785. Цех завода вырабатывает квадратные пластинки. стороны которых х могут принимать значения в пределах от 1 до 10 см. С каким допуском в можно обрабатывать стороны этих пластинок, чтобы независимо от их длины (в указанных границах) площадь их у отличалась от проектной меньше, чем на є? Произвести численный расчет, если:

- a) $\varepsilon = 1 \text{ cm}^2$; 6) $\varepsilon = 0.01 \text{ cm}^2$; B) $\varepsilon = 0.0001 \text{ cm}^2$.
- 786. Цилиндрическая муфта, ширина которой в и длина δ , надета на кривую $y = \sqrt[3]{x}$ и скользит по ней так, что ось муфты остается параллельной оси Ох. Чему должно быть равно б, чтобы эта муфта свободно прошла участок кривой, определяемый неравенством — $10 \le x \le 10$, если: a) $\varepsilon = 1$; б) $\varepsilon = 0,1$; в) $\varepsilon = 0,01$; г) є произвольно мало?

787. В положительном смысле сформулировать на языке « ϵ — δ » утверждение: функция f(x) непрерывна на некотором множестве (интервале, сегменте и т. п.), но не является равномерно непрерывной на этом множестве.

788. Показать, что функция f(x) = 1/x непрерывна в интервале (0, 1), но не является равномерно непрерывной в этом интервале.

789. Показать, что функция $f(x) = \sin \pi/x$ непрерывна и ограничена в интервале (0, 1), но не является

равномерно непрерывной в этом интервале.

790. Показать, что функция $f(x) = \sin x^2$ непрерывна и ограничена в бесконечном интервале — $\infty < x < +\infty$. но не является равномерно непрерывной в этом интервале.

791. Доказать, что если функция f(x) определена и непрерывна в области $a \le x < +\infty$ и существует конечный

$$\lim_{x\to +\infty} f(x),$$

то f(x) равномерно непрерывна в этой области. 792. Показать, что неограниченная функция

$$f(x) = x + \sin x$$

равномерно непрерывна на всей оси — $\infty < x < + \infty$. 793. Является ли равномерно непрерывной функция $f(x) = x^2$ на интервале a) (-l, l), где $l - \pi$ нобое,