

数学实验

Experiments in Mathematics

实验5 线性方程组的解法

2000-10-27

为什么要学习线性方程组 的数值解法

• 许多实际问题归结为线性(代数)方程组

机械设备、土建结构的受力分析

经济计划

输电网络、管道系统的参数计算

企业管理

- 大型的方程组需要有效的数值解法
- 数值解法的稳定性和收敛性问题需要注意

实验5的主要内容

- 1. 两类数值解法: 直接方法; 迭代方法
- 2. 实际问题中方程组的数值解。
- 3*.数值解法的稳定性和收敛性 —向量和矩阵的范数

线性方程组的一般形式、两类解法

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

$$a_{21}X_1 + a_{22}X_2 + \cdots + a_{2n}X_n = b_2$$

或 AX=b

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

直接法 经过有限次算术运算求出精确解(实际上 由于有舍入误差只能得到近似解)---- 高斯 (Gauss)消元法及与它密切相关的矩阵LU分解 迭代法 从初始解出发,根据设计好的步骤用逐次 求出的近似解逼近精确解 ---- 雅可比 (Jacobi) 迭代法和高斯—塞德尔 (Gauss—Seidel) 迭代法

直接法-列主元素消元法

高斯消元法条件 $a_{kk}^{(k)} \neq 0 (k = 1, 2, \dots, n)$

 $a_{kk}^{(k)}$ (绝对值)很小时, 用它作除数会导致舍入误 差的很大增加

解决 造 $|a_{ik}^{(k)}|$ $(i = k, \dots, n)$ $a_{nk}^{(k)}x_k + \dots + a_{nn}^{(k)}x_n = b_n^{(k)}$

办法 最大的一个 (列主元)

将列主元所在行与第1行交换后, 再按上面的高斯消元 法进行下去, 称为列主元素消元法。

2000-10-27

直接法 - 高斯消元法的矩阵表示

高斯消元法的第一次消元

直接法 - 高斯消元法的矩阵表示

第二次消元相当于再左乘单位下三角阵M。

$$M_1Ax = M_1b$$
 口 $M_2M_1Ax = M_2M_1b$ 最终消元形式 $M_{n-1}\cdots M_2M_1 = M$, $A_1^{(1)}x_1 + a_{12}^{(1)}x_2 + \cdots + a_{1n}^{(1)}x_n = b_1^{(1)}$ 记 $A_1^{(1)}x_1 + a_{12}^{(1)}x_2 + \cdots + a_{2n}^{(1)}x_n = b_2^{(1)}$ 记 $A_1^{(1)}x_1 + a_{12}^{(1)}x_2 + \cdots + a_{2n}^{(1)}x_n = b_2^{(1)}$ 记 $A_1^{(1)}x_1 + a_{12}^{(1)}x_2 + \cdots + a_{2n}^{(1)}x_n = b_2^{(1)}$ 记 $A_1^{(1)}x_1 + a_{12}^{(1)}x_2 + \cdots + a_{2n}^{(1)}x_n = b_2^{(1)}$ 记 $A_1^{(n-1)}x_1 + a_{n-1}^{(n-1)}x_n = b_{n-1}^{(n-1)}$ 对 角元素 $A_{nn}^{(n)}x_1 = A_{nn}^{(n-1)}x_1 = A_{nn}^{(n$

直接法一矩阵LU分解

高斯消元法通过左乘M,使MA=U M单位下三角阵,U上三角阵 记 L=M⁻¹,L为 单位下三角阵

若A可逆且顺序主子式不为零,则A可分解为一个单位下三角阵L和一个上三角阵U的积 A=LU。 这种分解是唯一的,称 矩阵LU分解。

0.10.27

直接法一矩阵LU分解

若A可逆, 但顺序主子式 D≠0不成立

消元中会遇到某个 $a_{ik}^{(k)} = 0$,但必存在 $a_{ik}^{(k)} \neq 0$ ($i = k + 1, \dots n$)

第:行与第:行交换 🖰 乘以初等交换阵

 $MA = U \Rightarrow MPA = U$

P~交换阵(单位阵经若干次行交换)

