

PROBLEMS

8.1 Temperature of the water in beaker is 50^{0} C. What is its value in Fahrenheit? Given Data

Temperature in Celsius = $T_c = 50^0 \text{ C}$

Required

Temperature in Fahrenheit = $T_f = ?$

Solution

As we know that

$$F = \frac{9}{5}C + 32$$

By putting the values, we have

$$\frac{9}{5} \times 50 + 32$$

$$F = 90 + 32$$

$$F = 122 \, ^{\circ}F$$

Result

Temperature in Fahrenheit = T_f = 122 °F

8.2 Normal human body temperature is 98.6° F. Convert it into Celsius and Kelvin scale. (GRW 2013, LHR 2013, 2015)

Given Data

Normal human Temperature in Fahrenheit = $T_f = 98.6^0 \text{ F}$

Required

Temperature in Celsius = $T_c = ?$

Temperature in Kelvin =
$$T_k = ?$$

Solution

As we know that

$$C = \frac{5}{9}(F - 32)$$

By putting the values, we have

$$C = \frac{5}{9}(98.6 - 32)$$

$$C = \frac{5}{9}(66.6)$$

As we know that

$$T_K = C + 273$$

By putting the values, we have

$$T_K = 37 + 273 = 310 \text{ K}$$

$$T_{K} = 310 \text{ K}$$

Result

Temperature in Celsius = $T_c = 37$ °C

Temperature in Kelvin = $T_k = 310 \text{ K}$

Given Data

Length of aluminum bar = $L_1 = 2$ m Initial temperature = $T_1 = 0$ °C = (0 + 273) K = 273 K Final temperature = $T_2 = 20$ °C = (20 + 273) K = 293 K Coefficient of linear expansion of aluminum = $\alpha = 2.5 \times 10^{-5}$ K⁻¹

Required

Increase in length = $L - L_o = ?$

Solution

As we know that

$$L - L_o = \alpha L_o (T_2 - T_1)$$

By putting the values, we have

Result

Increase in length = $L - L_0 = 1 \times 10^{-3} \text{ m} = 0.1 \text{ cm} = 1 \text{ mm}$

8.4 A balloon contains 1.2 m³ of air at 15⁰ C. Find its volume at 40⁰ C. Thermal coefficient of volume expansion of air is 3.67 x 10⁻³ K⁻¹.

Given Data

Initial volume of air in balloon =
$$V_1 = 1.2 \text{ m}^3$$

Initial temperature = $T_1 = 15^{\circ} \text{ C} = (15 + 273) \text{ K} = 288 \text{ K}$
Final temperature = $T_2 = 40^{\circ} \text{ C} = (40 + 273) \text{ K} = 313 \text{ K}$
Coefficient of volume expansion = $\beta = 3.67 \times 10^{-3} \text{ K}^{-1}$

Required

Final volume of gas = V_2 = ?

Solution

As we know that

$$V = V_o (1 + \beta (T_2 - T_1))$$

By putting the values, we have

$$V = 1.2 (1 + 3.67 \times 10^{-3} \times (313 - 288))$$

$$V = 1.2 (1 + 3.67 \times 10^{-3} (25))$$

$$V = 1.2 (1 + 91.75 \times 10^{-3})$$

$$V = 1.2 (1 + 0.091)$$

$$V = 1.2 + 0.108 = 1.308 = 1.3 \text{ m}^3$$

Result

Final volume of gas = $V_2 = 1.3 \text{ m}^3$

8.5 How much heat is required to increase the temperature of 0.5 kg of water from 10⁰ C to 65⁰ C. (LHR 2014 GRW 2015)

Given Data

Mass of water = m = 0.5 kg
Initial temperature =
$$T_1 = 10^0$$
 C
Final temperature = $T_2 = 65^0$ C
Change in Temperature

$$\Delta T = T_2 - T_1$$

$$= (65-10)^{\circ}$$
 C
= 55° C

Required

=55K

Heat required
$$= Q = ?$$

Solution

As we know that

$$\Delta O = mc\Delta T$$

By putting the values, we have

$$\Delta Q = 0.5 \times 4200 \times 55$$

 $\Delta Q = 115500 \text{ J}$

Result

Heat required = Q = 115500 J

8.6 An electric heater supplies heat at the rate of 1000 joules per second. How much time is required to raise the temperature of 200 g of water from 20° C to 90° C?

