Lecture 5: Defining & Identifying Causal Relationships

Outline:

- Definition of potential outcomes
- Fundamental problem of causal inference
- Definition of causal parameters of interest: Average treatment effect (ATE) and average treatment effect on the treated (ATT)
- Moving from potential outcomes to regression
- Readings: A&P Chapters 1-2, I&W Lecture 1

Causal relationships:

- Basic concept of causality: an action (or 'treatment') causes an outcome Y, if Y is the direct result of T
- 'Treatment effect' is the (average) <u>causal effect</u> of a binary (0–1) variable on an outcome variable of scientific or policy interest
 - The term 'treatment effect' comes from the medical literature concerned with the causal effects of binary, treatments, such as an experimental drug
- Examples of treatment: attending college, being exposed to air pollution, having an ITQ property rights regime, etc
 - Note: these are all binary treatments, i.e. T={0,1}. This is the case we consider here (most, but not all of what we will do translate to the case where 'treatment' is a dose, i.e. 0,1,2, ...)

Notion of treatment:

- What is a treatment? <u>Holland (JASA, 1986)</u>: a treatment is a potential manipulation that we can imagine. Mo causation without manipulation
 - Can I possibly expose each member of a population to T=0 or T=1?
- Q: Are gender, race, or adult height valid treatments? How about ambient pollution or smoking?
- Ex: You cannot manipulate race, but you can manipulate perception of race
 - Paper on this in next lecture
- Q: Any analogies to this point in natural sciences?
 - Can you manipulate climate? Topographical features?

Notion of treatment (ctd):

The importance of the idea of "no causation without manipulation" is that it forces us think about what kind of questions we can possibly answer within the "causal inference" framework

- Specifically such questions are ones where we could conceptually imagine an ideal controlled experiment with random assignment of a 'treatment'
- It should be noted that important questions are excluded from this approach. This does not mean they are not important (e.g., gender/racial discrimination)

Causality and potential outcomes

- We define a causal effect using a conceptual framework that is based on a set of <u>potential outcomes</u> that are observed in alternative states of the world
- □ 'Œubin Causal Model" □ See Holland, JASA (1986)
- Define:
- $T_i = \mathbf{1}$ (unit i receives the treatment)
 - Y_i(0) = outcome of unit i realized if does not receive treatment
 - $Y_i(1)$ = outcome of unit i realized if receives treatment

Potential outcomes: examples

Importance: Potential outcomes are key building blocks of definitional and empirical models of causal effects

Examples:

 $Y_i(0)$ = earnings of person i if she does not attend college $Y_i(1)$ = earnings of person i if she attends college

 $Y_i(0) = B_{MSY}$ of fishery i if ITQ system not implemented $Y_i(1) = B_{MSY}$ of fishery i if ITQ system is implemented

*** Key challenge for any empirical investigation is that only one of $(Y_i(0), Y_i(1))$ is observed for the same unit

Unit-level treatment effect:

- Denote $\beta_{1i} = Y_i(1) Y_i(0)$ the causal effect of the treatment T_i for unit i (basic definition of causal effect)
 - Note: this is a theoretical construct since we do not observe $Y_i(1)$ and $Y_i(0)$ for the same i
- \square Important observations about β_{1i} :
 - Treatment effect heterogeneity is native to this model: the same treatment T_i may affect different units in a different way
 - Causal effects are defined independently of treatment assignment mechanism
 - Understanding how the treatment was assigned to subjects is key for causal inference

Unit-level treatment effect:

- Denote $\beta_{1i} = Y_i(1) Y_i(0)$ the causal effect of the treatment T_i for unit i
 - Note: this is a theoretical construct since we do not observe $Y_i(1)$ and $Y_i(0)$ for the same i
- \square Important observations about β_{1i} :
 - No functional form assumption (i.e. not a linear regression or other type of model)
 - ⇒ Definition of causality independent of estimation method
 - Goal is to estimate some feature of distribution of β_{1i} (typically a mean)

Fundamental problem of causal inference

- Y_i(0), Y_i(1) cannot be observed for the same unit during the same experiment
 - Because of this, we must rely on counterfactuals (assumed hypothetical unobserved value) to estimate causal effects
 - Need to estimate $Y_i(0)$ for treated, and $Y_i(1)$ for non-treated
- Case 1: Comparison of different units, exposed to different levels of the treatment
- Case 2: Comparison of the same units, at different points in time (for those exposed to different levels of a time-varying treatment). Clearly requires additional assumptions...
 - This is the basis for panel data analysis. "Not as general"
- ☐ ⇒ The validity of the assumed counterfactual is the key to credible causal inference

SUTVA and observed outcomes

- SUTVA (Stable-Unit Treatment Value Assumption):
- Potential outcomes for unit i do not depend on the treatment assignments of other units (i.e. no interference across units)
- \square As a result, the observed outcome Y_i only depends on T_i :

$$Y_i = Y_i(T_i) = T_iY_i(1) + (1 - T_i)Y_i(0)$$

- SUTVA is restrictive. It rules out: general equilibrium effects, peer effects, spillovers, interference, etc
- The alternative would be a model where the observed outcomes for unit i depend on the treatment received by the other units

Two Most Common Causal Parameters of Interest:

Average treatment effect (ATE):

$$ATE = E[Y_i(1) - Y_i(0)]$$

- ATE = average effect of the treatment for a randomly chosen unit
- Average treatment effect on the treated (ATT):

$$ATT = E[Y_i(1) - Y_i(0) | T_i = 1]$$

- ATT= average treatment effect for units who received the treatment
- 1. In general ATE and ATT will differ. For example, if the units receiving the treatment are those benefiting from it the most on average, we will have ATT > ATE
- 2. ATE is an average on <u>unconditional</u> distributions of $Y_i(1)$ and $Y_i(0)$. When is that observed?

