Use $\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$ and a splitting argument to evaluate $S = 1 + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + \cdots$.

Solution. We have

$$\frac{\pi^4}{90} = \sum_{n=1}^{\infty} \frac{1}{n^4} = S + \sum_{\substack{n=1\\n \, \text{even}}}^{\infty} \frac{1}{n^4} = S + \sum_{n=1}^{\infty} \frac{1}{(2n)^4} = S + \frac{1}{16} \sum_{n=1}^{\infty} \frac{1}{n^4} = S + \frac{\pi^4}{16 \cdot 90}$$

Thus
$$S = \frac{\pi^4}{90} - \frac{\pi^4}{16\cdot 90} = \frac{\pi^4}{96}$$
.

Test the following series for convergence. Treat all real values of the constant parameter p.

(a).
$$\sum_{n=2}^{\infty} \frac{1}{(\log n)^p}$$

(b).
$$\sum_{n=2}^{\infty} \frac{1}{(\log n)^n}$$

(c).
$$\sum_{n=2}^{\infty} \frac{1}{n^p(\log n)}$$

(d).
$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$$

(a). Solution. Note that $\log n$ is monotonically increasing and $\log n > 0$ when $n \ge 2$. Let $p \le 0$. Then $(\log n)^p$ is monotonically decreasing, so $a_n = \frac{1}{(\log n)^p}$ is monotonically increasing. Note that $a_2 > 0$ for all p, and $a_n \ge a_2$ for all n, thus (a_n) does not converge to zero because it is bounded below away from zero (one can use $\varepsilon = a_2$ to show failiure to converge). Thus, by the crude divergence, $\sum_{n=2}^{\infty} \frac{1}{(\log n)^p}$ does not converge.

Let p > 0. Since $\log n$ is monotonically increasing, $(\log n)^p$ is also monotonically increasing. Furthermore, for $n \ge 2$, $(\log n)^p > 0$. Thus, (a_n) , where $a_n = \frac{1}{(\log n)^p}$, is a monotonically decreasing series.

Also note that

$$\sum_{k=1}^{\infty} 2^k a_{2^k} = \sum_{k=1}^{\infty} 2^k \frac{1}{(\log 2^k)^p} = \frac{1}{(\log 2)^p} \sum_{k=1}^{\infty} \frac{2^k}{k^p}$$

Note that $\left(\frac{2^k}{k^p}\right)^{-1} = \frac{k^p}{2^k}$. Thus by Theorem 3.20 (d) in Rudin (where $\alpha = p$ and p = 1) we know that $\lim_{n\to\infty}\frac{k^p}{2^k}=0$. But by question 6 (b) from homework 6, which states that if $x_n\to 0$ then $1/x_n$ cannot converge, we have that $\frac{2^k}{k^p}$ diverges. Thus, $\sum_{k=1}^{\infty}2^ka_{2^k}$ diverges as well (crude divergence test). Then, by the Cauchy Condensation Test, $\sum_{n=2}^{\infty}a_n$ must diverge as well (since (a_n) is monotonically decreasing and bounded below by 0). Hence, regardless of p, the series fails to converge.

(b). Solution. Let $a_n = \frac{1}{(\log n)^n}$ and

$$b_n = \begin{cases} \frac{1}{(\log 2)^2} & n = 2\\ \frac{1}{(\log 3)^n} & n \ge 3 \end{cases}$$

Consider the series $\sum_{n=2}^{\infty} b_n = \frac{1}{(\log 2)^n} + \sum_{n=3}^{\infty} \frac{1}{(\log 3)^n}$. Note that our series is a geometric series, specifically $\log 3 > 1$ so $0 < \frac{1}{\log 3} < 1$, which is the common ratio r, and so we know that the series $\sum_{n=2}^{\infty} b_n$ converges.

Now, since $0 < \log 3 \le \log n$ for $n \ge 3$, we have $0 < \frac{1}{\log n} < \frac{1}{\log 3} \implies 0 < \frac{1}{(\log n)^n} < \frac{1}{(\log 3)^n}$, thus $b_n \ge a_n = |a_n| \ge 0$ for all n, and thus by the comparison test, $\sum_{n=2}^{\infty} a_n$ must converge as well. (This is true regardless of p; it was not used.)

