

US012385928B2

## (12) United States Patent Lui et al.

# (54) AMYLOID PRECURSOR PROTEIN AS A DIAGNOSTIC MARKER FOR BILIARY ATRESIA

(71) Applicant: Versitech Limited, Hong Kong (CN)

(72) Inventors: Chi Hang Lui, Hong Kong (CN);
Rosana Ottakandathil Babu, Hong
Kong (CN); Paul Kwong Hang Tam,

Hong Kong (CN)

(73) Assignee: Versitech Limited, Hong Kong (CN)

(\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 975 days.

(21) Appl. No.: 17/418,732

(22) PCT Filed: Jan. 13, 2020

(86) PCT No.: PCT/CN2020/071742

§ 371 (c)(1),

(2) Date: Jun. 25, 2021

(87) PCT Pub. No.: **WO2020/156128** 

PCT Pub. Date: Aug. 6, 2020

(65) Prior Publication Data

US 2022/0065871 A1 Mar. 3, 2022

## Related U.S. Application Data

- (60) Provisional application No. 62/798,229, filed on Jan. 29, 2019.
- (51) Int. Cl. *G01N 33/68* (2006.01) *C12Q 1/6883* (2018.01)
- (52) **U.S. Cl.** CPC ...... *G01N 33/6893* (2013.01); *C12Q 1/6883* (2013.01); *G01N 2333/705* (2013.01)

## (10) Patent No.: US 12,385,928 B2

(45) **Date of Patent:** Aug. 12, 2025

#### (58) Field of Classification Search

CPC ......... G01N 33/6893; G01N 2333/705; G01N 2333/4709; G01N 2800/085; C12Q 1/6883; C12Q 2600/158

See application file for complete search history.

## (56) References Cited

#### FOREIGN PATENT DOCUMENTS

| CN | 104774914 A | 7/2015 |
|----|-------------|--------|
| CN | 107904303 A | 4/2018 |
| CN | 108267585 A | 7/2018 |

## OTHER PUBLICATIONS

International Search Report in PCT/CN2020/071742, mailed Apr. 13, 2020, 5 pages.

Borroni et al., "Predicting cognitive decline in Alzheimer disease: Role of platelet amyloid precursor protein," Alzheimer Disease & Associated Disorders. Jan. 1, 2004;18(1):32-4.

Ning et al., "Research Advances of Blood Biomarkers for Biliary Atresia," Chin J Pedaitr Surg, vol. 38, No. 11, Nov. 30, 2017, pp. 869-873.

Padovani et al., "Amyloid precursor protein in platelets: a peripheral marker for the diagnosis of sporadic AD," Neurology. Dec. 26, 2001;57(12):2243-8.

Xu et al.,  $\beta$ -amyloid Precusor Protein Exporession Level in Peripheral Platelets in Patients With Parkinson's Disease and Dementia, Chinese general Practice, vol. 18, No. 21, Jul. 31, 2015, pp. 2507-2510.

Primary Examiner — Iqbal H Chowdhury (74) Attorney, Agent, or Firm — Kilpatrick Townsend & Stockton LLP

## (57) ABSTRACT

Provided are novel diagnostic and prognostic methods for biliary atresia using amyloid precursor protein.

## 15 Claims, 2 Drawing Sheets

Specification includes a Sequence Listing.

Figure 1 PCA plot for liver biopsies RNA-seq analysis





Figure 2

## AMYLOID PRECURSOR PROTEIN AS A DIAGNOSTIC MARKER FOR BILIARY ATRESIA

#### SEQUENCE LISTING

A Sequence Listing conforming to the rules of for Application filed prior to Jul. 1, 2022 is hereby incorporated by reference. Said Sequence Listing has been filed as an electronic document via the USPTO patent electronic filing system in ASCII formatted text. The electronic document, created on May 17, 2025 is entitled "104525-1253597-000310US\_ST25", and is 82,065 bytes in size.

#### BACKGROUND

Biliary atresia is a disease of the liver and bile ducts that occurs in infants. Typically, symptoms of biliary atresia appear or develop about two to eight weeks after birth. Cells within the liver produce bile, a digestive liquid that helps digest fat. It also carries waste products from the liver to the intestines for excretion. This network of channels and ducts in which bile is produced, digests fat, and eventually moves to intestines is called the biliary system. Under the normal physiological conditions, the biliary system allows the bile to drain from the liver into the intestines. When a baby has biliary atresia, however, bile flow from the liver to the gallbladder is blocked. This causes the bile to be trapped inside the liver, which can quickly cause damage and scarring of the liver cells, resulting in liver cirrhosis and 30 eventually liver failure.

While the exact cause of biliary atresia is yet to be fully illustrated, it is believed that some infants develop biliary atresia due to their bile ducts not formed properly during pregnancy. For most other children with biliary atresia, their 35 bile ducts may be damaged by the body's immune system in response to a viral infection acquired after birth. Although biliary atresia is a rare disease, it affects the Asian population at a notably higher rate than other ethnicities. Diagnosis of biliary atresia relies on blood tests, ultrasound of the abdo- 40 men, liver biopsy, as well as diagnostic surgery (which may include an operative cholangiogram). Once diagnosed, biliary atresia is treated by Kasai procedure or hepatoportoenterostomy. With a 65-85% success rate routinely achieved by this procedure, failure still can result in a small percentage 45 of infants, who will then likely require a liver transplant for long term survival. Because of this life-threatening potential of biliary atresia, there exists an urgent need for new and more reliable methods for the early diagnosis of infants suspected of having biliary atresia and for risk assessment 50 among those who have undergone Kasai operation. This invention fulfills this and other related needs.

## SUMMARY OF THE INVENTION

The present inventors observed increased expression of amyloid precursor protein in the liver tissue of an infant who is at risk of developing biliary atresia or is suffering from biliary atresia and has a poor outcome of biliary atresia treatment by Kasai operation. This discovery thus allows 60 new methods to be devised for use in the diagnosis or prognosis of biliary atresia.

In the first aspect, the present invention provides a method for diagnosing or assessing the risk of biliary atresia (BA) in an infant by detecting in a liver sample taken from the infant 65 the level of amyloid precursor protein (APP). The method includes these steps: (i) determining the expression level of

2

APP in a liver sample taken from the infant; (ii) detecting an increase in the APP expression level in comparison to a standard control level; and (iii) determining the infant as having BA or at an increased risk of developing biliary atresia.

In some embodiments, the APP expression level is APP mRNA level or protein level. In some embodiments, step (i) comprises a reverse transcription polymerase chain reaction (RT-PCR) or an immunoassay. In some embodiments, the liver sample is a liver biopsy. In some embodiments, the method further includes after step (iii) a step of performing at least one additional diagnostic test for BA to confirm the diagnosis. In some embodiments, the method may further include after step (iii) a step of treating the infant with Kasai procedure.

In the second aspect, the present invention provides a method for assessing the likelihood of poor outcome (e.g., ineffective Kasai procedure) in an infant after the infant has been diagnosed with BA and has received Kasai operation. The method includes these steps: (i) determining the expression level of APP in a liver sample taken from the infant; (ii) detecting an increase in the APP expression level in comparison to a standard control level; and (iii) determining that the Kasai procedure is likely a failure.

In some embodiments, the APP expression level is APP mRNA level or protein level. In some embodiments, step (i) comprises a reverse transcription polymerase chain reaction (RT-PCR) or an immunoassay. In some embodiments, the liver sample is a liver biopsy. In some embodiments, the method further includes after step (iii) a step of performing at least one additional diagnostic test for BA to confirm the prognosis-if the additional test for BA indicates presence of BA, one may conclude the treatment has likely failed. In some embodiments, the method may further include after step (iii) a step of providing the infant with further treatment such as liver transplant.

In a third aspect, the present invention provides a kit for diagnosing BA, assessing risk of developing BA, or prognosing unsuccessful Kasai procedure in an infant. The kit comprises a first container containing at least one reagent for detecting the mRNA or protein level of APP and a second container containing a standard control sample having an average level of APP expression in healthy liver tissue.

In some embodiments, the APP expression level is APP mRNA level or APP protein level. In some embodiments, the first container contains one or more reagents for an RT-PCR. In some embodiments, the first container contains one or more reagents for an immunoassay. In some embodiments, one or more reagents contained in the first container include a set of primers for PCR. In some embodiments, one or more reagents contained in the first container include an antibody against APP. In some embodiments, the kit further includes user instructions for using the kit.

## BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. Principal component analysis of control and BA liver.

FIG. 2. Expression of APP in BA bile ducts. Sections of livers of biliary atresia (A) and normal controls (B; Hepatoblastoma) were immuno-fluorescent stained for APP (red) and CK19 (green; bile duct marker). Photos of liver sections of six BA patients (BA1 to BA6) and two HB patients (HB1 and HB2) were shown for comparison. Regions highlighted were enlarged and shown on the right.

## **DEFINITIONS**

As used herein, an "amyloid precursor protein (APP)" refers to a membrane protein encoded by a gene located on

chromosome 21 (in human). A highly conserved protein found in many species, there are several known isoforms of human APP due to alternative splicing, ranging in length from 639 to 770 amino acids, with certain isoforms preferentially expressed in neurons. An integral membrane protein 5 expressed in many tissues and concentrated in the synapses of neurons, APP has been implicated as a regulator of synapse formation, neural plasticity, and iron export, although its precise functions are yet to be fully understood. The term "amyloid precursor protein" or "APP" is used herein to broadly encompass any isoforms of the protein such as naturally occurring homologues or orthologues or mutants, including proteins or peptides derived from the full-length APP such as peptides generated by its proteolysis, for instance, beta amyloid (Aβ), a polypeptide contain- 15 ing about 37 to about 49 amino acid residues, whose amyloid fibrillar form is the primary component of amyloid plaques found in the brains of Alzheimer's disease patients. Preferably, an APP is specifically recognized by an antibody that specifically recognizes the full-length APP, e.g., a 20 polypeptide encoded by any one of the polynucleotide sequences set forth in Table 3.

Biliary atresia (BA) is a disease of blocked biliary system in the liver and bile ducts that typically occurs in infants in the age range of 2 weeks to 2 months. Symptoms of biliary 25 atresia include jaundice, dark urine, acholic stools (claycolored stools), weight loss and irritability. The preferred treatment method for BA is the Kasai procedure or operation, a surgical bypass procedure that allows bile to drain from the liver thus avoiding permanent damage to the liver. As used herein, a subject suffering from BA is an infant (for examples, aged about 1 week or about 2 weeks or about 3 weeks to about 1 month or about 2 months or about 3 months) who has been diagnosed with BA but is yet to receive the Kasai operation, or who has been diagnosed with BA, received the Kasai operation, yet still has symptoms relevant to the disease despite having received the Kasai operation.

In this disclosure the term "biological sample" or "sample" includes sections of tissues such as biopsy and 40 autopsy samples, and frozen sections taken for histologic purposes, or processed forms of any of such samples. Biological samples include blood and blood fractions or products (e.g., serum, plasma, platelets, red blood cells, and the like), sputum or saliva, lymph and tongue tissue, oral 45 swab, cultured cells, e.g., primary cultures, explants, transformed cells, stool, urine, and biopsy taken from a preselected organ or tissue (such as liver cells or hepatic tissue sample) as well as cells or tissue derived from biopsy. A biological sample is typically obtained from a eukaryotic 50 organism, which may be a mammal, may be a primate and may be a human subject.

The term "nucleic acid" or "polynucleotide" refers to deoxyribonucleotides or ribonucleotides and polymers thereof in either single- or double-stranded form. Unless 55 specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides which have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular onucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating 65 sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or

4

deoxyinosine residues (Batzer et al., *Nucleic Acid Res.*, 19:5081 (1991); Ohtsuka et al., *J. Biol. Chem.*, 260:2605-2608 (1985); and Cassol et al., (1992); Rossolini et al., *Mol. Cell. Probes*, 8:91-98 (1994)). The terms nucleic acid and polynucleotide are used interchangeably with gene, cDNA, and mRNA encoded by a gene.

The terms "polypeptide," "peptide," and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers and non-naturally occurring amino acid polymers. As used herein, the terms encompass amino acid chains of any length, including full length proteins (i.e., antigens), wherein the amino acid residues are linked by covalent peptide bonds.

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ-carboxyglutamate, and O-phosphoserine. Amino acid analogs refers to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., an a carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. "Amino acid mimetics" refers to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that functions in a manner similar to a naturally occurring amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

A "polynucleotide hybridization method" as used herein refers to a method for detecting the presence and/or quantity of a pre-determined polynucleotide sequence based on its ability to form Watson-Crick base-pairing, under appropriate hybridization conditions, with a polynucleotide probe of a known sequence. Examples of such hybridization methods include Southern blot, Northern blot, and in situ hybridization

"Primers" as used herein refer to oligonucleotides that can be used in an amplification method, such as a polymerase chain reaction (PCR), to amplify a nucleotide sequence based on the polynucleotide sequence corresponding to a gene of interest, e.g., the polynucleotide sequence encoding an APP or a derivative thereof. Typically at least one, possibly two, of the PCR primers for amplification of a polynucleotide sequence is sequence-specific for that polynucleotide sequence. The exact length of the primer will depend upon many factors, including temperature, source of the primer, and the method used. For example, for diagnostic and prognostic applications, depending on the complexity of the target sequence, the oligonucleotide primer typically contains at least 10, or 15, or 20, or 25 or more nucleotides, although it may contain fewer nucleotides or more nucleotides. The factors involved in determining the appropriate length of primer are readily known to one of ordinary skill in the art. The primers used in particular embodiments may

be designed to specifically amplify a coding sequence for an APP or its variant or derivative. Also, the primers may be designed for specifically amplify only one segment of the APP coding sequence for a fragment of APP. In this disclosure the term "primer pair" means a pair of primers that hybridize to opposite strands a target DNA molecule or to regions of the target DNA which flank a nucleotide sequence to be amplified (e.g., encoding an APP for the purpose of detection such as for assessing BA risk or disease prospect, especially after Kasai operation). In this disclosure the term "primer site" means the area of the target DNA or other nucleic acid to which a primer hybridizes.

A "label," "detectable label," or "detectable moiety" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, chemical, or other physical means. For example, useful labels include radioactive isotopes, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins that can be made detectable, e.g., by incorporating a radioactive component into the peptide or used to detect antibodies specifically reactive with the peptide. Typically a detectable label is attached to a probe or a molecule with defined binding characteristics (e.g., a polypueptide with a known binding specificity or a polynucleotide), so as to allow the presence of the probe (and therefore its binding target, e.g., a coding sequence for an APP or a fragment or variant thereof) to be readily detectable.

The term "treat" or "treating," as used in this application, describes to an act that leads to the elimination, reduction, 30 alleviation, reversal, or prevention or delay of onset or recurrence of any symptom of a relevant condition (e.g., BA). In other words, "treating" a condition encompasses both therapeutic and prophylactic intervention against the condition: for example, upon testing positive to have 35 elevated APP expression either at mRNA or protein level, an infant will be given additional diagnostic tests (such as blood tests, ultrasound of the abdomen, liver biopsy, as well as diagnostic surgery, which may include an operative cholangiogram) and, upon confirmation of the diagnosis of 40 BA, undergoes therapeutic or prophylactic regimen under the supervision of a medical professional including Kasai operation. For an infant who has received treatment for BA by Kasai operation but still has BA symptoms without improvement or even with worsening symptoms, subsequent 45 treatment will likely require liver transplant depending on physicians' decision upon careful monitoring of the infant. Administration of steroids and/or antibiotics may serve as additional/adjuvant treatment post-Kasai operation with an aim to slow down or halt further inflammation.

The term "effective amount" as used herein refers to an amount of a given substance that is sufficient in quantity to produce a desired effect. For example, when an effective amount of a therapeutic agent for treating BA by way of suppressing or eliminating the expression and/or activity of 55 APP especially in an infant's liver is administered to the infant, the symptoms of BA are reduced, reversed, eliminated, prevented, or delayed of the onset in the infant. An amount adequate to accomplish this is defined as the "therapeutically effective dose" when administration takes place 60 after BA symptoms have become detectable, or is defined as the "prophylactically effective dose" when administration takes place before any symptom has arisen. The dosing range varies with the nature of the therapeutic agent being administered and other factors such as the route of admin- 65 istration and the severity of a patient's BA and related condition.

6

The term "subject" or "subject in need of treatment," as used herein, includes individuals who seek medical attention due to risk of, or actual suffering from, biliary atresia. Subjects also include individuals currently undergoing therapy that seek manipulation of the therapeutic regimen. Subjects or individuals in need of treatment include those that demonstrate symptoms of biliary atresia, or those at are at risk of suffering from biliary atresia or its symptoms, or those have been tested positive for amyloid precursor protein expression but may not may not have any known risk and/or may or may not have any potentially relevant symptoms. For example, subjects in need of treatment include individuals with a genetic predisposition or family history for biliary atresia, those that are acutely suffering from relevant symptoms, those that have been exposed to a triggering substance or event, as well as those have received treatment for BA (e.g., Kasai operation) but are continuing to suffer from symptoms of the condition. A subject in need of treatment for BA may be any gender and typically an infant at the age of 3 months or younger, for example, between about 1 week to about 3 months, or between about 2 weeks to about 2 months.

The term "about" when used in reference to a predetermined value denotes a range encompassing  $\pm 10\%$  of the value.

#### DETAILED DESCRIPTION

#### I. General

The present invention relates to the detection of APP expression in the liver cells or tissue of infants who are suffering from or at risk of suffering from biliary atresia, or who are at risk of suffering from undesirable clinical outcome after receiving the Kasai operation. This invention thus provides methods for diagnosis of biliary atresia and prognosis for clinical outcome post-Kasai operation in infants based on detection of APP expression in a liver sample obtained from infants suspected of suffering from biliary atresia or having undergone the Kasai procedure.

Basic texts disclosing general methods and techniques in the field of recombinant genetics include Sambrook and Russell, *Molecular Cloning, A Laboratory Manual* (3rd ed. 2001); Kriegler, *Gene Transfer and Expression: A Labora*tory Manual (1990); and Ausubel et al., eds., *Current* Protocols in Molecular Biology (1994).

For nucleic acids, sizes are given in either kilobases (kb) or base pairs (bp). These are estimates derived from agarose or acrylamide gel electrophoresis, from sequenced nucleic acids, or from published DNA sequences. For proteins, sizes are given in kilodaltons (kDa) or amino acid residue numbers. Proteins sizes are estimated from gel electrophoresis, from sequenced proteins, from derived amino acid sequences, or from published protein sequences.

Oligonucleotides that are not commercially available can be chemically synthesized, e.g., according to the solid phase phosphoramidite triester method first described by Beaucage & Caruthers, *Tetrahedron Lett.* 22:1859-1862 (1981), using an automated synthesizer, as described in Van Devanter et. al., *Nucleic Acids Res.* 12:6159-6168 (1984). Purification of oligonucleotides is performed using any art-recognized strategy, e.g., native acrylamide gel electrophoresis or anion-exchange HPLC as described in Pearson & Reanier, *J. Chrom.* 255:137-149 (1983).

The polynucleotide sequence encoding a polypeptide of interest, e.g., an amyloid precursor protein or a variant or derivative thereof, and synthetic oligonucleotides can be

verified after cloning or subcloning using, e.g., the chain termination method for sequencing double-stranded templates of Wallace et al., *Gene* 16:21-26 (1981).

#### II. Acquisition of Samples and Analysis of mRNA

The present invention relates to detecting the expression level of APP, either at the mRNA or protein level, in the liver cells or tissue taken from an infant suspected of suffering from biliary atresia (BA) or an infant who has been diagnosed with BA and has received the Kasai operation, as a means to detect the presence of BA, to assess the risk of developing of BA, and/or to provide prognosis of BA treatment such as the Kasai operation in an infant, so as to allow the correct treatment and/or follow-up strategies after 15 Kasai operation. Thus, the first steps of practicing this invention are to obtain an appropriate sample from a test subject and extract mRNA from the sample.

#### A. Acquisition and Preparation of Samples

An appropriate sample such as a liver cell or tissue sample 20 obtained from an infant, who may or may not exhibit BA symptoms, to be tested or monitored for BA or treatment outcome using a method of the present invention. Collection of a liver biopsy sample from an individual is performed in accordance with the standard protocol hospitals or clinics 25 generally follow. An appropriate amount of tissue sample, including biopsy samples, is collected and may be stored according to standard procedures prior to further preparation.

## B. Extraction of RNA

There are numerous methods for extracting RNA from a biological sample. The general methods of RNA preparation (e.g., described by Sambrook and Russell, *Molecular Cloning: A Laboratory Manual* 3d ed., 2001) can be followed; various commercially available reagents or kits, such as 35 Trizol reagent (Invitrogen, Carlsbad, CA), Oligotex Direct mRNA Kits (Qiagen, Valencia, CA), RNeasy Mini Kits (Qiagen, Hilden, Germany), and PolyATtract® Series 9600<sup>TM</sup> (Promega, Madison, WI), may also be used to obtain RNA from a liver sample from an infant. Combinations of 40 more than one of these methods may also be used.

It is preferable in some applications that all or most of the contaminating DNA be eliminated from the RNA preparations. Thus, careful handling of the samples, thorough treatment with DNase, and proper negative controls in the 45 amplification and quantification steps should be used.

C. PCR-Based Quantitative Determination of RNA Level

Once RNA is extracted from a biological sample, the amount of RNA derived from a genetic locus of interest, e.g., and encoding for a protein of interest such as APP, may be 50 quantified. The preferred method for determining the RNA level is an amplification-based method, e.g., by PCR.

Prior to the amplification step, a DNA copy (cDNA) of the RNA of interest must be synthesized. This is achieved by reverse transcription, which can be carried out as a separate 55 step, or in a homogeneous reverse transcription-polymerase chain reaction (RT-PCR), a modification of the polymerase chain reaction for amplifying RNA. Methods suitable for PCR amplification of ribonucleic acids are described by Romero and Rotbart in *Diagnostic Molecular Biology:* 60 *Principles and Applications* pp. 401-406; Persing et al., eds., Mayo Foundation, Rochester, MN, 1993; Egger et al., *J. Clin. Microbiol.* 33:1442-1447, 1995; and U.S. Pat. No. 5,075,212.

The general methods of PCR are well known in the art and 65 are thus not described in detail herein. For a review of PCR methods, protocols, and principles in designing primers, see,

8

e.g., Innis, et al., *PCR Protocols: A Guide to Methods and Applications*, Academic Press, Inc. N.Y., 1990. PCR reagents and protocols are also available from commercial vendors, such as Roche Molecular Systems.

PCR is most usually carried out as an automated process with a thermostable enzyme. In this process, the temperature of the reaction mixture is typically cycled through a denaturing region, a primer annealing region, and an extension reaction region automatically. In some protocols, the annealing region and the extension reaction region are merged. Machines specifically adapted for this purpose are commercially available.

Although PCR amplification of the target RNA is typically used in practicing the present invention. One of skill in the art will recognize, however, that amplification of these RNA species in a maternal blood sample may be accomplished by any known method, such as ligase chain reaction (LCR), transcription-mediated amplification, and self-sustained sequence replication or nucleic acid sequence-based amplification (NASBA), each of which provides sufficient amplification. More recently developed branched-DNA technology may also be used to quantitatively determining the amount of RNA markers in maternal blood. For a review of branched-DNA signal amplification for direct quantitation of nucleic acid sequences in clinical samples, see Nolte, Adv. Clin. Chem. 33:201-235, 1998.

## C. Other Quantitative Methods

The RNA species of interest (such as the APP mRNA) can also be detected using other standard techniques, wellknown to those of skill in the art. Although the detection step is typically preceded by an amplification step, amplification is not required in the methods of the invention. For instance, the RNA species of interest may be identified by size fractionation (e.g., gel electrophoresis), whether or not proceeded by an amplification step. After running a sample in an agarose or polyacrylamide gel and labeling with ethidium bromide according to well-known techniques (see, e.g., Sambrook and Russell, supra), the presence of a band of the same size as the standard control is an indication of the presence of a target RNA, the amount of which may then be compared to the control based on the intensity of the band. Alternatively, oligonucleotide probes specific to RNA transcribed from a genetic locus, e.g., the APP gene, can be used to detect the presence of such RNA species and indicate the amount of RNA in comparison to the standard control, based on the intensity of signal imparted by the probe.

Sequence-specific probe hybridization is a well-known method of detecting a particular nucleic acid comprising other species of nucleic acids. Under sufficiently stringent hybridization conditions, the probes hybridize specifically only to substantially complementary sequences. The stringency of the hybridization conditions can be relaxed to tolerate varying amounts of sequence mismatch.

A number of hybridization formats are well-known in the art, including but not limited to, solution phase, solid phase, or mixed phase hybridization assays. The following articles provide an overview of the various hybridization assay formats: Singer et al., *Biotechniques* 4:230, 1986; Haase et al., *Methods in Virology*, pp. 189-226, 1984; Wilkinson, *In situ Hybridization*, Wilkinson ed., IRL Press, Oxford University Press, Oxford; and Hames and Higgins eds., *Nucleic Acid Hybridization: A Practical Approach*, IRL Press, 1987.

The hybridization complexes are detected according to well-known techniques and the detection is not a critical aspect of the present invention. Nucleic acid probes capable of specifically hybridizing to a target nucleic acid, i.e., the APP mRNA species or the amplified DNA, can be labeled by

any one of several methods typically used to detect the presence of hybridized nucleic acids. One common method of detection is the use of autoradiography using probes labeled with <sup>3</sup>H, <sup>125</sup>I, <sup>35</sup>S, <sup>14</sup>C, or <sup>32</sup>P, or the like. The choice of radioactive isotope depends on research preferences due to ease of synthesis, stability, and half-lives of the selected isotopes. Other labels include compounds (e.g., biotin and digoxigenin), which bind to antiligands or antibodies labeled with fluorophores, chemiluminescent agents, and enzymes. Alternatively, probes can be conjugated directly with labels such as fluorophores, chemiluminescent agents or enzymes. The choice of label depends on sensitivity required, ease of conjugation with the probe, stability requirements, and available instrumentation.

The probes and primers necessary for practicing the 15 present invention can be synthesized and labeled using well known techniques. Oligonucleotides used as probes and primers may be chemically synthesized according to the solid phase phosphoramidite triester method first described by Beaucage and Caruthers, *Tetrahedron Letts.*, 22:1859- 20 1862, 1981, using an automated synthesizer, as described in Needham-VanDevanter et al., *Nucleic Acids Res.* 12:6159-6168, 1984. Purification of oligonucleotides is by either native acrylamide gel electrophoresis or by anion-exchange high performance liquid chromatography (HPLC) as 25 described in Pearson and Regnier, *J. Chrom.*, 255:137-149, 1983.

## III. Immunoassays for Detection of Amyloid Precursor Protein

One aspect of this invention provides immunoassays used in the detection of APP in order to determine the expression level of the protein for the purpose of diagnosis and prognosis of BA. Antibodies against APP described herein are 35 useful for carrying out these immunological assays.

## A. Production of Antibodies Against APP

Methods for producing polyclonal and monoclonal antibodies that react specifically with an immunogen of interest are known to those of skill in the art (see, e.g., Coligan, 40 *Current Protocols in Immunology Wiley*/Greene, NY, 1991; Harlow and Lane, *Antibodies: A Laboratory Manual* Cold Spring Harbor Press, NY, 1989; Stites et al. (eds.) *Basic and Clinical Immunology* (4th ed.) Lange Medical Publications, Los Altos, CA, and references cited therein; Goding, *Monoclonal Antibodies: Principles and Practice* (2d ed.) Academic Press, New York, NY, 1986; and Kohler and Milstein *Nature* 256:495-497, 1975). Such techniques include antibody preparation by selection of antibodies from libraries of recombinant antibodies in phage or similar vectors (see, 50 Huse et al., *Science* 246:1275-1281, 1989; and Ward et al., *Nature* 341:544-546, 1989).

In order to produce antisera containing antibodies with desired specificity, the polypeptide of interest (e.g., APP) or an antigenic fragment thereof can be used to immunize 55 suitable animals, e.g., mice, rabbits, or primates. A standard adjuvant, such as Freund's adjuvant, can be used in accordance with a standard immunization protocol. Alternatively, a synthetic antigenic peptide derived from that particular polypeptide can be conjugated to a carrier protein and 60 subsequently used as an immunogen.

The animal's immune response to the immunogen preparation is monitored by taking test bleeds and determining the titer of reactivity to the antigen of interest. When appropriately high titers of antibody to the antigen are obtained, 65 blood is collected from the animal and antisera are prepared. Further fractionation of the antisera to enrich antibodies

10

specifically reactive to the antigen and purification of the antibodies can be performed subsequently, see, Harlow and Lane, supra, and the general descriptions of protein purification provided above.

Monoclonal antibodies are obtained using various techniques familiar to those of skill in the art. Typically, spleen cells from an animal immunized with a desired antigen are immortalized, commonly by fusion with a myeloma cell (see, Kohler and Milstein, *Eur. J. Immunol.* 6:511-519, 1976). Alternative methods of immortalization include, e.g., transformation with Epstein Barr Virus, oncogenes, or retroviruses, or other methods well known in the art. Colonies arising from single immortalized cells are screened for production of antibodies of the desired specificity and affinity for the antigen, and the yield of the monoclonal antibodies produced by such cells may be enhanced by various techniques, including injection into the peritoneal cavity of a vertebrate host.

Additionally, monoclonal antibodies may also be recombinantly produced upon identification of nucleic acid sequences encoding an antibody with desired specificity or a binding fragment of such antibody by screening a human B cell cDNA library according to the general protocol outlined by Huse et al., supra. The general principles and methods of recombinant polypeptide production discussed above are applicable for antibody production by recombinant methods.

## B. Immunoassays for APP

Once antibodies specific for APP are available, the expression of APP at protein level in a sample, e.g., a liver cell or tissue sample, can be measured by a variety of immunoassay methods providing qualitative and quantitative results to a skilled artisan. For a review of immunological and immunoassay procedures in general see, e.g., 55 Stites, supra; U.S. Pat. Nos. 4,366,241; 4,376,110; 4,517, 288; and 4,837,168.

## 1. Labeling in Immunoassays

Immunoassays often utilize a labeling agent to specifically bind to and label the binding complex formed by the antibody and the target protein (e.g., APP). The labeling agent may itself be one of the moieties comprising the antibody/target protein complex, or may be a third moiety, such as another antibody, that specifically binds to the antibody/target protein complex. A label may be detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical means. Examples include, but are not limited to, magnetic beads (e.g., Dynabeads<sup>TM</sup>), fluorescent dyes (e.g., fluorescein isothiocyanate, Texas red, rhodamine, and the like), radiolabels (e.g., <sup>3</sup>H, 125 I, 35 S, 14 C, or 32 P), enzymes (e.g., horse radish peroxidase, alkaline phosphatase, and others commonly used in an ELISA), and colorimetric labels such as colloidal gold or colored glass or plastic (e.g., polystyrene, polypropylene, latex, etc.) beads.

In some cases, the labeling agent is a second antibody bearing a detectable label. Alternatively, the second antibody may lack a label, but it may, in turn, be bound by a labeled third antibody specific to antibodies of the species from which the second antibody is derived. The second antibody can be modified with a detectable moiety, such as biotin, to which a third labeled molecule can specifically bind, such as enzyme-labeled streptavidin.

Other proteins capable of specifically binding immunoglobulin constant regions, such as protein A or protein G, can also be used as the label agents. These proteins are normal constituents of the cell walls of streptococcal bacteria. They exhibit a strong non-immunogenic reactivity with immuno-

globulin constant regions from a variety of species (see, generally, Kronval, et al. *J. Immunol.*, 111:1401-1406 (1973); and Akerstrom, et al., *J. Immunol.*, 135:2589-2542 (1985)).

#### 2. Immunoassay Formats

Immunoassays for detecting a target protein of interest (e.g., APP) from samples may be either competitive or noncompetitive. Noncompetitive immunoassays are assays in which the amount of captured target protein is directly measured. In one preferred "sandwich" assay, for example, 10 the antibody specific for the target protein can be bound directly to a solid substrate where the antibody is immobilized. It then captures the target protein in test samples. The antibody/target protein complex thus immobilized is then bound by a labeling agent, such as a second or third antibody 15 bearing a label, as described above.

In competitive assays, the amount of target protein in a sample is measured indirectly by measuring the amount of an added (exogenous) target protein displaced (or competed away) from an antibody specific for the target protein by the 20 target protein present in the sample. In a typical example of such an assay, the antibody is immobilized and the exogenous target protein is labeled. Since the amount of the exogenous target protein bound to the antibody is inversely proportional to the concentration of the target protein present in the sample, the target protein level in the sample can thus be determined based on the amount of exogenous target protein bound to the antibody and thus immobilized.

In some cases, western blot (immunoblot) analysis is used to detect and quantify the presence of APP in the samples.

The technique generally comprises separating sample proteins by gel electrophoresis on the basis of molecular weight, transferring the separated proteins to a suitable solid support (such as a nitrocellulose filter, a nylon filter, or a derivatized nylon filter) and incubating the samples with the antibodies that specifically bind the target protein. These antibodies may be directly labeled or alternatively may be subsequently detected using labeled antibodies (e.g., labeled sheep antimouse antibodies) that specifically bind to the antibodies against APP.

Other assay formats include liposome immunoassays (LIA), which use liposomes designed to bind specific molecules (e.g., antibodies) and release encapsulated reagents or markers. The released chemicals are then detected according to standard techniques (see, Monroe et al., *Amer. Clin. Prod.* 45 *Rev.*, 5:34-41 (1986)).

For these immunoassays, the patient being tested may be an infant who is at risk of developing BA or may be one who has been diagnosed with BA, has undergone treatment such as Kasai operation, and is now being assessed for likelihood 50 of a desirable outcome of the treatment.

## IV. Treatment Options

One practical application of this invention is intended for 55 early detection of BA among infants who are suspected of suffering from the disease or are at increased risk of developing the disease. Once they are tested according to any one of the methods of this invention and are determined as at risk of suffering from or later developing this disease, they can 60 be subject to additional diagnostic tests, such as blood tests, ultrasound of the abdomen, liver biopsy, and diagnostic surgery (which may include an operative cholangiogram) in order to confirm whether they indeed suffer from the disease. Upon confirmation of the diagnosis of BA, they can then 65 undergo appropriate treatment (e.g., the Kasai operation) as prescribed by their attending physician.

12

Another application is intended for predicting the likelihood of success among infants who have been diagnosed with BA and have been given appropriate treatment such as the Kasai operation. As it is known that a minority of all infant BA patients who underwent the operation will fail to properly recover, and the symptoms and damaging effects of BA will continue and even worsen. The claimed method of this invention allows physicians to quickly obtain an assessment of the likelihood of treatment outcome (e.g., shortly after the Kasai procedure such as 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, or up to 10 days or 2 weeks post-operation) when the infant may or may not yet to show any signs of persistent or deteriorating BA symptoms: whether it will result in desirable outcome, where the infant patient will fully recover from the disease, or it will result in failure, where the infant patient will require additional treatment, such as another Kasai procedure or even liver transplant.

A further aspect of the present invention is the treatment of BA. Since the expression of APP, both at mRNA level and at protein level, has been found to increase in the liver of infants who suffer from BA, or who are at increased risk of later developing BA while exhibiting no BA symptoms for the time being, or who have been diagnosed with BA and given appropriate treatment such as the Kasai procedure but suffer from undesirable outcome (i.e., failure of treatment to alleviate BA symptoms and damages to liver), one treatment method for BA is to target APP by suppressing its expression (both at mRNA and protein level) and/or activity. For instance, specific inhibitors targeting APP expression and/or activity may be administered to an infant who suffers from BA, or who is at heightened risk of later developing BA, or who has received a diagnosis of BA and received treatment (e.g., the Kasai procedure) but is at risk of suffering from treatment failure. Such specific inhibitors include a broad spectrum of possible compounds of distinct chemical and structural features such as a dominant negative APP mutant or its encoding nucleic acid, a nucleic acid encoding an antisense or miRNA, miniRNA, long non-coding RNA targeting APP, an inactivating anti-APP antibody, small chemicals, peptides, proteins, natural extract compounds from herbs, etc., and they are useful in both prophylactic and therapeutic applications for treating BA. Also, APP expression may be suppressed by genetic manipulation techniques including CRISPR.

## V. Establishing Standard Controls

For the application of this invention for the purpose of diagnosing BA or assessing risk of developing BA at a later time, in order to establish a standard control, a group of healthy infants without any liver disorders, especially BA, should first be selected before liver samples are obtained. These infants should be of similar age, which is within the appropriate time frame (for example, aged from about 2 weeks to about 8 weeks) when infants may be tested using the methods of the present invention. The health status of the selected infants should be confirmed by well established, routinely employed methods including but not limited to blood tests and abdominal ultrasound.

The selected group of healthy infants must be of a reasonable size, such that the average amount of APP mRNA and protein found in the liver tissue samples (e.g., liver biopsy) calculated from the group can be reasonably regarded as representative of the normal or average amount among the general population of healthy infants not suffer-

ing from BA and not at heightened risk of developing BA. Preferably, the selected group comprises at least 10 healthy infants

For the application of this invention for the purpose of providing a prognosis of BA treatment (especially the Kasai procedure) outcome among infants who have already been diagnosed with BA and received appropriate treatment such as the Kasai procedure, the same standard control described above may be used. In the alternative, a slightly different standard control can be established: a group of infants who suffered from BA and have undergone the same BA treatment such as Kasai operation and successfully recovered should be selected for collection of liver samples. Similar to the description above, these infants should be of similar age and make up a group of a reasonable size, e.g., at least 10 in 15 the group.

Once an average value is established for the amount of APP mRNA or protein based on the individual values found in the liver tissue of each infant of the selected group, this value is considered a standard control value for APP mRNA <sup>20</sup> or protein. Any liver tissue sample that contains a similar amount of APP mRNA or protein can thus be used as a standard control sample.

#### VI. Kits

The invention also provides kits for detecting APP mRNA or protein, especially in a liver sample taken from an infant, according to the method of the present invention for the purpose of detecting the presence of BA, assessing the risk 30 of later developing BA, or assessing likelihood of a successful BA treatment (such as the Kasai operation) outcome. The kits typically include a first container that contains a first container containing at least one, possibly more, reagent for detecting expression level of APP and a second container 35 containing a composition having a standard control level of APP expression (or a standard control sample). The one or more reagents in the first container may be used for measuring APP mRNA level, such as oligonucleotide primers useful for RT-PCR and/or oligonucleotide probe(s) for spe-40 cific hybridization with an APP-specific polynucleotide sequence. Other possible reagents may include the necessary enzyme(s) and buffer(s) for performing assays to detect APP mRNA such as RT-PCR or nucleotide hybridization.

For the purpose of determining the APP protein level in a diver sample, the one or more reagents contained in the first container may be those useful for immunoassays capable of specifically detecting and quantifying APP level as a protein, such as ELISA or western blot analysis. One useful reagent is an anti-APP antibody, which may be a polyclonal antibody or a monoclonal antibody capable of specific binding to APP. Further included may be a secondary antibody, for example, an antibody against the anti-APP antibody, preferably conjugated with a detectable label.

In addition, the kit may further include informational 55 material containing instructions for a user on how to use the kit for performing an assay and determining whether increased APP mRNA or protein is present in a patient sample.

## EXAMPLES

The following examples are provided by way of illustration only and not by way of limitation. Those of skill in the art will readily recognize a variety of non-critical parameters 65 that could be changed or modified to yield essentially the same or similar results.

14

Example 1: Amyloid Precursor Protein Expression in Biliary Atresia

This study reveals, for the first time, the specific expression of amyloid precursor protein and/or its processed forms in the bile duct of livers in patients suffering from biliary atresia (BA). This discovery allows one to devise new and reliable diagnostic methods for early detection of BA as well as for predicting the therapeutic outcome of BA treatment such as Kasai operation.

Introduction

Biliary atresia (BA [OMIM 210500]) is characterized by progressive fibro-obliterative cholangiopathy (disease of the bile duct) affecting both the intra- and extra-hepatic bile ducts and resulting in obstructive bile flow, cholestasis, and jaundice in neonates. BA occurs in some infants two to six weeks after birth, and symptoms of BA are usually evident between two and six weeks after birth, in that babies with BA develop progressive cholestasis, a condition in which the liver is unable to excrete bilirubin through the bile ducts in the form of bile. Bilirubin builds up inside of liver and begins to accumulate in the blood, causing symptoms including yellowing of the skin, itchiness, poor absorption of nutrients, pale stools, dark urine, and a swollen abdomen.

The differential diagnosis of BA allows for identification of patients suffering from BA as opposed to other disorders such as neonatal cholestasis (NC) like neonatal hepatitis (NH), paucity of interlobular bile ducts (PILBD), progressive familial intrahepatic cholestasis (PFIC), and various metabolic diseases like galactosemia and a-1 antitrypsin deficiency. The most important objective in such cases is to distinguish obstructive cholestasis from non-obstructive causes. The diagnosis of BA, particularly distinguishing it from other causes of liver injury in the neonatal period, is challenging as there is a high degree of overlap in clinical, biochemical, imaging, and histological characteristics of BA and other causes of NC.

Without surgical treatment (Kasai operation) to re-establish the bile drainage from microscopic residual bile ductules within the liver, progressive hepatic fibrosis leads to cirrhosis, portal vein hypertension, liver failure and death by the age of two (1, 2). However, postsurgical complications, including cholangitis (50%) and portal hypertension (>60%), remain a problem (3-7). Furthermore, regardless of drainage after successful surgery, patients will often develop inflammation and sclerosis of the biliary tree, leading to secondary biliary cirrhosis. To these patients and those who failed the surgical intervention, liver transplantation becomes the only treatment option. Indeed, BA has been the most common indication for liver transplantation during childhood for the past 20 years. Due to liver graft scarcity, many patients die before transplantation.

Urgently, there exists a distinct need to address the following problems: first, diagnosis of BA needs to be improved, in particular at early stages of the disease. The optimal age for Kasai operation is 60-75 days; delayed in diagnosis and surgery will lead to poor outcome. In fact, early diagnosis allows the family and surgeon for better planning of disease management. Second, despite the same Kasai operation, the outcome can vary from patient to patient, suggesting the existence of subsets of patient but there are no reliable markers for prognosis to guide stratified treatments for optimal outcomes. Third, regardless of drainage after Kasai operation, patients will often develop bile duct inflammation and sclerosis, leading to secondary biliary cirrhosis. To these patients and those who failed surgery, liver transplantation is the only option. For those BA patients

who are predicted to have poor outcome after Kasai operation may be selected to undergo liver transplantation as the treatment from the start without first undergoing Kasai operation. There is an urgent need to find new and effective therapies that ameliorate BA.

