

ch17: Deep Generative Models

这一章的重点是GAN,其他的两个更多的是了解性质

Concept

Generation = learns the probability distribution of training data.

Generative Model overview(P17)

• **Goal**: find a $p_{model}(x)$ that approximates $p_{data}(x)$ well.

How to represent $p_{model}(x)$?(P18)

• **Generator G:** a neural network that generates an image x with a probability $p_{\text{model}}(x)$ given a random code.

How to make $p_{model}(x) \approx p_{data}(x)$?

• **Discriminator D**: a neural network classifier that predicts whether a given image is sampled from $p_{model}(x)$ (fake) or $p_{data}(x)$ (real). If undistinguishable, then $p_{model}(x) \approx p_{data}(x)$

GAN(Generative Adversarial Network)overview(P20)

• A generative model by having **two** neural networks

Objective of Discriminator(P21-24)

• The discriminator tries to identify the synthesized instances

Objective of Generator(P25)

Objective of GAN(P26)

Adversarial Objectives for G and D 两者是博养的关系

$$\min_{G} \max_{D} V(G,D) = E_{x \sim P_{data}} [\log D(x)] + E_{z \sim P_{z}(z)} [\log(1-D(G(z))]$$

Global Optimum: G reproduces the true data distribution

Algorithm(P27)

GAN

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \dots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D\left(\boldsymbol{x}^{(i)}\right) + \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right) \right) \right).$$

end for

Some GANs

- Deep Convolutional GANs (DCGAN)(P30)
- Use **convolution** and **deconvolution** for the discriminator

• Conditional GANs(P32)

Results - Image-to-Image Translation

CycleGAN: Domain Transformation(P34)

CycleGAN补充:

CycleGAN的主要目的是实现Domain Adaptation,这里我们以风景照片和梵高画作为例,假现在有两个数据集 X 和 Y 分别存放风景照片和梵高画作。我们希望训练出一个生成器 G ,一个风景照,吐出一个梵高画作,即 $G(x)=y',x\in X$;同时,我们还希望训练出另一个竖器 F ,它吃一个梵高画作,吐出一个风景照,即 $G(y)=x',y\in Y$ 。为了达到这个目的,们还需要训练两个判别器 D_X 和 D_Y ,分别判断两个生成器生成图片的好坏:如果生成器产生**图片** y' 不像**数据集** Y 里的**图片** y ,此时判别器 D_Y 应给它低分(规定最低分为0),反之如影片 y' 像**数据集** Y 里的**图片** y ,则此时判别器Y0,则此时判别器Y1。此外,判别Y2。整个CycleGAN的模型框架如下语示:

在训练过程中,判别器和生成器是分别训练的,整个过程有点像进化论中捕食者和被捕食者迭代进 化的过程:

当我们固定住生成器的参数训练判别器时,判别器便能学到更好的判别技巧,当我们固定住判别器 参数训练生成器时,生成器为了骗过现在更厉害的判别器,被迫产生出更好质量的图片。两者便在 这迭代学习的过程中逐步进化,最终达到动态平衡。

这是一开始GAN被提出时的思想,而在CycleGAN中,我们不仅想要生成器产生的**图片**y' 跟**数据集**Y中的图片**画风一样**,我们还希望生成器产生的**图片**y' 跟他的输入**图片**x**内容一样**(比如我们输入一张带房子的照片,我们希望产生梵高画风的房子图片,而不是其他内容的图片,比如向日葵、星夜等等,否则意义就不是很大了。因为在一些APP中,我们通常想把自己拍摄的照片变成梵高画作嘛~)。

为了做到这一点,论文作者提出了**Cycle Consistency Loss**,即将**图片**y' 再放入生成器 F 中,产生的**新图片**x' 和最开始的**图片**x 尽可能的相似

即我们希望 F(G(x)) = x

有了这样的约束,我们才能希望生成器将我们的输入照片的风格转化为梵高画风,而不是从梵高的作品中随便挑一张图片来应付我们了事。Cycle Consistency Loss在原论文中的插图解释为

Variational Autoencoder (VAE) (P40-42)

真实图片印刷的

<u>Idea</u>: can we let z be a latent code of real images and meanwhile force it to follow some distributions e.g., unit Gaussian?

• An **autoencoder** where the latent code is sampled from a predicted Gaussian distribution.

Variational autoencoders are a probabilistic twist on autoencoders!

Sample from the mean and standard deviation to compute latent sample 变分自编码器是自编码器的概率扭曲:样本从均值和标准差来计算潜在样本

Why Regularization (P43)

What properties do we want to achieve from regularization? 连续性: 在潜在空间中接近的点, →解码后的相似内容

- 1. Continuity: points that are close in latent space → similar contents after decoding

 [本版] [1]
- **2. Completeness**: sampling from latent space → always "meaningful" content after decoding

Limitations of VAEs (and also GANs) (P45)

- The latent code z has a different (much smaller) size to the original image. 冬季双图 以质量的下降
- The content is generated all at once.

Denoising Diffusion Model

由粗到细生成,解决generated all at once的问题

Overview (P47)

- Two processes:
 - ► Forward diffusion process: gradually adds noise to input
 - ▶ Reverse denoising process: learns to generate data by denoising

Forward Diffusion Process (P48)

T-steps: each step (x_t) adds a fixed gaussian noise (β_t) to the previous step (x_{t-1}) . 确定的,可以操纵的

Backward Denoising Process (P49)

T steps: each step (x_{t-1}) removes some noise from the previous step (x_t) . 可训练但是比较难

The distribution $(\mu \text{ and } \sigma^2)$ of x_{t-1} can be estimated based on the previous image (x_t) using a neural network:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1}; \underline{\mu_{\theta}(\mathbf{x}_t, t)}, \sigma_t^2 \mathbf{I}) \qquad p(\mathbf{x}_T) = \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$$
 Trainable network (U-net) Denoising Autoencoder)

Architecture (P50)

Often use U-Net architectures with ResNet blocks and selfattention layers to represent $\varepsilon_{\theta}(x_{t}, t)$, which can further be used to compute $\mu_{\theta}(x_{t}, t)$

Algorithm (P51)

Algorithm 1 Training

1: repeat
2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \left\| \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \right\|^2$ 6: until converged

Algorithm 2 Sampling

- 1: $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 2: **for** t = T, ..., 1 **do**
- 3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if t > 1, else $\mathbf{z} = \mathbf{0}$
- 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$
- 5: end for
- 6: **return** \mathbf{x}_0