ATE and ATT in Context

Example with fictional data set (red font unobserved)

i	Y _i (1)	Y _i (0)	β_{1i}	T _i	Yi
1	5	2	3	1	5
2	1	1	0	1	1
3	1	0	1	0	0
4	1	1	0	0	1

ATE =
$$E[Y_i(1) - Y_i(0)] = 1$$
 and
ATT = $E[Y_i(1) - Y_i(0) | T_i = 1] = 1.5$ (notice that ATT > ATE)

Here
$$\overline{Y}_1 - \overline{Y}_0 = 2.5 \neq ATE \neq ATT$$

Key identification problem: in general you cannot identify ATE or ATT simply with data on Y_i and T_i.

Requirements for identification:

■ Note that ATE can be written as:

$$Pr(T_i=1)*E[Y_i(1) - Y_i(0) | T_i=1] +$$

 $\{1-Pr(T_i=1)\}*E[Y_i(1) - Y_i(0) | T_i=0]$

Thus for ATE, you need 2 counterfactuals, namely:

$$E[Y_i(0) | T_i=1]$$
 and $E[Y_i(1) | T_i=0]$

- □ For ATT, you only need 1 counterfactual: E[Y_i(0) | T_i=1]
- ☐ ⇒ Stronger assumptions typically required to identify
 ATE as opposed to ATT

From potential outcomes to regression:

Recall the Rubin Causal Model:

 $Y_i(0)$ = potential outcome for unit i if untreated $Y_i(1)$ = potential outcome for unit i if treated $T_i = 1$ if unit i treated, 0 if not

 \square We observe (Y_i, T_i) , where Y_i is the observed outcome:

$$Y_{i} = Y_{i}(1)T_{i} + Y_{i}(0)(1 - T_{i})$$
In words: we observe Y_{i} from the following conditional distributions: $Y_{1i}|T_{i}=1$ and $Y_{0i}|T_{i}=0$

$$= Y_{i}(0) + [Y_{i}(1)-Y_{i}(0)]T_{i}$$

$$= E[Y_{i}(0)] + [Y_{i}(1)-Y_{i}(0)]T_{i} + [Y_{i}(0) - E(Y_{i}(0))]$$

From potential outcomes to regression (ctd):

Thus:

$$Y_i = E[Y_i(0)] + [Y_i(1) - Y_i(0)]T_i + [Y_i(0) - E(Y_i(0))]$$

= β_0 + $\beta_{1i}T_i$ + u_i

Where:

$$\beta_{O} = E[Y_{i}(O)]$$

 $\beta_{1i} = Y_i(1) - Y_i(0) = individual treatment effect$

$$u_i = Y_i(0) - E(Y_i(0))$$
, so $E(u_i) = 0$

Causal parameters in this regression framework:

Causal parameters in this framework:

$$\beta_{1i} = Y_i(1) - Y_i(0) = individual treatment effect$$

$$E[\beta_{1i}]$$
 = average treatment effect (ATE)

$$E[\beta_{1i}|T_i=1]$$
 = average treatment effect on the treated (ATT)

When there is a single treatment effect (i.e. constant treatment effect) then $\beta_{1i} = \beta_1$, we obtain the usual regression model:

$$Y_i = \beta_0 + \beta_1 T_i + u_i$$

where β_1 has causal interpretation = average treatment effect parameter (which we assume here to be constant)

Identification of ATE in this framework:

The model of potential outcomes, with <u>constant</u> <u>treatment effects</u> implies the standard regression model:

$$Y_i = \beta_0 + \beta_1 T_i + u_i$$

- Can we correctly estimate the causal effect of T_i on Y_i with data on T_i and Y_i?
 - Can we estimate regression coefficient β_1 without bias?
- The key is whether the assumption Cov(T_i, u_i)=0 is satisfied [u and T uncorrelated]
 - In other words, is LSA#1 satisfied
 - When is this a reasonable assumption?
- □ Later: Address treatment effect heterogeneity $(\beta_{1i} \neq \beta_1)$

Omitted variables bias in this simple model:

- If T_i and u_i are <u>uncorrelated</u> (maybe conditional on other characteristics X_i), then we proceed with OLS to estimate average causal effect of T_i on Y_i:
 - The key to support this approach will be to identify research strategy (treatment assignment mechanism) where the LSA1 assumption above (or a variant) is credibly satisfied
- However, if T_i and u_i are <u>correlated</u>, the OLS is biased due to omitted variables bias:

$$\begin{aligned} \text{plim}\, \hat{\beta}_1^{\text{OLS}} &= \frac{Cov(\mathbf{Y}_i, \mathbf{T}_i)}{Var(\mathbf{T}_i)} \\ &= \frac{Cov(\beta_0 + \beta_1 \mathbf{T}_i + \mathbf{u}_i, \mathbf{T}_i)}{Var(\mathbf{T}_i)} = \beta_1 + \frac{Cov(\mathbf{u}_i, \mathbf{T}_i)}{Var(\mathbf{T}_i)} \end{aligned}$$

Three Treatment Assignment Mechanisms:

- 1. Random assignment of treatment (ensures that treatment is independent of potential outcomes)
 - Often the "ideal" benchmark to contrast with other studies

- <u>2.</u> Treatment not independent of potential outcomes, selection into T={0,1} based only on <u>observable</u> variables:
 - "Selection on observables" ⇒ can "control" for selection if you know the selection rule and have the appropriate data
- □ 3. Treatment not independent of potential outcomes, selection into $T=\{0,1\}$ based on <u>unobservable</u> variables:
 - "Selection on unobservables" ⇒ Need valid instruments, regression discontinuity, panel data, or need to know the statistical distribution of the unobservables