15

Materials and Methods

Liver Tissues

Control liver: "Quasi-normal" human liver tissues were obtained from non-tumour margin of hepatoblastoma (HB). BA liver: Liver biopsies of BA patients taken during Kasai operation or at transplantation. All tissues were obtained during operations with full informed consent from parents or patients, and the study was approved by Hong Kong West Cluster-Hong Kong University Cluster Research Ethics Committee/Institutional Review Board (UW 16-052). Antibodies

Anti-β-Amyloid (4G8; Biolegend) reacts to precursor forms, as well as abnormally processed isoforms of amyloid precursor protein. Anti-CK19 (ab52625; abcam) reacts to human cytokeratin 19.

Liver Biopsies

Wedge biopsies (50×50 mm) were obtained from nonsyndromic BA patients during laparoscopic cholangiography, hepatoblastoma (HB)).

RNA Sequencing of Liver Tissues

Total RNAs were prepared from 30 mg of control livers (HB; n=2) and BA livers (n=4) using RNeasy Mini Kit (Qiagen) following manufacturer's protocol. Reverse transcription, amplification of 50 ng total RNA of each liver samples, and library construction were performed using single cell RNA-seq technology (Smart-seq 2.0) with minor modifications (8). Qualities of the pre-amplified products of normal and BA livers were confirmed to be optimal by Bioanalyzer. Library construction was performed using Nextera XT Kit following manufacturer's protocol. Libraries were pooled and sequenced by pair ends of 100 base pairs (PE100) on illumina HiSeq 2500 System.

Immuno-Fluorescence Staining

Tissues were fixed in 4% paraformaldehyde (w/v) in PBS (phosphate-buffered saline, pH 7.2) for 48 h at 4° C., dehydrated in graded series of alcohol, cleared in xylene before being embedded in paraffin. Sections (8 μm in thickness) were prepared, mounted onto TESPA-coated microscope glass. Sections were dewaxed in xylene, hydrated in a graded series of alcohol and finally in distilled water. Antigen was retrieved by two steps: (i) incubating in 70% Formic acid for 10 minutes and washing in water; (ii) incubating in 10 mM sodium citrate buffer (pH 6.0) at 95°

16

C. for 10 min and washing in water. After blocking in PBS-T (PBS with 0.1% Triton) supplemented with 1% Bovine Serum Albumin for 1 h at room temperature, sections were incubated with anti-β-Amyloid (4G8, 1:200; Biolegend) and anti-CK19 (ab52625, 1:250; abcam) diluted in PBS-T/BSA for overnight at 4° C. After washing in PBS-T, sections were incubated with appropriate fluorescent tagged secondary antibodies in PBS-T/BSA at 37° C. for 1 h. After PBS-T washings, sections were mounted in Dapi-containing antifade mounting fluid. Images were taken with Nikon Eclipse 80i microscope mounted with SPOT RT3 microscope digital camera under fluorescence illumination. Photos were compiled using Adobe Photoshop 7. Results

Transcriptome Analysis of Normal and BA Liver by RNAseq

The RNA-seq reads were first subjected to quality check using FastQC version 0.11.1. Further the adapter contamination and low-quality regions were filtered using Cutadapt version 1.8.3 with the parameter -q=33 and retained only reads with length≥30. The percentage of high quality bases in the filtered raw reads were greater than 90% for all the samples, with the quality score cut-off=20. Subsequently, sequencing reads were filtered for rRNA sequence by aligning to human rRNA sequences using Bowtie 2 (default parameters). The remaining reads were mapped to the reference genome. The transcriptome mapping/alignment and identification of exon-exon splice junctions with the human genome reference (GRCh38, downloaded from Ensembl database) was done by using TopHat version 2.0.10 (default parameters). All the samples had an overall alignment of >80% with human reference. Counting of aligned reads per gene were done using HTSeq version 0.9.1 for further differential expression analysis. The counts for each gene per samples were presented as table in DESeq2 to accurately detect significant differentially expressed genes across the conditions. Visualization was done using R and Bioconductor (FIG. 5c?).

Principal component analysis (PCA) of liver biopsies revealed the following observations:

- Normal liver and BA liver displayed distinctive molecular signatures.
- The two normal liver controls showed differences among themselves, which may indicate the genetic differences between the patients or the tissue stages during isolation.
- Three of the BA livers were clustering very closely to each other while the other patient showed enormous difference, which may indicate progression of disease.

TABLE 1

| Pathways involvement of the 1558 differentially expressed genes                   |    |
|-----------------------------------------------------------------------------------|----|
| Integrin signalling pathway (P00034)                                              | 28 |
| Gonadotropin-releasing hormone receptor pathway (P06664)                          | 25 |
| Inflammation mediated by chemokine and cytokine signaling pathway (P00031)        | 21 |
| CCKR signaling map (P06959)                                                       | 20 |
| Wnt signaling pathway (P00057)                                                    | 17 |
| Angiogenesis (P00005)                                                             | 12 |
| PDGF signaling pathway (P00047)                                                   | 12 |
| Apoptosis signaling pathway (P00006)                                              | 11 |
| Nicotinic acetylcholine receptor signaling pathway (P00044)                       | 10 |
| Huntington disease (P00029)                                                       | 9  |
| Alzheimer disease-presenilin pathway (P00004)                                     | 8  |
| Heterotrimeric G-protein signaling pathway-Gq alpha and Go alpha mediated pathway | 8  |
| (P00027)                                                                          |    |
| Heterotrimeric G-protein signaling pathway-Gi alpha and Gs alpha mediated pathway | 8  |
| (P00026)                                                                          |    |
| Parkinson disease (P00049)                                                        | 7  |

| Pathways involvement of the 1558 differentially expressed genes                                                              |                            |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Interleukin signaling pathway (P00036)                                                                                       | 7                          |
| EGF receptor signaling pathway (P00018)                                                                                      | 7                          |
| T cell activation (P00053) TGF-beta signaling pathway (P00052)                                                               | 6<br>6                     |
| FGF signaling pathway (P00021)                                                                                               | 6                          |
| FAS signaling pathway (P00020)                                                                                               | 6                          |
| Cadherin signaling pathway (P00012)                                                                                          | 6                          |
| B cell activation (P00010)                                                                                                   | 6                          |
| Axon guidance mediated by Slit/Robo (P00008)  Toll receptor signaling pathway (P00054)                                       | 5<br>5                     |
| Oxidative stress response (P00046)                                                                                           | 5                          |
| Muscarinic acetylcholine receptor 1 and 3 signaling pathway (P00042)                                                         | 5                          |
| Insulin/IGF pathway-protein kinase B signaling cascade (P00033)                                                              | 5                          |
| Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade (P00032)                                      | 5                          |
| Dopamine receptor mediated signaling pathway (P05912)                                                                        | 5                          |
| Pyrimidine Metabolism (P02771)                                                                                               | 5                          |
| Endothelin signaling pathway (P00019)                                                                                        | 5                          |
| Blood coagulation (P00011) Adrenaline and noradrenaline biosynthesis (P00001)                                                | 5<br>4                     |
| De novo purine biosynthesis (P02738)                                                                                         | 4                          |
| PI3 kinase pathway (P00048)                                                                                                  | 4                          |
| Notch signaling pathway (P00045)                                                                                             | 4                          |
| Muscarinic acetylcholine receptor 2 and 4 signaling pathway (P00043)                                                         | 4                          |
| Nicotine degradation (P05914) 5-Hydroxytryptamine degredation (P04372)                                                       | 4<br>4                     |
| Axon guidance mediated by semaphorins (P00007)                                                                               | 3                          |
| Alpha adrenergic receptor signaling pathway (P00002)                                                                         | 3                          |
| Ubiquitin proteasome pathway (P00060)                                                                                        | 3                          |
| p53 pathway (P00059)                                                                                                         | 3                          |
| Formyltetrahydroformate biosynthesis (P02743) Plasminogen activating cascade (P00050)                                        | 3<br>3                     |
| Synaptic vesicle trafficking (P05734)                                                                                        | 3                          |
| Metabotropic glutamate receptor group III pathway (P00039)                                                                   | 3                          |
| Ionotropic glutamate receptor pathway (P00037)                                                                               | 3                          |
| Thyrotropin-releasing hormone receptor signaling pathway (P04394)                                                            | 3                          |
| 2-arachidonoylglycerol biosynthesis (P05726) Serine glycine biosynthesis (P02776)                                            | 3                          |
| Nicotine pharmacodynamics pathway (P06587)                                                                                   | 3                          |
| Cytoskeletal regulation by Rho GTPase (P00016)                                                                               | 3                          |
| Purine metabolism (P02769)                                                                                                   | 3                          |
| 5HT2 type receptor mediated signaling pathway (P04374)                                                                       | 3                          |
| Axon guidance mediated by netrin (P00009)<br>Pyridoxal-5-phosphate biosynthesis (P02759)                                     | 2                          |
| Alzheimer disease-amyloid secretase pathway (P00003)                                                                         | 2                          |
| Heme biosynthesis (P02746)                                                                                                   | 2                          |
| VEGF signaling pathway (P00056)                                                                                              | 2                          |
| Tetrahydrofolate biosynthesis (P02742)                                                                                       | 2                          |
| De novo pyrimidine ribonucleotides biosythesis (P02740)                                                                      | 2<br>2<br>2<br>2<br>2<br>2 |
| Androgen/estrogene/progesterone biosynthesis (P02727)<br>JAK/STAT signaling pathway (P00038)                                 | 2                          |
| Vitamin B6 metabolism (P02787)                                                                                               | 2                          |
| p53 pathway by glucose deprivation (P04397)                                                                                  |                            |
| Hypoxia response via HIF activation (P00030)                                                                                 | 2                          |
| Vitamin D metabolism and pathway (P04396)                                                                                    | 2                          |
| Ras Pathway (P04393) Oxytocin receptor mediated signaling pathway (P04391)                                                   | 2                          |
| p38 MAPK pathway (P05918)                                                                                                    | 2                          |
| Hedgehog signaling pathway (P00025)                                                                                          | 2<br>2<br>2<br>2           |
| Glycolysis (P00024)                                                                                                          | 2                          |
| General transcription by RNA polymerase I (P00022)                                                                           | 2                          |
| Pyruvate metabolism (P02772)                                                                                                 | 2                          |
| Histamine H1 receptor mediated signaling pathway (P04385) Cortocotropin releasing factor receptor signaling pathway (P04380) | 2 2                        |
| Circadian clock system (P00015)                                                                                              | 2                          |
| 5HT4 type receptor mediated signaling pathway (P04376)                                                                       | 2                          |
| 5HT3 type receptor mediated signaling pathway (P04375)                                                                       | 2                          |
| 5HT1 type receptor mediated signaling pathway (P04373)                                                                       | 2                          |
| Toll pathway-drosophila (P06217)                                                                                             | 1                          |
| SCW signaling pathway (P06216) GBB signaling pathway (P06214)                                                                | 1<br>1                     |
| DPP signaling pathway (P06213)                                                                                               | 1                          |
| DPP-SCW signaling pathway (P06212)                                                                                           | 1                          |
| BMP/activin signaling pathway-drosophila (P06211)                                                                            | 1                          |
| N-acetylglucosamine metabolism (P02756)                                                                                      | 1                          |
| Methylmalonyl pathway (P02755)<br>Methionine biosynthesis (P02753)                                                           | 1<br>1                     |
| Leucine biosynthesis (P02749)                                                                                                | 1                          |
| (x vm / 12)                                                                                                                  | •                          |

| Pathways involvement of the 1558 differentially expressed genes                   |   |
|-----------------------------------------------------------------------------------|---|
| Isoleucine biosynthesis (P02748)                                                  | 1 |
| mRNA splicing (P00058)                                                            | 1 |
| Histidine biosynthesis (P02747)                                                   | 1 |
| Transcription regulation by bZIP transcription factor (P00055)                    | 1 |
| Fructose galactose metabolism (P02744)                                            | 1 |
| De novo pyrimidine deoxyribonucleotide biosynthesis (P02739)                      | 1 |
| Metabotropic glutamate receptor group I pathway (P00041)                          | 1 |
| Asparagine and aspartate biosynthesis (P02730)                                    | 1 |
| Metabotropic glutamate receptor group Il pathway (P00040)                         | 1 |
| GABA-B receptor Il signaling (P05731)                                             | 1 |
| Alanine biosynthesis (P02724)                                                     | 1 |
| Interferon-gamma signaling pathway (P00035)                                       | 1 |
| Adenine and hypoxanthine salvage pathway (P02723)                                 | 1 |
| p53 pathway feedback loops 2 (P04398)                                             | 1 |
| Valine biosynthesis (P02785)                                                      | 1 |
| Threonine biosynthesis (P02781)                                                   | 1 |
| P53 pathway feedback loops 1 (P04392)                                             | 1 |
| Bupropion degradation (P05729)                                                    | 1 |
| Heterotrimeric G-protein signaling pathway-rod outer segment phototransduction    | 1 |
| (P00028)                                                                          |   |
| Opioid proopiomelanocortin pathway (P05917)                                       | 1 |
| Sulfate assimilation (P02778)                                                     | 1 |
| Opioid prodynorphin pathway (P05916)                                              | 1 |
| Succinate to proprionate conversion (P02777)                                      | 1 |
| Opioid proenkephalin pathway (P05915)                                             | 1 |
| General transcription regulation (P00023)                                         | 1 |
| Salvage pyrimidine ribonucleotides (P02775)                                       | 1 |
| Salvage pyrimidine deoxyribonucleotides (P02774)                                  | 1 |
| Angiotensin II-stimulated signaling through G proteins and beta-arrestin (P05911) | 1 |
| Pyridoxal phosphate salvage pathway (P02770)                                      | 1 |
| DNA replication (P00017)                                                          | 1 |
| Cholesterol biosynthesis (P00014)                                                 | 1 |
| Beta3 adrenergic receptor signaling pathway (P04379)                              | 1 |
| Beta2 adrenergic receptor signaling pathway (P04378)                              | 1 |
| Beta1 adrenergic receptor signaling pathway (P04377)                              | 1 |

TABLE 2

| List of amyloid pathwa | y genes being differentially expressed |  |  |
|------------------------|----------------------------------------|--|--|
| Gene id                | $\log_2$ Fold Change                   |  |  |
| A2M                    | -1.13                                  |  |  |
| ADAM9                  | 1.53                                   |  |  |
| APBB3                  | 0.98                                   |  |  |
| APH1B                  | 2.06                                   |  |  |
| APOL1                  | -1.66                                  |  |  |
| ATP2A3                 | 1.89                                   |  |  |
| CAPN1                  | 1.13                                   |  |  |
| FAS                    | -1.98                                  |  |  |
| FSTL1                  | 0.96                                   |  |  |
| ITPR3                  | 2.22                                   |  |  |
| LPL                    | 2.74                                   |  |  |
| MMP19                  | 3.21                                   |  |  |
| MMP2                   | 2.76                                   |  |  |
| MMP7                   | 5.75                                   |  |  |
| NDUFA6                 | -1.57                                  |  |  |
| NDUFB1                 | -0.78                                  |  |  |
| NDUFB3                 | -0.75                                  |  |  |
| NDUFV3                 | -0.86                                  |  |  |
| NOTCH3                 | 2.66                                   |  |  |
| TCF3                   | 1.34                                   |  |  |
| TTR                    | -2.11                                  |  |  |

Genes Involved in Amyloid Precursor Protein (APP) Metabolism were Differentially Expressed in BA Liver Pathway analysis for differentially expressed genes 65

Pathway analysis for differentially expressed genes (1558) were done using PANTHER (website: www.pantherdb.org/), KEGG Mapper (https://www.genome.jp/kegg/

mapper.html), DAVID (website: david.ncifcrf.gov/) and also from literatures. Among the list of pathways (Table 1), apart from hormonal and metabolic pathways, few disease related pathways were observed. Alzheimer disease presenilin and amyloid secretase pathway genes (10 nos.) were observed from panther pathways. KEGG pathway analysis also revealed few more genes to be involved in amyloid pathway genes from whole liver RNA-seq analysis. There were a total of 21 genes from total differentially expressed genes involved in amyloid pathway. The list of 21 genes along with log 2FoldChange are displayed in Table 2. Among which, MMP7 (Matrilysin, involved in amyloid-presenilin pathway) being the highest upregulated gene (log 2Fold-Change=5.752) among the total (1558) differentially expressed genes.

Expression of APP and its Processed Forms in BA Liver Immuno-fluorescence analysis for APP on liver sections of BA (n=18) and control (HB, n=5; CC, n=13; CS, n=2) patients revealed elevated expression of APP and/or its processed forms in the bile ducts of all the BA livers but not in all the control livers (FIG. 2).

All patents, patent applications, and other publications, including GenBank Accession Numbers or equivalent sequence identification numbers, cited in this application are incorporated by reference in the entirety of their contents for all purposes.

#### TABLE 3

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

1 ENSP00000284981

>TCONS 00180767 ENST00000346798 (SEQ ID NO: 1) GGTACCCACTGATGGTAATGCTGGCCTGCTGGCTGAACC CCAGATTGCCATGTTCTGTGGCAGACTGAACATGCACAT GAATGTCCAGAATGGGAAGTGGGATTCAGATCCATCAGG GACCAAAACCTGCATTGATACCAAGGAAGGCATCCTGCA GTATTGCCAAGAAGTCTACCCTGAACTGCAGATCACCAAT GTGGTAGAAGCCAACCAACCAGTGACCATCCAGAACTGG TGCAAGCGGGGCCGCAAGCAGTGCAAGACCCATCCCCA CTTTGTGATTCCCTACCGCTGCTTAGTTGGTGAGTTTGTA AGTGATGCCCTTCTCGTTCCTGACAAGTGCAAATTCTTAC ACCAGGAGAGGATGGATGTTTGCGAAACTCATCTTCACT GGCACACCGTCGCCAAAGAGACATGCAGTGAGAAGAGTA CCAACTTGCATGACTACGGCATGTTGCTGCCCTGCGGAA TTGACAAGTTCCGAGGGGTAGAGTTTGTGTGTTGCCCAC TGGCTGAAGAAAGTGACAATGTGGATTCTGCTGATGCGG AGGAGGATGACTCGGATGTCTGGTGGGGCGGAGCAGAC ACAGACTATGCAGATGGGAGTGAAGACAAAGTAGTAGAA GTAGCAGAGGAGGAAGAAGTGGCTGAGGTGGAAGAAGA AGAAGCCGATGATGACGAGGACGATGAGGATGGTGATGA GGTAGAGGAAGAGGCTGAGGAACCCTACGAAGAAGCCA CAGAGAGAACCACCAGCATTGCCACCACCACCACCACCA CCACAGAGTCTGTGGAAGAGGTGGTTCGAGAGGTGTGCT CTGAACAAGCCGAGACGGGGCCGTGCCGAGCAATGATC TCCCGCTGGTACTTTGATGTGACTGAAGGGAAGTGTGCC CCATTCTTTTACGGCGGATGTGGCGGCAACCGGAACAAC  ${\tt TTTGACACAGAAGAGTACTGCATGGCCGTGTGTGGCAGC}$  $\tt GCCATGTCCCAAAGTTTACTCAAGACTACCCAGGAACCTC$  $\tt TTGCCCGAGATCCTGTTAAACTTCCTACAACAGCAGCCAG$ TACCCCTGATGCCGTTGACAAGTATCTCGAGACACCTGG GGATGAGAATGAACATGCCCATTTCCAGAAAGCCAAAGA  ${\tt GAGGCTTGAGGCCAAGCACCGAGAGAGAATGTCCCAGG}$ TCATGAGAGAATGGGAAGAGGCAGAACGTCAAGCAAAGA ACTTGCCTAAAGCTGATAAGAAGGCAGTTATCCAGCATTT CCAGGAGAAAGTGGAATCTTTGGAACAGGAAGCAGCCAA CGAGAGACAGCAGCTGGTGGAGACACACATGGCCAGAG TGGAAGCCATGCTCAATGACCGCCGCCGCCTGGCCCTG GAGAACTACATCACCGCTCTGCAGGCTGTTCCTCCTCGG CCTCGTCACGTGTTCAATATGCTAAAGAAGTATGTCCGCG CAGAACAGAAGGACAGACACCCTAAAGCATTTCG AGCATGTGCGCATGGTGGATCCCAAGAAAGCCGCTCAGA TCCGGTCCCAGGTTATGACACACCTCCGTGTGATTTATGA GCGCATGAATCAGTCTCTCTCTCTCTCTACAACGTGCCT GCAGTGGCCGAGGAGATTCAGGATGAAGTTGATGAGCTG CTTCAGAAAGAGCAAAACTATTCAGATGACGTCTTGGCCA ACATGATTAGTGAACCAAGGATCAGTTACGGAAACGATG CTCTCATGCCATCTTTGACCGAAACGAAAACCACCGTGG AGCTCCTTCCCGTGAATGGAGAGTTCAGCCTGGACGATC TCCAGCCGTGGCATTCTTTTGGGGCTGACTCTGTGCCAG CCAACACAGAAAACGAAGTTGAGCCTGTTGATGCCCGCC CTGCTGCCGACCGAGGACTGACCACTCGACCAGGTTCTG GGTTGACAAATATCAAGACGGAGGAGATCTCTGAAGTGA AGATGGATGCAGAATTCCGACATGACTCAGGATATGAAG TTCATCATCAAAAATTGGTGTTCTTTGCAGAAGATGTGGG TTCAAACAAGGTGCAATCATTGGACTCATGGTGGGCGG TGTTGTCATAGCGACAGTGATCGTCATCACCTTGGTGATG CTGAAGAAGAACAGTACACATCCATTCATCATGGTGTGG TGGAGGTTGACGCCGCTGTCACCCCAGAGGAGCGCCAC CTGTCCAAGATGCAGCAGAACGGCTACGAAAATCCAACC TACAAGTTCTTTGAGCAGATGCAGAACTAGACCCCCGCC ACAGCAGCCTCTGAAGTTGGACAGCAAAACCATTGCTTC ACTACCCATCGGTGTCCATTTATAGAATAATGTGGGAAGA AACAAACCCGTTTTATGATTTACTCATTATCGCCTTTTGAC AGCTGTGCTGTAACACAAGTAGATGCCTGAACTTGAATTA ATCCACACATCAGTAATGTATTCTATCTCTCTTTTACATTTT GGTCTCTATACTACATTATTAATGGGTTTTGTGTACTGTAA AGAATTTAGCTGTATCAAACTAGTGCATGAATAGATTCTCT CCTGATTATTTATCACATAGCCCCTTAGCCAGTTGTATATT ATTCTTGTGGTTTGTGACCCAATTAAGTCCTACTTTACATA TGCTTTAAGAATCGATGGGGGGATGCTTCATGTGAACGTG ATCACTATGCATTTTAAAGTTAAACATTTTTAAGTATTTCA GATGCTTTAGAGAGATTTTTTTTCCATGACTGCATTTTACT  ${\tt GTACAGATTGCTGCTTCTGCTATATTTGTGATATAGGAATT}$ AAGAGGATACACACGTTTGTTTCTTCGTGCCTGTTTTATG TGCACACATTAGGCATTGAGACTTCAAGCTTTTCTTTTTT

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

2 ENSP00000284981

>TCONS 00180768 ENST00000346798 (SEO ID NO: 2) ATTGAGTGAAGATTAAGACGGAGAAGATGGCGCCTCTGC AGTGCAGCAAAGAAAAGCTGTGTGGAGGCTGCAGCCTAG TGAAATCCACCCACCACTAGGTACCCACTGATGGTAATG CTGGCCTGCTGGCTGAACCCCAGATTGCCATGTTCTGTG GCAGACTGAACATGCACATGAATGTCCAGAATGGGAAGT GGGATTCAGATCCATCAGGGACCAAAACCTGCATTGATA CCAAGGAAGGCATCCTGCAGTATTGCCAAGAAGTCTACC CTGAACTGCAGATCACCAATGTGGTAGAAGCCAACCAAC CAGTGACCATCCAGAACTGGTGCAAGCGGGGCCGCAAG CAGTGCAAGACCCATCCCCACTTTGTGATTCCCTACCGCT GCTTAGTTGGTGAGTTTGTAAGTGATGCCCTTCTCGTTCC TGACAAGTGCAAATTCTTACACCAGGAGAGGATGGATGTT TGCGAAACTCATCTTCACTGGCACACCGTCGCCAAAGAG ACATGCAGTGAGAAGAGTACCAACTTGCATGACTACGGC ATGTTGCTGCCCTGCGGAATTGACAAGTTCCGAGGGGTA GAGTTTGTGTGTTGCCCACTGGCTGAAGAAGTGACAAT  $\tt GTGGATTCTGCTGATGCGGAGGAGGATGACTCGGATGTC$ TGGTGGGGCGGAGCAGACACAGACTATGCAGATGGGAG TGAAGACAAAGTAGTAGAAGTAGCAGAGGAGGAAGAAGT GGCTGAGGTGGAAGAAGAAGAAGCCGATGATGACGAGG ACGATGAGGATGATGAGGTAGAGGAAGAGGCTGAG GAACCCTACGAAGAAGCCACAGAGAGAACCACCAGCATT GCCACCACCACCACCACAGAGTCTGTGGAAGAG  $\tt GTGGTTCGAGAGGTGTGCTCTGAACAAGCCGAGACGGG$ GCCGTGCCGAGCAATGATCTCCCGCTGGTACTTTGATGT  ${\tt GACTGAAGGGAAGTGTGCCCCATTCTTTACGGCGGATG}$ TGGCGGCAACCGGAACAACTTTGACACAGAAGAGTACTG  ${\tt CATGGCCGTGTGTGGCAGCGCCATTCCTACAACAGCAGC}$ CAGTACCCCTGATGCCGTTGACAAGTATCTCGAGACACC TGGGGATGAGAATGAACATGCCCATTTCCAGAAAGCCAA  ${\tt AGAGAGGCTTGAGGCCAAGCACCGAGAGAGAATGTCCC}$ AGGTCATGAGAGAATGGGAAGAGGCAGAACGTCAAGCAA AGAACTTGCCTAAAGCTGATAAGAAGGCAGTTATCCAGCA TTTCCAGGAGAAGTGGAATCTTTGGAACAGGAAGCAGC CAACGAGAGACAGCAGCTGGTGGAGACACACATGGCCA GAGTGGAAGCCATGCTCAATGACCGCCGCCGCCTGGCC CTGGAGAACTACATCACCGCTCTGCAGGCTGTTCCTCCT CGGCCTCGTCACGTGTTCAATATGCTAAAGAAGTATGTCC GCGCAGAACAGAAGGACAGACACCCTAAAGCATT TCGAGCATGTGCGCATGGTGGATCCCAAGAAAGCCGCTC AGATCCGGTCCCAGGTTATGACACACCTCCGTGTGATTTA TGAGCGCATGAATCAGTCTCTCTCCCTGCTCTACAACGTG CCTGCAGTGGCCGAGGAGATTCAGGATGAAGTTGATGAG CTGCTTCAGAAAGAGCAAAACTATTCAGATGACGTCTTGG CCAACATGATTAGTGAACCAAGGATCAGTTACGGAAACG ATGCTCTCATGCCATCTTTGACCGAAACGAAAACCACCGT GGAGCTCCTTCCCGTGAATGGAGAGTTCAGCCTGGACGA TCTCCAGCCGTGGCATTCTTTTGGGGCTGACTCTGTGCC AGCCAACACAGAAAACGAAGTTGAGCCTGTTGATGCCCG CCCTGCTGCCGACCGAGGACTGACCACTCGACCAGGTTC TGGGTTGACAAATATCAAGACGGAGGAGATCTCTGAAGT GAAGATGGATGCAGAATTCCGACATGACTCAGGATATGA AGTTCATCAAAAAATTGGTGTTCTTTGCAGAAGATGTG GGTTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGC GGTGTTGTCATAGCGACAGTGATCGTCATCACCTTGGTG ATGCTGAAGAAGAAACAGTACACATCCATTCATCATGGTG TGGTGGAGGTTGACGCCGCTGTCACCCCAGAGGAGCGC CACCTGTCCAAGATGCAGCAGAACGGCTACGAAAATCCA  ${\tt ACCTACAAGTTCTTTGAGCAGATGCAGAACTAGACCCCC}$ GCCACAGCAGCCTCTGAAGTTGGACAGCAAAACCATTGC  ${\tt TTCACTACCCATCGGTGTCCATTTATAGAATAATGTGGGA}$ 

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

AGAAACAAACCCGTTTTATGATTTACTCATTATCGCCTTTT GACAGCTGTGCTGTAACACAAGTAGATGCCTGAACTTGA ATTAATCCACACATCAGTAATGTATTCTATCTCTCTTTACA TTTTGGTCTCTATACTACATTATTAATGGGTTTTGTGTACT GTAAAGAATTTAGCTGTATCAAACTAGTGCATGAATAGAT TCTCTCCTGATTATTTATCACATAGCCCCTTAGCCAGTTGT ATATTATTCTTGTGGTTTGTGACCCAATTAAGTCCTACTTT ACATATGCTTTAAGAATCGATGGGGGATGCTTCATGTGAA CGTGGGAGTTCAGCTGCTTCTCTTTGCCTAAGTATTCCTTT CCTGATCACTATGCATTTTAAAGTTAAACATTTTTAAGTAT TTCAGATGCTTTAGAGAGATTTTTTTTCCATGACTGCATTT TACTGTACAGATTGCTGCTTCTGCTATATTTGTGATATAG GAATTAAGAGGATACACACGTTTGTTTCTTCGTGCCTGTT TTATGTGCACACATTAGGCATTGAGACTTCAAGCTTTTCTT TTTTTGTCCACGTATCTTTGGGTCTTTGATAAAGAAAAGAA AGGGGTGCTCTGCTGGTCTTCAATTACCAAGAATTCTCCA AAACAATTTTCTGCAGGATGATTGTACAGAATCATTGCTTA TGACATGATCGCTTTCTACACTGTATTACATAAATAAATTA AATAAAATAACCCCGGGCAAGACTTTTCTTTGAAGGATGA CTACAGACATTAAATAATCGAAGTAATTTTGGGTGGGGAG AAGAGGCAGATTCAATTTTCTTTAACCAGTCTGAAGTTTC ATTTATGATACAAAAGAAGATGAAAATGGAAGTGGCAATA TAAGGGGATGAGGAAGGCATGCCTGGACAAACCCTTCTT TTAAGATGTGTCTTCAATTTGTATAAAATGGTGTTTTCATG TAAATAAATACATTCTTGGAGGAGCACCATTG

3 ENSP00000284981

>TCONS\_00180769 | ENST00000346798 (SEQ ID NO: 3) CGCCGCGCTCGGGCTCCGTCAGTTTCCTCGGCAGCGGT AGGCGAGAGCACGCGGAGGAGCGTGCGCGGGGGCCCC  $\tt GGGAGACGGCGGCGGTGGCGGCGGGCAGAGCAAGG$ ACGCGGCGGATCCCACTCGCACAGCAGCGCACTCGGTG CCCCGCGCAGGGTCGCGATGCTGCCCGGTTTGGCACTG CTCCTGCTGGCCGCCTGGACGCTCGGGCGCTGGAGGT CTACCCTGAACTGCAGATCACCAATGTGGTAGAAGCCAA CCAACCAGTGACCATCCAGAACTGGTGCAAGCGGGGCC GCAAGCAGTGCAAGACCCATCCCCACTTTGTGATTCCCT ACCGCTGCTTAGTTGGTGAGTTTGTAAGTGATGCCCTTCT CGTTCCTGACAAGTGCAAATTCTTACACCAGGAGAGGAT GGATGTTTGCGAAACTCATCTTCACTGGCACACCGTCGC CAAAGAGACATGCAGTGAGAAGAGTACCAACTTGCATGA  $\tt CTACGGCATGTTGCTGCCCTGCGGAATTGACAAGTTCCG$ AGGGGTAGAGTTTGTGTGTTGCCCACTGGCTGAAGAAAG TGACAATGTGGATTCTGCTGATGCGGAGGAGGATGACTC  $\tt GGATGTCTGGTGGGGCGGAGCAGACACAGACTATGCAG$ ATGGGAGTGAAGACAAAGTAGTAGAAGTAGCAGAGGAGG AAGAAGTGGCTGAGGTGGAAGAAGAAGAAGCCGATGATG ACGAGGACGATGAGGATGATGAGGTAGAGGAAGAG GCTGAGGAACCCTACGAAGAAGCCACAGAGAGAACCACC AGCATTGCCACCACCACCACCACCACAGAGTCTGTG GAAGAGGTGGTTCGAGAGGTGTGCTCTGAACAAGCCGA GACGGGGCCGTGCCGAGCAATGATCTCCCGCTGGTACTT TGATGTGACTGAAGGGAAGTGTGCCCCATTCTTTTACGG CGGATGTGGCGGCAACCGGAACAACTTTGACACAGAAGA GTACTGCATGGCCGTGTGTGGCAGCGCCATGTCCCAAAG TTTACTCAAGACTACCCAGGAACCTCTTGCCCGAGATCCT GTTAAACTTCCTACAACAGCAGCCAGTACCCCTGATGCC GTTGACAAGTATCTCGAGACACCTGGGGATGAGAATGAA CATGCCCATTTCCAGAAAGCCAAAGAGAGGCTTGAGGCC AAGCACCGAGAGAATGTCCCAGCCTCGTCACGTGTTC AATATGCTAAAGAAGTATGTCCGCGCAGAACAGAAGGAC AGACAGCACCCTAAAGCATTTCGAGCATGTGCGCATG GTGGATCCCAAGAAAGCCGCTCAGATCCGGTCCCAGGTT ATGACACACCTCCGTGTGATTTATGAGCGCATGAATCAGT CTCTCTCCCTGCTCTACAACGTGCCTGCAGTGGCCGAGG AGATTCAGGATGAAGTTGATGAGCTGCTTCAGAAAGAGC AAAACTATTCAGATGACGTCTTGGCCAACATGATTAGTGA ACCAAGGATCAGTTACGGAAACGATGCTCTCATGCCATCT TTGACCGAAACGAAAACCACCGTGGAGCTCCTTCCCGTG AATGGAGAGTTCAGCCTGGACGATCTCCAGCCGTGGCAT TCTTTTGGGGCTGACTCTGTGCCAGCCAACACAGAAAAC GAAGTTGAGCCTGTTGATGCCCGCCCTGCTGCCGACCGA  $\tt GGACTGACCACTCGACCAGGTTCTGGGTTGACAAATATC$ AAGACGGAGGAGATCTCTGAAGTGAAGATGGATGCAGAA TTCCGACATGACTCAGGATATGAAGTTCATCATCAAAAAT

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

TGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTG CAATCATTGGACTCATGGTGGGCGGTGTTGTCATAGCGA CAGTGATCGTCATCACCTTGGTGATGCTGAAGAAGAAAC AGTACACATCCATTCATCATGGTGTGGTGGAGGTTGACG CCGCTGTCACCCCAGAGGAGCGCCACCTGTCCAAGATG CAGCAGAACGGCTACGAAAATCCAACCTACAAGTTCTTTG AGCAGATGCAGAACTAGACCCCCGCCACAGCAGCCTCTG AAGTTGGACAGCAAAACCATTGCTTCACTACCCATCGGTG TCCATTTATAGAATAATGTGGGAAGAACAAACCCGTTTT ATGATTTACTCATTATCGCCTTTTGACAGCTGTGCTGTAA CACAAGTAGATGCCTGAACTTGAATTAATCCACACATCAG TAATGTATTCTATCTCTTTTACATTTTGGTCTCTATACTAC ATTATTAATGGGTTTTGTGTACTGTAAAGAATTTAGCTGTA ACATAGCCCCTTAGCCAGTTGTATATTATTCTTGTGGTTT GTGACCCAATTAAGTCCTACTTTACATATGCTTTAAGAATC GATGGGGGATGCTTCATGTGAACGTGGGAGTTCAGCTGC TTCTCTTGCCTAAGTATTCCTTTCCTGATCACTATGCATTT TAAAGTTAAACATTTTTAAGTATTTCAGATGCTTTAGAGAG ATTTTTTTCCATGACTGCATTTTACTGTACAGATTGCTGC TTCTGCTATATTTGTGATATAGGAATTAAGAGGATACACA CGTTTGTTTCTTCGTGCCTGTTTTATGTGCACACATTAGG CATTGAGACTTCAAGCTTTTCTTTTTTTTTTCCACGTATCTT TGGGTCTTTGATAAAGAAAAGAATCCCTGTTCATTGTAAG TCTTCAATTACCAAGAATTCTCCAAAACAATTTTCTGCAGG ATGATTGTACAGAATCATTGCTTATGACATGATCGCTTTCT ACACTGTATTACATAAATAAATTAAATAAAATAACCCCGGG CAAGACTTTTCTTTGAAGGATGACTACAGACATTAAATAAT CGAAGTAATTTTGGGTGGGGAGAAGAGGCAGATTCAATT TTCTTTAACCAGTCTGAAGTTTCATTTATGATACAAAAGAA GATGAAAATGGAAGTGGCAATATAAGGGGATGAGGAAGG CATGCCTGGACAAACCCTTCTTTTAAGATGTGTCTTCAAT TTGTATAAAATGGTGTTTTCATGTAAATAAATACATTCTTG GAGGAGCACCATTG

4 ENSP00000284981

>TCONS 00180771 ENST00000346798 (SEQ ID NO: 4) CGCCGCGCTCGGCTCAGTTTCCTCGGCAGCGGT AGGCGAGAGCACGCGGAGGAGCGTGCGCGGGGGCCCC GGGAGACGGCGGCGGTGGCGGCGCGGGCAGAGCAAGG ACGCGGCGGATCCCACTCGCACAGCAGCGCACTCGGTG CCCCGCGCAGGGTCGCGATGCTGCCCGGTTTGGCACTG CTCCTGCTGGCCGCCTGGACGCTCGGGCGCTGGAGGT ACCCACTGATGGTAATGCTGGCCTGCTGGCTGAACCCCA  ${\tt GATTGCCATGTTCTGTGGCAGACTGAACATGCACATGAAT}$ GTCCAGAATGGGAAGTGGGATTCAGATCCATCAGGGACC AAAACCTGCATTGATACCAAGGAAGGCATCCTGCAGTATT GCCAAGAAGTCTACCCTGAACTGCAGATCACCAATGTGG TAGAAGCCAACCAGCGTGACCATCCAGAACTGGTGCA AGCGGGGCCGCAAGCAGTGCAAGACCCATCCCCACTTT GTGATTCCCTACCGCTGCTTAGTTGGTGAGTTTGTAAGTG ATGCCCTTCTCGTTCCTGACAAGTGCAAATTCTTACACCA GGAGAGGATGTTTGCGAAACTCATCTTCACTGGCA CACCGTCGCCAAAGAGACATGCAGTGAGAAGAGTACCAA CTTGCATGACTACGGCATGTTGCTGCCCTGCGGAATTGA CAAGTTCCGAGGGGTAGAGTTTGTGTGTTGCCCACTGGC TGAAGAAGTGACAATGTGGATTCTGCTGATGCGGAGGA GGATGACTCGGATGTCTGGTGGGGCGGAGCAGACACAG ACTATGCAGATGGGAGTGAAGACAAAGTAGTAGAAGTAG CAGAGGAGGAAGAAGTGGCTGAGGTGGAAGAAGAAGAA GCCGATGATGACGAGGACGATGAGGATGGTGATGAGGT AGAGGAAGAGCCTGAGGAACCCTACGAAGAAGCCACAG AGAGAACCACCAGCATTGCCACCACCACCACCACCACCA CAGAGTCTGTGGAAGAGGTGGTTCGAGAGGTGTGCTCTG AACAAGCCGAGACGGGGCCGTGCCGAGCAATGATCTCC CGCTGGTACTTTGATGTGACTGAAGGGAAGTGTGCCCCA TTCTTTTACGGCGGATGTGGCGGCAACCGGAACAACTTT GACACAGAAGAGTACTGCATGGCCGTGTGTGGCAGCGC CATTCCTACAACAGCAGCCAGTACCCCTGATGCCGTTGA CAAGTATCTCGAGACACCTGGGGATGAGAATGAACATGC CCATTTCCAGAAAGCCAAAGAGAGGCTTGAGGCCAAGCA CCGAGAGAGAATGTCCCAGGTCATGAGAGAATGGGAAGA GGCAGAACGTCAAGCAAAGAACTTGCCTAAAGCTGATAA GAAGGCAGTTATCCAGCATTTCCAGGAGAAAGTGGAATC TTTGGAACAGGAAGCAGCCAACGAGAGACAGCAGCTGGT

