Στοχαστικές Αριθμητικές Μέθοδοι και Εφαρμογές

Διδάσκων: Σαμπάνης Σ.

Κάρλος Μαύρος - ΣΕΜΦΕ ΕΜΠ November 10, 2021

1 $EI\Sigma A\Gamma \Omega \Gamma H$

- ♦ MCMC (Markov Chain Monte Carlo).
- ♦ Langevin Stochastic DEs: βλέπουμε τις στοχαστικές λύσεις σαν στοχαστικές διαφορικές εξισώσεις.
- ♦ Βελτιστοποίηση μη χυρτών συναρτήσεων σε χώρους μεγάλων διαστάσεων.

Στα gradient methods & stochastic gradient methods υπάρχουν 2 σχολές:

- ♦ Επιχειρησιαχή έρευνα (χυρτές συναρτήσεις).
- \diamond Μέσα από την θεωρία του Stochastic Approximation: χρησιμοποιεί ΔE σαν εργαλεία

Το stochastic gradient methods δεν είναι πραγματικά στοχαστικές (υπολογίζουμε απλώς μια μέση τιμή) Οι stochastic gradient methods είναι ένα υποσύνολο της θεωρίας Stochastic Approximation, η οποία χρησιμοποιεί πραγματικά στοχαστικά εργαλεία (έχουμε μέσα στοχαστικές διαδικασίες).

Εργαλεία:

- ♦ σ.β. σύγκλιση
- σύγκλιση με πιθανότητα
- Ito's formula (σημαντικό) διαχωρίζει το δυναμικό σύστημα τ.ω. να μπορούμε να αναγνωρίζουμε ποια είναι τα martingales. Βλέπω τις τάσεις του δυναμικού συστήματος.

1.1 $\Delta IA\Delta IKA\Sigma TIKA MA\Theta HMATO\Sigma$

- 💠 θα γίνει εξέταση
- 💠 βιβλιογραφία:
 - (Θεωρία Πιθανοτήτων) David Williams : Probability with martingales
 - (Στοχαστικές Διαδικασίες/Ανάλυση) Καραντζάς & Steven

2.1 Εισαγωγή

- 💠 Ονομάζουμε σύνολο κάθε συλλογή αντικειμένων όπου η διάταξη δεν έχει σημασία.
- 💠 Κάθε μέρος του συνόλου ονομάζεται υποσύνολο του συνόλου.
- \diamond Έστω Ω σύνολο, τότε το δυναμοσύνολο του Ω είναι το σύνολο όλων των υποσυνόλων του Ω και το συμβολίσουμε $\mathcal{P}(\Omega)$.
- \diamond Για κάθε σύνολο $\Omega = \{1, 2, \dots, n\}$ όπου $n \in \mathbb{N}$ το $\mathcal{P}(\Omega)$ έχει 2^n στοιχεία.

Παράδειγμα 1.

$$\Omega = \{1, 2, 3, \}$$
 $\mathcal{P}(\Omega) = \{\emptyset, \Omega, \{1\}, \{2\}, \{3\}, \{1, 2, \}, \{1, 3\}, \{2, 3\}\} = 2^{\Omega}$

Ορισμός 1. (σ-άλγεβρα): ονομάζουμε σ-άλγεβρα $\mathcal F$ ενός συνόλου Ω κάθε σύνολο υποσυνόλων του Ω με τις εξής ιδιότητες:

1.
$$\emptyset \in \mathcal{F}$$
 2. $A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$ 3. $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_i A_i \in \mathcal{F}$

Παράδειγμα 2. Τετριμμένη σ-άλγεβρα: $\mathcal{F} = \{\emptyset, \Omega\}$

Παράδειγμα 3. Για κάθε $A\subset\Omega$ μπορώ να φτιάξω την $\mathcal{F}=\{\emptyset,A,A^c,\Omega\}$ που είναι σ-άλγεβρα.

Αν έχω μια αριθμήσιμη συλλογή από παιρωισε δισθοιντ σετς A_1,A_2,\ldots δηλαδή $A_i\cap A_j=\emptyset \ \forall i\neq j$ και $\bigcup_i A_i=\Omega$ διαμέριση του Ω , τότε

$$\mathcal{F} = \{\emptyset, \Omega, A_1, A_2, \dots, \text{όλες τις πιθανές ενώσεις των } A_i\}$$

Αν έχω μια διαμέριση μπορώ να πάρω όλα τα συμπληρώματα με μόνο ενώσεις, δηλαδή αν είχα τα σύνολα διαμέρισης A_1,A_2,A_3,A_4 θα είχαμε $(A_1\cup A_2)^c=A_3\cup A_4$

3.1 Στοιχεία Θεωρίας Πιθανοτήτων

Ορισμός 2. (Παραγόμενη σ-άλγεβρα): Αν \mathcal{A} είναι μια συλλογή υποσυνόλων του Ω , τότε μπορούμε να βρούμε πάντοτε μια σ-άλγεβρα που να περιέχει το \mathcal{A} , η οποία είναι το δυναμοσύνολο $\mathcal{P}(\Omega)$.

Παίρνωντας την τομή όλων των σ-αλγεβρών που περιέχουν το $\mathcal A$ καταλήγουμε στην παραγόμενη σ-άλγεβρα (ή ελάχιστη σ-άλγεβρα).

$$\sigma(\mathcal{A}) = \bigcap_{\mathcal{A} \in \mathcal{F}} \mathcal{F}$$
 όπου κάθε \mathcal{F} σ-άλγεβρα

Σημαντικές Ιδιότητες: Έστω ${\cal F}$ μια σ-άλγεβρα ενός συνόλου Ω

$$\diamond A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$$

💠 Η τομή δύο ή περισσοτέρων σ-αλγεβρών είναι επίσης σ-άλγεβρα.

Ορισμός 3. (Βορελ σ-άλγεβρα)

Ονομάζουμε σ-άλγεβρα Borel (ή Borel σύνολα), συμβ. $\mathcal{B}(\mathbb{R})$ (στο \mathbb{R} , $d=1,2,\ldots$), την ελάχιστη σ-άλγεβρα (παραγόμενη) που περιέχει όλα τα ανοιχτά υποσύνολα του \mathbb{R}^d .

Πρόταση 1. Η σ-άλγεβρα Borel είναι η μικρότερη σ-άλγεβρα που περιέχει τα διαστήματα της μορφής

$$(-\infty, \alpha] \quad \alpha \in \mathbb{Z}$$

Απόδειξη

Έστω \mathcal{O} το σύνολο όλων των ανοικτών συνόλων του \mathbb{R} , τότε $\sigma(\mathcal{O}) = \mathcal{B}(\mathbb{R})$. Έστω \mathcal{D} το σύνολο όλων των διαστημάτων της μορφής $(-\infty, \alpha] \quad \alpha \in \mathbb{Z}$. Έστω τύρα μια αθίνουσα ακολουθία $\{\alpha_k\}_{k>1} \subset \mathbb{Z}$ οπτών αριθιών των α_k .

Έστω τώρα μια φθίνουσα ακολουθία $\{\alpha_k\}_{k\geq 1}\subset\mathbb{Z}$ ρητών αριθμών τ.ω. $\alpha_k\downarrow\alpha\in\mathbb{R}$ και έστω μια αύξουσα ακολουθία $\{\beta_k\}_{k\geq 1}\subset\mathbb{Z}$ τ.ω. $\beta_kb\in\mathbb{R}$. Συνεπώς μιας και

$$(\alpha, \beta) = \bigcup_{n=1}^{\infty} ((-\infty, \beta_n] \cap (-\infty, \alpha_n]^c)$$

Καταλήγουμε στο ότι το (α, β) ανήκει στην $\sigma(\mathcal{D})$ για κάθε $\alpha, \beta \in \mathbb{R}$ και άρα έχουμε $\mathcal{B}(\mathbb{R}) \subset \sigma(\mathcal{D})$.

