Proper Let $f: [0,1] \longrightarrow \mathbb{C}^{\times}$ be cts. Let w_0 be a logarithm of f(0). Then there is a unique branch of of log f such that g(0) = w.

Pf By the mot result from monday, there is a bonnon of log f, say h. Then $e^{h(0)} = f(0) = e^{h(0)}$ so $\exists k \in \mathbb{Z}$ sit. $h(0) = W_0 + 2\pi i k$. Let $g = h - 2\pi i k$. Then g is chosen $\forall t \in [0,i]$ $e^{h(t)} = e^{h(t) - 2\pi i k} = e^{h(t)} e^{-2\pi i k} = f(t) \cdot 1 = f(t)$. Thus g is a branch of $\log f$. g is unique since if g is another one then $e^{-1} = e^{-1}$ so $g = g^{-1} + 2\pi i n$. but $g(0) = w_0 - g(0)$.

Winding numbers.

Let $\gamma: S \to C^*$ be continuous. Define $f: [0,i] \to C^*$ by $f(t) = \chi(e^{2\pi i t})$ let $\gamma: h$ be branches of leg f. Then since [0,i] is connected $\beta: h$ an integer k sit. $\forall t \in [0,i]$ $h(t) = g(t) + 2\pi i k$. hence h(i) - h(o) = g(i) - g(o).

Let $n = \frac{g(i) - g(o)}{2\pi i}$. $n \in \mathbb{Z}$ since $e^{g(i)} = f(1) - \chi(e^{2\pi i}) = \chi(e^o) = f(o) = e^{f(o)}$.

So $g(i) - g(o) \in 2\pi i \mathbb{Z}$. Furthermore, $\frac{h(i) - h(o)}{2\pi i} = n$ as well, so this n is well defined as a fin of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ with respect to the origin $\gamma: n$ denoted $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ with respect to the origin $\gamma: n$ denoted $\gamma: n$ of $\gamma: n$ is called the winding $\gamma: n$ of $\gamma: n$ with respect to the origin $\gamma: n$ denoted $\gamma: n$ is $\gamma: n$.

If Let $r: S' \xrightarrow{cto} (o, \infty)$. Let $n \in \mathbb{Z}$. Define $Y: S' \to C'$ by Y(z) = Z''Y(z).

Thus $\operatorname{ind}(Y) = Y$.

Pf Define
$$f: [0, \Pi \to C^*]$$
 by $f(t) = Y(e^{2\pi i t})$, Thun $\forall t \in [0, \Pi]$,
$$f(t) = e^{2\pi i t} r(e^{2\pi i t}) = e^{3(t)} \quad \text{where} \quad g(t) = \ln(r(e^{2\pi i t})) + 2n\pi i t$$

$$g \text{ 1S cts So } g \text{ is a brown of } \log f, \text{ So } \text{ ind } (\pi) = \frac{g(n - g(0))}{2\pi i} = \frac{h(r(0))^4}{2\pi i} = n.$$

Fact let $\beta, \delta: S \xrightarrow{crs} C^{\times}$. Then $ind(\beta) = ind(\delta)$ iff $\beta \simeq \gamma$ in C^{\times} .

Pf of (\Rightarrow) \mathcal{L}_{ppose} ind $(\gamma) = ind(\beta)$. Define $\beta, \gamma: To_{1}T \longrightarrow C^{\times}$ by $\beta(\beta) = p(e^{2\pi i\beta})$ $\gamma(\beta) = \dots$.

let u and γ be branches of log β and log δ respectively. γ -u is a branch of $\log \frac{\gamma}{\beta}$.

Define $H: [0,1]^{2} \longrightarrow C^{\times}$ by $H(s,t) = e^{(1-t)(\gamma(s)-u(s))}$. Then H: s cts, $H(s,0) = e^{\gamma(s)-u(s)} = \frac{\gamma(s)}{\beta(s)}$ and $H(s,1) = e^{0} = 1$.

