Energy Consumptionin PC Gaming

Addressing the California Energy Commission's New Regulations

Computer gaming in California consumed \$700 million in energy bills, with emissions of 1.5 million tons of Carbon Dioxide in 2016 ... approximately 7% of commercial energy usage in California

Per the CEC's Research and Development Report, 2019

The CEC's new regulations aim to lower power consumption of PCs bought and sold in California

- 1. PCs must not exceed a threshold of power consumption
 - Determined by expandability score of the components.
 - Only applies to power consumption while idle consumption under load is irrelevant.
- 2. PCs must now use Gold Efficiency-rated power supplies.
- 3. All PCs must now be tested and submitted to the CEC's public database

Addressing Efficacy Problem

- How effective are these regulations?
 - Primarily answered through data analysis and exploration
- Specifically, are two primary requirements resulting in less power consumption?
 - i.e. Gold Power Supplies and High-Expandability Motherboards
- Most importantly, provide suggestions for improvement based on model results.

Addressing Labor Problem

- Impossibly large combinations to test
 - Example:
 - 27 unique motherboards, 15 Gold Power Supplies, 20 GPUs, 26 CPUs
 - = 27*15*20*26 via *rule of product*
 - = 210,600 unique combinations, or 157,950 hours worth of testing
- Solution: Can we build a model that can accurately predict untested combinations of components?
 - Can be used to rule out combinations that wouldn't pass certification
 - Replace actual testing?

The Data

	CPU Cores	Core Speed (GHz)	Number of hard disk drives	Number of extra solid-state drives	GPU Bandwidth	Ram Speed (GB/s)	RAM Capacity (GB)	Motherboard	PSU	PSU Size (Watts)	Short-Idle Power (Watts)
	8.0	3.5	0.0	1.0	512.0	28.8	16.0	MSI Z590 GAMING EDGE WIFI	220-G5-0850- X	850.0	52.69
	8.0	3.5	0.0	1.0	512.0	28.8	16.0	MSI Z590 PRO WIFI	220-G5-0850- X	850.0	49.13
	10.0	3.7	0.0	1.0	512.0	28.8	16.0	ASROCK Z490 TAICHI (WI-FI)	XPG CORE REACTOR	650.0	46.80

- Data directly from the CEC's Public Database, MAEDbS
- Data Description:
 - 1,672 unique submissions from 16 different manufacturers
 - 10 attributes, all discrete values.
 - Variable of interest: Short-Idle Power (Watts)

Data Collection Methodology

3 measurements of average power consumption (in watts) for 15 minutes each:

- 1. Short-Idle State
- 2. Long-Idle State
- 3. Sleep Mode

Why focus on Short-Idle?

Short-idle power (watts) Long-idle power (watts) Computer sleep mode power (watts)

mean	58.958719	60.870154	4.266051
std	15.260163	14.972945	2.086310

Efficacy of High-Expandability

- High-Expandability Score: More modern features, slots = higher score
- Short answer: Yes, very effective regulation.
- Results are contrary to popular opinion that higher expandability = more power.

Efficacy of Gold-rated Power Supplies

- Short answer: not effective
- T-test comparing Bronze vs Gold PSUs power consumption:
 - 168 Samples from computers with same CPU, Motherboard, PSU Wattage, and GPU.
 - Insignificant differences

```
Mean for Bronze PSU: 49.57
Mean for Gold PSU: 50.86
P-Value comparing Bronze vs Gold 650 watt PSU: 0.4214969328487391
```

Modeling for Short-Idle Power Consumption

CPU Cores	Core Speed (GHz)	Expandability Score	Number of hard disk drives	Number of extra solid- state drives	GPU Bandwidth	Ram Speed (GB/s)	RAM Capacity (GB)	PSU Size (Watts)	Chipset_B550	Chipset_B560	Chipset_X570	Chipset_Z590
8.0	3.6	510.0	0.0	0.0	912.0	25.6	16.0	750.0	1	0	0	0
8.0	3.6	610.0	0.0	0.0	608.0	28.8	16.0	750.0	0	0	0	1
8.0	3.8	730.0	0.0	0.0	608.0	25.6	32.0	750.0	0	0	1	0
8.0	3.8	730.0	0.0	0.0	608.0	25.6	16.0	750.0	0	0	1	0
12.0	3.7	730.0	0.0	0.0	608.0	28.8	32.0	850.0	0	0	1	0

- Modeling only for products tested by Skytech Gaming
- Using Random Forest Regressor and Gradient Boosting Regressor
- Preprocessing:
 - SMOTE Oversampling for Chipsets
 - MinMax Scaling, One-Hot Encoding

Results

Gradient Boosting Outperforms

Random Forest Regressor

Tuned Random Forest Results

Training R^2 Score: 0.82

Testing R^2 Score: 0.73

Training RMSE: 6.54 Training RMSE: 6.93

Actual vs. Predicted Plot

Gradient Boosting Regressor

Tuned Gradient Boosting Results

Training D^2 Coores 0 0

Training R^2 Score: 0.9 Testing R^2 Score: 0.77

Training RMSE: 4.92 Training RMSE: 6.45

Actual vs. Predicted Plot

Takeaways

- Problem 1: Effective Regulations? Yes and no.
 - High HES Motherboards are more efficient
 - Gold rated PSUs may not be necessary*
 - Higher barrier of entry
 - More information related to graphics card needed, as it holds the most weight.
- Problem 2: Can a model reduce labor problems?
 - Not good enough to replace labor; ethical concerns.
 - Better application in the CEC's hands.