EGZAMIN MATURALNY 2013

MATEMATYKA POZIOM ROZSZERZONY

Kryteria oceniania odpowiedzi

Zadanie 1. (0–4)

Rozwiąż nierówność $|2x-5|-|x+4| \le 2-2x$.

Obszar standardów	Opis wymagań
Użycie i tworzenie strategii	Rozwiązanie nierówności z wartością bezwzględną (IV.3.e.R)

I sposób rozwiązania (wyróżnienie na osi liczbowej przedziałów)

Wyróżniamy na osi liczbowej przedziały: A. $\left(-\infty, -4\right)$, B. $\left\langle -4, \frac{5}{2} \right\rangle$, C. $\left\langle \frac{5}{2}, +\infty \right\rangle$.

Rozwiązujemy nierówności w poszczególnych przedziałach i w każdym przedziale bierzemy część wspólną tego przedziału z otrzymanym zbiorem rozwiązań nierówności.

A.
$$x \in (-\infty, -4)$$
B. $x \in \left(-4, \frac{5}{2}\right)$

$$-2x + 5 + x + 4 \le 2 - 2x$$

$$x + 9 \le 2$$

$$x \le -7$$
W tym przypadku rozwiązaniem nierówności jest $-1 \le x \le \frac{5}{2}$
W tym przypadku rozwiązaniem nierówności jest $\frac{5}{2} \le x \le \frac{11}{3}$

Łącząc otrzymane rozwiązania, podajemy ostateczną odpowiedź: $x \le -7$ lub $-1 \le x \le \frac{11}{3}$.

Odpowiedź: Zbiorem rozwiązań nierówności jest $\left(-\infty, -7\right) \cup \left\langle -1, \frac{11}{3}\right\rangle$.

II sposób rozwiązania (zapisanie czterech przypadków)

Zapisujemy cztery przypadki:

I.
$$\begin{cases} 2x - 5 \ge 0 \\ x + 4 \ge 0 \end{cases}$$
 II.
$$\begin{cases} 2x - 5 \ge 0 \\ x + 4 < 0 \end{cases}$$
 III.
$$\begin{cases} 2x - 5 < 0 \\ x + 4 \ge 0 \end{cases}$$
 IV.
$$\begin{cases} 2x - 5 < 0 \\ x + 4 < 0 \end{cases}$$

W każdym z nich rozwiązujemy nierówność bądź układ nierówności

$\int 2x - 5 \ge 0$	$\int 2x - 5 \ge 0$	$\int 2x - 5 < 0$	$\int 2x - 5 < 0$
$\begin{cases} x+4 \ge 0 \end{cases}$	$\left \left\langle x+4<0\right. \right $	$\begin{cases} x + 4 \ge 0 \end{cases}$	$\begin{cases} x+4 < 0 \end{cases}$
$2x-5-x-4 \le 2-2x$	$2x-5+x+4 \le 2-2x$	$\left \left -2x + 5 - x - 4 \le 2 - 2x \right \right $	$\left -2x + 5 + x + 4 \le 2 - 2x \right $
$x \ge \frac{5}{2}$	$x \ge \frac{5}{2}$	$\int x < \frac{5}{2}$	$\left(x < \frac{5}{2}\right)$
$\begin{cases} x \ge -4 \end{cases}$	$\left \left\{ x < -4 \right. \right $	$\begin{cases} x \ge -4 \end{cases}$	$\left\{ x < -4 \right\}$
$3x \le 11$	$5x \le 3$	$x \ge -1$	$x \le -7$
$\int x \ge \frac{5}{2}$	niemożliwe	$-1 \le x < \frac{5}{2}$	$x \le -7$
$\begin{cases} x \ge -4 \end{cases}$			
$x \le 3\frac{2}{3}$			
$\frac{5}{2} \le x \le 3\frac{2}{3}$			

Łącząc otrzymane rozwiązania, podajemy ostateczną odpowiedź: $x \le -7$ lub $-1 \le x \le \frac{11}{2}$.

Schemat oceniania

Zdający

wyróżni na osi liczbowej przedziały $\left(-\infty, -4\right), \left\langle -4, \frac{5}{2} \right\rangle, \left\langle \frac{5}{2}, +\infty \right\rangle$

albo

zapisze cztery przypadki:

$$I. \begin{cases} 2x - 5 \ge 0 \\ x + 4 \ge 0 \end{cases}$$

I.
$$\begin{cases} 2x - 5 \ge 0 \\ x + 4 \ge 0 \end{cases}$$
 II.
$$\begin{cases} 2x - 5 \ge 0 \\ x + 4 < 0 \end{cases}$$
 III.
$$\begin{cases} 2x - 5 < 0 \\ x + 4 \ge 0 \end{cases}$$
 IV.
$$\begin{cases} 2x - 5 < 0 \\ x + 4 < 0 \end{cases}$$

III.
$$\begin{cases} 2x - 5 < 0 \\ x + 4 \ge 0 \end{cases}$$

IV.
$$\begin{cases} 2x - 5 < 0 \\ x + 4 < 0 \end{cases}$$

Uwaga

Jeżeli zdający popełni błędy w wyznaczaniu przedziałów, to przyznajemy **0 punktów.** Podobnie **0 punktów** otrzymuje zdający, który błędnie zapisał cztery przypadki.

Zdający zapisze nierówności w poszczególnych przedziałach, np.:

A. dla
$$x \in (-\infty, -4)$$
 mamy $-2x + 5 + x + 4 \le 2 - 2x$,

B. dla
$$x \in \left(-4, \frac{5}{2}\right)$$
 mamy $-2x + 5 - x - 4 \le 2 - 2x$,

C. dla
$$x \in \left(\frac{5}{2}, +\infty\right)$$
 mamy $2x - 5 - x - 4 \le 2 - 2x$

albo

zdający zapisze nierówności w poszczególnych przypadkach, np.:

I. gdy
$$2x-5 \ge 0$$
 i $x+4 \ge 0$, to wtedy $2x-5-x-4 \le 2-2x$,

II. gdy $2x-5 \ge 0$ i x+4 < 0, to wtedy $2x-5+x+4 \le 2-2x$ (lub stwierdzi, że ten przypadek jest niemożliwy),

III. gdy
$$2x-5 < 0$$
 i $x+4 \ge 0$, to wtedy $-2x+5-x-4 \le 2-2x$,

IV. gdy
$$2x-5 < 0$$
 i $x+4 < 0$, to wtedy $-2x+5+x+4 \le 2-2x$.

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe) 3 pkt

- zdający poprawnie rozwiaże nierówności i wyznaczy cześci wspólne otrzymanych wyników z poszczególnymi przedziałami tylko dla dwóch przedziałów (spośród A., B., C.), popełni błąd w trzecim i konsekwentnie doprowadzi rozwiązanie do końca albo
- zdający rozpatrzy cztery przypadki, poprawnie rozwiąże nierówności i wyznaczy części wspólne otrzymanych wyników z poszczególnymi przedziałami tylko w dwóch przypadkach (spośród I., III., IV.), popełni błąd w trzecim przypadku oraz stwierdzi, że przypadek II. jest niemożliwy, i konsekwentnie doprowadzi rozwiązanie do końca.

Zdający zapisze odpowiedź:
$$x \in \left(-\infty, -7\right) \cup \left\langle -1, \frac{11}{3}\right\rangle$$
.

Uwaga:

We wszystkich rozważanych przypadkach zdający może rozpatrywać obie nierówności nieostre (przedziały obustronnie domknięte). Jeżeli natomiast rozważy wszystkie nierówności ostre (przedziały otwarte), to przyznajemy za całe zadanie o **1 punkt mniej**, niż gdyby wyróżnił wszystkie przedziały poprawnie.

III sposób rozwiązania (graficzne)

Rysujemy wykresy funkcji f(x) = |2x-5|-|x+4| i g(x) = -2x+2.

Wyróżniamy na osi liczbowej przedziały:
$$\left(-\infty, -4\right), \left\langle -4, \frac{5}{2} \right\rangle, \left\langle \frac{5}{2}, +\infty \right\rangle$$
.

Zapisujemy wzór funkcji f w poszczególnych przedziałach bez wartości bezwzględnej, np.

$$f(x) = \begin{cases} -x+9 & \text{dla } x \in (-\infty, -4) \\ -3x+1 & \text{dla } x \in \left\langle -4, \frac{5}{2} \right\rangle \\ x-9 & \text{dla } x \in \left\langle \frac{5}{2}, +\infty \right\rangle \end{cases}$$

Rysujemy wykresy funkcji f i g:

Odczytujemy odcięte punktów przecięcia wykresów funkcji f i g: x=-7, x=-1, $x=\frac{11}{3}$, sprawdzamy, czy spełniają one równanie |2x-5|-|x+4|=2-2x, a następnie podajemy te wszystkie argumenty, dla których $f(x) \le g(x)$: $x \in (-\infty, -7) \cup \left\langle -1, \frac{11}{3} \right\rangle$.

