NSR Search Results Page 1 of 2

Visit the <u>Isotope Explorer</u> home page!

6 reference(s) found:

Keynumber: 2000VE09

Reference: J.Radioanal.Nucl.Chem. 246, 161 (2000)

Authors: M.L. Verheijke

Title: On the Relation between the Effective Resonance Energy and the Infinite Dilution Resonance

Integral for (n, γ) Reactions

Keyword abstract: NUCLEAR REACTIONS 36 S, 46 Ca, 138 Ce, 184 Os, 191 Ir(n, γ),E <2 MeV; calculated effective resonance energies. Relationship between resonance energy and infinite dilution resonance

integral discussed.

Keynumber: 1997BE42

Reference: Nucl.Phys. A621, 235c (1997)

Authors: H.Beer, C.Coceva, R.Hofinger, P.Mohr, H.Oberhummer, P.V.Sedyshev, Yu.P.Popov

Title: Measurement of Direct Neutron Capture by Neutron-Rich Sulfur Isotopes

Keyword abstract: NUCLEAR REACTIONS 34 , 36 S(n, γ),E=reactor; measured E γ ,I γ ; deduced capture

 σ . 35, 37S deduced levels, J, π , spectroscopic factors. Direct capture model.

Keynumber: 1995BE55

Reference: Phys.Rev. C52, 3442 (1995)

Authors: H.Beer, P.V.Sedyshev, Yu.P.Popov, W.Balogh, H.Herndl, H.Oberhummer

Title: Cross Section of ${}^{36}S(n,\gamma){}^{37}S$

Keyword abstract: NUCLEAR REACTIONS 36 S(n, γ),E=25,151,176,218 keV; measured σ (n, γ),direct capture; deduced stellar reaction rate factor. Fast cyclic activation technique. Samples of elemental sufur

enriched in ³⁶S.

Keynumber: <u>1985RA15</u>

Reference: Phys.Rev. C32, 18 (1985)

Authors: S.Raman, R.F.Carlton, J.C.Wells, E.T.Jurney, J.E.Lynn

Title: Thermal Neutron Capture Gamma Rays from Sulfur Isotopes: Experiment and theory

Keyword abstract: NUCLEAR REACTIONS ³⁴, ³³, ³², ³⁶S(n,γ),E=thermal; measured Εγ,Ιγ; deduced model dependent effects. ³³, ³⁴, ³⁵, ³⁷S deduced levels,γ-branching,J, π ,E1 transition. Potential capture theory.

Keynumber: 1984RA09

Reference: Phys.Rev. C30, 26 (1984)

Authors: S.Raman, W.Ratynski, E.T.Jurney, M.E.Bunker, J.W.Starner

Title: 36 S(n, γ) 37 S Reaction with Thermal Neutrons and Decay of 37 S to Levels in 37 Cl

Keyword abstract: RADIOACTIVITY 37 S(β⁻); measured Eγ,Iγ; deduced log ft. 37 Cl deduced levels. **Keyword abstract:** NUCLEAR REACTIONS 36 S(n,γ),E=thermal; measured Eγ,Iγ. 37 S deduced

Keyword abstract: NUCLEAR REACTIONS ${}^{50}S(n,\gamma)$, E=thermal; measured E γ , I γ . ${}^{57}S$ deduced

levels, neutron separation energy.

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

NSR Search Results Page 2 of 2

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.
