2.1. ДИАГРАМА НА ПРЕХОДИТЕ

1. Определение за краен автомат като идентификатор на низове

Краен автомат A над $\Sigma = \{a_1, a_2, ..., a_n,\}$ е краен ориентиран граф, от всеки връх на който излизат n насочени дъги, всяка обозначена с етикет a_i . Всяка дума $w \in \Sigma^*$ се дефинира с w - път от връх i до връх j в A и представлява конкатенацията на етикетите на насочените дъги, през които преминава. Думата $w \in \Sigma^*$ се разпознава от крайния автомат A, ако w пътят от началния връх води до крайния връх. Празната дума Λ се разпознава от A точно тогава, когато началният връх е и краен връх. Множеството от думи, разпознавани от крайния автомат A е крайно и се бележи с \widetilde{A} . Едно множество е регулярно над Σ точно тогава, когато се разпознава от краен автомат над Σ .

Пример:

За краен автомат над $\Sigma = \{a, b\}$ са в сила следните означения.

Дъга от вида

се означава с

No	A - автомат	\widetilde{A} - множество от думи
1	⊕ a,b	Ø
2	(+) 0,b	Σ^*
3	- b 0 0,b	Всички думи над Σ , съдържащи две последователни a или две последователни b .
4	a a a a a a a a a a a a a a a a a a a	Всички думи над Σ , съдържащи четен брой a и четен брой b .

С всеки връх i се свързва множеството S_i от всички думи w, за които имат w-път от началния връх води до i. На множество S_i се съпоставя множество S_j на онези върхове j, от които се стига до i по една единствена дъга. Обединението на всички множества S_i за крайните върхове е \widetilde{A}

За автомата (4) се получава:

 S_1 : Всички думи с четен брой a и четен брой b;

 S_2 : Всички думи с четен брой a и нечетен брой b;

 S_3 : Всички думи с нечетен брой a и четен брой b;

 S_4 : Всички думи с нечетен брой a и нечетен брой b.

 \mathcal{L} иаграма на преходите T над Σ е краен ориентиран граф, всяка насочена дъга на който е белязана с дума $w \in \Sigma^*$ (евентуално празната дума Λ), наричана етикет. Има поне един връх, белязан с "-" и множество (евентуално празно) от върхове, белязани с "+" (крайни върхове). Даден връх може да бъде едновременно начален и краен.

Ако думата $w \in \Sigma^*$, съществува w - краен път от връх i до връх j, конкатенацията на етикетите на насочените дъги на който представлява думата w (празните думи Λ се пренебрегват). Думата $w \in \Sigma^*$ се разпознава от T, ако съществува път w от начален до краен връх. Празната дума се разпознава от T, ако съществува връх в T, който е едновременно начален и краен или има Λ - път, който води от начален до краен връх. Множеството от думи, разпознавани от T, се означават с \widetilde{T} .

Диаграмата на преходите е обобщено понятие на краен автомат. Макар класът на крайните автомати е същински подклас на диаграмите на преходите, всяко регулярно множество, което е разпознава от диаграмите на преходите, се разпознава и от някакъв краен автомат. Всеки краен автомат е диаграма на преходите. Обратното не винаги е вярно. Крайният автомат е детерминиран, т.е. $\forall w \in \Sigma^*$ и връх $i \exists$ единствен w-път с начало i. Диаграмата на преходите е недетерминирана. Тя съдържа повече от един (или нито един) w-път с начало i.

Теорема на Клини: 1) За всяка диаграма на преходите T над Σ съществува регулярен израз R над Σ , за който $\widetilde{R} = \widetilde{T}$;2) За всеки регулярен израз R над Σ съществува краен автомат A над Σ , за който $\widetilde{A} = \widetilde{R}$. Следствие: 1) едно множество е регулярно над Σ точно тогава, когато се разпознава от някакъв краен автомат над Σ ; 2) едно множество е регулярно над Σ точно тогава, когато се разпознава от някаква диаграма на преходите над Σ .

Диаграмата на преходите T и множеството от думи \widetilde{T} над $\Sigma = \{a,b\}$, разпознавани от нея са представени в таблица -1.

Таблица-1

No	T-диаграма на	\widetilde{T} - множество от думи	
	преходите		
1	0	Ø	
2	(+)	$\{\Lambda\}$	
3	(F) a,b	Σ	
4	Q	$\{\Lambda, a, b\}$	
5	<u>-</u> + τ α	Всички думи над Σ , започващи с b , последвано само от a – та.	
6	a,b	Всички думи над Σ , съдържащи две последователни a - та и две последователни b - та.	
7	aa, bb + ab,ba aa,bb	Всички думи над Σ , съдържащи четен брой a - та и четен брой b – та.	
8	A aa + a,b	Всички думи над Σ , които започват с a или съдържат aa .	

