```
In [1]:
import pandas as pd

In [2]:

df = pd.read_csv('FT1000.csv')

In [3]:

df.head()
Out[3]:
```

	Rank	Name	Ranked2021	Ranked2020	Country	Sector	CAGR	Revenue2020	Revenu
0	1	Swappie	No	No	Finland	Technology	477.43	97611814	5
1	2	Kilo Health	No	No	Lithuania	Health	450.05	57318766	3
2	3	OCI	No	No	UK	Financial Services	409.59	568322073	43
3	4	OnlyFans	No	No	UK	Technology	393.63	316732986	26
4	5	Enpal	No	No	Germany	Energy	386.88	56109613	4
4									•

In [4]:

df.tail()

Out[4]:

	Rank	Name	Ranked2021	Ranked2020	Country	Sector	CAGR	Revenue2020
995	996	peopleForecast	No	No	Germany	Technology	36.59	2086411
996	997	Digitalpa	No	No	Italy	Management Consulting	36.59	1731340
997	998	Faktenkontor	No	No	Germany	Advertising	36.59	30967000
998	999	CLAREO	Yes	Yes	France	Retail	36.58	18854708
999	1000	Laca Trade	Yes	Yes	Italy	Property	36.55	24741510
4								>

In [5]:

df.shape

Out[5]:

(1000, 12)

```
In [6]:
df.columns
Out[6]:
Index(['Rank', 'Name', 'Ranked2021', 'Ranked2020', 'Country', 'Sector', 'CAG
R',
       'Revenue2020', 'Revenue2017', 'Employees2020', 'Employees2017',
       'FoundingYear'],
      dtype='object')
In [7]:
df.duplicated().sum()
Out[7]:
0
In [8]:
df.isnull().sum()
Out[8]:
Rank
                 0
Name
                 0
                 0
Ranked2021
Ranked2020
                 0
Country
                 0
Sector
                 0
CAGR
                 0
Revenue2020
                 0
Revenue2017
                 0
Employees2020
                 0
Employees2017
                 0
FoundingYear
                 0
dtype: int64
```

In [9]:

```
df.info()
<class 'pandas.core.frame.DataFrame'>
```

RangeIndex: 1000 entries, 0 to 999 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Rank	1000 non-null	int64
1	Name	1000 non-null	object
2	Ranked2021	1000 non-null	object
3	Ranked2020	1000 non-null	object
4	Country	1000 non-null	object
5	Sector	1000 non-null	object
6	CAGR	1000 non-null	float64
7	Revenue2020	1000 non-null	int64
8	Revenue2017	1000 non-null	int64
9	Employees2020	1000 non-null	int64
10	Employees2017	1000 non-null	int64
11	FoundingYear	1000 non-null	int64
dtypes: float64(1),		int64(6), object	t(5)
memo	ry usage: 93.9+	KB	

In [10]:

```
df.describe()
```

Out[10]:

	Rank	CAGR	Revenue2020	Revenue2017	Employees2020	Employees2017	F
count	1000.000000	1000.000000	1.000000e+03	1.000000e+03	1000.000000	1000.000000	
mean	500.500000	78.881950	2.034009e+07	4.005901e+06	79.948000	26.480000	
std	288.819436	52.471399	7.771805e+07	9.207763e+06	161.448155	63.526161	
min	1.000000	36.550000	1.507867e+06	1.007110e+05	1.000000	0.000000	
25%	250.750000	46.582500	3.186724e+06	6.283870e+05	14.000000	4.000000	
50%	500.500000	61.105000	6.361154e+06	1.271956e+06	30.000000	10.000000	
75%	750.250000	93.522500	1.662410e+07	3.549436e+06	70.000000	23.000000	
max	1000.000000	477.430000	2.120072e+09	1.453982e+08	1798.000000	767.000000	
4							•

```
In [11]:
df.nunique()
Out[11]:
Rank
                 1000
Name
                 1000
Ranked2021
                     2
Ranked2020
                     2
Country
                    30
                    39
Sector
CAGR
                   931
Revenue2020
                   999
Revenue2017
                   999
Employees2020
                   225
Employees2017
                   122
FoundingYear
                   42
dtype: int64
In [12]:
df['Ranked2021'].unique()
Out[12]:
array(['No', 'Yes'], dtype=object)
In [13]:
df['Ranked2021'].value_counts()
Out[13]:
No
       694
Yes
       306
Name: Ranked2021, dtype: int64
In [14]:
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings("ignore")
```

In [15]:

```
plt.figure(figsize=(15,6))
sns.countplot('Ranked2021', data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [16]:

```
label data = df['Ranked2021'].value counts()
explode = (0.1, 0.1)
plt.figure(figsize=(14, 10))
patches, texts, pcts = plt.pie(label_data,
                               labels = label data.index,
                               colors = ['blue', 'red'],
                               pctdistance = 0.65,
                               shadow = True,
                               startangle = 90,
                               explode = explode,
                               autopct = '%1.1f%%',
                               textprops={ 'fontsize': 25,
                                            'color': 'black',
                                            'weight': 'bold',
                                            'family': 'serif' })
plt.setp(pcts, color='white')
hfont = {'fontname':'serif', 'weight': 'bold'}
plt.title('Ranked2021', size=20, **hfont)
centre circle = plt.Circle((0,0),0.40,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.show()
```

No

Yes

852

148

Name: Ranked2020, dtype: int64

Ranked2021


