Algorithms and Complexity

Spring 2018 Aaram Yun

This page is intentionally left blank

Last time...

- >> We've studied
 - >> Turing machines

Today

- >> Encoding
- >> Search problems & decision problems
- >> Church-Turing Thesis
- >> Uncomputable problems
- >> Universal Turing machine

Encoding

```
0: some object

<0> = fo,1)* : the enoding of o
```

- >> We encode every objects we deal with as bit strings in $\{0,1\}^*$
 - >> Number: use binary enoding
 - >> Pair = x,y \(\ell_0 | \ell_1 \) \(\tau_1 \ell_2 \) = write doubled version of \(\ll_1 \ell_2 \)
 - >> Set: by a tuple

 And tuples: < x, y, z> = < x/, < y, z>>
 - >> Graph: use adjucency mostrix representation

More or less, any "reasonable" encoding scheme would do, So often we don't have to worry too much about the details.

Search problem

- $R \subseteq \{0,1\}^* \times \{0,1\}^*$: a relation of strings
- $>> \operatorname{Let} R(x) := \{y: (x,y) \in R\}$ the set of all y which are related to x by R.
- \gg This R is a search problem
- $\gg f: \{0,1\}^* \to \{0,1\}^* \cup \{\bot\} \ \textit{solves} \ R \ \textit{if} \ \ldots$

For every
$$x \in \{0,1\}^*$$
 if $R(x) = \emptyset$, then $f(x) = \bot$
and if $R(x) \neq \emptyset$, then $f(x) \neq \bot$, and $R(x) \neq \bot$, and $R(x) \neq \bot$

that is, f(1) ER(21)

Search problem

>> Examples

Sorting. Rosert is a set of (21, y) where nt is an enoding of a list of numbers and 2 is an enoding of a list of numbers with the property that I is a permutation of Il and y is sorted Equation solving Reg is a set of (51, 4) where nt is an encoding of an inti-ceff, polynomial and y is an encoding of an integer Such that 2(y) = 0

Decision problem

PRIMES = W = {0,13*

PRIMES= {<n> n is a prime number}

$$\gg S \subseteq \{0,1\}^*$$

 \gg This S is a decision problem

<n>EPRIMES iff n is prine.

 $\Rightarrow f: \{0,1\}^* \rightarrow \{0,1\}$ solves S if ...

For every
$$\chi \in \{0,1\}^{*}$$
 if $\chi \in S$, then $f(\chi) = 1$ and if $\chi \notin S$, then $f(\chi) = 0$.

If SCfolly, then a characteristic function Xs of S is defined a

$$\chi_{s(s)=1}$$
 if sief

A special case

- $\gg R \subseteq \{0,1\}^* \times \{0,1\}^*$
- $\gg R$ gives a decision problem as follows:

$$\gg S_R := \{x: R(x)
eq \emptyset\}$$

 \gg If you can solve R, then you can also solve S_R

Church-Turing thesis

>> Computability = Turing computability

Justification?

- >> From psychology
- >> From equivalence
- >> From modern computers

Uncomputable functions

- >> Not all functions are computable
 - >> Easy to prove by counting

```
of course, proving existence is different from showing a concrete example.

Similar situation had happened for the existence of transcendental numbers:

existence easy to prove by counting, but showing a concrete example is harder. (Now we know that e, to are transcendental.)
```

Halting problem

- >> We can encode a Turing machine, too.
 - \gg For each Turing machine M, $\langle M \rangle \in \{0,1\}^*$
- \gg The halting function $h:\{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ is defined as
 - $\Rightarrow h(\langle M \rangle, x) = 1 \text{ iff } M \text{ halts on input } x$
- >> The halting function *h* is not computable

proof) Suppose there exists a turny muchne H which computes h $H(\langle M, \chi \rangle) = h(\langle M \rangle, \chi)$ for all TM M and $\chi \in \{0,1\}^k$ We define a machine D which works as follows: D(<M7) halts and outputs 1 iff H(<M,<M>>) owlputs 0 loops freher iff fl((M, (M))) outputs 1. iff h(<M>,<M>) owherts O 7 D(<M>) halts and outputs I loops frever iff h(M), M) outputs 1.

Then, consider the emputation D(D) Suppose D(XD>) halts () H(XD,XD>>>) outputs 0 $\Leftrightarrow h(\langle D \rangle \langle D \rangle) = 0$ (D) (D) loops forever (h((M) 1) = o iff M(x) loops forever.) Then what if D((D)) (oops forever? \rightarrow H((D,(D)))=1.=> D (< D>) halts.

Universal Turing machine