3

Contents

```
1 ubuntu
1.2 cp.sh . . . . . . . . . . . . . . . . . .
2 Basic
2.1 ascii . . . . . . . . . . . . . . . .
2.2 limits . . . . . . . . . . . . . . . . . .
3 字串
STL
4.7 unordered_set . . . . . . . . . . . . . . .
5 sort
math
algorithm
7.1 basic . . .
7.3 三分搜
   7.4 prefix sum . . . . . . . . . . . . . . . . . .
7.7 floyd warshall . . . . . . . . . . . . . . . . . .
8 geometry
8.1 intersection . . . . . . . . . . . . . . . . .
9 動態規劃
9.1 LCS 和 LIS . . . . . . . . . . . . . . . . . .
                 15
10 Section2
10.1 thm . . . . . . . . . . . . . .
11 dp 表格
                  16
11.1 DPlist
                 16
                  26
12 slogan
ubuntu
```

1.1 run

1 ~ \$ bash cp.sh PA

1.2 cp.sh

```
1 #!/bin/bash
  clear
2
  g++ $1.cpp -DDBG -o $1
3
  if [[ "$?" == "0" ]]; then
          echo Running
          ./$1 < $1.in > $1.out
6
          echo END
8 fi
```

Basic

2.1 ascii

1	int	char	int	char	int	char
2	32		64	@	96	•
3	33	!	65	Α	97	a
4	34	"	66	В	98	b
5	35	#	67	С	99	C
6	36	\$	68	D	100	d
7	37	%	69	E	101	e
8	38	&	70	F	102	f
9	39	1	71	G	103	g
10	40	(72	Н	104	h
11	41)	73	I	105	i
12	42	*	74	J	106	j
13	43	+	<i>75</i>	K	107	k
14	44	,	76	L	108	1
15	45	-	77	M	109	m
16	46	-	78	N	110	n
17	47	/	79	0	111	0
18	48	0	80	P	112	p
19	49	1	81	Q	113	q
20	50	2	82	R	114	r
21	51	3	83	S	115	S
22	52	4	84	T	116	t
23	53	5	85	U	117	u
24	54	6	86	V	118	V
25	55	7	87	W	119	W
26	56	8	88	X	120	X
27	<i>57</i>	9	89	Υ	121	y
28	58	:	90	Ζ	122	Z
29	59	;	91	Γ	123	{
30	60	<	92	\	124	1
31	61	=	93	J	125	}
32	62	>	94	٨	126	~
33	63	?	95	_		

2.2 limits

```
[size]
1 [Type]
                                   [range]
2
  char
                       1
                                 127 to -128
  signed char
                                 127 to -128
                        1
  unsigned char
                       1
                                 0 to 255
                       2
                                 32767 to -32768
5
  short
  int
                                 2147483647 to -2147483648
  unsigned int
                        4
                                 0 to 4294967295
                        4
                                 2147483647 to -2147483648
8
  long
  unsigned long
                       4
                                 0 to 18446744073709551615
                       8
10
  long long
11
              9223372036854775807 to -9223372036854775808
                       8
                             1.79769e+308 to 2.22507e-308
12
  double
13
  long double
                        16
                             1.18973e+4932 to 3.3621e-4932
14
  float
                        4
                                3.40282e+38 to 1.17549e-38
15 unsigned long long
                       8
                                 0 to 18446744073709551615
16 string
                        32
```

3 字串

3.1 最長迴文子字串

```
1 #include <bits/stdc++.h>
2 #define T(x) ((x)%2 ? s[(x)/2] : '.')
3 using namespace std;
5 string s;
6 int n;
  int ex(int 1,int r){
8
9
     int i=0:
     while (1-i)=0&&r+i<0&T(1-i)==T(r+i) i++;
10
11
     return i;
12 }
13
  int main(){
14
15
    cin>>s:
16
    n=2*s.size()+1;
17
     int mx=0;
     int center=0:
18
19
     vector<int> r(n);
     int ans=1:
20
21
     r[0]=1;
     for(int i=1;i<n;i++){</pre>
22
23
       int ii=center-(i-center);
24
       int len=mx-i+1;
       if(i>mx){
25
         r[i]=ex(i,i);
26
         center=i;
27
28
         mx=i+r[i]-1;
29
       else if(r[ii]==len){
30
         r[i]=len+ex(i-len,i+len);
31
         center=i:
32
         mx=i+r[i]-1;
33
34
       else r[i]=min(r[ii],len);
35
36
       ans=max(ans,r[i]);
37
38
     cout << ans -1 << "\n";
39
     return 0;
40 }
```

3.2 stringstream

```
1 string s,word;
2 stringstream ss;
3 getline(cin,s);
4 ss<<s;
while(ss>>word) cout<<word<<endl;</pre>
```

4 STL

4.1 priority_queue

```
1 priority_queue: 優先隊列,資料預設由大到小排序。
  讀取優先權最高的值:
3
     x = pq.top();
                            //讀取後刪除
5
     pq.pop();
6 判斷是否為空的priority_queue:
                            //回傳 true
7
     pq.empty()
     pq.size()
                            //回傳a
8
  如需改變priority_queue的優先權定義:
9
     priority_queue<T> pq;
                            //預設由大到小
10
11
     priority_queue<T, vector<T>, greater<T> > pq;
                            //改成由小到大
12
     priority_queue<T, vector<T>, cmp> pq;
13
                                        //cmp
```

4.2 deque

```
1 deque 是 C++ 標準模板函式庫
     (Standard Template Library, STL)
2
     中的雙向佇列容器 (Double-ended Queue),
3
     跟 vector 相似,不過在 vector
4
        中若是要添加新元素至開端,
     其時間複雜度為 O(N), 但在 deque 中則是 O(1)。
5
     同樣也能在我們需要儲存更多元素的時候自動擴展空間,
6
     讓我們不必煩惱佇列長度的問題。
7
8 dq.push_back() //在 deque 的最尾端新增元素
9 dq.push_front() //在 deque 的開頭新增元素
             //移除 deque 最尾端的元素
10 dq.pop_back()
11 dq.pop_front() //移除 deque 最開頭的元素
12 dq.back()
              //取出 deque 最尾端的元素
              //回傳 deque 最開頭的元素
13 dq.front()
 dq.insert()
 dq.insert(position, n, val)
15
     position: 插入元素的 index 值
16
    n: 元素插入次數
17
    val: 插入的元素值
18
 da.erase()
     //刪除元素,需要使用迭代器指定刪除的元素或位置,
              //同時也會返回指向刪除元素下一元素的迭代器。
20
21 dq.clear()
              //清空整個 deque 佇列。
 dq.size()
              //檢查 deque 的尺寸
 dq.empty()
              //如果 deque 佇列為空返回 1;
23
              //若是存在任何元素,則返回ø
 dq.begin()
              //返回一個指向 deque 開頭的迭代器
 dq.end()
              //指向 deque 結尾,
26
              //不是最後一個元素,
27
28
              //而是最後一個元素的下一個位置
```

4.3 map

```
1 map:存放 key-value pairs 的映射資料結構,
      會按 key 由小到大排序。
2
 operator[]:存取指定的[i]元素的資料
6 迭代器
7| begin():回傳指向map頭部元素的迭代器
8 end():回傳指向map末尾的迭代器
9 rbegin():回傳一個指向map尾部的反向迭代器
10 rend():回傳一個指向map頭部的反向迭代器
11
12 遍歷整個map時,利用iterator操作:
 取key:it->first 或 (*it).first
13
14
 取value:it->second 或 (*it).second
15
16 容量
 empty():檢查容器是否為空,空則回傳true
17
 size():回傳元素數量
 max_size():回傳可以容納的最大元素個數
19
20
21 修改器
22 clear(): 刪除所有元素
23 insert():插入元素
24 erase():刪除一個元素
25 swap(): 交換兩個map
26
27| 查找
 count():回傳指定元素出現的次數
29 find(): 查找一個元素
30
31 //實作範例
 #include <bits/stdc++.h>
33 using namespace std;
34 int main(){
```

```
35
       //declaration container and iterator
       map<string, string> mp;
36
37
       map<string, string>::iterator iter;
       map<string, string>::reverse_iterator iter_r;
38
39
40
       //insert element
       mp.insert(pair<string, string>
41
42
                ("r000", "student_zero"));
       mp["r123"] = "student_first";
43
       mp["r456"] = "student_second";
44
45
       //traversal
46
47
       for(iter=mp.begin();iter!=mp.end();iter++)
           cout << iter -> first << " "
48
49
                        <<iter->second<<endl;
       for(iter_r=mp.rbegin();iter_r!=mp.rend();iter_r++)
50
51
           cout << iter_r -> first << "
                "<<iter_r->second<<endl;
52
53
       //find and erase the element
       iter=mp.find("r123");
54
55
       mp.erase(iter);
       iter=mp.find("r123");
56
57
       if(iter!=mp.end())
58
          cout << "Find, the value is "
                    <<iter->second<<endl:
59
       else cout<<"Do not Find"<<endl;</pre>
60
61
       return 0:
62 }
```

4.4 unordered_map

```
1 | unordered_map: 存放 key-value pairs2 | 的「無序」映射資料結構。3 | 用法與map相同
```

4.5 set

```
1 set: 集合,去除重複的元素,資料由小到大排序。
2
  取值: 使用iterator
3
     x = *st.begin();
5
             // set中的第一個元素(最小的元素)。
6
     x = *st.rbegin();
             // set中的最後一個元素(最大的元素)。
7
8
  判斷是否為空的set:
9
     st.empty() 回傳true
10
     st.size() 回傳零
11
12
  常用來搭配的member function:
13
     st.count(x);
14
      auto it = st.find(x);
15
         // binary search, O(log(N))
16
      auto it = st.lower_bound(x);
17
         // binary search, O(log(N))
18
     auto it = st.upper_bound(x);
19
20
         // binary search, O(log(N))
```

4.6 multiset

```
1 與 set 用法雷同,但會保留重複的元素。
2 資料由小到大排序。
3 宣告:
4 multiset<int> st;
5 刪除資料:
6 st.erase(val);
7 //會刪除所有值為 val 的元素。
8 st.erase(st.find(val));
9 //只刪除第一個值為 val 的元素。
```

4.7 unordered_set

4.8 單調隊列

```
1 // 單調隊列
  "如果一個選手比你小還比你強,你就可以退役了。"--單調隊列
3
4
  example
5
  給出一個長度為 n 的數組,
6
  輸出每 k 個連續的數中的最大值和最小值。
  #include <bits/stdc++.h>
10 #define maxn 1000100
  using namespace std;
  int q[maxn], a[maxn];
12
13 int n, k;
14
15
  void getmin() {
       // 得到這個隊列裡的最小值,直接找到最後的就行了
16
17
       int head=0,tail=0;
       for(int i=1;i<k;i++) {</pre>
18
           while(head<=tail&&a[q[tail]]>=a[i]) tail--;
19
20
           q[++tail]=i;
21
22
       for(int i=k; i<=n;i++) {</pre>
           while(head<=tail&&a[q[tail]]>=a[i]) tail--;
23
24
           q[++tail]=i;
           while(q[head]<=i-k) head++;</pre>
25
26
           cout << a[q[head]] << " ";
27
28
       cout << end1:
  }
29
30
31
  void getmax() { // 和上面同理
32
       int head=0,tail=0;
      for(int i=1;i<k;i++) {</pre>
33
           while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
34
35
           q[++tail]=i;
36
       for(int i=k;i<=n;i++) {</pre>
37
           while(head<=tail&&a[q[tail]]<=a[i])tail--;</pre>
38
39
           q[++tail]=i;
           while(q[head]<=i-k) head++;</pre>
40
           cout << a[q[head]] << " ";
41
      }
42
43
       cout << endl;
44 }
45
46
  int main(){
       cin>>n>>k; //每k個連續的數
47
48
      for(int i=1;i<=n;i++) cin>>a[i];
49
       getmin();
50
       getmax();
51
       return 0:
```

5 sort

5.1 大數排序

```
1 #python大數排序
2
  while True:
3
4
    try:
                              # 有幾筆數字需要排序
5
     n = int(input())
                              # 建立空串列
     arr = []
6
     for i in range(n):
7
       arr.append(int(input())) # 依序將數字存入串列
                              # 串列排序
9
10
     for i in arr:
       print(i)
                           # 依序印出串列中每個項目
11
12
    except:
13
     break
```