```
In [17]:

df['Ranked2020'].unique()

Out[17]:
    array(['No', 'Yes'], dtype=object)

In [18]:

df['Ranked2020'].value_counts()

Out[18]:
```

In [19]:

```
plt.figure(figsize=(15,6))
sns.countplot('Ranked2020', data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [20]:

```
label data = df['Ranked2020'].value counts()
explode = (0.1, 0.1)
plt.figure(figsize=(14, 10))
patches, texts, pcts = plt.pie(label_data,
                               labels = label data.index,
                               colors = ['blue', 'red'],
                               pctdistance = 0.65,
                               shadow = True,
                               startangle = 90,
                               explode = explode,
                               autopct = '%1.1f%%',
                               textprops={ 'fontsize': 25,
                                            'color': 'black',
                                            'weight': 'bold',
                                            'family': 'serif' })
plt.setp(pcts, color='white')
hfont = {'fontname':'serif', 'weight': 'bold'}
plt.title('Ranked2020', size=20, **hfont)
centre circle = plt.Circle((0,0),0.40,fc='white')
fig = plt.gcf()
fig.gca().add_artist(centre_circle)
plt.show()
```

Ranked2020

In [21]:

```
df['Country'].unique()
```

Out[21]:

In [22]:

```
df['Country'].value_counts()
```

Out[22]:

Italy	235
Germany	194
UK	155
France	147
Spain	49
Poland	34
Sweden	28
The Netherlands	19
Hungary	13
Czech Republic	11
Lithuania	11
Finland	11
Norway	11
Belgium	10
Romania	8
Bulgaria	7
Portugal	7
Slovakia	7
Croatia	7
Denmark	6
Greece	5
Austria	5
Ireland	4
Switzerland	4
Estonia	4
Cyprus	3
Slovenia	2
Latvia	1
Luxembourg	1
Liechtenstein	1

Name: Country, dtype: int64

In [23]:

```
plt.figure(figsize=(15,6))
sns.countplot('Country', data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [24]:

```
df['Sector'].unique()
```

Out[24]:

```
array(['Technology', 'Health', 'Financial Services', 'Energy',
    'Waste management & recycling', 'Industrial Goods', 'Ecommerce',
    'Food & Beverage', 'Support Services', 'Fintech', 'Transport',
    'Fashion', 'Retail', 'Games industry', 'Education', 'Property',
    'Management Consulting', 'Advertising', 'Interiors',
    'Pharmaceuticals', 'Personal & Household Goods', 'Automobiles',
    'Cyber Security', 'Construction', 'Batteries', 'Beauty',
    'Chemicals & Pharmaceuticals', 'Media', 'Aerospace & Defence',
    'Sales & Marketing', 'Telecoms', 'Agricultural Commodities',
    'Travel & Leisure', 'Restaurants', 'Insurance', 'Architecture',
    'Law', 'Precious metals', 'Sales and Marketing'], dtype=object)
```

In [25]:

```
df['Sector'].value_counts()
```

Out[25]:

Technology	209
Construction	89
Retail	86
Ecommerce	65
Support Services	56
Health	43
Energy	42
Industrial Goods	36
Advertising	33
Transport	28
Financial Services	28
Fintech	26
Automobiles	26
Property	26
Management Consulting	22
Telecoms	20
Food & Beverage	20
Education	15
Interiors	12
Waste management & recycling	12
Media	11
Sales & Marketing	10
Personal & Household Goods	10
Cyber Security	10 10
Fashion Chemicals & Pharmaceuticals	
	8 7
Travel & Leisure Agricultural Commodities	7
Aerospace & Defence	6
Pharmaceuticals	5
Beauty	5
Games industry	4
Insurance	3
Restaurants	2
Architecture	2
Law	2
Precious metals	2
Batteries	1
Sales and Marketing	1
Name: Sector, dtype: int64	_

In [26]:

```
plt.figure(figsize=(15,6))
sns.countplot('Sector', data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [27]:

```
df['FoundingYear'].unique()
```

Out[27]:

```
array([2016, 2013, 2012, 2017, 2015, 2014, 2011, 2000, 2006, 2004, 2001, 2010, 2008, 2009, 2005, 2007, 2003, 1989, 1996, 1976, 1999, 1990, 1982, 2002, 1986, 1984, 1994, 1993, 1998, 1979, 1952, 1997, 1983, 1977, 1965, 1975, 1956, 1995, 1991, 1938, 1992, 1898], dtype=int64)
```

```
In [28]:
```

```
df['FoundingYear'].value_counts()
Out[28]:
2016
        159
2015
        122
2013
        116
2014
        105
2012
        88
         68
2010
         65
2017
2011
         65
2009
         40
2008
         24
2007
         22
2006
         16
2005
         13
2003
         13
2004
         11
2001
         10
         9
2000
         9
2002
1999
          8
         6
1996
          4
1994
          3
1984
1993
          3
1998
          2
1997
          2
1938
          1
          1
1992
          1
1991
1977
          1
1995
          1
          1
1956
          1
1975
1965
          1
1990
          1
1983
          1
          1
1952
1979
          1
          1
1986
          1
1982
1976
          1
1989
          1
1898
          1
Name: FoundingYear, dtype: int64
```

