1.- Con los datos del "ANEXO 1":

a. Probar si el modelo econométrico: CPRt = Bo+B1PBIt+ ut fue estable o no para el punto de quiebre: 2001, en el periodo 1980-2019, utilizar Eviews.

1er paso: Planteamos la ecuación restringida del modelo:

CPRt = Bo+B1PBIt+ ut

2do paso: Estimando la eq restringida para toda la muestra (1980-2019), queremos saber la SCRR

Dependent Variable: CONSPR Method: Least Squares Date: 05/10/24 Time: 16:49

Sample: 140

Included observations: 40

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PBI	7243.331 0.617590	2520.444 0.008289	2.873832 74.50498	0.0066 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.993201 0.993022 6582.117 1.65E+09 -407.4161 5550.992 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watsc	ent var Iterion rion n criter.	178272.9 78795.25 20.47081 20.55525 20.50134 0.197879

PRt = 7243.33+0.61759PBIt

SCRR= 1,650,000,000

3er paso: Planteamos la eq no restringidas:

Para N1=(1980-2000): Yt=a0+a1Xt+u1t

Para N2=(2001-2019): Yt=b0+b1Xt+u2t

Estimamos las eq no restringidas para las dos sub muestras y queremos saber la SCR1 y SCR2

Dependent Variable: CONSPR Method: Least Squares Date: 05/10/24 Time: 17:09

Sample: 121

Included observations: 21

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PBI	6060.481 0.636947	8866.120 0.048604	0.683555 13.10480	0.5025 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.900386 0.895143 4959.925 4.67E+08 -207.4389 171.7359 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	121380.2 15317.09 19.94656 20.04604 19.96815 0.428527

(Sub muestra N1): Yt=6060.481+0.636947Xt

SCR1=467,000,000

Dependent Variable: CONSPR Method: Least Squares Date: 05/10/24 Time: 17:12

Sample: 22 40

Included observations: 19

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PBI	-12596.96 0.662704	4669.656 0.011753	-2.697622 56.38614	0.0153 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.994682 0.994369 5432 930 5.02E+08 -189.3076 3179.397 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	241154.3 72398.27 20.13765 20.23706 20.15447 0.240489

(Sub muestra N2): Yt=-12596.96+0.662704Xt

SCR2=502,000,000

4to paso:

SCRR= 1,650,000,000

SCRNR=SCR1+SCR2= 467000000+502000000 = 969,000,000

SCRR>SCRNR → Hubo cambio estructural

5to paso:

H0: a0=b0

a1=b1

H1: a0≠b0

a1≠b1

Fchow= (((SCRR-SCRNR))/K)/(SCRNR/((N-2k)))

Donde: SCRNR = SCR1 + SCR2

$$F_{chow} = \frac{\frac{(1650000000 - 969000000)}{2}}{\frac{9690000000}{(40 - 4)}} = 12.650$$

Según la tabla para un 5% de significancia F(2,36) = 3.32

Entonces, Fcalcu>Fcrit → se rechaza H0 y se acepta HA, lo que significa que no hubo estabilidad en la ecuación.

La ruta en eviews: Estimamos el modelo por MCO, luego vamos a view=> diagnóstico de estabilidad => chow breakpoint test => Ingresamos lo puntos de quiebre

Chow Breakpoint Test: 2001

Null Hypothesis: No breaks at specified breakpoints

Varying regressors: All equation variables

Equation Sample: 1980 2019

F-statistic	12.57550	Prob. F(2,36)	0.0001
Log likelihood ratio	21.19309	Prob. Chi-Square(2)	0.0000
Wald Statistic	25.15100	Prob. Chi-Square(2)	0.0000

Prueba con el p-value del Chow breakpoint test

H0: La eq estimada es estable

H1: La eq estimada no es estable

- ⇔ Como el p-value es 0.0000<0.05 (5% de significancia) => Rechazamos H0
- ⇒ Aceptamos H1, que implica que la eq estimada no es estable.

b. Probar si el modelo econométrico: CPRt = Bo+B1PBIt+ ut fue estable o no para los puntos de quiebre: 1991 2002, en el periodo 1980-2019, utilizar Eviews.

N1: (1980-1990)

Dependent Variable: CONSPR Method: Least Squares Date: 05/10/24 Time: 18:05 Sample: 1980 1990 Included observations: 11

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PBI	-14290.86 0.744507	19606.16 0.113963	-0.728896 6.532871	0.4846 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.825846 0.806496 5053.679 2.30E+08 -108.3112 42.67841 0.000107	Mean depende S.D. depende Akaike info cri Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	113406.3 11488.47 20.05659 20.12893 20.01098 0.603481

SCR1 = 230,000,000

N2: (1991-2001)

Dependent Variable: CONSPR Method: Least Squares Date: 05/10/24 Time: 18:07 Sample: 1991 2001 Included observations: 11

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PBI	29064.86 0.526632	6615.515 0.033728	4.393439 15.61412	0.0017 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.964399 0.960443 2878.169 74554716 -102.1186 243.8007 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critel Hannan-Quin Durbin-Watso	nt var iterion rion n criter.	131467.7 14471.23 18.93066 19.00301 18.88506 0.625746

SCR2 = 74,554,716

N3: (2002-2019)

Dependent Variable: CONSPR Method: Least Squares Date: 05/10/24 Time: 18:08 Sample: 2002 2019 Included observations: 18

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PBI	-16293.58 0.670855	4697.768 0.011605	-3.468366 57.80508	0.0032 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.995234 0.994937 5017.149 4.03E+08 -177.8520 3341.427 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	246516.8 70507.58 19.98355 20.08248 19.99719 0.304074

SCR3 = 403,000,000

⇒ SCRNR = 707,554,716

Para N: (1980-2019)

Dependent Variable: CONSPR Method: Least Squares Date: 05/10/24 Time: 18:09 Sample: 1980 2019 Included observations: 40

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PBI	7243.331 0.617590	2520.444 0.008289	2.873832 74.50498	0.0066 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.993201 0.993022 6582.117 1.65E+09 -407.4161 5550.992 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	178272.9 78795.25 20.47081 20.55525 20.50134 0.197879

⇒ SCRR=1,650,000,000

 $\label{eq:fchow} \textit{Fchow=} \left(((SCRR - SCRNR))/(S-1)k)/(SCRNR/((N-SK))) = \textbf{11.3218} \right.$

F critico según la tabla: F (4,34) = 2.69

Fcalcu> Fcrit → Se rechaza H0, se acepta H1

➡ En los tres periodos considerados, no ha habido estabilidad en los parámetros del modelo estimado.

Chow Breakpoint Test: 1991 2002

Null Hypothesis: No breaks at specified breakpoints

Varying regressors: All equation variables

Equation Sample: 1980 2019

F-statistic	11.28863	Prob. F(4,34)	0.0000
Log likelihood ratio	33.80166	Prob. Chi-Square(4)	0.0000
Wald Statistic	45.15454	Prob. Chi-Square(4)	0.0000

Como el p-value es 0.0000<0.05 (5% de significancia)

=> Rechazamos H0 Aceptamos H1, que implica que la eq estimada no es estable.

c. Probar si para los años 2018 y 2019 las importaciones de Perú respecto al PBI (IMt= Bo + B1PBIt + ut) fueron iguales en relación con el periodo 2000-2017, hay que considerar que el periodo de quiebre en este caso es el año 2018.

Consideramos

Para N: (2000-2019)

Dependent Variable: IM Method: Least Squares Date: 05/13/24 Time: 12:58 Sample: 2000 2019 Included observations: 20

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PBI	-37646.85 0.356735	4753.031 0.012174	-7.920599 29.30359	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.979468 0.978328 5941.716 6.35E+08 -201.1202 858.7001 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	96081.90 40360.88 20.31202 20.41160 20.33146 1.078579

⇒ SCRR=635,000,000

N1: (2000-2017):

Dependent Variable: IM Method: Least Squares Date: 05/13/24 Time: 12:58 Sample: 2000 2017 Included observations: 18

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PBI	-40974.42 0.367708	5160.473 0.013947	-7.940051 26.36508	0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.977500 0.976094 5870.441 5.51E+08 -180.6792 695.1177 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	90099.89 37967.94 20.29769 20.39662 20.31133 1.210414

SCR1=551,000,000

$$F_{chow} = \frac{\frac{(635,000,000 - 55100000)}{2}}{\frac{551000000}{(20 - 2)}} = 1.372$$

F critico: F(2,18) = 3.55

Planteamiento de Hipotesis:

H0 : Las ultimas observaciones (N2) provienen del modelo que genero la regresión del (periodo I) en base a N1

H1 : Las ultimas observaciones (N2) no provienen del modelo que genero la regresión del (periodo I) en base a N1

Fcalcu<Fcrit → Se acepta Ho, se rechaza la H1 → Las ultimas observaciones (N2) provienen del modelo que genero la regresión del (periodo I) en base a N1.

