高等数学作业

BII

吉林大学公共数学教学与研究中心 2018年2月

第一次作业

一、单项选择题

1.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{3xy}{x^2 + y^2} = ($$
).

- (A) $\frac{3}{2}$; (B) 0; (C) $\frac{6}{5}$; (D) 不存在.

2. 二元函数
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
在 $(0,0)$ 处 $(0,0)$

- (A) 连续, 偏导数存在;
- (B) 连续, 偏导数不存在;
- (C) 不连续, 偏导数存在;
- (D) 不连续, 偏导数不存在.

3. 设 $f(x, y) = y(x-1)^2 + x(y-2)^2$, 在下列求 f(1, 2)的方法中,不正确的一种是 ().

(A)
$$\boxtimes f(x,2) = 2(x-1)^2$$
, $f_x(x,2) = 4(x-1)$, $\boxtimes f_x(1,2) = 4(x-1)|_{x=1} = 0$;

(B) 因
$$f(1,2)=0$$
, 故 $f_x(1,2)=0'=0$;

(C)
$$\boxtimes f_x(x, y) = 2y(x-1) + (y-2)^2$$
, $\boxtimes f_x(1, 2) = f_x(x, y)|_{\substack{x=1\\y=2}} = 0$;

(D)
$$f_x(1,2) = \lim_{x \to 1} \frac{f(x,2) - f(1,2)}{x-1} = \lim_{x \to 1} \frac{2(x-1)^2 - 0}{x-1} = 0$$
.

- 4. 若 f(x, y) 的点 (x_0, y_0) 处的两个偏导数都存在,则 ().
 - (A) f(x, y) 在点 (x_0, y_0) 的某个邻域内有界;
 - (B) f(x, y) 在点 (x_0, y_0) 的某个邻域内连续;
 - (C) $f(x, y_0)$ 在点 x_0 处连续, $f(x_0, y)$ 在点 y_0 处连续;
 - (D) f(x, y) 在点 (x_0, y_0) 处连续.

5. 设
$$z = f(x, y)$$
, $\frac{\partial^2 z}{\partial y^2} = 2$, 且 $f(x, 0) = 1$, $f_y(x, 0) = x$, 则 $f(x, y)$ 为 ().

(A)
$$1-xy+x^2$$
; (B) $1+xy+y^2$; (C) $1-x^2y+y^2$; (D) $1+x^2y+y^2$.

二、填空题

1.
$$z = \frac{\sqrt{4x - y^2}}{\ln(1 - x^2 - y^2)}$$
的定义域为______.

2.
$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{1 - \sqrt{1 - xy}}{xy} = \underline{\hspace{1cm}}$$

5. 设
$$z = x^y$$
,则 $\frac{\partial^2 z}{\partial x \partial y} =$ ______.

三、计算题

1.计算
$$\lim_{\substack{x \to \infty \\ y \to 1}} \left(1 + \frac{y}{x+y} \right)^{x+y}$$

2. 讨论函数
$$f(x, y) = \begin{cases} \frac{x^2 + xy}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 的连续性.

3. 设
$$f(x, y) = \sqrt{x^2 |y|}$$
, 求 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$.

4. 求 $u = \int_{xz}^{yz} e^{t^2} dt$ 的偏导数.

5. 讨论函数 $f(x, y) = \sqrt[3]{x^3 + y^3}$ 在(0, 0) 点的可微性.

6. 证明函数 $f(x,y) = \sqrt{|xy|}$ 在点(0,0)处: (1) 连续; (2) 偏导数存在; (3) 不可微.

第二次作业

学院 班级 姓名 学号

一、单项选择题

1. 设 $z = \frac{y}{f(x^2 - v^2)}$, 其中 f(u) 为可导函数,则 $\frac{\partial z}{\partial r} = ($).

(A)
$$-\frac{2xy}{f^2(x^2-y^2)}$$
;

(A)
$$-\frac{2xy}{f^2(x^2-y^2)}$$
; (B) $-\frac{2xyf'(x^2-y^2)}{f^2(x^2-y^2)}$;

(C)
$$-\frac{yf'(x^2-y^2)}{f^2(x^2-y^2)}$$
;

(C)
$$-\frac{yf'(x^2-y^2)}{f^2(x^2-y^2)}$$
; (D) $-\frac{f(x^2-y^2)-yf'(x^2-y^2)}{f^2(x^2-y^2)}$.

2. 设方程 F(x-y,y-z,z-x)=0 确定 z 是 x, y 的函数, F 是可微函数, 则 $\frac{\partial z}{\partial x}=$).

(A)
$$-\frac{F_1'}{F_3'}$$
;

(B)
$$\frac{F_1'}{F_3'}$$
;

(C)
$$\frac{F_x - F_z}{F_y - F_z}$$

(A)
$$-\frac{F_1'}{F_3'}$$
; (B) $\frac{F_1'}{F_3'}$; (C) $\frac{F_x - F_z}{F_y - F_z}$; (D) $\frac{F_1' - F_3'}{F_2' - F_3'}$.

3. 设x = x(y, z), y = y(z, x), z = z(x, y)都由方程F(x, y, z) = 0所确定的隐函数,则下 列等式中,不正确的一个是(

(A)
$$\frac{\partial x}{\partial y} \frac{\partial y}{\partial x} = 1$$
;

(B)
$$\frac{\partial x}{\partial z} \frac{\partial z}{\partial r} = 1$$
;

(C)
$$\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x} = 1$$
;

(D)
$$\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x} = -1$$
.

4. 设u = u(x, y), v = v(x, y)都是可微函数,C为常数,则在下列梯度运算式中,有 错误的是().

(A)
$$\nabla C = 0$$
;

(B)
$$\nabla (Cu) = C\nabla u$$
;

(C)
$$\nabla(u+v) = \nabla u + \nabla v$$
;

(D)
$$\nabla (uv) = v\nabla u + u\nabla v$$
.

5. u = f(r), 而 $r = \sqrt{x^2 + y^2 + z^2}$, 且函数 f(r) 具有二阶连续导数,则 $\frac{\partial^2 u}{\partial r^2}$ + $\frac{\partial^2 u}{\partial v^2} + \frac{\partial^2 u}{\partial z^2} = ().$

(A)
$$f''(r) + \frac{1}{r} f'(r)$$
;

(A)
$$f''(r) + \frac{1}{r}f'(r)$$
; (B) $f''(r) + \frac{2}{r}f'(r)$;

(C)
$$\frac{1}{r^2}f''(r) + \frac{1}{r}f'(r)$$

(C)
$$\frac{1}{r^2}f''(r) + \frac{1}{r}f'(r)$$
; (D) $\frac{1}{r^2}f''(r) + \frac{2}{r}f'(r)$.

二、填空题

- 1. 已知 f(1,2) = 4, df(1,2) = 16dx + 4dy, df(1,4) = 64dx + 8dy, 则 z = f(x, f(x, y)) 在点 (1,2) 处对 x 的偏导数为_____.
- 2. 由方程 $xy yz + zx = e^z$ 所确定的隐函数 z = z(x, y) 在点(1, 1) 处的全微分
 - 3. $r = \sqrt{x^2 + y^2}$ 在点 (0,0) 处沿 x 轴正向的方向导数为_____.
 - 4. 函数 $u = x^2 + y^2 + z^2 xy + 2yz$ 在点 (-1, 2, -3) 处的方向导数的最大值等于_____.

三、计算与解答题

1. 设*f* 是 $C^{(2)}$ 类函数, $z = f(e^{xy}, x^2 - y^2)$, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

 $2. \quad z = (1 + xy)^y, \quad \Re dz.$

3. 设f, φ 是 $C^{(2)}$ 类函数, $z = yf\left(\frac{x}{y}\right) + x\varphi\left(\frac{y}{x}\right)$, 证明:

(1)
$$x \frac{\partial^2 z}{\partial x^2} + y \frac{\partial^2 z}{\partial x \partial y} = 0$$
; (2) $x^2 \frac{\partial^2 z}{\partial x^2} - y^2 \frac{\partial^2 z}{\partial y^2} = 0$.

6. 设 $u = f(x, y, z), \varphi(x^2, e^y, z) = 0, y = \sin x$, 其中求f, φ 是 $C^{(1)}$ 类函数,求 $\frac{\mathrm{d}u}{\mathrm{d}x}$.

7. 求函数 $z = \ln(x + y)$ 的点(1, 2)处沿着抛物线 $y^2 = 4x$ 的该点切线方向的方向导数.

第三次作业

一、单项选择题

- 1. 在曲线 x = t, $y = -t^2$, $z = t^3$ 的所有切线中,与平面 x + 2y + z = 4 平行的切线().
- (A) 只有一条; (B) 只有两条; (C) 至少有三条; (D) 不存在.
- 2. 设函数 f(x, y) 在点(0, 0)附近有定义,且 $f_x(0, 0) = 3$, $f_y(0, 0) = 1$,则().
 - (A) dz(0,0) = 3dx + dv;
 - (B) 曲面 z = f(x, y) 在点 (0, 0, f(0, 0)) 的法向量为 $\{3, 1, 1\}$;
 - (C) 曲线 $\begin{cases} z = f(x, y), \\ y = 0 \end{cases}$ 在点 (0, 0, f(0, 0)) 的切向量为 $\{1, 0, 3\}$;
 - (D) 曲线 $\begin{cases} z = f(x, y), \\ y = 0 \end{cases}$ 在点(0, 0, f(0, 0)) 的切向量为{3, 0, 1}.
- 3. 曲面 z = x + f(y z) 的任一点处的切平面 ().
- (A)垂直于一定直线; (B)平等于一定平面; (C)与一定坐标面成定角; (D)平行于一定直线.
- 4. 设 u(x,y) 在平面有界闭区域 D 上是 $C^{(2)}$ 类函数,且满足 $\frac{\partial^2 u}{\partial r \partial v} \neq 0$ 及 $\frac{\partial^{2u}}{\partial x^{2}} + \frac{\partial^{2}u}{\partial y^{2}} = 0 , \quad \text{则 } u(x, y) \text{ 的 } ().$
 - (A) 最大值点和最小值点必定都在D的内部;
 - (B) 最大值点和最小值点必定都在 D 的边界上:
 - (C) 最大值点在D的内部,最小值点在D的边界上;
 - (D) 最小值点在 D 的内部,最得到值点在 D 的边界上.

二、填空题

- 1. 如果曲面 xyz = 6 在点 M 处的切平面平行于平面 6x 3y + 2z + 1 = 0 ,则切点 M 的 坐标是
 - 2. 曲线 $\begin{cases} x^2 + 4y^2 + 9z^2 = 14, \\ x + y + z = 1 \end{cases}$ 在点 (1, 1, -1) 处的法平面方程是______.
 - 3. $z = x^2 + v^2$ 在条件 x + v = 1 下的极小值是 . .
- 4. 函数 $u = \sqrt{x^2 + y^2 + z^2}$ 在点 M(1,1,1) 处沿曲面 $2z = x^2 + y^2$ 在该点的外法线方向的 方向导数是 _____

三、计算题

1. 求曲线
$$\begin{cases} x^2 + y^2 + z^2 = 6, \\ z = x^2 + y^2 \end{cases}$$
 在点 $(1, 1, 2)$ 处的切线方程.

2. 过直线 $\begin{cases} 10x + 2y - 2z = 27, \\ x + y - z = 0 \end{cases}$ 作曲面 $3x^2 + y^2 - z^2 = 27$ 的切平面,求其方程.

3. 证明曲面 $x^{2/3} + y^{2/3} + z^{2/3} = a^{2/3}(a > 0)$ 上任意点处的切平面在各个坐标轴上的截距平方和等于 a^2 .

4. 求
$$f(x, y) = x^4 + y^4 - 2x^2 - 2y^2 + 4xy$$
 的极值

5. 求函数 $f(x,y) = x^2 + y^2 - 12x + 16y$ 在区域 $D = \{(x,y) | x^2 + y^2 \le 25\}$ 上的最大值和最小值.

在过点 体积最小	的所有平同	面中,求	一平面,	使之与三	[个坐标平]	面所围四面	面体

第四次作业

一、单项选择题

1. 设 f(x, y) 连续,且 $f(x, y) = xy + \iint_D f(x, y) dxdy$, 其中 D 是由 y = 0, $y = x^2$, x=1所围区域,则 f(x, y) 等于(

- (B) 2xy; (C) $xy + \frac{1}{8}$; (D) xy + 1.

2. 设 $D \in xOy$ 平面上以(1, 1), (-1, 1)和(-1, -1)为项点的三角形区域, $D_1 \in D$ 的第一 象限部分,则 $\iint (xy + \cos x \sin y) dxdy$ 等于().

- (A) $2\iint_{D_1} \cos x \sin y dx dy$; (B) $2\iint_{D_1} xy dx dy$; (C); $4\iint_{D_1} (xy + \cos x \sin y) dx dy$ (D) 0.

3. 设平面区域 $D:1 \le x^2 + y^2 \le 4$, f(x,y) 是在区域 D 上的连续函数,则 $\iint_{\mathbb{R}} f\left(\sqrt{x^2+y^2}\right) dxdy \ \ \ \ \ \ \ \ \ \ \ \).$

- (A) $2\pi \int_{1}^{2} rf(r) dr$; (B) $2\pi \left[\int_{0}^{2} rf(r) dr + \int_{0}^{1} rf(r) dr \right]$; (C) $2\pi \int_{1}^{2} rf(r^{2}) dr$; (D) $2\pi \left[\int_{0}^{2} rf(r^{2}) dr + \int_{0}^{1} rf(r^{2}) dr \right]$.

4. 设有空间区域 $\Omega_1: x^2 + y^2 + z^2 \le R^2, z \ge 0$ 及 $\Omega_2: x^2 + y^2 + z^2 \le R^2, x \ge 0$, $y \ge 0$,

- (A) $\iiint_{\Omega_{1}} x dV = 4 \iiint_{\Omega_{2}} x dV ;$ (B) $\iiint_{\Omega_{1}} y dV = 4 \iiint_{\Omega_{2}} y dV ;$ (C) $\iiint_{\Omega_{1}} z dV = 4 \iiint_{\Omega_{2}} z dV ;$ (D) $\iiint_{\Omega_{1}} xyzdV = 4 \iiint_{\Omega_{2}} xyzdV .$

二、填空题

1. 积分 $\int_{0}^{2} dx \int_{0}^{2} e^{-y^{2}} dy =$ ______.

