Московский Государственный Университет имени М. В. Ломоносова Механико-математический факультет Кафедра вычислительной математики

Численное моделирование нестационарного течения газа с использованием неявной разностной схемы А.Г.Соколова СКОРОСТЬ-ПЛОТНОСТЬ

Работу выполнил:

студент 410 группы Ясинский Н. Д.

Оглавление

1.	Постан	овка задачи	2
2.	Разнос	тная схема	3
3.	Запись	уравнений разностной схемы в координатах	3
4.	Отлади	ка на гладком решении	4
5.	Расчет	задачи протекания	15
	5.1.	Первый набор параметров	15
	5.2.	Второй набор параметров	19
	5.3.	Третий набор параметров	23
6.	Сравне	ение собственной реализации CGS и реализации в пакете LASPACK	27

1. Постановка задачи

Рассмотрим систему уравнений, описывающую нестационарное движение баротропного газа в области $\Omega = \Omega_{00} \cup \Omega_{01} \cup \Omega_{02} \cup \Omega_{11} \cup \Omega_{20} \cup \Omega_{21} \cup \Omega_{22}$, где Ω_{nm} - квадрат n < x < n+1 и m < y < m+1:

$$\begin{cases} \frac{\partial \rho}{\partial t} + div(\rho \boldsymbol{u}) = 0, \\ \rho \left[\frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u}, \nabla) \boldsymbol{u} \right] + \nabla p = L \boldsymbol{u} + \rho \boldsymbol{f}, \\ p = p(\rho), \end{cases}$$
(1)

где L есть линейный симметричный положительно определенный оператор. В нашей задаче берем

$$L\boldsymbol{u} \equiv div(\mu \nabla \boldsymbol{u}) + \frac{1}{3} \nabla(\mu div \boldsymbol{u})$$

Как и в одномерном случае, через μ обозначаем известную константу (0.1, 0.01 или 0.001), давление газа полагаем равным $p = C\rho$, где C = 1, 100, 1000. Вектор внешних сил f = f(x) считаем заданным.

Поскольку мы рассматриваем двумерную по пространству задачу, то напишем уравнения системы в этом случае:

$$\begin{cases}
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_1}{\partial x_1} + \frac{\partial \rho u_2}{\partial x_2} = f_0, \\
\frac{\partial \rho u_1}{\partial t} + \frac{\partial \rho u_1^2}{\partial x_1} + \frac{\partial \rho u_2 u_1}{\partial x_2} + \frac{\partial p}{\partial x_1} = \mu(\frac{4}{3}\frac{\partial^2 u_1}{\partial x_1^2} + \frac{\partial^2 u_1}{\partial x_2^2} + \frac{1}{3}\frac{\partial^2 u_2}{\partial x_1 \partial x_2}) + \rho f_1 \\
\frac{\partial \rho u_2}{\partial t} + \frac{\partial \rho u_2^2}{\partial x_2} + \frac{\partial \rho u_1 u_2}{\partial x_1} + \frac{\partial p}{\partial x_2} = \mu(\frac{4}{3}\frac{\partial^2 u_2}{\partial x_2^2} + \frac{\partial^2 u_2}{\partial x_1^2} + \frac{1}{3}\frac{\partial^2 u_1}{\partial x_1 \partial x_2}) + \rho f_2
\end{cases}$$
(2)

Неизвестные функции: плотность ρ и вектор скорости \boldsymbol{u} являются функциями переменных Эйлера $(t,\boldsymbol{x})\in Q=[0,T]\times\Omega$

В начальный момент времени задаются функции, значения которых определяют плотность и скорость газа в каждой точке Ω :

$$(\rho, \mathbf{u})|_{t=0} = (\rho_0, \mathbf{u_0}), \ x \in \Omega.$$

Наконец, установим граничные условия прилипания газа: $u_1|_{\partial\Omega}=u_2|_{\partial\Omega}=0$

2. Разностная схема

Для поиска численного решения задачи можно использовать схему А.Г.Соколова СКОРОСТЬ-ПЛОТНОСТЬ.

$$\begin{cases} H_{\bar{s}_{1}\bar{s}_{2}}V_{1_{t}} + H_{\bar{s}_{1}\bar{s}_{2}}\delta_{1}\{\hat{V}_{1}, V_{1}\} + H_{\bar{s}_{1}\bar{s}_{2}}\delta_{2}\{\hat{V}_{1}, V_{2}\} + p(H_{\bar{s}_{2}})\bar{x}_{1} = \\ = \mu(\frac{4}{3}(\hat{V}_{1})_{x_{1}\bar{x}_{1}} + (\hat{V}_{1})_{x_{2}\bar{x}_{2}}) + \frac{\mu}{3}(V_{2})_{x_{1}^{o}x_{2}^{o}} + f_{1}H_{\bar{s}_{1}\bar{s}_{2}}, & \text{при } H_{\bar{s}_{1}\bar{s}_{2}} \neq 0, \\ \hat{V}_{1} = 0, & \text{при } H_{\bar{s}_{1}\bar{s}_{2}} = 0, & \mathbf{x} \in \Omega_{\bar{h}}; \\ H_{\bar{s}_{1}\bar{s}_{2}}V_{2_{t}} + H_{\bar{s}_{1}\bar{s}_{2}}\delta_{1}\{\hat{V}_{2}, V_{1}\} + H_{\bar{s}_{1}\bar{s}_{2}}\delta_{2}\{\hat{V}_{2}, V_{2}\} + p(H_{\bar{s}_{1}})\bar{x}_{2} = \\ = \mu(\frac{4}{3}(\hat{V}_{2})_{x_{2}\bar{x}_{2}} + (\hat{V}_{2})_{x_{1}\bar{x}_{1}}) + \frac{\mu}{3}(V_{1})_{x_{1}^{o}x_{2}^{o}} + f_{2}H_{\bar{s}_{1}\bar{s}_{2}}, & \text{при } H_{\bar{s}_{1}\bar{s}_{2}} \neq 0, \\ \hat{V}_{2} = 0, & \text{при } H_{\bar{s}_{1}\bar{s}_{2}} = 0, & \mathbf{x} \in \Omega_{\bar{h}}; \\ H_{t} + (\sigma_{1}\{\hat{H}, \hat{V}_{1_{s_{2}}}\}\hat{V}_{1_{s_{2}}})_{x_{1}} + (\sigma_{2}\{\hat{H}, \hat{V}_{2_{s_{1}}}\}\hat{V}_{2_{s_{1}}})_{x_{2}} = 0, & \mathbf{x} \in \Omega_{\bar{h}}^{\frac{1}{2}} \end{cases}$$

