Hydrogen

Yingsheng Huang

November 19, 2017

1 Matching

QED Lagrangian is

$$\mathcal{L}_{QED} = \bar{l}(i\not D - m)l + \bar{N}(iD^0)N - \mathcal{L}_{\gamma} \tag{1}$$

Set the NRQED Lagrangian as (take large M limit where M is the mass of the proton/hydrogen nucleus)

$$\mathcal{L}_{NRQED} = \psi^{\dagger} (iD_0 + \frac{\mathbf{D}^2}{2m}) \psi + \bar{N}(iD_0) N + \mathcal{L}_{4-fer} + \mathcal{L}_{\gamma}$$
(2)

In tree level¹

$$i\mathcal{M}_{QED}^{(0)} = \begin{array}{c} P_N & \longrightarrow \\ q & \downarrow \\ & \downarrow$$

$$i\mathcal{M}_{NRQED}^{(0)} = \begin{array}{c} P_N & \longrightarrow & P_N \\ \hline i\mathcal{M}_{NRQED}^{(0)} = & q & = -e^2 \bar{u}_N(P_N) v^0 u_N(P_N) \frac{i}{\mathbf{q}^2} \psi^{\dagger}(p_2) \psi(p_1) \\ \hline p_1 & \longrightarrow & p_2 \end{array}$$

The box diagram for NRQED process is

$$i\mathcal{M}_{NRQED}^{(1)} = \underbrace{k} \underbrace{k - q}_{p_1 \xrightarrow{p_1 + k}} p_2$$

$$= e^4 \bar{u}_N(P_N) \frac{1 + \gamma^0}{2} u_N(P_N) \psi^{\dagger}(p_2) \int [\mathrm{d}k] \frac{1}{\mathbf{k}^2 (\mathbf{k} - \mathbf{q})^2 (-k^0 + i\epsilon) (p_1^0 + k^0 - m - \frac{(\mathbf{p_1} + \mathbf{k})^2}{2m} + i\epsilon)} \psi(p_1)$$

$$= -ie^4 \bar{u}_N(P_N) \frac{1 + \gamma^0}{2} u_N(P_N) \psi^{\dagger}(p_2) \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{1}{\mathbf{k}^2 (\mathbf{k} - \mathbf{q})^2 (E_1 - \frac{(\mathbf{p_1} + \mathbf{k})^2}{2m})} \psi(p_1)$$

$$= -ie^4 \bar{u}_N(P_N) \frac{1 + \gamma^0}{2} u_N(P_N) \psi^{\dagger}(p_2) \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{1}{(\mathbf{k} - \mathbf{p_1})^2 (\mathbf{k} - \mathbf{p_2})^2 (E_1 - \frac{\mathbf{k}^2}{2m})} \psi(p_1)$$

¹Note that there's no Gamma matrice in the heavy particle side, they can only appear in the QED side.

The box and crossed box diagram for QED process is

$$i\mathcal{M}_{1}^{(1)} = \underbrace{\begin{array}{c} P_{N} - k \\ \hline P_{N} \\ \hline \end{array}}_{p_{1}} \underbrace{\begin{array}{c} P_{N} - k \\ \hline \end{array}}_{p_{2}} \underbrace{\begin{array}{c} P_{N} - k \\ \hline \end{array}}_{p_{1}} \underbrace{\begin{array}{c} P_{N} - k \\ \hline \end{array}}_{p_{1}} \underbrace{\begin{array}{c} P_{N} - k \\ \hline \end{array}}_{p_{2}} \underbrace{\begin{array}{c} P_{N} - k \\ \hline \end{array}}_{p_{1}} \underbrace{\begin{array}{c} P_{N} - k \\ \hline \end{array}}_{p_{1}}$$

 $i\mathcal{M}_{1}^{(1)}$ has infrared log divergence and no ultraviolet divergence.

$$i\mathcal{M}_{2}^{(1)} = P_{N} \xrightarrow{k} P_{N}$$

$$i\mathcal{M}_{2}^{(1)} = P_{N} \xrightarrow{k} P_{N}$$

$$= e^{4}\bar{u}_{N}(P_{N}) \frac{1+\gamma^{0}}{2} u_{N}(P_{N}) u_{e}^{\dagger}(p_{2}) \int [\mathrm{d}k] \frac{(\not p_{1}+\not k+m)\gamma^{0}}{\mathbf{k}^{2}(\mathbf{k}-\mathbf{q})^{2}[(p_{1}+k)^{2}-m^{2}+i\epsilon](k^{0}+i\epsilon)} u_{e}(p_{1})$$

$$= e^{4}\bar{u}_{N}(P_{N}) \frac{1+\gamma^{0}}{2} u_{N}(P_{N}) u_{e}^{\dagger}(p_{2}) \int [\mathrm{d}k] \frac{2p_{1}^{0}+\not k\gamma^{0}}{\mathbf{k}^{2}(\mathbf{k}-\mathbf{q})^{2}[(p_{1}+k)^{2}-m^{2}+i\epsilon](k^{0}+i\epsilon)} u_{e}(p_{1})$$

$$= -ie^{4}\bar{u}_{N}(P_{N}) \frac{1+\gamma^{0}}{2} u_{N}(P_{N}) u_{e}^{\dagger}(p_{2}) \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \frac{p_{1}^{0}+k_{i}\gamma^{i}\gamma^{0}-\sqrt{(\mathbf{k}+\mathbf{p_{1}})^{2}+m^{2}}}{2\mathbf{k}^{2}(\mathbf{k}-\mathbf{q})^{2}[(\mathbf{k}+\mathbf{p_{1}})^{2}+m^{2}+p_{1}^{0}\sqrt{(\mathbf{k}+\mathbf{p_{1}})^{2}+m^{2}}]} u_{e}(p_{1})$$

$$= -ie^{4}\bar{u}_{N}(P_{N}) \frac{1+\gamma^{0}}{2} u_{N}(P_{N}) u_{e}^{\dagger}(p_{2}) \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \frac{p_{1}^{0}+(k_{i}-p_{1i})\gamma^{i}\gamma^{0}-\sqrt{\mathbf{k}^{2}+m^{2}}}{2(\mathbf{k}-\mathbf{p_{1}})^{2}(\mathbf{k}-\mathbf{p_{2}})^{2}[\mathbf{k}^{2}+m^{2}+p_{1}^{0}\sqrt{\mathbf{k}^{2}+m^{2}}]} u_{e}(p_{1})$$

