General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

SAL

ENERGY CONVERSION ALTERNATIVES STUDY -ECASWESTINGHOUSE PHASE I FINAL REPORT

Volume VII - METAL VAPOR RANKINE TOPPING-STEAM

BOTTOMING CYCLES

by P.B. Deegan

WESTINGHOUSE ELECTRIC CORPORATION RESEARCH LABORATORIES

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION NATIONAL SCIENCE FOUNDATION

NASA Lewis Research Center Contract NAS 3-19407

(NASA-CR-134941-Vc1-7) ENERGY CONVERSION
ALTERNATIVES STULY (ECAS), WESTINGHOUSE
PHASE 1. VOLUME 7: METAL VAPOR RANKINE
TOPPING-STEAM BOTTOMING CYCLES Final Report
(Westinghouse Research Labs.) 198 p HC

N76-23698

Unclas G3/44 28172

 Report No. NASA C Volume 		2. Government Acce	ession No.	3, Recipient's Catal	og No.
	ON ALTERNATIVES ASE I FINAL REPO			5. Report Date February 12,	1976
		NE TOPPING-STEAM	BOTTOMING CYCLES	6. Performing Organ	nization Code
7. Author(s) P. B. Deegan, e	t al		· · · · · · · · · · · · · · · · · · ·	8. Performing Organ Westinghouse 76-9E9-ECAS-	Report No.
9. Performing Organizati	on Name and Address			10. Work Unit No.	
Westinghouse El	ectric Corporati	Lon			
Research Labora Pittsburgh, PA				11, Contract or Gran NAS 3-19407	it No.
				13. Type of Report	and Period Covered
2. Sponsoring Agency N				Contractor I	
	and Development utics and Space	Administration		14. Sponsoring Agend	
National Science	e Foundation	Administration		14. Sponsoring Agent	cy Code
 Washington, D.C Supplementary Notes 	· .			<u> </u>	
Project Manage	rs:				
W. J. Brown, NA D. T. Beecher,	SA Lewis Researd Westinghouse Res	ch Center, Clevel search Laboratori	and, OH 44135 es, Pittsburgh, PA	A 15235	
6. Abstract					
	manau Banleina te	opper to a steam	cycle is a way to i	increase the mean	temperature
Adding a metal	vapor Kankine Li				
			e efficiency of a p	power plant. Pot	assium and
at which heat i	s added to the of	cycle to raise th	e efficiency of a prized bed	or pressurized (with an
at which heat i cesium topping integrated low-	s added to the of fluids are cons: Btu gasifier) bo	cycle to raise th idered. Pressur oilers are assume	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low-	s added to the of fluids are cons: Btu gasifier) bo	cycle to raise th idered. Pressur oilers are assume	e efficiency of a prized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low- plant efficience	s added to the of fluids are cons: Btu gasifier) bo	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low- plant efficience	s added to the of fluids are cons: Btu gasifier) bo y of 42.3% with	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low- plant efficience	s added to the of fluids are cons: Btu gasifier) bo y of 42.3% with	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low- plant efficience	s added to the of fluids are cons: Btu gasifier) bo y of 42.3% with	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low- plant efficience	s added to the of fluids are cons: Btu gasifier) bo y of 42.3% with	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low- plant efficience	s added to the of fluids are cons: Btu gasifier) bo y of 42.3% with	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low- plant efficience	s added to the of fluids are cons: Btu gasifier) bo y of 42.3% with	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low- plant efficience	s added to the of fluids are cons: Btu gasifier) bo y of 42.3% with	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low- plant efficience	s added to the of fluids are cons: Btu gasifier) bo y of 42.3% with	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low- plant efficience	s added to the of fluids are cons: Btu gasifier) bo y of 42.3% with	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low- plant efficience	s added to the of fluids are cons: Btu gasifier) bo y of 42.3% with	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low- plant efficience	s added to the of fluids are cons: Btu gasifier) bo y of 42.3% with	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat i cesium topping integrated low- plant efficience	s added to the of fluids are cons: Btu gasifier) bo y of 42.3% with	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (v	with an Led shows
at which heat is cesium topping integrated low-plant efficience of 8.19 mills/N	s added to the of fluids are considered by gasifier) by of 42.3% with [J (29.5 mills/k]]	cycle to raise th idered. Pressur pilers are assume a plant capitali	e efficiency of a prized fluidized bed	or pressurized (vector) and a cost of e	with an Led shows
at which heat is cesium topping integrated low-plant efficience of 8.19 mills/N	s added to the of fluids are considered by gasifier) by of 42.3% with [J (29.5 mills/k]]	cycle to raise th idered. Pressur pilers are assume a plant capitali	ne efficiency of a prized fluidized bed id. One of the terrozation of \$66.7/kw	or pressurized (vector) and a cost of e	with an Led shows
at which heat is cesium topping integrated low-plant efficience of 8.19 mills/N	s added to the of fluids are considered by of 42.3% with [J (29.5 mills/k]]	cycle to raise th idered. Pressur cilers are assume a plant capitali Wh).	ne efficiency of a prized fluidized bed id. One of the terrozation of \$66.7/kw	or pressurized (vector) and a cost of example of exampl	with an Led shows
at which heat is cesium topping integrated low-plant efficience of 8.19 mills/N	s added to the of fluids are considered by of 42.3% with (J (29.5 mills/k)) (29.5 mills/k) by Author(s) turbine	cycle to raise the idered. Pressur collers are assume a plant capitali wh).	te efficiency of a prized fluidized bed and. One of the term zation of \$66.7/kw	or pressurized (vector) and a cost of example of exampl	with an Led shows
at which heat is cesium topping integrated low-plant efficience of 8.19 mills/N	s added to the of fluids are considered by of 42.3% with (J (29.5 mills/kl)) (29.5 mills/kl) by Author(s)) turbine temperature	cycle to raise the idered. Pressur collers are assume a plant capitali wh).	te efficiency of a prized fluidized bed and. One of the term zation of \$66.7/kw	or pressurized (vector) and a cost of example of exampl	with an Led shows

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22161

ACKNOWLEDGMENTS

Section 8 entitled "Metal Vapor Rankine Topping-Steam Bottoming Cycles" was centered at the Westinghouse Advanced Reactors Division with the primary responsibility assumed by P. B. Deegan.

Others contributing to the concept study were:

- W. F. Guerin, who defined and costed the liquid metal subsystems.
- J. D. Mangus, who provided technical consultation.
- R. K. Sayre, who designed and costed the liquid metal condenser-steam generator.
- F. A. Beldecos of Power Generation Systems, who sized the needed metal vapor turbines.
- J. L. Steinberg and G. J. Silvestri of the Westinghouse Steam Turbine Division who calculated the performance and price of certain steam turbines.
- C. T. McCreedy and S. M. Scherer of Chas. T. Main, Inc. of Boston, who prepared the balance of plant description and costing, site drawings, and provided consultation on plant island arrangements and plant constructability.

TABLE OF CONTENTS

NASA Report No. NASA CR-134941

Volume I	Section 1 Section 2	INTRODUCTION AND SUMMARY GENERAL ASSUMPTIONS
Volume II	Section 3	MATERIALS CONSIDERATIONS
Volume III	Section 4	COMBUSTORS, FURNACES, AND LOW- BTU GASIFIERS
Volume IV	Section 5	OPEN RECUPERATED AND BOTTOMED GAS
Volume V	Section 6	COMBINED GAS-STEAM TURBINE CYCLES
Volume VI	Section 7	CLOSED-CYCLE GAS TURBINE SYSTEMS
Volume VII	Section 8	METAL VAPOR RANKINE TOPPING-STEAM BOTTOMING CYCLES
Volume VIII	Section 9	OPEN-CYCLE MHD
Volume IX	Section 10	CLOSED-CYCLE MHD
Volume X	Section 11	LIQUID-METAL MHD SYSTEMS
Volume XI	Section 12	ADVANCED STEAM SYSTEMS
Volume XII	Section 13	FUEL CELLS

EXPANDED TABLE OF CONTENTS Volume VII

																Page
ACKNO	WLEDO	EMENTS		•				•			•			•	•	i
TABLE	OF C	CONTENTS	·	•				•			•				•	ii
SUMMA	.RY			•				•			٠	•		•	•	vi
8. M	ETAL	VAPOR F	ANKINE	TOP	PING-S	TEAM 1	зоттом	ING	CYC	CLES	•			•,		8-1
8	.1	State c	f the A	rt		• • •		•			•			•	•	8-1
		8.1.1	Previou	s. S	tudies								•	•		8-9
8	. 2	Basic I	iquid-M	eta	ıl Rank	cine To	opping	Су	cle	P1a	nt		•	•	•	8-11
8	. 3	Method	of Perf	orm	ning Ca	alcula	tions	•				•				8-22
8	. 4	Results	of the	Pa	rameti	cic St	ıdy .								•	8-29
		8.4.1	Matrix	of	Compor	nents a	and Pa	ram	etri	ic V	ari	ati	lon	s .	•	8-29
		8.4.2	Effect	of	Furna	ce-Com	oustor	Ту	рe		•				•	8-31
		8.4.3	Effect	of	the Ga	as Turl	oine R	lecu	pera	itor	:					
			Effecti	ven	ess .							•				8-31
		8.4.4	Effect	of	Liquid	i-Meta	l Reci	rcu	lati	Lon					•	8-32
		8.4.5	Effect	of	Exhaus	st Gas	Feedw	ate	r He	eate	ers	and	i			
			Economi	zer	s			. •				•			•	8-32
		8.4.6	Effect	o£	Compre	essor	Pressu	ıre	Rat:	io :						8-33
		8.4.7	Effect	of	Air E	quival	ence P	Rati	ο.		•			•	•	8-35
		8.4.8	Effect	of	Gas T	urbine	Inlet	Te	mpe	rati	ıre					8-35
		8.4.9	Effect	of	Metal	Vapor	Turbi	ne	Inle	et I	Cemp	er	atu	re		8-38
		8.4.10	Effect	of	Steam	Throt	tle Te	mpe	rati	ıres	· .	•				8-39
		8.4.11	Effect	of	Steam	Throt	tle Pr	ess	ure	• •	, .				•	8-39
		8.4.12	Effect	of	Nonre	heat v	s Rehe	at	Ste	am ?	Curl	oin	2 .	•.		8-41
		8.4.13	Effect	of	Worki	ng Flu	id	**.								8-41
		8.4.14	Effect	of	Power	Level		٠,	•	•		•				8-43

EXPANDED TABLE OF CONTENTS (Continued)

			Page
8.5	Capital and In	stallation Costs of Plant Components	8-43
	8.5.1 Method	of Component Sizing	8-43
	8.5.1.1	Pressurized Fluidized Bed	8-43
	8,5,1,2	Pressurized Furnace	8-46
	8.5.1.3	Liquid-Metal Vapor Drum	8-46
	8.5.1.4	Liquid-Metal Vapor Turbine	8-47
	8.5.1.5	Metal Vapor Condenser-Steam Generator	8-47
	8.5.1.6	Liquid-Metal Condenser Hot Well	8-54
	8.5.1.7	Liquid-Metal Dump Tank	8-54
	8.5.1.8	Liquid-Metal Pumps	8-55
	8.5.1.9	Liquid-Metal Piping	8-56
	8.5.1.10	Liquid-Metal Storage Tanks	8-57
	8.5.1.11	Liquid-Metal Inventory	8-58
	8.5.1.12	Plant Arrangement and Component	
		Modularization	8-59
	8.5.2 Method	of Component Cost Evaluation	8-61
	8.5.2.1	Pressurized Fluidized Bed	8-61
	8.5.2.2	Pressurized Furnace	8-62
	8.5.2.3	Combustor Pressurizing Subsystem	8-63
	8.5.2.4	Liquid-Metal Subsystem Tanks	8-65
	8.5.2.5	Liquid-Metal Vapor Turbine	8-65
	8.5.2.6	Liquid-Metal Condenser - Steam Generator	8-67
	8.5.2.7	Liquid-Metal Pumps	8-69
	8.5.2.8	Liquid-Metal Piping	8-69
	8.5.2.9	Liquid-Metal Inventory	8-69
	8.5.2.10	Liquid-Metal Auxiliary Subsystem	8-73
	8.5.2.11	Summary of Liquid-Metal Subsystem	
		Direct Costs	8-73
8.6	Analysis of O	verall Cost of Electricity	8-75
	8.6.1 Matrix	of Component and Parameter Variations	8-75

EXPANDED TABLE OF CONTENTS (Continued)

			Page
	3.6.2	Effect of Furnace Combustor Type	8-77
8	3.6.3	Effect of Coal Type on PFB	8-77
8	3.6.4	Effect of Component and Parameter Variations	
		on PFB	8-79
8	3.6.4	Effect of System Temperatures on PFB	8-83
. 8	3.6.5	Effect of System Temperature on PFB	8-83
8	3.6.6	Effect of Working Fluid on Preliminary Optimum	
		Plant	8-87
	3.6.7	Effect of Nominal Power Variation	8-87
	8.6.8	Summary Sheets	8-89
	3.6.9	Additional Considerations	8-89
8.7	Conclu	sions and Recommendations	8-97
8.8 F	Refere	nces	8-105
Appendix A	8.1	Liquid-Metal Rankine Topping Cycle Parametric	
]	Points System Configuration and Parametric State	
	1	Points	8-106
Appendix A	8.2	Liquid-Metal Topping Cycle Parametric Point	
		Summary Sheets	8-157
Appendix A	8.3	Detailed Accounts Listing, Points 1, 4 and 49	8-166

SUMMARY

Adding a metal vapor Rankine topping cycle to a steam cycle is a way to increase the mean temperature at which heat is added to the cycle and to raise the efficiency of the power plant. The majority of this study uses potassium as the working fluid with a few cesium points for comparison. The systems studied use either a pressurized fluidized bed boiler burning coal directly or a pressurized boiler burning clean fuel gas from an integrated low-Btu gasifier. in the cycles are a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. The base case system assumes a 1255°K (1800°F) pressurizing turbine inlet temperature and a 15 to 1 pressure ratio. The liquid-metal vapor generator is a fluidized bed boiler. The liquid-metal system uses a boiler with a 2.5 to 1 recirculation ratio, and several four-stage - 30 rps (1800 rpm) double flow-25 MW turbine-generators which exhaust into a metal vapor condenser-steam boiler where steam is raised for a nearly conventional steam-bottoming plant.

The metal vapor enters the turbine at 1033°K (1400°F) and the condenser-steam generator at 866°K (1100°F). The steam-bottoming plant uses a 24.132 MPa (3500 psi) either single or nonreheat plant. The high pressure feedwater heating is accomplished partly by extraction steam and partially by exhaust gas feed heating. A temperature difference of 166.7°K (300°F) is assumed across the metal vapor turbine. The steam reheat and/or superheat temperature is 55.5°K (100°F) less than the metal vapor condensing temperature. These variables are not varied independently.

Calculations show the potassium-topped plant with a capitalization of \$667/kW and a plant efficiency of 42.3%.

Results show the comparable cesium cycle to have an efficiency about 0.5 point higher than the potassium cycle but to have a 0.44 mill/MJ (1.6 mills/kWh) higher cost of electricity. The need for both the gasifier and pressurized furnace compared to just a pressurized fluidized bed boiler results in a 17% high plant capitalization. The pressurized fluidized bed system is the choice for the case for further sody.

Also indicated are a 10 to 1 - 1255°K (1800°F) pressurizing gas turbine, a 1033°K (1400°F) metal turbine inlet temperature, and a 24.132 MPa/811°K/811°K (3500 psi/1000°F/1000°F) steam-bottoming plant.

The 1200 MW plant, made up of several distinct pressurized boiler and liquid-metal turbine loops with the exception of the steam turbine which is common to all loops, can be expected to have a higher availability than a normal plant with line dependence on all major components.

The pressurized fluidized bed boiler plant shows a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh). Extrapolation to other conditions than those calculated shows possible efficiencies of 44% with a possible capital cost of \$583/kW and a COE of 6.94 mills/MJ (25 mills/kWh). Some limited potential for this plant may exist.

REPRODUCED ALL OF THE ORIGINAL PAGE IS POOR

8. METAL VAPOR RANKINE TOPPING-STEAM BOTTOMING CYCLES

Figure 8.1 is a simplified schematic of an energy conversion system utilizing a Rankine metal vapor topping-steam bottoming cycle. The area enclosed by the heavy broken line is the liquid-metal system discussed in this section. The areas outside the heavy broken line include the furnace-boiler, the pressurizing gas turbine generator, and the steam turbine generator, described in greater detail in Sections 4, 5, 6, and 12. Design support for material selection and the fabrication methods suggested are presented in Section 3.

8.1 State of the Art

Considering the generation of power at present-day temperatures and higher, it must be recognized that steam as a working fluid presents serious problems. It requires too high an operating pressure, and it absorbs too little heat at the maximum cycle temperature. Combining a Rankine steam cycle with a Rankine metal vapor topping cycle overcomes these problems and offers the potential for higher cycle efficiencies.

Historically, between 1922 and 1949, six commercial power generating stations were installed and successfully operated with mercury vapor topping turbines at throttle conditions of about 0.8619 MPa (125 psi) gauge/788°K (958°F). In 1949, the Schiller Station of Public Service of New Hampshire went into operation with a total capacity of 40 MWe, of which 15 MWe were generated by the mercury vapor turbine generator. The 10 MWe mercury turbine generator installed at the Hartford Electric Light Company's South Meadow station in 1928 operated until 1947. It was replaced by a 15 MWe unit in 1949. In general, the metal vapor turbine presented few problems, but some boiler corrosion and necessary replacement did occur. These plants exhibited an efficiency

Fig. 8.1—Schematic tiquid metal Rankine topping cycle

15% higher than did steam plants with similar top temperatures. Three of these mercury plants were still operating in 1961, but the development of more efficient steam plants (modern plants with higher inlet steam temperatures) and the value of the mercury inventory have since caused them to be dismantled.

More recently, small power plants for space stations using metal vapor turbines (potassium) have been studied. There are now ongoing programs utilizing liquid-metal subsystems for liquid-metal fast breeder reactor (LMFBR) power plants. The pertinent components for which a body of technology has been developed for use in liquid-metal systems are metal vapor condenser-steam generators, feed heaters, pumps, piping systems, valving, expansion joints, purification systems, trace heating systems, inventory control, and metal vapor turbines.

The condenser-steam generator parameters listed in Table 8.1 are indicative of the state of the art as developed by the Energy Research and Development Administration (ERDA) for the LMFBR program.

Table 8.1 - LMFBR Steam Generator Operating Conditions

	Evaporator	Superheater
Temperatures, °F		
Sodium in	855	950
Sodium out	700	855
Water in	470	715
Water out	715	905
Sodium Velocity, ft/s	8.5	11.0
Steam Exit Velocity, ft/s	37.4	173
Pressure Drop, psi		
Water	44	245
Sodium	21	29

Table 8.2 - Characteristics of Sodium Pumps a

System	Hallam	EBR-2	Enrico Fermi	500 MWe FBR	P.F.R.	ANL 1000 MWe	FFTF 400 MWt
Primary System Pumps							
Design	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifugal
Туре	Free surface	Free surface	Free surface	Free surface	Free surface	Free surface	Free surfac
Number of units	2	2	3	3	3	3	4
Capacity, gpm	7200	5560	38,500	38,500	21,100	62,500	11,750
Dynamic head, ft	160	200	310	379	333	375	385
Design temp., °F	1000	800	1000	1100	752	1175	800
Motor speed, rpm	900	1075	900	600	960	520	870
Motor power, hp	350	350	1060	4000	200	6000	1.300
Sealing arrangement	Mechanical shaft seal	Hermetically sealed drive motor	Mechanical shaft seal	Mechanical shaft seal	Mechanical shaft seal	Mechanical shaft seal	Mechanical shaft sea
Material	304 SS	304 SS	304 SS	304 SS			
Type of speed control	Eddy current coupling	Variable freq. and voltage	Wound rotor . motor w/liquid rheostat	Eddy current coupling	Hydraulic coupling	WR/DC	Eddy current coupling
Secondary System Pumps						·	
Design	Centrifugal	ac linear	Centrifugal	Centrifugal	Centrifugal	Centrifugal	Centrifuga
Type	Free surface	Induction	Free surface	Free surface	Free surface	Free surface	Free surfa
Number of units	3	1	3	3	3	3	4
Capacity, gpm	7200	6500	13,000	45,300	20,400	55,200	11,450
Dynamic head, ft	170	142	100	226	159	250	222
Design temp., "F	1000	700	1000	965	752	1.085	675
Motor speed, rpm	900	1180 (MG set)	900	850	960	870	800
Motor power, hp	350	500 (MG set)	350	3000	750	3500	745
Sealing arrangement	Mechanical shaft seal	Total metal enclosure	Mechanical shaft seal	Mechanical shaft seal	Mechanical shaft seal	Mechanical shaft seal	Mechanical shaft sea
Material	304 SS	304 SS	2-1/4% Cr - 1% Mo	304 SS			
Type of speed control	Eddy current coupling	Variable Volt. (MG set)	Eddy current coupling	Eddy current coupling	Hydraulic coupling	WR/DC	Eddy curre

aPrototype FFTF pump/fabrication complete - January 1971
Prototype demonstration pump/fabrication complete - January 1972
500 FBR pump P.O. - January 1971.

The technology involved in the liquid-metal feedheater is similar to that developed for the intermediate heat exchanger (IHX) of the LMFBR. The liquid-metal operating conditions in Table 8.1 are comparable to those expected in the feedheater. The feedheater can operate at higher temperatures than those indicated because it is not limited by nuclear reactor temperatures.

Existing steam generators and IHXs have been operating at capacities in the order of 30 and 100 MWt per unit, respectively. The LMFBR program is designing them for 100 and 300 MWt per unit, respectively.

Initial estimates of liquid-metal flow rates and required pump heads indicate that a centrifugal pump will be selected according to pump state of the art. Figure 8.2 shows the range of flows and heads of existing liquid-metal pumps. The pumps of the LMFBR program, listed on Tables 8.2 and 8.3, provide additional information on centrifugal pump designs and operating conditions. The metal vapor Rankine topping cycle liquid-metal pump would be classified in the secondary pump parameter range, especially for the design head. The application of electromagnetic (EM) pumps is also a possibility.

Table 8.3 - Free Surface Sodium Pumps

Characteristics	SRE	HNPF
Capacity, gpm	2,500	7,200
Design Temperature, °F	1,200	1,000
Total Dynamic Head, ft	145	160
Motor Horsepower, hp	150	350
Hours of Operation	14,000	9,000

Table 8.4 lists the sizes and designs of liquid-metal valves which have been built and tested. These valves are of the order-of-

Fig. 8.2—Typical liquid metal pump characteristics

Table 8.4 - Large Valves in Liquid-Metal Cooled Reactors^a

		m . 1	m 1		Se	Service Conditions						
Reactor	Valve Function	Total Valves in Loop	Size, in	Stem Seal	Approx. Temp., °F	Approx. Pressure, psi	Approx. Flow, gpm					
EBR-I	Block	15	4, 6	Double bellows	600	20	291					
ERB-II	Throttle	2	4	Close clearance	700	56	630					
FERMI	Throttle	3	6	Double bellows	600	118	1,000					
	Check	3	16	None	600	. 118	10,000					
HALLAM	Block	9	14, 16	Freeze seal	950	57	6,750					
	Check	3	16	None	610	37	6,750					
SRE	Block	9	6	Bellows and freeze seal	850							
SRE-PEP	Block	4	4, 6	Bellows and freeze seal	1160	47	1,540					
	Throttle	1	8	Torque tube	650	19	1,420					

^aAll valves had stainless steel bodies.

1. Condenser-Steam Generator

- Westinghouse Primary Steam Generator Development Program
- AI MSG Steam Generator Study
- EBR-II

2. Liquid-Metal Feedheater

- Foster Wheeler Corp. LMFBR and FFTF IHX Design Report
- Fermi IHX
- Hallam IHX
- ALCO Sine-Wave IHX (SCTI)

3. Liquid-Metal Pumps

- Westinghouse Large Sodium Pump Study
- Fermi Pump
- British PFR Pump
- Hallam Pump
- · EM Pump Studies

4. Liquid-Metal Piping

- · Material Compatibility Studies
- Piping Stress Analysis Codes
- Pipe Hangers and Penetration Studies
- · Piping Insulation Selection' Studies

5. Liquid-Metal Valves

- Valve Development Program
- · Valve Operating Experience

6. Liquid-Metal Vapor Turbine

- Two- and Three-Stage Potassium Turbine Test by General Electric
- Potassium Turbine Tests by Garrett
- Liquid-Metal Rankine Cycle Space Power Application

7. Inventory Control Development Programs for:

- Level Instruments
- · Expansion Tanks, Dump Tank
- Flowmeters
- Temperature Instruments
- Pressure Instruments
- Leak Detectors

8. Liquid-Metal Purification Development Program for:

- Liquid-Metal Solubility Studies
- Hot and Cold Traps
- Soluble Getters
- Sampling Techniques
- Chemical Analysis
- EM Flowmeters
- Plugging Meters
- Electrochemical Meters

9. Trace Heating

- Heater Development Program
- Hanger and Insulation Development

magnitude size required for the metal vapor Rankine topping cycle. The LMFBR program is studying sodium valve development in order to improve on present valve capabilities.

In addition to the state of the art of mercury vapor turbines established for the mercury topping cycle power plants, much effort has been expended in space vehicle application of alkali-metal vapor turbines. The space program has also been investigating the feasibility of other liquid metals as working fluids for power generation.

Liquid-metal vapor turbines have been built and tested by General Electric for NASA and by Airesearch Manufacturing for the U. S. Air Force. A two-stage potassium turbine was operated successfully for 18 Ms (5000 hr) by General Electric.

The same may be said of liquid-metal inventory controls, purification systems, and trace heating: the technology exists. These systems have been built and tested for the Fermi, EBR-II, and Hallam in this country, and by several foreign nations. They have been designed for the Fast Flux Test Facility (FFTF), and many aspects of the systems have been tested in various facilities. Development programs are in progress to enhance the state of the art in these areas.

8.1.1 Previous Studies

As intimated previously, the steam generator studies for the LMFBR program provided information applicable to the condenser-steam generator. Table 8.5, Item 1, lists a few of the studies available. The Westinghouse Primary Steam Generator Development Program in particular provides an initial concept for design of the condenser-steam generator.

The design of the liquid-metal feedheater will closely resemble the IHX of the LMFBR program. Item 2 of Table 8.5 lists a design report and three actually built IHXs as reference studies.

Item 3 of the same table lists a Westinghouse study that provides liquid-metal pump design procedures, as well as sizing and costing information. Atomics International also has a similar study available,

which is not listed. Under Item 3 are listed three centrifugal pumps which were built and tested. The final entry refers to the studies on EM pumps.

The EM pumps avoid the uncertainty of hydrostatic or hydrodynamic bearings operating in high-temperature liquid metal. EM pumps require no bearing, nor do they requires seals since there is no penetration of the liquid-metal envelope. The utilization of EM pumps would additionally simplify the liquid-metal transport system.

Item 4 of Table 8.5 is concerned with piping systems for liquid metals. One of the major requirements of such a system is the compatibility of the liquid metal with the piping material, as discussed in Section 4. Material is available from the LMFBR program and the metal vapor Rankine cycle program for space vehicle application. Also available under the LMFBR program are piping stress analysis codes and a Westinghouse development analysis procedure. Development programs are also involved with pipe hangers, penetrations, and insulation materials.

As mentioned previously, liquid-metal valve development programs are in progress using past operating experience as a guide. These are listed in Item 5.

Item 6 concerns previous studies on liquid-metal vapor turbines. Listed first are the two- and three-stage potassium turbine tests performed by General Electric under NASA CR-924 and NASA CR-1483, respectively. Also listed are the potassium turbine tests by Airesearch under contract to the Air Force.

Items 7, 8, and 9 of Table 8.5 cover the auxiliary system of inventory control, purification, and trace heating. Listed under the individual systems are developed programs for specific components and equipment required in the systems.

Uncertainties and development problems do exist in a liquidmetal system, but previous studies and testing programs have provided a good background for resolving them. Current FFTF and other LMFBR development programs are advancing the state of the art in these areas.

8.2 Basic Liquid-Metal Rankine Topping Cycle Plant

The parametric analysis of Task I for the liquid-metal Rankine topping cycle included 50 different plant designs, as shown in Table 8.6. The work scope specifically required that the analysis include pressurized fluidized bed combustion of coal and a pressurized furnace burning low-Btu gas made from coal. It was decided to incorporate two base cases in the parametric analysis: Base Case 1, a pressurized fluidized bed (PFB) plant, and Base Case 2, a pressurized furnace (PF) plant.

The plant site arrangement and size for Base Case 1 is shown as Figure 8.3. The plant island arrangement is illustrated on Figure 8.4 as supplied by Chas. T. Main, Inc., the architect/engineer. Figures 8.5 and 8.6 represent the plant site and plant island arrangement drawings for Base Case 2.

The flow schematics and location of state points for a PFB plant and a PF plant are shown in Figures 8.7 and 8.8, respectively. The components and flow paths denoted by dashed lines represent variations in the system configuration that were investigated. The base case system configurations are represented by solid-line components.

The configuration, performance, and state point values of Base Cases 1 and 2 are shown in Tables 8.7 and 8.8, respectively, for 1200 MWe size plants.

The base cases were assumed to be as simple as possible—hence the absence of recuperators, gas-heated feedwater heaters or economizers, and liquid-metal extractions. Based on availability studies for the liquid-metal fast breeder, plant availability is lower for sodium reheat steam cycles than nonreheat steam because of the increased probability of sodium/water reaction in the event of a steam tube rupture. Thus, a nonreheat steam cycle was selected for the two base cases.

A recirculating liquid-metal boiler was selected instead of a once-through boiler for the base cases in order to improve heat transfer coefficients and to mitigate possible overheating of the furnace tubes at

	-		Comp	ound Matrix								Pa	rameter Matrix 🗕					
	Pressurized Combustor	Fuet	Recuperator Effectiveness	Liquid Metal Circulation Ratio	Liquid Metal Feedheater	Gas Feedwater Heater	Gas Economizer	Stages of Steam Reheat	Compressor Pressure Ratio	Air Equivalent Ratio	Gas Turbine Iniet Temperatura	Liquid Metal Inlet Temperature (°F)	Liquid Metal Condensor Temperature (°F)	Steam Turbine Throttle Temperature (°F)	Steam Turbine Throttle Pressure (psig)	Steam Turbine Back Pressure (In. Ho. Abs.)	Cycle Power (MWs)	Liquid Metal
Variable Values	Press, Furnace Press, Fluid, Bed	Bituminous Sub-bit Lignite	0,0,7,0,8	1:1,25:1	If Applicable	No, Yes	No, Yes	0,1	5,10,15	1.2, 2.0, 3.0	1600, 1700, 1800	1400, 1500, 1600					400, 800, 1200, 1600	1
Case No	 	<u> </u>						<u> </u>			ļ							L
1(1)	PFB	Bit	0	2.5:1	If Applicable	No	No	0	15	1.2	1800	1400	1100	1000	3500	33	1200	K
2 3	 	Sub-bit Lignite		-												<u> </u>		₩
4	PF	Bit													L			
5 6		Sub-bit Lignite																
7	PEB	Ligitie	α7													 		├
88_			0.8															士
10	PF		0.7 0.8				L											\Box
11	PFB			1:1				_				-						₩
12	Pf			1:1														
13	PFB PF					Yes Yes						ļ						├
15	PFB						Yes											
16 17	PF PFB						Yes											
18	PFB							-	10							<u> </u>		
19	PFB									2.0								
<u>20</u> 21		-								3.0	1600							
22						-					1700							⊢
73												1500	1200					1
24 												1600	1300					
76												1500 1600	1200 1300	1100 1200				┼
27								1				1,500		1250	-			\vdash
	<u> </u>							-				1500	1200 1300	1100				
30								-				1600	1500	1200	2400			├
31												1500	1200	1100				
32								, 				1600	1300	1200				1_
34							-+	+ +				1500	1200	1100				-
35								1				1600	1300	1200				
36 37												· ·			\Box	- 9 .	ļ	
36															-	2		\vdash
	PFB	750	0			V		Ţ								9		
40 41	- TB -	8it		2.5:1		Yes	No	1	15	1.2	1600	1400	1100	1000	3500	3.5	600 900	ļ
42														 }		-	1600	-
<u>43</u>	PF		-	$ \downarrow$ $ \downarrow$		\dashv	\bot	\Box									600	
44 45				-		┥┥			\dashv								900 1600	-
- 46	FFG							士							-	\dashv	1200	
47		-	-			\Box	\Box	П								\Box	600	
48 49	PFB		- -			\dashv		┉╁╍┼	+						\Box	\Box	1500	
50	PF						\rightarrow	++							-	-	1200 1200	-

(1) Case No. 1 is Base Case and All Blanks Have Same Value As Base Case

Fig. 8.3—Rankine metal vapor topping-steam bottoming cycle with pressurized fluidized bed boiler (Base Case 1)

8-1

Fig. 8, 4—Plant Island arrangement for a metal vapor Rankine topping plant with a pressurized fluidized bed boiler

Fig. 8.5—Rankine metal vapor topping-steam bottoming cycle with a pressurized furnace (Base Case 2)

Total = 1200 MW STM = 700 MW Vapor = 200 MW, 4 at 50 MW GT = 300 MW, 4 at 75 MW

Fig. 8.6—Plant island arrangement for a metal vapor Rankine topping plant with a pressurized furnace and integrated coal gasifier ${\sf res}$

Fig. 8.7 - Schematic liquid metal rankine topping cycle pressurized furnace

Table 8.7 - Liquid-Metal Rankine Topping Cycle Components and Operating Parameters for Base Case 1

					- * * * * * * EFFLCI	ENCIES * * * * *
	PCHER OUTPUT (MHE)		INE INLET			
	FURNACE PR.FLD		NTUZE (DEG-F)		L.M.SYSTE:	. 097
	CCAL	BIT GAS ELONG		NO	PRESSURIZING SUBSY	
	WORKING FLUID		ALTER HEATER	NO	STEAM CYCLE	.429
	RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO	15 L.M.FEED	LATION RATIO	2 .5 1 00	GROSS PLANT HET PLANT	.380 .370
	AIR EQUIVALENCE RATIO		STEAM REHEAT	140	NET POWER OUTPUT (M	
	AIR EQUIVALENCE RAFID	1.5 311953 0-	STEAM RENGAT	G	NET PENER DOTPOTTA	1109.37
		TOTAL FLOW	TEMPERATURE	PFESSU-	RE THERMAL LCAD	POWER OUTPUT
	**** STATE POINTS ****	10EJ6 LEMVHA	JEG-F	PSIA	10E05 910/HR	WKE
	1 L.M.TURBINE INLET	7.382	1406.000	15.	200	188.000
	2 L.M.CONDENSER		1100.000	2.4	400 5.856	
	3 L.M.FEED PUMP	5277.000 GPM	1100.000	33.9	900	.363
~	4 L.M.KECIRC PUMP	13574.000 GPM	1280.000	20.	510	.173
100	5 L.M.BOILER INLET		1280.000		6.600	
	6 STEAM TURBINE THROITLE	6.774	1000.600	3515.	300	720.600
	7 STEAM REHEAT		0.000	C . (000	
	8 ST.COND. BACK PRESS.			3.5	50CIN.HG 3.396	
	9 FINAL FEEDMATER		560 .000			
	16 CONDISG WATER INLET		\$69.000			
	11 COMPRESSOR INLET	10.320	59.000	14.6	90	
	12 GAS TURBINE INLET	11.216	1800.000			291.500
	13 GAS ECON. GAS INLET.		0.000		0.000	
	14 GAS FWH GAS INLET		0.000		0.003	
	15 STACK GAS EXHAUST		844.000			
	16 AS RECEIVED COFL	499.400T/HR			10.775	

Table 8.8 - Liquid-Metal Rankine Topping Cycle Components and Operating Parameters for Base Case 2

					* * * * * * EFFICI	ENCIES * * * * *
	POWER OUTPUT(NWE) FURNACE PR. 1 GCAL MCKKING FLUID RECUPERATOR EFFECTIVENES COMPRESSOR PRESSUFE RATIO AIR EQUIVALENCE RATIO	BIT GAS ELONO K GAS FEECH S 0.6 L.M.CIRCU C 15 L.M.FEECH	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	1809 • 5 NO NO NO 2 • 5 1 NO 0	L.M.SYSTEM PRESSURIZING SUBSY STEAM CYCLE GROSS PLANT HET PLANT NET PCHER OUTPUT (M	• 0) 7 STEM .263 • 42 0 .365 .356
	**** STATE POINTS ****	TOTAL FLOW 10EU6 LBM/HR	TEMPERATURE SEG-F	PRESSUR PSIA	THERMAL LCAD	POWER OUTPUT
	1 L.M.TURBINE INLET	7.327	1400.000	15.2	230	186.500
	2 L.M.CONDENSER		1100.005	2.4	0.6 5.813	
	3 L.M.FEED PUMP	5245.000 GPM	1100.000	33.59	90	, 356
	4 L.M. RECIRC PUMP	13491.000 GPM	1280.000	20.5	50	.170
917	E L.M.30ILER INLET		1280.000		6.551	
,	E STEAM TURBINE THROTTL	E 6.724	1000.000	3515.0	00	715.300
	7 STEAM REHEAT		0.000	C • 0	000	
	E ST.COND.BACK PRESS.			3.5	00IN.HG 3.372	
	S FINAL FEEDMATER		560.000			
	10 COND/SG WATER INLET		560.000			
	11 COMPRESSOR INLET	10.056	59.000	14.6	96	
	12 GAS TURBINE INLET	10.960	1800.000			298.600
	13 GAS ECON.GAS INLET,		0.000		9.000	
	14 GAS FWH GAS INLET		6.000		0.503	
	15 STACK GAS EXHAUST		857.000			
	14 AS RECEIVED COAL	520.000T/HR			11.220	

the hot end. Recirculation also provides for easier start-up and control, and reduction of mass transfer and corrosion. A recirculation ratio of 2.5 to 1 was selected because, for the heat fluxes estimated in the vapor generators, departure from nucleate boiling (DNB) occurred at approximately 50% quality. The recirculation ratio of 2.5 to 1 corresponds to 40% quality entering the metal vapor drum and provides sufficient conservatism to avoid the problems of DNB and film boiling in the liquid-metal vapor generators.

The recirculation ratio is defined as the ratio of total liquidmetal flow through the furnace/boiler divided by the feed flow.

A gas turbine inlet temperature of 1255°K (1800°F) was selected as the maximum temperature allowed for pressurized fluidized bed combustion of coal to avoid melting and agglomeration of the ash. In conjunction with the liquid-metal temperatures selected, the 1255°K (1800°F) temperature tended to minimize the PFB and PF heat transfer areas and, hence, minimize capital cost.

A potassium vapor turbine inlet temperature of 1033°K (1400°F) provided a reasonable turbine throttle pressure, 104.8 kPa (15.2 psi) abs. Since the PFB and PF are limited to overall heat transfer coefficients approximately equal to the flue gas coefficients [< 283 W/m²-°K (< 50 Btu/hr-ft²-°F)], the log mean temperature difference is maximized with 1033°K (1400°F) liquid metal. Reduction below 1033°K (1400°F) would result in a subatmospheric throttle pressure for the liquid-metal turbine. The liquid-metal condensing temperature of 866°K (1100°F) provided a reasonable condenser pressure [16.55 kPa (2.4 psi) abs] and condenser/steam generator hot-end temperature difference.

The steam turbine throttle conditions of 24.132 MPa (3500 psi) abs, 811°K (1000°F) provide high steam cycle efficiency. The supercritical pressure eliminates potential problems of tube fatigue and uncertainties associated with DNB. The 11.85 kPa (3-1/2 in Hg) abs back pressure represents wet cooling tower conditions. Wet towers are environmentally

more acceptable than are once-through and more economical for heat rejection than are dry cooling towers.

Potassium was selected as the working fluid because more data were available. For this reason the study concentrated on the effects of component and parameter variations on a potassium subsystem, assuming that the results of a potassium subsystem would apply to cesium as well.

8.3 Method of Performance Calculation

The performance of the metal vapor Rankine topping-steam bottoming cycle was calculated by a combination of computer codes and hand calculation. Computer codes were used for the performance of the steam turbine subsystem and the pressurized combustor subsystem, and hand calculations determined the performance of the liquid-metal subsystem.

The hand calculation of the metal vapor turbine was based on an isentropic expansion turbine efficiency of 78%. For an inlet condition of 1033°K (1400°F) and 99% quality, the potassium vapor left the turbine at 866°K (1100°F) and 90% quality. Approximately 202 kJ/kg (~87 Btu/1b) of useful work could be extracted from the potassium by expansion through a turbine for the above conditions. The amount of useful work for the 1089°K/922°K (1500°F/1200°F) turbine-condenser conditions and the 1144°K/978°K (1600°F/1300°F) turbine-condenser conditions was assumed to be approximately the same as for the 1033°K/866°K (1400°F/1100°F) cycle.

Further calculations on a volumetric flow basis demonstrated that a 25 MWe potassium turbine would be of a double-flow, four-stage design with a 1.82 m (6 ft) diameter disk and run at 30 rps (1800 rpm). The cesium turbine was designed for the same $1033^{\circ}\text{K}/866^{\circ}\text{K}$ ($1400^{\circ}\text{F}/1100^{\circ}\text{F}$) turbine-condenser conditions, with 90% exhaust quality and a 76% efficiency. The useful work for these conditions was calculated to be $\sim 61.2 \text{ kJ/kg}$ ($\sim 26.3 \text{ Btu/lb}$).

The performance of the pressurizing combustor subsystem was evaluated by computer program using the pressurized combustor type, the

coal type, recuperator effectiveness, the compressor pressure ratio, air equivalence ratio, and gas turbine inlet temperature as denoted for the 50 parametric points of the metal vapor Rankine topping cycle of Table 8.6. The output included the quantities of heat available from the combustor, Q_b/W_a ; the stack-gas cooler, Q_2/W_a ; and the power generated by the gas turbine generator, P/W_a , as a function of the airflow rate, W_a , and the fuel-to-air ratio, W_f/W_a .

The steam turbine subsystem efficiencies, as determined by computer code, were based on the steam turbine throttle temperatures and pressure and condenser back pressures given in Table 8.6. All cases utilized an 800 MWe steam turbine. The final feed temperatures were 566 and 550°K (560 and 530°F) for 24.132 and 16.547 MPa (3500 and 2400 psi) gauge conditions, respectively, with eight feedwater heaters. For the case which utilized a gas feedwater heater in parallel with the turbine feedwater train, the final feed temperature was 529°K (492°F) with seven feedwater heaters. The stack outlet temperature, total flue gas flow, and flue gas composition were included as input. For cases with steam reheat the reheat temperature was assumed equal to the steam throttle temperature, and the IP turbine inlet pressure was always taken as 4.137 MPa (600 psi) abs.

The integration of the three subsystems was performed by simple hand calculation in an iterative process. Assuming the metal vapor turbine-generator produced 100 MWe, $P_{\rm LMT}$, with a known useful work, $\Delta H_{\rm LMT}$, the liquid-metal flow rate, $W_{\rm LMT}$, is:

$$W_{LM} = P_{LMT}/\Delta H_{LMT}$$
 (8.1)

For any given metal vapor cycle the liquid-metal enthalpy rise in the boiler, $\Delta H_{\rm b}$, and enthalpy drop in the condenser-steam generator, $\Delta H_{\rm c}$, are known. So with W $_{\rm LM}$ of Equation 8.1 the heat available to the boiler, $Q_{\rm b}$, is:

$$Q_b = W_{LM} \Delta H_b$$
 (8.2)

and the heat rejected to the steam, Q_c , is:

$$Q_{C} = W_{IM} \Delta H_{C}$$
 (8.3)

For the pressurizing combustor subsystem performance values, the airflow rate, $\mathbf{W}_{\mathbf{a}}$, is:

$$W_a = \frac{Q_b}{(Q_b/W_a)} \tag{8.4}$$

and the power generated by the gas-turbine generator, P_{gt} , is:

$$P_{gt} = (P/W_a) W_a \tag{8.5}$$

In the case of a gas economizer or feedwater heater, the heat transferred in the stack-gas cooler, Q_2 , is:

$$Q_2 = (Q_2/W_a) W_a$$
 (8.6)

If there is no gas economizer or feedwater heater, then \mathbf{Q}_2 is 0. To determine the power produced by the steam-turbine generator, the total heat added to the steam-turbine subsystem, \mathbf{Q}_{stm} , is:

$$Q_{\text{stm}} = Q_c + Q_2 \tag{8.7}$$

and using the steam-turbine cycle efficiencies, η_{stm} , as determined by computer code, the steam-turbine rating, P_{stm} , is:

$$P_{stm} = (Q_{stm}) \eta_{stm}$$
 (8.8)

The summation of the power generated by the three subsystems is the total plant power, P_{total} . In order to determine the liquid-metal and airflows,

the thermal loads, and the three subsystem power ratings of a 1200 MWe rated plant, a new liquid-metal flow rate, W'_{LM}, was calculated from Equation 8.9:

$$W'_{LM} = W_{LM} (1200/P_{total})$$
 (8.9)

Letting W_{LM} equal W'_{LM} , the above procedure, Equations 8.2 through 8.8, was repeated.

Once the reiteration is completed, the remaining flow rates needed to size equipment can be calculated. The steam throttle flow rate, W_{stm} , was calculated as:

$$W_{stm} = \frac{Q_c + Q_2}{\Delta H_{cs} + \Delta H_2}$$
 (8.10)

where ΔH_2 is the water enthalpy rise in the gas economizer and/or gas feedwater heater.

In order to optimize the amount of heat input for a gas economizer with the cost of the heat exchanger, estimates indicate that $\sim 50\%$ of the heat available at the stack-gas cooler, Q_2 , should be used to economize the feedwater going to the condenser-steam generator. Obviously, all of Q_2 cannot be available for economizing, since the exhaust stack-gas temperature 416°K (290°F) is lower than the final feedwater temperature of 529°K (492°F).

The water-steam enthalpy rise, $\Delta H_{_{\rm C}}$, in the condenser-steam generator includes the enthalpy rise for the throttle steam flow and the reheat steam flow. A good approximation of the water enthalpy rise is defined by:

$$\Delta H_{cs} = \Delta H_{stm} + C \Delta H_{rh}$$
 (8.11)

Table 8.9 - Heating Values of Coals with Various % Moistures

Coal	Illinois Bituminous	Montana Subbituminous	North Dakota Lignite
As Received			
Moisture, % (Moistl)	13.0	24.3	36.7
HHV, Btu/1b	10788	8944	6890
LHV, Btu/1b	10230	8372	6248
Lockhopper			. ,
Moisture, % (Moist2)	3	20	27
HHV, Btu/1b	12028	9452	7946
LHV, Btu/1b	11525	8907	7365
Maximum Practicable Drying			
Moisture, % (Moist3)	0	16	18
HIV, Btu/1b	12400	9925	8926
LHV, Btu/1b	11913	9405	8401

where $\Delta H_{\rm stm}$ is the throttle steam enthalpy rise above that at the economizer exit, $\Delta H_{\rm rh}$ is the reheat steam enthalpy rise, and C is a constant which varies from 0.88 to 0.895, depending on throttle conditions.

This approximation of the high-pressure turbine extraction steam flow agrees within \pm 3% for computer-calculated performance values. The flue gas flow rate, W_g , based on the fuel/air ratio, W_f/W_a , which is given in the pressurizing combustor subsystem performance, is:

$$W_{g} = [1 + (W_{f}/W_{a})] W_{a}$$
 (8.12)

and the as fired coal flow, $W_{\mathfrak{f}}$, is:

$$W_{f} = (W_{f}/W_{a}) W_{a}$$
 (8.13)

The as received coal flow rate depends on the type of coal used and the type of combustor. For a pressurized fluidized bed the as received coal use rate, tons/hr, is:

Tons/hr =
$$W_f \left(\frac{1-Moist2}{1-Moist1} \right)$$
 (8.14)

where Moist1 and Moist2 are listed in Table 8.9 for the three types of coal considered. For a pressurized furnace the coal use rate is:

$$Tons/hr = W_f/(1.0-Moist1)$$
 (8.15)

where Moistl is also listed in Table 8.9. For a pressurized fluidized bed the total heat input of the plant Q_{total} is determined by:

$$Q_{total} = (Tons/hr) HHV$$
 (8.16)

where HHV, the higher heating values of the three coals, are listed for the various moisture contents in Table 8.9.

The gasification subsystem for a pressurized furnace plant requires heat for drying the coal, and process steam and air for the production of low-Btu fuel gas. It was assumed that these heating requirements were satisfied by the hot exhaust flue gas from the pressurizing combustor subsystem at the stack-gas cooler, \mathbf{Q}_2 . When a gas economizer was used to add heat in the steam turbine subsystem, approximately half the heat available at the stack-gas cooler, \mathbf{Q}_2 , was used to economize the feedwater. The other half of \mathbf{Q}_2 was assumed sufficient to satisfy the drying and process heat requirements of the gasification subsystem,

For a case where a gas feedwater heater was used in parallel with the extraction feedwater heater string, the process steam requirement was not satisfied (see Table 8.6 Cases 14, 43, 44, 45, and 50). The process steam heat, Q_{ps} , then was assumed to be an added thermal load on the pressurized furnace plant. The process steam rate, W_{ps} , was determined as:

$$W_{DS} = (W_{DS}/W_a) W_a \tag{8.17}$$

where (W_{ps}/W_a) , was calculated by the pressurizing combustor subsystem performance computer code for a pressurized furnace.

The thermal load of the process steam, Q_{ps} , was evaluated by:

$$Q_{ps} = W_{ps} \Delta H_{ps}$$
 (8.18)

where ΔH_{ps} was the water enthalpy rise from the enthalpy at the steam condenser to the enthalpy of saturated steam at a saturation pressure 1.5 times the pressurized furnace operating pressure. [For the applicable cases this saturation pressure was 1.5 times 1.520 MPa (15 atm), or P_{sat} is 2.28 MPa (330 psi) abs.] Hence, for cases 14, 43, 44, 45, and 50 of Table 8.6, the total heat input of the plant was:

$$Q_{total} = (Tons/hr) HHV + Q_{ps}$$
 (8.19)

The gross plant cycle efficiency, $\eta_{\hbox{\scriptsize Gross}},$ then, was given by:

$$\eta_{Gross} = P_{total}/Q_{total}$$
 (8.20)

where Q_{total} is given by Equation 8.16 for PFB and by Equation 8.19 for PF. With the various subsystem flows evaluated, the parametric points of the liquid-metal subsystem components were sized for each of the parametric points of Table 8.6.

