Slide Index and Citations for data/graphics

Slide	Information
number	momation
1	Title slide
2	Committee members
3	Resilience in UAV swarms explanation.
4	Motivation for choosing UAV Swarms as the topic.
<u>4</u> 5	Research Objectives.
6	Objective 1: Motivation for U-SMART.
7	System model for U-SMART.
8	Novel metrics for U-SMART.
9	Feasibility test description and simulation parameters.
10	Performance limitations introduced in simulation.
11	Test design for U-SMART.
12	Results for 5 agents using U-SMART.
13	Results for 50 agents using U-SMART.
14	Results for lostHBS metric across various tests.
15	Results for 5 agent VPL test in U-SMART.
16	Results for 5 agent VPL test in U-SMART – Continued
17	VPL results for all tests.
18	Creation of Proximity sensor array.
19	5 agent test for LAV.
20	Results for proximity sensor readings.
21	Results of LAV decision.
22	Results of LAV, GAV and APF decision.
23	Influence of APF on Swarm Cohesion metric.
24	5 agent test for task and energy.
25	5 agent test for task and energy.
26	Combined results showing all metrics for U-SMART.
27	Security of agents using U-SAMRT.
28	Objective 1 Conclusions.
29	Research Objective slide.
30	Objective 2- Motivation
31	SS-SAR workflow.
32	Pose check/conditional statements.
33	Features and benefits of SS-SAR.
34	Maps used.
35	Experiment outline.
36	Pose check in maps.
37	Pose check in real world map.
38	Pose check in simulation outdoor map.
39	Observations based on D2D framework.
40	Combined results for SS-SAR framework.
41	Objective 2- Conclusions
42	Objective 2- Future work
	5.2,55.2.5 - 1.00.2.5 11.5.11

43	Research Objective slide
44	Objective 3: Motivation
45	Objective title slide
46	Why is simulation important?
47	Bibliometric analysis of Simulation of UAV swarms
48	Disruption shortcomings.
49	Examine and Enhance.
50	Methods for disruption generation.
51	Major and minor disruptions programmed.
52	2D based wind grid.
53	Value based obstacle geometry.
54	Static PEWFG.
55	Simulation pipeline 1.
56	Bridge and 3D obstacle interaction grids.
57	Results of simulation.
58	Flow around turbine.
59	Induced airflow graphic.
60	Results for 2D grid.
61	ASOS data viz.
62	Wind tunnel for single agents.
63	Energy consumption changes.
64	Effect of induced airflow on agents.
65	Disruption modeling shortcoming slide.
66	2D fragmentation.
67	Obstacle modeling.
68	Effects of obstacles and turbulence on critical metrics.
69	Design of 3D grid.
70	Dispersion in 3D grid scenario.
71	Obstacle encounter rates for 3D world.
72	Combined results for Swarm Cohesion metric.
73	Examine additional disruptions.
74	Objective 3: Conclusions
75	Dissertation Conclusion
76	Results of using hetero-agents.
77	Results of using hetero-agents.
78	Research Publications.
79	Dissertation supporting publications.
80	Published conference papers.
81	Thank you slide and slide index.
82	Acknowledgement slide.

Citations

Slide	Citation information
46	Video source from two gifs for UAV disruption: Internet
46	Source of Pelican video: TxDot article/news keywords: pelicans, bridge, txDot
48	Detailed picture-paper citatations compiled by me at this <u>link</u>
55	Orignal 3D structure of bridge from Sketchfab
58	3D model for wind turbine also from Aldi Fahli Muzaqih// GrabCad community
58	Original input data for Windturbine analysis from Username: jettjinda on
	SimScale
61	Orignal ASOS data from <u>Iowa Environmental Mesonet</u>
62	Orignal SwarmLab Simulation creators/paper link Link
Overall	CoppeliaSime link : <u>Link</u>
73	Rotor fault graphic created using MATLAB UAV toolbox