## 1 Introduction

The KnightTour algorithm relies on the fact that any  $n \times n$  board, where n is even and greater than 6, can be formed by some combination of  $6 \times 6$ ,  $6 \times 8$ ,  $8 \times 8$ ,  $8 \times 10$ ,  $10 \times 10$ , or  $10 \times 12$  boards. If a knight's tour is found on all of the above base case boards, then it is guaranteed to exist on an  $n \times n$  board. We will prove this statement by induction on n, the size of the board.

## 2 Proof

**Theorem:** Any  $n \times n$  grid or  $n \times (n+2)$  grid with  $n \ge 12$  can be formed by some combination of  $6 \times 6$ ,  $6 \times 8$ ,  $8 \times 8$ ,  $8 \times 10$ ,  $10 \times 10$ , or  $10 \times 12$  grids.

*Proof by induction.* We will use induction to prove the above theorem.

**Base case:** Let n = 6, 8, and 10. For each of the  $n \times n$  and  $n \times (n + 2)$ , we know that one of the above grids completely fills the grid we are looking for.

**Inductive Hypothesis:** Suppose there exists a k such that  $10 \le k < n$  and the claim holds for all k. Since n is even, we have 2 cases to check to prove the claim.

Case 1: n = 4m for some  $m \in \mathbb{N}$ . For the  $n \times n$  square, we divide it into four  $2m \times 2m$  squares. For the  $n \times (n+2)$  rectangle, we divide it into two  $2m \times 2m$  squares and two  $2m \times (2m+2)$  rectangles. By the inductive hypothesis, as  $2m \geq 6$ , the claim holds if n = 4m.





Case 2: n = 4m + 2 for some  $m \in \mathbb{N}$ . For the  $n \times n$  square, we divide it into one  $2m \times 2m$  square, one  $(2m+2) \times (2m+2)$  square, and two  $2m \times (2m+2)$  rectangles. For the  $n \times (n+2)$  rectangle, we divide it into two  $(2m+2) \times (2m+2)$  squares and two  $2m \times (2m+2)$  rectangles. By the inductive hypothesis, as  $2m \ge 6$ , the claim holds if n = 4m + 2.





4m+2, 2m+2 4m+2, 4m+4

4m + 2, 0