8.4 Results of the Parametric Study

8.4.1 Matrix of Component and Parameter Variations

The work scope of this study required the metal vapor Rankine topping cycle to be investigated for a variety of furnace combustor types, fuel (coal types), cycle configurations, major cycle parameters, and power levels. The matrix of the 50 parametric points for the metal vapor Rankine topping cycle is shown on Table 8.6. Base Case 1, the pressurized fluidized bed, and Base Case 2, the pressurized furnace-gasifier system, are listed in Table 8.6 as Points 1 and 4, respectively.

The first 39 cases served as a sensitivity study to determine the effects of component and parameter variation for a constant power level. This sensitivity study was then used to determine a preliminary optimum case by combining the components and parametric values which individually provided the best cycle performance and which were estimated to be cost effective. This preliminary optimum cycle was used to determine the effect of power level variation for a PFB plant (Points 40, 41, 42, and 49) and a PF plant (Points 43, 44, 45, and 50). Points 46, 47, and 48 were used to study the effects of power-level variation and cesium as the working fluid in a PFB plant.

Table 8.10 - Effect on Cycle Performance of PFB and PF Plants for Parameter and Component Variation

(P	Overall Energy Efficiency, %						
Component/Parameter	PFB	Point No.	PF	Point No			
Coal Type							
Illinois No. 6 bituminous	35.9	1	35.0	4			
Montana subbituminous	35.8	2	38.1	5			
North Dakota lignite	34.8	3	38.8	6			
Recuperator Effectiveness							
ε = 0.0	35.9	1	35.0	4			
ε = 0.7	36.4	7	35.3	9			
ε = 0.8	36.4	8	× 35.4	10			
Recirculation Ratio							
25:1	35.9		35.0				
1:1 (once through)	35.9	11	35.0	12			
Gas Feedwater Heater	43.4	13	40.9	14			
Gas Economizer	39.7	15	38.8	16			

8.4.2 Effect of Furnace-Combustor Type

The effect of furnace-combustor type (PFB and PF) on performance was investigated, while varying several other parameters and components. Table 8.10 lists the parameter and components varied for both furnace-combustor types and the resulting overall energy efficiency. In all cases except the Montana and North Dakota coal cases, the PFB shows a higher efficiency. The lower PF efficiency is due to the 90% efficiency of the integrated gasifier producing low-Btu gas from the coal.

8.4.3 Effect of the Gas Turbine Recuperator Effectiveness, ε

The effect of preheating air at the inlet to the furnace-combustor with the gas turbine exhaust was determined for recuperator effectiveness of ε = 0.7 and ε = 0.8. The addition of a recuperator to the PFB raised the air inlet temperature 33.3 and 38.9°K (60 and 70°F) for an effectiveness of 0.7 and 0.8, respectively, over Base Case 1, which had no recuperation. The preheating reduced the required airflow and the power split in the cycle to improve the overall efficiency 1.4% above Base Case 1. For the PF plant the air temperature was raised 38.9 to 44.4°K (70 to 80°F) for 0.9 and 1.1% efficiency improvement for effectiveness of ε = 0.7 and ε = 0.8, respectively.

It was assumed that the recuperators would not be cost effective for the small efficiency improvements. Furthermore, the 22.2 to 27.8°K (40 to 50°F) drop in recuperator exhaust gas temperature would reduce the effectiveness of the gas-heated economizer and/or feedwater heaters and increase their cost. The recuperators were not, therefore, incorporated into the preliminary optimum.

8.4.4 Effect of Liquid-Metal Recirculation

As shown on Table 8.6, both once-through and recirculating liquid-metal boiler subsystems were studied. The cycle efficiency for the once-through system was negligibly higher than the recirculating system. The liquid-metal recirculation pumps required 0.17 MWe (less than 0.015%) of the net power output.

The once-through unit will cost less due to smaller liquidmetal inventory, storage tanks, and the absence of recirculation pumps, piping, and vapor drum. The recirculation ratio of 2.5 to 1 was selected to avoid DNB and all its subsequent problems. Recirculation also provides for easier control and a heated makeup inventory in case of loss of water flow for any reason. For these reasons the recirculating boiler system was selected for the preferred case.

8.4.5 Effect of Exhaust Gas Feedwater Heaters and Economizers

For Base Cases 1 and 2 the combustor pressurizing subsystem turbine exhaust gas was assumed to be used to provide process heat to other subsystems (such as process steam in the PF gasifier plant). In the case of the gas-heated feedwater heaters, all the heat available from the stack-gas coolers was transferred to the feedwater.

The resulting cycle efficiencies of 43.4 and 40.9% for the PFB and PF, respectively, were the highest found. The PFB plant efficiency increased 20.9% over Base Case 1; and the PF plant efficiency increased 16.9% over Base Case 2. The PF increase was not as large as the PFB case due to the gasifier process steam requirements. Because of the economizer exhaust gas temperature limitation imposed by the final feedwater temperature of 529°K (492°F), the exhaust gas transferred approximately half the available stack-gas cooler energy to the gas-heated economizer. The performance improvement was still significant (half the

amount of the feedwater heaters), 10.6% for the PFB and 10.9% for the PF. In the case of the PF the process steam requirements were supplied by the remaining available stack-gas cooler energy.

It was assumed that incorporation of both the gas feedwater heater and the economizer would not be cost effective. The larger increase in overall efficiency due to the gas-heated feedwater heater was the basis for its selection as optimum. Preliminary calculations, however, indicate that there is too much heat available in the gas feedwater heater with the assumed 529°K (492°F) maximum feedwater temperature. With this assumption the feedwater flow to the turbine extraction feedwater heater string is greatly reduced. The resulting low-pressure steam turbine exhaust flows are, therefore, larger than for full extraction machines, thereby causing large exhaust losses if the same low-pressure ends were chosen; or the use of larger, more costly ends if this is unacceptable. Reduced steam turbine efficiencies were assumed when a gas feedwater heater was incorporated. A logical optional approach would have been to remove the 529°K (492°F) assumed maximum feedwater temperature.

8.4.6 Effect of Compressor Pressure Ratio

Calculations were performed for combustor pressurizing subsystem pressure levels of 0.506, 1.013, and 1.520 MPa (5, 10, and 15 atm). The resulting overall energy efficiencies increased with increasing pressure ratio, as shown on Figure 8.9. On the basis of efficiency, the 15-to-1 compressor ratio was selected for the preliminary optimum plant.

On the other hand, a compressor pressure ratio of 10 to 1 results in a stack-gas cooler gas inlet temperature 311°K (100°F) higher than a 15-to-1 pressure ratio. There is also approximately 22% more stack-gas cooler energy available to the more efficient steam turbine by means of the gas feedwater heater and/or gas economizer. The effect on overall energy efficiency for a compressor pressure ratio of 10 to 1 with a gas feedwater heater and/or a gas economizer warrants further investigation.

Fig. 8.9—Effect compressor pressure ratio on overall energy efficiency for a pressurized fluidized bed boiler plant

Similarly, the energy available to the steam turbine may be increased by preheating the air to the furnace combustor and lowering the compressor pressure ratio to 10 to 1. Under these conditions the condenser-steam generator heat available to the steam turbine increases approximately 10%. The stack-gas cooler heat available decreases accordingly. Reduction in the amount of gas feedwater heating is in the proper direction for obtaining the optimum flow split through the parallel gas feedwater and the extraction feedwater string (mentioned in Subsection 8.4.5).

The present study has investigated the effects of individually and separately varying such components and parameters as recuperators, gas economizers, gas feedwater heaters, and compressor pressure ratios. The optimum plant configuration and parameters, however, can only be obtained by investigating the above parameters and components in combination, a task beyond the scope of Task I of this study.

8.4.7 Effect of Air Equivalence Ratio

Three values of air equivalence ratio, ϕ_{air} , were investigated. The minimum ϕ_{air} of 1.2 for fluidized bed combustion was used for Base Cases 1 and 2. Additional values of ϕ_{air} used were 2.0 and 3.0. As shown on Figure 8.10, the overall energy efficiency decreases drastically as ϕ_{air} increases above $\phi_{air} = 1.2$. As the airflow increases, less energy is available to heat the liquid metal. At a ϕ_{air} of 1.2, approximately 40% of the available heat is required to heat the air. At a ϕ_{air} of 2.0 almost 75%; and at a ϕ_{air} of 3.0 fully 90% of the heat available is heating the air (see Figure 8.10). The base case ($\phi_{air} = 1.2$) was selected as optimum.

8.4.8 Effect of Gas Turbine Inlet Temperature

The maximum allowable fluidized bed temperature is 1283°K (1850°F) because of the desulfurization reaction. Therefore, the maximum gas turbine inlet temperature selected was 1255°K (1800°F). Turbine inlet temperatures of 1144 and 1200°K (1600 and 1700°F) were also studied. The overall energy efficiency increased as the gas turbine inlet temperature decreased, as shown on Figure 8.11. The efficiency increased 6% as

Fig. 8. 10—Effect of air equivalence ratio variation on overall energy efficiency for a pressurized fluidized bed boiler plant

Fig. 8. 11 —Effect of gas turbine inlet temperature on overall energy efficiency for a pressurized fluidized bed boiler plant

the gas turbine inlet temperature was reduced from 1255 to 1144°K (1800 to 1600°F). This improved efficiency was the result of reducing the percentage of the total available energy absorbed by the combustor pressurizing subsystem. As the gas turbine inlet temperature was lowered, more of the available energy was transferred to the more efficient steam turbine. Figure 8.11 also shows the percent of available energy absorbed by the pressurizing subsystem as a function of temperature.

On the basis of overall efficiency the 1144°K (1600°F) gas turbine inlet temperature was selected as optimum. As will be demonstrated in Subsection 8.6, however, a lower gas turbine inlet temperature at the same pressure ratio reduces the log mean temperature difference in the stack-gas coolers which transfer energy to the steam turbine feedwater, thus increasing the cost of electricity for this plant. The interaction of gas turbine inlet temperature with stack-gas coolers and recuperators is as significant as is compressor pressure ratio. Again, an optimum plant cannot be determined until the interaction of the parameters and components of the combustor pressurizing subsystem has been investigated thoroughly.

8.4.9 Effect of Metal Vapor Turbine Inlet Temperatures

In studying the effect of liquid-metal temperature variation, a constant 166.7°K (300°F) temperature difference was maintained from liquid-metal turbine inlet to the condenser-steam generator. The liquid-metal temperature variations investigated were 1033°K inlet/866°K outlet (1400°F/1100°F), 1089°K/922°K (1500°F/1200°F), and 1144°K/978°F (1600°F/1300°F). The effect of this variation on overall energy efficiency was negligible. The efficiency improved only 0.3% over the entire range (see Figure 8.21b). The Base Case 1 liquid-metal temperatures of 1033°K/866°K (1400/1100°F) were selected for the preliminary optimum case. The lower temperatures tend to mitigate high-temperature material and development problems.

To fully appreciate liquid-metal system temperature variation effects, the effect of liquid-metal temperature differences should be

investigated. The liquid-metal turbine preliminary design calculations, however, indicated that the pressure drop through a moisture separator or reheater were unacceptable. Preliminary studies further indicated that internal moisture separation was not practical due to the low-turbine speeds. The liquid-metal turbine temperatures were based on these considerations and a maximum 10% moisture. Additional effort in the turbine design area should rectify these difficulties.

8.4.10 Effect of Steam Throttle Temperature

The steam throttle temperatures of 811, 866, and 922°K (1000, 1100, and 1200°F) were investigated. Unlike the previous parameter variations, the steam temperature was not varied separately but was varied with the liquid-metal temperature. In each case a 55.5°K (100°F) temperature difference was assumed between the liquid-metal condensing temperature and the steam turbine throttle temperature. The results of the steam turbine throttle temperature variations are, therefore, not completely independent.

The steam temperature was varied with steam pressure for both reheat and nonreheat turbines. As the steam temperature increases, the steam turbine Rankine cycle efficiency increases. Figure 8.12 illustrates the increase in overall energy efficiency as the steam temperature increases.

The steam throttle temperature of 811°K (1000°F) was recommended for the preliminary optimum case. This decision was based on steam turbine and condenser-steam generator design considerations. Material and development problems are diminished at the lower temperature, as are component costs.

8.4.11 Effect of Steam Throttle Pressure

Variation of the steam throttle pressure was limited to one subcritical and one supercritical pressure. The values of pressure investigated were 16.547 and 24.132 MPa (2400 and 3500 psi) gauge. Figure 8.12 demonstrates the Rankine cycle principle that as pressure

Fig. 8. 12 — Effect steam throttle temperature on overall energy efficiency for a pressurized fluidized boiler plant

increases for a constant steam temperature, the steam turbine efficiency improves; and as steam turbine efficiency increases, the overall energy efficiency increases. In the nonreheat cases the overall efficiency increases better than 1.7% at a given steam temperature when the steam pressure increases from 16.547 to 24.132 MPa (2400 to 3500 psi) gauge. In the reheat cases, the improvement in overall energy efficiency is about 1.4%.

The 24.132 MPa (3500 psi) gauge throttle pressure was selected on the basis of efficiency. It was also selected because, at 24.132 MPa (3500 psi) gauge, DNB and all its uncertainties are avoided in the condenser-steam generator.

8.4.12 Effect of Nonreheat versus Reheat Steam Turbine

Referring to Figure 8.12 shows the effect on overall efficiency as a function of pressure and temperature of the steam. For a given steam temperature, the overall efficiency improvement of reheat versus nonreheat is approximately a constant 2.5%, regardless of the temperature. The reheat cycle was selected for incorporation in the preliminary optimum.

8.4.13 Effect of Working Fluid

The effect of cesium versus potassium as the working fluid in the liquid-metal subsystem was studied only for the preliminary optimum case. It was assumed that cesium would not be competitive with potassium. The calculation of the preliminary optimum plant, however, resulted in an overall energy efficiency of 42.9% for the cesium and 42.4% for the potassium.

The 1.2% efficiency advantage for cesium over potassium demonstrated that cesium is competitive with potassium. Final conclusions should not be made at this time due to the preliminary nature of the calculations and designs. Further effort is required, particularly in the turbine design.

8-42

Fig. 8. 13—Flow sheet for a fluidized bed boiler plant

8.4.14 Effect of Power Level

No effort was made at this time to determine the effect on cycle performance for power variation. The efficiencies were assumed constant with power level to determine the effect of plant thermal rating on the cost of electricity.

8.5 Capital and Installation Costs of Plant Components

This section is divided into two segments: the first subsection presents the method of component sizing; the second outlines the method of component costing.

Component sizing and economic evaluation were performed by the various cognizant design groups for the metal vapor Rankine topping cycle subsystems. Flow schematics of the PFB and PF plant cycles are shown in Figures 8.13 and 8.14, respectively. The schematics show the cycle subsystems as labeled blocks.

The combustor pressurizing subsystem was sized and cost evaluated by the combustor-furnace and low-Btu gasifier design group (see Section 4). The combustor pressurizing subsystem consisted of coal handling and processing, compressor turbogenerator, the stack-gas cooler, the fluidized bed gasifier and boiler and related hot gas piping, and process air and steam piping. The steam turbine subsystem sizing and cost evaluation were performed by Westinghouse Large Turbine and Heat Transfer Divisions. The balance of plant was evaluated by Chas. T. Main, Inc. (see Section 2). The heat rejection subsystem was included in the assumptions of Section 2.

The method of sizing and costing plant components for the liquid-metal subsystem and its related subsystems, as shown in Figure 8.15, are presented in this section.

8.5.1 Method of Component Sizing

8.5.1.1 Pressurized Fluidized Bed

The sizing of the pressurized fluidized bed boiler, PFB, is covered in Section 4). The liquid-metal considerations in the design

Fig. 8. 14—Flow sheet for a pressurized furnace plant cycle

Fig. 8. 15—Flow sheet for the liquid metal turbine subsystem

and sizing of the PFB were the heat required, $Q_{\rm b}$, as determined in Subsection 8.3 by Equation 8.2. The overall heat transfer coefficient was assumed to be equivalent to the bed-side heat transfer coefficient [83.8 W/m²-°K (50 Btu/hr-ft²-°F)]. The tube-side liquid-metal pressure drop was assumed to be equal to that of the pressurized furnace, approximately 6% of the operating pressure. Finally, four PFB modules are assumed to be required for every 300 MWe of plant capacity.

8.5.1.2 Pressurized Furnace

The pressurized furnace, PF, design was an adaptation of the recirculating-type boiler proposed by A. P. Fraas (Reference 8.2). To ensure sufficient flow for a 2.5-to-1 circulation ratio, a centrifugal pump provides the driving force in an external recirculation loop which headers the subcooled liquid metal into the bottom of the furnace. The cold feed passes through the headers into tube bundle clusters and rises up through the combustion chamber to an upper set of headers. The two-phase mixture leaving the PF enters a liquid-metal vapor drum. The vapor is separated from the saturated liquid and passed to the liquid-metal turbine. The saturated liquid passes to a mixing header, where it mixes with the cold liquid-metal feed coming from the condenser-steam generator.

8.5.1.3 Liquid-Metal Vapor Drum

The liquid-metal vapor drum was sized on the assumption that under the worst transient surge the drum will never be more than two-thirds full of liquid, and that under normal conditions it is approximately half-filled with liquid. The Clinch River Breeder Reactor Plant (CRBRP) steam drum was sized on these criteria. The transient time of the saturated water in the CRBRP steam drum was calculated to be 60 s (1 min). It was then assumed that the worst transient surge in a liquid-metal topping cycle would not be as severe as in CRBRP, so the transit time for the liquid-metal drum was assumed to be half that of CRBRP, or 30 s (0.5 min). The volume of the drum, Vold, was then determined by:

$$Vol_{d} = \frac{2(RC - 1) W_{LM} t}{N_{d} \rho_{\ell}}$$
 (8.21)

where RC is the circulation ratio; W_{LM} is the total metal vapor mass flow rate to the turbine; N_d is the number of vapor drums; ρ_{χ} is the density of saturated liquid metal; and t is the transit time.

8.5.1.4 Liquid-Metal Vapor Turbine

The liquid-metal vapor turbine design was limited by available technology for large disk forgings of superalloys and refractory alloys. To compensate for the size limitations, the liquid-metal turbines are assumed to be modularized, double-flow units with built-up rotors. The rotors are similar to aircraft gas turbines, built up of disks and spacer rings rather than of a single-solid forging. The material candidates for the liquid-metal vapor turbine are discussed in Subsection 3.7, as are the bearing and shaft seal techniques.

The potassium turbine was designed (see Figure 8.16) as a 25 MWe, four-stage, double-flow, 1800 rpm turbine with a 1.83 m (6 ft) disk. Each generator is a four-pole, 1800 rpm machine rated at 30 MVA. The efficiencies assumed for the four stages of the potassium turbine were 82, 81, 79, and 75%, respectively. In the preliminary design the cesium turbine was assumed to have only two stages with similar power rating. Its efficiency was assumed to be 76%.

For the base case plant rating of 1200 MWe there are two liquid-metal turbines in tandem in each of the four liquid-metal loops, for a total of eight turbines. Since each turbine is double flow, the single condenser-steam generator in each loop would have four inlets.

8.5.1.5 Metal Vapor Condenser-Steam Generator

Steam condensers for power plants are not designed in accordance with the ASME Unfired Pressure Vessel code. This is probably because the design pressure of such units is not over 105.4 kPa (15 psi). In the case of a potassium condenser, however, the hot potassium vapor is a lethal and flammable fluid, and liquid potassium reacts violently with water. For these reasons it is recommended that the potassium condenser vessel be designed in accordance with Section VIII (Unfired Pressure Vessels).

	1-C	1-R	2-C	2-R	3 C	3-R	4-C	4-R
Mean Dia, in	70,50		75, 30		80.35		84, 50	
Blade Exit, ht	11,45	11.50	14.00	14.88	17.90	19.00	21.00	21.75
Base Dia in	59.05		61.30		62.45		66.50	
Gauging, %	25.0	36. 2	30.0	42.9	32.0	44.8	38.0	52.8
Flow Area, in ²	690.8		992.0		1447.5		2194.5	
Min Reaction %	15.0		17.5		22.5		26.3	
Hub/Tip		0.72		0.67		0.62		0.60
Pitch, in]	Γ						
Blades/Row					li	_		

Note: Major aerodynamic design constraint has been imposed by technical factors related to the procurement of acceptable rough disc forgings. Disc not to exceed 6 feet (maximum) diameter, Mtl. Spec. (TZM)

Double Flow 1800 RPM - 4 Pole Nominal Rating - 25,000 kW/30,000 kVA MWe

Fig. 8. 16-Longitudinal section of a potassium turbine

The design of power plant steam condensers is based upon the use of straight condenser tubing, the most economical form. The long straight tubes are supported at intervals by drilled plates. These large rectangular plates also serve as stays, or braces, for the flat condenser wall plates. Thus, the condensers are good for full vacuum but very little internal pressure. The slight differential expansion between the tubes and shell is taken up by the flexing of a flat steel membrane at one tubesheet.

In attempting to transpose such a design to a potassium vapor condenser operating at 811 to 978°K (1000 to 1300°F), generating high-pressure superheated steam within the tubes, many fundamental problems are encountered. The tubesheet thicknesses become prohibitive if conventional steam condenser tube spacing is used; if compact tube bundles are used, however, vapor velocities entering the tube bundle exceed sonic values.

To overcome these problems and at the same time allow for tube expansion, the condenser configuration shown in Figure 8.17 is recommended. The tube bundle is basically cylindrical, with the core of the cylinder large enough to avoid direct vapor impingement from the wet turbine exit vapor, moving at around 243.8 m/s (800 ft/s). Metal droplets at such velocities would most likely erode the tubes.

The tubes in the bundle are closely spaced radially, but are separated 11.43 to 15.24 cm (4-1/2 to 6 in) axially, 15.24 cm (6 in) for the lowest pressure [16.55 kPa (2.4 psi) abs] and 11.43 cm (4-1/2 in) for the higher pressures. For the 978°K (1300°F) designs the radial depth of the bundle has been increased because of the much greater driving head available on the potassium side.

The cylindrical tube bundle is surrounded by a spherical shell, which is recommended for two reasons: first, it is the only configuration which does not require stiffening rings in accordance with the ASME code. External stiffening rings are technically unacceptable because of excessive thermal stresses and consequent warping; and internal

Dwg. 6259A05

Fig. 8. 17 - Liquid metal condenser/steam generator

stiffening rings would interfere with drainage, complicate the bundle supports, and decrease usable volume. Second, a sphere is the most economical of material, being basically half the thickness of the corresponding cylinder. Another important reason for the use of a spherical shell is the large inherent reserve on allowable internal pressure. Thus, to meet full vacuum (as specified in the Code) the wall thickness required results in an allowable internal pressure of about 0.517 MPa (75 psi) gauge, which means that there is virtually no possibility of a condense; rupture due to a potassium-water reaction.

Since the condenser, as a pressure vessel, must be provided with pressure relief; since this pressure relief must be in the form of a vacuum-supported rupture disk; and since the rupture disk must operate below the creep temperature [700°K (800°F)], the rupture disk must be at the bottom of a liquid potassium pool. In the design shown in Figure 8.17 these conditions are met by providing a stagnant pool of potassium in the condenser drain line to act as an insulation layer. This pool also should act as a trap for water should a large water leak occur. The resulting potassium-water reaction will rupture the disk, but the bulk of the potassium will be retained in the hot-well storage tank.

The header-type tube bundles will be assembled externally to the shell, with all welding done on the outside. The completed tube bundle would be lowered into a hemisphere, a second hemisphere lowered into place, and the girth seam welded. Repairs to the bundle would be made by entering the condenser through a manway.

The steam generating tubing is designed in accordance with the procedures for Unfired Pressure Vessels, Section VIII, Part I, with the exception of the HA-188 tubing, which is not a Code-recognized material. The stress values used for the HA-188 tubing, however, are based upon the same criteria as are Code-allowable stress values (Reference 8.3).

Although the temperature gradient across the tube walls in some portions of the boiler-condenser was high, with consequent high thermal stresses, the practical effect of such conditions on the design will

Table 8.11 - Tube Bundle Design Summary

Case No.	Number of Tubes			Heat Trans	sfer Area	Sphere	Tubes	Steam (Generator	Tut	es, Rel	neater
	Evaporator	Superheater	Reheater	Steam Generator	Reheater	Diameter, ft	ID	OD	Material	ID	OD	Materia:
1	386	642		10,600		27.2	0.625	0.858	800 н			ŀ
2	372	619	i :	10,230		26.8	0.625	0.858	800 н			l
3	360	600	-	9,890		26.3	0.625	0.858	800 н			1
4	383	638		10,530		27.2	0.625	0.858	800 н			l
5	383	639	ł	10,560		27.2	0.625	0.858	800 н		ł	ł
6	384	640	i i	10,580		27.2	0.625	0.858	800 н		1	l
7	390	650	}	10,730		27.4	0.625	0.858	800 н			Ì
	390	650	<u> </u>	10,730		27.4	0.625	0.858	800 H		1	1
8	386	643		10,610		27.3	0.625	0.858	800 H		l	İ
	386	643		10,610		27.3	0.625	0.858	800 H		1	
10	386 386	643	1	10,600		27.2	0.625	0.858	800 H			1
11		638	\	10,530		27.1	0.625	0.858	800 H		1	1
12	383		ļ		•	27.4	0.625	0.858	800 H	j	j	}
13	390	650	i	10,730		26.8	0.625	0.858	800 H		}	ļ
14	374	623]	10,292		26.5	0.625	0.858	800 H	1		İ
15	365	608		10,040		26.3	0.625	0.858	800 H	1	ļ	ļ
16	363	605	[9,985		26.7	0.625	0.858	800 H	}		l
17	379	632	ļ	10,434		26.7	0.625	0.858	800 H	ļ	ţ	1
18	377	628		10,374		24.1	0.625	0.858	800 H			
19	302	503		8,315					800 H			1
20	179	298	ł	4,926		18.6	0.625	0.858	800 H	1		ŀ
21	412	687		11,320		28.1	0.625	0.858	800 H			į
22	399	665		10,970		27.7	0.625	0.858				1
23	385	642		10,570		27.2	0.625	0.858	800 H			ļ
24	384	639		10,544		27.1	0.625	0.858	800 H 800 H			
25	388	658		13,085		24.0	0.625	1.06		,		1
26	317	529		10,507		21.0	0.625	0.963	HA-188			800 н
27	325	475	200	8,248	5,580	26.7	0.625	0.858	800 H	1.5	1.75	
28	375	625	200	10,114	5,600	25.8	0.53	0.750	800 H	1.5	1.75	800 H
29	250	420	200	8,301	6,445	25.0	0.625	0.963	HA-188	1.5	1.75	800 н
30	360	600		8,473		24.5	0.625	0.788	800 н	ĺ		
31	331	551	1	9,714		21.0	0.625	0.911	800 н			
32	300	500		7,786		20.2	0.625	0.856	HA-188	1		1
33	300	500	200	8,200	5,948	26.7	0.625	0.788	800 н	1.5	1.75	800 H
34	276	460	200	8,070	5,650	24.1	0.625	0.911	800 H	1.5	1.75	800 H
35	248	414	200	6,452	6,555	22.6	0.625	0.856	HA-188	1.5	1.75	800 H
36	355	592		9,770		26.1	0.625	0.788	800 H	1	1	
37	375	625		10,310		26.8	0.625	0.788	800 н	i	1	1
38	379	632	f	10,430		26.7	0.625	0.858	800 H			
39	402	670	1	11,040		27.8	0.625	0.858	800 н	1	1	

depend upon the number of such temperature cycles, since thermal stresses are considered to be transient. Such transient conditions must be considered in a subsequent study phase.

In calculating the heat transfer, the mass velocity and inside diameter of the tubes were held constant, not only to simplify the calculations but also to minimize random variations in results. Also, for the 866°K (1100°F) vapor-condensing temperature, sphere size was considered to vary as the square root of surface, rather than as the cube root. In other words, the radial thickness of the tube bundle was held constant. This was done to hold condensing vapor pressure drop to a constant value. For the higher condensing pressures and temperatures, a more compact bundle was assumed, but space was allowed so that all welding could be done from outside the bundle. See Table 8.11 for the tube bundle design summary.

Tubing costs were based on communications with International Nickel Co., Huntington, West Virginia, for Incoloy 800 H; and Stellite Division at Kokomo, Indiana, for HA-188. Tubing costs are probably somewhat low, however, as costs were not quoted to a definite specification. Even if tubing costs were doubled, though, the overall cost of the boiler-condenser would not be greatly affected, as tubing material was rarely more than 10% of the calculated overall condenser cost.

The basic heat transfer tube material chosen was Incoloy 800 H, because it is resistant to chloride and caustic stress-corrosion cracking. For temperatures over 922°K (1200°F), however, the strength of Incoloy 800 H falls to such a low value that HA-188 material is more economical for the high-pressure applications.

For the reheaters, where the pressure is low, Incoloy 800 H can be used for all cases. While Croloy might be considered for reheater tubing, it is very doubtful that a transition weld could be fabricated that would withstand the temperature cycles, and the steam-side corrosion rate would be excessive.

For the spherical shell, Type 316 SS material is the most economical, as it results in a greater than 10% wall-thickness saving as compared to Type 304, thus negating the cost advantage of Type 304. Incoloy 800 H must be used for the spherical shell, however, as it is the only material acceptable for external pressure at design temperature [978°K (1300°F)] under the ASME Pressure Vessel Code.

8.5.1.6 Liquid-Metal Condenser Hot Well

Ordinarily, the hot wells were assumed to be within the condenser shell. For the purpose of mitigating liquid metal/water reaction the liquid-metal condenser hot well was placed outside the condenser shell, as shown in Figure 8.17. This separation minimizes the possibility of the bulk of the saturated liquid metal coming into direct contact with water in the event of a steam-tube leak or rupture, and mitigates the potential severity of the liquid metal/water reaction. It reduces the possible damage due to the liquid-metal reaction, reduces the amount of liquid-metal inventory which must be dumped, and shortens cleanup and recommissioning time.

The hot well was sized to hold a minute's worth of liquid metal at $\sim 60\%$ of the capacity available (see Equation 8.21). This excess volume allows for thermal expansion of the liquid metal and eliminates the need for expansion tanks in the liquid-metal loop.

8.5.1.7 Liquid-Metal Dump Tank

The four liquid-metal dump tanks were sized to accommodate the reaction products of a liquid metal/water reaction in the condenser-steam generator. This accident was assumed to produce the worst pressure surge and largest quantity of reaction products to the dump tank. Each dump tank hold-up volume was evaluated for a minute of normal hot-well mass flow of saturated liquid at the rupture disk design pressure of 0.207 MPa (30 psi) gauge.

As mentioned in Subsection 8.5.1.6, the liquid-metal hot well has been removed from the condenser shell to reduce the surface area of liquid metal in the event of a steam-tube rupture. The design of the

condenser drain line in Figure 8.17 shows the stagnant pool of liquid metal above the rupture disk in the condenser dump line and the smaller drain line to the hot well which runs off the dump line at a right angle. In the event of a large tube leak or tube rupture, the water will collect in the stagnant pool, and the pressure rise due to the liquid metal/water reaction will rupture the disk. The reaction products will flow to the dump tank. The bulk of the liquid metal is relatively uncontaminated while it is drained to the storage tank where it is processed to remove any impurities.

Each dump tank liquid hold-up is 70% of its capacity. A small fraction of the capacity is filled with a matrix of metal rods which acts as a condensing surface for the entering vapor. The remaining capacity, $\sim 30\%$, is for expansion.

The dump tank is equipped with a vent line to blow off the hydrogen produced by the reaction. A scrubber to remove liquid-metal/water reaction products and a flame suppressor will be provided in the vent line.

8.5.1.8 Liquid-Metal Pumps

The liquid-metal feed or condensate pump in each of the four loops was assumed to be a free surface centrifugal type, similar to the intermediate system pumps of the Fast Flux Test Facility (FFTF) and CRBRP. The pump operates at the temperature of the liquid-metal condensate. The pump head was calculated equivalent to the sum of the frictional losses in the vapor and feed piping, the turbine pressure loss, and the static head due to the hot well to mixing header elevational difference [10.1 m (~ 30 ft)].

In the once-through liquid-metal subsystem design the feed pump head had the additional requirement of making up the single- and two-phase total pressure losses of the liquid-metal vapor generator.

In the recirculation liquid-metal subsystem design, recirculation pumps were assumed to make certain that sufficient head was available to provide a 2.5-to-1 circulation ratio in each of the four loops. The circulation pumps operate at the temperature resulting from the mixture of

one and one-half parts saturated liquid from the liquid-metal vapor drum, which is 167°K (300°F) hotter than the one-part condensate liquid. For conservatism the entire vapor generator pressure drop was assumed to be in the two-phase region. Additional conservatism was added by neglecting static heads. The circulation pump head was calculated as the sum of the frictional loss from the mixing header to the boiler inlet, and the two-phase friction (Reference 8.4) and momentum losses of the boiler and exhaust piping to the vapor drum.

Table 8.12 lists the ranges of pump capacities and total developed heads calculated for the various system configurations, operating parameters, and working fluids. The frictional and momentum pressure losses of the pressurized fluidized bed vapor generator was assumed equal to those of the pressurized furnace.

Table 8.12 -	Range	of	Pump	Performance	Characteristics
--------------	-------	----	------	-------------	-----------------

Pump	Working Fluid	Capacities, gpm	Total Developed Head, ft	Pump Power kWe/Pump
Feed Pump	K Cs	4,400 to 5,600 7,400	70 to 170 80	50 to 150
Recirc. Pump	K Cs	11,000 to 14,500 19,000	12 to 21	25 to 50 60

8.5.1.9 Liquid-Metal Piping

The liquid-metal piping was assumed to be welded pipe conforming to Section VIII of the ASME Pressure Vessel Code. Piping material selection was based on the recommendation of Subsection 3.7 of this report (see Table 3.39), with the exception that 316 SS was used for all cold-leg piping.

The cold-leg liquid piping was sized on the basis of a 7.62 m/s (25 ft/s) flow velocity, for both feed and recirculation piping. The

two-phase piping from the furnace to the drum was based on a flow velocity of less than 3.05 m/s (10 ft/s), and the vapor piping at 182.9 m/s (600 ft/s) flow velocity. Smooth pipe friction factors were assumed.

Table 8.13 shows the various sizes and lengths assumed for the liquid-metal piping.

Table 8.13 - Liquid-Metal Loop Piping Dimensions

	Outside	Number	Total
	Diameter,	per	Length,
	in	Plant	ft
Feed Piping Recirc. Piping	9 (12) ^b	4	800
	10 (14) ^b	8	500
Two-Phase Piping Vapor Piping	30 72	16 8	400 1600

^aWall thickness with operating conditions and material according to Section VIII Unfired Pressure Vessel.

8.5.1.10 Liquid-Metal Storage Tanks

The liquid-metal storage tanks in each loop were sized to hold the entire liquid-metal inventory plus 20% at the liquid-metal turbine inlet temperature. The outside diameter and length were limited to 3.65 and 10.67 m (12 and 35 ft), respectively, to allow for shipment by normal routing and placement below the condenser-steam generator hot-well tank.

Four separate tanks were employed to allow for the appropriate sizing of each tank and to reduce the quantity of potassium in each container, thus diminishing the risk of a major spill or leak.

The tanks also act as dump tanks in the event of a sudden increase in oxygen level. The system purity is continuously monitored by

bCesium.

oxygen meters. In the event of a liquid metal/water reaction in the condenser and rupture of the rupture disk described in Subsections 8.5.1.6 and 8.5.1.7, the condenser exhausts to the dump tank while the rest of the loop components drain to the storage tank. This minimizes the contamination of the bulk of the loop liquid metal and permits leak tests to determine the location and extent of damage. The system is designed to drain by gravity to the storage tank. Separate lines from the major loop components are sized to gravity drain in a minimum of time. These lines and their valving will be designed to eliminate failure due to thermal shock. The tanks will be maintained at some intermediate temperature to avoid thermal shock damage by a continuous bleed-and-feed line. This bleed-and-feed line will be plumbed to a hot trap to purify the liquid metal in the event of an emergency dump.

Since the tank must be located at the lowest elevation in the system, a lined concrete pit was selected.

8.5.1.11 Liquid-Metal Inventory

The liquid-metal inventory was determined as the sum of the liquid-metal hold-up of the furnace-boiler, the vapor drum, the vapor ducting, the hot-well tank, the liquid feed piping, and recirculation piping. For conservatism 20% was added to account for liquid metal in the vapor turbines, the condenser-steam generator, the impurity monitoring system, and the receiving and processing system.

Table 8.14 represents the inventories calculated for the two liquid metals considered and for once-through and recirculating liquid-metal systems. Adjustments were made for the liquid-metal inventory requirements of other cases. The inventories were corrected by the ratio of the liquid-metal flow rate of the case being considered to the liquid-metal flow rate of the appropriate reference case. The flow ratio correction was applied only to that 64% of the total inventory which is flow-rate dependent (drum and hot-well hold-up volumes).

Table 8.14 - Liquid-Metal Inventories, 1b

	Pot	assium	Ce	esium
	Recirc.	Once-through	Recirc.	Once-through
PF and PFB	80,000	80,000	176,500	176,500
Main Piping	15,500	15,500	51,000	51,000
Recirc. Piping	24,300		65,900	
Drum	90,000		476,500	
Hot Well	120,000	122,000	381,200	381,200
	329,800	217,500	1,151,100	608,700
Miscellaneous (20%)	66,000	43,500	230,200	121,700
Total Inventory	395,800	261,000	1,381,300	730,400

8.5.1.12 Plant Arrangement and Component Modularization

As discussed in Subsection 8.5.1.10, the liquid-metal storage tanks were modularized for ease of placement, shipment, and reduction of liquid-metal volume in the event of a leak or spill. This is true of all the liquid-metal tanks and drums. The liquid-metal turbines were modularized to compensate for the current technological inability to forge large disks of superalloys and refractory alloys.

The number of modules of the various components and the plant arrangement were selected to allow for partial plant operation. By proper component sizing, arrangement, and plumbing, a loop consisting of a combustor pressurizing subsystem and a liquid-metal subsystem can operate totally independently of other such loops to provide steam to a single steam turbine subsystem. Such an arrangement provides the flexibility for partial plant operation, which significantly increases the plant availability.

Table 8.15 - Pressurized Fluidized Bed Cost Data

Point No.	Parameter Variation	Airflow, lb/s	(W ₁ /W _R) ^{0.8}	Reference Case	Cost x 10 ⁻³ , \$	Units Required
1	Base Case 1	716	1.00	1	23.277	4
2	Subbituminous	722	1.00	2	20.875	4
3	Lignite	741	1.00	. 3	22.412	4
7	ε = 0.7	710	0.993	1	23.3	4
8	ε = 0.8	710	0.993	1	24.3	4
11	RC = 1:1	716	1.00	1	23.3	4
13	GFWHTR	596	0.863	1	20.1	4
15	GAS ECON	645	0.920	1	21.4	4
17	PR = 5	810	1.00	17	32.202	4
18	PR = 10	740	1.00	18	24.998	4
19	φ = 2.0	641	1.00	19	12.413	8
20	φ = 3.0	712	1.00	20	11.153	12
21	TG = 1600°F	680	0.988	22	23.653	4
22	TG = 1700°F	690	1.00	22	24.352	4
23	TK = 1500°F/1200°F	716	1.00	23	23.882	4
24	TK = 1600°F/1300°F	710	1.00	24	28.236	4
25	3500 psig/1100°F	700	0.982	23	23.454	4
26	3500 psig/1200°F	690	0.977	24	27.6	4
27	3500/1000/1000*	700	0.982	1	22.9	4
28	3500/1100/1100*	690	0.971	23	23.2	4
29	3500/1200/1200*	673	0.958	24	27.1	4
30	2400 psig/1000°F	722	1.007	1	23.46	4.
31	2400 psig/1100°F	716	1.00	23	23.9	4
32	2400 psig/1200°F	700	0.989	24	27.9	4
33	2400/1000/1000*	710	0.993	1	23.72	4
34	2400/1100/1100*	700	0.982	23	23.46	4
35	2400/1200/1200*	680	0.966	24	27.3	4
36	2400/2 in Hg abs	716	1.00	1	23.3	4
37	2400/9 in Hg abs	756	1.044	1	24.335	. 4
38	3500/2 in Hg abs	706	0.982	1, 1,	22.9	4
39	3500/9 in Hg abs	740	1.027	1	23.9	4
40	600 MWe	566	1.00	49	23.653	2
41	900 MWe	566	1.00	49	23.653	3
42	1500 MWe	566	1.00	49	23.653	5
46	Cs, 1200 MWe	582	1.00	46	23.68	4
47	Cs, 600 MWe	582	1.00	46	23.68	2
48	Cs, 1500 MWe	582	1.00	46	23.68	5
49	1200 MWe	566	1.00	49	23.653	4

^{*}psig/°F/°F

For this study four loops were selected as the basis of component sizing and arrangement.

8.5.2 Method of Component Cost Evaluation

8.5.2.1 Pressurized Fluidized Bed

The cost evaluation of the pressurized fluidized bed (PFB) is covered in Section 4. For the liquid-metal vapor Rankine topping cycle study twelve PFB cases were sized and costed on the basis of the heat load required by the liquid metal, the gas turbine inlet temperature, the gas turbine compression ratio, and the air equivalence ratio. Among the twelve cases were the costs of the PFB for the three different fuels (Points 1, 2, and 3), the variations in compressor pressure ratio (Points 17 and 18), the air equivalence ratio (Points 19 and 20), gas turbine inlet temperature (Point 22), liquid-metal temperatures (Points 23 and 24), and the preliminary optimum plants with potassium (Point 49) and cesium (Point 46) as the working fluid. For cases where the above variables were similar, the cost of the PFB was determined by:

$$\$' = (AFR)(\$)$$
 (8.22)

where

AFR =
$$(w_a'/w_a)^{0.8}$$
 (8.23)

where \$' = cost of new PFB

\$ = cost of reference PFB

 $W_a = compressor airflow rate of reference PFB (1b/s)$

 $W_a' = compressor airflow rate of new PFB (1b/s).$

Table 8.15 lists the point number, the compressor airflow, the AFR installed costs per unit PFB, and the number of units per plant. There are four PFB modules per unit. The cost of materials and the cost

of installation per unit was determined to be 64 and 36%, respectively, of the installed cost per unit.

8.5.2.2 Pressurized Furnace

The pressurized furnace (PF) (Base Case 2, Point 4) was adapted from the design proposal of A. P. Fraas in 1973. The thermal duty per furnace of Base Case 2 is 20% higher than the Fraas proposal. The header drums, downcomer pipes, and vapor separator incorporated inside the Fraas furnace are external to the Base Case 2 PF design. Thus, the total furnace and boiler weight of the Fraas design was considered conservative for the Base Case 2 PF total weight.

The material cost of the Base Case 2 PF was determined by applying a \$22.05/kg (\$10/1b) cost of material. This figure is comparable to the installed cost of fossil-fired boilers. To be conservative, an additional 20% was included to the Base Case 2 PF as installation because of the liquid-metal environment. It is assumed that this estimate is accurate within 25%.

For the other PF cases calculated, the cost of material and cost of installation were corrected according to the ratio of unit thermal ratings as in Equation 8.22. The thermal rating ratio (TRR) replaced AFR in Equation 8.23 and is defined as:

TRR =
$$(Q_i/Q_R)^{0.8}$$
 (8.24)

where \boldsymbol{Q}_{1} is the unit thermal rating in Btu/hr and \boldsymbol{Q}_{R} is the reference unit thermal rating.

Table 8.16 lists the costs of materials and installation per furnace, the point number, the furnace thermal rating ratio, and the total number of furnaces.

Table 8.16 - Pressurized Furnace Costing Data a

Point No.	Parameter Variation	Unit Thermal Rating x 10 ⁻⁹ , Btu/hr	(Q ₁ /Q ₄)0.8	Material Cost x 10 ⁻³ , \$	Install Cost x 10 ³ , \$	Number Units
4	Base Case 2	0.819	1.00	2200	450	8
5	Subbituminous	0.820	1.00	2200	450	8
6	Lignite	0.822	1.00	2200	450	8
9	$\varepsilon = 0.7$	0.827	1.00	2200	450	8
10	ε = 0.8	0.827	1.00	2200	450	8
12	RC = 1:1	0.819	1.00	2200	450	8
14	GFWHTR	0.676	0.858	1900	390	8
16	Gas Economizer	0.740	0.922	2000	415	8
43	600 MWe	0.756	0.938	2100	420	4
44	900 MWe	0.756	0.938	2100	420	6
45	1500 MWe	0.756	0.938	2100	420	10
50	1200 MWe	0.756	0.938	2100	420	8

aReference Costs: Material \$2,200,000 Installation \$450,000.

8.5.2.3 Combustor Pressurizing Subsystem

The combustor pressurizing subsystem cost evaluation is detailed in Section 4. This includes recuperators, gas-heated economizers, and feedwater heaters, hot gas piping and the pressurizing gas turbine generators which were cost evaluated by the combustor-furnace, and low-Btu gasifier design groups for a pressurizing gas turbine generator air inlet

Table 8.17 - Combustor Pressurizing Subsystem Costs

Point No.	(W _a /650) ^{0.8}	Recupe Cost x Reference	rator 10 ⁻⁶ , \$ e/Actual	Stack-Ga Cost x Referenc	s Cooler 10 ⁻⁶ , \$ e/Actual	x 10	Piping 6, \$ e/Actual		urbine × 10 ⁻⁶ , \$
1	1.08					2.0	2.2	6.7	7.2
2	1.088	1				2.0	2.0	6.7	7.29
3	1.11					2.0	2.2	6.7	7.44
4	1.061	ļ			l	2.0	2.0	6.7	7.1
5	1.049					2.0	2.0	6.7	7.03
6	1.0367					2.0	2.0	6.7	6.95
7	1.073	1.9	2.0			2.0	2.1	6.7	7.2
8	1.073	3.2	3.4	Ì		2.0	2.1	6.7	7.2
9	1.049	2.5	2.6			2.0	2.0	6.7	7.03
10	1.049	4.3	4.5			2.0	2.0	6.7	7.03
11	1.08				·	2.0	2.2	6.7	7.2
12	1.06					2.0	2.1	6.7	7.1
13	0.933	}		1.7	1.6	2.0	1.9	6.7	6.2
14	0.91			1.7	1.54	2.0	1.8	6.7	6.1
15	0.994			1.7	1.7	2.0	2.0	6.7	6.7
16	0.975			1.7	1.66	2.0	1.9	6.7	6.6
17	1.19							5.7	6.8
18	1.11							5.9	6.5
19	0.994			}		l ·		6.7	6.6
20	1.073							6.7	7.2
21	1.0367					1.8	1.86	6.5	6.7
22	1.049	ŀ				1.9	2.0	6.6	6.9
23	1.080	1				2.0	2.2	6.7	7.2
24	1.073					2,0	2.1	6.7	7.2
25	1.061	1				2.0	2.0	6,7	7.1
- 26	1.049	1				2.0	2.0	6.7	7.03
27 ⁻	1.061					2.0	2.0	6.7	7.1
28	1.049					2.0	2.0	6.7	7.03
29	1.0367					2.0	2.0	6.7	6.9
30	1.088					2.0	2.2	6.7	7.3
31	1.08			ļ		2.0	2.2	6.7	7.2
32	1.061					2.0	2.1	6.7	7.1
33	1.073					2.0	2.1	6.7	7.2
34	1.061			}		2.0	2.1	6.7	7.1
35	1.0367					2.0	2.0	6.7	6.95
36	1.08					2.0	2.2	6.7	7.2
37	1.128					2.0	2.2	6,7	7.5
38	1.061					2.0	2.1	6.7	7.1
39	1.11					2.0	2.2	6.7	7.4
40	0.925			1.5	1.390	1.6	1.6	6.5	6.0
				1.5	1.390	1.8	1.6	6.5	6.0
41 42	0.925			1.5	1.390	1.8	1.6	6.5	6.0
42	0.925			1.5	1.340	1.8	1.6	6.5	5.8
43 44	0.895	ŀ		1.5	1.340	1.8	1.6	6.5	5.8
44	0.895			1.5	1.340	1.8	1.6	6.5	5.8
	0.895	1		1.5	1.37	1.8	1.6	6.5	5.9
46 47	0.915			1.5	1.37	1.8	1.6	6.5	5.9
				1.5	1.37	1.8	1.6	6.5	5,9
48	0.915	1		1.5	1.490	1.8	1.6	6.5	6.0
49	0.925			1		1 .		1	5.8
50	0.895	1		1.5	1.340	1.8	1.6	6.5	2.0

flow rating of 294.8 kg/s (650 lb/s). These costs were corrected by Equation 8.22 with Equation 8.23 replaced by:

$$AFR = (w_a/650)^{0.8}$$
 (8.25)

Table 8.17 lists appropriate point number, the AFR, the unit costs of the individual component, and number required. The recuperator material and installation costs are 75 and 25%, respectively, of the total unit costs given in Table 8.17. The same is true of the gas-heated economizers and feedwater heaters. The total installed cost of the hot gas piping is listed. The gas turbine installation cost is assumed constant.

8.5.2.4 Liquid-Metal Subsystem Tanks

The liquid-metal subsystem tanks and vapor drum were cost evaluated on the basis of stainless steel, ASME Class 1, nonreactor development technology standards. The vessel cost was \$33.07/kg (\$15/1b) per vessel. Insulation cost was \$430.60/m 2 (\$40/ft 2). Both these installed costs are adapted from CRBRP costs and include 10% for installation. For conservatism, the unit cost of material and insulation was assumed to be 90% and installation 10% of the total installed costs. Table 8.18 illustrates the various tanks sized and costed for a total plant potassium flow rate of 0.9072 Mg/s (7 2 x 10^6 lb/hr). The costs evaluated for the liquid-metal vapor drums are believed accurate to 10%; and the costs of the other liquid-metal tanks are believed to be conservatively high (approximately 30%).

