D11942011 林政均

1.

Darkening Lena SSIM = 0.8421

2.

(a).

假設有兩複數(a+bi)及(c+di)做相乘,得到 e + fi = (a + bi) (c + di) = (ac - bd) + (ad + bc)i可改寫為

$$\begin{bmatrix} e \\ f \end{bmatrix} = \begin{bmatrix} c & -d \\ d & c \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} c & c \\ c & c \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} 0 & -(d+c) \\ d-c & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

- ①. $g_1 = c(a+b)$ $h_1 = g_1$ ②. $g_2 = -b(c+d)$ $h_2 = a(d-c)$
- ③. $e = g_1 + g_2$ f = $h_1 + h_2$

其中使用了c(a+b)、-b(c+d)和a(d-c),3個乘法

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} b_1 & -b_2 & -b_3 & -b_4 \\ b_2 & b_1 & b_4 & -b_3 \\ b_3 & b_4 & b_1 & -b_2 \\ -b_4 & b_3 & b_2 & b_1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} b_1 & -b_2 & -b_3 & -b_4 \\ b_2 & b_1 & b_4 & -b_3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}$$

$$= \begin{bmatrix} b_1 & -b_2 \\ b_2 & b_1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + \begin{bmatrix} -b_3 & -b_4 \\ b_4 & -b_3 \end{bmatrix} \begin{bmatrix} a_3 \\ a_4 \end{bmatrix}$$

$$= \begin{bmatrix} b_1 & b_1 \\ b_1 & b_1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + \begin{bmatrix} 0 & -b_2 - b_1 \\ b_2 - b_1 & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$+ \begin{bmatrix} -b_3 & -b_3 \\ -b_3 & -b_3 \end{bmatrix} \begin{bmatrix} a_3 \\ a_4 \end{bmatrix} + \begin{bmatrix} 0 & -b_4 + b_3 \\ b_4 + b_3 & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

$$\begin{bmatrix} c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} b_3 & b_4 & b_1 & -b_2 \\ -b_4 & b_3 & b_2 & b_1 \end{bmatrix} \begin{bmatrix} a_3 \\ a_4 \end{bmatrix}$$

$$= \begin{bmatrix} b_3 & b_4 \\ -b_4 & b_3 \end{bmatrix} \begin{bmatrix} a_3 \\ a_4 \end{bmatrix} + \begin{bmatrix} b_1 & -b_2 \\ b_2 & b_1 \end{bmatrix} \begin{bmatrix} a_3 \\ a_4 \end{bmatrix}$$

$$= \begin{bmatrix} b_3 & b_3 \\ b_3 & b_3 \end{bmatrix} \begin{bmatrix} a_3 \\ a_4 \end{bmatrix} + \begin{bmatrix} 0 & b_4 - b_3 \\ -b_4 - b_3 & 0 \end{bmatrix} \begin{bmatrix} a_3 \\ a_4 \end{bmatrix}$$

$$+ \begin{bmatrix} b_1 & b_1 \\ b_1 & b_1 \end{bmatrix} \begin{bmatrix} a_3 \\ a_4 \end{bmatrix} + \begin{bmatrix} 0 & -b_2 - b_1 \\ b_2 - b_1 & 0 \end{bmatrix} \begin{bmatrix} a_3 \\ a_4 \end{bmatrix}$$

共使用了12個乘法。

3.

假設 N-point DFT,其中 N= P_1P_2 ,其中 P_1 , P_2 彼此互質, P_m -point DFT 的乘法量為 B_m ,則 N-point DFT 總乘法量可寫作 $P_1B_1+P_2B_2$ 又如果 N= P_1P_2 ,其中 P_1 , P_2 最大公因數不為 1, P_m -point DFT 的乘法量為 B_m ,則 N-point DFT 總乘法量可寫作 $P_1B_1+P_2B_2+3D_1+2D_2$

$$125$$
-point DFT \Rightarrow $125 = 5 \times 25$

$$MUL_{125} = 5MUL_{25} + 25MUL_5 + 3D_1 + 2D_2 = 5 \times 148 + 25 \times 1$$

$$10 + 3 \times 62 + 2 \times 0 = 1176$$

(b).

