Research Methods

Hypothesis Testing 2

Dr. Sven Magg, Prof. Dr. Stefan Wermter

http://www.informatik.uni-hamburg.de/WTM/

Plan for today!

- 1. t-Tests and t-distribution
- 2. Test hypotheses about correlations
- 3. What does the p-Value mean
- 4. How to correctly use the p-Value
- 5. Can samples be too big?

Recap: Z-Test

- The Z-Test does 3 things:
 - Estimates the sampling distribution of the mean
 - Transform this distribution into a standard normal distribution
 - Express sample mean \bar{x} as Z standard deviations from μ
- Z-Score: $Z = \frac{(\bar{x} \mu)}{\sigma_{\bar{x}}}, \ \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{N}}$
- Find critical values: $p \le 0.05$, 2-tailed $\Rightarrow \bar{x}_{crit} = \mu \pm 1.96 \sigma_{\bar{x}}$
- What if I don't know the population's standard deviation σ ?
 - We can estimate it from the sample standard deviation s:

$$\hat{\sigma} = s$$

$$\widehat{\sigma}_{ar{\chi}} = rac{\widehat{\sigma}}{\sqrt{N}}$$

t-Test

- What can we do if we have a sample with a size smaller than 30?
- Set of sampling distributions for small N: t-distributions

$$t = \frac{\mathbf{t\text{-}Score}}{\hat{\sigma}_{\bar{x}}} = \frac{(\bar{x} - \mu)}{s/\sqrt{N}}$$

- Look up t-score in a table for distribution with corresponding degrees of freedom
- For tests with one mean:

0.35

0.3

0.25

t-Test

Calculate t-score for 2-tailed test of size 5:

o for	Two Sided	50%	60%	70%	80%	90%	95%	98%	99%	99.5%	99.8%	99.9%
e for	1	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	127.3	318.3	636.6
ize 5:	2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	14.09	22.33	31.60
	3	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	7.453	10.21	12.92
$\mu = 1.$	4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
$\bar{x}=4.$	5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
70 113												
3.	∞	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291
$t = \frac{1.5}{1.5}$	=2.	33								from W	⁄ikipec	dia.com

One Sided 75% 80% 85% 90% 95% 97.5% 99% 99.5% 99.75% 99.99 99.95

- We can only reject with $p \le .1$ (with Z-Test: p=.02)
- Two-sample t-Test
 - What if we have two means and want to see whether they are drawn from two different populations?
 - Common test in many experiments

Two-Sample t-Test

- H_0 : $\mu_1 = \mu_2$
- H_1 : $\mu_1 \neq \mu_2$ (two-tailed test) or $\mu_1 > \mu_2$ (one-tailed test)

$$t = \frac{\bar{x}_1 - \bar{x}_2}{\widehat{\sigma}_{\overline{x}}}$$

Which $\hat{\sigma}_{\bar{x}}$ to use??

Let's remember what the sample standard deviation was:

$$\hat{\sigma}_{\bar{x}} = \frac{S}{\sqrt{N}} = \sqrt{S^2/N}, \qquad S^2 = \frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N-1} = \frac{SS}{df}$$

• Under H_0 , all values were drawn from the same population, i.e. the variances have to be pooled

Pooled Variance

$$s_{pooled}^{2} = \frac{\sum_{i=1}^{k} (N_{i} - 1)s_{i}^{2}}{\sum_{i=1}^{k} (N_{i} - 1)} = \frac{(N_{1} - 1)s_{1}^{2} + (N_{2} - 1)s_{2}^{2}}{N_{1} + N_{2} - 2}$$

$$\hat{\sigma}_{pooled} = \sqrt{\frac{S_{pooled}^2}{N_1 + N_2}}$$

Example:

- $\bar{x}_1 = 87$, $s_1 = 5.7$, $N_1 = 23$
- $\bar{x}_2 = 95$, $s_2 = 3.2$, $N_2 = 15$
- $s_{pooled}^2 = \frac{(22)32.49 + (14)10.24}{36} = 23.837$, $\hat{\sigma}_{pooled} = 0.792$
- $t = \frac{\bar{x}_1 \bar{x}_2}{\hat{\sigma}_{pooled}} = \frac{-8}{0.792} = -10.1 \ (p = 4.7 * 10^{-12})$

