MATH7670 LECTURE NOTES

1. Lecture 01

What is a toric variety(over \mathbb{C})? simplest: \mathbb{P}^n , also $\mathbb{P}^{n_1} \times \mathbb{P}^{n_2} \times \cdots \times \mathbb{P}^{n_r}$ (via Segre embdedding).

Example 1 (Hirzebruch surface). A polygon

$$\begin{split} \varphi: \mathbb{A}^2_{s,t} &\to \mathbb{P}^5 \\ (s,t) &\mapsto (1,s,s^2,s^3,t,st) \end{split}$$

Consider

$$\overline{\varphi(\mathbb{A}^2)} = X \subseteq \mathbb{P}^5.$$

X is an example of a toric variety. The edges correspond to curves C_1, \ldots, C_4 on X, $C_1 \cap C_2 = \operatorname{pt}$, $C_2 \cap C_3 = \operatorname{pt}$, etc. PicX is generated by $[C_1], [C_2]$

Toric varieties allow explicit constructions of many concepts in A.G.

- singularities, smoothness, resolution of singularities
- divisors, geometry of divisors PicX, ClX.
- cohomology of divisors
- vector bundles, projective bundles, sheaf of differentials
- Serre duality, Riemann-Roch

Special features:

- defined using: cones, fans, polyhedron
- action of the torus

$$T = (\mathbb{C}^*)^n.$$

• homogenerous coordinates on a toric variety.

Caution. Our toric varieties are always normal.

First few weeks:

- cones, F-M,
- affine toric varieties: define/ideals/points/singularities, maps, T-action.
- projective, more general, toric varieties

Date: January 24, 2019.

1.1. Cones. Let V be a finite dimensional \mathbb{R} -vector space.

Definition. Let $S \subseteq V$ be a subset, nonempty.

- (1) S is a (convex) cone if $\forall \mathbf{x}, \mathbf{y} \in S, \forall \alpha, \beta \in \mathbb{R}, \alpha, \beta \geq 0$, then $\alpha \mathbf{x} + \beta \mathbf{y} \in S$.
- (2) S is a **convex set** if $\forall \mathbf{x}, \mathbf{y} \in S, \forall \alpha, \beta \in \mathbb{R}, \alpha, \beta \geq 0, \alpha + \beta = 1$, then $\alpha \mathbf{x} + \beta \mathbf{y} \in S$.

Example 2. Some examples when $V = \mathbb{R}^2$:

(1) A convex cone:

(2) Convex sets:

(A) A polygon

Example 3. Key examples:

(1) If $A \in \mathbb{R}^{m \times n}$, write $A = [A_1, A_2, \dots, A_n]$, define

$$vcone(A) := \{x_1 A_1 + \dots + x_n A_n \in \mathbb{R}^n, x_1, \dots, x_n \ge 0\}$$
$$= \{A\mathbf{x} \in \mathbb{R}^n : \mathbf{x} \ge 0, \mathbf{x} \in \mathbb{R}^n\}$$

A cone of this form is called finitely generated or V-cone.

(2) obtain cone via intersections of half-spaces. If

$$B = \begin{bmatrix} B_1 \\ \vdots \\ B_d \end{bmatrix}, B_i \in (\mathbb{R}^n)^*$$

Define

hcone(B) := {
$$\mathbf{y} \in (\mathbb{R}^n)^* : \langle B_1, \mathbf{y} \rangle = B_1 \mathbf{y} \le 0, \dots, \langle B_n, \mathbf{y} \rangle = B_n \mathbf{y} \le 0$$
}
= { $\mathbf{y} \in (\mathbb{R}^m)^* : B\mathbf{y} \le 0$ }

(3) if $A \in \mathbb{R}^{m \times n}$, define

$$conv(A) := \{x_1 A_1 + \dots + x_n A_n : x_i \ge 0, \sum x_i = 1\}$$

A set of this form is a polytope.

(4) if $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$

$$P(A, \mathbf{b}) := \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \le \mathbf{b} \}$$

A set of this form is a polyhedron.

Definition (Key construction: dual cone). If $\sigma \in V$ is a cone, define its dual cone

$$\sigma^{\vee} = \{ \mathbf{y} \in V^* : \langle \mathbf{y}, \mathbf{x} \rangle \le 0, \forall \mathbf{x} \in \sigma \}.$$

(Check: σ^{\vee} is also a cone.)

Example 4. $V = \mathbb{R}^2$. Let $\sigma = \text{cone}(A_1, A_2)$. Then $\sigma^{\vee} = \text{cone}(A_1^{\perp}, A_2^{\perp})$.