2.- Con los datos del "ANEXO 2":

a. Estimar la ecuación: FBKt = B0 + B1IMt +B1 EXt +ut y probar la estabilidad de la ecuación estimada mediante la prueba: CUSUM y CUSUMQ. ¿Qué significa el resultado de la prueba CUSUM y CUSUMQ?

Para la prueba de CUSUM me arroja que en la ecuación estimada no existe punto de quiebre estructural, es decir, es estable

Para la prueba CUSUMQ, el modelo estimado no es estable, ya que la línea azul sale del intervalo de confianza a un 5% de significancia en los años 1980-2019. EN 1998 pudo haber un quiebre estructural.

3.- Con los datos del "ANEXO 3":

a. Probar el cambio estructural mediante variables dicótomas, si esta ha sido estable o no a un 5% de nivel de significancia.

 $IM_t = B_0 + B_1PBI_1 + B_2 D_i + B_3 D_i PBI_t + \mu_t$

Donde: D_i = 1(Si pertenece al periodo I)

0 (si pertenece al periodo II)

Dependent Variable: IM Method: Least Squares Date: 05/13/24 Time: 15:47 Sample: 1980 2019 Included observations: 40

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C PBI DI DIPBI	-38451.99 0.358512 3078.591 -0.000462	5570.684 0.013762 11413.30 0.055722	-6.902562 26.05093 0.269737 -0.008293	0.0000 0.0000 0.7889 0.9934
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.983656 0.982294 5949.410 1.27E+09 -402.2922 722.2120 0.000000	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin Durbin-Watso	ent var iterion rion n criter.	62477.50 44710.86 20.31461 20.48350 20.37568 0.709099

Yt= 154.0270+ 0.6585PBI -3078.59Di - 0.0004DIPBI

Hipotesis:

- Bo=0
 - Bo≠0
- B1=0
 - B1≠0
- ⇒ P-value =0.0000
- B2=0
 - B2≠0
- ⇒ P-value = 0.7889
- B3=0
 - B3≠0
- ⇒ P-value = 0.9934
- → El p value al ser mayor al 5% => B2≠0, B3≠0

→ Por lo tanto, al ser el parámetro autónomo y el parâmetro estimado nos significativos al 5%, afirmamos que el modelo estimado es estable.

b. Aplicar la prueba: CUSUM y CUSUMQ y si sale del intervalo de confianza aplicar la prueba de chow.

Para la prueba de CUSUM me arroja que en la ecuación estimada no existe punto de quiebre estructural, es decir, es estable

Para la prueba CUSUMQ, el modelo estimado es estable, ya que la línea azul no sale del intervalo de confianza a un 5% de significancia en los años 1980-2019.

4.- Con los datos del "ANEXO 4":

a. Descomponer las series de tiempo, graficar las series suavizadas. y evaluar la estacionariedad de las series a niveles según las pruebas de raíz unitaria (ADF, PP, KPSS).

Graficando:

Graficando las series suavizadas

Evaluando la estacionariedad

Augme	nted Dickey-Fuller Unit	Root Test on LPBI	_SA	Phillips-Perron Unit Root Test on LPBI_SA				
Null Hypothesis: LPBI Exogenous: Constant Lag Length: 2 (Automa				Exogenous: Constant	Null Hypothesis: LPBI_SA has a unit root Exogenous: Constant Bandwidth: 37 (Newey-West automatic) using Bartle			
		t-Statistic	Prob.*			Adj. t-Stat	Prob.*	
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-0.818309 -3.534868 -2.906923 -2.591006	0.8071	Phillips-Perron test st Test critical values:	atistic 1% level 5% level 10% level	-1.117186 -3.531592 -2.905519 -2.590262	0.7044	
*MacKinnon (1996) on	e-sided p-values.		KPS	*MacKinnon (1996) or \$ Unit Root Test on LPBI \$				
		Null Hypothesi Exogenous: Co Bandwidth: 6 (I	nstant	stationary utomatic) using Bartlett kern	el			
					LM-Stat.			
		Kwiatkowski-P Asymptotic criti		Shin test statistic 1% level 5% level 10% level	1.057271 0.739000 0.463000 0.347000			

*Kwiatkowski-Phillips-Schmidt-Shin (1992, Table 1)

El p-valor es mayor al 5% de significancia por lo que la serie tiene raíz unitaria, lo que indica que la serie no es estacionaria.

Augme	ented Dickey-Fuller Un	it Root Test on LCP_	SA	P	hillips-Perron Unit Root 1	Test on LCP_SA	
Null Hypothesis: LCP_ Exogenous: Constant Lag Length: 0 (Automa		axlag=10)		Null Hypothesis: LCP_ Exogenous: Constant Bandwidth: 16 (Newe)		Bartlett kernel	
		t-Statistic	Prob.*			Adj. t-Stat	Prob.*
Augmented Dickey-Ful Test critical values:	ller test statistic 1% level 5% level 10% level	-1.393121 -3.531592 -2.905519 -2.590262	0.5806	Phillips-Perron test sta Test critical values:	atistic 1% level 5% level 10% level	-2.021665 -3.531592 -2.905519 -2.590262	0.2771
*MacKinnon (1996) on	e-sided p-values.		KPS:	*MacKinnon (1996) on S Unit Root Test on LCP_			
		Null Hypothesis: I Exogenous: Cons Bandwidth: 6 (New	tant	ationary omatic) using Bartlett kerr	nel		
					LM-Stat.		
		Kwiatkowski-Phill		Shin test statistic	1.060787		
		Asymptotic critical	values*:	1% level 5% level 10% level	0.739000 0.463000 0.347000		
		*Kwiatkowski-Phi	llips-Schmidt	-Shin (1992, Table 1)			

El p-valor es mayor al 5% de significancia por lo que la serie tiene raíz unitaria, lo que indica que la serie no es estacionaria.

Null Hypothesis: LIP_SA has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)		Null Hypothesis: LIP_\$ Exogenous: Constant Bandwidth: 12 (Newey	6A has a unit root -West automatic) using B	artlett kernel			
		t-Statistic	Prob.*			Adj. t-Stat	Prob.*
Augmented Dickey-Ful Test critical values:	ler test statistic 1% level 5% level 10% level	-2.255149 -3.531592 -2.905519 -2.590262	0.1894	Phillips-Perron test sta Test critical values:	atistic 1% level 5% level 10% level	-1.958214 -3.531592 -2.905519 -2.590262	0.3043
MacKinnon (1996) on	e-sided p-values.		К	*MacKinnon (1996) on PSS Unit Root Test on LII	• • • • • • • • • • • • • • • • • • • •		
		Null Hypothesis Exogenous: Co Bandwidth: 6 (N	nstant	stationary automatic) using Bartlett	kernel		
					LM-Stat.		
		Kwiatkowski-Pł	nillips-Schm	idt-Shin test statistic	0.927944		
		Asymptotic critic	cal values*:	1% level 5% level 10% level	0.739000 0.463000 0.347000		

El p-valor es mayor al 5% de significancia por lo que la serie tiene raíz unitaria, lo que indica que la serie no es estacionaria.

Por lo que aplicamos diferenciación y volvemos a evaluar.

Augn	nented Dickey-Fulle	Unit Root Test on TPE	3I	Phillips-Perron Unit Root Test on TPBI			
Null Hypothesis: TPBI has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=10)		Null Hypothesis: TPBI has a unit root Exogenous: Constant Bandwidth: 1 (Newey-West automatic) using Bartlett kernel					
		t-Statistic	Prob.*			Adj. t-Stat	Prob.*
Augmented Dickey-Fu		-4.297852	0.0010	Phillips-Perron test sta	atistic	-4.377326	0.0008
Test critical values:	1% level 5% level 10% level	-3.538362 -2.908420 -2.591799		Test critical values:	1% level 5% level 10% level	-3.538362 -2.908420 -2.591799	
*MacKinnon (1996) on	e-sided p-values.			*MacKinnon (1996) on	e-sided p-values.		
			KPS	S Unit Root Test on TPBI			
		Null Hypothesis: The Exogenous: Const. Bandwidth: 3 (New	ant	ary omatic) using Bartlett kerne	el		
					LM-Stat.		
		Kwiatkowski-Phillip			0.089834		
		Asymptotic critical v	alues*:	1% level 5% level 10% level	0.739000 0.463000 0.347000		
		*Kwiatkowski-Philli	ps-Schmidt-	Shin (1992, Table 1)			

El p-valor es menor al 5% de significancia por lo que la serie ya no tiene raíz unitaria, lo que indica que la serie es estacionaria.

