Nome										
Cognome										
Matricola										
Compito					0)				
Eserciz	io	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Risposta

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

Esercizio 2. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 4. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

A)
$$1 < B \cdot K + A < 4$$

B)
$$2B \cdot K + A = 5$$

 \mathbf{E}) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

Esercizio 5. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

è verificata

- **A)** se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.
- **B)** solo se $f_0 = \frac{1}{3T} e \phi = 0$.
- C) nessuna delle altre risposte è corretta.
- **D)** se $f_0 = \frac{3}{7T} e \phi = 0$.
- **E)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.

Esercizio 6. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$
- **C)** Y(f) = 0 per f = 0.
- **D)** $Y(f) = -4Tj/\pi \text{ per } f = 1/2T.$
- **E)** y(t) è un segnale ad energia finita.

Esercizio 7. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 1
- **C**) 2
- **D**) 0
- **E**) 3

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- D) altro

N	ome										
Cog	gnome										
Mat	tricola										
Cor	mpito					1	L				
	Eserc	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- B) altro
- C) $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 2. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 0
- **B**) 3
- **C**) 1
- **D**) 2
- **E**) 4

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 4. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** Y(f) = 0 per f = 0.
- **B)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- C) $\mathcal{E}_{u} \leq \mathcal{E}_{x}$.
- **D)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$

Figura 1:

E) y(t) è un segnale ad energia finita.

Esercizio 5. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$ è verificata

- **A)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- **B)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- C) solo se $f_0 = \frac{1}{T} e \phi = 0$.
- D) nessuna delle altre risposte è corretta.
- **E)** se $f_0 = \frac{1}{2T}$ e $\phi = 0$.

Esercizio 6. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 10$
- **B)** $1 < B \cdot K + A < 4$
- C) Non sussiste alcuna relazione tra $B, K \in A$
- **D)** $2B \cdot K + A = 5$
- E) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

Esercizio 7. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).

Esercizio 8. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

2

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$
- B) $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					2	2				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).

Esercizio 2. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **B)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- C) se $f_0 = \frac{2}{T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- E) nessuna delle altre risposte è corretta.

Esercizio 3. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Non sussiste alcuna relazione tra $B, K \in A$
- **B)** $2B \cdot K + A = 5$
- **C)** $B \cdot K + A > 10$
- \mathbf{D}) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **E)** $1 < B \cdot K + A < 4$

 $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A)** 2
- **B**) 0
- **C**) 1
- **D**) 4
- **E**) 3

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) altro
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 6. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- A) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$
- **C)** Y(f) = 0 per f = 0.
- **D)** y(t) è un segnale ad energia finita.
- E) $Y(f) = -4Tj/\pi \text{ per } f = 1/2T.$

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$
- **B)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$

Esercizio 8. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					3	3				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- A) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).

Esercizio 2. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A)** 4
- **B**) 0
- **C**) 2
- **D**) 1
- **E**) 3

Esercizio 3. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- B) nessuna delle altre risposte è corretta.
- C) se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.
- **D)** solo se $f_0 = \frac{1}{3T} e \phi = 0$.

ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è **falsa**.

- A) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** $Y(f) = -4Tj/\pi \text{ per } f = 1/2T.$
- C) $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$
- **D)** y(t) è un segnale ad energia finita.
- **E)** Y(f) = 0 per f = 0.

Esercizio 5. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 2$
- **B)** Non sussiste alcuna relazione tra $B, K \in A$
- \mathbf{C}) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $0 < B \cdot K + A < 1$
- **E)** $B \cdot K + A > 2$

Esercizio 6. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) altro

D)
$$\{5 \cdot 4^{-n} - 7 \cdot 5^{-n}\}u[n-1]$$

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4	ŀ				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 5^{-n}\}u[n-1]$
- **B)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- C) altro
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 3. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- C) $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **D)** Y(f) = 0 per f = 0.
- **E)** y(t) è un segnale ad energia finita.

Esercizio 4. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

A) 4

- **D**) 0
- **E**) 1

Esercizio 5. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

è verificata

- **A)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- B) nessuna delle altre risposte è corretta.
- **C)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **E)** se $f_0 = \frac{3}{2T} e \phi = 0$.

Esercizio 6. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 7. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 5$
- **B)** $B \cdot K + A > 10$
- **C)** $1 < B \cdot K + A < 4$
- D) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- \mathbf{E}) Non sussiste alcuna relazione tra $B, K \in A$

Esercizio 8. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

2

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					5	Ó				
	Eserci	izio	1	2	3	4	5	6	7	8	
	D:	-4-									

Esercizio 1. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Non sussiste alcuna relazione tra $B, K \in A$
- **B)** $B \cdot K + A > 6$
- **C)** $0 < B \cdot K + A < 2$
- D) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **E)** $2B \cdot K + A = 3$

Esercizio 2. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- A) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** y(t) è un segnale ad energia finita.
- C) $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **D)** Y(f) = 0 per f = 0.
- **E)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$

Esercizio 3. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$$

Esercizio 4. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

A) 1

- **D**) 0
- **E**) 3

Esercizio 5. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 6. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{3}{7T}$ e $\phi = 0$.
- B) nessuna delle altre risposte è corretta.
- **C)** solo se $f_0 = \frac{1}{3T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **E)** se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.

Esercizio 7. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- B) altro
- C) $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 8. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- A) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- B) Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).

Nome										
Cognome										
Matricola										
Compito					6	5				
Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

A) Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).

Risposta

- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.

Esercizio 2. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$
- B) $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 5^{-n}\}u[n-1]$
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- D) altro

Esercizio 4. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

A)
$$Y(f) = 0$$
 per $f = 0$.

- **D**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **E)** $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$

Esercizio 5. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 3
- **B**) 1
- **C**) 4
- **D**) 0
- **E**) 2

Esercizio 6. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- B) Non sussiste alcuna relazione tra $B, K \in A$
- **C**) $2B \cdot K + A = 5$
- **D)** $1 < B \cdot K + A < 4$
- **E)** $B \cdot K + A > 10$

Esercizio 7. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- B) nessuna delle altre risposte è corretta.
- **C)** se $f_0 = \frac{1}{2T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **E)** solo se $f_0 = \frac{1}{T} e \phi = 0$.

Esercizio 8. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					7	*				
	Eserc	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Risposta

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- B) altro
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$

Esercizio 3. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 5$
- **B)** $1 < B \cdot K + A < 4$
- **C)** $B \cdot K + A > 10$
- **D)** Non sussiste alcuna relazione tra B, K e A
- E) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

Esercizio 4. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 5. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.

Esercizio 6. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 1
- **B**) 4
- **C**) 3
- **D**) 0
- **E**) 2

Esercizio 7. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **B)** se $f_0 = \frac{2}{T} e \phi = 0$.
- C) nessuna delle altre risposte è corretta.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **E)** solo se $f_0 = \frac{1}{T} e \phi = 0$.

Esercizio 8. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **B)** Y(f) = 0 per f = 0.
- C) y(t) è un segnale ad energia finita.
- $\mathbf{D)} \ \mathcal{E}_y \leq \mathcal{E}_x.$
- **E)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					8	3				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 2. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 4. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$
- **B)** $Y(f) = -4Tj/\pi \text{ per } f = 1/2T.$
- C) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **D)** Y(f) = 0 per f = 0.

 $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

Esercizio 6. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

A) solo se
$$f_0 = \frac{1}{3T} e \phi = 0$$
.

B) se
$$f_0 = \frac{1}{2T}$$
 e ϕ qualsiasi.

C) se
$$f_0 = \frac{2}{3T}$$
 e ϕ qualsiasi.

D) se
$$f_0 = \frac{3}{7T}$$
 e $\phi = 0$.

E) nessuna delle altre risposte è corretta.

Esercizio 7. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 2$
- B) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **C**) $B \cdot K + A > 2$
- **D)** $0 < B \cdot K + A < 1$
- E) Non sussiste alcuna relazione tra $B, K \in A$

Esercizio 8. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 2
- **B**) 3
- **C**) 1
- **D**) 0
- **E**) 4

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					6)				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.

Esercizio 2. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

Esercizio 3. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- A) nessuna delle altre risposte è corretta.
- **B)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **C)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.

Esercizio 4. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 5. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A)** 2
- **B**) 3
- **C**) 0
- **D**) 1
- **E**) 4

Esercizio 6. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 5$
- **B)** $B \cdot K + A > 10$
- C) Non sussiste alcuna relazione tra $B, K \in A$
- **D)** Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **E)** $1 < B \cdot K + A < 4$

Esercizio 7. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D)** altro

Esercizio 8. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$
- B) $\mathcal{E}_y \leq \mathcal{E}_x$.
- C) $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.
- **D)** Y(f) = 0 per f = 0.
- **E)** y(t) è un segnale ad energia finita.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					1	0				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- B) altro
- C) $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 4. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.

- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).

Esercizio 5. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$ è verificata

- **A)** se $f_0 = \frac{3}{7T} e \phi = 0$.
- B) nessuna delle altre risposte è corretta.
- C) se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **D)** solo se $f_0 = \frac{1}{3T} e \phi = 0$.
- **E)** se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.

Esercizio 6. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 10$
- **B)** $1 < B \cdot K + A < 4$
- **C)** $2B \cdot K + A = 5$
- **D)** Non sussiste alcuna relazione tra $B, K \in A$
- E) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

Esercizio 7. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** y(t) è un segnale ad energia finita.
- **B)** $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.
- C) $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$
- **D)** Y(f) = 0 per f = 0.
- **E**) $\mathcal{E}_y \leq \mathcal{E}_x$.

Esercizio 8. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 2
- **B**) 1
- **C**) 4
- **D**) 0
- **E**) 3

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					1	1				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 5$
- **B)** $1 < B \cdot K + A < 4$
- C) Non sussiste alcuna relazione tra $B, K \in A$
- D) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **E)** $B \cdot K + A > 10$

Esercizio 2. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X \left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c} \right)$$

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 4. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

A)
$$Y(f) = 0$$
 per $f = 0$.

