JEE EXPERT

RANK ELEVATOR TEST SERIES

(RETS/PT-03) 12TH (Zenith X01 & X02) Date 29.09.2019 BOOKLET CODE - [A & B]

ANSWER KEY

PHYSICS			CHEMISTRY			MATHEMATICS		
Q. No.	B. Code	B. Code	Q. No.	B. Code	B. Code	Q. No.	B. Code	B. Code
	(A)	(B)		(A)	(B)		(A)	(B)
1.	Α	Α	26.	В	В	51.	С	D
2.	В	В	27.	D	D	52.	В	В
3.	Α	С	28.	В	C	53.	D	В
4.	Α	D	29.	D	Α	54.	С	С
5.	Α	В	30.	В	C	55.	С	В
6.	D	Α	31.	A	С	56.	В	В
7.	D	Α	32.	C	Α	57 .	С	D
8.	D	В	33.	A	В	58.	D	В
9.	В	Α	34.	С	С	59.	D	С
10.	В	D	35.	С	D	60.	В	С
11.	D	В	36.	С	В	61.	В	Α
12.	Α	D	37.	D	В	62.	D	D
13.	D	Α	38.	С	С	63.	D	С
14.	D	D	39.	С	D	64.	С	С
15.	D	Α	40.	В	D	65.	В	D
16.	В	D	41.	D	С	66.	Α	В
17.	Α	D	42.	D	В	67.	С	С
18.	В	D	43.	D	D	68.	В	С
19.	С	В	44.	В	D	69.	Α	D
20.	D	D	45.	С	С	70.	С	Α
21.	(0021)	(0005)	46.	(0001)	(0004)	71.	(0004)	(0006)
22.	(0140)	(0002)	47.	(0003)	(0010)	72.	(0003)	(0005)
23.	(0002)	(0025)	48.	(0004)	(0002)	73.	(0003)	(0003)
24.	(0005)	(0140)	49.	(0002)	(0001)	74.	(0006)	(0004)
25.	(0022)	(0022)	50.	(0010)	(0003)	75.	(0005)	(0003)

JEE EXPERT

RANK ELEVATOR TEST SERIES

(RETS/PT-03) 12TH (Zenith X01 & X02) Date 29.09.2019 BOOKLET CODE - [A & B]

Solution

PART - III Mathematics

51./63 Sol. (C)

Consider the function

$$g(x) = f(x) - x^2$$

$$g(0) = g(\pi) = g(2\pi) = 0$$

 \Rightarrow f'(x) - 2x = 0 has two real roots in (0, 2 π) and f''(x) - 2 = 0 has at least one root in (0, 2 π)

52/66. Sol. (B)

From the given condition

$$P(x) = x^3 - 6x^2 + 11x$$

Which is on to but not one-one.

$$\int_{-1}^{1} P(x) dx = 6$$

53/65. Sol. (D)

$$f'(x) \ge 3$$
 and $f(0) = 2 \Rightarrow f(x) \ge 3x + 2 \ \forall \ x \in [0, 10]$

54/64. Sol. (C)

$$f(x) = \int_{-1/2}^{x^2+1} (t-2)(t-5)(t-10) dt$$

$$f'(x) = 2x(x^2 - 1)(x^2 - 4)(x^2 - 9)$$

Point of maxima \rightarrow -2, 0, 2

Point of minima \rightarrow -3, -1, 1, 3

55/67. Sol. (C)

$$F(f(x)) = x \Rightarrow g(x) = x \text{ and } x^2 - 2x + 2 = (x - 1)^2 + 1 \ge 1 \Rightarrow K = \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$$

[MATHEMATICS]

56/52. Sol. (B)

Circumcenter is fixed \Rightarrow A lying on a circle.

 \Rightarrow locus of centroid will be a circle.

