WO 2005/054139 PCT/EP2004/013544

Verfahren zur Herstellung von laseraktivem Quarzglas und Verwendung desselben

5

10

20

Die vorliegende Erfindung betrifft eine Verfahren zur Herstellung von laseraktivem Quarzglas.

Laseraktives Quarzglas wird beispielsweise eingesetzt für die Herstellung von Faserverstärkern, Faserlasern, Kantenfiltern oder Frequenzkonvertern. Gepumpte Faserlaser werden unter anderem für die Materialbearbeitung und in der Medizintechnik verwendet.

Laseraktives Quarzglas enthält Dotierstoffe, die eine Verstärkung von Laserstrahlung im Wirtsmaterial Quarzglas bewirken. Dabei handelt es sich in der Regel um Seltenerd-Kationen (Lanthaniden), aber auch um Kationen der sogenannten Übergangsmetalle. Dabei kommt es auf eine möglichst hohe Verstärkungsleistung und eine geringe Dämpfung der zu verstärkenden Laserstrahlung an.

In dem Zusammenhang stellen sich grundsätzlich die Aufgaben, eine homogene Verteilung der Dotierstoffe im Quarzglas zu gewährleisten, und eine Entglasung, wie sie insbesondere bei hohen Dotierstoffkonzentrationen auftreten kann, zu vermeiden. Bei Faserlasern für den Hochleistungsbereich, die beispielsweise unter der Bezeichnung "large mode area fiber laser" bekannt sind, liegt ein besonderes Augenmerk auch darauf, ein möglichst großes laseraktives Volumen bereit stellen zu können.

Optische Fasern werden in der Regel aus Vorformen gezogen, welche einen
Kernbereich aufweisen, der aus dem laseraktiven Material besteht, und der von
einem Mantelglasbereich umhüllt ist. Da die Fasern eine ausreichend niedrige
Dämpfung aufweisen müssen, werden für die Herstellung der Vorformen in aller
Regel CVD-Verfahren oder Sol-Gel-Verfahren eingesetzt, welche eine hohe Reinheit gewährleisten. Gegenwärtig werden Hochleistungs-Laserfasern aus Quarzglasbasis überwiegend nach dem sogenannten MCVD-Verfahren (Modified Chemical Vapor Deposition) hergestellt. Dieses Verfahren ist jedoch langwierig und

kostenaufwändig und es stößt hinsichtlich der realisierbaren Faserabmessungen mittlerweile an Grenzen. Daneben lassen sich viele laseraktive Dotierstoffe über die Gasphase (durch CVD-Verfahren) nicht abscheiden. Man versucht, dieses Problem durch eine nachträgliche Dotierung zu lösen, wobei dies aber einerseits einen zusätzlichen Prozeßschritt darstellt und andererseits zu Defiziten in der Materialcharakteristik führt, die auf physikalischen Beschränkungen bei Diffusionsvorgängen beruhen, wobei im Wesentlichen Dotierstoffgradienten zu nennen sind.

Herstellungsverfahren basierend auf dem Sol-Gel-Prozess benötigen teilweise lange Prozesszeiten und führen häufig nicht zu den erforderlichen Materialqualitäten.

Mittels Schmelzverfahren ist die erforderliche hohe Reinheit in der Regel nicht zu erreichen.

Es ist daher Ziel der vorliegenden Erfindung, ein Verfahren zur Herstellung von laseraktivem Quarzglas hoher Qualität anzugeben, das wirtschaftlich ist, und das es ermöglicht, ein laseraktives Volumen aus dotiertem Quarzglas in nahezu beliebiger Form und Abmessung bereit zu stellen.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, dass die folgenden Verfahrensschritte aufweist:

- a) Bereitstellen einer Dispersion mit einem Feststoffgehalt von mindestens
 40 Gew.-%, die SiO₂-Nanopulver sowie Dotierstoffe umfassend ein Kation der
 Seltenerdmetalle und der Übergangsmetalle in einer Flüssigkeit enthält,
- b) Granulation durch Bewegen der Dispersion unter Entzug von Feuchtigkeit bis zur Bildung eines dotierten SiO₂-Granulats aus sphärischen, porösen Granulatkörnern mit einem Feuchtigkeitsgehalt von weniger als 35 Gew.-% und mit einer Dichte von mindestens 0,95 g/cm³,
 - c) Trocknen und Reinigen des SiO₂-Granulats durch Aufheizen auf eine Temperatur von mindestens 1000 °C unter Bildung einer dotierten, porösen SiO₂-Körnung mit einem OH-Gehalt von weniger als 10 ppm; und

25

30

d) Sintern oder Erschmelzen der dotierten SiO₂-Körnung in einer reduzierend wirkenden Atmosphäre unter Bildung des Rohlings aus dotiertem Quarzglas.

