I problemi di Cousin su \mathbb{C}^n

Enrico Berni

Università di Pisa eberni@mail.dm.unipi.it

February 20, 2022

Overview

- Introduzione
 - I due problemi

2 Cousin I

Cousin II

Introduzione

È sempre possibile, dati un aperto connesso $\Omega \subseteq \mathbb{C}^n$, un suo ricoprimento aperto $\{U_i\}$ ed una famiglia di funzioni olomorfe $\{g_{ij}\}$ definite sotto certe condizioni locali, trovare dei prolungamenti g_i definiti sugli U_i ?

Cousin I

Sia $\Omega \subseteq \mathbb{C}^n$ un aperto connesso, e sia $\{U_i\}$ un suo ricoprimento aperto; supponiamo che per ogni coppia di indici j,k tali che $U_j \cap U_k \neq \emptyset$ esista una funzione olomorfa

$$g_{jk}:U_j\cap U_k\to\mathbb{C}$$

tale che

Cousin I

Sia $\Omega \subseteq \mathbb{C}^n$ un aperto connesso, e sia $\{U_i\}$ un suo ricoprimento aperto; supponiamo che per ogni coppia di indici j,k tali che $U_j \cap U_k \neq \emptyset$ esista una funzione olomorfa

$$g_{jk}:U_j\cap U_k\to\mathbb{C}$$

tale che

Problema

Stabilire sotto quali condizioni su Ω è possibile trovare una famiglia di funzioni olomorfe

$$g_i:U_i\to\mathbb{C}$$

tali che $g_{jk}=g_k-g_j$ su $U_j\cap U_k$, ogniqualvolta l'intersezione è non vuota.

Cousin II

Sia $\Omega \subseteq \mathbb{C}^n$ un aperto connesso, e sia $\{U_i\}$ un suo ricoprimento aperto; supponiamo che per ogni coppia di indici j,k tali che $U_i \cap U_j \neq \emptyset$ esista una funzione olomorfa

$$g_{jk}:U_j\cap U_k\to\mathbb{C}$$

tale che

Cousin II

Sia $\Omega \subseteq \mathbb{C}^n$ un aperto connesso, e sia $\{U_i\}$ un suo ricoprimento aperto; supponiamo che per ogni coppia di indici j,k tali che $U_i \cap U_j \neq \emptyset$ esista una funzione olomorfa

$$g_{jk}:U_j\cap U_k\to\mathbb{C}$$

tale che

- 2 $g_{jk} \cdot g_{kl} \cdot g_{lj} = 1$ se $U_j \cap U_k \cap U_l \neq \emptyset$

Problema

Stabilire sotto quali condizioni su Ω è possibile trovare una famiglia di funzioni olomorfe

$$g_i:U_i\to\mathbb{C}$$

tali che $g_{jk}=rac{g_k}{g_i}$ su $U_j\cap U_k$, ogniqualvolta l'intersezione è non vuota.

Theorem

L'analogo di Cousin I per funzioni C^{∞} , invece che olomorfe, è sempre risolubile.

Theorem

L'analogo di Cousin I per funzioni C^{∞} , invece che olomorfe, è sempre risolubile.

Proof.

Sia $\{\phi_i\}$ una partizione dell'unità C^{∞} su Ω subordinata al ricoprimento $\{U_i\}$.

Per ogni i, definisco $g_i(z):=\sum_k \phi_k(z)g_{ki}(z)$, con $z\in U_i$. Allora, su $U_i\cap U_j$ si ha

$$g_j(z) - g_i(z) = \sum_k \phi_k(z)(g_{kj}(z) - g_{ki}(z)) = \sum_k \phi_k(z)g_{ij}(z) = g_{ij}(z)$$

Theorem

Se $\Omega \subseteq \mathbb{C}^n$ è un dominio di olomorfia, allora Cousin I è sempre risolubile in Ω .

Proof.

Ricordiamo che $\bar{\partial} f := \sum_{j=1}^{n} \frac{\partial f}{\partial \bar{z_i}}$.

