NEC

PNP SILICON DARLINGTON TRANSISTOR

2SB1093

DESCRIPTION The 2SB1093 is a darlington transistor including a dumper diode

It is suitable for general driving use, such as hammer, solenoid, lamp or motor.

FEATURES

- High DC current_gain_
- High current capability, wide ASO and low collector saturation voltage.
- Includes a dumper diode at C-E.
- A complementary pair with NEC's 2SD1579.

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures Storage Temperature -55 to +150 °C Junction Temperature 150 °C Maximum Maximum Power Dissipation ($T_a = 25$ °C) Maximum Voltages and Currents (Ta = 25 °C) V_{CBO} Collector to Base Voltage -80 V V_{CEO} Collector to Emitter Voltage -80 V V_{EBO} Emitter to Base Voltage -8.0 V Collector Current (DC)..... 71.5 A Collector Current (Pulse)*.... #3.0 A lc.

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

PACKAGE DIMENSIONS in millimeters (inches) 7.0 MAX. (0.275 MAX.) (0.047) WWW (0.275 MAX.) (0.047) WWW (0.0041) (0.024) 1.7 (0.0024) (0.024) 1.7 (0.0067) (0.0067) (0.0067) WWW (0.0067) (0.0067) (0.0067) 1.7 (0.0067) (0.0067) (0.0067) 1.7 (0.0067) (0.0067) (0.0067)
3(B) 2(C) 2(C) 1. Emitter (E) 2. Collector (C) 3. Base (B) $R_1 \approx 10 \text{ k}\Omega$ $R_2 \approx 500 \Omega$ 1(E)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS	
hFE1	DC Current Gain	1000			-	$V_{CE} = -2.0 \text{ V, I}_{C} = -0.5 \text{ A}$	
hFE2	DC Current Gain	2000		30000	_	V _{CE} =-2.0 V, I _C =-1.0 A	
ton	Turn-On Time		0.5		μs	$I_C = -1.0 \text{ A, R}_L = 50 \Omega$	
t _{stg}	Storage Time		1.0		μs	I _{B1} = -I _{B2} = -1.0 mA, V _{CC} = -50 V See Test Circuit	
tf	Fall Time		1.0		μs		
Ісво	Collector Cutoff Current			-10	μΑ	$V_{CB} = -80 V, I_{E} = 0$	
ICER	Collector Cutoff Current			-1.0	mA	$V_{CE} = -80 \text{ V, R}_{BE} = 51 \Omega, T_a = 125 ^{\circ}\text{C}$	
ICEX1	Collector Cutoff Current			-10	μΑ	$V_{CE} = -80 \text{ V, } V_{BE(off)} = -1.5 \text{ V}$	
ICEX2	Collector Cutoff Current			-1.0	mA	$V_{CE} = -80 \text{ V}, V_{BE(off)} = -1.5 \text{ V}, T_a = 125 ^{\circ}\text{C}$	
^I EBO	Emitter Cutoff Current			-1.0	mA	$V_{EB} = -5.0 \text{ V, } I_{C} = 0$	
V _{CE(sat)}	Collector Saturation Voltage			-1.5	V	$I_C = -1.0 \text{ A}, I_B = -1.0 \text{ mA}$	
V _{BE(sat)}	Base Saturation Voltage			-2.0	V		
fT	Gain Bandwidth Product		80		MHz	V _{CE} = -10 V, I _E = 1.0 A	

Classification of hFE2

Rank	M	L	к
Range	2000 – 5000	4000 — 10000	8000 – 30000

Test Conditions: $V_{CE} = -2.0 \text{ V}$, $I_{C} = -1.0 \text{ A}$

^{*}PW \leq 300 μ s, Duty Cycle \leq 10 %

TYPICAL CHARACTERISTICS (Ta = 25 °C)

SWITCHING TIME (ton, tstg, tf) TEST CURCUIT