Die Herstellung des Rohlings für ein Bauteil aus laseraktivem Quarzglas erfolgt erfindungsgemäß weder über ein CVD- noch ein Schmelz oder Sol-Gel-Verfahren, sondern über eine spezielle "Pulver-Route", nämlich unter Einsatz eines hochreinen, homogen dotierten SiO₂-Granulates. Es hat sich gezeigt, dass über diese "Granulat-Pulver-Route" einerseits die Anforderungen hinsichtlich der Reinheit der Ausgangsmaterialien erfüllbar sind, und dass andererseits die erforderliche homogene Verteilung des Dotierstoffes oder der Dotierstoffe in dem Quarzglas gewährleistet werden kann.

Es zeigte sich überraschenderweise, dass die nach der Granulat-Pulver-Route hergestellten Fasern wesentlich höhere Absorptionsraten und damit bessere Verstärkereigenschaften aufweisen, als die Fasern, die aus anderen Ausgangsmaterialien und nach anderen Methoden hergestellt wurden. Eine wesentliche Rolle spielt dabei anscheinend die bei der Herstellung durchlaufene "Granulat-Vorgeschichte" oder nicht sichtbare "Kornstrukturen" des Materials, die in dem Ausgangsmaterial prägend eingeschrieben zu sein scheinen, und die durch Streueffekte zu einer erheblich höheren Effizienz der Laserlicht-Verstärkung führen (dies ist in sogenannten "Faserlaser—slope—Tests" nachweisbar). Gerade diese Streueffekte, die zu einer höheren optischen Dämpfung führen, scheinen derartige Fasern für den Einsatz in der Telekommunikationstechnik zu disqualifizieren.

Erfindungsgemäß wird zunächst ein SiO₂-Granulat hergestellt, das mit dem Dotierstoff homogen dotiert ist. In der DE 197 29 505 A1 ist ein Verfahren zur Herstellung eines derartigen SiO₂-Granulats beschrieben. Eine wesentliche Modifizierung des bekannten Verfahrens zur Granulatherstellung besteht darin, dass die Dispersion erfindungsgemäß mindestens einen Dotierstoff umfassend ein Kation der Seltenerdmetalle und der Übergangsmetalle enthält, welcher die Laseraktivität des Quarzglases bewirkt. Außerdem können weitere Dotierstoffe zur Einstellung der Viskosität und des Brechungsindex des Quarzglases vorgesehen sein, wofür

WO 2005/054139 PCT/EP2004/013544
- 4 -

in erster Linie eine oder mehrere Komponenten aus der Gruppe bestehend aus Aluminium, Phosphor und Bor eingesetzt werden.

Das für die Herstellung der Dispersion eingesetzte SiO₂-Pulver liegt als sogenanntes Nano-Pulver vor. Dabei handelt es sich um Pulverteilchen mit einer Teilchengröße unterhalb von 100 nm, welche zum Beispiel durch Pyrolyse von SiO₂-Ausgangsverbindungen, durch Fällungsreaktionen oder durch Aufmahlen verglaster SiO₂-Körnung erhalten werden können. Dieses feindisperse Nanopulver ermöglicht die erforderliche homogen Verteilung der Dotierstoffe in dem Quarzglas.

Erfindungsgemäß werden die Dotierstoffe in der Dispersion homogen verteilt. Die Dotierstoffe liegen ebenfalls als feinteiliges Pulver oder in Form einer Flüssigkeit vor.

Bei der "Granulat-Pulver-Route" entsteht ein poröses Zwischenprodukt in Form von porösem SiO₂-Granulat oder poröser SiO₂-Kömung (Verfahrensschritte b) und c)). Bei der Weiterverarbeitung dieses Materials besteht die Gefahr, dass sich geschlossene, gasgefüllte Hohlräume bilden, die durch ein nachfolgendes Aufschmelzen aus dem hochviskosen Quarzglas nicht oder nur sehr langsam zu entfernen sind, und die zu Blasen im Quarzglas führen, die in einem laseraktiven Bauteil jedoch kaum tolerierbar sind.

Daher wird gemäß dem Verfahrensschritt b) die Granulation so durchgeführt, dass die sich bildenden sphärischen, porösen Granulatkörner eine Dichte von mindestens 0,95 g/cm³ aufweisen. Diese hohe Dichte geht mit einem geringen Porengehalt der Granulatkörner einher, was die Gefahr einer Blasenbildung verringert.

