

PATENT ABSTRACTS OF JAPAN

(11) Publication number : 2000-297353

(43) Date of publication of application : 24.10.2000

(51)Int.Cl. C22C 38/00
C22C 38/42

(21)Application number : 11-220891 (71)Applicant : HITACHI METALS LTD

(22) Date of filing : 04.08.1999 (72) Inventor : NAKATSU EIJI
TAMURA ISAO

(30)Priority

Priority number : 11933629 Priority date : 12.02.1999 Priority country : JP

(54) STEEL FOR HIGH STRENGTH DIE EXCELLENT IN MACHINABILITY

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a high strength steel improved in machinability without damaging the advantage of an excellent balance of strength and ductility which is the characteristic of steel essentially consisting of a martensite structure and capable of producing a die as a prehardened material, particularly, high strength steel usable as steel for a plastic molding die.

SOLUTION: This steel is the one contg., by weight, 0.05 to 0.1% C, $\leq 1.5\%$ Si, $\leq 2.0\%$ Mn, 3.0 to $<8.0\%$ Cr, $\leq 4.0\%$ Ni, 0.1 to 2.0% Al and $\leq 3.5\%$ Cu and having a structure consisting essentially of martensite, and in which the contents of N and O which are inevitably present are controlled to $\leq 0.02\%$ N and $\leq 0.003\%$ O. By controlling the value of the formula: $7.7[\text{C}]+2.2[\text{Si}]+271.2[\text{S}]/[\text{Mn}]$ to 22.5, preferably to 56, its machinability by heavy cutting, and moreover, its precision discharge machinability and high-class polishability can be improved.

LEGAL STATUS

[Date of request for examination] 29.05.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Data of final disposal for application]

[Patent number] 2261766

[Date of registration] 20.09.2003

[Number of appeal against examiner's decision]

[of rejection]

[Date of requesting appeal against examiner's
decision of rejection]

[Date of extinction of right]

Copyright (C) 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12)特許公報 (B2)

(11)特許番号

特許第3351766号

(P3351766)

(45)発行日 平成14年12月3日(2002.12.3)

(24)登録日 平成14年9月20日(2002.9.20)

(51)Int.Cl'

C 22 C
38/00
38/42

識別記号

3 0 2

F I

C 22 C
38/00
38/42

3 0 2 E

(21)出願番号

特願平11-220391

(22)出願日

平成11年8月4日(1999.8.4)

(45)公開番号

特開2000-297353(2000-297353A)

(43)公開日

平成12年10月24日(2000.10.24)

審査請求日

平成12年5月29日(2000.5.29)

(31)優先権主張番号

特願平11-33029

(32)優先日

平成11年2月12日(1999.2.12)

(33)優先権主張国

日本 (JP)

(73)特許権者

000005083

日立金属株式会社

東京都港区芝浦一丁目2番1号

(72)発明者

中津 美司

島根県安来市安来町2107番地2 日立金
属株式会社冶金研究所内

(72)発明者

田村 康

島根県安来市安来町2107番地2 日立金
属株式会社冶金研究所内

審査官 岩井 正樹

請求項の数11(全 20 頁)

(54)【発明の名前】 被削性に優れた高強度金型用鋼材

1

(57)【特許請求の範囲】

【請求項1】 重量比でC:0.005~0.1%、Si:1.5%以下、Mn:2.0%以下、Cr:3.0~8.0%未満、Ni:4.0%以下、Al:0.1~2.0%、Cu:3.5%以下、Mo:0.1~1%を含有し、かつマルテンサイトを主体とする組織を有する鋼であって、不可避的に存在するNおよびOを、N:0.02%以下、O:0.003%以下に規制したことと特徴とする被削性に優れた高強度金型用鋼材。

【請求項2】 重量%で、式1:7.7[%C]+2.12[%Si]+2.1[%N]の値が2.5以上であることを特徴とする請求項1に記載の被削性に優れた高強度金型用鋼材。

【請求項3】 式1の値が6以下であることを特徴とする請求項2に記載の被削性に優れた高強度金型用鋼材。

2

【請求項4】 重量比で、C≥0.03%、Si:0.8~1.5%を認足することを特徴とする請求項2または3に記載の被削性に優れた高強度金型用鋼材。

【請求項5】 重量比でCを1%以下含有することを特徴とする請求項1ないし4のいずれかに記載の被削性に優れた高強度金型用鋼材。

【請求項6】 重量比でNは0.005%以下、Oは重量比で0.001%以下を有することを特徴とする請求項1ないし5のいずれかに記載の被削性に優れた高強度金型用鋼材。

【請求項7】 重量比でC:0.005~0.05%、Si:1.5%以下、Mn:2%以下、Cr:3.5~7.0%、Ni:1~4.0%、Al:0.5~2.0%、Cu:0.3~3.5%であることを特徴とする請求項1ないし6のいずれかに記載の被削性に優れた高強度金型用鋼材。

最終頁に続く

3

磨金型用鋼材

【請求項8】 重量比でVまたはNbをV+Nbで0.5%以下を含有することを特徴とする請求項1ないし7のいずれかに記載の被削性に優れた高強度金型用鋼材。

【請求項9】 重量比で、S : O. 20%以下を含有することを特徴とする請求項1ないし8のいずれかに記載の被削性に優れた高強度金型用鋼材。

【請求項10】 重量比で0.05%<SI≤1.5%を満たすことを特徴とする請求項1ないし9のいずれかに記載の被割性に優れた高強度金型用鋼材。

【請求項11】 表面硬さが38HRCを越えることを特徴とする請求項1ないし10のいずれかに記載の被削性に優れた高強度金型用鋼材。

【発明の詳細な説明】

100011

【発明の属する技術分野】本発明は、マルテンサイト組織による高強度と被削性を兼備した金型用鋼材に関するものである。

[0002]

【従来の技術】従来、たとえばプラスチック製品を成形するための金型材料として、ブリーハー・ドン金型鋼材の適用が知られている。ブリーハー・ドン金型鋼材とは、通常の鉄に適用される焼なまし一機械鍛工一焼入れによる強度(硬さ)の向上という工程をとらず、所定の硬さに調整した鋼材を機械加工して、焼入れ処理を行わないで金型等として使用するものである。そのため、金型等の製品として使用可能な強度および耐摩耗性を確保できる高い硬さであっても、かつ被削性に優れるという相反する特性が求められる。このような特性を有する材料としては、たとえば、特開平5-7087号あるいは特開平7-27873号等に開示されているNi, Al, Cu等を添加し折出効果を利用して硬さを高めるとともに、被削性的高いバイナイト組織と焼入れ材が結晶化しない。

100031

【発明が解決しようとする課題】上述したペイナイト組織を主とするブリッハード（鋼材は高）硬さと、比較的の良好的な被削性を実現するとして、有効な鋼材である。そのために、加工後の焼き入れ処理が重要であり、金型メーカーにとっては極めて使いやすいものとなっている。しかし、ペイナイト組織への転換は、製造時の熱処理工序で冷却速度のコントロールが不可欠であり、多大な熱処理工数がかかるという欠点も有している。さらに、最近の金型では更高的な高強度、高寿命化に加えて、耐食性の向上も要求され始めている。