6 math

6.1 質數與因數

48 using namespace std;

```
1 埃氏篩法
2 int n;
3 vector<int> isprime(n+1,1);
4 isprime[0]=isprime[1]=0;
5
  for(int i=2;i*i<=n;i++){</pre>
       if(isprime[i])
6
7
           for(int j=i*i;j<=n;j+=i) isprime[j]=0;</pre>
8 }
9
10 歐拉篩0(n)
11
  #define MAXN 47000 //sqrt(2^31)=46,340...
12 bool isPrime[MAXN];
13 int prime[MAXN];
14 int primeSize=0;
15
  void getPrimes(){
16
       memset(isPrime, true, sizeof(isPrime));
17
       isPrime[0]=isPrime[1]=false;
18
       for(int i=2;i<MAXN;i++){</pre>
19
           if(isPrime[i]) prime[primeSize++]=i;
20
           for(int
                j=0;j<primeSize&&i*prime[j]<=MAXN;++j){</pre>
21
                isPrime[i*prime[j]]=false;
22
                if(i%prime[j]==0) break;
           }
23
24
25
  }
26
27 最大公因數 0(log(min(a,b)))
28 int GCD(int a, int b){
       if(b==0) return a;
29
30
       return GCD(b,a%b);
31 }
32
33 質因數分解
34
  void primeFactorization(int n){
35
       for(int i=0;i<(int)p.size();++i){</pre>
36
           if(p[i]*p[i]>n) break;
37
           if(n%p[i]) continue;
           cout << p[i] << ' ';
38
           while(n%p[i]==0) n/=p[i];
39
40
41
       if(n!=1) cout << n << ' ';
       cout << '\n';
42
43 }
44
45 擴展歐幾里得算法
  //ax+by=GCD(a,b)
47 #include <bits/stdc++.h>
```

```
49
   int ext_euc(int a, int b, int &x, int &y){
50
51
        if(b==0){
52
           x=1, y=0;
53
            return a;
       }
54
55
       int d=ext_euc(b,a%b,y,x);
56
       y -= a/b * x;
57
        return d;
58
59
   int main(){
60
61
       int a,b,x,y;
62
       cin>>a>>b;
63
        ext_euc(a,b,x,y);
       cout << x << ' '<< y << endl;
64
65
        return 0;
66
   }
67
68
69
70 歌德巴赫猜想
71 solution : 把偶數 N (6≤N≤10^6) 寫成兩個質數的和。
   #include <iostream>
73 using namespace std;
   #define N 20000000
74
75
   int ox[N],p[N],pr;
   void PrimeTable(){
76
77
       ox[0]=ox[1]=1;
78
       pr=0;
79
        for(int i=2;i<N;i++){</pre>
80
            if(!ox[i]) p[pr++]=i;
81
            for(int j=0;i*p[j]<N&&j<pr;j++)</pre>
82
                ox[i*p[j]]=1;
       }
83
   }
84
85
86
   int main(){
87
       PrimeTable();
88
        int n;
        while(cin>>n,n){
89
90
            int x;
91
            for(x=1;;x+=2)
92
                if(!ox[x]&&!ox[n-x]) break;
            printf("%d = %d + %d\n",n,x,n-x);
93
94
       }
95 }
96 problem : 給定整數 N,
            求 N 最少可以拆成多少個質數的和。
97
   如果 N 是質數,則答案為 1。
98
   如果 N 是偶數(不包含2),則答案為 2 (強歌德巴赫猜想)。
100 如果 N 是奇數且 N-2 是質數,則答案為 2 (2+質數)。
   其他狀況答案為 3 (弱歌德巴赫猜想)。
101
   #include < bits / stdc ++. h>
103
   using namespace std;
104
105
   bool isPrime(int n){
        for(int i=2;i<n;++i){</pre>
106
            if(i*i>n) return true;
107
108
            if(n%i==0) return false;
109
110
        return true;
111 }
112
   int main(){
113
114
       int n;
115
       cin>>n;
       if(isPrime(n)) cout<<"1\n";</pre>
116
117
        else if(n%2==0||isPrime(n-2)) cout<<"2\n";</pre>
        else cout << "3\n";</pre>
118
119 }
```

6.2 快速冪

```
2 #include < iostream >
  #define ll long long
  using namespace std;
  const 11 MOD=1000000007;
6
  ll fp(ll a, ll b) {
7
       int ans=1;
8
9
       while(b>0){
           if(b&1) ans=ans*a%MOD;
10
           a=a*a%MOD;
11
12
           b>>=1:
13
14
       return ans;
15 }
16
17 int main() {
    int a,b;
18
19
     cin>>a>>b:
     cout << fp(a,b);
20
21 | }
```

6.3 歐拉函數

```
1 //計算閉區間 [1,n] 中的正整數與 n 互質的個數
2
3
  int phi(){
      int ans=n:
5
      for(int i=2;i*i<=n;i++)</pre>
6
          if(n%i==0){
7
              ans=ans-ans/i;
8
               while(n%i==0) n/=i;
9
10
      if(n>1) ans=ans-ans/n;
11
      return ans;
12 }
```

6.4 atan

```
1 說明
    atan() 和 atan2() 函數分別計算 x 和 y/x的反正切。
2
3
4 回覆值
    atan()函數會傳回介於範圍 - /2 到 /2 弧度之間的值。
5
    atan2() 函數會傳回介於 - 至
                                 弧度之間的值。
6
    如果 atan2() 函數的兩個引數都是零,
7
    則函數會將 errno 設為 EDOM,並傳回值 0。
8
9
10 範例
11 #include <math.h>
12 #include <stdio.h>
13
  int main(void){
14
15
      double a,b,c,d;
16
17
      c = 0.45;
     d=0.23;
18
19
20
      a=atan(c);
21
      b=atan2(c,d);
22
      printf("atan(%1f)=%1f/n",c,a);
23
24
      printf("atan2(%1f,%1f)=%1f/n",c,d,b);
25
26 }
27
28
  atan(0.450000)=0.422854
29
30 atan2(0.450000,0.230000)=1.098299
```

6.5 大步小步

```
題章
1
  給定 B,N,P,求出 L 滿足 B^L N(mod P)。
2
3
  餘數的循環節長度必定為 P 的因數,因此
5
      B^0 B^P,B^1 B^(P+1), ...,
  也就是說如果有解則 L<N,枚舉0,1,2,L-1
6
      能得到結果,但會超時。
7
  將 L 拆成 mx+y,只要分別枚舉 x,y 就能得到答案,
8
  設 m=√P 能保證最多枚舉 2√P 次 。
10
  B^(mx+y) N(mod P)
11
  B^(mx)B^y N(mod P)
12
13 B^y N(B^(-m))^x (mod P)
15 先求出 B^0,B^1,B^2,...,B^(m-1),
16 再枚舉 N(B^(-m)),N(B^(-m))^2,… 查看是否有對應的 B^y。
17 這種算法稱為大步小步演算法,
18 大步指的是枚舉 x (一次跨 m 步),
  小步指的是枚舉 y (一次跨 1 步)。
20
21
    複雜度分析
22 利用 map/unorder_map 存放 B^0,B^1,B^2,…,B^(m-1),
23 枚舉 x 查詢 map/unorder_map 是否有對應的 B^y,
  存放和查詢最多 2√P 次,時間複雜度為 0(√Plog√P)/0(√P)。
25
26
27
28
  #include <bits/stdc++.h>
29 using namespace std;
  using LL = long long;
30
  LL B, N, P;
31
32
  LL fpow(LL a, LL b, LL c){
33
34
      LL res=1;
35
      for(;b;b >>=1){
36
          if(b&1)
              res=(res*a)%c;
37
          a=(a*a)%c;
38
39
      }
40
      return res;
41
  }
42
43
  LL BSGS(LL a, LL b, LL p){
      a%=p,b%=p;
44
45
      if(a==0)
          return b==0?1:-1;
46
47
      if(b==1)
48
          return 0;
49
      map<LL, LL> tb;
50
      LL sq=ceil(sqrt(p-1));
51
      LL inv=fpow(a,p-sq-1,p);
52
      tb[1]=sq;
53
      for(LL i=1, tmp=1; i < sq; ++i){</pre>
          tmp=(tmp*a)%p;
54
55
          if(!tb.count(tmp))
56
              tb[tmp]=i;
57
      for(LL i=0;i<sq;++i){</pre>
58
59
          if(tb.count(b)){
60
              LL res=tb[b];
              return i*sq+(res==sq?0:res);
61
62
          b=(b*inv)%p;
63
64
      }
65
      return -1;
66 }
67
  int main(){
68
69
      ios::sync_with_stdio(false);
70
      cin.tie(0),cout.tie(0);
71
      while(cin>>P>>B>>N){
```

7 algorithm

7.1 basic

```
1 min_element:找尋最小元素
2 min_element(first, last)
3 max_element:找尋最大元素
4 max_element(first, last)
5 sort:排序,預設由小排到大。
6 sort(first, last)
기 sort(first, last, cmp):可自行定義比較運算子 cmp ∘
8 find:尋找元素。
9 find(first, last, val)
10 lower_bound:尋找第一個小於 x 的元素位置,
           如果不存在,則回傳 last 。
11
12 lower_bound(first, last, val)
13 upper_bound:尋找第一個大於 x 的元素位置,
           如果不存在,則回傳 last 。
14
upper_bound(first, last, val)
16 next_permutation:將序列順序轉換成下一個字典序,
                如果存在回傳 true,反之回傳 false。
17
18 next_permutation(first, last)
19 prev_permutation:將序列順序轉換成上一個字典序,
20
                如果存在回傳 true,反之回傳 false。
21 prev_permutation(first, last)
```

7.2 二分搜

```
1 int binary_search(int target) {
2 // For range [ok, ng) or (ng, ok], "ok" is for the
3 \ensuremath{//} index that target value exists, with "ng" doesn't.
      int ok = maxn, ng = -1;
5 // For first lower_bound, ok=maxn and ng=-1,
6 // for last lower_bound, ok = -1 and ng = maxn
7 // (the "check" funtion
  // should be changed depending on it.)
8
      while(abs(ok - ng) > 1) {
           int mid = (ok + ng) >> 1;
10
          if(check(mid)) ok = mid;
11
          else ng = mid;
13 // Be careful, "arr[mid]>=target" for first
14 // lower_bound and "arr[mid]<=target" for
15 // last lower_bound. For range (ng, ok],
16 // convert it into (ng, mid] and (mid, ok] than
17 // choose the first one, or convert [ok, ng) into
18 // [ok, mid) and [mid, ng) and than choose
19
  // the second one.
      }
20
21
      return ok;
22 }
23
24 lower_bound(arr, arr + n, k);
                                    //最左邊 ≥ k 的位置
25 upper_bound(arr, arr + n, k);
                                    //最左邊 > k 的位置
26 upper_bound(arr, arr + n, k) - 1;//最右邊 ≤ k 的位置
27 lower_bound(arr, arr + n, k) - 1; //最右邊 < k 的位置
28 (lower_bound, upper_bound)
                                    //等於 k 的範圍
29 equal_range(arr, arr+n, k);
```

7.3 三分搜

```
給定兩射線方向和速度,問兩射線最近距離。
2
3
  假設 F(t) 為兩射線在時間 t 的距離, F(t) 為二次函數,
  可用三分搜找二次函數最小值。
  #include <bits/stdc++.h>
8
  using namespace std;
10
  struct Point{
11
       double x, y, z;
12
       Point() {}
13
14
       Point(double _x, double _y, double _z):
15
           x(_x),y(_y),z(_z){}
       friend istream& operator>>(istream& is, Point& p)
16
17
           is >> p.x >> p.y >> p.z;
18
           return is;
      }
19
20
       Point operator+(const Point &rhs) const{
21
           return Point(x+rhs.x,y+rhs.y,z+rhs.z);
22
23
       Point operator - (const Point &rhs) const{
           return Point(x-rhs.x,y-rhs.y,z-rhs.z);
24
25
       Point operator*(const double &d) const{
26
27
           return Point(x*d,y*d,z*d);
28
       Point operator/(const double &d) const{
29
           return Point(x/d,y/d,z/d);
30
31
      }
32
       double dist(const Point &rhs) const{
33
           double res = 0;
           res+=(x-rhs.x)*(x-rhs.x);
34
           res+=(y-rhs.y)*(y-rhs.y);
35
           res+=(z-rhs.z)*(z-rhs.z);
36
37
           return res;
      }
38
  };
39
40
41
  int main(){
42
       ios::sync_with_stdio(false);
       cin.tie(0),cout.tie(0);
43
44
       int T;
45
       cin>>T;
       for(int ti=1;ti<=T;++ti){</pre>
46
47
           double time;
           Point x1, y1, d1, x2, y2, d2;
48
49
           cin>>time>>x1>>y1>>x2>>y2;
50
           d1=(y1-x1)/time;
51
           d2=(y2-x2)/time;
52
           double L=0,R=1e8,m1,m2,f1,f2;
           double ans = x1.dist(x2):
53
           while(abs(L-R)>1e-10){
55
               m1=(L+R)/2:
56
               m2=(m1+R)/2;
57
               f1=((d1*m1)+x1).dist((d2*m1)+x2);
               f2=((d1*m2)+x1).dist((d2*m2)+x2);
58
59
               ans = min(ans, min(f1, f2));
60
               if(f1<f2) R=m2;
61
               else L=m1;
           }
62
63
           cout << "Case "<<ti << ": ";
           cout << fixed << setprecision(4) << sqrt(ans) << '\n';</pre>
64
65
      }
```

7.4 prefix sum

```
1 // 前綴和
2 | 陣列前n項的和。
3 | b[i]=a[0]+a[1]+a[2]+ ··· +a[i]
4 | 區間和 [l, r]:b[r]-b[1-1] (要保留b[1]所以-1)
5 |
```

```
6 #include <bits/stdc++.h>
  using namespace std;
  int main(){
9
       int n;
10
       cin>>n;
11
       int a[n],b[n];
       for(int i=0;i<n;i++) cin>>a[i];
12
13
       for(int i=1;i<n;i++) b[i]=b[i-1]+a[i];</pre>
14
       for(int i=0;i<n;i++) cout<<b[i]<<' ';</pre>
15
16
       cout << '\n';
17
       int 1, r;
18
       cin>>l>>r;
       cout <<b[r]-b[1-1]; //區間和
19
20 }
```

