

Monte Carlo Method

Name: Chong-kwon Kim

SCONE Lab.

Computation of the Constant π

Lab.

- One of the most famous & oldest problems in mathematics
 - The Bible says that $\pi=3$
- The old wisdoms found out that
 - $-\pi$ can be bounded between inscribed and circumscribed polygons

- Monte Carlo method (simulation) is another technique to estimate π
 - Count the numbers of randomly selected points inside and outside of the circle, respectively

 $\pi = 709/900 * 4 = 3.1511...$

Monte Carlo Method

- \bullet Estimate the constant π
 - Pick randomly a point (x, y), x, y∈(0, 1)
 and check if the point is in the circle

- Let Z = 1, if
$$\sqrt{x^2 + y^2} \le 1$$
 0, ow
$$\Pr(Z=1) = \pi/4$$

- Repeat the experiment (Simulation) many times (m) and let Z_i be the result of i-th run
- Let W = $\sum_{i=1}^{m} Z_i$ \rightarrow E[W]=m $\cdot (\frac{\pi}{4})$
- Let $W' = \left(\frac{4}{m}\right) W$, then by Chernoff inequality

$$\Pr(|W' - \pi| \ge \varepsilon \pi) = \Pr(\left|W - \frac{m\pi}{4}\right| \ge \frac{\varepsilon m\pi}{4})$$
$$= \Pr(|W - E[W]| \ge \varepsilon E[W])$$
$$\le 2e^{-m\pi\varepsilon^2/12}$$

W~B(m, $\frac{\pi}{4}$)

For
$$0 < \delta \le 1$$
,

$$\Pr(X \ge (1 + \delta)\mu) \le e^{-\frac{\mu\delta^2}{3}}$$

(ε, δ) -Approximation

Definition

- A simulation is (ε, δ) -approximation for V if the output X of the simulation satisfies

$$\Pr(|X - V| \le \epsilon V) \ge 1 - \delta$$

- To make the constant π estimation be (ε, δ) approximation
 - From $\Pr(|W E[W]| \ge \varepsilon E[W]) \le 2e^{-\frac{m\pi\varepsilon^2}{12}}$ $\Pr(|W - E[W]| < \varepsilon E[W]) \ge 1 - 2e^{-m\pi\varepsilon^2/12}$
 - From $\delta \ge 2e^{-m\pi\varepsilon^2/12}$, $m \ge \frac{12\ln(\frac{2}{\delta})}{\pi\varepsilon^2}$

Repeat the same experiment many times

(ε, δ) -Approximation

- More generally, Claim
 - Let X_i , i=1,2,...,m be i.i.d. indicator random variables with $E[X_i] = \mu$

If
$$m \ge 3 \ln \left(\frac{2}{\delta}\right) / \varepsilon^2 \mu$$

- \rightarrow Then the experiment $\{X_i\}$ is an (ε, δ) -approximation for μ
- $\rightarrow \Pr(|\frac{1}{m}\sum_{i=1}^{m}X_i \mu| \ge \varepsilon\mu) \le \delta$
- \bullet Proof is basically the same as the constant π estimation Exercise 10.1
- Definition: FPRAS(Fully Polynomial Randomized) Approximation Scheme)
 - Given an input x and parameters ε , δ with $\varepsilon > 0$, $\delta < 1$, an FPRAS algorithm outputs an (ε, δ) -Approximation to V(x) in time that is polynomial in $1/\varepsilon$, $\ln(1/\delta)$ and the size of input x

Application: DNF

- Consider the complement of CNF
- By the de Morgan's rule

$$(\overline{x_1} + x_2 + \overline{x_3}) \cdot (\overline{x_2} + \overline{x_4}) \cdot (x_1 + \overline{x_3} + \overline{x_4})$$

$$\rightarrow$$
 $(x_1 \cdot \overline{x_2} \cdot x_3) + (x_2 \cdot x_4) + (\overline{x_1} \cdot x_3 \cdot x_4)$

CNF: Satisfiability

Is there a solution?

Most of random assignments make

the formula FALSE

DNF: No solution

Existence of a FALSE assignment Most of random assignments make the formula TRUE

Count # satisfying random assignments & check if $\# \equiv 2^n$

K-SAT: Cascaded modification

→ MC

Random assignments Monte Carlo

Simple Monte Carlo for DNF

- Let c(F) be # satisfying assignments of a DNF formula F
- A naïve approach to estimate c(F)

DNF Counting Algorithm 1

- 1. $X \leftarrow 0$
- 2. For k = 1, ..., m do
 - a) Generate random assignment of n variables
 - b) If the random assignment satisfies F, $X \leftarrow X + 1$
- 3. Return $Y \leftarrow (X/m)2^n$
- \bullet X_k : Indicator random variable

$$X_k = 1$$
, if k-th random assignment is a satisfying one 0, ow

•
$$\Pr(X_k = 1) = \frac{c(F)}{2^n}$$

$$\bullet \ \mathsf{E}[\mathsf{X}] = \mathsf{E}[\sum_{k=1}^{m} X_k] = \mathsf{m} \cdot \frac{c(F)}{2^n}$$

$$\bullet E[Y] = c(F)$$

Simple Monte Carlo for DNF

- How many iterations (m) are required to make X/m be an (ε, δ) -approximation for $c(F)/2^n$?
 - From $m \ge 3 \ln \left(\frac{2}{\delta}\right) / \varepsilon^2 \mu \implies m \ge 3 \cdot 2^n \ln \left(\frac{2}{\delta}\right) / \varepsilon^2 c(F)$
- What is the condition that make the algorithm FPRAS?
 - $c(F) = 2^n/\alpha(n)$
- ullet If c(F) is polynomial, we need to perform $O(2^n)$ iterations to find a satisfying assignment
- → Require better sampling techniques that find a few satisfying assignments

Lab.

FPRAS for DNF

- How to efficiently estimate the c(F)?
- Consider a DNF, $F=C_1+C_2+\cdots+C_t$
 - If any of clause is satisfied, then F is satisfied
 - Assume $C_i = x_1 \cdot \bar{x}_2 \cdot x_3$ \longrightarrow $x_1 = T$, $x_2 = F$, $x_3 = T$
 - \rightarrow Other literals such as $x_4, x_5,...$ can be either T/F
 - If there are n literals, then there are 2^{n-3} satisfying assignments
 - Let SC_i be a set of satisfying assignments of C_i that consists of l_i literals
 - $\rightarrow |SC_i| = 2^{n-l_i}$
- Let
 - $\cup = \{(i, a) \mid 1 \le i \le t \text{ and } a \in SC_i\}$

Note: A same assignments may occur many times in U

- Let S be the set of distinctive assignments that satisfy F
 - $S = \bigcup_{i=1}^t SC_i$
 - $C(F) = |\bigcup_{i=1}^{t} SC_i| \leq |U|$

 SC_2

 SC_3

 SC_4

 SC_t

10

FPRAS for DNF

- How to estimate $c(F) (= |S| = |\bigcup_{i=1}^t SC_i|)$?
 - We know the size of $U = \{(i, a) \mid 1 \le i \le t \text{ and } a \in SC_i\}$
 - $\bullet \mid \cup \mid = \sum_{i=1}^{t} |SC_i|$
 - It is easy to find SC_i (and $|SC_i|$), but the same satisfying assignment can appear in many SC_i
 - How many times a same satisfying assignment occur in different clauses?
 - Estimate |U|/|S|
- Sketch of a Monte Carlo simulation scheme
 - Select an assignment in SC_i , and check if it appear in other SC_i , then **systematically** remove it from the set
 - → Count only the first appearance
 - $S=\{(i, a) \mid 1 \le i \le t, a \in SC_i, a \notin SC_j, for j < i\}$
- Sampling method
 - Selection of (i. a) pairs
 - First sample i and then sample a in SC_i
 - Then examine if it satisfies SC_i , for j < i

Uniform sample over SC_i $\rightarrow |SC_i|/\sum_i |SC_i|$

FPRAS for DNF

DNF Counting Algorithm 2

- 2. For k = 1, ..., m do
 - a) With probability $|SC_i|/\sum_i |SC_i|$, choose $a \in SC_i$
- b) If $a \notin SC_k$ for all k < i, $X \leftarrow X + 1$ 3. Return $Y \leftarrow (X/m) \cdot \sum_i |SC_i|$

• Theorem:

- The above algorithm is FPRAS for the DNF counting problem when $m = (3t/\epsilon^2)\ln(2/\delta)$

Proof

- First show that sampling based on $|SC_i|/\sum_i |SC_i|$ is uniform sampling over |U|
 - Pr((i,a) is sampled) = Pr(i is sampled).Pr(a is selected | i sampled) $= (|SC_i|/|\cup|) \cdot (1/|SC_i|) = 1/|\cup|$
- Prob. that a random sample passes the test 2 b)) $\geq 1/t$
 - $\rightarrow \mu = \mathbb{E}[X_i] \ge 1/\mathsf{t}$

Note: $m \ge 3 \ln \left(\frac{2}{s}\right)$

Sampling Method

- Probe the sample space uniformly
 - The DNF example showed that sampling method itself is as important as the main problem

Sample space: Ω

- Definition: ε -Uniform sample of Ω
 - ω: Sampling instance
 - For any $S \subseteq \Omega$, $|\Pr(\omega \in S) \frac{|S|}{|\Omega|}| \le \varepsilon$
- Definition: FPAUS(Fully Polynomial Almost Uniform Sampler)
 - A sampling algorithm is FPAUS if, given an input x and parameter ε , it generates an ε -uniform sample of $\Omega(x)$ and running time is polynomial of $ln\varepsilon^{-1}$ and the size of the input x

- Recall the independent sets of a Graph (Chapter 6)
 - A subset of nodes that are not directly connected

{a}, {a,c}, {b,d}, {a,c,e} are
example of independent sets
{{a,c,d} is not an indep. set

- Estimating # independent sets in a graph G=(V, E)
- How?
 - Start from a primitive case and proceed to the original graph

- Suppose m=|E|, and randomly order the edges
- Define $G_i = (V, E_i)$ where E_i has the first i random edges
 - G_0 : Graph with no edges
 - $G_m \equiv G$
- Let $\Omega(G_i)$ be the set of independent sets in G_i
- $|\Omega(G_0)| = ??$
 - Every subset of V is an independent set of $G_o \rightarrow 2^n$, where n = |V|

- Note that G_i is derived from G_{i-1} by adding one randomly selected edge
 - Some of subsets $\in \Omega(G_{i-1})$ is no longer independent in G_i

$$- |\Omega(G_m)| = \frac{|\Omega(G_m)|}{|\Omega(G_{m-1})|} \cdot \frac{|\Omega(G_{m-1})|}{|\Omega(G_{m-2})|} \cdot \cdots \cdot \frac{|\Omega(G_2)|}{|\Omega(G_1)|} \cdot \frac{|\Omega(G_1)|}{|\Omega(G_0)|} \cdot |\Omega(G_0)|$$

- Let
$$r_i = \frac{|\Omega(G_i)|}{|\Omega(G_{i-1})|}$$

$$\rightarrow$$
 $|\Omega(G_m)| = 2^n \cdot \prod_{i=1}^m r_i$

- Develop estimates $\widetilde{r_i}$ for r_i such that the compound error $R = \prod_{i=1}^{m} \frac{\tilde{r_i}}{r_i}$ is bounded
 - \rightarrow Pr($|R-1| \le \epsilon$) $\ge 1-\delta$

 (ε, δ) -approximation

15

16

Example: Independent Set

• Claim:

If $\widetilde{r_i}$ is an $(\varepsilon/2m, \delta/m)$ -approximation for r_i (for i=1,2,...,m)

- \rightarrow Then $\Pr(|R-1| \le \epsilon) \ge 1-\delta$
- Proof:
 - For each i, $\Pr\left(|\widetilde{r_i} r_i| \le \frac{\varepsilon}{2m} r_i\right) \ge 1 \frac{\delta}{m}$
 - \rightarrow Pr $\left(|\widetilde{r_i} r_i| > \frac{\varepsilon}{2m} r_i\right) < \frac{\delta}{m}$
 - $-\Pr\left(\bigcup_{i=1}^{m}(|\widetilde{r_i}-r_i|>\frac{\varepsilon}{2m}r_i)\right)\leq \sum_{i=1}^{K}\Pr\left(|\widetilde{r_i}-r_i|>\frac{\varepsilon}{2m}r_i\right)<\delta$
 - $\rightarrow \Pr\left(\bigcap_{i=1}^{m}(|\widetilde{r_i} r_i| \le \frac{\varepsilon}{2m}r_i)\right) \ge 1 \delta$
 - $\Rightarrow \Pr\left((1 \frac{\varepsilon}{2m})^m \le \prod_{i=1}^m \frac{\widetilde{r_i}}{r_i} \le (1 + \frac{\varepsilon}{2m})^m \right) \ge 1 \delta$
 - The lemma holds because $(1-\frac{\varepsilon}{2m})^m \ge 1-\varepsilon$, $\left(1+\frac{\varepsilon}{2m}\right)^m \le 1+\varepsilon$

\bullet Estimation of r_i

- Sample independent sets in $\Omega(G_{i-1})$ and compute # sets also belong to $\Omega(G_i)$

Given G_i and G_{i-1}

- 1. $X \leftarrow 0$
- 2. Repeat for M(= $1296 \cdot m^2 \varepsilon^{-2} \ln(2m/\delta)$) independent trials
 - a) Generate an $(\varepsilon/6m)$ uniform sample from $\Omega(G_{i-1})$
 - b) If the sample is independent set of G_i , $X \leftarrow X + 1$
- 3. Return $\widetilde{r_i} \leftarrow X/M$

• Claim:

- The procedure to estimate r_i is an $(\varepsilon/2m,\,\delta/m)$ -approximation for r_i

First, prove the claim

Then, How to generate ε -Uniform sample?

→ Markov Chain Monte Carlo Method

18

MC^2

- MCMC, MC²: Markov Chain Monte Carlo
- Use MC that represents sample space for uniform

sampler

Construction of MC

- \rightarrow Should know all indep. sets of $G_{i-1} \rightarrow$ Impossible
- → Dynamic transitions on imaginary MC

- Example
 - Consider Independent set of G₄
 - A state is an instance of independent set
 - Neighbor states: States that are differ in only one vertex

MC^2

 Given that an MC is irreducible and ergodic, its stationary distribution ≡ long-term probability of states

- Irreducible. Why?
 - Again, consider Independent set of G₄
 - Finite # states
 - Any two states are communicating
- Aperiodic
 - Add a self-loop to each state
- Uniform sampling
 - The visiting probabilities to all states are the same
 - Uniform stationary probabilities ($\pi_{\chi} = \pi_{\nu}$)

S_{eoul} N_{ational} U_{niversity} 2018-05-28

Lab.

Uniform Distribution MC^2

- Assuming random walk over MC, how to define transition probabilities to obtain uniform stationary probabilities?
- Recall stationary prob. of RW is $\pi_u = \frac{a_u}{2|E|}$
 - → All states must have the same degree

Problem: Degrees (# neighbor states) of states are different Solution: Equal transition probabilities to all neighbor states Add self-loops

• Claim:

- Let M is the largest degree and define transition probability as

$$P_{x,y} = 1/M$$
, if $x \neq y$ and y is a neighbor of x
0, if $x \neq y$ and y is not a neighbor of x
 $1-N(x)/M$, if $x = y$

Then the stationary distribution is uniform distribution

• Proof:

- If $\pi_x = \pi_y$, then $\pi_x P_{x,y} = \pi_y P_{y,x}$ since $P_{x,y} = P_{y,x} = 1/M$ reversible and $\pi_x = \pi_y = 1/|\Omega|$ is the stationary distribution

- Generally, it is impossible (or impractical) to enumerate all states
- → Instead of pre-defining the entire MC, make impromptu transitions from the current state
 - Randomly select a neighbor state from the current state

- \bullet Let $X_0, X_1, ..., X_n$ be a sequence of transitions
- \bullet For large r, X_t (t $\geq r$) distributed like the stationary distribution
- \bullet Sample at X_r , X_{2r} , X_{3r} , \cdots transitions
- Efficiency of sampler
 - How large is r?
 - Easy of transitions

Example: Uniform Distribution MC^2

\bullet Apply MC^2 to independent set sampling

Start from arbitrary independent set X_0

- 1. From state X_i , find the next state X_{i+1} as follows
 - a) Choose a vertex (v) randomly from V
 - b) If $v \in X_i$, then $X_{i+1} \leftarrow X_i \{v\}$
 - c) else if $v \notin X_i$ and $X_i + \{v\}$ is still an independent set, then $X_{i+1} \leftarrow X_i + \{v\}$
 - d) else $X_{i+1} \leftarrow X_i$

• Properties of the MC

- Irreducible?
- Aperiodic?
- Transition probability $P_{x,y}$? (Or what is the value of M?)

Metropolis Algorithm

Nicholas Metropolis (1915~1999) was an American Physicist, Mathematician who developed Monte Carlo method with his team (including von Neumann) at LANL

- Want to assign Non-uniform distribution
- Claim:
 - Let $M \ge \max_{x \in \Omega} N(x)$ and let π_x be the desired stationary probability of state x
 - Define MC such as

$$P_{x,y} = (1/M) \cdot \min(1, \pi_y/\pi_x)$$
, if $x \neq y$ and y is a neighbor of x
0, if $x \neq y$ and y is not a neighbor of x
 $1 - \sum_{y \neq x} P_{x,y}$, if $x = y$

Metropolis Algorithm

Proof

- If $\pi_x < \pi_y$, then $P_{x,y} = 1/M$ and $P_{y,x} = (1/M) \cdot \pi_x/\pi_y$
 - $\rightarrow \pi_{x}P_{x,y} = \pi_{y}P_{y,x}$
- Similarly, $\pi_x P_{x,v} = \pi_v P_{v,x}$ for $\pi_x > \pi_y$

Application: Independent set

- Want to assign larger (or smaller) probability in proportion to the independent set size
 - $\rightarrow \pi_{x} \propto \lambda^{|I_{x}|}$

Start from arbitrary independent set X_0

- 1. From state X_i , find the next state X_{i+1} as follows
 - a) Choose a vertex (v) randomly from V
 - b) If $v \in X_i$, then $X_{i+1} \leftarrow X_i \{v\}$ w/ probability min(1,1/ λ)
 - c) else if $v \notin X_i$ and $X_i + \{v\}$ is still an independent set, then $X_{i+1} \leftarrow X_i + \{v\}$ with probability min(1, λ)
 - d) else $X_{i+1} \leftarrow X_i$

Review-Probabilistic Method

- A new field of mathematics originated by Erdos in 1940s
- Prove the existence of events with certain properties
 - Some methods are constructive
- Very useful (Powerful) in CS
 - Many CS (optimization) problems are NP-Hard → We developed heuristic solutions?

 How good is the solutions?

Methods

- Basic counting
- Expectation
- Derandomization using conditional expectation
- Sample & Modify
- Second moment
- Conditional expectation inequality
- _ | | |

Review-MCRW

- Many (or most) CS problems are concerned with dynamics of systems rather than static phenomena
 - → Modeled as stochastic (Random) process
- Markov process
 - A stochastic process with the memoryless property
- Transition probability and stationary distribution
 - Conditions to have a stationary distribution
 - Irreducible
 - Ergodic (Positive recurrent, aperiodic)
- Computation of stationary distribution
- Random Walk
 - Evidence of transitions but transition probabilities are not known

Review-Cont. Distribution and Poisson Process

- Continuous distribution
 - Uncountable sample space
- Like the discrete case, we have
 - Joint distribution
 - Conditional probability
 - Marginal distribution
- Examples of continuous distribution
 - Uniform
 - Exponential
- Stochastic counting process
- Poisson process
 - Number of arrivals in a time interval has the Poisson distribution.

Review-Cont. Distribution and Poisson Process

- Interarrival time of Poisson process
 - Exponential distribution
 - Memoryless property
- Combining and splitting of Poisson process
- CTMC (Continuous Time Markov Chain)
 - Transitions at each state is Poisson
 - M/M/1
- Queueing theory
 - Performance of queueing (= shared) systems
 - Little's Theorem: N=λT