Proof that every vector space has a basis

Nilava Metya

August 2019

Definition I. A *poset* (Partially ordered set) is a non-empty set X together with a relation \leq on X such that the following hold $\forall a, b, c \in X$:

- (Reflexivity) $a \le a$.
- (Anti-symmetry) $a \le b, b \le a \implies a = b$.
- (Transitivity) $a \le b \le c \implies a \le c$.
- 2. $C \subseteq X$ is called a *chain* if $x, y \in X \implies x \le y$ or $y \le x$.
- 3. $x \in X$ is called an *upper bound* of $Y \subseteq X$ if $y \le x \forall y \in Y$.
- 4. $x \in X$ is called a maximal element if $(y \in X) \land (x \le y) \implies x = y$.

Lemma (Zorn's lemma)

Let $\langle X, \leq \rangle$ be a poset. Suppose every chain $C \subseteq X$ has an upper bound in X. Then X has a maximal element.

Theorem

Let V be a k-vector space. Let $S \subseteq V$ be a linearly independent subset. Then S is contained in a maximal linearly independent set.

Proof. Define

$$X := \{ T : S \subseteq T \subseteq V, T \text{ is linearly independent } \}$$

If $\mathcal B$ is a maximal element of X then $S\subseteq \mathcal B$ and $\mathcal B$ is a maximal linearly independent set. So $\mathcal B$ is a basis.

Define the partial ordering \leq for sets A, $B \in X$ as: $A \leq B \iff A \subseteq B$

Let $C \subseteq X$ be a chain.

Let

$$M \coloneqq \bigcup_{T \in C} T$$

Note that $S \subseteq M \subseteq V$.

To show that M is an upper bound of C, we further need to show that M is linearly independent, so that it is in X. Suppose not. Then by definition, there exists $v_1, v_2, \ldots, v_n \in M$ and $k_1, k_2, \ldots, k_n \in k$, not all o, such that $k_1v_1 + k_2v_2 + \cdots + k_nv_n = 0$.

But, $\exists T_1, T_2, ..., T_n \in C$ (not necessarily distinct) such that $v_i \in T_i \ \forall i$. but T_i are all comparable. So $T_1 \cup T_2 \cup ... \cup T_n = T_i$ for some $1 \le j \le n$, which is the maximal element among T_i 's.

This proves that every chain in X has an upper bound. Hence by Zorn's lemma, we conclude that X has a maximal element \mathcal{B} , which is indeed a basis.