Numerical Methods II Assignment 2 Letao Chen

1.1 (a) The semilogy plot in ${L_1}^1, {L_2}^2, \; {L_{inf}}^3$ norm of the relative error is:

We can tell from the graph that the relative error decays exponentially as N grows larger, and $L_1>L_{inf}>L_2.$

 $^{^{1}}$ function f L_{1} norm: $\int \underline{|f|du}$, we use trapz() to do the integration

²function f L_2 norm: $\sqrt{\int |f|^2 du}$

³function f L_{inf} norm: $\inf\{C \geq 0 : |f(x)| \leq C, \forall x \in D\}$

(b) i. Triangle wave f:

The plot of original triangle wave f versus the interpft f plot when N=201 is shown as below:

The semilogy plot of relative error norm $\|\phi - \hat{\phi}\|/\|\phi\|$ of triangle wave f in L_1 , L_2 , L_{inf} norm is shown as below:

From the plot of the wave graph nd the interpft result we can see some obvious errors at the nonsmooth points, i.e., when x=-10, x=0, x=10, and these points cause the relative error plot of the three norm forms decays very slow even as N grows larger.

ii. Sawtooth wave g:

The plot of original sawtooth wave g versus the interpft g plot when N=201 is shown as below:

The semilogy plot of relative error norm $\|\phi - \hat{\phi}\|/\|\phi\|$ of sawtooth wave g in L_1, L_2, L_{inf} norm is shown as below:

From the plot of the sawtooth graph and the interpft result we can see some obvious errors at the nonsmooth points, i.e., when x=-10, x=0, and these points cause the absolute error plot decays very slow even as N grows larger, the relative error of L_1, L_2 approaches to 10^{-1} while in L_{inf} it approaches to 10^{1} .

If we analyze from the spectrum side, let's first look at the semilogy plot of the spectrum of smooth initial function, ϕ_{soln} (N = 135 for all three spectrum graphs below):

We can see the spectrum decays very smoothly as |x| grows larger, and that's because ϕ_{soln} itself is smooth.

However, if we look at the nonsmooth initial function f and g, the semilogy plot of the spectrum look like:

The spectrum has a oscillating decaying shape as |x| grows, and it doesn't decay to 10^{-8} as ϕ_{soln} does. That's because they are not smooth initial conditions.

1.2 (a) The code that evaluate $\mathbf{F}(\hat{\phi})$ is listed below:

```
function dphidt = pseudospec(L, phi, N)
    x = equalspace(-L/2, L/2,N);
    phi_hat = fft(phi(x));
    K = [0:(N-1)/2, -(N-1)/2:-1].*(2*pi/L);
    dphidt = 1i*K.^3.*phi_hat - 3*1i*K.*fft((ifft(phi_hat).^2));|
end
```

function equalspace(start, end, N) returns a list of N nodes that includes the first one but discards the last one.

The graph of $\partial \phi$ versus the result of $K(\phi)$ is shown as below (N = 201):

(b) The semilogy plot of relative error $|\partial \phi - K(\phi)|/\|\partial \phi\|$ in L_1, L_2, L_{inf} norms as N increases is shown below:

The error first increases in L_{inf} norm, then starts to decay exponentially as N increases after $N \approx 21$. This discretization gets more and more accurate when we take larger N.

(c) As shown from the graph, at least approximately over 155 grid points are needed if we want 9 digits of accuracy.

We also observe that the number of digits of accuracy is highly related to the value that the spectrum of ϕ decays to w.r.t. different N. From the error graph in (b) we can tell that the relative error $\approx 10^{-6}$ when N reaches 107 and $\approx 10^{-9}$ when N reaches 155.

If we look at the semilogy plot of the spectrum of ϕ with different N sizes, here we take N = 107 and N = 155:

The value the spectrum finally decays to, i.e., when $\vert x \vert = L/2$ has the same precision of the errors for corresponding N.