MAP REDUCE - GRAPHS

Adapted from the slides by Dr. Zareen Alamgir

Content obtained from many sources notably Jimmy Lin, Jeff Ullman, Jerome Simeon, Juliana Freire notes

Graphs and MapReduce

- A large class of graph algorithms involve:
 - □ Performing computations at each node: based on node features, edge features, and local link structure
 - Propagating computations: "traversing" the graph
- Key questions:
 - □ How do you represent graph data in MapReduce?
 - □ How do you traverse a graph in MapReduce?

Representing Graphs

- G = (V, E)
- Two common representations
 - ■Adjacency matrix
 - ■Adjacency list

55	n_1	n ₂	n ₃	n ₄	n ₅
n ₁	0	1	0	1	0
n ₂	0	0	1	0	1
n ₃	0	0	0	1	0
n ₄	0	0	0	0	1
n ₅	1	1	1	0	0

adjacency matrix

$$n_1$$
 $[n_2, n_4]$
 n_2 $[n_3, n_5]$
 n_3 $[n_4]$
 n_4 $[n_5]$

adjacency lists

 $n_5 [n_1, n_2, n_3]$

Adjacency Matrices

Represent a graph as an n x n square matrix M

- n = |V|
- M_{ij} = the weight of link from node *i* to *j*

	1	2	3	4
1	0	5	0	3
2	1	0	4	4
3	1	0	0	0
4	3	0	2	0

Adjacency Matrices: Critique

- Advantages:
 - Amenable to mathematical manipulation
 - □ Iteration over rows and columns corresponds to computations on outlinks and inlinks
- Disadvantages:
 - □ Lots of zeros for sparse matrices
 - □ Lots of wasted space

Adjacency Lists

• Take adjacency matrices... and throw away all the zeros

	1	2	3	4	
1	0	1	0	1	I:2,4
2	1	0	1	1	2: 1, 3,
3	1	0	0	0	3: l
4	1	0	1	0	4: I, 3

Adjacency Lists: Critique

- Advantages:
 - Much more compact representation
 - Easy to compute over outlinks
- Disadvantages:
 - Much more difficult to compute over inlinks

Challenge Question

• How would you invert a graph in MapReduce?

Reverse Web-Link Graph

- For each URL, find all pages (URLs) pointing to it (incoming links)
- Problem: Web page has only outgoing links
- Need all (anySource, P) links for each page P
 - □ Suggests Reduce with P as the key, source as value

Map:

□ for page source, create all (target, source) pairs for each link to a target found in page

Reduce:

□ since target is key, will receive all sources pointing to that target

Graphs and MapReduce

- A large class of graph algorithms involve:
 - □ Performing computations at each node: based on node features, edge features, and local link structure
 - □ Propagating computations: "traversing" the graph
- Generic recipe:
 - □ Represent graphs as adjacency lists
 - □ Perform local computations in mapper
 - □ Pass along partial results via out-links, keyed by destination node
 - □ Perform aggregation in reducer on in-links to a node
 - □ Iterate until convergence: controlled by external "driver"
 - □ Don't forget to pass the graph structure between iterations

Web as a Graph

Web as a directed graph:

□ Nodes: Webpages

□ Edges: Hyperlinks

I teach a class on Networks.

CS224W: Classes are in the Gates building

Computer
Science
Department
at Stanford

Stanford University

Web as a Graph

Web as a directed graph:

■ Nodes: Webpages

□ Edges: Hyperlinks

Ranking Nodes on the Graph

- All web pages are not equally "important" www.joe-schmoe.com vs. www.stanford.edu
- There is large diversity in the web-graph node connectivity.
 Let's rank the pages by the link structure!

PageRank: Ranking web pages (Brin & Page'98)

- Intuition
 - Web pages are not equally "important"
 - [₹]www.james.com **V** www.stanford.edu
 - □ Links as citations: a page cited often is more important
 - [₹]www.stanford.edu has 23,400 inlinks
 - [₹]www.james.com has 1 inlink
 - □ Are all links equal?
 - ***Links from important pages count more**
 - □ Recursive model: being cited by a highly cited paper counts a lot...

Predecessors and Successors of a Web Page

PageRank: The "Flow" Formulation

Example: PageRank Scores

Simple Recursive Formulation

- Each link's vote is proportional to the **importance** of its source page
- If page j with importance r_j has n out-links, each link gets r_j / n votes
- Page j's own importance is the sum of the votes on its in-links

PageRank: The "Flow" Model

- A "vote" from an important page is worth more
- A page is important if it is pointed to by other important pages
- Define a "rank" r_j for page j

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

 $_i$... out-degree of node i

"Flow" equations:

$$r_y = r/2 + r/2$$

 $r_a = r/2 + r$
 $r_m = r/2$

PageRank: Matrix Formulation

- Stochastic adjacency matrix
 - Let page i has i out-links

$$\square$$
 If $i \to j$ then $j_i = \frac{1}{i}$ else $j_i = 0$

- Rank vector : vector with an entry per page \square $_i$ is the importance score of page i

$$\Box \sigma_{i} = 1$$

The flow equations can be written

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

Example

- Remember the flow equation: $r_j = \sum_{i \to j} \frac{I_i}{d_i}$ Flow equation in the matrix form
- Flow equation in the matrix form

$$r_j = \sum_{i \to j} \frac{r_i}{d_i}$$

□ Suppose page *i* links to 3 pages, including *j*

Power Iteration method

- Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- Initialize: $\mathbf{r}^0 = [1/N,....,1/N]^T$
- Iterate: $\mathbf{r}^{k+1} = \mathbf{M}\mathbf{r}^k$
- Stop when $|\mathbf{r}^{k+1} \mathbf{r}^k|_1 < \varepsilon$
 - $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |\mathbf{x}_i|$ is the L₁ norm
 - □Can use any other vector norm e.g., Euclidean

