Cavallaro, Jeffery Math 221b Homework #2

1). Let $R = M_2(\mathbb{Z})$ and let:

$$I = \left\{ \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix} \mid a, c \in \mathbb{Z} \right\}$$

Show that I is a left ideal in R but not a right ideal in R.

It is known that R is a ring

Clearly, I is a non-empty subset of R

Assume $A, B \in I$

Assume
$$A, B \in I$$

Let $A = \begin{bmatrix} a_1 & 0 \\ c_1 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} a_2 & 0 \\ c_2 & 0 \end{bmatrix}$, $a_1, c_1, a_2, c_2 \in \mathbb{Z}$
 $A - B = \begin{bmatrix} a_1 & 0 \\ c_1 & 0 \end{bmatrix} - \begin{bmatrix} a_2 & 0 \\ c_2 & 0 \end{bmatrix} = \begin{bmatrix} a_1 - a_2 & 0 \\ c_1 - c_2 & 0 \end{bmatrix}$
But by closure, $a_1 - a_2 \in \mathbb{Z}$ and $c_1 - c_2 \in \mathbb{Z}$, so $A - B \in I$

Therefore, by the subgroup test, I is an additive subgroup of R.

Furthermore, matrix addition is commutative, so I is an additive abelian subgroup of R.

Assume
$$C \in R$$
Let $C = \begin{bmatrix} a_3 & b_3 \\ c_3 & d_3 \end{bmatrix}$
 $a_3, b_3, c_3, d_3 \in \mathbb{Z}$

$$CA = \begin{bmatrix} a_3 & b_3 \\ c_3 & d_3 \end{bmatrix} \begin{bmatrix} a_1 & 0 \\ c_1 & 0 \end{bmatrix} = \begin{bmatrix} a_1a_3 + b_3c_1 & 0 \\ a_1c_3 + c_1d_3 & 0 \end{bmatrix}$$
But by closure, $a_1a_3 + b_3c_1 \in \mathbb{Z}$ and $a_1c_3 + c_1d_3 \in \mathbb{Z}$, so $CA \in I$

Therefore, I is a left ideal in R.

$$AC = \begin{bmatrix} a_1 & 0 \\ c_1 & 0 \end{bmatrix} \begin{bmatrix} a_3 & b_3 \\ c_3 & d_3 \end{bmatrix} = \begin{bmatrix} a_1a_3 & a_1b_3 \\ a_3c_1 & b_3c_1 \end{bmatrix} \notin I$$
, unless a_1, b_3 , or $c_1 = 0$

Therefore, I is not a right ideal in R.

2). Let R be a ring with $1 \neq 0$ and $I \leq R$. Prove: $I = R \iff \exists r \in I, r$ is a unit in R.

$$\implies$$
 Assume $I=R$

$$1 \in R$$
 and $I = R$, so $1 \in I$

$$1 \cdot 1 = 1$$

So
$$1$$
 is a unit in ${\cal R}$

Let
$$r=1$$

$$\therefore \exists r \in I, r \text{ is a unit in } R.$$

 \iff Assume $\exists r \in I, r$ is a unit in R

$$\exists s \in R, rs = rs = 1$$

$$\implies$$
 Assume $i \in I$

Since
$$I \subseteq R$$
, $I \subseteq R$ and thus $I \subseteq R$

$$\therefore i \in R$$

$$\iff$$
 Assume $a \in R$

Assume
$$b \in R$$

$$\boldsymbol{R}$$
 is a ring, and thus multiplication is associative

$$ab = (ab)(1) = (ab)(sr) = (abs)r$$

But, by closure,
$$abs \in R$$
 and I is an ideal, so $(abs)r \in I$

Similarly,
$$ba = (1)(ba) = (rs)(ba) = r(sba) \in I$$

$$\therefore a \in I$$

$$I = R$$

3). Prove: $M_2(\mathbb{R})$ is a simple ring.

Assume
$$I \subseteq M_2(\mathbb{R})$$
 such that $I \neq \{0\}$

$$\exists\, A\in I, A\neq 0$$

Let
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
, $a_{11}, a_{12}, a_{13}, a_{14} \in \mathbb{R}$

AWLOG: $a_{ij} \neq 0$ (since $A \neq 0$)

Consider the standard basis for $M_2(\mathbb{R})$: $\{E_{11}, E_{12}, E_{21}, E_{22}\}$

Note that left multiply by E_{ij} selects the i^{th} row and left multiply by E_{ij} selects the j^{th}

column, so
$$\left(\frac{1}{a_{ij}}E_{ij}\right)AE_{ij}=E_{ij}$$

But
$$I ext{ } ext{$$

Let
$$T = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

By using left multiply by T to switch rows and right multiply by T to switch columns, all four basis matrices can be generated from E_{ij}

But since $E_{ij} \in I$ and $T \in M_2(\mathbb{R})$, all four basis matrices are in I

Assume $B \in M_2(\mathbb{R})$

Let
$$B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}, b_{11}, b_{12}, b_{21}, b_{22} \in \mathbb{R}$$

Let $B_{k\ell} \in M_2(\mathbb{R})$ such that the $k\ell^{th}$ entry is $b_{k\ell}$ and 0 everywhere else

$$B_{k\ell}E_{k\ell} = B_{k\ell}$$

But since $E_{k\ell} \in I$, $B_{k\ell} \in I$

Moreover,
$$B = B_{11} + B_{12} + B_{21} + B_{22}$$

But I is a ring, and thus an additive group, and so by closure, $B \in I$

Thus, $I=M_2(\mathbb{R})$ and $M_2(\mathbb{R})$ has no proper, non-trivial ideals

Therefore $M_2(\mathbb{R})$ is simple.

4). Let R be a commutative ring with $1 \neq 0$ and let $P \subseteq R$. Prove: P is a prime ideal in R iff R/P is an integral domain.

Since P is an ideal in R and R is commutative, R/P is a commutative ring with additive identity 0+P=P

It is also true that $a + P = P \iff a \in P$

 \implies Assume P is a prime ideal in R

Assume $a,b \in R$ such that $a,b \notin P$ Since P is prime, $ab \notin P$ $a+P \neq P$ and $b+P \neq P$ $(a+P)(b+P)=ab+P \neq P$

Therefore, R/P has no zero-divisors and is thus an integral domain.

 \iff Assume R/P is an integral domain

Assume $a,b\in R$ such that $ab\in P$ $ab+P=(a+P)(b+P)\in P$ If $a\in P$ then done, so AWLOG: $a\notin P$ $a+P\notin P$ But R/P is an integral domain, so b+P=P Thus $b\in P$

Therefore, P is a prime ideal in R.