Computational Logic

A "Hands-on" Introduction to Pure Logic Programming

Syntax: Terms (Variables, Constants, and Structures)

(using Prolog notation conventions)

• Variables: start with uppercase character (or "_"), may include "_" and digits:

```
Examples: X, Im4u, A_little_garden, _, _x, _22
```

• **Constants:** lowercase first character, may include "_" and digits. Also, numbers and some special characters. Quoted, any character:

```
Examples: a, dog, a_big_cat, 23, 'Hungry man', []
```

• **Structures:** a **functor** (the structure name, is like a constant name) followed by a fixed number of arguments between parentheses:

```
Example: date(monday, Month, 1994)
```

Arguments can in turn be variables, constants and structures.

Arity: is the number of arguments of a structure. Functors are represented as name/arity. A constant can be seen as a structure with arity zero.

Variables, constants, and structures as a whole are called **terms** (they are the terms of a "first-order language"): the *data structures* of a logic program.

Syntax: Terms

(using Prolog notation conventions)

• Examples of terms:

Term	Туре	Main functor:
dad	constant	dad/0
time(min, sec)	structure	time/2
<pre>pair(Calvin, tiger(Hobbes))</pre>	structure	pair/2
Tee(Alf, rob)	illegal	
A_good_time	variable	

• Functors can be defined as prefix, postfix, or infix operators (just syntax!):

a + b	is the term	'+'(a,b)	if +/2 declared infix
- b	is the term	'-'(b)	if -/1 declared prefix
a < b	is the term	'<'(a,b)	if 2 declared infix</td
john father mary	is the term	<pre>father(john,mary)</pre>	if father/2 declared infix

We assume that some such operator definitions are always preloaded.

Syntax: Rules and Facts (Clauses)

• Rule: an expression of the form:

```
p_0(t_1, t_2, \dots, t_{n_0}) \leftarrow p_1(t_1^1, t_2^1, \dots, t_{n_1}^1), \dots \\ p_m(t_1^m, t_2^m, \dots, t_{n_m}^m).
```

- $\diamond p_0(...)$ to $p_m(...)$ are *syntactically* like *terms*.
- $\diamond p_0(...)$ is called the **head** of the rule.
- \diamond The p_i to the right of the arrow are called *literals* and form the **body** of the rule. They are also called **procedure calls**.
- ♦ Usually, :- is called the neck of the rule.
- Fact: an expression of the form $p(t_1, t_2, \dots, t_n)$. (i.e., a rule with empty body).

Example:

Rules and facts are both called clauses.

Syntax: Predicates, Programs, and Queries

• **Predicate** (or *procedure definition*): a set of clauses whose heads have the same name and arity (called the **predicate name**).

Examples:

```
pet(spot).
pet(X):- animal(X), barks(X).
pet(X):- animal(X), meows(X).
animal(barry).
animal(hobbes).
```

Predicate pet/1 has three clauses. Of those, one is a fact and two are rules. Predicate animal/1 has three clauses, all facts.

- Logic Program: a set of predicates.
- Query: an expression of the form: (i.e., a clause without a head).

$$\leftarrow p_1(t_1^1,\ldots,t_{n_1}^1),\ldots,p_n(t_1^n,\ldots,t_{n_m}^n).$$

A query represents a *question to the program*.

Example: :- pet(X). In most systems written as: ?- pet(X).

"Declarative" Meaning of Facts and Rules

The declarative meaning is the corresponding one in first order logic, according to certain conventions:

Facts: state things that are true.
 (Note that a fact "p." can be seen as the rule "p:- true.")
 Example: the fact animal(spot).
 can be read as "spot is an animal".

• Rules:

- \diamond Commas in rule bodies represent conjunction, i.e., $p \leftarrow p_1, \cdots, p_m$. represents $p \leftarrow p_1 \wedge \cdots \wedge p_m$.
- ⋄ "←" represents as usual logical implication.

Thus, a rule $p \leftarrow p_1, \dots, p_m$. means "if p_1 and ... and p_m are true, then p is true" Example: the rule pet(X): - animal(X), barks(X). can be read as "X is a pet if it is an animal and it barks".

"Declarative" Meaning of Predicates and Queries

Predicates: clauses in the same predicate

```
\mathbf{p} \leftarrow \mathbf{p}_1, \ldots, \mathbf{p}_n
\mathbf{p} \leftarrow \mathbf{q}_1, \ldots, \mathbf{q}_m
```

provide different *alternatives* (for p).

Example: the rules

```
pet(X) :- animal(X), barks(X).
pet(X) :- animal(X), meows(X).
```

express two ways for X to be a pet.

- **Note** (variable *scope*): the X vars. in the two clauses above are different, despite the same name. Vars. are *local to clauses* (and are *renamed* any time a clause is used –as with vars. local to a procedure in conventional languages).
- A query represents a question to the program.

