Microsoft[®] Research

S-MART:

Novel Tree-based Structured Learning Algorithms Applied to Tweet Entity Linking

Yi Yang* and Ming-Wei Chang#

*Georgia Institute of Technology, Atlanta *Microsoft Research, Redmond

Traditional NLP Settings

- High dimensional sparse features (e.g., lexical features)
 - Languages are naturally in high dimensional spaces.
 - Powerful! Very expressive.
- Linear models
 - Linear Support Vector Machine
 - Maximize Entropy model

Sparse features

+ Linear models

Rise of Dense Features

Low dimensional embedding features

Low dimensional statistics features

Dense features + Non-linear models

Non-linear Models

Neural networks

Non-linear Models

- Neural networks
- Kernel methods
- Tree-based models (e.g., Random Forest, Boosted Tree)

Non-linear Models

- Neural networks
- Kernel methods
- ▶ Tree-based models (e.g., Random Forest, Boosted Tree)

Tree-based Models

- Empirical successes
 - Information retrieval [LambdaMART; Burges, 2010]
 - Computer vision [Babenko et al., 2011]
 - ▶ Real world classification [Fernandez-Delgado et al., 2014]
- Why tree-based models?
 - Handle categorical features and count data better.
 - Implicitly perform feature selection.

Contribution

- We present S-MART: Structured Multiple Additive Regression Trees
 - A general class of tree-based structured learning algorithms.
 - A friend of problems with dense features.
- We apply S-MART to entity linking on short and noisy texts
 - Entity linking utilizes statistics dense features.
- Experimental results show that S-MART significantly outperforms all alternative baselines.

Outline

S-MART: A family of Tree-based Structured Learning Algorithms

- S-MART for Tweet Entity Linking
 - Non-overlapping inference

Experiments

Outline

S-MART: A family of Tree-based Structured Learning Algorithms

- S-MART for Tweet Entity Linking
 - Non-overlapping inference

Experiments

Structured Learning

Model a joint scoring function $S(\mathbf{x}, \mathbf{y})$ over an input structure \mathbf{x} and an output structure \mathbf{y}

 Obtain the prediction requires inference (e.g., dynamic programming)

$$\widehat{\mathbf{y}} = \underset{y \in Gen(\mathbf{x})}{\operatorname{arg\,max}} S(\mathbf{x}, \mathbf{y})$$

Structured Multiple Additive Regression Trees (S-MART)

Assume a decomposition over factors

$$S(\mathbf{x}, \mathbf{y}) = \sum_{k \in \Omega(\mathbf{x})} F(\mathbf{x}, \mathbf{y}_k)$$

Optimize with functional gradient descents

$$F_m(\mathbf{x}, \mathbf{y}_k) = F_{m-1}(\mathbf{x}, \mathbf{y}_k) - \eta_m g_m(\mathbf{x}, \mathbf{y}_k)$$

Model functional gradients using regression trees $h_m(\mathbf{x}, \mathbf{y}_k)$

$$F(\mathbf{x}, \mathbf{y}_k) = F_M(\mathbf{x}, \mathbf{y}_k) = \sum_{m=1}^{M} \eta_m h_m(\mathbf{x}, \mathbf{y}_k)$$

Gradient Descent

Linear combination of parameters and feature functions

$$F(\mathbf{x}, \mathbf{y}_k) = \mathbf{w}^{\top} f(\mathbf{x}, \mathbf{y}_k)$$

Gradient descent in vector space

$$\mathbf{w}_m = \mathbf{w}_{m-1} - \eta_m \frac{\partial L}{\partial \mathbf{w}_{m-1}}$$

Gradient Descent in Function Space

$$F_0(\mathbf{x}, \mathbf{y}_k) = 0$$

$$g_m(\mathbf{x}, \mathbf{y}_k) = \left[\frac{\partial L(\mathbf{y}^*, S(\mathbf{x}, \mathbf{y}_k))}{\partial F(\mathbf{x}, \mathbf{y}_k)} \right]_{F(\mathbf{x}, \mathbf{y}_k) = F_{m-1}(\mathbf{x}, \mathbf{y}_k)}$$

Gradient Descent in Function Space

$$F_0(\mathbf{x}, \mathbf{y}_k) = 0$$

$$g_m(\mathbf{x}, \mathbf{y}_k) = \left[\frac{\partial L(\mathbf{y}^*, S(\mathbf{x}, \mathbf{y}_k))}{\partial F(\mathbf{x}, \mathbf{y}_k)} \right]_{F(\mathbf{x}, \mathbf{y}_k) = F_{m-1}(\mathbf{x}, \mathbf{y}_k)}$$

Gradient Descent in Function Space

$$F_0(\mathbf{x}, \mathbf{y}_k) = 0$$

$$F_m(\mathbf{x}, \mathbf{y}_k) = F_{m-1}(\mathbf{x}, \mathbf{y}_k) - \eta_m g_m(\mathbf{x}, \mathbf{y}_k)$$

Model Functional Gradients

Model Functional Gradients

Pointwise Functional Gradients

Model Functional Gradients

- Pointwise Functional Gradients
 - Approximation by regression

TreeCRF

[Dietterich+, 2004]

S-MART

TreeCRF

[Dietterich+, 2004]

S-MART

Structure

Linear chain

Various structures

	TreeCRF [Dietterich+, 2004]	S-MART
Structure	Linear chain	Various structures
Loss function	Logistic loss	Various losses