7.5 差分

```
1 // 差分
2 用途:在區間 [1, r] 加上一個數字v。
3|b[1] += v; (b[0~1] 加上v)
4 b[r+1] -= v; (b[r+1~n] 減去v (b[r] 仍保留v))
5 給的 a[] 是前綴和數列,建構 b[],
  因為 a[i] = b[0] + b[1] + b[2] + ··· + b[i],
7| 所以 b[i] = a[i] - a[i-1]。
8|在 b[1] 加上 v,b[r+1] 減去 v,
9 最後再從 0 跑到 n 使 b[i] += b[i-1]。
10 這樣一來,b[] 是一個在某區間加上v的前綴和。
11
12 #include <bits/stdc++.h>
13 using namespace std;
14 int a[1000], b[1000];
15 // a: 前綴和數列, b: 差分數列
16
  int main(){
      int n, 1, r, v;
17
      cin >> n;
18
      for(int i=1; i<=n; i++){</pre>
19
20
          cin >> a[i];
21
          b[i] = a[i] - a[i-1]; //建構差分數列
22
      cin >> 1 >> r >> v;
23
      b[1] += v;
24
      b[r+1] -= v;
25
26
      for(int i=1; i<=n; i++){</pre>
27
28
          b[i] += b[i-1];
          cout << b[i] << ' ';
29
30
31 }
```

7.6 greedy

```
1 // 貪心
2| 貪心演算法的核心為,
3 採取在目前狀態下最好或最佳(即最有利)的選擇。
5|但不保證能獲得最後(全域)最佳解,
6 提出想法後可以先試圖尋找有沒有能推翻原本的想法的反例,
 確認無誤再實作。
8
9
10 制數字問題
12 給定一個數字 N(≤10^100),需要刪除 K 個數字,
13 請問刪除 K 個數字後最小的數字為何?
14
15 //solution
 刪除滿足第 i 位數大於第 i+1 位數的最左邊第 i 位數,
17 扣除高位數的影響較扣除低位數的大。
18
19 //code
```

```
20 int main(){
21
      string s;
22
      int k;
23
      cin>>s>>k;
24
      for(int i=0;i<k;++i){</pre>
          if((int)s.size()==0) break;
25
          int pos =(int)s.size()-1;
26
27
          for(int j=0;j<(int)s.size()-1;++j){</pre>
             if(s[j]>s[j+1]){
28
                 pos=j;
30
                 break;
             }
31
          }
32
          s.erase(pos,1);
33
34
      while((int)s.size()>0&&s[0]=='0')
35
          s.erase(0,1);
36
37
      if((int)s.size()) cout<<s<<'\n';</pre>
      else cout << 0 << '\n';
38
39
  }
40
42 最小區間覆蓋長度
43 //problem
44 給定 n 條線段區間為 [Li,Ri],
  請問最少要選幾個區間才能完全覆蓋 [0,S]?
46
47
  //solution
  先將 所有 區間 依照 左界 由 小 到 大 排 序 ,
48
  對於當前區間 [Li,Ri],要從左界 >Ri 的所有區間中,
49
  找到有著最大的右界的區間,連接當前區間。
50
51
53 長度 n 的直線中有數個加熱器,
54 在 x 的加熱器可以讓 [x-r,x+r] 內的物品加熱,
  問最少要幾個加熱器可以把 [0,n] 的範圍加熱。
56
57
  //solution
  對於最左邊沒加熱的點a,選擇最遠可以加熱a的加熱器,
58
  更新已加熱範圍,重複上述動作繼續尋找加熱器。
  //code
61
  int main(){
63
      int n, r;
64
      int a[1005];
65
      cin>>n>>r;
      for(int i=1;i<=n;++i) cin>>a[i];
66
67
      int i=1, ans=0;
      while(i<=n){</pre>
68
          int R=min(i+r-1,n),L=max(i-r+1,0)
69
70
          int nextR=-1;
71
          for(int j=R; j>=L; -- j){
72
             if(a[j]){
73
                 nextR=i:
74
                 break;
             }
75
76
          if(nextR==-1){
77
             ans=-1;
78
79
             break;
80
          ++ans:
82
          i=nextR+r;
83
84
      cout << ans << '\n';
85
86
87
88 最多不重疊區間
  給你 n 條線段區間為 [Li,Ri],
  請問最多可以選擇幾條不重疊的線段(頭尾可相連)?
92
93
  //solution
```

94 依照右界由小到大排序,

95 每次取到一個不重疊的線段,答案 +1。

```
96
                                                         172 //problem
97
   //code
                                                         173 給定烏龜的重量和可承受重量,問最多可以疊幾隻烏龜?
   struct Line{
98
                                                         174
99
      int L,R;
                                                         175
100
       bool operator<(const Line &rhs)const{</pre>
                                                         176 和最少延遲數量問題是相同的問題,只要將題敘做轉換。
101
           return R<rhs.R;</pre>
                                                            工作處裡時長 → 烏龜重量
102
                                                            工作期限 → 烏龜可承受重量
103
  }:
                                                            多少工作不延期 → 可以疊幾隻烏龜
104
                                                         180
   int main(){
105
                                                         181
                                                            //code
106
       int t;
                                                         182
                                                            struct Work{
       cin>>t;
107
                                                                int t, d;
                                                         183
108
       Line a[30];
                                                         184
                                                                bool operator < (const Work &rhs)const{</pre>
       while(t--){
109
                                                         185
                                                                    return d<rhs.d;</pre>
110
           int n=0;
                                                         186
          while(cin>>a[n].L>>a[n].R,a[n].L||a[n].R)
111
                                                         187
                                                            };
112
               ++n;
                                                         188
113
           sort(a,a+n);
                                                         189
                                                            int main(){
           int ans=1,R=a[0].R;
114
                                                         190
                                                                int n=0:
115
           for(int i=1;i<n;i++){</pre>
                                                                Work a[10000];
                                                         191
              if(a[i].L>=R){
116
                                                                priority_queue<int> pq;
                                                         192
117
                  ++ans:
                                                                while(cin>>a[n].t>>a[n].d)
                                                         193
118
                  R=a[i].R;
                                                                    ++n;
                                                         194
              }
119
                                                         195
                                                                sort(a.a+n):
120
          }
                                                         196
                                                                int sumT=0, ans=n;
          cout << ans << '\n':</pre>
121
                                                                for(int i=0;i<n;++i){</pre>
                                                         197
122
                                                                    pq.push(a[i].t);
                                                         198
123
  }
                                                         199
                                                                    sumT+=a[i].t;
124
                                                         200
                                                                    if(a[i].d<sumT){</pre>
125
                                                         201
                                                                        int x=pq.top();
   最小化最大延遲問題
126
                                                         202
                                                                        pq.pop();
  //problem
127
                                                                        sumT -=x;
                                                         203
128 給定 N 項工作,每項工作的需要處理時長為 Ti,
                                                         204
                                                                        --ans;
   期限是 Di, 第 i 項工作延遲的時間為 Li=max(0,Fi-Di),
                                                         205
                                                                    }
   原本Fi 為第 i 項工作的完成時間,
130
                                                         206
131 求一種工作排序使 maxLi 最小。
                                                                cout << ans << '\n';
                                                         207
                                                         208 }
133 //solution
                                                         209
134 按照到期時間從早到晚處理。
                                                         210 任務調度問題
135
                                                            //problem
                                                            給定 N 項工作,每項工作的需要處理時長為 Ti,
136
   //code
                                                         212
137
   struct Work{
                                                         213
                                                            期限是 Di,如果第 i 項工作延遲需要受到 pi 單位懲罰,
138
       int t, d;
                                                            請問最少會受到多少單位懲罰。
                                                         214
139
       bool operator < (const Work &rhs)const{</pre>
                                                         215
           return d<rhs.d;</pre>
140
                                                         216
                                                            //solution
141
                                                         217 依照懲罰由大到小排序,
142 };
                                                         218 每項工作依序嘗試可不可以放在 Di-Ti+1, Di-Ti,...,1,0,
143
                                                         219
                                                            如果有空閒就放進去,否則延後執行。
   int main(){
144
                                                         220
145
       int n;
                                                         221
                                                            //problem
       Work a[10000];
146
                                                         222 給定 N 項工作,每項工作的需要處理時長為 Ti,
147
       cin>>n;
                                                            期限是 Di,如果第 i 項工作在期限內完成會獲得 ai
       for(int i=0;i<n;++i)</pre>
                                                         223
148
          cin>>a[i].t>>a[i].d;
                                                                單位獎勵,
149
150
       sort(a,a+n);
                                                            請問最多會獲得多少單位獎勵。
                                                         224
       int maxL=0, sumT=0;
151
                                                         225
       for(int i=0;i<n;++i){</pre>
152
                                                            //solution
                                                         226
          sumT+=a[i].t;
153
                                                            和上題相似,這題變成依照獎勵由大到小排序。
                                                         227
154
          maxL=max(maxL,sumT-a[i].d);
                                                         228
155
                                                         229
                                                            //code
       cout << maxL << '\n';</pre>
156
                                                            struct Work{
                                                         230
157 }
                                                         231
                                                                int d,p;
158
                                                                bool operator<(const Work &rhs)const{</pre>
                                                         232
159
                                                         233
                                                                    return p>rhs.p;
   最少延遲數量問題
160
                                                         234
161
                                                         235
                                                            };
162 | 給定 N 個工作,每個工作的需要處理時長為 Ti,
                                                         236
   期限是 Di,求一種工作排序使得逾期工作數量最小。
                                                            int main(){
163
                                                         237
                                                         238
164
                                                                Work a[100005];
165 //solution
                                                         239
166 期限越早到期的工作越先做。將工作依照到期時間從早到晚排序40
                                                                bitset<100005> ok;
                                                         241
                                                                while(cin>>n){
167 依序放入工作列表中,如果發現有工作預期,
                                                         242
                                                                    ok.reset():
   就從目前選擇的工作中,移除耗時最長的工作。
                                                         243
                                                                    for(int i=0;i<n;++i)</pre>
169
                                                         244
                                                                        cin>>a[i].d>>a[i].p;
170 上述方法為 Moore-Hodgson s Algorithm。
                                                         245
                                                                    sort(a,a+n);
```

```
246
              int ans=0;
              for(int i=0;i<n;++i){</pre>
247
                   int j=a[i].d;
248
                   while(j--)
249
250
                        if(!ok[j]){
251
                             ans+=a[i].p;
                             ok[j]=true;
252
253
                             break:
                        }
254
255
256
              cout << ans << '\n';
257
         }
258 }
```

7.7 floyd warshall

```
1 int w[n][n];
2 int d[n][n];
3 int p[n][n];
4|// 由 i 點到 j點的路徑,其中繼點為 p[i][j]。
6
                              1/0(V^3)
  void floyd_warshall(){
7
    for(int i=0;i<n;i++)</pre>
      for(int j=0; j<n; j++){</pre>
8
9
        d[i][j]=w[i][j];
                        // 預設為沒有中繼點
10
        p[i][j]=-1;
11
12
    for(int i=0;i<n;i++) d[i][i]=0;</pre>
    for(int k=0;k<n;k++)</pre>
13
      for(int i=0;i<n;i++)</pre>
14
15
        for(int j=0;j<n;j++)</pre>
          if(d[i][k]+d[k][j]<d[i][j]){</pre>
16
17
            d[i][j]=d[i][k]+d[k][j];
18
            p[i][j]=k; // 由 i 點走到 j 點經過了 k 點
          }
19
20 }
21
22 // 這支函式並不會印出起點和終點,必須另行印出。
23 void find_path(int s,int t){ // 印出最短路徑
    if(p[s][t]==-1) return; // 沒有中繼點就結束
24
                            // 前半段最短路徑
25
    find_path(s,p[s][t]);
                          // 中繼點
26
    cout << p[s][t];
    find_path(p[s][t],t); // 後半段最短路徑
27
28 }
```