Augmented Dickey-Fuller Unit Root Test on TCP			Phillips-Perron Unit Root Test on TCP				
Null Hypothesis: TCP Exogenous: Constant Lag Length: 0 (Automa		xlag=10)		Null Hypothesis: TCP has a unit root Exogenous: Constant Bandwidth: 1 (Newey-West automatic) using Bartlett kernel			
		t-Statistic	Prob.*			Adj. t-Stat	Prob.*
Augmented Dickey-Fu	ller test statistic	-3.747642	0.0055	Phillips-Perron test st	atistic	-3.838663	0.0042
Test critical values:	1% level	-3.538362		Test critical values:	1% level	-3.538362	
rest childen values.		-2.908420					
rest chical values.	5% level	-2.908420			5% level	-2.908420	

KPS:	S Unit Root Test on TCP	
Null Hypothesis: TCP is stationa	ry	
Exogenous: Constant		
Bandwidth: 4 (Newey-West autor	matic) using Bartlett kernel	
		LM-Stat.
Kwiatkowski-Phillips-Schmidt-Sh	nin test statistic	0.193308
Asymptotic critical values*:	1% level	0.739000
	5% level	0.463000
	10% level	0.347000

El p-valor es menor al 5% de significancia por lo que la serie ya no tiene raíz unitaria, lo que indica que la serie es estacionaria.

Augmented Dickey-Fuller Unit Root Test on TIP)	Phillips-Perron Unit Root Test on TIP			
Null Hypothesis: TIP h Exogenous: Constant Lag Length: 0 (Automa	as a unit root atic - based on SIC, ma	dag=10)		Null Hypothesis: TIP h Exogenous: Constant Bandwidth: 1 (Newey-V	as a unit root West automatic) using	Bartlett kernel	
		t-Statistic	Prob.*			Adj. t-Stat	Prob.*
Augmented Dickey-Ful		-4.154075	0.0016	Phillips-Perron test sta	atistic	-4.270618	0.0011
Test critical values:	1% level 5% level 10% level	-3.538362 -2.908420 -2.591799		Test critical values:	1% level 5% level 10% level	-3.538362 -2.908420 -2.591799	
*MacKinnon (1996) on	e-sided p-values.			*MacKinnon (1996) on	e-sided p-values.		
				KPSS Unit Root Tes	t on TIP		
		Exoger	nous: Consta	r is stationary nt y-West automatic) using Bar	tlett kernel		
					LM-St	at.	
				s-Schmidt-Shin test statistic			
		Asymp	totic critical va	alues*: 1% level 5% level			

El p-valor es menor al 5% de significancia por lo que la serie ya no tiene raíz unitaria, lo que indica que la serie es estacionaria.

c. Evaluar si las series cointegran utilizando la tabla de Hamilton y el test de Johansen.

Para PBI vemos que no hay autocorrelación ya que tiene un DW de 1.86, nos indica que el primer rezago es significativo, comparando el p-valor de vemos que es menor al 5% se rechaza H0 hay evidencia de que no tiene raíz unitaria.

Null Hypothesis: TPBI I Exogenous: Constant, Lag Length: 0 (Automa	Linear Trend	SIC, maxlag=1	1)	
			t-Statistic	Prob.*
Augmented Dickey-Full	er test statistic		-4.278700	0.0062
Test critical values:	1% level		-4.110440	
	5% level		-3.482763	
	10% level		-3.169372	
*MacKinnon (1996) one	e-sided p-value	s.		
Augmented Dickey-Full Dependent Variable: D Method: Least Squares Date: 05/14/24 Time: Sample (adjusted): 6 6 Included observations:	(TPBI) : 18:00 8			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
TPBI(-1)	-0.466699	0.109075	-4.278700	0.0001
C ,	3.816621	2.163807	1.763846	0.0828
@TREND("1")	-0.016065	0.048525	-0.331073	0.7417
R-squared	0.233829	Mean depen	dent var	-0.094085
Adjusted R-squared	0.208290	S.D. depend		7.837608
S.E. of regression	6.973753	Akaike info c		6.768632
Sum squared resid	2917.994	Schwarz crite		6.870686
Log likelihood	-210.2119	Hannan-Quii		6.808770
F-statistic	9.155762	Durbin-Wats	on stat	1.863224
Prob(F-statistic)	0.000339			

Para PC vemos que es posible que no haya autocorrelación ya que tiene un DW de 1.82, nos indica que el primer rezago es significativo, comparando el p-valor de vemos que es menor al 5% se rechaza H0 hay evidencia de que no tiene raíz unitaria.

Null Hypothesis: TCP has a unit root Exogenous: Constant, Linear Trend

Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-3.772891	0.0246
Test critical values:	1% level	-4.110440	
	5% level	-3.482763	
	10% level	-3.169372	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TCP) Method: Least Squares Date: 05/14/24 Time: 18:10 Sample (adjusted): 6 68

Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TCP(-1) C @TREND("1")	-0.381226 3.459295 -0.020466	0.101043 1.699153 0.034852	-3.772891 2.035894 -0.587229	0.0004 0.0462 0.5593
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.191797 0.164857 4.955030 1473.140 -188.6816 7.119405 0.001681	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir Durbin-Watso	ent var iterion rion nn criter.	-0.177319 5.422081 6.085132 6.187186 6.125270 1.821330

Para IP vemos que es posible no hay autocorrelación ya que tiene un DW de 1.80, nos indica que el primer rezago es significativo, comparando el p-valor de vemos que es menor al 5% se rechaza H0 hay evidencia de que no tiene raíz unitaria.

Null Hypothesis: TIP has a unit root Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-4.177551	0.0083
Test critical values:	1% level	-4.110440	
	5% level	-3.482763	
	10% level	-3.169372	

*MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TIP) Method: Least Squares Date: 05/14/24 Time: 18:11 Sample (adjusted): 6 68

Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TIP(-1)	-0.452831	0.108396	-4.177551	0.0001
С	5.210393	5.180503	1.005770	0.3186
@TREND("1")	-0.077962	0.125849	-0.619487	0.5379
R-squared	0.225464	Mean depend		-0.344960
Adjusted R-squared	0.199647	S.D. depende	ent var	20.15613
S.E. of regression	18.03218	Akaike info cr	iterion	8.668641
Sum squared resid	19509.57	Schwarz crite	rion	8.770695
Log likelihood	-270.0622	Hannan-Quir	ın criter.	8.708779
F-statistic	8.732886	Durbin-Watso	on stat	1.806533
Prob(F-statistic)	0.000469			

Con lo anterior vemos que las tres son del mismo orden. Realizando una regresión MCO tenemos y obtenemos la prueba de raíz unitaria nos indica que el primer rezago es significativo, comparando el p-valor de vemos que es menor al 5% se rechaza H0 hay evidencia de que no tiene raíz unitaria), es decir, es estacionaria. Comparando el valor t vemos -3.63 contra el valor de la tabla de -3.37. Esto confirma que las series están cointegradas (La regresión no es espuria)

Null Hypothesis: ERROR_MCO has a unit root

Exogenous: None

Lag Length: 0 (Automatic - based on SIC, maxlag=10)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-3.631608	0.0005
Test critical values:	1% level	-2.602185	
	5% level	-1.946072	
	10% level	-1.613448	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(ERROR_MCO) Method: Least Squares Date: 05/14/24 Time: 18:25 Sample (adjusted): 6 68

Included observations: 63 after adjustments

Dependent Variable: TPBI Method: Least Squares Date: 05/14/24 Time: 18:22 Sample (adjusted): 5 68 Included observations: 64 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C TCP TIP	0.737822 0.732430 0.147205	0.842088 0.120068 0.035686	0.876182 6.100118 4.124978	0.3844 0.0000 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.844189 0.839080 3.246718 643.0118 -164.6450 165.2499 0.000000	Mean depend S.D. depende Akaike info cri Schwarz criter Hannan-Quin Durbin-Watso	nt var terion ion n criter.	7.109485 8.093569 5.238907 5.340105 5.278774 0.725072

- Variable	Coefficient	Std. Error	t-Statistic	Prob.
ERROR_MCO(-1)	-0.360993	0.099403	-3.631608	0.0006
R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.174571 0.174571 2.490142 384.4500 -146.3665 1.670361	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	0.086569 2.740843 4.678302 4.712320 4.691681

Number of right-hand variables in regression, excluding trend or constant	Sample size	`	Probab	ility that ($\hat{\rho} - 1)/\hat{\sigma}_{\mu}$	is less the	an entry	
(n - 1)	(T)	0.010	0.025	0.050	0.075	0.100	0.125	0.150
Landedton "Ne				Case 1				
1	500	-3.39	-3.05	-2.76	-2.58	-2.45	-2.35	-2.26
2	500	-3.84	-3.55	-3.27	-3.11	-2.99	-2.88	-2.79
3	500	-4.30	-3.99	-3.74	-3.57	-3.44	-3.35	-3.26
4	500	-4.67	-4.38	-4.13	-3.95	-3.81	-3.71	-3.61
5	500	-4.99	-4.67	-4.40	-4.25	-4.14	-4.04	-3.94
			C	Case 2				
1	500	-3.96	-3.64	-3.37	-3.20	-3.07	-2.96	-2.86
2	500	-4.31	-4.02	-3.77	-3.58	-3.45	-3.35	-3.26
3	500	-4.73	-4.37	-4.11	-3.96	-3.83	-3.73	-3.65
4	500	-5.07	-4.71	-4.45	-4.29	-4.16	-4.05	-3.96
5	, 500	-5.28	-4.98	-4.71	-4.56	-4.43	-4.33	-4.24
			(Case 3				
1	500	-3.98	-3.68	-3.42	_	-3.13	_	-
2	500	-4.36	-4.07	-3.80	-3.65	-3.52	-3.42	-3.33
3	500	-4.65	-4.39	-4.16	-3.98	-3.84	-3.74	-3.66
4	500	-5.04	-4.77	-4.49	-4.32	-4.20	-4.08	-4.00
5	500	-5.36	-5.02	-4.74	-4.58	-4.46	-4.36	-4.28