8.5.2.5 Liquid-Metal Vapor Turbine

The potassium turbine generators were costed from a Westinghouse Steam Turbine Division catalog price listing for 25,000 kW rating. To compensate for the use of superalloys and refractory alloys the catalog price was approximately doubled for a \$3 million material cost. The cesium turbine, which was designed with only two stages instead of the four stages in the potassium turbine, was assumed to cost two-thirds as

Table 8.18 - Typical Liquid-Metal Subsystem Tank Cost Data

Item	Size Diameter x Length, ft	Cost/Vessel x 10 ⁻³ , \$	Insulation x 10 ⁻³ , \$	Installed Cost x 10 ⁻³ , \$	Quantity	Total Installed Cost x 10-3, \$
Potassium Storage Tank	10 x 30	1,181	38	1,219	4	4,876
Potassium Hot-well Tank	8 x 25	787	26	813	4	3,252
Potassium Dump Tank	8 x 20	630	21	651	4	2,604
Potassium Drum	8 x 22	693	23	716	4	2,864

much as the potassium turbine, or \$2 million. For both turbines the cost of installation was 9% of the material cost.

The accuracy of the liquid-metal turbine cost evaluation is difficult, at best, to estimate. Even a ± 50% accuracy would represent approximately a 2% variation in the overall plant cost. If the cost errors were higher than 50%, the integrated system would need to be reoptimized.

The obvious conclusion is that the design, manufacture, and cost evaluation of liquid-metal vapor turbines requires greater depth and effort.

8.5.2.6 Liquid-Metal Condenser-Steam Generator

The method of cost evaluation of the liquid-metal condenser-steam generator is illustrated on Table 8.19 for Base Case 1. Table 8.20 lists the cost summary for Points 1 through 39. The remaining Points (40 through 50) are comparable to Point 27 in Table 8.20. The cost of material was assumed to be 70% of the total cost listed in Table 8.20, and the installation cost 30% of the total cost.

Table 8.19 - Point 1 Boiler Condenser Cost

Item	Material, \$	Labor, \$
Spherical Housing	106,000	233,000
Insulation	(Included above)	94,000
Steam Gen. Tubing	149,000	
Steam Gen. Headers		}
Inlet	2,000	
Outlet	160,000	
Crossover	118,000	
Tube Supports	170,000	
Fabrication and Tests	•	1,285,000
Totals	705,000	1,612,000
Total Cost, per Condens	er	\$2,317,000

Table 8.20 - Cost Summary of Liquid-Metal Condenser Steam Generator

Point No.	Sphere Material, Labor, and Insulation x 10 ⁻³ , \$	Main Headers and Miscellaneous (Varies with Surface) × 10 ⁻³ , \$	Fabrication and Test (Varies With Surface) x 10 ⁻³ , \$	Heat Transfer Tubing x 10 ⁻³ , \$	1 Condensed Total Cost x 10 ⁻³ , \$
1	471	412	1,285	148	2,317
2	459	398	1,243	144	2,244
3	440	384	1,200	139	2,163
4	471	409	1,280	148	2,308
5	471	410	1,282	148	2,311
6	471	411	1,283	149	2,314
7	479	417	1,303	151	2,350
8	479	417	1,303	151	2,350
9	475	412	1,290	149	2,326
10	475	412	1,290	149	2,326
11	471	412	1,289	149	2,325
12	469	409	1,280	148	2,306
13					
14	459	400	1,250	145	2,254
15	448	390	1,220	141	2,199
16	445	388	1,211	140	2,184
17	455	406	1,266	146	2,273
18	455	403	1,260	146	2,267
19	329	323	1,010	117	1,779
20	172	191	598	69	1,030
21	561	440	1,375	159	2,535
22	500	426	1,330	154	2,410
23	472	410	1,283	148	2,313
24	470	409	1,280	148	2,307
25	326	509	1,586	315	2,736
26	219	408	1,276	667	2,570
27	455	20 536	1,675	116 87	2,889
28	423	20 610	1,910	139 88	3,190
29	431	20 571	1,790	527 101	3,440
30	381	329	1,030	86	1,826
31	-219	377	1,179	163	1,938
-		20		•	
32	253	302	945	354	1,874
33	455	20 54s	1,725	84 93	2,925
34	331	20 523	1,664	136 88	2,762
35	353	505	1,580	293 103	2,834
36	433	380	1,186	100	2,099
37	456	401	1,251	105	2,213
38	455	406	1,266	146	2,273
39	49C	429	1,340	155	2,414

8.5.2.7 Liquid-Metal Pumps

The cost evaluation of the liquid-metal recirculation and feed pumps was based on CRBRP intermediate pump costs and on engineering judgements for the reduced range of topping cycle pump performance characteristics in Table 8.12. The cost evaluation reflects pump costs based on commercial standards rather than on the RDT standards of the CRBRP pumps. The pump costs also include allowances for the shorter pump shaft lengths than those designed for CRBRP.

8.5.2.8 Liquid-Metal Piping

The liquid-metal piping was cost evaluated as welded pipe under ANSI B-31 Specification. Three tables are provided which show in detail the cost breakdown for pipe sizes of interest in the liquid-metal subsystem. The tables includes cost of material, fittings, shop fabrication, and shop support (which gives the manufacturing cost). The installation includes field erection and support costs. Finally, total installed costs of insulation and trace heating is added on. For simplicity the material cost, which includes piping material, insulation, and trace heating was estimated to be 75% of the total installed cost. The installation cost was, therefore, 25% of the installed cost for each pipe size. These cost values are considered to be ± 5% accurate.

Table 8.21 lists the costs of stainless steel piping.

Table 8.22 presents the costs of Incoloy 800 piping. The cost of Incoloy 800 pipe was assumed to be twice the cost of stainless, fabrication 1.5 times more costly, and field erection twice as much as for stainless.

Table 8.23 represents the cost evaluation of Haynes 188. The Haynes 188 material was assumed to cost six times as much as stainless. The shop fabrication was assumed to be twice as much, and field erection three times as expensive, as stainless steel. These cost estimates are assumed to be accurate within 5%.

8,5.2.9 Liquid-Metal Inventory

Liquid-metal inventory was evaluated on the basis of information supplied by Callery Chemical Company. The potassium inventory was

Table 8.21 - Costs of Stainless Steel Welded Pipe under ANSI B-31 Specification, \$/ft

Pipe Size, in	8	9	10	30	48
Cost	22.70	24.90	27.00	121.90	1,063.90
Fitting	26.90	37.50	48.10	426.70	552.10
Fabrication	36.20	38.80	41.50	181.20	223.70
Support	120.40	125.90	131.40	274.40	274.40
Total		227.10	248.00	1,017.80	2,114.10
Field Erection	40.20	57.90	75.60	202.10	316.50
Support	35.90	35.90	35.90	35.90	35.90
Insulation	14.20	15.50	16.70	51.00	51.00
Trace	54.60	59.70	64.80	170.00	170.00
		111.10	117.40	256.90	
Total Installed		396.10	441.00	1,476.80	2,687.50
M = 75% x Tot. I	l nst.	300.00	330.00	1,100.00	2,000.00
I = 25% x Tot. In	l ist.	100.00	110.00	380.00	690.00

Table 8.22 - Cost of Incoloy 800 Welded Pipe, \$/ft

Pipe Size, in	9	10	30	48
Cost 2 x SS	49.80	54.00	243.80	*
Fittings	37.50	48.10	426.70	
Fabrication 1.5 x SS	58.20	62.25	271.80	
Support	125.90	131.40	274.40	
	271.40	295.75	1,216.70	,
Field Erection 2 x SS	115.80	151.20	404.20	
Support	35.90	35.90	35.90	
Insulation	15.50	16.70	51.00	
Trace	59.70	64.80	170.00	
	111.10	117.40	256.90	
Total Installed	498.30	564.35	1,877.80	3,411.00
M = 75% Tot.Inst.	= 375.00	425.00	1,400.00	2,560.00
I = 25% Tot.Inst.	= 125.00	140.00	480.00	850.00

^{*}Assume Total Inst. = 1.27% SS Inst.

Table 8.23 - Cost of HA-188 Welded Pipe, \$/ft

Pipe Size, in	9	10	30	48
Cost = 6 x SS	149.40	162.00	731.40	*
Fittings	37.50	48.10	426.70	
Fabrication 2 x SS	. 77.60	83.00	362.40	
Support	125.90	131.40	274.40	
Total Shop	390.40	424.80	1,794.90	
Field Erection 3 x SS	173.70	226.80	606.30	
Support	35.90	35.90	35.90	
Insulation	15.50	16.70	51.00	
Trace	59.70	64.80	170.00	
Total Extras	111.10	117.40	256.90	
Total Installed	675.20	769.00	2,658.10	4,834.80
M = 75% Tot.Inst.	⇒ 500.00	575.00	2,000.00	3,600.00
I = 25% Tot.Inst.	= 175.00	190.00	660.00	1,240.00

^{*}Assume Total Inst. = 180% SS

evaluated at \$3.70/kg (\$1.68/lb). The cesium inventory was evaluated at \$39.68/kg (\$18.00/1b) on the basis of 100,000 1b/31.53 Ms (1 yr). potassium costs are considered to be \pm 5% and the cesium \pm 20%.

8.5.2.10 Liquid-Metal Auxiliary Subsystem

The liquid-metal auxiliary subsystems were evaluated from CRBRP auxiliary liquid-metal subsystems. Auxiliary subsystem costs were partially scaled for the Rankine topping cycle based on inventory, piping length, and component sizes.

Table 8.24 lists the costs evaluated for each auxiliary subsystem.

Subsystem	Material x 10 ⁻³ , \$	Installation x 10 ⁻³ , \$
Receiving and Processing	6,200	2,000
Impurity Monitoring	800	250
Inert Gas Receiving and Processing	1,700	400
Leak Detection	250	200
Trace Heating	2,500	2,000
Total	11,450	7,100

Table 8.24 - Liquid-Metal Auxiliary Subsystem Costs

The total material and installation cost is approximately 10% of the liquid-metal subsystem cost and 5% of the total plant direct costs. The assumed accuracy of ± 15% is negligible when compared to the liquidmetal subsystem cost.

8.5.2.11 Summary of Liquid-Metal Subsystem Direct Costs The direct costs of the liquid-metal components and auxiliary systems are summarized in Table 8.25 for the preliminary optimum

Table 8.25 - Summary of Liquid-Metal Subsystem
Direct Costs, Preliminary Optimum
Potassium Rankine Topping Cycle

	Material Cost x 10 ⁻⁶ , \$	Installation Cost \times 10 ⁻⁶ , \$
Boiler	60.672	34.128
Turbine	24.000	2.160
Condenser-Steam Gen.	6.160	2.640
Hot well	2.700	0.440
Piping	5.063	1.696
Drum	2.360	0.360
Recirculation Pump	0.860	0.069
Feed Pump	1.440	0.115
Inventory	0.640	0.013
Storage Tank	5.200	0.600
Dump Tank	2.280	0.344
Receiving and Processing	6.300	2.000
Impurity Monitor	0.800	0.250
Cover Gas	1.700	0.400
Leak Detection	0.250	0.200
Trace Heating	2.500	2.000
	122.925	47.415
Total Direct Cost	\$170	,340,000

potassium Rankine topping cycle (Point 49). Much of the costing data is based on engineering judgement rather than on actual cost estimates. The results are of the proper magnitude and are expected to be accurate to ± 30%. Such an error to the total plant capitalization is approximately 7%, which is within the accuracy for similar plant estimates. Such an error will not change the conclusions of this study, for which the systematic cost evaluation should provide reasonable comparisons, regardless of the absolute validity. The cost difference evaluated in the cases considered are meaningful.

Improvement in cost estimates for the Rankine topping cycle is possible only through greater efforts on the part of liquid-metal component designers and manufacturers, particularly for the liquid-metal turbine.

8.6 Analysis of Overall Cost of Electricity

8.6.1 Matrix of Component and Parameter Variations

The work scope of this study required that the liquid-metal Rankine topping cycle be investigated for a variety of furnace combustor types, fuels (coal), cycle configurations, major cycle parameters, and power levels. The matrix of the 50 parametric points for the liquid-metal vapor Rankine topping cycle is shown on Table 8.6. Base Case 1, the pressurized fluidized bed, and Base Case 2, the pressurized furnace, are listed on Table 8.6 as Points 1 and 4, respectively.

The first 39 cases served as a sensitivity study to determine the effects of component and parameter variation for a constant power level. This sensitivity study was then used to determine a preliminary optimum case by combining the components and parameter values which individually provided the best cycle performance and which were estimated to be cost effective. The economic model was not available for a cost evaluation of the sensitivity study.

This preliminary optimum cycle was used to determine the effect of power level variation for a PFB plant (Points 40, 41, 42, and 49) and

Fig. 8. 18—Performance and cost of electricity for a pressurized fluidized bed boiler and pressurized furnace 1200 MWe plants burning Illinois No. 6

a PF plant (Points 43, 44, 45, and 50). Points 46, 47, and 48 were used to study the effects of power level variation and cesium as the working fluid in a PFB plant.

The economic, natural resources requirement, and environmental intrustion analyses were performed on the 50 points calculated after the performance analysis was completed. Availability of the economic analysis at an earlier date would have resulted in a more cost-effective and more efficient preliminary optimum cycle than that depicted in Points 40 to 50. This is particularly true in the selection of coal, gas-heated economizer utilization, and gas turbine inlet temperature.

8.6.2 Effect of Furnace-Combustor Type

In Section 8.2 the plant configurations and operating state points of the PFB and PF base case plant were shown on Tables 8.7 and 8.9, respectively. The effect of furnace-combustor type on performance and cost of electricity for the PFB and PF base cases using Illinois No. 6 coal are illustrated on Figure 8.18. The higher PFB cycle efficiency and its lower cost of electricity relative to the PF is due to the high cost and ~ 90% efficiency of the gasifier to produce the low-Btu gas from the coal. The high cost of electricity from the PF gasifier system is due to the higher capital cost, as shown in the chart on Figure 8.18. The higher fuel and maintenance costs for the PF indicate the gasifier inefficiency. On the basis of lower cost and higher efficiency the PFB is the recommended furnace-combustor type for the liquid-metal Rankine topping cycle.

8.6.3 Effect of Coal Type on PFB

Three types of coal were evaluated for the liquid-metal Rankine topping cycle. The three coals and their effect on the performance and cost of a PFB plant are illustrated on Figure 8.19. Illinois No. 6 bituminous coal produces a higher cycle efficiency and lower fuel cost, as shown in the chart, due to its higher heating value. For this reason the Illinois No. 6 was selected for the preliminary optimum cycle prior to the availability of the cost evaluation. However, further analysis

Fig. 8. 19—Effect of coal type on pressurized fluidized bed boiler plant performance and cost of electricity

indicates that the Montana subbituminous produces the lowest cost of electricity, 8.6% less than Illinois No. 6, with only a 0.3% loss in cycle efficiency. The high cost of using the Illinois No. 6 is due to its high sulfur content (~ 4.9 times higher than the Montana or North Dakota). The high sulfur content requires much more dolomite for sulfur removal, as indicated by the operating and maintenance costs, which are almost double those of the other two coals. The higher sulfur content is also reflected in the capital cost for larger fuel handling and process sytems and for waste disposal.

Thus, the recommended fuel for the liquid-metal Rankine topping cycle is Montana subbituminous, not Illinois No. 6 bituminous, as shown in Table 8.6 for the preliminary optimum cycle.

8.6.4 Effect of Component and Parameter Variation on PFB

The matrix of points investigated in this study included variations of components and parameters in the combustor pressurizing subsystem, the steam subsystem, and type of heat rejection for both PFB and PF plants. These points are listed and numbered in Table 8.6. The performance and state point values for all cases are included in Appendix A 8.1 on computer printout sheets. The optimum point of each component or parameter variation is plotted against the base case cycle efficiency and cost of electricity for the 1200 MWe PFB plant burning Illinois No. 6 coal in Figure 8.20. Reference to the matrix of parametric points on Table 8.6 shows the range of values investigated for each of the components and parameters listed on the bottom of the bar chart of Figure 8.20.

Notice that most of the optimum points are the same as the base case. Had the points been run with the optimum coal, Montana subbituminous, all the optimum points would show improvement over Base Case 1.

The use of a recuperator to preheat air in the combustor pressurizing subsystem resulted in an increase in cycle efficiency of 1.4% over cycles with no recuperation for recuperator effectiveness of both ϵ = 0.70 and ϵ = 0.80. Thus, recuperation was found to be unjustified for a 15 to 1 pressure ratio. The optimum point was Base Case 1 with no

Dwg. 1675B81

 $\label{eq:Fig. 8.20-Effect} \textbf{Fig. 8.20-Effect of optimum components and optimum parameters on pressurized fluidized bed performance and cost of electricity$

recuperation. Similar results were obtained for recuperation with a PF plant.

Although not shown on Figure 8.20, a once-through liquid-metal subsystem was investigated for PFB and PF plants. The cycle efficiencies were the same as those of the base cases, with a slight cost advantage for a once-through system. On the basis of ease of control and avoidance of DNB with all its problems and uncertainties, the recirculation system was selected as optimum.

In the case of a gas-heated feedwater heater, the variation was no feedwater heater or incorporation of a gas feedwater heater in parallel with the steam turbine extraction feedwater string. As shown on Figure 8.20, the incorporation of the feedwater had a significant effect on the performance and cost of electricity. The cycle efficiency increased 21%, and the cost decreased 9.7%, in comparison with Base Case 1. For a PF plant the improvement was comparable. Incorporation of a gasheated feedwater heater, therefore, was selected.

The next variation shown on Figure 8.20 is a gas-heated economizer. Again, the options were either inclusion or omission of the economizer installed between the condenser-steam generator and the final feedwater heater. The cycle efficiency increased 10%, with a 4% reduction in the cost of electricity for a PFB plant.

In the initial design of the liquid-metal vapor turbine, extraction feedheating was determined to be inappropriate. Moisture separation was also ruled out because of the low pressure available and the inability to take the momentum losses. Hence, liquid-metal feedheating was not considered in this study.

One of the combustor pressurizing subsystem parameters investigated was the combustor pressure level. Values of [0.506, 1.013, and 1.519 MPa (5, 10, and 15 atm)] were used [1.519 MPa (15 atm) being the base case]. As illustrated by the appropriate bar chart in Figure 8.20, a 15:1 compressor pressure ratio was the optimum of the values studied.

The results showed that cycle performance increased, while the cost of electricity decreased, with increasing pressure ratio.

The final combustor pressurizing subsystem parameter studied was the air equivalence ratio, ϕ_{air} . In addition to the minimum value of 1.2 (base case) for fluidized bed combustion of solid fuels, values of ϕ_{air} equal to 2.0 and 3.0 were used. The investigation showed that values significantly higher than 1.2 have disastrous effects on the liquid-metal topping cycles. For ϕ_{air} of 2.0 and 3.0 the cycle efficiency compared to the base case ϕ_{air} of 1.2 decreased 46 and 69%, respectively; while the cost of electricity increased 40 and 110%, respectively. The base case ϕ_{air} of 1.2 was selected as optimum.

With regard to the steam subsystem, the effect of one stage of steam reheat was compared to a nonreheat cycle. The plot shown on Figure 8.20 is the optimum point for a 24.136 MPa (3500 psi) gauge, 811°K/811°K (1000°F/1000°F) reheat steam cycle. It was selected as optimum from among single reheat and nonreheat cycles at 24 and 16 MPa (3500 and 2400 psi) gauge with temperatures at 811, 866, and 922°K (1000, 1100, and 1200°F). For both nonreheat and reheat cycles, and for both pressures considered, the 866 and 922°K (1100 and 1200°F) temperatures showed increasing improvement in efficiency but also increasing costs. At the two higher temperatures there are materials problems to contend with.

For the selection of steam pressure, the base case value of 24.132 MPa (3500 psi) gauge showed an advantage over 16.547 MPa (2400 psi) gauge for both performance and cost of electricity at 811°K (1000°F) steam temperature, as expected. Additionally, the steam pressure of 24.132 MPa (3500 psi) gauge was selected as optimum because at supercritical pressure DNB and its associated problems and uncertainties are avoided.

The base case heat rejection was a wet cooling tower. Oncethrough and dry cooling tower heat rejection systems were also investigated. Even though the once-through has a 2% advantage in both cycle efficiency and cost of electricity, the wet cooling tower system was selected for environmental reasons. Based on a 5% differential in efficiency and cost, the wet cooling towers were selected over dry cooling tower heat rejection. Figure 8.20 shows the bar chart for the optimum heat rejection selection.

8.6.5 Effect of System Temperatures on PFB

The study also included the variation of the major cycle temperatures. Figure 8.21 shows the effects of varying the inlet temperatures of the three turbines on the cycle efficiency and cost of a PFB plant at 1200 MWe.

The uppermost curve demonstrates the results of lowering the gas turbine inlet temperature from the 1255°K (1800°F) maximum allowable fluidized bed temperature to 1144°K (1600°F). Note the 6% increase in cycle efficiency as the gas turbine inlet temperature decreases to 1144°K (1600°F). Due to the delay in the availability of the costing model, the increased cycle efficiency was the basis for selecting the gas turbine temperature for the preliminary optimum plant. It was assumed that the increased heat transfer area and, hence, increased cost of the furnacecombustor due to the reduced gas-side temperature, would not increase the plant capital cost significantly; that the lower temperature would mitigate cost increases by allowing the use of less exotic materials; and that the improved efficiency would reduce the increase in the cost of electricity. As indicated on Figure 8.21a the capital cost at 1144°K (1600°F) gas inlet temperature decreased below the 1255°K (1800°F) capital cost. Although not shown, the cost of electricity decreased 2.0 and 0.4% for 1144 and 1200°K (1600 and 1700°F), respectively, when compared to the base case gas turbine inlet temperature of 1255°K (1800°F). The recommended gas turbine inlet temperature of 1144°K (1600°F) was selected, with 1255°K (1800°F) as an alternate.

The second set of curves, Figure 8.21b, shows the effects of variations in liquid-metal turbine inlet temperatures. A constant temperature differential of 166.7°K (300°F) was assumed from turbine inlet to the liquid-metal condenser-steam generator. The liquid-metal system was investigated at three conditions 1033°K inlet/866°K condenser

Fig. 8. 21 —Effect of system temperatures on performance and cost of pressurized fluidized bed boiler plant

(1400°F/1100°F), 1089°K/922°K (1500°F/1200°F), and 1144°K/978°F (1600°F/1300°F). The gas turbine inlet temperature and steam turbine inlet temperatures were held constant at 1255 and 811°K (1800 and 1000°F), respectively. As Figure 8.21b demonstrates, the capital cost increased as much as 4% with increasing liquid-metal temperatures over the 1033°K (1400°F) base case. This was caused by the increased heat transfer area and the cost of construction materials in the liquid-metal subsystem. The cycle efficiency increase is negligible, considering the uncertainties of this study. With a definite economic incentive to minimize the liquid-metal temperatures, the 1033°K/866°K (1400°F/1100°F) liquid-metal temperatures were selected for investigation in Task II. The lower liquid-metal temperatures mitigate materials and development problems, particularly in the condenser-steam generator.

Up to this point all the parameter variations have been individual variations. Figure 8.21c shows the effect of steam throttle temperature variations; but for the steam temperatures the liquid-metal turbine temperature also varied (see Table 8.6, cases 23 through 35). For the steam temperatures listed in Figure 8.21c, the corresponding liquid-metal turbine inlet temperature is found directly above in Figure 8.21b. The gas turbine inlet temperature was held constant at 1255°K (1800°F). The values plotted in Figure 8.21c were the results for a 24.132 MPa (3500 psi) gauge single reheat steam cycle. The figure shows that both cycle efficiency and capital cost increase as the steam temperature increases: but when compared to the 811°K (1000°F) steam temperature case, the increase in capital cost is more than twice the increase in cycle efficiency for the 922°K (1200°F) case. The cost of electricity is 3.2 and 9.2% higher than 811°K (1000°F) steam for 866 and 922°K (1100 and 1200°F), respectively. Again, this is the result of higher costs for high-temperature materials to meet the temperature requirements in the steam turbine and the liquid-metal subsystem.

To ease the high cost and reduce the material and development problem, a steam throttle temperature of 811°K (1000°F) was recommended.

Fig. 8.22—Performance and cost of electricity of a potassium and a cesium topping cycle for best study plant configuration

The parametric analysis described above concluded with the selection of the preliminary optimum plant configuration and operating parameters, as shown in Point 49 of Table 8.6.

8.6.6 Effect of Working Fluid on Preliminary Optimum Plant

As described in Section 8.2, an initial assumption in the parametric analysis was that cesium would not be competitive with potassium as the working fluid for the liquid-metal Rankine topping cycle. The basis for this assumption was the limited supply of cesium available and the initially high cost estimates. The initial cesium inventory requirement was approximately 635 Mg (1,400,000 lb). The availability of cesium data was also limited. Thus, the parametric analysis of the metal vapor Rankine topping cycle concentrated on potassium as the working fluid. The results of that analysis were assumed to pertain to cesium within a reasonable degree of accuracy for preliminary evaluation.

Points 46, 47, and 48 of Table 8.6 define the cesium topping cycle and power level variation. Points 40, 41, 42, and 49 define the potassium topping cycle. Except for the working fluid these cases are similar. The results of Point 49 and 46 are shown on Figure 8.22 for potassium and cesium, respectively.

Due to the preliminary nature of the cesium turbine design and the lack of cesium data available, the large uncertainties of the cesium cycle tend to reduce the feasibility of application when compared with potassium. The results definitely demonstrated that cesium is competitive with potassium as the working fluid in a metal vapor topping cycle. These results, however, contain too many uncertainties to make a final selection at this time. Further effort, particularly in the design of the cesium turbine, is required.

8.6.7 Effect of Nominal Power Variation

The final variation analyzed in this study was nominal power level. Figure 8.23 shows the effect ωt various power applications on preliminary optimum plant configurations with cesium and potassium as the

Fig. 8. 23—Effect of nominal power on performance and cost of electricity for pressurized fluidized bed boiler

working fluids. The dashed curves show the relatively constant cycle efficiency over the range of power applications selected. The solid curves demonstrate the reduction in the cost of electricity as the nominal plant rating increases.

8.6.8 Summary Sheets

The natural resource requirements and environmental intrusion for Base Cases 1 and 2 are shown on the summary sheets in Tables 8.26 and 8.27, respectively. The sizes, weights, and costs of the major liquid-metal subsystem components and cooling towers are also included on the summary sheets.

Although they are not recommended points for Task II, the summary sheets for the preliminary optimum plants with potassium and cesium are included as Tables 8.28 and 8.29. They are a close approximation of the final results and improvements expected for the further optimization of the liquid-metal vapor Rankine topping cycle.

8.6.9 Additional Considerations

The overall costs and efficiencies of the 50 parametric points are included in Appendix A 8.2. Figure 8.24 is a plot of the overall efficiency versus capital cost for several of the cases considered. Figure 8.25 is a plot of the capital cost versus cost of electricity for the same cases.

In analyzing the overall cost of electricity, a new optimum cycle parameter and component configuration may be extrapolated. The plant will be similar to the preliminary optimum plant except for a 1255°K (1800°F) gas turbine inlet temperature and the burning of Montana subbituminous coal. A line AC has been drawn through Base Case 1 and the gas feedwater heater Point 13 in both Figures 8.24 and 8.25. Drawing the line A'C' parallel to AC through the subbituminous coal (Point 2) determines the locus of subbituminous coal, gas feedwater heater plants with a non-reheat steam plant.

On both figures line EG is drawn through the bituminous coal plant (Point 1) and the subbituminous coal plant (Point 2). Parallel line

Table 8.26 - Summary Sheet Liquid-Metal Rankine Topping Cycle Base Case No. 1, Point 1

Parameter Values		Performance and Cost		Natural Resources	
Net Power (MWe) Combustor Pressurizing Subsystem	1133.6	Power Plant Efficiency, %	35.9	Coal, 1b/kWh	9.88
Combustor type	PFB	Overall Energy Efficiency, 7	35.9	Sorbent, 1b/kWh	0.46
Fuel	Illinois No. 6	Capital Cost, 10 ⁶ \$	776.1	Total Water, gal/kWh	0.76
Gas turbine inlet temp., °F	1800	Capital Cost, \$/kWe	684.6	Cooling water	0.63
Compressor pressure ratio	15	Cost of Electricity, mills/kWh	31.58	Gasifier process	0.00
Air equivalence ratio	1.2		L	Condensate makeup	0.00
		(p)		Waste-handling slurry	0.09
Liquid-Metal Subsystem	ĸ			Scrubber waste	0.0
Fluid				NO suppression	0.00
Turbine inlet temperature, °F	1400			Total Land, acres/100 MWe	114.6
Condensing temperature, °F	1100			Main plant	16.5
Circulation ratio	2.5:1			Disposal land	77.2
Steam Turbine Subsystem				Access railroad	20.8
Turbine inlet temperature, "F	1000				
Turbine inlet pressure, psig	3500			(c)	
Reheat temperature, °F	NA				
Condensing pressure, in Hg abs	3.5				
Heat Rejection	Wet towers				
]				

	Ma	jor Compon	ents			*.
Component	Size, ft (W x L (or D) x H)	Weight, 10 ³ 1b	Cost Mfg., 103 \$	FOB Plant, \$/kWe	Units Required	Total Cost 10 ³ \$
PFB	13.6 x 121	700	5,820	4.98	16	93,160
L-M Turbine		ł i	3,000	2.56	8	24,000
Condenser-Steam Generator	27.2	155	2,300	1.97	4	9,200
Cooling Tower	43 x 40 x 70		230	0.20	13	2,990

Environm	ental Intrusion	
	1b/10 ⁶ Btu	1b/k₩h
so ₂	0.723	0.0068
NO.	0	0
нс	0	0
CO	0	0
Particulates	0.0365	3.45 x 10 ⁻⁶
•	Btu/kWh	
Heat to Water	2904	
Heat, Total Rejected	5239	
	1b/kWh	lb/day
Wastes	1	
Ash	0.084	2.36 x 10 ⁶
Spent sorbent	0.464	13.03 x 10

Net Power (MWe) Combustor Pressurizing Subsystem	1144.4
Combustor type	PFB
Fuel	Illinois No. 6
Cas turbine inlet temp., °F	1800
Compressor pressure ratio	15
Air equivalence ratio	1.2
Liquid-Metal Subsystem	4.
Fluid	ĸ
Turbine inlet temperature, °F	1400
Condensing temperature, °F	1100
Circulation ratio	2.5:1
Steam Turbine Subsystem	
Turbine inlet temperature, °F	1000
Turbine inlet pressure, psig	3500
Reheat temperature, °F	NA.
Condensing pressure, in Hg abs	3.5
Heat Rejection	Wet towers

Parameter Values

Performance and Cost	
Power Plant Efficiency, %	34.8
Overall Energy Efficiency, Z	35.0
Capital Cost, 10 ⁶ \$	926.1
Capital Cost, \$/kWe	809.2
Cost of Electricity, mills/kWh	35.88

(b)

Natural Resources	
Coal. 1b/kWh	0.904
Sorbent, 1b/kWh	0.478
Total Water, gal/kWh	0.813
Cooling water	0.601
Gasifier process	0.052
Condensate makeup	0.006
Waste-handling slurry	0.099
Scrubber waste	0.054
NO _x suppression	0.000
Total Land, acres/100 MWe	113.9
Main plant	17.3
Disposal land	75.98
Access railread	20.65

(c)

(a)

Major Components						
Component	Size, ft (W x L (or D) x H)	Weight, 10 ³ 1b	Cost MEg., 103 \$	FOB Plant, \$/kWe	Units Required	Total Cost, 10 ³ \$
PFB	14.5 x 25	220	2,200	1.95	8	17,600
L-M Turbine		[3,000	2.66	8	24,000
Condenser-Steam Generator	27.2 (sphere)	155	2,300	2.04	4	9,200
Cooling Tower	43 x 40 x 70		230	0.20	13	2,990

Environ	mental Intrusion	
	<u>lb/10⁶ Btu</u>	lb/kWh
so ₂	0.723	0.0074
NO_x	0	0
нс	0	o o
co	0	0
Particulates	i	
	Btu/kWh	
Heat to Water	2990	
Heat, Total Rejected	5730	
	1b/kWh	1b/day
Wastes		
Ash	0.090	2.44 × 10 ⁶
Spent sorbent	0.498	13.4 × 10 ⁶

(d)

8-92

Parameter Values	
Net Power (MWe) Combustor Pressurizing Subsystem	1140.0
Combustor type	PFB
Fuel	Illinois No. 6
Gas turbine inlet temp., °F	1600
Compressor pressure ratio	15
Air equivalence ratio	1.2
Liquid-Netal Subsystem	
Fluid	к
Turbine inlet temperature, °F	1400
Condensing temperature, °F	1100
Circulation ratio	2.5:1
Steam Turbine Subsystem	
Turbine inlet temperature, °F	1000
Turbine inlet pressure, psig	3500
Reheat temperature, °F	1000
Condensing pressure, in Hg abs	3.5
Heat Rejection	Wet towers

Performance and Cost	
Power Plant Efficiency, %	42.4
Overall Energy Efficiency, %	42.4
Capital Cost, 10 ⁶ \$	760.3
Capital Cost, \$/kWe	666.9
Cost of Electricity, mills/kWh	29.60

Naturai Resources	
Coal, 1b/kWh	0.746
Sorbent, 1b/kWh	0.395
Total Water, gal/kWh	0.737
Cooling water	0.603
Gasifier process	0.000
Condensate makeup	0.007
Waste-handling slurry	0.082
Scrubber waste	0.045
NO suppression	0.000
Total Land, acres/100 MWe	102.6
Main plant	16.4
Disposal land	65.4
Access railroad	20.7

(c)

(a)

Major Components						
Component	Size, ft (W x L (or D) x H)	Weight, 10 ³ 1b	Cost Mfg., 103 \$	FOB Plant, \$/kWe	Units Required	Total Cost 10 ³ \$
PFB	16.6 x 100	840	5,910	5.05	16	94,612
L-M Turbine			3,000	2.56	8.	24,000
Condenser-Steam Generator	26.7 (sphere)	196	2,300	1.96	4	9,200
Cooling Tower	43 × 40 × 70		230	0.20	13	2,990

Environme	ental Intrusion	
	1b/10 ⁶ Btu	lb/kWh
so ₂	0.723	0.0058
Nox	0	0
нс	0	0
co	0	0
Particulates	0.043	3.46 x 10 ⁻⁴
	Btu/kWh	
Heat to Water	3156	1
Heat, Total Rejected	3934	
	1b/kWh	1b/day
Wastes		
Ash	0.072	2.01 x 10 ⁶
Spent sorbent	0.395	11.1 × 10

(e)

Table 8.29 - Summary Sheet Liquid-Metal Rankine Topping Cycle, Point 46

Parameter Values			
Net Power (MWA) Combustor Pressurizing Subsystem	1139.9		
Combustor type	PFB -		
Fuel	Illinois No. 6		
Gas turbine inlet temp., °F	1600		
Compressor pressure ratio	15		
Air equivalence ratio	1.2		
Liquid-Metal Subsystem			
Fluid	Cs		
Turbine inlet temperature, °F	1400		
Condensing temperature, °F	1100		
Circulation ratio	2.5:1		
Steam Turbine Subsystem			
Turbine inlet temperature, °F	1000		
Turbine inlet pressure, psig	3500		
Reheat temperature, °F	1000		
Condensing pressure, in Hg abs	3.5		
Heat Rejection	Wet towers		

Performance and Cost	<u> </u>
Power Plant Efficiency, %	42.9
Overall Energy Efficiency, %	42.9
Capital Cost, 10 ⁶ \$	823.2
Capital Cost, \$/kWe	722.2
Cost of Electricity, mills/kWh	31.25

Natural Resources	
Coal, 1b/kWh	0.737
Sorbent, 1b/kWh	0.390
Total Water, gal/kWh	0.780
Cooling water	0.649
Gasifier process	0.000
Condensate makeup	0.007
Waste-handling slurry	0.083
Scrubber waste	0.044
NO _x suppression	0.000
Total Land, acres/100 MWe	103.31
Main plant	16.4
Disposal land	64.6
Access railroad	22.33

(c)

(a)

Major Components						
Component	Size, ft (W x L (or D) x H)	Weight, 10 ³ 1b	Cost Mfg., 103 \$	FOB Plant, \$/kWe	Units Required	Total Cost, 10 ³ \$
PFB	16 x 100	770	5,590	4.78	16	89,430
L-M Turbine			2,000	1.71	8	16,000
Condenser-Steam Generator	26.7 (sphere)	196	2,300	1.96	4	9,200
Cooling Tower	43 x 40 x 70		230	0.20	14	3,220
	ł ·	1	ł	,		L

(d)

Paul management of	Tutungian

	1b/10 ⁶ Btu	lb/kWh
so ₂	0.723	0.0054
NO _x	0	0
нс	0	0
CO ·	0	0
Particulates	0.0418	3.10 × 10
	Btu/kWn	
Heat to Water	3214	1
Heat, Total Rejected	3929	
	1b/kWh	1b/day
Nastes		
Ash	0.065	2.36 x 10 ⁶
Spent sorbent	0.364	10.219 x 10

Fig. 8.24—Capital cost vs overall efficiency for fluidized bed boiler plants

Fig. 8. 25—Capital cost is cost of electricity for fluidized bed boiler plant $\,$

E'G' is drawn through the bituminous coal plant with a gas feedwater heater and intersects line A'C' at Point B' to account for the reduced overall efficiency due to subbituminous coal. Point B' on Figures 8.24 and 8.25 determines a new plant burning subbituminous coal with 1255°K (1800°F) gas turbine inlet temperature, a gas-heated feedwater heater, a nonreheat 24.132 MPa (3500 psi) gauge steam turbine. Point B' on Figure 8.24 has an efficiency of 44.0% and a \$583/kWe capital cost.

The line HK has been drawn through Point 1 [a 24.132 MPa (3500 psi) gauge nonreheat steam turbine cycle] and Point 27 [a 24.132 MPa (3500 psi) gauge reheat steam turbine] in Figures 8.24 and 8.25 to define the rate of change of energy efficiency versus capital cost for reheat versus nonreheat steam cycles. Parallel line H'K' was drawn through the new subbituminous burning plant with a gas feedwater heater point B' on both figures. Assuming the same 0.8 percentage point efficiency improvement of reheat (Point 27) over nonreheat (Point 1), a subbituminous coal plant F' with reheat steam is determined along line H'K' for 44.0% overall energy efficiency on Figure 8.24. The new optimum plant F', with a 24.132 MPa (3500 psi) gauge steam turbine, 1255°K (1800°F) gas turbine inlet temperature, burning subbituminous coal has a capital cost of \$583/kWe at 44.0% overall energy efficiency on Figure 8.24.

If we follow the same procedure on Figure 8.25, the new optimum plant F' with a capital cost of \$583/kWe along line H'K' has a cost of electricity of 7.17 mills/MI (25.8 mills/kWh). Optimum plant F' has a 3.8% improvement in overall energy efficiency and an approximately 13% reduction in the cost of electricity over the preliminary optimum plant estimates.

On the basis of conventional power plant data, an additional cost reduction is possible. Redesign of the pressurized fluidized bed units to allow for greater utilization of shop fabrication instead of field erection could reduce construction time by three to six months. Such a reduction in time would significantly reduce the interest costs during construction.

Component modularization not only reduces construction time, but also facilitates and lends itself to the concept of partial plant operation. With the independent loop arrangement described briefly in Subsection 8.5.1.11 the availability of the liquid-metal vapor Rankine topping cycle plant can be significantly improved. Aside from loss of feedwater flow in the single steam turbine or loss of fuel from the coalhandling system, each of the four loops may operate independently of the other three.

The concept of power unit modules also provides for extension of the capital investment period. Rather than build a 1200 MWe plant all at once and tie up investing capital, one 300 MWe basic power unit is installed with full-size fuel handling and part-load operating steam turbine. When the first basic power unit begins producing power, additional power units can be added as load demand increases. In this way investment capital is available for other uses.

Appendix A 8.3 contains a listing of the economic model of the direct cost accounts and the cost of electricity for the preliminary optimum plant cycle with potassium (Point 49) and Points 1 and 4.

8.7 Conclusions and Recommendations

The results of this study indicate that a liquid-metal vapor Rankine topping cycle plant offers desirable plant performance. Development of the full potential of a direct coal-fired liquid-metal vapor Rankine topping cycle requires the development of high-temperature materials, the liquid-metal turbine, and the fluidized bed boiler. Power plant efficiencies of 40 to 44% are obtainable, based on current liquid-metal vapor turbine technology.

The economic potential of the system is limited by high costs for power conversion and liquid-metal heat transfer and piping equipment. The lowest electrical costs determined were about 8.05 mills/MJ (29 mills/kWh). Further optimization studies could improve the plant design performance and, therefore, the cost of electricity. Extrapolations presented

in Section 8.6, for example, imply costs more in the area of 7.17 mills/MJ (25.8 mills/kWh).

These results are adequate for a preliminary design and assessment of the relative effects of components and parameters on the system performance and costs. Further studies are required to optimize the plant configuration and parameters. Final conclusive performance and cost values can only be forthcoming upon completion of those studies.

Of all the systems considered, the costing factors of the metal vapor turbine are the most uncertain, due to the preliminary nature of the design, particularly at the high temperatures studied. The costing factors of the pressurized combustors are also uncertain, and are lacking for liquid-metal subsystems of both the combustor subsystems and liquid-metal subsystems. Extensive liquid-metal power system technology being developed will provide considerable data on the further development of the liquid-metal topping cycle.

The major limiting factors are suitable high-temperature materials and the uncertainties of high-temperature liquid-metal technology. Improved design and high-temperature metal technology would probably reduce the heat transfer and power conversion equipment costs, improving the attractiveness of the cycle.

The performance analysis of the 50 cases demonstrated that the combination of individually optimized components and parameters does not necessarily yield an optimum plant. The resulting cycle efficiencies could have been significantly improved by optimization of the combination of components and parameters investigated, without assuming advancement in the state of the art of the technologies involved. The analysis, however, did provide direction in selecting a new base case for further optimization. It also demonstrated that cycle efficiencies higher than conventional fossil-fired plants are attainable.

The economic analysis of the 50 cases demonstrated that high capital costs are generally required to obtain high cycle efficiencies; but it also provided direction in the selection of system configuration,

operating parameters, and, in particular, fuel for a new base from which to continue plant optimization. For example, the extrapolations of Subsection 8.6.9 indicate ~ 4% improvement in overall efficiency to 44.0% and a reduction in the cost of electricity of 13% to 7.17 mills/MJ (25.8 mills/kWh) over the preliminary optimum estimates. These improvements are the result of using Montana subbituminous coal instead of Illinois No. 6 and of raising the gas turbine inlet temperature to 1255°K (1800°F). The conclusions of Section 8.4 indicate that additional improvements in overall cycle efficiency may be obtained by combining the gas-heated feedwater heaters and economizers with recuperators at a compressor pressure ratio of 10 to 1 rather than 15 to 1. Further conclusions from Subsection 8.6.9 indicate significant reduction in the interest during construction by reducing construction time. Modularization of the pressurized fluidized beds could potentially reduce the construction period by three to six months. The utilization of modularized basic power units for part-load operation significantly improves the plant availability over the value assumed for this study. Modularized basic power units also provide for extension of the capital investment period, another potential cost reduction.

The recommended system configuration and parameters for Task II are listed in Table 8.30. The plant described is the recommended base case from which to continue the further optimization of the liquid-metal topping cycle. The values listed are the result of the economic and performance analysis described above.

An alternate liquid-metal vapor topping cycle is also recommended on Table 8.30. The final choice of working fluid cannot be made without further analysis. The performance and cost of electricity of the cesium topping cycle of Task I are suspect due to the uncertainties in the cesium property and thermodynamic data and to the preliminary nature of the cesium turbine design and performance. A more detailed study of cesium and, in particular, the cesium turbine is a prerequisite before final selection of the working fluid.

Table 8.30 - Recommended System Configuration and Parameters

	Base	Alternate
Power, MWe	1200	
Furnace	PFB	
Coal	Montana	
Working Fluid	Potassium	Cesium
Recuperator Effectiveness	0.7	
Gas-Heated Feedwater, Heater	Yes	
Gas-Heated Economizer	Yes	
Compressor Pressure Ratio	10	·
Air Equivalence Ratio	1.2	
Gas Turbine Inlet Temp., °F	1800	
LM. Turbine Inlet Temp., °F	1400	
LM. Condenser-Steam Generator Temperature, °F	1100	
Steam Throttle Temperature, °F	1000	
Reheat Temperature, °F	1000	
Steam Throttle Pressure, psig	3500	
Condenser Back Pressure, in Hg abs	3.5	

Additional conclusions of the Task I parametric analysis are listed in Table 8.31. A list of recommendations applicable to Task II are found in Table 8.32.

The preliminary optimum cycle demonstrated a cycle overall efficiency of 42.4% for potassium and 42.9% for cesium at a cost of electricity of about 8.21 and 8.67 mills/MJ (29.6 and 31.2 mills/kWh), respectively. These are preliminary results. Additional optimization studies will show a significant increase in cycle efficiency and greatly improve the attractiveness of the cost of electricity. Final conclusions and judgements on the liquid-metal vapor topping cycle cannot be made until the completion of these additional studies.

Table 8.31 - Preliminary Conclusions

- Pressurized fluidized bed plant is more efficient and more cost effective than pressurized furnace plant.
- 2. Subbituminous coal is the most cost effective in a pressurized fluidized bed.
- 3. A gas-heated feedwater provides the most significant improvement in plant efficiency.
- 4. A gas-heated economizer is cost effective.
- 5. Efficiency decreases as the air equivalence ratio increases above a minimum value of 1.2.
- 6. Increasing the liquid-metal vapor turbine inlet temperature beyond 1033°K (1400°F) is not economically justifiable.
- 7. Increasing steam temperature above 811°K (1000°F) is not cost effective for either reheat or nonreheat steam cycles.
- 8. A supercritical steam pressure of 24.132 MPa (3500 psi) gauge is more efficient and cost effective than is the subcritical steam of 16.547 MPa (2400 psi) gauge.
- Variation of system parameters separately does not provide the optimum cycle when individual optimums are combined.
- 10. Cesium is almost competitive with potassium as the selection of the liquid-metal working fluid.
- 11. Varied separately and individually, plant efficiency improves for increased compressor pressure ratio in the range 5 to 15 to 1 and for decreasing gas turbine inlet temperature in the range 1255°K (1800°F) to 1144°K (1600°F). Recuperation in the combustor pressurizing subsystem is not economically justifiable. In proper combinations together, however, and with stack-gas regeneration, potential plant efficiencies are higher at the maximum gas turbine inlet temperature [1255°K (1800°F)] and at a compressor pressure ratio of 10 with recuperation than the maximum efficiency values obtained individually.

Table 8.32 - Preliminary Recommendations

- 1. Provide a potassium boiler design with nucleation site promoters to protect the boiler tubes by reducing the high wall-temperature differences which occur during the vaporization of potassium.
- 2. Provide an ejector system on the condenser-steam generator to remove noncondensibles.
- 3. Provide liquid-metal vapor line sized to 40% full power vapor flow to by-pass the turbine and pass vapor directly to the condenser in the event of a loss of turbine event.
- 4. Provide a saturated liquid-metal by-pass line from the drum to the condenser as a means of reducing dissolute corrosion (10% flow).
- 5. Provide a liquid-metal hot trap in the above mentioned saturated liquid 10% flow by-pass line to remove oxygen in order to reduce corrosion.
- 6. Perform a feasibility study of jet pump or natural circulation to replace the recirculation pump.
- 7. Perform a feasibility study of the EM pump as a liquid-metal feed pump.
- 8. Study the liquid-metal component relative elevations to reduce pumping requirements.
- 9. Reevaluate recuperator effectiveness as a function of the compressor pressure ratio and the gas turbine inlet temperature.
- 10. Evaluate the gas turbine intercooling when recuperation is not feasible.
- 11. Reevaluate the gas feedwater heater and gas economizer effect on cycle.
- 12. Evaluate in detail the condenser-steam generator duplex-tube design with metallic bonds for liquid-metal/water reaction protection.

Table 8.32 continued

- 13. Evaluate the thermal stress on the water inlet side of the condensersteam generator.
- 14. Perform a transient analysis study to determine the saturated liquid hold-up requirements of the liquid-metal drum.
- 15. Perform a transient analysis study to determine the dump-tank, ventline, and rupture-disk criteria in the event of a liquid-metal/water reaction.
- 16. Perform a transient analysis of the boiler in liquid-metal/water reaction transient.
- 17. Analyze the liquid-metal turbine and condenser to mitigate damage in the event of steam tube rupture.
- 18. Perform detailed design studies of potassium and cesium turbines.
- 19. Provide protective partitions separating liquid-metal turbine generators and condensers in the event of a liquid-metal/water reaction.
- 20. Provide a scrubber system and flame suppressor on liquid-metal/water reaction vent lines.
- 21. Evaluate the use of 300 MWe basic power modules to extend the capital investment period and provide better availability.
- 22. Evaluate component modularization to reduce the time of construction.

8.8 References

- 8.1 J. D. Mangus, "Steam Generator and Turbine-Generator Cycle Selection for the Westinghouse Demonstration Plant," WARD-217, October 1971.
- 8.2 A. P. Fraas, "A Potassium-Steam Binary Vapor Cycle for Better Fuel Economy and Reduced Thermal Pollution," Journal of Engineering for Power, Trans. ASME, Vol., January 1973, pp. 53-62.
- 8.3 Private communication with J. Tackett of Stellite Division, Cabot Corporation.
- 8.4 L. R. Smith, M. R. Tek, and R. E. Balzhiser, "Pressure Drops and Void Fractions in Horizontal Two-Phase Flows of Potassium," AIChE Journal, 12, Vol. 12, January 1966, pp. 50-58.
- 8.5 R. J. Rossbach, E. Schnetzer, H. E. Nichols, and S. E. Eckard,
 "Performance of a Two-Stage, 200 HP Turbine in Wet Potassium Vapor,"
 AIAA Specialists Conference on Rankine Space Power Systems, Vol. 1,
 CONF-651026, October 1965.

