עלדה הן צבור 316163260 2 hry - IML 'sk, o≠ ueker(X)'s' . ker (X) ⊆ ker (X x) noy (1) $X^T X u = X^T O = 0$ · u ∈ Ker(xTx) po (s). XTX4=0 SK, 0 = UEKer(XTX) 'D'. Ker(XTX) S Ker(X) NOY uTxTxy = uTo :Fig. uT -> anen $(Xu)^T XU = 0 = > \langle Xu, Xu > = 0$ (X4, X4) =0 => X4=0 :0 plan inigo los les Chos N'21'0NI · u elcer(x) pli Aw=0 "> 1/613' .< V, w>=0 .> nola (32). WEKER(A) -1 VE Im(A7). 1. (2) :e", a cy -e y u e, ge 121 $\langle V, W \rangle = \langle A^T u, W \rangle = \langle A^T u \rangle W = U^T A W = U^T \cdot O = 0$ In(AT) c Ker (A) 1 ATUEV -e po u = "p · o sistassy. V E ker(A) 'z' e"you (2000), (ATh,w> 70 p"you WEKERA) Glep 4 p"y KO Dy <ATH W> = HTAW =0 אינה הפינה ולכן אינה המשואות יש או אינטל פתרונות או ט פתרונות All) Tronul y & Im(X) piple interpolation of in Nin (,) we Xw=y-ep w e"p , 2016 y L Ker(x") <=> y & ker(x") (=) y & In(x)

באואר ש העל פתכון אמשנעור , וצה אדיב יש OD פתרונות, (נצרש.	
$X^{T}Xw = X^{T}y \Rightarrow (X^{T}X)^{T}X^{W} = (X^{T}X)^{T}X^{T}y \Rightarrow (X^{T}X)^{$	
$\omega = (x^T x)^{-1} x^T y$	
P'GIN () (BON. VEKER(XTX) ": XTY & KEV (XTX) I sky seles - 136, XV=0 MG, VEKER(X) -e	
$\langle X^{T}y \mid V \rangle = (X^{T}y)^{T} V = y^{T} X V = 0$ $\exists \text{ filler (as anywhole yikhole)} \exists \text{ fight } V \in \text{ ker}(X^{T}X) \exists \text{ filler } X^{T}y \text{ for } y \in Y$ $\exists \text{ fight } Y = y^{T} X V = 0$	
א) נשיב לב כי P היא טכום ל משניצו סימשניאת, ולכן היא סימשני שם כן.	
C) NA(1, 0.	_()
$P_{v_{j}} = \left(\frac{\sum_{i=1}^{k} v_{i} v_{i}^{T}}{i=1}\right) v_{j} = \sum_{i=1}^{k} v_{i} v_{i}^{T} v_{j} = \sum_{i=1}^{k} v_{i} \delta_{i,j} = v_{j}$	
M, (CIEB 1515K GP) V = \(\frac{k}{2} CiVi \ UK, VEV \ D' \(\frac{k}{2} \)	
$P_{V} = P \underbrace{\sum_{i=1}^{k} (i V_{i} = \sum_{i=1}^{k} (i V_{i}) = \sum_{i=1}^{k} (i P_{V_{i}} = \sum_{i=1}^{k} (i V_{i}) = V}_{(i \neq 0)}$	
The first of the state of the property of the state of th	

 $(I-P)P = IP-PP = P-P^2 = P-P=0$ $X^{\dagger}y^{\dagger}(X^{T}x)^{1}X^{T}y$ IN NOW $X^{T}x$ ARE \hat{G} $(X^{T}x)^{-1}x^{T} = X^{T}$ $\left(X^{T}X\right)^{-1}X^{T} = \left(\left(U \mathcal{E} V^{T}\right)^{T}\left(U \mathcal{E} V^{T}\right)\right)^{-1}\left(U \mathcal{E} V^{T}\right)^{T} =$ $\left(V\mathcal{E}^{\mathsf{T}}\mathcal{V}^{\mathsf{T}}\mathcal{V}\mathcal{E}\mathcal{V}^{\mathsf{T}}\right)^{-1}\left(U\mathcal{E}\mathcal{V}^{\mathsf{T}}\right)^{\mathsf{T}}=\left(U\mathcal{E}^{\mathsf{T}}\mathcal{E}\mathcal{V}^{\mathsf{T}}\right)^{-1}\mathcal{V}\mathcal{E}^{\mathsf{T}}\mathcal{V}^{\mathsf{T}}=$ $\left(V^{T}\right)^{-1}\left(\mathcal{Z}^{T}\mathcal{E}\right)^{-1}V^{-1}V\mathcal{Z}^{T}U^{T}=$ $V(\underline{\varepsilon}^{\mathsf{T}}\underline{\varepsilon})^{\mathsf{T}}\underline{\varepsilon}^{\mathsf{T}}U^{\mathsf{T}} = V\underline{\varepsilon}^{\mathsf{T}}U^{\mathsf{T}} = \chi^{\mathsf{T}}$ 7677) 2(e'e) Span {X1, ..., Xm} le 34/20 (c) X le 26/20 (7) - γank (x⁷x)=d p n/a solo Yank (xTx)=d @vorse piele 3 NOC. E. MONÍN DE LINON DE LONGE LONGE NOUN DE NOVE 13.00 E 1455) A JE ("N'A) BECIA O'U) C"A SILIAN-O.

נועה בן דרור

<u>ווו – תרגיל 2 – חלק מעשי – IML</u>

(13

בחרתי להפוך את zipcode ל-feature קטגוריאלי, משום שזה feature שלא יכול להיות בעל החרתי להפוך את feature לינארי. כלומר, זה feature שיכול להשפיע על המחיר, אבל אין משמעות למספר עצמו של ה- zipcode מבחינה לינארית.

(15

נשים לב בטבלה למטה כי 2 הערכים הסינגולריים הנמוכים ביותר הם 0, ואחרים 0.03.

\$ 84	\$ 85	\$ 86
0.03240	0.00000	0.00000

מכיוון שקיים ערך סינגולרי ששווה ל-0, המטריצה X היא לא הפיכה. כמו כן, קיים ערך סינגולרי ששווה ל-0, המטריצה X סינגולרי שקרוב ל-0 (0.03), וניתן לפרש את זה כך שיש שני features שהזווית ביניהם חדה, ועל כן הם קירוב לינארי אחד של השני. זה גורר שגם אם לא היה ערך סינגולרי ששווה ל-0, המטריצה הייתה לכל הפחות "קרובה" ללהיות סינגולרית.

ניתן לראות בגרף כי ככל שמאמנים את המודל על יותר דאטה, ה- mse קטן, כלומר הדיוק עולה. נשים לב כי השיפור ברמת הדיוק קורה די מהר.

(17

הוא sqft_living - ולכן ה-sqft_living הקורלציה הכי גבוהה שנמצאה היא בין מחיר לבין feature מועיל ומשמעותי למודל.

קורלציה נמוכה שנמצאה היא בין מחיר לבין מצב הדירה, ולכן מצב הדירה הוא feature לא מועיל ולא משמעותי למודל.