Die Granulation wird dadurch bewirkt, dass der Dispersion unter fortwährender Bewegung so lange Feuchtigkeit entzogen wird, bis sie eine krümelige noch poröse Masse – ein Granulat - bildet. Die Bewegung erfolgt im Allgemeinen durch Rühren, wie dies in der DE 197 29 505 A1 beschrieben ist. Wichtig ist, dass die Dispersion erst dann in eine krümelige Masse zerfällt, wenn sie einen hohen Feststoffgehalt aufweist. Die flüssige Phase der Dispersion soll daher möglichst lange aufrechterhalten werden, was bei einer thixotropen Dispersion durch eine Bewegung unter hohem Energieeintrag gewährleistet werden kann. Ein hierfür geeig-

netes Granulationsverfahren ist die Rollgranulation in einem Granulierteller. Aber auch andere Granulationstechniken wie Sprühgranulation, Zentrifugalzerstäubung oder Wirbelschichtgranulation lassen sich zur Granulatherstellung vorteilhaft einsetzen. Andere Granulierverfahren unter Einsatz einer Granuliermühle, durch Kompaktierung, Walzenpressen, Brikettierung oder Extrudierung sind jedoch ebenfalls nicht ausgeschlossen und können die Herstellung maßgeschneiderter dotierter Quarzglas – Bauteile unterstützen.

Wesentlich ist, dass das erhaltene SiO₂-Granulat aus porösen SiO₂-Granulatkörnern besteht, die eine sphärische Form haben, und deren Feuchtigkeitsgehalt weniger als 35 Gew.-% und deren Dichte mindestens 0,75 g/cm³ beträgt. Erst durch die hohe Dichte des SiO₂-Granulats und den hohen Feststoffgehalt kann eine geringe Schrumpfung und ein blasenfreies Einschmelzen bzw. Sintern gewährleistet werden.

Das so erhaltene, poröse Granulat wird in einem weiteren Verfahrensschritt getrocknet und gereinigt, in dem es auf eine Temperatur von mindestens 1000°C unter Bildung einer porösen SiO₂-Körnung aufgeheizt wird. Hierbei kommt es zu einer thermischen Verfestigung des Granulats unter Beibehaltung der Porosität.

Im Hinblick auf eine Blasenbildung beim anschließenden Verglasen und einer Beeinträchtigung der optischen Eigenschaften des Quarzglases durch Absorption ist
es wichtig, dass die SiO₂-Körnung einen OH-Gehalt von weniger als 10 Gew.-ppm
aufweist. Wegen seiner Rest - Porosität kann das SiO₂-Granulat vor, während und
nach dem Verfahrensschritt c), dem Trocknen und Reinigen, zusätzlich mit Dotierstoffen versehen werden. Diese Dotierung kann über die Gasphase oder über die
Flüssigphase erfolgen.

Wesentlich ist außerdem, dass die Dotierstoffe in der SiO₂-Körnung homogen verteilt vorliegen und darin fest gebunden sind. Hierzu ist es in der Regel erforderlich, solche Dotierstoffe, die bei hoher Temperatur flüchtige Verbindungen bilden, können, in feste Oxide zu überführen, was bevorzugt im Verlauf der Verfahrensschritte a) bis c) geschieht.

WO 2005/054139 - 6 -

Die so erhaltene SiO₂-Körnung ist homogen mit dem laseraktiven Dotierstoff dotiert und wird anschließend unter Bildung des Quarzglas-Rohlings nach Verfahrensschritt d) gesintert bzw. erschmolzen. Es hat sich gezeigt, dass es gelingt, ein blasenfreies, homogen dotiertes Quarzglas zu erhalten, wenn das eingesetzte SiO₂-Granulat (und damit auch die daraus erhaltene SiO₂-Körnung) eine hohe Dichte und gleichzeitig einen geringen OH-Gehalt von weniger als 10 Gew.-ppm aufweist und wenn das Sintern oder Erschmelzen in einer reduzierend wirkenden Atmosphäre erfolgt.

Blasenreduzierend wirkt auch das in Verfahrensschritt d) genannte Merkmal, wonach das Sintern oder Erschmelzen der dotierten SiO2-Körnung in einer reduzierend wirkenden Atmosphäre erfolgt. Die reduzierend wirkende Atmosphäre kann die Ausbildung von sauerstoffhaltigen Gasblasen im Quarzglas des SiO₂-Rohlings vermindern oder die Bildung von Blasen mit Sauerstoff enthaltender Gasfüllung vermeiden. Eine reduzierend wirkende Atmosphäre ergibt sich beispielsweise durch Einsatz von Tiegel- oder Ofenteilen aus Grafit oder Kohlenstoff.

10

15

20

Das erfindungsgemäße Verfahren stellt ein flexibles und wirtschaftliches Herstellungsverfahren dar, das aufgrund der "Granulat-Pulver-Route" modular anhand der Verfahrensschritte a) bis d) eine maßgeschneiderte Produkt-Prozessierung gewährleistet, wobei unterschiedlichste Dotierstoffkonzentrationen erhalten werden können.

Im Hinblick auf eine hohe Dichte des SiO₂-Granulats und einer damit einhergehenden homogenen Dotierstoffverteilung und einer geringen Blasendichte des herzustellenden Quarzglases wird eine Verfahrensweise bevorzugt, bei der in der Dispersion ein anfänglicher Feststoffgehalt von mindestens 50 Gew.-%, vorzugsweise mindestens 60 Gew.-%, eingestellt wird.