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

GGAGACACATGGCCAGAGTGGAAGCCATGCTCAATGA CCGCCGCCTGGCCCTGGAGAACTACATCACCGCTCT  ${\tt GCAGGCTGTTCCTCCTCGGCCTCGTCACGTGTTCAATAT}$ GCTAAAGAAGTATGTCCGCGCAGAACAGAAGGACAGACA GCACACCCTAAAGCATTTCGAGCATGTGCGCATGGTGGA TCCCAAGAAAGCCGCTCAGATCCGGTCCCAGGTTATGAC ACACCTCCGTGTGATTTATGAGCGCATGAATCAGTCTCTC TCCCTGCTCTACAACGTGCCTGCAGTGGCCGAGGAGATT CAGGATGAAGTTGATGAGCTGCTTCAGAAAGAGCAAAAC TATTCAGATGACGTCTTGGCCAACATGATTAGTGAACCAA GGATCAGTTACGGAAACGATGCTCTCATGCCATCTTTGAC CGAAACGAAAACCACCGTGGAGCTCCTTCCCGTGAATGG AGAGTTCAGCCTGGACGATCTCCAGCCGTGGCATTCTTT TGGGGCTGACTCTGTGCCAGCCAACACAGAAAACGAAGG TTCTGGGTTGACAAATATCAAGACGGAGGAGATCTCTGAA GTGAAGATGGATGCAGAATTCCGACATGACTCAGGATAT GAAGTTCATCAACAAAATTGGTGTTCTTTGCAGAAGATG TGGGTTCAAACAAAGGTGCAATCATTGGACTCATGGTGG GCGGTGTTGTCATAGCGACAGTGATCGTCATCACCTTGG TGATGCTGAAGAAGAACAGTACACATCCATTCATCATGG TGTGGTGGAGGTTGACGCCGCTGTCACCCCAGAGGAGC GCCACCTGTCCAAGATGCAGCAGAACGGCTACGAAAATC CAACCTACAAGTTCTTTGAGCAGATGCAGAACTAGACCCC CGCCACAGCAGCCTCTGAAGTTGGACAGCAAAACCATTG CTTCACTACCCATCGGTGTCCATTTATAGAATAATGTGGG AAGAAACAAACCCGTTTTATGATTTACTCATTATCGCCTTT TGACAGCTGTGCTGTAACACAAGTAGATGCCTGAACTTGA ATTAATCCACACATCAGTAATGTATTCTATCTCTCTTTACA TTTTGGTCTCTATACTACATTATTAATGGGTTTTGTGTACT GTAAAGAATTTAGCTGTATCAAACTAGTGCATGAATAGAT TCTCTCCTGATTATTTATCACATAGCCCCTTAGCCAGTTGT ATATTATTCTTGTGGTTTGTGACCCAATTAAGTCCTACTTT ACATATGCTTTAAGAATCGATGGGGGATGCTTCATGTGAA CGTGGGAGTTCAGCTGCTTCTCTTTGCCTAAGTATTCCTTT CCTGATCACTATGCATTTTAAAGTTAAACATTTTTAAGTAT TTCAGATGCTTTAGAGAGATTTTTTTTCCATGACTGCATTT TACTGTACAGATTGCTGCTTCTGCTATATTTGTGATATAG GAATTAAGAGGATACACACGTTTGTTTCTTCGTGCCTGTT TTATGTGCACACATTAGGCATTGAGACTTCAAGCTTTTCTT TTTTTGTCCACGTATCTTTGGGTCTTTGATAAAGAAAAGAA TCCCTGTTCATTGTAAGCACTTTTACGGGGGGGGGTGGGG  ${\tt AGGGGTGCTCTGCTGGTCTTCAATTACCAAGAATTCTCCA}$ AAACAATTTTCTGCAGGATGATTGTACAGAATCATTGCTTA TGACATGATCGCTTTCTACACTGTATTACATAAATAAATTA AATAAAATAACCCCGGGCAAGACTTTTCTTTGAAGGATGA CTACAGACATTAAATAATCGAAGTAATTTTGGGTGGGGAG  ${\tt AAGAGGCAGATTCAATTTTCTTTAACCAGTCTGAAGTTTC}$ ATTTATGATACAAAAGAAGATGAAAATGGAAGTGGCAATA TAAGGGGATGAGGAAGGCATGCCTGGACAAACCCTTCTT TTAAGATGTGTCTTCAATTTGTATAAAATGGTGTTTTCATG TAAATAAATACATTCTTGGAGGAGCACCATTG

ENSP00000284981

>TCONS 00180772 | ENST00000346798 (SEQ ID NO: 5) CGCCGCGCTCGGGCTCCGTCAGTTTCCTCGGCAGCGGT AGGCGAGAGCACGCGGAGGAGCGTGCGCGGGGGCCCC GGGAGACGGCGGCGGTGGCGCGCGCGGCAGAGCAAGG ACGCGGCGGATCCCACTCGCACAGCAGCGCACTCGGTG CCCCGCGCAGGGTCGCGATGCTGCCCGGTTTGGCACTG CTCCTGCTGGCCGCCTGGACGCTCGGGCGCTGGAGGT ACCCACTGATGGTAATGCTGGCCTGCTGGCTGAACCCCA GATTGCCATGTTCTGTGGCAGACTGAACATGCACATGAAT GTCCAGAATGGGAAGTGGGATTCAGATCCATCAGGGACC AAAACCTGCATTGATACCAAGGAAGGCATCCTGCAGTATT GCCAAGAAGTCTACCCTGAACTGCAGATCACCAATGTGG TAGAAGCCAACCAACCAGTGACCATCCAGAACTGGTGCA AGCGGGGCCGCAAGCAGTGCAAGACCCATCCCCACTTT GTGATTCCCTACCGCTGCTTAGTTGGTGAGTTTGTAAGTG ATGCCCTTCTCGTTCCTGACAAGTGCAAATTCTTACACCA GGAGAGGATGGATGTTTGCGAAACTCATCTTCACTGGCA CACCGTCGCCAAAGAGACATGCAGTGAGAAGAGTACCAA CTTGCATGACTACGGCATGTTGCTGCCCTGCGGAATTGA  ${\tt CAAGTTCCGAGGGGTAGAGTTTGTGTGTTGCCCACTGGC}$ TGAAGAAAGTGACAATGTGGATTCTGCTGATGCGGAGGA GGATGACTCGGATGTCTGGTGGGGCGGAGCAGACACAG ACTATGCAGATGGGAGTGAAGACAAAGTAGTAGAAGTAG

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

CAGAGGAGGAAGAAGTGGCTGAGGTGGAAGAAGAAGAA GCCGATGATGACGAGGACGATGAGGATGGTGATGAGGT AGAGGAAGAGCCTACGAAGAAGCCACAG AGAGAACCACCAGCATTGCCACCACCACCACCACCA CAGAGTCTGTGGAAGAGGTGGTTCGAGAGGTGTGCTCTG AACAAGCCGAGACGGGGCCGTGCCGAGCAATGATCTCC CGCTGGTACTTTGATGTGACTGAAGGGAAGTGTGCCCCA TTCTTTTACGGCGGATGTGGCGGCAACCGGAACAACTTT GACACAGAAGAGTACTGCATGGCCGTGTGTGGCAGCGC CATGTCCCAAAGTTTACTCAAGACTACCCAGGAACCTCTT GCCCGAGATCCTGTTAAACTTCCTACAACAGCAGCCAGT ACCCCTGATGCCGTTGACAAGTATCTCGAGACACCTGGG GATGAGAATGAACATGCCCATTTCCAGAAAGCCAAAGAG AGGCTTGAGGCCAAGCACCGAGAGAAATGTCCCAGGT CATGAGAGAATGGGAAGAGGCAGAACGTCAAGCAAAGAA CTTGCCTAAAGCTGATAAGAAGGCAGTTATCCAGCATTTC CAGGAGAAAGTGGAATCTTTGGAACAGGAAGCAGCCAAC GAGAGACAGCAGCTGGTGGAGACACACATGGCCAGAGT GGAAGCCATGCTCAATGACCGCCGCCGCCTGGCCCTGG AGAACTACATCACCGCTCTGCAGGCTGTTCCTCCTCGGC CTCGTCACGTGTTCAATATGCTAAAGAAGTATGTCCGCGC AGAACAGAAGGACAGACAGCACCCTAAAGCATTTOGA GCATGTGCGCATGGTGGATCCCAAGAAAGCCGCTCAGAT CCGGTCCCAGGTTATGACACACCTCCGTGTGATTTATGA GCGCATGAATCAGTCTCTCTCCCTGCTCTACAACGTGCCT GCAGTGGCCGAGGAGATTCAGGATGAAGTTGATGAGCTG CTTCAGAAAGAGCAAAACTATTCAGATGACGTCTTGGCCA ACATGATTAGTGAACCAAGGATCAGTTACGGAAACGATG CTCTCATGCCATCTTTGACCGAAACGAAAACCACCGTGG AGCTCCTTCCCGTGAATGGAGAGTTCAGCCTGGACGATC TCCAGCCGTGGCATTCTTTTGGGGCTGACTCTGTGCCAG CCAACACAGAAAACGAAGGTTCTGGGTTGACAAATATCAA  ${\tt GACGGAGGAGATCTCTGAAGTGAAGATGGATGCAGAATT}$ CCGACATGACTCAGGATATGAAGTTCATCATCAAAAATTG GTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGCAA TCATTGGACTCATGGTGGGCGGTGTTGTCATAGCGACAG TGATCGTCATCACCTTGGTGATGCTGAAGAAGAAACAGTA CACATCCATTCATCATGGTGTGGTGGAGGTTGACGCCGC TGTCACCCCAGAGGAGCGCCACCTGTCCAAGATGCAGCA GAACGGCTACGAAAATCCAACCTACAAGTTCTTTGAGCAG ATGCAGAACTAGACCCCCGCCACAGCAGCCTCTGAAGTT GGACAGCAAAACCATTGCTTCACTACCCATCGGTGTCCAT TTATAGAATAATGTGGGAAGAAACAAACCCGTTTTATGAT TTACTCATTATCGCCTTTTGACAGCTGTGCTGTAACACAA  ${\tt GTAGATGCCTGAACTTGAATTAATCCACACATCAGTAATG}$ TATTCTATCTCTTTTACATTTTGGTCTCTATACTACATTAT TAATGGGTTTTGTGTACTGTAAAGAATTTAGCTGTATCAAA CTAGTGCATGAATAGATTCTCTCCTGATTATTTATCACATA  $\tt GCCCCTTAGCCAGTTGTATATTATTCTTGTGGTTTGTGAC$ CCAATTAAGTCCTACTTTACATATGCTTTAAGAATCGATGG GGGATGCTTCATGTGAACGTGGGAGTTCAGCTGCTTCTC TTGCCTAAGTATTCCTTTCCTGATCACTATGCATTTTAAAG TTAAACATTTTTAAGTATTTCAGATGCTTTAGAGAGATTTT TAAATAAAATAACCCCGGGCAAGACTTTTCTTTGAAGGAT GACTACAGACATTAAATAATCGAAGTAATTTTGGGTGGGG AGAAGAGGCAGATTCAATTTTCTTTAACCAGTCTGAAGTT TCATTTATGATACAAAAGAAGATGAAAATGGAAGTGGCAA TATAAGGGGATGAGGAAGGCATGCCTGGACAAACCCTTC TTTTAAGATGTGTCTTCAATTTGTATAAAATGGTGTTTTCA TGTAAATAAATACATTCTTGGAGGAGCACCATTG

ENSP00000284981

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

AAACTCATCTTCACTGGCACACCGTCGCCAAAGAGACAT GCAGTGAGAAGAGTACCAACTTGCATGACTACGGCATGT TGCTGCCCTGCGGAATTGACAAGTTCCGAGGGGTAGAGT TTGTGTGTTGCCCACTGGCTGAAGAAGTGACAATGTGG ATTCTGCTGATGCGGAGGAGGATGACTCGGATGTCTGGT GGGGCGGAGCAGACAGACTATGCAGATGGGAGTGAA GACAAAGTAGTAGAAGTAGCAGAGGAGGAAGAAGTGGCT GAGGTGGAAGAAGAAGCCGATGATGACGAGGACGA TGAGGATGGTGATGAGGTAGAGGAAGAGGCTGAGGAAC CCTACGAAGAAGCCACAGAGAGAACCACCAGCATTGCCA CCACCACCACCACCACAGAGTCTGTGGAAGAGGTGG TTCGAGAGGTGTGCTCTGAACAAGCCGAGACGGGGCCG TGCCGAGCAATGATCTCCCGCTGGTACTTTGATGTGACT GAAGGGAAGTGTGCCCCATTCTTTTACGGCGGATGTGGC GGCAACCGGAACAACTTTGACACAGAAGAGTACTGCATG GCCGTGTGTGGCAGCGCCATGTCCCAAAGTTTACTCAAG ACTACCCAGGAACCTCTTGCCCGAGATCCTGTTAAACTTC CTACAACAGCAGCCAGTACCCCTGATGCCGTTGACAAGT ATCTCGAGACACCTGGGGATGAGAATGAACATGCCCATT TCCAGAAAGCCAAAGAGAGGCTTGAGGCCAAGCACCGA GAGAGAATGTCCCAGGTCATGAGAGAATGGGAAGAGGCA GAACGTCAAGCAAAGAACTTGCCTAAAGCTGATAAGAAG GCAGTTATCCAGCATTTCCAGGAGAAAGTGGAATCTTTGG AACAGGAAGCAGCCAACGAGAGACAGCAGCTGGTGGAG ACACACATGGCCAGAGTGGAAGCCATGCTCAATGACCGC CGCCGCCTGGCCCTGGAGAACTACATCACCGCTCTGCAG  ${\tt GCTGTTCCTCGGCCTCGTCACGTGTTCAATATGCTAA}$ AGAAGTATGTCCGCGCAGAACAGAAGGACAGACAGCACA CCCTAAAGCATTTCGAGCATGTGCGCATGGTGGATCCCA AGAAAGCCGCTCAGATCCGGTCCCAGGTTATGACACACC TCCGTGTGATTTATGAGCGCATGAATCAGTCTCTCTCCCT GCTCTACAACGTGCCTGCAGTGGCCGAGGAGATTCAGGA TGAAGTTGATGAGCTGCTTCAGAAAGAGCAAAACTATTCA  ${\tt GATGACGTCTTGGCCAACATGATTAGTGAACCAAGGATC}$ AGTTACGGAAACGATGCTCTCATGCCATCTTTGACCGAAA CGAAAACCACCGTGGAGCTCCTTCCCGTGAATGGAGAGT TCAGCCTGGACGATCTCCAGCCGTGGCATTCTTTTGGGG CTGACTCTGTGCCAGCCAACACAGAAAACGAAGTTGAGC CTGTTGATGCCCGCCCTGCTGCCGACCGAGGACTGACCA CTCGACCAGGTTCTGGGTTGACAAATATCAAGACGGAGG AGATCTCTGAAGTGAAGATGGATGCAGAATTCCGACATG ACTCAGGATATGAAGTTCATCATCAAAAATTGGTGTTCTTT GCAGAAGATGTGGGTTCAAACAAAGGTGCAATCATTGGA CTCATGGTGGCGGTGTTGTCATAGCGACAGTGATCGTC ATCACCTTGGTGATGCTGAAGAAGAAACAGTACACATCCA TTCATCATGGTGTGGTGGAGGTTGACGCCGCTGTCACCC CAGAGGAGCGCCACCTGTCCAAGATGCAGCAGAACGGC TACGAAAATCCAACCTACAAGTTCTTTGAGCAGATGCAGA ACTAGACCCCGCCACAGCAGCCTCTGAAGTTGGACAGC AAAACCATTGCTTCACTACCCATCGGTGTCCATTTATAGA ATAATGTGGGAAGAAACAAACCCGTTTTATGATTTACTCA TTATCGCCTTTTGACAGCTGTGCTGTAACACAAGTAGATG CCTGAACTTGAATTAATCCACACATCAGTAATGTATTCTAT CTCTCTTTACATTTTGGTCTCTATACTACATTATTAATGGG TTTTGTGTACTGTAAAGAATTTAGCTGTATCAAACTAGTGC ATGAATAGATTCTCTCCTGATTATTTATCACATAGCCCCTT AGCCAGTTGTATATTATTCTTGTGGTTTGTGACCCAATTAA  $\tt GTCCTACTTTACATATGCTTTAAGAATCGATGGGGGATGC$ TTCATGTGAACGTGGGAGTTCAGCTGCTTCTCTTGCCTAA GTATTCCTTTCCTGATCACTATGCATTTTAAAGTTAAACAT TTTTAAGTATTTCAGATGCTTTAGAGAGATTTTTTTTCCAT GACTGCATTTTACTGTACAGATTGCTGCTTCTGCTATATTT  $\tt GTGATATAGGAATTAAGAGGATACACACGTTTGTTTCTTC$ GTGCCTGTTTTATGTGCACACATTAGGCATTGAGACTTCA AGCTTTTCTTTTTTTGTCCACGTATCTTTGGGTCTTTGATA AAGAAAAGAATCCCTGTTCATTGTAAGCACTTTTACGGGG CGGGTGGGGAGGGTGCTCTGCTGGTCTTCAATTACCAA GAATTCTCCAAAACAATTTTCTGCAGGATGATTGTACAGA  ${\tt ATCATTGCTTATGACATGATCGCTTTCTACACTGTATTACA}$ TAAATAAATTAAATAAAATAACCCCGGGCAAGACTTTTCTT TGAAGGATGACTACAGACATTAAATAATCGAAGTAATTTT  $\tt GGGTGGGGAGAAGAGGCAGATTCAATTTTCTTTAACCAG$ TCTGAAGTTTCATTTATGATACAAAAGAAGATGAAAATGG AAGTGGCAATATAAGGGGATGAGGAAGGCATGCCTGGAC

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

AAACCCTTCTTTTAAGATGTGTCTTCAATTTGTATAAAATG GTGTTTTCATGTAAATAAATACATTCTTGGAGGAGCA

7 ENSP00000345463

>TCONS 00180775 ENST00000348990 (SEQ ID NO: 7) AGTTTCCTCGGCAGCGGTAGGCGAGAGCACGCGGAGGA GCGTGCGCGGGGGCCCCCGGGAGACGGCGGCGGTGGCG GCGCGGCAGAGCAAGGACGCGGCGGATCCCACTCGCA CAGCAGCGCACTCGGTGCCCCGCGCAGGGTCGCGATGC TGCCCGGTTTGGCACTGCTCCTGCTGGCCGCCTGGACG GCTCGGGCGCTGGAGGTACCCACTGATGGTAATGCTGG CCTGCTGGCTGAACCCCAGATTGCCATGTTCTGTGGCAG ACTGAACATGCACATGAATGTCCAGAATGGGAAGTGGGA TTCAGATCCATCAGGGACCAAAACCTGCATTGATACCAAG GAAGGCATCCTGCAGTATTGCCAAGAAGTCTACCCTGAA CTGCAGATCACCAATGTGGTAGAAGCCAACCAACCAGTG ACCATCCAGAACTGGTGCAAGCGGGGCCGCAAGCAGTG CAAGACCCATCCCCACTTTGTGATTCCCTACCGCTGCTTA GTTGGTGAGTTTGTAAGTGATGCCCTTCTCGTTCCTGACA AGTGCAAATTCTTACACCAGGAGAGGATGGATGTTTGCG AAACTCATCTTCACTGGCACACCGTCGCCAAAGAGACAT GCAGTGAGAAGAGTACCAACTTGCATGACTACGGCATGT TGCTGCCCTGCGGAATTGACAAGTTCCGAGGGGTAGAGT TTGTGTGTTGCCCACTGGCTGAAGAAGTGACAATGTGG ATTCTGCTGATGCGGAGGAGGATGACTCGGATGTCTGGT GGGGCGGAGCAGACACAGACTATGCAGATGGGAGTGAA GACAAAGTAGTAGAAGTAGCAGAGGAGGAAGAAGTGGCT  $\tt GAGGTGGAAGAAGAAGACCGATGATGACGAGGACGA$ TGAGGATGGTGATGAGGTAGAGGAAGAGGCTGAGGAAC CCTACGAAGAAGCCACAGAGAGAACCACCAGCATTGCCA CCACCACCACCACCACAGAGTCTGTGGAAGAGGTGG TTCGAGTTCCTACAACAGCAGCCAGTACCCCTGATGCCG TTGACAAGTATCTCGAGACACCTGGGGATGAGAATGAAC ATGCCCATTTCCAGAAAGCCAAAGAGAGGCTTGAGGCCA  ${\tt AGCACCGAGAGAGAATGTCCCAGGTCATGAGAGAATGGG}$ AAGAGGCAGAACGTCAAGCAAAGAACTTGCCTAAAGCTG ATAAGAAGGCAGTTATCCAGCATTTCCAGGAGAAAGTGG AATCTTTGGAACAGGAAGCAGCCAACGAGAGACAGCAGC TGGTGGAGACACACATGGCCAGAGTGGAAGCCATGCTCA ATGACCGCCGCCTGGCCCTGGAGAACTACATCACC  ${\tt GCTCTGCAGGCTGTTCCTCCTCGGCCTCGTCACGTGTTC}$ AATATGCTAAAGAAGTATGTCCGCGCAGAACAGAAGGAC AGACAGCACCCTAAAGCATTTCGAGCATGTGCGCATG GTGGATCCCAAGAAAGCCGCTCAGATCCGGTCCCAGGTT ATGACACCTCCGTGTGATTTATGAGCGCATGAATCAGT  $\tt CTCTCTCCCTGCTCTACAACGTGCCTGCAGTGGCCGAGG$ AGATTCAGGATGAAGTTGATGAGCTGCTTCAGAAAGAGC AAAACTATTCAGATGACGTCTTGGCCAACATGATTAGTGA ACCAAGGATCAGTTACGGAAACGATGCTCTCATGCCATCT TTGACCGAAACGAAAACCACCGTGGAGCTCCTTCCCGTG AATGGAGAGTTCAGCCTGGACGATCTCCAGCCGTGGCAT TCTTTTGGGGCTGACTCTGTGCCAGCCAACACAGAAAAC GAAGTTGAGCCTGTTGATGCCCGCCCTGCTGCCGACCGA GGACTGACCACTCGACCAGGTTCTGGGTTGACAAATATC AAGACGGAGGAGATCTCTGAAGTGAAGATGGATGCAGAA TTCCGACATGACTCAGGATATGAAGTTCATCATCAAAAAT TGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTG CAATCATTGGACTCATGGTGGGCGGTGTTGTCATAGCGA CAGTGATCGTCATCACCTTGGTGATGCTGAAGAAGAAAC AGTACACATCCATTCATCATGGTGTGGTGGAGGTTGACG CCGCTGTCACCCCAGAGGAGCGCCACCTGTCCAAGATG CAGCAGAACGGCTACGAAAATCCAACCTACAAGTTCTTTG AGCAGATGCAGAACTAGACCCCCGCCACAGCAGCCTCTG AAGTTGGACAGCAAAACCATTGCTTCACTACCCATCGGTG TCCATTTATAGAATAATGTGGGAAGAAACAAACCCGTTTT ATGATTTACTCATTATCGCCTTTTGACAGCTGTGCTGTAA CACAAGTAGATGCCTGAACTTGAATTAATCCACACATCAG TAATGTATTCTATCTCTCTTTTACATTTTGGTCTCTATACTAC ATTATTAATGGGTTTTGTGTACTGTAAAGAATTTAGCTGTA  ${\tt ACATAGCCCCTTAGCCAGTTGTATATTATTCTTGTGGTTT}$  $\tt GTGACCCAATTAAGTCCTACTTTACATATGCTTTAAGAATC$ GATGGGGGATGCTTCATGTGAACGTGGGAGTTCAGCTGC TTCTCTTGCCTAAGTATTCCTTTCCTGATCACTATGCATTT TAAAGTTAAACATTTTTAAGTATTTCAGATGCTTTAGAGAG ATTTTTTTCCATGACTGCATTTTACTGTACAGATTGCTGC

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

8 ENSP00000346129

>TCONS 00180774 ENST00000354192 (SEO ID NO: 8) GCGAGAGCACGCGGAGGAGCGTGCGCGGGGGCCCCGG GAGACGCCGCGGTGGCGCGCGCGGCAGAGCAAGGAC GCGGCGGATCCCACTCGCACAGCAGCGCACTCGGTGCC CCGCGCAGGGTCGCGATGCTGCCCGGTTTGGCACTGCT CCTGCTGGCCGCCTGGACGGCTCGGGCGCTGGAGGTCT ACCCTGAACTGCAGATCACCAATGTGGTAGAAGCCAACC AACCAGTGACCATCCAGAACTGGTGCAAGCGGGGCCGC AAGCAGTGCAAGACCCATCCCCACTTTGTGATTCCCTACC GCTGCTTAGTTGGTGAGTTTGTAAGTGATGCCCTTCTCGT TCCTGACAAGTGCAAATTCTTACACCAGGAGAGGATGGA TGTTTGCGAAACTCATCTTCACTGGCACACCGTCGCCAAA GAGACATGCAGTGAGAAGAGTACCAACTTGCATGACTAC GGCATGTTGCTGCCCTGCGGAATTGACAAGTTCCGAGGG  $\tt GTAGAGTTTGTGTTTGCCCACTGGCTGAAGAAGTGAC$ AATGTGGATTCTGCTGATGCGGAGGAGGATGACTCGGAT  $\tt GTCTGGTGGGGGGGAGCAGACACAGACTATGCAGATGG$ GAGTGAAGACAAAGTAGTAGAAGTAGCAGAGGAGGAAGA AGTGGCTGAGGTGGAAGAAGAAGAAGCCGATGATGACG AGGACGATGAGGTGATGAGGTAGAGGAAGAGGCT GAGGAACCCTACGAAGAAGCCACAGAGAGAACCACCAG CATTGCCACCACCACCACCACCACAGAGTCTGTGGA AGAGGTGGTTCGAGTTCCTACAACAGCAGCCAGTACCCC TGATGCCGTTGACAAGTATCTCGAGACACCTGGGGATGA GAATGAACATGCCCATTTCCAGAAAGCCAAAGAGAGGCT TGAGGCCAAGCACCGAGAGAGAATGTCCCAGGTCATGAG AGAATGGGAAGAGCAGAACGTCAAGCAAAGAACTTGCC TAAAGCTGATAAGAAGGCAGTTATCCAGCATTTCCAGGAG  ${\tt AAAGTGGAATCTTTGGAACAGGAAGCAGCCAACGAGAGA}$ CAGCAGCTGGTGGAGACACACATGGCCAGAGTGGAAGC CATGCTCAATGACCGCCGCCGCCTGGCCCTGGAGAACTA CATCACCGCTCTGCAGGCTGTTCCTCCTCGGCCTCGTCA CGTGTTCAATATGCTAAAGAAGTATGTCCGCGCAGAACA GAAGGACAGCACACCCTAAAGCATTTCGAGCATGT GCGCATGGTGGATCCCAAGAAAGCCGCTCAGATCCGGTC CCAGGTTATGACACACCTCCGTGTGATTTATGAGCGCAT GAATCAGTCTCTCCCTGCTCTACAACGTGCCTGCAGT GGCCGAGGAGATTCAGGATGAAGTTGATGAGCTGCTTCA GAAAGAGCAAAACTATTCAGATGACGTCTTGGCCAACATG ATTAGTGAACCAAGGATCAGTTACGGAAACGATGCTCTCA TGCCATCTTTGACCGAAACGAAAACCACCGTGGAGCTCC TTCCCGTGAATGGAGAGTTCAGCCTGGACGATCTCCAGC CGTGGCATTCTTTTGGGGCTGACTCTGTGCCAGCCAACA CAGAAAACGAAGTTGAGCCTGTTGATGCCCGCCCTGCTG CCGACCGAGGACTGACCACTCGACCAGGTTCTGGGTTGA CAAATATCAAGACGGAGGAGATCTCTGAAGTGAAGATGG ATGCAGAATTCCGACATGACTCAGGATATGAAGTTCATCA TCAAAAATTGGTGTTCTTTGCAGAAGATGTGGGTTCAAAC AAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTTGTC ATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAAG AAGAAACAGTACACATCCATTCATCATGGTGTGGTGGAG GTTGACGCCGCTGTCACCCCAGAGGAGCGCCACCTGTC CAAGATGCAGCAGAACGGCTACGAAAATCCAACCTACAA GTTCTTTGAGCAGATGCAGAACTAGACCCCCGCCACAGC  ${\tt AGCCTCTGAAGTTGGACAGCAAAACCATTGCTTCACTACC}$ CATCGGTGTCCATTTATAGAATAATGTGGGAAGAAACAAA  $\tt CCCGTTTTATGATTTACTCATTATCGCCTTTTGACAGCTGT$ GCTGTAACACAAGTAGATGCCTGAACTTGAATTAATCCAC ACATCAGTAATGTATTCTATCTCTCTTTTACATTTTGGTCTC

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

TATACTACATTATTAATGGGTTTTGTGTACTGTAAAGAATT TAGCTGTATCAAACTAGTGCATGAATAGATTCTCTCCTGA TTATTTATCACATAGCCCCTTAGCCAGTTGTATATTATTCT TGTGGTTTGTGACCCAATTAAGTCCTACTTTACATATGCTT TAAGAATCGATGGGGGATGCTTCATGTGAACGTGGGAGT TCAGCTGCTTCTCTTGCCTAAGTATTCCTTTCCTGATCACT ATGCATTTTAAAGTTAAACATTTTTAAGTATTTCAGATGCT TTAGAGAGATTTTTTTTCCATGACTGCATTTTACTGTACAG ATTGCTGCTTCTGCTATATTTGTGATATAGGAATTAAGAG GATACACACGTTTGTTTCTTCGTGCCTGTTTTATGTGCAC ACATTAGGCATTGAGACTTCAAGCTTTTCTTTTTTTTTCCA CGTATCTTTGGGTCTTTGATAAAGAAAAGAATCCCTGTTC TCTGCTGGTCTTCAATTACCAAGAATTCTCCAAAACAATTT TCTGCAGGATGATTGTACAGAATCATTGCTTATGACATGA TCGCTTTCTACACTGTATTACATAAATAAATTAAATAAAAT AACCCCGGGCAAGACTTTTCTTTGAAGGATGACTACAGA CATTAAATAATCGAAGTAATTTTGGGTGGGGAGAAGAGG CAGATTCAATTTTCTTTAACCAGTCTGAAGTTTCATTTATG ATACAAAAGAAGATGAAAATGGAAGTGGCAATATAAGGG GATGAGGAAGGCATGCCTGGACAAACCCTTCTTTTAAGAT GTGTCTTCAATTTGTATAAAATGGTGTTTTCATGTAAATAA ATACATTCTTGGAGGAGCA

9 ENSP00000350578

>TCONS 00180776 ENST00000357903 SEQ ID NO: 9) CGCCGCGCTCGGGCTCCGTCAGTTTCCTCGGCAGCGGT  $\tt AGGCGAGAGCACGCGGAGGAGCGTGCGCGGGGGCCCCC$ GGGAGACGGCGGCGGTGGCGCGCGCGGCAGAGCAAGG  ${\tt ACGCGGCGGATCCCACTCGCACAGCAGCGCACTCGGTG}$ CCCCGCGCAGGGTCGCGATGCTGCCCGGTTTGGCACTG  $\tt CTCCTGCTGGCCGCCTGGACGCTCGGGCGCTGGAGGT$ ACCCACTGATGGTAATGCTGGCCTGCTGGCTGAACCCCA GATTGCCATGTTCTGTGGCAGACTGAACATGCACATGAAT GTCCAGAATGGGAAGTGGGATTCAGATCCATCAGGGACC AAAACCTGCATTGATACCAAGGAAGGCATCCTGCAGTATT GCCAAGAAGTCTACCCTGAACTGCAGATCACCAATGTGG TAGAAGCCAACCAACCAGTGACCATCCAGAACTGGTGCA AGCGGGGCCGCAAGCAGTGCAAGACCCATCCCCACTTT GTGATTCCCTACCGCTGCTTAGTTGGTGAGTTTGTAAGTG  ${\tt ATGCCCTTCTCGTTCCTGACAAGTGCAAATTCTTACACCA}$ GGAGAGGATGGATGTTTGCGAAACTCATCTTCACTGGCA CACCGTCGCCAAAGAGACATGCAGTGAGAAGAGTACCAA CTTGCATGACTACGGCATGTTGCTGCCCTGCGGAATTGA CAAGTTCCGAGGGGTAGAGTTTGTGTGTTGCCCACTGGC TGAAGAAAGTGACAATGTGGATTCTGCTGATGCGGAGGA  $\tt GGATGACTCGGATGTCTGGTGGGGCGGAGCAGACACAG$ ACTATGCAGATGGGAGTGAAGACAAAGTAGTAGAAGTAG CAGAGGAGGAAGAAGTGGCTGAGGTGGAAGAAGAAGAA GCCGATGATGACGAGGACGATGAGGATGGTGATGAGGT AGAGGAAGAGCCTGAGGAACCCTACGAAGAAGCCACAG AGAGAACCACCAGCATTGCCACCACCACCACCACCA CAGAGTCTGTGGAAGAGGTGGTTCGAGAGGTGTGCTCTG AACAAGCCGAGACGGGGCCGTGCCGAGCAATGATCTCC CGCTGGTACTTTGATGTGACTGAAGGGAAGTGTGCCCCA TTCTTTTACGGCGGATGTGGCGGCAACCGGAACAACTTT GACACAGAAGAGTACTGCATGGCCGTGTGTGGCAGCGC CATTCCTACAACAGCAGCCAGTACCCCTGATGCCGTTGA CAAGTATCTCGAGACACCTGGGGATGAGAATGAACATGC CCATTTCCAGAAAGCCAAAGAGAGGCTTGAGGCCAAGCA CCGAGAGAGAATGTCCCAGGTCATGAGAGAATGGGAAGA GGCAGAACGTCAAGCAAAGAACTTGCCTAAAGCTGATAA GAAGGCAGTTATCCAGCATTTCCAGGAGAAAGTGGAATC TTTGGAACAGGAAGCAGCCAACGAGAGACAGCAGCTGGT GGAGACACACATGGCCAGAGTGGAAGCCATGCTCAATGA CCGCCGCCTGGCCCTGGAGAACTACATCACCGCTCT GCAGGCTGTTCCTCCTCGGCCTCGTCACGTGTTCAATAT GCTAAAGAAGTATGTCCGCGCAGAACAGAAGGACAGACA GCACACCCTAAAGCATTTCGAGCATGTGCGCATGGTGGA TCCCAAGAAGCCGCTCAGATCCGGTCCCAGGTTATGAC  ${\tt ACACCTCCGTGTGATTTATGAGCGCATGAATCAGTCTCTC}$ TCCCTGCTCTACAACGTGCCTGCAGTGGCCGAGGAGATT CAGGATGAAGTTGATGAGCTGCTTCAGAAAGAGCAAAAC TATTCAGATGACGTCTTGGCCAACATGATTAGTGAACCAA GGATCAGTTACGGAAACGATGCTCTCATGCCATCTTTGAC CGAAACGAAAACCACCGTGGAGCTCCTTCCCGTGAATGG

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

AGAGTTCAGCCTGGACGATCTCCAGCCGTGGCATTCTTT TGGGGCTGACTCTGTGCCAGCCAACACAGAAAACGAAGT TGAGCCTGTTGATGCCCGCCCTGCTGCCGACCGAGGACT GACCACTCGACCAGGTTCTGGGTTGACAAATATCAAGAC GGAGGAGATCTCTGAAGTGAAGATGGATGCAGAATTCCG ACATGACTCAGGATATGAAGTTCATCAAAAAATTGGTG TTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGCAATCA TTGGACTCATGGTGGGCGGTGTTGTCATAGCGACAGTGA TCGTCATCACCTTGGTGATGCTGAAGAAGAAACAGTACAC ATCCATTCATCATGGTGTGGTGGAGGTTGACGCCGCTGT CACCCCAGAGGAGCGCCACCTGTCCAAGATGCAGCAGA ACGGCTACGAAAATCCAACCTACAAGTTCTTTGAGCAGAT GCAGAACTAGACCCCCGCCACAGCAGCCTCTGAAGTTGG ACAGCAAAACCATTGCTTCACTACCCATCGGTGTCCATTT ATAGAATAATGTGGGAAGAAACAAACCCGTTTTATGATTT ACTCATTATCGCCTTTTGACAGCTGTGCTGTAACACAAGT AGATGCCTGAACTTGAATTAATCCACACATCAGTAATGTA TTCTATCTCTCTTTACATTTTGGTCTCTATACTACATTATTA ATGGGTTTTGTGTACTGTAAAGAATTTAGCTGTATCAAACT AGTGCATGAATAGATTCTCTCCTGATTATTTATCACATAGC CCCTTAGCCAGTTGTATATTATTCTTGTGGTTTGTGACCC AATTAAGTCCTACTTTACATATGCTTTAAGAATCGATGGG GGATGCTTCATGTGAACGTGGGAGTTCAGCTGCTTCTCTT GCCTAAGTATTCCTTTCCTGATCACTATGCATTTTAAAGTT AAACATTTTTAAGTATTTCAGATGCTTTAGAGAGATTTTTT TTCCATGACTGCATTTTACTGTACAGATTGCTGCTTCTGCT  ${\tt ATATTTGTGATATAGGAATTAAGAGGATACACACGTTTGTT}$ TCTTCGTGCCTGTTTTATGTGCACACATTAGGCATTGAGA CTTCAAGCTTTTCTTTTTTTGTCCACGTATCTTTGGGTCTT TGATAAAGAAAAGAATCCCTGTTCATTGTAAGCACTTTTAC  $\tt GGGGGGGTGGGGAGGGGTGCTCTGCTGGTCTTCAATT$ ACCAAGAATTCTCCAAAACAATTTTCTGCAGGATGATTGT ACAGAATCATTGCTTATGACATGATCGCTTTCTACACTGT ATTACATAAATAAATTAAATAAAATAACCCCGGGCAAGACT TTTCTTTGAAGGATGACTACAGACATTAAATAATCGAAGTA ATTTTGGGTGGGGAGAAGAGGCAGATTCAATTTTCTTTAA CCAGTCTGAAGTTTCATTTATGATACAAAAGAAGATGAAA ATGGAAGTGGCAATATAAGGGGATGAGGAAGGCATGCCT GGACAAACCCTTCTTTTAAGATGTGTCTTCAATTTGTATAA  ${\tt AATGGTGTTTTCATGTAAATAAATACATTCTTGGAGGAGC}$ 

#### 10 ENSP00000350578

>TCONS 00179143 | ENST00000357903 CTTTATCACTTTACTATGCAATTTTTATGACTATGCTTAAG  ${\tt GAGAGTAAATTTTTCGAAGTTATTGAGGCAATGGAGAGTC}$ TTTGGAATGAGGATAATTAGGCCTGAGGACACAGAGGAA TCATGAGGAAGAATTCTCCAGTTTCATTCCTTTTTCTGGG TACAGTTTGTTTCTCCTTCTAAGTAAGTTCCTAGATATAGA ATGAATTGGAAAAATGAAACGTGAGGTTTGCTACGTCTA TAACAGTATCACATTTCATTTTTTAAAACTGCCAATGCTTT CAGTGAGGACCAGAAAGTACAGTGAGAAAAAAAATTCCT  ${\tt CAAATATTAGTTTTCATGCTCTTGCACGCATTTTTATAAAG}$ GCAAAAGTCATTCTGGTGCCTGTATACAATCTAAAGGCAT AATCTCCTGGAGCCTTCAGTGCTGGTTTTTGGGGTTTTCTG GAGATCAATCCACAGTGTCCCATTTTTTCTGCTGGAGCTC TGAACCCACTAAGAGAGAGCAAGAAGAGATGTAAACCTC TCCTTTGCTTCTGATAAAGCCAAGCCCTTACTAGTCCACA TGATGCTTTCTCTGGGGAGTGAGTCACATACAGGAGACA TGGCTTGTCCAGCTGCGTGCTGGACTGAATTTCAGCTCC AACCTGAACCTTCCAACAGGACAAGGGAGGAGGAGAAT

## 11 ENSP00000350578

>TCONS\_00179153 | ENST00000357903 (SEQ\_ID\_NO: 11) GTGTGTACCCCTAAACCCAGCTTATTATTTTTTTGACTTTT TGTAGAAACAGGGTCTCCCCATGTTGCCCAGGCTGGTCT TAAACTCCTGGGCTCAAATGATCCTCCTGGCTCAGCCTCC CATAGGGCTAGGATTACAGGTGTGAGCCACCATGCCTGG CCTTTTATACTGTTTATTCCCTTTAGATACAGTTAATGGAC ATTAATAAGCAGTTTATGCCAATCCCTTTTCATAGCTAATA AGAAGTCTTATCTTGGATAAATAAAACCTAGCCACACTAATG CTGCCACACCCAAATAAACTCTCTATGCATCTGAACTTCT TGAGGTTAATAATAATCAC CACTTTGGAAGTGAACACCCAGAATAAACCCACTAGAAATTCACATGGCCAG

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

TTTATAGATGGGGACTGGGGGAAGCAGGGAGGATCTCTG
CAATCCAGTAGTTAGGCTCTGCCAGAATGTATTTAGAGTT
GTCTCTAAATACATTCTGAGTCTCTGCTTCATTTTTTTTC
AATGAAAATGACAATGTCTGCTCATCCATGTTCAATGCAA
ATATAACAAGTTTCTAAGAATCCTTATATTTTTGTTATTGCA
TATAAGCATGAGTTTTAAAAACCTCTGAATGTTTAAAGGAT
CACCTGGGGGAATAAGAAAAATGCAGATCTCTGTAAGTC
CTGAGGTAGAGCCCAAGAATCTGTATTTTAACTAGAATTC
CTCTAAATTACTGTGCTCTCACTTGGCCCCAATTACACATTA
GGGACAATGATTTCAGGATGACAATCAGCCTTTTCCATC
CAAGGACTTAAAGCAGCTAAACCGAAGACACCGACAAAT
ACCAGATACTTTTCTCAGTCTCACTGGCTGATGGCACAAAA
GTGCAGAAGTCACCTAAGGGC

#### 12 ENSP00000350578

>TCONS 00179154 | ENST00000357903 (SEO ID NO: 12) CATGAGGAACTCCTTGGGCCTTGACCATTTTTAGCACTTT CACAGTTTCTGATTTTGATCAAGCCACTTAATCACCCAGG ATTCTGAATCTGAAAACCAGGAGGGTTTAATTCCACTTTC ATGTTCCCTTGAGGAGCTGTTGGCAGCAGGATGAAGGCA  $\tt GGTCCATACAGAACATGGGAAGGCAGGAAGCCAG$ CTTTTCCTTTCACATCAAAGAGATCTAGAAAGCAAAACCT  $\tt GTCTCACATTTGCATACAATATTAGACTTACATATGGATGC$ CATGTCTGTCAAAAGACAGGCTAATTAGGGCATTAGTTTC TTTAATGGTTGCGATTTAGTAATTCACAAATAGTCCCACTT AATTTTCATCCTATACCTAAAGGATCTACTTCACACTTGA AGTTTAAGAAGGCTTCTCCCTTAAGATAGAAAGAAGGCAT TCAAGTATCAAAATACTGGTTTCCTGCCAAAAAAATAAGGG ATGAGAAAAAGCAGACACTTAGCTTATCAATCAAAATGCT GGCAGGGAAAGACTACTGGATTACCAAGTTCATTCCCCT AGCCTGCACTGATTCCTCTTTTTCTCTAAAGTTTCTTATTT TTTCAGTTTTTCTCATGATACTGACATTGCCAACCAGCAG TCTGGAAACTGTTCAGGTTGATTCTTAGCAGAAAATCGAG GGGCTCTCCTGTTACTGTTAATATCCTTAAAACACTTAAAT TTGGTTAGTTTGCTTCAAGCATTCTCAGTATATTACAAAAA ATCAGCTACCCTAATGAACAGGAGGGGACAACAGCAAGG TATATTAGGAGCATCTCCTTCCTTTTTAATCAGAATTATAT TTGGAAGAAGAAAGCGGAGAATGTCTGACATTTTCACTGA TCGTTTAGGCTGATGGCTTAAACCATTTCCACCCAAGTTT CTTACAAGTTAGCATTTCCAGCCAACATTACCTACTGCAA TTTCTCTATAATCTTAAGGGTATTGAGCCCCCAAATGAGA GAGAGAAAAGAGATGTAAACTAAACAGGAGTCAGAGAAG GGGAAACTGAGTCTGTTGCACATCATTTACCCTTTAACAT GATTTTAAAGGTAATAATGCTTATAAAAATATTAGTAGTAG TAAGGGATATCAGGTGACAAGCAGAAGTGCCCCTCTCCA CAGATATGCCAGTGTATCTGTAGAAATACGGTGCTAAAAT TAGAAAAGACTGAACATTTTAATTTATTAGGTAGACCC

