and $(4/3, \sqrt{2/3})$. The global maximum is at $(4/3, \sqrt{2/3})$.