

Spark. RDD / SQL

SELEZNEV ARTEM
HEAD OF CVM ANALYTICS @ MAGNIT

APACHE SPARK

ФУНКЦИОНАЛЬНАЯ РАЗНИЦА


```
map()
reduce()
```

ФУНКЦИОНАЛЬНАЯ РАЗНИЦА


```
map() reduce()
filter() sortBy()
join() groupByKey()
first() count()
```

```
map()
reduce()
```

APACHE SPARK

APACHE SPARK – ЗАВИСИМОСТИ

РЕСУРСЫ

ПАРТИЦИОНИРОВАНИЕ

APACHE SPARK RUN-RESOURCES

- Есть ограничение в приросте производительности
- Все будет работать не быстрее самого медленно

$$Speedup = \frac{1}{(1-F) + \frac{F}{S}}$$

То, что может быть распараллелено (%)

То, что НЕ может быть распараллелено (%)

Кол-во процессоров

 $Speedup = \frac{1}{(1-0.25) + \frac{0.25}{20}}$

То, что может быть распараллелено (%)

То, что НЕ может быть распараллелено (%)

Кол-во процессоров

20 - процессоров 25% - распараллелено

$$Speedup = \frac{1}{0.75 + \frac{0.25}{20}} = 1.31$$

То, что может быть распараллелено (%)

То, что НЕ может быть распараллелено (%)

Кол-во процессоров

20 - процессоров25% - распараллелено1.31 – быстрее процесс

APACHE SPARK PARTITIONS

APACHE SPARK (2 СТРУКТУРЫ ДЛЯ РҮТНОN)

	RDD	DataFrame
Immutability	✓	✓
Schéma	X	✓
Apache Spark 1	~	~
Apache Spark 2	~	✓ (it does not exist in Java anymore)
Performance optimization	X	~
Level	Low	High (built upon RDD)
Typed	✓	X
Syntax Error	Compile time	Compile time
Analysis Error	Compile time	Runtime

APACHE SPARK – ТЕРМИНЫ

DRIVER

WORKER

APACHE SPARK – ТЕРМИНЫ

DRIVER

Процесс содержащий Spark Context

WORKER

Приложение (node) выполняющее код/команды

РАБОТА КОНТЕКСТА

PAБOTA KOHTEKCTA (?)

(НЕ БОЛЬШАЯ)

ЗАВИСИМОСТЬ ОТ ПАРТИЦИЙ (БОЛЬШАЯ)

ЗАВИСИМОСТЬ ОТ ПАРТИЦИЙ (БОЛЬШАЯ)

ФУНКЦИИ УПРАВЛЕНИЯ ПАРТИЦИЯМИ

.partitions()	Список объектов партиций	
.dependencies()	Список объектов зависимостей	
.compute(p, parent)	Кол-во элементов в партиции Р в родительском	
	объекте	
.practitioner()	Метадата по партиции	
preferredLocations(p)	Список нод, где партиция Р расположена	

SPARK RDD

RDD ПРИЧИНЫ ИСПОЛЬЗОВАНИЯ

НУЖНЫ НЕ ИЗМЕНЯЕМЫЕ ОБЪЕКТЫ

НУЖНА ТИПИЗАЦИЯ RDD[int], RDD[string]

FAULT TOLERANCE

ПРОВЕСТИ КРУПНЫЕ (ГРУБЫЕ) ИЗМЕНЕНИЯ ПО ВСЕМУ НАБОРУ ДАННЫХ

ВАЖНО ПАРТИЦИОНИРОВАНИЕ, РАСПРЕДЕЛЕНИЕ ПО НОДАМ (ОПРЕДЕЛЕННОЕ)

РЕСУРСАМ

КОГДА НУЖНО ИСПОЛЬЗОВАТЬ ДРУГИЕ ОПТИМИЗАТОРЫ (HE CATALYST)

RDD ПРИЧИНЫ ИСПОЛЬЗОВАНИЯ

ИСПОЛЬЗОВАТЬ BROADCAST

spark.sparkContext.broadcast(VARIABLE)

ИСПОЛЬЗОВАТЬ ACCUMULATOR

spark.sparkContext.accumulator(Type, Func())

