The URL for our Team GitHub repository is {https://github.com/Brandeis-BUS111-FinalProject/Prilgrim-Bank.git}.

Team: Yecheng Li, Doris Long, Vera Wang, Jikun Zhou

Class: BUS 111A

Project: Pilgrim case study

```
### Installing & Loading Packages
library(rmarkdown) ### This loads the package
```

Read the file and process the missing data

```
### Read the given dataset
consumerDB = read.csv("dataset.csv") ### read the given dataset
### Check who left the bank in 2000, named the variable as "LeftBank", which is "00"in X00nline and X0B
consumerDB$LeftBank = is.na(consumerDB$X00nline) & is.na(consumerDB$X0Billpay)
### Find the median for 1999 Age and Income
AgeMedian_1999 = median(consumerDB$X9Age,na.rm = TRUE)
IncomeMedian_1999 = median(consumerDB$X9Inc,na.rm = TRUE)
### Present the data for 1999 Age/Income median
AgeMedian_1999
## [1] 4
IncomeMedian 1999
## [1] 6
### Check who didn't left the bank in 2000, and the income or age in 1999 were missing, we named the va
consumerDB$fixAge = !consumerDB$LeftBank & is.na(consumerDB$X9Age)
consumerDB$fixIncome = !consumerDB$LeftBank & is.na(consumerDB$X9Inc)
### For "fixAge"== TRUE, we substitute "NA" to be "4", which is the median
### For "fixIncome" == TRUE, we substitute "NA" to be "6", which is the median
consumerDB[consumerDB$fixAge,]$X9Age = 4
consumerDB[consumerDB$fixIncome,]$X9Inc = 6
### Sort the concumerDB and get a Table that sepcifically contains data for 1999
### Name this table as "statsTable1999"
statsTable1999= consumerDB[,2:6]
X9Billpay = consumerDB[,10]
```

Statistics Summary for 1999 Data

statsTable1999= cbind(statsTable1999,X9Billpay)

```
### Note: Please install.packages("psych")
library(psych)
```

```
### Describe() method in psych package will give a summary for statsTable
### The Summary_Table
Summary_Table=t(describe(statsTable1999))
Summary_Table = round(Summary_Table,2) ### round the decimal points to 2 digits
### This summary gives the mean, median, standard deviation, min, max and range for 1999 Profit, Age, In
Summary_Table_New = Summary_Table[c(3:5,8:10),c(1:6)]
Summary_Table_New
```

```
##
          X9Profit X9Online X9Age X9Inc X9Tenure X9Billpay
                       0.12 4.04 5.55
                                           10.16
## mean
            111.50
                       0.33 1.49 2.15
                                           8.45
                                                      0.13
## sd
            272.84
                                           7.41
                                                      0.00
## median
             9.00
                       0.00 4.00 6.00
                                           0.16
                                                      0.00
## min
           -221.00
                       0.00 1.00 1.00
## max
          2071.00
                       1.00 7.00 9.00
                                           41.16
                                                      1.00
## range
          2292.00
                       1.00 6.00 8.00
                                           41.00
                                                      1.00
```

Graphic Summary

Box-Plot of Profit Distribution by Age in 1999

Box-Plot of Profit Distribution by Age Cont.(Zoomed In) in 1999

Box-Plot of Profit Distribution by Income in 1999

Box-Plot of Profit Distribution by Income Cont.(Zoomed In) in 1999

Box-Plot of Profit Distribution by Billpay in 1999

Box-Plot of Profit Distribution by Billpay Cont. (Zoomed In) in 1999

Box-Plot of Profit Distribution by Online in 1999

Box-Plot of Profit Distribution by Online Cont.(Zoomed In) in 1999

Histogram of Profits in 1999

Histogram of Profits Cont. (Zoomed In) in 1999

This boxplot describes the frequency of Online consumer in 1999
barplot(table(consumerDB\$X90nline),main="1999 Online Frequency Table",ylab = "Frequency#",col= "green")

1999 Online Frequency Table

1999 District Frequency Table

table(consumerDB\$X9District)

This boxplot describes the frequency of Billpay consumer in 1999
barplot(table(consumerDB\$X9Billpay),main="1999 Billpay Frequency Table",ylab = "Frequency#",col= "green"