Schemat oceniania

A. dla
$$x \in (-\infty, -4)$$
 mamy $f(x) = -x + 9$,

B. dla
$$x \in \left(-4, \frac{5}{2}\right)$$
 mamy $f(x) = -3x + 1$,

C. dla
$$x \in \left(\frac{5}{2}, +\infty\right)$$
 mamy $f(x) = x - 9$,

lub

$$f(x) = \begin{cases} -x+9 & \text{dla } x \in (-\infty, -4) \\ -3x+1 & \text{dla } x \in (-4, \frac{5}{2}) \end{cases}$$
$$x-9 & \text{dla } x \in (\frac{5}{2}, +\infty) .$$

Zadanie 2. (0–4)

Trapez równoramienny ABCD o podstawach AB i CD jest opisany na okręgu o promieniu r. Wykaż, że $4r^2 = |AB| \cdot |CD|$.

Obszar standardów	Opis wymagań
Rozumowanie i argumentacja	Przeprowadzenie dowodu geometrycznego (V.7.c)

I sposób rozwiązania

Sporządzamy rysunek i wprowadzamy oznaczenia: |AB| = a, |CD| = b, |AD| = c, r – promień okręgu wpisanego w trapez, h – wysokość trapezu.

Ponieważ trapez jest równoramienny i opisany na okręgu, więc

$$|AE| = \frac{a-b}{2}$$
, $h = 2r$ oraz $a+b=2c$, czyli $c = \frac{a+b}{2}$.

Z twierdzenia Pitagorasa dla trójkata AED otrzymujemy

$$c^{2} = (2r)^{2} + \left(\frac{a-b}{2}\right)^{2}$$
, skąd $4r^{2} = c^{2} - \left(\frac{a-b}{2}\right)^{2}$.

Podstawiając $c = \frac{a+b}{2}$ otrzymujemy

$$4r^{2} = \left(\frac{a+b}{2}\right)^{2} - \left(\frac{a-b}{2}\right)^{2},$$

$$4r^{2} = \frac{a^{2} + 2ab + b^{2} - a^{2} + 2ab - b^{2}}{4},$$

$$4r^{2} = \frac{4ab}{4},$$

$$4r^{2} = ab.$$

To kończy dowód.

Schemat oceniania I sposobu rozwiązania

• wyznaczy długość odcinka AE: $|AE| = \frac{a-b}{2}$

albo

• wyznaczy długość ramienia trapezu: $c = \frac{a+b}{2}$.

Pokonanie zasadniczych trudności zadania 3 pkt

Zdający wykorzysta twierdzenia Pitagorasa w trójkącie *AED* i zapisanie: $4r^2 = c^2 - \left(\frac{a-b}{2}\right)^2$.

II sposób rozwiązania

Sporządzamy rysunek i wprowadzamy oznaczenia jak na rysunku

Ponieważ w trapez jest wpisany okrąg, więc środek tego okręgu znajduje się na przecięciu dwusiecznych kątów trapezu. Z własności kątów naprzemianległych i przyległych wynika, że $2\alpha + 2\beta = 180^{\circ}$, czyli $\alpha + \beta = 90^{\circ}$.

Stad

$$\beta = 90^{\circ} - \alpha$$
.

Wnioskujemy stąd, że trójkąty prostokątne AEO i CFO są podobne. Zatem

$$\frac{|OE|}{|AE|} = \frac{|FC|}{|FO|}, \text{ czyli } \frac{r}{\frac{1}{2}a} = \frac{\frac{1}{2}b}{r} \text{ (lub } \text{tg}\alpha = \frac{r}{\frac{1}{2}a}, \text{ tg}\beta = \frac{r}{\frac{1}{2}b} \text{ i tg}\alpha = \frac{1}{\text{tg}\beta} \text{)}.$$

Stąd
$$r^2 = \frac{1}{4}ab$$
, czyli $4r^2 = ab$.

Schemat oceniania II sposobu rozwiązania

• uzasadni, że trójkąty AEO i CFO są podobne i zapisze, że $\frac{|OE|}{|AE|} = \frac{|FC|}{|FO|}$

albo

• wyznaczy $\operatorname{tg} \alpha = \frac{r}{\frac{1}{2}a}$ oraz $\operatorname{tg} \beta = \frac{r}{\frac{1}{2}b}$.

Zdający

• zapisze proporcję $\frac{r}{\frac{1}{2}a} = \frac{\frac{1}{2}b}{r}$

albo

• wykorzysta równości $\operatorname{tg} \beta = \frac{1}{\operatorname{tg} \alpha}$ i zapisze $\frac{r}{\frac{1}{2}b} = \frac{1}{\operatorname{tg} \alpha}$.

III sposób rozwiązania

Sporządzamy rysunek i wprowadzamy oznaczenia.

Z twierdzenia o odcinkach stycznych i własności trapezu równoramiennego wynika, że

$$|BM| = |KB| = \frac{1}{2}a \text{ oraz } |CM| = |LC| = \frac{1}{2}b.$$

Ponieważ w trapez jest wpisany okrąg, więc środek okręgu znajduje się na przecięciu dwusiecznych kątów wewnętrznych trapezu. Z własności kątów trapezu:

$$2\alpha + 2\beta = 180^{\circ}$$
, czyli $\alpha + \beta = 90^{\circ}$.

Stąd wynika, że trójkąt *BCO* jest prostokątny. Wysokość *OM* tego trójkąta jest średnią geometryczną długości odcinków *BM* i *CM*, czyli

$$r^2 = \frac{1}{2}a \cdot \frac{1}{2}b$$
, czyli $4r^2 = a \cdot b$,

co kończy dowód.

Schemat oceniania III sposobu rozwiązania

- zapisze, że trójkąt *BCO* jest prostokątny albo
- zapisanie, że $|BM| = |KB| = \frac{1}{2}a$ oraz $|CM| = |LC| = \frac{1}{2}b$.

Uwaga

Jeżeli zdający zapisze np. $|OM|^2 = |BM| \cdot |CM|$ i narysuje odcinek OM (lub zapisze, że jest to koniec promienia okręgu poprowadzonego do punktu styczności okręgu i ramienia trapezu), ale nie zapisze, że $|BM| = \frac{1}{2}a$ lub $|CM| = \frac{1}{2}b$ (nie wykorzystuje twierdzenia o równości odcinków stycznych), to otrzymuje **2 punkty**.

Pokonanie zasadniczych trudności zadania 3 pkt

Zdajacy

• wykorzysta twierdzenie o wysokości trójkąta prostokątnego opuszczonej na przeciwprostokątną, i zapisze, np. że $|OM| = \sqrt{|BM| \cdot |CM|}$

albo

• wykorzysta podobieństwo trójkątów *OMB* i *OMC* i zapisze $\frac{r}{\frac{1}{2}a} = \frac{\frac{1}{2}b}{r}$.

Zadanie 3. (0–3)

Oblicz, ile jest liczb naturalnych sześciocyfrowych, w zapisie których występuje dokładnie trzy razy cyfra 0 i dokładnie raz występuje cyfra 5.

Obszar standardów	Opis wymagań
Użycie i tworzenie strategii	Wykorzystanie wzorów na liczbę permutacji, kombinacji i wariacji do zliczania obiektów w sytuacjach kombinatorycznych (IV.10.R)

I sposób rozwiązania

Wybieramy z pięciu miejsc trzy miejsca, na których wstawiamy cyfrę 0, następnie wybieramy jedno z trzech miejsc dla cyfry 5, a na pozostałych dwóch miejscach rozmieszczamy cyfry różne od 0 i różne od 5.

$$\binom{5}{3} \cdot 3 \cdot 8^2 = 30 \cdot 64 = 1920.$$

Schemat oceniania I sposobu rozwiązania

Jeżeli zdający uzyska wynik końcowy, ale traktuje to jak jeden z kilku przypadków, to otrzymuje za rozwiązanie co najwyżej **2 punkty**.

II sposób rozwiązania

Rozróżniamy dwa przypadki:

- 1. cyfra 5 znajduje się na pierwszym miejscu (jest cyfrą setek tysięcy) albo
 - 2. cyfra 5 nie znajduje się na pierwszym miejscu.

W pierwszym przypadku wybieramy trzy miejsca (spośród pięciu), na których umieszczamy cyfrę 0, a na pozostałych dwóch miejscach rozmieszczamy cyfry różne od 0 i różne od 5.

Takich liczb sześciocyfrowych jest
$$1 \cdot {5 \choose 3} \cdot 8^2 = 640$$
.

