EXTREMELE FUNCTIILOR DE DOUĂ VARIABILE

- **1.** Fie $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 + xy + y^2 4\ln x 10\ln y + 3$. Determinați punctele de extrem și calculați valorile funcției în aceste puncte.
- **2.** Fie $f:D\subseteq \mathbb{R}^2 \to \mathbb{R}$, $f(x,y)=x^3+y^3-6xy$.
 - a) Pentru $D=\mathbb{R}^2$, determinați punctele de extrem și calculați valorile funcției în aceste puncte ;
 - b) Pentru $D = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, x+y \le 5\}$ determinați valoarea minimă și maximă a funcției .
- **3.** Fie $f:D \subseteq \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = 3xy^2 x^3 15x 36y + 9$.
 - a) Pentru $D=\mathbb{R}^2$, determinați punctele de extrem și calculați valorile funcției în aceste puncte ;
 - b) Pentru $D = [-4, 4] \times [-3, 3]$ determinați valoarea minimă și maximă a funcției .
- **4.** Fie $f:D\subseteq \mathbb{R}^2 \to \mathbb{R}$, $f(x,y)=4xy-x^4-y^4$.
 - a) Pentru $D = \mathbb{R}^2$, determinați punctele de extrem și calculați valorile funcției în aceste puncte ;
 - b) Pentru $D = \lceil -1, 2 \rceil \times \lceil 0, 2 \rceil$ determinați valoarea minimă și maximă a funcției .
- **5.** Fie $f:D \subseteq \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^3 + 3x^2y 15x 12y$.
 - a) Pentru $D=\mathbb{R}^2$, determinați punctele de extrem și calculați valorile funcției în aceste puncte ;
 - b) Pentru $D = \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, y \ge 0, 3y + x \le 3\}$ determinați valoarea minimă și maximă a funcției .
- **6.** Fie $f:[0,1]\times[0,1]\to\mathbb{R}$, f(x,y)=xy(1-x-y). Să se determine valoarea minimă și maximă a funcției pe domeniul dat.
- **7.** Fie $f:(-\infty,0)\times(0,+\infty)\to\mathbb{R}$, $f(x,y)=x^4+y^4-2x^2+4xy-2y^2$. Determinați punctele de extrem și calculați valorile funcției în aceste puncte.
- **8.** Fie $f:(0,+\infty)\times(0,+\infty)\to\mathbb{R}$, $f(x,y)=4x^2+\frac{2}{xy^2}+y^2$. Determinați punctele de extrem și calculați valorile funcției în aceste puncte.
- **9.** Fie $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$, $f\left(x,y\right)=x^3+8y^3-2xy$. Pentru $D=\left\{\left(x,y\right)\in\mathbb{R}^2\ \middle|\ x\geq 0,\ y\geq 0,\ y+2x\leq 2\right\}$ determinați valoarea minimă și maximă a funcției .
- **10.**Fie $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$, $f(x,y)=x^4+y^3-4x^3-3y^2+3y$. Pentru $D=\left\{(x,y)\in\mathbb{R}^2\ \middle|\ x^2+y^2<4\right\}$ determinați punctele de extrem ale funcției.

Indicații și soluții

1. Se impun condiții de existență pentru logaritmi și se stabilește $D = (0, +\infty) \times (0, +\infty)$. Se determină

punctele critice, rezolvând sistemul:
$$\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases}$$
 care conduce la ecuația bipătrată $3y^4 - 37y^2 + 100 = 0$, cu

soluțiile (în D) y=2 și $y=\frac{5\sqrt{3}}{3}$; Se obține un singur punct critic în D, $\left(x_0,y_0\right)=\left(1,2\right)$. Elementele matricei hessiene sunt $r_0=\frac{\partial^2 f}{\partial x^2}=2+\frac{4}{x^2}$, $t_0=\frac{\partial^2 f}{\partial y^2}=2+\frac{10}{y^2}$ și $s_0=\frac{\partial^2 f}{\partial x \partial y}=1$; Pentru punctul $\left(x_0,y_0\right)=\left(1,2\right)$ obținem $r_0=6>0$ și $r_0t_0-s_0^2=26>0$, deci punctul critic $\left(x_0,y_0\right)=\left(1,2\right)$ este punct de minim local și $f\left(1,2\right)=10\left(1-\ln 2\right)$.

