Process Mining: Data Science in Action

Cluster Analysis

Where innovation starts

Clustering (unsupervised learning: no response variable)

Clustering

k-means clustering

assume k=3

Just an illustration.

May be misleading:
often many
dimensions! TU/e

Generate k=3 centroids (e.g., random)

Assign instances to closest centroid

Recompute centroids based on assigned instances

Assign instances to closest centroid

Recompute centroids based on assigned instances

Assign instances to closest centroid

Recompute centroids based on assigned instances

Fixpoint has been reached: Nothing changes anymore.

Due to non-deterministic nature (random initial centroids), experiment may be repeated multiple times. Select "best clustering" at end.

Clusters returned

Main idea:

The instances in a cluster are more similar to each other than to those in other clusters.

Many use cases

For example: finding homogenous groups of customers, patients, sessions, students, etc.

After clustering: apply additional mining techniques on the partitioned input data.

Results *k*-means clustering (k=2)

Two clusters:

- Cluster 0: 2551 instances

- Cluster 1: 2449 instances

Centroids

Text View Fold	der View 🔘 Grap	ph View (Ce
Attribute	cluster_0	cluster_1
pizza margherita	0.008	1.026
pizza siciliana	0.011	1.028
lasagna	0.987	0.011
spaghetti carbonara	0.984	0.008
vino rosso	0.011	1.046
birra	0.995	0.007

Cluster 0: 2551 instances

birra

Cluster 1: 2449 instances

vino rosso

lasagna spaghetti carbonara

pizza siciliana pizza margherita

Scatter plot (with jitter)

Scatter plot (with jitter)

Scatter plot (with jitter)

Agglomerative hierarchical clustering

Two larger clusters

Six smaller clusters

Clustering can be used to split event logs

Part I: Preliminaries Part III: Beyond Process Discovery Chapter 2 Chapter 3 Chapter 7 Chapter 8 Chapter 1 Process Modeling and Data Mining Introduction Conformance Mining Additional **Operational Support** Analysis Checking Perspectives Part II: From Event Logs to Process Models Part IV: Putting Process Mining to Work Chapter 11 Chapter 4 Chapter 5 Chapter 6 Chapter 10 Process Discovery: An Getting the Data Advanced Process **Tool Support** Analyzing "Lasagna Analyzing "Spaghetti Introduction

2 Springer

Chapter 9

Chapter 12