Sia $\{\phi_i\}$ una partizione dell'unità subordinata al ricoprimento $\{U_i\}$.

$$h_i := \sum_k \phi_k \mathsf{g}_{ki} : U_i o \mathbb{C}$$

A priori le h_i potrebbero non essere olomorfe: tuttavia,

$$\bar{\partial}(h_j - h_i) = \bar{\partial} \sum_k \phi_k(g_{kj} - g_{ki}) = \bar{\partial} \sum_k \phi_k g_{ij} = \bar{\partial} g_{ij} = 0$$

Proof.

 $f_i:=\bar{\partial}h_i$ è ben definita, $\bar{\partial}$ -chiusa e $C^\infty(\Omega)$. In particolare, esistono f definita su Ω tale che $f|_{U_j}=f_j$ e $u\in C^\infty(\Omega)$ tali che $\bar{\partial}u=f$.

Proof.

 $f_i:=\bar{\partial}h_i$ è ben definita, $\bar{\partial}$ -chiusa e $C^\infty(\Omega)$. In particolare, esistono f definita su Ω tale che $f|_{U_j}=f_j$ e $u\in C^\infty(\Omega)$ tali che $\bar{\partial}u=f$. Posta $g_j=h_j-u$, si ha

$$\begin{cases} g_j - g_i = h_j - h_i = g_{ij} \\ \bar{\partial} g_i = \bar{\partial} h_i - \bar{\partial} u = 0 \end{cases}$$

Segue la tesi.

Lemma

Sia $\Omega \subseteq \mathbb{R}^n$ un aperto semplicemente connesso, e sia $f: \Omega \to \mathbb{C}$ continua e senza zeri in Ω . Allora, esiste $g: \Omega \to \mathbb{C}$ continua tale che $f = \exp g$. Inoltre, se $f \in C^k$, anche $g \in C^k$.

Proof.

Dato che f è continua, ogni punto $x\in\Omega$ ammette un intorno U_x su cui f ha un logaritmo continuo. Sia ora $x_0\in\Omega$, e sia $\gamma:[0,1]\to\Omega$ una curva continua, semplice e chiusa, con $\gamma(0)=\gamma(1)=x_0$.

Proof.

Dato che f è continua, ogni punto $x\in\Omega$ ammette un intorno U_x su cui f ha un logaritmo continuo. Sia ora $x_0\in\Omega$, e sia $\gamma:[0,1]\to\Omega$ una curva continua, semplice e chiusa, con $\gamma(0)=\gamma(1)=x_0$. Sempre per continuità, $f(\gamma):[0,1]\to\mathbb{C}$ ha un logaritmo continuo, cioè l'insieme

$$S = \{s \in [0,1) | log(f(\gamma(t))) \text{ è continua } \forall t \leq s\}$$

è un clopen non vuoto.

Proof.

Dato che f è continua, ogni punto $x\in\Omega$ ammette un intorno U_x su cui f ha un logaritmo continuo. Sia ora $x_0\in\Omega$, e sia $\gamma:[0,1]\to\Omega$ una curva continua, semplice e chiusa, con $\gamma(0)=\gamma(1)=x_0$. Sempre per continuità, $f(\gamma):[0,1]\to\mathbb{C}$ ha un logaritmo continuo, cioè l'insieme

$$S = \{s \in [0,1) | log(f(\gamma(t))) \text{ è continua } \forall t \leq s\}$$

è un clopen non vuoto.

Supponiamo per assurdo $\lim_{t\to 1} log(f(\gamma(t))) \neq log(f(\gamma(0)))$:

Proof.

Sia u(s,t) un'omotopia ad estremi fissi tra γ e C_{x_0} ; la funzione

$$\rho(s) := \frac{1}{2\pi i} (\lim_{t \to 1} \log(f(u(s, t))) - \log(f(u(s, 0))))$$

è continua in s, a valori interi, e soddisfa $\rho(0)=0$ e $\rho(1)\neq 0$, assurdo.

Proof.

Sia u(s,t) un'omotopia ad estremi fissi tra γ e C_{x_0} ; la funzione

$$\rho(s) := \frac{1}{2\pi i} (\lim_{t \to 1} \log(f(u(s, t))) - \log(f(u(s, 0))))$$

è continua in s, a valori interi, e soddisfa $\rho(0)=0$ e $\rho(1)\neq 0$, assurdo. Allora, $1\in S$ e $S=[0,1]\Longrightarrow f$ ha un logaritmo continuo su tutto Ω .

