Positive Definiteness and Self-Adjoint Extensions for Covariance Operators of Transformed Stationary Gaussian Processes

BY STEPHEN CROWLEY August 3, 2025

Table of contents

1	Definitions	1
2	Main Results	2
3	Foundational Constructions	4
4	Random Wave Model and Bessel Kernel	5
5	Operator-Theoretic Analysis: Defect Indices	5
	5.1 The Original Operator (Non-Monotonic Case)	
6	Stochastic Process Representation	7
7	Zero-Counting Theory	8
8	Spectral Theory and Zeta Zeros	9

1 Definitions

Definition 1. [Bessel Kernel] Let J_0 be the Bessel function of the first kind of order zero. The standard Bessel kernel is defined as $B(s,t) = J_0(2\pi |s-t|)$ for $s,t \in \mathbb{R}$.

Definition 2. [Transformed Bessel Kernel] Given a function $\theta: \mathbb{R} \to \mathbb{R}$, the transformed Bessel kernel is defined as $K_{\theta}(s,t) = J_0(2\pi |\theta(s) - \theta(t)|)$ for $s,t \in \mathbb{R}$.

Definition 3. [Covariance Operator] The integral operator T_{θ} associated with kernel K_{θ} acts on functions $f \in L^2(\mathbb{R})$ as:

$$(T_{\theta} f)(s) = \int_{\mathbb{R}} J_0 (2 \pi |\theta(s) - \theta(t)|) f(t) dt$$
 (1)

Definition 4. [Defect Indices] For a densely defined symmetric operator T on a Hilbert space \mathcal{H} with adjoint T^* , the defect indices (n_+, n_-) are:

$$n_{+} = \dim \ker (T^* - i \cdot I), \quad n_{-} = \dim \ker (T^* + i \cdot I)$$
 (2)

where I denotes the identity operator.

Definition 5. [Self-Adjoint Operator] A symmetric operator T is self-adjoint if and only if $T = T^*$, which is equivalent to having defect indices $n_+ = n_- = 0$.

2 Main Results

Theorem 6. The covariance operator T_{θ} with kernel $K_{\theta}(s,t) = J_0(2\pi |\theta(s) - \theta(t)|)$ has zero defect indices $(n_+ = n_- = 0)$ if and only if θ is strictly monotonic.

To prove this theorem, several preliminary results are needed.

Lemma 7. The Bessel kernel $B(s,t) = J_0(2\pi |s-t|)$ defines a positive definite operator.

Proof. By Bochner's theorem, a continuous function $\phi(s-t)$ is positive definite if and only if it is the Fourier transform of a non-negative measure. The Fourier transform of $J_0(2\pi|x|)$ is:

$$\mathcal{F}\left[J_0(2\pi|x|)\right](\omega) = \frac{1}{2\pi\sqrt{1-\omega^2/(4\pi^2)}} 1_{[-2\pi,2\pi]}(\omega)$$
 (3)

where $1_{[-2\pi,2\pi]}$ is the indicator function of the interval $[-2\pi,2\pi]$.

Since this is a non-negative function, $J_0(2\pi|x|)$ is positive definite, and hence B(s,t) defines a positive definite operator.

Lemma 8. The operator S associated with the standard Bessel kernel $B(s,t) = J_0(2\pi | s - t|)$ is self-adjoint.

Proof. The operator S with kernel B(s,t) is unitarily equivalent to multiplication by the function $\frac{1}{2\pi\sqrt{1-\omega^2/(4\pi^2)}} 1_{[-2\pi,2\pi]}(\omega)$ in the Fourier domain. Since this is a bounded, real-valued multiplication operator, it is self-adjoint, and thus S has defect indices (0,0). \square

Proposition 9. If $\theta: \mathbb{R} \to \mathbb{R}$ is strictly monotonic, then the covariance operator T_{θ} is self-adjoint.

