

2

PROPERTY TABLES AND CHARTS (ENGLISH UNITS)

Table A-1E	Molar mass, gas constant, and critical-point properties 932
Table A-2E	Ideal-gas specific heats of various common gases 933
Table A-3E	Properties of common liquids, solids, and foods 936
Table A-4E	Saturated water—Temperature table 938
Table A-5E	Saturated water—Pressure table 940
Table A-6E	Superheated water 942
Table A-7E	Compressed liquid water 946
Table A-8E	Saturated ice-water vapor 947
Figure A-9E	<i>T-s</i> diagram for water 948
Figure A-10E	Mollier diagram for water 949
Table A-11E	Saturated refrigerant-134a—Temperature table 950
Table A-12E	Saturated refrigerant-134a—Pressure table 951
Table A-13E	Superheated refrigerant-134a 952
Figure A-14E	<i>P-h</i> diagram for refrigerant-134a 954
Table A-16E	Properties of the atmosphere at high altitude 955
Table A-17E	Ideal-gas properties of air 956
Table A-18E	Ideal-gas properties of nitrogen, N ₂ 958
Table A-19E	Ideal-gas properties of oxygen, O ₂ 960
Table A-20E	Ideal-gas properties of carbon dioxide, CO ₂ 962
Table A-21E	Ideal-gas properties of carbon monoxide, CO 964
Table A-22E	Ideal-gas properties of hydrogen, H ₂ 966
Table A-23E	Ideal-gas properties of water vapor, H ₂ O 967
Table A-26E	Enthalpy of formation, Gibbs function of formation, and absolute entropy at 77°F, 1 atm 969
Table A-27E	Properties of some common fuels and hydrocarbons 970
Figure A-31E	Psychrometric chart at 1 atm total pressure 971

TABLE A-1E

Molar mass, gas constant, and critical-point properties

		Molar	Gas constant, R*		Critica	l-point proper	ties
Substance	Formula	mass, <i>M</i> lbm/lbmol	Btu/ lbm·R	psia·ft³/ lbm·R	Temperature, R	Pressure, psia	Volume, ft ³ /lbmol
Air	_	28.97	0.06855	0.3704	238.5	547	1.41
Ammonia	NH_3	17.03	0.1166	0.6301	729.8	1636	1.16
Argon	Ar	39.948	0.04971	0.2686	272	705	1.20
Benzene	C_6H_6	78.115	0.02542	0.1374	1012	714	4.17
Bromine	Br_2	159.808	0.01243	0.06714	1052	1500	2.17
<i>n</i> -Butane	C_4H_{10}	58.124	0.03417	0.1846	765.2	551	4.08
Carbon dioxide	CO ₂	44.01	0.04513	0.2438	547.5	1071	1.51
Carbon monoxide	CO	28.011	0.07090	0.3831	240	507	1.49
Carbon tetrachloride	CCl ₄	153.82	0.01291	0.06976	1001.5	661	4.42
Chlorine	Cl_2	70.906	0.02801	0.1517	751	1120	1.99
Chloroform	CHCl ₃	119.38	0.01664	0.08988	965.8	794	3.85
Dichlorodifluoromethane (R-12)	CCl ₂ F ₂	120.91	0.01643	0.08874	692.4	582	3.49
Dichlorofluoromethane (R-21)	CHCl ₂ F	102.92	0.01930	0.1043	813.0	749	3.16
Ethane	C_2H_6	30.020	0.06616	0.3574	549.8	708	2.37
Ethyl alcohol	C ₂ H ₅ OH	46.07	0.04311	0.2329	929.0	926	2.68
Ethylene	C_2H_4	28.054	0.07079	0.3825	508.3	742	1.99
Helium	Не	4.003	0.4961	2.6809	9.5	33.2	0.926
<i>n</i> -Hexane	C_6H_{14}	86.178	0.02305	0.1245	914.2	439	5.89
Hydrogen (normal)	H_2	2.016	0.9851	5.3224	59.9	188.1	1.04
Krypton	Kr	83.80	0.02370	0.1280	376.9	798	1.48
Methane	CH_4	16.043	0.1238	0.6688	343.9	673	1.59
Methyl alcohol	CH ₃ OH	32.042	0.06198	0.3349	923.7	1154	1.89
Methyl chloride	CH ₃ Cl	50.488	0.03934	0.2125	749.3	968	2.29
Neon	Ne	20.183	0.09840	0.5316	80.1	395	0.668
Nitrogen	N_2	28.013	0.07090	0.3830	227.1	492	1.44
Nitrous oxide	N_2O	44.013	0.04512	0.2438	557.4	1054	1.54
Oxygen	O_2	31.999	0.06206	0.3353	278.6	736	1.25
Propane	C_3H_8	44.097	0.04504	0.2433	665.9	617	3.20
Propylene	C_3H_6	42.081	0.04719	0.2550	656.9	670	2.90
Sulfur dioxide	SO_2	64.063	0.03100	1.1675	775.2	1143	1.95
Tetrafluoroethane (R-134a)	CF ₃ CH ₂ F	102.03	0.01946	0.1052	673.6	588.7	3.19
Trichlorofluoromethane (R-11)	CCl ₃ F	137.37	0.01446	0.07811	848.1	635	3.97
Water	H_2O	18.015	0.1102	0.5956	1164.8	3200	0.90
Xenon	Xe	131.30	0.01513	0.08172	521.55	852	1.90

^{*}Calculated from $R = R_u/M$, where $R_u = 1.98588$ Btu/lbmol·R = 10.7316 psia·ft³/lbmol·R and M is the molar mass.

Source of Data: K. A. Kobe and R. E. Lynn, Jr., Chemical Review 52 (1953), pp. 117–236, and ASHRAE, Handbook of Fundamentals (Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1993), pp. 16.4 and 36.1.

TABLE A-2E

Ideal-gas specific heats of various common gases (a) At 80° F

		Gas constant, R	c_p	c_{v}	
Gas	Formula	Btu/lbm·R	Btu/lbm·R	Btu/lbm·R	k
Air	_	0.06855	0.240	0.171	1.400
Argon	Ar	0.04971	0.1253	0.0756	1.667
Butane	C_4H_{10}	0.03424	0.415	0.381	1.09
Carbon dioxide	CO,	0.04513	0.203	0.158	1.285
Carbon monoxide	CO	0.07090	0.249	0.178	1.399
Ethane	C_2H_6	0.06616	0.427	0.361	1.183
Ethylene	C_2H_4	0.07079	0.411	0.340	1.208
Helium	He	0.4961	1.25	0.753	1.667
Hydrogen	H_2	0.9851	3.43	2.44	1.404
Methane	CH₄	0.1238	0.532	0.403	1.32
Neon	Ne	0.09840	0.246	0.1477	1.667
Nitrogen	N_2	0.07090	0.248	0.177	1.400
Octane	$C_8^{-}H_{18}$	0.01742	0.409	0.392	1.044
Oxygen	O_2	0.06206	0.219	0.157	1.395
Propane	C_3H_8	0.04504	0.407	0.362	1.124
Steam	H ₂ O	0.1102	0.445	0.335	1.329

Source of Data: Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, English/SI Version, 3rd ed. (New York: John Wiley & Sons, 1986), p. 687, Table A–8E.

TABLE A-2E

Ideal-gas specific heats of various common gases (Continued)

(b) At various temperatures

Temp., °F	c_p Btu/lbm·R	c _v Btu/lbm⋅R	k	c_p Btu/lbm·R	c _v Btu/lbm⋅R	k	c_p Btu/lbm·R	c₀ Btu/lbm·R	k	
		Air		Carbo	on dioxide, CC) ₂	Carbon monoxide, CO			
40	0.240	0.171	1.401	0.195	0.150	1.300	0.248	0.177	1.400	
100	0.240	0.172	1.400	0.205	0.160	1.283	0.249	0.178	1.399	
200	0.241	0.173	1.397	0.217	0.172	1.262	0.249	0.179	1.397	
300	0.243	0.174	1.394	0.229	0.184	1.246	0.251	0.180	1.394	
400	0.245	0.176	1.389	0.239	0.193	1.233	0.253	0.182	1.389	
500	0.248	0.179	1.383	0.247	0.202	1.223	0.256	0.185	1.384	
600	0.250	0.182	1.377	0.255	0.210	1.215	0.259	0.188	1.377	
700	0.254	0.185	1.371	0.262	0.217	1.208	0.262	0.191	1.371	
800	0.257	0.188	1.365	0.269	0.224	1.202	0.266	0.195	1.364	
900	0.259	0.191	1.358	0.275	0.230	1.197	0.269	0.198	1.357	
1000	0.263	0.195	1.353	0.280	0.235	1.192	0.273	0.202	1.351	
1500	0.276	0.208	1.330	0.298	0.253	1.178	0.287	0.216	1.328	
2000	0.286	0.217	1.312	0.312	0.267	1.169	0.297	0.226	1.314	
	I	Hydrogen, H ₂		Λ	litrogen, N ₂			Oxygen, O ₂		
40	3.397	2.412	1.409	0.248	0.177	1.400	0.219	0.156	1.397	
100	3.426	2.441	1.404	0.248	0.178	1.399	0.220	0.158	1.394	
200	3.451	2.466	1.399	0.249	0.178	1.398	0.223	0.161	1.387	
300	3.461	2.476	1.398	0.250	0.179	1.396	0.226	0.164	1.378	
400	3.466	2.480	1.397	0.251	0.180	1.393	0.230	0.168	1.368	
500	3.469	2.484	1.397	0.254	0.183	1.388	0.235	0.173	1.360	
600	3.473	2.488	1.396	0.256	0.185	1.383	0.239	0.177	1.352	
700	3.477	2.492	1.395	0.260	0.189	1.377	0.242	0.181	1.344	
800	3.494	2.509	1.393	0.262	0.191	1.371	0.246	0.184	1.337	
900	3.502	2.519	1.392	0.265	0.194	1.364	0.249	0.187	1.331	
1000	3.513	2.528	1.390	0.269	0.198	1.359	0.252	0.190	1.326	
1500	3.618	2.633	1.374	0.283	0.212	1.334	0.263	0.201	1.309	
2000	3.758	2.773	1.355	0.293	0.222	1.319	0.270	0.208	1.298	

Note: The unit Btu/lbm·R is equivalent to Btu/lbm·F.

Source of Data: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), p. 830, Table A-4. Originally published in Tables of Properties of Gases, NBS Circular 564, 1955.

TABLE A-2E

Ideal-gas specific heats of various common gases (*Concluded*) (c) As a function of temperature

$$\overline{c}_p = a + bT + cT^2 + dT^3$$

(T in R, c_p in Btu/lbmol·R)

						Temperature	% e	rror
Substance	Formula	а	b	c	d	range, R	Max.	Avg.
Nitrogen	N_2	6.903	-0.02085×10^{-2}	0.05957×10^{-5}	-0.1176×10^{-9}	491-3240	0.59	0.34
Oxygen	O_2	6.085	0.2017×10^{-2}	-0.05275×10^{-5}	0.05372×10^{-9}	491-3240	1.19	0.28
Air		6.713	0.02609×10^{-2}	0.03540×10^{-5}	-0.08052×10^{-9}	491-3240	0.72	0.33
Hydrogen	H_2	6.952	-0.02542×10^{-2}	0.02952×10^{-5}	-0.03565×10^{-9}	491-3240	1.02	0.26
Carbon monoxide	CÕ	6.726	0.02222×10^{-2}	0.03960×10^{-5}	-0.09100×10^{-9}	491-3240	0.89	0.37
Carbon dioxide	CO ₂	5.316	0.79361×10^{-2}	-0.2581×10^{-5}	0.3059×10^{-9}	491-3240	0.67	0.22
Water vapor	$H_2\tilde{O}$	7.700	0.02552×10^{-2}	0.07781×10^{-5}	-0.1472×10^{-9}	491-3240	0.53	0.24
Nitric oxide	NÕ	7.008	-0.01247×10^{-2}	0.07185×10^{-5}	-0.1715×10^{-9}	491-2700	0.97	0.36
Nitrous oxide	N_2O	5.758	0.7780×10^{-2}	-0.2596×10^{-5}	0.4331×10^{-9}	491-2700	0.59	0.26
Nitrogen dioxide	\tilde{NO}_2	5.48	0.7583×10^{-2}	-0.260×10^{-5}	0.322×10^{-9}	491-2700	0.46	0.18
Ammonia	NH ₃	6.5846	0.34028×10^{-2}	0.073034×10^{-5}	-0.27402×10^{-9}	491-2700	0.91	0.36
Sulfur	S	6.499	0.2943×10^{-2}	-0.1200×10^{-5}	0.1632×10^{-9}	491-3240	0.99	0.38
Sulfur dioxide	SO_2	6.157	0.7689×10^{-2}	-0.2810×10^{-5}	0.3527×10^{-9}	491-3240	0.45	0.24
Sulfur trioxide	SO_3^2	3.918	1.935×10^{-2}	-0.8256×10^{-5}	1.328×10^{-9}	491-2340	0.29	0.13
Acetylene	C_2H_2	5.21	1.2227×10^{-2}	-0.4812×10^{-5}	0.7457×10^{-9}	491-2700	1.46	0.59
Benzene	C_6H_6	-8.650	6.4322×10^{-2}	-2.327×10^{-5}	3.179×10^{-9}	491-2700	0.34	0.20
Methanol	CH_4O	4.55	1.214×10^{-2}	-0.0898×10^{-5}	-0.329×10^{-9}	491-1800	0.18	0.08
Ethanol	C_2H_6O	4.75	2.781×10^{-2}	-0.7651×10^{-5}	0.821×10^{-9}	491-2700	0.40	0.22
Hydrogen chloride	HCl	7.244	-0.1011×10^{-2}	0.09783×10^{-5}	-0.1776×10^{-9}	491-2740	0.22	0.08
Methane	CH_4	4.750	0.6666×10^{-2}	0.09352×10^{-5}	-0.4510×10^{-9}	491-2740	1.33	0.57
Ethane	$C_2 \vec{H_6}$	1.648	2.291×10^{-2}	-0.4722×10^{-5}	0.2984×10^{-9}	491-2740	0.83	0.28
Propane	$C_3^2H_8^0$	-0.966	4.044×10^{-2}	-1.159×10^{-5}	1.300×10^{-9}	491-2740	0.40	0.12
<i>n</i> -Butane	$C_{4}H_{10}$	0.945	4.929×10^{-2}	-1.352×10^{-5}	1.433×10^{-9}	491-2740	0.54	0.24
<i>i</i> -Butane	$C_4^7H_{10}^{10}$	-1.890	5.520×10^{-2}	-1.696×10^{-5}	2.044×10^{-9}	491-2740	0.25	0.13
<i>n</i> -Pentane	$C_5^{4}H_{12}^{10}$	1.618	6.028×10^{-2}	-1.656×10^{-5}	1.732×10^{-9}	491-2740	0.56	0.21
<i>n</i> -Hexane	$C_6^3H_{14}^{12}$	1.657	7.328×10^{-2}	-2.112×10^{-5}	2.363×10^{-9}	491-2740	0.72	0.20
Ethylene	$C_{2}^{0}H_{4}^{14}$	0.944	2.075×10^{-2}	-0.6151×10^{-5}	0.7326×10^{-9}	491-2740	0.54	0.13
Propylene	$C_3^2H_6$	0.753	3.162×10^{-2}	-0.8981×10^{-5}	1.008×10^{-9}	491–2740	0.73	0.17

Source of Data: B.G. Kyle, Chemical and Process Thermodynamics, 3rd ed. (Upper Saddle River, NJ: Prentice Hall, 2000).

TABLE A-3E

Properties of common liquids, solids, and foods

(a) Liquids

	Boilin	g data at 1 atm	Free.	zing data	Liq	quid propertie	S
Substance	Normal boiling point, °F	Latent heat of vaporization, h_{fg} Btu/lbm	Freezing point, °F	Latent heat of fusion, h_{if} Btu/lbm	Temperature, °F	Density, ρ lbm/ft ³	Specific heat, c_p Btu/lbm·R
Ammonia	-27.9	24.54	-107.9	138.6	-27.9 0 40 80	42.6 41.3 39.5 37.5	1.06 1.083 1.103 1.135
Argon Benzene Brine (20% sodium chloride	-302.6 176.4	69.5 169.4	-308.7 41.9	12.0 54.2	-302.6 68	87.0 54.9	0.272 0.411
by mass) <i>n</i> -Butane	219.0 31.1	 165.6	0.7 -217.3		68 31.1	71.8 37.5	0.743 0.552
Carbon dioxide Ethanol Ethyl alcohol	-109.2* 172.8 173.5	99.6 (at 32°F) 360.5 368	-69.8 -173.6 -248.8	 46.9 46.4	32 77 68	57.8 48.9 49.3	0.583 0.588 0.678
Ethylene glycol Glycerine	388.6 355.8	344.0 419	12.6 66.0	77.9 86.3	68 68	69.2 78.7	0.678 0.554
Helium Hydrogen	-452.1 -423.0	9.80 191.7	-434.5		-452.1 -423.0	9.13 4.41	5.45 2.39
Isobutane Kerosene Mercury	10.9 399–559 674.1	157.8 108 126.7	-255.5 -12.8 -38.0	45.5 — 4.90	10.9 68 77	37.1 51.2 847	0.545 0.478 0.033
Methane	-258.7	219.6	296.0	25.1	-258.7 -160	26.4 20.0	0.834 1.074
Methanol Nitrogen	148.1 -320.4	473 85.4	-143.9 -346.0	42.7 10.9	77 -320.4 -260	49.1 50.5 38.2	0.609 0.492 0.643
Octane Oil (light)	256.6	131.7	-71.5	77.9	68 77	43.9 56.8	0.502 0.430
Oxygen Petroleum	-297.3 	91.5 99–165	-361.8	5.9	-297.3 68	71.2 40.0	0.408 0.478
Propane	-43.7	184.0	-305.8	34.4	-43.7 32 100	36.3 33.0 29.4	0.538 0.604 0.673
Refrigerant-134a	-15.0	93.3	-141.9	_	-40 -15 32 90	88.5 86.0 80.9 73.6	0.283 0.294 0.318 0.348
Water	212	970.1	32	143.5	32 90 150 212	62.4 62.1 61.2 59.8	1.01 1.00 1.00 1.01

^{*}Sublimation temperature. (At pressures below the triple-point pressure of 75.1 psia, carbon dioxide exists as a solid or gas. Also, the freezing-point temperature of carbon dioxide is the triple-point temperature of -69.8°F.)

TABLE A-3E

Properties of common liquids, solids, and foods (Concluded)

(b) Solids (values are for room temperature unless indicated otherwise)

Substance	Density, ρ lbm/ft ³	Specific heat, c_p Btu/lbm·R	Substance	Density, ρ lbm/ft ³	Specific heat, c_p Btu/lbm·R
Metals			Nonmetals		
Aluminum			Asphalt	132	0.220
−100°F		0.192	Brick, common	120	0.189
32°F		0.212	Brick, fireclay (500°C)	144	0.229
100°F	170	0.218	Concrete	144	0.156
200°F		0.224	Clay	62.4	0.220
300°F		0.229	Diamond	151	0.147
400°F		0.235	Glass, window	169	0.191
500°F		0.240	Glass, pyrex	139	0.200
Bronze (76% Cu, 2% Zn, 2% Al)	517	0.0955	Graphite	156	0.170
			Granite Gypsum or plaster board	169	0.243
Brass, yellow (65% Cu, 35% Zn) Copper	519	0.0955	Ice -50°F	50	0.260 0.424
−60°F		0.0862	0°F		0.471
0°F		0.0893	20°F		0.491
100°F	555	0.0925	32°F	57.5	0.502
200°F		0.0938	Limestone	103	0.217
390°F		0.0963	Marble 162	0.210	
Iron	490	0.107	Plywood (Douglas fir)	34.0	
Lead	705	0.030	Rubber (hard)	68.7	
Magnesium	108	0.239	Rubber (soft)	71.8	
Nickel	555	0.105	Sand	94.9	
Silver	655	0.056	Stone	93.6	
Steel, mild	489	0.119	Woods, hard (maple, oak, etc.)	45.0	
Tungsten	1211	0.031	Woods, soft (fir, pine, etc.)	32.0	

(c) Foods

	Water	Freezing	Specific heat, Btu/lbm·R		Latent heat of		Water content, Freezing		Spec Btt	Latent heat of	
	content, %	point,	Above	Below	fusion,		%	point,	Above	Below	fusion,
Food	(mass)	°F	freezing	freezing	Btu/lbm	Food	(mass)	°F	freezing	freezing	Btu/lbm
Apples	84	30	0.873	0.453	121	Lettuce	95	32	0.961	0.487	136
Bananas	75	31	0.801	0.426	108	Milk, whole	88	31	0.905	0.465	126
Beef round	67	_	0.737	0.402	96	Oranges	87	31	0.897	0.462	125
Broccoli	90	31	0.921	0.471	129	Potatoes	78	31	0.825	0.435	112
Butter	16	_	_	0.249	23	Salmon fish	64	28	0.713	0.393	92
Cheese, Swiss	39	14	0.513	0.318	56	Shrimp	83	28	0.865	0.450	119
Cherries	80	29	0.841	0.441	115	Spinach	93	31	0.945	0.481	134
Chicken	74	27	0.793	0.423	106	Strawberries	90	31	0.921	0.471	129
Corn, sweet	74	31	0.793	0.423	106	Tomatoes, ripe	94	31	0.953	0.484	135
Eggs, whole	74	31	0.793	0.423	106	Turkey	64	_	0.713	0.393	92
Ice cream	63	22	0.705	0.390	90	Watermelon	93	31	0.945	0.481	134

Source of Data: Values are obtained from various handbooks and other sources or are calculated. Water content and freezing-point data of foods are from ASHRAE, Handbook of Fundamentals, I-P version (Atlanta, GA: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1993), Chap. 30, Table 1. Freezing point is the temperature at which freezing starts for fruits and vegetables, and the average freezing temperature for other foods.

