Temat: Dyfuzyjny system rekomendacji filmów.

Systemy rekomendacji są nieodłącznym elementem większości dużych serwisów i sklepów internetowych, pozwalają one klientom wydajnie je przeszukiwać i odkrywać, a samym firmom lepiej zarabiać. Można wyróżnić dwa główne typy, rekomendacja ze względu na:

- **Zawartość** (*Content-based filtering*) bazuje on na opisie i cechach, tworzy model przedmiotu i preferencji użytkownika.
- **Kolaboracyjne** (*Collaborative filtering*) wykorzystuje on oceny innych użytkowników porównując stopień podobieństwa z danym użytkownikiem.

W użyciu jednak są systemy wykorzystujące oba typy filtrowania, YouTube wykorzystuje bardziej zawartość, natomiast Netflix czy Filmweb bazuje bardziej na porównywaniu użytkowników. Algorytm rekomendujący filmy na YouTube jest liczony w milionach linijek kodu, ponadto Google wykorzystuje sztuczną inteligencję rozpoznawanie mowy i analizę obrazu do wyciągnięcia dokładniejszej zawartości filmu, zbiera i analizuje informacje takie jak polubienia, komentarze, czas oglądania czy udostępnienia i wykorzystuje ogromną bazę użytkowników w swoim systemie rekomendacji. Netflix również wykorzystuje sieci neuronowe i inne metody uczenia maszynowego jednak ma on mniej informacji o swoich użytkownikach, spora część wiedzy jest domyślana na podstawie zachowania jak częstość oglądania następnych odcinków itd. System działa całkiem dobrze, ponieważ ponad 80% filmów i seriali oglądanych na tej platformie, jest odkrytych za pomocą systemu rekomendacyjnego. Filmweb wykorzystuje w swoim Gustomierzu algorytm SVD działający na macierzach i algorytm k-najbliższych sąsiadów służący do prognozowania wartości.

Dyfuzja to proces samorzutnego rozprzestrzeniania się cząsteczek lub energii w ośrodku o temperaturze większej od zera bezwzględnego. Wynika ona z ciągłych losowych zderzeń cząsteczek. Wyróżnia się dwa typy mikroskopowa związana z ruchami Browna, śledzeniem ruchu cząstek i makroskopowa opisaną równaniami i biorącą pod uwage cały układ.

Prawo zachowania masy mówi, że dla zamkniętych układów masa układu pozostaje stała. W postaci różniczkowej wygląda następująco:

$$\nabla \vec{u} \rho + \frac{\partial \rho}{\partial t} = r$$
, gdzie ρ - gęstość/stężenie $\vec{\mathbf{u}}$ - prędkość masy \mathbf{r} - kreacja/anihilacja cząstek

Dzieląc prędkość na składowe związane z dyfuzją \mathbf{u}^{diff} i na \mathbf{u}^{r} związane z pozostałymi procesami zachodzącymi w płynących płynach takie jak adwekcja, czyli przenoszenie masy przez płynące cząsteczki, otrzymujemy ogólne równanie:

$$\nabla \vec{u}^{diff} \rho + \nabla \vec{u}^r \rho + \frac{\partial \rho}{\partial t} = r$$

Prawa Ficka definiują one matematycznie dyfuzję makroskopową.

- **I.** Definicja strumienia dyfuzji $J = -D \nabla \rho$, D- współczynnik proporcjonalności
- II. Określa zmianę stężenia z czasem

$$\frac{\partial \rho}{\partial t} = D \Delta \rho$$

Otrzymuje się z powyższych praw i założeń że:

r=0 – brak kreacji/anihilacji

ur=0 − brak adwekcji

D=const

Parametry modelu

Po przejrzeniu literatury zdecydowano na dyfuzję w gazie i model hybrydowy łączący dwa podejścia: mikroskopowe ruchy Browna gdzie cząsteczki filmu i użytkownika będą śledzone wraz z interakcjami w które będą wchodzić i makroskopowe gdzie będzie zachodzić dyfuzja na osi pionowej, która będzie odpowiedzialna za generalny trend ruchu cząsteczek użytkownika w górę sprzęgnięta ze stężeniami dla mikro podukładu. Między cząsteczkami filmów nie będą oddziaływać siły będą się one tylko zderzały.

