

Daffodil International University Department of Computer Science and Engineering Theory Course Outline

Course Code:	CSE413					
Course Title:	Mobile Application Design					
Program:	B.Sc. in CSE					
Faculty:	Faculty of Science and Information Technology (FSIT)					
Semester:	Spring 2025	Year:	2025			
Credit:	1	Contact Hour:	1.5 Hrs/Week			
Course Level:	L4-T1 Prerequisite: CSE325, CSE333					
Course Category:	Core Engineering	•				

Course Content (From Syllabus):

Introduction to Mobile Application Development: Overview of mobile platforms (Android, iOS); Evolution and trends in mobile applications; Mobile ecosystems and OS architectures; Development environments (Android Studio), SDK tools and their roles. User-Centered Design: UX/UI design principles, accessibility and usability standards, Material Design, and HIG. Prototyping and Wireframing: Tools like Figma, Adobe XD, creating and testing prototypes. Application Design: Lifecycle, intuitive navigation (tabs, drawers), and interactive components (forms, buttons, gestures). Data Handling and Networking: Local/cloud storage, RESTful APIs, secure data transfer. Advanced Features: Motion design, Flutter, React Native, AR/VR. Testing and Deployment: Debugging, app submission, and maintenance tools.

Course Description/Rationale:

The **Mobile Application Design (CSE413)** course provides a comprehensive introduction to designing and developing user-friendly mobile applications for Android and iOS platforms. It covers mobile architecture, development environments, and the complete app lifecycle, including deployment and maintenance. Key topics include UX/UI design principles, prototyping, navigation design, data handling, API integration, and cross-platform development with Flutter and React Native. Students will also explore emerging trends like AR/VR and foldable devices. Emphasizing theory and hands-on practice, this course prepares students to create scalable, efficient, and secure mobile applications that meet industry standards.

Course Objective:

- Understand the architecture of mobile platforms and development environments.
- Learn the principles of designing user-friendly and accessible mobile applications.
- Understand mobile application lifecycle management, including deployment and maintenance.
- Evaluate emerging trends and ethical considerations in mobile application design.

Course Learning Outcome (CO): (by the end of the course, students will be able to:)

CO1	Explain the design principles and architecture of mobile applications
CO2	Identify the key components and development tools for mobile platforms
CO3	Analyze mobile application performance and propose optimization strategies.

CO4

Apply the concepts of mobile application development and **Develop** mobile applications using modern frameworks to solve a real-life problem.

Contents of the Course:

Week	Course Content (as summary)	Hrs	COs
1	Introduction to Mobile Application Design and Development	1.5	CO1
2	Mobile Ecosystems and Development Environments	1.5	CO1, CO2
3	User-Centered Design Principles	1.5	CO1, CO3
4	Prototyping and Wireframing	1.5	CO1, CO2, CO4
5	Application Lifecycle and Navigation Design	1.5	CO1, CO2
6	Data Handling and Interaction Design	1.5	CO2, CO3
7	Networking and APIs in Mobile Applications	1.5	CO2, CO3
8	Advanced Visual and Motion Design	1.5	CO3, CO4
9	Cross-Platform Development	1.5	CO2, CO3, CO4
10	Emerging Trends in Mobile Application Design	1.5	CO1, CO3
11	Testing, Deployment, and Maintenance	1.5	CO3, CO4
	Total	16.5	

Mapping of Course Learning Outcomes to Program Learning Outcomes:

CO's/PO's	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	√											
CO2		1										
CO3			✓									
CO4					√							

Teaching Learning Activity:

TLA	Activity
TLA1	Introduce the importance of mobile application design and development. Explore real-world case studies highlighting successful mobile app designs and their impact.
TLA2	Discuss mobile platforms (Android, iOS) and their ecosystems. Set up development

	environments (Android Studio, Xcode) and explore the roles of SDKs in app design and development.
TLA3	Explain user-centered design principles, focusing on accessibility, usability, and interface guidelines (Material Design and Human Interface Guidelines). Use hands-on prototyping tools.
TLA4	Through lab activities, analyze mobile app performance and optimization strategies. Examine emerging trends and evaluate their implications for mobile application design.

