1)To draw line charts of employees where hire date between JAN- 2013 to DEC-2020

Ans:

```
import pandas as pd import matplotlib.pyplot as plt
```

```
data = {
    'ID': [1, 2, 3, 4, 5],
    'Hire Date': ['2013-05-15', '2014-06-20', '2015-
07-30', '2016-08-10', '2020-12-25']
}
df = pd.DataFrame(data)
df['Hire Date'] = pd.to_datetime(df['Hire Date'])
filtered_df = df[(df['Hire Date'] >= '2013-01-01')
& (df['Hire Date'] <= '2020-12-31')]

filtered_df['Year'] = filtered_df['Hire Date'].dt.year</pre>
```

```
hire_counts =
filtered_df['Year'].value_counts().sort_index()

plt.plot(hire_counts.index, hire_counts.values,
marker='o')

plt.title('Employee Hires from 2013 to 2020')

plt.xlabel('Year')

plt.ylabel('Number of Hires')

plt.xticks(hire_counts.index)

plt.grid()

plt.show()

output:-
```


2)To display a bar chart of the popularity of programming Languages. Use different colour for each bar. Programming languages: Java, Python, PHP, JavaScript, C#, C++ Popularity: 24.2, 19.3, 9.8, 8.5, 7.3, 6.2

Ans:

import matplotlib.pyplot as plt

```
languages = ['Java', 'Python', 'PHP', 'JavaScript',
'C#', 'C++']
popularity = [24.2, 19.3, 9.8, 8.5, 7.3, 6.2]
colors = ['#FF5733', '#33FF57', '#3357FF',
'#F1C40F', '#9B59B6', '#E74C3C']
plt.figure(figsize=(10, 6))
plt.bar(languages, popularity, color=colors)
plt.title('Popularity of Programming Languages')
plt.xlabel('Programming Languages')
plt.ylabel('Popularity (%)')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
OP:
```


3)To create a pie chart of the popularity of programming Languages.

Ans:

import matplotlib.pyplot as plt

languages = ['Java', 'Python', 'PHP', 'JavaScript',
'C#', 'C++']

popularity = [24.2, 19.3, 9.8, 8.5, 7.3, 6.2]

plt.figure(figsize=(8, 8))

plt.pie(popularity, labels=languages, autopct='%1.1f%%', startangle=140)
plt.title('Popularity of Programming Languages')
plt.axis('equal')
plt.show()

OP:

4)To create a stacked bar plot with error bars. Use bottom to stack the womens bars on top of the bar men's. Means (men) = (22, 30, 35, 35, 26) Means (women) = (25, 32, 30, 35, 29) Men Standard deviation = (4, 3, 4, 1, 5) Women Standard deviation = (3, 5, 2, 3, 3)

Ans:

import matplotlib.pyplot as plt import numpy as np

```
categories = ['A', 'B', 'C', 'D', 'E']

men_means = [22, 30, 35, 35, 26]

women_means = [25, 32, 30, 35, 29]

men_std = [4, 3, 4, 1, 5]

women_std = [3, 5, 2, 3, 3]
```

x = np.arange(len(categories))
bar_width = 0.4

```
plt.bar(x, men means, yerr=men std,
width=bar width, label='Men', color='lightblue',
capsize=5)
plt.bar(x, women means, yerr=women std,
bottom=men means, width=bar width,
label='Women', color='lightcoral', capsize=5)
plt.xlabel('Categories')
plt.ylabel('Means')
plt.title('Stacked Bar Plot with Error Bars')
plt.xticks(x, categories)
plt.legend()
plt.tight layout()
plt.show()
OP:
```


5)To draw a scatter plot comparing two subject marks of Mathematics and Science. Use marks of 10 students. Data: math_marks = [88, 92, 80, 89, 100, 80, 60, 100, 80, 34] science_marks = [35, 79, 79, 48, 100, 88, 32, 45, 20, 30] marks_range = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

Ans:

import matplotlib.pyplot as plt

```
math marks = [88, 92, 80, 89, 100, 80, 60, 100,
80, 34]
science_marks = [35, 79, 79, 48, 100, 88, 32, 45,
20, 30]
marks range = [10, 20, 30, 40, 50, 60, 70, 80, 90,
100]
plt.figure(figsize=(8, 6))
plt.scatter(math_marks, science_marks,
color='blue')
plt.xlabel('Mathematics Marks')
plt.ylabel('Science Marks')
plt.title('Scatter Plot of Mathematics vs Science
Marks')
plt.xlim(0, 110)
plt.ylim(0, 110)
plt.grid(True)
plt.axhline(50, color='red', linestyle='--')
plt.axvline(50, color='red', linestyle='--')
```

plt.show()

OP:

6)Solve some following questions based on below table. Get total profit of all months and show line plot with the following Style properties.

