다중회귀분석

다중회귀모형(multiple regression model)

종속변수 y가 독립변수 $x_1, x_2, ..., x_p$ 과 어떤 관계가 있는지를 보여주는 식

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon$$

- β₀,β₁,β₂,...,β_p: 회귀계수
- ε: 오차항

추정 다중회귀식: $\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_p x_p$

예: Programmer 급여 조사

한 소프트웨어 회사가 프로그래머 20명에 대한 급여 자료를 수집하였다. 그리고 급여가 경력연수나 직무적성 검사성적과 연관성을 갖는지를 결정하기 위하여 회귀분석이 사용하기로 했다.

```
> salary=read.csv("salary.csv")
> head(salary)
  experience score salary
            78
1
                   24.0
             100
                 43.0
             86 23.7
             82 34.3
              86 35.8
               84
                  38.0
         10
> summary(salary)
  experience
                                   salary
                   score
               Min. : 70.00
Min. : 0.00
                               Min.
                                      :22.20
               1st Qu.: 77.25
1st Qu.: 3.00
                              1st Qu.:27.80
               Median: 82.50
Median: 5.50
                               Median :30.85
Mean : 5.20
               Mean : 82.75
                             Mean
                                      :31.23
 3rd Ou.: 7.25
               3rd Qu.: 87.25 3rd Qu.:34.67
       :10.00
                      :100.00
                                      :43.00
Max.
                Max.
                                Max.
```


다중회귀모형

연봉 (y)은 경력연수 (x_1) 및 직무적성검사 성적 (x_2) 과 아래와 같은 회귀모형으로 관련되어 있다고 가정

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

여기서,

y = 연봉 (\$1000)

*x*₁ = 경력연수

 $x_2 =$ 직무적성검사 성적

추정된 회귀식

```
> model=lm(salary~experience+score, data)
```

> summary(model)

Call:

lm(formula = salary ~ experience + score, data = data)

Residuals:

Min 1Q Median 3Q Max -4.3586 -1.4581 -0.0341 1.1862 4.9102

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.17394 6.15607 0.516 0.61279
experience 1.40390 0.19857 7.070 1.88e-06 ***
score 0.25089 0.07735 3.243 0.00478 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 2.419 on 17 degrees of freedom Multiple R-squared: 0.8342, Adjusted R-squared: 0.8147 F-statistic: 42.76 on 2 and 17 DF, p-value: 2.328e-07

SALARY = 3.174 + 1.404(EXPER) + 0.251(SCORE)

계수의 해석방법

- b_i 는 **모든 다른 독립변수가 일정할 때** x_i 의 1단위 변화에 대한 y값 변화의 추정치
- $b_1 = 1.404$
 - 경력 연수가 1년 증가할 때 연봉이 \$1,404 증가할 것으로 기대된다 (직무적성검사 성적이 일정 하다고 할 때)
- $b_2 = 0.251$
 - 직무적성검사 성적이 1점 올라갈 때 연봉은 \$251 올라갈 것으로 기대된다 (경력연수가 일정하다고 할 때).

결정계수 (R²)

SST, SSR, SSE의 관계

여기서:

SST = 총제곱합

SSR = 회귀제곱합

SSE = 오차제곱합

```
Call:
lm(formula = salary ~ experience + score, data = data)
Residuals:
   Min
            10 Median 30
                                 Max
-4.3586 -1.4581 -0.0341 1.1862 4.9102
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.17394 6.15607 0.516 0.61279
experience 1.40390 0.19857 7.070 1.88e-06 ***
score 0.25089 0.07735 3.243 0.00478 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.419 on 17 degrees of freedom
Multiple R-squared: 0.8342 Adjusted R-squared: 0.8147
F-statistic: 42.76 on 2 and 17 DF, p-value: 2.328e-07
```

경력연수와 직무적성검사 성적이 연봉의 변동량의 83%를 설명한다

수정 다중결정계수 (adjusted R²)

$$R_a^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

- 설명변수의 수가 증가하면 결정계수는 언제나 증가
- 과연 높은 R2가 무조건 좋은가? (모수절약의 법칙)
- 설명변수의 개수에 대한 패널티 적용한 결정계수

Residual standard error: 2.419 on 17 degrees of freedom

Multiple R-squared: 0.8342,

F-statistic: 42.76 on 2 and 17 DF, p-value: 2.328e-07

유의성 검정(testing for significance)

단순회귀 분석에서는 F 검정과 t 검정이 같은 결론을 제공한다.

다중회귀분석에서 F 검정의 목적은 t 검정의 목적과 다르다 .

▶F검정

■ F 검정은 종속변수와 **모든 독립변수 집합** 간에 유의한 관계가 존재하는지를 검정하기 위해 활용된다.

➤T검정

■ 각 <u>개별 독립변수</u>가 유의한지 여부를 검정하기 위해 활용된다.

