Assignment -2

Assignment Date	20 November 2022
Team ID	PNT2022TMID25140
Project Name	AI Based Discourse for Banking Industry
Student Name	Deevan Prasanth S
Student Roll Number	210619104007
Maximum Marks	2 Marks

Question-1. Download dataset

Solution:

wNuml	Customer	Surname	CreditSco	Geograph	Gender	Age	Tenure	Balance	NumOfPrcHa	sCrCard IsAd	tiveM	Estimated Exit	ed
1	15634602	Hargrave	619	France	Female	4	2 2	0	1	1	1	101348.9	1
2	15647311	Hill	608	Spain	Female	4	1 1	83807.86	1	0	1	112542.6	0
3	15619304	Onio	502	France	Female	4	2 8	159660.8	3	1	0	113931.6	1
4	15701354	Boni	699	France	Female	3	9 1	0	2	0	0	93826.63	0
5	15737888	Mitchell	850	Spain	Female	4	3 2	125510.8	1	1	1	79084.1	0
6	15574012	Chu	645	Spain	Male	4	4 8	113755.8	2	1	0	149756.7	1
7	15592531	Bartlett	822	France	Male	5	0 7	0	2	1	1	10062.8	0
8	15656148	Obinna	376	Germany	Female	2	9 4	115046.7	4	1	0	119346.9	1
9	15792365	He	501	France	Male	4	4 4	142051.1	2	0	1	74940.5	0
10	15592389	H?	684	France	Male	2	7 2	134603.9	1	1	1	71725.73	0
11	15767821	Bearce	528	France	Male	3	1 6	102016.7	2	0	0	80181.12	0
12	15737173	Andrews	497	Spain	Male	2	4 3	0	2	1	0	76390.01	0
13	15632264	Kay	476	France	Female	3-	4 10	0	2	1	0	26260.98	0
14	15691483	Chin	549	France	Female	2	5 5	0	2	0	0	190857.8	0
15	15600882	Scott	635	Spain	Female	3.	5 7	0	2	1	1	65951.65	0
16	15643966	Goforth	616	Germany	Male	4	5 3	143129.4	2	0	1	64327.26	0
17	15737452	Romeo	653	Germany	Male	5	8 1	132602.9	1	1	0	5097.67	1
18	15788218	Henderso	549	Spain	Female	2	4 9	0	2	1	1	14406.41	0
19	15661507	Muldrow	587	Spain	Male	4	5 6	0	1	0	0	158684.8	0
20	15568982	Hao	726	France	Female	2	4 6	0	2	1	1	54724.03	0
21	15577657	McDonald	732	France	Male	4	1 8	0	2	1	1	170886.2	0
22	15597945	Dellucci	636	Spain	Female	3	2 8	0	2	1	0	138555.5	0
23	15699309	Gerasimo	510	Spain	Female	3	8 4	0	1	1	0	118913.5	1
24	15725737	Mosman	669	France	Male	4	6 3	0	2	0	1	8487.75	0
25	15625047	Yen	846	France	Female	3	8 5	0	1	1	1	187616.2	0
26	15738191	Maclean	577	France	Male	2	5 3	0	2	0	1	124508.3	0
27	15736816	Young	756	Germany	Male	3	6 2	136815.6	1	1	1	170042	0
28	15700772	Nebechi	571	France	Male	4	4 9	0	2	0	0	38433.35	0
29	15728693	McWillian	574	Germany	Female	4	3 3	141349.4	1	1	1	100187.4	0
30	15656300	Lucciano	411	France	Male	2	9 0	59697.17	2	1	1	53483.21	0
31	15589475	Azikiwe	591	Spain	Female	3	9 3	0	3	1	0	140469.4	1
32	15706552	Odinakac	533	France	Male	3	6 7	85311.7	1	0	1	156731.9	0
33	15750181	Sanderso	553	Germany	Male	4	1 9	110112.5	2	0	0	81898.81	0
34	15659428	Maggard	520	Spain	Female	4	2 6	0	2	1	1	34410.55	0
35	15732963	Clements	722	Spain	Female	2	9 9	0	2	1	1	142033.1	0
36	15794171	Lombardo	475	France	Female	4	5 0	134264	1	1	0	27822.99	1
37	15788448	Watson	490	Spain	Male	3	1 3	145260.2	1	0	1	114066.8	0
38	15729599	Lorenzo	804	Spain	Male	3	3 7	76548.6	1	0	1	98453.45	0
39	15717426	Armstron	850	France	Male	3	6 7	0	1	1	1	40812.9	0
40	15585768	Cameron	582	Germany	Male	4	1 6	70349.48	2	0	1	178074	0