Από την άλλη έχουμε $\sigma(\mathcal{D}) \subset \mathcal{B}(\mathbb{R})$ αφού τα διαστήματα στο \mathcal{D} μπορούμε να τα δούμε ως συμπληρώματα ανοικτών διαστημάτων, συνεπώς η ελάχιστη σ-άλγεβρα που περιέχει τέτοια ανοικτά υποσύνολα/διαστήματα θα είναι υποσύνολο της ελάχιστης σ-άλγεβρας που περιέχει όλα τα ανοικτά υποσύνολα του \mathbb{R} .

Σημείωση: Γενικά αν $A\subset B\Rightarrow \sigma(A)\subset \sigma(B)$ και αν $\mathcal F$ είναι σ-άλγεβρα τότε $\sigma(\mathcal F)=\mathcal F$

- \diamond Μονοσύνολα της μορφής $\{a\}$ όπου $a \in \mathbb{R}$ ανήκουν στην $\mathcal{B}(\mathbb{R})$.
- $\diamond \mathbb{N}, \mathbb{Q}, \mathbb{R} \setminus \mathbb{Q} \in \mathcal{B}(R).$

Ορισμός 4. (Μετρήσιμο σύνολο)

Έστω $\mathcal{F}mias - lgebra.TosnoloA \in \mathcal{F}$ λέγεται $\mathcal{F} - etrsimo$ ($\mathcal{F} - measurable$).

Ορισμός 5. (Μερησιμος χώρος)

Έστω \mathcal{F} μια σ-άλγεβρα υποσυνόλων ενός συνόλου Ω . Τότε το ζεύγος (Ω, \mathcal{F}) ονομάζεται μετρήσιμος χώρος (measurable space)

Ορισμός 6. (Μετρήσιμη συνάρτηση)

Έστω Ω ένα μη-κενό σύνολο, $\mathcal F$ μια σ-άλγεβρα του Ω και $f:\Omega\mapsto\mathbb R^n$. Η συνάρτηση f ονομάζεται $\mathcal F$ -μετρήσιμη (ή απλώς μετρήσιμη) αν για κάθε σύνολο Borel B, δηλαδή $B\in\mathcal B(\mathbb R^{\ltimes})$

$$f^{-1}(B) = \{\omega \in \Omega : f(\omega)\} \in \mathcal{F}$$

Τα παρακάτω είναι ισοδύναμα

- Η f είναι μετρήσιμη
- \Leftrightarrow Για κάθε ανοικτό σύνολο $A \subset \mathbb{R}^n$ ισχύει $f^{-1}(A) \in \mathcal{F}$.
- \diamond Για κάθε κλειστό σύνολο $B \subset \mathbb{R}^n$ ισχύει $f^{-1}(B) \in \mathcal{F}$.

Σημείωση: Η μετρησιμότητα (μεασυραβιλιτψ) μιας συνάρτησης εξαρτάται από το πόσο μεγάλη είναι η σ-άλγεβρα.

 \Leftrightarrow Aν $\mathcal{F}=\{\emptyset,\Omega\}$ τότε μετρήσιμες είναι μόνο οι σταθερές συναρτήσεις, δηλ. $f(\omega)=c\in\mathbb{R}, \forall \omega\in\Omega.$

Aν $B \in \mathcal{B}(\mathbb{R})$, όπου B ανοικτό σύνολο, τότε

$$f^{-1}(B) = \begin{cases} \emptyset &, c \notin B \\ \Omega &, c \in B \end{cases}$$

 \diamond Aν $A \subset \Omega$, $\mathcal{F} = \{\emptyset, A, A^c, \Omega\}$ τότε:

$$\mathbf{1}_{A}(\omega) = \begin{cases} 1 &, \omega \in A \\ 0 &, \omega \in A^{c} \end{cases}$$

$$f(\omega) = \begin{cases} c_1 &, \omega \in A \\ c_2 &, \omega \in A^c \end{cases}$$

Γιατί· Έστω $B \in \mathcal{B}(\mathbb{R})$ τότε

$$f^{-1}(B) = \begin{cases} \emptyset & ,0,1 \notin B \\ A & ,1 \in B \\ A^c & ,0 \in B \\ \Omega & ,0,1, \in B \end{cases}$$

4.1 Ιδιότητες μετρήσιμων συναρτήσεων

- 1. Οι δείκτριες συναρτήσεις ενός μετρήσιμου συνόλου είναι μετρήσιμες ($A \in \mathcal{F} \Rightarrow \mathbf{1}_A$ είναι \mathcal{F} -μετρήσιμη)
- 2. Το άθροισμα, η διαφορά, το γινόμενο και το πηλίκο (όπου ορίζεται) μετρήσιμων συναρτήσεων είναι μετρήσιμα.
- 3. Το μέγιστο και το ελάχιστο δύο ή περισσοτέρων (πεπερασμένων) μετρήσιμων συναρτήσεων είναι μετρήσιμα.
- 4. Το όριο (όταν υπάρχει) μιας ακολουθίας μετρήσιμων συναρτήσεων είναι μετρήσιμο όπως επίσης το lim inf και το lim sup.
- 5. Το sup και το inf μιας ακολουθίας μετρήσιμων συναρτήσεων είναι μετρήσιμα.
- 6. Η σύνθετη συνάρτηση $g \circ f$ μιας μετρήσιμης συνάρτησης f με μια συνεχή συνάρτηση g είναι μετρήσιμη συνάρτηση.

 Ω ς αποτέλεσμα, οι συναρτήσεις f^+ και f^- οι οποίες ορίζονται ως

$$f^+(x) = \max(f(x), 0)$$
 $f^-(x) = -\min(f(x), 0)$

είναι μετρήσιμες αν η f είναι μετρήσιμη.

(Για τα παραπάνω δεν θα κάνουμε απόδειξη σε αυτό το μάθημα, τα χρησιμοποιούμε ελεύθερα στις ασκήσεις και στην εξέταση με απλή αναφορά τους)

4.2 Θεωρία Μέτρου

Ορισμός 7. Έστω (Ω, \mathcal{F}) είναι μετρήσιμος χώρος και έστω $\mu : \mathcal{F} \to \mathbb{R} \cup \{+\infty\}$ είναι μια συάρτηση. Τότε, η μ ονομάζεται **μέτρο** αν:

- 1. Για όλα τα $A \in \mathcal{F}$ έχουμε $\mu(A) \geq 0$.
- 2. $\mu(\emptyset) = 0$.
- 3. Αν τα σύνολα $A_1,A_2,\dots\in\mathcal{F}$ είναι ξένα μεταξύ τους ανά δύο τότε $\mu\binom{\infty}{i=1}A_i)=\sum_{i=1}^\infty \mu(A_i)$ (αριθμήσιμη προσθετιχότητα)

Ορισμός 8. Ω ς μέτρο πιθανόητας ορίζουμε σε μία σ-άλγεβρα $\mathcal F$ ενός συνόλου Ω , μια συνάρτηση $P:\mathcal F\to [0,1]$ η οποία ικανοποιέι τις ιδιότητες ενός μέτρου και $P(\Omega)=1.$

Ορισμός 9. Ονομάζουμε **χώρο πιθανότητας** την τριάδα (Ω, \mathcal{F}, P) , όπου Ω είναι ένα σύνολο (που συχνά ονομάζεται δειγματοχώρος/σαμπλε σπαςε), \mathcal{F} είναι μια σ-άλγεβρα υποσυνόλων του Ω και $P: \mathcal{F} \to [0,1]$ είναι ένα μέτρο πιθανότητας.

