Foundation of Cryptography (0368-4162-01), Lecture 1

Adminstration + Introduction

Iftach Haitner, Tel Aviv University

November first, 2011

Part I

Administration and Course Overview

Section 1

Administration

Iftach Haitner. Schriber 20, email iftachh at gmail.com

- Iftach Haitner. Schriber 20, email iftachh at gmail.com
- Reception: Sundays 9:00-10:00 (please coordinate via email in advance)

- Iftach Haitner. Schriber 20, email iftachh at gmail.com
- Reception: Sundays 9:00-10:00 (please coordinate via email in advance)
- Who are you?

- Iftach Haitner. Schriber 20, email iftachh at gmail.com
- Reception: Sundays 9:00-10:00 (please coordinate via email in advance)
- Who are you?
- Mailing list: 0368-4162-01@listserv.tau.ac.il
 - Registered students are automatically on the list (need to activate the account by going to https://www.tau.ac.il/newuser/)
 - If you're not registered and want to get on the list (or want to get another address on the list), send e-mail to: listserv@listserv.tau.ac.il with the line: subscribe 0368-3500-34 <Real Name>

- Iftach Haitner. Schriber 20, email iftachh at gmail.com
- Reception: Sundays 9:00-10:00 (please coordinate via email in advance)
- Who are you?
- Mailing list: 0368-4162-01@listserv.tau.ac.il
 - Registered students are automatically on the list (need to activate the account by going to https://www.tau.ac.il/newuser/)
 - If you're not registered and want to get on the list (or want to get another address on the list), send e-mail to: listserv@listserv.tau.ac.il with the line: subscribe 0368-3500-34 <Real Name>
- Ocurse website: http://www.cs.tau.ac.il/ iftachh/Courses/FOC/Fall11/main.html (or just Google iftach and follow the link)

- Iftach Haitner. Schriber 20, email iftachh at gmail.com
- Reception: Sundays 9:00-10:00 (please coordinate via email in advance)
- Who are you?
- Mailing list: 0368-4162-01@listserv.tau.ac.il
 - Registered students are automatically on the list (need to activate the account by going to https://www.tau.ac.il/newuser/)
 - If you're not registered and want to get on the list (or want to get another address on the list), send e-mail to: listserv@listserv.tau.ac.il with the line: subscribe 0368-3500-34 <Real Name>
- Ocurse website: http://www.cs.tau.ac.il/ iftachh/Courses/FOC/Fall11/main.html (or just Google iftach and follow the link)

Grades

- Grading: Please add your name and email through the course website
 - Olass exam 60%

Grades

- Grading: Please add your name and email through the course website
 - Class exam 60%
 - Homework 30%: 3-5 exercises. Recommend to use use LaTex (see link in course website) Exercises (separate email per question) should be sent to foc.exc@gmail.com; Title: Question #, Name, Id

Grades

- Grading: Please add your name and email through the course website
 - Class exam 60%
 - 4 Homework 30%: 3-5 exercises. Recommend to use use LaTex (see link in course website) Exercises (separate email per question) should be sent to foc.exc@gmail.com; Title: Question #, Name, Id
 - Self grading 10 %
 - Please register following the link on the course website, and email foc.exc@gmail.com; Title: Grader #: Name, ID
 - Submit your solution to the question using Latex (I'll check it)
 - Within two weeks after the submission time. The grader should send the checked exercises to foc.exc@gmail.com and to the authors, and send a single excel file (columns: Id, Name, grade) to foc.exc@gmail.com, Title: Checked Exe # ,

and..

Slides

and..

- Slides
- 2 English

Course Prerequisites

Course Prerequisites

- Some prior knowledge of cryptography (such as 0369.3049) might help, but not necessarily
- Basic probability.
- Basic complexity (the classes P, NP, BPP)

Course Material

Course Material

- Books:
 - Oded Goldreich. Foundations of Cryptography.
 - 2 Jonathan Katz and Yehuda Lindell. An Introduction to Modern Cryptography.
- Lecture notes
 - Ran Canetti. Foundation of Cryptography (The 2008 course)
 - Salil Vadhan. Introduction to Cryptography.
 - 3 Luca Trevisan. Cryptography.
 - Yehuda lindell Foundations of Cryptography.

Section 2

Course Topics

Course Topics

Basic primitives in cryptography (i.e., one-way functions, pseudorandom generators and zero-knowledge proofs).

