

(11)Publication number:

10-059951

(43) Date of publication of application: 03.03.1998

(51)Int.Cl.

CO7D243/38 A61K 31/55 CO7D223/16 CO7D223/20 CO7D243/12 CO7D267/ CO7D267/20 CO7D281/16 CO7D401/04 // (CO7D401/04 CO7D213:79

CO7D243:38

(21)Application number: 08-245965

(71)Applicant: IYAKU BUNSHI SEKKEI

KENKYUSHO:KK

(22)Date of filing:

18.09.1996

(72)Inventor: SHUDO KOICHI

(30)Priority

Priority number: 07242639

Priority date: 21.09.1995

Priority country: JP

08150582

12.06.1996

JP

(54) COMPOUND FOR ENHANCING ACTION OF RETINOID

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a new compound having action enhancing action of a retinoid such as retinoic acid and useful for a medicinal composition.

SOLUTION: This retinoid action enhancing compound is represented by formula I (R1 is H or 1–6C alkyl; R2 and R3 are each independently H, a 1–6C alkyl or a 5–00 or 6–membered cycloalkyl ring; R4 is H, a 1–6C alkyl, a 1–6C alkoxy, hydroxyl group, etc.; X is NR7, O, etc.; R7 is H, a 1–6C alkyl or an aryl-substituted 1–6C alkyl) or formula II (R5 is H, a 1–6C alkyl) or an aryl- substituted 1–6C alkyl; R6 is H or a 1–6C alkyl), e.g. 4–[5H–2,3–(2,5–dimethyl–2,5– hexano)–5–methyldibenzo[b,e][1,4] diazepin–11–yl]benzoic acid 4–[1,3–dihydro–7,8–(2,5–dimethyl–2,5–hexano)–2–oxo–2H–1,4–benzodiazepin–5–yl]denzoic acid.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平10-59951

(43)公開日 平成10年(1998) 3月3日

(51) Int.Cl. ⁶	酸別記号	庁内整理番号	FΙ				技術表示箇所
C 0 7 D 243/38			C 0 7 D 24	13/38			
A 6 1 K 31/55	ABB		A61K 3	31/55		ABB	
	ABF					ABF	
	ABG					ABG	
	ABJ					ABJ	
		審查請求	未請求 請求項	質の数9	OL.	(全 23 頁)	最終頁に続く
(21)出願番号	特顧平8-245965		(71)出顧人			子設計研究	mc
(22)出顧日	平成8年(1996)9月1	18日			文京区本	#5丁目24	
(31)優先権主張番号	特顧平7-242639		(72)発明者	首藤	紘一		
(32)優先日	平7 (1995) 9 月21日			東京都	杉並区下	高井戸 5 -	9 - 18
(33)優先権主張国	日本 (JP)		(74)代理人	弁理士	今村	正純 (外	2名)
(31)優先権主張番号	特願平8-150582						
(32)優先日	平8 (1996) 6月12日	,					

(54)【発明の名称】 レチノイド作用増強性化合物

日本 (JP)

(57)【要約】 (修正有)

(33)優先権主張国

【解決手段】 一般式(I) 又は(II) [R¹はH 又はC1-6 アルキル基を示し; R²及びR³はH 若しくはC1-6 アルキル 基、又はR²及びR³が一緒になってシクロアルキル環を示し; R¹はH、C1-6 アルキル基等を示し; R⁵はH、C1-6 アルキル基等を示し; R⁵はH 又はC1-6 アルキル基を示し;

X は $-NR^7$ -, -0-等 (R^7 はH 、 C_{1-6} アルキル基等)を示し;Y はフェニレン基、ピリジンジイル基等を示す〕で表される化合物またはその塩、並びに該化合物を有効成分として含む医薬。

【効果】 レチノイド化合物の作用増強剤として有用である。

(I)

【特許請求の範囲】

【請求項1】 下記の一般式(I):

【化1】

又は、下記の一般式(II):

【化2】

【請求項2】 下記の化合物:4-[5H-2,3-(2,5- ジメチ ル-2,5- ヘキサノ)-5-メチルジベンゾ[b,e][1,4]ジアゼ ピン-11-イル] 安息香酸 (HX600); 4-[5H-2,3-ジイソプ ロピル-5- メチルジベンゾ[b,e][1,4]ジアゼピン-11-イ ル]安息香酸 (HX610); 4-[5H-2-tert- ブチル-5- メチ ルジベンゾ[b.e][1.4]ジアゼピン-11-イル] 安息香酸 (HX511); 4-[5H-3,4-(1,4- ブタノ)-5-メチルジベンゾ [b,e][1.4]ジアゼピン-11-イル] 安息香酸 (HX545):4-[5H-2.3-(2.5- ジメチル-2.5- ヘキサノ)-5-メチル-8-ニトロジベンゾ[b,e][1,4] ジアゼピン-11-イル] 安息 香酸 (HX531);4-[2,3-(2,5-ジメチル-2,5- ヘキサノ) ジベンゾ[b,f][1,4]オキサゼピン-11-イル] 安息香酸 (HX620); 4-[2,3-(2,5-ジメチル-2,5- ヘキサノ) ジベ ンゾ[b,f][1,4]チアゼピン-11-イル] 安息香酸 (HX63) 0);5-[5H-2,3-(2,5- ジメチル-2,5- ヘキサノ)-5-メチ ルジベンゾ[b,e][1,4]ジアゼピン-11-イル]-2-ピリジン カルボン酸;6-[5H-2,3-(2,5- ジメチル-2,5- ヘキサ ノ)-5-メチルジベンゾ[b,e][1,4]ジアゼピン-11-イル]-3-ピリジンカルボン酸;及び4-[2,3-(2,5-ジメチル-2,5 - ヘキサノ) ジベンゾ[b,e] アゼピン-11-イル] 安息香 50 酸 (HX640)からなる群から選ばれる請求項1に記載の化合物またはその塩。

【請求項3】 下記の化合物:4-[1.3- ジヒドロ-7.8-(2,5-ジメチル-2,5- ヘキサノ)-2-オキソ-2H-1,4-ベン ゾジアゼピン-5- イル]-安息香酸 (HX800);4-[1,3- ジ ヒドロ-7.8-(2.5-ジメチル-2.5- ヘキサノ)-1-メチル-2 - オキソ-2H-1,4-ベンゾジアゼピン-5- イル]-安息香酸 (HX801); 4-[3(S)-メチル-1.3- ジヒドロ-7.8-(2.5-ジ メチル-2.5- ヘキサノ)-2-オキソ-2H-1.4-ベンゾジアゼ 10 ピン-5- イル]-安息香酸 (HX810); 4-[1,3- ジヒドロ-7.8-(2.5-ジメチル-2.5- ヘキサノ)-1-イソプロピル-2-オキソ-2H-1.4-ベンゾジアゼピン-5- イル1-安息香酸 (HX803); 4-[1- ベンジル-1,3- ジヒドロ-7,8-(2,5-ジ メチル-2,5- ヘキサノ)-2-オキソ-2H-1,4-ベンゾジアゼ ピン-5- イル]-安息香酸 (HX805);及び4-[3(S)-ベンジ ル-1,3- ジヒドロ-7,8-(2,5-ジメチル-2,5- ヘキサノ)-2-オキソ-2H-1.4-ベンゾジアゼピン-5- イル1-安息香酸 (HX850)からなる群から選ばれる請求項1に記載の化合 物またはその塩。

【請求項4】 請求項1ないし3のいずれか1項に記載の化合物または生理学的に許容されるその塩を含む医薬。

【請求項5】 有効成分である請求項1ないし3のいずれか1項に記載の化合物または生理学的に許容されるその塩と製剤用添加物とを含む医薬用組成物の形態の請求項4に記載の医薬。

【請求項6】 核内レセプター・スーパーファミリーに 属する核内レセプターに結合して生理作用を発揮する生 理活性物質の作用増強剤として用いる請求項4又は5に 記載の医薬。

【請求項7】 該生理活性物質がレチノイド化合物である請求項6に記載の医薬。

【請求項8】 請求項1ないし3のいずれか1項に記載の化合物又は生理学的に許容されるその塩とレチノイド化合物とを含む医薬用組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、新規化合物に関するものであり、レチノイン酸やレチノイン酸様の生理活性を有する化合物(レチノイド)に代表される核内レセプターリガンドの生理作用を増強する新規化合物に関するものである。

[0002]

【従来の技術】レチノイン酸(ビタミンA酸)はビタミ

ンAの活性代謝産物であり、発生途上にある未熟な細胞を特有な機能を有する成熟細胞へと分化させる作用や、細胞の増殖促進作用や生命維持作用などの極めて重要な生理作用を有している。これまでに合成された種々のビタミンA誘導体、例えば、特開昭61-22047号公報や特開昭61-76440号公報記載の安息香酸誘導体、及びジャーナル・オブ・メディシナル・ケミストリー(Journal of Medicinal Chemistry, 1988, Vol. 31, No. 11, p. 2182)に記載の化合物なども、同様な生理作用を有することが明らかにされている。レチノイン酸及びレチノイン酸様の生物活性を有する上記化合物は「レチノイド」と総称されている。

【0003】例えば、オール・トランス(all-trans)・レ チノイン酸は、細胞核内に存在する核内レセプター・ス ーパーファミリー (Evans, R.M., Science, 240, p.88 9, 1988) に属するレチノイン酸レセプター (RAR)にリ ガンドとして結合して、動物細胞の増殖・分化あるいは 細胞死などを制御することが明らかにされている (Petko vich, M., et al., Nature, 330, pp.444-450, 1987). レチノイン酸様の生物活性を有する上記化合物(例え ば、4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethy1-2-n aphthalenyl)carbamoyl]benzoic acid: Am80など) も、 レチノイン酸と同様にRAR に結合して生理活性を発揮す ることが示唆されている(Hashimoto, Y., Cell struc t. Funct., 16, pp.113-123, 1991; Hashimoto, Y., et al., Biochem. Biophys. Res. Commun., 166, pp.1300 -1307, 1990を参照)。これらの化合物は、臨床的に は、ビタミンA欠乏症、上皮組織の角化症、リウマチ、 遅延型アレルギー、骨疾患、及び白血病やある種の癌の 治療や予防に有用であることが見出されている。

【0004】このようなレチノイドに対して拮抗的に作用し、上記レチノイドの代表的な作用を減弱する化合物が知られている(Eyrolles, L., et al., Journal of Me dicinal Chemistry, 37(10), pp.1508-1517, 1994)。しかしながら、それ自体はレチノイド作用を有しないか、あるいはそのレチノイド作用が微弱であるにもかかわらず、レチノイン酸などのレチノイドの作用を増強する物質は、唯一、EP 694,301 A1 に開示されているものしか知られていない。この刊行物には、RXR レセプターに対する特異的リガンド化合物が、RAR- α レセプターに対する特異的なリガンド化合物であるAm80の作用を増強する作用を有することが示唆されている。

[0005]

【発明が解決しようとする課題】本発明の課題は、レチノイン酸などのレチノイドの作用を増強する作用を有する化合物を提供することにある。より具体的にいうと、それ自体はレチノイド作用を有しないか、あるいはそのレチノイド作用が微弱であるにもかかわらず、レチノイン酸などのレチノイドの作用を顕著に増強することができる化合物を提供することが本発明の課題である。

[0006]

【課題を解決するための手段】本発明者は上記の課題を解決すべく鋭意努力した結果、下記の一般式で示される 化合物がレチノイン酸などのレチノイドの作用を増強す ることを見いだし、本発明を完成するに至った。

【0007】すなわち本発明によれば、下記の一般式(I):

【化3】

又は、下記の一般式(II): 【化4】

R⁵ X COOR R²

〔上記各式中、R1は水素原子又はC1-6 アルキル基を示 し;R²及びR³はそれぞれ独立に水素原子又はC1-6 アルキ ル基を示すか、あるいはR²及びR³が一緒になってそれら が結合するフェニル環上の炭素原子とともにCi-4 アルキ ル基を有することもある5又は6員のシクロアルキル環 を示し: R⁴ は水素原子、C₁₋₆ アルキル基、C₁₋₆ アルコキ シ基、水酸基、ニトロ基、又はハロゲン原子を示し; R5 は水素原子、C1-6 アルキル基、又はアリール置換C1-6 ア ルキル基を示し;R⁶は水素原子又はC₁₋₆アルキル基を示 し; X は-NR7-, -0-, -CHR7-, 又は -S-(式中、R7は水 素原子、C1-6 アルキル基、又はアリール置換C1-6 アルキ ル基を示す)を示し; Y はフェニレン基またはピリジン ジイル基を示す〕で表される化合物またはその塩を提供 するものである。また、本発明の別の態様によれば、上 記化合物からなる医薬:上記化合物からなるレチノイド 作用増強剤及び核内レセプターリガンド作用増強剤が提 供される。

[0008]

【発明の実施の形態】上記一般式(I) において、R'は水素原子又は直鎖若しくは分枝鎖のC1-6 (炭素数1ないし6の)アルキル基を示す。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などを挙げることができ、好ましくはメチル基を用いることができる。R²及びR³は、それぞれ独立に水素原子又は直鎖若しくは分枝鎖のC1-6 アルキル基を示す。アルキル基としては、例えば上記に例示したものを用いることができるが、好ましくは、エチル基、イソプロピル基、tert-

b

ブチル基などを用いることができる。R²及びR³の置換位 置は特に限定されず、それぞれ独立に任意の位置に置換 することができるが、R²及びR³がX に対してそれぞれパ ラ位及びメタ位であるか、R²及びR³がX に対してそれぞ れメタ位及びオルト位であることが好ましく、R²及びR³がX に対してそれぞれパラ位及びメタ位であることが特 に好ましい。