7.8 dinic

```
1 #include <stdio.h>
2 #include <string.h>
3 #include <queue>
  #define MAXNODE 105
5 #define oo 1e9
6 using namespace std;
8 int nodeNum;
  int graph[MAXNODE][MAXNODE];
9
10 int levelGraphΓMAXNODE 1:
11 bool canReachSink[MAXNODE];
12
13
  bool bfs(int from, int to){
14
       memset(levelGraph,0,sizeof(levelGraph));
       levelGraph[from]=1;
15
16
       queue < int > q;
       q.push(from);
17
18
       int currentNode;
19
       while(!q.empty()){
           currentNode=q.front();
20
21
           q.pop();
           for(int nextNode=1; nextNode <= nodeNum</pre>
22
23
                                      ; ++ nextNode){
24
                if((levelGraph[nextNode]==0)&&
                    graph[currentNode][nextNode]>0){
25
```

```
26
                     levelGraph[nextNode]=
27
                         levelGraph[currentNode]+1;
28
                     q.push(nextNode);
                3
29
30
                if((nextNode==to)&&
31
                     (graph[currentNode][nextNode]>0))
32
                     return true:
33
           }
34
       }
35
       return false;
36
  int dfs(int from, int to, int bottleNeck){
37
       if(from == to) return bottleNeck;
38
       int outFlow = 0;
39
40
       int flow;
       for(int nextNode=1; nextNode <= nodeNum; ++ nextNode){</pre>
41
42
           if((graph[from][nextNode]>0)&&
43
                (levelGraph[from]==levelGraph[nextNode]-1)&&
                canReachSink[nextNode]){
44
45
                flow=dfs(nextNode, to,
                     min(graph[from][nextNode],bottleNeck));
46
47
                graph[from][nextNode]-=flow; //貪心
                graph[nextNode][from]+=flow; //反悔路
48
49
                outFlow+=flow;
50
                bottleNeck -= flow:
51
           }
52
           if(bottleNeck==0) break;
53
54
       if(outFlow==0) canReachSink[from]=false;
55
       return outFlow;
56
  }
57
58
  int dinic(int from, int to){
       int maxFlow=0;
59
       while(bfs(from, to)){
60
61
           memset(canReachSink,1,sizeof(canReachSink));
62
           maxFlow += dfs(from, to, oo);
63
       return maxFlow;
64
65
  }
66
  int main(){
67
       int from, to, edgeNum;
68
69
       int NetWorkNum = 1;
70
       int maxFlow:
71
       while(scanf("%d",&nodeNum)!=EOF&&nodeNum!=0){
           memset(graph, 0, sizeof(graph));
72
           scanf("%d %d %d", &from, &to, &edgeNum);
73
           int u, v, w;
74
75
           for (int i = 0; i < edgeNum; ++i){</pre>
76
                scanf("%d %d %d", &u, &v, &w);
77
                graph[u][v] += w;
78
                graph[v][u] += w;
           }
79
           maxFlow = dinic(from, to);
printf("Network %d\n", NetWorkNum++);
80
81
           printf("The bandwidth is %d.\n\n", maxFlow);
82
83
       }
84
       return 0;
85
```

7.9 SegmentTree

```
1 #define MAXN 1000
2 int data[MAXN]; //原數據
3 int st[4 * MAXN]; //線段樹
4 int tag[4 * MAXN]; //懶標
5 6 inline int pull(int 1, int r) {
7 // 隨題目改變sum、max、min
8 // 1、r是左右樹的index
9 return st[1] + st[r];
10 }
11
12 void build(int 1, int r, int i) {
```

```
13
  // 在[1, r]區間建樹,目前根的index為i
      if (1 == r) {
14
15
          st[i] = data[l];
16
          return:
17
      int mid = 1 + ((r - 1) >> 1);
18
      build(1, mid, i * 2);
19
20
      build(mid + 1, r, i * 2 + 1);
      st[i] = pull(i * 2, i * 2 + 1);
21
22
23
24 int query(int ql, int qr, int l, int r, int i) {
  // [q1, qr]是查詢區間,[1, r]是當前節點包含的區間
25
26
      if (ql <= 1 && r <= qr)</pre>
27
          return st[i];
28
      int mid = 1 + ((r - 1) >> 1);
      if (tag[i]) {
29
          //如果當前懶標有值則更新左右節點
30
          st[i * 2] += tag[i] * (mid - 1 + 1);
31
32
          st[i * 2 + 1] += tag[i] * (r - mid);
          tag[i * 2] += tag[i];//下傳懶標至左節點
33
34
          tag[i*2+1] += tag[i];//下傳懶標至右節點
          tag[i] = 0;
35
36
      int sum = 0:
37
38
      if (ql <= mid)</pre>
39
          sum += query(ql, qr, l, mid, i * 2);
40
      if (ar > mid)
41
          sum += query(ql, qr, mid + 1, r, i*2+1);
42
      return sum;
43 }
44
45 void update(int ql,int qr,int l,int r,int i,int c) {
46 // [q1, qr]是查詢區間,[1, r]是當前節點包含的區間
  // c是變化量
47
      if (ql <= 1 && r <= qr) {</pre>
48
          st[i] += (r - l + 1) * c;
49
              //求和,此需乘上區間長度
          tag[i] += c;
50
51
          return;
52
      int mid = 1 + ((r - 1) >> 1);
53
      if (tag[i] && l != r) {
54
          //如果當前懶標有值則更新左右節點
55
56
          st[i * 2] += tag[i] * (mid - 1 + 1);
          st[i * 2 + 1] += tag[i] * (r - mid);
57
          tag[i * 2] += tag[i];//下傳懶標至左節點
58
          tag[i*2+1] += tag[i]; //下傳懶標至右節點
59
          tag[i] = 0;
60
61
62
      if (ql <= mid) update(ql, qr, l, mid, i * 2, c);</pre>
63
      if (qr > mid) update(ql, qr, mid+1, r, i*2+1, c);
      st[i] = pull(i * 2, i * 2 + 1);
64
65 }
67 //改值從+=改成=
```

7.10 Nim Game

```
1 | //兩人輪流取銅板,每人每次需在某堆取一枚以上的銅板,
2 //但不能同時在兩堆取銅板,直到最後,
3 //將銅板拿光的人贏得此遊戲。
5 #include <bits/stdc++.h>
6 #define maxn 23+5
7
  using namespace std;
9 int SG[maxn];
10 int visited [1000+5]:
11 int pile[maxn],ans;
12
13
  void calculateSG(){
14
      SG[0]=0;
15
      for(int i=1;i<=maxn;i++){</pre>
```

```
16
            int cur=0;
            for(int j=0; j<i; j++)</pre>
17
                 for(int k=0;k<=j;k++)</pre>
18
                      visited[SG[j]^SG[k]]=i;
19
20
            while(visited[cur]==i) cur++;
21
            SG[i]=cur;
22
23
  }
24
25
   int main(){
26
        calculateSG():
27
        int Case=0,n;
28
        while(cin>>n,n){
29
          ans=0;
30
          for(int i=1;i<=n;i++) cin>>pile[i];
          for(int i=1;i<=n;i++)</pre>
31
32
            if(pile[i]&1) ans^=SG[n-i];
          cout << "Game "<<++Case << ": ";</pre>
33
          if(!ans) cout<<"-1 -1 -1\n";
34
35
            bool flag=0;
36
37
            for(int i=1;i<=n;i++){</pre>
38
               if(pile[i]){
                 for(int j=i+1; j<=n; j++){</pre>
39
                    for(int k=j;k<=n;k++){</pre>
40
41
                      if((SG[n-i]^SG[n-j]^SG[n-k])==ans){
                        cout << i - 1 << " " << j - 1 << " " << k - 1 << endl;
42
43
                        flag=1;
44
                        break;
45
                      }
46
47
                   if(flag) break;
48
49
                 if(flag) break;
50
              }
51
            }
52
          }
53
54
        return 0;
55
   }
56
57
58
   input
59
      1 0 1 100
60
   3
     1 0 5
   2 2 1
61
62 0
63
   output
   Game 1: 0 2 3
   Game 2: 0 1 1
   Game 3: -1 -1 -1
67 */
```

7.11 Trie

```
1 #include <bits/stdc++.h>
  using namespace std;
  const int maxn = 300000 + 10;
  const int mod = 20071027;
7
  int dp[maxn];
  int mp[4000*100 + 10][26];
8
  char str[maxn];
9
10
  struct Trie {
11
12
       int seq;
13
      int val[maxn];
14
15
       Trie() {
           seq = 0;
16
17
           memset(val, 0, sizeof(val));
18
           memset(mp, 0, sizeof(mp));
19
20
       void insert(char* s, int len) {
```

```
22
           int r = 0;
                                                                18
           for(int i=0; i<len; i++) {</pre>
                                                                            int cur = q.front();
23
                                                                19
                int c = s[i] - 'a';
                                                                20
24
                                                                            q.pop();
                if(!mp[r][c]) mp[r][c] = ++seq;
                                                                            inq[cur] = false;
25
                                                                21
26
                r = mp[r][c];
                                                                22
                                                                            for (auto &e : G[cur])
           }
27
                                                                23
           val[r] = len;
                                                                24
                                                                                if (dis[e.t] <= dis[cur] + e.w)</pre>
28
29
           return;
                                                                25
                                                                                     continue:
                                                                26
                                                                                dis[e.t] = dis[cur] + e.w;
30
31
                                                                27
                                                                                if (inq[e.t])
32
       int find(int idx, int len) {
                                                                28
                                                                                     continue:
           int result = 0;
                                                                29
                                                                                 ++cnt[e.t];
33
           for(int r=0; idx<len; idx++) {</pre>
                                                                30
                                                                                if (cnt[e.t] > n)
34
                int c = str[idx] - 'a';
                                                                                     return false; // negtive cycle
35
                                                                31
36
                if(!(r = mp[r][c])) return result;
                                                                32
                                                                                inq[e.t] = true;
                if(val[r])
37
                                                                33
                                                                                q.push(e.t);
                    result = (result + dp[idx + 1]) % mod;
38
                                                                34
39
           }
                                                                35
                                                                       }
40
           return result;
                                                                36
                                                                        return true:
41
                                                                37 }
42 };
43
44 int main() {
                                                                   7.13 dijkstra
       int n, tc = 1;
45
46
                                                                 1 #include <bits/stdc++.h>
       while(~scanf("%s%d", str, &n)) {
47
                                                                   #define maxn 50000+5
48
           Trie tr;
                                                                   #define INF 0x3f3f3f3f
49
           int len = strlen(str);
50
           char word[100+10];
                                                                 4
                                                                   using namespace std;
51
           memset(dp, 0, sizeof(dp));
                                                                 6
                                                                   struct edge{
52
                                                                 7
                                                                       int v,w;
53
           dp[len] = 1;
                                                                 8
                                                                   };
54
55
           while(n--) {
                                                                 9
                                                                10
                                                                   struct Item{
                scanf("%s", word);
56
57
                tr.insert(word, strlen(word));
                                                                11
                                                                       int u, dis;
                                                                12
                                                                       bool operator<(const Item &rhs)const{</pre>
58
           }
                                                                13
                                                                            return dis>rhs.dis;
59
                                                                       }
           for(int i=len-1; i>=0; i--)
                                                                14
60
                                                                15 };
61
                dp[i] = tr.find(i, len);
                                                                16
62
           printf("Case %d: %d\n", tc++, dp[0]);
                                                                17
                                                                   vector<edge> G[maxn];
63
                                                                18
                                                                   int dist[maxn];
64
       return 0;
                                                                19
65 }
                                                                   void dijkstra(int s){ // O((V + E)log(E))
                                                                20
66
                                                                21
                                                                        memset(dist,INF,sizeof(dist));
67 /********
                                                                22
                                                                        dist[s]=0;
68
   ****Input****
                                                                23
                                                                        priority_queue<Item> pq;
   * abcd
69
                                                                        pq.push({s,0});
                                                                24
70
   * 4
                                                                25
                                                                        while(!pq.empty()){
71
   * a b cd ab
                                                                            Item now=pq.top();
72
   ******
                                                                26
                                                                27
                                                                            pq.pop();
   ****Output***
73
                                                                28
                                                                            if(now.dis>dist[now.u]) continue;
74
   * Case 1: 2
                                                                29
                                                                            for(edge e:G[now.u]){
75
   ******
                                                                30
                                                                                if(dist[e.v]>dist[now.u]+e.w){
76 */
                                                                                     dist[e.v]=dist[now.u]+e.w;
                                                                31
                                                                32
                                                                                     pq.push({e.v,dist[e.v]});
                                                                                }
                                                                33
  7.12 SPFA
                                                                34
                                                                            }
                                                                       }
                                                                35
                                                                36 }
1 struct Edge
                                                                37
2 {
                                                                38
                                                                   int main(){
3
       int t;
                                                                39
                                                                        int t, cas=1;
4
       long long w;
                                                                40
                                                                        cin>>t;
       Edge(){};
                                                                41
                                                                        while(t--){
       Edge(int _t, long long _w) : t(_t), w(_w) {}
6
                                                                42
                                                                            int n,m,s,t;
7 };
                                                                            cin>>n>>m>>s>>t;
                                                                43
8
                                                                            for(int i=0;i<=n;i++) G[i].clear();</pre>
9 bool SPFA(int st) // 平均O(V + E) 最糟O(VE)
                                                                45
                                                                            int u,v,w;
10 {
                                                                46
                                                                            for(int i=0;i<m;i++){</pre>
11
       vector<int> cnt(n, 0);
                                                                47
                                                                                cin>>u>>v>>w;
       bitset<MXV> inq(0);
12
                                                                48
                                                                                G[u].push_back({v,w});
13
       queue<int> q;
                                                                49
                                                                                G[v].push_back({u,w});
14
       q.push(st);
                                                                50
15
       dis[st] = 0;
                                                                51
                                                                            dijkstra(s);
```

53

inq[st] = true;

while (!q.empty())