2. 交换积分次序: $\int_0^1 dx \int_{-\sqrt{x}}^{\sqrt{x}} f(x, y) dy + \int_1^4 dx \int_{x-2}^{\sqrt{x}} f(x, y) dy =$ _______.

3. 设区域 D 为|x|+|y|≤1,则 $\iint_{\Omega} (|x|+|y|) dx dy = _____.$

4. 设区域 D 为 $x^2 + y^2 \le R^2$,则 $\iint_{\mathbb{R}} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right) dxdy = \underline{\hspace{1cm}}$.

5. 直角坐标中三次积分 $I = \int_{-1}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} dy \int_{0}^{x^2+y^2} f(x,y,z) dz$ 在柱面坐标中先 z 再 r 后

三、计算题

1.
$$\iint |x^2 + y^2 - 4| d\sigma$$
, 其中 D 为圆域 $x^2 + y^2 \le 9$

2. 计算 $\iint_{D} \frac{x \sin y}{y} dxdy$, 其中 D 是由 $y = x^2$ 和 y = x 所围成的区域.

3. \(\dip \iiint_D \iint_X (x^2 + y^2) \dxdy\), \(\dip \mu D = \{(x, y) | 0 \le x \le 2, \sqrt{2x - x^2} \le y \le \sqrt{4 - x^2}\}\).

4. 计算 $\iint_{\Omega} xy^2z^3\mathrm{d}V$,其中 Ω 是由曲面 z=xy 与平面 y=x,x=1 和 z=0 所围成的闭或区域.

5. $I = \iint_{\Omega} (x^2 + y^2) dv$, Ω 是由曲线 $y^2 = 2z$, x = 0 绕 Z 轴旋转一周而成的曲面与

两平面 Z=2, Z=8 所围的立体。

6.. 设
$$f(x,y)$$
 在 $x^2 + y^2 \le 1$ 上连续,求证: $\lim_{R \to 0} \frac{1}{R^2} \iint_{x^2 + y^2 \le R^2} f(x,y) d\sigma = \pi f(0,0)$

四、证明题

设函数 f(x) 在闭区间 [a,b] 上连续且恒大于零,证明

$$\int_a^b f(x) dx \int_a^b \frac{dx}{f(x)} \ge (b-a)^2.$$

第五次作业

一、单项选择题

1. 设 L 是圆周 $x^2 + y^2 = a^2$,则 ○ **i**s = ().

(A) $2\pi a^n$; (B) $2\pi a^{n+1}$; (C) $2\pi a^{2n}$; (D) $2\pi a^{2n+1}$.

2. 设 L 是由(0,0), (2,0), (1,1)三点连成的三角形边界曲线,则 \circ ().

(A) $\sqrt{2}$; (B) $2+\sqrt{2}$; (C) $2\sqrt{2}$; (D) $2+2\sqrt{2}$.

3. 设Σ是锥面 $x^2 + y^2 = z^2$ 在 $0 \le z \le 1$ 的部分,则 $\iint (x^2 + y^2) dS = ($).

(A) $\int_0^{\pi} d\theta \int_0^1 r^3 dr$;

(B) $\int_0^{2\pi} \mathrm{d}\theta \int_0^1 r^3 \mathrm{d}r;$

(C) $\sqrt{2} \int_{0}^{\pi} d\theta \int_{0}^{1} r^{3} dr$;

(D) $\sqrt{2} \int_{0}^{2\pi} d\theta \int_{0}^{1} r^{3} dr$.

4. 设 Σ 为 x^2 + y^2 + z^2 = a^2 (z \geq 0), Σ ₁是 Σ 在第一卦限中的部分,则有(

(A) $\iint_{\Sigma} x dS = 4 \iint_{\Sigma} x dS ;$

(B) $\iint_{\Sigma} y dS = 4 \iint_{\Sigma} x dS;$

(C) $\iint_{\Sigma} z dS = 4 \iint_{\Sigma} x dS;$

(D) $\iint_{S} xyz dS = 4 \iint_{S} xyz dS.$

二、填空题

2. $L: \frac{x^2}{4} + \frac{y^2}{2} = 1$,周长为a,则 o_x $xy + 4y^2)ds = _____.$

3 . 设 Γ 表 示 曲 线 弧 $x = \frac{\sqrt{3}}{2}\cos t, y = \frac{\sqrt{3}}{2}\sin t, z = \frac{t}{2}, (0 \le t \le 2\pi)$, $\int_{\Gamma} (x^2 + y^2 + z^2) ds = \underline{\hspace{1cm}}$

4. 设Σ是柱面 $x^2 + y^2 = a^2$ (a > 0) 在 $0 \le z \le h$ 之间的部分,则 $\iint_{\Sigma} x^2 dS = _____.$

5. 设 Σ 是 上 半 椭 球 面 $\frac{x^2}{9} + \frac{y^2}{4} + z^2 = 1$ ($z \ge 0$) , 已 知 Σ 的 面 积 为 A , 则 $\iint (4x^2 + 9y^2 + 36z^2 + xyz) dS = \underline{\hspace{1cm}}.$

三、计算题

1. 计算 \circ , 其中 L 为圆周 $x^2+y^2=a^2$, 直线 y=x 及 x 轴在第一象限内所围成的扇形的整个边界.

2. o , 其中
$$\Gamma$$
:
$$\begin{cases} x^2 + y^2 + z^2 = a^2, \\ x + y + z = 0. \end{cases}$$
.

3.
$$I = \iint_{\Sigma} |xyz| dS$$
 $\Sigma : z = x^2 + y^2$ 被 $z = 1$ 所截下部分

4. 求
$$I = \iint_{S} \frac{dS}{x^2 + y^2 + z^2}$$
 S: 介于 Z=0, Z=H 之间的 $x^2 + y^2 = R^2$

四、应用题

1. 求柱面 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ 被球面 $x^2 + y^2 + z^2 = 1$ 包围部分的面积S。

.

2. 求面密度 $\rho = 1$ 的均匀半球壳 $x^2 + y^2 + z^2 = a^2 \ (z \ge 0)$ 关于 z 轴的转动惯量.