2a. Se determină punctele critice, rezolvând sistemul: $\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases}$ care conduce la ecuația $y \left(\frac{1}{4} y^3 - 2 \right) = 0$,

cu soluțiile y=0 și y=2; Se obțin punctele critice $\left(x_0,y_0\right)=\left(0,0\right)$ și $\left(x_1,y_1\right)=\left(2,2\right)$. Elementele matricei hessiene sunt $r_0=\frac{\partial^2 f}{\partial x^2}=6x$, $t_0=\frac{\partial^2 f}{\partial y^2}=6y$ și $s_0=\frac{\partial^2 f}{\partial x \partial y}=-6$; Pentru punctul $\left(x_0,y_0\right)=\left(0,0\right)$ avem $r_0=0$ și $r_0t_0-s_0^2=-36<0$, deci $\left(x_0,y_0\right)=\left(0,0\right)$ nu e punct de extrem. Pentru $\left(x_1,y_1\right)=\left(2,2\right)$ avem $r_0=12>0$ și $r_0t_0-s_0^2=108>0$, deci $\left(x_1,y_1\right)=\left(2,2\right)$ este punct de minim local și $f\left(2,2\right)=-8$.

2b. Reprezentați grafic domeniul D. Pentru $\operatorname{Int}(D) = \left\{ \left(x,y\right) \in \mathbb{R}^2 \mid x>0, \ y>0, \ x+y<5 \right\}$, folosim **2a.** și $\left(x_0,y_0\right) = \left(0,0\right) \not\in \operatorname{Int}D$ iar $\left(x_1,y_1\right) = \left(2,2\right) \in \operatorname{Int}(D)$ este punct de minim, cu f(2,2) = -8.

Pentru y=0 și $x\in [0,5]$ studiem variația funcției $f\left(x,0\right)=g_1\left(x\right)=x^3$; Se obține $f\left(0,0\right)=g_1\left(0\right)=0$ și $f\left(5,0\right)=g_1\left(5\right)=125$.

Pentru x=0 și $y\in [0,5]$ studiem variația funcției $f\left(0,y\right)=g_{2}\left(y\right)=y^{3}$; Se obține $f\left(0,0\right)=g_{2}\left(0\right)=0$ și $f\left(0,5\right)=g_{2}\left(5\right)=125$.

Pentru $x \ge 0$, $y \ge 0$ și x + y = 5 studiem variația funcției $f\left(x, 5 - x\right) = g_3\left(x\right) = 21x^2 - 105x + 125$; Se obține $f\left(0, 5\right) = g_3\left(0\right) = 125$, $f\left(2.5, 2.5\right) = g_3\left(2.5\right) = -6.25$ și $f\left(5, 0\right) = g_3\left(5\right) = 125$.

Obţinem rezultatul final: $\max_{(x,y)\in D} f(x,y) = 125$ şi $\min_{(x,y)\in D} f(x,y) = -8$.

3a. Se determină punctele critice, rezolvând sistemul: $\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases}$ care conduce la ecuația bipătrată

 $y^4-5y^2-36=0$, cu soluțiile y=3 și y=-3; Obținem punctele critice $\left(x_0,y_0\right)=\left(2,3\right)$ și $\left(x_1,y_1\right)=\left(-2,-3\right)$. Elementele matricei hessiene: $r_0=\frac{\partial^2 f}{\partial x^2}=6x$, $t_0=\frac{\partial^2 f}{\partial y^2}=6x$ și $s_0=\frac{\partial^2 f}{\partial x\partial y}=6y$;

Pentru $(x_0,y_0)=(2,3)$ avem $r_0=12>0$ și $r_0t_0-s_0^2<0$, deci $(x_0,y_0)=(2,3)$ nu e punct de extrem. Pentru $(x_1,y_1)=(-2,-3)$ avem $r_0=-12<0$ și $r_0t_0-s_0^2<0$, deci $(x_1,y_1)=(-2,-3)$ nu este punct de extrem

3b. Reprezentați grafic domeniul D. Pentru $\operatorname{Int}(D) = \left(-4,4\right) \times \left(-3,3\right)$, folosim **3a.** și nu avem puncte de extrem în interiorul domeniului.

