Aufgabe 7

Beweisen oder widerlegen Sie:

- a) Seien zwei endliche Mengen M und N Teilmengen des \mathbb{R}^n . Aus $N\subseteq M$ folgt $L(N)\subseteq L(M)$.
- b) Für $M \subseteq \mathbb{R}^n$, M endlich, gilt L(M) = L(L(M)).

Lösung 7a

$$x \in L(N) \Rightarrow x = \sum_{k=1}^{r} \lambda_k \cdot n_k$$

$$= \sum_{k=1}^{r} \lambda_k \cdot n_k + 0$$

$$= \sum_{k=1}^{r} \lambda_k \cdot n_k + \sum_{m \in M \setminus N} 0 \cdot m$$

$$\Rightarrow x \in L(M)$$

$$\Rightarrow L(N) \subseteq L(M) \checkmark$$

Lösung 7b

Es ist zu zeigen, dass $L(L(M)) \subseteq L(M)$.

Sei $x \in L(L(N))$ so gilt $x = \sum_{i=1}^k a_i \cdot m_i$ mit $m_i \in L(N)$ für $n \in [1;k]$. Dann ist $m_i = \sum_{j=1}^l k_j \cdot n_j$.

Somit ist $a_i \cdot m_i = a_i \cdot \sum_{j=1}^l b_j \cdot n_j = \sum_{j=1}^l a_i \cdot b_j \cdot n_j$. Außerdem ist dann

$$\sum_{i=1}^{k} a_i \cdot m_i = \sum_{i=1}^{k} \sum_{j=1}^{l} a_i \cdot b_j \cdot n_j$$

$$= \sum_{j=1}^{l} \sum_{i=1}^{k} a_i \cdot b_j \cdot n_j$$

$$= \sum_{j=1}^{l} \left(\sum_{i=1}^{k} a_i \right) \cdot b_j \cdot n_j$$

$$:= c_j$$

So sieht man, dass $x \in L(N)$ \checkmark

Ausgabe: 07.12.2022

Abgabe: 13.12.2022

Ausgabe: 07.12.2022 Abgabe: 13.12.2022

Aus $M\subseteq N$ folgt $L(M)\subseteq L(N)$. Setze ein N=L(M). Da $M\subseteq L(M)$ ist, folgt ebenso $L(M)\subseteq L(L(M))$. \checkmark