 $i\mathcal{M}_2^{(1)}$ has no infrared or ultraviolet divergence.

$$i\mathcal{M}_{1}^{(1)} + i\mathcal{M}_{2}^{(1)} = ie^{4}\bar{u}_{N}(P_{N})\frac{1+\gamma^{0}}{2}u_{N}(P_{N})u_{e}^{\dagger}(p_{2})\int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}}\frac{p_{1}^{0^{2}} + k^{2} + m^{2} + (k_{i} - p_{1i})p_{1}^{0}\gamma^{i}\gamma^{0}}{(\mathbf{k} - \mathbf{p_{1}})^{2}(\mathbf{k} - \mathbf{p_{2}})^{2}[\mathbf{k}^{2} + m^{2} - p_{1}^{0^{2}}]\sqrt{\mathbf{k}^{2} + m^{2}}}u_{e}(p_{1})$$

$$= ie^{4}\bar{u}_{N}(P_{N})\frac{1+\gamma^{0}}{2}u_{N}(P_{N})u_{e}^{\dagger}(p_{2})\int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}}\frac{p_{1}^{0^{2}} + k^{2} + m^{2} + (k_{i} - p_{1i})p_{1}^{0}\gamma^{i}\gamma^{0}}{(\mathbf{k} - \mathbf{p_{1}})^{2}(\mathbf{k} - \mathbf{p_{2}})^{2}[\mathbf{k}^{2} - \mathbf{p_{1}}^{2}]\sqrt{\mathbf{k}^{2} + m^{2}}}u_{e}(p_{1})$$

Note that after the expansion over external momentum, k^i can be converted into p^i so it's actually at p^1 order. From this we can conclude that a contact interaction is presented at α^2 order with coefficient $\frac{4\pi e^4}{3m^2} = \frac{(4\pi)^3 \alpha^2}{3m^2}$.

Now consider operator product expansion.

At leading order $u_e(p) = \begin{pmatrix} \psi_e(p) \\ 0 \end{pmatrix}$. (If we're only interested in the hard region contribution, which is independent of states, the leading order is independent of any on-shell momentums.)

One loop scenario for NRQED case: p_1

$$\langle 0 | \psi_{e}(0) N(0) e \int d^{4}y \bar{\psi}_{e} \psi_{e} A^{0} e \int d^{4}z \bar{N} N A^{0} | e N \rangle = e^{2} u_{N}(v_{N}) \int [dk] \frac{1}{\mathbf{k}^{2}(-k^{0} + i\epsilon)(p_{1}^{0} + k^{0} - m - \frac{(\mathbf{p_{1} + k})^{2}}{2m} + i\epsilon)} \psi(p_{1})$$

$$= -ie^{2} u_{N}(v_{N}) \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{\mathbf{k}^{2}(E_{1} - \frac{(\mathbf{p_{1} + k})^{2}}{2m} + i\epsilon)} \psi(p_{1})$$

$$= -ie^{2} u_{N}(v_{N}) \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{(\mathbf{k} - \mathbf{p_{1}})^{2}(E_{1} - \frac{\mathbf{k}^{2}}{2m} + i\epsilon)} \psi(p_{1})$$

drop p_1

$$=-ie^2u_N(v_N)\int\frac{\mathrm{d}^3k}{(2\pi)^3}\frac{1}{\mathbf{k}^2(E_1-\frac{\mathbf{k}^2}{2m}+i\epsilon)}\psi(p_1)=\pi ie^2\sqrt{\frac{2m}{E_1}}u_N(v_N)\psi(p_1)$$

For QED case:

$$\langle 0 | \psi(x) N(0) e \int \mathrm{d}^4 y \bar{\psi} \gamma^0 \psi A^0 e \int \mathrm{d}^4 z \bar{N} N A^0 | e N \rangle^2 = e^2 u_N(v_N) \int [\mathrm{d}k] e^{-i(\mathbf{k} + \mathbf{p_1}) \cdot \mathbf{x}} \frac{(\not p_1 + \not k + m) \gamma^0}{\mathbf{k}^2 [(p_1 + k)^2 - m^2 + i\epsilon](-k^0 + i\epsilon)} u_e(p_1)$$

$$= e^2 u_N(v_N) \int [\mathrm{d}k] e^{-i(\mathbf{k} + \mathbf{p_1}) \cdot \mathbf{x}} \frac{2p_1^0 + \not k \gamma^0}{\mathbf{k}^2 [(p_1 + k)^2 - m^2 + i\epsilon](-k^0 + i\epsilon)} u_e(p_1)$$

$$= ie^2 u_N(v_N) \int \frac{\mathrm{d}^3 k}{(2\pi)^3} e^{-i(\mathbf{k} + \mathbf{p_1}) \cdot \mathbf{x}} \frac{p_1^0 + k_i \gamma^i \gamma^0 + \sqrt{(\mathbf{k} + \mathbf{p_1})^2 + m^2}}{2\mathbf{k}^2 [(\mathbf{k} + \mathbf{p_1})^2 + m^2 - p_1^0 \sqrt{(\mathbf{k} + \mathbf{p_1})^2 + m^2}]} u_e(p_1)$$

$$= ie^2 u_N(v_N) \int \frac{\mathrm{d}^3 k}{(2\pi)^3} e^{-i\mathbf{k} \cdot \mathbf{x}} \frac{p_1^0 + (k_i - p_{1i}) \gamma^i \gamma^0 + \sqrt{\mathbf{k}^2 + m^2}}{2(\mathbf{k} - \mathbf{p_1})^2 [\mathbf{k}^2 + m^2 - p_1^0 \sqrt{\mathbf{k}^2 + m^2}]} u_e(p_1)$$

