STAT 4100 Lecture Note

Week Twelve (Nov 28, 30 & Dec 2, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Dec/01 00:27:12

Approximation to the variance of $\hat{\theta}_n$

- Why?
 - Reflect the variation or dispersion of $\hat{\theta}_n$
 - Help approximate the distribution of $\hat{\theta}_n$ (and further construct the confidence region for θ) if assuming normality
- How?
 - Utilizing the asymptotic variance of $\hat{\theta}_n$
 - Resampling methods, e.g., bootstraping

CB Example 10.1.17 & Ex. 10.9 (con'd)

• iid $X_1, \ldots, X_n \sim p(x \mid \lambda) = \lambda^x \exp(-\lambda)/x!, x \in \mathbb{Z}^+, \lambda > 0$. Define $\theta = \Pr(X_i = 2 \mid \lambda) = \lambda^2 \exp(-\lambda)/2$. Approximate the variance of $\hat{\theta}_{\mathrm{ML}} = \bar{X}_n^2 \exp(-\bar{X}_n)/2$ by delta methods.

CB Example 10.1.15

• Holding iid $X_i \sim \text{Bernoulli}(p)$, the variance of Bernoulli(p) is $\tau(p) = p(1-p)$ whose MLE is $\tau(\hat{p}_{\text{ML}}) = \bar{X}_n(1-\bar{X}_n)$. Approximate $\text{var}\{\tau(\hat{p}_{\text{ML}})\}$ by delta methods.

Bootstraping the variance of $\hat{\theta}_n$ (CB Sec. 10.1.4)

- Nonparametric bootstrap:
 - 1. For j in 1 : B, do steps 2–3.
 - 2. Draw the jth resample \mathbf{x}_{j}^{*} of size n from the original sample $\mathbf{x} = \{x_{1}, \ldots, x_{n}\}$, with replacement, i.e., create a new iid sample \mathbf{x}_{j}^{*} from F_{n} (the empirical cdf of the original sample)
 - 3. Let $\hat{\theta}_i^* = \hat{\theta}(\boldsymbol{x}_i^*)$.
 - 4. $var(\hat{\theta}) \approx the sample variance of {\{\hat{\theta}_1^*, \dots, \hat{\theta}_B^*\}}.$
- $\bullet \ \ (Optional, see, e.g., www.stat.columbia.edu/\sim bodhi/Talks/Emp-Proc-Lecture-Notes.pdf) \ Empirical process: theoretical foundation for nonparametric bootstrap$
 - (Glivenko-Cantelli) $\sup_{x \in \mathbb{R}} |F_n(x) F(x)| \xrightarrow{\text{a.s.}} 0$
 - (Donsker) $\sqrt{n}(F_n F) \stackrel{d}{\to} BB \circ F$, i.e., $E[g\{\sqrt{n}(F_n F)\}] \to E[g(BB \circ F)]$ for all bounded, continuous and real-valued g
 - * BB is a Gaussian process (specifically, standard Brownian bridge process on [0, 1]), i.e.,
 - BB(0) = BB(1) = 0 but BB(t) $\sim \mathcal{N}(0, t(1-t))$ for $t \in (0,1)$;

```
· fixing t_1, \ldots, t_p \in (0,1), [BB(t_1), \ldots, BB(t_p)]^{\top} is of multivariate normal with cov(BB(s), BB(t)) = min(s, t) - st;
· BB(t) is continuous in t.
```

- Parametric bootstrap:
 - 1. For j in 1 : B, do steps 2–3.
 - 2. Draw the jth resample x_i^* of size n from a fitted model $f(x \mid \hat{\theta})$.
 - 3. Let $\hat{\theta}_i^* = \hat{\theta}(\boldsymbol{x}_i^*)$.
 - 4. $var(\hat{\theta}) \approx the sample variance of {\{\hat{\theta}_1^*, \dots, \hat{\theta}_B^*\}}.$

CB Example 10.1.15

• Holding iid $X_i \sim \text{Bernoulli}(p)$, the variance of Bernoulli(p) is $\tau(p) = p(1-p)$ for which the MLE is $\tau(\hat{p}_{\text{ML}}) = \bar{X}_n(1-\bar{X}_n)$. Approximate $\text{var}\{\tau(\hat{p}_{\text{ML}})\}$ by the bootstrap.

```
options(digits = 4)
set.seed(1)
B = 1e4L
n = 30
x = rbinom(n, 1, prob = .7)
theta_ml = mean(x)
tau_theta_star_np = numeric(B)
tau_theta_star_p = numeric(B)
# Nonparametric bootstrap
for (j in 1:B){
  x \text{ star} = \text{sample}(x, \text{ size} = n, \text{ replace} = T)
  tau_theta_star_np[j] = mean(x_star)*(1-mean(x_star))
var(tau_theta_star_np)
# Parametric bootstrap
for (j in 1:B){
  x_star = rbinom(n, size = 1, prob = theta_ml)
  tau_theta_star_p[j] = mean(x_star)*(1-mean(x_star))
var(tau_theta_star_p)
# Estimate via the first-order delta method
theta_ml*(1-theta_ml)*(1-2*theta_ml)^2/n
# Estimate via the second-order delta method
2*theta_ml^2*(1-theta_ml)^2/n^2
```

