UFRGS – INSTITUTO DE MATEMÁTICA E ESTATÍSTICA Departamento de Matemática Pura e Aplicada MAT01168 - 2023/1 - Turma C Prova da área IIA

1 - 3	4	5	Total

Nome:	Cartão:	Turma:

Regras Gerais:

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas:

- Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Identidades:		
$\operatorname{sen}(x) = \frac{e^{ix} - e^{-ix}}{2i}$	$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$	
$\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$	$\cosh(x) = \frac{e^x + e^{-x}}{2}$	
$(a+b)^n = \sum_{j=0}^{\infty} \binom{n}{j} a^{n-j} b^j, \binom{n}{j} = \frac{n!}{j!(n-j)!}$		
sen(x+y) = sen(x)cos(y) + sen(y)cos(x)		
$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$		

Propriedades:

1	Linearidade	$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha \mathcal{L}\left\{f(t)\right\} + \beta \mathcal{L}\left\{g(t)\right\}$
2	Transformada da derivada	$\mathcal{L}\left\{f'(t)\right\} = s\mathcal{L}\left\{f(t)\right\} - f(0)$ $\mathcal{L}\left\{f''(t)\right\} = s^2\mathcal{L}\left\{f(t)\right\} - sf(0) - f'(0)$
3	Deslocamento no eixo s	$\mathcal{L}\left\{e^{at}f(t)\right\} = F(s-a)$
4	Deslocamento no eixo t	$\mathcal{L}\left\{u(t-a)f(t-a)\right\} = e^{-as}F(s)$ $\mathcal{L}\left\{u(t-a)\right\} = \frac{e^{-as}}{s}$
5	Transformada da integral	$\mathcal{L}\left\{\int_0^t f(\tau)d\tau\right\} = \frac{F(s)}{s}$
6	Filtragem da Delta de Dirac	$\int_{-\infty}^{\infty} f(t)\delta(t-a)dt = f(a)$
7	Transformada da Delta de Dirac	$\mathcal{L}\left\{\delta(t-a)\right\} = e^{-as}$
8	Teorema da Convolução	$\mathcal{L}\left\{(f*g)(t)\right\} = F(s)G(s),$ onde $(f*g)(t) = \int_0^t f(\tau)g(t-\tau)d\tau$
9	Transformada de funções periódicas	$\mathcal{L}\left\{f(t)\right\} = \frac{1}{1 - e^{-sT}} \int_0^T e^{-s\tau} f(\tau) d\tau$
10	Derivada da transformada	$\mathcal{L}\left\{tf(t)\right\} = -\frac{dF(s)}{ds}$
11	Integral da transformada	$\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(\hat{s})d\hat{s}$

_	Séries:
	$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 \cdots, -1 < x < 1$
	$\frac{x}{(1-x)^2} = \sum_{n=1}^{\infty} nx^n = x + 2x^2 + 3x^3 + \dots, -1 < x < 1$
	$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, -\infty < x < \infty$
	$\ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, -1 < x < 1$
	$\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, -1 < x < 1$
	$\operatorname{sen}(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
	$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
	$\operatorname{senh}(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, -\infty < x < \infty$
	$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, -\infty < x < \infty$
	$(1+x)^m = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!} x^n,$
	$-1 < x < 1, m \neq 0, 1, 2, \dots$

Funções especiais:

runções especiais.	
Função Gamma	$\Gamma(k) = \int_0^\infty x^{k-1} e^{-x} dx$
Propriedade da Função Gamma	$\Gamma(k+1) = k\Gamma(k), k > 0$ $\Gamma(n+1) = n!, n \in \mathbb{N}$
Função de Bessel modificada de ordem ν	$I_{\nu}(x) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\nu+1)} \left(\frac{x}{2}\right)^{2m+\nu}$
Função de Bessel de ordem 0	$J_0(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m!^2} \left(\frac{x}{2}\right)^{2m}$
Integral seno	$\operatorname{Si}(t) = \int_0^t \frac{\operatorname{sen}(x)}{x} dx$

