Red-Black Trees

Letícia Rodrigues Bueno

Federal University of ABC (UFABC)

• **Purpose:** providing basic operations in time $O(\lg n)$ in the worst case;

- **Purpose:** providing basic operations in time $O(\lg n)$ in the worst case;
- Red-Black Trees: binary search trees with an extra bit in each node to the color (red or black);

- **Purpose:** providing basic operations in time $O(\lg n)$ in the worst case;
- Red-Black Trees: binary search trees with an extra bit in each node to the color (red or black);
- Height: at most 2 lg(n+1) where n is the number of nodes;

- **Purpose:** providing basic operations in time $O(\lg n)$ in the worst case;
- Red-Black Trees: binary search trees with an extra bit in each node to the color (red or black);
- Height: at most 2 lg(n+1) where n is the number of nodes;
- Insertion and deletion have time O(lg n);

- **Purpose:** providing basic operations in time $O(\lg n)$ in the worst case;
- Red-Black Trees: binary search trees with an extra bit in each node to the color (red or black);
- Height: at most 2 lg(n+1) where n is the number of nodes;
- Insertion and deletion have time O(lg n);
- The path from the root to the farthest leaf is no more than twice as long as the path from the root to the nearest leaf.

Comparison of Balanced Trees

Balanced Trees

$$h \geq 1 + \lfloor \log_2 n \rfloor$$

$$h \leq \frac{1}{\log_2 a} \cdot \log_2(n+1) + \log_a \sqrt{5}$$

$$h = 1 + \lfloor \log_2 n \rfloor \quad \text{where } a = (\frac{1+\sqrt{5}}{2})$$

RN

$$1 + \lfloor \log_2 n \rfloor \le h \le 2 \log_2 (n+1)$$

• A Red-Black tree is a binary search tree (BST) satisfying:

- A Red-Black tree is a binary search tree (BST) satisfying:
 - 1. Every external node is black;

- A Red-Black tree is a binary search tree (BST) satisfying:
 - Every external node is black;
 - For each node, all paths from a node to the leaves have the same number of black nodes;

- A Red-Black tree is a binary search tree (BST) satisfying:
 - Every external node is black;
 - For each node, all paths from a node to the leaves have the same number of black nodes;
 - 3. If a node is red, then both child nodes are black.

Example of Red-Black Tree

Node inserted *q* is red. Possibilities:

Case 1: v is black

Node inserted *q* is red. Possibilities:

Case 1: v is black

Node inserted *q* is red. Possibilities:

Case 2: v is red. Therefore, w (parent of v) is black.

Case 2.1: *t* is red;

We modify the color of v, t, w.

Node inserted *q* is red. Possibilities:

Case 2: v is red. Therefore, w (parent of v) is black.

Case 2.1: *t* is red;

We modify the color of v, t, w.

Node inserted *q* is red. Possibilities:

Case 2: v is red. Therefore, w (parent of v) is black.

Case 2.1: *t* is red;

We modify the color of v, t, w.

Case 2.2.1: q is the left child of v, and v is the left child of w. Change the color of v and w.

Case 2.2.1: q is the left child of v, and v is the left child of w. Change the color of v and w.

Case 2.2.2: q is the right child of v, and v is the left child of w. Change color of q and w.

Case 2.2.2: q is the right child of v, and v is the left child of w. Change color of q and w.

Case 2.2.3: q is the right child of v, and v is the right child of w. Change color of v and w.

Case 2.2.3: q is the right child of v, and v is the right child of w. Change color of v and w.

Case 2.2.4: q is the left child of v, and v is the right child of w. Change color of q and w.

Case 2.2.4: q is the left child of v, and v is the right child of w. Change color of q and w.

Red-Black Trees: insertion algorithm

```
InsertionRB(x, ptv, ptw, ptr, a):
        if ptv = external then
 2
 3
             new(ptv)
             ptv \uparrow .left \leftarrow ptv \uparrow .right \leftarrow external
 5
             ptv \uparrow .kev \leftarrow x; ptv \uparrow .color \leftarrow R
 6
            if ptroot = external then
                 ptv \uparrow .color \leftarrow B; ptroot \leftarrow ptv
 8
             else if x < ptw \uparrow .key then
                 ptw \uparrow .left \leftarrow ptv
             else ptw \uparrow .right \leftarrow ptv
10
        else if x \neq ptv \uparrow .key then
11
             if x < ptv \uparrow .key then ptq \leftarrow ptv \uparrow .left
12
             else ptq \leftarrow ptv \uparrow .right
13
14
                 InsertionRB(x, ptq, ptv, ptw, a)
                 if a = 1 then route(ptq, ptv, ptw, ptr, a)
15
                 else if a=0 then a=1
16
17
                 else "Invalid Insertion"
```

