

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)		2. REPORT TYPE Technical Paper		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER 2303	
				5e. TASK NUMBER M1A3	
				5f. WORK UNIT NUMBER 346127	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)				8. PERFORMING ORGANIZATION REPORT	
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC) AFRL/PRS 5 Pollux Drive Edwards AFB CA 93524-7048				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S NUMBER(S)	
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited.					
13. SUPPLEMENTARY NOTES					
14. ABSTRACT					
20030127 197					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF: a. REPORT Unclassified			17. LIMITATION OF ABSTRACT A	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Leilani Richardson
b. ABSTRACT Unclassified					19b. TELEPHONE NUMBER (include area code) (661) 275-5015
c. THIS PAGE Unclassified					

2303 MIA3

MEMORANDUM FOR PRS (In-House Contractor Publication)

FROM: PROI (STINFO)

08 May 2002

SUBJECT: Authorization for Release of Technical Information, Control Number: **AFRL-PR-ED-VG-2002-101**
Tim Haddad (ERC) and Brent Viers (PRSM), "Organic Polymers Modified with Inorganic Polyhedra"

Canadian Society for Chemistry
(2-5 June 2002, Vancouver, Canada) (Deadline: 31 May 2002)

(Statement A)

ORGANIC POLYMERS MODIFIED WITH INORGANIC POLYHEDRA.

Timothy S. Haddad and Brent D. Viers
ERC Inc., Air Force Research Lab,
10 E Saturn Boulevard
Edwards Air Force Base, CA 93524

Nanostructured composites of thermoplastics and inorganic clusters have been developed by incorporating polyhedral oligomeric silsesquioxane (POSS) macromers into organic polymers. These hybrid inorganic/organic thermoplastics based on styrenes, acrylics, imides, norbornenes or siloxanes, are reinforced by covalently linking monodisperse inorganic POSS clusters to the polymer backbone. A typical POSS-macromer, R₇P(Si₈O₁₂), is a well-defined octomeric polyhedron containing a single "P" functionality for polymerization and seven "R" groups to solubilize and compatibilize the inorganic filler with the organic matrix. A nanoreinforcement effect from the POSS groups is strongly influenced by the seven "R" groups (cyclopentyl, cyclohexyl, isobutyl or phenyl). Covalently attached POSS groups result in significant change to the observed characteristic relaxation time of the polymer; rheological measurements on molten polymer indicate that interactions between the POSS groups generate a reversible network material with rubbery properties. TEM images show that the inorganic POSS moieties associate to form a nanoscale network within the polymer matrix.

DISTRIBUTION STATEMENT A

Approved for Public Release
Distribution Unlimited

ORGANIC POLYMERS MODIFIED WITH INORGANIC POLYHEDRA

Tim Haddad and Brent Viers
ERC Inc., Air Force Research Lab

Edwards Air Force Base, CA

Hybrid Inorganic/Organic Polymers

Hybrid plastics can bridge the differences between ceramics and polymers

Anatomy of a POSS Macromer

Nonreactive organic (R) → Nonreactive organic (R)
groups for solubilization
and compatibilization.

→ May possess one or more
functional groups suitable for
polymerization or grafting.

Nanoscopic in size with an
Si-Si distance of 0.5 nm
and a R-R distance of 1.5 nm.

Thermally and chemically
robust hybrid
(organic-inorganic) framework.

Precise three-dimensional structure for molecular level
reinforcement of polymer segments and coils.

POSS Silanol Synthesis

Brown & Vogt: JACS, 1965, p. 4313
 Feher et al: JACS, 1989, p 1741;
 Organometallics, 1991, p 2526

POSS Macromers For Nanocomposites

Halides	Nitriles
Alcohols	Amines
Esters	Isocyanates
Bisphenols	Epoxides
Silanes	Styryls
Silanols	α -olefins
Silylchlorides	Acrylics
	Norbornenyls

POSS-based macromers are now available through either **Gelest** or **Aldrich**
POSS technology is commercialized by **Hybrid Plastics** in Fountain Valley CA

Why POSS and Why Nano?

