

Exercises – Forward kinematics

ELVE3610 Introduction to Robotics

Exercise 1: KINOVA Robot arm

- a) Assign reference frames to each link according to Denavit-Hartneberg convention
- b) Determine the homogeneous transform 0T_4 in the home configuration. Result should be numeric (no symbols or math)
- c) Determine Denavit Hartneberg parameters
- d) Determine forward kinematics for generic joint angles $(\theta_1, \theta_2, \theta_3, \theta_4)$.
- e) Implement forward kinematics as a python function that returns end effector pose

def forward_kinematics_kinova(q):

input q = [q1,q2,q3,q4] is a numpy array of dimension 4

Return T04

Returns 4x4 homogeneous transformation matrix Tsb

- f) Compute end effector pose for $(\theta_1, ..., \theta_4) = (\frac{\pi}{2}, 0, \frac{\pi}{2}, 0)$
- g) Compute end effector pose for $(\theta_1, ..., \theta_4) = (\frac{\pi}{2}, \frac{3\pi}{4}, \frac{\pi}{4}, \pi)$

Exercise 2: Da Vinci surgical robot

Figure 4.6: Top view of one da Vinci Xi surgical robot arm. Note that the grey regions represent R joints, green indicates the {s} frame, and yellow represents the end-effector frame {b} in this exercise. Dimensions are in cm.

- a) Assign reference frames to each link according to Denavit-Hartneberg convention
- b) Determine the homogeneous transform ${}^{0}T_{6}$ in the home configuration. Result should be numeric (no symbols or math)
- c) Determine Denavit Hartneberg parameters
- d) Determine forward kinematics for generic joint angles $(\theta_1, ..., \theta_6)$.
- e) Implement forward kinematics as a python function that returns end effector pose

def forward_kinematics_davinci(q):

input q = [q1,...,q6] is a numpy array of dimension 6
Return Tsb

Returns 4x4 homogeneous transformation matrix Tsb

- f) Compute end effector pose for $(\theta_1, ..., \theta_6) = (\frac{\pi}{2}, 0, 0, \frac{\pi}{4}, \frac{\pi}{4}, 0)$
- g) Compute end effector pose for $(\theta_1, \dots, \theta_6) = (\frac{\pi}{2}, \frac{\pi}{5}, \frac{\pi}{4}, 0, \frac{\pi}{4}, \frac{3\pi}{4})$

Exercise 3: Universal robots UR3

- a) Determine link referenece frames of each link based on Denavit Hartneberg convention
- b) Determine the homogeneous transform 0T_6 in the home configuration. Result should be numeric (no symbols or math)
- c) Determine Denavit Hartneberg parameters
- d) Determine forward kinematics for generic joint angles $(\theta_1, ..., \theta_6)$.
- e) Implement forward kinematics as a python function that returns end effector pose

def forward_kinematics_UR3(q):

input q = [q1,...,q6] is a numpy array of dimension 6

Return Toe

Returns 4x4 homogeneous transformation matrix Tsb

- f) Compute end effector pose for $(\theta_1, ..., \theta_6) = (\frac{\pi}{2}, 0, 0, \frac{\pi}{4}, \frac{\pi}{4}, 0)$ g) Compute end effector pose for $(\theta_1, ..., \theta_6) = (\frac{\pi}{2}, \frac{\pi}{5}, \frac{\pi}{4}, 0, \frac{\pi}{4}, \frac{3\pi}{4})$