B2B34ELPA Přednáška 7

7.1 MOSFET výstupní charakteristika

Dlouhý a krátký kanál, Earlyho jev, modely, průraz

7.2 MOSFET typy tranzistorů

Indukovaný a zabudovaný kanál typu P a N, charakteristiky, značení

7.3 MOSFET v obvodu

Parametry, pracovní bod, jeho volba a nastavení

7.4 MOSFET jako zesilovač

Princip, náhradní lineární model, určení parametrů, vf model, PSpice model

7.1 MOSFET výstupní charakteristika dlouhý kanál

7.1 MOSFET statický model PSpice Level 1 (Schichman-Hodges)

Odporový režim

$$\boldsymbol{I}_{\text{D}} = \boldsymbol{\mu}_{\text{n}} \, \boldsymbol{C}_{\text{ox}} \, \frac{\boldsymbol{W}}{L} \bigg[\big(\boldsymbol{U}_{\text{GS}} - \boldsymbol{U}_{\text{T}} \big) \boldsymbol{U}_{\text{DS}} - \frac{1}{2} \boldsymbol{U}_{\text{DS}}^2 \, \bigg]$$

Saturace

$$\boldsymbol{I}_{\text{D}} = \frac{1}{2} \boldsymbol{\mu}_{\text{n}} \, \boldsymbol{C}_{\text{ox}} \, \frac{\boldsymbol{W}}{L} \, \big(\boldsymbol{U}_{\text{GS}} - \boldsymbol{U}_{\text{T}} \big)^{2}$$

PARAMETRY MODELU

μ_n – pohyblivost elektronů

L – délka kanálu

W - šířka kanálu

C_{ox} – kapacita oxidu na jednotku plochy

$$C_{ox} = \varepsilon_0 \varepsilon_r / t_{ox}$$

ε₀ – permitivita vakua

ε_r – relativní permitivita oxidu

t_{ox} – tloušťka oxidu

7.1 MOSFET vliv modulace délky kanálu

$$I_{D} = \frac{1}{2} \mu_{n} C_{\text{ox}} \frac{W}{L - \Delta L} \left(U_{\text{GS}} - U_{T} \right)^{2} = \frac{1}{2} \mu_{n} C_{\text{ox}} \frac{W}{L} \frac{1}{1 - \Delta L/L} \left(U_{\text{GS}} - U_{T} \right)^{2} \qquad \text{pro} \quad \frac{\Delta L}{L} << 1$$

$$= \frac{1}{2} \mu_n C_{\text{ox}} \frac{W}{L} \left(1 + \frac{\Delta L}{L} \right) \left(U_{\text{GS}} - U_T \right)^2$$

$$I_D = \frac{1}{2} \mu_n C_{\text{ox}} \frac{W}{L} \left(U_{\text{GS}} - U_T \right)^2 \left(1 + \lambda U_{DS} \right)$$

$$\frac{\Delta L}{I} = \lambda U_{DS}$$

$$\lambda = \frac{1}{U_A}$$

U_A Earlyho napětí:

napětí, při kterém se kanál zkrátí na nulovou délku

Diferenciální odpor r_o v saturační oblasti

$$r_o = \left[\frac{\partial I_D}{\partial U_{DS}}\right]_{U_{GS} = konst.}^{-1}$$

$$r_{o} = \left[\frac{\partial I_{D}}{\partial U_{DS}}\right]_{U_{OS} = konst}^{-1} \qquad r_{o} = \left[\lambda \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} \left(U_{GS} - U_{T}\right)^{2}\right]^{-1} = \frac{1}{\lambda I_{D}} = \frac{U_{A}}{I_{D}}$$

Elektronické prvky - B2B34ELPA - př.7

MOSFET výstupní charakteristika krátký kanál

7.1 MOSFET statický model PSpice Level 1 (uvážení zkrácení kanálu)

 $I_D[mA]$

$$\boldsymbol{r}_{o} = \left[\boldsymbol{\lambda} \; \frac{1}{2} \boldsymbol{\mu}_{n} \; \boldsymbol{C}_{ox} \; \frac{\boldsymbol{W}}{L} \left(\boldsymbol{U}_{GS} - \boldsymbol{U}_{T} \right)^{2} \; \right]^{\!\!\!\!-1} = \; \frac{\boldsymbol{U}_{A} \; + \boldsymbol{U}_{DSP_{o}}}{\boldsymbol{I}_{DP_{o}}} \label{eq:rooted_rooted_problem}$$

