Algebra Przemienna

why am I doing this

koteczek

 \sim

Contents

Wstęp 1.1 Gradacje, filtracje	3
Pierścienie i ideały	4
2.1 Pierścienie i homomorfizmy pierścieni	
2.2 Ideały, pierścienie ilorazowe	4
2.3 Dzielniki zera, elementy nilpotentne i odwracalne	4
2.4 Ideały główne i maksymalne	5

1. Wstęp

1.1. Gradacje, filtracje

Są pierścienie i ideały, St_K to struktura pierścienia, dalej na środku mamy przykład pierścienia.

Są pierścienie, które są zgradowane i są pierścienie, które są zfiltrowane. Czemu nas to interesuje? bo mamy ciąg liczb. Stanley jest zgradowany.

Jak jest zgradowany, to ma ciąg wymiarów. Jakie są wymiary stopni gradacji?

Liczymy $\sum_{i=0}^{\infty}$ dim $R_i \cdot t^i$ dla punktu i dwóch punktów. Jeżeli K to $\frac{1}{1-t}$, dla połączonych dwóch punktów to $\left(\frac{1}{1-t}\right)^2$, a dla dwóch niepołączonych punktów $\frac{2}{1-t} - 1$.

Topologia < 3

Pierwszy rodzaj pierścieni pojawiających się w topologii to twory oznaczane

$$H^{\cdot}(X, R)$$
,

gdzie R to pierścień, a X to przestrzeń topologiczna. To jest chwilowo blackbox i my potem to wytłumaczymy. To coś jest zgradowane.

Taki pierścień to na przykład R[X]/ x^2 = 0.To jest pierścień wielomianów jednej zmiennej. Teraz dla dwóch zmiennych R[X, Y] : $/X^2$ = 0 = y^2 , xy = -yx. Pierwsze odpowiada okręgowi [S¹], a drugie odpowiada torusowi [T²]. Czyli torusowi przypisujemy taki pierścień, o to mniej więcej tutaj chodzi.

Te obiekty, o których algebra przemienna chce mówić to są zgradowane przemienne obiekty. Czyli R = \otimes R_i, a potem przemienność ma być taka, że r_ir_i = $(-1)^{\alpha ij}$ r_ir_i. Możemy na przykład mieć α = 1.

Pierścienie grupowe: k[G], gdzie k jest być może ciałem, a G jest grupą. I teraz jeżeli G jest nieprzemienne, to to jest bardzo nieprzemienne. Teoria reprezentacji zajmuje się badaniem takich pysi. W topologii jak mamy przestrzeń X, to nad nią wisi \overline{X} razem z działaniem grupy G takie, że $\overline{X}/G = X$ i to się nazywa pokryciem uniwersalnym. Iloraz jest X i to działa nakrywająco, to znaczy każda orbita G to jest zawsze otoczenie punktu który wybraliśmy. Zawsze możemy rozłożyć to jakoś trudne słowo, triangulacja. To co działa początkowo na \overline{X} , to działą teraz na traingulacji XDDD. $C_k(\overline{X})$ to formalne kombinacje liniowe o współczynnikach w k[G] K-sympleksów. Operatory brzegów. Mam wrażenie, że to akurat jest jakaś losowa baja o trójkącikach.

2. Pierścienie i ideały

Szybkie powtórzenie notacji i podstawowych definicji, z małym dodatkiem ponad algebrę 1r.

2.1. Pierścienie i homomorfizmy pierścieni

Pierścien A to zbiór z dwoma binarnymi operacjami (dodawanie i mnożenie) takimi, że

- 1. A jest abelową grupą względem dodawania,
- 2. mnożenie jest łączne i rozłączne względem dodawania,
- 3. dla nas dodatkowo mnożenie jest przemienne,
- 4. i ma element neutralny.

Czyli rozważamy tylko *pierścienie przemienne z jednością*. Warto zaznaczyć, że nie wykluczamy że 1 = 0, ale wtedy A ma tylko jeden element i jest pierścieniem zerowym, oznaczanym przez 0.

Homomorfizm pierścieni to funkcja f z pierścienia A w pierścień B taka, że

- 1. f(x + y) = f(x) + f(y),
- 2. f(xy) = f(x)f(y),
- 3. f(1) = 1.

2.2. Ideały, pierścienie ilorazowe

Ideał I pierścienia A to podzbiór A taki, że jest podgrupą względem dodawania i taki, że AI \subseteq I. Grupa ilorazowa A/I zachowuje mnożenie zdefiniowane w I, co sprawia, że jest pierścieniem, nazywanym **pierścieniem ilorazowym** [lub *residue-class ring*]. Elementami A/I są warstwy I w A, a funkcja $\phi: A \to A/I$ taka, że $\phi(x) = x + I$ jest surjiektywnym homomorfizmem.

Twierdzenie: Istnieje funkcja 1 – 1 zachowująca porządek zależności pomiędzy ideałami $I \subseteq J \triangleleft A$ oraz ideałami $J' \triangleleft A/I$ zadana przez $J = \phi^{-1}(J')$.

Dowód: Jeśli $f: A \to B$ jest homomorfizmem pierścieni, to jądro f jest ideałem I w A oraz obraz f jest podpierścieniem $C \subseteq B$. f indukuje izomorfizm pierścieni $A/I \cong C$.

W dalszej części możemy stosować oznaczenie $x \equiv y \mod I$ żeby powiedzieć, że $x - y \in I$.

2.3. Dzielniki zera, elementy nilpotentne i odwracalne

Dzielnik zera pierścienia A to element x taki, że istnieje dla niego y \neq 0 takie, że xy = 0. Pierścień, który nie posiada dzielników zera różnych od 0 jest nazywany dziedzina całkowita [integral domain].

Element $x \in A$ jest **nilpotentny**, jeżeli istnieje n > 0 takie, że $x^n = 0$. Element nilpotenty jest zawsze dzielnikiem zera, ale odwrotna zależność nie zawsze zachodzi.

Element odwracalny $x \in A$ to element "dzielący zero", czyli istnieje unikalne $y \in A$ takie, że xy = 1. Zwykle oznaczamy $y = x^{-1}$. Wszystkie elementy odwracalne pierścienia A tworzą **grupę multiplikatywną** [multiplicative group], która jest abelową.

Wielokrotności ax elementu $x \in A$ tworzą ideał główny [principal ideal] pierścienia A, co oznaczamy przez (x). Jeżeli x jest odwracalny, to (x) = A = (1). Ideał generowany przez 0 jest zwykle oznaczany (0) = 0.

Ciało to pierścień A w którym 1 ≠ 0 i każdy niezerowy dzielnik zera jest odwracalny. Każde ciało jest domeną całkowitą.

Twierdzenie: Niech A będzie pierścieniem, wtedy poniższe są równoważne:

I A jest ciałem,

II jedyne ideały w A są 0 lub (1),

III każdy homomorfizm z A w niezerowy pierścień B jest iniekcyjną.

Dowód:

 $I \implies II$: Niech $I \ne 0$ będzie ideałem w A. Wtedy I zawiera niezerowy element x, który jest odwracalny. W takim razie $(x) \subseteq I$, a ponieważ (x) = (1), to I = (1).

II \implies III: Niech $\phi: A \to B$ będzie homomorfizmem pierścieni. Wtedy ker (ϕ) jest ideałem różnym od (1), czyli ker (ϕ) musi byc zerem, a więc jest funkcją 1 – 1.

III \implies I: Niech x będzie elementem A, który nie jest odwracalny. WTedy (x) \neq (1), czyli B = A/(x) nie jest pierścieniem zerowym. Niech ϕ : A \rightarrow B będzie naturalnym homomorfizmem A w B z jądrem (x). Przez hipotezę ϕ jest 1 – 1, czyli (x) = 0, więc x = 0.

2.4. Ideały główne i maksymalne

Ideał I \triangleleft A jest ideałem głównym, jeżeli I \neq (1) oraz $xy \in I \implies x \in I$ albo $y \in I$.