Reinforcement Learning

Reinforcement learning: what if we do not know transitions *P* and reward function *r* of an MDP?

The Mystery Game:

https://programmingheroes.blogspot.com/2016/02/udacity-reinforcement-learning-mystery-game.html

Q-learning

- 1. Initialise Q(s,a) arbitrarily
- 2. For each episode:
 - a. Initialise s (go to the initial state)
 - b. Repeat for each step in the episode
 - i. Select the next action \underline{a} to apply from \underline{s} (using e.g. epsilon greedy, UCT) use Q(s,a)
 - ii. Execute action a and observe the reward r and new state s

iii.
$$Q(s,a) := Q(s,a) + Q(r + \max a' Q(s',a')) Q(s,a)$$

c. Until s is terminal

Q-Tables

State	Action			
	North	South	East	West
(0,0)	0.53	0.36	0.36	0.21
(0,1)	0.61	0.27	0.23	0.23
(2,2)	0.792	0.72	0.90	0.72
(2,3)	0.90	0.78	0.99	0.81

$$Q(s,a) := Q(s,a) + \alpha[r + \gamma \max a' Q(s',a') - Q(s,a)]$$

Learning rate $\alpha = 0.1$ Discount reward factor $\gamma = 0.9$

Q-learning: Q((2,2), North) = 0.79 + 0.1*(0 + 0.9*0.9 - 0.79) = 0.792

SARSA, with assumption that a' is West Q((2,2), North) =

If a' is East is for SARSA, the update would be just the same as for Q-learning because East is the max action from (2,2)

Q-learning: Off-policy

- 1. Initialise Q(s,a) arbitrarily
- 2. For each episode:
 - a. Initialise s (go to the initial state)
 - b. Repeat for each step in the episode
 - i. Select the next action a to apply from s (using e.g. epsilon greedy, UCT) use Q(s,a)

SARSA: On-policy learning

- 1. Initialise Q(s,a) arbitrarily
- 2. For each episode:
 - a. Initialise s (go to the initial state)
 - b. Select the next action a to apply from s (using e.g. epsilon greedy, UCT)
 - c. Repeat for each step in the episode

- b. Repeat for each step in the episode
- \rightarrow i. Select the next action a to apply from s (using e.g. epsilon greedy, UCT) use Q(s,a)
 - ii. Execute action a and observe the reward r and new states'
 - iii. $Q(s,a) := Q(s,a) + \alpha[r + \gamma \max(a')Q(s',a') Q(s,a)]$ iv. s := s'
- c. Until s is terminal

- b. Select the next action a to apply from s (using e.g. epsilon greedy, UCT)
- c. Repeat for each step in the episode
 - i. Execute action a and observe the reward r and new state s'
 - ii. Select the next action (a) to apply from s' (using e.g. epsilon greedy, UCT)
 - iii. $Q(s,a) := Q(s,a) + \alpha [r + \gamma Q(s',a') Q(s,a)]$ iv.(s:=s';(a):=a';
- d. Until s is terminal

Gridworld Q-Learning - Example 3 - The Cliff

Learning to Play Freeway, using Reinforcement Learning