Pentru y=-3 și $x\in [-4,4]$ studiem variația funcției $f\left(x,-3\right)=g_1\left(x\right)=-x^3+12x+117$; Se obține $f\left(-4,-3\right)=g_1\left(-4\right)=133$, $f\left(-2,-3\right)=g_1\left(-2\right)=101$, $f\left(2,-3\right)=g_1\left(2\right)=133$ și $f\left(4,-3\right)=g_1\left(4\right)=101$.

Pentru x=4 și $y\in [-3,3]$ studiem variația funcției $f\left(4,y\right)=g_{2}\left(y\right)=12y^{2}-36y-115$; Se obține $f\left(4,-3\right)=g_{2}\left(-3\right)=101$, $f\left(4,\frac{3}{2}\right)=g_{2}\left(\frac{3}{2}\right)=-142$ și $f\left(4,3\right)=g_{2}\left(3\right)=-115$.

Pentru y=3 și $x\in [-4,4]$ studiem variația funcției $f\left(x,3\right)=g_{3}\left(x\right)=-x^{3}+12x-99$; Se obține $f\left(-4,3\right)=g_{3}\left(-4\right)=-83$, $f\left(-2,3\right)=g_{3}\left(-2\right)=-115$, $f\left(2,3\right)=g_{3}\left(2\right)=-83$ și $f\left(4,3\right)=g_{3}\left(4\right)=-115$.

Pentru x = -4 și $y \in \left[-3,3 \right]$ studiem variația funcției $f\left(-4,y \right) = g_4\left(y \right) = -12y^2 - 36y + 133$; Se obține $f\left(-4,-3 \right) = g_4\left(-3 \right) = 133$, $f\left(-4,-\frac{3}{2} \right) = g_4\left(-\frac{3}{2} \right) = 160$ și $f\left(-4,3 \right) = g_4\left(3 \right) = -83$.

Obţinem ca rezultat final: $\max_{(x,y)\in D} f(x,y) = 160$ și $\min_{(x,y)\in D} f(x,y) = -142$.

4a. Se determină punctele critice, rezolvând sistemul: $\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases}$ care conduce la ecuația $x(1-x^8) = 0$, cu

soluțiile x=0, x=1 și x=-1; Se obțin punctele critice $(x_0,y_0)=(0,0)$, $(x_1,y_1)=(-1,-1)$ și $(x_2,y_2)=(1,1)$. Elementele matricei hessiene: $r_0=\frac{\partial^2 f}{\partial x^2}=-12x^2$, $t_0=\frac{\partial^2 f}{\partial y^2}=-12y^2$ și $s_0=\frac{\partial^2 f}{\partial x\partial y}=4$; Pentru $(x_0,y_0)=(0,0)$ avem $r_0=0$ și $r_0t_0-s_0^2<0$, deci $(x_0,y_0)=(0,0)$ nu e punct de extrem. Pentru $(x_1,y_1)=(-1,-1)$ avem $r_0=-12<0$ și $r_0t_0-s_0^2=128>0$, deci $(x_1,y_1)=(-1,-1)$ este punct de maxim local și f(-1,-1)=2. Pentru $(x_2,y_2)=(1,1)$ avem $r_0=-12<0$ și $r_0t_0-s_0^2=128>0$, deci $(x_2,y_2)=(1,1)$ este punct de maxim local și f(1,1)=2.

4b. Reprezentați grafic domeniul D. Pentru $\operatorname{Int}(D) = \left(-1,2\right) \times \left(0,2\right)$, folosim **4a.** și avem $\left(x_2,y_2\right) = \left(1,1\right)$ punct de extrem (maxim) în interiorul domeniului, cu $f\left(1,1\right) = 2$.

