ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 28 ottobre 2020

Esercizio 1

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$.

Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_2 in modo che, in condizioni di riposo, la tensione di uscita V_u sia $12\ V$;
- 2) Determinare, inoltre, il punto di riposo del transistore Q₁ e i parametri per il modello di piccolo segnale.

È consentita la consultazione del solo manuale delle caratteristiche. Nel caso di presenza appunti, testi in vista, si procederà all'immediato annullamento della prova scritta.

ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 28 ottobre 2020

Esercizio 2

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$; Q_2 è un transistore MOS a canale n resistivo con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$.

Con riferimento al circuito in figura:

1) Determinare l'espressione di V_U/V_i alle frequenze per le quali i condensatori C_1 , C_2 e C_3 possono essere considerati dei corto circuiti.

È consentita la consultazione del solo manuale delle caratteristiche. Nel caso di presenza appunti, testi in vista, si procederà all'immediato annullamento della prova scritta.

ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 28 ottobre 2020

Esercizio 3

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = A\overline{B} + C(\overline{D} + \overline{E}B)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento di tutti i transistori.

$$T_5 = \frac{V_{cc} - V_c}{R_5} = 0.5 \text{ mA}$$

$$I_c = I_{6+}I_5 = 2 mA$$

$$R_2 = \frac{V_K}{T_2} = \frac{7.5}{13.1 \times 10^{-6}} = 572368.4 \Omega$$

$$R_{1} = S25 \text{ K} \text{R}$$
 $R_{3} = 58 \text{ K} \text{R}$
 $R_{4} = 3.2 \text{ K} \text{R}$
 $R_{5} = 13.2 \text{ K} \text{R}$
 $R_{6} = 400 \text{ R}$
 $R_{7} = 400 \text{ K}$
 $R_{8} = 400 \text{ K}$

$$G_{1}: \int I_{c} = 2 mA$$

$$V_{c} = 5V$$

$$I_{g} = 6.83655 \mu A$$

$$h_{f} = 290$$

$$h_{i} = 4800 \Omega$$

$$h_{f} = 3ee$$

$$\frac{V_{u}}{V_{i}} = (-g_{m})(R_{s}||R_{14}) \frac{1}{1+g_{m}R_{44}}(R_{s}||R_{s})(A-h/e) \frac{R_{6}||R_{7}}{(R_{6}||R_{7})+R_{8}+(R_{3}||R_{10})}(-\frac{R_{4}}{R_{3}+R_{4}})$$

$$\frac{1}{(h/e+1)(R_{3}||R_{4}+R_{5})+hie+(R_{1}||R_{2})}$$

Ed esercizio b

Saturday, October 24, 2020

$$Y = A \cdot \overline{B} + C(\overline{D} + \overline{E} \cdot B)$$

$$\sum = A \cdot \overline{B} + C(\overline{D} + \overline{E} \cdot B)$$

PATH DA 3:

$$\left(\frac{w}{z}\right)_{q,ll,l2} = x$$

$$\frac{x}{1} + \frac{x}{2} + \frac{x}{2} = \frac{1}{p} \Rightarrow \frac{x}{3} = \frac{1}{p}$$

DITI. 10, 124-400 6-10

$$\frac{W}{Z}_{10} = t - \frac{1}{t} + \frac{1}{3\rho} = \frac{1}{\rho} - \frac{1}{t} = \frac{3}{3\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{5}{2\rho} = \frac{3}{2\rho} - \frac{7.5}{2\rho} = \frac{3}{2\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{5}{2\rho} = \frac{3}{2\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{5}{2\rho} = \frac{3}{2\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{5}{2\rho} = \frac{3}{2\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{1}{2\rho} = \frac{3}{2\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{1}{3\rho} = \frac{2}{2\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} - \frac{1}{3\rho} - \frac{1}{3\rho} - \frac{1}{3\rho} - \frac{1}{3\rho} = \frac{2}{3\rho} - \frac{1}{3\rho} - \frac$$

B.M. 7-8

$$\left(\frac{w}{\zeta}\right)_{7,p} = f \implies \frac{1}{F} + \frac{1}{F} = \frac{2}{F} = \frac{1}{F} \implies f = 2p = 10$$

$$\left(\frac{w}{\zeta}\right)_{7,p} = 2p = 10$$

PATA BP 3:

$$\left(\frac{w}{Z}\right)_{13,14,16,17} = Z$$

$$\frac{1}{Z} + \frac{1}{Z} + \frac{1}{Z} = \frac{3}{Z} = \frac{1}{M} \implies Z = 3M = 6$$

$$\left(\frac{w}{Z}\right)_{13,14,16,17} = 3M = 6$$

PATR DA 2,

$$\left(\frac{N}{2}\right)_{15} = l$$
 $\rightarrow \frac{1}{2} + \frac{1}{3m} = \frac{1}{n} \rightarrow \frac{1}{2} = \frac{3}{3n} - \frac{1}{3m} = \frac{2}{3n}$

$$\ell = \frac{3}{2}n = 3$$