16

17

cout << "Case #"<<cas++<<": ";

if(dist[t]==INF) cout<<"unreachable\n";</pre>

7.14 SCC Tarjan

```
1 //Strongly Connected Components
2 //Tarjan O(V + E)
3 int dfn[N], low[N], dfncnt, sk[N], in_stack[N], tp;
4 //dfn[u]: dfs時u被visited的順序
5 //low[u]: 在u的dfs子樹中能回到最早已在stack中的節點
6| int scc[N], sc;//節點 u 所在 SCC 的編號
7| int sz[N]; //強連通 u 的大小
9
  void tarjan(int u) {
10
      low[u] = dfn[u] = ++dfncnt, s[++tp] = u,
           in_stack[u] = 1;
11
      for (int i = h[u]; i; i = e[i].nex) {
12
           const int &v = e[i].t;
          if (!dfn[v]) {
13
14
               tarjan(v);
               low[u] = min(low[u], low[v]);
15
          } else if (in_stack[v]) {
16
17
               low[u] = min(low[u], dfn[v]);
18
19
      if (dfn[u] == low[u]) {
20
21
           ++sc;
          while (s[tp] != u) {
22
23
               scc[s[tp]] = sc;
24
               sz[sc]++
25
               in_stack[s[tp]] = 0;
26
               --tp;
          }
27
28
           scc[s[tp]] = sc;
29
          sz[sc]++
30
          in_stack[s[tp]] = 0;
31
           --tp;
      }
32
33 }
```

7.15 SCC Kosaraju

```
1 / / 做兩次dfs, O(V + E)
2 //g 是原圖, g2 是反圖
3 //s是dfs離開的節點
  void dfs1(int u) {
5
      vis[u] = true;
       for (int v : g[u])
6
7
           if (!vis[v]) dfs1(v);
8
      s.push_back(u);
9
  }
10
11
  void dfs2(int u) {
12
      group[u] = sccCnt;
      for (int v : g2[u])
13
           if (!group[v]) dfs2(v);
14
15 }
16
17
  void kosaraju() {
      sccCnt = 0;
18
19
       for (int i = 1; i <= n; ++i)
           if (!vis[i]) dfs1(i);
20
21
       for (int i = n; i >= 1; --i)
22
           if (!group[s[i]]) {
23
               ++sccCnt;
24
               dfs2(s[i]);
           }
25
26 }
```

7.16 ArticulationPoints Tarjan

```
1 #include <bits/stdc++.h>
2 using namespace std;
4
  vector<vector<int>> G;
5
  int N:
6 int timer;
  bool visited[105];
7
  int visTime[105]; // 第一次visit的時間
  int low[105];
9
  // 最小能回到的父節點(不能是自己的parent)的visTime
10
11 int res;
12
  //求割點數量
  void tarjan(int u, int parent) {
13
       int child = 0;
15
      bool isCut = false;
16
       visited[u] = true;
17
       visTime[u] = low[u] = ++timer;
18
       for (int v: G[u]) {
19
           if (!visited[v]) {
20
               ++child;
21
               tarjan(v, u);
22
               low[u] = min(low[u], low[v]);
23
               if (parent != -1 && low[v] >= visTime[u])
24
                   isCut = true;
25
26
           else if (v != parent)
27
               low[u] = min(low[u], visTime[v]);
28
29
       //If u is root of DFS tree->有兩個以上的children
30
       if (parent == -1 && child >= 2)
           isCut = true;
31
32
       if (isCut)
33
           ++res;
34
  }
35
36
  int main()
37
  {
38
       char input[105];
       char* token;
39
       while (scanf("%d", &N) != EOF && N)
40
41
42
           G.assign(105, vector<int>());
           memset(visited, false, sizeof(visited));
43
44
           memset(low, 0, sizeof(low));
           memset(visTime, 0, sizeof(visited));
45
46
           timer = 0;
47
           res = 0;
48
           getchar(); // for \n
49
           while (fgets(input, 105, stdin))
50
               if (input[0] == '0')
51
                   break;
52
53
               int size = strlen(input);
54
               input[size - 1] = ' \setminus 0';
55
               --size;
56
               token = strtok(input, " ");
               int u = atoi(token);
57
58
               int v;
59
               while (token = strtok(NULL, " "))
60
               {
61
                   v = atoi(token);
                   G[u].emplace_back(v);
62
63
                   G[v].emplace_back(u);
               }
64
65
66
           tarjan(1, -1);
67
           printf("%d\n", res);
      }
68
69
       return 0;
```

7.17 最小樹狀圖

```
76 如果新加入的這條邊使堆中的邊形成了環,
   定義
  有向圖上的最小生成樹 (Directed Minimum Spanning Tree)
                                                 77 那麼將構成環的那些結點收縮,
                                                   我們不妨將這些已經收縮的結點命名為超級結點,
  稱為最小樹形圖。
                                                 78
  常用的演算法是朱劉演算法(也稱為Edmonds 演算法),
                                                   再繼續這個過程,如果所有的頂點都縮成了超級結點,
                                                 79
4
5 可以在0(nm)時間內解決最小樹形圖問題。
                                                   那麼收縮過程就結束了。
                                                   整個收縮過程結束後會得到一棵收縮樹,
6
                                                 81
7
                                                 82
                                                   之後就會對它進行伸展操作。
8 1. 對於每個點,選擇它入度最小的那條邊
                                                 83
9 2. 如果沒有環,演算法終止;
                                                 84 | 堆中的邊總是會形成一條路徑 v0 <- v1 <- ... <- vk,
    否則進行縮環並更新其他點到環的距離。
                                                 85 由於圖是強連通的,這個路徑必然存在,
10
                                                 86 並且其中的 vi 可能是最初的單一結點:
12 bool solve() {
                                                   也可能是壓縮後的超級結點。
                                                 87
   ans = 0;
13
14
   int u, v, root = 0;
                                                 89 最初有 v0=a,其中 a 是圖中任意的一個結點,
   for (;;) {
15
                                                 90 每次都選擇一條最小入邊 vk <- u,
     f(i, 0, n) in[i] = 1e100;
16
                                                 91 | 如果 u 不是v0,v1,...,vk中的一個結點,
     f(i, 0, m) {
17
                                                   那麼就將結點擴展到 v k+1=u。
18
       u = e[i].s;
                                                 93 如果 u 是他們其中的一個結點 vi,
       v = e[i].t;
19
                                                   那麼就找到了一個關於 vi <- ... <- vk <- vi的環,
       if (u != v && e[i].w < in[v]) {</pre>
20
21
        in[v] = e[i].w;
                                                   再將他們收縮為一個超級結點c。
        pre[v] = u;
22
                                                 96
23
                                                   向隊列 P 中放入所有的結點或超級結點,
                                                 97
24
                                                   並初始選擇任一節點 a,只要佇列不為空,就進行以下步驟:
                                                 98
     f(i, 0, m) if(i!=root && in[i]>1e50) return 0;
25
26
     int tn = 0;
                                                 100
                                                   選擇 a 的最小入邊,保證不存在自環,
     memset(id, -1, sizeof id);
27
                                                 101
                                                   並找到另一頭的結點 b。
28
     memset(vis, -1, sizeof vis);
                                                   如果結點b沒有被記錄過說明未形成環,
                                                 102
29
     in[root] = 0;
                                                   令 a <- b,繼續目前操作尋找環。
                                                 103
30
     f(i, 0, n) {
                                                 104
31
       ans += in[i];
                                                   如果 b 被記錄過了,就表示出現了環。
                                                 105
       v = i;
32
                                                   總結點數加一,並將環上的所有結點重新編號,對堆進行合併,
33
       while(vis[v]!=i&&id[v]==-1&&v!=root){
                                                 106
        vis[v] = i;
                                                   以及結點/超級結點的總權值的更新。
34
35
        v = pre[v];
                                                   更新權值操作就是將環上所有結點的入邊都收集起來,
                                                 108
36
       }
                                                   並減去環上入邊的邊權。
                                                 109
37
       if (v != root && id[v] == -1) {
                                                110
38
        for(int u=pre[v];u!=v;u=pre[u]) id[u]=tn;
                                                111
        id[v] = tn++;
39
                                                   #include <bits/stdc++.h>
                                                112
       }
40
                                                 113
                                                   using namespace std;
     }
41
                                                114
                                                   typedef long long 11;
42
     if (tn == 0) break;
                                                115 #define maxn 102
     f(i, 0, n) if (id[i] == -1) id[i] = tn++;
43
                                                116 #define INF 0x3f3f3f3f
     f(i, 0, m) {
44
                                                117
       u = e[i].s;
45
                                                 118
                                                   struct UnionFind {
46
       v = e[i].t:
                                                     int fa[maxn << 1];</pre>
                                                119
47
       e[i].s = id[u];
                                                     UnionFind() { memset(fa, 0, sizeof(fa)); }
       e[i].t = id[v];
48
                                                121
                                                     void clear(int n) {
       if (e[i].s != e[i].t) e[i].w -= in[v];
49
                                                       memset(fa + 1, 0, sizeof(int) * n);
                                                122
50
                                                 123
     n = tn;
51
                                                     int find(int x) {
                                                124
     root = id[root];
52
                                                 125
                                                       return fa[x] ? fa[x] = find(fa[x]) : x;
53
                                                126
54
   return ans;
                                                127
                                                     int operator[](int x) { return find(x); }
55
 }
                                                128
56
                                                129
57
                                                   struct Edge {
58
                                                131
                                                    int u, v, w, w0;
   Tarjan 的DMST 演算法
59
                                                132
60 Tarjan 提出了一種能夠在
                                                 133
61 0 (m+nlog n)時間內解決最小樹形圖問題的演算法。
                                                   struct Heap {
                                                134
62
                                                     int rk, constant;
                                                136
                                                     Heap *lch, *rch;
                                                 137
64 Tarjan 的演算法分為收縮與伸展兩個過程。
                                                138
65 | 接下來先介紹收縮的過程。
                                                139
                                                     Heap(Edge *_e):
66 | 我們要假設輸入的圖是滿足強連通的,
                                                 140
                                                      e(_e),rk(1),constant(0),lch(NULL),rch(NULL){}
67 如果不滿足那就加入 O(n) 條邊使其滿足,
                                                 141
68 並且這些邊的邊權是無窮大的。
                                                     void push() {
69
                                                      if (1ch) 1ch->constant += constant;
                                                 143
70 | 我們需要一個堆存儲結點的入邊編號,入邊權值,
                                                       if (rch) rch->constant += constant;
                                                 144
71 結點總代價等相關信息,由於後續過程中會有堆的合併操作,
                                                145
                                                      e->w += constant;
146
                                                       constant = 0;
                                                 147
                                                     }
73 | 演算法的每一步都選擇一個任意結點v,
                                                148 };
74 需要保證v不是根節點,並且在堆中沒有它的入邊。
```

75 再將v的最小入邊加入到堆中,

```
150 Heap *merge(Heap *x, Heap *y) {
     if (!x) return y;
151
     if (!y) return x;
153
     if(x\rightarrow e\rightarrow w + x\rightarrow constant > y\rightarrow e\rightarrow w + y\rightarrow constant)
       swap(x, y);
154
155
     x->push();
     x - rch = merge(x - rch, y);
156
157
     if (!x->lch || x->lch->rk < x->rch->rk)
       swap(x->lch, x->rch);
158
159
      if (x->rch)
160
       x->rk = x->rch->rk + 1;
161
     else
        x->rk = 1;
162
163
     return x;
164 }
165
166 Edge *extract(Heap *&x) {
167
     Edge *r = x->e;
     x->push();
168
169
     x = merge(x->lch, x->rch);
170
     return r;
171 }
172
173 vector<Edge> in[maxn];
   int n, m, fa[maxn << 1], nxt[maxn << 1];</pre>
175 Edge *ed[maxn << 1];
176 Heap *Q[maxn << 1];
177 UnionFind id;
178
179
   void contract() {
     bool mark[maxn << 1];</pre>
180
      //將圖上的每一個節點與其相連的那些節點進行記錄
181
     for (int i = 1; i <= n; i++) {</pre>
182
        queue < Heap *> q;
183
        for (int j = 0; j < in[i].size(); j++)</pre>
184
185
          q.push(new Heap(&in[i][j]));
186
        while (q.size() > 1) {
          Heap *u = q.front();
187
          q.pop();
188
          Heap *v = q.front();
189
190
          q.pop();
191
          q.push(merge(u, v));
192
       Q[i] = q.front();
193
     }
194
195
     mark[1] = true;
     for(int a=1,b=1,p;Q[a];b=a,mark[b]=true){
196
        //尋找最小入邊以及其端點,保證無環
197
198
        do {
199
          ed[a] = extract(Q[a]);
200
          a = id[ed[a]->u];
        } while (a == b && Q[a]);
201
        if (a == b) break;
202
203
        if (!mark[a]) continue;
        //對發現的環進行收縮,以及環內的節點重新編號,
204
        //總權值更新
205
206
        for (a = b, n++; a != n; a = p) {
207
          id.fa[a] = fa[a] = n;
          if (Q[a]) Q[a]->constant -= ed[a]->w;
208
          Q[n] = merge(Q[n], Q[a]);
210
          p = id[ed[a]->u];
211
          nxt[p == n ? b : p] = a;
212
213
     }
214 }
215
216 ll expand(int x, int r);
217 | 11 expand_iter(int x) {
     11 r = 0;
218
219
     for(int u=nxt[x];u!=x;u=nxt[u]){
        if (ed[u]->w0 >= INF)
220
          return INF;
221
222
223
          r += expand(ed[u]->v,u)+ed[u]->w0;
224
225
     return r;
226 }
```

```
227
228 11 expand(int x, int t) {
     11 r = 0;
229
      for (; x != t; x = fa[x]) {
230
231
       r += expand_iter(x);
232
        if (r >= INF) return INF;
     }
233
234
      return r;
235 }
236
237
   void link(int u, int v, int w) {
      in[v].push_back({u, v, w, w});
238
239 }
240
241
   int main() {
242
     int rt;
      scanf("%d %d %d", &n, &m, &rt);
243
244
      for (int i = 0; i < m; i++) {
        int u, v, w;
scanf("%d %d %d", &u, &v, &w);
245
246
        link(u, v, w);
247
248
      //保證強連通
249
     for (int i = 1; i <= n; i++)</pre>
250
       link(i > 1 ? i - 1 : n, i, INF);
251
252
      contract();
      11 ans = expand(rt, n);
253
      if (ans >= INF)
255
        puts("-1");
256
      else
        printf("%11d\n", ans);
257
258
      return 0;
259 }
```

