STAT 510, Final Exam

May 8, 2020, due at 7PM

Name: TIANQI WU

NetID: twu38

Please sign the following pledge and read all instructions carefully before starting the exam.

Pledge: I have neither given nor received any unauthorized aid in completing this exam, and I have conducted myself within the guidelines of the University Student Code.

CI:		_ 4 -	
21	gn:	ana	ire:

INSTRUCTIONS:

- This is a take-home exam. However, you are not allowed to discuss with anyone else and should finish the exam by your own.
- Show all work, clearly and in order, if you want to receive full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Answer all the questions in the space provided. You may attach additional sheets if necessary.
- This test has 4 regular questions and one bonus question (100 + 5 points). It is your responsibility to make sure that you have all of the questions.
- Good luck!

Que. No.	Max Points	Earned Pts.
1.0	25	
2	25	
3	25	
4	25	
5 (bonus)	5,	

TOTAL: _____

Question 1. (25 points) Let the distribution of $\mathbf{X}=(X_1,X_2,X_3)^T$ be $N(\boldsymbol{\mu},\Sigma)$ (multivariate normal) with $\boldsymbol{\mu}^T=(-2,1,1)$ and $\boldsymbol{\Sigma}=\begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 2 & 2 \end{pmatrix}$.

- (a) (10 points) Find the distribution of $3X_1 2X_2 + X_3$.
- (b) (15 points) Find a vector $a \in \mathbb{R}^2$ such that (X_1, X_2) is independent of $X_2 a^T \begin{pmatrix} X_1 \\ X_3 \end{pmatrix}$.

(a) Since
$$X=M+BZ$$
, where $Z \bowtie N(0,1)$. $Z=BB'$
 $DX = D(M+BZ) = DM + (DB)Z$

Hence, $DX \sim N(DM, DBB'D')$
 $DX \sim N(DM, DZD')$, let $D = (3,-2,1)$
 $DM = (3,-2,1)(\frac{-2}{1}) = -7$

$$D\Sigma D = (3, -2, 1) (\frac{1}{3}, \frac{3}{2}) = 9.$$

Hence, $3x_1 - 2x_2 + x_3 \sim N(-7, 9)$

(b). To let
$$(X_1, X_2)$$
 independent of $X_2 - \lambda^T \begin{pmatrix} X_1 \\ X_3 \end{pmatrix} \Rightarrow$

$$\begin{pmatrix} Cov(X_1, X_2 - \lambda^T \begin{pmatrix} X_1 \\ X_3 \end{pmatrix}) = 0 \\ Cov(X_2, X_2 - \lambda^T \begin{pmatrix} X_1 \\ X_3 \end{pmatrix}) = 0 \Rightarrow$$

$$\begin{cases} 1 - 21 - 22 = 0 \\ 3 - 21 - 22 = 0 \end{cases} \Rightarrow$$

$$\begin{cases} \lambda_1 = -1 \\ \lambda_2 = 2 \end{cases}$$

$$2=\left(\begin{array}{c} -1\\ 2\end{array}\right)$$

Question 2. (25 points) Let X_1, \ldots, X_n be a sample of size n from the exponential distribution

$$f_{\theta}(x) = \theta e^{-\theta x}, \quad x > 0,$$

where $\theta > 0$ is the parameter. In this problem, we consider a Bayesian framework for parameter estimation and hypothesis testing.

(a) (10 points) For parameter estimation, suppose we use a Gamma prior $Ga(\alpha, \beta)$ for parameter θ , that is,

$$p(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta}$$
 for $\theta > 0$.

Find the posterior distribution of θ given data (X_1, X_2, \dots, X_n) . What would be a proper Bayesian estimator of θ based on this posterior?

(b) (15 points) For Bayesian hypothesis testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$, suppose we use the hierarchical prior:

$$p(H_0) = p(H_1) = \frac{1}{2},$$

 $\theta \mid H_0 \sim \text{point mass distribution at } \theta_0,$
 $\theta \mid H_1 \sim \text{Ga}(\alpha, \beta).$

What is the posterior probability of the null? Find the reject rule in terms of $\{X_i\}_{i=1}^n$ if we want to reject the null when its posterior probability falls below 0.05.