Für eine geringe Blasendichte ist es auch vorteilhaft, wenn das nach Verfahrensschritt b) erhaltene SiO2-Granulat eine BET-Oberfläche im Bereich zwischen 40 m²/g bis 70 m²/g aufweist. Vorzugsweise liegt die BET-Oberfläche nach Verfahrensschritt b) bei dem SiO₂-Granulat bei mindestens 50 m²/g. Hierdurch wird beim Sintern bzw. Schmelzen des SiO₂-Granulats eine geringe Blasenbildung erreicht.

Im Hinblick auf ein günstiges Sinter- bzw. Schmelzverfahren hat es sich als vorteilhaft erwiesen, wenn die sphärischen, porösen Granulatkörner eine Korngröße von weniger als 500 µm aufweisen.

Ein besonders effektives und rasches Trocknen der porösen SiO₂-Granulatkörner wird erreicht, wenn das SiO₂-Granulat in chlorhaltiger Atmosphäre getrocknet und gereinigt wird. Dabei hat es sich besonders bewährt, wenn das SiO₂-Granulat bei einer Temperatur von mindestens 950 °C getrocknet und gereinigt wird.

Vorteilhafterweise erfolgt das Trocknen und Reinigen des porösen Granulats unter sauerstoffhaltiger Atmosphäre. Dadurch wird eine Fixierung solcher Dotierstoffe bewirkt, welche beim Aufheizen auf höhere Temperaturen flüchtige Verbindungen bilden können.

Es hat sich weiterhin als vorteilhaft erwiesen, wenn die nach Verfahrensschritt c) erhaltene poröse SiO₂-Körnung einen OH-Gehalt von weniger als 1 Gew.-ppm aufweist.

Der geringe OH-Gehalt wirkt sich vorteilhaft sowohl auf die Blasenbildung als auch auf die optische Dämpfung des Quarzglases bei den durch die OH-Absorption beeinflussten Lichtwellenlängen aus.

Im Hinblick auf eine geringe Blasenbildung hat es sich auch als günstig erwiesen, wenn die nach Verfahrensschritt c) erhaltene poröse SiO₂-Körnung eine BET-Oberfläche von weniger als 20 m²/g aufweist.

Es wird eine Verfahrensweise besonders bevorzugt, bei der das Sintern oder Schmelzen der SiO₂-Körnung nach Verfahrensschritt d) ein Gasdrucksintern umfasst. Beim Gasdrucksintern wird die zu sinternde SiO₂-Körnung unter erhöhtem Druck erhitzt und dabei erschmolzen. Der Überdruck reduziert die Blasenbildung.

- 25 Besonders bewährt hat sich eine Verfahrensvariante des Gasdrucksinterns, das folgende Verfahrensschritte umfasst:
 - aa) ein Aufheizen der SiO₂-Körnung auf eine Schmelztemperatur von mindestens 1600 °C unter Anlegen und Aufrechterhalten eines Unterdruck,

- bb) ein Halten bei der Schmelztemperatur unter einem Überdruck im Bereich zwischen 5 bar und 15 bar während einer Schmelzdauer von mindestens 30 min unter Bildung des Quarzglas-Rohlings,
- cc) ein Abkühlen des Quarzglas-Rohlings.
- 5 Mit dieser Verfahrensvariante gelingt es insbesondere auch große Formteile in optisch einwandfreier Qualit\u00e4t herzustellen.

Als besonders günstig hat es sich erwiesen, wenn das Abkühlen nach Verfahrensschritt cc) unter Aufrechterhaltung eines Überdrucks erfolgt. Durch das Aufrechterhalten des Überdrucks während des Abkühlens wird eine Ausbildung und das

10 Wachstum von Blasen im noch erweichten Quarzglas vermieden.

Besonders bewährt hat sich eine Verfahrensmodifikation, bei der die SiO₂-Körnung vor dem Verfahrensschritt d) thermisch verdichtet wird. Auch die Vorverdichtung der SiO₂-Körnung trägt zu einer Verminderung der Blasenbildung während der Schmelz- bzw. Sinterphase bei.

- 15 Es hat sich bewährt, wenn der Quarzglas-Rohling bei einer Temperatur von mindestens 1120 °C während einer Haltezeit von mindestens 40 h getempert wird. Hierdurch werden thermische Spannungen, welche eine Doppelbrechung bewirken, abgebaut.
- Bei einer besonders bevorzugten Verfahrensvariante wird die SiO₂-Körnung nach Verfahrensschritt d) in einer Form erschmolzen. Infolge der hohen Dichte der SiO₂-Körnung und der damit einhergehenden geringen Schrumpfung des daraus gesinterten Formkörpers weist dieser im wesentlichen die durch die Form vorgegebenen Abmessungen auf. Nachbearbeitungen können somit vermeiden und Materialverluste reduziert werden, was die Wirtschaftlichkeit des Verfahrens weiter verbessert.