【0009】また、R²及びR³が一緒になって、R²及びR³ がそれぞれ結合するフェニル環上の2個の炭素原子とと もに、5又は6員のシクロアルキル環を形成することが 10 できる。該シクロアルキル環は1個または2個以上のC 14 アルキル基を有していてもよく、例えば、2~4個 のメチル基、好ましくは4個のメチル基を有していても よい。例えば、R2及びR3が置換するフェニル環とR2及び R³とにより、5,6,7,8-テトラヒドロナフタレン環や5,5, 8,8-テトラメチル-5,6,7,8- テトラヒドロナフタレン環 などが形成されることが好ましい。R⁴は水素原子、C₁₋₆ アルキル基、C1-6 アルコキシ基、水酸基、ニトロ基、又 はハロゲン原子を示す。C1-6 アルキル基としては上記に 例示したものを用いることができ、C1-6 アルコキシ基と 20 しては、例えば、メトキシ基、エトキシ基、n-プロポキ シ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ 基、tert- ブトキシ基、好ましくはメトキシ基を用いる ことができる。ハロゲン原子としては、フッ素原子、塩 素原子、臭素原子、又はヨウ素原子のいずれを用いても よい。R⁴の位置は特に限定されず、フェニル環上の任意 の位置に置換することができる。

【0010】R⁵は水素原子、C₁₋₆ アルキル基、又はアリール置換C₁₋₆ アルキル基を示す。C₁₋₆ アルキル基としては直鎖又は分枝鎖のいずれでもよく、上記に例示したも 30のを好適に用いることができる。アリール置換C₁₋₆ アルキル基のアリール部分としてはフェニル、ナフチル、ピリジルなどを挙げることができ、C₁₋₆ アルキル部分は直鎖又は分枝鎖のいずれでもよい。例えば、ベンジル基、フェネチル基などのフェニル置換C₁₋₆ アルキル基、ナフチルメチル基などのナフチル置換C₁₋₆ アルキル基、ピリジルメチル基などのピリジル置換C₁₋₆ アルキル基などを用いることができる。

【0011】これらのアリール置換C1-6 アルキル基を構成するアリール基は1又は2以上の置換基を有していてもよい。例えば、フッ素原子、塩素原子などのハロゲン原子;メチル基、エチル基などのC1-6 アルキル基;メトキシ基、エトキシ基などの直鎖若しくは分枝鎖のC1-6 アルコキシ基;ニトロ基;トリフルオロメチル基などの直鎖若しくは分枝鎖のハロゲン化C1-6 アルキル基;水酸基;カルボキシル基;メトキシカルボニル基などを置換基として有していてもよい。R⁶は水素原子又はC1-6 アルキル基を示す。C1-6 アルキル基としては直鎖若しくは分枝鎖のいずれでもよく、上記に例示したものを好適50

に用いることができる。 R^5 及び R^6 が共に水素原子である化合物;及び、 R^6 が C_{1-6} アルキル基又はアリール置換 C_{1-6} アルキル基であり、かつ、 R^6 が水素原子である化合物は特に好ましい化合物である。

【0012】X はR'で置換された窒素原子 (-NR'-)、酸素原子(-0-)、R'で置換されたメチレン基(-CHR'-)、又は硫黄原子(-S-)を示す。R'は水素原子、C1-6 アルキル基又はアリール置換C1-6 アルキル基を示す。C1-6 アルキル基としては直鎖又は分枝鎖のいずれでもよく、上記に例示したもの、例えば、メチル基を用いることができる。アリール置換C1-6 アルキル基としては上記に例示したもの、好ましくは、ベンジル基を用いることができる。窒素原子又は硫黄原子はそれぞれN-オキシド又はスルホキシドであってもよい。これらのうち、X がR'で置換された窒素原子 (NR')であることが好ましく、特に好ましいのは、X がメチル基、エチル基、n-プロピル基、イソプロピル基、又はベンジル基で置換された窒素原子を示す場合である。

【0013】Y はフェニレン基またはピリジンジイル基を示す。例えば、p-フェニレン基、m-フェニレン基、o-フェニレン基、ピリジン-2.4-ジイル基、ピリジン-2.5-ジイル基を形いることができ、 ロン基またはピリジンジイル基を用いることができ、 がましくは、p-フェニレン基、m-フェニレン基、または ピリジン-2.5-ジイル基を用いることができる。ピリジン-2.5-ジイル基を用いることができる。ピリジン-2.5-ジイル基を用いる場合、ピリジンの2-位または 5-位のいずれの位置に-COOR¹で示される基が置換していてもよい。

【0014】本発明の化合物には、酸付加塩または塩基付加塩が含まれる。酸付加塩としては、塩酸塩若しくは臭化水素酸塩などの鉱酸塩、又はp-トルエンスルホン酸塩、メタンスルホン酸塩、シュウ酸塩、若しくは酒石酸塩などの有機酸塩を挙げることができる。塩基付加塩はR¹が水素原子を示す場合に形成され、ナトリウム塩、カリウム塩、マグネシウム塩、若しくはカルシウム塩などの金属塩、アンモニウム塩、又はトリエチルアミン塩若しくはエタノールアミン塩などの有機アミン塩などを用いることができる。

【0015】本発明の式(II)の化合物では、R⁵及びR⁶が 異なる置換基である場合には、それらが置換する炭素原 子が不斉炭素となる。上記の式(II)においてXを含む7 員環を平面と仮定した場合に、R⁵又はR⁶のいずれが平面 の上側にあってもよい。また、本発明の式(I) 又は式(I I)の化合物は、Xや置換基の種類に応じて、さらに1個 または2個以上の不斉炭素を有する場合があるが、この ような不斉炭素に基づく任意の光学異性体、光学異性体 の任意の混合物、ラセミ体、2個以上の不斉炭素に基づ くジアステレオ異性体、ジアステレオ異性体の任意の混 合物などは、いずれも本発明の範囲に包含される。ま た、遊離化合物又は塩の形態の化合物の任意の水和物又

は溶媒和物も本発明の範囲に包含されることはいうまで もない。

【0016】上記一般式(I) で示される本発明の化合物 のうち、好ましい化合物として、4-[5H-2,3-(2,5- ジメ チル-2,5- ヘキサノ)-5-メチルジベンゾ[b,e][1,4]ジア ゼピン-11-イル] 安息香酸 (HX600); 4-[5H-2,3-ジイソ プロピル-5- メチルジベンゾ[b,e][1,4]ジアゼピン-11-イル]安息香酸 (HX610); 4-[5H-2-tert- ブチル-5- メ チルジベンゾ[b,e][1,4]ジアゼピン-11-イル] 安息香酸 (HX511); 4-[5H-3,4-(1,4- ブタノ)-5-メチルジベンゾ 10 [b,e][1,4]ジアゼピン-11-イル] 安息香酸 (HX545):4-|5H-2,3-(2,5- ジメチル-2,5- ヘキサノ)-5-メチル-8-ニトロジベンゾ[b.e][1.4] ジアゼピン-11-イル] 安息 香酸 (HX531); 4-[2,3-(2,5-ジメチル-2,5- ヘキサノ) ジベンゾ[b,f][1,4]オキサゼピン-11-イル] 安息香酸 (HX620); 4-[2,3-(2,5-ジメチル-2,5- ヘキサノ) ジベ ンゾ[b,f][1,4]チアゼピン-11-イル] 安息香酸 (HX63 0);5-[5H-2,3-(2,5- ジメチル-2,5- ヘキサノ)-5-メチ ルジベンゾ[b.e][1.4]ジアゼピン-11-イル]-2-ピリジン カルボン酸; 6-[5H-2,3-(2,5- ジメチル-2,5- ヘキサ ノ)-5-メチルジベンゾ[b,e][1,4]ジアゼピン-11-イル]-3-ピリジンカルボン酸;4-[2,3-(2,5-ジメチル-2,5- へ キサノ) ジベンゾ[b,e] アゼピン-11-イル] 安息香酸 (HX640);及び上記各化合物の低級アルキルエステル、 例えばメチルエステル (例えば、HX600については、メ チル 4-[5H-2,3-(2,5-ジメチル-2,5- ヘキサノ)-5-メチ ルジベンゾ[b,e][1,4]ジアゼピン-11-イル] ベンゾエー ト);などを挙げることができる。

【0017】上記一般式(II)で示される本発明の化合物のうち、好ましい化合物として、例えば、下記の表に示30される化合物を挙げることができる。これらの化合物において、R¹は水素原子又はメチル基であり、Yはp-フェニレン基、Xは-NR⁷-である。BzIはベンジル基を示し、7-Me.8-Et.8-i-Pro及び9-t-Buなどの表示は、それぞれ、式(II)で示される化合物の7-位にメチル基、8-位にエチル基、8-位にイソプロピル基、及び9-位にtert-ブチル基が置換していることを示す。また、7-(CHz)4-8及び7-C(CH3)zCHzC(CH3)z-8などの表示は、それぞれ、式(II)で示される化合物の7-位と8-位とが-(CH2)4-及び-C(CH3)zCHzC(CH3)z-で結合されてい40ることを示す。

【0018】 【化5】

$$\begin{array}{c|c} R^{\delta} & & COOH \\ \hline R^{5} & & & & R^{2} \\ \hline 0 & & & & R^{3} \end{array}$$

【表1】

R²	R ⁸	R ⁵	R ⁶	R7
H	H	H	H	H
7-Me	H	H	H	H
7-Me	8-Me	H	H	H
8-Me	9-Me	Ħ	H	H
7-Bt	8-Et	Ħ	H	H
7-n-Pro	8-n-Pro	H	H	H
7-i-Pro	8-i-Pro	H	H	H
7-i-Pro	8-i-Pro	Me	H	H
7-i-Pro	8-i-Pro	Et	H	H
7-i-Pro	8-i-Pro	i-Pro	H	H
7-i-Pro	8-i-Pro	H	H	Me
7-i-Pro	8-i-Pro	Me	H	Me
7-i-Pro	8-i-Pro	Et	H	Me
7-i-Pro	8-1-Pro	Et	Me	Me
7-i-Pro	8-i-Pro	i-Pro	H	- Me
7-i-Pro	8-i-Pro	i-Pro	H	i-Pro
7-i-Pro	8-n-Pro	H	H	H
7-t-Bu	8-t-Bu	Ne	H	H
7-t-Bu	8-t-Bu	Et	H	H
7-t-Bu	8-t-Bu	i-Pro	H	H
7-t-Bu	8-t -B u	H	H	Me
7-t-Bu	8-t-Bu	H	H	i-Pro
7-t-Bu	8-t-Bu	Ne	H	Me
7-t-Bu	8-t-Bu	i-Pro	H	Me
7-t-Bu	8-t-Bu	Et	Ме	Me
7-(CH ₂) ₄		H	H	H
	CH ₂ CH ₂ C (CH ₃) ₂ -8	H	H	H
	CH, CH, C(CH,), -8	Ne	H	H
	CH2 CH2 C (CH3)2-8	Мe	Me	H
	CH ₂ CH ₂ C (CH ₃) ₂ -8	Me	Me	Me
	CH ₂ CH ₂ C (CH ₃) ₂ -8	Et	H	H
	CH ₂ CH ₂ C (CH ₃) ₂ -8	n-Pro	H	H
	CH ₂ CH ₂ C (CH ₃) ₂ -8	i-Pro	H	H
	CH ₂ CH ₂ C (CH ₃) ₂ -8	H	H	Me
	CH, CH, C (CH,), -8	Ħ	H	i-Pro
	CH ₂ CH ₂ C (CH ₃) ₂ -8	n-Pro	H	Me
	CH ₂ CH ₃ C (CH ₃) ₂ -8	i-Pro	H	Me
	CH ₂ CH ₂ C (CH ₃) ₂ -8	i-Pro	H	i-Pro
	CH ₂ CH ₂ C (CH ₅) ₂ -8	t-Bu	H	H
	CH, CH, C (CH,), -8	t-Bu	H	Me
	CH ₂ CH ₂ C (CH ₃) ₂ -8	t-Bu	H	i-Pro
	CH, CH, C (CH,), -8	Bzl	H	H
	CH, CH, C (CH,), -8	Bz l	H	Me
	. CH2 CH4 C (CH3)2-8	H	H	
I U (UDS)	4 out out o (out \8 _0	ш	п	Bz l

[1,3- ジヒドロ-7,8-(2,5-ジメチル-2,5- ヘキサノ)-2-オキソ-2H-1,4-ベンゾジアゼピン-5- イル]-安息香酸 (HX800); 4-[1,3- ジヒドロ-7,8-(2,5-ジメチル-2,5- ヘキサノ)-1-メチル-2- オキソ-2H-1,4-ベンゾジアゼピン-5- イル]-安息香酸 (HX801); 4-[3(S)-メチル-1,3-ジヒドロ-7,8-(2,5-ジメチル-2,5- ヘキサノ)-2-オキソ-2H-1,4-ベンゾジアゼピン-5- イル]-安息香酸 (HX810); 4-[1,3- ジヒドロ-7,8-(2,5-ジメチル-2,5- ヘキサノ)-1-イソプロピル-2- オキソ-2H-1,4-ベンゾジアゼピン-5- イル]-安息香酸 (HX803); 4-[1- ベンジル-1,3-ジヒドロ-7,8-(2,5-ジメチル-2,5- ヘキサノ)-2-オキソ

