

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- C.Maths
- Physics
- Chemistry

+ more

G.C.E A/L Examination November - 2018

Fied Work Centre

Grade - 13 (2019)

PHYSICS

Marking Scheme

15	PART -	·I	•		
∤. _ 2	1412	215	245	41 2	
23	12,-5	22.4	32,-5	42,_2	
3,_5	اعــع	233	aa3	48,-5	
2	14~3	245	342	44,-1	
5-5	152	254	354	453	
6_3	161	261	862	46,-1	
* 1	172	273	3 ₇ -3	47 1	
8,-5	184	285	882	48,-5	
9,-5	193	294	393	49,-5	
104	20,-4	30,-5	40,-1	50,-2	
	* /*		TOTAL = BOX		
*			= 50	MARKS.	
5	PART-IIA (STRU	CTURED ESS	AY)		
01) 4. 0	ol mm			(QI)	
	0.03 mm -				
c.)	1.81 mm -		- 60	(<u>@</u>)	
	x = 1.84 mm	(60) (b)		<u>@</u>	
(OI)					
the three lone phain the average distance between the regs					
by measuring the 3 distances between the tips of the legs.					
By using internal and external javas of a Vernier caliper the distance between each pair of legs must be measured and mean distance between the legs must be obtained.					
	historice between each pa distance between the legs	must be ob	bained,		
€,	$R = \frac{x}{2} + \frac{y^2}{6x}$				
	= 0.184 + 32 6 KO:18	4	For Substitution	<u> </u>	
*					

8, 244 CM.

F,	Length :	Metry scale	z *
	- Control (1997)	Vernier caliper	(ōi)
	Mass: Thickness:	Triple beam balance! Micromeles scress gauge.	OI TOTAL 10 MARKS
انمرا	\		

(ii) police '...

(b) Asbestos sheet / Insulation sheet
To minimise the flow of heat (by radiation) from Bursen burner to
the calorimeter.

(c) Begin the experiment by reducing the temperature of water 4 or 5°C below ambient temperature and continue to send steam until its temperature is 4 er 5°C above The ambient temperature. (1)

(d)(1)1. Mass of empty calorimeter + stirrer ... = m,

2. Mass of empty calonimeter + stirrer + water = m2

3. Initial temperature of water = 0,00

4. final highest temperature of the system. - - = 03°C

5. Mass exempty calonimeter+stirrer+water+steam. = mg (Award 2) marks if all five or the first-four are correct () mark if first time are correct)

- (e) Since the Latent heat of vaporization of water is high, The mass of water collected will be smalled Henre, The Fractional error or percentage error will be large.
- - Because autinode is produced at the mid point between bridges.
 The paper mount (rider) receives maximum Enatic energy when
 - (iii) Having kept the vibrating tuning fork pressed on the sonometer box, obtain the resonating length which makes the paper mount (rider) to be thrown out, as The distance between the bridges is gently and gradually increased from a smaller value.
 - (b) (i) $f = \frac{1}{2\ell} \sqrt{\frac{T}{m}}$ $= \frac{1}{2\ell} \sqrt{\frac{V \cdot s \cdot w \cdot g}{A \cdot s \cdot w}} \quad \omega = \text{density of water}$ $= \frac{1}{2\ell} \sqrt{\frac{V \cdot s \cdot g}{A \cdot s}}$ $= \frac{1}{2\ell} \sqrt{\frac{V \cdot s \cdot g}{A}} \left[1 \frac{1}{s}\right]$ (b)
 - (ii) $l^2 = \frac{\sqrt{9}}{4A} \left[1 \frac{1}{5}\right] \cdot \frac{1}{42}$
- (c) (i) Choosing two points on the graph which can be read easily in (o)

Gradient = 10 cm's -

(i)
$$\frac{\sqrt{9}}{4A}[1-\frac{1}{8}] = 9 \text{ modient} = 10 \text{ cm}^2 s^2$$

(d) dB = 10 log (I) (Here I = threshold in lensity of hearing)

04) (a) C = NABICOSO

(C)(i) Use semi cylindrical magnetic poles with soft iron cylinder/
semi cylindrical magnetic poles/
Use a radial magnetic field. For any one answer—01

(d) (i) NABI =
$$CO \rightarrow I = \frac{CO}{NAB}$$

ii) First, the coil would perform rotational sirople harmonic motion about that position and finally comes to rest. (1)

PART I B

P = Pressure of fluid = pressure energy parwint volumer...

1 pv = Kinetic energy of unit volume of fluid.

hpg = Potential energy of unit volume of fluid.