Appendix A 8.1

LIQUID-METAL RANKINE TOPPING CYCLE PARAMETRIC POINTS SYSTEM CONFIGURATION AND PARAMETRIC STATE POINTS

					* * * * * EFFICIE	NCIES * * * * *
	PCWER OUTPUT(MWE) FURNACE PR.FLD CCAL WORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	GAS ECONOM K GAS FEEDHA G.O L.M.CIRCUI L.M.FEEDHA	TURE (DEG+F) MIZER ATEF HEATER LATION RATIO	1600 • 0 L • NO PF NO ST 2.5 i GF NO NE	M.SYSTEM RESSURIZING SUBSYS FEAM CYCLE ROSS PLANT ET PLANT ET POWER OUTPUT(MA	.097 STEM .267 .420 .380 .370
	**** STATE POINTS ****	TOTAL FLOW 10E05 LBM/HR	TEMPERATURE DEG-F	PRESSURE PSIA	THERMAL LOAD 10E09 BTU/HR	POWER OUTPUT MWE
	1 L.M.TURBINE INLET	7.332	1400.000	15.200		188.000
	2 L.M.CONDENSER		1100.000	2.400	5.856	
	3 L.M.FEED PUMP	527 7. 000 GPM	1100.000	33.900		.363
	4 L.M.REGIRC PUMP	13574.000 GPM	1280.000	20.610		.173
,	5 L.M.BOILER INLET		1280.000		6.600	
,	E STEAM TURBINE THROTTLE	6.774	1000.000	3515.000		720.500
	7 STEAM REHEAT		0-000	0.000		
	8 ST.COND.BACK PRESS.			3.5001	(N.HG 3.396	
	9 FINAL FEEDWATER		560.000			
	16 COND/SS WATER INLET		560.000			
	11 COMPRESSOR INLET	10.320	59.000	14.690		
	12 GAS TURBINE INLET	11.216	1800.000			291.500
	13 GAS ECON.GAS INLET.		0.000		0.000	
	14 GAS FWH GAS INLET		0.000		0.000	
	15 STACK GAS EXHAUST		344.000			
	16 AS RECEIVED COAL	499.400T/HR	•		10.775	

		CASE NU. Z			
BOUGO OUTOUT WHEN	4330 606 70007	:		* * * * * * EFFICI	ENCIES * * * *
POWER OUTPUT(MWE) FURNACE PR.FLD		NE INLET TURE (DEG-F)	1500.0	L.M.SYSTEM	. 097
CGAL SUI	B3IT GAS ECONO			PRESSURIZING SUBSI	
WCRKING FLUID		ATER HEATER		STEAM CYCLE	.420
RECUPERATOR EFFECTIVENESS		LATION RATIO		GROSS PLANT	. 374
COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO		EATER STEAM REHEAT		NET PLANT NET POWER OUTPUT (N	.365 1169.34
HIR EGGIVACENDE KALID	ITTE STRUCTS OF	SICAN KENEAT	•	NET FOWER DOTFOTO	1461 1103034
	TOTAL FLOW	TEMPERATURE	PRESSURE	THERMAL LOAD	POWER OUTPUT
**** STATE POINTS ****	10E06 LBM/HR	DEG-F	PSIA	10E09 BTU/HR	HHE
1 L.M.TURBINE INLET	7.113	1400.000	15.20	0	181.000
2 L.M.CONDENSER		1100.600	2.40	0 5.643	-
3 L.M.FEED PUMP	5085.000 GPM	1100.000	31.72	0	• 324
4 L.M.RECIRC PUMP	13080.000 GPM	1280.000	20.23	0	•155
5 L.M.BOILER INLET		1280.000		6.360	
E STEAM TURBINE THROTTLE	6.527	1000.000	3515.00	0	694.400
7 STEAM REHEAT		0.000	0.00	0	
8 ST.COND.BACK PRESS.			3.50	OIN.HG 3.273	
9 FINAL FEEDWATER		560.000			
16 COND/SG WATER INLET		560.000			
11 COMPRESSOR INLET	10.427	59.000	14.69	0	
12 GAS TURBINE INLET	13.318	1800.000			324.400
13 GAS ECON.GAS INLET,		0.000		0.000	
14 GAS FWH GAS INLET		0.000		0.000	
15 STACK GAS EXHAUST		851.000			
14 AS RECEIVED COAL	611.600T/HR			10.940	

8-10×

					* * * * *	* EFFICI	ENCIES * * * * *
	PCHER OUTPUT (MWE)	1200 GAS TURBI		44.00.0	L M CVCTC		807
	FURNACE PR.FL	LIG GAS ECONO	TURE (DEG-F)	1600•0 NO	L.M.SYSTE PRESSURIZ		.097 STEM .285
	WORKING FLUID		ATE F HEATER	NO	STEAM CYC		•420
	RECUPERATOR EFFECTIVENESS		LATION RATIO		GROSS PLA		.366
	COMPRESSOR PRESSURE RATIO			NO	NET PLANT		.356
	AIR EQUIVALENCE RATIO	1.2 STAGES OF	STEAM REHEAT	0	NET POWER	OUTPUT (M	WE) 1169.48
	**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSU		MAL LOAD 9 BTU/HR	POWER OUTPUT HWE
	1 L.M.TURBINE INLET	6.872	1400.000	15.	200		175.000
	2 L.H.CONDENSER		1100.000	2.4	+ 0 0	5.452	
	3 L.M.FEED PUMP	4913.000 GPM		29.1			.293
	L L.M.RECIRC PUMP	12637.000 GPM	1250.000	19.	pan'		- 140
201	5 L.M. BOILER INLET		1280.000			6.144	
5	& STEAM TURBINE THROTTLE	6.306	1000.000	3515.	000		670.900
	7 STEAM REHEAT		0.000	0.0	100		
	8 ST.COND.BACK PRESS.			3.5	500IN.HG	3.162	
	9 FINAL FEEDMATER		560.000				
	10 COND/SG WATER INLET		560.000				•
	11 COMPRESSOR INLET	10.676	59.000	14.0	590		
	12 GAS TURBINE INLET	12.086	1800.000				354.000
	13 GAS ECON.GAS INLET.		0.000			0.000	
	14 GAS FNH GAS INLET		0.000			0.000	
	15 STACK GAS EXHAUST		855 • 008				
	16 AS RECEIVED COAL	812.600T/HR				11.198	

20<u>1</u>-1

					* * * * * EFFICI	ENCIES + + + + +
	PCHER OUTPUT(MME) FURNACE PR.FUT CCAL MCRKING FLUID RECUPERATOR EFFECTIVENESS CCMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	BIT GAS ECONO K GAS FEEDW 0.0 L.M.CIRCU 15 L.M.FEEDW	TURE (DEG-F) MIZER ATE F HEATER LATION RATIO	NO P NO S 2-1 G NO N	.M.SYSTEM PESSUPIZING SUBSY: TEAM CYCLE ROSS PLANT ET PLANT ET POHER OUTPUT(M	.420 .365 .356
	**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSURE PSIA		POWER OUTPUT
	1 L.M.TURBINE INLET	7.327	1400.000	15.200		186.500
	2 L.M.CONDENSER		1100.000	2.400	5.813	
	3 L.M.FEED PUMP	5245.000 GPM	1100.000	33.598		•356
	4 L.M.RECIRC PUMP	13491.000 GPM	1280.000	20.550		.170
,	5 L.M.BOILER INLET	•	1280.000		6.551	
	E STEAM TURBINE THROTTLE	6.724	1000.000	3515.000		715.300
	7 STEAM REHEAT		0 • 6 0 0	0.000		
	8 ST.COND.BACK PRESS.			3.500	IN.HG 3.372	
	9 FINAL FEEDWATER		560.000			
	10 COND/SG WATER INLET		560.000			6
	11 COMPRESSOR INLET	10.056	59.000	14.690		
	12 GAS TURBINE INLET	10.960	1800.000			298.600
	13 GAS ECON.GAS INLET,		0.000		0.000	
	14 GAS FHH GAS INLET		0.000		0.000	
	15 STACK GAS EXHAUST		857 - 600			
	16 AS RECEIVED COAL	520.000T/HR			11.220	

			CASE NO. 5			
	POHER OUTPUT (MHE)	1200 GAS TURBI	NE THEET		* * * * * * EFFICI	ENCIES * * * * *
	FURNACE PR.FUR		TURE (DEG-F)	1600.0	L.M.SYSTEM	• 097
		BBIT GAS ECONO	MIZER	NO	PRESSURIZING SUBSY	
	NCRKING FLUID		ATER HEATER	NO	STEAM CYCLE	•420
	RECUPERATOR EFFECTIVENESS		LATION RATIO	2.5 1	GROSS PLANT	• 378
	COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	15 L.M.FEEDH	EATER STEAM REHEAT	NO n	NET PLANT NET POWER OUTPUT (M	.369
	AIR ENGINEEROE RATIO	INC STAGES OF	SIEAN KENEMI	U	NEI POWER OUTPOIL	WE) 1169.39
				· · · · · ·		*
	**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSURI PSIA		POWER OUTPUT
	STATE POINTS	IUCUO CONTAR	DEG-F	PSIA	10E09 BTU/HR	MHE
	1 L.M.TURBINE INLET	7.337	1400.000	15 . 2	0 0	186.800
	2 L.M.CONDENSER					
	2 L.M. CUNDENSER		1100.000	2.4	00 5.821	J
	3 L.M.FEED PUMP	5245.000 GPM	1100.000	33.5	90	•356
	4 L.M.RECIRC PUMP	13491.000 GPM	1280.000	20.5	50	-170
9	E L.M.BOILER INLET		1280.000		6.560	
1110		· · · · · · · · · · · · · · · · · · ·				
	E STEAM TURBINE THROTTLE	6.733	1000.000	3515.0	0.0	716 • 739
	7 STEAM REHEAT		0.000	0.0	αο	
			, , , , ,			
	8 ST.COND. BACK PRESS.			3.50	00IN.HG 3.376	
	9 FINAL FEEDWATER		560.800			
				¥		
	10 COND/SG WATER INLET		560.000			
	11 COMPRESSOR INLET	9.950	59.000	14.69	an	
			33000		, ,	
	12 GAS TURBINE INLET	10.865	1600.000			296.800
	13 GAS ECON.GAS INLET.		0.000		0.000	
	TO DAS COUNTDAS INCCIT		0.000		0.000	
	14 GAS FWH GAS INLET		0.000		0.000	
	15 STACK GAS EXHAUST		-E7 000			
	TO STACK ONS EXHAUST		557.000			
	16 AS RECEIVED COAL	604.600T/HR			10.815	

					* * * * * * * EFF10	TENCTES
	FURNACE PR.FUF COAL WORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO	LIG GAS ECONO K GAS FEEDH 0.0 L.M.CIRCU 15 L.M.FEEDH	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	NO NO 2.5 1 NO	L.M.SYSTEM PRESSURIZING SUBS STEAM CYCLE GROSS PLANT NET PLANT NET POWER OUTPUT	.420 .383 .373
	**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSU PSIA		-
	1 L.M.TURBINE INLET	7.353	1400.000	15.	200	187.300
	2 L.M.CONDENSER		1100.000	2.	400 5.833	
	3 L.M.FEED PUMP	3245.000 GPM	1100.000	33.	59 0	.356
	4 L.M.RECIRC PUMP	13491.000 GPM	1280.000	20.	550	.178
8-112	5 L.M.BOILER INLET		1280.000		6.575	
12	E STEAM TURBINE THROTTLE	6.747	1000.000	3515.	000	717.800
	7 STEAM REHEAT		0.000	0.	000	
	8 ST.COND.BACK PRESS.			3.	500IN.HG 3.383	•
	9 FINAL FEEDMATER		560.000			
	10 COND/SG WATER INLET		560.000			
	11 COMPRESSOR INLET	9.826	59.000	14.	690	
-	12 GAS TURBINE INLET	10.809	1800.000			294.800
	13 GAS ECON.GAS INLET,		0.000		0.000	
	14 GAS FHH GAS INLET		0.000		0.000	
	15 STACK GAS EXHAUST		858.000			
	16 AS RECEIVED COAL	776.100T/HR			10.695	

					Ett1010	ENCIES + + + +
	POWER OUTPUT(HWE) FURNACE PR.FLD COAL MORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	GAS ECONO K GAS FEEDW •7 L.M.CIRCUI 15 L.M.FEEDHS	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	NO 5 NO 5 2.º 1 (L.M.SYSTEM PRESSURIZING SUBSYS STEAM CYCLE GROSS PLANT NET PLANT NET POMER OUTPUT(MI	.097 .272 .420 .385 .375
		TOTAL FLOW	TEMPERATURE	PRESSURE	THERMAL LOAD	POWER OUTPUT
	**** STATE POINTS ****	10E06 LBH/HR	DEG-F	PSIA	15E09 BTU/HR	HWE
	1 L.M.TURBINE INLET	7.463	1400.000	15.20	ו	190.000
	2 L.M.CONDENSER		1100.000	2.40	5.920	
	3 L.M.FEED PUMP	533 7. 000 GPM	1100.000	34.70	3	•375
	4 L.M.REGIRG PUMP	13730.000 GPM	1280.000	20.74	1	•179
B	5 L.M.BOILER INLET		1289.000		6.673	
بد	E STEAM TURBINE THROTTLE	6.848	1000.000	3515.00	n -	728.600
	7 STEAM REHEAT		0.000	0.00	1	
	& ST.COND.BACK PRESS.			3.500	IIN.HG 3.434	
	9 FINAL FEEDWATER		560.000			
	10 COND/SG WATER INLET		560.000		•	× .
	11 COMPRESSOR INLET	10.197	59.000	14.69)	
	12 GAS TURBINE INLET	11.082	1800.000			281.30 0
	13 GAS ECON.GAS INLET,		0.000		0.080	
	14 GAS FWH GAS INLET		0.000		0.000	
	15 STACK GAS EXHAUST		801.000			
	16 AS RECEIVED COAL	493.400T/HR			10.645	

					* * * * * * EFFICI	ENCIES + + + +
		1200 GAS TURBI				:
	FURNACE PR.FLD		TURE (DEG-F)		L.M.SYSTEM	.097
	CGAL	BIT GAS ECONO			PRESSURIZING SUBSY	
	WORKING FLUID RECUPERATOR EFFECTIVENESS		ATER HEATER		STEAM CYCLE	•420
		.8 L.M.CIRCU 15 L.M.FEEDH	LATION RATIO		GROSS PLANT	• 365
	AIR EQUIVALENCE RATIO		STEAM REHEAT	NO ฉ	NET PLANT NET POWER OUTPUT (M	.376
	AIR EROTTALLINGE WATES	TIE STAGES OF	STEAM REMEAT	U	NEI POWER OUTPOIL	WE) 1169.36
		TOTAL FLOW	TEMPERATURE	PRESSURE	THERMAL LOAD	POHER OUTPUT
	**** STATE POINTS ****	10E06 LBM/HR	DEG-F	PSIA	10E09 BTU/HR	HWE
	1 L.M.TURBINE INLET	7.469	1400.000	15.20	10	190-200
	2 L.M.CONDENSER		1100.600	2.40	5.925	
	3 L.M.FEED PUMP	5337.000 GPM	1100.000	34.70	10	.375
	L L.M.RECIRC PUMP	13730.000 GPM	1280.000	20.74	0	-179
8-1	E L.M.BOILER INLET		1280-000		6.678	4 2
4	E STEAM TURBINE THROTTLE	6.854	1000.600	3515.00	10	729.100
	7 STEAM REHEAT		0.000	0.00	0	
	8 ST.COND.BACK PRESS.			3.50	OIN.HG 3.437	
	9 FINAL FEEDWATER		360 • 000			
	10 CONDISS WATER INLET		560.000			
	11 COMPRESSOR INLET	10.172	59.000	14.69		
	12 GAS TURBINE INLET	11.054	1800.000			250.600
	13 GAS ECON.GAS INLET,		0.000		0.000	
	14 GAS FWH GAS INLET		0.000		0.000	
	1! STACK GAS EXHAUST		794 • 000			
	16 AS RECEIVED COAL	492.200T/HR			10.620	

					* * * * *	* EFFICIE	ENCIES 4	
	POHER OUTPUT (MHE)					2232.		
	FURNACE PR.FUI	KNACE TEMPERAT			L.M.SYSTE			.097
	HORKING FLUID	BIT GAS ECONON K GAS FEEDWA	112ER NTER HEATER	ОИ СИ	STEAM CYC	ING SUBSYS	SIEM	• 2t·5
	RECUPERATOR EFFECTIVENESS	-7 L-M-CTROW	ATION RATIO		GROSS PLA			•420 •368
	COMPRESSOR PRESSURE RATIO	15 L.M.FEEDHE		NO	NET PLANT			•359
	AIR EQUIVALENCE RATIO	1.2 STAGES OF	STEAM REHEAT	a		OUTPUT (M)	HE)	
	**** STATE POINTS ****	TOTAL FLOW 10E36 LBM/HR	TEMPERATURE DEG-F	PRESSUR PSIA		MAL LOAD 9 BTU/HR		OUTPUT E
	1 L.M.TURBINE INLET	7 • 399	1+00.000	15.2	200		18	88.400
	2 L.H.CONDENSER		1100.000	2 • 4	0 0	5.869		
	3 L.H.FEED PUMP	5291.000 GPM	1100.000	34.1	L+0			.365
	4 L.M.RECIRC PUMP	13610.000 GPM	1280.000	20 • 6	÷0			.175
0	5 L.M.BOILER INLET		1280.000			6.615		
7	6 STEAM TURBINE THROTTLE	6.789	1000.000	3515.0	100		73	22.300
	7 STEAM REHEAT		0.000	0.0	100			
	8 ST.COND.BACK PRESS.			3.5	SOOIN.HG	3.484		
	9 FINAL FEEDWATER		560.000					
	10 COND/SG HATER INLET		360.000					
	11 COPPRESSOR INLET	9.973	59.000	14.6	90			
	12 GAS TURBINE INLET	10.870	1800.000				28	39.200
	13 GAS ECON.GAS INLET,		0.000			0.000		
	14 GAS FWH GAS INLET		0.000			0.000		
	15 STACK GAS EXHAUST		327.000					
	16 AS RECEIVED COAL	515.300T/HR				11.118		

1600.0

GAS TURBINE INLET

514.200T/HR

TEMPERATURE (DEG-F)

POWER OUTPUT (MWE)

16 AS RECEIVED COAL

FURNACE

1200

PR. FURNACE

EFFICIENCIES

11.094

.097

L.M.SYSTEH

	FURNACE PY.FU	RNACE TEMPERA	TURE (DEG-F)	1600.0	L.M.SYSTE	EM	• 097
	CCAL	BIT GAS ECONO	MIZER	NO	PRESSURIZ	YZEUZ DNI	STEM .267
	WCRKING FLUID		ATER HEATER	NO	STEAM CYC		•420
	RECUPERATOR EFFECTIVENESS		LATION RATIO	2.5 1	GROSS PLA	INT	• 369
	CCMPRESSOR PRESSURE RATIO			NO	NET PLANT	Ī	.360
	AIR EQUIVALENCE RATIO	1.2 STAGES OF	STEAM REHEAT	. 0	NET POWER	R OUTPUT (M	HE) 1169.38
	**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSUR PSIA		RMAL LOAD 19 BTU/HR	POWER OUTPUT
	1 L.M.TURBINE INLET	7.403	1400.000	15.2	0 0		188.500
	2 L.M.CONDENSER		1100.000	2.4	0 0	5.873	
	3 L.M.FEED PUMP	5291.000 GPM	1100.000	34-1	40		.365
	4 L.M.RECIRC PUMP	13610.000 GPM	1280.000	20.6	48		.175
8-116	5 L.M.BOILER INLET		1280.000			6.619	•
6	E STEAM TURBINE THROTTLE	6.793	1000.000	3515.0	00		722.700
	7 STEAM REHEAT		0.000	0.0	00	· Bank All and	
	8 ST.COND.BACK PRESS.			3.5	00IN.HG	3.406	
	9 FINAL FEEDWATER		560.000				
	10 CONDISG WATER INLET		360 . 000				
	11 COMPRESSOR INLET	9.953	59.000	14.6	90	-	
	12 GAS TURBINE INLET	10.848	1800.000				288.700
	13 GAS ECON.GAS INLET,		0.000			0.000	
	14 GAS FWH GAS INLET		0.000			0.000	
	15 STACK GAS EXHAUST		821.000				•

					* * * * * * EFFIC	FNCTES # # # # #
	POWER OUTPUT(HME) FURNACE PR.FLG GCAL WGRKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	GAS ECONOM K GAS FEEDWA D.O L.M.CIRCUL 15 L.M.FEEDHE	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	NO NO	L.M.SYSTEM PRESSURIZING SUBST STEAM CYCLE GROSS PLANT NET PLANT NET POHER OUTPUT (.097 (STEH .267 .420 .380
	**** STATE POINTS ****		TEMPERATURE DEG-F	PRESSUR PSIA		
	1 L.M.TURBINE INLET	7.382	1+00.000	15.2	90	188.000
	2 L.M.CONDENSER		1100.000	2 • 4	00 5.856	
	3 L.M.FEED PUMP	3277.000 GPM	1100-000	31.2	40	.331
	4 L.M.RECIFC PUMP	-0.000 GPM	1100.800	-0.0	00	-0.000
0	5 L.M.BOILER INLET		1100.000		6.600	
7	E STEAM TURBINE THROTTLE	6.774	1000-000	3515.0	00	720.700
	7 STEAM REHEAT		0.000	0.0	0 0	
	8 ST.COND. BACK PRESS.			3.5	00IN.HG 3.396	
	9 FINAL FEEDWATER		560.000			
	16 COND/SG WATER INLET		560.000			
	11 COMPRESSOR INLET	10.321	59.000	14.6	90	
	12 GAS TURBINE INLET	11.217	1800.000			291.300
	13 GAS ECON.GAS INLET.		0.000		0.000	
	14 GAS FWH GAS INLET		0.600		0.000	
	15 STACK GAS EXHAUST		844.00E			
	16 AS RECEIVED COAL	499.200T/HR			10.775	

					* * * * *	* EFFICI	ENCIES * *	* * *
	POWER OUTPUT(MME) FURNACE PR.FUR COAL WORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	BIT GAS ECONOM K GAS FEEDWOOD 0.0 L.M.CIRCU 15 L.M.FEEDWO	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	1000.0° NO NO 1 1 NO	L.M.SYSTE PRESSURIZ STEAM CYC GROSS PLA NET PLANT NET POWER	M Ing Sub sy s Le Nt	STEM	.097 .263 .420 .365 .356
	**** STATE POINTS ****	TOTAL FLOW 10E06 LAM/HR	TEMPERATURE DEG-F	PRESSUR PSIA		MAL LOAD 9 BTU/HR	POHER GUT	TPUT
	1 L.M.TURBINE INLET	7.323	1400.000	15.2	0 0		186.5	00
	2 L.M.CONDENSER		1100-000	2.4	9 0	5.809		
	3 L.M.FEED PUMP	5235.000 GPM	1100.000	31.0	40		• 3	327
	4 L.M.RECIRC PUMP	-0.000 GPM	1100.000	-0.0	0 0		0 . 0	0.0
P - 1	5 L.M.BOILER INLET		1100.000			6.548		
,	E STEAM TURBINE THROTTLE	6.720	1000.000	3515.0	0 0		714.9	300
	7 STEAM REHEAT		0.000	0.0	0 0			
	8 ST.COND.BACK PRESS.			3.5	00IN.HG	3.369		
	9 FINAL FEEDWATER		560.000					
	10 COND/SG WATER INLET		o60.000					
	11 COMPRESSOR INLET	10.052	59.000	14.6	90			
	12 GAS TURBINE INLET	10.956	1800.000	٠.			298.5	0.0
	13 GAS ECON.GAS INLET.		0.000		•	0.000		
	14 GAS FWH GAS INLET		0.000	•		0.000		
	15 STACK GAS EXHAUST		857.000	:				
	16 AS RECEIVED COAL	519.400T/HR				11.207		

				* * * * * * 65570	TENOTES = = = = = =
POWER OUTPUT (MWE)		NE INLET		* * * * * * EFFIC	TENCIES + + +
FURNACE PR.FLD COAL	BIT GAS ECONON		NO	PRESSURIZING SUBS	
WORKING FLUID RECUPERATOR EFFECTIVENESS	GAS FEEDWA	ATER HEATER LATION RATIO	YES 2.5 1	STEAM CYCLE Gross Plant	•440 •457
COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	15 L.M.FEEDHE		СИ	NET PLANT	. 445
MAIN EGOTAMEEROE MAILO	I.E STRUES UP	SICAR REMEAT	, U	NET POWER OUTPUT	UMC: 11030/0
**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSUR PSIA		POHER OUTPUT
1 L.M.TURBINE INLET	6.140	1400.000	15.	200	156.400
2 L.M.CONDENSER		1100.000	2.	+00 5.871	
3 L.M.FEED PUMP	+389.000 GPM	1100.000	24.2	250	.209
4 L.M.RECIRC PUMP	. 11290.000 GPM	1280.000	18•9	950	.100
5 L.M.BOILER INLET		1280.000		5.490	
6 STEAH TURBINE THROTTLE	5.214	1000.000	3515.	000	802.800
7 STEAM REHEAT		0 • 0 0 0.	0 • 0	000	
E ST.COND.BACK PRESS.			3.	500IN.HG 3.487	
S FINAL FEEDWATER		492.000			
10 COND/SG WATER INLET		492.000			
11 COMPRESSOR INLET	8.584	59.000	14+6	590	
12 GAS TURBINE INLET	9.329	1800.000			240.800
13 GAS ECON.GAS INLET,		0.000		0.000	
14 GAS FWH GAS INLET		352.000		1.355	
15 STACK GAS EXHAUST		290.000			
16 AS RECEIVED COAL	415.400T/HR			8.963	

		and the second s	CASE NO. 14				
					* * * * *	* EFFICIEN	CIES * * * * *
	POWER OUTPUT (MME)	1200 GAS TURBI	NE INLET				
	FURNACE PR. FUR		TURE (DEG-F)	1800.0	L.M.SYSTE		• 0 9 7
	CCAL	BIT GAS ECONO		NO		ING SUBSYST	
	WORKING FLUID		ATE F HEATER	YES	STEAM CYC		• 440
	RECUPERATOR EFFECTIVENESS		LATION RATIO	2.5 1	GROSS PLA		• 425
	COMPRESSOR PRESSURE RATIO			NO	NET PLANT		.415
	AIR EQUIVALENCE RATIO	1.2 STAGES OF	STEAM REHEAT	8	NEI PUWER	OUTPUT (MME	1169.71
					•.		
		TOTAL FLOW	TEMPERATURE	PRESSU			POWER OUTPUT
	**** STATE POINTS ****	10EJ6 LBM/HR	DEG-F	PSIA	10E0	9 BTU/HR	HHE
	1 L.M.TURBINE INLET	6.053	1400.000	15.	20.0		154.100
			2100000				
	2 L.M.CONDENSER		1100.000	2.	+00	5.802	
	3 L.M.FEED PUMP	+327.000 GPM	1100.000	23.0	30		.200
		•					Tel 19
	4 L.M.RECIRC PUMP	11130.000 GPM	1280.000	18.	840		• 096
_	5 L.M.BOILER INLET		1280.000			5.411	
ŏ							
	& STEAM TURBINE THROTTLE	5.194	1200.000	3515.	900		799.600
	7 STEAM REHEAT		0.000	0.1	000		
	8 ST.COND. BACK PRESS.			3.5	500IN.HG	3.474	
	9 FINAL FEEDWATER		+92.000				
	10 COND/SG WATER INLET		492.000				
	11 COMPRESSOR INLET	8.307	59.000	14.0	590		
	12 GAS TURBINE INLET	9.054	1800.000				246.300
	13 GAS ECON.GAS INLET.		0.000			0.000	
	14 GAS FHH GAS INLET		865.000			1.401	
	15 STACK GAS EXHAUST		290.000				
	16 AS RECEIVED COAL	429.200T/HR				9.630	
		A Company of the Comp					

	POWER OUTPUT (AWE)	1200 RAS TURBI	NE THEF	-	* * * * *	* EFFICIE	CIES * * * * *
	FURNACE PR.FLE COAL MORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	D.BED TEMPERA BIT GAS ECONO K GAS FEEDM 0.0 L.M.CIRCU 15 L.M.FEEDH	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	YES NO 2.5 1 NO	L.M.SYSTEM PRESSURIZI STEAM CYCL GROSS PLAN NET PLANT NET POHER	NG SUBSYSTE	.432 .419 .408
	**** STATE POINTS ****	TOTAL FLON 10E06 LBH/HR	TEHPERATURE DEG-F	PRESSU PSIA		IÁL LOAD BTU/HR	POWER OUTPUT MWE
	1 L.M.TURBINE INLET	6.697	1-00.000	15.	200		170.500
	2 L.M.CONDENSER		1100.000	2.	480	5.313	
	3 L.M.FEED PUMP	5639.000 GPM	1100.000	28.	400		.271
	4 L.M.RECIRC PUMP	12315.000 GPM	1280.000	19.	660		.129
•	5 L.M.BOILER INLET		1280-000			5.987	
1	E STEAM TURBINE THROTTLE	6.417	1000.000	3515.	000		766.100
	7 STEAM REHEAT		0.000	G.	000		
	E ST.COND.BACK PRESS.			3.	500IN.HG	3.466	
	9 FINAL FEEDWATER		492-000				
	10 COND/SG WATER INLET		560.000				
	11 COMPRESSOR INLET	9.363	59.000	14-	690		
	12 GAS TURBINE INLET	10.176	1800.000				262.700
	13 GAS ECON.GAS INLET.		852.000			.739	
	14 GAS FWH GAS INLET		0.000			0.000	
	15 STACK GAS EXHAUST		290.000				
	1E AS RECEIVED COAL	453.100T/HR				9.776	

8-12

					* * * * * * EFFICIE	NCIES + + + +
		BIT GAS ECONO K GAS FEEDH 3.0 L.M.CIRCUI 15 L.M.FEEDH	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	1:00.0 YES No 2.2 1	L.M.SYSTEM PRESSURIZING SUBSYS STEAM CYCLE GROSS PLANT NET PLANT NET POWER OUTPUT(MI	.097 .263 .432 .404
	**** STATE POINTS ****	TOTAL FLOW 10EJ5 LBM/HR	TEMPERATURE DEG-F	PRESSURE PSIA		
	1 L.M.TURBINE INLET	6.622	1400.000	15.20	0	168.600
	2 L.M.CONDENSER		1100.000	2.40	0 5.254	
	3 L.M.FEED PUMP	+734.000 GPM	1100.000	27.81	0	-262
	4 L.M.RECIRC PUMP	12177.000 GPM	1280.000	19.56	0	•125
	5 L.M.BOILER INLET		1280.000		5.921	
8-122	E STEAM TURBINE THROTTLE	6.576	1000.000	3515.00	0	762.000
22	7 STEAM REHEAT		0.000	0.00	0	
٠.	8 ST.COND.BACK PRESS.			3.50	OIN.HG 3.419	
	9 FINAL FEEDWATER		492.000			
	10 COND/SG WATER INLET		560.000			
	11 COMPRESSOR INLET	9.090	59.000	14.69	0	
	12 GAS TURBINE INLET	9.907	1800.000			269.400
	13 GAS ECON.GAS INLET.		865.000		. 766	
	14 GAS FWH GAS INLET		0.000		0.000	
	15 STACK GAS EXHAUST		290.000			
	16 AS RECEIVED COAL	469.700T/HR			10.134	
					•	

	POWER OUTPUT (MWE)	1200 GAS TURBIN	E THIET			L., 1010	
	FURNACE PT.FLE CCAL MCRKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	0.3ED TEMPERAT 3IT GAS ECONOM K GAS FEEDHA 0.0 L.M.CIRCUL 5 L.M.FEEDHE	URE (DEG-F) MIZER MIZER HEATER ATION RATIO	1600.0 NO NO 2.5 1 NO	STEAM CYCL GROSS PLAN NET PLANT	NG SUBSYSTEM E	.420 .336 .327
	**** STATE POINTS ****		TEMPERATURE DEG-F	PRESSUS PSIA		AL LOAD POI BTU/HR	HER CUTPUT
	1 L.M.TURSINE INLET	7.265	1400.000	15.2	200		185.000
	2 L.M.CONDENSER		1100.000	2.4	+0 0	5.763	
	3 L.M.FEED PUMP	5194.000 GPM	1100.000	32.9	980		.346
	4 L.M.RECIRC PUMP	13360.000 GPM	1280.000	20	÷4 0		.165
œ	5 L.M.BOILER INLET		1280.008			6.495	
123	E STEAM TURBINE THROTTLE	6.657	1000.000	3515.0	0 0 0	•	709.300
	7 STEAM REHEAT		0.008	0.0	300		
	8 ST.COND. EACK PRESS.			3.9	FOOIN.HG	3.343	
	9 FINAL FEEDWATER		560.000				
	10 COND/SG WATER INLET		560.000				
	11 COMPRESSOR INLET	11.682	59.000	14.6	59 0		
	12 GAS TURBINE INLET	12.696	1806.000				305.700
	13 GAS ECON.GAS INLET.		0.000			0.000	
	14 GAS FHH GAS INLET		0.000			0.000	
	15 STACK GAS EXHAUST		1150.000				
	16 AS RECEIVED COAL	565.300T/HR			:	12.197	

					*****	FFICIENCIE	S * * * * *
PONER OUTPUT (MHE)	1200	GAS TURBIN	E INLET		7		
FURNACE	PR.FLO.BED		URE (DEG-F)	1000-0	L.M.SYSTEH		.097
CGAL	BIT	GAS ECONO		NO	PRESSURIZING	SUBSYSTEM	. 25 2
WORKING FLUID	K		TER HEATER	NO	STEAM CYCLE		.420
RECUPERATOR EFFECT			ATION RATIO	2.5 1	GROSS PLANT		.368
COMPRESSOR PRESSURE	ERHTIO 10 ,	L.M.FEEDHE	EATER	NO	NET PLANT		.359
AIR EQUIVALENCE PAT	10 1.2	STAGES OF	STEAM REHEAT	0	NET POWER OUT	PUT (MME)	1169.50
	тот	AL FLON	TEMPERATURE	PRESSU	RE THERMAL	LOAD PON	ER OUTPUT
**** STATE POINTS	10E0	6 LBM/HR	DEG-F	PSIA	10E09 BT	U/HR	HWE
1 L.M.TURBINE INLE	ET	7.224	1400.000	15.	200		184.000
2 L.M.CONDENSER			1100.000	2.4	+00 5.	731	
3 L.M.FEED PUMP	5	150.000 GPM	1100.000	32.	980		.346
4 L.H.RECIEC PUMP	13	360.000 GPM	1280.000	20 •	+4-0		•165
5 L.M.BOILER INLET	r		1280.008		ő.	459	
E STEAM TURBINE TH	ROTTLE	6.629	1000.000	3515 • 1	000		705.300
7 STEAM REHEAT			0.000	0.1	000		
8 ST.COND.BACK PRE	SS.			3.5	500IN.HG 3.	32-	
9 FINAL FEEDWATER			560.000				
10 COND/SG WATER IN	ILET		560.000				
11 COMPRESSOR INLET	ī i	10.662	59.000	14.6	590		
12 GAS TURBINE INLE	: T	11.588	1800.000				310.700
13 GAS ECON.GAS INL	.ET,		0.000		0.	000	
14 GAS FHH GAS INLE	T		0.000		0.	000	
15 STACK GAS EXHAUS	ST Agreement of the second		949.000				
16 AS RECEIVED COAL		515.900T/HR			11.	131	

				* * * * * * EFFICIE	ENCIES * * * * *
PCHER OUTPUT(MHE) FURNACE PR.FLC CCAL MCRKING FLUID RECUPERATOR EFFECTIVENESS CCMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	GAS ECONO K GAS FEEDW 0.0 L.M.CIRCUI 15 L.M.FEEDH	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	NO NO 2.5 1 NO	L.M.SYSTEM PRESSURIZING SUBSYS STEAM CYCLE GROSS PLANT NET PLANT NET POWER OUTPUT(ME	.420 .212 .207
**** STATE POINTS ****	TOTAL FLOW 10E36 LBM/HR	TEMPERATURE DEG-F	PRESSURE PSIA	THERMAL LOAD 10E09 BTU/HR	POWER OUTPUT
1 L.M.TURBINE INLET	5.789	1400.000	15.20	0	147.400
2 L.M.CONDENSER		1100.000	2 • 40	4.593	
3 L.M.FEED PUMP	4138.000 GPH	1100.000	21.81	.0	•175
4 L.M.RECIRC PUMP	10645.000 GPM	1280.000	20.35	50	.129
5 L.M.BOILER INLET		1280.000		5.175	
6 STEAM TURBINE THROTTLE	5 • 313	1000.000	3515.00	10	565.200
7 STEAM REHEAT		0.000	0.00	0	
6 ST.COND.BACK PRESS.			3.50	OIN.HG 2.664	
9 FINAL FEEDWATER		560.000			
10 COND/SG WATER INLET		560.000			
11 COMPRESSOR INLET	18.485	59.000	14.69	90	
12 GAS TURBINE INLET	20.089	1800.000			487.300
13 GAS ECON.GAS INLET.		0.000		0.000	
14 GAS FHH GAS INLET		0.000		0.000	
15 STACK GAS EXHAUST		817.000			
16 AS RECEIVED COAL	894.400T/HR			19-297	

					* * * *	* * EFFICI	ENCIES + + + + +
	POWER OUTPUT (MWE)	1200 GAS TURBI		4160.6			0.03
	FURNACE PRAFLI	TEMPERA SIT GAS ECONO	TURE (DEG-F)	1630.9 NO	L.M.SYST	ZING SUBSYS	.09 7 37EM .096
	WCRKING FLUID		ATEF HEATER	NO ON	STEAM CY		•420
	RECUPERATOR EFFECTIVENESS		LATION RATIO		GROSS PL		.127
	COMPRESSOR PRESSURE RATIO			เด	NET PLAN		.124
	AIR EQUIVALENCE RATIO		STEAM REHEAT	0		R OUTPUT (HI	
	**** STATE POINTS ****	TOTAL FLOW 10EDS LBM/HR	TEMPERATURE DEG-F	PRESSUF PSI4		RMAL LOAD 09 BTU/HR	PONER OUTPUT
	1 L.M.TURBINE INLET	3.421	1400.600	15.	200		87.400
							,
	2 L.M.CONDENSER		1100.000	2.4	+00	2.722	
	3 L.M.FEED PUMP	2446.000 GPM	1100.000	32.	+40		.160
	4 L.M.RECIRC PUHP	5290.000 GPM	1280.000	20.3	350		.076
	5 L.M.BOILER INLET		1280.000			3.068	
20	& STEAM TURBINE THROTTLE	3.148	1000.000	3515.	000		334.900
ň	7 STEAM REHEAT		0.000	0.0	00:0		
	& ST.COND.BACK PRESS.			3.5	SOOIN.HG	1.579	
	9 FINAL FEEDHATER		560.000				
	10 COND/SG WATER INLET		560.000				
	11 COMPRESSOR INLET	30.770	59.000	14.6	590		
	12 GAS TURBINE INLET	33.441	1800.000				777.700
	13 GAS ECON.GAS INLET,		0.000			0.000	
	14 GAS FWH GAS INLET		0.000			0.000	
	15 STACK GAS EXHAUST		805.000				
	16 AS RECEIVED COAL	1488.900T/HR				32.125	

8-126

WALL AND IS POOR

					* * * * *	* EFFICI	ENCIES *	* * * *
	PCHER OUTPUT(MHE) FURNACE PR.FLE CGAL WORKING FLUID RECUPERATOR EFFECTIVENESS GOMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	GAS ECONOM K GAS FEEDWA D.O L.M.CIRCUL L.M.FEEDHE	URE (DEG-F) IZER TER HEATER ATION RATIO	1:00.3 NO NO 2:5 1 NO	L.M.SYSTE PRESSUPIZ STEAM CYC GROSS PLA NET PLANT	M ING SUBSY: LE NT	STEM	.097 .291 .420 .403 .393 1169.27
	**** STATE POINTS ****	TOTAL FLOW 10EJ5 LBM/HR	TEMPERATURE CEG-F	PRESSUR PSI4		MAL LOAD 9 BTU/HR	POHER Mi	OUTPUT E
	1 L.M. TURBINE INLET	7.883	1400.000	15.2	9 0		20	0.700
	2 L.M.CONDENSES		1100.000	2.4	00	6 • 253		
	3 L.M.FEED PUMP	3635.000 GPM	1100.000	38.4	10			.442
	L L.M.REGIRC PUMP	1+496.000 GPM	1280.000	21.3	370			.211
,	5 L.M.BOILER INLET		1280.000			7.048		
,	E STEAM TURBINE THROTTLE	7.234	1000.000	3515.0	9.0		76	9.500
	7 STEAM REHEAT		0 • 6 0 0	0.0	0.0			
	8 ST.COND.BACK PRESS.			3.5	00IN.HG	3.627		
	9 FINAL FEEDWATER		960,000					
	16 COND/SG WATER INLET		560.000					
	11 COMPRESSOR INLET	9.737	59.000	14.6	96			
	12 GAS TURBINE INLET	10.583	1600.000				22	9.700
	13 GAS ECON.GAS INLET,		0.000			0.000		
	14 GAS FHH GAS INLET		0.000			0.000		
	15 STACK GAS EXHAUST		726.000					
	16 AS RECEIVED COAL	471.100T/HR				10.165		

						. FLLTOTEN	MIEZ A A A A A
	FURNACE PR.FLO CCAL MCRKING FLUID RECUPERATOR EFFECTIVENESS	BIT GAS ECONO K GAS FEEDH 9.0 L.M.CIRCUI 15 L.M.FEEDH	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	NO NO 2.5 1 NO	L.M.SYSTEM PRESSURIZI STEAM CYCLI GROSS PLAN NET PLANT NET POHER	NG SUBSYST E T	.420 .394 .385
	**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSUA PSIA		AL LOAD STU/HR	POWER OUTPUT MME
	1 L.M.TURBINE INLET	7 • 639	1400.000	15.2	20 0		194.500
	2 L.M.CONDENSER		1100.000	2.4	00	6.063	
	3 L.M.FEED PUMP	5460.000 GPM	1100.000	36.2	220		•402
	4 L.M.RECIRC PUMP	14047.000 GPM	1280.000	2.1.0	10:0		•192
þ	5 L.M.BOILER INLET		1280-000			6.830	
200	E STEAM TURBINE THROTTLE	7.010	1000.000	3515.0	100		745.800
	7 STEAM REHEAT		0.000	0 - 0	000		-
	& ST.COND.BACK PRESS.			3.5	OBIN.HG	3.515	
	S FINAL FEEDWATER		560.000				
	10 COND/SG WATER INLET		560.000				
	11 COMPRESSOR INLET	9.941	59.000	14.6	90		
	12 GAS TURBINE INLET	10.804	1700.000				259.600
	13 GAS ECON.GAS INLET.		0.000			0.000	
	14 GAS FWH GAS INLET		0.000			0.000	
	15 STACK GAS EXHAUST		790.000				
	16 AS RECEIVED COAL	481.000T/HR			1	10.378	

				•	A A A A ELLICIE	INCTES
	PCHER OUTPUT(MHE) FURNACE PR.FLO COAL MORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	GAS ECONO K GAS FEEDM B.O L.M.CIRCU 15 L.M.FEEDH	TURE (DEG-F) HIZER ATER HEATER LATION RATIO	NO PI NO S 2.5 1 G NO N	.M.SYSTEM PESSURIZING SUBSYS TEAM CYCLE ROSS PLANT ET PLANT ET POHER OUTPUT(M)	.420 .361 .371
	**** STATE POINTS ****	TOTAL FLOW 10006 LBM/HR	TEMPERATURE DEG-F	PRESSURE PSIA	THERMAL LOAD	POWER OUTPUT MWE
	1 L.M.TURBINE INLET	7.485	1500.000	24.700		190.600
	2 L.M.CONDENSER		1200.000	4.800	5.540	
	3 L.M.FEED PUMP	5444.800 GPM	1200.000	43.600		-460
	L L.M.RECIRC PUMP	1+028.000 GPM	1380.000	29.330		•141
,	5 L.M.BOILER INLET		1380.000		6.593	
	E STEAM TURBINE THROTTLE	6.755	1000.000	3515.000		718.600
	7 STEAM REHEAT		0.600	0.000		
	8 ST.COND.BACK PRESS.			3.500	IN.HG 3.387	
	9 FINAL FEEDWATER		560.000			
	10 CONDISG WATER INLET		560.000			
	11 COMPRESSOR INLET	10.310	59.000	14.690		
	12 GAS TURBINE INLET	11.205	1800.000			290.800
	13 GAS ECON.GAS INLET,		0.000		0.000	
	14 GAS FWH GAS INLET		0.000		0.000	
	15 STACK GAS EXHAUST		844.600			
	16 AS RECEIVED COAL	498.900T/HR			10.757	

			CASE NO. 24		* * * * *	* EEETOTE	NOTES # # # # #
	POWER OUTPUT(MME) FURNACE PR.FLO COAL WORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	GAS ECONOM K GAS FEEDWA G.O L.M.CIRCUI L.M.FEEDHE	TURE (DEG-F) MIZER MIER HEATER LATION RATIO	1800.0 NO NO 2.5 1 NO	L.M.SYSTEM PRESSURIZI STEAM CYCL GROSS PLAN NET PLANT NET POHER	f Ing Subsys E IT	.105 .267 .420 .381 .372
	**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSUR PSIA		MAL LOAD B BTU/HR	POWER OUTPUT MHE
	1 L.M.TURBINE INLET	7.583	1600.000	38.2	0.0		193.100
	2 L.M.CONDENSER		1300-600	8 • 8	00	5.824	
	3 L.M.FEED PUMP	3608.000 GPM	1300-000	58.8	3 0		.611
	4 L.M.RECIRC PUMP	1+446.000 GPM	1480.000	42.5	90		.138
<u>ھ</u>	5 L.M.BOILER INLET		1480.000			6.577	
မ	E STEAM TURBINE THROTTLE	6.737	1000.000	3515.0	0.0		716.700
	7 STEAM REHEAT		0.000	0.0	0 0		
	E ST.COND.BACK PRESS.			3. 5	00IN.HG	3.378	
	9 FINAL FEEDWATER		560.000				
	10 COND/SG WATER INLET		560.000				
	11 COMPRESSOR INLET	10.285	59.000	14.6	90		
	12 GAS TURBINE INLET	11.178	1800.000				290.200
	13 GAS ECON.GAS INLET,		0.000			0.000	
	14 GAS FWH GAS INLET		0.000			0.000	
	15 STACK GAS EXHAUST		344.000				•
	16 AS RECEIVED COAL	497.700T/HR				10.738	

				* * * * :	* * FFFICT	ENCIES * * * * *
						.098
					-	
						• 430
			-			.386 .376
	3170	J. C. R. REMEAT	J			
	TOTAL FLOW	TEMBED ATUBE	DDESCIID	E. THE	DMAL LOAD	POWER OUTPUT
**** STATE POINTS ****						MNE
1 L.M.TURBINE INLET	7 • 381	1500.000	24.7	6 0		188.000
2 L.M.CONDENSER		1200.000	4.8	60	5.758	
3 L.M.FEED PUMP	5368.000 GPM	1200.000	42.5	20		- 44 0
4 L.M.REGIRC PUMP	13831.000 GPM	1380.000	29.2	0 0		.135
E I W DOTLED THEF		4700 000				
S C.M.BUILER INCE!		1380.000			6 • > U U	
E STEAM TURBINE THROTTLE	6.140	1100.600	3515.0	0.0		725.400
7 STEAM REHEAT		0.000	0.0	00		
E ST.COND. BACK PRESS.			3.5	00IN.HG	3.282	
9 FINAL FEEDWATER		560.000				
46 CONDICT WATER THEFT		560.000				
IN COMMISS WATER INCE!		200.000				
11 COMPRESSOR INLET	10.165	59.000	14.6	90		
12 GAS TURBINE INLET	11.047	1800.000				286.900
13 GAS ECON.GAS INLET,		0.000			0.000	
14 GAS FWH GAS INLET		0.000			0.000	
15 STACK GAS EXHAUST		844.000				
46 AS RECETUED COAL	604 000T 4HD				40 547	
TE AS RECEIVED COME	471.0001/UK				10.012	
	FURNACE CCAL MCRKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO **** STATE POINTS **** 1 L.M.TURBINE INLET 2 L.M.CONDENSER 3 L.M.FEED PUMP 4 L.M.RECIRC PUMP 5 L.M.BOILER INLET 6 STEAM TURBINE THROTTLE 7 STEAM REHEAT 6 ST.COND.BACK PRESS. 9 FINAL FEEDWATER 10 COND/SG WATER INLET 11 COMPRESSOR INLET 12 GAS TURBINE INLET 13 GAS ECON.GAS INLET, 14 GAS FWH GAS INLET	FURNACE COAL GOAL GOAL GOAS ECONO MCRKING FLUID RECUPERATOR EFFECTIVENESS 0.0 L.M.CIRCU COMPRESSOR PRESSURE RATIO 15 L.M.FEEDHI AIR EQUIVALENCE RATIO 1.2 STAGES OF ***** STATE POINTS ***** 10E06 LBM/HR 1 L.M.TURBINE INLET 2 L.M.CONDENSER 3 L.M.FEED PUMP 5 L.M.BOILER INLET 6 STEAM TURBINE THROTTLE 7 STEAM REHEAT E ST.COND.BACK PRESS. 9 FINAL FEEDWATER 10 COND/SG HATER INLET 11 COMPRESSOR INLET 11 GAS ECON.GAS INLET 12 GAS FWH GAS INLET 12 GAS FWH GAS INLET 12 STACK GAS EXHAUST	FURNACE	FURNACE	POMER OUTPUT (MME) 1260 GAS TURBINE INLET FURNACE PRIDABLE TEMPRATURE (DEG-F) 1600.0 L.M.SYSTI COAL SIT GAS ECONOMIZER NO PRESSURI MCRKING FLUID K GAS FEEDMATER HEATER NO STEAM CYN ECOPPERATOR EFFECTIVENESS 0.0 L.M.CIRCULATION RATIO 2.51 GROSS PL. COMPRESSOR PRESSURE RATIO 15 L.M.FEEDHEATER NO NET PLAN' AIR EQUIVALENCE RATIO 1.2 STAGES OF STEAM REHEAT 0 NET PONE 1.2 STAGES OF STEAM REHEAT 0 NET PONE 1.2 L.M.STEEDHEATER PSIA 10E1 1.2 L.M.STEEDHEATER PSIA 10E1 1.2 L.M.STEEDHEATER PSIA 10E1 1.2 L.M.STEEDHEATER PSIA 10E1 1.2 L.M.STEEDHEATER PSIA 10E1 1.2 L.M.STEEDHEATER PSIA 10E1 1.2 L.M.STEEDHEATER PSIA 10E1 1.2 L.M.STEEDHEATER PSIA 10E1 1.2 L.M.STEEDHEATER PSIA 10E1 1.2 L.M.STEEDHEATER PSIA 10E1 1.2 L.M.STEEDHEATER PSIA 10E1 1.2 L.M.STEEDHEATER PSIA 10E1 1.2 L.M.STEEDHEATER PSIA 1.2 L.M.STEEDHEATER PSIA 1.2 L.M.STEEDHEATER PSIA 1.2 L.M.STEEDHEATER PSIA 1.2 L.M.STEEDHEATER PSIA 1.2 L.M.STEEDHEATER PSIA 1.2 L.M.STEEDHEATER PSIA 1.2 L.M.STEEDHEATER PSIA 1.2 L.M.STEEDHEATER PSIA 1.2 L.M.STEEDHEATER PSIA 1.2 L.M.STEEDHEATER PSIA 1.2 L.M.STEEDHEATER PSIA 1.2 L.M.STEEDHEATER PSIA 1.2 L.M.STEEDHEATER PRESSOR INLET 1.2 L.M.STEEDHEATER PSIA	FURNACE PROBLEM TEMPERATURE TOEGEF) 1600.0 L.M.SYSTEM KCKKING FLUID K GAS ECONOMIZER NO STEAM CYCLE CUPERATOR EFFECTIVENESS 0.0 L.M.CIRCULATION RATIO 2.5 1 GROSS PLANT COMPRESSOR PRESSURE RATIO 15 L.M.FEEDHEATER NO NET PLANT AIR EQUIVALENCE RATIO 1.2 STAGES OF STEAM REHEAT 0 NET PLANT 10E06 L8M/HR 0EG-F PSIA 10E09 BTU/HR **** STATE POINTS **** 10E06 L8M/HR 0EG-F PSIA 10E09 BTU/HR 1 L.M.TURBINE INLET 7.381 1500.000 24.760 2 L.M.CONDENSER 1200.000 4.8800 5.756 3 L.M.FEED PUMP 5368.000 GPM 1200.000 42.520 L L.M.RECIRC PUMP 13831.000 GPM 1380.000 29.200 5 L.M.BOILER INLET 1380.000 0.000 6 STEAM TURBINE THROTTLE 6.140 1100.000 3515.000 7 STEAM REHEAT 0.000 0.000 6 STEAM TURBINE THROTTLE 6.140 1100.000 3519.000 9 FINAL FEEDMATER 560.000 10 COND/SG MATER INLET 560.000 11 COMPRESSOR INLET 10.165 59.000 14.690 12 GAS TURBINE INLET 11.047 1800.000 13 GAS ECON.GAS INLET, 0.000 0.000 14 GAS FMH GAS INLET 0.000 0.000 15 STACK GAS EXHAUST 844.000

