

Schletter, Inc.		15° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-05, Eq. 7-2)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	85 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 11.34 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Cf+ TOP	=	1.000	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the danage.

2.4 Seismic Loads

Rev. 11.05.2015

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S _s of 1.5
$S_{DS} =$	1.67	$C_{S} = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
$T_a =$	0.05	$C_{d} = 1.25$	to calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E ^O

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

 $\begin{array}{c} 1.0D + 1.0S \\ 1.0D + 1.0W \\ 1.0D + 0.75L + 0.75W + 0.75S \\ 0.6D + 1.0W & \text{(ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2)} \\ 1.238D + 0.875E & \text{0} \\ 1.1785D + 0.65625E + 0.75S & \text{0} \\ 0.362D + 0.875E & \text{0} \\ \end{array}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	<u>Location</u>	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>iviaximum</u>	Front	<u>Rear</u>	
Tensile Load =	<u>1009.75</u>	<u>3620.31</u>	k
Compressive Load =	4679.02	<u>4857.44</u>	k
Lateral Load =	<u>319.95</u>	<u>1328.44</u>	k
Moment (Weak Axis) =	<u>0.65</u>	0.44	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi **Overturning Check** 90442.3 in-lbs $M_O =$ Resisting Force Required = 1370.34 lbs A minimum 132in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2283.90 lbs to resist overturning. Minimum Width = <u>21 in</u> in Weight Provided = 4186.88 lbs Sliding 319.12 lbs Force = Friction = Use a 132in long x 21in wide x 18in tall 0.4 ballast foundation to resist sliding. Weight Required = 797.81 lbs Resisting Weight = 4186.88 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 319.12 lbs Cohesion = 130 psf Use a 132in long x 21in wide x 18in tall 19.25 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2093.44 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$

Bearing Pressure

Length =

8 in

 $\frac{\text{Ballast Width}}{21 \text{ in}} = \frac{22 \text{ in}}{23 \text{ in}} = \frac{24 \text{ in}}{4785 \text{ lbs}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) = \frac{4187 \text{ lbs}}{4386 \text{ lbs}} = \frac{4586 \text{ lbs}}{4785 \text{ lbs}} = \frac{4785 \text{ lbs}}{4785 \text{ lbs}}$

ASD LC		1.0D -	+ 1.0S			1.0D+	- 1.0W		1	.0D + 0.75L +	0.75W + 0.75	S		0.6D +	+ 1.0W	
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	1810 lbs	1810 lbs	1810 lbs	1810 lbs	1282 lbs	1282 lbs	1282 lbs	1282 lbs	2186 lbs	2186 lbs	2186 lbs	2186 lbs	-479 lbs	-479 lbs	-479 lbs	-479 lbs
F _B	1877 lbs	1877 lbs	1877 lbs	1877 lbs	1331 lbs	1331 lbs	1331 lbs	1331 lbs	2267 lbs	2267 lbs	2267 lbs	2267 lbs	-1734 lbs	-1734 lbs	-1734 lbs	-1734 lbs
F_V	162 lbs	162 lbs	162 lbs	162 lbs	575 lbs	575 lbs	575 lbs	575 lbs	542 lbs	542 lbs	542 lbs	542 lbs	-638 lbs	-638 lbs	-638 lbs	-638 lbs
P _{total}	7874 lbs	8074 lbs	8273 lbs	8473 lbs	6800 lbs	7000 lbs	7199 lbs	7398 lbs	8640 lbs	8839 lbs	9038 lbs	9238 lbs	299 lbs	419 lbs	538 lbs	658 lbs
M	4396 lbs-ft	4396 lbs-ft	4396 lbs-ft	4396 lbs-ft	3802 lbs-ft	3802 lbs-ft	3802 lbs-ft	3802 lbs-ft	5824 lbs-ft	5824 lbs-ft	5824 lbs-ft	5824 lbs-ft	987 lbs-ft	987 lbs-ft	987 lbs-ft	987 lbs-ft
е	0.56 ft	0.54 ft	0.53 ft	0.52 ft	0.56 ft	0.54 ft	0.53 ft	0.51 ft	0.67 ft	0.66 ft	0.64 ft	0.63 ft	3.30 ft	2.36 ft	1.83 ft	1.50 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft									
f _{min}	284.5 psf	281.4 psf	278.7 psf	276.1 psf	245.5 psf	244.2 psf	243.1 psf	242.0 psf	283.8 psf	280.8 psf	278.0 psf	275.5 psf	0.0 psf	0.0 psf	0.0 psf	5.4 psf
f _{max}	533.6 psf	519.3 psf	506.1 psf	494.1 psf	461.0 psf	449.9 psf	439.8 psf	430.6 psf	613.8 psf	595.8 psf	579.4 psf	564.3 psf	51.8 psf	48.4 psf	51.1 psf	54.4 psf

Maximum Bearing Pressure = 614 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Seismic Design

Overturning Check

 $M_O = 1958.5 \text{ ft-lbs}$

Resisting Force Required = 2238.28 lbs

S.F. = 1.67

Weight Required = 3730.46 lbs Minimum Width = 21 in in A minimum 132in long x 21in wide x 18in tall ballast foundation is required to resist overturning.

Weight Provided = 4186.88 lbs

Bearing Pressure

ASD LC	1	.238D + 0.875	5E	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		21 in			21 in			21 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	261 lbs	676 lbs	232 lbs	992 lbs	3000 lbs	970 lbs	86 lbs	198 lbs	58 lbs		
F _V	221 lbs	217 lbs	223 lbs	165 lbs	158 lbs	173 lbs	221 lbs	219 lbs	222 lbs		
P _{total}	5444 lbs	5859 lbs	5416 lbs	5926 lbs	7934 lbs	5904 lbs	1602 lbs	1713 lbs	1574 lbs		
M	886 lbs-ft	878 lbs-ft	892 lbs-ft	672 lbs-ft	666 lbs-ft	698 lbs-ft	883 lbs-ft	877 lbs-ft	884 lbs-ft		
е	0.16 ft	0.15 ft	0.16 ft	0.11 ft	0.08 ft	0.12 ft	0.55 ft	0.51 ft	0.56 ft		
L/6	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft		
f _{min}	124.9 psf	148.0 psf	122.5 psf	188.2 psf	293.5 psf	182.4 psf	0.0 psf	0.0 psf	0.0 psf		
f _{max}	440.7 psf	460.8 psf	440.2 psf	427.6 psf	530.8 psf	431.0 psf	300.1 psf	285.9 psf	304.6 psf		

Maximum Bearing Pressure = 531 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut
Maximum Axial Load =	3.599 k	$\frac{\overline{Axial Load}}{Axial Load} = 3.573 k$
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity = 12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity = 7.421 k
Utilization =	<u>48%</u>	Utilization = 48%
<u>Diagonal Strut</u> Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	0.968 k 12.808 k 7.421 k <u>13%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)
0 0		

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.48 \text{ in} \\ \end{array}$

 $0.48 \le 0.726$, OK.

The racking structure's reaction to seismic loads is shown to the right.
The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 126 \text{ in}$$

$$J = 0.432$$

$$348.575$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)}}]$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= 126 \\ J &= 0.432 \\ 221.673 \end{split}$$

$$S1 &= \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= 1701.56 \\ \phi F_L &= \phi b [Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= 28.5 \end{split}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

 $\phi F_L = 27.2 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 37.0588

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{ccc} \phi F_L St = & 25.1 \text{ ksi} \\ \text{lx} = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ \text{y} = & 41.015 \text{ mm} \\ \text{Sx} = & 1.335 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 2.788 \text{ k-ft} \end{array}$$

$$\begin{array}{lll} \phi F_L W k = & 23.1 \text{ ksi} \\ ly = & 446476 \text{ mm}^4 \\ & 1.073 \text{ in}^4 \\ x = & 45.5 \text{ mm} \\ Sy = & 0.599 \text{ in}^3 \\ M_{max} W k = & 1.152 \text{ k-ft} \end{array}$$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^T$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$S2 = 1701.56$$

$$SI = \left(\frac{1.6Dc}{1.6Dc}\right)$$

$$S2 = \begin{array}{c} (1.6) \\ 1701.56 \end{array}$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\varphi F_L = 29.4 \text{ ksi}$$

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{\frac{\theta_b}{\theta_b}Fcy}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_{L} = 29.2$$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

 $\phi F_L = 31.6 \text{ ksi}$

46.7

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

S2 =

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = \begin{bmatrix} 1.6Dt \\ 1.1 \end{bmatrix}$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L St = 29.4 \text{ ksi}$$

$$lx = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

$$y = 43.717 \text{ mm}$$

$$Sx = 1.375 \text{ in}^3$$

43.2 ksi

3.363 k-ft

3.4.16.1

3.4.18

h/t = 16.2

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

 $M_{max}St =$

 $\phi F_L =$

3.4.9

$$b/t = 16.2$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

33.3 ksi

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi y F_C y$

3.4.10

 $\phi F_L =$

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ 38.7028 \\ \\ \mathit{S1} = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ \\ \mathit{S2} = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib}[\mathsf{Bc-1.6Dc^*}\sqrt{(\mathsf{LbSc})/(\mathsf{Cb^*}\sqrt{(\mathsf{lyJ})/2}))}] \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L}_{b} &= 24.8 \\ \mathsf{J} &= 0.942 \\ 38.7028 \\ S1 &= \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2} \\ S1 &= 0.51461 \\ S2 &= \left(\frac{C_{c}}{1.6}\right)^{2} \\ S2 &= 1701.56 \\ \phi \mathsf{F}_{\mathsf{L}} &= \phi b [\mathsf{Bc-1.6Dc*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))}] \\ \phi \mathsf{F}_{\mathsf{L}} &= 31.4 \end{split}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

 $lx = 279836 \text{ mm}^4$

0.672 in⁴

 $0.621 in^{3}$

1.460 k-ft

27.5 mm

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$CC = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

$$V = 0.621 \text{ in}^3$$

$$V = 1.460 \text{ k-ft}$$

y =

Sx =

 $M_{max}St =$

Compression

3.4.7

$$\lambda = 0.57371$$

 $r = 0.81$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$
 $S2^* = 1.23671$
 $\phi cc = 0.87952$
 $\phi F_L = \phi cc(Bc-Dc^*\lambda)$
 $\phi F_L = 28.0279$ ksi

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\phi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

28.2 ksi

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_{\rm b} = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942	J = 0.942
135.148	135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56	$S2 = \left(\frac{C_c}{1.6}\right)^2$ $S2 = 1701.56$
$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2})}]$	$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{((LbSc)/(Cb*\sqrt{(lyJ)/2}))}]$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

S1 = 1.1
 $S2 = C_t$
S2 = 141.0
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$x = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$

$$Sx = 0.621 \text{ in}^3$$

1.460 k-ft

Compression

 $M_{max}St =$

3.4.7

$$λ = 2.00335$$
 $r = 0.81$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$
 $S2^* = 1.23671$
 $φcc = 0.86047$
 $φF_L = (φccFcy)/(λ^2)$
 $φF_L = 7.50396$ ksi

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \ ksi \\ y = & 279836 \ mm^4 \\ & 0.672 \ in^4 \\ x = & 27.5 \ mm \\ Sy = & 0.621 \ in^3 \\ M_{max} W k = & 1.460 \ k\text{-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S2 = 32.70$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 30.6 \text{ ksi}$

$$\phi F_L =$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.6$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1N/A for Weak Direction

3.4.18 h/t =24.5 S1 = mDbrS1 = 36.9 0.65 m = $C_0 =$ 27.5 Cc = 27.5 k_1Bbr mDbrS2 = 77.3 $\phi F_L = 1.3 \phi y F c y$ 43.2 ksi $\varphi F_L =$ $\phi F_1 St =$ 28.2 ksi $lx = 279836 \text{ mm}^4$

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$\psi = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max}W k = 1.460 \text{ k-ft}$$

Compression

 $M_{max}St =$

y =

Sx =

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.76536$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 18.9268$ ksi

$\phi F_{L} = 18.9268 \text{ ksi}$ 3.4.9 b/t =24.5 S1 = 12.21 (See 3.4.16 above for formula) 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c [Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi 24.5 b/t =S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-31.635	-31.635	0	0
2	M14	V	-31.635	-31.635	0	0
3	M15	V	-50.616	-50.616	0	0
4	M16	V	-50.616	-50.616	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	٧	72.761	72.761	0	0
2	M14	٧	56.31	56.31	0	0
3	M15	V	31.635	31.635	0	0
4	M16	У	31.635	31.635	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Z	6.693	6.693	0	0
2	M14	Ζ	6.693	6.693	0	0
3	M15	Z	6.693	6.693	0	0
4	M16	Ζ	6.693	6.693	0	0
5	M13	Ζ	0	0	0	0
6	M14	Z	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes			2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	224.867	2	1107.54	1	1.17	1	.005	1	0	1	0	1
2		min	-325.238	3	-843.513	3	-87.429	5	338	4	0	1	0	1
3	N7	max	.055	1	1231.296	1	328	12	0	12	0	1	0	1
4		min	044	2	-220.075	3	-246.119	4	501	4	0	1	0	1
5	N15	max	.024	9	3599.249	1	0	3	0	3	0	1	0	1
6		min	719	2	-776.728	3	-237.15	5	49	4	0	1	0	1
7	N16	max	981.635	2	3736.495	1	0	1	0	1	0	1	0	1
8		min	-1021.875	3	-2784.853	3	-87.114	5	341	4	0	1	0	1
9	N23	max	.055	1	1231.296	1	8.502	1	.018	1	0	1	0	1
10		min	044	2	-220.075	3	-241.058	4	492	4	0	1	0	1
11	N24	max	224.867	2	1107.54	1	05	12	0	12	0	1	0	1
12		min	-325.238	3	-843.513	3	-87.947	4	34	4	0	1	0	1
13	Totals:	max	1430.562	2	12013.418	1	0	3						
14		min	-1672.659	3	-5688.758	3	-981.943	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	93.506	1	511.521	1	-4.933	12	0	3	.222	1	0	1
2			min	3.587	12	-437.91	3	-143.401	1	013	1	.009	12	0	3
3		2	max	93.506	1	358.492	1	-3.854	12	0	3	.076	4	.435	3
4			min	3.587	12	-308.129	3	-110.309	1	013	1	.003	12	507	1
5		3	max	93.506	1	205.464	1	-2.776	12	0	3	.038	5	.719	3
6			min	3.587	12	-178.347	3	-77.216	1	013	1	035	1	836	1
7		4	max	93.506	1	52.435	1	-1.697	12	0	3	.02	5	.851	3
8			min	3.587	12	-48.565	3	-44.124	1	013	1	106	1	987	1
9		5	max	93.506	1	81.217	3	618	12	0	3	.003	5	.832	3
10			min	3.587	12	-100.594	1	-16.084	4	013	1	138	1	959	1
11		6	max	93.506	1	210.998	3	22.061	1	0	3	004	12	.662	3
12			min	3.587	12	-253.622	1	-11.857	5	013	1	132	1	752	1
13		7	max	93.506	1	340.78	3	55.154	1	0	3	003	12	.34	3
14			min	-3.946	5	-406.651	1	-10.188	5	013	1	086	1	367	1
15		8	max	93.506	1	470.562	3	88.246	1	0	3	0	10	.197	1
16			min	-15.922	5	-559.68	1	-8.519	5	013	1	037	4	133	3
17		9	max	93.506	1	600.343	3	121.338	1	0	3	.119	1	.939	1
18			min	-27.898	5	-712.708	1	-6.85	5	013	1	045	5	758	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

