The Linear Sum Assignment Problem Scientific Computing Class

Group 14:

Melisa Akdemir Ludwig Austermann Tabea Both Matthias Personnaz

TU Berlin

17.2 2023

The Linear Sum Assignment

Problem: Minimize the cost of an Allocation between resources and tasks.

Definitions: The costmatrix $C^{n,m}$, the entry $c_{i,j}$ defines the cost for assigning resource i to task j

Applications: job problem, special assignment problem, minimum weight bipartite matching.

The Linear Sum Assignment Problem

Graph representation

The Linear Sum Assignment Problem

Mathematical Introduction

minimize
$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i,j} x_{i,j}$$
 (total cost) (1) subject to $\sum_{i=1}^{n} x_{i,j} = 1 \quad \forall i \in 1, \dots, n$

$$\sum_{i=1}^{n} x_{i,j} = 1 \quad \forall j \in 1, \dots, n$$
 (3)

$$x_{i,j} \in 0, 1 \quad \forall i, j \in 1, \dots, n$$
 (4)

A greedy, parallelized approach Motivations

▶ Test every possible permutation amongst \mathfrak{S}_n and keep the one

$$\arg\min_{\sigma} \sum_{i=1}^{n} C_{i,\sigma(i)} \tag{5}$$

- Stupid? Some problems might need to solve multiple small-scale assignment problems on local data ($n \sim 10^1$), or as proxy heuristics.
- Examples: Task Scheduling, iterative problems with incomplete information, TSP on clustered graphs, etc.
- Doesn't compete with polynomial algorithms for large instances. Use cases are different.

A greedy, parallelized approach Strategy

- Proposition: make use of GPUs with great parallel capabilities.
- ► ⇒ Simpler set of arithmetic capabilities.
- Need a way to efficiently enumerate & distribute permutations AND minimize memory transfers.
- Encode the permutations with numbers.
- Requires decoding them with simple computational objects (a.k.a. numbers, arrays + arithmetic operations. No sets, nor fancy data structures in C language).

A greedy, parallelized approach Encoding

► Lehmer encoding

$$L:\mathfrak{S}_n\longrightarrow\{0\}\times[0,1]\times\cdots\times[0,n-1]$$

$$\sigma \longmapsto L(\sigma) = [\#\{j < i, \sigma(i) > \sigma(j)\}]_{1 \le i \le n}$$
 (7)

Factorial number system

Radix/Base	8	7	6	5	4	3	2	1
Place value	7!	6!	5!	4!	3!	2!	1!	0!
Place value in decimal	5040	720	120	24	6	2	1	1
Highest digit allowed	7	6	5	4	3	2	1	0

A greedy, parallelized approach

Scopes & limitations

- On modern GPU systems, scales well in terms of parallelization.
- ▶ Memory complexity lies within $\Theta(k \cdot n^2 \log n)$ with k: number of concurrently running threads.
- Practically, single precision will limit applicable range to n < 13 and double integer precision to n < 21.
- Easily reach 10 to 1000 billion permutations checked per second depending on hardware.

Hungarian Method

- is a primal-dual algorithm
- use a submatching to find a higher order submatching
- feasible dual solution & partial primal solution
- each iteration find optimal assignement on reduced cost subgraph
- we use therefore augmenting paths

Hungarian Method simple Version

Idea: take one vertex k and build an alternating tree rooted at k.

Hungarian Method

Shortest Augmenting Path Version

Idea: take one vertex k and find the shortest augmenting path. We do not need the whole incremental graph during computation, therefore the cost has to be carried over.

Signature Method

Signature Method is an implementation of the Dual Pivoting Algorithm for the Assignment Problem which has $\mathcal{O}(n^3)$ time complexity where n is the number of tasks.

The algorithm starts by constructing a feasible solution to the problem in the form of a tree, called the dual feasible tree. It then iterates over the tree, pivoting on an edge in the tree, to obtain a new tree. This process is repeated until no more improvements can be made to the solution.