【0004】一方、マルテンサイト組織を主体とする鉄鋼材料は、初析フェライト、バーライトやペイナイトなどの組織が出現しないように、ある程度速い速度で冷却してオーステナイトからマルテンサイト変態させることで、強度が大きく上昇するにわかからず延性・韌性がほとんど低下しないという特徴を最大限に利用して様々な

の用途に用いられている。金型材料としての適用も知られており、公表特許公報3-501752号には、C:0.01~0.1、Si:≤2、Mn:0.3~3.0、Cr:1~5、Mo:0.1~1、Ni:1~7、Al:1.0~3.0および／またはCu:1.0~4.0の金型鋼が

【0005】この鋼は、時効前の鋼がラスマルテンサイ

ト組織であり 30~38HRC となって、引き続いて行われる硬さを高める熱処理が容易に行えるという利点が提案されている。しかし、上述した公表特許公報 3-5017

52号であっても、たとえば38HRCを越えるような高い硬さのマルテンサイト組織を有する鋼を機械加工することは想定されていない。これは、マルテンサイト組織

は、被削性に問題があると考えられており、硬さの高いマルテンサイト組織に調整した後の機械加工は考えられなかったからである。本発明の目的は、以上のような問題点を解決するためのものであって、マルテンサイト組織を主体とする鋼材の強度・延性バランスに依る利点を害することなく、被削性を改善し、ブリーハードン材として全型の製造が可能である鋼、特にはブリーラスマッキング成形金型用鋼材として使用できる高強度鋼材を供給することである。

【0006】
【課題を解決するための手段】本発明者は、被削性ならびに耐久性との関係、さらに耐食性についても検討し、最も良き組成に調整することによって、焼入れ時にオーステナイトから生じるマルテンサイト組織や、焼入れされると焼戻し過程での金属間合物化物や炭化物の析出挙動を抑制して、耐久性を改善することなく被削性を大きく改善できることを出した。本発明に割り込まれた。

[0007] すなわち本発明は、重量比でC: 0. 05~0. 1%、Si: 1. 5%以下、Mn: 2. 0%以下、Cr: 3. 0~8. 0%未満、Ni: 4. 0%以下、Al: 0. 1~2. 0%、Cu: 3. 5%以下、Mo: 0. 1~1%を含有し、かつマルテンサイトを主体とする組織を有する鋼であって、不可避的に存在するNbおよびBを、N: 0. 02%以下、O: 0. 003%以下に拘束し、たとえばNb+V+Ti+Al系合金鋼である。

[0008] 本発明において、重量%で、式 $1: 7.7$
 $[\%C] + 2.2 [\%Si] + 27.1 \cdot 2 [\%S]$ の値が
 2.5 以上、さらには好ましくは 6 以下とすることで、
 硬削削での被削性の向上、さらには高精度放電加工性や高
 磨耗性を向上することができる。本発明においては、
 必要に応じて重量比 C_0 を 1% 以下、V または Nb を
 $V + Nb$ で 0.5% 以下、S : O 20% 以下を含有す
 ることが好ましい。

【0009】
【発明の実施の形態】上述したように、本発明の最も重要な特徴の1つは、最適な化学組成に調整することによって、硬く高強度のマルテンサイト組織であっても優れた被削性および耐食性を兼ね備え、さらに軽くましくは運

切削や放電加工性、磨き性をも兼備した金型用鋼を提供できたことにある。マルテンサイト組織を得るには、通常の焼入れ処理を素材に施しても良いが、本発明は、Crを3%以上含んでいたため、マルテンサイトに変態し易く、熱間加工後の冷却速度を空冷以上の冷却速度とする直接焼入れで達成することも可能である。以下、本発明が規定する化学組成について詳細に説明する。

【0010】Cr : 0.005~0.1%

Crを低めに設定したことは、本発明の基本的な被削性向上を確保するために重要である。Crを低めることは、硬いマルテンサイト組織であっても、マルテンサイトの組織単位であるパケットを大きくするために有効であり、被削性向上する重要な要素である。

【0011】具体的には、本発明鋼材の光学顕微鏡では、1つのオーステナイト粒は数個のパケットに分割され、各パケットはさらにいくつかのほぼ平行な帯状のブロックに分割されている。パケットは平行に並び（つまり同じ晶へき面の）多くのラヌの集団からなる領域であり、ブロックは平行でかつ同じ結晶方位をもつラヌの集団からなる領域である。このようにパケットあるいはブロックはマルテンサイトの強靭性を支える基本的組織単位となる。本発明鋼材では、ブロックの発達が不十分なため、強靭性は主としてパケットによって支配されると考えられる。具体的には図1に示す組織を有することになる。C量を低めることは、固溶C量の低下となり、オーステナイトからマルテンサイト変態時に生ずる変態歪みが小さくなり、歪みの緩和構造として形成されるパケットの組み合せを少なくすことができ、結果としてサイズを大きくすることができるものである。大きなパケットは、切削等の機械加工時の疲労応力を低減させるので切削抵抗を減少させ工具への負荷を改善し、硬いマルテンサイト組織であっても優れた被削性を確保できるものである。

【0012】また、Cは、フェライトの生成を防ぎ、硬さ、強度向上に有効な元素である。0.005%以上は必要な元素である。Cが0.1%を超えると、炭化物を形成し切削時の工具摩耗を増長する原因となったり、基地中のCr量が減じたため耐食性を劣化するので、0.1%以下とする。さらに望ましくは、上述の作用を害せず被削性をさらに向上させるために0.05%未満とする。

【0013】Cr : 3.0~8.0%未満

Crは、耐食性を付与するのに有効な元素であるとともに、被削性に優れた組織を得るために規制する必要のある元素である。Crは3%未満、8%以上で初折フェライトがマルテンサイト変態時に析出するため被削性が低下する。また、この初折フェライトの析出時には固溶Cがマトリックス中に排出されるため、マトリックス中の固溶C量が増加して、統一せりのオーステナイトがマルテンサイトに変態する時に、変態歪みが大きくなる。

そのため、上述したパケットサイズが小さくなり、さらには被削性を低下させる。したがって、本発明においては、Cr 3.0~8.0%未満と規定した、好ましくはCr 3.5~7.0%である。

【0014】N : 0.02%以下

本発明の鋼材においては、Crを3.0%以上と比較的多量に含有させるものである。Crの増加は、鋼中のNの固溶度を増加してしまう。たとえば、2%程度のCrでは、1500°Cにおいて220ppm程度の固溶限であるが、3%程度では280ppmに増加し、5%では300ppmを越えるまでに固溶限が大きくなってしまう。Nは、鋼において窒化物を形成する元素で、とくに本発明のようにAlを含む場合には、AlNによって金型の韌性、被削性および磨き性を著しく劣化する。したがって、Crを添加した本発明において、Nを低く規制することは重要である。本発明においては、韌性、被削性および磨き性をさらに向上させるため、0.02%以下、好ましくは0.005%以下、より好ましくは0.002%以下と規定する。

【0015】O : 0.003%以下、好ましくは0.001%以下

Oは、鋼において酸化物を形成する元素であり、0.003%を越えると冷間塑性加工性および磨き性が著しく劣化するので、上限を0.003%とする。望ましくは磨き性を向上させるため0.001%以下とする。