4.2.1 Ιδιότητες μέτρων πιθανότητας

Θεωρούμε τον χ.π. (Ω, \mathcal{F}, P) . Τότε ισχύουν τα εξής:

- 1. (coutable subadditivity). Για κάθε $A_1,A_2,\dots\in\mathcal{F}$ έχουμε $P\left(\bigcup_{i\geq 1}\right)\leq\sum_{i\geq 1}P(A_i)$.
- 2. (monotonicity). Για κάθε $A, B \in \mathcal{F}$ με $A \subset B$ έχουμε $P(A) \leq P(B)$.
- 3. (continuity). Έστω $A_1\subset A_2\subset\dots$ όπου $A_1,A_2,\dots\in\mathcal{F}$ μια αύξουσα αχολουθία ενδεχομένων, τότε $\lim_{n\to\infty}P(A_n)=P\left(\bigcup_{n=1}^\infty A_n\right)$

Σημείωση: Οι παραπάνω ιδιότητες ισχύοτν για οποιοδήποτε μέτρο.

Πιο κάτω παραθέτουμε μια απόδειξη της Ιδιότητας 3.

$$P\big(\bigcup_{n=1}^{\infty}A_n\big)=P\big(\bigcup_{n=1}^{\infty}(A_n\setminus A_{n-1})$$
 (sountable addituty)
$$=\sum_{n=1}^{\infty}P(A_n\setminus A_{n-1})$$

$$=\lim_{n\to\infty}\sum_{i=1}^nP(A_i\setminus A_{i-1})$$
 (sountable addituty)
$$=\lim_{n\to\infty}P\big(\bigcup_{i=1}^n(A_n\setminus A_{n-1})\big)$$

$$=\lim_{n\to\infty}P(A_n)$$

Ιδιότητα (πηγάζει από την 3) Έστω $A_1 \supset A_2 \supset \dots$ (contracting sequence of events), τότε ισχύει ότι:

$$\lim_{n \to \infty} P(A_n) = P(\bigcap_{n=1}^{\infty} A_n)$$

Ορισμός 10. Έστω (Ω, \mathcal{F}) μετρήσιμος χώρος και $\mu : \mathcal{F} \to \mathbb{R} \cup \{+\infty\}$ είναι ένα μέτρο. Τότε ονομάζουμε αυτό το μέτρο:

- 1. πεπερασμένο, αν $\mu(\Omega) < \infty$.
- 2. σ-πεπερασμένο, αν υπάρχει μια ακολουθία $\{A_n\}_{n\geq 0}$ στοιχείων της $\mathcal F$ τέτοια ώστε $\mu(A_n)<\infty$ $\forall n\in\mathbb R$ και $\bigcup_{n\geq 1}A_n=\Omega$

4.2.2 Θεώρημα Καραθεοδωρή (εκτός ύλης)

Ορισμός 11. Έστω Ω είναι ένα μη-κενό σύνολο. Ονομάζουμε ένα σύνολο υποσυνόλων $\mathcal G$ του Ω ως π-σύστημα (ή άλγεβρα) αν είναι κλειστό ως προς τις πεπερασμένες τομές, δηλαδή:

$$G_1, G_2 \in \mathcal{G} \Rightarrow G_1 \cap G_2 \in \mathcal{G}$$

Πρόταση 2. Αν δύο μέτρα πιθανότητας συμπίπτουςν σε ένα π-σύστημα, τότε συμπίπτουν και στην σ-άλγεβρα που παράγεται από το π-σύστημα.

Θεώρημα 1. ἃρατηεοδορψ΄ς Εξτενσιον Τηεορεμ

Έστω Ω έιναι ένα σύνολο, \mathcal{G} ένα π-σύστημα του Ω και $\mathcal{F} = \sigma(\mathcal{G})$. Αν το μ_0 είναι μια αριθμήσιμα προσθετική συνάρτηση από το \mathcal{G} στο $[0, +\infty]$, δηλ. $\mu_0 : \mathcal{G} \to \mathbb{R}_+ \cup \{+\infty\}$. Τότε υπάρχει μέτρο στο (Ω, \mathcal{F}) τέτοιο ώστε

$$\mu(A) = \mu_0(A) \quad \forall A \in \mathcal{G}$$

Αν μάλιστα $\mu_0(\Omega) < \infty$, τότε υπάρχει μοναδικό τέτοιο μέτρο μ .

Παράδειγμα 4. Μέτρο Lebesgue στο $(\Omega, \mathcal{F}) = ((0, 1], \mathcal{B}((0, 1]))$. Θεωρούμε όλα εκείνα τα υποσύνολα του Ω τα οποία μπορούν να γραφτούν ως πεπερασμένες ενώσεις των διαστημάτων $(a_1, b_1], \ldots (a_n, b_n]$ όπου $n \in \mathbb{N}$ και $0 < a_1 \le b_1 \le \cdots \le a_n \le b_n \le 1$. Αν \mathcal{G} είναι το π-σύστημα (άλγεβρα) που περιέχει όλα αυτά τα υποσύνολα, τότε $\mathcal{F} = \sigma(\mathcal{G}) = \mathcal{B}((0, 1])$

Ορίζουμε επίσης για κάθε σύνολο $G \in \mathcal{G}$, τη συνάρτηση

$$\mu_0(G) = \sum_{k \le r} (b_k - a_k)$$

όπου αυτό το G είναι $G=(a_1,b_1]\cup\cdots\cup(a_r,b_r]$ και $r\leq n$. Έτσι η μ_0 είναι καλώς ορισμένη (ωελλ-δεφινεδ) και είναι αριθμήσιμα προσθετική.

Συνεπώς, σύμφωνα με το Θ. Καραθεοδωρή υπάρχει ένα μοναδικό μέτρο στον $((0,1],\mathcal{B}((0,1]))$ που είναι η προέκταση του μ_0 στο \mathcal{G} και το οποίο ονομάζεται μέτρο Lebesgue. (γενίκευση της Ευκλείδιας απόστασης)

4.3 Ολοκλήρωση

Μια παρατήρηση: Ας εξετάσουμε τη συνάρτηση $f:[0,1]\to\mathbb{R}$ η οποία ορίζεται ως

$$f(x) = \begin{cases} 0, & \forall x \in \mathbb{Q} \cap [0, 1] \\ 1, & \forall x \in [0, 1] \setminus \mathbb{R} \end{cases}$$

Καθορίζουμε πρώτα μια διαμέριση $0=x_0< x_1<\cdots< x_n=1$ και μετά εξετάζουμε τα αθροίσματα Reiamman για ρητούς αριθμούς ξ_i και παρατηρούμε

$$\sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) = 0$$

Αν διαλέξω άρρητους xi_i τότε

$$\sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) = 1$$

Συνεπώς είναι προφανές ότι αυτή η συνάρτηση δεν είναι Riemann ολοκληρώσιμη. Ωστόσο παρατηρώ ότι η f είναι η $\mathbf{1}_{[0,1]\setminus\mathbb{Q}}$. Ποιο είναι το μέτρο Lebesgue του $A=[0,1]\mathbb{Q}$. Γνωρίζουμε ότι οι ρητοί ως αριθμήσιμη ένωση (ξένων) μονοσυνόλων είναι μετρήσιμοι, συνεπώς $\mathbb{Q}=\sum_{i=1}^{\infty}\{a_i\}=0$ αφού τα μονοσύνολα είναι σύνολα μέτρου 0, άρα έπεται ότι το σύνολο των αρρήτων είναι:

$$\mu([0,1] \setminus \mathbb{Q}) = 1$$

Ουσιαστικά με τα παραπάνω συλλογιζόμαστε ότι:

$$\int_{[0,1]} f(x)d\mu(x) = 1 \cdot \mu([0,1] \setminus \mathbb{Q}) + 0 \cdot \mu([0,1] \cap \mathbb{Q}) = 1$$

Το ερώτημα είναι: μπορώ να ολοκληρώσω τις απλές συναρτήσεις:

Απλές συναρτήσεις (step functions) είναι συναρτήσεις της μορφής

$$f(x) = \sum_{i=1}^n c_i \mathbf{1}_{A_i}$$
 όπου $A_i \cap A_j = \emptyset$ και $\bigcup_i A_i = \Omega$

Στόχος μας είναι να ξεκινήσουεμ να κτίζουμε το ολοκλήρωμ από απλές συναρτήσεις και να γενικεύσουμε, καταλήγοντας στο ολοκλήρωμα γενικά για μετρήσιμες συναρτήσεις.