- Focus on formal definitions and rigorous proofs.
- The goal is not studying some list, but to understand cryptography.
- Get ready to start researching

Section 3

Notations

Notations I

- For $t \in \mathbb{N}$, let $[t] := \{1, \dots, t\}$.
- poly stands for the set of all polynomials.
- The worst-case running-time of a polynomial-time algorithm on input x, is bounded by p(|x|) for some p ∈ poly.
- A function is polynomial-time computable, if there exists a polynomial-time algorithm to compute it.
- PPT stands for probabilistic polynomial-time algorithms.
- A function $\mu \colon \mathbb{N} \mapsto [0,1]$ is negligible, denoted $\mu(n) = \text{neg}(n)$, if for any $p \in \text{poly there exists } n' \in \mathbb{N}$ with $\mu(n) \le 1/p(n)$ for any n > n'.

Distribution and random variables I

- The support of a distribution P over a finite set \mathcal{U} , denoted Supp(P), is defined as $\{u \in \mathcal{U} : P(x) > 0\}$.
- Given a distribution P and en event E with $\Pr_P[E] > 0$, we let $(P \mid E)$ denote the conditional distribution P given E (i.e., $(P \mid E)(x) = \frac{D(x) \wedge E}{\Pr_P[E]}$).
- For $t \in \mathbb{N}$, let let U_t denote a random variable uniformly distributed over $\{0,1\}^t$.
- Given a random variable X, we let x ← X denote that x is distributed according to X (e.g., Pr_{x←X}[x = 7]).
- Given a final set S, we let $x \leftarrow S$ denote that x is uniformly distributed in S.

Distribution and random variables II

- We use the convention that when a random variable appears twice in the same expression, it refers to a *single* instance of this random variable. For instance, Pr[X = X] = 1 (regardless of the definition of X).
- Given distribution P over \mathcal{U} and $t \in \mathbb{N}$, we let P^t over \mathcal{U}^t be defined by $D^t(x_1, \dots, x_t) = \prod_{i \in [t]} D(x_i)$.
- Similarly, given a random variable X, we let X^t denote the random variable induced by t independent samples from X.

Part II

Foundation of Cryptography

What is Cryptography?

- What is Cryptography?
- Hardness assumptions, why do we need them?

- What is Cryptography?
- Hardness assumptions, why do we need them?
- **3** Does $P \neq NP$ suffice?
 - P \neq NP: i.e., $\exists L \in$ NP, such that for any polynomial-time algorithm A, $\exists x \in \{0,1\}^*$ with $A(x) \neq 1_L(x)$
 - **polynomial-time algorithms:** an algorithm A runs in polynomial-time, if $\exists p \in \text{poly such that the}$ running time of A(x) is bounded by p(|x|) for any $x \in \{0,1\}^*$

- What is Cryptography?
- Hardness assumptions, why do we need them?
- **3** Does $P \neq NP$ suffice?
 - P \neq NP: i.e., $\exists L \in$ NP, such that for any polynomial-time algorithm A, $\exists x \in \{0,1\}^*$ with $A(x) \neq 1_L(x)$
 - **polynomial-time algorithms:** an algorithm A runs in polynomial-time, if $\exists p \in \text{poly such that the}$ running time of A(x) is bounded by p(|x|) for any $x \in \{0,1\}^*$
- Problems: hard on the average. No known solution

- What is Cryptography?
- Hardness assumptions, why do we need them?
- **3** Does $P \neq NP$ suffice?

```
P \neq NP: i.e., \exists L \in NP, such that for any polynomial-time algorithm A, \exists x \in \{0,1\}^* with A(x) \neq 1_L(x)
```

- **polynomial-time algorithms:** an algorithm A runs in polynomial-time, if $\exists p \in \text{poly such that the}$ running time of A(x) is bounded by p(|x|) for any $x \in \{0,1\}^*$
- Problems: hard on the average. No known solution
- One-way functions: an efficiently computable function that no efficient algorithm can invert.