3. Запись уравнений разностной схемы в координатах

Используем следующие обозначения:

$$\begin{split} \tilde{H}^n_{m_1,m_2} &= \frac{H^n_{m_1,m_2} + H^n_{m_1-1,m_2} + H^n_{m_1,m_2-1} + H^n_{m_1-1,m_2-1}}{4}, \\ \tilde{V}^n_{1m_1,m_2} &= \frac{V^n_{1m_1,m_2} + V^n_{1m_1,m_2+1}}{2}, \quad \tilde{V}^n_{2m_1,m_2} &= \frac{V^n_{2m_1,m_2} + V^n_{2m_1+1,m_2}}{2}, \\ H^n_{1m_1,m_2} &= \frac{H^n_{m_1,m_2} + H^n_{m_1,m_2-1}}{2}, \quad H^n_{2m_1,m_2} &= \frac{H^n_{m_1,m_2} + H^n_{m_1-1,m_2}}{2}. \end{split}$$

Тогда первое уравнение разностной схемы в координатах выглядит так:

$$\begin{cases} V_{1_{m_{1},m_{2}}}^{n+1}(\tilde{H}_{m_{1},m_{2}}^{n}(\frac{1}{\tau}+\frac{|V_{1_{m_{1},m_{2}}}^{n}|}{h_{1}}+\frac{|V_{2_{m_{1},m_{2}}}^{n}|}{h_{2}})+\frac{8\mu}{3h_{1}^{2}}+\frac{2\mu}{h_{2}^{2}})+\\ +V_{1_{m_{1}-1,m_{2}}}^{n+1}(-\frac{\tilde{H}_{m_{1},m_{2}}^{n}}{2h_{1}}(|V_{1_{m_{1},m_{2}}}^{n}|+V_{1_{m_{1},m_{2}}}^{n})-\frac{4\mu}{3h_{1}^{2}})+V_{1_{m_{1},m_{2}-1}}^{n+1}(-\frac{\tilde{H}_{m_{1},m_{2}}^{n}}{2h_{2}}(|V_{2_{m_{1},m_{2}}}^{n}|+V_{2_{m_{1},m_{2}}}^{n})-\frac{\mu}{h_{2}^{2}})+\\ +V_{1_{m_{1}+1,m_{2}}}^{n+1}(-\frac{\tilde{H}_{m_{1},m_{2}}^{n}}{2h_{1}}(|V_{1_{m_{1},m_{2}}}^{n}|-V_{1_{m_{1},m_{2}}}^{n})-\frac{4\mu}{3h_{1}^{2}})+V_{1_{m_{1},m_{2}+1}}^{n+1}(-\frac{\tilde{H}_{m_{1},m_{2}}^{n}}{2h_{2}}(|V_{2_{m_{1},m_{2}}}^{n}|-V_{2_{m_{1},m_{2}}}^{n})-\frac{\mu}{h_{2}^{2}})=\\ =\frac{\tilde{H}_{m_{1},m_{2}}^{n}V_{1_{m_{1},m_{2}}}^{n}}{\tau}-\frac{p(H_{1_{m_{1},m_{2}}}^{n})-p(H_{1_{m_{1}-1,m_{2}}}^{n})}{h_{1}}+\frac{\mu}{3}\frac{V_{2_{m_{1}-1,m_{2}-1}}^{n}-V_{2_{m_{1}-1,m_{2}+1}}^{n}-V_{2_{m_{1}+1,m_{2}-1}}^{n}+V_{2_{m_{1}+1,m_{2}+1}}^{n}}{4h_{1}h_{2}}+\\ +f_{1_{m_{1},m_{2}}}^{n+1}\tilde{H}_{m_{1},m_{2}}^{n}\text{ при }\tilde{H}_{m_{1},m_{2}}^{n}\neq0, \text{ иначе }V_{1_{m_{1},m_{2}}}^{n+1}=0, \ \boldsymbol{x}\in\Omega_{\bar{h}}. \end{cases}$$

Второе уравнение:

$$\begin{cases} V_{2m_{1},m_{2}}^{n+1} (\tilde{H}_{m_{1},m_{2}}^{n}(\frac{1}{\tau} + \frac{|V_{1m_{1},m_{2}}^{n}|}{h_{1}} + \frac{|V_{2m_{1},m_{2}}^{n}|}{h_{2}}) + \frac{8\mu}{3h_{2}^{2}} + \frac{2\mu}{h_{1}^{2}}) + \\ + V_{2m_{1}-1,m_{2}}^{n+1} (-\frac{\tilde{H}_{m_{1},m_{2}}^{n}}{2h_{1}} (|V_{1m_{1},m_{2}}^{n}| + V_{1m_{1},m_{2}}^{n}) - \frac{\mu}{h_{1}^{2}}) + V_{2m_{1},m_{2}-1}^{n+1} (-\frac{\tilde{H}_{m_{1},m_{2}}^{n}}{2h_{2}} (|V_{2m_{1},m_{2}}^{n}| + V_{2m_{1},m_{2}}^{n}) - \frac{4\mu}{3h_{2}^{2}}) + \\ + V_{2m_{1}+1,m_{2}}^{n+1} (-\frac{\tilde{H}_{m_{1},m_{2}}^{n}}{2h_{1}} (|V_{1m_{1},m_{2}}^{n}| - V_{1m_{1},m_{2}}^{n}) - \frac{\mu}{h_{1}^{2}}) + V_{2m_{1},m_{2}+1}^{n+1} (-\frac{\tilde{H}_{m_{1},m_{2}}^{n}}{2h_{2}} (|V_{2m_{1},m_{2}}^{n}| - V_{2m_{1},m_{2}}^{n}) - \frac{4\mu}{3h_{2}^{2}}) = \\ = \frac{\tilde{H}_{m_{1},m_{2}}^{n} V_{2m_{1},m_{2}}^{n}}{\tau} - \frac{p(H_{2m_{1},m_{2}}^{n}) - p(H_{2m_{1},m_{2}-1}^{n})}{h_{2}} + \frac{\mu}{3} \frac{V_{1m_{1}-1,m_{2}-1}^{n} - V_{1m_{1}-1,m_{2}+1}^{n} - V_{1m_{1}+1,m_{2}-1}^{n} + V_{1m_{1}+1,m_{2}-1}^{n$$

