Relation: consists of a *set* of tuples (records). Each tuple is a row and has n attributes or columns. Each tuple contains the exact same attributes in the same order.

Superkey: a set of $k \leq n$ attributes that uniquely identifies a tuple. There are at most $2^n - 1$ superkeys for an *n*-attribute relation.

Candidate Key: is a minimal superkey s.t. no subset of its attributes form a superkey itself. A candidate key may be null.

Primay Key: is a candidate key chosen by the DB designer to enforce uniqueness based on use case. A primary key may not be null. If a primary key is composite, no component can be null

Foreign Key: in S points to a primary key in R. FK's need not be unique in S, but must be unique (by def.) in R. FK's are primarily used for referential integrity. Further, the FK \in S need not have the same name as the PK \in R.

```
Selection: \sigma_{\psi}(R) = \{t \in R : \psi(t)\}. \sigma_{\psi}(R) \approx \text{SELECT} * \text{FROM } R \text{ WHERE } \psi(t). It filters on \textit{tuples} using: =, \neq, <, >, \leq, \geq, \neg, \lor, \land.
```

Projection: $\Pi_{a_i}(R) = \{t[a_i] : t \in R, i \leq n\}$. $\Pi \approx \text{SELECT } a_1, \dots, a_n \text{ FROM } R$. Also, $\Pi_{f(a_i) \to a'}$ where f is any reasonable function.

Cartesian Product: $R \times S = \{(r, s) : r \in R, s \in S\}$. They are very bad and inefficient.

Natural Join: $R \bowtie S = \prod_{R \cup S} (\sigma_{R.k=S.k}(R \times S)) = \{(r,s) : r \in R, s \in S, r[k] = s[k]\}$. Only to be used in relational algebra.

Natural Join Edge Cases: If $k = \emptyset$, $R \bowtie S = R \times S$. If $\forall r \in R, s \in S, r[k] \neq s[k]$, $R \bowtie S = \emptyset$.

Join Key: is the set of $k \leq n$ attributes that we join R, S on. All conditions are equality \implies equijoin. Otherwise, non-equijoin.

Theta Join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S) = \{(r, s) : r \in R, s \in S, \theta((r, s))\}$. Name clash \rightarrow alias. We choose the join key.

Inner Join: Include all rows that satisfy $\theta((r,s))$. Throw out all rows that don't satisfy $\theta((r,s))$.

Aggregation: $group \gamma_{f(a_i)}(R)$ where f is an aggregation function. Some include SUM, AVG, MIN, MAX, DISTINCT-COUNT.

Rename: $\rho_S(R)$ renames a **relation** $R \to S$. $\rho_{a/b}(R)$ renames an **attribute** $a \to b \in R$. Usually used in $rho_S(R) \times R$.

Union: $R \cup S = \{r_1, \dots, r_{|R|}, s_1, \dots, s_{|S|} : r_i \in R, s_j \in S\}$. R, S must have the same set of attributes for this to work.

Set Difference: $R - S = \{t : t \in R, t \notin S\}$. Note: Division \div is not implemented in SQL.

Intersection: $R \cap S = \{t : t \in R, S\}$. R, S must have the same set of attributes for this to work. Note: $R \cap S = R - (R - S)$. **Order of Operations:** $\sigma, \Pi, \rho \to \times, \bowtie \to \cap \to \cup, -$.

ENUM: Order of defined when type is constructed. Values are case sensitive, whitespace matters. *Can:* add, rename values. *Cannot:* delete, reorder values. 4 bytes.

Create Enum/Table:

where type is a data type and OPTIONS can be none or more of: NOT NULL, DEFAULT [DEFAULT VALUE], UNIQUE, PRIMARY KEY, FOREIGN KEY REFERENCES other_table(other_table_ukey) ON DELETE/UPDATE CASCADE/RESTRICT/SET NULL. We can set the PK/FK inline or at the bottom using PRIMARY KEY (column_i) and FOREIGN KEY (column_j) REFERENCES other_table(other_table_ukey).

Changing Schema: Don't lmao. Use extra (if you were smart enough to think ahead) or create another table with a join key.

Alter Table: add/drop columns, constraints (e.g. PK/FK), rename tables/columns, change data types of columns. ALTER TABLE table_name

```
DROP col_i, -- delete column

ALTER COLUMN col_j TYPE new_type, -- changes type of col_j to new_type

ADD col_k type, -- adds col_k

DROP CONSTRAINT table_name_pkey, -- drops PK constraint

ADD PRIMARY KEY col_l, -- adds PK constraint to col_l

RENAME COLUMN col_m TO new_col_name, -- renames col_m to new_col_name

RENAME TO new_table_name; -- renames table_name to new_table_name
```

Drop, Truncate, Delete: DROP [TABLE/SCHEMA/DATABASE] table_name/schema_name/db_name; deletes the table/schema/db. If inside a script, use IF EXISTS. TRUNCATE table_name will delete all of the data inside table_name, but will preserve the schema. This is the same as DELETE FROM table_name WHERE 1=1.