10	LC
11	1
Min 3.587 12 600.343 3 -121.338 1 0 3 .003 12 .758	3
12	1
Min 3.587 12 470.562 3 -88.246 1 0 3 003 1 133	3
25	1
26	3
26	3
27 14 max 93.506 1 253.622 1 461 12 .013 1 0 15 .662 28 min .849 15 .210.998 3 -22.061 1 0 3 132 1 752 29 15 min -10.59 5 -81.217 3 -12.399 5 0 3 138 1 959 31 16 max 93.506 1 48.565 3 44.124 1 .013 1 003 12 .851 32 min -22.566 5 -52.435 1 -10.73 5 0 3 106 1 987 33 17 max 93.506 1 178.347 3 77.216 1 .013 1 0 12 .719 34 min -34.542 5 -205.456 1 308.129 3 110.309<	1
28 min .849 15 -210.998 3 -22.061 1 0 3 132 1 752 29 15 max 93.506 1 100.594 1 11.031 1 004 12 .832 30 min -10.59 5 -81.217 3 -12.399 5 0 3 138 1 959 31 16 max 93.506 1 48.565 3 44.124 1 .013 1 003 12 .851 32 min -22.566 5 -52.435 1 -10.73 5 0 3 106 1 987 33 17 max 93.506 1 178.347 3 77.216 1 .013 1 0 12 .719 34 min -46.518 5 -205.464 1 -9.061 5 0 3 052 5 <td>3</td>	3
15 max 93.506 1 100.594 1 11.031 1 .013 1 .004 12 .832 830 min .10.59 5 .81.217 3 .12.399 5 0 3 .138 1 .959 31 16 max 93.506 1 48.565 3 44.124 1 .013 1 .003 12 .851 32 min .22.566 5 .52.435 1 .10.73 5 0 3 .106 1 .987 33 17 max 93.506 1 178.347 3 77.216 1 .013 1 0 12 .719 34 min .34.542 5 .205.464 1 .9.061 5 0 3 .055 4 .836 35 18 max 93.506 1 308.129 3 110.309 1 .013 1 .074 1 .435 36 min .46.518 5 .358.492 1 .7.392 5 0 3 .052 5 .507 37 19 max 93.506 1 437.91 3 143.401 1 .013 1 .222 1 0 38 min .58.494 5 .511.521 1 .5.723 5 0 3 .059 5 0 3 .059 5 0 39 M14 1 max 65.4 4 537.433 1 .5.068 12 .005 3 .252 1 0 40 min 1.536 12 .342.887 3 .147.66 1 .011 1 .01 12 0 41 2 max 53.424 4 384.405 1 .3.989 12 .005 3 .056 5 .569 44 min 1.536 12 .243.814 3 .114.568 1 .011 1 .004 12 .538 43 3 max 42.336 1 231.376 1 .2.91 12 .005 3 .036 5 .668 44 min 1.536 12 .443.741 3 .81.475 1 .011 1 .015 1 .897 45 4 max 42.336 1 53.405 3 .753 12 .005 3 .036 5 .669 48 min 1.536 12 .45.668 3 .48.383 1 .011 1 .015 1 .897 45 4 max 42.336 1 53.405 3 .753 12 .005 3 .006 5 .675 48 min 1.536 12 .45.668 3 .48.383 1 .011 1 .015 1 .897 45 4 max 42.336 1 53.405 3 .753 12 .005 3 .006 5 .675 48 min 1.536 12 .476.681 1 .23.698 4 .011 1 .127 1 .905 50 min .3.139 5 .227.71 1 .18.447 5 .011 1 .127 1 .905 50 min .3.139 5 .227.71 1 .18.447 5 .011 1 .005 3 .003 12 .555 50 min .3.139 5 .227.71 1 .18.447 5 .011 1 .0	1
Min	3
31 16 max 93.506 1 48.565 3 44.124 1 .013 1 003 12 .851 32 min -22.566 5 -52.435 1 -10.73 5 0 3 106 1 987 33 17 max 93.506 1 178.347 3 77.216 1 .013 1 0 12 .719 34 min -34.542 5 -205.464 1 -9.061 5 0 3 05 4 836 35 18 max 93.506 1 308.129 3 110.309 1 .013 1 .074 1 .435 36 min -46.518 5 -358.492 1 -7.392 5 0 3 052 5 -5.07 37 19 max 93.506 1 437.91 3 143.401 1 .013 <td>1</td>	1
32 min -22.566 5 -52.435 1 -10.73 5 0 3 106 1 987 33 17 max 93.506 1 178.347 3 77.216 1 .013 1 0 12 .719 34 min -34.542 5 -205.464 1 -9.061 5 0 3 05 4 836 35 18 max 93.506 1 308.129 3 110.309 1 .013 1 .074 1 .435 36 min -46.518 5 -358.492 1 -7.392 5 0 3 052 5 -507 37 19 max 93.506 1 437.91 3 143.401 1 .013 1 .222 1 0 38 min -58.494 5 -511.521 1 -5.723 5 0 3	3
33 17 max 93.506 1 178.347 3 77.216 1 .013 1 0 12 .719 34 min -34.542 5 -205.464 1 -9.061 5 0 3 05 4 836 35 18 max 93.506 1 308.129 3 110.309 1 .013 1 .074 1 .435 36 min -46.518 5 -358.492 1 -7.392 5 0 3 052 5 507 37 19 max 93.506 1 437.91 3 143.401 1 .013 1 .222 1 0 38 min -58.494 5 -511.521 1 -5.723 5 0 3 059 5 0 39 M14 1 max 65.4 4 537.433 1 -5.068 12	1
34 min -34.542 5 -205.464 1 -9.061 5 0 3 05 4 836 35 18 max 93.506 1 308.129 3 110.309 1 .013 1 .074 1 .435 36 min -46.518 5 -358.492 1 -7.392 5 0 3 052 5 507 37 19 max 93.506 1 437.91 3 143.401 1 .013 1 .222 1 0 38 min -58.494 5 -511.521 1 -5.723 5 0 3 059 5 0 39 M14 1 max 65.4 4 537.433 1 -5.068 12 .005 3 .252 1 0 40 min 1.536 12 -342.887 3 -147.66 1 011	3
35 18 max 93.506 1 308.129 3 110.309 1 .013 1 .074 1 .435 36 min -46.518 5 -358.492 1 -7.392 5 0 3 052 5 507 37 19 max 93.506 1 437.91 3 143.401 1 .013 1 .222 1 0 38 min -58.494 5 -511.521 1 -5.723 5 0 3 059 5 0 39 M14 1 max 65.4 4 537.433 1 -5.068 12 .005 3 .252 1 0 40 min 1.536 12 -342.887 3 -147.66 1 011 1 .01 12 0 41 2 max 53.424 4 384.405 1 -3.989 12	1
36 min -46.518 5 -358.492 1 -7.392 5 0 3 052 5 507 37 19 max 93.506 1 437.91 3 143.401 1 .013 1 .222 1 0 38 min -58.494 5 -511.521 1 -5.723 5 0 3 059 5 0 39 M14 1 max 65.4 4 537.433 1 -5.068 12 .005 3 .252 1 0 40 min 1.536 12 -342.887 3 -147.66 1 011 1 .01 12 0 41 2 max 53.424 4 384.405 1 -3.989 12 .005 3 .107 4 .342 42 min 1.536 12 -243.814 3 -114.568 1 011	3
37 19 max 93.506 1 437.91 3 143.401 1 .013 1 .222 1 0 38 min -58.494 5 -511.521 1 -5.723 5 0 3 059 5 0 39 M14 1 max 65.4 4 537.433 1 -5.068 12 .005 3 .252 1 0 40 min 1.536 12 -342.887 3 -147.66 1 011 1 .01 12 0 41 2 max 53.424 4 384.405 1 -3.989 12 .005 3 .107 4 .342 42 min 1.536 12 -243.814 3 -114.568 1 011 1 .004 12 538 43 3 max 42.336 1 231.376 1 -2.91 12 .005 3 .056 5 .569 44 max 42.336	1
38 min -58.494 5 -511.521 1 -5.723 5 0 3 059 5 0 39 M14 1 max 65.4 4 537.433 1 -5.068 12 .005 3 .252 1 0 40 min 1.536 12 -342.887 3 -147.66 1 011 1 .01 12 0 41 2 max 53.424 4 384.405 1 -3.989 12 .005 3 .107 4 .342 42 min 1.536 12 -243.814 3 -114.568 1 011 1 .004 12 538 43 3 max 42.336 1 231.376 1 -2.91 12 .005 3 .056 5 .569 44 max 42.336 1 78.347 1 -1.832 12 .005	1
39 M14 1 max 65.4 4 537.433 1 -5.068 12 .005 3 .252 1 0 40 min 1.536 12 -342.887 3 -147.66 1 011 1 .01 12 0 41 2 max 53.424 4 384.405 1 -3.989 12 .005 3 .107 4 .342 42 min 1.536 12 -243.814 3 -114.568 1 011 1 .004 12 538 43 3 max 42.336 1 231.376 1 -2.91 12 .005 3 .056 5 .569 44 min 1.536 12 -144.741 3 -81.475 1 011 1 015 1 897 45 4 max 42.336 1 78.347 1 -1.832 12<	3
40 min 1.536 12 -342.887 3 -147.66 1 011 1 .01 12 0 41 2 max 53.424 4 384.405 1 -3.989 12 .005 3 .107 4 .342 42 min 1.536 12 -243.814 3 -114.568 1 011 1 .004 12 538 43 3 max 42.336 1 231.376 1 -2.91 12 .005 3 .056 5 .569 44 min 1.536 12 -144.741 3 -81.475 1 011 1 015 1 897 45 4 max 42.336 1 78.347 1 -1.832 12 .005 3 .03 5 .68 46 min 1.536 12 -45.668 3 -48.383 1 011 <	1
41 2 max 53.424 4 384.405 1 -3.989 12 .005 3 .107 4 .342 42 min 1.536 12 -243.814 3 -114.568 1 011 1 .004 12 538 43 3 max 42.336 1 231.376 1 -2.91 12 .005 3 .056 5 .569 44 min 1.536 12 -144.741 3 -81.475 1 011 1 015 1 897 45 4 max 42.336 1 78.347 1 -1.832 12 .005 3 .03 5 .68 46 min 1.536 12 -45.668 3 -48.383 1 011 1 091 1 -1.078 47 5 max 42.336 1 53.405 3 753 12 .005 3 .006 5 .675 48 min 1.536 <td< td=""><td>3</td></td<>	3
42 min 1.536 12 -243.814 3 -114.568 1 011 1 .004 12 538 43 3 max 42.336 1 231.376 1 -2.91 12 .005 3 .056 5 .569 44 min 1.536 12 -144.741 3 -81.475 1 011 1 015 1 897 45 4 max 42.336 1 78.347 1 -1.832 12 .005 3 .03 5 .68 46 min 1.536 12 -45.668 3 -48.383 1 011 1 091 1 -1.078 47 5 max 42.336 1 53.405 3 753 12 .005 3 .006 5 .675 48 min 1.536 12 -74.681 1 -23.698 4 011	3
43 3 max 42.336 1 231.376 1 -2.91 12 .005 3 .056 5 .569 44 min 1.536 12 -144.741 3 -81.475 1 011 1 015 1 897 45 4 max 42.336 1 78.347 1 -1.832 12 .005 3 .03 5 .68 46 min 1.536 12 -45.668 3 -48.383 1 011 1 091 1 -1.078 47 5 max 42.336 1 53.405 3 753 12 .005 3 .006 5 .675 48 min 1.536 12 -74.681 1 -23.698 4 011 1 128 1 -1.08 49 6 max 42.336 1 152.478 3 17.802 1 .005 3 004 12 .555 50 min -3.139 <td< td=""><td>1</td></td<>	1
44 min 1.536 12 -144.741 3 -81.475 1 011 1 015 1 897 45 4 max 42.336 1 78.347 1 -1.832 12 .005 3 .03 5 .68 46 min 1.536 12 -45.668 3 -48.383 1 011 1 091 1 -1.078 47 5 max 42.336 1 53.405 3 753 12 .005 3 .006 5 .675 48 min 1.536 12 -74.681 1 -23.698 4 011 1 128 1 -1.08 49 6 max 42.336 1 152.478 3 17.802 1 .005 3 004 12 .555 50 min -3.139 5 -227.71 1 -18.447 5 011	3
45 4 max 42.336 1 78.347 1 -1.832 12 .005 3 .03 5 .68 46 min 1.536 12 -45.668 3 -48.383 1 011 1 091 1 -1.078 47 5 max 42.336 1 53.405 3 753 12 .005 3 .006 5 .675 48 min 1.536 12 -74.681 1 -23.698 4 011 1 128 1 -1.08 49 6 max 42.336 1 152.478 3 17.802 1 .005 3 004 12 .555 50 min -3.139 5 -227.71 1 -18.447 5 011 1 127 1 903 51 7 max 42.336 1 251.552 3 50.894 1 .005 3 003 12 .32	1
46 min 1.536 12 -45.668 3 -48.383 1 011 1 091 1 -1.078 47 5 max 42.336 1 53.405 3 753 12 .005 3 .006 5 .675 48 min 1.536 12 -74.681 1 -23.698 4 011 1 128 1 -1.08 49 6 max 42.336 1 152.478 3 17.802 1 .005 3 004 12 .555 50 min -3.139 5 -227.71 1 -18.447 5 011 1 127 1 903 51 7 max 42.336 1 251.552 3 50.894 1 .005 3 003 12 .32	3
47 5 max 42.336 1 53.405 3 753 12 .005 3 .006 5 .675 48 min 1.536 12 -74.681 1 -23.698 4 011 1 128 1 -1.08 49 6 max 42.336 1 152.478 3 17.802 1 .005 3 004 12 .555 50 min -3.139 5 -227.71 1 -18.447 5 011 1 127 1 903 51 7 max 42.336 1 251.552 3 50.894 1 .005 3 003 12 .32	1
48 min 1.536 12 -74.681 1 -23.698 4 011 1 128 1 -1.08 49 6 max 42.336 1 152.478 3 17.802 1 .005 3 004 12 .555 50 min -3.139 5 -227.71 1 -18.447 5 011 1 127 1 903 51 7 max 42.336 1 251.552 3 50.894 1 .005 3 003 12 .32	3
49 6 max 42.336 1 152.478 3 17.802 1 .005 3 004 12 .555 50 min -3.139 5 -227.71 1 -18.447 5 011 1 127 1 903 51 7 max 42.336 1 251.552 3 50.894 1 .005 3 003 12 .32	1
50 min -3.139 5 -227.71 1 -18.447 5011 1127 1903 51 7 max 42.336 1 251.552 3 50.894 1 .005 3003 12 .32	3
51 7 max 42.336 1 251.552 3 50.894 1 .005 3003 12 .32	1
52 min -15.115 5 -380.739 1 -16.778 5 011 1 087 1 548	3
52	1
	15
53	3
	1
	3
0. 10 110.0 1 1 0 10111 1 1 1000 1 1200 1 11000	1
58 min 1.536 12 -839.825 1 -89.009 14 011 1 .007 12 -1.081 59 11 max 51.494 4 686.796 1 -3.562 12 .011 1 .109 1 .697	1
60 min 1.536 12 -449.698 3 -117.079 1005 3 .003 12498	3
61	15
62 min 1.536 12 -350.625 3 -83.987 1005 3008 1032	3
63	3
64 min 1.536 12 -251.552 3 -50.894 1005 3087 1548	1
65	3
66 min 1.536 12 -152.478 3 -24.255 4005 3127 1903	1
67 15 max 42.336 1 74.681 1 15.29 1 .011 1 004 12 .675	3
68 min -4.747 5 -53.405 3 -18.56 5005 3128 1 -1.08	1
69 16 max 42.336 1 45.668 3 48.383 1 .011 1 003 12 .68	3
70 min -16.723 5 -78.347 1 -16.891 5005 3091 1 -1.078	1
71 17 max 42.336 1 144.741 3 81.475 1 .011 1 0 3 .569	3
72 min -28.699 5 -231.376 1 -15.222 5005 3062 4897	1
73 18 max 42.336 1 243.814 3 114.568 1 .011 1 .099 1 .342	3
74 min -40.675 5 -384.405 1 -13.553 5005 3075 5538	1
75 19 max 42.336 1 342.887 3 147.66 1 .011 1 .252 1 0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

