

Dynamic Neural Network in Computer Networks: Enhancing Network Efficiency

Junhao Cai, Changhee Joo Computer Science and Engineering, Korea University, Seoul 02841, South Korea

Introduction

- In-network compression: Video traffic requires significant bandwid th or end-device computation; lacking these leads to low QoS. In-n etwork compression serves as an alternative, balancing network and computational resources.
- Feedback-Based Multimedia Transmission: Previous methods dep end on feedback about resource availability, often leading to inaccurate decisions due to stale or inaccurate data.
- **Dynamic Autoencoder:** We propose a dynamic neural network-bas ed compression method enabling flexible in-network computation without the need for feedback.

Objectives

- Model Structure: Develop a dynamic autoencoder model utilizing dynamic neural network technology.
- Flexible Compression Ratio: Adjust the compression ratio via mult i-level compression.
- Network Resource Usage: Enable flexible utilization of network re sources to adapt to dynamic network environments.
- Better Service Quality: Address the decline in service quality due to increasing multimedia data traffic.

Methods

- Layered Block Development: Implement dynamic autoencoder wit h layered blocks for multiple compression paths and real-time compression ratio adjustment.
- Multi-Level Compression: Design a 3-level compression model for i mages and videos, expandable to N levels, to cater to various data t ypes.
- **Dynamic Resource Optimization:** Facilitate resource identification a nd optimization via metadata exchange, adjusting compression ratios based on device performance and network bandwidth.

Results

• Example of 3-level Dynamic Neural Network: Minor quality loss in small videos; larger media handles multiple compressions well.

	Original	Level 1	Level 2	Level 3
Train	1	0.970872	0.959086	0.9338
Test	1	0.971050	0.959276	0.9341

Computational Time:

Stage	Time Range (ms)	Average Time (ms)	Median (ms)	Variance	
Lv1_encoder	0.54 - 2.80	0.67	0.57	0.1757	
Lv2_encoder	0.67 - 3.19	0.92	0.71	0.3640	
Lv3_encoder	0.83 - 4.32	1.87	1.12	1.3835	
Lv3_decoder	0.81 - 4.19	1.43	1.05	0.7343	
Lv2_decoder	0.66 - 3.64	0.93	0.70	0.4728	
Lv1_decoder	0.53 - 2.96	0.67	0.56	0.2102	

• Network Performance: Enhanced video transmission with adjusta ble autoencoder computation. (The study transmits video and dumy packets of equal size at a frequency of every 0.1 seconds, o ver a link with a bandwidth of 3 Mbps.)

Conclusion

Our study presents a dynamic autoencoder for efficient multimedia compression, optimizing network and computational resources. It combines adaptive structures and intelligent resource management to enhance network performance, demonstrating a scalable solution for handling increased multimedia traffic with minimal quality loss.