Pentru y=0 și $x\in [-1,2]$ studiem variația funcției $f\left(x,0\right)=g_1\left(x\right)=-x^4$; Se obține $f\left(-1,0\right)=g_1\left(-1\right)=-1$, $f\left(0,0\right)=g_1\left(0\right)=0$ și $f\left(2,0\right)=g_1\left(2\right)=-16$;

Pentru x=2 și $y\in \left[0,2\right]$ studiem variația funcției $f\left(2,y\right)=g_{2}\left(y\right)=-y^{4}+8y-16$; Se obține $f\left(2,0\right)=g_{2}\left(0\right)=-16$, $f\left(2,\sqrt[3]{2}\right)=g_{2}\left(\sqrt[3]{2}\right)=6\sqrt[3]{2}-16$ și $f\left(2,2\right)=g_{2}\left(3\right)=-16$;

Pentru y=2 și $x \in [-1,2]$ studiem variația funcției $f(x,2)=g_3(x)=-x^4+8x-16$; Se obține $f(0,2)=g_3(0)=-16$, $f(\sqrt[3]{2},2)=g_3(\sqrt[3]{2})=6\sqrt[3]{2}-16$ și $f(2,2)=g_3(2)=-16$;

Pentru x=-1 și $y\in \left[0,2\right]$ studiem variația funcției $f\left(-1,y\right)=g_4\left(y\right)=-y^4-4y-1$; Se obține $f\left(-1,0\right)=g_4\left(0\right)=-1$ și $f\left(-1,2\right)=g_4\left(2\right)=-25$.

Obţinem ca rezultat final: $\max_{(x,y)\in D} f(x,y) = 2$ şi $\min_{(x,y)\in D} f(x,y) = -25$.

5a. Se determină punctele critice, rezolvând sistemul: $\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases}$ care conduce la ecuația $x^2 = 4$, cu soluțiile

x=2 și x=-2; Se obțin punctele critice $\left(x_0,y_0\right)=\left(2,\frac{1}{4}\right)$ și $\left(x_1,y_1\right)=\left(-2,-\frac{1}{4}\right)$. Elementele matricei

 $\text{hessiene:}\quad r_0 = \frac{\partial^2 f}{\partial x^2} = 6x + 6y \quad \text{,} \quad t_0 = \frac{\partial^2 f}{\partial y^2} = 0 \quad \text{si} \quad s_0 = \frac{\partial^2 f}{\partial x \partial y} = 6x \; \text{;} \quad \text{Pentru} \quad \left(x_0, y_0\right) = \left(2, \frac{1}{4}\right) \quad \text{avem} \quad \left(x_0, y_0\right) = \left(2, \frac{1}{4}\right) \quad \left(x_0, y_0\right) = \left(2, \frac{1$

 $r_{\!_{0}} = \frac{27}{2} > 0 \quad \text{ și } \quad r_{\!_{0}} t_{\!_{0}} - s_{\!_{0}}^2 = -144 < 0 \text{ , } \quad \text{deci} \quad \left(x_{\!_{0}}, y_{\!_{0}}\right) = \left(2, \frac{1}{4}\right) \quad \text{nu e punct de extrem. Pentru}$

de extrem.

5b. Reprezentați grafic domeniul D. Pentru $\operatorname{Int}(D) = \{(x,y) \in \mathbb{R}^2 \mid x > 0, \ y > 0, \ 3y + x < 3\}$, folosim **5a.** și nu avem puncte de extrem în interiorul domeniului.

Pentru y = 0 și $x \in [0,3]$ studiem variația funcției $f(x,0) = g_1(x) = x^3 - 15x$; Se obține $f(0,0) = g_1(0) = 0$, $f(\sqrt{5},0) = g_1(\sqrt{5}) = -10\sqrt{5}$ și $f(3,0) = g_1(3) = -18$.

Pentru x=0 și $y\in \left[0,1\right]$ studiem variația funcției $f\left(0,y\right)=g_{2}\left(y\right)=-12y$; Se obține $f\left(0,0\right)=g_{2}\left(0\right)=0$ și $f\left(0,1\right)=g_{2}\left(1\right)=-12$.

Pentru $x \ge 0$, $y \ge 0$ și 3y + x = 3 studiem variația funcției $f\left(x, -\frac{1}{3}x + 1\right) = g_3\left(x\right) = 3x^2 - 11x - 12$; Se

 $\text{obtine } f\left(0,1\right) = g_{3}\left(0\right) = -12 \text{ , } f\left(\frac{11}{6},\frac{7}{18}\right) = g_{3}\left(\frac{11}{6}\right) = -\frac{265}{12} \simeq -22.083 \text{ si } f\left(3,0\right) = g_{3}\left(3\right) = -18 \text{ .}$

Obţinem rezultatul final: $\max_{(x,y)\in D} f\left(x,y\right) = 0$ și $\min_{(x,y)\in D} f\left(x,y\right) = -10\sqrt{5} \simeq -22.360$.