유의성 검정: F 검정

가설

```
H_0: \beta_1 = \beta_2 = \dots = \beta_p = 0
```

Ha: 하나 이상의 모수가 0이 아니다.

```
Call:
```

lm(formula = salary ~ experience + score, data = data)

Residuals:

Min 1Q Median 3Q Max -4.3586 -1.4581 -0.0341 1.1862 4.9102

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.17394 6.15607 0.516 0.61279
experience 1.40390 0.19857 7.070 1.88e-06 ***
score 0.25089 0.07735 3.243 0.00478 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 2.419 on 17 degrees of freedom Multiple R-squared: 0.8342, Adjusted R-squared: 0.8147 F-statistic: 42.76 on 2 and 17 DF, p-value: 2.328e-07

유의성 검정: t 검정

$H_0: \beta_i = 0$ $H_a: \beta_i \neq 0$ Call: lm(formula = salary ~ experience + score, data = data) Residuals: Min 10 Median 30 Max -4.3586 -1.4581 -0.0341 1.1862 4.9102 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.17394 6.15607 0.516 0.61279 experience 1.40390 0.19857 7.070 1.88e-06 *** 0.25089 0.07735 3.243 0.00478 ** score Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1 Residual standard error: 2.419 on 17 degrees of freedom

Multiple R-squared: 0.8342, Adjusted R-squared: 0.8147

F-statistic: 42.76 on 2 and 17 DF, p-value: 2.328e-07

오차항에 대한 가정

- **1**. 오차항 ε 은 평균이 '0'인 확률변수이다.
- 2 ϵ 의 분산은 모든 x값에 대해 동일하다.
- 3. ε 값들은 서로 독립적이다.
- **4**. 오차항 ε 은 정규분포를 이루는 확률변수이다.

잔차분석

추정과 예측

 경력 5년, 적성검사 성적 80점인 사람과 경력 10년, 적성검사 성적 70점인 사람의 연봉 예측치는?

다중공선성(multicollinearity)

다중공선성은 독립변수들 사이의 상관관계를 지칭한다.

독립변수들이 높은 상관관계를 가질 때, 어떤 특정 독립변수가 종속변수에 미치는 개별적인 영향을 파악하기 어렵다.

Attitude data

한 금융회사의 30개 부서 직원들로부터 7 개의 사항에 대해 긍정적으로 대답한 비율을 포함 한 자료

Υ	rating	numeric	Overall rating
X[1]	complaints	numeric	Handling of employee complaints
X[2]	privileges	numeric	Does not allow special privileges
X[3]	learning	numeric	Opportunity to learn
X[4]	raises	numeric	Raises based on performance
X[5]	critical	numeric	Too critical
X[6]	advance	numeric	Advancement

■ 상관계수

rating complaints learning rating 1.0000000 0.8254176 0.6236782 complaints 0.8254176 1.0000000 0.5967358 learning 0.6236782 0.5967358 1.0000000

> summary(lm(rating~complaints+learning,data=attitude))

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.8709 7.0612 1.398 0.174
complaints 0.6435 0.1185 5.432 9.57e-06 ***
learning 0.2112 0.1344 1.571 0.128
```

Learning이 1 증가할 때 rating이 0.2112만큼 증가한다고 기대한다. (complaints가 일정하게 유지될 때)

Learning은 rating을 설명하기에 유의하지 않은 변수인가?

> summary(lm(rating~learning,data=attitude))

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.1741 8.8148 3.196 0.003438 **

learning 0.6468 0.1532 4.222 0.000231 ***
```

모형선택 (Model Selection)

- Confirmatory Analysis
 - 모형선택이 이론에 근거를 둔 경우
- Exploratory Analysis
 - 적용할 이론을 사전에 정해놓지 않고 가능한 여러모형을 고려한 후 가장 적절한 모형을 고르는 분석
 - 모형선택 방법을 통해 독립변수의 수를 줄인다.

모형선택 방법

- Forward selection
 - 가장 유의한 변수부터 하나씩 추가
- Backward selection
 - 모든 변수를 넣고 가장 기여도가 낮은 것부터 하나씩 제거
- Stepwise selection
 - Forward selection과 backward selection을 조합
- All subsets
 - 모든 가능한 모형 을 비교하여 최적의 모형 선택
 - 여러 모형 중 최소 AIC, BIC, Mallow's Cp 혹은 최대 adjusted R-sq를 갖는 모형을 선택

모형선택 방법: Backward Selection

• 모든 변수를 넣고 모형을 추정한다.

```
> out=lm(rating~.,data=attitude)
> anova(out)
Analysis of Variance Table
Response: rating
         Df Sum Sq Mean Sq F value
                                   Pr(>F)
complaints 1 2927.58 2927.58 58.6026 9.056e-08 ***
privileges 1 7.52 7.52 0.1505 0.7016
learning 1 137.25 137.25 2.7473
                                   0.1110
                                                      가장 유의하지
raises 1 0.94 0.94 0.0189 _
                                   0.8920
                                                     않은 변수를 제거
critical 1 0.56 0.56 0.0113
                                    0.9163
advance 1 74.11 74.11
                          1,4835
                                   0.2356
Residuals 23 1149.00 49.96
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
```