第六次作业

学院 班级 姓名 学号 一、单项选择题 1. 设 L 是圆周 $x^2 + y^2 = a^2$ (a > 0) 负向一周,则曲线积分 (B) $-\frac{\pi a^4}{2}$; (C) $-\pi a^4$; (D) πa^4 . (A) 0; 2. 设 L 是椭圆 $4x^2 + y^2 = 8x$ 沿逆时针方向,则曲线积分 $\gamma = ($). (A) 2π ; (B) π ; (C) 1; (D) 0.3. 设 Σ 是球面 $x^2 + y^2 + z^2 = a^2$ 的外侧,则曲面积分 $\bigcirc \frac{\mathrm{d}z\mathrm{d}x + z\mathrm{d}x\mathrm{d}y}{(x + y^2 + z^2)^{\frac{3}{2}}} = ().$ (C) 2π ; (D) 4π . (A) 0;(B) 1: 4. 已知 $\frac{(x+ay)dy-ydx}{(x+v)^2}$ 为某函数的全微分,则a=()正确. (A) -1; (B) 0;(C) 2 (D) 1. 二、填空题 2. 设 L 为封闭折线|x|+|y|=1 正向一周,则 \circ os(x+y)dy=_____. 3. 设 L 为 $y = \int_0^x \tan t dt$ 从 x=0 到 $x = \frac{\pi}{4}$ 一段弧,将 $\int_L P(x,y) dx + Q(x,y) dy$ 化为第一型 4. 设 Σ 是 平 面 $3x+2y+2\sqrt{3}z=6$ 在 第 一 卦 限 部 分 的 下 侧 , 则 I= $\iint P dy dz + Q dz dx + R dx dy$ 化为对面积的曲面积分为 $I = \underline{\hspace{1cm}}$. 5. 设 Σ 为球面 $x^2 + y^2 + z^2 = a^2$, 法向量向外,则〇 6. 设 $u = x^2 + 2y + yz$, 则 div(gradu) = _____.

三、计算题

1. 计算 $\int_L y^2 dx - x dy$, 其中 L 是抛物线 $y = x^2$ 上从点 A(1,1) 到 B(-1,1) , 再沿直线到 C(0,2) 的曲线.

2. 计算 $\int_L (x^2-y) dx - (x+\sin y) dy$,其中 L 是圆周 $y = \sqrt{2x-x^2}$ 上从 A(2,0) 到 O(0,0) 的一段弧.

3. 设 f(x) 在 $(-\infty, +\infty)$ 内具有一阶连续导数,L 是半平面 (y>0) 内的有向分段光滑曲线,其起点为 (a,b) ,终点为 (c,d) . 证明

$$I = \int_{L} \frac{1}{y} [1 + y^{2} f(xy)] dx + \frac{x}{y^{2}} [y^{2} f(xy) - 1] dy$$

- (1) 证明曲线积分I与路径L无关
- (2) 当ab = cd时,求I的值

4. 设力 $F = \frac{-y\mathbf{i} + x\mathbf{j}}{y^2}$, 证明力 F 在上半平面内所作的功与路径无关,并求从点 A(1,2) 到点 B(2,1) 力 F 所作的功.

5. 计算 $I = \iint_{\Sigma} 2x^3 dy dz + 2y^3 dz dx + 3(z^2 - 1) dx dy$, 其中 Σ 是曲面 $z = 1 - x^2 - y^2$ $(z \ge 0)$ 的上侧.

6. 计算 $\int_{\Sigma} (z^2 + x) dy dz - z dx dy$, 其中 \sum 是抛物面 $z = \frac{1}{2} (\chi^2 + y^2)$ 介于平面 z = 0 与 z = 2 之间 部分的下侧.

阶段测试题

学院	王级	姓名	学号						
一、单项选择题(每小题 3 分,满分 18 分)									
1. 二元函数 $z = f(z_0, y_0)$ 可微的 (续,且 $f'_x(x_0,y_0)$ 、	$f_y'(x_0, y_0)$ 存在是 $z = f(x, y)$						
			(D) 非充分非必要 $z = f(x, y)$ 在 (0, 0) 处,						
	(B		f(x,y) 不一定连续						
3. 设 L 为椭圆 $\frac{x^2}{a^2}$ +	$\frac{y^2}{b^2} = 1$ 的顺时针充	7向,则○	$(y-x)\mathrm{d}y = ().$						
(A) $2\pi ab$ 4. 设D由 $y = \sqrt{1-x}$									
		(C) 2/3 (z≥0) 围成,则	(D) 4/3 月三重积分∭(x² + y² + z²)dV						
化为柱面坐标系下三次积分为 ().									
(A) $\int_0^{2\pi} d\theta \int_0^2 r dr$	$\int_{r^2}^{\sqrt{2-r^2}} (r^2 + z^2) dz$	(B) $\int_0^{2\pi} \mathrm{d}\theta \int_0^{\sqrt{2}} r \mathrm{d}\theta$	$\mathrm{d}r \int_{r^2}^{\sqrt{2-r^2}} (r^2 + z^2) \mathrm{d}z$						
(C) $\int_0^{2\pi} d\theta \int_0^1 r dr \int_0^1 r dr$	$\int_{r^2}^{\sqrt{2-r^2}} 2dz$	(D) $\int_0^{2\pi} d\theta \int_0^1 rd\theta$	$r \int_{r^2}^{\sqrt{2-r^2}} (r^2 + z^2) \mathrm{d}z$						
6. 设 Ω : x^2+y^2+z	$z^2 \le 1. \ \Sigma : x^2 + y^2 + $	$z^2 = 1. r : x^2 + y^2 + $	$z^2 = 1$, $x = 0 (y \ge 0)$ \pm (0,						
0, -1) 到 (0, 0, 1) 则 (A) $\iiint_{\Omega} z dV = 0$			$(D) \int_{r} z dy = 0$						
二、填空题(每小题 3 分,满分 21 分)									
$1. \Box 知 f(x,y) = e^{3x}$	$\ln 2y \ , \ \ \bigcup f_x'(0,\frac{1}{2})$)=,	$f_{yy}''(0,1) = $						

2. $u = xy^2 + z^3 - xyz$ 在点 M(1,1,1) 处沿 $\bar{l} =$ ______方向的方向导数最大,方向导数的最大为_____.

3 . 读
$$u = \frac{1}{2} [\phi(x+at) + \phi(x-at)] + \frac{1}{2a} \int_{x-at}^{x+at} f(t) dt$$
 , 其中 $f, \phi \in C^{(2)}$, 则
$$\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} = \underline{\hspace{1cm}}.$$

- 4. 设 Ω 为由 $z = \sqrt{x^2 + y^2}$,z = 2 围成的空间区域,a 为常数,则 $\iint_{\Omega} a dV = \underline{\qquad}$.
- 5. L 为上半圆周 $y = \sqrt{1-x^2}$, 则 $\int_{L} (x+y)^2 e^{x^2+y^2} ds =$ ______.
- 6. 设 Σ 是柱面 $x^2 + y^2 = 1$ 在 $0 \le z \le 2$ 之间的部分,则 $\iint_{\Sigma} y^2 dS =$ _______.
- 7. 设 $I = \int_0^{\frac{\sqrt{2}}{2}R} dx \int_0^x f(x,y) dy + \int_{\frac{\sqrt{2}}{2}R}^R dx \int_0^{\sqrt{R^2-x^2}} f(x,y) dy$, 改变积分次序 I =_______; 化为极坐标下二次积分为 I =_______.

三、解答题(每小题8分,满分48分)

1. $z = f(2x - y, y \sin x) + xg(e^x \ln y)$, 其中 f 具有二阶连续偏导数,g 具有二阶导数。求 $\frac{\partial^2 z}{\partial x \partial y}$.