Proof. When θ is strictly monotonic, it is invertible. Consider the change of variables:

$$u = \theta(s), \quad v = \theta(t)$$
 (4)

Define the unitary transformation $U: L^2(\mathbb{R}, ds) \to L^2(\mathbb{R}, du)$ by:

$$(Uf)(u) = f(\theta^{-1}(u))\sqrt{\left|\frac{d\theta^{-1}}{du}(u)\right|}$$
(5)

Under this transformation, the operator T_{θ} becomes:

$$(UT_{\theta}U^{-1}g)(u) = \int_{\mathbb{R}} J_0(2\pi |u-v|) g(v) dv$$
 (6)

which is precisely the operator S with the standard Bessel kernel.

Since S is self-adjoint by Lemma 8, and unitary equivalence preserves self-adjointness, $T_{\theta} = U^{-1} S U$ is also self-adjoint. Thus, its defect indices are (0,0).

Proposition 10. If $\overline{\theta}$ is not strictly monotonic, then T_{θ} has non-zero defect indices.

Proof. If θ is not strictly monotonic, there exist points $s_1 \neq s_2$ such that $\theta(s_1) = \theta(s_2)$. Let $\mathcal{E} = \{(s_1, s_2) \in \mathbb{R}^2 : s_1 \neq s_2, \theta(s_1) = \theta(s_2)\}$. This set is non-empty by assumption. For any pair $(s_1, s_2) \in \mathcal{E}$, the kernel satisfies:

$$K_{\theta}(s_1, t) = J_0(2\pi |\theta(s_1) - \theta(t)|) = J_0(2\pi |\theta(s_2) - \theta(t)|) = K_{\theta}(s_2, t)$$
(7)

This introduces a linear dependence in the kernel, violating the strict positive definiteness needed for self-adjointness.

To formalize this, consider the distribution:

$$f_{s_1,s_2}(t) = \delta(t - s_1) - \delta(t - s_2)$$
 (8)

While f_{s_1,s_2} itself is not in $L^2(\mathbb{R})$, it can be approximated by L^2 functions. Using the symmetry property $K_{\theta}(s_1,t) = K_{\theta}(s_2,t)$:

$$(T_{\theta} f_{s_1, s_2})(s) = \int_{\mathbb{R}} K_{\theta}(s, t) f_{s_1, s_2}(t) dt = K_{\theta}(s, s_1) - K_{\theta}(s, s_2) = 0$$
(9)

This implies that T_{θ} has a non-trivial null space, and consequently, there exist non-zero solutions to the equations $(T_{\theta}^* \pm i \cdot I) g = 0$. Therefore, both defect indices n_+ and n_- are at least 1.

Lemma 11. If θ is not strictly monotonic, then the kernel $K_{\theta}(s,t) = J_0(2\pi |\theta(s) - \theta(t)|)$ is not positive definite.

Proof. Let $s_1 \neq s_2$ with $\theta(s_1) = \theta(s_2)$. Consider the matrix:

$$M = \begin{pmatrix} K_{\theta}(s_1, s_1) & K_{\theta}(s_1, s_2) \\ K_{\theta}(s_2, s_1) & K_{\theta}(s_2, s_2) \end{pmatrix}$$
 (10)

Since $\theta(s_1) = \theta(s_2)$, we have:

$$K_{\theta}(s_1, s_1) = K_{\theta}(s_2, s_2) = J_0(0) = 1$$
 (11)

$$K_{\theta}(s_1, s_2) = K_{\theta}(s_2, s_1) = J_0(2 \pi |\theta(s_1) - \theta(s_2)|) = J_0(0) = 1$$
 (12)

Thus, $M = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, which has eigenvalues 2 and 0. The presence of the zero eigenvalue means M is not strictly positive definite. Therefore, K_{θ} is not a positive definite kernel. \square

Combining Proposition 9 and Proposition 10, the covariance operator T_{θ} has defect indices (0,0) if and only if θ is strictly monotonic.

Corollary 12. The Gaussian process with covariance function $K_{\theta}(s,t) = J_0(2 \pi | \theta(s) - \theta(t)|)$ is well-defined if and only if θ is strictly monotonic.