W drugim przypadku na pierwszym miejscu umieszczamy cyfrę różną od 0 i różną od 5 (mamy 8 takich możliwości), następnie wybieramy miejsce w którym wstawimy cyfrę 5 (mamy 5 możliwości), a następnie z pozostałych czterech miejsc wybieramy trzy, w których wstawiamy cyfrę 0 (możemy to zrobić na 4 sposoby), na pozostałym miejscu umieszczamy cyfrę różną od 0 i różną od 5 (możemy to zrobić na 8 sposobów).

Zatem w tym przypadku mamy 8.5.4.8 = 1280 takich liczb.

Mamy więc
$$1 \cdot {5 \choose 3} \cdot 8^2 + 8 \cdot 5 \cdot 4 \cdot 8 = 640 + 1280 = 1920$$
 liczb sześciocyfrowych spełniających

warunki zadania.

<u>Uwaga</u>

W drugim przypadku możemy także przeprowadzić inne rozumowanie:

spośród miejsc od drugiego do szóstego wybieramy cztery, na których umieszczamy cyfrę 5 i trzy cyfry 0 (mamy 5·4 takich możliwości), następnie na pozostałych dwóch miejscach rozmieszczamy cyfry różne od 0 i różne od 5 (mamy 8² takich możliwości).

Tak więc w tym przypadku mamy $5 \cdot 4 \cdot 8^2 = 1280$ takich liczb.

Schemat oceniania II sposobu rozwiązania

• zapisze, że jest $1 \cdot {5 \choose 3} \cdot 8^2$ liczb sześciocyfrowych, w zapisie których pierwszą cyfrą jest 5 i cyfra 0 występuje dokładnie trzy razy

albo

• zapisze, że jest 8·5·4·8 liczb sześciocyfrowych, w zapisie których pierwszą cyfrą nie jest 5 i cyfra 0 występuje dokładnie trzy razy.

Pokonanie zasadniczych trudności zadania2 pkt

Zdający zapisze, że jest $1 \cdot {5 \choose 3} \cdot 8^2$ liczb sześciocyfrowych, w zapisie których pierwszą cyfrą

jest 5, cyfra 0 występuje dokładnie trzy razy oraz że jest 8·5·4·8 liczb sześciocyfrowych, w zapisie których pierwszą cyfrą nie jest 5 i cyfra 0 występuje dokładnie trzy razy.

Zdający zapisze, że jest 1920 liczb sześciocyfrowych, w zapisie których cyfra 0 występuje dokładnie trzy razy i cyfra 5 występuje tylko raz.

<u>Uwaga</u>

Jeżeli zdający uzyska wynik końcowy, ale traktuje to jak jeden z kilku przypadków, to otrzymuje za rozwiązanie co najwyżej **2 punkty**.

III sposób rozwiązania

Wybieramy cztery miejsca, na których wstawiamy cyfrę 5 i trzy cyfry 0, na pozostałych miejscach rozmieszczamy cyfry różne od 0 i różne od 5.

Jest
$$\binom{6}{4}$$
 · 4 · 8² = 3840 takich ciągów sześciowyrazowych.

Wśród nich znajdują się te, w których cyfra 0 znajduje się na pierwszym miejscu. Jest ich $\binom{5}{3} \cdot 3 \cdot 8^2 = 1920$.

Stąd wynika, że liczb sześciocyfrowych spełniających warunki zadania jest $\binom{6}{4} \cdot 4 \cdot 8^2 - \binom{5}{3} \cdot 3 \cdot 8^2 = 3840 - 1920 = 1920$.

Schemat oceniania III sposobu rozwiązania

• zapisze liczbę ciągów sześciowyrazowych, w zapisie których tylko jeden raz występuje cyfra 5, a cyfra 0 pojawia się dokładnie trzy razy: $\binom{6}{4} \cdot 4 \cdot 8^2$

albo

• zapisze liczbę ciągów sześciowyrazowych, w zapisie których pierwszą cyfrą jest $0: \binom{5}{3} \cdot 3 \cdot 8^2$.

Zdający zapisze, że jest $\binom{6}{4} \cdot 4 \cdot 8^2$ ciągów sześciowyrazowych, w zapisie których tylko jeden

raz występuje cyfra 5, a cyfra 0 pojawia się dokładnie trzy razy, w tym $\binom{5}{3} \cdot 3 \cdot 8^2$ takich ciągów, w zapisie których pierwszą cyfrą jest 0.

Uwaga

Jeżeli zdający uzyska wynik końcowy, ale traktuje to jak jeden z kilku przypadków, to otrzymuje za rozwiązanie co najwyżej **2 punkty**.

Zadanie 4. (0–4)

Rozwiąż równanie $\cos 2x + \cos x + 1 = 0$ dla $x \in \langle 0, 2\pi \rangle$.

Obszar standardów	Opis wymagań
Użycie i tworzenie strategii	Rozwiązanie równania trygonometrycznego (IV.6.e.R)

Rozwiązanie (I sposób)

Ponieważ $\cos 2x = 2\cos^2 x - 1$, więc równanie $\cos 2x + \cos x + 1 = 0$ jest równoważne równaniu

$$2\cos^2 x + \cos x = 0$$

czyli równaniu $\cos x(2\cos x+1)=0$. To równanie jest równoważne alternatywie równań

$$\cos x = 0 \text{ lub } \cos x = -\frac{1}{2}.$$

W przedziale $\langle 0, 2\pi \rangle$ równanie $\cos x = 0$ ma dwa rozwiązania: $x = \frac{\pi}{2}$ lub $x = \frac{3}{2}\pi$.

Równanie $\cos x = -\frac{1}{2}$ ma w przedziale $\langle 0, 2\pi \rangle$ dwa rozwiązania: $x = \frac{2}{3}\pi$ lub $x = \frac{4}{3}\pi$.

Zapisujemy odpowiedź: równanie $\cos 2x + \cos x + 1 = 0$ w przedziale $\langle 0, 2\pi \rangle$ ma cztery

rozwiązania:
$$x = \frac{\pi}{2}$$
, $x = \frac{2}{3}\pi$, $x = \frac{4}{3}\pi$, $x = \frac{3}{2}\pi$.

Schemat oceniania I sposobu rozwiązania

- zapisze alternatywę $\cos x = 0$ lub $\cos x = -\frac{1}{2}$ albo
- wprowadzi pomocniczą niewiadomą, np. $t = \cos x$ i zapisze, że t = 0 lub $t = -\frac{1}{2}$ i na tym zakończy lub dalej popełni błędy.

- rozwiąże równanie $\cos x = 0$ w przedziale $\langle 0, 2\pi \rangle$: $x = \frac{\pi}{2}$ lub $x = \frac{3}{2}\pi$ albo
- rozwiąże równanie $\cos x = -\frac{1}{2}$ w przedziale $\langle 0, 2\pi \rangle$: $x = \frac{2}{3}\pi$ lub $x = \frac{4}{3}\pi$.

Rozwiązanie pełne 4 pkt

Zdający zapisze rozwiązania obu równań w przedziale $\langle 0, 2\pi \rangle$:

$$\cos x = 0$$
 dla $x = \frac{\pi}{2}$ lub $x = \frac{3}{2}\pi$ (albo $x = 90^{\circ}$ lub $x = 270^{\circ}$),

$$\cos x = -\frac{1}{2} \text{ dla } x = \frac{2}{3}\pi \text{ lub } x = \frac{4}{3}\pi \text{ (albo } x = 120^{\circ} \text{ lub } x = 240^{\circ} \text{)}.$$

<u>Uwagi</u>

- 1. Nie wymagamy, aby zdający zapisał warunek np. $t \in \langle -1,1 \rangle$, o ile z rozwiązania wynika, że zdający uwzględnia ten warunek.
- 2. Jeżeli zdający podaje ogólne rozwiązanie równania trygonometrycznego: $\cos x = 0$ dla $x = \frac{\pi}{2} + k\pi$, gdzie k jest liczbą całkowitą, $\cos x = -\frac{1}{2}$ dla $x = \frac{2}{3}\pi + 2k\pi$, gdzie k jest liczbą całkowitą lub $x = \frac{4}{3}\pi + 2k\pi$, gdzie k jest liczbą całkowitą, to otrzymuje **3 punkty**.
- 3. Jeżeli zdający dzieli stronami równanie $2\cos^2 x + \cos x = 0$ przez $\cos x$ bez rozpatrzenia dwóch przypadków i poprawnie rozwiąże równanie $2\cos x + 1 = 0$, to otrzymuje za całe rozwiązanie **2 punkty**.

