Course	21CSC204J	Course	DESIGN AND ANALYSIS OF ALGORITHMS	Course	C	PROFESSIONAL CORE	L	T	Р	C
Code	210302040	Name	DESIGN AND ANALYSIS OF ALGORITHMS	Category	·	PROFESSIONAL CORE	3	0	2	4

Pre-requisit Courses	N	il	Co- requisite Courses	Nil	Progressive Courses	Nii	i
Course Off	ering Department	Sc	hool of Computing	Data Book / Codes / Standards		Nil	

Course Le	Course Learning Rationale (CLR): The purpose of learning this course is to:			Program Outcomes (PO)										Specific			
CLR-1:	CLR-1: design efficient algorithms in solving complex real time problems			2	3	4	5	6	7	8	9	10	11	12	Ou		
CLR-2:	CLR-2: analyze various algorithm design techniques to solve real time problems in polynomial time		D			of		aty			×						\Box
CLR-3:	utilize various approaches to solve greedy and dynamic algorithms	ego	3		ant of	ions	Φ	Socie			Wor		auce				
CLR-4:	utilize back tracking and branch and bound paradigms to solve expo	nential time problems	2	Sis	lopme	figal	sage	and			eam	⊆	Fina	ming			
CLR-5:	analyze the need of approximation and randomization algorithms, algorithms	utilize the importance Non polynomial	2	n Analy	develo	t inves x probl	Tool	jineer	ment & ability		al & Te	ınicatio	Mgt. &	gLear			
Course Ou	stcomes (CO): At the end of this course, learners	will be able to:	20	roblen	esign/ olution	onduc	odem	he en	Sustain	thics	dividu	ommı	roject	ie Lor	SO-1	SO-2	80-3
CO-1:	apply efficient algorithms to reduce space and time complexity of bo			1	2	1		7.	шω			3	-	3	3	1	-
CO-2:	solve problems using divide and conquer approaches	2	2	1	2	1						3		3	3	1	-
CO-3:	apply greedy and dynamic programming type's techniques to solve	polynomial time problems 2	2	1	2	1		1	-			3	-	3	3	1	-
CO-4:	create exponential problems using backtracking and branch and box	ind approaches 2	2	1	2	1			-			3	-	3	3	1	-
CO-5:	interpret various approximation algorithms and interpret solutions to e problems	valuate P type, NP Type, NPC, NP Hard 2	2	1	2	1	- 5	3	-			3	-	3	3	1	-

Unit-1 - Introduction to Algorithm Design

Course Learning Petianale (CLD):

15 Hour

Program

Program Outcomes (PO)

Fundamentals of Algorithms - Correctness of algorithm - Time complexity analysis - Insertion sort-Line count, Operation count Algorithm Design paradigms - Designing an algorithm And its analysis-Best, Worst and Average case - Asymptotic notations Based on growth functions. O,O,Θ, ω, Ω - Mathematical analysis - Induction, Recurrence relations - Solution of recurre

Unit-2 - Divide and Conquer

15 Hour

Maximum Subarray Problem Binary Search - Complexity of binary search Merge sort - Time complexity analysis -Quick sort and its Time complexity analysis Best case, Worst case, Average case analysis - Strassen's Matrix multiplication and its recurrence relation - Time complexity analysis of Merge sort - Largest sub-array sum - Time complexity analysis of Largest sub-array sum - Master Theorem Proof - Master theorem examples - Finding Maximum and Minimum in an array - Time complexity analysis-Examples - Algorithm for finding closest pair problem - Convex Hull problem

Unit-3 - Greedy and Dynamic Programming

15 Hour

- Examples of problems that can be solved by using greedy and dynamic approach Huffman coding using greedy approach Comparison of brute force and Huffman method of encoding - Knapsack problem using greedy approach Complexity derivation of knapsack using greedy - Tree traversals - Minimum spanning tree - greedy Kruskal's algorithm - greedy - Minimum spanning tree - Prims algorithm Introduction to dynamic programming - 0/1 knapsack problem - Complexity calculation of knapsack problem - Matrix chain multiplication using dynamic programming - Complexity of matrix chain multiplication - Longest common subsequence using dynamic programming - Explanation of CS with an example - Optimal binary search tree (OBST) using dynamic programming - Explanation of OBST with an example.

Unit-4 - Backtracking 15 Hour

branch and bound - N queen's problem - backtracking - Sum of subsets using backtracking Complexity calculation of sum of subsets Graph introduction Hamiltonian circuit - backtracking - Branch and bound -Knapsack problem Example and complexity calculation. Differentiate with dynamic and greedy Travelling salesman problem using branch and bound - Travelling salesman problem using branch and bound example - Travelling salesman problem using branch and bound example - Time complexity calculation with an example - Graph algorithms - Depth first search and Breadth first search - Shortest path introduction - Floyd-Warshall Introduction - Floyd-Warshall with sample graph - Floyd-Warshall complexity

Unit-5 - Randomized and Approximation Algorithm

15 Hour

Randomized hiring problem Randomized quick sort Complexity analysis String matching algorithm Examples - Rabin Karp algorithm for string matching Example discussion - Approximation algorithm - Vertex covering - Introduction Complexity classes - P type problems - Introduction to NP type problems - Hamiltonian cycle problem - NP complete problem introduction - Satisfiability problem - NP hard problems - Examples

Lab Experiments

Lab 1: Simple Algorithm-Insertion sort

Lab 2: Bubble Sort

Lab 3: Recurrence Type-Merge sort, Linear search

Lab 4: Quicksort, Binary search

Lab 5: Strassen Matrix multiplication

Lab 6: Finding Maximum and Minimum in an array, Convex Hull problem

Lab 7: Huffman coding, knapsack and using greedy

Lab 8: Various tree traversals.

Lab 9: Longest common subsequence

Lab 10: N queen's problem

Lab 11: Travelling salesman problem

Lab 12: BFS and DFS implementation with array

Lab 13: Randomized quick sort

Lab 14: String matching algorithms

Lab 15: Discussion over analyzing a real time problem

Learning	7.
Resources	2

- Thomas H Cormen, Charles E Leiserson, Ronald L Revest, Clifford Stein, Introduction to Algorithms, 3rd ed., The MIT Press Cambridge, 2014
- 3. Ellis Horowitz, Sartajsahni, Sanguthevar, Rajesekaran, Fundamentals of Computer Algorithms, Galgotia Publication, 2010
- Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2nd ed., Pearson Education, 2006
 S. Sridhar, Design and Analysis of Algorithms, Oxford University Press, 2015

Learning Assessm	nent			100					
		Continuous Learning Assessment (CLA)							
	Bloom's Level of Thinking		Average of unit test 5%)		earning CLA-2 5%)	Summative Final Examination (40% weightage)			
		Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	30%	. /		30%	30%			
Level 2	Understand	70%	•)/(4		30%	30%			
Level 3	Apply		- 7 (14		40%	40%			
Level 4	Analyze								
Level 5	Evaluate	~ (and or a				
Level 6	Create	-7 (x)	7 1 7 1 1	A Partie and					
•	Total	10	0%	10	00 %	100 %			

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
 G. Venkiteswaran, Wipro Technologies, gvenki@pilani.bits-pilani.ac.in 	 Mitesh Khapra, IITM Chennai, miteshk@cse.iitm.ac.in 	Dr. K.Senthil Kumar, SRMIST						
Dr. Sainarayanan Gopalakrishnan, HCL Technologies, sai.jgk@gmail.com	V. Masilamani. IIITDM, masila@iiitdm.ac.in	2. Dr. V. Sivakumar, SRMIST						
		Dr. R. Vidhya, SRMIST						