Select: SELECT col_1, ..., col_n FROM table_name WHERE condition;.

Where: pre-filters rows in a table. It acts on values in columns and transformation functions applied on rows independently (NOT aggregation functions). Note: WHERE c BETWEEN x AND y \simeq WHERE c <= y AND c >= x.

Query Order: SELECT \rightarrow FROM \rightarrow JOIN \rightarrow ON(s) \rightarrow WHERE \rightarrow GROUP BY \rightarrow HAVING \rightarrow ORDER BY \rightarrow LIMIT \rightarrow OFFSET Execution Order: FROM \rightarrow ON \rightarrow JOIN \rightarrow WHERE \rightarrow GROUP BY \rightarrow HAVING \rightarrow SELECT \rightarrow DISTINCT \rightarrow ORDER BY

```
Aggregation/Group By: Aggregations over a relation does not need a GROUP BY. Aggregations over groups requires a GROUP BY. For
example: SELECT AVG(one) AS avg FROM table_name; and SELECT one, AVG(two) AS avg FROM table_name GROUP BY one;
Having: post-filters result of an aggregation. SELECT one AVG(two) AS avg FROM r_name GROUP BY one HAVING AVG(two) < 100;
Outer Join: keep rows that don't have a match, replacing the "other side" as null. We use LEFT/RIGHT/FULL OUTER JOIN where OUTER
is optional.
Left Join: keeps all rows in the LHS of the join.
Right Join: keeps all rows in the RHS of the join.
Full Join: keeps rows from both sides of the join.
Coalesce: COALESCE(expr, replacement value) where expr may return null. It can take multiple arguments and returns the first
that is not null.
Nested Query/Subquery: Innermost query gets evaluated first.
Derived Table Subquery: returns a table.
SELECT uid, last, first, mi, scores.career, midterm, (midterm - mean) / sd AS z_score
FROM (
    SELECT career, AVG(midterm) AS mean, STDDEV(midterm) AS sd
    FROM midterm_scores
    GROUP BY career
) aggregated
JOIN midterm_scores scores
ON scores.career = aggregated.career;
Scalar Subquery: returns a scalar.
SELECT uid, last, first, mi, midterm
                                                              SELECT uid, last, first, mi, midterm,
                                                                 (midterm - (SELECT AVG(midterm) FROM midterm_scores))
FROM midterm_scores
WHERE midterm > (
                                                                 / (SELECT STDDEV(midterm) FROM midterm_scores)
    SELECT AVG(midterm) + 0.5 * STDDEV(midterm)
                                                                 AS zscore
    FROM midterm_scores
                                                              FROM midterm_scores;
);
Filter Subquery: using IN/NOT IN is a semijoin if we project out all of the columns from the flights table.
SELECT flights.*
FROM flights
    WHERE flights.tail IN (
    SELECT tail FROM airtran_aircraft
Correlated Subquery: They suck, lol. This reexecutes the subquery for every row in the outer query.
SELECT uid, last, first, mi, midterm
FROM midterm_scores m1
WHERE midterm > (
    SELECT AVG(midterm) + 0.5 * STDDEV(midterm)
    FROM midterm_scores m2
    WHERE m1.career = m2.career
);
Subqueries v. Joins: Subqueries are typically faster. Joins are slow so we want to filter as much as possible before joining.
Adding Rows: INSERT INTO table_name VALUES ('val11', ..., 'val1n'), ('val21', ..., 'val2n'),...; requires us to know
the schema. Order matters, and all values must be specified. Another way is:
INSERT INTO table_name (coll_name, ..., colk_name) VALUES ('val11', ..., 'val1k'), ('val21', ..., 'val2k'), ...;
We just specify the names of the columns we insert into. Order doesn't matter but we need to be consistent.
Modifying Rows: UPDATE table_name SET column_name = new_value WHERE condition;
Check Constraint: CONSTRAINT Constraint_Name CHECK (condition); is put at the end of a CREATE TABLE. They can be added using
ALTER TABLE. We can only use check constraints on rows.
Casting: Cast with column_name::new_type.
NullIf: NULLIF(var, replacement). If var is null, replace with replacement.
Control Flow: Case and Searched Case statements:
SELECT ...,
                                                              SELECT ...,
    CASE column_name
                                                                   CASE
        WHEN condition_1 THEN result_1
                                                                       WHEN column_name = condition_1 THEN result_1
        WHEN condition_n THEN result_n
                                                                       WHEN column_name = condition_n THEN result_n
        ELSE default_result
                                                                       ELSE default_result
    END AS new_column_name
                                                                   END AS new_column_name
FROM midterm_scores;
                                                              FROM midterm_scores;
SQL Injection: If we don't use a prepared query, consider SELECT uid FROM bruinbase WHERE uid='{}'. In place of "{}", we can
inject '; DROP DATABASE students; -- to drop the students database.
Caching: Caching is fast and decreases the workload on the DB. We can either talk to the cache and DB directly or have a broker/proxy
```

talk to the DB and cache.