B)
$$Y(f) = 4Ti/\pi \text{ per } f = 1/2T.$$

C)
$$|Y(f)|^2 = 4T^2/\pi^2$$
 per $f = 1/4T$.

D) y(t) è un segnale ad energia finita.

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) altro
- **D)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$

Esercizio 6. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **B)** se $f_0 = \frac{2}{T} e \phi = 0$.
- C) se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- D) nessuna delle altre risposte è corretta.
- **E)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.

Esercizio 7. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).

Esercizio 8. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 3
- **B**) 4
- **C**) 1
- **D**) 0
- **E**) 2

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					1:	2				
	Eserci	izio	1	2	3	4	5	6	7	8	
											1

Esercizio 1. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- A) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.

Esercizio 2. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A)** 0
- **B**) 1
- **C**) 4
- **D**) 2
- **E**) 3

Esercizio 3. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 4. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** Non sussiste alcuna relazione tra $B, K \in A$
- **E)** $B \cdot K + A > 10$

Esercizio 5. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- C) $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **D)** Y(f) = 0 per f = 0.
- **E)** y(t) è un segnale ad energia finita.

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 5^{-n}\}u[n-1]$
- B) altro
- C) $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 7. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 8. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{3}{2T} e \phi = 0$.
- **B)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **C)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- E) nessuna delle altre risposte è corretta.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					1	3				
	Eserci	zio	1	2	3	4	5	6	7	8	

Risposta

Esercizio 1. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** Y(f) = 0 per f = 0.
- B) $\mathcal{E}_y \leq \mathcal{E}_x$.
- C) y(t) è un segnale ad energia finita.
- **D)** $Y(f) = -4Tj/\pi \text{ per } f = 1/2T.$
- **E)** $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$

Esercizio 2. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$v[n] = \{-3x[n-1] + 2x[n-2] + 9v[n-1] - v[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

A)
$$\delta[n] + (1/4)^n u[n] - (1/5)^n u[n]$$

B)
$$\{4^{-n} - 5^{-n}\}u[n-1]$$

C)
$$\{5 \cdot 4^{-n} - 7 \cdot 5^{-n}\}u[n-1]$$

D) altro

Esercizio 4. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

A) 0

- **D**) 4
- **E**) 3

Esercizio 5. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).

Esercizio 6. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 10$
- B) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- C) Non sussiste alcuna relazione tra $B, K \in A$
- **D)** $2B \cdot K + A = 5$
- **E)** $1 < B \cdot K + A < 4$

Esercizio 7. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **B)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- C) se $f_0 = \frac{1}{2T}$ e $\phi = 0$.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- E) nessuna delle altre risposte è corretta.

Esercizio 8. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					1	4				
	Eserc	izio	1	2	3	4	5	6	7	8	

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.

Esercizio 2. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)$

Esercizio 3. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$
- **B)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$

Esercizio 4. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **B)** Y(f) = 0 per f = 0.

E) $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- D) altro

Esercizio 6. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A)** 0
- **B**) 2
- **C**) 4
- **D**) 1
- **E**) 3

Esercizio 7. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

è verificata

- A) nessuna delle altre risposte è corretta.
- **B)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **C)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **E**) se $f_0 = \frac{3}{2T} e \phi = 0$.

Esercizio 8. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Non sussiste alcuna relazione tra $B, K \in A$
- **B)** $0 < B \cdot K + A < 1$
- **C**) $B \cdot K + A > 2$
- **D)** Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **E)** $2B \cdot K + A = 2$

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X \left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c} \right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

Esercizio 2. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** Y(f) = 0 per f = 0.
- C) $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.
- **D)** y(t) è un segnale ad energia finita.
- **E)** $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$

Esercizio 3. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- A) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).

Esercizio 4. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 5. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 0
- **C**) 2
- **D**) 1
- **E**) 3

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- D) altro

Esercizio 7. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- B) Non sussiste alcuna relazione tra $B, K \in A$
- **C)** $B \cdot K + A > 10$
- **D)** $2B \cdot K + A = 5$
- **E)** $1 < B \cdot K + A < 4$

Esercizio 8. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- A) nessuna delle altre risposte è corretta.
- **B)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- **C**) se $f_0 = \frac{1}{2T} e \phi = 0$.
- **D)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **E)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					1	6				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 2. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).

Esercizio 3. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **B)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- C) se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- D) nessuna delle altre risposte è corretta.
- **E)** se $f_0 = \frac{3}{2T}$ e $\phi = 0$.

 $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A)** 0
- **B**) 1
- **C**) 4
- **D**) 3
- **E**) 2

Esercizio 5. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

Esercizio 6. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$
- **B**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- C) y(t) è un segnale ad energia finita.
- **D)** $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.
- **E)** Y(f) = 0 per f = 0.

Esercizio 7. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 5$
- B) Non sussiste alcuna relazione tra $B, K \in A$
- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $B \cdot K + A > 10$
- **E)** $1 < B \cdot K + A < 4$

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 5^{-n}\}u[n-1]$
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- D) altro

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					1'	7				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{n=1}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.

Esercizio 2. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 3. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$$

Esercizio 4. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

A) 4

- **D**) 0
- **E**) 3

Esercizio 5. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

è verificata

- A) nessuna delle altre risposte è corretta.
- **B**) se $f_0 = \frac{2}{T} e \phi = 0$.
- C) se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **E)** solo se $f_0 = \frac{1}{T} e \phi = 0$.

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **D**) altro

Esercizio 7. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Non sussiste alcuna relazione tra $B, K \in A$
- **B)** $1 < B \cdot K + A < 4$
- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $2B \cdot K + A = 5$
- **E)** $B \cdot K + A > 10$

Esercizio 8. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$
- **B)** Y(f) = 0 per f = 0.
- C) $Y(f) = -4Ti/\pi \text{ per } f = 1/2T.$
- **D)** y(t) è un segnale ad energia finita.
- **E**) $\mathcal{E}_y \leq \mathcal{E}_x$.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					1	8				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = -4Tj/\pi \text{ per } f = 1/2T.$
- **B**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **C)** Y(f) = 0 per f = 0.
- **D)** $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$
- **E)** y(t) è un segnale ad energia finita.

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D**) altro

Esercizio 3. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$
- **B)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$

Esercizio 4. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 1

Esercizio 5. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **B)** Non sussiste alcuna relazione tra $B, K \in A$
- **C)** $2B \cdot K + A = 5$
- **D)** $B \cdot K + A > 10$
- **E)** $1 < B \cdot K + A < 4$

Esercizio 6. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 7. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- B) nessuna delle altre risposte è corretta.
- **C**) se $f_0 = \frac{3}{2T} e \phi = 0$.
- **D)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- **E)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.

Esercizio 8. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					1:	9				
	Eserci	izio	1	2	3	4	5	6	7	8	

Risposta

Esercizio 1. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A)** 2
- **B**) 3
- **C**) 1
- **D**) 0
- **E**) 4

Esercizio 2. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- A) $\mathcal{E}_{y} \leq \mathcal{E}_{x}$.
- **B)** $Y(f) = -4Ti/\pi \text{ per } f = -1/2T.$
- C) Y(f) = 0 per f = 0.
- **D)** $Y(f) = -4Tj/\pi \text{ per } f = 1/2T.$
- **E)** y(t) è un segnale ad energia finita.

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 4. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 3$
- **B)** $B \cdot K + A > 6$
- **C)** $0 < B \cdot K + A < 2$
- **D)** Non sussiste alcuna relazione tra $B, K \in A$
- \mathbf{E}) Tra $B,\,K$ e A sussiste una relazione diversa da quelle delle altre risposte

Esercizio 6. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

- **B)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$

Esercizio 7. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **B)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- C) se $f_0 = \frac{1}{2T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- E) nessuna delle altre risposte è corretta.

Esercizio 8. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					2	0				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- D) altro

Esercizio 3. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 10$
- **B)** Non sussiste alcuna relazione tra $B, K \in A$
- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $1 < B \cdot K + A < 4$
- **E**) $2B \cdot K + A = 5$

Esercizio 4. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- C) se $f_0 = \frac{1}{2T} e \phi = 0$.
- **D**) solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **E)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.

Esercizio 5. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X \left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c} \right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X \left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c} \right)$$

Esercizio 6. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$
- **B)** y(t) è un segnale ad energia finita.
- **C)** Y(f) = 0 per f = 0.
- D) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **E)** $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.

Esercizio 7. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{t=0}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.

Esercizio 8. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 0
- **C**) 3
- **D**) 1
- **E**) 2

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					2	1				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 0
- **B**) 4
- **C**) 1
- **D**) 2
- **E**) 3

Esercizio 2. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

A) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).

Risposta

- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- C) Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 4. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

A)
$$\{4^{-n} - 2 \cdot 5^{-n}\}u[n-1]$$

D)
$$\delta[n] + (1/4)^n u[n] - (1/5)^n u[n]$$

Esercizio 5. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 6$
- **B)** Non sussiste alcuna relazione tra $B, K \in A$
- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $2B \cdot K + A = 3$
- **E)** $0 < B \cdot K + A < 2$

Esercizio 6. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 7. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- A) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** Y(f) = 0 per f = 0.
- C) y(t) è un segnale ad energia finita.
- **D)** $Y(f) = -4Ti/\pi \text{ per } f = 1/2T.$
- **E)** $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$

Esercizio 8. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

A) se
$$f_0 = \frac{3}{2T} e \phi = 0$$
.

B) solo se
$$f_0 = \frac{1}{2T} e \phi = 0$$
.

- C) nessuna delle altre risposte è corretta.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **E)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					2	2				
	1										
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 2. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **B)** Y(f) = 0 per f = 0.
- C) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **D)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **E)** y(t) è un segnale ad energia finita.