Der SiO₂-Rohling nach Verfahrensschritt d) wird vorzugsweise dreidimensional homogenisiert. Die Homogenisierung erfolgt durch Durchmischen des SiO₂-Rohlings in mehreren Richtungen.

Dadurch wird Schlierenfreiheit und eine in drei Dimensionen homogene Verteilung der Brechzahl erreicht.

Alternativ hierzu hat es sich auch als günstig erwiesen, aus SiO₂-Körnung unterschiedlicher Brechzahl einen Schüttkörper mit einer radial inhomogenen Brechzahlverteilung auszubilden, und diesen Schüttkörper zu dem SiO₂-Rohling zu sintern oder zu erschmelzen.

Durch eine entsprechende Anordnung von SiO₂-Körnungen unterschiedlicher Brechzahl in einem Schüttkörper lassen sich beliebige Brechzahlverteilungen im gesinterten Quarzglas-Rohling realisieren. Es sind damit auch harmonische Übergänge mit angepassten mechanischen Eigenschaften, z.B. thermische Ausdehnungskoeffizienten, realisierbar

Das erfindungsgemäße Verfahren ist besonders geeignet zur Herstellung von SiO₂-Rohlingen, welche als Kernmaterial für Faserlaser, als optischer Filter oder als Umhüllungsrohre für Laser Verwendung finden. Derartige Umhüllungsrohre für Laser werden als Kühlrohre zur Einleitung einer Kühlflüssigkeit eingesetzt. Bei den Faserlasern handelt es sich um seitlich gepumpte bzw. um endgepumpte Faserlaser:

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert:

20 1. Beispiel: Yb-dotiertes Quarzglas

Es wird ein Stab mit einem Durchmesser von 6 mm aus laseraktivem Quarzglas hergestellt, das mit 0,7 mol-% Yb₂O₃ und mit 5,0 mol-% Al₂O₃ dotiert ist.

Hierzu wird aus Wasser und aus amorphen, nanoskaligen, durch Flammenhydrolyse von SiCl₄ erzeugten, pyrogenen SiO₂-Partikeln, die eine spezifische Oberfläche (nach BET) von 50 m²/g aufweisen eine wässrige Dispersion hergestellt und homogenisiert. In die homogene Dispersion werden als Ausgangskomponenten für die Dotanden in Wasser lösliche Hydratverbindungen eingesetzt. In 1500 g Wasser werden 1000 g SiO₂ und Dotanden in folgenden Mengen eingerührt:

YbCl₃x6H₂O:

87g

AlCl₃x6H₂O:

25

387g

Die Herstellung des Granulats erfolgt mittels eines üblichen Naßgranulierverfahrens unter Einsatz eines Eirich-Mischers. Hierzu wird der Dispersion durch Überleiten von erwärmter Luft und unter fortwährendem Rühren Feuchtigkeit entzogen, bis diese unter Bildung einer krümeligen Masse aus sphärischen, porösen, homogen dotierten SiO₂-Granulatkörnern zerfällt.

Die SiO₂-Granulatkörner zeichnen sich durch einen geringen Feuchtigkeitsgehalt von 28 Gew.-% und durch eine Dichte von 0,75 g/cm³ aus.

Sie werden anschließend durch Erhitzen in einem Durchlaufofen bei einer Temperatur von ca. 1100°C in chlorhaltiger Atmosphäre gereinigt und getrocknet und gleichzeitig thermisch leicht vorverdichtet. Die Reinigung mittels Chlor ist dabei besonders effektiv, da die Oberfläche der SiO₂-Partikel über die Porenkanäle für das Reinigungsgas zugänglich ist und die gasförmigen Verunreinigungen leicht entfernt werden können.

Die nach dieser Vorbehandlung erhaltene SiO₂-Körnung zeichnet sich durch einen OH-Gehalt von weniger als 1 Gew.-ppm, eine spezifische BET-Oberfläche von 34 m²/g und durch eine Stampfdichte von 0,95 g/cm³ aus. Der mittlere Korndurchmesser liegt bei etwa 420 µm, wobei die Fraktion mit Korngrößen oberhalb von 500 µm vor dem Sintern entfernt wird. Der Gesamtgehalt der Verunreinigungen an Li, Na, K, Mg, Ca, Fe, Cu, und Mn beträgt weniger als 200 Gew.-ppb.

Die so hergestellte dotierte, poröse SiO₂-Körnung aus amorphen, nanoskaligen SiO₂-Partikeln wird anschließend in eine Grafitform gegeben und bei einer Temperatur von 1600 °C durch Gasdrucksintern verglast. Hierbei wird die Form zunächst unter Aufrechterhaltung eines Unterdrucks von auf die Sintertemperatur von 1600 °C aufgeheizt. Nach Erreichen der Sintertemperatur wird im Ofen ein Überdruck von 5 bar eingestellt und die Form bei dieser Temperatur ca. 30 min lang gehalten. Beim anschließenden Abkühlen auf Raumtemperatur wird der Überdruck bis zu einer Temperatur von 400 °C noch weiter aufrecht erhalten.

