Computerz Graphics

December 2, 2018

Contents

1	Vektoren 2						
	1.1	Länge des Vektors	2				
	1.2		2				
	1.3		2				
	1.4	Achsenabschnitt	2				
	1.5	Hessische Normalform	2				
2	Transformation 2						
	2.1	Transformation des Koordinatenystems .	2				
	2.2	homogene Koordinaten	2				
	2.3		2				
	2.4	Prokektive Transformation	2				
	2.5	Euklidische Transformationen	2				
	2.6	Rotation um beliebige Achse	2				
	2.7	Rotation um eine Achse durch den Ur-					
		sprung	3				
	2.8		3				
	2.9		3				
	2.10	Perspektivische Projektion	3				
	2.11	Perspektivische Projektionmatrix	3				
	2.12	Sichtvolumen Clipping	3				
3	Curves 4						
	3.1	Kurvie in der Ebene	4				
	3.2		4				
	3.3	Spirale entlang des Zylinders	4				
	3.4	Methode unbestimmte Koeffizienten	4				
	3.5	Lagrange Methode	4				
	3.6	Lineare Bézier spline	4				
	3.7		4				
	3.8	Qubic Bézier Spline	4				
	3.9	Bernsteinpolynome	5				
4	App	Appendix 5					
			5				

1 Vektoren

- Skalarprodukt
- · Matrixprodukt

1.1 Länge des Vektors

$$||v|| = \sqrt{v \cdot v}$$

1.2 Einheitsvektor

$$e_v = \frac{1}{||v||} \bullet v$$
$$(i = e_1, j = e_2, k = e_3)$$

1.3 Euklidische Distanz

$$\overline{AB} = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_n - a_n)^2}$$

1.4 Achsenabschnitt

Gegeben sind 3 Punkte $p_x = x, p_y = y, p_z = z$ ergibt Ebenegleichung:

$$\frac{x}{p_x} + \frac{y}{p_y} + \frac{z}{1} = 1$$
, HNF =

1.5 Hessische Normalform

TODO

2 Transformation

2.1 Transformation des Koordinatenystems

TODO

2.2 homogene Koordinaten

jeder Punkt P(x,y,z) des Raumes \mathbb{R}^{1} besitzt eine 4komponenten Vektor \vec{r}

$$\vec{r} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, x = \frac{x_1}{x_4}, y = \frac{x_2}{x_4}, z = \frac{x_3}{x_4}$$

$$(x,y,z) = (\frac{x_1}{x_4}, \frac{x_2}{x_4}, \frac{x_3}{x_4})$$

2.3 Ebene im Raum

Ebene ϵ *im Raum* \mathbb{R}^3

 $\epsilon : ax + by + cz + d = 0$ Hessische Normalform

$$\vec{w} = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
, Punkt: $\vec{r} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

Ebenengleichung:

$$\vec{w} \bullet \vec{r} = w^T \cdot r = ax + by + cz + d = 0$$

2.4 Prokektive Transformation

Die homogene Matrix H ist nur bis auf einen konstanten Faktor bestimmt, heisst, alle Vielfachen von H sind auch

 $\eta: \mathbb{P}^3 \mapsto \mathbb{P}^3$ stellt eine **projektiven Transformation** dar

$$\eta(r) = \mathbf{H} \cdot r = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$
 Euklidisch (starre Bewegung)

$$D = \begin{bmatrix} \mathbf{R} & \dot{t} \\ 0^T & 1 \end{bmatrix}$$

Abstand zwischen zwei Punkten, alle Winkel $(R^{-1} = R^T)$

Ähnlichkeit $S = \begin{bmatrix} k \cdot \mathbf{M} & t \\ 0^T & 1 \end{bmatrix}$

Winkel zwischen zwei Punkten, alle Winkel

Parallelität, Verhältnis zwischen Volumeninhalt

Allgemein

$$\mathbf{H} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \\ h_{41} & h_{42} & h_{43} & h_{44} \end{bmatrix}$$

2.5 Euklidische Transformationen

TODO Translation, Spiegelung an einer Ebene, Rotation, Zusammensetzen von

2.6 Rotation um beliebige Achse

- 1) Rotation um ϕ um z-Achse (Matrix D)
- 2) Rotation um den Winkel $\theta \in [0, \pi]$ (um frühere X-Achse) (Matrix C)
- 3) Eigentlich Rotation um den gegeben Winkel ψ (Matrix B)

 $c_{\alpha} = \cos \alpha$, $s_{\alpha} = \cos \alpha$, $\alpha \in \phi, \theta, \psi$

D

$$\mathbf{D} = \begin{bmatrix} c_{\phi} & s_{\phi} & 0 \\ -s_{\phi} & c_{\phi} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\theta} & s_{\theta} \\ 0 & -s_{\theta} & c_{\theta} \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} c_{\psi} & s_{\psi} & 0 \\ -s_{\psi} & c_{\psi} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Danach wieder zurück rotieren um ϕ und θ

2.7 Rotation um eine Achse durch den Ursprung

TODO insert T / $R_{y,x,z}$

Todo rotation around any axis

Todo altertative, rotation around origin

2.8 Parallele Projektion

Projektion auf Ebene $\epsilon: ax+by+cz+d=0$ Die ebene ist definiert durch Normalvektor $\vec{n}=\begin{bmatrix} a\\b\\c\end{bmatrix}$ Normalenvektor erhalten: $|\vec{n}|=\sqrt{a^2+b^2+c^2}=1$

Projektionsrichtung definiert durch $\vec{v} = (v_x, v_y, v_z)$ Normalisieren von Projektionsrichtung: $|\vec{v}|$

Ist $|\vec{n}|$ (Ebenen Normalenvektor) und $|\vec{v}|$ (Projektionsrichtung) gegeben

 $ec{x} = ec{x}_0 + t ec{v}$, komponentenweise $\begin{bmatrix} x = x_0 + t v_x \\ y = y_0 + t v_y \\ y = y_0 + t v_y \end{bmatrix}$ Wobei x_0 Punkt wo auf x auf Ebene Projeziert wird

 ψ entspricht Winkel zwischen \vec{n} und \vec{v}

 $cos(\psi) = \vec{v} \bullet \vec{n}$ TODO - gleichung t t*

2.9 Parallele Projektionsmatrix

$$\begin{bmatrix} x^* \\ y^* \\ z^* \end{bmatrix} = \mathbf{H} \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} = \begin{bmatrix} (c_{\psi} - av_x) & -bv_x & -cv_x & -dv_x \\ -av_y & (c_{\psi} - bv_y) & -cv_y & -dv_y \\ -av_z & -bv_z & (c_{\psi} - cv_z) & -dv_z \\ 0 & 0 & 0 & c_{\psi} \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \\ z_0 \\ 1 \end{bmatrix}$$

$$\cos(\psi) = c_{\psi}$$

2.10 Perspektivische Projektion

Fall wenn Zentrum O im Nullpunkt

$$\epsilon : ax + by + cz + d = 0$$
, Ebene

Beliebigen Punkt $A_0(x_0, y_0, z_0)$ mit Projektionspunkt $A^*(x^*, y^*, z^*)$ in Ebene ϵ

$$\begin{bmatrix} x^* \\ y^* \\ z^* \end{bmatrix} = \begin{bmatrix} \lambda x_0 \\ \lambda y_0 \\ \lambda z_0 \end{bmatrix}$$

$$\lambda = -\frac{d}{ax_0 + by_0 + cz_0}$$

$$(ax_0 + by_0 + cz_0) \cdot \begin{bmatrix} x^* \\ y^* \\ z^* \\ 1 \end{bmatrix} = \begin{bmatrix} -dx_0 \\ -dy_0 \\ -dz_0 \\ ax_0 + by_0 + cz_0 \end{bmatrix} = \begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & -d & 0 \\ a & b & c & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ y_0 \\ z_0 \\ 1 \end{bmatrix}$$

2.11 Perspektivische Projektionmatrix

$$\mathbf{H} = \begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & -d & 0 \\ a & b & c & 0 \end{bmatrix}$$

2.12 Sichtvolumen Clipping

Das kanonische Sichtvolmen ist ein Würfel mit $P(\pm 1, \pm 1, \pm 1)$

Defür sind vorne und hinten, sowie zwei Punkte bestimmend Grösse gegeben

P links unten, Q rechts oben z vorne z = -a, z hinten z = -b

$$\mathbf{T} = \begin{bmatrix} \frac{2a}{x_Q - x_P} & 0 & \frac{x_Q + x_P}{x_Q - x_P} & 0\\ 0 & \frac{2a}{y_Q - y_P} & \frac{y_Q + y_P}{y_Q - y_P} & 0\\ 0 & 0 & -\frac{b + a}{b - a} & -2\frac{ba}{b - a}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

3 Curves

3.1 Kurvie in der Ebene

Explizite Darstellung

$$\gamma:[a,b] \to \mathbb{R}, x \mapsto y = f(x)$$

Kreis:
oberer Halbkreis $\sqrt{r^2 - x^2}$
unterer Halbkreis $\sqrt{r^2 - x^2}$

Implizite Darstellung

$$F(x,y) = 0$$

Kreis: $x^2 + y^2 - r^2 = 0$

Parameterdarstellung

$$\gamma: [a,b] \to \mathbb{R}^2, t \mapsto X(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Punkte miteinander verbunden, einzeln angegeben $[r \cos t]$

