ای نام تو بهترین سرآغاز

حفاظت و رله نرانسفورمانور جربان

مدرس: نبى اله رمضاني

❖ ترانسفورماتورهای جریان Current Transformer)-CT • وظایف:

- ✓ مبدل جریان بالا به جریان قابل اعمال به دستگاههای اندازه گیری رنج پایین و یا حفاظتی
 - ✓ جداسازی دستگاههای اندازه گیری و یا حفاظتی از شبکه فشار قوی

نکته: رلههای وجود دارند که بطور مستقیم به ۲۰ کیلوولت متصل میشوند که به آنها رلههای Primary گویند. رلههای که به ثانویه CTها متصل مىشوند رلههاى Secondary ناميده مىشوند.

ادامه) کو ترانسفورماتورهای جریان (ادامه)

وزارت علوم، تحقیقات و ف

- نحوه استقرار CT در شبکه قدرت بصورت سری است. پس عامل بوجود آورنده شار در هسته جریان است.

 $E_{\rm S} = Z_{Burden}.I_{\rm S}$

نکته: به بار متصل شده در ثانویه مبدلها بردن (Burden) نامیده می شود.

تمرین: چرا نباید ثانویه CT را باز نگهدشت؟

ادامه) کو ترانسفورماتورهای جریان (ادامه)

√ دسته بندی ۲ ها

- اندازهگیری: در ثانویه آن صرفا آمپرمتر قرار میگیرد (اندازهگیری جریان بار و اضافه بار کم) تفاوت در رنج اندازه گیری است - حفاظتی: در ثانویه آن صرفا رله قرار می گیرد (اندازه گیری جریان اتصال کوتاه)

ادامه) کو ترانسفورماتورهای جریان (ادامه)

√ دسته بندی CT ها

CT از نظر ساختمان هسته:

۱- هسته با فاصله هوایی

- هسته بدون فاصله هوایی (**Ring Type**)

· **CT** از نظر نوع سیمپیچی اولیه :

CT از نظرمحل استقرار هسته:

- پاندولی Pendulum کاربرد: در سطح اتصال کو تاه بالا

- سنجاق سرى Hairpin كاربرد: در سطح اتصال كو تاه بالا

- هسته پایین (Tank Type)

- هسته بالا (Inverted Type)

→ مقایسه CT های هسته پایین و هسته بالا

- هسته بالا از نظر الكتريكي بهتر است زيرا:
 - عایق بندی کمتری نیاز دارد.
 - نیروی اتصال کوتاه آن کم است.
- کمتر بودن مشکل خنک کنندگی سیم پیچ اولیه
 - * CT ها از نظر جنس هسته

- اشكالات هسته بالا:
- حمل و نقل آن مشكل تر است.
- وزن سنگین آن ممکن است آن را در برابر زلزله شکننده کند.

√بررسی عملکرد ماندگار CT ها

خطای نسبی دامنه
$$rac{I_e \sin(lpha+\delta)}{{I_s}'}$$
 خطای نسبی فاز $rac{I_e \cos(lpha+\delta)}{{I_s}'}$

خطای فاز
$$I_q \ I_e \ \star$$
خطای نسبت تبدیل خطای مرکب

تمرین (نیاز به تحویل نیست): روابط روبرو را اثبات کنید:

 E_S الف محاسبه •

$$e_S = n_2 \frac{d\varphi}{dt}, \quad \varphi = \varphi_{max} Sin(2\pi f)t$$

$$e_S=2\pi f n_2 \varphi_{max} Cos(2\pi f) t$$
مقدار موثر $E_S=rac{2\pi f n_2 \varphi_{max}}{\sqrt{2}}$ و $\varphi_{max}=A.~B_{max}$

$$E_s = 4.44 f n_2 A. B_{max}$$

$$n_2 I_e = H.l$$

$$I_{e rms} = \frac{H.l}{\sqrt{2}n_2}$$

انقطه کار
$$Z_t rac{n_1}{n_2} I_p$$
 نقطه کار Q I_e $rac{n_1}{n_2} I_p$ I_e

√ محاسبه نقطه کار در ناحیه خطی منحنی اشباع CT ها

$$E_s = Z_t \left(\frac{n_1}{n_2} I_p - I_e \right)$$

افزایش جریان اولیه

$$Z_t = cte$$
 g $I_{p2} > I_{p1}$

- در این ارتباط دو سوال مطرح می شود:

۱ – تا چند برابر جریان نامی شبکه نقطه کار در محدوده خطی باقی می ماند؟

۲ - حدا کثر مقدار خطا در این حالت چه قدر است؟

- برای پاسخ به این دو سوال:

کلاس و حد دقت CT ها مطرح می شود.

نکته: در ترانسفورماتور جریان اندازه گیری نقطه کار در نزدیکی نقطه اشباع است. زیرا انتظار نداریم که میترها جریان اتصال کوتاه را نشان دهد.

◄ حد دقت و کلاس دقت CT اندازه گیری (در بار نامی)

حد دقت در حالت کلی ۱۲۰ درصد است. مگر غیر آن قید شود.

- كلاس دقت

0.1, 0.2, 0.5, 1, 3,5

- توان خروجی CT بر اساس استاندارد EC 185 بر اساس استاندارد 2.5 VA, 5VA, 10 VA, 15 VA, 30 VA

مثال : CT اندازه گیری با کلاس ۵.

چنانچه تا ۱۲۰ درصد جریان در بار نامی از CT عبور کند میتر ۵ درصد خطا را نشان می دهد.

مثال :%15 VA, class 0.5, ext. 200

چنانچه ۲ برابرجریان در بار نامی از CT عبور کند میتر ۰/۵ درصد خطا را نشان میدهد.

وزارت علوم، تحقيقات و فنأورى در بار نامی (در ضریب قدرت پس فازی ۸/۰ تا ۱)

√ بررسی عملکرد ماندگار CT ها (ادامه)

✓ کلاس دقت و حد دقت CT حفاظتی

- كلاس دقت

5P, 10P, S, T, U, X

5%, 10%, 3%, 10%, 5%, ≈ 0

حد دقت مطابق استاندارد 185 IEC

5, 10, 15, 20, 30

مثال: 15 VA, 5P10

در بار نامی (در ضریب قدرت پس فازی ۸/۰ تا ۱) چنانچه تا ۱۰ برابر جریان از CT عبور کند ۵ درصد خطا ایجاد می شود.

تعریف حد دقت: حداکثر مضرب جریان که اندازه خطا در مقدار مورد نظر باقی میماند.

با آرزوی سلامتی، بهروزی و موفقیت