

SINGLE-CELL TRANSCRIPTOMICS WITH R

Enrichment analysis

Deepak Tanwar

March 18-20, 2025 Adapted from previous year courses

Feedback from Geert van Geest

Learning objectives

What is Enrichment analysis?

Distinguish between different ways to do it.

Challenges and Limitations of methods.

Goal: To gain biologically meaningful insights from long gene lists

Statistically evaluates the fraction of genes in a particular pathway found among the set of genes showing changes in expression.

- Select a list of genes with certain threshold (FDR <= 0.05)</p>
- 2. For each pathway, count input genes that are part of the pathway
- 3. Repeat for an appropriate background list of genes
- 4. Every pathway is tested for over- or under-representation in the list of input genes

The most commonly used tests are based on the hypergeometric, chi-square, or binomial distribution

Gene1	0.051
Gene2	0.05001
Gene 3	0.049
Gene 4	0.001
Gene 5	0.023
Gene 6	0.04
Gene 7	0.01
Gene 8	0.0501
Gene 9	0.2
Gene 9 Gene 10	0.2
Gene 10	0.051
Gene 10 Gene 11	0.051
Gene 10 Gene 11 Gene 12	0.051 0.05 0.49
Gene 10 Gene 11 Gene 12 Gene 13	0.051 0.05 0.49 0.03

0.051
0.05001
0.049
0.001
0.023
0.04
0.01
0.0501
0.2
0.051
0.05
0.49
0.03
0.01
0.052
0.9

pvalue <= 0.05

Gene 3	0.049
Gene 4	0.001
Gene 5	0.023
Gene 6	0.04
Gene 7	0.01
Gene 5	0.023

Gene 11	0.05
Gene 12	0.49
Gene 13	0.03
Gene 14	0.01

Gene1	0.051
Gene2	0.05001
Gene 3	0.049
Gene 4	0.001
Gene 5	0.023
Gene 6	0.04
Gene 7	0.01
Gene 8	0.0501
Gene 9	0.2
Gene 10	0.051
Gene 11	0.05
Gene 12	0.49
Gene 13	0.03
Gene 14	0.01
Gene 15	0.052
Gene 16	0.9

pvalue <= 0.05

Gene 3	0.049
Gene 4	0.001
Gene 5	0.023
Gene 6	0.04
Gene 7	0.01

Gene 11	0.05
Gene 12	0.49
Gene 13	0.03
Gene 14	0.01

Fisher's test

H_o: The proportion of genes in the gene set is the same for both groups

H_a: The proportion of genes in the gene set is higher in the differentially expressed group

Problems with ORA

Cutoff? 0.051?

Treat all genes equally

Each gene is independent of other

Each pathway is independent of each other

Functional class scoring (FCS)

The hypothesis of FCS is that although large changes in individual genes can have significant effects on pathways, weaker but coordinated changes in sets of functionally related genes (i.e., pathways) can also have significant effects

- 1. Rank the genes
- 2. Perform gene-level statistics in a pathway
- 3. Calculate pathway level-statistics: Kolmogorov-Smirnov statistic

0.051	10
0.05001	12
0.049	11
0.001	8
0.023	2
0.04	3
0.01	1
0.0501	3
0.2	-10
0.051	-3
0.05	-8
0.49	-19
0.03	-3
0.01	-2
0.052	-1
0.9	-4
	0.05001 0.049 0.001 0.023 0.04 0.01 0.0501 0.2 0.051 0.05 0.49 0.03 0.01 0.052

Gene1	0.051	10
Gene2	0.05001	12
Gene 3	0.049	11
Gene 4	0.001	8
Gene 5	0.023	2
Gene 6	0.04	3
Gene 7	0.01	1
Gene 8	0.0501	3
Gene 9	0.2	-10
Gene 10	0.051	-3
Gene 11	0.05	-8
Gene 12	0.49	-19
Gene 13	0.03	-3
Gene 14	0.01	-2
Gene 15	0.052	-1
Gene 16	0.9	-4

Gene set enrichment analysis (GSEA)

Genes ranked by test statistic or log2(FC) * t-value

Functional class scoring (FCS)

Problems with FCS

Each gene is independent of other

Each pathway is independent of each other

Databases

- GO: BP, MF, CC
- KEGG
- Reactome
- DOSE
- DisGeNET
- MSigDb
- KEGG module
- WikiPathways
- TF
- miRNA
- "user input"
- PathGuide

Methods

- ORA
- GSEA
- SAFE
- PADOG
- ROAST
- CAMERA
- GSA
- GSVA/ssGSEA
- GlobelTest
- EBM
- MGSA
- GOSeq
- QUSAGE
- Pathview
- GOSemSim
- GGEA
- SPIA
- PathNet
- DEGraph
- TopologyGSA
- GANPA
- CePa
- NetGSA
- WGCNA

Databases

- GO: BP, MF, CC
- KEGG
- Reactome
- DOSE
- DisGeNET
- MSigDb
- KEGG module
- WikiPathways
- TF
- miRNA
- "user input"
- PathGuide

Problems with databases: Low resolution

Methods

- ORA
- GSEA
- SAFE
- PADOG
- ROAST
- CAMERA
- GSA
- GSVA/ssGSEA
- GlobelTest
- EBM
- MGSA
- GOSeq
- QUSAGE
- Pathview
- GOSemSim
- GGEA
- SPIA
- PathNet
- DEGraph
- TopologyGSA
- GANPA
- CePa
- NetGSA
- WGCNA

Gene Ontology: the world's largest source of information on the functions of genes

The GO contains many terms that are highly similar or overlapping in meaning (e.g., "cell cycle" and "mitosis").

Semantic Similarity Measurement Based on *Exclusively Inherited*Shared Information for Gene Ontology

"exclusively inherited" refers to the subset of shared information that is unique to the two terms being compared (GOTerm₅ and GOTerm₆) and not inherited by other unrelated terms.

Illustration of Semantic Similarity Measurement for Gene Ontology Terms Using Exclusively Inherited Shared Information

Making your own database

database_seeds

\$paper1_day1 Gene1, Gene2, Gene3, Gene4

\$paper2_day2 Gene3, Gene4, Gene5, Gene6

Quiz

- 1. Single cell-level pathway analysis can provide insights into cell-to-cell variability in pathway activity, while pseudo-bulk analysis cannot.
- A) True
- в) False
- 2. Using "exclusively inherited" shared information in semantic similarity calculations helps reduce the impact of redundant GO terms.
- A) True
- B) False

Summary

Three types of methods for enrichment analysis:

- 1. ORA
- 2. FCS
- 3. Pathway Topology

Databases problem

GO semantic similarity

Thank you

sib.swiss