#### 13 ENSP00000351796

>TCONS\_00180770 | ENST00000358918 (SEQ  $\overline{\text{ID}}$  NO: 13) CGCCGCGCTCGGCTCGGCTCGTCAGTTTCCTCGGCAGCGGT AGGCGAGAGCACGCGGAGGAGCGTGCGCGGGGGCCCC GGGAGACGGCGGCGGTGGCGGCGCGGGCAGAGCAAGG ACGCGGCGGATCCCACTCGCACAGCAGCGCACTCGGTG CCCCGCGCAGGGTCGCGATGCTGCCCGGTTTGGCACTG CTCCTGCTGGCCGCCTGGACGCCTCGGGCGCTCGGAGGT ACCCACTGATGGTAATGCTGGCCTGCTGGCTGAACCCCA GATTGCCATGTTCTGTGGCAGACTGAACATGCACATGAAT GTCCAGAATGGGAAGTGGGATTCAGATCCATCAGGGACC AAAACCTGCATTGATACCAAGGAAGGCATCCTGCAGTATT GCCAAGAAGTCTACCCTGAACTGCAGATCACCAATGTGG TAGAAGCCAACCAACCAGTGACCATCCAGAACTGGTGCA AGCGGGGCCGCAAGCAGTGCAAGACCCATCCCCACTTT GTGATTCCCTACCGCTGCTTAGTTGGTGAGTTTGTAAGTG  ${\tt ATGCCCTTCTCGTTCCTGACAAGTGCAAATTCTTACACCA}$ GGAGAGGATGGATGTTTGCGAAACTCATCTTCACTGGCA CACCGTCGCCAAAGAGACATGCAGTGAGAAGAGTACCAA  $\tt CTTGCATGACTACGGCATGTTGCTGCCCTGCGGAATTGA$ CAAGTTCCGAGGGGTAGAGTTTGTGTGTTGCCCACTGGC TGAAGAAAGTGACAATGTGGATTCTGCTGATGCGGAGGA GGATGACTCGGATGTCTGGTGGGGCGGAGCAGACACAG ACTATGCAGATGGGAGTGAAGACAAAGTAGTAGAAGTAG CAGAGGAGGAAGAAGTGGCTGAGGTGGAAGAAGAAGAA

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

GCCGATGATGACGAGGACGATGAGGATGGTGATGAGGT AGAGGAAGAGCCTACGAAGAAGCCACAG AGAGAACCACCAGCATTGCCACCACCACCACCACCA CAGAGTCTGTGGAAGAGGTGGTTCGAGAGGTGTGCTCTG AACAAGCCGAGACGGGGCCGTGCCGAGCAATGATCTCC CGCTGGTACTTTGATGTGACTGAAGGGAAGTGTGCCCCA TTCTTTTACGGCGGATGTGGCGGCAACCGGAACAACTTT GACACAGAAGAGTACTGCATGGCCGTGTGTGGCAGCGC CATGTCCCAAAGTTTACTCAAGACTACCCAGGAACCTCTT GCCCGAGATCCTGTTAAACTTCCTACAACAGCAGCCAGT ACCCCTGATGCCGTTGACAAGTATCTCGAGACACCTGGG GATGAGAATGAACATGCCCATTTCCAGAAAGCCAAAGAG AGGCTTGAGGCCAAGCACCGAGAGAGAATGTCCCAGGT CATGAGAGAATGGGAAGAGGCAGAACGTCAAGCAAAGAA CTTGCCTAAAGCTGATAAGAAGGCAGTTATCCAGCATTTC CAGGAGAAGTGGAATCTTTGGAACAGGAAGCAGCCAAC GAGAGACAGCAGCTGGTGGAGACACACATGGCCAGAGT GGAAGCCATGCTCAATGACCGCCGCCGCCTGGCCCTGG AGAACTACATCACCGCTCTGCAGGCTGTTCCTCCTCGGC CTCGTCACGTGTTCAATATGCTAAAGAAGTATGTCCGCGC AGAACAGAAGGACAGACACCCTAAAGCATTTCGA GCATGTGCGCATGGTGGATCCCAAGAAAGCCGCTCAGAT CCGGTCCCAGGTTATGACACACCTCCGTGTGATTTATGA GCGCATGAATCAGTCTCTCTCCCTGCTCTACAACGTGCCT GCAGTGGCCGAGGAGATTCAGGATGAAGTTGATGAGCTG CTTCAGAAAGAGCAAAACTATTCAGATGACGTCTTGGCCA  ${\tt ACATGATTAGTGAACCAAGGATCAGTTACGGAAACGATG}$ CTCTCATGCCATCTTTGACCGAAACGAAAACCACCGTGG AGCTCCTTCCCGTGAATGGAGAGTTCAGCCTGGACGATC TCCAGCCGTGGCATTCTTTTGGGGCTGACTCTGTGCCAG CCAACACAGAAAACGAAGGTTCTGGGTTGACAAATATCAA GACGGAGGAGATCTCTGAAGTGAAGATGGATGCAGAATT CCGACATGACTCAGGATATGAAGTTCATCATCAAAAATTG GTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGGTGCAA TCATTGGACTCATGGTGGGCGGTGTTGTCATAGCGACAG TGATCGTCATCACCTTGGTGATGCTGAAGAAGAAACAGTA CACATCCATTCATCATGGTGTGGTGGAGGTTGACGCCGC TGTCACCCCAGAGGAGCGCCACCTGTCCAAGATGCAGCA GAACGGCTACGAAAATCCAACCTACAAGTTCTTTGAGCAG ATGCAGAACTAGACCCCCGCCACAGCAGCCTCTGAAGTT GGACAGCAAAACCATTGCTTCACTACCCATCGGTGTCCAT TTATAGAATAATGTGGGAAGAAACAAACCCGTTTTATGAT TTACTCATTATCGCCTTTTGACAGCTGTGCTGTAACACAA GTAGATGCCTGAACTTGAATTAATCCACACATCAGTAATG TATTCTATCTCTCTTTACATTTTGGTCTCTATACTACATTAT TAATGGGTTTTGTGTACTGTAAAGAATTTAGCTGTATCAAA CTAGTGCATGAATAGATTCTCTCCTGATTATTTATCACATA  $\tt GCCCCTTAGCCAGTTGTATATTATTCTTGTGGTTTGTGAC$ CCAATTAAGTCCTACTTTACATATGCTTTAAGAATCGATGG GGGATGCTTCATGTGAACGTGGGAGTTCAGCTGCTTCTC TTGCCTAAGTATTCCTTTCCTGATCACTATGCATTTTAAAG TTAAACATTTTTAAGTATTTCAGATGCTTTAGAGAGATTTT TTTTCCATGACTGCATTTTACTGTACAGATTGCTGCTTCTG CTATATTTGTGATATAGGAATTAAGAGGATACACACGTTT GTTTCTTCGTGCCTGTTTTATGTGCACACATTAGGCATTG AGACTTCAAGCTTTTCTTTTTTTTTCCACGTATCTTTGGGT CTTTGATAAAGAAAAGAATCCCTGTTCATTGTAAGCACTTT TACGGGGGGGGGGGGGGGGGGTGCTCTGCTGGTCTTCA ATTACCAAGAATTCTCCAAAACAATTTTCTGCAGGATGATT GTACAGAATCATTGCTTATGACATGATCGCTTTCTACACT GTATTACATAAATAAATTAAATAAAATAACCCCGGGCAAG ACTTTTCTTTGAAGGATGACTACAGACATTAAATAATCGAA GTAATTTTGGGTGGGGAGAAGAGGCAGATTCAATTTTCTT TAACCAGTCTGAAGTTTCATTTATGATACAAAAGAAGATG AAAATGGAAGTGGCAATATAAGGGGATGAGGAAGGCATG CCTGGACAAACCCTTCTTTTAAGATGTGTCTTCAATTTGTA TAAAATGGTGTTTTCATGTAAATAAATACATTCTTGGAGGA GCACCATTG

ENSP00000351796

>TCONS\_00180781 | ENST00000358918 (SEQ ID NO: 14) GATCCCACTGCCACAGCAGCACTCGGTGCCCCGGC AGGGTCGCATGCTGCCCGGTTTGGCACTGCTCGTG GCCGCCTGGACGGCTCGGGCGCTGGAGGTACCCACTGA TGGTAATGCTGGCCTGCTGGCTGAACCCCACATTGCCAT

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

GTTCTGTGGCAGACTGAACATGCACATGAATGTCCAGAAT GGGAAGTGGGATTCAGATCCATCAGGGACCAAAACCTGC ATTGATACCAAGGAAGGCATCCTGCAGTATTGCCAAGAA GTCTACCCTGAACTGCAGATCACCAATGTGGTAGAAGCC AACCAACCAGTGACCATCCAGAACTGGTGCAAGCGGGGC CGCAAGCAGTGCAAGACCCATCCCCACTTTGTGATTCCC TACCGCTGCTTAGTTGGTGAGTTTGTAAGTGATGCCCTTC TCGTTCCTGACAAGTGCAAATTCTTACACCAGGAGAGGAT GGATGTTTGCGAAACTCATCTTCACTGGCACACCGTCGC CAAAGAGACATGCAGTGAGAAGAGTACCAACTTGCATGA CTACGGCATGTTGCTGCCCTGCGGAATTGACAAGTTCCG AGGGGTAGAGTTTGTGTGTTGCCCACTGGCTGAAGAAAG TGACAATGTGGATTCTGCTGATGCGGAGGAGGATGACTC GGATGTCTGGTGGGGCGGAGCAGACACAGACTATGCAG ATGGGAGTGAAGACAAAGTAGTAGAAGTAGCAGAGGAGG AAGAAGTGGCTGAGGTGGAAGAAGAAGAAGCCGATGATG ACGAGGACGATGAGGATGGTGATGAGGTAGAGGAAGAG GCTGAGGAACCCTACGAAGAAGCCACAGAGAGAACCACC AGCATTGCCACCACCACCACCACCACAGAGTCTGTG GAAGAGGTGGTTCGAGAGGTGTGCTCTGAACAAGCCGA GACGGGGCCGTGCCGAGCAATGATCTCCCGCTGGTACTT TGATGTGACTGAAGGGAAGTGTGCCCCATTCTTTTACGG CGGATGTGGCGCCAACCGGAACAACTTTGACACAGAAGA GTACTGCATGGCCGTGTGTGGCAGCGCCATGTCCCAAAG TTTACTCAAGACTACCCAGGAACCTCTTGCCCGAGATCCT GTTAAACTTCCTACAACAGCAGCCAGTACCCCTGATGCC  $\tt GTTGACAAGTATCTCGAGACACCTGGGGATGAGAATGAA$ CATGCCCATTTCCAGAAAGCCAAAGAGAGGCTTGAGGCC  ${\tt AAGCACCGAGAGAGAATGTCCCAGGTCATGAGAGAATGG}$ GAAGAGGCAGAACGTCAAGCAAAGAACTTGCCTAAAGCT  ${\tt GATAAGAAGGCAGTTATCCAGCATTTCCAGGAGAAAGTG}$ GAATCTTTGGAACAGGAAGCAGCCAACGAGAGACAGCAG CTGGTGGAGACACACATGGCCAGAGTGGAAGCCATGCTC  ${\tt AATGACCGCCGCCGCCTGGCCCTGGAGAACTACATCACC}$ GCTCTGCAGGCTGTTCCTCCTCGGCCTCGTCACGTGTTC AATATGCTAAAGAAGTATGTCCGCGCAGAACAGAAGGAC AGACAGCACCCTAAAGCATTTCGAGCATGTGCGCATG GTGGATCCCAAGAAAGCCGCTCAGATCCGGTCCCAGGTT ATGACACACCTCCGTGTGATTTATGAGCGCATGAATCAGT  $\tt CTCTCTCCCTGCTCTACAACGTGCCTGCAGTGGCCGAGG$ AGATTCAGGATGAAGTTGATGAGCTGCTTCAGAAAGAGC AAAACTATTCAGATGACGTCTTGGCCAACATGATTAGTGA ACCAAGGATCAGTTACGGAAACGATGCTCTCATGCCATCT TTGACCGAAACGAAAACCACCGTGGAGCTCCTTCCCGTG AATGGAGAGTTCAGCCTGGACGATCTCCAGCCGTGGCAT TCTTTTGGGGCTGACTCTGTGCCAGCCAACACAGAAAAC GAAGGTTCTGGGTTGACAAATATCAAGACGGAGGAGATC TCTGAAGTGAAGATGGATGCAGAATTCCGACATGACTCA GGATATGAAGTTCATCATCAAAAATTGGTGTTCTTTGCAG AAGATGTGGGTTCAAACAAAGGTGCAATCATTGGACTCAT GGTGGGCGGTGTTGTCATAGCGACAGTGATCGTCATCAC CTTGGTGATGCTGAAGAAGAACAGTACACATCCATTCAT CATGGTGTGGAGGTTGACGCCGCTGTCACCCCAGA GGAGCGCCACCTGTCCAAGATGCAGCAGAACGGCTACG AAAATCCAACCTACAAGTTCTTTGAGCAGATGCAGAACTA GACCCCCGCCACAGCAGCCTCTGAAGTTGGACAGCAAAA CCATTGCTTCACTACCCATCGG

ENSP00000352760

15

>TCONS 00180777 | ENST00000359726 (SEO ID NO: 15) GTCGGATGATTCAAGCTCACGGGGACGAGCAGGAGCGC TCTCGACTTTTCTAGAGCCTCAGCGTCCTAGGACTCACCT TTCCCTGATCCTGCACCGTCCCTCTCCTGGCCCCAGACT CTCCCTCCCACTGTTCACGAAGCCCAGGTACCCACTGAT GGTAATGCTGGCCTGCTGGCTGAACCCCAGATTGCCATG TTCTGTGGCAGACTGAACATGCACATGAATGTCCAGAATG GGAAGTGGGATTCAGATCCATCAGGGACCAAAACCTGCA TTGATACCAAGGAAGGCATCCTGCAGTATTGCCAAGAAG TCTACCCTGAACTGCAGATCACCAATGTGGTAGAAGCCA  ${\tt ACCAACCAGTGACCATCCAGAACTGGTGCAAGCGGGGC}$ CGCAAGCAGTGCAAGACCCATCCCCACTTTGTGATTCCC TACCGCTGCTTAGTTGGTGAGTTTGTAAGTGATGCCCTTC TCGTTCCTGACAAGTGCAAATTCTTACACCAGGAGAGGAT GGATGTTTGCGAAACTCATCTTCACTGGCACACCGTCGC CAAAGAGACATGCAGTGAGAAGAGTACCAACTTGCATGA

#### APP transcrips fina

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences with cufflinks variants UniProt id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

> CTACGGCATGTTGCTGCCCTGCGGAATTGACAAGTTCCG AGGGGTAGAGTTTGTGTTTGCCCACTGGCTGAAGAAAG TGACAATGTGGATTCTGCTGATGCGGAGGAGGATGACTC GGATGTCTGGTGGGGCGGAGCAGACACAGACTATGCAG ATGGGAGTGAAGACAAAGTAGTAGAAGTAGCAGAGGAGG AAGAAGTGGCTGAGGTGGAAGAAGAAGAAGCCGATGATG ACGAGGACGATGAGGATGATGAGGTAGAGGAAGAG GCTGAGGAACCCTACGAAGAAGCCACAGAGAGAACCACC AGCATTGCCACCACCACCACCACCACAGAGTCTGTG GAAGAGGTGGTTCGAGTTCCTACAACAGCAGCCAGTACC CCTGATGCCGTTGACAAGTATCTCGAGACACCTGGGGAT GAGAATGAACATGCCCATTTCCAGAAAGCCAAAGAGAGG CTTGAGGCCAAGCACCGAGAGAGAATGTCCCAGGTCATG AGAGAATGGGAAGAGCAGAACGTCAAGCAAAGAACTTG CCTAAAGCTGATAAGAAGGCAGTTATCCAGCATTTCCAGG AGAAAGTGGAATCTTTGGAACAGGAAGCAGCCAACGAGA GACAGCAGCTGGTGGAGACACACATGGCCAGAGTGGAA GCCATGCTCAATGACCGCCGCCGCCTGGCCCTGGAGAA CTACATCACCGCTCTGCAGGCTGTTCCTCCTCGGCCTCG TCACGTGTTCAATATGCTAAAGAAGTATGTCCGCGCAGAA CAGAAGGACAGCACACCCTAAAGCATTTCGAGCAT GTGCGCATGGTGGATCCCAAGAAAGCCGCTCAGATCCG GTCCCAGGTTATGACACACCTCCGTGTGATTTATGAGCG CATGAATCAGTCTCTCTCCCTGCTCTACAACGTGCCTGCA GTGGCCGAGGAGATTCAGGATGAAGTTGATGAGCTGCTT CAGAAAGAGCAAAACTATTCAGATGACGTCTTGGCCAACA TGATTAGTGAACCAAGGATCAGTTACGGAAACGATGCTCT CATGCCATCTTTGACCGAAACGAAAACCACCGTGGAGCT CCTTCCCGTGAATGGAGAGTTCAGCCTGGACGATCTCCA GCCGTGGCATTCTTTTGGGGCTGACTCTGTGCCAGCCAA  ${\tt CACAGAAAACGAAGTTGAGCCTGTTGATGCCCGCCCTGC}$ TGCCGACCGAGGACTGACCACTCGACCAGGTTCTGGGTT GACAAATATCAAGACGGAGGAGATCTCTGAAGTGAAGAT GGATGCAGAATTCCGACATGACTCAGGATATGAAGTTCAT CATCAAAAATTGGTGTTCTTTGCAGAAGATGTGGGTTCAA  ${\tt ACAAAGGTGCAATCATTGGACTCATGGTGGGCGGTGTTG}$ TCATAGCGACAGTGATCGTCATCACCTTGGTGATGCTGAA GAAGAAACAGTACACATCCATTCATCATGGTGTGGTGGA GGTTGACGCCGCTGTCACCCCAGAGGAGCGCCACCTGT CCAAGATGCAGCAGAACGGCTACGAAAATCCAACCTACA AGTTCTTTGAGCAGATGCAGAACTAGACCCCCGCCACAG  ${\tt CAGCCTCTGAAGTTGGACAGCAAAACCATTGCTTCACTAC}$ CCATCGGTGTCCATTTATAGAATAATGTGGGAAGAAACAA ACCCGTTTTATGATTTACTCATTATCGCCTTTTGACAGCTG TGCTGTAACACAAGTAGATGCCTGAACTTGAATTAATCCA CACATCAGTAATGTATTCTATCTCTCTTTTACATTTTGGTCT CTATACTACATTATTAATGGGTTTTGTGTACTGTAAAGAAT  ${\tt TTAGCTGTATCAAACTAGTGCATGAATAGATTCTCTCCTG}$ ATTATTTATCACATAGCCCCTTAGCCAGTTGTATATTATTC TTGTGGTTTGTGACCCAATTAAGTCCTACTTTACATATGCT TTAAGAATCGATGGGGGATGCTTCATGTGAACGTGGGAG TTCAGCTGCTTCTCTTGCCTAAGTATTCCTTTCCTGATCAC TATGCATTTTAAAGTTAAACATTTTTAAGTATTTCAGATGC TTTAGAGAGATTTTTTTTCCATGACTGCATTTTACTGTACA GATTGCTGCTTCTGCTATATTTGTGATATAGGAATTAAGA GGATACACACGTTTGTTTCTTCGTGCCTGTTTTATGTGCA CACATTAGGCATTGAGACTTCAAGCTTTTCTTTTTTTTTCCC ACGTATCTTTGGGTCTTTGATAAAGAAAAGAATCCCTGTT CTCTGCTGGTCTTCAATTACCAAGAATTCTCCAAAACAATT TTCTGCAGGATGATTGTACAGAATCATTGCTTATGACATG TAACCCCGGGCAAGACTTTTCTTTGAAGGATGACTACAGA CATTAAATAATCGAAGTAATTTTGGGTGGGGAGAAGAGG CAGATTCAATTTTCTTTAACCAGTCTGAAGTTTCATTTATG ATACAAAAGAAGATGAAAATGGAAGTGGCAATATAAGGG GATGAGGAAGGCATGCCTGGACAAACCCTTCTTTTAAGAT GTGTCTTCAATTTGTATAAAATGGTGTTTTCATGTAAATAA ATACATTCTTGGAGGAGC

ENSP00000387483

>TCONS 00180766 | ENST00000440126 (SEO ID NO: 16) AGAGTTCCGGAGGCTTTGGTTGTCCATTGTTAGCTTAGAA GTTGGCGCAGTGTGCGTGTGATCCACGCCTAAATAGCAC AGCCTTGCTGTGCGTGGTAGAAGTTGGGTTAGTGTTGAC

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

ATGCTGTTGACTCACCCTCCCGAGGATGGAAGCTCTGGC CTGGGTCAAGTTGTGGTCACTGCAGTTAACAGTTTGTTGA  ${\tt TCTCAGGGAGTATTCCACAGTTGCTGATGTAATTGACAAT}$ GATTGGAGCCAGCTCTTCCCCAGATTCAAATGGACCAATT AGAGGACTTGTTGGTTCTGTTTATCAACTATGTACCCACT GATGGTAATGCTGGCCTGCTGGCTGAACCCCAGATTGCC ATGTTCTGTGGCAGACTGAACATGCACATGAATGTCCAGA ATGGGAAGTGGGATTCAGATCCATCAGGGACCAAAACCT GCATTGATACCAAGGAAGGCATCCTGCAGTATTGCCAAG AAGTCTACCCTGAACTGCAGATCACCAATGTGGTAGAAG CCAACCAACCAGTGACCATCCAGAACTGGTGCAAGCGGG GCCGCAAGCAGTGCAAGACCCATCCCCACTTTGTGATTC CCTACCGCTGCTTAGTTGGTGAGTTTGTAAGTGATGCCCT TCTCGTTCCTGACAAGTGCAAATTCTTACACCAGGAGAGG ATGGATGTTTGCGAAACTCATCTTCACTGGCACACCGTCG CCAAAGAGACATGCAGTGAGAAGAGTACCAACTTGCATG ACTACGGCATGTTGCTGCCCTGCGGAATTGACAAGTTCC GAGGGGTAGAGTTTGTGTGTTGCCCACTGGCTGAAGAAA GTGACAATGTGGATTCTGCTGATGCGGAGGAGGATGACT CGGATGTCTGGTGGGGGGGGGGGGGGAGACACAGACTATGCA GATGGGAGTGAAGACAAAGTAGTAGAAGTAGCAGAGGAG GAAGAAGTGGCTGAGGTGGAAGAAGAAGAAGCCGATGAT GACGAGGACGATGAGGATGGTGATGAGGTAGAGGAAGA GGCTGAGGAACCCTACGAAGAAGCCACAGAGAGAACCA CCAGCATTGCCACCACCACCACCACCACCACAGAGTCTG TGGAAGAGGTGGTTCGAGAGGTGTGCTCTGAACAAGCCG  ${\tt AGACGGGGCCGTGCCGAGCAATGATCTCCCGCTGGTAC}$ TTTGATGTGACTGAAGGGAAGTGTGCCCCATTCTTTTACG  $\tt GCGGATGTGGCGGCAACCGGAACAACTTTGACACAGAAG$ AGTACTGCATGGCCGTGTGTGGCAGCGCCATTCCTACAA CAGCAGCCAGTACCCCTGATGCCGTTGACAAGTATCTCG AGACACCTGGGGATGAGAATGAACATGCCCATTTCCAGA AAGCCAAAGAGAGGCTTGAGGCCAAGCACCGAGAGAGA ATGTCCCAGGTCATGAGAGAATGGGAAGAGGCAGAACGT CAAGCAAAGAACTTGCCTAAAGCTGATAAGAAGGCAGTTA TCCAGCATTTCCAGGAGAAAGTGGAATCTTTGGAACAGG  ${\tt AAGCAGCCAACGAGAGACAGCAGCTGGTGGAGACACAC}$ ATGGCCAGAGTGGAAGCCATGCTCAATGACCGCCGCCG CCTGGCCCTGGAGAACTACATCACCGCTCTGCAGGCTGT TCCTCCTCGGCCTCGTCACGTGTTCAATATGCTAAAGAAG TATGTCCGCGCAGAACAGAAGGACAGACAGCACCCTA AAGCATTTCGAGCATGTGCGCATGGTGGATCCCAAGAAA GCCGCTCAGATCCGGTCCCAGGTTATGACACACCTCCGT  $\tt GTGATTTATGAGCGCATGAATCAGTCTCTCTCTCTCTCTT$  ${\tt ACAACGTGCCTGCAGTGGCCGAGGAGATTCAGGATGAAG}$ TTGATGAGCTGCTTCAGAAAGAGCAAAACTATTCAGATGA CGTCTTGGCCAACATGATTAGTGAACCAAGGATCAGTTAC CCACCGTGGAGCTCCTTCCCGTGAATGGAGAGTTCAGCC TGGACGATCTCCAGCCGTGGCATTCTTTTGGGGCTGACT CTGTGCCAGCCAACACAGAAAACGAAGTTGAGCCTGTTG ATGCCCGCCCTGCTGCCGACCGAGGACTGACCACTCGA CCAGGTTCTGGGTTGACAAATATCAAGACGGAGGAGATC TCTGAAGTGAAGATGGATGCAGAATTCCGACATGACTCA GGATATGAAGTTCATCATCAAAAATTGGTGTTCTTTGCAG AAGATGTGGGTTCAAACAAAGGTGCAATCATTGGACTCAT GGTGGGCGGTGTTGTCATAGCGACAGTGATCGTCATCAC CTTGGTGATGCTGAAGAAGAACAGTACACATCCATTCAT CATGGTGTGGGGGGTTGACGCCGCTGTCACCCCAGA GGAGCGCCACCTGTCCAAGATGCAGCAGAACGGCTACG AAAATCCAACCTACAAGTTCTTTGAGCAGATGCAGAACTA GACCCCGCCACAGCAGCCTCTGAAGTTGGACAGCAAAA CCATTGCTTCACTACCCATCGGTGTCCATTTATAGAATAA TGTGGGAAGAACAAACCCGTTTTATGATTTACTCATTAT CGCCTTTTGACAGCTGTGCTGTAACACAAGTAGATGCCT GAACTTGAATTAATCCACACATCAGTAATGTATTCTATCTC TCTTTACATTTTGGTCTCTATACTACATTATTAATGGGTTTT GTGTACTGTAAAGAATTTAGCTGTATCAAACTAGTGCATG AATAGATTCTCTCCTGATTATTTATCACATAGCCCCCTTAGC CAGTTGTATATTCTTGTGGTTTGTGACCCAATTAAGTC  $\tt CTACTTTACATATGCTTTAAGAATCGATGGGGGATGCTTC$ ATGTGAACGTGGGAGTTCAGCTGCTTCTCTTGCCTAAGTA TTCCTTTCCTGATCACTATGCATTTTAAAGTTAAACATTTTT AAGTATTTCAGATGCTTTAGAGAGATTTTTTTTCCATGACT GCATTTTACTGTACAGATTGCTGCTTCTGCTATATTTGTGA

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

17 ENSP00000387483

>TCONS 00180778 | ENST00000440126 (SEO ID NO: 17) AGAGTTCCGGAGGCTTTGGTTGTCCATTGTTAGCTTAGAA GTTGGCGCAGTGTGCGTGTGATCCACGCCTAAATAGCAC  ${\tt AGCCTTGCTGTGCGTGGTAGAGTTGGGTTAGTGTTGAC}$  $\tt ATGCTGTTGACTCACCCTCCCGAGGATGGAAGCTCTGGC$ CTGGGTCAAGTTGTGGTCACTGCAGTTAACAGTTTGTTGA TCTCAGGGAGTATTCCACAGTTGCTGATGTAATTGACAAT GATTGGAGCCAGCTCTTCCCCAGATTCAAATGGACCAATT AGAGGACTTGTTGGTTCTGTTTATCAACTATGTACCCACT GATGGTAATGCTGGCCTGCTGGCTGAACCCCAGATTGCC ATGTTCTGTGGCAGACTGAACATGCACATGAATGTCCAGA ATGGGAAGTGGGATTCAGATCCATCAGGGACCAAAACCT GCATTGATACCAAGGAAGGCATCCTGCAGTATTGCCAAG AAGTCTACCCTGAACTGCAGATCACCAATGTGGTAGAAG CCAACCAACCAGTGACCATCCAGAACTGGTGCAAGCGGG GCCGCAAGCAGTGCAAGACCCATCCCCACTTTGTGATTC CCTACCGCTGCTTAGTTGGTGAGTTTGTAAGTGATGCCCT TCTCGTTCCTGACAAGTGCAAATTCTTACACCAGGAGAGG ATGGATGTTTGCGAAACTCATCTTCACTGGCACACCGTCG CCAAAGAGACATGCAGTGAGAAGAGTACCAACTTGCATG ACTACGGCATGTTGCTGCCCTGCGGAATTGACAAGTTCC GAGGGGTAGAGTTTGTGTGTTGCCCACTGGCTGAAGAAA GTGACAATGTGGATTCTGCTGATGCGGAGGAGGATGACT CGGATGTCTGGTGGGGCGGAGCAGACACAGACTATGCA GATGGGAGTGAAGACAAAGTAGTAGAAGTAGCAGAGGAG GAAGAAGTGGCTGAGGTGGAAGAAGAAGAAGCCGATGAT GACGAGGACGATGAGGATGGTGATGAGGTAGAGGAAGA GGCTGAGGAACCCTACGAAGAAGCCACAGAGAGAACCA CCAGCATTGCCACCACCACCACCACCACCACAGAGTCTG TGGAAGAGGTGGTTCGAGAGGTGTGCTCTGAACAAGCCG  ${\tt AGACGGGGCCGTGCCGAGCAATGATCTCCCGCTGGTAC}$ TTTGATGTGACTGAAGGGAAGTGTGCCCCATTCTTTTACG  $\tt GCGGATGTGGCGGCAACCGGAACAACTTTGACACAGAAG$ AGTACTGCATGGCCGTGTGTGGCAGCGCCATTCCTACAA CAGCAGCCAGTACCCCTGATGCCGTTGACAAGTATCTCG AGACACCTGGGGATGAGAATGAACATGCCCATTTCCAGA AAGCCAAAGAGAGGCTTGAGGCCAAGCACCGAGAGAGA  $\tt ATGTCCCAGGTCATGAGAGAATGGGAAGAGGCAGAACGT$ CAAGCAAAGAACTTGCCTAAAGCTGATAAGAAGGCAGTTA TCCAGCATTTCCAGGAGAAAGTGGAATCTTTGGAACAGG AAGCAGCCAACGAGAGACAGCAGCTGGTGGAGACACAC ATGGCCAGAGTGGAAGCCATGCTCAATGACCGCCGCCG CCTGGCCCTGGAGAACTACATCACCGCTCTGCAGGCTGT TCCTCCTCGGCCTCGTCACGTGTTCAATATGCTAAAGAAG TATGTCCGCGCAGAACAGAAGGACAGACAGCACCCTA AAGCATTTCGAGCATGTGCGCATGGTGGATCCCAAGAAA  ${\tt GCCGCTCAGATCCGGTCCCAGGTTATGACACACCTCCGT}$ GTGATTTATGAGCGCATGAATCAGTCTCTCTCCCTGCTCT  ${\tt ACAACGTGCCTGCAGTGGCCGAGGAGATTCAGGATGAAG}$ TTGATGAGCTGCTTCAGAAAGAGCAAAACTATTCAGATGA CGTCTTGGCCAACATGATTAGTGAACCAAGGATCAGTTAC CCACCGTGGAGCTCCTTCCCGTGAATGGAGAGTTCAGCC TGGACGATCTCCAGCCGTGGCATTCTTTTGGGGCTGACT CTGTGCCAGCCAACACAGAAAACGAAGTTGAGCCTGTTG ATGCCCGCCCTGCTGCCGACCGAGGACTGACCACTCGA CCAGGTTCTGGGTTGACAAATATCAAGACGGAGGAGATC TCTGAAGTGAAGATGGATGCAGAATTCCGACATGACTCA GGATATGAAGTTCATCAACAAAATTGGTGTTCTTTGCAG

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

18 ENSP00000396923

>TCONS 00180783 | ENST00000448850 (SEO ID NO: 18) ACTGCAGATCACCAATGTGGTAGAAGCCAACCAACCAGT GACCATCCAGAACTGGTGCAAGCGGGGCCGCAAGCAGT  ${\tt GCAAGACCCATCCCCACTTTGTGATTCCCTACCGCTGCTT}$ AGTTGGTGAGTTTGTAAGTGATGCCCTTCTCGTTCCTGAC  ${\tt AAGTGCAAATTCTTACACCAGGAGAGGATGGATGTTTGC}$ GAAACTCATCTTCACTGGCACACCGTCGCCAAAGAGACA TGCAGTGAGAAGAGTACCAACTTGCATGACTACGGCATG TTGCTGCCCTGCGGAATTGACAAGTTCCGAGGGGTAGAG TTTGTGTGTTGCCCACTGGCTGAAGAAGTGACAATGTG  ${\tt GATTCTGCTGATGCGGAGGAGGATGACTCGGATGTCTGG}$ TGGGGCGGAGCAGACACAGACTATGCAGATGGGAGTGA AGACAAAGTAGTAGAAGTAGCAGAGGAGGAAGAAGTGGC TGAGGTGGAAGAAGAAGCCGATGATGACGAGGACG ATGAGGATGGTGATGAGGTAGAGGAAGAGGCTGAGGAA CCCTACGAAGAAGCCACAGAGAGAACCACCAGCATTGCC ACCACCACCACCACCACAGAGTCTGTGGAAGAGGTG GTTCGAGAGGTGTGCTCTGAACAAGCCGAGACGGGGCC GTGCCGAGCAATGATCTCCCGCTGGTACTTTGATGTGAC TGAAGGGAAGTGTGCCCCATTCTTTTACGGCGGATGTGG CGGCAACCGGAACAACTTTGACACAGAAGAGTACTGCAT GGCCGTGTGTGGCAGCGCCATTCCTACAACAGCAGCCA GTACCCCTGATGCCGTTGACAAGTATCTCGAGACACCTG GGGATGAGAATGAACATGCCCATTTCCAGAAAGCCAAAG AGAGGCTTGAGGCCAAGCACCGAGAGAAATGTCCCAG GTCATGAGAGAATGGGAAGAGGCAGAACGTCAAGCAAAG AACTTGCCTAAAGCTGATAAGAAGGCAGTTATCCAGCATT TCCAGGAGAAGTGGAATCTTTGGAACAGGAAGCAGCCA ACGAGAGACAGCAGCTGGTGGAGACACACATGGCCAGA GTGGAAGCCATGCTCAATGACCGCCGCCGCCTGGCCCT GGAGAACTACATCACCGCTCTGCAGGCTGTTCCTCCTCG  ${\tt GCCTCGTCACGTGTTCAATATGCTAAAGAAGTATGTCCGC}$ GCAGAACAGAAGGACAGACACCCTAAAGCATTTC  ${\tt GAGCATGTGCGCATGGTGGATCCCAAGAAAGCCGCTCAG}$  ${\tt ATCCGGTCCCAGGTTATGACACACCTCCGTGTGATTTATG}$ AGCGCATGAATCAGTCTCTCTCCCTGCTCTACAACGTGC CTGCAGTGGCCGAGGAGATTCAGGATGAAGTTGGTGCAG TGGCTCATGCCTGTAATTCCAGCATTTTGGGAGGCCAAG GTGGGCAGATGACTTGAGCCCAGAAGTTCAAGACCAGAA TGGGAAACATGGCAAGACCACATTTCTACAAAAAAATTAT CCAGGCATGATAACATCTATTTGTAGTCCCAGCTACTCAG GAGGCTGTGGTGGGAGGATCTCCTGAGCCTGGGGTGGC TGAGGCTGCAGTGAGCCTTGATCACGCCACCTGGGCAAT AGAGCAAGACCCTGTCTCAAAAAAAGGAAGAAAAAGACT ATTATTTCCCCCATTGAATGGTCTTGGCACTATTACACAAA  ${\tt ATCAATTGTCCATAGATAATATGGGTTTATTTCTTAATTCT}$ TAGTTCTTTTGATCTGTGTGCCTGTGCTTACTGTAGT ACCACACTGTTTTGATTATTGTAGCTTTGTAGTAAATTTTG

ENSP00000398879

19

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

GTAAGTGATGCCCTTCTCGTTCCTGACAAGTGCAAATTCT TACACCAGGAGAGGATGGATGTTTGCGAAACTCATCTTCA  $\tt CTGGCACACCGTCGCCAAAGAGACATGCAGTGAGAAGAG$ TACCAACTTGCATGACTACGGCATGTTGCTGCCCTGCGG  ${\tt AATTGACAAGTTCCGAGGGGTAGAGTTTGTGTGTTGCCC}$ ACTGGCTGAAGAAAGTGACAATGTGGATTCTGCTGATGC  $\tt GGAGGAGGATGACTCGGATGTCTGGTGGGGCGGAGCAG$ ACACAGACTATGCAGATGGGAGTGAAGACAAAGTAGTAG AAGTAGCAGAGGAGGAAGAAGTGGCTGAGGTGGAAGAA GAAGAAGCCGATGATGACGAGGACGATGAGGATGGTGAT GAGGTAGAGGAAGAGGCTGAGGAACCCTACGAAGAAGC CACAGAGAGAACCACCAGCATTGCCACCACCACCACCAC CACCACAGAGTCTGTGGAAGAGGTGGTTCGAGAGGTGTG CTCTGAACAAGCCGAGACGGGGCCGTGCCGAGCAATGA TCTCCCGCTGGTACTTTGATGTGACTGAAGGGAAGTGTG CCCCATTCTTTTACGGCGGATGTGGCGGCAACCGGAACA ACTTTGACACAGAAGAGTACTGCATGGCCGTGTGTGGCA GCGCCATGTCCCAAAGTTTACTCAAGACTACCCAGGAAC CTCTTGCCCGAGATCCTGTTAAACTTCCTACAACAGCAGC CAGTACCCCTGATGCCGTTGACAAGTATCTCGAGACACC TGGGGATGAGAATGAACATGCCCATTTCCAGAAAGCCAA AGAGAGGCTTGAGGCCAAGCACCGAGAGAGAATGTCCC AGGTCATGAGAGAATGGGAAGAGGCAGAACGTCAAGCAA AGAACTTGCCTAAAGCTGATAAGAAGGCAGTTATCCAGCA TTTCCAGGAGAAGTGGAATCTTTGGAACAGGAAGCAGC CAACGAGAGACAGCAGCTGGTGGAGACACACATGGCCA  ${\tt GAGTGGAAGCCATGCTCAATGACCGCCGCCTGGCC}$ CTGGAGAACTACATCACCGCTCTGCAGGCTGTTCCTCCT  $\tt CGGCCTCGTCACGTGTTCAATATGCTAAAGAAGTATGTCC$ GCGCAGAACAGAAGGACAGACACCCTAAAGCATT TCGAGCATGTGCGCATGGTGGATCCCAAGAAAGCCGCTC AGATCCGGTCCCAGGTTATGACACACCTCCGTGTGATTTA TGAGCGCATGAATCAGTCTCTCTCCCTGCTCTACAACGTG CCTGCAGTGGCCGAGGAGATTCAGGATGAAGTTGATGAG CTGCTTCAGAAAGAGCAAAACTATTCAGATGACGTCTTGG CCAACATGATTAGTGAACCAAGGATCAGTTACGGAAACG ATGCTCTCATGCCATCTTTGACCGAAACGAAAACCACCGT GGAGCTCCTTCCCGTGAATGGAGAGTTCAGCCTGGACGA TCTCCAGCCGTGGCATTCTTTTGGGGCTGACTCTGTGCC AGCCAACACAGAAAACGAAGTTGAGCCTGTTGATGCCCG CCCTGCTGCCGACCGAGGACTGACCACTCGACCAGGTTC TGGGTTGACAAATATCAAGACGGAGGAGATCTCTGAAGT GAAGATGGATGCAGAATTCCGACATGACTCAGGATATGA AGTTCATCAAAAAATTGGTGTTCTTTGCAGAAGATGTG GGTTCAAACAAAGGTGCAATCATTGGACTCATGGTGGGC GGTGTTGTCATAGCGACAGTGATCGTCATCACCTTGGTG ATGCTGAAGAAGAACAGTACACATCCATTCATCATGGTG  ${\tt TGGTGGAGGTTGACGCCGCTGTCACCCCAGAGGAGCGC}$ CACCTGTCCAAGATGCAGCAGAACGGCTACGAAAATCCA ACCTACAAGTTCTTTGAGCAGATGCAGAACTAGACCCCC GCCACAGCAGCCTCTGAAGTTGGACAGCAAAACCATTGC TTCACTACCCATCGGTGTCCATTTATAGAATAATGTGGGA AGAAACAAACCCGTTTTATGATTTACTCATTATCGCCTTTT GACAGCTGTGCTGTAACACAAGTAGATGCCTGAACTTGA ATTAATCCACACATCAGTAATGTATTCTATCTCTCTTTACA TTTTGGTCTCTATACTACATTATTAATGGGTTTTGTGTACT GTAAAGAATTTAGCTGTATCAAACTAGTGCATGAATAGAT TCTCTCCTGATTATTTATCACATAGCCCCTTAGCCAGTTGT ATATTATTCT

ENSP00000406539

20

#### APP transcrips final

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks\_variants UniProt\_id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