Large-sample hypothesis testing

Recall the LRT

- $H_0: \boldsymbol{\theta} \in \boldsymbol{\Theta}_0$ v.s. $H_1: \boldsymbol{\theta} \in \boldsymbol{\Theta}_1$, where $\boldsymbol{\Theta} = \boldsymbol{\Theta}_0 \cup \boldsymbol{\Theta}_1$
- LRT statistic

$$\lambda(\boldsymbol{x}) = \frac{\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} L(\boldsymbol{\theta}; \boldsymbol{x})}{\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} L(\boldsymbol{\theta}; \boldsymbol{x})} = \frac{L(\hat{\boldsymbol{\theta}}_{0, \text{ML}}; \boldsymbol{x})}{L(\hat{\boldsymbol{\theta}}_{\text{ML}}; \boldsymbol{x})}$$

- $\hat{oldsymbol{ heta}}_{0,\mathrm{ML}}$: constrained MLE for $oldsymbol{ heta} \in oldsymbol{\Theta}_0$
- $\hat{oldsymbol{ heta}}_{\mathrm{ML}}$: unconstrained MLE for $oldsymbol{ heta} \in oldsymbol{\Theta}$
- $\{x : \lambda(x) \le c_{\alpha}\}$: rejection region of level α LRT
 - $-c_{\alpha}$ is such defined that $\sup_{\boldsymbol{\theta} \in \boldsymbol{\Theta}_0} \Pr(\lambda(\mathbf{X}) \leq c_{\alpha} \mid \boldsymbol{\theta}) = \alpha$

Asymptotic distribution of LRT statistic (CB Thm 10.3.1 & 10.3.3)

• Under H_0 , as $n \to \infty$,

$$-2 \ln \lambda(\mathbf{X}) \xrightarrow{d} \chi^2(\nu),$$

where $\nu =$ difference of numbers of free parameters in Θ_0 and Θ .

- (CB Thm 10.3.3) $\{x: -2 \ln \lambda(x) \ge \chi^2_{\nu,1-\alpha}\}$: asymptotic rejection region of level α LRT
 - $-\chi^2_{\nu,1-\alpha}$ is the $1-\alpha$ quantile of $\chi^2(\nu)$.

CB Example 10.3.4

• iid $X_1, \ldots, X_n \sim \Pr(X_i = j) = p_j, j = 1, \ldots, 5$. Specify the $1 - \alpha$ LRT rejection region for $H_0: p_1 = p_2 = p_3$ and $p_4 = p_5$ vs. $H_1:$ Otherwise.

Wald test (CB pp. 493)

- $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$
 - Wald statistic: $(\hat{\theta}_n \theta_0) / \sqrt{\operatorname{var}(\hat{\theta}_n)}$ (if $(\hat{\theta}_n \theta_0) / \sqrt{\operatorname{var}(\hat{\theta}_n)} \xrightarrow{d} \mathcal{N}(0, 1)$ under H_0 as $n \to \infty$)
 - * Asymptotically equivalent to LRT for this two sided test if $\hat{\theta}_n = \hat{\theta}_{ML}$
 - * Substitute $\widehat{\text{var}}(\hat{\theta}_n)$ for $\text{var}(\hat{\theta}_n)$ if $\text{var}(\hat{\theta}_n)$ is well approximated by $\widehat{\text{var}}(\hat{\theta}_n)$
 - Level α rejection region: $\{ \boldsymbol{x} : |\hat{\theta}_n \theta_0| / \sqrt{\operatorname{var}(\hat{\theta}_n)} \ge \Phi_{1-\alpha/2}^{-1} \}$

Score test (CB pp. 494)

- $H_0: \theta = \theta_0 \text{ vs. } H_1: \theta \neq \theta_0$
 - Score statistic: $S(\theta_0; \mathbf{X}) / \sqrt{I_n(\theta_0)} \stackrel{d}{(\to)} \mathcal{N}(0, 1)$ under H_0 as $n \to \infty$)
 - Level α rejection region: $\{ \boldsymbol{x} : |S(\theta_0; \boldsymbol{x})| / \sqrt{I_n(\theta_0)} \ge \Phi_{1-\alpha/2}^{-1} \}$.
- If Θ_0 contains more than one points, then substitute $\hat{\theta}_{0,\text{ML}}$ for θ_0 . So the score test at most involves the constrained MLE.

CB Examples 10.3.5 & 10.3.6

• iid $X_1, \ldots, X_n \sim \text{Bernoulli}(p), p \in (0,1)$. Derive LRT, Wald and score tests for $H_0: p = p_0$ versus $H_1: p \neq p_0$.

3

Asymptotic confidence regions

- Constructed by reverting rejection regions
- Examples
 - -1α LRT confidence region for θ : $\{\theta : -2 \ln\{L(\theta; \boldsymbol{x})/L(\hat{\theta}_{\text{ML}}; \boldsymbol{x})\} < \chi^2_{1,1-\alpha}\}$
 - $\begin{array}{l} -1-\alpha \text{ Wald confidence region for } \theta \colon \left\{\theta : |\hat{\theta}_n \theta|/\sqrt{\mathrm{var}(\hat{\theta}_n)} < \Phi_{1-\alpha/2}^{-1}\right\} \\ -1-\alpha \text{ score confidence region for } \theta \colon \left\{\theta : |S(\theta; \boldsymbol{x})|/\sqrt{I_n(\theta)} < \Phi_{1-\alpha/2}^{-1}\right\} \end{array}$

CB Examples 10.4.2, 10.4.3 & 10.4.5

• iid $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$, construct $1 - \alpha$ confidence intervals for p.

Take-home exercises (NOT to be submitted; to be potentially covered in labs)

- CB Ex. 10.17(a-c), 10.36, 10.38
- HMC Ex. 6.3.16-6.3.18