Con la prueba de Johansen se rechaza la hipótesis de "no cointegración"

Date: 05/14/24 Time: 20:19 Sample (adjusted): 11 68 Included observations: 58 after adjustments Trend assumption: Linear deterministic trend Series: TPBI TCP TIP Lags interval (in first differences): 1 to 5

Unrestricted Cointegration Rank Test (Trace)						
Hypothesized No. of CE(s)	Eigenvalue	Trace Statistic	0.05 Critical Value	Prob.**		
None * At most 1 * At most 2 *	0.337257 0.263615 0.090658	47.11949 23.26010 5.511950	29.79707 15.49471 3.841465	0.0002 0.0028 0.0189		

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None *	0.337257	23.85938	21.13162	0.0201
At most 1 *	0.263615	17.74815	14.26460	0.0135
At most 2 *	0.090658	5.511950	3.841465	0.0189

Max-eigenvalue test indicates 3 cointegrating eqn(s) at the 0.05 level *denotes rejection of the hypothesis at the 0.05 level **MacKinnon-Haug-Michelis (1999) p-values

Unrestricted Cointegrating Coefficients (normalized by b'*S11*b=l):

TPBI	TCP	TIP
-0.625527	0.668235	-0.044182
-0.462462	0.145255	0.278135
-0.281501	-0.223511	0.106948

Unrestricted Adjustment Coefficients (alpha):					
D(TPBI)	-0.447853	-1.641362	1.596838		
D(TCP)	-1.051374	-0.899190	1.121492		
D(TIP)	-2 573953	-5 942253	2 508783		

1 Cointegrating Equation(s): Log likelihood -46	64.7118
---	---------

Normalized cointe	egrating coeffic	ients (standard	error in parentheses)
TPBI	TCP	TIP	

1.000000

Adjustment coefficients (standard error in parentheses)

D(TPBI)	0.200144	
	(0.60805)	
D(TCP)	0.657662	
	(0.42709)	
D(TIP)	1.610076	
	(1.43706)	

2 Cointegrating I	Equation(s):	Log likelihood	-455.8377	
Normalized coin	tegrating coeffic	ients (standard err	or in parentheses	;)
TPBI	TCP	TIP		
1.000000	0.000000	-0.881309		
		(0.14385)		
0.000000	1.000000	-0.891099		
		(0.15587)		
Adjustment coef	ficients (standar	d error in parenthe	ses)	
D(TPBI)	1.039211	-0.537686		
	(0.72941)	(0.64120)		
D(TCP)	1.073503	-0.833176		
	(0.51978)	(0.45692)		
D(TIP)	4.358140	-2.583145		
	(1.63485)	(1.43714)		

Evaluando el test de Hansen al tener un p-valor menor al 5% las series están cointegradas

Dependent Variable: TPBI Method: Fully Modified Least Squares (FMOLS)

Date: 05/14/24 Time: 18:43 Sample (adjusted): 6 68

Included observations: 63 after adjustments Cointegrating equation deterministics: C

Long-run covariance estimate (Bartlett kernel, Newey-West fixed bandwidth = 4.0000)

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Cointegration Test - Hansen Parameter Instability			
TCP TIP C	0.626204 0.164678 1.516589	0.157382 0.046429 1.091529	3.978870 3.546896 1.389416	0.0002 0.0008 0.1698	Date: 05/14/24 Time: 18:44 Equation: EQ01 Series: TPBI TCP TIP			
R-squared Adjusted R-squared S.E. of regression Long-run variance	0.841161 0.835867 3.298837 17.53530	Mean depend S.D. depende Sum squared	nt var	7.046168 8.142585 652.9395	Lc statistic Trends (m) Trends (k) Trends (p2) Prob.* 5 0.405611 2 0 0 0.0805 *Hansen (1992b) Lc(m2=2, k=0) p-values, where m2=m-p2 is the number			
					of stochastic trends in the asymptotic distribution			

Con Hengle-Grannger y el de Phillips-Oulairs tenemos

- -Ho: Series no están cointegradas (no hay relación de largo plazo)
- -Ha: Series si están cointegradas

Como el valor de tau es mayor al 5% no rechazamos H0 las series no están cointegradas (no hay relación de largo plazo)

Cointegration Test - Engle-Granger Date: 05/14/24 Time: 18:45 Equation: EQ01 Specification: TPBI TCP TIP C Cointegrating equation deterministics: C Null hypothesis: Series are not cointegrated

Automatic lag specification (lag=0 based on Schwarz info criterion,

Cointegration Test - Phillips-Ouliaris Date: 05/14/24 Time: 18:46 Fouation: FO01 Specification: TPBI TCP TIP C

Cointegrating equation deterministics: C Null hypothesis: Series are not cointegrated

Long-run variance estimate (Bartlett kernel, Newey-West fixed bandwidth = 4.0000)

			No d.f. adjustment for variances		
Engle-Granger tau-statistic Engle-Granger z-statistic	Value -3.631608 -22.74258	Prob.* 0.0851 0.0601	Phillips-Ouliaris tau-statistic Phillips-Ouliaris z-statistic	Value -3.866608 -25.92845	Prob.* 0.0514 0.0287
*MacKinnon (1996) p-values.			*MacKinnon (1996) p-values.		
Intermediate Results:			Intermediate Results:		
Rho - 1	-0.360993		Rho - 1	-0.360993	
Rho S.E.	0.099403		Bias corrected Rho - 1 (Rho* - 1)	-0.411563	
Residual variance	6.200806		Rho* S.E.	0.106440	
Long-run residual variance	6.200806		Residual variance	6.102380	
Number of lags	0		Long-run residual variance	7.109832	
Number of observations	63		Long-run residual autocovariance	0.503726	
Number of stochastic trends**	3		Number of observations	63	
			Number of stochastic trends**	3	
**Number of stochastic trends in a	symptotic distribu	tion.	**Number of stochastic trends in as	ymptotic distribu	tion.
Engle-Granger Test Equation: Dependent Variable: D(RESID)			Phillips-Ouliaris Test Equation:		

Method: Least Squares Date: 05/14/24 Time: 18:45 Sample (adjusted): 6 68

Included observations: 63 after adjustments

Dependent Variable: D(RESID) Method: Least Squares Date: 05/14/24 Time: 18:46 Sample (adjusted): 6 68

Included observations: 63 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Variable	Coefficient	Std. Error	t-Statistic	Prob.
RESID(-1)	-0.360993	0.099403	-3.631608	0.0006	RESID(-1)	-0.360993	0.099403	-3.631608	0.0006
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.174571 0.174571 2.490142 384.4500 -146.3665 1.670361	Mean depend S.D. depende Akaike info cri Schwarz critel Hannan-Quin	nt var iterion rion	2.740843 4.678302 4.712320	R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.174571 0.174571 2.490142 384.4500 -146.3665 1.670361	Mean depende S.D. depende Akaike info cr Schwarz crite Hannan-Quir	ent var iterion rion	0.086569 2.740843 4.678302 4.712320 4.691681

d. Estimar el modelo VAR con las series desestacionalizadas y en primeras diferencias, escoger el número de rezagos óptimos según los criterios de información.