5.1 Το ολοκλήρωμα Lebesgue

Θα ορίσουμε το ολοκλήρωμα Lebesgue σε τρία βήματα.

Έστω (Ω, \mathcal{F}) μετήσιμος χώρος και $\mu: \mathcal{F} \to \mathbb{R} \cup \{+\infty\}$ ένα μέτρο. Επίσης έστω

$$F:\Omega \to \mathbb{R} \cup \{+\infty\}$$
 μετρήσιμη συνάρτηση

Βήμα 1

Θεωρώ ότι έχω $f \ge 0$ απλές και μετρήσιμες συναρτήσεις της μορφής:

$$f(x) = \sum_{i=1}^n c_i \mathbf{1}_{A_i}$$
 όπου $A_i \cap A_j = \emptyset$ και $\bigcup_i A_i = \Omega$

τότε ορζίουμε το ολοκλήρωμα Lebesgue της f ως:

$$\int_{\Omega} f d\mu = \sum_{i=1}^{c} {}_{i}\mu(A_{i}) \in [0, +\infty]$$

με την σύμβαση ότι στο ολοκλήρωμα Lebesgeue $(0 \cdot \infty = 0)$.

Βήμα 2

Τώρα θεωρούμε ότι έχουμε $f \ge 0$ μετρήσιμες συναρτήσεις. Στην συνέχεια θα χρειασούμε το Θ. Μονότονης Σύγκλισης/Monotone Convergence Theorem.

Θεώρημα 2. Θεώρημα Μονότονης σύγκλησης. Έστω $f \geq 0$ μετρήσιμη συνράτηση. Τότε μπορώ να βρώ (πάντοτε) μια ακολουθία μη-αρνητικών απλών συναρτήσεων (που όπως είδαμε είναι μετρήσιμες), έστω $\{f_n\}_{n\geq 1}$, έτσι ώστε η $\{f_n\}_n$ να είναι αύξουσα ακολουθία $(f_n \subseteq f_{n+1} \ \forall n)$ και

$$\lim_{n \to \infty} f_n(x) = f(x)$$
 (ποιντωισε - σημειαχά)

Για να ορίσουμε το ολοκλήρωμα Lebesgue για $f \geq 0$ μετρήσιμες, χρησιμοποιούμε το Θεώρημα Μονότονης σύγκλισης:

$$\left(\int_{\Omega} \lim_{n \to \infty} f_n d\mu\right) = \left(\int_{\Omega} f d\mu\right) = \left(\lim_{n \to \infty} f_n d\mu\right)$$

και τότε, χρησμοποιώντας το Θ. Μονότονης Σύγκλισης μπορούμε να αποδείξουμε ότι το

 $\left(\lim_{n\to\infty}\int_{\Omega}f_nd\mu\right)$

 Γ_1 είναι καλώς ορισμένο και δεν εξαρτάται από την επιλογή της ακολουθίας $\{f_n\}_{n\geq 1}$.

Βήμα 3

Τέλος, έστω f μετρήσιμη συνάρτηση. Τότε μπορώ να γράψω την f χρησμοποιώντας το θετικό και το αρνητικό της μέρος, δηλαδή

$$f = f^+ - f^-$$

όπου $f^+(x) = \max\{f(x), 0\}$ και $f^-(x) = \max\{-f(x), 0\}$. Τότε το ολοκλήρωμα Lebesgue ορίζεται ως

$$\int_{\Omega} f d\mu = \int_{\Omega} f^{+} d\mu - \int_{\Omega} f^{-} d\mu$$

5.2 Ιδιότητες

- 1. Το ολοκλήρωμα Lebesgue μιας μετρήσιμης συνάρτησης, όπου αυτό ορίζεται, είναι ένα στοιχείο του $[0,\infty]$.
- 2. Αν το μέτρο ενός έστω από τα A_i είναι ίσο με άπειρο, τότε το ολοκλήρωμα Lebesgue παίρενει την τιμή $+\infty$ (για κάθε $c_i > 0$, $i \ge 1$).
- 3. Αν τα ολοχληρώματα $\int_{\Omega}f^+d\mu$ και $\int_{\Omega}f^-d\mu$ παίρνουν την τιμ $+\infty$ τότε το $\int_{\Omega}fd\mu$ δεν ορίζεται.
- 4. Αν έχουμε ένα φραγμένο διάστημα [a,b] με $a,b\in\mathbb{R}$, το ολοκλήρωμα

$$\int_{a}^{b} f(x)d(x)$$

είναι καλως ορισμένο για f μετρήσιμη, τότε το ολοκλήρωμα Λ εβεσγυε

$$\int_{[}a,b]fd\mu$$

ισουται με το ολοκλήρωμα Riemann.

5. Αν για μια μετρήσιμη συνάρτηση f υπάρχει το γενικευμένο ολ. Riemann

$$\int_{-\infty}^{\infty} f(x)d < \dot{\eta} \int_{-\infty}^{\infty} |f(x)| dx < \infty < \infty$$

τότε, το ολοκλήρωμα Lebesgue \equiv Riemann.

6. Μπορώ να έχω το γενιχευμένο ολ. Riemann αλλά όχι το αντίστοιχο Lebesgue. (π.χ. $f(x) = \frac{sinx}{x} \mathbf{1}_{\{x \neq 0\}}$)

5.3 Κύριες Ιδιότητες του ολοκληρώματος Lebesgue:

$$\int_{\mathbb{R}} (c_1 f + c_2 g) d\mu = c_1 \int_{\mathbb{R}} f d\mu + c_2 \int_{\mathbb{R}} g d\mu$$

 $\diamond~\{(\Xi \'{\epsilon}$ να Σύνολα - Disjoint Sets)} Αν A,Bείναι ξένα μεταξύ τους σύνολα, τότε

$$\int_{A\cup B}fd\mu=\int_{A}fd\mu+\int_{B}fd\mu$$

 \diamond {(Μονοτονία - Comparison)} Αν $f(x) \leq g(x)$ για κάθε $x \in \mathbb{R},$ τότε

$$\int_{\mathbb{R}} f(x)d\mu(x) \le \int_{\mathbb{R}} g(x)d\mu(x)$$

.

6.0.1 Θεωρήματα Σύγκλισης

Θεώρημα 3 (Μονότονης Σύγκλισης - Monotone Convergence Theorem (MCT).). Έστω $\{f_n\}_{n\geq 1}$ μια αύξουσα ακολουθία μετρήσιμων μη αρνητικών συναρτήσεων, οι οποίες συγκλίνουν σε μια συνάρτηση μετρήσιμη f, τότε

$$\int_{\mathbb{R}} f d\mu = \lim_{n \to \infty} \int_{\mathbb{R}} f_n d\mu$$

όπου οι δύο πλευρές μπορούν να πάρουν την τιμή άπειρο.