2. 已知 $y = e^{ty} + x$,而 t 是由方程 $y^2 + t^2 - x^2 = 1$ 确定的 x, y 的函数,求 $\frac{\mathrm{d}y}{\mathrm{d}x}$.

3. 计算 $\iint_{D} \frac{\cos y}{y} dxdy$, 其中 D 由 $y = \sqrt{x}$, y = x 围成.

4. 计算 $I=\iint_{\Sigma}\frac{1}{z}\mathrm{d}S$,其中 Σ 为锥面 $z=\sqrt{x^2+y^2}$ 被柱面 $x^2+y^2=2x$ 截得的有限部分.

5. 计算曲线积分 $\int_{\mathit{ONA}} (2x\sin y - y) \mathrm{d}x + (x^2\cos y - 1) \mathrm{d}y$,其中 ONA 为连接点 $\mathrm{O}(0,\ 0)$ 和 $\mathit{A}(2,\frac{\pi}{2})$ 的任何路径,但与直线 OA 围成的图形 ONAO 有定面积 π .

6. 设 f(x) 连续, $F(t) = \iint_{\Omega} [z^2 + f(x^2 + y^2)] dV$, 其中 $\Omega : 0 \le z \le h, x^2 + y^2 \le t^2$, 求 $\frac{dF}{dt}, \lim_{t \to 0^+} \frac{F(t)}{t^2}.$

四、证明题(满分6分)

求证 \bigcirc ,并由此估计 \bigcirc ,并由此估计 \bigcirc ,对 $z^2+y^2+z^2=a^2$ 与平面 $z^2+y^2+z^2=a^2$ 与平面 $z^2+y^2+z^2=a^2$ 与平面 $z^2+y^2+z^2=a^2$ 与平面 $z^2+y^2+z^2=a^2$ 的交线并已取定方向, $z^2+z^2=a^2$ 函数.

五、应用题(满分7分)

求内接于椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$,且棱平行于对称轴的体积最大的长方体.

第七次作业

一、单项选择题

1. 设 $0 < a_n < \frac{1}{n} (n = 1, 2, 3, \dots, 则下列级数中肯定收敛的是 ().$

- (A) $\sum_{n=1}^{\infty} a_n$; (B) $\sum_{n=1}^{\infty} (-1)^n a_n$; (C) $\sum_{n=1}^{\infty} \sqrt{a_n}$; (D) $\sum_{n=1}^{\infty} \frac{a_n}{n}$.

2. 若级数 $\sum_{n=0}^{\infty} u_n$, $\sum_{n=0}^{\infty} v_n$ 都发散, 则 ().

- (A) $\sum_{n=0}^{\infty} (u_n + v_n)$ 发散;
- (B) $\sum_{n=1}^{\infty} u_n v_n$ 发散;
- (C) $\sum_{n=1}^{\infty} (|u_n| + |v_n|)$ 发散; (D) $\sum_{n=1}^{\infty} (u_n^2 + v_n^2)$ 发散.

3. 设级数 $\sum_{n=1}^{\infty} u_n$ 收敛,则必收敛的级数为 ().

- (A) $\sum_{n=0}^{\infty} (-1)^n \frac{u_n}{n}$;
- (B) $\sum_{n=1}^{\infty} u_n^2$;
- (C) $\sum_{n=1}^{\infty} (u_{2n-1} u_{2n});$
- $(D) \sum_{n=0}^{\infty} (u_n + u_{n+1}).$

4. 设 a 为常数,则级数 $\sum_{1}^{\infty} \left(\frac{\sin \alpha}{n^2} - \frac{1}{\sqrt{n}} \right)$ ().

- (A)绝对收敛; (B)条件收敛; (C)发散; (D)收敛性取决于 a 的

值.

5. 已知函数 $\sum_{n=0}^{\infty} a_n (x-1)^n$ 在 x = -2 处收敛,则在 x = 0 处,该级数为 ().

- (A) 发散; (B) 条件收敛; (C) 绝对收敛; (D) 收敛性不定.

6. 幂级数 $\sum_{n=2^{n}}^{\infty} \frac{1}{n^{2^{n}}} x^{n}$ 的收敛域是 ().

- (A) $\left[-\frac{1}{3}, \frac{1}{3}\right]$; (B) $\left[-\frac{1}{3}, \frac{1}{3}\right]$; (C) $\left[-3, 3\right]$; (D) $\left[-3, 3\right]$.

7. 2^x 展开为x的幂级数是().

- (A) $\sum_{n=0}^{\infty} \frac{x^n}{n!}$; (B) $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n$; (C) $\sum_{n=0}^{\infty} \frac{(x \ln 2)^n}{n!}$; (D) $\sum_{n=0}^{\infty} \frac{(x \ln 2)^n}{n!}$.

二、填空题

- 2. 设幂级数 $\sum_{n=1}^{\infty} a_n x^n$ 的收敛半径为 2,则幂级数 $\sum_{n=1}^{\infty} n a_n (x+1)^{n+1}$ 的收敛区间为_____.
- 3. 幂级数 $\sum_{n=1}^{\infty} \frac{n}{2^n + (-3)^n} x^{2n}$ 的收敛半径为______.
- 4. 设级数 $\sum_{n=1}^{\infty} \frac{1}{n^{2+p}}$ 收敛,则常数 p 的最大取值范围是______
- 5. 设函数 $f(x) = x^2, x \in [0,1]$,而 $s(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x, \quad x \in (-\infty, +\infty)$,其中 $a_n = 2 \int_0^1 f(x) \cos n\pi x dx, \quad n = 0, 1, 2, \cdots, \quad \text{则 } s(-1) \text{ 的值为} \underline{\hspace{1cm}}.$

三、计算题

1. 设正项数列 $\{a_n\}$ 单调减少,且 $\sum_{n=1}^{\infty} (-1)^n a_n$ 发散,试问级数 $\sum_{n=1}^{\infty} \left(\frac{1}{a_n+1}\right)^n$ 是否收敛?并说明理由.

2. 求级数
$$\sum_{n=1}^{\infty} \left(\frac{\ln^n 3}{2^n} + \frac{1}{n(n+1)} \right)$$
的和.

3. 讨论级数
$$\sum_{n=1}^{\infty} \frac{a^n n!}{n^n}$$
 的敛散性.

4. 讨论交错级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot (\sqrt[n]{a} - 1) (a > 0, a \neq 1)$ 是绝对收敛还是条件收敛.

5. .求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (x-4)^n$ 收敛区间及和函数 S(x).

6. 将函数 $f(x) = \frac{1}{x^2 - 5x + 6}$ 在 x = 4 点展成幂级数

7. 求幂级数 $\sum_{n=1}^{\infty} nx^n$ 的和函数.

8. 设 f(x) 是周期为 2 的周期函数,且 $f(x) = \begin{cases} x, & 0 \le x \le 1, \\ 0, & 1 < x < 2, \end{cases}$ 写出 f(x) 的傅里叶级数与其和函数,并求级数 $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$ 的和.