$$I = \frac{1}{2} \mu_n \, C_{ox} \, \frac{W}{L} \, \big(U_{GS} - U_T \big)^2$$

Pro oblast saturace platí

$$\boldsymbol{I}_{\text{D}} = \frac{1}{2} \boldsymbol{\mu}_{\text{n}} \, \boldsymbol{C}_{\text{ox}} \, \frac{\boldsymbol{W}}{L} \, \big(\boldsymbol{U}_{\text{GS}} - \boldsymbol{U}_{\text{T}} \, \big)^{2} \, \big(1 + \, \lambda \boldsymbol{U}_{\text{DS}} \, \big) = \boldsymbol{I} + \frac{\boldsymbol{U}_{\text{DS}}}{r_{\text{o}}}$$

U_A– Earlyho napětí

λ – koeficient modulace délky kanálu

7.1 MOSFET možnosti průrazu

7.2 MOSFET typy a značení

značení tranzistoru MOSFET vycházející z polarity substrátu a kanálu P→N

7.2 **MOSFET** typy a značení

značení tranzistoru MOSFET vycházející ze směru toku proudu

7.2 MOSFET (N) – indukovaný kanál

při nulovém napětí U_{GS} nevede kanál je nutné indukovat kladným U_{GS}

MOSFET – zabudovaný kanál (při výrobě)

při nulovém napětí U_{GS} vede kanál se uzavře záporným U_{GS}

7.2 MOSFET (N) převodní charakteristika

□ Převodní charakteristika I_D= f (U_{GS})

•
$$U_{DS}$$
 = konst.
• $U_{DS} = U_{GS}$ $\Longrightarrow I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (U_{GS} - U_T)^2$

•
$$U_{DS} = U_{DD} - R_D I_D$$

Tranzistor MOSFET lze použít jako diodu s nastavitelným prahovým napětím (kvadratická závislost I na U)

7.2 MOSFET (P) indukovaný a zabudovaný kanál

Indukovaný kanál

+3V +2V +1V 0V -1V

-2V

Převodní charakteristiky

7.2 MOSFET vliv teploty na V-A charakteristiku

$$I_{\text{D}} = \frac{1}{2} \mu_{\text{n}} C_{\text{ox}} \, \frac{W}{L} \, \left(U_{\text{GS}} - \overline{U_{\text{T}}} \right)^2 \left(1 + \lambda U_{\text{DS}} \right)$$

pohyblivost klesá s teplotou - dominantní

prahové napětí vlivem poklesu φ_B se snižuje s teplotou

7.3 MOSFET – mezní parametry

7.3 MOSFET katalogový list

SOT23 N-CHANNEL ENHANCEMENT MODE VERTICAL DIVIOS FET

ISSUE 3-JANUARY 1996

FEATURES

- * 60Volt V_{DS}
- * $R_{DS(ON)} = 5\Omega$

BS170F

PARTMARKING DETAIL - MV

Maximální napětí Drain-Source

Maximální hodnota I _D – trvale –
maximami nounota i _D – ti vale –
Maximální hodnota I ₅ – pulzně -

Maximální napětí Gate-Source

Maximální ztrátový výkon

Průrazné napětí Drain-Source

Prahové napětí

Statický odpor D-S v sepnutém stavu <

Strmost -

Vstupní kapacita ———
Spínací/vypínací zpoždění

Elektronické prvky - B2B34ELPA - př.7

ABSOLUTE MAXIMUM RATINGS.

ABSOLOTE IVIANIIVIDIVIRATIINGS.						
PARAMETER	SYMBOL	VALUE	UNIT			
Drain-Source Voltage	V _{DS}	60	V			
Continuous Drain Current at T _{amb} =25°C	I _D	0.15	mA			
Pulsed Drain Current	I _{DM}	3	Α			
Gate Source Voltage	V _{GS}	± 20	V			
Power Dissipation at T _{amb} =25°C	P _{tot}	330	mW			
Operating and Storage Temperature Range	T _j :T _{stg}	-55 to +150	°C			

ELECTRICAL CHARACTERISTICS (at $T_{amb} = 25^{\circ}C$ unless otherwise stated).