drop $\mathbf{p_1}$

$$= ie^{2}u_{N}(v_{N}) \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} e^{-i\mathbf{k}\cdot\mathbf{x}} \frac{m + \sqrt{\mathbf{k}^{2} + m^{2}}}{2\mathbf{k}^{2}[\mathbf{k}^{2} + m^{2} - m\sqrt{\mathbf{k}^{2} + m^{2}}]} u_{e}(p_{1})$$

$$= ie^{2}u_{N}(v_{N}) \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} e^{-i\mathbf{k}\cdot\mathbf{x}} \frac{m + \sqrt{\mathbf{k}^{2} + m^{2}}}{2\mathbf{k}^{2}\sqrt{\mathbf{k}^{2} + m^{2}}[\sqrt{\mathbf{k}^{2} + m^{2}} - m]} u_{e}(p_{1})$$

we can see there's no UV divergence here. IR divergence is presented but it's exactly the same with the NRQED one so there's nothing that needs to concern about.

Two loop scenario for QED case $\langle 0|T\psi(x)N(0)e\int \mathrm{d}^4y_1\bar{\psi}\gamma^0\psi A^0e\int \mathrm{d}^4z_1\bar{N}NA^0e\int \mathrm{d}^4y_2\bar{\psi}\gamma^0\psi A^0e\int \mathrm{d}^4z_2\bar{N}NA^0|eN\rangle$:

define $a = (\mathbf{p_1} + \mathbf{k_1} + \mathbf{k_2})^2 + m^2$ and $b = \sqrt{(\mathbf{p_1} + \mathbf{k_1} + \mathbf{k_2})^2 + m^2} - k_1^0 - p_1^0 + k_2^i \gamma_i \gamma^0 = \sqrt{a} - k_1^0 - p_1^0 + k_2^i \gamma_i \gamma^0$ (pole location is $\sqrt{a} - k_1^0 - p_1^0 - \frac{i\epsilon}{2\sqrt{a}}$), and note that the long coefficient of the first ϵ above is positive

$$=ie^4\int[\mathrm{d}k_1]\frac{\mathrm{d}^3\mathbf{k_2}}{(2\pi)^3}\frac{4p_1^{0^2}+2p_1^0k_1^0+2\mathbf{p_1}\cdot\mathbf{k_1}+2(k_1^0+p_1^0)[b+k_1\gamma^0]-\gamma^0bk_1}{2\sqrt{a}(\sqrt{a}-p_1^0)[-k_1^0+i\epsilon][(p_1+k_1)^2-m^2+i\epsilon]}\frac{1}{|\mathbf{k_1}|^2|\mathbf{k_2}|^2}u_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}$$

also define b' so that $b=b'-k_1^0$ ($b'=\sqrt{a}-p_1^0+k_2^i\gamma_i\gamma^0$) and $a'=(\mathbf{p_1}+\mathbf{k_1})^2+m^2$

 $\frac{1}{-k_1^0 + i\epsilon} \frac{1}{(p_1 + k_1)^2 - m^2 + i\epsilon} \frac{1}{|\mathbf{k_1}|^2 |\mathbf{k_2}|^2} u_N(v_N) u_e(p_1) e^{-i(\mathbf{p_1} + \mathbf{k_1} + \mathbf{k_2}) \cdot \mathbf{x}}$

$$=ie^4\int[\mathrm{d}k_1]\frac{\mathrm{d}^3\mathbf{k_2}}{(2\pi)^3}\frac{4p_1^{0^2}+2p_1^0k_1^0+2\mathbf{p_1}\cdot\mathbf{k_1}+2(k_1^0+p_1^0)[b'+k_1^i\gamma_i\gamma^0]-\gamma^0(b'-k_1^0)(k_1^0\gamma^0+k_1^i\gamma_i)}{2\sqrt{a}(\sqrt{a}-p_1^0)[-k_1^0+i\epsilon][(p_1+k_1)^2-m^2+i\epsilon]|\mathbf{k_1}|^2|\mathbf{k_2}|^2}u_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_2})}dv_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_1}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_2}+\mathbf{k_$$

the pole location is $\sqrt{a'} - p_1^0 - \frac{i\epsilon}{2\sqrt{a}}$

$$=-e^{4}\int\frac{\mathrm{d}^{3}\mathbf{k_{1}}}{(2\pi)^{3}}\frac{\mathrm{d}^{3}\mathbf{k_{2}}}{(2\pi)^{3}}\frac{2\sqrt{a'}(\sqrt{a}-p_{1}^{0}+(k_{1}+k_{2})^{i}\gamma_{i}\gamma^{0})-(\sqrt{a'}-\sqrt{a}+k_{2}^{i}\gamma_{i}\gamma^{0})(\sqrt{a'}-p_{1}^{0}-k_{1}^{i}\gamma_{i}\gamma^{0})+2p_{1}^{0^{2}}+2\mathbf{k_{1}}\cdot\mathbf{p_{1}}+2\sqrt{a'}p_{1}^{0}}{4\sqrt{a}\sqrt{a'}(\sqrt{a'}-p_{1}^{0})(\sqrt{a}-p_{1}^{0})|\mathbf{k_{1}}|^{2}|\mathbf{k_{2}}|^{2}}$$

$$u_{N}(v_{N})u_{e}(p_{1})e^{-i(\mathbf{p_{1}}+\mathbf{k_{1}}+\mathbf{k_{2}})\cdot\mathbf{x}}$$

shift both loop momentum⁴ so that $a = |\mathbf{k_2}|^2 + m^2$ and $a' = |\mathbf{k_1}|^2 + m^2$, now $b = \sqrt{a} - k_1^0 + (k_2 - k_1)^i \gamma_i \gamma^0$ and $b' = \sqrt{a} + (k_2 - k_1)^i \gamma_i \gamma^0$