76 min -52.651 5 -537.433 1 -11.884 5 005 3 089 5 0 77 M15 1 max 81.955 5 597.212 1 -5.048 12 .011 1 .252 1 0 78 min -44.548 1 -187.576 3 -147.638 1 004 3 .009 12 0 79 2 max 69.979 5 426.468 1 -3.969 12 .011 1 .142 4 .18 80 min -44.548 1 -134.563 3 -114.545 1 004 3 .004 12 59 81 3 max 58.003 5 255.724 1 -2.89 12 .011 1 .082 5 .31 82 min -44.548 1 -81.55 3 -81.453 1 -	8 3 97 1 4 3 95 1 8 3
78 min -44.548 1 -187.576 3 -147.638 1 004 3 .009 12 0 79 2 max 69.979 5 426.468 1 -3.969 12 .011 1 .142 4 .18 80 min -44.548 1 -134.563 3 -114.545 1 004 3 .004 12 59 81 3 max 58.003 5 255.724 1 -2.89 12 .011 1 .082 5 .31 82 min -44.548 1 -81.55 3 -81.453 1 004 3 015 1 99	3 8 3 7 1 4 3 95 1 8 3
79 2 max 69.979 5 426.468 1 -3.969 12 .011 1 .142 4 .18 80 min -44.548 1 -134.563 3 -114.545 1 004 3 .004 12 59 81 3 max 58.003 5 255.724 1 -2.89 12 .011 1 .082 5 .31 82 min -44.548 1 -81.55 3 -81.453 1 004 3 015 1 99	8 3 97 1 4 3 95 1 8 3
80 min -44.548 1 -134.563 3 -114.545 1 004 3 .004 12 59 81 3 max 58.003 5 255.724 1 -2.89 12 .011 1 .082 5 .31 82 min -44.548 1 -81.55 3 -81.453 1 004 3 015 1 99	07 1 4 3 05 1 8 3
80 min -44.548 1 -134.563 3 -114.545 1 004 3 .004 12 59 81 3 max 58.003 5 255.724 1 -2.89 12 .011 1 .082 5 .31 82 min -44.548 1 -81.55 3 -81.453 1 004 3 015 1 99	4 3 95 1 8 3
81 3 max 58.003 5 255.724 1 -2.89 12 .011 1 .082 5 .31 82 min -44.548 1 -81.55 3 -81.453 1004 3015 199	95 1 8 3
	8 3
83 4 max 46.027 5 84.979 1 -1.812 12 .011 1 .046 5 .37	94 1
84 min -44.548 1 -28.537 3 -48.36 1004 3091 1 -1.1	
85 5 max 34.051 5 24.477 3733 12 .011 1 .011 5 .38	1 3
86 min -44.548 1 -85.765 1 -32.259 4004 3128 1 -1.1	93 1
87 6 max 22.075 5 77.49 3 17.824 1 .011 1004 12 .32	1 3
88 min -44.548 1 -256.509 1 -27.006 5004 3127 199	94 1
89 7 max 10.099 5 130.503 3 50.917 1 .011 1003 12 .2	3
90 min -44.548 1 -427.253 1 -25.337 5004 3087 159	95 1
91 8 max -1.219 15 183.516 3 84.009 1 .011 1 0 10 .01	7 3
92 min -44.548 1 -597.998 1 -23.668 5 004 3 083 4 00	3 9
93 9 max -1.742 12 236.529 3 117.102 1 .011 1 .109 1 .8	1
94 min -44.548 1 -768.742 1 -21.999 5 004 3 107 5 22	28 3
95 10 max -1.742 12 355.788 14 150.194 1 .011 1 .265 1 1.79	7 1
96 min -44.548 1 -939.486 1 -93.353 14 005 14 .007 12 55	35
97 11 max 9.181 5 768.742 1 -3.582 12 .004 3 .142 4 .8	1
98 min -44.548 1 -236.529 3 -117.102 1 011 1 .003 12 22	28 3
99 12 max -1.742 12 597.998 1 -2.503 12 .004 3 .08 5 .01	7 3
100 min -44.548 1 -183.516 3 -84.009 1011 1008 100	3 9
101	3
102 min -44.548 1 -130.503 3 -50.917 1011 1087 155	95 1
103	1 3
104 min -44.548 1 -77.49 3 -32.83 4011 1127 199	94 1
105	1 3
106 min -48.209 4 -24.477 3 -27.12 5011 1128 1 -1.1	93 1
107 16 max -1.742 12 28.537 3 48.36 1 .004 3 003 12 .37	8 3
108 min -60.185 4 -84.979 1 -25.451 5011 1091 1 -1.1	94 1
109 17 max -1.742 12 81.55 3 81.453 1 .004 3 0 3 .31	4 3
110 min -72.161 4 -255.724 1 -23.782 5011 1088 499	95 1
111 18 max -1.742 12 134.563 3 114.545 1 .004 3 .099 1 .18	8 3
112 min -84.137 4 -426.468 1 -22.113 5011 111 559	7 1
113	1
114 min -96.113 4 -597.212 1 -20.444 5011 1135 5 0	5
115 M16 1 max 81.804 5 571.5 1 -4.869 12 .012 1 .223 1 0	1
116 min -98.626 1 -176.502 3 -143.567 1006 3 .008 12 0	
117 2 max 69.828 5 400.755 1 -3.791 12 .012 1 .106 4 .17	5 3
118 min -98.626 1 -123.489 3 -110.474 1006 3 .003 1250	
119 3 max 57.852 5 230.011 1 -2.712 12 .012 1 .06 5 .28	
120 min -98.626 1 -70.476 3 -77.382 1006 3034 193	
121 4 max 45.876 5 59.267 1 -1.633 12 .012 1 .033 5 .33	
122 min -98.626 1 -17.463 3 -44.289 1006 3105 1 -1.1	
123 5 max 33.9 5 35.55 3554 12 .012 1 .008 5 .32	
124 min -98.626 1 -111.477 1 -23.265 4006 3138 1 -1.0	73 1
125 6 max 21.924 5 88.563 3 21.895 1 .012 1004 12 .25	
126 min -98.626 1 -282.222 1 -18.97 5006 3131 184	
127 7 max 9.948 5 141.577 3 54.988 1 .012 1003 12 .12	2 3
128 min -98.626 1 -452.966 1 -17.301 5006 3087 14	
129 8 max -1.294 15 194.59 3 88.08 1 .012 1 0 10 .21	
130 min -98.626 1 -623.71 1 -15.632 5006 3057 401	
131 9 max -3.659 12 247.603 3 121.173 1 .012 1 .119 1 1.0	
132 min -98.626 1 -794.455 1 -13.963 5 006 3 072 5 33	32 3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC		LC
133		10	max	-3.659	12	366.234	14	154.265	1	.012	1_	.28	1	2.067	1
134			min	-98.626	1_	-965.199	1	-91.381	14	006	3	.008	12	652	3
135		11	max	4.091	5	794.455	1	-3.761	12	.006	3	.119	1	1.04	1
136			min	-98.626	1	-247.603	3	-121.173	1	012	1	.003	12	332	3
137		12	max	-3.659	12	623.71	1	-2.682	12	.006	3	.055	4	.213	1
138			min	-98.626	1	-194.59	3	-88.08	1	012	1	003	1	074	3
139		13	max	-3.659	12	452.966	1	-1.603	12	.006	3	.027	5	.122	3
140			min	-98.626	1	-141.577	3	-54.988	1	012	1	087	1	415	1
141		14	max	-3.659	12	282.222	1	524	12	.006	3	.002	5	.256	3
142			min	-98.626	1	-88.563	က	-25.888	4	012	1	131	1	844	1
143		15	max	-3.659	12	111.477	1	11.197	1	.006	3	004	12	.329	3
144			min	-98.626	1	-35.55	3	-19.503	5	012	1	138	1	-1.073	1
145		16	max	-3.659	12	17.463	3	44.289	1	.006	3	003	12	.339	3
146			min	-98.626	1	-59.267	1	-17.834	5	012	1	105	1	-1.104	1
147		17	max	-3.659	12	70.476	3	77.382	1	.006	3	0	12	.288	3
148			min	-98.626	1	-230.011	1	-16.165	5	012	1	072	4	935	1
149		18	max		12	123.489	3	110.474	1	.006	3	.075	1	.175	3
150				-100.412	4	-400.755	1	-14.496	5	012	1	082	5	567	1
151		19	max	-3.659	12	176.502	3	143.567	1	.006	3	.223	1	0	1
152			min	-112.388	4	-571.5	1	-12.827	5	012	1	098	5	0	5
153	M2	1		1104.422	1	2.331	4	1.327	1	0	3	0	3	0	1
154	··· -			-768.721	3	.571	15	-83.071	4	0	4	0	1	0	1
155		2		1104.75	1	2.315	4	1.327	1	0	3	0	1	0	15
156				-768.475	3	.567	15	-83.356	4	0	4	018	4	0	4
157		3		1105.079	1	2.3	4	1.327	1	0	3	0	1	0	15
158				-768.229	3	.564	15	-83.641	4	0	4	037	4	001	4
159		4		1105.407	1	2.285	4	1.327	1	0	3	0	1	0	15
160				-767.982	3	.56	15	-83.926	4	0	4	055	4	002	4
161		5		1105.735	_ 	2.27	4	1.327	1	0	3	.001	1	0	15
162				-767.736	3	.557	15	-84.21	4	0	4	074	4	002	4
163		6		1106.064	<u> </u>	2.254	4	1.327	1	0	3	.001	1	- <u>002</u> 0	15
164				-767.49	3	.553	15	-84.495	4	0	4	093	4	003	4
165		7		1106.392	<u> </u>	2.239	4	1.327	1	0	3	.002	1	<u>003</u> 0	15
166				-767.243	3	.549	15	-84.78	4	0	4	112	4	003	4
167		8		1106.721	<u> </u>	2.224	4	1.327	1	0	3	.002	1	- <u>003</u> 0	15
168		0		-766.997	3	.546	15	-85.065	4	0	4	13	4	004	4
169		9		1107.049	<u> </u>	2.209	4	1.327	1	0	3	.002	1	- <u>004</u> 0	15
		9			3	.542	15	-85.35	4	0	4	149	4	004	4
170		10		<u>-766.751</u>	_				1		3		1		
171		10		1107.378	1	2.193	4	1.327		0		.003		001	15
172 173		11	may	<u>-766.504</u> 1107.706	3	.539 2.178	<u>15</u> 4	-85.635 1.227	<u>4</u> 1	0	3	168	1	005	15
								1.327				.003		001	
174		10		-766.258	3	.535	15	<u>-85.919</u>	4	0	4	187	4	005	15
175		12		1108.034	<u>1</u>	2.163	4	1.327	1_1	0	3	.003	1	001	15
176		10		<u>-766.012</u>	3_	.532	15	-86.204	4	0	4	206	4	005	4
177		13		1108.363	1	2.148	4	1.327	1	0	3	.004	1	001	15
178		4.4		-765.765	3	.528	15	-86.489	4	0	4	225	4	006	4
179		14		1108.691	1_	2.132	4	1.327	1	0	3	.004	1	002	15
180		4-		-765.519	3_	.524	15	-86.774	4	0	4	245	4	006	4
181		15		1109.02	1_	2.117	4	1.327	1	0	3	.004	1	002	15
182		4.0		-765.273	3_	.521	15	<u>-87.059</u>	4	0	4	264	4	007	4
183		16		1109.348	1_	2.102	4	1.327	1	0	3	.004	1	002	15
184				-765.026	3	.517	15	<u>-87.343</u>	4	0	4	283	4	007	4
185		17		1109.677	_1_	2.087	4	1.327	1	0	3	.005	1	002	15
186				-764.78	3	.514	15	-87.628	4	0	4	303	4	008	4
187		18		1110.005	_1_	2.071	4	1.327	1	0	3	.005	1	002	15
188				-764.534	3	.51	15	-87.913	4	0	4	322	4	008	4
189		19	max	1110.334	1	2.056	4	1.327	1	0	3	.005	1	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
190			min	-764.287	3	.506	15	-88.198	4	0	4	341	4	009	4
191	M3	1	max	203.632	2	8.104	4	.011	1	0	3	0	1	.009	4
192			min	-308.86	3	1.917	15	-1.234	5	0	4	013	4	.002	15
193		2	max	203.461	2	7.332	4	.011	1	0	3	0	1	.005	4
194			min	-308.988	3	1.736	15	691	5	0	4	013	4	.001	15
195		3	max	203.291	2	6.559	4	.011	1	0	3	0	1	.003	4
196			min	-309.115	3	1.554	15	149	5	0	4	013	4	0	12
197		4	max	203.121	2	5.787	4	.447	4	0	3	0	1	0	2
198			min	-309.243	3	1.372	15	0	12	0	4	013	4	0	3
199		5	max	202.95	2	5.015	4	.989	4	0	3	0	1	0	15
200			min	-309.371	3	1.191	15	0	12	0	4	013	4	002	6
201		6	max	202.78	2	4.242	4	1.531	4	0	3	0	1	0	15
202			min	-309.499	3	1.009	15	0	12	0	4	012	4	004	6
203		7	max	202.61	2	3.47	4	2.073	4	0	3	0	1	001	15
204			min	-309.626	3	.828	15	0	12	0	4	012	4	006	6
205		8	max	202.439	2	2.697	4	2.615	4	0	3	0	1	002	15
206			min	-309.754	3	.646	15	0	12	0	4	011	4	007	6
207		9	max	202.269	2	1.925	4	3.158	4	0	3	0	1	002	15
208			min	-309.882	3	.465	15	0	12	0	4	01	4	008	6
209		10	max	202.099	2	1.152	4	3.7	4	0	3	0	1	002	15
210			min	-310.01	3	.283	15	0	12	0	4	008	5	009	6
211		11	max	201.928	2	.38	4	4.242	4	0	3	0	1	002	15
212			min	-310.137	3	.054	12	0	12	0	4	006	5	009	6
213		12	max	201.758	2	08	15	4.784	4	0	3	0	1	002	15
214		<u> </u>	min	-310.265	3	393	6	0	12	0	4	005	5	009	6
215		13	max	201.588	2	262	15	5.326	4	0	3	0	1	002	15
216		1	min	-310.393	3	-1.166	6	0	12	0	4	002	5	009	6
217		14	max	201.417	2	443	15	5.868	4	0	3	0	1	002	15
218			min	-310.521	3	-1.938	6	0	12	0	4	0	5	008	6
219		15	max	201.247	2	625	15	6.41	4	0	3	.003	4	002	15
220		'0	min	-310.648	3	-2.711	6	0.41	12	0	4	0	12	007	6
221		16	max	201.076	2	806	15	6.953	4	0	3	.005	4	001	15
222		''	min	-310.776	3	-3.483	6	0.000	12	0	4	0	12	006	6
223		17	max	200.906	2	988	15	7.495	4	0	3	.008	4	0	15
224		1''	min	-310.904	3	-4.256	6	0	12	0	4	0	12	004	6
225		18	max	200.736	2	-1.17	15	8.037	4	0	3	.012	4	<u>.00+</u>	15
226		10	min	-311.032	3	-5.028	6	0.007	12	0	4	0	12	002	6
227		19	max	200.565	2	-1.351	15	8.579	4	0	3	.015	4	0	1
228		15	min	-311.159	3	-5.8	6	0.575	12	0	4	.010	12	0	1
229	M4	1	max	1228.23	1	0	1	326	12	0	1	.008	4	0	1
230	IVIT			-222.375		0		-245.15		0	1	0	10		1
231		2		1228.401	1	0	1	326	12	0	1	0	12	0	1
232		_		-222.247	3	0	1	-245.298		0	1	02	4	0	1
233		3		1228.571	1	0	1	326	12	0	1	0	12	0	1
234			min	-222.119	3	0	1	-245.445		0	1	048	4	0	1
235		4		1228.741		0	1	326	12	0	1	0	12	0	1
236		-		-221.992	3	0	1	-245.593		0	1	076	4	0	1
237		5		1228.912	1	0	1	326	12	0	1	0	12	0	1
		5		-221.864			1				1				1
238		G			<u>3</u> 1	0	1	-245.741 326	4 12	0	1	105 0	12	<u> </u>	1
239 240		6		1229.082 -221.736	3	0	1	326		0	1	133	4	0	1
		7		1229.252			1				1		12		•
241		/			1	0		326	12	0	_	0		0	1
242		0		<u>-221.608</u>	3_1	0	1	-246.036		0	1	161	4	0	1 1
243		8		1229.423	1	0	1	326	12	0	1	100	12	0	1
244		0	min	-221.481	3	0	1	-246.183	4	0	1	189	12	0	1
245		9		1229.593	1	0	1	326	12	0	1	0		0	1
246			min	-221.353	3	0	1	-246.331	4	0	1	218	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome		z-z Mome	<u>LC</u>
247		10	max	1229.763	1	0	1	326	12	0	1	0	12	0	1
248			min	-221.225	3	0	1	-246.479	4	0	1	246	4	0	1
249		11	max	1229.934	1	0	1	326	12	0	1	0	12	0	1
250			min	-221.097	3	0	1	-246.626	4	0	1	274	4	0	1
251		12	max	1230.104	1	0	1	326	12	0	1	0	12	0	1
252			min	-220.969	3	0	1	-246.774	4	0	1	303	4	0	1
253		13	max	1230.274	1	0	1	326	12	0	1	0	12	0	1
254			min	-220.842	3	0	1	-246.922	4	0	1	331	4	0	1
255		14	max	1230.445	1	0	1	326	12	0	1	0	12	0	1
256			min	-220.714	3	0	1	-247.069	4	0	1	359	4	0	1
257		15	max	1230.615	1	0	1	326	12	0	1	0	12	0	1
258			min	-220.586	3	0	1	-247.217	4	0	1	388	4	0	1
259		16	max	1230.785	1	0	1	326	12	0	1	0	12	0	1
260			min	-220.458	3	0	1	-247.365	4	0	1	416	4	0	1
261		17	max	1230.956	1	0	1	326	12	0	1	0	12	0	1
262			min	-220.331	3	0	1	-247.512	4	0	1	444	4	0	1
263		18	max	1231.126	1	0	1	326	12	0	1	0	12	0	1
264			min	-220.203	3	0	1	-247.66	4	0	1	473	4	0	1
265		19	max	1231.296	1	0	1	326	12	0	1	0	12	0	1
266			min	-220.075	3	0	1	-247.807	4	0	1	501	4	0	1
267	M6	1		3567.236	1	2.514	2	0	1	0	1	0	4	0	1
268			min	-2532.188	3	.376	12	-83.824	4	0	4	0	1	0	1
269		2	max	3567.565	1	2.502	2	0	1	0	1	0	1	0	12
270			min	-2531.942	3	.37	12	-84.108	4	0	4	019	4	0	2
271		3		3567.893	1	2.49	2	0	1	0	1	0	1	0	12
272			min	-2531.696	3	.364	12	-84.393	4	0	4	037	4	001	2
273		4		3568.222	1	2.478	2	0	1	0	1	0	1	0	12
274			min	-2531.449	3	.358	12	-84.678	4	0	4	056	4	002	2
275		5		3568.55	1	2.466	2	0	1	0	1	0	1	0	12
276			min	-2531.203	3	.352	12	-84.963	4	0	4	075	4	002	2
277		6		3568.879	1	2.454	2	0	1	0	1	0	1	0	12
278			min	-2530.957	3	.346	12	-85.248	4	0	4	094	4	003	2
279		7		3569.207	1	2.443	2	0	1	0	1	0	1	0	12
280			min		3	.34	12	-85.533	4	0	4	113	4	003	2
281		8		3569.535	1	2.431	2	0	1	0	1	0	1	0	12
282			min	-2530.464	3	.334	12	-85.817	4	0	4	132	4	004	2
283		9		3569.864	1	2.419	2	0	1	0	1	0	1	0	12
284			min	-2530.218	3	.328	12		4	0	4	151	4	004	2
285		10		3570.192	1	2.407	2	00.102	1	0	1	0	1	0	12
286		10	min	-2529.971	3	.322	12	-86.387	4	0	4	17	4	005	2
287		11	max	3570.521		2.395	2	0	1	0	1	0	1	0	12
288			min		3	.316	12	-86.672	4	0	4	189	4	005	2
289		12		3570.849	1	2.383	2	0	1	0	1	0	1	0	12
290		14	min		3	.31	12	-86.957	4	0	4	208	4	006	2
291		13		3571.178	1	2.371	2	0	1	0	1	0	1	0	12
292		13	min		3	.304	12	-87.242	4	0	4	227	4	006	2
293		1/		3571.506	1	2.359	2	0	1	0	1	0	1	0	12
294		14	min		3	.298	12	-87.526	4	0	4	247	4	007	2
295		15			<u> </u>	2.347	2		1		1	0	1		12
296		10		3571.835 -2528.74	3	.292	12	0 -87.811	4	0	4	266	4	001 008	2
297		16	min	3572.163	<u>ა</u> 1	2.336	2	0	1	0	1	<u>2</u> 66	1		12
		10						-88.096						001	
298		17	min		3	.287	12		4	0	4	286 0	4	008	12
299		17		3572.491	1	2.324	2	0 201	1	0	1		1	001	12
300		10	min		3	.281	12	-88.381	4	0	4	305	4	009	2
301		18		3572.82	1	2.312	2	0	1	0	1	0	1	001	12
302		10	min		3	.275	12	-88.666	4	0	4	325	4	009	2
303		19	max	3573.148	1	2.3	2	0	1	0	1	0	1	001	12

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	. LC	z-z Mome	. LC
304			min	-2527.755	3	.269	12	-88.951	4	0	4	344	4	01	2
305	M7	1	max	923.859	2	8.12	6	0	1	0	1	0	1	.01	2
306			min	-965.393	3	1.905	15	-1.303	5	0	4	013	4	.001	12
307		2	max	923.688	2	7.347	6	0	1	0	1	0	1_	.007	2
308			min	-965.52	3	1.723	15	761	5	0	4	013	4	0	3
309		3	max	923.518	2	6.575	6	0	1	0	1	0	1	.004	2
310			min	-965.648	3	1.542	15	219	5	0	4	014	4	002	3
311		4	max	923.348	2	5.802	6	.37	4	0	1	0	1	.002	2
312			min	-965.776	3	1.36	15	0	1	0	4	014	4	003	3
313		5	max	923.177	2	5.03	6	.912	4	0	1	0	1	0	2
314			min	-965.904	3	1.179	15	0	1	0	4	013	4	004	3
315		6	max	923.007	2	4.258	6	1.454	4	0	1	0	1	001	15
316			min	-966.031	3	.997	15	0	1	0	4	013	4	005	3
317		7	max	922.837	2	3.485	6	1.996	4	0	1	0	1	001	15
318			min	-966.159	3	.815	15	0	1	0	4	012	4	006	4
319		8	max	922.666	2	2.713	6	2.538	4	0	1	0	1	002	15
320			min	-966.287	3	.634	15	0	1	0	4	011	4	007	4
321		9	max	922.496	2	1.94	6	3.08	4	0	1	0	1	002	15
322			min	-966.415	3	.452	15	0	1	0	4	01	4	008	4
323		10	max	922.326	2	1.265	2	3.622	4	0	1	0	1	002	15
324			min	-966.543	3	.169	12	0	1	0	4	008	4	009	4
325		11	max	922.155	2	.663	2	4.164	4	0	1	0	1	002	15
326			min	-966.67	3	225	3	0	1	0	4	007	4	009	4
327		12	max		2	.061	2	4.707	4	0	1	0	1	002	15
328			min	-966.798	3	676	3	0	1	0	4	005	4	009	4
329		13	max		2	274	15	5.249	4	0	1	0	1	002	15
330			min	-966.926	3	-1.149	4	0	1	0	4	003	4	009	4
331		14	max		2	456	15	5.791	4	0	1	0	1	002	15
332			min	-967.054	3	-1.922	4	0	1	0	4	0	5	008	4
333		15	max		2	637	15	6.333	4	0	1	.002	4	002	15
334			min	-967.181	3	-2.694	4	0	1	0	4	0	1	007	4
335		16	max		2	819	15	6.875	4	0	1	.005	4	001	15
336			min	-967.309	3	-3.467	4	0	1	0	4	0	1	006	4
337		17	max		2	-1	15	7.417	4	0	1	.008	4	0	15
338			min	-967.437	3	-4.239	4	0	1	0	4	0	1	004	4
339		18	max		2	-1.182	15	7.959	4	0	1	.011	4	0	15
340			min	-967.565	3	-5.012	4	0	1	0	4	0	1	002	4
341		19	max		2	-1.363	15	8.501	4	0	1	.015	4	0	1
342			min	-967.692	3	-5.784	4	0	1	0	4	0	1	0	1
343	M8	1	max	3596.183	1	0	1	0	1	0	1	.008	4	0	1
344				-779.028	3	0	1	-239.612	4	0	1	0	1	0	1
345		2		3596.353	1	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-239.759	4	0	1	02	4	0	1
347		3		3596.524	1	0	1	0	1	0	1	0	1	0	1
348			min		3	0	1	-239.907	4	0	1	047	4	0	1
349		4	max	3596.694	1	0	1	0	1	0	1	0	1	0	1
350				-778.645	3	0	1	-240.055	4	0	1	075	4	0	1
351		5		3596.864	1	0	1	0	1	0	1	0	1	0	1
352			min		3	0	1	-240.202	4	0	1	102	4	0	1
353		6		3597.035	1	0	1	0	1	0	1	0	1	0	1
354				-778.389	3	0	1	-240.35	4	0	1	13	4	0	1
355		7		3597.205	1	0	1	0	1	0	1	0	1	0	1
356				-778.261	3	0	1	-240.497		0	1	158	4	0	1
357		8		3597.376	1	0	1	0	1	0	1	0	1	0	1
358				-778.134	3	0	1	-240.645		0	1	185	4	0	1
359		9		3597.546	1	0	1	0	1	0	1	0	1	0	1
360		Ť		-778.006		0	1	-240.793	_	0	1	213	4	0	1
000			1111111	110.000				2 10.1 00				.210			