Esercizio 3. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.

Esercizio 4. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 3

E) 1

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- B) altro
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 6. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- A) nessuna delle altre risposte è corretta.
- **B)** solo se $f_0 = \frac{1}{3T}$ e $\phi = 0$.
- C) se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{3}{7T} e \phi = 0$.
- **E)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

- **B)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$

Esercizio 8. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 6$
- **B)** $0 < B \cdot K + A < 2$
- C) Non sussiste alcuna relazione tra $B, K \in A$
- D) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **E**) $2B \cdot K + A = 3$

N	ome										
Cog	gnome										
Mat	tricola										
Cor	mpito					2	3				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 5$
- **B)** $B \cdot K + A > 10$
- **C)** $1 < B \cdot K + A < 4$
- **D)** Non sussiste alcuna relazione tra $B, K \in A$
- E) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

Esercizio 2. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 3. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{n=1}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right)=21X\left(\frac{1}{T}\right)$.

Esercizio 4. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

Figura 1:

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm i)/2$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 5. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$ è verificata

- **A)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- B) nessuna delle altre risposte è corretta.
- C) se $f_0 = \frac{1}{2T} e \phi = 0$.
- **D)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **E)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.

Esercizio 6. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 1
- **B**) 3
- **C**) 4
- **D**) 2
- **E**) 0

Esercizio 7. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$
- C) $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.
- **D)** Y(f) = 0 per f = 0.
- **E)** y(t) è un segnale ad energia finita.

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- B) altro
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					2	4				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.

Esercizio 2. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **B)** y(t) è un segnale ad energia finita.
- **C)** Y(f) = 0 per f = 0.
- **D**) $\mathcal{E}_u \leq \mathcal{E}_x$.
- **E)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$

Esercizio 3. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 4. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 5. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 0
- **B**) 2
- **C**) 1
- **D**) 4
- **E**) 3

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- D) altro

Esercizio 7. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

è verificata

- **A)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **B)** se $f_0 = \frac{2}{T} e \phi = 0$.
- **C**) solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- E) nessuna delle altre risposte è corretta.

Esercizio 8. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 2$
- **B)** $2B \cdot K + A = 2$
- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $0 < B \cdot K + A < 1$
- E) Non sussiste alcuna relazione tra $B, K \in A$

N	ome										
Cog	gnome										
Mat	tricola										
Cor	mpito					2	5				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $0 < B \cdot K + A < 1$
- **B)** $B \cdot K + A > 2$
- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $2B \cdot K + A = 2$
- E) Non sussiste alcuna relazione tra $B, K \in A$

Esercizio 2. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 3. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** y(t) è un segnale ad energia finita.
- B) $\mathcal{E}_u \leq \mathcal{E}_x$.
- C) $Y(f) = 2Ti/\pi \text{ per } f = 1/2T.$
- **D)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **E)** Y(f) = 0 per f = 0.

Esercizio 4. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- C) se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{1}{2T} e \phi = 0$.
- E) nessuna delle altre risposte è corretta.

Esercizio 5. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.

Esercizio 6. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$
- **B)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$

Esercizio 7. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 3
- **B**) 4
- **C**) 2
- **D**) 0
- **E**) 1

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

N	ome										
	gnome										
Mat	tricola										
Co	mpito					2	6				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **B)** se $f_0 = \frac{1}{2T} e \phi = 0$.
- C) se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- E) nessuna delle altre risposte è corretta.

Esercizio 2. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- B) altro
- C) $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 5. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 1
- **B**) 3
- **C**) 2
- **D**) 4
- **E**) 0

Esercizio 6. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 5$
- B) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- C) Non sussiste alcuna relazione tra $B, K \in A$
- **D)** $1 < B \cdot K + A < 4$
- **E)** $B \cdot K + A > 10$

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

- **B)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$

Esercizio 8. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** Y(f) = 0 per f = 0.
- B) $\mathcal{E}_y \leq \mathcal{E}_x$.
- C) $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$
- **D)** $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.
- **E)** y(t) è un segnale ad energia finita.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					2	7				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $0 < B \cdot K + A < 2$
- B) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

Risposta

- **C)** $B \cdot K + A > 6$
- **D)** $2B \cdot K + A = 3$
- E) Non sussiste alcuna relazione tra $B, K \in A$

Esercizio 2. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 3
- **B**) 2
- **C**) 4
- **D**) 0
- **E**) 1

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- C) altro
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 4. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** y(t) è un segnale ad energia finita.
- **B)** Y(f) = 0 per f = 0.
- C) $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$

Esercizio 5. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- A) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.

Esercizio 6. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **B**) se $f_0 = \frac{1}{2T}$ e $\phi = 0$.
- C) se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- E) nessuna delle altre risposte è corretta.

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

- **B)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$

Esercizio 8. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					2	8				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- C) altro
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 3. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** Y(f) = 0 per f = 0.
- **B)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- C) $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **D)** y(t) è un segnale ad energia finita.
- E) $\mathcal{E}_y \leq \mathcal{E}_x$.

Esercizio 4. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$$

Esercizio 5. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$ è verificata

- **A)** se $f_0 = \frac{3}{7T}$ e $\phi = 0$.
- **B)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- C) nessuna delle altre risposte è corretta.
- **D)** se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.
- **E)** solo se $f_0 = \frac{1}{3T} e \phi = 0$.

Esercizio 6. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- A) Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.

Esercizio 7. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 6$
- **B)** $2B \cdot K + A = 3$
- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** Non sussiste alcuna relazione tra $B, K \in A$
- **E)** $0 < B \cdot K + A < 2$

Esercizio 8. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 3
- **C**) 2
- **D**) 1
- **E**) 0

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					2	9				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

è verificata

- A) nessuna delle altre risposte è corretta.
- **B)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- C) se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{1}{2T} e \phi = 0$.
- **E)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.

Esercizio 2. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 3. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 10$
- **B)** $1 < B \cdot K + A < 4$
- **C**) $2B \cdot K + A = 5$
- **D)** Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- E) Non sussiste alcuna relazione tra $B, K \in A$

Esercizio 4. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **B)** $W(e^{j\omega}) = \frac{1}{T_c} \Lambda \left(\frac{\omega}{\pi T_c} \right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- D) altro

Esercizio 6. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 3
- **B**) 4
- **C**) 1
- **D**) 2
- **E**) 0

Esercizio 7. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- A) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** Y(f) = 0 per f = 0.
- C) y(t) è un segnale ad energia finita.
- **D)** $Y(f) = -4Ti/\pi \text{ per } f = 1/2T.$
- **E)** $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$

Esercizio 8. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.

2

D) Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.

N	ome										
Cog	gnome										
Mat	tricola										
Co	Compito					3	0				
	Eserci	Esercizio		2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

A)
$$\{5 \cdot 4^{-n} - 7 \cdot 5^{-n}\}u[n-1]$$

B)
$$\delta[n] + (1/4)^n u[n] - (1/5)^n u[n]$$

C)
$$\{4^{-n} - 5^{-n}\}u[n-1]$$

D) altro

Esercizio 2. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 3. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **B)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- C) nessuna delle altre risposte è corretta.
- **D)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.

E) se
$$f_0 = \frac{1}{2T} e \phi = 0$$
.

$$y(t) = \sum_{n=1}^{\infty} z(t-n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).

Esercizio 5. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **B)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- C) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **D)** Y(f) = 0 per f = 0.
- **E)** y(t) è un segnale ad energia finita.

Esercizio 6. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 2
- **B**) 1
- **C**) 3
- **D**) 0
- **E**) 4

Esercizio 7. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 10$
- B) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- C) Non sussiste alcuna relazione tra $B, K \in A$
- **D)** $2B \cdot K + A = 5$
- **E)** $1 < B \cdot K + A < 4$

Esercizio 8. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

N	ome										
Cog	gnome										
Matricola											
Co	Compito					3	1				
	Eserci	izio	1	2	3	4	5	6	7	8	Ī
	Rispos	sta									

Esercizio 1. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** y(t) è un segnale ad energia finita.
- **B)** Y(f) = 0 per f = 0.
- C) $Y(f) = 4Ti/\pi \text{ per } f = 1/2T.$
- **D)** $|Y(f)|^2 = 4T^2/\pi^2 \text{ per } f = 1/4T.$
- **E**) $\mathcal{E}_y \leq \mathcal{E}_x$.

Esercizio 2. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 1
- \mathbf{C}) 0
- **D**) 2
- **E**) 3

Esercizio 3. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $1 < B \cdot K + A < 4$
- **B)** Non sussiste alcuna relazione tra $B, K \in A$
- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $2B \cdot K + A = 5$
- **E)** $B \cdot K + A > 10$

Esercizio 4. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

A) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.

D) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) altro
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 6. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 7. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **B)** se $f_0 = \frac{1}{2T}$ e $\phi = 0$.
- **C**) solo se $f_0 = \frac{1}{T} e \phi = 0$.
- D) nessuna delle altre risposte è corretta.
- **E)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.

Esercizio 8. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

2

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X \left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c} \right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

N	ome										
Cog	gnome										
	tricola										
Compito						3:	2				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sposta									

Esercizio 1. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{3}{2T}$ e $\phi = 0$.
- **B)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- C) se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- D) nessuna delle altre risposte è corretta.
- **E)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.

Esercizio 2. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 2
- **C**) 1
- **D**) 0
- **E**) 3

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 4. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **C)** Y(f) = 0 per f = 0.
- **D**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **E)** y(t) è un segnale ad energia finita.

Esercizio 5. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X \left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c} \right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

Esercizio 6. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.