TABLE A-4E

Saturated water—Temperature table

			ic volume, ³/lbm	Internal energy, Btu/lbm			<i>Enthalpy,</i> Btu/lbm		Entropy, Btu/lbm·R			
		Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Temp.,	Sat. press.,	liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
T°F	$P_{\rm sat}$ psia	U_f	U_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g
32.018	0.08871	0.01602	3299.9	0.000	1021.0	1021.0	0.000	1075.2	1075.2	0.00000	2.18672	2.1867
35 40	0.09998 0.12173	0.01602	2945.7 2443.6	3.004 8.032	1019.0	1022.0 1023.7	3.004 8.032	1073.5 1070.7	1076.5	0.00609	2.17011 2.14271	2.1762 2.1589
45	0.12175	0.01602 0.01602	2035.8	13.05	1015.6 1012.2	1025.7	13.05	1070.7	1078.7 1080.9	0.01620 0.02620	2.14271	2.1369
50	0.17812	0.01602	1703.1	18.07	1012.2	1025.5	18.07	1067.8	1080.9	0.02020	2.08956	2.1421
55	0.21413	0.01603	1430.4	23.07	1005.5	1028.6	23.07	1062.2	1085.3	0.04586	2.06377	2.1096
60	0.25638	0.01604	1206.1	28.08	1002.1	1030.2	28.08	1059.4	1087.4	0.05554	2.03847	2.0940
65	0.30578	0.01604	1020.8	33.08	998.76	1031.8	33.08	1056.5	1089.6	0.06511	2.01366	2.0788
70 75	0.36334 0.43016	0.01605 0.01606	867.18 739.27	38.08 43.07	995.39 992.02	1033.5 1035.1	38.08 43.07	1053.7 1050.9	1091.8 1093.9	0.07459 0.08398	1.98931 1.96541	2.0639 2.0494
13	0.43010	0.01000	139.21	43.07	992.02	1033.1	43.07	1030.9	1093.9	0.06396	1.90541	2.0494
80	0.50745	0.01607	632.41	48.06	988.65	1036.7	48.07	1048.0	1096.1	0.09328	1.94196	2.0352
85	0.59659	0.01609	542.80	53.06	985.28	1038.3	53.06	1045.2	1098.3	0.10248	1.91892	2.0214
90	0.69904	0.01610	467.40	58.05	981.90	1040.0	58.05	1042.4	1100.4	0.11161	1.89630	2.0079
95	0.81643	0.01612	403.74	63.04	978.52	1041.6	63.04	1039.5	1102.6	0.12065	1.87408	1.9947
100	0.95052	0.01613	349.83	68.03	975.14	1043.2	68.03	1036.7	1104.7	0.12961	1.85225	1.9819
110	1.2767	0.01617	264.96	78.01	968.36	1046.4	78.02	1031.0	1109.0	0.14728	1.80970	1.9570
120	1.6951	0.01620	202.94	88.00	961.56	1049.6	88.00	1025.2	1113.2	0.16466	1.76856	1.9332
130	2.2260	0.01625	157.09	97.99	954.73	1052.7	97.99	1019.4	1117.4	0.18174	1.72877	1.9105
140	2.8931	0.01629	122.81	107.98	947.87	1055.9	107.99	1013.6	1121.6	0.19855	1.69024	1.8888
150	3.7234	0.01634	96.929	117.98	940.98	1059.0	117.99	1007.8	1125.7	0.21508	1.65291	1.8680
160	4.7474	0.01639	77.185	127.98	934.05	1062.0	128.00	1001.8	1129.8	0.23136	1.61670	1.8481
170	5.9999	0.01645	61.982	138.00	927.08	1065.1	138.02	995.88	1133.9	0.24739	1.58155	1.8289
180	7.5197	0.01651	50.172	148.02	920.06	1068.1	148.04	989.85	1137.9	0.26318	1.54741	1.8106
190	9.3497	0.01657	40.920	158.05	912.99	1071.0	158.08	983.76	1141.8	0.27874	1.51421	1.7930
200	11.538	0.01663	33.613	168.10	905.87	1074.0	168.13	977.60	1145.7	0.29409	1.48191	1.7760
210	14.136	0.01670	27.798	178.15	898.68	1076.8	178.20	971.35	1149.5	0.30922	1.45046	1.7597
212	14.709	0.01671	26.782	180.16	897.24	1077.4	180.21	970.09	1150.3	0.31222	1.44427	1.7565
220	17.201	0.01677	23.136	188.22	891.43	1079.6	188.28	965.02	1153.3	0.32414	1.41980	1.7439
230	20.795	0.01684	19.374	198.31	884.10	1082.4	198.37	958.59	1157.0	0.33887	1.38989	1.7288
240	24.985	0.01692	16.316	208.41	876.70	1085.1	208.49	952.06	1160.5	0.35342	1.36069	1.7141
250	29.844	0.01700	13.816	218.54	869.21	1087.7	218.63	945.41	1164.0	0.36779	1.33216	1.6999
260	35.447	0.01708	11.760	228.68	861.62	1090.3	228.79	938.65	1167.4	0.38198	1.30425	1.6862
270	41.877	0.01717	10.059	238.85	853.94	1092.8	238.98	931.76	1170.7	0.39601	1.27694	1.6730
280	49.222	0.01726	8.6439	249.04	846.16	1095.2	249.20	924.74	1173.9	0.40989	1.25018	1.6601
290	57.573	0.01735	7.4607	259.26	838.27	1097.5	259.45	917.57	1177.0	0.42361	1.22393	1.6475
300	67.028	0.01745	6.4663	269.51	830.25	1099.8	269.73	910.24	1180.0	0.43720	1.19818	1.6354
310	77.691	0.01745	5.6266	279.79	822.11	1101.9	280.05	902.75	1182.8	0.45065	1.17289	1.6235
320	89.667	0.01765	4.9144	290.11	813.84	1104.0	290.40	895.09	1185.5	0.46396	1.14802	1.6120
330	103.07	0.01776	4.3076	300.46	805.43	1105.9	300.80	887.25	1188.1	0.47716	1.12355	1.6007
340	118.02	0.01787	3.7885	310.85	796.87	1107.7	311.24	879.22	1190.5	0.49024	1.09945	1.5897
350	134.63	0.01799	3.3425	321.29	788.16	1109.4	321.73	870.98	1192.7	0.50321	1.07570	1.5789
360	153.03	0.01799	2.9580	331.76	779.28	1111.0	332.28	862.53	1192.7	0.50521	1.05227	1.5683
370	173.36	0.01811	2.6252	342.29	770.23	1112.5	342.88	853.86	1196.7	0.52884	1.03227	1.5580
380	195.74	0.01836	2.3361	352.87	761.00	1113.9	353.53	844.96	1198.5	0.54152	1.00628	1.5478
390	220.33	0.01850	2.0842	363.50	751.58	1115.1	364.25	835.81	1200.1	0.55411	0.98366	1.5378

TABLE A-4E

Saturated water—Temperature table (Concluded)

		1 0	c volume, /Ibm	Internal energy, Btu/lbm				Enthalpy, Btu/lbm			<i>Entropy,</i> Btu/lbm∙R	
		Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Temp.,	Sat. press.,	liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
T°F	P _{sat} psia	$\mathbf{U}_{\!f}$	\mathbf{U}_{g}	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g
400	247.26	0.01864	1.8639	374.19	741.97	1116.2	375.04	826.39	1201.4	0.56663	0.96127	1.5279
410	276.69	0.01878	1.6706	384.94	732.14	1117.1	385.90	816.71	1202.6	0.57907	0.93908	1.5182
420	308.76	0.01894	1.5006	395.76	722.08	1117.8	396.84	806.74	1203.6	0.59145	0.91707	1.5085
430	343.64	0.01910	1.3505	406.65	711.80	1118.4	407.86	796.46	1204.3	0.60377	0.89522	1.4990
440	381.49	0.01926	1.2178	417.61	701.26	1118.9	418.97	785.87	1204.8	0.61603	0.87349	1.4895
450	422.47	0.01944	1.0999	428.66	690.47	1119.1	430.18	774.94	1205.1	0.62826	0.85187	1.4801
460	466.75	0.01962	0.99510	439.79	679.39	1119.2	441.48	763.65	1205.1	0.64044	0.83033	1.4708
470	514.52	0.01981	0.90158	451.01	668.02	1119.0	452.90	751.98	1204.9	0.65260	0.80885	1.4615
480	565.96	0.02001	0.81794	462.34	656.34	1118.7	464.43	739.91	1204.3	0.66474	0.78739	1.4521
490	621.24	0.02022	0.74296	473.77	644.32	1118.1	476.09	727.40	1203.5	0.67686	0.76594	1.4428
500	680.56	0.02044	0.67558	485.32	631.94	1117.3	487.89	714.44	1202.3	0.68899	0.74445	1.4334
510	744.11	0.02067	0.61489	496.99	619.17	1116.2	499.84	700.99	1200.8	0.70112	0.72290	1.4240
520	812.11	0.02092	0.56009	508.80	605.99	1114.8	511.94	687.01	1199.0	0.71327	0.70126	1.4145
530	884.74	0.02118	0.51051	520.76	592.35	1113.1	524.23	672.47	1196.7	0.72546	0.67947	1.4049
540	962.24	0.02146	0.46553	532.88	578.23	1111.1	536.70	657.31	1194.0	0.73770	0.65751	1.3952
550	1044.8	0.02176	0.42465	545.18	563.58	1108.8	549.39	641.47	1190.9	0.75000	0.63532	1.3853
560	1132.7	0.02207	0.38740	557.68	548.33	1106.0	562.31	624.91	1187.2	0.76238	0.61284	1.3752
570	1226.2	0.02242	0.35339	570.40	532.45	1102.8	575.49	607.55	1183.0	0.77486	0.59003	1.3649
580	1325.5	0.02279	0.32225	583.37	515.84	1099.2	588.95	589.29	1178.2	0.78748	0.56679	1.3543
590	1430.8	0.02319	0.29367	596.61	498.43	1095.0	602.75	570.04	1172.8	0.80026	0.54306	1.3433
600	1542.5	0.02362	0.26737	610.18	480.10	1090.3	616.92	549.67	1166.6	0.81323	0.51871	1.3319
610	1660.9	0.02411	0.24309	624.11	460.73	1084.8	631.52	528.03	1159.5	0.82645	0.49363	1.3201
620	1786.2	0.02464	0.22061	638.47	440.14	1078.6	646.62	504.92	1151.5	0.83998	0.46765	1.3076
630	1918.9	0.02524	0.19972	653.35	418.12	1071.5	662.32	480.07	1142.4	0.85389	0.44056	1.2944
640	2059.3	0.02593	0.18019	668.86	394.36	1063.2	678.74	453.14	1131.9	0.86828	0.41206	1.2803
650	2207.8	0.02673	0.16184	685.16	368.44	1053.6	696.08	423.65	1119.7	0.88332	0.38177	1.2651
660	2364.9	0.02767	0.14444	702.48	339.74	1042.2	714.59	390.84	1105.4	0.89922	0.34906	1.2483
670	2531.2	0.02884	0.12774	721.23	307.22	1028.5	734.74	353.54	1088.3	0.91636	0.31296	1.2293
680	2707.3	0.03035	0.11134	742.11	269.00	1011.1	757.32	309.57	1066.9	0.93541	0.27163	1.2070
690	2894.1	0.03255	0.09451	766.81	220.77	987.6	784.24	253.96	1038.2	0.95797	0.22089	1.1789
700	3093.0	0.03670	0.07482	801.75	146.50	948.3	822.76	168.32	991.1	0.99023	0.14514	1.1354
705.10	3200.1	0.04975	0.04975	866.61	0	866.6	896.07	0	896.1	1.05257	0	1.0526

Source of Data: Tables A-4E through A-8E are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the highly accurate Steam_IAPWS, which incorporates the 1995 Formulation for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, issued by The International Association for the Properties of Water and Steam (IAPWS). This formulation replaces the 1984 formulation of Haar, Gallagher, and Kell (NBS/NRC Steam Tables, Hemisphere Publishing Co., 1984), which is also available in EES as the routine STEAM. The new formulation is based on the correlations of Saul and Wagner (J. Phys. Chem. Ref. Data, 16, 893, 1987) with modifications to adjust to the International Temperature Scale of 1990. The modifications are described by Wagner and Pruss (J. Phys. Chem. Ref. Data, 22, 783, 1993). The properties of ice are based on Hyland and Wexler, "Formulations for the Thermodynamic Properties of the Saturated Phases of H₂O from 173.15 K to 473.15 K," ASHRAE Trans., Part 2A, Paper 2793, 1983.

TABLE A-5E

Saturated water—Pressure table

			ic volume, ³/lbm	Internal energy, Btu/lbm			Enthalpy, Btu/lbm			<i>Entropy,</i> Btu/lbm⋅R		
	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Press.,	temp.,	liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
P psia	$T_{\rm sat}$ ${}^{\circ}{\rm F}$	$U_{\!f}$	U_g	u_f	u_{fg}	u_g	h_f	$h_{\!f\!g}$	h_g	S_f	S_{fg}	S_g
1	101.69	0.01614	333.49	69.72	973.99	1043.7	69.72	1035.7	1105.4	0.13262	1.84495	1.9776
2	126.02	0.01623	173.71	94.02	957.45	1051.5	94.02	1021.7	1115.8	0.17499	1.74444	1.9194
3	141.41	0.01630	118.70	109.39	946.90	1056.3	109.40	1012.8	1122.2	0.20090	1.68489	1.8858
4	152.91	0.01636	90.629	120.89	938.97	1059.9	120.90	1006.0	1126.9	0.21985	1.64225	1.8621
5	162.18	0.01641	73.525	130.17	932.53	1062.7	130.18	1000.5	1130.7	0.23488	1.60894	1.8438
6	170.00	0.01645	61.982	138.00	927.08	1065.1	138.02	995.88	1133.9	0.24739	1.58155	1.8289
8	182.81	0.01652	47.347	150.83	918.08	1068.9	150.86	988.15	1139.0	0.26757	1.53800	1.8056
10	193.16	0.01659	38.425	161.22	910.75	1072.0	161.25	981.82	1143.1	0.28362	1.50391	1.7875
14.696	211.95	0.01671	26.805	180.12	897.27	1077.4	180.16	970.12	1150.3	0.31215	1.44441	1.7566
15	212.99	0.01672	26.297	181.16	896.52	1077.7	181.21	969.47	1150.7	0.31370	1.44441	1.7549
20	227.92	0.01683	20.093	196.21	885.63	1081.8	196.27	959.93	1156.2	0.33582	1.39606	1.7319
25	240.03	0.01692	16.307	208.45	876.67	1085.1	208.52	952.03	1160.6	0.35347	1.36060	1.7141
30	250.30	0.01700	13.749	218.84	868.98	1087.8	218.93	945.21	1164.1	0.36821	1.33132	1.6995
35 40	259.25	0.01708	11.901	227.92	862.19 856.09	1090.1 1092.1	228.03	939.16	1167.2 1169.8	0.38093 0.39213	1.30632	1.6872
40	267.22	0.01715	10.501	236.02	830.09	1092.1	236.14	933.69	1109.8	0.39213	1.28448	1.6766
45	274.41	0.01721	9.4028	243.34	850.52	1093.9	243.49	928.68	1172.2	0.40216	1.26506	1.6672
50	280.99	0.01727	8.5175	250.05	845.39	1095.4	250.21	924.03	1174.2	0.41125	1.24756	1.6588
55	287.05	0.01732	7.7882	256.25	840.61	1096.9	256.42	919.70	1176.1	0.41958	1.23162	1.6512
60	292.69	0.01738	7.1766	262.01	836.13	1098.1	262.20	915.61	1177.8	0.42728	1.21697	1.6442
65	297.95	0.01743	6.6560	267.41	831.90	1099.3	267.62	911.75	1179.4	0.43443	1.20341	1.6378
70	302.91	0.01748	6.2075	272.50	827.90	1100.4	272.72	908.08	1180.8	0.44112	1.19078	1.6319
75	307.59	0.01752	5.8167	277.31	824.09	1101.4	277.55	904.58	1182.1	0.44741	1.17895	1.6264
80	312.02	0.01757	5.4733	281.87	820.45	1102.3	282.13	901.22	1183.4	0.45335	1.16783	1.6212
85 90	316.24 320.26	0.01761 0.01765	5.1689 4.8972	286.22 290.38	816.97 813.62	1103.2 1104.0	286.50 290.67	898.00 894.89	1184.5 1185.6	0.45897 0.46431	1.15732 1.14737	1.6163 1.6117
90	320.20	0.01703	4.0972	290.36	013.02	1104.0	290.07	054.05	1105.0	0.40431	1.14/3/	1.0117
95	324.11	0.01770	4.6532	294.36	810.40	1104.8	294.67	891.89	1186.6	0.46941	1.13791	1.6073
100	327.81	0.01774	4.4327	298.19	807.29	1105.5	298.51	888.99	1187.5	0.47427	1.12888	1.6032
110	334.77	0.01781	4.0410	305.41	801.37	1106.8	305.78	883.44	1189.2	0.48341	1.11201	1.5954
120	341.25	0.01789	3.7289	312.16	795.79	1107.9	312.55	878.20	1190.8	0.49187	1.09646	1.5883
130	347.32	0.01796	3.4557	318.48	790.51	1109.0	318.92	873.21	1192.1	0.49974	1.08204	1.5818
140	353.03	0.01802	3.2202	324.45	785.49	1109.9	324.92	868.45	1193.4	0.50711	1.06858	1.5757
150	358.42	0.01809	3.0150	330.11	780.69	1110.8	330.61	863.88	1194.5	0.51405	1.05595	1.5700
160	363.54	0.01815	2.8347	335.49	776.10	1111.6	336.02	859.49	1195.5	0.52061	1.04405	1.5647
170 180	368.41 373.07	0.01821 0.01827	2.6749 2.5322	340.62 345.53	771.68	1112.3 1113.0	341.19 346.14	855.25 851.16	1196.4 1197.3	0.52682 0.53274	1.03279 1.02210	1.5596 1.5548
100	373.07	0.01627	2.3322	343.33	707.42	1113.0	340.14	031.10	1197.3	0.33274	1.02210	1.3346
190	377.52	0.01833	2.4040	350.24		1113.6	350.89	847.19	1198.1	0.53839	1.01191	1.5503
200	381.80	0.01839	2.2882	354.78		1114.1	355.46	843.33	1198.8	0.54379	1.00219	1.5460
250	400.97	0.01865	1.8440	375.23		1116.3	376.09	825.47	1201.6 1203.3	0.56784	0.95912	1.5270
300 350	417.35 431.74	0.01890 0.01912	1.5435 1.3263	392.89 408.55	709.98	1117.7 1118.5	393.94 409.79	809.41 794.65	1203.3	0.58818 0.60590	0.92289 0.89143	1.5111 1.4973
330	731./4	0.01912	1.3203	T00.33	709.70	1110.5	707.17	774.03	1204.4	0.00390	0.07143	1.7713
400	444.62	0.01934	1.1617	422.70		1119.0	424.13	780.87	1205.0	0.62168	0.86350	1.4852
450	456.31	0.01955	1.0324	435.67		1119.2	437.30	767.86	1205.2	0.63595	0.83828	1.4742
500	467.04	0.01975	0.92819	447.68		1119.1	449.51	755.48	1205.0	0.64900	0.81521	1.4642
550 600	476.97 486.24	0.01995 0.02014	0.84228 0.77020	458.90 469.46		1118.8 1118.3	460.93 471.70	743.60 732.15	1204.5 1203.9	0.66107 0.67231	0.79388 0.77400	1.4550 1.4463
000	400.24	0.02014	0.77020	407.40	040.00	1110.3	4/1./0	132.13	1203.9	0.07231	0.77400	1.4403

TABLE A-5E

Saturated water—Pressure table (Concluded)

		1 0	volume, Ibm	Internal energy, Btu/lbm		Enthalpy, Btu/lbm			Entropy, Btu/lbm·R			
Press., P psia	Sat. temp., $T_{\rm sat}$ °F	Sat. liquid, v_f	Sat. vapor, U_g	Sat. liquid, u_f	Evap., u_{fg}	Sat. vapor, u_g	Sat. liquid, h_f	Evap., h_{fg}	Sat. vapor, h_g	Sat. liquid, s_f	Evap., s_{fg}	Sat. vapor, s_g
700 800 900 1000 1200	503.13 518.27 532.02 544.65 567.26	0.02051 0.02087 0.02124 0.02159 0.02232	0.65589 0.56920 0.50107 0.44604 0.36241	488.96 506.74 523.19 538.58 566.89	627.98 608.30 589.54 571.49 536.87	1116.9 1115.0 1112.7 1110.1 1103.8	491.62 509.83 526.73 542.57 571.85	710.29 689.48 669.46 650.03 612.39	1201.9 1199.3 1196.2 1192.6 1184.2	0.69279 0.71117 0.72793 0.74341 0.77143	0.73771 0.70502 0.67505 0.64722 0.59632	1.4305 1.4162 1.4030 1.3906 1.3677
1400 1600 1800 2000 2500 3000	587.14 604.93 621.07 635.85 668.17	0.02307 0.02386 0.02470 0.02563 0.02860 0.03433	0.30161 0.25516 0.21831 0.18815 0.13076	592.79 616.99 640.03 662.33 717.67	503.50 470.69 437.86 404.46 313.53	1096.3 1087.7 1077.9 1066.8 1031.2	598.76 624.06 648.26 671.82 730.90 802.45	575.66 539.18 502.35 464.60 360.79	1174.4 1163.2 1150.6 1136.4 1091.7	0.79658 0.81972 0.84144 0.86224 0.91311	0.54991 0.50645 0.46482 0.42409 0.31988	1.3465 1.3262 1.3063 1.2863 1.2330
3200.1	705.10	0.03433	0.08460	866.61	0	969.8 866.6	896.07	214.32 0	896.1	1.05257	0.18554 0	1.1587 1.0526

TABLE A-6E

•	1		
SIII	nerh	eated	water

Бирение	aleu walei											
T	U	и	h	S	υ	и	h	S	υ	и	h	S
°F	ft³/lbm	Btu/lbm		Btu/lbm·R	ft³/lbm	Btu/lbm		Btu/lbm·R	ft³/lbm			Btu/lbm·R
	1	p = 1.0 ps	sia (101.6	9°F)*		P = 5.0 p	sia (162.1	8°F)		P = 10 ps	sia (193.10	5°F)
Sat.†	333.49	1043.7	1105.4	1.9776	73.525	1062.7	1130.7	1.8438	38.425	1072.0	1143.1	1.7875
200	392.53	1077.5	1150.1	2.0509	78.153	1076.2	1148.5	1.8716	38.849	1074.5	1146.4	1.7926
240	416.44	1091.2	1168.3	2.0777	83.009	1090.3	1167.1	1.8989	41.326	1089.1	1165.5	1.8207
280	440.33	1105.0	1186.5	2.1030	87.838	1104.3	1185.6	1.9246	43.774	1103.4	1184.4	1.8469
320	464.20	1118.9	1204.8	2.1271	92.650	1118.4	1204.1	1.9490		1117.6	1203.1	1.8716
360		1132.9	1223.3	2.1502	97.452	1132.5	1222.6	1.9722		1131.9	1221.8	1.8950
400		1147.1	1241.8	2.1722	102.25	1146.7	1241.3	1.9944		1146.2	1240.6	1.9174
440		1161.3	1260.4	2.1934	107.03	1160.9	1260.0	2.0156		1160.5	1259.4	1.9388
500		1182.8	1288.6	2.2237	114.21	1182.6	1288.2	2.0461		1182.2	1287.8	1.9693
600		1219.4	1336.2	2.2709	126.15	1219.2	1335.9	2.0933		1219.0	1335.6	2.0167
700		1256.8	1384.6	2.3146	138.09	1256.7	1384.4	2.1371		1256.5	1384.2	2.0605
800		1295.1	1433.9	2.3553	150.02	1294.9	1433.7	2.1778		1294.8	1433.5	2.1013
1000		1374.2	1535.1	2.4299	173.86	1374.2	1535.0	2.2524		1374.1	1534.9	2.1760
1200		1457.1	1640.0	2.4972	197.70	1457.0	1640.0	2.3198		1457.0	1639.9	2.2433
1400	1107.8	1543.7	1748.7	2.5590	221.54	1543.7	1748.7	2.3816	110.762	1543.6	1748.6	2.3052
		P = 15 ps	sia (212.9	9°F)		P = 20 p	sia (227.9	2°F)		P = 40 ps	sia (267.22	2°F)
Sat.	26.297		1150.7	1.7549	20.093	1081.8	1156.2	1.7319	10.501	1092.1	1169.8	1.6766
240	27.429	1087.8	1163.9	1.7742	20.478	1086.5	1162.3	1.7406				
280	29.085	1102.4	1183.2	1.8010	21.739	1101.4	1181.9	1.7679	10.713	1097.3	1176.6	1.6858
320	30.722	1116.9	1202.2	1.8260	22.980	1116.1	1201.2	1.7933	11.363	1112.9	1197.1	1.7128
360	32.348	1131.3	1221.1	1.8496	24.209	1130.7	1220.2	1.8171	11.999	1128.1	1216.9	1.7376
400	33.965	1145.7	1239.9	1.8721	25.429	1145.1	1239.3	1.8398	12.625	1143.1	1236.5	1.7610
440	35.576	1160.1	1258.8	1.8936	26.644	1159.7	1258.3	1.8614	13.244	1157.9	1256.0	1.7831
500	37.986	1181.9	1287.3	1.9243	28.458	1181.6	1286.9	1.8922	14.165	1180.2	1285.0	1.8143
600	41.988	1218.7	1335.3	1.9718	31.467	1218.5	1334.9	1.9398	15.686	1217.5	1333.6	1.8625
700	45.981	1256.3	1383.9	2.0156	34.467	1256.1	1383.7	1.9837	17.197	1255.3	1382.6	1.9067
800	49.967	1294.6	1433.3	2.0565	37.461	1294.5	1433.1	2.0247	18.702	1293.9	1432.3	1.9478
1000	57.930	1374.0	1534.8	2.1312	43.438	1373.8	1534.6	2.0994	21.700	1373.4	1534.1	2.0227
1200	65.885	1456.9	1639.8	2.1986	49.407	1456.8	1639.7	2.1668	24.691	1456.5	1639.3	2.0902
1400	73.836	1543.6	1748.5	2.2604	55.373	1543.5	1748.4	2.2287	27.678	1543.3	1748.1	2.1522
1600	81.784	1634.0	1861.0	2.3178	61.335	1633.9	1860.9	2.2861	30.662	1633.7	1860.7	2.2096
		P = 60 ps	sia (292.6	9°F)		P = 80 p	sia (312.0	2°F)		P = 100 p	sia (327.8	1°F)
Sat.	7.1766	1098.1	1177.8	1.6442	5.4733	1102.3	1183.4	1.6212	4.4327	1105.5	1187.5	1.6032
320	7.4863	1109.6	1192.7	1.6636		1105.9	1187.9	1.6271				
360	7.9259	1125.5	1213.5	1.6897		1122.7	1209.9	1.6545	4.6628	1119.8	1206.1	1.6263
400	8.3548	1140.9	1233.7	1.7138		1138.7	1230.8	1.6794	4.9359	1136.4	1227.8	1.6521
440	8.7766	1156.1	1253.6	1.7364		1154.3	1251.2	1.7026		1152.4	1248.7	1.6759
500	9.4005	1178.8		1.7682		1177.3	1281.2	1.7350		1175.9	1279.3	1.7088
600		1216.5		1.8168	7.7951	1215.4	1330.8	1.7841		1214.4	1329.4	1.7586
700	11.4401		1381.6	1.8613		1253.8	1380.5	1.8289		1253.0	1379.5	1.8037
800	12.4484		1431.5	1.9026		1292.6	1430.6	1.8704		1292.0	1429.8	1.8453
1000	14.4543		1533.5	1.9777		1372.6	1532.9	1.9457		1372.2	1532.4	1.9208
1200	16.4525		1638.9	2.0454		1455.9	1638.5	2.0135		1455.6	1638.1	1.9887
1400	18.4464		1747.8	2.1073		1542.8	1747.5	2.0755	11.0612	1542.6	1747.2	2.0508
1600	20.438	1633.5	1860.5	2.1648	15.3257		1860.2	2.1330		1633.2	1860.0	2.1083
1800	22.428	1727.6	1976.6	2.2187	16.8192	1727.5	1976.5	2.1869		1727.3	1976.3	2.1622
2000	24.417	1825.2	2096.3	2.2694	18.3117	1825.0	2096.1	2.2376	14.6487	1824.9	2096.0	2.2130

 $^{{}^*}$ The temperature in parentheses is the saturation temperature at the specified pressure.

