MATH 250: TOPOLOGY I PROBLEM SET #3

FALL 2025

Due Wednesday, October 1. Please attempt all of the problems. <u>Six</u> of them will be graded. You may consult books, papers, and websites as long as you cite all sources and write up your solutions in your own words. **Last update: 9/23**.

Problem 1 (Munkres 128, #4(1)). Consider the product, uniform, and box topologies on $\mathbf{R}^{\omega} = \mathbf{R} \times \mathbf{R} \times \mathbf{R} \times \dots$ (where each factor of \mathbf{R} is analytic). In which topologies are the following functions continuous?

$$f(t) = (t, 2t, 3t, ...),$$

$$g(t) = (t, t, t, ...),$$

$$h(t) = (t, \frac{1}{2}t, \frac{1}{3}t, ...).$$

Problem 2 (Munkres 128, #4(2)). Same setup as Problem 1. In which topologies do the following sequences converge?

$$(w_i)_i \text{ where } w_1 = (1, 1, 1, 1, \ldots),$$

$$w_2 = (0, 2, 2, 2, \ldots),$$

$$w_3 = (0, 0, 3, 3, \ldots),$$

$$\cdots$$

$$(y_i)_i \text{ where } y_1 = (1, 0, 0, 0, \ldots),$$

$$y_2 = (\frac{1}{2}, \frac{1}{2}, 0, 0, \ldots),$$

$$y_3 = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, \ldots),$$

$$(x_i)_i \text{ where } x_1 = (1, 1, 1, 1, \ldots),$$

$$x_2 = (0, \frac{1}{2}, \frac{1}{2}, \ldots),$$

$$x_3 = (0, 0, \frac{1}{3}, \frac{1}{3}, \ldots),$$

$$\vdots$$

$$(z_i)_i \text{ where } z_1 = (1, 1, 0, 0, \ldots),$$

$$z_2 = (\frac{1}{2}, \frac{1}{2}, 0, 0, \ldots),$$

$$z_3 = (\frac{1}{3}, \frac{1}{3}, 0, 0, \ldots),$$

$$\vdots$$

Problem 3 (Munkres 118, #7). Let $\mathbf{R}^{\infty} \subseteq \mathbf{R}^{\omega}$ be the subset of sequences $(a_i)_{i>0}$ such that $a_i \neq 0$ for only finitely many i. What is the closure of \mathbf{R}^{∞} ...

- (1) ... in the box topology on \mathbf{R}^{ω} ?
- (2) ... in the product topology on \mathbf{R}^{ω} ?

Problem 4 (Munkres 118, #8). Fix sequences $(a_1, a_2, ...), (b_1, b_2, ...) \in \mathbf{R}^{\omega}$ such that $a_i > 0$ for all i. Let $h : \mathbf{R}^{\omega} \to \mathbf{R}^{\omega}$ be defined by

$$h(x_1, x_2, \ldots) = (a_1x_1 + b_1, a_2x_2 + b_2, \ldots)$$

- (1) Show that in the product topology, h is a self-homeomorphism of \mathbf{R}^{ω} .
- (2) What happens in the box topology?

Problem 5 (Munkres 92, #3). Endow [-1, 1] with the analytic topology: *i.e.*, the subspace topology it inherits from analytic **R**. Determine which of the following sets are open in [-1, 1], and which are open in **R**.

$$A = \{x \mid \frac{1}{2} < |x| < 1\}, \qquad B = \{x \mid \frac{1}{2} < |x| \le 1\},$$

$$C = \{x \mid \frac{1}{2} \le |x| < 1\}, \qquad D = \{x \mid \frac{1}{2} \le |x| \le 1\},$$

$$E = \{x \mid 0 < |x| < 1 \text{ and } \frac{1}{x} \notin \mathbf{Z}_{+}]\}.$$

Problem 6 (Munkres 92, #6). Show that the countable collection

$$\{(a,b) \times (c,d) \mid a < b \text{ and } c < d \text{ and } a,b,c,d \text{ are rational}\}$$

is a basis for the analytic topology on \mathbb{R}^2 . You may assume Problem 5 from Problem Set 1. *Hint:* How do the analytic and product topologies on \mathbb{R}^2 compare?

Problem 7 (Munkres 101, #11–13). Show that:

- (1) A product of two Hausdorff spaces is Hausdorff (in the product topology).
- (2) A subspace of a Hausdorff space is Hausdorff (in the subspace topology).
- (3) X is Hausdorff if and only if its diagonal $\Delta_X = \{(x, x) \mid x \in X\}$ is closed in (the product topology on) $X \times X$.

Problem 8. Let $s: A \to X$ and $r: X \to A$ be maps of sets such that $r \circ s$ is the identity map on A.

- (1) Show that s must be injective and r must be surjective.
- (2) Now suppose that X and A are endowed with topologies. Show that if s and r are both continuous, then the topology on A must be the quotient topology induced by the surjective map r.

In the situation above, we say that s is a continuous *section* of r, and that r is a continuous *retraction* of s.

Problem 9. Let $X = \mathbb{R}^2 - \{0\}$, endowed with the subspace topology it inherits from analytic \mathbb{R}^2 . Let

$$S^1 = \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 = 1\},\$$

endowed with the subspace topology it inherits from X.

- (1) Give a basis for the above topology on S^1 . Hint: If \mathcal{B} is a basis for the topology on X, then $\{S^1 \cap B \mid B \in \mathcal{B}\}$ is a basis for the topology on S^1 .
- (2) Give a retraction of the inclusion map from S^1 into X, in the sense of Problem 8. *Hint:* Polar coordinates.

Problem 10 (Munkres 152, #2). Let $(A_n)_{n=1}^{\infty}$ be a sequence of connected subspaces of X, such that $A_n \cap A_{n+1} \neq \emptyset$ for all n. Show that $\bigcup_{n=1}^{\infty} A_n$ is connected.

Problem 11 (Munkres 152, #11). Let $p: X \to Y$ be a quotient map. Show that if Y is connected and each subspace $p^{-1}(y) \subseteq X$ is connected, then X is connected.

Problem 12 (Munkres 152, #5). We say that X is *totally disconnected* if and only if its only nonempty connected subspaces are one-point sets.

- (1) Show that if X is discrete, then X is totally disconnected.
- (2) Show that the set of rational numbers \mathbf{Q} , as a subspace of (analytic) \mathbf{R} , is totally disconnected, but not discrete.