若A可逆,则存在交换阵 P 使 PA=LU L为单位下三角阵,U为上三角阵。

10

直接法 - 正定对称矩阵的分解

正定对称矩阵 A 可分解成对角元素为正的下三角阵 L 与它的转置矩阵之积,即

 $A = LL^{T} \qquad \qquad \vec{\mathfrak{I}} \qquad A = LDL^{T}$

其中 L 是单位下三角阵,D 是元素为正的对角阵。这种分解称三角分解或 Cholesky 分解。

2000-10-27

直接法-MATLAB的用法

1. 求解Ax=b 用左除: $x=A \setminus b$,输出方程的解x

2. 矩阵LU分解

[x,y]=1u(A) 若 A 可逆且顺序主子式不为零, 输出 x 为单位下 三角阵 L, y 为上三角阵 U, 使 A=LU; 若 A 可逆,x 为一交换阵 与单位下三角阵之积.

[x,y,p]=lu(A) 若 A 可逆,输出 x 为单位下三角阵 L, y 为上三角阵 U, p 为一交换阵 P, 使 PA = LU.

u =chol (A) 对正定对称矩阵 A 的 Cholesky 分解,输出 u 为上三角阵 U,使 A=U $^{\text{I}}$ U

2000-10-27

例. 解
$$\begin{cases} 10x_1 + 3x_2 + x_3 = 14 \\ 2x_1 - 10x_2 + 3x_3 = -5 \\ x_3 + 3x_2 + 10x_3 = 14 \end{cases}$$
 shiyan51
$$\vec{F}$$
 所然数矩阵 作 LU 分解
$$\begin{bmatrix} A = \begin{bmatrix} 10 & 3 & 1; 2 & -10 & 3; 1 & 3 & 10 \end{bmatrix}, \\ b = \begin{bmatrix} 14 & -5 & 14 \end{bmatrix}', \\ x = A \setminus b, \\ \begin{bmatrix} L1, U1 \end{bmatrix} = lu(A); \\ L1, U1, \\ A1 = L1 * U1, \\ L2, U2, P \end{bmatrix}$$
 43
$$\begin{bmatrix} L2, U2, P \end{bmatrix} = lu(A); \\ L2, U2, P, \\ A2 = L2 * U2, \\ A3 = inv(P) * A2 \end{cases}$$
 13

观察Hilbert矩阵的病态性

例. Hx=b. 其中 $H=hilb(5), b=[1,...1]^T$

迭代法 --- 一个 例 子

$$\begin{cases} 10x_1 + 3x_2 + x_3 = 14 \\ 2x_1 - 10x_2 + 3x_3 = -5 \end{cases} \qquad \begin{cases} x_1 = -0.3x_2 - 0.1x_3 + 1.4 \\ x_2 = 0.2x_1 + 0.3x_3 + 0.5 \\ x_3 + 3x_2 + 10x_3 = 14 \end{cases} \qquad \begin{cases} x_1 = -0.3x_2 - 0.1x_3 + 1.4 \\ x_2 = 0.2x_1 + 0.3x_3 + 0.5 \\ x_3 = -0.1x_1 - 0.3x_2 + 1.4 \end{cases}$$
$$\begin{cases} x_1^{(k+1)} = -0.3x_2^{(k)} - 0.1x_3^{(k)} + 1.4 \\ x_2^{(k+1)} = 0.2x_1^{(k)} + 0.3x_3^{(k)} + 0.5 \\ x_3^{(k+1)} = -0.1x_1^{(k)} - 0.3x_2^{(k)} + 1.4 \end{cases} \qquad k = 0,1,2,\cdots$$

 $x_1^{(0)} = x_2^{(0)} = x_3^{(0)} = 0$ \Rightarrow $x_1^{(1)} = 1.4, x_2^{(1)} = 0.5, x_3^{(1)} = 1.4$