Examples:

```
?- pet(spot).
asks whether spot is a pet.
2- pet(X).
asks: "Is there an X which is a pet?"
```

"Execution" and Semantics

Example of a logic program:

```
pet(X):- animal(X), barks(X).
pet(X):- animal(X), meows(X).
animal(spot). barks(spot).
animal(barry). meows(barry).
animal(hobbes). roars(hobbes).
```

• **Execution:** given a program and a query, *executing* the logic program is attempting to find an answer to the query.

Example: given the program above and the query :- pet(X). the system will try to find a "substitution" for X which makes pet(X) true.

- The declarative semantics specifies what should be computed (all possible answers).
 - \Rightarrow Intuitively, we have two possible answers: X = spot and X = barry.
- The operational semantics specifies how answers are computed (which allows us to determine how many steps it will take).

Running Programs in a Logic Programming System

• File pets.pl contains (explained later):

```
:- module(_,_,['bf/bfall']).
```

- + the pet example code as in previous slides.
- Interaction with the system query evaluator (the "top level"):

```
?- Ciao 1.XX ...
?- use_module(pets).
yes
?- pet(spot).
yes
?- pet(X).
X = spot ?;
X = barry ?;
no
?-
```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).

Simple (Top-Down) Operational Meaning of Programs

- A logic program is operationally a set of *procedure definitions* (the predicates).
- A query ← p is an initial procedure call.
- A procedure definition with one *clause* $p \leftarrow p_1, \dots, p_m$. means: "to execute a call to p you have to *call* p_1 and ...and p_m "
 - \diamond In principle, the order in which p_1, \ldots, p_n are called does not matter, but, in practical systems it is fixed.
- If several clauses (definitions) $p \leftarrow p_1, \ldots, p_n$ means: $p \leftarrow q_1, \ldots, q_m$

"to execute a call to p, call $p_1 \wedge \dots \wedge p_n$, or, alternatively, $q_1 \wedge \dots \wedge q_n$, or \ldots"

- Unique to logic programming –it is like having several alternative procedure definitions.
- Means that several possible paths may exist to a solution and they should be explored.
- System usually stops when the first solution found, user can ask for more.
- Again, in principle, the order in which these paths are explored does not matter (*if certain conditions are met*), but, for a given system, this is typically also fixed.

In the following we define a more precise operational semantics.

Unification: uses

- **Unification** is the mechanism used in *procedure calls* to:
 - Pass parameters.
 - "Return" values.
- It is also used to:
 - Access parts of structures.
 - Give values to variables.
- Unification is a procedure to solve equations on data structures.
 - As usual, it returns a minimal solution to the equation (or the equation system).
 - As many equation solving procedures it is based on isolating variables and then *instantiating* them with their values.

Unification

- Unifying two terms (or literals) A and B: is asking if they can be made syntactically identical by giving (minimal) values to their variables.
 - \diamond I.e., find a **variable substitution** θ such that $A\theta = B\theta$ (or, if impossible, *fail*).
 - Only variables can be given values!
 - Two structures can be made identical only by making their arguments identical.

E.g.:

A	В	θ	$A\theta$	$B\theta$
dog	dog	Ø	dog	dog
X	a	$\{\mathtt{X}=\mathtt{a}\}$	a	a
X	Y	$\{X = Y\}$	Y	Y
f(X, g(t))	f(m(h), g(M))	${X=m(h), M=t}$	f(m(h), g(t))	f(m(h), g(t))
f(X, g(t))	f(m(h), t(M))	Impossible (1)		
f(X, X)	f(Y, 1(Y))	Impossible (2)		

- (1) Structures with different name and/or arity cannot be unified.
- (2) A variable cannot be given as value a term which contains that variable, because it would create an infinite term. This is known as the occurs check. (See, however, cyclic terms later.)

Unification

Often several solutions exist, e.g.:

A	B	$ heta_1$	$A heta_1$ and $B heta_1$
f(X, g(T))	f(m(H), g(M))	$\{X=m(a), H=a, M=b, T=b\}$	f(m(a), g(b))
"	"	$\{X=m(H), M=f(A), T=f(A)\}$	f(m(H), g(f(A)))

These are correct, but a simpler ("more general") solution exists:

A	B	$ heta_1$	$A heta_1$ and $B heta_1$
f(X, g(T))	f(m(H), g(M))	$\{X=m(H), T=M\}$	f(m(H), g(M))

- Always a unique (modulo variable renaming) most general solution exists (unless unification fails).
- This is the one that we are interested in.
- The *unification algorithm* finds this solution.