					* * * * *	* * EFFICI	ENCIES + + + + +
	PCHER OUTPUT(MWE) FURNACE PR.FLE CCAL WCRKING FLUID RECUPERATOR EFFECTIVENESS CCHPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	### GAS ECONO! K GAS FEEDW: 8.0 L.M.CIRCU! 15 L.M.FEEDH!	TURE (DEG-F) HIZER ATER HEATER LATION RATIO	NO NO 2.5 1 NO	STEAM CYC GROSS PLANT NET PLANT	ZING SUBSYS CLE Ant	.443 .394 .364
	**** STATE POINTS ****	TOTAL FLOW 10EJ5 LBM/HR	TEMPERATURE DEG-F	PRESSUF PSIA		RMAL LOAD 09 BTU/HR	POWER OUTPUT
	1 L.M.TURBINE INLET	7.343	1600.000	38.	200		187.000
	2 L.M.CONDENSER		1300.000	8 • 8	800	5.640	
	3 L.M.FEED PUMP	5431.000 GPM	1300.000	-55.	770		.555
	4 L.M.RECIRC PUMP	13988.000 GPM	1480.000	42.	320		.125
	5 L.M.BOILER INLET		1480.000			6.369	
,	E STEAM TURBINE THROTTLE	5.607	1200.000	3515.	000		732.000
3	7 STEAM REHEAT		0.600	0.0	000		
	& ST.COND.BACK PRESS.			3.5	SOOIN.HG	3.141	
	9 FINAL FEEDWATER		560.000				
	10 COND/SG WATER INLET		560.000				
	11 COMPRESSOR INLET	9.959	59.000	14.6	590		
	12 GAS TURBINE INLET	10.823	1800.000				281.000
	13 GAS ECON.GAS INLET.		0.000			0.003	
	14 GAS FWH GAS INLET		0.000			0.000	
:	15 STACK GAS EXHAUST		844.000				
	16 AS RECEIVED COAL	481.900T/HR				10.397	

						• • EFFICIE	ENCIES + + + + +
	PCHER OUTPUT (MWE) FURNACE PR.FL COAL HORKING FLUID REGUPERATOR EFFECTIVENESS CCHPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	BIT GAS ECONO K GAS FEEDH 0.0 L.H.CIRCU 15 L.H.FEEDH	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	NO NO	STEAM CYC GROSS PL NET PLAN	ZING SUBSYS CLE Ant	.435 .388 .378
	**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSUF PSIA	-	RMAL LOAD 09 BTU/HR	PONER CUTPUT
	1 L.M.TURBINE INLET	7.227	1400.000	15.2	200		184.000
	2 L.M.CONDENSER		1100.000	2.4	-00	5 • 7 33	
	3 L.M.FEED PUMP	3166.000 GPM	1100-000	32.6	560		.340
	L L.M.RECIRC PUMP	13290.008 GPM	1280.000	20 • 3	390		.163
ထု	5 L.M.BOILER INLET		1280.000			6.461	
-133	E STEAM TURBINE THROTTLE	5.269	1000.000	3515.0	000		730.700
	7 STEAM REHEAT		1000.000	600.0	000		
	8 ST.COND.BACK PRESS.			3.5	500IN.HG	3.239	
	9 FINAL FEEDWATER		560 .00 0				
	10 COND/SG WATER INLET		560.000				
	11 COMPRESSOR INLET	10.104	59.000	14.6	590		
	12 GAS TURBINE INLET	10.981	1800.000				285.200
	13 GAS ECON.GAS INLET.		0.000			0.000	
	14 GAS FWH GAS INLET		0.000			0.000	
	15 STACK GAS EXHAUST		844.000			•	
	16 AS RECEIVED COAL	488.900T/HR				10.549	

			CASE NO. 28			
	PCHER OUTPUT(MHE) FURNACE PR.FLO COAL WORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	GAS ECONO K GAS FEEDH 0.0 L.M.CIRCU 15 L.M.FEEDH	TURE (DEG-F) MIZER ATE F HEATER LATION RATIO	1800.0 L NO P NO S 2.5 1 G NO N	* * * * * EFFICION .M.SYSTEM RESSURIZING SUBSY: TEAM CYCLE ROSS PLANT ET PLANT ET POWER OUTPUT(MI	.098 .267 .449 .396 .336
	**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSURE PSIA	THERMAL LOAD 10E09 BTU/HR	POWER CUTPUT
	1 L.M.TURBINE INLET	7.194	1500.000	24.700		163.000
	2 L.M.CONDENSER		1200.000	4.800	5.512	
	3 L.M.FEED PUMP	5236.000 GPM	1200.000	40.630		-408
	L L.M.RECIRC PUMP	13492.000 GPM	1360.000	28.980		•125
8	5 L.M.BOILER INLET		1380.000		6.336	
134	E STEAM TURBINE THROTTLE	4.807	1100.000	3515.000		737.400
	7 STEAM REHEAT		1100.000	600.000		
	8 ST.COND.BACK PRESS.			3.500	IN.HG 3.095	
	9 FINAL FEEDWATER		560.000			
	10 COND/SG WATER INLET		560.000			
	11 COMPRESSOR INLET	9.907	59.000	14.698		
	12 GAS TURBINE INLET	10.767	1800.000			279.600
	13 GAS ECON. GAS INLET,		0.000		0.000	
	14 GAS FWH GAS INLET		0.000		0.000	
	15 STACK GAS EXHAUST		844.000			
	1€ AS RECEIVED COAL	479.400T/HR			10.343	

EFFICIENCIES * * *

						LITTOIL	11012
FU CC WO RE CC	WER OUTPUT(MME) IRNACE PR.FLG IRKING FLUID COUPERATOR EFFECTIVENESS MPRESSOK FRESSUPE R4TIO IR EQUIVALENCE PATIO	GAS ECONOM K GAS FEEDWA O.O L.M.CIRCUL L.M.FEEDHE	URE (DEG-F) IZER TER HEATER ATION RATIO	1800.0 NO NO 2.5 1 NO 1	STEAM CY GROSS PL NET PLAN	ZING SUBSYS CLE ANT	.462 .484 .394
* **	** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSURE PSIA		RMAL LOAD 09 BTU/HR	POWER OUTPUT MWE
1	L.M.TURBINE INLET	7.155	1600.000	38.20	0.0		182.200
2	L.M.CONDENSER		1300.000	8 - 80	0 0	5.49.	
3	L.M.FEED PUMP	3292.000 GPM	1300.000	53.40	33		.514
. 4	L.M.RECIRC PUMP	13631.000 GPM	1480.000	42.11	LO		•116
φ <u>5</u>	L.M.BOILER INLET		1480 • 000			6.206	
<u> </u>	STEAM TURBINE THROTTLE	4.430	1200.000	3515.00	0 0		743.900
7	STEAM REHEAT		1200.000	600.00	3 0		
8	ST.COND.BACK PRESS.			3.50	OOIN.HG	2 • 95 ⊍	
9	FINAL FEEDWATER		560.000				
10	CONDISG WATER INLET		560.000				
11	COMPRESSOR INLET	9.705	59.000	14.6	90		
12	GAS TURBINE INLET	10.547	1800.000				273.900
13	GAS ECON.GAS INLET.		0.000			0.000	
14	GAS FWH GAS INLET		0.000			0.000	
15	STACK GAS EXHAUST		844.000				
16	AS RECEIVED COAL	469.600T/HR		•		10.132	

								MOTES
	POMER OUTPUT (MM FURNACE COAL MORKING FLUID RECUPERATOR EFF COMPRESSOR PRES AIR EQUIVALENCE	PR.FLO ECTIVENESS SURE RATIO	BED TEMPERA BIT GAS ECONO K GAS FEED 0.0 L.H.CIRCU 15 L.M.FEED	MATER HEATER JLATION RATIO	1600.0 NO NO 2.5 1 NO 0	STEAM CYC GROSS PLAN NET PLANT	ING SUBSYS Le Nt	.410 .374 .365
	**** STATE POIN	ITS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSUR PSIA		MAL LOAD 9 BTU/HR	POWER OUTPUT NHE
	1 L.M.TURBINE	INLET	7.490	1400.000	15.2	20 0		190.700
	2 L.M.CONDENSE	R		1100.000	2.4	100	5.942	
	3 L.M.FEED PUM	(9	5354,000 GPI	1 1100 - 600	34.9	310	•	.379
	4 L.M.RECIRC P	บทค	13773.000 GP	1 1280 e 000	20.7	70		.181
	5 L.M.BOILER I	NLET		1280.000			6.696	
8-136	6 STEAM TURBIN	E THROTTLE	6.338	1000.000	2415 • 6	000		713.800
8	7 STEAM REHEAT			0.000	0.0	10 0		
	8 ST.COND.BACK	PRESS.			3.5	OOIN.HG	3.506	
	9 FINAL FEEDWA	TER		530.000				
	10 COND/SG WATE	R INLET		530.000				
	11 COMPRESSOR I	NLET	10.471	59.000	14.6	90		
	12 GAS TURBINE	INLET	11.380	1800.000				295.500
	13 GAS ECON.GAS	INLET,		0.00.0			0.000	
	14 GAS FWH GAS	INLET		0.000			0.000	
	15 STACK GAS EX	HAUST		844.000				
	16 AS RECEIVED	COAL	506.700T/HF	٠,			10.933	

	POWER OUTPUT(MW FURNACE COAL MORKING FLUID	P3.FL	BIT GAS ECONO K GAS FEEDW	TURE (DEG-F) MIZER ATER HEATER	NO PR NO ST	M.SYSTEM ESSURIZING SUBSYS	420
	RECUPERATOR EFF COMPRESSOR PRES AIR EQUIVALENCE	SURE RATIO	15 L.M.FEEDH	LATION RATIO EATER STEAM REHEAT	NO NE	ROSS PLANT ET PLANT ET PONER OUTPUT(HI	•380 •371 HE) 1169.60
	**** STATE POIN	ITS ****	TOTAL FLON 10EJ6 LBM/HR	TEMPERATURE DEG-F	PRESSURE PSIA	THERMAL LOAD 10E09 BTU/HR	POHER CUTPUT MHE
	1 L.M.TURBINE	INLET	7.486	1500.000	24.700		190-600
	2 L.M.CONDENSE	R		1200.000	4.800	5.840	
	3 L.M.FEED PUM	IP ·	5444.008 GPM	1200.000	43.600		-460
	4 L.M.RECIRC P	UMP	1+028.000 GPM	1380.000	29.330		-141
œ	5 L.M.BOILER I	NLET		1380.000		6.594	
137	E STEAM TURBIN	E THROTTLE	5.824	1100.000	2415.000		718.600
	7 STEAM REHEAT			0.000	0.000		
	8 ST.COND.BACK	PRESS.			3.5001	N.HG 3.387	
	9 FINAL FEEDHA	TER		530.000			
	10 COND/SG HATE	R INLET		530.000			
	11 COMPRESSOR I	NLET	10.311	59.000	14.690		
	12 GAS TURBINE	INLET	11.206	1800.000			290.990
	13 GAS ECON.GAS	INLET,		0.000		0.000	
	14 GAS FWH GAS	INLET		0.000		0.000	
	15 STACK GAS EX	HAUST		644.000			
	16 AS RECEIVED	COAL	498.900T/HR			10.764	

				- + + + + + FFF	ICIENCIES * * * * *
POWER OUTPUT (MWE) FURNACE PY.FLE CGAL MCRKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	BIT GAS ECONO K GAS FEEDH J.O L.M.CIRCU 15 L.M.FEEDH	TURE (DEG-F) MIZER ATER HEATER LATION RATIO EATER	1800.0 NO NO 2.5 1 NO	L.M.SYSTEM PRESSURIZING SU STEAM CYCLE GROSS PLANT NET PLANT	.109 9SYSTEM .267 .430 .387
AIR EGOLVACENCE RATIO	1.2 STAGES OF	STEAM REHEAT	ย	NET POWER OUTPU	T(MWE) 1169.40
**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSU PSIA		
1 L.M.TURBINE INLET	7.476	1600.000	38.	200	190.400
2 L.M.CONDENSER		1300.000	8.	800 5.74	0
3 L.M.FEED PUMP	****** GPH	1300.000		490	.586
4 L.M.RECIRC PUMP	1+242.000 GPM	1480.000	42.	470	-132
5 L.M.BOILER INLET		1480.000		6.48	5
E STEAM TURBINE THROTTLE	5.389	1200.000	2415.	000	723.500
7 STEAM REHEAT		0.000	0.	000	
& ST.COND.BACK PRESS.			3.	500IN.HG 3.27	3
S FINAL FEEDWATER		530.000			
10 COND/SG WATER INLET		530.000			
11 COMPRESSOR INLET	10.141	59.000	14.	690	
12 GAS TURBINE INLET	11.021	1800.000			286.200
13 GAS ECON.GAS INLET,		0.000		0.00	0
14 GAS FWH GAS INLET		0.000		0.00	0
15 STACK GAS EXHAUST		844.000			
16 AS RECEIVED COAL	490.700T/HR			10.58	7

	POWER OUTPUT (HWE)	1200 GAS TURBI	NE TALET			
	FURNACE PP.FLC COAL MORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO	BED TEMPERA BIT GAS ECONO K GAS FEEDH B.J L.M.CIRCUI 15 L.M.FEEDH	TURE (DEG-F)	NO F NO S 2.9 1 G NO N	M.SYSTEM PRESSURIZING SUBSYSTEAM CYCLE PROSS PLANT PLANT PET POWER OUTPUT (MI	•426 •383 •374
	**** STATE POINTS ****	TOTAL FLOW 10E35 LBM/HR	TEMPERATURE DEG+F	PRESSURE PSIA		POWER OUTPUT MWE
	1 L.M.TURBINE INLET	7.320	1-00.000	15.200	ι,	186.400
	2 L.M.CONDENSER		1100.000	2.400	5.807	
	3 L.H.FEED PUMP	5233.000 GPM	1100.000	33.450	ı	.354
	4 L.M.REGIRC PUMP	13460.000 GPM	1280.000	20.520	l	.169
8	5 L.M. BOILER INLET		1280.000		6.544	
20	E STEAM TURBINE THROTTLE	5 • 238	1000.000	2415.000	ı	724.800
	7 STEAM REHEAT		1000-000	600.000		
	8 ST.COND.BACK PRESS.			3.500	IIN.HG 3.333	
	9 FINAL FEEDWATER		530.000			
	10 COND/SG WATER INLET		530.000			
	11 COMPRESSOR INLET	10.234	59.000	14.690		
	12 GAS TURBINE INLET	11-122	1800.000			288.800
	13 GAS ECON.GAS INLET,		0.000		0.000	
	14 GAS FHH GAS INLET		0.000		0.000	
	15 STACK GAS EXHAUST		644.000			
	16 AS RECEIVED COAL	495.200T/HR			10.684	

				-	* * * * * EFFICIE	NCIES + + + + +
	POWER OUTPUT (MME)	1200 GAS TURBIT				
	FURNACE , PR.FL		TURE (DEG-F)		.M.SYSTEM	.098
	CGAL	BIT GAS ECONOR			RESSURIZING SUBSYS	STEM .267 .436
	MORKING FLUID RECUPERATOR EFFECTIVENESS		ATER HEATER Lation Ratio		TEAM CYCLE ROSS PLANT	.389
	CCMPRESSOR PRESSURE RATIO				ET PLANT	.380
	AIR EQUIVALENCE RATIO		STEAM REHEAT		ET POWER OUTPUT (M)	
	**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSURE PSIA	THERMAL LOAD 10E09 BTU/HR	POWER OUTPUT MWE
	1 L.M.TURBINE INLET	7.316	1500.000	24.700		186.300
	2 L.M.CONDENSER		1200.600	4.890	5.707	
	3 L.H.FEED PUMP	3320.000 GPM	1200.000	41.850		•429
	4 L.M.RECIRC PUMP	13709.000 GPM	1380.000	29.120		.131
0	5 L.M.BOILER INLET		1380.000		ā.444	
- -	6 STEAM TURBINE THROTTLE	4.840	1100.000	2415.800		729.600
	7 STEAM REHEAT		1100.000	660.000		
	8 ST.COND.BACK PRESS.			3.500	IN.HG 3.219	
	9 FINAL FEEDWATER		530.000			
	10 COND/SG WATER INLET		530.000			
	11 COMPRESSOR INLET	10.076	59.000	14.690		
	12 GAS TURBINE INLET	10.950	1800.000			284.400
	13 GAS ECON. GAS INLET,		0.000		0.000	
	14 GAS FWH GAS INLET		0.00%		0.000	\$
	15 STACK GAS EXHAUST	•	444.000			
	16 AS RECEIVED COAL .	487.500T/HR			10.518	

				* * * * *	* EFFICIO	ENCIES + + + 4	
PCHER OUTPUT (MHE)			4 : = = =				
= · · · · =							
AIR EQUIVALENCE RATIO							
**** STATE POINTS ****		DEG-F					1
1 L.M. TURBINE INLET	7.253	1600.000	38.2	200		184.780	
2 L.M.CONDENSER		1300.000	8.5	300	5.570		
3 L.M.FEED PUMP	5365.000 GPM	1300-900	54.5	30		.535	
4 L.M.RECIRC PUMP	13817.000 GPM	1480.000	32.2	220		.121	
5 L.M.BOILER INLET		1-80-000			6.291		
E STEAM TURBINE THROTTLE	4.466	1200-000	2415.	100		737.700	
7 STEAM REHEAT		1200.000	600.	0 0			
8 ST.COND. EACK PRESS.			3.5	BOOIN.HG	3.052		
S FINAL FEEDWATER		530.000					
16 COND/SG WATER INLET		530.000					
11 COMPRESSOR INLET	9.837	59.000	14.6	90			
12 GAS TURBINE INLET	10.691	1900-000				277.600	
13 GAS ECON.GAS INLET.		0.000			0.000		
14 GAS FWH GAS INLET		0.000			0.000		
15 STACK GAS EXHAUST		844.000					
16 AS RECEIVED COAL	476.000T/HR				10.270		
	FURNACE COAL MORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE PATIO **** STATE POINTS **** 1 L.M.TURBINE INLET 2 L.M.CONDENSER 3 L.M.FEED PUMP 4 L.M.RECIRC PUMP 5 L.M.BOILER INLET 6 STEAM TURBINE THROTTLE 7 STEAM REHEAT 8 ST.COND.EACK PRESS. 5 FINAL FEEDWATER 10 COND/SG WATER INLET 11 COMPRESSOR INLET 12 GAS TURBINE INLET 13 GAS ECON.GAS INLET, 14 GAS FWH GAS INLET 15 STACK GAS EXHAUST	FURNACE PR.FLO.BED TEMPERA COAL BIT GAS ECONO MORKING FLUID K GAS FEEDM RECUPERATOR EFFECTIVENESS 0.0 L.M.CIRCU COMPRESSOR PRESSURE RATIO 15 L.M.FEEDM AIR EQUIVALENCE RATIO 1.2 STAGES OF TOTAL FLOM 10ED6 LBM/HR 1 L.M.TURBINE INLET 7.253 2 L.M.CONDENSER 3 L.M.FEED PUMP 5365.000 GPM 4 L.M.RECIRC PUMP 13817.000 GPM 5 L.M.BOILER INLET E STEAM TURBINE THROTTLE 4.466 7 STEAM REHEAT 8 ST.COND.EACK PRESS. 5 FINAL FEEDWATER 16 COND/SG WATER INLET 11 COMPRESSOR INLET 11 COMPRESSOR INLET 12 GAS TURBINE INLET 13 GAS ECON.GAS INLET, 14 GAS FWH GAS INLET 15 STACK GAS EXHAUST	FURNACE COAL 31T GAS ECONOMIZER WORKING FLUID K GAS FEEDHATER HEATER RECUPERATOR EFFECTIVENESS 0.0 L.M.CIRCULATION RATIO COMPRESSOR PRESSURE RATIO 15 L.M.FEEDHEATER AIR EQUIVALENCE RATIO 1.2 STAGES OF STEAM REHEAT **** STATE POINTS **** TOTAL FLOW DEG-F 1 L.M.TURBINE INLET 7.253 1600.000 2 L.M.CONDENSER 1300.000 4 L.M.RECIRC PUMP 5365.000 GPM 1300.000 5 L.M.BOILER INLET 1.80.000 5 L.M.BOILER INLET 1.80.000 7 STEAM TURBINE THROTTLE 4.466 1200.000 8 ST.COND.EACK PRESS. 9 FINAL FEEDHATER 530.000 10 COND/SG WATER INLET 9.837 59.000 11 COMPRESSOR INLET 9.837 59.000 12 GAS TURBINE INLET 10.691 1900.000 13 GAS ECON.GAS INLET 0.000 15 STACK GAS EXHAUST 844.000	FURNACE PR.FLO.BED TEMPERATURE (DEG-F) 1800.0 COAL BIT GAS ECONOMIZER NO MORKING FLUID K GAS FEEDNATER HEATER NO RECUPERATOR EFFECTIVENESS 0.0 L.M.CIRCULATION RATIO 2.F 1 COMPRESSOR PRESSURE RATIO 15 L.M.FEEDHEATER NO AIR EQUIVALENCE PATIO 1.2 STAGES OF STEAM REHEAT 1 **** STATE POINTS **** TOTAL FLOW TEMPERATURE PRESSURE 1 L.M.TURBINE INLET 7.253 1600.000 38.2 L.M.FEED PUMP 5365.000 GPM 1300.000 34.6 L.M.FEED PUMP 5365.000 GPM 1300.000 32.2 L.M.RECIRC PUMP 13817.000 GPM 1480.000 32.2 L.M.BOILER INLET 1.80.000 ESTEAM REHEAT 1200.000 600.0 STEAM REHEAT 1200.000 600.0 STEAM REHEAT 1200.000 600.0 STEAM REHEAT 1200.000 600.0 STEAM REHEAT 1200.000 14.6 ST.COND.EACK PRESS. 3.5 FINAL FEEDMATER 530.000 14.6 ST.COND.SG MATER INLET 530.000 14.6 ST.C	POMER OUTPUT (MME) 1200 GAS TURBINE INLET FURNACE PR-FLD.3ED TEMPERATURE (DEG-F) 1600.0 L.M.SYSTEM COAL 31T GAS ECONOMIZER NO PRESSURIZI MORKING FLUID K GAS FEEDMATER HEATER NO STEAM CYCL RECUPERATOR EFFECTIVENESS 0.0 L.M.CIRCULATION RATIO 2.5 1 GROSS PLAN CYCL GAS PASS PASS PASS PASS PASS PASS PASS	POWER OUTPUT(HNE) 120G GAS TURBINE INLET FURNACE PRIDABED TEMPERATURE (DEG-F) 1800.0 L.M.SYSTEM COAL MORKING FLUID K GAS ECONOMIZER NO PRESSURIZING SUBSYSTEM CORNERSOR PRESSURE RATIO 15 L.M.GIRCULATION RATIO 2.F 1 GROSS PLANT COMPRESSOR PRESSURE RATIO 15 L.M.GIRCULATION RATIO 2.F 1 GROSS PLANT COMPRESSOR PRESSURE RATIO 1.5 L.M.GIRCULATION RATIO 2.F 1 GROSS PLANT NO NET PLANT AIR EQUIVALENCE PATIO 1.2 STAGES OF STEAM REHEAT 1 NET POWER OUTPUT(MI 1.2 STAGES OF STEAM REHEAT 1 NET POWER OUTPUT(MI 1.2 STAGES OF STEAM REHEAT 1 NET POWER OUTPUT(MI 1.2 STAGES OF STEAM REHEAT 1 NET POWER OUTPUT(MI 1.2 STAGES OF STEAM REHEAT 1 NET POWER OUTPUT(MI 1.2 STAGES OF STEAM REHEAT 1 NET POWER OUTPUT(MI 1.2 STAGES OF STEAM REHEAT 1 NET POWER OUTPUT(MI 1.2 STAGES OF STEAM REHEAT 1 NET POWER OUTPUT(MI 1.2 STAGES OF STEAM REHEAT 1 NET POWER OUTPUT(MI 1.2 STAGES OF STEAM REHEAT 1 NET POWER OUTPUT(MI 1.2 STAGES OF STEAM REHEAT 1 NET POWER OUTPUT(MI 1.2 STAGES OF STEAM STAGES OF STEAM STAGES OUTPUT(MI 1.2 STAGES OF STEAM STAGES OUTPUT(MI 1.2 STAGES OF STEAM STAGES OUTPUT(MI 1.2 STAGES OF STEAM STAGES OUTPUT(MI 1.2 STAGES OF STAGES OUTPUT(MI 1.2 STAGES OF STAGES OUTPUT(MI 1.2 STAGES OF STAGES OUTPUT(MI 1.2 STAGES OF STAGES OUTPUT(MI 1.2 STAGES OF STAGES OUTPUT(MI 1.2 STAGES OUTPUT(MI 1.2 STAGES OF STAGES OUTPUT(MI 1.2 STAGES OUTPUT(MI 1	FURNACE PR.FLO.3ED TEMPERATURE (OEG-F) 1800.0 L.M.SYSTEM .11 COAL .31 GAS FEEDMATER HEATER NO STEAM CYCLE .44 CAS FEEDMATER HEATER NO STEAM CYCLE .45 CAS FEEDMATER HEATER NO STEAM CYCLE .45 CAS FEEDMATER HEATER NO STEAM CYCLE .45 CAS FEEDMATER HEATER NO STEAM CYCLE .45 CAS FEEDMATER TO S

			CASE NO. 36				
	POWER DUTPUT (MME) FURNACE PROFILE COAL MCRKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSUPE RATIO AIR EQUIVALENCE RATIO	GAS ECONO GAS FEEDW 0.0 L.M.CIRCUI 15 L.M.FEEDH	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	1800.0 NO NO 2.5 1 - NO 3	L.M.SYSTEM PRESSURIZI STEAM CYCL GROSS PLAN NET PLANT	1 Ing Subsyst Le	.421 .380 .371
	**** STATE POINTS ****	TOTAL FLOW 10E36 LBM/HR	TEMPERATURE DEG-F	PRESSUF PSIA	- , , , , ,	MAL LOAD 9 BTU/HR	POWER OUTPUT MWE
	1 L.M.TURBINE INLET	7.371	1400.600	15.8	200		187.700
	2 L.M.CONDENSER		1100.000	2.4	00	5.647	
	3 L.M.FEED PUMP	3269.000 GPM	1100.000	33.8	380		.361
	L L.M.RECIRC PUMP	13554.000 GPM	1280.000	20.8	ia o		.173
ထု	5 L.M.BOILER INLET		1280.000			6.591	
8-142	€ STEAM TURBINE THROTTLE	6.237	1000.000	2415.0	000		721.300
	7 STEAM REHEAT		0.000	0.0	000		
	& ST.COND.BACK PRESS.			2.0	100IN.HG	3.385	
	9 FINAL FEEDHATER		530.000				
	10 COND/SG WATER INLET		530.000				
	11 COMPRESSOR INLET	10.306	59.000	14.5	90		
	12 GAS TURBINE INLET	11.201	1800-000				290.900
	13 GAS ECON.GAS INLET,		0.000			0.000	
	14 GAS FWH GAS INLET		0.000			0.000	
	15 STACK GAS EXHAUST		844.000				
	16 AS RECEIVED COAL	498.700T/HR				10.760	

							FLLIPIE	WOTED
	FUI COI WOI REI COI	WER OUTPUT(MWE) RNACE PR.FLD AL RKING FLUID CUPERATOR EFFECTIVENESS MPRESSOR PRESSURE RATIO R EQUIVALENCE RATIO	-BED TEMPERA BIT GAS ECONO K GAS FEEDN 0.0 L.M.CIRCUI 15 L.M.FEEDN	TURE (DEG-F) HIZER ATTR HEATER LATION RATIO ZATER		PRESSURIZ STEAM CYC GROSS PLA NET PLANT	7	
	¥ # #	** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSUR PSIA		RMAL LOAD STUZHR	
	1	L.M.TURBINE INLET	7.790	1 ~00 .000	15.2	0 0		198.400
	2	L.M.CONDENSER		1100.000	2.4	0.0	ŝ.180	
	3	L.M.FEED PUMP	3569.000 GPM	1100.800	37.5	60		•426
	4	L.M.RECIFC PUMP	14325.000 GPM	1280.000	21.2	30		.204
æ	5	L.M.BOILER INLET		1280.000			6.965	
143	6	STEAM TURBINE THROTTLE	6.591	1000.000	2415.0	0 0		693.500
	7	STEAM REHEAT		0.000	0.0	0 0		
	8	ST.COND. BACK PRESS.			9.0	OOIN.HG	3.813	
	9	FINAL FEEDWATER		530.000				
	10	CONDISG WATER INLET		530.000				
	11	COMPRESSOR INLET	10.692	59.000	14.6	90		
	12	GAS TURBINE INLET	11.837	1800.000				307.400
	13	GAS ECON. GAS INLET,		0.000			0.000	
	14	GAS FWH GAS INLET		0.000			0.000	
	15	STACK GAS EXHAUST		844.000				
	18	AS RECEIVED COAL	52 7. 000T/HR				11.370	

			0H3E 110 30			
	POWER OUTPUT (MWE)	1200 GAS TURBI	NE INLET		* * * * * * EFFICIENC	IES * * * *
	FURNACE PR.FLC COAL WORKING FLUID	3.3ED TEMPERA BIT GAS ECONO	TURE (DEG-F)	1630.0 NO NO	L.M.SYSTEM PRESSURIZING SUBSYSTE STEAM CYCLE	.037 M .207
	RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO	15 L.M.FEEDH		2.5 1 NO	GROSS PLANT NET PLANT	.386 .377
	AIR EQUIVALENCE RATIO	1.2 STAGES OF	STEAM REHEAT	J	NET POHER OUTPUT (MHE)	1169.50
	**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSUR PSIA		OMER OUTPUT
	1 L.M.TURBINE INLET	7.258	1400.000	15.2	200	184.800
	2 L.M.CONDENSER		1100.000	2.4	900 5.75a	
	3 L.M.FEED PUMP	5188.000 GPM	1100.003	32.9	930	-345
	4 L.M.RECIRC PUMP	13346.000 GPM	1280.000	20.4	30	•165
	E L.M.BOILER INLET		1280.000		6.489	
•	€ STEAM TURBINE THROTTLE	6.6 60	1000.000	3515.0	00	728.800
-	7 STEAM REHEAT		0.000	0.0		
	8 ST.COND.BACK PRESS.			2.0	001N.HG 3.271	
	9 FINAL FEEDWATER		560.000			
	10 COND/SG WATER INLET		560.000			
	11 COMPRESSOR INLET	10.147	59.000	14.6	90	
	12 GAS TURBINE INLET	11.028	1800.000			286.400
	13 GAS ECON.GAS INLET,		0.000		0.000	
	14 GAS FHH GAS INLET		0.000		0.000	
	15 STACK GAS EXHAUST		644.008			
	16 AS RECEIVED COAL	491.000T/HR			10.594	

-144

			CHOE HO: 32			
	PCWER OUTPUT (MWE)	1200 GAS TURBI	NE THET	•	* * * * * * EFFICIE	NGIES * * * * *
	FURNACE PR.FLC COAL	BED TEMPERA BIT GAS ECONOR K GAS FEEDW D.O L.M.CIRCU	TURE (DEG-F) HIZER ATER HEATER LATION RATIO	NO NO 2.3 1 NO	L.M.SYSTEM PRESSURIZING SUBSYS STEAM CYCLE GROSS PLANT NET PLANT NET POWER OUTPUT(M)	.392 .365 .356
	**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE .DEG-F	PRESSURE PSIA	THERMAL LOAD	POWER OUTPUT HWE
	1 L.M.TURBINE INLET	7.691	1400.000	15.20	0	195.800
	2 L.M.CONDENSER		1100.000	2.40	0 6.101	
	3 L.M.FEED PUMP	5498.000 GPM	1100.000	36.68	0	-410
	4 L.M.RECIRC PUMP	14143.000 GPM	1280.000	21.09	0	.196
	5 L.M.BOILER INLET		1280.000		6.876	
11/	E STEAM TURBINE THROTTLE	7.057	1000.000	3515.00	0	700.700
n	7 STEAM REHEAT		0.000	0.00	0	
	8 ST.COND.BACK PRESS.			9.00	01N.HG 3.709	
	9 FINAL FEEDWATER		560.000			
	10 COND/SG WATER INLET		560.000			
	11 COMPRESSOR INLET	10.752	59.000	14.69	0	
	12 GAS TURBINE INLET	11.685	1800.000			303.500
	13 GAS ECON. GAS INLET.		0.000		0.000	
	14 GAS FHH GAS INLET		0.000		0.000	
	15 STACK GAS EXHAUST		644.000			
	16 AS RECEIVED COAL	52 0.3 00T/HR			11.226	

				* * * * *	* EFFICIE	NUIES + + + + 1
						_
						.097
-						TEM .256
						• 433 • 446
					•	.435
			1		OUTPUT (MW	
**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F				POWER OUTPUT HWE
1 L.M.TURBINE INLET	3.441	1400.000	15.8	20 0		87.630
2 L.M.CONDENSEF		1100.000	2.4	+00	2.730	
3 L.M.FEED PUMP	+920.000 GPM	1100.000	29.8	350		.147
4 L.M.RECIRC PUMP	12657.000 GPM	1280.000	19.9	10		.070
E L.M.BOILER INLET		1280.000			3.077	
& STEAM TURBINE THROTTLE	2.685	1000.000	3515.0	10 0		413.330
7 STEAM REHEAT		1000.000	600.0	10 0		
8 ST.COND.BACK PRESS.			3.5	OOIN.HG	1.847	
9 FINAL FEEDWATER		492.000				
LO CONDISG WATER INLET		492.000				
L1 COMPRESS 34 INLET	4.250	59.000	14.6	90		
LE GAS TURBINE INLET	4.632	1600.000				99.050
13 GAS ECON.GAS INLET,		0.000			0.000	
L4 GAS FWH GAS INLET		852.000			•527	
LE STACK GAS EXHAUST		290.000				
LE AS RECEIVED COAL	212.750T/HR				4.590	
	COAL MORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO ***** STATE POINTS **** 1 L.M.TURBINE INLET 2 L.M.CONDENSEF 3 L.M.FEED PUMP 4 L.M.RECIRC PUMP 5 L.M.BOILER INLET 6 STEAM TURBINE THROTTLE 7 STEAM REHEAT 8 ST.COND.BACK PRESS.	FURNACE PR.FLC.9ED TEMPERAL COAL BIT GAS ECONOM MORKING FLUID K GAS FEEDW RECUPERATOR EFFECTIVENESS 0.0 COMPRESSOR PRESSURE RATIO 15 L.M.FEEDW AIR EQUIVALENCE RATIO 1.2 STAGES OF TOTAL FLOW 10E06 LBM/HR 1 L.M.TURBINE INLET 3.441 2 L.M.GONDENSEF 3 L.M.FEED PUMP +920.000 GPM 4 L.M.RECIRC PUMP 12657.000 GPM 5 L.M.BOILER INLET 6 STEAM TURBINE THROTTLE 2.685 7 STEAM REHEAT 8 ST.GOND.BACK PRESS. 9 FINAL FEEDWATER 11 COMPRESSOR INLET 4.250 12 GAS TURBINE INLET 4.632 13 GAS ECON.GAS INLET 14 GAS FWH GAS INLET 15 STACK GAS EXHAUST	FURNACE PR.FLC.9ED TEMPERATURE (DEG-F) COAL BIT GAS ECONOMIZER MORKING FLUID K GAS FEEDWATER HEATER RECUPERATOR EFFECTIVENESS D.D L.M.CIRCULATION RATIO COMPRESSOR PRESSURE RATIO 15 L.M.FEEDMEATER AIR EQUIVALENCE RATIO 1.2 STAGES OF STEAM REHEAT ***** STATE POINTS **** 10E06 LBM/HR DEG-F 1 L.M.TURBINE INLET 3.441 1400.000 2 L.M.CONDENSEF 1100.000 3 L.M.FEED PUMP +920.000 GPM 1100.000 4 L.M.RECIRC PUMP 12657.000 GPM 1280.000 5 L.M.BOILER INLET 2.685 1000.000 7 STEAM TURBINE THROTTLE 2.685 1000.000 8 ST.COND.BACK PRESS. 9 FINAL FEEDMATER 492.000 LC COND/SG HATER INLET 4.250 59.000 LC GAS TURBINE INLET 4.632 1600.000 LC GAS TURBINE INLET 4.632 1600.000 LC GAS FEM GAS INLET 4.632 1600.000 LC GAS FEM GAS INLET 4.632 1600.000 LC STACK GAS EXHAUST 290.000	FURNACE PR.FLC.9ED TEMPERATURE (0EG-F) 1600.0 COAL BIT GAS ECONOMIZER NO MORKING FLUID K GAS FEEDMATER HEATER YES RECUPERATOR EFFECTIVENESS 0.0 L.M.CIRCULATION RATIO 2.5 1 COMPRESSOR PRESSURE RATIO 15 L.M.FEEDMEATER NO AIR EQUIVALENCE RATIO 1.2 STAGES OF STEAM REHEAT 1 ***** STATE POINTS **** 10E06 LBM/MR DEG-F PSIA 1 L.M.TURBINE INLET 3.441 1400.000 15.2 L.M.CONDENSEF 1100.000 29.8 L.M.FEED PUMP +920.000 GPM 1100.000 29.8 L.M.BOILER INLET 1280.000 19.9 SECOND/SECOND TRANSPORT 1000.000 3515.0 T.M.BOILER INLET 1280.000 600.0 ST. STEAM REHEAT 1000.000 3515.0 T.M.BOILER INLET 1000.000 600.0 ST. STEAM REHEAT 1000.000 14.6 ST. COND/SG HATER INLET 492.000 14.6 ST. COND/SG H	PCHER OUTPUT(MHE)	FURNACE PR.FLC.3ED TEMPERATURE (DEG-F) 1600.0 L.M.SYSTEM GAS ECONOMIZER NO PRESSURIZING SUBSYS (GAS FEEDMATER HEATER YES STEAM CYCLE RECUPERATOR EFFECTIVENESS 0.3 L.M.CIRCULATION RATIO 2.5 1 GROSS PLANT COMPRESSOR PRESSURE RATIO 1.2 STAGES OF STEAM REHEAT 1 NET POMER OUTPUT (MM FEEDMATER HEATER NO NET PLANT AIR EQUIVALENCE RATIO 1.2 STAGES OF STEAM REHEAT 1 NET POMER OUTPUT (MM FEEDMATER POINTS **** TOTAL FLOM TEMPERATURE PRESSURE THERMAL LOAD 15.200 15.200 15.200 2.730 15. L.M.FEED PUHP

				* * * * *	+ EFFICI	ENCIES * * * * *
POWER OUTPUT(MME) FURNACE PR.FLE COAL MORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	GAS ECONO K GAS FEEDM 0.0 L.M.CIRCU 15 L.M.FEEDH	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	NO Yes	L.M.SYSTE PRESSURIZ STEAM CYC GROSS PLA NET PLANT	EM ZING SUBSYS CLE ANT	.097 .256 .433 .446
**** STATE POINTS ****	TOTAL FLOW	TEMPERATURE DEG-F	PRESSUI PSIA		RMAL LOAD 19 BTU/HR	POWER OUTPUT
1 L.M. TURBINE INLET	5.163	1400.000	15.	200		131.450
2 L.M.CONDENSER		1100.000	2.0	+00	4.095	
3 L.M.FEED PUMP	+920.000 GPM	1100.000	29.8	850		.220
L L.M.RECIRC PUMP	12657.000 GPH	1280.000	19.9	910		•105
5 L.M.BOILER INLET		1280-000			4.615	
E STEAM TURBINE THROTTLE	4.027	1000.000	3515.	000		620.000
7 STEAM REHEAT		1000.000	600.1	000		
& ST.COND.BACK PRESS.			3.5	EOOIN.HG	2.771	
9 FINAL FEEDWATER		492.000				
10 COND/SG WATER INLET		492.000				
11 COMPRESSOR INLET	6.375	59.000	14.5	590		
12 GAS TURBINE INLET	6.948	1600.000				148.580
13 GAS ECON. GAS INLET,		0.000			0.000	
14 GAS FWH GAS INLET		852.000			.792	
15 STACK GAS EXHAUST		290.000				
16 AS RECEIVED COAL	319.130T/HR				6.885	

CIMO	REP
HAMEINO.	NI TO
100	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FOOR	WHIL H

					* * * * *	* * EFFICI	ENCIES * * * *
	POWER OUTPUT(MWE) FURNACE PROFILE COAL WORKING FLUID REGUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	350 TEMPERA 31T GAS ECONO K GAS FEEDH 3.0 L.M.CIRCU 15 L.M.FEEDH	ATER HEATER LATION RATIO	1600.0 NO YES 2.5 1	STEAM CYC GROSS PLA NET PLANT	ING SUBSYS	•433 •446 •435
	**** STATE POINTS ****	TOTAL FLOW 10EJ6 LBM/HR	TEMPERATURE DEG-F	PRESSUR PSIA		RHAL LOAD 19 BTU/HR	
	1 L.M. TURBINE INLET	8 • 604	1400.000	15.2	0 0		219.098
	2 L.M.CONDENSER		1100.000	2.4	0.0	6.82=	
	3 L.M.FEED PUMP	+920.000 GPM	1100.000	29.8	50		.367
	4 L.M.RECIRC PUMP	12657.000 GPM	1280.000	19.9	1.0		.176
	5 L.M.BOILER INLET		1280.000			7 •692	
20	E STEAM TURBINE THROTTLE	6.711	1000.000	3515.0	0 0	•	1033.330
1148	7 STEAM REHEAT		1000-000	600.0	00		
	& ST.COND.BACK PRESS.			3.5	ODIN.HG	4.618	
	9 FINAL FEEDWATER		492.000				
	10 COND/SG WATER INLET		492.000				
	11 COMPRESSOR INLET	10.625	59.000	14.5	90 .		
	12 GAS TURBINE INLET	11.579	1600.000				247.625
	13 GAS ECON.GAS INLET,		0.000			9.000	
	14 GAS FWH GAS INLET		852.000			1.320	
	1º STACK GAS EXHAUST		290.000				
	16 AS RECEIVED COAL	531.880T/HR				11.475	

	0.0000 -0000000000000000000000000000000				ELLICIT	INDIES
	PCHER OUTPUT (MWE) FURNACE P2.FUE COAL MCRKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	GAS ECONO K GAS FEEDW d.0 L.M.CIRCU 15 L.M.FEEDW	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	NO PRE YES STE 2.5 1 GRO NO NET	SYSTEM SSURIZING SUBSYS AM CYCLE SS PLANT PLANT POHER OUTPUT(HI	.433 .416 .406
	**** STATE POINTS ****	TOTAL FLOW 10E36 LBM/HR	TEMPERATURE DEG-F	PRESSURE PSIA	THERMAL LOAD 10E09 BTU/HR	POHER OUTPUT
	1 L.M. TURBINE INLET	3.384	1400.000	15.200		86.160
	2 L.M.CONDENSER		1100.000	2.400	2.684	
	3 L.M.FEED PUMP	4837.000 GPM	1100.600	28.930		.140
	4 L.M.RECIRC PUMP	12444.000 GPM	1280.000	19.750		.067
œ	5 L.M.BOILER INLET		1280.000		3.025	
2	E STEAM TURBINE THROTTLE	2.666	1000.000	3515.000		410.400
	7 STEAM REHEAT		1000.000	600.000	•	
	& ST.COND.BACK PRESS.			3.500IN	.HG 1.834	
	9 FINAL FEEDWATER		492.000			
	10 COND/SG WATER INLET		492.000			
	11 COMPRESSOR INLET	4.079	59.000	14.690		
	12 GAS TURBINE INLET	4.458	1600.000			103.450
	13 GAS ECON.GAS INLET.		0.000		0.000	
	14 GAS FWH GAS INLET		865.000		•55 0	
	15 STACK GAS EXHAUST		290.000			
	16 AS RECEIVED COAL	218.020T/HR			4.922	

					* * * * * * EFFICIE	ENCIES + + + + +
	POMER OUTPUT(NHE) FURNACE PR.FU CCAL MORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	GAS ECONO K GAS FEEDW E.O L.M.CIRCU 15 L.M.FEEDH	TURE (DEG-F) MIZER ATER HEATER LATION RATIO	NO YES 2.5 1 NO	L.M.SYSTEM PRESSURIZING SUBSYS STEAM CYCLE GROSS PLANT NET PLANT NET POWER OUTPUT(M)	.433 .416 .406
	**** STATE POINTS ****	TOTAL FLOW 10E05 LBM/HR	TEMPERATURE DEG-F	PRESSURE PSIA		POWER OUTPUT MME
	1 L.M.TURBINE INLET	5.075	1400.000	15.20	0	129.240
	2 L.M.CONDENSER		1100.000	2.40	0 4.026	
	3 L. M. FEED PUMP	+837.000 GPM	1100.000	28.93	0	.210
	4 L.M.RECIRC PUMP	12444.000 GPM	1280.000	19.75	0	.130
φ	5 L.M.BOILER INLET		1280.000		4.538	
150	6 STEAM TURBINE THROTTLE	3.998	1000.000	3515.00	0	615.600
	7 STEAM REHEAT		1000-000	600.00	o ·	
	& ST.COND.BACK PRESS.			3.50	0IN.HG 2.751	
	9 FINAL FEEDWATER		492.000			
	10 COND/SG WATER INLET		492.000			
	11 COMPRESSOR INLET	6.119	59.000	14.69	0	
	12 GAS TURBINE INLET	6.687	1600.000			155.180
	13 GAS ECON.GAS INLET,		0.000		0.000	
	14 GAS FWH GAS INLET		865.000		.826	
	15 STACK GAS EXHAUST		290.000			
	16 AS RECEIVED COAL	327.020T/HR			7.383	

					* * * * * * EFFICI	ENCIES * * * * *
	· · · · · · · · · · · · · · · · · · ·	1500 GAS TURBI				
	FURNACE PR. FUE		TURE (DEG-F)		L.M.SYSTEM	• 097
	CCAL	BIT GAS ECONO:		NO	PRESSURIZING SUBSY	
	WORKING FLUID RECUPERATOR EFFECTIVENESS		ATER HEATER	YES	STEAM CYCLE	• 433
	COMPRESSOR PRESSURE RATIO	15 L.M.FEEDH	LATION RATIO	2.5 1	GROSS PLANT NET PLANT	•416 •406
	AIR EQUIVALENCE RATIO		STEAM REHEAT	NO 1	NET POWER OUTPUT (M	
	Harris Edulina Harris	317023 01	STEAT REMENT	•	MET FOREX BOTT STATE	140200
		TOTAL FLOW	TEMPERATURE	PRESSURE	THERMAL LOAD	POWER OUTPUT
	**** STATE POINTS ****	10E05 LBM/HR	DEG-F	PSIA	10E09 BTU/HR	MME
	1 L.M.TURBINE INLET	8.459	1400.000	15.20	10	215.400
	2 L.M.CONDENSER		1100.000	2• +0	6.710	
	3 L.M.FEED PUMP	⇒637.000 GPM	1100.000	28.93	30	.349
	4 L.M.RECIRC PUMP	12444.000 GPM	1280.000	19.75	0	.167
3	5 L.M.BOILER INLET		1280.000		7.563	
ņ	6 STEAM TURBINE THPOTTLE	6.664	1000.000	3515.00	10:	1026.000
	7 STEAM REHEAT		1000-000	600.00	10	
	8 ST.COND. EACK PRESS.			3.50	OIN.HG 4.585	
	9 FINAL FEEDWATER		492.000			
	16 COND/SG WATER INLET		492.000			
	11 COMPRESSOR INLET	10.198	59.000	14.69	10	
	12 GAS TURBINE INLET	11.145	1000.000			258.630
	13 GAS ECON.GAS INLET,		0.000		0.000	
	14 GAS FWH GAS INLET		a65.000		1.376	
	15 STACK GAS EXHAUST		290.000			
	16 AS RECEIVED COAL	545.040T/HR			12.305	