【0016】Si : 1.5%以下

Siは、通常脱酸剂として使用されるが、一方、韌性を低下させる反面被削性を改善する。したがって両者の作用バランスを考慮して1.5%以下が好ましい。さらに望ましくは、上述の両者の作用バランスを寄せす基地の硬さを向上させるために0.05< Si < 1.5%とする。

Mn : 2.0%以下

Mnは、Siと同様に脱酸剤として使用されるほか、焼入性を高めてフェライトの生成を阻止する作用があるが、多すぎると組織に延性を増し被削性を低下するので2.0%以下とした。

【0017】Ni : 1.0~4.0%

Niは、変態点を下げ、冷却時に主体組織であるマルテンサイト組織を均一に生成させる作用と、Alとの金属間化合物を形成して析出させて硬さを高める作用があり、1.0%未満ではこの作用が認められなく、4.0%を超えてその効果は添加量のわりには顕著にならず、また、オーステナイトを生成し必要以上に粒になり被削性を劣化させるので1.0%~4.0%とする。

【0018】Al : 0.1~2.0%

Alは、Niと結合し金属間化合物Ni-Alを形成して析出させ、硬さを高める作用があり、その効果のために0.1%以上を必要とするが、2.0%を超えてもNiととのバランスの点から析出硬化に効果が期待出来ない

こと、酸化物系の硬い介在物を形成し工具疲労の原因となったり、鏡面研磨性、シボ加工性なども害するので、0.1~2.0%とした。より硬さを安定して出現させ軟化抵抗の低下を抑制するためには、0.5~2.0%とする。

【0019】Cu : 3.5%以下

Cuは、少量のFeを固溶した固溶体(ε相)を生成するとされ、Niと同様に析出硬化に寄与する。しかし、Cuは、反面韌性を低下させたり、高溫で材料の結晶粒界に浸潤して、熱間加工性を害する作用をするため3.5%以下とした。好ましくは0.3~3.5%とする。

【0020】上述した本発明の基本成分範囲で通常のエンドル等の剥削加工性は問題ないが、特に重切削を適用する場合を対象にして、さらには換討を進めた結果、重量%で、式1 : 7.7 [%C] + 2.2 [%Si] + 2.71.2 [%S]の値が2.5以上、6以下が好ましいことを見いだした。すなわち、上述した本発明における性能比較においても優れた韌性と被削性を兼備できる範囲として、下記式1の値が2.5以上を演算すれば良いことを見いだしたものである。また、さらに精密密巻加工性、耐久性を兼備するには、下記式1の値が6以下を満足すれば良いことを見いだしたものである。式1の係数等は、実験値の回帰分析により得られたものである。

【0021】詳しく説明するが、特に重切削、たとえば工具一刃当たりの被削材への切り込み面積が 5.0 mm^2 以上の切削条件において、本発明の規定範囲の鋼であっても、工具への溶着現象が発生して工具寿命に至るという、特異な現象を確認した。理由は不詳であるが、切削温度の上昇が原因であろうと思われる。本発明者はさきなる実験を繰り返し、C, Si, Sの量を調整することで、重切削にも耐えられる好ましい組成が得られたのであり、式1はその関係を規定するものである。式1において規定されるC, Si, Sは重切削加工に対してそれぞれ以下の意味をもつと考えられる。

【0022】Siは、重切削の場合、切削温度がかなり上昇するため、工具と切り屑の接触界面で低融点酸化物を形成し、それによる切り屑の潤滑効果によって、工具への溶着を防ぐ役割を果たす。Sは、低融点硫化物を形成して、切り屑の潤滑効果を向上する役割と、MnSによる切り屑の分断性を向上させる役割がある。さらに、重切削では切削温度がかなり高いため、その温度での被削材の延性、韌性が高くなっていて、非常に削り難い状況になってしまい。Sは、高溫での延性、韌性をやや低下させるため被削性を改善できる。Cは、切り屑を早期に分断して、工具への溶着を防ぐ。

【0023】なお、重切削における溶着現象を防止するために、上記の範囲が望ましいのであるが、Si量を多くすると韌性がやや低下する。これを補うために、Cをやや高めに設定するのが好ましい。この点を考慮すると

重切削を適用する場合の好ましいC量は、重量比で0.03%以上で必要であり、Siは0.8~1.5%と高めに設定する必要がある。また、重切削を適用する場合、Sが0.001%未満では、重切削での被削性が良くなく、0.01%以上では精密放電加工性(韌性劣化とMnSによる線状欠陥)や高級磨き性(MnSによるビット発生)が良くないため、Sを添加する場合は、0.001~0.01%とすることが望ましい。また、Sは割れ感受性を高めるため、特に放電加工を行う場合には、好ましくは0.006以下に制限することが望ましい。

【0024】Mo : 0.1~1.0%

Moは、基地中に固溶して不動態皮膜を強化し耐食性を向上させるのに極めて有効である。また、Moは、Cと結合して微細な複合炭化物を形成することによって、Crが主体となって形成されるM7C3型の炭化物の粗大化を抑制する著しい効果があり、韌性向上やビンホールの生成要因が軽減される。しかし、過剰に含有すると多量の炭化物を形成して工具摩耗を増加させるので、上限を1.0%とする。上述の効果を有効に出現させるため0.1%以上添加する。

【0025】Co : 1.0%以下

Coは、基地中に固溶して2次硬化性と耐食性を向上させるとともに、Crが主体となって形成されるM7C3型の炭化物の粗大化を抑制し、この炭化物および金属間化合物(Ni-Al)を基地中に微細に析出させて、韌性を改善する。しかし、多すぎると韌性の低下、被削性の劣化および焼入れ性の低下を招くこと、また、経済性も考慮して上限は1.0%とした。より好ましくは、上述の効果を有効に出現させるため0.1%以上添加する。

【0026】VおよびNb : 0.5%以下

VおよびNbは、結晶粒の細粒化に有効で材料の韌性改善作用を有し、本発明鋼の特性をさらに改善する効果を示すので、必要により添加することができる。また、VおよびNbはNと結合して微細な窒化物を形成する傾向があるので、AlNの生成による粗大な化合物に起因する切削性、韌性および耐久性の低下を抑制することができる。多量に含有すると炭化物を形成して、工具摩耗を増加させるので上限値は、VとNbの合計で0.5%とした。より好ましくは、0.01~0.1%である。

【0027】S : 0.20%以下

Sは、Mnと結合してMn-S介在物を形成し被削性を向上させる。しかし、Mn-Sは孔食の起点となり易く耐食性を劣化させるので必要に応じて添加することができる。しかし、0.20%を越えても耐食性の低下に見合はる被削性向上は望めないので上限は0.20%とした。また、Sは、上述したように放電加工性、耐久性を劣化するため、用途に応じて添加量を制限する必要がある。