9. 设
$$a_1 = 2$$
, $a_{n+1} = \frac{1}{2}(a_n + \frac{1}{a_n})$ 证明: ① $\lim_{n \to \infty} a_n$ 存在 ② $\sum_{n=1}^{\infty} (\frac{a_n}{a_{n+1}} - 1)$ 收敛.

第八次作业

学院_		姓名		学号
_	、单项选择题			
1.	下列各组函数可以构成	成微分方程 y"+2y'+∫	v=0 的基本解组	的是().
	(A) $\sin x, x \sin x$;	(B) e^x, xe^x ;	(C) e^{-x} , xe^{-x} ;	(D) e^{x}, e^{-x} .
2.	若 y_1, y_2 是方程 $y' + p$	$f(x)y = q(x)(q(x) \neq 0)$ is]两个解,要使 a	$y_1 + \beta y_2$ 也是該方程的
解 , α,	β应满足关系式 ().		
	(A) $\alpha + \beta = 1$;	(B) $\alpha + \beta = 0$;	(C) $\alpha\beta = 1$;	(D) $\alpha\beta = 0$.
3.	设线性无关的函数。	y ₁ (x), y ₂ (x), y ₃ (x) 均是	:方程 y" + p(x)y'	y'+q(x)y=f(x)的解,
C_1, C_2	是任意常数,则该方程	的通解是 ().		
	(A) $C_1 y_1 + C_2 y_2 + y_3$;			
	(B) $C_1 y_1 + C_2 y_2 - (C_1)$	$+C_{2})y_{3};$		
	(C) $C_1 y_1 + C_2 y_2 - (1 - \frac{1}{2})^2$	$C_1 - C_2 y_3$;		
	(D) $C_1 y_1 + C_2 y_2 + (1 - C_1 y_1 + C_2 y_2)$	$(C_1-C_2)y_3.$		
4.	若 2 是微分方程 y"+	$py' + qy = e^{2x}$ 的特征	方程的一个单根,	,则该微分方程必有一
	$y^* = ($).	., .,		
	(A) Ae^{2x} ; (B) A	xe^{2x} ; (C) Ax^2e^{2x}	$(D) xe^{2x}$.	
5.	方程 $y'' - 3y' + 2y = e^x$	cos 2x 的特解形式为().	
	$(A) e^x (C_1 \cos 2x + C_2)$	$\sin 2x$); (B) $C_1 e^x \cos 2x$;	
	(C) $xe^x(C_1\cos 2x + C_2\cos 2x)$	$\sin 2x$; (D) $C_2 e^x \sin 2x$.	
6.	$ \forall y_1 = 2\cos x, y_2 = \sin x $	x 为特解的二阶常系数	数齐次线性微分为	方程是 ().
	(A) $y'' - y = 0$;) $y'' + y = 0$;	
	(C) $y'' - y' = 0$;	((D) $y'' + y' = 0$.	
=	、填空题			

1. 当 n= 时,方程 $y'+p(x)y=q(x)y^n$ 为一阶线性微分	议分力 程。
---	--------

- 2. 常微分方程 $(3x^2 + 6xy^2)dx + (6x^2y + 4y^2)dy = 0$ 的通解是______.
- 3. 若 y_1, y_2, y_3 是二阶非齐次线性微分方程 y'' + p(x)y' + q(x)y = f(x) 的线性无关的解,则用 y_1, y_2, y_3 表达此方程的通解为______.
 - 4. 微分方程 $2y^{(4)} 2y^{(3)} + 5y'' = 0$ 的通解为______.
 - 5. 微分方程 y'' y' = 1 的通解 $y = ____.$
 - 6. 以 $y = 2e^x \cos 3x$ 为一个特解的二阶常系数线性微分方程为 . .
 - 7. $y'' 5y' + 6y = e^x \sin x + 6$ 的一个特解形式为______.

三、计算题

1. 求解微分方程 $xy' = y(\ln y - \ln x)$.

2. 求解微分方程 $(y^2 - 6x)y' + 2y = 0$

3. 求解微分方程 $y'' + y'^2 = 1, y|_{x=0} = 0, y'|_{x=0} = 1.$

4. 求解微分方程 $y'+x\sin 2y = xe^{-x^2}\cos^2 y$, $y(0) = \frac{\pi}{4}$

5. 已知曲线 y = f(x) 经过原点,在原点的切线平行于直线 2x - y - 5 = 0,且 y = f(x) 满足微分方程 $y'' - 6y' + 9y = e^{3x}$,求此曲线的方程.

6. 求微分方程 $y'' - y = \sin^2 x$ 的通解.

•

7. 求解
$$y'' - 3y' + 2y = 2e^x$$
 满足 $y(0) = 1, y'(0) = -1;$

8.求解欧拉方程 x^2y'' $-xy' + 2y = x \ln x$.

四、综合题

设f(x)具有二阶连续导数,f(0) = 0, f'(0) = 1,且

$$[xy(x+y) - f(x)y]dx + [f'(x) + x^2y]dy = 0$$

是全微分方程,求f(x)及此全微分方程的通解.

综合练习题

班级 姓名 学号

学院

一、单项选择题 1. 函数 $z = \sqrt{x^2 + y^2}$ 在点(0,0)处 (). (B) 偏导数存在; (A) 不连续; (C) 沿任一方向的方向导数存在; (D) 可微. 2. 设 f(x) 为连续函数, $F(t) = \int_{1}^{t} dy \int_{x}^{t} f(x) dx$ 则 F'(2) 为 (). (A) 2f(2); (B) f(2); (D) 0.(C) -f(2); 3. 设 f(x, y) 为 $D: x^2 + y^2 \le a^2$ 上的连续函数,则 $\lim_{a \to 0^+} \frac{1}{\pi a^2} \iint_{\mathbb{R}} f(x, y) d\sigma = ($ (A) 不存在; (B) f(0,0); (C) f(1,1); (D) $f'_{r}(0,0)$. 4. 设 Ω 由 平 面 x+y+z+1=0, x+y+z+2=0, x=0, y=0, z=0 围 成 , $I_1 = \iiint [\ln(x+y+z+3)]^2 dV, I_2 = \iiint (x+y+z)^2 dV$, $\iiint ($ (A) $I_1 < I_2$; (B) $I_1 > I_2$; (C) $I_1 \le I_2$; (D) $I_1 \ge I_2$. 5. 设 $\sum a_n$ 为正项级数,下列结论中正确的是((A) 若 $\lim_{n\to\infty} na_n = 0$,则级数 $\sum_{n=0}^{\infty} a_n$ 收敛; (B) 若存在非零常数 λ ,使得 $\lim_{n\to\infty} na_n = \lambda$,则级数 $\sum_{n=1}^{\infty} a_n$ 发散; (C) 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\lim_{n\to\infty} n^2 a = 0$; (D) 若级数 $\sum_{n=0}^{\infty} a_n$ 发散,则存在非零常数 λ ,使得 $\lim_{n\to\infty} na_n = \lambda$. 6. 若 $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a} \right| = \frac{1}{4}$,则幂级数 $\sum_{n=0}^{\infty} a_n x^{2n}$ (). (B) 当 $|x| > \frac{1}{4}$ 时绝对发散; (A) 当|x|<2 时绝对收敛; (C) 当|x|<4 时绝对收敛; (D) 当|x|> $\frac{1}{2}$ 时绝对发散. 7. 设 y = f(x) 是方程 $y'' + y' = e^{\sin x}$ 的解,并且 $f'(x_0) = 0$,则 f(x) (

- (A) 在点 x_0 的某邻域内单调增加; (B) 在点 x_0 的某邻域内单调减少;
- (C) 在点 x_0 处取极小值
- (D) 在点 x_0 处取极大值.

