Analyse

Séries Numériques

Question 1/19

Théorème de comparaison des séries à termes positifs

Réponse 1/19

$$\exists N \in \mathbb{N}, \ \forall n \geqslant N, \ 0 \leqslant u_n \leqslant v_n$$

Si $\sum v_n$ converge alors $\sum u_n$ converge
Si $\sum u_n$ diverge alors $\sum v_n$ diverge

Question 2/19

Caractérisation par ε de la somme

Réponse 2/19

$$\forall \varepsilon > 0, \ \exists J_{\varepsilon} \in \mathcal{P}_f(I), \ \forall K \in \mathcal{P}_f(I)$$

$$J_{\varepsilon} \subset K \Rightarrow \left| S - \sum_{i \in K} (a_i) \right| \leqslant \varepsilon$$

Question 3/19

Théorème spécial de convergence des séries alternées

Réponse 3/19

Une série alternée est convergente Les sommes partielles sont du signe du premier terme

Les restes sont du signe de leur premier terme et de valeur absolue plus petite que celle de ce dernier

Question 4/19

$$\sum_{i \in I} (a_i)$$

Réponse 4/19

$$\sup \left\{ \left\{ \sum_{i \in I} (a_i), \ J \in \mathcal{P}_f(I) \right\} \right\}$$

Question 5/19

Règle de Riemann

Réponse 5/19

S'il existe $\alpha > 1$ tel que $(n^{\alpha}u_n)$ est bornée, alors $\sum u_n$ converge Si (nu_n) est minorée par m > 0 à partir de

 $n \in \mathbb{N}$, alors $\sum u_n$ diverge

Question 6/19

 $\sum u_n$ diverge grossièrement

Réponse 6/19

 (u_n) ne tend pas vers 0

Question 7/19

Série alternée

Réponse 7/19

 $\sum u_n$ est alternée s'il existe une suite (a_n) positive décroissante de limite nulle telle que $u_n = (-1)^n a_n$

Question 8/19

Critère d'Abel

Réponse 8/19

Si (a_n) est une suite réelle positive décroissante de limite nulle, et la somme partielle de $\sum b_n$ est bornée, alors $\sum a_n b_n$ converge Les suites $e^{in\alpha}$, $\cos(n\alpha)$ et $\sin(n\alpha)$ vérifient les conditions pour (b_n) lorsque $\alpha \not\equiv 0$ $[2\pi]$

Question 9/19

Série de Bertrand

Réponse 9/19

$$\sum_{n=2}^{\infty} \left(\frac{1}{n^{\alpha} \ln^{\beta}(n)} \right)$$

Une série de Bertrand converge si et seulement si $(\alpha, \beta) > (1, 1)$ pour l'ordre lexicographique

Question 10/19

Comparaison par dominance

Réponse 10/19

$$u_n = O(v_n)$$

Si $\sum v_n$ converge alors $\sum u_n$ converge
Si $\sum u_n$ ou $\sum |u_n|$ diverge alors $\sum v_n$ diverge

Question 11/19

$$\ell^1(I,X)$$

Réponse 11/19

Ensemble des familles sommables indexées sur I à valeurs dans $X\subset \mathbb{C}$

Question 12/19

Produit de Cauchy

Réponse 12/19

Si $\sum a_n$ et $\sum b_n$ sont absolument convergentes

et
$$c_n = \sum_{k=0}^{n} (a_k b_{n-k})$$
, alors $\sum c_n$ est absolument

convergente

$$\left(\sum_{n=0}^{+\infty} (a_n)\right) \left(\sum_{n=0}^{+\infty} (b_n)\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} (a_k b_{n-k})\right)$$

Question 13/19

Série de Riemann

Réponse 13/19

$$\sum_{n=1}^{+\infty} \left(\frac{1}{n^{\alpha}}\right)$$

Une série de Riemann converge si et seulement si $\alpha>1$

Question 14/19

Semi-convergence

Réponse 14/19

Convergence sans convergence absolue

Question 15/19

Convergence absolue

Réponse 15/19

$$\sum u_n$$
 converge absolument si $\sum |u_n|$ converge
Si $\sum |u_n|$ converge alors $\sum u_n$ converge

Question 16/19

Formule du binôme négatif

Réponse 16/19

$$\sum_{n=0}^{+\infty} \left(\frac{1}{(n-1)^n} \right)^{n-1}$$

$$\sum_{n=0}^{+\infty} \left(\frac{n!}{(n-p)!} z^{n-p} \right) = \frac{p!}{(1-z)^{p+1}}$$
$$\frac{1}{(1-z)^{p+1}} = \sum_{n=0}^{+\infty} \left(\binom{n+p}{p} z^n \right)$$

Question 17/19

Règle de d'Alembert

Réponse 17/19

Si
$$\left| \frac{u_{n+1}}{u_n} \right| \to \ell$$
 où $0 \le \ell < 1$, alors $\sum u_n$ converge absolument

Si $\left| \frac{u_{n+1}}{u_n} \right| \to \ell$ où $\ell > 1$, alors $\sum u_n$ diverge grossièrement

Question 18/19

Sommabilité

Réponse 18/19

$$(a_i)$$
 est sommable si $\sum_{i \in I} (|a_i|) < +\infty$

Question 19/19

Encadrement des sommes par les intégrales f est continue et décroissante sur $[n_0, +\infty[$ avec $n_0 \in \mathbb{Z}$

Réponse 19/19

$$\int_{n_0+1}^{n+1} (f(t)) dt$$

$$\leq \sum_{k=n_0+1}^{n} (f(k)) \leq \sum_{k=n_0+1}^{n} (f(t)) dt$$