AACTTGCCTAAAGCTGATAAGAAGGCAGTTATCCAGCATT TCCAGGAGAAAGTGGAATCTTTGGAACAGGAAGCA

>TCONS 00180780 | ENST00000464867

21 Uniprot id: P05067

(SEQ ID NO: 21) ATCCTTGCCAACCTCTCAACCAGGATTTAACTTCTGCTTTT  $\tt CCCCCATTTTCAAAAATTATAGCATGTATTTAAAGGCAGC$ AGAAGCCTTACTTTCAGGTTTCCCTTACCCTTTCATTTCTT TTTGTTCAAAATAGGTAGTAATTGAAGTTTTAAATATAGGG TATCATTTTCTTTAAGAGTCATTTATCAATTTTCTTCTAAC TTCAGGCCTAGAAAGAAGTTTTGGGTAGGCTTTGTCTTAC AGTGTTATTATTATGAGTAAAACTAATTGGTTGTCCTGCA TACTTTAATTATGATGTAATACAGGTTCTGGGTTGACAAAT ATCAAGACGGAGGAGATCTCTGAAGTGAAGATGGATGCA GAATTCCGACATGACTCAGGATATGAAGTTCATCAAA AATTGGTGTTCTTTGCAGAAGATGTGGGTTCAAACAAAGG TGCAATCATTGGACTCATGGTGGGCGGTGTTGTCATAGC GACAGTGATCGTCATCACCTTGGTGATGCTGAAGAAGAA ACAGTACACATCCATTCATCATGGTGTGGTGGAGGTTGA CGCCGCTGTCACCCCAGAGGAGCGCCACCTGTCCAAGA TGCAGCAGAACGGCTACGAAAATCCAACCTACAAGTTCTT TGAGCAGATGCAGAACTAGACCCCCGCCACAGCAGCCTC TGAAGTTGGACAGCAAAACCATTGCTTCACTACCCATCGG TGTCCATTTATAGAATAATGTGGGAAGAAACAAACCCGTT TTATGATTTACTCATTATCGCCTTTTGACAGCTGTGCTGTA ACACAAGTAGATGCC

22 Uniprot id: P05067

>TCONS 00180785 | ENST00000491395 (SEQ ID NO: 22) CAGÃCTATGCAGATGGGAGTGAAGACAAAGTAGTAGAAG TAGCAGAGGAGGAAGAAGTGGCTGAGGTGGAAGAAGAA GAAGCCGATGATGACGAGGACGATGAGGATGGTGATGA GGTAGAGGAAGAGCCTACGAAGAAGCCA CAGAGAGAACCACCAGCATTGCCACCACCACCACCA CCACAGAGTCTGTGGAAGAGGTGGTTCGAGAGGTGTGCT CTGAACAAGCCGAGACGGGGCCGTGCCGAGCAATGATC TCCCGCTGGTACTTTGATGTGACTGAAGGGAAGTGTGCC CCATTCTTTTACGGCGGATGTGGCGGCAACCGGAACAAC TTTGACACAGAAGAGTACTGCATGGCCGTGTGTGGCAGC GCCATGTCCCAAAGTTTACTCAAGACTACCCAGGAACCTC TTGCCCGAGATCCTGTTAAACGTACGTTGTCATTCACCTG AGGGAAGGGAGGGAGGATGCTGCTTGGTTCA CATAACTCCAGCATCATCACCTTCTTTGCATGGTTTTGTG TTTCTTGAACACCTGTCTTAGTAAAATGTTTCTTCCCATTA CCTTGCTTGTAATTACATCTGATTTTGCCAGACA

23 Uniprot\_id: P05067

>TCONS 00180786 | ENST00000474136 (SEQ ID NO: 23) CGAĞAGCACGCGGAGGAGCGTGCGCGGGGGCCCCGGG AGACGGCGGCGGTGGCGGCGCGGGCAGAGCAAGGACG CGGCGGATCCCACTCGCACAGCAGCGCACTCGGTGCCC CGCGCAGGGTCGCGATGCTGCCCGGTTTGGCACTGCTC CTGCTGGCCGCCTGGACGGCTCGGGCGCTGGAGGTACC CACTGATGGTAATGCTGGCCTGCTGGCTGAACCCCAGAT TGCCATGTTCTGTGGCAGACTGAACATGCACATGAATGTC CAGAATGGGAAGTGGGATTCAGATCCATCAGGGACCAAA  ${\tt ACCTGCATTGATACCAAGGAAGGCATCCTGCAGTATTGC}$ CAAGAAGTCTACCCTGAACTGCAGATCACCAATGTGGTA GAAGCCAACCAGTGACCATCCAGAACTGGTGCAAG CGGGGCCGCAAGCAGTGCAAGACCCATCCCCACTTTGTG ATTCCCTACCGCTGCTTAGTTGGTGAGTTTGTAAGTGATG CCCTTCTCGTTCCTGACAAGTGCAAATTCTTACACCAGGA GAGGATGGATGTTTGCGAAACTCATCTTCACTGGCACAC CGTCGCCAAAGAGACATGCAGTGAGAAGAGTACCAACTT GCATGACTACGGCATGTTGCTGCCCTGCGGAATTGACAA  $\tt GTTCCGAGGGGTAGAGTTTGTGTTGTCCCACTGGCTGA$ AGAAAGTGACAATGTGGATTCTGCTGATGCGGAGGAGGA TGACTCGGATGTCTGGTGGGGCGGAGCAGACACAGACT ATGCAGATGGGAGTGAAGACAAAGTAGTAGAAGTAGCAG AGGAGGAAGAAGTGGCTGAGGTGGAAGAAGAAGAAGCC GATGATGACGAGGACGATGAGGATGATGAGGTAGA GGAAGAGGCTGAGGAACCCTACGAAGAAGCCACAGAGA GAACCACCAGCATTGCCACCACCACCACCACCACCACAG AGTCTGTGGAAGAGGTGGTTCGAGAGAAGTGGTATAAGG AAGTACATTCTGGCCAGGCACGATGGCTCATGCTGTAAT

#### APP transcrips fina

Number of Ensembl\_protein\_id/ Fasta\_Formatted\_DNA\_sequences\_with\_cufflinks variants UniProt id transcript\_ids\_and\_corres-ponding\_Ensembl\_ids

> CCCAGCACTTTGGGAGGCCGAGGTGGGTGCATCACCTG AGGTCAGGAGTTTGAGACCAGCCTGGCCAACATGGTGAA ACCCCTCGCTACTAAAAATACAAAAATTAGCCGGGCGTG GTGGCACACCTGTGGTCCCAGCTACTCGGGAGGCTG AAGCAGGAGAATCGCTTGAACCCGGGAGACGGAGGTTG CAGTAAGCCGAGTTCACTCCATTGTACTCTAGCCTGGGT GACAGAGCGAGATTCGTCTCAAAAAAAAAAAAA

24 Uniprot\_id: P05067

(SEO ID NO: 24) GTAACATTCTAAAGGTAGTAGGGTCTTGATTGGGTTGCTT AGGCATTAAAAGGCTGTTTAACTTGTCTTGAAGTCTATCTT TCCTTGATGTCTTCTGCGGTAAGAACACTGTGATACAGAT GGAATGACGGGAAGTGGTTTTCCTTTCTTTCAGTTGGTGA GTTTGTAAGTGATGCCCTTCTCGTTCCTGACAAGTGCAAA TTCTTACACCAGGAGAGGATGGATGTTTGCGAAACTCATC TTCACTGGCACACCGTCGCCAAAGAGACATGCAGTGAGA AGAGTACCAACTTGCATGACTACGGCATGTTGCTGCCCT GCGGAATTGACAAGTTCCGAGGGGTAGAGTTTGTGTGTT

>TCONS 00180787 | ENST00000463070

GCCCACTGGCTGAAGAAAGTGACAATGTGGATTCTGCTG ATGCGGAGGAGGATGACTCGGATGTCTGGTGGGGCGGA GCAGACACAGACTATGCAGATGGGAGTGAAGACAAAGTA GTAGAAGTAGCAGAGGAGGAAGAAGTGGCTGAGGTGGA AGAAGAAGAAGCCGATGATGACGAGGACGATGAGGATG

GTGATGAGGTAGAGGAAGAGGCTGAGGAACCC

25 Uniprot\_id: P05067 >TCONS\_00180788 | ENST00000548570

(SEO ID NO: 25)

ACTGGAGGGCTGAGAAGAGACTGATGGCATTTGTTGTTC TTGACCTTGAAAGAAGAGTTGCAGATTGTTGGAGCAAGG CCAGATGGTAATAGGTTGGAAAGAACAAGTGAGGGGCGT GAGAGTGACAGTCTACAACCCCGTTAAGAAGTTATCTGTG AAAATGCCTCTTCCTGTCTTGATTATAGCCTCCCTCGCAC ATGGCTTTCTGAGTATGTTGGTGAGTTTGTAAGTGATGCC CTTCTCGTTCCTGACAAGTGCAAATTCTTACACCAGGAGA GGATGGATGTTTGCGAAACTCATCTTCACTGGCACACCG TCGCCAAAGAGACATGCAGTGAGAAGAGTACCAACTTGC ATGACT

26 Uniprot id: P05067 >TCONS 00180789 ENST00000462267

(SEQ ID NO: 26) CTGAACATGCACATGAATGTCCAGAATGGGAAGTGGGAT TCAGATCCATCAGGGACCAAAACCTGCATTGATACCAAG GAAGGCATCCTGCAGTATTGCCAAGAAGTCTACCCTGAA CTGCAGATCACCAATGTGGTAGAAGCCAACCAACCAGTG ACCATCCAGAACTGGTGCAAGCGGGGCCGCAAGCAGTG CAAGACCCATCCCCACTTTGTGATTCCCTACCGCTGCTTA GGTGAGCCGGCCGGCCGTGGGGCTGTTGATTGGGG GCCTGGTCTTGAGGGAAGAAAAAGAGGATGCTCCTGTTA GGTCACATACACAGACTTGTTCTTCAGCACATTGCCACTC TGTGTTGTACTGTGTTTTGGACTCTTGCAGTTACATTCTGT GCACTGACCCTATAGGAGCAGTATTTTTGAGTTCCCTGCC TCAGAATGAATTTACCCAGGGTGTATATTGAAATTACAAAT TCCTGGGCCAGTTCCAGGACTCCTGAATGAAAAATGCCT ATAGTAGCGGATCCGGGAATTCTTATTTTACCGTATCGCA TAGATGATTCTCATGAACAGGGGCCTTGTGTGTTTCTTCA CATAGACTTTCTAGAAGAAGAATCTAATGTGAAGCTGCA GCATTTTGTTAATTTCTAAAAAAAAAAAAAAAAAAA

Uniprot id: P05067

>TCONS\_00180790 | ENST00000466453

(SEO ID NO: 27)

GGCGCGCCTCTTCCCTGGCAGCTCTGGGGACTCTGGT TTAGTTCCCCTGGGGGCACAGGATGCTGGGGAGGGTCC GAAGGGTCTTTTTTTTAGGGTGCAGATAAAAGGATCGAAT TGAGTGAAGATTAAGACGGAGAAGATGGCGCCTCTGCAG TGCAGCAAAGAAAGCTGTGTGGAGGCTGCAGCCTAGTG AAATCCACCACCACTAGGTACCCACTGATGGTAATGCT GGCCTGCTGGCTGAACCCCAGATTGCCATGTTCTGTGGC AGACTGAACATGCACATGAATGTCCAGAATGGGAAGTGG GATTCAGATCCATCAGGGACCAAAACCTGCATTGATACCA AGGAAGGCATCCTGCAGTATTGC

## REFERENCES

- 1. Hartley J L, Davenport M, Kelly D A. Biliary atresia. Lancet. 2009; 374 (9702): 1704-13.
- Performing Kasai portoenterostomy beyond 60 days of life is not necessarily associated with a worse outcome. Journal of pediatric gastroenterology and nutrition. 2010; 51 (5): 631-4.
- 3. Chung P H, Wong K K, Tam P K. Predictors for failure 10 after Kasai operation. Journal of pediatric surgery. 2015; 50 (2): 293-6.
- 4. Ernest van Heurn L W, Saing H, Tam P K. Cholangitis after hepatic portoenterostomy for biliary atresia: a multivariate analysis of risk factors. The Journal of pediatrics. 15 2003; 142 (5): 566-71.

64

- 5. Khong PL, Ooi CG, Saing H, Chan KL, Wong WH, Tam P K, et al. Portal venous velocity in the follow-up of patients with biliary atresia after Kasai portoenterostomy. Journal of pediatric surgery. 2002; 37 (6): 873-6.
- 2. Wong K K, Chung P H, Chan I H, Lan L C, Tam P K. 5 6. van Heurn L W, Saing H, Tam P K. Portoenterostomy for biliary atresia: Long-term survival and prognosis after esophageal variceal bleeding. Journal of pediatric surgery. 2004; 39 (1): 6-9.
  - 7. Wong K K, Fan A H, Lan L C, Lin S C, Tam P K. Effective antibiotic regime for postoperative acute cholangitis in biliary atresia—an evolving scene. Journal of pediatric surgery. 2004; 39 (12): 1800-2.
  - 8. Picelli S, Faridani O R, Bjorklund A K, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nature protocols. 2014; 9 (1): 171-81.

#### SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 27 <210> SEQ ID NO 1 <211> LENGTH: 3383 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence <400> SEQUENCE: 1 ggtacceact gatggtaatg etggeetget ggetgaacce cagattgeea tgttetgtgg 60 cagactgaac atgcacatga atgtccagaa tgggaagtgg gattcagatc catcagggac 120 caaaacctgc attgatacca aggaaggcat cctgcagtat tgccaagaag tctaccctga 180 actgcagatc accaatgtgg tagaagccaa ccaaccagtg accatccaga actggtgcaa 240 gcggggccgc aagcagtgca agacccatcc ccactttgtg attccctacc gctgcttagt 300 tggtgagttt gtaagtgatg coettetegt teetgacaag tgcaaattet tacaccagga 360 gaggatggat gtttgcgaaa ctcatcttca ctggcacacc gtcgccaaag agacatgcag 420 tgagaagagt accaacttgc atgactacgg catgttgctg ccctgcggaa ttgacaagtt ccgaggggta gagtttgtgt gttgcccact ggctgaagaa agtgacaatg tggattctgc tgatgcggag gaggatgact cggatgtctg gtggggcgga gcagacacag actatgcaga 600 tgggagtgaa gacaaagtag tagaagtagc agaggaggaa gaagtggctg aggtggaaga 660 agaagaagcc gatgatgacg aggacgatga ggatggtgat gaggtagagg aagaggctga 720 ggaaccctac gaagaagcca cagagagaac caccagcatt gccaccacca ccaccaccac 780 cacagagtct gtggaagagg tggttcgaga ggtgtgctct gaacaagccg agacggggcc 840 gtgccgagca atgatctccc gctggtactt tgatgtgact gaagggaagt gtgccccatt 900 cttttacggc ggatgtggcg gcaaccggaa caactttgac acagaagagt actgcatggc 960 cqtqtqtqqc aqcqccatqt cccaaaqttt actcaaqact acccaqqaac ctcttqcccq 1020 agateetgtt aaaetteeta caacageage cagtaceeet gatgeegttg acaagtatet 1080 cgagacacct ggggatgaga atgaacatgc ccatttccag aaagccaaag agaggcttga 1140 ggccaagcac cgagagagaa tgtcccaggt catgagagaa tgggaagagg cagaacgtca 1200 aqcaaaqaac ttqcctaaaq ctqataaqaa qqcaqttatc caqcatttcc aqqaqaaaqt 1260 ggaatctttg gaacaggaag cagccaacga gagacagcag ctggtggaga cacacatggc 1320 caqaqtqqaa qccatqctca atqaccqccq ccqcctqqcc ctqqaqaact acatcaccqc 1380

| tctgcaggct | gttcctcctc | ggcctcgtca | cgtgttcaat | atgctaaaga | agtatgtccg | 1440 |
|------------|------------|------------|------------|------------|------------|------|
| cgcagaacag | aaggacagac | agcacaccct | aaagcatttc | gagcatgtgc | gcatggtgga | 1500 |
| tcccaagaaa | gccgctcaga | teeggteeea | ggttatgaca | cacctccgtg | tgatttatga | 1560 |
| gcgcatgaat | cagtetetet | ccctgctcta | caacgtgcct | gcagtggccg | aggagattca | 1620 |
| ggatgaagtt | gatgagctgc | ttcagaaaga | gcaaaactat | tcagatgacg | tcttggccaa | 1680 |
| catgattagt | gaaccaagga | tcagttacgg | aaacgatgct | ctcatgccat | ctttgaccga | 1740 |
| aacgaaaacc | accgtggagc | teetteeegt | gaatggagag | ttcagcctgg | acgatctcca | 1800 |
| gccgtggcat | tcttttgggg | ctgactctgt | gccagccaac | acagaaaacg | aagttgagcc | 1860 |
| tgttgatgcc | cgccctgctg | ccgaccgagg | actgaccact | cgaccaggtt | ctgggttgac | 1920 |
| aaatatcaag | acggaggaga | tctctgaagt | gaagatggat | gcagaattcc | gacatgactc | 1980 |
| aggatatgaa | gttcatcatc | aaaaattggt | gttctttgca | gaagatgtgg | gttcaaacaa | 2040 |
| aggtgcaatc | attggactca | tggtgggcgg | tgttgtcata | gcgacagtga | tcgtcatcac | 2100 |
| cttggtgatg | ctgaagaaga | aacagtacac | atccattcat | catggtgtgg | tggaggttga | 2160 |
| cgccgctgtc | accccagagg | agcgccacct | gtccaagatg | cagcagaacg | gctacgaaaa | 2220 |
| tccaacctac | aagttctttg | agcagatgca | gaactagacc | cccgccacag | cagcctctga | 2280 |
| agttggacag | caaaaccatt | gcttcactac | ccatcggtgt | ccatttatag | aataatgtgg | 2340 |
| gaagaaacaa | acccgtttta | tgatttactc | attatcgcct | tttgacagct | gtgctgtaac | 2400 |
| acaagtagat | gcctgaactt | gaattaatcc | acacatcagt | aatgtattct | atctctcttt | 2460 |
| acattttggt | ctctatacta | cattattaat | gggttttgtg | tactgtaaag | aatttagctg | 2520 |
| tatcaaacta | gtgcatgaat | agattctctc | ctgattattt | atcacatagc | cccttagcca | 2580 |
| gttgtatatt | attcttgtgg | tttgtgaccc | aattaagtcc | tactttacat | atgctttaag | 2640 |
| aatcgatggg | ggatgcttca | tgtgaacgtg | ggagttcagc | tgcttctctt | gcctaagtat | 2700 |
| tcctttcctg | atcactatgc | attttaaagt | taaacatttt | taagtatttc | agatgcttta | 2760 |
| gagagatttt | ttttccatga | ctgcatttta | ctgtacagat | tgctgcttct | gctatatttg | 2820 |
| tgatatagga | attaagagga | tacacacgtt | tgtttcttcg | tgcctgtttt | atgtgcacac | 2880 |
| attaggcatt | gagacttcaa | gcttttcttt | ttttgtccac | gtatctttgg | gtctttgata | 2940 |
| aagaaaagaa | tccctgttca | ttgtaagcac | ttttacgggg | cgggtgggga | ggggtgctct | 3000 |
| gctggtcttc | aattaccaag | aattctccaa | aacaattttc | tgcaggatga | ttgtacagaa | 3060 |
| tcattgctta | tgacatgatc | gctttctaca | ctgtattaca | taaataaatt | aaataaaata | 3120 |
| accccgggca | agacttttct | ttgaaggatg | actacagaca | ttaaataatc | gaagtaattt | 3180 |
| tgggtgggga | gaagaggcag | attcaatttt | ctttaaccag | tctgaagttt | catttatgat | 3240 |
| acaaaagaag | atgaaaatgg | aagtggcaat | ataaggggat | gaggaaggca | tgcctggaca | 3300 |
| aacccttctt | ttaagatgtg | tcttcaattt | gtataaaatg | gtgttttcat | gtaaataaat | 3360 |
| acattcttgg | aggagcacca | ttg        |            |            |            | 3383 |
|            |            |            |            |            |            |      |

<sup>&</sup>lt;210> SEQ ID NO 2 <211> LENGTH: 3423 <212> TYPE: DNA <213> ORGANISM: Artificial sequence

<sup>&</sup>lt;220> FEATURE:
<223> OTHER INFORMATION: Description of sequence: amyloid precursor
... protein coding sequence

| 1 |
|---|
| 1 |

| attgagtgaa | gattaagacg | gagaagatgg | cgcctctgca | gtgcagcaaa | gaaaagctgt | 60   |
|------------|------------|------------|------------|------------|------------|------|
| gtggaggctg | cagcctagtg | aaatccaccc | accactaggt | acccactgat | ggtaatgctg | 120  |
| geetgetgge | tgaaccccag | attgccatgt | tctgtggcag | actgaacatg | cacatgaatg | 180  |
| tccagaatgg | gaagtgggat | tcagatccat | cagggaccaa | aacctgcatt | gataccaagg | 240  |
| aaggcatcct | gcagtattgc | caagaagtct | accctgaact | gcagatcacc | aatgtggtag | 300  |
| aagccaacca | accagtgacc | atccagaact | ggtgcaagcg | gggccgcaag | cagtgcaaga | 360  |
| cccatcccca | ctttgtgatt | ccctaccgct | gcttagttgg | tgagtttgta | agtgatgccc | 420  |
| ttctcgttcc | tgacaagtgc | aaattcttac | accaggagag | gatggatgtt | tgcgaaactc | 480  |
| atcttcactg | gcacaccgtc | gccaaagaga | catgcagtga | gaagagtacc | aacttgcatg | 540  |
| actacggcat | gttgctgccc | tgcggaattg | acaagttccg | aggggtagag | tttgtgtgtt | 600  |
| gcccactggc | tgaagaaagt | gacaatgtgg | attctgctga | tgcggaggag | gatgactcgg | 660  |
| atgtctggtg | gggcggagca | gacacagact | atgcagatgg | gagtgaagac | aaagtagtag | 720  |
| aagtagcaga | ggaggaagaa | gtggctgagg | tggaagaaga | agaagccgat | gatgacgagg | 780  |
| acgatgagga | tggtgatgag | gtagaggaag | aggctgagga | accctacgaa | gaagccacag | 840  |
| agagaaccac | cagcattgcc | accaccacca | ccaccaccac | agagtctgtg | gaagaggtgg | 900  |
| ttcgagaggt | gtgctctgaa | caagccgaga | cggggccgtg | ccgagcaatg | atctcccgct | 960  |
| ggtactttga | tgtgactgaa | gggaagtgtg | ccccattctt | ttacggcgga | tgtggcggca | 1020 |
| accggaacaa | ctttgacaca | gaagagtact | gcatggccgt | gtgtggcagc | gccattccta | 1080 |
| caacagcagc | cagtacccct | gatgccgttg | acaagtatct | cgagacacct | ggggatgaga | 1140 |
| atgaacatgc | ccatttccag | aaagccaaag | agaggcttga | ggccaagcac | cgagagagaa | 1200 |
| tgtcccaggt | catgagagaa | tgggaagagg | cagaacgtca | agcaaagaac | ttgcctaaag | 1260 |
| ctgataagaa | ggcagttatc | cagcatttcc | aggagaaagt | ggaatctttg | gaacaggaag | 1320 |
| cagccaacga | gagacagcag | ctggtggaga | cacacatggc | cagagtggaa | gccatgctca | 1380 |
| atgaccgccg | ccgcctggcc | ctggagaact | acatcaccgc | tetgeagget | gttcctcctc | 1440 |
| ggcctcgtca | cgtgttcaat | atgctaaaga | agtatgtccg | cgcagaacag | aaggacagac | 1500 |
| agcacaccct | aaagcatttc | gagcatgtgc | gcatggtgga | tcccaagaaa | gccgctcaga | 1560 |
| tccggtccca | ggttatgaca | cacctccgtg | tgatttatga | gcgcatgaat | cagtctctct | 1620 |
| ccctgctcta | caacgtgcct | gcagtggccg | aggagattca | ggatgaagtt | gatgagctgc | 1680 |
| ttcagaaaga | gcaaaactat | tcagatgacg | tettggeeaa | catgattagt | gaaccaagga | 1740 |
| tcagttacgg | aaacgatgct | ctcatgccat | ctttgaccga | aacgaaaacc | accgtggagc | 1800 |
| teetteeegt | gaatggagag | ttcagcctgg | acgatctcca | gccgtggcat | tcttttgggg | 1860 |
| ctgactctgt | gccagccaac | acagaaaacg | aagttgagcc | tgttgatgcc | cgccctgctg | 1920 |
| ccgaccgagg | actgaccact | cgaccaggtt | ctgggttgac | aaatatcaag | acggaggaga | 1980 |
| tctctgaagt | gaagatggat | gcagaattcc | gacatgactc | aggatatgaa | gttcatcatc | 2040 |
| aaaaattggt | gttctttgca | gaagatgtgg | gttcaaacaa | aggtgcaatc | attggactca | 2100 |
| tggtgggcgg | tgttgtcata | gcgacagtga | tcgtcatcac | cttggtgatg | ctgaagaaga | 2160 |
| aacagtacac | atccattcat | catggtgtgg | tggaggttga | cgccgctgtc | accccagagg | 2220 |
| agcgccacct | gtccaagatg | cagcagaacg | gctacgaaaa | tccaacctac | aagttctttg | 2280 |
| agcagatgca | gaactagacc | cccgccacaq | cageetetga | agttggacaq | caaaaccatt | 2340 |
|            | -          |            |            |            |            |      |

-continued

| -continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| gcttcactac ccatcggtgt ccatttatag aataatgtgg gaagaaacaa acccgtttta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2400                                                              |
| tgatttactc attatcgcct tttgacagct gtgctgtaac acaagtagat gcctgaactt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2460                                                              |
| gaattaatcc acacatcagt aatgtattct atctctcttt acattttggt ctctatacta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2520                                                              |
| cattattaat gggttttgtg tactgtaaag aatttagctg tatcaaacta gtgcatgaat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2580                                                              |
| agattetete etgattattt ateacatage eeettageea gttgtatatt attettgtgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2640                                                              |
| tttgtgaccc aattaagtcc tactttacat atgctttaag aatcgatggg ggatgcttca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2700                                                              |
| tgtgaacgtg ggagttcagc tgcttctctt gcctaagtat tcctttcctg atcactatgc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2760                                                              |
| attttaaagt taaacatttt taagtatttc agatgcttta gagagatttt ttttccatga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2820                                                              |
| ctgcatttta ctgtacagat tgctgcttct gctatatttg tgatatagga attaagagga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2880                                                              |
| tacacacgtt tgtttcttcg tgcctgtttt atgtgcacac attaggcatt gagacttcaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2940                                                              |
| gettttettt ttttgteeac gtatetttgg gtetttgata aagaaaagaa teeetgttea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3000                                                              |
| ttgtaagcac ttttacgggg cgggtgggga ggggtgctct gctggtcttc aattaccaag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3060                                                              |
| aattotocaa aacaatttto tgoaggatga ttgtacagaa toattgotta tgacatgato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3120                                                              |
| getttetaca etgtattaca taaataaatt aaataaaata acceegggea agaettttet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3180                                                              |
| ttgaaggatg actacagaca ttaaataatc gaagtaattt tgggtgggga gaagaggcag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3240                                                              |
| attcaatttt ctttaaccag tctgaagttt catttatgat acaaaagaag atgaaaatgg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3300                                                              |
| aagtggcaat ataaggggat gaggaaggca tgcctggaca aacccttctt ttaagatgtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3360                                                              |
| tetteaattt gtataaaatg gtgtttteat gtaaataaat acattettgg aggageacea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3420                                                              |
| ttg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3423                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3123                                                              |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:     protein coding sequence</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |
| <210> SEQ ID NO 3 <211> LENGTH: 3204 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Description of sequence: amyloid precurso:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                   |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c                                                                 |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60                                                                |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60<br>120                                                         |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60<br>120<br>180                                                  |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence &lt;400&gt; SEQUENCE: 3  cgccgcgctc gggctccgtc agtttcctcg gcagcggtag gcgagagcac gcggaggagc gtgcgcgggg gccccgggag acggcggcg tggcgcgcg ggcagagcaa ggacgcggcg gatcccactc gcacagcagc gcactcggtg ccccgcgcag ggtcgcgatg ctgcccggtt tggcactgct cctgctggcc gcctggacgg ctcgggcgct ggaggtctac cctgaactgc</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60<br>120<br>180<br>240                                           |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;222&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60<br>120<br>180<br>240                                           |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence &lt;400&gt; SEQUENCE: 3  cgccgcgctc gggctccgtc agtttcctcg gcagcggtag gcgagagcac gcggaggagc gtgcgcgggg gccccgggag acggcgcgg tggcggcgc ggcagagcaa ggacgcgcg gatcccactc gcacagcagc gcactcggtg ccccgcgcag ggtcgcgatg ctgcccggtt tggcactgct cctgctggcc gcctggacgg ctcgggcgct ggaggtctac cctgaactgc agatcaccaa tgtggtagaa gccaaccaac cagtgaccat ccagaactgg tgcaagcgg gccgcaagca gtgcaagcag gccgcaagca gtgcaagcac catcccact ttgtgattcc ctaccgctgc ttagttggtg</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60<br>120<br>180<br>240<br>300<br>360                             |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;222&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60<br>120<br>180<br>240<br>300<br>360<br>420                      |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;222&gt; OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence &lt;400&gt; SEQUENCE: 3  cgccgcgctc gggctccgtc agtttcctcg gcagcggtag gcgagagcac gcggaggagc gtgcgcgggg gccccgggag acggcggcg tggcggcgc ggcagagcaa ggacgcggcg gatcccactc gcacagcagc gcactcggtg ccccgcgcag ggtcgcgatg ctgcccggtt tggcactgct cctgctggcc gcctggacg ctcgggcgct ggaggtctac cctgaactgc agatcaccaa tgtggtagaa gccaaccaac cagtgaccat ccagaactgg tgcaagcgg gccgcaagca gtgcaagcac catcccact ttgtgattcc ctaccgctg ttagttggtg agtttgtaag tgatgccctt ctcgttcctg acaagtgcaa attcttacac caggagagga tggatgtttg cgaaactcat cttcactggc acaccgtcgc caaagagca tgcagtgaga tggatgtttg cgaaactcat cttcactggc acaccgtcgc caaagagca tgcagtgaga</pre>                                                                                                                                                                                                                                                              | 60<br>120<br>180<br>240<br>300<br>360<br>420                      |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence &lt;400&gt; SEQUENCE: 3  cgccgcgctc gggctccgtc agtttcctcg gcagcggtag gcgagagcac gcggaggagc gtgcgcgggg gccccgggag acggcggcg tggcggcgg ggcagagcaa ggacgcggcg gatcccactc gcacagcagc gcactcggtg ccccgcgcag ggtcgcgatg ctgcccggtt tggcactgct cctgctggcc gcctggacgg ctcgggcgct ggaggtctac cctgaactgc agatcaccaa tgtggtagaa gccaaccaac cagtgaccat ccagaactgg tgcaagcggg gccgcaagca gtgcaagacc catccccact ttgtgattcc ctaccgctgc ttagttggtg agtttgtaag tgatgccctt ctcgttcctg acaagtgcaa attcttacac caggagagga tggatgtttg cgaaactcat cttcactggc acaccgtcgc caaagagca tgcagtgaga agagtactac cttgcatgac tctcactggc acaccgtcgc caaagagca tgcagtgaga agagtaccaa cttgcatgac taccgcatgt tgctgccctg cggaattgac aagttccgag agagtaccaa cttgcatgac taccgcatgt tgctgccctg cggaattgac aagttccgag agagtaccaa cttgcatgac taccgcatgt tgctgccctg cggaattgac aagttccgag</pre>                                                    | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480               |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |
| <pre>&lt;210&gt; SEQ ID NO 3 &lt;211&gt; LENGTH: 3204 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso: protein coding sequence &lt;400&gt; SEQUENCE: 3  cgccgcgctc gggctccgtc agtttcctcg gcagcggtag gcgagagcac gcggaggagc gtgcgcgggg gccccgggag acggcggggg tggcggcgg ggcagagcaa ggacgcgggg gatcccactc gcacagcagc gcactcggt ccccgcgag ggtcgcata ctgcccggtt tggcactgct cctgctggcc gcctggacgg ctcgggcgct ggaggtctac cctgaactgc agatcaccaa tgtggtagaa gccaaccaac cagtgaccat ccagaactgg tgcaagcgg gccgcaagca gtgcaagcag gtcgcaagcag gtcgcaagca gtgcaagcag gccgcaagca gtgcaagcac catccccact ttgtgattcc ctaccgctgc ttagttggtg agtttgtaag tgatgccctt ctcgttcctg acaagtgcaa attcttacac caggagagga tggatgtttg cgaaactcat cttcactggc acaccgtcgc caaagagcaa tgcagtgaga agagtaccaa cttgcatgac tacggcatgt tgctgcctt cggaattgac aagttccgag gggtagagtt tgtgtgttgc ccactggctg aagaaagtga caatgtggat tctgctgatg cggaggagga tgactcggat gtctggtgg gcggagcaga cacagactat gcagatgga cggaggagga tgactcggat gtctggtggg gcggagcaga cacagactat gcagatgga</pre> | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600 |

840

cctacgaaga agccacagag agaaccacca gcattgccac caccaccacc accaccacag

agtctgtgga agaggtggtt cgagaggtgt gctctgaaca agccgagacg gggccgtgcc

| -continued |
|------------|
|            |

| gagcaatgat | ctcccgctgg | tactttgatg | tgactgaagg | gaagtgtgcc | ccattcttt  | 960  |
|------------|------------|------------|------------|------------|------------|------|
|            |            |            |            | agagtactgc |            | 1020 |
| gtggcagcgc | catgtcccaa | agtttactca | agactaccca | ggaacctctt | gcccgagatc | 1080 |
| ctgttaaact | tcctacaaca | gcagccagta | cccctgatgc | cgttgacaag | tatctcgaga | 1140 |
| cacctgggga | tgagaatgaa | catgcccatt | tccagaaagc | caaagagagg | cttgaggcca | 1200 |
| agcaccgaga | gagaatgtcc | cagcctcgtc | acgtgttcaa | tatgctaaag | aagtatgtcc | 1260 |
| gcgcagaaca | gaaggacaga | cagcacaccc | taaagcattt | cgagcatgtg | cgcatggtgg | 1320 |
| atcccaagaa | agccgctcag | atccggtccc | aggttatgac | acacctccgt | gtgatttatg | 1380 |
| agcgcatgaa | tcagtctctc | tecetgetet | acaacgtgcc | tgcagtggcc | gaggagattc | 1440 |
| aggatgaagt | tgatgagctg | cttcagaaag | agcaaaacta | ttcagatgac | gtcttggcca | 1500 |
| acatgattag | tgaaccaagg | atcagttacg | gaaacgatgc | tctcatgcca | tctttgaccg | 1560 |
| aaacgaaaac | caccgtggag | ctccttcccg | tgaatggaga | gttcagcctg | gacgatctcc | 1620 |
| agccgtggca | ttcttttggg | gctgactctg | tgccagccaa | cacagaaaac | gaagttgagc | 1680 |
| ctgttgatgc | ccgccctgct | gccgaccgag | gactgaccac | tcgaccaggt | tctgggttga | 1740 |
| caaatatcaa | gacggaggag | atctctgaag | tgaagatgga | tgcagaattc | cgacatgact | 1800 |
| caggatatga | agttcatcat | caaaaattgg | tgttctttgc | agaagatgtg | ggttcaaaca | 1860 |
| aaggtgcaat | cattggactc | atggtgggcg | gtgttgtcat | agcgacagtg | atcgtcatca | 1920 |
| ccttggtgat | gctgaagaag | aaacagtaca | catccattca | tcatggtgtg | gtggaggttg | 1980 |
| acgccgctgt | caccccagag | gagcgccacc | tgtccaagat | gcagcagaac | ggctacgaaa | 2040 |
| atccaaccta | caagttcttt | gagcagatgc | agaactagac | ccccgccaca | gcagcctctg | 2100 |
| aagttggaca | gcaaaaccat | tgcttcacta | cccatcggtg | tccatttata | gaataatgtg | 2160 |
| ggaagaaaca | aacccgtttt | atgatttact | cattatcgcc | ttttgacagc | tgtgctgtaa | 2220 |
| cacaagtaga | tgcctgaact | tgaattaatc | cacacatcag | taatgtattc | tatctctctt | 2280 |
| tacattttgg | tctctatact | acattattaa | tgggttttgt | gtactgtaaa | gaatttagct | 2340 |
| gtatcaaact | agtgcatgaa | tagattctct | cctgattatt | tatcacatag | ccccttagcc | 2400 |
| agttgtatat | tattcttgtg | gtttgtgacc | caattaagtc | ctactttaca | tatgctttaa | 2460 |
| gaatcgatgg | gggatgcttc | atgtgaacgt | gggagttcag | ctgcttctct | tgcctaagta | 2520 |
| ttcctttcct | gatcactatg | cattttaaag | ttaaacattt | ttaagtattt | cagatgcttt | 2580 |
| agagagattt | tttttccatg | actgcatttt | actgtacaga | ttgctgcttc | tgctatattt | 2640 |
| gtgatatagg | aattaagagg | atacacacgt | ttgtttcttc | gtgcctgttt | tatgtgcaca | 2700 |
| cattaggcat | tgagacttca | agcttttctt | tttttgtcca | cgtatctttg | ggtctttgat | 2760 |
| aaagaaaaga | atccctgttc | attgtaagca | cttttacggg | gcgggtgggg | aggggtgctc | 2820 |
| tgctggtctt | caattaccaa | gaattctcca | aaacaatttt | ctgcaggatg | attgtacaga | 2880 |
| atcattgctt | atgacatgat | cgctttctac | actgtattac | ataaataaat | taaataaaat | 2940 |
| aaccccgggc | aagacttttc | tttgaaggat | gactacagac | attaaataat | cgaagtaatt | 3000 |
| ttgggtgggg | agaagaggca | gattcaattt | tctttaacca | gtctgaagtt | tcatttatga | 3060 |
| tacaaaagaa | gatgaaaatg | gaagtggcaa | tataagggga | tgaggaaggc | atgeetggae | 3120 |
| aaacccttct | tttaagatgt | gtcttcaatt | tgtataaaat | ggtgttttca | tgtaaataaa | 3180 |
| tacattcttg | gaggagcacc | attg       |            |            |            | 3204 |
|            |            |            |            |            |            |      |

**74** 73

<210> SEQ ID NO 4
<211> LENGTH: 3495
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence

<220> FEATURE:
<223> OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence

<400> SEQUENCE: 4

| cgccgcgctc | gggeteegte | agtttcctcg | gcagcggtag | gcgagagcac | gcggaggagc | 60   |
|------------|------------|------------|------------|------------|------------|------|
| gtgcgcgggg | gccccgggag | acggcggcgg | tggeggegeg | ggcagagcaa | ggacgcggcg | 120  |
| gateceaete | gcacagcagc | gcactcggtg | ccccgcgcag | ggtcgcgatg | ctgcccggtt | 180  |
| tggcactgct | cctgctggcc | gcctggacgg | ctcgggcgct | ggaggtaccc | actgatggta | 240  |
| atgctggcct | gctggctgaa | ccccagattg | ccatgttctg | tggcagactg | aacatgcaca | 300  |
| tgaatgtcca | gaatgggaag | tgggattcag | atccatcagg | gaccaaaacc | tgcattgata | 360  |
| ccaaggaagg | catcctgcag | tattgccaag | aagtctaccc | tgaactgcag | atcaccaatg | 420  |
| tggtagaagc | caaccaacca | gtgaccatcc | agaactggtg | caagcggggc | cgcaagcagt | 480  |
| gcaagaccca | tccccacttt | gtgattccct | accgctgctt | agttggtgag | tttgtaagtg | 540  |
| atgecettet | cgttcctgac | aagtgcaaat | tcttacacca | ggagaggatg | gatgtttgcg | 600  |
| aaactcatct | tcactggcac | accgtcgcca | aagagacatg | cagtgagaag | agtaccaact | 660  |
| tgcatgacta | cggcatgttg | ctgccctgcg | gaattgacaa | gttccgaggg | gtagagtttg | 720  |
| tgtgttgccc | actggctgaa | gaaagtgaca | atgtggattc | tgctgatgcg | gaggaggatg | 780  |
| actcggatgt | ctggtggggc | ggagcagaca | cagactatgc | agatgggagt | gaagacaaag | 840  |
| tagtagaagt | agcagaggag | gaagaagtgg | ctgaggtgga | agaagaagaa | gccgatgatg | 900  |
| acgaggacga | tgaggatggt | gatgaggtag | aggaagaggc | tgaggaaccc | tacgaagaag | 960  |
| ccacagagag | aaccaccagc | attgccacca | ccaccaccac | caccacagag | tctgtggaag | 1020 |
| aggtggttcg | agaggtgtgc | tctgaacaag | ccgagacggg | gccgtgccga | gcaatgatct | 1080 |
| cccgctggta | ctttgatgtg | actgaaggga | agtgtgcccc | attcttttac | ggcggatgtg | 1140 |
| gcggcaaccg | gaacaacttt | gacacagaag | agtactgcat | ggccgtgtgt | ggcagcgcca | 1200 |
| ttcctacaac | agcagccagt | acccctgatg | ccgttgacaa | gtatctcgag | acacctgggg | 1260 |
| atgagaatga | acatgcccat | ttccagaaag | ccaaagagag | gcttgaggcc | aagcaccgag | 1320 |
| agagaatgtc | ccaggtcatg | agagaatggg | aagaggcaga | acgtcaagca | aagaacttgc | 1380 |
| ctaaagctga | taagaaggca | gttatccagc | atttccagga | gaaagtggaa | tctttggaac | 1440 |
| aggaagcagc | caacgagaga | cagcagctgg | tggagacaca | catggccaga | gtggaagcca | 1500 |
| tgctcaatga | cegeegeege | ctggccctgg | agaactacat | caccgctctg | caggetgtte | 1560 |
| ctcctcggcc | tegteaegtg | ttcaatatgc | taaagaagta | tgtccgcgca | gaacagaagg | 1620 |
| acagacagca | caccctaaag | catttcgagc | atgtgcgcat | ggtggatccc | aagaaagccg | 1680 |
| ctcagatccg | gtcccaggtt | atgacacacc | tccgtgtgat | ttatgagcgc | atgaatcagt | 1740 |
| ctctctccct | gctctacaac | gtgcctgcag | tggccgagga | gattcaggat | gaagttgatg | 1800 |
| agctgcttca | gaaagagcaa | aactattcag | atgacgtctt | ggccaacatg | attagtgaac | 1860 |
| caaggatcag | ttacggaaac | gatgctctca | tgccatcttt | gaccgaaacg | aaaaccaccg | 1920 |
| tggagctcct | tcccgtgaat | ggagagttca | gcctggacga | tctccagccg | tggcattctt | 1980 |
| ttggggctga | ctctgtgcca | gccaacacag | aaaacgaagg | ttctgggttg | acaaatatca | 2040 |
|            |            | gtgaagatgg |            |            |            | 2100 |
|            |            |            |            |            | 3          |      |