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
361		10	max	3597.716	1_	0	1	0	_1_	0	1	0	1	0	1
362			min	-777.878	3	0	1	-240.94	4	0	1	241	4	0	1
363		11		3597.887	_1_	0	1	0	_1_	0	1	0	1	0	1
364			min	-777.75	3_	0	1	-241.088	4_	0	1	268	4	0	1
365		12		3598.057	1	0	1	0	1_	0	1	0	1	0	1
366		40		-777.622	3	0	1	-241.236	4	0	1_	296	4	0	1
367		13		3598.227	<u>1</u> 3	0	1	0	<u>1</u> 4	0	1	0	4	0	1
368 369		14		-777.495 3598.398	<u>ာ</u> 1	0	1	-241.383 0	_ 4 _	0	1	324 0	1	0	1
370		14		-777.367	3	0	1	-241.531	4	0	1	351	4	0	1
371		15		3598.568		0	1	0	1	0	1	0	1	0	1
372		10		-777.239	3	0	1	-241.679	4	0	1	379	4	0	1
373		16		3598.738	1	0	1	0	1	0	1	0	1	0	1
374				-777.111	3	0	1	-241.826	4	0	1	407	4	0	1
375		17		3598.909	1	0	1	0	1	0	1	0	1	0	1
376			min	-776.984	3	0	1	-241.974	4	0	1	435	4	0	1
377		18	max	3599.079	1	0	1	0	1_	0	1	0	1	0	1
378				-776.856	3	0	1	-242.121	4	0	1	462	4	0	1
379		19		3599.249	_1_	0	1	0	_1_	0	1	0	1	0	1
380		_		-776.728	3	0	1	-242.269	4	0	1	49	4	0	1
381	M10	1		1104.422	_1_	2.229	6	048	12	0	1	0	1	0	1
382				-768.721	3	.503	15	-83.736	4_	0	5_	0	3	0	1
383		2		1104.75	1	2.214	6	048	12	0	1_	0	12	0	15
384		_	min	-768.475	3_	.5	15	-84.021	4	0	5	019	4	0	6
385 386		3		1105.079 -768.229	<u>1</u> 3	2.199 .496	6 15	048 -84.306	<u>12</u>	0	<u>1</u> 5	037	12	0	15
387		4		1105.407	<u>ა</u> 1	2.184	6	048	12	0	<u> </u>	0	12	0	15
388		4	_	-767.982	3	.492	15	-84.591	4	0	5	056	4	001	6
389		5		1105.735	_ <u></u>	2.168	6	048	12	0	1	0	12	0	15
390				-767.736	3	.489	15	-84.876	4	0	5	075	4	002	6
391		6		1106.064	1	2.153	6	048	12	0	1	0	12	0	15
392			min		3	.485	15	-85.16	4	0	5	094	4	002	6
393		7	max	1106.392	1	2.138	6	048	12	0	1	0	12	0	15
394			min	-767.243	3	.482	15	-85.445	4	0	5	112	4	003	6
395		8	max	1106.721	1	2.123	6	048	12	0	1	0	12	0	15
396				-766.997	3	.478	15	-85.73	4	0	5	131	4	003	6
397		9		1107.049	_1_	2.107	6	048	12	0	1	0	12	0	15
398				-766.751	3	.474	15	-86.015	4	0	5	15	4	004	6
399		10		1107.378	_1_	2.092	6	048	12	0	1_	0	12	0	15
400		44		-766.504	3	.471	15	-86.3	4	0	5	169	4	004	6
401		11		1107.706	1	2.077	6	048	12	0	1	100	12	001	15
402		12		-766.258 1108.034	<u>3</u>	.467 2.062	1 <u>5</u>	-86.585 048	<u>4</u> 12	0	<u>5</u> 1	189 0	12	005 001	15
404		12		-766.012	_ <u>1</u>	.464	15	-86.869	4	0	5	208	4	001	6
405		13		1108.363	<u>ა</u> 1	2.046	6	048	12	0	<u> </u>	0	12	003 001	15
406		10		-765.765	3	.46	15	-87.154	4	0	5	227	4	006	6
407		14		1108.691	1	2.031	6	048	12	0	1	0	12	001	15
408				-765.519	3	.457	15	-87.439	4	0	5	246	4	006	6
409		15		1109.02	1	2.016	6	048	12	0	1	0	12	001	15
410				-765.273	3	.453	15	-87.724	4	0	5	266	4	007	6
411		16	max	1109.348	1	2.001	6	048	12	0	1	0	12	002	15
412			min	-765.026	3	.449	15	-88.009	4	0	5	285	4	007	6
413		17		1109.677	1_	1.985	6	048	12	0	1	0	12	002	15
414				-764.78	3	.446	15	-88.293	4	0	5	305	4	007	6
415		18		1110.005	_1_	1.97	6	048	12	0	1	0	12	002	15
416				-764.534	3	.442	15	-88.578	4	0	5	324	4	008	6
417		19	max	1110.334	_1_	1.955	6	048	12	0	1	0	12	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
418			min	-764.287	3	.439	15	-88.863	4	0	5	344	4	008	6
419	M11	1	max		2	8.051	6	0	12	0	1	0	12	.008	6
420			min	-308.86	3	1.882	15	-1.234	5	0	4	013	4	.002	15
421		2	max	203.461	2	7.279	6	0	12	0	1	0	12	.005	6
422			min	-308.988	3	1.7	15	692	5	0	4	013	4	.001	15
423		3	max	203.291	2	6.506	6	0	12	0	1	0	12	.003	2
424			min	-309.115	3	1.518	15	15	5	0	4	013	4	0	12
425		4	max	203.121	2	5.734	6	.442	4	0	1	0	12	0	2
426			min	-309.243	3	1.337	15	011	1	0	4	013	4	0	3
427		5	max	202.95	2	4.961	6	.984	4	0	1	0	12	0	15
428			min	-309.371	3	1.155	15	011	1	0	4	013	4	003	4
429		6	max	202.78	2	4.189	6	1.526	4	0	1	0	12	001	15
430			min	-309.499	3	.974	15	011	1	0	4	013	4	005	4
431		7	max	202.61	2	3.416	6	2.068	4	0	1	0	12	002	15
432			min	-309.626	3	.792	15	011	1	0	4	012	4	006	4
433		8	max	202.439	2	2.644	6	2.611	4	0	1	0	12	002	15
434			min	-309.754	3	.611	15	011	1	0	4	011	4	007	4
435		9	max	202.269	2	1.872	6	3.153	4	0	1	0	12	002	15
436			min	-309.882	3	.429	15	011	1	0	4	01	4	008	4
437		10	max	202.099	2	1.099	6	3.695	4	0	1	0	12	002	15
438			min	-310.01	3	.247	15	011	1	0	4	008	4	009	4
439		11	max	201.928	2	.371	2	4.237	4	0	1	0	12	002	15
440			min	-310.137	3	.054	12	011	1	0	4	007	4	009	4
441		12	max	201.758	2	116	15	4.779	4	0	1	0	12	002	15
442			min	-310.265	3	447	4	011	1	0	4	005	4	009	4
443		13	max	201.588	2	297	15	5.321	4	0	1	0	12	002	15
444			min	-310.393	3	-1.219	4	011	1	0	4	002	4	009	4
445		14	max	201.417	2	479	15	5.863	4	0	1	0	12	002	15
446			min	-310.521	3	-1.992	4	011	1	0	4	0	1	008	4
447		15	max	201.247	2	66	15	6.405	4	0	1	.002	4	002	15
448			min	-310.648	3	-2.764	4	011	1	0	4	0	1	007	4
449		16	max	201.076	2	842	15	6.948	4	0	1	.005	4	001	15
450			min	-310.776	3	-3.536	4	011	1	0	4	0	1	006	4
451		17	max	200.906	2	-1.024	15	7.49	4	0	1	.008	4	001	15
452			min	-310.904	3	-4.309	4	011	1	0	4	0	1	004	4
453		18	max	200.736	2	-1.205	15	8.032	4	0	1	.012	4	0	15
454			min	-311.032	3	-5.081	4	011	1	0	4	0	1	002	4
455		19	max	200.565	2	-1.387	15	8.574	4	0	1	.015	4	0	1
456			min	-311.159	3	-5.854	4	011	1	0	4	0	1	0	1
457	M12	1	max	1228.23	1	0	1	8.841	1	0	1	.008	4	0	1
458			min	-222.375	3	0	1	-240.705	4	0	1	0	1	0	1
459		2	max	1228.401	1	0	1	8.841	1	0	1	0	1	0	1
460			min	-222.247	3	0	1	-240.853	4	0	1	02	4	0	1
461		3	max	1228.571	1	0	1	8.841	1	0	1	.002	1	0	1
462			min	-222.119	3	0	1	-241	4	0	1	047	4	0	1
463		4	max	1228.741	1	0	1	8.841	1	0	1	.003	1	0	1
464			min	-221.992	3	0	1	-241.148	4	0	1	075	4	0	1
465		5	max	1228.912	1	0	1	8.841	1	0	1	.004	1	0	1
466			min	-221.864	3	0	1	-241.296	4	0	1	103	4	0	1
467		6		1229.082	1	0	1	8.841	1	0	1	.005	1	0	1
468					3	0	1	-241.443	4	0	1	13	4	0	1
469		7		1229.252	1	0	1	8.841	1	0	1	.006	1	0	1
470				-221.608	3	0	1	-241.591	4	0	1	158	4	0	1
471		8		1229.423	1	0	1	8.841	1	0	1	.007	1	0	1
472			min	-221.481	3	0	1	-241.738	4	0	1	186	4	0	1
473		9		1229.593	1	0	1	8.841	1	0	1	.008	1	0	1
474				-221.353	3	0	1	-241.886	4	0	1	214	4	0	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10		1229.763	1	0	1	8.841	1	0	1	.009	1	0	1
476			min	-221.225	3	0	1	-242.034	4	0	1	241	4	0	1
477		11	max	1229.934	1	0	1	8.841	1	0	1	.01	1	0	1
478			min	-221.097	3	0	1	-242.181	4	0	1	269	4	0	1
479		12	max	1230.104	1	0	1	8.841	1	0	1	.011	1	0	1
480			min	-220.969	3	0	1	-242.329	4	0	1	297	4	0	1
481		13	max	1230.274	1	0	1	8.841	1	0	1	.012	1	0	1
482			min	-220.842	3	0	1	-242.477	4	0	1	325	4	0	1
483		14	max	1230.445	1	0	1	8.841	1	0	1	.013	1	0	1
484			min	-220.714	3	0	1	-242.624	4	0	1	353	4	0	1
485		15		1230.615	1	0	1	8.841	1	0	1	.014	1	0	1
486			min	-220.586	3	0	1	-242.772	4	0	1	381	4	0	1
487		16		1230.785	1	0	1	8.841	1	0	1	.015	1	0	1
488				-220.458	3	0	1	-242.92	4	0	1	408	4	0	1
489		17		1230.956	1	0	1	8.841	1	0	1	.016	1	0	1
490				-220.331	3	0	1	-243.067	4	0	1	436	4	0	1
491		18		1231.126	1	0	1	8.841	1	0	1	.017	1	0	1
492				-220.203	3	0	1	-243.215	4	0	1	464	4	0	1
493		19		1231.296	1	0	1	8.841	1	0	1	.018	1	0	1
494			min	-220.075	3	0	1	-243.362	4	0	1	492	4	0	1
495	M1	1	max	143.404	1	437.9	3	58.484	5	0	1	.222	1	0	3
496			min	-5.723	5	-510.323	1	-93.413	1	0	3	059	5	013	1
497		2	max	143.774	1	436.863	3	59.725	5	0	1	.173	1	.256	1
498			min	-5.55	5	-511.707	1	-93.413	1	0	3	028	5	23	3
499		3	max	180.931	3	561.417	1	-3.538	12	0	3	.124	1	.514	1
500				-119.868	2	-313.85	3	-92.322	1	0	1	.002	15	452	3
501		4		181.209	3	560.033	1	-3.538	12	0	3	.075	1	.218	1
502		7		-119.497	2	-314.888	3	-92.322	1	0	1	008	5	286	3
503		5		181.487	3	558.649	<u> </u>	-3.538	12	0	3	.026	1	200 004	15
504		J	min	-119.126	2	-315.926	3	-92.322	1	0	1	017	5	119	3
505		6		181.765	3	557.266	1	-3.538	12	0	3	0	12	.048	3
506		0		-118.756	2	-316.963	3	-92.322	1	0	1	031	4	372	1
507		7	max		3	555.882	1	-3.538	12	0	3	003	12	.215	3
508				-118.385	2	-318.001	3	-92.322	1	0	1	003	1	665	1
		8		182.321	3	554.499	<u> </u>		12	0	3		12	.383	3
509 510		0	max	-118.014	2	-319.039	3	-3.538 -92.322	1	0	1	005 12	1	958	1
		9					2	39.784		_		.07	1		3
511		9	max		2	30.671			5	0	9		5	.448	
512		40	min	-60.757		.418	<u>15</u>	-134.678	1_	0		122	_	<u>-1.091</u>	1
513		10	max	190.503	3	29.287	2	41.026	5_4	0	9	0	12	.436	3
514 515		11	min	-60.386 190.781	3	0 27.903	<u>5</u>	<u>-134.678</u>	<u>1</u> 5	0	9	102	12	<u>-1.1</u>	3
		11						42.267		0		003		.425	1
516		12		-60.015	2	-1.73	3	<u>-134.678</u> 130.021	1	0	3	093	4	<u>-1.108</u>	_
517		12		198.654	3	208.72	_		5_1	0	1	.118	1 5	.369	3
518		10		-46.372	5	-586.71	1	-90.174	1	0	3	173	5	<u>977</u>	1
519		13	max	198.932	3	207.682	3	131.263	5	0	1	.071	1	.26	3
520		4.4	min	-46.199	5	-588.094	1_	-90.174	1_	0	3	104	5	<u>667</u>	1
521		14	max		3_	206.645	3	132.504	5_	0	1	.023	1	.15	3
522		4.5		-46.026	5_	-589.477	1_	-90.174	1_	0	3	035	5	357	1
523		15		199.488	3_	205.607	3_	133.745	_5_	0	1	.035	5	.042	3
524		4.0	min	-45.853	5	-590.861	1_	-90.174	_1_	0	3	024	1	045	1
525		16		199.766	3_	204.569	3	134.987	5	0	1	.106	5	.267	1
526			min	-45.68	5_	-592.244	1_	-90.174	_1_	0	3	072	1	<u>067</u>	3
527		17	max		3_	203.532	3	136.228	_5_	0	1	.178	5	.58	1
528			min	-45.507	5	-593.628	1_	-90.174	1_	0	3	12	1	174	3
529		18	max	12.653	_5_	574.023	1_	-3.659	12	0	5	.146	5	.29	1
530				-143.936	1	-175.489	3	-113.683	4	0	1	171	1	087	3
531		19	max	12.826	5	572.639	1_	-3.659	12	0	5	.098	5	.006	3

