Часть 1. Тест.

Вопрос 1 \clubsuit Если $\mathrm{E}(X)=7$, $\mathrm{E}(Y)=6$, $\mathrm{Var}(X)=6$, $\mathrm{Var}(Y)=7$, $\mathrm{Cov}(X,Y)=-1$, то $\mathrm{Cov}(4-X+2Y,4X)$ равна

A 32

D -16

-32

G Нет верного ответа.

- B -48
- C 16 F

Вопрос 2 \clubsuit В парной регрессии на уровне значимости 5%-ов гипотеза H_0 : $\beta_2=2016$ не отвергается. Из этого можно сделать вывод, что на соответствующем уровне значимости

- $oxed{A}$ доверительный интервал для eta_2 не содержит ноль
- \square H_0 : $\beta_2 = 0$ отвергается

 $\lceil \mathbf{B} \rceil \ H_0$: $\beta_2 = 0$ не отвергается

 $lackbox{f E}\ H_a$: $eta_2
eq 0$ не отвергается

 \square H_a : $\beta_2 \neq 0$ отвергается

Нет верного ответа.

Вопрос 3 \clubsuit В парной регрессии величина $\bar{Y} - \sum \hat{Y}_i/n$

А равна (-1)

- равна 0
- В может принимать любое положительное значение
- F может принимать любое неотрицательное значение

- С не существует
- [D] равна 1 [G] *Нет верного ответа.*

Вопрос 4 \clubsuit В модели парной регрессии $R^2=0.7, TSS=100$ и 12 наблюдений. Несмещённая оценка дисперсии случайной ошибки равна

3

D 2.8

G Нет верного ответа.

B 2.9

E 3.1

C 3.3

F 3.2

Вопрос 5 \clubsuit Имеются данные по доходу жены, мужа и продолжительности брака. Доход семьи складывается из дохода жены и мужа. Вася оценил зависимость дохода семьи от продолжительности брака и получил регрессию $\hat{Y}_i = 20 + 3X_i$, Петя оценил зависимость дохода мужа от продолжительности брака и получил регрессию $\hat{Y}_i = 10 + 2X_i$. Маша оценивает зависимость дохода жены от продолжительности брака. Она получит регрессию:

- $\hat{Y}_i = 10 + X_i$
- $\begin{aligned} \mathbf{F}_i &= 10 + X_i \\ \mathbf{B} \quad \hat{Y}_i &= 10 X_i \end{aligned}$
- $\boxed{\mathbf{C}} \ \hat{Y}_i = 20 + 3X_i$

- Е недостаточно данных для ответа
- $\boxed{\mathbf{F}} \ \hat{Y}_i = 30 + 5X_i$
- G Нет верного ответа.

Вопрос 6 \clubsuit Условием теоремы Гаусса-Маркова, необходимым для несмещённости оценок коэффициентов регрессии в модели $Y_i = \beta_1 + \beta_2 X_i + u_i$ является

- А гомоскедастичность случайных ошибок
- В некоррелированность случайных ошибок
- $E(u_i) = 0$
- П гетероскедастичность случайных ошибок
- $E E(u_i) \neq 0$
- F нормальность случайных ошибок
- G Нет верного ответа.

Вопрос 7 \clubsuit Если $\alpha = 0.01$ и P-значение равно 0, то

- $\boxed{\mathsf{A}}$ H_a не отвергается
- В недостаточно информации для ответа
- \square H_a принимается

- H_0 отвергается
- $\lceil \mathsf{F} \rceil H_a$ отвергается
- G Нет верного ответа.

Вопрос 8 \clubsuit Если все Y_i в линейной регрессии увеличить в три раза, то оценка \hat{eta}_2

- помножится на 3
- В не изменится
- С помножится на 6
- D поделится на 6

- Е поделится на 3
- $\overline{\mathbf{F}}$ изменится в произвольную сторону, в зависимости от X_i
- G Нет верного ответа.

Вопрос 9 👫 Свободно распространяемым программным обеспечением является

- A Excel
- R
- C SPSS

- D Stata
- E Eviews
- F Matlab

G Нет верного ответа.

Вопрос 10 \clubsuit Предпосылки теоремы Гаусса-Маркова выполнены, случайные ошибки нормально распределены, уровень доверия равен 80%, критическое значение t-статистики равно 1.48, всего n наблюдений. Регрессия имеет вид $\hat{Y}_i = -4 + \mathop{5}\limits_{(3)} X_i$, в скобках указаны стандартные ошибки. Доверительный интервал

для β_2 равен

A [4.22; 5.78]
B [4.89; 5.11]

- \boxed{C} [2.04; 7.96]
- \boxed{D} [3.52; 6.48]

- [4.7; 5.3]
- **F** Нет верного ответа.

Часть 2. Задачи.

- 1. Для модели $Y_i = \beta_1 + \beta_2 X_i + u_i$ выполнены все предпосылки теоремы Гаусса-Маркова. Докажите несмещённость МНК-оценки коэффициента β_1 .
- 2. В течение 10 дней Василий записывал количество пойманных им покемонов, Y_i , и количество решённых задач по эконометрике, X_i . Оказалось, что $\sum X_i^2 = 30$, $\sum Y_i^2 = 80$, $\sum X_i = 10$, $\sum Y_i = 10$ и $\sum X_i Y_i = 0$. Василий предполагает корректность линейной модели $Y_i = \beta_1 + \beta_2 X_i + u_i$.
 - а) Найдите МНК-оценки коэффициентов регресси
 - б) Найдите RSS, ESS, TSS и R^2
- 3. Для модели $Y_i = \beta_1 + \beta_2 X_i + u_i$ выполнены все предпосылки теоремы Гаусса-Маркова. Выведите формулу для дисперсии МНК-оценки, $Var(\hat{\beta}_1)$.
- 4. Рассмотрим модель $Y_i = \beta_1 + \beta_2 X_i + u_i$ с неслучайным регрессором. Аккуратно сформулируйте теорему Гаусса-Маркова, пояснив смысл используемых понятий
- 5. Для модели $Y_i=\beta_1+\beta_2 X_i+u_i$ выполнены все предпосылки теоремы Гаусса-Маркова, а случайные ошибки нормально распределены. Известны все значенения Y_i , все значения \hat{Y}_i и часть значений X_i

X_i	2	1		
Y_{i}	4	5	9	2
\hat{Y}_i	5	4	7	4

- а) Найдите МНК-оценки коэффициентов регрессии
- б) Найдите стандартную ошибку коэффициента \hat{eta}_2
- в) Постройте 95%-ый доверительный интервал для коэффициента \hat{eta}_2
- г) Проверьте гипотезу о незначимости коэффициента β_2 на уровне значимости 5%

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Randall Munroe, xkcd

Имя, фамилия:	
Номер группы:	

Вопрос 1 : A B C D **F** G

Вопрос 2 : A B C D E

Вопрос 3 : A B C D **F** G

Вопрос 4 : **В** В С D E F G

Вопрос 5 : В В С D E F G

Вопрос 6 : A B D E F G

Вопрос 7 : A B C D **F** G

Вопрос 8 : **В** С D E F G

Вопрос 10 : A B C D **F**