Tutorial (Discussion 1) - Topic 2

Question 1

For each of the following, state the largest domain for which the function is defined.

(a)
$$f(x) = x^2 - 1$$

(d) $h(z) = \sqrt[3]{z+3}$

(a)
$$f(x) = x^2 - 1$$
 (b) $f(t) = \frac{t+3}{t+4}$ (c) $g(x) = \sqrt{x+3}$

(c)
$$g(x) = \sqrt{x+3}$$

(c)
$$g(x) = \sqrt{x+3}$$

Question 2

(a) If
$$f(x) = 3x + 2$$
 and $g(x) = 2x - 3$, obtain and simplify the formulae for: *(i) $fg(x)$ (ii) $gf(x)$ (iii) $gg(x)$ (σ)(i)

(ii) gf(x)(iii) gg(x)

$$(a)(i) 6x-7 (ii) 6x+1$$

(b) If h(x) = 2 - x

(i) obtain the formula for hh(x),

(ii) explain why the function h is called self-inverse.

Question 3

Question 4

(ii)
$$h(x) = h^{-1}(x)$$

The functions f and g are defined by

$$f(x) = x^2 - 3, x \in \mathbb{R}; g(x) = x + 3, x \in \mathbb{R}$$

(a) Obtain the formula for the function
$$gf(x)$$
.

(a)
$$x^2$$

(b) (i) $f(x) \in R$, $f(x) \ge -3$

$$(i) f(x) \qquad (i)$$

The formulae for functions f and g are defined by

$$f(x) = x^2 + 2$$
, $g(x) = \sqrt{3-x}$ (a) (i) R (ii) $\Re \le 3$

(i)
$$f(x)$$
 (ii) $g(x)$ (b) State the largest possible domain and corresponding range for $gf(x)$.

Question 5

The formulae for functions f and g are defined by

$$f(x) = \frac{x+3}{x-4}$$
, $g(x) = \frac{x-1}{x+2}$

(a) Show that
$$gf(x) = \frac{7}{3x - 5}$$

Question 6

11 The functions f, g and h are defined by

$$f(x) = 2 - 3x, \quad x \in \mathbb{R}; \quad g(x) = 1 - x, \quad x \in \mathbb{R};$$
$$h(x) = \frac{2 - x}{3}, \quad x \in \mathbb{R}$$

- (a) Show that (i) fg(x) = gf(x), (ii) fh(x) = hf(x).
- (b) Does gh(x) = hg(x)?

Question 7

12 If
$$f(x) = \frac{x+1}{x-2}$$
,

- (a) show that $f(x) = 1 + \frac{3}{x-2}$
- (b) write down a valid domain and range for f(x), $x \in R$, $x \neq 2$, $f(x) \in R$, $f(x) \neq 1$
- (c) show that $f^{-1}(x) = \frac{1+2x}{x-1}$,

(d) write down a valid domain and range for
$$f^{-1}(x)$$
.
 $x \in \mathbb{R}$, $x \neq 1$, $f^{-1}(x) \in \mathbb{R}$, $f^{-1}(x) \neq 2$.

Question 8

The functions g and h are defined by

$$g(x) = \sqrt{x-4}, \quad x \in \mathbb{R}, x > 4; \quad h(x) = \sqrt{1-x^2}, x \in \mathbb{R}, -1 \le x \le 1$$
State the domain and range for the function $hg(x)$.
$$hg(x) \in \mathbb{R}, \quad 4 < x \le 5$$

$$hg(x) \in \mathbb{R}, \quad 0 \le hg(x) < 1$$

Question 9

Functions f and g are defined, for $x \ge 0$, by

$$f: x \mapsto \frac{12}{x+1}$$
,

g:
$$x \mapsto \sqrt{x+1}$$
.

(i) Write down the range of f and of g.

$$0 < f(n) \le 12$$
 $g(n) \ge 1$

[2]

(iii) Solve
$$gf(x) = 3$$
. $\frac{1}{2}$

Question 10

The function f is defined by

$$f: x \mapsto 9 - x^2, \quad x \in \mathbb{R}$$

Find the exact solutions of the equation ff(x) = 0.