

4.2. Zeros and extremes of single-variable function

4.2.2. Newton method

based on linear approximation of a smooth function around its root

 \rightarrow Taylor expansion of $f(x_0) = 0$ around root x_0

$$f(x_0) \approx f(x) + (x_0 - x) f'(x) + \dots = 0$$

x =trial value for root of x_0 at n-th step

step
$$x_{n+1}$$
: $f(x_{n+1}) = f(x_n) + (x_{n+1} - x_n) \cdot f'(x_n) \simeq 0$ $\to x_{n+1} = x_n - \frac{f_n}{f'_n}$ with $f_n = f(x_n)$

often called also Newton-Raphson method

more efficient: large step created for small slope small step for large slope (efficient and avoids overshooting)