Reinforcement Learning - Projektvorstellung Thema: Q-Learning für das Rucksack-Problem

Patrizia Schalk und Manuel Richter

February 5, 2018

- 1 Spiele / OpenAl Gym
- 2 Das Rucksack-Problem
- 3 Lösung durch Q-Learning
- 4 Anwendung: Ein Terminkalende
- 5 Ausblick

Ursprüngliches Projekt

Installation und Verwendung des OpenAl Gyms

Installation des OpenAl Gyms

Ursprüngliches Projekt

Installation und Verwendung des OpenAl Gyms

- Installation des OpenAl Gyms
- Implementieren von Q-Learning für das Cartpole-Problem

Gegeben:

Inspiration

Gegeben:

■ Ein Rucksack mit vorgegebenem Maximalgewicht

Inspiration

Gegeben:

- Ein Rucksack mit vorgegebenem Maximalgewicht
- Eine Menge von Gegenständen, denen jeweils Gewicht und Wert zugeordnet wird

Inspiration

Gegeben:

- Ein Rucksack mit vorgegebenem Maximalgewicht
- Eine Menge von Gegenständen, denen jeweils Gewicht und Wert zugeordnet wird

Gesucht:

Inspiration

Gegeben:

- Ein Rucksack mit vorgegebenem Maximalgewicht
- Eine Menge von Gegenständen, denen jeweils Gewicht und Wert zugeordnet wird

Gesucht:

Welche Gegenstände können im Rucksack verstaut werden, ohne die Gewichtsgrenze zu überschreiten?

Konzept Inspiration

Gegeben:

- Ein Rucksack mit vorgegebenem Maximalgewicht
- Eine Menge von Gegenständen, denen jeweils Gewicht und Wert zugeordnet wird

Gesucht:

- Welche Gegenstände können im Rucksack verstaut werden, ohne die Gewichtsgrenze zu überschreiten?
- Welche Gegenstände sollten ausgewählt werden, um den Gesamtwert zu maximieren?

Abwandlung

Wie kann dieses Problem auf eine GridWorld übertragen werden?

Abwandlung

Wie kann dieses Problem auf eine GridWorld übertragen werden?

■ Anstelle einer Gewichtsgrenze definieren wir eine Platz-Grenze

Spiele / OpenAl Gym

Abwandlung

Wie kann dieses Problem auf eine GridWorld übertragen werden?

Anstelle einer Gewichtsgrenze definieren wir eine Platz-Grenze

Zustandsraum

Der optimale Spielzug unterscheidet sich je nachdem, wo Spielsteine gesetzt wurden.

Zustandsraum

Der optimale Spielzug unterscheidet sich je nachdem, wo Spielsteine gesetzt wurden.

 \Rightarrow Für jeden möglichen Status des Spielfeldes muss ein Zustand generiert werden.

Zustandsraum

Der optimale Spielzug unterscheidet sich je nachdem, wo Spielsteine gesetzt wurden.

⇒ Für jeden möglichen Status des Spielfeldes muss ein Zustand generiert werden.

Zustandsraum

Spiele / OpenAl Gym

Zur Darstellung des Spielbrettes verwenden wir n^2 Bits, indem wir das Spielfeld als binäre Darstellung eines Integers auffassen.

Zustandsraum

Zur Darstellung des Spielbrettes verwenden wir n^2 Bits, indem wir das Spielfeld als binäre Darstellung eines Integers auffassen. In diesem Beispiel: $(1111100111100110)_2 = 63.974$

Aktionen

Analog zum Spielfeld beschreiben wir die Spielsteine, die auf das Feld gesetzt werden können.

					1	1	1
1	1	1	1		0	0	1
1	1	0	0		0	0	0
				1			
				1	1	0	0
1	0	1	1		1	0	0

Jeder Spielstein kann an eine beliebige Position des Spielfeldes gesetzt werden.

Aktionen

Jeder Spielstein kann an eine beliebige Position des Spielfeldes gesetzt werden.

Beispiel einer Aktion: ((0,0),12):

Setze Spielstein an Position (0,0)

Ende einer Episode

Die Episode endet, wenn der Agent versucht, einen illegalen Spielzug auszuführen:

- Der gesetzte Spielstein liegt (zum Teil) auf einem bereits gesetzten Spielstein
- Der Agent versucht, einen Spielstein so zu setzen, dass er das Spielfeld überlappt

Für jeden erfolgreich gesetzten Spielstein erhält der Agent einen Reward von:

Anzahl der neu verdeckten Felder Anzahl der gesamten Felder

Für jeden erfolgreich gesetzten Spielstein erhält der Agent einen Reward von:

Anzahl der neu verdeckten Felder Anzahl der gesamten Felder

Besitzen die Spielsteine jeweils Geldwerte, so modifizieren wir den Reward wie folgt:

Anzahl der neu verdeckten Felder Anzahl der gesamten Felder Maximaler auftretender Wert

Spiele / OpenAl Gym

Für einen Terminkalender, der Termine für nur einen Tag organisiert, benötigen wir kein Spielfeld quadratischer Größe.

Spielfeldgröße

Spiele / OpenAl Gym

Für einen Terminkalender, der Termine für nur einen Tag organisiert, benötigen wir kein Spielfeld quadratischer Größe.

⇒ Die Breite des Spielfelds wird stets 1 sein

Modifikationen

Aktionen

Unsere Spielsteine stehen für Termine, die in den Planer eingereiht werden sollen.

Modifikationen

Aktionen

- Unsere Spielsteine stehen für Termine, die in den Planer eingereiht werden sollen.
- Der Wert eines Spielsteins entspricht der Priorität einer Aufgabe.

Modifikationen

Aktionen

- Unsere Spielsteine stehen für Termine, die in den Planer eingereiht werden sollen.
- Der Wert eines Spielsteins entspricht der Priorität einer Aufgabe.
- Der Benutzer interessiert sich nur für das optimale Ergebnis und nicht für den Prozess dorthin.

 Basierend auf dem Terminkalender ließe sich ein Scheduler mittels Q-Learning implementieren

Spiele / OpenAl Gym

Spiele / OpenAl Gym

- Basierend auf dem Terminkalender ließe sich ein Scheduler mittels Q-Learning implementieren
- Ermöglicht man dem Agenten, die Spielsteine zu rotieren, ließe sich eine einfache Form von Tetris implementieren

Vielen Dank für die Aufmerksamkeit.

Noch Fragen?