Line Style dotted and Line-color should be red.

Show legend at the lower right location. • X label name = Month Number • Y label name = Sold

units number • Add a circle marker. • Line marker color as read

• Line width should be 3

	 Line wie 	dth should	be 3					
month_number	facecream	facewash	toothpaste	bathingsoap	shampoo	moisturizer	total_units	total_profit
1	2500	1500	5200	9200	1200	1500	21100	21100
2	2630	1200	5100	6100	2100	1200	18330	18330
3	2140	1340	4550	9550	3550	1340	22470	22470
4	3400	1130	5870	8870	1870	1130	22270	22270
5	3600	1740	4560	7760	1560	1740	20960	20960
6	2760	1555	4890	7490	1890	1555	20140	20140
7	2980	1120	4780	8980	1780	1120	29550	29550
8	3700	1400	5860	9960	2860	1400	36140	36140
9	3540	1780	6100	8100	2100	1780	23400	23400
10	1990	1890	8300	10300	2300	1890	26670	26670
11	2340	2100	7300	13300	2400	2100	41280	41280
12	2900	1760	7400	14400	1800	1760	30020	30020

Ans:

import matplotlib.pyplot as plt

month_number = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

total_profit = [211000, 183300, 224700, 222700, 209600, 201400, 295500, 312000, 234000, 266700, 412800, 300200]

plt.figure(figsize=(10, 6))
plt.plot(month_number, total_profit,
linestyle=':', color='red', marker='o',
markersize=8,

```
markerfacecolor='red', linewidth=3, label='Total Profit')
```

```
plt.xlabel('Month Number')
plt.ylabel('Total Profit')
plt.title('Total Profit per Month')
plt.legend(loc='lower right')
```

plt.grid(True)
plt.show()

OP:

7)Draw scatter plot of toothpaste sales data of each month

Ans:

toothpaste_sales = [5200, 5100, 4550, 5870, 4560, 7490, 4780, 5860, 6110, 10300, 8300, 7400]

plt.figure(figsize=(10, 6))

plt.scatter(month_number, toothpaste_sales,
color='blue', s=100, label='Toothpaste Sales')

plt.xlabel('Month Number')
plt.ylabel('Toothpaste Sales')
plt.title('Toothpaste Sales per Month')

```
plt.legend()
plt.grid(True)
plt.show()
```

OP:

8)Construct histogram of most common profit ranges of the total profit of each month.

Ans:

```
# Create a histogram of total profits

plt.figure(figsize=(10, 6))

plt.hist(total_profit, bins=5, color='green',
edgecolor='black', alpha=0.7)
```

```
# Add labels and title
plt.xlabel('Total Profit Ranges')
plt.ylabel('Frequency')
plt.title('Histogram of Total Profit Ranges per
Month')

# Display the histogram
plt.grid(True)
plt.show()

OP:
```


9)Draw Pie chart calculate total sale data for last year for each product.

Ans:

facecream_sales = [2500, 2630, 2140, 3400, 3150, 2760, 2980, 3700, 3540, 1990, 2340, 2900]

facewash_sales = [1500, 1200, 1340, 1130, 1555, 1555, 1120, 2140, 1780, 1890, 1760, 1760]

toothpaste_sales = [5200, 5100, 4550, 5870, 4560, 7490, 4780, 5860, 6110, 10300, 8300, 7400]

```
bathingsoap sales = [9200, 6100, 9550, 8870,
7760, 7490, 8980, 9960, 8110, 10300, 13300,
14400]
shampoo sales = [1200, 2100, 3550, 1870,
1560, 1740, 1780, 2860, 2110, 2300, 2400,
1800]
moisturizer sales = [1500, 1200, 1340, 1870,
1560, 1740, 1120, 2090, 1780, 1890, 2100,
1760]
total sales = [
  sum(facecream sales),
  sum(facewash_sales),
  sum(toothpaste sales),
  sum(bathingsoap_sales),
  sum(shampoo sales),
  sum(moisturizer sales)
```

```
products = ['Facecream', 'Facewash',
'Toothpaste', 'Bathing Soap', 'Shampoo',
'Moisturizer']
plt.figure(figsize=(8, 8))
plt.pie(total_sales, labels=products,
autopct='%1.1f%%', startangle=140,
colors=['gold', 'lightblue', 'lightgreen', 'coral',
'pink', 'violet'])
plt.title('Total Sales Data for Last Year by
Product')
plt.show()
OP:
```

Total Sales Data for Last Year by Product

10) Draw stack plot of all product sales data.