	TreeCRF [Dietterich+, 2004]	S-MART
Structure	Linear chain	Various structures
Loss function	Logistic loss	Various losses
Scoring function	$F^{y_t}(\mathbf{x})$	$F(\mathbf{x},\mathbf{y}_t)$

Outline

S-MART: A family of Tree-based Structured Learning Algorithms

- S-MART for Tweet Entity Linking
 - Non-overlapping inference

Experiments

Entity Linking in Short Texts

- Data explosion: noisy and short texts
 - Twitter messages
 - Web queries

- Downstream applications
 - Semantic parsing and question answering [Yih et al., 2015]
 - ▶ Relation extraction [Riedel et al., 2013]

Tweet Entity Linking

Entity Linking meets Dense Features

- Short of labeled data
 - Lack of context makes annotation more challenging.
 - Language changes, annotation may become stale and ill-suited for new spellings and words. [Yang and Eisenstein, 2013]
- Powerful statistic dense features [Guo et al., 2013]
 - The probability of a surface form to be an entity
 - View count of a Wikipedia page
 - Textual similarity between a tweet and a Wikipedia page

- Structured learning: select the best non-overlapping entity assignment
 - Choose top 20 entity candidates for each surface form
 - Add a special NIL entity to represent no entity should be fired here

- Structured learning: select the best non-overlapping entity assignment
 - Choose top 20 entity candidates for each surface form
 - Add a special NIL entity to represent no entity should be fired here

- Structured learning: select the best non-overlapping entity assignment
 - Choose top 20 entity candidates for each surface form
 - Add a special NIL entity to represent no entity should be fired here

- Structured learning: select the best non-overlapping entity assignment
 - Choose top 20 entity candidates for each surface form
 - Add a special NIL entity to represent no entity should be fired here

- Structured learning: select the best non-overlapping entity assignment
 - Choose top 20 entity candidates for each surface form
 - Add a special NIL entity to represent no entity should be fired here

S-MART for Tweet Entity Linking

Logistic loss

$$L(\mathbf{y}^*, S(\mathbf{x}, \mathbf{y})) = -\log P(\mathbf{y}^* | \mathbf{x})$$
$$= \log Z(\mathbf{x}) - S(\mathbf{x}, \mathbf{y}^*)$$

Point-wise gradients

$$g_{ku} = \frac{\partial L}{\partial F(\mathbf{x}, y_k = u_k)}$$
 Inference
$$= P(y_k = u_k | \mathbf{x}) - \mathbf{1}[y_k^* = u_k]$$

Inference: Forward Algorithm

$$\alpha(u_k, k) = \exp(F(\mathbf{x}, y_k = u_k))$$

$$\cdot \prod_{p=1}^{P-1} \exp(F(\mathbf{x}, y_{k-p} = \mathbf{Nil}))$$

$$\cdot \sum_{u_{k-P}} \alpha(u_{k-P}, k-P)$$

Inference: Backward Algorithm

Eli Manning and the New York Giants are going to win the World Series

Eli

Eli Manning

Manning

New

New York

York

New York Giants

Giants

 $\beta(u_k,k)$

win World

World Series

Series

Inference: Backward Algorithm

Eli Manning and the New York Giants are going to win the World Series

Eli

Eli Manning

Manning

New

New York

New York Giants

York

win

World

World Series

Series

$$\beta(u_k, k) = \sum_{u_{k+Q}} \left(\exp(F(\mathbf{x}, y_{k+Q} = u_{k+Q})) \right)$$

$$\cdot \prod_{q=1}^{Q-1} \exp(F(\mathbf{x}, y_{k+q} = \mathbf{Nil}))$$

$$\beta(u_{k+Q}, k+Q)$$

Outline

S-MART: A family of Tree-based Structured Learning Algorithms

- S-MART for Tweet Entity Linking
 - Non-overlapping inference
- Experiments

Data

- Named Entity Extraction & Linking (NEEL) Challenge datasets [Cano et al., 2014]
- ► TACL datasets [Fang & Chang, 2014]

Data	#Tweet	#Entity	Date
NEEL Train	2,340	2,202	Jul. ~ Aug. 11
NEEL Test	1,164	687	Jul. ~ Aug. 11
TACL-IE	500	300	Dec. 12
TACL-IR	980	-	Dec. 12

Evaluation Methodology

- ▶ IE-driven Evaluation [Guo et al., 2013]
 - Standard evaluation of the system ability on extracting entities from tweets
 - Metric: macro F-score

- ▶ IR-driven Evaluation [Fang & Chang, 2014]
 - Evaluation of the system ability on disambiguation of the target entities in tweets
 - Metric: macro F-score on query entities

Algorithms

	Structured	Non-linear	Tree-based
Structured Perceptron			
Linear SSVM*			
Polynomial SSVM			
LambdaRank	_		
MART#			
S-MART			

^{*} previous state of the art system

[#] winning system of NEEL challenge 2014

	85	
_	80	
NEEL Test F	75	
Z	70	
	65	

	70	
	65	
ACL-IR F1	60	
_	55	
	50	

Conclusion

- A novel tree-based structured learning framework S-MART
 - Generalization of TreeCRF
- A novel inference algorithm for non-overlapping structure of the tweet entity linking task.
- Application: Knowledge base QA (outstanding paper of ACL'15)
 - Dur system is a core component of the QA system.
- Rise of non-linear models
 - We can try advanced neural based structured algorithms
 - It's worth to try different non-linear models

Thank you!