Esercizio 7. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 5^{-n}\}u[n-1]$
- **B)** altro
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 8. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Non sussiste alcuna relazione tra $B, K \in A$
- B) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **C)** $B \cdot K + A > 10$
- **D)** $1 < B \cdot K + A < 4$
- **E)** $2B \cdot K + A = 5$

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito				3	3					
	Eserci	Esercizio		2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- A) nessuna delle altre risposte è corretta.
- **B)** se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.
- C) se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **D)** solo se $f_0 = \frac{1}{3T} e \phi = 0$.
- **E)** se $f_0 = \frac{3}{7T} e \phi = 0$.

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- D) altro

Esercizio 3. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- A) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** $|Y(f)|^2 = 16T^2/\pi^2 \text{ per } f = 1/4T.$
- C) y(t) è un segnale ad energia finita.
- **D)** Y(f) = 0 per f = 0.
- **E)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$

Esercizio 4. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **B)** $W(e^{j\omega}) = \frac{1}{T_c} \Lambda \left(\frac{\omega}{2\pi T_c} \right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 5. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 3
- **C**) 2
- **D**) 0
- **E**) 1

Esercizio 6. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 7. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right)=21X\left(\frac{1}{T}\right)$.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.

Esercizio 8. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Non sussiste alcuna relazione tra $B, K \in A$
- B) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **C)** $0 < B \cdot K + A < 2$
- **D)** $B \cdot K + A > 6$
- **E**) $2B \cdot K + A = 3$

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					3	4				
	Esercizio		1	2	3	4	5	6	7	8	
	Rispos	isposta									

Esercizio 1. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 2$
- B) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **C)** $0 < B \cdot K + A < 1$
- **D)** $2B \cdot K + A = 2$
- E) Non sussiste alcuna relazione tra $B, K \in A$

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 3. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- C) Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.

Esercizio 4. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$ è verificata

- **A)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **B)** solo se $f_0 = \frac{1}{3T} e \phi = 0$.
- C) se $f_0 = \frac{3}{7T} e \phi = 0$.

Figura 1:

- D) nessuna delle altre risposte è corretta.
- **E)** se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.

Esercizio 5. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 6. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X \left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c} \right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

Esercizio 7. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** Y(f) = 0 per f = 0.
- **B)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- C) $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **D)** y(t) è un segnale ad energia finita.
- **E**) $\mathcal{E}_y \leq \mathcal{E}_x$.

Esercizio 8. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 1
- **B**) 3
- **C**) 4
- **D**) 2
- **E**) 0

N	ome										
Cog	gnome										
Mat	tricola										
Cor	mpito					3.	5				
	Esercizio		1	2	3	4	5	6	7	8	
	Rispos	Risposta									

Esercizio 1. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** Y(f) = 0 per f = 0.
- **B)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- C) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **D)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **E)** y(t) è un segnale ad energia finita.

Esercizio 2. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- C) altro
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 4. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.

 $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

Esercizio 6. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 5$
- **B)** $1 < B \cdot K + A < 4$
- C) Non sussiste alcuna relazione tra $B, K \in A$
- **D)** $B \cdot K + A > 10$
- E) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

Esercizio 7. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- **B)** se $f_0 = \frac{3}{2T} e \phi = 0$.
- C) se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- D) nessuna delle altre risposte è corretta.
- **E)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.

Esercizio 8. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 1
- **C**) 3
- **D**) 0
- **E**) 2

N	ome										
	gnome										
Mat	tricola										
Co	mpito					3	6				
	Eserci	izio	1	2	3	4	5	6	7	8	

Risposta

Esercizio 1. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 3
- **C**) 0
- **D**) 1
- **E**) 2

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D**) altro

Esercizio 3. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** y(t) è un segnale ad energia finita.
- **B)** $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$
- **C)** Y(f) = 0 per f = 0.
- **D**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **E)** $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.

Esercizio 4. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

A) Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.

f(x) = f(x) = f(x)

D) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.

Esercizio 5. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

è verificata

A) nessuna delle altre risposte è corretta.

B) solo se
$$f_0 = \frac{1}{3T} e \phi = 0$$
.

C) se
$$f_0 = \frac{1}{2T}$$
 e ϕ qualsiasi.

D) se
$$f_0 = \frac{2}{3T}$$
 e ϕ qualsiasi.

E) se
$$f_0 = \frac{3}{7T} e \phi = 0$$
.

Esercizio 6. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1\pm j)/2$

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 8. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

2

- **A)** $2B \cdot K + A = 2$
- B) Non sussiste alcuna relazione tra $B, K \in A$
- **C)** $B \cdot K + A > 2$
- **D)** Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **E)** $0 < B \cdot K + A < 1$

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					3	7				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- A) nessuna delle altre risposte è corretta.
- **B)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- C) se $f_0 = \frac{3}{2T} e \phi = 0$.
- **D)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- **E)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.

Esercizio 2. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Non sussiste alcuna relazione tra $B, K \in A$
- **B)** $2B \cdot K + A = 3$
- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $B \cdot K + A > 6$
- **E)** $0 < B \cdot K + A < 2$

Esercizio 3. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 5. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** y(t) è un segnale ad energia finita.
- **B)** $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$
- C) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **D)** $Y(f) = -4Tj/\pi \text{ per } f = 1/2T.$
- **E)** Y(f) = 0 per f = 0.

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- D) altro

Esercizio 7. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 0
- **C**) 2
- **D**) 3
- **E**) 1

Esercizio 8. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

A) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.

2

- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					3	8				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $1 < B \cdot K + A < 4$
- B) Non sussiste alcuna relazione tra $B, K \in A$
- **C**) $2B \cdot K + A = 5$
- D) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **E)** $B \cdot K + A > 10$

Esercizio 2. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$
- **B)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$

Esercizio 3. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right)=21X\left(\frac{1}{T}\right)$.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.

Esercizio 4. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

A)
$$Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$$

- **D)** Y(f) = 0 per f = 0.
- **E)** y(t) è un segnale ad energia finita.

Esercizio 5. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 6. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- A) nessuna delle altre risposte è corretta.
- **B)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- C) se $f_0 = \frac{2}{T} e \phi = 0$.
- **D)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **E)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.

Esercizio 7. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 3
- **B**) 4
- **C**) 0
- **D**) 1
- **E**) 2

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) altro
- **D)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					39	9				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 2. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 10$
- B) Non sussiste alcuna relazione tra $B, K \in A$
- **C**) $2B \cdot K + A = 5$
- **D)** $1 < B \cdot K + A < 4$
- E) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

Esercizio 3. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** y(t) è un segnale ad energia finita.
- **B)** Y(f) = 0 per f = 0.
- C) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **D)** $|Y(f)|^2 = 4T^2/\pi^2 \text{ per } f = 1/4T.$
- **E)** $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$

Esercizio 4. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **C**) solo se $f_0 = \frac{1}{3T} e \phi = 0$.
- D) nessuna delle altre risposte è corretta.
- **E)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.

Esercizio 5. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.

Esercizio 6. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 0
- **B**) 2
- **C**) 1
- **D**) 3
- **E**) 4

Esercizio 7. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) altro
- **D)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$

Esercizio 8. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4	0				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 2. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 1
- **B**) 0
- **C**) 4
- **D**) 3
- **E**) 2

Esercizio 3. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **B)** se $f_0 = \frac{2}{T} e \phi = 0$.
- **C)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- E) nessuna delle altre risposte è corretta.

Esercizio 4. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- C) $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **D)** y(t) è un segnale ad energia finita.
- **E)** Y(f) = 0 per f = 0.

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 6. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$
- **B)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$

Esercizio 7. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).

Esercizio 8. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $0 < B \cdot K + A < 2$
- **B)** Non sussiste alcuna relazione tra $B, K \in A$
- **C**) $2B \cdot K + A = 3$
- **D)** Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **E)** $B \cdot K + A > 6$

N	ome										
	gnome										
Ma	tricola										
Co	mpito					4	1				
	Eserci	zio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 2. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.

Esercizio 3. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **B)** Y(f) = 0 per f = 0.
- C) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **D)** y(t) è un segnale ad energia finita.
- **E)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$

Esercizio 4. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty} A\left(\frac{1}{2\pi T_c} + \frac{N}{T_c}\right)$$

Esercizio 5. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 10$
- B) Non sussiste alcuna relazione tra $B, K \in A$
- **C)** $2B \cdot K + A = 5$
- D) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **E)** $1 < B \cdot K + A < 4$

Esercizio 6. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 7. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A)** 0
- **B**) 3
- **C**) 2
- **D**) 1
- **E**) 4

Esercizio 8. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **B)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- ${\bf C})\,$ nessuna delle altre risposte è corretta.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **E**) se $f_0 = \frac{2}{T} e \phi = 0$.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4	2				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 2. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- A) nessuna delle altre risposte è corretta.
- **B)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- **C**) solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **E)** se $f_0 = \frac{1}{2T}$ e $\phi = 0$.

Esercizio 3. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 1
- **B**) 2
- **C**) 3
- **D**) 0
- **E**) 4

Esercizio 4. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **C)** Y(f) = 0 per f = 0.
- **D**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **E)** $Y(f) = -4Ti/\pi \text{ per } f = -1/2T.$

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- B) altro
- C) $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 6. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$$

Esercizio 7. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- B) Non sussiste alcuna relazione tra $B, K \in A$
- **C**) $2B \cdot K + A = 3$
- **D)** $B \cdot K + A > 6$
- **E)** $0 < B \cdot K + A < 2$

Esercizio 8. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).

N	ome										
	gnome										
Mat	tricola										
Co	mpito					4	3				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.

Esercizio 2. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **B)** Non sussiste alcuna relazione tra $B, K \in A$
- **C)** $2B \cdot K + A = 2$
- **D)** $B \cdot K + A > 2$
- **E)** $0 < B \cdot K + A < 1$

Esercizio 3. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- B) nessuna delle altre risposte è corretta.
- C) se $f_0 = \frac{3}{7T} e \phi = 0$.
- **D)** se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.
- **E)** solo se $f_0 = \frac{1}{3T} e \phi = 0$.