 $^{^\}dagger Properties$ of saturated vapor at the specified pressure.

TABLE A-6E

Superheated water (Continued)

Superhe	ated wate	r (Contir	iued)									
T	U	и	h	S	υ	и	h	S	υ	и	h	S
°F				Btu/lbm·R				Btu/lbm·R				Btu/lbm·R
	i	P = 120 p	sia (341.2	25°F)		P = 140 p	sia (353.0	3°F)		P = 160 p	sia (363.5	4°F)
Sat.	3 7289	1107.9	1190.8	1.5883	3 2202	2 1109.9	1193.4	1.5757	2.8347	1111.6	1195.5	1.5647
360		1116.7	1202.1	1.6023		1113.4	1197.8	1.5811	2.03 17	1111.0	11/5.5	1.5017
400		1134.0	1224.6	1.6292		5 1131.5	1221.4	1.6092	3.0076	1129.0	1218.0	1.5914
450		1154.5	1251.4	1.6594		1152.6	1248.9	1.6403	3.2293	1150.7	1246.3	1.6234
500	4.6340	1174.4	1277.3	1.6872		5 1172.9	1275.3	1.6686	3.4412	1171.4	1273.2	1.6522
550	4.9010	1193.9	1302.8	1.7131		5 1192.7	1301.1	1.6948	3.6469	1191.4	1299.4	1.6788
600		1213.4	1328.0	1.7375		1212.3	1326.6	1.7195	3.8484	1211.3	1325.2	1.7037
700		1252.2	1378.4	1.7829		1251.4	1377.3	1.7652	4.2434	1250.6	1376.3	1.7498
800		1291.4	1429.0	1.8247		1290.8	1428.1	1.8072	4.6316	1290.2	1427.3	1.7920
1000		1371.7	1531.8	1.9005		2 1371.3	1531.3	1.8832	5.3968	1370.9	1530.7	1.8682
1200		1455.3	1637.7	1.9684		1455.0	1637.3	1.9512	6.1540	1454.7	1636.9	1.9363
1400		1542.3	1746.9	2.0305		1542.1	1746.6	2.0134	6.9070	1541.8	1746.3	1.9986
1600	10.2135		1859.8	2.0881		1632.8	1859.5	2.0711	7.6574	1632.6	1859.3	2.0563
1800	11.2106		1976.1	2.1420		2 1727.0	1975.9	2.1250	8.4063	1726.9	1975.7	2.1102
2000	12.2067	1824.8	2095.8	2.1928	10.4624	1824.6	2095.7	2.1758	9.1542	1824.5	2095.5	2.1610
		P = 180 p)7°F)			osia (381.8	0°F)		P = 225 p	osia (391.8	0°F)
Sat.	2.5322	1113.0	1197.3	1.5548		1114.1	1198.8	1.5460	2.0423	1115.3	1200.3	1.5360
400	2.6490	1126.3	1214.5	1.5752	2.3615	1123.5	1210.9	1.5602	2.0728	1119.7	1206.0	1.5427
450	2.8514	1148.7	1243.7	1.6082	2.5488	1146.7	1241.0	1.5943	2.2457	1144.1	1237.6	1.5783
500	3.0433	1169.8	1271.2	1.6376	2.7247	1168.2	1269.0	1.6243	2.4059	1166.2	1266.3	1.6091
550	3.2286	1190.2	1297.7	1.6646	2.8939	1188.9	1296.0	1.6516	2.5590	1187.2	1293.8	1.6370
600	3.4097	1210.2	1323.8	1.6897	3.0586	1209.1	1322.3	1.6771	2.7075	1207.7	1320.5	1.6628
700	3.7635	1249.8	1375.2	1.7361	3.3796		1374.1	1.7238	2.9956	1248.0	1372.7	1.7099
800	4.1104	1289.5	1426.5	1.7785	3.6934		1425.6	1.7664	3.2765	1288.1	1424.5	1.7528
900	4.4531	1329.7	1478.0	1.8179	4.0031	1329.2	1477.3	1.8059	3.5530	1328.5	1476.5	1.7925
1000	4.7929	1370.5	1530.1	1.8549	4.3099		1529.6	1.8430	3.8268	1369.5	1528.9	1.8296
1200	5.4674	1454.3	1636.5	1.9231	4.9182	1454.0	1636.1	1.9113	4.3689	1453.6	1635.6	1.8981
1400	6.1377	1541.6	1746.0	1.9855	5.5222	1541.4	1745.7	1.9737	4.9068	1541.1	1745.4	1.9606
1600	6.8054	1632.4	1859.1	2.0432	6.1238		1858.8	2.0315	5.4422	1632.0	1858.6	2.0184
1800	7.4716	1726.7	1975.6	2.0971	6.7238	1726.5	1975.4	2.0855	5.9760	1726.4	1975.2	2.0724
2000	8.1367	1824.4	2095.4	2.1479	7.3227	1824.3	2095.3	2.1363	6.5087	1824.1	2095.1	2.1232
		P = 250 p				P = 275 p	sia (409.4	5°F)			osia (417.3	
Sat.	1.8440	1116.3	1201.6	1.5270		1117.0	1202.6	1.5187		1117.7	1203.3	1.5111
450	2.0027	1141.3	1234.0	1.5636		1138.5	1230.3	1.5499	1.6369	1135.6	1226.4	1.5369
500	2.1506	1164.1	1263.6	1.5953	1.9415	1162.0	1260.8	1.5825	1.7670	1159.8	1257.9	1.5706
550	2.2910	1185.6	1291.5	1.6237	2.0715	1183.9	1289.3	1.6115	1.8885	1182.1	1287.0	1.6001
600	2.4264	1206.3	1318.6	1.6499	2.1964		1316.7	1.6380	2.0046	1203.5	1314.8	1.6270
650	2.5586	1226.8	1345.1	1.6743		1225.6	1343.5	1.6627	2.1172	1224.4	1341.9	1.6520
700	2.6883	1247.0	1371.4	1.6974		1246.0	1370.0	1.6860	2.2273	1244.9	1368.6	1.6755
800	2.9429	1287.3	1423.5	1.7406		1286.5	1422.4	1.7294	2.4424	1285.7	1421.3	1.7192
900	3.1930	1327.9	1475.6	1.7804	2.8984		1474.8	1.7694	2.6529	1326.6	1473.9	1.7593
1000	3.4403	1369.0	1528.2	1.8177	3.1241		1527.4	1.8068	2.8605	1367.9	1526.7	1.7968
1200	3.9295	1453.3	1635.0	1.8863	3.5700		1634.5	1.8755	3.2704	1452.5	1634.0	1.8657
1400	4.4144	1540.8	1745.0	1.9488	4.0116		1744.6	1.9381	3.6759	1540.2	1744.2	1.9284
1600	4.8969	1631.7	1858.3	2.0066	4.4507		1858.0	1.9960	4.0789	1631.3	1857.7	1.9863
1800	5.3777	1726.2	1974.9	2.0607	4.8882		1974.7	2.0501	4.4803	1725.8	1974.5	2.0404
2000	5.8575	1823.9	2094.9	2.1116	5.3247	1823.8	2094.7	2.1010	4.8807	1823.6	2094.6	2.0913