Mapping Course Outcome (COs) with the Teaching Learning and Assessment Strategy

COs	POs	Teaching Learning Activity	Assessment Strategy	Learning Domain	Knowledg e Profile (WK)	Complex Engineering Problem (EP)	Complex Engineering Activity (EA)
CO1	PO1	TLA1	Quiz Assignment	C1	K1-K4	EP1, EP2	
CO2	PO2	TLA2	Midterm Quiz	C2	K1-K4	EP1, EP3	
CO3	PO3	TLA3	Midterm Final Quiz	C4	K5	EP1, EP3	
CO4	PO5	TLA4	Final Quiz Presentation	С3	К3	EP1, EP6	

Bloom's Taxonomy	Knowledge Profile	EP Attributes	EA Attributes
Cognitive Domain	_		
8	K1: Natural Science	EP1: Depth of	
C1: Remembering	K2: Mathematics	knowledge	
C2: Understand	K3: Engineering	required.	
C3: Apply	Fundamentals	EP2: Range of	
C4: Analyze	K4: Specialist	conflicting	
	Knowledge	requirements	
	K5: Engineering Design	EP3: Depth of analysis	
	K6: Technology	required.	
	_	EP6: Extent of	
		stakeholder involvement	

Justification of CO-PO Mapping:

- CO1 to PO1: CO1 involves understanding and explaining the design principles and architecture of mobile
 applications, which aligns with PO1 by applying foundational engineering knowledge to address mobile
 application design challenges.
- CO2 to PO2: CO2 requires students to identify and evaluate suitable development tools for solving platform-specific challenges, fulfilling PO2 by analyzing and drawing conclusions based on engineering principles.
- CO3 to PO3: CO3 requires students to propose performance optimization strategies, fulfilling PO3 by

- designing solutions to enhance mobile application efficiency.
- CO4 to PO5: CO4 focuses on applying mobile app development concepts and using modern frameworks to develop mobile applications for real-life problems. This corresponds with PO5, where students use modern engineering tools and techniques (like frameworks and platforms) to solve engineering problems, particularly in the context of mobile app development.

Justification of Knowledge Profile (KP) Mapping:

- **CO1 to K1-K4**: CO1 requires understanding mobile application design principles, involving K1 (Natural Science), K2 (Mathematics), K3 (Engineering Fundamentals), and K4 (Specialist Knowledge).
- **CO2 to K1-K4**: CO2 focuses on SDKs and mobile components, requiring K1 (Natural Science), K2 (Mathematics), K3 (Engineering Fundamentals), and K4 (Specialist Knowledge).
- **CO3 to K5**: CO3 involves analyzing app performance, and aligning with K5 (Engineering Design) to propose optimization strategies.
- **CO4 to K6**: CO4 emphasizes applying modern frameworks to solve real-life problems, correlating with K6 (Technology) for using tools to develop mobile apps.

Justification of Complex Engineering Problem (CEP) Attributes Mapping:

- **CO1 to EP1, EP2**: CO1 covers fundamental mobile application design principles, requiring basic problem analysis (EP1) and addressing conflicting design requirements (EP2) in app architecture.
- CO2 to EP1, EP3: CO2 involves identifying key mobile development components and tools, requiring in-depth analysis (EP3) of SDKs, components, and their interactions.
- **CO3 to EP1, EP3**: CO3 requires performance analysis of mobile apps, involving deep analysis (EP3) of performance bottlenecks and technical challenges (EP1).
- **CO4 to EP1, EP6**: CO4 focuses on applying mobile development concepts to real-life problems, involving complex problem-solving (EP1) and stakeholder involvement (EP6) in app design and development.

Course Delivery Plan/Lesson Delivery Plan:

Week/Lesson (Hour)	Discussion Topic and Book Reference	Student Activities During Online and Onsite [course teacher will decide based on the type of the contents]	Mapping with CO and PO	Assessment Plan
Week-1 Lesson 1 [1.5 Hours]	Introduction to Mobile Application Design and Development - Overview of mobile platforms (Android, iOS) - Evolution and trends in mobile applications - Understanding the roles of design and development in mobile app creation Reference: "Professional Mobile Application Development" by Jeff McWherter	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion	CO1	Class Test, Assignment, Midterm
Week-2 Lesson 2 [1.5 Hours]	Mobile Ecosystems and Development Environments - Overview of mobile OS architectures - Introduction to SDKs (Android SDK, iOS SDK) - Setting up development environments (Android Studio, Xcode) - Role of SDK tools in supporting app design and development Reference: Official Android/iOS SDK documentation	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion	CO1, CO2	Class Test, Assignment, Midterm
Week-3 Lesson 3 [1.5 Hours]	User-Centered Design Principles - Key principles of UX/UI design - Accessibility and usability standards - Introduction to Material Design and Human Interface Guidelines (HIG) Reference: Google Material Design and Apple HIG	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion	CO1, CO3	Class Test, Assignment, Midterm
Week-4 Lesson 4 [1.5 Hours]	Prototyping and Wireframing - Tools for prototyping (Figma, Adobe XD) - Creating wireframes and interactive prototypes - Testing design concepts before development Reference: Tutorials on prototyping tools	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion	CO1, CO2, CO4	Class Test, Assignment, Midterm
Week-5 Lesson 5 [1.5 Hours]	Application Lifecycle and Navigation Design - Understanding activity lifecycles in mobile apps - Designing intuitive navigation (tabs,	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture	CO1, CO2	Class Test, Assignment, Midterm

