Ordonnancement

March 14, 2021

Problème

Considérons un ensemble de tâches devant être réalisées.

Chaque tâche a une durée.

Il y a des dépendances entre les tâches : par exemple, une tâche ${\cal C}$ peut avoir besoin que ${\cal A}$ et ${\cal B}$ soient terminées avant de commencer.

Problème

Considérons un ensemble de tâches devant être réalisées.

Chaque tâche a une durée.

Il y a des dépendances entre les tâches : par exemple, une tâche ${\cal C}$ peut avoir besoin que ${\cal A}$ et ${\cal B}$ soient terminées avant de commencer.

Objectif : minimiser le temps total de réalisation des tâches.

Programmation dynamique

On note w(t) la durée d'une tâche t. Soit t une tâche et T l'ensemble des dépendances de t (c'est-à-dire tâches qui doivent finir avant que t commence). On veut calculer d(t), la date minimum de fin de t.

Programmation dynamique

On note w(t) la durée d'une tâche t. Soit t une tâche et T l'ensemble des dépendances de t (c'est-à-dire tâches qui doivent finir avant que t commence). On veut calculer d(t), la date minimum de fin de t.

On peut montrer que :

$$d(t) = w(t) + \max_{t' \in T} d(t')$$

Programmation dynamique

On note w(t) la durée d'une tâche t.

Soit t une tâche et T l'ensemble des dépendances de t (c'est-à-dire tâches qui doivent finir avant que t commence). On veut calculer d(t), la date minimum de fin de t.

On peut montrer que :

$$d(t) = w(t) + \max_{t' \in T} d(t')$$

La valeur maximum de d(t), pour une tâche quelconque t, donne le temps de réalisation total minimum.

Le chemin correspondant est dit **critique** (toutes les tâches le long de ce chemin doivent être réalisées dès que possible).

La méthode MPM consiste à considérer un graphe orienté tel que :

- Les sommets correspond au début d'une tâche.
- Chaque arête est une dépendance, avec un poids égal à la durée de la tâche de départ.

La méthode MPM consiste à considérer un graphe orienté tel que :

- 1 Les sommets correspond au début d'une tâche.
- Chaque arête est une dépendance, avec un poids égal à la durée de la tâche de départ.

De plus on rajoute deux sommets s et p (pour le début et la fin) :

- $oldsymbol{0}$ s est relié à chaque tâche sans prédécesseur, avec un poids $oldsymbol{0}$.
- Chaque tâche t sans successeur est relié à p, avec un poids égal à la durée de t.

Tâche	Prédecesseurs	Durée
А		5
В		3
С	А	2
D	B, C	4
E	A, C	3

Tâche	Prédecesseurs	Durée
А		5
В		3
С	А	2
D	B, C	4
Е	A, C	3

Tâche	Prédecesseurs	Durée
Α		5
В		3
С	А	2
D	B, C	4
Е	A, C	3

Tâche	Prédecesseurs	Durée
Α		5
В		3
С	A	2
D	B, C	4
E	A, C	3

Tâche	Prédecesseurs	Durée
Α		5
В		3
С	А	2
D	B, C	4
Е	A, C	3

Tâche	Prédecesseurs	Durée
Α		5
В		3
С	A	2
D	B, C	4
E	A, C	3

Date au plus tard

On a donc trouvé la **date au plus tôt** pour commencer chaque tâche (la date la plus tôt pour t étant la durée minimale pour réaliser toutes les tâches).

On peut aussi calculer la **date au plus tard** f(t) d'une tâche t: la date maximum à laquelle on peut démarrer t sans ralentir la durée totale optimale.

Date au plus tard

On a donc trouvé la **date au plus tôt** pour commencer chaque tâche (la date la plus tôt pour t étant la durée minimale pour réaliser toutes les tâches).

On peut aussi calculer la **date au plus tard** f(t) d'une tâche t: la date maximum à laquelle on peut démarrer t sans ralentir la durée totale optimale.

Soit T l'ensemble des successeurs de t. On peut montrer que :

$$f(t) = \min_{t' \in T} f(t') - w(t)$$

Date au plus tard

On a donc trouvé la **date au plus tôt** pour commencer chaque tâche (la date la plus tôt pour t étant la durée minimale pour réaliser toutes les tâches).

On peut aussi calculer la **date au plus tard** f(t) d'une tâche t: la date maximum à laquelle on peut démarrer t sans ralentir la durée totale optimale.

Soit T l'ensemble des successeurs de t. On peut montrer que :

$$f(t) = \min_{t' \in T} f(t') - w(t)$$

Ainsi, on peut trouver les dates au plus tard de chaque tâche en utilisant le graphe obtenu précédemment, à l'envers (en partant de p).

Méthode PERT

La méthode PERT consiste à considérer un graphe orienté tel que :

- Les arêtes sont les tâches.
- Les sommets correspondent aux débuts/fins de tâches.

Méthode PERT : exemple

 $Voir\ vid\'eo:\ https://www.youtube.com/watch?v=xAidvykSNXo$