1999 Billpay Frequency Table


```
### Note: NA represents those consumers that left the bank in 2000 and didn't have information in 1999
summary_Income_1999 = ddply(consumerDB, .(X9Inc),
                            summarize, '0' = sum(X90nline,X90nline==0), '1' = sum(X90nline,X90nline==1)
summary_Income_1999
##
      X9Inc
                0
                     1
## 1
          1
            2044
                   320
## 2
              810
                  132
          2
            2571
## 3
          3
                  568
## 4
            2312 494
          4
## 5
         5 2369
                  606
## 6
          6 10249 2458
## 7
         7
            3152 934
            1742 542
## 8
          8
## 9
         9
             2960 1042
## 10
         NA
            3425 612
### 1999 Age with online and billpay customer
### Note: NA represents those consumers that left the bank in 2000 and didn't have information in 1999
summary_Age_1999 = ddply(consumerDB, .(X9Age),
                            summarize, '0' = sum(X90nline,X90nline==0), '1' = sum(X90nline,X90nline==1)
summary_Age_1999
##
     X9Age
              0
                    1
             710
                 274
## 1
## 2
         2 3650 1572
## 3
        3 5390 1668
## 4
         4 10229 2540
           3236
## 5
         5
                  612
## 6
         6
           2290
                  230
## 7
         7
           2693
                 196
           3436
## 8
                 616
        NA
### Creating Tenure levels to different 14 levels
### The range of Tenure is 0 to 42
consumerDB$Tenure.Level = "0"
consumerDB[consumerDB$X9Tenure <= 3.00,]$Tenure.Level = "Level 01"</pre>
consumerDB$X9Tenure > 3.00 & consumerDB$X9Tenure <= 6.00,]$Tenure.Level = "Level 02"
consumerDB$X9Tenure > 6.00 & consumerDB$X9Tenure <= 9.00,]$Tenure.Level = "Level 03"
consumerDB[consumerDB$X9Tenure > 9.00 & consumerDB$X9Tenure <= 12.00,]$Tenure.Level = "Level 04"
consumerDB[consumerDB$X9Tenure > 12.00 & consumerDB$X9Tenure <= 15.00,]$Tenure.Level = "Level 05"
consumerDB[consumerDB$X9Tenure > 15.00 & consumerDB$X9Tenure <= 18.00,]$Tenure.Level = "Level 06"
consumerDB[consumerDB$X9Tenure > 18.00 & consumerDB$X9Tenure <= 21.00,]$Tenure.Level = "Level 07"
consumerDB[consumerDB$X9Tenure > 21.00 & consumerDB$X9Tenure <= 24.00,]$Tenure.Level = "Level 08"
consumerDB[consumerDB$X9Tenure > 24.00 & consumerDB$X9Tenure <= 27.00,]$Tenure.Level = "Level 09"
consumerDB[consumerDB$X9Tenure > 27.00 & consumerDB$X9Tenure <= 30.00,]$Tenure.Level = "Level 10"
consumerDB[consumerDB$X9Tenure > 30.00 & consumerDB$X9Tenure <= 33.00,]$Tenure.Level = "Level 11"
consumerDB[consumerDB$X9Tenure > 33.00 & consumerDB$X9Tenure <= 36.00,]$Tenure.Level = "Level 12"
consumerDB[consumerDB$X9Tenure > 36.00 & consumerDB$X9Tenure <= 39.00,]$Tenure.Level = "Level 13"
consumerDB[consumerDB$X9Tenure > 39.00 & consumerDB$X9Tenure <= 42.00,]$Tenure.Level = "Level 14"
### Format the table and present a piovt table with online consumers in different tenure levels
table(consumerDB$Tenure.Level,consumerDB$X9Online)
```

```
##
##
    Level 01 5517 799
    Level 02 5777
##
                   864
    Level 03 4476 849
##
##
    Level 04 2931 426
##
    Level 05 2026 276
##
    Level 06 1760 204
##
    Level 07 1379 150
##
    Level 08 1287
                    121
##
    Level 09 872
    Level 10 745
    Level 11 532
##
                     26
    Level 12 259
##
    Level 13 131
                      4
##
    Level 14
              88
                      2
### Format the table and present a piovt table with billpay consumers in different tenure levels
table(consumerDB$Tenure.Level,consumerDB$X9Billpay)
##
##
                      1
    Level 01 6222
##
                     94
    Level 02 6511
##
                   130
##
    Level 03 5220
                   105
##
    Level 04 3292
##
    Level 05 2262
                     40
    Level 06 1939
##
                     25
##
    Level 07 1507
                     22
##
    Level 08 1391
##
    Level 09 922
                     15
##
    Level 10 795
##
    Level 11 553
    Level 12 268
     Level 13 134
##
                      1
