

GTU Electronics Engineering

ELEC 331 Electronic Circuits 2

Fall Semester

Instructor: Assist. Prof. Önder Şuvak

HW 4 Questions and Answers

Updated October 20, 2017 - 13:40

Assigned:

Due:

Answers Out:

Late Due:

Contents

Citle Page	1
Contents	1
Question 1	2
Question	2
Solution	3
Question 2	5
Question	5
Solution	6
Question 3	10
Question	10
Solution	13
Question 4	16
Question	16
Solution	19
Question 5	20
Question	20
Solution	
Question 6	22
Question	22
Solution	23

Transfer Function – High Frequency Response

Sedra 6.40

6.40 Consider an amplifier whose $F_H(s)$ is given by

$$F_H(s) = \frac{1}{\left(1 + \frac{s}{\omega_{P1}}\right)\left(1 + \frac{s}{\omega_{P2}}\right)}$$

with $\omega_{P1} < \omega_{P2}$. Find the ratio ω_{P2}/ω_{P1} for which the value of the 3-dB frequency ω_H calculated using the dominant-pole approximation differs from that calculated using the root-sum-of-squares formula (Eq. 6.36) by:

- (a) 10%.
- (b) 1%.

$$\omega_H \cong 1 / \sqrt{\frac{1}{\omega_{P1}^2 + \frac{1}{\omega_{P2}^2} + \cdots} - 2\left(\frac{1}{\omega_{Z1}^2 + \frac{1}{\omega_{Z2}^2} + \cdots}\right)}$$
 (6.36)

Necessary Knowledge and Skills: Bode plots, poles and zeros, dominant pole approximation, half-power or cut-off or corner or -3 dB frequency, root sum of squares formula and derivation

$$F_{H}(y) = \frac{\int_{C} dy}{\left(1 + \frac{s}{w_{p_{1}}}\right)\left(1 + \frac{s}{w_{p_{2}}}\right)} \frac{\int_{C} dy}{\int_{C} dy}$$

$$\Rightarrow \sqrt{\frac{s}{w_{p_{1}}}} < w_{p_{2}} \Rightarrow Dominant pole approx says $w_{p_{1}} \approx w_{p_{1}}$

$$\Rightarrow With (6.36) we have
$$w_{p_{1}} = \frac{w_{p_{1}}}{\left(\frac{1}{w_{p_{1}}}\right)^{2} + \left(\frac{1}{w_{p_{2}}}\right)^{2}} \frac{w_{p_{1}}}{\left(\frac{1}{w_{p_{2}}}\right)^{2}}$$

$$= \frac{w_{p_{1}}}{\left(1 + \frac{w_{p_{1}}}{w_{p_{2}}}\right)^{2}}$$

$$\Rightarrow W_{H} = w_{p_{1}} = \frac{v_{p_{1}}}{\left(1 + \frac{w_{p_{1}}}{w_{p_{2}}}\right)^{2}}$$

$$\Rightarrow w_{p_{1}} = \frac{v_{p_{1}}}{\left(1 + \frac{v_{p_{1}}}{w_{p_{2}}}\right)^{2}}$$

$$\Rightarrow w_{p_{1}} = \frac{v_{p_{1}}}{\left(1 + \frac{v_{p_{1}}}{w_{p_{2}}}\right)^{2}}$$$$$$

Transfer Function – High frequency Response

Sedra 6.41

- **6.41** The high-frequency response of a direct-coupled amplifier having a dc gain of -100 V/V incorporates zeros at ∞ and 10^6 rad/s (one at each frequency) and poles at 10^5 rad/s and 10^7 rad/s (one at each frequency). Write an expression for the amplifier transfer function. Find ω_H using:
- (a) the dominant-pole approximation.
- (b) the root-sum-of-squares approximation (Eq. 6.36).

If a way is found to lower the frequency of the finite zero to 10^5 rad/s, what does the transfer function become? What is the 3-dB frequency of the resulting amplifier?

$$\omega_H \cong 1 / \sqrt{\left(\frac{1}{\omega_{P1}^2} + \frac{1}{\omega_{P2}^2} + \cdots\right) - 2\left(\frac{1}{\omega_{Z1}^2} + \frac{1}{\omega_{Z2}^2} + \cdots\right)}$$
 (6.36)

Necessary Knowledge and Skills: Bode plots, transfer functions, poles and zeros, dominant pole approximation, half-power or cut-off or corner or -3 dB frequency, root sum of squares formula and derivation

Corner frequency collection

$$W_{H} \stackrel{\sim}{=} |0^{5} \text{ rad/s} \quad \text{due to dominant}$$

$$pok approx$$

$$W_{H} \stackrel{\sim}{=} \left(\frac{1}{|0^{5}|^{2}} + \left(\frac{1}{|0^{7}|^{2}} - 2\left(\frac{1}{|0^{6}|}\right)^{2}\right)^{2}\right)$$

$$= |.0| \times |0^{5} \text{ rad/s}$$

$$2ero at |0^{6} \text{ rad/s} \rightarrow 2ero at |0^{5} \text{ rod/s} \rightarrow 1ero at |0^{5} \text{ ro$$