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
532			min	-143.565	1	-176.527	3	-112.442	4	0	1	223	1	012	1
533	<u>M5</u>	1	max	308.857	1	1460.211	3	89.192	5	0	1	0	1	.026	1
534			min	9.551	12	-1724.247	1	0	1	0	4	134	4	0	3
535		2	max	309.228	1	1459.173	3	90.434	5	0	1	0	1	.937	1
536			min	9.737	12	-1725.63	1	0	1	0	4	088	4	771	3
537		3	max	581.11	3	1729.448	1	13.614	4	0	4	0	1	1.806	1
538			min	-486.477	1	-1016.238	3	0	1	0	1	041	4	-1.511	3
539		4	max	581.388	3	1728.064	1	14.856	4	0	4	0	1	.894	1
540			min	-486.106	1	-1017.275	3	0	1	0	1	034	4	974	3
541		5	max	581.666	3	1726.68	1	16.097	4	0	4	0	1	.011	9
542			min	-485.736	1	-1018.313	3	0	1	0	1	025	4	437	3
543		6	max	581.944	3	1725.297	1	17.339	4	0	4	0	1	.1	3
544			min	-485.365	1	-1019.351	3	0	1	0	1	017	5	928	1
545		7	max	582.222	3	1723.913	1	18.58	4	0	4	0	1	.638	3
546			min	-484.994	1	-1020.389	3	0	1	0	1	009	5	-1.838	1
547		8	max	582.5	3	1722.529	1	19.822	4	0	4	.004	14	1.177	3
548			min	-484.623	1	-1021.426	3	0	1	0	1	0	15	-2.748	1
549		9	max	596.651	3	101.129	2	127.092	4	0	1	0	1	1.356	3
550			min	-330.305	2	.418	15	0	1	0	1	159	4	-3.106	1
551		10	max	596.929	3	99.745	2	128.333	4	0	1	0	1	1.313	3
552			min	-329.934	2	.001	15	0	1	0	1	092	5	-3.134	1
553		11	max	597.207	3	98.362	2	129.575	4	0	1	0	1	1.271	3
554			min	-329.563	2	-1.576	6	0	1	0	1	026	5	-3.162	1
555		12	max		3	664.43	3	177.068	4	0	1	0	1	1.115	3
556			min	-212.569	2	-1831.182	1	0	1	0	4	241	4	-2.816	1
557		13	max	611.7	3	663.393	3	178.31	4	0	1	0	1	.765	3
558			min	-212.198	2	-1832.566	1	0	1	0	4	147	4	-1.849	1
559		14	max		3	662.355	3	179.551	4	0	1	0	1	.415	3
560			min	-211.828	2	-1833.95	1	0	1	0	4	053	4	882	1
561		15	max	612.256	3	661.317	3	180.793	4	0	1	.042	4	.126	2
562			min	-211.457	2	-1835.333	1	0	1	0	4	0	1	004	13
563		16	max		3	660.279	3	182.034	4	0	1	.138	4	1.055	1
564			min	-211.086	2	-1836.717	1	0	1	0	4	0	1	283	3
565		17	max		3	659.242	3	183.275	4	0	1	.234	4	2.025	1
566			min	-210.715	2	-1838.1	1	0	1	0	4	0	1	631	3
567		18	max	-9.864	12	1938.606	1	0	1	0	4	.229	4	1.047	1
568		1	min	-308.905	1	-600.347	3	-43.335	5	0	1	0	1	33	3
569		19	max	-9.678	12		1	0	1	0	4	.207	4	.024	1
570		10	min	-308.534	1	-601.385	3	-42.094	5	0	1	0	1	013	3
571	M9	1	max	143.404	1	437.9	3	93.413	1	0	3	009	12	0	3
572	1110					-510.323	1	3.587	12		1	222	1	013	1
573		2		143.774	1	436.863	3	93.413	1	0	3	007	12	.256	1
574			min	5.118	12		1	3.587	12	0	1	173	1	23	3
575		3		180.931	3	561.417	1	92.322	1	0	1	005	12	.514	1
576		Ť	min	-119.868	2	-313.85	3	-10.929	5	0	3	124	1	452	3
577		4		181.209	3	560.033	1	92.322	1	0	1	003	12	.218	1
578					2	-314.888	3	-9.688	5	0	3	075	1	286	3
579		5		181.487	3	558.649	1	92.322	1	0	1	001	12	004	15
580				-119.126	2	-315.926		-8.446	5	0	3	026	1	119	3
581		6		181.765	3	557.266	1	92.322	1	0	1	.022	1	.048	3
582				-118.756	2	-316.963	3	-7.205	5	0	3	024	5	372	1
583		7		182.043	3	555.882	1	92.322	1	0	1	.071	1	.215	3
584				-118.385		-318.001	3	-5.964	5	0	3	028	5	665	1
585		8		182.321	3	554.499	1	92.322	1	0	1	.12	1	.383	3
586		0	min	-118.014	2	-319.039	3	-4.722	5	0	3	03	5	958	1
587		9		190.225	3	30.671	2	134.678	1	0	3	003	12	.448	3
588		3	min		2	.422	15	5.073	12	0	9	003 145	4	-1.091	1
J00			1111111	200.737		.422	10	5.075	12	U	J	140	+	-1.091	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	190.503	3	29.287	2	134.678	1	0	3	0	1	.436	3
590			min	-60.386	2	.005	15	5.073	12	0	9	101	4	-1.1	1
591		11	max	190.781	3	27.903	2	134.678	1	0	3	.072	1	.425	3
592			min	-60.015	2	-1.691	6	5.073	12	0	9	072	5	-1.108	1
593		12	max	198.654	3	208.72	3	159.054	4	0	3	004	12	.369	3
594			min	-38.197	10	-586.71	1	3.332	12	0	1	211	4	977	1
595		13	max	198.932	3	207.682	3	160.295	4	0	3	003	12	.26	3
596			min	-37.888	10	-588.094	1	3.332	12	0	1	127	4	667	1
597		14	max	199.21	3	206.645	3	161.537	4	0	3	0	12	.15	3
598			min	-37.579	10	-589.477	1	3.332	12	0	1	042	4	357	1
599		15	max	199.488	3	205.607	3	162.778	4	0	3	.044	4	.042	3
600			min	-37.27	10	-590.861	1	3.332	12	0	1	0	12	045	1
601		16	max	199.766	3	204.569	3	164.02	4	0	3	.13	4	.267	1
602			min	-36.961	10	-592.244	1	3.332	12	0	1	.003	12	067	3
603		17	max	200.044	3	203.532	3	165.261	4	0	3	.217	4	.58	1
604			min	-36.653	10	-593.628	1	3.332	12	0	1	.004	12	174	3
605		18	max	-5.055	12	574.023	1	98.716	1	0	1	.2	4	.29	1
606			min	-143.936	1	-175.489	3	-83.132	5	0	3	.006	12	087	3
607	·	19	max	-4.869	12	572.639	1	98.716	1	0	1	.223	1	.006	3
608			min	-143.565	1	-176.527	3	-81.891	5	0	3	.008	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC_x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.11	1	.003	3 8.698e-3	1	NC	1	NC	1
2			min	499	4	012	3	001	10 -9.101e-4	3	NC	1	NC	1
3		2	max	0	1	.227	3	.039	1 1.006e-2	1	NC	5	NC	2
4			min	499	4	147	1	015	5 -9.534e-4	3	980.05	1	6895.987	1
5		3	max	0	1	.42	3	.092	1 1.141e-2	1	NC	5	NC	3
6			min	499	4	351	1	017	5 -9.967e-4	3	546.577	1	2802.35	1
7		4	max	0	1	.537	3	.139	1 1.277e-2	1	NC	5	NC	3
8			min	499	4	467	1	012	5 -1.04e-3	3	437.324	1	1847.454	1
9		5	max	0	1	.563	3	.163	1 1.413e-2	1	NC	5	NC	3
10			min	499	4	477	1	002	5 -1.083e-3	3	429.724	1	1568.923	1
11		6	max	0	1	.501	3	.158	1 1.548e-2	1	NC	5	NC	3
12			min	499	4	385	1	.006	15 -1.127e-3	3	490.914	3	1619.65	1
13		7	max	0	1	.369	3	.125	1 1.684e-2	1	NC	5	NC	3
14			min	499	4	214	1	.008	10 -1.17e-3	3	661.33	3	2053.645	1
15		8	max	0	1	.201	3	.074	1 1.82e-2	1	NC	5	NC	2
16			min	499	4	012	9	.003	10 -1.213e-3	3	1180.79	3	3512.019	1
17		9	max	0	1	.182	1	.023	1 1.955e-2	1	NC	4	NC	1
18			min	499	4	.005	15	002	10 -1.256e-3	3	3462.624	1	NC	1
19		10	max	0	1	.266	1	.01	3 2.091e-2	1	NC	3	NC	1
20			min	499	4	019	3	006	2 -1.3e-3	3	1611.746	1	NC	1
21		11	max	0	12	.182	1	.023	1 1.955e-2	1	NC	4	NC	1
22			min	499	4	.005	15	012	5 -1.256e-3	3	3462.624	1	NC	1
23		12	max	0	12	.201	3	.074	1 1.82e-2	1	NC	5	NC	2
24			min	499	4	012	9	012	5 -1.213e-3	3	1180.79	3	3512.019	1
25		13	max	0	12	.369	3	.125	1 1.684e-2	1	NC	5	NC	3
26			min	499	4	214	1	004	5 -1.17e-3	3	661.33	3	2053.645	1
27		14	max	0	12	.501	3	.158	1 1.548e-2	1	NC	5	NC	3
28			min	499	4	385	1	.005	15 -1.127e-3	3	490.914	3	1619.65	1
29		15	max	0	12	.563	3	.163	1 1.413e-2	1	NC	5	NC	3
30			min	499	4	477	1	.009	12 -1.083e-3	3	429.724	1	1568.923	1
31		16	max	0	12	.537	3	.139	1 1.277e-2	1	NC	5	NC	3
32			min	499	4	467	1	.008	12 -1.04e-3	3	437.324	1	1847.454	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
33		17	max	0	12	.42	3	.092	1	1.141e-2	1	NC	5	NC	3
34			min	499	4	351	1	.006	12	-9.967e-4	3	546.577	1	2802.35	1
35		18	max	0	12	.227	3	.039	1	1.006e-2	1	NC	5	NC	2
36			min	499	4	147	1	.002	10	-9.534e-4	3	980.05	1	6895.987	1
37		19	max	0	12	.11	1	.003	3	8.698e-3	1	NC	1	NC	1
38			min	499	4	012	3	001	10	-9.101e-4	3	NC	1	NC	1
39	M14	1	max	0	1	.131	3	.003	3	5.509e-3	1	NC	1	NC	1
40			min	397	4	357	1	0	10	-2.395e-3	3	NC	1	NC	1
41		2	max	0	1	.357	3	.027	1	6.64e-3	1	NC	5	NC	1
42			min	397	4	745	1	021	5	-2.928e-3	3	647.963	1	NC	1
43		3	max	0	1	.548	3	.075	1	7.77e-3	1	NC	15	NC	3
44			min	397	4	-1.078	1	025	5	-3.462e-3	3	349.346	1	3474.788	1
45		4	max	0	1	.677	3	.12	1	8.9e-3	1	NC	15	NC	3
46			min	397	4	-1.315	1	017	5	-3.996e-3	3	262.907	1	2148.465	1
47		5	max	0	1	.735	3	.145	1	1.003e-2	1	9017.179	15	NC	3
48			min	397	4	-1.437	1	002	5	-4.529e-3	3	233.141	1	1761.947	1
49		6	max	0	1	.72	3	.144	1	1.116e-2	1	8986.629	15	NC	3
50			min	397	4	-1.445	1	.009	12	-5.063e-3	3	231.564	1	1778.995	1
51		7	max	0	1	.647	3	.116	1	1.229e-2	1	9833.008	15	NC	3
52			min	397	4	-1.356	1	.007	10	-5.597e-3	3	252.089	1	2220.28	1
53		8	max	0	1	.54	3	.07	1	1.342e-2	1	NC	15	NC	2
54			min	397	4	-1.21	1	.003	10	-6.13e-3	3	295.285	1	3746.704	1
55		9	max	0	1	.437	3	.029	4	1.455e-2	1_	NC	15	NC	1
56			min	398	4	-1.064	1	002	10	-6.664e-3	3	356.349	1	8566.707	4
57		10	max	0	1	.389	3	.009	3	1.568e-2	1	NC	5	NC	1
58			min	398	4	994	1	005	2	-7.198e-3	3	395.094	1	NC	1
59		11	max	0	12	.437	3	.022	1	1.455e-2	1	NC	15	NC	1
60			min	398	4	-1.064	1	021	5	-6.664e-3	3	356.349	1	NC	1
61		12	max	0	12	.54	3	.07	1	1.342e-2	1	NC	15	NC	2
62			min	398	4	-1.21	1	024	5	-6.13e-3	3	295.285	1	3746.704	
63		13	max	0	12	.647	3	.116	1	1.229e-2	1	9832.747	15	NC	3
64			min	398	4	-1.356	1	015	5	-5.597e-3	3	252.089	1	2220.28	1
65		14	max	0	12	.72	3	.144	1	1.116e-2	1	8986.305	15	NC	3
66			min	398	4	-1.445	1	0	15	-5.063e-3	3	231.564	1	1778.995	1
67		15	max	0	12	.735	3	.145	1	1.003e-2	1_	9016.77	15	NC	3
68			min	398	4	-1.437	1	.008	12	-4.529e-3	3	233.141	1	1761.947	1
69		16	max	0	12	.677	3	.12	1	8.9e-3	1_	NC	15	NC	3
70			min	398	4	-1.315	1	.007	12	-3.996e-3	3	262.907	1	2148.465	1
71		17	max	0	12	.548	3	.075	1	7.77e-3	1_	NC	15	NC	3
72			min	398	4	-1.078	1	.005	12	-3.462e-3	3	349.346	1	3474.788	1
73		18	max	0	12	.357	3	.03	4	6.64e-3	_1_	NC	5_	NC	1
74			min	398	4	745	1	.001	10		3	647.963	1	8274.306	4
75		19	max	0	12	.131	3	.003	3	5.509e-3	1	NC	_1_	NC	1
76			min	398	4	357	1	0	10	-2.395e-3	3	NC	1	NC	1
77	M15	1	max	0	12	.134	3	.003	3	2.012e-3	3	NC	_1_	NC	1
78			min	335	4	356	1	0	10	-5.598e-3	1_	NC	1_	NC	1
79		2	max	0	12	.276	3	.027	1	2.463e-3	3	NC	5	NC	2
80			min	335	4	778	1	032	5	-6.751e-3	1	597.815	1	7664.409	
81		3	max	0	12	.398	3	.075	1	2.914e-3	3	NC	15	NC	3
82			min	335	4	-1.136	1	039	5	-7.904e-3	1_	322.926	1	3465.654	
83		4	max	0	12	.487	3	.12	1	3.365e-3	3	NC	15	NC	3
84			min	335	4	-1.39	1	028	5	-9.057e-3	1	243.829	1	2144.069	
85		5	max	0	12	.536	3	.145	1	3.816e-3	3	9024.533	15	NC	3
86			min	335	4	-1.516	1	007	5	-1.021e-2	1	217.335	1	1758.669	
87		6	max	0	12	.543	3	.144	1	4.266e-3	3	8995.423	15	NC	3
88			min	335	4	-1.515	1	.009	12	-1.136e-2	1	217.544	1	1775.546	
89		7	max	0	12	.517	3	.116	1	4.717e-3	3	9845.034	15	NC	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
90			min	335	4	<u>-1.408</u>	1	.008	10 -1.252e-2	1	239.604	1_	2214.974	
91		8	max	0	12	.47	3	.07	1 5.168e-3	3	NC	<u>15</u>	NC NC	2
92			min	335	4	-1.239	1	.003	10 -1.367e-2	1_	285.512	1_	3732.138	
93		9	max	0	12	.421	3	.039	4 5.619e-3	3	NC 050.404	<u>15</u>	NC C470 474	1
94		10	min	335 0	1	-1.072 .398	3	001 .009	10 -1.482e-2 3 6.07e-3	<u>1</u> 3	352.124 NC	<u>1</u> 5	6478.174 NC	1
96		10	max min	335	4	993	1	005	2 -1.598e-2	1	395.641	1	NC NC	1
97		11	max	333 0	1	<u>993 </u>	3	.022	1 5.619e-3	3	NC	15	NC NC	1
98			min	335	4	-1.072	1	031	5 -1.482e-2	1	352.124		8222.623	
99		12	max	0	1	.47	3	.07	1 5.168e-3	3	NC	15	NC	2
100		12	min	335	4	-1.239	1	036	5 -1.367e-2	1	285.512	1	3732.138	
101		13	max	0	1	.517	3	.116	1 4.717e-3	3	9844.842	15	NC	3
102			min	335	4	-1.408	1	023	5 -1.252e-2	1	239.604	1	2214.974	
103		14	max	0	1	.543	3	.144	1 4.266e-3	3	8995.187	15	NC	3
104			min	335	4	-1.515	1	002	5 -1.136e-2	1	217.544	1	1775.546	
105		15	max	0	1	.536	3	.145	1 3.816e-3	3	9024.237	15	NC	3
106			min	334	4	-1.516	1	.008	12 -1.021e-2	1	217.335	1	1758.669	1
107		16	max	0	1	.487	3	.12	1 3.365e-3	3	NC	15	NC	3
108			min	334	4	-1.39	1	.007	12 -9.057e-3	1	243.829	1	2144.069	1
109		17	max	0	1	.398	3	.075	1 2.914e-3	3	NC	15	NC	3
110			min	334	4	-1.136	1	.005	12 -7.904e-3	1	322.926	1	3465.654	
111		18	max	0	1	.276	3	.041	4 2.463e-3	3	NC	5	NC	2
112			min	334	4	778	1	.001	10 -6.751e-3	1	597.815	1_	6111.114	4
113		19	max	0	1	.134	3	.003	3 2.012e-3	3	NC	_1_	NC	1
114			min	334	4	356	1	0	10 -5.598e-3	1_	NC	1_	NC	1
115	<u>M16</u>	1	max	0	12	.107	1	.002	3 3.48e-3	3	NC	1_	NC	1
116			min	146	4	044	3	0	10 -8.234e-3	1_	NC	_1_	NC	1
117		2	max	0	12	.041	3	.038	1 4.125e-3	3_	NC	5	NC	2
118			min	146	4	184	1	024	5 -9.477e-3	1_	866.665	_1_	6937.669	
119		3	max	0	12	.108	3	.092	1 4.769e-3	3	NC 400,000	5	NC 2010 255	3
120		1	min	146	4	41 <u>5</u>	1	03	5 -1.072e-2	1	482.688	1_	2810.355	
121 122		4	max	0	12	.145 547	3	.138 022	1 5.414e-3 5 -1.196e-2	3	NC 385.217	<u>5</u>	NC	3
123		5	min	146 0	12	<u>547</u> .146	3	.163		<u>1</u> 3	NC	<u> </u>	1849.511 NC	3
124		5	max	146	4	562	1	007	1 6.059e-3 5 -1.321e-2	1	376.77	1	1568.417	1
125		6	min max	146 0	12	562 .111	3	.158	1 6.704e-3	3	NC	5	NC	3
126		1	min	146	4	463	1	.006	15 -1.445e-2	1	442.596	1	1616.404	
127		7	max	0	12	.049	3	.125	1 7.349e-3	3	NC	5	NC	3
128		T .	min	146	4	274	1	.008	12 -1.569e-2	1	662.189	1	2043.845	
129		8	max	0	12	.001	13	.075	1 7.993e-3	3	NC	3	NC	3
130			min		4	062	2	.004	10 -1.694e-2				3471.501	
131		9	max	0	12	.165	1	.028	4 8.638e-3	3	NC	4	NC	1
132			min	146	4	091	3	0	10 -1.818e-2	1	4323.985	1	9033.455	4
133		10	max	0	1	.258	1	.008	3 9.283e-3	3	NC	5	NC	1
134			min	146	4	12	3	005	2 -1.942e-2	1	1667.642	1	NC	1
135		11	max	0	1	.165	1	.024	1 8.638e-3	3	NC	4	NC	1
136			min	146	4	091	3	019	5 -1.818e-2	1	4323.985	1	NC	1
137		12	max	0	1	.001	13	.075	1 7.993e-3	3	NC	3	NC	3
138			min	146	4	062	2	021	5 -1.694e-2	1	1694.376	1	3471.501	1
139		13	max	0	1	.049	3	.125	1 7.349e-3	3	NC	5	NC	3
140			min	146	4	274	1	01	5 -1.569e-2	1	662.189	1_	2043.845	
141		14	max	0	1	.111	3	.158	1 6.704e-3	3	NC	5	NC	3
142			min	146	4	463	1	.004	15 -1.445e-2	1	442.596	1_	1616.404	
143		15	max	0	1	.146	3	.163	1 6.059e-3	3	NC	5_	NC	3
144			min	146	4	562	1	.008	12 -1.321e-2	1	376.77	<u>1</u>	1568.417	1
145		16	max	0	1	.145	3	.138	1 5.414e-3	3	NC	5	NC	3
146			min	146	4	547	1	.007	12 -1.196e-2	<u>1</u>	385.217	1_	1849.511	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	I C	(n) I /v Ratio	1 C	(n) I /z Ratio	I.C.
147		17	max	0	1	.108	3	.092	1	4.769e-3	3	NC	5	NC	3
148			min	146	4	415	1	.005	12	-1.072e-2	1	482.688	1	2810.355	1
149		18	max	0	1	.041	3	.038	1	4.125e-3	3	NC	5	NC	2
150			min	146	4	184	1	.002	10	-9.477e-3	1	866.665	1	6917.636	4
151		19	max	0	1	.107	1	.002	3	3.48e-3	3	NC	1	NC	1
152			min	146	4	044	3	0	10	-8.234e-3	1	NC	1	NC	1
153	M2	1	max	.005	1	.002	2	.007	1	1.228e-3	5	NC	1	NC	2
154			min	004	3	004	3	472	4	-1.858e-4	1_	NC	1	101.367	4
155		2	max	.005	1	.001	2	.007	1	1.318e-3	5	NC	1	NC	2
156			min	003	3	004	3	433	4	-1.721e-4	1	NC	1	110.453	4
157		3	max	.005	1	.001	2	.006	1	1.408e-3	5	NC	1	NC	2
158			min	003	3	004	3	395	4	-1.585e-4	1	NC	1	121.258	4
159		4	max	.004	1	0	2	.005	1	1.498e-3	5	NC	1	NC	2
160			min	003	3	004	3	356	4	-1.449e-4	1	NC	1	134.231	4
161		5	max	.004	1	0	2	.005	1	1.588e-3	5	NC	1	NC	2
162			min	003	3	004	3	319	4	-1.312e-4	1	NC	1	149.985	4
163		6	max	.004	1	0	15	.004	1	1.678e-3	5	NC	1_	NC	1
164			min	003	3	004	3	283	4	-1.176e-4	1	NC	1	169.369	4
165		7	max	.003	1	0	15	.004	1	1.768e-3	5	NC	_1_	NC	1_
166			min	002	3	004	3	247	4	-1.039e-4	1	NC	1	193.593	4
167		8	max	.003	1	0	15	.003	1	1.858e-3	5_	NC	_1_	NC	1
168			min	002	3	004	3	213	4	-9.028e-5	1_	NC	1	224.422	4
169		9	max	.003	1	0	15	.003	1	1.953e-3	4	NC	_1_	NC	1
170			min	002	3	003	3	181	4	-7.664e-5	1_	NC	1	264.518	4
171		10	max	.003	1	0	15	.002	1	2.048e-3	4	NC	1_	NC	1
172			min	002	3	003	3	15	4	-6.299e-5	1_	NC	1_	318.054	4
173		11	max	.002	1	0	15	.002	1	2.143e-3	4_	NC	<u>1</u>	NC	1
174			min	002	3	003	3	122	4	-4.935e-5	1_	NC	1_	391.875	4
175		12	max	.002	1	0	15	.001	1	2.238e-3	4	NC	1	NC	1
176			min	001	3	003	3	096	4	-3.571e-5	1_	NC	1	497.867	4
177		13	max	.002	1	0	15	.001	1	2.333e-3	4_	NC	_1_	NC	1
178			min	001	3	002	3	073	4	-2.206e-5	1_	NC	1_	658.187	4
179		14	max	.001	1	0	15	0	1	2.428e-3	4_	NC	_1_	NC	1
180			min	0	3	002	3	052	4	-8.417e-6	1_	NC	1_	918.181	4
181		15	max	.001	1	0	15	0	1	2.523e-3	4	NC	1	NC	1
182			min	0	3	002	3	035	4	0	3	NC	1_	1383.217	4
183		16	max	0	1	0	15	0	1	2.618e-3	4_	NC	1	NC	1
184			min	0	3	001	6	02	4	5.516e-7	12	NC	_1_	2347.998	
185		17	max	0	1	0	15	0	1	2.713e-3	4_	NC	_1_	NC	1
186			min	0	3	001	6	01	4	1.078e-6	12	NC	_1_	4926.194	4
187		18	max	0	1	0	15	0	1	2.808e-3	4_	NC	_1_	NC	1
188			min	0	3	0	6	003	4	1.605e-6	12	NC	_1_	NC	1
189		19	max	0	1	0	1	0	1	2.903e-3	4_	NC	_1_	NC NC	1
190			min	0	1	0	1	0	1	2.131e-6	12	NC	1	NC	1
191	M3	1_	max	0	1	0	1	0	1	-6.648e-7	12	NC	1	NC NC	1
192			min	0	1	0	1	0	1	-6.47e-4	4_	NC	1	NC	1
193		2	max	0	3	0	15	.014	4	4.357e-6	1_	NC	1	NC NC	1
194			min	0	2	001	6	0	12	-7.137e-6	5_	NC	1	NC NC	1
195		3	max	0	3	0	15	.028	4	6.371e-4	4	NC	1	NC NC	1
196		4	min	0	2	003	6	0	12	9.935e-7	12	NC NC	1_	NC NC	1
197		4	max	0	3	001	15	.04	4	1.279e-3	4	NC NC	1	NC 0004.070	1
198		_	min	0	2	005	6	0	12	1.823e-6	12	NC NC	1	9964.072	4
199		5_	max	0	3	001	15	.053	4	1.921e-3	4	NC	1	NC	1
200			min	0	2	007	6	0	12	2.652e-6	12	NC	1_	8294.65	4
201		6	max	0	3	002	15	.064	4	2.563e-3	4	NC	1	NC 7440.00	1
202		-	min	0	2	008	6	0	12	3.481e-6	<u>12</u>	NC NC	1_	7446.68	4
203		7	max	0	3	002	15	.075	4	3.205e-3	4	NC	<u>1</u>	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

