650.445: Practical Cryptographic Systems Provable Security II

Review

- Housekeeping:
 - Readings: two new papers on Syllabus
 - For 3/23 (3/25)
 - Midterm on 3/25
 - A1
- -Mean: 85, Median 90, Stdev ~15
- -Have a great spring break

Review

- Last time:
 - Intro to Provable Security
 - Information-Theoretic vs. Complexity-Theoretic
 - One-Way Functions
- -Implications: P = NP?
 - Schnorr vs. DSA
 - Random Oracles (!!)

Today:

- Reduction Proofs
 - Exploring the concept
 - Specific examples
 - How Random Oracles help

Reduction Proofs

- The basic idea:
 - I assume that problem X is <u>hard</u>
 - And demonstrate that:
- -If there <u>exists</u> an adversary (program) that "breaks" my scheme
- -Then I could use this adversary (as a subroutine) to solve problem X
 - By contradiction: the adversary cannot exist!

Example: RSA Problem

Problem instance

RSA Problem:

Given (N, e, m^{e)} for <u>random</u> m

"Solver" algorithm

Solution

RSA Solution:

Output m

Example: RSA <u>Assumption</u>

Problem instance

RSA Problem:

Given (N, e, m^{e)} for random m

Hypothesis:

No efficient (polynomial time) algorithm solves this problem with greater than <u>negligible</u> probability.

Solution

RSA Solution:

Output m

Theorem

- Statement:
 - If the RSA assumption holds,
 then it's hard to decrypt an RSA ciphertext

- Statement:
 - If the RSA assumption holds, then it's hard to decrypt an RSA ciphertext
 - If the RSA assumption holds, there is no (efficient) algorithm that, given pk = (N, e) and random ciphertext m^e, outputs m (except with negligible probability)

Precisely states what we want to prove. But how do we prove this?

- Statement:
 - If the RSA assumption holds, there is no (efficient) algorithm that, given pk = (N, e) and ciphertext me, outputs m (except with negligible probability).

Statement:

Not quite sure how to prove this...

1st Try

If the RSA assumption homs, there is no (efficient) algorithm that, given pk = (N, e) and ciphertext me, outputs m (except with negligible probability).

Statement:

1st Try

 If the RSA assumption holds, there is no (efficient) algorithm that, given pk = (N, e) and ciphertext m^e, outputs m (except with negligible probability).

Statement:

If there is an efficient algorithm <u>A</u> that, given pk = (N, e) and ciphertext m^e, outputs m, (with > negigible probability) THEN the RSA assumption would not hold.

By contradiction: if we assume that the RSA assumption <u>does</u> hold, then <u>A</u> cannot exist.

Statement:

3rd Try

If there is an efficient algorithm <u>A</u> that, given pk = (N, e) and ciphertext m^e, outputs m, (with > negigible probability) THEN...

we can show the existence of an efficient algorithm <u>B</u> that solves the RSA problem with > negl. probability.

By contradiction: if we assume that <u>B</u> cannot exist, then <u>A</u> cannot exist.

Imagine that A exists

PK and ciphertext

PK = (N, e)Ciphertext = m^e A

Decryption

Decryption = m

Then we can construct B

Problem instance

RSA Problem:

Given (N, e, m^{e)} for <u>random</u> m

PK = (N, e) Ciphertext = m^e

Reduction ("B")

Adversary

Decryption = m

Solution

RSA Solution:

Output m

Security Definitions

- What does it mean to "break" a scheme?
 - Formal security definitions
 - Often described as "games"
 - Examples:
- -Semantic security
- -Signature unforgeability

Digital Signatures

• The real world (scenario 1):

Digital Signatures

The real world (scenario 1):

Digital Signatures

• The real world (scenario 2):

Security Game (1)

Public Key

message, forged signature

Any message with a valid signature --- that did not come from the Challenger!

Adversary

Existential Unforgeability (no messages)

Security Game (2)

Existential Unforgeability under Chosen Message Attack

EU-CMA Schemes

- Problem:
 - "Textbook" RSA signatures are not EU-CMA
 - Simple attack, given (N, e):
- -Pick random s, compute $m=s^e$

The pair is a yalid message, signature!

(admittedly, m may not be very meaningful)

EU-CMA Schemes

- Ad-hoc fix: Make the messages meaningful
 - Use a hash function H()
 - Add some defined padding bytes
 - Ex. PKCS #1 v1.5:

0x00 0x01

Fixed Padding

0x00

H(Message)

~ 1024 bits (128 bytes)

- This seems to sort-of solve the problem
 - But can we prove it's EU-CMA?
 - Let's think about how a proof might work:

Intuition:

Somehow get adversary to <u>sign</u> the message m^e

(N, e)

chosen message signature

 $(m',s): m'=s^e$

Reduction

Intuition:

Somehow get adversary to <u>sign</u> the message m^e

 (N, e, m^e)

Problem:

Reduction doesn't know secret exponent (d)... So we can't sign Adversary's messages.

m

(N, e)

chosen v assage
sigr a vire

 $(m',s): m'=s^e$

Reduction

Intuition:

Somehow get adversary to <u>sign</u> the message m^e

 (N, e, m^e)

Big problem:

Adversary gets to output any signed message it wants... Won't necessarily be related to *m*.

m

(N, e)

chosen v assage sigr a vire

 $(m',s): m'=s^e$

Reduction

PKCS#1 v1.5

• Issues:

- We want the adversary to sign a message of <u>our choice</u> -- but the EU-CMA game lets them sign <u>any</u> message
- We need to give the adversary signatures on chosen messages... But we don't know the secret key!

- Bellare/Rogaway (Eurocrypt '96):
 - Submitted to p1363
 - Adopted by RSA Security (PKCS)
 - Accepted by NIST

- Bellare/Rogaway (Eurocrypt '96):
 - Padding scheme
 - Applied to message M, to produce padded message EM
 - RSA sign EM
 - padding1/padding2
 are fixed values

- What are these hash functions (Hash, MGF)?
 - Ideal hash functions, aka Random Oracles

Random Oracles

- In principle, Random Oracle is a "trusted third party"

Hash Function

Public Key

chosen message signature

message, forged signature

 But... our reduction can trick the adversary, and control the oracle

Proof (board)