7.18 凸包

```
* Q: 平面上給定多個區域, 由多個座標點所形成, 再給定
   * 多點(x,y),判斷有落點的區域(destroyed)的面積總和。
3
   * **********************************
  #include <bits/stdc++.h>
  using namespace std;
8
  const int maxn = 500 + 10;
9
  const int maxCoordinate = 500 + 10;
10
  struct Point {
12
      int x, y;
13
  };
14
15
  int n;
16 bool destroyed[maxn];
17
  Point arr[maxn];
18
  vector < Point > polygons[maxn];
19
  void scanAndSortPoints() {
20
21
      int minX = maxCoordinate, minY = maxCoordinate;
      for(int i=0; i<n; i++) {</pre>
22
23
          int x, y;
          scanf("%d%d", &x, &y);
24
          arr[i] = (Point)\{x, y\};
25
          if(y < minY || (y == minY && x < minX)) {</pre>
26
      // If there are floating points, use:
27
28
          if(y<minY || (fabs(y-minY)<eps && x<minX)) {</pre>
              minX = x, minY = y;
29
30
      }
31
32
      sort(arr, arr+n, [minX, minY](Point& a, Point& b){
33
          double theta1 = atan2(a.y - minY, a.x - minX);
          double theta2 = atan2(b.y - minY, b.x - minX);
34
35
          return theta1 < theta2;</pre>
36
      });
37
      return;
38 }
39
```

```
40 // returns cross product of u(AB) x v(AC)
41 int cross(Point& A, Point& B, Point& C) {
       int u[2] = \{B.x - A.x, B.y - A.y\};
42
       int v[2] = {C.x - A.x, C.y - A.y};
43
44
       return (u[0] * v[1]) - (u[1] * v[0]);
45 }
46
47 // size of arr = n >= 3
48 // st = the stack using vector, m = index of the top
   vector<Point> convex_hull() {
50
       vector<Point> st(arr, arr+3);
       for(int i=3, m=2; i<n; i++, m++) {</pre>
51
52
            while(m >= 2) {
                if(cross(st[m], st[m-1], arr[i]) < 0)</pre>
53
54
55
                st.pop_back();
               m - -;
56
           }
57
58
           st.push_back(arr[i]);
59
60
       return st;
61 }
62
63 bool inPolygon(vector < Point > & vec, Point p) {
       vec.push_back(vec[0]);
64
       for(int i=1; i<vec.size(); i++) {</pre>
65
           if(cross(vec[i-1], vec[i], p) < 0) {</pre>
66
67
                vec.pop_back();
                return false;
68
69
           }
70
71
       vec.pop_back();
72
       return true;
73 }
74
75
          1 | x1 x2 x3 x4 x5
                                                xn I
      76
77
          2 | y1 y2 y3 y4 y5
   double calculateArea(vector < Point > & v) {
78
79
       v.push_back(v[0]);
                                    // make v[n] = v[0]
80
       double result = 0.0;
81
       for(int i=1; i<v.size(); i++)</pre>
           result += v[i-1].x*v[i].y - v[i-1].y*v[i].x;
82
83
       v.pop back():
       return result / 2.0;
84
85 }
86
87
   int main() {
88
       int p = 0;
       while(~scanf("%d", &n) && (n != -1)) {
89
90
           scanAndSortPoints();
91
           polygons[p++] = convex_hull();
92
93
94
       int x, y;
       double result = 0.0;
95
       while(~scanf("%d%d", &x, &y)) {
96
97
            for(int i=0; i<p; i++) {</pre>
98
                if(inPolygon(polygons[i], (Point){x, y}))
                    destroyed[i] = true;
99
           }
100
       }
101
       for(int i=0; i<p; i++) {</pre>
102
103
           if(destroyed[i])
104
                result += calculateArea(polygons[i]);
105
       printf("%.21f\n", result);
106
107
       return 0;
108 }
```

8 geometry

8.1 intersection

```
1 using LL = long long;
  struct Point2D {
4
      LL x, y;
  };
5
  struct Line2D {
      Point2D s, e;
      LL a, b, c;
                                       // L: ax + by = c
9
      Line2D(Point2D s, Point2D e): s(s), e(e) {
10
11
          a = e.y - s.y;
          b = s.x - e.x;
12
13
          c = a * s.x + b * s.y;
14
15 };
16
17 // 用克拉馬公式求二元一次解
18
  Point2D intersection2D(Line2D 11, Line2D 12) {
19
      LL D = 11.a * 12.b - 12.a * 11.b;
20
      LL Dx = 11.c * 12.b - 12.c * 11.b;
      LL Dy = 11.a * 12.c - 12.a * 11.c;
21
22
                       // intersection
23
           double x = 1.0 * Dx / D;
24
           double y = 1.0 * Dy / D;
25
26
      } else {
          if(Dx || Dy) // Parallel lines
27
                     // Same line
28
29
      }
30 }
```

9 動態規劃

9.1 LCS 和 LIS

```
1 // 最長共同子序列 (LCS)
2| 給定兩序列 A,B ,求最長的序列 C ,
 C 同時為 A,B 的子序列。
5 //最長遞增子序列 (LIS)
 給你一個序列 A , 求最長的序列 B ,
6
  B 是一個(非)嚴格遞增序列,且為 A 的子序列。
9 //LCS 和 LIS 題目轉換
10 LIS 轉成 LCS
    1. A 為原序列, B=sort(A)
12
    2. 對 A,B 做 LCS
13 LCS 轉成 LIS
    1. A, B 為原本的兩序列
14
    2. 最 A 序列作編號轉換,將轉換規則套用在 B
15
    3. 對 B 做 LIS
16
    4. 重複的數字在編號轉換時後要變成不同的數字,
17
      越早出現的數字要越小
18
    5. 如果有數字在 B 裡面而不在 A 裡面,
19
      直接忽略這個數字不做轉換即可
20
```

10 Section2

10.1 thm

- 中文測試
- $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
- $\binom{x}{y} = \frac{x!}{y!(x-y)!}$
- $\int_0^\infty e^{-x} dx$
- $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$

dp 表格 11

11.1 DPlist

															_
	11	dp	表格				7					· ·			
	11.1	NΒ	list				7: 7	5	 			 	 	 	
	11.1	DΓ	1151				7	7							I
		 I		 	· I	· I	7: - 7:	9	 		 	 	 	 	-
			 	 	 	 	l 8 l 8	1	l 				 		
	l l	I	I				- 8 8	3					 		
,				 	 	 	- 8 - 8	5	 	 	 	 	 	 	-
				 	 	 	l 8 l 8	7	 				 		1
1	!				 	 	- 8 8	9	! !			 !	<u> </u>	 !	-
3				 	 · 	 · 	l 9 - 9	1	 		 	 	 	 	 -
5	i	İ		 	 	 	l 9 l 9	3	 		 		 		1
7		ļ		 	· 	· 	- 9. 9	5				 !			-
3				 	 	 ·	l 9 - 9	7	 		 	 	 	 	-
1		I	 	 	 	 	l 9 l 9	9	 		 	 	 	 	
3	!	 !		 !	· :	 	- 10 10	1	 		 	 	 	 	-
5		 		 	 	 	l 10 - 10	3	 			 	 	 	 -
6 7		I	 	 	 	 	l 10- l 10	5	 		 	 	 	 	1
3		 !		 	· 	· 	- 10 10	7	 		 	 	 	 	-
)		 	ا 	 l 	 ·	 ·	l 10 - 10	9	l 			 	 	 	-
3		I	 	 	 	 	l 11/ l 11	1	 		 	 	 	 	
5	!	 !		 	 !	 !	- 11: 11:	3	 		 	 	 	 	-
7		 		 	 	 	l 11:	5	 			 	 	 	 -
9		I	 	 	 	 	l 11/ l 11	7	 		 	 	 	 	1
)	!	 !	!	 <u> </u>	! !	! !	- 11/ 11/	9	 		 	 	 	 	-
3		 		 	 	 	l 12	1				 	 	 	-
5		I	 	 	 	 	l 12 l 12	3	 				 		
5 7		 !		 	 !	 	- 12 12	5	 		 	 	 	 	-
3		 	<u>-</u>	 	 	 	l 12 - 12	7				 	 	 	-
		I	 	 	 	 	l 12 l 12	9	 		 	 	 	 	1
2		 !		 	· 	· 	- 13 13	1	 		 	 	 	 	-
5		 		 l 	 	 	l 13:	3	 		 	 	 	 	 -
7		 	 	 	 	 	l 13 l 13	5	 		l 	l 	 	l 	1
9		 ļ	!	 	· 	· 	- 13 13	7	 !		 	 !	 	 !	1
)		 		 l 	 	 	l 13	9				 	 	 	-
2		 	 	 	l 	l 	14 14	1	 			 	 	 	1
5	!	 ļ	I	 ! !	· !	· !	- 14 14	3	 		 	 	 	 	-
5 7		 		 	 	 	14 - 14	5	l			 	l 	l 	 -
3		l I	 	 	 	 	14 14	6	 		 	 	 	 	1
)	 	 I	I	 	· 	· 	14		 	: 	: : 	· 		 	-
2	l I	- 1	1	1	I	I	I								

304						
305	I	I	1	I	I	I
306	İ	İ	İ	Ī	ĺ	ĺ
307 308	1			 I	 I	 I
309	i	i	i	 		i i
310						
311 312						
313						
314	1	I	1	I	I	I
315 316	1	I	I	1	I	I
316	1	1	1	I	I	1
18	i	i	i	i	i	i
19						
20 21	1	1	 	 	 	
2	<u>'</u>		<u>-</u>	' 	<u>-</u>	
23 24	1	1	1	1	1	1
;			 	 	 	
	1	I	I	I	I	I
	1	I	1	I	I	I
				 I		 I
)	I	I I	1	[[I 	I I
			· 		· 	·
	!	Į.	!	!	Į.	!
3	I	I	I	I	l 	I
4 5	1	I	1	I	I	I
5	Ì	Ì	İ	Ī	Ì	Ì
7						
3	1	I I	I	I I	I I	I I
9				· 	· 	·
1	1	ļ.	I	I	ļ.	1
2					 	
3 4	1	1	1			1
5	i	İ	i	i	İ	i
6 7						
7	1	1	1	I I	I I	I I
)		· 	· 	· 		·
١	!	!	1	I	l	!
2		 	I	 	 	
	1	 	1	 	 	I
	i	i	i	i	i	i
	1	1	1	1	1	1
				ı 	ı 	ı
	1	ļ	1	I	1	1
	1	I	1	I	I	I
	I	 I	I	 I	 I	 I
	i	i	i		İ	i
1						
	1	1	1	1	1	I
	I 	I 	·	I 	I 	I
	1	I	1	I	I	I
	1	I	I	I	I	I
		 I	I	 I	 I	 I
			İ			İ
	1	1	1			1
	I 	I 	I	I 	I 	I
	1	I	I	I	I	I
	1	I	1	1	I	I
	1					
)	I	I	1	I	I	I