Section 5

One Way Functions

One-Way Functions

Definition 1 (One-Way Functions (OWFs))

A polynomial-time computable function $f: \{0,1\}^* \mapsto f: \{0,1\}^*$ is one-way, if for any PPT A

$$\Pr_{y \leftarrow f(U_n)}[\mathsf{A}(1^n, y) \in f^{-1}(y)] = \mathsf{neg}(n)$$

 U_n : a random variable uniformly distributed over $\{0,1\}^n$

polynomial-time computable: there exists a polynomial-time algorithm F, such that F(x) = f(x) for every $x \in \{0,1\}^*$

PPT: probabilistic polynomial-time algorithm

neg: a function $\mu \colon \mathbb{N} \mapsto [0,1]$ is a *negligible* function of n, denoted $\mu(n) = \text{neg}(n)$, if for any $p \in \text{poly there}$ exists $n' \in \mathbb{N}$ such that g(n) < 1/p(n) for all n > n'

We will typically omit 1ⁿ from the parameter list of A

- Is this the right definition?
 - Asymptotic
 - Efficiently computable
 - On the average
 - Only against PPT's

- Is this the right definition?
 - Asymptotic
 - Efficiently computable
 - On the average
 - Only against PPT's
- 2 (most) Crypto implies OWFs
- O Do OWFs imply Crypto?
- Where do we find them

- Is this the right definition?
 - Asymptotic
 - Efficiently computable
 - On the average
 - Only against PPT's
- 2 (most) Crypto implies OWFs
- O Do OWFs imply Crypto?
- Where do we find them
- Non uniform OWFs

Definition 2 (Non-uniform OWF))

A polynomial-time computable function $f: \{0,1\}^* \mapsto f: \{0,1\}^*$ is one-way, if for any polynomial-size family of circuits $\{C_n\}_{n\in\mathbb{N}}$

$$\Pr_{y \leftarrow f(U_n)}[C_n(y) \in f^{-1}(y)] = \operatorname{neg}(n)$$

Length Preserving OWFs

Length preserving functions

Definition 3 (length preserving functions)

A function $f: \{0,1\}^* \mapsto f: \{0,1\}^*$ is length preserving, if |f(x)| = |x| for any $x \in \{0,1\}^*$

Length Preserving OWFs

Length preserving functions

Definition 3 (length preserving functions)

A function $f: \{0,1\}^* \mapsto f: \{0,1\}^*$ is length preserving, if |f(x)| = |x| for any $x \in \{0,1\}^*$

Theorem 4

Assume that OWFs exit, then there exist length-preserving OWFs

Length Preserving OWFs

Length preserving functions

Definition 3 (length preserving functions)

A function $f: \{0,1\}^* \mapsto f: \{0,1\}^*$ is length preserving, if |f(x)| = |x| for any $x \in \{0,1\}^*$

Theorem 4

Assume that OWFs exit, then there exist length-preserving OWFs

Proof idea: use the assumed OWF to create a length preserving one

Partial domain functions

Definition 5 (Partial domain functions)

For $m, \ell \colon \mathbb{N} \to \mathbb{N}$, let $h \colon \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}$ denote a function defined over input lengths in $\{m(n)\}_{n \in \mathbb{N}}$, and maps strings of length m(n) to strings of length $\ell(n)$.

The definition of one-wayness naturally extends to such functions.

OWFs imply Length Preserving OWFs cont.

Let f be a OWF, let $p \in \text{poly}$ be a bound on its computing-time and assume wlg. that p is monotonly increasing (can we?).

Construction 6 (the length preserving function)

Define $g: \{0,1\}^{p(n)} \mapsto \{0,1\}^{p(n)}$ as

$$g(x) = f(x_{1,...,n}), 0^{p(n)-|f(x_{1,...,n})|}$$

Note that *g* is length preserving and efficient (why?).

OWFs imply Length Preserving OWFs cont.

Let f be a OWF, let $p \in \text{poly}$ be a bound on its computing-time and assume wlg. that p is monotonly increasing (can we?).

Construction 6 (the length preserving function)

Define $g: \{0,1\}^{p(n)} \mapsto \{0,1\}^{p(n)}$ as

$$g(x) = f(x_{1,...,n}), 0^{p(n)-|f(x_{1,...,n})|}$$

Note that *g* is length preserving and efficient (why?).

Claim 7

g is one-way.

OWFs imply Length Preserving OWFs cont.

Let f be a OWF, let $p \in \text{poly}$ be a bound on its computing-time and assume wlg. that p is monotonly increasing (can we?).