Integrais: $\int xe^{\lambda x} dx = \frac{e^{\lambda x}}{\lambda^2} (\lambda x - 1) + C$ $\int x^2 e^{\lambda x} dx = e^{\lambda x} \left(\frac{x^2}{\lambda} - \frac{2x}{\lambda^2} + \frac{2}{\lambda^3} \right) + C$ $\int x^n e^{\lambda x} dx = \frac{1}{\lambda} x^n e^{\lambda x} - \frac{n}{\lambda} \int x^{n-1} e^{\lambda x} dx + C$ $\int x \cos(\lambda x) dx = \frac{\cos(\lambda x) + \lambda x \sin(\lambda x)}{\lambda^2} + C$ $\int x \sin(\lambda x) dx = \frac{\sin(\lambda x) - \lambda x \cos(\lambda x)}{\lambda^2} + C$ $\int e^{\lambda x} \sin(w x) dx = \frac{e^{\lambda x} (\lambda \sin(w x) - w \cos(w x))}{\lambda^2 + w^2}$

Tabela de transformadas de Laplace	Tabela d	e trans	formadas	de	Laplace
------------------------------------	----------	---------	----------	----	---------

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tabel	a de transformadas de Lapiace:	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$F(s) = \mathcal{L}\{f(t)\}$	$f(t) = \mathcal{L} - \{F(s)\}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1		1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	$\frac{1}{s^n}$, $(n = 1, 2, 3,)$	· ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	$\frac{1}{\sqrt{s}}$,	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	$\frac{1}{s^{\frac{3}{2}}}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6		$\frac{t^{k-1}}{\Gamma(k)}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	$\frac{1}{s-a}$	e^{at}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8		te^{at}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	$\frac{1}{(s-a)^n}$, $(n=1,2,3)$	$\frac{1}{(n-1)!}t^{n-1}e^{at}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	$\frac{1}{(s-a)^k}, \qquad (k>0)$	$\frac{1}{\Gamma(k)}t^{k-1}e^{at}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	$\frac{s}{(s-a)(s-b)}, \qquad (a \neq b)$	$\frac{1}{a-b} \left(ae^{at} - be^{bt} \right)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13		$\frac{1}{w}\operatorname{sen}(wt)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	$\frac{s}{s^2 + w^2}$	$\cos(wt)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15		$\frac{1}{a}\operatorname{senh}(at)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16	$\frac{s}{s^2-a^2}$	$\cosh(at)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	$\frac{1}{(s-a)^2 + w^2}$	$\frac{1}{w}e^{at}\operatorname{sen}(wt)$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18	$\frac{s-a}{(s-a)^2 + w^2}$	
$ \begin{array}{c ccccc} 20 & \frac{1}{s^2(s^2+w^2)} & \frac{1}{w^3}(wt-\operatorname{sen}(wt)) \\ 21 & \frac{1}{(s^2+w^2)^2} & \frac{1}{2w^3}(\operatorname{sen}(wt)-wt\cos(wt)) \\ 22 & \frac{s}{(s^2+w^2)^2} & \frac{t}{2w}\operatorname{sen}(wt) \\ 23 & \frac{s^2}{(s^2+w^2)^2} & \frac{1}{2w}(\operatorname{sen}(wt)+wt\cos(wt)) \\ 24 & \frac{s}{(s^2+a^2)(s^2+b^2)}, & \frac{1}{b^2-a^2}(\cos(at)-\cos(bt)) \\ 25 & \frac{1}{(s^4+4a^4)} & \frac{1}{4a^3}[\operatorname{sen}(at)\cosh(at)-\cos(at) - \cos(at) \operatorname{senh}(at)] \\ 26 & \frac{s}{(s^4+4a^4)} & \frac{1}{2a^2}\operatorname{sen}(at)\operatorname{senh}(at)) \\ 27 & \frac{1}{(s^4-a^4)} & \frac{1}{2a^3}(\operatorname{senh}(at)-\operatorname{sen}(at)) \end{array} $	19	1	$\frac{1}{w^2}(1-\cos(wt))$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	1	$\frac{1}{w^3}(wt - \operatorname{sen}(wt))$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21	$\frac{1}{(s^2+w^2)^2}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22		$\frac{t}{2w}\operatorname{sen}(wt)$
	23	$\frac{s^2}{(s^2+w^2)^2}$	$\frac{1}{2w}(\operatorname{sen}(wt) + wt \cos(wt))$
$-\cos(at) \operatorname{senh}(at)]$ $26 \qquad \frac{s}{(s^4 + 4a^4)} \qquad \frac{1}{2a^2} \operatorname{sen}(at) \operatorname{senh}(at))$ $27 \qquad \frac{1}{(s^4 - a^4)} \qquad \frac{1}{2a^3} (\operatorname{senh}(at) - \operatorname{sen}(at))$	24		$\frac{1}{b^2 - a^2}(\cos(at) - \cos(bt))$
$ \begin{array}{c cc} \hline 26 & \frac{s}{(s^4 + 4a^4)} & \frac{1}{2a^2} \operatorname{sen}(at) \operatorname{senh}(at)) \\ \hline 27 & \frac{1}{(s^4 - a^4)} & \frac{1}{2a^3} (\operatorname{senh}(at) - \operatorname{sen}(at)) \end{array} $	25	$\frac{1}{(s^4 + 4a^4)}$	100
$\frac{1}{(s^4 - a^4)} \qquad \frac{1}{2a^3} (\operatorname{senh}(at) - \operatorname{sen}(at))$	26	$\frac{s}{(s^4 + 4a^4)}$	1
(0 0) 20	27	1	
	28		$\frac{1}{2a^2}(\cosh(at) - \cos(at))$

