

Instituto Tecnológico de Aeronáutica - ITA

Divisão de Engenharia Eletrônica Departamento de Eletrônica Aplicada Laboratório de EEA-21

Lab4

4ª Experiência Síntese e Análise de uma Unidade Lógica Aritmética (ULA)

1. Objetivos

- a. Familiarização com a implementação de circuitos digitais em *protoboard*;
- b. Familiarização com técnica de Mapa de Karnaugh reduzido.;
- c. Estudo de Unidade Lógica Aritmética;

2. Instruções gerais

Para cada um dos tópicos abaixo, observe o que se pede em negrito. Quando a solicitação é da forma:

- "Projete", espera-se que os alunos projetem os circuitos seguindo algum tipo de especificação dada. Assim, os cálculos combinacionais, procedimentos de minimização ou outros mecanismos utilizados para o projeto e o diagrama esquemático final do circuito devem ser mostrados (constar do relatório).
- "Monte", espera-se que o circuito dado ou projetado seja montado em *protoboard* de maneira organizada, com as entradas e saídas identificadas. Os **componentes** serão fornecidos pelo almoxarifado, devendo os mesmos ser retornados após a avaliação dos circuitos pelo instrutor.
- "Simule", espera-se que seja utilizado um software de captura esquemática para a obtenção dos resultados. Assim, o diagrama esquemático (no caso de captura esquemática) deve ser apresentado, bem como o diagrama de temporização contendo as entradas e as saídas.
- "Analise", espera-se que sejam obtidas as expressões lógicas, tabelas verdade, a partir de um diagrama esquemático, diagrama de temporização ou outra informação sobre o circuito lógico. Dessa forma, os procedimentos de análise devem ser mostrados no relatório.

Um breve comentário sobre os resultados, observações e dificuldades é esperado para todas as tarefas.

3. Informações úteis

3.1 Especificações básicas da ULA 74181

			<i></i>
Pin Names	Description	B0 — 1	24 - V _{CC}
A0-A3	Operand Inputs	A0 — 2	23 — A1
B0-B3	Operand Inputs	S3 — 3	22 — B1
S0-S3	Function Select Inputs	S2 - 4	21 — A2
М	Mode Control Input	S1-5	20 — B2
\overline{C}_n	Carry Input	50 - 6	19 — A3
F0-F3	Function Outputs	$\overline{C}_n - 7$	18 — B3
A = B	Comparator Output	M 8	17 — G
G	Carry Generate Output	F0 — 9 F1 — 10	16 - C_{n+4} 15 - P
Р	Carry Propagate Output	$\begin{array}{ c c c c c c }\hline & & & & & & & & & & & & & & & & & & &$	14 — A=B
¯C _{n+4}	Carry Output	GND — 12	13 — F3
	1		15
			-

Tabela 1 - Tabela verdade para ULA 74181

SELECTION				ACTIVE-HIGH DATA			
- JELEGITOR		M = H	M = L; ARITHM	ETIC OPERATIONS			
S3	S2	S1	SO	LOGIC FUNCTIONS	C _n = H (no carry)	C _n = L (with carry)	
L	L	L	L	F = A	F = A	F = A PLUS 1	
L.	L	L	H	F = A + B	F = A + B	F = (A + B) PLUS 1	
L	L	н	L	F = AB	F = A + B	F = (A + B) PLUS 1	
L	L	Н	н	F = 0	F = MINUS 1 (2's COMPL)	F = ZERO	
L	н	L	L	F ≃ AB	F = A PLUS AB	F - A PLUS AB PLUS 1	
L	н	L	н	F = B	F = (A + B) PLUS AB	F = (A + B) PLUS AB PLUS 1	
L	н	н	L	F = A ⊕ B	F = A MINUS B MINUS 1	F = A MINUS B	
L	н	н	н	F = AB	F = AB MINUS 1	F = AB	
н	L	L	L	F = A + B	F = A PLUS AB	F = A PLUS AB PLUS 1	
Н	L	L	н	F = A ⊕ B	F = A PLUS B	F = A PLUS B PLUS 1	
н	L	H	L	F = B	F = (A + B) PLUS AB	F = (A + B) PLUS AB PLUS 1	
н	L	H	н	F = AB	F = AB MINUS 1	F = AB	
н	н	L	L	F = 1	F = A	F = A PLUS A PLUS 1	
н	н	L	н	F = A + B	F = (A + B) PLUS A	F = (A + B) PLUS A PLUS 1	
н	н	Н	L.	F - A + B	F = (A + B) PLUS A	F = (A + B) PLUS A PLUS 1	
н	н	Н	н	F-A	F = A MINUS 1	F = A	

3.2 Projeto completo de uma ULA de um bit: Seja a ULA de n bits representada na Figura a seguir:

Consideremos as operações apresentadas na Tabela 3.