					* * * * *	 EFFICIE 	NCIES * * * * *
			NE INLET				
	FURNACE PR.FU	BIT GAS ECONO	TURE (DEG-F)		L.M.SYSTE		•136
	WORKING FLUID		ATER HEATER	NO YES	STEAM CYC	ING SUBSYS	TEM .256
	RECUPERATOR EFFECTIVENESS		LATION RATIO	2.7 1	GROSS PLA		.452
	COMPRESSOR PRESSURE R-TIO	15 L.M.FEEDH		NO	NET PLANT		.441
	AIR EQUIVALENCE RATIO		STEAM REHEAT	1		OUTPUT (MK	
	**** STATE POINTS ****	TOTAL FLOW 10E05 LBM/HR	TEMPERATURE DEG-F	PRESSUS PSIA	• • • • • • • • • • • • • • • • • • • •	MAL LCAD 9 BTU/HR	POHER OUTPUT MNE
	1 L.M.TURBINE INLET	27.263	1400.000	15.2	9 0		194.11
	2 L.M.CONDENSER		1100.000	2.4	00	5.349	
	3 L.M.FEED PUMP	8786.000 GPM	1103.000	56.5	70		1.108
	4 L.M.RECIRC PUMP	22707.000 GPM	1280.000	21.1	.30		.400
	5 L.H.BOILER INLET		1280.000			6.066	
2	6 STEAM TURBINE THROTTLE	5.265	1000.600	351 5.9	100		810.64
•	7 STEAM REHEAT		1000.000	600.0	00		
	& ST.COND.BACK PRESS.			3.5	ODIN.HG	3.623	
	9 FINAL FEEDWATER		492.000				
	10 COND/SG WATER INLET		+92.000				
	11 COMPRESSOR INLET	8.378	59.000	14.6	90		
	12 GAS TURBINE INLET	9.130	1600.000				195.25
	13 GAS ECON.GAS INLET,		0.000			0.000	
	14 GAS FWH GAS INLET		852.000			1.040	
	15 STACK GAS EXHAUST		290.000				
	16 AS RECEIVED COAL	419.395T/HR				9.048	

						ELLICIA	FUCTED
	POWER OUTPUT(MME) FURNACE PR.FUR GOAL MCRKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	BIT GAS ECONO CS GAS FEEDW J.O L.M.CIRCU 15 L.M.FEEDH	TURE (DEG-F) MIZER MATER HEATER MATION RATIO	1600.0 NO YES 2.5 1 NO	STEAM CY GROSS PL NET PLAN	IZING SUBSYS ICLE .ANT	• 433 .452 .441
	**** STATE POINTS ****	TOTAL FLOW 10E06 LBM/HR	TEMPERATURE DEG-F	PRESSUR PSIA		ERMAL LOAD E09 BTU/HR	POWER OUTPUT HWE
	1 L.M.TURBINE INLET	13.632	1400.000	15.7	200		97.06
	2 L.M.CONDENSER		1100.000	2.0	400	2.674	
	3 L.M.FEED PUMP	8786.000 GPM	1100.000	56.5	570		. 554
	4 L.M.RECIKC PUMP	22707.000 GPM	1280.000	21.	130		.200
	5 L.M.BOILER INLET		1280.000			3.033	
0	E STEAM TURBINE THROTTLE	2.633	1000-000	3515.	000		420.790
3	7 STEAM REHEAT		1000.000	600.0	000		
	6 ST.COND.BACK PRESS.			3.5	500IN.HG	1.812	
	9 FINAL FEEDWATER		492.800				
	10 COND/SG WATER INLET		492.000				
	11 COMPRESSOR INLET	4.189	59.000	14.6	390		
	12 GAS TURBINE INLET	4.551	1600.000				97.63
	13 GAS ECON.GAS INLET,		0.000			0.000	
	14 GAS FWH GAS INLET		85 2 • 000			.520	
	15 STACK GAS EXHAUST		290.000				
	16 AS RECEIVED COAL	209.70T/HR				4.524	

					* * * * * * EFFICIE	NCTES # # # # #
	FURNACE PR.FUR	NACE TEMPERA BIT GAS ECONO CS GAS FEEDW J.O L.M.CIRCU LS L.M.FEEDH	MIZER ATE F HEATER LATION RATIO EATER	1600.0 L NO F YES S 2.8 1 C	M.SYSTEM PRESSURIZING SUBSYS STEAM CYCLE GROSS PLANT NET PLANT NET POWER OUTPUT (MW	.136 .256 .433 .452 .441
	**** STATE POINTS ****	TOTAL FLOW 10EJ6 LBM/HR	TEMPERATURE DEG+F	PRESSURE PSIA	THERMAL LOAD 10E09.BTU/HR	
	1 L.M. TURBINE INLET	34.080	1400-000	15.20)	242.640
	2 L.M.CONDENSER		1100-000	2.400	6.686	
	3 L.M.FEED PUMP	8786.000 GPM	1100-000	56.57)	1.385
	4 L.M.RECIRC PUMP	22707.000 GPM	1280.000	21.130	1	.500
ထု	5 L.M.BOILER INLET		1280.000		7.583	
8-154	E STEAM TURBINE THROTTLE	6.581	1000.000	3515.000	1	1013.300
	7 STEAM REHEAT		1008.000	600.000)	
	& ST.COND.BACK PRESS.			. 3.500	DIN.HG 4.529	
	9 FINAL FEEDWATER		492.000			
•	10 COND/SG WATER INLET		492.000			
	11 COMPRESSOR INLET	10.473	59.000	14.690	ı	
	12 GAS TURBINE INLET	11.379	1600.000			244.060
	13 GAS ECON.GAS INLET.		0.000		0.000	
	14 GAS FWH GAS INLET		852.000		1.301	
	15 STACK GAS EXHAUST		290.000	•		
	16 AS RECEIVED COAL	524.250T/HR			11.311	

	DAUES SUFSUE TOURS	4000 CAS TUDOT	UE TAU ET				MOZES
	PCWER OUTPUT(MWE) FURNACE PR.FLD CCAL MORKING FLUID RECUPERATOR EFFECTIVENESS COMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	GAS ECONO K GAS FEEDW J.O L.M.CIRCUI 15 L.M.FEEDH	TURE (CEG-F) MIZER ATER HEATER LATION RATIO	NO YES 2.5 1 NO	PRESSURIZ STEAM CYC GROSS PLA NET PLANT	NT	STEH .256 .433 .446 .435
	.**** STATE POINTS ****	TOTAL FLOW 10E05 LBM/HR	TEMPERATURE DEG-F	PRESSUR PSIA		MAL LOAD 9 BTU/HR	POWER OUTPUT
	1 L.M.TURBINE INLET	6.883	1400.000	15.2	20.0		175.270
	2 L.M.CONDENSER		1100-000	2.4	00	5.7E0	
	3 L.M.FEED PUMP	+920.000 GPM	1100.000	29.8	50		.294
	4 L.M.RECIRC PUMP	12657.000 GPM	1280.000	19.9	10		•141
0	F L.M.BOILER INLET		1280.000			6.154	
n n	6 STEAM TURBINE THROTTLE	5.369	1000.000	3515.0	10 0		826.660
	7 STEAM REHEAT		1000.000	600.0	10 0		
	& ST.COND.BACK PRESS.			3.9	OOIN.HG	3.694	
	5 FINAL FEEDWATER		492.000				
	10 COND/SG WATER INLET		-92 - 000				
	11 COMPRESSOR INLET	8.500	59.000	14.6	90		
	12 GAS TURBINE INLET	9.263	1600.000				198.100
	13 GAS ECON.GAS INLET.		0.000			0.000	
	14 GAS FWH GAS INLET		852.000			1.055	
	15 STACK GAS EXHAUST		290.000				
	16 AS RECEIVED COAL	425.500T/HR				9.181	

	·				2112022110	120
	POWER OUTPUT(MWE) FURNACE PR.FUR COAL MORKING FLUID RECUPERATOR EFFECTIVENESS CCMPRESSOR PRESSURE RATIO AIR EQUIVALENCE RATIO	GAS ECONO K GAS FEEDWA G-0 L.M.CIRCUL 15 L.M.FEEDWA	TURE (DEG-F) MIZER MITER HEATER LATION RATIO	NO P YES S 2.F 1 G NO N	.M.SYSTEM RESSURIZING SUBSYSTE TEAM CYCLE ROSS PLANT ET PLANT ET POHER OUTPUT(MME)	.433 .416 .406
	**** STATE POINTS ****	TOTAL FLOW 10E36 LBM/HR	TEMPERATURE DEG-F	PRESSURE PSIA	THERMAL LOAD P	POWER OUTPUT MWE
	1 L.M. TURBINE INLET	6.767	1400.000	15.200		172.320
	2 L.M.CONDENSER		1100.000	2.400	5.368	
	3 L.M.FEED PUMP	+837.000 GPM	1103.000	28.930		•279
	4 L.M.REGIRG PUMP	12444.000 GPM	1280.000	19.750		•133
œ	F L.M.BOILER INLET		1280.000		6.050	
156	E STEAM TURBINE THROTTLE	5.331	1000.000	3515.000		820.800
	7 STEAM REHEAT		1000.000	600.006		
	& ST.COND.BACK PRESS.			3.500	IN.HG 3.668	
	S FINAL FEEDWATER		492.000			
	10 COND/SG WATER INLET		-92.000			
	11 COMPRESSOR INLET	8.158	59.000	14.690		
	12 GAS TURBINE INLET	8.916	1600.000			206.900
	13 GAS ECON.GAS INLET,		0 • 0 0 0		0.000	
	14 GAS FWH GAS INLET		865.000		1.101	
	15 STACK GAS EXHAUST		290.000			
	16 AS RECEIVED COAL	436.030T/HR			9 • 844	

Appendix A 8.2

LIQUID-METAL RANKINE TOPPING CYCLE PARAMETRIC POINTS SUMMARY SHEETS

PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVERALL ENERGY EFF CAP COST MILLION & CAPITAL COST ** KWE COE CAPITAL COE FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST				
PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVERALL ENERGY EFF CAP_COST MILLION \$ CAPITAL COST.\$/KHE COE CAPITAL COE FUEL COE OP 8 MAIN COST OF ELECTRIC EST TIME OF CONST				
PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF CAP COST MILLION CAPITAL COST.*/KWE COE CAPITAL COE FUEL COE OP 3 MAIN COST OF ELECTRIC EST TIME OF CONST	17 13 .000 .00 .316 .34 859.552 787.35 762.292 695.36 24.098 21.98 9.188 8.35 2.034 1.90 35.320 32.24 6.500 6.50	19 20 6 .COC .COC 7 .194 .117 7 .194 .173 3 .915.6641178.917 7 .833.6571126.112 2 .26.335 .35.593 4 .19.235 .26.123 4 .2.316 .4.644 0 .44.130 .66.425 0 .6.500 .5.500	21 22 .600 .00 .381 .37 7 775.139 784.56 2 682.735 691.43 3 21.583 21.85 7 .708 7.76 1.703 1.21 5 30.984 31.46 6.500 6.50	23 24 3 •360 •500 3 •360 •360 9 781.671 823.214 3 689.465 726.089 8 21.796 22.953 6 8.059 9.059 9 1.859 1.859 1.859 1.859 1.859 1.859 1.859 1.859 1.859 1.859 1.859 1.859
PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVER ALL ENERGY EFF CAP COST MILLION \$ CAPITAL COST.*/KWE COE CAPITAL COE OP \$ MAIN COST OF ELECTRIC EST TIME OF CONSI				
PARAMETRIC POINT THERMODYNAMIC EFF POWER PLANT EFF OVER ALL ENERGY EFF CAP COST MILLION \$ CAPITAL COST.*S/KWE COE CAPITAL COE FUEL COE OP & MAIN COST OF ELECTRIC EST TIME OF CONST	33 34 .000 .000 .362 .363 783 820 917.671 691.168 720.561 21.889 22.771 8.014 7.884 1.849 1.821 1.849 1.821 1.849 1.821 1.849 6.500 6.500	35 36	37 38 0 000 000 1 336 36 0 813 396 767 74 1 725 225 673 95 5 22 925 21 36 7 8 621 7 91 1 8 621 1 91 1 8 6 500 6 500	39 40

REPRODUCTIVE OF THE ORIGINAL PLAN IS POOR

Table A 8,2.1 Continued

RANKINE METAL VAPOR TOPPING-STEAM CYCLE SUMMARY PLANT RESULTS

1									
	PARAMETRIC POINT	41	42	43	44	45	46	47	₹8
	THERMODYNAMIC EFF	-000	-000	-000	•000	-000	•000	.000	-000
٦.	POWER PLANT EFF	423	. \$23	,398	398	-398	-129	-129	
	OVERALL ENERGY EFF	, 423	423	-400	-400	100	-429	-429	-429
	CAP COST MILLION \$			443.079		1106.025	323-205		1044-248
	CAPITAL COST + S/KWE	671.515	678.296	772.283	760-438	771-150	722-150	739.208	732-816
	COE CAPITAL	21.228 6.852	21.442 5.852	24.414 7.293	24.C39 7.293	24.378 7.293	22.829	23.358	23-166
	COE FUEL COE OP & MAIN	1.678		1.800	1.800	1.800	6.756 1.561	6.756 1.661	6.756 1.661
	COST OF ELECTRIC	29.758	29.972			33.471	31.246	31.785	31.583
£.	EST TIME OF CONST	6.181	6.759		6.181	6.759	6.500	5.757	
	PARAMETRIC POINT	49	50	5 ž	52	53	54	55	56
	THERMODYNAMIC EFF			-000	-000	.000	•000	.000	.000
	POWER PLANT EFF	. 924	-398	.000	-000	.000	-000	-000	000
	OVERALL ENERGY EFF CAP COST MILLION \$. 424	-400	.000	-000	-000	-000	-000	-000
	CAP COST MILLION &	760,293	832-804	.000	•000	000	.000	.000	
	CAPITAL COST.S/KWE	666-942	769.360	-000	-000	-000	-000	-000	-000
	COE CAPITAL	21.084	24.321	•000	- 000	-000	-080	- 000	-000
	COE FUEL	5.847	7.293	-500	-000	-000	-000	-000	-000
	COE OP 8 MAIN	1.572	1.800	- 500	• 000	-000	000	-000	
	COST OF ELECTRIC	53-605	33.413	-000	•000	-500	000	•000	-000
	EST TIME OF CONST	6.500	6.500	•000	•000	•000	•000	-000	-000

PARAMETRIC POINT	1	_	3	4	5	6	7	8
TOTAL CAPITAL COST •MS P LIG MET VAPOR GENERATORS •MS LIG MET TURPINE •MS	776.08	721.36	741.96 57.344	925.0 7 17.600	872.11 17.500	881.71	790.66	811.15
L LIG MET TUREINE .MS A STEAM TURB-GEN & FEED STG .MS	24.000 21.200			24.000	24.000	17-600 24-050	59.648 24.000	62 • 208 24 • 00 0
A SIEAN TURB-GEN & FELU STG WAS N MET VAP COND-STEAM GEN MS I LIG MET CIRC & PROCESS SYS MS	9.340 27.178	21.150 8.25C	21-116 8-860 25-448	21-200 9-340	21 200 9 340	21 - 200 9 - 340	21.235 2.340	21 • 235 9 • 346
RAC THER DIMPHIP-PEC-PIPING -MC	3 7 _600	27.063 37.160 2.750	38_56R	26.048 36.400	26.048 36.120	26.048 35.800	27.183 36.800	27-183 36-800
R TOT MAJOR COMPONENT COST *M\$ E TOT MAJOR COMPONENT COST *S/KWE S BALANCE OF PLANT COST *S/KWE U SITE LASOR PLANT COST *S/KWE U SITE LASOR *S/KWE T INDIRECT COST *S/KWE PROF & OWNER COSTS *S/KWE B CONTINGENCY COST *S/KWE R ESCALATION COST *S/KWE A TOTAL CAPITALIZATION *S/KWE A TOTAL CAPITALIZATION *S/KWE O COST OF ELEC-CAPITAL *MILLS/KWE D COST OF ELEC-CAPITAL *MILLS/KWE U TOTAL COST OF ELEC *MILLS/KWE N COE D *S CAP *FACTOR *MILLS/KWE N COE D *S CAP *FACTOR *MILLS/KWE COE 1 *SXCAP *COST *MILLS/KWE COE 1 *SXCAP *COST *MILLS/KWE COE 1 *SXCAP *COST *MILLS/KWE COE (CONTINGENCY=O) *MILLS/KWE COE (CONTINGENCY=O) *MILLS/KWE COE (ESCALATION=O) *MILLS/KWE	2.750	2.750	2.750	2-750	2.750	2-750	2-750	2.750
R TOT MAJOR COMPONENT COST *MS E TOT MAJOR COMPONENT COST*S/KWE	181.716 160.303	174.597 151.849	179.072 156.742	120-010	137.058 117.655	136.738	130 • 956 159 • 564	183.516 161.822
S BALANCE OF PLANT COST **/KWE U SITE LABOR **/KWE	77.592 86.652	69.C3D 77.398	71.515 80.392	158.247 104.470	142-430 94-797	145.577 96.202	82.649 88.275	86.357 30.781
TINDIRECT COSTS +\$/KWE	324.547 44.193	298.276 39.473	308.650 41.000	382.727 53.280	354 -882 48 - 346	359.379 49.063	330.488 45.020	338.960 46.298
PROF & OWNER COSTS **/KWE B CONTINGENCY COST **/KWE	25.964 30.832	23.862 28.336	29.692 29.322	30 • 618 36 • 359	28.391 33.714	28.750 34.141	26 • 439 31 • 396	27.117 32.201
R ESCALATION COST *\$/KWE E INT DURING CONSTRUCTION *\$/KWE	117.152 141.939	107.354 130.068	111-13C 134-643	138.474 167.772	128.108 155.213	129.760 157.215	119.301 144.543	122.394 148.290
A TOTAL CAPITALIZATION **/KWE K COST OF ELEC-CAPITAL*MILLS/KWE	584.625 21.643	627.370 19.833	649.436 20.530	909 -230 25 582	748.654 23.667	758 •307 23 • 972	697-187 22 - 040	715.261 22.611
D COST OF ELEC-PUEL •MILES/KWE O COST OF ELEC-OPEMAIN.MILES/KWE	8.C81 1.863	8.095 930	8.325 968	78,334 1,964	7.905 981	7.817 .998	7.973 1.847	7.973
N TOTAL COST OF ELEC *MILLS/KNE N COE 0.5 CAP. FACTOR *MILLS/KNE	31.586 38.191	28.858 34.919	29.823 36.094	35.879 43.665	32.552 39.764	32.786 40.089	31.859 38.582	32.430 39.325
COE U.8 CAP. FACTOR *MILLS/KWE COE 1.2XCAP. COST *MILLS/KWE	27.454 35.915	25.065 32.824	25.899 33.929	31.CD8 40.995	28.040 37.286	28.217 37.581	27.652 35.267	28•116 36•953
COE 1.2XFUEL COST .MILLS/KWE COE (CONTINGENCY=9) .MILLS/KWE	33.203 30.018	30.477 27.417	31.488 28.332	37.546 34.030	34 - 134 30 - 338	34.350 31.050	33 • 454 30 • 262	34 • 025 30 • 793
φ COE (ESCALATIONED) -MILLS/KWE	27.058	24,708	25.527	30 526	27.600	27.770	27.247	27.699
•								
PARAMETRIC POINT				12				
PARAMETRIC POINT		10 959.52	11 767.41 59.648		730.10	14 869.67	15 752.69	16. 900•68
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM THIRD-GEN & FEED STG *MS	944.61 17.600 24.000	959.52 17.600	767.41 59.648 24.000 21.200	917.65 17.600 24.000	730-10 51-456 24-000 26-180	14 869.67 17.600 24.000	752.69 54.784 24.000 26.405	900.68 17.600 24.000
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM THIRD-GEN & FEED STG *MS	944.61 17.600 24.000	10 959.52 17.600 24.000 21.210 9.340 25.158	767.41 59.648 21.200 21.200 9.330	917.65 17.600 24.000	730-10 51-456 24-000 26-180	14 869.67 17.600 24.000	752.69 54.784 24.000 26.405	900.68 17.600 24.000
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM TURB-GEN & FEED STG *MS N MET VAP COND-STEAM GEN *MS T LIG MET CIRC & PROCESS SYS *MS GAS TURB PUMPUP-REC-PIPING *MS	944.61 17.600 24.000	959.52 17.600 24.000 21.210 9.310 26.158 38.120	767.41 59.648 24.000 21.200 23.320 37.600	12 917.65 17.600 24.000 21.200 9.340 22.300 35.400	13 730-10 51-456 24-000 26-180 8-860 26-163 32-400	14 869.67 17.608 24.000 26.000 9.343 32.800	15 762.69 54.784 24.000 26.405 8.860 26.433 39.900	900 • 68 17 • 600 24 • 000 26 • 285 9 • 040 25 • 408
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM TURB-GEN & FEED STG *MS N MET VAP COND-STEAM GEN *MS T LIG MET CIRC & PROCESS SYS *MS GAS TURB PUMPUP-REC-PIPING *MS LIG MET AUX ELEC EQUIP *MS	9 944.61 17.600 24.000 21.210 9.340 26.153 35.1750	959.52 17.600 24.000 21.210 9.330 26.153 35.120 2.750	767.41 59.642 24.000 21.200 9.330 23.320 37.600 2.750	12 917.65 17.600 24.000 21.200 9.340 22.300 2.750	13 730.10 51.456 24.000 26.180 8.850 26.163 32.430 2.750	35.850 24.000 26.000 25.340 25.143 32.800 2.750	752.69 54.784 24.000 26.405 8.860 26.430 26.430 26.430 26.430	900-68 17-600 24-000 26-285 9-940 25-408 39-380 2-750
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM TURB-GEN & FEED STG *MS N MET VAP COND-STEAM GEN *MS T LIG MET CIRC & PROCESS SYS *MS GAS TURB PUMPUP-REC-PIPING *MS LIG MET AUX ELEC EQUIP *MS	9 944.61 17.600 24.000 21.210 9.340 26.153 35.1750	959.52 17.600 24.000 21.210 9.330 26.153 35.120 2.750	767.41 59.642 24.000 21.200 9.330 23.320 37.600 2.750	12 917.65 17.600 24.000 21.200 9.340 22.300 2.750	13 730.10 51.456 24.000 26.180 8.850 26.163 32.430 2.750	35.850 24.000 26.000 25.340 25.143 32.800 2.750	752.69 54.784 24.000 26.405 8.860 26.430 26.430 26.430 26.430	900-68 17-600 24-000 26-285 9-940 25-408 39-380 2-750
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM TURB-GEN & FEED STG *MS N MET VAP COND-STEAM GEN *MS T LIG MET CIRC & PROCESS SYS *MS GAS TURB PUMPUP-REC-PIPING *MS LIG MET AUX ELEC EQUIP *MS	9 944.61 17.600 24.000 21.210 9.340 26.153 35.1750	959.52 17.600 24.000 21.210 9.330 26.153 35.120 2.750	767.41 59.642 24.000 21.200 9.330 23.320 37.600 2.750	12 917.65 17.600 24.000 21.200 9.340 22.300 2.750	13 730.10 51.456 24.000 26.180 8.850 26.163 32.430 2.750	35.850 24.000 26.000 25.340 25.143 32.800 2.750	752.69 54.784 24.000 26.405 8.860 26.430 26.430 26.430 26.430	900-68 17-600 24-000 26-285 9-940 25-408 39-380 2-750
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM TURB-GEN & FEED STG *MS N MET VAP COND-STEAM GEN *MS T LIG MET CIRC & PROCESS SYS *MS GAS TURB PUMPUP-REC-PIPING *MS LIG MET AUX ELEC EQUIP *MS	9 944.61 17.600 24.000 21.210 9.340 26.153 35.1750	959.52 17.600 24.000 21.210 9.330 26.153 35.120 2.750	767.41 59.642 24.000 21.200 9.330 23.320 37.600 2.750	12 917.65 17.600 24.000 21.200 9.340 22.300 2.750	13 730.10 51.456 24.000 26.180 8.850 26.163 32.430 2.750	35.850 24.000 26.000 25.340 25.143 32.800 2.750	752.69 54.784 24.000 26.405 8.860 26.430 26.430 26.430 26.430	900-68 17-600 24-000 26-285 9-940 25-408 39-380 2-750
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM TURB-GEN & FEED STG *MS N MET VAP COND-STEAM GEN *MS T LIG MET CIRC & PROCESS SYS *MS GAS TURB PUMPUP-REC-PIPING *MS LIG MET AUX ELEC EQUIP *MS	9 944.61 17.600 24.000 21.210 9.340 26.153 35.1750	959.52 17.600 24.000 21.210 9.330 26.153 35.120 2.750	767.41 59.642 24.000 21.200 9.330 23.320 37.600 2.750	12 917.65 17.600 24.000 21.200 9.340 22.300 2.750	13 730.10 51.456 24.000 26.180 8.850 26.163 32.430 2.750	35.850 24.000 26.000 25.340 25.143 32.800 2.750	752.69 54.784 24.000 26.405 8.860 26.430 26.430 26.430 26.430	900-68 17-600 24-000 26-285 9-940 25-408 39-380 2-750
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM TURB-GEN & FEED STG *MS N MET VAP COND-STEAM GEN *MS T LIG MET CIRC & PROCESS SYS *MS GAS TURB PUMPUP-REC-PIPING *MS LIG MET AUX ELEC EQUIP *MS	9 944.61 17.600 24.000 21.210 9.340 26.153 35.1750	959.52 17.600 24.000 21.210 9.330 26.153 35.120 2.750	767.41 59.642 24.000 21.200 9.330 23.320 37.600 2.750	12 917.65 17.600 24.000 21.200 9.340 22.300 2.750	13 730.10 51.456 24.000 26.180 8.850 26.163 32.430 2.750	35.850 24.000 26.000 25.340 25.143 32.800 2.750	752.69 54.784 24.000 26.405 8.860 26.430 26.430 26.430 26.430	900-68 17-600 24-000 26-285 9-940 25-408 39-380 2-750
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM TURB-GEN & FEED STG *MS N MET VAP COND-STEAM GEN *MS T LIG MET CIRC & PROCESS SYS *MS GAS TURB PUMPUP-REC-PIPING *MS LIG MET AUX ELEC EQUIP *MS	9 944.61 17.600 24.000 21.210 9.340 26.153 35.1750	959.52 17.600 24.000 21.210 9.330 26.153 35.120 2.750	767.41 59.642 24.000 21.200 9.330 23.320 37.600 2.750	12 917.65 17.600 24.000 21.200 9.340 22.300 2.750	13 730.10 51.456 24.000 26.180 8.850 26.163 32.430 2.750	35.850 24.000 26.000 25.340 25.143 32.800 2.750	752.69 54.784 24.000 26.405 8.860 26.430 26.430 26.430 26.430	900-68 17-600 24-000 26-285 9-940 25-408 39-380 2-750
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM TURB-GEN & FEED STG *MS N MET VAP COND-STEAM GEN *MS T LIG MET CIRC & PROCESS SYS *MS GAS TURB PUMPUP-REC-PIPING *MS LIG MET AUX ELEC EQUIP *MS	9 944.61 17.600 24.000 21.210 9.340 26.153 35.1750	959.52 17.600 24.000 21.210 9.330 26.153 35.120 2.750	767.41 59.642 24.000 21.200 9.330 23.320 37.600 2.750	12 917.65 17.600 24.000 21.200 9.340 22.300 2.750	13 730.10 51.456 24.000 26.180 8.850 26.163 32.430 2.750	35.850 24.000 26.000 25.340 25.143 32.800 2.750	752.69 54.784 24.000 26.405 8.860 26.430 26.430 26.430 26.430	900-68 17-600 24-000 26-285 9-940 25-408 39-380 2-750
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM TURB-GEN & FEED STG *MS N MET VAP COND-STEAM GEN *MS T LIG MET CIRC & PROCESS SYS *MS GAS TURB PUMPUP-REC-PIPING *MS LIG MET AUX ELEC EQUIP *MS	9 944.61 17.600 24.000 21.210 9.340 26.153 35.1750	959.52 17.600 24.000 21.210 9.330 26.153 35.120 2.750	767.41 59.642 24.000 21.200 9.330 23.320 37.600 2.750	12 917.65 17.600 24.000 21.200 9.340 22.300 2.750	13 730.10 51.456 24.000 26.180 8.850 26.163 32.430 2.750	35.850 24.000 26.000 25.340 25.143 32.800 2.750	752.69 54.784 24.000 26.405 8.860 26.430 26.430 26.430 26.430	900-68 17-600 24-000 26-285 9-940 25-408 39-380 2-750
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM TURB-GEN & FEED STG *MS N MET VAP COND-STEAM GEN *MS T LIG MET CIRC & PROCESS SYS *MS GAS TURB PUMPUP-REC-PIPING *MS LIG MET AUX ELEC EQUIP *MS	9 944.61 17.600 24.000 21.210 9.340 26.153 35.1750	959.52 17.600 24.000 21.210 9.330 26.153 35.120 2.750	767.41 59.642 24.000 21.200 9.330 23.320 37.600 2.750	12 917.65 17.600 24.000 21.200 9.340 22.300 2.750	13 730.10 51.456 24.000 26.180 8.850 26.163 32.430 2.750	35.850 24.000 26.000 25.340 25.143 32.800 2.750	752.69 54.784 24.000 26.405 8.860 26.430 26.430 26.430 26.430	900-68 17-600 24-000 26-285 9-940 25-408 39-380 2-750
PARAMETRIC POINT TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS *MS L LIG MET TURBINE A STEAM TURB-GEN & FEED STG *MS N MET VAP COND-STEAM GEN *MS T LIG MET CIRC & PROCESS SYS *MS GAS TURB PUMPUP-REC-PIPING *MS LIG MET AUX ELEC EQUIP *MS	9 944.61 17.600 24.000 21.210 9.340 26.153 35.1750	959.52 17.600 24.000 21.210 9.330 26.153 35.120 2.750	767.41 59.642 24.000 21.200 9.330 23.320 37.600 2.750	12 917.65 17.600 24.000 21.200 9.340 22.300 2.750	13 730.10 51.456 24.000 26.180 8.850 26.163 32.430 2.750	35.850 24.000 26.000 25.340 25.143 32.800 2.750	752.69 54.784 24.000 26.405 8.860 26.430 26.430 26.430 26.430	900-68 17-600 24-000 26-285 9-940 25-408 39-380 2-750

RANKINE METAL VAPOR TOPPING-STEAM CYCLE SUMMARY PLANT RESULTS

<u> </u>		· · · · · · · · · · · · · · · · · · ·		·				
PARAMETRIC POINT	17	18	19	20	21	22	23	24
TOTAL CAPITAL COST P LIO MET VAPOR GENERATORS *M\$ L LIO MET TURBINE A STEAM TURB-GEN R FEED STG *M\$ N MET VAP COND-STEAM GEN *M\$ LIO MET CIRC & PROCESS SYS *M\$ GAS TURB PUMPUP-REC-PIPING *M\$ LIO MET AUX ELEC EQUIP *M\$	859.55 82.432 24.600 21.130 9.340 27.058 36.000 2.750	787.35 64.000 24.000 21.190 9.340 27.068 34.860 2.750	24.060 20.890 7.320 26.023	1178 92 36 016 12 000 20 405 4 160 25 088 110 400 2 750	775 - 14 60 - 544 24 - 600 21 - 310 16 - 000 27 - 608 34 - 240 2 - 750	784.57 62.336 24.000 21.260 2.620 27.448 35.600 2.750	781.67 61.184 24.000 21.200 9.340 27.448 37.600 2.750	823-21 72-192 24-000 21-290 9-340 29-348 37-200 2-750
PROF & OWNER COSIS B CONTINGENCY COSIS R ESCALATION COST T. **/KWE E INT DURING CONSTRUCTION **/KWE A TOTAL CAPITALIZATION **/KWE K COST OF ELEC-CAPITAL**/KWE D COST OF ELEC-CAPITAL**/KWE W TOTAL COST OF ELEC-PRHAIN**/KLLS/KWE W TOTAL COST OF ELEC-PRHAIN**/KLLS/KWE M COE 0.5 CAP** FACTOR **HILLS/KWE COE 0.8 CAP** FACTOR **HILLS/KWE COE 1.2XCAP** COST **HILLS/KWE COE (CONTINGENCY=0) **MILLS/KWE COE (CONTINGENCY=0) **MILLS/KWE COE (ESCALATION=0) **MILLS/KWE	179 - 835 60 - 944 99 - 592 359 - 972 50 - 843 28 - 792 34 - 197 130 - 942 158 - 041 762 - 252 24 - 098 9 - 188 2 - 034 35 - 320 42 - 660	151.751	194.031 96.833 104.468 395.332 53.279 31.627 37.557 142.551	249.137 132.697 149.34 530.968 76.058 42.477 58.472 192.698 233.469 1126.112 35.599 26.182	158-940 77-462 86-995 323-398 44-368 25-872 30-723 116-828	161 - 288 77 - 778 88 - 346 327 - 413 45 - 057 26 - 194 118 - 315 118 - 315 691 - 458 7 - 786	326-786 44-570 26-143 31-045 117-980	196 .030 172 .902 77 .507 93 .221 347 .635 27 .490 32 .645 124 .247 150 .535 8 .053 8 .053 1 .859 32 .874 22 .953 8 .859 32 .874 28 .492 37 .462 34 .483 31 .211 28 .068
PARAMETRIC POINT			27	28	29	30	<u>3</u> 1	32
TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS •M\$ I TIG HET TURBINE •M\$ A STEAM TURB-GEN & FEED STG •M\$ N MET VAP COND-STEAM GEN •M\$ I LIG MET CIRC & PROCESS SYS •M\$ GAS TURB PUMPUP-REC-PIPING •M\$ LIG MET AUX ELEC EQUIP •M\$	799.08 60.032 24.000 26.400 10.460 27.438 36.400 2.750	855.86 70.656 24.000 31.500 10.180 29.153 36.120 2.750	777.11 58.624 21.000 21.230 11.020 27.068 36.400 2.750	E0 700	896-42 69-376 24-000 41-860 12-420 29-048 35-600 2-750	772-85 60-058 24-000 21-600 7-940 27-188 38-000 2-750	795.45 61.184 24.000 26.700 8.220 27.368 37.600 2.750	851 •52 71 • 424 24 • 000 31 • 900 8 • 220 29 • 268 36 • 800 2 • 750
R TOT MAJOR COMPONENT COST *** E TOT MAJOR COMPONENT COST **** S BALANCE OF PLANT COST **** L STIE LABOR **** L TOTAL DIRECT COST **** PROF & OWNER COSTS **** PROF & OWNER COSTS **** E FOR TOURING CONSTRUCTION **** E INT DURING CONSTRUCTION **** K COST OF ELEC-CAPITAL **** D COST OF ELEC-FUEL **** D COST OF ELEC-FUEL **** U COST OF ELEC-FUEL **** N COE C.*** COE O.*** OE O.*** OE O.*** COE O.** CO	335,154 45,158 26,732 31,745 120,525	81.709 95.506 357.129 48.708 28.570 33.927 123.935	77.968 86.955 324.503 44.347 25.960 30.828 117.180	82.742 90.329 342.872 46.068 27.430 32.573 123.595	85-601 99-178 373-845 50-581 29-908 35-515 134-857	76.832 86.378 323.509 44.053 25.881 30.733 116.777	78.984 88.225 332.894 44.995 25.631 31.625 120.072	80 • 258 95 • 266 355 • 632

RANKINE METAL VAPOR TOPPING-STEAM CYCLE SUMMARY PLANT RESULTS

Management of the control of the con		and the second s	with the plant of the state of	•
PARAMETRIC POINT	33 34	35 36	37 38	39 40
TOTAL CAPITAL COST P LIG MET VAPOR GENERATORS L LIG MET TURBINE A STEAM TURB-GEN & FEED STG N MET VAP COND-STEAM GEN T LIG MET CIRC & PROCESS SYS GAS TURB PUMPUP-REC-PIPING LIG MET AUX ELEC EQUIP	*M\$ 21.500 31.9 *M\$ 11.020 10.7 *M\$ 27.083 27.2	88 69-988 59-648 60 24-000 24-000 60 42-250 22-900 60 10-740 8-760 63 29-048 27-078 60 36-000 37-600	62-208 58-62- 24-000 24-000 24-350 22-53 9-160 9-340 27-538 27-05 38-800 36-60	61-284 30-336 26-000 12-000 5 23-970 12-805 9-620 5-242 9-620 5-242 8 38-400 15-20
R TOT MAJOR COMPONENT COST E TOT MAJOR COMPONENT COST \$/\$ B ALANCE OF PLANT COST \$/\$ U SITE LABOR \$/\$ I TOTAL DIRECT COST \$/\$ PROF & OWNER COSTS \$/\$ PROF & OWNER COSTS \$/\$ R ESCALATION COST \$/\$ E INT DURING CONSTRUCTION \$/\$ A TOTAL CAPITALIZATION \$/\$ K COST OF ELEC-CAPITAL MILLS/\$ O COST OF ELEC-PREAD MILLS/\$ U TOTAL COST OF ELEC-PREAD MILLS/\$ COE 0.5 CAP. FACTOR MILLS/\$ COE 0.5 CAP. FACTOR MILLS/\$ COE 1.2XCAP. COST MILLS/\$ COE 1.2XCAP. COST MILLS/\$ COE (CONTINGENCY=0) MILLS/\$ COE (ESCALATION=0) MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$ COE (ESCALATION=0) MILLS/\$ MILLS/\$	NE	17 29.577 27.137 18 39.278 35.491 10 35.845 32.827	168.393	3 166-910 166-057 3 88-245 84-958 8 88-739 93-541 5 343-894 344-566 8 45-257 47-706 1 27-512 27-565 1 23-670 30-175 5 123-670 107-987 7 722-912 685-601 5 22-853 21-673 7 8-495 6-852 8 1.878 1.677 2 40-193 36-816 1 28-867 26-64 1 37-797 36-64
PARAMETRIC POINT	41 42	43 44	45 46	47 48
TOTAL CAPITAL COST PLIQ MET VAPOR GENERATORS L LIO MET VAPOR GENERATORS L LIO MET VAPOR SEN & FEED STG N MET VAP COND-STEAM GEN T LIO MET CIRC & PROCESS SYS GAS TURB PUMPUP-REC-PIPING LIO MET AUX ELEC EQUIP	M\$ 7.863 13.10 M\$ 22.082 31.00 M\$ 22.800 38.00 M\$ 2.063 3.43	73 12.730 19.115 15 5.186 7.779 19 17.112 21.312 10 14.920 22.200 17 1.375 2.063	29.724 60.033 37.000 30.000 3.464 2.750	1 30-310 75-776 8-000 20-000 1 11-905 31.898 4 5-322 13-305 3 35-907 72.866 1 15-000 37-500
R TOT MAJOR COMPONENT COST E TOT MAJOR COMPONENT COST S BALANCE OF PLANT COST U SITE LABOR L TOTAL DIRECT COST PROF 8 OWNER COSTS B CONTINGENCY COST R ESCALATION COST A TOTAL CAPITALIZATION K COST OF ELEC-CAPITAL MILLS/K O COST OF ELEC-CAPITAL MILLS/K O COST OF ELEC-OPERAIN-MILLS/K N TOTAL COST OF ELEC M TOTAL COST OF ELEC M TOTAL COST OF ELEC M TOTAL COST OF ELEC COE 0.8 CAP. FACTOR .MILLS/K COST OF ELEC COE 1.2XCAP. COST COE 1.2XCAP. COST COE 1.2XCAP. COST COE (CONTINGENCY=0) COE (COST OMILLS/K)	WE 326-130 314-1 WE 45-C50 43-77 WE 26-095 25-1 WE 29-947 3C-6 WE 111-085 119-08 WE 133-149 145-57 WE 671-515 678-2 WE 21-228 21-4 WE 6-852 6-88	72-122 103-669 2 125-709 120-77 2 125-709 120-77 9 156-378 148-142 9 105-837 100-544 1 387-925 369-160 2 53-977 51-278 2 31-034 29-533 7 121-640 125-795 7 143-75-150-788 2 7-93-7-93-7-93 8 1-800 1-800 2 33-506 40-941 40-455	356.983 342.588 49.917 46.207 28.559 27.415	8.740 90.466 3.72.449.340.337 5.50.337 46.135 5.29.736 27.227 32.617 33.213 1.16.430 128.559 1.37.579 157.246 1.739.208 732.816 2.3358 23.166 2.756 6.756 1.661 1.661 5.1.785 31.583

Table A 8.2.2 Continued

RANKINE METAL VAPOR TOPPING-STEAM CYCLE SUMMARY PLANT RESULTS

DA DA HETTOTO DOTALT								
PARAMETRIC POINT	49	50	51	52	53	54	5 5	56
TOTAL CAPITAL COST .MS	760.23	882.8G	00	• 50	08	-00	•00	-0g
P LIG MET VAPOR GENERATORS .MS	50.572	17.500	•000	-000	200	-600	•000	-000
L LIQ MET TURBINE .MS A STEAM TURB-GEN & FEED STG .MS	24.000 25.590	24.000 25.430	200	-000	-000	-000	•000	•000
N HET VAP COND-STEAM GEN MS	10.484	9.172	.000 .000	•000 •000	000. 030.	.000 000	•000	•000 •000
T LIG MET CIRC & PROCESS SYS .MS	26.543	25.518	3005	- 2000	:000	000	•000	-000
GAS TURB PUMPUP-REC-PIPING -MS	30.460	31.200	•000	•860	•00C	-006	-000	2000
LIG MET AUX ELEC EQUIP ##\$	2.750	2.750	-006	-000	-080	•000	•000	-800
R TOT HAJOR COMPONENT COST .MS	180.539	135.720	-000	-000		-000	-000	•000
E TOT MAJOR COMPONENT COST. S/KWE	158.372	118.279	-000	.000	-000	-000	-000	-000
S BALANCE OF PLANT COST **/KHE	71.707	145-216	-00C	•000	.000	.000	•000	•000
U SITE LABOR *5/KWE L TOTAL DIRECT COST *5/KWE	85.579 315.658	99.359 363.855	-000	000	· • 000	•000	-000	-000
T INDIRECT COSTS +\$/KWE	43.646	50.673	•000	-000	-000	-000 -000	.000	-000
PROF & OWNER COSTS **/KWE	25-253	29.108	.000	-000	-000	-000	2000	•000 •000
B CONTINGENCY COST .SAKWE	29. 988	34.566	•000	- 000	000		000	•000
R ESCALATION COST *5/KWE E INT DURING CONSTRUCTION *5/KWE	114.126	131.651 159.506	•CDC	•000	•000	-500	-000	•00g
A TOTAL CAPITALIZATION +\$/KWE	566-942	769.360	•000 200	•000 •000	.000 000	-000 -000	•000 000	•000
K COST OF FLEC-CAPTTAL MILLS/KWE	21.084	24.321	. OC.L	- ០០០	-000	.000	:000	•000 •000
D COST OF ELEC-FUEL MILLS/KWE	6.847	7-293	-000	-000	•000	-00C	•888	-000
O COST OF ELEC -OPENAIN MILLS/KWE N TOTAL COST OF ELEC -MILLS/KWE	1.572	1.800 33.413	-000	•000	•000	•000	•000	•000
N COE 0.5 CAP. FACTOR MILLS/KHE	29.502 36.039	40.821	-000 -000	-000	.000 000	•000 •000	•000 •000	-000
COE 0.8 CAP. FACTOR MILLS/KNE	25.574	28.778	-000	-000	-000	000	.000	-000 200
COE 1.2XCAP. COST *MILLS/KWE	33.819	38.278	•000	.000	• 086	-000	-000	•ំពីពិធី
COE (CONTINGENCY=D) *MILLS/KWE	30.971	34-872	330•	•555	-000	•000	•000	•000
COE (ESCALATIONED) MILLS/KWE	28.077 25.191	31.555 28.324	.000 000	-000	000	•000	-000	•000
C		ていきコピュ	-300	•000	•900	•000	-000	-00c

