Data Structures Algorithm Efficiency

CS284

Objectives

- Algorithm efficiency
- Big-O notation for measuring algorithm efficiency
- Comparing efficiency

Algorithm Efficiency and Big-O

- Getting a precise measure of the performance of an algorithm is difficult
- Big-O notation expresses the performance of an algorithm as a function of the number of items to be processed
- ▶ This permits algorithms to be compared for efficiency
- It does so independently of the underlying compiler
- We're going to provide an informal introduction, more in CS 385 Algorithms

Linear Growth Rate

Processing time increases in proportion to the number of inputs n

```
public static int search(int[] x, int target) {
  for(int i=0; i<x.length; i++) {
    if (x[i]==target)
      return i;
  }
  return -1; // target not found
}</pre>
```

Linear Growth Rate

Processing time increases in proportion to the number of inputs n

```
public static int search(int[] x, int target) {
  for(int i=0; i<x.length; i++) {
    if (x[i]==target)
      return i;
  }
  return -1; // target not found
}</pre>
```

- ▶ Let *n* be x.length
- ▶ Target not present \Rightarrow for loop will execute *n* times
- ▶ Target present \Rightarrow for loop will execute (on average) (n+1)/2 times
- ▶ Therefore, the total execution time is directly proportional to *n*
- ▶ This is described as a growth rate of order n or $\mathcal{O}(n)$

n*m Growth Rate

Processing time can be dependent on two different inputs n and m

```
public static boolean areDifferent(int[] x, int[] y) {
  for(int i=0; i<x.length; i++) {
    if (search(y, x[i]) != -1)
      return false;
  }
  return true;
}</pre>
```

n*m Growth Rate

Processing time can be dependent on two different inputs n and m

```
public static boolean areDifferent(int[] x, int[] y) {
  for(int i=0; i<x.length; i++) {
    if (search(y, x[i]) != -1)
      return false;
  }
  return true;
}</pre>
```

- ► The for loop will execute x.length times
- ▶ But it will call search, which will execute y.length times
- ► The total execution time is proportional to (x.length * y.length)
- ▶ The growth rate has an order of n * m or $\mathcal{O}(n * m)$

Quadratic Growth Rate

Processing time proportional to square of number of inputs n

```
public static boolean areUnique(int[] x) {
   for(int i=0; i<x.length; i++) {
     for(int j=0; j<x.length; j++) {
      if (i != j && x[i] == x[j])
         return false;
     }
}
return true;
}</pre>
```

Quadratic Growth Rate

Processing time proportional to square of number of inputs n

```
public static boolean areUnique(int[] x) {
  for(int i=0; i<x.length; i++) {
    for(int j=0; j<x.length; j++) {
      if (i != j && x[i] == x[j])
         return false;
    }
}
return true;
}</pre>
```

- ▶ The for loop with i as index will execute x.length times
- ▶ The for loop with j as index will execute x.length times
- ► The total number of times the inner loop will execute is (x.length) ²
- ▶ The growth rate has an order of n^2 or $\mathcal{O}(n^2)$

Big-O Notation

- ► The O() in the previous examples can be thought of as an abbreviation of "order of magnitude"
- ► A simple way to determine the big-O notation of an algorithm is to look at the loops and to
 - see whether the loops are nested
 - consider the number of times a loop is executed
- Assuming a loop body consists only of simple statements and executes at most n times,
 - ▶ a single loop is $\mathcal{O}(n)$
 - ▶ a pair of nested loops is $\mathcal{O}(n^2)$
 - ▶ a nested pair of loops inside another is $\mathcal{O}(n^3)$
 - ▶ and so on . . .

Big-O Notation

You must also examine the number of times a loop is executed

```
for(int i=1; i < x.length; i *= 2) {
    // Do something with x[i]
}</pre>
```

► The loop body will execute *k* times, with *i* having the following values:

$$1, 2, 4, 8, 16, ..., 2^k$$

until 2^k is greater or equal to x.length

Lets deduce the value of k

$$2^{k-1} < x.length \le 2^k$$

 $\Rightarrow k-1 < \log_2(x.length) \le k$ (since $\log_2 2^k$ is k)
 $\Rightarrow k = \lceil \log_2(x.length) \rceil$

Big-O Notation

You must also examine the number of times a loop is executed

```
for(int i=1; i < x.length; i *= 2) {
    // Do something with x[i]
}</pre>
```

- $k = \lceil \log_2(x.length) \rceil$
- ▶ Thus we say the loop is $\mathcal{O}(\log_2 n)$
- ► Logarithmic functions grow slowly as the number of data items *n* increases

Different Growth Rates

Formal Definition of Big-O

- Nested loop executes Simple Statement *n*² times
- Loop executes 5 Simple
 Statements n times
- 25 Simple Statements are executed
- ► Conclusion: the relationship between processing time and *n* (number of data items processed) is:

```
\mathcal{T}(n) = n^2 + 5n + 25
```

```
\for (int i = 0; i < n; i++) {
    for (int j = 0; j < n; j++) {
             Simple Statement
  for (int i = 0; i < n; i++) {
     Simple Statement 1
     Simple Statement 2
     Simple Statement 3
     Simple Statement 4
     Simple Statement 5
12
  \Simple Statement 6
   Simple Statement 7
   Simple Statement 30
```

Why Not Compare Algorithms Using \mathcal{T} ?

