Permit Number 8097 and PSDTX138M5

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission Rates (8)	
(1)			lbs/hour	TPY (4)
	Meltshop Overhead Canopy Hoods	РМ	13.04	52.14
	Baghouse A Stack	PM ₁₀	13.04	52.14
	FIN:01-EAF, Tundish Pre-Heater,	PM _{2.5}	9.65	38.58
	Ladle Pre-Heater, Shroud Pre-Heater,	СО	77.86	311.42
	and Caster Torches	NO _x	5.75	23.00
		SO ₂	4.81	18.66
		voc	29.66	118.64
		Pb	0.043	0.17
		Hg	0.0029	0.012
		Cr	0.0011	0.0042
		Cd	0.0016	0.0064
06	6 Meltshop Overhead Canopy Hoods	РМ	22.00	88.00
	Baghouse B Stack (6 and 7)	PM ₁₀	22.00	88.00
	FIN: 04-EAF, Tundish Pre-Heater, Ladle Pre-Heater, Shroud Pre-Heater, and Caster Torches	PM _{2.5}	16.28	65.12
		со	133.85	535.38
		NO _x	9.88	39.53
		SO ₂	8.27	32.07
		voc	50.99	203.96
		Pb	0.073	0.30
		Hg	0.0050	0.010

Project Number: 182866

		Cr	0.0018	0.0073
		Cd	0.0027	0.011
07 Furnace A and B 4 th Hole Evacuation and	РМ	17.37	69.49	
	Meltshop Overhead Canopy Hood	PM ₁₀	17.37	69.49
	Baghouse C Stack (6 and 7)	PM _{2.5}	12.85	51.42
	FIN: 01-EAF, 04-EAF, Tundish	СО	284.29	1137.16
	Pre-Heater, Ladle Pre-Heater, Shroud	NO _x	63.08	252.31
	Pre-Heater, and Caster Torches	SO ₂	28.58	114.34
	Caster Forches	voc	24.58	98.34
		Pb	0.0229	0.0914
		Hg	0.11	0.44
		Cr	0.0022	0.0088
		Cd	0.0013	0.0053
09	Large Section Mill Reheat Furnace	РМ	3.38	14.82
	Stack	PM ₁₀	3.38	14.82
		PM _{2.5}	3.38	14.82
		со	37.39	163.76
		NO _x	95.34	417.59
	SO ₂	6.36	1.17	
		VOC	2.45	10.72
Fin: Furna-Fug,		РМ	3.73	14.93
	PM ₁₀	3.73	14.93	
	Tundish Pre-Heater, Ladle Pre-Heater, Shroud Pre-Heater, and Caster Torches	PM _{2.5}	2.76	11.05
		СО	5.23	20.92
		NO _x	0.32	1.27

		SO ₂	0.32	1.27
	VOC	2.01	8.05	
	Pb	0.0029	0.0115	
		Hg	0.0002	0.0008
		Cr	0.0001	0.0003
		Cd	0.0001	0.0004
55	55 Roof Monitor Baghouse E Stack	РМ	3.73	14.93
	(7) FIN: FURNB-FUG,	PM ₁₀	3.73	14.93
	Tundish Pre-Heater, Ladle Pre-Heater,	PM _{2.5}	2.76	11.05
	Shroud Pre-Heater, and Caster Torches	со	5.23	20.92
	and Caster Forches	NO _x	0.32	1.27
		SO ₂	0.32	1.27
		voc	2.01	8.05
		Pb	0.0029	0.0115
		Hg	0.0002	0.0008
		Cr	0.0001	0.0003
		Cd	0.0001	0.0004
10C	B Side Ladle Heaters Sidewall	РМ	0.15	0.58
	Vent	PM ₁₀	0.15	0.58
		PM _{2.5}	0.15	0.58
		со	1.61	6.43
		NO _x	1.91	7.65
		SO ₂	0.27	0.05
		voc	0.11	0.42
10D	A Side Ladle Heaters Sidewall	РМ	0.04	0.18

Vent

1	I			
		PM ₁₀	0.04	0.18
		PM _{2.5}	0.04	0.18
		СО	0.49	1.97
		NO _x	0.59	2.34
		SO ₂	0.08	0.014
		voc	0.03	0.13
11A	Outdoor Alloy Handling	РМ	0.0023	0.0089
	(5)	PM ₁₀	0.0011	0.0042
		PM _{2.5}	<0.0002	<0.0007
12	Scrap Steel Handling	РМ	0.48	1.93
	(5)	PM ₁₀	0.23	0.91
		PM _{2.5}	0.035	0.14
13	Baghouse Dust Railcar Fugitives	РМ	<0.001	0.0023
	(5)	PM ₁₀	<0.001	0.0011
		PM _{2.5}	<0.0001	<0.0002
		Pb	<0.00002	<0.00006
		Hg	<0.00001	4.0 E-08
		Cr	<0.00001	3.9 E-06
		Cd	<0.00001	1.7 E-06
14	Alloy Piles (5)	РМ	0.079	0.054
		PM ₁₀	0.079	0.054
		PM _{2.5}	0.079	0.054
15A	Pelletizer Silo Stack	РМ	0.0324	<0.13
		PM ₁₀	0.0324	<0.13
		PM _{2.5}	0.0324	<0.13

