DEVELOPING A $^{12}_{6}{\rm Th}^{2+}_{3}{\rm ESIS}$ TEMPLATE TO HELP STUDENTS GRADUATE IN A REASONABLE TIME

© Copyright by Graduate A. Student, 2013

All Rights Reserved

A thesis submitted to the Faculty and the Board of	Trustees of the Colorado School of
Mines in partial fulfillment of the requirements for the o	degree of Master of Science (Engi-
neering Systems).	
Golden, Colorado	
Date	
Date	
C.	gned:
Sı	gned:Graduate A. Student
Si	gned:
	Dr. Primary A. Advisor
	Thesis Advisor
Si	gned: Dr. Secondary B. Advisor
	Thesis Advisor
Golden, Colorado	
Date	
Si	gned:
	Dr. Big Boss
	Professor and Head Department of Engineering

ABSTRACT

Sample Abstract

TABLE OF CONTENTS

ABSTR	ACT												•		•		•	iii
LIST O	F FIG	URES																vi
LIST O	F TAB	LES																vii
LIST O	F SYM	IBOLS															7	viii
LIST O	F ABE	REVIATI	ONS															ix
ACKNO	OWLEI	OGMENTS	S															. x
DEDIC	ATION	1																xi
СНАРТ	TER 1	IN THE E	BEGINNI	NG .														. 1
1.1	A Sub	section .																. 1
1.2	AA Sı	ubsection																. 1
	1.2.1	Transpor	t of UT			s Me	dia:	Ger	ıeral	Elu	ıtioı	ı Pı	roce	edu	ıres			. 1
	1.2.1	Transpor	t of U T	hrough	Porou											S .		
	1.2.1	Transpor		hrough	Porou											S .		. 2
	1.2.1	Transpor	i Subsec	hrough tion . ction	Porou											5 .		. 2
1.3	1.2.2	Transpor 1.2.1.1 1.2.1.2	i Subsection	hrough tion . etion	Porou											S		. 2
1.3 1.4	1.2.2 AAA	Transpor 1.2.1.1 1.2.1.2 aa Subse	i Subsection	hrough tion . etion	Porou													. 2
1.4	1.2.2 AAA AAAA	Transpor 1.2.1.1 1.2.1.2 aa Subse Subsection	i Subsection	hrough tion . etion	Porou													· 2 · 2 · 2 · 2
1.4 CHAPT	1.2.2 AAA AAAA TER 2	Transpor 1.2.1.1 1.2.1.2 aa Subse Subsection A Subsection	i Subsection	hrough tion . etion TEST	Porou													· 2 · 2 · 2 · 2 · 4
1.4 CHAPT	1.2.2 AAA AAAA TER 2 TER 3	Transpor 1.2.1.1 1.2.1.2 aa Subse Subsection A Subsection SUBDOC	i Subsection	hrough tion . etion TEST	Porou													· 2 · 2 · 2 · 2 · 3

3.3	Could Still Be Better
3.4	Testing Procedure
3.5	Final Results
СНАРТ	TER 4 THE WAY AHEAD
4.1	How Things Could Be Better
4.2	Why We Think Things Aren't Better
4.3	We Love Our Advisors
APPEN	IDIX A - MAGICAL ENCODING AWESOMENESS
A.1	Test Appendix Sub-Section
A.2	Sub-Sections are Fun
APPEN	IDIX B - SPECIAL COOLNESS

LIST OF FIGURES

Figure 1.1	A pretty picture from the Squier Group — this is a test of the emergency long-title system
Figure 3.1	A world-class hero
Figure 3.2	The Flying Spaghetti Monster Knows All

LIST OF TABLES

Table 4.1	A table of tabular goodness	. 7
Table A.1	This is where we have fun testing encoding	. 8
Table A.2	Stratigraphy of the Granite Mountains and Lost Creek areas	. (
Table A.3	Test of a small longtable	11
Table A.4	Test of a small longtable on the alternate page	12

LIST OF SYMBOLS

absorption coefficient
absorption cross section
average radius of cylindrical shell
activation energy of oxidation reaction of a-C in excited state $\dots E_{ac}^*$

LIST OF ABBREVIATIONS

Bio Force Gun, Model 9000	FG9000
Mammoth Armed Reclamation Vehicle	MARV
Stone of Jordan	SoJ
Field flow fractionation-inductively coupled plasma-mass spectrometry FFF-	ICP-MS

ACKNOWLEDGMENTS

I would like to thank the academy for granting me this prestigious thesis. This project would never have succeeded without <friend>, <parent>, and of course <spouse>.

