ВЕКТОРЫ

- 1. Понятие вектора.
- 2. Линейные операции над векторами.
- 3. Векторный базис, координаты вектора.
- 4. Скалярное произведение двух векторов.
- 5. Векторное произведение двух векторов.
- 6. Смешанное произведение трех векторов.

1. Понятие вектора

Вектор — это математический объект, характеризующийся величиной и направлением. Геометрической интерпретацией вектора служит направленный отрезок, который можно переносить параллельно самому себе (свободный вектор).

Вектор обозначается следующим образом: \vec{a} , \overrightarrow{AB} (если вектор задан началом в точке A и концом в точке B). Длина вектора называется его модулем и обозначается $|\vec{a}|$, $|\overrightarrow{AB}|$.

Вектор, длина которого равна единице, называется *единичным* вектором или ортом, а длина которого равна нулю – *нулевым* или нуль-вектором (обозначается $\vec{0}$, направление его произвольно).

Векторы, лежащие на параллельных прямых или на одной прямой, называются коллинеарными и обозначаются $\vec{a} \parallel \vec{b}$.

Два ненулевых вектора \vec{a} и \vec{b} называют *равными*, если их модули и направления совпадают.

Два коллинеарных вектора называются *противоположными*, если их модули равны, а направления противоположны. Вектор, противоположный вектору \vec{a} , обозначается $(-\vec{a})$.

Векторы, лежащие в параллельных плоскостях (или в одной плоскости) называются *компланарными*.

2. Линейные операции над векторами

Линейными операциями над векторами называют их сложение, вычитание, умножение вектора на число.

Суммой двух векторов \vec{a} и \vec{b} называется вектор $\vec{c} = \vec{a} + \vec{b}$, начало которого совпадает с началом вектора \vec{a} , а конец — с концом вектора \vec{b} при условии, что вектор \vec{b} отложен из конца вектора \vec{a} .

Вектор $\vec{a} + \vec{b}$ можно построить по правилу треугольника или параллелограмма.

Чтобы сложить несколько векторов, нужно перенести их параллельно самим себе так, чтобы начало каждого последующего вектора совпадало с концом предыдущего. Тогда вектор, начало которого совпадает с началом первого, а конец — с концом последнего, представляет сумму слагаемых векторов (правило замыкания ломаной).

Разностью векторов $\vec{a} - \vec{b}$ называется вектор, равный сумме векторов \vec{a} и $(-\vec{b}$), т. е. $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$, где $(-\vec{b})$ – вектор, противоположный \vec{b} .

Вектор $\vec{a} - \vec{b}$ можно построить по правилу параллелограмма.

Правило треугольника

Правило замыкания ломаной

Правило параллелограмма

Произведением вектора \vec{a} **на число** λ называется вектор $\vec{b} = \lambda \cdot \vec{a}$, модуль $|\vec{b}|$ которого равен $|\lambda| \cdot |\vec{a}|$, а направление совпадает с направлением вектора \vec{a} , если $\lambda > 0$, и противоположно направлению вектора \vec{a} , если $\lambda < 0$.

Отсюда – условие коллинеарности двух векторов:

$$\vec{a} \parallel \vec{b} \Leftrightarrow \vec{b} = \lambda \cdot \vec{a}$$
 или $\vec{a} = \lambda \vec{b}$

Основные свойства линейных операций над векторами:

1)
$$\vec{a} + \vec{b} = \vec{b} + \vec{a}$$
;
2) $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$;
3) $\lambda \cdot (\vec{a} + \vec{b}) = \lambda \cdot \vec{a} + \lambda \cdot \vec{b}$;
4) $\lambda(\mu\vec{a}) = (\lambda \cdot \mu)\vec{a}$;
5) $(\lambda + \mu)\vec{a} = \lambda \cdot \vec{a} + \mu \cdot \vec{a}$;
6) $\vec{a} + \vec{0} = \vec{a}$, $\vec{a} \cdot 0 = \vec{0}$;
7) $-1 \cdot \vec{a} = -\vec{a}$;
8) $\vec{a} - \vec{a} = \vec{0}$;
9) $\vec{a} \cdot 1 = \vec{a}$;
10) если $\vec{c} = \vec{a} + \vec{b}$, то $\vec{a} = \vec{c} - \vec{b}$ и $\vec{b} = \vec{c} - \vec{a}$.