Tabela 3: Tabela de operações da ULA a ser projetada.

M	C	S	S	Saída	Comentário
1	0	0	0	F = A	Entrada A transferida para a Saída
1	0	0	1	$F = \overline{A}$	Complemento de um de A
1	0	1	0	F = A mais B	Soma de A com B
1	0	1	1	$F = \overline{A}$ mais B	Soma de B e complemento de um de A
1	1	0	0	F = A mais 1	Incrementa A
1	1	0	1	$F = \overline{A}$ mais 1	Complemento de dois de A
1	1	1	0	F = A mais B mais 1	Incrementa soma de A mais B
1	1	1	1	$F = \overline{A}$ mais B mais 1	B menos A
0	X	0	0	$F_i = A_i$	Entrada A transferida para a saída F
0	X	0	1	$F_i = \overline{A_i}$	Entrada A_i complementada e transferida para a saída F_i
0	X	1	0	$F_i = A_i \oplus B_i$	Ou exclusivo
0	X	1	1	$F_i = \overline{A_i \oplus B_i}$	Não ou exclusivo

O projeto consistirá na célula básica de 1 bit para esta ULA:

3

3.2.1 Elaboração dos mapas de Karnaugh e redução das funções F e Carry out.

Função de saída F_i:

$M = S_1 S_0$	00	01	11	10
0	A_{i}	$\overline{A_i}$	$\overline{A_i \oplus B_i}$	$A_i \oplus B_i$
1	$A_i \oplus C_i$	$\overline{A_i \oplus C_i}$	$\overline{A_i \oplus B_i \oplus C_i}$	$A_i \oplus B_i \oplus C_i$

Deste mapa obtém-se a seguinte expressão, onde os termos envolvendo operações XOR com C_i foram escritos na forma de soma de produtos:

$$\begin{split} F_{i} &= \overline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot A_{i} + \overline{S_{1}} \cdot S_{0} \cdot \overline{M} \cdot \overline{A_{i}} + \underline{S_{1}} \cdot S_{0} \cdot \overline{M} \cdot \overline{A_{i} \oplus B_{i}} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \left(A_{i} \oplus B_{i}\right) + \\ &+ \overline{S_{1}} \cdot \overline{S_{0}} \cdot M \cdot A_{i} \cdot \overline{C_{i}} + \overline{S_{1}} \cdot \overline{S_{0}} \cdot M \cdot \overline{A_{i}} \cdot C_{i} + \overline{S_{1}} \cdot S_{0} \cdot M \cdot A_{i} \cdot C_{i} + \overline{S_{1}} \cdot S_{0} \cdot M \cdot \overline{A_{i}} \cdot \overline{C_{i}} + \\ &+ S_{1} \cdot S_{0} \cdot M \cdot C_{i} \cdot \left(A_{i} \oplus B_{i}\right) + \underline{S_{1}} \cdot S_{0} \cdot M \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + S_{1} \cdot \overline{S_{0}} \cdot M \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot M \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot M \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot M \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot M \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot M \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot M \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot M \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot M \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{\left(A_{i} \oplus B_{i}\right)} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{C_{i}} \cdot \overline{C_{i}} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{C_{i}} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{C_{i}} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{C_{i}} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{C_{i}} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{C_{i}} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{C_{i}} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{C_{i}} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} \cdot \overline{C_{i}} + \underline{S_{1}} \cdot \overline{S_{0}} \cdot \overline{M} \cdot \overline{C_{i}} + \underline{S_{1}} \cdot \overline{S$$