-2H-1,4-ベンゾジアゼピン-5- イル]-安息香酸 (HX80 5);及び4-[3(S)-ベンジル-1,3- ジヒドロ-7,8-(2,5-ジメチル-2,5- ヘキサノ)-2-オキソ-2H-1,4-ベンゾジアゼピン-5- イル]-安息香酸 (HX850);並びに、上記各化合物の低級アルキルエステル、好ましくはメチルエステル (例えば、HX800 については、メチル 4-[1,3-ジヒドロ-7,8-(2,5-ジメチル-2,5- ヘキサノ)-2-オキソ-2H-1,4-ベープーである。

10

[0020]

10 【化6】

【0021】本発明の式(I) に包含される好ましい化合物であるHX600, HX610, HX511, HX531, 及び HX545について、製造方法の一例を以下のスキームに示す。また、本発明の式(II)に包含される好ましい化合物であるHX800, HX801, 及び HX850について、同様に製造方法の一例を以下のスキームに示す。もっとも、本発明の化合物及びその製造方法は、これらのスキームに示されたものに限定されることはない。なお、本明細費の実施例には、

下記スキームに従う本発明の化合物の製造方法が詳細に 説明されているので、これらの方法に示された出発原料 や試薬、並びに反応条件などを適宜修飾ないし改変する ことにより、本発明の範囲に包含される化合物がいずれ も製造可能であることは容易に理解されよう。

[0022] [化7]

[0023] 【化8】

13

11 12 HX610 [0024] [化9]

30

16

NO₂

Cul / K₂CO₃
o-xylene

NaH / DMF

NaH / DMF

NaH / DMF

13

Fe / HCI / EtOH

15

17

18 HX511

[0025] 【化10】

20

[0027]

【化12】

[0028]

【化13】

【0029】本発明の化合物は、それ自体はレチノイド様の作用を実質的に有していないか、あるいは微弱又は中程度のレチノイド様作用を有する化合物であるが、本発明の化合物をレチノイン酸などのレチノイドと共存させた場合には、レチノイドの生理活性(代表的なものとして細胞分化作用、細胞増殖促進作用、及び生命維持作用など)が顕著に増強される。

【0030】いかなる特定の理論に拘泥するわけではないが、本発明の化合物自体がレチノイド作用を有する場合には、その作用は相乗的作用である。従って、本発明の化合物は、レチノイン酸やレチノイン酸様の生物活性を有する上記化合物(例えば、4-[(5,6,7,8-tetrahydro 5,5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid: Am80など)などのレチノイドをビタミンA欠乏症、上皮組織の角化症、乾癬、アレルギー疾患、リウマチなどの免疫性疾患、骨疾患、白血病、又は癌の予防・治療のための医薬として投与する場合に、該レチノイドの作用増強剤として用いることができる。

【0031】また、本発明の化合物は、レチノイドを上記疾患の治療・予防のために投与しない場合においても生体内に既に存在するレチノイン酸の作用を増強するので、上記疾患の治療・予防の目的で本発明の化合物自体を投与することも可能である。さらに、本発明の化合物は、レチノイドに対しての作用増強効果のみならず、細胞の核内に存在する核内レセプター・スーパーファミリー(Evans, R.M., Science, 240, p.889, 1988)に属するレセプターに結合して生理作用を発揮するステロイド化合物、ビタミンD3などのビタミンD化合物、又はチロキシンなどの生理活性物質の作用増強に用いることもできる。

【0032】本発明の化合物からなる医薬は、それ自体 を投与してもよいが、好ましくは、当業者に周知の方法 50 によって製造可能な経口用あるいは非経口用の医薬組成物として投与することが好ましい。また、レチノイン酸などのレチノイドを有効成分として含む医薬に配合して、いわゆる合剤の形態の医薬組成物として用いることもできる。経口投与に適する医薬用組成物としては、例えば、錠剤、カプセル剤、散剤、細粒剤、顆粒剤、液剤、及びシロップ剤等を挙げることができ、非経口投与に適する医薬組成物としては、例えば、注射剤、坐剤、吸入剤、点眼剤、点鼻剤、軟膏剤、クリーム剤、及び貼付剤等を挙げることができる。

【0033】上記の医薬組成物は、薬理学的、製剤学的に許容しうる添加物を加えて製造することができる。薬理学的、製剤学的に許容しうる添加物の例としては、例えば、賦形剤、崩壊剤ないし崩壊補助剤、結合剤、滑沢剤、コーティング剤、色素、希釈剤、基剤、溶解剤ないし溶解補助剤、等張化剤、pH調節剤、安定化剤、噴射剤、及び粘着剤等を挙げることができる。

【0034】本発明の医薬の投与量は特に限定されず、レチノイン酸などのレチノイドを有効成分として含む医薬と本発明の医薬とを併用してレチノイドの作用を増強する場合、あるいは、レチノイドを含む医薬を併用せずに、生体内に既に存在するレチノイン酸の作用増強のために本発明の医薬を投与する場合など、あらゆる投与方法において適宜の投与量が容易に選択できる。例えば、経口投与の場合には成人一日あたり0.01~1.000 mg程度の範囲で用いることができる。レチノイドを有効成分として含む医薬と本発明の医薬とを併用する場合には、レチノイドの投与期間中、あるいはその前後のいずれの期間においても本発明の医薬を投与することが可能である。

[0035]

【実施例】以下、本発明を実施例によりさらに具体的に

説明するが、本発明の範囲は下記の実施例の範囲に限定されることはない。なお、実施例中の化合物番号は、上記のスキーム中の化合物番号に対応している。

【0036】例1:4-[5H-2,3-(2,5- ジメチル-2,5- ヘキサノ)-5-メチルジベンゾ[b,e][1,4]ジアゼピン-11-イル] 安息香酸 (HX600)の製造

6-プロモ-1,2,3,4- テトラヒドロ-1,1,4,4- テトラメチルナフタレン 2.30 g(8.61 mmo1), o- ニトロアニリン 4.30 g (31.2 mmo1), KzCO3 4.30 g (31.2 mmo1), CuI 347 mg にキシレン 40 mIを加え、24時間加熱環流した。減圧下にキシレンを留去し、残渣をシリカゲルカラムクロマトグラフィー (AcOEt:n-ヘキサン=1:50)で精製した。ヘキサンより再結晶して化合物 1 を得た(2.33 g.84%)。

 $^1\,H$ -NMR CDC $_{13}$ 9.49(s, 1H), 8.20(dd, 1H, 8.4Hz, 1.5Hz), 7.33(d, 2H, 8.4Hz), 7.20(dd, 1H, 8.8Hz, 1.1Hz), 7.18(d, 1H, 2.2Hz), 7.04(dd, 1H, 8.4Hz, 2.2Hz), 6.73(m, 1H), 1.71(s, 4H), 1.30(s, 6H), 1.28(s, 6H)

【0038】化合物21.41g(4.17 mmo1)を水20 m1及びエタノール40 m1に懸濁し、濃塩酸6.0 m1を加えた。この混合物に鉄粉2.2gを加えて30分間加熱還流した。反応液を濾過して固形の鉄粉を除き、濾液を酢酸エチルで抽出した。有機相を水、飽和食塩水で洗浄して乾燥し、溶媒を減圧留去して化合物3を得た(1.25g.99%)。

¹H-NMR CDC 13 7.11 (d, 1H, 8.8Hz), 7.06 (m, 2H), 6.81 (dd, 1H, 8.1Hz, 1.5Hz), 6.75 (m, 1H), 6.61 (d, 1H, 2.6Hz), 6.44 (dd, 1H, 8.4Hz, 2.6Hz), 3.82 (brs, 2H), 3.18 (s, 3H), 1.65 (s, 4H), 1.23 (s, 6H), 1.23 (s, 6H) 【0039】化合物3 1.25 g (4.06 mmol)を乾燥ベンゼン 25 m1に溶解し、ピリジン 0.5m1を加えた。テレフタル酸モノメチルエステルクロライド 966 mg (4.87 mmol)を加えて室温で18時間攪拌した。反応液に氷水及び希塩酸を加えて酢酸エチルで抽出し、有機相を乾燥後に溶媒を減圧留去して粗生成物 2.10 g を得た。シリカ 50

ゲルカラムクロマトグラフィー (Ac0Et:n-ヘキサン=1:20)で精製して化合物 4 を得た(1.72 g, 90%)。

¹H-NMR CDC 13 8.57 (dd, 1H, 8.1Hz, 1.5Hz), 8.45 (s, 1H), 7.99 (d, 2H, 8.8Hz), 7.45 (d, 2H, 8.8Hz), 7.32 (m, 1H), 7.18-7.26 (m, 2H), 6.68 (d, 1H, 2.6Hz), 6.60 (dd, 1H, 8.4Hz, 2.6Hz), 3.93 (s, 3H), 3.31 (s, 3H), 1.64 (s, 4H), 1.24 (s, 6H), 1.16 (s, 6H)

【0040】化合物4 1.72 g (3.65 mmo1) にポリリン酸 15.8 g を加えて 110℃で2時間40分投搾した。反応液に水を加えてジクロルメタンで抽出し、有機相を飽和食塩水で洗浄した。溶媒を減圧留去して得られる残渣を乾燥した後、シリカゲルカラムクロマトグラフィー (Ac OEt:n-ヘキサン=1:30)で精製し本発明の化合物 (化合物5:メチル4-[5H-5-メチル-7,8-(2,5-ジメチル-2,5-ヘキサノ) ジベンゾ[b,e] ジアゼピン-10-イル] ベンゾエート) を得た (1.41 g,86%)。m.p.238 ℃ 「H-NMR CDC Is 8.07 (d,2H,8.8Hz),7.88 (d,2H,8.4Hz),7.31 (dd,1H,7.7Hz,1.8Hz),7.15 (m,1H),7.09 (m,1H),6.98 (dd,1H,6.6Hz,1.8Hz),6.92 (s,1H),6.87 (s,1H),3.95 (s,3H),3.26 (s,3H),1.63 (m,4H),1.32 (s,3H),1.26 (s,3H),1.12 (s,3H),1.04 (s,3H)

Anal. Calc. for C₃₀ H₃₂ N₂ O₂ C:79.61, H:7.13, N:6.1 9; Found C:79.56, H:7.27, N:6.12

【0041】化合物5 43 mg (0.095 mmo1) をエタノール 4 m1 及び 2N NaOH 1.5 m1 に懸濁し、室温で1時間10分担拌した。反応液を2N HC1でpH=2に調整した後、ジクロルメタンで抽出した。有機相を水、飽和食塩水で洗浄し、乾燥後に溶媒を減圧留去した。得られた残渣を乾燥して本発明の化合物 HX600を得た (化合物6,37.1mg,89%)。m.p.282 ℃

¹ H-NMR CDC 13 8.15 (d, 2H, 8.4Hz), 7.91 (d, 2H, 8.4Hz), 7.33 (dd, 1H, 7.7Hz, 1.5Hz), 7.15 (m, 1H), 7.09 (m, 1H), 6.98 (dd, 1H, 7.7Hz, 1.1Hz), 6.93 (s, 1H), 6.88 (s, 1H), 3.27 (s, 3H), 1.62 (m, 4H), 1.32 (s, 3H), 1.27 (s, 3H), 1.13 (s, 3H), 1.05 (s, 3H)

Anal. Calc. for C₂₉ H₃₀ N₂ O₂ C:79.42, H:6.89, N:6.3 9; Found C:79.12, H:7.15, N:6.25

【0042】例2:4-[5H-2,3-ジイソプロピル-5- メチルジベンゾ[b,e][1,4]ジアゼピン-11-イル] 安息香酸(HX610)の製造

3.4-ジイソプロピルアニリン 107 mg(0.60 mmol), o-ヨードニトロベンゼン 180 mg (0.72 mmol), K2CO3 83 mg (0.60 mmol), 及び CuI 34 mgをキシレン 5 ml に加えて18時間加熱環流した。減圧下にキシレンを留去し、残渣をシリカゲルカラムクロマトグラフィー (AcOEt:n-ヘキサン=1:50)で精製して化合物7を得た(59 mg, 33%)

¹H-NMR CDC 13 9.50(s, 1H), 8.20(dd, 1H, 8.4Hz, 1.5H

z)、7.40(m, 1H), 7.29(d, 1H, 8.1Hz), 7.20(dd, 1H, 8.8Hz, 1.1Hz), 7.13(d, 1H, 2.2Hz), 7.08(dd, 1H, 8.4 Hz, 2.2Hz), 6.73(m, 1H), 3.27(m, 2H), 1.25(m, 12H) 【0043】NaH (60% in oil) 16 mg (0.40 mmol, 2 e q)をn-ヘキサンで洗い、乾燥させた。化合物 7.58 mg (0.20 mmol)を5 m1の DMFに溶解して加え、室温で30分間攪拌した。この混合物にCH3 I 0.04 m1 (0.60 mmol)を加えて3時間攪拌した。反応液を氷水にあけてジクロルメタンで抽出し、有機相を水、飽和食塩水で洗浄した。乾燥後、溶媒を減圧下に留去して化合物 8 を得た(57 mg, 93%)。

¹ H-NMR CDC 13 7.81 (dd, 1H, 8.1Hz, 1.5Hz), 7.53 (m, 1 H), 7.34 (dd, 1H, 8.1Hz, 1.5Hz), 7.18 (m, 1H), 7.10 (d. 1H, 9.2Hz), 6.62 (m, 2H), 3.31 (s, 3H), 3.17 (septet, 2H), 1.19 (d. 6H, 7.0Hz), 1.14 (d. 6H, 7.0Hz) 【0044】化合物8 52.5 mg (0.17 mmol)を水 2 ml及びエタノール 4 ml に懸濁して濃塩酸 0.5 ml を加えた。鉄粉 200 mg を加えて30分間加熱還流した。反応液を濾過して固形の鉄粉を除き、濾液を酢酸エチルで抽出した。有機相を水、飽和食塩水で洗浄し、乾燥した後に20 溶媒を減圧留去して化合物9を得た (40.0 mg, 84%)。