Construction 6 (the length preserving function)

Define $g: \{0,1\}^{p(n)} \mapsto \{0,1\}^{p(n)}$ as

$$g(x) = f(x_{1,...,n}), 0^{p(n)-|f(x_{1,...,n})|}$$

Note that *g* is length preserving and efficient (why?).

Claim 7

g is one-way.

How can we prove that g is one-way?

OWFs imply Length Preserving OWFs cont.

Let f be a OWF, let $p \in \text{poly}$ be a bound on its computing-time and assume wlg. that p is monotonly increasing (can we?).

Construction 6 (the length preserving function)

Define $g: \{0,1\}^{p(n)} \mapsto \{0,1\}^{p(n)}$ as

$$g(x) = f(x_{1,...,n}), 0^{p(n)-|f(x_{1,...,n})|}$$

Note that *g* is length preserving and efficient (why?).

Claim 7

g is one-way.

How can we prove that g is one-way?

Answer: using reduction

Proving that g is one-way

Proof:

Assume that g is not one-way. Namely, there exists PPT A a $q \in \mathsf{poly}$ and an infinite $\mathcal{I} \subseteq \{p(n) \colon n \in \mathbb{N}\}$, with

$$\Pr_{y \leftarrow g(U_n)}[A(y) \in g^{-1}(y)] > 1/q(n)$$
 (1)

for any $n \in \mathcal{I}$ (?).

Proving that g is one-way

Proof:

Assume that g is not one-way. Namely, there exists PPT A a $q \in \text{poly}$ and an infinite $\mathcal{I} \subseteq \{p(n) \colon n \in \mathbb{N}\}$, with

$$\Pr_{y \leftarrow g(U_n)}[A(y) \in g^{-1}(y)] > 1/q(n)$$
 (1)

for any $n \in \mathcal{I}$ (?).

We would like to use A for inverting *f*.

Algorithm 8 (The inverter B)

Input: 1^n and $y \in \{0, 1\}^*$.

- Let $x = A(1^{p(n)}, y, 0^{p(n)-|y|}).$
- 2 Return $x_{1,...,n}$.

Algorithm 8 (The inverter B)

Input: 1^n and $y \in \{0, 1\}^*$.

- Let $x = A(1^{p(n)}, y, 0^{p(n)-|y|}).$
- 2 Return $x_{1,...,n}$.

Claim 9

Let $\mathcal{I}' := \{ n \in \mathbb{N} \colon p(n) \in \mathcal{I} \}$. Then

- \mathbf{O} \mathcal{I}' is infinite
- 2 For any $n \in \mathcal{I}'$, it holds that $\Pr_{y \leftarrow g(U_n)}[\mathsf{B}(y) \in f^{-1}(y)] > 1/q(p(n)).$

in contradiction to the assumed one-wayness of f. \square

Conclusion

Remark 10

- We directly related the hardness of f to that of g
- The reduction is not "security preserving"

From partial domain functions to all-length functions

Construction 11

Given a function $f: \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}$, $f_{all}: \{0,1\}^* \mapsto \{0,1\}^*$ as

$$f_{all}(x) = f(x_{1,...,k(n)}), 0^{n-k(n)}$$

where n = |x| and $k(n) := \max\{m(n') \le n : n' \in \mathbb{N}\}.$

From partial domain functions to all-length functions

Construction 11

Given a function $f: \{0,1\}^{m(n)} \mapsto \{0,1\}^{\ell(n)}$, $f_{all}: \{0,1\}^* \mapsto \{0,1\}^*$ as

$$f_{all}(x) = f(x_{1,...,k(n)}), 0^{n-k(n)}$$

where n = |x| and $k(n) := \max\{m(n') \le n : n' \in \mathbb{N}\}.$

Claim 12

Assume that f is a one-way function and that m is monotone, polynomial-time commutable an satisfies $\frac{m(n+1)}{m(n)} \leq p(n)$ for some $p \in \text{poly}$, then f_{all} is a one-way function. Further, if f is length preserving, then so is f_{all} .

Proof: ?

Weak One Way Functions

Definition 13 (weak one-way functions)

A polynomial-time computable function $f:\{0,1\}^*\mapsto f:\{0,1\}^*$ is α -one-way, if

$$\Pr_{y \leftarrow f(U_n)}[\mathsf{A}(1^n, y) \in f^{-1}(y)] \le \alpha(n)$$

for any PPT A and large enough $n \in \mathbb{N}$.