For those that shall follow after.

CHAPTER 1

IN THE BEGINNING

A chapter [???]. See nifty "longtables" in Appendix A.1.

Nam eget congue lacus. Lorem ipsum dolor sit amet, consectetur faucibus tempor.

$$x + y = 7 \tag{1.1}$$

Maecenas posuere luctus ligula sit amet ornare. Pellentesque vitae velit nulla. Ut a turpis massa, id ullamcorper odio.

1.1 A Subsection

A subsection of the chapter. In this particular chapter we're going to an include an example of a list:

- This little listy went to market
- This little listy stayed home
- This little listy had roast beef
- This little listy had none
- And this little listy graduated, and went "wee wee "all the way home

See? Wasn't that fun.

1.2 AA Subsection

Another subsection of the chapter. See cool encoding stuff in Appendix A.

1.2.1 Transport of U Through Porous Media: General Elution Procedures

I wonder why there's so much detail?

1.2.1.1 i Subsection

Note that using "three deep" sections is HIGHLY discouraged.

1.2.1.2 ii Subsection

So don't make sections this deep unless you really must.

1.2.2 aa Subsection

Oooo - this topic must be really important! Its importance might be described by Equation 1.2, which is nothing like the awesome Equation 1.3 or the uber-nifty vector example in Equation 1.4.

Importance
$$\approx 0$$
 (1.2)

$$\sum_{i}^{\infty} \vec{F}_{i} = m \vec{a} \tag{1.3}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = {}_{W}^{S} \mathbf{T} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \tag{1.4}$$

1.3 AAA Subsection

Yet another subsection (for more information, see Section 1.2.1 or Chapter 3).

1.4 AAAA Subsection

Last subsection¹, see Figure 1.1.

 $[\]overline{}^{1}$ this is evil

Figure 1.1: A pretty picture from the Squier Group — this is a test of the emergency long-title system.

CHAPTER 2

SUBDOCUMENT TEST

This is an example of using a "child document" or "subdocument" within a thesis. Blah blah blah

CHAPTER 3 SECOND GENERATION CHAPTER

Another chapter.

3.1 Lots of Mistakes Originally

Fun fun...

3.2 Figured out How to Fix Things

Ha-ha!

3.3 Could Still Be Better

Interesting huh?

3.4 Testing Procedure

I thought you'd like this.

3.5 Final Results

It's over (see Figure 3.1)! Also it is important to note the placement of labels in subfigures: Figure 3.2, and Figure 3.2(b).

Figure 3.1: A world-class hero of awesomeness [?].

Global Average Temperature Vs. Number of Pirates

16.5
16
15.5
15
15
1880
1980
13.5
13
35000
45000
20000
15000
5000
400
17
Number of Pirates (Approximate)

Figure 3.2: The Flying Spaghetti Monster Knows All

(b) Importance of Pirates

CHAPTER 4

THE WAY AHEAD

Ugh, another chapter [?]!

4.1 How Things Could Be Better

We thought that was the end!

4.2 Why We Think Things Aren't Better

We really hoped it was anyway.

4.3 We Love Our Advisors

Are you really still reading this? Ok, then check out Table 4.1!

Table 4.1: A table of tabular goodness.

	В	b
В	BB	Bb
b	Bb	bb

APPENDIX A - MAGICAL ENCODING AWESOMENESS

Table A.1 shows how several symbols appear in the rendered document.

Table A.1: This is where we have fun testing encoding

	Normal	Math
The greater than:	>	>
The less than:	<	<
The tilde:	~	~

A.1 Test Appendix Sub-Section

Table A.2 is an example of a very large "longtable."