ELECTRICAL CHARACTERISTICS (at Tamb = 25 Culless otherwise stated).							
PA RA METER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.	
Drain-Source Breakdown Voltage	BV _{DSS}	60	90		V	$I_D = 100 \mu A$, $V_{GS} = 0V$	
Gate-Source Threshold Voltage	$V_{GS(th)}$	0.8		3	V	$I_D=1mA$, $V_{DS}=V_{GS}$	
Gate-Body Leakage	I _{GSS}			10	nA	V_{GS} =15V, V_{DS} =OV	
Zero Gate Voltage Drain Current	I _{DSS}			0.5	μА	V_{DS} =25V, V_{GS} =OV	
Static Drain-Source On-State Resistance (1)	R _{DS(on)}			5	Ω	V _{GS} =10V, I _D =200mA	
Forward Transconductance (1)(2)	g _{fs}		200		mS	V _{DS} =10V, I _D =200mA	
Input Capacitance (2)	C _{iss}		60		pF	V _{DS} =1OV, V _{GS} =OV, f=1MHz	
Turn-On Delay Time (2)(3)	t _{d(on)}			10	ns	M 45W L 600 A	
Turn-Off Delay Time (2)(3)	t _{d(off)}			10	ns	V _{DD} ≈-15V, I _D =600mA	

7.3 MOSFET Volba polohy klidového pracovního bodu Po

7.3 MOSFET Volba polohy klidového pracovního bodu Po

7.3 Klidový pracovní bod P_0 MOSFET jako zdroj proudu

7.3 Převodní charakteristika invertoru MOSFET

Optimální poloha P₀ pro třídu A by měla garantovat maximální rozkmit pracovního bodu v lineární části převodní charakteristiky

Po volit uprostřed její "lineární" části

volba U_{DS0} ≈ U_{DD}/2 nemusí být ideální!

7.3 Způsoby nastavení polohy P₀

7.3 Postup určení polohy pracovního bodu

Nalezněte hodnotu napětí U_{DS} tranzistoru NMOS, jehož parametry jsou definovány přiloženou výstupní VA charakteristikou.

7.3 Postup určení polohy pracovního bodu - Řešení

1. Popsat obvod ve shodě s charakteristikou

Předpokládáme, že proud tekoucí do hradla lze zanedbat (I_{GSS} ~ nA)

$$I_G = 0$$

7.3 Postup určení polohy pracovního bodu - Řešení

zatěžovací charakteristika zdroje U_{DD} R_D

$$U_{GS} = U_{DD}(R_2/(R_1+R_2))$$
 (2)+(3)

nezatížený napěťový dělič R₁ R₂

$$U_{GS0}$$
= 15V (220/(220+820)) = 3.17V

- 1. Popsat obvod ve shodě s charakteristikou
- 2. Sestavit obvodové rovnice

$$\mathbf{U}_{\mathrm{DD}} = \mathbf{R}_{\mathrm{D}} \mathbf{I}_{\mathrm{D}} + \mathbf{U}_{\mathrm{DS}} \quad (1)$$

$$U_{DD} = R_1 I_1 + R_2 I_1$$
 (2)

$$U_{GS} = R_2 I_1 \tag{3}$$

7.3 Postup určení polohy pracovního bodu - Řešení

- 1. Popsat obvod ve shodě s charakteristikou
- 2. Sestavit obvodové rovnice
- 3. Grafické řešení

vybrat nejbližší vrstevnici charakteristiky pro U_{GS0}

$$I_D = (U_{DD} - U_{DS})/R_D$$
 (1) wynést graf (1)

v charakteristice

U_{GS} [V]

Pracovní bod tranzistoru P_o je dán průsečíkem grafu rovnice (1) s vrstevnicí výstupní charakteristiky pro U_{GS0} =3.2V.

$$P_0 = [U_{GS0}, U_{DS0}, I_{D0}]$$

$$P_0 = [3.2V, 9.75V, 7.5mA]$$

7.4 MOSFET jako zesilovač malého signálu

7.4 MOSFET jako odporový dvojbran

dvojbran abstraktní blok s dvojicí vstupních a výstupních svorek, který je charakterizovaný vztahy mezi obvodovými veličinami U₁, I₁, U₂, I₂

Obecný dvojbran bývá popsán dvojicí nelineárních časově neproměnných rovnic

$$\mathbf{U_1} = \mathbf{h_1} \big(\mathbf{I_1}, \mathbf{U_2} \big)$$

$$\mathbf{I_2} = \mathbf{h_2} (\mathbf{I_1}, \mathbf{U_2})$$

V případě MOSFETu

$$\mathbf{I_G} = \mathbf{y_1} \! \left(\mathbf{U_{GS}}, \mathbf{U_{DS}} \right)$$

$$\mathbf{I_D} = \mathbf{y_2} \big(\mathbf{U_{GS}}, \mathbf{U_{DS}} \big)$$

U tranzistorů řízených polem (FET) jsou řídící veličiny jsou napětí. Je-li substrát spojen s emitorem je bývá uváděn elektroda společná pro vstup i výstup.

