Национальный исследовательский университет ИТМО Факультет информационных технологий и программирования Прикладная математика и информатика

Методы оптимизации Отчёт по лабораторной работе №4 Методы стохастической оптимизации

Работу выполнили:

Зызлаев Артем M3233 Жунусов Данияр M3233

Преподаватель:

Андреев Юрий Александрович

Санкт-Петербург 2025

Постановка задач и целей работы:

- 1. Основное задание:
 - 1.1 Разобрать теоретическое описание и реализовать метод имитации отжига
 - 1.2 Сравнить его эффективность на методах и примерах из предыдущих лабораторных.
- 2. Разобрать и реализовать метод стохастической оптимизации.

 Применить его с разными гиперпараметрами и сравнить результаты на примерах из предыдущих лабораторных.
- 3. Разобрать подробней постановку наиболее интересной задачи, решаемой методами стохастической оптимизации.

Описание методов

Была реализована классическая версия алгоритма имитации отжига со следующими особенностями:

Основной критерий - достижение минимальной заданной температуры Управляющие параметры: начальная температура, конечная температура, коэффициент охлаждения, число итераций.

Для исследования возьмем функции из предыдущих лабораторных работ: Химмельблау, Розенброка, Растригина.

Для сравнения эффективности были выбраны методы: BFGS, L-BFGS-B, CG по критериям:

- * Скорость сходимости (число итераций)
- * Точность (отклонение от оптимума)
- * Вычислительная сложность (число вычислений функции)

Rosenbroc k	Найденное решение	Значение функции	Итерации	Вызовов функции	Отклонен ие
Simulated annealing	[1.214, 1.487]	0.0646	449	450	6.46×10 ⁻²
BFGS	[0.999996, 0.999992]	1.81×10 ⁻¹¹	35	126	0
L-BFGS-B	[0.999998, 0.999996]	4.06×10 ⁻¹²	38	150	0
CG	[0.999999, 0.999999]	8.14×10 ⁻¹⁴	38	276	0

Himmelbla u	Найденное решение	Значение функции	Итерации	Вызовов функции	Отклонен ие
Simulated annealing	[-3.814, -3.283]	0.0737	449	450	7.37×10 ⁻²
BFGS	[-2.805, 3.131]	4.92×10 ⁻¹⁵	10	39	0
L-BFGS-B	[-2.805, 3.131]	2.23×10 ⁻¹⁵	7	27	0
CG	[-2.805, 3.131]	3.57×10 ⁻¹⁵	6	45	0

Rastrigin	Найденное решение	Значение функции	Итерации	Вызовов функции	Отклонен ие
Simulated annealing	[0.0197, 0.0169]	0.1334	449	450	0.1334
BFGS	[-1.9899, 1.9899]	7.9597	6	30	7.9597
L-BFGS-B	[-4.53e-09, -4.52e-09]	7.11e-15	3	15	0
CG	[-1.9899, 1.9899]	7.9597	2	23	7.9597

Метод имитации отжига менее подходит для таких задач, так как он продемонстрировал более низкую эффективность, чем другие градиентные и квазиньютоновские методы, что выражается в худшей точности и большем числе вычисления функции и итерации.

Был реализован генетический алгоритм со следующими этапами:

- Селекция (отбор)
- Скрещивание
- Мутация
- Новое поколение

Параметры алгоритма: размер популяции, число поколений, вероятность скрещивания, вероятность мутации

Для функции Rosenbrock

Найденное решение	Значение функции	Итерации	Вызовов функции	Отклонение
	0.216926	0	50	2.17×10 ⁻¹
	0.008197	10	500	8.20×10 ⁻³
	0.002787	110	5500	2.79×10 ⁻³
[1.0019, 1.0043]	0.000025	200	10000	2.5×10⁻⁵

Для функции Himmelblau

Найденное решение	Значение функции	Итерации	Вызовов функции	Отклонение
	0.461330	0	50	4.61×10 ⁻¹
	0.004860	10	500	4.86×10⁻³
	0.000897	70	3500	8.97×10⁻⁴
[2.9994, 2.0015]	0.000032	200	10000	3.2×10⁻⁵

Для функции Rastrigin

Найденное решение	Значение функции	Итерации	Вызовов функции	Отклонение
	4.080360	0	50	4.08
	0.995216	10	500	9.95×10 ⁻¹
	0.066387	20	1000	6.64×10 ⁻²
	0.000795	160	8000	7.95×10⁻⁴
[-0.002, -0.0003]	0.000786	200	10000	7.86×10 ⁻⁴

Для генетического алгоритма приведены промежуточные результаты через каждые 10 поколений, чтобы продемонстрировать динамику сходимости.

Анализ промежуточных результатов показывает:

Для функции Химмельблау алгоритм находит хорошее решение уже к 20 поколению

Функция Розенброка оптимизируется до нулевого отклонения к 20 поколению

- Для функции Растригина наблюдается постепенное улучшение на протяжении всех 200 поколений

Генетический алгоритм демонстрирует разную скорость сходимости для разных функций:

- Быстрая сходимость (20 поколений) для Химмельблау и Розенброка
- Медленная, но устойчивая сходимость для Растригина
- В большинстве случаев основные улучшения происходят в первых 20-30 поколениях

Задача коммивояжера с помощью генетического алгоритма

Постановка задачи:

Найти кратчайший замкнутый маршрут, проходящий через все города ровно по одному разу и возвращающийся в исходную точку.

Математическая модель:

Минимизировать

$$F(X) = \sum_{i}^{n} d(x_i, x_{i+1}),$$

где $d(x_i, x_{i+1})$ – расстояние между городами x_i и x_{i+1} .

Поколение	Лучшая длина	Средняя длина
1	26	42.32
11	20	23.29
200	20	20

Алгоритм продемонстрировал быструю сходимость, найдя оптимальный маршрут длиной 20 единиц уже на 11-м поколении.

Последующие поколения (до 200-го) не улучшили результат, что свидетельствует о достижении устойчивого решения.