【0028】本発明においては、上述した組織と化学組成による基本的な作用を損なわない範囲において韌性改

前元素あるいはさらに被削性改善元素を添加することができる。例えば、被削性改善元素として Ti : 0. 5% 以下、Zr : 0. 5% 以下、Ta : 0. 3% 以下のいずれかまたは 2 種を含有させることもでき、被削性改善元素として Zr : 0. 003~0. 2%、Ca : 0. 000 5~0. 01%、Pb : 0. 03~0. 2%、Se : 0. 03~0. 2%、Te : 0. 01~0. 15%、Bi : 0. 01~0. 2%、In : 0. 005~0. 5%、Ce : 0. 01~0. 1% のいずれかまたは 2 種を含有させることもでき、また Y、La、Nd、Sm およびその他の R 原子全体で 0. 0005~0. 8% 含有させることもできる。

【0029】

【実施例】次に実施例により、本発明を詳細に説明する。まず、実施例における標準的な製法を示す。供試鋼は、30 kg 高周波真空溶解炉にて溶解し、4.0 mm × 4.0 mm の角棒に鍛造後、熱処理を施しマルテンサイト組織を得て実験に供した。熱処理は液温 4.0 HRC ± 5 を得るように、焼入れは 1000 °C で 1 時間加熱してから空冷し、その後焼戻しして 520 °C から 580 °C の 20 °C 気みの適正温度で 1 時間加熱後空冷するものである。実際の測定評価におけるマルテンサイトのパケットサイズは、まず光学顕微鏡組織を ASTM で規定されている 100 倍での標準粒度図と比較して粒度を決定し、各試料においてそれを写真についてこれらの測定を行ない平均パケットサイズとして求めた。パケットサイズの数値が大きいほどパケットは細かくなっていることを示す。

【0030】被削性的評価は、エンドミル切削試験を実施し、切削長 6 m での工具追面の最大摩耗巾 (V_m $\mu\text{m}/\text{mm}$) を測定した。切削条件は、2 枚刃 $\phi 1.0$ ハイスクエンドミル、切削速度 $2.3 \text{ m}/\text{min}$ 、送り速度 $0.06 \text{ mm}/\text{rev}$ 、溝式で行った。耐性的評価は、2 mm ノックチ試験片 (JIS 2 号試験片) を用いてシャルピー衝撃試験を実施し、室温でのシャルピー衝撃値を測定した。耐食試験として、①塩水噴霧試験 (5% NaCl, 35 °C, 1 h) ②水道水浸せき試験 (室温、1 時間浸せき後大気中放置) を実施し、外観観察により発錆状況を比較しその程度により① (良好: 発錆ゼロ)、○ (良: 発錆面積率 10% 未満)、× (不良: 発錆面積率 30% 以上)、△ (中間: 発錆面積率 1.0 ~ 30% 未満) で評価した。

【0031】磨き性的評価は、50 mm 角の試料で焼入れ焼

戻しを施し穂さを調整した後、グライダーベーパー→ダイヤモンドコンパウンド方式にて鏡面仕上げを行い、10 倍の拡大鏡を用いて微細なピット発生個数をカウントして、ピット数が 10 個未満のものを○、10~20 個のものを△、それ以上のものを×とした。

【0032】(実施例 1) 表 1 に示す主要成分と表 2 に示す微量元素が検出される鋼材を上述した製法により製造し、評価を行った。結果を表 3 に示す。本発明の試料 No. 1~6 は本発明の規定範囲内で C 盤を変化させた試料である。本発明の範囲内で C_r を増加させていくと、耐食性がやや向上する傾向が見られる。また被削性には、5% 付近で最良の結果となっている。耐性および磨き性に大きな差は認められない。一方、本発明の規定範囲よりも C_r の少ない比較例 C3、および本発明の規定範囲よりも C_r の多い比較例 C4 は、いずれもフェライト組織を発現し、被削性が本発明の試料に比べて大きく劣化した結果となった。

【0033】また、本発明の試料 No. 7~12 は、本発明の範囲内で C 盤を変化させた試料である。本発明の範囲内で C_r を増加させて行くと、被削性がやや劣化する傾向が見られる。耐食性、耐性、磨き性には大きな差は認められない。一方、本発明の規定範囲よりも C_r の多い比較例 C1 は、本発明の試料に比べて耐食性が劣化すると共に、被削性が大きく劣化する結果となった。

【0034】本発明の典型的な組織として、図 2 に試料 3 の 400 倍の組織写真とそのスケッチを示し、比較例として図 3 に試料 C1 の 400 倍の組織写真とそのスケッチを示す。C の多い試料 C1 は、明らかにパケットサイズが小さくなっている。すなわち、被削性の劣化は、表 3 に示すパケットサイズと相関しており、C の多い比較例 C1 は、パケットサイズが小さくなり、被削性が劣化したものと推測できる。また、本発明の規定範囲よりも N の多い比較例 C2 は、金型鋼材として重大な問題である磨き性が本発明の試料よりも劣り、また被削性の試験においても好ましくないチッピングが発生するという結果となつた。また、図 4 に C_r の少ない比較例 C3 の 400 倍の組織写真を示す。図 4 に示すように、C_r が本発明の規定範囲よりも少ないとフェライト組織が発現している。このフェライトの発現が被削性を劣化する原因になつている。

【0035】

[表 1]

11

12

試料 No.	化学組成wt%														備考	
	C	Si	Mn	Cr	Ni	Al	Cu	Mo	Co	V	Nb	N	O	S	Fe	
1	0.031	0.28	0.91	3.22	2.58	1.05	1.45	0.31	0.01	0.043	0.004	0.0054	0.0016	0.004	bal.	光明鋼
2	0.031	0.30	0.92	4.05	3.01	1.10	1.80	0.30	0.01	0.055	0.004	0.0060	0.0016	0.004	bal.	光明鋼
3	0.029	0.30	0.29	5.01	3.01	1.05	1.48	0.32	0.01	0.043	0.004	0.0054	0.0016	0.004	bal.	光明鋼
4	0.028	0.29	0.91	5.99	3.03	1.05	1.48	0.33	0.01	0.044	0.005	0.0055	0.019	0.005	bal.	光明鋼
5	0.031	0.28	0.91	1.75	1.10	1.05	1.48	0.35	0.01	0.044	0.005	0.0055	0.019	0.004	bal.	光明鋼
6	0.031	0.28	0.91	7.85	2.82	1.05	1.48	0.35	0.01	0.044	0.004	0.0060	0.022	0.005	bal.	光明鋼
7	0.009	0.28	0.91	5.11	2.58	1.10	1.48	0.20	0.01	0.048	0.004	0.0061	0.014	0.004	bal.	光明鋼
8	0.015	0.28	0.92	5.08	3.01	1.11	1.51	0.31	0.01	0.042	0.004	0.0060	0.018	0.004	bal.	光明鋼
9	0.032	0.28	0.29	4.99	3.01	1.08	1.48	0.33	0.01	0.044	0.004	0.0058	0.016	0.005	bal.	光明鋼
10	0.002	0.28	0.26	5.01	3.05	1.00	1.48	0.34	0.01	0.054	0.004	0.0054	0.015	0.005	bal.	光明鋼
11	0.063	0.28	0.91	5.02	2.89	1.02	1.52	0.25	0.01	0.080	0.008	0.0054	0.018	0.008	bal.	光明鋼
12	0.106	0.28	0.93	5.10	2.88	1.12	1.49	0.32	0.01	0.046	0.006	0.0059	0.020	0.005	bal.	光明鋼
C1	0.142	0.30	0.30	5.11	3.10	1.12	1.52	0.32	0.01	0.050	0.006	0.0062	0.013	0.005	bal.	比較鋼
C5	0.028	0.28	0.20	5.02	3.01	1.10	1.50	0.32	0.01	0.048	0.006	0.0063	0.018	0.005	bal.	比較鋼
C3	0.080	0.30	0.28	2.49	2.89	1.08	1.48	0.29	0.01	0.087	0.004	0.0153	0.018	0.005	bal.	比較鋼
C4	0.131	0.28	0.31	3.45	3.03	1.10	1.51	0.34	0.01	0.044	0.004	0.0061	0.014	0.004	bal.	比較鋼

