

Этикетка

КСНЛ.431241.001 ЭТ

Микросхема 1564ИВЗТ1ЭП

Микросхема интегральная 1564ИВЗТ1ЭП

Функциональное назначение: Шифратор приоритетов 10-4

Условное графическое обозначение Схема расположения выводов Номера выводов показаны условно 11 Q0D0CD 12 D1 Q1 13 6 D2Q2 Q3 1 D3 14 2 D4 3 D5 4 D6 16 5 D7 $V_{CC} \\$ 16 Ключ 10 0V8 D8

Таблица назначения выводов

№	Обозначение	Назначение вывода	№	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	D3	Вход	9	Q0	Выход
2	D4	Вход	10	D8	Вход
3	D5	Вход	11	D0	Вход
4	D6	Вход	12	D1	Вход
5	D7	Вход	13	D2	Вход
6	Q2	Выход	14	Q3	Выход
7	Q1	Выход	15	NC	Не подключен
8	0V	Общий	16	V_{CC}	Питание

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при t = 25+10 °C)

1.1 Основные электрические параметры (при t = 25±10 °C) Буквенное Норма				
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более	Примечание
1	2	3	4	
1. Максимальное выходное напряжение низкого уровня, В, при: $U_{\rm CC}$ =2,0 В, $U_{\rm IL}$ =0,3 В, $U_{\rm IH}$ =1,5 В $I_{\rm O}$ = 20 мкА $U_{\rm CC}$ =4,5 В, $U_{\rm IL}$ =0,9 В, $U_{\rm IH}$ =3,15 В, $I_{\rm O}$ = 0,4 мА $U_{\rm CC}$ =6,0 В, $U_{\rm IL}$ =1,2 В, $U_{\rm IH}$ =4,2 В, $I_{\rm O}$ = 5,2 мА	U _{OL max}	- - -	0,10 0,26 0,26	
2. Минимальное выходное напряжение высокого уровня, В, при: $U_{\rm CC}{=}2,0$ В, $U_{\rm H}{=}1,5$ В, $I_{\rm O}{=}$ 20 мкА $U_{\rm CC}{=}4,5$ В, $U_{\rm H}{=}3,15$ В, $I_{\rm O}{=}4,0$ мА $U_{\rm CC}{=}6,0$ В, $U_{\rm H}{=}4,2$ В, $I_{\rm O}{=}5,2$ мА	$U_{ m OHmin}$	1,9 4,0 5,5	- - -	
3. Входной ток низкого уровня, мкА, при: U _{CC} = 6,0 B, U _{IL} = 0 B, U _{IH} =U _{CC}	I _{IL}	-	/-0,1/	
4. Входной ток высокого уровня, мкА, при: $U_{CC} = 6,0$ B, $U_{IL} = 0$ B, $U_{IH} = U_{CC}$	I_{IH}	-	0,1	
5. Ток потребления, мкА, при $U_{CC}\!=\!6,\!0$ B, $U_{IL}\!=\!0$ B, $U_{IH}\!=\!U_{CC}$	I_{CC}		4,0	
6. Динамический ток потребления, мА, при: $U_{\rm CC}$ = 6,0 B, f = 10 МГц	I_{OCC}	-	18	

7. Время задержки распространения при включении (выключении), нс, при: $U_{CC}=2,0$ В, $C_L=50$ пФ $U_{CC}=4,5$ В, $C_L=50$ пФ $U_{CC}=6,0$ В, $C_L=50$ пФ	t _{PHL} (t _{PLH})	- - -	210 43 36	
8. Входная емкость, пФ,	C _I	-	10	

1.2 Содержание драгоценных металлов в	1000) шт.	микрос	хем:
---------------------------------------	------	-------	--------	------

золото г. серебро г.

в том числе:

золото г/мм на 16 выводах длиной мм.

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

2.2 Гамма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте 3ИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-08ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ИВ3Т1ЭП соответствуют техническим условиям АЕЯР.431200.424-08ТУ и признаны годными для эксплуатации.

Приняты по от (извещение, акт и др.) (дата)	_
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	» (дата)
Приняты по ${}$ (извещение, акт и др.) от ${}$ (дата)	
Место для штампа ОТК	Место для штампа ПЗ

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, выход- общий, вход-выход, питание-общий. Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.