-continued

| aagttcat             | ca                                  | tcaaaaattg                           | gtgttctttg | cagaagatgt | gggttcaaac   | aaaggtgcaa    | 2160 |
|----------------------|-------------------------------------|--------------------------------------|------------|------------|--------------|---------------|------|
| tcattgga             | ct                                  | catggtgggc                           | ggtgttgtca | tagcgacagt | gatcgtcatc   | accttggtga    | 2220 |
| tgctgaag             | jaa                                 | gaaacagtac                           | acatccattc | atcatggtgt | ggtggaggtt   | gacgccgctg    | 2280 |
| tcacccca             | ıga                                 | ggagcgccac                           | ctgtccaaga | tgcagcagaa | cggctacgaa   | aatccaacct    | 2340 |
| acaagtto             | tt                                  | tgagcagatg                           | cagaactaga | ccccgccac  | agcagcctct   | gaagttggac    | 2400 |
| agcaaaac             | ca                                  | ttgcttcact                           | acccatcggt | gtccatttat | agaataatgt   | gggaagaaac    | 2460 |
| aaacccgt             | tt                                  | tatgatttac                           | tcattatcgc | cttttgacag | ctgtgctgta   | acacaagtag    | 2520 |
| atgcctga             | ac                                  | ttgaattaat                           | ccacacatca | gtaatgtatt | ctatctctct   | ttacattttg    | 2580 |
| gtctctat             | ac                                  | tacattatta                           | atgggttttg | tgtactgtaa | agaatttagc   | tgtatcaaac    | 2640 |
| tagtgcat             | ga                                  | atagattctc                           | tcctgattat | ttatcacata | gccccttagc   | cagttgtata    | 2700 |
| ttattctt             | gt                                  | ggtttgtgac                           | ccaattaagt | cctactttac | atatgcttta   | agaatcgatg    | 2760 |
| ggggatgd             | tt                                  | catgtgaacg                           | tgggagttca | gctgcttctc | ttgcctaagt   | attcctttcc    | 2820 |
| tgatcact             | at                                  | gcattttaaa                           | gttaaacatt | tttaagtatt | tcagatgctt   | tagagagatt    | 2880 |
| ttttttcc             | at                                  | gactgcattt                           | tactgtacag | attgctgctt | ctgctatatt   | tgtgatatag    | 2940 |
| gaattaag             | jag                                 | gatacacacg                           | tttgtttctt | cgtgcctgtt | ttatgtgcac   | acattaggca    | 3000 |
| ttgagact             | tc                                  | aagcttttct                           | ttttttgtcc | acgtatcttt | gggtctttga   | taaagaaaag    | 3060 |
| aatccctg             | jtt                                 | cattgtaagc                           | acttttacgg | ggcgggtggg | gaggggtgct   | ctgctggtct    | 3120 |
| tcaattac             | ca                                  | agaattctcc                           | aaaacaattt | tctgcaggat | gattgtacag   | aatcattgct    | 3180 |
| tatgacat             | ga                                  | tegettteta                           | cactgtatta | cataaataaa | ttaaataaaa   | taaccccggg    | 3240 |
| caagactt             | tt                                  | ctttgaagga                           | tgactacaga | cattaaataa | tcgaagtaat   | tttgggtggg    | 3300 |
| gagaagag             | gc                                  | agattcaatt                           | ttctttaacc | agtctgaagt | ttcatttatg   | atacaaaaga    | 3360 |
| agatgaaa             | at                                  | ggaagtggca                           | atataagggg | atgaggaagg | catgcctgga   | caaacccttc    | 3420 |
| ttttaaga             | ıtg                                 | tgtcttcaat                           | ttgtataaaa | tggtgtttc  | atgtaaataa   | atacattctt    | 3480 |
| ggaggagc             | ac                                  | cattg                                |            |            |              |               | 3495 |
| <220> FE<br><223> OT | ENGT<br>PE:<br>RGAN<br>EATU<br>THER | H: 3254<br>DNA<br>ISM: Artifi<br>RE: |            |            | uence: amylo | oid precursor |      |
| <400> SE             | QUE                                 | NCE: 5                               |            |            |              |               |      |
| cgccgcgc             | tc                                  | gggctccgtc                           | agtttcctcg | gcagcggtag | gcgagagcac   | gcggaggagc    | 60   |
| gtgcgcgg             | 199                                 | gccccgggag                           | acggcggcgg | tggcggcgcg | ggcagagcaa   | ggacgcggcg    | 120  |
| gateceae             | etc                                 | gcacagcagc                           | gcactcggtg | ccccgcgcag | ggtcgcgatg   | ctgcccggtt    | 180  |
| tggcactg             | gct                                 | cctgctggcc                           | gcctggacgg | ctcgggcgct | ggaggtaccc   | actgatggta    | 240  |
| atgctggc             | ct                                  | gctggctgaa                           | ccccagattg | ccatgttctg | tggcagactg   | aacatgcaca    | 300  |
| tgaatgto             | ca                                  | gaatgggaag                           | tgggattcag | atccatcagg | gaccaaaacc   | tgcattgata    | 360  |
| ccaaggaa             | ıgg                                 | catcctgcag                           | tattgccaag | aagtctaccc | tgaactgcag   | atcaccaatg    | 420  |
| tggtagaa             | ıgc                                 | caaccaacca                           | gtgaccatcc | agaactggtg | caagegggge   | cgcaagcagt    | 480  |
|                      |                                     |                                      |            |            |              |               | E40  |

gcaagaccca tccccacttt gtgattccct accgctgctt agttggtgag tttgtaagtg

atgcccttct cgttcctgac aagtgcaaat tcttacacca ggagaggatg gatgtttgcg

|            | tcactggcac |            |            |            |            | 660  |
|------------|------------|------------|------------|------------|------------|------|
|            | cggcatgttg |            |            |            |            | 720  |
|            | actggctgaa |            |            |            |            | 780  |
|            | ctggtggggc |            |            |            |            | 840  |
| tagtagaagt | agcagaggag | gaagaagtgg | ctgaggtgga | agaagaagaa | gccgatgatg | 900  |
| acgaggacga | tgaggatggt | gatgaggtag | aggaagaggc | tgaggaaccc | tacgaagaag | 960  |
| ccacagagag | aaccaccagc | attgccacca | ccaccaccac | caccacagag | tctgtggaag | 1020 |
| aggtggttcg | agaggtgtgc | tctgaacaag | ccgagacggg | gccgtgccga | gcaatgatct | 1080 |
| cccgctggta | ctttgatgtg | actgaaggga | agtgtgcccc | attcttttac | ggcggatgtg | 1140 |
| geggeaaceg | gaacaacttt | gacacagaag | agtactgcat | ggccgtgtgt | ggcagcgcca | 1200 |
| tgtcccaaag | tttactcaag | actacccagg | aacctcttgc | ccgagatcct | gttaaacttc | 1260 |
| ctacaacagc | agccagtacc | cctgatgccg | ttgacaagta | tctcgagaca | cctggggatg | 1320 |
| agaatgaaca | tgcccatttc | cagaaagcca | aagagaggct | tgaggccaag | caccgagaga | 1380 |
| gaatgtccca | ggtcatgaga | gaatgggaag | aggcagaacg | tcaagcaaag | aacttgccta | 1440 |
| aagctgataa | gaaggcagtt | atccagcatt | tccaggagaa | agtggaatct | ttggaacagg | 1500 |
| aagcagccaa | cgagagacag | cagctggtgg | agacacacat | ggccagagtg | gaagccatgc | 1560 |
| tcaatgaccg | ccgccgcctg | gccctggaga | actacatcac | cgctctgcag | gctgttcctc | 1620 |
| ctcggcctcg | tcacgtgttc | aatatgctaa | agaagtatgt | ccgcgcagaa | cagaaggaca | 1680 |
| gacagcacac | cctaaagcat | ttcgagcatg | tgcgcatggt | ggatcccaag | aaagccgctc | 1740 |
| agatccggtc | ccaggttatg | acacacctcc | gtgtgattta | tgagcgcatg | aatcagtctc | 1800 |
| tetecetget | ctacaacgtg | cctgcagtgg | ccgaggagat | tcaggatgaa | gttgatgagc | 1860 |
| tgcttcagaa | agagcaaaac | tattcagatg | acgtcttggc | caacatgatt | agtgaaccaa | 1920 |
| ggatcagtta | cggaaacgat | gctctcatgc | catctttgac | cgaaacgaaa | accaccgtgg | 1980 |
| agctccttcc | cgtgaatgga | gagttcagcc | tggacgatct | ccagccgtgg | cattcttttg | 2040 |
| gggctgactc | tgtgccagcc | aacacagaaa | acgaaggttc | tgggttgaca | aatatcaaga | 2100 |
| cggaggagat | ctctgaagtg | aagatggatg | cagaattccg | acatgactca | ggatatgaag | 2160 |
| ttcatcatca | aaaattggtg | ttctttgcag | aagatgtggg | ttcaaacaaa | ggtgcaatca | 2220 |
| ttggactcat | ggtgggcggt | gttgtcatag | cgacagtgat | cgtcatcacc | ttggtgatgc | 2280 |
| tgaagaagaa | acagtacaca | tccattcatc | atggtgtggt | ggaggttgac | gccgctgtca | 2340 |
| ccccagagga | gcgccacctg | tccaagatgc | agcagaacgg | ctacgaaaat | ccaacctaca | 2400 |
| agttetttga | gcagatgcag | aactagaccc | ccgccacagc | agcctctgaa | gttggacagc | 2460 |
| aaaaccattg | cttcactacc | catcggtgtc | catttataga | ataatgtggg | aagaaacaaa | 2520 |
| cccgttttat | gatttactca | ttatcgcctt | ttgacagctg | tgctgtaaca | caagtagatg | 2580 |
| cctqaacttq | aattaatcca | cacatcaqta | atqtattcta | tctctcttta | cattttqqtc | 2640 |
|            | attattaatg |            |            |            |            | 2700 |
|            | gattetetee |            |            |            |            | 2760 |
|            |            | _          | _          |            | _          |      |
|            | ttgtgaccca |            |            |            |            | 2820 |
| gatgetteat | gtgaacgtgg | gagttcagct | gettetettg | cctaagtatt | cctttcctga | 2880 |
| tcactatgca | ttttaaagtt | aaacattttt | aagtatttca | gatgctttag | agagattttt | 2940 |

| -continue |
|-----------|
|           |

| -continued                                                                                                                                                                                                            |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| tttccatgat cgctttctac actgtattac ataaataaat taaataaaat aaccccgggc                                                                                                                                                     | 3000 |
| aagacttttc tttgaaggat gactacagac attaaataat cgaagtaatt ttgggtgggg                                                                                                                                                     | 3060 |
| agaagaggca gattcaattt totttaacca gtotgaagtt toatttatga tacaaaagaa                                                                                                                                                     | 3120 |
| gatgaaaatg gaagtggcaa tataagggga tgaggaaggc atgcctggac aaacccttct                                                                                                                                                     | 3180 |
| tttaagatgt gtcttcaatt tgtataaaat ggtgttttca tgtaaataaa tacattcttg                                                                                                                                                     | 3240 |
| gaggagcacc attg                                                                                                                                                                                                       | 3254 |
| <210> SEQ ID NO 6 <211> LENGTH: 3467 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence <400> SEQUENCE: 6 |      |
|                                                                                                                                                                                                                       | 60   |
| cageagegea eteggtgeee egegeagggt egegatgetg eeeggtttgg caetgeteet                                                                                                                                                     | 120  |
| gctggccgcc tggacggctc gggcgctgga ggtacccact gatggtaatg ctggcctgct ggctgaaccc cagattgcca tgttctgtgg cagactgaac atgcacatga atgtccagaa                                                                                   | 180  |
| tgggaagtgg gattcagatc catcagggac caaaacctgc attgatacca aggaaggcat                                                                                                                                                     | 240  |
| cotgoagtat tgccaagaag totaccotga actgcagatc accaatgtgg tagaagccaa                                                                                                                                                     | 300  |
| ccaaccagtg accatccaga actggtgcaa goggggcogc aagcagtgca agacccatcc                                                                                                                                                     | 360  |
| ccactttgtg attocctace getgettagt tggtgagttt gtaagtgatg cecttetegt                                                                                                                                                     | 420  |
| tectgacaag tgcaaattet tacaccagga gaggatggat gtttgegaaa etcatettea                                                                                                                                                     | 480  |
| ctggcacacc gtcgccaaag agacatgcag tgagaagagt accaacttgc atgactacgg                                                                                                                                                     | 540  |
| catgitigctig coctgoggaa tigacaagti cogaggggta gagittigtig gitigoccact                                                                                                                                                 | 600  |
| ggctgaagaa agtgacaatg tggattctgc tgatgcggag gaggatgact cggatgtctg                                                                                                                                                     | 660  |
| gtggggcgga gcagacacag actatgcaga tgggagtgaa gacaaagtag tagaagtagc                                                                                                                                                     | 720  |
| agaggaggaa gaagtggctg aggtggaaga agaagaagcc gatgatgacg aggacgatga                                                                                                                                                     | 780  |
| ggatggtgat gaggtagagg aagaggctga ggaaccctac gaagaagcca cagagagaac                                                                                                                                                     | 840  |
| caccagcatt gccaccacca ccaccaccac cacagagtct gtggaagagg tggttcgaga                                                                                                                                                     | 900  |
| ggtgtgctct gaacaagccg agacggggcc gtgccgagca atgatctccc gctggtactt                                                                                                                                                     | 960  |
| tgatgtgact gaagggaagt gtgccccatt cttttacggc ggatgtggcg gcaaccggaa                                                                                                                                                     | 1020 |
| caactttgac acagaagagt actgcatggc cgtgtgtggc agcgccatgt cccaaagttt                                                                                                                                                     | 1080 |
| actcaagact acccaggaac ctcttgcccg agatcctgtt aaacttccta caacagcagc                                                                                                                                                     | 1140 |
| cagtaccect gatgeegttg acaagtatet egagacaect ggggatgaga atgaacatge                                                                                                                                                     | 1200 |
| ccatttccag aaagccaaag agaggcttga ggccaagcac cgagagagaa tgtcccaggt                                                                                                                                                     | 1260 |
| catgagagaa tgggaagagg cagaacgtca agcaaagaac ttgcctaaag ctgataagaa                                                                                                                                                     | 1320 |
| ggcagttatc cagcatttcc aggagaaagt ggaatctttg gaacaggaag cagccaacga                                                                                                                                                     | 1380 |
| gagacagcag ctggtggaga cacacatggc cagagtggaa gccatgctca atgaccgccg                                                                                                                                                     | 1440 |
| cogoctggcc ctggagaact acateacoge tetgeagget gtteeteete ggeetegtea                                                                                                                                                     | 1500 |
| cgtgttcaat atgctaaaga agtatgtccg cgcagaacag aaggacagac agcacaccct                                                                                                                                                     | 1560 |
| aaagcatttc gagcatgtgc gcatggtgga toccaagaaa gccgctcaga tocggtccca                                                                                                                                                     | 1620 |
| anageneers gageacgege gearggegga becoudagada geogebouga bebygbbbba                                                                                                                                                    | 1010 |

ggttatgaca cacctccgtg tgatttatga gcgcatgaat cagtctctct ccctgctcta 1680

-continued

| caacgtgcct                                                                                                                                                                                                                 | gcagtggccg | aggagattca | ggatgaagtt | gatgagctgc | ttcagaaaga | 1740 |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------|--|--|
| gcaaaactat                                                                                                                                                                                                                 | tcagatgacg | tcttggccaa | catgattagt | gaaccaagga | tcagttacgg | 1800 |  |  |
| aaacgatgct                                                                                                                                                                                                                 | ctcatgccat | ctttgaccga | aacgaaaacc | accgtggagc | teetteeegt | 1860 |  |  |
| gaatggagag                                                                                                                                                                                                                 | ttcagcctgg | acgatctcca | gccgtggcat | tcttttgggg | ctgactctgt | 1920 |  |  |
| gccagccaac                                                                                                                                                                                                                 | acagaaaacg | aagttgagcc | tgttgatgcc | cgccctgctg | ccgaccgagg | 1980 |  |  |
| actgaccact                                                                                                                                                                                                                 | cgaccaggtt | ctgggttgac | aaatatcaag | acggaggaga | tctctgaagt | 2040 |  |  |
| gaagatggat                                                                                                                                                                                                                 | gcagaattcc | gacatgactc | aggatatgaa | gttcatcatc | aaaaattggt | 2100 |  |  |
| gttctttgca                                                                                                                                                                                                                 | gaagatgtgg | gttcaaacaa | aggtgcaatc | attggactca | tggtgggcgg | 2160 |  |  |
| tgttgtcata                                                                                                                                                                                                                 | gcgacagtga | tcgtcatcac | cttggtgatg | ctgaagaaga | aacagtacac | 2220 |  |  |
| atccattcat                                                                                                                                                                                                                 | catggtgtgg | tggaggttga | cgccgctgtc | accccagagg | agcgccacct | 2280 |  |  |
| gtccaagatg                                                                                                                                                                                                                 | cagcagaacg | gctacgaaaa | tccaacctac | aagttctttg | agcagatgca | 2340 |  |  |
| gaactagacc                                                                                                                                                                                                                 | cccgccacag | cagcctctga | agttggacag | caaaaccatt | gcttcactac | 2400 |  |  |
| ccatcggtgt                                                                                                                                                                                                                 | ccatttatag | aataatgtgg | gaagaaacaa | acccgtttta | tgatttactc | 2460 |  |  |
| attatcgcct                                                                                                                                                                                                                 | tttgacagct | gtgctgtaac | acaagtagat | gcctgaactt | gaattaatcc | 2520 |  |  |
| acacatcagt                                                                                                                                                                                                                 | aatgtattct | atctctcttt | acattttggt | ctctatacta | cattattaat | 2580 |  |  |
| gggttttgtg                                                                                                                                                                                                                 | tactgtaaag | aatttagctg | tatcaaacta | gtgcatgaat | agattetete | 2640 |  |  |
| ctgattattt                                                                                                                                                                                                                 | atcacatagc | cccttagcca | gttgtatatt | attcttgtgg | tttgtgaccc | 2700 |  |  |
| aattaagtcc                                                                                                                                                                                                                 | tactttacat | atgctttaag | aatcgatggg | ggatgcttca | tgtgaacgtg | 2760 |  |  |
| ggagttcagc                                                                                                                                                                                                                 | tgcttctctt | gcctaagtat | teettteetg | atcactatgc | attttaaagt | 2820 |  |  |
| taaacatttt                                                                                                                                                                                                                 | taagtatttc | agatgcttta | gagagatttt | ttttccatga | ctgcatttta | 2880 |  |  |
| ctgtacagat                                                                                                                                                                                                                 | tgctgcttct | gctatatttg | tgatatagga | attaagagga | tacacacgtt | 2940 |  |  |
| tgtttcttcg                                                                                                                                                                                                                 | tgcctgtttt | atgtgcacac | attaggcatt | gagacttcaa | gcttttcttt | 3000 |  |  |
| ttttgtccac                                                                                                                                                                                                                 | gtatctttgg | gtctttgata | aagaaaagaa | tccctgttca | ttgtaagcac | 3060 |  |  |
| ttttacgggg                                                                                                                                                                                                                 | cgggtgggga | ggggtgctct | getggtette | aattaccaag | aattctccaa | 3120 |  |  |
| aacaattttc                                                                                                                                                                                                                 | tgcaggatga | ttgtacagaa | tcattgctta | tgacatgatc | gctttctaca | 3180 |  |  |
| ctgtattaca                                                                                                                                                                                                                 | taaataaatt | aaataaaata | accccgggca | agacttttct | ttgaaggatg | 3240 |  |  |
| actacagaca                                                                                                                                                                                                                 | ttaaataatc | gaagtaattt | tgggtgggga | gaagaggcag | attcaatttt | 3300 |  |  |
| ctttaaccag                                                                                                                                                                                                                 | tctgaagttt | catttatgat | acaaaagaag | atgaaaatgg | aagtggcaat | 3360 |  |  |
| ataaggggat                                                                                                                                                                                                                 | gaggaaggca | tgcctggaca | aacccttctt | ttaagatgtg | tcttcaattt | 3420 |  |  |
| gtataaaatg                                                                                                                                                                                                                 | gtgttttcat | gtaaataaat | acattcttgg | aggagca    |            | 3467 |  |  |
| <pre>&lt;210&gt; SEQ ID NO 7 &lt;211&gt; LENGTH: 3355 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precursor</pre> |            |            |            |            |            |      |  |  |
| <400> SEQUI                                                                                                                                                                                                                |            | aaaaaaa    | aaaaaaaa.  | atagaa     | aaaaaa     | 60   |  |  |
|                                                                                                                                                                                                                            |            |            |            |            | gccccgggag | 60   |  |  |
|                                                                                                                                                                                                                            |            |            |            |            | gcacagcagc | 120  |  |  |
| qcactcqqtq                                                                                                                                                                                                                 | ccccqcqcaq | gqtcqcqatq | ctqcccqqtt | tqqcactqct | cctgctggcc | 180  |  |  |

gcctggacgg ctcgggcgct ggaggtaccc actgatggta atgctggcct gctggctgaa

| ccccagattg | ccatgttctg | tggcagactg | aacatgcaca | tgaatgtcca | gaatgggaag | 300  |
|------------|------------|------------|------------|------------|------------|------|
| tgggattcag | atccatcagg | gaccaaaacc | tgcattgata | ccaaggaagg | catcctgcag | 360  |
| tattgccaag | aagtctaccc | tgaactgcag | atcaccaatg | tggtagaagc | caaccaacca | 420  |
| gtgaccatcc | agaactggtg | caagcggggc | cgcaagcagt | gcaagaccca | tccccacttt | 480  |
| gtgattccct | accgctgctt | agttggtgag | tttgtaagtg | atgcccttct | cgttcctgac | 540  |
| aagtgcaaat | tcttacacca | ggagaggatg | gatgtttgcg | aaactcatct | tcactggcac | 600  |
| accgtcgcca | aagagacatg | cagtgagaag | agtaccaact | tgcatgacta | cggcatgttg | 660  |
| ctgccctgcg | gaattgacaa | gttccgaggg | gtagagtttg | tgtgttgccc | actggctgaa | 720  |
| gaaagtgaca | atgtggattc | tgctgatgcg | gaggaggatg | actcggatgt | ctggtggggc | 780  |
| ggagcagaca | cagactatgc | agatgggagt | gaagacaaag | tagtagaagt | agcagaggag | 840  |
| gaagaagtgg | ctgaggtgga | agaagaagaa | gccgatgatg | acgaggacga | tgaggatggt | 900  |
| gatgaggtag | aggaagaggc | tgaggaaccc | tacgaagaag | ccacagagag | aaccaccagc | 960  |
| attgccacca | ccaccaccac | caccacagag | tctgtggaag | aggtggttcg | agttcctaca | 1020 |
| acagcagcca | gtacccctga | tgccgttgac | aagtatctcg | agacacctgg | ggatgagaat | 1080 |
| gaacatgccc | atttccagaa | agccaaagag | aggettgagg | ccaagcaccg | agagagaatg | 1140 |
| tcccaggtca | tgagagaatg | ggaagaggca | gaacgtcaag | caaagaactt | gcctaaagct | 1200 |
| gataagaagg | cagttatcca | gcatttccag | gagaaagtgg | aatctttgga | acaggaagca | 1260 |
| gccaacgaga | gacagcagct | ggtggagaca | cacatggcca | gagtggaagc | catgctcaat | 1320 |
| gaccgccgcc | gcctggccct | ggagaactac | atcaccgctc | tgcaggctgt | tectectegg | 1380 |
| cctcgtcacg | tgttcaatat | gctaaagaag | tatgtccgcg | cagaacagaa | ggacagacag | 1440 |
| cacaccctaa | agcatttcga | gcatgtgcgc | atggtggatc | ccaagaaagc | cgctcagatc | 1500 |
| cggtcccagg | ttatgacaca | cctccgtgtg | atttatgagc | gcatgaatca | gtctctctcc | 1560 |
| ctgctctaca | acgtgcctgc | agtggccgag | gagattcagg | atgaagttga | tgagctgctt | 1620 |
| cagaaagagc | aaaactattc | agatgacgtc | ttggccaaca | tgattagtga | accaaggatc | 1680 |
| agttacggaa | acgatgctct | catgccatct | ttgaccgaaa | cgaaaaccac | cgtggagctc | 1740 |
| cttcccgtga | atggagagtt | cagcctggac | gatctccagc | cgtggcattc | ttttggggct | 1800 |
| gactctgtgc | cagccaacac | agaaaacgaa | gttgagcctg | ttgatgcccg | ccctgctgcc | 1860 |
| gaccgaggac | tgaccactcg | accaggttct | gggttgacaa | atatcaagac | ggaggagatc | 1920 |
| tctgaagtga | agatggatgc | agaattccga | catgactcag | gatatgaagt | tcatcatcaa | 1980 |
| aaattggtgt | tctttgcaga | agatgtgggt | tcaaacaaag | gtgcaatcat | tggactcatg | 2040 |
| gtgggcggtg | ttgtcatagc | gacagtgatc | gtcatcacct | tggtgatgct | gaagaagaaa | 2100 |
| cagtacacat | ccattcatca | tggtgtggtg | gaggttgacg | ccgctgtcac | cccagaggag | 2160 |
| cgccacctgt | ccaagatgca | gcagaacggc | tacgaaaatc | caacctacaa | gttctttgag | 2220 |
| cagatgcaga | actagacccc | cgccacagca | gcctctgaag | ttggacagca | aaaccattgc | 2280 |
| ttcactaccc | ateggtgtee | atttatagaa | taatgtggga | agaaacaaac | ccgttttatg | 2340 |
| atttactcat | tatcgccttt | tgacagctgt | gctgtaacac | aagtagatgc | ctgaacttga | 2400 |
| attaatccac | acatcagtaa | tgtattctat | ctctctttac | attttggtct | ctatactaca | 2460 |
| ttattaatgg | gttttgtgta | ctgtaaagaa | tttagctgta | tcaaactagt | gcatgaatag | 2520 |
| attctctcct | gattatttat | cacatagece | cttagccagt | tgtatattat | tcttgtggtt | 2580 |
|            |            |            | gctttaagaa |            |            | 2640 |
| 5 5        | 3          |            | 55.44      | 5 55599    | 5          |      |

-continued

| tgaacgtggg                                           | agttcagctg | cttctcttgc | ctaagtattc | ctttcctgat | cactatgcat | 2700 |
|------------------------------------------------------|------------|------------|------------|------------|------------|------|
| tttaaagtta                                           | aacattttta | agtatttcag | atgctttaga | gagattttt  | ttccatgact | 2760 |
| gcattttact                                           | gtacagattg | ctgcttctgc | tatatttgtg | atataggaat | taagaggata | 2820 |
| cacacgtttg                                           | tttcttcgtg | cctgttttat | gtgcacacat | taggcattga | gacttcaagc | 2880 |
| ttttctttt                                            | ttgtccacgt | atctttgggt | ctttgataaa | gaaaagaatc | cctgttcatt | 2940 |
| gtaagcactt                                           | ttacggggcg | ggtggggagg | ggtgctctgc | tggtcttcaa | ttaccaagaa | 3000 |
| ttctccaaaa                                           | caattttctg | caggatgatt | gtacagaatc | attgcttatg | acatgatcgc | 3060 |
| tttctacact                                           | gtattacata | aataaattaa | ataaaataac | cccgggcaag | acttttcttt | 3120 |
| gaaggatgac                                           | tacagacatt | aaataatcga | agtaattttg | ggtggggaga | agaggcagat | 3180 |
| tcaattttct                                           | ttaaccagtc | tgaagtttca | tttatgatac | aaaagaagat | gaaaatggaa | 3240 |
| gtggcaatat                                           | aaggggatga | ggaaggcatg | cctggacaaa | cccttcttt  | aagatgtgtc | 3300 |
| ttcaatttgt                                           | ataaaatggt | gttttcatgt | aaataaatac | attcttggag | gagca      | 3355 |
| <210> SEQ ID NO 8 <211> LENGTH: 3167 <212> TYPE: DNA |            |            |            |            |            |      |

<400> SEQUENCE: 8

60 gegagageac geggaggage gtgegegggg geecegggag aeggeggegg tggeggege ggcagagcaa ggacgcggcg gatcccactc gcacagcagc gcactcggtg ccccgcgcag 120 ggtcgcgatg ctgcccggtt tggcactgct cctgctggcc gcctggacgg ctcgggcgct 180 ggaggtetac cetgaactge agateaceaa tgtggtagaa gecaaceaac cagtgaceat 240 ccagaactgg tgcaagcggg gccgcaagca gtgcaagacc catccccact ttgtgattcc 300 ctaccgctgc ttagttggtg agtttgtaag tgatgccctt ctcgttcctg acaagtgcaa 360 attettacae caggagagga tggatgtttg cgaaacteat etteaetgge acaeegtege 420 caaagagaca tgcagtgaga agagtaccaa cttgcatgac tacggcatgt tgctgccctg 480 cggaattgac aagttccgag gggtagagtt tgtgtgttgc ccactggctg aagaaagtga 540 600 caatgtggat tetgetgatg eggaggagga tgaeteggat gtetggtggg geggageaga cacagactat gcagatggga gtgaagacaa agtagtagaa gtagcagagg aggaagaagt 660 ggctgaggtg gaagaagaag aagccgatga tgacgaggac gatgaggatg gtgatgaggt 720 agaggaagag gctgaggaac cctacgaaga agccacagag agaaccacca gcattgccac caccaccacc accaccacag agtctgtgga agaggtggtt cgagttccta caacagcagc 840 caqtaccct qatqccqttq acaaqtatct cqaqacacct qqqqatqaqa atqaacatqc 900 ccatttccag aaagccaaag agaggettga ggccaagcac cgagagagaa tgtcccaggt 960 catgagagaa tgggaagagg cagaacgtca agcaaagaac ttgcctaaag ctgataagaa ggcagttatc cagcatttcc aggagaaagt ggaatctttg gaacaggaag cagccaacga 1080 gagacagcag ctggtggaga cacacatggc cagagtggaa gccatgctca atgaccgccg 1140 ccgcctggcc ctggagaact acatcaccgc tctgcaggct gttcctcctc ggcctcgtca 1200 cgtgttcaat atgctaaaga agtatgtccg cgcagaacag aaggacagac agcacaccct 1260 aaagcatttc gagcatgtgc gcatggtgga tcccaagaaa gccgctcaga tccggtccca 1320

<sup>&</sup>lt;213> ORGANISM: Artificial sequence

<sup>&</sup>lt;220> FEATURE:

<sup>&</sup>lt;223> OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence

| ggttatgaca                         | cacctccgtg | tgatttatga | gcgcatgaat | cagtetetet | ccctgctcta | 1380 |
|------------------------------------|------------|------------|------------|------------|------------|------|
| caacgtgcct                         | gcagtggccg | aggagattca | ggatgaagtt | gatgagctgc | ttcagaaaga | 1440 |
| gcaaaactat                         | tcagatgacg | tcttggccaa | catgattagt | gaaccaagga | tcagttacgg | 1500 |
| aaacgatgct                         | ctcatgccat | ctttgaccga | aacgaaaacc | accgtggagc | tccttcccgt | 1560 |
| gaatggagag                         | ttcagcctgg | acgatctcca | gccgtggcat | tcttttgggg | ctgactctgt | 1620 |
| gccagccaac                         | acagaaaacg | aagttgagcc | tgttgatgcc | cgccctgctg | ccgaccgagg | 1680 |
| actgaccact                         | cgaccaggtt | ctgggttgac | aaatatcaag | acggaggaga | tctctgaagt | 1740 |
| gaagatggat                         | gcagaattcc | gacatgactc | aggatatgaa | gttcatcatc | aaaaattggt | 1800 |
| gttctttgca                         | gaagatgtgg | gttcaaacaa | aggtgcaatc | attggactca | tggtgggcgg | 1860 |
| tgttgtcata                         | gcgacagtga | tcgtcatcac | cttggtgatg | ctgaagaaga | aacagtacac | 1920 |
| atccattcat                         | catggtgtgg | tggaggttga | cgccgctgtc | accccagagg | agegeeacet | 1980 |
| gtccaagatg                         | cagcagaacg | gctacgaaaa | tccaacctac | aagttctttg | agcagatgca | 2040 |
| gaactagacc                         | cccgccacag | cagcctctga | agttggacag | caaaaccatt | gcttcactac | 2100 |
| ccatcggtgt                         | ccatttatag | aataatgtgg | gaagaaacaa | acccgtttta | tgatttactc | 2160 |
| attatcgcct                         | tttgacagct | gtgctgtaac | acaagtagat | gcctgaactt | gaattaatcc | 2220 |
| acacatcagt                         | aatgtattct | atctctcttt | acattttggt | ctctatacta | cattattaat | 2280 |
| gggttttgtg                         | tactgtaaag | aatttagctg | tatcaaacta | gtgcatgaat | agattctctc | 2340 |
| ctgattattt                         | atcacatagc | cccttagcca | gttgtatatt | attcttgtgg | tttgtgaccc | 2400 |
| aattaagtcc                         | tactttacat | atgctttaag | aatcgatggg | ggatgcttca | tgtgaacgtg | 2460 |
| ggagttcagc                         | tgcttctctt | gcctaagtat | tcctttcctg | atcactatgc | attttaaagt | 2520 |
| taaacatttt                         | taagtatttc | agatgcttta | gagagatttt | ttttccatga | ctgcatttta | 2580 |
| ctgtacagat                         | tgctgcttct | gctatatttg | tgatatagga | attaagagga | tacacacgtt | 2640 |
| tgtttcttcg                         | tgcctgtttt | atgtgcacac | attaggcatt | gagacttcaa | gcttttcttt | 2700 |
| ttttgtccac                         | gtatctttgg | gtctttgata | aagaaaagaa | tccctgttca | ttgtaagcac | 2760 |
| ttttacgggg                         | cgggtgggga | ggggtgetet | getggtette | aattaccaag | aattctccaa | 2820 |
| aacaattttc                         | tgcaggatga | ttgtacagaa | tcattgctta | tgacatgatc | gctttctaca | 2880 |
| ctgtattaca                         | taaataaatt | aaataaaata | accccgggca | agacttttct | ttgaaggatg | 2940 |
| actacagaca                         | ttaaataatc | gaagtaattt | tgggtgggga | gaagaggcag | attcaatttt | 3000 |
| ctttaaccag                         | tctgaagttt | catttatgat | acaaaagaag | atgaaaatgg | aagtggcaat | 3060 |
| ataaggggat                         | gaggaaggca | tgcctggaca | aacccttctt | ttaagatgtg | tcttcaattt | 3120 |
| gtataaaatg                         | gtgttttcat | gtaaataaat | acattettgg | aggagca    |            | 3167 |
| <210> SEQ : <211> LENG: <212> TYPE | TH: 3543   |            |            |            |            |      |

<400> SEQUENCE: 9

| cgccgcgctc | gggctccgtc | agtttcctcg | gcagcggtag | gcgagagcac | gcggaggagc | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| gtgcgcgggg | gccccgggag | acggcggcgg | tggcggcgcg | ggcagagcaa | ggacgcggcg | 120 |
| gatcccactc | gcacagcagc | gcactcggtg | ccccgcgcag | ggtcgcgatg | ctgcccggtt | 180 |

<sup>&</sup>lt;212> TYPE: DNA <213> ORGANISM: Artificial sequence

<sup>&</sup>lt;223> OTHER INFORMATION: Description of sequence: amyloid precursor
 protein coding sequence

| tggcactgct cctgctggcc | gcctggacgg | ctcgggcgct | ggaggtaccc | actgatggta | 240  |
|-----------------------|------------|------------|------------|------------|------|
| atgctggcct gctggctgaa | ccccagattg | ccatgttctg | tggcagactg | aacatgcaca | 300  |
| tgaatgtcca gaatgggaag | tgggattcag | atccatcagg | gaccaaaacc | tgcattgata | 360  |
| ccaaggaagg catcctgcag | tattgccaag | aagtctaccc | tgaactgcag | atcaccaatg | 420  |
| tggtagaagc caaccaacca | gtgaccatcc | agaactggtg | caagcggggc | cgcaagcagt | 480  |
| gcaagaccca tccccacttt | gtgattccct | accgctgctt | agttggtgag | tttgtaagtg | 540  |
| atgecettet egtteetgae | aagtgcaaat | tcttacacca | ggagaggatg | gatgtttgcg | 600  |
| aaactcatct tcactggcac | accgtcgcca | aagagacatg | cagtgagaag | agtaccaact | 660  |
| tgcatgacta cggcatgttg | ctgccctgcg | gaattgacaa | gttccgaggg | gtagagtttg | 720  |
| tgtgttgccc actggctgaa | gaaagtgaca | atgtggattc | tgctgatgcg | gaggaggatg | 780  |
| actcggatgt ctggtggggc | ggagcagaca | cagactatgc | agatgggagt | gaagacaaag | 840  |
| tagtagaagt agcagaggag | gaagaagtgg | ctgaggtgga | agaagaagaa | gccgatgatg | 900  |
| acgaggacga tgaggatggt | gatgaggtag | aggaagaggc | tgaggaaccc | tacgaagaag | 960  |
| ccacagagag aaccaccagc | attgccacca | ccaccaccac | caccacagag | tctgtggaag | 1020 |
| aggtggttcg agaggtgtgc | tctgaacaag | ccgagacggg | gccgtgccga | gcaatgatct | 1080 |
| cccgctggta ctttgatgtg | actgaaggga | agtgtgcccc | attcttttac | ggcggatgtg | 1140 |
| gcggcaaccg gaacaacttt | gacacagaag | agtactgcat | ggccgtgtgt | ggcagcgcca | 1200 |
| ttcctacaac agcagccagt | acccctgatg | ccgttgacaa | gtatctcgag | acacctgggg | 1260 |
| atgagaatga acatgcccat | ttccagaaag | ccaaagagag | gcttgaggcc | aagcaccgag | 1320 |
| agagaatgtc ccaggtcatg | agagaatggg | aagaggcaga | acgtcaagca | aagaacttgc | 1380 |
| ctaaagctga taagaaggca | gttatccagc | atttccagga | gaaagtggaa | tctttggaac | 1440 |
| aggaagcagc caacgagaga | cagcagctgg | tggagacaca | catggccaga | gtggaagcca | 1500 |
| tgctcaatga ccgccgccgc | ctggccctgg | agaactacat | caccgctctg | caggctgttc | 1560 |
| ctcctcggcc tcgtcacgtg | ttcaatatgc | taaagaagta | tgtccgcgca | gaacagaagg | 1620 |
| acagacagca caccctaaag | catttcgagc | atgtgcgcat | ggtggatccc | aagaaagccg | 1680 |
| ctcagatccg gtcccaggtt | atgacacacc | teegtgtgat | ttatgagcgc | atgaatcagt | 1740 |
| ctctctccct gctctacaac | gtgcctgcag | tggccgagga | gattcaggat | gaagttgatg | 1800 |
| agctgcttca gaaagagcaa | aactattcag | atgacgtctt | ggccaacatg | attagtgaac | 1860 |
| caaggatcag ttacggaaac | gatgctctca | tgccatcttt | gaccgaaacg | aaaaccaccg | 1920 |
| tggagctcct tcccgtgaat | ggagagttca | gcctggacga | tctccagccg | tggcattctt | 1980 |
| ttggggctga ctctgtgcca | gccaacacag | aaaacgaagt | tgagcctgtt | gatgcccgcc | 2040 |
| ctgctgccga ccgaggactg | accactcgac | caggttctgg | gttgacaaat | atcaagacgg | 2100 |
| aggagatete tgaagtgaag | atggatgcag | aattccgaca | tgactcagga | tatgaagttc | 2160 |
| atcatcaaaa attggtgttc | tttgcagaag | atgtgggttc | aaacaaaggt | gcaatcattg | 2220 |
| gactcatggt gggcggtgtt | gtcatagcga | cagtgatcgt | catcaccttg | gtgatgctga | 2280 |
| agaagaaaca gtacacatcc | attcatcatg | gtgtggtgga | ggttgacgcc | gctgtcaccc | 2340 |
| cagaggagcg ccacctgtcc | aagatgcagc | agaacggcta | cgaaaatcca | acctacaagt | 2400 |
| tctttgagca gatgcagaac | tagacccccg | ccacagcagc | ctctgaagtt | ggacagcaaa | 2460 |
| accattgctt cactacccat |            |            |            |            | 2520 |
|                       |            |            |            |            |      |

|                                                                                                                                                 |              |            | -conti       | iuea          |      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------|--------------|---------------|------|--|
| gttttatgat ttactcatta                                                                                                                           | tegeettttg   | acagetgtge | tgtaacacaa   | gtagatgcct    | 2580 |  |
| gaacttgaat taatccacac                                                                                                                           | atcagtaatg   | tattctatct | ctctttacat   | tttggtctct    | 2640 |  |
| atactacatt attaatgggt                                                                                                                           | tttgtgtact   | gtaaagaatt | tagctgtatc   | aaactagtgc    | 2700 |  |
| atgaatagat teteteetga                                                                                                                           | ttatttatca   | catageceet | tagccagttg   | tatattattc    | 2760 |  |
| ttgtggtttg tgacccaatt                                                                                                                           | aagtcctact   | ttacatatgc | tttaagaatc   | gatgggggat    | 2820 |  |
| gcttcatgtg aacgtgggag                                                                                                                           | ttcagctgct   | tctcttgcct | aagtattcct   | ttcctgatca    | 2880 |  |
| ctatgcattt taaagttaaa                                                                                                                           | catttttaag   | tatttcagat | gctttagaga   | gattttttt     | 2940 |  |
| ccatgactgc attttactgt                                                                                                                           | acagattgct   | gcttctgcta | tatttgtgat   | ataggaatta    | 3000 |  |
| agaggataca cacgtttgtt                                                                                                                           | tcttcgtgcc   | tgttttatgt | gcacacatta   | ggcattgaga    | 3060 |  |
| cttcaagctt ttctttttt                                                                                                                            | gtccacgtat   | ctttgggtct | ttgataaaga   | aaagaatccc    | 3120 |  |
| tgttcattgt aagcactttt                                                                                                                           | acggggcggg   | tggggagggg | tgctctgctg   | gtcttcaatt    | 3180 |  |
| accaagaatt ctccaaaaca                                                                                                                           | attttctgca   | ggatgattgt | acagaatcat   | tgcttatgac    | 3240 |  |
| atgategett tetacaetgt                                                                                                                           | attacataaa   | taaattaaat | aaaataaccc   | cgggcaagac    | 3300 |  |
| ttttctttga aggatgacta                                                                                                                           | cagacattaa   | ataatcgaag | taattttggg   | tggggagaag    | 3360 |  |
| aggcagattc aattttcttt                                                                                                                           | aaccagtctg   | aagtttcatt | tatgatacaa   | aagaagatga    | 3420 |  |
| aaatggaagt ggcaatataa                                                                                                                           | ggggatgagg   | aaggcatgcc | tggacaaacc   | cttcttttaa    | 3480 |  |
| gatgtgtctt caatttgtat                                                                                                                           | aaaatggtgt   | tttcatgtaa | ataaatacat   | tcttggagga    | 3540 |  |
| gca                                                                                                                                             |              |            |              |               | 3543 |  |
| <210> SEQ ID NO 10<br><211> LENGTH: 690<br><212> TYPE: DNA<br>213> ORGANISM: Artif<br><220> FEATURE:<br><223> OTHER INFORMATI<br>protein coding | ON: Descript |            | uence: amylo | oid precursor |      |  |
| <400> SEQUENCE: 10                                                                                                                              |              |            |              |               |      |  |
| ctttatcact ttactatgca                                                                                                                           | atttttatga   | ctatgcttaa | ggagagtaaa   | tttttcgaag    | 60   |  |
| ttattgaggc aatggagagt                                                                                                                           | ctttggaatg   | aggataatta | ggcctgagga   | cacagaggaa    | 120  |  |
| tcatgaggaa gaattctcca                                                                                                                           | gtttcattcc   | tttttctggg | tacagtttgt   | ttctccttct    | 180  |  |
| aagtaagttc ctagatatag                                                                                                                           | aatgaattgg   | aaaaaatgaa | acgtgaggtt   | tgctacgtct    | 240  |  |
| ataacagtat cacatttcat                                                                                                                           | tttttaaaac   | tgccaatgct | ttcagtgagg   | accagaaagt    | 300  |  |
| acagtgagaa aaaaaaattc                                                                                                                           | ctcaaatatt   | agttttcatg | ctcttgcacg   | catttttata    | 360  |  |
| aaggcaaaag tcattctggt                                                                                                                           | gcctgtatac   | aatctaaagg | cataatctcc   | tggagccttc    | 420  |  |
| agtgctggtt ttggggtttt                                                                                                                           | ctggagatca   | atccacagtg | tcccattttt   | tctgctggag    | 480  |  |
| ctctgaaccc actaagagag                                                                                                                           | agcaagaaga   | gatgtaaacc | tctcctttgc   | ttctgataaa    | 540  |  |
| gccaagccct tactagtcca                                                                                                                           | catgatgctt   | tctctgggga | gtgagtcaca   | tacaggagac    | 600  |  |
| atggcttgtc cagctgcgtg                                                                                                                           | ctggactgaa   | tttcagctcc | aacctgaacc   | ttccaacagg    | 660  |  |
| acaagggagg gaggagaatg                                                                                                                           | ggccgtagca   |            |              |               | 690  |  |
| <210> SEQ ID NO 11 <211> LENGTH: 905                                                                                                            |              |            |              |               |      |  |