Generacja modelu użytkownika ze wszystkich dostępnych ocen zostaną wyciągnięte listy 10 najpopularniejszych reżyserów i 100 najpopularniejszych tagów określających zawartość. Wszystko brane z odpowiednią wagą zależną od oceny filmu i różnicy między oceną użytkownika, a oceną społeczności.

Generowanie gazu będzie się odbywać przed symulacją, cząsteczki filmu będą rozłożone na osi związanej z ich oceną i osi związanej z siłą oddziaływania z użytkownikiem, która może być odpychająca Ilość przyciągająca. cząsteczek będzie zależała od parametru związanego z popularnością danego filmu. Brana pod uwagę będzie również ocena i logarytm stosunku dochodu do budżetu wszystko z odpowiednia waga, co sprawi że zmniejszą się interakcje z filmami które przyniosły straty. Jeżeli tagi czy reżyser będą się pokrywały z wygenerowanymi

listami siła również zostanie odpowiednio zwiększona. Środek układu będzie odpowiednio unormowany do średniej oceny użytkownika, których rozkład zazwyczaj jest podobny do rozkładu normalnego.

Proponowane klasy

movie

- id
- $x,y i v_x, v_y$
- r-promień, m-masa
- F- siła oddziaływań

user

- $x,y i v_x, v_y$
- r-promień, m-masa
- lista interakcji przechowuje id filmów

Im większa liczba filmów będzie symulowana tym lepsze wyniki powinien dawać algorytm, więc planuję go zaimplementować w C++ ze względu na jego wydajność.

Ewaluacja

Na podstawie bazy ocen użytkowników (26mln ocen 270k unikalnych użytkowników)

Cel systemu: Być lepszym niż losowo polecane filmy.

Cel dodatkowy: Być lepszy niż polecanie kolejnych nieobejrzanych filmów z top 250.

W zależności od wyników można zastosować do oceny rekomendowanych filmów różne podejścia:

- 1) Generować rekomendacje na podstawie 90% ocen i porównywać rekomendacje z pozostałymi 10%. Ma to swoje minusy ponieważ przestrzeń filmów jest bardzo duża i są małe szanse, że system poda akurat te filmy które obejrzał użytkownik i będzie można porównać kolejność propozycji z posortowanymi obejrzanymi filmami.
- 2) Generowanie gazu z już obejrzanymi filmami, zwiększa szanse na możliwości porównywania, jednakże optymalizowanie systemu w ten sposób trochę wykrzywia cele stawiane przed modelem, który ma polecać nieobejrzane filmy. Nadal to około 100 ocen na kilkadziesiąt tysięcy filmów
- 3) Przeprowadzenie małego eksperymentu z 10 osób obejrzy 3 proponowane filmy i oceni jakość tych propozycji.

Podsumowanie parametrów wpływających na siły między cząstkami użytkownika i filmu

- → lista 10 najpopularniejszych reżyserów
- → lista 100 najpopularniejszych tagów
- → ocena
- → stosunek dochodów do budżetu

Wydajne liczenie zderzeń kul na 2-wymiarowej płaszczyźnie

1) Liczenie normy wektora kolizji.

$$\vec{n} = \frac{\vec{c_2} \cdot \vec{c_1}}{\|\vec{c_2} \cdot \vec{c_1}\|} = \frac{c_2 - c_1}{\sqrt{(c_{2x} - c_{1x})^2 + (c_{2y} - c_{1y})^2}}$$

2) Uwzględnienie stosunku prędkości i mas.

$$p = \frac{2(\vec{n}\vec{v}_1 - \vec{n}\vec{v}_2)}{m_1 + m_2}$$

3) Prędkość wynikowa.

$$\vec{w}_1 = v_1 - pm_1\vec{n}$$

 $\vec{w}_2 = v_2 + pm_2\vec{n}$

Źródła

Diffusion in Gases and Porous Media, R.E. Cunningham, R.J.J. Williams Diffusion in Solids, A.S. Nowick, J.J.Burton The Mathematics of Diffusion, J.Crank

https://en.wikipedia.org/wiki/Continuity equation

https://en.wikipedia.org/wiki/Recommender system

https://en.wikipedia.org/wiki/Netflix Prize

http://www.filmweb.pl/help#I.6

 $\frac{http://home.agh.edu.pl/\sim dabrowa/files/4.Rownania-dyfuzji-wst-p-teoretyczny.pdf}{http://ericleong.me/research/circle-circle/\#dynamic-circle-circle-collision}$