- ▶ Comparing algorithms based on running time $\mathcal{T}(n)$ is not convenient
- lacktriangle The formulas describing ${\mathcal T}$ can be complicated
- It is better to bound T by another function
- That way algorithms can be compared by comparing their bounds
- ▶ The Big-o notation $\mathcal{O}(f(n))$ for \mathcal{T} means "roughly" that f(n) is a bound for \mathcal{T} , for large enough values of n
- Lets make this more precise

Formal Definition of Big-O

 $\mathcal{T}(n) = \text{time it takes an algorithm to process } n \text{ data items}$

▶ In terms of $\mathcal{T}(n)$,

$$\mathcal{T}(n) = \mathcal{O}(f(n))$$

▶ means that there exist two constants, n_0 and c, greater than zero such that for all $n > n_0$,

$$\mathcal{T}(n) \leq cf(n)$$

- ▶ In other words, as n gets sufficiently large (larger than n_0), there is some constant c for which the processing time will always be less than or equal to cf(n)
- ightharpoonup cf(n) is an upper bound on performance

Formal Definition of Big-O

- ▶ The growth rate of f(n) will be determined by the fastest growing term, which is the one with the largest exponent
- ▶ In the example, $\mathcal{T}(n) = n^2 + 5n + 25$ has growth order $\mathcal{O}(n^2)$
- ▶ In general, it is safe to ignore all constants and to drop the lower-order terms when determining the order of magnitude

- ▶ Given $\mathcal{T}(n) = n^2 + 5n + 25$, show that this is $\mathcal{O}(n^2)$
- Find constants n_0 and c so that, for all $n > n_0$, $cn^2 > n^2 + 5n + 25$
 - Find the point where $cn^2 = n^2 + 5n + 25$
 - ▶ Let $n = n_0$, and solve for c, $c = 1 + \frac{5}{n_0} + \frac{25}{n_0^2}$
- ▶ When n_0 is 5, the RHS is $(1 + \frac{5}{5} + \frac{25}{25})$, c is 3
- So, $3n^2 > n^2 + 5n + 25$, for all n > 5
- ▶ Other values of n_0 and c also work

Consider the following loop

```
for (int i = 0; i < n; i++)
{
   for (int j = i + 1; j < n; j++)
   {
      3 simple statements
   }
}</pre>
```

$$T(n) = 3(n-1) + 3(n-2) + ... + 3$$

▶ Lets compute a bound on the growth rate

Big-O Example 2 (cont.)

$$T(n) = 3(n-1) + 3(n-2) + ... + 3$$

Factoring out the 3,

$$3(n-1+n-2+...+1)$$

- ► $1+2+...+n-1=\frac{(n*(n-1))}{2}$
- ▶ Therefore $\mathcal{T}(n) = 1.5n^2 1.5n$
- ▶ When n = 1, the polynomial has value 0
- For values of n > 1, $1.5n^2 > 1.5n^2 1.5n$
- ▶ Therefore $\mathcal{T}(n)$ is $\mathcal{O}(n^2)$ when n_0 is 1 and c is 1.5

Symbols Used in Quantifying Performance

Symbol Meaning		
$\mathrm{T}(n)$	The time that a method or program takes as a function of the number of inputs, <i>n</i> . We may not be able to measure or determine this exactly.	
f(n)	Any function of n . Generally, $f(n)$ will represent a simpler function that $T(n)$, for example, n^2 rather than $1.5n^2 - 1.5n$.	
O (f(<i>n</i>))	Order of magnitude. $O(f(n))$ is the set of functions that grow no faster than $f(n)$. We say that $T(n) = O(f(n))$ to indicate that the growth of $T(n)$ is bounded by the growth of $f(n)$.	

Common Growth Rates

Big-O	Name	
$\mathcal{O}(1)$	Constant	
$\mathcal{O}(\log n)$	Logarithmic	
$\mathcal{O}(n)$	Linear	
$\mathcal{O}(n \log n)$	Log-linear	
$\mathcal{O}(n^2)$	Quadratic	
$\mathcal{O}(n^3)$	Cubic	
$\mathcal{O}(2^n)$	Exponential	
$\mathcal{O}(n!)$	Factortial	

Effects of Different Growth Rates

O(f(n))	f(50)	f(100)	f(100)/f(50)
O(1)	1	1	1
$O(\log n)$	5.64	6.64	1.18
O(n)	50	100	2
$O(n \log n)$	282	664	2.35
$O(n^2)$	2500	10,000	4
$O(n^3)$	12,500	100,000	8
O(2 ⁿ)	1.126×10^{15}	1.27×10^{30}	1.126×10^{15}
O(n!)	3.0×10^{64}	9.3×10^{157}	3.1×10^{93}

Algorithms with Exponential and Factorial Growth Rates

- ► Algorithms with exponential and factorial growth rates have an effective practical limit on the size of the problem they can be used to solve
- ▶ With an $\mathcal{O}(2^n)$ algorithm, if 100 inputs takes an hour then,
 - ▶ 101 inputs will take 2 hours
 - ▶ 105 inputs will take 32 hours
 - ▶ 114 inputs will take 16,384 hours (almost 2 years!)

Algorithms with Exponential and Factorial Growth Rates (cont.)

- ▶ Encryption algorithms take advantage of this characteristic
- ▶ Some cryptographic algorithms can be broken in $\mathcal{O}(2^n)$ time, where n is the number of bits in the key
- ▶ A key length of 40 is considered breakable by a modern computer, but a key length of 100 bits will take a billion-billion (1018) times longer than a key length of 40