Rozwiązanie (II sposób)

Równanie możemy zapisać w postaci równoważnej

$$\cos 2x = -\cos x - 1.$$

Rozpatrujemy dwie funkcje $f(x) = \cos 2x$ oraz $g(x) = -\cos x - 1$ i rysujemy ich wykres (wystarczy ograniczyć się do przedziału $\langle 0, 2\pi \rangle$)

Odczytujemy rozwiązania równania: $x = \frac{\pi}{2}$, $x = \frac{2\pi}{3}$, $x = \frac{4\pi}{3}$, $x = \frac{3\pi}{2}$

Schemat oceniania II sposobu rozwiązania

Rozwiązanie pełne 4 pkt

Zdający zapisze rozwiązania obu równań w przedziale $\langle 0, 2\pi \rangle$:

$$\cos x = 0$$
 dla $x = \frac{\pi}{2}$ lub $x = \frac{3}{2}\pi$ (albo $x = 90^{\circ}$ lub $x = 270^{\circ}$),
 $\cos x = -\frac{1}{2}$ dla $x = \frac{2}{3}\pi$ lub $x = \frac{4}{3}\pi$ (albo $x = 120^{\circ}$ lub $x = 240^{\circ}$).

Uwaga

Jeżeli zdający poda poprawnie trzy spośród rozwiązań (błędnie odczyta czwarte rozwiązanie, to otrzymuje **3 punkty**, jeśli natomiast odczyta co najwyżej dwa rozwiązania, to otrzymuje **2 punkty**.

Zadanie 5. (0–5)

Ciąg liczbowy (a, b, c) jest arytmetyczny i a+b+c=33, natomiast ciąg (a-1, b+5, c+19) jest geometryczny. Oblicz a, b, c.

Obszar standardów	Opis wymagań
Modelowanie matematyczne	Wykorzystanie własności ciągu geometrycznego oraz własności ciągu arytmetycznego (III.5)

I sposób rozwiązania

Zapisujemy układ równań:

$$\begin{cases} a+b+c = 33 \\ a+c = 2b \\ (b+5)^2 = (a-1)(c+19) \end{cases}$$

Podstawiamy do pierwszego równania, w miejsce a+c wyrażenie 2b i otrzymujemy równanie 3b=33, skąd b=11. Układ równań przyjmuje zatem postać:

$$\begin{cases} b = 11 \\ a + c = 22 \\ 16^2 = (a-1)(c+19) \end{cases}$$

Równania drugie i trzecie tworzą układ z dwiema niewiadomymi, który rozwiążemy, podstawiając wyrażenie 22-a w miejsce niewiadomej c w równaniu trzecim. Otrzymujemy zatem równanie kwadratowe z niewiadomą a:

$$a^2 - 42a + 297 = 0$$

Zatem a = 33 lub a = 9.

Jeżeli a = 33, to c = -11 i oczywiście b = 11.

Otrzymujemy zatem ciąg arytmetyczny (33, 11, -11), a po odpowiednich przekształceniach ciąg geometryczny (32, 16, 8).

Jeżeli zaś a = 9, to c = 13 i b = 11. Otrzymujemy teraz ciąg arytmetyczny (9, 11, 13), a po wykonaniu odpowiednich przekształceń ciąg geometryczny (8, 16, 32).

Szukanymi liczbami sa zatem: a = 33, b = 11, c = -11 lub a = 9, b = 11, c = 13.

Schemat oceniania I sposobu rozwiazania

$$\begin{cases} a+b+c = 33 \\ a+c = 2b \\ (b+5)^2 = (a-1)(c+19) \end{cases}$$

i na tym zakończy lub dalej popełni błędy.

$$a^2 - 42a + 297 = 0$$
 lub $c^2 - 2c - 143 = 0$

i na tym zakończy lub dalej popełni błędy.

 poprawne rozwiąże równanie kwadratowe, odrzuci jedno z rozwiązań i poprawnie wyznaczy drugą trójkę liczb

albo

 przekształci układ równań z jedną niewiadomą do równania kwadratowego z błędem rachunkowym, np. błąd w redukcji wyrazów podobnych lub w przepisywaniu i konsekwentne doprowadzi rozwiązanie do końca (o ile otrzymane równanie kwadratowe ma dwa pierwiastki rzeczywiste).

Uwagi

- 1. Jeżeli zdający stosuje własności ciągu arytmetycznego przy rozważaniu ciągu geometrycznego (lub odwrotnie), to za całe rozwiązanie otrzymuje **0 punktów**.
- 2. Jeżeli zdający zapisze odpowiedź w postaci, z której nie można jednoznacznie stwierdzić, że są dwie trójki szukanych liczb, np. zapisze: a = 33 lub a = 9, b = 11, c = -11 lub c = 13, to otrzymuje **4 punkty**.

II sposób rozwiazania

Oznaczamy: przez a – pierwszy wyraz ciągu arytmetycznego, a przez r – różnicę tego ciągu. Wówczas b = a + r, c = a + 2r. Z własności ciągu arytmetycznego i z treści zadania otrzymujemy równanie a + (a + r) + (a + 2r) = 33 i stąd a + r = 11. Zatem ciąg arytmetyczny możemy zapisać następująco: (11-r, 11, 11+r). Ciąg (a-1, b+5, c+19), a więc ciąg (10-r, 16, 30+r) jest geometryczny, więc możemy zapisać równanie, np.

$$16^2 = (10-r)(30+r)$$
.

Po przekształceniach i uporządkowaniu otrzymujemy równanie kwadratowe

$$r^2 + 20r - 44 = 0$$
.

Rozwiązaniami tego równania są: r = 2 lub r = -22. Następnie obliczamy a, b, c.

Szukane liczby to: $\begin{cases} a = 9 \\ b = 11 \text{ lub } \\ c = 13 \end{cases} \begin{cases} a = 33 \\ b = 11 \\ c = -11 \end{cases}$

Schemat oceniania II sposobu rozwiązania

$$a + (a+r) + (a+2r) = 33$$
 lub $a+r=11$

i na tym zakończy lub dalej popełni błędy.

Rozwiązanie, w którym jest istotny postęp2 pkt Zdający

• wykorzysta własności ciągu geometrycznego i zapisze układ równań, np.

$$\begin{cases} a+r=11\\ (a+r+5)^2 = (a-1)(a+2r+19) \end{cases}$$

albo

• zapisze wyrazy ciągu geometrycznego w zależności od r, np. (10-r, 16, 30+r) i na tym zakończy lub dalej popełni błędy.

Pokonanie zasadniczych trudności zadania3 pkt Zdający przekształci układ równań do równania z niewiadomą *r* , np.

$$(11-r+r+5)^2 = (11-r-1)(11-r+2r+19)$$
 lub $r^2 + 20r - 44 = 0$

i na tym zakończy lub dalej popełni błędy.

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe).......4 pkt Zdający

- poprawnie rozwiąże równanie kwadratowe, odrzuci jedno z rozwiązań, np. r < 0 i poprawnie wyznaczy drugą trójkę liczb
- albo
- przekształci układ równań z jedną niewiadomą do równania kwadratowego z błędem rachunkowym, np. błąd w redukcji wyrazów podobnych lub w przepisywaniu i konsekwentne doprowadzi rozwiązanie do końca (o ile otrzymane równanie kwadratowe ma dwa pierwiastki rzeczywiste).

Zdający wyznaczy dwie trójki liczb: $\begin{cases} a = 9 \\ b = 11 \text{ lub } \end{cases} \begin{cases} a = 33 \\ b = 11 \end{cases}.$ c = -11

Uwagi

- 1. Jeżeli zdający stosuje własności ciągu arytmetycznego przy rozważaniu ciągu geometrycznego (lub odwrotnie), to za całe rozwiązanie otrzymuje **0 punktów**.
- 2. Jeżeli zdający zapisze odpowiedź w postaci, z której nie można jednoznacznie stwierdzić, że są dwie trójki szukanych liczb, np. zapisze: a = 33 lub a = 9, b = 11, c = -11 lub c = 13, to otrzymuje **4 punkty**.

Zadanie 6. (0–6)

Wyznacz wszystkie wartości parametru m, dla których równanie $x^2 + 2(1-m)x + m^2 - m = 0$ ma dwa różne rozwiązania rzeczywiste x_1 , x_2 spełniające warunek $x_1 \cdot x_2 \le 6m \le x_1^2 + x_2^2$.

Obszar standardów	Opis wymagań
Użycie i tworzenie strategii	Rozwiązanie równania kwadratowego z parametrem, przeprowadzenie dyskusji i wyciągnięcie wniosków (IV.3.b.R)

Rozwiązanie

Zapisujemy układ warunków:

$$\begin{cases} \Delta > 0 \\ x_1 \cdot x_2 \leq 6m \leq x_1^2 + x_2^2 \end{cases}$$
 Rozwiązujemy nierówność $\Delta > 0$, czyli $\left[2 \left(1 - m \right) \right]^2 - 4 \cdot 1 \cdot \left(m^2 - m \right) > 0$,
$$4 \left(m - 1 \right)^2 - 4m \left(m - 1 \right) > 0$$
,
$$-m + 1 > 0$$
,
$$m < 1$$
,
$$m \in \left(-\infty, 1 \right)$$
.

Nierówność $x_1 \cdot x_2 \le 6m \le x_1^2 + x_2^2$ zapisujemy w postaci równoważnej

$$x_1 \cdot x_2 \le 6m \le (x_1 + x_2)^2 - 2x_1x_2$$
.

