6.036 Introduction to Machine Learning

Recurrent Neural Networks

recap (what you should know)

- Feed-forward (layered) neural networks
 - units, weights, activation functions
 - layer-wise forward propagation
 - back-propagation of error
 - stochastic gradient descent
- Convolutional neural networks (CNNs)
 - filters, feature maps, pooling

Multi-way classification

(explained on the board; see notes)

How to cast as a supervised learning problem?

How to cast as a supervised learning problem?

 Historical data can be broken down into feature vectors and target values (sliding window)

$$\begin{bmatrix} 0.82 \\ 0.80 \\ 0.73 \\ 0.72 \end{bmatrix} \qquad 0.89$$
$$x^{(t)} \qquad y^{(t)}$$

Language modeling: what comes next?

This course has been a tremendous ...

Language modeling: what comes next?

This course has been a tremendous ...

tremendous :

?

8

$$x^{(t)}$$
 $y^{(t)}$

Language modeling: what comes next?

This course has been a tremendous ...

1

 $\begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

tremendous

been

$$x^{(t)}$$

$$y^{(t)}$$

What are we missing?

- Sequence prediction problems can be recast in a form amenable to feed-forward neural networks
- But we have to engineer how "history" is mapped to a vector (representation). This vector is then fed into, e.g., a neural network
 - how many steps back should we look at?
 - how to retain important items mentioned far back?
- Instead, we would like to learn how to encode the "history" into a vector

Learning to encode/decode

Language modelingThis course has been a

success (?)

Sentiment classification
 I have seen better lectures

-1

Machine translationI have seen better lectures

Olen nähnyt parempia luentoja

encoding

decoding

Key concepts

- Encoding
 - e.g., mapping a sequence to a vector
- Decoding
 - e.g., mapping a vector to, e.g., a sequence

Encoding everything

words
$$\begin{bmatrix} .1 \\ .3 \\ .4 \end{bmatrix} \begin{bmatrix} .7 \\ .1 \\ .0 \end{bmatrix} \begin{bmatrix} .2 \\ .8 \\ .3 \end{bmatrix}$$

"Efforts and courage are not enough without purpose and direction" — JFK

sentences

images

events

 Easy to introduce adjustable "lego pieces" and optimize them for end-to-end performance

<null>

Efforts and courage are not ...

 Easy to introduce adjustable "lego pieces" and optimize them for end-to-end performance

$$s_t = \tanh(W^{s,s} s_{t-1} + W^{s,x} x_t)$$

<null>

Efforts and courage are not ...

$$s_t = \tanh(W^{s,s} s_{t-1} + W^{s,x} x_t)$$

$$s_t = \tanh(W^{s,s} s_{t-1} + W^{s,x} x_t)$$

 Easy to introduce adjustable "lego pieces" and optimize them for end-to-end performance

$$s_t = \tanh(W^{s,s} s_{t-1} + W^{s,x} x_t)$$

Efforts and courage are not

$$s_t = \tanh(W^{s,s} s_{t-1} + W^{s,x} x_t)$$

$$s_t = \tanh(W^{s,s} s_{t-1} + W^{s,x} x_t)$$

- There are three differences between the encoder (unfolded RNN) and a standard feed-forward architecture
 - input is received at each layer (per word), not just at the beginning as in a typical feed-forward network
 - the number of layers varies, and depends on the length of the sentence
 - parameters of each layer (representing an application of an RNN) are shared (same RNN at each step)

What's in the box?

We can make the RNN more sophisticated...

$$s_t = \tanh(W^{s,s} s_{t-1} + W^{s,x} x_t)$$

What's in the box?

We can make the RNN more sophisticated...

$$g_t = \text{sigmoid}(W^{g,s} s_{t-1} + W^{g,x} x_t)$$

$$s_t = (1 - g_t) \odot s_{t-1} + g_t \odot \tanh(W^{s,s} s_{t-1} + W^{s,x} x_t)$$

What's in the box?

We can make the RNN more sophisticated...

$$f_t = \operatorname{sigmoid}(W^{f,h}h_{t-1} + W^{f,x}x_t)$$
 forget gate $i_t = \operatorname{sigmoid}(W^{i,h}h_{t-1} + W^{i,x}x_t)$ input gate $o_t = \operatorname{sigmoid}(W^{o,h}h_{t-1} + W^{o,x}x_t)$ output gate $c_t = f_t \odot c_{t-1} + i_t \odot \tanh(W^{c,h}h_{t-1} + W^{c,x}x_t)$ memory $c_t = o_t \odot \tanh(c_t)$ visible state

 Our RNN now needs to also produce an output (e.g., a word) as well as update its state

vector encoding
of a sentence
"I have seen better
lectures"

 Our RNN now needs to also produce an output (e.g., a word) as well as update its state

distribution over the possible words

vector encoding
of a sentence
"I have seen better
lectures"

 Our RNN now needs to also produce an output (e.g., a word) as well as update its state

distribution over the possible words

vector encoding
of a sentence
"I have seen better
lectures"

 Our RNN now needs to also produce an output (e.g., a word) as well as update its state

 Our RNN now needs to also produce an output (e.g., a word) as well as update its state

- Our RNN now needs to also produce an output (e.g., a word) as well as update its state
- The output is fed in as an input (to gauge what's left)

Decoding: what's in the box

 Our RNN now needs to also produce an output (e.g., a word) as well as update its state

previous output as an input x

$$s_t = \tanh(W^{s,s} s_{t-1} + W^{s,x} x_t)$$
 state $p_t = \operatorname{softmax}(W^o s_t)$ output distribution

Decoding: what's in the box

 $[0.1, 0.3, \ldots, 0.2]$ output distribution

previous output as an input x

$$f_t = \operatorname{sigmoid}(W^{f,h}h_{t-1} + W^{f,x}x_t)$$
 forget gate

$$i_t = \operatorname{sigmoid}(W^{i,h}h_{t-1} + W^{i,x}x_t)$$
 input gate

$$o_t = \operatorname{sigmoid}(W^{o,h}h_{t-1} + W^{o,x}x_t)$$
 output gate

$$c_t = f_t \odot c_{t-1} + i_t \odot \tanh(W^{c,h} h_{t-1} + W^{c,x} x_t) \xrightarrow{\text{memory}}$$

 $h_t = o_t \odot \tanh(c_t)$ visible state

$$p_t = \operatorname{softmax}(W^o h_t)$$
 output distribution

Mapping images to text

Examples

A person riding a motorcycle on a dirt road.

A group of young people

A herd of elephants walking across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A close up of a cat laying on a couch.

A skateboarder does a trick

A little girl in a pink hat is

A red motorcycle parked on the

A dog is jumping to catch a

A refrigerator filled with lots of food and drinks.

A yellow school bus parked

Key things

- Multi-way classification (explained on the board)
 - softmax, loss
- Neural networks for sequences
 - encoding/decoding
- RNNs, unfolded
 - state evolution, gates
 - relation to feed-forward neural networks
 - back-propagation (conceptually)
- Issues: vanishing/exploding gradient
- LSTM (operationally)