

QUESTÃO 1 - Uma casca hemisférica fechada de raio R contém um fluido que é mantido a uma pressão uniforme p. A força que o fluido exerce sobre a parte curva da casca é dada por

B) $\pi R^2 p$

C) $4\pi R^2 p$

D) $(4/3)\pi R^2 p$

E) $(4/3)\pi R^3 p$

QUESTÃO 2 - A figura mostra dois blocos de gelo A e B, de mesmas dimensões, que flutuam na água. Podemos dizer que

B) o bloco B desloca um volume maior de água, já que a pressão é menor na parte inferior do bloco.

C) os dois blocos deslocam o mesmo volume de água, já que têm o mesmo peso.

D) o bloco A desloca um volume maior de água, já que a parte submersa atinge uma profundidade maior.

E) o bloco B desloca um volume maior de água, já que a parte submersa tem uma área maior.

QUESTÃO 3 - Uma caixa hermeticamente fechada, cuja tampa possui uma área de 80 cm², foi parcialmente evacuada. A pressão atmosférica no local era 1.01×10^5 Pa, e uma força de 108 lbf foi necessária para remover a tampa. A pressão no interior da caixa era

A) 2,60 \times 10⁴ Pa

C) $7.50 \times 10^4 \text{ Pa}$

D) $1.38 \times 10^5 \text{ Pa}$

E) $1,76 \times 10^5 \text{ Pa}$

QUESTÃO 4 - A massa específica da água é 1,0 g/cm³. A massa específica do óleo no lado esquerdo do tubo em forma de U mostrado na figura é

A) 0.20 g/cm^3

B) 0.80 g/cm^3

C) 1.0 g/cm^3

D) $1,3 \text{ g/cm}^3$

E) 5.0 g/cm^3

QUESTÃO 5 - Um tubo em forma de U contém mercúrio (massa específica: 14×10^3 kg/m³). Quando 10 cm de água (massa específica: 1.0×10^3 kg/m³) são despejados no lado esquerdo do tubo, o mercúrio do lado direito sobe

A) 0,36 cm

B) 0,72 cm

C) 14 cm

D) 35 cm

E) 70 cm

QUESTÃO 6 - Um balde que contém um fluido incompressível de massa específica ρ é colocado no piso de um elevador. Quando o elevador está subindo com uma aceleração a , a diferença de pressão entre dois pontos do fluido separados por uma distância vertical Δh é dada por A) $\rho a \Delta h$ B) $\rho g \Delta h$ C) $\rho (g+a) \Delta h$ C) $\rho (g-a) \Delta h$ E) $\rho g a \Delta h$
QUESTÃO 7 - Uma prensa hidráulica tem um pistão com 2,0 cm de diâmetro e outro pistão com 8,0 cm de diâmetro. A força que deve ser aplicada ao pistão menor para obter uma força de 1600 N no pistão maior é A) 6,25 N B) 25 N C) 100 N D) 400 N E) 1600 N
QUESTÃO 8 - Um dos lados de um tubo em forma de U tem um diâmetro duas vezes maior que o outro. Para remover uma rolha do tubo mais estreito, é preciso uma força de 16 N. O tubo é enchido com água e recebe um pistão no lado mais largo. A menor força necessária para deslocar a rolha é A) 4 N B) 8 N C) 16 N D) 32 N E) 64 N
QUESTÃO 9 - Um dos lados de um tubo em forma de U tem um diâmetro duas vezes maior que o outro. O tubo contém um fluido incompressível e dispõe de um pistão em cada lado, ambos em contato com o fluido. Quando o pistão do lado mais estreito desce uma distância d , o pistão do lado mais largo sobe uma distância d 0
QUESTÃO 10 - Um pedaço de madeira flutua na água com 60% do volume submerso. A massa específica da madeira, em g/cm³, é A) 0,4 B) 0,5 C) 0,6 D) menor que 0,4 E) maior que 0,6
QUESTÃO 11 - Uma pedra, que pesa 1400 N no ar, tem um peso aparente de 900 N quando está mergulhada em água doce, cuja massa específica é 998 kg/m³. O volume da pedra é A) 0,14 m³ B) 0,60 m³ C) 0,90 m³ D) 5,1 × 10 ⁻² m³ E) 9,2 × 10 ⁻² m³

	nensões de uma jangada de madeira (massa específica: 150 kg/m^3) são $3.0 \text{m} \times 3.0 \text{ m} \times 1.0 \text{ m}$. que a jangada pode transportar em água salgada (massa específica: 1020 kg/m^3)?
A) 1350 kg	
B) 7800 kg	
C) 9200 kg	
D) 19.500 kg	
E) 24.300 kg	
QUESTÃO 13 - A águ	a escoa em um cano cilíndrico de seção reta variável. A velocidade da água é 3,0 m/s em um ponto
	ano é 1,0 cm. Em um ponto no qual o diâmetro do cano é 3,0 cm, a velocidade da água é
A) 9 m/s	
B) 3 m/s	
C) 1 m/s	
D) 0,33 m/s	
E) 0,11 m/s	
~	
	rigador de jardim consiste em uma mangueira de 1,0 cm de diâmetro com uma extremidade
	1 0,050 cm de diâmetro, perto da extremidade fechada. Se a vazão da água na mangueira é 2,0 m/s
a velocidade da água qu	ue sai pelos furos é
A) 2,0 m/s	
B) 32 m/s	
C) 40 m/s	
D) 600 m/s	
E) 800 m/s	
OUESTÃO 15 - A águ	a (massa específica: 1.0×10^3 kg/m3) flui em um cano horizontal cujo diâmetro diminui
continuamente de uma	extremidade para a outra. Na extremidade mais larga, a velocidade da água é 4,0 m/s. A diferença s extremidades é 4.5×10^3 Pa. A velocidade da água na extremidade mais estreita é
A) 2,6 m/s	
B) 3,4 m/s	
C) 4,0 m/s	
D) 4,5 m/s	
E) 5,0 m/s	
L) 3,0 II/8	
QUESTÃO 16 - Um ca	uno de água entra em uma casa 2,0 m abaixo do nível do solo. Um cano de menor diâmetro leva
água a uma torneira situ	nada no segundo andar, 5,0 acima do solo. A velocidade da água é 2,0 m/s no cano principal e 7,0
	Tome a massa específica da água como sendo 1.0×10^3 kg/m ³ . Se a diferença de pressão no cano
principal é 2.0×10^5 Pa	, a pressão no segundo andar é
A) 7.5×10^4 Pa, com o	cano principal na pressão mais alta
B) $2,65 \times 10^4$ Pa, com o	o cano principal na pressão mais alta
	cano principal na pressão mais baixa
	o cano principal na pressão mais baixa
	cano principal na pressão mais alta
, ,	A A A