57/68. Sol. (C)

58/69. Sol. (D)

Let $\alpha \& \beta$ be the roots

$$1+\frac{b}{a}+\frac{c}{a}=n$$
 (a prime)

$$\Rightarrow$$
 1 + $\alpha\beta$ - α - β = a prime

$$\Rightarrow$$
 $(\alpha -1) (\beta -1) = a \text{ prime } \Rightarrow \alpha = 2 \& \beta = 3$

$$\int_{2}^{3} (3x^2 - 2x + 1) dx = 15$$

&

$$a = 1 \Rightarrow b = -5 c = 6$$

$$\int_{-5}^{7} \frac{e^{|x-1|} \; (x-1)}{(x-1)^2 + 2} \; dx = \int_{-6}^{6} \frac{e^{|x|} x}{x^2 + 2} \; dx = 0$$

65/58. Sol. (B)

$$\phi'(x) = f(x)$$

 $\phi(x)$ is a periodic function with period T.

Because f(x) has the period T.

66/61. Sol. (A)
$$f(x) = \begin{cases} -x^2 & , & x \le -1 \\ 2 + [x] + [-x] & , & -1 < x < 1 \\ -x^2 & , & x \ge 1 \end{cases}$$

$$f(x) = \begin{cases} -x^2 & , & x \le -1 \\ 1 & , & -1 < x < 0 \\ 2 & , & x = 0 \\ 1 & , & 0 < x < 1 \\ -x^2 & , & x \ge 1 \end{cases}$$

Thus f(x) is an even function. $\oint \int_{-2}^{2} f(x) dx = 2 \int_{0}^{2} f(x) dx$

$$=2\left(\int_{0}^{1} f(x)dx + \int_{1}^{2} f(x)dx\right) = 2\left(1 - \frac{x^{3}}{3}\right)^{2} = 2\left(1 - \frac{7}{3}\right) = -\frac{8}{3}$$

67/54. Sol. (C)

68/56. Sol. (B)

LHS of given equation is always positive.

And RHS is always negative as discriminant is less than 0 and coefficient of x^2 is -1.

∴ No solution.

[MATHEMATICS]

69/70. Sol. (A)

Let $f(x) = ax^2 + bx - 5$, since f(x) = 0 does not have two distinct real roots, so either $f(x) \ge 0$ or $f(x) \le 0$ for all real x. But f(0) = -5 so $f(x) \le 0$.

$$\Rightarrow f(-5) \le 0$$

$$\Rightarrow$$
 $25a - 5b - 5 \le 0$

$$\Rightarrow$$
 5*a* - *b* \leq 1.

70/59. Sol. (C)

We have
$$\alpha + \beta = -a$$
, so $\frac{\alpha + \beta}{2} = -\frac{a}{2}$. Thus $f'\left(-\frac{a}{2}\right) = 2\left(-\frac{a}{2}\right) + a = 0$.

Numerical Value Type Question: 71 to 75

71/74. Sol. 0004

The equation f(x) = 0 has one negative and two positive roots and. f'(x) = 0 has 2 positive roots.

72/75. Sol. (0003)

$$x^2 + ax + b = cx^2 + cx + 1$$

$$\Rightarrow$$
 $(1-c)x^2 + (a-c)x + (b-1) = 0$ has 3 real roots.

$$\Rightarrow$$
 1 - c = a - c = b - 1 = 0

73/73. Sol. (0003)

For continuous function two consicutive maxima or minima can not occure.

74/71. Sol. (0006)

Let
$$h(x) = f(x) - (3x + 2) = 0$$
 has 5 roots

$$h'(x) = f'(x) - 3 = 0$$
 4 roots

$$h''(x) = f''(x) = 0$$
 3 roots

$$\Rightarrow$$
 $(f'(x) - 3) f''(x) = 0$ 7 roots

75/75. Sol. (0005)

Sol.
$$I = \int_{1}^{2} \frac{f(x)}{x} dx$$
 put $x = \frac{4}{t}$; $I = -\int_{4}^{2} \frac{f\left(\frac{4}{t}\right) dt}{t} = \int_{2}^{4} \frac{f(x)}{x} dx \implies 2I = \int_{1}^{2} \frac{f(x)}{x} dx + \int_{2}^{4} \frac{f(x)}{x} dx = \int_{1}^{4} f(x) dx$
