

Topic Modeling

A cura di:

Davide Locci

Alessandro Piroddi

Web Analitycs e Analisi Testuale Prof. Marco Ortu

Indice

Obiettivi progetto

Tweets scraping

Tweets cleaning: le fasi

Tweets cleaning: Lemmatizzazione

Preliminar Analysis

Topic Modeling: Definizione

Topic Modeling: risultati Scikit

Topic Modeling: risultati Gensim

Obiettivi Progetto

- Analizzare le tendenze della stampa italiana e statunitense nell'ultimo triennio
- Utilizzare come fonte i tweet dei loro account ufficiali
- Impatto sulle notizie del verificarsi di due grandi eventi covid-19 e invasione russa in Ucraina

Tweets Scraping

• 7 giorni antecedenti l'estrazione

- testo
- data
- nome giornale
- lingua
- numero likes
- numero retweets

- Nessuna richiesta formale di accesso ai token
- periodo antecedente in linea con il progetto

Tweets Cleaning

Le fasi

- Pulizia generale
- Tokenizzazione
- Rimozione Stopwords
- Lemmatizzazione

Tools

spaCy

Tweets Cleaning Lemmatizazzione 🗹 Stemming Singolari, plurali Radice **>>>** Parola sintattica maschili, femminili Verbi Esempi Amico, amica, amici, amiche Amico Friend, friends Friend National Nation Vincere Vinci

Win

Wins

Tools* pandas

Preliminar Analysis

- Individuazione top words
- Trend temporale occorenze di parola
- Trend temporale tweet,retweet,like

NLTK

matpl tlib

Preliminar Analysis

Individuazione top words

Qualche esempio

Word	Count	Word	Count	Word	Count
trump	3073	coronavirus	12009	Ukraine	2786
president	3040	president			2141
write	1839	people			1752
people	1794	trump 8631		president	1485
company	1253	pandemic	7368	people	1285
house	1047	write	7344	war	1050
Word	Count	Word	Count	Word	Count
salvini	318	italia	2294	ucraina	866
pd	183	I covid	1 1590	russo	780
conte	179	I conte	1 1409	querra	594
m5s	138	litaliano	1291	russia	579
migrante	124	l vaccino	1052	putin	574
dimaio	103	presidente	1031	italia	533
Word	Count I	+	Count		Count
	++	1 101.0	COONE	+	+
trump	3073	coronavirus	12009	ukraine	2786
president	3040	president	10225	russia	2141
write	1839	people	9745	russian	1752
people	1794	trump	8631	president	1485
company	1253	pandemic	7368	people	1285
house	1047	write	7344	war	1050

NLTK

matpl tlib

Preliminar Analysis

Trend temporale occorenze di parola

Parole target

12000 pulm or rain or

Tools

pandas

NLTK

Prettytable

matpl tlib

NLTK

matpletlib

Topic Modeling Definizione

Nel natural language processing, e più in generale nell'apprendimento statistico, gli algoritmi di topic modeling sono modelli statistici non supervisionati che cercano di associare un argomento ad un documento appartenente ad una collezione di documenti. Un problema di topic modeling non è nient'altro che un problema relativo a determinare quali sono gli argomenti trattati all'interno di un corpus di documenti

Topic Modeling LDA

L'algoritmo scelto per implementare la topic modeling è la LDA.

E' un algoritmo probabilistico che estrae a partire da un corpus di documenti, i vari topic di quei documenti. Definiti un corpus e il numero di topic si genererà una lista di parole chiave ed ogni topic sarà la combinazione chiave delle parole chiave individuate

Topic Modeling risultati Scikit

text	topic	ic weight top words	
Doc 0 congedo mestruale discutere spagna	3	0.599994 putin ucraina guerra russo morire russia kiev figlio zelensky mosca	
Doc 1 padre figlio campo olimpiadi sordo buone notizie edicola	3	0.734044 putin ucraina guerra russo morire russia kiev figlio zelensky mosca	
Doc 2 mascherina scuola lega pressing speranza decidere scienza	2	0.700081 uccidere diretta donna covid morto italia roma presidente green pass	8
Doc 3 colonna autobus lasciare acciaieria azovstal video	1	0.367069 milano tornare video gas parlare sanzione segreto rischio gara russia	1
Doc 4 mariupol irriducibile azovstal assedio dilemma resa	0	0.798245 ucraino auto europa inter mariupol italiano vincere attacco famiglia	russo
Doc 5 vergognare padre riconoscere scelta giusto	3	0.640041 putin ucraina guerra russo morire russia kiev figlio zelensky mosca	The second second
Doc 6 addio giorgio chiellini stadium abbraccio emozione standing ovation	2	0.799998 uccidere diretta donna covid morto italia roma presidente green pass	3
Doc 7 coming out calciatore jake daniels gay inglese attività dire	2	0.799998 uccidere diretta donna covid morto italia roma presidente green pass	É.
Doc 8 barricati sotterraneo acciaieria resistente azovstal	3	0.732997 putin ucraina guerra russo morire russia kiev figlio zelensky mosca	
Doc 9 spiagge intesa ipotesi aumentare indennizzo	1	0.733332 milano tornare video gas parlare sanzione segreto rischio gara russia	1
Doc 10 sparatoria california odiare taiwan immigrato cinese uniti	0	0.550317 ucraino auto europa inter mariupol italiano vincere attacco famiglia	russo
Doc 11 matteo vincitore certamen pensavo impreciso farcee	3	0.733330 putin ucraina guerra russo morire russia kiev figlio zelensky mosca	,
Doc 12 torino gallerie italia fotografia tesore	0	0.399961 ucraino auto europa inter mariupol italiano vincere attacco famiglia	russo
Doc 13 comandante battaglione azov obbediremo ordine evacuazione	1	0.733330 milano tornare video gas parlare sanzione segreto rischio gara russia	3
Doc 14 berlusconi sorpresa treviglio convention fi comunismo	4	0.733332 italia cambiare usa draghi euro russo chiedere storia vedere succede	re

Tools

pandas

NLTK

Topic Modeling risultati Gensim 🚜

'0.034*"votare" + 0.025*"stella" + 0.019*"diretta" + 0.015*"amadeus" + ' '0.013*"italia" + 0.012*"salvini" + 0.012*"suy" + 0.010*"indicare" + ' '0.009*"giro" + 0.008*"terzo"'), '0.028*"appena" + 0.026*"morire" + 0.014*"italiano" + 0.014*"palco" + ' '0.011*"mascherina" + 0.011*"fuga" + 0.010*"pass" + 0.010*"green" + ' '0.010*"europeo" + 0.009*"regola"'),

'0.038*"sanremo" + 0.030*"canzone" + 0.017*"pandemia" + 0.014*"padre" + ' '0.013*"festival" + 0.011*"storia" + 0.011*"voto" + 0.010*"ubriaco" + '

'0.008*"terra" + 0.007*"euro"'),

'+ 0.013*"blanco" + 0.011*"mahmood"'),

'0.008*"lauro" + 0.007*"achille"')]

	+-	
topics		n_documents
		2058
		1944

Tools*

NLTK

Topic Modeling risultati Gensim

pandas

NLTK

IP[y]

Bibliografia

spaCy

NLTK

IP[y]: IPython
Interactive Computing