[0036]

* * [表2]

試料 No.	化学組成wt%							備考
	H	P	B	W	Tl	Zr		
1	0.0003	0.013	0.0009	0.01	0.006	0.002	光明鋼	
2	0.0002	0.013	0.0038	0.01	0.005	0.003	光明鋼	
3	0.0003	0.011	0.0010	0.01	0.008	0.005	光明鋼	
4	0.0002	0.003	0.0011	0.01	0.004	0.004	光明鋼	
5	0.0004	0.012	0.0008	0.01	0.002	0.005	光明鋼	
6	0.0003	0.022	0.0013	0.01	0.004	0.004	光明鋼	
7	0.0004	0.013	0.0009	0.01	0.003	0.005	光明鋼	
8	0.0003	0.025	0.0048	0.01	0.002	0.004	光明鋼	
9	0.0003	0.024	0.0010	0.01	0.006	0.005	光明鋼	
10	0.0002	0.012	0.0011	0.01	0.005	0.006	光明鋼	
11	0.0002	0.022	0.0008	0.01	0.006	0.004	光明鋼	
12	0.0002	0.014	0.0009	0.01	0.004	0.004	光明鋼	
C1	0.0004	0.024	0.0012	0.01	0.006	0.005	比較鋼	
C2	0.0003	0.022	0.0028	0.01	0.005	0.005	比較鋼	
C3	0.0004	0.012	0.0011	0.01	0.006	0.005	比較鋼	
C4	0.0003	0.025	0.0013	0.01	0.004	0.004	比較鋼	

測定レベルに基づく不純物の上脱離
Mg:0.001,Cu:0.001,Ag:0.001,Zn:0.001,Sr:0.006,Pb:0.001,Au:0.004,
Sr:0.001,Bi:0.01,Se:0.01,Te:0.001,Y:0.01,Ga:0.01,Ta:0.01

[0037]

* * [表3]

試料 No.	マルテンサイト組織 パケットサイズ	硬さ HRC	耐食性		被削性	延性 J/cm ²	脆性	備考
			水道水及蒸留水噴露	○				
1	8	40.2	○	○	0.17	24.9	○	光明鋼
2	8	40.5	○	○	0.15	24.2	○	光明鋼
3	8	40.3	○	○	0.14	23.8	○	光明鋼
4	5	40.5	○	○	0.14	24.0	○	光明鋼
5	6	40.6	○	○	0.14	24.0	○	光明鋼
6	8	40.3	○	○	0.15	24.3	○	光明鋼
7	7	40.2	○	○	0.13	23.8	○	光明鋼
8	7.5	40.3	○	○	0.13	23.9	○	光明鋼
9	6	40.5	○	○	0.14	24.2	○	光明鋼
10	8	41	○	○	0.15	24.2	○	光明鋼
11	8	40.9	○	○	0.17	24.0	○	光明鋼
12	8	41.1	○	○	0.17	24.3	○	光明鋼
G1	9.5	41.2	○	△	0.40	8.6	○	比較鋼
C2	8	41	○	○	×(ランク)	6.8	×	比較鋼
C3	フェライト組織	39.8	×	×	0.37	24.8	○	比較鋼
C4	フェライト組織	39.7	○	○	0.35	25.2	○	比較鋼

[0038] (実験例2)

表4に示す主要成分と表5に示す微量元素が検出される鋼材を上述した製法により製造し、評価を行った。結果を表6に示す。試料No21~24は、本明発のMnおよび好

ましい規定範囲内でCの添加効果を確認したものである。MnおよびまたはCを添加する試料22~24は、Cを実質的に添加しない試料21よりも塑性が飛躍的に向上し、被削性も殆ど劣化しない。すなわち、C、M

oの添加は、韧性の向上に極めて有利であることがわかる。また、試料No. 24のようにMoとCoを複合添加することは、さらに韧性を向上でき有利である。なお、本発明の組成範囲、そして、好ましい組成範囲を越えて、Moおよび/またはCoを添加した比較鋼C5~C7では、韧性の向上は達成できるが、被削性が劣化していくことが確認される。

【0039】図5に比較鋼の試料No. 21 (Mo, Co無添加)、図6に本発明鋼の試料22 (Mo添加)、図7に上比較鋼の試料No. 23 (Co添加)、図8には本発明鋼の試料2

10

4 (Co, Mo複合添加) の粒界炭化物を強調したエッチング処理を施して観察した金属ミクロ組織写真を示す。図5のMo, Co無添加材では低C含有鋼にもかかわらず旧

オーステナイト結晶粒界やマルテンサイトのパケット境界に炭化物 (M7C3) が多量に析出しているのがわかる。一方Moおよび/またはCoを添加した図6ないし図8では、旧オーステナイト結晶粒界やマルテンサイトのパケット境界に析出する炭化物 (M7C3) がかなり減少しているのが確認できる。つまり、本発明におけるMoおよび/またはCoの添加は、韧性の劣化をまねく旧オーステナイト結晶粒界やマルテンサイトのパケット境界に析出する炭化物 (M7C3) の抑制に非常に効果的であることかがわかる。

【0040】

【表4】

試料 No.	化学組成(wt%)												鐵素 量		
	C	Si	Mn	Cr	Ni	Al	Cu	Mo	Co	V	Nb	N	O		
21	0.029	0.30	0.30	5.02	3.10	1.08	1.48	0.01	0.005	0.005	0.0013	0.004	0.004	1.25%	
22	0.029	0.29	0.30	5.10	3.01	1.10	1.50	0.30	0.01	0.004	0.005	0.0046	0.0015	0.0065	1.25%
23	0.030	0.30	0.29	5.05	2.99	1.09	1.48	0.01	0.005	0.005	0.0048	0.0016	0.005	1.25%	
24	0.031	0.28	0.31	5.12	3.03	1.10	1.51	0.39	0.01	0.005	0.0047	0.0014	0.004	1.25%	
C5	0.031	0.28	0.31	5.12	2.98	1.05	1.45	0.39	0.01	0.005	0.004	0.0054	0.0016	0.004	1.25%
C6	0.031	0.30	0.32	4.99	3.01	1.10	1.52	0.01	1.85	0.005	0.004	0.0060	0.0017	0.004	1.25%
C7	0.029	0.30	0.29	5.01	3.01	1.02	1.45	1.48	1.52	0.004	0.004	0.0052	0.0017	0.005	1.25%

[0041]