Weak One Way Functions

Definition 13 (weak one-way functions)

A polynomial-time computable function $f:\{0,1\}^*\mapsto f:\{0,1\}^*$ is α -one-way, if

$$\Pr_{y \leftarrow f(U_n)}[\mathsf{A}(1^n, y) \in f^{-1}(y)] \le \alpha(n)$$

for any PPT A and large enough $n \in \mathbb{N}$.

 (strong) OWF according to Def 1, are neg(n)-one-way according to the above definition

Weak One Way Functions

Definition 13 (weak one-way functions)

A polynomial-time computable function $f:\{0,1\}^*\mapsto f:\{0,1\}^*$ is α -one-way, if

$$\Pr_{y \leftarrow f(U_n)}[\mathsf{A}(1^n, y) \in f^{-1}(y)] \le \alpha(n)$$

for any PPT A and large enough $n \in \mathbb{N}$.

- (strong) OWF according to Def 1, are neg(n)-one-way according to the above definition
- 2 Examples

Definition 13 (weak one-way functions)

A polynomial-time computable function $f:\{0,1\}^*\mapsto f:\{0,1\}^*$ is α -one-way, if

$$\Pr_{y \leftarrow f(U_n)}[\mathsf{A}(1^n, y) \in f^{-1}(y)] \le \alpha(n)$$

for any PPT A and large enough $n \in \mathbb{N}$.

- (strong) OWF according to Def 1, are neg(n)-one-way according to the above definition
- Examples
- Oan we "amplify" weak OWF to strong ones?

Strong to weak OWFs

Claim 14

Assume there exists OWFs, then there exist functions that are $\frac{1}{3}$ one-way, but not (strong) one-way

Strong to weak OWFs

Claim 14

Assume there exists OWFs, then there exist functions that are $\frac{1}{3}$ one-way, but not (strong) one-way

Proof: let f be a owf. Define g(x) = (1, g(x)) if $x_1 = 1$, and 0 otherwise.

Weak to Strong OWFs

Theorem 15

Assume there exists $(1 - \alpha)$ -weak OWFs with $\alpha(n) > 1/p(n)$ for some $p \in \text{poly}$, then there exists (strong) one-way functions.

Weak to Strong OWFs

Theorem 15

Assume there exists $(1 - \alpha)$ -weak OWFs with $\alpha(n) > 1/p(n)$ for some $p \in \text{poly}$, then there exists (strong) one-way functions.

Proof: we assume wlg that *f* is length preserving (can we do so?)

Construction 16 (g – the strong one-way function)

Let $t: \mathbb{N} \to \mathbb{N}$ be a polynomial-time computable function satisfying $t(n) \in \omega(\log n/\alpha(n))$. Define $g: (\{0,1\}^n)^{t(n)} \mapsto (\{0,1\}^n)^{t(n)}$ as

$$g(x_1,\ldots,x_t)=f(x_1),\ldots,f(x_t)$$

Weak to Strong OWFs

Theorem 15

Assume there exists $(1 - \alpha)$ -weak OWFs with $\alpha(n) > 1/p(n)$ for some $p \in \text{poly}$, then there exists (strong) one-way functions.

Proof: we assume wlg that *f* is length preserving (can we do so?)

Construction 16 (g – the strong one-way function)

Let $t: \mathbb{N} \to \mathbb{N}$ be a polynomial-time computable function satisfying $t(n) \in \omega(\log n/\alpha(n))$. Define $g: (\{0,1\}^n)^{t(n)} \mapsto (\{0,1\}^n)^{t(n)}$ as

$$g(x_1,\ldots,x_t)=f(x_1),\ldots,f(x_t)$$

Claim 17

g is one-way.

Proving that g is one-way – the naive approach

Let A be a potential inverter for g, and assume that A tries to attacks each of the t outputs of g independently. Then

$$\mathsf{Pr}_{\boldsymbol{y} \leftarrow g(U_n^{t(n)})}[\mathsf{A}(\boldsymbol{y}) \in g^{-1}(\boldsymbol{y})] \leq (1 - \alpha(\boldsymbol{n}))^{t(\boldsymbol{n})} \leq e^{-\omega(\log \boldsymbol{n})} = \mathsf{neg}(\boldsymbol{n})$$

Proving that g is one-way – the naive approach

Let A be a potential inverter for g, and assume that A tries to attacks each of the t outputs of g independently. Then

$$\mathsf{Pr}_{y \leftarrow g(U_n^{t(n)})}[\mathsf{A}(y) \in g^{-1}(y)] \leq (1 - \alpha(n))^{t(n)} \leq e^{-\omega(\log n)} = \mathsf{neg}(n)$$

A less naive approach would be to assume that A goes over output sequentially.

