

1. Aritmética binaria, formatos de representación numérica y arquitectura de Von Neumann

Contenidos

- 1.- Tipos de información: instrucciones y datos
 - 1. Introducción
 - 2. Sistemas posicionales
- 2.- Representaciones numéricas
 - 1. Coma fija
 - 2. Coma flotante. Estándar IEEE 754

1.- Tipos de información: instrucciones y datos

- Los seres humanos utilizamos diferentes tipos de información en función de nuestros sentidos.
- Los ordenadores solo pueden procesar, directamente, información binaria.
- Para que el ordenador pueda utilizar un determinado tipo de información es necesario transformarla a binario: traducción simbólica

1.- Tipos de información: instrucciones y datos

- Todo ordenador maneja un conjunto finito de valores:
 - ❖ Binario (dos estados)
 - ❖ Ancho de los buses, tamaño de los registros, ...

Ej.: En un registro/bus de 8 bits caben 256 valores distintos ¿Cómo representar un estado de ánimo?

• Algunos tipos de información son infinitos y continuos, mientras que la información se almacena de forma finita y discontinua.

Características de la representación

- Toda representación elegida tiene limitaciones. Es preciso describir estas limitaciones y para ello se utiliza principalmente dos atributos:
 - Rango de representación: Intervalo entre el menor y mayor elemento representable.
 - Resolución de la representación: Diferencia entre un elemento representable y el siguiente.
 - Nos ofrece una idea del máximo error cometido en la representación de una cantidad.
 - La resolución puede ser constante o no.

Características de la representación

La representaciones usadas en un computador son causa y efecto de las características del mismo (tanto de la estructura como de la arquitectura)

Representación seleccionada

Tipos de datos

Operaciones sobre datos

Características de la máquina

Tamaño de información característico

- Octeto o byte: secuencia de 8 bits
- Palabra: Información manipulada en paralelo en el interior del computador (32 bits típico, 16, 8, 4 y 36, 48, 64)
 - $^$ palabra \Rightarrow n representables \Rightarrow p potencia de cálculo
 - Media palabra:
 Para cuando no hace falta gran precisión. Ahorra "sitio"
 - Doble palabra:
 Para mejorar precisión de cálculo. Necesita de más "sitio"
- Resolución de acceso a memoria:

Tamaño mínimo de información que es capaz de leer directamente de memoria.

Sistemas de numeración posicionales-Repaso Definición

<u>Binario</u>: Base 2, {0,1}

Posición	S	4	3	2	1	0	-1	-2	-3	-4
Peso	-/+	16	8	4	2	1	1/2	1/4	1/8	1/16

<u>Hexadecimal</u> Base 16, {0,1,2, 3,..., 8, 9, A, B, ..., F}

Posición	S	4	3	2	1	0	-1	-2	-3	-4
Peso	-/+	16 ⁴	16 ³	16 ²	16 ¹	16^{0}	16-1	16-2	16-3	16-4

Sistemas de numeración posicionales - Repaso Conversión

- Decimal a binario: *Ej: 318,6*₍₁₀₎
- Parte entera: Potencias implícitas

$$318 = 256+32+16+8+4+2 = 2^8 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1$$

posiciones 8, 5, 4, 3, 2, 1

Parte fraccionaria: parte entera del producto por 2

$$0.6 \times 2 = 1.2 \triangleright 1$$
 en posición -1 ; $0.2 \times 2 = 0.4 \triangleright 0$ en posición -2 ; $0.4 \times 2 = 0.8 \triangleright 0$ en posición -3 ; $0.8 \times 2 = 1.6 \triangleright 1$ en posición -4 $318.6_{(10)} = 100111110.1001_{(2)}$

• Binario a hexadecimal: convertir grupos de 4 cifras binarias a derecha e izquierda de la coma

Bin.	1	0	0	1	1	1	1	1	0	1	0	0	1	
Hex.	1		3	3		E				9				
	13E,9													

Códigos de Representación

- •Signo magnitud: Signo = 0 (si es positivo), Signo = 1 (si es negativo) $-2^{n-1} + 1 \le x \le 2^{n-1} 1$
- •Complemento a 1: binario (si es positivo), complementado (si es negativo) $-2^{n-1} + 1 \le x \le 2^{n-1} 1$
- •Complemento a 2: binario (si es positivo), C1+1 (si es negativo) $\frac{-2^{n-1} \le x \le 2^{n-1} 1}{1}$
- •Exceso: Se suma el exceso $2^{n-1}-1$ al número que se quiere representar $R = A + 2^{n-1}-1$

Número	S-M	C-1	C-2	Exc 4bits -7 ≤ x ≤ +8	Exc 5 bits -15 ≤ x ≤ +16	Exc 6 bits -31 ≤ x ≤ +32
3	0 11	011	011	1010	10010	
-12	1 1100	10011	10100	Imposible	00011	010011
23	0 10111	010111	010111	Imposible		
-72						