【表5】

試料 No.	化学組成wt%						備考
	H	P	B	W	Ti	Zr	
21	0.0003	0.025	0.0013	0.01	0.004	0.004	比較鋼
22	0.0003	0.013	0.0009	0.01	0.006	0.002	発明鋼
23	0.0002	0.013	0.0038	0.01	0.005	0.003	比較鋼
24	0.0003	0.011	0.0010	0.01	0.006	0.005	発明鋼
C5	0.0002	0.003	0.0011	0.01	0.004	0.004	比較鋼
C6	0.0004	0.012	0.0008	0.01	0.002	0.006	比較鋼
C7	0.0003	0.022	0.0013	0.01	0.004	0.006	比較鋼

測定レベルに基づく不純物の上限値

Mg:0.001,Ce:0.001,Ag:0.001,Zn:0.001,Sn:0.008,Pb:0.001,As:0.004,Sb:0.001,Bi:0.01,Se:0.01,Te:0.001,Y:0.01,Ce:0.01,Ta:0.01

【0042】

* * 【表6】

試料 No.	マルテンサイト相組 パケットサイズ	硬さ HRC	耐食性 水道水浸漬 塩水噴霧	被削性 ○○○○○	韌性 J/cm ²	磨き性 ○○○○○	備考
21	8	40.2	○	○	0.14	13.6	○ 比較鋼
22	8	41.0	○	○	0.15	20.4	○ 発明鋼
23	8	41.0	○	○	0.15	20.0	○ 比較鋼
24	8	41.2	○	○	0.16	28.4	○ 発明鋼
C5	8	40.2	○	○	0.28	21.0	○ 比較鋼
C6	8	40.5	○	○	0.30	21.3	○ 比較鋼
C7	8	40.3	○	○	0.31	25.1	○ 比較鋼

【0043】(実験例3)

表7に示す主要成分と表8に示す微量元素が検出される鋼材を上述した製法により製造し、評価を行った。結果を表9に示す。試料No31～35は、本発明の好ましい規定範囲内でVおよびNbの添加効果を確認したものである。VおよびNbを添加する試料32～35は、VまたはNbを実質的に添加しない試料31よりも韌性が飛躍的に向上し、被削性も殆ど劣化しない。すなわち、V

またはNbの添加は、韌性の向上に極めて有利であることがわかる。また、試料No34のようにVとNbの複合添加も可能である。なお、本発明の好ましい組成範囲を越えて、VおよびNbを添加した比較鋼C8～C10では、韌性の向上が殆ど無くなり、被削性が劣化し、また耐食性も劣化することが確認される。

【0044】

【表7】

試料 No.	化成電解液成分%										備考	
	C	Si	Mn	Cr	Ni	Al	Co	V	Nb	N	O	
31	0.029	0.30	0.30	5.02	3.10	1.08	1.48	0.01	0.005	0.005	0.0013	0.004
32	0.028	0.29	0.30	5.10	3.01	1.10	1.50	0.01	0.006	0.005	0.0015	0.005
33	0.030	0.29	0.29	5.05	2.98	1.09	1.48	0.01	0.007	0.005	0.0018	0.005
34	0.031	0.28	0.31	5.12	3.03	1.10	1.51	0.01	0.006	0.0047	0.0014	0.004
35	0.029	0.29	0.29	5.03	3.00	1.04	1.53	0.02	0.01	0.005	0.0012	0.005
G8	0.031	0.28	0.31	5.12	2.98	1.05	1.45	0.01	0.01	0.010	0.0054	0.0016
G9	0.031	0.20	0.32	4.99	3.01	1.10	1.52	0.01	0.006	0.020	0.0069	0.0017
G10	0.029	0.20	0.29	5.01	3.01	1.02	1.45	0.01	0.01	0.036	0.020	0.0017

【0045】

【表8】

試料 No.	化学組成 wt%						備考
	H	P	B	W	Tl	Zr	
31	0.0002	0.003	0.0011	0.01	0.004	0.004	比較鋼
32	0.0004	0.012	0.0008	0.01	0.002	0.005	比較銅
33	0.0003	0.022	0.0013	0.01	0.004	0.006	比較銅
34	0.0004	0.013	0.0009	0.01	0.003	0.005	比較銅
35	0.0004	0.024	0.0008	0.01	0.003	0.004	発明銅
C8	0.0003	0.025	0.0048	0.01	0.002	0.004	比較銅
C9	0.0003	0.024	0.0010	0.01	0.006	0.005	比較銅
C10	0.0002	0.012	0.0011	0.01	0.005	0.006	比較銅

測定レベルに基づく不純物の上限値
Mg:0.001,Ce:0.001,Ag:0.001,Zn:0.001,Sn:0.006,Pb:0.001,As:0.004,Sb:0.001,Bi:0.01,Se:0.01,Tc:0.01,Y:0.01,Ce:0.01,Ta:0.01

【0046】

* * 【表9】

試料 No.	マルテンサイト組織 パケットサイズ	硬さ HRC	耐食性		被削性	韌性 J/cm ²	磨き性	備考
			水道水浸漬	塩水噴霧				
31	8	40.2	◎	○	0.14	13.6	○	比較銅
32	8	41.0	◎	○	0.17	22.4	○	比較銅
33	8	41.0	◎	○	0.17	23.0	○	比較銅
34	8	41.2	◎	○	0.17	28.4	○	比較銅
35	8	41.3	◎	○	0.17	29.4	○	発明銅
C8	8	41.3	◎	△	0.29	17.8	○	比較銅
C9	8	41.2	◎	△	0.30	16.5	○	比較銅
C10	8	41.7	◎	△	0.37	15.7	○	比較銅

【0047】(実施例4)

表10に示す主要成分と表11に示す微量元素が検出された鋼材を上述した製法により製造し、評価を行った。結果を表12に示す。試料No41～51は、Moを除く本発明の規定範囲内で、成分を変更したものである。試料No41～51に対して、比較鋼C11は、Siが好ましい組成範囲を越えているため、被削性はやや向上しているものの韌性が劣化している。また、比較鋼C12は、Niが多すぎて、韌性はそれほど改善されていないにもかかわらず被削性が顕著に劣化している。

【0048】比較鋼C13は、Alが少なすぎて、析出硬化元素が不足のため硬さを高めることができなかった。また、比較鋼C14は、Cuが多すぎて、熱間加工時の割れを発生し加工することができなかった。また、比較鋼C15は、Sが好ましい組成範囲を越えているため、被削性は向上したが韌性は顕著に劣りし、さらに腐化物が多量に生成したため難易くおよび磨き性も劣化した。