$$= -e^{4} \int \frac{\mathrm{d}^{3}\mathbf{k_{1}}}{(2\pi)^{3}} \frac{\mathrm{d}^{3}\mathbf{k_{2}}}{(2\pi)^{3}} u_{N}(v_{N}) u_{e}(p_{1}) e^{-i\mathbf{k_{2} \cdot x}}$$

$$= \frac{2\sqrt{a'}(\sqrt{a} - p_{1}^{0} + (k_{2} - p_{1})^{i}\gamma_{i}\gamma^{0}) - (\sqrt{a'} - \sqrt{a} + (k_{2} - k_{1})^{i}\gamma_{i}\gamma^{0})(\sqrt{a'} - p_{1}^{0} - (k_{1} - p_{1})^{i}\gamma_{i}\gamma^{0}) + 2m^{2} + 2\mathbf{k_{1} \cdot p_{1}} + 2\sqrt{a'}p_{1}^{0}}{4\sqrt{a'}(\sqrt{a'} - p_{1}^{0})(\sqrt{a} - p_{1}^{0})|\mathbf{k_{1}} - \mathbf{p_{1}}|^{2}|\mathbf{k_{2}} - \mathbf{k_{1}}|^{2}}$$

 $^{^{2} \}left< 0 | \psi(x) N(0) e \int \mathrm{d}^{4} y \bar{\psi} \gamma^{0} \psi A^{0} e \int \mathrm{d}^{4} z \bar{N} N A^{0} | e N \right> \\ = e^{2} \int \mathrm{d}^{4} y \int \mathrm{d}^{4} z \int \frac{\mathrm{d}^{4} k_{1}}{(2\pi)^{4}} \frac{i}{\mathbf{k}^{2}} e^{-ik \cdot (z-y)} \int \frac{\mathrm{d}^{4} k_{1}}{(2\pi)^{4}} \tilde{S}_{e}(k_{1}) e^{-ik_{1} \cdot (y-x)} \int \frac{\mathrm{d}^{4} k_{2}}{(2\pi)^{4}} \tilde{S}_{N}(k_{2}) u_{N}(v_{N}) u_{e}(p) e^{-ip_{1} \cdot y}.$

drop $\mathbf{p_1}$

$$= -e^{4} \int \frac{d^{3}\mathbf{k_{1}}}{(2\pi)^{3}} \frac{d^{3}\mathbf{k_{2}}}{(2\pi)^{3}} \frac{2\sqrt{a'}(\sqrt{a} - m + k_{2}^{i}\gamma_{i}\gamma^{0}) - (\sqrt{a'} - \sqrt{a} + (k_{2} - k_{1})^{i}\gamma_{i}\gamma^{0})(\sqrt{a'} - m - k_{1}^{i}\gamma_{i}\gamma^{0}) + 2m^{2} + 2\sqrt{a'}m}{4\sqrt{a}\sqrt{a'}(\sqrt{a'} - m)(\sqrt{a} - m)|\mathbf{k_{1}}|^{2}|\mathbf{k_{2}} - \mathbf{k_{1}}|^{2}}$$

$$u_{N}(v_{N})u_{e}(p_{1})e^{-i\mathbf{k_{2}}\cdot\mathbf{x}}$$

rewrite it with $a_1 = a'$ and $a_2 = a$, now $a_1 = \sqrt{|\mathbf{k_1}|^2 + m^2}$ and $a_2 = \sqrt{|\mathbf{k_2}|^2 + m^2}$

$$=-e^{4}\int\frac{\mathrm{d}^{3}\mathbf{k_{1}}}{(2\pi)^{3}}\frac{\mathrm{d}^{3}\mathbf{k_{2}}}{(2\pi)^{3}}\frac{2\sqrt{a_{1}}(\sqrt{a_{2}}-m+k_{2}^{i}\gamma_{i}\gamma^{0})-(\sqrt{a_{1}}-\sqrt{a_{2}}+(k_{2}-k_{1})^{i}\gamma_{i}\gamma^{0})(\sqrt{a_{1}}-m-k_{1}^{i}\gamma_{i}\gamma^{0})+2m^{2}+2\sqrt{a_{1}}m}{4\sqrt{a_{1}}\sqrt{a_{2}}(\sqrt{a_{1}}-m)(\sqrt{a_{2}}-m)|\mathbf{k_{1}}|^{2}|\mathbf{k_{2}}-\mathbf{k_{1}}|^{2}}$$

$$u_{N}(v_{N})u_{e}(p_{1})e^{-i\mathbf{k_{2}}\cdot\mathbf{x}}$$

to investigate the divergent behaviour of the integral, rewrite the integral before the shift $(a_1 = (\mathbf{p_1} + \mathbf{k_1})^2 + m^2)$ and $a_2 = (\mathbf{p_1} + \mathbf{k_1} + \mathbf{k_2})^2 + m^2$

$$=-e^4\int\frac{\mathrm{d}^3\mathbf{k_1}}{(2\pi)^3}\frac{\mathrm{d}^3\mathbf{k_2}}{(2\pi)^3}\frac{2\sqrt{a_1}(\sqrt{a_2}-p_1^0+(k_1+k_2)^i\gamma_i\gamma^0)-(\sqrt{a_1}-\sqrt{a_2}+k_2^i\gamma_i\gamma^0)(\sqrt{a_1}-p_1^0-k_1^i\gamma_i\gamma^0)+2p_1^{0^2}+2\mathbf{k_1}\cdot\mathbf{p_1}+2\sqrt{a_1}p_1^0}{4\sqrt{a_2}\sqrt{a_1}(\sqrt{a_1}-p_1^0)(\sqrt{a_2}-p_1^0)|\mathbf{k_1}|^2|\mathbf{k_2}|^2}\\ u_N(v_N)u_e(p_1)e^{-i(\mathbf{p_1}+\mathbf{k_1}+\mathbf{k_2})\cdot\mathbf{x}}$$

we can see it's UV logarithm divergent and IR logarithm divergent (only for the $p_1^{0^2} \approx m^2$ term). Now we must regularize it to dimention (d-1)