EL modelo VAR seria:

LS 12 TCP TIP TPBI

VAR Model:

TCP = C(1,1)*TCP(-1) + C(1,2)*TCP(-2) + C(1,3)*TIP(-1) + C(1,4)*TIP(-2) + C(1,5)*TPBI(-1) + C(1,2)*TCP(-2) + C(1,3)*TIP(-1) + C(1,4)*TIP(-2) + C(1,5)*TPBI(-1) + C(1,6)*TPBI(-2) + C(1,7)

TIP = C(2,1)*TCP(-1) + C(2,2)*TCP(-2) + C(2,3)*TIP(-1) + C(2,4)*TIP(-2) + C(2,5)*TPBI(-1)+ C(2,6)*TPBI(-2) + C(2,7)

 $\mathsf{TPBI} = \mathsf{C}(3,1) * \mathsf{TCP}(-1) + \mathsf{C}(3,2) * \mathsf{TCP}(-2) + \mathsf{C}(3,3) * \mathsf{TIP}(-1) + \mathsf{C}(3,4) * \mathsf{TIP}(-2) + \mathsf{C}(3,5) * \mathsf{TPBI}(-1) + \mathsf{C}(3,2) * \mathsf{C}(3,2) * \mathsf{CPBI}(-1) + \mathsf{C}(3,2) * \mathsf{CPBI}(-1)$ 1) + C(3,6)*TPBI(-2) + C(3,7)

VAR Model - Substituted Coefficients:

TCP = 0.786135991449*TCP(-1) - 0.440012274617*TCP(-2) - 0.0262676709866*TIP(-1) - 0.00341301941722*TIP(-2) - 0.0180850892134*TPBI(-1) + 0.266028198151*TPBI(-2) + 3.16826421712

 $\label{eq:TIP} \footnotesize \begin{array}{l} \text{TIP} = 0.572595964654*TCP(-1) - 1.90431759407*TCP(-2) + 0.556136033409*TIP(-1) - 0.323711040493*TIP(-2) - 0.334061467692*TPBI(-1) + 1.89132436122*TPBI(-2) + 3.4497530432 \end{array}$

$$\label{eq:tpbi} \begin{split} \text{TPBI} &= 0.0640248117812*\text{TCP}(-1) - 0.505571122487*\text{TCP}(-2) - \\ 0.0681852390603*\text{TIP}(-1) - 0.0256561241091*\text{TIP}(-2) + 0.66094063617*\text{TPBI}(-1) + \\ 0.31927134255*\text{TPBI}(-2) + 4.01247629995 \end{split}$$

Vector Autoregression Estimates Date: 05/14/24 Time: 12:47 Sample (adjusted): 7 68 Included observations: 62 after adjustments Standard errors in () & t-statistics in []

	TCP	TIP	TPBI
TCP(-1)	0.786136	0.572596	0.064025
	(0.41159)	(1.45153)	(0.57496)
	[1.91001]	[0.39448]	[0.11136]
TCP(-2)	-0.440012	-1.904318	-0.505571
	(0.38491)	(1.35746)	(0.53770)
	[-1.14314]	[-1.40285]	[-0.94025]
TIP(-1)	-0.026268	0.556136	-0.068185
	(0.07723)	(0.27236)	(0.10788)
	[-0.34013]	[2.04192]	[-0.63203]
TIP(-2)	-0.003413	-0.323711	-0.025656
	(0.07878)	(0.27783)	(0.11005)
	[-0.04332]	[-1.16514]	[-0.23313]
TPBI(-1)	-0.018085	-0.334061	0.660941
	(0.30264)	(1.06730)	(0.42276)
	[-0.05976]	[-0.31300]	[1.56338]
TPBI(-2)	0.266028	1.891324	0.319271
	(0.28813)	(1.01615)	(0.40250)
	[0.92328]	[1.86126]	[0.79321]
С	3.168264	3.449753	4.012476
	(1.42556)	(5.02747)	(1.99141)
	[2.22248]	[0.68618]	[2.01489]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AlC Schwarz SC Mean dependent S.D. dependent	0.418288	0.386070	0.338352
	0.354828	0.319096	0.266172
	1392.076	17313.81	2716.529
	5.030952	17.74251	7.027904
	6.591414	5.764468	4.687629
	-184.4281	-262.5701	-205.1534
	6.175101	8.695809	6.843659
	6.415261	8.935969	7.083820
	7.296262	5.573411	7.010376
	6.263435	21.50167	8.204059
Determinant resid covariant Determinant resid covariant Log likelihood Akaike information criterion Schwarz criterion Number of coefficients	nce	8781.757 6130.479 -534.2744 17.91208 18.63256 21	

Obteniendo los rezagos óptimos vemos que serían 5

VAR Lag Order Selection Criteria Endogenous variables: TCP TIP TPBI Exogenous variables: C Date: 05/14/24 Time: 12:54

Sample: 168 Included observations: 56

Lag	LogL	LR	FPE	AIC	sc	HQ
	-532.2995	NA	40304.60	19.11784	19.22634	19.15991
1	-480.0352	97.06227	8602.319	17.57269	18.00669*	17.74095*
2	-475.2443	8.384220	10029.85	17.72301	18.48252	18.01747
3	-467.4596	12.78904	10555.43	17.76642	18.85143	18.18707
4	-457.0202	16.03192	10170.43	17.71501	19.12552	18.26186
5	-442.4061	20.87731*	8518.090*	17.51450*	19.25052	18.18755
6	-437.1232	6.981003	10073.08	17.64726	19.70878	18.44650
7	-430.6048	7.915204	11569.83	17.73589	20.12291	18.66133
8	-424.2178	7.071301	13607.70	17.82921	20.54173	18.88085

* indicates lag order selected by the criterion LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error

AIC: Akaike information criterion

SC: Schwarz information criterion

HQ: Hannan-Quinn information criterion

Y el VAR quedaría de la siguiente forma:

LS 1 5 TCP TIP TPBI

VAR Model:

TCP = C(1,1)*TCP(-1) + C(1,2)*TCP(-2) + C(1,3)*TCP(-3) + C(1,4)*TCP(-4) + C(1,5)*TCP(-5) + C(1,4)*TCP(-4) + C(1,5)*TCP(-5) + C(1,4)*TCP(-4) + C(1,5)*TCP(-5) + C(1,4)*TCP(-4) + C(1,5)*TCP(-5) + C(1,4)*TCP(-6) + C(1,6)*TCP(-6) + C(1,6)*TCP(-6)C(1,6)*TIP(-1) + C(1,7)*TIP(-2) + C(1,8)*TIP(-3) + C(1,9)*TIP(-4) + C(1,10)*TIP(-5) +C(1,11)*TPBI(-1) + C(1,12)*TPBI(-2) + C(1,13)*TPBI(-3) + C(1,14)*TPBI(-4) + C(1,15)*TPBI(-5) + C(1,14)*TPBI(-6) + C(1,16)*TPBI(-6) + C(1,16)*TPBC(1,16)

TIP = C(2,1)*TCP(-1) + C(2,2)*TCP(-2) + C(2,3)*TCP(-3) + C(2,4)*TCP(-4) + C(2,5)*TCP(-5) + C(2,4)*TCP(-6) + C(2,6)*TCP(-6) + C(2,6)*TCP(-6)C(2,6)*TIP(-1) + C(2,7)*TIP(-2) + C(2,8)*TIP(-3) + C(2,9)*TIP(-4) + C(2,10)*TIP(-5) +C(2,11)*TPBI(-1) + C(2,12)*TPBI(-2) + C(2,13)*TPBI(-3) + C(2,14)*TPBI(-4) + C(2,15)*TPBI(-5) + C(2,14)*TPBI(-5) + C(2,15)*TPBI(-5) + C(2,15)*TPBC(2,16)

TPBI = C(3,1)*TCP(-1) + C(3,2)*TCP(-2) + C(3,3)*TCP(-3) + C(3,4)*TCP(-4) + C(3,5)*TCP(-5) + C(3,6)*TCP(-6) + C(3,6)*TCP(-6)C(3,6)*TIP(-1) + C(3,7)*TIP(-2) + C(3,8)*TIP(-3) + C(3,9)*TIP(-4) + C(3,10)*TIP(-5) + C(3,6)*TIP(-1) + C(3,10)*TIP(-1) + C(3,10)*TIP(-1)C(3,11)*TPBI(-1) + C(3,12)*TPBI(-2) + C(3,13)*TPBI(-3) + C(3,14)*TPBI(-4) + C(3,15)*TPBI(-5) + C(3,14)*TPBI(-4) + C(3,15)*TPBI(-5) + C(3,16)*TPBI(-6) + C(3,16)*TPBC(3,16)

VAR Model - Substituted Coefficients:

TCP = 0.704815206166*TCP(-1) - 0.218981700032*TCP(-2) + 0.12274469791*TCP(-3) - 0.218981700032*TCP(-2) + 0.12274469791*TCP(-3) - 0.218981700032*TCP(-3) + 0.12274469791*TCP(-3) - 0.218981700032*TCP(-3) + 0.12274469791*TCP(-3) - 0.218981700032*TCP(-3) + 0.12274469791*TCP(-3) - 0.218981700032*TCP(-3) + 0.12274469791*TCP(-3) + 0.1227469791*TCP(-3) + 0.1227469791*TCP(-3) + 0.1227469791*TCP(-3) + 0.1227467*TCP(-3) + 0.1227467*TCP(-3) + 0.122747*TCP(-3) + 0.122747*TCP(-3) + 0.122747*TCP1.06728119156*TCP(-4) + 0.517917862442*TCP(-5) - 0.117781310419*TIP(-1) + 0.134087018322*TIP(-2) - 0.131407548525*TIP(-3) + 0.0397193053943*TIP(-4) -0.0030646643048*TIP(-5) + 0.286830270771*TPBI(-1) - 0.181909603288*TPBI(-2) + 0.249545759364*TPBI(-3) + 0.333796761228*TPBI(-4) - 0.0184152243048*TPBI(-5) + 2.53831320819

