EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto)

Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos

2005

Época Especial

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação de todo o GRUPO I.

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui sete questões de escolha múltipla.
- O Grupo II inclui cinco questões de resposta aberta, algumas delas subdivididas em alíneas, num total de dez.

Grupo I

- · As sete questões deste grupo são de escolha múltipla.
- · Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas apenas a letra correspondente à alternativa que seleccionar para responder a cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- · Não apresente cálculos, nem justificações.
- **1.** Considere a função f, de domínio $\mathbb{R}\setminus\{3\}$, definida por $f(x)=\frac{x-2}{x-3}$

Em cada uma das opções seguintes estão escritas duas equações.

Em qual das opções as duas equações definem as assimptotas do gráfico de f ?

(A) x = 2 e y = 1

(B) x = 2 e y = 2

(C) x = 3 e y = 1

- **(D)** x = 3 e y = 2
- **2.** Para um certo valor de k, é contínua em $\mathbb R$ a função f definida por

$$f(x) = \begin{cases} k + \sin x & \text{se } x \le 0 \\ \frac{3x + \ln(1+x)}{x} & \text{se } x > 0 \end{cases}$$

 $(\ln \ \operatorname{designa} \operatorname{logaritmo} \operatorname{de} \operatorname{base} \ e)$

Qual é o valor de k?

(A) 1

(B) 2

(C) 3

(D) 4

3. De uma função f, de domínio $\mathbb R$, sabe-se que a sua **derivada** é dada por

$$f'(x) = x^3 - 3x + 1.$$

Em qual dos conjuntos seguintes o $\mathbf{gráfico}$ de \mathbf{f} tem a concavidade voltada para baixo?

(B)
$$]-\infty,-1[$$

(D)]
$$-\infty$$
, 0[

4. Na figura está representada, em referencial o.n. xOy, parte do gráfico da função f, de domínio \mathbb{R} , definida por $f(x)=e^{ax}+1$ (a é uma constante real positiva).

Na figura está também representada a recta $\ r$, que é tangente ao gráfico de $\ f$ no ponto em que este intersecta o eixo $\ Oy.$

A recta $\, r \,$ intersecta o eixo $\, Ox \,$ no ponto de abcissa $\, - \, 6. \,$

Qual é o valor de a?

(A)
$$\frac{1}{2}$$

(B)
$$\frac{1}{3}$$

(C)
$$\frac{2}{3}$$

(D)
$$\frac{3}{2}$$

5. Um dado equilibrado, com as faces numeradas de 1 a 6, é lançado duas vezes.

Seja X a variável aleatória que designa o «número de vezes que, nesses dois lançamentos, sai face par».

A distribuição de probabilidades da variável $\, \, X \,$ é

x_i	0	1	2
$P(X=x_i)$	$\frac{1}{4}$	a	b

Qual das afirmações seguintes é verdadeira?

(A)
$$a = \frac{1}{4}$$
 e $b = \frac{1}{2}$

(B)
$$a = \frac{1}{4}$$
 e $b = \frac{1}{4}$

(C)
$$a = \frac{1}{2}$$
 e $b = \frac{1}{4}$

(D)
$$a = \frac{1}{2}$$
 e $b = \frac{1}{2}$

6. Escolhe-se, ao acaso, um aluno de uma turma de uma escola secundária. Considere os acontecimentos:

A: «O aluno é uma rapariga»

B: «O aluno não usa óculos»

Qual é o acontecimento **contrário** de $A \cup B$?

- (A) O aluno é um rapaz e usa óculos
- (B) O aiuno é um rapaz e não usa óculos
- (C) O aluno é um rapaz ou usa óculos
- (D) O aluno é um rapaz ou não usa óculos
- 7. Considere, no plano complexo, um ponto A, imagem geométrica de um certo número complexo z. Sabe-se que A não pertence a qualquer um dos eixos do plano complexo.

Seja B o ponto simétrico do ponto A, relativamente ao eixo imaginário.

Qual dos números complexos seguintes tem por imagem geométrica o ponto $\,B\,?\,$

(A)
$$\overline{z}$$

(B)
$$\frac{1}{z}$$

(C)
$$-\overline{z}$$

(D)
$$-z$$

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, pretende-se sempre o valor exacto.

- **1.** Em \mathbb{C} , conjunto dos números complexos, considere $z_1=cis\left(\frac{\pi}{6}\right)$
 - **1.1.** Sem utilizar a calculadora, determine o valor de $\frac{\left[i\times(z_1)^6-1\right]^2}{i}$ Apresente o resultado na forma algébrica.
 - 1.2. Represente, no plano complexo, o conjunto definido pela condição

$$|z-z_1| \leq 1 \quad \land \quad |z| \leq |z-z_1|$$

- Seis amigos, a Ana, o Bruno, a Catarina, o Diogo, a Elsa e o Filipe, v\u00e3o jantar a um restaurante. Sentam-se, ao acaso, numa mesa redonda, com seis lugares (pode considerar que os lugares est\u00e3o numerados, de 1 a 6).
 - 2.1. Sejam os acontecimentos:
 - A: «O Diogo, a Elsa e o Filipe sentam-se em lugares consecutivos, ficando a Elsa no meio.»
 - B: «A Catarina e o Filipe sentam-se ao lado um do outro.»
 - 2.1.1. Determine a probabilidade do acontecimento A. Apresente o resultado na forma de fracção irredutivel.
 - **2.1.2.** Sem utilizar a fórmula da probabilidade condicionada, indique o valor de P(B|A). Numa pequena composição, justifique a sua resposta, começando por explicar o significado de P(B|A), no contexto da situação descrita.
 - 2.2. Depois de sentados, os seis amigos resolvem escolher a refeição. Sabe-se que:
 - · na ementa, existem três pratos de peixe e quatro de carne;
 - cada um dos seis amigos vai escolher um único prato, de peixe ou de carne;
 - só o Filipe está indeciso se vai escolher peixe ou came;
 - · os restantes cinco vão escolher peixe.

De quantas maneiras diferentes podem os seis amigos escolher os seus pratos?

3. O tempo t, medido em anos, que um planeta demora a realizar uma translação completa, em torno do Sol, está relacionado com a distância média, d, desse planeta ao Sol, medida em milhões de quilómetros, por meio da fórmula

$$2 \ln(t) = k + 3 \ln(d)$$

(k é uma constante real e \ln designa logaritmo de base e)

Sem utilizar a calculadora, a não ser para efectuar eventuais cálculos numéricos, resolva as duas alíneas seguintes:

3.1. Sabe-se que:

- a distância média de Urano ao Sol é (aproximadamente) o dobro da distância média de Saturno ao Sol;
- o planeta Urano demora (aproximadamente) 84 anos a realizar uma translação completa em torno do Sol.

Determine quanto tempo demora o planeta Saturno a realizar uma translação completa em torno do Sol. Apresente o resultado em anos, arredondado às décimas.

Nota: sempre que, nos cálculos intermédios, proceder a arredondamentos, conserve, no mínimo, três casas decimais.

- **3.2.** Sabendo que a distância média da Terra ao Sol é, aproximadamente, de 149,6 milhões de quilómetros, determine o valor de k (apresente o resultado arredondado às unidades).
- **4.** De uma função f, de domínio \mathbb{R} , sabe-se que:
 - f tem derivada finita em todos os pontos de $\, \mathbb{R} \,$
 - f(0) = -1
 - f é estritamente crescente em \mathbb{R}^- e é estritamente decrescente em \mathbb{R}^+

Seja g a função, de domínio \mathbb{R} , definida por $g(x)=[f(x)]^2$.

Prove que $\,1\,$ é o mínimo da função $\,g.$

5. Na figura estão representadas uma semi-recta $\dot{A}B$ e uma circunferência de centro O e raio 1 (os pontos O, A e B são colineares; o ponto A pertence à circunferência).

Considere que um ponto $\,P\,$ se desloca ao longo da semi-recta $\,\dot{A}B\,$, nunca coincidindo com o ponto $\,A\,$.

Os pontos R e S acompanham o movimento do ponto P, de tal forma que as rectas PR e PS são sempre tangentes à circunferência, nos pontos R e S, respectivamente.

Seja α a amplitude, em radianos, do ângulo $SOR \ (\alpha \in \]0,\pi[).$

- **5.1.** Mostre que a área do **quadrilátero** [ORPS] é dada, em função de α , por $f(\alpha)=\operatorname{tg}\left(\frac{\alpha}{2}\right)$
- **5.2.** Calcule $\lim_{\alpha \to \pi^-} f(\alpha)$ e interprete geometricamente o resultado obtido.
- **5.3.** Recorra à calculadora para determinar **graficamente** a solução da equação que lhe permite resolver o seguinte problema:

Qual é o valor de $\, \alpha \,$ para o qual a área do quadrilátero [ORPS] é igual à área da região sombreada?

Apresente todos os elementos recolhidos na utilização da calculadora, nomeadamente o **gráfico**, ou **gráficos**, obtido(s), bem como coordenadas relevantes de alguns pontos. Apresente o valor pedido na forma de dízima, arredondado às décimas.

COTAÇÕES

Grupo I	63
Cada resposta certa	3
Nota: um total negativo neste grupo vale 0 (zero) pontos.	
Grupo II	137
1	21
1.1	
2	32
2.1	2
2.21	0 ,
3	29
3.1	
4	15
5	40
5.1	4
TOTAL	200