Unification Algorithm

• Let A and B be two terms:

1
$$\theta = \emptyset$$
, $E = \{A = B\}$

- 2 while not $E = \emptyset$:
 - 2.1 delete an equation T = S from E
 - 2.2 case T or S (or both) are (distinct) variables. Assuming T variable:
 - * (occur check) if T occurs in the term $S \to \text{halt}$ with failure
 - * substitute variable T by term S in all terms in θ
 - * substitute variable T by term S in all terms in E
 - * add T = S to θ
 - 2.3 case T and S are non-variable terms:
 - * if their names or arities are different \rightarrow halt with failure
 - * obtain the arguments $\{T_1,\ldots,T_n\}$ of T and $\{S_1,\ldots,S_n\}$ of S
 - * add $\{T_1 = S_1, \dots, T_n = S_n\}$ to E
- 3 halt with θ being the m.g.u of A and B

Unification Algorithm Examples (I)

• Unify: A = p(X,X) and B = p(f(Z),f(W))

• Unify: A = p(X, f(Y)) and B = p(Z, X)

Unification Algorithm Examples (II)

• Unify: A = p(X, f(Y)) and B = p(a, g(b))

$$\begin{array}{c|cccc} \theta & E & T & S \\ \{\} & \{p(X,f(Y))=p(a,g(b))\} & p(X,f(Y)) & p(a,g(b)) \\ \{\} & \{X=a,f(Y)=g(b)\} & X & a \\ \{X=a\} & \{f(Y)=g(b)\} & f(Y) & g(b) \\ \textit{fail} & & & \end{array}$$

• Unify: A = p(X, f(X)) and B = p(Z, Z)

A (Schematic) Interpreter for Logic Programs (SLD-resolution)

Input: A logic program P, a query Q

Output: $Q\mu$ (answer substitution) if Q is provable from P, failure otherwise

Algorithm:

- 1. Initialize the "resolvent" R to be $\{Q\}$
- 2. While *R* is nonempty do:
 - 2.1. Take the leftmost literal A in R
 - 2.2. Choose a (renamed) clause $A' \leftarrow B_1, \dots, B_n$ from P, such that A and A' unify with unifier θ (if no such clause can be found, branch is *failed*; explore another branch)
 - **2.3.** Remove A from R, add B_1, \ldots, B_n to R
 - **2.4.** Apply θ to R and Q
- 3. If R is empty, output Q (a solution). Explore another branch for more sol's.
- Step 2.2 defines alternative paths to be explored to find answer(s);
 execution explores this tree (for example, breadth-first).

A (Schematic) Interpreter for Logic Programs (Contd.)

- Since step 2.2 is left open, a given logic programming system must specify how it deals with this by providing one (or more)
 - Search rule(s): "how are clauses/branches selected in 2.2."
- If the search rule is not specified execution can be *nondeterministic*, since choosing a different clause (in step 2.2) could lead to different solutions (finding solutions in a different order).

Example (two valid executions):

```
?- pet(X).
X = spot ?;
X = barry ?;
X = spot ?;
no
?-
X = spot ?;
no
?-
```

- In fact, there is also some freedom in step 2.1, i.e., a system may also specify:
 - Computation rule(s): "how are literals selected in 2.1."

Running programs

```
C1: pet(X) :- animal(X), barks(X).
C2: pet(X) :- animal(X), meows(X).

C3: animal(spot).
C4: animal(barry).
C5: animal(hobbes).

C6: barks(spot).
C7: meows(barry).
C8: roars(hobbes).
```

:- pet(P).

Q	R	Clause	θ
pet(P)	pet(P)	C_2^{ullet}	$\{P = X_1\}$
$pet(X_1)$	$animal(X_1), meows(X_1)$	$C_4^{ \star}$	${X_1 = \text{barry}}$
pet(barry)	meows(barry)	C_7	{}
pet(barry)			_

* means
there is a choicepoint, i.e., there are
other clauses whose
head unifies.

- System response: P = barry ?
- If we type ";" after the ? prompt (i.e., we ask for another solution) the system can go and execute a different branch (i.e., a different choice in C_2^* or C_4^*).

Running programs (different strategy)

```
C1: pet(X) :- animal(X), barks(X).
C2: pet(X) :- animal(X), meows(X).

C3: animal(spot).
C4: animal(barry).
C5: animal(hobbes).

C6: barks(spot).
C7: meows(barry).
C8: roars(hobbes).
```

i- pet(P). (different strategy)

Q	R	Clause	θ
pet(P)	pet(P)	$C_1^{ \star}$	$\{P = X_1\}$
$\mathtt{pet}(X_1)$	$animal(X_1)$, $barks(X_1)$	$C_5^{ \star}$	${X_1 = \text{hobbes}}$
<pre>pet(hobbes)</pre>	barks(hobbes)	???	failure
		: :- O *	ou (C *) to final a colution
$ ightarrow$ explore an We take C_3 in	other branch (different chostead of C_5 :	ice in C_1^*	or C_5^*) to find a solution.
· •	•	ice in C_1^*	or C_5^*) to find a solution. $\{P = X_1\}$
We take C_3 in	stead of C_5 :	_	,
We take C ₃ in pet (P)	stead of C_5 : $pet(P)$	C ₁ *	$\{P = X_1\}$

The Search Tree

A query + a logic program together specify a search tree.
 Example: query :- pet(X) with the previous program generates this search tree (the boxes represent the "and" parts [except leaves]):

- Different query → different tree.
- The search and computation rules explain how the search tree will be explored during execution.
- How can we achieve completeness (guarantee that all solutions will be found)?

Characterization of The Search Tree

- All solutions are at *finite depth* in the tree.
- Failures can be at finite depth or, in some cases, be an infinite branch.