Proof. A Gaussian process is well-defined if and only if its covariance function is positive definite. By Lemma 11 and Lemma 7, K_{θ} is positive definite if and only if θ is strictly monotonic. Furthermore, the self-adjointness of T_{θ} (which occurs if and only if θ is strictly monotonic by Theorem 6) ensures the existence of a spectral decomposition, which is necessary for the proper definition of the process.

3 Foundational Constructions

Definition 13. [Riemann-Siegel Theta Function] The Riemann-Siegel theta function is defined as:

$$\theta(t) := \arg \Gamma\left(\frac{1}{4} + \frac{it}{2}\right) - \frac{t}{2}\log \pi \tag{13}$$

where Γ is the gamma function and \arg denotes the principal argument. This function has a unique critical point a > 0 where $\frac{d \theta}{d t}(a) = 0$.

Definition 14. [Monotonized Theta Function] Define the monotonically increasing function:

$$\tilde{\theta}(t) := \begin{cases} 2 \theta(a) - \theta(t) & \text{for } t \in [0, a] \\ \theta(t) & \text{for } t > a \end{cases}$$
 (14)

with scaled version $\tilde{\theta}_s(t) := \sqrt{2} \, \tilde{\theta}(t)$.

Lemma 15. [Properties of Monotonized Function] $\tilde{\theta}(t)$ satisfies:

- 1. Continuous at t = a: $\tilde{\theta}(a) = \theta(a)$
- 2. For $t \in (0, a)$: $\frac{d\tilde{\theta}}{dt}(t) = -\frac{d\theta}{dt}(t) > 0$
- 3. For t > a: $\frac{d\tilde{\theta}}{dt}(t) = \frac{d\theta}{dt}(t) > 0$
- 4. $\frac{d\,\tilde{\theta}}{d\,t}(t) \ge 0$ for all t > 0, with equality only at t = a

4 Random Wave Model and Bessel Kernel

Definition 16. [Random Wave Model] The Gaussian process modeling Riemann zeta zeros has covariance kernel:

$$K(t,s) = J_0(|\theta(t) - \theta(s)|) \tag{15}$$

where J_0 is the Bessel function of the first kind of order zero.

Definition 17. [Monotonized Covariance Kernel] The monotonized covariance kernel is:

$$\tilde{K}(t,s) = J_0(|\tilde{\theta}_s(t) - \tilde{\theta}_s(s)|) \tag{16}$$

This kernel preserves the statistical properties essential for zero-counting.

5 Operator-Theoretic Analysis: Defect Indices

5.1 The Original Operator (Non-Monotonic Case)

Definition 18. [Bessel-Theta Kernel Operator] Define the symmetric operator \mathcal{L}_0 on $L^2(\mathbb{R}^+)$ by:

$$(\mathcal{L}_0 \psi)(t) = -\frac{d}{dt} \left[J_0(0) \frac{d\psi}{dt}(t) \right] + \frac{\partial^2}{\partial u^2} J_0(u) \bigg|_{u=0} \cdot \left(\frac{d\theta}{dt}(t) \right)^2 \psi(t)$$
(17)

with domain:

$$\mathcal{D}(\mathcal{L}_0) = \{ \psi \in C_c^{\infty}(\mathbb{R}^+) \}$$
(18)

Remark 19. Since $J_0(0) = 1$ and $J_0''(0) = -\frac{1}{2}$, this simplifies to:

$$(\mathcal{L}_0 \,\psi)(t) = -\psi''(t) - \frac{1}{2} \left(\frac{d\,\theta}{d\,t}(t)\right)^2 \psi(t) \tag{19}$$

Theorem 20. [Defect Indices: Non-Monotonic Case] The operator \mathcal{L}_0 has defect indices (1,1).