$$=-e^{4}\int\frac{\mathrm{d}^{d-1}\mathbf{k_{1}}}{(2\pi)^{d-1}}\frac{\mathrm{d}^{d-1}\mathbf{k_{2}}}{(2\pi)^{d-1}}\frac{2\sqrt{a_{1}}(\sqrt{a_{2}}-m+k_{2}^{i}\gamma_{i}\gamma^{0})-(\sqrt{a_{1}}-\sqrt{a_{2}}+(k_{2}-k_{1})^{i}\gamma_{i}\gamma^{0})(\sqrt{a_{1}}-m-k_{1}^{i}\gamma_{i}\gamma^{0})+2m^{2}+2\sqrt{a_{1}}m}{4\sqrt{a_{1}}\sqrt{a_{2}}(\sqrt{a_{1}}-m)(\sqrt{a_{2}}-m)|\mathbf{k_{1}}|^{2}|\mathbf{k_{2}}-\mathbf{k_{1}}|^{2}}$$

$$u_{N}(v_{N})u_{e}(p_{1})e^{-i\mathbf{k_{2}}\cdot\mathbf{x}}$$

$$p_{1} + k_{1} + k_{2}$$

$$= e^{4} \int [dk_{1}][dk_{2}]e^{-i(\mathbf{p_{1}} + \mathbf{k_{1}} + \mathbf{k_{2}}) \cdot \mathbf{x}} \frac{1}{|\mathbf{k_{1}}|^{2}} \frac{1}{|\mathbf{k_{2}}|^{2}} \frac{1}{-k_{1}^{0} - k_{2}^{0} + i\epsilon} \frac{1}{(p_{1} + k_{1} + k_{2})^{2} - m^{2} + i\epsilon} \gamma^{0} \frac{p_{1} + k_{1} + m}{(p_{1} + k_{1})^{2} - m^{2} + i\epsilon} \gamma^{0} u_{N}(v_{N}) u_{e}(p_{1})$$

$$= e^{4} \int [dk_{1}][dk_{2}]e^{-i(\mathbf{p_{1}} + \mathbf{k_{1}} + \mathbf{k_{2}}) \cdot \mathbf{x}} \frac{1}{|\mathbf{k_{1}}|^{2}|\mathbf{k_{2}}|^{2}} \frac{4p_{1}^{0^{2}} + 2p_{1}^{0}k_{1}^{0} + 2\mathbf{p_{1}} \cdot \mathbf{k_{1}} + 2(p_{1}^{0} + k_{1}^{0})(k_{1} + k_{2})\gamma^{0} - k_{2}k_{1}}{(p_{1} + k_{1} + k_{2})^{2} - m^{2} + i\epsilon][(p_{1} + k_{1})^{2} - m^{2} + i\epsilon][-k_{1}^{0} - k_{2}^{0} + i\epsilon][-k_{2}^{0} + i\epsilon] u_{N}(v_{N}) u_{e}(p_{1})$$

$$= ie^{4} \int [dk_{1}] \frac{d^{3}\mathbf{k_{2}}}{(2\pi)^{3}} \frac{4p_{1}^{0^{2}} + 2p_{1}^{0}k_{1}^{0} + 2\mathbf{p_{1}} \cdot \mathbf{k_{1}} + 2(k_{1}^{0} + p_{1}^{0})[b + k_{1}\gamma^{0}] - \gamma^{0}bk_{1}}{2\sqrt{a_{2}}(\sqrt{a_{2}} - k_{1}^{0} + i\epsilon)} \frac{1}{|\mathbf{k_{1}}|^{2}|\mathbf{k_{2}}|^{2}} u_{N}(v_{N}) u_{e}(p_{1})e^{-i(\mathbf{p_{1}} + \mathbf{k_{1}} + \mathbf{k_{2}}) \cdot \mathbf{x}}$$

$$= -e^{4} \int \frac{d^{3}\mathbf{k_{1}}}{(2\pi)^{3}} \frac{d^{3}\mathbf{k_{2}}}{(2\pi)^{3}} \frac{2\sqrt{a'}(\sqrt{a} - p_{1}^{0} + (k_{1} + k_{2})^{i}\gamma_{1}\gamma^{0}) + (\sqrt{a'} + \sqrt{a} + k_{2}^{i}\gamma_{1}\gamma^{0})(\sqrt{a'} + p_{1}^{0} + k_{1}^{i}\gamma_{1}\gamma^{0}) - 2p_{1}^{0^{2}} - 2k_{1} \cdot \mathbf{p_{1}} + 2\sqrt{a'}p_{1}^{0}}{4\sqrt{a_{1}}\sqrt{a_{2}}\left(\sqrt{a_{1}} + \sqrt{a_{2}}\right)\left(\sqrt{a_{2}} - p_{1}^{0}\right)|\mathbf{k_{1}}|^{2}|\mathbf{k_{2}}|^{2}}$$

$$= -e^{4} \int \frac{d^{3}\mathbf{k_{1}}}{(2\pi)^{3}} \frac{d^{3}\mathbf{k_{2}}}{(2\pi)^{3}} \frac{2\sqrt{a'}(\sqrt{a} - p_{1}^{0} + (k_{1} + k_{2})^{i}\gamma_{1}\gamma^{0}) + (\sqrt{a'} + \sqrt{a} + k_{2}^{i}\gamma_{1}\gamma^{0})(\sqrt{a'} + p_{1}^{0} + k_{1}^{i}\gamma_{1}\gamma^{0}) - 2p_{1}^{0^{2}} - 2k_{1} \cdot \mathbf{p_{1}} + 2\sqrt{a'}p_{1}^{0}}{4\sqrt{a_{1}}\sqrt{a_{2}}\left(\sqrt{a_{1}} + \sqrt{a_{2}}\right)\left(\sqrt{a_{2}} - p_{1}^{0}\right)|\mathbf{k_{1}}|^{2}|\mathbf{k_{2}}|^{2}}}$$