Das so erhaltene Yb-dotierte Quarzglasblock ist transparent und von ausgezeichneter optischer Qualität. Das Quarzglas ist als Kernglas für einen optisch gepumpten Faserlaser geeignet. Kernstäbe bis zu einem Durchmesser von 15 mm können aus dem Blockmaterial durch Kernbohren entnommen werden. Die so erzeugten Hohlzylinder finden als laseraktive Kühlrohre bei Lasern Verwendung.

2. Beispiel: Nd-dotiertes Quarzglas

Es wird ein Stab mit einem Durchmesser von 10 mm und einer Länge von 1 m aus laseraktivem Quarzglas hergestellt, das mit 1300 ppm Nd₂O₃, und 0,5 mol % Al₂O₃, dotiert ist.

Hierzu wird aus Wasser und aus amorphen, nanoskaligen, durch eine Sol-Gel-Fällungsreaktion erzeugten SiO₂-Partikeln, die eine spezifische Oberfläche (nach BET) von 50 m²/g aufweisen eine wässrige Dispersion mit einem anfänglichen Feststoffgehalt von 50 Gew.-% hergestellt und homogenisiert. In die homogene Dispersion werden als Ausgangskomponenten für die Dotanden in Wasser lösliche Hydratverbindungen eingesetzt. Pro kg SiO₂ werden 40,0g AlCl₃ x 6H₂O und 2;8g NdCl₃ x 6H₂O in die Dispersion eingerührt.

Die Herstellung des Granulats erfolgt wie anhand Beispiel 1 beschrieben. Es stellen sich infolgedessen auch die gleichen Eigenschaften der so erhaltenen SiO₂-Granulatkörner ein.

Das dotierte Granulat wird anschließend durch Erhitzen in einem Durchlaufofen bei einer Temperatur von ca. 1250 °C in chlor- und sauerstoffhaltiger Atmosphäre gereinigt und getrocknet und gleichzeitig thermisch leicht vorverdichtet. Die nach dieser Vorbehandlung erhaltene SiO₂-Körnung zeichnet sich durch einen OH-Gehalt von weniger als 1 Gew.-ppm, und durch eine spezifische BET-Oberfläche von 18 m²/g aus.

Die Kornfraktion mit Korngrößen oberhalb von 500 µm wird entfernt, und die verbleibende Körnung wird durch kurzes Erhitzen auf eine Temperatur um 1450 °C dichtgesintert. Die auf diese Weise erhaltene dichte SiO₂-Körnung zeichnet sich durch einen OH-Gehalt von weniger als 1 Gew.-ppm aus. Der Gesamtgehalt der

Verunreinigungen an Li, Na, K, Mg, Ca, Fe, Cu, und Mn beträgt weniger als 200 Gew.-ppb.

Die so hergestellte dotierte, poröse SiO₂-Körnung wird anschließend in eine Grafitform gegeben und bei einer Temperatur von 1600 °C durch Gasdrucksintern verglast, wie dies oben anhand Beispiel 1 beschrieben ist.

Das so erhaltene Nd-dotierte Quarzglasblock ist transparent und von ausgezeichneter optischer Qualität und ist für einen Einsatz als Kernmaterial für einen Faserlaser oder als optischer Filter geeignet. Durch Kernbohren werden aus dem Blockmaterial Rohre hergestellt, die als laseraktive Kühlrohre bei Lasern Verwendung finden.

Patentansprüche

- Verfahren zur Herstellung eines Rohlings für ein Bauteil aus laseraktivem Quarzglas, umfassend die folgenden Verfahrensschritte:
 - a) Bereitstellen einer Dispersion mit einem Feststoffgehalt von mindestens 40 Gew.-%, die SiO₂-Nanopulver sowie Dotierstoffe umfassend ein Kation der Seltenerdmetalle und der Übergangsmetalle in einer Flüssigkeit enthält,
 - b) Granulation durch Bewegen der Dispersion unter Entzug von Feuchtigkeit bis zur Bildung eines dotierten SiO₂-Granulats aus sphärischen, porösen Granulatkörnern mit einem Feuchtigkeitsgehalt von weniger als 35 Gew.-% und mit einer Dichte von mindestens 0,95 g/cm³,
 - c) Trocknen und Reinigen des SiO₂-Granulats durch Aufheizen auf eine Temperatur von mindestens 1000 °C unter Bildung einer dotierten, porösen SiO₂-Körnung mit einem OH-Gehalt von weniger als 10 ppm; und
 - d) Sintern oder Erschmelzen der dotierten SiO₂-Körnung in einer reduzierend wirkenden Atmosphäre unter Bildung des Rohlings aus dotiertem Quarzglas.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in der Dispersion ein anfänglicher Feststoffgehalt der von mindestens 50 Gew-% eingestellt wird.
- 3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das nach Verfahrensschritt b) erhaltene SiO₂-Granulat eine BET-Oberfläche im Bereich zwischen 40 m²/g bis 70 m²/g aufweist.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das nach Verfahrensschritt b) erhaltene SiO₂-Granulat eine BET-Oberfläche von mindestens 50 m²/g aufweist.

- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn-5. zeichnet, dass die sphärischen, porösen Granulatkörner eine Korngröße von weniger als 500 µm aufweisen.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn-6. zeichnet, dass das SiO2-Granulat in chlorhaltiger Atmosphäre getrocknet und gereinigt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn-7. zeichnet, dass das SiO₂-Granulat bei einer Temperatur von mindestens 1050 °C getrocknet und gereinigt wird.
- 8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Trocknen und Reinigen des porösen Granulats unter sauerstoffhaltiger Atmosphäre erfolgt.
- 9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die nach Verfahrensschritt c) erhaltene poröse SiO2-Körnung einen OH-Gehalt von weniger als ein Gew.-ppm aufweist.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn-10. zeichnet, dass die nach Verfahrensschritt c) erhaltene poröse SiO2-Körnung einen eine BET-Oberfläche von weniger als 20 m²/g aufweist.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekenn-11. zeichnet, dass das Sintern oder Schmelzen der SiO2-Körnung nach Verfahrensschritt d) ein Gasdrucksintern umfasst.
- Verfahren nach Anspruch 11, dass das Gasdrucksintern folgende Verfah-12. rensschritte umfasst:
 - aa)ein Aufheizen der SiO₂-Körnung auf eine Schmelztemperatur von mindestens 1600 °C unter Anlegen und Aufrechterhalten eines Unterdruck,
 - bb)ein Halten bei der Schmelztemperatur unter einem Überdruck im Bereich zwischen 5 bar und 15 bar während einer Schmelzdauer von mindestens 30 min unter Bildung des Quarzglas-Rohlings,
 - cc) ein Abkühlen des Quarzglas-Rohlings.

- Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das Abkühlen nach Verfahrensschritt cc) unter Aufrechterhaltung eines Überdrucks erfolgt.
- 14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die SiO₂-Körung vor dem Verfahrensschritt d) thermisch verdichtet wird.
- 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Quarzglas-Rohling bei einer Temperatur von mindestens
 1120 °C während einer Haltezeit von mindestens 40 h getempert wird.
- 16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die SiO₂-Körnung nach Verfahrensschritt d) in einer Form erschmolzen wird.
- 17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der SiO₂-Rohling nach Verfahrensschritt d) dreidimensional homogenisiert wird.
- 18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass SiO₂-Körnung unterschiedlicher Brechzahl ein Schüttkörper mit einer radial inhomogenen Brechzahlverteilung gebildet wird, und dass der Schüttkörper zu dem SiO₂-Rohling gesintert oder erschmolzen wird.
- 19. Verwendung eines nach einem Verfahren gemäß den Ansprüchen 1 bis 18 erhalten SiO₂-Rohlings als Kernmaterial für einen Faserlaser, als optischer Filter oder als Umhüllungsrohr für Laser.

INTENATIONAL SEARCH REPORT

Internation Application No
PCT/EP2004/013544

CLASSIFICATION OF SUBJECT MATTER C 7 C03B19/10 C03C IPC 7 C03C1/02 C03C3/06 CO3C4/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system tollowed by classification symbols) CO3C CO3B IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X EP 1 148 035 A (HERAEUS QUARZGLAS GMBH & 1-15 CO. KG) 24 October 2001 (2001-10-24) paragraph '0012! paragraph '0035! paragraph '0058! - paragraph '0069! X WO 01/46079 A (HERAEUS QUARZGLAS GMBH & 1 - 19CO. KG; SHIN-ETSU QUARTZ PRODUCTS CO., LTD) 28 June 2001 (2001-06-28) page 6, paragraph 1 - paragraph 2 page 10, paragraph 2 claims 23,24 page 12, last paragraph - page 14, last EP 0 692 524 A (HERAEUS QUARZGLAS GMBH) Α 1 - 1917 January 1996 (1996-01-17) column 3, line 27 - line 31 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention *A* document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another clailon or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or other means ments, such combination being obvious to a person skilled document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 25 April 2005 02/05/2005 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Riswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016 Somann, K

INTENATIONAL SEARCH REPORT

Internal Application No
PCT/EP2004/013544

Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Α .	DE 197 29 505 A1 (HERAEUS QUARZGLAS GMBH, 63450 HANAU, DE) 14 January 1999 (1999-01-14) cited in the application the whole document		1-19
		i	
			• .
·			
			·

