北京信息科技大学 2019~2020 学年 第1学期

《计算机电路基础》期末考试试卷 A 参考答案及评分标准

一、填空题(每空2分,共30分)

- 1. 1.5
- 2. -1, 4 3. 短路, 开路
- 4. 异或
- 5. $0.4 \sim 0.5$, 0.1

- 6. 正向
- 7. A
- 8. 650, 1A8
- 9. 31
- 10. 门电路, 触发器

二、共4小题(每小题5分,共20分)

1. (1) 电压源 u_s 和输出 u_o 的波形如解图 2.1 所示:

(3分)

(2) 当 $u_S < 0$, 二极管 D 导通; 当 $u_S > 0$ 时, D 截止。

(2分)

2. (1) $A_u = u_0 / u_1 = u_+ / u_1 = R_2 / (R_1 + R_2) = 10 / 20 = 0.5$

- (2分)
- (2) $A_{us} = u_0 / u_s = u_+ / u_s = R_2 / (R_S + R_1 + R_2) = 10 / 25 = 0.4$

(2分) (1分)

(3) 运放构成同相跟随器电路。

3. (1)
$$Y = \overline{A}\overline{B} + A\overline{B} + \overline{A}B = \overline{A}\overline{B} + A\overline{B} + \overline{A}B + \overline{A}B$$

$$= \overline{B}(\overline{A} + A) + \overline{A}(\overline{B} + B) = \overline{A} + \overline{B}$$

(2)
$$Y = \overline{A} + \overline{B} = \overline{A \cdot B}$$

(2分)

4. 对应输入画出 JK 触发器输出 Q 的波形如解图 2.4 所示。

三、(10分)

利用叠加原理: 当 6V 电压源单独作用时 I' = 0.4 A

(4分)

当 9V 电压源单独作用时 I" = 0.6A

(4分)

求 6V、9V 电源共同作用时 I = I' + I'' = 0.4 + 0.6 = 1A

(2分)

四、(10分)

(1)
$$I_{\rm B} = (U_{\rm CC} - U_{\rm BE}) / R_{\rm B}$$
, $I_{\rm C} = \beta I_{\rm B}$, $U_{\rm CE} = U_{\rm CC} - R_{\rm C}I_{\rm C}$

(4分)

(2)
$$A_u = -\beta R_C / r_{be}$$
, $r_i = R_B / / r_{be}$, $r_o = R_C$

(4分)

(2分)

(3) 若接上 R_L ,则静态工作点均不变,输入、输出电阻 r_i 、 r_o 也

五、(10分)

(1)
$$F = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$
 (5 $\%$)

$$= AB + AC + BC \tag{2 \%}$$

(2) 根据分析,该电路实现的是少数服从多数的三人表决功能。 (3分)

六、(10分)

(1) 数据输入端为
$$A_3 A_2 A_1 A_0 = 1000$$
; (2分)

将进位信号
$$(Q_3Q_2Q_1Q_0 = 1111)$$
 取反作为置数逻辑; (2分)

(2) 电路实现的逻辑功能为: 八进制加法计数器。 (2分)

七、(10分)

(1)根据题意画逻辑函数的卡诺图如解图 7(a)所示; (4分)

(2) 化简合并、再变形得

$$Y = A + \overline{B}\overline{C} + \overline{B}\overline{D} = \overline{A + \overline{B + C} + \overline{B + D}} \tag{4 \(\frac{1}{12}\)}$$

(3)由上式结果,用或非门实现的逻辑电路如解图7(b)所示。 (2分)

注:因门电路的种类不做限定,故答案不唯一;以门电路数量较少为宜。

解表 6	状态表
州平イン ひ	1八心(4)

СР	Q	Q_2 Q	Q_2 Q	Q_0	
0	1	0	0	0	
1	1	0	0	1	
2	1	0	1	0	
2 3	1	0	1	1	
4	1	1	0	0	
4 5 6	1	1	0	1	
6	1	1	1	0	
7	1	1	1	1	
8	1	0	0	0	

解图 7