	RANKINE METAL								
	PARAMETRIC POINT COAL: LB/KW-HR SORBANT OR SEED.LB/KW-HR TOTAL WATER: GAL/KW-HR GASIFIER PROCESS H20 CONDENSATE MAKE UP WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/IGOMWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	1	2	3	4	5	5	7	3
	COAL LB/KW-HR SORBANT OR SEED LB/KW-HR	•38127 •46628	1-05477 -12096	1.42149	• 90383 • 47822	1-00215	1.27605 .12171	-86945 -46003	-86346 -46003
	TOTAL WATER GAL/KW-HR	•767 •611	-664 -581	-653 -565	-813 -601	•722 •591	-721 -594	•772 •618	•772 •618
	GASIFIER PROCESS H20	00000	00000	.00000	05206	•05111 COEGO	-D4793	-00000	00000
	WASTE HANDLING SLURRY	.0965	.025C	0281	.0990	0235	-0252	-0352	0952
	NOX SUPPRESSION	.05288	00000	-05402	.00000	00000	-00000	.00000	•05217 •00000
	TOTAL LAND ACRES/ICOMVE	114.59 16.50	67.39 16.26	69.51 16.37	113.94	65.32 17.00	67.10 17.03	113.59 16.49	113.54
<u> </u>	DISPOSAL LAND	77.24	30.57	34 05	75.98		29.74	76.21	75.21
	PARAMETRIC POINT COAL, LB/KW-HR SORBANT OR SEED, LB/KW-HR TOTAL MATER, GAL/KW-HR COOLING WATER GASIFIER PROCESS H20 CONDENSATE MAKE UP, WASTE HANDLING SLURRY SCRUBBER WASTE WATER NOX SUPPRESSION TOTAL LAND ACRES/100HWE MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	20072	10	11	12	13		15	15
	COAL LB/KW-HR SORBANT OR SEED LB/KW-HR	.89632 .47424	-89382 -47292	-88127 -46628	47821	•72812 •38525	•11325 •40912	•79645 •42140	•81435 •43087
-	COOLING WATER	<u>817</u>	-816 -607	:7 67	812 501	-754 -624	.799 .617		799 608
	GASÍFIER PROCESS H20 CONDENSATE MAKE UP .	-05163 -00606	-05148 -00606	.00000	•05206 •00600	-00000 -00676	-04454 -00668	-000000 -00587	-04E91
	WASTE HANDLING SLURRY	6982	- 60979	0965	05930	0797	- 6847		0.892
ż	NOX SUPPRESSION	00000	00000	.00000	00000	00000	00000	20000	00000
-	MAIN PLANT	113.30 17.30	17.30	16.50	17.30	16.39	17-24	16.44	17.25
	DISPOSAL LAND LAND FOR ACCESS RR	75.35 20.65	75.14 20.65	77-24 20-85	75.98 20.65	53.82 20.72	55,00 20,57	69.81 20.78	68-46 20-60
8-164	PARAMETRIC POINT COAL. LB/KW-HR SORS ANT OR SEED. LB/KW-HR TOTAL WATER. GAL/KW-HR COOLING WATER GASIFIER PROCESS H2D. CONDENSATE MAKE UP. WASTE HANDLING SLURRY SCRUBBER WASYE WATER NOX SUPPRESSION TOTAL LAND ACRES/IDCHWE HAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	17 1.00197 -53014 -781 -605 -00000 -006C4 -1097 -06012 -00000 125.37 16.58 87.82 20.96	18 •91105 •8204 •760 •599 •0000 •00598 •05466 •00000 117-24 16-52 79-85 20-87	19 1.62910 .86196 .776 .495 .0000 .80494 .09775 .000775 .000775 .0001142.79 17.01	20 2.85522 1.51070 .735 .00000 .00307 .3127 .17131 .00000 278.54 250.26 10.42	21 -82968 -73899 -752 -00000 -00651 -0909 -04978 -00000 111-61 72-72 22-42	22 84912 -4927 -782 -00000 -05631 -0930 -05095 -05095 -05095 -05095 -74-42 -22-43	23 -87884 -96999 -7650 -00000 -00608 -0963 -05273 -05273 -77-03 20-85	24 -87881 -7638 -000000 -00607 -0363 -005273 -05273 -114-39 -77-03 -20-85
8-164	PARAMETRIC POINT COAL. LB/KW-HR SORS ANT OR SEED. LB/KW-HR TOTAL WATER. GAL/KW-HR COOLING WATER GASIFIER PROCESS H2D. CONDENSATE MAKE UP. WASTE HANDLING SLURRY SCRUBBER WASYE WATER NOX SUPPRESSION TOTAL LAND ACRES/IDCHWE HAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	17 1.00197 -53014 -781 -605 -00000 -006C4 -1097 -06012 -00000 125.37 16.58 87.82 20.96	18 •91105 •8204 •760 •599 •0000 •00598 •05466 •00000 117-24 16-52 79-85 20-87	19 1.62910 .86196 .776 .495 .0000 .80494 .09775 .000775 .000775 .0001142.79 17.01	20 2.85522 1.51070 .735 .00000 .00307 .3127 .17131 .00000 278.54 250.26 10.42	21 -82968 -73899 -752 -00000 -00651 -0909 -04978 -00000 111-61 72-72 22-42	22 84912 -4927 -782 -00000 -05631 -0930 -05095 -05095 -05095 -05095 -74-42 -22-43	23 -87884 -96999 -7650 -00000 -00608 -0963 -05273 -05273 -77-03 20-85	24 -87881 -7638 -000000 -00607 -0363 -005273 -05273 -114-39 -77-03 -20-85
8-164	PARAMETRIC POINT COAL. LB/KW-HR SORS ANT OR SEED. LB/KW-HR TOTAL WATER. GAL/KW-HR COOLING WATER GASIFIER PROCESS H2D. CONDENSATE MAKE UP. WASTE HANDLING SLURRY SCRUBBER WASYE WATER NOX SUPPRESSION TOTAL LAND ACRES/IDCHWE HAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	17 1.00197 -53014 -781 -605 -00000 -006C4 -1097 -06012 -00000 125.37 16.58 87.82 20.96	18 •91105 •8204 •760 •599 •0000 •00598 •05466 •00000 117-24 16-52 79-85 20-87	19 1.62910 .86196 .776 .495 .0000 .80494 .09775 .000775 .000775 .0001142.79 17.01	20 2.85522 1.51070 .735 .00000 .00307 .3127 .17131 .00000 278.54 250.26 10.42	21 -82968 -73899 -752 -00000 -00651 -0909 -04978 -00000 111-61 72-72 22-42	22 84912 -4927 -782 -00000 -05631 -0930 -05095 -05095 -05095 -05095 -74-42 -22-43	23 -87884 -96999 -7650 -00000 -00608 -0963 -05273 -05273 -77-03 20-85	24 -87881 -7638 -000000 -00607 -0363 -005273 -05273 -114-39 -77-03 -20-85
8-164	PARAMETRIC POINT COAL. LB/KW-HR SORS ANT OR SEED. LB/KW-HR TOTAL WATER. GAL/KW-HR COOLING WATER GASIFIER PROCESS H2D. CONDENSATE MAKE UP. WASTE HANDLING SLURRY SCRUBBER WASYE WATER NOX SUPPRESSION TOTAL LAND ACRES/IDCHWE HAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	17 1.00197 -53014 -781 -605 -00000 -006C4 -1097 -06012 -00000 125.37 16.58 87.82 20.96	18 •91105 •8204 •760 •599 •0000 •00598 •05466 •00000 117-24 16-52 79-85 20-87	19 1.62910 .86196 .776 .495 .0000 .80494 .09775 .000775 .000775 .0001142.79 17.01	20 2.85522 1.51070 .735 .00000 .00307 .3127 .17131 .00000 278.54 250.26 10.42	21 -82968 -73899 -752 -00000 -00651 -0909 -04978 -00000 111-61 72-72 22-42	22 84912 -4927 -782 -00000 -05631 -0930 -05095 -05095 -05095 -05095 -74-42 -22-43	23 -87884 -96999 -7650 -00000 -00608 -0963 -05273 -05273 -77-03 20-85	24 -87881 -763 -00000 -00667 -0363 -05273 -05273 -114-37 -77-03 -20-85
8-164	PARAMETRIC POINT COAL. LB/KW-HR SORS ANT OR SEED. LB/KW-HR TOTAL WATER. GAL/KW-HR COOLING WATER GASIFIER PROCESS H2D. CONDENSATE MAKE UP. WASTE HANDLING SLURRY SCRUBBER WASYE WATER NOX SUPPRESSION TOTAL LAND ACRES/IDCHWE HAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	17 1.00197 -53014 -781 -605 -00000 -006C4 -1097 -06012 -00000 125.37 16.58 87.82 20.96	18 •91105 •8204 •760 •599 •0000 •00598 •05466 •00000 117-24 16-52 79-85 20-87	19 1.62910 .86196 .776 .495 .0000 .80494 .09775 .000775 .000775 .0001142.79 17.01	20 2.85522 1.51070 .735 .00000 .00307 .3127 .17131 .00000 278.54 250.26 10.42	21 -82968 -73899 -752 -00000 -00651 -0909 -04978 -00000 111-61 72-72 22-42	22 84912 -4927 -782 -00000 -05631 -0930 -05095 -05095 -05095 -05095 -74-42 -22-43	23 -87884 -96999 -7650 -00000 -00608 -0963 -05273 -05273 -77-03 20-85	24 -87881 -7638 -000000 -00607 -0363 -005273 -05273 -114-39 -77-03 -20-85
8-164	PARAMETRIC POINT COAL. LB/KW-HR SORS ANT OR SEED. LB/KW-HR TOTAL WATER. GAL/KW-HR COOLING WATER GASIFIER PROCESS H2D. CONDENSATE MAKE UP. WASTE HANDLING SLURRY SCRUBBER WASYE WATER NOX SUPPRESSION TOTAL LAND ACRES/IDCHWE HAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	17 1.00197 -53014 -781 -605 -00000 -006C4 -1097 -06012 -00000 125.37 16.58 87.82 20.96	18 •91105 •8204 •760 •599 •0000 •00598 •05466 •00000 117-24 16-52 79-85 20-87	19 1.62910 .86196 .776 .495 .0000 .80494 .09775 .000775 .000775 .0001142.79 17.01	20 2.85522 1.51070 .735 .00000 .00307 .3127 .17131 .00000 278.54 250.26 10.42	21 -82968 -73899 -752 -00000 -00651 -0909 -04978 -00000 111-61 72-72 22-42	22 84912 -4927 -782 -00000 -05631 -0930 -05095 -05095 -05095 -05095 -74-42 -22-43	23 -87884 -96999 -7650 -00000 -00608 -0963 -05273 -05273 -77-03 20-85	24 -87881 -7638 -000000 -00607 -0363 -005273 -05273 -114-39 -77-03 -20-85
8-164	PARAMETRIC POINT COAL. LB/KW-HR SORS ANT OR SEED. LB/KW-HR TOTAL WATER. GAL/KW-HR COOLING WATER GASIFIER PROCESS H2D. CONDENSATE MAKE UP. WASTE HANDLING SLURRY SCRUBBER WASYE WATER NOX SUPPRESSION TOTAL LAND ACRES/IDCHWE HAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	17 1.00197 -53014 -781 -605 -00000 -006C4 -1097 -06012 -00000 125.37 16.58 87.82 20.96	18 •91105 •8204 •760 •599 •0000 •00598 •05466 •00000 117-24 16-52 79-85 20-87	19 1.62910 .86196 .776 .495 .0000 .80494 .09775 .000775 .000775 .0001142.79 17.01	20 2.85522 1.51070 .735 .00000 .00307 .3127 .17131 .00000 278.54 250.26 10.42	21 -82968 -73899 -752 -00000 -00651 -0909 -04978 -00000 111-61 72-72 22-42	22 84912 -4927 -782 -00000 -05631 -0930 -05095 -05095 -05095 -05095 -74-42 -22-43	23 -87884 -96999 -7650 -00000 -00608 -0963 -05273 -05273 -77-03 20-85	24 -87881 -7638 -000000 -00607 -0363 -005273 -05273 -114-39 -77-03 -20-85
8-164	PARAMETRIC POINT COAL. LB/KW-HR SORS ANT OR SEED. LB/KW-HR TOTAL WATER. GAL/KW-HR COOLING WATER GASIFIER PROCESS H2D. CONDENSATE MAKE UP. WASTE HANDLING SLURRY SCRUBBER WASYE WATER NOX SUPPRESSION TOTAL LAND ACRES/IDCHWE HAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	17 1.00197 -53014 -781 -605 -00000 -006C4 -1097 -06012 -00000 125.37 16.58 87.82 20.96	18 •91105 •8204 •760 •599 •0000 •00598 •05466 •00000 117-24 16-52 79-85 20-87	19 1.62910 .86196 .776 .495 .0000 .80494 .09775 .000775 .000775 .176.34 17.01 142.79 15.54	20 2.85522 1.51070 .735 .00000 .00307 .3127 .17131 .00000 278.54 250.26 10.42	21 -82968 -73899 -752 -00000 -00651 -0909 -04978 -00000 111-61 72-72 22-42	22 84912 -4927 -782 -00000 -05631 -0930 -05095 -05095 -05095 -05095 -74-42 -22-43	23 -87884 -96999 -7650 -00000 -00608 -0963 -05273 -05273 -77-03 20-85	24 -87881 -7638 -000000 -00607 -0363 -005273 -05273 -114-39 -77-03 -20-85
8-164		17 1.00197 -53014 -781 -605 -00000 -006C4 -1097 -06012 -00000 125.37 16.58 87.82 20.96	18 •91105 •8204 •760 •599 •0000 •00598 •05466 •00000 117-24 16-52 79-85 20-87	19 1.62910 .86196 .776 .495 .0000 .80494 .09775 .000775 .000775 .176.34 17.01 142.79 15.54	20 2.85522 1.51070 .735 .00000 .00307 .3127 .17131 .00000 278.54 250.26 10.42	21 -82968 -73899 -752 -00000 -00651 -0909 -04978 -00000 111-61 72-72 22-42	22 84912 -4927 -782 -00000 -05631 -0930 -05095 -05095 -05095 -05095 -74-42 -22-43	23 -87884 -96999 -7650 -00000 -00608 -0963 -05273 -05273 -77-03 20-85	24 -87881 -7638 -000000 -00607 -0363 -005273 -05273 -114-39 -77-03 -20-85

REPRO-

RANKINE MET	AL VAPOR TOP	PING-STE	AM CYCLE	NATURA	L RESOUR	CE REQUI	REMENTS	
PARAMETRIC POINT		34 -85998	35 83709	36 87760	37 94018	38 -86333	39 •92544	.48 .74719
SORBANT OR SEED LB/KW-H	HR 46243	45502 749	-44290	. 46434	-49745	45673	.49018	-39534
TOTAL WATER, GAL/KW-H	IR •754	-749 -597	-636 -548	•155 •000	-165 -COO	•152 •000	-163 -000	•795 •662
GASIFIER PROCESS H	20 00000	.00000	.00000	.00000	-000000	•000000	.000000	•00000
CONDENSATE MAKE UP WASTE HANDLING SLU	RRY -0614	-00617 -0942	-00623 -0917	.00608 .0961	-00594 -1030	-00614 -0946	•00599 •1015	-D0597
SCRUBBER WASTE WAT	ER _05244	.0516C	.05023	.052€6	-C5641	-05180	•C5559	-C4493
NOX SUPPRESSION	200000	-00000	.00000	.000000	178.51	-000000	175.50	.00000 112.72
TOTAL LAND ACRES/100M	WE 113.94 16.49	112.58	109.02 16.45	93.35 15.43	15.57	92.09 15.42	16.66	24-88
DISPOSAL LAND LAND FOR ACCESS RR	75.61 20.34	75.38 20.83	73.37 19.20	76.92	-82.41 79.43	75-67 00	-81.20 77.74	65 .99 22 .3 5
LAND FOR ACCESS RE	20.04	20.03	13.20	•00	13.43	•00		22.33
PARAMETRIC POINT	41	42	43	44		₹ 6	- 	48
COAL, LB/KW-HR	-74726	•74723 •39536	-79091 -41847	-79098 -41851	.79095 .41849	•73677 •33982	•73677 •38982	-73673 -38980
TOTAL WATER - GAL /KW-H	R 796	796 562	839 652	-839	-839	.780	.780	.780
SORBANT OR SEED LB/KW TOTAL WATER GAL/KW-H COOLING WATER GASIFIER PROCESS H CONDENSATE MAKE UP	HR 33538 R 796 652 20 00000 00697	.562 .00000	-552	-652 -04556	-652 -04555	-649 -00000	90000	.00000
CONDENSATE HAKE UP	.00697	-00597	-C4556 -DC687	-00687	•00687	- 00683	•00683	•00583
WASTE HANDLING SLU SCRUBBER WASTE WAT NOX SUPPRESSION TOTAL LAND ACRES/100M	RRY _ G818 ER _ 04484	0212	-0856 -04745	-0866 -04746	-0266 -04745	.0307 .04421	-0307 -04421	-0307 -04420
NOX SUPPRESSION	.00000	-00000t:	-ccocc	-00000	.00000	.00000 103.31	.00000	.00000
TOTAL LAND ACRES/100H	WE 108.42 19.51	102.84 14.36	114.83 26.15	110-25	15.09	103.31 16.40	111.77	100-61
DISPOSAL LAND LAND FOR ACCESS RR	55.50	55.43	66.49	66.49	66.49	64.58	~ 5 4 . ∑ 3	14 × 35
LAND FOR ACCESS RR	23.41	22.99	22.18	23.24	22.82	22.33	22.33	21.69
								•
PARAMETRIC POINT	49	50	51	52	53	54	55	56
COST - 1 R/KU-HD	74565	.79091	-00000	.00000	-00000	-00000	-000000	-00000
SORBANT OR SEED LB/KW TOTAL WATER BALZKU-H COOLING WATER GASTETER PROCESS H	-HR .74665 R .737	•41847 839	.0000	.00000	00000	00000	00000	00000
COOLING WATER	603 120 •00000	• 6.52	.000	-000	-000	-000	.000	-000
GASTFTER PROCESS H COMDENSATE MAKE UP	00000	-04556 -00687	.00000	.00000	.00000 00000	-00000 -00000	00000	-00000
WASTE HANDLING SLU SCRUBBER WASTE WAT	RRY 0818 ER 04480	-0865	-0000	-0000	-0000	.00000	-0000	-0000
SCRUBBER WASTE WAT	ER _84488	-04745 BOODD	.00000 .00000	.00000 00000	-00000	-00000 00000	-00000 00000	•C00000
TOTAL LAND ACRESTION	00000 WE 102.58	105.93	.00	-00	-00000 00-	•00	•00	-00000
MAIN PLANT DISPOSAL LAND LAND FOR ACCESS RR	16.40	17.26 66.49	00. 00.	-00	•00 •00	•00	.00 00	-00
LAND FOR ACCESS RR	20.73	22.18	:66	200	-00	-00	-00	-00
magazine in a company of the company			. .,					

BBRKPT PRINTS

APPENDIX A 8.3

DETAILED ACCOUNTS LISTING POINTS 1, 4, 49, and 46

Table A 8.3.1

RANKINI METAL VAPOR TOPPING-STEAM CYCLE ACCOUNT LISTING

ACCOUNT NO	. & NAME.	UNIT	AMOUNT	TINU\2 TAH	INS \$/UNIT	HAT COST.S	INS COST.S
SITE DEVELOP 1- 1 LAND C 1- 2 CLEARI 1- 3 GRADIN 1- 4 ACCESS 1- 5 LOOP R 1- 5 SIDING 1- 7 OTHER PERCENT TOT	MENT	1005	****	**************************************		***********	
1. 1 LAND C 1. 2 CLEARI	USI GNA DN	ACRE	52.3	1000-00		187666.00	37396.25
1. 3 GRADIN 1. 4 ACCESS	G LAND RAILROAD	ACRE MILE	187.0 5.0	115000.00	3000.00 110000.00	575000 . 00	561000.00 550000.00
1. 5 LOOP R	AILROAD TRA	CK MILE	2.5	120000.00	76060±00	300000 •00	175000.00
1. 7 OTHER PERCENT TOT	SITE COSTS	ACRE	COUNT 1	.00 854 ACCO	37.	396406.86 1458406.86	396406.86 1719803.11
EXCAVATION & 2- 1 COMMON 2- 2 PILING PERCENT TOT	PILING EXCAVATION	YD3	75150.0	•00	3.00	•60	225450.00
Z. Z PILING PERCENT TOT	AL DIRECT C	FT OSI IN AC	200400.6 : COUNT2.	8.50 8.78_ACCO	3.50 STALLS UNITALLS	1302600.00 1302600.00	1703400.00 1928850.00
PLANT ISLAND 3. 1 PLANT 3. 2 SPECIA PERCENT FOT	CONCRETE IS. CONCRET	T Y53	25050.0	70-00	80.00	1753500.00	2004000.00
3. 2 SPECIA PERCENT TOT	L STRUCTURE	S YD3 OST IN AC	COUNT 3	- 1.021 ACCO	JNT TOTAL.	.00 1753500.00	2004000 . 00
HEAT REJECTI 4.1 COOLIN 4.2 CIRCUL 4.3 SURFAC PERCENT TOT	ON SYSTEM G TOWERS	EACH	13.G	•00	•00	1995500.00	994500.00
4. 2 CIRCUL	ATING H20 S	YS EACH FT2	389090-2	• 00 • 00	_ักอิ กา-	1139243.23	1527531.13 268856.17
PERCENT TOT	AL DIRECT C	OST IN AC	COUNT	= 2.086 ACCO	INT TOTAL S	4882305.31	2790937.34
STRUCTURAL F	FATURES				-		
5- 1 STAT. 5- 2 STLOS	STRUCTURAL 8 SUNKERS	ST. TON	27300.5	05C • GC 1800 • GB	175.CC 756.0C	17745000.00	47775Gr.DC
5. 3 CHIMNE	Y DRAI FEATUR	FT FACH	1.0	*00 72500G-00	150000-00	725000-00	186000.00
STRUCTURAL F 5. 1 STATS 5. 2 SILOS 5. 3 CHIMNE 5. 4 STRUCT PERCENT TOT	AL DIRECT C	OST IN AC	COUNT	= 6.364 ACCO	UNT TOTAL S	18470000.00	4943500.00
BUILDINGS							
5. 1 STATIO	N EUTLOINGS	FT3	7500000-0	.15	.16	1200000.00 320000.00 240000.00 1760000.00	1200000-00
5. 3 WAREHO	USE & SHOP	FTZ	200000	12.00	18.00	240000.00	150000-00
PERCENT 10).	BE DIKE CI.	NOT THE WA	PANAL TO		JNI_LUIBLEE	TIPEDIN OR	TØMUGG•DN
FUEL HANDLIN	G. S. STORAGE	Tnt		00	20	10117405 40	
7. 2 DOLOKI	TE HAND SY	S TPH	264.3	-00	020	3469GC1.50	- \$313571 • 81 1567851 • 77
FUEL HANDLIN 7-1 COAL H 7-2 DOLOMI 7-3 FUEL O PERCENT TOT	AL CIRECT C	OST IN AC	COUNT 7	= 5.433 ACCO	JNT TOTAL THE	290836.01 13877662.62	227825.41 E109249.94
FUEL PROCESS 1 COAL D 2 CARBON B. 3 GASIFI PERCENT TOT	BĀĒK S CKNZ Tur	HER TPH	• <u>0</u>	• 00	-00	•00	•00
8. 2 CARBON 8. 3 GASIFI	ERS	<u>TPH</u>	0	-00	00 •00	.00	.00
PERCENT TOT	AL DIRECT C	OST IN AC	COUNT 8 :	- BDC ACCOU	SALARTOT TAL	-DC	•00

RANKINE METAL VAPOR TOPPING-STEAM CYCLE ACCOUNT LISTING

ACCOUNT	NO. 8 NAME.		ANOUNT 1	· ·	INS S/UNIT	HAT COST-S	INS COST#\$
FIRING SYS	•		•0	•00	•CB	•00	•00
PERCENT I	OTAL DIRECT C	OST IN ACCO	UNT 9 =	nnn Accou	NT TOTAL.S	00_	00
	RATOR (FIRED)		0	•00	-ກຄ	-00	.01
10. 2 FLUI	D BED BOILER OTAL DIRECT	EA	4.0 1	4912000.00		59648000.00 59648000.00	33551999.75
ENERGY CON 11. 1 STEA 11. 2 SAS	VERTER M TURBINE GEN TURBINE GENER	ERATOR	1.0 1	9708000.00	1255014.50	19700000.00 28800000.00	1255014.50 6304000.00
11. 3 LIQU	IO METAL TURE ID METAL DRUM	3-GEN	8.0	3000000.00 650000.00	270000-00	240000000.00	2159999-91 380000-0
11. 5 LIQU	ID HET RECIRC	PUMP	4.0	215000.00	17200.00	860000.00	68800-01
11. 7 LIG	MET HOT LEG P	PIPE .	2000.0 1300.0	2330.00 310.00	780-00 104-00	4660000.00 403000.00	1560000 0 135200 0
11. 9 ITR	MET CONDENSA MET INVENTORY OTAL DIRECT		1.0 1.0 UNT 11 =2	450000.00 675000.00 25.963 ACCOU	36000.00 13500.00 NT TOTAL:\$	1800000.00 675000.00 83498000.00	144000 -0 13500 -0 12020514 -3
COURT THE U	EAT EXCHANGE	·······			 		
	COND-STEAM GE		4.0 4.0	1610000.00 725000.00	690000.00	6440000.00 2900000.00	2760000 - 01
PERCENT	DTAL DIRECT C	OST IN ACCO	UNT 12 =			9340000.00	3200000-01
						ر سوق	
13. 1 GAS-	ERY HEAT EXCL AIR RECUPERAT	FOR EA	.0	-BC	•00	.00	.0
13. 2 ECON 13. 3 GAS	OMIZER FEED_WATER_HE	EA TATER FA	-D	-00 -00	•00 •00	.00 .00	•D:
13. 4 FEED	WATER HEATER OTAL DIRECT (STRING OST IN ACCO	ONT 13 =	1500000 00 •20 ACCOU	45000.00 NT 101AL.S	1500000.00	\$5000 0
			14				
TATER TREA	THENT	GP M	115.3	2500.00	70C•00	288239-99	80707.2
14. 2 COND PERCENT T	ENSATE POLISI OTAL DIRECT (TING KWE 7 OST IN ACCO	20600.0 UNT 14 =	1.25 .404 ACCOU	_30	900749.98 1188989.97	216180.0 296887.2
	<u> </u>	A CONTRACT OF SEA					
POWER COND	TURB TRANSFOR	MER 8	80733.3	-00	.00	1594347.28	31886.9
15. 3 GAS	VAP TURB TRAN TURB TRANSFOR	MER 3	29655.6 5627 7. 8	.00	•00 •00	2545736.06	.01
PERCENT T	OTAL DIRECT O	COST IN ACCO	UNT 15 =	2.359 ACCOU	AT TOTAL, S	8647246-37	32524-6

and the second s

RANKINE METAL VAPOR TOPPING-STEAM CYCLE ACCOUNT LISTING PARAMETRIC POINT NO. 1

ACCOUNT	NO. & NAME.	UNIT AMOU	TIND WAT \$\ONLY	INS \$/UNIT	AAT COST+S	INS COST+\$
AUXILIARY 15. 1 3010 16. 2 0THE 16. 3 MISC 16. 4 AUXI 16. 5 LIQ 16. 6 LIQ 16. 7 LIQ 16. 9 LIQ 16. 9 LIQ	MECH EQUIPMENT FEED PUMPS OF SERVICE SYSTEM FOR THE PROPERTY OF THE PUMPS OF THE PU	NT EDR.KWZ 6343 KWE 6840 KWE 11400 S-PROC TANK EA HONITOR K EA COST IN ACCOUNT	78.6 1.6 CG.6	7	1143231.87 601920.60 1333800.60 6200000.00 5206600.00 1760006.00 2280000.00 19258951.75	82080.00 832199.99 2000000.00 60000.00 250000.00 400000.00
PIPE 8 FIT 17. 1 CONV 17. 2 HOT 17. 3 STEA PERCENT	TTINGS VENTIONAL PIPI CAS PIPING AM PIPING & FI TOTAL DIRECT (ING TON 13 ITTINGS COST IN ACCOUNT	70.0 3000.0 4.0 2200000.0 .0 .0 17 = 4.179 ACC	1800-00 0 -00 0 -00 0 -00 0 -00 0 -00	\$110000.00 8300000.00 .00 12310000.00	2466000.00 .00 .00 2466000.00
AUXILIARY 18. 1 MISC 18. 2 SWIT 18. 3 CONG 18. 4 ISO 18. 5 LIGH 18. 7 LM PERCENT	ELEC EQUIPMENT OF THE PROPERTY	NT 11400 PAN KWE 11400 RAYS FT 49300 US FT 17 KWE 11400 N SYS EA SYSTEM COST IN ACCOUNT	00.0 1.4 00.0 1.3 00.0 1.3 00.0 510.0 00.0 510.0 1.0 250000.0 1.0 2500000.0	0 •17 5 •45 2 1•36 0 450•00 5 2000000•00 0 2000000•00	1596000.00 2223000.00 550759.94 967000.00 395000.00 2500000.00 2500000.00	193800.00 5704799.94 765000.00 490200.00 200000.00 10866799.75
CONTROL. 13.1 COMP 13.1 COMP 13.2 CTHE PERCENT 1	INSTRUMENTATION TO THE PUTER ON TROLS TO THE PUTER OF THE	ON EACH EACH COST IN ACCOUNT	1.0 660000.0 1.0 1250000.0 1) = _734_ACC	0 15000-00 0 774000-00 0UNT 10TAL#5	550000.00 1250000.00 1910000.00	15000.00 774660.00 789000.00
PROCESS HA 20- 1 BOT 20- 2 DRY 20- 3 WET 20- 4 ONSI	ISTE SYSTEMS FOM ASH ASH SLURRY LIE DISPOSAL	TPH TPH TPH 20 ACRE 8	.0 48.0 2727531.0 64.3 6708132.3 75.6 5126.8 20 = 6.298 ACC	000 5 531907-77 1 1677033-08 77365-19	2727531.06 6708132.31 4489103.44	681907-77 1677033-08 6886791-06
			-8 8784224.21 -0 21.5 -0 000 ACC			•nn
* **	DIRECT COSTS				73120.0C 9	

```
SUB 101AL.S
ESCALATION COST.S
ENTREST DURING CONST.S
TOTAL CAPITALIZATION.S
COST OF ELEC-CAPITAL
COST OF ELEC-FUCL
COST OF ELEC-CP & MAIN
TOTAL COST OF ELEC
                 ACCOUNT RATE CONTINGENCY PERCENT STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDARD STANDA
   50096640. 50096040. 50096040.
29432052. 29432052. 29432052.
34950561. 34950561. 34950561.
                                                                                                                                                                                                                                                                                                                                   51.C 50036040.

8.C 29432052.

9.5 34950561.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           50096040
29432052
34950561
                                          INDIRECT COST. $
PROF 8 OWNER COSTS. $
CONTINGENCY COST. $
                                                                                                                                                                                                                                                                                                                                               9.5 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561 34950561
                                          SUB TOTAL **
ESCALATION COST **
ENTREST DURING CONST **
TOTAL CAPITALIZATION **
                                                                                                                                                                                                                                                                                                                             10.0
                                          COST OF ELEC-CAPITAL
COST OF ELEC-FULL
COST OF ELEC-OP & MAIN
TOTAL COST OF ELEC
                                                                                                                                                                                                                                                                                                                                   18.0
                                                                                                                                                                                                                                                                                                                                                                                                                             1.86282
30.46009
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     1.86282
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1.86282
32.76485
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1.85282
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         27-05783
                                                                                                                                                                                                                                                                                                                   PERCENT 6.00 INT DURING CONST.PERCENT 12.50 15.00 PERCENT 6.00 10.00 12.50 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.
               _ACCOUNT ____
                                          TOTAL DIRECT COSTS.S
INDIRECT COST.S
PROF & OWNER COSTS.S
CONTINGENCY COST.S
                                                                                                                                                                                                                                                                                                                                                                                         34950561.
                                                                                                                                                                                                                                                                                                                          9.5 34950561 34950561 34950561 34950561 34950561 54950561 54950561 50 4923779296 482379296 482379296 56.5 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 132800955 
                                     CONTINGENCY COST S
SUB TOTAL S
ESCALATION COST S
INTREST DURING CONSTRA
TOTAL CAPITALIZATION S
COST OF ELEC-CAPITAL
COST OF ELEC-FUEL
COST OF ELEC-DP MAIN
TOTAL COST OF ELEC
                                                                                                                                                                                                                                                                                                                                                                                                                                       8.08106
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   8.C8105
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            8.08100
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          8-08106
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    8.08105
                                                                                                                                                                                                                                                                                                                                                        . 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1.86282
32.85174
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   1.85282
30.61738
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  1.86782
31.58E45
```

RANKINE METAL VAPOR TOPPING-STEAM CYCLE COST OF ELECTRICITY MILLS/KW.HR

	ACCOUNT	DATE	ç	IXED CHARGE	RATE. PCT		
	ACCUONT	PERCENT	r 10.00	14.40	18.CC	21.60	25.00
	TOTAL BEDFOR COCTO.E	.6	367900648.	367900648.	367900648.	367500648.	367966648.
	TOTAL DIRECT COSTS .S	51.0	50035040	50095040	50096040-	50098040-	50096040.
	INDIRECT COST+5				23432052	29432052	29432052
	PROF & OWNER COSTS . S		23432052	29432052.			34950561
	CONTINGENCY COST . S	9.5	34950581.	34950561.	34950561-	34350561	24330385.
	SUB TOTAL . \$.0	482379296.	482379256.	482379296.	462379296.	482379296.
	ESCALATION COST.S	5.5	132800955.	132800955.	132800955.	132800955.	132800955.
	THIREST DURING CONSINS.	10.0	160899162	160899162	160899162	160899162.	150899162
-	TOTAL CAPITALIZATION S		776079483.	775079468.	775079408.	776073408.	775073408
		25.C	12.02365	17.31405	21.64256	25.97108	30.05912
	COST OF ELEC-CAPITAL		3.C81G6	8.02106	8-03106	3.08106	8.08105
	COST OF ELEC-FUEL	- <u>C</u>			1.85282		1.86282
M-W- 94	COST OF ELEC-OP & MAIN	÷Ĉ	1.8E282	1-86282		35.91496	10.00300
	TOTAL COST OF ELEC	• U	21.96753	27.25794	31,38645	22.21420	40.00360
	ACCOUNT	RATE		EUEL COST	:/10xx6BTU		احاله سواوا المستدا
		PERCEN	T .50	• 85	1.50	2.5C	1.02
	TOTAL DIRECT COSTS:5	.0	367900648.	367900648.	367900648.	357900648.	367900648.
	INDIRECT COST.	51.0	50096040.	50096040	5009604C.	50096040.	50036040.
	PROF & OWNER COSIS: \$	2.0	29432052	29432052	29432052	29432052	29432052
-		9.5	34950561	34950561.	34950561	34950561.	349505E1.
4	CONTINGENCY COST +\$	2.5		452379296	482379296	482379296.	482379296
	SUB TOTAL . S	- 0	482379296-		132800955	132800955	132800955.
	ESCALATION COST *	5.5	132800955.	132800955.			160899162
	INTREST DURING CONST.	18.0	160899162	160899162	166839152.	160399162.	
	TOTAL CAPITALIZATION,S	.0	776079408.	778079408.	776079408.	776073408.	776079408
	COST OF ELEC-CAPITAL	19,0	21.64256	21.64256	21.64255	21.54255	21.54256
	COST OF ELEC-FUEL	.0	4.75357	8.08106	14.25C7C	23.76783	9.69728
	COST OF ELEC-OP & MAIN	. Q.,	1.86232	1.86282	1.86282	1.85282	1.85282
φ -	TOTAL COST OF ELEC	. 6	28.25895	31.58545	37.75609	47.27322	33.20265
<u>.</u>	TOTAL GOST OF LELG	• •	2012000				
171							
-		RATE.		CAPACTIY_EA	CTOD. PEPCE	NT	
	ACCOUNT	PERCEN		45.00	50.00	65.00	80.00
			707000000	367900648.	367900648.	367900648.	367900648.
	TOTAL DIRECT_COSTS .s	· C	367900648.		50098046.	50096040.	50096040
	INDIRECT COST.S	51.0	50026040.	50036040.			29432052
	PROF & OWNER COSTS . S	. يولا	29432052	29432052.	29432052	_ 29932052.	
	CONTINGENCY COST.S	9.5	34950561.	34950561.	34950561.	34950561-	34950561.
ê	SUB TOTAL \$.0	482379296.	482379296.	482379296.	482379296.	482379296.
7	ESCALATION COST.S	5.5	132800955-	132300955.	132800955.	132300955.	132800955.
	INTREST DURING CONSILS	10.0	160899162.	160899162.	160899162	160899162	150899162.
	TOTAL CAPITALIZATION.S	.0	7760794C3.	776079408.	776079408	776073409.	776079408.
		18.0	117.23055	31.26148	28.13533	21.54256	17.58458
	COST OF ELEC-CAPITAL	16.5	20150.8	3.03106	8.08106	8.08106	8.08105
	COST OF ELEC-UEL COST OF ELEC-OP & MAIN	- 2	3.11789	2-62498			1.78821
	COST OF ELEC-OP & MAIN	<u>-</u> -Ē			38.1905	31.58645	27.45386
	TOTAL COST OF ELEC	.0	128.42950	41.36752	20.12024	37.00043	21843300

2	B
3	
1	3
h	
	- CAN
	- 2
į	REPRODL
1	7.4
ORIGINAL AND IS NOT	
1/ 52. Profes	SHIL GO
	ئے۔۔۔

<u> </u>	RANKINE METAL	VAPOR TOPPING	S-STEAM	YCLE				
ACCOUNT NO 7 8 14 18 20 TOTALS RANKINE 1 NOMINAL POW NOM HEAT RA ST TURB HEA CONDENSER	AUX POHER	MWE PERC PL	ANT POW	OPERATION	COST MAI	NTENANCE COS	Ţ	
7	7. 11.	23061	10.97667	1.13.	91312	0000	ic in	
14 18	10	00000 32360	00000	12.	47066 00000	0000	ic io	
20 TOTALS	27. 56.	93519 41913	41.90991 5.85923	3. 1430.	75305 57990	.0000 13.1391	.1	
RANKINE (METAL VAPOR T	OPPING-STEAM (CYCLE BA	SE CASE INP I POWER: MW	PUT E		3. 5809	
NOM HEAT RAI ST TURB HEA	ΓE∙ BTU∕KW-HR Γ RATE CHANGE	8980.920 1.01	70 NE	T HEAT RATE	BTU/KW	-NR 950	17.1534	
CONDENSER DESIGN PRES	URE IN HG A	3-500	<u> </u>	MBER OF SHE	<u>rr</u> z		3-C000	
NUMBER OF IT	18E3/SHELL [2-F	3.50 7035.57 508.55 77.600 23.00 4.11	35 TE	RMINAL TEMP	DIFF. F		5.0000	
DESIGN TEMP	F	77.000	DO AP	PROACH F.	MP. F		5.6713	
OFF DESIGN	RES IN HG A	4.11	ge rb	TURBINE BE	ADE LEN.	IN 2	5.0000	
1	700.000 2 20.600 7	3.500	3 83396	035. 000.000000	<u>- 4 </u>	3.000	5 10	5.500 1.000
11 16	1.000 12 2.000 17	291.500 187.000	13 18	1.000 3.000	14 19	.000 5.000	15 26	2.500
21 26 750001	.000 22 0.000 27	25050,000 20000,000	23 26	20000-000	29 2	27300.000 60000C.000	25 30	•000
36 4 93000	1.000 32 0.000 37	1370.000 1700.000	33	1-000	34 39	1.000	35 40 72	5000.000
45 51	-BCD 47	-000 -000	48	3.CCC	49	2.000	50 50	•000
51 5	.000 ? 000 ?	4.000 1.000	Ę	.000 4.000	9 4	-880 8-000	5 233	000000-000
11 16 197000	4.000 12 0.000 17	2000.000	13 18 7	1300.000	14 19	4.000	15" 20 300	1.000
ω 21 1 26 23	.000 22 0.000 27	658000.000 780.000	23	95000.000 310.000	29 29	215000.000 104.000	25 30 45	000.
72 31 23 35 230000	.CC0 32 00.000 37	675CC0.000	33	.000 725060.000	34 39	4.000	35 40	4.000 -000
41 4 5	.006 42 .000 47	000. 000.	43	1.000	44 49	•000 •000	45 50	000.
51 56	-400 5Z -000 57	**************************************	53 58	1.000	59 59	3 <u>4</u> 000 0000 4	55 60	•600 1•000
<u> </u>	0 000 67	**113 **000 **3-50** **191-500 **191-500 **191-500 **191-500 **19	53	2500CD • 000	69 1	700000 000	70	រក្ខភព ្ឌុក កូលប្រជុំ
75 81 20000	1.000 77	1.000	78	250000.000	79	200000-000	30 250	0000-000
85 91	200 37 -000 92	.000 .000	33	000	. 89	000	35	1.000
วี ธิ์	. ŏŏŏ šī	.000	28	.000	39	.000 1	őč	-000

RANKINE METAL VAPOR TOPPING-SIEAM CYCLE ACCOUNT LISTING PARAMETRIC POINT NO. 4

ACCOU	.פא דא	& NAME.	UNIT		MAT SJUNIT I	NS S/UNIT	AAT COST.	INS COST, \$
SITE DE 1. 1 1 1 2 C 1. 2 C 1. 3 6 1. 5 L 1. 5 L 1. 7 O PERCEN	VELCPME AND CCS LEARING RADING CCESS R OOP RAI IDING R THER SI T TOTAL	NT T LAND LAND LAND AILROAD LROAD TRACK TE COSTS DIRECT CO	ACRE ACRE ACRE MILE WILE WILE ACRE OST IN 40	198.0 66.0 198.0 5.0 5.0 198.0 198.0 198.0 198.0 198.0 198.0 198.0 198.0 198.0 198.0 198.0 198.0 198.0 198.0	1005.00 -00 -00 115000.00 12600.00 125000.00	600.00 3000.00 110000.00 70006.00 80000.00	198000 .00 -00 -00 575000 00 36000 .00 -00 415889 52 1549889 52	39596.04 594000.00 550000.00 210006.00 416885.52
EXCAVAT 2. 1 C 2. 2 P PERCEN	ION & POMMON E	ILING XCAVATION DIRECT CO	YD3 FT IN_AC	71550.0 190800.0 COUNT 2.2	.00 5.50 .792 ACCOUN	3.00 8.50 1. TOTAL	.00 1240260.00 1240260.30	214550.00 1621800.00 1836450.00
PLANT I 3. 1 P 3. 2 S PERCEN	SLAND C LANT IS PECIAL T TOTAL	ONCRETE CONCRETE STRUCTURES DIRECT CO	YD3 YD3 ST IN AC	23450.0 COUNT 30=	70-00 -817 ACCOUN	BG.CO 500 IT TOTAL.\$	1659500.00 1669500.00	1908000.00 1908000.00
HEAT RE 4. 1 C 4. 2 C 4. 3 S PERCEN	JECTION OOLING IRCULAT URFACE T TOTAL	SYSTEM TOWERS ING H20 SY COMPENSER DIRECT CO	EACH 'S EACH FT2 ST IN AC	13.0 1.0 381365.9 COUNT 4 =	.00 .00 .00 1.745 ACCOUN	.00 .00 .00 T TOTAL.5	1995500.00 1131192.05 1738058.08 4864750.06	994500.00 1516785.56 266956.12 2778241.69
STRUCTU 5. 1 S 5. 3 C 5. 4 S PERCEN	RAL FEA TAT. ST ILOS & HIMNEY TRUCTUR T TOTAL	TURES RUCTURAL S BUNKERS AL FEATURE DIRECT CO	T. TON TOH FT SEACH IST IN AC	27366 .C .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	650.00 1800.00 .00 725000.00 5.346 ACCOUN	175.00 750.00 000 165000.00 T TOTAL.\$	17745866 .00 .00 .00 725000 .00 18476900 .00	4777500.00 .00 .00 165000.00 4943500.00
SUTLOIN 6. 1 S 5. 2 A 5. 3 N PERCEN	GS TATION DMINSTR AREHOUS T TOTAL	EUTEDINGS ATION E & SHOP DIRECT_CO	F13 F12 F12 ST IN AC	7500000.0 20000.0 20000.0 COUNT 6 =	.16 16.00 12.00 .776 ACCOUN	-15 14-00 8-00 T TOTAL+5	1200000.00 320660.00 240000.00 1760000.00	1200000.00 280000.00 160000.00 1640000.00
FUEL HA 7. 1 C 7. 2 C 7. 3 F PERCEN	MOLING CAL HAN CLOMITE UEL CIL TOTAL	& STORAGE DLING SYS HAND. SYS HAND. SYS DIRECT CO	TPH TPH GAL ST IN AC	\$17.2 273.6 2600000.0 COUNT 7 =	-00 -00 -00 4.656 ACCDUN	*08 80 80 8.JATCT T	10319369-87 3579441-31 290836-01 14189647-12	\$35\$83\$-87 1610568-86 227826-\$1 6203230-06
FUEL PR	OCESSIN GAL DRY ARRONIZ ASIFIER T TOTAL	G ER & CRÚSH ERS S DIRECT CO	ER TPH TPH TPH ST IN AC	517.2 COUNT 8 =	-89 -00 -00 -00 32-175 ACCOUN	.00 .00 .00 T TOTAL.\$.00 .00 90190844.00 90190844.00	50732349-50 50732349-50

Table A 8.3.4 Continued

Table A 8.3.4 Continued	
RANKINS METAL VAPOR TOPPING-STEAM CYCLE ACCOUNT LISTING PARAMETRIC POINT NO. 4	
ACCOUNT NO. & NAME: UNIT AMOUNT WAT STUNIT INS STUNIT WAT COST.S INS COST.S	i
FIRING SYSTEM 9. 1 PERCENT TOTAL DIRECT COST IN ACCOUNT 9 = .000 ACCOUNT TOTAL. 00 .00 .00 .00 .00	0
VAPOR GENERATOR (FIRED) 10. 1 PRESSURIZE BOILER EA 8.0 2200000.00 450000.00 17600000.00 3600000.00 10. 2 FUUID BED BOILER EA .0 .00 .00 .00 .00 .00 .00 .00 .00 .00	B. 0
ENERGY CONVERTER 11. 1 STEAN TURBINE GENERATOR 11. 2 GAS TURBINE GENERATOR 11. 3 LIQUID METAL TURB-GEN 11. 4 LIQUID METAL DRUM 4.0 625C0C.00 90000.00 2500000.00 2500000.00 2159399-9 11. 4 LIQUID METAL DRUM 4.0 625C0C.00 90000.00 2500000.00 360000.00 360000.00 12500000.00 360000.00 11. 5 LIQUID METAL DRUM 4.0 625C0C.00 90000.00 360000.00 360000.00 360000.00 360000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 1250000.00 135000.00 1250000.00 135000.00 135000.00 13500.00 13500.00 13500.00 13500.00 13500.00 13500.00 135000.00 13500.00 13500.00 13500.00 13500.00 13500.00 13500.00 13500.00 13500.00 13500.00 13500.00 13500.00 13500.00 13500.00 135000.00 13500.00 13500.00 13500.00 13500.00 13500.00 13500.00 135000.00 13500.00 13500.00 13500.00 13500.00 13500.00 13500.00 13500	17 10 10 10 10 10 10 10 10 10 10 10 10 10
CCUPLING HEAT EXCHANGER 12. 1 L M COND-STEAM GEN 12. 2 HOT WELL TANK 12. 2 HOT WELL TANK 12. 2 HOT WELL TANK 12. 2 HOT WELL TANK 12. 2 HOT WELL TANK 12. 2 HOT WELL TANK 13. 2 HOT WELL TANK 14.0 725000.00 110000.00 2900000.00 3200000.00	10 10
HEAT RECOVERY HEAT EXCH. 13. 1 GAS-AIR RECUPERATOR EA .G .CC .CO .GG .GG .GG 13. 2 ECONOMIZER EA .G .GG .GG .GG .GG .GG .GG .GG .GG .GG	0000
MATER IREALMENT. 14. 1 DEMINERALIZER GPH 1107.4 2000.00 560.00 2214824.53 620150.8 14. 2 CONDENSATE POLISHING KWE 715300.0 1.25 .30 894125.00 214590.0 PERCENT TOTAL DIRECT COST IN ACCOUNT 14 = .900 ACCOUNT TOTAL.\$ 3108949.53 834740.8	G
POWER CONDITIONING 15-1 SIM TURB TRANSFORMER 874255-5 .00 .00 1586509-19 31730-1 15-2 MET VAP TURB TRANSFORMER 227955-6 .00 .00 4504501-12 634-6 15-3 GAS TURB TRANSFORMER 364955-5 .00 .00 2556236-19 .00 PERCENT TOTAL DIRECT COST IN ACCOUNT 15 = 1.982 ACCOUNT TOTAL \$8647246.50 32364-7	.8 .0 .0 .0 .0

RANKINE METAL VAPOR TOPPING-SIEAM CYCLE ACCOUNT LISTING

ACCOUNT NO.	E NAME.	UNIT	AMOUNT	MAT S/UNIT	TINU \$ ZNI	HAT COST+5	INS COST+S
AUXILIARY MECH 16. I BOILER F 16. 2 OTHER PU 16. 3 MISC SER 16. 5 LIQ MET 16. 5 LIQ MET 16. 7 LIQ MET 16. 9 LIQ MET 16. 9 LIQ MET PERCENT TOTAL	EQUIPMENT EED PUMP & MPS VICE SYS V BOILER	DR.KWE KWE KWE PPH	579535.0 684000.0 1140000.0	1.67 - 88 1.17 4.00	•10 •12 •73 •80	1134823.44 601920.00 1333800.00	82080.0 832199.9
16. 5 LIQ MET 16. 6 LIQ MET 16. 7 LIG MET 16. 8 COVER GA	RECETVING- STORAGE TA THPURITY M S SYSTEM DUMP TANK	PROC NK EA ONITOR EA FA	1.0 9.0 1.0 1.0 4.0	5200000.00 1300000.00 300000.00 1700000.00	2000000.00 150000.00 250000.00 40000.00	6200000-00 5200000-00 800000-00 1700000-00 2280000-00	2000008.0 60000.0 250000.0 700000.0 344000.0
							457E233.4
PIPE & FITTING 17. 1 CONVENTI 17. 2 HOT GAS 17. 3 STEAM PI PERCENT TOTAL	ŎNAL PIPIN PIPING PING & FIT DIRECT CO	G TON EA TINGS ST IN A	1540.0 4.0 4.0 CCOUNT 17	3000.00 200000.00 -00 -3.514 ACCO	1800.00 .00 .00 .00 UNT TOTAL:\$	\$520000.00 8660666.00 .00 12626860.00	2772000.1 .0 2772000.0
AUXILIARY ELECTION OF THE PROPERTY OF THE PROP	EQUIPMENT ERS.ETC AR & NCC P CABLES.TRA	AN KHE	1140000.0 1140000.0 4930000.0	1.40 1.95 1.32 510.00	-17 -35 1-36 450-00	1596000.00 2223000.00 6507599.94 867000.00	193800.1 513000.1 6704799.1 765000.1
AUXILIARY ELEC 18. I MISC NOT 18. 2 SHITCHGE 18. 3 CONDUTY. 18. 4 ISOLATED 18. 5 LIGHTING 18. 6 LM LEAK 18. 7 LM TRACE PERCENT TOTAL	8 COMMUN DETECTION HEATING S DIRECT CO	KWÉ SYS EA YSTEM ST IN A	1140000.6 1.0 1.0 CCOUNT 18	250000.00 2500000.00 5.756 ACCO	200000-00 2000000-00 UNT TOTAL+\$	399000.00 250000.00 2500000.00 14342599.87	490200. 2000000. 2000000. 10866799.
CONTROL INSTR 19. 1 COMPUTER 19. 2 OTHER CO PERCENT TOTAL	UMENTATION NTROLS DIRECT CO	EACH EACH ST_IN_A	1.0 1.0 CCOUNT 19	660000.00 12500GC.00 - 616 ACCO	15800.00 77400.00 UNT TOTAL.S	660000.00 1250000.00 1910000.00	15000. 77400C. 789000.
PROCESS WASTE 20-1 ROTTOM A 20-2 DRY ASH 20-3 WET SLUR 20-4 ONSITE 20-4 ONSITE	SM3TSAS	TPH TPH	_0_ 49.6	00 2804410•69	701102.67		781102
20. 3 WET SLUR 20. 4 ONSITE D PERCENT TOTAL	RY ISPOSAL DIRECT CO	TPH ACRE ST IN A	27316 869-5 CCOUNT 20	6945489.19 5131.90 5.364 ACCO	1736372.30 7873.33 UNT TOTAL:5	6945489.19 4462321.12 14212221.00	1736372. 346056. 83541.
STACK GAS CLEAR 21. 1 PRECIPII 21. 2 SCRUBBER 21. 3 MISC STE PERCENT TOTAL	NING ATOR	EACH KWE	.0.	9025730.50 21.72	5866725.75 9.96	.00. 00.	
PERCENT TOTAL	DIRECT CO	ST IN A	CCOUNT 21":	= .000 ACCO	UNT TOTAL S	*00	•

ACCOUNT	_RATE.	LABOR RAT	E: \$/HR		
ACCOUNT TOTAL DIRECT COSTS *S INDIRECT COSTS *S PROF & ONNER COSTS *S PROF & ONNER COSTS *S CONTINGENCY COST *S SUB TOTAL *S ESCALATION COST *S INTREST DURING CONST *S TOTAL CAPITALIZATION *S COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	PERCENT 6.00 51.0 3861C6876. 51.0 34512973. 8.C 30888550. 9.5 36680153. 60 488188548. 5.5 134400224. 10.0 1622836856. 13.C 21.69633. 0 9.33370. 0 1.963351.	8-50 4143C3748-4 48893379-3 39358855-535700272-5 1474804544-1 178684544-1 861865248-1 23-80787 8-33370 1-96351 34-10507	10.60 37989124.60972920.35039129.41608966.775610136.558457778.226074520.125.5813570.35.87877	15-00 487615624-8 86282434-3 39092492-6 59230784-6 181488873-6 1988854-3 060608200-2 29-2978-3 1-96351 39-59508	21.50 560927496. 123671488. 44874199. 53288111. 782761280. 215497320. 22509351136. 34.78788 8.33370 1.96351 45.08509
ACCOUNT TOTAL DIRECT COSTS, \$ INDIRECT COST, \$ PROF & OWNER COST, \$ CONTINGENCY COST, \$ SUB TOTAL, \$ ESCALATION COST, \$ INTREST DURING CONST, \$ TOTAL CAPITALIZATION, \$ COST OF ELEC-CAPITAL COST OF ELEC-CP & MAIN TOTAL COST OF ELEC	RATE: PERCENT -5.00 0 437989124. 51.0 437989129. 8.0 35039129. 20.c -21899456. 6.5 140983656. 10.0 170813170. 6 823898536. 18.0 22.75909 0 8.33370 0 1.96351	CONTINGENCY .00 437939124.9 60972920.3 535039129.0 536001172.5 147012664.1 178117809.1 959131632.9 23.73235 8.33370 1.964351 34.02956	PERCENT 9-50 137989124- 60972920- 3503791296- 75610138- 75610138- 91996608- 26074520- 25-58155- 8-33370- 35-87877	5.00 437989124- 60972920 35039129- 555900624- 555900624- 153041672- 1854224358- 894364728- 24-70562 8-33370 1-93283	20.00 437989124. 60972920. 35039129. 621598992. 171128696. 207336338. 1000064024. 8.33370. 1.92263.
TOTAL CIPECT COSTS, S INDIRECT COSTS, S INDIRECT COST, S PROF & ONNER COSTS, S CONTINGENCY COST, S SUB TOTAL, S E SCALATION COST, S INTREST DURING CONST, S TOTAL CAPITALIZATION, S COST OF ELEC-FUEL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	RATE. PERCENT 5.00 437989124. 51.0 437989124. 51.0 50972920. 8.0 35039129. 9.5 41608966. 0 118952302. 10.0 183315482. 10.0 183315482. 10.0 8.33370 10.0 8.33370 10.0 196351	ESCALATION RA 6.50 437983124.4 60972920. 35039129. 41608966.575610136.5 158467778.1 191996608.2 925074520.3 25.58156 8.33370 1.96351 35.87877	ATE . PERCEN 137989129. 60972920. 35039129. 41608966. 75610136. 99873080. 901014638. 176497848. 176497848. 176497848. 176497848. 176497848. 176497848. 176497848.	10.00 437989124. 60972920. 41608966. 575610136. 25814394. 213580040. 047334120. 047334120. 1.96351 39.22840	437989124 60972920 35039129 41608966 575610136 0 156686850 732296984 20 22872 8 33370 1 96351 30 52592
ACCOUNT TOTAL DIRECT COSTS.\$ INDIRECT COSTS.\$ PROF.& OWNER COSTS.\$ CONTINGENCY COST.\$ SUB TOTAL.\$ ESCALATION COST.\$ INTRESI DURING CONST.\$ TOTAL CAPITALIZATION.\$	RATE. PERCENT 6.00 -0 437939124- 51.0 60972920 9.0 35039129- 9.5 41608966- 0 575510136- 6-5 158467778	INT DURING CO 8.00 \$37989124. \$ 60972920. 35039129. \$1608966. 575610136. 5 1584677778. 1	NST. PERCEN 10.00 37989124 60972920 35039129 41608966 575610136	12.50 37789124.60972920.35039129.51608966.5756101378.24613748.246137488.33370.3714.3635137.37435	15.00 437989124 60972920 35039129 41608966 575610136 158467778