Now define $H: S^{\times}[0,1] \longrightarrow C^{\times}$ by $H(e^{\pi i \cdot s},t) = H(s,t)$. Since $ind(\beta) = ind(\gamma)$, $\gamma(s) - \gamma(s) = u(s) - u(s)$ so $\gamma(s) - u(s) = \gamma(s) - u(s)$. Thus $\gamma(s) = u(s) = u(s)$ and $\gamma(s) = u(s) = u(s)$. $\gamma(s) = \frac{\gamma(s)}{\beta(s)}$ and $\gamma(s) = u(s) = u(s)$. So $\gamma(s) = u(s) = u(s)$. Thus $\gamma(s) = u(s) = u(s)$ and so $\gamma(s) = \frac{\gamma(s)}{\beta(s)}$ and $\gamma(s) = u(s) = u(s)$.

Law we simplify this ???

Proph For all loops β and χ in Γ , the product $\beta\chi$ is a loop in Γ^{χ} and ind $(\beta\chi) = \operatorname{Ind}(\beta\chi) + \operatorname{Ind}(\chi)$.

If let $\tilde{\beta}(t) = \beta(e^{2\pi i t})$, $\tilde{\gamma}(t) = \chi(e^{2\pi i t})$ as before. Let u, v be branches of $lg\tilde{\beta}$ and $lg\tilde{\chi}$ resp.

Let u = u + v. $e^{iu} = e^{u}e^{v} = \tilde{\beta}\tilde{\chi}$. So u is a bound of $log(\tilde{\beta})$.

So $ind(\beta\chi) = u(1) - u(0) = (u(1) - u(0)) + (v(1) - v(0)) = ind(\beta) + ind(\chi)$.

(on long: $ind (\frac{1}{k}) = -ind (1)$, $ind (\frac{p}{\delta}) = ind (p) - ind (p)$. $ind (p) = ind (d) \iff ind (\frac{p}{\delta}) = ind (\frac{\delta}{p}) = 0$.

Proper Let Y be a loop in C^{\times} . Then ind (Y) = 0 iff J a branch of log(x) $Y^f \Rightarrow \mathcal{D}$ eline $\hat{Y} : L_0 : D \to C^{\times}$ by $\hat{Y}(t) = Y(e^{2\pi i \cdot t})$. Let \hat{g} be a branch of $log \hat{g}$.

Thus $\tilde{g}(i) - \hat{g}(o) = 0$ so $\tilde{g}(i) = \hat{g}(o)$, define $g: \hat{S} \to C^{\times}$ by $g(e^{2\pi i \cdot t}) = \tilde{g}(t)$ $g: \hat{S} \to C^{\times}$ by $g(e^{2\pi i \cdot t}) = \tilde{g}(t)$ $g: \hat{S} \to C^{\times}$ by $g(e^{2\pi i \cdot t}) = \tilde{g}(t)$ $g: \hat{S} \to C^{\times}$ by $g(e^{2\pi i \cdot t}) = \tilde{g}(t)$ $g: \hat{S} \to C^{\times}$ by $g(e^{2\pi i \cdot t}) = \tilde{g}(t)$ $g: \hat{S} \to C^{\times}$ branch of log Y, say $g: loc \hat{Y}(t) = Y(e^{2\pi i \cdot t})$, $g: \hat{g}(t) = g(e^{2\pi i \cdot t})$.

Thus $\tilde{g}: \hat{S} \to C^{\times}$ branch of log Y, say $g: loc \hat{Y}(t) = Y(e^{2\pi i \cdot t})$, $g: \hat{g}(t) = g(e^{2\pi i \cdot t})$.

Lorolley Let β , Y be loops in C^{\times} . Suppose in $J(\beta) = m^{2}(Y)$. Thun $\beta \simeq Y$ in C^{\times} .

Pf in $J(\frac{Y}{\beta}) \circ S \circ J$ a branch of log $\frac{Y}{\beta}$ in C^{\times} , say W. Hence $\frac{Y}{\beta} \simeq 1$ in C^{\times} .

Let $H: \frac{Y}{\beta} \simeq 1$. Then $gH: Y \simeq \beta$.