Question-2. Load the dataset

Solution:

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import sklearn
data = pd.read_csv(r'Churn_Modelling.csv')
df.head

Count	method	NDFrame.	head o	t Row	Number Cu:	stomerId	Surname	CreditScore (ieography	Gender	Ag
9	1 15634602										
1		2 156	47311	Hill	6	38 Spa:	in Female	41			
2		3 156	19304	Hill Onio	5	92 Franc	e Female	42			
3		4 157	01354	Boni	6	99 Franc	e Female	39			
4				Mitchell							
		****		• • • •	10.00	•		****			
9995	99	96 156	06229	Obijiaku	7	71 Franc	e Male	39			
9996	99	97 155	69892	Johnstone	5:	16 Franc	e Male	35			
9997	99	98 155	84532	Johnstone Liu	7	16 Franc 39 Franc	e Female	36			
9998	99	99 156	82355	Sabbatini	7	72 German	nv Male	42			
				Walker							
1	Tenure	Balanc	e Num	OfProducts	HasCrCard	IsActive	Member \				
Э		0.0		1			1				
1	1	83807.8	6	1	0		1				
2	8	159660.8	0	3	1		0				
3	1	0.0	0	2	0		0				
4		125510.8		1	1		1				
9995	5	0.0	0	2			0				
9996	10	57369.6 0.0	1	1	1		1				
9997	7	0.0	0	1			1				
9998	3	75075.3	1	2	1		0				
9999	4	130142.7	9	1	1		0				
E	Estimat	edSalary	Exite	ed							
Э	1	01348.88		1							
1	1	12542.58		0							
2	1	13931.57		1							
3	- 76	93826.63		0							
4		79084.10		0							
9995		96270.64		0							
9996		01699.77		0							
9997	177	42085.58		1							
9998	10	42085.58 92888.52		1							
		38190.78									

[10000 rows x 14 columns]>

Question-3. Perform Below Visualizations.

3.1 Univariate Analysis

Solution:

sns.displot(data['CreditScore'])

sns.boxplot(x = data['CreditScore'])

sns.distplot(data['Age'])

sns.boxplot(data['Age'])

3.2 Bivariate Analysis

Solution:

plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')

plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')

plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')

plt.figure(figsize=(10,10)) sns.lineplot(data['Age'], data['EstimatedSalary'])

plt.figure(figsize=(17,17))
sns.barplot(data['Age'], data['EstimatedSalary'])

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')

3.3 Multivariate Analysis

Solution:

sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])

sns.scatterplot(data['Age'], data['Balance'], hue = data['Gender'])

Question-4. Perform descriptive statistics on the dataset.

Solution:

data.mean(numeric_only = True)

 RowNumber
 5.000500e+03

 CustomerId
 1.569094e+07

 CreditScore
 6.505288e+02

 Age
 3.892180e+01

 Tenure
 5.012800e+00

 Balance
 7.648589e+04

 NumOfProducts
 1.530200e+00

 HasCrCard
 7.055000e-01

 IsActiveMember
 5.151000e-01

 EstimatedSalary
 1.000902e+05

 Exited
 2.037000e-01

 dtype: float64

data.median(numeric_only = True)

 RowNumber
 5.000500e+03

 CustomerId
 1.569074e+07

 CreditScore
 6.520000e+02

 Age
 3.700000e+01

 Tenure
 5.00000e+00

 Balance
 9.719854e+04

 NumOfProducts
 1.000000e+00

 HasCrCard
 1.000000e+00

 IsActiveMember
 1.000000e+00

 EstimatedSalary
 1.001939e+05

 Exited
 0.000000e+00

 dtype: float64

data['CreditScore'].mode()

0 850 dtype: int64

data['EstimatedSalary'].mode()

0 24924.92 dtype: float64

data['HasCrCard'].unique()

array([1, 0])

data['Tenure'].unique()

array([2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])

data.std(numeric_only=True)

RowNumber	2886.895680
CustomerId	71936.186123
CreditScore	96.653299
Age	10.487806
Tenure	2.892174
Balance	62397.405202
NumOfProducts	0.581654
HasCrCard	0.455840
IsActiveMember	0.499797
EstimatedSalary	57510.492818
Exited	0.402769
dtype: float64	

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

data['Tenure'].value_counts()

Name: Tenure, dtype: int64

Question-5. Handle the Missing values.