(c). Solution. Let $a_n = \frac{1}{n^p(\log n)}$. Let $p \leq 0$. Then $n > 1 \implies 0 < \frac{1}{n} < 1 \implies \frac{1}{n^p} \geq 1$. Furthermore, $0 < \log n < n \implies \frac{1}{\log n} > \frac{1}{n} > 0$. Thus $\frac{1}{n^p} \frac{1}{\log n} > \frac{1}{n} = \left| \frac{1}{n} \right| > 0$. Recall that $\sum_n \frac{1}{n} = +\infty$, so by the comparison test, $\sum_{n=2}^{\infty} a_n = +\infty$ as well, i.e. it fails to converge.

Now let $0 . Note that <math>(n+1)^p > n^p > 0$ and $\log n + 1 > \log n > 0$ for all n, thus $(n+1)^p \log n + 1 > n^p \log n > 0$, and taking the reciprocal, we get $a_n > a_{n+1} > 0$. Now see

$$\sum_{k=1}^{\infty} 2^k \frac{1}{(2^k)^p (\log 2^k)} = \frac{1}{\log 2} \sum_{k=1}^{\infty} \frac{(2^k)^{1-p}}{k}$$

First, if p=1, then our sum becomes $\frac{1}{\log 2} \sum_{k=1}^{\infty} \frac{1}{k}$, which diverges, so by the Cauchy condensation test, $\sum_n a_n$ must diverge as well. Now let $p \neq 1$. Note that $\left(\frac{(2^k)^{1-p}}{k}\right)^{-1} = \frac{k}{(2^{1-p})^k}$. By Theorem 3.20 (d) in Rudin (where $\alpha=1$ and $p=2^{1-p}-1>0$), we know that $\lim_{k\to\infty} \frac{k}{(2^{1-p})^k} = 0$. But then by question 6 (b) from homework 6, we have that $\frac{(2^k)^{1-p}}{k}$ must diverge as well. Thus $\sum_{k=1}^{\infty} 2^k a_{2^k}$ diverges as well (crude divergence

test). Then, by the Cauchy condensation test, $\sum_{n=2}^{\infty} a_n$ must diverge as well. Thus if 0 , the series fails to converge.

Finally, let p > 1. Note that for all $n \ge 3$, $\log n > 1$, so $0 < n^p < n^p \log n$, thus $0 < \frac{1}{n^p \log n} = \left| \frac{1}{n^p \log n} \right| < \frac{1}{n^p}$. Since p > 1, we know that $\sum_{n=3}^{\infty} \frac{1}{n^p}$ converges, thus by the comparison test, $\sum_{n=3}^{\infty} \frac{1}{n^p \log n}$ converges as well. Therefore, when p > 1, $\sum_{n=2}^{\infty} \frac{1}{n^p (\log n)}$ converges.

(d). Solution. Let $a_n = \frac{1}{n(\log n)^p}$. Let $p \le 0$. Note that since $0 < \frac{1}{\log n} < 1$ for $n \ge 3$, we have $1 \le \frac{1}{(\log n)^p}$. Thus, $\frac{1}{n(\log n)^p} \ge \frac{1}{n} = \left|\frac{1}{n}\right| > 0$. Furthermore, $\sum_n \frac{1}{n}$ diverges, thus by the comparison test, $\sum_{n=3}^{\infty} a_n$ diverges as well. Thus, when $p \le 0$, $\sum_{n=2}^{\infty} a_n$ does not converge.