 $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A)** 2
- **B**) 3
- **C**) 1
- **D**) 0
- **E**) 4

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **D)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$

Esercizio 6. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X \left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c} \right)$$

- **B)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$

Esercizio 8. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- A) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** Y(f) = 0 per f = 0.
- C) $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$
- **D)** $Y(f) = -4Tj/\pi \text{ per } f = 1/2T.$
- **E)** y(t) è un segnale ad energia finita.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					4	4				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).

Esercizio 2. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 2$
- **B)** $2B \cdot K + A = 2$
- C) Non sussiste alcuna relazione tra $B, K \in A$
- \mathbf{D}) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **E)** $0 < B \cdot K + A < 1$

Esercizio 3. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- A) nessuna delle altre risposte è corretta.
- **B)** se $f_0 = \frac{1}{2T} e \phi = 0$.
- C) se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **D)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **E**) se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **D)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$

Esercizio 6. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 1
- **B**) 3
- **C**) 4
- **D**) 0
- **E**) 2

Esercizio 7. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** Y(f) = 0 per f = 0.
- **B)** y(t) è un segnale ad energia finita.
- C) $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **D)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **E**) $\mathcal{E}_y \leq \mathcal{E}_x$.

Esercizio 8. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

Nome	
Cognome	
Matricola	
Compito	45

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.
- **C)** Y(f) = 0 per f = 0.
- **D)** $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$
- **E)** y(t) è un segnale ad energia finita.

Esercizio 2. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D**) altro

Esercizio 4. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 2
- **B**) 4
- **C**) 0
- **D**) 1

E) 3

Esercizio 5. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$ è verificata

- **A)** se $f_0 = \frac{3}{7T} e \phi = 0$.
- **B)** se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.
- **C)** solo se $f_0 = \frac{1}{3T} e \phi = 0$.
- D) nessuna delle altre risposte è corretta.
- **E)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.

Esercizio 6. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$
- **B)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$

Esercizio 8. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **B)** $0 < B \cdot K + A < 2$
- **C)** $2B \cdot K + A = 3$
- **D)** $B \cdot K + A > 6$
- E) Non sussiste alcuna relazione tra $B, K \in A$

N	ome										
	gnome										
Ma	tricola										
Co	mpito					4	6				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

Risposta

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 2. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- **B)** se $f_0 = \frac{3}{2T}$ e $\phi = 0$.
- C) nessuna delle altre risposte è corretta.
- **D)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **E)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.

Esercizio 3. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

1 0

- **A)** $2B \cdot K + A = 3$
- **B)** $B \cdot K + A > 6$
- C) Non sussiste alcuna relazione tra $B, K \in A$
- D) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **E)** $0 < B \cdot K + A < 2$

Esercizio 5. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 0
- **B**) 4
- **C**) 1
- **D**) 2
- **E**) 3

Esercizio 6. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- A) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.

Esercizio 7. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** y(t) è un segnale ad energia finita.
- B) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **C)** Y(f) = 0 per f = 0.
- **D)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **E)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.

Esercizio 8. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

N	ome											
Cog	gnome											
	tricola											
Co	Compito			47								
	Esercizio		1	2	3	4	5	6	7	8		
	Rispos	Risposta										

Esercizio 1. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **B)** solo se $f_0 = \frac{1}{3T} e \phi = 0$.
- **C**) se $f_0 = \frac{3}{7T} e \phi = 0$.
- D) nessuna delle altre risposte è corretta.
- **E)** se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.

Esercizio 2. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 3. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **B)** Y(f) = 0 per f = 0.
- C) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **D)** y(t) è un segnale ad energia finita.
- **E)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$

Esercizio 4. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **C**) 3
- **D**) 1
- **E**) 2

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 5^{-n}\}u[n-1]$
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- D) altro

Esercizio 6. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 10$
- B) Non sussiste alcuna relazione tra $B, K \in A$
- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $1 < B \cdot K + A < 4$
- **E)** $2B \cdot K + A = 5$

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 8. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).

N	ome										
Cog	gnome										
Mat	tricola										
Cor	Compito					4	8				
	Esercizio		1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- A) nessuna delle altre risposte è corretta.
- **B)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- C) se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **E)** se $f_0 = \frac{2}{T} e \phi = 0$.

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 5^{-n}\}u[n-1]$
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- **D)** altro

Esercizio 3. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 0
- **B**) 4
- **C**) 1
- **D**) 2
- **E**) 3

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X \left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c} \right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 5. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** y(t) è un segnale ad energia finita.
- **B**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- C) $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$
- **D)** $Y(f) = -4Tj/\pi \text{ per } f = 1/2T.$
- **E)** Y(f) = 0 per f = 0.

Esercizio 6. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- A) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- B) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).

Esercizio 7. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 2$
- B) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **C**) $2B \cdot K + A = 2$
- **D)** $0 < B \cdot K + A < 1$
- **E)** Non sussiste alcuna relazione tra $B, K \in A$

Esercizio 8. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					4	9				
	Eserci	Esercizio		2	3	4	5	6	7	8	
	Rienos	ato									

Esercizio 1. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.

Esercizio 2. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $|Y(f)|^2 = 4T^2/\pi^2 \text{ per } f = 1/4T.$
- **B)** y(t) è un segnale ad energia finita.
- C) $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$
- **D**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **E)** Y(f) = 0 per f = 0.

Esercizio 3. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- A) nessuna delle altre risposte è corretta.
- **B)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **C**) se $f_0 = \frac{1}{2T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- **E)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.

,

A) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

- **B)** $0 < B \cdot K + A < 1$
- C) Non sussiste alcuna relazione tra $B, K \in A$
- **D)** $B \cdot K + A > 2$
- **E)** $2B \cdot K + A = 2$

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) altro
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 6. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- **B)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$

Esercizio 7. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 3
- **B**) 1
- **C**) 2
- **D**) 4
- **E**) 0

Esercizio 8. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

N	ome											
Cog	Cognome											
Matricola												
Co	Compito		50									
											i	
	Eserci	izio	1	2	3	4	5	6	7	8		

Esercizio 1. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- **B)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- C) se $f_0 = \frac{1}{2T} e \phi = 0$.
- D) nessuna delle altre risposte è corretta.
- **E)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.

Esercizio 2. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 3. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Non sussiste alcuna relazione tra $B, K \in A$
- **B)** $2B \cdot K + A = 2$
- **C**) $B \cdot K + A > 2$
- **D)** $0 < B \cdot K + A < 1$
- E) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$

Esercizio 5. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 6. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 0
- **B**) 1
- **C**) 4
- **D**) 2
- **E**) 3

Esercizio 7. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.
- C) y(t) è un segnale ad energia finita.
- **D)** $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$
- **E)** Y(f) = 0 per f = 0.

Esercizio 8. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).

N	ome										
	gnome										
Mat	tricola										
Co	mpito					5	1				
	Esercizio		1	2	3	4	5	6	7	8	
	Diana	ıt o									

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 5^{-n}\}u[n-1]$
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) altro
- **D)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$

Esercizio 2. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 3. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{n=1}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- A) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.

Esercizio 4. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 3

Figura 1:

- **C**) 1
- **D**) 2
- **E**) 0

Esercizio 5. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$ è verificata

- **A)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **B)** se $f_0 = \frac{1}{2T} e \phi = 0$.
- C) se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- E) nessuna delle altre risposte è corretta.

Esercizio 6. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Non sussiste alcuna relazione tra $B, K \in A$
- B) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **C**) $2B \cdot K + A = 3$
- **D)** $0 < B \cdot K + A < 2$
- **E)** $B \cdot K + A > 6$

Esercizio 7. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** Y(f) = 0 per f = 0.
- **B**) $\mathcal{E}_{y} \leq \mathcal{E}_{x}$.
- C) $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **D)** y(t) è un segnale ad energia finita.
- **E)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$

Esercizio 8. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- A) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- **B)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$

N	ome										
Cog	gnome										
Mat	tricola										
Cor	Compito					5	2				
İ	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

Esercizio 2. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 5$
- **B)** Non sussiste alcuna relazione tra $B, K \in A$
- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $1 < B \cdot K + A < 4$
- **E)** $B \cdot K + A > 10$

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)$

Esercizio 4. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

- C) se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{2}{T} e \phi = 0$.
- **E)** solo se $f_0 = \frac{1}{T} e \phi = 0$.

Esercizio 5. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 3
- **B**) 1
- **C**) 4
- **D**) 2
- **E**) 0

Esercizio 6. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** Y(f) = 0 per f = 0.
- **B)** $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$
- C) $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.
- **D**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **E)** y(t) è un segnale ad energia finita.

Esercizio 7. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D)** altro

Esercizio 8. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					5	3				
	Esercizio		1	2	3	4	5	6	7	8	
	Risposta										

Esercizio 1. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = -4Tj/\pi \text{ per } f = 1/2T.$
- **B**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- C) $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$
- **D)** Y(f) = 0 per f = 0.
- **E)** y(t) è un segnale ad energia finita.

Esercizio 2. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 3. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **B)** Non sussiste alcuna relazione tra $B, K \in A$
- C) $0 < B \cdot K + A < 1$
- **D)** $2B \cdot K + A = 2$
- **E)** $B \cdot K + A > 2$

Esercizio 4. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 3
- **B**) 2
- \mathbf{C}) 0
- **D**) 1

 $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 6. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

è verificata

- **A)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- **B)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- C) se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{3}{2T}$ e $\phi = 0$.
- E) nessuna delle altre risposte è corretta.