$$(A) \ f(x|\theta) = \frac{\pi}{\Pi}(\theta \cdot e^{-\theta x}) = \theta^n e^{-\theta x x}$$

$$p(\theta|x) \propto f(x|\theta) \cdot P(\theta) = \frac{\beta^2}{\Pi(a)} \cdot \theta^{n+a-1} \cdot e^{-(\beta+\xi x_1)\theta}$$

$$Heace, \ P(\theta|x) \sim \left[Ga(n+a,\beta+\xi x_1)\right], \ \hat{\theta} = \left[\frac{n+a}{\beta+\xi x_1}\right]$$

$$(b). \ P(x|H_0) = \theta_0^n e^{-\theta_0 \xi x_1}$$

$$P(x|H_1) = \int_0^\infty \frac{\beta^2}{\Pi(a)} \cdot \theta^{n+a-1} e^{-(\beta+\xi x_1)\theta} d\theta$$

$$= \frac{\beta^2}{\Pi(a)} \cdot \frac{\Gamma(n+a)}{(\beta+\xi x_1)^{n+a}} \cdot Pdf \ df \ Ga(n+a,\beta+\xi x_1)$$

$$P(H_0|x) = \frac{1}{1+\beta A_0} = \frac{1}{1+\frac{\beta^2}{\Pi(a)}} \cdot \frac{\Gamma(n+a)}{(\beta+\xi x_1)^{n+a}} \cdot \frac{1}{\theta_0^n e^{-\theta_0 \xi x_1}}$$

$$P(H_0|x) < 0.05 \Rightarrow \frac{1}{1+\beta A_0} = \frac{1}{1+$$

Question 3. (25 points) Consider the same sample $\{X_i\}_{i=1}^n$ of size n from the exponential distribution in Question 2. Now we will focus on the frequentist procedure for parameter estimation.

- (a) (5 points) Find the maximum likelihood estimator (MLE) $\hat{\theta}_n$.
- (b) (5 points) We know that as the MLE, $\hat{\theta}_n$ is a consistent estimator of θ , and is asymptotically normal. Find expressions for the asymptotic bias $b(\theta)$ and the asymptotic variance $V(\theta)$ of $\widehat{\theta}_n$, so that

$$\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\to} N(b(\theta), V(\theta))$$
 as $n \to \infty$.

- (c) (5 points) Construct a confidence interval for θ with asymptotic level 0.95 based on the asymptotic totic distribution of $\widehat{\theta}_n$ you derived in (b). (The 97.5% quantile of the standard normal is 1.96.)
- (d) (5 points) Use the Delta method to find a function $g:(0,\infty)\to\mathbb{R}$ such that the asymptotic variance of $g(\widehat{\theta}_n)$ is a constant independent of θ , or

$$\sqrt{n}\left(g(\widehat{\theta}_n) - g(\theta)\right) \stackrel{d}{\to} N(0, \sigma^2)$$
 as $n \to \infty$

for some constant σ^2 that is independent of θ . Such a function g is called a variance stabilizing transformation of the MLE θ_n

(e) (5 points) Construct a confidence interval for θ with asymptotic level 0.95 based on the result in (d). Which confidence interval is better, the one constructed in (c) or the one here?

(a)
$$L(\theta \mid X) = \frac{1}{1!} \theta e^{-\theta X} \Rightarrow L(\theta, X) = n \log \theta - \theta \Sigma X; \Rightarrow L'(\theta, X) = \frac{n}{\theta} - \Sigma X; = 0 \Rightarrow \left[\hat{\theta} = \frac{n}{\Sigma X} \right]$$

(b)
$$I_X(\theta) = -E_{\theta} \left[\frac{d^2}{d\theta^2} l(\theta | X) \right] = E_{\theta} \left[\frac{d^2}{\theta^2} \right] = \frac{1}{\theta^2}$$

$$\sqrt{n(\hat{\theta}_n - \theta)} \xrightarrow{d} N(0, I_{x}(\theta)) = N(0, \theta^2) \Rightarrow [b(0) = 0, V(\theta) = \theta^2]$$

(CC).
$$\begin{bmatrix} \hat{\theta}_n - \frac{1.96}{\sqrt{n}} \hat{\theta}_n \end{bmatrix}$$
, $\hat{\theta}_n + \frac{1.96}{\sqrt{n}} \hat{\theta}_n \end{bmatrix}$, where $\hat{\theta}_n = \frac{n}{zx}$;

(d) Since
$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} N(0, \theta^2)$$
, let $9(\theta) = \ln \theta$, $9'(\theta) = \frac{1}{\theta}$.