Pb <0.0009 <0.004 Hg 5.0 E-07 2.0 E-06 Cr 5.5 E-05 2.2 E-04 Cd 2.4 E-05 9.5 E-05 PM					
The state of the		Pb	<0.0009	<0.004	
Table		Hg	5.0 E-07	2.0 E-06	
Railcar Loading From Pelletizer Silo (5)			Cr	5.5 E-05	2.2 E-04
From Pelletizer Silo (5) PM ₁₀ PM _{2.5} Phy 1.5 E-05 1.7 E-06 PM 1.7 E-06 Reheat Furnace Stack PM PM 2.15 6.22 PM _{2.5} CO 16.11 46.61 NOx SO ₂ SO ₂ SO ₂ SO ₃ OO001 O.00002 O.00011 O.00002 O.00011 O.00002 O.00011 O.00002 O.00011 O.00002 O.00011 O.00002 O.00011 O.00002 O.0001 O.00001 O.00002 O.0001 O.00002 O.0001 O.00001 O.00002 O.0001 O.00001 O.00002 O.0001 O.00001 O.00002 O.0001 O.00001 O.00001 O.00002 O.0001 O.00001 O.00002 O.0001 O.00001 O.00001 O.00002 O.0001 O.00001 O.00002 O.0001 O.00001 O.00002 O.0001 O.00001 O.00002 O.0001 O.00001 O.00001 O.00002 O.0001 O.00001 O.00001			Cd	2.4 E-05	9.5 E-05
PM10	15B		РМ	<0.0006	0.0023
Pb 1.5 E-05 5.9 E-05 Hg 9.0 E-09 4.0 E-08 Cr 9.7 E-07 3.9 E-06 Cd 4.2 E-07 1.7 E-06 30 In Plant Vehicle Traffic (5) PM - 34.8 PM ₁₀ - 12.5 05A Medium Section Mill Reheat Furnace Stack PM ₁₀ 2.15 6.22 PM _{2.5} 2.15 6.22 CO 16.11 46.61 NO _x 45.10 130.52 SO ₂ 3.03 0.37			PM ₁₀	<0.0003	0.00011
Hg 9.0 E-09 4.0 E-08 Cr 9.7 E-07 3.9 E-06 Cd 4.2 E-07 1.7 E-06 30 In Plant Vehicle Traffic (5) PM - 34.8 PM ₁₀ - 12.5 O5A Medium Section Mill Reheat Furnace Stack PM ₁₀ 2.15 6.22 PM _{2.5} 2.15 6.22 CO 16.11 46.61 NO _x 45.10 130.52 SO ₂ 3.03 0.37			PM _{2.5}	<0.0001	0.00002
Cr 9.7 E-07 3.9 E-06 Cd 4.2 E-07 1.7 E-06 30 In Plant Vehicle Traffic (5) PM - 34.8 PM ₁₀ - 12.5 O5A Medium Section Mill Reheat Furnace Stack PM ₁₀ 2.15 6.22 PM _{2.5} 2.15 6.22 CO 16.11 46.61 NO _x 45.10 130.52 SO ₂ 3.03 0.37			Pb	1.5 E-05	5.9 E-05
30 In Plant Vehicle Traffic (5) PM - 34.8 05A Medium Section Mill Reheat Furnace Stack PM 2.15 6.22 PM ₁₀ 2.15 6.22 PM _{2.5} 2.15 6.22 CO 16.11 46.61 NOx 45.10 130.52 SO ₂ 3.03 0.37			Hg	9.0 E-09	4.0 E-08
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Cr	9.7 E-07	3.9 E-06
Traffic (5) PM ₁₀ - 12.5 05A Medium Section Mill Reheat Furnace Stack PM ₁₀ 2.15 6.22 PM _{2.5} 2.15 6.22 CO 16.11 46.61 NO _x 45.10 130.52 SO ₂ 3.03 0.37			Cd	4.2 E-07	1.7 E-06
05A Medium Section Mill Reheat Furnace Stack PM 2.15 6.22 PM ₁₀ 2.15 6.22 PM _{2.5} 2.15 6.22 CO 16.11 46.61 NO _x 45.10 130.52 SO ₂ 3.03 0.37	30		РМ	-	34.8
Reheat Furnace Stack PM ₁₀ PM _{2.5} CO 16.11 NO _x 45.10 130.52 SO ₂ Reheat Furnace Stack PM ₁₀ PM _{2.5} 2.15 6.22 A 46.61 NO _x SO ₂ 3.03 0.37			PM ₁₀	-	12.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reheat Furnace		РМ	2.15	6.22
CO 16.11 46.61 NO _x 45.10 130.52 SO ₂ 3.03 0.37			PM ₁₀	2.15	6.22
NO _x 45.10 130.52 SO ₂ 3.03 0.37			PM _{2.5}	2.15	6.22
SO ₂ 3.03 0.37		СО	16.11	46.61	
		NOx	45.10	130.52	
VOC 1.14 3.29			SO ₂	3.03	0.37
		voc	1.14	3.29	

(1) Emission point identification - either specific equipment designation or emission point number from plot plan.

(2) Specific point source name. For fugitive sources, use area name or fugitive source name.

(3) VOC - volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM_{10} and $PM_{2.5}$, as

represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

Pb - lead and lead compounds

Hg - mercury and mercury compoundsCr - chromium and chromium compoundsCd - cadmium and cadmium compounds

- (4) Compliance with annual emission limits (tons per year) is based on a 12 month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) Emissions collected in the canopy hood are combined in a mixing chamber before splitting to the two baghouses.
- (7) Indoor coke storage silo baghouse emits inside the building and its emissions are included in the values shown.
- (8) Planned startup and shutdown and maintenance emissions are included.

Date:	February 25, 2013
Date.	1 Columny 25, 2015