2. Velocity of air at point B = 30 + 2.1 = 32.1 ms - 0)

(iv) 1.
$$P_A + \frac{1}{2}PV_A^2 = P_0$$

$$P_B + \frac{1}{2}PV_B^2 = P_0$$

$$P_{A+\frac{1}{2}PV_A^2} = P_B + \frac{1}{2}PV_B^2$$

$$P_{A-P_B} = \frac{1}{2}P(V_B^2 - V_A^2)$$

$$= \frac{1}{2}x \cdot 3[(32\cdot1)^2 - (27\cdot9)^2] = 163\cdot8 P_0. \text{ (f)}$$

(iV)
$$\int s = ut + t at^2$$
 $t = \sqrt{0.36} = 0.6s$

| Some | S

$$Q = \frac{F}{m} = \frac{0.6}{150 \times 10^3} \text{ ms}^2$$

$$d = 0 + \frac{1}{2} \left(\frac{0.6}{150 \times 10^{-8}} \right) (0.6)^{2}$$
 (0)

To Tal 15 Makks

```
06)(4)
         V = \sqrt{\frac{1}{m}}
                        T = Tension in the sbring
                       m = mass permittlength or linear density of the storing
   (b) (i)
                          -- Fundamental vibration
                  S Sin
       350= f. (2x0.5) => f = 350 Hz
                                                                 (01)
       First over tone
       350 = f. (2x05) -> f = 700Hz
                                                                 (01
       (2nd overtone, f2=1050Hz not possible)
     (11) The maximum possible frequency for the 2nd overtone must
         be 1000 Hz
       VT = 1000 × 0:5x2) Equation (1)
        For initial sutuation :-
        Equation ()2 T = 1000 x 0.15
                                                              (0)
                      = 100 = 0.136 N
(c) (i) Density = mass
                            , A = area of cross section of the wire - (01)
               m = 8000A
        V 8000A 350
           -. A = 0.15
SODOX 3502 = 1.58x10 m2
                                                           10
       m = 8000A = 8000x 1.53x10 - 1.24x10 kgm-
 (iii) For longitudinal waves, V= \ F
                                                           (0)
                                                          (OI)
                         = 5000 mg
```

(01

$$h = \frac{P_f - P_i}{P_u 8} = \frac{2.38 \times 10^5 - 1 \times 10^5}{10^4}$$

2. For the air in the balloon :-

$$\frac{P_1 \ V_1}{T_1} = \frac{P_2 \ V_2}{T_2}$$

$$\frac{1 \times 10^5 \times 0.5}{300} = \frac{P_2 \times 0.21}{290}$$

$$P_{2} = \frac{0.5 \times 10^{5} \times 290}{0.21 \times 300}$$

$$= \frac{145 \times 10^{5}}{63} = 2.3 \times 10^{5} R_{0} = 0$$

- (c) 1. Adding additional load and explanation
 - 2. The body of bactona will be destroyed due to vast expansion of air within it.

01

$$O9)(9)(1) F_{E} = Eq.$$

(ii)
$$F_B = BqV$$

Not to escape

FE = FA

Eq = BqV

i.e.	
(C) (i) Circular motion (path)	- @
(ii) since the magnetic force is always perpendicular to The direction of motion/velocity.	, -@
(iii) Bog v = m v2 For using This equation	-ø
Bo q = m = For the substitution of & for V	-
m = Bobd	-@
(d) Based on the result obtained in (c) (iii) m oc d, hence the distance d increases as the mass m increases.	-(1)
(e) Isotopes of same element has same charge but differ mass. Hence their device can separate them.	ent TOTAL 15 MARKS
10)(0)(i)	- (0)
(i) $E = \frac{V}{d}$ $V = Ed = 2 \times 10^{3} \times 2 \times 10^{-2} = 40 \text{ V}$	-(1)
Vioworplate - Vuppor plate = 40V D - Vuppor plate = 40V	
Vupper plate = -40 V (Negative sign is essential)	
$(iii) E = \frac{6}{E}$	@
$E = \frac{QA}{E_0}$ $2 \times 10^3 = \frac{Q}{10 \times 10^2 \times 10 \times 10^2 \times 9 \times 10^{12}}$ For substitution	@
$Q = 2 \times 9 \times 10^{11}$ = 1.8 × 10 C	ം ബ
THE REPORT OF THE PERSON OF TH	

(b)
$$\dot{U}$$
 $EQ = ma$

$$\dot{a} = \frac{EQ}{m}$$

Biology

C.Maths

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

✓ t.me/Science Eagle ▶ YouTube / Science Eagle f 💆 🔘 /S cience Eagle S L