Proving that g is one-way – the naive approach

Let A be a potential inverter for g, and assume that A tries to attacks each of the t outputs of g independently. Then

$$\mathsf{Pr}_{y \leftarrow g(U_n^{t(n)})}[\mathsf{A}(y) \in g^{-1}(y)] \leq (1 - \alpha(n))^{t(n)} \leq e^{-\omega(\log n)} = \mathsf{neg}(n)$$

A less naive approach would be to assume that A goes over output sequentially.

Unfortunately, we can assume none of the above.

Failing Sets

Failing Sets

Definition 18 (failing set)

A function $f: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ has a $(\delta(n), \varepsilon(n))$ -failing set for A, if for large enough n, exists set $\mathcal{S}(n) \subseteq \{0,1\}^{\ell(n)}$ with

- $\Pr[f(U_n) \in \mathcal{S}(n)] \geq \delta(n)$, and
- **2** $\Pr[A(y) \in f^{-1}(y)] < \varepsilon(n)$, for every $y \in S(n)$

Failing Sets

Definition 18 (failing set)

A function $f: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ has a $(\delta(n), \varepsilon(n))$ -failing set for A, if for large enough n, exists set $\mathcal{S}(n) \subseteq \{0,1\}^{\ell(n)}$ with

- $\Pr[f(U_n) \in \mathcal{S}(n)] \geq \delta(n)$, and
- 2 $\Pr[A(y) \in f^{-1}(y)] < \varepsilon(n)$, for every $y \in S(n)$

Claim 19

Let f be a $(1 - \alpha)$ -OWF. Then f has $(\alpha(n)/2, 1/p(n))$ -failing set for any PPT A and $p \in \text{poly}$.

Failing Sets

Definition 18 (failing set)

A function $f: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ has a $(\delta(n), \varepsilon(n))$ -failing set for A, if for large enough n, exists set $\mathcal{S}(n) \subseteq \{0,1\}^{\ell(n)}$ with

- $\Pr[f(U_n) \in \mathcal{S}(n)] \geq \delta(n)$, and
- **2** $\Pr[A(y) \in f^{-1}(y)] < \varepsilon(n)$, for every $y \in S(n)$

Claim 19

Let f be a $(1 - \alpha)$ -OWF. Then f has $(\alpha(n)/2, 1/p(n))$ -failing set for any PPT A and $p \in \text{poly}$.

Proof: Assume \exists PPT A, a $p \in$ poly and an infinite set $\mathcal{I} \subseteq \mathbb{N}$ such that for every $n \in \mathcal{I}$, $\exists \mathcal{S}(n) \subseteq \{0,1\}^n$ with

- $\Pr[f(U_n) \in \mathcal{S}(n)] \ge 1 \alpha(n)/2$, and
- $Pr[A(y) \in f^{-1}(y)] \ge 1/p(n), \text{ for every } y \in \mathcal{S}(n)$

We'll use A to contradict the hardness of f.

Using A to invert f

Using A to invert f

Algorithm 20 (The inverter B)

Input: $y \in \{0, 1\}^n$.

Do (with fresh randomness) for np(n) times:

If
$$x = A(y) \in f^{-1}(y)$$
, return x

Clearly, B is a PPT

Using A to invert f

Algorithm 20 (The inverter B)

Input: $y \in \{0, 1\}^n$.

Do (with fresh randomness) for np(n) times:

If $x = A(y) \in f^{-1}(y)$, return x

Clearly, B is a PPT

Claim 21

For every $n \in \mathcal{I}$, it holds that

$$\mathsf{Pr}_{y \leftarrow f(U_n)}[\mathsf{B}(y) \in f^{-1}(y)] > 1 - \alpha(n)$$