TABLE A-6E

Super	heated	water	(Continued)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Superine	died water (Comm				<u> </u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	T	U u	h s	U u	h s	\cup u h s
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	°F	ft3/lbm Btu/lbm	Btu/lbm Btu/lbm·R	ft ³ /lbm Btu/lbm	Btu/lbm Btu/lbm	R ft ³ /lbm Btu/lbm Btu/lbm Btu/lbm·R
Sat. 1,3263 1118.5 1204.4 1.4973 1.1617 1119.0 1205.0 1.4852 1.0324 1119.2 1205.2 1.4742 1450 1.3739 1129.3 1218.3 1.5128 1.1747 1122.5 1204.5 1.4901 1.001 1.						
450		P = 350 p	osia (431.74°F)	P = 400	psia (444.62°F)	$P = 450 \text{ psia } (456.31^{\circ}\text{F})$
500 1.4921 1155.2 1251.9 1.5487 1.2851 1150.4 1245.6 1.5288 1.1233 1145.4 1238.9 1.5103 500 1.004 1178.6 1282.2 1.5795 1.386 1.1476 1177.6 1306.9 1.5897 1.3001 1194.6 1302.8 1.5737 500 1.8979 1242.8 1365.8 1.6567 1240.7 1362.9 1.6401 1.658.8 1.8607 1240.7 1362.9 1.6401 1.658.8 1.8607 1.246.9 1.301 1194.6 1302.8 1.5737 500 2.2671 1325.3 1472.2 1.7414 1.9777 1324.0 1470.4 1.625.7 1.7526 1322.7 1468.6 1.7117 1000 2.4464 1366.9 1525.3 1.7791 1.21358 1365.8 1523.9 1.7636 1.8942 1364.7 1522.4 1.7499 1400 3.1484 1539.6 1743.5 1.9111 1.205.0 1.464.0 1.6849 1.6808 1.446.1 1.8827 1400 3.1484 1539.6 1743.5 1.9111 1.27527 1.539.0 1742.7 1.8960 1.4838 1.484.1 1.482.1 1.8827 1800 3.8394 1725.4 1974.0 2.0233 3.3586 1725.0 1973.6 2.0084 2.9847 1724.6 1973.2 1.9952 2000 4.1830 1823.3 2094.2 2.0742 3.6597 1823.0 2039.3 2.0594 3.2527 1822.6 2093.5 2.0462 500 0.9934 11401 1231.9 1.4928 0.7920 1183.1 203.9 1.4463 0.5588 1.4996 0.15876 1914 1298.6 1.5590 0.94605 1183.1 2209.9 1.5325 0.7932 1.7794 1.671 1.266.0 1.5284 0.87542 1188.7 1.255.9 1.4996 0.1.5876 1.914 1.286 1.5590 0.94605 1184.9 1.289.9 1.5325 0.90792 1149.5 1.243.8 1.5939 0.1.6461 0.1.5876 1.914 1.298.6 1.5590 0.94605 1184.9 1.289.9 1.5325 0.90792 1149.5 1.243.8 1.5939 1.5066 0.1.5876 1.914 1.286 0.5656 1.303.8 1.275.8 1.8918 1.5998 1.5066 0.1.5876 1.914 1.286 0.5656 1.303.8 1.275.8 1.8918 1.5998 1.5066 0.1.5876 1.914 1.298.6 1.5590 0.94605 1184.9 1.289.9 1.5325 0.90792 1.242.5 1.5066 0.1.5876 1.914 1.298.6 1.5590 0.94605 1.184.9 1.2899.9 1.5325 0.90792 1.2914 1.494.6 0.1.5998 1.5066 0.1.5876 0.1.5998 0.1.5998 1.5066	Sat.	1.3263 1118.5	1204.4 1.4973	1.1617 1119.0	1205.0 1.4852	1.0324 1119.2 1205.2 1.4742
500 1.4921 1155.2 1251.9 1.5487 1.2851 1150.4 1245.6 1.5288 1.1233 1145.4 1238.9 1.5103 500 1.7030 1200.6 1310.9 1.6073 1.4765 1197.6 1306.9 1.5897 1.3001 1194.6 1302.8 1.5737 500 1.8979 1242.8 1365.8 1.6567 1.407 1362.9 1.6401 1.6849 1.6085 500 2.0848 1284.1 1419.1 1.7009 1.8166 1282.5 1417.0 1.6849 1.6080 1.285.3 1472.2 1.7414 1.9777 1324.0 1470.4 1.7257 1.7526 1322.7 1408.6 1.7117 1000 2.4464 1366.9 1525.3 1.7791 2.1358 1365.8 1523.9 1.7636 1.8942 1364.7 1522.4 1.7499 1200 2.796 1451.7 1633.0 1.848 3.4465 1450.9 1632.0 1.8331 2.1718 1450.1 1631.0 1.8196 1400 3.1484 1539.6 1743.5 1.9111 2.7527 1539.0 1742.7 1.8960 2.4450 1538.4 1742.0 1.8827 1400 3.894 1725.4 1974.0 2.0233 3.3586 1725.0 1973.6 2.0084 2.9847 1724.6 1973.2 1.9952 2000 4.1830 1823.3 2094.2 2.0742 3.6597 1823.0 2039.3 2.0949 3.2527 1822.6 2093.5 2.0462 P = 500 psia (467.04°F)	450	1.3739 1129.3	1218.3 1.5128	1.1747 1122.5	1209.4 1.4901	
550 1.6004 178.6 1282.2 1.5795 1.3840 1174.9 1277.3 1.5610 1.2152 1171.1 1272.3 1.5441	500			1.2851 1150.4		1.1233 1145.4 1238.9 1.5103
600	550					
650 1.8018 1221.9 1338.6 1.6328 1.5650 1219.4 1335.3 1.6158 1.807 1216.9 1331.9 1.6005 700 1.8979 1242.8 1365.8 1.6567 1.6507 1240.7 1362.9 1.6401 1.4584 1238.5 1360.0 1.6253 800 2.0848 1284.1 1419.1 1.7009 1.8166 1282.5 1417.0 1.6849 1.6080 1280.8 1414.7 1.6706 700 2.2461 1325.3 1472.2 1.7414 1.9777 1324.0 1470.4 1.7257 1.7566 1322.7 1468.6 1.7117 710						
Roo	650	1.8018 1221.9	1338.6 1.6328	1.5650 1219.4	1335.3 1.6158	1.3807 1216.9 1331.9 1.6005
900 2.2671 1325.3 1472.2 1.7414 1.9777 1324.0 1470.4 1.7257 1.7526 1322.7 1468.6 1.7117 1000 2.4464 1366.9 1525.3 1.7791 2.158 1365.8 1523.9 1.7636 1.8442 1364.7 1522.4 1.7499 1200 2.7996 1451.7 1633.0 1.8483 2.4465 1450.9 1632.0 1.8331 2.1718 1450.1 1631.0 1.8196 1400 3.1484 1539.6 1743.5 1.9111 2.7527 1539.0 1742.7 1.8960 2.4450 1538.4 1742.0 1.8827 1800 3.8394 1725.4 1974.0 2.0233 3.3586 1725.0 1973.6 2.0084 2.9847 1724.6 1973.2 1.9952 2000 4.1830 1823.3 2094.2 2.0742 3.6597 1823.0 2093.9 2.0594 2.9847 1724.6 1973.2 1.9952 2000 4.1830 1823.3 2094.2 2.0742 3.6597 1823.0 2093.9 2.0594 3.2527 1822.6 2093.5 2.0462	700	1.8979 1242.8	1365.8 1.6567	1.6507 1240.7	1362.9 1.6401	1.4584 1238.5 1360.0 1.6253
900 2.2671 1325.3 1472.2 1.7414 1.9777 1324.0 1470.4 1.7257 1.7526 1322.7 1468.6 1.7117 1000 2.4464 1366.9 1525.3 1.7791 2.1538 1365.8 1523.9 1.7636 1.8442 1364.7 1522.4 1.7499 1200 2.7996 1451.7 1633.0 1.8483 2.4465 1450.9 1632.0 1.8331 2.1718 1450.1 1631.0 1.8196 1400 3.1484 1539.6 1743.5 1.9111 2.7527 1539.0 1742.7 1.8960 2.4450 1538.4 1742.0 1.8827 1800 3.8394 1725.4 1974.0 2.0233 3.5856 1533.3 1856.5 1.9541 2.7157 1629.8 1856.0 1.9409 1800 3.8394 1725.4 1974.0 2.0233 3.6597 1823.0 2093.9 2.0984 2.9847 1724.6 1973.2 1.9952 2000 4.1830 1823.3 2094.2 2.0742 3.6597 1823.0 2093.9 2.0594 2.9847 1724.6 1973.2 1.9952 2001 4.1830 1823.3 2094.2 2.0742 3.6597 1823.0 2093.9 2.0594 3.2527 1822.6 2093.5 2.0462 P = 500 psia (467.04°F)	800	2.0848 1284.1	1419.1 1.7009	1.8166 1282.5	1417.0 1.6849	1.6080 1280.8 1414.7 1.6706
1400 3.1484 1539.6 1743.5 19111 2.7527 1539.0 1742.7 1.8960 2.4450 1538.4 1742.0 1.8827 1800 3.4947 1630.8 1857.1 1.9691 3.0565 1630.3 1856.5 1.9541 2.7157 1629.8 1856.0 1.9409 1800 3.8394 1725.4 1974.0 2.0233 3.3586 1725.0 1973.6 2.0084 2.9847 1742.6 1973.2 1.9952 2.0000 4.1830 1823.3 2094.2 2.0742 3.6597 1823.0 2093.9 2.0594 2.9847 1742.6 1973.2 1.9952 2.0662 2.9841 11111 1205.0 1.4642 0.77020 1118.3 1203.9 1.4463 0.65589 1116.9 1201.9 1.4305 1.4928 0.99304 1140.1 1231.9 1.4928 0.79526 1128.2 1216.5 1.4596 0.77020 1118.3 1203.9 0.79526 1128.2 1216.5 1.4596 0.77020 118.3 1.203.9 0.79526 1128.2 1216.5 1.4596 0.77020 118.3 1.203.9 0.79526 1128.2 1216.5 1.4596 0.77020 118.3 1.203.9 0.79526 1128.2 1216.5 1.4596 0.77020 118.3 1.203.9 0.79526 1128.2 1216.5 1.4596 0.77020 118.3 1.503.9 0.7709 1149.5 1243.8 1.4730 0.79526 1128.2 1216.5 1.4596 0.77020 1140.1 1231.9 1.4928 0.79526 1128.2 1216.5 1.4596 0.77020 1149.5 1243.8 1.4730 0.7004 1.236.4 1357.0 1.6117 1.07316 1231.9 1351.0 1.5877 0.7932 1.7792 1.446.8 0.77020 1.30440 1236.4 1357.0 1.6117 1.07316 1231.9 1351.0 1.5877 0.97076 1227.2 1344.8 1.5666 0.77020 1.30440 1236.4 1357.0 1.6117 1.07316 1231.9 1351.0 1.5877 0.79076 1227.2 1344.8 1.5666 1.7908 1.70094 1363.6 1521.0 1.7376 1.41097 1361.4 1518.1 1.7160 1.20381 1359.2 1515.2 1.6574 1.000 1.5221 1449.4 1630.0 1.8075 1.62252 1447.8 1627.9 1.7865 1.5870 1.4968 1.5870 1.4968 1.4969 1.4968 1.4969 1.4968 1.4969 1.4968 1.4969 1.4968 1.4969 1.4	900	2.2671 1325.3	1472.2 1.7414	1.9777 1324.0	1470.4 1.7257	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000	2.4464 1366.9	1525.3 1.7791	2.1358 1365.8	1523.9 1.7636	1.8942 1364.7 1522.4 1.7499
1600 3,4947 1630.8 1857.1 1.9691 3.0565 1630.3 1856.5 1.9541 2.7157 1629.8 1856.0 1.9409 1800 3.8394 1725.4 1974.0 2.0233 3.3586 1725.0 1973.6 2.0084 2.9847 1724.6 1973.2 1.9952 2.0004 2.9847 1724.6 1973.2 1.9952 2.0004 2.9847 1724.6 1973.2 1.9952 2.0004 2.9847 1724.6 1973.2 1.9952 2.0004 2.9847 1724.6 1973.2 1.9952 2.0004 2.9847 1724.6 1973.2 1.9952 2.0004 2.9847 1724.6 1973.2 1.9952 2.0004 2.9847 1724.6 1973.2 1.9952 2.0004 2.9847 1724.6 1973.2 1.9952 2.0004 2.9847 1724.6 1973.2 1.9058 2.0004 2.9847 1724.6 1973.2 1.9058 1.4068 2.9847 1724.6 1.9058 1.9068 1.4068 2.9847 1724.6 1.9058 1.9068 1.4068 2.9847 1.4068 2.9847 1.4068 2.9847 1.4663 2.00848 2.9847 1.4663 2.00848 2.9847 1.4663 2.00848 2.9847 1.4663 2.00848 2.9847 1.4068 2.00848 2.9847 1.4068 2.00848 2.9847 1.4068 2.00848 2.9847 1.4068 2.00848 2.9847 1.4068 2.00848 2.9847 1.4068 2.00848 2.9847 1.4068 2.00848 2	1200	2.7996 1451.7	1633.0 1.8483	2.4465 1450.9	1632.0 1.8331	2.1718 1450.1 1631.0 1.8196
1800 3.8394 1725.4 1974.0 2.0233 3.5386 1725.0 1973.6 2.0084 2.9847 1724.6 1973.2 1.9952 2.0094 2.0094.2 2.0742 3.6597 1823.0 2093.9 2.0594 3.2527 1823.6 2093.5 2.0462 2	1400	3.1484 1539.6	1743.5 1.9111	2.7527 1539.0	1742.7 1.8960	2.4450 1538.4 1742.0 1.8827
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1600	3.4947 1630.8	1857.1 1.9691	3.0565 1630.3	1856.5 1.9541	2.7157 1629.8 1856.0 1.9409
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1800	3.8394 1725.4	1974.0 2.0233	3.3586 1725.0	1973.6 2.0084	2.9847 1724.6 1973.2 1.9952
Sat. 0.92815 1119.1 1205.0 1.4642 0.77020 1118.3 1203.9 1.4463 0.65589 1116.9 1201.9 1.4305 500 0.99304 1140.1 1231.9 1.4928 0.79526 1128.2 1216.5 1.4596 0.72791 1149.5 1243.8 1.4730 0.7974 1167.1 1267.0 1.5284 0.87542 1158.7 1255.9 1.4996 0.72799 1149.5 1243.8 1.4730 0.601 1.15876 1191.4 1298.6 1.5590 0.94605 1184.9 1289.9 1.5325 0.79332 1177.9 1280.7 1.5087 0.001 1.30440 1236.4 1357.0 1.6117 1.07316 1231.9 1351.0 1.5877 0.90769 1227.2 1344.8 1.5666 0.140407 1279.2 1412.5 1.6576 1.19038 1275.8 1408.0 1.6348 1.01125 1272.4 1403.4 1.6150 0.001 1.70094 1363.6 1521.0 1.7376 1.41097 1361.4 1518.1 1.7160 1.20381 1359.2 1515.2 1.6974 1100 1.82726 1406.2 1575.3 1.7735 1.51749 1404.4 1572.9 1.7522 1.29621 1402.5 1570.4 1.7341 1200 1.95211 1449.4 1630.0 1.8075 1.62252 1447.8 1627.9 1.7865 1.38709 1446.2 1625.9 1.7685 1400 2.1988 1537.8 1741.2 1.8708 1.82957 1536.6 1739.7 1.8501 1.56580 1535.4 1738.2 1.8324 1600 2.4430 1629.4 1855.4 1.9291 2.0340 1628.4 1854.2 1.9085 1.3149 1627.5 1853.1 1.8911 1800 2.6856 1724.2 1972.7 1.9834 2.2369 1723.4 1971.8 1.9630 1.91643 1722.7 1970.9 1.9457 2000 2.9271 1822.3 2093.1 2.0345 2.4387 1821.7 2092.4 2.0141 2.08987 1821.0 2091.7 1.9969 1.5060 0.73279 1170.5 1270.9 1.4866 0.51431 1154.1 1249.3 1.4457 0.37894 1129.5 1217.2 1.3961 1000 1.08301 1313.3 1456.0 1.5191 0.56411 1185.1 1249.3 1.4457 0.37894 1129.5 1217.2 1.3961 1000 1.0841 1313.3 1456.0 1.5191 0.56411 1185.1 1249.3 1.4457 0.37894 1129.5 1217.2 1.3961 1000 1.0841 1313.3 1456.0 1.6113 0.76136 1307.7 1448.6 1.6126 0.5876 1346.7 1498.6 1.6249 1.0014 1302.4 1400.7 1568.0 1.7316 1.0812 1.	2000	4.1830 1823.3	2094.2 2.0742	3.6597 1823.0	2093.9 2.0594	3.2527 1822.6 2093.5 2.0462
Sat. 0.92815 1119.1 1205.0 1.4642 0.77020 1118.3 1203.9 1.4463 0.65589 1116.9 1201.9 1.4305 500 0.99304 1140.1 1231.9 1.4928 0.79526 1128.2 1216.5 1.4596 0.72791 1149.5 1243.8 1.4730 0.7974 1167.1 1267.0 1.5284 0.87542 1158.7 1255.9 1.4996 0.72799 1149.5 1243.8 1.4730 0.601 1.15876 1191.4 1298.6 1.5590 0.94605 1184.9 1289.9 1.5325 0.79332 1177.9 1280.7 1.5087 0.001 1.30440 1236.4 1357.0 1.6117 1.07316 1231.9 1351.0 1.5877 0.90769 1227.2 1344.8 1.5666 0.140407 1279.2 1412.5 1.6576 1.19038 1275.8 1408.0 1.6348 1.01125 1272.4 1403.4 1.6150 0.001 1.70094 1363.6 1521.0 1.7376 1.41097 1361.4 1518.1 1.7160 1.20381 1359.2 1515.2 1.6974 1100 1.82726 1406.2 1575.3 1.7735 1.51749 1404.4 1572.9 1.7522 1.29621 1402.5 1570.4 1.7341 1200 1.95211 1449.4 1630.0 1.8075 1.62252 1447.8 1627.9 1.7865 1.38709 1446.2 1625.9 1.7685 1400 2.1988 1537.8 1741.2 1.8708 1.82957 1536.6 1739.7 1.8501 1.56580 1535.4 1738.2 1.8324 1600 2.4430 1629.4 1855.4 1.9291 2.0340 1628.4 1854.2 1.9085 1.3149 1627.5 1853.1 1.8911 1800 2.6856 1724.2 1972.7 1.9834 2.2369 1723.4 1971.8 1.9630 1.91643 1722.7 1970.9 1.9457 2000 2.9271 1822.3 2093.1 2.0345 2.4387 1821.7 2092.4 2.0141 2.08987 1821.0 2091.7 1.9969 1.5060 0.73279 1170.5 1270.9 1.4866 0.51431 1154.1 1249.3 1.4457 0.37894 1129.5 1217.2 1.3961 1000 1.08301 1313.3 1456.0 1.5191 0.56411 1185.1 1249.3 1.4457 0.37894 1129.5 1217.2 1.3961 1000 1.0841 1313.3 1456.0 1.5191 0.56411 1185.1 1249.3 1.4457 0.37894 1129.5 1217.2 1.3961 1000 1.0841 1313.3 1456.0 1.6113 0.76136 1307.7 1448.6 1.6126 0.5876 1346.7 1498.6 1.6249 1.0014 1302.4 1400.7 1568.0 1.7316 1.0812 1.		D 500	· (467.040E)	D (00	: (40(0 40E)	D 700 : (502 120E)
550	_			+	*	
550						0.65589 1116.9 1201.9 1.4305
650						
1.23312 1214.3 1328.4 1.5865 1.01133 1209.0 1321.3 1.5614 0.85242 1203.4 1313.8 1.5933 1.5014 1.30440 1236.4 1357.0 1.6117 1.07316 1231.9 1351.0 1.5877 0.90769 1227.2 1344.8 1.5666 1.44097 1279.2 1412.5 1.6576 1.19038 1275.8 1408.0 1.6348 1.01125 1272.4 1403.4 1.6150 1.77050 1.77050 1.8707 1.7735 1.19038 1275.8 1408.0 1.6348 1.01125 1272.4 1403.4 1.6150 1.7706 1.8707 1.10921 1316.0 1459.7 1.6581 1.000 1.70094 1363.6 1521.0 1.7376 1.41097 1361.4 1518.1 1.7160 1.20381 1359.2 1515.2 1.6974 1.000 1.82726 1406.2 1575.3 1.7735 1.51749 1404.4 1572.9 1.7522 1.29621 1402.5 1570.4 1.7341 1200 1.95211 1449.4 1630.0 1.8075 1.62252 1447.8 1627.9 1.7865 1.38709 1446.2 1625.9 1.7685 1.400 2.1988 1537.8 1741.2 1.8708 1.82957 1536.6 1739.7 1.8501 1.56580 1535.4 1738.2 1.8324 1600 2.4430 1629.4 1855.4 1.9291 2.0340 1628.4 1854.2 1.9085 1.74192 1627.5 1853.1 1.8911 1800 2.6856 1724.2 1972.7 1.9834 2.2369 1723.4 1971.8 1.9630 1.91643 1722.7 1970.9 1.9457 1.9969 1.000 1.00						
700						
800						
1.57252 1321.4 1466.9 1.6992 1.30230 1318.7 1463.3 1.6771 1.10921 1316.0 1459.7 1.6581 1.000 1.70094 1363.6 1521.0 1.7376 1.41097 1361.4 1518.1 1.7160 1.20381 1359.2 1515.2 1.6974 1.000 1.82726 1406.2 1575.3 1.7735 1.51749 1404.4 1572.9 1.7522 1.29621 1402.5 1570.4 1.7341 1200 1.95211 1449.4 1630.0 1.8075 1.62252 1447.8 1627.9 1.7865 1.38709 1446.2 1625.9 1.7685 1400 2.1988 1537.8 1741.2 1.8708 1.82957 1536.6 1739.7 1.8501 1.56580 1535.4 1738.2 1.8324 1600 2.4430 1629.4 1855.4 1.9291 2.0340 1628.4 1854.2 1.9085 1.74192 1627.5 1853.1 1.8911 1800 2.6856 1724.2 1972.7 1.9834 2.2369 1723.4 1971.8 1.9630 1.91643 1722.7 1970.9 1.9457 1.9969 1.20340 1.20345 2.4387 1821.7 2092.4 2.0141 2.08987 1821.0 2091.7 1.9969 1.9600 1.56920 1115.0 1199.3 1.4162 0.44604 1110.1 1192.6 1.3906 0.34549 1102.0 1181.9 1.3623 1.5600 0.67799 1170.5 1270.9 1.4866 0.51431 1154.1 1249.3 1.4457 0.37894 1129.5 1217.2 1.3961 0.78330 1222.4 1338.4 1.5476 0.60844 1212.4 1325.0 1.5140 0.46735 1198.7 1306.8 1.4477 1.306.0 0.87678 1268.9 1398.7 1.5975 0.68821 1261.7 1389.0 1.5670 0.53687 1252.2 1376.4 1.5347 9.00 0.96434 1313.3 1456.0 1.6413 0.76136 1307.7 1448.6 1.6126 0.59876 1300.5 1439.0 1.5826 1.000 1.04841 1357.0 1512.2 1.6812 0.83078 1352.5 1560.2 1.6535 0.65656 1346.7 1498.6 1.6249 1.000 1.04841 1357.0 1512.2 1.6812 0.83078 1352.5 1560.2 1.6535 0.65656 1346.7 1498.6 1.6249 1.000 1.20151 1444.6 1623.8 1.7528 0.96327 1441.4 1619.7 1.7263 0.76545 1437.4 1614.5 1.6993 1400 1.36707 1534.2 1736.7 1.8170 1.09101 1531.8 1733.7 1.7911 0.86944 1522.2 1846.7 1.8246 1800 1.67606 1721.9 1970.0 1.9306 1.33956 1720.3						
1,70094 1363.6 1521.0 1.7376 1.41097 1361.4 1518.1 1.7160 1.20381 1359.2 1515.2 1.6974 1100 1.82726 1406.2 1575.3 1.7735 1.51749 1404.4 1572.9 1.7522 1.29621 1402.5 1570.4 1.7341 1200 1.95211 1449.4 1630.0 1.8075 1.62252 1447.8 1627.9 1.7865 1.38709 1446.2 1625.9 1.7685 1400 2.1988 1537.8 1741.2 1.8708 1.82957 1536.6 1739.7 1.8501 1.56580 1535.4 1738.2 1.8324 1600 2.4430 1629.4 1855.4 1.9291 2.0340 1628.4 1854.2 1.9085 1.74192 1627.5 1853.1 1.8911 1800 2.6856 1724.2 1972.7 1.9834 2.2369 1723.4 1971.8 1.9630 1.91643 1722.7 1970.9 1.9457 1.9200 1.922.1 1822.3 2093.1 2.0345 2.4387 1821.7 2092.4 2.0141 2.08987 1821.0 2091.7 1.9969 1.9457 1.9969 1.996						
1100						
$\begin{array}{c} 1200 & 1.95211 & 1449.4 & 1630.0 & 1.8075 \\ 1400 & 2.1988 & 1537.8 & 1741.2 & 1.8708 \\ 1820 & 2.1988 & 1537.8 & 1741.2 & 1.8708 \\ 1820 & 2.0340 & 1628.4 & 1854.2 & 1.9085 \\ 2.0340 & 1628.4 & 1854.2 & 1.9085 \\ 2.0340 & 1628.4 & 1854.2 & 1.9085 \\ 2.0340 & 1628.4 & 1854.2 & 1.9085 \\ 2.0340 & 1628.4 & 1854.2 & 1.9085 \\ 2.0340 & 1628.4 & 1854.2 & 1.9085 \\ 2.0340 & 1628.4 & 1854.2 & 1.9085 \\ 2.0340 & 1628.4 & 1854.2 & 1.9085 \\ 2.0340 & 1628.4 & 1854.2 & 1.9085 \\ 2.0340 & 1628.4 & 1854.2 & 1.9085 \\ 2.0340 & 1628.4 & 1854.2 & 1.9085 \\ 1.74192 & 1627.5 & 1853.1 & 1.8911 \\ 1.9630 & 1.91643 & 1722.7 & 1970.9 & 1.9457 \\ 2.000 & 2.9271 & 1822.3 & 2093.1 & 2.0345 & 2.4387 & 1821.7 & 2092.4 & 2.0141 \\ 2.0917 & 1.9969 \\ \hline \\ Sat. & 0.56920 & 1115.0 & 1199.3 & 1.4162 \\ 0.61586 & 1139.4 & 1230.5 & 1.4476 \\ 0.600 & 0.67799 & 1170.5 & 1270.9 & 1.4866 \\ 0.51431 & 1154.1 & 1249.3 & 1.4457 \\ 0.650 & 0.73279 & 1197.6 & 1306.0 & 1.5191 \\ 0.56411 & 1185.1 & 1289.5 & 1.4827 \\ 0.08310 & 1222.4 & 1338.4 & 1.5476 \\ 0.60844 & 1212.4 & 1325.0 & 1.5140 \\ 0.87678 & 1268.9 & 1398.7 & 1.5975 \\ 0.68821 & 1261.7 & 1389.0 & 1.5670 \\ 0.96434 & 1313.3 & 1456.0 & 1.6413 \\ 0.900 & 0.96434 & 1313.3 & 1456.0 & 1.6413 \\ 0.800 & 1.04841 & 1357.0 & 1512.2 & 1.6812 \\ 0.83078 & 1352.5 & 1506.2 & 1.6535 \\ 1.200 & 1.21051 & 1444.6 & 1623.8 & 1.7528 \\ 1.200 & 1.21051 & 1444.6 & 1623.8 & 1.7528 \\ 1.200 & 1.21051 & 1444.6 & 1623.8 & 1.7528 \\ 1.200 & 1.52283 & 1626.5 & 1851.9 & 1.8759 \\ 1.21610 & 1624.6 & 1849.6 & 1.8504 \\ 1800 & 1.67606 & 1721.9 & 1970.0 & 1.9306 \\ 1.33956 & 1720.3 & 1968.2 & 1.9053 \\ 1.07036 & 1718.4 & 1966.0 & 1.8799 \\ 1.8799 & 1.8799 \\ 1.000 & 1.67606 & 1721.9 & 1970.0 & 1.9306 \\ 1.33956 & 1720.3 & 1968.2 & 1.9053 \\ 1.07036 & 1718.4 & 1966.0 & 1.8799 \\ 1.000 & 1.67606 & 1721.9 & 1970.0 & 1.9306 \\ 1.33956 & 1720.3 & 1968.2 & 1.9053 \\ 1.07036 & 1718.4 & 1966.0 & 1.8799 \\ 1.000 & 1.67606 & 1721.9 & 1970.0 & 1.9306 \\ 1.33956 & 1720.3 & 1968.2 & 1.9053 \\ 1.07036 & 1718.4 & 1966.0 & 1.8799 \\ 1.000 & 1.67606 & 1721.9 & 1970.0 & 1.9306 \\ 1.33956 &$						
$ \begin{array}{c} 1400 \\ 2.1988 \\ 1537.8 \\ 1741.2 \\ 1.8708 \\ 1.82957 \\ 1536.6 \\ 1739.7 \\ 1.8501 \\ 1.86957 \\ 1536.6 \\ 1739.7 \\ 1.8501 \\ 1.86580 \\ 139.7 \\ 1.9085 \\ 1.74192 \\ 1627.5 \\ 1853.1 \\ 1.8911 \\ 1.8900 \\ 2.6856 \\ 1724.2 \\ 1972.7 \\ 1.9834 \\ 2.2369 \\ 1723.4 \\ 1971.8 \\ 1.9630 \\ 2.4387 \\ 1821.7 \\ 2092.4 \\ 2.0141 \\ 2.08987 \\ 1821.0 \\ 2091.7 \\ 1.970.9 \\ 1.9457 \\ 2.08987 \\ 1821.0 \\ 2091.7 \\ 1.9969 \\ \hline \\ P = 800 \text{ psia } (518.27^{\circ}\text{F}) \\ \hline \\ P = 800 \text{ psia } (518.27^{\circ}\text{F}) \\ \hline \\ Sat. \\ 0.56920 \\ 1115.0 \\ 1199.3 \\ 1.4162 \\ 0.44604 \\ 1110.1 \\ 1192.6 \\ 0.44604 \\ 1110.1 \\ 1192.6 \\ 1.3906 \\ 0.64586 \\ 139.4 \\ 120.3 \\ 120$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Sat. 0.56920 1115.0 1199.3 1.4162 0.44604 1110.1 1192.6 1.3906 0.34549 1102.0 1181.9 1.3623 550 0.61586 1139.4 1230.5 1.4476 0.45375 1115.2 1199.2 1.3972 0.34549 1102.0 1181.9 1.3623 600 0.67799 1170.5 1270.9 1.4866 0.51431 1154.1 1249.3 1.4457 0.37894 1129.5 1217.2 1.3961 650 0.73279 1197.6 1306.0 1.5191 0.56411 1185.1 1289.5 1.4827 0.42703 1167.5 1266.3 1.4414 700 0.78330 1222.4 1338.4 1.5476 0.60844 1212.4 1325.0 1.5140 0.46735 1198.7 1306.8 1.4771 750 0.83102 1246.0 1369.1 1.5735 0.64944 1237.6 1357.8 1.5418 0.50344 1226.4 1342.9 1.5076 800 0.87678	2000	2.9271 1822.3	2093.1 2.0345	2.4387 1821.7	2092.4 2.0141	2.08987 1821.0 2091.7 1.9969
550 0.61586 1139.4 1230.5 1.4476 0.45375 1115.2 1199.2 1.3972 600 0.67799 1170.5 1270.9 1.4866 0.51431 1154.1 1249.3 1.4457 0.37894 1129.5 1217.2 1.3961 650 0.73279 1197.6 1306.0 1.5191 0.56411 1185.1 1289.5 1.4827 0.42703 1167.5 1266.3 1.4414 700 0.78330 1222.4 1338.4 1.5476 0.60844 1212.4 1325.0 1.5140 0.46735 1198.7 1306.8 1.4771 750 0.83102 1246.0 1369.1 1.5735 0.64944 1237.6 1357.8 1.5418 0.50344 1226.4 1342.9 1.5076 800 0.87678 1268.9 1398.7 1.5975 0.68821 1261.7 1389.0 1.5670 0.53687 1252.2 1376.4 1.5347 900 0.96434 1313.3 1456.0 1.6413 0.76136		P = 800 p	osia (518.27°F)	P = 1000	psia (544.65°F)	$P = 1250 \text{ psia } (572.45^{\circ}\text{F})$
550 0.61586 1139.4 1230.5 1.4476 0.45375 1115.2 1199.2 1.3972 600 0.67799 1170.5 1270.9 1.4866 0.51431 1154.1 1249.3 1.4457 0.37894 1129.5 1217.2 1.3961 650 0.73279 1197.6 1306.0 1.5191 0.56411 1185.1 1289.5 1.4827 0.42703 1167.5 1266.3 1.4414 700 0.78330 1222.4 1338.4 1.5476 0.60844 1212.4 1325.0 1.5140 0.46735 1198.7 1306.8 1.4771 750 0.83102 1246.0 1369.1 1.5735 0.64944 1237.6 1357.8 1.5418 0.50344 1226.4 1342.9 1.5076 800 0.87678 1268.9 1398.7 1.5975 0.68821 1261.7 1389.0 1.5670 0.53687 1252.2 1376.4 1.5347 900 0.96434 1313.3 1456.0 1.6413 0.76136	Sat.	0.56920 1115.0	1199.3 1.4162	0.44604 1110.1	1192.6 1.3906	0.34549 1102.0 1181.9 1.3623
600 0.67799 1170.5 1270.9 1.4866 0.51431 1154.1 1249.3 1.4457 0.37894 1129.5 1217.2 1.3961 650 0.73279 1197.6 1306.0 1.5191 0.56411 1185.1 1289.5 1.4827 0.42703 1167.5 1266.3 1.4414 700 0.78330 1222.4 1338.4 1.5476 0.60844 1212.4 1325.0 1.5140 0.46735 1198.7 1306.8 1.4771 750 0.83102 1246.0 1369.1 1.5735 0.64944 1237.6 1357.8 1.5418 0.50344 1226.4 1342.9 1.5076 800 0.87678 1268.9 1398.7 1.5975 0.68821 1261.7 1389.0 1.5670 0.53687 1252.2 1376.4 1.5347 900 0.96434 1313.3 1456.0 1.6413 0.76136 1307.7 1448.6 1.6126 0.59876 1300.5 1439.0 1.5826 1000 1.04841						1.5025
650 0.73279 1197.6 1306.0 1.5191 0.56411 1185.1 1289.5 1.4827 0.42703 1167.5 1266.3 1.4414 700 0.78330 1222.4 1338.4 1.5476 0.60844 1212.4 1325.0 1.5140 0.46735 1198.7 1306.8 1.4771 750 0.83102 1246.0 1369.1 1.5735 0.64944 1237.6 1357.8 1.5418 0.50344 1226.4 1342.9 1.5076 800 0.87678 1268.9 1398.7 1.5975 0.68821 1261.7 1389.0 1.5670 0.53687 1252.2 1376.4 1.5347 900 0.96434 1313.3 1456.0 1.6413 0.76136 1307.7 1448.6 1.6126 0.59876 1300.5 1439.0 1.5826 1000 1.04841 1357.0 1512.2 1.6812 0.83078 1352.5 1506.2 1.6535 0.65656 1346.7 1498.6 1.6249 1100 1.13024						0.37894 1129.5 1217.2 1.3961
700 0.78330 1222.4 1338.4 1.5476 0.60844 1212.4 1325.0 1.5140 0.46735 1198.7 1306.8 1.4771 750 0.83102 1246.0 1369.1 1.5735 0.64944 1237.6 1357.8 1.5418 0.50344 1226.4 1342.9 1.5076 800 0.87678 1268.9 1398.7 1.5975 0.68821 1261.7 1389.0 1.5670 0.53687 1252.2 1376.4 1.5347 900 0.96434 1313.3 1456.0 1.6413 0.76136 1307.7 1448.6 1.6126 0.59876 1300.5 1439.0 1.5826 1000 1.04841 1357.0 1512.2 1.6812 0.83078 1352.5 1506.2 1.6535 0.65656 1346.7 1498.6 1.6249 1100 1.13024 1400.7 1568.0 1.7181 0.89783 1396.9 1563.1 1.6911 0.71184 1392.2 1556.8 1.6635 1200 1.21051						
750 0.83102 1246.0 1369.1 1.5735 0.64944 1237.6 1357.8 1.5418 0.50344 1226.4 1342.9 1.5076 800 0.87678 1268.9 1398.7 1.5975 0.68821 1261.7 1389.0 1.5670 0.53687 1252.2 1376.4 1.5347 900 0.96434 1313.3 1456.0 1.6413 0.76136 1307.7 1448.6 1.6126 0.59876 1300.5 1439.0 1.5826 1000 1.04841 1357.0 1512.2 1.6812 0.83078 1352.5 1506.2 1.6535 0.65656 1346.7 1498.6 1.6249 1100 1.13024 1400.7 1568.0 1.7181 0.89783 1396.9 1563.1 1.6911 0.71184 1392.2 1556.8 1.6635 1200 1.21051 1444.6 1623.8 1.7528 0.96327 1441.4 1619.7 1.7263 0.76545 1437.4 1614.5 1.6993 1400 1.36797						
800 0.87678 1268.9 1398.7 1.5975 0.68821 1261.7 1389.0 1.5670 0.53687 1252.2 1376.4 1.5347 900 0.96434 1313.3 1456.0 1.6413 0.76136 1307.7 1448.6 1.6126 0.59876 1300.5 1439.0 1.5826 1000 1.04841 1357.0 1512.2 1.6812 0.83078 1352.5 1506.2 1.6535 0.65656 1346.7 1498.6 1.6249 1100 1.13024 1400.7 1568.0 1.7181 0.89783 1396.9 1563.1 1.6911 0.71184 1392.2 1556.8 1.6635 1200 1.21051 1444.6 1623.8 1.7528 0.96327 1441.4 1619.7 1.7263 0.76545 1437.4 1614.5 1.6993 1400 1.36797 1534.2 1736.7 1.8170 1.09101 1531.8 1733.7 1.7911 0.86944 1528.7 1729.8 1.7649 1600 1.52283 1626.5 1851.9 1.8759 1.21610 1624.6 1849.6 1.850						
900 0.96434 1313.3 1456.0 1.6413 0.76136 1307.7 1448.6 1.6126 0.59876 1300.5 1439.0 1.5826 1000 1.04841 1357.0 1512.2 1.6812 0.83078 1352.5 1506.2 1.6535 0.65656 1346.7 1498.6 1.6249 1100 1.13024 1400.7 1568.0 1.7181 0.89783 1396.9 1563.1 1.6911 0.71184 1392.2 1556.8 1.6635 1200 1.21051 1444.6 1623.8 1.7528 0.96327 1441.4 1619.7 1.7263 0.76545 1437.4 1614.5 1.6993 1400 1.36797 1534.2 1736.7 1.8170 1.09101 1531.8 1733.7 1.7911 0.86944 1528.7 1729.8 1.7649 1600 1.52283 1626.5 1851.9 1.8759 1.21610 1624.6 1849.6 1.8504 0.97072 1622.2 1846.7 1.8246 1800 1.67606 1721.9 1970.0 1.9306 1.33956 1720.3 1968.2 1.90						
1000 1.04841 1357.0 1512.2 1.6812 0.83078 1352.5 1506.2 1.6535 0.65656 1346.7 1498.6 1.6249 1100 1.13024 1400.7 1568.0 1.7181 0.89783 1396.9 1563.1 1.6911 0.71184 1392.2 1556.8 1.6635 1200 1.21051 1444.6 1623.8 1.7528 0.96327 1441.4 1619.7 1.7263 0.76545 1437.4 1614.5 1.6993 1400 1.36797 1534.2 1736.7 1.8170 1.09101 1531.8 1733.7 1.7911 0.86944 1528.7 1729.8 1.7649 1600 1.52283 1626.5 1851.9 1.8759 1.21610 1624.6 1849.6 1.8504 0.97072 1622.2 1846.7 1.8246 1800 1.67606 1721.9 1970.0 1.9306 1.33956 1720.3 1968.2 1.9053 1.07036 1718.4 1966.0 1.8799						
1100 1.13024 1400.7 1568.0 1.7181 0.89783 1396.9 1563.1 1.6911 0.71184 1392.2 1556.8 1.6635 1200 1.21051 1444.6 1623.8 1.7528 0.96327 1441.4 1619.7 1.7263 0.76545 1437.4 1614.5 1.6993 1400 1.36797 1534.2 1736.7 1.8170 1.09101 1531.8 1733.7 1.7911 0.86944 1528.7 1729.8 1.7649 1600 1.52283 1626.5 1851.9 1.8759 1.21610 1624.6 1849.6 1.8504 0.97072 1622.2 1846.7 1.8246 1800 1.67606 1721.9 1970.0 1.9306 1.33956 1720.3 1968.2 1.9053 1.07036 1718.4 1966.0 1.8799						
1200 1.21051 1444.6 1623.8 1.7528 0.96327 1441.4 1619.7 1.7263 0.76545 1437.4 1614.5 1.6993 1400 1.36797 1534.2 1736.7 1.8170 1.09101 1531.8 1733.7 1.7911 0.86944 1528.7 1729.8 1.7649 1600 1.52283 1626.5 1851.9 1.8759 1.21610 1624.6 1849.6 1.8504 0.97072 1622.2 1846.7 1.8246 1800 1.67606 1721.9 1970.0 1.9306 1.33956 1720.3 1968.2 1.9053 1.07036 1718.4 1966.0 1.8799						
1400 1.36797 1534.2 1736.7 1.8170 1.09101 1531.8 1733.7 1.7911 0.86944 1528.7 1729.8 1.7649 1600 1.52283 1626.5 1851.9 1.8759 1.21610 1624.6 1849.6 1.8504 0.97072 1622.2 1846.7 1.8246 1800 1.67606 1721.9 1970.0 1.9306 1.33956 1720.3 1968.2 1.9053 1.07036 1718.4 1966.0 1.8799						
1600 1.52283 1626.5 1851.9 1.8759 1.21610 1624.6 1849.6 1.8504 0.97072 1622.2 1846.7 1.8246 1800 1.67606 1721.9 1970.0 1.9306 1.33956 1720.3 1968.2 1.9053 1.07036 1718.4 1966.0 1.8799						
1800 1.67606 1721.9 1970.0 1.9306 1.33956 1720.3 1968.2 1.9053 1.07036 1718.4 1966.0 1.8799						

