Correlation and Regression

- Correlation analysis is used for investigating the relationship between two quantitative variables
- Goals of correlation analysis :
 - Analyze if two measurement variables have a relation. This means change in one influences change in the other measure
 - Quantify the strength of the relationship between the variables

Correlation Examples

A positive correlation between height of a child and age: As the child grows his or her height increases almost linearly.

Correlation Coefficient (Cont'd)

Correlation and Regression Examples

Analysis of Student Grades in Mathematics and English

- Use Correlation to determine if the students who are good at Mathematics tend to be equally good at English
- Use Regression to determine whether the marks in English can be predicted for given marks in Mathematics

Correlation: Example

Correlation does not imply Causation.

- Myth: India team loses a match if Sachin Tendulkar hits a century
- Correlation: Sachin hits a century and India wins a match
- Does it imply causation? Does Sachin hitting a century causes India to lose the match?

Correlation Coefficient

- Correlation Coefficient (also called Pearson Correlation Coefficient) is a measure of strength and direction of a linear relation between two variables
- Correlation Coefficient r or R is defined as covariance of variables divided by product of Standard Deviations of the variables

$$r = \frac{\sum_{i=1}^{n} \left(\left(x_i - \overline{x} \right) \left(y_i - \overline{y} \right) \right)}{\sqrt{\sum_{i=1}^{n} \left(x_i - \overline{x} \right)^2 \sum_{i=1}^{n} \left(y_i - \overline{y} \right)^2}}$$

Correlation Coefficient (Cont'd)

The Correlation Coefficient ranges from -1 to 1.

- +1 indicates perfect collinearity, which means, if one value increases, the other also increases in the same proportion
- -1 indicates perfect negative collinearity, which means, if one value decreases, the other increases in the same proportion
- Zero indicates no relationship between the variables