Power Iteration Example

y
$$1/3$$
 $1/3$ $5/12$ $3/8$ $2/5$ $a = 1/3$ $1/2$ $1/3$ $11/24$... $2/5$ m $1/3$ $1/6$ $1/4$ $1/6$ $1/5$

Page Rank

The intuition behind this matrix:

- Initially each page has 1 unit of importance.
- At each round, each page shares importance it has among its successors, and receives new importance from its predecessors.
- The importance of each page reaches a limit after some steps
- That importance is also the probability that a Web surfer, starting at a random page, and following random links from each page will be at the page in question after a long series of links.

Random Walk Interpretation

- Imagine a random web surfer
 - □ At any time t, surfer is on some page P
 - □ At time t+1, the surfer follows an outlink from P uniformly at random
 - □ Ends up on some page Q linked from P
 - Process repeats indefinitely
- **p**(t) is the probability distribution whose ith component is the probability that the surfer is at page i at time t

Page Rank in Map Reduce

PageRank Pseudo-code

```
1: class Mapper
2: method Map(nid n, node N)
3: p \leftarrow N.PageRank/|N.AdjacencyList|
4: Emit(nid n, N) \triangleright Pass along graph structure
5: for all nodeid m \in N.AdjacencyList do
6: Emit(nid m, p) \triangleright Pass PageRank mass to neighbors
```

```
1: class Reducer
        method Reduce(nid m, [p_1, p_2, \ldots])
            M \leftarrow \emptyset
            for all p \in \text{counts } [p_1, p_2, \ldots] do
                if IsNode(p) then
                    M \leftarrow p

    Recover graph structure

6:
                else

    Sums incoming PageRank contributions

                    s \leftarrow s + p
            M.PageRank \leftarrow s
            Emit(nid m, node M)
10:
```

PageRank: The Google Formulation

PageRank: Three Questions

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i} \quad \text{or} \quad r = Mr$$

- Does this converge?
- Does it converge to what we want?
- Are results reasonable?

Does this converge?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

• Example:

Iteration 0, 1, 2, ...

Does it converge to what we want?

$$r_j^{(t+1)} = \sum_{i \to j} \frac{r_i^{(t)}}{d_i}$$

• Example:

Iteration 0, 1, 2, ...

PageRank: Problems

2 problems:

- (1) Some pages are dead ends (have no out-links)
 - □Random walk has "nowhere" to go to
 - □Such pages cause importance to "leak out"
- (2) Spider traps: (all out-links are within the group)
 - □Random walked gets "stuck" in a trap
 - □And eventually spider traps absorb all importance

Problem: Spider Traps

Power Iteration:

$$\square$$
Set $j=1$

$$\square_j = \sum_{i \to j} \frac{r_i}{d_i}$$

[₹]And iterate

m is a spider trap

$$r_y = r/2 + r/2$$

 $r_a = r/2$
 $r_m = r/2 + r$

• Example:

Iteration 0, 1, 2, ...

All the PageRank score gets "trapped" in node m.

Solution: Teleports!

- The Google solution for spider traps: At each time step, the random surfer has two options
 - □ With prob. β follow a link at random
 - □ With prob. **1-** β jump to some random page
 - □Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Problem: Dead Ends

• Power Iteration:

$$\square$$
Set $j=1$

$$\square_{j} = \sum_{i \to j} \frac{r_{i}}{d_{i}}$$

[₹]And iterate

	y	a	m
y	1/2	1/2	0
a	1/2	0	0
m	0	1/2	0

$$r_y = r/2 + r/2$$

 $r_a = r/2$
 $r_m = r/2$

• Example:

Iteration 0, 1, 2, ...

Here the PageRank "leaks" out since the matrix is not stochastic.

Solution: Always Teleport!

- Teleports: Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly

Solution: Random Teleports

- Google's solution that does it all:
 - At each step, random surfer has two options:
 - □ With probability β follow a link at random
 - □ With probability **1**-\(\beta\) jump to some random page
- PageRank equation [Brin-Page, 98]

$$= \sum_{i \to i} \frac{i}{i} + (1 -) \frac{1}{-}$$
 d_i... out-degree of node i

This formulation assumes that has no dead ends. We can either preprocess matrix to remove all dead ends or explicitly follow random teleport links with probability 1.0 from dead-ends.

The Google Matrix

PageRank equation [Brin-Page, '98]

$$j = \sum_{i \to j} \frac{i}{i} + (1 -) \frac{1}{i}$$

The Google Matrix A:

$$= +1 - \left(\right) \left[\frac{1}{-} \right]_{\times}$$

 $[1/N]_{N\times N}...N$ by N matrix where all entries are 1/N

- We have a recursive problem: = .
 And the Power method still works!
- What is \(\beta\)?
 - □ In practice $\beta = 0.8, 0.9$ (make 5 steps on avg., jump)

Random Teleports ($\beta = 0.8$)