Depth-First Search

- Incomplete: may fall through an infinite branch before finding all solutions.
- But very efficient: it can be implemented with a call stack, very similar to a traditional programming language.

Breadth-First Search

- Will find all solutions before falling through an infinite branch.
- But costly in terms of time and memory.
- Used in all the following examples (via Ciao's bf package).

Selecting breadth-first or depth-first search

- In the Ciao system we can select the search rule using the packages mechanism.
- Files should start with the following line:
 - ♦ To execute in breadth-first mode:

```
:- module(_,_,['bf/bfall']).
```

⋄ To execute in depth-first mode:

```
:- module(_,_,[]).
```

See the part on Developing Programs with a Logic Programming System for more details on the particular system used in the course (Ciao).

Role of Unification in Execution

As mentioned before, unification used to access data and give values to variables.

```
Example: Consider query :- animal(A), named(A,Name). with:
animal(dog(barry)). named(dog(Name),Name).
```

 Also, unification is used to pass parameters in procedure calls and to return values upon procedure exit.

Q	R	Clause	θ
pet(P)	pet(P)	$C_1^{ \star}$	$\{P=X_1\}$
$pet(X_1)$	animal(X_1), barks(X_1)	$C_3^{ \star}$	$\{ X_1 = spot \}$
pet(spot)	barks(spot)	C_6	{}
pet(spot)			

"Modes"

In fact, argument positions are not fixed a priory to be input or output.

- Thus, procedures can be used in different modes
 s.t. different sets of arguments are input or output in each mode.
- We sometimes use + and to refer to, respectively, and argument being an input or an an output, e.g.:

```
plus(+X, +Y, -Z) means we call plus with
```

- ◊ X instantiated,
- ⋄ Y instantiated, and
- ♦ Z free.

Database Programming

A Logic Database is a set of facts and rules (i.e., a logic program):

```
father_of(john, peter).
father_of(john, mary).
father_of(peter, michael).
mother_of(mary, david).
grandfather_of(L,M) :- father_of(L,N),
father_of(X,Y) :- father_of(X,Z),
mother_of(mary, david).
```

 Given such database, a logic programming system can answer questions (queries) such as:

```
?- father_of(john, peter).
yes
?- father_of(john, david).
no
?- father_of(john, X).
X = peter ;
X = mary
```

Rules for grandmother_of(X,Y)?

```
?- grandfather_of(X, michael).
X = john
?- grandfather_of(X, Y).
X = john, Y = michael;
X = john, Y = david
?- grandfather_of(X, X).
no
```

Database Programming (Contd.)

Another example:

```
Power r1 n2 r2 t2 n3 n4 n5
```

```
resistor(power,n1).
resistor(power,n2).

transistor(n2,ground,n1).
transistor(n3,n4,n2).
transistor(n5,ground,n4).
```

```
inverter(Input,Output) :-
   transistor(Input,ground,Output), resistor(power,Output).
nand_gate(Input1,Input2,Output) :-
   transistor(Input1,X,Output), transistor(Input2,ground,X),
   resistor(power,Output).
and_gate(Input1,Input2,Output) :-
   nand_gate(Input1,Input2,X), inverter(X, Output).
```

Query and_gate(In1,In2,Out) has solution: In1=n3, In2=n5, Out=n1

Structured Data and Data Abstraction (and the '=' Predicate)

- Data structures are created using (complex) terms.
- Structuring data is important: course(complog, wed, 18, 30, 20, 30, 'M.', 'Hermenegildo', new, 5102).
- When is the Computational Logic course?
 course(complog, Day, StartH, StartM, FinishH, FinishM, C, D, E, F).
- Structured version:

```
course(complog,Time,Lecturer, Location) :-
   Time = t(wed,18:30,20:30),
   Lecturer = lect('M.','Hermenegildo'),
   Location = loc(new,5102).
```

Note: "X=Y" is equivalent to "'='(X,Y)" where the predicate =/2 is defined as the fact "'='(X,X)." — Plain unification!

Equivalent to:

```
course(complog, t(wed,18:30,20:30),
   lect('M.','Hermenegildo'), loc(new,5102)).
```

Structured Data and Data Abstraction (and The Anonymous Variable)

Given:

```
course(complog, Time, Lecturer, Location) :-
    Time = t(wed, 18:30, 20:30),
    Lecturer = lect('M.', 'Hermenegildo'),
    Location = loc(new, 5102).
```

When is the Computational Logic course?

```
?- course(complog, Time, A, B).
has solution:
Time=t(wed, 18:30, 20:30), A=lect('M.', 'Hermenegildo'), B=loc(new, 5102)
```

Using the anonymous variable ("_"):

```
:- course(complog,Time, _, _).
has solution:
Time=t(wed,18:30,20:30)
```

Terms as Data Structures with Pointers

- main below is a procedure, that:
 - creates some data structures, with pointers and aliasing.
 - calls other procedures, passing to them pointers to these structures.

```
main :-
X=f(K,g(K)),
Y=a,
Z=g(L),
W=h(b,L),
% Heap memory at this point \longrightarrow
p(X,Y),
q(Y,Z),
r(W).
```


- Terms are data structures with pointers.
- Logical variables are declarative pointers.
 - Declarative: they can only be assigned once.