Logging: is important, so do it lmao. But, minimize the amount of private data.

Salt and Pepper: A string (salt) is randomly chosen to be affixed to the data before it is hashed. This hash and salt are stored. Peppering is similar, but is stored in a separate table. This makes it more difficult to steal than salting. Peppering is not widely implemented.

Normalization: Normalization is the process of refactoring tables to reduce redundancy in a relation. It involves splitting a table with redundant data into two or more non-redundant tables. Tables without redundancies are called **normalized**. When there are redundancies, we can **decompose** the table using **functional dependencies**.

Problems with Deormalized Tables: Redundancy, data integrity issues (update/insert), delay in creating new records. Normalized tables allow for separation of concerns.

Functional Dependency: $X \to Y$: X functionally determines Y if every $x \in X$ is associated with exactly one $y \in Y$. If there exists $X \to Y$, we can decompose the table into two: R(X,Y) and R(X,Z) where $Z := R \setminus Y$. For example:

X	Y	A	В		X	Y		X	A	В
α	β	σ	π	Here, $X \to Y$ since $\alpha \mapsto \beta, \gamma \mapsto \eta$, so we can decompose the relation into $R_1 :=$	α	β	and $R_2 :=$	α	σ	π
α	β	γ	Δ		α	β		α	γ	Δ
γ	η	π	Δ		γ	$\mid \eta \mid$		γ	π	Δ

Functional Dependency Properties (Armstrong's Axioms [1-3] and Corollaries [4-7]): $\alpha, \beta, \gamma \in r(R)$.

- (1) Reflexivity: If $\beta \subseteq \alpha$, then $\alpha \to \beta$. Ex: $A \subseteq A \implies A \to A, A \subseteq AB \implies AB \to A$.
- (2) Augmentation: If $\alpha \to \beta$, then $\alpha \gamma \to \beta \gamma$. Ex: $\{uid\} \to \{name\} \Longrightarrow \{uid, major\} \to \{name, major\}$.
- (3) Transitivity: If $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$. Ex: $\{uid\} \to \{room \ \#\}, \{room \ \#\} \to \{room \ type\} \implies \{uid\} \to \{room \ type\}$.
- (4) Union: If $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$. Pf. $(\alpha \to \gamma \implies \alpha \alpha \to \alpha \gamma \iff \alpha \to \alpha \gamma)$, $(\alpha \to \beta \implies \alpha \gamma \to \beta \gamma) \implies \alpha \to \alpha \gamma \to \beta \gamma$.
- (5) Composition: If $\alpha \to \beta, \gamma \to \Delta$, then $\alpha \gamma \to \beta \Delta$.
- (6) **Decomposition:** If $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$.
- (7) Pseudotransitivity: If $\alpha \to beta$, $\Delta\beta \to \gamma$, then $\Delta\alpha \to \gamma$.

Canonical Cover: $F_c \subseteq F^+$ is the basis set of the set of all functional dependencies F^+ . It is **not** unique.

Finding F_c : (1) Decompose RHS: $(X \to YZA \text{ becomes } X \to Y, X \to Z, X \to A)$. (2) Remove extraneous attributes: $(AB \to C, B \to C, AB \to C \text{ is extraneous})$. (3) Remove trivial, duplicate, inferred FD's (by transitivity). (4) Union and repeat until set doesn't change. Example: Given $\{B \to D, C \to D, AB \to C, B \to E, C \to F, A \to BCDEF, AB \to D, AB \to F\}$,

After (1), we get $\{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, A \rightarrow F, B \rightarrow D, C \rightarrow D, AB \rightarrow C, B \rightarrow E, C \rightarrow F, AB \rightarrow D, AB \rightarrow F\}$.

After (2), we get $\{A \to B, A \to C, A \to D, A \to E, A \to F, B \to D, C \to D, B \to E, C \to F\}$.

After (3), we get $\{A \to B, A \to C, B \to D, C \to D, B \to E, C \to F\}$.

After (4), we get $F_c := \{A \to BC, B \to DE, C \to DF\}$. Then we have $R_1(A, B, C), R_2(B, D, E), R_3(C, D, F)$.

Normal Forms: There are 8 normal forms, but we discuss 1NF, 2NF, 3NF, and BCNF (3.5NF).

First Normal Form (1NF): Atomic attributes (flat, no nesting/collections), no repeated groups, there is a unique key, no null values. Second Normal Form (2NF): R is 1NF and does not contain any composite keys. More generally, R is 2NF $\iff \forall a \in R$, either (1) $a \in CK$ or (2) $a \in R$ depends on an entire key; i.e. it is not partially dependent on any composite candidate key.

Third Normal Form (3NF): All non-prime $a \in R$ depend directly on a CK (no transitivity); i.e. if all $a \in R$ are part of a candidate key, R is 3NF. Zaniolo's 3NF: $\forall f \in F$, at least one is true: (1) $a \to \beta$ is trivial. (2) $\alpha \in R$ is SK. (3) $\beta \in CK$.