Θεώρημα 4 (Λήμμα Φατου - Fatou Lemma (FL).). Έστω $\{f_n\}_{n\geq 1}$ μια ακολουθία μετρήσιμων, μη-αρνητικών συναρτήσεων, τότε

$$\int_{\mathbb{R}} \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int_{\mathbb{R}} f_n d\mu$$

Aπόδειξη. $Δημιουργώ την ακολουθία μετρήσιμων συναρτήσεων <math>\{g_n\}_{n\geq 1}$, όπου $g_k:=\inf_{n\geq k}f_n.$ Η $\{g_n\}$ συνεπώς είναι μια αύξουσα ακολουθία μη-αρνητικών μετρήσιμων συναρτήσεων, όπου

$$\lim_{n \to \infty} = \liminf_{n \to \infty} f_n$$

Συνεπώς, από MCT έχουμε $\int_{\mathbb{R}} \lim_{k\to\infty} g_k d\mu = \lim_{k\to\infty} \int_{\mathbb{R}} g_k d\mu$, συνεπώς

$$\int_{\mathbb{R}} \liminf_{n \to \infty} f_n d\mu = \lim_{k \to \infty} \int \inf_{n \ge k} f_n d\mu$$

$$\leq \lim_{k \to \infty} \inf_{n \ge k} \int_{\mathbb{R}} f_n d\mu$$

$$(*) \qquad \leq \liminf_{n \to \infty} \int_{\mathbb{R}} f_n d\mu$$

Όπου (*) ισχύει διότι για κάθε $n \geq k, f_n \geq g_k$, συνεπώς $\int_{\mathbb{R}} f_n d\mu \geq \int_{\mathbb{R}} g_k d\mu$.

Το λήμμα Fatou μας λέει ότι μπορεί να έχω μια ακολουθία μετρήσιμων τ.μ. που να συκλίνει σε μια (μετρήσιμη) τ.μ. αλλά οι ροπές τους (μομεντς) να μην συγκλίνουν!!

Θεώρημα 5 (Θεώρημα Κυριαρχημένης Σύγκλισης - (Lebesgue) Dominated Convergence Theorem (LDCT).). Έστω $\{f_n\}_{n\geq 1}$ μια ακολουθία ολοκληρώσιμων συναρτήσεων η οποία συγκλίνει στην f (σημειακή σύγκλιση - σύγκλιση σ.π/α.ε.). Αν υπάρχει μια ολοκληρώσιμη συνάρτηση $g\geq 0$ τέτοια ώστε $|f_n|\leq g$ (σχεδόν παντού) για κάθε $n\geq 1$, τότε η f είναι ολοκληρώσιμη και

$$\int_{\mathbb{R}} f d\mu = \lim_{n \to \infty} \int_{\mathbb{R}} f_n d\mu$$

Aπόδ ϵ ιξη. Παρατηρούμε πρώτα ότι $|f_n-f|\leq |f_n|+|f|\leq g+g\leq 2g$ και ότι

$$\int_{\mathbb{R}} 2g d\mu = 2 \int_{\mathbb{R}} g d\mu < \infty$$

Τώρα θα κάνουμε χρήση του Φ Τ. Έστω $h_n:=2g-|f_n-f|$, άρα η $\{h_n\}$ είναι μια μη-αρνητική ακολουθία μετρήσιμων συναρτήσεων, εφαρμόζω το λήμμα Fatou και

$$\int_{\mathbb{R}} \liminf_{n \to \infty} h_n d\mu \le \liminf_{n \to \infty} \int_{\mathbb{R}} h_n d\mu$$

Συνεπώς

$$\int_{\mathbb{R}} 2g d\mu + \int_{\mathbb{R}} \liminf_{n \to \infty} (-|f_n - f|) d\mu \le \int_{\mathbb{R}} 2g d\mu + \liminf_{n \to \infty} \int_{\mathbb{R}} (-|f_n - f|) d\mu$$

χρησιμοποιώντας ότι $-\limsup_{n\to\infty}-|f_n-f|=\liminf_{n\to\infty}|f_n-f|$ παίρνουμε

$$-\int_{\mathbb{R}} \limsup_{n \to \infty} |f_n - f| d\mu \le -\limsup_{n \to \infty} \int_{\mathbb{R}} |f_n - f| d\mu$$

Συνεπώς, πολλαπλασιάζοντας και τα δύο μέλη με -1, παίρνουμε

$$\limsup_{n \to \infty} \int_{\mathbb{R}} |f_n - f| d\mu \le \int_{\mathbb{R}} |f_n - f| d\mu = 0$$

καθώς το $\limsup |f_n-f|=\lim |f_n-f|=0$. Έχουμε δηλαδή

$$\lim_{n \to \infty} \int_{\mathbb{R}} |f_n - f| d\mu = 0$$

Ισχύει από ςομπαρισον/μονοτονιςιτψ προπερτψ ότι

$$\lim_{n\to\infty} \left| \int_{\mathbb{D}} f d\mu - \int_{\mathbb{D}} f_n d\mu \right| = \lim_{n\to\infty} \left| \int_{\mathbb{D}} (f_n - f) d\mu \right| \le \lim_{n\to\infty} \int_{\mathbb{D}} \left| f_n - f \right| d\mu = 0$$

Σημείωση: Τα παραπάνω τρία θεωρήματα σύκγλισης (MCT, FL, LDCT) ισχύουν σε σ-πεπερασμένους χώρος μέτρου $(\Omega, \mathcal{F}, \mu)$.

Ορισμός 12. Έστω $(\Omega, \mathcal{F}, \mathbb{P})$ ένας χώρος πιθανότητας. Τότε, μια συνάρτηση $X:\Omega\to\mathbb{R}$ ονομάζεται τυχαία μεταβλητή αν και μόνο αν

$$X^{-1}(B) \in \mathcal{F} \quad \forall B \in \mathcal{B}(R)$$

Ορισμός 13. Έστω μ, ν δύο μέτρα ορισμένα σε ένα μετρήσιμο χώρο (Ω, \mathcal{F}) . Αν για κάθε $A \in \mathcal{F}$ τ.ω. $\mu(A) = 0$ τότε $\nu(A) = 0$, τότε λέμε ότι το ν είναι απόλυτα συνεχές ως προς το μ (αβσολυτελψ ςοντινύους ω.ρ.τ μ), και συμβολικά γράφουμε $\nu << \mu$

Θεώρημα 6 (Radon-Nikodym). Έστω μ και ν δύο σ-πεπερασμένα μέτρα ορισμένα σε ένα μετρήσιμο χώρο (Ω, \mathcal{F}) και $\nu << \mu$. Τότε υπάρχει μοναδική (σχεδόν παντού) μη αρνητική και ολοκληρώσιμη συνάρτηση f στο $(\Omega, \mathcal{F}, \mu)$ τ.ω.

$$\nu(A) = \int_A f d\mu \quad \forall A \in \mathbb{F}$$

Χρησιμοποιούμε σαν συμβολισμό $d\nu=fd\mu$ (shorthand notation) για να δηλώσουμε την σχέση μεταξύ των δύο μέτρων, και η $f=\frac{d\nu}{d\mu}$ είναι γνωστή ως παράγωγος Radon-Nikodym (Radon-Nikodym derivative) ή απλώς πυκνότητα (density) του ν ως προς το μ .

