EECE.5200 - Homework 6

Travis Kessler

19 April 2021

Accessing Source Code

Source code is available at: https://github.com/tjkessler/eece5200/tree/main/hw6

Note: due to processor architecture incompatibilities (M1 ARM-based processor from Apple), the GLFW-based runtime found in the $2020_glfw.d$ directory was unable to be compiled. The GLUT-based runtime found in the $2020_glad.d$ directory will be the primary focus for this assignment.

Methodology

Two files are supplied in the 2020-glad.d directory: 2D.cpp and 3D.cpp. These files display a two-dimensional and a three-dimensional sinusoidal waveform respectively. Sinusoidal waves are constrained to $-1 \le x \le 1$ and $-1 \le y \le 1$ for the two-dimensional representation, and $-1 \le x \le 1$, $-1 \le y \le 1$, and $-1 \le z \le 1$ for the three-dimensional representation. 100 samples of x between -1 and 1 are sampled for the two-dimensional representation, and 20 samples of x and y between y and y are calculated using $y = sin(x\pi)$.

The purpose of this assignment is to modify the supplied runtimes such that the sinusoidal waveforms move left and right (w.r.t. the x axis) when the 'l' and 'r' keys are pressed respectively, and move up and down (w.r.t. the y axis) when the 'u' and 'd' keys are pressed respectively. This was accomplished by introducing two global variables, $_OFFSET_X$ and $_SCALAR_Y$. $_OFFSET_X$ introduces a horizontal shift to the waveforms, and $_SCALAR_Y$ introduces a vertical scale (adjustment of amplitude) to the waveforms. The glutPostRedisplay() function is used to update the sinusoidal waveforms' graphical representation.

Results

Figure 1: Default positioning for two-dimensional sinusoidal waveform

Figure 2: Increased amplitude for two-dimensional sinusoidal waveform

Figure 3: Decreased amplitude for two-dimensional sinusoidal waveform

Figure 4: Left-shifted positioning for two-dimensional sinusoidal waveform

Figure 5: Right-shifted positioning for two-dimensional sinusoidal waveform

Figure 6: Default positioning for three-dimensional sinusoidal waveform

Figure 7: Increased amplitude for three-dimensional sinusoidal waveform $\,$

Figure 8: Decreased amplitude for three-dimensional sinusoidal waveform

Figure 9: Left-shifted positioning for three-dimensional sinusoidal waveform

Figure 10: Right-shifted positioning for three-dimensional sinusoidal waveform

Bibliography

[1] Thompson, C. University of Massachusetts Lowell Department of Electrical and Computer Engineering 16.520 Computer Aided Engineering Analysis Problem Set 6. Retrieved April 19, 2021, from http://morse.uml.edu/Activities.d/16.520/S2021.d/ps6.pdf