ACCUMULATOR

```
accum = sc.accumulator(0)
from collections import Counter
class CounterAccumulatorParam(ps.accumulators.AccumulatorParam):
    def zero(self, initialValue):
       return Counter()
   def addInPlace(self, v1, v2):
        v1 += v2
        return v1
accum = sc.accumulator(Counter(), CounterAccumulatorParam())
def count null(record):
    global accum
    c = Counter()
    for key, value in record.items():
           if value == '':
               c[key] += 1
    accum.add(c)
rdd dict.foreach(count null)
accum.value
```

ACCUMULATOR

```
accum = sc.accumulator(0)
from collections import Counter
class CounterAccumulatorParam(ps.accumulators.AccumulatorParam):
    def zero(self, initialValue):
       return Counter()
   def addInPlace(self, v1, v2):
        v1 += v2
        return v1
accum = sc.accumulator(Counter(), CounterAccumulatorParam())
def count null(record):
    global accum
    c = Counter()
    for key, value in record.items():
           if value == '':
               c[key] += 1
    accum.add(c)
rdd dict.foreach(count null)
accum.value
```

RDD НЕ ИЗБАВЛЯЕТ ОТ ПРОБЛЕМ

HET ОПТИМИЗАТОРА (В DATAFRAME / DATASET ИСПОЛЬЗУЕТСЯ CATALYST)

НУЖНО СЛЕДИТЬ ЗА ТИПАМИ ДАННЫХ

ДЕГРАДАЦИЯ ДАННЫХ ПРИ МАЛОМ КОЛ-ВЕ ОЗУ (КОГДА IN-MEMORY)

НУЖНО ИСПОЛЬЗОВАТЬ GARBAGE COLLECTION

RDD (KEY – VALUE) | MAP – REDUCE

```
pets = sc.parallelize([("cat", 1), ("dog", 1), ("cat", 2)])

pets.reduceByKey(lambda x, y: x + y) # => {(cat, 3), (dog, 1)}

pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}

pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}
```

MAPPER

- str(обычный файл\tc вашими\tданными)
- list(list(str(обычный файл), str(с вашими), str(данными)
- function(object) <- list(str)
- return: key value

RDD (KEY – VALUE) | MAP – REDUCE

```
pets = sc.parallelize([("cat", 1), ("dog", 1), ("cat", 2)])

pets.reduceByKey(lambda x, y: x + y) # => {(cat, 3), (dog, 1)}

pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}

pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}
```

MAPPER

- str(обычный файл\tc вашими\tданными)
- list(list(str(обычный файл), str(с вашими), str(данными)
- function(object) <- list(str)
- return: key value

RDD НА ПРИМЕРЕ

RDD | WORDCOUNT

```
file_rdd.map(line => line.split(""))
    .map(split => (split(0), split(1).toInt))
    .groupByKey()
    .mapValues(iter => iter.reduce(_ + _)).collect()
```

dummy.txt

```
jon 2
mary 3
anna 1
jon 1
jesse 3
mary 5
```

RDD | PLAN

```
sc.textFile('file:///dummy.txt')
     map(line => line.split(" "))
map(split => (split(0), split(1).toInt))
            groupByKey()
 mapValues(iter => iter.reduce(_ + _))
              collect()
```

RDD | PLAN RDD

RDD | BAPbEP

RDD | БAPbEP

RDD | BAPbEP

RDD | BAPLEP

Shuffle барьер

RDD | ВЫПОЛНЕНИЕ

• Разбиение уровней на задачи для Executor's

RDD | ВЫПОЛНЕНИЕ

- Разбиение уровней на задачи для Executor's
- Задача это процесс партиционирования данных и вычисления

RDD | ВЫПОЛНЕНИЕ

- Разбиение уровней на задачи для Executor's
- Задача это процесс партиционирования данных и вычисления
- Выполнение каждой задачи

RDD | ПАРТИЦИОНИРОВАНИЕ ЗАДАЧ

RDD | SHUFFLE

jon 2 mary 3 anna 1 jon 1

jesse 1 mary 5

```
groupByKey()

t

mapValues(iter => iter.reduce(_ + _))
```

RDD | SHUFFLE

```
groupByKey()

wt

mapValues(iter => iter.reduce(_ + _))
```

- Перераспределение данных по партициям
- Hash key для создания бакетов
- Выполнение процесса
 с записью на диск temp файлов
 (как Hadoop)