Paired t-Test

- Assume you have two algorithms A and B and want to compare performance
- One testing strategy:
 - Select 10 random tests for each $T_1 T_{10}$ and $T_{11} T_{21}$
 - Calculate means and standard deviation for both
 - Run 2-Sample t-Test
- Better strategy:
 - Run both algorithms on the same 10 tests
 - Calculate differences δ in performance for each test
 - Calculate mean \bar{x}_{δ} and s_{δ} standard deviation
 - $H_0: \mu_{\delta} = 0, \ H_1: \mu_{\delta} = k$

Paired t-Test

- Use a paired t-Test when the samples are dependent
 - Same sample has been tested twice
 - Samples have been matched into meaningful groups
- Now run 1-Sample t-Test using \bar{x}_{δ} , s_{δ} and N_{δ} :

$$t = \frac{(\bar{x}_{\delta} - \mu_{\delta})}{s_{\delta} / \sqrt{N_{\delta}}}$$

- N_{δ} is number of pairs and $df = N_{\delta} 1$
- This way we can reduce the variance due to test problems
- ⇒ Boosting significance by reducing variance of tests

t-Test Summary

- Can be used for all sample sizes, for larger N it approaches the Z-distribution
- Common usage: Comparing two means
- Parametric Test!
 - Assumptions:
 - samples are drawn from normal distribution
 - samples are independent
 - sample variances are equal
 - Pretty robust against violations of normality
 - Pretty robust to variance heterogeneity if sample sizes equal
 - Not robust to violations of independency!

Correlations

Pearson's Correlation Coefficient

$$r_{XY} = \frac{cov(x, y)}{s_X s_Y} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{(n-1)s_X s_Y}$$

- r_{XY} is a value between -1 and 1 and is a measure of linear association between two variables X and Y
- Used to test independence of two variables
- Can we test the hypothesis that the correlation is zero?
- We need a sampling distribution of the correlation coefficient! Complicated!
- We can get them by empirical sampling or transformation

Fisher's r-transform

$$z(r_{XY}) = 0.5 ln \frac{1 + r_{XY}}{1 - r_{XY}}$$

- Transforms r_{XY} to produce a sampling distribution which is approximately normal
 - Assumption: The variables are normally distributed
- Mean: $z(\rho) = 0.5 ln \frac{1+\rho}{1-\rho}$, where ρ denotes the population correlation
- Estimated standard error: $\hat{\sigma}_{z(r)} = \frac{1}{\sqrt{n-3}}$
- Now we can test the hypothesis $H_0: \rho_{XY} = 0$ or $H_0: \rho_{XY} = k$

Fisher's r-transform

- Height and weight of 33 students
- Correlation Coefficient:

$$r_{XY} = (\ \)_{75}$$

$$z(r_{XY}) = 0.5 ln \frac{1+0.64}{1-0.64} = 0.759$$

$$\hat{\sigma}_{z(r)} = \frac{1}{\sqrt{n-3}} = \frac{1}{\sqrt{30}} = 0.183$$

• Now we can use a Z-Test to test our H_0 : $\rho_{XY} = 0$

$$Z = \frac{(z(r_{XY}) - z(\rho))}{\hat{\sigma}_{z(r)}} = \frac{0.759 - 0}{0.183} = 4.16$$

Clearly outside our critical values of +/- 1.96 (p=.00003)

Recap

- We defined a general process with 5 steps
 - 1. State null Hypothesis H_0
 - Gather a sample statistic (run experiment)
 - 3. Find sampling distribution N_h , assuming H_0 is true
 - 4. Calculate p-value using the sampling distribution N_h
 - 5. Use p-value as evidence against H_0
 - We need a hypothesis which is falsifiable in practice
- One problem is to find the sampling distribution
- Levels commonly used for rejection of H₀: p=.05 and p=.01