6. Reprezentați grafic domeniul D.

Pentru $\operatorname{Int}(D) = \{(x,y) \in \mathbb{R}^2 \mid x \in (0,1), y \in (0,1)\}$, se determină punctele critice, rezolvând sistemul:

$$\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases}$$
 care conduce la ecuațiile $3x = 1$ și $y = 1 - 2x$ (atenție! Soluțiile $x = 0$ și $y = 0$ nu aparțin $\text{Int } D$)

Se obține punctul critic $(x_0,y_0)=\left(\frac{1}{3},\frac{1}{3}\right)\in \operatorname{Int} D$. Elementele matricei hessiene: $r_0=\frac{\partial^2 f}{\partial x^2}=-2y$,

 $t_0 = \frac{\partial^2 f}{\partial y^2} = -2x \quad \text{ și} \quad s_0 = \frac{\partial^2 f}{\partial x \partial y} = 1 - 2x - 2y \; ; \quad \text{Pentru} \quad \left(x_0, y_0\right) = \left(\frac{1}{3}, \frac{1}{3}\right) \quad \text{avem} \quad r_0 = -\frac{2}{3} < 0 \quad \text{ și}$ $r_0 t_0 - s_0^2 = \frac{1}{3} > 0 \; , \; \text{deci} \; \left(x_0, y_0\right) = \left(\frac{1}{3}, \frac{1}{3}\right) \quad \text{este punct de maxim local și} \quad f\left(\frac{1}{3}, \frac{1}{3}\right) = \frac{1}{27} \; .$

Pentru x = 0 și $y \in [0,1]$ avem f(0,y) = 0;

Pentru x=1 și $y\in [0,1]$ studiem variația funcției $f\left(1,y\right)=g_1\left(y\right)=-y^2$; Se obține $f\left(1,0\right)=g_1\left(0\right)=0$ și $f\left(1,1\right)=g_1\left(1\right)=-1$;

Pentru $x \in [0,1]$ și y = 0 avem f(x,0) = 0;

Pentru $x \in [0,1]$ și y=1 studiem variația funcției $f(x,1)=g_2(x)=-x^2$; Se obține $f(0,1)=g_2(0)=0$ și $f(1,1)=g_2(1)=-1$;

Obţinem rezultatul final: $\max_{(x,y)\in D} f(x,y) = \frac{1}{27}$ şi $\min_{(x,y)\in D} f(x,y) = -1$.

7. Se determină punctele critice, rezolvând sistemul: $\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases}$ care conduce la ecuațiile $y = x - x^3$ și $x^3 \left(2 - 3x^2 + 3x^4 - x^6 \right) = 0$. Consolutio este x = 0, iar equația binătrată se rezoluă folesind potația

 $x^3\left(2-3x^2+3x^4-x^6\right)=0\;;\;\;\text{O}\;\;\text{soluție}\;\;\text{este}\;\;x=0\;\;\text{iar}\;\;\text{ecuația}\;\;\text{bipătrată}\;\;\text{se}\;\;\text{rezolvă}\;\;\text{folosind}\;\;\text{notația}\\ x^2=t>0\;\;\text{și}\;\;\text{schema}\;\;\text{lui}\;\;\text{Horner}\;\;\text{pentru}\;\;\text{determinarea}\;\;\text{soluției}\;\;x=2\;;\;\;\text{Celelalte}\;\;\text{soluții}\;\;\text{sunt}\;\;x=-\sqrt{2}\;\;\text{și}\\ x=\sqrt{2}\;;\;\;\;\text{Se}\;\;\;\text{obțin}\;\;\;\text{punctele}\;\;\;\text{critice}\;\;\;\;(x_0,y_0)=(0,0)\not\in D\;,\;\;\;\;(x_1,y_1)=\left(\sqrt{2},-\sqrt{2}\right)\not\in D\;\;\;\text{și}\\ (x_2,y_2)=\left(-\sqrt{2},\sqrt{2}\right)\in D\;\;\;\text{Elementele}\;\;\text{matricei}\;\;\text{hessiene:}\;\;r_0=\frac{\partial^2 f}{\partial x^2}=12x^2-4\;\;,\;\;t_0=\frac{\partial^2 f}{\partial y^2}=12y^2-4\;\;\text{și}\\ s_0=\frac{\partial^2 f}{\partial x\partial y}=4\;;\;\;\;\text{Pentru}\;\;\;(x_2,y_2)=\left(-\sqrt{2},\sqrt{2}\right)\;\;\;\text{avem}\;\;\;r_0=20>0\;\;\;\text{și}\;\;\;\;r_0t_0-s_0^2=384>0\;,\;\;\;\text{deci}\\ (x_2,y_2)=\left(-\sqrt{2},\sqrt{2}\right)\;\;\text{este punct de minim local și}\;\;f\left(-\sqrt{2},\sqrt{2}\right)=-8\;.$

