ECE 459/559 Secure & Trustworthy Computer Hardware Design

Introduction to Cryptography
Part I

Garrett S. Rose Spring 2017

Summary

- Substitution Ciphers
- Permutations
- Making good ciphers

Terminology & Background Threats to Messages

- Interception
- Interruption
 - Blocking messages
- Modification
- Fabrication

"A threat is blocked by control of a vulnerability"

[Pfleeger & Pfleeger]

Basic Terminology & Notation

- Cryptology
 - Cryptography + Cryptanalysis
- Cryptography
 - Art/science of keeping messages secure
- Cryptanalysis
 - Art/science of breaking ciphertext
 - Ex.: Enigma in WWII

Basic Cryptographic Scheme

P ENCRYPTION ciphertext DECODING DECODING Plaintext

(E) DECRYPTION DECODING Plaintext

(D) P

- $P = \langle p_1, p_2, ..., p_n \rangle$ $p_i = i$ -th character of P
 - P = "DO NOT TELL ANYBODY" $p_1 = "D", p_2 = "O", etc.$
 - By convention, plaintext (a.k.a. "cleartext") in uppercase
- $C = \langle c_1, c_2, ..., c_n \rangle$ $c_i = i$ -th character of C
 - C = "ep opu ufmm bozcpez"

$$c_1 = \text{"e"}, c_2 = \text{"p"}, \text{ etc.}$$

By convention, ciphertext in lowercase

Benefits of Cryptography

- An improvement, not a solution!
- Minimizes problems
- Doesn't solve them all
 - Remember: There is <u>no</u> solution!
- Adds an envelope (encoding) to an open postcard (plaintext)

Formal Notation

- C = E(P) E encryption rule/algorithm
- P = D(C) D decryption rule/algorithm
- Need cryptosystem, where:
 - P = D(C) = D(E(P))
 - i.e., able to get original message back

Cryptography in Practice

Sending a secure message

Receiving a secure message

Cryptosystem with Keys

- $C = E(K_{F}, P)$
 - E = set of encryption algorithms / K_F selects E_i ∈ E
- $P = D(K_D, C)$
 - D = set of decryption algorithms / K_D selects D_i ∈ D
- Crypto algorithms and keys are like door locks and keys
- We need: $P = D(K_D, E(K_F, P))$

Classification of Crytosystems (w.r.t. Keys)

- Keyless cryptosystems exist (e.g. Caesar's Cipher)
 - Less secure
- Symmetric cryptosystems: $K_F = K_D$
 - Classic
 - Encipher and decipher using same key (or one key is easily derived from other)
- Asymmetric cryptosystems: $K_E \neq K_D$
 - Public key system
 - Encrypt and decrypt using different keys (computationally infeasible to derive one from other)

Cryptanalysis Goals

- Break a single message
- Recognize patterns in encrypted messages
 - gain ability to break subsequent messages
- Infer meaning without breaking encryption
 - Unusual volume of messages between troops may indicate attack
 - Busiest node may be enemy headquarters
- Deduce the key, facilitate breaking subsequent messages
- Find vulnerabilities in implementation or environment of an encryption algorithm
- Find general weakness in encryption algorithm

Information for Cryptanalysts

- Intercepted encrypted messages
- Known encryption algorithms
- Intercepted plaintext
- Data known or suspected to be ciphertext
- Math or statistical tools and techniques
- Properties of natural languages
 - Especially adversary's natural language
 - To confuse enemy, U.S. used Navajo language in WWII
- Properties of computer systems
- Ingenuity and ol' fashioned luck
- There are no rules!

Breakable Encryption

- Theoretically, it is possible to device unbreakable cryptosystems
- Practical cryptosystems almost always breakable, given adequate time and computing resources
- Trick is to make breaking cryptosystem <u>hard enough</u> for intruder

Example of Breakable Encryption

- Breakability of encryption algorithm message uses 25 characters
- 26²⁵ possible decryptions ~ 10³⁵ decryptions
- Only one is correct
- Brute force approach:
 - -10^{10} (10 bln) decryption/sec => $10^{35}/10^{10} = 10^{15}$ sec = 32 mln yrs!
 - Infeasible with current technology
- Be smarter use ingenuity
 - Could reduce 26²⁵ to, say, 10¹⁵ decryptions to check
 - 10^{10} decryption/sec => $10^{15}/10^{10} = 10^{5}$ sec ≈ 1 day

Requirements of Crypto Protocols

- Messages should get to destination
- Only recipient should get it
- Only recipient should see it
- Need proof of sender's identity
- Message shouldn't be corrupted in transit
- Message should be sent/received once
- Proofs that message was sent/received (non-repudiation)

Representing Characters

Letters (uppercase only) represented by numbers 0-25 (modulo 26)

Operations on letters:

$$A + 2 = C$$

 $X + 4 = B$ (circular)

Basic Types of Ciphers

- Substitution ciphers
 - Letters of P replaced with other letters by E
- Transportation (permutation) ciphers
 - Order of letters of P rearranged by E
- Product ciphers
 - E "=" E₁ "+" E₂ "+" ... "+" E_n
 - Combine two or more ciphers to enhance security