Παρατήρηση: Στο Θεώρημα Radon Nikodym αυστηρά δεν έχουμε ορίσει κάποια παράγωγο μέτρου σε σχέση με κάποιο άλλο μέτρο, και ο συμβολισμός της πυκνότητας

$$f = \frac{d\nu}{d\mu} \qquad \dot{\gamma} \qquad d\nu = f d\mu$$

ωστόσο, αν δούμε την απόδειξη του Θεωρήματος, αν έχουμε τρία μέτρα ν,μ,ρ και πυκνότητες $g=\frac{d\nu}{d\mu}$ και $f=\frac{d\mu}{d\rho}$ μπορούμε να πούμε $gf=\frac{d\nu}{d\rho}$, δηλαδή συμβολικά:

$$\frac{d\nu}{d\mu}\frac{d\mu}{d\rho} = \frac{d\nu}{d\rho}$$

όπου πρακτικά 'απλοποιούμε' το κλάσμα. Υπενθυμίζουμε ότι δεν έχουμε παραγώγους και όλα αυτά τα κάνουμε συμβολικά αλλά παίρνουμε έγκυρα αποτελέσματα.

Σύνδεση/εφαρμογή με τα χρηματοοικονομικά μαθηματικα: Προσπαθούμε να βρούμε ισοδύναμα μέτρα πιθανότητας ως προς το 'φυσικό' μέτρο πιθανότητας έτσι ώστε να δημιουργήσουμε στο νέο μέτρο martingale (δίκαια παιχνίδια). Υπό το νέο μέτρο, όταν γίνεται η αποτίμηση να μην υπάρχουν ευκαιρίες για arbitrage.

Ορισμός 14. Έστω $X:\Omega \Rightarrow \mathbb{R}$ τ.μ. σε ένα χώρο πιθανότητας $(\Omega,\mathcal{F},\mathbb{R})$. Η απεικόνιση $\mathbb{F}_X:\mathcal{B}(\mathbb{R}) \to [0,1]$ που ορίζεται ως

$$\mathbb{F}_X(B) := \mathbb{P}(X^{-1}(B))] = \mathbb{P}(\{\omega \in \Omega : X(\omega) \in B\}) \in [0, 1] \qquad \forall B \in \mathcal{B}(\mathbb{R})$$

και ονομάζεται κατανομή της X (distribution or law of the r.v. X).

Σημείωση: Στην θέση του μετρήσιμου χώρου $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ μπορεί να χρησιμοποιηθεί κάποιος άλλος μετρήσιμος χώρος (S,\mathcal{H}) .

 $\mathbf{\Pi}$ ρόταση 3. Η κατανομή \mathbb{F}_X είναι μέτρο πιθανότητας στον (\mathbb{R},\mathcal{B}) .

Απόδειξη. Αρχεί να δείξουμε ότι ικανοποιεί τις ιδιότητες ενός μέτρου πιθανότητας.

- 1. $\mathbb{F}_X(B) \in [0,1]$ για κάθε $B \in \mathcal{B}$.
- 2. $\mathbb{F}_X(\mathbb{R})=\mathbb{P}[X^{-1}(\mathbb{R})]=\mathbb{P}[\Omega].$ Ομοίως δείχνω ότι $\mathbb{F}_X(\emptyset)=\mathbb{P}[X^{-1}(\emptyset)]=\mathbb{P}[\emptyset]=0.$
- 3. Αν τα $A_1, A_2, \dots \in \mathcal{B}$ είναι ξένα μεταξύ τους ανά δύο, τότε:

$$\mathbb{F}_X(\cup_i A_i) = \mathbb{P}[X^{-1}(\cup_i A_i)] = \mathbb{P}[\cup_i X^{-1}(A_i)]$$

και παρατηρώ ότι τα $X^{-1}(A_i)$ είναι ξένα μεταξύ τους ανά δύο, οπότε χρησιμοποιώ την αρ. προσθετικότητα του $\mathbb P$ και παίρνω

$$\mathbb{F}_X(\cup_i A_i) = \sum_{i=1}^{\infty} \mathbb{P}(X^{-1}(A_i)) = \sum_{i=1}^{\infty} \mathbb{F}_X(A_i)$$

- \diamond Οι συναρτήσεις κατανομής ορίζονται από την σχέση $\mathbb{F}_X(x):=\mathbb{F}((-\infty,x])=\mathbb{P}(X\leq x)$
- Οι συνάρτηση κατανομής είναι μοναδική (να γίνει απόδειξη).
- \diamond Το αντίστροφο επίσης ισχύει, δηλαδη: για κάθε συνάρτηση κατανομής F υπάρχει μοναδική κατανομή $\mathbb F$ τ.ω. η σχέση που έχουμε πιο πάνω να ικανοποιείται, δηλαδή

$$F(x) = \mathbb{F}((-\infty, x])$$

να ικανοποιείται.

Εμείς επιθυμούμε να ορίσουμε την $\mathbb{E}[X]=\int_{\Omega}Xd\mathbb{P}$, και θα χρησιμοποιήσουμε το πιο κάτω θεώρημα έτσι ώστε να μην απαιτείται ο υπολογισμός του ολοκληρώματος Lebesgue μέσω απλών συναρτήσεων, αλλά μέσω ολοκληρωμάτων Riemann με τα οποία είμαστε εξοικειωμένοι.

Θεώρημα 7. (αλλαγής μεταβλητής) Έστω $X:\Omega\to\mathbb{R}$ μια τ.μ. που ορίζεται στον χ.π. $(\Omega,\mathcal{F},\mathbb{P})$ και g μια (Βορελ) μετρήσιμη συνάρτηση. Τότε

$$\int_{\Omega} g(X(\omega))d\mathbb{P}(\omega) = \int_{\mathbb{R}} g(x)d\mathbb{F}_X(x)$$

δηλαδή αντί να κάνω τον υπολογισμό στον $(\Omega, \mathcal{F}, \mathbb{P})$ τον κάνω στον $(\mathbb{R}, \mathcal{B}, \mathbb{F}_X)$

Aπόδειξη. Κάνουμε την απόδειξη σε τρία βήματα.

1. Αν
$$g(x) = \sum_{i=1}^n c_i \mathbf{1}_{A_i}(x)$$
, όπου $c_i \in \mathbb{R}$, $A_i \cap A_j = \emptyset$ και $\bigcup_{i=1}^n = \mathbb{R}$, τότε

$$\int_{\Omega} g(X(\omega))d\mathbb{P}(\omega) = \int_{\Omega} \sum_{i=1}^{n} \mathbf{1}_{A_{i}}(X(\omega))d\mathbb{P}(\omega) = \sum_{i=1}^{n} c_{i} \int_{\Omega} \mathbf{1}_{A_{i}}(X(\omega))d\mathbb{P}(\omega)$$

$$= \sum_{i=1}^{n} c_{i} \int_{\{\omega \in \Omega: X(\omega) \in A_{i}\}} X(\omega)\mathbb{P}(\omega) = \sum_{i=1}^{n} c_{i} \int_{X^{-1}(A_{i})} 1\mathbb{P}$$

$$= \sum_{i=1}^{n} c_{i}\mathbb{P}(X^{-1}(A_{i})) = \sum_{i=1}^{n} c_{i}\mathbb{F}_{X}(A_{i})$$

$$= \sum_{i=1}^{n} c_{i} \int_{A_{i}} 1d\mathbb{F}_{X}(x) = \sum_{i=1}^{n} c_{i} \int_{\mathbb{R}} \mathbf{1}_{A_{i}}(x)d\mathbb{F}_{X}(x)$$

$$= \int_{\mathbb{R}} \sum_{i=1}^{n} c_{i} \mathbf{1}_{A_{i}}(x)d\mathbb{F}_{X}(x) = \int_{\mathbb{R}} g(x)d\mathbb{F}_{X}(x)$$

συνεπώς έχουμε δείξει ότι ισχύει για απλές συναρτήσεις.