Field	Property	Critical Length
Electronics	Tunneling	1-100 nm
Optical	Quantum Well	1-100 nm
	Wave Decay	10-1000 nm
Polymers	Primary Structure	0.1-10 nm
	Secondary Structure	10-1000 nm
Mechanics	Dislocation Interaction	1-1000 nm
	Crack Tip Radius	1-100 nm
	Entanglement Rad.	10-50 nm
Therm-Mech.	Chain Motion	0.5-50 nm
Nucleation	Defect	0.1-10 nm
	Critical Nucleus Size	1-10 nm
	Surface Corrugation	1-10 nm
Catalysis	Surface Topology	1-10 nm
Biology	Cell Walls	1-100 nm
Membranes	Porosity Control	0.1-5 nm

Structure-Property Relationships

- Maximizing property enhancements through changes at the nano level

- Polymer miscibility vs. POSS/POSS interactions

POSS Polymer Incorporation

POSS Pendent

POSS Bead

POSS Crosslinking

POSS Blending

Size & Shape

50 Wt % POSS Blends in 2 Million MW Polystyrene

Vi₈T₈

Phenethyl₈T₈

Nanodispersion!!

DMA of 10 Wt % POSS in isotactic Polypropylene

PDMS-POSS TMA Characterization

The POSS/Siloxane copolymers with four or more Si-O repeat units in the siloxane segment have softening temperatures well below the decomposition temperatures.

TMA of Pendant POSS-Siloxanes

Hydrosilation to High MW PDMS

Used 5 weight % POSS

There are about 7 POSS-macromers per PDMS chain

Comparison of Three T₈-POSS Macromers

Comparison of Two POSS Polyhedra

DMA of 30 wt % POSS Polystyrenes

- Comparison of isobutyl, cyclopentyl & cyclohexyl
- Bulk polymerized samples

TMA Plot Comparison For POSS-Styryl and POSS-EthylStyryl Polymers (R = Cyclohexyl and Cyclopentyl)

Total TMA Dimension Change - 5 mm

Polymerization of POSS Norbornenes

Both block and random copolymers were synthesized. The wt. % POSS was varied from 0 to 50 wt. % POSS. An ideal polymerization would yield polymers with 500 monomer units.

0 wt % POSS, 0 mole % POSS: x = 500, y = 0
10 wt % POSS, 1 mole % POSS: x = 495, y = 5
50 wt % POSS, 8 mole % POSS: x = 460, y = 40

DSC Data for POSS-Norbornenes

Storage Modulus and Loss Tangent

Cyclohexyl Relaxation: 14.7 Kcal/mol

No Maximum for
50% CyPOSS

Various Wt % Cyclohexyl
POSS Polynorbornene
Random Copolymers

TEM of Random POSS Norbornenes

50CyPOSS/PN

50CpPOSS/PN

“Coarse” Cylinder Nanostructure
(Diameter ~ 12nm)

“Fine” Cylinder Nanostructure
(Diameter ~ 6nm)

CyclohexylIPOSS-rich domains may entrain more unoriented polynorbornene chains than CyclopentylIPOSS-rich domains.

Solid Rocket Motor Insulation

POSS-Insulation Sample

O-Atom Etching Experiment

8.47×10^{20} atoms cm⁻²

Kapton 10 wt% POSS

Average etch depth: 2.2 μm

Summary

- The successful incorporation of nano-sized inorganic clusters (POSS) into a wide variety of polymers has been demonstrated.
- These POSS clusters have a remarkable effect on the thermal transitions and mechanical properties of the polymers they are copolymerized into.
- The POSS effect on the properties of analogous polymers shows a dependency on the type of alkyl group on the POSS cluster.
- TEM images of randomly copolymerized polymers illustrate this dependency, as the size of the POSS domains are alkyl-group dependent.
- Rheology of high molecular weight PDMS grafted with small amounts of POSS illustrates a dependence on both the POSS-alkyl-group and POSS shape.

Acknowledgement\$

Dr. Brent Viers

Mr. Brian Moore

Mr. Justin Leland

Mr. Pat Ruth

Capt. Rene Gonzalez

Dr. Rusty Blanski

Dr. Shawn Phillips

Dr. Sandra Tomczak

Prof. Pat Mather UCONN
Prof. Andre Lee MSU
Prof. Ben Hsiao SUNY
Prof. Frank Fehrer UCI
Prof. Gar Hoflund UF
Prof. Tim Mitten MSU

Hybrid Plastics Inc.

Acknowledgement\$: We gratefully acknowledge the Air Force Office of Scientific Research, Directorate of Chemistry and Life Sciences, and the Air Force Research Laboratory, Propulsion Directorate for their financial support.