Oblig 1

Oliver Ekeberg

August 28, 2025

1 1.4

1.1 1.4.2

Vis at standardbasisen $(e_1,...,e_n)$ er en basis for \mathbb{K}^n

pf:

En

Først viser jeg at $(e_1,...,e_n)$ er lineært uavhengig. Dette skjer når likningen

$$0 = \alpha_1 e_1 + \dots + \alpha_n e_n$$

har eneste løsning at $\alpha_1 = ... = \alpha_n = 0$. Vi vet videre at $e_j = (\delta_{jk})_{k=1}^n$ hvor j er da posisjonen til vektoren inne i listen, og k er da den k'te posisjonen i n-tuppelen.

I nesten enhver situasjon så har vi en liste med n-tupler

$$0 = \alpha_1 e_1 + \dots + \alpha_n e_n$$

$$= \sum_{j=1}^n \alpha_j * e_j$$

$$= \sum_{j=1}^n \alpha_j * (\delta_{jk})_{k=1}^n$$

$$= (\sum_{j=1}^n \alpha_j \delta_{jk})_{k=1}^n$$

$$= (\alpha_k)$$

hvis og bare hvis $\alpha_1 = \dots = \alpha_n = 0$

 $Så(e_1,...e_n)$ er lineært uavhengig

Deretter må jeg vise at listen $(e_1, ... e_n)$ utspenner heel \mathbb{K}^n

Definisjonen på spennet av en liste med vektorer er definert som

$$span(\mathbb{K}^n) = \{\alpha_1 e_1 + \dots + \alpha_n e_n : \alpha_1, \dots, \alpha_n \in \mathbb{K}\}$$

Siden $(e_1, ..., e_n)$ er lineært uavhengig, så vet vi at det finnes n
 uavhengige vektorer, og de må av den grunn utspenne hele \mathbb{K}^n

1.2 1.4.6

1.2.1 a)

La $C = (e_1, ..., e_n)$ være standardbasisen til \mathbb{K}^n . Vis at $[x]_C = x, \forall x \in \mathbb{K}^n$.

pf:

Vi vet at $e_j = (\delta_{jk})$ som er den j-te n-tuppelen, som er 0 overalt enn i den k-te posisjonen.

Da er enhver $x \in \mathbb{K}^n$ en lineær kombinasjon av standardbasisen, og kan skrives som

$$x = \sum_{j=1}^{n} x_j e_j$$
$$= \sum_{j=1}^{n} x_j (\delta_{jk})$$
$$= (x_k)$$

Da vil av teorem 1.4.5, som sier at hvis $u = x_1u_1 + ... + x_nu_n = > [u]_B = (x_1, ..., x_n)$ gitt at basisen til et vektorrom U over \mathbb{K} er gitt ved at $B = (u_1, ..., u_n)$, kunne si at $[x]_C = x, \forall x \in \mathbb{K}^n$

1.2.2 b)

La U være et vektorrom over \mathbb{K} med en basis $B = (u_1, ..., u_n)$. Vis at

$$[u_j]_B = e_j, \forall j = 1, ..., n$$

Vi vet at vi kan uttrykke u_j som $0 * u_1 + ... + 1 * u_j + ... + 0 * u_n$.

Da vet vi fra teorem 1.4.5 at $[u_j]_B = (0, ..., 1, ..., 0)$. Dette er det samme som å skrive $e_j = (0, ..., 1, ..., 0)$ hvor 1 er i den j-te plassen, som viser at

$$[u_j]_B = e_j, \forall j = 1, ..., n$$

$$x + y = z$$