7.4 Linearizace charakteristik pro okolí P₀

$$I_{G} = y_{1}(U_{GS}, U_{DS})$$

$$\mathbf{I_D} = \mathbf{y_2} \big(\mathbf{U_{GS}}, \mathbf{U_{DS}} \big)$$

Nahrazení nelineárních funkcí funkcemi lineárními, pro změny veličin je dvojbran popsán 4 parametry, které představují parciální derivace výstupních veličin dle v stupních v pracovním bodě P₀.

$$\Delta i_{_G} = y_{_{11}} \Delta u_{_{GS}} + y_{_{12}} \Delta u_{_{DS}}$$

$$\Delta i_{_D} = y_{_{21}} \Delta u_{_{GS}} + y_{_{22}} \Delta u_{_{DS}}$$

$$\mathbf{y}_{11} = \frac{\partial \mathbf{I_G}}{\partial \mathbf{U_{GS}}}$$

$$\mathbf{y_{12}} = \frac{\partial \mathbf{I_G}}{\partial \mathbf{U_{DS}}}$$

$$\mathbf{y_{21}} = \frac{\partial \mathbf{I_D}}{\partial \mathbf{U_{GS}}}$$

$$\mathbf{y_{22}} = \frac{\partial \mathbf{I_D}}{\partial \mathbf{U_{DS}}}$$

vstupní vodivost

zpětná transkonduktance

transkonduktance

výstupní vodivost

7.4 Linearizace charakteristik pro okolí P₀

Náhradní Lineární Obvod (NLO) pro změny veličin

MOSFET $I_G = 0$

U MOSFETu nulový vstupní proud implikuje nulovou vstupní vodivost a zpětnou transkonduktanci.

$$\Delta i_G = 0 \Rightarrow y_{11}, y_{12} = 0$$

$$\Delta i_{\text{D}} = y_{\text{21}} \Delta u_{\text{GS}} + y_{\text{22}} \Delta u_{\text{DS}}$$

U MOSFETu je NLO popsán dvěma parametry: transkonduktancí (y_{21}) a výstupní vodivostí (y_{22}).

$$\mathbf{y_{21}} = \left(\frac{\Delta i_{D}}{\Delta u_{GS}}\right)_{P_{0}}^{\Delta u_{DS} = 0} = \mathbf{g}_{m}$$

$$\mathbf{y_{22}} = \left(\frac{\Delta i_{D}}{\Delta u_{DS}}\right)_{P_{O}}^{\Delta u_{GS} = 0} = 1/r_{0}$$

7.4 Diferenciální strmost g_m

$$\mathbf{g_m} = \mathbf{y_{21}} = \frac{\partial \mathbf{I_D}}{\partial \mathbf{U_{GS}}}\Big|_{\mathbf{P_0}}$$

rozměr [A/V] resp. [S] typické hodnoty 1mA/V – 1A/V

7.4 Diferenciální strmost g_m (transkonduktance)

$$g_m = y_{21} = \frac{\partial I_D}{\partial U_{GS}}\Big|_{P_0}$$

vztahy platí pro oblast saturace !!!

$$g_m = \mu_n C_{ox} \frac{W}{L} (U_{GS} - U_T)$$

vyšší hodnoty U_{GS}-U_T omezují rozkmit výstupního signálu (rozšíření odporové oblasti)

možnost ovládání g_m při návrhu tranzistoru

$$g_m = \sqrt{2\mu_n C_{ox}} \sqrt{W/L} \sqrt{I_D}$$
 pro

pro daný MOSFET strmost roste s odmocninou kolektorového proudu

pro daný proud je strmost úměrná $\sqrt{W/L}$

$$g_m = \frac{2I_D}{U_{GS} - U_T}$$

7.4 Diferenciální výstupní odpor r₀

$$\mathbf{r_0} = 1/\mathbf{y_{22}} = \frac{\partial \mathbf{U_{DS}}}{\partial \mathbf{I_D}}\bigg|_{\mathbf{P_0}}$$

rozměr $[\Omega]$ typické hodnoty $10k\Omega - 100k\Omega$

Stanovit lze z poměru

diferencí Δu_{DS} ku Δi_D

$$\mathbf{r_0} = 1/\mathbf{y}_{22} = \left(\frac{\Delta \mathbf{u}_{DS}}{\Delta \mathbf{i}_{D}}\right)_{P_0}^{\Delta \mathbf{u}_{GS} = 0}$$

$$r_0 = \frac{14V - 0V}{8mA - 7mA}$$

 $r_0 = 14 k\Omega$

7.4 MOSFET úplný vysokofrekvenční model

uvažuje řadu parazitních kapacit a vliv modulace kanálu zpětným hradlem (Body Effect, backgating)