Proof.

Sia u(s,t) un'omotopia ad estremi fissi tra γ e C_{x_0} ; la funzione

$$\rho(s) := \frac{1}{2\pi i} (\lim_{t \to 1} \log(f(u(s, t))) - \log(f(u(s, 0))))$$

è continua in s, a valori interi, e soddisfa $\rho(0)=0$ e $\rho(1)\neq 0$, assurdo. Allora, $1\in S$ e $S=[0,1]\Longrightarrow f$ ha un logaritmo continuo su tutto Ω . Per il caso C^k , si deriva l'equazione funzionale $\exp g=f$ e si ripete il ragionamento.

Corollary

Sia $\Omega \subseteq \mathbb{C}^n$ un aperto semplicemente connesso, e sia $f: \Omega \to \mathbb{C}$ una funzione olomorfa senza zeri. Allora, esiste una funzione olomorfa $g: \Omega \to \mathbb{C}$ tale che $f = \exp g$.

Corollary

Sia $\Omega \subseteq \mathbb{C}^n$ un aperto semplicemente connesso, e sia $f: \Omega \to \mathbb{C}$ una funzione olomorfa senza zeri. Allora, esiste una funzione olomorfa $g: \Omega \to \mathbb{C}$ tale che $f = \exp g$.

Proof.

Per il lemma precedente, esiste una funzione C^1 g che soddisfa $\exp g = f$. Derivando l'equazione, si osserva che g soddisfa le condizioni di Cauchy-Riemann.

Theorem

Sia $\Omega \subseteq \mathbb{C}^n$ un dominio di olomorfia; sia $\{g_{ij}\}$ un insieme di dati locali per Cousin II, sul ricoprimento $\{U_i\}$. Se esistono delle funzioni continue e senza zeri $g_i': U_i \to \mathbb{C}$ tali che $g_{ij} = g_j'/g_i'$ su $U_i \cap U_j$, allora esistono delle funzioni olomorfe e senza zeri $g_i: U_i \to \mathbb{C}$ tali che $g_{ij} = g_i/g_i$.

Proof.

Se gli $\{U_i\}$ sono tutti polidischi, siano g_i' come da ipotesi. Scriviamo $g_i' = \exp h_i'$, e sia $h_{ij} = h_j' - h_i'$.

Proof.

Se gli $\{U_i\}$ sono tutti polidischi, siano g_i' come da ipotesi. Scriviamo $g_i' = \exp h_i'$, e sia $h_{ij} = h_j' - h_i'$.

 h_{ij} è un logaritmo continuo di g_{ij} (supponiamo olomorfo), e $\{h_{ij}\}$ un insieme di dati locali per Cousin I.

Risolviamo Cousin I con $\{h_i\}$, e Cousin II con $g_i = \exp h_i$:

$$g_j/g_i = \exp(h_j - h_i) = \exp h_{ij} = \exp(h'_j - h'_i) = g_{ij}$$

Proof.

Se gli U_i non sono tutti polidischi, consideriamo un raffinamento $\{\tilde{U}_j\}$ di $\{U_i\}$ fatto di polidischi. Sia $\rho: \mathbb{N} \to \mathbb{N}$ tale che $\tilde{U}_i \subseteq U_{\rho(i)}$.

Proof.

Se gli U_i non sono tutti polidischi, consideriamo un raffinamento $\{\tilde{U}_j\}$ di $\{U_i\}$ fatto di polidischi. Sia $\rho:\mathbb{N}\to\mathbb{N}$ tale che $\tilde{U}_i\subseteq U_{\rho(i)}$. Definiamo

$$\tilde{g}_{ij} = g_{\rho(i)\rho(j)}$$

 $\{\tilde{g}_{ij}\}$ è un set di dati locali per Cousin II sul ricoprimento $\{\tilde{U}_j\}$; siano \tilde{g}_i che lo risolvono.

Proof.