¹ H-NMR CDC 13 7.07 (m, 3H), 6.82 (dd, 1H, 7.7Hz, 1.5Hz), 6.76 (m, 1H), 6.59 (d, 1H, 2.9Hz), 6.46 (dd, 1H, 8.4Hz, 2.6Hz), 3.84 (brs, 2H), 3.20 (s, 3H), 3.18 (m, 2H), 1.19 (m, 12H)

【0046】化合物1044 mg (0.10 mmo1)にポリリン酸 1.2 gを加えて120℃で1時間投拌した。反応液に水を加えてジクロルメタンで抽出し、有機相を飽和食塩水で洗浄し、乾燥後に溶媒を減圧留去した。得られた残渣を乾燥した後、シリカゲルカラムクロマトグラフィー (Ac 0Et:n-ヘキサン=1:30)で精製して本発明の化合物 (化合物11:メチル4-[5II-5-メチル-7.8-ジイソプロピルジベンゾ[b,e] ジアゼピン-10-イル] ベンゾエート)を得た(19.2 mg, 45%)。

¹ H-NMR CDC l₃ 8.07 (d, 2H, 8.8Hz), 7.87 (d, 2H, 8.4Hz), 7.31 (dd, 1H, 7.7Hz, 1.8Hz), 7.15 (m, 1H), 7.08

 $\begin{array}{c} (m\ .\ 1H)\ ,\ 6\ .98\ (m\ .\ 1H)\ ,\ 6\ .99\ (s\ .\ 1H)\ ,\ 6\ .97\ (s\ .\ 1H)\ ,\ 3\ .\\ 95\ (s\ ,\ 3H)\ ,\ 3\ .27\ (s\ .\ 3H)\ ,\ 3\ .23\ (m\ ,\ 1H)\ ,\ 3\ .13\ (m\ ,\ 1H)\ ,\\ 1\ .28\ (d\ ,\ 3H\ ,\ 6\ .6Hz)\ ,\ 1\ .26\ (d\ ,\ 3H\ ,\ 7\ .0Hz)\ ,\ 1\ .08\ (d\ ,\ 3H\ ,\ 7\ .0Hz)\ ,\ 1\ .01\ (d\ ,\ 3H\ ,\ 7\ .0Hz)$

【0047】化合物11 18 mg (0.043 mmo1) をエタノール 2 ml 及び 2N NaOH 1 ml に懸濁し、室温で40分攪拌した。2N NC1でpH=2に調節した後、反応液をジクロルメタンで抽出した。有機相を水、飽和食塩水で洗浄し、溶媒を減圧留去し、得られた残渣を乾燥して本発明の化合物 HX610 (化合物12) を得た(15.6 mg, 88%)。エタノールー水の混合物から再結晶して 10.5 mgの精製体を得た。m.p.263 ℃

¹ H-NMR CDC l₃ 8.14(d, 2H, 8.8Hz), 7.91(d, 2H, 8.4Hz), 7.32(dd, 1H, 7.7Hz, 1.8Hz), 7.16(m, 1H), 7.10 (m, 1H), 6.99(dd, 1H, 8.1Hz, 1.1Hz), 6.90(s, 1H), 6.83(s, 1H), 3.28(s, 3H), 3.24(m, 1H), 3.14(m, 1H), 1.28(d, 3H, 7.0Hz), 1.23(d, 3H, 6.6Hz), 1.10 (d, 3H, 7.0Hz), 1.02(d, 3H, 7.0Hz)

Anal. Calc. for C₂₇ H₂₈ N₂O₂ C:78.61, H:6.84, N:6.7 9; Found C:78.36, H:6.92, N:6.67

【0048】例3:4-[5H-2-tert- ブチル-5- メチルジベンゾ[b,e][1,4]ジアゼピン-11-イル] 安息香酸 (HX511)の製造

o-ヨードニトロベンゼン 1.25 g (5.0 mmol)に4-tert-ブチルアニリン 761 mg (5.1 mmol)、K2 CO3 697 (5.1 mmol)、CuI 95 mg、及びo-キシレン 10 m1を加え、150 ℃で11時間攪拌した。反応液をシリカゲルカラムクロマトグラフィー(AcOEt:n- ヘキサン=1:40)で精製して化合物13を得た(529.1 mg, 39%)。

¹ H-NMR CDC l₃ 9.48(s, 1H), 8.20(dd, 1H, 8.4Hz, 1.5Hz), 7.43(d, 2H, 8.8Hz), 7.35(m, 1H), 7.22(m, 3H), 6.76(m, 1H), 1.35(s, 9H)

【0049】NaH (60% in oil) 73 mg (1.82 mmol)をへ キサンで洗浄して乾燥した。1 mlのDMF をNaH に加えて おき、その懸濁液に化合物13 241.7 mg (0.895 mmo1) を 5ml のDMF に溶解して加えた。室温で20分間攪拌し た後にヨウ化メチル 0.18 m1(2.78 mmo1, 3 eq)を加え て3時間攪拌した。反応液を氷水にあけてジクロロメタ ンで抽出し、有機相を水及び飽和食塩水で洗浄し、乾燥 後に減圧濃縮して化合物14を得た(245.3 mg, 97%)。 ¹H-NMR CDC 13 7 83 (dd. 1H, 8.1Hz. 1.5Hz), 7.57 (m. 1 H), 7.36 (dd, 1H, 8.1Hz, 1.5Hz), 7.22 (d, 2H, 8.8H z), 6.70(d, 2H, 9.2Hz), 3.29(s, 3H), 1.27(s, 9H) 【0050】化合物14 240 mg (0.845 mmol)に水 4 ml 、エタノール 8 ml 及び鉄粉 406 mg を加え、濃塩酸 1.0 ml を加えて 20 分間加熱還流した。反応液に酢酸 エチルを加えて濾過し、母液を水及び飽和食塩水で洗浄 した。有機相を乾燥後、減圧濃縮して化合物15を得た(1 84.6 mg. 86%) .

o ¹H-NMR CDC 1₃ 7.22 (d, 2H, 8.8Hz), 7.08 (m, 1H), 7.04

(dd. 1H, 8.1Hz, 1.5Hz), 6.82(dd, 1H, 7.7Hz, 1.5Hz), 6.77(m, 1H), 6.61(d, 2H, 8.8Hz), 3.83 (brs, 2 H), 3.20(s, 3H), 1.28(s, 9H)

【0051】化合物15 174 mg (0.685 mmol)を乾燥ベンゼン 7 ml に溶解し、ピリジン 0.1ml (1.25 mmol) を加えた。テレフタル酸モノメチルエステルクロライド 163 mg (0.823 mmol)を加えて室温で 2時間15分攪拌した。反応液に氷水および希塩酸を加えて酢酸エチルで抽出し、有機相を乾燥後、溶媒を減圧留去して 320.1 mgの粗生成物を得た。この生成物をシリカゲルカラムクロマトグラフィー(AcOEt:n- ヘキサン=1:20)で精製して化合物16を得た(206.7 mg, 73%)。

¹H-NMR CDC I₃ 8.60 (d, 1H, 7.0Hz), 8.57 (s, 1H), 8.00 (d, 2H, 8.4Hz), 7.53 (d, 2H, 8.4Hz), 7.33 (m, 1H), 7.28 (d, 2H, 8.8Hz), 7.21 (m, 2H), 6.72 (d, 2H, 8.8Hz), 3.93 (s, 3H), 3.28 (s, 3H), 1.29 (s, 9H)

【0052】化合物16 202.6 mg (0.487 mmo1)にポリリン酸 2.5 gを加えて 130℃で2時間攪拌した。さらにポリリン酸 2.0 gを追加して1時間攪拌した。反応液に水を加えてジクロロメタンで抽出し、有機相を濃縮・乾燥して粗生成物 164.9 mg を得た。この粗生成物をシリカゲルカラムクロマトグラフィー(AcOEt:n- ヘキサン=1:40→1:20)で精製し、得られた精製物をさらにシリカゲルカラムクロマトグラフィー(AcOEt:n- ヘキサン=1:20)で精製して化合物17を得た(22.0 mg, 11%)。

¹ H-NMR CDC 13 8.08 (d, 2H, 8.4Hz), 7.86 (d, 2H, 8.4Hz), 7.42 (dd, 1H, 8.4Hz, 2.2Hz), 7.32 (dd, 1H, 7.7Hz, 1.8Hz), 7.15 (m, 1H), 7.09 (m, 1H), 6.98 (m, 3H), 3.95 (s, 3H), 3.26 (s, 3H), 1.18 (s, 9H)

【0053】化合物17 20.1 mg (0.05 mmo1)に 2N NaOH 30 1.0 m1 及びエタノール 2.0 m1 を加えて3時間15分投 拌した。反応液に 2N 塩酸を加えて酸性にした後、ジクロロメタンで抽出した。有機相を水および飽和食塩水で洗浄し、乾燥後に溶媒を減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(ジクロロメタン:メタノール=20:1)で精製して本発明の化合物 HX5 11 (化合物18)を得た(16.5 mg, 85%)。エタノールー水の混合物から再結晶して精製体を得た。m.p. 249 ℃ ¹H-NMR CDC 13 8.14 (d, 2H, 8.4Hz), 7.90 (d, 2H, 8.4Hz), 7.43 (dd, 1H, 8.4Hz, 2.2Hz), 7.32 (dd, 1H, 7.7Hz, 40 1.8Hz), 7.15 (m, 1H), 7.09 (m, 1H), 6.98 (m, 3H), 3.26 (s, 3H), 1.19 (s, 9H)

Anal. Calc. for C25 H24 N2 O2 C:78.10, H:6.29, N:7.2 9; Found C:77.92, H:6.40, N:7.13

【0054】例4:4-[5H-2,3-(2,5-ジメチル-2,5-へ キサノ)-5-メチル-8-ニトロジベンゾ[b,e] [1,4] ジアゼピン-11-イル] 安息香酸 (HX531)の製造

化合物 5 (HX600 のメチルエステル体) 102 mg (0.226 mmol) を濃硫酸 5 mlに溶解し、氷冷下で KNO3 36.5 mg (0.36 mmol) を加えた。 1 時間後、反応液を氷水にあ

け、ジクロロメタンで抽出した。有機相を飽和重曹水、水、食塩水の順に洗浄し、乾燥後に溶媒を減圧留去して粗生成物 102 mg を得た。この粗生成物をシリカゲルカラムクロマトグラフィー(AcOEt:n- ヘキサン=1:20)で精製して化合物19を得た(19.3 mg, 17%)。

¹H-NMR CDC 13 8.14 (d, 1H, 2.6Hz), 8.11 (d, 2H, 8.8Hz), 8.01 (dd, 1H, 8.8Hz, 2.6Hz), 7.89 (d, 1H, 8.8Hz), 6.93 (s, 1H), 6.91 (s, 1H), 3.97 (s, 3H), 3.32 (s, 3H), 1.66 (m, 4H), 1.32 (s, 3H), 1.28 (s, 3H), 1.14 (s, 3H), 1.07 (s, 3H)

【0055】化合物19 17.3 mg (0.035 mmo1) に 2N Na OH 1.0 m1 及びエタノール 2.0 m1を加えて90分間室温で攪拌した。反応液を 2N HC1 で酸性にした後、ジクロロメタンで抽出した。有機相を水及び飽和食塩水で洗浄し、乾燥後に溶媒を減圧留去して本発明の化合物 HX531 (化合物20) を得た(15.0 mg, 89%)。エタノールー水の混合物から再結晶して精製体を得た。m.p.300 ℃以上¹H-NMR CDC13 8.15(m, 3H), 8.01(dd, 1H, 8.8Hz, 2.6H, z), 7.90(d, 2H, 7.3Hz), 7.00(d, 1H, 9.2Hz), 6.93 (s, 1H), 6.92(s, 1H), 3.31(s, 3H), 1.65(m, 4H), 1.32(s, 3H), 1.27(s, 3H), 1.14(s, 3H), 1.07(s, 3H) Anal. Calc. for C29 H29 N3 O4 C:72.03, H:6.04, N:8.6 9; Found C:71.89, H:6.25, N:8.54

【0056】例5:4-[5H-3,4-(1,4- ブタノ)-5-メチルジベンゾ[b,e][1,4]ジアゼピン-11-イル] 安息香酸 (HX 545)の製造

5.6.7.8-テトラヒドロ-1- ナフチルアミン 1.83 g (12.43 mmo1)、o-ヨードニトロベンゼン 3.1 g (12.43 mmo1)、K2CO3 1.72 g (12.43 mmo1)、及び CuI 217 mg にキシレン 40 m1を加え、18時間加熱環流した。キシレンを減圧留去して得られた残査をシリカゲルカラムクロマトグラフィー(AcOEt:n- ヘキサン=1:50)で精製して化合物21を得た (736 mg, 22%)。

¹H-NMR CDC ¹³ 9.30 (s, 1H), 8.20 (dd, 1H, 8.8Hz, 1.5Hz), 7.32 (m, 1H), 7.15 (m, 2H), 7.04 (d, 1H, 7.3Hz), 6.90 (dd, 1H, 8.4Hz, 1.1Hz), 6.72 (m, 1H), 2.83 (m, 2H), 2.64 (m, 2H), 1.79 (m, 4H)

