Course Introduction Data Science & Al

Sabine De Vreese Stijn Lievens Lieven Smits Bert Van Vreckem 2021–2022

Contents

Course guide

Introduction

Course guide

Learning goals

- Descriptive Statistics
 - O Knows some descriptive measures for data (central tendency, dispersion).
 - O Can calculate some descriptive measures for data using statistical software (Python).
- Data visualisation
 - O Knows different types of plots to represent data visually.
 - O Can visualize data using appropriate plots
- Probability
 - O Knows the basic rules with regard to calculating with probabilities.
 - O Knows the properties of some important probability distributions

Learning goals

- Bivariate analysis
 - O Can quantify and appropriately test the relationship between two variables.
 - O Can construct a simple linear model to show the relationship between two or more variables.
- Time series analysis
 - Can discuss some common models to predict time series and/or detect anomalies.
 - O Can indicate the importance of testing the accuracy of a model in a methodologically correct manner.

Course contents

- Introduction, sampling
- Univariate analysis
- Probability, central limit theorem, statistical testing
- Bivariate analysis: qualitative variables
- Bivariate analysis: qualitative vs. quantitative variables
- Bivariate analysis: quantitative variables
- Time series analysis

Learning materials

Published on Chamilo!

- Lecture slides
- Textbook: Rajagopalan (2021) A Python Data Analyst's Toolkit: Learn Python and Python-based Libraries with Applications in Data Analysis and Statistics. Springer.
- Google Colab (https://colab.research.google.com)
- Software (optional!):
 - O Python (+libraries)
 - O Visual Studio Code
 - O Github account, Git client
- Lab assignments with example code (Github)

Teaching methods

- 3 hours per week
- classroom instruction (lecture)
- exercises & lab assignments

Recommendations for learning

- Attend classes!
- Take notes
- Use effective learning strategies
- Make an effort

Planning

Wk	Subject
1	Course intro, sampling
2	
3	Univariate analysis
4	
5	Probability, central limit theorem
6	Statistical testing: z-test
7	Statistical testing: Student <i>t</i> -test
_	Easter holiday

Planning

Wk	Subject
8	Bivariate analysis:
	χ² test, Cramér's V
9	Bivariate analysis: qual. vs. quant. variable
	two-sample <i>t</i> -test, effect size
10	Bivariate analysis: quantitative variables
	Linear regression
11	Time series analysis
12	Catch-up session (if needed)

Assessment

Written open book exam, with use of computer. Allowed:

- Slides, course material on Chamilo
- Textbook
- Your notes, solutions to exercises
- Python example code
- Software for statistical analysis (Python, VS Code)

Introduction

- Data visualisation mistakes and gaffes are
- Media outlets, politicians, special interest groups, shady people on Facebook, ...misrepresent or misinterpret objective data to "prove" their point.

Why learn data science?

- The amount of data is exploding
- Data drives business decisions
- It's important to analyse and visualise data correctly!
- Tools and data are more accessible than ever

