

PUNJAB ENGINEERING COLLEGE, CHANDIGARH Mid-Term Examination

February 2020

Programme: B.Tech. Course Name: Digital Signal Processing Maximum Marks: 40 Year/Semester: 2nd/ 4th Course Code: ECN 209 Time Allowed: 90 min

1.	Consider the sequence $x(n) = u(n) - u(n-4)$.	1
	(a) Find 4-point DFT of x(n).	4
	(b) If $y(n)$ is 4-point circular convolution of $x(n)$ with itself, find 4-point DFT of $y(n)$.	3
2	(a) Find 4-point inverse DFT of sequence X(k)= {15, -3+j6, -5, -3-j6} using radix-2 DIT IFFT.	4
	(b) Hence, compute the reduction in number of multiplications and additions as compared to direct	2
	method.	
3.	Suppose that we have a 1025-point data sequence.	1
	(a) How many complex multiplications and additions are required to compute DFT of this sequence,	3
	using radix-2 FFT algorithm?	
-	(b) How many multiplications and additions would be required to compute a 1025-point DFT directly?	2
4.	A system is defined by following difference equation:	+-
	y(n) = x(n) + 2x(n-1) + 3y(n-2)	
	This system is an example of non-recursive system. Is this statement correct? Justify	2
5.	Convert an analog filter with system function H(s) into digital IIR filter using impulse invariant	+
	technique (assume T=1s).	
		4
	$H(s) = \frac{1}{s^2 + 8s + 25}$	7
	5 7 53 7 25	
6.	(a) Discuss the advantages of FIR filters over IIR filters.	2
	(h) The desired frequency response of a law pro	-
	corner desired requerity response of a low pass FIR filters is	
4,	$H_{d}(\omega) = \begin{cases} e^{-j\omega\tau}, & 0 \le \omega \le 0.35 \pi \\ 0, & 0.35\pi < \omega \le \pi \end{cases}$	
-	$(0, \qquad 0.35\pi < \omega \leq \pi)$	
2.7	Determine the impulse response of causal FIR filter, using windowing technique with a window having	7
	minimum transition width. Given that transition band is $[0.297\pi, 0.393\pi]$ and τ represents constant phase	'
4.7	delay.	
7.	(a) What are the limitations of windowing technique for FIR filter design?	_
	(b) A 5-length linear phase FIR filter is to be designed using frequency sampling type-I design	1.5
	technique. If the desired filter response is given as:	2
		~
	$H_{d}(\omega) = \begin{cases} 0, & 0 < \omega < 0.25\pi \\ e^{-j2\omega}, & 0.25\pi \le \omega \le 0.4\pi \\ 0, & 0.4\pi < \omega \le \pi \end{cases}$	
	$(0.25\pi \le \omega \le 0.4\pi)$	5
-	$(0. 0.4\pi < \omega \le \pi)$	5
	Find the filter coefficients of linear phase FIR filter.	