【0057】NaH (60% in oil) 114 mg (2.84 mmol, 2 eq) をヘキサンで洗浄して乾燥した。化合物21 381 mg (1.42 mmol) を 8 ml のDMF に溶解して加え、室温で15分間攪拌した。この混合物にヨウ化メチル 0.37 ml (5.68 mmol)を加えて3時間30分攪拌した。反応液を氷水にあけてジクロロメタンで抽出し、有機相を乾燥した後、溶媒を減圧留去して粗生成物を得た。この粗生成物をシリカゲルカラムクロマトグラフィー(AcOEt:n-ヘキサン=1:100) で精製し、さらに得られた化合物を水及び飽和食塩水で洗浄し、乾燥後に溶媒を留去して化合物22を得た (293 mg, 73%)。

¹H-NMR CDC l₃ 7.67 (dd, 1H, 8.1Hz, 1.8Hz), 7.34 (m, 1 H), 7.08 (t, 1H, 7.7Hz), 6.97 (d, 1H, 7.3Hz), 6.86 (m. 3H), 3.16 (s. 3H), 2.81 (m. 2H), 2.57 (m. 2H), 1.76 (m. 4H)

【0058】化合物22 101.6 mg (0.36 mmol) を水 2 m l およびエタノール 6 ml の混合物に懸濁し、濃塩酸 0.5 ml を加えた。この混合物に鉄粉 201 mg を加えて 10 分間加熱還流した。反応液を濾過して固形分を除き、母液を酢酸エチルで抽出した。有機相を水および飽和食塩水で洗浄し、乾燥後に溶媒を減圧留去して化合物 23を得た(81.1 mg, 89%)。

 1 H-NMR CDC I₃ 7.13(t. 1H, 7.7Hz), 7.03(d. 1H, 7.3Hz), 6.93(m. 1H), 6.83(d. 1H, 7.0Hz), 6.75(dd. 1H, 7.7Hz, 1.1Hz), 6.64(m. 2H), 3.96(brs, 2H), 3.05(s, 3H), 2.76(m. 2H), 2.15(m. 2H), 1.65(m. 4H)

【0059】化合物23 81 mg (0.32 mmo1)を乾燥ベンゼン5 m1 に溶解し、ピリジン 0.1 m1 を加えた。この溶液にテレフタル酸モノメチルエステルクロライド 79.6 mg (0.40 mmo1)を加え、室温で16時間攪拌した。反応液に氷水及び希塩酸を加えて酢酸エチルで抽出し、有機相を乾燥した後に溶媒を減圧留去した。得られた残査をシリカゲルカラムクロマトグラフィー(AcOEt:n- ヘキサン=1:20 →1;10) で精製して化合物24を得た(113.9 mg, 8 6%)。

¹H-NMR CDC 13 8.45(s, 1H), 8.36(d, 1H, 7.7Hz), 8.09 (d, 2H, 8.1Hz), 7.68(d, 2H, 8.4Hz), 7.13(m, 3H), 6.99 (dd, 1H, 8.1Hz, 1.5Hz), 6.96 (d, 1H, 7.3Hz), 6.91 (d, 1H, 7.7Hz), 3.96(s, 3H), 3.10(s, 3H), 2.73 (m, 2H), 2.31 (m, 2H), 1.60 (m, 2H), 1.51 (m, 2H) 【0060】化合物24 113 mg (0.273 mmol)にポリリン酸 1.83 g を加え、130 ℃で1時間攪拌した。反応液に水を加えてジクロロメタンで抽出し、有機相を飽和食塩水で洗浄した。乾燥後に溶媒を減圧倒去して得られた残査をシリカゲルカラムクロマトグラフィー (AcOEt:n-ヘキサン=1:40→1;20)で精製して化合物25を得た(67.9 mg, 63%)。

¹ H-NMR CDC ¹³ 8.10 (d, 2H, 8.8Hz), 7.91 (d, 2H, 8.4Hz), 7.40 (dd, 1H, 8.1Hz, 2.2Hz), 7.25 (m, 1H), 7.20 (m, 2H), 6.89 (d, 1H, 8.1Hz), 6.82 (d, 1H, 8.1Hz), 3.95 (s, 3H), 3.06 (s, 3H), 3.02 (m, 2H), 2.78 (m, 2H), 1.95 (m, 1H), 1.85 (m, 1H), 1.75 (m, 2H)

【 O O 6 1 】 化合物25 66.3 mg (0.167 mmo1) に 2N Na OH 2.0 m1 及びエタノール 5.0 m1を加えて 1 時間15分室温で攪拌した。反応液を 2N HC1 で酸性にした後にジクロロメタンで抽出し、有機相を水および飽和食塩水で洗浄した。乾燥後に溶媒を減圧留去して本発明の化合物HX545 (化合物26) を得た(60.7 mg, 95%)。エタノールー水の混合物から再結晶して精製体を得た。m.p.273 ℃ ¹H-NMR CDC 13 8.17 (d, 2H, 8.8Hz), 7.95 (d, 2H, 8.4Hz), 7.42 (dd, 1H, 7.7Hz, 1.8Hz), 7.22 (m, 3H), 6.91 (d, 1H, 8.1Hz), 6.83 (d, 1H, 8.1Hz), 3.07 (s, 3H), 3.02 (m, 2H), 2.80 (m, 2H), 1.95 (m, 2H), 1.84 (m, 2

H), 1.75(m, 4H)

Ana I. Ca Ic. for C25 H22 N2 O2 C:78.51, H:5.80, N:7.3 2; Found C:78.32, H:5.83, N:7.13

【0062】例6:4-[2,3-(2,5-ジメチル-2,5- ヘキサノ) ジベンゾ[b,f][1,4]オキサゼピン-11-イル] 安息香酸 (HX620)の製造

5.6.7.8-テトラヒドロ-5.5.8.8- テトラメチル-2- ナフトール 97 mg (0.475mmo1)、o-クロロニトロベンゼン77 mg (0.48 mmo1)、及び水酸化カリウム 27mg (0.48 mo1)に DMS0 5 m1を加え、90℃で17時間30分投拌した。反応液に水、ジクロロメタン、及び濃塩酸 1 m1 を加え、有機相を希塩酸及び食塩水で洗浄した。乾燥後に溶媒を減圧留去して粗生成物 139.7 mg を得た。この粗生成物をシリカゲルカラムクロマトグラフィー(AcOEt:n-ヘキサン=1:30)で精製して、o-(5.6.7.8- テトラヒドロ-5.5.8.8- テトラメチル-2- ナフタレニル)-2-ニトロフェノール(化合物27)を得た(103.1 mg, 67%, 無色油状物)。

1H-NMR CDC 1s 7.93 (dd、1H、8.1Hz、1.5Hz), 7.46 (m、1H), 7.29 (d, 1H、8.8Hz), 7.14 (m, 1H), 7.01 (d, 1H、2.6Hz), 6.99 (dd、1H、8.4Hz、1.1Hz), 6.80 (dd、1H、8.4Hz、1.1Hz), 6.80 (dd、1H、8.4Hz、2.6Hz), 1.69 (s, 4H), 1.28 (s, 6H), 1.25 (s, 6H) 【0063】化合物27を水2m1及びエタノール6m1に懸濁し、濃塩酸0.5m1を加えた。この混合物に鉄粉220mgを加え、30分間加熱還流した。反応液を濾過して固形物を除き、母液を酢酸エチルで抽出した。有機相を水及び飽和食塩水で洗浄し、乾燥後に溶媒を減圧留去してo-(5.6,7,8-テトラヒドロ-5.5,8,8-テトラメチル-2-ナフタレニル)-2-アミノフェノール(化合物28)を得た(80.5mg、85%)。

¹H-NMR CDC l₃ 7.21 (d, 1H, 8.8Hz), 6.97 (d, 1H, 2.9Hz), 6.95 (m, 1H), 6.85 (dd, 1H, 8.1Hz, 1.5Hz), 6.82 (dd, 1H, 7.7Hz, 1.5Hz), 6.70 (m, 2H), 3.82 (brs,2H), 1.68 (s, 4H), 1.26 (s, 6H), 1.25 (s, 6H)

【0064】化合物28 80.5 mg (0.264 mmo1) を乾燥べ ンゼン 5 ml に溶解し、ピリジン 0.1 ml (1.25 mmol) を加えた。この溶液にテレフタル酸モノメチルエステル クロライド 63 mg (0.317 mmol) を加え、室温で16時間 30分拠拌した。反応液に氷水及び希塩酸を加えて酢酸工 チルで抽出し、乾燥後に溶媒を減圧留去して粗生成物13 3 mg を得た。この粗生成物をシリカゲルカラムクロマ トグラフィー(AcOEt:n- ヘキサン=1:20 →1:2)で精製し て、メチル 4-[2-(o-(5.6.7.8-テトラヒドロ-5.5.8.8-テトラメチルナフタレニル) アミノ) カルバモイル] ベ ンゾエート(化合物29)を得た (115.8 mg, 94%)。 ¹H-NMR CDC l₃ 8.59 (dd, 1H, 8.1Hz, 1.5Hz), 8.56 (brs, 1H), 8.11(d, 2H, 8.8Hz), 7.86(d, 2H, 8.4Hz), 7.30 (d, 1H, 8.8Hz), 7.16(m, 1H), 7.07(dd, 1H, 8.1H, 1. 5Hz), 7.04(d, 1H, 2.6Hz), 6.90(dd, 1H, 8.1Hz, 1.5H z), 6.81 (dd, 1H,8.4Hz, 2.6Hz), 3.95(s, 3H), 1.70

(s, 4H), 1.28(s, 6H), 1.25(s, 6H)

【0065】化合物29 111 mg (0.238 mmo1)にポリリン酸 2.2 gを加え、100 ℃で1時間30分換拌した。反応液に水に加えてジクロロメタンで抽出した。有機相を乾燥後、溶媒を減圧留去し、得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt:n- ヘキサン=1:40)で精製して、メチル 4-[2,3-(2,5- ジメチル-2,5- ヘキサノ)ジベンゾ[b,f][1,4]オキサゼピン-11-イル] ベンゾエート (化合物30) を得た(33.4 mg, 31%)。

 1 H-NMR CDC $_{13}$ 8.12 (d, 2H, 8.4Hz), 7.92 (d, 2H, 8.8Hz), 7.44 (m, 1H), 7.21 (m, 3H), 7.16 (s, 1H), 7.01 (s, 1H), 1.66 (m, 4H), 1.30 (s, 6H), 1.11 (s, 6H)

【0066】化合物3030.0 mg (0.067 mmo1)をエタノール 5 m1 及び 2N 水酸化ナトリウム 1 m1 に懸濁し、40分間室温で投拌した。反応液を 2N 塩酸で酸性にした後、ジクロロメタンで抽出した。有機相を水及び飽和食塩水で洗浄し、乾燥後に溶媒を減圧留去して本発明の化合物 4-[2,3-(2,5-ジメチル-2,5-ヘキサノ)ジベンゾ[b,f][1,4]オキサゼピン-11-イル安息香酸(HX620:化合物31)を得た(29.0 mg, 100%)。エタノールー水の混合物から再結晶して精製体を得た。m.p.289℃

¹H-NMR CDC ₁₃ 8.19 (d, 2H, 8.8Hz), 7.97 (d, 2H, 8.8Hz), 7.46 (m, 1H), 7.22 (m, 3H), 7.18 (s, 1H), 7.02 (s, 1H), 1.66 (s, 4H), 1.31 (s, 6H), 1.12 (s, 6H)

【0067】例7:4-[2,3-(2,5-ジメチル-2,5- ヘキサノ) ジベンゾ[b,f][1,4]チアゼピン-11-イル] 安息香酸 (HX630)の製造

クロロスルホン酸 10 mlに 0℃で1,2,3,4-テトラヒドロ-1,1,4,4-テトラメチルナフタレン 6.0 g (32.0 mmol)を加えて1時間攪拌した。反応液を氷水にあけて酢酸エチルで抽出した。有機相を飽和食塩水で洗浄し、乾燥後に溶媒を減圧留去した。残渣に亜鉛末 10 g (15.2 mmol)とエタノール 20 mlを加え、さらに濃塩酸 40 mlを5分間かけて加え、その後に1時間25分加熱選流した。反応液に氷水及び酢酸エチルを加えて抽出し、有機相を飽和食塩水で洗浄した。乾燥後に溶媒を減圧留去して粗生成物 6.82 g を得た。

¹H-NMR CDC 13 3.37 (s. 1H, -SH)

【0068】上記の粗チオフェノール体 290 mg (1.3 m mol)、o-クロロニトロベンゼン 212mg (1.3 m mol)、及び水酸化カリウム 71.5 mg (1.3 m mol) に DMSO 8 m lを加えて 100℃で15時間40分攪拌した。反応液に水及びジクロロメタンを加え、濃塩酸約 1 m l を加えた。有機相を希塩酸及び食塩水で洗浄し、乾燥後に溶媒を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(AcOEt:n- ヘキサン=1:40)で精製して、s-(5,6,7,8-テトラヒドロ-5,5,8,8-テトラメチル-2-ナフタレニル)-2-ニトロチオフェノール(化合物32)を得た(112.3 mg, 25%)。