8. Se determină punctele critice, rezolvând sistemul: $\begin{cases} \frac{\partial f}{\partial x} = 0\\ \frac{\partial f}{\partial y} = 0 \end{cases}$ care conduce la ecuațiile $x = \frac{2}{y^4}$ și

 $x^3y^2 = \frac{1}{4} \quad \text{cu soluțiile} \quad y = -\sqrt{2} \quad \text{și} \quad y = \sqrt{2} \; ; \; \text{Se obțin punctele critice} \quad \left(x_0, y_0\right) = \left(\frac{1}{2}, -\sqrt{2}\right) \not\in D \quad \text{și} \quad \left(x_1, y_1\right) = \left(\frac{1}{2}, \sqrt{2}\right) \in D \; . \; \text{Elementele matricei hessiene:} \quad r_0 = \frac{\partial^2 f}{\partial x^2} = 8 + \frac{4}{x^2y^3} \quad , \quad t_0 = \frac{\partial^2 f}{\partial y^2} = \frac{12}{xy^4} + 2 \quad \text{și} \quad s_0 = \frac{\partial^2 f}{\partial x \partial y} = \frac{4}{x^2y^3} \; ; \quad \text{Pentru} \quad \left(x_1, y_1\right) = \left(\frac{1}{2}, \sqrt{2}\right) \quad \text{avem} \quad r_0 = 24 > 0 \quad \text{și} \quad r_0 t_0 - s_0^2 = 160 > 0 \; , \quad \text{deci} \quad \left(x_1, y_1\right) = \left(\frac{1}{2}, \sqrt{2}\right) \quad \text{este punct de minim local și} \quad f\left(\frac{1}{2}, \sqrt{2}\right) = 5 \; .$

9. Reprezentați grafic domeniul D.

Pentru $\operatorname{Int}(D) = \{(x,y) \in \mathbb{R}^2 \mid x > 0, y > 0, y + 2x < 2\}$, se determină punctele critice, rezolvând sistemul:

 $\begin{cases} \frac{\partial f}{\partial x} = 0\\ \frac{\partial f}{\partial y} = 0 \end{cases}$ care conduce la ecuațiile $x = 12y^2$ și $2y(216y^3 - 1) = 0$ cu soluțiile y = 0 și $y = \frac{1}{6}$. Se obțin

 $\text{punctele critice } \left(x_0,y_0\right) = \left(0,0\right) \not\in \operatorname{Int} D \quad \text{si} \quad \left(x_1,y_1\right) = \left(\frac{1}{3},\frac{1}{6}\right) \in \operatorname{Int} D \ . \quad \text{Elementele matricei hessiene:}$

