Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «ВЫЧИСЛИТЕЛЬНЫЕ КОМПЛЕКСЫ»

Выполнил студент группы 3630102/70201

Кузин А.В.

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2020

Содержание

1	Постановка задачи	2
2	Конкретизация задачи и теория	2
3	Решение 3.1 Переопределенная ИСЛАУ 3.2 Недоопределенная ИСЛАУ	3 3 4
4	Приложения	5
C	Список иллюстраций	
	1 Допусковое множество решений для недоопределенной ИСЛАУ 2 Допусковое множество в проекции	

1 Постановка задачи

Требуется решить недоопределённую интервальную систему линейных алгебраических уравнений (ИСЛАУ) с матрицей 3×2 и переопределённую ИСЛАУ с матрицей 2×3 . Используемые матрицы должны совпадать с точностью до транспонирования.

Для случая 3×2 построить график распознающего функционала $Tol(x_1, x_2)$.

Для случая 2х3 проанализируйте решение. Постройте 3-мерный образ допускового множества или его проекции на плоскости $(x_i \ O \ x_j)$.

2 Конкретизация задачи и теория

В качестве исходной матрицы СЛАУ была выбрана точечная матрица A и вектор x:

$$A = \begin{pmatrix} 19 & 11 \\ 10 & 15 \\ 14 & 12 \end{pmatrix}, x = \begin{pmatrix} 0.3 \\ 0.2 \end{pmatrix} \tag{1}$$

Таким образом, правая часть СЛАУ была определена значениями A и x:

$$b = A \cdot x = \begin{pmatrix} 7.9 \\ 6 \\ 6.6 \end{pmatrix} \tag{2}$$

Далее, положим величины радиусов элементов $rad\mathbf{A}$, $rad\mathbf{b}$ равными:

$$rad\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 2 & 2 \\ 4 & 2 \end{pmatrix}, rad\mathbf{b} = \begin{pmatrix} 2 \\ 2 \\ 2.5 \end{pmatrix}$$
 (3)

Из (1), (2) и (3) имеем переопределенную ИСЛАУ 2 х 3:

$$\begin{pmatrix}
[17,21] & [9,13] \\
[8,12] & [13,17] \\
[10,18] & [10,14]
\end{pmatrix} \cdot x = \begin{pmatrix}
[5.9,9.9] \\
[4,8] \\
[4.1,9.1]
\end{pmatrix}$$
(4)

Для исследования разрешимости этих интервальной ИСЛАУ использовался распознающий функционал Tol(x):

$$Tol(x) = \min_{1 \le i \le n} (radb_i - |midb_i - \sum_{j=1}^m a_{ij}x_j|)$$

$$\tag{5}$$

Допусковое множество решений ИСЛАУ при этом задаётся условием $Tol(x) \geq 0$. Таким образом для нахождения допускового множества и проверки разрешимости системы удобно найти точку x, максимизирующую распознающий функционал, и рассмотреть её окрестность.

3 Решение

3.1 Переопределенная ИСЛАУ

С помощью программы tolsolvty были найдены максимум функционала распознающего функционала maxTol и значение аргумента, в которой он достигался argmaxTol.

$$maxTol = 0.917538; argmaxTol = \begin{pmatrix} 0.28947693\\ 0.21227687 \end{pmatrix}$$
 (6)

Оценка меры вариабельности *ive*:

$$ive(\mathbf{A}, \mathbf{b}) = \sqrt{n}(\underset{A \in \mathbf{A}}{mincond}\mathbf{A}) \cdot ||argmaxTol|| \cdot \frac{maxTol}{||\mathbf{b}||}$$
 (7)

По формуле (7) получено: ive = 0.2369.

С помощью программы И.А. Шарой допускового множества, вычисленного программой EqnTolR2, входящей в пакет IntLinIncR2, было рассчитано и отображено (в виде графика) допусковое множество решений.

Результат графического представления полученного бруса, множества решений и их совмещения представлен на рисунке:

3.2 Недоопределенная ИСЛАУ

Для задания ИСЛАУ матрица A из предыдущего раздела была транспонирована, а вектор x дополнен ещё одним членом:

$$A = \begin{pmatrix} 19 & 10 & 14 \\ 11 & 15 & 12 \end{pmatrix}, x = \begin{pmatrix} 0.3 \\ 0.2 \\ 0.1 \end{pmatrix}$$
 (8)

Для них была определена правая часть:

$$b = A \cdot x = \begin{pmatrix} 9.1\\7.5 \end{pmatrix} \tag{9}$$

Из (8) и (9) получена недоопределенная ИСЛАУ:

$$\begin{pmatrix} [17,21] & [8,12] & [10,18] \\ [9,13] & [13,17] & [10,14] \end{pmatrix} \cdot x = \begin{pmatrix} [7.1,11.1] \\ [5,10] \end{pmatrix}$$
 (10)

С помощью программы tolsolvty были найдены максимум функционала распознающего функционала maxTol и значение аргумента, в которой он достигался argmaxTol.

$$maxTol = 0.8639954; argmaxTol = \begin{pmatrix} 3.79999850e - 01\\ 1.88001053e - 01\\ -5.81838840e - 07 \end{pmatrix}$$
 (11)

По формуле (7) получено: ive = 0.3260.

Построим допусковое множество в объеме:

Рис. 1: Допусковое множество решений для недоопределенной ИСЛАУ

Рассмотрим также проекцию на x_1Ox_2 , так как в решении третья координата близка к 0.

Рис. 2: Допусковое множество в проекции

Стоит отметить, что точка, соответствующая решению, близка к центру, поэтому брус покрывает почти всё допусковое множество.

4 Приложения

Код программы на GitHub, URL: https://github.com/Kexon5/Comp_complex.git