Then,
$$Nn(9(\hat{\theta}_n)-9(\theta)) \xrightarrow{d} \overrightarrow{\theta} \cdot N(0,\theta^2) = N(0,1) \Rightarrow 6^2 = 1$$

Question 4. (25 points) Suppose X_1, X_2, \ldots, X_n are independently and identically distributed (iid) with a Beta $(\alpha, 1)$ distribution and Y_1, Y_2, \ldots, Y_m are iid with a Beta $(\beta, 1)$ distribution. Assume $\{X_i\}_{i=1}^n$ are independent of $\{Y_i\}_{i=1}^m$.

- (a) (10 points) Find likelihood ratio test of $H_0: \alpha = \beta$ versus $H_1: \alpha \neq \beta$.
- (b) (5 points) Show that the test in part (a) can be based on the statistic

$$T = \frac{\sum_{i=1}^{n} \log X_i}{\sum_{i=1}^{n} \log X_i + \sum_{i=1}^{m} \log Y_i}.$$

(c) (10 points) Find the distribution of T when H_0 is true, and then show how to get a test of size $\alpha = 0.05$.

(a) under
$$H_1: L(\partial_{x}\beta_{1}x,y) = 2^{n} (\frac{\pi}{n}x_{1})^{2-1} \beta^{m} (\frac{\pi}{n}y_{1})^{\beta-1}$$
 $L' = \frac{n}{2} + \frac{n}{2} \log x_{1} = 0 \Rightarrow \hat{\lambda} = -\frac{n}{2 \log x_{1}}, \text{ Similarly, } \hat{\beta} = -\frac{m}{2 \log y_{1}}$

under $H_0: L(\partial_{x}\beta_{1}x,y) = \partial_{x}\beta_{1} (\frac{\pi}{n}x_{1})^{2-1} \partial_{x}\beta_{2} = 0$
 $L' = \frac{n+m}{2} + \frac{n}{2} \log x_{1} + \frac{n}{2} \log y_{1} = 0 \Rightarrow \hat{\lambda}_{0} = -\frac{n+m}{2 \log x_{1}} + \frac{n}{2} \log y_{1}$
 $L(\partial_{x}\beta_{1}x,y) = \frac{n+m}{2} (\frac{n}{n}x_{1})^{2-1} (\frac{n}{n}y_{1})^{2-1} = \frac{n+m}{2} (\frac{n}{n}x_{1})^{2-1} (\frac{n}{n}y_{1})^{2-1} = \frac{n+m}{2} (\frac{n}{n}x_{1})^{2-1} = \frac{n+m}{2} (\frac{n}$

(b)
$$\ln(\Lambda(x,y)) = n \ln \hat{a} + m \ln \hat{\beta} - (n+m) \ln \hat{a}_0 + (\hat{a} - \hat{a}_0) \frac{\hat{\Sigma}}{\log x} + (\hat{\beta} - \hat{a}_0) \frac{\hat{\Sigma}}{\log y}$$

$$= n \ln \hat{a} + m \ln \hat{\beta} - (n+m) \ln \hat{a}_0$$

$$\chi(x,y) = \left(-\frac{n}{\sum \log x}\right)^n \left(-\frac{m}{\sum \log y}\right)^m \left(-\frac{\sum \log x}{n+m}\right)^n$$

$$= \frac{n^n m^n}{n+m} \left(\frac{1}{n+m}\right)^m \left(\frac{1}{n+m}\right)^n$$

$$=\frac{n^{n}m^{n}}{(n+m)^{n+m}}\left(\frac{1}{1-T}\right)^{m}\left(\frac{1}{T}\right)^{n}$$

(C)
$$\log Xi \sim \exp(\lambda)$$
, $\log Yi \sim \exp(\beta)$.

 $\sum_{i=1}^{n} \log Xi \sim Ga(\Lambda,\lambda)$, $\sum_{i=1}^{n} \log Yi \sim Ga(M,\beta)$

under Ho, $\lambda = \beta$, $\sum_{i=1}^{n} \log Xi + \sum_{i=1}^{n} \log Yi = Ga(\Lambda + M,\lambda)$

Hence, $\sum_{i=1}^{n} N \cdot \operatorname{Betal}(\Lambda,M)$. To get a test of size λ , we need

 $\sum_{i=1}^{n} P(C_i \leq T \leq C_i) = 0.05$, $\sum_{i=1}^{n} P(C_i \leq T \leq C_i) = 0.05$