Третье уравнение:

$$\begin{cases}
H_{m_{1},m_{2}}^{n+1}(\frac{1}{\tau} + \frac{1}{2h_{1}}(\tilde{V}_{1m_{1}+1,m_{2}}^{n+1} + |\tilde{V}_{1m_{1}+1,m_{2}}^{n+1}| - \tilde{V}_{1m_{1},m_{2}}^{n+1} + |\tilde{V}_{1m_{1},m_{2}}^{n+1}|) + \\
+ \frac{1}{2h_{2}}(\tilde{V}_{2m_{1},m_{2}+1}^{n+1} + |\tilde{V}_{2m_{1},m_{2}+1}^{n+1}| - \tilde{V}_{2m_{1},m_{2}}^{n+1} + |\tilde{V}_{2m_{1},m_{2}}^{n+1}|)) + \\
+ H_{m_{1}-1,m_{2}}^{n+1}(-\frac{\tilde{V}_{1m_{1},m_{2}}^{n+1} + |\tilde{V}_{1m_{1},m_{2}}^{n+1}|}{2h_{1}}) + H_{m_{1},m_{2}-1}^{n+1}(-\frac{\tilde{V}_{2m_{1},m_{2}}^{n+1} + |\tilde{V}_{2m_{1},m_{2}}^{n+1}|}{2h_{2}}) + \\
+ H_{m_{1}+1,m_{2}}^{n+1}(\frac{\tilde{V}_{1m_{1}+1,m_{2}}^{n+1} - |\tilde{V}_{1m_{1}+1,m_{2}}^{n+1}|}{2h_{1}}) + H_{m_{1},m_{2}+1}^{n+1}(\frac{\tilde{V}_{2m_{1},m_{2}+1}^{n+1} - |\tilde{V}_{2m_{1},m_{2}+1}^{n+1}|}{2h_{2}}) = \frac{H_{m_{1},m_{2}}^{n}}{\tau} + f_{0}, \ \boldsymbol{x} \in \Omega_{\tilde{h}}^{\frac{1}{2}}.
\end{cases}$$
(6)

На каждом временном слое будем сначала из первых двух уравнений находить $V_{1_{i,j}}$ и $V_{2_{i,j}}$ и далее использовать найденные значения скоростей для нахождения плотности $H_{i,j}$.

4. Отладка на гладком решении

Зададим функции:

$$u_1 = \sin(2\pi x_1)\sin(2\pi x_2)e^t$$

$$u_2 = \sin(2\pi x_1)\sin(2\pi x_2)e^{-t}$$

$$\rho(t, x_1, x_2) = (\cos(2\pi x_1) + \frac{3}{2})(\sin(2\pi x_2) + \frac{3}{2})e^t$$

Определим f_0, f_1, f_2 так, чтобы они удовлетворяли системе (2) и найдем их непо-

средственной подстановкой:

$$\begin{cases} u_{1_{t_1}} = u_1 \\ u_{1_{x_1}} = 2\pi cos(2\pi x_1)sin(2\pi x_2)e^t \\ u_{1_{x_1}} = 2\pi sin(2\pi x_1)cos(2\pi x_2)e^t \\ u_{1_{x_1,x_1}} = u_{1_{x_2,x_2}} = -4\pi^2u_1 \\ u_{1_{x_1,x_2}} = 4\pi^2cos(2\pi x_1)cos(2\pi x_2)e^t \\ u_{2_t} = -u_2 \\ u_{2_{x_1}} = 2\pi cos(2\pi x_1)sin(2\pi x_2)e^{-t} \\ u_{2_{x_2}} = 2\pi sin(2\pi x_1)cos(2\pi x_2)e^{-t} \\ u_{2_{x_1,x_1}} = u_{2_{x_2,x_2}} = -4\pi^2u_2 \\ u_{2_{x_1,x_2}} = 4\pi^2cos(2\pi x_1)cos(2\pi x_2)e^{-t} \\ \rho_t = \rho \\ \rho_{x_1} = -2\pi sin(2\pi x_1)(sin(2\pi x_2) + \frac{3}{2})e^t \\ \rho_{x_2} = 2\pi(cos(2\pi x_1) + \frac{3}{2})cos(2\pi x_2)e^t \\ f_0 = \rho_t + u_1\rho_{x_1} + \rho u_{1_{x_1}} + u_2\rho_{x_2} + \rho u_{2_{x_2}} \\ f_1 = \frac{u_1\rho_t + \rho u_{1_t} + u_1^2\rho_{x_1} + 2\rho u_1 u_{1_t} + u_1 u_2\rho_{x_2} + u_1\rho u_{2_x} + u_2\rho u_{1_{x_2}} + p_{x_1} - \frac{4}{3}\mu u_{1_{x_1,x_1}} - \mu u_{1_{x_2,x_2}} - \frac{1}{3}\mu u_{2_{x_1,x_2}} \\ f_2 = \frac{u_2\rho_t + \rho u_2_t + u_2^2\rho_{x_2} + 2\rho u_2 u_{2_{x_2}} + u_1\rho u_{2_{x_1}} + u_2\rho u_{1_{x_1}} + p_{x_2} - \frac{4}{3}\mu u_{2_{x_1,x_2}} - \frac{1}{3}\mu u_{1_{x_1,x_2}} \\ \rho \\ 3$$
анустим программу и составим таблицы опнобок численного решения для плот-

Запустим программу и составим таблицы ошибок численного решения для плотности и скорости в нормах $\|\cdot\|_{C_h}$, $\|\cdot\|_{L^2}$, $\|\cdot\|_W$ при различных значениях C=1, 10 и $\mu=0.1,\ 0.01,\ 0.001$. Анализируя их, можем заметить, что схема сходится с порядком $O(\tau+h^2)$.

