

Introduction to Clean Room and vacuum systems

Susana Cardoso de Freitas

The Scale of Things – Nanometers and More

Things Natural

Mi Na

Dust mite 200 µm

Human hair ~ 60-120 µm wide

Red blood cells (~7-8 µm)

Ant

~ 5 mm

Fly ash

~ 10-20 µm

~2-1/2 nm diameter

ATP synthase

Atoms of silicon spacing 0.078 nm

Things Manmade

Corral diameter 14 nm

Wafer processing - I Clean room environment

Semiconductor clean room:

- controlled temperature (20°C), air pressure, humidity (30%)
- controlled airbone particulates
- controlled vibration
- controlled lighting

If you've never done it before, putting on a bunny suit can take 30 to 40 minutes. The **Intel pros** can do it in five.

INESC: 250 m² Class 10 and 100 clean room 250 m² Class 10000 (grey area)

HEPA(High Efficiency Particulate Air Filter)

- for maintaining contamination control

INESC

- Filtering particles down to 0.3 microns

ISO 14644-1 cleanroom standards

	particles/m³						
Class	0.1 μm	0.2 μm	0.3 µm	0.5 μm	1 µm	5 µm	
ISO 1	10	2					
ISO 2	100	24	10	4			
ISO 3	1,000	237	102	35	8		
ISO 4	10,000	2,370	1,020	352	83		
ISO 5	100,000	23,700	10,200	3,520	832	29	
ISO 6	000,000,1	237,000	102,000	35,200	8,320	293	
ISO 7				352,000	83,200	2,930	
ISO 8				3,520,000	832,000	29,300	
ISO 9				35,200,000	8,320,000	293,000	

Cleanroom class comparison

The following classes are mostly equivalent, although the testing standards diffe

ISO 14644-1 FED STD 209E

ISO 3 1
ISO 4 10
ISO 5 100
ISO 6 1,000
ISO 7 10,000
ISO 8 100,000

Vacuum systems

Vacuum basics

- What is a vacuum?
 - Any gas at sub-atmospheric pressure
 - Vacuum is really the absence of gas
 - Vacuum is not absolute, but a continuous range of conditions
 - 15 orders of magnitude in common usage
- Pressure is Force per Unit Area
 - Pounds/sq. in
 - Newtons / sq.meter
 - Tons/ sq. angstrom
 - Atmospheric Pressure
 - 14.7 pounds/sq. in.
 - 105 Newtons/sq. meter
 - · approx. ton/sq ft
 - · approx. kg(force) / sq.cm.

- SI UNITS:
 - Pascal = 1 Newton/ sq. meter
 - 1 atm = 10^5 pascals
 - Non-Si Units: (common units)
 - Torr, millitorr
 - Bar, millibar
- Torr is an archaic unit but widely used and widely understood
 - Avoiding it is difficult

What is vacuum

- Mean free path (lambda)
 - How far does a molecule go before it strikes another?
- Impingement rate --- Surface Flux
 - · How many molecules strike the surface in a given period of time?

•Residual gas analyzer (RGA)

Mass	Species	Explanation		
0		Zero Blast , unfiltered fragments		
1 H		Cracking of hydrogen		
2	H ₂	Dominant Species at UHV		
4	Не	Permeation through polymers or leak		
		detection residue		
16	0	Crcking of O2 or H20. Electron Desorption		
		from Surfaces		
16 CH ₄		Methane produced in system by ion pumps		
18	Water	Dominant Species except at UHV		
19	F	ionic ghost, see below		
20	Ne, Ar **	Inert Gases not pumped well by ion pumps		
28	N ₂	Air leak if accomanied by 14		
28	со	A major constituent at UHV. Desorption		
35	CI	Process gas or residue or ionic ghosts (see		
		below)		
37	CI isotope			
40	Ar	Inert Gases not pumped well by ion pumps		
>40		Generally hydrocarbon contamination		
intervals of		CH ₂ groups cracked off long hydrocarbon		
14		chain		
16,19,35,37		Residue of O,F,Cl desorbed from surfaces in		
		RGA by electron bombardment. Artifacts.		