458	1	1	1	1	1	1	535							_
459	<u> </u>	i	i	<u> </u>	<u> </u>	1	536	1	1	ı			1	ı
		'		'		' 		1	1	1	! !	1		
460							- 537	1	1	ı	ı	ı	1	I
461	!	!	!	!	!	!	538							-
462		I	ı	I	ı	I	539	1	1	1	l	I		l
463							- 540		I	I	l	I		l
464		1	I	I	I	1	541							-
465	1	1	1	I	I	I	542	1	I	I	I	I		
466							- 543	1	1	I	I	I	1	I
467	1	1	1	I	I	1	544		· 	· 				-
468	i	i	i	i	i	i	545	1	I .	ı	ı	ı	1	ı
	'	'	.' 	'	'	' 		1		! !		1		! !
469							- 546	ı	ı	ı	I	ı	1	I
470	!	!	!	!	!	!	547							-
471		ı	ı	I	I		548	ı	I	I	l	I	1	I
472							- 549	I	I	1	l	l		l
473		ı	1	1	1		550							-
474	1	1	1	1	1	1	551	1	1	I	I	I	1	ı
475			. .	· 	· 	· 	- 552	i	i	i	İ	i	i	i
476	1	1	1	I	ı	I	553							_
477	i	i	i	i	i	i	554	1	1	ı	ı	ı	1	ı
	'	'	' 	' 	' 	' 		1						
478							- 555	ı	ı	ı	I	ı	1	I
479	!	!	!	!	!	!	556							
480		I	I	I	I		557	I	I	I	l	I		l
481							- 558	I	I	I	I	I		
482	1	1	1	I	I	1	559							-
483	1	1	1	1	1	1	560	1	1	I	I	I	1	ı
484	· 		. .			· 	- 561	i	i	i	i	i	i	i
485	1	1	1	ı	ı	1	562							_
- 1	<u> </u>	i	<u> </u>		<u> </u>	1	563	1		ı			1	
486	ı	ı	ı	1	1	I		!	!	1	!	1	!	!
487							- 564	ı	ı	I	I	I	I	I
488		I	I	I	I		565							-
489		I	I	I	I		566	I	I	I	l	I		l
490							- 567	1	I	I	I	I		
491	1	1	1	1	1	1	568							-
492	İ	i	i	ĺ	İ	İ	569	1	I	I	I	I	1	ı
493			. .				- 570	i	i	i	i	i	i	i
494	1	1	1	1	1	1	571					' 		_
	1	1	-	!	!	1								
495	I	ı	ı	1	1	I	572	!	!	!	!	!	!	!
496							- 573	I	I	I	I	I	I	l
497		I	I	I	I		574							-
498		1	1	I	I	1	575	1	I	I	I	I		
499							- 576	1	I	I	I	I		
500	1	1	1	I	I	1	577							-
501	i	i	i	i	i	i	578	1	I	I	I	I	1	ı
502			. .	· 	· 		- 579	i	i	i	i	i	i	i
503	1	1	1	1	1	1	580		' 		, 	' 		_
	1	- !	!	!	!	1				1			1	
504	1	ı	ı	1	1	I	581	!	!	!	!	!	!	!
505							- 582	ı	ı	I	I	I	ı	l
506		I	I	I	I		583							-
507		1	I	I	I	1	584	I	I	I	I	I		
508							- 585	1		I		l	1	l
509		1	1	I	I	1	586							-
510	1	I	1	1		1	587	1	1		l	I		l
511							- 588	1	I	I	I	I	1	ı
512	1	1	1	I	I	I	589	· 	· 					_
513	i	i	i	i	i	I	590	1	ı	ı	ı	ı	1	ı
514				' 	' 	' 	- 591	i	i	i	I	I	i	i
	1	1	1	1		1			I 		I 	I 		-
515	1	!	!	1	!	I	592							
516	1	I	1	I	I	I	593	1	!	!	!	1	1	I
517							- 594	1	1	I	l	I	1	I
518	1	I	1	1	I	1	595							-
519	1	I	1			1	596	1			l	I		l
520							- 597	1	I	I	l	I	1	l
521	1	1	1	I	I	I	598			· 			· 	-
522	i	i	i	i	i	I	599	1	ı	ı	ı	ı	1	ı
523				' 	' 	' 	- 600	i	i	i	I	I	i	i
	1			_				1	1	1	l 	I	1	I -
524	!	!	!	!	!	!	601							-
525	1	I	1	1	1	I	602	1	!	!	!	I	1	I
526							- 603	1	1	1	l	I	1	I
527	1	I	1		I		604							-
528	1	I	1		I	1	605	1		I	l	I		l
529							- 606	1	I	I	l	I	1	l
530	1	1	1	I	I	I	607							-
531	i	i	i	i	i	i	608	1	I	I	I	I	1	ı
			· 	· 			- 609	i	i	i	I	I	i	i
532	1		1	1				1	I 	I	I 	I 	I	-
533	1	!	1	1	1	I	610							
534	1	I	1	I	I	I	611	1	I	I	I	I	I	I

612		1 1	ı	689	I	I	I	l	I	1 1
613				- 690	1	I	I	I	I	1 1
614 615				691 692	1	I	 I	· I	 I	I I
616				693	i	i	i	İ	i	i i
617 618				694 695	1	 I	 I	 I	 I	I I
619				- 696		i I	' 	 	' 	i i
620		!!!	!	697			·			
621 622			ا 	698 - 699	1	 	 	 	 	
623		1 1	1	700						
624				701		1	l '		l '	
625 626				702 703		 	 	 	I 	
627	li i i i	i i	ĺ	704	1	I	l	l	l	1 1
628 629		ا		705 706		 	 	 	 	
630	li i i i	iii	i	707	1	I	I	l	I	1 1
631				708	1	I	I	l	I	1 1
632 633				709 710	1	 I	· I	· I	 I	I I
634				711	i	i	İ		İ	i i
635	! ! ! !	!!!	!	712						
636 637			ا 	713 - 714	1	 	 	 	 	
638		1 1	1	715						
639		1 1	I	716		1	<u> </u>		<u> </u>	
640 641				- 717 718	I	I 	 	 :	 	
642	li i i i	i i	i	719	1	I	I	l	I	1
643				720	1	I	I		I	1 1
644 645				721 722	1	I				I I
646				723	i	i	i İ	İ	i İ	i i
647				724 725			· I	 I	 I	
648 649		ا ا 	ا 	725	1	! 	! 	 	! 	, ,
650	i i i i		1	727						
651 652				728 729			 -	 	 -	
653		1 1	1	730				:		
654	1 1 1	1 1	I	731	1	I	l	l	ļ	1 1
655 656				732		 	 	 	 	
657	li i i i	iii	i	734	1	I	I	I	I	1 1
658				735	1	I	I	l	I	1 1
659 660				736 737	1	 I	 I	 I	 I	
661				738	i	i I	I		I	i i
662			[739			 I			
663 664		ا ا 	ا 	740 - 741	1	! 	! 	 	! 	
665		1 1	1	742						
666 667				743 - 744		[-		 -	
668				744			I 		ı 	ı l
669	ji i i i	ı i	i	746	!	I	ļ	ļ	ļ	<u> </u>
670 671			. ـ ـ ـ ـ ـ ـ ـ ـ	747 748	I	l 	l 	 	l 	ı l
672	i i i i	iii	i	749	1	I	I	l	I	1 1
673				750	1	I	I	l	I	1 1
674 675				751 752	I	 I	· I	· I	 I	I I
676				753	i	İ	İ		İ	i i
677		!!!	!	754			·			
678 679		ا ا	ا 	755 756	1	I I	I I	[[I I	
680		1 1	1	757						. '
681		1 1	1	758	1	I	l '		l	<u> </u>
682 683		ا ا		759 760	I	I 	 	 	I 	ı l
684	li i i	i i	i	761	1	I	I	I	I	1 1
685				762	1	1	l 	l 	l 	l I
686 687				763 764	1	 	 	· 		
688				765	İ	İ	İ	l	İ	i i

66						- 843		ı	ı	ı	ı
7	1	I	I I		1	844		 :	 	 	
1	I	1	I I	I	1	845	1 1	l	l	l	l
	 I	· · · · · · · · · · · · · ·	 I I	 I		- 846 847		 	 	 	
	i	i	; ; ; ;	i	i	848	1 1	l	l	l	l
1						- 849	i i				l
		Į.			I	850		 · ı			 I
			 			851 - 852		 	 	 	l I
İ	I	1	l I	1	1	853		 	· 	· 	
1	I	I	I I	1	1	854	!!!	<u> </u>	<u> </u>	<u> </u>	l
3	 I		 I I	 I		- 855 856		 	 	 	
,	i	i	I I	i	İ	857	1 1	I	I	I	ı
İ					·	- 858	i i	İ	İ	İ	l
1		į.	!!!	!	!	859		 	·	·	
	 	 	 	 	 	860 - 861		 	 	 	
l	ı	1	1 1	ı	1	862		 			
	İ	İ	i i	i	İ	863	1 1				l
						864	1 1	l	l	l	l
	1	I I	1	I I	I	865 866	I I	 I	· I	· I	 I
			ı l 	' 		- 867		1 	1 	1 	'
	I	1	l l	I	1	868		 			
	I	I	I I	1	1	869	!!!	<u> </u>	<u> </u>	<u> </u>	l
						- 870 871		 	 	 	
l	i	i	! ! ! !		i	871	1 1	1	1	1	ı
		· ·				- 873	i i	İ	İ	İ	İ
l	1	Į.	!!!	ļ	1	874		 	·		
l			 			875 - 876					
	ı	1	l I	I	1	877		 :	 	 	I
l	i	i	i i	i	i	878	1 1	l	l	l	l
l			 			879	1 1		l	l	l
l		!				880 881		 I	·	· I	
l	 		 	 	 	- 882		 	 	 	l I
	I	1	I I	1	1	883		 			
	I	1	I I	I	1	884] [<u> </u>	<u> </u>	<u> </u>	l
	 I		 I I			- 885 886		 	 	 	
l	i	i	I I	i	İ	887	1 1	I	I	I	ı
l						- 888	i i	ĺ	ĺ	ĺ	
l	ļ	Į.	!!!	ļ.	!	889		 	·	·	
	 	 	 	 	 	890 - 891		 	 	 	
	ı	1	1 1	ı	1	892		 ' 			'
;	ĺ	İ	i i	İ	İ	893	1 1				l
			 '			- 894		 			
	T T	I I	ı 	I I	I I	895 896		 			 I
				'	·	- 897	i i	İ	İ	İ	I
İ	ļ	į.	ļ ļ	ļ.	Ţ	898		 	·	·	
	1		l	 		899		[[[
	I	I			1	- 900 901	ı l	 :	 	 	।
l	i	i	i i	i	i	902	1 1	l	l	l	I
İ			 . ·			- 903	1 1	l	l	l	I
	1	Į I		I	I	904		 I	· I	· I	 I
	1 		ı l 	 		905 - 906	1 1	l 	! 	! 	I I
	ı	1	l I	1	1	907		 	· 	· 	
	I	1	l I	I	1	908	1 1	l	!	!	l
			 '			909		 l 	l 	l 	l
	T T	I I	ı 	I I	I I	910 911		 · I	· 	· 	 I
						912	i i	İ	İ	İ	İ
	I	1	l l	1	1	913		 			
١	1		 	 	1	914					
	1	l			1	- 915 916		 	 	 	
	i	i	i i	i	i	917	1 1	l	l	l	I
2						- 918	1 1	l	l	l	I
	1	I	I I	I	1	919		 			

1												
920 921					 -	997 998	1		· I			
922				 	 	- 999	i	 				! !
923	1 1	1	1	I	I	J 1000						
924	1	1	1	I	l	1001	1					
925					 '	- 1002	I	I				l I
926 927	1 1	l I	1	 	 	1003 1004	1		· I		 I	
928						- 1005	i	 		 		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
929	1 1	1	1	I	I	l 1006	·					
930	1	I	1	I	l	1007	1					l I
931					 '	- 1008	I	I				l I
932 933		l I	1	 	l I	1009 1010	1		· I			
934						- 1011	i	İ	 	 	 	i i
935	1 1	1	1	I	I	1012						
936	1 1	I	1	I	l	1013	!	<u> </u>				ļ ļ
937 938	1 1		1	 I		- 1014 1015		 	 	 	 	
939	i i	i	i	! 	! 	1015	1	1	I	I	I	1 1
940		:	· 			- 1017	i	i i				i i
941	1	1	1	l	l	l 1018						
942	I I	l	1	I	l 	1019	1					
943 944		I	1	· · · · · · · · · · · · ·	· · · · · · · · · · · · ·	- 1020 1021	I 	I 	I 	 	I 	ı l
945	i i	i	i			1021	1		l	l	l	
946	·	· · ·				- 1023	1	ı	l	l	l	ı i
947	1 1	1	1	1	<u> </u>	1024				· ·		
948 949		 		 	 	1025 - 1026						
950	1 1	ı	I			1026	I 	 	 :	 	 	l I
951	i i	i	i	I	I	1028	I	I				Ι Ι
952						- 1029	1	I				I I
953	!!!	ļ	!	!	<u> </u>	1030			·			
954 955		 		 	 	1031 - 1032	1	 	 	 	 	
956	1 1	1	I	I	I	1032		 	 		 	
957	i i	i	i	I	I	1034	I	I				Ι Ι
958						- 1035	1					
959	!!!	ļ				1036						
960 961		 	I	 	 	1037 - 1038	1]]]]]]	l I I I
962	1 1	1	I	I	I	l 1039			:			
963	1	1	1	I	l	l 1040	1	l I	l	l	l	l I
964						- 1041	I	I				l I
965 966		l I	1	 	 	1042 1043	1		 I			
967						1043 - 1044	i	! 	 	 	 	' '
968	1	1	1	I	I	1045	· 			· 	· ·	
969	1 1	I	1	I	l	1046	!	<u> </u>				! !
970 971	1 1		1	 I		- 1047 1048		 	 	 	 	
972	i i	i	İ	! 	! 	1049	ı	I	I	I	I	1 1
973						- 1050	Ī	I	- 	- 	- 	I I
974	<u> </u>	!	Į.	I	ļ	l 1051		·		·		
975 976		 		 	 	1052 - 1053	1]]] 	
976		I	1	I	I	1053	I 	ı 				ı l
978	i i	i	i	i İ	I	1055	1	I	I	I	I	l I
979					·	- 1056	1	I	l	l	l	l İ
980		ļ	1	[-	1057	1	· ·	· I	· I	· I	,
981 982	ı l	 	I	I 	 	1058 - 1059	1	I I	I I	I I	I I	I I
983	1 1	1	I	I	I	1060						
984	ı i	i	I	I	I	1061	1	l I	l	l	l	1
985					·	- 1062	1	l I	l	l	l	l I
986		l '	1	[-	1063	1	 I	 I	· I	 I	
987 988	ı l	 	I 	I 	I 	1064 - 1065	1	 	! 	! 	! 	ı 1
989	1 1	I	I	I	I	1066						
990	ı i	i	1	I	I	1067	1	I	l	l	l	l I
991					·	- 1068	1	l I	l	l	l	l I
992		ļ	1	[-	1069	1	· ·	· I	· I	· I	,
993 994	ı l	 	I	I 	 	1070 - 1071	1	I I	I I	I I	I I	ı 1 I I
995	1 1	1	I	I	I	1071						
996	ı i	i	I	I	I	1073	1	l I	l	l	l	1