Now let p > 0. Note that (n+1) > n > 0 and $\log n + 1 > \log n > 0 \implies (\log n + 1)^p > (\log n)^p > 0$ for all $n \ge 2$. thus $(n+1)^p \log n + 1 > n^p \log n > 0$, and taking the reciprocal, we get $a_n > a_{n+1} > 0$. Consider

$$\sum_{k=1}^{\infty} 2^k \frac{1}{2^k (\log 2^k)^p} = \frac{1}{(\log 2)^p} \sum_{k=1}^{\infty} \frac{1}{k^p}$$

But the sum is just the p-series. Thus if $p \le 1$, this sum diverges, and if p > 1, the sum converges. Thus, by the Cauchy condensation test, when $0 , <math>\sum_n a_n$ fails to converge; when p > 1, $\sum_n a_n$ converges.

Consider the set ℓ^2 consisting of all real sequences $x=(x_1,x_2,\ldots)$ enjoying the special property that $\sum_n |x_n|^2$ converges. Define an inner product on ℓ^2 as follows:

$$\forall x, y \in \ell^2, \ \langle x, y \rangle := \sum_{n=1}^{\infty} x_n y_n$$

(a). Prove that the series in this definition converges.

Informally, this is the natural generalization of Euclidean k-space to the case $k = \aleph_0$; the inner product $\langle x, y \rangle$ in ℓ^2 is analogous to the dot product $x \bullet y$ in \mathbb{R}^k . It's only a small stretch to call the elements of ℓ^2 "vectors". Add further credibility to this interpretation by defining $||x|| = \sqrt{\langle x, x \rangle}$ for each $x \in \ell^2$, and then proving

- (b) $|\langle x, y \rangle| \le ||x|| ||y||$ for all $x, y \in \ell^2$.
- (c) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \ell^2$.

This generalization has some limitations, however. In \mathbb{R}^k , any sequence of vectors $x^{(1)}, x^{(2)}, x^{(3)}, \ldots$, whose component sequences converge must be a convergent sequence of vectors, and its limit can be identified by taking the limit in each component separetly. Show that this fails in ℓ^2 , as follows:

- (d) Construct a sequence $x^{(1)}, x^{(2)}, \ldots$, of vectors in ℓ^2 such that $||x^{(n)}|| = 1$ for all n, and yet every $p \in \mathbb{N}$ the 'p-th component sequence' $\langle \mathbf{e}_p, x^{(n)} \rangle$ converges to 0 as $n \to \infty$. Here, just as in \mathbb{R}^k , \mathbf{e}_p denotes the "standard unit vector" with exactly one nonzero entry, which is a 1 in position p.
- (a). Solution. For all n, we have $(x_n+y_n)^2\geq 0$, so $x_n^2+y_n^2\geq -2x_ny_n$, and $(x_n-y_n)^2\geq 0$, so $x_n^2+y_n^2\geq 2x_ny_n$, hence $x_n^2+y_n^2\geq 2|x_ny_n|\geq |x_ny_n|$. Let $b_n=x_n^2+y_n^2=|x_n|^2+|y_n|^2$. We now show that $\sum_n b_n$ converges. Let $X_n=\sum_{k=0}^n |x_k|^2$ and $Y_n=\sum_{k=0}^n |y_k|^2$. Thus $X_n+Y_n=\sum_{k=0}^n (|x_k|^2+|y_k|^2)=\sum_{k=0}^n b_k$. Since $\sum_n |x_n|^2$ and $\sum_n |y_n|^2$ converge, denote their limits as $X=\sum_n |x_n|^2=\lim_{n\to\infty} X_n$ and $Y=\sum_n |y_n|^2=\lim_{n\to\infty} Y_n$. So by the addition limit law, we have $\sum_n b_n=\lim_{n\to\infty} \sum_{k=0}^n b_k=\lim_{n\to\infty} \infty (X_n+Y_n)=X+Y$, thus $\sum_n b_n$ converges. Finally, by the comparison test, since $\sum_n (x_n^2+b_n^2)$, we have that $\sum_n (x_ny_n)$ converges as well.
- (b). Solution. Note that if we consider the first k terms of x_n and y_n as entries of a k-tuple, we have shown in class the Cauchy Schwartz inequality:

$$L_k = \left| \sum_{n=1}^k x_n y_n \right| \le \sqrt{\sum_{n=1}^k x_n^2} \sqrt{\sum_{n=1}^k y_n^2} = \sqrt{\sum_{n=1}^k x_n^2 \sum_{n=1}^k y_n^2} = R_k$$