The Caesar Cipher (A Substitution Cipher)

- $c_i = E(p_i) = (p_i + 3) \mod 26$ (26 letters in English alphabet)
 - Change each letter to third letter following it (circularly)
 A → D, B → E, ..., X → A, Y → B, Z → C
- Can represent as permutation of π : $\pi(i) = (i + 3) \mod 26$ $\pi(0) = 3$, $\pi(1) = 4$, ..., $\pi(23) = 26 \mod 26 = 0$, $\pi(24) = 1$, $\pi(25) = 2$
- Key = 3 OR key = 'D' (since D represents 3)

The Caesar Cipher

- Example:
 - P (plaintext): HELLO WORLD
 - C (ciphertext): khoor zruog
- Caesar Cipher is a monoalphabetic substitution cipher
 (= simple substitution cipher)
 - One key is used
 - One letter substitutes the letter in P

Attacking a Substitution Cipher

- Exhaustive search
 - If key space small, try all possible keys until you find right one
 - Caesar cipher has only 26 possible keys
 from A to Z OR from 0 to 25
- Statistical analysis (attack)
 - Compare to so called 1-gram (unigram) model of English
 - Shows frequency of each character used in English language
 - The longer the C, the more effective statistical analysis is

1-grams (Unigrams) for English

a	0.080	h	0.060	n	0.070	t	0.090
b	0.015	i	0.065	0	0.080	u	0.030
С	0.030	j	0.005	р	0.020	V	0.010
d	0.040	k	0.005	q	0.002	W	0.015
е	0.130	I	0.035	r	0.065	Х	0.005
f	0.020	m	0.030	S	0.060	У	0.020
g	0.015					Z	0.002

Statistical Attack

- Compute frequency f(c_i) for each letter c_i used in ciphertext
- Example: C = "khoor zruog"
 - 10 characters: 3x 'o', 2x 'r', 1x {'k', 'h', 'z', 'u', 'g'}
 - f(c_i):

```
f('g') = 0.1f('h') = 0.1f('k') = 0.1f('o') = 0.3f('r') = 0.2
f('u') = 0.1f('z') = 0.1f(c_i) = 0 for any other c_i
```

- Apply 1-gram model of English
 - Frequency of usage for characters in language
 - 1-grams provided on previous slide

Statistical Attack - Step 2

- Phi $\varphi(i)$ correlation of frequency of letters in ciphertext with frequency of corresponding letters in alphabet given key I
- For key i: $\varphi(i) = \sum_{0 < c < 25} f(c) \cdot p(c I)$
 - c representation of character (a=0, ..., z=25)
 - f(c) is frequency of character x in English
 - Intuition: sum of probabilities for words in P, if i were the key

Statistical Attack - Step 2

```
• Example: C = "khoor zruog" (P = "HELLO WORLD") f(c): \\ f('g') = 0.1f('h') = 0.1f('k') = 0.1f('o') = 0.3f('r') = 0.2 \\ f('u') = 0.1f('z') = 0.1f(c_{_i}) = 0 \text{ for any other } c_{_i} \\ c: \\ g-6, h-7, k-10, o-14, r-17, u-20, z-25
```

•
$$\phi(i) = 0.1 \cdot p(6 - i) + 0.1 \cdot p(7 - i) + 0.1 \cdot p(10 - i) + 0.3 \cdot p(14 - i) + 0.2 \cdot p(17 - i) + 0.1 \cdot p(20 - i) + 0.1 \cdot p(25 - i)$$

Statistical Attack - Step 2 (Calculations)

İ	φ(i)	İ	φ(<i>i</i>)	i	φ(i)	İ	φ(<i>i</i>)
0	0.0482	7	0.0442	13	0.0520	19	0.0315
1	0.0364	8	0.0202	14	0.0535	20	0.0302
2	0.0410	9	0.0267	15	0.0226	21	0.0517
3	0.0575	10	0.0635	16	0.0322	22	0.0380
4	0.0252	11	0.0262	17	0.0392	23	0.0370
5	0.0190	12	0.0325	18	0.0299	24	0.0316
6	0.0660					25	0.0430

Statistical Attack - Step 3 (The Result)

- Most probably keys (largest φ(i) values):
 - I = 6, $\varphi(i) = 0.0660$ plaintext: EBIIL TLOLA
 - I = 10, $\phi(i) = 0.0635$ plaintext: AXEEH PHKEW
 - I = 3, $\phi(i) = 0.0575$ plaintext: HELLO WORLD
 - I = 14, $\phi(i) = 0.0535$ plaintext: WTAAD LDGAS
- Only English phrase is for i = 3
 - That's the key (3 or 'D') code broken

Caesar's Problem

- Conclusion: Key is too short
 - 1-character key monoalphabetic substitution
 - Can be found by exhaustive search
 - Statistical frequencies not concealed well by short key
 - Looks too much like "regular" English letters
- Solution: May the key longer
 - N-character (n ≥ 2) polyalphabetic substitution
 - Makes exhaustive search much more difficult
 - Statistical frequencies concealed much better