INTENATIONAL SEARCH REPORT

information on patent family members

Internal al Application No PCT/EP2004/013544

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 1148035	Α	24-10-2001	DE	10019693 A1	31-10-2001
			ĒΡ	1148035 A2	24-10-2001
			JP	2001354438 A	25-12-2001
			US	2002134108 A1	26-09-2002
					20-09-2002
WO 0146079	Α	28-06-2001	DE	19962451 C1	30-08-2001
		•	CA	2395501 A1	28-06-2001
			CN	1413175 A	23-04-2003
			WO	0146079 A1	28-06-2001
			EΡ	1240114 A1	18-09-2002
			JP	2004500299 T	08-01-2004
			TW	548246 B	21-08-2003
			US	6380110 B1	30-04-2002
EP 0692524	Α	17-01-1996	DE	4424044 A1	10 01 1006
		-, 01 1550	DE	59502641 D1	18-01-1996
			EP	0692524 A1	30-07-1998
•			ĴΡ	2944469 B2	17-01-1996
			JP	8059222 A	06-09-1999 05-03-1996
	•		บร	5643347 A	01-07-1997
		·		307337/ A	01-0/-199/
DE 19729505	A1	14-01-1999	DE	59800264 D1	19-10-2000
			EP	0890555 A1	13-01-1999
			JP	11130417 A	18-05-1999
			US	5979186 A	09-11-1999

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 C03B19/10 C03C1/02 C03C3/06 C03C4/00 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchlerier Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 CO3C CO3B Recherchlerte aber nicht zum Mindestprüfsloff gehörende Veröffentlichungen, soweit diese unter die recherchlerten Gebiete fallen Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evll. verwendete Suchbegriffe) EPO-Internal C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Kategorie® Betr. Anspruch Nr. X EP 1 148 035 A (HERAEUS QUARZGLAS GMBH & 1-15 CO. KG) 24. Oktober 2001 (2001-10-24) Absatz '0012! Absatz '0035! Absatz '0058! - Absatz '0069! WO 01/46079 A (HERAEUS QUARZGLAS GMBH & X 1 - 19CO. KG; SHIN-ETSU QUARTZ PRODUCTS CO.. LTD) 28. Juni 2001 (2001-06-28) Seite 6, Absatz 1 - Absatz 2 Seite 10, Absatz 2 Ansprüche 23,24 Seite 12, letzter Absatz - Seite 14, letzter Absatz EP 0 692 524 A (HERAEUS QUARZGLAS GMBH) 1 - 1917. Januar 1996 (1996-01-17) Spalte 3, Zeile 27 - Zeile 31 Weltere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamille Besondere Kalegorien von angegebenen Veröffentlichungen 'T' Spätere Veröffentlichung, die nach dem internationalen Anmekledatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der *A* Varöffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht ats besonders bedeutsam anzusehen ist 'E' ålleres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist Erfindung zugrundeliegenden Prinzips oder der Ihr zugrundeliegenden Theorie angegeben ist 'L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erschelnen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Veröffentlichung von besonderer Bedeutung die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahellegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) ausgerunn)

'O' Veröffentlichung, die sich auf eine mündliche Offenbarung,
eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

'P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach
dem beanspruchten Prioritätsdatum veröffentlicht worden ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der Internationalen Recherche Absendedatum des internationalen Recherchenberichts 25. April 2005 02/05/2005 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Somann, K

Internal rales Aktenzeichen
PCT/EP2004/013544

		PCT/EP2004/013544			
C.(Fortsetz Kategorie*	enden Teile	Betr. Anspruch Nr.			
A	DE 197 29 505 A1 (HERAEUS QUARZGLAS GMBH, 63450 HANAU, DE) 14. Januar 1999 (1999-01-14) in der Anmeldung erwähnt das ganze Dokument		1-19		
		. –			
			,		
	o (Fortsetzung von Elett 2) (Januar 2004)				

INTERNATIONALEMECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP2004/013544

Im Recherchenberid ngeführtes Patenidoku	ht ment	Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 1148035	Α	24-10-2001	DE	10019693 A1	31-10-2001
			ΕP	1148035 A2	24-10-2001
			JP	2001354438 A	25-12-2001
			US	2002134108 A1	26-09-2002
WO 0146079	Α	28-06-2001		10000454	
WO 01400/3	M	28-00-2001	DE	19962451 C1	30-08-2001
			CA	2395501 A1	28-06-2001
			CN	1413175 A	23-04-2003
			WO	0146079 A1	28-06-2001
•			EP	1240114 A1	18-09-2002
			JP	2004500299 T	08-01-2004
			TW	548246 B	21-08-2003
			US	6380110 B1	30-04-2002
EP 0692524	Α	17-01-1996	DE	4424044 A1	18-01-1996
			DE	59502641 D1	30-07-1998
			ĒΡ	0692524 A1	17-01-1996
			JР	2944469 B2	06-09-1999
			ĴΡ	8059222 A	
			US	5643347 A	05-03-1996
					01-07-1997
DE 19729505	A1	14-01-1999	DE	59800264 D1	19-10-2000
			EP	0890555 Al	13-01-1999
			JP	11130417 A	18-05-1999
			US	5979186 A	09-11-1999