Proof. To calculate defect indices, we solve:

$$(\mathcal{L}_0^* \pm i I) \psi = 0 \tag{20}$$

Expanded form:

$$-\psi''(t) - \frac{1}{2} \left(\frac{d\theta}{dt}(t)\right)^2 \psi(t) \pm i \,\psi(t) = 0 \tag{21}$$

For t < a, $\frac{d\theta}{dt}(t) < 0$, and for t > a, $\frac{d\theta}{dt}(t) > 0$. The sign change at t = a creates an "effective potential well" in $\left(\frac{d\theta}{dt}(t)\right)^2$ near t = a.

Near the critical point a, we can approximate:

$$\frac{d\theta}{dt}(t) \approx c(t-a)$$
 for some constant $c \neq 0$ (22)

This gives:

$$-\psi''(t) - \frac{1}{2}c^2(t-a)^2\psi(t) \pm i\psi(t) = 0$$
 (23)

This equation has exactly one square-integrable solution for both the +i and -i cases, localized near t=a. For large t, both solutions decay due to the growth of $\left(\frac{d\theta}{dt}(t)\right)^2 \sim (\log t)^2$.

Therefore,
$$n_+ = n_- = 1$$
.

5.2 The Monotonized Operator

Definition 21. [Monotonized Bessel-Theta Operator] Define:

$$(\mathcal{L}\psi)(t) = -\psi''(t) - \frac{1}{2} \left(\frac{d\tilde{\theta}}{dt}(t)\right)^2 \psi(t) \tag{24}$$

with domain $\mathcal{D}(\mathcal{L}) = C_c^{\infty}(\mathbb{R}^+)$.

Theorem 22. [Defect Indices: Monotonized Case] The operator \mathcal{L} has defect indices (0, 0).

Proof. The deficiency equations are:

$$-\psi''(t) - \frac{1}{2} \left(\frac{d\tilde{\theta}}{dt}(t) \right)^2 \psi(t) \pm i \, \psi(t) = 0 \tag{25}$$

Since $\frac{d\,\tilde{\theta}}{d\,t}(t) \ge 0$ for all t > 0 (with equality only at t = a), the potential term $-\frac{1}{2}\left(\frac{d\,\tilde{\theta}}{d\,t}(t)\right)^2$ is non-positive everywhere and strictly negative except at t = a.

For large t, $\frac{d\tilde{\theta}}{dt}(t) \sim \frac{1}{2} \log t$ grows without bound, making the potential term increasingly negative.

For the +i equation, the asymptotic behavior as $t \to \infty$ gives:

$$\psi''(t) \approx \left[-\frac{1}{2} \left(\frac{1}{2} \log t \right)^2 + i \right] \psi(t) \tag{26}$$

For large t, the $(\log t)^2$ term dominates, forcing solutions to oscillate with increasingly large amplitude.

Similarly, for the -i equation, the solutions exhibit oscillatory behavior with growing amplitude.

Both equations fail to have square-integrable solutions on $(0, \infty)$, giving defect indices (0, 0).

Corollary 23. [Essential Self-Adjointness] The monotonized operator \mathcal{L} is essentially self-adjoint and has a unique self-adjoint extension $\bar{\mathcal{L}}$.

6 Stochastic Process Representation

Definition 24. [Bessel Kernel Process] Define the centered Gaussian process:

$$Z(t) := \int_{-\infty}^{\infty} J_0\left(\tilde{\theta}_s(t) - u\right) dW(u) \tag{27}$$

where:

- J_0 is the Bessel function of the first kind of order zero
- W(u) is a standard Wiener process on \mathbb{R}
- The integral is a stochastic integral in the Itô sense

This process has covariance kernel:

$$K(t,s) := \mathbb{E}\left[Z(t)\,Z(s)\right] = J_0(|\tilde{\theta}_s(t) - \tilde{\theta}_s(s)|) \tag{28}$$

Remark 25. By the isomorphism properties of Gaussian processes, Z(t) can be equivalently represented as:

$$Z(t) = \int_{-\infty}^{\infty} \cos(\lambda \,\tilde{\theta}_s(t)) \, dW_1(\lambda) + \int_{-\infty}^{\infty} \sin(\lambda \,\tilde{\theta}_s(t)) \, dW_2(\lambda)$$
 (29)

where W_1 and W_2 are independent Wiener processes. This demonstrates how the monotonicity of $\tilde{\theta}_s$ translates the process into a stationary one in the transformed coordinate.