2. Αν η g είναι (Βορελ) μετρήσιμη συνάρτηση η οποία παίρνει μη αρνητικές τιμές. Τότε, υπάρχει αύξουσα ακολουθία μετρήσιμων συναρτήσεων $\{g_n\}_{n\in\mathbb{N}}$ ώστε $\lim_{n\to\infty}g_n(x)=g(x)$ σ.π. Χρησιμοποιώντας το Θεώρημα Μονότονης Σύγκλισης παρατηρούμε ότι:

$$\int_{\Omega} g(X(\omega))d\mathbb{P}(\omega) = \lim_{n \to \infty} \int_{\Omega} g_n(X(\omega))d\mathbb{P}$$

Επίσης, το όριο

$$\lim_{n\to\infty} \int_{\mathbb{R}} g_n(x) d\mathbb{F}_X(x) = \int_{\mathbb{R}} g(x) d\mathbb{F}_X(x)$$

3. Τέλος, αν η g είναι μια (Βορελ) μετρήσιμη συνάρτηση, τότε χρησιμοποιούμε την σχέση

$$g = g^+ - g^-$$

για να καταλήξουμε στο επιθυμητό αποτέλεσμα.

Και πάλι, στην θέση του (\mathbb{R},\mathcal{B}) μπορούμε να έχουμε τον (S,\mathcal{H}) η g θα πρέπει να είναι \mathcal{H} μετρήσιμη και η X θα πηγαίνει από το Ω στο \mathbb{R} .

Ορισμός 15. Αν υπάρχει Borel μετρήσιμη συνάρτηση $f_X:\mathcal{B}(\mathbb{R})\to\mathbb{R}$ έτσι ώστε $\forall B\in\mathcal{B}$

 $\mathbf{F}_X(B) = \int_B f_X(x) d\mu(x)$

όπου μ είναι το μέτρο Lebesgue, τότε λέμε ότι η X είναι τυχαία μεταβλητή με συνεχή κατανομή και η f_X ονομάζεται πυκνότητα (δενσιτψ) της X (αλλά και της κατανομής \mathbb{F}_X).

8 Μάθημα 7

Ορισμός 16. Έστω $(\Omega, \mathcal{F}, \mathbb{P})$ ένας χώρος πιθανότητας και $X: \Omega \to S$ μια τυχαία μεταβλητή στον χώρο αυτό που παίρνει διακριτές τιμές $x_1, x_2, \dots \in S$, όπου (S, \mathcal{H}) ένας μετρήσιμος χώρος. Τότε λέμε ότι η X έχει διακριτή κατανομή με μάζα $\mathbb{P}(X=x_i)=\mathbb{P}(\{\omega\in\Omega: X(\omega)=x_i\})$.

Ορισμός 17. Έστω X μια τ.μ. στον χώρος πιθανότητας $(\Omega, \mathcal{F}, \mathbb{P})$. Ορίζουμε ως μέση τιμή (εξπεςτατιον) της X το ολοκλήρωμα $\int_{\Omega} Xd\mathbb{P}$, δηλαδή $\mathbb{E}[X] = \int_{\Omega} Xd\mathbb{P}$

Ορισμός 18. Έστω $X: \Omega \to \mathbb{R}$ μια τ.μ. στον $(\Omega, \mathcal{F}, \mathbb{P})$ με $\mathbb{E}[|X|^2] < \infty$. Ορίζουμε την διασπορά (αριανςε) της X ως το ολοκλήρωμα $\int_{\Omega} |X - \mathbb{E}[X]|^2 d\mathbb{P}$, δηλαδή

$$Var(X) = \mathbb{E}[|X - \mathbb{E}[X]|^2]$$

Διακριτές Τυχαίες Μεταβλητές: $X(\omega)=\sum_i x_i \mathbf{1}_{A_i}(\omega), x_i \in \mathbb{R}. A_i \cap A_j=\emptyset$ για $i\neq j$ με $A_i\in \mathcal{F}$ για κάθε $i\geq 1.$

$$\mathbb{E}[X] = \int_{\Omega} X d\mathbb{P} = \int_{\Omega} \sum_{i} x_{i} \mathbf{1}_{A_{i}} = \sum_{i} \int_{\Omega} x_{i} \mathbf{1}_{A_{i}} d\mathbb{P} = \sum_{i} \int_{A_{i}} x_{i} d\mathbb{P}$$
$$= \sum_{i} x_{i} \int_{A_{i}} d\mathbb{P} = \sum_{i} x_{i} \mathbb{P}(A_{i}) = \sum_{i} \sum_{i} x_{i} \mathbb{P}(A_{i})$$

Θεώρημα 8 (Ανισότητα Markov). Έστω $X:\Omega\to\mathbb{R}$ μια τυχαία μεταβλητή στον χώρο πιθανότητας $(\Omega,\mathcal{F},\mathbb{P})$ η οποία παίρνει μη-αρνητικές τιμές και c>0. Τότε

$$\mathbb{P}(X \ge c) \le \frac{\mathbb{E}[X]}{c}$$
 $\mathbb{E}[X] \ge \mathbb{E}[x\mathbf{1}_{\{x \ge c\}}] = c\mathbb{P}(X \ge c)$

Θεώρημα 9 (Ανισότητα Chebyshev). Έστω $X:\Omega\to\mathbb{R}$ μια τ.μ. στον $(\Omega,\mathcal{F},\mathbb{P})$ με $\mathbb{E}[|X|]<\infty$ και c>0. Τότε

$$\mathbb{P}(|X - \mathbb{E}[X]| \ge c) \le \frac{Var(X)}{c^2}$$

Θεώρημα 10 (Ανισότητα Jensen). Έστω $X:\Omega\to\mathbb{R}$ μια τ.μ. στον χ.π. $(\Omega,\mathcal{F},\mathbb{P})$ και $\phi:\mathbb{R}\to\mathbb{R}$ μια κυρτή συνάρτηση και επίσης $\mathbb{E}[X]<\infty$. Τότε

$$\mathbb{E}[\phi(X)] \ge \phi(\mathbb{E}[X])$$

8.1 Χώροι L^p

Χώροι $L^p, p>0$: Έστω (S,\mathcal{H},μ) ένας σ-πεπερασμένος χώρος μέτρου. Το σύνολο όλων των μετρήσιμων συναρτήσεων $f:S\to V$, όπου V,\mathcal{G} μετρήσιμος χώρος, οι οποίες έχουν την ιδιότητα

$$\left(\int_{S} |f|_{V}^{p} d\mu\right)^{1/p} < \infty$$

όπου $|\cdot|_V$ η νόρμα που παράγεται από τον V.

Για εμάς $S=\Omega, \mathcal{H}=\mathcal{F}, \mu=\mathbb{P}$ και θέλουμε όλες τις τ.μ. τ.ω.

$$||X||_p = \left(\int_{\Omega} |X|^p d\mathbb{P}\right)^{1/p} < \infty$$

όταν p>1 έχουμε την λεγόμενη L^p νόρμα.