204		Member	Sec	x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			
206															
207			8												
208					_										
209			9												
210			40	•									_		
211			10												
212			11												
12															
214			10												
13 max .002 3 .003 15 .133 4 7.057e-3 4 NC 1 NC 1			12												
1916			12												
218			13							0.2950.6					
18			1.1												-
219			14												
220			15										_		
221			13												
222			16												
223			10												
224			17				-								
18 max .003 3 0 15 .178 4 1.027e-2 4 NC 1 NC 1			11/												
226			18										_		•
19			10							1.0276-2					
228			10		_										-
229 M4			13												
230		M4	1							-4 626e-7					
231		IVIT													
232			2										•		
233 3 max .003 1 .001 2 0 12 .4.626e-7 12 NC 1 NC 2 234 min 0 3 .002 3 .157 4 .1.009e-3 4 NC 1 157.806 4 235 4 max .002 1 .001 2 0 12 .4.626e-7 12 NC 1 NC 2 236 min 0 3 .002 3 142 4 .1.009e-3 4 NC 1 174.56 4 237 5 max .002 1 0 2 0 12 .4.626e-7 12 NC 1 NC 2 238 min 0 3 .002 3 127 4 .1.009e-3 4 NC 1 194.898 4 239 6 max .002 1 0 2 0 12 .4.626e-7 12 NC 1 NC 2 240 min 0 3 .002 3 113 4 .1.009e-3 4 NC 1 194.898 4 241 7 max .002 1 0 2 0 12 .4.626e-7 12 NC 1 NC 2 242 min 0 3 .002 3 099 4 .1.009e-3 4 NC 1 219.911 4 241 7 max .002 1 0 2 0 12 .4.626e-7 12 NC 1 NC 2 242 min 0 3 002 3 099 4 .1.009e-3 4 NC 1 251.146 4 243 8 max .002 1 0 2 0 12 .4.626e-7 12 NC 1 NC 2 244 min 0 3 002 3 085 4 .1.009e-3 4 NC 1 251.146 4 245 9 max .002 1 0 2 0 12 .4.626e-7 12 NC 1 NC 2 246 min 0 3 001 3 085 4 .1.009e-3 4 NC 1 290.861 4 245 9 max .002 1 0 2 0 12 .4.626e-7 12 NC 1 NC 2 246 min 0 3 001 3 072 4 .1.009e-3 4 NC 1 342.455 4 247 10 max .001 1 0 2 0 12 .4.626e-7 12 NC 1 NC 1 248 min 0 3 001 3 06 4 .1.009e-3 4 NC 1 342.455 4 249 11 max .001 1 0 2 0 12 .4.626e-7 12 NC 1 NC 1 250 min 0 3 001 3 049 4 .1.009e-3 4 NC 1 1411.241 4 249 11 max .001 1 0 2 0 12 .4.626e-7 12 NC 1 NC 1 1252 min 0 3 001 3 039 4 .1.009e-3 4 NC 1 150.913 4 150.913 4 150.913 4 150.913 4 150.913 4 150.913 4 150.913 4 150.913 4															
234			3												
235					-										
236			4										•		
237			_												
238			5												
239					-										
240			6	•							_				
241 7 max .002 1 0 2 0 12 -4.626e-7 12 NC 1 NC 2 242 min 0 3 002 3 099 4 -1.009e-3 4 NC 1 251.146 4 243 8 max .002 1 0 2 0 12 -4.626e-7 12 NC 1 NC 2 244 min 0 3 002 3 085 4 -1.009e-3 4 NC 1 290.861 4 245 9 max .002 1 0 2 0 12 -4.626e-7 12 NC 1 NC 2 246 min 0 3 001 3 072 4 -1.009e-3 4 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>					-										
242 min 0 3 002 3 099 4 -1.009e-3 4 NC 1 251.146 4 243 8 max .002 1 0 2 0 12 -4.626e-7 12 NC 1 NC 2 244 min 0 3 002 3 085 4 -1.009e-3 4 NC 1 290.861 4 245 9 max .002 1 0 2 0 12 -4.626e-7 12 NC 1 NC 2 246 min 0 3 001 3 072 4 -1.009e-3 4 NC 1 NL 1 247 10 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 248 min 0 3 001 3			7												
243 8 max .002 1 0 2 0 12 -4.626e-7 12 NC 1 NC 2 244 min 0 3002 3085 4 -1.009e-3 4 NC 1 290.861 4 245 9 max .002 1 0 2 0 12 -4.626e-7 12 NC 1 NC 2 246 min 0 3001 3072 4 -1.009e-3 4 NC 1 342.455 4 247 10 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 248 min 0 3001 306 4 -1.009e-3 4 NC 1 411.241 4 249 11 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 250 min 0 3001 3049 4 -1.009e-3 4 NC 1 505.913 4 251 12 max .001 1 0 2 0 12			Ľ												
244 min 0 3 002 3 085 4 -1.009e-3 4 NC 1 290.861 4 245 9 max .002 1 0 2 0 12 -4.626e-7 12 NC 1 NC 2 246 min 0 3 001 3 072 4 -1.009e-3 4 NC 1 342.455 4 247 10 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 248 min 0 3 001 3 06 4 -1.009e-3 4 NC 1 NC 1 249 11 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 250 min 0 3 001 3			8										1		
245 9 max .002 1 0 2 0 12 -4.626e-7 12 NC 1 NC 2 246 min 0 3 001 3 072 4 -1.009e-3 4 NC 1 342.455 4 247 10 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 248 min 0 3 001 3 06 4 -1.009e-3 4 NC 1 411.241 4 249 11 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 250 min 0 3 001 3 049 4 -1.009e-3 4 NC 1 NC 1 251 12 max .001 1 0					3								1		
246 min 0 3 001 3 072 4 -1.009e-3 4 NC 1 342.455 4 247 10 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 248 min 0 3 001 3 06 4 -1.009e-3 4 NC 1 411.241 4 249 11 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 250 min 0 3 001 3 049 4 -1.009e-3 4 NC 1 NC 1 251 12 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 252 min 0 3 001 3 <td< td=""><td></td><td></td><td>9</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			9												
247 10 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 248 min 0 3 001 3 06 4 -1.009e-3 4 NC 1 411.241 4 249 11 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 250 min 0 3 001 3 049 4 -1.009e-3 4 NC 1 505.913 4 251 12 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 252 min 0 3 001 3 039 4 -1.009e-3 4 NC 1 641.512 4 253 13 max 0 1 0 <				_				072					1		_
248 min 0 3 001 3 06 4 -1.009e-3 4 NC 1 411.241 4 249 11 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 250 min 0 3 001 3 049 4 -1.009e-3 4 NC 1 505.913 4 251 12 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 252 min 0 3 001 3 039 4 -1.009e-3 4 NC 1 641.512 4 253 13 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 254 min 0 3 0 3 029 4 -1.009e-3<			10	.001					12				1		1
249 11 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 250 min 0 3 001 3 049 4 -1.009e-3 4 NC 1 505.913 4 251 12 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 252 min 0 3 001 3 039 4 -1.009e-3 4 NC 1 641.512 4 253 13 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 254 min 0 3 0 3 029 4 -1.009e-3 4 NC 1 845.959 4 255 14 max 0 1 0 2 </td <td></td> <td></td> <td></td> <td></td> <td>3</td> <td>001</td> <td></td> <td>06</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>4</td>					3	001		06					1		4
250 min 0 3 001 3 049 4 -1.009e-3 4 NC 1 505.913 4 251 12 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 252 min 0 3 001 3 039 4 -1.009e-3 4 NC 1 641.512 4 253 13 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 254 min 0 3 0 3 029 4 -1.009e-3 4 NC 1 845.959 4 255 14 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 256 min 0 3 0 3 021 </td <td></td> <td></td> <td>11</td> <td>.001</td> <td></td> <td></td> <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>			11	.001					12				1		
251 12 max .001 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 252 min 0 3 001 3 039 4 -1.009e-3 4 NC 1 641.512 4 253 13 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 254 min 0 3 0 3 029 4 -1.009e-3 4 NC 1 845.959 4 255 14 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 256 min 0 3 0 3 021 4 -1.009e-3 4 NC 1 176.073 4 257 15 max 0 1 0 2						001		049					1		4
252 min 0 3 001 3 039 4 -1.009e-3 4 NC 1 641.512 4 253 13 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 254 min 0 3 0 3 029 4 -1.009e-3 4 NC 1 845.959 4 255 14 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 256 min 0 3 0 3 021 4 -1.009e-3 4 NC 1 176.073 4 257 15 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 258 min 0 3 0 3 014			12						12				1		1
253 13 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 254 min 0 3 0 3 029 4 -1.009e-3 4 NC 1 845.959 4 255 14 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 256 min 0 3 0 3 021 4 -1.009e-3 4 NC 1 176.073 4 257 15 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 258 min 0 3 0 3 014 4 -1.009e-3 4 NC 1 1762.857 4 259 16 max 0 1 0 2 <								039	4				1		4
254 min 0 3 0 3 029 4 -1.009e-3 4 NC 1 845.959 4 255 14 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 256 min 0 3 0 3 021 4 -1.009e-3 4 NC 1 1176.073 4 257 15 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 258 min 0 3 0 3 014 4 -1.009e-3 4 NC 1 1762.857 4 259 16 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1			13										1		
255 14 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 256 min 0 3 0 3021 4 -1.009e-3 4 NC 1 1176.073 4 257 15 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 258 min 0 3 014 4 -1.009e-3 4 NC 1 1762.857 4 259 16 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1					3								1		4
256 min 0 3 0 3 021 4 -1.009e-3 4 NC 1 1176.073 4 257 15 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 258 min 0 3 0 3 014 4 -1.009e-3 4 NC 1 1762.857 4 259 16 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1			14	_									1		
257 15 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1 258 min 0 3 0 3 014 4 -1.009e-3 4 NC 1 1762.857 4 259 16 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1								-							_
258 min 0 3 0 3 014 4 -1.009e-3 4 NC 1 1762.857 4 259 16 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1			15	· ·									1		
259 16 max 0 1 0 2 0 12 -4.626e-7 12 NC 1 NC 1						-					-		1		4
			16	0		0			12		12		1		
	260				3			008		-1.009e-3	4		1	2968.567	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
261		17	max	0	1	0	2	0	12	-4.626e-7	12	NC	_1_	NC	1
262			min	0	3	0	3	004	4	-1.009e-3	4	NC	1_	6136.916	4
263		18	max	0	1	0	2	00	12	-4.626e-7	12	NC	_1_	NC	1
264			min	0	3	0	3	001	4	-1.009e-3	4	NC	1_	NC	1
265		19	max	0	1	0	1	0	1	-4.626e-7	12	NC	_1_	NC	1
266			min	0	1	0	1	0	1	-1.009e-3	4	NC	1_	NC	1
267	<u>M6</u>	1	max	.016	1	.009	2	0	1	1.284e-3	4_	NC	3	NC	1
268			min	012	3	013	3	476	4	0	1_	5272.686	2	100.496	4
269		2	max	.016	1	.008	2	0	1	1.373e-3	4	NC	_1_	NC	1
270		_	min	011	3	013	3	437	4	0	1_	5833.098	2	109.505	4
271		3	max	.015	1	.007	2	0	1	1.461e-3	4	NC	1_	NC	1
272			min	01	3	012	3	398	4	0	1_	6520.615	2	120.218	4
273		4	max	.014	1	.006	2	0	1	1.55e-3	4	NC	1_	NC	1
274			min	01	3	011	3	36	4	0	1_	7376.027	2	133.081	4
275		5	max	.013	1	.006	2	0	1	1.639e-3	4_	NC	1_	NC 440.704	1
276			min	009	3	011	3	322	4	0	1_	8458.566	2	148.701	4
277		6	max	.012	1	.005	2	0	1	1.728e-3	4	NC 0057.05	1_	NC 407,000	1
278		-	min	008	3	01	3	285	4	0	1_	9857.05	2	167.922	4
279		7	max	.011	1	.004	2	0	1	1.816e-3	4_	NC	_1_	NC 101 010	1
280			min	008	3	009	3	249	4	0	1_	NC NC	1_	191.942	4
281		8	max	.01	1	.003	2	0	1	1.905e-3	4	NC NC	1_	NC 000 F44	1
282		_	min	007	3	009	3	215	4	0	1_	NC NC	1_	222.511	4
283		9	max	.009	1	.003	2	0	1	1.994e-3	4	NC	1_	NC OCO 074	1
284		40	min	006	3	008	3	182	4	0	1_	NC NC	1_	262.271	4
285		10	max	800.	1	.002	2	0	1	2.083e-3	4	NC NC	1_1	NC 245.20	1
286		4.4	min	006	3	007	3	152	4	0 171 0 2	1_	NC NC	1_	315.36	4
287		11	max	.007	3	.001	2	0	1	2.171e-3	4	NC	1_1	NC 200 FCZ	1
288		40	min	005		006	3	123	4	0	1_	NC NC	1_	388.567	4
289		12	max	.006	3	0	2	0	1	2.26e-3	<u>4</u> 1	NC	<u>1</u> 1	NC 402 C02	1
290 291		13	min	005 .005	1	<u>006</u> 0	2	097 0	1	0 2.349e-3	4	NC NC	1	493.682 NC	1
292		13	max	004	3	005	3	073	4	0	1	NC NC	1	652.686	4
293		14	min	.005	1	005 0	2	073 0	1	2.438e-3	4	NC NC	1	NC	1
294		14	max	003	3	004	3	053	4	0	1	NC NC	1	910.564	4
295		15		.004	1	004	2	055 0	1	2.526e-3	4	NC	1	NC	1
296		15	max min	003	3	003	3	035	4	0	1	NC	1	1371.87	4
297		16	max	.003	1	<u>003</u> 0	2	0 033	1	2.615e-3	4	NC	1	NC	1
298		10	min	002	3	003	3	021	4	0	1	NC	1	2329.077	4
299		17	max	.002	1	003	2	0	1	2.704e-3	4	NC	1	NC	1
300		17	min	001	3	002	3	01	4	0	1	NC	1	4887.805	
301		18	max	0	1	0	15	0	1	2.793e-3	4	NC	1	NC	1
302		10	min	0	3	0	3	003	4	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	2.881e-3	4	NC	1	NC	1
304		10	min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	-6.399e-4	4	NC	1	NC	1
307		2	max	0	3	0	15	.014	4	0	1	NC	1	NC	1
308			min	0	2	002	3	0	1	-1.177e-5	5	NC	1	NC	1
309		3	max	0	3	0	15	.027	4	6.183e-4	4	NC	1	NC	1
310			min	0	2	003	3	0	1	0	1	NC	1	NC	1
311		4	max	.001	3	001	15	.04	4	1.247e-3	4	NC	1	NC	1
312			min	001	2	005	3	0	1	0	1	NC	1	9597.949	4
313		5	max	.002	3	002	15	.052	4	1.877e-3	4	NC	1	NC	1
314			min	002	2	007	4	0	1	0	1	NC	1	7969.668	_
315		6	max	.002	3	002	15	.064	4	2.506e-3	4	NC	1	NC	1
316			min	002	2	009	4	0	1	0	1	NC	1	7134.164	
317		7	max	.003	3	002	15	.075	4	3.135e-3	4	NC	1	NC	1
						_			_			_			

