

Regressão logística multinomial em dados de e-commerce brasileiros

Guilherme Souza

Regressão logística multinomial em dados de e-commerce brasileiros

Trabalho apresentado como requisito para conclusão do curso de Econometria.

Universidade Federal Fluminense – UFF
Faculdade de Administração e Ciências Contábeis – EST
Departamento de Administração – STA
Programa de pós-graduação em Administração

Orientador: Prof. Dr. Eduardo Camilo da Silva

Niterói

2018

Regressão logística multinomial em dados de e-commerce brasileiros

14 de outubro de 2018

Os Provedores

Os dados a serem utilizados neste relatório foram publicados pela Olist¹, uma loja que atua dentro dentro dos marketplaces. É uma grande loja de departamentos dos principais e-commerces do Brasil. Conecta micro, pequenas e médias empresas (PMEs) a esses principais marketplaces por meio de contratos.

Os dados são provenientes de transações comerciais reais² envovelndo clientes e vendedores, sendo que a referência aos nomes das empresas vendedoras (parceiros da Olist) foram trocados por nomes de casas de Game of Thrones.

Quando um cliente compra um produto da Olist, o vendedor é notificado para atender ao pedido. Assim que o cliente recebe o produto, ou a data prevista da entrega vence, o cliente recebe uma pesquisa de satisfação por email onde ele pode dar uma nota pela experiência de compra e escrever alguns comentários.

Os datasets estão publicados na plataforma Kaggle³, uma grande comunidade voltada à análise de dados e aprendizado de máquina.

O Dataset

Originalmente, a fonte de dados inclui 6 bases .csv distintas, cada qual destinadas a estudos específicos, mas todos são relacionados a eventos de compra em ecommerce pela plataforma Olist . A base utilizada neste relatório corresponde ao arquivo .csv de nome olist_classified_public_dataset_v2. Nesta base de dados, cada registro corresponde a uma compra de um cliente, referente a um produto e uma análise/crítica. Na tabela 1, vemos um head() das 6 primeiras colunas do dataset utilizando o ambiente kableExtra⁴:

Variáveis

O dataset é composto por 3,584 linhas e 34 colunas das quais 9 são destinas à composição da coluna most_voted_class. O valor dos campos desta coluna refletem o resultado agregado de dados originários de uma pesquisa de satisfação enviada ao cliente após a concretização da compra. Ao responder à pesquisa, o cliente possibilita, por intermádio dos dados, a criação de variáveis "intermediárias", também presentes na base de estudo e identidicadas pelo prefixo votes_*. O valor presente nas mesmas é inteiro e corresponde a uma pontuação que varia de 0 a 6. Estas variávies representam a intensidade do evento identificado no nome da coluna correspondente. A definição de cada uma delas é assim dada:

- votes_before_estimate: votos recebidos para entrega antes das mensagens de data estimadas.
- votos_delayed: votos recebidos por reclamações atrasadas.
- votes low quality: votos recebidos por reclamações de baixa qualidade do produto.
- votes return: votos recebidos por desejar devolver o produto às reclamações do vendedor.
- votes not as anounced: votos recebidos por produto não como reclamações anunciadas.
- votes_partial_delivery: votos recebidos por reclamações de entrega parcial (nem todos os produtos entregues).

¹https://olist.com/

²https://www.kaggle.com/olistbr/brazilian-ecommerce#olist_public_dataset_v2.csv

³https://www.kaggle.com/

⁴kableExtra auxilia na construção de tabelas complexas e permite encadear o código com o comando kable e sintaxa do tipo pipe. Escrito por ZHU (2018), encontra-se na versão 0.9.0.

Table 1: Inspecionando o dataset

X	id	order_status	order_products_value	order_freight_value	order_items_qty
0	1	delivered	89.99	14.38	1
1	2	delivered	69.00	15.23	1
2	3	delivered	99.80	15.86	2
3	4	delivered	87.00	12.74	1
4	5	delivered	99.90	17.95	1
5	6	delivered	39.99	0.15	1

- votes_other_delivery: votos recebidos para outras reclamações relacionadas à entrega.
- votes other order: votos recebidos por outras reclamações relacionadas ao pedido.
- votes_satisfied: votos recebidos para mensagens satisfeitas pelo cliente.

Baseado no resultado agregado destas variáveis, a primeira variável intermediária, most_voted_sub_class é criada. É uma variável categórica cujos níveis são:

- antes_prazo: produto chegou antes do prazo estimado.
- atrasado: produto chegou depois do prazo estimado.
- baixa_qualidade: produto avaliado como de baixa qualidade.
- devolucao: comprador tem a intenção de devolver o produto.
- diferente_do_anunciado: em desacordo com o produto anunciado.
- entrega_parcial: veio com algum componente faltando.
- outro_entrega: será feita uma nova entrega.
- outro_pedido: será feito um novo pedido.
- satisfeito: comprador satisfeito com o produto.