	drawers, bottom navigation) - Case studies of effective navigation systems Reference: Android and iOS navigation design documentation	video, Lecture note, Open discussion		
Week-6 Lesson 6 [1.5 Hours]	Data Handling and Interaction Design - Introduction to local and cloud storage (SharedPreferences, SQLite, Firebase) - Designing interactive UI components (forms, buttons, gestures) - Ensuring smooth user interactions with animations and transitions Reference: Android/iOS developer guides on data handling	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion	CO2, CO3	Class Test, Assignment, Midterm
Week-7		n Examination Week 1 – Week 6		
Week-8 Lesson 7 [1.5 Hours]	Networking and APIs in Mobile Applications - Introduction to RESTful APIs and JSON - Real-time communication (Firebase Realtime Database) - Design considerations for secure mobile data transfer Reference: Networking chapters in the course textbook	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion	CO2, CO3	Class Test, Assignment, Presentation, Final
Week-9 Lesson 8 [1.5 Hours]	Advanced Visual and Motion Design - Advanced UI elements (custom themes, animations) - Microinteractions for better user engagement - Tools for creating motion graphics and transitions Reference: Design blogs and case studies	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion	CO3, CO4	Class Test, Assignment, Presentation, Final
Week-10 Lesson 9 [1.5 Hours]	Cross-Platform Development - Introduction to Flutter and React Native - Advantages and challenges of cross-platform development - Comparing cross-platform and native app development - Best practices for designing cross-platform apps Reference: Official documentation from Flutter and React Native	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion	CO2, CO3, CO4	Class Test, Assignment, Presentation, Final
Week-11 Lesson 10 [1.5 Hours]	Emerging Trends in Mobile Application Design - Introduction to emerging technologies: AR (Augmented Reality), VR (Virtual Reality), and foldable devices - Voice User Interfaces (VUI) and conversational design - Design challenges and solutions for integrating emerging technologies	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion	CO1, CO3	Class Test, Assignment, Presentation, Final

	- Case studies of apps using AR/VR and voice UI Reference: Industry articles and platform-specific documentation				
Week-12 Lesson 11 [1.5 Hours]	Testing, Deployment, and Maintenance - Types of testing: unit, UI, and performance - Debugging strategies and tools (Logcat, Xcode debugger) - App submission process (Google Play Store, Apple App Store) - Monitoring and analytics tools Reference: App Store submission guidelines	Brainstorming sessions, Classroom discussion, Voice over PPT, Lecture video, Lecture note, Open discussion	CO3, CO4	Class Test, Assignment, Presentation, Final	
Week-13	Final Examination Syllabus: Week 8 – Week 12				

Assessment Pattern:

Assessment Task	CO's				Mark (Total = 100)
	CO1	CO2	СОЗ	CO4	
Attendance					7
Class Test					15
Assignment					5
Presentation					8
Midterm Examination	5	5	5	10	25
Final Examination	5	10	10	15	40
Total Marks	10	15	15	25	100

CIE - Breakup [60 marks]

Bloom's Criteria	Attendance (07)	Class Test (15)	Assignment (05)	Presentation (08)	Midterm (25)
Remember		02			2.5
Understand		05	02	02	7.5
Apply		05		03	12.5
Analyze		03	03	03	2.5
Evaluate					
Create					

SEE - Semester End Examination [40 Marks]

Bloom's Criteria	Score for the Test		
Remember	5		
Understand	10		
Apply	20		
Analyze	5		
Evaluate			
Create			

Learning Materials:

Textbook/Recommended Readings:

1. Professional Mobile Application Development by Jeff McWherter and Scott Gowell

Reference Books/Supplementary Readings:

- 1. Google Material Design Guidelines
- 2. Apple Human Interface Guidelines
- 3. OWASP Mobile Security Guidelines
- 4. Research articles and platform documentation