Lecture 9 – Classification and Regression

Bulat Ibragimov

bulat@di.ku.dk

Department of Computer Science University of Copenhagen

Objectives

What is classification
Training/validation/testing datasets
K-nearest neighbours
Support vector machines
Classification performance evaluation

Classification

- Supervised
 - We have a database with samples and their labels

Generative vs Discriminative models

- Generative:
 - Computes probabilistic model for each class
 - Can use unlabeled data

- Discriminative:
 - Focus on separation of classes
 - Cannot use unlabeled data

Training/Validation/Testing datasets

- Training dataset:
 - Model can use both training features and labels for changing its parameters.
- Validation dataset:
 - Needed to estimate how suitable is the selected model for solving the target problem.
- Testing dataset:
 - Can only be used when the model is completely finalized. Cannot be used to update anything about the model

Training/Validation dataset example

Dataset:

	Student 1	Student 2	Student 3	Student 4	Student 5	
Name	Thomas	Victor	Diana	Tiffany	Andrew	
Hours of preparation	12	25	10	21	1	
Grade [0-10]	5	9	4	10	1	
		Training set				

• Two models trained on training set:

Accuracy on validation

- Grade depends on student's name:
 name starts with [A-M] grade < 5
 name starts with [N-Z] grade ≥ 5
- Grade depends on the length of preparation:

hours
$$< 12 - grade < 5$$

hours $\ge 12 - grade \ge 5$

How to know which one is more reasonable

50%

75%

k-nearest neighbor classifier

- How would you classify the white box:
 - Red or blue class?

- How did you do it:
 - Fit gaussian?
 - Coded a neural network?

Nearby elements are red

1-nearest neighbor classifier

- If we formalize this intuition:
 - Find the most similar training example x'
 - Use its label y' as the prediction

- Voronoi tessellation:
 - Separates space according to classes
 - Used to compute classification boundary

- Sensitive to outliers:
 - One point can change a very large regions
- Check more than 1 nearest neighbor

k-nearest neighbor (kNN) classifier

- Input:
 - Training examples $\{x_i, l_i\}$:
 - x_i features of i-th examples
 - l_i label of i-th examples
- Goal is to classify new example {z}
- Algorithm:
 - Compute distance $D(z, x_i)$ to every training example x_i
 - Select k closest examples $x_{i1} \dots x_{ik}$ and their labels $l_{i1} \dots l_{ik}$
 - Output the most frequent class from $l_{i1} \dots l_{ik}$

Example: digit classification 7NN

- Database of 16x16 grayscale scale bitmaps of digits with known labels
- Recognize digit on new 16x16 grayscale bitmap
- Distance metric:

•
$$D(A,B) = \sqrt{\sum_{i} \sum_{j} (A_{i,j} - B_{i,j})^2}$$

Predictions

- **0**; as majority voting
- **2**; parity voting, but 2s have higher scores
- 4; unanimously voting
- **9**; as majority voting
- **7**; as majority voting

kNN regression

- Input:
 - Training examples $\{x_i, y_i\}$:
 - x_i features of i-th examples
 - y_i real value associated with examples (profit, exam result)
- Goal is to assign value to new example{z}
- Algorithm:
 - Compute distance $D(z, x_i)$ to every training example x_i
 - Select k closest examples $x_{i1} \dots x_{ik}$ and their values $y_{i1} \dots y_{ik}$
 - Output the mean of $y_{i1} \dots y_{ik}$

Example: kNN regression

- Let's predict values for x=4:
 - 1NN regression
 - 2NN regression
 - 3NN regression
 - etc.
- Results may significantly depend on the k selection:
 - What if we choose k = database size
- Which k is good for predicting for x=0?
- Extrapolation is less accurate than interpolation

kNN: how to select k?

- What will be the prediction for green point for:
 - 1NN classification
 - 2NN classification
 - 5NN classification

 Let's say you have a database of 10000 points in space with known red/blue labels. How to choose good k?

Validation set!

kNN: Distance measure

Euclidian distance:

$$D(x,x') = \sqrt{\sum_{d} |x_d - x'_d|^2}$$

• Manhattan distance:

$$D(x, x') = \sum_{d} |x_d - x'_d|$$

• Logical distance (categorical attributes):

$$D(x, x') = \sum_{d} 1_{x_d \neq x'_d}$$

kNN and Parzen Windows

The size of the neighborhoods can be very different

The size of the neighborhoods is the same

$$P(red|x) = \frac{\sum_{i} 1_{l_i = red} \cdot 1_{x_i \in R(x)}}{\sum_{i} 1_{x_i \in R(x)}}$$

kNN, Parzen Windows and Kernels

What is the problem with $1_{x_i \in R(x)}$?

