```
In [38]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [39]:

```
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")
test_2 = pd.read_csv("test.csv")
```

In [40]:

```
train.describe()
```

Out[40]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

處理 missing data

In [41]:

```
print(train.isnull().sum())
print(train.info())
```

```
PassengerId
                  0
Survived
                  0
Pclass
                  0
                  0
Name
Sex
                  0
               177
Age
                  0
SibSp
Parch
                  0
                  0
Ticket
Fare
                  0
Cabin
                687
Embarked
                  2
```

dtype: int64

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	PassengerId	891 non-null	int64				
1	Survived	891 non-null	int64				
2	Pclass	891 non-null	int64				
3	Name	891 non-null	object				
4	Sex	891 non-null	object				
5	Age	714 non-null	float64				
6	SibSp	891 non-null	int64				
7	Parch	891 non-null	int64				
8	Ticket	891 non-null	object				
9	Fare	891 non-null	float64				
10	Cabin	204 non-null	object				
11	Embarked	889 non-null	object				
11							

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

None

In [42]:

```
print(test.isnull().sum())
print(test.info())
PassengerId
                 0
Pclass
                 0
Name
                 0
Sex
                 0
Age
                86
SibSp
                 0
                 0
Parch
Ticket
                 0
                 1
Fare
Cabin
               327
Embarked
                 0
dtype: int64
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):
#
     Column
                 Non-Null Count Dtype
___
     _____
                  _____
     PassengerId 418 non-null
 0
                                   int64
                 418 non-null
 1
     Pclass
                                   int64
                 418 non-null
 2
     Name
                                  object
 3
                 418 non-null
     Sex
                                  object
                 332 non-null float
418 non-null int64
                 332 non-null
 4
                                  float64
     Age
 5
     SibSp
 6
                 418 non-null int64
    Parch
                 418 non-null object
417 non-null float6
 7
     Ticket
 8
     Fare
                                   float64
 9
     Cabin
                 91 non-null
                                   object
 10 Embarked
                 418 non-null
                                   object
dtypes: float64(2), int64(4), object(5)
memory usage: 36.0+ KB
None
 1. train 資料缺"Age", "Cabin", "Embarked"
```

2. test 資料缺"Age", "Cabin", "Fare"

處理"Age" 的 missing data

```
In [43]:
```

```
# 建立一個"Age"的標準差平均隨機數字的array
data = [train, test, test_2]

for dataset in data:
    mean = train["Age"].mean()
    std = test["Age"].std()
    is_null = dataset["Age"].isnull().sum()
    # 介在平均、標準差、遺失值的隨機數字
    rand_age = np.random.randint(mean - std, mean + std, size = is_null)
    # 墳隨機數字
    age_slice = dataset["Age"].copy()
    age_slice[np.isnan(age_slice)] = rand_age
    dataset["Age"] = age_slice
    dataset["Age"] = train["Age"].astype(int)
train["Age"].isnull().sum()
```

Out[43]:

0

處理 "Embarked" 的 missing data

In [44]:

```
# 用 common value 補
common_value = 'S'
data = [train, test, test_2]

for dataset in data:
   dataset['Embarked'] = dataset['Embarked'].fillna(common_value)
```

處理 "Cabin" 的 missing data

In [45]:

```
# 因為缺太多,所以直接拿掉
train = train.drop(['Cabin'], axis=1)
test = test.drop(['Cabin'], axis=1)
test_2 = test_2.drop(['Cabin'], axis=1)
```

處理 "Fare" 的 missing data

In [46]:

```
data = [train, test, test_2]

for dataset in data:
   dataset['Fare'] = dataset['Fare'].fillna(0)
   dataset['Fare'] = dataset['Fare'].astype(int)
```

```
In [47]:
```

```
# 用 common value 補
common_value = 'S'
data = [train, test, test_2]

for dataset in data:
    dataset['Fare'] = dataset['Fare'].fillna(common_value)
```

把不會用到的column拿掉

```
In [48]:
```

```
train = train.drop(['PassengerId','Name','Ticket'], axis=1)
test = test.drop(['PassengerId','Name','Ticket'], axis=1)
test_2= test_2.drop(['Name','Ticket'], axis=1)
```

In [49]:

```
genders = {"male": 0, "female": 1}
data = [train, test,test_2]

for dataset in data:
    dataset['Sex'] = dataset['Sex'].map(genders)
```

In [50]:

```
ports = {"S": 0, "C": 1, "Q": 2}
data = [train, test,test_2]

for dataset in data:
    dataset['Embarked'] = dataset['Embarked'].map(ports)
```

In [51]:

```
train.info()
test.info()
test_2.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Survived	891 non-null	int64
1	Pclass	891 non-null	int64
2	Sex	891 non-null	int64
3	Age	891 non-null	int64
4	SibSp	891 non-null	int64
5	Parch	891 non-null	int64
6	Fare	891 non-null	int64
7	Embarked	891 non-null	int64

dtypes: int64(8)
memory usage: 55.8 KB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 7 columns):

Column	Non-Null Count	Dtype
Pclass	418 non-null	int64
Sex	418 non-null	int64
Age	418 non-null	int64
SibSp	418 non-null	int64
Parch	418 non-null	int64
Fare	418 non-null	int64
Embarked	418 non-null	int64
	Pclass Sex Age SibSp Parch Fare	Pclass 418 non-null Sex 418 non-null Age 418 non-null SibSp 418 non-null Parch 418 non-null Fare 418 non-null

dtypes: int64(7)

memory usage: 23.0 KB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Pclass	418 non-null	int64
2	Sex	418 non-null	int64
3	Age	418 non-null	int64
4	SibSp	418 non-null	int64
5	Parch	418 non-null	int64
6	Fare	418 non-null	int64
7	Embarked	418 non-null	int64

dtypes: int64(8)
memory usage: 26.2 KB

In [52]:

Survived: 342 (38.4 percent), Not Survived: 549 (61.6 percent), Total: 891

In [53]:

```
sns.distplot(surv['Age'].dropna().values, bins=range(0, 81, 1), color = "blue", axla
sns.distplot(nosurv['Age'].dropna().values, bins=range(0, 81, 1), color = "red", axla
```

Out[53]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd160c792d0>

In [54]:

```
median_age_surv = np.median(surv['Age'].dropna())
median_age_nonsurv = np.median(nosurv['Age'].dropna())
print("Median age survivors:", median_age_surv, ", Median age non-survivers:", media
```

Median age survivors: 28.0 , Median age non-survivers: 29.0

"Age" 中,存活的中位數為28,在0~10歲左右的小孩存活率也較高,在30歲之後的分佈接近常態分佈。 死亡的中位數為28,整體分佈情形近似於常態分佈。

In [55]:

sns.barplot('Sex', 'Survived', data=train)

Out[55]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd1604262d0>

"Sex" 出現 女性存活率 >> 男性存活率

In [56]:

sns.barplot('Pclass', 'Survived', data=train)

Out[56]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd16049d6d0>

"Pclass"表示3個等級的座位,由高到低1->3,圖中顯示高級座位區的存活率 > 次級座位區的存活率 > 最低等級座位區的存活率

In [57]:

sns.barplot('Embarked', 'Survived', data=train)

Out[57]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fd160500090>

"Embarked"表示出發的港口代號,雖然乍看之下跟存活率好像沒什麼關係,但從圖會發現"C港口的存活率" > " S港口的存活率"

In [58]:

```
FacetGrid = sns.FacetGrid(train, row='Embarked', size=4.5, aspect=1.6)
FacetGrid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette=None, order=None,
FacetGrid.add_legend()
```

/Users/lnl/opt/anaconda3/lib/python3.7/site-packages/seaborn/axisgrid.py:243: UserWarning: The `size` parameter has been renamed to `height `; please update your code.
warnings.warn(msg, UserWarning)

Out[58]:

<seaborn.axisgrid.FacetGrid at 0x7fd1605e64d0>

In [59]:

```
sns.distplot(surv['SibSp'].dropna().values, bins=range(0, 8, 1), kde=False,color = '
sns.distplot(surv['Parch'].dropna().values, bins=range(0, 8, 1), kde=False,color = '
```

Out[59]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fd1605e6850>

"SibSp"表示有幾個兄弟姊妹或配偶一同旅行,"Parch"表示有幾個爸媽或小孩一同旅行。從圖中可以看出有1~3個家人一起存活的機率比較高。

In [60]:

```
sns.distplot(np.log10(surv['Fare'].dropna().values+1), color = "blue", axlabel='Fare
sns.distplot(np.log10(nosurv['Fare'].dropna().values+1), color = "red", axlabel='Fare
```

Out[60]:

<matplotlib.axes._subplots.AxesSubplot at 0x7fd160e8f950>

In [61]:

sns.distplot(surv['Fare'].dropna().values, bins=range(0, 200, 5), kde=False, color =
sns.distplot(nosurv['Fare'].dropna().values, bins=range(0, 200, 5), kde=False, color

Out[61]:

<matplotlib.axes. subplots.AxesSubplot at 0x7fd160dd0a90>

"Fare"表示票價,看似與存活率沒關係,但票價偏低的人死亡率卻異常的高。合理的猜測可能是,票價越低的位子越深處,離救生船比較遠,因此死亡率比較高。

In [62]:

plt.figure(figsize=(16,10))
foo = sns.heatmap(train.corr(), vmax=0.7,vmin=-0.7, square=True, annot=True,annot_kw

從相關圖可以看出:

- 1. "Pclass" 跟 "Fare" 相關係數為-0.55,為中度負相關。非常合理,因為高等級座位(class1)票價較高。
- 2. "SibSp" 和 "Parch" 相關係數為0.41,為中度正相關,推測因為較多人的家族可能兩個都有,一個人的兩個都為0。
- 3. "Pclass" 跟 "Age" 相關係數為-0.32,為中度負相關,推測較低等級座位的成年人比較多,較高等級座位的小孩比較多。
- 4. "Pclass" 跟 "Survived" 相關係數為-0.34,為中度負相關,推測原因教高等級座位的人離救生船比較近,生存率較高。

In [63]:

```
data = [train, test,test_2]
for dataset in data:
    dataset['Age'] = dataset['Age'].astype(int)
    dataset.loc[ dataset['Age'] <= 11, 'Age'] = 0
    dataset.loc[(dataset['Age'] > 11) & (dataset['Age'] <= 18), 'Age'] = 1
    dataset.loc[(dataset['Age'] > 18) & (dataset['Age'] <= 22), 'Age'] = 2
    dataset.loc[(dataset['Age'] > 22) & (dataset['Age'] <= 27), 'Age'] = 3
    dataset.loc[(dataset['Age'] > 27) & (dataset['Age'] <= 33), 'Age'] = 4
    dataset.loc[(dataset['Age'] > 33) & (dataset['Age'] <= 40), 'Age'] = 5
    dataset.loc[(dataset['Age'] > 40) & (dataset['Age'] <= 66), 'Age'] = 6

# let's see how it's distributed train_df['Age'].value_counts()</pre>
```

In [64]:

```
train['Age'].value counts()
Out[64]:
4
     173
6
     168
5
     145
3
     133
2
     107
      97
1
0
       68
Name: Age, dtype: int64
```

In [65]:

```
data = [train, test,test_2]

for dataset in data:
    dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0
    dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1
    dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare'] = 2
    dataset.loc[(dataset['Fare'] > 31) & (dataset['Fare'] <= 99), 'Fare'] = 3
    dataset.loc[(dataset['Fare'] > 99) & (dataset['Fare'] <= 250), 'Fare'] = 4
    dataset.loc[ dataset['Fare'] > 250, 'Fare'] = 5
    dataset['Fare'] = dataset['Fare'].astype(int)
```

```
In [66]:
```

```
data = [train, test,test_2]
for dataset in data:
   dataset['Age_Class'] = dataset['Age']* dataset['Pclass']
```

In [67]:

```
data = [train, test,test_2]
for dataset in data:
    dataset['relatives'] = dataset['SibSp'] + dataset['Parch']
    dataset.loc[dataset['relatives'] > 0, 'not_alone'] = 0
    dataset.loc[dataset['relatives'] == 0, 'not_alone'] = 1
    dataset['not_alone'] = dataset['not_alone'].astype(int)
train['not_alone'].value_counts()
```

Out[67]:

```
1 537
0 354
Name: not_alone, dtype: int64
```

In [69]:

```
for dataset in data:
    dataset['Fare_Per_Person'] = dataset['Fare']/(dataset['relatives']+1)
    dataset['Fare_Per_Person'] = dataset['Fare_Per_Person'].astype(int)
train.head(10)
```

Out[69]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	Age_Class	relatives	not_alone
0	0	3	0	2	1	0	0	0	6	1	0
1	1	1	1	5	1	0	3	1	5	1	0
2	1	3	1	3	0	0	0	0	9	0	1
3	1	1	1	5	1	0	3	0	5	1	0
4	0	3	0	5	0	0	1	0	15	0	1
5	0	3	0	4	0	0	1	2	12	0	1
6	0	1	0	6	0	0	3	0	6	0	1
7	0	3	0	0	3	1	2	0	0	4	0
8	1	3	1	3	0	2	1	0	9	2	0
9	1	2	1	1	1	0	2	1	2	1	0

In [70]:

```
X_train = train.drop("Survived", axis=1)
Y_train = train["Survived"]
X_test = test
```

```
In [71]:
```

```
X_train.columns
```

```
Out[71]:
```

In [72]:

```
from sklearn.ensemble import RandomForestClassifier
random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, Y_train)

Y_prediction = random_forest.predict(X_test)
random_forest.score(X_train, Y_train)
```

Out[72]:

0.9057239057239057

Y prediction

```
Out[73]:
```

```
array([0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0,
0,
       1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0,
1,
       1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1,
1,
       1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1,
0,
       1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0,
       0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0,
1,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0,
0,
       0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0,
1,
       1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1,
0,
       0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1,
0,
       1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1,
1,
       0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
0,
       0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0,
0,
       0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
0,
       0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0,
0,
       1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1,
0,
       0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0,
0,
       1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
1,
       0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
0])
```

In [74]:

