CS412 Machine Learning - 2023

HW3-Gradient Descent 50pts

1)	50pts - We are trying to minimize a function $F(x) = In$ other words we want to find the x for which $f(x)$ is	
	Starting from the point x=10 use steepest descent algorithm for TWO steps to find the local minimum of the function around this point. You should use a "step size" of α = 0.1 in update, as: $x = x - \alpha x \nabla$ We will use a subscript to indicate the subsequent values of x, starting from x_0 .	
	Worksheet:	
	$F(x_0) = \dots 5.$: Just to note at what F value we start (5pts
	∇ <i>F</i> =2 <i>x</i> - 10	: Compute the gradient (10pts)
	Note: Even though F is a function of a single variable, you can still write/think of the gradient as a vector of size one.	
	$\nabla F \mid x_0 = \dots 10.\dots$: This is the gradient evaluated at x_0 (10 p ts
	<i>x</i> ₁ =9	::::::::::::::::::::::::::::::::
	<i>F</i> (<i>x</i> ₁) =4	: just checking to see if we are indeed minimizing
	Now do the 2 nd step similarly and write your result	s below (no partial so be careful please): :20pts

<u>Submission</u>: Write the ANSWER line as inline submission to homework and attach the filled page as a pdf document to Sucourse.