Se gli U_i non sono tutti polidischi, consideriamo un raffinamento $\{\tilde{U}_j\}$ di $\{U_i\}$ fatto di polidischi. Sia $\rho:\mathbb{N}\to\mathbb{N}$ tale che $\tilde{U}_i\subseteq U_{\rho(i)}$. Definiamo

$$\tilde{g}_{ij} = g_{\rho(i)\rho(j)}$$

 $\{\tilde{g}_{ij}\}$ è un set di dati locali per Cousin II sul ricoprimento $\{\tilde{U}_j\}$; siano \tilde{g}_i che lo risolvono.

Per ogni i, j, k, in $U_i \cap U_j \cap U_k$ si ha

$$\frac{\tilde{g_k}}{\tilde{g_j}}g_{\rho(k)i}g_{i\rho(j)} = \frac{\tilde{g_k}}{\tilde{g_j}}g_{\rho(k)\rho(j)} = \frac{\tilde{g_k}}{\tilde{g_j}}\tilde{g_{kj}} = 1$$

Proof.

Allora,
$$ilde{g_k} g_{
ho(k)i} = ilde{g_j} g_{
ho(j)i}$$
 su $U_i \cap U_j \cap U_k$, e

$$g_i := \tilde{g_k} g_{\rho(k)i}$$

è olomorfa e senza zeri su tutto U_i .

Proof.

Allora, $\tilde{g_k}g_{\rho(k)i}=\tilde{g_j}g_{\rho(j)i}$ su $U_i\cap U_j\cap U_k$, e

$$g_i := \tilde{g_k} g_{\rho(k)i}$$

è olomorfa e senza zeri su tutto U_i . Per concludere, notiamo che per ogni i, j, k, su $U_i \cap U_j \cap \tilde{U_k}$ si ha

$$g_j/g_i = \tilde{g}_k g_{\rho(k)j} \frac{1}{g_k \tilde{g}_{\rho(k)i}} = g_{ij}$$

Corollary

Sia $\Omega \subseteq \mathbb{C}^n$ un dominio di olomorfia. Il secondo problema di Cousin può essere risolto su Ω se e solo se può essere risolto con funzioni continue.

Theorem (Oka)

Esiste un dominio di olomorfia $\Omega \subseteq \mathbb{C}^n$ su cui si può risolvere Cousin I, ma non Cousin II.

Proof.

Considero

$$\Omega = \{ (z_1, z_2) \in \mathbb{C}^2 | 3/4 < |z_j| < 5/4 \quad j = 1, 2 \} \subseteq \mathbb{C}^2$$

$$P = \{ (z_1, z_2) \in \mathbb{C}^2 | z_1 - z_2 - 1 = 0 \}$$

$$A = \Omega \cap P$$

Proof.

Considero

$$\Omega = \{ (z_1, z_2) \in \mathbb{C}^2 | 3/4 < |z_j| < 5/4 \quad j = 1, 2 \} \subseteq \mathbb{C}^2$$

$$P = \{ (z_1, z_2) \in \mathbb{C}^2 | z_1 - z_2 - 1 = 0 \}$$

$$A = \Omega \cap P$$

Allora,

$$U_1 = \{(z_1, z_2) \in \Omega | \mathfrak{Im}(z_1), \mathfrak{Im}(z_2) > 0 \}$$

е

$$U_2 = \Omega \setminus (A \cap U_1)$$

formano un ricoprimento aperto di Ω .

Proof.

Supponiamo per assurdo che Cousin II possa essere risolto, e siano $\{g_1,g_2\}$ le funzioni cercate.

Proof.

Supponiamo per assurdo che Cousin II possa essere risolto, e siano $\{g_1,g_2\}$ le funzioni cercate.

Definiamo

$$F(z) = \begin{cases} (z_1 - z_2 - 1)/g_1 & z \in U_1 \\ 1/g_2 & z \in U_2 \end{cases}$$

e poi ne consideriamo la restrizione al toro unitario

$$T = \{(z_1, z_2) \in \mathbb{C}^2 | |z_1| = |z_2| = 1\},$$

$$g(\alpha, \beta) = F(e^{i\alpha}, e^{i\beta}) \quad \alpha, \beta \in [0, 2\pi)$$

L'unico zero di g è $(e^{i\pi/3}, e^{2i\pi/3}) \in U_1$.