RDD ТЕРМИНЫ

TRANSFORMATION

«Ленивое» вычисление. Return – новый RDD

ACTION

Запускает выполнение вычислений над данными. Return – финальное значение (на драйвер)

RDD TRANSFORMATION

```
1
nums = sc.parallelize([1,2,3])
2
squared = nums.map(lambda x: x*x) # => {1, 4, 9}
3
even = squared.filter(lambda x: x % 2 == 0) # => [4]
4
nums.flatMap(lambda x: range(x)) # => {0, 0, 1, 0, 1, 2}
```

RDD TRANSFORMATION

```
1
nums = sc.parallelize([1,2,3])
2
squared = nums.map(lambda x: x*x) # => {1, 4, 9}
3
even = squared.filter(lambda x: x % 2 == 0) # => [4]
4
nums.flatMap(lambda x: range(x)) # => {0, 0, 1, 0, 1, 2}
```

Количество вычислений = 1!

RDD ACTION

```
nums = sc.parallelize([1, 2, 3])
2
nums.collect() # => [1, 2, 3]
nums.take(2) # => [1, 2]
nums.count() # => 3
nums.reduce(lambda: x, y: x + y) # => 6
6
nums.saveAsTextFile("hdfs://file.txt")
```

RDD ACTION

```
nums = sc.parallelize([1, 2, 3])
nums.collect() \# \Rightarrow [1, 2, 3]
nums.take(2) \# => [1, 2]
nums.count() # => 3
nums.reduce(lambda: x, y: x + y) # => 6
6
nums.saveAsTextFile("hdfs://file.txt")
```

Количество вычислений = 6

```
B [1]: import random
      flips = 100000
      heads = (
           sc.parallelize(coins) - Создаем RDD
Transformations ...map(lambda i: random.random())
            .filter(lambda r: r < 0.51)</pre>
            .count() - Action
```

```
B [1]: import random
       flips = 100000
       coins = range(1, flips + 1)
       heads = (
               sc.parallelize(coins)
                  .map(lambda i: random.random())
                  .filter(lambda r: r < 0.51)
                  .count()
```

- Создаем функцию
- Применяем её к объекту

```
B [1]: import random
      flips = 100000
      coins = range(1, flips + 1)
      heads = (
              sc.parallelize(coins)
                .map(lambda i: random.random())
               .filter(lambda r: r < 0.51)
                .count()
```

```
import random
import random
                                                     flips = 100000
flips = 100000
                                                     coins = range(1, flips + 1)
coins = range(1, flips + 1)
                                                     rdd = sc.parallelize(coins)
heads = (
        sc.parallelize(coins)
                                                     flips_rdd = rdd.map(lambda i: random.random())
          .map(lambda i: random.random())
                                                     heads_rdd = flips_rdd.filter(lambda r: r < 0.51)
           .filter(lambda r: r < 0.51)
                                                     heads = heads rdd.count(
          .count(
```

DATAFRAMES

0	john	23	iowa	2	
1	mary	78	dc	2	
2	peter	22	california	0	
3	jeff	19	texas	1	
4	bill	45	washington	2	
5	lisa	33	dc	1	

wild DATAFRAME appeared!

ПРИНЦИП РАБОТЫ С DF

Создать DataFrame из ресурсов

Применить трансформаторы к DataFrame (select, filter, etc.)

Применить экшены к DataFrame (show, saveAs..., etc.)

KAK C RDD?

НОВАЯ СТРУКТУРА!

TABLE

Состоит из строк и колонок

ROW

Из объекта rows – namedtuple - rdd

```
df = sqlContext.read.text("")
onlyComments = df.filter("status == 'comments'")
```

«Ленивые» вычисления

```
idf = sqlContext.read.text("")
onlyComments = df.filter("status == 'comments'")
onlyComments.count() / df.count()
```

?

```
df = sqlContext.read.text("")
onlyComments = df.filter("status == 'comments'")
onlyComments.count() / df.count()
```



```
idf = sqlContext.read.text("")
onlyComments = df.filter("status == 'comments'")
onlyComments.count() / df.count()
```