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
318			min	003	2	01	4	0	1	0	1_	9568.408	4	6733.005	4
319		8	max	.003	3	003	15	.085	4	3.764e-3	4	NC	_1_	NC	1
320			min	003	2	011	4	0	1	0	1	8508.949	4	6627.221	4
321		9	max	.004	3	003	15	.095	4	4.393e-3	4	NC	1_	NC	1_
322			min	004	2	012	4	0	1	0	1	7874.077	4	6767.766	4
323		10	max	.004	3	003	15	.105	4	5.022e-3	4	NC	_1_	NC	1
324			min	004	2	013	4	0	1	0	1	7550.098	4	7157.587	4
325		11	max	.005	3	003	15	.114	4	5.651e-3	4	NC	1_	NC	1
326			min	004	2	013	4	0	1	0	1	7488.087	4	7845.897	4
327		12	max	.005	3	003	15	.122	4	6.28e-3	4	NC	1	NC	1
328			min	005	2	013	4	0	1	0	1	7684.905	4	8943.95	4
329		13	max	.006	3	003	15	.131	4	6.909e-3	4	NC	1_	NC	1
330			min	005	2	012	4	0	1	0	1	8184.244	4	NC	1
331		14	max	.006	3	003	15	.139	4	7.538e-3	4	NC	1	NC	1
332			min	006	2	012	1	0	1	0	1	9100.162	4	NC	1
333		15	max	.007	3	002	15	.148	4	8.168e-3	4	NC	1_	NC	1
334			min	006	2	011	1	0	1	0	1	NC	1	NC	1
335		16	max	.007	3	002	15	.156	4	8.797e-3	4	NC	1	NC	1
336			min	007	2	011	1	0	1	0	1	NC	1	NC	1
337		17	max	.008	3	001	15	.165	4	9.426e-3	4	NC	1	NC	1
338			min	007	2	01	1	0	1	0	1	NC	1	NC	1
339		18	max	.008	3	0	15	.174	4	1.005e-2	4	NC	1	NC	1
340			min	008	2	009	1	0	1	0	1	NC	1_	NC	1
341		19	max	.008	3	0	15	.184	4	1.068e-2	4	NC	1_	NC	1
342			min	008	2	007	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.009	1	.007	2	0	1	0	1	NC	1	NC	1
344			min	002	3	008	3	184	4	-1.031e-3	4	NC	1	135.082	4
345		2	max	.008	1	.006	2	0	1	0	1	NC	1	NC	1
346			min	002	3	008	3	169	4	-1.031e-3	4	NC	1	147.082	4
347		3	max	.008	1	.006	2	0	1	0	1	NC	1	NC	1
348			min	002	3	007	3	154	4	-1.031e-3	4	NC	1	161.352	4
349		4	max	.007	1	.005	2	0	1	0	1	NC	1_	NC	1
350			min	002	3	007	3	139	4	-1.031e-3	4	NC	1_	178.484	4
351		5	max	.007	1	.005	2	0	1	0	1	NC	1	NC	1
352			min	001	3	006	3	124	4	-1.031e-3	4	NC	1	199.282	4
353		6	max	.006	1	.005	2	0	1	0	1	NC	1	NC	1
354			min	001	3	006	3	11	4	-1.031e-3	4	NC	1	224.86	4
355		7	max	.006	1	.004	2	0	1	0	1	NC	1	NC	1
356			min	001	3	006	3	097	4	-1.031e-3	4	NC	1	256.801	4
357		8	max	.005	1	.004	2	0	1	0	1	NC	1	NC	1
358			min	001	3	005	3	083	4	-1.031e-3	4	NC	1	297.414	4
359		9	max	.005	1	.004	2	0	1	0	1	NC	1	NC	1
360			min	001	3	005	3	071	4	-1.031e-3	4	NC	1	350.173	4
361		10	max	.004	1	.003	2	0	1	0	1	NC	1	NC	1
362			min	0	3	004	3	059	4	-1.031e-3	4	NC	1	420.513	4
363		11	max	.004	1	.003	2	0	1	0	1	NC	1	NC	1
364			min	0	3	004	3	048	4	-1.031e-3	4	NC	1	517.324	4
365		12	max	.003	1	.003	2	0	1	0	1	NC	1	NC	1
366			min	0	3	003	3	038	4	-1.031e-3	4	NC	1	655.987	4
367		13	max	.003	1	.002	2	0	1	0	1	NC	1	NC	1
368			min	0	3	003	3	029	4	-1.031e-3	4	NC	1	865.054	4
369		14	max	.002	1	.002	2	0	1	0	1	NC	1	NC	1
370			min	0	3	002	3	021	4	-1.031e-3	4	NC	1	1202.628	4
371		15	max	.002	1	.001	2	0	1	0	1	NC	1	NC	1
372			min	0	3	002	3	014	4	-1.031e-3	4	NC	1	1802.676	_
373		16	max	.001	1	.001	2	0	1	0	1	NC	1	NC	1
374			min	0	3	001	3	008	4	-1.031e-3	4	NC	1	3035.645	_
<u> </u>			11.007			1001		.000		1100100				10000.010	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		LC
375		17	max	0	1	0	2	0	1	0	1_	NC	1	NC	1
376			min	0	3	0	3	004	4	-1.031e-3	4_	NC	<u>1</u>	6275.65	4
377		18	max	0	1	0	2	0	1	0	1_	NC	1	NC NC	1
378		40	min	0	3	0	3	001	4	-1.031e-3	4_	NC NC	1_	NC NC	1
379		19	max	0	1	0	1	0	1	0 -1.031e-3	1_	NC NC	<u>1</u> 1	NC NC	1
380	M40	1	min	.005	1	.002		0	12		4	NC NC	1	NC NC	2
381	M10	1	max		3		3			1.286e-3 7.348e-6	<u>4</u> 12	NC NC	1		
383		2	min	004 .005	1	<u>004</u> .001	2	<u>476</u> 0	12	1.374e-3	4	NC NC	1	100.602 NC	2
384			max min	003	3	004	3	437	4	6.821e-6	12	NC NC	1	109.621	4
385		3	max	.005	1	.004	2	437 0	12	1.462e-3	4	NC NC	1	NC	2
386		3	min	003	3	004	3	398	4	6.294e-6	12	NC	1	120.345	4
387		4	max	.004	1	0	2	<u>590</u>	12	1.551e-3	4	NC	1	NC	2
388		_	min	003	3	004	3	359	4	5.768e-6	12	NC	1	133.222	4
389		5	max	.004	1	0	2	<u>.555</u>	12	1.639e-3	4	NC	1	NC	2
390		T .	min	003	3	004	3	321	4	5.241e-6	12	NC	1	148.859	4
391		6	max	.004	1	0	2	0	12	1.727e-3	4	NC	1	NC	1
392			min	003	3	004	3	285	4	4.715e-6	12	NC	1	168.1	4
393		7	max	.003	1	0	10	0	12	1.815e-3	4	NC	1	NC	1
394			min	002	3	004	3	249	4	4.188e-6	12	NC	1	192.145	4
395		8	max	.003	1	0	10	0	12	1.903e-3	4	NC	1	NC	1
396			min	002	3	004	3	215	4	3.661e-6	12	NC	1	222.747	4
397		9	max	.003	1	0	10	0	12	1.991e-3	4	NC	1	NC	1
398			min	002	3	003	3	182	4	3.135e-6	12	NC	1	262.549	4
399		10	max	.003	1	0	10	0	12	2.079e-3	4	NC	1	NC	1
400			min	002	3	003	3	152	4	2.608e-6	12	NC	1	315.695	4
401		11	max	.002	1	0	15	0	12	2.168e-3	4	NC	<u>1</u>	NC	1
402			min	002	3	003	3	123	4	2.082e-6	12	NC	1_	388.981	4
403		12	max	.002	1	0	15	0	12	2.256e-3	4	NC	_1_	NC	1
404			min	001	3	003	4	097	4	1.555e-6	12	NC	_1_	494.21	4
405		13	max	.002	1	0	15	0	12	2.344e-3	4	NC	1	NC	1
406			min	001	3	003	4	073	4	1.028e-6	12	NC	1_	653.386	4
407		14	max	.001	1	0	15	0	12	2.432e-3	4	NC	1	NC NC	1
408		4.5	min	0	3	002	4	052	4	5.017e-7	12	NC NC	1_	911.548	4
409		15	max	.001	1	0	15	0	12	2.52e-3	4_	NC NC	1	NC 4070.005	1
410		4.0	min	0	3	002	4	035	4	-5.227e-6	1_	NC NC	1_	1373.365	
411		16	max	0	3	0 002	15	0 021	12	2.608e-3 -1.887e-5	4_	NC NC	1	NC 2331.653	1
413		17	min	0	1		15		12		1_	NC NC			1
414		17	max min	<u> </u>	3	0 001	4	0 01	4	2.696e-3 -3.252e-5	<u>4</u> 1	NC NC	1	NC 4893.364	
415		18	max	0	1	0	15	0		2.785e-3		NC	1	NC	1
416		10	min	0	3	0	4	003	4	-4.616e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	<u>003</u>	1	2.873e-3	4	NC	1	NC	1
418		10	min	0	1	0	1	0	1	-5.98e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.852e-5	1	NC	1	NC	1
420			min	0	1	0	1	0	1	-6.377e-4	4	NC	1	NC	1
421		2	max	0	3	0	15	.014	4	-1.643e-7	12	NC	1	NC	1
422			min	0	2	002	4	0	1	-7.56e-6	5	NC	1	NC	1
423		3	max	0	3	0	15	.027	4	6.234e-4	4	NC	1	NC	1
424			min	0	2	003	4	0	1	-2.724e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	.04	4	1.254e-3	4	NC	1	NC	1
426			min	0	2	005	4	0	1	-5.012e-5	1	NC	1	9838.756	4
427		5	max	0	3	002	15	.052	4	1.884e-3	4	NC	1	NC	1
428			min	0	2	007	4	001	1	-7.299e-5	1	NC	1	8185.984	4
429		6	max	0	3	002	15	.064	4	2.515e-3	4	NC	1	NC	1
430			min	0	2	009	4	002	1	-9.587e-5	1	NC	1	7344.473	4
431		7	max	0	3	003	15	.075	4	3.146e-3	4	NC	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:_