Solution:

data.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

Question-6. Find the outliers and replace the outliers

Solution:

fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter plot ax.scatter(data['Balance'], data['Exited'])

x-axis label
ax.set_xlabel('Balance')

y-axis label
ax.set_ylabel('Exited')
plt.show()

sns.boxplot(x=data['Balance'])

from scipy import stats #Outlier detection - zscore
zscore = np.abs(stats.zscore(data['CreditScore']))
print(zscore)

print('No. of Outliers : ', np.shape(np.where(zscore>3)))

```
0
        0.332952
        0.447540
1
       1.551761
2
3
        0.500422
4
        2.073415
9995
        1.250458
       1.405920
9996
9997
       0.604594
9998
       1.260876
       1.469219
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers : (1, 0)
```

q = data.quantile([0.75,0.25]) q

RowNumber CustomerId Surname CreditScore Geography Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited 0.75 7500.25 15753233.75 2238.25 718.0 2.0 1.0 1.0 149388.2475 0.0 1.0 44.0 7.0 127644.24 1.0 0.25 584.0 3.0 0.00 0.0 0.0 2500.75 15628528.25 773.75 0.0 0.0 32.0 1.0 51002.1100 0.0

iqr = q.iloc[0] - q.iloc[1]

iqr

RowNumber	4999.5000
CustomerId	124705.5000
Surname	1464.5000
CreditScore	134.0000
Geography	1.0000
Gender	1.0000
Age	12.0000
Tenure	4.0000
Balance	127644.2400
NumOfProducts	1.0000
HasCrCard	1.0000
IsActiveMember	1.0000
EstimatedSalary	98386.1375
Exited	0.0000
dtype: float64	

u = q.iloc[0] + (1.5*iqr)

u

```
        RowNumber
        1.499950e+04

        CustomerId
        1.594029e+07

        Surname
        4.435000e+03

        CreditScore
        9.190000e+02

        Geography
        2.500000e+00

        Gender
        2.500000e+00

        Age
        6.200000e+01

        Tenure
        1.300000e+01

        Balance
        3.191106e+05

        NumOfProducts
        3.500000e+00

        HasCrCard
        2.500000e+00

        IsActiveMember
        2.500000e+00

        EstimatedSalary
        2.969675e+05

        Exited
        0.000000e+00

        dtype: float64
```

I = q.iloc[1] - (1.5*iqr)

ı

```
        RowNumber
        -4.998500e+03

        CustomerId
        1.544147e+07

        Surname
        -1.423000e+03

        CreditScore
        3.830000e+02

        Geography
        -1.500000e+00

        Gender
        -1.500000e+00

        Age
        1.400000e+01

        Tenure
        -3.000000e+00

        Balance
        -1.914664e+05

        NumOfProducts
        -5.00000e-01

        HasCrCard
        -1.500000e+00

        IsActiveMember
        -1.500000e+00

        EstimatedSalary
        -9.657710e+04

        Exited
        0.000000e+00
```

```
Q1 = data['EstimatedSalary'].quantile(0.25) #Outlier detection - IQR
Q3 = data['EstimatedSalary'].quantile(0.75)
iqr = Q3 - Q1
print(iqr)
upper=Q3 + 1.5 * iqr
lower=Q1 - 1.5 * iqr
```

```
count = np.size(np.where(data['EstimatedSalary'] > upper))
count = count + np.size(np.where(data['EstimatedSalary'] < lower))
print('No. of outliers : ', count)

98386.1375
No. of outliers : 0</pre>
```

data['CreditScore'] = np.where(np.logical_or(data['CreditScore']>900, data['CreditScore']<383), 65
0, data['CreditScore'])
sns.boxplot(data['CreditScore'])</pre>


```
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma
lower = data.Age.mean() - (3 * data.Age.std())
columns = data[ ( data['Age'] > upper ) | ( data['Age'] < lower ) ]
print('Upper range : ', upper)
print('Lower range : ', lower)
print('No. of Outliers : ', len(columns))

Upper range : 70.38521935511383
   Lower range : 7.458380644886169
No. of Outliers : 133</pre>
```

columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', 'CreditScore'] #After outlier removal

```
for i in columns:

Q1 = data[i].quantile(0.25)

Q3 = data[i].quantile(0.75)

iqr = Q3 - Q1

upper=Q3 + 1.5 * iqr

lower=Q1 - 1.5 * iqr

count = np.size(np.where(data[i] > upper))

count = count + np.size(np.where(data[i] < lower))

print('No. of outliers in ', i, ' : ', count)
```

```
No. of outliers in EstimatedSalary : 0
No. of outliers in Age : 0
No. of outliers in Balance : 0
No. of outliers in NumOfProducts : 0
No. of outliers in Tenure : 0
No. of outliers in CreditScore : 0
```