 $\begin{aligned} & \mathsf{TIP} = 0.0963298384273*\mathsf{TCP}(-1) + 0.162294916997*\mathsf{TCP}(-2) - 1.14954483013*\mathsf{TCP}(-3) - \\ & 3.19919569708*\mathsf{TCP}(-4) + 1.13911464802*\mathsf{TCP}(-5) + 0.0455245889344*\mathsf{TIP}(-1) + \\ & 0.180570855653*\mathsf{TIP}(-2) - 0.287107291075*\mathsf{TIP}(-3) - 0.261146249071*\mathsf{TIP}(-4) + \\ & 0.14238323296*\mathsf{TIP}(-5) + 1.07476115498*\mathsf{TPBI}(-1) - 0.525443861374*\mathsf{TPBI}(-2) + \\ & 1.38064060079*\mathsf{TPBI}(-3) + 1.68939439067*\mathsf{TPBI}(-4) - 0.117664974815*\mathsf{TPBI}(-5) + \\ & 3.52922064113 \end{aligned}$

$$\begin{split} \text{TPBI} &= 0.214667594431 \text{*} \text{TCP(-1)} - 0.103993618519 \text{*} \text{TCP(-2)} + 0.105956332097 \text{*} \text{TCP(-3)} - \\ 1.4148340582 \text{*} \text{TCP(-4)} + 0.423873573683 \text{*} \text{TCP(-5)} - 0.259085057719 \text{*} \text{TIP(-1)} + \\ 0.0970345359369 \text{*} \text{TIP(-2)} - 0.104720131471 \text{*} \text{TIP(-3)} + 0.0720492607175 \text{*} \text{TIP(-4)} - \\ 0.0980446925974 \text{*} \text{TIP(-5)} + 0.971755647187 \text{*} \text{TPBI(-1)} - 0.219963969058 \text{*} \text{TPBI(-2)} + \\ 0.21039524781 \text{*} \text{TPBI(-3)} + 0.303327474219 \text{*} \text{TPBI(-4)} + 0.252876243896 \text{*} \text{TPBI(-5)} + \\ 3.74720771031 \end{split}$$

Vector Autoregression Estimates Date: 05/14/24 Time: 13:00 Sample (adjusted): 10 68 Included observations: 59 after adjustments Standard errors in () & t-statistics in []

	TCP	TIP	TPBI
TCP(-1)	0.704815	0.096330	0.214668
101(1)	(0.48273)	(1.54728)	(0.67316)
	[1.46007]	[0.06226]	[0.31889]
TCP(-2)	-0.218982 (0.57591)	0.162295 (1.84596)	-0.103994 (0.80311)
	[-0.38024]	[0.08792]	[-0.12949]
	[-0.50024]	[0.00732]	[-0.12343]
TCP(-3)	0.122745	-1.149545	0.105956
	(0.56864)	(1.82265)	(0.79297)
	[0.21586]	[-0.63070]	[0.13362]
TCP(-4)	-1.067281	-3.199196	-1.414834
	(0.54051)	(1.73248)	(0.75374)
	[-1.97459]	[-1.84660]	[-1.87710]
TOD(5)	0.547040		0.400074
TCP(-5)	0.517918 (0.45136)	1.139115 (1.44673)	0.423874 (0.62942)
	[1.14747]	[0.78737]	[0.67344]
		[[
TIP(-1)	-0.117781	0.045525	-0.259085
	(0.10392)	(0.33308)	(0.14491)
	[-1.13342]	[0.13668]	[-1.78789]
TIP(-2)	0.134087	0.180571	0.097035
(= /	(0.09827)	(0.31498)	(0.13703)
	[1.36451]	[0.57329]	[0.70811]
TIP(-3)	-0.131408 (0.09896)	-0.287107 (0.31718)	-0.104720 (0.13799)
	[-1.32793]	[-0.90517]	[-0.75887]
	[1.02100]	[0.00011]	[0.70007]
TIP(-4)	0.039719	-0.261146	0.072049
	(0.10199)	(0.32691)	(0.14223)
	[0.38944]	[-0.79882]	[0.50658]
TIP(-5)	-0.003065	0.142383	-0.098045
(0)	(0.09216)	(0.29541)	(0.12852)
	[-0.03325]	[0.48199]	[-0.76287]
TDD// 4)			0.074750
TPBI(-1)	0.286830 (0.34323)	1.074761 (1.10014)	0.971756 (0.47863)
	[0.83569]	[0.97693]	[2.03030]
	[,	[[======
TPBI(-2)	-0.181910	-0.525444	-0.219964
	(0.40068)	(1.28431)	(0.55875)
	[-0.45400]	[-0.40913]	[-0.39367]
TPBI(-3)	0.249546	1.380641	0.210395
= (= /	(0.38707)	(1.24066)	(0.53976)
	[0.64471]	[1.11283]	[0.38979]
TODY 4	0.000707		
TPBI(-4)	0.333797 (0.37969)	1.689394 (1.21702)	0.303327 (0.52948)
	[0.87913]	[1.38814]	[0.57288]
	-		
TPBI(-5)	-0.018415	-0.117665	0.252876
	(0.33584)	(1.07646)	(0.46832)
	[-0.05483]	[-0.10931]	[0.53996]
С	2.538313	3.529221	3.747208
	(1.89036)	(6.05916)	(2.63611)
	[1.34276]	[0.58246]	[1.42149]
R-squared	0.571496	0.616257	0.521244
Adj. R-squared	0.422018	0.482394	0.354236
Sum sq. resids	1005.507	10330.45	1955.331
S.E. equation	4.835689	15.49978	6.743354
F-statistic	3.823277	4.603619	3.121073
Log likelihood Akaike AIC	-167.3708 6.215960	-236.0941 8.545564	-186.9903 6.881027
Schwarz SC	6.779360	9.108964	7.444427
Mean dependent	7.161138	4.821156	7.014625
S.D. dependent	6.360646	21.54397	8.391489
Determinent and descriptions of	- (4-4-41)	4000.040	
Determinant resid covariano Determinant resid covariano	e (dotadj.) e	4032.248 1560.977	
Log likelihood	-	-468.0676	
Akaike information criterion		17.49382	
Schwarz criterion		19.18402	
Number of coefficients		48	

Al revisar normalidad vemos que el p-valor conjunto es menor al 5%, por lo que los reciduos no se comportan de manera normal

> VAR Residual Normality Tests Orthogonalization: Cholesky (Lutkepohl) Null Hypothesis: Residuals are multivariate normal Date: 05/14/24 Time: 13:10

Included observations: 59

Component	Skewness	Chi-sq	df	Prob.*
1	-1.768514	30.75516	1	0.0000
2	0.271952	0.727253	1	0.3938
3	0.452173	2.010527	1	0.1562
Joint		33.49294	3	0.0000
Component	Kurtosis	Chi-sq	df	Prob.
1	14.07955	301.7762	1	0.0000
2	3.327996	0.264470	1	0.6071
3	3.462066	0.524865	1	0.4688
Joint		302.5656	3	0.0000
Component	Jarque-Bera	df	Prob.	
1	332.5314	2	0.0000	
2	0.991724	2	0.6090	
3	2.535393	2	0.2815	
Joint	336.0585	6	0.0000	

^{*}Approximate p-values do not account for coefficient estimation

Corrigiendo esto usamos una variable dummy y el VAR queda de la siguiente forma:

LS 15 TCP TIP TPBI @ C DT

VAR Model:

TCP = C(1,1)*TCP(-1) + C(1,2)*TCP(-2) + C(1,3)*TCP(-3) + C(1,4)*TCP(-4) + C(1,5)*TCP(-5) + C(1,6)*TIP(-1)+ C(1,7)*TIP(-2) + C(1,8)*TIP(-3) + C(1,9)*TIP(-4) + C(1,10)*TIP(-5) + C(1,11)*TPBI(-1) + C(1,12)*TPBI(-2) + C(1,12)*TPBI(-1) + C(1,12)*TPBI(-1)C(1,13)*TPBI(-3) + C(1,14)*TPBI(-4) + C(1,15)*TPBI(-5) + C(1,16) + C(1,17)*DT

TIP = C(2,1)*TCP(-1) + C(2,2)*TCP(-2) + C(2,3)*TCP(-3) + C(2,4)*TCP(-4) + C(2,5)*TCP(-5) + C(2,6)*TIP(-1) + C(2,6)*TIP(-1)+ C(2,7)*TIP(-2) + C(2,8)*TIP(-3) + C(2,9)*TIP(-4) + C(2,10)*TIP(-5) + C(2,11)*TPBI(-1) + C(2,12)*TPBI(-2) + C(2,11)*TPBI(-1) + C(2,12)*TPBI(-1) + C(2,12)*TPBI(-1)C(2,13)*TPBI(-3) + C(2,14)*TPBI(-4) + C(2,15)*TPBI(-5) + C(2,16) + C(2,17)*DT