- 1. Чтение данных (2 раза)
- 2. Подсчет результата по патрициям (2 раза)
- 3. Фильтр
- 4. Соединение результата на драйвере


```
df = sqlContext.read.text("")

df.cache() # cached!

onlyComments = df.filter("status == 'comments'")

onlyComments.count() / df.count()
```



```
1. Чтение данных
df = sqlContext.read.text("")
                                                 2. Подсчет результата по патрициям (2 раза)
df.cache()
            # cached!
                                                 3. Фильтр
onlyComments = df.filter("status == 'comments'")
onlyComments.count() / df.count()
                                                 4. Соединение результата на драйвере
                                                                                      count
    Node
                                                Node
                                                                          Node
                                                                                              Count
                           count
                                                             filter
                   RAM
                                                                          Node
    Node
                                                Node
                              Count
    Node
                                                Node
```

- Python код работает на driver
- Transformations на executor'ax
- Actions на executor'ax и driver

```
df = sqlContext.read.text("")
onlyComments = df.filter("status == 'comments'")
onlyComments.count() / df.count()
```


- Python код работает на driver
- Transformations на executor'ax
- Actions на executor'ax и driver

```
df = sqlContext.read.text("")
onlyComments = df.filter("status == 'comments'")
onlyComments.count() / df.count()
```


- Python код работает на driver
- Transformations на executor'ax (а ещё, во время чтения)
- Actions на executor'ax и driver

```
df = sqlContext.read.text("")
onlyComments = df.filter("status == 'comments'")
onlyComments.count() / df.count()
```


НОВАЯ МОДЕЛЬ РАЗРАБОТКИ

- Python код работает на driver
- Transformations на executor'ax
- Actions на executor'ax и driver

```
df = sqlContext.read.text("")
onlyComments = df.filter("status == 'comments'")
onlyComments.count() / df.count()
```


PERFORMANCE

Данные: применяем сериализацию и кэширование

Следим за структурами данных, кэшем, количеством шаффлов

Запомним: parallelism + memory + GC

Данные: применяем сериализацию и кэширование

Следим за структурами данных, кэшем, количеством шаффлов

Запомним: parallelism + memory + GC

.coalesce() – когда очень много партиций

Много задач заканчиваются быстро, но есть несколько медленных

Много задач в очереди

<100мс на задачу

.repartition() — когда очень мало партиций

Не эффекта от параллелизма

Данные очень смещены (смотрим за skew в данных)

Spark Jobs (?)

User: root

Total Uptime: 120.7 h Scheduling Mode: FIFO

▼ Event Timeline

Enable zooming

Storage - Cache

Environment - Configuration

Executors – Workers

Всегда старайтесь уменьшить данные

- aggregateByKey()
- filter()

Остерегайтесь shuffle Сделайте заранее партиционирование и .persist()

join()partitionBy()reduceByKey()sortByKey()

Ищите лучшие варианты

УРОВНИ КЭША

MEMORY_ONLY

В ОЗУ, как RDD объект в JVM

MEMORY_AND_DISK

В ОЗУ, как RDD объект в JVM (но на диск помещается то, что не влезло в ОЗУ)

DISK_ONLY

RDD партции хранятся на диске, без участия ОЗУ

*_SER / *_N

Повторяет уровень хранения, но объект становится сериализованный (в байт коде) (более эффективно по памяти, но появляется зависимость процессора /

Повторяет уровень хранения, повторяет (реплецирует) на N количестве нод

ЗАПОМНИМ

НЕЛЬЗЯ ИЗМЕРИТЬ – НЕЛЬЗЯ УСКОРИТЬ

ДЕЛАЙТЕ РЕВЬЮ СВОЕГО КОДА (ИЗБЕГАЙТЕ ЦИКЛОВ)

НАБОРЫ ДАННЫХ МОГУТ БЫТЬ ОПТИМИЗИРОВАННЫ ПАРТИЦИОНИРОВАНИЕМ

САМАЯ ДОРОГАЯ ОПЕРАЦИЯ SHUFFLE

SPARK ПРОЕКТ

SPARK **ПРОЕКТ**

• Цель: Разработать Data Quality «платформу» на Apache Spark

Задача: Выбрать данные

(https://cseweb.ucsd.edu/~jmcauley/datasets.html)