二、填空题

- 1. 函数 f(x, y) 在点 (x_0, y_0) 连续且可偏导,是 f(x, y) 在点 (x_0, y_0) 可微的____条件.
- 2. 设 $z = e^{xy} \cos e^{xy}$,则dz =
- 3. 设函数 $u(x,y) = f(x+y) + f(x-y) + \int_{x-y}^{x+y} g(t) dt$, 其中f 具有二阶导数,g 具有一 阶导数,则 $\frac{\partial^2 u}{\partial v^2} - \frac{\partial^2 u}{\partial v^2} = \underline{\hspace{1cm}}$.
 - 4. 设为 L 椭圆 $\frac{x^2}{4} + \frac{y^2}{3} = 1$,其周长为 a,则 \circ $+4y^2$) ds =______.
- 5. 周期为 2 的函数 f(x),它在一个周期内的表达式为 $f(x) = x, -1 \le x \le 1$,设它的傅 里叶级数的和函数为s(x),则 $s\left(\frac{3}{2}\right) =$ ______.
 - 6. 以 $y_1(x) = \sin x$, $y_2(x) = \cos x$ 为特解的二阶常系数齐次线性微分方程是_____.
 - 7. 曲面 $\Sigma: |x| + |y| + |z| = 1$,则〇 S =_____.

三、计算题

1. 设 $z = x^3 f\left(xy, \frac{y}{x}\right)$, f 具有连续的二阶偏导数,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x \partial y}$.

2. 设 y = y(x), z = z(x) 是由方程 z = xf(x+y) 和 F(x, y, z) = 0 确定的函数,其中 f 和 F 分别具有一阶连续导数和一阶连续偏导数,求 $\frac{dz}{dx}$.

3. 求 $\iint\limits_{\Omega} \mathrm{e}^{|z|} \mathrm{d}x \mathrm{d}y \mathrm{d}z$,其中 Ω 为球体 $x^2 + y^2 + z^2 \le 1$.

4. 设 z = z(x, y) 是由 $x^2 - 6xy + 10y^2 - 2yz - z^2 + 18 = 0$ 确定的函数,求 z = z(x, y) 的极值点和极值.

- 5. 设函数 f(u) 在 $(0, +\infty)$ 内具有二阶导数,且 $z = f(\sqrt{x^2 + y^2})$ 满足等式 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$
- (I) 验证: $f''(u) + \frac{f'(u)}{u} = 0$;
- (II) 若 f(1) = 0, f'(1) = 1, 求函数 f(u) 的表达式.

6. 计算 $I = \iint_{\Sigma} xz \, dy \, dz + 2zy \, dz \, dx + 3xy \, dx \, dy$ 其中 Σ 为曲 $z = 1 - x^2 - \frac{y^2}{4}$ ($0 \le z \le 1$) 的上侧.

7. 将函数 $f(x) = \frac{1}{4} \ln \frac{1+x}{1-x} + \frac{1}{2} \arctan x - x$ 展开成 x 的幂级数.

8. 已知齐次方程 (x-1)y''-xy'+y=0 的通解为 $Y(x)=c_1x+c_2e^x$ 求非齐次方程 $(x-1)y''-xy'+y=(x-1)^2$ 的通解.

9. 设u = u(r)具有二阶导数。 $u = u(\sqrt{x^2 + y^2})$ 满足方程

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} - \frac{1}{x} \frac{\partial u}{\partial x} + u = x^2 + y^2$$

求 $u(\sqrt{x^2+y^2})$ 的表达式。

四、应用题

在第一卦限内作球面 $x^2 + y^2 + z^2 = a^2$ 的切平面,使该切平面与三坐标面所围成的四面体的体积最小,求这切平面的切点.

五、证明题

设 $a_n = \int_0^{\pi/4} (\tan x)^n dx, n = 1,2,3,\cdots$. 证明:对任意常数 $\lambda > 0$,级数 $\sum_{n=1}^{\infty} \frac{a_n}{n^{\lambda}}$ 收敛.

综合模拟题(一)

	一、填空题(共5道小题,每小题3分,	满分 15 分)	
	1. 设函数 $z = \sqrt{x^4 + y^4}$,则 $z'_x(0,0) = $	·	
	2. 设 L 是直线 $y=x$ 上由点 A (0,0)至	J点 B(1,1)的线된	设,则第一型曲线积分
$\int_L $	$\sqrt{y} ds = \underline{\hspace{1cm}}$.		
	3. 设曲面 Σ 为圆锥面 $z=2-\sqrt{x^2+y^2}$	在 xoy 面上方的部分	分,则第一型曲面积分
\iint_{Σ} (.	$(x^2 + y^2) dS = \underline{\qquad}.$		
	4. 设函数 $f(x) = \begin{cases} -x, & -\pi \le x < 0, \\ x, & 0 \le x \le \pi. \end{cases}$ 将 f	f(x) 在[-π,π] 上展升	于为傅里叶(Fourier)级
数,	$ \oint f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx), $	则 $a_1 =$	<u>-</u>
	5. 微分方程 $xy' + y = 0$ 满足 $y(1) = 1$ 的角		
	二、选择题(共5道小题,每小题3分,	满分 15 分)	
	1. 函数 $z = x^3 + y^3 - 3xy$ 的极小值点是	()	
	(A) (1,1); (B) (0,0);	(C) (0,1);	(D) (1,0).
	2. 设山坡的高度为 $z = 5 - x^2 - 2y^2$, —	一个登山者在山坡上	$(-\frac{3}{2},-1,\frac{3}{4})$ 处,他决定沿
最际	走的道路向上攀登,则他应当选取的方向]1是()	
	(A) $l=(3,4)$; (B) $l=(-3,-4)$;	(C) $l=(-4,3)$;	(D) $l=(4,-3)$.
	3. 交错级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+a} (a>0)$ ()	
	(A) 绝对收敛;	(B) 条件收敛;	
	(C) 敛散性与 a 有关;	(D) 发散.	

- 4. 幂级数 $\sum_{n=0}^{\infty} \frac{(x-1)^n}{\sqrt{n+1}}$ 的收敛域是 () .
- (A) (0,2]; (B) (-2,0); (C) [0,2); (D) [-1,1).
- 5. 函数 $y = C_1 e^x + C_2 e^{-2x} + x e^x$ 满足的一个微分方程是 ()
 - (A) $y'' y' 2y = 3xe^x$; (B) $y'' y' 2y = 3e^x$;
- (C) $y'' + y' 2y = 3xe^x$; (D) $y'' + y' 2y = 3e^x$.

