1. (5 points) G is a group. H is a subgroup of G and N is a normal subgroup of G. H acts on G/N by left multiplication, i.e., for any $h \in H$, $gN \in G/N$,

$$h.gN = (hg)N$$

Prove that the above action is transitive if and only if G = HN.

Solution:

If the action is transitive, for any $g \in G$, $gN \in O(N)$, so there exists $h \in H$ such that hN = h.N = gN, in particular $g \in hN \subseteq HN$, we conclude G = HN.

Conversely, if G = HN, for any $gN \in G/N$, there exists $h \in H, n \in N$ such that $g = hn \in hN$, so gN = hN = h.N, which means $gN \in O(N)$, we conclude O(N) = G/N, the action is transitive.

- 2. M_2 is the group of isometries on \mathbb{R}^2 . Let H be the subset of M_2 consisting of all translations and all rotations (around any point).
 - (i). (5 points) Prove that H is a subgroup of M_2
 - (ii). (5 points) If T is the group of translations on \mathbb{R}^2 and R is the group of rotations around origin on \mathbb{R}^2 , prove that $H = T \rtimes R$.
 - (iii). (5 points) What is $[M_2: H]$, the index of H in M_2 ? Prove your answer.

Solution:

Method I:

(i). H consists of all isometries of the form $t_{\vec{a}}\rho_{\theta}$. For any $t_{\vec{a}}\rho_{\alpha}, t_{\vec{b}}\rho_{\beta} \in H$,

$$(t_{\vec{a}}\rho_{\alpha})^{-1}(t_{\vec{b}}\rho_{\beta}) = \rho_{-\alpha}t_{\vec{b}-\vec{a}}\rho_{\beta} = t_{\rho_{-\alpha}(\vec{b}-\vec{a})}\rho_{-\alpha+\beta} \in H$$

- (ii). T is a normal subgroup in M_2 , so it is also a subgroup in H. Also we have $T \cap R = \{1\}$ and H = TR, so $H = T \rtimes R$.
- (iii). Every element of M_2 is of the form $t_{\vec{a}}\rho_{\theta}$ or $t_{\vec{a}}\rho_{\theta}r$, and $r \notin H$, so there are two distinct right cosets H and Hr, $[M_2:H]=2$.

Method II for (i),(iii):

In Homework, we have proved

$$\Psi: M_2 \longrightarrow \{\pm 1\}$$

$$t_{\vec{a}}\rho_{\theta}r^k \mapsto (-1)^k$$

is a well-defined homomorphism.

 $\ker(\Psi) = H$, so H is a subgroup of M_2 , and $[M_2: H] = |\operatorname{Im}(\Psi)| = 2$

3. (5 points) G is a group. $Z(G) = \{g \in G | \forall x \in G, gx = xg\}$. If [G:Z(G)] = k, prove that each conjugacy class of G has at most k elements.

Solution: Let G act on itself by conjugation. For any $g \in G$, its conjugacy class C_x is its orbit, and its normalizer N(x) is its stablizer. Note that $Z(G) \subseteq N(x)$, so

$$[G:N(x)] \leq [G:Z(G)] = k$$

Apply the counting formula,

$$|C_x| = [G:N(x)] \le k$$

4. (5 points) G is a finite group, p is a prime and p divides |G|. N is a normal subgroup of G and P is a Sylow p-subgroup of G. Prove that PN/N is a Sylow p-subgroup of G/N.

Solution: Let $|G| = p^e m$, where m is relatively prime to p. $|P| = p^e$.

First,

$$|PN/N| = \frac{|PN|}{|N|} = \frac{|P|}{|P \cap N|} = \frac{p^e}{|P \cap N|}$$

so |PN/N| is a *p*-subgroup of G/N.

Next, $\frac{|G/N|}{|PN/N|} = \frac{|G|}{|PN|}$, which divides $\frac{|G|}{|P|} = m$, and m is relatively prime to p, so |PN/N| has the same number of p-factor as |G/N|, which implies PN/N is a Sylow p-subgroup of G/N.

5. (5 points) Let \mathbb{Z} be the group of integers with addition as composition.

 $G = \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$. $\phi : A_3 \longrightarrow \operatorname{Aut}(G)$ is the homomorphism defined by

$$\phi_{\sigma}: G \longrightarrow G$$

$$(a_1, a_2, a_3) \mapsto (a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)})$$

Find all the elements of finite order in $G \rtimes_{\phi} A_3$.

Solution:

 $(a_1, a_2, a_3, id)^n = (na_1, na_2, na_3, id)$, which cannot be (0, 0, 0, id) for any $n \neq 0$ unless $a_1 = a_2 = a_3 = 0$.

Let $\sigma = (1\ 2\ 3), \ |\sigma| = 3$, so $(a_1, a_2, a_3, \sigma)^n$ cannot be (0, 0, 0, id) when n is not a multiple of 3.