Esercizio 7. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

A)
$$\{4^{-n} - 5^{-n}\}u[n-1]$$

- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) altro

D)
$$\{4^{-n} - 2 \cdot 5^{-n}\}u[n-1]$$

N	ome										
Cog	gnome										
Mat	tricola										
Cor	mpito					5	4				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- B) Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 3. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 0
- **B**) 4
- **C**) 2
- **D**) 3
- **E**) 1

Esercizio 4. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

B) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty} A \left(\frac{3\pi}{4\pi T_c} + \frac{\pi}{T_c} \right)$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

Esercizio 5. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

A) Non sussiste alcuna relazione tra $B, K \in A$

B)
$$0 < B \cdot K + A < 1$$

C)
$$B \cdot K + A > 2$$

 \mathbf{D}) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

E)
$$2B \cdot K + A = 2$$

Esercizio 6. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

A)
$$Y(f) = 0$$
 per $f = 0$.

B) y(t) è un segnale ad energia finita.

C)
$$Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$$

D)
$$\mathcal{E}_{u} \leq \mathcal{E}_{x}$$
.

E)
$$|Y(f)|^2 = 4T^2/\pi^2$$
 per $f = 1/4T$.

Esercizio 7. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

A) solo se
$$f_0 = \frac{1}{2T} e \phi = 0$$
.

B) se
$$f_0 = \frac{1}{2T}$$
 e ϕ qualsiasi.

C) se
$$f_0 = \frac{3}{2T} e \phi = 0$$
.

D) nessuna delle altre risposte è corretta.

E) se
$$f_0 = \frac{1}{T}$$
 e ϕ qualsiasi.

Esercizio 8. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					5.	5				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) altro
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 2. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 3
- **C**) 2
- **D**) 1
- **E**) 0

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm i)/2$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 4. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

- C) se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **E)** se $f_0 = \frac{2}{T} e \phi = 0$.

Esercizio 5. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **B)** Y(f) = 0 per f = 0.
- C) $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **D)** y(t) è un segnale ad energia finita.
- **E**) $\mathcal{E}_y \leq \mathcal{E}_x$.

Esercizio 6. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **B)** $2B \cdot K + A = 2$
- **C**) $B \cdot K + A > 2$
- **D)** Non sussiste alcuna relazione tra $B, K \in A$
- **E)** $0 < B \cdot K + A < 1$

Esercizio 7. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).

Esercizio 8. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

N	ome										
Cog	gnome										
Mat	tricola										
Co	Compito					5	6				
	Esercizio		1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Non sussiste alcuna relazione tra $B, K \in A$
- **B)** $2B \cdot K + A = 5$
- \mathbf{C}) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $B \cdot K + A > 10$
- **E)** $1 < B \cdot K + A < 4$

Esercizio 2. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- A) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).

Esercizio 3. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 3
- **B**) 2
- **C**) 4
- **D**) 0
- **E**) 1

Esercizio 4. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

A)
$$\{4^{-n} - 5^{-n}\}u[n-1]$$

B)
$$\{4^{-n} - 2 \cdot 5^{-n}\}u[n-1]$$

D)
$$\delta[n] + (1/4)^n u[n] - (1/5)^n u[n]$$

Esercizio 6. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 7. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- B) nessuna delle altre risposte è corretta.
- C) se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **D)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- **E)** se $f_0 = \frac{3}{2T} e \phi = 0$.

Esercizio 8. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

A)
$$\mathcal{E}_y \leq \mathcal{E}_x$$
.

B)
$$Y(f) = 0$$
 per $f = 0$.

C)
$$|Y(f)|^2 = 4T^2/\pi^2$$
 per $f = 1/4T$.

D)
$$Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$$

E) y(t) è un segnale ad energia finita.

N	ome										
Cog	gnome										
Mat	tricola										
Co	Compito					5	7				
	Esercizio		1	2	3	1	5	6	7	Q	
	LISCI C.	LZIO	1		0	4	9	U	'	O	

Esercizio 1. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

è verificata

A) se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.

B) se
$$f_0 = \frac{3}{7T} e \phi = 0$$
.

C) nessuna delle altre risposte è corretta.

D) se
$$f_0 = \frac{2}{3T}$$
 e ϕ qualsiasi.

E) solo se
$$f_0 = \frac{1}{3T} e \phi = 0$$
.

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 4. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- C) $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **D)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **E)** Y(f) = 0 per f = 0.

Esercizio 5. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 2$
- ${f B})$ Tra $B,\,K$ e A sussiste una relazione diversa da quelle delle altre risposte
- **C)** $0 < B \cdot K + A < 1$
- **D)** $2B \cdot K + A = 2$
- \mathbf{E}) Non sussiste alcuna relazione tra $B, K \in A$

Esercizio 6. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$
- B) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$

Esercizio 8. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 3
- **B**) 1
- **C**) 0
- **D**) 4
- **E**) 2

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					5	8				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

A) Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).

Risposta

- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.

Esercizio 2. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **B**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- C) $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **D)** y(t) è un segnale ad energia finita.
- **E)** Y(f) = 0 per f = 0.

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- B) altro
- C) $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 4. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$ è verificata

- A) nessuna delle altre risposte è corretta.
- **B**) se $f_0 = \frac{2}{T} e \phi = 0$.

Figura 1:

- C) se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **D)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **E)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.

Esercizio 5. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 0
- **B**) 1
- **C**) 4
- **D**) 3
- **E**) 2

Esercizio 6. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$
- **B)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$

Esercizio 7. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 8. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 3$
- B) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **C)** $0 < B \cdot K + A < 2$
- **D)** Non sussiste alcuna relazione tra $B, K \in A$
- **E)** $B \cdot K + A > 6$

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					5	9				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

A)
$$\delta[n] + (1/4)^n u[n] - (1/5)^n u[n]$$

B)
$$\{4^{-n} - 5^{-n}\}u[n-1]$$

C)
$$\{4^{-n} - 2 \cdot 5^{-n}\}u[n-1]$$

D) altro

Esercizio 2. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

Esercizio 3. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.

Esercizio 4. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

A)
$$\mathcal{E}_y \leq \mathcal{E}_x$$
.

- **D)** Y(f) = 0 per f = 0.
- **E)** $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.

Esercizio 5. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A)** 2
- **B**) 1
- **C**) 4
- **D**) 3
- **E**) 0

Esercizio 6. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 7. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 6$
- B) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **C**) $2B \cdot K + A = 3$
- **D)** Non sussiste alcuna relazione tra B, K e A
- **E)** $0 < B \cdot K + A < 2$

Esercizio 8. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **B)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- C) nessuna delle altre risposte è corretta.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **E)** se $f_0 = \frac{2}{T} e \phi = 0$.

N	ome					·					
Cog	gnome										
Mat	tricola										
Co	Compito					6	0				
	Esercizio		1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **B)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- **C**) se $f_0 = \frac{3}{2T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- E) nessuna delle altre risposte è corretta.

Esercizio 2. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Non sussiste alcuna relazione tra $B, K \in A$
- \mathbf{B}) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **C)** $B \cdot K + A > 6$
- **D)** $2B \cdot K + A = 3$
- **E)** $0 < B \cdot K + A < 2$

Esercizio 3. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 0
- **C**) 1
- **D**) 3
- **E**) 2

$$y(t) = \sum_{n} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 6. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$
- **B)** Y(f) = 0 per f = 0.
- C) y(t) è un segnale ad energia finita.
- **D)** $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.
- **E**) $\mathcal{E}_y \leq \mathcal{E}_x$.

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

Esercizio 8. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm i)/2$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

N	ome										
	gnome										
Mat	tricola										
Co	$_{ m mpito}$					6	1				
	Esercizio		1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- A) Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).

Esercizio 2. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n + 1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 4. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$ è verificata

- **A)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **B)** se $f_0 = \frac{3}{7T}$ e $\phi = 0$.
- **C**) solo se $f_0 = \frac{1}{3T} e \phi = 0$.

Figura 1:

- D) nessuna delle altre risposte è corretta.
- **E)** se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 6. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- A) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$
- C) y(t) è un segnale ad energia finita.
- **D)** Y(f) = 0 per f = 0.
- **E)** $Y(f) = -4Ti/\pi \text{ per } f = 1/2T.$

Esercizio 7. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 10$
- **B)** $2B \cdot K + A = 5$
- C) Non sussiste alcuna relazione tra $B, K \in A$
- **D)** $1 < B \cdot K + A < 4$
- E) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

Esercizio 8. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 0
- **B**) 1
- **C**) 4
- **D**) 3
- **E**) 2

N	ome										
	gnome										
Mat	tricola										
Cor	Compito					6	2				
	Eserci	izio	1	2	3	4	5	6	7	8	
											1

Esercizio 1. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **B)** $2B \cdot K + A = 2$
- C) Non sussiste alcuna relazione tra $B, K \in A$
- **D)** $B \cdot K + A > 2$
- **E)** $0 < B \cdot K + A < 1$

Esercizio 2. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 4. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n + 1] = w[3n + 2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

D) $W(e^{j\omega}) = \frac{1}{T_c} \Lambda \left(\frac{3\pi}{4\pi T_c} \right)$

Esercizio 5. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- A) nessuna delle altre risposte è corretta.
- **B)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- C) se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- **D)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **E**) se $f_0 = \frac{1}{2T} e \phi = 0$.

Esercizio 6. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** Y(f) = 0 per f = 0.
- **B)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- C) y(t) è un segnale ad energia finita.
- **D**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **E)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$

Esercizio 7. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 5^{-n}\}u[n-1]$
- B) altro
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 8. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 2
- **B**) 3
- **C**) 1
- **D**) 4
- **E**) 0

N	ome										
Cog	gnome										
Mat	tricola										
Cor	Compito					6	3				
	Eserci	izio	1	2	3	1	5	6	7	Q	
	LISCI C.	LZIO	1		0	4	9	U	'	O	

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 2. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 3. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- A) se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.
- **B)** solo se $f_0 = \frac{1}{3T} e \phi = 0$.
- C) se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- D) nessuna delle altre risposte è corretta.
- **E)** se $f_0 = \frac{3}{7T} e \phi = 0$.