Por fim, a partir do resultado desta variável é possível gerar a classificação resultante para o campo most_voted_class. Em outras palavras, temos a variável resposta . Os valores possíveis são:

- problemas_de_entrega
- problemas_de_qualidade
- satisfeito_com_pedido

As demais variáveis são:

- index: coluna de índice.
- id: variável inteira que faz referência a linha.
- order_status: referência ao status da ordem (delivered, shipped, etc)

Table 2: Status das ordens

order_status	count	percent
delivered	3467	0.9673549
shipped	48	0.0133929
canceled	25	0.0069754
invoiced	24	0.0066964
processing	20	0.0055804

Figure 1: Status das ordens

- order_products_value: preço total de uma ordem de compra.
- order_freight_value: valor total do frete em um pedido.
- order_sellers_qty: quantidade total de vendedores que atenderam a um pedido.

Figure 2: Preço, frete e quantidade de vendedores que atenderam uma ordem.

• order_items_qty: quantidade total de itens comprados em um pedido.

Table 3: Total de itens

order_items_qty	count	percent
1	3337	93.1%
2	180	5.0%
3	39	1.1%
4	15	0.4%
5	6	0.2%
6	6	0.2%
8	1	0.0%

• order_purchase_timestamp: mostra o registro de data e hora da compra.

Table 4: Qtd. de ordens em 2017 e 2018

year	count	percent
2017	2556	71.3%
2018	1028	28.7%

Figure 3: Estatísticas mensais e diárias das ordens de compras.

• order_aproved_at: mostra o carimbo de data / hora da aprovação do pagamento.

Figure 4: Delay médio por UF calculado como a diferença entre as datas de aprovação e ordem de compra. Mato grosso e Acre são os destaques com o menor tempo de aprovação de ordens.

- order_estimated_delivery_date: mostra a data de entrega estimada que foi informada ao cliente no momento da compra.
- order_delivered_customer_date: mostra a data real de entrega do pedido ao cliente.

Figure 5: Comparação entre a estimação do prazo e o erro.

- customer_city: cidade do cliente
- customer_zip_code_prefix: os três primeiros dígitos do código postal do cliente. A figura 6 exibe uma tentativa de construção de visualização espacial de dados com auxilio do pacote leaflet. O pacote permite a criação de mapas interativos que podem ser utilizados diretamente do console do R (CHENG; KARAMBELKAR; XIE, 2018). Cada ponto no mapa representa uma cidade e uma ordem. A localização de cada ponto se deu por sucessivas chamadas à API de geolocalização Data Science Toolkit⁵ pela função geocode() do pacote ggmap. Este pacote oferece um extenso conjunto de ferramentas que permite acessar conteúdo estático de provedores como Google Maps, OpenStreetMap, entre outros. (KAHLE; WICKHAM, 2013)

Figure 6: Visualização espacial da frequência de ordens por cidades brasileiras com utilização do pacote leaflet

• customer_state: estado / província do cliente

⁵http://www.datasciencetoolkit.org/

Table 5: Frequência de ordens por estado

_customer_state	count	percent
SP	1369	38.2%
RJ	505	14.1%
MG	438	12.2%
RS	188	5.2%
PR	161	4.5%
BA	150	4.2%
SC	118	3.3%
GO	84	2.3%
PE	76	2.1%
DF	74	2.1%
ES	70	2.0%
CE	58	1.6%
PA	58	1.6%
MT	42	1.2%
MA	41	1.1%
AL	24	0.7%
PI	24	0.7%
PB	23	0.6%
RN	21	0.6%
MS	18	0.5%
SE	16	0.4%
TO	10	0.3%
RO	7	0.2%
AM	5	0.1%
AC	3	0.1%
RR	1	0.0%

[•] product_category_name: a categoria raiz do produto adquirido, em português.

- product_name_lenght: número de caracteres extraídos do nome do produto comprado.
- product_description_lenght: número de caracteres extraídos da descrição do produto adquirido.
- product_photos_qty: número de fotos publicadas de produtos comprados.
- review_score: nota variando de 1 a 5 dada pelo cliente em uma pesquisa de satisfação.

Figure 7: Estatísticas do anúncio na seguinte ordem, tamanho do nome em caracteres, tamanho da descrição em caracteres, quantidade de fotos e avaliação obtida.