8.2 Σύγκλιση

Ορισμός 19. Έστω $\{X_n\}_{n\geq 1}$ μια ακολουθία τυχαίων μεταβλητών σε να χώρο πιθανότητας $(\Omega,\mathcal{F},\mathbb{P})$. Τότε μέμε ότι

1. η ακολουθία συγκλίνει σε μια τυχαία μεταβλητή X σχεδόν βέβαια (ή με πιθανότητα 1) και γράφουμε $X_n \stackrel{\sigma.\beta.}{\to} X$, αν

$$P(\lim_{n\to\infty} X_n = X) = 1$$

δηλαδή αν $P(\{\omega\in\lim_{n\to\infty}X_n(\omega)=X(\omega\})=1$

2. η ακολουθία συγκλίνει σε μια τυχαία μεταβλητή X κατά πιθανότητα (in probability) και γράφουμε $X_n \stackrel{\mathbb{P}}{\to} X$ αν

$$\lim_{n \to \infty} \mathbb{P}(|X_n - X| > \epsilon) = 0 \qquad \forall \epsilon > 0$$

3. η ακολουθία συγκίνει σε μια τυχαία μεταβλητή X κατά κατανομή (in distribution) και γράφουμε $X_n \stackrel{d}{\to} X$ αν

$$\lim_{n \to \infty} \underbrace{\mathbb{P}(X_n \le x)}_{F_{X_n}(x)} = \underbrace{\mathbb{P}(X \le x)}_{F_X(x)}$$

σε κάθε σημείο συνέχειας x της συνάρτησης κατανομής F_X

4. η ακολουθία συγκλίνει σε μια τυχαία μεταβλητή X στον L^p και γράφουμε $X_n \stackrel{L^p}{\to} X$ αν

$$\lim_{n \to \infty} \mathbb{E}[|X_n - X|^p] = 0$$

Ισχύει το ακόλουθο σχήμα που συνδέει τις πιο πάνω συγκλίσεις

σ.β.
$$\label{eq:definition} \psi$$
 στον $L^p\Rightarrow$ κατά πιθανότητα
$$\psi$$
 κατά κατανομή

9 Μάθημα 8

Υποθέτω για όλα τα παρακάτω ότι υπάρχει ένας χώρος πιθανότητας $(\Omega, \mathcal{F}, \mathbb{P})$.

Ορισμός 20. Έστω $A,B\in\mathcal{F}$ και $\mathbb{P}(A)\neq 0$, τότε ορίζουμε τη δεσμευμένη πιθανότητα του A δοθέντος/δεδομένου του B ως εξής

$$\mathbb{P}(A|B) := \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Ορισμός 21. Τα ενδεχόμενα $A,B\in\mathcal{F}$ λέμε ότι είναι ανεξάρτητα (μεταξύ τους) αν

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Ορισμός 22. Δύο τυχαίες μεταβλητές $X:\Omega\to\mathbb{R}$ και $Y:\Omega\to\mathbb{R}$ ονομάζονται ανεξάρτητες αν για οποιαδήποτε $A,B\in B(\mathbb{R}) taendeqmena\Xi^{-1}(A)$ και $Y^{-1}(B)$ είναι ανεξάρτητα.

Ορισμός 23. Δύο σ-άλγεβρες $\mathcal{F}_1, \mathcal{F}_2 \subset \mathcal{F}$, ονομάζονται ανεξάρτητες αν οποιαδήποτε ενδεχόμενα $A \in \mathcal{F}_1$ και $B \in \mathcal{F}_2$ έχουμε ότι είναι ανεξάρτητας.

Παράδειγμα 5. Δύο τυχαίες μεταβλητές X και Y είναι ανεξάρτητες αν και μόνο αν οι παραγόμενες σ-άλγεβρες $\sigma(X), \sigma(Y)$ είναι ανεξάρτητες.

Ορισμός 24. Η ελάχιστη σ-άλγεβρα που περιέχει όλες τις προ-εικόνες (pre-images) $X^{-1}(A), \ \forall A \in \mathcal{B}\mathbb{R}$ μιας τυχαίας μεταβλητής X, ονομάζεται σ-άλγεβρα παραγόμενη από την X, και συμβολίζεται με $\sigma(X)$.

Σημεωίση: Ο ορισμός επεκτείνεται με φυσικό τρόπο σε πεπερασμένο πλήθος τ.μ. X_1,\ldots,X_n για την δημιουργία παραγόμενης σ-άλγεβρας $\sigma(X_1,\ldots,X_n)$ από αυτές τις τυχαίες μεταβλητές.

Παράδειγμα 6. Αν X και Y είναι ανεξάρτητες τ.μ. τότε

$$\forall x, y, \in \mathbb{R} \quad \mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y)$$

και συνεπώς

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

Ορισμός 25. Έστω X μια ολοχληρώσιμη τυχαία μεταβλητή και $B \in \mathcal{F}$ με $\mathbb{P}(B) \neq 0$. Τότε ορίζουμε τη δεσμευμένη μέση τιμή της X δοθέντος του ενδεχομένου B ως

$$\mathbb{E}[X|B] = \frac{1}{\mathbb{P}(B)} \int_{B} X d\mathbb{P} = \frac{\mathbb{E}[X \mathbf{1}_{B}]}{\mathbb{E}[\mathbf{1}_{B}]}$$

Παρατήρηση: Αν θέσω $X = \mathbf{1}_A$ τότε εύχολα βλέπουμε ότι

$$\mathbb{E}[\mathbf{1}_A|B] = \frac{1}{\mathbb{P}(B)} \int_B \mathbf{1}_A d\mathbb{P} = \frac{1}{\mathbb{P}(B)} \int_{A \cap B} d\mathbb{P} = \frac{P(A \cap B)}{\mathbb{P}}$$

Σημείωση Όταν δύο τ.μ. X και Y είναι ανεξάρτητες, τότε $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ (αφήνεται ως άσκηση)

Ορισμός 26. Έστω X μια L^1 τυχαία μεταβλητή, δηλαδή $\mathbb{E}[|X|]<\infty$. Τότε ορίζουμε την δεσμευμένη μέση τιμή της X δοθείσης της διαχριτής τυχαίας μεταβλητής

$$Y = \sum_{i \geq 1} y_i \mathbf{1}_{A_i}$$
 όπου $A_i = \{Y = y_i\}$ $\forall i \geq 1$

ως την τυχαία μεταβλητή $\mathbb{E}[X|Y]$ τ.ω.

$$\mathbb{E}[X|Y] = \sum_{i} \mathbb{E}[X|\{Y = y_i\}] \mathbf{1}_{\{Y = y_i\}}$$

Παράδειγμα 7. Έστω $(\Omega, \mathcal{F}, \mathbb{P})$ ένας χώρος πιθανότητας όπου $\Omega = [0, 1], \mathcal{F} = \mathcal{B}([0, 1])$ και \mathbb{P} το μέτρο Lebesgue στο [0, 1]. Έστω επίησης οι τ.μ. $X, Y : \Omega \to \mathbb{R}$ όπου

$$X(\omega) = 2\omega^2, \quad Y(\omega) = \begin{cases} 1, & \forall \omega \in [0, 1/3) = A_1 \\ 2, & \forall \omega \in [1/3, 2/3) = A_2 \\ 0, & \forall \omega \in [2/3, 1] = A_3 \end{cases}$$

Παρατηρούμε ότι η Y έχει διακριτή κατανομή και ότι $\{\omega\in\Omega:Y(\omega)=1\}=\{Y=1\}=[0,1/3).$ Ομοίως $\{Y=2\}=[1/3,2/3)$ και $\{Y=0\}=[2/3,1]$ Αλλιώς μπορούμε να δούμε το παραπάνω μέσω της παραγόμενης σ-άλγεβρας της Y

$$\sigma(Y) = \{A_1, A_2, A_3, A_1 \cup A_2, A_1 \cup A_3, a_2 \cup A_3, \Omega, \emptyset\}$$

Άρα, η τ.μ. $\mathbb{E}[X|Y]:\Omega\to\mathbb{R}$ ορίζεται ως

$$\mathbb{E}[X|Y](\omega) = \begin{cases} \mathbb{E}[X|[0,\frac{1}{3}] = \frac{1}{\mathbb{P}([0,1/3))} \mathbb{E}[X\mathbf{1}_{[0,1/3)}] = \frac{1}{3} \int_{0}^{1/3} 2x^{2} dx = \frac{2}{27} &, \quad \forall \omega \in [0,1/3) \\ \mathbb{E}[X|[\frac{1}{3},\frac{2}{3}] = \frac{14}{27} &, \quad \forall \omega \in [0,1/3) \\ \mathbb{E}[X|[\frac{2}{3}],1]] = \frac{38}{27} &, \quad \forall \omega \in [0,1/3) \end{cases}$$