

Notes on Overfitting

- Overfitting results in decision trees that are more complex than necessary
- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records
- Need new ways for estimating errors

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 56

Estimating Generalization Errors

- Re-substitution errors: error on training (Σ e(t))
- Generalization errors: error on testing $(\Sigma e'(t))$
- Methods for estimating generalization errors:
 - Optimistic approach: e'(t) = e(t)Pessimistic approach:
 - Pessimistic approach:

 For each leaf node: e'(t) = (e(t)+0.5)
 - Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances): Training error = 10/1000 = 1%
 - Generalization error = $(10 + 30 \times 0.5)/1000 = 2.5\%$
 - Reduced error pruning (REP):
 - uses validation data set to estimate generalization error

Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 57

Occam's Razor

- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model
- For complex models, there is a greater chance that it was fitted accidentally by errors in data
- Therefore, one should include model complexity when evaluating a model

Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

How to Address Overfitting

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fullygrown tree
 - Possible conditions:
 - · Stop if number of instances is less than some userspecified threshold.
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain) by at least some threshold.

Tan,Steinbach, Kumar Introduction to Data Mining

Disadvantage of Pre-Pruning

- Since we use a hill-climbing search, looking only one step ahead, pre-pruning might stop too early.
- Extreme example: exclusive OR, A XOR B.

How to Address Overfitting...

- Post-pruning
 - Grow decision tree to its entirety
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node.
 - Class label of leaf node is determined from majority class of instances in the sub-tree

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 61

Example of Post-Pruning Training Error (Before splitting) = 10/30 Class = Yes 20 Pessimistic error = (10 + 0.5)/30 = 10.5/30Training Error (After splitting) = 9/30 Class = No 10 Pessimistic error (After splitting) Error = 10/30 = (9 + 4 × 0.5)/30 = 11/30 PRUNE Α? Class = Yes 8 Class = Yes 3 Class = Yes 4 Class = No 4 Class = No 4 Class = No 1 Class = Yes 5 Class = No 1 © Tan,Steinbach, Kuma 4/18/2004

Error based pruning in C4.5 (J48) Suppose we observe 2 errors out of 7 in a leaf node.

The point estimate for the error rate in that leaf is 2/7=0.286.

If the probability of error is 2/7 then the probability of observing 2 errors or less is 0.68 (binomial distribution with n=7, and p=2/7).

As a pessimistic estimate of the error rate in this leaf node, we are going to find the value of p, such that the probability of 2 errors or less is relatively small, say 0.25. This turns out to be the case for p = 0.4861. Hence [0,0.4861) can be regarded as a 75% right-one-sided confidence interval for p.

For p=0.659 the probability of observing 2 errors or less is 0.05. Values higher than 0.659 give even smaller probabilities to observing 2 errors or less, and are therefore highly unlikely.

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

Error based pruning in C4.5 (J48) Binomial distribution with n=7, and p = 0.659. P(X <= 2) = 0.05. This is the sum of the height of the red bars.

Handling Missing Attribute Values

- Missing values affect decision tree construction in three different ways:
 - Affects how impurity measures are computed
 - Affects how to distribute instance with missing value to child nodes
 - Affects how a test instance with missing value is classified

Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 68

Classify Instances

For the final prediction for case 11, take the weighted average of the predictions in node A and B.

 $P_A(class=yes) = 1$, $P_B(class=yes)=0$.

Weighted average:

$$P(class=yes) = \frac{0.55 \cdot 2.67 \cdot 1 + 0.45 \cdot 3 \cdot 0}{0.55 \cdot 2.67 + 0.45 \cdot 3} \approx 0.52$$

Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 74

Oblique Decision Trees x + y < 1Class = • Class = + • Test condition may involve multiple attributes · More expressive representation • Finding optimal test condition is computationally expensive Introduction to Data Mining

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Tan,Steinbach, Kumar Introduction to Data Mining

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 78

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PRE	DICTED CI	_ASS		
		Class=Yes	Class=No	a: TP (true positiv	
ACTUAL CLASS	Class=Yes	а	b	b: FN (false negative c: FP (false positive d: TN (true negative	ve)
	Class=No	С	d		iive)
© Tan.Steinbach, Kum	ar Intro	duction to Data Mining		4/18/2004	79

Metrics for Performance Evaluation...

	PRE	DICTED CL	ASS
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)
CLASS	Class=No	c (FP)	d (TN)

• Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Tan,Steinbach, Kumar Introduction to Data Mining

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Tan,Steinbach, Kumar Introduction to Data Mining

ROC (Receiver Operating Characteristic) • Developed in 1950s for signal detection theory to analyze noisy signals - Characterize the trade-off between positive hits and false alarms • ROC curve plots TP (on the y-axis) against FP (on the x-axis) • Performance of each classifier represented as a point on the ROC curve changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 85

How to Construct an ROC curve • Use classifier that produces Instance P(+|A) True Class posterior probability for each 0.95 test instance P(+|A) 0.93 • Sort the instances according 0.87 to P(+|A) in decreasing order 0.85 0.85 Apply threshold at each 0.85 unique value of P(+|A) 0.76 • Count the number of TP, FP, 8 0.53 TN, FN at each threshold 0.43 10 0.25 • TP rate, TPR = TP/(TP+FN) • FP rate, FPR = FP/(FP + TN)

Introduction to Data Mining

Tan,Steinbach, Kumar

Instance	P(+)	True class	FPR	TPR
1	0.95	+	0	1/5
2	0.93	+	0	2/5
3	0.87	-	1/5	2/5
4	0.85	-		
5	0.85	-		
6	0.85	+	3/5	3/5
7	0.76	-	4/5	3/5
8	0.53	+	4/5	4/5
9	0.43	-	1	4/5
10	0.25	+	1	1