3. Векторный базис, координаты вектора

Пусть на плоскости задана прямоугольная декартова система координат Oxy и \vec{a} — произвольный вектор, лежащий в этой плоскости.

Переместим \vec{a} , сохраняя его длину и направление так, чтобы его начало совпало с началом координат. Получим вектор $\overrightarrow{OM} = \vec{a}$.

Обозначим через (x; y) координаты точки M, через α и β — углы, которые образует вектор \overrightarrow{OM} с положительными направлениями осей Ox и Oy; $\cos \alpha$ и $\cos \beta$ называются направляющими косинусами вектора \overrightarrow{OM} .

Проекцией вектора \vec{a} на ось l называется число, равное произведению модуля вектора на косинус угла между вектором и осью; обозначается $np_l\vec{a}$.

Тогда
$$\operatorname{np}_{Ox} \overrightarrow{OM} = \left| \overrightarrow{OM} \right| \cos \alpha = x$$
, $\operatorname{np}_{Oy} \overrightarrow{OM} = \left| \overrightarrow{OM} \right| \cos \beta = y$.

Координатами вектора на плоскости *Оху* называются его проекции на координатные оси.

Следовательно, x и y – координаты вектора \overrightarrow{OM} . Записывают $\overrightarrow{OM} = \{x;y\}$.

Вектор OM называют радиус-вектором точки М. Точка и ее ра-

диус-вектор имеют одинаковые координаты. Из $\triangle OMP$ получаем $|\overrightarrow{OM}| = \sqrt{x^2 + y^2}$.

Исходный вектор \vec{a} имеет ту же длину, образует такие же углы с осями координат, что и \overrightarrow{OM} , поэтому вектор \vec{a} имеет такие же координаты: $\vec{a} = \{x,y\}$ и $|\vec{a}| = \sqrt{x^2 + y^2}$.

Т. к. $x = |\vec{a}|\cos\alpha$, $y = |\vec{a}|\cos\beta$, то имеем

$$\cos \alpha = \frac{x}{|\vec{a}|} = \frac{x}{\sqrt{x^2 + y^2}}, \ \cos \beta = \frac{y}{|\vec{a}|} = \frac{y}{\sqrt{x^2 + y^2}}$$
 — направляющие косинусы вектора $\vec{a} = \{x, y\}$

Вектор $\vec{e}_a = \{\cos\alpha, \cos\beta\}$ является единичным вектором направления вектора \vec{a} .

Базис на плоскости — это два произвольных неколлинеарных вектора на этой плоскости.

Пусть векторы \vec{e}_1 и \vec{e}_2 образуют базис на плоскости. Тогда произвольный вектор \vec{c} этой плоскости может быть единственным образом представлен в виде линейной комбинации векторов \vec{e}_1 и \vec{e}_2 (разложен по векторам \vec{e}_1 и \vec{e}_2):

$$\vec{c} = \alpha_1 \vec{e}_1 + \alpha_2 \vec{e}_2$$

Здесь $\alpha_{\scriptscriptstyle 1}$ и $\alpha_{\scriptscriptstyle 2}$ – координаты вектора \vec{c} в базисе $\vec{e}_{\scriptscriptstyle 1}$, $\vec{e}_{\scriptscriptstyle 2}$.

Единичные векторы $\vec{i} = \{1, 0\}$ и $\vec{j} = \{0, 1\}$ образуют базис на плоскости Oxy, их называют декартовыми ортами на плоскости.

Т. к.
$$\vec{a} = \overrightarrow{OM} = \overrightarrow{OP} + \overrightarrow{OK} = x\vec{i} + y\vec{j}$$
, то $\{x,y\}$ — координаты вектора \vec{a} в базисе \vec{i} , \vec{j} .

Аналогично пусть в пространстве задана декартова прямоугольная система координат Oxyz и точка M(x; y; z).

Любые три некомпланарных вектора образуют базис в простран-

стве.

Введем базис \vec{i} , \vec{j} , \vec{k} , где \vec{i} = $\{1; 0; 0\}$, \vec{j} = $\{0; 1; 0\}$, \vec{k} = $\{0; 0; 1\}$ – декартовы орты на осях Ox, Oy, Oz соответственно.