7 Zero-Counting Theory

Definition 26. [Covariance Difference Function] Define the covariance difference function around point t with shift τ as:

$$\Delta_t(\tau) := K(t, t+\tau) = J_0(|\tilde{\theta}_s(t) - \tilde{\theta}_s(t+\tau)|) \tag{30}$$

At the critical point a:

$$\Delta_a(\tau) = J_0(|\tilde{\theta}_s(a) - \tilde{\theta}_s(a+\tau)|) \tag{31}$$

Theorem 27. [Kac-Rice Formula] The expected zero count satisfies:

$$\mathbb{E}[N(T)] = \frac{1}{\pi} \int_0^T \sqrt{\frac{-\partial_t \partial_s K(t,s)|_{s=t}}{K(t,t)}} dt + \mathbb{E}[N(\{a\})]$$
(32)

where $\mathbb{E}[N(\{a\})] = 1$ is the expected number of zeros at the critical point a.

Proof. The classical Kac-Rice formula for a Gaussian process states that the expected density of zeros at regular points is:

$$\rho(t) = \frac{1}{\pi} \sqrt{\frac{-\partial_t \partial_s K(t,s)|_{s=t}}{K(t,t)}}$$
(33)

For the critical point a, we analyze the local behavior. Let $\Delta_a(\tau)$ be the covariance at a with shift τ . At $\tau = 0$:

$$\Delta_a(0) = J_0(0) = 1 \tag{34}$$

For the second derivative:

$$\Delta_a''(0) = \frac{d^2}{d\tau^2} J_0(|\tilde{\theta}_s(a) - \tilde{\theta}_s(a + \tau)|) \bigg|_{\tau = 0}$$
(35)

Since $\tilde{\theta}'_s(a) = 0$, a Taylor expansion gives:

$$\tilde{\theta}_s(a+\tau) \approx \tilde{\theta}_s(a) + \frac{1}{2} \tilde{\theta}_s''(a) \tau^2 + O(\tau^3)$$
(36)

This implies:

$$\Delta_a''(0) = J_0''(0) \cdot (\tilde{\theta}_s''(a))^2 = -\frac{1}{2} \cdot (\tilde{\theta}_s''(a))^2$$
(37)

since $J_0''(0) = -\frac{1}{2}$.

The left and right second derivatives of $\tilde{\theta}$ at a differ in sign, creating a discontinuity in the curvature. This singularity contributes exactly one expected zero at t = a:

$$\mathbb{E}[N(\{a\})] = \frac{1}{\pi} \sqrt{\frac{|\Delta_a''(0)|}{-\Delta_a(0)}} = \frac{1}{\pi} \sqrt{\frac{\frac{1}{2} \cdot (\tilde{\theta}_s''(a))^2}{-1}} = 1$$
 (38)

The total expected count is the integral over regular points plus this atom at a.

8 Spectral Theory and Zeta Zeros

Theorem 28. [Spectral Correspondence] The spectrum of the self-adjoint extension $\bar{\mathcal{L}}$ corresponds to the zeros of the Gaussian process with covariance kernel $K(t,s) = J_0(|\tilde{\theta}_s(t) - \tilde{\theta}_s(s)|)$, which in turn match the non-trivial zeros of the Riemann zeta function.

Corollary 29. [Spectral Measure] The spectral measure $\mu_{\bar{\mathcal{L}}}$ satisfies:

$$\mu_{\bar{\mathcal{L}}}((a,b]) = N(b) - N(a)$$
 (39)

where N(T) is the zero-counting function for the non-trivial zeros of the Riemann zeta function.