

Claims

1 1. A multiple modulus conversion (MMC) method for obtaining a plurality
2 of index values associated with a plurality of moduli, for use in a communication system
3 having means configured to map frames of information bits onto predetermined
4 communication signal parameters, said method comprising:

5 obtaining an input;
6 representing the input as a plurality of sub-quotients;
7 performing a multiplication operation to multiply at least one of the sub-quotients
8 by a multiplicand; and
9 determining an index value associated with the multiplicand, the index value
10 being responsive to the inverse modulus multiplication operation.

1 2. A method according to Claim 1, further comprising obtaining a
2 multiplicand that relates to the estimated inverse of a whole number, wherein performing
3 a multiplication operation includes multiplying at least one of the sub-quotients by the
4 multiplicand.

1 3. A method according to Claim 2, wherein at least one pseudo remainder is
2 produced, the method further comprising checking at least one of the pseudo remainders
3 to determine whether the pseudo remainder falls within a predetermined range and, if it is
4 not within the predetermined range, adjusting the pseudo remainder such that the pseudo
5 remainder falls within the predetermined range.

1 4. A method according to Claim 2, wherein at least one pseudo remainder is
2 produced, the method further comprising checking at least one of the pseudo remainders
3 to determine whether the pseudo remainder is larger than or equal to a predetermined
4 number and, if it is, subtracting the said number from the pseudo remainder.

1 5. A method according to Claim 4, wherein the predetermined number is
2 subtracted from the pseudo remainder until the pseudo remainder is smaller than the
3 predetermined number.

1 6. A method according to Claim 2, wherein at least one of the multiplicands
2 is pre-calculated, and stored in a table, the method further comprising obtaining at least
3 one multiplicand from the table.

1 7. A method according to Claim 2, wherein the maximum number of digits
2 N_3 in the multiplicands, the maximum number of digits N_2 in the whole numbers, and the
3 maximum number of digits $n(j)$ in all but the most significant of the sub-quotients are
4 related by the inequality $N_3 > N_2 + n(j)$.

1 8. A method according to Claim 2, wherein the multiplicand is calculated
2 according to the following formula: $C_i = \text{floor}(B^{N_3}/Y_i)$, where B is the base of the
3 numbering system, N_3 is the maximum number of digits in the multiplicands, and Y_i is
4 the whole number.

1 9. A method according to Claim 2, wherein the input is represented as sub-
2 quotients in the form of $Q_{i-1} = Q_{i-1,0} + Q_{i-1,1}*B^{n(0)} + \dots + Q_{i-1,k}*B^{n(0)+n(1)+\dots+n(k-1)}$.

1 10. A method according to Claim 8, wherein a sub-quotient of the output
2 pseudo-quotient is obtained by multiplying a portion of the input by the multiplicand C_i
3 according to the following formula: $Q_{i,j} = ((Q_{i-1,j}+R_{i,j+1}*B^{n(j)})*C_i) \gg N_3$; and wherein the
4 output pseudo-remainder of the sub-quotient calculation is obtained according to the
5 following formula: $R_{i,j} = (Q_{i-1,j}+R_{i,j+1}*B^{n(j)}) - (Q_{i,j}*Y_i)$, where B is the base number system.

1 11. A method according to Claim 8, further comprising producing an output
2 remainder R_i and new quotient $Q_i = Q_{i,0} + Q_{i,1}*B^{n(0)} + \dots + Q_{i,k}*B^{n(0)+n(1)+\dots+n(k-1)}$.

1 12. A multiple modulus conversion (MMC) encoder comprising:

2 an input configured to receive input data represented by a number of digits;
3 a multiplication means for multiplying two numbers; and
4 a processor configured to represent the input as a plurality of sub-quotients, to
5 multiply at least one sub-quotient by a multiplicand, and to produce an index value
6 associated with the multiplicand, the index value being responsive to the multiplication
7 operation.

1 13. A modulus encoder according to Claim 12, wherein the multiplicand is
2 related to the estimated inverse of a whole number.

1 14. A modulus encoder according to Claim 13, wherein the processor is
2 further configured to generate a pseudo remainder, and further configured to check
3 whether the pseudo remainder falls within a predetermined range.

1 15. A modulus encoder according to Claim 13, wherein the processor is
2 further configured to generate a pseudo remainder, and further configured to check
3 whether the pseudo remainder is larger than or equal to a predetermined number, and
4 further configured to subtract the predetermined number from the pseudo remainder if the
5 pseudo remainder is larger than the predetermined number.

1 16. A modulus encoder according to Claim 15, wherein the processor is
2 configured to keep subtracting the predetermined number from the pseudo remainder
3 until the pseudo remainder is smaller than the predetermined number.

1 17. A modulus encoder according to Claim 13, further including storage
2 means to store at least one multiplicand.

1 18. A modulus encoder according to Claim 13, wherein the processor is
2 configured to handle multiplicands with a maximum number of digits N_3 , and is further
3 configured to handle moduli with a maximum number of digits N_2 , and is further
4 configured to handle inputs represented as sub-quotients with a maximum number of

5 digits $n(j)$ in all but the most significant of the sub-quotients, wherein these quantities are
6 related by the inequality $N_3 > N_2 + n(j)$.

1 19. A modulus encoder according to Claim 13, further including a inverse
2 estimate calculation means, wherein the inverse estimate is calculated according to the
3 following formula: $C_i = \text{floor}(B^{N_3}/Y_i)$, where B is the base of the number system, N_3 is
4 the maximum number of digits in the multiplicands, and Y_i is a whole number.

1 20. A modulus encoder according to Claim 13, wherein the input is configured
2 to obtain an input value in the form $Q_{i-1} = Q_{i-1,0} + Q_{i-1,1}*B^{n(0)} + \dots + Q_{i-1,k}*B^{n(0)+n(1)+\dots+n(k-1)}$.

1 21. A modulus encoder according to Claim 18, wherein the processor is
2 configured to obtain a sub-quotient of an output pseudo-quotient by multiplying a portion
3 of the input by an estimated inverse modulus according to the following formula: $Q_{i,j} =$
4 $((Q_{i-1,j}+R_{i,j+1}*B^{n(j)})*C_i) >> N_3$; and wherein the processor is further configured to obtain a
5 pseudo remainder according to the following formula: $R_{i,j} = (Q_{i-1,j}+R_{i,j+1}*B^{n(j)}) - (Q_{i,j}*Y_i)$,
6 where B is the base of the numbering system.

1 22. A modulus encoder according to Claim 18, wherein the processor is
2 further configured to generate an output remainder R_i and new quotient $Q_i = Q_{i,0} +$
3 $Q_{i,1}*B^{n(0)} + \dots + Q_{i,k}*B^{n(0)+n(1)+\dots+n(k-1)}$.