

BACKGROUND

OPTIMAL TRANSPORT BETWEEN WORD EMBEDDINGS

Treat embeddings as support points of discrete distribution

- ▶ But this assumes the two spaces are *registered* (~axes are in correspondence)
- Not true in general for word embeddings in different languages!

[Kusner et al. 2015; Zhang et al . 2017]

$d(\mathbf{x}^{(i)}, \mathbf{y}^{(j)})$ meaningful

$d(\mathbf{x}^{(i)}, \mathbf{y}^{(j)})$ meaningless

(identical under word embedding objective)

OPTIMAL TRANSPORT BETWEEN WORD EMBEDDINGS

Treat embeddings as support points of discrete distribution

- ▶ But this assumes the two spaces are *registered* (~axes are in correspondence)
- Not true in general for word embeddings in different languages!

TAILORING OT TO UNREGISTERED SPACES: APPROACH 1