¹H-NMR CDC 13 8.23(dd, 1H, 8.1Hz, 1.5Hz), 7.52(d, 1 so クロロメタンで抽出した。有機相を水及び飽和食塩水で

H, 1.8Hz), 7.40(d, 1H,8.1Hz), 7.35(m, 1H), 7.29(d d, 1H, 8.1Hz, 1.8Hz), 7.20(m, 1H), 6.90(dd,1H, 8.1 Hz, 1.1Hz), 1.72(s, 4H), 1.32(s, 6H), 1.27(s, 6H) 【0069】化合物32 275.3 mg (0.807 mmo1)を水 5 m 1 及びエタノール 10 m1に懸濁し、濃塩酸 0.5 m1 を加えた。この混合物に鉄粉 210 mg を加えて5分間加熱環流した。反応液を濾過して固形物を除き、母液を酢酸エチルで抽出した。有機相を水及び飽和食塩水で洗浄し、乾燥後に溶媒を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(Ac0Et:n- ヘキサン=1:40)で精製して、s-(5.6.7.8- テトラヒドロ-5.5.8.8- テトラメチル-2- ナフタレニル)-2-アミノチオフェノール (化合物33) を得た(91.4 mg, 36%)。

¹H-NMR CDC 13 7.43 (dd. 1H, 7.7Hz. 1.5Hz), 7.21 (m. 1H), 7.14 (d. 1H. 8.4Hz), 7.10 (d. 1H. 2.2Hz), 6.77 (m. 3H), 4.30 (brs, 2H), 1.64 (s. 4H), 1.22 (s. 6H), 1.20 (s. 6H)

【0070】化合物3391.4 mg (0.294 mmo1) を乾燥ベンゼン5 m1 に溶解し、ピリジン0.2 m1 (2.5 mmo1)を加えた。この溶液にテレフタル酸モノメチルエステルクロライド76 mg (0.38 mmo1)を加えて室温で18時間攪拌した。反応液に氷水及び希塩酸を加えて酢酸エチルで抽出し、有機相を乾燥後に溶媒を留去して粗生成物146.8 mgを得た。この粗生成物をシリカゲルカラムクロマトグラフィー(Ac0Et:n-ヘキサン=1:20→1:10) で精製して、メチル4-[2-(s-(5.6.7.8-テトラヒドロ-5.5.8.8-テトラメチルナフタレニル) アミノ) カルバモイル] ベンゾエート (化合物34) を得た(123.7 mg,89%)。

¹ H-NMR CDC 13 9.03 (brs, 1H), 8.65 (d, 1H, 7.0Hz), 8. 05 (d, 2H, 8.8Hz), 7.66 (dd, 1H, 7.7Hz, 1.5Hz), 7.63 (d, 2H, 8.8Hz), 7.51 (m, 1H), 7.18 (m, 3H), 7.10 (d, 1H, 1.8Hz), 6.83 (dd, 1H, 8.4Hz, 2.2Hz), 3.95 (s, 3 H), 1.61 (s, 4H), 1.20 (s, 6H), 1.13 (s, 6H)

【0071】化合物34 46.8 mg (0.099 mmo1) にポリリン酸 1.48 g を加えて120 ℃で45分間攪拌した。反応液に水を加えてジクロロメタンで抽出し、有機相を乾燥後に溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィー(Ac0Et:n- ヘキサン=1:40)で精製してメチル 4-[2,3-(2,5- ジメチル-2,5- ヘキサノ) ジベンゾ[b,f][1.4]チアゼピン-11-イル] ベンゾエート (化合物35) を得た(27.3 mg,61%)。

¹ H-NMR CDC 13 8.09 (d, 2H, 8.4Hz), 7.90 (d, 2H, 8.4Hz), 7.48 (dd, 1H, 7.7Hz, 1.5Hz), 7.44 (s, 1H), 7.38 (d, 2H, 7.7Hz), 7.34 (m, 1H), 7.13 (m, 1H), 7.03 (s, 1H), 3.96 (s, 3H), 1.64 (m, 4H), 1.31 (s, 3H), 1.28 (s, 3H), 1.13 (s, 3H), 1.06 (s, 3H)

【0072】化合物3526.4 mg (0.058 mmo1) をエタノール 5 m1 及び水酸化ナトリウム 1m1 に懸濁して40分間室温で撹拌した。反応液を2N塩酸で酸性にしてジクロロメタンで抽出した。有機相を水及び飽和食塩水で

洗浄し、乾燥後に溶媒を減圧濃縮して本発明の化合物 4-[2,3-(2,5-ジメチル-2,5-ヘキサノ) ジベンゾ[b,f] [1,4]チアゼピン-11-イル] 安息香酸 (HX 630, 化合物36) を得た(24.9 mg, 97%)。エタノールー水の混合物から再結晶して精製体を得た。m.p.299 ℃ ¹H-NMR CDC13 8.17(d, 2H, 8.4Hz), 7.94(d, 2H, 8.4Hz), 7.48(dd, 1H, 7.7Hz,1.1Hz), 7.45(s, 1H), 7.37 (m, 2H), 7.13(m, 1H), 7.04(s, 1H), 1.65(m, 4H), 1.31(s, 3H), 1.28(s, 3H), 1.15(s, 3H), 1.07(s, 3H) 【0073】例8:4-[2,3-(2,5-ジメチル-2,5-ヘキサノ) ジベンゾ[b,e] アゼピン-11-イル] 安息香酸 (HX640)の製造

【0074】化合物37 262.1 mg (0.78 mmol) をエタノール 10 mlに溶解し、鉄粉 313 mgを加え、さらに濃塩酸 2.0 ml を加えて反応液を 15 分間加熱選流した。反応液を濾過し、濾液に酢酸エチルを加えて抽出し、乾燥後に溶媒を留去して(5.5.8.8- テトラメチル-5.6.7.8-テトラヒドロ-2- ナフチル) カルボニル-2- アニリン(化合物38) を得た(242.9 mg, 100%)。

 $^{1}\text{H-NMR CDC } 13 \ \ 7.61 (\text{d}, \ 1\text{H}, \ 1.8\text{Hz}) \ , \ \ 7.51 (\text{d}, \ 1\text{H}, \ 8.1\text{Hz}) \ , \\ z) \ , \ \ 7.41 (\text{dd}, \ 1\text{H}, \ 8.1\text{Hz}, 1.8\text{Hz}) \ , \ \ 7.37 (\text{d}, \ 1\text{H}, \ 8.1\text{Hz}) \ , \\ 7.29 (\text{m}, \ 1\text{H}) \ , \ \ 6.74 (\text{d}, \ 1\text{H}, \ 8.1\text{Hz}) \ , \ \ 6.61 (\text{t}, \ 1\text{H}, \ 8.1\text{Hz}) \ , \\ z) \ , \ 1.72 (\text{s}, \ 4\text{H}) \ , \ 1.32 (\text{s}, \ 6\text{H}) \ , \ 1.29 (\text{s}, \ 6\text{H}) \ , \ 1.29 (\text{s}, \ 6\text{H}) \ , \ 1.32 (\text{s}, \ 6\text{$

【0075】化合物38 67.3 mg (0.22 mmo1)をジエチルエーテル 2 m1 に溶解し、この溶液に LiAlH4 41.3 mg (1.09 mmo1, 8 m1のジエチルエーテル中に懸濁したもの)を加えて19時間加熱還流した。反応液を常法に従って処理し、得られた粗生成物をシリカゲルカラムクロマトグラフィー(Ac0Et:n- ヘキサン=1:40-1:20) で精製して 2-(5,6,7,8-テトラヒドロ-5,5,8,8- テトラメチルナフチルメチル) アニリン (化合物39) を得た(34.9 mg,54%)。

¹H-NMR CDC13 7.20(d, 1H, 8.1Hz), 7.15(d, 1H), 7.09 (m, 1H), 7.05(m, 1H), 6.89(dd, 1H, 8.1Hz), 6.77(td, 1H, 7.7Hz), 6.70(d, 1H, 7.7Hz), 3.86(s, 3H), 3.70 so (brs, 2H), 1.66(s, 4H), 1.25(s, 6H), 1.24(s, 6H) 【0076】化合物3988.5 mg (0.30 mmo1)を乾燥ベンゼン4 m1 に溶解し、ピリジン0.2m1 (2.5 mmo1)を加えた。この溶液にテレフタル酸モノメチルエステルクロライド73.7 mg (0.37 mmo1)を加え、反応液を室温で1時間30分撹拌した。反応液に氷水、2N HC1を加えて酢酸エチルで抽出し、乾燥後に溶媒を留去した。残査をシリカゲルカラムクロマトグラフィーで精製してメチル4-[2-(2-(5.6.7.8-テトラヒドロ-5.5.8.8-テトラメチルナフチルメチル)アミノカルボニル]ベンゾエート(化合物40)を得た(115.1 mg, 84%)。

¹ H-NMR CDC13 8.13 (d, 1H, 8Hz), 7.99 (d, 2H, 8.4Hz), 7.62 (brs, 1H), 7.38 (d, 2H, 8.4Hz), 7.30 (m, 3H), 7.21 (t, 1H, 7.7Hz), 7.11 (d, 1H), 6.90 (dd, 1H, 8.1Hz), 4.04 (s, 2H), 3.95 (s, 3H), 1.68 (m, 4H), 1.29 (s, 6H), 1.15 (s, 6H)

【0077】化合物40 103.4 mg (0.227 mmo1)にポリリン酸 1.56 g を加えて110 ℃で45分間攪拌した。反応液に水を加えてジクロロメタンで抽出した。有機相を乾燥後、溶媒を留去し、残査をシリカゲルカラムクロマトグラフィー(Ac0Et:n- ヘキサン=1:20)で精製して、メチル4-[2.3-(2.5-ジメチル-2.5- ヘキサノ) ジベンゾ[b.e] アゼピン-11-イル] ベンゾエート (化合物41) を得た(78.3 mg. 79%)。

*H-NMR CDC l3 8.11 (d, 2H, 8.4Hz), 7.96 (d, 2H, 8.4Hz), 7.43 (brd, 1H, 8Hz), 7.25 (m, 2H), 7.22 (s, 1H), 7.17 (t, 1H, 7.3Hz), 7.08 (s, 1H), 3.96 (s, 3H), 3.70 (brs, 1H), 3.67 (brs, 1H), 1.64 (brs, 4H), 1.40 (brs, 3H), 1.30 (brs, 3H), 1.15 (brs, 3H), 1.04 (brs, 3H) 【0078】化合物4178.3 mg (0.179 mmo1)をエタノール 10 m1及び2N NaOH 2 m1の混合物に懸濁し、室温で1時間撹拌した。反応液を2N HC1で酸性にした後、ジクロロメタンで抽出した。有機相を乾燥後、溶媒を留去して4-[2,3-(2,5-ジメチル-2,5- ヘキサノ)ジベンゾ[b,e]アゼピン-11-イル]安息香酸 (HX640、化合物42)を得た(73.6 mg, 97%)。エタノールー水の混合物から再結晶して精製体を得た。

m.p.300 ℃以上

Anal. Calc. for C29 H29 NO2 C:82.24, H:6.90, N:3.31; Found C:82.30, H:6.98, N:3.02

【0079】例9:4-[1,3- ジヒドロ-7,8-(2,5-ジメチル -2,5-ヘキサノ)-2-オキソ-2H-1,4-ベンゾジアゼピン-5-イル] 安息香酸 (HX800)の製造

1,2,3,4-テトラヒドロ -1,1,4,4-テトラメチルナフタレン 10.0 g (53.2 mmol) 及びテレフタル酸モノメチルエ

【0080】化合物43 693 mg (1.98 mmo1) を濃 HzSO45 ml に溶解し、氷冷下に KNO3 240 mg (2.37 mmo1)を加えた。1時間後に反応液を氷水にあけ、ジクロロメタンで抽出した。有機相を飽和重曹水、水、飽和食塩水で洗い、乾燥した後に濃縮した。残査を酢酸エチルより再結晶して、メチル 4-{3-ニトロ -5.5.8.8-テトラメチル-5.6.7.8-テトラヒドロ -2-ナフチル) カルボニル] ベンゾエート (化合物44) を無色針状晶として得た (414 mg, 53%)。

¹ H-NMR CDC l₃ : 8.16(s, 1H), 8.11(d, 2H, 8.4Hz), 7.81(d, 2H, 8.4Hz), 7.38(s, 1H), 3.94(s, 3H), 1.77(s, 4H), 1.39(s, 6H), 1.31(s, 6H)

【0081】化合物45 318.5 mg (0.806 mmo1)を水 5 m 1 及びエタノール 10 m1に懸濁して、濃塩酸 1.0 m1 を加えた。この混合物に鉄粉 317 mg を加えて50分間還流した後、反応液を濾過して固形分を除去した。濾液を酢酸エチルで抽出し、有機相を水、飽和食塩水で洗浄した。乾燥後に有機相を濃縮して、メチル 4-{3-アミノ -5.5.8.8-テトラメチル -5.6.7.8-テトラヒドロ -2-ナフチル)カルボニル]ベンゾエート(化合物46)を黄色結晶として得た (279.2 mg, 95%)。

¹H-NMR CDC 1₃ : 8.14 (d, 2H, 8.4Hz), 7.69 (d, 2H, 8.8

Hz), 7.31(s, 1H), 6.67(s, 1H), 5.90(brs, 2H), 3.97(s, 3H), 1.65(m, 4H), 1.28(s, 6H), 1.11(s, 6H) 【0082】化合物46 70 mg (0.19 mmo1)及びグリシンメチルエステル塩酸塩 38.3 mg (0.31 mmo1)にピリジン5 m1 を加え、16時間還流した。反応液に希塩酸を加えてジクロロメタンで抽出した。有機相を水、飽和食塩水で洗浄して乾燥した後、濃縮して残査 72.3 mgを回収した。残査をシリカゲルカラムクロマトグラフィー(AcOEt:n-ヘキサン=1:4)により精製して、メチル 4-[1,3-ジヒドロ-7,8-(2.5-ジメチル -2.5-ヘキサノ)-2-オキソ-2H-1,4-ベンゾジアゼピン -5-イル]ベンゾエート(化合物47)を得た(34.7 mg,45%)。同時に23.1 mg (33%)の原料を回収した。