MFP << "a"

Fluid like

"crowded"

- Molecules interact with each other more than walls
- Act as a "fluid"
- Flow
- Diffusion
- Viscosity
- Familiar region
- Molecules act on each other
- We can act on the gas " as a whole"
- Essentially most of "rough" vacuum range Viscous Flow

MFP >> "a"

Molecule like

"sparse"/ "vacant"

- A "sparse" gas on the scale of the tube dimension
- Molecules interact only with the walls
- Every molecule to itself
- No intermolecular forces or energy transfer
- We can only act on ONE MOLECULE AT A TIME
- A VERY UNFAMILIAR REGIME.
- Most of mid, high and ultra high vacuum Free Molecular Flow

Vacuum systems

Vacuum chambers need to have several holes...

•rear door

•(stainless steel

•Water cooling tubes •Table can (opened) •table •targets •Zongzhi

Problems:

- •. Material degasing
- •. Water adsorbed

INESC MN Microsistemas & Nanotecnologias

INESC MN Microsistemas & Nanotecnologias

•Rotary pumps

•Turbomolecular pumps

- •Momentum transfer from the disks to the gas molecules.
- •Separation rotor to disks ~ free mean path (molecular regime)

- •- 1st stage pumps
- ultimate pressure ~10⁻⁴ Torr
- Requires a purge vapor line
- •- 2nd stage pumps
- ultimate pressure ~10⁻¹⁰ Torr
- requires a backing pump

•Cryogenic pumps

- •- 2nd stage pumps
- ultimate pressure ~10⁻¹¹ Torr

Rough vacuum pumps

Microsistemas &

- Advantages:
 - Reliable

•Rotary pumps

- Cheap
- · Removes gases permanently
- Disadvantages:
 - Noisy
 - Dirty
 - Oily
 - Big
 - Heavy

Four Stages in the Cycle of a Rotary-Vane Pump

Most "mechanical pumps" require a Pump Fluid

- Functions:
 - Lubricant
 - Sealant
 - Heat Transfer/coolant
 - Corrosion Protection

- Syntetic oils
- •(Fomblin, 400€/1

Requisite Properties:

- Chemically stable
- Thermally stable
- Appropriate lubricating ability
- Appropriate viscosity
- Low vapor pressure

•High vacuum pumps

•Turbomolecular pumps

•Blade speed ~ molecular speed

•40 000 – 80 000 rpm

- Multiple stages
- Transfer of momentum to molecules by collision with high speed turbine blades

- Pumping speed proportional to blade speed
- Only the tips pump well
- Pumps very badly when not up to full speed
- Can take 15 minutes to get up to speed (big ones)
- Variety of sizes:
 - 100 l/sec small and compact
 - 2500 l/sec BIG and EXPENSIVE
- Vibration
- Needs a backing pump
- Catastrophic failure (metal

- •Heavy gases are pumped better (slower)
- •At ultimate pressures, the residual gas is 99% H₂

INESC MN • High vacuum pumps

Flange

1st stage (60K

Cold

head

Microsistemas & Nanotecnologias

Cryogenic pumps

- •Gas condensation + adsorption
- •cold surface and/or large area
- •(porous: activated charcoal)

Advantages:

- Clean
- · Fast at moderate cost
- · Can be BIG
- HV and UHV compatible to 10-9 torr
- Almost Infinite Capacity (except He, H,)

• Disadvantages:

- · Store Large quantity of gas
- Toxics
- Reactives Not for reactive gases
- Vibration
- · Heat Sensitivity

- •Ultra-pure Helium working fluid
- •External compressor

•Cryo Pump

•Expansion head

Periodically saturates with adsorbed gases

- · Saturate the pores so it wont pump He/H,
- · Physically obscure the entry way with "ice"
 - the frosty refrigerator problem

Capacity.

Pressureize d

Helium

- Almost infinite for H₂0, N₂, O₂
- · Limited for H2, He
- · Moderate for Ar

Months between regenerations

Cryopumps are capture pumps.

Gases pumped are retained only while the pump is cold.

Gases stored may be toxic, flammable, or result in high pressures when the pump is warmed up.

Fig. 3.1 — Zonas de pressão correspondentes às bombas indicadas

•Pirani

- •Ultimate pressure
- •detection ~10⁻⁴ Torr

Fig. 4.7 — Circuito de medida para um Pirani

- •Pressure increase \rightarrow lower filament temperature
- •→ Lower resistance

• detection ~10-8 Torr

Fig. 4.13 — Manómetro de ionização de cátodo frio — Penning

A presença de um campo magnético faz aumentar o percurso dos electrões e portanto eleva a eficiência de ionização.

Fig. 4.15 — Zonas de trabalho de vários vacuómetros

•Bayard-Alpert

- •Ultimate pressure
- •detection ~10⁻¹¹ Torr

