### Bayesianische Variablenselektion

Volker Schmid

10. Juli 2017

Ridge und Lasso

Indikatorvariablen

Spike and Slab

Ridge und Lasso

# Bayesianisches (Generalisiertes) Lineares Modell

Gegeben seien n Beobachtungen einer Zielvariable y und von p Kovariablen  $x_1, \ldots, x_p$ .

$$y_i | \mu_i, \phi_i \sim f(\mu_i, \phi_i)$$
 i.i.d.  $h(\mu_i) = \sum_{j=1}^p \beta_j x_{ij}$ 

# Bayesianisches lineares Regressionsmodell

$$y_i|\beta, \sigma^2 \sim N(\mu_i, \sigma^2)$$
  
 $\mu_i = \sum_{j=1}^p \beta_j x_{ij}$ 

Welche Priori-Information haben wir über die  $\beta$ ? Erstmal keine. . .

$$p(\beta_j) \propto \text{const.}$$

Können wir sehen als uneigentliche Normalverteilung (hier konjugierte Verteilung) mit Varianz unendlich. Damit ist

$$\beta \sim N_p(\hat{\beta}, \Sigma)$$

mit  $\hat{\beta} = (X'X)^{-1}X'y$  dem KQ-Schätzer!

## Ridge-Regression I

Nun: p >> n.

Idee der Ridge-Regression: Viele der  $\beta$  Parameter sollen gleich oder nahe Null sein. Bestrafe daher Parameter, die zu stark von der Null abweichen. Damit penalisierter log-Likelihood-Ansatz:

$$I_{pen}(\beta) = I(\beta) - \frac{\lambda}{2} \sum_{j=1}^{p} \beta_j^2$$

Bayesianisch gedacht: Wir haben die Vorinformation, dass die Parameter nahe Null sind. Kombiniert mit konjugiertem Priori-Ansatz kommen wir auf:

$$\beta_j \sim N(0, \tau^{-1}) \quad \forall j$$

#### Ridge-Regression II

Die Log-Priori-Dichte ist

$$\log(p(\beta)) = -\frac{\tau}{2} \sum_{i=1}^{p} \beta^2 + C$$

Damit sind penalisierte log-Likelihood und log-Posteriori bis auf Konstanten identisch. Ein Maximum-A-Posteriori-Ansatz liefert also selbes Ergebnis wie ein penalisierter log-Likelihood-Ansatz (Tikhonov-Regularisierung).

## Beispiel Bayesianische Ridge-Regression I

Wir konstruieren einen Beispieldatensatz

```
n < -50
p < -100
true.sigma2 <- 0.001
x <- matrix(runif(n*p), nrow=n)
true.beta <-c(10,20,30, rep(0,p-3))
mu <- as.vector(x%*%true.beta)</pre>
y <- rnorm(n,mu,sqrt(true.sigma2))
par(mfrow=c(2,3))
for (i in c(1:4,10,90))
  plot(x[,i],y)
```

## Beispiel Bayesianische Ridge-Regression II



#### Posteriori

$$p(\beta, \tau, \sigma^{2}|y) \propto \sigma^{-n} \exp\left(-\frac{1}{2\sigma^{2}} \sum_{i} (y_{i} - \sum_{j} \beta_{j} x_{ij})^{2}\right)$$

$$\cdot \tau^{p/2} \exp\left(-\frac{\tau}{2} \sum_{j} \beta_{j}^{2}\right)$$

$$\cdot \tau^{a-1} \exp(-\tau b)$$

$$\cdot \sigma^{2} - a_{0} - 1 \exp(-b_{0}/\sigma^{2})$$

#### Damit gilt:

- $\beta | \tau, \sigma^2 \sim \mathcal{N}(\hat{\beta}, \Sigma) \text{ mit } \hat{\beta} = (X'X + \tau I)^{-1}X'y \text{ und }$   $\Sigma = (X'X + \tau I)^{-1}).$
- $ightharpoonup au |eta \sim \mathsf{Ga}(\mathsf{a}+\mathsf{p}/2,\mathsf{b}+\sum eta_j^2/2)$
- $\sigma^2 | \beta, y \sim IG(a_0 + n/2, b + \sum_i (\epsilon_i^2)) \text{ mit } \epsilon_i = y_i \sum_j \beta_j x_{ij}$

#### MMCM I

```
beta < -rep(0,p)
XX < - t(x) % * %x
Xy <- t(x)%*%y
tau <- 1
sigma2 <- 1
a0 <- 1
b0 < -0.001
a <- 1
b < -0.1
beta.save<-array(NA,c(p,500))
tau.save<-rep(NA,500)
sigma2.save < -rep(NA, 500)
```

