An Introduction to R

Chris Miller, PhD Washington University St Louis

What is R?

A free software environment for statistical computing and graphics

Ordination of fuzzy clusters (PCoA)

Why is R useful?

- Data management and manipulation
- Well established system of packages and documentation, especially in bioinformatics
- Support for rich statistical simulation and modeling
- Active development and dedicated community
- Cutting-edge graphical data visualization
- Free!

Things R is less good at

BIG data

There is a learning curve from many other languanges

- A common paradigm is to use other tools to massage your data into a bite size chunk, then import that into R for exploration/vizualization
 - e.g. Generate coverage in 10,000 bp bins from a bam file using mosdepth, run stats and make pretty plots of them with R

Where to learn more about R

- The R Project Homepage: http://www.r-project.org
- Quick R Homepage: http://www.statmethods.net
- Bioconductor: http://www.bioconductor.org
- An Introduction to R (long!): http://cran.r-project.org/doc/manuals/R-intro.html
- Google there are tons of tutorials, guides, demos, packages and more

R for Biologists

- Bioconductor (http://bioconductor.org)
 - 2,140 packages (21-August, 2022):
 - · Variant detection: coding changes, PolyPhen database
 - Annotation: pathway analysis, access GO, KEGG, NCBI and many others
 - High-throughput assays: flow cytometry, mass spec
 - Transcription factor binding detection
- Ecology (see: http://cran.r-project.org/web/views/Environmetrics.html)
 - Ordination
 - Cluster Analysis
 - Ecological Theory
 - Population Dynamics
 - Spatial Data Analysis
- Phylogenetics and Evolution (see: http://cran.r-project.org/web/views/Phylogenetics.html)
 - Ancestral State Reconstruction
 - Phylogenetic Inference
 - Trait Evolution

Obtaining R

Windows, Mac or Linux OS: https://www.r-project.org

Running R

- Install a R Integrated Development Environment (IDE)
 - RStudio: http://www.rstudio.com
 - Makes working with R much easier, particularly for a new R user
 - Run on Windows, Mac or Linux OS
- Or from the command line, type R

R Studio

Basic R functionality

```
Calculator
                                 (4+5^2)/3.14

    +, -, /, *, ^, log(), exp(), sqrt(),

                                 [1] 9.235669
    abs(), cos(), sin(), tan(), ...
Set Variables /
                                                  y=c(1,2,3,4,5)
                                y=13.4
                                 >y
    Vectors
                                                  [1] 1 2 3 4 5
                                 [1] 13.4
Sequences
                                 y=rep(2,10) [1] 2 2 2 2 2 2 2 2 2 2 2
                                                   [1] 2 3 4 5 6 7 8
                                 y=2:8
Statistics
                                 t.test(7:34, 5:29)
                                   t = 1.6348, df = 50.999, p-value = 0.1082
                                   alternative hypothesis: true difference in means is not
```

equal to 0

95 percent confidence interval:

17.0

-0.797982 7.797982

sample estimates: mean of x mean of y

20.5

Manipulation I

n[n>8 & n!=50]

n=c(3, 7, 12, 50, 103)	
n[4]	[1] 50
n[-2]	[1] 3 12 50 103
n[1:3]	[1] 3 7 12
n[c(1,3,5)]	[1] 3 12 103
n[n<50]	[1] 3 7 12

[1] 12 103

Manipulation II

max(n)

[1] 4 8 13 51 104
[1] 175
[1] 35
[1] 1796.5
[1] 3

[1] 103

Basic Visualization I

y=c(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

Basic Visualization I

y=c(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

barplot(y)

Basic Visualization II

y=c(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

boxplot(y)

Basic Visualization III

y=c(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

hist(y)

Basic Visualization III.i

y=c(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

hist(log(y))

Basic Visualization III.ii

y=c(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

hist(log(y), col="salmon", main="variable y") variable y 9 Frequency 2 -10 15 5 20 25 30 35

у

Basic Visualization IV

y=c(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

plot(y)

Basic Visualization IV.ii

y=(1,1,2,3,3,4,4,5,10,11,11,14,15,16,16,16,20,32)

plot(y, type="l", col="dark red", lwd=100, main="y
variable", ylim=c(0,20), xlim=c(5,15), ylab="vert",
xlab="horiz.")

y variable

Help

- Do you need to remember all of the variables?
- ? is your friend
- ?plot

plot {graphics}

Generic X-Y Plotting

Description

Generic function for plotting of R objects. For more details about the graphical parameter arguments, see par.

For simple scatter plots, plot.default will be used. However, there are plot methods for many R objects, including functions, data.frames, density objects, etc. Use methods (plot) and the documentation for these.

Usage

```
plot(x, y, ...)
```

R Documentation

type

what type of plot should be drawn. Possible types are

- . "p" for points,
- · "1" for lines,
- "b" for **b**oth,
- . "c" for the lines part alone of "b",
- "o" for both 'overplotted',
- "h" for 'histogram' like (or 'high-density') vertical lines,
- . "s" for stair steps,
- . "S" for other steps, see 'Details' below,
- "n" for no plotting.

read.csv

- A data.frame is essentially a table
- rows can contain mixed types
 - numeric, text strings
- cols must contain same type

	clostridia	proteobacteria	bacteroides
01_healthy	22	54	245
02_healthy	26	65	265
03_healthy	34	66	262
01_sick	32	32	116
02_sick	12	24	101
03_sick	9	18	87

	clostridia	bacteroides
02_healthy	26	265
03_healthy	34	262
01_sick	32	116
02_sick	12	101
03_sick	9	87

Data Frame Manipulations

https://is.gd/bacteriacsv

	clostridia	proteobacteria	bacteroides
01_healthy	22	54	245
02_healthy	26	65	265
03_healthy	34	66	262
01_sick	32	32	116
02_sick	12	24	101
03_sick	9	18	87

bac\$proteobacteria

[1] 54 65 66 32 24 18

t.test(bac\$proteobacteria[1:3], bac\$proteobacteria[4:6])
p-value = 0.002725

Getting Help in R

?write.table

Description

write.table prints its required argument x (after converting it to a data frame if it is not one nor a matrix) to a file or connection.

Usage

Arguments

the object to be written, preferably a matrix or data frame. If not, it is attempted to coerce x to a data frame.

file either a character string naming a file or a connection open for writing. "" indicates output to the console.

logical. Only relevant if file is a character string. If TRUE, the output is appended to the file. If FALSE, any existing file of the name is destroyed.

Exercise: try to write out our `bac` data frame to a tab-separated file with no quoting around the data

Getting Help in R

Google is your friend!

R syntax can be weird

At first you don't even know what you don't know!

Don't use stackoverflow answers blindly, but do use them and learn from them!