Your Name: _____ Group Members:__

In-class Problem 1 (Chapter 6, Exercise 20)

Let $x, y, z \in \mathbb{Z}$ and let p be a prime number.

- (a) Prove that if $x^{p-1} + y^{p-1} = z^{p-1}$, then $p \mid xyz$.
- (b) Prove that if $x^p + y^p = z^p$, then $p \mid (x + y z)$.

Hint: Recall Fermat's Little Theorem and its corrollaries.

Solution: Let p be a prime number.

(a) Let $x, y, z \in \mathbb{Z}$ such that $x^{p-1} + y^{p-1} = z^{p-1}$.

By Fermat's Little Theorem, if $p \nmid x$, then $x^{p-1} \equiv 1 \pmod{p}$. If $p \mid x$, then $x^{p-1} \equiv 0 \pmod{p}$. Similarly for y and z. Thus,

$$x^{p-1} + y^{p-1} \equiv \begin{cases} 0 + 0 \pmod{p} \\ 0 + 1 \pmod{p} \\ 1 + 1 \pmod{p} \end{cases}$$

has a solution if andd only if p divides at least one of x, y. Thus, $p \mid xyz$.

(b) Let $x, y, z \in \mathbb{Z}$ such that $x^p + y^p = z^p$.

By Corollary 5.8, $x^p \equiv x \pmod{p}$, $y^p \equiv y \pmod{p}$, and $z^p \equiv z \pmod{p}$. Thus,

$$x^p + y^p \equiv z^p \pmod{p}$$

 $x + y \equiv z \pmod{p}$.

In otherwords, $p \mid (x + y - z)$.