Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports année scolaire 2024-2025 Professeur : Zakaria Haouzan Établissement : Lycée SKHOR qualifiant

Devoir surveillé N°2-S1 Durée 2h00 2-BAC Section des sciences Mathématiques

Fiche Pédagogique _____

I Introduction

Le programme d'études de la matière physique chimie vise à croître un ensemble de compétences visant à développer la personnalité de l'apprenant. Ces compétences peuvent être classées en Compétences transversales communes et Compétences qualitatives associées aux différentes parties du programme.

II cadre de référence

L'épreuve a été réalisée en adoptant des modes proches à des situations d'apprentissages et des situations problèmes, qui permettent de compléter les connaissances et les compétences contenues dans les instructions pédagogiques et dans le programme de la matière physique chimie et aussi dans le cadre de référence de l'examen national.

Tout en respectant les rapports d'importance précisés dans les tableaux suivants :

Restitution des Connaissances	Application des Connaissances	Situation Problème	
40%	30%	30%	

III tableau de spécification

Niveau d'habileté		Restitution des Connaissances	Application des Connaissances	Situation Problème	la somme
Transformations nucléaires 62%			5% 2Q - 2pt	5% 1Q - 1pt	62% 13pts
	Noyaux, masse et énergie 45%	18% 2Q - 2pts	15% 2Q - 2pt	14% 1Q - 1pt	12Q 75min
Les Transformations non totales d'un d'un système chimique 47%	Transfo chimiques dans les deux sens État d'équilibre d'un système chimique	18% 6Q - 4pts	14% 2pts - 2Q	13% 2pts - 2Q	38% 7pts 10Q 45min
_		40% 14Q - 11pts	30% 6Q - 5pts	30% 6Q - 5pts	

Devoir surveillé $N^{\circ}1$ Semestre I

				imie				(7pts)
Suivi tempor	rel d'u	une transform	ation chimic	que par la con	ductimétrie .			
N° Question		Réponse			Note			
1.	les quantités de matière initiales des réactifs.			0 5mta				
1.	$n_0(Zn_{(s)}) = 0,016mol \text{ et } n_0(H_3O_{(aq)}^+) = 0,04mol$			0,5pts				
	le tableau d'avancement de cette réaction.							
		Equation de l	a réaction		$+ \operatorname{Zn} \to Zn^{2+}$	_)	
		états	avancement	quanti	té de Matière e	en mol		
2.		Etat initial	0	0,04	0,01	0	0	0,5pts
		Etat de	x	0,04-2x	0.01 - x	x	x	
	<u>t</u>	transformation	J	,	,			
		Etat final	x_{max}	$0,04-2x_{max}$	$0,01-x_{max}$	$2x_{max}$	x_{max}	
3	$x_{max} = 0,016 mol$ et le réactif limitant Zn.			0,5pts				
4	la diminution de la conductivité mesurée au cours de la transformation chimique			0.25pt				
	est due à la disparition des ions H_3O^+			0.25pt				
5		$\sigma = 21, 3 - 7, 42.10^2 x$			1pt			
6	a t = 400s x = 0.014mol donc $n(H_3O^+)_t = 0.012mol$; $n(Zn)_t = 0.002mol$;				1,25pts			
	$n(Zn^{-1})_t = n(H_2)_t = 0,014mot \text{ et } V(H_2) = 3,5L$				1,2000			
7	'expression de v la vitesse volumique $v = -\frac{1}{7,42.10^2 \cdot V} \cdot \frac{d\sigma}{dt}$ et $v(t=0) = 0,842S/m^4; \ v(t=400) = 0,168S/m^4$				1pt			
'								
8	a $t=t_{1/2} \sigma_t 1/2 = 15S/m \text{ donc } t_{1/2} = 160s$			0,25pt				
9	l'évolue la vitesse de réaction au cours du temps et Donner			0,25pt				
<i>J</i>	une interprétation de cette variation en envisageant un facteur cinétique.							
10	Tracer , en justifiant , sur le même courbe précédente , l'allure de			$\begin{vmatrix} 1,5pt \end{vmatrix}$				
10			la courb	e obtenue dans	ce cas.			\parallel $1, \Im p_{\ell}$

Physique (13pts				
Partie 1 : le mouvement des vagues(3pt				
N° Question	Réponse	Note		
1	L'onde étudiée est transversale	1pt		
2	la vitesse de propagation de ces ondes v =10m/s	1pt		
3	le nom du phénomène observé diffraction . puis $\lambda=d=70m$	1pt		
Partie 2 : Pr	Partie 2: Propagation d'une onde ultrasonore dans l'air			
1	Définir une onde mécanique progressive.	1pt		
2	L'onde ultrasonore est longitudinale	$\parallel 1pt$		
3	la relation entre la longueur d'onde $v = \lambda.N$	1pt		
4.1	graphiquement la valeur de la période $T = 10.\mu.S$	1pt		
4.2	la valeur de $\lambda = 3,4cm$	1pt		
Partie 2 : Étude du phénomène ondulatoire(5p				
1	Nom du phénomène observé diffraction la nature de la lumière monochromatique	1pt		
2	a l'aide de la figure 1 $\theta = \frac{L}{2.D}$	0,5pt		
3	En utilisant les résultats des mesures $\theta = 3, 15.10^{-3} rad$	0,5pt		
4	la relation qui lie les grandeurs $\theta = \frac{\lambda}{a}$	0,5pt		
5	la valeur de la longueur d'onde $\lambda = 0,63m$	0.504		
9	elle appartient au domaine visible	0,5pt		
	-on remplace la lumière émise par le LASER (lumière rouge) par une lumière bleue			
	L diminue			
6	-n diminue la largeur de la fente a L augmente	2pt		
	-différencier expérimentalement une lumière monochromatique d'une lumière			
	polychromatique par un prisme			

Distribution des notes du DS

Figure 1: Distribution des notes du DS $\,$

Statistique	Valeur	
Nombre d'étudiants	22	
Note minimale	2/20	
Note maximale	18/20	
Moyenne	10/20	
Médiane	10/20	