Таблица 1. Ошибка для Hпри $\mu=0.1$ и C=1

au / h	0.05	0.025	0.0125	0.00625
0.050000	3.382585e-01	2.922250e-01	2.847450e-01	2.840030e-01
	3.058462e-01	2.992953e-01	3.053588e-01	3.108551e-01
	2.590994e+01	3.230783e+01	4.380752e+01	6.099383e+01
0.025000	1.951517e-01	1.481547e-01	1.373600e-01	1.358182e-01
	1.661374e-01	1.476231e-01	1.483555e-01	1.517066e-01
	2.157172e+01	2.397083e+01	3.082853e+01	4.254339e+01
0.012500	1.264181e-01	7.670930e-02	6.546455e-02	6.307194e-02
	1.097124e-01	7.928331e-02	7.285834e-02	7.346984e-02
	$1.993576e{+01}$	1.986318e+01	2.241246e+01	2.957164e+01
0.006250	9.369401e-02	6.442703e-02	4.256141e-02	2.833280e-02
	9.241624e-02	5.531793e-02	4.019941e-02	3.625986e-02
	1.944743e+01	$1.856775 e{+01}$	$1.815391\mathrm{e}{+01}$	$ \boxed{ 2.088751 \mathrm{e}{+01} } $

Таблица 2. Ошибка для V_1 при $\mu=0.1$ и C=1

au / h	0.05	0.025	0.0125	0.00625
0.050000	3.601637e-01	1.314280e-01	9.133186e-02	7.452318e-02
	4.246110e-01	1.295482e-01	9.116871e-02	9.289078e-02
	3.037685e+01	2.077480e+01	$2.243616\mathrm{e}{+01}$	2.717535e+01
0.025000	4.101887e-01	9.500941e-02	5.117395e-02	3.361618e-02
	4.515754e-01	1.241552e-01	4.540428e-02	3.658604e-02
	3.161865e+01	1.995805e+01	$1.545543e{+01}$	1.724373e+01
0.012500	4.352984e-01	1.183641e-01	3.152034e-02	1.379714e-02
	4.675480e-01	1.313621e-01	3.723685e-02	1.123091e-02
	3.233428e+01	2.066203e+01	1.358249e+01	1.034845e+01
0.006250	4.478783e-01	1.300659e-01	3.870640e-02	1.065004e-02
	4.760910e-01	1.371567e-01	4.080806e-02	1.147848e-02
	3.271024e+01	2.123852e+01	1.426613e+01	1.026613e+01

Таблица 3. Ошибка для V_2 при $\mu=0.1$ и C=1

au / h	0.05	0.025	0.0125	0.00625
0.050000	2.460131e-01	7.277457e-02	3.460319e-02	2.562245e-02
	2.339442e-01	6.682971e-02	3.103373e-02	2.523181e-02
	2.163462e+01	1.431885e+01	1.228577e + 01	$1.362920 \mathrm{e}{+01}$
0.025000	2.477339e-01	6.508771e-02	2.254865e-02	1.333730e-02
	2.324035e-01	6.081065e-02	2.032757e-02	1.193801e-02
	$2.160151\mathrm{e}{+01}$	1.371151e+01	9.964773e+00	9.384880e+00
0.012500	2.491775e-01	6.338530e-02	1.808867e-02	7.304048e-03
	2.318302e-01	5.873068e-02	1.685523e-02	6.593511e-03
	$2.160445\mathrm{e}{+01}$	1.357887e+01	9.347249e+00	7.424938e+00
0.006250	2.498810e-01	6.330425e-02	1.733863e-02	7.571211e-03
	2.315967e-01	5.797251e-02	1.606412e-02	5.747964e-03
	2.161109e+01	1.356425e+01	9.349207e+00	7.379013e+00

Таблица 4. Ошибка для Hпри $\mu=0.01$ и C=1

au / h	0.05	0.025	0.0125	0.00625
0.050000	4.122917e-01	2.812023e-01	2.514614e-01	2.448973e-01
	3.994312e-01	3.190713e-01	3.074923e-01	3.069445e-01
	2.995057e+01	$3.260100\mathrm{e}{+01}$	4.258987e + 01	5.874851e+01
0.025000	2.769793e-01	1.460063e-01	1.155383e-01	nan
	2.615796e-01	1.656424e-01	1.517471e-01	nan
	2.544780e + 01	2.393560e+01	$2.954906\mathrm{e}{+01}$	nan
0.012500	2.096799e-01	7.886364e-02	5.391509e-02	5.298915e-02
	2.004414e-01	9.098553e-02	7.558236e-02	7.371939e-02
	2.305103e+01	1.849456e+01	2.056341e+01	2.713830e+01
0.006250	1.761250e-01	4.783208e-02	3.556534e-02	3.373939e-02
	1.741278e-01	5.604922e-02	4.002608e-02	3.829052e-02
	2.184015e+01	1.552498e+01	1.529783e+01	1.893338e+01

Таблица 5. Ошибка для V_1 при $\mu=0.01$ и C=1

au / h	0.05	0.025	0.0125	0.00625
0.050000	7.726822e-01	2.455662e-01	9.056710e-02	3.982691e-02
	9.653279e-01	3.293501e-01	1.196739e-01	4.377673e-02
	4.832513e+01	3.384282e+01	$2.481890e{+01}$	1.968564 e+01
0.025000	8.214596e-01	2.895325e-01	1.282552e-01	nan
	9.927509e-01	3.476983e-01	1.392235e-01	nan
	4.901033e+01	3.475919e+01	2.667454e + 01	nan
0.012500	8.458603e-01	3.115743e-01	1.494754e-01	9.305098e-02
	$1.007031\mathrm{e}{+00}$	3.586793e-01	1.529832e-01	9.297785e-02
	4.936799e+01	3.532249e+01	$2.800631\mathrm{e}{+01}$	2.705763e+01
0.006250	8.580598e-01	3.226104e-01	1.601039e-01	1.034728e-01
	1.014309e+00	3.645818e-01	1.605974e-01	1.030919e-01
	4.955037e+01	$3.562650 \mathrm{e}{+01}$	2.872893e+01	2.843333e+01