#### MMCM II

```
for (i in 1:1000)
  Sigma <- solve(XX+tau*diag(p))
  mu <- Sigma%*%Xy
  beta <- mnormt::rmnorm(1,mu,Sigma)
  tau \leftarrow rgamma(1, a+p/2, b+sum(beta^2)/2)
  sigma2 <- 1/rgamma(1, a0+n/2, b0+sum((y-x%*%beta)^2))
  if (i>500)
    beta.save[,i-500]=beta
    tau.save[i-500]=tau
    sigma2.save[i-500] = sigma2
```

#### Plot

```
beta.qu<-apply(beta.save,1,quantile,probs=c(.05,.5,.95))
plot(beta.qu[2,],pch=19,ylim=range(beta.qu),ylab="beta")
for (i in 1:p)
lines(rep(i,2),beta.qu[c(1,3),i],lwd=2)</pre>
```



### Relevante Kovariablen

```
sum(beta.qu[2,]==0)
## [1] 0
print(which(beta.qu[1,]>0))
## [1] 1 2 3 49 98
print(which(beta.qu[3,]<0))</pre>
## [1] 83
```

- ▶ Bei Ridge werden die Parameter Richtung Null gedrückt
- ► Aber: Parameter werden nicht genau gleich Null!

#### Lasso

Alternative: Lasso ( $L_1$ -Regularisierung)

$$\mathit{pen}(eta) = \sum_j |eta_j|$$

Bayesianisch analog zu Ridge:

$$p(eta_j) \propto \exp\left(-rac{ au}{2}\sum |eta_j|
ight)$$

- ▶ Das entspricht einer Laplace-Verteilung mit Erwartungswert 0
- Aber: (erstmal) kein Gibbs-Sampler mehr möglich

### Bayesianischer Lasso I

Nach Park, Trevor and Casella, George. The Bayesian Lasso. Journal of American Statistical Association. 103(482):681-686. 2008 gilt äquivalent:

$$eta_j | \sigma^2, au_j^2 \sim N(0, \sigma^2 au_j^2)$$
 $au_j | \sigma^2 \sim Exp(\lambda^2/2)$ 
 $au^2 \sim Ga(a, b)$ 

Damit läßt sich wiederum ein Gibbs-Sampler konstruieren.

beta.L<-gibbsBLasso(x, y, max.steps = 10000)

## Bayesianischer Lasso II

```
## Tteration: 1000
Iteration: 2000
Iteration: 3000
Iteration: 4000
Iteration: 5000
Iteration: 6000
Iteration: 7000
Iteration: 8000
Iteration: 9000
Iteration: 10000
plot(beta.L[2,],pch=19,ylim=range(beta.L),ylab="beta")
for (i in 1:p)
lines(rep(i,2),beta.L[c(1,3),i],lwd=2)
```

# Bayesianischer Lasso III



sum(beta.L[2,]==0)

# Bayesianischer Lasso IV

```
## [1] 0
print(which(beta.L[1,]>0))
##
    [1] 1 2 3 15 16 17 23 26 27 28 29 30 35 36 37 49 52
## [24] 79 80 87 93 98
print(which(beta.L[3,]<0))</pre>
## integer(0)
```

#### Elastic Net

Ridge und Lasso lassen sich kombinieren:

$$p(eta_j) \propto \exp\left(-rac{ au}{2}\sum |eta_j| - rac{
u}{2}\sum eta_j^2
ight)$$





#### Indikatorvariablen

Setze

$$\beta_i = I_i \tilde{\beta}_i$$

wobei  $I_i$  eine (0/1-)Indikatorvariable ist.

Ist  $I_i = 0$ , wird  $\beta_i$  auf 0 gesetzt,  $\tilde{\beta}_i$  wird aus der Priori gezogen.

#### Ising-Feld

- Ansatz lässt sich auch auf Kovariablen mit bekannter/angenommener Korrelation anwenden
- Z.B. Gene auf DNA, Bilder
- ► Auf die Indikatorvariablen wird das ein Ising-Feld angenommen
- ▶ mit  $J_i = 2I_i 1$ , also  $J_i \in \{-1, 1\}$

$$p(I) \propto \exp\left(- au \sum_{i \sim j} J_i J_j\right)$$

- Sampling daraus allerdings schwierig
- Alternative: Probit-Modell

$$I_i = \begin{cases} 1 & \text{für } \phi > 0 \\ 0 & \text{für } \phi \le 0 \end{cases}$$

mit

Spike and Slab

# Spike and Slab I

- ▶ Idee: Damit  $p(\beta = 0|y) > 0$ , muss  $p(\beta = 0) > 0$  sein
- Kombiniere flache Priori (Slab) mit Punktmasse auf Null (Spike)
- Computational bessere Darstellung als Mischung von zwei Normalverteilungen mit sehr großer uns sehr kleiner Varianz



Änhlichkeiten zu Elastic Net, wenn Lasso über Normalverteilung modelliert wird.