1. AVL Trees:

1. AVL Trees:

1.1 first self-balancing binary search tree, proposed by Adel'son-Vel'skii and Landis in 1962;

1. AVL Trees:

- 1.1 first self-balancing binary search tree, proposed by Adel'son-Vel'skii and Landis in 1962;
- **1.2 height:** between $\log_2(n+1)$ and 1.4404 $\log_2(n+2) 0.328$, therefore, $O(\log n)$;

1. AVL Trees:

- 1.1 first self-balancing binary search tree, proposed by Adel'son-Vel'skii and Landis in 1962;
- **1.2 height:** between $\log_2(n+1)$ and 1.4404 $\log_2(n+2) 0.328$, therefore, $O(\log n)$;
- 2. Red-Black Trees:

1. AVL Trees:

- 1.1 first self-balancing binary search tree, proposed by Adel'son-Vel'skii and Landis in 1962;
- **1.2 height:** between $\log_2(n+1)$ and 1.4404 $\log_2(n+2) 0.328$, therefore, $O(\log n)$;

2. Red-Black Trees:

2.1 proposed by Guibas and Sedgewick in 1978;

1. AVL Trees:

- 1.1 first self-balancing binary search tree, proposed by Adel'son-Vel'skii and Landis in 1962:
- **1.2 height:** between $\log_2(n+1)$ and 1.4404 $\log_2(n+2) 0.328$, therefore, $O(\log n)$;

2. Red-Black Trees:

- 2.1 proposed by Guibas and Sedgewick in 1978;
- **2.2 height:** $2 \log_2(n+1)$, therefore, $O(\log n)$;

1. AVL Trees:

- 1.1 first self-balancing binary search tree, proposed by Adel'son-Vel'skii and Landis in 1962:
- **1.2 height:** between $\log_2(n+1)$ and 1.4404 $\log_2(n+2) 0.328$, therefore, $O(\log n)$;

2. Red-Black Trees:

- 2.1 proposed by Guibas and Sedgewick in 1978;
- **2.2 height:** $2 \log_2(n+1)$, therefore, $O(\log n)$;

Comparison: AVL trees are more strictly balanced than Red-Black trees, making insertion and deletion slower but retrieval (search) faster;

- 1. Prove or give a counterexample:
 - 1.1 Every complete tree is AVL.
 - 1.2 Every AVL tree is complete.
 - **1.3** Every AVL tree is red-black.
 - **1.4** Every red-black tree is AVL.
 - **1.5** Every complete tree is red-black.
 - **1.6** Every red-black tree is complete.

2. Show that, in a Red-Black tree, the longest path from a node *x* to a leaf has length at most twice the length of the shortest path from *x* to a leaf.

- 2. Show that, in a Red-Black tree, the longest path from a node *x* to a leaf has length at most twice the length of the shortest path from *x* to a leaf.
- **3.** Give an example of insertion in a Red-Black tree whose recoloring of nodes propagates up to the root.

- 2. Show that, in a Red-Black tree, the longest path from a node *x* to a leaf has length at most twice the length of the shortest path from *x* to a leaf.
- **3.** Give an example of insertion in a Red-Black tree whose recoloring of nodes propagates up to the root.
- **4.** Write the procedure of deletion for Red-Black trees.

- 2. Show that, in a Red-Black tree, the longest path from a node *x* to a leaf has length at most twice the length of the shortest path from *x* to a leaf.
- **3.** Give an example of insertion in a Red-Black tree whose recoloring of nodes propagates up to the root.
- 4. Write the procedure of deletion for Red-Black trees.
- Prove or give a counterexample: given a Red-Black tree with a red root, if we change its color for black, the resulting tree is still a Red-Black tree.

Bibliography

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L. and STEIN, C. *Introduction to Algorithms*, 3rd edition, MIT Press, 2009. SZWARCFITER, J. L. and MARKENZON, L. Estruturas de Dados e seus Algoritmos, LTC, 1994. (in Portuguese)