Given Data

Rate of heat supplied by heat = $P = 1000 \text{ Js}^{-1}$

Mass of water =
$$m = 200 g = 0.2 kg$$

Specific heat of water =
$$c = 4200J$$

Initial temperature =
$$T_1 = 20^0 \text{ C}$$

Final temperature =
$$T_2 = 90^{\circ}$$
 C

Change in temperature =
$$\Delta T = 90 - 20 = 70^{\circ} C = 70K$$

Required

Heat required =
$$Q = ?$$

Time
$$= t = ?$$

Solution

As we know that

$$Q = cm \Delta T$$

 $Q = 0.2 \times 4200 \times 70$
 $Q = 58800 J$

As we also know that

$$P \times t = Q$$

 $t = Q/P$
 $t = 588000/1000$
 $t = 58.8 \text{ s}$

Result

Heat required =
$$Q = 58800 J$$

Time taken
$$= t = 58.8 \text{ s}$$

8.7 How much ice will melt by 50000 J of heat? Latent heat of fusion of (GRW 2013, 14) ice = 336000 Jkg⁻¹.

Given Data

Heat supplied to ice =
$$\Delta Q_f = 50000 \text{ J}$$

Latent heat of fusion of ice =
$$H_f = 336000 \text{ Jkg}^{-1}$$

Required

Mass of ice
$$= m = ?$$

Solution

As we know that

$$\Delta Q = m \times H_f$$

So
$$m = \frac{\Delta Q}{H_c}$$

By putting the values, we have

$$m = \frac{50000}{336000}$$
$$m = 0.15 \text{ kg} = 150 \text{ g}$$

Result

8.8 Find the quantity of heat needed to melt 100 g of ice at -10^{0} C to 10^{0} C .

Given Data

Mass of ice = m = 100 g = 0.1 kg Specific heat of ice = 2100 JKg⁻¹K⁻¹ Specific heat of water = 4200 JKg⁻¹K⁻¹ Latent heat of fusion of ice = 336000 JKg⁻¹K⁻¹ Initial temperature of ice = T_1 = -10⁰ C Final temperature = T_2 = 10⁰ C

Required

Heat required to raise the temperature of ice from -10° C to 10° C = Q = ?

Solution

Step-I Heat required to raise the temperature of ice from
$$-10^{\circ}$$
C to 0° C = $\Delta Q_1 = ?$

$$T_1 = -10^{\circ}C$$

 $T_2 = 0^{\circ}C$
 $\Delta T = 0^{\circ}C - (-10)^{\circ}C = 10^{\circ}C = 10 \text{ K}$
 $\Delta Q = \text{cm}\Delta T$
 $\Delta Q_1 = 2100 \times 0.1 \times 10$
 $\Delta Q_1 = 2100 \text{ J}$

Step-II Heat required to convert ice at 0° C into water at 0° C = ΔQ_2 =?

We know that

$$\Delta Q = mL_f$$

$$\Delta Q_2 = 0.1 \times 336000$$

$$\Delta Q_2 = 33600 \text{ J}$$

Step-III

Heat required to raise temperature water from 0° C to 10° C = ΔQ_3 =?

T1 = 0°C
T2 = 10°C

$$\Delta$$
T = 10°C -0°C = 10°C = 10K

We know that

$$\Delta Q = cm\Delta T$$

$$\Delta Q_3 = 4200 \times 0.1 \times 10$$

$$\Delta Q_3 = 4200 \text{ J}$$

$$Total heat required = Q = \Delta Q_1 + \Delta Q_2 + \Delta Q_3$$

$$Q = 2100 + 33600 + 4200$$

Result

Heat required = Q = 39900 J

Q = 39900 J

8.9 How much heat is required to change 100 g of water at 100° C into steam?

(LHR 2013, 2015)

Mass of water =
$$m = 100 g = 0.1 kg$$

Temperature of water =
$$T_1 = 100^0 \text{ C}$$

Temperature of steam =
$$T_2 = 100^0 \text{ C}$$

Latent heat of vaporization of water =
$$H_v = 2.26 \times 10^6 \text{ Jkg}^{-1}$$

Required

Heat required =
$$Q_v = ?$$

Solution

$$Q_v = m x H_v$$

 $Q_v = 0.1 x 2.26 x 10^6 J$
 $Q_v = 2.26 x 10^5 J$

Result

Heat required = $Q_v = 2.26 \times 10^5 \text{ J}$

8.10 Find the temperature of water after passing 5 g of steam at 100° C through 500 g of water at 10° C.

Given Data

Mass of water =
$$m_1 = 500 \text{ g} = 0.5 \text{ kg}$$

Mass of steam =
$$m_2 = 5 g = 0.005 kg$$

Temperature of water =
$$T_1 = 10^0 \text{ C}$$

Temperature of steam =
$$T_2 = 100^{\circ}$$
 C

Specific heat of water =
$$c = 4200 \text{ Jkg}^{-1} \text{K}^{-1}$$

Latent heat of vaporization of vaporization = $H_v = 2.26 \times 106 \text{ Jkg}^{-1}$

Required

Final temperature of water
$$= T = ?$$

Solution

According to law of heat exchange

Heat lost by steam = Heat gain by water

$$mH_v + cm\Delta T = cm\Delta T$$

$$(0.005)(2.26\times10^6) + (4200)(0.005)(100-T) = (4200)(0.5) (T-10)$$

$$11300+21(100-T) = 2100(T-10)$$

$$11300+2100-21T = 2100T-21000$$

$$11300+2100+21000 = 2100T+21T$$

$$344400 = 2121T$$

$$T = \frac{34400}{2121}$$

$$T = 16.2^{\circ}C$$

Result

Final temperature of water = $T = 16.2^{\circ}C$