# Spike and Slab III

z.B. Implementation in spikeSlabGAM-Paker

$$eta|\gamma, au^2\sim N(0, au^2\gamma) \ \gamma|w\sim wl_1(\gamma)+(1-w)l_{
u_0}(\gamma) \ au^2\sim IG(a_{ au},b_{ au}) \ w\sim Beta(a_w,b_w)$$

 $ightharpoonup 
u_0$  sehr klein, entspricht *spike* 

### WGRR und gen

- Ishwaran und Rao (2014) zeigen, dass die Spike and Slab prior ein Spezialfall der gewichteten generalisierten Ridge-Regression sind (weighted generalized Ridge regression, WGRR)
- ▶ Beim WGRR können die  $\beta$  Parameter auf Null gesetzt werden, wir erhalten  $p(\beta = 0|y)$
- ▶ Durch Bayesian Model Averaging gehen aber z.B. bei  $E(y^*|y)$  weiterhin viele/alle Regressionsparameter ein
- ▶ Ishwaran und Rao (2014) schlagen weiterhin das generalizes elatic net (gen) vor, das mehr Paramete auf Null setzt

#### spikeslabGAM paket I

Beim spikeSlabGAM-Paket wird die Variablenselektion auf die glatten Effekte angewandt:

```
## ## ---- This is spikeSlabGAM 1.1-11 ---- ##
## Please note that a recent update to gridExtra has made :
## to change the interface for <plot.spikeSlabGAM> start:
## Instead of arguments 'rows', 'cols', 'widths', 'heights
## it now accepts only 'nrow' and 'ncol'.
## Arguments 'widths' & 'heights' can still be defined and
## to <gridExtra:::marrangeGrob>.
## Sorry for the inconvenience.
```

# spikeslabGAM paket II



#### spikeslabGAM paket III

```
## Model has 56 coefficients in 13 model terms.
## Blockwise sampling: alpha: 3 block(s); xi: 5 block(s).
```

```
## Using 2 parallel processes.
## Use 'options(mc.cores = <YourNumberHere>)' to override n
```

```
## starting chain(s):
## bbbb0-----100%
##
## Mean acceptance rates:
## alpha ksi
## 0.92 0.65
print(summary(m0), printModels=FALSE)
## Spike-and-Slab STAR for Binomial data
##
## Model:
## diabetes ~ (lin(pregnant) + sm(pregnant)) + (lin(glucose
      (lin(pressure) + sm(pressure)) + (lin(mass) + sm(mass)
##
      (lin(pedigree) + sm(pedigree)) + (lin(age) + sm(age)
##
```

## 524 observations; 56 coefficients in 13 model terms.

spikeslabGAM paket IV

```
spikeslabGAM paket V
   ##
   ## Prior:
   ## a[tau] b[tau] v[0] a[w]
                                       b[w]
   ## 5.0e+00 2.5e+01 2.5e-04 1.0e+00 1.0e+00
   ##
   ## MCMC:
   ## Saved 4000 samples from 4 chain(s), each ran 5000 itera-
   ##
        burn-in of 500; Thinning: 5
   ## P-IWLS acceptance rates: 0.92 for alpha; 0.65 for xi.
   ##
   ## Null deviance:
                              679
   ## Mean posterior deviance: 467
   ##
   ## Marginal posterior inclusion probabilities and term impo
                    P(\text{gamma} = 1) pi dim
   ##
   ## u
                             NA NA 1
   ## lin(pregnant) 0.263 0.027 1
```

## spikeslabGAM paket VI

```
## sm(pregnant)
                       0.022 0.000
## lin(glucose)
                       1.000 0.533
                                     1 ***
## sm(glucose)
                       0.015 0.000
## lin(pressure)
                       0.016 0.000
## sm(pressure)
                       0.015 0.000
## lin(mass)
                       1.000 0.186
## sm(mass)
                       0.810 0.044
                                    8
                                       **
## lin(pedigree)
                       0.249 0.007
## sm(pedigree)
                       0.630 0.008
                                       **
## lin(age)
                       0.754 0.092
                                       **
## sm(age)
                       0.782 0.103
                                        **
## *:P(gamma = 1)>.25 **:P(gamma = 1)>.5 ***:P(gamma = 1)>
```