Derivation of (6.36), see go
$$573-574 \text{ of Sedra.}$$

$$\boxed{(1+\frac{s}{w_{21}})(1+\frac{s}{w_{22}})}$$

$$\boxed{(1+\frac{s}{w_{21}})(1+\frac{s}{w_{22}})}$$

$$\boxed{(1+\frac{s}{w_{21}})(1+\frac{s}{w_{22}})}$$

$$\boxed{(1+\frac{s}{w_{21}})(1+\frac{s}{w_{22}})}$$

$$\boxed{(1+\frac{s}{w_{21}})(1+\frac{s}{w_{22}})}$$

$$\boxed{(1+\frac{s}{w_{21}})(1+\frac{s}{w_{22}})}$$

$$\boxed{(1+\frac{s}{w_{21}})(1+\frac{s}{w_{22}})}$$

$$\boxed{(1+\frac{s}{w_{21}})(1+\frac{s}{w_{22}})}$$

$$\boxed{(1+\frac{s}{w_{21}})(1+\frac{s}{w_{22}})}$$

$$\boxed{(1+\frac{s}{w_{22}})(1+\frac{s}{w_{22}})}$$

$$\boxed{(1+\frac{s}{w_{22}})(1+\frac{s}{w_{22}})$$

$$\boxed{(1+\frac$$

put
$$w = w_{H}$$

ond $|F_{H}(vw_{H})|^{2} = \frac{1}{2}$ (power wholest of w=w_{H})

$$\frac{1}{2} = \frac{\left(1 + \left(\frac{w_{H}}{w_{21}}\right)^{2}\right)\left(1 + \left(\frac{w_{H}}{w_{22}}\right)^{2}\right)}{\left(1 + \left(\frac{w_{H}}{w_{Pl}}\right)^{2}\right)\left(1 + \left(\frac{w_{H}}{w_{Pl}}\right)^{2}\right)}$$

On it higher order terms.

$$w_{H} = \frac{1}{\sqrt{\frac{1}{w_{Pl}^{2}}} + \frac{1}{w_{Pl}^{2}} - \frac{2}{w_{2l}^{2}}}$$

(6.36) as the generalitation of the bost formula.

Magnitude Bode Plot

Malik 8.4

- 8.4 Estimate the gain in dB at
- (a) 10,000 rad/s for Fig. P8.3d.
- (b) 4000 rad/s for Fig. P8.3d.
- (c) 30,000 rad/s for Fig. P8.3a.
- (d) 100,000 rad/s for Fig. P8.3d.

Magnitude Bode Plot	Malik 8.4	
Necessary Knowledge and Skills: Bode plots, transfer functions, poles and zeros, half-power or cutoff or corner or -3 dB frequency, transfer function derivation from Bode plots, slope interpretations in Bode plots		
Additional task: Derive the transfer function corresponding to plots.	each of the given magnitude Bode	

Motik 8.4

Find the tronsfer functions first.

83a
$$\rightarrow$$
 $A(jw) = 100 \frac{1}{1 + \frac{jw}{20000}}$

$$f(jw) = B \frac{jw}{1 + \frac{jw}{100}} \left(1 + \frac{jw}{2 \times 10^9}\right)$$
to be computed

20 lopio 100 B = 66 dB
20 lopio 100 + 20 lopio B = 66 dB
40

then
$$B = 10 \land (\frac{26}{20})$$

power

8.3c
$$2000 \text{ at } 0 \text{ rad/s}$$
 $pole \text{ at } 350 \text{ rad/s}$
 $H(in) = B$
 Jin
 $J + Jin$
 Jin
 $J + Jin$
 Jin
 $J + Jin$
 Jin
 Jin

Magnitude Bode Plot

Malik 8.5

8.5 Estimate the radian frequency where the gain is 0 dB for

- (a) Fig. P8.3a.
- (b) Fig. P8.3c.
- (c) Fig. P8.3d.

Figure P8.3

10,000

(d)

100

-60 dB/dec

(rad/s)

100,000

Magnitude Bode Plot		Malik 8.5
Necessary Knowledge and Skills: Bode off or corner or -3 dB frequency, slope int	plots, transfer functions, poles and erpretations in Bode plots	zeros, half-power or cut-

Soln to Q 4

MATK 85

8.30)

Mape =
$$-20 \, \text{dB/dec} \frac{\text{OdB-100dB}}{\text{logic}(w_u) - \text{logic}(2000)}$$

Compute Will

Compute Will

Compute Will

8.34)

We know from Molit 8.4d) that

$$\frac{jw}{joo,000} \text{ in dB} = 20 \, \text{dB}$$
then
$$\text{dope} = -60 \, \text{dB/dec} = \frac{0 - 20 \, \text{dB}}{\text{logic}(w_u) - \text{logic}(10000)}$$

$$-60 \, \text{logic}(w_u) + 300 = -20$$

$$w_u = 10 \, \text{A} \, \frac{\text{H}_{320}}{\text{H}_{60}} \text{ rad/sec}$$

Corner Frequency by OCTC

Razavi 11.13

Figure 11.66

Assume the capacitors are small valued, comparable to the internal capacitances of the transistor. Compute the 3dB corner frequency by the OCTC method.

Necessary Knowledge and Skills: Open Circuit Time Constants (OCTC) method for approximating the high frequency cut-off point, small signal equivalent circuit for MOS, small signal impedance computations

Cin sees Rin (CL O.C.

Vin 70r)

Rin = Rs//
$$\frac{1}{gm}$$

CL sees RL (Cin O.C.

Vin 70v)

RL = RD // [Rp + ro + (1+gmro) Rs]

Vysg = $\frac{1}{Cin Rin + C_2 R_2}$

Corner Frequency by OCTC

Razavi 11.14

Figure 11.67

Assume the capacitors are small valued, comparable to the internal capacitances of the transistor. Compute the 3dB corner frequency by the OCTC method.

Necessary Knowledge and Skills: Open Circuit Time Constants (OCTC) method for approximating the high frequency cut-off point, small signal equivalent circuit for MOS, small signal impedance computations