

Event History AnalysisPractice class I

- 1. Introduction to Event History Analyses
- 2. Introduction to Credit risk
- 3. Definition to basic terms of EHA in application to CR
- 4. Database

Introduction to Event History Analysis

Event History Analysis

Survival analysis is a class of statistical methods for studying the occurence and timing of events. Origins from biostatistics (studies of deaths)

Where EHA methods can be used:

- Demographics Life Expectancy Tables
- Clinical trials time to side effects or death
- Insurance time to insurance claim
- Credit risk time to default (event of not repaying credit)
- Engineering time to machine breakdown

Event History Analysis vs. Regression methods

Criterion	Regression	ЕНА			
Target variable	Variety (continuous, discrete etc)	Time to event			
Censoring	Full history of subjects admited to the study is needed, especially the target variable must be known	Complex theory about censoring			
Outcome	Expected value	Distribution of a target variable.			

Introduction to Credit risk

EHA

How does the proces of granting a loan look like?

How does a Bank earn money?

Credit risk is a risk that money granted to a client will not be repaid back due to loss of creditworthiness during the loan period.

How does a bank protect against Credit risk?

→ Especially in Consumer Finance, but not only – they build Credit risk models, whose goal is to estimate the probability of not repaying a credit (=default).

What does it mean "not repaying a credit?"

Definition of default: it is a situation in which a client has a delay in instalment payment exceeding 90 days (known as days past due, DPD).

How does the proces of monitoring credit exposures looks like?

In application model, we model probability that a loan defaults in the first 12 months since acceptance.

Why is this target variable problematic?

Consumer loans are usually granted for up to 10 years, so an assumption that Credit risk concentrates in first 12M is difficult to pass.

As you can see below the Credit risk during first 12M materializes at 4% whereas lifetime risk is about 8% - banks build models on a risk 4%, but the real risk is about 2 times higher!

Credit risk Comparison of EHA and classical method

Definition to basic terms of EHA in application to CR

EHA

Event:

- Initial (event-origin) initiates a career (e.g.: first children birth initiates maternity career)
- **Repetitive** may occur a few times in a career (e.g.: job change)
- Non-repetitive may not occur more than once in a career (e.g.: death)

Credit risk:

- ✓ Initial event: granting a loan
- ✓ Following events are **non-repetitive**: customer that experienced default is assumed not reliable and therefore marked as a bad customer.

Censoring in Credit risk

In the database used we have only right censoring. Therefore we assume equivalent situation when a loan closes in accordance to schedule and a loan that is open at the end of observation period.

Time of origin

Start and end of the observation period must be precisely specified.

Origin of an episode may be:

- Evident/natural in the study of deaths natural origin of time is birth
- Arbitrary in the study of retirement age, origin time might be birth or date of entering the labor market.

Credit risk

In credit risk, we assume origin of episode would be date of granting a loan.

Database description

EHA

Database consists of two tables:

- 1. Production database about client and transaction (as at the date of application)
- 2. Transactions database about history of repayments

Observation unit: trasaction (in other words loan, credit account, contract)

 Assumption: if a client has more than one loan in our bank, event of default on each of his/her loans is independent.

IDs:

- AID account ID and a key to join two tables
- CID customer ID

Products:

- CSS: cash loan, for any purpose
- INS: instalment loan, for purchase of particular event

		aid	Ø product	period		▲	status	due_installments	paid_installments	(i) leftn_installments
1	000000009	css2006012600002	css	200601	200601	Α		0	0	24
2	000000009	css2006012600002	css	200602	200601	Α		1	0	24
3	0000000009	css2006012600002	css	200603	200601	Α		1	1	23
4	000000009	css2006012600002	css	200604	200601	Α		0	3	21
5	000000009	css2006012600002	css	200605	200601	Α		0	4	20
6	000000009	css2006012600002	css	200606	200601	Α		0	5	19
7	000000009	css2006012600002	css	200607	200601	Α		1	5	19
8	000000009	css2006012600002	css	200608	200601	Α		1	6	18
9	000000009	css2006012600002	css	200609	200601	Α		0	8	16
10	000000009	css2006012600002	css	200610	200601	Α		0	9	15
11	000000009	css2006012600002	css	200611	200601	Α		0	10	14
12	000000009	css2006012600002	css	200612	200601	Α		1	10	14
13	000000009	css2006012600002	css	200701	200601	Α		2	10	14
14	000000009	css2006012600002	css	200702	200601	Α		0	13	11
15	000000009	css2006012600002	css	200703	200601	Α		1	13	11
16	0000000009	css2006012600002	css	200704	200601	Α		2	13	11
17	000000009	css2006012600002	css	200705	200601	Α		1	15	9
18	000000009	css2006012600002	css	200706	200601	Α		1	16	8
19	0000000009	css2006012600002	css	200707	200601	Α		2	16	8
20	000000009	css2006012600002	css	200708	200601	Α		3	16	8
21	000000009	css2006012600002	css	200709	200601	Α		4	16	8
22	000000009	css2006012600002	css	200710	200601	Α		5	16	8
23	000000009	css2006012600002	css	200711	200601	Α		6	16	8
24	000000009	css2006012600002	css	200712	200601	Α		7	16	8
25	000000009	css2006012600002	css	200801	200601	В		7	16	8

