Algorithm Homework 06

Qiu Yihang

June 2022

1 Problem 01 - Clique with Half Size

Proof. First we prove that the problem is NP.

We prove that the problem is polynomial-time verifiable.

Consider the algorithm $V: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$, $(x,y) \mapsto V(x,y)$. x is a 0,1-sequence representing a graph G = (V,E) while y is a 0,1-sequence representing a clique V'. Obvious $|y| = |x|^{O(1)}$. V(x,y) checks whether $|V'| = \frac{n}{2} = \frac{|V|}{2}$ and whether V' is a clique on the graph represented by x. Obvious the checking process takes O(|E|) time, i.e. V terminates in $|x|^{O(1)}$ time.

Thus, V is a verifier. Therefore, the problem is polynomial-time verifiable, i.e. NP.

Let the exact k-clique problem on G be whether G contain a clique with size exactly k. Now we prove exact k-clique \leq_K clique with half size.

We convert the exact k-clique problem on G into a clique with half size problem on G' as follows. Let the clique on G be \mathcal{V}_G . Let the clique on G' be \mathcal{V} .

CASE 01.
$$k = \frac{|V|}{2}$$
. Construct $G'_k = (V'_k, E'_k) = G = (V, E)$.

Obvious the solutions of the two problems are exactly the same.

CASE 02. $k < \frac{|V|}{2}$.

First we construct a complete graph $G_c = (V_c, E_c)$ with $|V_c| = |V| - 2k$,

(i.e.
$$E_c = \{(u, v) \mid \forall u, v \in V_c, u \neq v\}.$$
)

Then we construct $G_k' = (V_k', E_k')$, where $V_k' = V \cup V_c$ and $E_k' = E \cup E_c \cup (V \times V_k')$.

Obvious \mathcal{V} must contain V_c and $\mathcal{V}_G = \mathcal{V} \setminus V_c$, i.e. $|\mathcal{V}_G| = |\mathcal{V}| - |V_c|$.

Thus,
$$|\mathcal{V}_G| = k \iff |\mathcal{V}| = |\mathcal{V}_G| + |V_c| = k + (|V| - 2k) = |V| - k = \frac{|V'_k|}{2}$$
.

Therefore, exact k-clique on G' and clique with half size G has the same solution.

CASE 03. $k > \frac{|V|}{2}$.

First we construct a graph $G_n = (V_n, E_n)$, where $|V_n| = 2k - |V|, E_n = \emptyset$.

Then we construct $G'_k = (V'_k, E'_k)$, where $V'_k = V \cup V_n$ and $E'_k = E \cup E_n = E$.

Obvious \mathcal{V} cannot contain V_c and $\mathcal{V}_G = \mathcal{V}$, i.e. $|\mathcal{V}_G| = |\mathcal{V}|$.

Thus,
$$|\mathcal{V}_G| = k \Longleftrightarrow |\mathcal{V}| = k = \frac{2k}{2} = \frac{|V| + 2k - |V|}{2} = \frac{|V_k'|}{2}$$
.

Therefore, exact k-clique on G' and clique with half size G has the same solution.

Through the process above, we can convert a k-clique problem on G into a clique with half size problem on G'. Thus,

exact k-clique \leq_K clique with half size.

Moreover, k-clique \leq_K exact k-clique.

For any k-clique problem, we can solve a series of $exact\ k$ -clique problems, i.e. $exact\ k$ -clique, $exact\ (k+1)$ -clique, ... $exact\ |V|$ -clique. Solving these |V|-k+1 problems, we can decide the solution of k-clique.

Since the number of the series of exact k-clique problem is polynomial, we have

 $k\text{-clique} \leq_K exact \ k\text{-clique} \implies k\text{-clique} \leq_K clique \ with \ half \ size.$

Meanwhile, we know k-clique problem is NP-complete.

Therefore, the problem is NP-complete.

