APG -> Accelerated Proximal Gradient

proximal operator

PG method

1 Definition

a) norm function | | ! | : R7 -> IR

1. ||x||70 & ||x||=0 => x=0

2. | dx1 = d 1x1

3. 11 x+ y11 & 11 x11 + 11 y11

b) inner product <..-> : R"xR" -> R

[e.g.]
$$\langle A,B \rangle = \text{tr}(A^TB) = \sum_{i,j} a_{ij}b_{ij}$$

 $\langle x,y \rangle = x^Ty = \sum_{i} x_i y_i$

1) Projection theroem { a) exists & unique b) sufficient & necessary condition piagram

(-> closed convex set

a) $T_{(2)} = \underset{\text{arg min}}{\text{arg min}} \|x - z\|_{2}^{2}$ $= \underset{\text{exist } k \text{ unique}}{\text{exist } k \text{ unique}}$

b) $x^* = \pi_{c(2)} \Leftrightarrow (2-x^*, x-x^*) \in V \times C$

6 Normal Cone for one non-empty set C
$N_{c}(\bar{x}) := \{ \neq \in \chi : \langle \neq, x - \bar{x} > \leq o \ \forall x \in C \}$ $\bar{x} \in C \}$ (must on the boundary) By convention, $N_{c}(\bar{x}) = \phi$ if $\bar{x} \notin C$
[Prop] if (is non-empty & convex set & ZeC
a) $N_c(\bar{x})$ closed & convex
b) $\bar{x} \in int$ then $N_c(\bar{x}) = \{-3\}$
c) if (is a cone, then $N_c(\bar{x}) \leq C^D$
if is non-empty & convex & closed set.
then: u ∈ Nc(y) ⇒ y = Tc(y+u)
(7) Sub-differentiable / Sub-gradient
deal with non-smoothness
$y \in \mathcal{I}(u) \iff f(x) = f(x) + y^{T}(x) + y^{T}(x)$
$V \in \partial f(x) \iff f(x) \neq f(x) + V^{T}(x-x) \forall x \in X$
By convention, $\partial f(x) = \phi$ for $\forall x \notin dom(f)$
we only consider $\partial f(x)$ at $x \in dom(f)$

wo don't want
$$f(x) = +\infty$$

b)
$$\overline{x} \in \text{argunin } f(x) \iff o \in \partial f(\overline{x})$$

$$x \in X$$
if f is convex & proper

$$f^*(y) = \sup_{x \in X} \{(y, x) - f(x)\}$$
 YEX

a)
$$f^*$$
 is closed & convex
b) if f closed & proper & convex,
then $(f^*)^* = f$

[Prop]
$$\langle x, y \rangle = f(x) + f^*(y)$$

$$X \in \partial f'(y)$$

$$T_{C} \leftarrow P_{S_{C}} = T_{C}$$

$$X \in N_{C}(y)$$

$$Y = T_{C}(y+u)$$

$$V = T_{C}(y+u)$$

$$V = T_{C}(y+u)$$

```
Proximal operator
```

[Prop] 1.
$$\nabla \phi_f(x) = x - P_f(x)$$

= $Q_f(x)$

2.
$$\begin{cases} argmin & f(x) = argmin & f(x) \\ x & x \end{cases}$$

$$min & f(x) = argmin & f(x) \\ x & x \end{cases}$$

$$3 \quad T_C = P_{\delta_C}$$

$$f_{\delta_{c}}(x) = \frac{1}{2} \|x - \Pi_{c}(x)\|_{2}^{2} \longrightarrow \frac{\text{smooth the}}{\delta_{c}(c)}$$

[e.g.]
$$f(x) = \lambda |x|$$

$$\psi_{f}(x) = \min_{y} \left\{ \frac{\lambda |y| + \frac{1}{2} |y - x||_{L^{1}}}{y} \right\}$$

$$\frac{\text{Smooth}}{\text{out } \lambda |x|} = \left\{ \frac{\frac{1}{2} x^{2}}{\lambda |x| - \frac{\lambda^{2}}{2}}, |x| > \lambda \right\}$$

$$P_{f}(x) = \begin{cases} x+\lambda & x<-\lambda \\ 0 & |x| \le \lambda \\ x-\lambda & x > \lambda \end{cases}$$

