STAT Ch1 Census survey: Sample survey: population : 計出黎: A Tom's Tips 有Estimation的像 statistics 就咁描述的你 statistics Types of Data: · Colour · Numerical No. of people Weight, time Levels of Measurement: Gender

Grades

Height

* Tom's Tips:

Dates

Scanned by CamScanner

冇 treatment 的 study 1年:

有 treatment 的 study 你:

Sampling:

- · Non-prob.
- · Random 抽

* Toms Tips:

·分 subgroup,每 subgroup抽

:分 做 heterogeneous groups, 抽 group

:每长相相抽

* Variable:

=> Supp Ex 1 Q3c

A manager wanted to estimate the mean daily travel expense for all staff in Company B.

Stat Ch2 A * Tom's Tips Shapes of Histogram: * Tom's Tips: Stem and Leaf: Stem | Leaves (Unit = ?) * Tom's Tips:

* Tom's Skill:

Frequency distribution:		
The objective is to provides	about the data.	
Pareto Diagram:		
Use to quickly identify which data	appearing more often	tham others.
Scatter Diagram:		

Mean (Sensitive to outliers?

Sample mean =
$$=\frac{\sum x}{}$$

* Tom's Tips:

Weighted mean =
$$\frac{Z_1 \times w}{Z_1 w}$$

*全部數量一樣 >

Percentile (Sensitive - ??

$$i = \left(\frac{P}{100}\right)n$$
 # Tom's Tips

i is integer:

i is NOT integer .

Quartiles (Sensitive - - ?)

Q, is percentile

Q2 is percentile

Q3 is percentile

Range (Sensitive -- 77 Largest - Smallest Interquartile Range (Sensitive - . . ? Q3 - Q1 $\left(\frac{75}{100}\right)n$ - $\left(\frac{25}{100}\right)n$ Variance (Sensitive -r -r ? SD (Sensitive -1 - 7. * Tom's Tips: population sample o = 5 = CV (Sensitive -r -r ? population sample CV= CV= Chebysher's Theorem $(1 - \frac{1}{k^2}) \times 100\%$ Box Plot Min Q. Q_2 Q3 Max Median

Numerical Measures Mean, Range, Variance, Percentile, Mode, Median, Quartiles, SD, CV, Interquartile Range Measure of location Variability > > > > > > > > > 7 * Tom's Tips Shape of a Distribution 5 kewness skenness

* Tom's

Skill

$$P_r^n = \frac{n!}{(n-r)!} \qquad {n \choose r} = \frac{n!}{n!(n-r)!}$$

* Tom's Tip:

Mutually Exclusive

Conditional Prob.

Independent

Dependent

Marginal Prob.

P(B) = P(BIA,)P(A,)+...+P(BIAK)P(AK)

Bayes' Theorem $P(B|A_i)P(A_i)$ $P(A_i|B) = \frac{P(B|A_i)P(A_i)}{P(B|A_i)P(A_i) + ... + P(B|A_k)P(A_k)}$

* Tom's Skill

STAT Ch6

Cumulative Prob. Function

$$F(X_0) = P(X \leq X_0) = \sum_{X \in X_0} P(X)$$

Cumulative p.d.f.

* Tom's Tips

Discrete Random Variable:

Tom's Tips

$$Var(X) =$$

Linear Transformation

H{a,b} G R,

* Tom's Tips

Sum and Diff

Var (X, + X2) =

* Tom's Tips

Jointly Distributed Discrete Random Variables $P(X+Y \le 1) \ne P(X \le 1 \text{ AND } Y \le 1)$ Marginal Prob. sum =

STAT Ch.7

Bernoulli Distribution

* Tom's Tips.

$$P(0) = (1 - p) P(1) = P$$

*E(x)=

Binomial Distribution X B(n,p)

$$p(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

* Tom's Tips

Multinomial Distribution

$$P = \frac{n!}{x_1! x_2!} P_1^{x_1} P_2^{x_2}$$

Hypergeometric Distribution

$$P(x) = \frac{\binom{r}{x}\binom{N-r}{n-x}}{\binom{N}{n}}$$

* Tom's Skill

* u = E(x) =

vs Binomial

n <5% ⇒ Binomia 1 ≈ Hypergeometric

if #=P

M=E(x)[Same]

Var(X) diff (N-n)

Binomial:

with/without

replacement

Hypergeometric: with/without replacement

Greometric Distribution $P(1-p)^{x-1}$

Var(x)=

Poisson Distribution $p(x) = \frac{\lambda^x e^{-\lambda}}{x!}$

*E(x)=入: で

* Tom's Tips

* Tom's Tips

STAT Ch.8

Uniform Distribution X~U(a,b)

$$f(x) = \begin{cases} f(x) = \\ f$$

Exponential Distribution

$$P(X \leq X) = =$$

$$E(x) = =$$

$$V_{ar}(x) = =$$

Poisson
$$\iff$$
 Exponential

* Tom's Skill

Normal Distribution $X \sim N(\mu, \tau^2)$ Standard Normal $X \sim Z(0,1)$ $\frac{X-}{} = \frac{Z}{}$ percentile meaning:

Binomial under Normal Approximation

 $P(a \le x \le b) = P($ p(1-p) > -

* Tom's Tips

STAT Ch.9 Population sample mean: mean: 50: SD: Sampling Distribution of MEAN with replacement: A Tom's Tips Mx = without replacement Mx = J== $\frac{N}{N} \leq 5\%$ $\Rightarrow N_0$ need $\sqrt{\frac{N-n}{N-1}}$ *Tx: Standard error of the mean CLT X~N(Mx, Tx2) * Tom's Typs Mx = Sampling Variance $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$

* Tom's Skill (Graph)

* Tom's Tips (d.f.)

STAT Ch.10

Confidence Level * Tom Tips: (Graph)

(1- α)

Confidence Interval for μ (Ξ) σ^2 ?

normally distributed? $n \geqslant 30$? $\pi - Z_{d/2} \frac{\sigma}{J_n} < \mu < \overline{X} + Z_{d/2} \frac{\sigma}{J_n}$ * Tom's Tips: Graph

Confident Interval for
$$\mu$$
 (t)

 $t = \frac{1}{2} + \frac{1}{2}$

$$n = \frac{Z_{\alpha/2}^2 \sigma^2}{ME^2} \quad (ALWAYS ROUND UP)$$

Confident Interval for Vaur (X)

$$\chi_{n-1}^2 = \frac{(n-1)s^2}{\sqrt{s^2}}$$

$$\frac{(n-1)5^{2}}{\chi^{2}_{n-1,|\alpha|2}} < \sigma^{2} < \frac{(n-1)5^{2}}{\chi^{2}_{n-1,|1-(\alpha|2)}}$$