Kernel-based predictor

$$P(red|x) = \frac{\sum_{i} 1_{l_i = red} \cdot 1_{x_i \in R(x)}}{\sum_{i} 1_{x_i \in R(x)}}$$

$$P(red|x) = \frac{\sum_{i} 1_{l_i = red} \cdot K(x_i, x)}{\sum_{i} K(x_i, x)}$$

kNN problem: speed!

- There are 60000 examples digit recognition database:
 - It will be extremely slow to measure distance to all of them
- Many acceleration techniques. For example, KD search tree:
 - Training samples: {(1, 9), (2, 3), (4, 1), (3, 7), (5, 4), (6, 8), (7, 2), (8, 8), (7, 9), (9, 6)}
 - Pick random dimension, find median, split
 - For a test sample (7, 4), follow the tree and search the specific subregion

http://homepages.inf.ed.ac.uk/vlavrenk

- Let's say we want to best separate red and blue points
- Many solutions are possible, but are they equally good?
- Somehow this solution looks better than other solutions. How did you make such intuitive conclusion?

- Let's say the points above the line have positive labels (+1), while points below negative (-1)
- A prediction line can be defined as:

 The prediction is uncertain at the green borderline:

$$w^T \bar{x} = 0$$

 What is the equations for points above the upper gray line:

$$w^T x' \ge 1$$

 The equations for points below the lower gray line:

$$w^T x^{\prime\prime} \leq -1$$

• Hinge loss function:

$$h(x, y, w^T x) = \begin{cases} 0 & \text{if } y \cdot w^T x \ge 1\\ 1 - y \cdot w^T x & \text{else} \end{cases}$$

• L2 Regularization (why do we need it?):

$$l = ||w||^2$$

We want to optimize:

$$\min_{w} (\lambda ||w||^2 + h(x, y, w^T x))$$

• Partial derivatives of $\min(\lambda ||w||^2 + h(x, y, w^T x))$:

Update of w:

for mis-classified samples:

$$w = w - \eta(-y_i x_{ik} + 2\lambda w_k)$$

for correctly classified samples:

$$w = w - \eta(2\lambda w_k)$$

Support vector machines: regularization

• Separation with very low $\lambda = 1e - 10$:

 $\min_{w} (\lambda ||w||^2 + h(x, y, w^T x))$

How will the solution w look like?

$$w = 5x - 12.5$$

- Could we get something like?
 - w = 10x 25
- Is this a good solution?

Support vector machines: regularization

 This separation does not classify samples perfectly, but seems to be more reliable

Support vector machines: regularization

• Separation with $\lambda = 10$:

$$\min_{w} (\lambda ||w||^2 + h(x, y, w^T x))$$

• The solution w will look like:

$$w = 0.065x$$

• The solution w comes closer to 0, with growth of λ :

λ	w
1e-10	[5, -12.5]
0.1	[0.43, -0.28]
10	[0.065, 0]

Support vector machines: dimensionality

• 2D data:

• 3D data:

Support vector machines: kernel

 Can we classify these samples with support vectors:

Let's transform data:

$$z = e^{-\|x\|^2}$$

Support vector machines: kernels

Polynomial kernel:

$$K(x_i, x_j) = (x_i \cdot x_j + 1)^p$$

Radial basis function kernel:

$$K(x_i, x_j) = e^{-\gamma(x_i - x_j)^2}$$

• Hinge loss: $h(x, y, w^T x) = h(x, y, K(w, x))$

Classification performance evaluation: 2 classes

Accuracy:

- What are the problems of such metric:
 - Class imbalance problem:
 - 0.9 healthy subject, 0.1 diseased
 - Naïve classification will result in 0.9 accuracy
 - Let's say $f(x) \in [-1,1]$, f(x) = 0.01 will be as good as f(x) = 0.99 for y = 1

Performance evaluation: sensitivity/specificity

- Let's normalize all labels y and f(x) to [0,1]
- True positive (TP) # of cases, where $y_i = 1$ and $f(x_i) \ge 0$
- True negative (TN) # of cases, where $y_i = -1$ and $f(x_i) < 0$
- False positive (FP) # of cases, where $y_i = -1$ and $f(x_i) \ge 0$
- False negative (FN) # of cases, where $y_i = 1$ and $f(x_i) < 0$

• Sensitivity:

$$\frac{TP}{TP + FN}$$

• Specificity:

$$\frac{TN}{TN + FP}$$

Performance evaluation: ROC curve

• Example of testing mosquito killing spray:

Performance evaluation: ROC curve

Receiving operator curve:

FPR	TPR	AUC
1	1	0.064516
0.935484	0.989247	0.118259
0.815939	0.964158	0.160998
0.648956	0.924731	0.184244
0.449715	0.874552	0.204117
0.216319	0.792115	0.142791
0.036053	0.577061	0.009855
0.018975	0.308244	0.003509
0.00759	0.16129	0.001224
0	0.053763	0
0	0	0
		0.889515

Closer AUC to 1 the better

Questions?