Для радиус-вектора точки M имеет место разложение

$$\overrightarrow{OM} = \overrightarrow{OP} + \overrightarrow{PN} + \overrightarrow{NM} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$$
.
Следовательно, $\{x,y,z\}$ - координаты вектора $\overrightarrow{a} = \overrightarrow{OM}$ в базисе \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} .

В дальнейшем для удобства координаты вектора \vec{a} будем обозначать $\{x_a,y_a,z_a\}$. Пусть α , β , γ — углы, образованные вектором \vec{a} с осями координат Ox, Oy, Oz соответственно. Тогда имеют место формулы

$$x_{a} = |\vec{a}|\cos\alpha, \ y_{a} = |\vec{a}|\cos\beta, \ z_{a} = |\vec{a}|\cos\gamma,$$

$$|\vec{a}| = \sqrt{x_{a}^{2} + y_{a}^{2} + z_{a}^{2}}, \ \vec{e}_{a} = \{\cos\alpha, \cos\beta, \cos\gamma\},$$

$$\cos\alpha = \frac{x_{a}}{|\vec{a}|}, \cos\beta = \frac{y_{a}}{|\vec{a}|}, \cos\gamma = \frac{z_{a}}{|\vec{a}|},$$

$$\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma = 1.$$

В дальнейшем будем считать, что в пространстве задана декартова прямоугольная система координат.

Пусть векторы \vec{a} , \vec{b} заданы своими координатами в базисе \vec{i} , \vec{j} , \vec{k} : $\vec{a} = \{x_a; y_a; z_a\} = x_a \vec{i} + y_a \vec{j} + z_a \vec{k}$, $\vec{b} = \{x_b; y_b; z_b\} = x_b \vec{i} + y_b \vec{j} + z_b \vec{k}$. Тогда

$$\vec{a} + \vec{b} = \{x_a + x_b; y_a + y_b; z_a + z_b\}$$

$$\vec{a} - \vec{b} = \{x_a - x_b; y_a - y_b; z_a - z_b\}$$

$$\lambda \vec{a} = \{\lambda x_a; \lambda y_a; \lambda z_a\}$$

$$\vec{a} \parallel \vec{b} \Leftrightarrow \frac{x_a}{x_b} = \frac{y_a}{y_b} = \frac{z_a}{z_b}$$

$$\vec{a} = \vec{b} \Leftrightarrow x_a = x_b, y_a = y_b, z_a = z_b$$

Т.к. $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$, то для каждого вектора $\overrightarrow{d} = \overrightarrow{AB}$ с началом в точке $A(x_A; y_A; z_A)$ и концом в точке $B(x_B; y_B; z_B)$ его координаты равны

$$x_d = x_B - x_A$$
; $y_d = y_B - y_A$; $z_d = z_B - z_A$.

4. Скалярное произведение двух векторов

Скалярным произведением $\vec{a} \cdot \vec{b}$ векторов \vec{a} и \vec{b} называется **число** (скаляр), равное произведению модулей этих векторов на косинус угла $\vec{a} \cdot \vec{b} = \varphi$ между ними:

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \widehat{\vec{a}} \widehat{\vec{b}} .$$

Если векторы заданы в прямоугольной декартовой системе координат координатами $\vec{a} = \left\{x_a; y_a; z_a\right\}, \ \vec{b} = \left\{x_b; y_b; z_b\right\},$ то

$$\vec{a} \cdot \vec{b} = x_a x_b + y_a y_b + z_a z_b$$

Свойства скалярного произведения:

1.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
; 2. $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$;
3. $\vec{a} \cdot \vec{a} = |\vec{a}|^2$; 4. $\vec{a} \cdot \vec{b} = |\vec{a}| \operatorname{np}_{\vec{a}} \vec{b} = |\vec{b}| \operatorname{np}_{\vec{b}} \vec{a}$.

Некоторые приложения скалярного произведения:

1) условие ортогональности (перпендикулярности) ненулевых векторов:

$$\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0 \Leftrightarrow x_a x_b + y_a y_b + z_a z_b = 0;$$

2) косинус угла между двумя ненулевыми векторами равен:

$$\cos \widehat{\vec{a}\vec{b}} = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{x_a x_b + y_a y_b + z_a z_b}{\sqrt{x_a^2 + y_a^2 + z_a^2} \sqrt{x_b^2 + y_b^2 + z_b^2}};$$

3) проекция вектора \vec{a} на вектор \vec{b} равна:

$$np_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{x_a x_b + y_a y_b + z_a z_b}{\sqrt{x_b^2 + y_b^2 + z_b^2}};$$

4) работа A постоянной по величине и направлению силы \vec{F} по перемещению материальной точки на вектор \vec{s} равна $A = \vec{F} \cdot \vec{s}$ (физический смысл скалярного произведения).

5. Векторное произведение двух векторов

Три некомпланарных, упорядоченных вектора $\vec{a}, \vec{b}, \vec{c}$, приведенные к общему началу, называют правой тройкой векторов, если кратчайший поворот от \vec{a} к \vec{b} виден из конца вектора \vec{c} против хода часовой стрелки.

Если же этот поворот виден по ходу часовой стрелки, то тройка векторов называется левой.

Декартов базис \vec{i} , \vec{j} , \vec{k} образует правую тройку.

Векторным произведением вектора \vec{a} на \vec{b} называется вектор $\vec{c} = \vec{a} \times \vec{b}$, обладающий свойствами:

- 1) $\vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}$;
- 2) $\vec{a}, \vec{b}, \vec{c}$ образуют правую тройку;
- 3) $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \vec{a} \cdot \vec{b}$.

Свойства векторного произведения

1. Если
$$\vec{a} = \{x_a; y_a; z_a\}, \vec{b} = \{x_b; y_b; z_b\},$$
 то
$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_a & y_a & z_a \\ x_b & y_b & z_b \end{vmatrix} = \vec{i} \begin{vmatrix} y_a & z_a \\ y_b & z_b \end{vmatrix} - \vec{j} \begin{vmatrix} x_a & z_a \\ x_b & z_b \end{vmatrix} + \vec{k} \begin{vmatrix} x_a & y_a \\ x_b & y_b \end{vmatrix}.$$
2. $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ 5. Площади параллелограмма и тре

- угольника
- $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$
- $S_{\Box} = \left| \vec{a} \times \vec{b} \right|$ $S_{\triangle} = \frac{1}{2} \cdot \left| \vec{a} \times \vec{b} \right|$

4.
$$\vec{a} \times \vec{b} = \vec{0} \Leftrightarrow \vec{a} \parallel \vec{b}$$
 при $|\vec{a}| \neq 0, |\vec{b}| \neq 0$

6. Смешанное произведение трех векторов

Смешанным произведением $\vec{a}\vec{b}\vec{c}$ трех векторов \vec{a},\vec{b},\vec{c} называется скалярное произведение вектора $\vec{a} \times \vec{b}$ и вектора \vec{c} .

По определению $\vec{a}\vec{b}\vec{c} = (\vec{a} \times \vec{b}) \cdot \vec{c}$.

Свойства смешанного произведения

1.
$$\vec{a}\vec{b}\vec{c} = (\vec{a}\times\vec{b})\cdot\vec{c} = \vec{a}\cdot(\vec{b}\times\vec{c}) = \vec{b}\vec{c}\vec{a} = \vec{c}\vec{a}\vec{b} = -\vec{a}\vec{c}\vec{b} = -\vec{c}\vec{b}\vec{a}$$

2. Если
$$\vec{a} = \{x_a; y_a; z_a\}$$
, $\vec{b} = \{x_b; y_b; z_b\}$, $\vec{c} = \{x_c; y_c; z_c\}$, то

$$\vec{a}\vec{b}\vec{c} = \begin{vmatrix} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{vmatrix} = x_a \begin{vmatrix} y_b & z_b \\ y_c & z_c \end{vmatrix} - y_a \begin{vmatrix} x_b & z_b \\ x_c & z_c \end{vmatrix} + z_a \begin{vmatrix} x_b & y_b \\ x_c & y_c \end{vmatrix}$$

3. Объем параллелепипеда, треуголь- 4. Объем пирамиды ной призмы

$$V_{\rm nap} = \left| \vec{a} \vec{b} \vec{c} \right|$$

$$V_{\text{nap}} = \left| \vec{a} \vec{b} \vec{c} \right| \qquad V_{\text{призмы}} = \frac{1}{2} \left| \vec{a} \vec{b} \vec{c} \right|$$

5.
$$\vec{a}\vec{b}\vec{c} = 0 \iff \vec{a}$$
, \vec{b} , \vec{c} – компланарны

$$V_{\text{пир}} = \frac{1}{6} |\vec{a}\vec{b}\vec{c}|$$