Ans:

import matplotlib.pyplot as plt

month_number = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

facecream_sales = [2500, 2630, 2140, 3400, 3150, 2760, 2980, 3700, 3540, 1990, 2340, 2900]

facewash_sales = [1500, 1200, 1340, 1130, 1555, 1555, 1120, 2140, 1780, 1890, 1760, 1760]

toothpaste_sales = [5200, 5100, 4550, 5870, 4560, 7490, 4780, 5860, 6110, 10300, 8300, 7400]

bathingsoap_sales = [9200, 6100, 9550, 8870, 7760, 7490, 8980, 9960, 8110, 10300, 13300, 14400]

shampoo_sales = [1200, 2100, 3550, 1870, 1560, 1740, 1780, 2860, 2110, 2300, 2400, 1800]

moisturizer_sales = [1500, 1200, 1340, 1870, 1560, 1740, 1120, 2090, 1780, 1890, 2100, 1760]

plt.figure(figsize=(10, 6))

plt.stackplot(month_number, facecream_sales, facewash_sales, toothpaste_sales, bathingsoap_sales,

```
shampoo_sales, moisturizer_sales,
labels=['Facecream', 'Facewash', 'Toothpaste',
'Bathing Soap', 'Shampoo', 'Moisturizer'],
colors=['gold', 'lightblue', 'lightgreen', 'coral',
'pink', 'violet'])
plt.xlabel('Month Number')
plt.ylabel('Sales')
plt.title('Stack Plot of Product Sales Data')
plt.legend(loc='upper left')
plt.show()
OP:
```


11) Construct Subplot of Bathing soap face wash of all months

Ans:

import matplotlib.pyplot as plt

month_number = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

bathingsoap_sales = [9200, 6100, 9550, 8870, 7760, 7490, 8980, 9960, 8110, 10300, 13300, 14400]

```
facewash sales = [1500, 1200, 1340, 1130,
1555, 1555, 1120, 2140, 1780, 1890, 1760,
1760]
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
ax1.plot(month number, bathingsoap sales,
color='orange', marker='o')
ax1.set title('Bathing Soap Sales per Month')
ax1.set xlabel('Month Number')
ax1.set_ylabel('Sales')
ax1.grid(True)
ax2.plot(month_number, facewash_sales,
color='blue', marker='o')
ax2.set title('Face Wash Sales per Month')
ax2.set xlabel('Month Number')
ax2.set ylabel('Sales')
ax2.grid(True)
```

plt.tight_layout()

plt.show()

OP:

12) Draw box plot and violin plot.

Ans:

import matplotlib.pyplot as plt

products = ['Facecream', 'Facewash',
'Toothpaste', 'Bathing Soap', 'Shampoo',
'Moisturizer']

facecream_sales = [2500, 2630, 2140, 3400, 3150, 2760, 2980, 3700, 3540, 1990, 2340, 2900]

facewash_sales = [1500, 1200, 1340, 1130, 1555, 1555, 1120, 2140, 1780, 1890, 1760, 1760]

toothpaste_sales = [5200, 5100, 4550, 5870, 4560, 7490, 4780, 5860, 6110, 10300, 8300, 7400]

bathingsoap_sales = [9200, 6100, 9550, 8870, 7760, 7490, 8980, 9960, 8110, 10300, 13300, 14400]

shampoo_sales = [1200, 2100, 3550, 1870, 1560, 1740, 1780, 2860, 2110, 2300, 2400, 1800]

moisturizer_sales = [1500, 1200, 1340, 1870, 1560, 1740, 1120, 2090, 1780, 1890, 2100, 1760]

sales_data = [facecream_sales, facewash_sales,
toothpaste_sales, bathingsoap_sales,
shampoo_sales, moisturizer_sales]

```
plt.figure(figsize=(12, 6))
plt.subplot(1, 2, 1)
plt.boxplot(sales_data, labels=products)
plt.title('Box Plot of Product Sales Data')
plt.xlabel('Products')
plt.ylabel('Sales')
plt.subplot(1, 2, 2)
plt.violinplot(sales_data, showmeans=False,
showmedians=True)
plt.title('Violin Plot of Product Sales Data')
plt.xticks([1, 2, 3, 4, 5, 6], products) # Setting x-
ticks to match the product labels
plt.xlabel('Products')
plt.ylabel('Sales')
plt.tight layout()
```

plt.show()

OP:

