

Department of Electrical Engineering and Computer Science

EEL 4768C: Computer Architecture

Introduction

Instructor: Suboh A. Suboh

Computer Architecture

- The architecture describes the low-level software environment
 - Think of assembly language
 - How many bits is a word (32 bits?)
 - How many registers are there on the CPU?
 - What are the supported instructions?
 - What are the addressing modes?
- The architecture describes the environment in which the assembly language runs

Basic Computer Architecture

- CPU connected to Memory and other devices through strips of wire called Bus
- Carries information from place to place
 - Address bus
 - Data bus
 - Control bus

Popular Computer Architecture

ARM - most popular by number of CPUs sold

• These CPUs have low computation power; they're used in products, such as phones, calculators, home monitoring,

printers...

Popular Computer Architecture

- The next popular architecture is the IA-32 (Intel Architecture 32-bit)
- Intel x86 family of architectures
- Used in the Intel-based CPUs in laptops, desktops and servers

Popular Computer Architecture

- MIPS is the third most popular architecture
- Used in digital camera, digital TV, DVD player, automotive, tablets, media players, network router...

You can find more information on MIPS at this link:

www.mips.com

Eight Great Ideas

- Design for *Moore's Law*
- Use *abstraction* to simplify design
- Make the common case fast
- Performance via parallelism
- Performance via pipelining
- Performance via prediction
- *Hierarchy* of memories
- Dependability via redundancy

CPU(Central Processing Unit)

- CPU Function?
 - The main function of the processor is to execute instructions
- An instruction is the basic operation done by a computer
- Any program is broken down into millions or billions of instructions
 - The CPU executes these instructions one by one

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data
 - The machine language is executed by the CPU! It runs directly on the hardware.

High-level language program (in C) swap(int v[], int k)
{int temp;
 temp = v[k];
 v[k] = v[k+1];
 v[k+1] = temp;
}

Compiler

Assembly language program (for MIPS)

swap:

muli \$2, \$5,4

add \$2, \$4,\$2

lw \$15, 0(\$2)

lw \$16, 4(\$2)

sw \$16, 0(\$2)

sw \$15, 4(\$2)

jr \$31

Binary machine language program (for MIPS)

CPU Hardware Circuitry

- In early 1980s, MOS technology became good enough to put between 25,000 and 50,000 transistors on a single chip
 - Then, we could build a single-chip 32-bit microprocessor
 - Before that, a 32-bit processor would be on two chips
 - One chip eliminates chip crossing within the processor
- By late 1980s, first-level cache (memory) can go on the same chip as the microprocessor
 - Eliminates chip crossing between the processor and cache
- This lead to dramatic improvement in performance and reduction in power consumption
- These thresholds came at a critical point that they changed the processor design

Processor Performance

Moore's Law

Transistors*

1.7B

transistors

10,000,000,000

In 1965, Intel's Gordon Moore predicted that the number of transistors that can be integrated on single chip would double about every two years

Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

DRAM capacity

Manufacturing ICs

• Yield: proportion of working dies per wafer

Intel Core i7 Wafer

- 300mm wafer, 280 chips, 32nm technology
- Each chip is 20.7 x 10.5 mm

Inside the Processor

• Apple A5

Response Time and Throughput

- Response time
 - How long it takes to do a task
- Throughput
 - Total work done per unit time
 - e.g., tasks/transactions/... per hour
- How are response time and throughput affected by
 - Replacing the processor with a faster version?
 - Adding more processors?

Relative Performance

- Define Performance = 1/Execution Time
- "X is *n* time faster than Y"

Performance_x/Performance_y

- = Execution time $_{Y}$ /Execution time $_{X} = n$
- Example: time taken to run a program
 - 10s on A, 15s on B
 - Execution Time_B / Execution Time_A = 15s / 10s = 1.5
 - So A is 1.5 times faster than B

Measuring Execution Time

- Elapsed time
 - Total response time, including all aspects
 - Processing, I/O, OS overhead, idle time
 - Determines system performance
- CPU time
 - Time spent processing a given job
 - Discounts I/O time, other jobs' shares
 - Comprises user CPU time and system CPU time
 - Different programs are affected differently by CPU and system performance

CPU Clocking

 Operation of digital hardware governed by a constantrate clock

- Clock period: duration of a clock cycle
 - e.g., $250ps = 0.25ns = 250 \times 10^{-12}s$
- Clock frequency (rate): cycles per second
 - e.g., 4.0GHz = 4000MHz = 4.0×10^9 Hz

CPU Time

CPU Time = CPU Clock Cycles × Clock Cycle Time

= CPU Clock Cycles

Clock Rate

- Performance improved by
 - Reducing number of clock cycles
 - Increasing clock rate
 - Hardware designer must often trade off clock rate against cycle count

CPU Time Example

- Computer A: 2GHz clock, 10s CPU time
- Designing Computer B
 - Aim for 6s CPU time
 - Can do faster clock, but causes 1.2 × clock cycles
- How fast must Computer B clock be?

Clock Rate_B =
$$\frac{\text{Clock Cycles}_{\text{B}}}{\text{CPU Time}_{\text{B}}} = \frac{1.2 \times \text{Clock Cycles}_{\text{A}}}{6\text{s}}$$

Clock Cycles_A = CPU Time_A × Clock Rate_A

$$= 10\text{s} \times 2\text{GHz} = 20 \times 10^{9}$$

Clock Rate_B = $\frac{1.2 \times 20 \times 10^{9}}{6\text{s}} = \frac{24 \times 10^{9}}{6\text{s}} = 4\text{GHz}$

Instruction Count and CPI

 $Clock \ Cycles = Instruction \ Count \times Cycles \ per \ Instruction$ $CPU \ Time = Instruction \ Count \times CPI \times Clock \ Cycle \ Time$ $= \frac{Instruction \ Count \times CPI}{Clock \ Rate}$

- Instruction Count for a program
 - Determined by program, ISA and compiler
- Average cycles per instruction
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

CPI Example

- Computer A: Cycle Time = 250ps, CPI = 2.0
- Computer B: Cycle Time = 500ps, CPI = 1.2
- Same ISA
- Which is faster, and by how much?

$$\begin{aligned} \text{CPUTime}_{A} &= \text{Instruction Count} \times \text{CPI}_{A} \times \text{Cycle Time}_{A} \\ &= \text{I} \times 2.0 \times 250 \text{ps} = \text{I} \times 500 \text{ps} & \text{A is faster...} \end{aligned}$$

$$\begin{aligned} \text{CPUTime}_{B} &= \text{Instruction Count} \times \text{CPI}_{B} \times \text{Cycle Time}_{B} \\ &= \text{I} \times 1.2 \times 500 \text{ps} = \text{I} \times 600 \text{ps} \end{aligned}$$

$$\begin{aligned} &= \text{CPUTime}_{B} \\ &= \text{CPUTime}_{A} \end{aligned} = \frac{\text{I} \times 600 \text{ps}}{\text{I} \times 500 \text{ps}} = 1.2 & \text{...by this much} \end{aligned}$$

Performance Summary

$$CPUTime = \frac{Instructions}{Program} \times \frac{Clock\ cycles}{Instruction} \times \frac{Seconds}{Clock\ cycle}$$

- Performance depends on
 - Algorithm: affects IC, possibly CPI
 - Programming language: affects IC, CPI
 - Compiler: affects IC, CPI
 - Instruction set architecture: affects IC, CPI, T_c

Power Trends

In CMOS IC technology

Reducing Power

- Suppose a new CPU has
 - 85% of capacitive load of old CPU
 - 15% voltage and 15% frequency reduction

$$\frac{P_{\text{new}}}{P_{\text{old}}} = \frac{C_{\text{old}} \times 0.85 \times (V_{\text{old}} \times 0.85)^2 \times F_{\text{old}} \times 0.85}{C_{\text{old}} \times V_{\text{old}}^2 \times F_{\text{old}}} = 0.85^4 = 0.52$$

- The power wall
 - We can't reduce voltage further
 - We can't remove more heat
- How else can we improve performance?

Uniprocessor Performance

Multiprocessors

- Multicore microprocessors
 - More than one processor per chip
- Requires explicitly parallel programming
 - Compare with instruction level parallelism
 - Hardware executes multiple instructions at once
 - Hidden from the programmer
 - Hard to do
 - Programming for performance
 - Load balancing
 - Optimizing communication and synchronization

SPEC CPU Benchmark

- Programs used to measure performance
 - Supposedly typical of actual workload
- Standard Performance Evaluation Corp (SPEC)
 - Develops benchmarks for CPU, I/O, Web, ...
- SPEC CPU2006
 - Elapsed time to execute a selection of programs
 - Negligible I/O, so focuses on CPU performance
 - Normalize relative to reference machine
 - Summarize as geometric mean of performance ratios
 - CINT2006 (integer) and CFP2006 (floating-point)

CINT2006 for Intel Core i7 920

Description	Name	Instruction Count x 10 ⁹	CPI	Clock cycle time (seconds x 10 ⁻⁹)	Execution Time (seconds)	Reference Time (seconds)	SPECratio
Interpreted string processing	perl	2252	0.60	0.376	508	9770	19.2
Block-sorting compression	bzip2	2390	0.70	0.376	629	9650	15.4
GNU C compiler	gcc	794	1.20	0.376	358	8050	22.5
Combinatorial optimization	mcf	221	2.66	0.376	221	9120	41.2
Go game (AI)	go	1274	1.10	0.376	527	10490	19.9
Search gene sequence	hmmer	2616	0.60	0.376	590	9330	15.8
Chess game (AI)	sjeng	1948	0.80	0.376	586	12100	20.7
Quantum computer simulation	libquantum	659	0.44	0.376	109	20720	190.0
Video compression	h264avc	3793	0.50	0.376	713	22130	31.0
Discrete event simulation library	omnetpp	367	2.10	0.376	290	6250	21.5
Games/path finding	astar	1250	1.00	0.376	470	7020	14.9
XML parsing	xalancbmk	1045	0.70	0.376	275	6900	25.1
Geometric mean	-	_	_	-	-	_	25.7

Amdahl's Law

• Improving an aspect of a computer and expecting a proportional improvement in overall performance

$$T_{\text{improved}} = \frac{T_{\text{affected}}}{\text{improvement factor}} + T_{\text{unaffected}}$$

- Example: multiply accounts for 80s/100s
 - How much improvement in multiply performance to get 5× overall?

$$20 = \frac{80}{n} + 20$$
 • Can't be done!

Corollary: make the common case fast

Amdahl's Law

Example :

Suppose that we can improve the floating point instruction performance of machine by a factor of 15 (the same floating point instructions run 15 times faster on this new machine). What percent of the instructions must be floating point to achieve a *Speedup* of at least 4?

We will use Amdahl's Law again for this question.

Let x be percentage of floating point instructions. Since the speedup is 4, if the original program executed in 100 cycles, the new program runs in 100/4 = 25 cycles.

$$(100)/4 = (x)/15 + (100 - x)$$

Solving for x, we get:

$$x = 80.36$$

The percent of floating point instructions need to be 80.36.