What can we get from the bounding box?

Jie Shao (邵杰) <u>jieshao.mail@gmail.com</u>

公安部第三研究所

公安部第三研究所

The Third Research Institute of Ministry of Public Security

物联网技术研发中心简介

- 中心使命: 支撑"智慧警务"
- 参与部、省、市、县各级公安机 关视频监控信息化顶层设计及应 用建设
- 视频解析服务体系: 从"处理、分析、挖掘、评价"等环节出发,实现对海量视频资源的深度应用, 促进整个视频监控产业实现从监控到理解的转型

公安部第三研究所

The Third Research Institute of Ministry of Public Security

敢为人先 引领发展 科技强警 励志报国

基于视频结构化描述的视频语义分析系统

- 可描述车辆颜色、车型、品牌等, 车型类别 > 1200类
- 个性化检索、以图搜图等
- 参与重大案件侦破数十起: 桂林爆炸案、苏州抓捕案、亚信反恐…

Trimps-Soushen(搜神) at ILSVRC2015

Jie SHAO, Xiaoteng ZHANG, Jianying ZHOU, Zhengyan DING, Wenfei WANG, Lin MEI, Chuanping HU

The Third Research Institute of the Ministry of Public Security, P.R. China.

Summary of Trimps Submission

Object localization

- 2nd place, 12.29% error (1st place with extra data)
- Object detection from video (VID)
 - 4th place, 0.461 mAP (3rd place with extra data)
- Scene classification
 - 4th place, 17.98% error
- Object detection
 - 7th place, 0.446 mAP (4th place with extra data)

ILSVRC2015 official certification

Bounding box annotations

Person Car Motorcycle Helmet

What can we get?

- Objectness
- Negative categories
- Bounding box voting

Region-based detection pipeline

Objectness

Motivation

- Positive samples must be object first
- Put objectness in an end-to-end pipeline

Related works

- BBox rejection
- DeepBox
- Region proposal networks(RPN)

Objectness – our approach

- Regions with iou>=0.5 label as 1, otherwise 0
- Only use in training stage
- Most improved on val: +2.2% mAP (avg 1.1%)

Negative categories

Motivation

- Set all IOU<0.5 regions to be same categories is
 NOT reasonable
- Harder task always helps

Negative categories – our approach

More categories

Positive: IOU>=0.5, Negative: 0.2<=IOU<0.5,

Background: others

Negative categories – our approach

- 401 categories in total
- Regressor trained on pos regions
- Most improved on val: +3.2% mAP (avg 2.2%)

Negative categories – Similar works

"Object centric pre-training" by Qualcomm Research

Use the bounding box annotations for pre-training.

well-framed

well-framed

flower, partially-framed

background

Original image + bounding box

- Increase the number of classes from N to 2*N+1:
 - N classes for the object, well-framed.
 - N classes for partially framed objects.
 - 1 class for 'background', i.e., object not visible.

Bounding box voting

- After standard NMS, keep region b with highest score in local area
- Select regions *R*, IOU>=0.5
- Voting using RUb,

$$-Box = \frac{\sum_{i=1}^{k} score_{i} * bbox_{i}}{\sum_{i=1}^{k} score_{i}}$$

- Keep highest score

(a) Step 1

(b) Step 2

(c) Step 3

(d) Step 4

More details

- Edge Boxes for regions extraction
- Pre-train model
 - VGG16, VGG19, pooling->conv
 - 489 non-overlap subcategories
- COCO data used in some models
 - 43 categories with more data
- Faster-rcnn model
 - 5x4=20 anchors, ratios(0.2,0.4,1,2,5) and scales(2,3,4,5)
 - Negative categories and objectness in fast stage

Detection results (val set)

Baseline: VGG16 pre-trained on CLS data

Model	baseline	+obj	+neg	+obj +neg
mAP	43.0	45.2	46.2	46.9

Simple pipeline

Input Image

- Single model improvements
 - Objectness loss
 - Negative categories
 - Bounding box voting
- Multi-model

- Multi-model ensemble (testing)
 - Bounding box voting (+0.3% vs best single model)
 - Most crowded (not highest scored, +1.4%)

Top-5 localization error (test set)

Object Localization (rank #2)

Object Detection from Video

From 200 to 30

- Using models from object detection task
- Using video data for fine-tuning
- Tracking (not finished)

Object Detection from Video

Results

Object Detection from Video (rank #4)

计算机视觉研究与应用创新论坛

视频图像分析技术挑战赛(筹)

- **组织单位:** 创新论坛组委会主办,公 安部第三研究所-上海交通大学智能视 频评测联合实验室承办
- 比赛目标: 提高智能视频图像分析技术的研究水平,促进公安实战中的应用
- **任务设置:** 视频图像目标<mark>检测</mark>、视频 图像目标检索
- 比赛时间: 2016.09
- 详细信息将稍后公布

http://sist.shanghaitech.edu.cn/racv2016/

Thank you! Q&A