$$= u_{N}(v_{N})u_{e}(p_{1})e^{-i(\mathbf{p_{1}} + \mathbf{k_{1}} + \mathbf{k_{2}}) \cdot \mathbf{x}} \frac{d^{3}\mathbf{k_{1}}}{d^{3}\mathbf{k_{2}}} \frac{d^{3}\mathbf{k_{2}}}{d^{3}\mathbf{k_{2}}} \frac{d^{3}\mathbf{k_{2}}}{d^{3}\mathbf{k_{2}}} \frac{d^{3}\mathbf{k_{2}}}{d^{3}\mathbf{k_{2}}} \frac{d^{3}\mathbf{k_{2}}}{d^{3}\mathbf{k_{2}}} \frac{d^{3}\mathbf{k_{2}}}{d^{3}\mathbf{k_{2}}} \frac{d^{3}\mathbf{k_{2}}}{d^{3}\mathbf{k_{2}}} \frac{d^{3}\mathbf{k_{2}}$$

do the shift

$$=-e^{4}\int\frac{\mathrm{d}^{3}\mathbf{k_{1}}}{(2\pi)^{3}}\frac{\mathrm{d}^{3}\mathbf{k_{2}}}{(2\pi)^{3}}\frac{2\sqrt{a'}(\sqrt{a}-p_{1}^{0}+(k_{1}+k_{2})^{i}\gamma_{i}\gamma^{0})+(\sqrt{a'}+\sqrt{a}+k_{2}^{i}\gamma_{i}\gamma^{0})(\sqrt{a'}+p_{1}^{0}+k_{1}^{i}\gamma_{i}\gamma^{0})-2p_{1}^{0^{2}}-2\mathbf{k_{1}}\cdot\mathbf{p_{1}}+2\sqrt{a'}p_{1}^{0}}{4\sqrt{a_{1}}\sqrt{a_{2}}\left(\sqrt{a_{1}}+\sqrt{a_{2}}\right)\left(\sqrt{a_{2}}-p_{1}^{0}\right)\left|\mathbf{k_{1}}\right|^{2}\left|\mathbf{k_{2}}\right|^{2}}$$

$$u_{N}(v_{N})u_{e}(p_{1})e^{-i(\mathbf{p_{1}}+\mathbf{k_{1}}+\mathbf{k_{2}})\cdot\mathbf{x}}$$

 $drop p_1$

$$=-e^{4}\int\frac{\mathrm{d}^{3}\mathbf{k_{1}}}{(2\pi)^{3}}\frac{\mathrm{d}^{3}\mathbf{k_{2}}}{(2\pi)^{3}}\frac{2\sqrt{a'}(\sqrt{a}-m+(k_{1}+k_{2})^{i}\gamma_{i}\gamma^{0})+(\sqrt{a'}+\sqrt{a}+k_{2}^{i}\gamma_{i}\gamma^{0})(\sqrt{a'}+m+k_{1}^{i}\gamma_{i}\gamma^{0})-2m^{2}+2\sqrt{a'}m}{4\sqrt{a_{1}}\sqrt{a_{2}}\left(\sqrt{a_{1}}+\sqrt{a_{2}}\right)\left(\sqrt{a_{2}}-m\right)\left|\mathbf{k_{1}}\right|^{2}\left|\mathbf{k_{2}}\right|^{2}}$$

$$u_{N}(v_{N})u_{e}(p_{1})e^{-i\mathbf{k_{2}}\cdot\mathbf{x}}$$

The sum of QED diagram at NNLO is

$$-\begin{bmatrix} x & 0 & x & 0 \\ p_1 + k_1 + k_2 & P_N - k_1 - k_2 & p_1 + k_1 + k_2 & P_N - k_1 - k_2 \\ p_1 + k_1 & P_N - k_1 & + & p_1 + k_1 \\ p_1 & P_N = m_N v_N & p_1 & P_N = m_N v_N \end{bmatrix}$$

$$= e^4 \int \frac{\mathrm{d}^3 \mathbf{k_1}}{(2\pi)^3} \frac{\mathrm{d}^3 \mathbf{k_2}}{(2\pi)^3} u_N(v_N) u_e(p_1) e^{-i(\mathbf{p_1} + \mathbf{k_1} + \mathbf{k_2}) \cdot \mathbf{x}}$$

For NRQED case ($\langle 0|\psi_e(0)N(0)e\int d^4y_1\bar{\psi}_e\psi_eA^0e\int d^4z_1\bar{N}NA^0e\int d^4y_2\bar{\psi}_e\psi_eA^0e\int d^4z_2\bar{N}NA^0|eN\rangle$)

$$p_{1} + k_{1} + k_{2}$$

$$- p_{1} + k_{1}$$

$$p_{1}$$

$$P_{N} - k_{1}$$

$$P_{N} = m_{N}v_{N}$$

$$= e^{4} \int [dk_{1}][dk_{2}] \frac{1}{|\mathbf{k}_{1}|^{2}} \frac{1}{|\mathbf{k}_{2}|^{2}} \frac{1}{-k_{1}^{0} - k_{2}^{0} + i\epsilon} \frac{1}{-k_{1}^{0} + i\epsilon} \frac{1}{p_{1}^{0} + k_{1}^{0} - m - \frac{(\mathbf{p}_{1} + \mathbf{k}_{1})^{2}}{2m} + i\epsilon} \frac{1}{p_{1}^{0} + k_{1}^{0} + k_{2}^{0} - m - \frac{(\mathbf{p}_{1} + \mathbf{k}_{1} + \mathbf{k}_{2})^{2}}{2m} + i\epsilon} \psi_{e}(p_{1})u_{N}(v_{N})^{5}$$

$$= ie^{4} \int [dk_{1}] \frac{d^{3}\mathbf{k}_{2}}{(2\pi)^{3}} \frac{1}{|\mathbf{k}_{1}|^{2}} \frac{1}{|\mathbf{k}_{2}|^{2}} \frac{1}{-k_{1}^{0} + i\epsilon} \frac{1}{p_{1}^{0} + k_{1}^{0} - m - \frac{(\mathbf{p}_{1} + \mathbf{k}_{1})^{2}}{2m} + i\epsilon} \frac{1}{p_{1}^{0} - m - \frac{(\mathbf{p}_{1} + \mathbf{k}_{1} + \mathbf{k}_{2})^{2}}{2m} + 2i\epsilon} \psi_{e}(p_{1})u_{N}(v_{N})$$