Wykorzystując wzory Viete'a, otrzymujemy układ nierówności z niewiadomą m:

$$\frac{m^2 - m}{1} \le 6m$$
 i $6m \le \left(\frac{2(m-1)}{1}\right)^2 - 2 \cdot \frac{m^2 - m}{1}$,

czyli

$$m^{2} - 7m \leq 0 \quad i \quad 6m \leq 4\left(m^{2} - 2m + 1\right) - 2m^{2} + 2m,$$

$$m\left(m - 7\right) \leq 0 \quad i \quad m^{2} - 6m + 2 \geq 0,$$

$$m \in \left\langle 0, 7 \right\rangle \quad i \quad m \in \left(-\infty, 3 - \sqrt{7}\right) \cup \left\langle 3 + \sqrt{7}, +\infty\right),$$

$$m \in \left\langle 0, 3 - \sqrt{7}\right\rangle \cup \left\langle 3 + \sqrt{7}, 7\right\rangle.$$

Stąd i z poprzednio warunku otrzymujemy

$$m \in \langle 0, 3 - \sqrt{7} \rangle$$
.

Schemat oceniania

Rozwiązanie zadania składa się z trzech etapów.

Pierwszy z nich polega na rozwiązaniu nierówności $\Delta > 0$: $m \in (-\infty, 1)$.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 1 punkt.

<u>Uwaga</u>

Jeżeli zdający zapisze $\Delta \ge 0$, to za tę część otrzymuje **0 punktów**.

Drugi etap polega na rozwiązaniu nierówności $x_1 \cdot x_2 \le 6m \le x_1^2 + x_2^2$. Za tę część rozwiązania zdający otrzymuje **4 punkty**.

Podział punktów za drugi etap rozwiązania:

Za rozwiązanie nierówności $x_1 \cdot x_2 \le 6m$: $m \in \langle 0,7 \rangle$ zdający otrzymuje **1 punkt.**

Za rozwiązanie nierówności $6m \le x_1^2 + x_2^2$ zdający otrzymuje 3 punkty. Przy czym w tej części:

- **1 punkt** zdający otrzymuje za zapisanie wyrażenia $x_1^2 + x_2^2$ w postaci $(x_1 + x_2)^2 2x_1x_2$,
- **2 punkty** zdający otrzymuje za zapisanie nierówności $6m \le x_1^2 + x_2^2$ w postaci nierówności z jedną niewiadomą, np.: $6m \le 4(m^2 2m + 1) 2m^2 + 2m$,
- **3 punkty** zdający otrzymuje za rozwiązanie nierówności $6m \le x_1^2 + x_2^2$:

$$m \in \left(-\infty, 3-\sqrt{7}\right) \cup \left\langle 3+\sqrt{7}, +\infty \right\rangle$$
.

Trzeci etap polega na wyznaczeniu części wspólnej rozwiązań nierówności z etapu pierwszego i drugiego.

Rozwiązanie pełne (trzeci etap)......6 pkt

Zdający wyznaczy część wspólną zbiorów rozwiązań nierówności i poda odpowiedź: $m \in \left<0,3-\sqrt{7}\right>$.

Uwaga

W przypadku rozwiązania z usterkami, za ostatni etap przyznajemy **1 punkt** jedynie wówczas, gdy zdający poprawnie wykona etap I i popełnia błędy w rozwiązaniu nierówności z etapu II albo gdy popełnia błędy w etapie I i dobrze rozwiąże co najmniej jedną nierówność z etapu II.

Zadanie 7. (0–4)

Prosta o równaniu 3x-4y-36=0 przecina okrąg o środku S=(3,12) w punktach A i B. Długość odcinka AB jest równa 40. Wyznacz równanie tego okręgu.

Obszar standardów	Opis wymagań
Użycie i tworzenie strategii	Wyznaczenie równania okręgu (IV.8.e.g.c.R)

I sposób rozwiązania

Odległość środka S okręgu od prostej o równaniu 3x - 4y - 36 = 0 jest równa

$$\frac{\left|3 \cdot 3 - 4 \cdot 12 - 36\right|}{\sqrt{3^2 + \left(-4\right)^2}} = \frac{\left|-75\right|}{5} = 15.$$

Jest to też długość odcinka SC, gdzie C jest środkiem cięciwy AB. Ponieważ |AB| = 40, więc

$$|AC| = \frac{1}{2} \cdot 40 = 20$$
.

Trójkąt ACS jest prostokątny, a jego przeciwprostokątną jest promień r okręgu. Z twierdzenia Pitagorasa otrzymujemy $|AS|^2 = |AC|^2 + |SC|^2$, czyli

$$r^2 = 20^2 + 15^2 = 400 + 225 = 625$$
.

Równanie okręgu ma więc postać

$$(x-3)^2 + (y-12)^2 = 625$$
.

<u>Uwaga</u>

Zdający może obliczyć odległość punktu S od prostej o równaniu 3x-4y-36=0 w inny sposób, np. wybrać na prostej dwa punkty (np. C=(12,0) i D=(0,-9)), obliczyć pole trójkąta CDS ($P_{CDS}=\frac{225}{2}$), a stąd obliczyć szukaną odległość, czyli wysokość trójkąta opuszczoną z wierzchołka S: h=15.

Schemat oceniania I sposobu rozwiązania

- wykona rysunek, na którym zaznaczy środek cięciwy AB albo zapisze, że środek cięciwy AB, środek okręgu i koniec cięciwy to wierzchołki trójkąta prostokątnego, albo
- wykorzysta współrzędne środka okręgu i zapisze równanie okręgu w postaci:

$$(x-3)^2 + (y-12)^2 = r^2$$
,

albo

• obliczy połowę długości cięciwy AB: $\frac{1}{2}|AB| = 20$,

albo

• obliczy odległość punktu *S* od prostej *AB* i nie interpretuje jej błędnie (np. jako promień szukanego okręgu) i na tym zakończy.

$$\frac{\left|3 \cdot 3 - 4 \cdot 12 - 36\right|}{\sqrt{3^2 + \left(-4\right)^2}} = 15 \text{ lub } \frac{2P_{CDS}}{|CD|} = 15,$$

gdzie C i D leżą na prostej o równaniu 3x-4y-36=0 oraz

- wykona rysunek, na którym zaznaczy środek cięciwy *AB* lub
- zapisze, że środek cięciwy AB, środek okręgu i koniec cięciwy to wierzchołki trójkata prostokatnego

lub

• wykorzysta współrzędne środka okręgu i zapisze równanie okręgu w postaci: $(x-3)^2 + (y-12)^2 = r^2$

lub

• obliczy połowę długości cięciwy AB: $\frac{1}{2}|AB| = 20$.

II sposób rozwiazania

Prosta prostopadła do prostej o równaniu 3x-4y-36=0 przechodząca przez środek szukanego okręgu jest symetralną cięciwy AB. Jej równanie ma postać

$$4(x-3)+3(y-12)=0$$
,
 $4x+3y-48=0$.

Środek D cięciwy AB jest punktem przecięcia tej prostej z prostą AB. Jego współrzędne obliczymy rozwiązując układ równań

$$\begin{cases} 3x - 4y - 36 = 0 & \begin{cases} y = \frac{3}{4}x - 9 & \begin{cases} y = \frac{3}{4}x - 9 & \begin{cases} x = 12 \\ 4x + 3y - 48 = 0 \end{cases} & \begin{cases} 4x + 3\left(\frac{3}{4}x - 9\right) - 48 = 0 \end{cases} & \begin{cases} \frac{25}{4}x - 75 = 0 \end{cases} & \begin{cases} y = 0 \end{cases} \end{cases}$$

wiec D = (12,0).

Punkty A i B leżą na okręgu o środku D i promieniu 20 i na prostej AB. Współrzędne punktów A i B obliczymy, rozwiązując układ równań

$$\begin{cases} (x-12)^2 + y^2 = 20^2 \\ 3x - 4y - 36 = 0 \end{cases}$$

$$\begin{cases} (x-12)^2 + y^2 = 20^2 \\ y = \frac{3}{4}x - 9 \end{cases}$$

$$\begin{cases} (x-12)^2 + (\frac{3}{4}x - 9)^2 = 20^2 \\ y = \frac{3}{4}x - 9 \end{cases}$$

$$\begin{cases} (x-12)^2 + \frac{9}{16}(x-12)^2 = 400 \\ y = \frac{3}{4}x - 9 \end{cases}$$

$$\begin{cases} \frac{25}{16}(x-12)^2 = 400 \\ y = \frac{3}{4}x - 9 \end{cases}$$

$$\begin{cases} \frac{5}{4}|x - 12| = 20 \\ y = \frac{3}{4}x - 9 \end{cases}$$

$$\begin{cases} |x - 12| = 16 \\ y = \frac{3}{4}x - 9 \end{cases}$$

$$\begin{cases} x = -4 \lor x = 28 \\ y = \frac{3}{4}x - 9 \end{cases}$$

$$\begin{cases} x = -4 \lor x = 28 \\ y = -12 \lor y = 12 \end{cases}$$

Zatem A = (-4, -12), B = (28, 12).