TABLE A-6E

Superheated water (Concluded)

Superhe	ated water	: (Concli	uded)									
T	U	и	h	S	υ	и	h	S	υ	и	h	S
°F				Btu/lbm·R				Btu/lbm·R				Btu/lbm·R
			osia (596.				psia (617.1				psia (635.8	
Cat						1080.5	1153.9	1.3112				
Sat. 600	0.27093	1092.1	1175.4	1.3362 1.3423	0.22061	1000.5	1133.9	1.3112	0.18815	1000.8	1136.4	1.2863
650	0.23109		1239.7	1.3423	0.26202	1122.8	1207.9	1.3607	0.20586	1001 /	1167.6	1.3146
700	0.33310		1286.9	1.4433	0.30252		1264.7	1.4108	0.20360		1239.8	1.3783
750	0.40535		1326.9	1.4771	0.33455		1309.8	1.4489	0.28074		1291.3	1.4218
800	0.43550		1363.1	1.5064		1231.7	1349.1	1.4807	0.30763		1334.3	1.4567
850	0.46356		1396.9	1.5328		1259.3	1385.1	1.5088	0.33169		1372.8	1.4867
900	0.49015		1429.2	1.5569		1285.4	1419.0	1.5341	0.35390		1408.5	1.5134
1000	0.54031		1490.8	1.6007		1334.9	1482.9	1.5796	0.39479	1328.7	1474.9	1.5606
1100	0.58781	1387.3	1550.5	1.6402		1382.4	1544.1	1.6201	0.43266	1377.5	1537.6	1.6021
1200	0.63355	1433.3	1609.2	1.6767	0.53932	1429.2	1603.9	1.6572	0.46864	1425.1	1598.5	1.6400
1400	0.72172		1726.0	1.7432	0.61621	1522.6	1722.1	1.7245	0.53708		1718.3	1.7081
1600	0.80714		1843.8	1.8033		1617.4	1840.9	1.7852	0.60269		1838.0	1.7693
1800	0.89090		1963.7	1.8589	0.76273		1961.5	1.8410	0.66660		1959.2	1.8255
2000	0.97358	1815.9	2086.1	1.9108	0.83406	1814.2	2084.3	1.8931	0.72942	1812.6	2082.6	1.8778
	P	2 = 2500	osia (668.	.17°F)	j	P = 3000 j	psia (695.4	41°F)		<i>P</i> =	3500 psia	
Sat.	0.13076	1031.2	1091.7	1.2330	0.08460	969.8	1016.8	1.1587				
650									0.02492		679.9	0.8632
700	0.16849		1176.3	1.3072	0.09838		1059.9	1.1960	0.03065		779.9	0.9511
750	0.20327		1249.0	1.3686	0.14840		1196.5	1.3118	0.10460		1125.4	1.2434
800	0.22949		1302.0	1.4116		1167.5	1265.3	1.3676	0.13639		1222.6	1.3224
850	0.25174		1346.6	1.4463		1208.2	1317.9	1.4086	0.15847		1286.5	1.3721
900	0.27165		1386.4	1.4761	0.21640		1362.9	1.4423	0.17659		1337.8	1.4106
950	0.29001		1423.3 1458.2	1.5028		1273.9	1403.3	1.4716	0.19245		1382.4 1423.0	1.4428
1000 1100	0.30726 0.33949		1524.4	1.5271 1.5710	0.24876 0.27732		1440.9 1510.8	1.4978 1.5441	0.20687 0.23289		1423.0	1.4711 1.5201
1200	0.35949		1587.6	1.6103		1408.0	1576.6	1.5850	0.25654		1565.4	1.5627
1400	0.42631		1710.5	1.6802		1507.0	1702.7	1.6567	0.29978		1694.8	1.6364
1600	0.48004		1832.2	1.7424		1605.3	1826.4	1.7199	0.33994		1820.5	1.7006
1800	0.53205		1954.8	1.7991	0.44237		1950.3	1.7773	0.37833		1945.8	1.7586
2000	0.58295		2079.1	1.8518	0.48532		2075.6	1.8304	0.41561		2072.1	1.8121
			4000 psia				5000 psia				6000 psia	
650	0.02448	657.9	676.1	0.8577	0.02379		670.3	0.8485	0.02325		666.1	0.8408
700	0.02448	742.3	763.6	0.8377	0.02379		746.6	0.8483	0.02323		736.5	0.8408
750	0.02871	962.1	1009.2	1.1410	0.02678		853.0	1.0054	0.02364	788.7	821.8	0.9028
800	0.00570	1094.2	1172.1	1.1410	0.05937		1041.8	1.1581	0.02981		941.0	1.0711
850	0.10320		1251.8	1.3355		1092.4	1171.5	1.2593	0.05815		1083.1	1.1819
900	0.14647		1310.9	1.3799		1155.9	1252.1	1.3198	0.07584		1187.7	1.2603
950	0.16176		1360.5	1.4157		1203.9	1313.6	1.3643	0.09010		1263.7	1.3153
1000	0.17538		1404.4	1.4463		1244.0	1365.5	1.4004	0.10208		1324.7	1.3578
1100	0.19957		1482.8	1.4983		1312.2	1453.8	1.4590	0.12211		1424.0	1.4237
1200	0.22121	1390.3	1554.1	1.5426		1372.1	1531.1	1.5070	0.13911		1507.8	1.4758
1300	0.24128		1621.6	1.5821		1427.8	1602.7	1.5490	0.15434		1583.8	1.5203
1400	0.26028		1687.0	1.6182	0.20508	1481.4	1671.1	1.5868	0.16841	1468.4	1655.4	1.5598
1600	0.29620		1814.7	1.6835		1585.6	1803.1	1.6542	0.19438	1575.7	1791.5	1.6294
1800	0.33033	1696.8	1941.4	1.7422		1689.0	1932.5	1.7142	0.21853		1923.7	1.6907
2000	0.36335	1799.7	2068.6	1.7961	0.29023	1793.2	2061.7	1.7689	0.24155	1786.7	2054.9	1.7463

TABLE A-7E

	1	111	1.1	
Com	pressed	. IIQ	Ju1d	water

	pressed fiqu											
T	U	и	h	S	υ	и	h	S	υ	и	h	S
°F	ft ³ /lbm	Btu/lbm	Btu/lbm	Btu/lbm·R	ft³/lbm	Btu/lbm	Btu/lbm	Btu/lbm·R	ft³/lbm	Btu/lbm	Btu/lbm	Btu/lbm·R
	P	r = 500 ps	ia (467.0	4°F)	P =	= 1000 ps	ia (544.6	5°F)	P :	= 1500 ps	sia (596.2	6°F)
Sat.	0.019750	447.68	449.51	0.64900	0.021595	538.58	542.57	0.74341	0.023456	605.07	611.58	0.80836
32	0.015994	0.01	1.49	0.00001	0.015966	0.03	2.99	0.00005	0.015939	0.05	4.48	0.00008
50	0.015998	18.03	19.51	0.03601	0.015972	17.99	20.95	0.03593	0.015946	17.95	22.38	0.03584
100	0.016107	67.86	69.35	0.12930	0.016083	67.69	70.67	0.12899	0.016059	67.53	71.98	0.12869
150	0.016317	117.70	119.21	0.21462	0.016292	117.42	120.43	0.21416	0.016267	117.14	121.66	0.21369
200	0.016607	167.70	169.24	0.29349	0.016580	167.31	170.38	0.29289	0.016553	166.92	171.52	0.29229
250	0.016972	218.04	219.61	0.36708	0.016941	217.51	220.65	0.36634	0.016911	217.00	221.69	0.36560
300	0.017417	268.92	270.53	0.43641	0.017380	268.24	271.46	0.43551	0.017345	267.57	272.39	0.43463
350	0.017954	320.64	322.30	0.50240	0.017910	319.77	323.08	0.50132	0.017866	318.91	323.87	0.50025
400	0.018609	373.61	375.33	0.56595	0.018552	372.48	375.91	0.56463	0.018496	371.37	376.51	0.56333
450	0.019425	428.44	430.24	0.62802	0.019347	426.93	430.51	0.62635	0.019271	425.47	430.82	0.62472
500					0.020368	484.03	487.80	0.68764	0.020258	482.01	487.63	0.68550
550									0.021595	542.50	548.50	0.74731
	P	= 2000 p	sia (635.8	35°F)	P =	= 3000 ps	ia (695.4	1°F)		P = 50	000 psia	
Sat.	0.025634	662.33	671.82	0.86224	0.034335	783.39	802.45	0.97321				
32	0.015912	0.07	5.96	0.00010	0.015859	0.10	8.90	0.00011	0.015756	0.13	14.71	0.00002
50	0.015921	17.91	23.80	0.03574	0.015870	17.83	26.64	0.03554	0.015773	17.65	32.25	0.03505
100	0.016035	67.36	73.30	0.12838	0.015988	67.04	75.91	0.12776	0.015897	66.41	81.12	0.12652
200	0.016527	166.54	172.66	0.29170	0.016475	165.79	174.94	0.29053	0.016375	164.36	179.51	0.28824
300	0.017310	266.92	273.33	0.43376	0.017242	265.65	275.22	0.43204	0.017112	263.24	279.07	0.42874
400	0.018442	370.30	377.12	0.56205	0.018338	368.22	378.41	0.55959	0.018145	364.35	381.14	0.55492
450	0.019199	424.06	431.16	0.62314	0.019062	421.36	431.94	0.62010	0.018812	416.40	433.80	0.61445
500	0.020154	480.08	487.54	0.68346	0.019960	476.45	487.53	0.67958	0.019620	469.94	488.10	0.67254
560	0.021739	552.21	560.26	0.75692	0.021405	546.59	558.47	0.75126	0.020862	537.08	556.38	0.74154
600	0.023317	605.77	614.40	0.80898	0.022759	597.42	610.06	0.80086	0.021943	584.42	604.72	0.78803
640					0.024765	654.52	668.27	0.85476	0.023358	634.95	656.56	0.83603
680					0.028821	728.63	744.64	0.92288	0.025366	690.67	714.14	0.88745
700									0.026777	721.78	746.56	0.91564

TABLE A-8E

Saturated ice-water vapor

		Specific ft ³ /	<i>volume</i> , lbm	Internal energy, Btu/lbm				E <i>nthalpy</i> , Btu/lbm		B		
Т	Sat.	Sat.	Sat.	Sat.	C1-1	Sat.	Sat.	C1-1	Sat.	Sat.	C1-1	Sat.
Temp., $T ^{\circ}F$	press.,	ice,	vapor,	ice,	Subl.,	vapor,	ice,	Subl.,	vapor,	ice,	Subl.,	vapor,
<i>I</i> 1	$P_{\rm sat}$ psia	U _i	Ug	u_i	u_{ig}	u_g	h_i	h_{ig}	h_g	S_i	S_{ig}	S_g
32.018	0.08871	0.01747	3299.6	-143.34	1164.2	1020.9	-143.34	1218.3	1075.0	-0.29146	2.4779	2.1864
32	0.08864	0.01747	3302.6	-143.35	1164.2	1020.9	-143.35	1218.4	1075.0	-0.29148	2.4779	2.1865
30	0.08086	0.01747	3605.8	-144.35	1164.6	1020.2	-144.35	1218.5	1074.2	-0.29353	2.4883	2.1948
25	0.06405	0.01746	4505.8	-146.85	1165.4	1018.6	-146.85	1218.8	1072.0	-0.29865	2.5146	2.2160
20	0.05049	0.01746	5657.6	-149.32	1166.2	1016.9	-149.32	1219.1	1069.8	-0.30377	2.5414	2.2376
15	0.03960	0.01745	7138.9	-151.76	1167.0	1015.2	-151.76	1219.3	1067.6	-0.30889	2.5687	2.2598
10	0.03089	0.01744	9054.0	-154.18	1167.8	1013.6	-154.18	1219.5	1065.4	-0.31401	2.5965	2.2825
5	0.02397	0.01743	11,543	-156.57	1168.5	1011.9	-156.57	1219.7	1063.1	-0.31913	2.6248	2.3057
0	0.01850	0.01743	14,797	-158.94	1169.2	1010.3	-158.94	1219.9	1060.9	-0.32426	2.6537	2.3295
-5	0.01420	0.01742	19,075	-161.28	1169.9	1008.6	-161.28	1220.0	1058.7	-0.32938	2.6832	2.3538
-10	0.01083	0.01741	24,731	-163.60	1170.6	1007.0	-163.60	1220.1	1056.5	-0.33451	2.7133	2.3788
-15	0.00821	0.01740	32,257	-165.90	1171.2	1005.3	-165.90	1220.2	1054.3	-0.33964	2.7440	2.4044
-20	0.00619	0.01740	42,335	-168.16	1171.8	1003.6	-168.16	1220.3	1052.1	-0.34478	2.7754	2.4306
-25	0.00463	0.01739	55,917	-170.41	1172.4	1002.0	-170.41	1220.3	1049.9	-0.34991	2.8074	2.4575
-30	0.00344	0.01738	74,345	-172.63	1173.0	1000.3	-172.63	1220.3	1047.7	-0.35505	2.8401	2.4850
-35	0.00254	0.01738	99,526	-174.83	1173.5	998.7	-174.83	1220.3	1045.5	-0.36019	2.8735	2.5133
-40	0.00186	0.01737	134,182	-177.00	1174.0	997.0	-177.00	1220.3	1043.3	-0.36534	2.9076	2.5423

FIGURE A-9E

T-s diagram for water.

Source of Data: Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore. Steam Tables (New York: John Wiley & Sons, 1969)

FIGURE A-10E

Mollier diagram for water.

Source of Data: Joseph H. Keenan, Frederick G. Keyes, Philip G. Hill, and Joan G. Moore. Steam Tables (New York: John Wiley & Sons, 1969)

TABLE A-11E

Saturated refrigerant-134a-Temperature table

			<i>volume</i> , lbm	Inte	ernal ener Btu/lbm	gy,		<i>Enthalpy</i> , Btu/lbm			Entropy, Btu/lbm·R	
	Sat.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
Temp.,	press.,	liquid,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,	liquid,	Evap.,	vapor,
T°F	$P_{\rm sat}$ psia	$U_{\!f}$	U_g	u_f	u_{fg}	u_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g
40	7.432	0.01130	5.7769	-0.016	89.174	89.16	0.000	97.104	97.10	0.00000	0.23136	0.23136
-40 -35	8.581	0.01130	5.0489	1.483	88.360	89.10	1.501	96.360	97.10	0.00000	0.23130	0.23130
-33 -30	9.869	0.01130	4.4286	2.987	87.542	90.53	3.008	95.608	98.62	0.00333	0.22250	0.23044
-30 -25	11.306	0.01149	3.8980	4.497	86.717	91.21	4.522	94.849	99.37	0.00707	0.22230	0.22937
-20	12.906	0.01149	3.4424	6.014	85.887	91.90	6.041	94.080	100.12	0.01037	0.21396	0.22800
-15	14.680	0.01163	3.0495	7.536	85.050	92.59	7.568	93.303	100.12	0.01748	0.20981	0.22729
-10	16.642	0.01170	2.7097	9.065	84.206	93.27	9.102	92.515	101.62	0.02090	0.20572	0.22662
- 5	18.806	0.01178	2.4146	10.601	83.355	93.96	10.642	91.717	102.36	0.02430	0.20171	0.22600
0	21.185	0.01185	2.1575	12.143	82.496	94.64	12.190	90.907	103.10	0.02767	0.19775	0.22542
5	23.793	0.01193	1.9328	13.693	81.628	95.32	13.745	90.085	103.83	0.03103	0.19385	0.22488
10	26.646	0.01200	1.7358	15.249	80.751	96.00	15.308	89.251	104.56	0.03436	0.19001	0.22437
15	29.759	0.01208	1.5625	16.813	79.865	96.68	16.879	88.403	105.28	0.03767	0.18623	0.22390
20	33.147	0.01216	1.4097	18.384	78.969	97.35	18.459	87.541	106.00	0.04097	0.18249	0.22345
25	36.826	0.01225	1.2746	19.963	78.062	98.03	20.047	86.665	106.71	0.04424	0.17880	0.22304
30	40.813	0.01233	1.1548	21.550	77.144	98.69	21.643	85.772	107.42	0.04750	0.17515	0.22265
35	45.124	0.01242	1.0482	23.145	76.214	99.36	23.249	84.863	108.11	0.05074	0.17154	0.22228
40	49.776	0.01251	0.95323	24.749	75.272	100.02	24.864	83.937	108.80	0.05397	0.16797	0.22194
45	54.787	0.01261	0.86837	26.361	74.317	100.68	26.489	82.993	109.48	0.05718	0.16443	0.22162
50	60.175	0.01270	0.79236	27.983	73.347	101.33	28.124	82.029	110.15	0.06038	0.16093	0.22131
55	65.957	0.01280	0.72414	29.614	72.363	101.98	29.770	81.046	110.82	0.06357	0.15746	0.22103
60	72.152	0.01290	0.66277	31.254	71.364	102.62	31.426	80.041	111.47	0.06674	0.15401	0.22075
65	78.780	0.01301	0.60744	32.904	70.348	103.25	33.094	79.014	112.11	0.06991	0.15058	0.22049
70	85.858	0.01311	0.55746	34.565	69.315	103.88	34.773	77.964	112.74	0.07306	0.14718	0.22024
75	93.408	0.01323	0.51222	36.237	68.264	104.50	36.465	76.889	113.35	0.07621	0.14379	0.22000
80	101.45	0.01334	0.47119 0.43391	37.920	67.193 66.102	105.11	38.170 39.888	75.788 74.660	113.96	0.07934	0.14042	0.21976
85 90	110.00 119.08	0.01346 0.01359	0.43391	39.614 41.321	64.989	105.72 106.31	41.620	73.503	114.55 115.12	0.08247 0.08560	0.13706 0.13371	0.21953 0.21931
95	128.72	0.01339	0.36902	43.041	63.852	106.31	43.367	72.315	115.12	0.08300	0.13371	0.21931
100	138.93	0.01372	0.30902	44.774	62.690	100.89	45.130	71.094	116.22	0.08872	0.13030	0.21908
105	149.73	0.01300	0.31486	46.521	61.501	108.02	46.909	69.838	116.75	0.09495	0.12762	0.21862
110	161.16	0.01415	0.29113	48.284	60.284	108.57	48.706	68.544	117.25	0.09806	0.12031	0.21838
115	173.23	0.01430	0.26933	50.063	59.035	109.10	50.521	67.210	117.73	0.10118	0.11694	0.21813
120	185.96	0.01446	0.24928	51.858	57.753	109.61	52.356	65.833	118.19	0.10430	0.11356	0.21786
130	213.53	0.01482	0.21373	55.505	55.075	110.58	56.091	62.935	119.03	0.11056	0.10672	0.21728
140	244.06	0.01522	0.18331	59.237	52.221	111.46	59.925	59.813	119.74	0.11686	0.09973	0.21660
150	277.79	0.01567	0.15707	63.070	49.151	112.22	63.875	56.419	120.29	0.12324	0.09253	0.21577
160	314.94	0.01619	0.13423	67.022	45.811	112.83	67.965	52.690	120.66	0.12971	0.08502	0.21473
170	355.80	0.01682	0.11413	71.139	42.101	113.24	72.246	48.509	120.75	0.13637	0.07703	0.21340
180	400.66	0.01759	0.09619	75.464	37.893	113.36	76.768	43.721	120.49	0.14327	0.06834	0.21161
190	449.90	0.01861	0.07982	80.093	32.929	113.02	81.642	38.025	119.67	0.15057	0.05852	0.20909
200	504.00	0.02010	0.06441	85.297	26.629	111.93	87.172	30.761	117.93	0.15872	0.04662	0.20534
210	563.76	0.02309	0.04722	91.993	16.498	108.49	94.402	19.015	113.42	0.16924	0.02839	0.19763

Source of Data: Tables A-11E through A-13E are generated using the Engineering Equation Solver (EES) software developed by S. A. Klein and F. L. Alvarado. The routine used in calculations is the R134a, which is based on the fundamental equation of state developed by R. Tillner-Roth and H.D. Baehr, "An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HFC-134a) for temperatures from 170 K to 455 K and pressures up to 70 MPa," J. Phys. Chem, Ref. Data, Vol. 23, No. 5, 1994. The enthalpy and entropy values of saturated liquid are set to zero at -40°C (and -40°F).