• 가장 유의하지 않은 변수 하나 제거 후 다시 모형 추정

Backward Selection의 자동화

```
> backward=step(out, direction="backward", trace=FALSE)
> backward$anova
         Step Df Deviance Resid. Df Resid. Dev
                                                  AIC
                                23
                                    1149.000 123.3635
1
              NA
                       NA
   - critical 1 3.405864
                                    1152.406 121.4523
                                 24
3
     - raises 1 10.605443
                                25
                                    1163.012 119.7271
4 - privileges 1 16.097508
                                26
                                    1179.109 118.1395
    - advance 1 75.539831
                                27 1254.649 118.0024
> summary(backward)
Call:
lm(formula = rating ~ complaints + learning, data = attitude)
Residuals:
              10 Median
                               30
    Min
                                      Max
-11.5568 -5.7331 0.6701 6.5341 10.3610
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept)
            9.8709
                       7.0612 1.398
                                        0.174
complaints
            0.6435
                       0.1185 5.432 9.57e-06 ***
learning
            0.2112
                       0.1344 1.571 0.128
```

모형선택 방법: Stepwise Selection

- > both=step(out,direction="both",trace=FALSE)
- > both\$anova

	Step	Df	Deviance	Resid.	Df	Resid.	Dev	AIC
1		NA	NA		23	1149.	000	123.3635
2	- critical	1	3.405864		24	1152.	406	121.4523
3	- raises	1	10.605443		25	1163.	012	119.7271
4 -	- privileges	1	16.097508		26	1179.	109	118.1395
5	- advance	1	75.539831		27	1254.	649	118.0024

모형선택 방법: All Subsets Regression

```
subset의 각 size 당 몇
                      Full model
                                                       개의 최적 모형을
library(leaps)
leaps=regsubsets(rating~.,data=attitude nbest=5)
                                                       저장할 것인가 설정
> summary(leaps)
Subset selection object
Call: regsubsets.formula(rating ~ ., data = attitude, nbest = 5)
6 Variables (and intercept)
         Forced in Forced out
complaints
             FALSE
privileges
             FALSE
                      FALSE
learning
                      FALSE
             FALSE
raises
             FALSE
                      FALSE
critical
             FALSE
                      FALSE
advance
             FALSE
                      FALSE
5 subsets of each size up to 6
Selection Algorithm: exhaustive
       complaints privileges learning raises critical
                                                advance
                                                              저장된 각 모형에
  (1)
  (2)
                                                              포함된 설명변수 표시
  (3)
                 m_{\frac{1}{2}}m
                                   m_{\rm eff} m
```

 $m_{\frac{1}{2}}m$

 $m_{\phi}m$

 $m_{\frac{1}{2}}m$

" * "

"*"

(1)

• adjusted R-square가 최대인 Best model

```
> summary.out=summary(leaps)
> which.max(summary.out$adjr2)
[1] 11
> summary.out$which[11,]
(Intercept) complaints privileges
                                     learning
                                                  raises
                                                            critical
                                                                         advance
      TRUE
                  TRUE
                            FALSE
                                                    FALSE
                                                                            TRUE
                                         TRUE
                                                               FALSE
          > out3=lm(rating~complaints+learning+advance,data=attitude)
          > summary(out3)
          call:
          lm(formula = rating ~ complaints + learning + advance, data = attitude)
          Residuals:
              Min
                      10 Median
                                      3Q
                                             Max
          -12.217 -5.377 0.967
                                   6.078 11.540
          Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
          (Intercept) 13.5777
                                7.5439 1.800
                                                  0.0835 .
          complaints
                       0.6227
                                0.1181 5.271 1.65e-05 ***
          learning 0.3124 0.1542 2.026 0.0532 .
          advance
                      -0.1870
                                  0.1449 -1.291 0.2082
          Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
          Residual standard error: 6.734 on 26 degrees of freedom
          Multiple R-squared: 0.7256, Adjusted R-squared: 0.6939
          F-statistic: 22.92 on 3 and 26 DF, p-value: 1.807e-07
```

부적절한 다중회귀모형 활용

- 비선형 관계의 분석
- 잘못된 인과관계
 - 1인당 연간 국민소득으로 연간 자폐증 발생률을 설명
- 역인과관계
 - 골프 레슨을 받을 수록 나쁜 점수를 받음
- 변수 누락 편향
 - 골프 치는 사람들, 심장병, 암, 류머티즘 확률 높아
- 서로 관련이 깊은 설명변수 (다중공선성)
 - 불법 약물 복용(헤로인, 코카인 복용)이 SAT 점수에 미치는 영향 (헤로인, 코카인 둘 중 하나만 하는 사람이 너무 적음)
- 데이터 범위를 벗어난 추정
 - 성인을 대상으로 신체활동 정도, 인종 등 변수를 활용해 체중 추정. 갓난아기의 체중 예측?