Linear Algebra Day 3 — Basis and Dimension

Objectives

- Understand what a **basis** is in a vector space
- Learn the meaning of **dimension** and how it relates to the basis
- Identify linearly independent vs dependent sets
- Use visuals and examples to build intuition

1 Concept Summary

Definition

A basis of a vector space is a set of vectors that: 1. Span the space 2. Are linearly independent

Intuition

- A basis is like the **coordinate frame** of a space
- Every vector in the space can be expressed uniquely as a combination of basis vectors
- The dimension of a space is the number of vectors in any basis for that space

Visual: Independence vs Dependence

Below, blue and red vectors point in the same direction \rightarrow linearly dependent. Blue and green vectors point in different directions \rightarrow linearly independent.

Linear Independence Visualization

Key Formulas and Rules

Linear independence

A set of vectors (v_1, v_2, ..., v_k) is linearly independent if:

$$\ a_1 v_1 + a_2 v_2 + \cdot v_k = \cdot \{bmatrix\} 0 \setminus \cdot 0 \in \{bmatrix\}$$
 only when:

$$\ a_1 = a_2 = \dots = a_k = 0$$

Dimension

The **dimension** of a vector space is:

the number of vectors in a basis of that space

Examples:

- $\mathbb{R}^2 \rightarrow \text{dimension } 2$
- $\mathbb{R}^3 \rightarrow \text{dimension } 3$
- A line through the origin in $\mathbb{R}^2 \to \text{dimension } 1$

3 Worked Examples

Example 1: Check if vectors form a basis

Are these a basis of \mathbb{R}^2 ?

 $\ v_1 = \left(bmatrix \right) 1 \ 2 \ \left(bmatrix \right), \quad v_2 = \left(bmatrix \right) 3 \ 6 \ \left(bmatrix \right) \$

Check: is one a multiple of the other?

$$$\ v_2 = 3 \cdot v_1$$

 \rightarrow Yes \rightarrow Linearly dependent \rightarrow \times Not a basis

\checkmark Example 2: Standard basis in \mathbb{R}^3

 $\$ \begin{bmatrix} 1 \ 0 \ 0 \end{bmatrix},\quad \begin{bmatrix} 0 \ 1 \ 0 \end{bmatrix},\quad \begin{bmatrix} 0 \ 0 \ 1 \end{bmatrix} \$\$

 \rightarrow These are linearly independent and span \mathbb{R}^3

✓ They form a basis

Practice Problems

1. Do the vectors form a basis of \mathbb{R}^2 ?

\$\$ \begin{bmatrix} 1 \ 1 \end{bmatrix},\quad \begin{bmatrix} 1 \ -1 \end{bmatrix} \$\$

1. Are these vectors linearly independent?

 $\$ \begin{bmatrix} 2 \ 1 \ 0 \end{bmatrix},\quad \begin{bmatrix} -1 \ 3 \ 1 \end{bmatrix},\quad \begin{bmatrix} 1 \ 2 \ 3 \end{bmatrix} \$\$

1. What's the dimension of the span of:

Metacognition Check

- [] Can I test independence with the zero vector condition?
- [] Can I explain dimension in terms of basis count?
- [] Can I visualize basis vs non-basis examples?

Real-World Applications

- Robotics: Robot movement spaces depend on basis and dimensionality
- **Data Science**: Dimensionality reduction = choosing a new basis
- Physics: Vectors like forces and velocities live in vector spaces with defined bases

Tomorrow's Preview

Day 4: Matrix Representation & Linear Transformations

We'll use matrices to represent how vectors move, rotate, stretch, or shrink.