CSC 369 Lecture 15 Notes

Vocabulary

1. Multiprogramming

• Is the technique of utilizing several programs concurrently in a single computer system

2. Mechanism

- Is low-level methods or protocols that implement a needed piece of functionality
- Is low-level machinery in OS
- Does not dictate policies

3. Policies

- Are algorithms for making some kind of decisions within the OS
- Is high-level intelligence in OS
- Does not dictate mechanism

4. CPU Bound

- Means the rate at which process progresses is determined primarily by the speed of the CPU.
- Has very long CPU bursts, infrequent I/O bursts

5. I/O Bound

- Means the rate at which process progresses is determinted primarily by the speed of I/O Subsystem.
- Has short CPU bursts, frequent (long) I/O bursts

6. Non-preemtive Scheduling

• Is the type of scheduling that once the CPU has been allocated to a process, it keeps the CPU until it terminates or blocks

7. Preemtive Scheduling

• Is type of scheduling where CPU can be taken from a running process and allocated to another

8. Context Switching

• Is dispatching a process from a ready queue

CSC 369 Lecture 15 Notes

9. Convoy Effect

• All other processes wait for the one big process to release the CPU

1 Thread Life Cycle

- CPU-Bound: has very long CPU bursts, infrequent I/O bursts
- I/O-Bound: has short CPU bursts, frequent (long) I/O bursts
- During I/O bursts, CPU is not needed

2 Recall State Diagram

• Thread/Process is blocked during I/O burst and therefore does not use CPU

3 Scheduling Goals

- All Systems
 - Fairness Each process receives fair share of CPU
 - Avoid starvation
 - Policy enforcement Usage policies should be met
 - Balance All parts of the system should be busy
- Bach Systems
 - Throughput Maximize job completed per hour
 - Turnaround time Minimize time between submission and completion
 - CPU utilization Keeps the CPU busy all the time

CSC 369 Lecture 15 Notes

4 Scheduling Goals

- Interactive Systems
 - Response time Minimize time between receiving request and starting to produce output
 - * Response time = First Run Time Arrival Time
 - Proportionality "Simple" tasks complete quickly
- Real-Time Systems
 - Meet deadlines
 - Predictability

5 Process State Diagram

• Dispatching a process from the ready queue is called **context switching**

6 Algorithm: Shortest Job First

• Is optimal with respect to average wait time

7 Algorithm: Round Robin

- Designed for time-sharing systems
- Pre-emptive
- Ready queue is circular
- Choice of quantum is chritical
 - We want q to be large w.r.t the context switch time