Hence, *f* is not $(1 - \alpha(n))$ -one-way

$$Pr[B(y) \in f^{-1}(y)]$$

$$\Pr[\mathsf{B}(y) \in f^{-1}(y)] \ge \Pr[\mathsf{B}(y) \in f^{-1}(y) \land y \in \mathcal{S}(n)]$$

$$Pr[B(y) \in f^{-1}(y)]$$

$$\geq Pr[B(y) \in f^{-1}(y) \land y \in \mathcal{S}(n)]$$

$$= Pr[y \in \mathcal{S}(n)] \cdot Pr[B(y) \in f^{-1}(y) \mid y \in \mathcal{S}(n)]$$

$$\Pr[B(y) \in f^{-1}(y)] \\
\ge \Pr[B(y) \in f^{-1}(y) \land y \in S(n)] \\
= \Pr[y \in S(n)] \cdot \Pr[B(y) \in f^{-1}(y) \mid y \in S(n)] \\
\ge (1 - \alpha(n)/2) \cdot (1 - (1 - 1/p(n))^{np(n)})$$

$$\Pr[\mathsf{B}(y) \in f^{-1}(y)] \\
\geq \Pr[\mathsf{B}(y) \in f^{-1}(y) \land y \in \mathcal{S}(n)] \\
= \Pr[y \in \mathcal{S}(n)] \cdot \Pr[\mathsf{B}(y) \in f^{-1}(y) \mid y \in \mathcal{S}(n)] \\
\geq (1 - \alpha(n)/2) \cdot (1 - (1 - 1/p(n))^{np(n)}) \\
\geq (1 - \alpha(n)/2) \cdot (1 - 2^{-n}) > 1 - \alpha(n). \square$$

Proving that g is one-way

We show that if g is not OWF, then f has no flailing-set of the "right" type.

Proving that g is one-way

We show that if g is not OWF, then f has no flailing-set of the "right" type.

Claim 22

Assume \exists PPT A, $p \in$ poly and an infinite set $\mathcal{I} \subseteq \mathbb{N}$ s.t.

$$\Pr_{z \leftarrow g(U_n^{t(n)})}[A(z) \in g^{-1}(z)] \ge 1/p(n)$$
 (2)

for every $n \in \mathcal{I}$. Then \exists PPT B and $q \in$ poly s.t.

$$Pr_{y \leftarrow \mathcal{S}}[B(y) \in f^{-1}(y)] \ge 1/q(n) \tag{3}$$

for every $n \in \mathcal{I}$ and $\mathcal{S} \subseteq \{0,1\}^n$ with $\Pr_{y \leftarrow f(U_n)}[\mathcal{S}] \ge \alpha(n)/2$.

Namely, f does not have a $(\alpha(n)/2, 1/q(n))$ -failing set.

Algorithm B

Algorithm 23 (No failing set algorithm B)

Input: $y \in \{0, 1\}^n$.

- **①** Choose $z = (z_1, \ldots, z_t) \leftarrow g(U_n^t)$ and $i \leftarrow [t]$
- 2 Set $z' = (z_1, \ldots, z_{i-1}, y, z_{i+1}, \ldots, z_t)$
- **3** Return $A(z')_i$

Algorithm B

Algorithm 23 (No failing set algorithm B)

Input: $y \in \{0, 1\}^n$.

- Choose $z = (z_1, \ldots, z_t) \leftarrow g(U_n^t)$ and $i \leftarrow [t]$
- 2 Set $z' = (z_1, \ldots, z_{i-1}, y, z_{i+1}, \ldots, z_t)$
- 3 Return $A(z')_i$

Fix $n \in \mathcal{I}$ and a set $\mathcal{S} \subseteq \{0,1\}^n$ of the right probability. We analyze B's success probability using the following (inefficient) algorithm B*:

Algorithm B*

Definition 24 (Bad)

For $z \in Im(g)$ (the image of g), we set Bad(z) = 1 iff $\nexists i \in [t]$ with $z_i \in S$.

B* differ from B in the way it chooses z': in case Bad(z) = 1, it sets z' = z. Otherwise, it sets i to an arbitrary index $j \in [t]$ with $z_j \in \mathcal{S}$, and sets z' as B does with respect to this i.

Algorithm B*

Definition 24 (Bad)

For $z \in Im(g)$ (the image of g), we set Bad(z) = 1 iff $\nexists i \in [t]$ with $z_i \in S$.

B* differ from B in the way it chooses z': in case Bad(z) = 1, it sets z' = z. Otherwise, it sets i to an arbitrary index $j \in [t]$ with $z_j \in \mathcal{S}$, and sets z' as B does with respect to this i.