Remark. if $\sigma = \text{vcone}(A), A \in \mathbb{R}^{m \times n}$, then $\sigma^{\vee} = \text{hcone}(A^T)$. This is because

$$\sigma^{\vee} = \{ \mathbf{y} \in (\mathbb{R}^m)^* : \langle \mathbf{y}, \mathbf{x} \rangle \le 0, \forall \mathbf{x} \in \sigma \}$$
$$= \{ \mathbf{y} : \langle \mathbf{y}, A_1 \rangle \le 0, \dots, \langle \mathbf{y}, A_n \rangle \le 0 \}.$$

Some desires:

- (1) show that σ is a hoone $\iff \sigma$ is a voone
- (2) find σ^{\vee} , i.e. find B s.t. $\sigma^{\vee} = \text{vcone}(B)$
- (3) $\sigma^{\vee\vee} = \sigma$?

1.2. Fourier-Motzkin elimination. Let $vcone(A) = \{Ax : x \ge 0\}$, consider

$$C = \left\{ \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} : \mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{R}^m, \mathbf{y} = A\mathbf{x}, \mathbf{x} \ge 0 \right\}$$
$$= \left\{ \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} : \begin{bmatrix} A & -I \\ -A & I \\ -I & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \le 0 \right\}$$

is an hoone $\subseteq \mathbb{R}^{n+m}$. Consider $\pi_{\mathbf{y}}$

$$\pi_{\mathbf{y}} : \mathbb{R}^{n+m} \to \mathbb{R}^m,$$
$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} \mapsto \mathbf{y}.$$

Then $\pi_{\mathbf{y}}(C) = \sigma$.

Generalize: let $P = P(A, \mathbf{b}) = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b}\} \subseteq \mathbb{R}^n$. Fix $1 \leq k \leq n$ column index $(A \in \mathbb{R}^{m \times n})$, define

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \mapsto \begin{bmatrix} x_1 \\ \vdots \\ 0 \\ \vdots \\ x_n \end{bmatrix}.$$

The image of π_k is $\{x_k = 0\} = \mathbb{R}^{n-1} \subseteq \mathbb{R}^n$. Then $\pi_k(P) \subseteq \mathbb{R}^{n-1} \subseteq \mathbb{R}^n$. Is $\pi_k(P)$ a polyhedral?

Theorem 1.1 (Fourier-Motzkin elimination). Fix $A \in \mathbb{R}^{m \times n}$, $1 \leq k \leq n$, then there exists $C \in \mathbb{R}^{r \times m}$, some r, s.t.

- (1) $C \ge 0$
- (2) CA has column k equal to 0
- (3) if $P = P(A, \mathbf{b})$, then $\pi_k(P) = P(A', \mathbf{b}')$ where A' = CA, $\mathbf{b}' = C\mathbf{b}$.

Example 5.

$$A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & -1 & -1 \\ 1 & 0 & 1 \\ 1 & -2 & 0 \end{bmatrix}, \sigma = \{ \mathbf{x} : A\mathbf{x} \le 0 \} \subseteq \mathbb{R}^3$$

and

$$\pi_3: \mathbb{R}^3 \to \mathbb{R}^3,$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \mapsto \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$

(1)
$$\begin{cases} x_1 + x_2 - x_3 \le 0 \\ 2x_1 - x_2 - x_3 \le 0 \\ x_1 + x_3 \le 0 \\ x_1 - 2x_2 \le 0 \end{cases}$$

parition $\{1, 2, 3, 4\}$:

$$Z := \{4\}$$

 $N := \{1, 2\}$
 $P := \{3\}$

(2)
$$\begin{cases} x_1 - 2x_2 \le 0 \\ 2x_1 + x_2 \le 0 \\ 3x_1 - x_2 \le 0 \end{cases}$$

if
$$\begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$$
 satisfies (2), find $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfies (1):

$$x_3 \ge x_1 + x_2$$
$$x_3 \ge 2x_1 - x_2$$
$$x_3 \le -x_1$$

Let

$$L = \max(x_1 + x_2, 2x_1 - x_2),$$

$$U = \min(-x_1),$$

then any x_3 s.t. $L \le x_3 \le U$ satisfies $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \sigma$.

2. Lecture 02

Recall: F-M elimination (Theorem 1.1). (HW: prove it.) We had defined $\sigma^\vee\colon \sigma\subseteq V=\mathbb{R}^m$

$$\sigma^{\vee} = \{ \mathbf{y} \in V^* : \langle \mathbf{y}, \mathbf{x} \rangle \le 0, \forall \mathbf{x} \in \sigma \}.$$

Goals:

- \bullet hcones = vcones
- $\bullet \ \sigma^{\vee\vee} = \sigma$

2.1. "Farkas jungle".

