HW1 report

Qiong Wang 5906740674

(a) Download the data set: column_2C_weka.arff

(b) 1. Scatterplot:

Red: Abnormal Blue: Normal The code is B1.py

2. Boxplot:

The code is B2.py

3. first 70 rows of class 0 and the first 140 rows of class 1 are training set and the rest of data are test set

- (c) 1. I use sklearn package
 - 2. k = {1, 3, 5·····,207}

The code is C2.py

Best k = 3 Best test error rate = 0.079999999999999

When k = 3

TPR = TP/(TP+FN) = 0.9079

TNR = TN/(TN+FP) = 0.9583

Precision = TP/(TP+FP) = 0.9857

F-score = 0.9452

3. learning curve

The code is C3.py

(d) Replace the Euclidean metric The code is D.py

When p = 1 Manhattan metric:

Best k = 1

Here k = 1, so the training error is always 0

When $log(p) = [0.1, 0.2, \dots, 1]$

Minkowski metric:

Best Ig(p) = 0.7

When p is infinite

Chebyshev metric:

Best k = 21

Mahalanobis metric:

Best k = 1

Best error rate = 0.150000000000000002

(e) In weighted decision situation The code is E.py

manhattan test error rate

Manhattan metric:

best k = 26

error rate = 0.0999999999999998

Euclidean test error rate

Euclidean metric:

Best k = 6

Test error = 0.0999999999999998

chebyshev test error rate

Chebyshev metric:

Best k = 16

(f) When K=1 or weighted decision (inversely proportional to its distance), the training error rate = 0, which is the lowest training error.