	$F(s) = \mathcal{L}\{f(t)\}\$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$
29	$\sqrt{s-a} - \sqrt{s-b}$	$f(t) = \mathcal{L}^{-1}\{F(s)\}$ $\frac{1}{2\sqrt{\pi t^3}}(e^{bt} - e^{at})$
30	$\frac{1}{\sqrt{s+a}\sqrt{s+b}}$	$e^{\frac{-(a+b)t}{2}}I_0\left(\frac{a-b}{2}t\right)$
31	$\frac{1}{\sqrt{s^2 + a^2}}$	$J_0(at)$
32	$\frac{s}{(s-a)^{\frac{3}{2}}}$	$\frac{1}{\sqrt{\pi t}}e^{at}(1+2at)$
33	$\frac{1}{(s^2 - a^2)^k}, \qquad (k > 0)$	$\frac{\sqrt{\pi}}{\Gamma(k)} \left(\frac{t}{2a}\right)^{k-\frac{1}{2}} I_{k-\frac{1}{2}}(at)$
34	$\frac{1}{s}e^{-\frac{k}{s}}, \qquad (k>0)$	$J_0(2\sqrt{kt})$
35	$\frac{1}{\sqrt{s}}e^{-rac{k}{s}}$	$\frac{1}{\sqrt{\pi t}}\cos(2\sqrt{kt})$
36	$\frac{1}{s^{\frac{3}{2}}}e^{\frac{k}{s}}$	$\frac{1}{\sqrt{\pi t}} \operatorname{senh}(2\sqrt{kt})$
37	$e^{-k\sqrt{s}}, \qquad (k>0)$	$\frac{k}{2\sqrt{\pi t^3}}e^{-\frac{k^2}{4t}}$
38	$\frac{1}{s}\ln(s)$	$-\ln(t) - \gamma, \qquad (\gamma \approx 0, 5772)$
39	$\ln\left(\frac{s-a}{s-b}\right)$	$\frac{1}{t}\left(e^{bt} - e^{at}\right)$
40	$\ln\left(\frac{s^2+w^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cos(wt)\right)$
41	$\ln\left(\frac{s^2 - a^2}{s^2}\right)$	$\frac{2}{t}\left(1-\cosh(at)\right)$
42	$\tan^{-1}\left(\frac{w}{s}\right)$	$\frac{1}{t}\operatorname{sen}(wt)$
43	$\frac{1}{s}\cot^{-1}(s)$	$\mathrm{Si}\left(t ight)$
44	$\frac{1}{s} \tanh\left(\frac{as}{2}\right)$	Onda quadrada $f(t) = \begin{cases} 1, & 0 < t < a \\ -1, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
45	$\frac{1}{as^2}\tanh\left(\frac{as}{2}\right)$	Onda triangular $f(t) = \begin{cases} \frac{t}{a}, & 0 < t < a \\ -\frac{t}{a} + 2, & a < t < 2a \end{cases}$ $f(t+2a) = f(t), t > 0$
46	$\frac{w}{(s^2+w^2)\left(1-e^{-\frac{\pi}{w}s}\right)}$	Retificador de meia onda $f(t) = \begin{cases} sen(wt), & 0 < t < \frac{\pi}{w} \\ 0, & \frac{\pi}{w} < t < \frac{2\pi}{w} \end{cases}$ $f\left(t + \frac{2\pi}{w}\right) = f(t), t > 0$
47	$\frac{w}{s^2 + w^2} \coth\left(\frac{\pi s}{2w}\right)$	Retificador de onda completa $f(t) = \operatorname{sen}(wt) $
48	$\frac{1}{as^2} - \frac{e^{-as}}{s(1 - e^{-as})}$	Onda dente de serra $f(t) = \frac{t}{a}, \qquad 0 < t < a$ $f(t) = f(t-a), t > a$

