Ejercicio de practica

Se indica que se debe considerar una carga de 1 450 VA por cada circuito derivado de dos conductores para pequeños aparatos eléctricos y lavadoras en unidades de vivienda. Se permite que estas cargas se incluyan en la carga de alumbrado general y se apliquen los factores de demanda indicados en la tabla 220.42. Para el horno de microondas y la bomba de agua, que son circuitos independientes, vamos a considerar un factor de demanda de 100%.

Tomando en cuenta todo lo anterior, vamos a calcular la suma de las demandas máximas para determinar el alimentador:

- En el alumbrado general tenemos cargas de 13 A, 12 A, 14 A y 11 A con voltaje de 127 V.
- En pequeños aparatos eléctricos y lavadoras tenemos tres circuitos, cada uno con una carga de 1 450 VA. (Circuito de aparatos eléctricos 1 = 11 A, Circuito de aparatos eléctricos 2 = 14 A y circuito para lavadoras 10 A).
- La carga de la bomba es de 10 A, la cual es una carga continua. Este tiene un dispositivo de protección contra sobre corriente de 30 A.
- La carga del horno microondas es de 11 A.
- La casa está a una temperatura de 41 C.
- Se considera un factor de potencia de 1.
- El circuito alimentador se considera Monofásico.

Determine:

- Determine el tamaño del conductor (calibre del cable) con base en la caída de tensión máxima recomendada para el circuito alimentador y para el circuito No .3
- La carga total que se puede considerar.
- La demandad máxima promedio y el factor de demanda del alumbrado (no incluya la bomba y el horno microondas).
- Mencione cual es el número de fases ideal para el circuito.
- Aplique el balanceo de cargas para que el circuito quede distribuido correctamente
- Realice una tabla resumen con los datos concluidos.
- Designe el valor nominal máximo de dispositivo de protección del circuito alimentador de la bomba.
- Verifique su selección de calibre de cable de acuerdo a la caída de tensión máxima recomendada.

Alumbrado.

Por ser una carga continua tenemos una carga para cálculos de alimentador de:

Carga en pequeños aparatos y lavadoras:

La carga total que podemos considerar es de:

Demanda Máxima, primeros 3000 VA.

$$DM = \frac{100 * 3000}{100} = 3000 \, VA$$

Demanda Máxima, evaluado en 3000 VA.

$$DM = \frac{35 * 9287.5}{100} = 3250.6 \, VA$$

La carga total de alumbrado que debe soportar el alimentador es de:

$$DM = 3000 VA + 3250.6 VA = 6250.6 VA$$

El factor de la demanda general para la carga total de alumbrado de acuerdo con la ecuación 1 es de:

$$FD = \frac{6250.6 \, VA}{12 \, 287.5 \, VA} \times 100 = 50.08\%$$

La carga de la **bomba** por ser carga continua (de 10 A) se da para cálculos del alimentador de = $10 \text{ A} \times 1,25 = 12.5 \text{ A}$. La cual guedaría de la siguiente forma.

$$12.5A * 127 V = 1587.5 VA$$
.

La carga del horno de microondas es de 11 A. La cual quedaría de la siguiente forma:

$$11 A * 127 = 1397 VA$$

Total:

La carga total de la bomba más el horno de microondas que debe soportar el alimentador es de:

$$1587.5 VA. + 1397 VA = 2984.5 VA$$

La suma total de las demandas máximas que debe soportar el alimentador es de:

DM = 6250.6 VA + 2984.5 VA = 9235.1 VA

P = 9235.1 VA * 1 = 9235.1 W = 9.23 kW

Nombre del circuito	Corriente total en el circuito (A)	Ajuste de corriente a las cargas continuas (x 125) (A)	Factor de demanda de la carga (%)	Corriente considerando el factor de demanda (A), ecuación # 2
Circuito derivado de alumbrado general No. 1	13	13* 1.25 = 16.25	50.08	16.25 * 50.08 / 100 = 8.13
Circuito derivado de alumbrado general No. 2	12	12 * 1.25 = 15	50.08	15*50.08/100 = 7.76
Circuito derivado de alumbrado general No. 3	14	14* 1.25 = 17.38	50.08	17.38* 50.08/100 = 8.70
Circuito derivado de alumbrado general No. 4	11	11 * 1.25 = 13.75	50.08	13.75*50.08/100 = 6.886
Circuito derivado para otras cargas No. 1 (horno microondas)	11	11	90	13.75*90/100 = 7.65
Circuito derivado para otras cargas No. 2 (la bomba)	10	10 * 1.25 = 12.25	90	12.25*90/100 = 6.81
Circuito para pequeños aparatos No. 1 (circuito 1)	11	11	50.08	11 * 50.08/100 = 5.50
Circuito para pequeños aparatos No. 2 (circuito 2)	14	14	50.08	14* 50.08/100 = 7.01
Circuito para lavadoras	10	10	50.08	10* 50.08/100 = 5.00 Total = 63.44

Tabla resumen del ejercicio 1

Valor deseable por fase: 21.14 A

Distribución de fases:

- Fase A: Conectamos a esta fase el Circuito derivado de alumbrado general No. 1, el Circuito derivado de alumbrado general No. 2 y el Circuito derivado de alumbrado general No. 3. Para esta fase resulta en una corriente de: = 8.13 A + 7.76 A + 8,70 A = 24.59 A.
- Fase B: Conectamos a estas fases la bomba y el micro hondas y el circuito para pequeños aparatos 1: 7.65 + 6.81+5.50 = 19.96 A
- Fase C: Conecta el circuito derivado de alumbrado general No. 3, Circuito para

pequeños aparatos No. 2 (circuito 2) y Circuito para lavadoras. Para esta fase resulta en una corriente de: 7.01 A +6.88 A = 18.896 A

Se toma un disyuntor de 30 A. ya que la carga por fase máxima es 24.59 A

Calibre de cable para el circuito No 3.

Valor nominal máximo del dispositivo de protección del circuito alimentador de la bomba= 30 A + 10 A = 41 A. Se toma un dispositivo contra sobre corriente de 40 A.

Tomando en cuenta el factor de corrección por temperatura y por agrupamiento (80% y 71%)se tiene que: 8.70 x 0.80 x 0.71 = 4.94 mm2

De acuerdo con esto, para el circuito de alumbrado general No. 3, le corresponde por capacidad de conducción de corriente un calibre mínimo de 5,26 mm2 (10 AWG).

Calibre del cable para el alimentador:

De acuerdo con esto, 12.25 x 0.80 x 0.71 = 6,95 mm2 para el circuito de alimentación de la bomba le corresponde por capacidad de conducción de corriente un calibre mínimo de 8.36 mm2 (8 AWG).

Determinación del tamaño del conductor con base en la caída de tensión máxima recomendada

Caída de tensión para el circuito No 3.

$$L = 1.5m + 1.2m + 1.2m + 2.3m + 4.3m + 1.9m + 2.3m = 14.7m$$

$$\Delta V = \frac{2(3.940hm/km)0.0147km * (20)}{127v} * 100 = 1.82\%$$

Caída de tensión cable para el alimentador:

$$\Delta V = \frac{2(2.560hm/km)0.002km * (30)}{127v} * 100 = 0.24\%$$