 $|x_1^{(4)}| = 0.9906, \ x_2^{(4)} = 0.9645, \ x_3^{(4)} = 0.9906$

精确解 $x_1 = x_2 = x_3 = 1$

迭代法 - 雅可比 (Jacobi) 迭代

将 A 分解为 A = D - L - U , 其中 $D = diag(a_{11}, a_{22}, \dots a_{nn})$,

$$L = -\begin{bmatrix} 0 & & & & \\ a_{21} & 0 & & & \\ \vdots & \ddots & \ddots & \\ a_{s1} & a_{s2} \cdots a_{s,s-1} & 0 \end{bmatrix}, \qquad U = -\begin{bmatrix} 0 & a_{12} \cdots & a_{1s} \\ & 0 & \ddots & \vdots \\ & & \ddots & a_{s-1,1} \\ & & & 0 \end{bmatrix}$$

设对角阵D非奇异(即 $a \neq 0, i=1, \dots n$) Ax = b

迭代法 - 高斯-塞德尔 (Gauss-Sedeil) 迭代

Jacobi迭代公式 $Dx^{(k+1)} = Lx^{(k)} + Ux^{(k)} + b$

Gauss-Seideil迭代公式 $Dx^{(k+1)} = Lx^{(k+1)} + L/x^{(k)} + h$

在D非奇异的假设下(D-L)可逆,于是得到 $B_2 = (D-L)^{-1}U, \quad f_2 = (D-L)^{-1}b$ $x^{(k+1)} = B_2 x^{(k)} + f_2 \quad (k = 0,1,2\cdots)$

迭代法的收敛性

Jacobi迭代

$$x^{(k+1)} = B_1 x^{(k)} + f_1$$

 $B_1 = D^{-1}(L + U)$ $f_1 = D^{-1}b$

Gauss-Seideil迭代 $x^{(k+1)} = B_2 x^{(k)} + f_2$

 $B_2 = (D - L)^{-1}U$ $f_2 = (D - L)^{-1}b$

一般迭代形式 $x^{(k+1)} = Bx^{(k)} + f$

原方程组的解 x^* 满足: $x^* = Bx^* + f$

迭代k次得到 $x^{(k)} - x^* = B^k(x^{(0)} - x^*)$

序列收敛 $x^{(k)} \rightarrow x^* (k \rightarrow \infty)$ 的充要条件

 $B^k \to 0 (k \to \infty)$ \$\iff B\$的所有特征根(取模)小于1

B的谱半径 $\rho(B) = \max |\lambda|$

J C $\rho(B) < 1$

 $\lambda_i(i=1,\cdots n)$ 是B的特征根

23

迭代法的收敛性

序列收敛 $x^{(k)} \rightarrow x^*(k \rightarrow \infty)$ 的充分条件

- 1) 若A是严格对角占优的,即 $|b_{ii}| > \sum |b_{ij}| (i = 1, \dots n)$, 则雅可比和高斯-赛德尔迭代均收敛;
- 2) 若 A 对称正定,则高斯-塞德尔迭代收敛;
- 3) 若 $\|B\| = q < 1$,则迭代公式 $x^{(k+1)} = Bx^{(k)} + f$ 收敛

且
$$\|x^{(k+1)} - x^*\| \le \frac{q}{1-q} \|x^{(k+1)} - x^{(k)}\|, q$$
越小收敛越快

谱半径性质: $\rho(B)$ ≤|B| 其中|B|是任何一种矩阵范数

迭代法-MATLAB的用法

1. 提取(产生)对角阵

v=diag(x) 输入向量x,输出v是以x为对角元素的对角阵:

输入矩阵x,输出v是x的对角元素构成的向量; v=diag(diag(x)) 输入矩阵x,输出v是x的对角元 素构成的对角阵,可用于迭代法中从A中提取D。

2. 提取(产生)上(下)三角阵

y=triu(x) 输入矩阵 x, 输出 v 是 x 的上三角阵; v=tril(x) 输入矩阵 x, 输出 v 是 x 的下三角阵;

2000-10-27 25

v=triu(x,1) 输入矩阵 x,输出 v 是 x 的上三角阵, 但对角元素为 0,可用于迭代法中从 A 中提取 U; v=tril(x,-1) 输入矩阵 x,输出 v 是 x 的下三角阵, 但对角元素为 0,可用于迭代法中从 A 中提取 L.