2 Problem 02 - (C, V)-Knapsack

Proof. First we prove the (C, V)-Knapsack problem is NP.

Consider the algorithm $V: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}, (x,y) \mapsto V(x,y)$. x is a 0,1-sequence representing $n, w_1, w_2, ... w_n, v_1, v_2, ... v_n, C, V, y$ is a 0,1-sequence representing a subset of the n items, i.e. $\mathcal{I} \subset \{1,2,...n\}$. V(x,y) checks whether y is a valid arrangement with total value of items at least V, i.e. to check whether $\sum_{i\in\mathcal{I}} w_i \leq C$ and $\sum_{i\in\mathcal{I}} v_i \geq V$. Obvious this takes at most O(n) time, i.e. V(x,y) terminates in $|x|^{O(1)}$ time.

Thus, V is a verifier. Then the problem is polynomial-time verifiable, i.e. NP.

Now we prove Subset Sum $\leq_K (C, V)$ -Knapsack.

For any Subset Sum problem, i.e. given $n, a_1, a_2, ... a_n$ and W, decide whether exists $\mathcal{I} \in [n]$ s.t. $\sum_{i \in \mathcal{I}} a_i = W$, we can convert it into the (C, V)-Knapsack problems as follows.

Given n. Given $w_i = a_i, v_i = a_i$ for any $i \in [n]$. Determine whether exists a subset of items with total weight at most C = W and total value at least V = W. The (W, W)-Knapscak problem returning 1 means $\exists \mathcal{I} \subset [n]$ s.t. $\sum_{i \in \mathcal{I}} a_i \leq W, \sum_{i \in \mathcal{I}} a_i \geq W \implies \sum_{i \in \mathcal{I}} a_i = W$.

Thus, the solutions for the two problems above are exactly the same. Therefore,

Subset Sum
$$\leq_K (C, V)$$
-Knapsack.

Meanwhile, Subset Sum is NP-complete.

Thus, (C, V)-Knapsack is also NP-complete.

3 Problem 3 - Subgraph Problem

Proof. First we prove that the subgraph problem is NP.

Consider the algorithm $V: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}, (x,y) \mapsto V(x,y)$. x is a 0,1-sequence representing $G = (V_G, E_G), H = (V_H, E_H), y$ is a 0,1-sequence representing a mapping from V_H to V_G , noting which vertex in H is corresponding to which vertex in G. V(x,y) checks that under y, whether H is a subgraph of G, i.e. to check whether $\{y(u), y(v)\} \in E$ iff. $\{u, v\} \in E$. Obvious this process takes at most $O(|E|^2)$, i.e. V(x,y) terminates in $|x|^{O(1)}$ time.

Thus, V is a verifier. Therefore, the problem is polynomial-time verifiable, i.e. NP.

Now we prove that exact k-clique \leq_K subgraph problem.

We can convert the exact k-clique problem on G into a subgraph problem on G as follows.

For any two vertices in a clique, exists an edge between them on the original graph. Then we know the complete graph of vertices in the clique is a subgraph of the original graph.

Thus, we can construct a complete graph \mathcal{G} with k vertices. Determine whether \mathcal{G} is a subgraph of G. When \mathcal{G} is a subgraph of G, we know exists at least k vertices on G which can induce a clique on G, i.e. exists a clique on G with size $\geq k$. Otherwise, there does not exist any clique on G with size $\geq k$.

Thus, the solutions of the two problems are exactly the same, i.e.

k-clique \leq_K subgraph problem.

Meanwhile, k-clique is NP-Complete.

Therefore, subgraph problem is NP-complete.

4 Rating and Feedback

The completion of the homework takes me one day, about 15 hours in total (including thinkings on problem 4-9 without writing a formal proof). Still, writing a formal solution is the most time-consuming part.

The ratings of each problem is as follows.

Problem	Rating
1	3
2	2
3	2

Table 1: Ratings.

This time I finish all problems on my own.