Corollary 1. Let $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, then either

- (1) $\exists \mathbf{x} \in \mathbb{R}^n \text{ s.t. } A\mathbf{x} \leq \mathbf{b}, \text{ or }$
- (2) $\exists \mathbf{y} \in \mathbb{R}^m \text{ s.t. } \mathbf{y}^T \overline{A} = A^T \mathbf{y} = 0, \ \mathbf{y} \ge 0 \text{ but } \mathbf{y}^T \mathbf{b} = \langle \mathbf{y}, \mathbf{b} \rangle < 0,$

but not both.

Proof. not both: If we have $A\mathbf{x} \leq \mathbf{b}$, $\mathbf{y}^T A = 0$, $\mathbf{y} \geq 0$, $\mathbf{y}^T \mathbf{b} < 0$, then $0 = \mathbf{y}^T A \mathbf{x} \leq \mathbf{y}^T \mathbf{b} < 0$.

Contradiction!

Suppose $A\mathbf{x} \leq \mathbf{b}$ has no solution. Produce \mathbf{y} : Apply F-M to columns $n, n-1, \ldots, 1$, obtain $C \in \mathbb{R}^{N \times m}$, $C \geq 0$ and CA = 0. Then we get a system $0 = CAX \leq C\mathbf{b} = \mathbf{b}'$ having no solutions. So some $b'_i = 0$. Let $\mathbf{y}^T = i$ -th row of C. So

$$\mathbf{y} \ge 0,$$
$$\mathbf{y}^T A = 0,$$
$$\mathbf{y}^T \mathbf{b} < 0.$$

Corollary 2. Let $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, then either

- (1) $\exists \mathbf{x} \in \mathbb{R}^n \text{ s.t. } A\mathbf{x} = \mathbf{b}, \mathbf{x} > 0 \text{ or,}$
- (2) $\exists \mathbf{y} \in \mathbb{R}^m \text{ s.t. } \mathbf{y}^T A \leq 0, \ \mathbf{y}^T \mathbf{b} > 0,$

but not both.

Proof. Not both: $A\mathbf{x} = \mathbf{b}$,

$$\mathbf{y}^T A \mathbf{x} = \mathbf{y}^T \mathbf{b} > 0$$

Contradiction!

Assume (1) fails, i.e.

$$\{\mathbf{x} \in \mathbb{R}^n : \begin{bmatrix} A \\ -A \\ -I \end{bmatrix} \mathbf{x} \le \begin{bmatrix} \mathbf{b} \\ -\mathbf{b} \\ 0 \end{bmatrix}\} = \emptyset$$

by Corollary 1, $\exists \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \end{bmatrix} \ge 0 \text{ s.t.}$

$$\begin{bmatrix} \mathbf{y}_1^T & \mathbf{y}_2^T & \mathbf{y}_3^T \end{bmatrix} \begin{bmatrix} A \\ -A \\ -I \end{bmatrix} = 0,$$

$$\begin{bmatrix} \mathbf{y}_1^T & \mathbf{y}_2^T & \mathbf{y}_3^T \end{bmatrix} \begin{bmatrix} \mathbf{b} \\ -\mathbf{b} \\ 0 \end{bmatrix} < 0,$$

SO

$$(\mathbf{y}_1^T - \mathbf{y}_2^T)A = \mathbf{y}_3^T \ge 0,$$

$$(\mathbf{y}_1^T - \mathbf{y}_2^T)\mathbf{b} < 0.$$

Let
$$\mathbf{y} = \mathbf{y}_1^T - \mathbf{y}_2^T$$
.

Corollary 3 (Farkas lemma). Let $\sigma = vcone(A)$, $A \in \mathbb{R}^{m \times n}$, let $\mathbf{b} \in \mathbb{R}^m$, then either

- (1) $\mathbf{b} \in \sigma$ or,
- (2) $\exists \mathbf{y} \in \sigma^{\vee} \ s.t. \ \mathbf{y}^T \mathbf{b} > 0.$

Corollary 4. Given $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, let $\sigma = vcone(A) \subset \mathbb{R}^m$. If $\mathbf{b} \notin \sigma$, then $\exists \mathbf{y} \in \sigma^{\vee} \subseteq (\mathbb{R}^n)^*$ s.t. $\mathbf{y}^T \sigma \leq 0$, $\mathbf{y}^T \mathbf{b} > 0$. i.e.

$$\sigma \subseteq H_{\mathbf{y}}^{\leq 0} := \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{y}^T \mathbf{x} \leq 0 \}$$

and

$$\mathbf{b} \in H_{\mathbf{y}}^{>0} := \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{y}^T \mathbf{x} > 0 \}.$$

Notation: $\mathbf{y}^{\perp} := H_{\mathbf{y}}^{=0} := \{ \mathbf{x} \in \mathbb{R}^m : \mathbf{y}^T \mathbf{x} = 0 \}.$

Corollary 5. let $\sigma = vcone(A) \subseteq \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$, then $\sigma = \sigma^{\vee \vee}$.