TPBI = C(3,1)*TCP(-1) + C(3,2)*TCP(-2) + C(3,3)*TCP(-3) + C(3,4)*TCP(-4) + C(3,5)*TCP(-5) + C(3,6)*TIP(-1) + C(3,6)*TIP(-1)+ C(3,7)*T!P(-2) + C(3,8)*T!P(-3) + C(3,9)*T!P(-4) + C(3,10)*T!P(-5) + C(3,11)*TPB!(-1) + C(3,12)*TPB!(-2) + C(3,12)*TPB!(-1) + C(3,12)*TPB!(-1)C(3,13)*TPBI(-3) + C(3,14)*TPBI(-4) + C(3,15)*TPBI(-5) + C(3,16) + C(3,17)*DT

VAR Model - Substituted Coefficients:

TCP = 0.487153373193*TCP(-1) - 0.0715255949267*TCP(-2) - 0.42267811015*TCP(-3) - 0.4226785*TCP(-3) - 0.4226785*TCP(-3) - 0.42) - 0.0295696555493*TIP(-3) + 0.00274268464741*TIP(-4) + 0.0532237146275*TIP(-5) + 0.0986440567527*TPBI(-1) - 0.0708209042104*TPBI(-2) + 0.409498525092*TPBI(-3) -0.098715991058*TPBI(-4) - 0.000757580939892*TPBI(-5) + 5.33635626235 - 26.5333992974*DT

TIP = -0.569286562385*TCP(-1) + 0.613220100421*TCP(-2) - 2.81746410409*TCP(-3) -0.706798573965*TCP(-4) + 0.122037632352*TCP(-5) + 0.376004919415*TIP(-1) - 0.0403724561098*TIP(-2)+ 0.024316034103*TIP(-3) - 0.374221862189*TIP(-4) + 0.314514780695*TIP(-5) + 0.499282079262*TPBI(-1) - 0.185731294219*TPBÌ(-2) + 1.86978094648*TPBÌ(-3) + 0.366757447163*TPBÍ(-4) -0.0636673728334*TPBI(-5) + 12.0857200585 - 81.1399293133*DT

 $\mathsf{TPBI} = -0.0924025197376 * \mathsf{TCP} (-1) + 0.104032577029 * \mathsf{TCP} (-2) - 0.663508124087 * \mathsf{TCP} (-3) - 0.00124025197376 * \mathsf{TCP} (-1) + 0.104032577029 * \mathsf{TCP} (-2) - 0.00124025197376 * \mathsf{TCP} (-3) - 0.001240251976 * \mathsf$

	.,		
	TCP	TIP	TPBI
TCP(-1)	0.487153	-0.569287	-0.092403
101 (-1)	(0.32384)	(1.09662)	(0.44468)
	[1.50432]	[-0.51913]	[-0.20780]
TCP(-2)	-0.071526	0.613220	0.104033
	(0.38526) [-0.18566]	(1.30462) [0.47004]	(0.52902) [0.19665]
	[-0.10300]	[0.47004]	[0.19003]
TCP(-3)	-0.422678	-2.817464	-0.663508
, ,	(0.38702)	(1.31058)	(0.53144)
	[-1.09214]	[-2.14978]	[-1.24852]
TOP(4)	0.050040	0.700700	0.005040
TCP(-4)	-0.252248 (0.37763)	-0.706799 (1.27880)	-0.265012 (0.51855)
	[-0.66797]	[-0.55271]	[-0.51106]
	[[[
TCP(-5)	0.185326	0.122038	-0.045337
	(0.30489)	(1.03245)	(0.41866)
	[0.60785]	[0.11820]	[-0.10829]
TIP(-1)	-0.009712	0.376005	-0.106624
(.)	(0.07095)	(0.24027)	(0.09743)
	[-0.13688]	[1.56493]	[-1.09438]
TIP(-2)	0.061837	-0.040372	-0.004894
	(0.06638) [0.93162]	(0.22477) [-0.17962]	(0.09114) [-0.05369]
	[0.53 102]	[-0.1/902]	[-0.03309]
TIP(-3)	-0.029570	0.024316	0.038949
	(0.06754)	(0.22870)	(0.09274)
	[-0.43783]	[0.10632]	[0.41999]
TID(4)	0.002743	0.074000	0.040004
TIP(-4)	(0.06832)	-0.374222 (0.23136)	0.019884 (0.09381)
	[0.04014]	[-1.61751]	[0.21195]
	[0.0.0.1]	[1.01.01]	[0.21100]
TIP(-5)	0.053224	0.314515	-0.018635
	(0.06204)	(0.21009)	(0.08519)
	[0.85787]	[1.49702]	[-0.21874]
TPBI(-1)	0.098644	0.499282	0.706269
11-01(-1)	(0.23071)	(0.78126)	(0.31680)
	[0.42757]	[0.63907]	[2.22938]
TPBI(-2)	-0.070821	-0.185731	-0.063244
	(0.26810) [-0.26416]	(0.90789) [-0.20457]	(0.36815) [-0.17179]
	[-0.20410]	[-0.20457]	[-0.17 17 9]
TPBI(-3)	0.409499	1.869781	0.436051
	(0.25949)	(0.87872)	(0.35632)
	[1.57809]	[2.12784]	[1.22376]
TPBI(-4)	-0.098716	0.366757	-0.306847
1FDI(-4)	(0.26035)	(0.88164)	(0.35750)
	[-0.37917]	[0.41600]	[-0.85831]
TPBI(-5)	-0.000758	-0.063667	0.277787
	(0.22437)	(0.75980)	(0.30810)
	[-0.00338]	[-0.08380]	[0.90163]
С	5.336356	12.08572	7.694594
	(1.31866)	(4.46546)	(1.81073)
	[4.04679]	[2.70649]	[4.24944]
DT	-26.53340 (3.59913)	-81.13993 (12.1879)	-37.43244 (4.94217)
	[-7.37217]	[-6.65741]	[-7.57409]
	[[[
R-squared	0.813208	0.813288	0.797641
Adj. R-squared	0.742050	0.742159	0.720552
Sum sq. resids	438.3165 3.230496	5026.341 10.93960	826.4720 4.435979
S.E. equation F-statistic	11.42810	11.43408	10.34701
Log likelihood	-142.8768	-214.8422	-161.5864
Akaike AIC	5.419552	7.859058	6.053777
Schwarz SC	6.018165	8.457671	6.652389
Mean dependent	7.161138	4.821156	7.014625
S.D. dependent	0.300646	21.54397	8.391489
Determinant resid covariand	e (dof adi.)	1781.605	
Determinant resid covariand		642.6925	
Log likelihood		-441.8893	
Akaike information criterion		16.70811	
Schwarz criterion Number of coefficients		18.50395	
raumber of coefficients		51	

Al evaluar nuevamente normalidad vemos que se corrige y ahora el p-valor es mayor al 5% lo que indica que los residuos se comportan de manera normal.

> VAR Residual Normality Tests Orthogonalization: Residual Correlation (Doornik-Hansen) Null Hypothesis: Residuals are multivariate normal Date: 05/14/24 Time: 13:16

Sample: 1 68 Included observations: 59

Component	Skewness	Chi-sq	df	Prob.*
1 2 3	0.258033 0.539277 0.194243	0.774962 3.155600 0.443503	1 1 1	0.3787 0.0757 0.5054
Joint		4.374064	3	0.2238
Component	Kurtosis	Chi-sq	df	Prob.
1 2 3	4.167711 3.202557 2.634818	5.735183 0.024978 0.059176	1 1 1	0.0166 0.8744 0.8078
Joint		5.819337	3	0.1207
Component	Jarque-Bera	df	Prob.	
1 2 3	6.510144 3.180578 0.502679	2 2 2	0.0386 0.2039 0.7778	
Joint	10.19340	6	0.1167	

^{*}Approximate p-values do not account for coefficient estimation

e. Probar la autocorrelación, heterocedasticidad del modelo VAR y evaluar si el modelo es estable o no según la prueba del círculo unitario.

Probando la autocorrelación:

VAR Residual Serial Correlation LM Tests Date: 05/14/24 Time: 13:20 Sample: 168 Included observations: 59

Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.
1	6.531252	9	0.6858	0.723510	(9, 90.2)	0.686
2	4.000212	9	0.9114	0.437130	(9, 90.2)	0.911
3	16.87794	9	0.0507	1.978086	(9, 90.2)	0.050
4	17.94574	9	0.0358	2.115624	(9, 90.2)	0.036
5	11.41797	9	0.2481	1.298802	(9, 90.2)	0.248

Null hypothesis: No serial correlation at lags 1 to h LRE* stat df Prob. Rao F-stat df Prob. Lag 0.723510 0.678569 6.531252 0.6858 (9, 90.2) 0.6862 12.45392 18 0.8229 (18, 96.7)0.8243 27 36 45 1.123419 2.137976 1.680425 (27, 91.2) (36, 83.5) (45, 75.0) 29 77481 0.3244 0.3322 65.64759 67.28871 0.0018 0.0173 0.0232

VAR Residual Portmanteau Tests for Autocorrelations Null Hypothesis: No residual autocorrelations up to lag h Date: 05/14/24 Time: 13:21

Sample: 1 68

Included observations: 59

	Lags	Q-Stat	Prob.*	Adj Q-Stat	Prob.*	df
_ `	1	2.280557		2.319877		
	2	4.330972		4.442236		
	3	16.93159		17.71788		
=	4	28.08008		29.67718		
	5	37.22289		39.66654		
-	6	46.89946	0.0000	50.43858	0.0000	9
	7	58.67594	0.0000	63.80035	0.0000	18
	8	66.69904	0.0000	73.08197	0.0000	27
٠						

^{*}Test is valid only for lags larger than the VAR lag order. df is degrees of freedom for (approximate) chi-square distribution *df and Prob. may not be valid for models with exogenous variables

Para la prueba de autocorrelación tenemos que hasta el rezago numero 5 no existe presencia de autocorrelación serial.