TABLE A-12E

Saturated refrigerant-134a–Pressure table

		1 3	<i>volume</i> , lbm	Inte	ernal ener Btu/lbm	·gy,		<i>Enthalpy,</i> Btu/lbm		<i>Entropy,</i> Btu/Ibm·R		
Press.,	Sat.	Sat.	Sat.	Sat.	Evap.,	Sat.	Sat.	Evap.,	Sat.	Sat.	Evap.,	Sat.
P psia	temp.,	liquid,	vapor,	liquid,	u_{fg}	vapor,	liquid,	$h_{\!f\!g}$	vapor,	liquid,	S_{fg}	vapor,
	$T_{\rm sat}{}^{\circ}{\rm F}$	$U_{\!f}$	v_g	u_f	36	u_g	h_f	70	h_g	S_f	70	s_g
5	-53.09	0.01113	8.3740	-3.914	91.283	87.37	-3.903	99.021	95.12	-0.00944	0.24353	0.23409
10	-29.52	0.01143	4.3740	3.132	87.463	90.59	3.153	95.536	98.69	0.00741	0.22208	0.22949
15	-14.15	0.01164	2.9882	7.796	84.907	92.70	7.828	93.170	101.00	0.01806	0.20911	0.22717
20	-2.43	0.01181	2.2781	11.393	82.915	94.31	11.436	91.302	102.74	0.02603	0.19967	0.22570
25	7.17	0.01196	1.8442	14.367	81.249	95.62	14.422	89.725	104.15	0.03247	0.19218	0.22465
30	15.37	0.01209	1.5506	16.929	79.799	96.73	16.996	88.340	105.34	0.03792	0.18595	0.22386
35	22.57	0.01221	1.3382	19.195	78.504	97.70	19.274	87.093	106.37	0.04265	0.18058	0.22324
40	29.01	0.01232	1.1773	21.236	77.326	98.56	21.327	85.950	107.28	0.04686	0.17586	0.22272
45	34.86	0.01242	1.0510	23.101	76.240	99.34	23.205	84.889	108.09	0.05065	0.17164	0.22229
50	40.23	0.01252	0.94909	24.824	75.228	100.05	24.939	83.894	108.83	0.05412	0.16780	0.22192
55	45.20	0.01261	0.86509	26.428	74.277	100.70	26.556	82.954	109.51	0.05732	0.16429	0.22160
60	49.84	0.01270	0.79462	27.932	73.378	101.31	28.073	82.060	110.13	0.06028	0.16104	0.22132
65	54.20	0.01278	0.73462	29.351	72.523	101.87	29.505	81.205	110.71	0.06306	0.15801	0.22107
70	58.30	0.01287	0.68290	30.696	71.705	102.40	30.862	80.385	111.25	0.06567	0.15518	0.22084
75	62.19	0.01295	0.63784	31.975	70.921	102.90	32.155	79.594	111.75	0.06813	0.15251	0.22064
80	65.89	0.01303	0.59822	33.198	70.167	103.36	33.391	78.830	112.22	0.07047	0.14998	0.22045
85	69.41	0.01310	0.56309	34.369	69.438	103.81	34.575	78.089	112.66	0.07269	0.14758	0.22027
90	72.78	0.01318	0.53173	35.494	68.733	104.23	35.713	77.369	113.08	0.07481	0.14529	0.22011
95	76.02	0.01325	0.50356	36.577	68.048	104.63	36.810	76.668	113.48	0.07684	0.14311	0.21995
100	79.12	0.01332	0.47811	37.623	67.383	105.01	37.870	75.984	113.85	0.07879	0.14101	0.21981
110	85.00	0.01332	0.43390	39.614	66.102	105.72	39.888	74.660	114.55	0.08247	0.13706	0.21953
120	90.49	0.01360	0.39681	41.489	64.878	106.37	41.791	73.388	115.18	0.08590	0.13338	0.21928
130	95.64	0.01374	0.36523	43.263	63.704	106.97	43.594	72.159	115.75	0.08912	0.12993	0.21905
140	100.51	0.01371	0.33800	44.951	62.570	107.52	45.311	70.967	116.28	0.09215	0.12668	0.21883
150	105.12	0.01307	0.33426	46.563	61.473	107.52	46.952	69.807	116.76	0.09502	0.12359	0.21861
160	109.50	0.01400	0.29339	48.109	60.406	108.51	48.527	68.674	117.20	0.09776	0.12064	0.21840
170	113.69	0.01415	0.27487	49.595	59.366	108.96	50.043	67.564	117.61	0.10036	0.12004	0.21819
180	117.69	0.01420	0.25833	51.027	58.349	109.38	51.507	66.475	117.01	0.10036	0.11763	0.21799
190	121.53	0.01459	0.23833	52.412	57.353	109.36	52.922	65.402	117.38	0.10286	0.11313	0.21778
200	125.22	0.01452	0.24340	53.753	56.375	110.13	54.295	64.345	118.52	0.10320	0.11232	0.21778
220	132.21	0.01404	0.20662	56.321	54.462	110.13	56.927	62.267	119.19	0.10737	0.11000	0.21737
	132.21											
240 260	138.73	0.01516 0.01543	0.18694	58.757	52.596 50.763	111.35 111.84	59.430 61.824	60.225 58.205	119.65 120.03	0.11606	0.10063	0.21669
	150.62		0.17012	61.082 63.313					120.03	0.11994 0.12364	0.09627 0.09207	0.21622
280		0.01570	0.15555		48.951	112.26	64.126	56.197 54.195				0.21571
300	156.09	0.01598	0.14279	65.460	47.154	112.61	66.347		120.54	0.12717	0.08800	0.21517
350	168.64	0.01672	0.11673	70.567	42.632	113.20	71.651	49.109	120.76	0.13545	0.07815	0.21360
400	179.86	0.01758	0.09643	75.401	37.957	113.36	76.702	43.794	120.50	0.14317	0.06847	0.21164
450	190.02	0.01860	0.07979	80.112	32.909	113.02	81.662	38.003	119.67	0.15060	0.05849	0.20909
500	199.29	0.01997	0.06533	84.900	27.096	112.00	86.748	31.292	118.04	0.15810	0.04748	0.20558

TABLE A-13E

Superheated refrigerant-134a

T	U	и	h	S	U	и	h	S	U	и	h	S
°F	ft ³ /lbm	Btu/lbm	Btu/lbm	Btu/lbm·R	ft ³ /lbm	Btu/lbm	Btu/lbm	Btu/lbm·R	ft³/lbm	Btu/lbm	Btu/lbm	Btu/lbm·R
	P =	= 10 psia ($T_{\rm sat} = -2$	9.52°F)	P =	= 15 psia ($T_{\rm sat} = -14$.15°F)	P	= 20 psia	$(T_{\rm sat} = -2$.43°F)
Sat.	4.3740	90.59	98.69	0.22949	2.9882	92.70	101.00	0.22717	2.2781	94.31	102.74	0.22570
-20	4.4856	92.14	100.44	0.23351								
0	4.7135	95.42	104.14	0.24175	3.1001	95.08	103.69	0.23312	2.2922	94.73	103.21	0.22673
20	4.9380	98.77	107.91	0.24978	3.2551	98.49	107.52	0.24129	2.4130	98.19	107.12	0.23506
40	5.1600	102.21	111.76	0.25763	3.4074	101.96	111.42	0.24924	2.5306	101.71	111.07	0.24313
60	5.3802	105.73	115.68	0.26533	3.5577	105.51	115.38	0.25702	2.6461	105.29	115.08	0.25099
80	5.5989	109.33	119.69	0.27290	3.7064	109.14	119.42	0.26465	2.7600	108.94	119.15	0.25868
100	5.8165	113.02	123.78	0.28035	3.8540	112.85	123.54	0.27214	2.8726	112.67	123.30	0.26623
120	6.0331	116.80	127.96	0.28768	4.0006	116.64	127.75	0.27952	2.9842	116.48	127.53	0.27364
140	6.2490	120.66	132.23	0.29492	4.1464	120.52	132.03	0.28678	3.0950	120.38	131.83	0.28094
160	6.4642	124.62	136.58	0.30205	4.2915	124.49	136.40	0.29395	3.2051	124.35	136.22	0.28814
180	6.6789	124.62	141.01	0.30203	4.4361	124.49	140.85	0.29393	3.3146	124.33	140.68	0.28514
200	6.8930	132.78	145.54	0.31606	4.5802	132.67	145.38	0.30800	3.4237	132.56	145.23	0.30223
220	7.1068	136.99	150.14	0.32293	4.7239	136.89	150.00	0.31489	3.5324	136.78	149.86	0.30914
	P	= 30 psia	$(T_{\rm sat} = 15)$	5.37°F)	Р	= 40 psia	$(T_{\rm sat} = 29.$	01°F)	P	= 50 psia	$(T_{\rm sat} = 40$.23°F)
Sat.	1.5506	96.73	105.34	0.22386	1.1773	98.56	107.28	0.22272	0.9491	100.05	108.83	0.22192
20	1.5691	97.56	106.27	0.22583	1.1773	70.50	107.20	0.22272	0.7171	100.05	100.03	0.22172
40	1.6528	101.18	110.35	0.23416	1.2126	100.61	109.59	0.22740				
60	1.7338	104.83	114.45	0.24220	1.2768	104.35	113.80	0.23567	1.0019	103.85	113.12	0.23033
80	1.8130	104.63	118.60	0.25003	1.3389	104.33	118.03	0.24365	1.0540	107.69	117.44	0.23849
100	1.8908	112.31	122.81	0.25769	1.3995	111.94	122.30	0.24303	1.1043	111.56	121.78	0.23649
120	1.9675	116.16	127.08	0.25709	1.4588	115.83	126.63	0.25142	1.1534	115.49	126.16	0.25408
140	2.0434	120.08	131.43	0.20319	1.5173	119.79	131.02	0.25902	1.1334	119.48	130.60	0.25408
						123.82						
160	2.1185	124.09	135.85	0.27981	1.5750		135.47	0.27377	1.2488	123.54	135.09	0.26898
180	2.1931	128.17	140.34	0.28695	1.6321	127.92	140.00	0.28096	1.2955	127.67	139.66	0.27622
200	2.2671	132.33	144.92	0.29399	1.6887	132.10	144.60	0.28805	1.3416	131.87	144.29	0.28335
220	2.3408	136.58	149.57	0.30094	1.7449	136.37	149.28	0.29503	1.3873	136.15	148.99	0.29037
240	2.4141	140.90	154.30	0.30780	1.8007	140.70	154.03	0.30192	1.4326	140.51	153.76	0.29730
260	2.4871	145.30	159.11	0.31458	1.8562	145.12	158.86	0.30873	1.4776	144.94	158.61	0.30413
280	2.5598	149.79	164.00	0.32128	1.9114	149.62	163.77	0.31545	1.5223	149.45	163.53	0.31087
	P	= 60 psia	$(T_{\rm sat} = 49)$	9.84°F)	P	= 70 psia	$(T_{\rm sat} = 58.$	30°F)	P	= 80 psia	$(T_{\rm sat} = 65$.89°F)
Sat.	0.7946	101.31	110.13	0.22132	0.6829	102.40	111.25	0.22084	0.5982	103.36	112.22	0.22045
60	0.7540	103.31	112.39	0.22572	0.6857	102.74	111.62	0.22157	0.5702	105.50	112.22	0.22073
80	0.8636	107.24	116.82	0.23408	0.7271	106.77	116.18	0.23018	0.6243	106.27	115.51	0.22663
100	0.9072	111.17	121.24	0.23400	0.7662	110.77	120.69	0.23838	0.6601	110.35	120.12	0.23501
120	0.9495	115.14	125.69	0.24212	0.7002	114.79	125.20	0.23636	0.6941	114.43	120.12	0.23301
140	0.9493				0.8401				0.0941	114.43	124.70	
		119.17		0.25753		118.86	129.74	0.25399				0.25084
160	1.0312	123.26		0.26497		122.98	134.32	0.26151		122.69 126.89	133.92	0.25843
180	1.0709	127.42	139.31	0.27227	0.9105	127.16	138.95	0.26886	0.7900		138.59	0.26585
200	1.1101	131.64	143.97	0.27945	0.9447	131.40	143.64	0.27608	0.8206	131.17	143.31	0.27312
220	1.1489	135.94	148.69	0.28651	0.9785	135.72	148.40	0.28318	0.8507	135.50	148.09	0.28026
240	1.1872	140.31	153.49	0.29346	1.0118	140.11	153.22	0.29017	0.8803	139.91	152.94	0.28728
260	1.2252	144.76	158.36	0.30032	1.0449	144.57	158.10	0.29706	0.9096	144.38	157.85	0.29420
280	1.2629	149.28	163.30	0.30709	1.0776	149.10	163.06	0.30386	0.9386	148.93	162.82	0.30102
300	1.3004	153.88	168.31	0.31378	1.1101	153.71	168.09	0.31057	0.9674	153.55	167.87	0.30775
320	1.3377	158.55	173.40	0.32039	1.1424	158.40	173.20	0.31720	0.9959	158.25	172.99	0.31440

TABLE A-13E

Superheated refrigerant-134a (Concluded)

Superhe	ated refrig	gerant-134	ta (Conc	rluded)								
T	U	и	h	S	υ	и	h	S	υ	и	h	S
°F	-			Btu/lbm·R				Btu/lbm·R				Btu/lbm·R
	<i>P</i> =	= 90 psia	$(T_{\rm sat} = 72$	2.78°F)	<i>P</i> =	= 100 psia	$(T_{\rm sat} = 79$.12°F)	P:	= 120 psia	$a (T_{\text{sat}} = 90$	0.49°F)
Sat.	0.53173	104.23	113.08	0.22011	0.47811	105.01	113.85	0.21981	0.39681	106.37	115.18	0.21928
80	0.54388		114.81	0.22332		105.19	114.06	0.22018				
100	0.57729	109.91	119.53	0.23191	0.51076	109.46	118.91	0.22902	0.41013	108.49	117.59	0.22364
120	0.60874	114.05	124.19	0.24009	0.54022	113.66	123.66	0.23735	0.43692	112.85	122.55	0.23234
140	0.63885		128.84	0.24799	0.56821	117.86	128.38	0.24535	0.46190	117.16	127.42	0.24059
160	0.66796		133.51	0.25565		122.09	133.10	0.25310		121.47	132.25	0.24853
180	0.69629		138.22	0.26313		126.36	137.85	0.26065		125.80	137.09	0.25621
200	0.72399		142.98	0.27045		130.68	142.64	0.26802		130.18	141.96	0.26370
220	0.75119		147.79	0.27763		135.05	147.48	0.27525		134.60	146.86	0.27102
240	0.77796		152.66	0.28469		139.50	152.38	0.28234		139.08	151.80	0.27819
260	0.80437		157.59 162.58	0.29164		144.00	157.33	0.28932		143.62	156.80	0.28523
280	0.83048 0.85633		167.65	0.29849		148.58	162.34 167.42	0.29620		148.22	161.86 166.97	0.29216
300 320	0.88195		172.78	0.30524 0.31191		153.22	172.57	0.30297 0.30966		152.89	172.15	0.29898 0.30571
320												
	P =	140 psia	$(T_{\rm sat} = 10)$	00.51°F)	P =	: 160 psia	$(T_{\rm sat} = 109)$	9.50°F)	P =	= 180 psia	$(T_{\rm sat} = 11)$	7.69°F)
Sat.	0.33800	107.52	116.28	0.21883	0.29339	108.51	117.20	0.21840	0.25833	109.38	117.98	0.21799
120	0.36243		121.36	0.22775	0.30578	111.01	120.07	0.22339	0.26083	109.95	118.64	0.21912
140	0.38551	116.42	126.40	0.23630		115.63	125.33	0.23232	0.28231	114.78	124.18	0.22852
160	0.40711	120.82	131.37	0.24444		120.14	130.44	0.24070		119.43	129.47	0.23720
180	0.42766		136.31	0.25229		124.63	135.49	0.24872		124.01	134.65	0.24542
200	0.44743		141.25	0.25990		129.13	140.52	0.25647		128.58	139.77	0.25332
220	0.46657		146.22	0.26731		133.65	145.56	0.26399		133.16	144.89	0.26095
240	0.48522		151.22	0.27457		138.21	150.62	0.27133		137.76	150.01	0.26838
260 280	0.50345 0.52134		156.26 161.36	0.28168 0.28866		142.82	155.72 160.86	0.27851 0.28555		142.41	155.16 160.35	0.27564 0.28275
300	0.53895		166.51	0.28600		152.21	166.05	0.28333		147.11	165.58	0.28273
320	0.55630		171.72	0.30230		156.99	171.29	0.29248		156.67	170.85	0.28972
340	0.57345		176.99	0.30898		161.84	176.59	0.30600		161.53	176.18	0.30333
360	0.59041		182.33	0.31557		166.75	181.95	0.31262		166.47	181.57	0.30998
		200 psia					$(T_{\text{sat}} = 156$				$T_{\text{sat}} = 179$	
Sat.	$\frac{1}{0.23001}$		$\frac{(r_{\text{sat}} - 12)}{118.64}$	0.21757		112.61	$\frac{(T_{\text{sat}} - 150)}{120.54}$	0.21517		113.36	$\frac{(r_{\text{sat}} - 17)}{120.50}$	0.21164
140	0.23001	113.86	122.94	0.21737	0.14275	112.01	120.54	0.21317	0.03043	113.30	120.30	0.21104
160	0.24341		128.44	0.22483	0.14656	113.82	121.96	0.21747				
180	0.28115		133.77	0.24231		119.53	128.61	0.22803	0.09658	113.42	120.56	0.21174
200	0.29704		139.00	0.25037		124.79	134.66	0.23734		120.53	128.99	0.22473
220	0.31212		144.20	0.25813		129.86	140.43	0.24596		126.45	135.88	0.23502
240	0.32658		149.39	0.26566		134.83	146.05	0.25412	0.13853	131.96	142.21	0.24420
260	0.34054	141.99	154.60	0.27300	0.21306	139.77	151.60	0.26193		137.27	148.26	0.25272
280	0.35410	146.73	159.83	0.28017	0.22347	144.71	157.11	0.26949		142.48	154.15	0.26079
300	0.36733		165.10	0.28720		149.66	162.62	0.27683		147.65	159.95	0.26853
320	0.38029		170.41	0.29410		154.63	168.13	0.28399		152.81	165.71	0.27601
340	0.39300		175.77	0.30089		159.65	173.66	0.29100		157.97	171.45	0.28328
360	0.40552	166.18	181.19	0.30758	0.26159	164.71	179.23	0.29788	0.18951	163.16	177.19	0.29037

FIGURE A-14E

P-h diagram for refrigerant-134a.

Reprinted by permission of American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., Atlanta, GA.

TABLE A-16E

Properties of the atmosphere at high altitude

Altitude,	Temperature, °F	Pressure,	Gravity, g, ft/s ²	Speed of sound, ft/s	Density, lbm/ft ³	Viscosity μ, lbm/ft·s	Thermal conductivity. Btu/h·ft·R
0	59.00	14.7	32.174	1116	0.07647	1.202×10^{-5}	0.0146
500	57.22	14.4	32.173	1115	0.07536	1.199×10^{-5}	0.0146
1000	55.43	14.2	32.171	1113	0.07426	1.196×10^{-5}	0.0146
1500	53.65	13.9	32.169	1111	0.07317	1.193×10^{-5}	0.0145
2000	51.87	13.7	32.168	1109	0.07210	1.190×10^{-5}	0.0145
2500	50.09	13.4	32.166	1107	0.07104	1.186×10^{-5}	0.0144
3000	48.30	13.2	32.165	1105	0.06998	1.183×10^{-5}	0.0144
3500	46.52	12.9	32.163	1103	0.06985	1.180×10^{-5}	0.0143
4000	44.74	12.7	32.162	1101	0.06792	1.177×10^{-5}	0.0143
4500	42.96	12.5	32.160	1099	0.06690	1.173×10^{-5}	0.0142
5000	41.17	12.2	32.159	1097	0.06590	1.170×10^{-5}	0.0142
5500	39.39	12.0	32.157	1095	0.06491	1.167×10^{-5}	0.0141
6000	37.61	11.8	32.156	1093	0.06393	1.164×10^{-5}	0.0141
6500	35.83	11.6	32.154	1091	0.06296	1.160×10^{-5}	0.0141
7000	34.05	11.3	32.152	1089	0.06200	1.157×10^{-5}	0.0140
7500	32.26	11.1	32.151	1087	0.06105	1.154×10^{-5}	0.0140
8000	30.48	10.9	32.149	1085	0.06012	1.154×10^{-5} 1.150×10^{-5}	0.0139
8500	28.70	10.7	32.148	1083	0.05919	1.130×10^{-5} 1.147×10^{-5}	0.0139
9000	26.92	10.7	32.146	1081	0.05828	1.144×10^{-5}	0.0138
9500	25.14	10.3	32.145	1079	0.05738	1.144×10^{-5} 1.140×10^{-5}	0.0138
10,000	23.36	10.1	32.145	1077	0.05648	1.140×10^{-5} 1.137×10^{-5}	0.0136
11,000	19.79	9.72	32.140	1073	0.05473	1.137×10^{-5} 1.130×10^{-5}	0.0137
12,000	16.23	9.34	32.137	1069	0.05302	1.124×10^{-5}	0.0136
13,000	12.67	8.99	32.134	1065	0.05302	1.124×10^{-5} 1.117×10^{-5}	0.0136
14,000	9.12	8.63	32.131	1061	0.04973	1.117×10^{-5} 1.110×10^{-5}	0.0133
15,000	5.55	8.29	32.128	1057	0.04973	1.110×10 1.104×10^{-5}	0.0134
16,000	+1.99	7.97	32.125	1057	0.04659	1.04×10^{-5} 1.097×10^{-5}	0.0133
17,000	-1.58	7.65	32.123	1033	0.04508	1.097×10 1.090×10^{-5}	0.0132
18,000	-5.14	7.34	32.122	1049	0.04361	1.080×10^{-5} 1.083×10^{-5}	0.0132
19,000	-3.14 -8.70	7.05	32.119	1043	0.04301	1.085×10^{-5} 1.076×10^{-5}	0.0130
20,000	-8.70 -12.2	6.76	32.113	1041	0.04217	1.070×10^{-5} 1.070×10^{-5}	0.0129
22,000	-12.2 -19.4	6.21	32.112	1037	0.03808	1.076×10^{-5} 1.056×10^{-5}	0.0128
24,000	-19.4 -26.5	5.70	32.100	1029	0.03553	1.036×10^{-5} 1.042×10^{-5}	0.0126
	-26.5 -33.6	5.22	32.100			1.042×10^{-5} 1.028×10^{-5}	
26,000	-33.6 -40.7			1012	0.03311	1.028×10^{-5} 1.014×10^{-5}	0.0122
28,000		4.78 4.37	32.088	1003 995	0.03082		0.0121
30,000	-47.8		32.082		0.02866	1.000×10^{-5}	0.0119
32,000	-54.9	3.99	32.08	987	0.02661	0.986×10^{-5}	0.0117
34,000	-62.0	3.63	32.07	978	0.02468	0.971×10^{-5}	0.0115
36,000	-69.2	3.30	32.06	969	0.02285	0.956×10^{-5}	0.0113
38,000	-69.7	3.05	32.06	968	0.02079	0.955×10^{-5}	0.0113
40,000	-69.7	2.73	32.05	968	0.01890	0.955×10^{-5}	0.0113
45,000	-69.7	2.148	32.04	968	0.01487	0.955×10^{-5}	0.0113
50,000	-69.7	1.691	32.02	968	0.01171	0.955×10^{-5}	0.0113
55,000	-69.7	1.332	32.00	968	0.00922	0.955×10^{-5}	0.0113
60,000	-69.7	1.048	31.99	968	0.00726	0.955×10^{-5}	0.0113

Source of Data: U.S. Standard Atmosphere Supplements, U.S. Government Printing Office, 1966. Based on year-round mean conditions at 45° latitude and varies with the time of the year and the weather patterns. The conditions at sea level (z=0) are taken to be P=14.696 psia, T=59°F, $\rho=0.076474$ lbm/ft³, g=32.1741 ft²/s.