Kreis:
$$\begin{bmatrix} r\cos t \\ r\sin t \end{bmatrix}$$

3.2 Kurve im Raum

$$\gamma: [a,b] \to \mathbb{R}^3, t \mapsto X(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}$$

3.3 Spirale entlang des Zylinders

$$\begin{split} x^2 + y^2 &= r^2 \\ \gamma : [0, 4\pi] \to \mathbb{R}^3, t \mapsto X(t) = \begin{bmatrix} r \cos t \\ r sint \\ ht/(2\pi) \end{bmatrix} \\ \textit{Grundriss ergibt Kreis, H\"{o}he Linear} \end{split}$$

3.4 Methode unbestimmte Koeffizienten

$$P_{3}(x) = c_{0} + c_{1}x^{2} + c_{2}x^{2} + c_{3}x^{3}$$

$$\begin{bmatrix} 1 & x_{0} & x_{0}^{2} & x_{0}^{3} \\ 1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\ 1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\ 1 & x_{3} & x_{3}^{2} & x_{3}^{3} \end{bmatrix} \begin{bmatrix} c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \end{bmatrix} = \begin{bmatrix} y_{0} \\ y_{1} \\ y_{2} \\ y_{3} \end{bmatrix}$$

$$c_{0} = c_{1} = c_{2} = c_{3} = 1$$

3.5 Lagrange Methode

$$\begin{split} l_0(x) &= (x-x_1)(x-x_2) \dots \\ L_0(x) &= \frac{l_0(x)}{l_0(x_0)} = \frac{(x-x_1)(x-x_2)\dots}{(x_0-x_1)(x_0-x_2)\dots} \\ P_n(x) &= y_0 L_0(x) + y_1 L_1(x) + \dots + y_n L_n() \\ l_k(x) &= \prod_{i=0i \neq k}^n (x-x_i) \\ L_k(x) &= \frac{l_k(x)}{l_k(x_k)} \end{split}$$

3.6 Lineare Bézier spline

$$P(t) = (1 - t)P_0 + P_1(0 \le t \le 1)$$

Gewichteter Durchschnitt der Kontrollpunkte

$$P(t) = (P_1 - P_0)t + P_0$$
Polynom in t

$$P(t) = [P_0, P_1] \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} t \\ 1 \end{bmatrix} (0 \le t \le 1)$$
 Matrizform

3.7 Quadric Bézier spline

drei Kontrollpunkte P_0, P_1, P_2

$$P_0^1(t) = (1-t)P_0 + P_1$$

$$P_1^1(t) = (1-t)P_0 + P_1$$

$$P(t) = (1-t)^2 P_0 + 2(1-t)t P_1 + t^2 P_2$$

3.8 Qubic Bézier Spline

vier Kontrollpunkte P_0, P_1, P_2, P_3

$$\begin{aligned} & \textit{Mit } P_0^1, \, P_1^1 \, \textit{und} \\ & P_2^1(t) = (1-t)P_2 + tP_3 \\ & P_1^2(t) = (1-t)P_0^1(t) + tP_1^1(t) \\ & P_2^2(t) = (1-t)P_1^1(t) + tP_2^1(t) \\ & P(t) = (1-t)^3P_0 + 3(1-t)^2tP_1 + 3(1-t)t^2P_2 + t^3P_3 \end{aligned}$$

3.9 Bernsteinpolynome

4 Appendix

4.1 Radians

Winkel α°	Bogenmass	Sinus	Kosinus
0°	0	$\frac{1}{2}\sqrt{0} = 0$	$\frac{1}{2}\sqrt{4} = 1$
30°	$\frac{\pi}{6}$	$\frac{1}{2}\sqrt{1} = \frac{1}{2}$	$\frac{1}{2}\sqrt{3}$
45°	$\frac{\pi}{4}$	$\frac{1}{2}\sqrt{2} = \frac{1}{\sqrt{2}}$	$\frac{1}{2}\sqrt{2} = \frac{1}{\sqrt{2}}$
60°	$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{1} = \frac{1}{2}$
90°	$\frac{\pi}{2}$	$\frac{1}{2}\sqrt{4} = 1$	$\frac{1}{2}\sqrt{0} = 0$
180°	π	0	-1
270°	$\frac{3\pi}{2}$	-1	0
360°	2π	0	1

$$\overline{\cos^2(\alpha)} = \frac{1}{1+\tan^2(\alpha)}, \sin^2(\alpha) = \frac{\tan^2(\alpha)}{1+\tan^2(\alpha)}$$