- review creation date: mostra a data em que a pesquisa de satisfação foi enviada ao cliente.
- review_answer_timestamp: mostra o registro de data e hora da resposta da pesquisa de satisfação.

Figure 8: Demora para responder a pesquisa de safistação. É a diferença entre a data de envio da pesquisa de satisfação e a data de resposta.

- review_comment_title: título do comentário da resenha deixada pelo cliente, em português.
- review_comment_message: mensagem de comentário da avaliação deixada pelo cliente, em português. A figura 9 mostra a nuvem de palavras criada com auxilio do pacote tm que fornece insfraestrutura para mineração de textos (FEINERER; HORNIK; MEYER, 2008).

Figure 9: Word cloud de palavras mais comuns presentes nos comentários sobre os produtos. Extraído da coluna review.comment.message.

Modelos e Regressões

Regressão Logística Multinomial

Para a criação de um modelo de regressão múltipla, a variável mais interessante seria most_voted_class. Neste caso, poderíamos ter uma equação para estimar em que classe se encontra uma ordem de compra com base em um conjunto de variáveis preditoras. Contudo, trata-se de uma variável categórica com 3 níveis.

Uma alternativa é fazer uma regressão logística multinomial (RLM). Trata-se de uma forma de regressão condizuda quando a variável dependente é categórica com mais de dois níveis. É usada para descrever dados e explicar a relação entre uma variável nominal dependente e uma ou mais variáveis independentes contínuas. As variáveis nominais podem ser entendidas como variáveis que não possuem uma ordem intrínsceca. De fato, se tomássemos como variável resposta most_voted_class, não poderíamos afirmar que existe uma ordem entre os nívies problemas_de_entrega, problemas_de_qualidade, e satisfeito_com_pedido. Desta forma, em teoria, podemos utilizar essa técnica para determinar, dado um conjunto de preditoras – grupo de variáveis relacionadas ao questionário, por exemplo, em qual classe se encontrará um cliente. Poderíamos utilizar tal modelo para determinar, por exemplo, a probabilidade de um cliente estar satisfeito_com_pedido utilizando os dados relativos a sua compra.

Para a realização da análise de regressão nos dados de e-commerce da Olist seguiu-se os procedimentos do tutorial disponível em Analytics Vidhya (2016).

Após as modelagens, algumas variáveis auxiliares foram criadas, como order_purchase_aprove_delay, delivery_delay, delivery_estimation_delay, order_delivery_estimation_delay_error. Abaixo, a função str() apresenta a estrutura do dataset resultante onde será aplicada a RLM:

```
3584 obs. of 25 variables:
   'data.frame':
##
   $ order_products_value
                                                  90 69 99.8 87 99.9 ...
   $ order_freight_value
                                                  14.4 15.2 15.9 12.7 17.9 ...
##
                                            num
##
   $ order_items_qty
                                           : int
                                                  1 1 2 1 1 1 1 1 1 1 ...
##
   $ order_sellers_qty
                                                  1 1 4 1 2 6 1 1 1 1 ...
                                           : int
   $ customer_zip_code_prefix
                                                  308 377 122 140 205 20 564 83 69 403 ...
##
                                           : int
   $ product name lenght
                                                  59 50 59 45 60 53 54 50 47 60 ...
##
                                           : int
   $ product_description_lenght
##
                                           : int
                                                  492 679 341 411 189 386 1120 448 482 189 ...
##
  $ product_photos_qty
                                                  3 4 2 1 1 1 8 1 2 1 ...
                                           : int
##
   $ review_score
                                           : int
                                                  5 5 1 4 3 5 2 5 3 4 ...
   $ votes before estimate
                                                  0 3 0 0 0 0 0 2 1 0 ...
##
                                           : int
##
   $ votes_delayed
                                                  0003000000...
                                           : int
##
   $ votes low quality
                                                  0000000000...
##
   $ votes_return
                                                  0 0 0 0 0 0 0 0 0 0 ...
                                           : int
   $ votes_not_as_anounced
##
                                           : int
                                                  0 0 0 0 0 0 0 0 0 0 ...
##
   $ votes_partial_delivery
                                           : int
                                                  0 0 3 0 3 1 0 0 0 0 ...
##
   $ votes_other_delivery
                                                  0 0 0 0 0 1 3 0 0 0 ...
   $ votes_other_order
##
                                                  0 0 0 0 0 1 0 0 0 0 ...
                                           : int
##
   $ votes_satisfied
                                           : int
                                                  3 0 0 0 0 0 0 1 2 3 ...
   $ order_purchase_aprove_delay
##
                                                  0.589 0.608 99.135 105.631 36.589 ...
                                           : num
##
   $ delivery_delay
                                           : num
                                                  9 3 6 14 11 5 22 18 6 17 ...
   $ delivery_estimation_delay
##
                                                  22 28 19 35 26 19 31 19 20 28 ...
                                           : num
   $ order_delivery_estimation_delay_error: num
##
                                                  13 25 13 21 15 14 9 1 14 11 ...
  $ review_answer_delay
##
                                           : num
                                                 1 3 9 1 3 3 1 0 3 2 ...
   $ most_voted_subclass
                                           : Factor w/ 10 levels "", "antes_prazo", ..: 10 2 7 3 7 1 8 2
   $ most_voted_class
                                           : Factor w/ 4 levels "", "problemas_de_entrega", ..: 4 4 2 2 2
```