TABLE A-17E

Ideal-gas properties of air

T	h		11		s°	T	h		11		s°
R	n Btu/lbm	P_r	и Btu/lbm	U_r	S Btu/lbm·R	R	n Btu/lbm	P_r	и Btu/lbm	U_r	S Btu/lbm·R
360	85.97	0.3363	61.29	396.6	0.50369	1600	395.74	71.13	286.06	8.263	0.87130
380	90.75	0.3303	64.70	346.6	0.51663	1650	409.13	80.89	296.03	7.556	0.87150
400	95.53	0.4858	68.11	305.0	0.52890	1700	422.59	90.95	306.06	6.924	0.88758
420	100.32	0.4838	71.52	270.1	0.54058	1750	436.12	101.98	316.16	6.357	0.89542
440	105.11	0.6776	74.93	240.6	0.55172	1800	449.71	114.0	326.32	5.847	0.90308
460	109.90	0.7713	78.36	215.33	0.56235	1850	463.37	127.2	336.55	5.388	0.90308
480	114.69	0.7313	81.77	193.65	0.57255	1900	477.09	141.5	346.85	4.974	0.91788
500	119.48	1.0590	85.20	174.90	0.58233	1950	490.88	157.1	357.20	4.598	0.92504
520	124.27	1.2147	88.62	158.58	0.59173	2000	504.71	174.0	367.61	4.258	0.93205
537	128.10	1.3593	91.53	146.34	0.59945	2050	518.71	192.3	378.08	3.949	0.93891
540	129.06	1.3860	92.04	144.32	0.60078	2100	532.55	212.1	388.60	3.667	0.94564
560	133.86	1.5742	95.47	131.78	0.60950	2150	546.54	223.5	399.17	3.410	0.95222
580	138.66	1.7800	98.90	120.70	0.61793	2200	560.59	256.6	409.78	3.176	0.95919
600	143.47	2.005	102.34	110.88	0.62607	2250	574.69	281.4	420.46	2.961	0.96501
620	148.28	2.249	105.78	102.12	0.63395	2300	588.82	308.1	431.16	2.765	0.97123
640	153.09	2.514	109.21	94.30	0.64159	2350	603.00	336.8	441.91	2.585	0.97732
660	157.92	2.801	112.67	87.27	0.64902	2400	617.22	367.6	452.70	2.419	0.98331
680	162.73	3.111	116.12	80.96	0.65621	2450	631.48	400.5	463.54	2.266	0.98919
700	167.56	3.446	119.58	75.25	0.66321	2500	645.78	435.7	474.40	2.125	0.99497
720	172.39	3.806	123.04	70.07	0.67002	2550	660.12	473.3	485.31	1.996	1.00064
740	177.23	4.193	126.51	65.38	0.67665	2600	674.49	513.5	496.26	1.876	1.00623
760	182.08	4.607	129.99	61.10	0.68312	2650	688.90	556.3	507.25	1.765	1.01172
780	186.94	5.051	133.47	57.20	0.68942	2700	703.35	601.9	518.26	1.662	1.01712
800	191.81	5.526	136.97	53.63	0.69558	2750	717.83	650.4	529.31	1.566	1.02244
820	196.69	6.033	140.47	50.35	0.70160	2800	732.33	702.0	540.40	1.478	1.02767
840	201.56	6.573	143.98	47.34	0.70747	2850	746.88	756.7	551.52	1.395	1.03282
860	206.46	7.149	147.50	44.57	0.71323	2900	761.45	814.8	562.66	1.318	1.03788
880	211.35	7.761	151.02	42.01	0.71886	2950	776.05	876.4	573.84	1.247	1.04288
900	216.26	8.411	154.57	39.64	0.72438	3000	790.68	941.4	585.04	1.180	1.04779
920	221.18	9.102	158.12	37.44	0.72979	3050	805.34	1011	596.28	1.118	1.05264
940	226.11	9.834	161.68	35.41	0.73509	3100	820.03	1083	607.53	1.060	1.05741
960	231.06	10.61	165.26	33.52	0.74030	3150	834.75	1161	618.82	1.006	1.06212
980	236.02	11.43	168.83	31.76	0.74540	3200	849.48	1242	630.12	0.955	1.06676
1000	240.98	12.30	172.43	30.12	0.75042	3250	864.24	1328	641.46	0.907	1.07134
1040	250.95	14.18	179.66	27.17	0.76019	3300	879.02	1418	652.81	0.8621	1.07585
1080	260.97	16.28	186.93	24.58	0.76964	3350	893.83	1513	664.20	0.8202	1.08031
1120	271.03	18.60	194.25	22.30	0.77880	3400	908.66	1613	675.60		1.08470
1160	281.14	21.18	201.63	20.29	0.78767	3450	923.52	1719 1829	687.04	0.7436	1.08904
1200	291.30	24.01	209.05	18.51	0.79628	3500	938.40	1829	698.48		1.09332
1240	301.52	27.13	216.53	16.93	0.80466	3550	953.30	1946	709.95	0.6759	1.09755
1280	311.79	30.55	224.05	15.52	0.81280	3600	968.21	2068	721.44		1.10172
1320	322.11	34.31	231.63	14.25	0.82075	3650	983.15	2196	732.95		1.10584
1360	332.48	38.41	239.25	13.12	0.82848	3700	998.11	2330	744.48		1.10991
1400	342.90	42.88	246.93	12.10	0.83604	3750	1013.1	2471	756.04	0.5621	1.11393
1440	353.37	47.75	254.66	11.17	0.84341	3800	1028.1	2618	767.60		1.11791
1480	363.89	53.04	262.44	10.34	0.85062		1043.1	2773	779.19		1.12183
1520	374.47	58.78	270.26	9.578	0.85767		1058.1	2934	790.80		1.12571
1560	385.08	65.00	278.13	8.890	0.86456	3950	1073.2	3103	802.43	0.4715	1.12955

TABLE A-17E

Ideal-gas properties of air (Concluded)

T	h		и		s°	T	h		и		s°
R	Btu/lbm	P_r	Btu/lbm	U_r	Btu/lbm·R	R	Btu/lbm	P_r	Btu/lbm	\mathbf{U}_r	Btu/lbm·R
4000	1088.3	3280	814.06	0.4518	1.13334	4600	1270.4	6089	955.04	0.2799	1.17575
4050	1103.4	3464	825.72	0.4331	1.13709	4700	1300.9	6701	978.73	0.2598	1.18232
4100	1118.5	3656	837.40	0.4154	1.14079	4800	1331.5	7362	1002.5	0.2415	1.18876
4150	1133.6	3858	849.09	0.3985	1.14446	4900	1362.2	8073	1026.3	0.2248	1.19508
4200	1148.7	4067	860.81	0.3826	1.14809	5000	1392.9	8837	1050.1	0.2096	1.20129
4300	1179.0	4513	884.28	0.3529	1.15522	5100	1423.6	9658	1074.0	0.1956	1.20738
4400	1209.4	4997	907.81	0.3262	1.16221	5200	1454.4	10,539	1098.0	0.1828	1.21336
4500	1239.9	5521	931.39	0.3019	1.16905	5300	1485.3	11,481	1122.0	0.1710	1.2192

Note: The properties P_r (relative pressure) and U_r (relative specific volume) are dimensionless quantities used in the analysis of isentropic processes, and should not be confused with the properties pressure and specific volume.

Source of Data: Kenneth Wark, Thermodynamics, 4th ed. (New York: McGraw-Hill, 1983), pp. 832–33, Table A–5. Originally published in J. H. Keenan and J. Kaye, Gas Tables (New York: John Wiley & Sons, 1948).

TABLE A-18E

Ideal-gas properties of nitrogen, N₂

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R	R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R
300	2,082.0	1,486.2	41.695	1080	7,551.0	5,406.2	50.651
320	2,221.0	1,585.5	42.143	1100	7,695.0	5,510.5	50.783
340	2,360.0	1,684.4	42.564	1120	7,839.3	5,615.2	50.912
360	2,498.9	1,784.0	42.962	1140	7,984.0	5,720.1	51.040
380	2,638.0	1,883.4	43.337	1160	8,129.0	5,825.4	51.167
400	2,777.0	1,982.6	43.694	1180	8,274.4	5,931.0	51.291
420	2,916.1	2,082.0	44.034	1200	8,420.0	6,037.0	51.143
440	3,055.1	2,181.3	44.357	1220	8,566.1	6,143.4	51.534
460	3,194.1	2,280.6	44.665	1240	8,712.6	6,250.1	51.653
480	3,333.1	2,379.9	44.962	1260	8,859.3	6,357.2	51.771
500	3,472.2	2,479.3	45.246	1280	9,006.4	6,464.5	51.887
520	3,611.3	2,578.6	45.519	1300	9,153.9	6,572.3	51.001
537	3,729.5	2,663.1	45.743	1320	9,301.8	6,680.4	52.114
540	3,750.3	2,678.0	45.781	1340	9,450.0	6,788.9	52.225
560	3,889.5	2,777.4	46.034	1360	9,598.6	6,897.8	52.335
580	4,028.7	2,876.9	46.278	1380	9,747.5	7,007.0	52.444
600	4,167.9	2,976.4	46.514	1400	9,896.9	7,116.7	52.551
620	4,307.1	3,075.9	46.742	1420	10,046.6	7,226.7	52.658
640	4,446.4	3,175.5	46.964	1440	10,196.6	7,337.0	52.763
660	4,585.8	3,275.2	47.178	1460	10,347.0	7,447.6	52.867
680	4,725.3	3,374.9	47.386	1480	10,497.8	7,558.7	52.969
700	4,864.9	3,474.8	47.588	1500	10,648.0	7,670.1	53.071
720	5,004.5	3,574.7	47.785	1520	10,800.4	7,781.9	53.171
740	5,144.3	3,674.7	47.977	1540	10,952.2	7,893.9	53.271
760	5,284.1	3,774.9	48.164	1560	11,104.3	8,006.4	53.369
780	5,424.2	3,875.2	48.345	1580	11,256.9	8,119.2	53.465
800	5,564.4	3,975.7	48.522	1600	11,409.7	8,232.3	53.561
820	5,704.7	4,076.3	48.696	1620	11,562.8	8,345.7	53.656
840	5,845.3	4,177.1	48.865	1640	11,716.4	8,459.6	53.751
860	5,985.9	4,278.1	49.031	1660	11,870.2	8,573.6	53.844
880	6,126.9	4,379.4	49.193	1680	12,024.3	8,688.1	53.936
900	6,268.1	4,480.8	49.352	1700	12,178.9	8,802.9	54.028
920	6,409.6	4,582.6	49.507	1720	12,333.7	8,918.0	54.118
940	6,551.2	4,684.5	49.659	1740	12,488.8	9,033.4	54.208
960	6,693.1	4,786.7	49.808	1760	12,644.3	9,149.2	54.297
980	6,835.4	4,889.3	49.955	1780	12,800.2	9,265.3	54.385
1000	6,977.9	4,992.0	50.099	1800	12,956.3	9,381.7	54.472
1020	7,120.7	5,095.1	50.241	1820	13,112.7	9,498.4	54.559
1040	7,263.8	5,198.5	50.380	1840	13,269.5	9,615.5	54.645
1060	7,407.2	5,302.2	50.516	1860	13,426.5	9,732.8	54.729

TABLE A-18E

Ideal-gas properties of nitrogen, N₂ (Concluded)

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R	R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R
1900	13,742	9,968	54.896	3500	27,016	20,065	59.944
1940	14,058	10,205	55.061	3540	27,359	20,329	60.041
1980	14,375	10,443	55.223	3580	27,703	20,593	60.138
2020	14,694	10,682	55.383	3620	28,046	20,858	60.234
2060	15,013	10,923	55.540	3660	28,391	21,122	60.328
2100	15,334	11,164	55.694	3700	28,735	21,387	60.422
2140	15,656	11,406	55.846	3740	29,080	21,653	60.515
2180	15,978	11,649	55.995	3780	29,425	21,919	60.607
2220	16,302	11,893	56.141	3820	29,771	22,185	60.698
2260	16,626	12,138	56.286	3860	30,117	22,451	60.788
2300	16,951	12,384	56.429	3900	30,463	22,718	60.877
2340	17,277	12,630	56.570	3940	30,809	22,985	60.966
2380	17,604	12,878	56.708	3980	31,156	23,252	61.053
2420	17,392	13,126	56.845	4020	31,503	23,520	61.139
2460	18,260	13,375	56.980	4060	31,850	23,788	61.225
2500	18,590	13,625	57.112	4100	32,198	24,056	61.310
2540	18,919	13,875	57.243	4140	32,546	24,324	61.395
2580	19,250	14,127	57.372	4180	32,894	24,593	61.479
2620	19,582	14,379	57.499	4220	33,242	24,862	61.562
2660	19,914	14,631	57.625	4260	33,591	25,131	61.644
2700	20,246	14,885	57.750	4300	33,940	25,401	61.726
2740	20,580	15,139	57.872	4340	34,289	25,670	61.806
2780	20,914	15,393	57.993	4380	34,638	25,940	61.887
2820	21,248	15,648	58.113	4420	34,988	26,210	61.966
2860	21,584	15,905	58.231	4460	35,338	26,481	62.045
2900	21,920	16,161	58.348	4500	35,688	26,751	62.123
2940	22,256	16,417	58.463	4540	36,038	27,022	62.201
2980	22,593	16,675	58.576	4580	36,389	27,293	62.278
3020	22,930	16,933	58.688	4620	36,739	27,565	62.354
3060	23,268	17,192	58.800	4660	37,090	27,836	62.429
3100	23,607	17,451	58.910	4700	37,441	28,108	62.504
3140	23,946	17,710	59.019	4740	37,792	28,379	62.578
3180	24,285	17,970	59.126	4780	38,144	28,651	62.652
3220	24,625	18,231	59.232	4820	38,495	28,924	62.725
3260	24,965	18,491	59.338	4860	38,847	29,196	62.798
3300	25,306	18,753	59.442	4900	39,199	29,468	62.870
3340	25,647	19,014	59.544	5000	40,080	30,151	63.049
3380	25,989	19,277	59.646	5100	40,962	30,834	63.223
3420	26,331	19,539	59.747	5200	41,844	31,518	63.395
3460	26,673	19,802	59.846	5300	42,728	32,203	63.563

Source of Data: Tables A–18E through A–23E are adapted from Kenneth Wark, *Thermodynamics*, 4th ed. (New York: McGraw-Hill, 1983), pp. 834–44. Originally published in J. H. Keenan and J. Kaye, *Gas Tables* (New York: John Wiley & Sons, 1945).

TABLE A-19E

Ideal-gas properties of oxygen, O₂

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R	R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R
300	2,073.5	1,477.8	44.927	1080	7,696.8	5,552.1	54.064
320	2,212.6	1,577.1	45.375	1100	7,850.4	5,665.9	54.204
340	2,351.7	1,676.5	45.797	1120	8,004.5	5,780.3	54.343
360	2,490.8	1,775.9	46.195	1140	8,159.1	5,895.2	54.480
380	2,630.0	1,875.3	46.571	1160	8,314.2	6,010.6	54.614
400	2,769.1	1,974.8	46.927	1180	8,469.8	6,126.5	54.748
420	2,908.3	2,074.3	47.267	1200	8,625.8	6,242.8	54.879
440	3,047.5	2,173.8	47.591	1220	8,782.4	6,359.6	55.008
460	3,186.9	2,273.4	47.900	1240	8,939.4	6,476.9	55.136
480	3,326.5	2,373.3	48.198	1260	9,096.7	6,594.5	55.262
500	3,466.2	2,473.2	48.483	1280	9,254.6	6,712.7	55.386
520	3,606.1	2,573.4	48.757	1300	9,412.9	6,831.3	55.508
537	3,725.1	2,658.7	48.982	1320	9,571.9	6,950.2	55.630
540	3,746.2	2,673.8	49.021	1340	9,730.7	7,069.6	55.750
560	3,886.6	2,774.5	49.276	1360	9,890.2	7,189.4	55.867
580	4,027.3	2,875.5	49.522	1380	10,050.1	7,309.6	55.984
600	4,168.3	2,976.8	49.762	1400	10,210.4	7,430.1	56.099
620	4,309.7	3,078.4	49.993	1420	10,371.0	7,551.1	56.213
640	4,451.4	3,180.4	50.218	1440	10,532.0	7,672.4	56.326
660	4,593.5	3,282.9	50.437	1460	10,693.3	7,793.9	56.437
680	4,736.2	3,385.8	50.650	1480	10,855.1	7,916.0	56.547
700	4,879.3	3,489.2	50.858	1500	11,017.1	8,038.3	56.656
720	5,022.9	3,593.1	51.059	1520	11,179.6	8,161.1	56.763
740	5,167.0	3,697.4	51.257	1540	11,342.4	8,284.2	56.869
760	5,311.4	3,802.4	51.450	1560	11,505.4	8,407.4	56.975
780	5,456.4	3,907.5	51.638	1580	11,668.8	8,531.1	57.079
800	5,602.0	4,013.3	51.821	1600	11,832.5	8,655.1	57.182
820	5,748.1	4,119.7	52.002	1620	11,996.6	8,779.5	57.284
840	5,894.8	4,226.6	52.179	1640	12,160.9	8,904.1	57.385
860	6,041.9	4,334.1	52.352	1660	12,325.5	9,029.0	57.484
880	6,189.6	4,442.0	52.522	1680	12,490.4	9,154.1	57.582
900	6,337.9	4,550.6	52.688	1700	12,655.6	9,279.6	57.680
920	6,486.7	4,659.7	52.852	1720	12,821.1	9,405.4	57.777
940	6,636.1	4,769.4	53.012	1740	12,986.9	9,531.5	57.873
960	6,786.0	4,879.5	53.170	1760	13,153.0	9,657.9	57.968
980	6,936.4	4,990.3	53.326	1780	13,319.2	9,784.4	58.062
1000	7,087.5	5,101.6	53.477	1800	13,485.8	9,911.2	58.155
1020	7,238.9	5,213.3	53.628	1820	13,652.5	10,038.2	58.247
1040	7,391.0	5,325.7	53.775	1840	13,819.6	10,165.6	58.339
1060	7,543.6	5,438.6	53.921	1860	13,986.8	10,293.1	58.428

TABLE A-19E

Ideal-gas properties of oxygen, O₂ (Concluded)

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R	R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R
1900	14,322	10,549	58.607	3500	28,273	21,323	63.914
1940	14,658	10,806	58.782	3540	28,633	21,603	64.016
1980	14,995	11,063	58.954	3580	28,994	21,884	64.114
2020	15,333	11,321	59.123	3620	29,354	22,165	64.217
2060	15,672	11,581	59.289	3660	29,716	22,447	64.316
2100	16,011	11,841	59.451	3700	30,078	22,730	64.415
2140	16,351	12,101	59.612	3740	30,440	23,013	64.512
2180	16,692	12,363	59.770	3780	30,803	23,296	64.609
2220	17,036	12,625	59.926	3820	31,166	23,580	64.704
2260	17,376	12,888	60.077	3860	31,529	23,864	64.800
2300	17,719	13,151	60.228	3900	31,894	24,149	64.893
2340	18,062	13,416	60.376	3940	32,258	24,434	64.986
2380	18,407	13,680	60.522	3980	32,623	24,720	65.078
2420	18,572	13,946	60.666	4020	32,989	25,006	65.169
2460	19,097	14,212	60.808	4060	33,355	25,292	65.260
2500	19,443	14,479	60.946	4100	33,722	25,580	65.350
2540	19,790	14,746	61.084	4140	34,089	25,867	64.439
2580	20,138	15,014	61.220	4180	34,456	26,155	65.527
2620	20,485	15,282	61.354	4220	34,824	26,144	65.615
2660	20,834	15,551	61.486	4260	35,192	26,733	65.702
2700	21,183	15,821	61.616	4300	35,561	27,022	65.788
2740	21,533	16,091	61.744	4340	35,930	27,312	65.873
2780	21,883	16,362	61.871	4380	36,300	27,602	65.958
2820	22,232	16,633	61.996	4420	36,670	27,823	66.042
2860	22,584	16,905	62.120	4460	37,041	28,184	66.125
2900	22,936	17,177	62.242	4500	37,412	28,475	66.208
2940	23,288	17,450	62.363	4540	37,783	28,768	66.290
2980	23,641	17,723	62.483	4580	38,155	29,060	66.372
3020	23,994	17,997	62.599	4620	38,528	29,353	66.453
3060	24,348	18,271	62.716	4660	38,900	29,646	66.533
3100	24,703	18,546	62.831	4700	39,274	29,940	66.613
3140	25,057	18,822	62.945	4740	39,647	30,234	66.691
3180	25,413	19,098	63.057	4780	40,021	30,529	66.770
3220	25,769	19,374	63.169	4820	40,396	30,824	66.848
3260	26,175	19,651	63.279	4860	40,771	31,120	66.925
3300	26,412	19,928	63.386	4900	41,146	31,415	67.003
3340	26,839	20,206	63.494	5000	42,086	32,157	67.193
3380	27,197	20,485	63.601	5100	43,021	32,901	67.380
3420	27,555	20,763	63.706	5200	43,974	33,648	67.562
3460	27.914	21.043	63.811	5300	44,922	34,397	67.743

TABLE A-20E

Ideal-gas properties of carbon dioxide, CO₂

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R	R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R
300	2,108.2	1,512.4	46.353	1080	9,575.8	7,431.1	58.072
320	2,256.6	1,621.1	46.832	1100	9,802.6	7,618.1	58.281
340	2,407.3	1,732.1	47.289	1120	10,030.6	7,806.4	58.485
360	2,560.5	1,845.6	47.728	1140	10,260.1	7,996.2	58.689
380	2,716.4	1,961.8	48.148	1160	10,490.6	8,187.0	58.889
400	2,874.7	2,080.4	48.555	1180	10,722.3	8,379.0	59.088
420	3,035.7	2,201.7	48.947	1200	10,955.3	8,572.3	59.283
440	3,199.4	2,325.6	49.329	1220	11,189.4	8,766.6	59.477
460	3,365.7	2,452.2	49.698	1240	11,424.6	8,962.1	59.668
480	3,534.7	2,581.5	50.058	1260	11,661.0	9,158.8	59.858
500	3,706.2	2,713.3	50.408	1280	11,898.4	9,356.5	60.044
520	3,880.3	2,847.7	50.750	1300	12,136.9	9,555.3	60.229
537	4,027.5	2,963.8	51.032	1320	12,376.4	9,755.0	60.412
540	4,056.8	2,984.4	51.082	1340	12,617.0	9,955.9	60.593
560	4,235.8	3,123.7	51.408	1360	12,858.5	10,157.7	60.772
580	4,417.2	3,265.4	51.726	1380	13,101.0	10,360.5	60.949
600	4,600.9	3,409.4	52.038	1400	13,344.7	10,564.5	61.124
620	4,786.6	3,555.6	52.343	1420	13,589.1	10,769.2	61.298
640	4,974.9	3,704.0	52.641	1440	13,834.5	10,974.8	61.469
660	5,165.2	3,854.6	52.934	1460	14,080.8	11,181.4	61.639
680	5,357.6	4,007.2	53.225	1480	14,328.0	11,388.9	61.800
700	5,552.0	4,161.9	53.503	1500	14,576.0	11,597.2	61.974
720	5,748.4	4,318.6	53.780	1520	14,824.9	11,806.4	62.138
740	5,946.8	4,477.3	54.051	1540	15,074.7	12,016.5	62.302
760	6,147.0	4,637.9	54.319	1560	15,325.3	12,227.3	62.464
780	6,349.1	4,800.1	54.582	1580	15,576.7	12,439.0	62.624
800	6,552.9	4,964.2	54.839	1600	15,829.0	12,651.6	62.783
820	6,758.3	5,129.9	55.093	1620	16,081.9	12,864.8	62.939
840	6,965.7	5,297.6	55.343	1640	16,335.7	13,078.9	63.095
860	7,174.7	5,466.9	55.589	1660	16,590.2	13,293.7	63.250
880	7,385.3	5,637.7	55.831	1680	16,845.5	13,509.2	63.403
900	7,597.6	5,810.3	56.070	1700	17,101.4	13,725.4	63.555
920	7,811.4	5,984.4	56.305	1720	17,358.1	13,942.4	63.704
940	8,026.8	6,160.1	56.536	1740	17,615.5	14,160.1	63.853
960	8,243.8	6,337.4	56.765	1760	17,873.5	14,378.4	64.001
980	8,462.2	6,516.1	56.990	1780	18,132.2	14,597.4	64.147
1000	8,682.1	6,696.2	57.212	1800	18,391.5	14,816.9	64.292
1020	8,903.4	6,877.8	57.432	1820	18,651.5	15,037.2	64.435
1040	9,126.2	7,060.9	57.647	1840	18,912.2	15,258.2	64.578
1060	9,350.3	7,245.3	57.861	1860	19,173.4	15,479.7	64.719

TABLE A-20E

Ideal-gas properties of carbon dioxide, CO₂ (Concluded)

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R	R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R
1900	19,698	15,925	64.999	3500	41,965	35,015	73.462
1940	20,224	16,372	65.272	3540	42,543	35,513	73.627
1980	20,753	16,821	65.543	3580	43,121	36,012	73.789
2020	21,284	17,273	65.809	3620	43,701	36,512	73.951
2060	21,818	17,727	66.069	3660	44,280	37,012	74.110
2100	22,353	18,182	66.327	3700	44,861	37,513	74.267
2140	22,890	18,640	66.581	3740	45,442	38,014	74.423
2180	23,429	19,101	66.830	3780	46,023	38,517	74.578
2220	23,970	19,561	67.076	3820	46,605	39,019	74.732
2260	24,512	20,024	67.319	3860	47,188	39,522	74.884
2300	25,056	20,489	67.557	3900	47,771	40,026	75.033
2340	25,602	20,955	67.792	3940	48,355	40,531	75.182
2380	26,150	21,423	68.025	3980	48,939	41,035	75.330
2420	26,699	21,893	68.253	4020	49,524	41,541	75.477
2460	27,249	22,364	68.479	4060	50,109	42,047	75.622
2500	27,801	22,837	68.702	4100	50,695	42,553	75.765
2540	28,355	23,310	68.921	4140	51,282	43,060	75.907
2580	28,910	23,786	69.138	4180	51,868	43,568	76.048
2620	29,465	24,262	69.352	4220	52,456	44,075	76.188
2660	30,023	24,740	69.563	4260	53,044	44,584	76.327
2700	30,581	25,220	69.771	4300	53,632	45,093	76.464
2740	31,141	25,701	69.977	4340	54,221	45,602	76.601
2780	31,702	26,181	70.181	4380	54,810	46,112	76.736
2820	32,264	26,664	70.382	4420	55,400	46,622	76.870
2860	32,827	27,148	70.580	4460	55,990	47,133	77.003
2900	33,392	27,633	70.776	4500	56,581	47,645	77.135
2940	33,957	28,118	70.970	4540	57,172	48,156	77.266
2980	34,523	28,605	71.160	4580	57,764	48,668	77.395
3020	35,090	29,093	71.350	4620	58,356	49,181	77.581
3060	35,659	29,582	71.537	4660	58,948	49,694	77.652
3100	36,228	30,072	71.722	4700	59,541	50,208	77.779
3140	36,798	30,562	71.904	4740	60,134	50,721	77.905
3180	37,369	31,054	72.085	4780	60,728	51,236	78.029
3220	37,941	31,546	72.264	4820	61,322	51,750	78.153
3260	38,513	32,039	72.441	4860	61,916	52,265	78.276
3300	39,087	32,533	72.616	4900	62,511	52,781	78.398
3340	39,661	33,028	72.788	5000	64,000	54,071	78.698
3380	40,236	33,524	72.960	5100	65,491	55,363	78.994
3420	40,812	34,020	73.129	5200	66,984	56,658	79.284
3460	41,388	34,517	73.297	5300	68,471	57,954	79.569