Table A.2: Stratigraphy of the Granite Mountains and Lost Creek areas

Age	$Formation^2$	Thickness	Thickness	Thickness	Aquifer? ⁶	Lithology
		$(feet)^3$	$(feet)^4$	$(\text{feet})^5$		
Quaternary	Alluvium	-	0-20	-	Yes	Sands and clays derived chiefly
						from the Tertiary formations in the
						area.
Paleocene	Fort Union	up to 3,000	4,650	6,500?	Yes	Consists of alternating fine to
						coarse grained sandstone siltstone
						and mudstone. Contains various
						layers of lignitic coal beds.
Cretaceous	Lance	1,700 to 2,700	2,950	4,000?	Yes	Interbedded sandstone, siltstone
						and mudstone. Gray to brownish
						gray. Locally carbonaceous.
						Sandstone is white to grayish
						orange.
Cretaceous	Fox Hills		550	1,800?	No	Consists of coarsening upward shale
						and fine-grained sand with thin
						coal beds near the top. Represents
						a transition from marine to
						non-marine environment. Grades
						into Lewis Shale at the base.
Cretaceous	Lewis Shale	1,250	1,200	1,050 to	No	Interbedded dark-gray and
				2,000		olive-gray shale and olive-gray
						sandstone.

²Only major unconformities shown, indicated by break in table.

³Generalized thicknesses from.

 $^{^4}$ Thicknesses shown are approximate and apply to Lost Creek vicinity only.

⁵Thicknesses shown are from a public screened dataset of logged formation tops from the 12 townships surrounding Lost Creek. ⁶Aquifer designations – Lost Creek vicinity only.

Table A.2: Continued.

Age	Formation	Thickness	Thickness	Thickness	Aquifer?	Lithology
		(feet)	(feet)	(feet)		
Cretaceous	Mesaverde	0 to 1,000	800	300 to	No	Gray to dark gray shales with
	Group			500?		interbedded buff to tan fine to
						medium grained sandstones.
Cretaceous	Steele and	Cody Shale	2,000 to	2,400 to	No	Steele shale is soft gray marine,
	Niobrara Shales	4,500 to 5,000	2,500	5,000		Niobrara shale is dark gray and contains calcareous zones.
Cretaceous	Frontier	700 to 900	500 to	750 to	Yes	Gray sandstone and sandy shale.
			1,000	1,500		
Cretaceous	Dakota		300 to		Yes	Marine sandstone, tan to buff, fine
			400			to medium grained may contain
						carbonaceous shale layer.
Jurassic	Nugget	400 to 525	500		Yes	Grayish to dull red coarse grained
	Sandstone					cross-bedded quartz sandstone.
Triassic	Chugwater	1,275	1,500		No	Red shale and siltstone contains
_						gypsum partings near the base.
Permian	Phosphoria	275 to 325	300		No	Black to dark gray shale, chert and phosphorite.
Pennsylvanian	Tensleep and	600 to 700	750		No	White to gray sandstone containing
	Amsden and					thin limestone and dolomite
	Madison					partings. Red and green shale and
						dolomite, sandstone near base.
Cambrian	Undifferentiated	900 to 1,000	1,000		No	Siltstone and quartzite, including
						Flathead sandstone.
Precambrian	Basement	-	-		No	Granites, metamorphic and igneous
						rocks.

Table A.3: Test of a small longtable.

A	В	С
1	2	3

Table A.4: Test of a small longtable on the alternate page.

1	2	3
A	В	С

Δ 2	Sub-	Sections	aro	Fun
A.4	Sub-	DECUIONS.	are	T UH

Sorta...

APPENDIX B - SPECIAL COOLNESS

Insert ice cubes here (Listing B.1).

Listing B.1: A MATLAB "Hello World" Example

% Below is the example code for the absolute most popular program EVER! ${\bf disp}\,(\,\,{}^{\backprime}{\rm Hello}\,{}_{\lnot}{\rm World}\,\,{}^{\backprime})\,;$