RANKINE METAL VAPOR TOPPING-STEAM CYCLE COST OF ELECTRICITY. MILLS/KW.+HR PARAMETRIC POINT NO. 4

ACCOUNT RATE, FIXED CHARGE RATE, PCT 18.00 21.60 25.00 TOTAL DIRECT COSTS. 0 437989124.	
INDIRECT COST.\$ 51.0 60972920. 60972920. 60972920. 60972920. 60972920. 50972	
PROF	
SUB TOTAL *	
ESCALATION COST.\$ 5.5 158467778. 15846778. 15846778. 158467778. 158467778. 158467778. 15846778. 158467778. 158	
TNTREST DURING CONST.* 10.0 191996608 191996608 191996608 191996608 191996608 191996608 191996608 191996608 191996608 191996608 1919996608 1919996608 1919996608 1919996608 1919996608 191999608 1919996608 191999698 191999698 191999698 191999698 191999698 191999698 191999698 191999698 191999698 191999698 191999698 191999998 191999998 191999998 191999998 191999998 191999998 1919999998 191999998 191999998 191999998 191999998 191999998 191999998 191999998 191999998 191999998 191999998 1919999998 1919999998 19199999999	
COST OF ELEC-CAPITAL 25.C 14.21198 20.46525 25.58156 30.69787 35.52995 COST OF ELEC-FUEL 0 8.33370 8.33370 8.33370 8.33370 8.33370 8.33370 0.057 OF ELEC-FUEL 0 1.96351 1.9635	
COST OF ELEC-FUEL .0 9.33370 8	
ACCOUNT PERCENT SO FUEL COSI \$/10 * 6 BTU 2.50 1.02	
PEDCENT 50 250 1.02	
(•
TOTAL DIRECT COSTS:	
INDIRECT COST.\$ 51.0 60972920. 60972920. 60972920. 60972920. 60972920. 60972920. 60972920. 60972920. 60972920. 60972920. 35039129. 35039129. 35039129. 35039129.	
CONTINGENCY COST \$ 9.5 41608966. 41608966. 41608966. 41608966.	
SUB TOTAL*\$ -0 575610136. 57561010136. 575610136. 575610136. 575610136. 575610136. 575610136. 575610136. 57561	
TOTAL CAPITALIZATION:	
COST OF ELEC-CAPITAL 18.0 25.58156 25.5	
COST OF FLEC-OP & MATH	
TOTAL COST OF ELEC .0 32.44724 35.87877 42.25160 52.05595 37.54551	
L777	
ACCOUNT RATE: CAPACITY FACTOR: PERCENT PERCENT 12.00 45.00 50.00 65.00 80.00	••
PERCENT 12.00 45.00 50.00 65.00 80.00 TOTAL DIRECT COSTS.\$.0 437989124. 437989124. 437989124. 437989124. 437989124.	
INDIRECT COST. \$ 51.0 60972920. 60972920. 60972920. 60972920. 60972920.	
PROF 8 OWNER COSTS.\$ 8.0 35039129, 3	
SUB TOTAL • \$ D _575610136 575610136 575610136 575610136_	
ESCALATION COST . 5 5 158467778 158467778 158467778 158467778 158467778 158467778 158467778 158467778	
TNTREST DURING CONST-\$ 10.0 191996608. 19199608. 191996608. 191996608. 191996608. 191996608. 191996608. 191996608. 191996608. 191996	
COST OF ELEC-CAPITAL 18.0 138.56679 36.95114 33.25603 25.58156 20.78502	
COST OF ELEC-FUEL 0 8.33370 8.3370 8.33370 8.3370 8.3370 8.3370 8.3370 8.3370 8.3370 8.300 8.300 8.300	
COST OF ELECTOP & MAIN C 3-21857 2-12565 2-07483 1-96351 1-88890 TOTAL COST OF ELEC -0 150-11906 47-41050 43-66456 35-87877 31-00761	

						TOPPIN									· - · - · · · · ·
	ACCOU	NT NO 4	AUX	PONER	MWE 34881	PERC PL	ANT 16.0	POW 9193.	OPERAT	ION .55.	COST M	AINTEN	ANCE C	0ST 731	
		7 8 14		10	54857 00000 00000		13.5 -0:	7405 0000 0000	1	463. 87.	94225 76623 19131		000. 000. 000.	300 300 300	
	TOTAL	20 LS ANKINE ME	ra: v	28 55 APOP	82114 61032	-STFAR	51.8 4.8	2695 5939	I CASE	9.1 620.1	06275 01379		13.087	300 731	
	NOMŤ NOM ST T	NT NO 1 8 1 9 20 LS ANKINE MEI NAL POWER; HEAT RATE; ENSER	BTU BTU RATE	/KW-HE	}	1200 00 9349 39	00. 98 81	NET	POWER HEAT	RATE	BTU/	KW-HR	<u>11</u>	44.3897 904.3522	<u></u>
-	COND DESTI NUMB U. B	ENSER 6N PRESSUZ ER OF TUBI TUZHR-FT2-	RE.I	N .HG .A Ell		3.50 6985.05 608.85	180	- NUM TUB TER	BER OF E LENG	SHE	LLS. FT DIFF.	<u>.</u>		3.0000 69.5067 5.0000	
	HEAT DESI RANG OFF	ENSER GN PRESSUR ER OF TUBIL TU/HR-FT2- REJECTION GN TEMP* F DESIGN PRE	! ES : I	N HG A	 L .	77.00 23.00 2.41	00 00 96	APP OFF LP	ROACH # DESIG	F N TE E BL	MP F	N. IN		15.6713 51.4000 25.0000	·
*******	1 5 11 15	1200 715.	1.00ú 300 000	2 7 12 17		3.500 3.500 98.600 98.000	13 13 18	33720	00000. 1. 3.	365 000 000 000	9 14 19		3.000 4.000 5.000	15 10 15 20	\$.500 1.000 1.000 3.000 .000 725000 725000 1.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00000 6.0000 6.00000 6.00000 6.00000 6.00000 6.00000 6.00000 6.0000000 6.00000000
	21 25 31 36 41	7500000 1 4930000 166000	000 000 000 000	27 32 37 42	235 200 15 17 6600	00.000 00.000 00.000	28 33 38 43		20000	000 000 000 000	24 29 34 39	250000 250000	0.000 1.000 1.000 1.000	25 30 35 40	-000 -600 1-000 725000-600 -774000-000
	46 51 1	1.	.000 .000	47 52 2		5.350 5.350	48 3	2:	3. 200000	-000 -000	49	4500	2.000 00.000	50 1 5	.000 .000
8-178	11 16 21	19700000	000 000 000	12 17 22	625 <u>0</u>	000.000	13 13 23	71	1300. 00000.	000 000	14 19 24	21500	4.000	15 20 25	1.000 3000000.000
-	31 36 41 45	2300000	000 000 000	32 37 42 47	6650	000.00	33 38 43 48	7:	25000	000 000 000	34 39 44	11000	4.000 0.00 0.00 0.00	30 75 40 45	450000,000 4.000 -000
:	51 56 61 65	150000	000 000 000	52 57 62 67	15000 15000	00.000 000 4.000	53 58 63 68	62! 2!	1. 20000.	000 000 000 000	54 59 64	200000 170000	.000 4.000 10.000	55 60 65 70	1-000 1-000 130000-000 40000-000
******	75 81 86	2000000	000 000 000 900 000	77 77 82 87	860	00.000 1.000 .000	73 78 83 88 93	2	50000	800 000 600 000 000	74 79 84 .89	20000	000-00	75 90 85 30	-800 2500000 -000 -000 -000
	36	•	000	97		-000	98		-1	ÖÖÖ	99		-800	10c	-000

RANKINE METAL VAPOR TOPPING-STEAM CYCLE ACCOUNT LISTING PARAMETRIC POINT NO.49

and the second of the second o		CIKTE BOTUL				
ACCOUNT NO. & NAME.	UNIT	AMOUNT MAT	\$/UNIT INS	ENUNIT MA	COST+#	INS COST+\$
SITE DEVELOPMENT 1. 1 LAND COST 1. 2 CLEARING LAND 1. 3 GRADING LAND 1. 4 ACCESS RAILROAD 1. 5 LOOP RAILROAD TI 1. 6 SIDING R R IRACE 1. 7 GTHER SITE COST PERCENT TOTAL DIRECT	ACRE ACRE ACRE ACRE RACK MILE COST IN ACCO	187-0 62-3 187-0 5-0 1 2-5 1 0 1	1000.00 .00 .00 .15000.00 .25000.00 .25000.00 .00 883 ACCOUNT	ESC-00 3000-00 10000-00 70000-00 80000-00 FOTAL:\$ 1	187000-00 -00 -00 575000-00 300000-00 396406-86 458406-86	37396.26 561000.00 550000.00 175000.00 396406.86 1719803.11
EXCAVATION 8 PILING 2. 1 COMMON EXCAVATION 2. 2 PILING PERCENT TOTAL DIRECT						
PLANT ISLAND CONCRETE 3. 1 PLANT IS. CONCRE 3. 2 SPECIAL STRUCTUR PERCENT TOTAL DIRECT	TE YD3 RES YD3 COST IN ACCO	25050.0 .0 UNT 3 = 1.	70.00 .00 044 ACCOUNT	80.00 1 000 TOTAL:\$ 1	753500 <u>.00</u> 200 753500 <u>.</u> 00	2 <u>0</u> 04060.00 2004600.00
HEAT REJECTION SYSTEM 4. 1 COOLING TOWERS 4. 2 CIRCULATING H20 4. 3 SURFACE CONDENSE PERCENT TOTAL DIRECT	EACH SYS EACH R FI2 3 COST IN ACCO	13.0 1.0 81071.8 UNT 4 = 2.	-00 -00 -00 TAUCOOA EST	.00 1: .00 1: .00 1: .00 1:	95500.00 130319.83 737028.50 862848.31	994500.00 1515616.03 266750.29 2776866.31
STRUCTURAL FEATURES 5. 1 STAT. STRUCTURAL 5. 2 SILOS & BUNKERS 5. 3 CHIMNEY 5. 4 STRUCTURAL FEATURES PERCENT YOTAL DIRECT	ST. TON TPH FT RES EACH COST IN ACCO	27300.0 .0 .0 1.0 0 0 7	650.00 1800.00 .00 25000.00 16	175.00 177 750.00 6000.00	745000.00 -06 -00 725000.00	\$777500.00 .00 .00 166000.00 49\$3500.00
BUILDINGS 6. 1 STATION EUILDING 6. 2 ADMINSTRATION 6. 3 WAREHOUSE & SHOP PERCENT TOTAL DIRECT						
FUEL HANDLING & STORAG 7- 1 COAL HANDLING SY 7- 2 DOLOMITE HAND. S 7- 3 FUEL OIL HAND. S PERCENT TOTAL DIRECT						2517788 • 03 1385278 • 22 227826 • 41 4130892 • 66
FUEL PROCESSING 8. I COAL DRYER & CRU 8. 2 CARSOMIZERS 9. 3 GASIFIERS PERCENT TOTAL DIRECT						-00 -00 -00
TENCENT TOTAL DIRECT	2021 #16 46601	o14 1 0 •	ODD MCCOOM! 1	OINLYS	• 00	•00•

	RANKIN	E METAL VAF	OR TOPPING-	STEAM CYCLE	ACCOUNT LIS	TING	
ACCOUNT	NO. 8 NAMI	E, UNIT	AMOUNT	MAT S/UNIT	INS \$/UNIT	MAT COST.S	INS COST+S
FIRING SYS 9.1 PERCENT T	TEH OTAL DIRE	CT COST IN	ACCOUNT 9	-000 ACC	O .OC	00.	• 6
VAPOR GENE 10-1 PRES 10-2 FLUI PERCENT T	RATOR (FI SURIZE BO D BED BOI OTAL DIRE	RED) ILER E/ LER E/ CT COST IN	ACCOUNT 18	15163000.0 15163000.0 =26.345 ACC	0 8531999.8 0 8531999.8 0UNT TOTAL.\$	00 60672600 CG 60672600 00	34127999.5 34127999.5
ENERGY CON 11. 1 STEA 11. 2 GAS 11. 3 LIGU 11. 4 LIGU 11. 5 LIGU 11. 7 LIG 11. 8 LIGU 11. 9 LIGU PERCENT T	VERTER M TURBINE TURBINE TURBINE ID METAL ID METAL ID MET COLD MET CONDE MET CONDE MET INVEN OTAL DIRE	GENERATOR ENERATOR ENERATOR DRUM DRUM ENERATOR DRUM ENERATOR ENERA	1.0 8.0 4.0 2000.0 1300.0 1.0 ACCOUNT 11	19700000.0 6000000.0 3000000.0 590000.0 215000.0 310.0 35000.0 640000.0	0 1209394-22 0 1576000-00 0 276000-00 0 90000-00 0 17200-00 0 780-00 0 104-00 0 28800-00 0 12800-00	19700000.00 24000000.00 25000000.00 2360000.00 360000.00 4660000.00 403000.00 1440000.00 78063000.00	1209394.2 6304000.2 2159999.6 360000.6 68800.1 135200.6 115200.6 12800.6
			····		0 834000.00 0 11000.00 0UNT TOTAL*\$		
HEAT RECOV 13. 1 GAS- 13. 2 ECON 13. 3 GAS 13. 4 FEED PERCENT T	ERY HEAT AIR RECUP OMIZER FEED WATER WATER HE OTAL DIRE	EXCH. ERATOR E/ E HEATER E/ ATER STRING CT COST IN	ACCOUNT 13	.0 1042500.0 1720060.0 = 2.037 ACC	0 .07 0 .07 0 347500.00 0 51600.00	.00 .00 417000.00 172000.00 589000.00	1390000 0 51600 0 1441600 0
WATER TREA 14-1 DEMI 14-2 COND PERCENT T	TMENT NERALIZER ENSATE POI OTAL DIRE	GPA ISHING KWE CT COST IN	132.3 826700.0 ACCOUNT 14	2500.0 1.2 = .474 ACC	0 700.00 5 .30 30NT TOTAL+\$	330679.99 1033374.98 1364054.97	92590.4 248010.0 340600.3
POWER COND 15. 1 STM 15. 2 MET 15. 3 GAS	ITIONING TURB TRANS VAP TURB	SFORMER TRANSFORMER	1010411.1 214133.3	• D	0 •00	1751257•39 4488381•25 2407607•84 8647246•37	35025 • 1 700 •

RANKINE METAL VAPOR TOPPING-STEAM CYCLE ACCOUNT LISTING PARAMETRIC POINT NO.43

mpage in the contract of the c			E,M	KANE INTO PO	THE MAPAS	Access to a second		
ACCOUNT	NO.	& NAME.	UNIT	TRUOMA	MAT \$/UNIT	INS \$/UNIT	MAT COST. S	INS COST. 5
AUXILIARY 16. 1 8011 16. 2 07H 16. 3 MISO 16. 4 AUX 16. 5 LIQ 16. 7 LIQ 15. 8 COVE 16. 9 LIQ PERCENT	ER FI R PUI SER LIAR HET MET MET ER GA	EED PUMP MPS VICE SYS Y BOILER RECEIVIN STORAGE IMPURIT S SYSTEM	RDR.KWE KWE KWE PPH VG-PROC TANK EA MONITOR	785365.6 684000.0 1140000.0 1.0 4.0 1.0 1.0 1.0 1.0	1.67 .83 1.17 4.00 6300000.00 1300000.00 .00 1700000.00 57000.00	.10 .12 .73 .80 .2060800.00 .150000.00 .250000.00 .400000.00 .86000.00	1311559.53 601920.00 1333800.60 .00 8300000.00 5200000.00 860000.00 1700000.00 2280006.00 19527279.50	82080-00 832199-99 -00 200000-00 -00000-00 -250000-00 40000-00
PIPE & FIT 17. 1 CONV 17. 2 HOT 17. 3 STEA PERCENT	TTINGS VENTION GAS IN MARIENTAL	S ONAL PIF PIPING PING & F DIRECT	PING TON EA COST IN A	1370 6 4-0 4-0 4-0 4-0 17	3000.00 1600000.00 .00 3.606 ACCO	1800-00 -00 -00 -00 UNT TOTAL:\$	4110000.00 6400000.00 .00 10510000.00	2566000.00 .00 .00 2566000.00
AUXILIARY 18- 1 MIS(18- 2 SWI 18- 3 CON 18- 4 ISO 18- 5 LIGH 18- 5 LM 1 18- 7 LM 1 PERCENT 1	ELEC MOTI TCHGE DUTT+(ATED TTING EAK TRACE TOTAL	EQUIPME ERS *ETG AR & HGG ABLES *I PHASE * & COMMU DETECTION HEATING DIRECT	ENT PAN KWE RAYS FT BUS FT IN KWE ON SYS EA COST IN A	1140000.0 1140000.0 4930000.0 1700.0 1140000.0 1.0 CCOUNT 18	1.40 1.32 510.00 250000.00 250000.00	-17 -45 -136 -430-00 -200000-66 UNI YOTAL,\$	1596000 .00 2223000 .00 6507599.94 867000 .00 398000 .00 250000 .00 250000 .00 13342599.87	193800 •00 513000 •00 6704799 •94 765000 •00 490200 •00 200000 •00 200000 •00 10866799 •75
CONTROL. 1 19. 1 COME 19. 2 OTHE PERCENT 1	ENSTRI PUTER R COI TOTAL	UMENTATI NTROLS DIRECT	ON EACH EACH COST IN A	1.0 1.0 CCOUNT 19	660000.00 1250000.00 -750 ACCO	15000.00 774000.00 UNIT TOTAL.\$	660000.00 1250000.00 1910000.00	15000.00 774000.00 789000.00
PROCESS W/ 20- 1 BOT1 20- 2 DRY 20- 3 WET 20- 4 ONSI PERCENT 1	STE S TOM AS ASR SLURI TE DI TOTAL	RYSTEMS SH CSPOSAL DIRECT	TPH TPH TPH ACRE COST IN A	40.9 225.2 796.0 CCQUNT 20 =	2400835.16 5715449.06 5272.45 5.588 ACCO	500208.79 1428862.27 8081.34 INT TOTAL,\$	2400835-16 5715449-06 3933406-16 12049690-25	600208 • 75 1428862 • 27 6028918 • 81 8057989 • 81
						5039260.19 9.88 .00 JNT TOTAL:\$		
TOTAL				i and while relations			282562•00	

RANKINE METAL VAPOR TOPPING-STEAM CYCLE COST OF ELECTRICITY MILLS/KW.HR PARAMETRIC POINT NO.43

ACCOUNT TOTAL DIRECT COSTS+\$ INDIRECT COSTS+\$ PROF 2 OWNER COSTS+\$ CONTINGENCY COST * SUB TOTAL * ESCALATION COST * INTREST DURING CONST* TOTAL CAPITALIZATION * COST OF ELEC-FUEL COST OF ELEC-OP 8 MAIN TOTAL COST OF ELEC	PERCENT 6.00 .0 317503976. 51.C 28162921. 8.9 25400318. 9.5 30162877. .0 401230088. 6.5 110460252. 10.0 133831583. .0 45521920. 18.0 17.90084 .0 1.67201	LABOR RATE, \$/HR 8.50 10.60 340512836. 359840392. 39897471. 49754494. 27241031. 28787231. 32348725. 34184837. 440000116. 472566948. 121133797. 130099576. 146763450. 157625222. 707897360. 760292736. 18.63056 21.08353 6.84663 6.84663 1.67201 1.67201	15.00 21.50 400336096. 460159296. 70467303. 100917134. 32026887. 36812743. 38031929. 43715133. 540802208. 641604289. 148825016. 176636234. 180386312. 214009168. 876073536.1032249688. 24.12784 28.62511 6.84663 6.84663 1.67201 1.67201
TOTAL COST OF ELEC ACCOUNT TOTAL DIRECT COSTS.S INDIRECT COSTS.S PROF & OWNER COSTS.S CONTINGENCY COST.S SUB TOTAL.S ESCALATION COST.S INTEST DURING CONST.S TOTAL CAPITALIZATION.S COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-PUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC.	PERCENT -5.00 25.984C392. 51.0 49754494. 8.0 28787231. 20.0 -17992019. 6.5 115735080. 10.0 140222464. 0 676347640. 18.C 18.75566. 0 6.84663	28.14920 29.60217 CONTINGENCY PERCENT .00 359840332. 359840392. 49754494. 49754494. 28787231. 34184837. 438382112. 472666948. 120688354. 130099576. 146223760. 157626222. 705294224. 760292736. 19.55637 21.08353 1.67201 1.67201	32.64648 37.14375 5.00 20.00 359840392. 359840392. 49754494. 28787231. 28787231. 17992019. 71968078. 456374128. 510350188. 125641628. 140501454. 152275054. 170228942. 20.36102. 22.76922. 6.84665. 1.67201 1.67201
ACCOUNT TOTAL DIRECT COSTS.* INDIRECT COSTS.* INDIRECT COSTS.* PROF & ONNER COSTS.* CONTINGENCY COST.* SUB TOTAL.* ESCALATION COST.* INTREST DURING CONST.* VOTAL CAPITALIZATION.* COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	RATE PERCENT 5.00 S1.0 49754494. 8.0 28787231. 9.5 34184837. 0.0 772566948. 0.0 7765798; 10.0 750499152. 10.0 750499152. 11.0 9765798; 10.0 766663	28.07701 29.60217 ESCALATION RATE, PERCE, 8.00 359840392. 359840392. 49754454. 49754454. 287877231. 34184837. 34184837. 472566948. 472566948. 150099576. 164092682. 157626222. 165029884. 21.08353 6.84663 6.84663 1.67201 1.67201	28.87373 31.28786 NT 10.0C 359840392. 359840392. 49754494. 28787231. 34184837. 34184837. 472566948. 472566948. 211932152. 128637462. 23.84419 6.8663 6.84663 1.67201 1.67201
TOTAL COST OF ELEC ACCOUNT TOTAL DIRECT COSTS,* INDIRECT COST,* PROF & OWNER COSTS,* CONTINEENCY COST,* SUB TOTAL * ESCALATION COST,* INTREST DURING CONST,* COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-D & MAIN TOTAL COST OF ELEC	28.50490 RATE, PERCENT 6.00 359840392. 51.0 359840392. 6.0 28787231. 9.5 34184837. 6.5 130099576. 15.0 693507304. 18.0 19.23163. 18.0 19.23163. 18.0 19.277001.	29.60217 30.75C13 INT DURING CONST.PERCE. 8.00 10.00 359840392. 359840392. 49754494. 49754494. 28787231. 28787231. 34184837. 34184837. 472566948. 472566948. 130099576. 130099576. 123583174. 157625222. 726249688. 760292736. 20.13949 21.08353 6.84663 1.67201 1.67201 28.652813 29.60217	32-36283 25-19052 NT 12-50 359840392-359840392-49754494-28787231-372566948-472566948-372566948-372566948-372566948-372566948-372566948-372566948-372566948-372566948-372566948-372566948-372566948-372566948-372566948-372566948-372566948-372566948-37256693-37258701 30-82478-37258705

RANKINE METAL VAPOR TOPPING-STEAM CYCLE COST OF ELECTRICITY MILLS/KW-HR PARAMETRIC POINT NO.43

TOTAL DIRECT COS INDIRECT COST.* PROF & OWNER COST CONTINSENCY COST. SUB TOTAL.* ESCALATION COST. INTREST DURING COT ACCOST OF ELEC-FUE COST OF ELEC-FUE	TS.* \$ 8.0 2878 ## 9.5 3418 ## 10.0 15762 IION.* 10.0 15762 IION.* 25.0 11.0 E MAIN 0 1.0	10392. 359840392. 359840392. 359840392. 3754454. 49754454. 377231. 38184637. 3818467. 3	18.CU 21.6D 59840392. 35984039 49754494. 4975449 28787231. 2878723 34184837. 3418483 72566948. 47256694 30099576. 13009957	28787231 - 34184837 - 3418487 - 341847 -
TOTAL DIRECT COS INDIRECT COST.*S PROF & OWNER COST CONTINGENCY COST SUB TOTAL.*S ESCALATION COST. INTREST DURING C TOTAL CAPITALIZA COST OF ELEC-CAP COST OF ELEC-FUE COST OF E	TS.\$	34827. 39184837. 34827. 39184837. 56948. 972566948. 9 365222. 157626222. 1	10.46 RTU 2.50 10.50 59840392. 35984079 49754494. 4975443 38184837. 3418483 72566948. 47256694 30099576. 13009957 57626222. 15762629273 60292736. 76029273 21.08353 12.08230 20.137 1.67201 1.672 34.83783 42.892	4- 4975494-1 - 28787237- 34184837- 8- 472566948- - 130099576- 2- 157626222- - 760292736- 21-08353 21-08353 1-67201
ACCOUNT TOTAL DIRECT COST INDIRECT COST OF ELECTORY PROF S OWNER COST CONTINGENCY COST SUB TOTAL S ESCALATION COST INTREST DURING COST OF ELECTORY COST OF ELECTORY COST OF ELECTORY COST OF ELECTORY COST OF ELECTORY COST OF ELECTORY COST OF ELECTORY COST OF ELECTORY COST OF ELECTORY	S	10392. 359840392. 3 14494. 49754494. 3 17231. 28787231. 3 18837. 34184837. 55948. 472566948. 4 19576. 130099576. 1 156222. 157626222. 1	0R. PERCENI	2. 359840392. 49754494. 28787231. 34184837. 8. 472566948. 6. 130099576. 2. 157626222. 5. 760292736. 17.13037 6.84663

	TAULE R U.J.J									
	RA	NKINE	METAL 1	VAPOR TOPPIN	G-STEA	M CYCLE				. • •
AC	COUNT NO 77 99 14 18 20 OTALS NEW YER OTALS NEW YER OMINAL POWER	AUX F	0 WER * M 8 * 34 6 * 21 10 * 13 10 * 98 23 * 71 66 * 60 4 POR TOR	VE PERC PL 4353 1173 3970 5000 5020 1694 3210 PPING-STEAM 1200-80	ANT PO 14.897 16.347 16.990 18.257 39.507 5.266 CYCLE	M CYCLE W OPERATION 92 55. 34 1264. 42 1264. 42 7 7 7 7 7 7 7 12 12 1. 18 ASF CASE INFRET POWER, MINET HEAT RATE NUMBER OF SHE TUBE LENGTH. TERMINAL TEMP APPROACH. F OFF DESIGN TE LP TURBINE BE	CGST MA GG832 67934 00080 30682 00000 45775 45771 VIT	INTENANCE CO 13-801 -000 -000 -000 -000 13-031	ST 70 100 100 100 100 100 170 170 139•9875	
Z N	OM HEAT RATE T TURB HEAT	RATE C	KW-HR Change	7651.90 .37	56 80	NET HEAT RATE	E. PTU/K	W−HR 80	154 - 8641	
ם א ט H	ESIGN PRESSUUMBER OF TUB • BTU/HR-FT2 • AT REJECTIO	RE, IN ES/SHE	HG A	3.50 6980.50 608.35	100 34 35	NUMBER OF SHE TUBE LENGTH, TERMINAL TEMP	FI FI DIFF:	F	3.0000 59.5067 5.0000	
D R O	ESIGN TEMP. ANGE: F FF DESIGN PR	ë Es∗ in	HG A	77.00 23.00 2.41	100 100 .75	APPROACH. F OFF DESIGN TE LP TURBINE BL	EMP. F LADE LEN	, IN	15.6713 51.4000 25.0000	5]
11222333	1 120 825 1 1 1 2 1 2 1 5 7500000 1 4930000 1 166000	000 000 000 000 000 000 000 000 000 00	2 7 127 227 237 237 473	3.506 138.100 187.000 25050.000 20000.000 1370.000 1700.000 66000.000	3 87878787878 1112237744	.446 69400060-000 3-000 -CCF 20000-000 1-000 1-5000-000 3-000	945494949 1122233449	.000 3.000 5.000 5.000 27360.005 1.000 1.000 1.25000.006 2.000	5 115050505050 1102335450	6.500 1.000 2.500 -000 2.500 -000 72500.000 77400.000 -000
8-184 111222333445556667777778888999	1 1 19700000 1 19700000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6066 6066 6066 6066 6066 6066 6066 606	5 127272727272727272727272727272727272727	5.35C 1.62C 2000.000 2000.000 590.000 540.000 640.000 4.000 4.000 4.000 8.000.000 8.000.000 8.000.000 8.000.000 8.000.000	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	**CCC*** 13CC***CC	94949494949494949494949494949494949494	.000 \$.000 \$.000 .000	5 1122505050505050505050505050505050505050	6 - 500 1 - 000 2 - 500 2 - 500 1 - 000 2 - 500 1 - 000 7 - 500 7 - 500 2 - 500 3 - 000
										•

RANKINE METAL VAPOR TOPPING-STEAM CYCLE ACCOUNT LISTING PARAMETRIC POINT NO.45

	CCOIN	T NO	0 114	we.	115	(TT	A MO	IINT	MAT	¢ /111	MT T	TNS	S/UNIT	MAT	CASTAR	TNC	COST	. c
•	ACCOON	1 140-	& NA	417 E. B	O,	41.6	Airo	OIK I	na i	470	MT.	TKO	37 014.2.1		003111	2113	003,	
SI 1 1 1 1 1 1 1 1 P	TE DEV. 1 LA 2 CL 3 GR 4 AC 5 LO 6 SI 7 OT RCENT	ELOPM ND CO EARING ADING CESS OP RA DING S TGTA	ENT SI G LAN RAILE ILROS R R I ITE C	ID RGAD RD TR IRACK SOSTS	ACK)	CRE CRE CRE CRE CRE CRE MILE MILE MILE MILE MILE MILE MILE MIL	1 1 ACCOUNT	87.0 62.0 87.0 52.0 52.0 1	111111111111111111111111111111111111111	1001 15001 2000 2506 314	0.00 00.00 00.00 00.00 00.00 00.00	1 NT	600-00 3900-00 10000-00 70000-00 86600-00 -00 TOTAL,\$	18 57 30 145	7000-01 -01 -01 -01 -01 -01 -01 -01 -01 -	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	37396 51000 50000 75000 96406 19803	.00 .00 .00
£ X 2 2 P	CAVATI 1 CO 2 PI ERCENT	ON & MHON LING TOTA	PILIN EXCAN L DIF	NG VATIO RECT	N COST	YD3 FT IN	751 2004 Account	50.0 00.0 2	= = 5	327	- 00 6-50 AČC DU	NT	3.00 8.50 Total.**	130 130	.01 22600 • 0 22600 • 0	2 0 17 0 19	25450 03400 28850	-00 -00 -00
- 3 3 Pl		ANT I ECTAL TOTA	S. CO STRU L DIF	NCRE JCTUR RECT									80 - C C 00 Total;\$		53500 <u>+</u> 0 50 53500 <u>+</u> 0	g 20 0 20	04088 04080	00 00 00
HE 4 4 P	AT REJ 1 CO 2 CI 3 SU ERCENT	ECTIO OLING RCULA RFACE TOTA	N SYS TOWE TING CONI L DIF	STEM ERS HZG : DENSE RECT	SYS E	EACH EACH FT2 IN	4097 ACCOUNT	14.0 1.0 53.4	= 2.0	026	.00 00 00 00 00 00	INT .	.CC .OC .CC Total.s	21 1 121 18. 520	49000.0 15394.0 37454.3	6 15 9 2	71000 29689 86827 8 7517	.83 .41
8-185	RUCTUR 1 ST 2 SI 3 CH 5 ST ERCENT	AL FE AT. S LOS & IMNEY RUCTU TOTA	ATURE TRUCT BUNE RAL F L DIF	ES FURAL KERS EATU RECT	ST. RES E	TON TPH FT FT EACH IN	273 ACCOUNT	00.0 .0 .0 1.0	7: - 5•3	55 186 2500 994	0.00 0.00 0.00 0.00 ACCOU	 'NT ⁻¹	175.00 750.00 .00 66600.00 TOTAL:\$	177 72 184	15000-0 0-0 0 0000-0 0000-0	0 47 0 1	77500 66000 43500	.00 .00 .00
80 6 6 6 P	ILDING 1 ST 2 AD 3 NA ERCENT	S ATION MINST REHOU TOTA	BUIL RATIO SE 8 L DIF	LDING ON SHOP RECT	S COST	FT3 FT2 FT2 IN	75000 200 200 200 ACCOUNT	00.6 00.6 00.0	= .	1 87G	-16 6-00 2-00 ACCOU	NT	14.00 24.00 8.00 TOTAL,\$	120 37 27 17	0.0000.0 20000.0 40000.0	12 0 2 0 1 0 1	00000 80000 60000 4 0000	•00 •00
FU 77 77 7	EL HAN 1 CO 2 DO 3 FU ERCENT	DLING AL HA LOMIT EL DI EL TOTA	R ST NDLII E HAI L HAI L DIF	FORAGING SYND. S	E YS YS COST	TPH TPH GAL IN	26000 ACCOUNT	19.9 22.2 00.0	= 3 _* :	379	-00 00 ACCOU	NT	.00 .00 .08 TOTAL:S	- 58 29 21 21	50870.5 56791.4 90836.0 98497.8	4 13 1 2	91311 71040 27826 90778	-98 -41
FU 8 3	EL PRO 1 CO 2 CA 3 GA ERCENT	CESSI AL DR RBONI SIFIE TOTA	NG YER & ZERS RS L CIF	CRU RECT	SHER Cost	TPH TPH TPH IN	ACCOUNT	.0 .0	- •!	308	.00 .00 .00 ACCOU	INT	.00 .00 .00 .00 total:s		-0 -0 -0	G G G		.00 .00 .00

	Table	A 8.3.10	Continue	METER	VAPOR 1	TOPPIN	G-ST	EAM C	YCLE	ACCOUN	IT LIS	TING				
•	ACCO	UNT NO.	E NAME	. UN	PARAN	AMOUN	POI T M	CR TR	.46 Unit	INS \$	UNIT	HAT	COSTIB	INS	COST	, \$
	FIRING 9. 1 PERCE	SYSTEM NT TOTA	l L CIREC	T COST	IN ACCO	UNT	•0 • =	.000	AČCOU	ICT TO	.00 ral.+\$		•00 •00		•	.DC
	VAPOR 10. 1 10. 2 PERCE	GENERAT PRESSUR FLUID B NT TOTA	OR (FIR IZE BOI EO BOIL L DIREC	ED) LER ER T COST	EA EA IN ACC	ם ב זאטכ	.0 .0 1 .0 =2	51552 4.248	00.00 ACCOU	85247 301 TO	.00 799.87 FAL.\$	606: 606:	00 20820.00 20800.00	3409 3409	9199 9199	.00 .50 .50
	ENERGY 11. 1 11. 2 11. 3 11. 4 11. 5 11. 6 11. 8 11. 8	CONVER STEAM TUR GAS TUR LIQUID LIQUID LIQUED LIQ MET LIQ MET LIQ MET LIQ MET	TER URBINE BEINE GE METAL T METAL T METAL D HOT LE CONDEN INVENT	GENERAL NERATOR NERATOR URB-GEN RUM IRC PUM GE PIPIN EG PIPIN SATE PU GRY T COST	OR	14 8 9 4 2000 1300 1300 1	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.97000 59000 20000 11800 2350 2350 4950 86360	00-00 00-00 00-00 00-00 30-00 30-00 67-00 00-00 ACCOL	12158 15761 1800 13501 180 390 5727 JNT TO	323.09 000.00 000.00 000.00 300.00 780.00 720.00	197 236 160 47 46 19 286 1007	00000 -00 00000 -00 00000 -00 20000 -00 40000 -00 40000 -00 77100 -00 80000 -00 80000 -00	121 631 143 544 158 1692	5823 34000 39999 10000 75200 50000 1200 1200 72720 7343	.09 .98 .00 .00 .00
								• •					44000 •00 00000 • 00 44000 •00		76000 76000	30. 00
8-186	HEAT R 13. 1 13. 2 13. 3 13. 4 PERCE	ECOVERY GAS-AIR ECONOMI GAS FEE FEED WA NT TOTA	HEAT E RECUPE ZER D WATER TER HEA L DIREC	XCH. RATOR HEATER TER STR T COST	EA EA EA ING IN ACC	4 1 0UNT 1	.0 .0 .0 .3 =	10275 17200 1.856	.00 .00 .00 .00 .00 .00 .00	342: 516 JNT TO		41 17: 58:	-00 -00 10000-00 20000-00 30000-00	137 142	70000 51600 21600	.00 .00 .00
<u>-</u>	HATER 14- 1 14- 2 PERCE	TREATME DEMINER CONDENS NT TOTA	NT ALIZER ATE POL L DIREC	ISHING T COST	GPM KWE IN ACCO	129 810600 UNT 1	• 7 • 0 • 0 • =	25 • 4 28	00.00 1.25 ACCOU	וכד דמנ	700.0C .30 ral,s	3: 10: 13:	24239-99 13249-98 37489-97	24	0787 3180 3967	-00
-	POWER 15. 1 15. 2 15. 3 PERCE	CONDITI STM TUR MET VAP GAS TUR NT TOTA	ONING RE TRANS TURB T B TRANS L DIREC	FORMER RANSFOR FORMER T COST	MER IN ACC	990733 237294 238638 DUNT 1	•3 •5 •9 ==	2.223	-00 -00 -00 ACCOU	ICT TAL	.00 .00 .00	17 45 24 86	27447•28 16406 <u>•1</u> 9 03393•00 47246•37		34548 690 35239	.98 .00

RANKINE METAL VAPOR TOPPING-STEAM CYCLE ACCOUNT LISTING PARAMETRIC POINT NO.4E

	AC	COUNT	NO.	a NAM	E.	UNIT	ARAMETR And				INS	\$/UNIT	MAT	COST, \$	INS CO	ST, \$
	AUXI 16. 16. 16. 16. 16. 16. 16.	LIARY 1 BOI 2 OIH 3 MIS 4 AUS 5 LIQ 7 LIG 8 COV 9 LIG CENT	MECHLER FER PLES SEFE ILLER FOR METHET HETHER FOR METHET FOR ALLER	EED PIPES VICE Y SOI RECEI STORA IMPURI SOURCE DURE	PMENT UMP 8 SYS LER VING- GE T/ ITY M TEM TANK CT CO	DR.KHE KWE KWE PPH PROC ANK EA CONITCR EA CONITCR EA	7706 5340 11400	100.00 100.00 1.00 1.00 1.00 1.00 1.00	6200 1710 800 1700 770 5•94	1.67 1.17 1.17 0.00 000-00 000-00 000-00 000-00 000-00	200 25 25 40 12 UNT T	.10 -73 -80 -80 -80 -80 -80 -90 -90 -90 -90 -90 -90 -90 -90 -90 -9	121 61 13: 621 68: 37: 17: 17: 17: 17: 17: 17: 17: 17: 17: 1	36016 .87 33800 .00 33800 .00 30000 .00 90000 .00 90000 .00 90000 .00 11736.75	820 8321 2000 11400 2500 4000 5000	00.00 00.00 00.00
· -	PIPE 17. 17. 17. PER	R FI 1 CON 2 HOT 3 STE CENT	TTIME VENTI GAS AM PI TOTAL	S ONAL PIPIN PING DIRE	PIPIN 6 8 FII CT CC	IG TON EA TINGS ST IN	.13 Account	70.6 4.0 17 =	1600 3•32	000.00 000.00 2 ACCO	UNT T	1800 - CC - CC - CC - CC	1051	00000.00 0000.00 0000.00	24660 24660	00.00 00.00 00.00
8-18	18. 18. 18. 18. 18.	LIARY 1 MIS 2 SWI 3 CON 4 LIG 5 LIG 6 LM 7 LM CENT	C MOTTCHEE DUIT	ERS PE AR & CABLE PHAS & CO DETEC HEAT	TC MCC F S TRA E BUS MMUN TION ING S	AN KWE LYS FT FT KWE SYS EA SYSTEH	11480 11401 49300 17 11400	000-0 000-0 000-0 100-0 1-0 1-0	250 2500 6•45	1.40 1.95 1.32 510.00 000.00 000.00	20 200 UNT T	-11 -45 -450-00 -450-00 -0000-00 -0000-00	15 22 55 8 3 2 1 25 1 43	96000 - C0 23000 - D0 27539 - 94 67000 - C0 99000 - C0 50000 - C0 42599 - 87	5130 67047 7650 4902 2000 2000	00.00 00.00 92.94 00.00 00.00 00.00 99.75
37	19. 19.	ROL: 1 COM 2 OTH CENT	PUTER ER CO	K INTROL	s	EACH EACH	ACCOUNT	1.0 1.0 19 =	1250	000.00 000.00 1 ACCO	77	5000.00 4000.00 3TAL.5	12!	50000.00 50000.00	7740	00.00 00.00
-	PROC 20. 20. 20. 20. PER	ESS N 1 BOT 2 DRY 3 NET 4 ONS CENT	ASTE TOM A ASH SLUF ITE D TOTAL	SYSTE SH RRY ISPOS DIRE	MS CT CO	TPH TPH TPH ACRE ST IN	ACCOUNI	40.3 222.2 36.1 20 =	2375 5639 5 5.08	.00 345.91 580.31 286.89 8 ACCD	59 140 UNT I	.00 3835.48 9895.08 8101.55	23 56 38 119	.00 75345.91 89580.31 91820.72	5938 14098 59637 79674	65.5E
_	STAC 21. 21. PER	K GAS 1 PRE 2 SCR 3 MIS CENT	CLEA CIPIT UBBER C STE TOTAL	MING ATOR EL & DIRE	DUCTS CT CO	EACH KWE	ACCOUNT		7672 •00	318.81 21.51 .00 0 Acco	498 T TNU	7007-19 9-91 000 2-1ATC	<u>. </u>	00. 00. 00. 00.		.00 .00 .00
4		TOTAL	L DIR	ECT 0	2720	\$			÷			287	35856	4.00 1	0327837	9-00

OBJECTATION OF THE

RANKINE HETAL VAPOR TOPPING-STEAM CYCLE COST OF ELECTRICITY MILLS/KW.HR PARAMETRIC POINT NO.45

ACCOUNT	RATE. PERCENT 10.00	FIXED CHARGE RATE	PCT 21.60	"7c" 7c"
TOTAL DIRECT COSTS, \$ INDIRECT COST, \$ PROF & OWNER COSTS, \$ CONTINGENCY COST, \$ SUB TOTAL, \$ ESCALATION COST, \$ INTREST DURING CONST, \$.0 390536340. 51.0 52671972. 8.0 31250955. 9.5 37110509. 0 511670372. 6.5 140864906. 10.0 170669294.	390536948. 39063 52671972. 5267 31250955. 3125 37110509. 3711 511670372. 51167 140864906. 14086 170669924. 17086	1972. 52671972. 52671972. 52671972. 52955. 31250955. 6509. 37110509. 70372. 511670372. 4906. 140864906. 59294. 170869294.	390636940 52671972 31250955 37110509 511670372 140864906 170669294
TOTAL CAPITALIZATION, S COST OF ELEC-CAPITAL COST OF ELEC-FUEL COST OF ELEC-OP R MAIN TOTAL COST OF ELEC	25.0 12.68232 5.775603 .0 1.6613 .0 21.1001	18.26.26 22 6.75603 6 1.66133 1 26.68061 31	4560 823204560 823204560 823204560 975603 975603 675603 66133 166133 24643 35.81224	31.70704 6.75603 1.66133 40.12440
ACCOUNT TOTAL DIRECT COSTS ** INDIRECT COST ** PROF & OWNER COSTS ** CONTINGENCY COST ** SUB TOTAL ** ESCALATION COST **	RATE	FUEL_COST: \$/10*	6 <u>PTU</u>	
TOTAL ATTEST ANGTO	PERCENT 50	.85 1.	50 2.50 2.50	1.02
TWDTDECT COSTAC	51_0 52671972.	52571972 <u> </u>	71972 - 32671972 -	52671972
PROF & OWNER COSTS +5	8.0 31250955	31250955. 3125	0955 31250955	31250955.
CONTINGENCY COST.	9.5 37110509.	37110569. 3713	0509. 37110509.	37110509-
SUB TOTAL** ESCALATION COST**	5.5 140864906.	140354906. 14088	(U3/2.5116/U3/2. Emgns_ 1m0864906_	140864906.
INTREST DURING CONST.\$	10.0 170669294.	170669294. 17066	9294 - 170669294 -	170669294
TOTAL CAPITALIZATION • \$	•D 823204560.	823204560. 82320	4550. 823204560.	823204560.
COST OF ELEC-CAPITAL	18.G 22.8250 3.9741	22.82907 22. 6.75603 11.	82907 22.82907 92241 19.87068	22.82907 8.10724
COST OF ELECTROEL	D 1.66133	1.66133 1.		1.66133
COST OF ELECTIVAL COST OF ELECTIVAL TOTAL COST OF ELECTIVAL			41280 44.361UZ	32.59763
ACCOUNT TOTAL DIRECT COSTS.S INDIRECT COST.S PROF & OWNER COSTS.S CONTINGENCY COST.S	RATE.	CAPACITY FACTOR	PERCENT	
	PERCENT 12.00	45.00 50	65.00	80.00
THOTPECT COSTAC	51_0 52671972.	390636940. 39063 52671972. 5267	71977 52671972 -	52671972
PROF & OWNER COSTS. \$	8.0 31250955	31250955. 3125	50955. 31250955.	31250955.
CONTINGENCY COST .S	9.5 37110509.	37110509. 3711	0509. 37110509.	37110509.
SUB TOTAL . S ESCALATION COST . S INTREST DURING CONST . S	-0 511670372.	511670372. 51167 140864906. 14086		511570372.
TNTREST DURING CONST.S	10.0 170669294	170669294. 17068	59294. 170669294.	170669294
IUIAL CAPITALIZATION .S	•U 823264560e	823204560. 82320	4550. 823204560.	823204560.
COST OF ELEC-CAPITAL	18-0 123-65747	32.97532 29. 6.75603 6	67779 22.82907 75603 6.75603	18.54862 6.75603
COST OF FLECTHULL	-U 0-756U:	1.82348 1.	77265 1.65133	1.58572
COST OF ELEC-FUEL COST OF ELEC-OP & MAIN TOTAL COST OF ELEC	1.33.3298	41.55483 38.	20647 31.24643	26.89137

_	ACCOUNT NO	ANKINE HETAL VAP AUX PONER,MNE 9,6201	OR TOPPING-STE	AM CYCLE DW DPERATION (24)	COST MAINTENANCE	COST
. —	7 8 14 18	5.1292 10.0643 .0000 10.8636	7 10.20 1 16.75 0 .60 0 13.08	194 1188. 166 . 000 14. 205 .	6802 •0 00000 •0 02819 •0	0000 0000 0000 0000
	TOTALS RANKINE M NONINAL POWE MOM HEAT DAT	23.4621 60.0794 ETAL VAPOR TOPPI R. MHE F. RTUZNU-HD	1 38.95: 6 5.27! NG-STEAN CYCLE 1200.0000 7550.3315	193 7. 050 1269. BASE CASE INPU NET POWER. MW	35876 .0 22404 14.0 JT	CCCC 2289 1139-9205 7988-2718
<u></u>	ST TURB HEAT CONDENSER DESIGN PRESS NUMBER OF TU	RATE CHANGE URE, IN HG A BES/SHELL	9781 3.5000 7505-9598	NUMBER OF SHE	LLS	3.0000 69.5067
	HEAT REJECTI DESIGN TEMP• RANGE• F OFF DESIGN P	Z-F ON F RES. IN HG A	77.0000 23.0000 2.4235	APPROACH. F OFF DESIGN TEL LP TURBINE BL	COST MAINTENANCE 14910 14.0 56802 00 10000 0 0	15.6713 51.4000 25.0000
	1 12 6 81 11 16 21 25 750000 31 35 493000 41 16600 45	00.000 2 0.600 7 1.000 17 2.000 17 2.000 27 1.000 32 0.000 37 0.000 42 0.000 47 0.000 57 0.000 57	3.500 8 195.250 13 187.000 18 5050.606 23 0000.000 33 1700.000 38 0000.000 43 .350 3	452 523000000.000 1.000 3.000 2000.000 2000.000 1.000 1.5000.600 3.000	9 3 00 14 00 19 5 00 24 27300 00 29 2500000 00 39 1 00 49 125000 00 49 2 00	25.0000 00 5 6.00 01 15 1.00 02 20 2.50 03 30 1.00 05 775000.00 05 23680000.00 05 23680000.00 06 10 40.00 07 40.00 07 40.00 08 5 1370000.00 08 5 1710000.00 08 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8-190	11 1970000 21 25 233 31 273000 41 46 51 56	.000 7 4.000 17 0.000 27 0.000 32 2853 0.000 32 2863 0.000 37 0.000 47 0.000 47 0.000 57	1.600 8 2000.000 13 0000.000 13 786.006 28 6000.000 33 4.000 43 0000.000 53	1300-000 590000-000 1350000-000 1350000-000 367-000 750000-000 1-000 -000 1-000	9 8 60 14 9 00 24 235000 00 29 124 60 33 125 60 4 00 39 125 60 49 60 54 9 60	10 4 00 15 10 0 15 10
*USGPO: 1976	61 66 28500 71 77000 76 81 200000 91 96	1.000 62 3.000 67 80 0.000 72 12 1.000 77 1.000 87 -900 87 -000 92 ,000 97	4.000 63 0000.000 68 5000.000 73 1.000 78 .000 83 .000 93 .000 98	6200000 .000 250000 .000 4.000 250000 .000 .000 .000 .000	64 200000 00 69 170000 00 74 160000 00 73 20000 00 84 00 89 00 94 00 99 00	0