• Questão 1 (0.5 cada item) Considere a função f(t) dada por:

$$f(t) = u(t) - tu(t-1) + g(t)u(t-2)$$

Sabe-se que f(t) é dada por partes como:

$$f(t) = \begin{cases} f_1(t), & 0 < t < 1, \\ f_2(t), & 1 < t < 2, \\ 2, & t > 2. \end{cases}$$

Em que $f_1(t)$ e $f_2(t)$ são funções definidas nos respectivos intervalos e g(t) está definida para $t \ge 0$. Marque as alternativas que apresentam expressões para $f_2(t)$, g(t), $I := \int_0^4 f(t)^2 dt$ e $F(s) := \mathcal{L}\{f(t)\}$.

$$(\)\ f_{2}(t) = t - 1 \\ (\)\ f_{2}(t) = t - 1 \\ (\)\ f_{2}(t) = 1 - t \\ (\)\ f_{2}(t) = t + 1 \\ (\)\ f_{2}(t) = -t \\ (\)\ f_{2}(t) = -t \\ (\)\ N.D.A.$$

$$(\)\ f(s) = \frac{s + e^{-s} - e^{-2s}}{s}$$

$$(\)\ F(s) = \frac{s - (1 + s)e^{-s} + (3s + 1)e^{-2s}}{s^{2}}$$

$$(\)\ F(s) = \frac{s^{2} + (1 + s)e^{-s} - (3s + 1)e^{-2s}}{s^{2}}$$

$$(\)\ F(s) = \frac{s^{2} + (1 + s)e^{-s} - (3s + 1)e^{-2s}}{s^{2}}$$

$$(\)\ F(s) = \frac{s + e^{-s} - e^{-2s}}{s^{2}}$$

$$(\)\ F(s) = \frac{s + e^{-s} - e^{-2s}}{s^{2}}$$

$$(\)\ F(s) = \frac{s + e^{-s} - e^{-2s}}{s^{2}}$$

$$(\)\ F(s) = \frac{s + e^{-s} + (s - 3)e^{-2s}}{s^{2}}$$

• Questão 2 (0.5 cada item) Seja $\alpha = \ln(4)$, $f(t) = u(t - \alpha) + u(t - 3\alpha)$ e x(t) satisfaz o problema:

$$ax(t) + \int_0^t x(\tau)d\tau = af(t)$$

Assinale as alternativas que apresentam o valor de $x(2\alpha)$ e a valor do salto dado por $\lim_{t\to 3\alpha+} x(t) - \lim_{t\to 3\alpha-} x(t)$ para $t\geq 3$, respectivamente.

 $\lim_{t \to 3\alpha +} x(t) - \lim_{t \to 3\alpha -} x(t)$

- $(\)\ 2^{-2a}$
- $(\)\ 2^{-a}$
- $(\)\ 1$
- $(\)\ 2^a$
- $() 2^{2a}$ () -3

• Questão 3 (0.5 cada item) Considere a função f(t) dada pela expressão:

$$f(t) = \begin{cases} 1 - t^2, & 0 \le t < 1 \\ 0, & 1 \le t < 3 \\ 2, & t \ge 3 \end{cases}$$

Assinale abaixo expressões em termos das funções Delta de Dirac e Heavisides para f(t) e g(t) = f'(t) e expressões para as transformadas de Laplace $F(s) = \mathcal{L}\{f(t)\}\$ e $G(s) = \mathcal{L}\{g(t)\}\$ = $\mathcal{L}\{f'(t)\}\$. g(t) = f'(t)