Note that L_k and R_k are sequences that satisfy $L_k \leq R_k$ for all k. Thus by the lemma from October 11 from the course notes, we also have

$$\liminf_{k \to \infty} L_k \le \liminf_{k \to \infty} R_k \quad \text{and} \quad \limsup_{k \to \infty} L_n \le \limsup_{k \to \infty} R_k$$

Furthermore, both $\sum_n x_n^2$ and $\sum_n y_n^2$ converge, so our limit laws tell us that their product must also converge, and R_k is just the square of a convergent sequence, and so R_k must also converge. Additionally, we proved in part (a) that L_k converges. Thus, both of their lim sups and liminfs must equal each other, so we get

$$\lim_{k \to \infty} L_k \le \lim_{k \to \infty} R_k$$

But extracting the definitions of L_k and R_k , this is just

$$\lim_{k \to \infty} \left| \sum_{n=1}^{k} x_n y_n \right| \le \lim_{k \to \infty} \sqrt{\sum_{n=1}^{k} x_n^2} \sqrt{\sum_{n=1}^{k} y_n^2}$$

$$\implies |\langle x, y \rangle| = \left| \sum_{n=1}^{\infty} x_n y_n \right| \le \sqrt{\sum_{n=1}^{\infty} x_n^2} \sqrt{\sum_{n=1}^{\infty} y_n^2} = ||x|| ||y||$$

(c). Solution. If idk something to do with previous one. Note that if we consider the first k terms of x_n and y_n as entries of a k-tuple, we have shown in class the triangle inequality:

$$L_k = \sqrt{\sum_{n=1}^k x_n + y_n} \le \sqrt{\sum_{n=1}^k x_n^2} \sqrt{\sum_{n=1}^k y_n^2} = \sqrt{\sum_{n=1}^k x_n^2 \sum_{n=1}^k y_n^2} = R_k$$

Note that L_k and R_k are sequences that satisfy $L_k \leq R_k$ for all k. Thus by the lemma from October 11 from the course notes, we also have

$$\liminf_{k \to \infty} L_k \le \liminf_{k \to \infty} R_k \quad \text{and} \quad \limsup_{k \to \infty} L_n \le \limsup_{k \to \infty} R_k$$

Furthermore, both $\sum_n x_n^2$ and $\sum_n y_n^2$ converge, so our limit laws tell us that their product must also converge, and R_k is just the square of a convergent sequence, and so R_k must also converge. Additionally, we proved in part (a) that L_k converges. Thus, both of their lim sups and liminfs must equal each other, so we get

$$\lim_{k \to \infty} L_k \le \lim_{k \to \infty} R_k$$

But extracting the definitions of L_k and R_k , this is just

$$\lim_{k \to \infty} \left| \sum_{n=1}^k x_n y_n \right| \le \lim_{k \to \infty} \sqrt{\sum_{n=1}^k x_n^2} \sqrt{\sum_{n=1}^k y_n^2}$$

$$\implies |\langle x, y \rangle| = \left| \sum_{n=1}^{\infty} x_n y_n \right| \le \sqrt{\sum_{n=1}^{\infty} x_n^2} \sqrt{\sum_{n=1}^{\infty} y_n^2} = ||x|| ||y||$$

(d). Solution. ff

Given that the sequence $(s_n + 2s_{n+1})$ converges, prove that the sequence (s_n) converges.

Solution. Cauchy-ness: Since $(s_n + 2s_{n+1})$ converges, then for any ε' , there exists some $N' \in \mathbb{N}$ such that for for all $n \geq N$ and for all $p \in \mathbb{N}$, we have $|2s_{n+p+1} + s_{n+p} - 2s_{n+1} - s_n| < \varepsilon'$.