Promień szukanego okręgu jest równy $r = |AS| = \sqrt{(-4-3)^2 + (-12-12)^2} = \sqrt{625} = 25$. Stąd wynika, że szukany okrąg ma równanie $(x-3)^2 + (y-12)^2 = 625$.

Schemat oceniania II sposobu rozwiązania

- wykona rysunek, na którym zaznaczy środek cięciwy AB albo zapisze, że środek cięciwy AB, środek okręgu i koniec cięciwy to wierzchołki trójkąta prostokątnego, albo
- wykorzysta współrzędne środka okręgu i zapisze równanie okręgu w postaci:

$$(x-3)^2 + (y-12)^2 = r^2$$
,

albo

• obliczy połowę długości cięciwy AB: $\frac{1}{2}|AB| = 20$,

albo

• wyznaczy równanie symetralnej cięciwy *AB*: 4(x-3)+3(y-12)=0.

Zadanie 8. (0–4)

Reszta z dzielenia wielomianu $W(x) = 4x^3 - 5x^2 - 23x + m$ przez dwumian x + 1 jest równa 20. Oblicz wartość współczynnika m oraz pierwiastki tego wielomianu.

Obszar standardów	Opis wymagań
Wykorzystanie	Zastosowanie twierdzenia o reszcie z dzielenia
i interpretowanie reprezentacji	wielomianu przez dwumian $x-a$ i twierdzenia
	o pierwiastkach wymiernych wielomianu (II.2.b.c.R)

Rozwiązanie

Reszta z dzielenia wielomianu W przez dwumian x+1 jest równa W(-1). Zatem

$$4(-1)^3 - 5(-1)^2 - 23(-1) + m = 20$$
.

Stąd m = 6. Wielomian W ma zatem postać $W(x) = 4x^3 - 5x^2 - 23x + 6$.

Zauważmy, że
$$W(3) = 4 \cdot 3^3 - 5 \cdot 3^2 - 23 \cdot 3 + 6 = 3 \cdot (36 - 15 - 23 + 2) = 0$$
.

Zatem wielomian W jest podzielny przez dwumian x-3. Wykonując to dzielenie, otrzymujemy $4x^3-5x^2-23x+6=(x-3)(4x^2+7x-2)$.

Obliczamy pierwiastki trójmianu $4x^2 + 7x - 2$:

$$\Delta = 7^2 - 4 \cdot 4 \cdot (-2) = 81, \ \sqrt{\Delta} = 9,$$

 $x_1 = \frac{-7 - 9}{8} = -2, \ x_2 = \frac{-7 + 9}{8} = \frac{1}{4}.$

W rezultacie wielomian W ma trzy pierwiastki: x = -2, $x = \frac{1}{4}$, x = 3.

<u>Uwaga</u>

Możemy też zauważyć, że pierwiastkiem wielomianu W jest liczba – 2, gdyż

$$W(-2) = 4 \cdot (-2)^3 - 5 \cdot (-2)^2 - 23 \cdot (-2) + 6 = 2 \cdot (-16 - 10 + 23 + 3) = 0.$$

Zatem wielomian W jest podzielny przez dwumian x+2. Wykonując to dzielenie, otrzymujemy:

$$4x^3 - 5x^2 - 23x + 6 = (x+2)(4x^2 - 13x + 3).$$

Obliczamy pierwiastki trójmianu $4x^2 - 13x + 3$:

$$\Delta = (-13)^2 - 4 \cdot 4 \cdot 3 = 169 - 48 = 121, \ \sqrt{\Delta} = 11,$$
$$x_1 = \frac{13 - 11}{8} = \frac{1}{4}, \ x_2 = \frac{13 + 11}{8} = 3.$$

W rezultacie wielomian W ma trzy pierwiastki: x = -2, $x = \frac{1}{4}$, x = 3.

albo

Możemy zauważyć, że liczba $\frac{1}{4}$ jest pierwiastkiem wielomianu W, gdyż

$$W\left(\frac{1}{4}\right) = 4 \cdot \left(\frac{1}{4}\right)^3 - 5 \cdot \left(\frac{1}{4}\right)^2 - 23 \cdot \frac{1}{4} + 6 = \frac{1}{16} - \frac{5}{16} - 5\frac{3}{4} + 6 = 0.$$

Zatem wielomian W jest podzielny przez dwumian $x-\frac{1}{4}$. Wykonując to dzielenie, otrzymujemy:

$$4x^3 - 5x^2 - 23x + 6 = \left(x - \frac{1}{4}\right)\left(4x^2 - 4x - 24\right).$$

Obliczamy pierwiastki trójmianu $4x^2 - 4x - 24$:

$$\Delta = (-4)^2 - 4 \cdot 4 \cdot (-24) = 16 + 16 \cdot 24 = 16 \cdot 25, \ \sqrt{\Delta} = 4 \cdot 5 = 20,$$
$$x_1 = \frac{4 - 20}{8} = -2, \ x_2 = \frac{4 + 20}{8} = 3.$$

W rezultacie wielomian W ma trzy pierwiastki: x = -2, $x = \frac{1}{4}$, x = 3.

Schemat oceniania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania
Zdający zapisze równanie z niewiadomą m , np. $4 \cdot \left(-1\right)^3 - 5 \cdot \left(-1\right)^2 - 23 \cdot \left(-1\right) + m = 20$.
Rozwiązanie, w którym jest istotny postęp
Zdający obliczy wartość współczynnika m : $m = 6$.
Pokonanie zasadniczych trudności zadania
Zdający
• poda jeden z pierwiastków wielomianu, np.: 3, podzieli wielomian przez dwumian
$(x-3)$ i otrzyma iloraz $4x^2 + 7x - 2$ lub poda pierwiastek (-2) , podzieli wielomian
przez dwumian $(x+2)$ i otrzyma iloraz $4x^2-13x+3$,
albo

Zadanie 9. (0–5)

Dany jest trójkąt ABC, w którym |AC| = 17 i |BC| = 10. Na boku AB leży punkt D taki, że |AD| : |DB| = 3 : 4 oraz |DC| = 10. Oblicz pole trójkąta ABC.

Obszar standardów	Opis wymagań
Użycie i tworzenie strategii	Wykorzystanie związków miarowych w figurach płaskich (IV.7)

I sposób rozwiązania

Poprowadźmy wysokość CE trójkąta ABC

Niech |AD| = 3x, wtedy |DB| = 4x. Trójkąt DBC jest równoramienny, gdyż |BC| = |DC|, więc |DE| = |EB| = 2x. Stosując twierdzenia Pitagorasa dla trójkątów BEC i AEC, otrzymujemy

$$(2x)^2 + h^2 = 10^2 \text{ oraz } (5x)^2 + h^2 = 17^2,$$

czyli

$$4x^2 + h^2 = 10^2$$
 oraz $25x^2 + h^2 = 17^2$.

Stąd otrzymujemy

$$h^2 = 10^2 - 4x^2$$
 oraz $25x^2 + 10^2 - 4x^2 = 17^2$.

Rozwiązujemy drugie z równań

$$21x^2 = 189,$$

$$x^2 = 9,$$

$$x = 3$$

Zatem
$$h = \sqrt{10^2 - 4 \cdot 3^2} = \sqrt{100 - 36} = 8$$
.

Pole trójkata ABC jest równe

$$P_{ABC} = \frac{1}{2} |AB| \cdot h = \frac{1}{2} \cdot 7x \cdot h = \frac{1}{2} \cdot 21 \cdot 8 = 84$$
.

Uwaga

Po obliczeniu *x* mamy już długości wszystkich boków trójkąta, więc jego pole możemy również obliczyć ze wzoru Herona. Wtedy mamy

$$p = \frac{10 + 17 + 21}{2} = 24$$
, $p - a = 24 - 10 = 14$, $p - b = 24 - 17 = 7$, $p - c = 24 - 21 = 3$.

$$P_{ABC} = \sqrt{p(p-a)(p-b)(p-c)} = \sqrt{24 \cdot 14 \cdot 7 \cdot 3} = 84$$
.

II sposób rozwiązania

Poprowadźmy wysokość *CE* trójkąta *ABC* i oznaczmy niech $| \angle ABC | = \beta$.