7.4 MOSFET kapacity tranzistoru

- odporová (triodová) oblast $C_{gs} = C_{gd} = \frac{1}{2}WLC_{ox}$
- saturace $\begin{cases} C_{gs} = \frac{2}{3} WLC_{ox} \\ C_{gd} = 0 \end{cases}$
- nevodivý stav $\begin{cases} C_{gs} = C_{gd} = 0 \\ C_{gb} = WLC_{ox} \end{cases}$
- dále je nutné uvážit parazitní kapacity způsobené přesahem oblastí emitoru a kolektoru pod hradlo
- typicky $C_{ov} = WL_{ov}C_{ox}$ $L_{ov} = 0.05 0.1L$
- takto vypočtené hodnoty je třeba přičíst k C_{gs} and C_{gd}

7.4 MOSFET zjednodušený vf model

pro substrát (B) spojený s emitorem (S)

pro substrát (B) spojený s emitorem (S) + zanedbaná kapacita C_{db}

7.4 MOSFET mezní kmitočet

Mezní kmitočet f_T je definován jako frekvence při níž je proudový zisk i_{out}/i_{in} roven jedné.

$$i_{in} = j\omega C_{gs} u_{gs}$$

$$i_{out} = g_m u_{gs}$$

$$C_{gs} \approx C_{ox}WL$$

zanedbán vliv C_{gd}

$$\frac{\dot{I}_{out}}{\dot{I}_{in}} = \frac{g_{m} U_{gs}}{2\pi f_{T} C_{gs} U_{gs}} = 1$$

$$f_{\mathsf{T}} = \frac{g_{\mathsf{m}}}{2\pi \, C_{\mathsf{gs}}}$$

$$f_{\mathsf{T}} = \frac{\mu (U_{\mathsf{GS}} - U_{\mathsf{T}})}{2\pi L^2}$$

7.4 MOSFET simulační model pro SPICE

MOSFET je reprezentován textem, který mimo přiřazení vývodů obsahuje odkaz na použitý obvodový model a jeho parametry.

prahové napětí
délka kanálu
šířka kanálu
pohyblivost
koeficient modulace
pohyblivost*kapacita

$$\boldsymbol{I}_{\text{D}} = \boldsymbol{\mu}_{\text{n}} \, \boldsymbol{C}_{\text{ox}} \, \frac{\boldsymbol{W}}{L} \left[\left(\boldsymbol{U}_{\text{GS}} - \boldsymbol{U}_{\text{T}} \right) \boldsymbol{U}_{\text{DS}} - \frac{1}{2} \boldsymbol{U}_{\text{DS}}^2 \, \right]$$

Saturace

$$\boldsymbol{I}_{\text{D}} = \frac{1}{2} \boldsymbol{\mu}_{\text{n}} \, \boldsymbol{C}_{\text{ox}} \, \frac{\boldsymbol{W}}{L} \, \big(\boldsymbol{U}_{\text{GS}} - \boldsymbol{U}_{\text{T}} \big)^2$$

7.4 MOSFET parametry modelu pro SPICE pro různé technologie

Technology	$L_{ m min}$	$W_{ m min}$	$(V_{DD} + V_{SS})_{\max}$
5-μm CMOS	5 μm	12.5 μm	10 V
0.5-μm CMOS	0.5 μm	1.25 µm	3.3 V
0.18-μm CMOS	0.18 μm	0.22 μm	1.8 V

	5-μm CMOS Process		0.5-μm C	MOS Process	0.18-μm CMOS Process	
	NMOS	PMOS	NMOS	PMOS	NMOS	PMOS
LEVEL	1	1	1	1	1	1
TOX	8.50e-08	8.50e-08	9.50e-09	9.50e-09	4.08e-09	4.08e-09
UO	750	250	460	115	291	102
LAMBDA	0.01	0.03	0.1	0.2	0.08	0.11
GAMMA	1.4	0.65	0.5	0.45	0.3	0.3
VTO	1	-1	0.7	-0.8	0.5	-0.45