Structured Data and Data Abstraction (Contd.)

• The circuit example revisited:

```
resistor(r1, power, n1).
                            transistor(t1,n2,ground,n1).
                            transistor(t2,n3,n4,n2).
resistor(r2, power, n2).
                            transistor(t3,n5,ground,n4).
inverter(inv(T,R),Input,Output) :-
  transistor(T,Input,ground,Output),
  resistor(R, power, Output).
nand_gate(nand(T1,T2,R),Input1,Input2,Output) :-
  transistor(T1, Input1, X, Output),
  transistor(T2, Input2, ground, X),
  resistor(R, power, Output).
and_gate(and(N,I),Input1,Input2,Output) :-
   nand_gate(N,Input1,Input2,X), inverter(I,X,Output).
```

• The query :- and_gate(G,In1,In2,Out).
has solution: G=and(nand(t2,t3,r2),inv(t1,r1)),In1=n3,In2=n5,Out=n1

Logic Programs and the Relational DB Model

Relational Database

Relation Name

Relation

Tuple Attribute

Name	Age	Sex
Brown	20	М
Jones	21	F
Smith	36	М
"Po	erson'	,

Name	Town	Years
Brown	London	15
Brown	York	5
Jones	Paris	21
Smith	Brussels	15
Smith	Santander	5
	"Lived in"	

Logic Programming

- \rightarrow Predicate symbol
- → Procedure consisting of ground facts (facts without variables)
- → Ground fact
- → Argument of predicate

```
person(brown,20,male).
person(jones,21,female).
person(smith,36,male).
```

```
lived_in(brown, london, 15).
lived_in(brown, york, 5).
lived_in(jones, paris, 21).
lived_in(smith, brussels,15).
lived_in(smith, santander,5).
```

Logic Programs and the Relational DB Model (Contd.)

- The operations of the relational model are easily implemented as rules.
 - \diamond Union: $r_{union}(X_1,...,X_n) \leftarrow r(X_1,...,X_n)$. $r_{union}(X_1,...,X_n) \leftarrow s(X_1,...,X_n)$.
 - \diamond Set Difference: $r_diff_s(X_1,\ldots,X_n) \leftarrow r(X_1,\ldots,X_n)$, not $s(X_1,\ldots,X_n)$. $r_diff_s(X_1,\ldots,X_n) \leftarrow s(X_1,\ldots,X_n)$, not $r(X_1,\ldots,X_n)$. (we postpone the discussion on negation until later.)
 - Cartesian Product:

$$r_X_s(X_1,...,X_m,X_{m+1},...,X_{m+n}) \leftarrow r(X_1,...,X_m), s(X_{m+1},...,X_{m+n}).$$

- \diamond Projection: r13(X_1, X_3) \leftarrow r(X_1, X_2, X_3).
- \diamond *Selection*: $r_{\text{selected}}(X_1, X_2, X_3) \leftarrow r(X_1, X_2, X_3), \leq (X_2, X_3).$ (see later for definition of $\leq /2$)
- Derived operations some can be expressed more directly in LP:
 - \diamond Intersection: r_meet_s(X_1, \ldots, X_n) \leftarrow r(X_1, \ldots, X_n), s(X_1, \ldots, X_n).
 - \diamond Join: r_joinX2_s(X_1,\ldots,X_n) \leftarrow r(X_1,X_2,X_3,\ldots,X_n), s($X_1',X_2,X_3',\ldots,X_n'$).
- Duplicates an issue: see "setof" later in Prolog.

Deductive Databases

- The subject of "deductive databases" uses these ideas to develop logic-based databases.
 - Often syntactic restrictions (a subset of definite programs) used (e.g. "Datalog" – no functors, no existential variables).
 - \diamond Variations of a "bottom-up" execution strategy used: Use the T_p operator (explained in the theory part) to compute the model, restrict to the query.
 - Powerful notions of negation supported: S-models
 - → Answer Set Programming (ASP)
 - → powerful knowledge representation and reasoning systems.

Recursive Programming

Example: ancestors.

```
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), parent(Z,Y).
ancestor(X,Y) :- parent(X,Z), parent(Z,W), parent(W,Y).
ancestor(X,Y) :- parent(X,Z), parent(Z,W), parent(W,K), parent(K,Y).
```

Defining ancestor recursively:

```
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).
```

Exercise: define "related", "cousin", "same generation", etc.

Types

- Type: a (possibly infinite) set of terms.
- Type definition: A program defining a type.
- Example: Weekday:
 - Set of terms to represent: 'Monday', 'Tuesday', 'Wednesday', ...
 - Type definition:
 weekday('Monday').
 weekday('Tuesday'). ...
- Example: Date (weekday * day in the month):
 - Set of terms to represent: date('Monday',23), date('Tuesday',24), ...
 - ◇ Type definition:
 date(date(W,D)) :- weekday(W), day_of_month(D).
 day_of_month(1).
 day_of_month(2).

 $day_of_month(31)$.