 $^1\, H\text{-NMR}$ CDC $_{13}$: $8.06\, (d$, 2H , 8.8 Hz), $7.66\, (m$, 3H), $7.16\, (s$, 1H), $6.96\, (s$, 1H), $4.36\, (brs$, 2H), $3.95\, (s$, 3H), $1.70\, (m$, 4H), $1.33\, (s$, 6H), $1.16\, (s$, 6H

【0083】化合物47 32.6 mg(0.08 mmo1) をエタノール 5 m1 及び 2N NaOH 1 m1 に懸濁して室温で20分間投拌した。反応液を 2N 塩酸で酸性にしてジクロロメタンで抽出した。有機相を水、飽和食塩水で洗浄し、乾燥した後に濃縮して 4-[1.3-ジヒドロ-7.8-(2.5-ジメチル -2.5-ヘキサノ)-2-オキソ-2H-1.4-ベンゾジアゼピン -5-イル] 安息香酸(HX800, 化合物48) を得た(26.0 mg, 83%)。一部をメタノールーヘキサンより再結晶した。mp>300℃

o MS M+ 390

¹ H-NMR CDC 13 : 8.23 (brs, 1H), 8.12 (d, 2H, 8.4Hz), 7.69(d, 2H, 8.4Hz), 7.17(s, 1H), 7.01(s, 1H), 4.38 (brs, 2H), 1.71(s, 4H), 1.34(s, 6H), 1.17(s, 6H) 【0084】例10:4-[1,3- ジヒドロ-7,8-(2,5-ジメチ ル -2.5-ヘキサノ)-1-メチル -2-オキソ-2H-1,4-ベンゾ ジアゼピン -5-イル] 安息香酸(HX801) の製造 7.1 mg (0.18 mmol, 2 eq)の NaH (60% in oil) をヘキ サンで洗浄して乾燥し、例9で得たメチル 4-[1,3-ジヒ ドロ-7.8-(2.5-ジメチル -2.5-ヘキサノ)-2-オキソ-2H-1,4-ベンゾジアゼピン -5-イル] ベンゾエート 36 mg (0.089 mmo1) を4 m1 のDMF に溶解して加えた。この混 合物を室温で10分間攪拌した後、 CH3 IO.02 ml (0.36 m mol, 4 eq) を加えて、さらに2時間30分攪拌した。反 応液を氷水にあけてジクロロメタンで抽出し、有機相を 水、飽和食塩水で洗浄して乾燥した後に濃縮した。残査 をシリカゲルカラムクロマトグラフィー (AcOEt:n-ヘキ サン= 1:1) により精製してメチル 4-[1,3-ジヒドロ -7,8-(2,5-ジメチル -2,5-ヘキサノ)-1-メチル-2- オキ ソ-2H-1:4-ベンゾジアゼピン -5-イル] ベンゾエート (化合物49) を得た(21.8 mg, 59%)。

¹ H-NMR CDC l₃ : 8.07 (d, 2H, 8.4Hz), 7.74 (d, 2H, 8.4 Hz), 7.21 (s, 1H), 7.13 (s, 1H), 4.82 (d, 1H, 10.3H z), 3.95 (s, 3H), 3.86 (d, 1H, 10.6Hz), 3.40 (s, 3H), 1.71 (m, 4H), 1.38 (s, 3H), 1.31 (s, 3H), 1.20 (s, 3 H), 1.14 (s, 3H)

【0085】化合物49 29.6 mg (0.07 mmo1)をエタノール 3 m1 及び 2N NaOH 1 m1 に懸潤して、室温で40分間 拇拌した。反応液を2N HC1で酸性にし、ジクロロメタンで抽出した。有機相を水、飽和食塩水で洗浄し、乾燥した後に濃縮して4-[1.3- ジヒドロ-7.8-(2.5-ジメチル -2.5-ヘキサノ)-1-メチル -2-オキソ-2H-1.4-ベンゾジアゼピン -5-イル] 安息香酸(HX801, 化合物50) を得た(23.5 mg, 83%)。一部を酢酸エチルーヘキサンより再結晶した。mp> 300℃

¹ H-NMR CDC l₃ : 8.13 (d, 2H, 8.8Hz), 7.77 (d, 2H, 8.4 Hz), 7.22 (s, 1H), 7.14 (s, 1H), 4.84 (d, 1H, 10.6H z), 3.88 (d, 1H, 10.6Hz), 3.41 (s, 3Hz), 1.72 (m,4H), 1.39 (s, 3H), 1.32 (s, 3H), 1.21 (s, 3H), 1.15 (s, 3 H)

Anal. Calc. for C25 H28 N2 O3 C:74.23, H:6.98, N:6.9

【0086】例11:4-[3(S)-メチル -1,3-ジヒドロ-7.8

38

3; Found C:74.19, H:6.97, N:6.63

-(2.5-ジメチル -2.5-ヘキサノ)-2-オキソ-2H-1.4-ベンソジアゼピン -5-イル] 安息香酸(HX810) の製造例9で得たメチル 4-[3-アミノ -5.5.8.8-テトラメチル -5.6.7.8-テトラヒドロ -2-ナフチル) カルボニル] ベンゾエート 188 mg (0.515 mmo1)及びL-アラニンエチルエステル塩酸塩 177 mg (0.77 mmo1, 1.5 eq) にピリジン 5 m1 を加えて 16 時間還流した。反応液に希塩酸を加えてジクロロメタンで抽出した。有機相を水、飽和食塩水で洗浄し、乾燥した後に濃縮した。残査をシリカゲルカラムクロマトグラフィー (AcOEt:n-ヘキサン= 1:3) により精製し、メチル4-[3(S)-メチル -1.3-ジヒドロ-7.8-(2.5-ジメチル -2.5-ヘキサノ)-2-オキソ-2H-1.4-ベンゾジアゼピン -5-イル] ベンゾエート (化合物51) を得た(25.6 mg, 12%)。

¹H-NMR CDC 13 : 8.06 (d. 2H, 8.4Hz), 7.67 (d. 2H, 8.4 Hz), 7.17 (s. 1H), 6.97 (s. 1H), 3.94 (s. 3H), 3.84 (q. 1H, 6.6Hz), 1.74 (d. 3H, 6.6Hz), 1.71 (m. 4H), 1.34 (s. 3H), 1.31 (s. 3H), 1.19 (s. 3H), 1.12 (s. 3H) 20 【0087】化合物51 15.1 mg (0.036 mmol)をエタノール 3 m1 及び 2N NaOH 1 m1 に懸濁して室温で40分間攪拌した。反応液を2N HC1で酸性にし、ジクロロメタンで抽出した。有機相を水、飽和食塩水で洗浄し、乾燥した後に濃縮して 4-[3(S)-メチル -1.3-ジヒドロ-7.8-(2.5-ジメチル -2.5-ヘキサノ)-2-オキソ-2H-1.4-ベンゾジアゼピン -5-イル]安息香酸 (HX810, 化合物52)を得た(14.9 mg, 100%)。一部を酢酸エチルーヘキサンより再結晶した。mp> 300℃

 $^{1}\text{H-NMR CDC 13} : 8.11 (d, 2H, 8.4Hz), 7.95 (brs, 1H), \\ 7.70 (d, 2H, 8.4Hz), 7.18 (s, 1H), 7.00 (s, 1H), 3.85 \\ (q, 1H, 6.6Hz), 1.75 (d, 3H, 6.6Hz), 1.71 (m,4H), 1. \\ 35 (s, 3H), 1.32 (s, 3H), 1.20 (s, 3H), 1.13 (s, 3H), \\ Anal. Calc. for C25 H28 N2 O3 C:74.23, H:6.98, N:6.9 \\ 3: Found C:74.19, H:7.18, N:6.66 \\$

【0088】例12:4-[1,3-ジヒドロ-7.8-(2.5-ジメチル・2.5-ヘキサノ)-1-イソプロピル-2-オキソ-2H-1.4-ベンゾジアゼピン・5-イル] 安息香酸 (HX803)の製造4.7 mg (0.12 mmol, 2 eq)の NaH (60% in oil)をヘキサンで洗浄して乾燥し、例9で得たメチル 4-[1,3-ジヒ・40ドロ-7.8-(2.5-ジメチル・2.5-ヘキサノ)-2-オキソ-2H-1.4-ベンゾジアゼピン・5-イル] ベンゾエート 24 mg (0.059 mmol)を6 m1のDMF に溶解して加えた。反応液を室温で15分間攪拌した後2-ヨードプロパン 0.02 m1 (0.24 mmol, 4 eq)を加えてさらに4時間攪拌を続けた。反応液を氷水にあけてジクロロメタンで抽出し、水、飽和食塩水で洗浄した後、乾燥して濃縮した。残査をシリカゲルカラムクロマトグラフィー(Ac0Et:n-ヘキサン=1:5)により精製し、メチル4-[1,3-ジヒドロ-7.8-(2,5-ジメチル・2.5-ヘキサノ)-1-イソプロピル・2 50

-オキソ-2H-1,4-ベンゾジアゼピン -5-イル] ベンゾエート (化合物53) を得た(6.4 mg, 24%)。

¹H-NMR CDC 13 : 8.07 (d, 2H, 8.4Hz), 7.74 (d, 2H, 8.4 Hz), 7.31 (s, 1H), 7.10 (s, 1H), 4.73 (d, 1H, 10.3H z), 4.57 (septet, 1H, 7.0Hz), 3.95 (s, 3H), 3.83 (d, 1H, 10.3Hz), 1.72 (m, 4H), 1.52 (d, 3H, 6.6Hz), 1.38 (s, 3H), 1.32 (s, 3H), 1.21 (s, 3H), 1.18 (d, 3H, 7.0 Hz), 1.13 (s, 3H)

【0089】化合物53 6.4 mg (0.014 mno1)をエタノール 4 m1 及び 2N NaOH 0.5 m1 に懸濁して、室温で 2時間攪拌した。反応液を2N HC1で酸性にして、ジクロロメタンで抽出した。有機相を水、飽和食塩水で洗浄し、乾燥した後に濃縮して 4-[1,3-ジヒドロ-7,8-(2,5-ジメチル-2,5-ヘキサノ)-1-イソプロピル-2- オキソ-2H-1,4-ベンゾジアゼピン -5-イル] 安息香酸(HX803、化合物54)を得た(6.2 mg, 100%)。一部を酢酸エチルーヘキサンより再結晶した。mp 275℃

¹H-NMR CDC l₃ : 8.13(d, 2H, 8.4Hz), 7.78(d, 2H, 8.1 Hz), 7.32(s, 1H), 7.11(s, 1H), 4.77(d, 1H, 10.3H z), 4.58(septet, 1H, 7.0Hz), 3.85(d, 1H, 10.3Hz), 1.73(m, 4H), 1.53(d, 3H, 7.0Hz), 1.39(s, 3H), 1.32(s, 3H), 1.19(d, 3H, 7.3Hz), 1.14(s, 3H)

【0090】例13:4-[1- ベンジル -1,3-ジヒドロ-7,8 -(2,5-ジメチル -2,5-ヘキサノ)-2-オキソ-2H-1,4-ベン ゾジアゼピン -5-イル] 安息香酸 (HX805)の製造 6.1 mg (0.15 mmol, 2 eq)の NaH (60% in oil) をヘキ サンで洗浄して乾燥し、例9で得たメチル 4-[1,3-ジヒ ドロ-7,8-(2,5-ジメチル -2,5-ヘキサノ)-2-オキソ-2H-1,4-ベンゾジアゼピン -5-イル] ベンゾエート 31.9 mg (0.076 mmol)を 3 ml の DMFに溶解して加えた。室温 で20分間攪拌した後、反応液にベンジルブロマイド 0.0 35 ml (0.30 mmol, 4 eq) を加えて、さらに 1 時間攪拌 した。反応液を氷水にあけてジクロロメタンで抽出し、 有機相を水、飽和食塩水で洗浄し、乾燥した後に濃縮し た。残査を酢酸エチルージクロロメタンより再結晶し て、メチル 4-[1-ベンジル -1,3-ジヒドロ-7,8-(2,5-ジ メチル -2.5-ヘキサノ)-2-オキソ-2H-1.4-ベンゾジアゼ ピン -5-イル] ベンゾエート (化合物55) を得た(23.3 mg, 60%)。

¹H-NMR CDC 13 : 8.03 (d, 2H, 8.4Hz), 7.51 (d, 2H, 8.4 Hz), 7.25 (s, 1H), 7.16 (m, 3H), 7.06 (m, 2H), 4.89 (d, 1H, 10.3Hz), 4.87 (d, 1H, 15.4Hz), 3.97 (d, 1H, 10.3Hz), 3.95 (s, 3H), 1.66 (s, 4H), 1.23 (s, 3H), 1.2 0 (s, 3H), 1.11 (s, 3H), 1.08 (s, 3H)

【0091】化合物55 19.1 mg (0.035 mmo1) をエタノール 6 m1 及び 2N NaOH 1 m1 に懸濁して、70℃で 2時間攪拌した。反応液を2N HC1で酸性にし、ジクロロメタンで抽出した。有機相を水、飽和食塩水で洗い、乾燥した後に濃縮して 4-[1-ベンジル -1,3-ジヒドロ-7,8-(2,