    Level 14
Correlation Statistics
### Sort the table and ignore those data points that miss 1999 income or age value
### Name a new consumer Database "consumerDB2"
consumerDB2=consumerDB[!is.na(consumerDB$X9Inc),]
consumerDB2=consumerDB2[!is.na(consumerDB2$X9Age),]
### Calculate the profit's corrlation with other factors
```

```
### Calculate the profit s coffiction with other factors
cor(x=consumerDB2$X9Profit, y=consumerDB2$X9Inc)

## [1] 0.1299013

cor(x=consumerDB2$X9Profit, y=consumerDB2$X9Age)

## [1] 0.1350308

cor(x=consumerDB$X9Profit, y=consumerDB$X9Online)
```

```
cor(x=consumerDB$X9Profit, y=consumerDB$X9Billpay)
## [1] 0.04006637
cor(x=consumerDB$X9Profit, y=consumerDB$X9Tenure)
## [1] 0.191133
cor(x=consumerDB$X9Profit, y=consumerDB$X9District)
## [1] 0.00309511
### Creating Profit levels to different 13 levels
### The range of Profit is -221 to 2071
consumerDB$Profit.Level = "0" ### default value
### Divide the profits by 10 and create a smaller range of Profit
consumerDB$ProfitProcess = consumerDB$X9Profit/10
consumerDB[consumerDB$ProfitProcess <= 0,]$Profit.Level = "Level 01"</pre>
consumerDB[consumerDB$ProfitProcess > 0 & consumerDB$ProfitProcess <= 10,]$Profit.Level = "Level 02"
consumerDB[consumerDB$ProfitProcess > 10 & consumerDB$ProfitProcess <= 20,]$Profit.Level = "Level 03"
consumerDB[consumerDB$ProfitProcess > 20 & consumerDB$ProfitProcess <= 40,]$Profit.Level = "Level 04"
consumerDB[consumerDB$ProfitProcess > 40 & consumerDB$ProfitProcess <= 60,]$Profit.Level = "Level 05"
consumerDB[consumerDB$ProfitProcess > 60 & consumerDB$ProfitProcess <= 80,]$Profit.Level = "Level 06"
consumerDB[consumerDB$ProfitProcess > 80 & consumerDB$ProfitProcess <= 100,]$Profit.Level = "Level 07"
consumerDB[consumerDB$ProfitProcess > 100 & consumerDB$ProfitProcess <= 120,]$Profit.Level = "Level 08"
consumerDB[consumerDB$ProfitProcess > 120 & consumerDB$ProfitProcess <= 140,]$Profit.Level = "Level 09"
consumerDB[consumerDB$ProfitProcess > 140 & consumerDB$ProfitProcess <= 160,]$Profit.Level = "Level 10"
consumerDB[consumerDB$ProfitProcess > 160 & consumerDB$ProfitProcess <= 180,]$Profit.Level = "Level 11"
consumerDB[consumerDB$ProfitProcess > 180 & consumerDB$ProfitProcess <= 200,]$Profit.Level = "Level 12"
consumerDB[consumerDB$ProfitProcess > 200,]$Profit.Level = "Level 13"
### Format the table and present a piovt table with online consumers in different profit levels
table(consumerDB$Profit.Level,consumerDB$X9Online)
##
##
                  0
                        1
##
    Level 01 13009
                    1793
##
    Level 02 5890
                      742
##
    Level 03 2886
##
    Level 04 3069
                      454
##
    Level 05 1331
                      220
##
    Level 06
               667
                      113
##
    Level 07
                376
                      52
##
    Level 08
                213
                       41
##
    Level 09
               151
                       21
##
    Level 10
                86
                       15
##
    Level 11
                 48
                        8
    Level 12
                 38
##
                        3
##
    Level 13
                 16
                        0
### Format the table and present a piovt table with billpay consumers in different profit levels
table(consumerDB$Profit.Level,consumerDB$X9Billpay)
##
##
                  0
                        1
##
    Level 01 14617
                      185
```

```
##
    Level 02 6538
                       94
##
    Level 03 3218
                       60
    Level 04 3438
                       85
##
##
    Level 05 1503
                       48
##
    Level 06
               757
                       23
##
    Level 07
               415
                       13
##
    Level 08
               245
                       9
    Level 09
                       6
##
               166
    Level 10
                98
##
                        3
##
    Level 11
                54
                        2
##
    Level 12
                41
                        0
##
    Level 13
                16
                        0
```