-> M-Y Decomposition

$$x = Pf(x) + Pf(x)$$

[-) closed convex cone

[e.y.] f(x) = Sc (x)

$$\{\kappa(x) = \delta_{c}^{*}(x) = \delta_{c}^{\circ}(x)$$

$$\Rightarrow \chi = P_{\delta_{c}}(x) + P_{\delta_{c}}(x)$$

PG Method

Recap: Gradient Descent
$$\beta^{(k+1)} = \beta^{(k)} - \alpha \nabla f(\beta^{(k)})$$

$$(\beta) = \int_{\beta^{(k)}} (\beta) = \int_{\beta^{(k)}} (\beta^{(k)}) + \nabla \int_{\beta^{(k)}} (\beta^{(k)})^{\dagger} (\beta^{(k)}) + \nabla \int_{\beta^{(k)}} (\beta^{(k)})^{\dagger} (\beta^{(k)})^{\dagger} (\beta^{(k)})^{\dagger}$$
Taylor term

$$\frac{1}{2} \cdot \frac{1}{\alpha_{k}} \parallel \beta - \beta^{(k)} \parallel_{L}^{2}$$

$$\begin{cases} \beta^{(k+1)} = \text{argmin } \widehat{f}_{\beta^{(k)}} (\beta) \end{cases}$$
proximal term

= argunin Tayor tem (
$$\beta$$
) + $\frac{1}{2d_R} || \beta - \beta^{(k)} ||_2$

on $\beta^{(k)}$

= $P_{d_R}(T_{aylor}, approx)$ ($\beta^{(k)}$)

$$= P_{\mathcal{A}_{\mathcal{G}}(\cdot)} \left(\mathcal{B}^{(k)} - \mathcal{A}_{\mathcal{F}} \mathcal{T} f(\mathcal{B}^{(k)}) \right)$$

1 Calculation of Normal Cone

N((x) := { ZER" : <Z, x- X > <0 YXEC}

a) $C = \mathbb{R}_{+}^{n}$ $2 \in \mathbb{N}_{c}(\bar{x})$

consider a) if Xi>o,

then we can choose $\widetilde{\chi}$ & $\widehat{\chi}$ >0

s.t &-xi>0. &-xi<0

 $\widetilde{\chi}_{j} = \widetilde{\chi}_{j}$, $\widehat{\chi}_{j} = \overline{\chi}_{j}$

then <2, 2-x>60

 \Leftrightarrow $\Xi_i \cdot (\widehat{\chi}_i - \overline{\chi}_i) \leq 0 \Rightarrow \Xi_i \leq 0$

(Z, X-x> €0

⇒ Zi (xi - x) ≤0 → Zi >0

=> Zi=0!

b) if xi=0,

then for $\forall x > 0$, we should make sure

< 2, x-x> ≤0

€ Z Zi (xi - xi) ≤ 0

 $\Leftrightarrow \sum_{\overline{X}_{i}=0} \overline{Z}_{i} (X_{i} - \overline{X}_{i}) \in \circ$

 $\Leftrightarrow \sum_{\overline{r}_i=0} Z_i x_i \leq 0 \qquad \chi_i \geqslant 0$

⇒ 2: 30

$$\Rightarrow \text{ if } \bar{x} = (1,1,0...,0)$$
then $N_c(\bar{x}) = \{0\} \times \{0\} \times \mathbb{R}_+^{n-2}$

(2) Calculation of sub-gradient

$$f(x) = ||x||_1 \longrightarrow consider 2f(0)$$

The last "equivalence" comes from:

a) if
$$\frac{1}{2}$$
 schisfies $\frac{1}{2}$ $1 \le 1$ for $\frac{1}{2}$ $1 \le 1$ then choose $\frac{1}{2} = \frac{1}{2} \le 1$ $\frac{1}{2} \le 1$ $\frac{1}{2} \le 1$

b) if
$$z$$
 satisfies $||z||_0 \le 1$.
then $\langle z, n \rangle = \sum_{i=1}^{n} z_i v_i$