Recap

- We also defined another process using cut-off points
 - 1. State null Hypothesis H_0 and alternate hypothesis H_1
 - 2. Gather a sample statistic x (run experiment)
 - 3. Find sampling distribution, assuming H_0 is true
 - 4. Set maximum acceptable probability α
 - Find cut-off points c^+ and c^- such that $P(N_h \ge c^+) + P(N_h \le c^-) \le \alpha$
 - 5. Decide: If $(x \ge c^+)$ or $(x \le c^-)$, reject H_0
 - Reject H_0 if x falls into rejection regions defined by α
- Common levels for α : α =.05 or α =.01

History excursion

- "Early" Ronald Fisher [1925]
 - Inductive inference: Use direct probability P(Data| H₀)
 - Only use a Null-Hypothesis H₀
 - Use known distribution of a test statistic T, assuming H₀
 - Set significance level (.05/.01/.001) following a convention
 - Calculate p-value to check whether there is a significant (= backed by statistics) divergence
 - Significance value is a genuine feature of the test
- "Late" Ronald Fisher [1956]
 - Calculate exact p-value from the data
 - Significance level is a feature of the data themselves
 - No need for an arbitrary convention

History excursion

- Ronald Fisher combined
 - Use known distribution of a test statistic T, assuming H_0
 - Determine density of values that exceed observed value
 - Use p value as strength of evidence against H0
 - p-Value is sample-based measure of evidence against null hypothesis
 - We report exact p-value,
 NOT a decision

p-value	Strength of evidence			
0.100	Borderline (or weak)			
0.050	Moderate			
0.025	Substantial			
0.010	Strong			
0.005	Very Strong			
0.001	Overwhelming			

Neyman-Pearson

- Neyman-Pearson: [1928]
- Define H₀ and alternative Hypothesis H₁
- There are two errors you can make:
 - Type I: False rejection (probability α)
 - Type II: False acceptance (probability β)

	H_1 is true	H_0 is true
Reject H ₀	Correct Outcome Power (1-β) True Positive (TP)	Wrong Outcome Type I (α-)Error False Positive (FP) Significance Level
Accept H ₀	Wrong Outcome Type II (β-)Error False Negative (FN)	Correct Outcome Specificity (1-α) True Negative (TN)

Group Task!

Colour the regions for α, β,power and specificity

Group Task!

Colour the regions for α, β,power and specificity

α and β 0.4 0.3 0.25 0.2 0.2 0.2 0.2 0.3

Error probabilities:

$$P(Type\ I\ Error) = 0.15$$
 $P(Reject\ H_0|H_0\ true) = \alpha$
 $P(Type\ II\ Error) = 0.05$
 $P(Accept\ H_0|H_1\ true) = \beta^2$

- The power of the test $(= P(Accept H_1|H_1 true))$ is dependent on:
 - α, which is set a priori
 - the degree of separation between the two distributions given by $\delta = \mu_1 \mu_0$
 - the variance(s) of the population(s)
 - the sample size N

Power of a test

- Analogy
 - You are searching for an item in your room
 - Power: "What are your chances that you would find the item"
 - Depends on:
 - How long you are searching Sample Size
 - The size of the tool | Size of effect, i.e. degree of separation
 - The messiness of the room Standard deviation
 - There is a high chance to find a large item in a clean room if you spend a long time searching!
 - If you can't find it, you can be confident it wasn't there
 - Power of an experiment: If there really is an effect, how high are the chances that the experiment would find it?

How to get the power?

