CSC236 Worksheet 8 Solution

Hyungmo Gu

May 14, 2020

Question 1

• Part 1 (Building L_1 and L_2):

 L_1 :

$$Q = \{E, O\}$$

$$\Sigma = \{a, b\}$$

$$\delta = \begin{bmatrix} a & b \\ *E & O & E \\ O & E & O \end{bmatrix}$$

$$q_0 = E$$

$$F = \{E\}$$

Draw Diagram

 L_2 :

$$Q = \{0, 1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\delta = \begin{bmatrix} a & b \\ *0 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 0 & 0 \end{bmatrix}$$

$$q_0 = 0$$

$$F = \{0\}$$

Draw Diagram

Part 1 (Building $L_1 \cap L_2$):

$$\begin{split} Q &= \{(E,0), (E,1), (E,2), (O,0), (O,1), (O,2)\} \\ \Sigma &= \{a,b\} \\ \delta &= \begin{bmatrix} & a & b \\ &^*(E,0) & 1 & 1 \\ & (E,1) & 2 & 2 \\ & (E,2) & 0 & 0 \\ & (O,0) & 1 & 1 \\ & (O,1) & 2 & 2 \\ & (O,2) & 0 & 0 \\ \end{bmatrix} \\ q_0 &= (E,0) \\ F &= \{(E,0)\} \end{split}$$

Correct Solution:

Part 1 (Building L_1 and L_2):

 L_1 :

$$Q = \{E, O\}$$

$$\Sigma = \{a, b\}$$

$$\delta = \begin{bmatrix} a & b \\ *E & O & E \\ O & E & O \end{bmatrix}$$

$$q_0 = E$$

$$F = \{E\}$$

Draw Diagram

 L_2 :

$$Q = \{0, 1, 2\}$$

$$\Sigma = \{a, b\}$$

$$\delta = \begin{bmatrix} a & b \\ *0 & 1 & 1 \\ 1 & 2 & 2 \\ 2 & 0 & 0 \end{bmatrix}$$

$$q_0 = 0$$

$$F = \{0\}$$

Notes:

- Deterministic Finite State Automaton (DFSA): is a mathematical method of machine which, given any input string x, accepts or rejects x.
- Applications of DFSA
 - 1. Vending Machine

- 2. Protocol analysis
- 3. Text parsing
- 4. Video game character behavior

Figure 3: Behavior of a Pac-Man Ghost

- 5. Security Analysis
- 6. <u>CPU control units</u> (**)
- 7. Natural Language Processing (**)
- 8. Speech Recognition (**)
- Definitions and Syntax

- DFSA M is a quintuple $M = (Q, \Sigma, q_0, F, \delta)$, where
 - * Q: a finite set of **states**.
 - · Represents status of system
 - · Is represented by a black circle, i.e. s,q

- · i.e. automatic sliding door at walmart has two states: either close or open
- \cdot i.e. traffic light has three states: red, yellow, green
- * Σ : a finite non-empty alphabet
 - · is set of symbols in each transition, i.e. a, b, c

- * $q_0 \in Q$: the start or initial state
- * $\delta: Q \times \sigma \to Q$: a transition function
 - · is a connection between two states.
 - · is represented by an arrow

- * $F\subseteq Q$: the set of accepting or final states
 - · Is represented by a double circle

- · Multiple accepting states may exists
- · Purpose: When processing ends, the output is either accept or reject
- Simple Example

- Step 1

- 1. First symbol of the input **baabb** is \mathbf{b} and the current state is s.
- 2. Ask, is there any exiting transition from s that contains the symbol **b**?
- 3. The answer is yes, so move to q

- Step 2

- 1. Next symbol of the input **baabb** is \mathbf{a} and the current state is q.
- 2. Ask, is there any exiting transition from q that contains the symbol \mathbf{a} or \mathbf{b}, \mathbf{c} ?

3. The answer is yes, and it's \mathbf{a} . So move to p

- Step 3

- 1. Next symbol of the input **baabb** is \mathbf{a} and the current state is p.
- 2. Ask, is there any exiting transition from p that contains the symbol \mathbf{a} or \mathbf{b} ?
- 3. The answer is yes, and it's ${\bf a}$. So move to p

- Step 4

- 1. Next symbol of the input **baabb** is **b** and the current state is p.
- 2. Ask, is there any exiting transition from p that contains the symbol \mathbf{a} or \mathbf{b} ?
- 3. The answer is yes, and it's **b**. So move to q

- Step 5

- 1. Next symbol of the input **baabb** is \mathbf{b} and the current state is q.
- 2. Ask, is there any exiting transition from q that contains the symbol \mathbf{a} or \mathbf{b} , \mathbf{c} ?
- 3. The answer is yes, and it's **b**. So move to r

- Step 6

- 1. Next symbol of the input **baabb** is **b** and the current state is r.
- 2. Ask, if it satisfies the accepting or final state (i.e, has the end of string been reached?). If so, the output is accept. Otherwise, it's reject.

• Formal Languages

- is a <u>subset</u> of all possible words Σ * formed by symbols of alphabet Σ .
 - * Σ * is set of all possible strings over the alphabet Σ .
 - * i.e. $\Sigma = \{a,b\}, \ \Sigma * = \{a,b,aa,ab,ba,bb,aaa,aab,\cdots\}$
- Example
 - 1. $L = \{w \mid w \text{ has at most seventeen 0's}\}$
 - 2. $L = \{w \mid w \text{ has equal number of 0's and 1's} \}$
 - 3. $L = \{x \in \{a, b\}^* \mid \text{the number of as in } x \text{ is even}\}$
 - * * in $\{a, b\}$ * means all possible combinations
 - * i.e. $\{a, b, aa, ab, ba, bb, aaa, baa, aba, \cdots\}$

• Tabular DFAs

- Example

$$\delta = \begin{bmatrix} & 0 & 1 \\ *q_0 & q_1 & q_0 \\ q_1 & q_3 & q_2 \\ q_2 & q_3 & q_0 \\ q_3 & q_3 & q_3 \end{bmatrix}$$

Note: * means it's an accepting state

Question 2

•

Rough Works:

1. Prove that M_1 accepts L_1

First, define Σ^* as the smallest set such that

(a)
$$\epsilon \in \Sigma^*$$

(b)
$$s \in \Sigma^* \Rightarrow sa \in \Sigma^* \land sb \in \Sigma^*$$

I will prove that M_1 accepts L_1 .

Define P(s) as:

$$P(s): \delta^*(E, s) = \begin{cases} E & \text{if } s \text{ has an even number of } as \\ O & \text{if } s \text{ has an even number of } as \end{cases}$$
 (1)

I will prove $\forall s \in \Sigma^*$, P(s) by structural induction.

1. Basis Case

 $|\epsilon| = 0$, an even number, and $\delta^*(E, \epsilon) = E$ so the implication in the first line of the invariant is true in this case. Also since $|\epsilon|$ is not odd, the implication in the second line of the invariant is vacuously true. So $P(\epsilon)$ holds.

2. Inductive Step

Let $s \in \Sigma^*$ and assume P(s). I will show that P(sa) and P(sb) follow. There are two cases to consider:

1. Case sa

Then,

$$\delta^*(E, sa) = \delta(\delta^*(E, s), a) = \begin{cases} \delta(E, a) & \text{if } s \text{ has even number of } as \\ \delta(O, a) & \text{if } s \text{ has odd number of } as \end{cases}$$

$$= \begin{cases} O & \text{if } sa \text{ has odd number of } as \\ E & \text{if } sa \text{ has even number of } as \end{cases}$$

$$(2)$$

$$= \begin{cases} O & \text{if } sa \text{ has even number of } as \\ E & \text{if } sa \text{ has even number of } as \end{cases}$$

$$(3)$$

2. Case sb (Let's first start with this)

Then,
$$\delta^*(E, sb) = \delta(\delta^*(E, s), b) = \begin{cases} \delta(E, b) & \text{if } s \text{ has even number of } as \\ \delta(O, b) & \text{if } s \text{ has odd number of } as \end{cases}$$

$$= \begin{cases} E & \text{if } sb \text{ has odd number of } as \\ O & \text{if } sb \text{ has even number of } as \end{cases}$$

$$(4)$$

$$(5)$$

- 2. Prove that M_2 accepts L_2
- 3. Prove that $M_{1\wedge 2}$ accepts $L_1 \cap L_2$