<sup>&</sup>lt;211> LENGTH: 905

<sup>&</sup>lt;212> TYPE: DNA <213> ORGANISM: Artificial sequence

<sup>&</sup>lt;220> FEATURE:

<sup>&</sup>lt;223> OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence

-continued

<400> SEOUENCE: 11

gtgtgtaccc ctaaacccag cttattattt ttttgacttt ttgtagaaac agggtctccc 60 catgttgccc aggctggtct taaactcctg ggctcaaatg atcctcctgc ctcagcctcc 120 catagggcta ggattacagg tgtgagccac catgcctggc cttttatact gtttattccc 180 tttagataca gttaatggac attaataagc agtttatgcc aatccctttt catagctaat 240 aagaagtett atettggata aataaaacet ageeactaat getgeeacae eeaaataaae 300 tctctatgca tctgaacttc ttgaggttaa taatgcttca ttgtaatatt ttataaaatc 360 accactttgg aagtgaacac cactagaaat tcacatggcc agtttataga tggggactgg gggaagcagg gaggatetet geaatecagt agttaggete tgecagaatg tatttagagt tgtctctaaa tacattctga gtctctgctt cattttttt ttcaatgaaa atgacaatgt 540 ctgtcatccc atgttcaaga caaatataac aagtttctaa gaatccttat atttttgtta 600 ttgcatataa gcatgagttt taaaaaacctc tgaatgttta aaggatcacc tgggggaata 660 agaaaaatgc agatctctgt aggtctgagg tagagcccaa gaatctgtat ttttaactag 720 aatteeteta aattaetgtg etteaettgg eeceaattae acattaggag acaatgattt 780 caggatgaca atcagccttt tccatccaag gacttaaagc agctaaaccg aagacaccga 840 caaataccaq atacttttct caqtctactq qctqatqqca caaaaqtqca qaaqtcacqt 900 905 agggc <210 > SEO TD NO 12 <211> LENGTH: 1320 <212> TYPE: DNA <213 > ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence <400> SEQUENCE: 12 catgaggaac tccttgggcc ttgaccattt ttagcacttt cacagtttct gattttgatc 60 aagccactta atcacccagg attctgaatc tgaaaaccag gagggtttaa ttccactttc 120 atgttccctt gaggagctgt tggcagcagg atgaaggcag gtccatacag aacatgggaa 180 ggaagccagg aagccagctt ttcctttcac atcaaagaga tctagaaagc aaaacctgtc 240 tcacatttgc atacaatatt agacttacat atggatgcca tgtctgtcaa aagacaggct 300 aattagggca ttagtttctt taatggttgc gatttagtaa ttcacaaata gtcccactta 360 atttttcatc ctatacctaa aggatctact tcacacttga agtttaagaa ggcttctccc ttaagataga aagaaggcat tcaagtatca aaatactggt ttcctgccaa aaaataaggg atgagaaaaa gcagacactt agcttatcaa tcaaaatgct ggcagggaaa gactactgga 540 ttaccaaqtt cattccccta qcctqcactq attcctcttt ttctctaaaq tttcttattt 600 tttcagtttt tctcatgata ctgacattgc caaccagcag tctggaaact gttcaggttg 660 attottagca gaaaatogag gggototoot gttactgtta atatoottaa aacaottaaa tttggttagt ttgcttcaag cattctcagt atattacaaa aaaaaaaagt actcaagaat 780 ttctagactt tattttgact gacatcagct accctaatga acaggagggg acaacagcaa 840 ggtatattag gagcatctcc ttccttttta atcagaatta tataggaatt aagaactcta 900 aggccacagt agagtatagt atcttggaag aagaaagcgg agaatgtctg acattttcac 960

tgatcgttta ggctgatggc ttaaaccatt tccacccaag tttcttacaa gttagcattt

-continued

ccagccaaca ttacctactg caatttctct ataatcttaa gggtattgag cccccaaatg 1080 agagagagaa aagagatgta aactaaacag gagtcagaga aggggaaact gagtctgttg 1140 cacatcattt accetttaac atgattttaa aggtaataat gettataaaa atattagtag 1200 tagtaaggga tatcaggtga caagcagaag tgcccctctc cacagatatg ccagtgtatc 1260 tgtagaaata cggtgctaaa attagaaaag actgaacatt ttaatttatt aggtagaccc 1320 <210> SEQ ID NO 13 <211> LENGTH: 3552 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <223> OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence <400> SEQUENCE: 13 egeogeque qqqeteeqte aqttteeteq qeaqeqqtaq qeqaqaqeae qeqqaqqaqe 60 120 gtgcgcgggg gccccgggag acggcggcgg tggcggcgg ggcagagcaa ggacgcggcg gateceacte geacageage geacteggtg eccegegeag ggtegegatg etgeceggtt 180 tggcactgct cctgctggcc gcctggacgg ctcgggcgct ggaggtaccc actgatggta 240 atgctggcct gctggctgaa ccccagattg ccatgttctg tggcagactg aacatgcaca 300 tgaatgtcca gaatgggaag tgggattcag atccatcagg gaccaaaacc tgcattgata 360 ccaaggaagg catcctgcag tattgccaag aagtctaccc tgaactgcag atcaccaatg 420 tqqtaqaaqc caaccaacca qtqaccatcc aqaactqqtq caaqcqqqqc cqcaaqcaqt 480 gcaagaccca tccccacttt gtgattccct accgctgctt agttggtgag tttgtaagtg 540 atgcccttct cgttcctgac aagtgcaaat tcttacacca ggagaggatg gatgtttgcg 600 aaactcatct tcactggcac accgtcgcca aagagacatg cagtgagaag agtaccaact 660 tgcatgacta cggcatgttg ctgccctgcg gaattgacaa gttccgaggg gtagagtttg 720 tgtgttgccc actggctgaa gaaagtgaca atgtggattc tgctgatgcg gaggaggatg 780 actoggatgt ctggtggggc ggagcagaca cagactatgc agatgggagt gaagacaaag 840 900 tagtagaagt agcagaggag gaagaagtgg ctgaggtgga agaagaagaa gccgatgatg 960 acgaggacga tgaggatggt gatgaggtag aggaagaggc tgaggaaccc tacgaagaag 1020 ccacagagag aaccaccagc attgccacca ccaccaccac caccacagag tctgtggaag aggtggttcg agaggtgtgc tctgaacaag ccgagacggg gccgtgccga gcaatgatct 1080 cccgctggta ctttgatgtg actgaaggga agtgtgcccc attcttttac ggcggatgtg 1140 geggeaaccg gaacaacttt gacacagaag agtactgcat ggeegtgtgt ggeagegeca tqtcccaaaq tttactcaaq actacccaqq aacctcttqc ccqaqatcct qttaaacttc 1260 1320 ctacaacaqc aqccaqtacc cctqatqccq ttqacaaqta tctcqaqaca cctqqqqatq agaatgaaca tgcccatttc cagaaagcca aagagaggct tgaggccaag caccgagaga 1380 gaatgtccca ggtcatgaga gaatgggaag aggcagaacg tcaagcaaag aacttgccta aagctgataa gaaggcagtt atccagcatt tccaggagaa agtggaatct ttggaacagg 1500 aagcagccaa cgagagacag cagctggtgg agacacacat ggccagagtg gaagccatgc 1560 tcaatgaccg ccgccgcctg gccctggaga actacatcac cgctctgcag gctgttcctc 1620

ctcggcctcg tcacgtgttc aatatgctaa agaagtatgt ccgcgcagaa cagaaggaca

gacagcacac cctaaagcat ttcgagcatg tgcgcatggt ggatcccaag aaagccgctc

1680

-continued

| agateeggte                                                                                                                                                                                                | ccaggttatg | acacacctcc | gtgtgattta | tgagcgcatg | aatcagtctc | 1800 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|------------|------------|------|
| tctccctgct                                                                                                                                                                                                | ctacaacgtg | cctgcagtgg | ccgaggagat | tcaggatgaa | gttgatgagc | 1860 |
| tgcttcagaa                                                                                                                                                                                                | agagcaaaac | tattcagatg | acgtcttggc | caacatgatt | agtgaaccaa | 1920 |
| ggatcagtta                                                                                                                                                                                                | cggaaacgat | gctctcatgc | catctttgac | cgaaacgaaa | accaccgtgg | 1980 |
| agctccttcc                                                                                                                                                                                                | cgtgaatgga | gagttcagcc | tggacgatct | ccagccgtgg | cattcttttg | 2040 |
| gggctgactc                                                                                                                                                                                                | tgtgccagcc | aacacagaaa | acgaaggttc | tgggttgaca | aatatcaaga | 2100 |
| cggaggagat                                                                                                                                                                                                | ctctgaagtg | aagatggatg | cagaattccg | acatgactca | ggatatgaag | 2160 |
| ttcatcatca                                                                                                                                                                                                | aaaattggtg | ttctttgcag | aagatgtggg | ttcaaacaaa | ggtgcaatca | 2220 |
| ttggactcat                                                                                                                                                                                                | ggtgggcggt | gttgtcatag | cgacagtgat | cgtcatcacc | ttggtgatgc | 2280 |
| tgaagaagaa                                                                                                                                                                                                | acagtacaca | tccattcatc | atggtgtggt | ggaggttgac | gccgctgtca | 2340 |
| ccccagagga                                                                                                                                                                                                | gcgccacctg | tccaagatgc | agcagaacgg | ctacgaaaat | ccaacctaca | 2400 |
| agttctttga                                                                                                                                                                                                | gcagatgcag | aactagaccc | ccgccacagc | agcctctgaa | gttggacagc | 2460 |
| aaaaccattg                                                                                                                                                                                                | cttcactacc | catcggtgtc | catttataga | ataatgtggg | aagaaacaaa | 2520 |
| cccgttttat                                                                                                                                                                                                | gatttactca | ttatcgcctt | ttgacagctg | tgctgtaaca | caagtagatg | 2580 |
| cctgaacttg                                                                                                                                                                                                | aattaatcca | cacatcagta | atgtattcta | tctctcttta | cattttggtc | 2640 |
| tctatactac                                                                                                                                                                                                | attattaatg | ggttttgtgt | actgtaaaga | atttagctgt | atcaaactag | 2700 |
| tgcatgaata                                                                                                                                                                                                | gattctctcc | tgattattta | tcacatagcc | ccttagccag | ttgtatatta | 2760 |
| ttcttgtggt                                                                                                                                                                                                | ttgtgaccca | attaagtcct | actttacata | tgctttaaga | atcgatgggg | 2820 |
| gatgcttcat                                                                                                                                                                                                | gtgaacgtgg | gagttcagct | gcttctcttg | cctaagtatt | cctttcctga | 2880 |
| tcactatgca                                                                                                                                                                                                | ttttaaagtt | aaacattttt | aagtatttca | gatgctttag | agagattttt | 2940 |
| tttccatgac                                                                                                                                                                                                | tgcattttac | tgtacagatt | gctgcttctg | ctatatttgt | gatataggaa | 3000 |
| ttaagaggat                                                                                                                                                                                                | acacacgttt | gtttcttcgt | gcctgtttta | tgtgcacaca | ttaggcattg | 3060 |
| agacttcaag                                                                                                                                                                                                | ctttcttt   | tttgtccacg | tatctttggg | tctttgataa | agaaaagaat | 3120 |
| ccctgttcat                                                                                                                                                                                                | tgtaagcact | tttacggggc | gggtggggag | gggtgctctg | ctggtcttca | 3180 |
| attaccaaga                                                                                                                                                                                                | attctccaaa | acaattttct | gcaggatgat | tgtacagaat | cattgcttat | 3240 |
| gacatgatcg                                                                                                                                                                                                | ctttctacac | tgtattacat | aaataaatta | aataaaataa | ccccgggcaa | 3300 |
| gacttttctt                                                                                                                                                                                                | tgaaggatga | ctacagacat | taaataatcg | aagtaatttt | gggtggggag | 3360 |
| aagaggcaga                                                                                                                                                                                                | ttcaattttc | tttaaccagt | ctgaagtttc | atttatgata | caaaagaaga | 3420 |
| tgaaaatgga                                                                                                                                                                                                | agtggcaata | taaggggatg | aggaaggcat | gcctggacaa | accettettt | 3480 |
| taagatgtgt                                                                                                                                                                                                | cttcaatttg | tataaaatgg | tgttttcatg | taaataaata | cattettgga | 3540 |
| ggagcaccat                                                                                                                                                                                                | tg         |            |            |            |            | 3552 |
| <210> SEQ ID NO 14  <211> LENGTH: 2366  <212> TYPE: DNA  <213> ORGANISM: Artificial sequence  <220> FEATURE:  <223> OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence |            |            |            |            |            |      |

<400> SEQUENCE: 14

| gatcccactc | gcacagcagc | gcactcggtg | ccccgcgcag | ggtcgcgatg | ctgcccggtt | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| tggcactgct | cctgctggcc | gcctggacgg | ctcgggcgct | ggaggtaccc | actgatggta | 120 |
| atqctqqcct | qctqqctqaa | ccccagattq | ccatqttctq | tqqcaqactq | aacatqcaca | 180 |

protein coding sequence

-continued

| tgaatgtcca | gaatgggaag | tgggattcag | atccatcagg | gaccaaaacc | tgcattgata | 240  |
|------------|------------|------------|------------|------------|------------|------|
| ccaaggaagg | catcctgcag | tattgccaag | aagtctaccc | tgaactgcag | atcaccaatg | 300  |
| tggtagaagc | caaccaacca | gtgaccatcc | agaactggtg | caagcggggc | cgcaagcagt | 360  |
| gcaagaccca | tccccacttt | gtgattccct | accgctgctt | agttggtgag | tttgtaagtg | 420  |
| atgcccttct | cgttcctgac | aagtgcaaat | tcttacacca | ggagaggatg | gatgtttgcg | 480  |
| aaactcatct | tcactggcac | accgtcgcca | aagagacatg | cagtgagaag | agtaccaact | 540  |
| tgcatgacta | cggcatgttg | ctgccctgcg | gaattgacaa | gttccgaggg | gtagagtttg | 600  |
| tgtgttgccc | actggctgaa | gaaagtgaca | atgtggattc | tgctgatgcg | gaggaggatg | 660  |
| actcggatgt | ctggtggggc | ggagcagaca | cagactatgc | agatgggagt | gaagacaaag | 720  |
| tagtagaagt | agcagaggag | gaagaagtgg | ctgaggtgga | agaagaagaa | gccgatgatg | 780  |
| acgaggacga | tgaggatggt | gatgaggtag | aggaagaggc | tgaggaaccc | tacgaagaag | 840  |
| ccacagagag | aaccaccagc | attgccacca | ccaccaccac | caccacagag | tctgtggaag | 900  |
| aggtggttcg | agaggtgtgc | tctgaacaag | ccgagacggg | gccgtgccga | gcaatgatct | 960  |
| cccgctggta | ctttgatgtg | actgaaggga | agtgtgcccc | attcttttac | ggcggatgtg | 1020 |
| gcggcaaccg | gaacaacttt | gacacagaag | agtactgcat | ggccgtgtgt | ggcagcgcca | 1080 |
| tgtcccaaag | tttactcaag | actacccagg | aacctcttgc | ccgagatcct | gttaaacttc | 1140 |
| ctacaacagc | agccagtacc | cctgatgccg | ttgacaagta | tctcgagaca | cctggggatg | 1200 |
| agaatgaaca | tgcccatttc | cagaaagcca | aagagaggct | tgaggccaag | caccgagaga | 1260 |
| gaatgtccca | ggtcatgaga | gaatgggaag | aggcagaacg | tcaagcaaag | aacttgccta | 1320 |
| aagctgataa | gaaggcagtt | atccagcatt | tccaggagaa | agtggaatct | ttggaacagg | 1380 |
| aagcagccaa | cgagagacag | cagctggtgg | agacacacat | ggccagagtg | gaagccatgc | 1440 |
| tcaatgaccg | ccgccgcctg | gccctggaga | actacatcac | cgctctgcag | gctgttcctc | 1500 |
| ctcggcctcg | tcacgtgttc | aatatgctaa | agaagtatgt | ccgcgcagaa | cagaaggaca | 1560 |
| gacagcacac | cctaaagcat | ttcgagcatg | tgcgcatggt | ggatcccaag | aaagccgctc | 1620 |
| agatccggtc | ccaggttatg | acacacctcc | gtgtgattta | tgagcgcatg | aatcagtctc | 1680 |
| tctccctgct | ctacaacgtg | cctgcagtgg | ccgaggagat | tcaggatgaa | gttgatgagc | 1740 |
| tgcttcagaa | agagcaaaac | tattcagatg | acgtcttggc | caacatgatt | agtgaaccaa | 1800 |
| ggatcagtta | cggaaacgat | gctctcatgc | catctttgac | cgaaacgaaa | accaccgtgg | 1860 |
| agctccttcc | cgtgaatgga | gagttcagcc | tggacgatct | ccagccgtgg | cattcttttg | 1920 |
| gggctgactc | tgtgccagcc | aacacagaaa | acgaaggttc | tgggttgaca | aatatcaaga | 1980 |
| cggaggagat | ctctgaagtg | aagatggatg | cagaattccg | acatgactca | ggatatgaag | 2040 |
| ttcatcatca | aaaattggtg | ttctttgcag | aagatgtggg | ttcaaacaaa | ggtgcaatca | 2100 |
| ttggactcat | ggtgggcggt | gttgtcatag | cgacagtgat | cgtcatcacc | ttggtgatgc | 2160 |
| tgaagaagaa | acagtacaca | tccattcatc | atggtgtggt | ggaggttgac | gccgctgtca | 2220 |
| ccccagagga | gcgccacctg | tccaagatgc | agcagaacgg | ctacgaaaat | ccaacctaca | 2280 |
| agttctttga | gcagatgcag | aactagaccc | ccgccacagc | agcctctgaa | gttggacagc | 2340 |
| aaaaccattg | cttcactacc | catcgg     |            |            |            | 2366 |
|            |            |            |            |            |            |      |

<210> SEQ ID NO 15 <211> LENGTH: 3294 <212> TYPE: DNA

102 101

<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence

<400> SEQUENCE: 15

| ~          |            |            |            |            |            |      |
|------------|------------|------------|------------|------------|------------|------|
| gtcggatgat | tcaagctcac | ggggacgagc | aggagcgctc | tegaetttte | tagagcctca | 60   |
| gcgtcctagg | actcaccttt | ccctgatcct | gcaccgtccc | teteetggee | ccagactctc | 120  |
| cctcccactg | ttcacgaagc | ccaggtaccc | actgatggta | atgctggcct | gctggctgaa | 180  |
| ccccagattg | ccatgttctg | tggcagactg | aacatgcaca | tgaatgtcca | gaatgggaag | 240  |
| tgggattcag | atccatcagg | gaccaaaacc | tgcattgata | ccaaggaagg | catcctgcag | 300  |
| tattgccaag | aagtctaccc | tgaactgcag | atcaccaatg | tggtagaagc | caaccaacca | 360  |
| gtgaccatcc | agaactggtg | caagcggggc | cgcaagcagt | gcaagaccca | tccccacttt | 420  |
| gtgattccct | accgctgctt | agttggtgag | tttgtaagtg | atgecettet | cgttcctgac | 480  |
| aagtgcaaat | tcttacacca | ggagaggatg | gatgtttgcg | aaactcatct | tcactggcac | 540  |
| accgtcgcca | aagagacatg | cagtgagaag | agtaccaact | tgcatgacta | cggcatgttg | 600  |
| ctgccctgcg | gaattgacaa | gttccgaggg | gtagagtttg | tgtgttgccc | actggctgaa | 660  |
| gaaagtgaca | atgtggattc | tgctgatgcg | gaggaggatg | actcggatgt | ctggtggggc | 720  |
| ggagcagaca | cagactatgc | agatgggagt | gaagacaaag | tagtagaagt | agcagaggag | 780  |
| gaagaagtgg | ctgaggtgga | agaagaagaa | gccgatgatg | acgaggacga | tgaggatggt | 840  |
| gatgaggtag | aggaagaggc | tgaggaaccc | tacgaagaag | ccacagagag | aaccaccagc | 900  |
| attgccacca | ccaccaccac | caccacagag | tctgtggaag | aggtggttcg | agttcctaca | 960  |
| acagcagcca | gtacccctga | tgccgttgac | aagtatctcg | agacacctgg | ggatgagaat | 1020 |
| gaacatgccc | atttccagaa | agccaaagag | aggcttgagg | ccaagcaccg | agagagaatg | 1080 |
| tcccaggtca | tgagagaatg | ggaagaggca | gaacgtcaag | caaagaactt | gcctaaagct | 1140 |
| gataagaagg | cagttatcca | gcatttccag | gagaaagtgg | aatctttgga | acaggaagca | 1200 |
| gccaacgaga | gacagcagct | ggtggagaca | cacatggcca | gagtggaagc | catgctcaat | 1260 |
| gaccgccgcc | gcctggccct | ggagaactac | atcaccgctc | tgcaggctgt | tectectegg | 1320 |
| cctcgtcacg | tgttcaatat | gctaaagaag | tatgtccgcg | cagaacagaa | ggacagacag | 1380 |
| cacaccctaa | agcatttcga | gcatgtgcgc | atggtggatc | ccaagaaagc | cgctcagatc | 1440 |
| cggtcccagg | ttatgacaca | cctccgtgtg | atttatgagc | gcatgaatca | gtctctctcc | 1500 |
| ctgctctaca | acgtgcctgc | agtggccgag | gagattcagg | atgaagttga | tgagctgctt | 1560 |
| cagaaagagc | aaaactattc | agatgacgtc | ttggccaaca | tgattagtga | accaaggatc | 1620 |
| agttacggaa | acgatgctct | catgccatct | ttgaccgaaa | cgaaaaccac | cgtggagctc | 1680 |
| cttcccgtga | atggagagtt | cagcctggac | gatetecage | cgtggcattc | ttttggggct | 1740 |
| gactctgtgc | cagccaacac | agaaaacgaa | gttgagcctg | ttgatgcccg | ccctgctgcc | 1800 |
| gaccgaggac | tgaccactcg | accaggttct | gggttgacaa | atatcaagac | ggaggagatc | 1860 |
| tctgaagtga | agatggatgc | agaattccga | catgactcag | gatatgaagt | tcatcatcaa | 1920 |
| aaattggtgt | tctttgcaga | agatgtgggt | tcaaacaaag | gtgcaatcat | tggactcatg | 1980 |
| gtgggcggtg | ttgtcatagc | gacagtgatc | gtcatcacct | tggtgatgct | gaagaagaaa | 2040 |
| cagtacacat | ccattcatca | tggtgtggtg | gaggttgacg | ccgctgtcac | cccagaggag | 2100 |
|            |            | gcagaacggc |            |            |            | 2160 |
| , J-       | 5 5        | _ 5 55-    | -          |            |            |      |

-continued

| -continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                   |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| cagatgcaga actagacccc cgccacagca gcctctgaag ttggacagca aaaccattgc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2220                                                              |  |  |  |  |
| ttcactaccc atcggtgtcc atttatagaa taatgtggga agaaacaaac ccgttttatg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2280                                                              |  |  |  |  |
| atttactcat tatcgccttt tgacagctgt gctgtaacac aagtagatgc ctgaacttga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2340                                                              |  |  |  |  |
| attaatccac acatcagtaa tgtattctat ctctctttac attttggtct ctatactaca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2400                                                              |  |  |  |  |
| ttattaatgg gttttgtgta ctgtaaagaa tttagctgta tcaaactagt gcatgaatag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2460                                                              |  |  |  |  |
| atteteteet gattatttat cacatageee ettageeagt tgtatattat tettgtggtt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2520                                                              |  |  |  |  |
| tgtgacccaa ttaagtccta ctttacatat gctttaagaa tcgatggggg atgcttcatg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2580                                                              |  |  |  |  |
| tgaacgtggg agttcagctg cttctcttgc ctaagtattc ctttcctgat cactatgcat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2640                                                              |  |  |  |  |
| tttaaagtta aacattttta agtatttcag atgctttaga gagatttttt ttccatgact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2700                                                              |  |  |  |  |
| gcattttact gtacagattg ctgcttctgc tatatttgtg atataggaat taagaggata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2760                                                              |  |  |  |  |
| cacacgtttg tttcttcgtg cctgttttat gtgcacacat taggcattga gacttcaagc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2820                                                              |  |  |  |  |
| ttttcttttt ttgtccacgt atctttgggt ctttgataaa gaaaagaatc cctgttcatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2880                                                              |  |  |  |  |
| gtaagcactt ttacggggcg ggtggggagg ggtgctctgc tggtcttcaa ttaccaagaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2940                                                              |  |  |  |  |
| ttctccaaaa caattttctg caggatgatt gtacagaatc attgcttatg acatgatcgc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3000                                                              |  |  |  |  |
| tttctacact gtattacata aataaattaa ataaaataac cccgggcaag acttttcttt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3060                                                              |  |  |  |  |
| gaaggatgac tacagacatt aaataatcga agtaattttg ggtggggaga agaggcagat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3120                                                              |  |  |  |  |
| tcaattttct ttaaccagtc tgaagtttca tttatgatac aaaagaagat gaaaatggaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3180                                                              |  |  |  |  |
| gtggcaatat aaggggatga ggaaggcatg cctggacaaa cccttctttt aagatgtgtc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3240                                                              |  |  |  |  |
| ttcaatttgt ataaaatggt gttttcatgt aaataaatac attcttggag gagc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3294                                                              |  |  |  |  |
| <210> SEQ ID NO 16 <211> LENGTH: 3633 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Description of sequence: amyloid precursor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |  |  |  |  |
| <211> LENGTH: 3633<br><212> TYPE: DNA<br><213> ORGANISM: Artificial sequence<br><220> FEATURE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r                                                                 |  |  |  |  |
| <pre>&lt;211&gt; LENGTH: 3633 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r                                                                 |  |  |  |  |
| <211> LENGTH: 3633 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Description of sequence: amyloid precurso protein coding sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r<br>60                                                           |  |  |  |  |
| <211> LENGTH: 3633 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Description of sequence: amyloid precurso protein coding sequence <400> SEQUENCE: 16                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   |  |  |  |  |
| <pre>&lt;211&gt; LENGTH: 3633 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso protein coding sequence &lt;400&gt; SEQUENCE: 16 agagttccgg aggctttggt tgtccattgt tagcttagaa gttggcgcag tgtgcgtgtg</pre>                                                                                                                                                                                                                                                                                                                                          | 60                                                                |  |  |  |  |
| <pre>&lt;211&gt; LENGTH: 3633 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso protein coding sequence &lt;400&gt; SEQUENCE: 16 agagttccgg aggctttggt tgtccattgt tagcttagaa gttggcgcag tgtgcgtgtg atccacgcct aaatagcaca gccttgctgt gcgtggtaga agttgggtta gtgttgacat</pre>                                                                                                                                                                                                                                                                        | 60<br>120                                                         |  |  |  |  |
| <pre>&lt;211&gt; LENGTH: 3633 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>120<br>180                                                  |  |  |  |  |
| <pre>&lt;211&gt; LENGTH: 3633 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER IMFORMATION: Description of sequence: amyloid precurso protein coding sequence &lt;400&gt; SEQUENCE: 16 agagttccgg aggctttggt tgtccattgt tagcttagaa gttggcgcag tgtgcgtgtg atccacgcct aaatagcaca gccttgctgt gcgtggtaga agttgggtta gtgttgacat gctgttgact caccctcccg aggatggaag ctctggcctg ggtcaagttg tggtcactgc agttaacagt ttgttgatct cagggagtat tccacagttg ctgatgtaat tgacaatgat</pre>                                                                                                                                    | 60<br>120<br>180<br>240                                           |  |  |  |  |
| <pre>&lt;211&gt; LENGTH: 3633 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>120<br>180<br>240<br>300                                    |  |  |  |  |
| <pre>&lt;211&gt; LENGTH: 3633 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso protein coding sequence &lt;400&gt; SEQUENCE: 16 agagttccgg aggctttggt tgtccattgt tagcttagaa gttggcgcag tgtgcgtgtg atccacgcct aaatagcaca gccttgctgt gcgtggtaga agttgggtta gtgttgacat gctgttgact caccctcccg aggatggaag ctctggcctg ggtcaagttg tggtcactgc agttaacagt ttgttgatct cagggagtat tccacagttg ctgatgtaat tgacaatgat tggagccagc tcttccccag attcaaatgg accaattaga ggacttgttg gttctgtta tcaactatgt acccactgat ggtaatgctg gcctgctggc tgaaccccag attgccatgt</pre> | 60<br>120<br>180<br>240<br>300<br>360                             |  |  |  |  |
| <pre>&lt;211&gt; LENGTH: 3633 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>120<br>180<br>240<br>300<br>360<br>420                      |  |  |  |  |
| <pre>&lt;211&gt; LENGTH: 3633 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480               |  |  |  |  |
| <pre>&lt;211&gt; LENGTH: 3633 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480               |  |  |  |  |
| <pre>&lt;211&gt; LENGTH: 3633 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |  |  |  |  |
| <pre>&lt;211&gt; LENGTH: 3633 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600 |  |  |  |  |

attctgctga tgcggaggag gatgactcgg atgtctggtg gggcggagca gacacagact

| atgcagatgg | gagtgaagac | aaagtagtag | aagtagcaga | ggaggaagaa | gtggctgagg | 960  |
|------------|------------|------------|------------|------------|------------|------|
| tggaagaaga | agaagccgat | gatgacgagg | acgatgagga | tggtgatgag | gtagaggaag | 1020 |
| aggetgagga | accctacgaa | gaagccacag | agagaaccac | cagcattgcc | accaccacca | 1080 |
| ccaccaccac | agagtctgtg | gaagaggtgg | ttcgagaggt | gtgctctgaa | caagccgaga | 1140 |
| cggggccgtg | ccgagcaatg | atctcccgct | ggtactttga | tgtgactgaa | gggaagtgtg | 1200 |
| ccccattctt | ttacggcgga | tgtggcggca | accggaacaa | ctttgacaca | gaagagtact | 1260 |
| gcatggccgt | gtgtggcagc | gccattccta | caacagcagc | cagtacccct | gatgccgttg | 1320 |
| acaagtatct | cgagacacct | ggggatgaga | atgaacatgc | ccatttccag | aaagccaaag | 1380 |
| agaggcttga | ggccaagcac | cgagagagaa | tgtcccaggt | catgagagaa | tgggaagagg | 1440 |
| cagaacgtca | agcaaagaac | ttgcctaaag | ctgataagaa | ggcagttatc | cagcatttcc | 1500 |
| aggagaaagt | ggaatctttg | gaacaggaag | cagccaacga | gagacagcag | ctggtggaga | 1560 |
| cacacatggc | cagagtggaa | gccatgctca | atgaccgccg | ccgcctggcc | ctggagaact | 1620 |
| acatcaccgc | tctgcaggct | gttcctcctc | ggcctcgtca | cgtgttcaat | atgctaaaga | 1680 |
| agtatgtccg | cgcagaacag | aaggacagac | agcacaccct | aaagcatttc | gagcatgtgc | 1740 |
| gcatggtgga | tcccaagaaa | gccgctcaga | tccggtccca | ggttatgaca | cacctccgtg | 1800 |
| tgatttatga | gcgcatgaat | cagtctctct | ccctgctcta | caacgtgcct | gcagtggccg | 1860 |
| aggagattca | ggatgaagtt | gatgagctgc | ttcagaaaga | gcaaaactat | tcagatgacg | 1920 |
| tcttggccaa | catgattagt | gaaccaagga | tcagttacgg | aaacgatgct | ctcatgccat | 1980 |
| ctttgaccga | aacgaaaacc | accgtggagc | tccttcccgt | gaatggagag | ttcagcctgg | 2040 |
| acgatctcca | gccgtggcat | tcttttgggg | ctgactctgt | gccagccaac | acagaaaacg | 2100 |
| aagttgagcc | tgttgatgcc | cgccctgctg | ccgaccgagg | actgaccact | cgaccaggtt | 2160 |
| ctgggttgac | aaatatcaag | acggaggaga | tctctgaagt | gaagatggat | gcagaattcc | 2220 |
| gacatgactc | aggatatgaa | gttcatcatc | aaaaattggt | gttctttgca | gaagatgtgg | 2280 |
| gttcaaacaa | aggtgcaatc | attggactca | tggtgggegg | tgttgtcata | gcgacagtga | 2340 |
| tegteateae | cttggtgatg | ctgaagaaga | aacagtacac | atccattcat | catggtgtgg | 2400 |
| tggaggttga | cgccgctgtc | accccagagg | agegeeacet | gtccaagatg | cagcagaacg | 2460 |
| gctacgaaaa | tccaacctac | aagttctttg | agcagatgca | gaactagacc | cccgccacag | 2520 |
| cagcctctga | agttggacag | caaaaccatt | gcttcactac | ccatcggtgt | ccatttatag | 2580 |
| aataatgtgg | gaagaaacaa | acccgtttta | tgatttactc | attatcgcct | tttgacagct | 2640 |
| gtgctgtaac | acaagtagat | gcctgaactt | gaattaatcc | acacatcagt | aatgtattct | 2700 |
| atctctcttt | acattttggt | ctctatacta | cattattaat | gggttttgtg | tactgtaaag | 2760 |
| aatttagctg | tatcaaacta | gtgcatgaat | agattctctc | ctgattattt | atcacatagc | 2820 |
| cccttagcca | gttgtatatt | attcttgtgg | tttgtgaccc | aattaagtcc | tactttacat | 2880 |
| atgctttaag | aatcgatggg | ggatgcttca | tgtgaacgtg | ggagttcagc | tgcttctctt | 2940 |
| gcctaagtat | tcctttcctg | atcactatgc | attttaaagt | taaacatttt | taagtatttc | 3000 |
| agatgcttta | gagagatttt | ttttccatga | ctgcatttta | ctgtacagat | tgctgcttct | 3060 |
| gctatatttg | tgatatagga | attaagagga | tacacacgtt | tgtttcttcg | tgcctgtttt | 3120 |
| atgtgcacac | attaggcatt | gagacttcaa | gcttttcttt | ttttgtccac | gtatctttgg | 3180 |
| gtctttgata | aagaaaagaa | tccctgttca | ttgtaagcac | ttttacgggg | cgggtgggga | 3240 |
| ggggtgctct | gctggtcttc | aattaccaag | aattctccaa | aacaattttc | tgcaggatga | 3300 |
|            |            | _          |            |            |            |      |

| ttgtacagaa tcatt | getta tgacatgate                                            | gctttctaca | ctgtattaca   | taaataaatt    | 3360 |
|------------------|-------------------------------------------------------------|------------|--------------|---------------|------|
| aaataaaata acccc | gggca agacttttct                                            | ttgaaggatg | actacagaca   | ttaaataatc    | 3420 |
| gaagtaattt tgggt | gggga gaagaggcag                                            | attcaatttt | ctttaaccag   | tctgaagttt    | 3480 |
| catttatgat acaaa | agaag atgaaaatgg                                            | aagtggcaat | ataaggggat   | gaggaaggca    | 3540 |
| tgcctggaca aaccc | ttctt ttaagatgtg                                            | tcttcaattt | gtataaaatg   | gtgttttcat    | 3600 |
| gtaaataaat acatt | cttgg aggagcacca                                            | ttg        |              |               | 3633 |
|                  | 46<br>Artificial seque<br>RMATION: Descrip<br>ding sequence |            | uence: amylo | oid precursor |      |
| <400> SEQUENCE:  |                                                             |            |              |               |      |
| agagttccgg aggct |                                                             |            |              |               | 60   |
| atccacgcct aaata |                                                             |            |              |               | 120  |
| getgttgaet cacce |                                                             |            |              |               | 180  |
| agttaacagt ttgtt |                                                             |            |              |               | 240  |
| tggagccagc tette | -                                                           | _          |              |               | 300  |
| tcaactatgt accca |                                                             |            |              |               | 360  |
| tctgtggcag actga | acatg cacatgaatg                                            | tccagaatgg | gaagtgggat   | tcagatccat    | 420  |
| cagggaccaa aacct | gcatt gataccaagg                                            | aaggcatcct | gcagtattgc   | caagaagtct    | 480  |
| accctgaact gcaga | tcacc aatgtggtag                                            | aagccaacca | accagtgacc   | atccagaact    | 540  |
| ggtgcaagcg gggcc | gcaag cagtgcaaga                                            | cccatcccca | ctttgtgatt   | ccctaccgct    | 600  |
| gcttagttgg tgagt | ttgta agtgatgccc                                            | ttctcgttcc | tgacaagtgc   | aaattcttac    | 660  |
| accaggagag gatgg | atgtt tgcgaaactc                                            | atcttcactg | gcacaccgtc   | gccaaagaga    | 720  |
| catgcagtga gaaga | gtacc aacttgcatg                                            | actacggcat | gttgctgccc   | tgcggaattg    | 780  |
| acaagttccg agggg | tagag tttgtgtgtt                                            | gcccactggc | tgaagaaagt   | gacaatgtgg    | 840  |
| attetgetga tgegg | aggag gatgactcgg                                            | atgtctggtg | gggcggagca   | gacacagact    | 900  |
| atgcagatgg gagtg | aagac aaagtagtag                                            | aagtagcaga | ggaggaagaa   | gtggctgagg    | 960  |
| tggaagaaga agaag | ccgat gatgacgagg                                            | acgatgagga | tggtgatgag   | gtagaggaag    | 1020 |
| aggetgagga accet | acgaa gaagccacag                                            | agagaaccac | cagcattgcc   | accaccacca    | 1080 |
| ccaccaccac agagt | ctgtg gaagaggtgg                                            | ttcgagaggt | gtgctctgaa   | caagccgaga    | 1140 |
| cggggccgtg ccgag | caatg atctcccgct                                            | ggtactttga | tgtgactgaa   | gggaagtgtg    | 1200 |
| ccccattctt ttacg | gcgga tgtggcggca                                            | accggaacaa | ctttgacaca   | gaagagtact    | 1260 |
| gcatggccgt gtgtg | gcagc gccattccta                                            | caacagcagc | cagtacccct   | gatgccgttg    | 1320 |
| acaagtatct cgaga | cacct ggggatgaga                                            | atgaacatgc | ccatttccag   | aaagccaaag    | 1380 |
| agaggettga ggeea | agcac cgagagagaa                                            | tgtcccaggt | catgagagaa   | tgggaagagg    | 1440 |
| cagaacgtca agcaa | agaac ttgcctaaag                                            | ctgataagaa | ggcagttatc   | cagcatttcc    | 1500 |
| aggagaaagt ggaat | ctttg gaacaggaag                                            | cagccaacga | gagacagcag   | ctggtggaga    | 1560 |
| cacacatggc cagag | tggaa gccatgctca                                            | atgaccgccg | ccgcctggcc   | ctggagaact    | 1620 |
| acatcacege tetge |                                                             |            |              |               | 1680 |
| 5 5              |                                                             |            |              |               |      |