$$= -e^{4} \int \frac{d^{3}\mathbf{k}_{1}}{(2\pi)^{3}} \frac{d^{3}\mathbf{k}_{2}}{(2\pi)^{3}} \frac{1}{|\mathbf{k}_{1}|^{2}} \frac{1}{|\mathbf{k}_{2}|^{2}} \frac{1}{p_{1}^{0} - m - \frac{(\mathbf{p}_{1} + \mathbf{k}_{1})^{2}}{2m} + 2i\epsilon} \frac{1}{p_{1}^{0} - m - \frac{(\mathbf{p}_{1} + \mathbf{k}_{1} + \mathbf{k}_{2})^{2}}{2m} + 2i\epsilon} \psi_{e}(p_{1})u_{N}(v_{N})$$

do the shift as above

$$=-e^{4}\int\frac{\mathrm{d}^{3}\mathbf{k_{1}}}{(2\pi)^{3}}\frac{\mathrm{d}^{3}\mathbf{k_{2}}}{(2\pi)^{3}}\frac{1}{\left|\mathbf{k_{1}}-\mathbf{p_{1}}\right|^{2}}\frac{1}{\left|\mathbf{k_{2}}-\mathbf{k_{1}}\right|^{2}}\frac{1}{p_{1}^{0}-m-\frac{\left|\mathbf{k_{1}}\right|^{2}}{2m}+2i\epsilon}\frac{1}{p_{1}^{0}-m-\frac{\left|\mathbf{k_{2}}\right|^{2}}{2m}+2i\epsilon}\psi_{e}(p_{1})u_{N}(v_{N})$$

drop $\mathbf{p_1}$

$$= -e^{4} \int \frac{d^{3}\mathbf{k_{1}}}{(2\pi)^{3}} \frac{d^{3}\mathbf{k_{2}}}{(2\pi)^{3}} \frac{1}{|\mathbf{k_{1}}|^{2}} \frac{1}{|\mathbf{k_{2}} - \mathbf{k_{1}}|^{2}} \frac{1}{-\frac{|\mathbf{k_{1}}|^{2}}{2m} + 2i\epsilon} \frac{1}{-\frac{|\mathbf{k_{2}}|^{2}}{2m} + 2i\epsilon} \psi_{e}(p_{1})u_{N}(v_{N})$$

There's also a contact term

2 HSET

2.1 Lagrangian

For scalar QED

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger}D^{\mu}\phi - m^2\phi^{\dagger}\phi$$

where

$$D_{\mu} = \partial_{\mu} + ieA_{\mu}$$

In Schwartz's QFT (Chap. 35) he mentioned a choice of χ_v and $\tilde{\chi}_v$:

$$\phi(x) = e^{-imv \cdot x} \frac{1}{\sqrt{2m}} (\chi_v(x) + \tilde{\chi}_v(x))$$
(3)

$$\chi_v(x) = e^{imv \cdot x} \frac{1}{\sqrt{2m}} (iv \cdot D + m)\phi(x), \ \tilde{\chi}_v(x) = e^{imv \cdot x} \frac{1}{\sqrt{2m}} (-iv \cdot D + m)\phi(x)$$

$$\tag{4}$$

Put (3) into (4), a simple relation is derived:

$$(-iv \cdot D)\chi_v(x) = (2m + iv \cdot D)\tilde{\chi}_v(x)$$

It can also be writen as

$$2m\tilde{\chi}_v = (-iv \cdot D)(\chi_v + \tilde{\chi}_v)$$

Use this result

$$\mathcal{L} = \frac{1}{2m} \Big\{ \Big\{ [D^{\mu}(\chi_v + \tilde{\chi}_v)]^{\dagger} + imv^{\mu}(\chi_v + \tilde{\chi}_v)^{\dagger} \Big\} \Big\{ [D_{\mu}(\chi_v + \tilde{\chi}_v)] - imv_{\mu}(\chi_v + \tilde{\chi}_v) \Big\} - m^2(\chi_v + \tilde{\chi}_v)^{\dagger}(\chi_v + \tilde{\chi}_v) \Big\}$$

$$= (\chi_v + \tilde{\chi}_v)^{\dagger} (iv \cdot D)(\chi_v + \tilde{\chi}_v) + \frac{1}{2m} [D^{\mu}(\chi_v + \tilde{\chi}_v)]^{\dagger} D_{\mu}(\chi_v + \tilde{\chi}_v)$$

$$= (\chi_v(x) + \tilde{\chi}_v(x))^{\dagger} (iv \cdot D)(\chi_v(x) + \tilde{\chi}_v(x)) + \mathcal{O}(\frac{1}{m})$$
(6)

(note that $D_{\mu}\phi = e^{-imv \cdot x}[D_{\mu}(\chi_v + \tilde{\chi}_v) - imv_{\mu}(\chi_v + \tilde{\chi}_v)]$ and $-imv^{\mu}[D_{\mu}(\chi_v + \tilde{\chi}_v)]^{\dagger}(\chi_v + \tilde{\chi}_v) = imv^{\mu}(\chi_v + \tilde{\chi}_v)^{\dagger}D_{\mu}(\chi_v + \tilde{\chi}_v) - total\ derivative\ term)$

Use the leading order of (5)

$$\mathcal{L}^{(0)} = (\chi_v + \tilde{\chi}_v)^{\dagger} (iv \cdot D)(\chi_v + \tilde{\chi}_v)$$

$$= \chi_v^{\dagger} iv \cdot D\chi_v + \tilde{\chi}_v^{\dagger} iv \cdot D(\chi_v + \tilde{\chi}_v) + \chi_v^{\dagger} iv \cdot D\tilde{\chi}_v$$

$$= \chi_v^{\dagger} iv \cdot D\chi_v - 2m\tilde{\chi}_v^{\dagger} \tilde{\chi}_v + (iv \cdot D\chi_v)^{\dagger} \tilde{\chi}_v$$

$$= \chi_v^{\dagger} iv \cdot D\chi_v - 2m\tilde{\chi}_v^{\dagger} \tilde{\chi}_v + [(-2m - iv \cdot D)\tilde{\chi}_v]^{\dagger} \tilde{\chi}_v$$

$$= \chi_v^{\dagger} iv \cdot D\chi_v - \tilde{\chi}_v^{\dagger} (iv \cdot D + 4m)\tilde{\chi}_v$$

⁵Clearly in this line, if this NRQCD diagram is crossed, the second pole would become $-k_2^0 + i\epsilon$ and the whole formula is zero (since both poles of k_1^0 would be in the same side).