Таблица 6. Ошибка для V_2 при $\mu=0.01$ и C=1

au / h	0.05	0.025	0.0125	0.00625
0.050000	8.504541e-01	2.015802e-01	5.956985e-02	4.510771e-02
	8.462032e-01	1.921688e-01	5.663115e-02	3.325543e-02
	4.514841e+01	2.813022e+01	2.061922e+01	1.908164 e + 01
0.025000	8.484116e-01	2.002554e-01	7.049868e-02	nan
	8.440840e-01	1.882500e-01	5.917255e-02	nan
	$4.520644\mathrm{e}{+01}$	2.820189e+01	$2.128681\mathrm{e}{+01}$	nan
0.012500	8.472332e-01	2.012441e-01	7.620237e-02	6.092131e-02
	8.431215e-01	1.868970e-01	6.247501e-02	5.066535e-02
	$4.524011\mathrm{e}{+01}$	2.827720e+01	2.178233e+01	$2.203129\mathrm{e}{+01}$
0.006250	8.466064e-01	2.028664e-01	7.905384e-02	6.371225e-02
	8.426641e-01	1.863782e-01	6.456430e-02	5.444196e-02
	$4.525801\mathrm{e}{+01}$	2.832466e+01	2.206253e+01	$2.262367\mathrm{e}{+01}$

Таблица 7. Ошибка для Hпри $\mu=0.001$ и C=1

au / h	0.05	0.025	0.0125	0.00625
0.050000	4.359734e-01	2.836349e-01	3.660001e-01	2.462570e + 01
	4.673008e-01	3.338357e-01	3.116752e-01	$\left \begin{array}{ccc} 3.742721\mathrm{e}{+00} \end{array} \right $
	3.260859e+01	3.332512e+01	4.476679e + 01	$ \boxed{ 6.401519 \mathrm{e}{+02} } $
0.025000	3.018430e-01	1.508509e-01	1.156831e-01	1.080348e-01
	3.380116e-01	1.824690e-01	1.558249e-01	1.511675e-01
	2.883934e+01	2.509370e+01	$2.987060\mathrm{e}{+01}$	4.038614e+01
0.012500	2.353122e-01	9.355749e-02	6.327856e-02	nan
	2.820088e-01	1.101973e-01	7.990994e-02	nan
	2.695844e+01	2.014641e+01	2.119039e+01	nan
0.006250	2.047358e-01	6.734325e-02	nan	nan
	2.577537e-01	7.735284e-02	nan	nan
	2.604453e+01	1.754713e+01	nan	nan

Таблица 8. Ошибка для V_1 при $\mu=0.001$ и C=1

au / h	0.05	0.025	0.0125	0.00625
0.050000	$1.666174\mathrm{e}{+00}$	7.043645e-01	4.684878e-01	3.144968e+01
	1.503148e+00	7.304118e-01	4.844502e-01	8.323016e+00
	6.004914e+01	5.052014e+01	5.576455e+01	9.575495e+02
0.025000	1.699403e+00	7.429665e- 01	5.019025e-01	4.176943e-01
	1.538692e+00	7.575845e-01	5.118000e-01	4.499569e-01
	6.080118e+01	5.158499e+01	5.248194e+01	5.999946e+01
0.012500	1.717114e+00	7.630549e-01	5.186224e-01	nan
	1.561353e+00	7.726113e-01	5.264785e-01	nan
	6.125439e+01	5.215625e+01	5.325308e+01	nan
0.006250	1.726253e+00	7.733053e-01	nan	nan
	1.573984e+00	7.804740e-01	nan	nan
	$6.150236\mathrm{e}{+01}$	$5.245080\mathrm{e}{+01}$	nan	nan

Таблица 9. Ошибка для V_2 при $\mu=0.001$ и C=1

au / h	0.05	0.025	0.0125	0.00625
0.050000	1.453296e+00	4.643355e-01	3.772796e-01	8.176351e+00
	1.147613e+00	3.835316e-01	3.739666e-01	9.858405e-01
	5.303547e+01	$4.193850\mathrm{e}{+01}$	5.111102e+01	3.112038e+02
0.025000	1.445692e+00	4.728937e-01	3.866631e-01	3.898031e-01
	1.153702e+00	3.912218e-01	3.819731e-01	4.000425e-01
	5.317349e+01	$4.232242\mathrm{e}{+01}$	$4.904422\mathrm{e}{+01}$	5.914669e+01
0.012500	1.440002e+00	4.772398e-01	3.913910e-01	nan
	1.156502e+00	3.951769e-01	3.864010e-01	nan
	5.324462e+01	$4.251953\mathrm{e}{+01}$	$4.927759\mathrm{e}{+01}$	nan
0.006250	1.436669e+00	4.794547e-01	nan	nan
	$1.157906\mathrm{e}{+00}$	3.971910e-01	nan	nan
	5.328328e+01	4.262017e+01	nan	nan

Таблица 10. Ошибка для Hпри $\mu=0.1$ и C=10

au / h	0.05	0.025	0.0125	0.00625
0.050000	4.379158e-01	3.088312e-01	2.795949e-01	2.737192e-01
	4.095019e-01	3.260409e-01	3.136366e-01	3.129914e-01
	3.060367e+01	$3.364110\mathrm{e}{+01}$	4.399431e+01	$ \boxed{ 6.064656\mathrm{e}{+01} } $
0.025000	3.010068e-01	1.719869e-01	1.420741e-01	nan
	2.724374e-01	1.723619e-01	1.568701e-01	nan
	$2.614531\mathrm{e}{+01}$	$2.518130\mathrm{e}{+01}$	$3.130805\mathrm{e}{+01}$	nan
0.012500	2.329619e-01	1.040855e-01	7.373151e-02	nan
	2.118628e-01	9.759850e-02	7.917247e-02	nan
	2.376315e+01	$1.985254e{+01}$	2.256677e + 01	nan
0.006250	1.990453e-01	7.024033e-02	nan	3.271347e-02
	1.857565e-01	6.243194e-02	nan	3.789985e-02
	$2.255067\mathrm{e}{+01}$	$1.678784\mathrm{e}{+01}$	nan	2.115671e+01