No *chunk* abaixo vemos a modelagem do dataset utilizando sintaxe pipe do pacote dplyr (WICKHAM et al., 2018) e aplicação da RLM com utilização do pacote nnet (VENABLES; RIPLEY, 2002):

```
library(nnet)
olist_data_mod_reg <- olist_data_mod_reg %>%
   filter(most_voted_class != '')
olist_data_mod_reg$most_voted_class2 <- relevel(olist_data_mod_reg$most_voted_class,
                                                ref = "satisfeito com pedido")
rlm <- multinom(most_voted_class ~ ., data = olist_data_mod_reg[,c(9,18,20,</pre>
                                                                                        25)])
## Warning in multinom(most_voted_class ~ ., data = olist_data_mod_reg[,
## c(9, : group '' is empty
## # weights: 15 (8 variable)
## initial value 3628.716389
## iter 10 value 1220.070480
## iter 20 value 1196.792440
## final value 1196.732784
## converged
summary(rlm)
## Call:
## multinom(formula = most_voted_class ~ ., data = olist_data_mod_reg[,
##
       c(9, 18, 20, 25)])
##
##
  Coefficients:
##
                           (Intercept) review_score votes_satisfied
## problemas_de_qualidade 0.03302506
                                         0.05167207
                                                          0.5850768
## satisfeito com pedido
                          -7.56304681
                                         2.06762389
                                                          2.5684232
##
                          delivery_delay
## problemas de qualidade
                              -0.05187714
## satisfeito_com_pedido
                             -0.09557719
##
## Std. Errors:
                           (Intercept) review_score votes_satisfied
## problemas_de_qualidade
                            0.1452070
                                         0.04614153
                                                          0.2081487
## satisfeito_com_pedido
                            0.5325287
                                         0.11945811
                                                          0.2032135
                          delivery_delay
## problemas_de_qualidade
                              0.006067884
## satisfeito_com_pedido
                              0.013087012
## Residual Deviance: 2393.466
## AIC: 2409.466
```

A RLM funciona como uma série de regressões logísticas, cada qual comparando dois níveis da variável resposta (most_voted_class).

- 1 A função relevel() renivela os fatores da coluna da variável resposta fazendo com que satisfeito com pedido seja o fator de referência para as comparações feitas pela função.
- 2 A aplicação da RLM neste dataset se dá por meio da função multinom() contida no pacote nnet, definindo como variável dependente most_voted_class e review_score, votes_satisfied e delivery_delay (colunas com índices 9, 18 e 20 respectivamente) como variáveis independentes. A saída da função fornece primeiramente um bloco de informações relacionadas a execução.
- 3 São dois os blocos subsequentes na saída do summary(), o primeiro com os coeficientes e o próximo com as

estatísticas de erros padrão. No bloco coefficients, vemos que a primeira linha compara problemas_de_entrega com o fator de referência satisfeito_com_pedido. A segunda linha compara problemas_de_qualidade com o mesmo fator de referência e assim por diante.

Podemos também realizar testes com dados fictícios,

```
dummy_data <- data.frame(review_score = sample(c(1:5),5),</pre>
                          votes_satisfied = sample(c(1:6),5),
                          delivery_delay = sample(c(1:20),5))
pred <- predict(rlm, dummy data, 'probs')</pre>
pred <- as.data.frame(pred) %>%
    cbind(dummy_data)
pred <- pred[,c(4,5,6,1,2,3)]
pred
     review_score votes_satisfied delivery_delay problemas_de_entrega
##
## 1
                                                            2.437106e-05
                 4
                                  3
                                                 18
                                                            1.234435e-03
## 2
                 2
                                  2
## 3
                                                 10
                                                            1.878854e-01
## 4
                 5
                                  1
                                                 2
                                                            5.681775e-03
## 5
                                  4
                                                 19
                                                            4.071599e-02
##
     problemas_de_qualidade satisfeito_com_pedido
                0.0003437544
                                          0.9996319
## 1
## 2
               0.0035671557
                                          0.9951984
## 3
               0.4130562182
                                          0.3990584
                0.0123045818
                                          0.9820136
## 4
## 5
               0.1717362078
                                          0.7875478
```