【0049】

【表10】

[C-1] 各元素の含有量																
No.	C	Si	Mn	Cr	Ni	Al	Ca	Mo	Ge	V	Nb	N	O	S	Fe	鉄素
41	0.032	1.20	1.45	5.56	3.46	0.88	1.48	0.01	0.01	0.050	0.004	0.0000	0.0017	0.004	bal.	上部鋼
42	0.062	0.89	0.31	5.61	2.55	1.56	1.08	0.33	0.01	0.004	0.004	0.0026	0.0077	0.005	bal.	中間鋼
43	0.029	0.34	0.56	5.88	2.88	1.46	1.12	0.01	0.01	0.006	0.004	0.0084	0.0119	0.005	bal.	上部鋼
44	0.046	0.77	1.11	3.21	1.88	0.78	1.78	0.01	0.01	0.005	0.005	0.0055	0.0116	0.004	bal.	中間鋼
45	0.058	0.56	0.76	4.65	3.04	0.69	3.20	0.01	0.01	0.004	0.004	0.0050	0.0020	0.005	bal.	上部鋼
46	0.019	1.03	0.91	7.77	1.78	1.23	0.89	0.01	0.01	0.005	0.004	0.0051	0.0014	0.004	bal.	中間鋼
47	0.068	0.28	0.21	5.36	2.16	1.84	1.78	0.01	0.01	0.005	0.004	0.0018	0.0018	0.004	bal.	上部鋼
48	0.027	0.68	0.19	5.46	3.46	0.88	2.33	0.01	0.01	0.004	0.004	0.0068	0.0016	0.005	bal.	中間鋼
49	0.038	0.98	1.87	3.15	1.79	1.86	1.44	0.01	0.01	0.005	0.004	0.0054	0.0115	0.006	bal.	上部鋼
50	0.049	0.45	0.67	5.65	2.68	1.44	1.55	0.01	0.01	0.005	0.005	0.0054	0.0118	0.004	bal.	中間鋼
51	0.021	0.31	0.22	4.65	3.15	1.18	3.02	0.01	0.01	0.004	0.004	0.0052	0.0020	0.005	bal.	上部鋼
C11	0.028	2.20	0.35	7.56	2.03	0.89	2.03	0.01	0.01	0.005	0.005	0.0050	0.0013	0.004	bal.	中間鋼
C12	0.043	0.62	0.38	6.23	5.38	1.56	1.69	0.01	0.01	0.004	0.005	0.0045	0.0015	0.005	bal.	上部鋼
C13	0.034	0.37	1.02	5.16	3.56	0.04	3.20	0.01	0.01	0.005	0.004	0.0048	0.0016	0.005	bal.	中間鋼
C14	0.058	0.97	0.49	4.62	1.89	1.69	4.65	0.01	0.01	0.005	0.004	0.0047	0.0014	0.004	bal.	上部鋼
C15	0.068	0.99	0.79	3.53	2.47	1.74	2.64	0.01	0.01	0.005	0.004	0.0054	0.0010	0.026	bal.	中間鋼

【0050】

【表11】

試料 No.	化学組成wt%						備考
	H	P	B	W	Ti	Zr	
41	0.0002	0.013	0.0038	0.01	0.005	0.003	比較鋼
42	0.0003	0.011	0.0010	0.01	0.006	0.005	発明鋼
43	0.0002	0.003	0.0011	0.01	0.004	0.004	比較鋼
44	0.0004	0.012	0.0008	0.01	0.002	0.005	比較鋼
45	0.0003	0.022	0.0013	0.01	0.004	0.006	比較鋼
46	0.0004	0.013	0.0008	0.01	0.003	0.005	比較鋼
47	0.0003	0.025	0.0048	0.01	0.002	0.004	比較鋼
48	0.0003	0.024	0.0010	0.01	0.006	0.005	比較鋼
49	0.0002	0.012	0.0011	0.01	0.005	0.006	比較鋼
50	0.0003	0.022	0.0008	0.01	0.006	0.005	比較鋼
51	0.0002	0.014	0.0009	0.01	0.004	0.004	比較鋼
C11	0.0004	0.024	0.0012	0.01	0.006	0.005	比較鋼
C12	0.0003	0.022	0.0038	0.01	0.005	0.006	比較鋼
C13	0.0004	0.012	0.0011	0.01	0.006	0.005	比較鋼
C14	0.0003	0.025	0.0013	0.01	0.004	0.004	比較鋼
C15	0.0003	0.013	0.0009	0.01	0.006	0.002	比較鋼

測定レベルに基づく不純物の上限値

Mg:0.001,Ca:0.001,Ag:0.001,Zn:0.001,Sn:0.008,Pb:0.001,As:0.004,Sb:0.001,Bi:0.01,Se:0.001,Y:0.01,Ce:0.01,Ta:0.01

* * * [表12]

試料 No.	マルテンサイト組織 パケットサイズ	硬さ HRC	耐食性		被削性 J/cm ²	塑性	磨き性	備考
			水道水浸漬	塩水噴霧				
41	8	40.5	◎	○	0.15	20.2	○	比較鋼
42	8	40.3	◎	○	0.14	20.8	○	発明鋼
43	8	40.5	◎	○	0.14	14	○	比較鋼
44	8	40.8	◎	○	0.14	14	○	比較鋼
45	8	40.3	◎	○	0.15	14.3	○	比較鋼
46	8	40.2	◎	○	0.13	13.8	○	比較鋼
47	8	41.3	◎	○	0.13	18.9	○	比較鋼
48	8	40.5	◎	○	0.14	14.2	○	比較鋼
49	8	41	◎	○	0.15	14.2	○	比較鋼
50	8	40.8	◎	○	0.17	14	○	比較鋼
51	8	40.1	◎	○	0.17	14.3	○	比較鋼
C11	8	41.2	◎	○	0.13	5.8	○	比較鋼
C12	8	40.1	◎	○	0.26	15	○	比較鋼
C13	8	27.8	◎	○	0.14	14.8	○	比較鋼
熱間加工時の割れ発生								
C15	8	40.2	×	×	0.13	8.6	×	比較鋼

【0052】(実施例5)

表13に示す主要成分と表14に示す微量元素が検出される鋼材を上述した製法により製造し、評価を行った。結果を表15に示す。なお、評価としては、上述したエンドミルによる評価に加えて、重切削の評価を行った。重切削での被削性的評価は、正面フライス切削試験を実施し、工具が欠損するまでの切削長を測定した。切削条件は、8枚刃φ160正面フライスカッターでの單一刃切削、切削速度12.0m/min、送り速度0.1mm/刃、乾式、センターカット方式、工具一刃当たりの被削材への

切り込み面積を24.0mm²である。放電加工性の評価は、φ10～20のCu電極を用いて仕上げ肌(面粗さ)±1μmとなる条件(ピーク電流：1～4A、パルス幅：2～10μs、灯油)で試験後、肉眼および光学顕微鏡での観察、面粗さの測定を行った。評価基準は、まず肉眼および光学顕微鏡で検査し割れ発生したもの(×)を除去した後、面粗さ(Ry)が3μm未満を○、2μm以上3μm未満を△、3μm以上を×とした。表15に示すように、虫でも、重切削を考慮して本発明で見出した機器式での適正範囲を満足し、Sが0.001

~0.01%の範囲である試料No. 52~62は、重切削を満足し、精密放電加工においても、肉膜で確認される横条の発生もなく、高級磨き評価においてもピットの発生もなく優れていることが確認される。さらに、Sが0.006%以下を満足する試料No. 52, *