Proof.

Consideriamo nel piano α - β Γ_1 e, Γ_2 come in figura, entrambi orientati positivamente. Guardiamo gli indici di avvolgimento:

$$0 = \int_{\Gamma_1} d\log g = \int_{\Gamma_2} d\log g = \int_{\Gamma_2} d\log (e^{i\alpha} - e^{i\beta} - 1)$$

Proof.

Cambiamo variabili,

$$\begin{cases} \alpha' = \alpha - \pi/3 \\ \beta' = \beta - 2\pi/3 \end{cases}$$

e consideriamo l'immagine di Γ_2 , Γ_2' , il quale ancora non si avvolge intorno all'origine, dove

$$g'(\alpha', \beta') = g(\alpha, \beta)$$

ha l'unico zero.

Proof.

Cambiamo variabili,

$$\begin{cases} \alpha' = \alpha - \pi/3 \\ \beta' = \beta - 2\pi/3 \end{cases}$$

e consideriamo l'immagine di Γ_2 , Γ_2' , il quale ancora non si avvolge intorno all'origine, dove

$$g'(\alpha', \beta') = g(\alpha, \beta)$$

ha l'unico zero. Il determinante del jacobiano del cambio di base è $\sin(\alpha' - \beta' - \pi/3)$, che si avvicina arbitrariamente a $\sqrt{3}/2$ mano a mano che $\alpha \to \beta$. Dato che allora

$$\int_{\Gamma_2'} d\log g' \neq 0$$

si ha l'assurdo cercato.

Theorem

Sia $\Omega\subseteq\mathbb{C}^n$ un aperto connesso sul quale si può sempre risolvere Cousin II. Sia $M\subseteq\Omega$ una sottovarietà complessa propriamente immersa con la proprietà che per ogni $m\in M$ esista un intorno $U_m\subseteq\Omega$ e una funzione olomorfa $f_m:U_m\to\mathbb{C}$ tali che $U_m\cap M=\{z\in U_m|f_m(z)=0\}$ e $\partial f_m\neq 0$ su U_m . Allora, esiste una funzione olomorfa f definita su f tale che

$$M = \{z \in \Omega | f(z) = 0\}$$

Proof.

Sia $\{U_i\}\subseteq \{U_m\}_M$ localmente finito, e sia $U_0=\Omega\setminus M$, aperto in Ω . Siano

$$\begin{cases} f_i: U_i \to \mathbb{C} \\ f_0 \equiv 1: U_0 \to \mathbb{C} \end{cases}$$

Proof.

Sia $\{U_i\}\subseteq \{U_m\}_M$ localmente finito, e sia $U_0=\Omega\setminus M$, aperto in Ω . Siano

$$\begin{cases} f_i: U_i \to \mathbb{C} \\ f_0 \equiv 1: U_0 \to \mathbb{C} \end{cases}$$

Le funzioni $g_{ij}=f_j/f_i$ sono dati locali per Cousin II; dato che il problema è risolubile, esistono funzioni olomorfe e senza zeri $g_i:U_i\to\mathbb{C}$ che rispettano la compatibilità.

Proof.

Sia $\{U_i\} \subseteq \{U_m\}_M$ localmente finito, e sia $U_0 = \Omega \setminus M$, aperto in Ω . Siano

$$\begin{cases} f_i: U_i \to \mathbb{C} \\ f_0 \equiv 1: U_0 \to \mathbb{C} \end{cases}$$

Le funzioni $g_{ij}=f_j/f_i$ sono dati locali per Cousin II; dato che il problema è risolubile, esistono funzioni olomorfe e senza zeri $g_i:U_i\to\mathbb{C}$ che rispettano la compatibilità. La funzione

$$f(z) = \frac{f_i(z)}{g_i(z)}$$
 $z \in U_i$

è ben definita, olomorfa, e $M = \{z \in \Omega | f(z) = 0\}.$

Bibliografia

Steven G. Krantz (2001)

Function Theory of Several Complex Variables AMS Chelsea Publishing

Grazie per l'attenzione!