Question-7. Check for Categorical columns and perform encoding

Solution:

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
le = LabelEncoder()
oneh = OneHotEncoder()
data['Surname'] = le.fit_transform(data['Surname'])
data['Gender'] = le.fit_transform(data['Gender'])
data['Geography'] = le.fit_transform(data['Geography'])
data.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	0

Question-8. Split the data into dependent and independent variables split the data in X and Y

Solution:

```
x # independent values ( inputs)
x = data.iloc[:, 0:13]
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10
	100		ma	572	SSAT	550	1354	1000	250	355	***		
9995	9996	15606229	1999	771	0	1	39	5	0.00	2	1	0	96270.64
9996	9997	15569892	1336	516	0	1	35	10	57369.61	1	1	1	101699.77
9997	9998	15584532	1570	709	0	0	36	7	0.00	1	0	1	42085.58
9998	9999	15682355	2345	772	1	1	42	3	75075.31	2	1	0	92888.52
9999	10000	15628319	2751	792	0	0	28	4	130142.79	1	1	0	38190.78

10000 rows x 13 columns

y # dependent values (output)

```
y = data['Exited']
0
      1
1
      0
2
      1
3
      0
4
     0
9995
     0
9996 0
9997
     1
9998
    1
```

Name: Exited, Length: 10000, dtype: int64

Question-9. Scale the independent variables

Solution:

```
from sklearn.preprocessing import StandardScaler, MinMaxScaler
sc = StandardScaler()
x_scaled = sc.fit_transform(x)
x_scaled
```

```
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167, 0.97024255, 0.02188649],
[-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167, -1.03067011, 0.2406869],
...,
[1.73118479, -1.47928179, 0.07353887, ..., -1.54776799, 0.97024255, -1.00864308],
[1.7315312, -0.11935577, 0.98943914, ..., 0.64609167, -1.03067011, -0.12523071],
[1.73187761, -0.87055909, 1.4692527, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question-10. Split x and y into Training and Testing

Solution:

from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)

x_train

```
array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167, 0.97024255, -0.77021814],
[ 1.39655257, 0.71431365, -1.58808148, ..., 0.64609167, -1.03067011, -1.39576675],
[ -0.4532777, 0.96344969, -0.24082173, ..., -1.54776799, 0.97024255, -1.49965629],
...,
[ -0.60119484, -1.62052514, -0.36136603, ..., 0.64609167, -1.03067011, 1.41441489],
[ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167, 0.97024255, 0.84614739],
[ -0.78548505, -1.36411841, 1.3829808, ..., 0.64609167, -1.03067011, 0.32630495]])
```

x_train.shape

(7000, 13)

```
x_test
```

```
array([[ 1.52229946, -1.04525042,  1.39834429, ...,  0.64609167,  0.97024255,  1.61304597],
[-1.42080128, -0.50381294, -0.78208925, ...,  0.64609167,  -1.03067011,  0.49753166],
[-0.90118604, -0.7932923,  0.41271742, ...,  0.64609167,  0.97024255, -0.4235611 ],
...,
[ 1.49216178, -0.14646448,  0.6868966, ...,  0.64609167,  0.97024255,  1.17045451],
[ 1.1758893, -1.29228727, -1.38481071, ...,  0.64609167,  0.97024255, -0.50846777],
[ 0.080888677, -1.38538833,  1.11707427, ...,  0.64609167,  0.97024255, -1.15342685]])
```

x_test.shape

(3000, 13)

y_train

```
7681
       1
9031
       0
3691
       0
202
       1
5625
      0
9225
      0
4859
      0
3264
      0
9845
       0
2732
Name: Exited, Length: 7000, dtype: int64
```

y_test

```
9394
        0
898
        1
2398
5906
       0
2343
       . .
4004
       0
7375
      0
9307
       0
8394
      0
5233
       1
Name: Exited, Length: 3000, dtype: int64
```