In [29]:

```
plt.figure(figsize=(15,6))
sns.countplot('FoundingYear', data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [30]:

```
import plotly.express as px
import plotly.graph_objects as go
from plotly import tools
from plotly.subplots import make_subplots
from plotly.offline import iplot, init_notebook_mode
```

In [31]:

```
plt.figure(figsize=(18,6))
plt.title('2020 vs 2021',fontsize = 20)
sns.lineplot(data=df['Ranked2020'],linewidth = 2, label = '2020')
sns.lineplot(data=df['Ranked2021'],linewidth = 2, label = '2021', color='green')
plt.show()
```


In [32]:

```
plt.figure(figsize=(18,6))
plt.title('Revenue 2020 vs Revenue 2017',fontsize = 20)
sns.lineplot(data=df['Revenue2020'],linewidth = 2, label = '2020')
sns.lineplot(data=df['Revenue2017'],linewidth = 2, label = '2017', color='r')
plt.show()
```


In [33]:

```
plt.figure(figsize=(18,6))
plt.title('Employees 2020 vs Employees 2017',fontsize = 20)
sns.lineplot(data=df['Employees2020'],linewidth = 2, label = '2020')
sns.lineplot(data=df['Employees2017'],linewidth = 2, label = '2017', color='r')
plt.show()
```


In [34]:

```
plt.figure(figsize=(15,10))
sns.lineplot(data=df, x='FoundingYear', y='CAGR', color='black', alpha=0.9)
plt.title('CAGR vs FoundingYear',fontsize = 20)
plt.show()
```



```
In [35]:
```

```
sns.jointplot(x='CAGR', y='FoundingYear', data=df , height = 10 , kind='hex')
plt.title('CAGR vs FoundingYear',fontsize = 12)
plt.show()
```


In [36]:

```
plt.figure(figsize=(12,12))
sns.scatterplot(x='Sector',y='Country',hue='CAGR',data=df)
plt.xticks(rotation=90)
plt.title('CAGR vs Country & Sector',fontsize = 20)
plt.show()
```


In [37]:

```
fig, ax = plt.subplots(figsize=(20,12))
plt.xticks(rotation=90)
ax = sns.stripplot(y='Country', x='Sector', data=df, palette='Pastel1', s=10, marker='P', li
plt.title('CAGR vs Country & Sector', fontsize = 20)
plt.show()
```


In [38]:

Revenue distribution relative to countries for 2020

In [39]:

Revenue distribution relative to countries for 2017

In [40]:

Sector revenues for 2020

In [41]:

Sector revenues for 2017

In [42]:

```
plt.figure(figsize=(18,12))
sns.scatterplot(data=df, x='Sector', y='Revenue2020', hue='Country', legend=True)
plt.xticks(rotation=90)
plt.title('Revenue for 2020 vs countries & sectors',fontsize = 20)
plt.show()
```


In [43]:

```
plt.figure(figsize=(18,12))
sns.scatterplot(data=df, x='Sector', y='Revenue2017', hue='Country', legend=True)
plt.xticks(rotation=90)
plt.title('Revenue for 2017 vs countries & sectors',fontsize = 20)
plt.show()
```


In [44]:

```
plt.figure(figsize=(10,8))
sns.kdeplot(df['CAGR'],df['Revenue2020'],shade=True,cmap='Reds', shade_lowest=False)
plt.title('CAGR vs Revenue2020',fontsize = 20)
plt.show()
```


In [45]:

```
plt.figure(figsize=(10,8))
sns.kdeplot(df['CAGR'],df['Revenue2017'],shade=True,cmap='Reds', shade_lowest=False)
plt.title('CAGR vs Revenue2017',fontsize = 20)
plt.show()
```


In [46]:

fig=px.choropleth(data_frame=df,locations=df['Country'],locationmode='country names',color=d
fig.update_layout(dict1={'title':'Revenue distribution relative to countries for 2020 on the
fig.show()

Revenue distribution relative to countries for 2020 on the map

2016 2014 2001 2007 1999 1984 1952 1975 1992

In [47]:

fig=px.choropleth(data_frame=df,locations=df['Country'],locationmode='country names',color=d
fig.update_layout(dict1={'title':'Revenue distribution relative to countries for 2017 on the
fig.show()

Revenue distribution relative to countries for 2017 on the map

localhost:8888/notebooks/Top 1000 Europe Companies.ipynb

In [48]:

Distribution and analysis of the number of employees by sector

In [49]:

Distribution and analysis of the number of employees by sector

