Multiple Linear Regression

Presented By Dr.A.Bazila Banu, Prof & Head/AIML

Multiple linear regression

- Multiple linear regression is a method we can use to quantify the relationship between two or more independent variables(X1,X2...) and a dependent variable(Y).
- Multiple Linear Regression Formula

yi =
$$\beta$$
0 + β 1xi1 + β 2xi2 + ... + β pxip+ ϵ

Where:

- •yi is the dependent or predicted variable
- •β0 is the y-intercept, i.e., the value of y when both xi and x2 are 0.
- •β1 and β2 are the regression coefficients representing the change in y relative to a one-unit change in xi1 and xi2, respectively.
- •**βp** is the slope coefficient for each independent variable
- is the model's random error (residual) term.

Visualizing a Multiple Regression Model

Steps to calculate

- Step 1: Calculate X₁², X₂², X₁y, X₂y and X₁X₂ and Regression Sums.
- Step 3: Calculate b₀, b₁, and b₂.
- Step 5: Place b₀, b₁, and b₂ in the estimated linear regression equation.

Sample Data Set

У	X_1	X ₂
140	60	22
155	62	25
159	67	24
179	70	20
192	71	15
200	72	14
212	75	14
215	78	11

У	X ₁	X ₂
140	60	22
155	62	25
159	67	24
179	70	20
192	71	15
200	72	14
212	75	14
215	78	11
181.5	69.375	18.125
1452	555	145

Mean Sum

X_1^2	X22	X ₁ y	X ₂ y	X1X2	
3600	484	8400	3080	1320	
3844	625	9610	3875	1550	
4489	576	10653	3816	1608	
4900	400	12530	3580	1400	
5041	225	13632	2880	1065	
5184	196	14400	2800	1008	
5625	196	15900	2968	1050	
6084	121	16770	2365	858	
38767	2823	101895	25364	9859	

Reg Sums

Sum

263.875 194.875 1162.5 -953.5 -200.375
--

Calculate b_0 , b_1 , and b_2 .

The formula to calculate

•
$$b_{1} = [(\Sigma x_{2}^{2})(\Sigma x_{1}y) - (\Sigma x_{1}x_{2})(\Sigma x_{2}y)] / [(\Sigma x_{1}^{2})(\Sigma x_{2}^{2}) - (\Sigma x_{1}x_{2})^{2}]$$

 $b1 = [(194.875)(1162.5) - (-200.375)(-953.5)] / [(263.875)(194.875) - (-200.375)2]$
 $= 3.148$

The formula to calculate

b2 =
$$[(\Sigma x12)(\Sigma x2y) - (\Sigma x1x2)(\Sigma x1y)] / [(\Sigma x12)(\Sigma x22) - (\Sigma x1x2)2]$$

b2 = $[(263.875)(-953.5) - (-200.375)(1152.5)] / [(263.875)(194.875) - (-200.375)2]$
= -1.656

The formula to calculate

$$b_{0} = y - b1X1 - b2X2$$

• Thus, b0 = 181.5 - 3.148(69.375) - (-1.656)(18.125) = -6.867

Estimated linear regression equation is

•
$$\hat{y} = -6.867 + 3.148x_1 - 1.656x_2$$

How to Interpret a Multiple Linear Regression Equation

- Here is how to interpret this estimated linear regression equation: $\hat{y} = -6.867 + 3.148x_1 1.656x_2$ **b₀ = -6.867**. When both predictor variables are equal to zero, the mean value for y is -6.867.
- b_1 = 3.148. A one unit increase in x_1 is associated with a 3.148 unit increase in y, on average, assuming x_2 is held constant.
- b_2 = -1.656. A one unit increase in x_2 is associated with a 1.656 unit decrease in y, on average, assuming x_1 is held constant.

Multiple Linear Regression in Python

Step 1: Load the Boston dataset

```
import pandas as pd
import numpy as np
dataset = pd.read_csv('Boston1.csv')
dataset
```

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
5	0.02985	0.0	2.18	0	0.458	6.430	58.7	6.0622	3	222	18.7	394.12	5.21	28.7
6	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.60	12.43	22.9
7	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.90	19.15	27.1
8	0.21124	12.5	7.87	0	0.524	5.631	100.0	6.0821	5	311	15.2	386.63	29.93	16.5
9	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311	15.2	386.71	17.10	18.9
10	0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15.0
11	0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5	311	15.2	396.90	13.27	18.9
12	0.09378	12.5	7.87	0	0.524	5.889	39.0	5.4509	5	311	15.2	390.50	15.71	21.7
13	0.62976	0.0	8.14	0	0.538	5.949	61.8	4.7075	4	307	21.0	396.90	8.26	20.4
14	0.63796	0.0	8.14	0	0.538	6.096	84.5	4.4619	4	307	21.0	380.02	10.26	18.2
15	0.62739	0.0	8.14	0	0.538	5.834	56.5	4.4986	4	307	21.0	395.62	8.47	19.9

Medv as dependent variable (Y) and other columns as Independent Variables(X1,X2 ...)

Split the data for X and Y

```
In [3]: X = pd.DataFrame(dataset.iloc[:,:-1])
y = pd.DataFrame(dataset.iloc[:,-1])
```

Step 5: Divide the data into train and test sets:

```
In [6]: from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=5)
```

Step 6: Train the algorithm:

```
In [8]: from sklearn.linear_model import LinearRegression
    regressor = LinearRegression()
    regressor.fit(X_train, y_train)
```

Step 7: Comparing the predicted value to the actual value:

```
In [13]: y_pred = regressor.predict(X_test)
    y_pred = pd.DataFrame(y_pred, columns=['Predicted'])
    y_pred
```

Step 10: Evaluate the algorithm

```
In [15]: from sklearn import metrics
    print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
    print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
    print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
```

Mean Absolute Error: 3.2132704958423757 Mean Squared Error: 20.86929218377072 Root Mean Squared Error: 4.568292042303198