We want to show that if $\varepsilon > 0$, there exists some $N \in \mathbb{N}$ such that for all $n \geq N$ and for all $p \in \mathbb{N}$, we have $|s_{n+p} - s_n| < \varepsilon$. To do this then, we want some bound on $|2s_{n+p+1} - 2s_{n+1}|$. This kinda makes me feel like induction. If we let p = 1, then we have $|2s_{n+2} - 2s_{n+1}|$.

Maybe something about how

Let $\varepsilon > 0$ be arbitrary. Let N = N'. We will show that (s_n) is Cauchy. Let N = N' (where N' is so that other series bounded by ε too). Let $n \ge N$. We now induct on p. Base case (p = 1): we have $|s_{n+1} - s_n|$. But note that $\varepsilon > |2s_{n+2} + s_{n+1} - 2s_{n+1} - s_n| = |2s_{n+2} - s_{n+1} - s_n|$.

Hmm, what if showing s_n gets arbitrarily close to $s_n + 2s_{n+1}$. If Let $a_n = s_n + 2s_{n+1}$. Then $s_n = a_n - 2a_{n+1} + 4a_{n+2} - \cdots = \sum_{i=0}^{\infty} (-2)^i a_{n+i}$.

Prove that if $\sum_{n=1}^{\infty} a_n^2$ converges, then $\sum_{n=1}^{\infty} \frac{a_n}{n^q}$ converges for any constant $q > \frac{1}{2}$.

Solution. Apparently 3(a)... presume bly $a_n = x_n$ and $y_n = \frac{1}{n^q}$ (p-series so converges).

In parts (a)-(c) below, suppose $a_n > 0$ and $b_n > 0$ for all n, and define

$$A = \sum_{n=1}^{\infty} a_n, \quad B = \sum_{n=1}^{\infty} b_n$$

- (a). Prove the Limit Comparison Test: If b_n/a_n converges to a real number L > 0, then series A converges if and only if series B converges.
- (b). Prove the Ratio Comparison Test: If $a_{n+1}/a_n \leq b_{n+1}/b_n$, convergence of series B implies convergence of series A. What if $a_{n+1}/a_n \leq b_n/b_{n-1}$ instead? [Clue: Start by finding upper and lower bounds for the sequence $r_n = a_n/b_n$.]
- (c). Use (b) with $\zeta(p)$ to prove Raabe's Test: if p > 1 and $a_{n+1}/a_n \le 1 p/n$ for all n sufficiently large, then series A converges. [Clue: First show that $1 px < (1 x)^p$ for all $x \le 1$. Just use calculus.]
- (d). Test $\sum_n a_n$ for convergence, where $a_n = \frac{1 \cdot 4 \cdots (3n+1)}{n^2 3^n n!}$.
- (a). Solution. ff
- (b). Solution. ff
- (c). Solution. ff
- (d). Solution. ff

Prove: If each $a_n \ge 0$ and $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} \frac{a_n}{1+a_n}$ also diverges. Does the converse hold? Solution. If Contrapositive

(a). Prove: Given any $D \in \mathbb{R}$ and $\delta > 0$, there is a finite collection of numbers a_1, a_2, \ldots, a_N such that $D = a_1 + a_2 + \cdots + a_N$ and

$$\delta > |a_1| > |a_2| > \dots > |a_N| > 0$$

- (b). Let $(\sigma_n)_{n\in\mathbb{N}}$ be an arbitrary sequence of real numbers. Explain how to construct a sequence $(x_n)_{n\in\mathbb{N}}$ in \mathbb{R} satisfying, simultaneously
 - (i) $|x_n| > |x_{n+1}|$ for all n, and $x_n \to 0$ as $n \to \infty$, and
 - (ii) the sequence $(s_N)_{N\in\mathbb{N}}$ defined by $s_N=\sum_{n=1}^N x_n$ has $(\sigma_n)_n$ as a subsequence.

Discussion: This show badly the converse of the Crude Divergence Test can fail: the series $\sigma_n x_n$ has terms tending to 0, yet its sequence of partial sums can be wild enough to hit all elements of the preassigned $(\sigma_n)_n$.

- (a). Solution. ff
- (b). Solution. ff