onde as três primeiras colunas são dados gerados de forma procedural e alimentados no modelo por meio da função predict(). Cada linha na tabela representa um cliente ou ordem. Podemos observar a variação da distribuição das probabilidades em relação a classe em que se encontraria o cliente conforme variam suas ações na pesquisa de satisfação e a demora na entrega do produto de modo que,

$$P_{prob.entrega} + P_{prob.qualidade} + P_{satisfeito} = 1$$

Estatísticas de validação

Abaixo vemos a saída da tabela de coeficientes e os intervalos de confiança de cada variável preditora:

```
##
                            (Intercept) review_score votes_satisfied
## problemas_de_qualidade 1.0335764421
                                            1.053030
                                                            1.795129
                          0.0005192906
                                            7.906015
                                                            13.045238
## satisfeito_com_pedido
                           delivery delay
## problemas_de_qualidade
                               0.9494455
## satisfeito_com_pedido
                                0.9088482
   , , problemas_de_qualidade
##
##
##
                       2.5 %
                                 97.5 %
## (Intercept)
                   0.7775747 1.3738618
## review_score
                   0.9619780 1.1527009
## votes_satisfied 1.1937657 2.6994305
## delivery_delay 0.9382208 0.9608045
```

```
##
## , , satisfeito_com_pedido
##
## 2.5 % 97.5 %
## (Intercept) 0.0001828611 0.001474687
## review_score 6.2556827661 9.991727353
## votes_satisfied 8.7594411091 19.427979196
## delivery_delay 0.8858326200 0.932461777
```

No primeiro bloco, cada linha apresenta os coeficientes de regressão multinomial para uma dada classe. O segundo e terceiro blocos contém as estatísticas sobre significância dos coeficiêntes das variáveis preditoras em relação a cada uma das possíveis classes de most_voted_class. Os intervalos de confiança assinalados vão de 2.5 % a 97.5 %.

A daterminação da significância da variável preditora na composição do modelo é feita com base na observação do intervalo de confiança. A variável terá significancia apenas se no intervalo de confiança que esteja situada, não apresentar 1 (EDUCATION, 2014). Neste caso, para problemas_de_qualidade, as variáveis significantes são votes_satisfied e delivery_delay. Para a segunda, incluímos todas as variáveis uma vez que todas são significantes.

Podemos agora comparar as variáveis significantes com os modelos do primeiro bloco e indicar as seguintes generalizações:

- Cada dia à mais de delivery_delay impacta inversamente a probabilidade de problemas_de_qualidade em comparação com problemas_de_entrega.
- Uma unidade de aumento em votes_satisfied impacta positivamente a probabilidade de o cliente estar satisfeito_com_pedido em comparação com ter tido problemas_de_entrega.
- Cada dia à mais de delivery_delay impacta inversamente a probabilidade de o cliente estar satisfeito_com_pedido em comparação com ter tido problemas na entrega.
- Cada unidade de aumento satisfeito_com_pedido aumenta as chances de o cliente estar satisfeito_com_pedido em comparação com ter tido problemas na entrega.

Referências

CHENG, J.; KARAMBELKAR, B.; XIE, Y. leaflet: Create Interactive Web Maps with the JavaScript 'Leaflet' Library. Traducao. [s.l: s.n.].

EDUCATION, Q. (10) 4 Multinomial Logistic Regression - YouTube, abr. 2014. Disponível em: <https://www.youtube.com/watch?v=zDIa2a4gTcE&t=656s>

FEINERER, I.; HORNIK, K.; MEYER, D. Text Mining Infrastructure in R. **Journal of Statistical Software**, v. 25, n. 5, p. 1–54, March 2008.

KAHLE, D.; WICKHAM, H. ggmap: Spatial Visualization with ggplot2. **The R Journal**, v. 5, n. 1, p. 144–161, 2013.

VENABLES, W. N.; RIPLEY, B. D. Modern Applied Statistics with S. Traducao. Fourth ed. New York: Springer, 2002.

WICKHAM, H. et al. dplyr: A Grammar of Data Manipulation. Traducao. [s.l: s.n.].

ZHU, H. kableExtra: Construct Complex Table with 'kable' and Pipe Syntax. Traducao. [s.l: s.n.].