* 54, 55, 57, 58, 60, 61は、より重れた精密放電加工性および高級磨き性を有することを確認している。

【0053】

【表13】

試料 No.	化学組成(wt%)										標準 値	参考 値		
	C	Si	Mn	Cr	Ni	Al	Cu	Mo	Co	V	Nb	N	O	Fo
52	0.055	0.72	0.28	5.02	3.01	0.91	0.32	0.29	0.26	0.094	0.004	0.0018	0.0017	0.0051
53	0.058	0.29	2.98	3.98	1.74	1.00	0.29	0.01	0.004	0.004	0.0022	0.0012	0.0010	bal. 無明確
54	0.052	0.71	0.26	5.00	2.92	0.94	0.78	0.29	0.01	0.005	0.004	0.0017	0.0019	0.0053
55	0.063	0.70	0.29	5.23	2.97	0.92	0.77	0.30	0.01	0.005	0.005	0.0017	0.0012	0.0031
56	0.061	0.72	0.48	4.95	3.95	2.67	0.88	0.31	0.30	0.01	0.004	0.0020	0.0020	0.0051
57	0.058	1.25	0.49	3.91	2.00	1.23	0.59	0.01	0.01	0.005	0.004	0.0051	0.0014	0.0040
58	0.055	0.36	0.21	5.38	2.96	0.91	0.30	0.32	0.01	0.005	0.004	0.0018	0.0018	0.0041
59	0.054	0.29	0.98	5.68	2.95	1.20	2.14	0.46	0.01	0.004	0.004	0.0015	0.0016	0.0032
60	0.063	1.18	0.48	3.93	2.95	0.90	0.31	0.47	0.01	0.005	0.004	0.0019	0.0008	0.0038
61	0.049	0.56	0.67	6.97	2.66	1.44	1.56	0.01	0.01	0.005	0.005	0.0020	0.0016	0.0043
62	0.031	0.31	0.22	4.65	3.56	1.18	1.34	0.01	0.01	0.004	0.004	0.0019	0.0020	0.0082
63	0.053	0.24	0.30	5.98	2.95	1.00	0.65	0.30	0.01	0.110	0.005	0.0017	0.0008	0.0036
64	0.063	0.30	0.29	5.15	2.90	0.88	0.31	0.29	0.01	0.004	0.005	0.0020	0.0010	0.0005
65	0.049	0.70	0.30	3.92	2.98	0.93	0.31	0.48	0.01	0.005	0.004	0.0019	0.0016	0.0009
66	0.033	1.45	0.49	4.56	2.98	0.86	0.91	0.48	0.01	0.004	0.004	0.0011	0.0010	0.0050
67	0.062	1.18	0.58	4.65	3.02	0.84	0.34	0.28	0.01	0.005	0.005	0.0017	0.0012	0.1750

【0054】

【表14】

試料 No.	化学組成wt%						備考
	H	P	B	W	Ti	Zr	
52	0.0002	0.022	0.0002	0.01	0.014	0.004	発明鋼
53	0.0003	0.026	0.0010	0.01	0.006	0.005	発明鋼
54	0.0002	0.016	0.0011	0.01	0.005	0.003	発明鋼
55	0.0004	0.012	0.0008	0.01	0.002	0.004	発明鋼
56	0.0003	0.015	0.0003	0.01	0.004	0.006	発明鋼
57	0.0004	0.016	0.0009	0.01	0.003	0.003	比較鋼
58	0.0003	0.022	0.0048	0.01	0.007	0.004	発明鋼
59	0.0003	0.013	0.0010	0.01	0.006	0.005	発明鋼
60	0.0002	0.018	0.0011	0.01	0.005	0.004	発明鋼
61	0.0003	0.022	0.0008	0.01	0.006	0.005	比較鋼
62	0.0002	0.003	0.0008	0.01	0.004	0.004	比較鋼
63	0.0004	0.003	0.0002	0.01	0.008	0.004	発明鋼
64	0.0003	0.005	0.0001	0.01	0.005	0.004	発明鋼
65	0.0004	0.023	0.0011	0.01	0.007	0.005	発明鋼
66	0.0003	0.026	0.0003	0.01	0.005	0.004	発明鋼
67	0.0004	0.012	0.0001	0.01	0.006	0.002	発明鋼

測定レベルに基づく不純物の上限値
 Mg:0.001,Ce:0.001,Ag:0.001,Zn:0.001,Sr:0.006,Pb:0.001,As:0.004,Sb:
 0.001,Bi:0.01,Se:0.01,Tc:0.001,Y:0.01,Ce:0.01,Ta:0.01

試験料 No.	マルテンサイト組織 No.	硬度 HRC	水素脆化 等温水淬火	耐食性 海水噴霧	被削性 切削速度 J/cm ²	塑性 被削性	放電加工性 被削性	参考
52	8	40.3	○	○	0.15	1.70	25.4	○
53	8	40.8	○	○	0.14	3	3.26	○
54	8	40.2	○	○	0.14	2	14	○
55	8	39.9	○	○	0.14	1.25	14	○
56	8	40.3	○	○	0.15	1.70	25	○
57	8	39.8	○	○	0.13	2.25	24.9	○
58	8	41.3	○	○	0.13	2	15.3	○
59	8	40.5	○	○	0.14	2.75	20.4	○
60	8	40.5	○	○	0.15	2.25	24.8	○
61	8	40.9	○	○	0.17	1.75	17.2	○
62	8	40.2	○	○	0.17	1.5	15.8	○
63	8	40.6	○	○	0.13	0.1	25	○
64	8	41.2	○	○	0.2	0.25	16	○
65	8	40.5	○	○	0.14	0.25	14.8	○
66	8	39.3	○	○	0.13	3	8.2	△
67	8	40	○	○	0.13	2	8.5	△

【0056】

【発明の効果】本発明によればマルテンサイト組織を主体とする鋼材の熱処理後の加工性を飛躍的に高めるため、生産コスト低減、リードタイム短縮の観点からの金型の切削加工工数の低減にとって欠くことのできない高強度金型用鋼材となる。特に本発明の好ましい組成範囲を満たすことにより、強度・延性バランスに優れる利点を有することなく、3.8～4.5 HRC の硬さを有し、耐食性に優れ、かつ被削性を飛躍的に改善することができるというプラスチック成形用金型用鋼材として極めて有用である。

【図面の簡単な説明】

【図1】本発明の鋼材の有する金属ミクロ組織の模式図である。

【図2】本発明の鋼材の金属ミクロ組織写真の一例とその模式図である。

【図3】Cの高い比較鋼材の代表的な金属ミクロ組織写真的一例とその模式図である。

【図4】Cの低い比較鋼材の代表的な金属ミクロ組織写真的一例である。

【図5】比較の鋼材の粒界炭化物を強調した金属ミクロ組織写真の一例である。

【図6】Moを添加した本発明の鋼材の粒界炭化物を強調した金属ミクロ組織写真の一例である。

【図7】Cを添加した比較の鋼材の粒界炭化物を強調した金属ミクロ組織写真の一例である。

【図8】MoとCを複合添加した本発明の鋼材の粒界炭化物を強調した金属ミクロ組織写真の一例である。

[図1]

[図2]

模式図

[図3]

[図4]

(19)

特許3351766

【図5】

【図6】

【図7】

[図8]

フロントページの続き

(56)参考文献 特開 昭63-76855 (JP, A)
 特開2000-119769 (JP, A)
 特開2000-54068 (JP, A)
 特開 平11-140591 (JP, A)
 特開 昭62-167883 (JP, A)
 特開 平5-70887 (JP, A)
 特表 平3-501752 (JP, A)

(58)調査した分野(Int.Cl.¹, DB名)
 C22C 38/00 ~ 38/60