TABLE A-21E

Ideal-gas properties of carbon monoxide, CO

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R	R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R
300	2,081.9	1,486.1	43.223	1080	7,571.1	5,426.4	52.203
320	2,220.9	1,585.4	43.672	1100	7,716.8	5,532.3	52.337
340	2,359.9	1,684.7	44.093	1120	7,862.9	5,638.7	52.468
360	2,498.8	1,783.9	44.490	1140	8,009.2	5,745.4	52.598
380	2,637.9	1,883.3	44.866	1160	8,156.1	5,851.5	52.726
400	2,776.9	1,982.6	45.223	1180	8,303.3	5,960.0	52.852
420	2,916.0	2,081.9	45.563	1200	8,450.8	6,067.8	52.976
440	3,055.0	2,181.2	45.886	1220	8,598.8	6,176.0	53.098
460	3,194.0	2,280.5	46.194	1240	8,747.2	6,284.7	53.218
480	3,333.0	2,379.8	46.491	1260	8,896.0	6,393.8	53.337
500	3,472.1	2,479.2	46.775	1280	9,045.0	6,503.1	53.455
520	3,611.2	2,578.6	47.048	1300	9,194.6	6,613.0	53.571
537	3,725.1	2,663.1	47.272	1320	9,344.6	6,723.2	53.685
540	3,750.3	2,677.9	47.310	1340	9,494.8	6,833.7	53.799
560	3,889.5	2,777.4	47.563	1360	9,645.5	6,944.7	53.910
580	4,028.7	2,876.9	47.807	1380	9,796.6	7,056.1	54.021
600	4,168.0	2,976.5	48.044	1400	9,948.1	7,167.9	54.129
620	4,307.4	3,076.2	48.272	1420	10,100.0	7,280.1	54.237
640	4,446.9	3,175.9	48.494	1440	10,252.2	7,392.6	54.344
660	4,586.6	3,275.8	48.709	1460	10,404.8	7,505.4	54.448
680	4,726.2	3,375.8	48.917	1480	10,557.8	7,618.7	54.522
700	4,886.0	3,475.9	49.120	1500	10,711.1	7,732.3	54.665
720	5,006.1	3,576.3	49.317	1520	10,864.9	7,846.4	54.757
740	5,146.4	3,676.9	49.509	1540	11,019.0	7,960.8	54.858
760	5,286.8	3,777.5	49.697	1560	11,173.4	8,075.4	54.958
780	5,427.4	3,878.4	49.880	1580	11,328.2	8,190.5	55.056
800	5,568.2	3,979.5	50.058	1600	11,483.4	8,306.0	55.154
820	5,709.4	4,081.0	50.232	1620	11,638.9	8,421.8	55.251
840	5,850.7	4,182.6	50.402	1640	11,794.7	8,537.9	55.347
860	5,992.3	4,284.5	50.569	1660	11,950.9	8,654.4	55.411
880	6,134.2	4,386.6	50.732	1680	12,107.5	8,771.2	55.535
900	6,276.4	4,489.1	50.892	1700	12,264.3	8,888.3	55.628
920	6,419.0	4,592.0	51.048	1720	12,421.4	9,005.7	55.720
940	6,561.7	4,695.0	51.202	1740	12,579.0	9,123.6	55.811
960	6,704.9	4,798.5	51.353	1760	12,736.7	9,241.6	55.900
980	6,848.4	4,902.3	51.501	1780 1800	12,894.9	9,360.0	55.990 56.078
1000	6,992.2 7,136.4	5,006.3	51.646 51.788	1800	13,053.2	9,478.6 9,597.7	56.078
1020		5,110.8			13,212.0		56.166
1040 1060	7,281.0 7,425.9	5,215.7 5,320.9	51.929 52.067	1840 1860	13,371.0 13,530.2	9,717.0 9,836.5	56.253 56.339
1000	7,423.9	3,320.9	32.007	1800	15,550.2	9,030.3	30.339

TABLE A-21E

Ideal-gas properties of carbon monoxide, CO (Concluded)

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R	R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R
1900	13,850	10,077	56.509	3500	27,262	20,311	61.612
1940	14,170	10,318	56.677	3540	27,608	20,576	61.710
1980	14,492	10,560	56.841	3580	27,954	20,844	61.807
2020	14,815	10,803	57.007	3620	28,300	21,111	61.903
2060	15,139	11,048	57.161	3660	28,647	21,378	61.998
2100	15,463	11,293	57.317	3700	28,994	21,646	62.093
2140	15,789	11,539	57.470	3740	29,341	21,914	62.186
2180	16,116	11,787	57.621	3780	29,688	22,182	62.279
2220	16,443	12,035	57.770	3820	30,036	22,450	62.370
2260	16,722	12,284	57.917	3860	30,384	22,719	62.461
2300	17,101	12,534	58.062	3900	30,733	22,988	62.511
2340	17,431	12,784	58.204	3940	31,082	23,257	62.640
2380	17,762	13,035	58.344	3980	31,431	23,527	62.728
2420	18,093	13,287	58.482	4020	31,780	23,797	62.816
2460	18,426	13,541	58.619	4060	32,129	24,067	62.902
2500	18,759	13,794	58.754	4100	32,479	24,337	62.988
2540	19,093	14,048	58.885	4140	32,829	24,608	63.072
2580	19,427	14,303	59.016	4180	33,179	24,878	63.156
2620	19,762	14,559	59.145	4220	33,530	25,149	63.240
2660	20,098	14,815	59.272	4260	33,880	25,421	63.323
2700	20,434	15,072	59.398	4300	34,231	25,692	63.405
2740	20,771	15,330	59.521	4340	34,582	25,934	63.486
2780	21,108	15,588	59.644	4380	34,934	26,235	63.567
2820	21,446	15,846	59.765	4420	35,285	26,508	63.647
2860	21,785	16,105	59.884	4460	35,637	26,780	63.726
2900	22,124	16,365	60.002	4500	35,989	27,052	63.805
2940	22,463	16,225	60.118	4540	36,341	27,325	63.883
2980	22,803	16,885	60.232	4580	36,693	27,598	63.960
3020	23,144	17,146	60.346	4620	37,046	27,871	64.036
3060	23,485	17,408	60.458	4660	37,398	28,144	64.113
3100	23,826	17,670	60.569	4700	37,751	28,417	64.188
3140	24,168	17,932	60.679	4740	38,104	28,691	64.263
3180	24,510	18,195	60.787	4780	38,457	28,965	64.337
3220	24,853	18,458	60.894	4820	38,811	29,239	64.411
3260	25,196	18,722	61.000	4860	39,164	29,513	64.484
3300	25,539	18,986	61.105	4900	39,518	29,787	64.556
3340	25,883	19,250	61.209	5000	40,403	30,473	64.735
3380	26,227	19,515	61.311	5100	41,289	31,161	64.910
3420	26,572	19,780	61.412	5200	42,176	31,849	65.082
3460	26,917	20,045	61.513	5300	43,063	32,538	65.252

TABLE A-22E

Ideal-gas properties of hydrogen, H₂

T	\overline{h}	\overline{u}	\overline{s}°	Т	\overline{h}	\overline{u}	\overline{s}°
R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R	R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R
300	2,063.5	1,467.7	27.337	1400	9,673.8	6,893.6	37.883
320	2,189.4	1,553.9	27.742	1500	10,381.5	7,402.7	38.372
340	2,317.2	1,642.0	28.130	1600	11,092.5	7,915.1	38.830
360	2,446.8	1,731.9	28.501	1700	11,807.4	8,431.4	39.264
380	2,577.8	1,823.2	28.856	1800	12,526.8	8,952.2	39.675
400	2,710.2	1,915.8	29.195	1900	13,250.9	9,477.8	40.067
420	2,843.7	2,009.6	29.520	2000	13,980.1	10,008.4	40.441
440	2,978.1	2,104.3	29.833	2100	14,714.5	10,544.2	40.799
460	3,113.5	2,200.0	30.133	2200	15,454.4	11,085.5	41.143
480	3,249.4	2,296.2	20.424	2300	16,199.8	11,632.3	41.475
500	3,386.1	2,393.2	30.703	2400	16,950.6	12,184.5	41.794
520	3,523.2	2,490.6	30.972	2500	17,707.3	12,742.6	42.104
537	3,640.3	2,573.9	31.194	2600	18,469.7	13,306.4	42.403
540	3,660.9	2,588.5	31.232	2700	19,237.8	13,876.0	42.692
560	3,798.8	2,686.7	31.482	2800	20,011.8	14,451.4	42.973
580	3,937.1	2,785.3	31.724	2900	20,791.5	15,032.5	43.247
600	4,075.6	2,884.1	31.959	3000	21,576.9	15,619.3	43.514
620	4,214.3	2,983.1	32.187	3100	22,367.7	16,211.5	43.773
640	4,353.1	3,082.1	32.407	3200	23,164.1	16,809.3	44.026
660	4,492.1	3,181.4	32.621	3300	23,965.5	17,412.1	44.273
680	4,631.1	3,280.7	32.829	3400	24,771.9	18,019.9	44.513
700	4,770.2	3,380.1	33.031	3500	25,582.9	18,632.4	44.748
720	4,909.5	3,479.6	33.226	3600	26,398.5	19,249.4	44.978
740	5,048.8	3,579.2	33.417	3700	27,218.5	19,870.8	45.203
760	5,188.1	3,678.8	33.603	3800	28,042.8	20,496.5	45.423
780	5,327.6	3,778.6	33.784	3900	28,871.1	21,126.2	45.638
800	5,467.1	3,878.4	33.961	4000	29,703.5	21,760.0	45.849
820	5,606.7	3,978.3	34.134 34.302	4100	30,539.8	22,397.7	46.056
840	5,746.3 5,885.9	4,078.2 4,178.0	34.302 34.466	4200 4300	31,379.8 32,223.5	23,039.2 23,684.3	46.257 46.456
860 880	6,025.6	4,178.0	34.627	4400	33,070.9	24,333.1	46.450
900	6,165.3	4,278.0	34.784	4500	33,921.6	24,985.2	46.842
920	6,305.1	4,478.1	34.764	4600	34,775.7	25,640.7	47.030
940	6,444.9	4,478.1	35.087	4700	35,633.0	26,299.4	47.030
960	6,584.7	4,678.3	35.235	4800	36,493.4	26,961.2	47.396
980	6,724.6	4,778.4	35.233	4900	35,356.9	27,626.1	47.574
1000	6,864.5	4,878.6	35.520	5000	38,223.3	28,294.0	47.749
1100	7,564.6	5,380.1	36.188	5100	39,092.8	28,964.9	47.921
1200	8,265.8	5,882.8	36.798	5200	39,965.1	29,638.6	48.090
1300	8,968.7	6,387.1	37.360	5300	40,840.2	30.315.1	48.257
1300	0,500.7	0,367.1	37.300	3300	40,040.2	50,515.1	40.237

TABLE A-23E

Ideal-gas properties of water vapor, H₂O

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R	R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R
300	2,367.6	1,771.8	40.439	1080	8,768.2	6,623.5	50.854
320	2,526.8	1,891.3	40.952	1100	8,942.0	6,757.5	51.013
340	2,686.0	2,010.8	41.435	1120	9,116.4	6,892.2	51.171
360	2,845.1	2,130.2	41.889	1140	9,291.4	7,027.5	51.325
380	3,004.4	2,249.8	42.320	1160	9,467.1	7,163.5	51.478
400	3,163.8	2,369.4	42.728	1180	9,643.4	7,300.1	51.360
420	3,323.2	2,489.1	43.117	1200	9,820.4	7,437.4	51.777
440	3,482.7	2,608.9	43.487	1220	9,998.0	7,575.2	51.925
460	3,642.3	2,728.8	43.841	1240	10,176.1	7,713.6	52.070
480	3,802.0	2,848.8	44.182	1260	10,354.9	7,852.7	52.212
500	3,962.0	2,969.1	44.508	1280	10,534.4	7,992.5	52.354
520	4,122.0	3,089.4	44.821	1300	10,714.5	8,132.9	52.494
537	4,258.0	3,191.9	45.079	1320	10,895.3	8,274.0	52.631
540	4,282.4	3,210.0	45.124	1340	11,076.6	8,415.5	52.768
560	4,442.8	3,330.7	45.415	1360	11,258.7	8,557.9	52.903
580	4,603.7	3,451.9	45.696	1380	11,441.4	8,700.9	53.037
600	4,764.7	3,573.2	45.970	1400	11,624.8	8,844.6	53.168
620	4,926.1	3,694.9	46.235	1420	11,808.8	8,988.9	53.299
640	5,087.8	3,816.8	46.492	1440	11,993.4	9,133.8	53.428
660	5,250.0	3,939.3	46.741	1460	12,178.8	9,279.4	53.556
680	5,412.5	4,062.1	46.984	1480	12,364.8	9,425.7	53.682
700	5,575.4	4,185.3	47.219	1500	12,551.4	9,572.7	53.808
720	5,738.8	4,309.0	47.450	1520	12,738.8	9,720.3	53.932
740	5,902.6	4,433.1	47.673	1540	12,926.8	9,868.6	54.055
760	6,066.9	4,557.6	47.893	1560	13,115.6	10,017.6	54.117
780	6,231.7	4,682.7	48.106	1580	13,305.0	10,167.3	54.298
800	6,396.9	4,808.2	48.316	1600	13,494.4	10,317.6	54.418
820	6,562.6	4,934.2	48.520	1620	13,685.7	10,468.6	54.535
840	6,728.9	5,060.8	48.721	1640	13,877.0	10,620.2	54.653
860	6,895.6	5,187.8	48.916	1660	14,069.2	10,772.7	54.770
880	7,062.9	5,315.3	49.109	1680	14,261.9	10,925.6	54.886
900	7,230.9	5,443.6	49.298	1700	14,455.4	11,079.4	54.999
920	7,399.4	5,572.4	49.483	1720	14,649.5	11,233.8	55.113
940	7,568.4	5,701.7	49.665	1740	14,844.3	11,388.9	55.226
960	7,738.0	5,831.6	49.843	1760	15,039.8	11,544.7	55.339
980	7,908.2	5,962.0	50.019	1780	15,236.1	11,701.2	55.449
1000	8,078.2	6,093.0	50.191	1800	15,433.0	11,858.4	55.559
1020	8,250.4	6,224.8	50.360	1820	15,630.6	12,016.3	55.668
1040	8,422.4	6,357.1	50.528	1840	15,828.7	12,174.7	55.777
1060	8,595.0	6,490.0	50.693	1860	16,027.6	12,333.9	55.884

TABLE A-23E

Ideal-gas properties of water vapor, H₂O (Concluded)

T	\overline{h}	\overline{u}	\overline{s}°	T	\overline{h}	\overline{u}	\overline{s}°
R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R	R	Btu/lbmol	Btu/lbmol	Btu/lbmol·R
1900	16,428	12,654	56.097	3500	34,324	27,373	62.876
1940	16,830	12,977	56.307	3540	34,809	27,779	63.015
1980	17,235	13,303	56.514	3580	35,296	28,187	63.153
2020	17,643	13,632	56.719	3620	35,785	28,596	63.288
2060	18,054	13,963	56.920	3660	36,274	29,006	63.423
2100	18,467	14,297	57.119	3700	36,765	29,418	63.557
2140	18,883	14,633	57.315	3740	37,258	29,831	63.690
2180	19,301	14,972	57.509	3780	37,752	30,245	63.821
2220	19,722	15,313	57.701	3820	38,247	30,661	63.952
2260	20,145	15,657	57.889	3860	38,743	31,077	64.082
2300	20,571	16,003	58.077	3900	39,240	31,495	64.210
2340	20,999	16,352	58.261	3940	39,739	31,915	64.338
2380	21,429	16,703	58.445	3980	40,239	32,335	64.465
2420	21,862	17,057	58.625	4020	40,740	32,757	64.591
2460	22,298	17,413	58.803	4060	41,242	33,179	64.715
2500	22,735	17,771	58.980	4100	41,745	33,603	64.839
2540	23,175	18,131	59.155	4140	42,250	34,028	64.962
2580	23,618	18,494	59.328	4180	42,755	34,454	65.084
2620	24,062	18,859	59.500	4220	43,267	34,881	65.204
2660	24,508	19,226	59.669	4260	43,769	35,310	65.325
2700	24,957	19,595	59.837	4300	44,278	35,739	65.444
2740	25,408	19,967	60.003	4340	44,788	36,169	65.563
2780	25,861	20,340	60.167	4380	45,298	36,600	65.680
2820	26,316	20,715	60.330	4420	45,810	37,032	65.797
2860	26,773	21,093	60.490	4460	46,322	37,465	65.913
2900	27,231	21,472	60.650	4500	46,836	37,900	66.028
2940	27,692	21,853	60.809	4540	47,350	38,334	66.142
2980	28,154	22,237	60.965	4580	47,866	38,770	66.255
3020	28,619	22,621	61.120	4620	48,382	39,207	66.368
3060	29,085	23,085	61.274	4660	48,899	39,645	66.480
3100	29,553	23,397	61.426	4700	49,417	40,083	66.591
3140	30,023	23,787	61.577	4740	49,936	40,523	66.701
3180	30,494	24,179	61.727	4780	50,455	40,963	66.811
3220	30,967	24,572	61.874	4820	50,976	41,404	66.920
3260	31,442	24,968	62.022	4860	51,497	41,856	67.028
3300	31,918	25,365	62.167	4900	52,019	42,288	67.135
3340	32,396	25,763	62.312	5000	53,327	43,398	67.401
3380	32,876	26,164	62.454	5100	54,640	44,512	67.662
3420	33,357	26,565	62.597	5200	55,957	45,631	67.918
3460	33,839	26,968	62.738	5300	57,279	46,754	68.172

TABLE A-26E

Enthalpy of formation, Gibbs function of formation, and absolute entropy at 77°F, 1 atm

		\overline{h}_f°	\overline{g}_f°	\overline{s}°
Substance	Formula	Btu/lbmol	Btu/lbmol	Btu/lbmol·R
Carbon	C(s)	0	0	1.36
Hydrogen	$H_2(g)$	0	0	31.21
Nitrogen	$N_2(g)$	0	0	45.77
Oxygen	$O_2(g)$	0	0	49.00
Carbon monoxide	CO(g)	-47,540	-59,010	47.21
Carbon dioxide	$CO_2(g)$	-169,300	-169,680	51.07
Water vapor	$H_2O(g)$	-104,040	-98,350	45.11
Water	$H_2O(l)$	-122,970	-102,040	16.71
Hydrogen peroxide	$H_2O_2(g)$	-58,640	-45,430	55.60
Ammonia	$NH_3(g)$	-19,750	-7,140	45.97
Methane	$CH_4(g)$	-32,210	-21,860	44.49
Acetylene	$C_2H_2(g)$	+97,540	+87,990	48.00
Ethylene	$C_2H_4(g)$	+22,490	+29,306	52.54
Ethane	$C_2H_6(g)$	-36,420	-14,150	54.85
Propylene	$C_3H_6(g)$	+8,790	+26,980	63.80
Propane	$C_3H_8(g)$	-44,680	-10,105	64.51
<i>n</i> -Butane	$C_4H_{10}(g)$	-54,270	-6,760	74.11
<i>n</i> -Octane	$C_8H_{18}(g)$	-89,680	+7,110	111.55
<i>n</i> -Octane	$C_8H_{18}(l)$	-107,530	+2,840	86.23
<i>n</i> -Dodecane	$C_{12}H_{26}(g)$	-125,190	+21,570	148.86
Benzene	$C_6H_6(g)$	+35,680	+55,780	64.34
Methyl alcohol	$CH_3OH(g)$	-86,540	-69,700	57.29
Methyl alcohol	$CH_3OH(l)$	-102,670	-71,570	30.30
Ethyl alcohol	$C_2H_5OH(g)$	-101,230	-72,520	67.54
Ethyl alcohol	$C_2H_5OH(l)$	-119,470	-75,240	38.40
Oxygen	O(g)	+107,210	+99,710	38.47
Hydrogen	H(g)	+93,780	+87,460	27.39
Nitrogen	N(g)	+203,340	+195,970	36.61
Hydroxyl	OH(g)	+16,790	+14,750	43.92

Source of Data: From JANAF, Thermochemical Tables (Midland, MI: Dow Chemical Co., 1971), Selected Values of Chemical Thermodynamic Properties, NBS Technical Note 270-3, 1968; and API Research Project 44 (Carnegie Press, 1953).

TABLE A-27E

Properties of some common fuels and hydrocarbons

Fuel (phase)	Formula	Molar mass, lbm/lbmol	Density, ¹ lbm/ft ³	Enthalpy of vaporization, ² Btu/lbm	Specific heat, ${}^{1}c_{p}$ Btu/lbm· ${}^{\circ}$ F	Higher heating value, ³ Btu/lbm	Lower heating value, ³ Btu/lbm
Carbon (s)	С	12.011	125	_	0.169	14,100	14,100
Hydrogen (g)	H_2	2.016	_	_	3.44	60,970	51,600
Carbon monoxide (g)	CÔ	28.013	_	_	0.251	4,340	4,340
Methane (g)	CH_{4}	16.043	_	219	0.525	23,880	21,520
Methanol (l)	CH ₄ O	32.042	49.3	502	0.604	9,740	8,570
Acetylene (g)	C_2H_2	26.038	_	_	0.404	21,490	20,760
Ethane (g)	C_2H_6	30.070	_	74	0.418	22,320	20,430
Ethanol (<i>l</i>)	C_2H_6O	46.069	49.3	395	0.583	12,760	11,530
Propane (<i>l</i>)	C_3H_8	44.097	31.2	144	0.662	21,640	19,930
Butane (<i>l</i>)	$C_{4}H_{10}$	58.123	36.1	156	0.578	21,130	19,510
1-Pentene (<i>l</i>)	C_5H_{10}	70.134	40.0	156	0.525	20,540	19,190
Isopentane (<i>l</i>)	C_5H_{12}	72.150	39.1	_	0.554	20,890	19,310
Benzene (<i>l</i>)	C_6H_6	78.114	54.7	186	0.411	17,970	17,240
Hexene (<i>l</i>)	$C_{6}H_{12}$	84.161	42.0	169	0.439	20,430	19,090
Hexane (<i>l</i>)	$C_{6}H_{14}$	86.177	41.2	157	0.542	20,770	19,240
Toluene (<i>l</i>)	C_7H_8	92.141	54.1	177	0.408	18,230	17,420
Heptane (<i>l</i>)	C_7H_{16}	100.204	42.7	157	0.535	20,680	19,180
Octane (l)	C_8H_{18}	114.231	43.9	156	0.533	20,590	19,100
Decane (l)	$C_{10}H_{22}$	142.285	45.6	155	0.528	20,490	19,020
Gasoline (<i>l</i>)	$C_n H_{1.87n}$	100-110	45-49	151	0.57	20,300	18,900
Light diesel (<i>l</i>)	$C_nH_{1.8n}$	170	49-52	116	0.53	19,800	18,600
Heavy diesel (<i>l</i>)	$C_nH_{1.7n}$	200	51-55	99	0.45	19,600	18,400
Natural gas (g)	$C_n H_{3.8n} N_{0.1n}$	18	_	_	0.48	21,500	19,400

 $^{^1} At \ 1 \ atm \ and \ 68 ^\circ F.$

 $^{^2\}mathrm{At}\ 77^\circ\mathrm{F}$ for liquid fuels, and 1 atm and normal boiling temperature for gaseous fuels.

³At 77°F. Multiply by molar mass to obtain heating values in Btu/lbmol.

Prepared by Center for Applied Thermodynamic Studies, University of Idaho.

FIGURE A-31E

Psychrometric chart at 1 atm total pressure.

From the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA.