1 Математическая постановка задачи

Для решения общей задачи по нахождению деформаций и напряжений в деформируемом теле, занимающем область G с границей ∂G , необходимо использовать следующие соотношения:

кинематические граничные условия

$$u(x) = u_0, \ x \in \partial G_D, \tag{1}$$

силовые граничные условия

$$\sigma(u) \cdot n = p(x), \ x \in \partial G_N, \tag{2}$$

соотношения Коши для тензора полных деформаций

$$\varepsilon(u) = \frac{1}{2} (\nabla u + (\nabla u)^T, \tag{3}$$

тензор напряжений

$$\sigma(u) = ??? \tag{4}$$

Здесь u(x) - компоненты вектора перемещения, ∂G_D - участок границы, на котором действуют кинематические условия Дирихле, ∂G_N - участок границы, на котором действуют силовые граничные условия Неймана, p(x) - вектор внешней нагрузки.

Решить данную задачу можно с помощью метода декомпозиции Шварца.

1.1 Методы Шварца

Рассмотрим классическую задачу метода Шварца для двух подобластей: имеется сложная область Ω , состоящая из объединения двух простых областей (круга Ω_1 и прямоугольника Ω_2). Рассмотрим уравнение Пуассона, цель которого найти перемещения $u:\Omega\to\mathbb{R}$ при условии, что

$$-\triangle(u) = f, \ u \in \Omega$$
$$u = 0, \ u \in \partial\Omega$$

Рис. 1: Сложная область, получившаяся из объединения двух простых областей

Классический метод Шварца это итерационный метод, основанный на решении задач меньшего масштаба в подобластях Ω_1 и Ω_2 . Один шаг итерационного процесса обновления результатов $u^n \to u^{n+1}$:

$$\begin{split} -\bigtriangleup(u^{n+1}) &= f, \;\; u \in \Omega_1 \\ u^{n+1} &= 0, \;\; u \in \partial \Omega_1 \cap \partial \Omega \text{ после чего} \\ u^{n+1} &= u^n, \;\; u \in \partial \Omega_1 \cap \bar{\Omega_2} \end{split} \qquad \begin{aligned} -\bigtriangleup(u^{n+1}) &= f, \;\; u \in \Omega_2 \\ u^{n+1} &= 0, \;\; u \in \partial \Omega_2 \cap \partial \Omega \\ u^{n+1} &= u^n, \;\; u \in \partial \Omega_2 \cap \bar{\Omega_1} \end{aligned}$$

Теперь же рассмотрим случай для произвольной области и произвольного числа подобластей. Вернёмся к нашей первоначальной задаче (ссылка здесь), представим область G в виде объединения конечного числа подобластей $G = \bigcup_{i=1}^M G_i$ с конечным числом границ $\partial G_1, \ldots, \partial G_M$, где M - число подобластей. Данные подобласти пересекаются, что требует ввода дополнительных обозначений для границ, возникающих после декомпозиции областей: $\Gamma = \bigcup_{i=1}^M \Gamma_i$.

Выберем начальное приближение для перемещений, удовлетворяющее граничным условиям (ссылка здесь). Алгоритм из классического метода Шварца можно оптимизировать для большего числа подобластей:

$$-\triangle(u^{n+\frac{i}{M}}) = f(x), \quad x \in G_i$$

$$\sigma(u^{n+\frac{i}{M}}) \cdot n = p(x), \quad x \in \partial G_N \cap \partial G_i$$

$$u^{n+\frac{i}{M}}(x) = 0, \quad x \in \partial G_D \cap \partial G_i$$

$$u^{n+\frac{i}{M}}(x) = u^{n+\frac{(i-1)}{M}}(x), \quad x \in G \setminus ((G_i \setminus \partial G_i) \cap (\partial G_N \cup \partial G_i))$$

Данный алгоритм Шварца называют мультипликативным, он последовательный и решение на каждой подобласти зависит от решения на предыдущей подобласти (или от решения на предыдущей итерации, если речь идёт о первой подобласти для итерации).

Существует также другой вариант метода Шварца, основанный на решении локальных задач для каждой подобласти без зависимости от соседних подоб-

ластей:

$$-\triangle(u^{n+\frac{i}{M}}) = f(x), \quad x \in G_i$$

$$\sigma(u^{n+\frac{i}{M}}) \cdot n = p(x), \quad x \in \partial G_N \cap \partial G_i$$

$$u^{n+\frac{i}{M}}(x) = 0, \quad x \in \partial G_D \cap \partial G_i$$

$$u^{n+1}(x) = u^n(x), \quad x \in G \setminus ((G_i \setminus \partial G_i) \cap (\partial G_N \cup \partial G_i))$$

Этот метод называется аддитивный метод Шварца. В конце каждой итерации решение вычисляется по формуле

$$u^{n+1} = u^n + \alpha \sum_{i=1}^{M} (u_i^{n+1} - u^n),$$

где коэффициент α - некоторый параметр, от которого зависит скорость сходимости итерационного процесса.

2 Результаты численных расчётов

В данном разделе будут приведены расчёты четырёх тестовых задач с использованием четырёх методов. Для каждой из задач для базового случая будут приведены графики распределения напряжений вдоль поверхности, к которой приложено давление, а также графики распределения перемещений на всей расчётной области.

Для методов декомпозиции области расчётные области будут разбиты на заданное количество секторов без перекрытия $\Omega_1, \ldots, \Omega_M$ в зависимости от задачи, где M - число подобластей. Также стоит заметить, что каждая подобласть Ω_i ($i=1,\ldots,M$) в зависимости от задачи обладает своими размерными характеристиками. Подобласть G_i соответствует объединению подобласти Ω_i и дополнительных участков соседних подобластей Ω_{i-1} и Ω_{i+1} . Размеры этих дополнительных участков зависят от относительного коэффициента перекрытия (отношение размера перекрытия к размеру подобласти Ω_i).

Итерационный процесс для мультипликативного, аддитивного и двухуровневого аддитивного методов продолжался до тех пор, пока не выполнялось условие критерия останова:

$$u_{e}rror = \sqrt{\frac{\sum_{k=1}^{N_{p}} s_{k} \left(\frac{u_{k}^{m+1} - u_{k}^{m}}{u_{k}^{m+1}}\right)^{2}}{\sum_{k=1}^{N_{p}} s_{k}}} < \varepsilon_{0},$$
 (5)

где s_k - суммарная площадь элементов сетки, в которые входит k-й узел, разделённая на количество узлов в элементе, N_{elem} - количество узлов сетки, u_k^{m+1} - решение на текущей итерации, u_k^m - решение на предыдущей итерации.

Дополнительно для каждой из задач для методов декомпозиции будут приведены таблицы зависимости количества итераций от относительного коэффициента перекрытия.

2.1 Первая тестовая задача

Расчётная область - тело, закреплённое с левой и правой стороны по оси OX и с нижней стороны по оси OY. Сверху действует распределённая нагрузка $p=50\ \mathrm{M}\Pi$ а. Ширина тела $a=2\ \mathrm{cm}$, высота тела $b=1\ \mathrm{cm}$.

Для решения поставленной задачи примем, что материал тела имеет следу-

Рис. 2: Схема расчётной области первой тестовой задачи (заглушка)

ющие параметры: модуль Юнга $E=70~\Gamma\Pi {\rm a}$, коэффициент Пуассона $\mu=0.34$.

Для исследования зависимости сходимости метода от размерности итоговой системы линейных уравнений рассмотрены три расчётные сетки с шагами h=0.05 (количество узлов - 994), h=0.025 (количество узлов - 3812), h=0.0125 (количество узлов - 15006). Для аддитивного метода Шварца итерационный параметр $\alpha=0.5$.

Для данной задачи известны аналитические решения для компонент тензора напряжений и для перемещений. В таблице 1 представлены нормы ошибок вычислений перемещений, радиального и окружного напряжений, полученные при решении задачи без декомпозиции для различных сеток, в таблице 2 - отношения норм ошибок.

2.2 Третья тестовая задача

Расчётная область - сектор поперечного сечения толстостенной трубы, основные размерные характеристики трубы - внутренний радиус $r_1=1$ см, внешний радиус $r_2=2$ см. К внутреннему торцу приложено давление $p_1=5$ МПа, к внешнему торцу также приложено давление $p_2=10$ МПа.

Рис. 3: Схема расчётной области четвёртой тестовой задачи (заглушка)

Для применения методов декомпозиции области исходная область разбивалась на заданное количество секторов без перекрытия $\Omega_1, \ldots, \Omega_M$, где M - число подобластей. Размеры участков, а именно центральный угол каждого из них, задавался заранее выбранным коэффициентом относительного перекрытия.

Для решения поставленной задачи примем, что материал тела имеет следующие параметры: модуль Юнга $E=70~\Gamma\Pi a$, коэффициент Пуассона $\mu=0.34$. Для данной задачи известны аналитические решения для компонент тензора напряжений и для перемещений.

Для аддитивного метода Шварца итерационный параметр $\alpha=0.5$. Для исследования зависимости сходимости метода от размерности итоговой системы линейных уравнений рассмотрены три расчётные сетки с шагами h=0.05 (количество узлов - 1334), h=0.025 (количество узлов - 4571), h=0.0125 (количество узлов - 16636).

2.2.1 Мультипликативный метод Шварца

В таблице (1) представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании мультипликативного метода Шварца в случае фиксированного относительного перекрытия подобластей (данный коэффициент равен 0.3). Анализ полученных результатов показал, что:

• при увеличении числа подобластей количество итераций увеличивается;

Таблица 1: Количество итераций в зависимости от количества подобластей

Количество подобластей	h = 0.5	h = 0.025	h = 0.0125
2 области	38	38	38
4 области	155	151	149
8 областей	480	462	453

2.2.2 Аддитивный метод Шварца

В таблице (2) представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании аддитивного метода Шварца в случае фиксированного относительного перекрытия подобластей (данный коэффициент равен 0.3). Анализ полученных результатов показал, что:

• при увеличении числа подобластей количество итераций существенно возрастает;

Таблица 2: Количество итераций в зависимости от количества подобластей

Количество подобластей	h = 0.5	h = 0.025	h = 0.0125
2 области	33	64	34
4 области	125	98	94
8 областей	397	353	337

2.2.3 Двухуровневый аддитивный метод Шварца

В таблице (3) представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании двухуровневого аддитивного метода Шварца в случае фиксированного относительного перекрытия подобластей (данный коэффициент равен 0.3). Анализ полученных результатов показал, что:

- количество итераций несильно зависит от шага сетки;
- при увеличении числа подобластей количество итераций меняется, но не так сильно по сравнению с применением аддитивного метода Шварца;

Таблица 3: Количество итераций в зависимости от количества подобластей

Количество подобластей	h = 0.5	h = 0.025	h = 0.0125
2 области	23	36	27
4 области	48	47	46
8 областей	79	75	73

2.3 Четвёртая тестовая задача

Расчётная область - сектор поперечного сечения подшипника, основные размерные характеристики подшипника - центральный угол - 90° , внутренний радиус внутреннего кольца $r_{in}^{a}=1.0$ см, внешний радиус внешнего кольца $r_{out}^{b}=2.0$ см. Прочие характеристики, а именно внешний радиус внутреннего кольца r_{out}^{a} , внутренний радиус внешнего кольца r_{in}^{b} и радиус шарика в полости, зависят от количества шариков в полости между кольцами.

(Тут нужно расписать, как выбирается параметр для оставшихся характеристик)

Рис. 4: Схема расчётной области четвёртой тестовой задачи (заглушка)

Для применения методов декомпозиции области исходная область разбивалась на заданное количество секторов без перекрытия $\Omega_1, \ldots, \Omega_M$, где M - число подобластей. Размеры участков, а именно центральный угол каждого из них, задавался заранее выбранным коэффициентом относительного перекрытия.

Для решения поставленной задачи примем, что материал тела имеет следующие параметры: модуль Юнга $E=210~\Gamma\Pi a$, коэффициент Пуассона $\mu=0.25$. Для данной задачи неизвестны аналитические решения для компонент тензора напряжений и для перемещений.

Для аддитивного метода Шварца итерационный параметр $\alpha=0.5$. Для исследования зависимости сходимости метода от размерности итоговой систе-

мы линейных уравнений рассмотрены три расчётные сетки с шагами h=0.05 (количество узлов - 1334), h=0.025 (количество узлов - 4571), h=0.0125 (количество узлов - 16636).

2.3.1 Мультипликативный метод Шварца

В таблице (4) представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании мультипликативного метода Шварца в случае фиксированного относительного перекрытия подобластей (данный коэффициент равен 0.3). Анализ полученных результатов показал, что:

• при увеличении числа подобластей количество итераций увеличивается;

Таблица 4: Количество итераций в зависимости от количества подобластей

Количество подобластей	h = 0.5	h = 0.025	h = 0.0125
2 области	37	39	40
4 области	192	202	213
8 областей	510	488	518

2.3.2 Аддитивный метод Шварца

В таблице (5) представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании аддитивного метода Шварца в случае фиксированного относительного перекрытия подобластей (данный коэффициент равен 0.3). Анализ полученных результатов показал, что:

• при увеличении числа подобластей количество итераций существенно возрастает;

Таблица 5: Количество итераций в зависимости от количества подобластей

Количество подобластей	h = 0.5	h = 0.025	h = 0.0125
2 области	33	64	34
4 области	125	98	94
8 областей	397	353	337

2.3.3 Двухуровневый аддитивный метод Шварца

В таблице (6) представлено количество итераций в зависимости от количества подобластей и шага сетки при использовании двухуровневого аддитивного метода Шварца в случае фиксированного относительного перекрытия подобластей (данный коэффициент равен 0.3). Анализ полученных результатов показал, что:

- количество итераций несильно зависит от шага сетки;
- при увеличении числа подобластей количество итераций меняется, но не так сильно по сравнению с применением аддитивного метода Шварца;

Таблица 6: Количество итераций в зависимости от количества подобластей

Количество подобластей	h = 0.5	h = 0.025	h = 0.0125
2 области	44	46	40
4 области	72	74	79
8 областей	106	108	114