例 用迭代法解

 $\begin{cases} 10x_1 + 3x_2 + x_3 = 14 \\ 2x_1 - 10x_2 + 3x_3 = -5 \\ x_3 + 3x_2 + 10x_3 = 14 \end{cases}$

MATLAB 5. 3. 1nk

 x^T(籍可比)
 x^T(高斯一塞德尔)

 0 (0,0,0)
 (0,0,0)

 1 (1.4,0.5,1.4)
 (1.4,0.78,1.026)

 2 (1.11,1.20,1.11)
 (1.0634,1.0205,0.9875)

 3 (0.929,1.055,0.929)
 (0.9951,0.9953,1.0019)

 4 (0.9906,0.9645,0.9906)
 (1.0012,1.0008,0.9996)

稀疏矩阵的处理 ~ MATLAB进行大规模计算的优点

a=sparse(r,c,v,m,n) 在第r行、第c列输入数值v,矩阵共m行n列,输出a为稀疏矩阵,只给出(r,c)及v

aa=full(a) 输入稀疏矩阵a,输出aa为满矩阵 (包含零元素)

a=sparse(2,2:3,8,2,4), aa=full(a),

a = (2,2) 8 (2,3) 8

8 aa= 0 0 0 0 8 0 8 8 0

100-10-27

例. 分别用稀疏矩阵和满矩阵求解Ax=b, 比较计算时间

 $\overset{\text{Y.T.}}{\swarrow} A = \begin{bmatrix}
4 & 1 & & & \\
1 & 4 & 1 & & & \\
& 1 & 4 & \ddots & & \\
& & \ddots & \ddots & 1 \\
& & & & 1 & 4
\end{bmatrix}_{\text{max}}$

n=500;b=[1:n]';
a1=sparse(1:n,1:n,4,n,n);
a2=sparse(2:n,1:n-1,1,n,n);
a=a1+a2+a2';

 $b = [1, 2, \cdots n]^T$

tic;x=a\b;t1=toc
aa=full(a);
tic;xx=aa\b;t2=toc
y=sum(x)

Shiyan54

t₁,t2相差巨大,说明用稀疏矩阵计算的优点

yy=sum(xx)

(y=yy 用于简单地验证两种方法结果的一致)

实例1 投入产出模型

表 1 国民经济各个部门间的关系

分配去向 投入来源	农业	制造业	服务业	外部需求	总产出
农业	15	20	30	35	100
制造业	30	10	45	115	200
服务业	20	60	/	70	150
初始投入	35	110	75		
总投入	100	200	150		

假定每个部门 的产出与各部 门对它的投入 成正比,得到 投入系数。

表2 投入产出表 分配去向 农业 制造业 服务业 投入来源 0.15 0.10 0.20 农业 制造业 0.30 0.05 0.30 0.20 服务业 0.30 0

29

2000-10-27

实例1 投入产出模型

- 1)设有n个部门,已知投入系数,给定外部需求,建立求解各部门总产出的模型。
- 2)设投入系数如表2所给,如果今年对农业、制造业和服务业的外部需求分别为50,150,100亿元,问这三个部门的总产出分别应为多少。
- 3)如果三个部门的外部需求分别增加1个单位,它们的总产出应分别增加多少。
- 4)如果对于任意给定的、非负的外部需求,都能得到非负的总产出,模型就称为可行的。问为使模型可行,投入系数应满足什么条件?

2000-10-27

30

谱半径

设 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 为A的特征根,则A的谱半径定义为:

$$\rho(A) = \max_{1 \le i \le n} |\lambda_i|$$

谱半径性质

 $\rho(A)$ \leq |A| 其中||A||是任何一种矩阵范数

条件数
$$Cond(A) = ||A^{-1}|| \cdot ||A||$$

$$\left\|A\right\|_{2}, \left\|A\right\|_{1}, \left\|A\right\|_{\infty} \Rightarrow cond_{2}(A), cond_{1}(A), cond_{\infty}(A)$$

2000-10-27