Niech |AD| = 3x, wtedy |DB| = 4x. Trójkąt DBC jest równoramienny, gdyż |BC| = |DC|, więc |DE| = |EB| = 2x. Z trójkąta prostokątnego EBC obliczamy

$$\cos \beta = \frac{2x}{10} = \frac{x}{5}.$$

Z twierdzenia cosinusów dla trójkąta ABC otrzymujemy

$$17^2 = (7x)^2 + 10^2 - 2 \cdot 7x \cdot 10 \cdot \cos \beta.$$

Zatem

$$289 = 49x^2 + 100 - 2 \cdot 7x \cdot 10 \cdot \frac{x}{5},$$

czyli

$$189 = 49x^{2} - 28x^{2},$$

$$189 = 21x^{2},$$

$$x^{2} = 9,$$

$$x = 3.$$

Zatem $h = \sqrt{10^2 - 4 \cdot 3^2} = \sqrt{100 - 36} = 8$.

Pole trójkata ABC jest równe

$$P_{ABC} = \frac{1}{2} |AB| \cdot h = \frac{1}{2} \cdot 7x \cdot h = \frac{1}{2} \cdot 21 \cdot 8 = 84$$
.

Uwaga

Po obliczeniu *x* mamy już długości wszystkich boków trójkąta, więc jego pole możemy również obliczyć ze wzoru Herona. Wtedy mamy

$$p = \frac{10+17+21}{2} = 24, \ p-a = 24-10=14, \ p-b = 24-17=7, \ p-c = 24-21=3.$$

$$P_{ABC} = \sqrt{p(p-a)(p-b)(p-c)} = \sqrt{24\cdot14\cdot7\cdot3} = 84.$$

III sposób rozwiązania

Oznaczmy $| \not \prec ABC | = \beta$.

Niech |AD| = 3x, wtedy |DB| = 4x. Z twierdzenia cosinusów dla trójkątów ABC i DBC otrzymujemy

$$17^{2} = (7x)^{2} + 10^{2} - 2 \cdot 7x \cdot 10 \cdot \cos \beta \quad \text{oraz} \quad 10^{2} = (4x)^{2} + 10^{2} - 2 \cdot 4x \cdot 10 \cdot \cos \beta,$$

czyli

$$289 = 49x^2 + 100 - 140x \cdot \cos \beta$$
 oraz $100 = 16x^2 + 100 - 80x \cdot \cos \beta$.

Z drugiego równania obliczamy

$$\cos \beta = \frac{16x^2}{80x} = \frac{x}{5}.$$

Stąd i z pierwszego równania dostajemy

$$189 = 49x^{2} - 140x \cdot \frac{x}{5},$$

$$189 = 21x^{2},$$

$$x^{2} = 9,$$

$$x = 3.$$

Zatem $h = \sqrt{10^2 - 4 \cdot 3^2} = \sqrt{100 - 36} = 8$.

Pole trójkata ABC jest równe

$$P_{ABC} = \frac{1}{2} |AB| \cdot h = \frac{1}{2} \cdot 7x \cdot h = \frac{1}{2} \cdot 21 \cdot 8 = 84$$
.

Uwaga

Po obliczeniu *x* mamy już długości wszystkich boków trójkąta, więc jego pole możemy również obliczyć ze wzoru Herona. Wtedy mamy

$$p = \frac{10 + 17 + 21}{2} = 24, \quad p - a = 24 - 10 = 14, \quad p - b = 24 - 17 = 7, \quad p - c = 24 - 21 = 3.$$

$$P_{ABC} = \sqrt{p(p - a)(p - b)(p - c)} = \sqrt{24 \cdot 14 \cdot 7 \cdot 3} = 84.$$

Schemat oceniania I, II i III sposobu rozwiązania

Rozwiązanie, w którym jest istotny postęp2 pkt

Zdający zapisze układ równań pozwalający obliczyć wprowadzoną niewiadomą, np.:

•
$$(2x)^2 + h^2 = 10^2 \text{ oraz } (5x)^2 + h^2 = 17^2$$
,

albo

•
$$\cos \beta = \frac{x}{5} \text{ oraz } 17^2 = (7x)^2 + 10^2 - 2 \cdot 7x \cdot 10 \cdot \cos \beta$$
,

albo

•
$$17^2 = (7x)^2 + 10^2 - 2 \cdot 7x \cdot 10 \cdot \cos \beta$$
 oraz $10^2 = (4x)^2 + 10^2 - 2 \cdot 4x \cdot 10 \cdot \cos \beta$.

Zdający obliczy *x* oraz wysokość trójkąta z błędem rachunkowym i konsekwentnie do tego błędu obliczy pole trójkąta *ABC*.

Zadanie 10. (0-4)

W ostrosłupie *ABCS* podstawa *ABC* jest trójkątem równobocznym o boku długości *a*. Krawędź *AS* jest prostopadła do płaszczyzny podstawy. Odległość wierzchołka *A* od ściany *BCS* jest równa *d*. Wyznacz objętość tego ostrosłupa.

Obszar standardów	Opis wymagań
Użycie i tworzenie strategii	Wyznaczanie związków miarowych w ostrosłupie (IV.9.a.b)

I sposób rozwiązania

Zaznaczamy na rysunku odcinek AE, długość tego odcinka jest odległością wierzchołka A od ściany BCS i jednocześnie wysokością trójkąta prostokątnego DAS, gdzie D jest środkiem krawędzi BC danego ostrosłupa. Zatem |AE| = d.

Ponadto w trójkącie DAS wprowadzamy oznaczenia:

 α – miara kąta ADS i h = |AS| – wysokość ostrosłupa ABCS.

Z trójkątów prostokątnych *DAS* i *AED*, otrzymujemy $\sin \alpha = \frac{|AS|}{|SD|} = \frac{|AE|}{|AD|}$.

Ponieważ
$$|AD| = \frac{a\sqrt{3}}{2}$$
, to $\sin \alpha = \frac{h}{\sqrt{h^2 + \frac{3}{4}a^2}} = \frac{d}{\frac{a\sqrt{3}}{2}}$.

Przekształcamy równość $\frac{h}{\sqrt{h^2 + \frac{3}{4}a^2}} = \frac{d}{\frac{a\sqrt{3}}{2}}$ i wyznaczamy wysokość ostrosłupa h.

Otrzymujemy kolejno:

$$\frac{2h}{\sqrt{4h^2 + 3a^2}} = \frac{2d}{a\sqrt{3}}$$
$$\frac{h^2}{4h^2 + 3a^2} = \frac{d^2}{3a^2}$$
$$h^2 = \frac{3a^2d^2}{3a^2 - 4d^2}$$

czyli

$$h = \frac{ad\sqrt{3}}{\sqrt{3a^2 - 4d^2}}.$$

Wyznaczamy objętość ostrosłupa ABCS:

$$V = \frac{1}{3} \cdot \frac{a^2 \sqrt{3}}{4} \cdot h = \frac{a^2 \sqrt{3}}{12} \cdot \frac{ad\sqrt{3}}{\sqrt{3a^2 - 4d^2}} = \frac{a^3 d}{4\sqrt{3a^2 - 4d^2}}.$$

<u>Uwaga</u>

Równość $\frac{h}{\sqrt{h^2 + \frac{3}{4}a^2}} = \frac{d}{\frac{a\sqrt{3}}{2}}$ możemy również otrzymać, korzystając z podobieństwa

trójkatów DAS i AED.

Schemat oceniania I sposobu rozwiązania

Zdający zaznaczy na rysunku odcinek o długości d prostopadły do płaszczyzny BCS.

Rozwiązanie, w którym jest istotny postęp2 pkt Zdający zapisze równość, z której można wyznaczyć *h* w zależności od *a* i *d*, np.:

$$\frac{h}{\sqrt{h^2 + \frac{3}{4}a^2}} = \frac{d}{a\sqrt{3}}.$$

II sposób rozwiązania

Zaznaczamy na rysunku odcinek AE, długość tego odcinka jest odległością wierzchołka A od ściany BCS i jednocześnie wysokością ostrosłupa ABCS o podstawie BSC.

Zatem objętość V ostrosłupa ABCS jest równa: $V = \frac{1}{3}P_{BSC} \cdot d$.

Obliczmy P_{BSC} pole trójkąta BSC: $P_{BSC} = \frac{1}{2} \cdot a \cdot |SD|$.

