Protein quantitation I: Overview (Week 6)

Proteomic Bioinformatics - Quantitation

Quantitation - Label-Free (Standard Curve)

Quantitation - Label-Free (MS)

Sample i Protein j Peptide k

Assumption:

 $oldsymbol{lpha}_{\scriptscriptstyle k}\,p_{\scriptscriptstyle ij}^{\scriptscriptstyle L}\,p_{\scriptscriptstyle ij}^{\scriptscriptstyle \mathrm{Pr}}\,p_{\scriptscriptstyle ijk}^{\scriptscriptstyle D}\,p_{\scriptscriptstyle ik}^{\scriptscriptstyle Pep}\,p_{\scriptscriptstyle ik}^{\scriptscriptstyle LC}\,p_{\scriptscriptstyle ik}^{\scriptscriptstyle MS}$

constant for all samples

$$C_{i_n^{j}}/C_{i_m^{j}}=I_{i_n^{j}}/I_{i_m^{j}}$$

Quantitation - Metabolic Labeling

Ong et al. MCP 1 (2002) 376

Comparison of metabolic labeling and label-free quantitation

Label free assumption:

$$lpha_{\scriptscriptstyle k}\,p_{\scriptscriptstyle ij}^{\scriptscriptstyle L}\,p_{\scriptscriptstyle ij}^{\scriptscriptstyle ext{Pr}}\,p_{\scriptscriptstyle ijk}^{\scriptscriptstyle D}\,p_{\scriptscriptstyle ik}^{\scriptscriptstyle Pep}\,p_{\scriptscriptstyle ik}^{\scriptscriptstyle LC}\,p_{\scriptscriptstyle ik}^{\scriptscriptstyle MS}$$
 constant for all samples

Metabolic labeling assumption:

$$p_{ij}^{N}$$

constant for all samples and the behavior of heavy and light isotopes is identical

Intensity variation between runs

How significant is a measured change in amount?

It depends on the size of the random variation of the amount measurement that can be obtained by repeat measurement of identical samples.

Protein Complexes

Protein Complexes - specific/non-specific binding

Tackett et al. JPR 2005

Protein Turnover

$$\frac{dC_{j}^{H}(t)}{dt} = -(K_{c} + K_{T})C_{j}^{H}(t)$$

$$C_{j}^{L}(t) + C_{j}^{H}(t) = C_{j}^{H}(0)$$

$$\Rightarrow C_{j}^{H}(t) = C_{j}^{H}(0)e^{-(K_{c} + K_{T})t}$$

 $K_C = log(2)/t_C$, t_C is the average time it takes for cells to go through the cell cycle, and $K_T = log(2)/t_T$, t_T is the time it takes for half the proteins to turn over.

$$\log(\frac{\mathcal{I}_{j}^{\mathcal{H}}(t) + \mathcal{I}_{j}^{\mathcal{L}}(t)}{\mathcal{I}_{j}^{\mathcal{H}}(t)}) = t(\frac{1}{t_{C}} + \frac{1}{t_{T}})\log(2)$$

Super-SILAC

Geiger et al., Nature Methods 2010

Quantitation - Protein Labeling

Quantitation - Labeled Proteins

Quantitation - Labeled Chimeric Proteins

Beynon et al. Nature Methods 2 (2005) 587 Anderson & Hunter MCP 5 (2006) 573

Quantitation - Peptide Labeling

Assumption: All losses after mixing are identical for the heavy and light isotopes and

$$p_{i_n^{J}}^{L} p_{i_n^{J}}^{\operatorname{Pr}} p_{i_n^{Jk}}^{D} p_{i_n^{k}}^{M} \approx$$

$$\approx p_{i_m^{J}}^{L} p_{i_m^{J}}^{\operatorname{Pr}} p_{i_m^{Jk}}^{D} p_{i_m^{k}}^{M}$$

Gygi et al. Nature Biotech 17 (1999) 994 Mirgorodskaya et al. RCMS 14 (2000) 1226

Quantitation - Labeled Synthetic Peptides

Assumption: All losses after mixing are identical for the heavy and light isotopes and

$$p_{i_n^{J}}^{L}p_{i_n^{J}}^{\operatorname{Pr}}p_{i_n^{Jk}}^{D}p_{i_n^{Jk}}^{M} \approx p_{sk}^{M}$$

Synthetic Peptides (Heavy)

Quantitation - Label-Free (MS/MS)

Quantitation - Labeled Synthetic Peptides

Quantitation - Isobaric Peptide Labeling

Ross et al. MCP 3 (2004) 1154

Isotope distributions

Isotope distributions

Estimating peptide quantity

Time dimension

Time

m/z

Sampling

Sampling

Sampling

Retention Time Alignment

Estimating peptide quantity by spectrum counting

What is the best way to estimate quantity?

Peak height - resistant to interference

- poor statistics

Peak area - better statistics

- more sensitive to interference

Curve fitting - better statistics

- needs to know the peak shape

- slow

Spectrum counting - resistant to interference

- easy to implement

 poor statistics for low-abundance proteins

Examples - qTOF

Examples - Orbitrap

Examples - Orbitrap

AADDTWEPFASGK

Time

AADDTWEPFASGK

YVLTQPPSVSVAPGQTAR

Time

YVLTQPPSVSVAPGQTAR

Interference

Analysis of low abundance proteins is **sensitive to interference** from other components of the sample.

MS1 interference: other components of the sample that overlap with the isotope distribution.

MS/MS interference: other components of the sample with same precursor and fragment masses as the transitions that are monitored.

MS1 interference

Quantitation using MRM

Data taken from CPTAC Verification Work Group Study 7.

10 peptides
3 transitions per peptide
Concentrations 1-500 fmol/µl
Human plasma background
8 laboratories
4 repeat analysis per lab

Addona et al., Nature Biotechnol. 27 (2009) 633-641

Quantitation using MRM

Ratios of intensities of transitions

Model: Noise and Interference

Can the knowledge of the relative intensity of the transitions be used to correct for interference?

- Noise is a normally distributed increase or decrease in the intensity.
- Interference is an increase in the intensity of one or more transitions.

Detection of interference

Interference is detected by comparing the ratio of the intensity of pairs of transitions with the expected ratio and finding outliers.

Transition i has interference if $Z_{threshold} < Z_{i}$

where $Z_{threshold}$ is the interference detection threshold;

$$z_i = \max_{j \neq i} z_{ji} = \max_{j \neq i} \frac{r_{ji} - I_j/I_i}{\sigma_{ji}}$$

 z_{ji} is the number of standard deviations that the ratio between the intensities of transitions j and i deviate from the noise;

 \mathbf{I}_{i} and \mathbf{I}_{j} are the log intensities of transitions i and j;

 r_{ji} is the median of the log intensity of transitions j and i; σ_{ji} is the noise in the ratio.

Error in quantitation after correction in presence of noise but no interference

Corrections for interference

Error in quantitation after correction in presence of interference and noise

Correction for MS2 interference

Workflow for quantitation with LC-MS

Standardization

Retention time alignment Mass calibration Intensity normalization

Quality Control

Detection of problems with samples and analysis

Quantitation

Peak detection
Background subtraction
Limits for integration in time and mass
Exclusion of interfering peaks

Takeaway Message

- There are many different ways to quantitate proteins choose the one that is appropriate for your application.
- In general the earlier you can introduce isotopic labels the better the accuracy.
- Always monitor for interference.

Protein quantitation I: Overview (Week 6)