| agtatgtccg cgcagaacag aaggacagac agcacaccct aaagcatttc gagcatgtgc                                                                                                                                                           | 1740                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| gcatggtgga teccaagaaa geegeteaga teeggteeca ggttatgaca caeeteegtg                                                                                                                                                           | 1800                                                              |
| tgatttatga gegeatgaat eagtetetet eeetgeteta eaaegtgeet geagtggeeg                                                                                                                                                           | 1860                                                              |
| aggagattca ggatgaagtt gatgagctgc ttcagaaaga gcaaaactat tcagatgacg                                                                                                                                                           | 1920                                                              |
| tettggecaa eatgattagt gaaceaagga teagttaegg aaaegatget eteatgeeat                                                                                                                                                           | 1980                                                              |
| ctttgaccga aacgaaaacc accgtggagc tccttcccgt gaatggagag ttcagcctgg                                                                                                                                                           | 2040                                                              |
| acgateteca geogtggeat tettttgggg etgaetetgt gecagecaae acagaaaaeg                                                                                                                                                           | 2100                                                              |
| aagttgagee tgttgatgee egeeetgetg eegaeegagg aetgaeeact egaeeaggtt                                                                                                                                                           | 2160                                                              |
| ctgggttgac aaatatcaag acggaggaga tctctgaagt gaagatggat gcagaattcc                                                                                                                                                           | 2220                                                              |
| gacatgactc aggatatgaa gttcatcatc aaaaattggt gttctttgca gaagatgtgg                                                                                                                                                           | 2280                                                              |
| gttcaaacaa aggtgcaatc attggactca tggtgggcgg tgttgtcata gcgacagtga                                                                                                                                                           | 2340                                                              |
| togtcatcac cttggtgatg ctgaagaaga aacagtacac atccattcat catggtgtgg                                                                                                                                                           | 2400                                                              |
| tggaggttga cgccgctgtc accccagagg agcgccacct gtccaagatg cagcagaacg                                                                                                                                                           | 2460                                                              |
| gctacgaaaa tccaacctac aagttetttg agcagatgca gaactagacc cccgccacag                                                                                                                                                           | 2520                                                              |
| cageetetga agttggacag caaaaceatt getteactae ceateggtgt eeatttatag                                                                                                                                                           | 2580                                                              |
| aataatgtgg gaagaaacaa accegtttta tgatttactc attategeet tttgacaget                                                                                                                                                           | 2640                                                              |
| gtgctgtaac acaagtagat gcctgaactt gaattaatcc acacatcagt aatgtattct                                                                                                                                                           | 2700                                                              |
| atctctcttt acattttggt ctctatacta cattattaat gggttttgtg tactgtaaag                                                                                                                                                           | 2760                                                              |
| aatttagctg tatcaaacta gtgcatgaat agattctctc ctgattattt atcacatagc                                                                                                                                                           | 2820                                                              |
|                                                                                                                                                                                                                             |                                                                   |
| cccttagcca gttgtatatt attctt                                                                                                                                                                                                | 2846                                                              |
| <pre>&lt;210&gt; SEQ ID NO 18 &lt;211&gt; LENGTH: 1846 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre> |                                                                   |
| <210> SEQ ID NO 18 <211> LENGTH: 1846 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Description of sequence: amyloid precurso:                                                |                                                                   |
| <210> SEQ ID NO 18 <211> LENGTH: 1846 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Description of sequence: amyloid precurso: protein coding sequence                        |                                                                   |
| <210> SEQ ID NO 18 <211> LENGTH: 1846 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Description of sequence: amyloid precurso: protein coding sequence <400> SEQUENCE: 18     | c                                                                 |
| <pre>&lt;210&gt; SEQ ID NO 18 &lt;211&gt; LENGTH: 1846 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre> | 60                                                                |
| <pre>&lt;210&gt; SEQ ID NO 18 &lt;211&gt; LENGTH: 1846 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre> | 60                                                                |
| <pre>&lt;210&gt; SEQ ID NO 18 &lt;211&gt; LENGTH: 1846 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre> | 60 120 180                                                        |
| <pre>&lt;210&gt; SEQ ID NO 18 &lt;211&gt; LENGTH: 1846 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre> | 60<br>120<br>180<br>240                                           |
| <pre>&lt;210&gt; SEQ ID NO 18 &lt;211&gt; LENGTH: 1846 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre> | 60<br>120<br>180<br>240<br>300                                    |
| <pre>&lt;210&gt; SEQ ID NO 18 &lt;211&gt; LENGTH: 1846 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre> | 60<br>120<br>180<br>240<br>300<br>360                             |
| <pre>&lt;210&gt; SEQ ID NO 18 &lt;211&gt; LENGTH: 1846 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre> | 60<br>120<br>180<br>240<br>300<br>360<br>420                      |
| <pre>&lt;210&gt; SEQ ID NO 18 &lt;211&gt; LENGTH: 1846 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre> | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480               |
| <pre>&lt;210&gt; SEQ ID NO 18 &lt;211&gt; LENGTH: 1846 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre> | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540        |
| <pre>&lt;210&gt; SEQ ID NO 18 &lt;211&gt; LENGTH: 1846 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre> | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600 |
| <pre>&lt;210&gt; SEQ ID NO 18 &lt;211&gt; LENGTH: 1846 &lt;212&gt; TYPE: DNA &lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precurso:</pre> | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600 |

cgtgtgtggc agcgccattc ctacaacagc agccagtacc cctgatgccg ttgacaagta

| tctcgagaca                                                                                                                                                                                                                                              | cctggggatg                                                                                                                                                              | agaatgaaca                                                                                                                             | tgcccatttc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cagaaagcca                                                                                                                                     | aagagaggct                                                                                                                                     | 900                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| tgaggccaag                                                                                                                                                                                                                                              | caccgagaga                                                                                                                                                              | gaatgtccca                                                                                                                             | ggtcatgaga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gaatgggaag                                                                                                                                     | aggcagaacg                                                                                                                                     | 960                                                                      |
| tcaagcaaag                                                                                                                                                                                                                                              | aacttgccta                                                                                                                                                              | aagctgataa                                                                                                                             | gaaggcagtt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | atccagcatt                                                                                                                                     | tccaggagaa                                                                                                                                     | 1020                                                                     |
| agtggaatct                                                                                                                                                                                                                                              | ttggaacagg                                                                                                                                                              | aagcagccaa                                                                                                                             | cgagagacag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cagetggtgg                                                                                                                                     | agacacacat                                                                                                                                     | 1080                                                                     |
| ggccagagtg                                                                                                                                                                                                                                              | gaagccatgc                                                                                                                                                              | tcaatgaccg                                                                                                                             | ccgccgcctg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gccctggaga                                                                                                                                     | actacatcac                                                                                                                                     | 1140                                                                     |
| cgctctgcag                                                                                                                                                                                                                                              | gctgttcctc                                                                                                                                                              | ctcggcctcg                                                                                                                             | tcacgtgttc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | aatatgctaa                                                                                                                                     | agaagtatgt                                                                                                                                     | 1200                                                                     |
| ccgcgcagaa                                                                                                                                                                                                                                              | cagaaggaca                                                                                                                                                              | gacagcacac                                                                                                                             | cctaaagcat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ttcgagcatg                                                                                                                                     | tgcgcatggt                                                                                                                                     | 1260                                                                     |
| ggatcccaag                                                                                                                                                                                                                                              | aaagccgctc                                                                                                                                                              | agatccggtc                                                                                                                             | ccaggttatg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | acacacctcc                                                                                                                                     | gtgtgattta                                                                                                                                     | 1320                                                                     |
| tgagcgcatg                                                                                                                                                                                                                                              | aatcagtctc                                                                                                                                                              | tctccctgct                                                                                                                             | ctacaacgtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cctgcagtgg                                                                                                                                     | ccgaggagat                                                                                                                                     | 1380                                                                     |
| tcaggatgaa                                                                                                                                                                                                                                              | gttggtgcag                                                                                                                                                              | tggctcatgc                                                                                                                             | ctgtaattcc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | agcattttgg                                                                                                                                     | gaggccaagg                                                                                                                                     | 1440                                                                     |
| tgggcagatg                                                                                                                                                                                                                                              | acttgagccc                                                                                                                                                              | agaagttcaa                                                                                                                             | gaccagaatg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ggaaacatgg                                                                                                                                     | caagaccaca                                                                                                                                     | 1500                                                                     |
| tttctacaaa                                                                                                                                                                                                                                              | aaaattatcc                                                                                                                                                              | aggcatgata                                                                                                                             | acatctattt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gtagtcccag                                                                                                                                     | ctactcagga                                                                                                                                     | 1560                                                                     |
| ggctgtggtg                                                                                                                                                                                                                                              | ggaggatctc                                                                                                                                                              | ctgagcctgg                                                                                                                             | ggtggctgag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gctgcagtga                                                                                                                                     | gccttgatca                                                                                                                                     | 1620                                                                     |
| cgccacctgg                                                                                                                                                                                                                                              | gcaatagagc                                                                                                                                                              | aagaccctgt                                                                                                                             | ctcaaaaaaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ggaagaaaaa                                                                                                                                     | gactattatt                                                                                                                                     | 1680                                                                     |
| tcccccattg                                                                                                                                                                                                                                              | aatggtcttg                                                                                                                                                              | gcactattac                                                                                                                             | acaaaatcaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ttgtccatag                                                                                                                                     | ataatatggg                                                                                                                                     | 1740                                                                     |
| tttatttctt                                                                                                                                                                                                                                              | aattcttagt                                                                                                                                                              | tctttcttt                                                                                                                              | gatctgtgtg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cctgtgctta                                                                                                                                     | ctgtagtacc                                                                                                                                     | 1800                                                                     |
| acactgtttt                                                                                                                                                                                                                                              | gattattgta                                                                                                                                                              | gctttgtagt                                                                                                                             | aaattttgaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | atcagc                                                                                                                                         |                                                                                                                                                | 1846                                                                     |
| <210> SEQ :                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                |                                                                                                                                                |                                                                          |
| <pre>&lt;211&gt; LENG' &lt;212&gt; TYPE &lt;213&gt; ORGAI &lt;220&gt; FEAT' &lt;223&gt; OTHEI</pre>                                                                                                                                                     | : DNA<br>NISM: Artif:<br>URE:<br>R INFORMATIC<br>ein coding s                                                                                                           | DN: Descript                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | uence: amylo                                                                                                                                   | oid precursor                                                                                                                                  |                                                                          |
| <211> LENG' <212> TYPE <213> ORGAI <220> FEAT' <223> OTHEI prote <4400> SEQUI                                                                                                                                                                           | : DNA<br>NISM: Artif:<br>URE:<br>R INFORMATIC<br>ein coding s                                                                                                           | DN: Descript                                                                                                                           | tion of sequ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                |                                                                                                                                                | 60                                                                       |
| <211> LENG <212> TYPE <213> ORGA1 <220> FEAT <223> OTHE prote <400> SEQUE cagcagcgca                                                                                                                                                                    | : DNA<br>NISM: Artif:<br>URE:<br>R INFORMATIO<br>ein coding s                                                                                                           | DN: Descript<br>sequence<br>cgcgcagggt                                                                                                 | cion of sequ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cccggtttgg                                                                                                                                     | cactgctcct                                                                                                                                     |                                                                          |
| <211> LENG <212> TYPE <213> ORGA1 <220> FEAT <223> OTHE prote <400> SEQUI cagcagcgca gctggccgcc                                                                                                                                                         | : DNA NISM: Artif: URE: R INFORMATI( ein coding : ENCE: 19 ctcggtgccc                                                                                                   | DN: Descript<br>sequence<br>cgcgcagggt<br>gggcgctgga                                                                                   | cion of sequences | cccggtttgg<br>gaactgcaga                                                                                                                       | cactgctcct                                                                                                                                     | 60                                                                       |
| <211> LENG <212> TYPE <213> ORGA <220> FEAT <223> OTHE prote <400> SEQUE cagcagcgca gctggccgcc ggtagaagcc                                                                                                                                               | : DNA NISM: Artif: URE: R INFORMATIO ein coding: ENCE: 19 ctcggtgccc tggacggctc                                                                                         | ON: Descript<br>sequence<br>cgcgcagggt<br>gggcgctgga<br>tgaccatcca                                                                     | cgcgatgctg ggtctaccct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cccggtttgg<br>gaactgcaga<br>aagcggggcc                                                                                                         | cactgeteet<br>teaceaatgt<br>geaageagtg                                                                                                         | 60<br>120                                                                |
| <211> LENG <212> TYPE <213> ORGAI <220> FEAT <223> OTHE prote <400> SEQUI cagcagcgca gctggccgcc ggtagaagcc caagacccat                                                                                                                                   | : DNA NISM: Artif: URE: R INFORMATIC ein coding : ENCE: 19 ctcggtgccc tggacggctc aaccaaccag                                                                             | ON: Descript sequence cgcgcagggt gggcgctgga tgaccatcca tgattcccta                                                                      | cgcgatgctg ggtctaccct gaactggtgc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cccggtttgg<br>gaactgcaga<br>aagcggggcc<br>gttggtgagt                                                                                           | cactgeteet<br>teaceaatgt<br>geaageagtg<br>ttgtaagtga                                                                                           | 60<br>120<br>180                                                         |
| <211> LENG <212> TYPE <213> ORGA <220> FEAT <223> OTHE prote <400> SEQUI cagcagcgca gctggccgcc ggtagaagcc caagacccat tgcccttctc                                                                                                                         | : DNA NISM: Artif: URE: R INFORMATIO ein coding: ENCE: 19 ctcggtgccc tggacggctc aaccaaccag ccccactttg                                                                   | ON: Descript sequence cgcgcagggt gggcgctgga tgaccatcca tgattcccta agtgcaaatt                                                           | cgcgatgctg ggtctaccct gaactggtgc ccgctgctta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cccggtttgg<br>gaactgcaga<br>aagcggggcc<br>gttggtgagt<br>gagaggatgg                                                                             | cactgctcct<br>tcaccaatgt<br>gcaagcagtg<br>ttgtaagtga<br>atgtttgcga                                                                             | 60<br>120<br>180<br>240                                                  |
| <211> LENG <212> TYPE <213> ORGAN <220> FEAT <223> OTHE prote <400> SEQUI cagcagcgca gctggccgcc ggtagaagcc caagacccat tgcccttctc aactcatctt                                                                                                             | : DNA NISM: Artif: URE: R INFORMATIC ein coding s ENCE: 19 ctcggtgccc tggacggctc aaccaaccag ccccactttg gttcctgaca                                                       | DN: Descript sequence cgcgcagggt gggcgctgga tgaccatcca tgattcccta agtgcaaatt ccgtcgccaa                                                | cgcgatgctg ggtctaccct gaactggtgc ccgctgctta cttacaccag agagacatgc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cccggtttgg gaactgcaga aagcggggcc gttggtgagt gagaggatgg agtgagaaga                                                                              | cactgeteet teaceaatgt geaageagtg ttgtaagtga atgtttgega gtaceaactt                                                                              | 60<br>120<br>180<br>240<br>300                                           |
| <211> LENG <212> TYPE <213> ORGAJ <220> FEAT <223> OTHEI prote <400> SEQUI cagcagcgca gctggccgcc ggtagaagcc caagacccat tgcccttctc aactcatctt gcatgactac                                                                                                 | EDNA NISM: Artif: URE: RINFORMATIC ein coding: ENCE: 19 ctcggtgccc tggacggctc aaccaaccag ccccactttg gttcctgaca cactggcaca                                               | cgcgcagggt gggcgctgga tgaccatcca tgattcccta agtgcaaatt ccgtcgccaa                                                                      | cgcgatgctg ggtctaccct gaactggtgc ccgctgctta cttacaccag agagacatgc aattgacaag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cccggtttgg gaactgcaga aagcggggcc gttggtgagt gagaggatgg agtgagaaga ttccgagggg                                                                   | cactgeteet teaceaatgt geaageagtg ttgtaagtga atgtttgega gtaceaactt tagagtttgt                                                                   | 60<br>120<br>180<br>240<br>300<br>360                                    |
| <211> LENG <212> TYPE <213> ORGA <220> FEAT <223> OTHE prote <400> SEQUI cagcagcgca gctggccgcc ggtagaagcc caagacccat tgcccttctc aactcatctt gcatgactac gtgttgccca                                                                                        | EDNA NISM: Artif: URE: R INFORMATIC ein coding s ENCE: 19 ctcggtgccc tggacggctc aaccaaccag ccccactttg gttcctgaca cactggcaca ggcatgttgc                                  | DN: Descript sequence cgcgcagggt gggcgctgga tgaccatcca tgattcccta agtgcaaatt ccgtcgccaa tgccctgcgg aaagtgacaa                          | cgcgatgctg ggtctaccct gaactggtgc ccgctgctta cttacaccag agagacatgc aattgacaag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cccggtttgg gaactgcaga aagcggggcc gttggtgagt gagaggatgg agtgagaaga ttccgagggg                                                                   | cactgctcct tcaccaatgt gcaagcagtg ttgtaagtga atgtttgcga gtaccaactt tagagtttgt aggaggatga                                                        | 60<br>120<br>180<br>240<br>300<br>360<br>420                             |
| <211> LENG <212> TYPE <213> ORGA <220> FEAT <223> OTHE prote <400> SEQUI cagcagcgca gctggccgcc ggtagaagcc caagacccat tgcccttctc aactcatctt gcatgactac gtgttgccca ctcggatgtcca                                                                           | EDNA NISM: Artif: URE: URE: URE: URE: URE: URE: URE: URE                                                                                                                | cgcgcagggt gggcgctgga tgaccatcca tgattcccta agtgcaaatt ccgtcgccaa tgccttgcg                                                            | cgcgatgctg ggtctaccct gaactggtgc ccgctgctta cttacaccag agagacatgc aattgacaag tgtggattct agactatgca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cccggtttgg gaactgcaga aagcggggcc gttggtgagt gagaggatgg agtgagaaga ttccgagggg gctgatgcgg gatgggagtg                                             | cactgeteet teaceaatgt geaageagtg ttgtaagtga atgtttgega gtaceaaett tagagtttgt aggaggatga aagacaaagt                                             | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480                      |
| <211> LENG <212> TYPE <213> ORGAN <220> FEAT <223> OTHE prote <400> SEQUI cagcagcgca gctggccgcc ggtagaagcc caagacccat tgcccttctc aactcatctt gcatgactac gtgttgccca ctcggatgtc agtagaagta                                                                 | EDNA NISM: Artif: URE: R INFORMATIO ein coding: ENCE: 19 ctcggtgccc tggacggctc aaccaaccag ccccactttg gttcctgaca cactggcaca ggcatgttgc ctggctgaag tggtggggcg             | cgcgcagggt gggcgctgga tgaccatcca tgattcccta agtgcaaatt ccgtcgccaa tgccctgcgg aaagtgacaa gagcagacac aagaagtggc                          | cgcgatgctg ggtctaccct gaactggtgc ccgctgctta cttacaccag agagacatgc aattgacaag tgtggattct agactatgca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cccggtttgg gaactgcaga aagcggggcc gttggtgagt gagaggatgg agtgagaaga ttccgagggg gctgatgcgg gatgggagtg                                             | cactgctcct tcaccaatgt gcaagcagtg ttgtaagtga atgtttgcga gtaccaactt tagagtttgt aggaggatga aagacaaagt ccgatgatga                                  | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540               |
| <211> LENG' <212> TYPE <2113 ORGAI <220> FEATI <223> OTHEI prote <400> SEQUI cagcagcgca gctggccgcc ggtagaagcc caagacccat tgcccttctc aactcatctt gcatgactac gtgttgccca ctcggatgtc agtagaagta ctcggatgtc agtagaagta ctcggatgtc agtagaagta cgagagacgat      | EDNA NISM: Artif: URE: R INFORMATIC ein coding s ENCE: 19  ctcggtgccc tggacggctc aaccaaccag cccactttg gttcctgaca cactggcaca ggcatgttgc ctggctgaag tggtggggcg gcagaggagg | cgcgcagggt gggcgctgga tgaccatcca tgattcccta agtgcaaatt ccgtcgccaa tgccctgcgg aaagtgacaa gagcagacac aagaagtgaca                         | cgcgatgctg ggtctaccct gaactggtgc ccgctgctta cttacaccag agagacatgc aattgacaag tgtggattct agactatgca tgaggtggaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cccggtttgg gaactgcaga aagcggggcc gttggtgagt gagaggatgg agtgagaaga ttccgagggg gctgatgcgg gatggagttg gaagaagaag                                  | cactgctcct tcaccaatgt gcaagcagtg ttgtaagtga atgtttgcga gtaccaactt tagagtttgt aggaggatga aagacaaagt ccgatgatga acgaagaagc                       | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540               |
| <211> LENG <211> TYPE <2113 ORGAN <220> FEAT <223> OTHEN prote <400> SEQUI cagcagcgca gctggccgcc ggtagaagcc caagacccat tgcccttctc aactcatctt gcatgactac gtgttgccca ctcggatgtc agtagaagta ccgaggacgat cacagagacgat cacagagacgat cacagagaga               | EDNA NISM: Artif: URE: R INFORMATIO ein coding s ENCE: 19 ctcggtgccc tggacggctc aaccaaccag ccccactttg gttcctgaca cactggcaca ggcatgttgc ctggctgaag tggtggggcg gcagaggagg | cgcgcagggt gggcgctgga tgaccatcca tgattcccta agtgcaaatt ccgtcgccaa tgccctgcgg aaagtgacaa gagcagacac agagagacac atgaggtaga               | cgcgatgctg ggtctaccct gaactggtgc ccgctgctta cttacaccag agagacatgc aattgacaag tgtggattct agactatgca tgaggtggaa ggaagaggct caccaccacc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cccggtttgg gaactgcaga aagcggggcc gttggtgagt gagaggatgg agtgagaaga ttccgagggg gctgatgcgg gatgggagtg gaagaagaag gaagaagaag                       | cactgctcct tcaccaatgt gcaagcagtg ttgtaagtga atgtttgcga gtaccaactt tagagtttgt aggaggatga aagacaaagt ccgatgatga acgaagaagc ctgtggaaga            | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600        |
| <211> LENG <212> TYPE <213> ORGAN <220> FEAT <223> OTHEN prote <400> SEQUE cagcagcgca gctggccgcc ggtagaagcc caagacccat tgcccttctc aactcatctt gcatgactac ctcggatgtc agtagaagta cgaggacgat cacagagacgat cacagagacgat cacagagacgat cacagagacgat ggtggttcga | EDNA NISM: Artif: URE: R INFORMATIC ein coding s ENCE: 19 ctcggtgccc tggacggctc aaccaaccag cccactttg gttcctgaca cactggcaca ggcatgttgc ctggctgaag tggtgggggg gagaggagg   | cgcgcagggt gggcgctgga tgaccatcca tgattcccta agtgcaaatt ccgtcgccaa tgccctgcgg aaagtgacaa gagcagacac aagaagtgaca ttgacgcaacac atgatgacac | cgcgatgctg ggtctaccct gaactggtgc ccgctgctta cttacaccag agagacatgc aattgacaag tgtggattct agactatgca tgaggtggaa ggaagaggct caccaccacc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cccggtttgg gaactgcaga aagcggggcc gttggtgagt gagaggatgg agtgagaaga ttccgagggg gctgatgcgg gatgggagtg gaagaagaag gaagaaccct accacagagt ccgtgccgag | cactgctcct tcaccaatgt gcaagcagtg ttgtaagtga atgtttgcga gtaccaactt tagagtttgt aggaggatga aagacaaagt ccgatgatga acgaagaagc ctgtggaaga caatgatctc | 60<br>120<br>180<br>240<br>300<br>360<br>420<br>480<br>540<br>600<br>660 |

gtcccaaagt ttactcaaga ctacccagga acctcttgcc cgagatcctg ttaaacttcc

tacaacagca gccagtaccc ctgatgccgt tgacaagtat ctcgagacac ctggggatga

-continued

| gaatgaacat                | gcccatttcc                               | agaaagccaa   | agagaggett | gaggccaagc   | accgagagag    | 1080 |
|---------------------------|------------------------------------------|--------------|------------|--------------|---------------|------|
| aatgtcccag                | gtcatgagag                               | aatgggaaga   | ggcagaacgt | caagcaaaga   | acttgcctaa    | 1140 |
| agctgataag                | aaggcagtta                               | tccagcattt   | ccaggagaaa | gtggaatctt   | tggaacagga    | 1200 |
| agcagccaac                | gagagacagc                               | agctggtgga   | gacacacatg | gccagagtgg   | aagccatgct    | 1260 |
| caatgaccgc                | egeegeetgg                               | ccctggagaa   | ctacatcacc | gctctgcagg   | ctgttcctcc    | 1320 |
| teggeetegt                | cacgtgttca                               | atatgctaaa   | gaagtatgtc | cgcgcagaac   | agaaggacag    | 1380 |
| acagcacacc                | ctaaagcatt                               | tcgagcatgt   | gcgcatggtg | gatcccaaga   | aagccgctca    | 1440 |
| gateeggtee                | caggttatga                               | cacacctccg   | tgtgatttat | gagcgcatga   | atcagtctct    | 1500 |
| ctccctgctc                | tacaacgtgc                               | ctgcagtggc   | cgaggagatt | caggatgaag   | ttgatgagct    | 1560 |
| gcttcagaaa                | gagcaaaact                               | attcagatga   | cgtcttggcc | aacatgatta   | gtgaaccaag    | 1620 |
| gatcagttac                | ggaaacgatg                               | ctctcatgcc   | atctttgacc | gaaacgaaaa   | ccaccgtgga    | 1680 |
| gctccttccc                | gtgaatggag                               | agttcagcct   | ggacgatctc | cagccgtggc   | attcttttgg    | 1740 |
| ggctgactct                | gtgccagcca                               | acacagaaaa   | cgaagttgag | cctgttgatg   | cccgccctgc    | 1800 |
| tgccgaccga                | ggactgacca                               | ctcgaccagg   | ttctgggttg | acaaatatca   | agacggagga    | 1860 |
| gatctctgaa                | gtgaagatgg                               | atgcagaatt   | ccgacatgac | tcaggatatg   | aagttcatca    | 1920 |
| tcaaaaattg                | gtgttctttg                               | cagaagatgt   | gggttcaaac | aaaggtgcaa   | tcattggact    | 1980 |
| catggtgggc                | ggtgttgtca                               | tagcgacagt   | gatcgtcatc | accttggtga   | tgctgaagaa    | 2040 |
| gaaacagtac                | acatccattc                               | atcatggtgt   | ggtggaggtt | gacgccgctg   | tcaccccaga    | 2100 |
| ggagcgccac                | ctgtccaaga                               | tgcagcagaa   | cggctacgaa | aatccaacct   | acaagttctt    | 2160 |
| tgagcagatg                | cagaactaga                               | cccccgccac   | agcagcctct | gaagttggac   | agcaaaacca    | 2220 |
| ttgcttcact                | acccatcggt                               | gtccatttat   | agaataatgt | gggaagaaac   | aaacccgttt    | 2280 |
| tatgatttac                | tcattatcgc                               | cttttgacag   | ctgtgctgta | acacaagtag   | atgcctgaac    | 2340 |
| ttgaattaat                | ccacacatca                               | gtaatgtatt   | ctatctctct | ttacattttg   | gtctctatac    | 2400 |
| tacattatta                | atgggttttg                               | tgtactgtaa   | agaatttagc | tgtatcaaac   | tagtgcatga    | 2460 |
| atagattete                | tcctgattat                               | ttatcacata   | gccccttagc | cagttgtata   | ttattct       | 2517 |
| <220> FEATURE <223> OTHER | TH: 541<br>: DNA<br>NISM: Artif:<br>URE: | DN: Descript |            | uence: amylo | oid precursor |      |
| <400> SEQUI               | ENCE: 20                                 |              |            |              |               |      |
| gggcggagca                | gacacagact                               | atgcagatgg   | gagtgaagac | aaagtagtag   | aagtagcaga    | 60   |
| ggaggaagaa                | gtggctgagg                               | tggaagaaga   | agaagccgat | gatgacgagg   | acgatgagga    | 120  |
| tggtgatgag                | gtagaggaag                               | aggetgagga   | accctacgaa | gaagccacag   | agagaaccac    | 180  |
| cagcattgcc                | accaccacca                               | ccaccaccac   | agagtctgtg | gaagaggtgg   | ttcgagtgtc    | 240  |
| ccaaagttta                | ctcaagacta                               | cccaggaacc   | tcttgcccga | gatcctgtta   | aacttcctac    | 300  |
| aacagcagcc                | agtacccctg                               | atgccgttga   | caagtatctc | gagacacctg   | gggatgagaa    | 360  |
| tgaacatgcc                | catttccaga                               | aagccaaaga   | gaggettgag | gccaagcacc   | gagagagaat    | 420  |
| atacaeaata                | atgagagaat                               | aaaaaaaa     | adaacdtcaa | acaaaaact    | tacctaaaac    | 480  |

gtcccaggtc atgagagaat gggaagaggc agaacgtcaa gcaaagaact tgcctaaagc

tgataagaag gcagttatcc agcatttcca ggagaaagtg gaatctttgg aacaggaagc

480

-continued

541 <210> SEQ ID NO 21 <211> LENGTH: 816 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence <400> SEQUENCE: 21 atccttgcca acctctcaac caggatttaa cttctgcttt tcccccattt tcaaaaaatta 60 tagcatgtat ttaaaggcag cagaagcett actttcaggt ttcccttacc ctttcatttc tttttgttca aaataggtag taattgaagt tttaaatata gggtatcatt tttctttaag agtcatttat caattttctt ctaacttcag gcctagaaag aagttttggg taggctttgt cttacaqtqt tattatttat qaqtaaaact aattqqttqt cctqcatact ttaattatqa 300 tgtaatacag gttctgggtt gacaaatatc aagacggagg agatctctga agtgaagatg 360 gatgcagaat tccgacatga ctcaggatat gaagttcatc atcaaaaatt ggtgttcttt 420 480 gcagaagatg tgggttcaaa caaaggtgca atcattggac tcatggtggg cggtgttgtc atagcgacag tgatcgtcat caccttggtg atgctgaaga agaaacagta cacatccatt 540 catcatggtg tggtggaggt tgacgccgct gtcaccccag aggagcgcca cctgtccaag 600 atgcagcaga acggctacga aaatccaacc tacaagttct ttgagcagat gcagaactag 660 accccgcca cagcagcctc tgaagttgga cagcaaaacc attgcttcac tacccatcgg 720 tgtccattta tagaataatg tgggaagaaa caaacccgtt ttatgattta ctcattatcg 780 ccttttgaca gctgtgctgt aacacaagta gatgcc 816 <210> SEQ ID NO 22 <211> LENGTH: 619 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence <400> SEQUENCE: 22 cagactatgc agatgggagt gaagacaaag tagtagaagt agcagaggag gaagaagtgg 60 ctgaggtgga agaagaagaa gccgatgatg acgaggacga tgaggatggt gatgaggtag aggaagaggc tgaggaaccc tacgaagaag ccacagagag aaccaccagc attgccacca ccaccaccac caccacagag tctgtggaag aggtggttcg agaggtgtgc tctgaacaag 240 ccgagacggg gccgtgccga gcaatgatct cccgctggta ctttgatgtg actgaaggga 300 agtgtgcccc attcttttac ggcggatgtg gcggcaaccg gaacaacttt gacacagaag 360 agtactgcat ggccgtgtgt ggcagcgcca tgtcccaaag tttactcaag actacccagg 420 aacctcttgc ccgagatcct gttaaacgta cgttgtcatt cacctgaggg aagggaagag 480 gggaggagga tgctgcttgg ttcacataac tccagcatca tcaccttctt tgcatggttt 540 tgtgtttctt gaacacctgt cttagtaaaa tgtttcttcc cattaccttg cttgtaatta 600 catctgattt tgccagaca 619 <210> SEQ ID NO 23

<sup>&</sup>lt;211> LENGTH: 1309

<sup>&</sup>lt;212> TYPE: DNA

-continued

| <pre>&lt;213&gt; ORGANISM: Artificial sequence &lt;220&gt; FEATURE: &lt;223&gt; OTHER INFORMATION: Description of sequence: amyloid precursor     protein coding sequence</pre>                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <400> SEQUENCE: 23                                                                                                                                                                                                     |
| cgagagcacg cggaggagcg tgcgcggggg ccccgggaga cggcggcggt ggcggcgcgg 6                                                                                                                                                    |
| gcagagcaag gacgcggcgg atcccactcg cacagcagcg cactcggtgc cccgcgcagg 12                                                                                                                                                   |
| gtegegatge tgeeeggttt ggeaetgete etgetggeeg eetggaegge tegggegetg 18                                                                                                                                                   |
| gaggtaccca ctgatggtaa tgctggcctg ctggctgaac cccagattgc catgttctgt 24                                                                                                                                                   |
| ggcagactga acatgcacat gaatgtccag aatgggaagt gggattcaga tccatcaggg 30                                                                                                                                                   |
| accaaaacct gcattgatac caaggaaggc atcctgcagt attgccaaga agtctaccct 36                                                                                                                                                   |
| gaactgcaga tcaccaatgt ggtagaagcc aaccaaccag tgaccatcca gaactggtgc 42                                                                                                                                                   |
| aageggggee geaageagtg caagaceeat ecceaetttg tgatteeeta eegetgetta 48                                                                                                                                                   |
| gttggtgagt ttgtaagtga tgcccttctc gttcctgaca agtgcaaatt cttacaccag 54                                                                                                                                                   |
| gagaggatgg atgtttgcga aactcatctt cactggcaca ccgtcgccaa agagacatgc 60                                                                                                                                                   |
| agtgagaaga gtaccaactt gcatgactac ggcatgttgc tgccctgcgg aattgacaag 66                                                                                                                                                   |
| ttccgagggg tagagtttgt gtgttgccca ctggctgaag aaagtgacaa tgtggattct 72                                                                                                                                                   |
| gctgatgcgg aggaggatga ctcggatgtc tggtggggcg gagcagacac agactatgca 78                                                                                                                                                   |
| gatgggagtg aagacaaagt agtagaagta gcagaggagg aagaagtggc tgaggtggaa 84                                                                                                                                                   |
| gaagaagaag ccgatgatga cgaggacgat gaggatggtg atgaggtaga ggaagaggct 900                                                                                                                                                  |
| gaggaaccet acgaagaage cacagagaga accaccagca ttgccaccac caccaccacc 96                                                                                                                                                   |
| accacagagt ctgtggaaga ggtggttcga gagaagtggt ataaggaagt acattctggc 102                                                                                                                                                  |
| caggicacgat ggctcatgct gtaatcccag cactttggga ggccgaggtg ggtgcatcac 108                                                                                                                                                 |
| ctgaggtcag gagtttgaga ccagcctggc caacatggtg aaacccctcg ctactaaaaa 114                                                                                                                                                  |
| tacaaaaatt agccgggcgt ggtggcacac acctgtggtc ccagctactc gggaggctga 1200                                                                                                                                                 |
| agcaggagaa tegettgaac eegggagaeg gaggttgeag taageegagt teactecatt 126                                                                                                                                                  |
| gtactctagc ctgggtgaca gagcgagatt cgtctcaaaa aaaaaaaaa 130                                                                                                                                                              |
| <210> SEQ ID NO 24 <211> LENGTH: 582 <212> TYPE: DNA <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Description of sequence: amyloid precursor protein coding sequence <400> SEQUENCE: 24 |
| gtaacattct aaaggtagta gggtcttgat tgggttgctt aggcattaaa aggctgttta 60                                                                                                                                                   |
| acttgtcttg aagtctatct ttccttgatg tcttctgcgg taagaacact gtgatacaga 12                                                                                                                                                   |
| tggaatgacg ggaagtggtt ttcctttctt tcagttggtg agtttgtaag tgatgccctt 180                                                                                                                                                  |
| ctcgttcctg acaagtgcaa attcttacac caggagagga tggatgtttg cgaaactcat 24                                                                                                                                                   |
| cttcactggc acaccgtcgc caaagagaca tgcagtgaga agagtaccaa cttgcatgac 300                                                                                                                                                  |
| tacggcatgt tgctgccctg cggaattgac aagttccgag gggtagagtt tgtgtgttgc 360                                                                                                                                                  |
| ccactggctg aagaaagtga caatgtggat tctgctgatg cggaggagga tgactcggat 42                                                                                                                                                   |
| gtctggtggg gcggagcaga cacagactat gcagatggga gtgaagacaa agtagtagaa 48                                                                                                                                                   |
|                                                                                                                                                                                                                        |

gtagcagagg aggaagaagt ggctgaggtg gaagaagaag aagccgatga tgacgaggac

```
gatgaggatg gtgatgaggt agaggaagag gctgaggaac cc
                                                                 582
<210> SEQ ID NO 25
<211> LENGTH: 361
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of sequence: amyloid precursor
     protein coding sequence
<400> SEQUENCE: 25
actggagggc tgagaagaga ctgatggcat ttgttgttct tgaccttgaa agaagagttg
                                                                  60
cagattgttg gagcaaggcc agatggtaat aggttggaaa gaacaagtga ggggcgtgag
agtgacagtc tacaaccccg ttaagaagtt atctgtgaaa atgcctcttc ctgtcttgat
tatageetee etegeacatg getttetgag tatgttggtg agtttgtaag tgatgeeett
                                                                 240
ctcqttcctq acaaqtqcaa attcttacac caqqaqaqqa tqqatqtttq cqaaactcat
                                                                 300
cttcactggc acaccgtcgc caaagagaca tgcagtgaga agagtaccaa cttgcatgac
                                                                 360
                                                                 361
<210> SEQ ID NO 26
<211> LENGTH: 667
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of sequence: amyloid precursor
     protein coding sequence
<400> SEQUENCE: 26
ctgaacatgc acatgaatgt ccagaatggg aagtgggatt cagatccatc agggaccaaa
                                                                  60
acctgcattg ataccaagga aggcatcctg cagtattgcc aagaagtcta ccctgaactg
                                                                 120
cagatcacca atgtggtaga agccaaccaa ccagtgacca tccagaactg gtgcaagcgg
                                                                 180
ggccgcaagc agtgcaagac ccatccccac tttgtgattc cctaccgctg cttaggtgag
                                                                 240
ccggccggcc gtggggctgg tgttgattgg gggcctggtc ttgagggaag aaaaagagga
                                                                 300
tgctcctgtt aggtcacata cacagacttg ttcttcagca cattgccact ctgtgttgta
                                                                 360
ctgtgttttg gactcttgca gttacattct gtgcactgac cctataggag cagtattttt
                                                                 420
gagttccctg cctcagaatg aatttaccca gggtgtatat tgaaattaca aattcctggg
ccagttccag gactcctgaa tgaaaaatgc ctatagtagc ggatccggga attcttattt
                                                                 540
taccgtatcg catagatgat tctcatgaac aggggccttg tgtgtttctt cacatagact
660
aaaaaaa
                                                                 667
<210> SEQ ID NO 27
<211> LENGTH: 374
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of sequence: amyloid precursor
     protein coding sequence
<400> SEQUENCE: 27
qqcqcqqcct cttccctqqc aqctctqqqq actctqqttt aqttcccctq qqqqcacaqq
                                                                  60
atgctgggga gggtccgaag ggtctttttt ttagggtgca gataaaagga tcgaattgag
                                                                 120
180
```

| gctgcagcct | agtgaaatcc | acccaccact | aggtacccac | tgatggtaat | gctggcctgc | 240 |
|------------|------------|------------|------------|------------|------------|-----|
| tggctgaacc | ccagattgcc | atgttctgtg | gcagactgaa | catgcacatg | aatgtccaga | 300 |
| atgggaagtg | ggattcagat | ccatcaggga | ccaaaacctg | cattgatacc | aaggaaggca | 360 |
| tcctgcagta | ttgc       |            |            |            |            | 374 |

What is claimed is:

- 1. A method for diagnosing biliary atresia (BA) or assessing risk of developing BA in an infant, comprising:
  - (i) determining expression level of amyloid precursor 15 protein (APP) in a liver sample taken from the infant;
  - (ii) detecting an increase in the APP expression level from step (i) when compared with a standard control value; and
  - (iii) determining the infant as having BA or at risk of  $^{20}$  developing BA.
- 2. The method of claim 1, wherein the APP expression level is APP mRNA level.
- 3. The method of claim 1, wherein the APP expression  $_{\ \, 25}$  level is APP protein level.
- **4**. The method of claim **2**, wherein step (i) comprises a reverse transcription polymerase chain reaction (RT-PCR).
- 5. The method of claim 3, wherein step (i) comprises an immunoassay.
- **6**. The method of claim **1**, wherein the liver sample is a liver biopsy.
- 7. The method of claim 1, further comprising a step, following step (iii), of performing at least one additional diagnostic test for BA.

- **8**. The method of claim **7**, further comprising a step, following step (iii), of treating the infant with Kasai procedure.
- **9**. A method for assessing effectiveness of Kasai procedure in an infant who has BA and has undergone Kasai procedure, comprising:
  - (i) determining expression level of amyloid precursor protein (APP) in a liver sample taken from the infant;
  - (ii) detecting an increase in the APP expression level from step (i) when compared with a standard control value;
  - (iii) determining the Kasai procedure as ineffective.
- 10. The method of claim 9, wherein the APP expression level is APP mRNA level.
- 11. The method of claim 9, wherein the APP expression level is APP protein level.
- 12. The method of claim 10, wherein step (i) comprises an RT-PCR.
- ${f 13}.$  The method of claim  ${f 11},$  wherein step (i) comprises an  $_{30}$  immunoassay.
  - **14**. The method of claim **9**, wherein the liver sample is a liver biopsy.
  - 15. The method of claim 9, further comprising a step, following step (iii), of performing liver transplant.

\* \* \* \* \*