Recursive Programming: Recursive Types

- Recursive types: defined by recursive logic programs.
- Example: natural numbers (simplest recursive data type):
 - \diamond Set of terms to represent: 0, s(0), s(s(0)), ...
 - Type definition:

nat(0).
nat(s(X)) :- nat(X).

A minimal recursive predicate:

one unit clause and one recursive clause (with a single body literal).

Types are runnable and can be used to check or produce values:

- We can reason about complexity, for a given class of queries ("mode").
 E.g., for mode nat(ground) complexity is linear in size of number.
- Example: integers:
 - ♦ Set of terms to represent: 0, s(0), -s(0),...
 - o Type definition:
 integer(X) :- nat(X).
 integer(-X) :- nat(X).

Recursive Programming: Arithmetic

• Defining the natural order (\leq) of natural numbers:

```
less_or_equal(0,X) :- nat(X).
less_or_equal(s(X),s(Y)) :- less_or_equal(X,Y).
```

Multiple uses (modes):

```
less_or_equal(s(0),s(s(0))), less_or_equal(X,0),...
```

Multiple solutions:

```
less_or_equal(X,s(0)), less_or_equal(s(s(0)),Y), etc.
```

Addition:

```
plus(0,X,X) :- nat(X).
plus(s(X),Y,s(Z)) :- plus(X,Y,Z).
```

- \diamond Multiple uses (modes): plus(s(s(0)),s(0),Z), plus(s(s(0)),Y,s(0))
- ♦ Multiple solutions: plus(X,Y,s(s(s(0)))), etc.

Recursive Programming: Arithmetic

Another possible definition of addition:

```
plus(X,0,X) :- nat(X).
plus(X,s(Y),s(Z)) :- plus(X,Y,Z).
```

- The meaning of plus is the same if both definitions are combined.
- Not recommended: several proof trees for the same query → not efficient, not concise. We look for minimal axiomatizations.
- The art of logic programming: finding compact and computationally efficient formulations!

• Try to define: times(X,Y,Z) (Z = X*Y), exp(N,X,Y) $(Y = X^N)$, factorial(N,F) (F = N!), minimum(N1,N2,Min), ...

Recursive Programming: Arithmetic

Definition of mod(X,Y,Z)
 "Z is the remainder from dividing X by Y"

```
\exists Qs.t. \ X = Y * Q + Z \land Z < Y \Rightarrow \\ \mathbf{mod}(X,Y,Z) := less(Z, Y), \ times(Y,Q,W), \ plus(W,Z,X). less(0,s(X)) := nat(X). less(s(X),s(Y)) := less(X,Y).
```

Another possible definition:

```
mod(X,Y,X) :- less(X, Y).
mod(X,Y,Z) :- plus(X1,Y,X), mod(X1,Y,Z).
```

 The second is much more efficient than the first one (compare the size of the proof trees).

Recursive Programming: Arithmetic/Functions

The Ackermann function:

```
ackermann(0,N) = N+1
ackermann(M,0) = ackermann(M-1,1)
ackermann(M,N) = ackermann(M-1,ackermann(M,N-1))
```

In Peano arithmetic:

```
ackermann(0,N) = s(N)
ackermann(s(M1),0) = ackermann(M1,s(0))
ackermann(s(M1),s(N1)) = ackermann(M1,ackermann(s(M1),N1))
```

Can be defined as:

```
ackermann(0,N,s(N)).
ackermann(s(M1),0,Val) :- ackermann(M1,s(0),Val).
ackermann(s(M1),s(N1),Val) :- ackermann(s(M1),N1,Val1),
ackermann(M1,Val1,Val).
```

• In general, *functions* can be coded as a predicate with one more argument, which represents the output (and additional syntactic sugar often available).

Recursive Programming: Arithmetic/Functions (Functional Syntax)

- Syntactic support available (see, e.g., the Ciao fsyntax and functional packages).
- The Ackermann function (Peano) in Ciao's functional Syntax and defining s as a prefix operator:

```
:- use_package(functional).
:- op(500, fy, s).

ackermann( 0,  N) := s N.
ackermann(s M,  0) := ackermann(M, s 0).
ackermann(s M, s N) := ackermann(M, ackermann(s M, N) ).
```

Convenient in other cases – e.g. for defining types:

```
nat(0).
nat(s(X)) :- nat(X).
```

Using special := notation for the "return" (last) the argument:

```
nat := 0.
nat := s(X) :- nat(X).
```

Recursive Programming: Arithmetic/Functions (Funct. Syntax, Contd.)

Moving body call to head using the "notation ("evaluate and replace with result"):

```
nat := 0.
nat := s(~nat).
```

"~" not needed with funcional package if inside its own definition:

```
nat := 0.
nat := s(nat).
```

Using an :-op(500, fy, s). declaration to define s as a *prefix operator*:

```
nat := 0.
nat := s nat.
```

Using "|" (disjunction):

```
nat := 0 | s nat.
```

Which is exactly equivalent to:

```
nat(0).
nat(s(X)) :- nat(X).
```

Recursive Programming: Lists

- Binary structure: first argument is element, second argument is rest of the list.
- We need:
 - \diamond A constant symbol: we use the *constant* [] (\rightarrow denotes the empty list).
 - ♦ A functor of arity 2: traditionally the dot "." (which is overloaded).
- Syntactic sugar: the term .(X,Y) is denoted by [X|Y] (X is the *head*, Y is the *tail*).