Revisando la herterocedastisidad vemos que el p-valor es mayor al 5% lo que me indica que los errores de mi modelo son homocedasticios.

VAR Residual Heteroskedasticity Tests (Levels and Squares)
Date: 05/14/24 Time: 13:26 Sample: 1 68 Included observations: 59

Joint test:		
Chi-sq	df	Prob.
202.7144	186	0.1904

Individual components

Depe	ndent	R-squared	F(31,27)	Prob.	Chi-sq(31)	Prob.
res2 res3 res2 res3	*res1 *res2 *res3 *res1 *res1 *res2	0.920056 0.947662 0.920357 0.972347 0.921505 0.958979	10.02382 15.77033 10.06488 30.62525 10.22481 20.36121	0.0000 0.0000 0.0000 0.0000 0.0000	54.28333 55.91207 54.30104 57.36847 54.36877 56.57975	0.0060 0.0040 0.0060 0.0027 0.0059 0.0033

Analizando la estabilidad del modelo vemos que los valores son menores a 1 y todos están dentro del círculo unitario por lo que concluimos que el modelo es estable.

Exogenous variables: C DT Lag specification: 1 5 Date: 05/14/24 Time: 13:28

Root	Modulus
0.580694 - 0.701301i	0.910511
0.580694 + 0.701301i	0.910511
0.811462 - 0.353301i	0.885038
0.811462 + 0.353301i	0.885038
-0.658749 - 0.514758i	0.836018
-0.658749 + 0.514758i	0.836018
-0.562562 - 0.607559i	0.828011
-0.562562 + 0.607559i	0.828011
0.528472 - 0.589329i	0.791575
0.528472 + 0.589329i	0.791575
-0.392412 - 0.556041i	0.680565
-0.392412 + 0.556041i	0.680565
0.210821 - 0.502343i	0.544788
0.210821 + 0.502343i	0.544788
0.533975	0.533975

No root lies outside the unit circle. VAR satisfies the stability condition.

f. Estimar el modelo SVAR (restricción a largo plazo – matriz F), explicar el comportamiento según la tabla de la descomposición de la varianza e interpretar las gráficas de Impulso – respuesta estructural y descomposición histórica.

Estimando el modelo SVAR tenemos que a largo plazo los componentes si son significativos excepto el de rezago 5

Structural VAR Estimates
Date: 05/14/24 Time: 13:13
Sample (adjusted): 10 68
Included observations: 59 after adjustments
Estimation method: Maximum likelihood via Newton-Raphson (analytic derivatives)
Convergence achieved after 21 iterations

Structural VAR is just-identified						
Model: e = Phi*Fu wh	ere E[uu']=I					
F=	0	0				
C(1) C(2)	0 C(4)	0				
C(2)	C(5)	C(6)				
-(-)	-(-)	-(-)				
	Coefficient	Std. Error	z-Statistic	Prob.		
C(1)	4.442424	0.408958	10.86278	0.0000		
C(2)	4.729812	1.082027	4.371253	0.0000		
C(3)	4.148454	0.519737	7.981833	0.0000		
C(4)	7.608583	0.700427	10.86278	0.0000		
C(5)	0.628256	0.347760	1.806580	0.0708		
C(6)	-2.633993	0.242479	-10.86278	0.0000		
Log likelihood	-471.9676					
Estimated S matrix:						
2.998099	-0.809696	0.889890				
7.913874	3.762062	6.549218				
4.404453	0.511215	0.131742				
Estimated F matrix:						
4 442424	0.000000	0.000000				

0.000000

0.000000

-2.633993

Grafica de impulso respuesta

0.000000 7.608583

0.628256

4.442424

4.729812 4.148454

Accumulated Response to Structural VAR Innovations $\pm\,2$ S.E.

Al analizar las gráficas todas parten de un mismo periodo y tienden a su estado estacionario.

Para la primer grafica del CP tenemos que la respuesta hacia si misma es un efecto significativo y la respuesta de este si responde a un shock en ella misma.

En el shock 2 vemos que tiene un efecto significativo a lo largo de los periodos.

En el shock 3 inicia con un efecto significativo, pero después deja de serlo y tiende a su estado estacionario.

Para el IP un efecto significativo después del periodo 6 al 15 deja de ser significativa, pero después vuelve a ser significativa.

En el shock 2 vemos que tiene un efecto no significativo.

En el shock 3 inicia con un efecto significativo, pero después del 4 periodo deja de serlo.

Para el PBI es un efecto significativo

En el shock 2 vemos que tiene un efecto no significativo a lo largo de los periodos.

En el shock 3 vemos que tiene un efecto no significativo a lo largo de los periodos.

Revisando la descomposición de la varianza vemos lo siguiente:

El CP se explica a si mismo al inicio en un 100% después disminuye hasta el periodo 5 donde se vuelve constante hasta con una explicación del 90%.

El CP con respecto al IP se tiene que no explica prácticamente nada.

El CP con respecto al PBI explica al inicio nada, pero después del 5 periodo llega a explicar un 10%

El PBI con respecto al CP explica desde un inicio prácticamente un 50%

El IP con respecto a si misma se explica en un inicio un 40% pero disminuye y después del periodo 5 explica solo un 30%.

El IP con respecto al PBI no explica nada en los primeros 3 periodos y después empieza a explicar estabilizándose después del periodo 10 a un 20%

El PBI con respecto al CP inicia explicando un 80% y después naja un poco logrando mantenerse a partir del 3 periodo en explicar un 76%

El PBI con respecto al IP no logra explicar mucho, es prácticamente nada

El PBI con respecto a si mismo se logra explicar un 20%

Descomposición histórica

Al ver las gráficas vemos que el CP si se explica en su mayoría a sí mismo, el CP no explica las variaciones de la serie de IP prácticamente en nada y el PBI explica solo una parte, pero no todo.

El IP explica una gran parte del CP pero a sí misma solo un poco también no captura todas las variaciones y con respecto al PBI solo explica un poco.

El PBI si explica una gran parte de las variaciones del CP, pero de IP no lo logra y sobre si misma solo logra explicar algunas variaciones.

g. Evaluar la Causalidad a lo Granger en las series de tiempo diferenciadas y desestacionalizadas.

Vemos que el CP no causa a lo Granger a el PBI y el IP (0.5941), El IP causa a lo Granger al CP y al PBI (0.0060), y el PBI no causa a lo Granger a el CP y el IP (0.3642). La causalidad es unidireccional.

VAR Granger Causality/Block Exogeneity Wald Tests

Date: 05/14/24 Time: 16:4 Sample: 1 68 Included observations: 59	8				
Dependent variable: TCP					
Excluded	Chi-sq	df	Prob.		
TIP TPBI	1.773029 4.210326	5 5	0.8796 0.5195		
All	8.356127	10	0.5941		
Dependent variable: TIP					
Excluded	Chi-sq	df	Prob.		
TCP TPBI	22.18556 12.99886	5 5	0.0005 0.0234		
All	24.65715	10	0.0060		
Dependent variable: TPBI					
Dependent variable: TPBI Excluded	Chi-sq	df	Prob.		
<u> </u>	Chi-sq 10.51751 2.309449	df 5 5	Prob. 0.0618 0.8049		

5.- Según la econometría Bayesiana, responder las siguientes preguntas:

a. Si tenemos la función de producción de Cobb-Douglas: Y = $AK\alpha N\beta$. En términos lineales, según nuestra función de producción. ¿Cuál será nuestro Prior?

La función en términos lineales es $y=\alpha k+\beta n+\mu$ de esta función de producción $\alpha\in(0,1)$ es el Prior

b. Si el posterior model probality: p(M1jy) = 0.9 versus p(M2jy) = 0.3, ¿Cuál es el mejor modelo en explicar los datos? (M1 o M2).

La probabilidad posterior del modelo M1 es significativamente mayor que la de M2.

- La probabilidad de que el modelo *M*1 sea el correcto es del 90%.
- La probabilidad de que el modelo M2 sea el correcto es del 30%.

Por lo tanto, **el modelo M1 es el mejor modelo para explicar los datos** que el modelo M2 según las probabilidades posteriores. En términos bayesianos, seleccionamos el modelo con la mayor probabilidad posterior, que en este caso es *M*1 con una probabilidad posterior de 0.9.