# Uncertainty Estimation Methods for Countering Attacks on Machine-Generated Text Detectors

#### Valeriy Levanov

Moscow Institute of Physics and Technology

Course: My first scientific paper

(Strijov's practice)

Expert: A. V. Grabovoy

Consultant: A. E. Voznyuk

2025

## Goal of research

#### Machine-generated texts detection task

- Develop robust detectors for machine-generated text
- Counter adversarial attacks (homoglyphs, paraphrasing, noise injection)
- Achieve high accuracy with low computational costs

## Key hypothesis

Uncertainty estimation methods can provide resilient detection without continuous retraining across attack types

#### Literature Review

# Key Publications on Uncertainty Estimation

- ▶ Polygraph: Fadeeva A. et al. "Polygraph: Uncertainty-Aware Detection of LLM-Generated Text", ACL 2023
- ▶ M4GT: Wang Y. et al. "M4GT: Benchmark for Machine-Generated Text Detection", NAACL 2024
- ▶ RAID: Sadasivan V. et al. "RAID: Robust Al Detection Dataset", NeurIPS 2023

## Recent Preprints

- ► Image Uncertainty: Jun Nie et al. "Detecting Al-Generated Images via Uncertainty", arXiv:2412.05897 (2024)
- Perplexity Networks: Pablo Miralles-González et al. "Token Weighting for AI Text Detection", arXiv:2501.03940 (2025)

#### Problem Statement

## Binary text classification

#### Given:

- ▶ Input space T all possible texts
- ▶ Output space  $\mathcal{Y} = \{0,1\}$  (0=human, 1=machine)

#### Detection model

Find mapping:

$$F: \mathcal{T} \rightarrow \{0,1\}$$

that correctly classifies texts

## Hypothesis

Machine-generated texts exhibit quantifiable differences in prediction confidence compared to human texts

#### Problem statement

## Decomposed model architecture

$$F = f_3 \circ f_2 \circ f_1 : \mathcal{T} \rightarrow \{0, 1\}$$

#### where:

▶  $f_1: \mathcal{T} \to \mathcal{L}$  - extracts context logits using LLM (Llama-3-8B)

$$f_1(t) = \{\ell_i\}_{i=1}^L, \ \ell_i \in \mathbb{R}^{|V|}$$

- $f_2:\mathcal{L} o\mathbb{R}^d$  computes uncertainty metrics
- $lackbox{ iny }f_3:\mathbb{R}^d o\{0,1\}$  binary classifier

## Quality metrics

- ► ROC-AUC (primary)
- Training time (primary)
- Accuracy

#### Solution

# Perplexity

$$PPL = \exp\left(-\frac{1}{L}\sum_{l=1}^{L}\log P(w_l|w_{< l})\right)$$

Information-based method

## MC Entropy

$$H_S = -\frac{1}{K} \sum_{k=1}^{K} \log P(y^{(k)}|x)$$

Information-based method

# Mean Token Entropy

$$H = -\frac{1}{L} \sum_{i=1}^{L} \sum_{j} P(w_{j}|w_{< i}) \log P(w_{j}|w_{< i})$$

Information-based method

#### Mahalanobis distance

$$MD = \sqrt{(h-\mu)^T \Sigma^{-1} (h-\mu)}$$

- Dencity-based method
- Method fits a Gaussian centered at the training data centroid μ with an empirical covariance Σ matrix

# Computational Experiment

## Model Configuration

- LLM: Llama-3-8B-Instruct
- ► Features:
  - ► Top-512 context logits per token
  - ► Max token count 512

#### **Datasets**

#### M4GT (arXiv)

- ▶ 12K machine / 6K human
- ▶ 6 generation models
- ► Clean data (no attacks)

#### RAID (Reddit)

- ► 15K machine / 15K human
- ▶ 12 generation models
- ▶ 11 attack types

## Classification Models

#### Baseline Model

- ROBERTa-Base fine-tuned
- ► Trained for 1 epoch

## **Uncertainty-Based Classifiers**

- Logistic Regression
  - Linear baseline
  - ► Fast training
- Random Forest
  - ▶ 300 trees
  - ► Max depth = 10

#### Neural Network

- Architecture:
  - 4 linear layers
  - BatchNorm + Dropout
- ► Training:
  - Adam optimizer
  - BCE loss
  - ▶ 300 epochs

## Results:

| Model                    | ROC-AUC | Accuracy | Train Time (s) |
|--------------------------|---------|----------|----------------|
| BERT Classifier          | 0.9954  | 0.9942   | 1489           |
| Neural Classifier + UE   | 0.7942  | 0.8183   | 208            |
| $Random\;Forest\;+\;UE$  | 0.7831  | 0.8103   | 6.77           |
| Logistic Regression + UE | 0.7317  | 0.7744   | 0.013          |

Table: Performance comparison on arXiv data from M4GT

| Model                                           | ROC-AUC | Accuracy | Train Time (s) |
|-------------------------------------------------|---------|----------|----------------|
| BERT Classifier                                 | 0.9532  | 0.9538   | 2362           |
| Neural Classifier + UE                          | 0.8977  | 0.8987   | 378            |
| ${\sf Random\ Forest\ +\ UE}$                   | 0.8987  | 0.8992   | 10.7           |
| ${\sf Logistic}  {\sf Regression}  +  {\sf UE}$ | 0.7258  | 0.7271   | 0.035          |

Table: Performance comparison on Reddit data from RAID

#### Key findings:

- Accuracy reduction of BERT Classifier on attacked dataset
- ▶ 200x faster than BERT with 5.5% performance drop

## Conclusion

#### Results

- ROC-AUC: 0.89 (RAID dataset)
- Training time:
  - Rand Forest: 10s
  - Neural Net: 378s

#### **Future Work**

- ► Architecture search
- Hyperparameter optimization
- Attack pattern detection



UMAP: embeddings in uncertainty metric space by attacks

Uncertainty metrics reveal some attack patterns