5-ジメチル -2.5-ヘキサノ)-2-オキソ-2H-1.4-ベンゾジアゼピン -5-イル] 安息香酸(HX805, 化合物56) を得た(12.5 mg, 72%)。一部を酢酸エチルージクロロメタンより再結晶した。mp> 300℃

 $\begin{array}{l} ^{1}\text{H-NMR CDC 13} &: 8.08 \, (d,\ 2H,\ 8.8Hz)\,,\ 7.55 \, (d,\ 2H,\ 8.4 \\ \text{Hz})\,,\ 7.16 \, (m,\ 3H)\,,\ 7.07 \, (m,\ 2H)\,,\ 7.00 \, (s,\ 1H)\,,\ 5.45 \\ (d,\ 1H,\ 14.7Hz)\,,\ 4.91 \, (d,\ 1H,\ 10.3Hz)\,,\ 4.88 \, (d,\ 1H,\ 1\ 4.3Hz)\,,\ 3.99 \, (d,\ 1H,\ 10.3Hz)\,,\ 1.65 \, (m,\ 4H)\,,\ 1.23 \, (s,\ 3H)\,,\ 1.21 \, (s,\ 3H)\,,\ 1.12 \, (s,\ 3H)\,,\ 1.09 \, (s,\ 3H) \\ \text{Anal. Calc. for C31 H32 Nz O3} & C:77.47\,,\ H:6.71\,,\ N:5.8 \end{array}$

3: Found C:77.27, H:6.80, N:5.70

【0092】例14:4-[3(S)-ベンジル -1,3-ジヒドロ-7,8-(2,5-ジメチル -2,5-ヘキサノ)-2-オキソ-2H-1,4-ベンゾジアゼピン -5-イル] 安息香酸 (HX850)の製造 Fmoc-(L)- フェニルアラニン 272 mg (0.70 mmol) に S OC12 4 m1 を加えて30分間還流した。 SOC12を減圧下溜 去してよく乾燥した。残査に 89 mg (0.244 mmol) のメ チル 4-[3-アミノ -5,5,8,8-テトラメチル -5,6,7,8-テ トラヒドロ -2-ナフチル) カルボニル] ベンゾエート及 び DMAP 12 mg を加え、さらに無水ベンゼン 10 m l及び 20 ピリジン 0.5 ml を加えた。この混合物を室温で50分間 攪拌し、2N HC1で酸性にした後、ジクロロメタンで抽出 した。有機相を水、飽和食塩水で洗浄し、 Naz SO4 で乾 燥した後に濃縮した。残査をシリカゲルカラムクロマト グラフィー (AcOEt:n-ヘキサン= 1:30) により精製 し、メチル 4-[[3-N-(N-α-9-フルオレニルメトキシカ ルボニル -L-フィニルアラニル) アミド -5,5,8,8-テト ラヒドロ -2-ナフチル] カルボニル] ベンゾエート(化 合物57) を得た(117.8mg, 99%)。

¹ H-NMR CDC l₃ : 11.14(s, 1H), 8.61(s, 1H), 8.08(d, 30 2H, 8.1Hz), 7.75(d, 2H, 7.3Hz), 7.62(m, 3H), 7.52 (m, 2H), 7.40(m, 3H), 7.24(m, 5H), 7.11(d, 1H), 5. 43(d, 1H), 4.65(d, 1H), 4.39(m, 1H), 4.37(m, 1H), 4.19(m, 1H), 3.97(s, 3H), 3.28(m, 1H), 3.19(m, 1H), 1.70(m, 4H), 1.36(s, 6H), 1.14(s, 6H)

【0093】 化合物57 82.3 mg (0.11 mmo1)にジクロロメタン 4 ml 及びピペリジン 1 mlを加えた混合物を室温で40分間攪拌した。溶媒を減圧下溜去して乾燥し、残査にブタノール 10 ml及び酢酸 0.5 ml を加えて 80 ℃で2時間攪拌した。反応液に重曹水を加えて、ジクロロ 40メタンで抽出した。シリカゲルカラムクロマトグラフィー(Ac0Et:n-ヘキサン= 1:10)により精製し、メチル4-[3(S)-ベンジル-1.3-ジヒドロ-7.8-(2.5-ジメチル-2.5-ヘキサノ)-2-オキソ-2H-1.4-ベンゾジアゼピン-5-イル] ベンゾエート(化合物58)を得た(48.4 mg, 92%)。

¹ H-NMR CDC l₃ : 8.38 (brs. 1H) , 8.03 (d, 2H, 8.4Hz) , 7.58 (d, 2H, 8.4Hz) , 7.42 (d, 2H, 7.3Hz) , 7.32 (t, 2 H, 7.3Hz) , 7.23 (t, 1H, 7.0Hz) , 7.10 (s, 1H) , 7.00 (s, 1H) , 3.93 (s, 3H) , 3.87 (m, 1H) , 3.63 (m, 2H) , 1 . 50

68(m, 4H), 1.34(s, 3H), 1.31(s, 3H), 1.16(s, 3H), 1.10(s, 3H)

【0094】化合物58 28.6 mg (0.06 mmo1)をエタノール 5 m1 及び 1N KOH 2 m1に懸濁して、室温で30分間攪拌した。反応液を2N HC1で酸性にしてジクロロメタンで抽出し、有機相を乾燥した後に濃縮して4-[3(S)-ベンジル・1,3-ジヒドロ-7.8-(2,5-ジメチル・2,5-ヘキサノ)-2-オキソ・2H-1,4-ベンゾジアゼピン・5-イル] 安息香酸(HX850,化合物59)を得た(24.8 mg,89%)。一部をジクロロメタンーヘキサンより再結晶した。

【0095】例15:試験例

レチノイドの細胞分化誘導作用に対する上記例1及び例2の化合物の作用を検討した。レチノイド化合物(オールートランスーレチノイン酸レセプターに対するアゴニスト)としてレチノイン酸およびAm80 [4-[(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)carbamoyl]benzoic acid〕を用いた。特開昭61-76440号公報に記載された方法に準じて、前骨髄球性白血病細胞株HL-60に対する上記レチノイドの細胞分化誘導能を、例1及び例2の化合物の存在下及び非存在下で測定した。顆粒球系細胞への分化の程度は、核の形態観察及びニトロブルーテトラゾリウム(NBT)の還元能を測定することにより判定した。本方法はレチノイドの細胞分化誘導活性をよく反映するものとして周知の方法である。結果を以下の表2に示す(表中、NBT 陽性率は生細胞中に対する分化細胞の割合をパーセントで示した値である)。

[0096]

【表2】

41					
レチノイド(M)	被検化合物(M)	NBT陽性率(%)			
・ レチノイン酸	非存在下	14			
(1.1×10 ⁻⁹)	HX600 1.1×10 ⁷	68			
	HX600 3.3×10 ⁷	76			
	EX600 1.0×10 ⁶	69			
レチノイン酸	非存在下	36			
(3.3×10 ⁻⁹)	HX600 1.1×10 ⁷	86			
	HX600 3.3×10 ⁻⁷	90			
	EX600 1.0×10 ⁶	90			
レチノイン酸	非存在下	54			
(1.0×10 ⁻⁸)	HX600 1.1 ×10 ⁷	91			
	HX600 3.3 ×10 ⁻⁷	91			
	HX600 1.0 ×10 ⁻⁶	91			
Am80	非存在下	15			
(3.7×10^{-10})	HX600 1.0 ×10°	21			
	HX600 1.0 ×10 8	41			
	HX600 1.0 ×10 ⁻⁷	72			
	HX600 1.0 ×10-6	67			
Am80	非存在下	44			
(1.1×10 ⁻⁹)	HX600 1.0 ×10°	48			
	HX600 1.0 ×10 8	65			
	HX600 1.0 ×10 ⁻⁷	90			
	HX600 1.0 ×10 ⁻⁶	93			
Am80	非存在下	53			
(3.3×10 ⁻⁹)	EX600 1.0 ×10°	64			
,	HX600 1.0 ×10 ⁻⁸	73			
	HX600 1.0 ×10 ⁻⁷	93			
	HX600 1.0 ×10 ⁻⁶	93			
Am80	非存在下	55			
(1.0×10 ⁻⁸)	EX600 1.0 ×10°	69			
(1.07.120)	HX600 1.0 ×10 ⁻⁸	80			
	HX600 1.0 ×10 ⁷	91			
	EX600 1.0 ×10 ⁻⁶	95			
Am80	非存在下	00			
(3. 3×10 ⁻¹⁰)	EX640 1.0 ×10 ⁻¹¹	44			
(0.0/10 /	EX640 1.0 ×10	46			
	EX640 1.0 ×10 ⁻⁸	75			
	EX640 1.0 ×10 ⁻⁷	89			
	EX640 1.0 ×10 ⁻⁶	85			
Am80	非存在下	OĐ			
(1.1×10 ⁻¹⁰)	新存在 下 EX640 1.0 ×10 ⁻¹⁰	7			
(1.1~10)	EX640 1.0 ×10	5			
	HX640 1.0 ×10 ⁻⁸	24			

	HX640 1.0 ×10 ⁻⁷	69
Аш80	非存在下	21
(3.7×10^{-10})	LE135 1.1 ×10 ⁻⁷	3
	LE135 3.3 ×10 ⁻⁷	1.2
	LE135 1.0 ×10 ⁻⁶	1.3
Am80	非存在下	35
(1.1×10 ⁻⁹)	LE135 1.1 ×10 ⁷	23
	LE135 3.3 ×10 ⁻⁷	5
	LE135 1.0 ×10° 6	2
Am80	非存在下	51
(3.3×10 ⁻⁹)	LE135 1.1 ×10 ⁷	54
	LE135 3.3 ×10 ⁻⁷	32
	LE135 1.0 ×10 ⁻⁶	14
Аш80	非存在下	55
(1.0×10^{-8})	LE135 1.1 ×10 ⁷	62
	LE135 3.3 ×10 ⁷	51
	LE135 1.0 ×10 ⁻⁶	34

【0097】本発明の化合物をレチノイン酸又はAm80と 共存させた場合には、分化した細胞の割合が顕著に増加 しており、本発明の化合物によりレチノイン酸又はAm80 の細胞分化誘導作用が増強されたことが明らかである。 一方、対照として用いた化合物 LE135は、レチノイドの アンタゴニストとして公知の化合物であり(Eyrolles, L., et al., J. Med. Chem., 37, pp.1508-1517, 1994 中の化合物16: 4-(5H-7,8,9,10-tetrahydro-5,7,7,10,1 0-pentamethylbenzo[e]naphto[2,3-b][1,4]diazepin-13 -yl)benzoic acid)、本発明の化合物HX600 の構造異性 体に相当する。この化合物をAm80と共存させると、Am80 の細胞分化誘導作用が顕著に抑制された。

【0098】例16:試験例

例10の化合物 (HX801)のレチノイドの細胞分化誘導作用に対する作用を検討した。レチノイド化合物としてAm80を用い、例15と同様の方法に従って、前骨髄球性白血病細胞株HL-60 に対する上記レチノイドの細胞分化誘導能を HX801の存在下及び非存在下で測定した。結果を表3に示す(表中、"一"は無添加を示す)。これらの結果から、本発明の化合物をAm80と共存させた場合には、分化した細胞の割合が顕著に増加しており、本発明の化合物によりAm80の細胞分化誘導作用が増強されたことが明らかである。

【0099】 【表3】

Am80 (M)	HX801 (M)	NBT 陽性率(%)
_	_	1'
1.0×10 ⁻⁹	_	48
3.3×10 ⁻¹⁰	_	30
1.1×10 ⁻¹⁰	-	5
3.7×10 ⁻¹¹	_	3
1.2×10 ⁻¹¹	· -	0.6
_	1.0×10 ⁻⁶	1.1
_	3. 3×10 ⁻⁷	0.3
-	1.1×10 ⁻⁷	1.1
1.0×10 ⁻⁹	1.0×10 ⁻⁶	77
n	3. 3×10 ⁻⁷	76
П	1.1×10 ⁻⁷	63
3.3×10 ⁻¹⁰	1.0×10^{-6}	<i>7</i> 1
n	3. 3×10 ⁻⁷	55
n	1. 1×10 ⁻⁷	49
1.1×10 ⁻¹⁰	1.0×10 ⁻⁶	48
,	3. 3×10 ⁻⁷	28
n	1.1×10 ⁻⁷	22
3.7×10 ⁻¹¹	1.0×10 ⁻⁶	4.4
n	3. 3×10 ⁻⁷	2.3
n	1.1×10 ⁻⁷	4
1.2×10 ⁻¹¹	1. 0×10 ⁻⁸	. 2
n	3. 3×10 ⁻⁷	2
n	1.1×10 ⁷	1.4

[0100]

【発明の効果】本発明の化合物は、レチノイン酸などの レチノイドの作用を増強し、レチノイド作用増強剤など の医薬として有用である。

44

・コントロール

フロントページの続き

(51) Int.C1.6	識別記号	庁内整理番号	FI	ħ	技術表示箇所
A 6 1 K 31/5	5 ADF		A 6 1 K 31/55	ADF	
	A D S			ADS	
	ADU			A D U	
	ADV			ADV	
	AED			AED	
C O 7 D 223/1	6		C O 7 D 223/16	В	
223/2	0		223/20		
243/1	2		243/12		
267/1	4		267/14		
267/2	0		267/20		
281/1	0		281/10		
281/1	6		281/16		
401/0	4 243		401/04	2 4 3	
//(C 0 7 D 401/0	4				
213:7	9				
. 243:3	8)				