Chromatic Derivatives: "A New Perspective of Signal Representation"

R99942052

劉俊麟

Image Processing Laboratory, EEII 530, Graduate Institute of Communication Engineering, National Taiwan University.

May 6, 2011

Introduction

Chromatic Derivative Theory

Chromatic Derivative Filter Banks

Conclusion

- Introduction
- 2 Chromatic Derivative Theory
- 3 Chromatic Derivative Filter Banks
- 4 Conclusion

Fourier Series as an Example

• For the time domain signal f(t) with period T, We can expand it into coefficients a_n by the Fourier series expansion, which is

$$f(t) = \sum_{n = -\infty}^{\infty} a_n e^{j2\pi nt/T}.$$
 (1)

$$a_n = \frac{1}{T} \int_0^T f(t)e^{-j2\pi nt/T} dt,$$
 (2)

- (1) can be viewed as the linear combination of the bases, $e^{j2\pi nt/T}$.
- $a_n = \langle f(t), \frac{1}{T}e^{j2\pi nt/T} \rangle$.
- Global approximation: a_0, a_1, a_{-1} contains the rough shape information.

Figure: Reconstruction by 11 a_n 's (top) and 21 a_n 's (bottom).

Taylor Series as an Example

• In Calculus [4], we can expand function f(t) around t_0 into linear combination of polynomials $(t-t_0)^n/n!$,

$$f(t) = a_0 + a_1(t - t_0) + a_2 \frac{(t - t_0)^2}{2!} + \dots + a_n \frac{(t - t_0)^n}{n!} + \dots$$
(3)

$$a_n = \left[\mathcal{D}_t^n f(t) \right]_{t=t_0} \tag{4}$$

- Local approximation: a_0, a_1, a_2 contains the shape information around the expansion point.
- Stability problem.

Figure: Reconstruction by 11 a_n 's (top) and 21 a_n 's (bottom).

Comparison between Fourier-based and Taylor-based Representation

	Fourier-based	Taylor-based	
Physical Meaning	The frequency component	The slope component	
Bases	Sinusoids	Polynomials	
Coeff. by	Integration	High-order derivatives	
Approx.	Global	Local	
Variants	Fourier Transform, Sine/Cosine Transform	Chromatic Derivatives	

- Introduction
- Chromatic Derivative Theory
- 3 Chromatic Derivative Filter Banks
- 4 Conclusion

First Look at Chromatic Derivatives

- Aleksandar Ignjatović introduced the concept and coined "Chromatic Derivatives" around 2000. [1, 2].
- Its main concept is to replace the order-n derivative with linear combinations of smaller order derivatives.

$$\mathcal{D}_t^n \quad \Rightarrow \quad \sum_{k=0}^n c_k \mathcal{D}_t^k \tag{5}$$

- The coefficients c_k are determined by orthogonal polynomials.
- It is more bounded and noise-resistant than Taylor series.

$$f(t) = a_0 + a_1(t - t_0) + a_2 \frac{(t - t_0)^2}{2!} + \dots, \qquad a_n = \left[\mathcal{D}_t^n f(t) \right]_{t = t_0}$$

Legendre Polynomials as an Example

Differential equation:

$$\left[\left(1-x^{2}\right)\mathcal{D}_{x}^{2}-2x\mathcal{D}_{x}\right]P_{n}(x)=-n\left(n+1\right)P_{n}(x).$$

• Complete and orthogonal over [-1, 1].

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \frac{2}{2n+1} \delta_{m,n}.$$

First four polynomials:

$$P_0(x) = 1, \quad P_1(x) = x,$$

 $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2},$
 $P_3(x) = \frac{5}{2}x^3 - \frac{3}{2}x.$

• $P_n(-x) = (-1)^n P_n(x)$.

Figure: Legendre polynomials $P_n(x)$ when n = 0, 1, 2, 3.

Definition of Chromatic Derivatives

The Chromatic Derivatives associated with the Legendre polynomials

$$\mathcal{K}_t^n = (-j)^n P_n^L(j\mathcal{D}_t), \qquad (6)$$

where

- subscript t means derivatives with respect to t.
- ullet superscript n means the order of the polynomials.
- $P_n^L(\cdot) = \sqrt{2n+1}P_n(\cdot/\pi)$ are the normalized and scaled Legendre polynomials, which are orthonormal over $[-\pi,\pi]$.

	Operator	Coefficient
Derivatives	\mathcal{D}_t^3	$\left[\mathcal{D}_t^3 f(t)\right]\big _{t=t_0}.$
Chromatic derivatives	$\frac{5}{2}\mathcal{D}_t^3 + \frac{3}{2}\mathcal{D}_t$	$\left[\frac{5}{2}\mathcal{D}_t^3 f(t) + \frac{3}{2}\mathcal{D}_t f(t)\right]\Big _{t=t_0}$

Table: Comparison of the 3rd derivative and the 3rd chromatic derivative.

The Analysis Equation of Chromatic Derivatives

It is easy to verify that

$$\mathcal{K}_{t}^{n}e^{j\omega t} = j^{n}P_{n}^{L}\left(\omega\right)e^{j\omega t}.\tag{7}$$

 \bullet We can extend to the Fourier transformable signal x(t) ^1,

$$\mathcal{K}_{t}^{n}x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} j^{n} P_{n}^{L}(\omega) X(\omega) e^{j\omega t} d\omega.$$
 (8)

• If x(t) is bandlimited in $[-\pi, \pi]$ and t = 0, (8) becomes

Analysis equation

$$a_n = \left[\mathcal{K}_t^n x(t) \right]_{t=0} = \frac{1}{2\pi} \int_{-\pi}^{\pi} j^n P_n^L(\omega) X(\omega) d\omega. \tag{9}$$

- ► Filtering + Sampling.
- Orthogonal polynomial expansion.

 $^{^{1}}X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$

Reconstruction from the Chromatic Derivatives

 Because the Legendre functions are orthogonal bases, from (9), the synthesis equation is

$$X(\omega) = \sum_{n=0}^{\infty} a_n (-j)^n P_n^L(\omega).$$
 (10)

 \bullet Taking the inverse Fourier transform on ω yields

Synthesis equation

$$x(t) = \sum_{n=0}^{\infty} a_n \sqrt{2n+1} j_n(\pi t),$$
 (11)

where $j_n(x) = \sqrt{\frac{\pi}{2x}} J_{n+1/2}(x)$ is the spherical Bessel function.

• Note that (11) resembles the "Whittaker-Shannon interpolation formula", which is

$$x(t) = \sum_{n=0}^{\infty} x[n]\operatorname{sinc}(t-n).$$
 (12)

劉俊麟 (GICE, NTU)

Example: Noise Tolerance

Example: Approximate Sinusoids

Input signal

$$\cos\left(\frac{\pi t}{5}\right) + \frac{1}{5}\cos\left(\frac{9\pi t}{10}\right) + \frac{1}{10}\sin\left(\frac{3\pi t}{10}\right)$$

- Synthesis by $21 a_n$'s.
- Local approximation?
- Bounded?
- Error?

Example: Approximate Sinusoids (Cont'd)

Comparison among Taylor Series/Chromatic Derivatives/Sinc Interpolation

	Taylor series	Chromatic derivatives	sinc interpolation
Analysis	(4)	(9)	x[n] = x(n)
Synthesis	(3)	(11)	(12)
Noise Tolerance	Low	High	-
Local approx.	Yes	Yes	Yes
Bounded	No	Yes	Yes
Local approx. accuracy	Best	Good	Poor

- Introduction
- 2 Chromatic Derivative Theory
- Chromatic Derivative Filter Banks
- 4 Conclusion

Chromatic Derivative Filter Banks [3]

 Is there a system diagram to implement chromatic derivatives? For example, the analysis equation mentioned before is

$$a_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} j^{n} P_{n}^{L}(\omega) X(\omega) d\omega.$$

we can let the analysis filters $H_n(\omega)=j^nP_n^L(\omega)$ and synthesis filters $F_m(\omega)$.

What is the condition on perfect reconstruction? Biorthogonal condition

$$\int_{-\pi}^{\pi} H_n(\omega) F_m(\omega) d\omega = \delta_{n,m}.$$
 (13)

- How do we design the filters in the system?
- Is there any constraint on the input signal?

Infinite-Channel Chromatic Derivative Filter Banks

$$a_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_n(\omega) X(\omega) d\omega, \qquad X(\omega) = \sum_{m=0}^{\infty} a_m F_m(\omega)$$

劉俊麟 (GICE, NTU)

Perfect Reconstruction

• Assume that $X(\omega) \in \operatorname{Span}\{F_m(\omega)\}_{m=0}^{\infty}$, i.e.

$$X(\omega) = \sum_{m=0}^{\infty} c_m F_m(\omega). \tag{14}$$

ullet The output of the nth analysis channel is

$$a_{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) H_{n}(\omega) d\omega$$

$$= \sum_{m=0}^{\infty} c_{m} \underbrace{\frac{1}{2\pi} \int_{-\pi}^{\pi} F_{m}(\omega) H_{n}(\omega) d\omega}_{\text{Biorthogonality}} = c_{n}$$
(15)

ullet The reconstructed spectrum $\hat{X}(\omega)$ is

$$\hat{X}(\omega) = \sum_{n=0}^{\infty} a_n F_n(\omega) = X(\omega).$$
 (16)

Filter Design in Chromatic Derivative Filter Banks

Biorthogonal equation

$$\int_{\text{desired band}} H_n(\omega) F_m(\omega) d\omega = \delta_{n,m}. \tag{17}$$

- We do not have to design $H_n(\omega)$ and $F_m(\omega)$ in (17) directly.
- Instead, we can choose pre-defined orthogonal polynomials such as
 - ▶ Legendre polynomials or Chebyshev polynomials for bandlimited signals.
 - Laguerre polynomials for analytic signals.
 - Hermite polynomials for nonbandlimited signals [5].
- Selecting

$$H_n(\omega) \propto P_n\left(\frac{\omega}{\omega_0}\right),$$

$$F_m(\omega) \propto P_m\left(\frac{\omega}{\omega_0}\right) W\left(\frac{\omega}{\omega_0}\right),$$

satisfies (17) directly.

- Introduction
- 2 Chromatic Derivative Theory
- 3 Chromatic Derivative Filter Banks
- 4 Conclusion

Conclusion

- In my presentation, The concept of chromatic derivatives were introduced.
- The features of Fourier-based, Taylor-based, chromatic derivatives and sinc interpolation were discussed.
 - ► The noise tolerance, the stability and the local approximation ability are very good when it is compared to the other two methods.
- The chromatic derivative filter banks are useful for implementation.
 The design steps are relatively simple.
- Lots of key properties and applications of chromatic derivatives are still under research.

References

- [1] A. Ignjatović, "Chromatic derivatives and local approximations," *IEEE Transactions on Signal Processing*, vol. 57, no. 8, pp. 2998–3007, 2009.
- [2] A. Ignjatović, "Signal processor with local signal behavior," pat. 6115726, 2000.
- [3] M. J. Narasimha, A. Ignjatović, and P. P. Vaidyanathan, "Chromatic derivative filter banks," *IEEE Signal Processing Letters*, vol. 9, no. 7, pp. 215–216, 2002.
- [4] G. B. Thomas, M. D. Weir, J. Hass, and F. R. Giordano, *Thomas' Calculus*, 11th ed. Addison Wesley.
- [5] G. G. Walter and X. Shen, "A sampling expansion for nonbandlimited signals in chromatic derivatives," *IEEE Transactions on Signal Processing*, vol. 53, no. 4, pp. 1291–1298, 2005.