Proof. (1) $\sigma \subseteq \sigma^{\vee\vee}$: this is essentially formal.

$$\mathbf{y} \in \sigma^{\vee} \iff \mathbf{y}^T A_1 \leq 0, \dots, \mathbf{y}^T A_n \leq 0$$

 $\iff \mathbf{y} \in \text{hcone}(A).$

need to show $A_i \in \text{hcone}(A^T)^{\vee} = \sigma^{\vee\vee}$, if $\mathbf{y} \in \sigma^{\vee}$, then $\mathbf{y}^T A_i \leq 0 \implies A_i \in \sigma^{\vee\vee}$.

(2) $\sigma \supseteq \sigma^{\vee\vee}$ is the main part:

If $\mathbf{b} \in \sigma^{\vee\vee}$, but $\mathbf{b} \notin \sigma$, Farkas $\implies \exists \mathbf{y} \in \sigma^{\vee} \text{ s.t. } \mathbf{y}^T \mathbf{b} > 0$ contradiction since this must be $< 0(\mathbf{b} \in \sigma^{\vee\vee})$.

Corollary 6. Let $\sigma = hcone(A^T) \subseteq \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$ be a polyhedral cone. Then

$$\sigma^{\vee} = vcone(A).$$

Proof. Let $\tau = \text{vcone}(A)$, then $\sigma = \tau^{\vee}$, then $\sigma^{\vee} = \tau^{\vee\vee} = \tau$.

Is the proof of Corollary 6 circular reasoning? [No. Because from last class we know that $\tau = \text{vcone}(A) \implies \tau^{\vee} = \text{hcone}(A^{T})$.]

Theorem 2.1 (Weyl-Minkowski). let $\sigma \subseteq \mathbb{R}^m$ be a cone, then σ is finitely generated $\iff \sigma$ is polyhedral.

Proof. σ is f.g. \implies σ is polyhedral: this is just F-M.

 σ is polyhedral $\Longrightarrow \sigma$ is f.g.: σ is polyhedral $\Longrightarrow \sigma^{\vee}$ f.g. $\Longrightarrow \sigma^{\vee}$ is polyhedral $\Longrightarrow \sigma^{\vee\vee}$ is f.g. $\Longrightarrow \sigma$ f.g.

Definition. let $\sigma = \text{vcone}(A) = \text{vcone}(A_1, \dots, A_n)$ is an **irredundant representation** of σ if $\forall i \in 1, \dots, n$,

$$vcone\{A_j: j \neq i\} \neq \sigma$$

Similarly, if $\sigma = \text{hcone}(B) = \text{hcone}(B_1, \dots, B_d)^T$, say this is irredundant if $\forall i \in 1, \dots, d$,

$$vcone\{B_i : j \neq i\} \neq \sigma$$

What does F-M gives us?

$$A_{m \times n} \xrightarrow{\mathrm{FM}} B_{m \times r} \to C_{m \times s}$$

$$\begin{bmatrix} A \\ -A \\ -I \end{bmatrix}$$

s.t. $\sigma = \text{vcone}(A) = \text{hcone}(B^T) = \text{vcone}(C)$. We can arrange that B, C give irredundant representation of $\sigma^{\vee} = \text{vcone}(B)$ and $\sigma^{\vee\vee} = \text{vcone}(C)$.

Example 6 (M2 code e.g. in Handout #1). vcone(A) is a cone $\subseteq \mathbb{R}^4$ generated by $2\mathbf{e}_i + \mathbf{e}_j$ for $i \neq j, 1 \leq i, j \leq 4$. B = FM(A) is a 4×8 matrix, whose columns generate σ^{\vee} .

2.2. faces of σ , faces of σ^{\vee} .

Definition. A face of a polyhedral cone $\sigma \subseteq \mathbb{R}^m$ is a subset $\tau \subset \sigma$ of the form $\tau = \sigma \cap u^{\perp}$ for some $u \in \sigma^{\vee}$.

Example 7. A 3d cone:

Remark.

- σ is a face of σ
- the smallest face is

$$\sigma \cap (-\sigma)$$
 (= lineality space)

• a face $\tau \leq \sigma(\leq \text{means a face of})$ is also a polyhedral cone. if $\sigma = \text{vcone}(A_1, \ldots, A_n)$ and $u \in \sigma^{\vee}$, then $\tau = \text{vcone}(\{A_i : u \cdot A_i = 0\}).[\#o6 \text{ in hand out}\#1:\text{columns are gens of } \sigma, \text{ rows are gens of } \sigma^{\vee}, \text{ can figure out all faces}(u_i^T v_j = 0 \text{ in entry } (i, j))]$