We can have the final form⁶

$$\mathcal{L} = \chi_v^{\dagger} i v \cdot D \chi_v - \tilde{\chi}_v^{\dagger} (i v \cdot D + 4m) \tilde{\chi}_v + \mathcal{O}(\frac{1}{m})$$

2.2 Quantization

2.2.1 HQET as an example

The leading term of HQET Lagrangian is

$$\mathcal{L} = \bar{Q}_v(iv \cdot D)Q_v$$

$$Q_v(x) = e^{imv \cdot x} \frac{1 + \psi}{2} \psi(x)$$

In free Dirac fermion theory we know that

$$\left\{\psi_a(\mathbf{x}), \psi_b^{\dagger}(\mathbf{y})\right\} = \delta^{(3)}(\mathbf{x} - \mathbf{y})\delta_{ab}$$
$$\left\{a_{\mathbf{p}}, a_{\mathbf{p}'}^{\dagger}\right\} = (2\pi)^3 \delta^{(3)}(\mathbf{p} - \mathbf{p}')$$

also the plane wave expansion of ψ is

$$\psi(x) = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} a_{\mathbf{p}} u(p) e^{-ip \cdot x}$$
$$= \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{1}{\sqrt{2mv^0}} a_v \sqrt{m} u(v) e^{-imv \cdot x - ik \cdot x}$$

using normalization of states $u(k) = \sqrt{m}u(v)^7$, $\langle p'|p\rangle = 2E_p(2\pi)^3\delta^{(3)}(\mathbf{p'}-\mathbf{p})$ and $\langle v',k'|v,k\rangle = 2v^0\delta_{vv'}(2\pi)^3\delta^{(3)}(\mathbf{k'}-\mathbf{k})$ we have $|p\rangle = \sqrt{m}\,|v\rangle\,\,(|p\rangle = \sqrt{2E_p}a_{\mathbf{p}}^\dagger\,|0\rangle$ while $|v,k\rangle = \sqrt{2v^0}a_{v,\mathbf{k}}^\dagger\,|0\rangle$

$$= \int \frac{\mathrm{d}^3k}{(2\pi)^3} \frac{1}{\sqrt{2v^0}} a_v u(v) e^{-imv \cdot x - ik \cdot x}$$

Using the definition of $Q_v(x)$

$$Q_{v}(x) = e^{imv \cdot x} \frac{1 + \cancel{v}}{2} \psi(x)$$

$$= \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{\sqrt{2v^{0}}} a_{v} \frac{1 + \cancel{v}}{2} u(v) e^{-ik \cdot x}$$

$$= \int \frac{d^{3}k}{(2\pi)^{3}} \frac{1}{\sqrt{2v^{0}}} a_{v} u(v) e^{-ik \cdot x}$$

The commutation relation should be

$$\{Q_{va}(\mathbf{x}), Q_{v'b}(\mathbf{x}')\} = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{\mathrm{d}^3 k'}{(2\pi)^3} \frac{1}{\sqrt{4v^0 v'^0}} \{a_v, a_{v'}^{\dagger}\} u_a(v) u_b^{\dagger}(v') e^{-ik \cdot x + ik' \cdot x'}$$

using $\sum_s u_a(v)u_b^{\dagger}(v) = \frac{1}{m}\sum_s u_a(p)u_b^{\dagger}(p) = [(\not v+1)\gamma^0]_{ab}$

$$= \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{\mathrm{d}^3 k'}{(2\pi)^3} \frac{1}{\sqrt{4v^0 v'^0}} \{a_v, a_{v'}^{\dagger}\} [(\psi + 1)\gamma^0]_{ab} e^{-ik \cdot x + ik' \cdot x'}$$

assuming $\{a_v, a_{v'}\} = (2\pi)^3 \delta_{vv'} \delta^{(3)}(\mathbf{k} - \mathbf{k}')$

$$= \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \frac{1}{2v^{0}} [(\psi + 1)\gamma^{0}]_{ab} e^{-ik \cdot (x - x')} \delta_{vv'}$$
$$= [\frac{(\psi + 1)\gamma^{0}}{2v^{0}}]_{ab} \delta_{vv'} \delta^{(3)}(\mathbf{x} - \mathbf{x}')$$

⁶With one problem: if we can tolerate coupled particle-anti particle pair, we can trade $iv \cdot D$ for mass term, so the leading part is the same but the anti-particle part could be different with the mixing?

⁷The relation $\bar{u}^s(p)\gamma^\mu u^s(p)=2p^\mu$ can be derived using Gordon identity, same for $\bar{u}^s(v)\gamma^\mu u^s(v)=2v^\mu$, but it's actually $\bar{u}u$.

2.2.2 HSET

The anti-particle field is decoupled so we don't have to consider that for now. The equation-of-motion is

$$\begin{cases} v \cdot D\chi_v^{\dagger} = 0 \\ v \cdot D\chi_v = 0 \end{cases}$$

By definition

$$\chi_v(x) = \frac{e^{imv \cdot x}}{\sqrt{2m}} (iv \cdot D + m)\phi(x)$$
$$= \frac{1}{\sqrt{2m}} (iv \cdot D + 2m)e^{imv \cdot x}\phi(x)$$

Obviously the plane wave expansion should be irrelevant of the heavy particle mass, which means the exponential part is $e^{-ik \cdot x}$ where k marks the offshellness.