Considerando os termos sublinhados, e efetuando algumas simplificações, chega-se à expressão

$$F_{i} = S_{1}\left(A_{i} \oplus B_{i}\right)\left(\overline{\left(MC_{i}\right)} \oplus S_{0}\right) + S_{1}\left(\overline{A_{i} \oplus B_{i}}\right)\left(\left(MC_{i}\right) \oplus S_{0}\right) + \overline{S_{1}}A_{i}\left(\overline{\left(MC_{i}\right)} \oplus S_{0}\right) + \overline{S_{1}}\overline{A_{i}}\left(\left(MC_{i}\right) \oplus S_{0}\right)$$

Chamemos $Z = ((MC_i) \oplus S_0)$. Expandindo a expressão acima obtida, e multiplicando os dois últimos termos por $(B_i + \overline{B_i})$ teremos:

$$F_{i} = S_{1}A_{i}\overline{B_{i}}\overline{Z} + S_{1}\overline{A_{i}}B_{i}\overline{Z} + S_{1}A_{i}B_{i}Z + S_{1}\overline{A_{i}}\overline{B_{i}}Z + \overline{S_{1}}A_{i}B_{i}\overline{Z} + \overline{S_{1}}A_{i}\overline{B_{i}}\overline{Z} + \overline{S_{1}}\overline{A_{i}}B_{i}Z + \overline{S_{1}}\overline{A_{i}}B_{i}Z$$

cujos termos podem ser rearranjados para termos

$$F_{i} = S_{1}\overline{A_{i}}B_{i}\overline{Z} + S_{1}A_{i}B_{i}Z + \overline{S_{1}}\overline{A_{i}}\overline{B_{i}}Z + \overline{S_{1}}\overline{A_{i}}\overline{B_{i}}Z + \overline{S_{1}}\overline{A_{i}}\overline{B_{i}}Z + \overline{S_{1}}\overline{A_{i}}\overline{B_{i}}Z + \overline{S_{1}}\overline{A_{i}}B_{i}Z + \overline{S_{1}}\overline{A_{i}}B_{i}Z$$

$$F_{i} = (S_{1}B_{i})\overline{A_{i}}\overline{Z} + (S_{1}B_{i})A_{i}Z + \overline{B_{i}}\overline{A_{i}}Z + \overline{B_{i}}\overline{A_{i}}Z + \overline{B_{i}}A_{i}\overline{Z} + \overline{S_{1}}B_{i}(A_{i}\overline{Z} + \overline{A_{i}}Z)$$

$$F_{i} = (S_{1}B_{i})(\overline{A_{i}}\overline{Z} + A_{i}Z) + \overline{B_{i}}(\overline{A_{i}}Z + A_{i}\overline{Z}) + \overline{S_{1}}B_{i}(A_{i}\overline{Z} + \overline{A_{i}}Z)$$

$$F_{i} = (S_{1}B_{i})(\overline{A_{i}}\overline{Z} + A_{i}Z) + (\overline{B_{i}} + \overline{S_{1}}B_{i})(A_{i}\overline{Z} + \overline{A_{i}}Z)$$

$$F_{i} = \left(S_{1}B_{i}\right)\left(\overline{A_{i}}\overline{Z} + A_{i}Z\right) + \left(\overline{S_{1}} + \overline{B_{i}}\right)\left(A_{i}\overline{Z} + \overline{A_{i}}Z\right) = \left(S_{1}B_{i}\right)\overline{\left(A_{i} \oplus Z\right)} + \overline{\left(S_{1}B_{i}\right)}\left(A_{i} \oplus Z\right)$$

$$F_i = (S_1 B_i) \oplus A_i \oplus Z$$

e finalmente, como $Z = ((MC_i) \oplus S_0)$

$$F_i = (S_1 B_i) \oplus A_i \oplus S_0 \oplus (MC_i)$$

Função Carry:

M	S_0	00	01	11	10
0		X	X	X	X
1		$A_i \cdot C_i$	$\overline{A_i} \cdot C_i$	$\overline{A_i}(B_i \oplus C_i) + B_i \cdot C_i$	$A_i(B_i \oplus C_i) + B_i \cdot C_i$

Deste mapa pode-se extrair a seguinte expressão, onde as operações XOR foram escritas na forma de soma de produtos:

$$\begin{split} C_{i+1} &= \overline{S_1} \cdot \overline{S_0} A_i C_i + \overline{S_1} S_0 \overline{A_i} C_i + S_1 S_0 \overline{A_i} B_i \overline{C_i} + S_1 S_0 \overline{A_i} \overline{B_i} C_i + \\ &+ S_1 S_0 B_i C_i + S_1 \overline{S_0} A_i B_i \overline{C_i} + S_1 \overline{S_0} A_i \overline{B_i} C_i + S_1 \overline{S_0} B_i C_i \end{split}$$

que pode ser simplificada para

$$C_{i+1} = \overline{S_1}C_i\left(A_i \oplus S_0\right) + S_1B_i\overline{C_i}\left(A_i \oplus S_0\right) + S_1\overline{B_i}C_i\left(A_i \oplus S_0\right) + S_1B_iC_i$$

ou

$$C_{i+1} = \left(A_i \oplus S_0\right) \left\lceil \overline{S_1} C_i + S_1 B_i \overline{C_i} + S_1 \overline{B_i} C_i \right\rceil + S_1 B_i C_i$$

Levando em conta que para M = 0 temos don't care, a seguinte expressão não altera os valores de

 C_{i+1} quando M = 1:

$$C_{i+1} = \left(A_i \oplus S_0\right) \left\lceil \overline{S_1} M C_i + S_1 B_i \overline{M C_i} + S_1 \overline{B_i} M C_i \right\rceil + S_1 B_i M C_i$$

Simplificando esta última expressão, obtém-se:

$$C_{i+1} = (A_i \oplus S_0) \lceil (S_1 B_i) \oplus (MC_i) \rceil + (S_1 B_i) (MC_i)$$

3.2.2 Desenho esquemático do circuito:

4 Material necessário para as montagens:

CI 74181- ULA 4bits

CI 7404 - 6 NOTs

CI 7408- 4 ANDS

CI 7432 - 4 ORs

CI 7486 – 4XORs

5. Montagens:

5.1 Tarefa 5.1: Montagem de uma ULA de 1 bit

Monte a ULA de 1 bit esquematizada no circuito lógico abaixo.

Verifique a validade da tabela de operações abaixo:

M	C_{i}	S	S	Saída	Comentário
1	0	0	0	F=A	Entrada A transferida para a Saída
1	0	0	1	$F = \overline{A}$	Complemento de um de A
1	0	1	0	F=A mais B	Soma de A com B
1	0	1	1	$F = \overline{A}$ mais B	Soma de B e complemento de um de A
1	1	0	0	F=A mais 1	Incrementa A
1	1	0	1	$F = \overline{A}$ mais 1	Complemento de dois de A
1	1	1	0	F=A mais B mais 1	Incrementa soma de A mais B
1	1	1	1	$F = \overline{A}$ mais B mais 1	B menos A

5.2 Tarefa 5.2: Projeto e montagem de uma ULA de 4 bits utilizando o circuito integrado 74181 Utilizando a ULA monte 74181, projete e um circuito que realize as seguintes operações: $(0)_d + (0)_d$, $(3)_d + (5)_d$, $(8)_d - (5)_d$, $(8)_d + (8)_d$. Esse circuito deve ter uma única chave para comutar entre a operação de soma e de subtração. Observe o diagrama de blocos abaixo.

6. Simulação:

As Simulações são Tarefas a serem feitas em casa e incorporadas ao Relatório do Lab4.

6.1 Tarefa 6.1: Simulação de uma célula básica ULA de 1 bit

Projete uma ULA como célula básica (1 bit) que executa as operações da tabela abaixo:

S_1	S_0	M=1	M=0	
			C ₀ =0	C ₀ =1
0	0	\overline{A}	$F=\overline{A}$	A menos B
0	1	\overline{AB}	F=A mais B	B menos A
1	0	$\overline{A} + B$	$F = \overline{A} \text{ mais } B$	A menos 1
1	1	A⊕B	F=A mais 1	F=A mais (A+B) mais 1

Mostre:

- a. A tabela de verdade de F e C de cada operação;
- b. A tabela de verdade de F e C;
- c. A implementação desta ULA usando *MUX 8x1* que possua uma entrada "*Enable*".

6.2 Tarefa 6.2: Simulação via captura esquemática

Simule, através da captura esquemática, o problema anterior, mostrando o resultado de todas as 12 operações para:

- a. A=1, B=0
- b. A=0, B=1
- c. A=1, B=1

Utilize a seguinte ordem de operações: $S_1S_0MC_0 \rightarrow 001x$, 011x, 101x, 111x, 0000, 0100, 1000, 1100, 0001, 0101, 1001, 1101.