Таблица 11. Ошибка для V_1 при $\mu=0.1$ и C=10

au / h	0.05	0.025	0.0125	0.00625
0.050000	7.204431e-01	3.116563e-01	1.685392e-01	1.061471e-01
	9.770114e-01	3.509234e-01	1.582984e-01	9.953150e-02
	4.842439e+01	3.491748e+01	$2.869366\mathrm{e}{+01}$	2.795485e+01
0.025000	7.690490e-01	2.912625e-01	1.426778e-01	nan
	9.987966e-01	3.560184e-01	1.471959e-01	nan
	4.897149e+01	3.502905e+01	$2.716655\mathrm{e}{+01}$	nan
0.012500	7.934429e-01	2.814438e-01	1.304680e-01	nan
	1.010494e+00	3.608143e-01	1.467062e-01	nan
	$4.926667\mathrm{e}{+01}$	3.522359e+01	$2.692458e{+01}$	nan
0.006250	8.056646e-01	2.765132e-01	nan	5.766870e-02
	$1.016536\mathrm{e}{+00}$	3.637599e-01	nan	6.457842e-02
	4.941936e+01	3.535443e+01	nan	2.137451e+01

Таблица 12. Ошибка для V_2 при $\mu=0.1$ и C=10

au / h	0.05	0.025	0.0125	0.00625
0.050000	8.779638e-01	2.341308e-01	8.521627e-02	4.990941e-02
	8.755831e-01	2.176451e-01	7.441395e-02	4.091681e-02
	$4.550631\mathrm{e}{+01}$	2.860092e+01	2.065922e+01	1.823011e+01
0.025000	8.774487e-01	2.257516e-01	7.314089e-02	nan
	8.733826e-01	2.100133e-01	6.354602e-02	nan
	$4.554308\mathrm{e}{+01}$	2.839343e+01	$1.978960\mathrm{e}{+01}$	nan
0.012500	8.771238e-01	2.216494e-01	6.828953e-02	nan
	8.723749e-01	2.066381e-01	5.945652e-02	nan
	$4.556552e{+01}$	$2.832600 \mathrm{e}{+01}$	$1.955954e{+01}$	nan
0.006250	8.769438e-01	2.195770e-01	nan	2.201314e-02
	8.718950e-01	2.050710e-01	nan	1.969993e-02
	4.557777e + 01	2.830187e+01	nan	1.480412e+01

Таблица 13. Ошибка для Hпри $\mu=0.01$ и C=10

au / h	0.05	0.025	0.0125	0.00625
0.050000	5.022297e-01	$2.318006\mathrm{e}{+01}$	8.002827e+01	4.569114e+02
	4.983093e-01	$4.033700 \mathrm{e}{+00}$	$1.255065\mathrm{e}{+01}$	$\left \ 2.718427\mathrm{e}{+01}\ \right $
	3.425143e+01	2.526827e + 02	$6.479960\mathrm{e}{+02}$	1.625057e + 03
0.025000	3.667539e-01	1.889509e-01	1.448961e-01	1.346814e-01
	3.709241e-01	1.962107e-01	1.633320e-01	1.571070e-01
	$3.052235\mathrm{e}{+01}$	2.698553e+01	3.190348e+01	4.284493e+01
0.012500	2.993979e-01	1.217692e-01	7.748501e-02	6.719677e-02
	3.155665e-01	1.246295e-01	8.610734e-02	7.898373e-02
	2.860323e+01	2.219031e+01	2.341771e+01	3.035203e+01
0.006250	2.658226e-01	8.828099e-02	4.388522e-02	3.355768e-02
	2.913040e-01	9.213179e-02	4.816854e-02	4.008584e-02
	$2.764170\mathrm{e}{+01}$	1.951889e+01	$1.780842\mathrm{e}{+01}$	$ \boxed{ 2.159109\mathrm{e}{+01} } $

Таблица 14. Ошибка для V_1 при $\mu=0.01$ и C=10

au / h	0.05	0.025	0.0125	0.00625
0.050000	1.359984e+00	9.816287e + 01	3.730740e+02	7.263507e + 02
	1.314541e+00	3.006015e+01	9.733602e+01	$\left \begin{array}{c} 1.527184\mathrm{e}{+02} \end{array}\right $
	5.786361e+01	6.794086e+02	$1.636865\mathrm{e}{+03}$	2.854633e+03
0.025000	$1.400920 \mathrm{e}{+00}$	4.422100e-01	1.728284e-01	8.584164e-02
	1.339660e+00	4.856445e-01	2.112132e-01	1.059539e-01
	5.843342e+01	$4.147836\mathrm{e}{+01}$	3.231285e+01	2.716561e+01
0.012500	1.421356e+00	4.605578e-01	1.900734e-01	1.047909e-01
	$1.352040\mathrm{e}{+00}$	4.934495e-01	2.181868e-01	1.144532e-01
	5.871929e+01	4.181827e+01	3.285871e+01	2.834385e+01
0.006250	1.431589e+00	4.697625e-01	1.988547e-01	1.144009e-01
	1.358144e+00	4.976405e-01	2.223616e-01	1.198970e-01
	5.886130e+01	4.200244 e + 01	3.319438e+01	2.909968e+01

Таблица 15. Ошибка для V_2 при $\mu=0.01$ и C=10

au / h	0.05	0.025	0.0125	0.00625
0.050000	1.680875e+00	6.494087e+01	2.248977e + 02	6.399047e+02
	1.419798e+00	1.078925e+01	$6.382032\mathrm{e}{+01}$	1.363810e+02
	5.627146e+01	4.154757e + 02	1.273870e + 03	2.628431e+03
0.025000	1.679677e+00	4.179273e-01	1.031969e-01	6.266666e-02
	1.422674e+00	3.110594e-01	8.817872e-02	5.281883e-02
	5.638024e+01	3.400912e+01	$2.485517\mathrm{e}{+01}$	2.349406e+01
0.012500	1.678966e+00	4.131386e-01	9.866717e-02	7.059630e-02
	1.424404e+00	3.092335e-01	8.951032e-02	5.924689e-02
	5.644265e+01	3.401329e+01	$2.512959\mathrm{e}{+01}$	2.442240e+01
0.006250	1.678427e + 00	4.106807e-01	9.638085e-02	7.471750e-02
	1.425261e+00	3.083945e-01	9.050876e-02	6.272706e-02
	5.647419e+01	3.402114e+01	$2.529399\mathrm{e}{+01}$	2.491654e + 01