1 0

- **A)** $0 < B \cdot K + A < 2$
- **B)** $B \cdot K + A > 6$
- **C**) $2B \cdot K + A = 3$
- **D)** Non sussiste alcuna relazione tra $B, K \in A$
- E) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

Esercizio 5. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 1
- **B**) 4
- **C**) 2
- **D**) 3
- **E**) 0

Esercizio 6. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 7. (Punti 1) Il segnale $x(t) = -p_T(t + T/2) + p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- A) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** Y(f) = 0 per f = 0.
- C) $Y(f) = -4Ti/\pi \text{ per } f = 1/2T.$
- **D)** y(t) è un segnale ad energia finita.
- **E)** $Y(f) = -4Tj/\pi \text{ per } f = -1/2T.$

Esercizio 8. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- A) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.

N	ome										
	gnome										
Mat	tricola										
Co	Compito					6	4				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- A) Non sussiste alcuna relazione tra $B, K \in A$
- **B)** $0 < B \cdot K + A < 1$
- **C)** $B \cdot K + A > 2$
- **D)** $2B \cdot K + A = 2$
- E) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

Esercizio 2. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 1
- **B**) 2
- **C**) 3
- **D**) 4
- **E**) 0

Esercizio 3. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **B)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- C) nessuna delle altre risposte è corretta.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **E)** se $f_0 = \frac{1}{2T} e \phi = 0$.

Ad esso è associata una risposta all'impulso

A)
$$\delta[n] + (1/4)^n u[n] - (1/5)^n u[n]$$

B)
$$\{4^{-n} - 5^{-n}\}u[n-1]$$

C)
$$\{4^{-n} - 2 \cdot 5^{-n}\}u[n-1]$$

D) altro

Esercizio 5. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $\mathcal{E}_y \leq \mathcal{E}_x$.
- **B)** $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.
- C) $Y(f) = 4Ti/\pi \text{ per } f = 1/2T.$
- **D)** Y(f) = 0 per f = 0.
- **E)** y(t) è un segnale ad energia finita.

Esercizio 6. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 8. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

A) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.

2

- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right)=21X\left(\frac{1}{T}\right)$.

N	ome										
	gnome										
Mat	tricola										
Co	mpito					6	5				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 3
- **B**) 0
- **C**) 1
- **D**) 4
- **E**) 2

Esercizio 2. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.

Esercizio 3. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$
- **B)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$

Esercizio 4. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- C) $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **D)** Y(f) = 0 per f = 0.
- **E)** y(t) è un segnale ad energia finita.

Esercizio 5. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) altro
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 6. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $0 < B \cdot K + A < 1$
- B) Non sussiste alcuna relazione tra $B, K \in A$
- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $B \cdot K + A > 2$
- **E)** $2B \cdot K + A = 2$

Esercizio 7. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 8. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

2

è verificata

- **A)** solo se $f_0 = \frac{1}{3T} e \phi = 0$.
- **B)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **C)** se $f_0 = \frac{3}{7T} e \phi = 0$.
- **D)** se $f_0 = \frac{2}{3T}$ e ϕ qualsiasi.
- E) nessuna delle altre risposte è corretta.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					6	6				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 2. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) altro
- **D)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$

Esercizio 4. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

C) $W(e^{3\pi}) = \frac{1}{T_c} \sum_{n=-\infty} A\left(\frac{2\pi T_c}{2\pi T_c} + \frac{1}{T_c}\right)$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

Esercizio 5. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

A) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

B)
$$0 < B \cdot K + A < 2$$

- C) Non sussiste alcuna relazione tra $B, K \in A$
- **D)** $2B \cdot K + A = 3$
- **E)** $B \cdot K + A > 6$

Esercizio 6. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

A) se
$$f_0 = \frac{3}{2T}$$
 e $\phi = 0$.

B) solo se
$$f_0 = \frac{1}{2T} e \phi = 0$$
.

C) nessuna delle altre risposte è corretta.

D) se
$$f_0 = \frac{1}{2T}$$
 e ϕ qualsiasi.

E) se
$$f_0 = \frac{1}{T}$$
 e ϕ qualsiasi.

Esercizio 7. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 1
- **B**) 4
- **C**) 2
- **D**) 3
- **E**) 0

Esercizio 8. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

A)
$$Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$$

B)
$$Y(f) = 0$$
 per $f = 0$.

C)
$$|Y(f)|^2 = 4T^2/\pi^2$$
 per $f = 1/4T$.

$$\mathbf{D)} \ \mathcal{E}_y \leq \mathcal{E}_x.$$

E) y(t) è un segnale ad energia finita.

N	ome					·					
Cog	gnome										
Mat	tricola										
Co	mpito					6	7				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- **B)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **C**) solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **D**) se $f_0 = \frac{1}{2T} e \phi = 0$.
- E) nessuna delle altre risposte è corretta.

Esercizio 2. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D)** $\{4^{-n} 2 \cdot 5^{-n}\}u[n-1]$

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$
- C) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 4. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **C)** Y(f) = 0 per f = 0.
- **D)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **E**) $\mathcal{E}_y \leq \mathcal{E}_x$.

Esercizio 5. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$
- **B)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$

Esercizio 6. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 1
- **B**) 3
- **C**) 0
- **D**) 2
- **E**) 4

Esercizio 7. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- A) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- **B)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right)=21X\left(\frac{1}{T}\right)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.

Esercizio 8. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 6$
- **B)** Non sussiste alcuna relazione tra $B, K \in A$
- **C)** $0 < B \cdot K + A < 2$
- **D)** $2B \cdot K + A = 3$
- E) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					6	8				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

A)
$$\{5 \cdot 4^{-n} - 7 \cdot 5^{-n}\}u[n-1]$$

- B) altro
- C) $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 2. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 3. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 1
- **B**) 0
- **C**) 2
- **D**) 4
- **E**) 3

Esercizio 4. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

A)
$$2B \cdot K + A = 5$$

- **D)** $1 < B \cdot K + A < 4$
- **E)** $B \cdot K + A > 10$

Esercizio 5. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

è verificata

- **A)** se $f_0 = \frac{3}{2T}$ e $\phi = 0$.
- B) nessuna delle altre risposte è corretta.
- **C)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **E)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.

Esercizio 6. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)$

Esercizio 7. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** Y(f) = 0 per f = 0.
- **B**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- C) $Y(f) = 4Ti/\pi \text{ per } f = 1/2T.$
- **D)** $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.
- **E)** y(t) è un segnale ad energia finita.

Esercizio 8. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-10}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

A) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.

2

- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.

N	ome										
Cog	gnome										
Ma	tricola										
Co	mpito					6	9				
	Eserc	izio	1	2	3	4	5	6	7	8	
	ъ.	1									

Esercizio 1. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 2
- **C**) 0
- **D**) 3
- **E**) 1

Esercizio 2. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

è verificata

- **A)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **B)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- C) se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{2}{T} e \phi = 0$.
- E) nessuna delle altre risposte è corretta.

Esercizio 3. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 2$
- B) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **C)** $0 < B \cdot K + A < 1$
- **D)** Non sussiste alcuna relazione tra $B, K \in A$
- **E)** $2B \cdot K + A = 2$

Ad esso è associata una risposta all'impulso

A) $\delta[n] + (1/4)^n u[n] - (1/5)^n u[n]$

- **A)** $\delta[n] + (1/4)^n u[n] (1$
- B) altro
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 5. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-1] - 2x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero immaginario e due poli complessi coniugati nei punti $(1 \pm j)/2$
- B) instabile con uno zero nel punto +2 e due poli complessi coniugati nei punti $\sqrt{2}(1\pm i)$
- C) stabile con uno zero reale e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 6. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **B)** Y(f) = 0 per f = 0.
- C) $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **D**) $\mathcal{E}_{y} \leq \mathcal{E}_{x}$.
- **E)** y(t) è un segnale ad energia finita.

Esercizio 7. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{t=0}^{10} x(t - nT)$$

Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y(0) = 21X(0)$.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata $B \in Y\left(\frac{1}{T}\right) = X\left(\frac{1}{T}\right)$.
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{20T}$ dove $p(t)_{20T}$ è una porta simmetrica pari a 1 per $t \in (-10T, 10T)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T}\right) = 21X\left(\frac{1}{T}\right)$.

Esercizio 8. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0.

Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

2

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$$

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					7	n				
L	mproo						U				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- B) Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.

Esercizio 2. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- **B)** se $f_0 = \frac{3}{2T} e \phi = 0$.
- C) se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- E) nessuna delle altre risposte è corretta.

Esercizio 3. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** y(t) è un segnale ad energia finita.
- **B)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **C)** Y(f) = 0 per f = 0.
- **D)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **E**) $\mathcal{E}_y \leq \mathcal{E}_x$.

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1\pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 5. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=7 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 2
- **C**) 0
- **D**) 1
- **E**) 3

Esercizio 6. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 6$
- **B)** $0 < B \cdot K + A < 2$
- C) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **D)** $2B \cdot K + A = 3$
- **E)** Non sussiste alcuna relazione tra $B, K \in A$

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

Esercizio 8. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

A)
$$\{4^{-n} - 2 \cdot 5^{-n}\}u[n-1]$$

- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) altro

D)
$$\delta[n] + (1/4)^n u[n] - (1/5)^n u[n]$$

N	ome										
	gnome										
Mat	tricola										
Cor	mpito					7	1				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- D) altro

Esercizio 2. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.
- **B)** Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- C) Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.
- **D)** Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.

Esercizio 3. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{2}{T} e \phi = 0$.
- **B)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- C) nessuna delle altre risposte è corretta.
- **D)** solo se $f_0 = \frac{1}{T} e \phi = 0$.
- **E)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.

A) y(t) è un segnale ad energia finita.

- **B**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- C) $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **D)** $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **E)** Y(f) = 0 per f = 0.