- Power often shown as power curves for one of the four parameters α , δ , variances (σ_1 and σ_2), and N
- Calculating the power of a test is usually difficult and tedious

 Statistical Power as a Function of Effect Size
- Using computers:
 - Fix all parameters but one
 - Draw samples from both populations
 - 3. Run the test and see whether you would reject H_0

- 4. Repeat 2.& 3. k times and calculate #rejections/k
- 5. Repeat 2.- 4. for all needed values of the free parameter

Neyman-Pearson

- First define α and β before running the test
- α and β are probabilities if making errors of type I / II in the long run and therefore features of the test
- Set α and β not by a convention but after a detailed costbenefit analysis of the consequences
- You have to think prior to the experiment about meaningful values for α and β
 - What are the consequences of making a type I or II error?
 - Values often used: α =.05 and β =.2 (= power of 80%)
 - Sometimes you want a power of almost 100% and can accept a high probability of errors of type I

Neyman-Pearson

- Rules of inductive behaviour
- Rule gives you decision (reject/accept H₀) without final statement whether we believe H₀ is true/false
- A optimal statistical test minimises β while keeping α at a set bound.
- Nowadays often mixed forms of Fisher/Neyman-Pearson is used
 - Report significance level (usually 1-3 stars or "ns") and exact p-value
 - Define α and use it to reject hypotheses after calculating p
 - Use a conventional α and β of 0.05 and .2
 - etc....

What should you do?

- Decide for one side of the debate!
- Either:
 - 1. Think about and set α and β **before** the test and report findings as significant or not, stating the significance level "There was a significant effect (α =.05)" or ".. ($p \le .01$)", etc.
 - 2. Calculate p-Value for the sample **after** the test and report exact p-Value without reporting a decision about H_0
- In the first case, think about the consequences of your errors.
- If you can't think of any: Use 2.

Sample Size

- You can increase the power of the test by increasing N
- But should you?
- We do not increase the confidence by increasing N!
 - If we want to estimate a parameter, sample size should be as large as you can afford
 - If we want to test a hypothesis, samples should be no larger than required to show the effect
- If we test a hypothesis and are confident to reject H₀ with sample size N, we don't gain anything by increasing N
- On the contrary.....

Sample Size

- Can samples be too big?
- By increasing N you can
 - boost any real effect to significance
 - boost any meaningless effect to significance
- Do not fish for significance!
- What we want to know: How much predictive power does our result have?
- In other words: Does knowing which population the sample came from give us the power to predict it's value?

Sample size

- Example from Cohen
- t = 2.468 with 1998 degrees of freedom

Sample	\overline{x}	S	N	
Α	147.95	11.10	1000	
В	146.77	10.16	1000	
A&B	147.36		2000	

- Significant difference $(p \le .05)$
- If I hand you one sample from A and let you guess whether it is above the combined mean A&B, how well would you do?
- 517 values from A exceed the combined mean
- 464 from B do as well
- You would guess correctly for 51.7% of samples!
- If you don't know the origin of the sample: 50%

Sample Size

- We can roughly estimate predictive power
- If we know (or can estimate):
 - the population variances σ_A^2 and σ_B^2 of populations A & B
 - The variance σ_P^2 of the combined population
- then predictive power means reduction in variance from knowing the population
- Relative reduction by knowing sample is from A:

$$\omega^2 = \frac{\sigma_P^2 - \sigma_A^2}{\sigma_P^2}$$

- If $\omega^2 = 0$, then $\sigma_P^2 = \sigma_A^2$ and no prediction is possible
- $\omega^2 = 1$ means no variance in the population, i.e. perfect prediction

Sample Size

- We can only estimate ω^2 since we try to find the population parameters!
- If both variances are equal for both populations, a rough estimate is:

$$\widehat{\omega}^2 = \frac{t^2 - 1}{t^2 + N_1 + N_2 - 1}$$

- In the example: $\widehat{\omega}^2$ =0.0025
- If we would have drawn only 100 samples each: $\hat{\omega}^2$ =0.027
- Increasing N decreases the predictive power and therefore the meaningfulness of significant findings

What have we learned?

- 1. How to use a t-Test for low numbers of samples
- 2. How to test hypothesis about two means
- Test hypothesis about correlations with Fisher's r-transform
- 4. Fisher's testing strategy using sample-based p-values
- 5. Neyman-Pearson's strategy to set α and β
- 6. We know now how to report significance (or when not)
- 7. Increasing sample size will increase the chance to find effects where there are none!