Códigos de Representación - Ejemplo -

Disponemos de un registro de 6 bits y queremos representar el número -23

Signo magnitud	<u>C - 1</u>	<u>C - 2</u>	<u>Exceso</u>
$-2^{n-1} + 1 \le x \le 2^{n-1} - 1$ $-31 \le x \le +31$	$-2^{n-1} + 1 \le x \le 2^{n-1} - 1$ $-31 \le x \le +31$	$-2^{n-1} \le x \le 2^{n-1} - 1$ $-32 \le x \le +31$	$-2^{n-1} + 1 \le x \le 2^{n-1}$ $-31 \le x \le +32$
como el número es - el bit de signo es 1 11011	como el número es - se complementan todos sus dígitos	como el número es - se complementan <u>todos</u> sus dígitos y después se suma 1	exceso = $2^{n-1}-1 = 31$ se suma el exceso -23 + 31 = 8
	$0 1 0 1 1 1 \rightarrow 1 0 1 0 0 0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	001000
Resultado:	Resultado:	Resultado:	Resultado:
110111	101000	101001	<u>0 0 1 0 0 0</u>

Formatos numéricos

Objetivo:

- ➤ Cuando tenemos un número de cifras binarias considerables, aparece el problema de cómo representar este Nº en un espacio limitado.
- > Representar números reales en un espacio de bits limitado
- **▶** Dos formatos:
 - Coma fija: más sencillo pero con menor rango de representación
 - Coma flotante: más complejo pero con una amplia capacidad de representación

Formatos numéricos: coma fija

Delimita tres zonas de representación Signo, Parte entera, Parte fraccionaria

- ☐ Hay que definir previamente el Nº de bits asignados
- ☐ La parte entera se introduce de derecha a izquierda
- ☐ La parte fraccionaria de introduce de izquierda a derecha
- ☐ El signo siempre es el bit más significativo
- ☐ Si el nº de bits a introducir > capacidad del formato aparecen truncamientos → Errores de representación

Definición: P.E. 4 bits, P.F. 5 bits (el signo se sobreentiende que es 1 bit)									
S		P.	E.		P.F				
1	1	0	0	1	1 1 0 1 1				

Formatos numéricos: coma flotante

Coma flotante: parte de la notación exponencial de un número

```
-12,456 = -1,2456 \times 10^{1}
0,0000000213 = 2,13 \times 10^{-8}
3916538910213 = 3,916538910213 \times 10^{12}
-11011,001 = -1,1011001 \times 2^{100}
```

- ☐ Partiendo de una representación en base (B)
- ☐ Cualquier número se representa mediante:
 - ➤ Signo (S),
 - ➤ Mantisa (M),
 - > Exponente (E)

S M x B^E

Formatos numéricos: coma flotante

Coma flotante: Características

S M x B^E

- ☐ La mantisa se normaliza: se ajusta a la forma fraccionaria 1,xxxx
- ☐ Puede utilizar bit implícito: no se representa el bit más significativo de la mantisa, porque se sobreentiende que es 1.
- ☐ La mantisa es fraccionaria: se introduce de izquierda a derecha.
- \square El exponente es un entero representado en exceso $2^{n-1}-1$. Siendo n el nº de bits del exponente

Formatos numéricos: Estándar IEEE754

• Estándar para el almacenamiento en coma flotante utilizado por la mayoría de los ordenadores.

S Exponente Mantisa

Define dos formatos:

Precisión simple: 32 bits (S: 1, E: 8, M: 23). Variables de tipo float

Precisión doble: 64 bits (S: 1, E: 11, M: 52). Variables de tipo double

Características:

❖ Exponente: exceso 2ⁿ⁻¹-1

Mantisa: signo-magnitud, normalizada con bit implícito

Formatos numéricos: Estándar IEEE754

Precisión simple: 32 bits (signo: 1, exponente: 8, mantisa: 23)

☐ El valor se calcula con la siguiente expresión:

$$N = (-1)S \times 1.M \times 2^{E-127}$$

☐ Donde:

S = 0 indica número positivo, S = 1 indica número negativo

0 < E < 255 (E=0 y E=255 indican excepciones)

☐ Bit implícito: Una vez normalizado, el bit más significativo es 1, <u>no se</u> <u>almacena en M</u> para dejar espacio para un bit más (aumenta la precisión)

Formatos numéricos: Estándar IEEE754

- 1º Normalizar:
- $1,01110010101111010000111111000011111100010011_2 * 2^5$
- 2º Representar la mantisa utilizando bit implícito: solo se cogen los 23 primeros bits el resto se trunca

3º Representar el exponente en exceso a 2^{n-1} -1: 5 + 127 = 132 = 10000100

32 bits

