PROBLEM LIST 2

- (1) (10 points) **Stigler diet**. The diet planning problem is considered. There are 77 foods reached of 9 nutrients. Recommended daily consumption of nutrient i is defined by number k_i . For each food j and nutrient i the amount of nutrient per 1\$ spent on this food is defined by $s_{j,i}$. The goal is to find amounts of money spent for each type of food in 365 days and consume all nutrients in numbers which ratio to required consumption lays in $[1 \delta, 1 + \delta]$. Objective minimize amount of total spent money. Create Linear programming model and find the solutions for given data set and $\delta = 0.1$.
- (2) (10 points) **Sudoku puzzle**. Sudoku puzzle objective is to fill a 9 × 9 grid with digits so that each column, each row, and each of the nine 3 × 3 boxes contain all of the digits from 1 to 9. Create Integer Programming model and find the solution of the following instance.

		8		1			
						4	3
5							
			7		8		
					1		
6						7	5
	3	4					
		2			6		

- (3) (15 points) **Function**. Consider the problem max f, where $f:[0,1] \to R$ subject to $f(x) + f(y) + f(z) \le xyz + 1$. Create Mixed-Integer Programming model of this problem, consider discretion $\{0/N, 1/N, \dots, N/N\}$ of function domain [0,1] and find approximate solutions for N = 5, 8, 30.
- (4) (20 points) No 4-cycles. How many edges can be in the graph with n vertices without cycles of the length 4? Create Integer Programming model and find solution for n = 8, 10, 12.
- (5) (10 points) **Plane chromatic number**. We can prove that chromatic number of plane is not less than 4 using the following graph. Create Integer Programming model to check if the vertices of graph on the picture can be colored in 3 colors such that each edge connect vertices of different color.

- (6) (15 points) **Shortest path.** There is a direct graph G(V, E). For each edge $(i, j) \in V$ its length is defined by $l_{ij} = l_{ji}$. If there is no edge from i to j, then $l_{ij} = -1$ and $l_{ii} = 0$ for each $i \in V$. The objective is to find shortest path from a to b. Create Integer Programming model and find solutions for three different pairs of vertices defined in the attached materials.
- (7) (20 points) Assignment with minimal cost. There is a set of workers W and a set of tasks N, such that |W| = |N| and assignment cost function c_{ij} defined for each $i \in W, j \in N$. The objective is to assign workers on tasks with minimal cost. The correct Integer Programming model is described below.
 - Binary variables: $\forall i \in W, j \in Nx_{ij}$ equals to 1 iff worker i assigned on task i.
 - Objective: $\min \sum_{i \in W} \sum_{j \in N} c_{ij} x_{ij}$.
 - Constraints:
 - each worker should be assigned on one task: $\forall i \in W : \sum_{j \in N} x_{ij} = 1$;
 - each task should be assigned to one worker: $\forall j \in N : \sum_{i \in W} x_{ij} = 1$.

Prove that for this model fractional solution of linear relaxation is optimal solution of Integer Programming model. There is no need to implement model, only theoretical proof is required.