- Status A/B/C = active / bad / closed
- Due_installments = number of due instalments
- Paid_installments = number of paid instalments
- Leftn_installments = number of instalments left to be paid

Example:

First instalment for transaction ID = css2006012600002 was not paid, subsequent was paid. In April 2006 client paid the instalment that was due as well as the sheduled instalment. In August 2007 defaulted.

			product	ø period	13	act_age	133	act_cc	1	act_loaninc (app_income
1▶	0000001237	css2006010100	css	200601		84	0.5	776850886		2.6068821689	1918
2	0000003380	css2006010100	css	200601		87	0.4	997470916		2.5290844714	1977
3	0000003467	css2006010100	css	200601		75	0.5	841584158		4.1254125413	1212
4	0000003620	css2006010100	css	200601		94	0.6	026871401		4.7984644914	1042
5	0000003621	css2006010100	css	200601		70	0.6	045918367		3.1887755102	1568
6	0000003779	css2006010100	css	200601		97	0.4	707766213		4.003202562	1249
7	0000003940	css2006010100	css	200601		84	0.5	311004785		2.990430622	1672
8	0000004025	css2006010100	css	200601		75	0.5	112262522		2.8785261946	1737
9	0000005240	css2006010100	css	200601		85	0.8	916666667		10.416666667	480
10	0000007621	css2006010100	css	200601		82	0.6	264441592		6.4184852375	779
11	0000007991	css2006010100	css	200601		72	0.6	336357292		3.4891835311	1433
12	0000008933	css2006010100	css	200601		83	0.4	875701684		4.0096230954	1247
13	0000009195	css2006010100	css	200601		79	0.3	469761759		3.0543677459	1637
14	0000009992	css2006010100	css	200601		84	0.5	684210526		2.3923444976	2090
15	0000011195	css2006010101	css	200601		85	0.5	816993464		2.7233115468	1836
16	0000014116	css2006010101	css	200601		86	0.6	901098901		5.4945054945	910
17	0000014174	css2006010101	css	200601		81	0.3	948051948		3.2467532468	1540
18	0000014482	css2006010101	css	200601		93	0.5	685950413		4.132231405	1210
19	0000014618	css2006010101	css	200601		82	0.5	931800159		3.9651070579	1261
20	0000014938	css2006010101	css	200601		76	0.6	521181001		6.4184852375	779

1 row = 1 transaction

4 groups of variables:

- App_: application variables
- 2. Act_: variables containing current value as at the date of granting a loan
- Ags_: behavioral variables calculated independently of the customer relations with a bank
- 4. Agr_: behavioral variables calculated only when a client was a bank's customer for the whole period


```
data trans;
set trans;
by aid cid;
default=(due installments>=3);
if due installments>=3 then ttd=intck('month',input(fin period,yymmn6.),input(period,yymmn6.));
run;
                                                                     Loan closure
proc sql;
                                                                   (according to the
                                                                                              No default, loan still
create table trans as
                                                                      schedule)
                                                                                              open at the end of
select distinct aid, cid, product, fin period,
                                                                                              observation period
       max(default) as default,
       case when min(leftn installments)=0 and max(default)=0 then 0
             when min(leftn installments)>0 and max(default)=0 and max(period)='200812' then 1
                                                                                                           Default during
             when max(default)=1 then 2 end as rc,
                                                                                                         observation period
       min(case when ttd >= 0 then ttd end) as ttd,
       case when max(default)=0 then max(period) else min(case when default=1 then period end) end as max period
  from trans
 group by aid, cid;
quit;
```


Thank you. Any questions?