Formal object	"Cons pair" syntax	"Element" syntax
.(a,[])	[a []]	[a]
.(a,.(b,[]))	[a [b []]]	[a,b]
.(a,.(b,.(c,[])))	[a [b [c []]]]	[a,b,c]
.(a,X)	[a X]	[a X]
.(a,.(b,X))	[a [b X]]	[a,b X]

Note that:

[a,b] and [a|X] unify with
$$\{X = [b]\}$$
 [a] and [a,b|X] do not unify

[a] and [a|X] unify with
$$\{X = [\]\}$$
 [] and [X] do not unify

Type definition (no syntactic sugar):

```
list([]).
list(.(X,Y)) :- list(Y).
```

• Type definition, with some syntactic sugar ([] notation):

```
list([]).
list([X|Y]) :- list(Y).
```

Type definition, using also functional package:

```
list := [] | [_|list].
```

"Exploring" the type:

```
?- list(L).
L = [] ?;
L = [_] ?;
L = [_,_] ?;
L = [_,_,_] ?
```

X is a member of the list Y:

Resulting definition:

```
member(X,[X|Y]) :- list(Y).
member(X,[_|T]) :- member(X,T).
```

- Uses of member(X,Y):
 - checking whether an element is in a list (member(b,[a,b,c]))
 - finding an element in a list (member(X,[a,b,c]))
 - finding a list containing an element (member(a,Y))

- Combining lists and naturals:
 - Computing the length of a list:

```
len([],0).
len([H|T],s(LT)) :- len(T,LT)
```

Adding all elements of a list:

```
sumlist([],0).
sumlist([H|T],S) :- sumlist(T,ST), plus(ST,H,S).
```

The type of lists of natural numbers:

```
natlist([]).
natlist([H|T]) :- nat(H), natlist(T).

or:
natlist := [~nat|natlist].
```

• Exercises:

- Define: prefix(X,Y) (the list X is a prefix of the list Y), e.g.
 prefix([a, b], [a, b, c, d])
- ♦ Define: suffix(X,Y), sublist(X,Y),...

- Concatenation of lists:
 - Base case:

```
append([],[a],[a]). append([],[a,b],[a,b]). etc. \Rightarrow append([],Ys,Ys) :- list(Ys).
```

 \Rightarrow append([X,Z],Ys,[X,Z|Ys]) :- list(Ys).

This is still infinite \rightarrow we need to generalize more.

Second generalization:
 append([X],Ys,[X|Ys]) :- list(Ys).
 append([X,Z],Ys,[X,Z|Ys]) :- list(Ys).
 append([X,Z,W],Ys,[X,Z,W|Ys]) :- list(Ys).
 ⇒ append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).
So, we have:
 append([],Ys,Ys) :- list(Ys).
 append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

- Another way of reasoning: thinking inductively.
 - ♦ The base case is: append([],Ys,Ys):-list(Ys).
 - If we assume that append(Xs,Ys,Zs) works for some iteration, then, in the next one, the following holds: append([X|Xs],Ys,[X|Zs]).

- Uses of append:
 - Concatenate two given lists:

```
?- append([a,b,c],[d,e],L).
L = [a,b,c,d,e] ?
```

Find differences between lists:

```
?- append(D,[d,e],[a,b,c,d,e]).
D = [a,b,c] ?
```

Split a list:

```
?- append(A,B,[a,b,c,d,e]).
A = [],
B = [a,b,c,d,e] ? ;
A = [a],
B = [b,c,d,e] ? ;
A = [a,b],
B = [c,d,e] ? ;
A = [a,b,c],
B = [d,e] ?
```

• reverse(Xs, Ys): Ys is the list obtained by reversing the elements in the list Xs It is clear that we will need to traverse the list Xs

For each element X of Xs, we must put X at the end of the rest of the Xs list already reversed:

```
reverse([X|Xs],Ys ) :-
  reverse(Xs,Zs),
  append(Zs,[X],Ys).
```

How can we stop?

```
reverse([],[]).
```

 As defined, reverse(Xs,Ys) is very inefficient. Another possible definition: (uses an accumulating parameter)

```
reverse(Xs,Ys) :- reverse(Xs,[],Ys).
reverse([],Ys,Ys).
reverse([X|Xs],Acc,Ys) :- reverse(Xs,[X|Acc],Ys).
```

⇒ Find the differences in terms of efficiency between the two definitions.