三、(满分6分)

设 $z = f(xe^y, x)$, 其中 f 具有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

四、解答下列各题(共 4 个小题, 每小题 10 分, 满分 40 分)

1. 计算二重积分 $\iint_D (|x-y|+2) dx dy$, 其中 D 为圆域 $x^2 + y^2 \le 1$ 在第一象限的部分.

2. 计算三重积分 $I=\iint_{\Omega}(x+y+z)\mathrm{d}x\mathrm{d}y\mathrm{d}z$,其中 Ω 是由圆锥面 $z=\sqrt{x^2+y^2}$ 与平面 z=1围成的闭区域.

3. 设 $\varphi(x)$ 具有连续的导数,且 $\varphi(0) = 0$,又曲线积分 $\int_L xy^2 dx + y\varphi(x) dy$ 与路径无关,(1) 求 $\varphi(x)$ 表达式;(2) 计算 $\int_{(0,0)}^{(1,1)} xy^2 dx + y\varphi(x) dy$.

4. 已知 $f_n(x)$ 满足 $f_n'(x) = f_n(x) + x^{n-1} e^x$, n 为正整数,且 $f_n(1) = \frac{e}{n}$,求函数项级数 $\sum_{n=1}^{\infty} f_n(x) \ge n$.

- 五、解答下列各题(共3个小题,每小题8分,满分24分)
- 1. 曲线 $\begin{cases} x^2 + y^2 + z^2 = 6 \\ x + y + z = 0 \end{cases}$ 在点 (1,-2,1) 处的切线及法平面方程.

2. 利用高斯公式计算第二型曲面积分

$$I = \bigcirc \qquad (x^2y - z^3) dz dx + (2xy + y^2z) dx dy,$$

其中Σ是球面 $x^2 + y^2 + z^2 = 1$ 的内侧表面.

3. 将函数 $f(x) = \frac{3x}{x^2 + x - 2}$ 展开成 x 的幂级数.

综合模拟题 (二)

学	院
	一、单项选择题(共6道小题,每小题3分,满分18分)
	1. 设函数 $f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, x^2 + y^2 \neq 0, \\ 0, x^2 + y^2 = 0. \end{cases}$ 关于 $f(x,y)$ 有以下命题:
	① $f'_x(0,0) = 0, f'_y(0,0) = 0.$
	② $f(x,y)$ 在点 $(0,0)$ 处极限不存在.
	③ $f(x,y)$ 在点 $(0,0)$ 处不连续.
	④ $f(x,y)$ 在点 $(0,0)$ 处可微.
	以上命题中结论正确的个数是()
	(A) 1 个. (B) 2 个. (C) 3 个. (D) 4 个.
	2. 二次积分 $\int_0^1 dx \int_x^{\sqrt{x}} \frac{\sin y}{y} dy = ($)
	(A) $1-\sin 1$. (B) $\sin 1-1$. (C) $1+\sin 1$. (D) $\sin 1$.
	3. 设曲面 \sum 是柱面 $x^2 + y^2 = 4$ 在 $0 \le z \le 1$ 之间的部分,则 $\iint_{\Sigma} x^2 dS = ($)
	(A) π . (B) 2π . (C) 4π . (D) 8π .
	4. 设二元函数 $U(x,y)$ 的全微分 $dU = xy^2 dx + x^2y dy$, 则 $U(x,y)$ 的一个表达式为
(
	(A) $\frac{1}{2}x^2 + y^2$. (B) $\frac{1}{2}x^2y^2$. (C) x^2y^2 . (D). $x^2 - \frac{1}{2}y^2$.
	5. 如果幂级数 $\sum_{n=0}^{\infty} a_n (x-1)^n$ 在 $x=-1$ 处收敛,则该级数在 $x=2$ 处(
	(A) 条件收敛. (B) 绝对收敛.

6. 方程 $y'' + y' - 2y = e^x(\cos x - 7\sin x)$ 特解的形式是 (),其中 a,b 为常数.

(C) 发 散. (D) 敛散性不定.

- (A) $e^x(a\cos x + b\sin x)$. (B) $xe^x(a\cos x + b\sin x)$.
- (C) $ae^x \cos x$. (D) $be^x \sin x$.
- 二、填空题(共6道小题,每小题3分,满分18分).

1. 函数
$$z = \frac{x}{y} + xy$$
,则 $dz|_{(2,1)} =$ _______.

- 2. 函数 $z = x^2 xy + y^2$ 在点 (1,1) 处沿方向 I=_______ 的方向导数最大.
- 3. 设曲线 L 的方程为 $\begin{cases} x = \cos t \\ y = 2\sin t \end{cases} (0 \le t \le \frac{\pi}{2}), \quad \text{则} \int_{L} xy \, ds = \underline{\hspace{1cm}}.$
- 5. 设函数 f(x) 是以 2π 为周期的周期函数,且在区间 $[-\pi,\pi]$ 上的表达式为

$$f(x) = \begin{cases} 2, -\pi \le x \le 0, \\ x, 0 < x \le \pi, \end{cases} \text{ if } f(x) \text{ in } f(x)$$

- 6. 将函数 $\frac{1}{x}$ 展开成(x-3)的幂级数的形式为 ______.
- 三、按要求解答下列各题(共6道小题,每小题7分,满分42分).
- 1. 设 f 为 $C^{(2)}$ 类函数,且 $z = f(x^2 + y)$,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x \partial y}$.

2. 求曲面 $x = e^{2y-z}$ 在点 (1,1,2) 处的切平面与法线方程.

3. 求函数 $f(x) = x^4 + y^4 - x^2 - 2xy - y^2$ 的极值.

4. 计算 $\iint_D |x-y^2| d\sigma$, 其中 $D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$.

5. 计算 $\iint_{\Omega} (x^2 + y^2 + z^2) dV$, 其中 Ω 由锥面 $z = \sqrt{x^2 + y^2}$ 和球面 $z = \sqrt{1 - x^2 - y^2}$ 围成.

6. 求微分方程 $y' + y = 1 + x^2$ 满足初始条件 y(0) = 4 的解.

四、按要求解答下列各题(共3道小题,满分22分).

1. (满分8分)

计算 $\int_L (y^3 + xe^{2y}) dx + (x^2 e^{2y} - x^3) dy$, 其中曲线 $L \not\in x^2 + y^2 = 4x$ 的上半圆周,顺时针方向.

2. (满分8分)

计算曲面积分 $\iint_{\Sigma} y^3 \, \mathrm{d}z \, \mathrm{d}x + (y+z) \, \mathrm{d}x \, \mathrm{d}y$, 其中曲面 Σ 为 $z = x^2 + y^2 (0 \le z \le 1)$ 的下侧.

3. (满分6分)

设幂级数
$$\sum_{n=0}^{\infty} a_n x^n$$
 在 $(-\infty, +\infty)$ 内收敛,和函数为 $y(x)$,且满足
$$y'' - 2xy' - 4y = 0, y(0) = 0, y'(0) = 1$$
 ,

(1) 证明
$$a_{n+2} = \frac{2}{n+1} a_n, n = 1, 2, \dots$$
; (2) 求 $y(x)$ 表达式.