Таблица 16. Ошибка для Hпри $\mu=0.001$ и C=10

au / h	0.05	0.025	0.0125	0.00625
0.050000	1.619038e+01	2.132490e+02	1.833493e+03	nan
	8.086971e+00	2.917370e+01	7.611850e+01	nan
	2.175257e + 02	6.256078e + 02	1.747229e+03	nan
0.025000	4.157885e-01	1.294371e+01	6.110039e+02	nan
	4.089933e-01	5.336948e+00	3.034687e+01	nan
	3.195356e+01	2.929706e+02	1.064212e+03	nan
0.012500	3.450884e-01	1.345620e-01	1.446227e+01	nan
	3.513142e-01	1.351194e-01	4.452185e+00	nan
	2.999332e+01	$2.319011\mathrm{e}{+01}$	4.480412e+02	nan
0.006250	3.099180e-01	1.015528e-01	4.685647e-02	nan
	3.262885e-01	1.036259e-01	5.069289e-02	nan
	2.902492e+01	2.067521e+01	1.835243e+01	nan

Таблица 17. Ошибка для V_1 при $\mu=0.001$ и C=10

au / h	0.05	0.025	0.0125	0.00625
0.050000	2.592893e+02	$9.188390\mathrm{e}{+02}$	2.046037e + 03	nan
	2.482567e + 02	5.788986e+02	8.298532e+02	nan
	1.142722e+03	2.247511e+03	3.898030e+03	nan
0.025000	3.261186e+00	3.658394e+02	8.167039e+02	nan
	2.934761e+00	2.079971e+02	5.741028e+02	nan
	8.312269e+01	$1.476630\mathrm{e}{+03}$	3.148327e+03	nan
0.012500	$3.352350 e{+00}$	7.989225e-01	2.038734e+02	nan
	3.041358e+00	7.646975e-01	1.511962e+02	nan
	8.376787e + 01	5.322959e+01	1.871809e+03	nan
0.006250	3.348656e+00	8.096317e-01	5.078112e-01	nan
	3.058518e+00	7.769644e-01	5.215247e-01	nan
	8.384589e+01	5.363803e+01	5.272447e+01	nan

Таблица 18. Ошибка для V_2 при $\mu=0.001$ и C=10

au / h	0.05	0.025	0.0125	0.00625
0.050000	3.097526e+02	9.105192e+02	$1.810486\mathrm{e}{+03}$	nan
	$2.465527\mathrm{e}{+02}$	6.508973e+02	9.003029e+02	nan
	1.145382e+03	2.222291e+03	3.831220e+03	nan
0.025000	3.800390e+00	3.093700e+02	9.076518e+02	nan
	$2.869558\mathrm{e}{+00}$	2.030082e+02	= 5.383942e + 02	nan
	$8.138894\mathrm{e}{+01}$	1.426623e+03	3.115168e+03	nan
0.012500	$3.762316\mathrm{e}{+00}$	6.709359e-01	2.116510e + 02	nan
	$2.881800\mathrm{e}{+00}$	5.676468e-01	1.526669e+02	nan
	$8.138077\mathrm{e}{+01}$	$4.663713\mathrm{e}{+01}$	1.858727e + 03	nan
0.006250	3.766894e+00	6.714674e-01	3.888786e-01	nan
	2.880976e+00	5.676194e-01	4.049462e-01	nan
	$8.128286\mathrm{e}{+01}$	$4.660626\mathrm{e}{+01}$	5.027010e+01	nan

5. Расчет задачи протекания

Рассмотрим граничные условия $u_1|_{\Gamma_{00}^{x-}\cup\Gamma_{01}^{x-}\cup\Gamma_{02}^{x-}}=\omega=const$ и $\frac{\partial u_2}{\partial y}|_{\Gamma_{20}^{y-}}=0$, моделирующие втекание и вытекание газа соответственно. Здесь Γ_{nm}^{z-} обозначает минимальное значение координаты z (z=x или z=x) в соответствующем квадрате. На оставшейся границе Ω все так же действуют условия прилипания.

Зададим начальные условия:

$$\begin{cases} u_1(0, \boldsymbol{x}) = 0, & \boldsymbol{x} \in \Omega \\ u_2(0, \boldsymbol{x}) = 0, & \boldsymbol{x} \in \Omega \\ \rho(0, \boldsymbol{x}) = \rho_{\gamma} = const, & \boldsymbol{x} \in \Omega \end{cases}$$
(8)

Запустим программу, считая, что решение СЛУ найдено, если норма псевдоневязки в методе CGS упала в 10^9 раз. Будем считать, что счет закончен, если С-норма плотности и L_2 -нормы скоростей на двух соседних слоях отличаются менее, чем на 10^{-3} . Исследуем момент завершения программы для параметров $\rho_{\gamma} \in \{1, 10\}, \ \omega \in \{0.5, 1\}, \ C \in \{1, 10\}, \ \mu \in \{0, 0.01, 0.1\}.$

5.1. Первый набор параметров

Таблица 19. Момент завершения задачи протекания при $h=0.05, \tau=0.01$

C/μ		0.001			0.01			0.1	
1	ω/ ho_{γ}	1	10	ω/ ho_{γ}	1	10	ω/ ho_{γ}	1	10
	0.5	10.65	12.94	0.5	6.86	7.37	0.5	2.34	3.17
	1	15.59	>100	1	10.92	18.33	1	6.88	7.27
10	ω/ ho_{γ}	1	10	ω/ ho_{γ}	1	10	ω/ ho_{γ}	1	10
	0.5	17.14	13.07	0.5	9.05	9.83	0.5	2.86	2.44
	1	12.84	26.17	1	8.92	21.75	1	3.75	7.38

Значение '> 100' означает, что разница плотности и скоростей на соседних слоях не опустилась ниже требуемой за t=100.