147-point DFT
$$\Rightarrow$$
147 = 3 \times 49

$$MUL_{49} = 7MUL_7 + 7MUL_7 + 3D_1 = 7 \times 16 \times 2 + 3 \times 26 =$$

302

$$MUL_{147} = 49MUL_3 + 3MUL_{49} = 49 \times 2 + 3 \times 302 = 1004$$

(c).

$$385$$
-point DFT $\Rightarrow 385 = 11 \times 35$

$$MUL_{385} = 11MUL_{35} + 35MUL_{11} = 11 \times 150 + 35 \times 40 = 3050$$

4.

1D DFT 的複雜度為 O(Nlog₂N)

3D DFT 的複雜度可寫作

$$MN \times Klog_2K + NK \times Mlog_2M + KM \times Nlog_2N$$

$$=$$
 MNK $\times \log_2(MNK)$

$$\Rightarrow$$
 O(MNK log₂(MNK))

5.

Precision =
$$\frac{TP}{TP+FP} = \frac{900}{900+100} = 0.9$$

Recall =
$$\frac{TP}{TP+FN} = \frac{900}{900+300} = 0.75$$

F-score = 2
$$\times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} = 2 \times \frac{0.9 \times 0.75}{0.9 + 0.75} = 0.82$$

6.

(a).

length(y[n]) =
$$500$$

N = 1100 , M = 500

①. Direct:

FFT 點數為 500

2). Sectioned convolution:

$$L_0 = 550, \ P_0 = L_0 + M - 1 = 949$$
 取 $P = 840$,則 $L = P - M + 1 = 341$, $MUL_{840} = 4580$ $S = \left[\frac{1100}{341}\right] = 3$

FFT 點數為 840

③. Non-sectioned convolution

$$P \ge 1599$$

取
$$P = 1680$$
, $MUL_{1680} = 10420$

FFT 點數為 1680

Non-sectioned convolution 實數乘法量最少,因此最適合(a)

(b).

length(y[n]) =
$$40$$

N = 1100 , M = 40

①. Direct:

FFT 點數為 40

(2). Sectioned convolution:

$$L_0 = 248$$
, $P_0 = L_0 + M - 1 = 287$
取 $P = 28$,则 $L = P - M + 1 = 249$, $MUL_{288} = 1160$ $S = [\frac{1100}{249}] = 4$

FFT 點數為 288

③. Non-sectioned convolution

$$P \ge 1139$$

取
$$P = 1152$$
, $MUL_{1152} = 7088$

FFT 點數為 1152

Sectioned convolution 實數乘法量最少,因此最適合(b)

(c).

length(y[n]) =
$$6$$

N = 1100, M = 6

①. Direct:

FFT 點數為6

②. Sectioned convolution:

$$L_0 = 19$$
, $P_0 = L_0 + M - 1 = 24$
取 $P = 24$,则 $L = P - M + 1 = 19$, $MUL_{24} = 28$ $S = \left[\frac{1100}{19}\right] = 57$

FFT 點數為 24

③. Non-sectioned convolution

$$P \ge 1105$$

取
$$P = 1152$$
, $MUL_{1152} = 7088$

FFT 點數為 1152

Sectioned convolution 實數乘法量最少,因此最適合(c)

(d).

length(y[n]) =
$$2$$

N = 1100 , M = 2

①. Direct:

FFT 點數為2

(2). Sectioned convolution:

$$L_0 = 2$$
, $P_0 = L_0 + M - 1 = 3$
取 $P = 4$,则 $L = P - M + 1 = 3$, $MUL_4 = 0$
 $S = \left[\frac{1100}{3}\right] = 366$

FFT 點數為4

實數乘法量 2 × 366 × MUL₄ + 3 × 366 × 4= 4392

③. Non-sectioned convolution

$$P \ge 1101$$

取
$$P = 1152$$
, $MUL_{1152} = 7088$

FFT 點數為 1152

Sectioned convolution 實數乘法量最少,因此最適合(d)