1075 1076	1							1						
4077	:		!	!	l	<u> </u>	1153							-
1077 1078		 	 	 	 	 	1154 - 1155		1	 	 	1 1	l I	1
1079	1	l	I	I	l	I	1156							-
1080	Ì		ĺ	ĺ		ĺ	1157	1	1	I	I	1 !	l	I
1081		·					- 1158		1	I	I	1	l	I
1082 1083		 	 	 	 	 	1159 1166			1	 I	1		- I
1084							- 1161		i	i	i	i	' 	i
1085	I	I	I	I	I	I	1162							-
1086	I		l	I		l	1163		1		<u> </u>	1		!
1087 1088	1	· I	 I	 I	 I	 I	- 1164 1165		·	 	l 	I .	l 	 -
1089	i	' 		İ	' 		1166		1	I	I	1	I	I
1090							- 1167	1	Ī	Ì	l	1	l	I
1091	!		!	!		!	1168							-
1092 1093		 	 	 	 	 	1169 - 1176		1	 	 	1	l I	1
1094	ı	I	I	I	I	I	1171	'						-
1095	İ	i İ	İ	İ	i İ	İ	1172	1	1	I	I	1 /	I	I
1096							- 1173		1	I	I	1	l	I
1097 1098	I I	I I	I I	I 	I I	I I	1174 1175		1	1				ı
1099							- 1176		i	i	I	. !		i
1100	!	l	l	I	l	l	1177							-
1101		l 	 	 	l 	 	1178		1	1	[]	 -	
1102 1103	1	· · · · · · · · · · · · ·				 	- 1179 1186		I	I 	I 	ı .	I 	I -
1104	i		İ	i i		İ	1181	1	1	I	I	1	l	I
1105							- 1182	1	1	I	I	1	l	I
1106							1183				 I			-
1107 1108		 	 	 	 	l 	118 ² - 1185		1	 	! 	 	l I	1
1109	I	l	I	I	l	I	1186							-
1110	I	l	l	I	l	l	1187		1	1	I	1 /	l	I
1111 1112		· I		 I	 I		- 1188 1189				 		 	<u> </u>
1113	<u> </u>	l 	! 	! 	l 	! 	1196		I	I	I	1	I	ı
1114							- 1191	1	i	i	i	i i	i İ	i
1115	ļ.	l ·	ļ ·	Į.	l ·	ļ	1192							-
1116 1117		 	 	 	 	 	1193 - 1194		1	 	 	1 1	 	1
1118	ı	I	I	I	I	I	1195						 	-
1119	ĺ	l	ĺ	l	l	ĺ	1196	1	1	I	I	1 /	I	I
1120					·		- 1197		I	I	I	1		I
1121 1122	 	l I	 	 	l I	 	1198 1199		1	1	 I		 I	- I
1123							- 1206		İ	i	İ	i	' 	i
1124	I	I	I	I	I	I	1201							-
1125		l 	 	 	 	l 	1202]		
1126 1127	1	I		I	I		- 1203 1204		 	 	I 	I .	l 	- -
1128	i		İ	i i		İ	1205	1	1	I	I	1	l	I
1129		·					- 1206		1	I	I	1 !	I	I
1130 1131	I I	l I	l I	I I	l I	l I	1207 1208		I		 I			- I
1132		 	 	 	 	ı 	- 1200 - 1209		1	1	' 	 	! 	
1133	I	I	I	I	I	I	1216							-
1134	I	I	I	I	I	I	1211		1	1	ļ	!		
1135 1136	I	· I		· I	· I		- 1212 1213		I	I	I 	ı .	l 	I -
1137	i						1213		1	I	I	1	I	I
1138							- 1215	1	1	I	I	I i	I	I
1139	1		l '	1		l '	1216							-
1140 1141	I	l 	l 	I 	l 	l 	1217 - 1218		I	I I	I I	I	 	l I
1142	I	I	I	I	I	I	1216							-
1143	İ	l	l	Ī	l	l	1226	1	1	I	I	1	l	I
1144		·					- 1221	1	1	I	I	1 !	I	I
1145 1146	I	l I	l I	I I	l I	l I	1222 1223		I		 I			- I
1147			' 			' 	- 1224			i			' 	
1148	I	I	I	I	I	I	1225							-
1149	1		I	I		I	1226	1	1	1	ļ	!		
1150							- 1227	1	I	I	I	1	I	I

1000							1205						
1228 1229	1	I	1	 I			- 1305 1306		 :	 	 	 	
1230	i	i	i	I	I		1307	1 1					I I
1231							1308	1 1					l I
1232	1	1	1	!	<u> </u>	!!!	1309						
1233 1234			 	 	l 		1310						
1234	1	I	1			I I	- 1311 1312		 	l 		l 	
1236	i	i	i	İ	i I	I i	1313	1 1					l I
1237							1314	1 1		l I		l I	l I
1238	!	1	!	l	!	[[1315						
1239 1240			 	 	l 		1316 - 1317						
1240	1	I	I	I		I I	1318		 :	 	 	 	
1242	i	i	i	I	I	i i	1319	1 1		I		I	Ι Ι
1243							1320	1 1					l I
1244	!	1	!	!	<u> </u>	[[1321						
1245 1246		 	l 	 	 		1322 - 1323			 		 	
1247	1	ı	ı	ı	ı		1323			 		 	
1248	i	i	i	I	I	i i	1325	1 1					I I
1249							1326	1 1					l I
1250	1				<u> </u>		1327	1	·				
1251 1252	I 	I 	I 	I 	I 	ı	1328 - 1329	1 1		 		 	
1253	I	I	I	I	I		1323		:				
1254	1	I	I	I	I	ı	1331	1 1		l I		l I	Ι Ι
1255							1332	1 1		l I		l I	l I
1256 1257	1	1	1	[-	[1333 1334	1	· ·	 I			
1257	I		I 	 	 		- 1335	1 1		 		 	
1259	I	I	I	I	I	1 1	1336						
1260	1	I	I	I	I	1 1	1337	1 1		l I		l I	l I
1261							1338	1 1					l I
1262 1263	1	 	 	 	 	 	1339 1340	1					
1264		' 	' 				- 1341	i i		 		 	
1265	1	I	I	I	I	1 1	1342						
1266	1	I	I	I	l	1 1	1343	1 1					
1267							1344	1 1		l		l	l I
1268 1269	1	 	 	l I	l I	I I	1345 1346	1					
1270		' 					1347	i i					i i
1271	1	1	I	I	l	1 1	1348						
1272	I	I	I	I	l	1 1	1349						. !
1273 1274	1	1	1	 I	 I		- 1350 1351		 	 		 	
1275	I I	İ	i	i İ	! 		1352	1 1		ı		ı	
1276	· 						1353	i i		İ		İ	i i
1277	!	!	!	!	!	!!!	1354						
1278 1279		 	 	 	 		1355 1356			 		 	
1280	ı	I	I	I	I		1357			 		 	
1281	İ	İ	İ	Ī			1358	1 1		I		I	Ι Ι
1282							1359	1 1		l I		l I	l I
1283 1284	1	1	1	[[1360	1					
1284	I 	ı 	ı 	 	ı 	ı	1361 - 1362			 		 	ı 1
1286	1	I	I	I	I	I I	1363						
1287	1	I	I	I	l	I i	1364	1 1		<u> </u>		<u> </u>	ļ I
1288				· ·	 I	 ı	1365						
1289 1290	1	I I	I I	I I	I I	[1366 1367						
1291							1368						·
1292	1	I	I	I	I	I I	1369						·
1293	1	I	I	I	I	I I	1370	1 !					<u> </u>
1294	1	 I	 I	 I	 I	 I	- 1371 I 1372		 	 		 	
1295 1296	1	1	1	! 	! 	i !	1372 1373			 		 	
1297							1374	i i					· '
1298	1	I	I	I	I	I I	1375						·
1299	1	I	I	I	I	I I	1376			<u> </u>		<u> </u>	
1300 1301	1	 I	 I	 I	 I	 	- 1377 1378	I	 	l 	 	l 	ı
1302	i	İ	1		' 	, ! 	1379	1		I		I	
1303						· 	1380	i i					i i
1304	1	I	I	I	l	I 1	1381						

				_			- 1							
1382	1			!	<u> </u>	<u> </u>	1459			· ·				
1383 1384	I 		 	 	 	 	1460 - 1461	1	l I	l I		l I	 	
1385	1	ı	ı	ı	ı	ı	1461		 	 	 	 		
1386	i	i	i	I	i I	i I	1463	1					1 1	
1387							1464	İ					i i	
1388		1		I	l	l	1465							
1389		I	I	l	l	l	1466	!					!!!	
1390 1391				 !			- 1467 1468		 	 	 	 	l I	
1392	1	1	I I	! 	! 	! 	1469	1	I	I	ı	I	1 1	
1393					, 		1470	i					i i	
1394	1	1		I	l	l	1471							
1395	1	1	I	I	l	l	1472	1			l			
1396							- 1473	1				l	1 1	
1397 1398	1	1	1	 	l I	l I	1474 1475	1						
1399			' 				- 1476	i	I 	I 		! 		
1400	1	1	I	I	I	I	1477	·						
1401		1		I	l	l	1478	1					1 1	
1402							- 1479	1					1 1	
1403 1404	1	1	 	 	 	 	1480 1481	1	 I	 I				
1405			' 				- 1482	i	I 	! 		! 		
1406	1	1	I	I	I	I	1483	· 						
1407	1	1	I	I	l	l	1484	1				l	1 1	
1408							- 1485	1					1 1	
1409 1410	1	1	1	 	 	 	1486 1487	1						
1411			 	 	 	 	- 1488	1	l 	l 	 	l 		
1412	1	1	I	I	I	I	1489							
1413	1	1	I	I	l	l	1490	1	l	l		l	1 1	
1414							- 1491	1					1 1	
1415 1416	1	1	 	 	 	 	1492 1493	1	 I	 I			 I I	
1417				 	 		- 1494	i	l 	l 	 	! 	' '	
1418	1	1	I	I	I	I	1495	·						
1419	1	1	I	I	l	l	1496	1	l	l	l	l	1 1	
1420							1497	1					1 1	
1421 1422	1	1	 	 	 	 	1498 1499	1		· I				i
1423			 	 	 	 	- 1500	i	I 	I 	 	l I	, , , ,	
1424	1	I	I	I	I	I	1501			' 	' 			
1425	1	1	I	I	l	l	1502	1	l	l		l	1 1	
1426					·		- 1503	1					1 1	
1427 1428	1	1	1	 	 	 	1504 1505	1		 I		 I		i
1429			' 				- 1506	i	I 	I 		! 		
1430	1	1	I	I	I	I	1507	·						
1431	1	1	1	I	l	l	1508	1					1 1	
1432							- 1509 - 1510	1				l	1 1	
1433 1434	1	1	 	 	 	 	1510 1511	1		· I				i
1435							- 1512	i	I			I	 .	
1436	1	I	1	I	I	I	1513							
1437	1	1	1	I	l	I	1514	!					!!!	
1438 1439	1	I		 I	 I	 I	- 1515 1516	1	 	 	 	 	I 	
1440			i i	! 	! 	! 	1517	1	I	I	1	I	1 1	
1441	· 		· 		, 		- 1518	i				I	i i	
1442	1	1	I	I	l	l	1519							
1443		1	I	I	l	l	1520	1	l	l		<u> </u>		
1444 1445	1	1		 I	 I		- 1521 1522		 	 	 	 	l I	
1446	1	1	 	I I	l I	l I	1522	1	I	I	1	I	1 1	
1447	' 		' 		' 		- 1524	i	' 	' 		' 	i i	
1448	1	1		I	l	l	1525							
1449	1	I	1	I	I	I	1526	!	l ·	l ·	!	l ·	ļ I	
1450					· I		- 1527	1	 	l 	l 	l 	I I	_
1451 1452	I	I I	I I	I I	I I	I I	1528 1529	1		 I	 I			
1453				' 	' 	' 	- 1530				· 		, l	
1454	1	I	I	I	I	I	1531							
1455	1	1	I	I	l	l	1532	1	l	l	l	l	1 1	
1456				·	· I		- 1533		 	 	l 	 	l I	_
1457 1458	1	I I	I I	I I	I I	I I	1534 							
1730	1	1	1	'	1	1	•							

12 slogan

12.1 slogan