Esercizio 5. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1\pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 6. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 7. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $1 < B \cdot K + A < 4$
- **B)** $2B \cdot K + A = 5$
- **C)** $B \cdot K + A > 10$
- **D)** Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- E) Non sussiste alcuna relazione tra $B, K \in A$

Esercizio 8. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 4
- **B**) 3
- **C**) 1
- **D**) 0
- **E**) 2

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					73	2				
	Eserci	izio	1	2	3	4	5	6	7	8	

Esercizio 1. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=6 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 2
- **B**) 3
- **C**) 4
- **D**) 1
- **E**) 0

Esercizio 2. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $B \cdot K + A > 6$
- **B)** $2B \cdot K + A = 3$
- **C)** $0 < B \cdot K + A < 2$
- **D)** Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte

Risposta

E) Non sussiste alcuna relazione tra $B, K \in A$

Esercizio 3. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- C) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$

Esercizio 4. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- **B)** $\{4^{-n} 5^{-n}\}u[n-1]$
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$

costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).

Esercizio 6. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{2T} e \phi = 0$.
- **B)** se $f_0 = \frac{1}{4T}$ e ϕ qualsiasi.
- C) se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- D) nessuna delle altre risposte è corretta.
- **E)** solo se $f_0 = \frac{1}{T} e \phi = 0$.

Esercizio 7. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[3n] = v[n] ed inoltre w[3n+1] = w[3n+2] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

- **A)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{4\pi T_c}\right)$
- **B)** $W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{3\omega}{2\pi T_c}\right)$
- C) $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{4\pi T_c} + \frac{n}{T_c}\right)$
- **D)** $W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{3\omega}{2\pi T_c} + \frac{n}{T_c}\right)$

Esercizio 8. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **B)** y(t) è un segnale ad energia finita.
- C) $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **D)** Y(f) = 0 per f = 0.
- **E**) $\mathcal{E}_y \leq \mathcal{E}_x$.

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					7	3				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Rispos	sta									

Esercizio 1. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- A) altro
- **B)** $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- C) $\{4^{-n} 5^{-n}\}u[n-1]$
- **D)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$

Esercizio 2. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $Y(f) = 2Tj/\pi \text{ per } f = 1/2T.$
- **B)** y(t) è un segnale ad energia finita.
- C) $|Y(f)|^2 = 16T^2/\pi^2$ per f = 1/4T.
- **D**) $\mathcal{E}_y \leq \mathcal{E}_x$.
- **E)** Y(f) = 0 per f = 0.

Esercizio 3. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.
- B) nessuna delle altre risposte è corretta.
- C) se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **D)** se $f_0 = \frac{3}{2T} e \phi = 0$.
- **E)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.

Esercizio 4. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 2$, varianza $\sigma_X^2 = 1$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- C) Non sussiste alcuna relazione tra $B, K \in A$
- D) Tra B, K e A sussiste una relazione diversa da quelle delle altre risposte
- **E)** $B \cdot K + A > 10$

Esercizio 5. (Punti 1) Si consideri il segnale x(t) a energia finita a banda limitata B_x con spettro X(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} x(t - nT_c)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)(2N+1)$.
- B) Lo spettro Y(f) di y(t) ha banda limitata B_x e Y(0) = X(0)(2N+1).
- C) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $x(t)p(t)_{2NT_c}$ dove $p(t)_{2NT_c}$ è una porta simmetrica pari a 1 per $t \in (-NT_c, NT_c)$ e zero altrove.
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_x e $Y\left(\frac{1}{T_c}\right) = X\left(\frac{1}{T_c}\right)$.

Esercizio 6. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$

Esercizio 7. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=5 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A**) 0
- **B**) 4
- **C**) 3
- **D**) 1
- **E**) 2

Esercizio 8. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[4n] = v[n] ed inoltre w[4n+1] = w[4n+2] = w[4n+3] = 0. Quanto vale la trasformata di Fourier della sequenza w[n]?

Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{2\omega}{\pi T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{2\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

N	ome										
Cog	gnome										
Mat	tricola										
Co	mpito					7	4				
	Eserci	izio	1	2	3	4	5	6	7	8	
	Diama	-t-a									

Esercizio 1. (Punti 1.5) Sia dato un segnale x(t) con spettro X(f). Da x(t) viene ricavata una sequenza $v[n] = x(nT_c)$, e da essa un'altra sequenza w[n] tale che w[2n] = v[n] ed inoltre w[2n+1] = 0.

Quanto vale la trasformata di Fourier (DTFT) della sequenza w[n]? Suggerimento: Si consiglia di scrivere prima $V(e^{j\omega}) = DTFT(v[n])$ in termini di $X(\omega)$ e poi di ricavare la relazione tra $W(e^{j\omega}) = DTFT(w[n])$ e $V(e^{j\omega})$.

A)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{\pi T_c}\right)$$

B)
$$W(e^{j\omega}) = \frac{1}{T_c} X\left(\frac{\omega}{2\pi T_c}\right)$$

C)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{\pi T_c} + \frac{n}{T_c}\right)$$

D)
$$W(e^{j\omega}) = \frac{1}{T_c} \sum_{n=-\infty}^{\infty} X\left(\frac{\omega}{2\pi T_c} + \frac{n}{T_c}\right)$$

Esercizio 2. (Punti 1) Il segnale $x(t) = p_T(t + T/2) - p_T(t - T/2)$ passa attraverso un filtro passa basso ideale con funzione di trasferimento H(f) = 1 per |f| < B e B > 1/2T. Si indichi con y(t) il segnale in uscita. Dire quale delle seguenti affermazioni è falsa.

- **A)** $|Y(f)|^2 = 4T^2/\pi^2$ per f = 1/4T.
- **B)** y(t) è un segnale ad energia finita.
- C) $Y(f) = 4Tj/\pi \text{ per } f = 1/2T.$
- **D)** Y(f) = 0 per f = 0.
- **E**) $\mathcal{E}_y \leq \mathcal{E}_x$.

Esercizio 3. (Punti 1.5) Si consideri un filtro numerico causale con relazione ingresso/uscita del tipo

$$y[n] = \{-3x[n-1] + 2x[n-2] + 9y[n-1] - y[n-2]\}/20$$

Ad esso è associata una risposta all'impulso

- **A)** $\delta[n] + (1/4)^n u[n] (1/5)^n u[n]$
- B) altro
- C) $\{5 \cdot 4^{-n} 7 \cdot 5^{-n}\}u[n-1]$
- **D)** $\{4^{-n} 5^{-n}\}u[n-1]$

Esercizio 4. (Punti 1) Sia dato il processo casuale X(t) gaussiano stazionario, con valore medio $m_X = 1$, varianza $\sigma_X^2 = 2$, e densità spettrale di potenza $S_X(f) = Kp_{2B}(f) + A\delta(f)$, con $p_{2B}(f) = 1$ per |f| < B e nulla altrove, K e A due costanti reali strettamente positive. Dire quale delle seguenti relazioni è corretta.

- **A)** $2B \cdot K + A = 3$
- B) Non sussiste alcuna relazione tra $B, K \in A$
- **C)** $B \cdot K + A > 6$

Esercizio 5. (Punti 1) Si consideri il segnale z(t) a energia finita a banda limitata B_z con spettro Z(f) e si costruisca il segnale

$$y(t) = \sum_{-N}^{N} z(t - n)$$

con N finito. Dire quale delle seguenti affermazioni è corretta.

- **A)** Lo spettro Y(f) di y(t) ha banda illimitata e Y(1) = Z(1)(2N+1).
- B) Lo spettro Y(f) di y(t) è a righe e l'ampiezza delle righe è proporzionale allo spettro del segnale $z(t)p(t)_{2N}$ dove $p(t)_{2N}$ è una porta simmetrica pari a 1 per $t \in (-N, N)$ e zero altrove.
- C) Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(1) = X(1).
- **D)** Lo spettro Y(f) di y(t) ha banda limitata B_z e Y(0) = Z(0)(2N+1).

Esercizio 6. (Punti 1.5) Sono dati due segnali discreti $x_1[n]$ e $x_2[n]$. $x_1[n]$ vale 1 per n=1 e n=3, vale 2 per n=2, e vale 0 altrove. $x_2[n]$ vale 1 per $0 \le n \le 4$ e vale 0 altrove. Dei due segnali viene calcolata la DFT (Discrete Fourier Transform) su N=8 punti, ottenendo le due sequenze $X_1[k]$ e $X_2[k]$ di durata N. Del prodotto $X_1[k] \times X_2[k]$ (che ha sempre lunghezza N) si calcola la DFT inversa ottenendo $x_3[n]$. Il valore minimo assunto da $x_3[n]$ è

- **A)** 0
- **B**) 1
- **C**) 4
- **D**) 3
- **E**) 2

Esercizio 7. (Punti 1) Si consideri una relazione ingresso/uscita del tipo

$$y[n] = x[n-2] + (1/\sqrt{2})y[n-1] - (1/4)y[n-2]$$

Ad essa è associato un filtro numerico causale

- A) stabile con uno zero nell'origine e due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$
- B) instabile con uno zero nell'origine e due poli complessi coniugati nei punti $(1 \pm j)/2$
- C) stabile con due poli complessi coniugati nei punti $\sqrt{2}(1\pm j)/4$ e nessuno zero

Esercizio 8. (Punti 1.5) È dato il sistema in figura 1 con $x(t) = \cos(2\pi f_0 t + \phi)$. La condizione $y(t) = 0 \quad \forall t$

Figura 1:

è verificata

- **A)** se $f_0 = \frac{1}{T}$ e ϕ qualsiasi.
- B) nessuna delle altre risposte è corretta.
- C) se $f_0 = \frac{3}{2T} e \phi = 0$.
- **D)** se $f_0 = \frac{1}{2T}$ e ϕ qualsiasi.
- **E)** solo se $f_0 = \frac{1}{2T} e \phi = 0$.