$$r_0 = \frac{\partial^2 f}{\partial x^2} = 6x \quad \text{,} \quad t_0 = \frac{\partial^2 f}{\partial y^2} = 48y \quad \text{si} \quad s_0 = \frac{\partial^2 f}{\partial x \partial y} = -2 \; \text{;} \quad \text{Pentru} \quad \left(x_1, y_1\right) = \left(\frac{1}{3}, \frac{1}{6}\right) \quad \text{avem} \quad r_0 = 2 > 0 \quad \text{si} \quad \left(\frac{1}{3}, \frac{1}{6}\right) = \frac{\partial^2 f}{\partial x^2} = 48y \quad \text{si} \quad \left(\frac{1}{3}, \frac{1}{6}\right) = \frac{\partial^2 f}{\partial x^2} = 48y \quad \text{si} \quad \left(\frac{1}{3}, \frac{1}{6}\right) = \frac{\partial^2 f}{\partial x^2} = 48y \quad \text{si} \quad \left(\frac{1}{3}, \frac{1}{6}\right) = \frac{\partial^2 f}{\partial x^2} = 48y \quad \text{si} \quad \left(\frac{1}{3}, \frac{1}{6}\right) = \frac{\partial^2 f}{\partial x^2} = 48y \quad \text{si} \quad \left(\frac{1}{3}, \frac{1}{6}\right) = \frac{\partial^2 f}{\partial x^2} = 48y \quad \text{si} \quad \left(\frac{1}{3}, \frac{1}{6}\right) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial$$

$$r_0t_0-s_0^2=12>0 \text{ , deci } \left(x_1,y_1\right)=\left(\frac{1}{3},\frac{1}{6}\right) \text{ este punct de minim local \emptyset} \quad f\left(\frac{1}{3},\frac{1}{6}\right)=-\frac{1}{27} \,.$$

Pentru y=0 și $x\in [0,1]$ studiem variația funcției $f\left(x,0\right)=g_1\left(x\right)=x^3$; Se obține $f\left(0,0\right)=g_1\left(0\right)=0$ și $f\left(1,0\right)=g_1\left(1\right)=1$;

 $\begin{array}{lll} & \text{si} & f\left(1,0\right) = g_1\left(1\right) = 1 \,, \\ & \text{Pentru} & x = 0 \quad \text{si} & y \in \left[0,2\right] \quad \text{studiem} \quad \text{variația} \quad \text{funcției} \quad f\left(0,y\right) = g_2\left(y\right) = 8y^3 \,; \quad \text{Se} \quad \text{obține} \\ & f\left(0,0\right) = g_2\left(0\right) = 0 \,\,\text{si} \quad f\left(0,2\right) = g_2\left(2\right) = 64 \,; \end{array}$

Pentru $x \in [0,1]$ și y = -2x + 2 studiem variația funcției $f\left(x, -2x + 2\right) = g_3\left(x\right) = -63x^3 + 196x^2 - 196x + 64$; $g_3'\left(x\right) = -189x^2 + 392x - 196$ și are soluțiile (aproximate) $x_1 \simeq 0,84$ și $x_2 \simeq 1,23$. Se obține $f\left(0,2\right) = g_3\left(0\right) = 64$, $f\left(1,0\right) = g_3\left(1\right) = 1$ și $f\left(0.84,0.32\right) = g_3\left(0.84\right) \simeq 0.32$;

Obţinem rezultatul final: $\max_{(x,y)\in D} f(x,y) = 64$ şi $\min_{(x,y)\in D} f(x,y) = -\frac{1}{27}$.

10. Domeniul D este mulțime deschisă (interiorul discului centrat în origine și de rază 2). Se determină

punctele critice, rezolvând sistemul: $\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases}$ care conduce la ecuațiile $4x^3 - 12x^2 = 0$ și $3y^2 - 6y + 3 = 0$;

Se obțin punctele critice $(x_0,y_0)=(0,1)\in D$ și $(x_1,y_1)=(3,1)\not\in D$. Elementele matricei hessiene: $r_0=\frac{\partial^2 f}{\partial x^2}=12x^2-24x$, $t_0=\frac{\partial^2 f}{\partial y^2}=6y-6$ și $s_0=\frac{\partial^2 f}{\partial x\partial y}=0$; Pentru $(x_0,y_0)=(0,1)$ avem $r_0=0$ și $r_0t_0-s_0^2=0$, deci se va studia semnul diferenței f(x,y)-f(0,1) într-o vecinătate a punctului (0,1). Notăm $g(x,y)=f(x,y)-f(0,1)=x^3(x-4)+(y-1)^3$; Funcția $g(0,y)=(y-1)^3$ își schimbă semnul în jurul lui y=1, deci funcția g(x,y) nu păstrează semn constant într-o vecinătate a punctului $(x_0,y_0)=(0,1)$, deci acesta NU este punct de extrem. Concluzia este că funcția dată nu are puncte de extrem pe domeniul dat.