()
$$(1-t^2)u(t) + 2u(t-3)$$

()
$$\delta(t) - 2tu(t) + 2tu(t-1) + 2\delta(t-3)$$

()
$$(1-t^2)u(t) - (t^2-1)u(t-1) + 2u(t-3)$$

()
$$\delta(t) + 2tu(t) - 2tu(t-1)$$

$$(1-t^2)u(t-1)+(1+t^2)u(t-3)$$

()
$$\delta(t) - tu(t) + tu(t-1) + \delta(t-3)$$

$$(1-t^2)u(t) + (t^2-1)u(t-1) + 2u(t-3)$$

()
$$\delta(t) - 2tu(t) + 2tu(t-1)$$

()
$$(1-t^2)u(t-1)+(t^2-1)u(t-3)$$

()
$$\delta(t) - 2tu(t) + 2\delta(t-3)$$

$$F(s) = \mathcal{L}\{f(t)\}\$$

$$G(s) = \mathcal{L}{g(t)} = \mathcal{L}{f'(t)}$$
:

$$(\)\ \frac{s^2-2+2(1+s)e^{-s}+2s^2e^{-3s}}{s}$$

$$(\)\ \frac{s^2 - 2 + 2(1+s)e^{-s} + 2s^2e^{-3s}}{s^2}$$

$$(\)\ \frac{s^2 - 2 + 2(1+s)e^{-s} + 2s^2e^{-3s}}{s^2}$$

$$() \frac{s^2 - 2 + 2(1+s)e^{-s} + 2s^2e^{-3s}}{s}$$

$$(\)\ \frac{s-2+2(1+s)e^{-s}-2s^2e^{-3s}}{s^3}$$

$$(\)\ \frac{s^2-2+2(1+s)e^{-s}+2s^2e^{-3s}}{s^3}$$

$$(\)\ \frac{s^2-2+2(1+s)e^{-s}+2s^2e^{-3s}}{s^3}$$

$$(\)\ \frac{s-2+2(1+s)e^{-s}-2s^2e^{-3s}}{s^3}$$

$$(\)\ \frac{s-2+2(1+s)e^{-s}-2s^2e^{-3s}}{s^2}$$

$$(\)\ \frac{s-2+2(1+s)e^{-s}-2s^2e^{-3s}}{s^2}$$

 \bullet Questão 4 (0.5 cada item + 1.0 pelos gráficos e tabela, todo desenvolvimento é avaliado.) Considere o problema:

$$\frac{1}{\ln(2)}y'(t) + y(t) = 1 + u(t-1), \qquad 0 \le t \le 2$$
$$y(0) = y_0, \quad y(2) = \frac{3}{2}.$$

Assinale as alternativas corretas, complete a tabela e trace os gráficos de y(t) e y'(t), indicando eixos e valores notáveis. Use $\sqrt{2} \approx 1, 4$.

() $y(1/2) + y(3/2) = 2 + \sqrt{2}$ () $y(1/2) + y(3/2) = 2 - \sqrt{2}$	() $y_0 = 1$ () $y_0 = 2$
() $y(1/2) + y(3/2) = \frac{2 - \sqrt{2}}{2}$	$(\)\ y_0 = 3$
$() y(1/2) + y(3/2) = \frac{2 + \sqrt{2}}{2}$	() $y_0 = 4$ () N.D.A.
() N.D.A.	

t	y(t)	y'(t)
1/2		
$\lim_{t\to 1-}$		
$\lim_{t \to 1+}$		
3/2		

• Questão 5 (3.0 pontos) A temperatura numa sala climatizada evolui no tempo conforme o seguinte modelo simplificado:

$$\frac{dv(t)}{dt} = -\lambda(v(t) - v_{amb}) + q(t) \tag{1}$$

onde v(t) representa a temperatura medida, v_{amb} é temperatura ambiente, q(t) é a potência de um aquecedor e λ é uma constante relacionada às trocas de calor. Suponha também que a temperatura é regulada por um sistema de controle automático que procura ajustar a potência q(t) de forma que a temperatura medida se mantenha próxima de zero grau Celcius. O sistema de controle automático é regido pela seguinte equação:

$$q(t) = -\epsilon \frac{dq(t)}{dt} - K_p v(t) - K_d \frac{dv(t)}{dt}$$
(2)

Considere $\epsilon = 1/2$, $0K_p = 5$, $K_d = 2$, $\lambda = 1$, $v_{amb} = -10$, v(0) = 0, q(0) = -2.

- a) (1.0) Encontre $V(s) := \mathcal{L}\{v(t)\}$. Expresse como uma função racional cujo demoninador é um polinônio cúbico
- b) (1.0) Encontre v(t).
- c) (1.0) Calcule $v_{\infty} := \lim_{t \to \infty} v(t)$ e $q_{\infty} := \lim_{t \to \infty} q(t)$.

Obs: Copie suas respostas finais abaixo. O desenvolvimento ta	mbém será avaliado.
V(s) =	
v(t) =	
$v_{\infty} =$	$q_{\infty} =$