Приведем иллюстрации плотности и скорости газа в случае $C=1,~\mu=0.01,~\omega=1,~\rho_{\gamma}=1,~h=0.05,~\tau=0.01.$ Анализ приведенных ниже рисунков показывает, что

движение газа постепенно переходит в течение из области $\Gamma_{00}^{x-} \cup \Gamma_{01}^{x-} \cup \Gamma_{02}^{x-}$ в Γ_{20}^{y-} . Также можем наблюдать образование постоянного вихря в Ω_{22} и исчезающего с течением времени вихря в Ω_{20} .

t = 0

t = 0.5

t = 1

t = 2

t = 5

t = 7.5

t = 10.92

Также изобразим то, как менялась масса газа с течением времени до момента стабилизации течения. Видим, что масса постоянно увеличивается, однако скорость ее изменения все время уменьшается.

Изменение массы от времени

5.2. Второй набор параметров

Измельчим сетку по времени и пространству в два раза и проведем аналогичные тесты:

Таблица 20. Момент завершения задачи протекания при $h=0.025, \tau=0.005$

C/μ	0.001			0.01		0.1			
1	ω/ ho_{γ}	1	10	ω/ ho_{γ}	1	10	ω/ ho_{γ}	1	10
	0.5	8.38	9.47	0.5	4.46	4.17	0.5	1.45	2.10
	1	11.04	>100	1	8.04	14.15	1	3.50	6.11
10	ω/ ho_{γ}	1	10	ω/ ho_{γ}	1	10	ω/ ho_{γ}	1	10
	0.5	11.63	7.28	0.5	7.04	3.14	0.5	2.59	0.86
	1	>100	21.61	1	7.04	15.17	1	3.08	3.47

Приведем иллюстрации плотности и скорости газа, понизив коэффициент вязкости газа μ по сравнению с первым случаем: $C=1,\ \mu=0.001,\ \omega=1,\ \rho_{\gamma}=1,\ h=0.025,\ \tau=0.005.$ На рисунках ниже также можем наблюдать два вихря: в Ω_{22} и в Ω_{20} , причем второй с течением времени был вытеснен к краю области.

t = 0

t = 0.5

t = 1

t = 2

t = 5

t = 7.5

t = 10

Также покажем то, как менялась масса газа с течением времени до момента стабилизации течения. Аналогично первому случаю масса постоянно увеличивается, однако скорость ее изменения все время уменьшается. Суммарные массы в обоих случаях примерно равны.

Изменение массы от времени

5.3. Третий набор параметров

Измельчим сетку по времени и пространству еще в два раза и проведем аналогичные тесты:

Таблица 21. Момент завершения задачи протекания при $h=0.0125, \tau=0.0025$

C/μ		0.001			0.01			0.1	
1	ω/ ho_{γ}	1	10	ω/ ho_{γ}	1	10	ω/ ho_{γ}	1	10
	0.5	>50	>50	0.5	-	19.21	0.5	5.85	6.17
	1	>50	>50	1	19.05	34.9	1	-	14.43
10	ω/ ho_{γ}	1	10	ω/ ho_{γ}	1	10	ω/ ho_{γ}	1	10
	0.5	>50	>50	0.5	11.88	19.89	0.5	3.76	6.72
	1	-	>50	1	12.7	35.6	1	11.44	10.77

Прочерк в клетке таблицы означает, что схема разошлась при данных параметрах. Приведем иллюстрации плотности и скорости газа, повысив на этот раз коэффициент вязкости газа μ и увеличив коэффициент зависимости между давлением и плотностью C по сравнению с первым случаем: $C=10,\ \mu=0.1,\ \omega=1.,\ \rho_{\gamma}=1,\ h=0.0125,\ \tau=0.0025$. Заметим, что с этим набором параметров течение происходило намного быстрее, а из-за усиления критерия стабилизации плотность газа во всей области выровнялась.

Еще на рисунках ниже можем видеть два вихря в Ω_{00} и в Ω_{02} , образовавшихся в начале и исчезнувшех со временем. Также остался вихрь в Ω_{22} , однако к моменту стабилизации скорость газа в нем сильно упала, а вот вихрь в Ω_{20} на этом наборе параметров не появлялся вообще.

t = 0

t = 0.45

t = 1

t = 2

t = 5

t = 7.5

t = 11.44

Также покажем то, как менялась масса газа с течением времени до момента стабилизации течения. Здесь поведение массы похоже на два предыдущих случая, однако масса в состоянии стабилизации течения получилась заметно меньше.

Изменение массы от времени

6. Сравнение собственной реализации CGS и реализации в пакете LASPACK

Все вычисления, проведенные выше, использовали собственную реализацию алгоритма CGS. Сравним моменты завершения программы с собственной реализацией CGS и программы, в которой CGS берется из пакета LASPACK.

Первый набор параметров: $h=0.05,\ \tau=0.01,\ \omega=1,\ \mu=0.01,\ C=1,\ \rho_{\gamma}=1$ Второй набор параметров: $h=0.025,\ \tau=0.005,\ \omega=1,\ \mu=0.001,\ C=1,\ \rho_{\gamma}=1$ Третий набор параметров: $h=0.0125,\ \tau=0.0025,\ \omega=1.,\ \mu=0.1,\ C=10,\ \rho_{\gamma}=1$

Таблица 22. Моменты завершения задачи протекания

Набор параметров	Набор параметров Собственная реализация Реа	
1	10.92	10.92
2	11.04	11.04
3	11.44	11.44

Можем заметить, что время до стабилизации решения задач протекания совпало, что скорее всего означает, что получены одинаковые решения. Теперь сравним время работы, общее количество итераций и количество итераций в секунду у данных программ.

Таблица 23. Время работы в секундах

Набор параметров	Собственная реализация	Реализация из LASPACK
1	6.80	10.67
2	65.86	86.72
3	1193.63	1556.35

Таблица 24. Общее количество итераций

Набор параметров	Собственная реализация	Реализация из LASPACK
1	30894	36360
2	64446	78012
3	262534	331673

Таблица 25. Количество итераций в секунду

Набор параметров	Собственная реализация	Реализация из LASPACK
1	4543	3407
2	978	900
3	220	213

Можем видеть, что собственная реализация итерационного солвера CGS предпочтительнее реализации, представленной в пакете LASPACK и по времени работы, и по числу итераций, и по количеству итераций в секунду.