CS2040S Data Structures and Algorithms

Hashing III

Hashing!

- Introduction to Hashing
- Collision Resolution: chaining
- Java hashing
- Collision resolution: open addressing
- Table (re)sizing

Midterm

Thurs. March 10 6:30pm

- Location: MPSH
- Room assignment on Coursemology
- Please double-check room

Bring to quiz:

- One double-sided sheet of paper with any notes you like.
- Pens/pencils.
- You may not use anything else. (No calculators, no phones, etc.)

Midterm

Covid Issues

- Please do test before taking the midterm.
- You will need to have the "green pass" on the Univus app to take midterm.
- Please do not come if you feel unwell.

Midterm

What happens if covid positive?

- Upload test to Univus.
- There will be a makeup next week.
- Get well soon!

What if I don't feel well?

- If covid positive, see above.
- If not covid positive, see doctor for MC → Makeup.
- But don't take midterm if unwell!

Hashing!

- Introduction to Hashing
- Collision Resolution: chaining
- Java hashing
- Collision resolution: open addressing
- Table (re)sizing

Abstract Data Types

Symbol Table

public interface	SymbolTable	
void	insert(Key k, Value v)	insert (k,v) into table
Value	search(Key k)	get value paired with k
void	delete(Key k)	remove key k (and value)
boolean	contains(Key k)	is there a value for k?
int	size()	number of (k,v) pairs

Note: no successor / predecessor queries.

Hash Functions

Problem:

- Huge universe U of possible keys.
- Smaller number n of actual keys.
- How to map *n* keys to $m \approx n$ buckets?

Hash Functions

Collisions:

- We say that two <u>distinct</u> keys k_1 and k_2 collide if: $h(k_1) = h(k_2)$

– Unavoidable!

- The table size is smaller than the universe size.
- The pigeonhole principle says:
 - There must exist two keys that map to the same bucket.
 - Some keys must collide!

Chaining

Each bucket contains a linked list of items.

Let's be optimistic today.

The Simple Uniform Hashing Assumption

- Every key is equally likely to map to every bucket.
- Keys are mapped independently.

Assume hash function has this property, even if it may not! Intuition:

Each key is put in a random bucket.

 Then, as long as there are enough buckets, we won't get too many keys in any one bucket.

Hashing with Chaining

If hash function satisfies **Simple Uniform Hashing** Assumption

Searching:

- Expected search time = 1 + n/m = O(1)
- Worst-case search time = O(n)

Inserting:

- Worst-case insertion time = O(1)
- ** In this case, inserting allows duplicates...

Preventing duplicates requires searching.

Open Addressing

On collision:

Probe a sequence of buckets until you find an empty one.

Hash Functions

Two properties of a good hash function:

- 1. h(key, i) enumerates all possible buckets.
 - For every bucket *j*, there is some *i* such that:

$$h(key, i) = j$$

- The hash function is permutation of $\{1..m\}$.
- For linear probing: true!

Hash Functions

Two properties of a good hash function:

2. <u>Uniform</u> Hashing Assumption

Every key is equally likely to be mapped to every *permutation*, independent of every other key.

n! permutations for probe sequence: e.g.,

- 1234
- 1243
- 1423
- 1432

•

Performance of Open Addressing

• Chaining:

- When (m==n), we can still add new items to the hash table.
- We can still search efficiently.

Open addressing:

- When (m==n), the table is full.
- We cannot insert any more items.
- We cannot search efficiently.

Performance of Open Addressing

Define:

- Load $\alpha = n / m$ Average # items / bucket
 - Assume α < 1.

Claim:

For *n* items, in a table of size *m*, assuming *uniform hashing*, the expected cost of an operation is:

$$\leq \frac{1}{1-\alpha}$$

Example: if (α =90%), then E[# probes] = 10

Disadvantages...

Open addressing:

- Performance degrades badly as $\alpha \rightarrow 1$.

Hashing: Recap

Problem: coping with large universe of keys

- Number of possible keys is very, very large.
- Direct Access Table takes too much space

Hash functions

- Use hash function to map keys to buckets.
- Sometimes, keys collide (inevitably!)

Resolve collisions

- Chaining \rightarrow SUHA \rightarrow O(1 + α) expected cost ops
- Open Addressing \rightarrow UHA \rightarrow O(1 / 1- α) expected cost ops

Hashing!

- Introduction to Hashing
- Collision Resolution: chaining
- Java hashing
- Collision resolution: open addressing
- Table (re)sizing

How large should the table be?

- Assume: Hashing with Chaining
- Assume: Simple Uniform Hashing
- Expected search time: O(1 + n/m)
- Optimal size: $m = \Theta(n)$
 - if (m < 2n): too many collisions.
 - if (m > 10n): too much wasted space.

- Problem: we don't know *n* in advance.

Idea:

- Start with small (constant) table size.
- Grow (and shrink) table as necessary.

Example:

- Initially, m = 10.
- After inserting 6 items, table too small! Grow...
- After deleting *n*-1 items, table too big! Shrink...

How to grow the table:

- 1. Choose new table size *m*.
- 2. Choose new hash function h.
 - Hash function depends on table size!
 - Remember: $h: U \rightarrow \{1..m\}$
- 3. For each item in the old hash table:
 - Compute new hash function.
 - Copy item to new bucket.

Time complexity of growing the table:

- Assume:
 - Let m_1 be the size of the old hash table.
 - Let m_2 be the size of the new hash table.
 - Let *n* be the number of elements in the hash table.
- Costs:
 - Scanning old hash table: $O(m_1)$
 - Inserting each element in new hash table: O(1)
 - Total: $O(m_1 + n)$

Time complexity of growing the table:

- Assume:
 - Size $m_1 < n$.
 - Size $m_2 > 2n$

- Costs:
 - Total: $O(m_1 + n)$. = O(n)

Time complexity of growing the table:

Wait! What is the cost of initializing the new table?

Initializing a table of size X takes X time!

– Costs:

Total: $O(m_1 + m_2 + n)$

Time complexity of growing the table:

- Assume:
 - Let m_1 be the size of the old hash table.
 - Let m_2 be the size of the new hash table.
 - Let *n* be the number of elements in the hash table.
- Costs:
 - Scanning old hash table: $O(m_1)$
 - Creating new hash table: $O(m_2)$
 - Inserting each element in new hash table: O(1)
 - Total: $O(m_1 + m_2 + n)$

Idea 1: Increment table size by 1

- if
$$(n == m)$$
: $m = m+1$

- Cost of resize:
 - Size $m_1 = n$.
 - Size $m_2 = n + 1$.
 - Total: O(n)

Initially: m = 8

Increase table size by 1 on resize. What is the cost of inserting n items?

- 1. O(n)
- 2. O(n log n)
- \checkmark 3. O(n²)
 - 4. $O(n^3)$
 - 5. None of the above.

Idea 1: Increment table size by 1

- When (n == m): m = m+1
- Cost of each resize: O(n)

Table size	8	8	9	10	11	12	•••	n+1
Number of items	0	7	8	9	10	11	•••	n
Number of inserts		7	1	1	1	1	•••	1
Cost		7	8	9	10	11		n

- Total cost: $(7 + 8 + 9 + 10 + 11 + ... + n) = O(n^2)$

Idea 2: Double table size

- if (n == m): m = 2m

Cost of resize:

- Size $m_1 = n$.
- Size $m_2 = 2n$.
- Total: O(n)

Idea 2: Double table size

- When (n == m): m = 2m
- Cost of each resize: O(n)

Table size	8	8	16	16	16	16	16	16	16	16	32	32	32	•••	2n
# of items	0	7	8	9	10	11	12	13	14	15	16	17	18	•••	n
# of inserts		7	1	1	1	1	1	1	1	1	1	1	1	•••	1
Cost		7	8	1	1	1	1	1	1	1	16	1	1		n

- Total cost:
$$(7 + 15 + 31 + ... + n) = O(n)$$

Idea 2: Double table size

Cost of Resizing:

Table size	Total Resizing Cost
8	8
16	(8 + 16)
32	(8+16+32)
64	(8+16+32+64)
128	(8+16+32+64+128)
• • •	• • •
m	$<(1+2+4+8++m) \le O(m)$

Idea 2: Double table size

- if (n == m): m = 2m

- Cost of resize: O(n)
- Cost of inserting n items + resizing: O(n)

- Most insertions: O(1)
- Some insertions: linear cost (expensive)
- Average cost: O(1)

Design question

Do you care that some insertions take a lot longer than others?

- Most insertions: O(1)
- Some insertions: linear cost (expensive)
- Total cost is good…
- ... but what if the slow operation is really, really important / time critical?
- What if YOUR online purchase is the one that triggers a two hour database rebuild?

Idea 3: Square table size

- When (n == m): $m = m^2$

Table size	Total Resizing Cost
8	?
64	?
4,096	?
16,777,216	?
•••	• • •
m	?

Assume: square table size What is the cost of inserting *n* items?

- 1. $O(\log n)$
- 2. $O(\sqrt{n})$
- 3. O(n)
- 4. $O(n \log n)$
- **✓**5. $O(n^2)$
 - 6. $O(2^n)$
 - 7. None of the above.

Idea 3: Square table size

- if
$$(n == m)$$
: $m = m^2$

Cost of resize:

- Size $m_1 = n$.
- Size $m_2 = n^2$.
- Total: $O(m_1 + m_2 + n)$ = $O(n + n^2 + n)$ = $O(n^2)$

Idea 3: Square table size

- When (n == m): $m = m^2$

# Items	Total Resizing Cost
8	64
64	(64 + 4,096)
4,096	(64 + 4,096 +)
• • •	• • •
n	$> n^2$
	$= O(n^2)$

Idea 3: Square table size

- When (n == m): $m = m^2$

# Items	Resizing Cost	Insert Cost
8	64	8
64	(64 + 4,096)	64
4,096	(64 + 4,096 +)	4,096
• • •	• • •	• • •
n	$> n^2$	n
	$< O(n^2)$	O(n)

Idea 3: Square table size

- if
$$(n == m)$$
: $m = m^2$

- Cost of resize:
 - Total: $O(n^2)$

- Cost of inserts:
 - Total: O(n)

Why else is squaring the table size bad?

- 1. Resize takes too long to find items to copy.
- ✓2. Inefficient space usage.
 - 3. Searching is more expensive in a big table.
 - 4. Inserting is more expensive in big table.
 - 5. Deleting is more expensive in a big table.

Basic procedure: (chained hash tables)

Delete(key)

- 1. Calculate hash of *key*.
- 2. Let *L* be the linked list in the specified bucket.
- 3. Search for item in linked list *L*.
- 4. Delete item from linked list L.

Cost:

- Total: O(1 + n/m)

What happens if too many items are deleted?

- Table is too big!
- Shrink the table...

- Try 1:
 - If (n == m), then m = 2m.
 - If (n < m/2) then m = m/2.

Rules for shrinking and growing:

- Try 1:
 - If (n == m), then m = 2m.
 - If (n < m/2) then m = m/2.

- Example problem:
 - Start: n=100, m=200
 - Delete: n=99, $m=200 \rightarrow$ shrink to m=100
 - Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
 - Repeat...

Example execution:

- Start: n=100, m=200
- cost=100 Delete: n=99, $m=200 \rightarrow$ shrink to m=100
- cost=100 Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
- cost=100 Delete: n=99, $m=200 \rightarrow$ shrink to m=100
- cost=100 Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
- cost=100 Delete: n=99, $m=200 \rightarrow$ shrink to m=100
- cost=100 Insert: n=100, $m=100 \rightarrow \text{grow to } m=200$
 - Repeat...

Rules for shrinking and growing:

- Try 2:
 - If (n == m), then m = 2m.
 - If (n < m/4), then m = m/2.

– Claim:

- Every time you double a table of size m, at least m/2 new items were added.
- Every time you shrink a table of size m, at least m/4 items were deleted.

Technique for analyzing "average" cost:

- Common in data structure analysis
- Smooths the cost when some operations are expensive and some operations are cheap:
 - E.g., some ops are O(1), some are O(n).
 - What matters is the *total* cost of all the ops.

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: amortized cost = 7

"amortized" is NOT "average"

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: amortized cost **NOT** 7

insert: 13
 insert: 5
 insert: 7
 insert: 7

Definition:

- Operation has amortized cost T(n) if for every integer k, the cost of k operations is $\leq k T(n)$

Example: (Hash Tables)

- Inserting k elements into a hash table with resizing takes time O(k).
- Conclusion:

The <u>insert operation</u> has amortized cost O(1).

Accounting Method

- Imagine a bank account B.
- Each operation adds money to the bank account.
- Every step of the algorithm spends money:
 - Immediate money: to perform the operation.
 - Deferred money: from the bank account.
- Total cost execution = total money
 - Average time / operation = money / num. ops

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account, uses O(1) dollars to insert element.
- A table with k new elements since
 last resize has k dollars in bank.

Bank account \$2 dollars

0	null
1	null
2	$(\mathbf{k}_1, \mathbf{A})$
3	null
4	null
5	null
6	null
7	null
8	(k_2, B)
9	null

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account.

- Claim:

- Resizing a table of size m takes O(m) time.
- If you resize a table of size m, then:
 - at least m/2 new elements since last resize
 - bank account has $\Theta(m)$ dollars.

Accounting Method Example (Hash Table)

- Each table has a bank account.
- Each time an element is added to the table, it adds O(1) dollars to the bank account.
- Pay for resizing from the bank account!
- Strategy:
 - Analyze inserts ignoring cost of resizing.
 - Ensure that bank account always is big enough to pay for resizing.

Total cost: Inserting k elements costs:

- Deferred dollars: O(k) (to pay for resizing)
- Immediate dollars: O(k) for inserting elements in table
- Total (Deferred + Immediate): O(k)

Total cost: Inserting k elements costs:

- Deferred dollars: O(k) (to pay for resizing)
- Immediate dollars: O(k) for inserting elements in table
- Total (Deferred + Immediate): O(k)

Cost per operation:

- Deferred dollars: O(1)
- Immediate dollars: O(1)
- Total: O(1) / per operation

Counter ADT:

- increment()
- read()

Counter ADT:

- increment()
- read()

increment()

Counter ADT:

- increment()
- read()

increment(), increment()

0 0 0 0 0 0 0 1 0

Counter ADT:

- increment()
- read()

increment(), increment()

0 0 0 0 0 0 0 1 1

What is the worst-case cost of incrementing a counter with max-value n?

- 1. O(1)
- **✓**2. O(log n)
 - 3. O(n)
 - 4. $O(n^2)$
 - 5. I have no idea.

Counter ADT:

- increment()
- read()

Some increments are expensive...

Question: If we increment the counter to *n*, what is the amortized cost per operation?

- Easy answer: $O(\log n)$
- More careful analysis....

Observation:

During each increment, only <u>one</u> bit is changed from: $0 \rightarrow 1$

Observation:

During each increment, many bits may be changed from: $1 \rightarrow 0$

Observation:

Accounting method: each bit has a bank account.

Whenever you change it from $0 \rightarrow 1$, add one dollar.

Observation:

Accounting method: each bit has a bank account. Whenever you change it from $0 \rightarrow 1$, add one dollar. Whenever you change it from $1 \rightarrow 0$, pay one dollar.

Counter ADT

Counter ADT

increment()

Counter ADT

increment(), increment()

Counter ADT

increment(), increment()

Counter ADT

increment()

Observation:

Amortized cost of increment: 2

- One operation to switch one $0 \rightarrow 1$
- One dollar (for bank account of switched bit).

(All switches from $1 \rightarrow 0$ paid for by bank account.)

Design question

Do you care that some insertions take a lot longer than others?

- Most insertions: O(1)
- Some insertions: linear cost (expensive)
- Total cost is good…
- ... but what if the slow operation is really, really important / time critical?
- What if YOUR online purchase is the one that triggers a two hour database rebuild?

Hash Table Resizing

Rules for shrinking and growing:

- If (n == m), then m = 2m.
- If (n < m/4), then m = m/2.

Key facts:

- Every time you double a table of size m, at least m/2 new items were added \rightarrow can pay for doubling.
- Every time you shrink a table of size m, at least m/4 items were deleted \rightarrow can pay for shrinking.
- \rightarrow Operations cost O(1) amortized, expected cost!

Hashing!

- Introduction to Hashing
- Collision Resolution: chaining
- Java hashing
- Collision resolution: open addressing
- Table (re)sizing