433		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) I /v Ratio	1 C	(n) L/z Ratio	I.C.
433	432			min												
434			8		.001	3	003	15		4		4		1		
436	434			min	0		012	4	002	1		1	8131.504	4	6861.22	4
437	435		9	max	.001	3	003	15	.095	4		4		1	NC	1
A38	436			min	0			4	003	1	-1.645e-4	1		4	7031.888	4
439	437		10	max	.001		003	15	.104	4		4		2		1
A440				min						1		1				4
441			11													
MAY Max Max												•		•		
444			12													_
A444	_		10					_								
A45			13													
A46			4.4									•		•		-
447			14													
A48			15							•		_				
A49			15											_		
450			16									•				
451			10													
452			17									•		_		•
453			17													_
455			18									-		_		-
455			10													
456			19									•				•
457 M12			-10													
458		M12	1					2		1		1		1		3
459		····-												1		
460			2		.003					1		1		1		2
461						3				4		4		1		4
463 4 max .002 1 .001 2 .005 1 1.536e-5 1 NC 1 NC 2 464 min 0 3 002 3 139 4 -1.001e-3 4 NC 1 177.809 4 465 5 max .002 1 0 2 .005 1 1.536e-5 1 NC 1 NC 2 466 min 0 3 002 3 111 4 -1.001e-3 4 NC 1 188.524 4 469 7 max .002 1 0 2 .004 1 1.536e-5 1 NC 1 NC 2 468 min 0 3 002 3 111 4 -1.001e-3 4 NC 1 224.001 4 469 7 max .002 1 0 2 .004 1			3	max	.003	1	.001	2	.006	1		1	NC	1	NC	2
464	462			min	0	3	002	3	154	4	-1.001e-3	4	NC	1	160.745	4
465			4	max	.002				.005	1	1.536e-5	1		1_		2
Min				min		3	002			4		4		1_		
467 6 max .002 1 0 2 .004 1 1.536e-5 1 NC 1 NC 2 468 min 0 3 002 3 111 4 -1.001e-3 4 NC 1 224.001 4 469 7 max .002 1 0 2 .004 1 1.536e-5 1 NC 1 NC 2 470 min 0 3 002 3 097 4 -1.001e-3 4 NC 1 255.816 4 471 8 max .002 1 0 2 .003 1 1.536e-5 1 NC 1 NC 2 472 min 0 3 001 3 002 1 .0 2 .003 1 1.536e-5 1 NC 1 NC 1 NC 1 NA 1 <td></td> <td></td> <td>5</td> <td>max</td> <td>.002</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td>_1_</td> <td></td> <td>2</td>			5	max	.002					1		1		_1_		2
468 min 0 3 002 3 111 4 -1.001e-3 4 NC 1 224.001 4 469 7 max .002 1 0 2 .004 1 1.536e-5 1 NC 1 NC 2 470 min 0 3 002 3 097 4 -1.001e-3 4 NC 1 255.816 4 471 8 max .002 1 0 2 .003 1 1.536e-5 1 NC 1 NC 2 472 min 0 3 002 3 084 4 -1.001e-3 4 NC 1 296.268 4 473 9 max .002 1 0 2 .003 1 1.536e-5 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC				min								4				
469 7 max .002 1 0 2 .004 1 1.536e-5 1 NC 1 NC 2 470 min 0 3 002 3 097 4 -1.001e-3 4 NC 1 255.816 4 471 8 max .002 1 0 2 .003 1 1.536e-5 1 NC 1 NC 2 472 min 0 3 002 3 084 4 -1.001e-3 4 NC 1 296.268 4 473 9 max .002 1 0 2 .003 1 1.536e-5 1 NC 1 NC 2 474 min 0 3 001 3 071 4 -1.001e-3 4 NC 1 348.819 4 475 10 max .001 1 0			6											_		
470 min 0 3 002 3 097 4 -1.001e-3 4 NC 1 255.816 4 471 8 max .002 1 0 2 .003 1 1.536e-5 1 NC 1 NC 2 472 min 0 3 002 3 084 4 -1.001e-3 4 NC 1 296.268 4 473 9 max .002 1 0 2 .003 1 1.536e-5 1 NC 1 NC 2 474 min 0 3 001 3 071 4 -1.001e-3 4 NC 1 348.819 4 475 10 max .001 1 0 2 .002 1 1.536e-5 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td></td<>												4				
471 8 max .002 1 0 2 .003 1 1.536e-5 1 NC 1 NC 2 472 min 0 3 002 3 084 4 -1.001e-3 4 NC 1 296.268 4 473 9 max .002 1 0 2 .003 1 1.536e-5 1 NC 1 NC 2 474 min 0 3 001 3 071 4 -1.001e-3 4 NC 1 348.819 4 475 10 max .001 1 0 2 .002 1 1.536e-5 1 NC 1 NC 1 4 475 1 1 0 2 .002 1 1.536e-5 1 NC 1 <td></td> <td></td> <td>7</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>			7			-						1				
472 min 0 3 002 3 084 4 -1.001e-3 4 NC 1 296.268 4 473 9 max .002 1 0 2 .003 1 1.536e-5 1 NC 1 NC 2 474 min 0 3 001 3 071 4 -1.001e-3 4 NC 1 348.819 4 475 10 max .001 1 0 2 .002 1 1.536e-5 1 NC 1 NC 1 476 min 0 3 001 3 059 4 -1.001e-3 4 NC 1 418.881 4 477 11 max .001 1 0 2 .002 1 1.536e-5 1 NC 1 NC 1 479 12 max .001 1 0														_		
473 9 max .002 1 0 2 .003 1 1.536e-5 1 NC 1 NC 2 474 min 0 3 001 3 071 4 -1.001e-3 4 NC 1 348.819 4 475 10 max .001 1 0 2 .002 1 1.536e-5 1 NC 1 NC 1 476 min 0 3 001 3 059 4 -1.001e-3 4 NC 1 418.881 4 477 11 max .001 1 0 2 .002 1 1.536e-5 1 NC 1 NC 1 478 min 0 3 001 3 048 4 -1.001e-3 4 NC 1 515.308 4 479 12 max .001 1 0			8			-										
474 min 0 3 001 3 071 4 -1.001e-3 4 NC 1 348.819 4 475 10 max .001 1 0 2 .002 1 1.536e-5 1 NC 1 NC 1 476 min 0 3 001 3 059 4 -1.001e-3 4 NC 1 418.881 4 477 11 max .001 1 0 2 .002 1 1.536e-5 1 NC 1 NC 1 478 min 0 3 001 3 048 4 -1.001e-3 4 NC 1 515.308 4 479 12 max .001 1 0 2 .001 1 1.536e-5 1 NC 1 NC 1 480 min 0 3 001 3														_		-
475 10 max .001 1 0 2 .002 1 1.536e-5 1 NC 1 NC 1 476 min 0 3 001 3 059 4 -1.001e-3 4 NC 1 418.881 4 477 11 max .001 1 0 2 .002 1 1.536e-5 1 NC 1 NC 1 478 min 0 3 001 3 048 4 -1.001e-3 4 NC 1 NC 1 479 12 max .001 1 0 2 .001 1 1.536e-5 1 NC 1 NC 1 480 min 0 3 001 3 038 4 -1.001e-3 4 NC 1 NC 1 481 13 max 0 1 0 2			9													
476 min 0 3 001 3 059 4 -1.001e-3 4 NC 1 418.881 4 477 11 max .001 1 0 2 .002 1 1.536e-5 1 NC 1 NC 1 478 min 0 3 001 3 048 4 -1.001e-3 4 NC 1 515.308 4 479 12 max .001 1 0 2 .001 1 1.536e-5 1 NC 1 NC 1 480 min 0 3 001 3 038 4 -1.001e-3 4 NC 1 653.421 4 481 13 max 0 1 0 2 .001 1 1.536e-5 1 NC 1 NC 1 482 min 0 3 0 3			10											_		
477 11 max .001 1 0 2 .002 1 1.536e-5 1 NC 1 NC 1 478 min 0 3 001 3 048 4 -1.001e-3 4 NC 1 515.308 4 479 12 max .001 1 0 2 .001 1 1.536e-5 1 NC 1 NC 1 480 min 0 3 001 3 038 4 -1.001e-3 4 NC 1 653.421 4 481 13 max 0 1 0 2 .001 1 1.536e-5 1 NC 1 NC 1 482 min 0 3 0 3 029 4 -1.001e-3 4 NC 1 861.659 4 483 14 max 0 1 0 2 </td <td></td> <td></td> <td>10</td> <td></td>			10													
478 min 0 3 001 3 048 4 -1.001e-3 4 NC 1 515.308 4 479 12 max .001 1 0 2 .001 1 1.536e-5 1 NC 1 NC 1 480 min 0 3 001 3 038 4 -1.001e-3 4 NC 1 653.421 4 481 13 max 0 1 0 2 .001 1 1.536e-5 1 NC 1 NC 1 482 min 0 3 0 3 029 4 -1.001e-3 4 NC 1 861.659 4 483 14 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1 484 min 0 3 0 3 021			11											•		
479 12 max .001 1 0 2 .001 1 1.536e-5 1 NC 1 NC 1 480 min 0 3 001 3 038 4 -1.001e-3 4 NC 1 653.421 4 481 13 max 0 1 0 2 .001 1 1.536e-5 1 NC 1 NC 1 482 min 0 3 0 3 029 4 -1.001e-3 4 NC 1 861.659 4 483 14 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1 484 min 0 3 0 3 021 4 -1.001e-3 4 NC 1 1197.892 4 485 15 max 0 1 0 2																
480 min 0 3 001 3 038 4 -1.001e-3 4 NC 1 653.421 4 481 13 max 0 1 0 2 .001 1 1.536e-5 1 NC 1 NC 1 482 min 0 3 0 3 029 4 -1.001e-3 4 NC 1 861.659 4 483 14 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1 484 min 0 3 0 3 021 4 -1.001e-3 4 NC 1 1197.892 4 485 15 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1 486 min 0 3 0 3 014			12													
481 13 max 0 1 0 2 .001 1 1.536e-5 1 NC 1 NC 1 482 min 0 3 0 3 029 4 -1.001e-3 4 NC 1 861.659 4 483 14 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1 484 min 0 3 0 3 021 4 -1.001e-3 4 NC 1 1197.892 4 485 15 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1 486 min 0 3 0 3 014 4 -1.001e-3 4 NC 1 1795.552 4 487 16 max 0 1 0 2 0 1 1.536e-5 1			14													
482 min 0 3 0 3 029 4 -1.001e-3 4 NC 1 861.659 4 483 14 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1 484 min 0 3 0 3 021 4 -1.001e-3 4 NC 1 1197.892 4 485 15 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1 486 min 0 3 0 3 014 4 -1.001e-3 4 NC 1 1795.552 4 487 16 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1			13													
483 14 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1 484 min 0 3 0 3 021 4 -1.001e-3 4 NC 1 1197.892 4 485 15 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1 486 min 0 3 0 3 014 4 -1.001e-3 4 NC 1 1795.552 4 487 16 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1			13							_	-1 001e-3					-
484 min 0 3 0 3 021 4 -1.001e-3 4 NC 1 1197.892 4 485 15 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1 486 min 0 3 0 3 014 4 -1.001e-3 4 NC 1 1795.552 4 487 16 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1			14													
485 15 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1 486 min 0 3 0 3 014 4 -1.001e-3 4 NC 1 1795.552 4 487 16 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1			17			3										_
486 min 0 3 0 3 014 4 -1.001e-3 4 NC 1 1795.552 4 487 16 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1			15											_		
487 16 max 0 1 0 2 0 1 1.536e-5 1 NC 1 NC 1									-							
			16							_				•		
488 min 0 3 0 3 008 4 -1.001e-3 4 NC 1 3023.605 4	488				0	3		3	008		-1.001e-3		NC	_	3023.605	

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		LC
489		17	max	0	1	0	2	0	1	1.536e-5	1	NC	1_	NC	1
490			min	0	3	0	3	004	4	-1.001e-3	4	NC	1	6250.653	4
491		18	max	0	1	0	2	0	1	1.536e-5	1	NC	1	NC	1
492			min	0	3	0	3	001	4	-1.001e-3	4	NC	1	NC	1
493		19	max	0	1	0	1	0	1	1.536e-5	1	NC	1	NC	1
494			min	0	1	0	1	0	1	-1.001e-3	4	NC	1	NC	1
495	M1	1	max	.003	3	.11	1	.499	4	1.911e-2	1	NC	1	NC	1
496			min	001	10	012	3	0	12	-1.77e-2	3	NC	1	NC	1
497		2	max	.003	3	.054	1	.485	4	9.316e-3	1	NC	3	NC	1
498			min	001	10	006	3	005	1	-8.757e-3	3	2063.565	1	NC	1
499		3	max	.003	3	.005	3	.472	4	1.446e-2	4	NC	5	NC	1
500		 	min	001	10	006	1	007	1	-1.379e-4	1	985.836	1	8423.756	
501		4		.003	3	.024	3	.459	4	1.284e-2	4	NC	5	NC	1
		4	max			024 076	1				3				5
502		-	min	001	10			007	1	-3.153e-3	_	614.697	1_	5704.13	
503		5	max	.003	3	.049	3	.446	4	1.121e-2	4_	NC 400.070	<u>15</u>	NC 4000 050	1
504			min	0	10	1 <u>51</u>	1	005	1	-6.221e-3	3	439.076	1_	4338.358	5
505		6	max	.003	3	.076	3	.433	4	1.581e-2	1	NC	<u>15</u>	NC	1
506			min	0	10	223	1	002	1	-9.288e-3	3	343.09	<u>1</u>	3540.37	5
507		7	max	.003	3	.102	3	.419	4	2.112e-2	1_	9418.796	15	NC	1
508			min	0	10	289	1	0	12	-1.236e-2	3	286.799	1_	3030.037	4
509		8	max	.003	3	.124	3	.404	4	2.644e-2	1	8364.879	15	NC	1
510			min	0	10	341	1	0	12	-1.542e-2	3	253.662	1	2689.142	4
511		9	max	.003	3	.139	3	.387	4	2.901e-2	1	7815.7	15	NC	1
512			min	0	10	374	1	0	1	-1.548e-2	3	236.472	1	2500.542	4
513		10	max	.003	3	.144	3	.369	4	2.977e-2	1	7648.534	15	NC	1
514			min	0	10	384	1	0	12	-1.352e-2	3	231.315	1	2451.623	4
515		11	max	.003	3	.141	3	.348	4	3.052e-2	1	7815.556	15	NC	1
516			min	0	10	373	1	0	12	-1.157e-2	3	236.708	1	2520.602	4
517		12	max	.003	3	.129	3	.325	4	2.873e-2	1	8364.548	15	NC	1
518		12	min	0	10	34	1	0	1	-9.636e-3	3	254.399	1	2725.812	5
519		13	max	.003	3	.109	3	.299	4	2.308e-2	1	9418.16	15	NC	1
520		13	min	0	10	287	1	0	1	-7.713e-3	3	288.628	1	3220.427	4
521		14		.003	3	.085	3	.271	4	1.744e-2	1	NC	15	NC	1
522		14	max	<u>.003</u>	10	221	1	.271		-5.79e-3		347.039	1	4212.05	
		4.5	min					•	12		3				4
523		15	max	.003	3	.057	3	.242	4	1.18e-2	1	NC 447.050	<u>15</u>	NC COOR 570	1
524		10	min	0	10	147	1	0	12	-3.868e-3	3	447.256	1_	6303.578	
525		16	max	.003	3	.029	3	.214	4	9.523e-3	4_	NC	5	NC	1
526			min	0	10	073	1	0	12	-1.945e-3	3	632.017	1_	NC	1
527		17	max	.002	3	.002	3	.188	4	1.039e-2	4_	NC	_5_	NC	1
528			min	0	10	004	1	0	12	-2.259e-5	3	1025.213	1_	NC	1
529		18	max	.002	3	.054	1	.166	4	1.087e-2	_1_	NC	5	NC	1
530			min	0	10	022	3	0	12		3	2163.897	1	NC	1
531		19	max	.002	3	.107	1	.146	4	2.16e-2	1	NC	_1_	NC	1
532			min	0	10	044	3	0	1	-6.366e-3	3	NC	1	NC	1
533	M5	1	max	.01	3	.266	1	.499	4	0	1	NC	1	NC	1
534			min	006	2	019	3	0	1	-2.095e-6	4	NC	1	NC	1
535		2	max	.01	3	.132	1	.488	4	7.404e-3	4	NC	5	NC	1
536			min	006	2	01	3	0	1	0	1	852.355	1	NC	1
537		3	max	.01	3	.015	3	.476	4	1.458e-2	4	NC	15	NC	1
538		Ť	min	006	2	021	1	0	1	0	1	398.198	1	7034.127	4
539		4	max	.01	3	.068	3	.462	4	1.188e-2	4	8874.357	15	NC	1
540			min	006	2	207	1	0	1	0	1	241.417	1	5085.208	
541		5		.01	3	.141	3	.448	4	9.179e-3	4	6213.026	15	NC	1
		U O	max		2	412			1	0	-				1
542		_	min	006			1	0			1_	168.638	1_	4084.672	4
543		6	max	.01	3	.223	3	.434	4	6.478e-3	4	4784.931	<u>15</u>	NC	1
544		-	min	006	2	<u>615</u>	1	0	1	0 777 - 0	1_	129.628	1_	3469.608	
545		7	max	.01	3	.302	3	.419	4	3.777e-3	4	3959.896	<u> 15</u>	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r		(n) L/y Ratio L			
546			min	006	2	801	1	0	1	0	1_	107.11		3044.101	
547		8	max	.009	3	.369	3	.404	4	1.077e-3	4		15	NC_	1
548			min	005	2	949	1	0	1	0	_1_			2721.344	
549		9	max	.009	3	.412	3	.388	4	0	1_		15	NC NC	1
550		40	min	005	2	<u>-1.043</u>	1	0	1	-1.196e-6	5	01.010		<u>2501.083</u>	
551		10	max	.009	3	.427	3	.369	4	0 -1.131e-6	1		15	NC 2468.922	4
552		11	min	005 .009	3	<u>-1.074</u> .417	3	.348	4	0	<u>5</u> 1		1 15	2466.922 NC	1
553 554			max	005	2	-1.042	1	.346	1	-1.067e-6	5			2545.109	
555		12	max	.009	3	.381	3	.326	4	7.483e-4	4		15	NC	1
556		12	min	005	2	947	1	0	1	0	1			2690.251	4
557		13	max	.008	3	.322	3	.3	4	2.625e-3	4		15	NC	1
558		10	min	005	2	795	1	0	1	0	1			3173.216	
559		14	max	.008	3	.249	3	.27	4	4.503e-3	4		15	NC	1
560			min	005	2	607	1	0	1	0	1			4332.065	4
561		15	max	.008	3	.167	3	.24	4	6.38e-3	4		15	NC	1
562			min	005	2	401	1	0	1	0	1		1	7311.302	5
563		16	max	.008	3	.083	3	.211	4	8.257e-3	4	8876.402	15	NC	1
564			min	005	2	196	1	0	1	0	1	250.205	1	NC	1
565		17	max	.008	3	.006	3	.184	4	1.013e-2	4		15	NC	1
566			min	005	2	013	1	0	1	0	1		1	NC	1
567		18	max	.008	3	.133	1	.163	4	5.147e-3	4		5	NC	1
568			min	005	2	06	3	0	1	0	1_	000:=0:	1	NC	1
569		19	max	.008	3	.258	1	.146	4	0	_1_	110	1	NC	1
570			min	005	2	12	3	0	1	-8.631e-7	4_	110	1	NC NC	1
571	<u>M9</u>	1	max	.003	3	11	1	.499	4	1.77e-2	3		1	NC_	1
572			min	001	10	012	3	0	1	-1.911e-2	1_		1	NC NC	1
573		2	max	.003	3	.054	1	.488	4	8.757e-3	3_		3	NC NC	1
574			min	001	10	006	3	0	12	-9.316e-3	1_		1	NC NC	1
575 576		3	max	.003	3	.005	3	.475	12	1.454e-2 -1.722e-5	4		5 1	NC 7120.441	4
576 577		4	min	001 .003	3	006 .024	3	.462	4	1.139e-2	<u>10</u> 5		5	7120.441 NC	1
578		4	max	001	10	024 076	1	.462	12	-5.178e-3	1			5112.204	
579		5	max	.003	3	.049	3	.448	4	8.537e-3	5		15	NC	1
580			min	.003	10	151	1	0	12	-1.049e-2	1		1	4082.065	
581		6	max	.003	3	.076	3	.434	4	9.288e-3	3		15	NC	1
582			min	0	10	223	1	0	12	-1.581e-2	1			3453.538	
583		7	max	.003	3	.102	3	.419	4	1.236e-2	3		15	NC	1
584			min	0	10	289	1	0	1	-2.112e-2	1			3025.715	
585		8	max	.003	3	.124	3	.404	4	1.542e-2	3		15	NC	1
586			min		10	341	1	0		-2.644e-2		253.662	1	2707.103	5
587		9	max	.003	3	.139	3	.388	4	1.548e-2	3		15	NC	1
588			min	0	10	374	1	0	12	-2.901e-2	1		1	2494.816	4
589		10	max	.003	3	.144	3	.369	4	1.352e-2	3	7639.583	15	NC	1
590			min	0	10	384	1	0	1	-2.977e-2	1		1	2452.495	4
591		11	max	.003	3	.141	3	.348	4	1.157e-2	3		15	NC	1
592			min	0	10	373	1	0	1	-3.052e-2	1_		1	2527.816	4
593		12	max	.003	3	.129	3	.325	4	9.636e-3	3		15	NC	1
594			min	0	10	34	1	0	12	-2.873e-2	1_			2708.025	4
595		13	max	.003	3	.109	3	.299	4	7.713e-3	3_		15	NC	1
596			min	0	10	287	1	0	12	-2.308e-2	1			3221.422	
597		14	max	.003	3	.085	3	.27	4	5.79e-3	3		15	NC_	1
598		1 -	min	0	10	221	1	002	1	-1.744e-2	_1_			4313.689	5
599		15	max	.003	3	.057	3	.24	4	5.92e-3	_5_		15	NC NC	1
600		40	min	0	10	147	1	004	1	-1.18e-2	_1_			6824.078	
601		16	max	.003	3	.029	3	.211	4	8.e-3	5		5	NC NC	1
602			min	0	10	073	1	006	1	-6.158e-3	1	632.017	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
603		17	max	.002	3	.002	3	.185	4	1.015e-2	4	NC	5	NC	1
604			min	0	10	004	1	007	1	-5.153e-4	1	1025.213	1	NC	1
605		18	max	.002	3	.054	1	.163	4	4.736e-3	5	NC	5	NC	1
606			min	0	10	022	3	005	1	-1.087e-2	1	2163.897	1	NC	1
607		19	max	.002	3	.107	1	.146	4	6.366e-3	3	NC	1	NC	1
608			min	0	10	044	3	0	12	-2.16e-2	1	NC	1	NC	1

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-42 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015					
Engineer:	HCV	Page:	1/5					
Project:	Standard PVMax - Worst Case, 21-30 Inch Width							
Address:								
Phone:								
E-mail:								

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f_c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	,N $\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{\sf ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378 00	648.00	1 000	0 836	1 000	1 000	15503	<i>Ψ</i> 0.70	φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 21-30 Inch Width				
Address:					
Phone:					
E-mail:					

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.