0419_규민

Clustering_methods

scikit-learn 공식문서 참고할것

• https://scikit-learn.org/stable/modules/clustering.

클러스터링에는 넓게 두가지 접근법이 있다.

- 1. Compactness
 - o 서로 가까이 있는 대상끼리 묶고, 그 그룹의 중심으로 비슷한 대상끼리 밀집되어 분포 하도록 하는 방식
 - ㅇ 주로 두 대상간의 거리로 유사도 측정
 - o k-means
- 2. Connectivity
 - 서로 연결되어 있거나 바로 옆에 있는 대상이 같은 그룹으로 묶임
 - ㅇ 두 대상이 거리상 매우 가깝더라도 연결되어 있지 않다면 같은 그룹으로 묶이지 않음
 - o Spectral clustering (스펙트럼 군집화)

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General- purpose, even cluster size, flat geometry, not too many clusters	Distances between points
Affinity propagation	damping, sample preference	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Graph distance (e.g. nearest- neighbor graph)
Mean-shift	bandwidth	Not scalable with n_samples	Many clusters, uneven cluster size, non-flat geometry	Distances between points
Spectral clustering	number of clusters	Medium n_samples, small n_clusters	Few clusters, even cluster size, non-flat geometry	Graph distance (e.g. nearest- neighbor graph)
Ward hierarchical clustering	number of clusters or distance threshold	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints	Distances between points
Agglomerative clustering	number of clusters or distance threshold, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances	Any pairwise distance
DBSCAN	neighborhood size	Very large n_samples, medium n_clusters	Non-flat geometry, uneven cluster sizes	Distances between nearest points
OPTICS	minimum cluster membership	Very large n_samples, large n_clusters	Non-flat geometry, uneven cluster sizes, variable cluster density	Distances between points
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation	Mahalanobis distances to centers
Birch	branching factor, threshold, optional global clusterer.	Large n_clusters and n_samples	Large dataset, outlier removal, data reduction.	Euclidean distance between points

K-means

주어진 데이터를 K개의 클러스터로 묶는 알고리즘 각 클러스터와 거리 차이의 분산을 최소화화는 방식으로 동작

알고리즘

*표준알고리즘

- 입력값: K: 클러스터 수, D: n개의 데이터를 포함하는 집합
- 초기 k"평균값"(아래의 경우 k=3)은 데이터 중에 무작위 추출

1.

2. k 각 데이터는 가장 가까이 있는 평균값을 기준으로 묶임 분할된 영역은 보로노이 다이어그램으로 표시됨

3. K개 클러스터 중심점 을 기준으로 평균값 재조정

4. 위의 작업을 반복하면 점들이 소속된 집단을 바꾸지 않거나, 무게중심 이 변하지 않는 상태로 수렴

*무작위 분할

- 처음에 데이터를 임의의 클러스터에 배당한 후 각 클러스터에 배당된 점들의 평균값을 초기 평균으로 설정해서 시작한다.
- 데이터 순서에 대해 독립적이다
- 초기 클러스터의 무게중심 들이 데이터 집합의 중심에 가깝게 위치 하는 경향 -> 선호되는 이유

하계점

- 클러스터 개수 K 값을 입력 파라미터로 지정해주어야 한다.
- 알고리즘의 에러 수렴이 전역 최소가 아닌 지역 최솟값으로 수렴할 가능성이 있다.
- 이상값(outlier)에 민감하다.
- 구형이 아닌 클러스터를 찾는데 적절치 않다.

Spectral clustering (스펙트럼군집화 알고리즘)

- 데이터의 유사성 매트릭스의 스펙트럼(고유값)을 사용하여 차원축소를 해, 더 적은 차원으로 클러스터링 하는것
- K-means는 거리에 관심이 있는반면, 스펙트럼은 연결에 관심이 있다.
- 알고리즘 참조
 - https://brunch.co.kr/@mathpresso/11

알고리즘

1. Compute a similarity graph

거리를 계산하여 유사도 행렬을 구한다.

데이터로부터 유사도 행렬을 계산

주성분분석(PCA)을 통해 주성분 추출

주성분 분석(PCA) 을 통하여 주성분을 추출

주성분 분석 수행

2. Project the data onto a lower-dimensional space & Create cluster

낮은 차원의 각 점으로 변환

그 후 K-means와 같은 알고리즘을 이용하여 클러스터 생성

낮은 차원으로 사영시킨 데이터 / 비슷한 그룹은 비슷한 위치로 사영된다

3. 결과물

장단점

Pros

• 데이터의 분포에 대한 강한 가정을 하지 않는다

- 구현이 쉽고 좋은 결과 나온다
- 몇 천개 수준의 Sparse(부족한)한 데이터에 대해 충분히 합리적인 속도로 계산할 수 있다.

Cons

- 마지막 단계에서 K-means와 같은 clustering 알고리즘 사용하는데, 항상 같은 결과를 보장하지 않는다
- 큰 데이터는 상당한 계산량 요구
- 몇 개의 그룹으로 쪼개어 지느냐에 따라 결과가 달라질 수 있다.
- 클러스터의 개수 지정해줘야한다.

아이디어 & 의문

- I) 스펙트럼군집화 알고리즘은 `많지않은데이터`에서 좋을거 같다
 - -> 우리데이터에 써보자!
- Q) 랜덤변수 설정으로 최적의 K값 찾을 수 있다면 좋을것 같다.
 - -> 근데 최적의 K를 무었을 기준으로 찾지? 그래프를 눈으로 볼 수 없는데?
- q) 6가지 기법 돌려보고 어떤 기준으로 모델 선정할까?