Wprowadzamy oznaczenie: α – miara kąta ADS i z trójkątów prostokątnych DAS i AA'D, otrzymujemy:

$$\cos \alpha = \frac{|AD|}{|SD|} = \frac{a\sqrt{3}}{\frac{2}{|SD|}} i \sin \alpha = \frac{|AE|}{|AD|} = \frac{d}{\frac{a\sqrt{3}}{2}}.$$

Z jedynki trygonometrycznej obliczamy |SD|:

$$\left(\frac{a\sqrt{3}}{\frac{2}{|SD|}}\right)^2 + \left(\frac{d}{a\sqrt{3}}\right)^2 = 1.$$

$$\frac{3a^2}{4|SD|^2} = 1 - \frac{4d^2}{3a^2}$$

$$\frac{3a^2}{4|SD|^2} = \frac{3a^2 - 4d^2}{3a^2}$$

$$|SD| = \frac{3a^2}{2\sqrt{3a^2 - 4d^2}}$$

Wyznaczamy objętość ostrosłupa ABCS:

$$V = \frac{1}{3} \cdot \frac{1}{2} a \cdot \frac{3a^2}{2\sqrt{3a^2 - 4d^2}} \cdot d = \frac{a^3 d}{4\sqrt{3a^2 - 4d^2}}.$$

Schemat oceniania II sposobu rozwiązania

$$\left(\frac{a\sqrt{3}}{\frac{2}{|SD|}}\right)^2 + \left(\frac{d}{a\sqrt{3}}\right)^2 = 1.$$

III sposób rozwiązania

Płaszczyzny ABC i ABS są prostopadłe, trójkąt ABC jest równoboczny, więc jego wysokość $|CF| = \frac{a\sqrt{3}}{2}$ jest jednocześnie wysokością ostrosłupa opuszczoną na płaszczyznę podstawy ABS. Zatem

(1)
$$V = \frac{1}{3} P_{ABS} \cdot |CF| = \frac{1}{3} \cdot \frac{1}{2} ah \cdot \frac{a\sqrt{3}}{2}.$$

Z twierdzenia Pitagorasa dla trójkąta ADS otrzymujemy

$$|DS|^2 = |AD|^2 + |AS|^2,$$

$$m^2 = \left(\frac{a\sqrt{3}}{2}\right)^2 + h^2.$$

Stad

$$m = \sqrt{\left(\frac{a\sqrt{3}}{2}\right)^2 + h^2} = \sqrt{\frac{3}{4}a^2 + h^2} = \frac{1}{2}\sqrt{3a^2 + 4h^2}.$$

Odcinek AE jest wysokością ostrosłupa opuszczoną na podstawę BCS, więc

(2)
$$V = \frac{1}{3} P_{BCS} \cdot |DS| = \frac{1}{3} \cdot \frac{1}{2} am \cdot d,$$

$$V = \frac{1}{3} \cdot \frac{1}{2} a \cdot \frac{1}{2} \sqrt{3a^2 + 4h^2} \cdot d.$$

Porównując prawe strony (1) i (2) otrzymujemy

$$\frac{1}{3} \cdot \frac{1}{2} ah \cdot \frac{a\sqrt{3}}{2} = \frac{1}{3} \cdot \frac{1}{2} a \cdot \frac{1}{2} \sqrt{3a^2 + 4h^2} \cdot d.$$

Stad

$$ah\sqrt{3} = d\sqrt{3a^2 + 4h^2},$$

$$3a^2h^2 = d^2(3a^2 + 4h^2),$$

$$3a^2h^2 = 3a^2d^2 + 4d^2h^2,$$

$$3a^2h^2 - 4d^2h^2 = 3a^2d^2,$$

$$h^2(3a^2 - 4d^2) = 3a^2d^2,$$

$$h^{2} = \frac{3a^{2}d^{2}}{3a^{2} - 4d^{2}},$$
$$h = \frac{ad\sqrt{3}}{\sqrt{3a^{2} - 4d^{2}}}.$$

Objętość ostrosłupa jest zatem równa

$$V = \frac{1}{3} P_{ABC} \cdot h = \frac{1}{3} \cdot \frac{a^2 \sqrt{3}}{4} \cdot \frac{ad\sqrt{3}}{\sqrt{3a^2 - 4d^2}} = \frac{a^3 d}{4\sqrt{3a^2 - 4d^2}}.$$

Schemat oceniania III sposobu rozwiązania

$$\frac{1}{3} \cdot \frac{a^2 \sqrt{3}}{4} \cdot h = \frac{1}{3} \cdot \frac{a \cdot m}{2} \cdot d, \text{ gdzie } m = \sqrt{h^2 + \left(\frac{a\sqrt{3}}{2}\right)^2}.$$

Zadanie 11. (0–4)

Rzucamy cztery razy symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że iloczyn liczb oczek otrzymanych we wszystkich czterech rzutach będzie równy 60 .

Obszar standardów	Opis wymagań
Modelowanie matematyczne	Stosowanie twierdzenia znanego jako klasyczna definicja prawdopodobieństwa do obliczania prawdopodobieństw zdarzeń (III.10.b.d)

Rozwiązanie

Zdarzeniem elementarnym w tym doświadczeniu jest każdy ciąg czteroelementowy, którego wyrazami są liczby ze zbioru $\{1, 2, 3, 4, 5, 6\}$. Jest to model klasyczny. Wszystkich zdarzeń elementarnych tego doświadczenia jest 6^4 .

Zauważmy, że $60 = 1 \cdot 2 \cdot 5 \cdot 6 = 1 \cdot 3 \cdot 4 \cdot 5 = 2 \cdot 2 \cdot 3 \cdot 5$. Oznacza to, że należy rozpatrzyć trzy przypadki:

- 1. Ciągi, których wyrazami są liczby ze zbioru $\{1,2,5,6\}$. Jest ich 4! = 24.
- 2. Ciągi, których wyrazami są liczby ze zbioru $\{1,3,4,5\}$. Jest ich 4! = 24.
- 3. Ciągi, których wyrazami są liczby ze zbioru $\{2,3,5\}$ i których dwa wyrazy są dwójkami. Jest ich $4 \cdot 3 = 12$.
- 4. Otrzymujemy zatem 60 ciągów. Prawdopodobieństwo tego zdarzenia jest więc równe $\frac{60}{6^4} = \frac{5}{108}.$

Schemat oceniania

Zasadnicze trudności tego zadania polegają na zauważeniu trzech różnych sposobów otrzymania iloczynu równego 60 oraz zliczeniu, w każdym przypadku, liczby różnych czterowyrazowych ciągów. Za każdy rozpatrzony przypadek wraz z obliczoną poprawnie liczbę ciągów zdający otrzymuje **1 punkt**.

Czwarty punkt przyznamy zdającemu, który zapisze, że prawdopodobieństwo opisanego w treści zadania zdarzenia jest równe $\frac{|A|}{6^4}$, gdzie |A| oznacza obliczoną przez zdającego liczbę ciągów.

Zadanie 12. (0–3)

Na rysunku przedstawiony jest fragment wykresu funkcji logarytmicznej f określonej wzorem $f(x) = \log_2(x - p)$.

- a) Podaj wartość p.
- b) Narysuj wykres funkcji określonej wzorem y = |f(x)|.
- c) Podaj wszystkie wartości parametru m, dla których równanie |f(x)| = m ma dwa rozwiązania o przeciwnych znakach.

Obszar standardów	Opis wymagań
Użycie i tworzenie strategii	Sporządzanie wykresu funkcji $y = f(x) $ na podstawie
	danego wykresu funkcji logarytmicznej $y = f(x)$;
	badanie liczby rozwiązań równania z parametrem (IV.4.a.d i 4.a.e.R)

Rozwiązanie

- a) Odczytujemy z wykresu, że p=-4. Możemy również zauważyć, że f(0)=2. Stąd otrzymujemy $\log_2(-p)=2$. Z definicji logarytmu mamy $-p=2^2=4$. Stąd p=-4.
- b) Wykres funkcji określonej wzorem y = |f(x)| uzyskamy z wykresu funkcji f. W tym celu wystarczy tę część wykresu funkcji f, która leży pod osią Ox, odbić symetrycznie względem tej osi, a pozostałą część wykresu pozostawić bez zmian. W rezultacie otrzymujemy wykres

c) Z wykresu odczytujemy, że równanie |f(x)| = m ma dwa rozwiązania przeciwnych znaków dla m > 2.

Schemat oceniania

Rozwiązanie, w którym jest istotny postęp1 pkt Zdający

- zapisze, że p = -4 albo
- narysuje wykres funkcji o wzorze y = |f(x)| albo
- poda wszystkie wartości parametru m, dla których równanie |f(x)| = m ma dwa rozwiązania przeciwnych znaków.

<u>Uwaga</u>

Jeżeli zdający ustala wartości parametru m na podstawie błędnie narysowanego wykresu funkcji y = |f(x)|, to nie otrzymuje punktu za wyznaczenie tych wartości.

- zapisze, że p = -4 i narysuje wykres funkcji o wzorze y = |f(x)| i nie poda wszystkich wartości parametru m, dla których równanie |f(x)| = m ma dwa rozwiązania przeciwnych znaków
- albo
- nie poda wartości p, narysuje wykres funkcji o wzorze y = |f(x)| i poda wszystkie wartości parametru m, dla których równanie |f(x)| = m ma dwa rozwiązania przeciwnych znaków

albo

• zapisze, że p = -4, nie narysuje wykresu funkcji o wzorze y = |f(x)| i poda wszystkie wartości parametru m, dla których równanie |f(x)| = m ma dwa rozwiązania przeciwnych znaków.