When n = 3k:

$$(a_1, a_2, a_3, \sigma)^3 = (a_1, a_2, a_3, \sigma)^2 (a_1, a_2, a_3, \sigma)$$

$$= ((a_1, a_2, a_3) + \phi_{\sigma}(a_1, a_2, a_3), \sigma^1) (a_1, a_2, a_3, \sigma)$$

$$= ((a_1, a_2, a_3) + (a_2, a_3, a_1), \sigma^2) (a_1, a_2, a_3, \sigma)$$

$$= (a_1 + a_2, a_2 + a_3, a_3 + a_1, \sigma^2) (a_1, a_2, a_3, \sigma)$$

$$= ((a_1 + a_2, a_2 + a_3, a_3 + a_1) + \phi_{\sigma^2}(a_1, a_2, a_3), \sigma^3)$$

$$= (a_1 + a_2 + a_3, a_1 + a_2 + a_3, a_1 + a_2 + a_3, id)$$

So $(a_1, a_2, a_3, \sigma)^{3k} = (k(a_1 + a_2 + a_3), k(a_1 + a_2 + a_3), k(a_1 + a_2 + a_3), id)$, this cannot be the identity for nonzero k unless $a_1 + a_2 + a_3 = 0$.

We can have similar argument for $\sigma^{-1} = (1 \ 3 \ 2)$.

In summary, the elements of finite order are (0,0,0,id) and all elements of the form $(a_1,a_2,a_3,(1\ 2\ 3))$ or $(a_1,a_2,a_3,(1\ 3\ 2))$ for $a_1+a_2+a_3=0$.

6. (5 points) Let $I = (x^2 + 2) \subseteq \mathbb{R}[x]$. Find the multiplicative inverse of

$$2x + 1 + I \in \mathbb{R}[x]/I$$

Solution: Let the inverse be $ax + b + I \in \mathbb{R}[x]/I$.

$$1+I = (2x+1+I)(ax+b+I) = 2ax^2 + (a+2b)x + b + I = 2a(-2) + (a+2b)x + b + I$$

so
$$\begin{cases} a+2b=0\\ -4a+b=1 \end{cases} \implies \begin{cases} a=-\frac{2}{9}\\ b=\frac{1}{9} \end{cases} \implies ax+b+I=-\frac{2}{9}x+\frac{1}{9}+I$$

7. (5 points) R is a ring. Prove that I = (x) is a maximal ideal of R[x] if and only if R is a field.

Solution:

Method I: Let $\phi: R[x] \longrightarrow R$ be the evaluation map $\phi(p(x)) = p(0)$. It is a surjective homomrophism, with $\ker(\phi) = \{p(x) \in R[x] | p(0) = 0\} = (x)$

First Isomorphism Theorem implies

$$R[x]/(x) \cong R$$

(x) is a maximal ideal $\iff R[x]/(x)$ is a field $\iff R$ is a field.

Method II:

If R is a field, then (p(x)) is a maximal ideal of R[x] if and only if p(x) is irreducible. x is irreducible, so (x) is a maximal ideal.

Conversely, If I=(x) is a maximal ideal, suppose R is not a field, then there exists $a\neq 0$ in R that is not a unit. Let $J=\{f(x)\in R[x]|f(0)\in aR\}$. Since $x\in J,\ (x)\subseteq J.\ a\in J$ and $a\notin (x)$, so $(x)\neq J.\ a$ is not a unit, so $1\notin aR$, $J\neq R[x]$. We get

$$(x) \subsetneq J \subsetneq R[x]$$

contradict to (x) maximal ideal. We conclude R is a field.

8. (5 points) Classify groups of order 45 up to isomorphism.

Solution:

If G is a group of order $45 = 3^2 \times 5$, it has Sylow 3-group and Sylow 5-group. Let n_p be the number of Sylow p-subgroups of G, then

$$\begin{cases} n_3|5\\ n_3 \equiv 1 \pmod{3} \end{cases} \implies n_3 = 1$$

$$\begin{cases} n_5|3^2\\ n_5 \equiv 1 \pmod{5} \end{cases} \implies n_5 = 1$$

$$\begin{cases} n_5|3^2\\ n_5 \equiv 1 \pmod{5} \end{cases} \implies n_5 = 1$$

This implies the unique Sylow 3-subgroup H and the unique Sylow 5-subgroup K are normal.

|H| = 9 and |K| = 5 are relatively prime, so $H \cap K = \{1\}$.

$$|HK| = \frac{|H| \times |K|}{|H \cap K|} = 45 = |G|$$
, so $G = HK$.

We get $G = H \times K$. $|H| = 3^2$, so $H \cong \mathbb{Z}/9\mathbb{Z}$ or $H \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$. |K| = 5, so $K \cong \mathbb{Z}/5\mathbb{Z}$.

We conclude $G \cong \mathbb{Z}/9\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$ or $G \cong \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.