Обобщената диаграма на преходите представлява диаграма на преходите, чиито насочени дъги са белязани с регулярни изрази

2. Метод на подмножествата за конструиране на краен автомат

Да се конструира краен автомат A по зададен регулярен израз R над Σ , така, че $\widetilde{A}=\widetilde{R}$.

Алгоритъм:

1. Конструира се диаграма на преходите T, за която $\widetilde{T}=\widetilde{R}$. Започва се от обобщената диаграма на преходите, съставена от начален връх x и краен връх y, с дъга между тях обозначена с регулярен израз R.

- 2. Последователно се разклонява R, като се прибавя нови върхове и дъги, докато всяка дъга се бележи само с буква от Σ или Λ , като се прилагат следните правила:
- a. Ако между два върха i и j съществува регулярен израз, съставен от конкатенацията на два регулярни израза A и B, то се въвежда нов връх k между i и j и насочена дъга от i към k, отбелязана с етикет A и дъга от k към j, отбелязана с етикет B.

 δ . Ако между два върха i и j съществува регулярен израз, описващ обединението на два регулярни израза A и B, между върховете i и j се добавят две дъги от i и j, обозначени съответно A и B.

 ${\it 6}$. Ако между два върха i и j има регулярен израз от вида ${\it A*}$, добавя се нов връх ${\it k}$ между i и j и насочена дъга от i към ${\it k}$, отбелязана с етикет ${\it \Lambda}$ и дъга от ${\it k}$ към ${\it j}$, отбелязана с етикет ${\it \Lambda}$, и дъга от ${\it k}$ към ${\it k}$, обозначена с регулярен израз ${\it A}$.

3. Построяване на таблица на преходите.

Нека T е диаграмата на преходите, получена след стъпка 2. Приема се, че $\Sigma = \{a,b\}$ е азбука и M е произволно подмножество на върхове на T. За всяка дума $w \in \Sigma^*$ се дефинира подмножество M_w от всички върхове на T, до които съществува w-път, водещ от някакъв връх на подмножеството M. Например, подмножеството M_{ab} се състои от всички върхове на T, до които има ab-път от някакъв връх на M или все едно всички върхове на T, до които има b-път от някакъв връх на M_a .

Пример:

1)
$$M = \{1\}$$
 $M_{ab} = \{2\}$ $M_a = \{2\}$
2) $M = \{1, 5\}$ $M_{ab} = \{2, 3, 6\}$ $M_b = \{5\}$
3) $M = \{1, 4, 6\}$ $M_{ab} = \{2, 3\}$ $M_a = \{2, 6\}$

Таблицата на преходите се състои от три стълба. Елементите от таблицата са подмножества от върховете на T (евентуално празното множество). Подмножеството от първи ред, първи стълб е $\{x\}_\Lambda$, т.е. подмножество, състоящо се от началния връх x и всички върхове на T, до които има Λ - път от x. За всеки ред на таблицата се прави следното: ако подмножеството M е в първи стълб, във втори стълб се прибавя множество M_a - множество от върхове на T, до които има a – път от някакъв връх на M, в трети стълб се прибавя M_b - множество от върхове на T, до които има b – път от някакъв връх на M. Ако M_a не се среща преди това в първи стълб, то се поставя в на следващия ред в първи стълб и процесът се повтаря. Аналогично се процедира с M_b . Процесът приключва, когато няма нови подмножества във втори и трети стълб на таблицата.

M	M_a	M_b
$M\{x\}_{\Lambda}$	-	_
-	-	-

4. Построяване на крайния автомат.

От таблицата на преходите се построява крайният автомат. Той се състои от толкова върха, колкото са редовете в таблицата. На всяко подмножество M в първи стълб от таблицата съответства връх \overline{M} в A. Върхът $\{\overline{x}\}_{\Lambda}$, съответстващ на подмножеството от първи ред и първи стълб, е единственият начален връх на A. Насочените дъги на крайния автомат съответстват на наредените двойки $\langle M, M_a \rangle$ (за дъга с етикет a) и $\langle M, M_b \rangle$ (за дъга с етикет b). Даден връх \overline{M} от A е краен точно тогава, когато M съдържа краен връх на T. Крайните върхове на крайния автомат са тези върхове, чиито множества в таблицата съдържат краен връх на диаграмата, от която е построена таблицата.