MH-Z14 Intelligent Infrared Gas Module User's Manual

1. Profile

Main functions and features:

- ➤ High sensitivity, High resolution
- > Low power consumption
- > Output modes: UART, analog voltage signal, PWM wave
- Quick response
- > Temperature compensation, excellent linear output
- Good stability
- Long lifespan
- > Anti-water vapor interference
- No poisoning

2 Main technical parameters

Working voltage	4.5 V ~ 5.5V DC		
Average current	< 85 mA		
Average current			
Interface level	3.3 V		
Measuring range	0~5%VOL optional		
	PWM		
Output signal	UART		
	0.4-2V DC		
Preheat time	3min		
Reponse Time	$T_{90} < 90s$		
Working temperature	0℃~50℃		
Working humidity	0~95%RH		
Weight	15 g		
Lifespan	>5 year		
Dimension	57.5×34.7×16mm(L×W×H)		

Target Gas	Measuring Range	Accuracy	Mark
Carbon Dioxide (CO2)	0~2000ppm	±(50ppm +5%readin g value)	Temperature compensation
	0~5000ppm		Temperature compensation
	0~1%VOL		Temperature compensation
	0~3%VOL		Temperature compensation
	0~5%VOL		Temperature compensation

3. Structure

4. Definition for pins

PIN Description Pad1、 Pad15 Pad17 Vin (input voltage $4.5V\sim5.5V$) GND Pad2、Pad3、 Pad12、Pad16 Pad4 Vout2 (0.4 \sim 2V) Pad5 Vout1 $(0\sim2.5V)$ Pad6 **PWM** Pad8 HD NC Pad7 Pad9 $0{\sim}3.3V$ input digital Pad11、Pad14、Pad18 UART (RXD) Pad10、Pad13、Pad19 UART (TXD) $0\sim$ 3.3V output digital

5. Circuit

6. Operating instruction

6.1 Analog output connections

The output value of Vout1 is 0-2.5V, which stands for 0 to full range.

The output value of Vout2 is 0.4-2V, which stands for 0 to full range.

Vin –5V GND- Power Ground

Vout2-ADC input

After preheating, the value of output voltage from Vout2 represents gas concentration.

6.2 PWM output (taking PWM output from 2000ppm as example):

CO2 output range: 0ppm-2000ppm Cycle: 1004ms \pm 5%

High level output for beginning: 2ms (in name)

Middle of cycle: $1000 \text{ms} \pm 5\%$ Low level output for ending: 2ms (in name)

Account formula for CO2 concentration which gets through PWM:

$$C_{ppm} = 2000 \times (T_H - 2ms) / (T_H + T_L - 4ms)$$

Among:

 $C_{\it ppm}$ is calculated CO2 concentration, unit is ppm;

 $T_{\!\scriptscriptstyle H}$ is time for high level during an output cycle;

 $T_{\!\scriptscriptstyle L}$ is time for low level during an output cycle.

6.3 Digital connects:

Vin-5V power

GND-Power Ground

RXD connect sensor TXD

TXD connect sensor RXD

You can read gas concentration via Uart, no need to calculate.

6.3.1 Communication protocol

1. General Settings

Baud rate	9600
Date byte	8 byte
Stop byte	1byte
Calibrate byte	no

2. Command

Each command or return: Contains 9 bytes (byte 0 $^{\sim}$ 8) starting byte fixed 0 XFF command contains sensor number (factory default to 0 x01) to check and end

Command List:

0x86	5	Gas concentration			
0x87	0x87 Calibrate zero point (ZERO)				
0x88	3	Calibrate span point (SPAN)			

Read gas concentration

	Send command										
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8			
Startin	Sensor	comman	-	-	-	-	-	Check			
g byte	No.	d						value			
0XFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79			

Return value

				Return				
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Starti	comman	High level	Low level	-	-	-	-	Chec
ng	d	concentra	concentra					k
byte		tion	tion					value
0XFF	0x86	0x02	0x60	0x47	0x00	0x00	0x00	0xD1

Gas concentration= high level *256+low level

Calibrate zero point

	Send command										
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8			
Starti	Sensor	comman	-	-	-	-	-	Check			
ng	No.	d						value			
byte											
0XFF	0x01	0x87	0x00	0x00	0x00	0x00	0x00	0x78			

No return value

Calibrate span point

	Send command										
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8			
Starti	Sensor	comman	High level	Low level	-	-	-	Check			
ng	No.	d	span	span				value			
byte			point	point							
0XFF	0x01	0x88	0x07	0xD0	0x00	0x00	0x00	0xA0			

No return value

3. Calibration and calculation

The checksum = (invert (byte 1 + ... + 7)) + 1

Reading gas concentration:

	Send command										
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8			
Starti	Sensor	comman	-	-	-	-	-	Check			
ng	No.	d						value			
byte											
0XFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79			

Except byte 0 ,add the other bytes together

```
0x1 + 0x86 + 0 + 0 + 0 + 0 + 0 = 0x87
```

Get the value from the first step, then invert it.

```
0xff - 0x87 = 0x78
```

The second value plus one

0x78 + 0x01 = 0x79

Program :C language

```
char getCheckSum(char *packet)
{
    char i, checksum;
    for( i = 1; i < 8; i++)
    {
        checksum += packet[i];
    }
    checksum = 0xff - checksum;
    checksum += 1;
    return checksum;
}</pre>
```

7. Notes for maintenance

- 7.1 The sensor should be calibrated regularly. The cycle time is better to be no more than 6 months.
- 7.2 Do not use the sensor in the high dusty environment for long time.
- 7.3 Please use the sensor with correct power supply.
- 7.4 Forbidden to cut the sensor pin.