Signature Method

```
comment: initialization (dual feasible tree of level n-1);
T := ([1, j] : j = 1, 2, ..., n), u_1 := 0;
for j := 1 to n do v_i := c_{1i};
for i := 2 to n do
 j^* := argmin(c_{ii} - v_i : j \in V), u_i := c_{ii^*} - v_{i*}, T := T \cup ([i, j^*]);
endfor
for k := n - 1 down to 2 do [comment: k = \text{level of } T]
comment: decrease by 1 the level of the current tree;
   select a row vertex t \in U with d_t(T) = 1 as the target, and set s := 1;
  repeat
   comment: dual pivoting;
   let I be the first column vertex in the path connecting s to t in T;
   T := T \setminus ([s, l]), and let T^s, T^l(s \in T^s, l \in T^l) be the resulting subtrees;
   \delta := \min(c_{ii} - u_i - v_i : i \in U(T^i), j \in V(T^s));
   let [s^*, I^*] be an edge for which \delta is achieved, and set T := T \cup ([s^*, I^*]);
   for each i \in U(T^I) do u_i := u_i + \delta:
   for each j \in V(T^l) do v_i := v_i - \delta;
   s := s^*
  until d_s(T) = 2
endfor
comment: determine the optimal primal solution;
let r be the unique row vertex having d_r(T) = 1;
for each odd edge [i,j] \in T do x_{ij} := 1 [ comment: x_{ij} = 0 for all other edges]
```

Signature Method

The algorithm works as follows:

- 1. Initialize the dual feasible tree (T) of level n-1 and compute the dual variables (uandv) associated with the tree.
- 2. Select two nodes *s* and *t* in the tree and obtain the path between them.
- 3. Perform the dual pivot operation on the selected edge (s, l), where l is the neighbor of s in the path between s and t. This operation involves removing the edge (s, l) from the tree, splitting the tree into two subtrees $(T^s$ and $T^l)$, adding the edge $[s^*, l^*]$ to T, where s^* and l^* are the vertices that achieve delta, and updating the cost matrix and the dual variables.
- 4. Repeat the steps 2 and 3 until no more improvements can be made to the solution, meaning until degree of s is 2.

Minimum Cost Flow

Reformulation

Minimum Cost Flow

Reformulation

Mathematical formulation:

minimize
$$\sum_{i,j \in V} \underbrace{f(i,j) * c(i,j)}_{\text{total cost}}$$

Constraints:

$$\begin{array}{ll} 0 \leq f(i,j) \leq 1 & \rightarrow \text{ one-to-one matching} \\ f(i,j) = -f(j,i) & \forall j,i \neq \{s,t\} & \rightarrow \text{ matching property} \\ \sum_{j \in V} f(s,j) = n = \sum_{j \in V} f(j,t) & \rightarrow \text{ complete matching} \end{array}$$

Optimal solution is stored in binary flow variable f(i,j) on edge.

Minimum Cost Flow

Successive Shortest Path Algorithm

```
Input: Flownetwork G = (V, E, s, t); n number of flowamount;
Output: Minimal cost flow:
 1: Initialize e.flow is 0 on all edges;
 2: Flow amount is 0;
 3: while Flow amount smaller than n do
 4:
       Find augmenting path s-t Path P in residual Graph G_f;
       Find minimal residual capacity \delta in Path P;
 5:
       Push flow amount \delta on path P to augment flow;
 6:
       Increase flowamount with \delta;
 7:
       Update G_f;
 8:
```

The Linear Sum Assigment Problem

Successive Shortest Path Algorithm

```
Input: Costmatrix C^{n,m};
Output: Optimal cost solution:
 1: Initialize Flownetwork:
 2: Initialize feasible flow 0; amnt =0;
 3: while flow amount smaller than n do
        Find augmenting path s - t Path P in residual Graph G_f;
 4:
        Find minimal residual capacity \delta in Path P;
 5:
        Push flow amount \delta on path P to augment flow;
 6:
        Increase flowamount with \delta:
 7:
 8:
       Update G_f;
    Optimal solution stored in flow;
```