Recursive Programming: Binary Trees

- Represented by a ternary functor tree(Element, Left, Right).
- Empty tree represented by void.
- Definition:

```
binary_tree(void).
binary_tree(Element, Left, Right)) :-
    binary_tree(Left),
    binary_tree(Right).
```

Defining tree_member(Element, Tree):

```
tree_member(X,tree(X,Left,Right)) :-
    binary_tree(Left),
    binary_tree(Right).

tree_member(X,tree(Y,Left,Right)) :- tree_member(X,Left).

tree_member(X,tree(Y,Left,Right)) :- tree_member(X,Right).
```

Recursive Programming: Binary Trees

• Defining pre_order(Tree, Elements):
Elements is a list containing the elements of Tree traversed in *preorder*.

```
pre_order(void,[]).
pre_order(tree(X,Left,Right),Elements):-
    pre_order(Left,ElementsLeft),
    pre_order(Right,ElementsRight),
    append([X|ElementsLeft],ElementsRight,Elements).
```

- Exercise define:
 - o in_order(Tree, Elements)
 - opost_order(Tree,Elements)

Polymorphism

Note that the two definitions of member/2 can be used simultaneously:

```
lt_member(X,[X|Y]) :- list(Y).
lt_member(X,[_|T]) :- lt_member(X,T).

lt_member(X,tree(X,L,R)) :- binary_tree(L), binary_tree(R).
lt_member(X,tree(Y,L,R)) :- lt_member(X,L).
lt_member(X,tree(Y,L,R)) :- lt_member(X,R).
```

Lists only unify with the first two clauses, trees with clauses 3–5!

- :- lt_member(X,[b,a,c]). X = b ; X = a ; X = c
- :- lt_member(X,tree(b,tree(a,void,void),tree(c,void,void))).

 X = b ; X = a ; X = c
- Also, try (somewat surprising): :- lt_member(M,T).

Recursive Programming: Manipulating Symbolic Expressions

- Recognizing (and generating!) polynomials in some term X:
 - ⋄ X is a polynomial in X
 - a constant is a polynomial in X
 - sums, differences and products of polynomials in X are polynomials
 - also polynomials raised to the power of a natural number and the quotient of a polynomial by a constant

```
polynomial(X,X).
polynomial(Term,X) :- pconstant(Term).
polynomial(Term1+Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1-Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1*Term2,X) :- polynomial(Term1,X), polynomial(Term2,X).
polynomial(Term1/Term2,X) :- polynomial(Term1,X), pconstant(Term2).
polynomial(Term1^N,X) :- polynomial(Term1,X), nat(N).
```

Recursive Programming: Manipulating Symb. Expressions (Contd.)

Symbolic differentiation: deriv(Expression, X, DifferentiatedExpression)

- ?- deriv(s(s(s(0)))*x+s(s(0)),x,Y).
- A simplification step can be added.

Recursive Programming: Automata (Graphs)

 Recognizing the sequence of characters accepted by the following non-deterministic, finite automaton (NDFA):

where **q0** is both the *initial* and the *final* state.

- Strings are represented as lists of constants (e.g., [a,b,b]).
- Program:

Recursive Programming: Automata (Graphs) (Contd.)

• A nondeterministic, stack, finite automaton (NDSFA):

```
accept(S) :- initial(Q), accept_from(S,Q,[]).
accept_from([],Q,[]) :- final(Q).
accept_from([X|Xs],Q,S) :- delta(Q,X,S,NewQ,NewS),
                            accept_from(Xs.NewO.NewS).
initial(q0).
final(q1).
delta(q0,X,Xs,q0,[X|Xs]).
delta(q0,X,Xs,q1,[X|Xs]).
delta(q0,X,Xs,q1,Xs).
delta(q1, X, [X|Xs], q1, Xs).
```

What sequence does it recognize?

Recursive Programming: Towers of Hanoi

• Objective:

Move tower of N disks from peg a to peg b, with the help of peg c.

• Rules:

- Only one disk can be moved at a time.
- A larger disk can never be placed on top of a smaller disk.

Recursive Programming: Towers of Hanoi (Contd.)

- We will call the main predicate hanoi_moves(N, Moves)
- N is the number of disks and Moves the corresponding list of "moves".
- Each move move (A, B) represents that the top disk in A should be moved to B.
- Example:

is represented by:

Recursive Programming: Towers of Hanoi (Contd.)

A general rule:

• We capture this in a predicate hanoi(N,Orig,Dest,Help,Moves) where "Moves contains the moves needed to move a tower of N disks from peg Orig to peg Dest, with the help of peg Help."

And we simply call this predicate:

```
hanoi_moves(N, Moves):-
hanoi(N,a,b,c, Moves).
```

Learning to Compose Recursive Programs

- To some extent it is a simple question of practice.
- By generalization (as in the previous examples): elegant, but sometimes difficult?
 (Not the way most people do it.)
- Think inductively: state first the base case(s), and then think about the general recursive case(s).
- Sometimes it may help to compose programs with a given use in mind (e.g., "forwards execution"), making sure it is declaratively correct. Consider then also if alternative uses make sense.
- Sometimes it helps to look at well-written examples and use the same "schemas."
- Using a global top-down design approach can help (in general, not just for recursive programs):
 - State the general problem.
 - Break it down into subproblems.
 - Solve the pieces.
- Again, the best approach: practice, practice, practice.