Claim 25

$$\Pr_{y \leftarrow S}[B^*(y) \in f^{-1}(y)] \ge \frac{1/p(n)}{n} \operatorname{neg}(n),$$

and therefore $\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}(y) \in f^{-1}(y)] \ge \frac{1}{t(n)p(n)} - \mathsf{neg}(n)$.

Claim 25 follows from the following two claims,

Claim 26

$$\Pr_{z \leftarrow g(U_n^t)}[\mathsf{Bad}(z)] = \mathsf{neg}(n)$$

Claim 27

Let $Z = g(U_n^t)$ and let Z' be the value of z' induced by a random execution of B* on $y \leftarrow (f(U_n) \mid f(U_n) \in S))$. Then Z and Z' are identically distributed.

The claims imply Claim 25.

The claims imply Claim 25.

$$\mathsf{Pr}_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \ge \mathsf{Pr}_{z \leftarrow g(U_n^t)}[\mathsf{A}(z) \in g^{-1}(z) \land \neg \, \mathsf{Bad}(z)] \tag{4}$$

The claims imply Claim 25.

$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \ge \Pr_{z \leftarrow g(U_n^t)}[\mathsf{A}(z) \in g^{-1}(z) \land \neg \, \mathsf{Bad}(z)] \tag{4}$$

$$\Pr_{z \leftarrow g(U_n^t)}[\mathsf{A}(z) \in g^{-1}(z)]$$

$$\leq \Pr[\mathsf{A}(z) \in g^{-1}(Z) \land \neg \mathsf{Bad}(z)] + \Pr[\mathsf{Bad}(z)]$$
(5)

The claims imply Claim 25.

$$\mathsf{Pr}_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \ge \mathsf{Pr}_{z \leftarrow g(U_n^t)}[\mathsf{A}(z) \in g^{-1}(z) \land \neg \, \mathsf{Bad}(z)] \tag{4}$$

$$\Pr_{z \leftarrow g(U_n^t)}[\mathsf{A}(z) \in g^{-1}(z)]$$

$$\leq \Pr[\mathsf{A}(z) \in g^{-1}(Z) \land \neg \mathsf{Bad}(z)] + \Pr[\mathsf{Bad}(z)]$$
(5)

It follows that

$$\Pr_{y \leftarrow \mathcal{S}}[\mathsf{B}^*(y) \in f^{-1}(y)] \ge \Pr_{z \leftarrow g(U_n^t)}[\mathsf{A}(z) \in g^{-1}(z)] - \mathsf{neg}(n)$$
$$\ge \frac{1}{p(n)} - \mathsf{neg}(n). \square$$

Proof of Claim 26?

Proof of Claim 26?

Proof of Claim 27: Consider the following process for sampling Z_i :

- Let $\beta = \Pr_{y \leftarrow f(U_n)}[S]$. Set $\ell_i = 1$ wp β and $\ell_i = 0$ otherwise.
- ② If $\ell_i = 1$, let $y \leftarrow (f(U_n) \mid f(U_n) \in S)$. Otherwise, set $y \leftarrow (f(U_n) \mid f(U_n) \notin S)$.

It is easy to see that the above process is correct (samples Z correctly).

Proof of Claim 26?

Proof of Claim 27: Consider the following process for sampling Z_i :

- Let $\beta = \Pr_{y \leftarrow f(U_n)}[S]$. Set $\ell_i = 1$ wp β and $\ell_i = 0$ otherwise.
- ② If $\ell_i = 1$, let $y \leftarrow (f(U_n) \mid f(U_n) \in S)$. Otherwise, set $y \leftarrow (f(U_n) \mid f(U_n) \notin S)$.

It is easy to see that the above process is correct (samples Z correctly).

Now all that B* does, is repeating Step 2 for one of the i's with $\ell_i = 1$ (if such exists) \square

Conclusion

Remark 28 (hardness amplification via parallel repetition)

• Can we give a more efficient (secure) reduction?

Conclusion

Remark 28 (hardness amplification via parallel repetition)

- Can we give a more efficient (secure) reduction?
- Similar theorems for other cryptographic primitives (e.g., Captchas, general protocols)?

Conclusion

Remark 28 (hardness amplification via parallel repetition)

- Can we give a more efficient (secure) reduction?
- Similar theorems for other cryptographic primitives (e.g., Captchas, general protocols)?
 What properties of the weak OWF have we used in the proof?