This week you will practice writing differential equations modelling real world phenomena as well as understanding population models. You will also get practice solving separable differential equations.

Homework: The homework will be due on Friday 15 February, at 8am, the *start* of the lecture. It will consist of questions:

7, 10.(1) from problem set 5 and 5.(1) from this problem set below

*Numbers in parentheses indicate the question has been taken from the textbook:

S. J. Schreiber, Calculus for the Life Sciences, Wiley,

and refer to the section and question number in the textbook.

- 1. Divide p(x) by q(x) and express the quotient as a divisor plus a remainder.
 - (a) $p(x) = 2x^3 + 4x^2 5$, q(x) = x + 3
 - (b) $p(x) = 15x^4 3x^2 6x$, q(x) = 3x + 6
 - (c) $p(x) = 2x^4 5x^3 + 6x^2 + 3x 2$, q(x) = x 2
 - (d) $p(x) = 5x^4 + 2x^3 + x^2 3x + 1$, q(x) = x + 2
 - (e) $p(x) = x^6$, q(x) = x 1
 - (f) $p(x) = x^3 5x^2 + x 15$, $q(x) = x^2 1$
 - (g) $p(x) = x^3 2x^2 5x + 7$, $q(x) = x^2 + x 6$
 - (h) $p(x) = x^3 + 3x^2 6x 7$, $q(x) = x^2 + 2x 8$
 - (i) $p(x) = 2x^3 8x^2 + 8x 4$, $q(x) = 2x^2 4x + 2$
 - (j) $p(x) = 3x^4 x^3 2x^2 + 5x 1$, q(x) = x + 1
 - (k) $p(x) = 4x^5 + 7x^4 9x^3 + 2x^2 x + 3$, $q(x) = x^2 4x + 3$
 - (1) $p(x) = 4x^5 + 7x^4 9x^3 + 2x^2 x + 3$, $q(x) = x^3 + x^2 5x + 3$
 - (m) Make up your own! Pick random polynomials and divide!
- 2. Use the method of partial fractions to break up these rational functions.
 - (a) $\frac{2}{(x-2)x}$
 - (b) $\frac{5}{(x-2)(x+3)}$
 - (c) $\frac{7}{(x+6)(x-1)}$
 - (d) $\frac{5x}{(x-1)(x+4)}$
 - (e) $\frac{x}{(x+1)(x+2)}$
 - (f) $\frac{12x-6}{(x-3)(x+3)}$
 - $(g) \frac{x-1}{(x+2)(x+1)}$
 - (h) $\frac{1}{x^2-x-6}$
 - (i) $\frac{11}{x^2 3x 28}$
 - (j) $\frac{10}{x^2 + 2x 24}$
 - $(k) \quad \frac{4x}{x^2 + 6x + 5}$
 - (1) $\frac{3x}{x^2-7x+10}$
 - (m) $\frac{1}{x^3 2x^2 5x + 6}$

- (n) $\frac{4x^2-x}{x^3-4x^2-x+4}$
- 3. Use the method of partial fractions to break up these rational functions.
 - (a) $\frac{x}{(x+1)^2}$
 - (b) $\frac{2x-1}{(x+3)^2}$
 - (c) $\frac{1-3x}{(x-1)^2}$
 - (d) $\frac{1+3x}{(x-2)^2}$
 - (e) $\frac{2x^2}{(x-1)^3}$
 - (f) $\frac{x-1}{(x-2)^3}$
 - (g) $\frac{x-3}{(x+2)^2(x-2)}$
 - (h) $\frac{x}{(x-1)(x+3)^2}$
- 4. Integrate the functions in question 2 and question 3.
- 5. Calculate $\int \frac{p(x)}{q(x)} dx$ for each part of question 1.
- 6. (6.1) Write a differential equation to model the situations described below. Do not try to solve.
 - (a) (6.1-1) The number of bacteria in a culture grows at a rate that is proportional to the number of bacteria present.
 - (b) (6.1-2) A sample of radium decays at a rate that is proportional to the amount of radium present in the sample.
 - (c) (6.1-5) According to Benjamin Gompertz (1779-1865) the growth rate of a population is proportional to the number of individuals present, where the factor of proportionality is an exponentially decreasing function of time.
 - (d) (6.1-7) The rate at which an epidemic spreads through a community of P susceptible people is proportional to the product of the number of people y who have caught the disease and the number P-y who have not.
 - (e) (6.1-8) The rate at which people are implicated in a government scandal is proportional to the product of the number N of people already implicated and the number of people involved who have not yet been implicated.
- 7. (6.1) A population model is given by

$$\frac{\mathrm{d}P}{\mathrm{d}t} = P(100 - P).$$

- (a) (6.1-9) For what values is the population at equilibrium?
- (b) (6.1-10) For what values is $\frac{dP}{dt} > 0$?
- (c) (6.1-11) For what values is $\frac{dP}{dt} < 0$?
- (d) (6.1-12) Describe how the fate of the population depends on the initial density.
- 8. (6.1) A population model is given by

$$\frac{\mathrm{d}P}{\mathrm{d}t} = P(P-1)(100-P).$$

- (a) (6.1-13) For what values is the population at equilibrium?
- (b) (6.1-14) For what values is $\frac{dP}{dt} > 0$?
- (c) (6.1-15) For what values is $\frac{dP}{dt} < 0$?

- (d) (6.1-16) Describe how the fate of the population depends on the initial density.
- 9. (6.1) Radioactive decay: Certain types of atoms (e.g. carbon-14, xenon-133, lead-210, etc.) are inherently unstable. They exhibit random transitions to a different atom while emitting radiation in the process. Based on experimental evidence, Rutherford found in the early 20th century that the number, N, of atoms in a radioactive substance can be described by the equation

$$\frac{\mathrm{d}N}{\mathrm{d}t} = -\lambda N$$

where t is measured in years and $\lambda > 0$ is known as the *decay constant*. The decay constant is found experimentally by measuring the half life, τ of the radioactive substance (i.e. the time it takes for half of the substance to decay). Use this information in the following problems.

- (a) (6.1-18) Find a solution to the decay equation assuming that $N(0) = N_0$.
- (b) (6.1-19) For xenon-133, the half-life is 5 days. Find λ . Assume t is measured in days.
- (c) (6.1-20) For carbon-14 the half life is 5, 568 years. Find the decay constant λ , assuming t is measured in years.
- (d) (6.1-21) How old is a piece of human bone which contains just 60% of the amount of carbon-14 expected in a sample of bone from a living person, assuming the half life of carbon-14 is 5,568 years?
- (e) (6.1-22) The Dead Sea Scrolls were written on parchment at about 100 B.C. What percentage of carbon-14 originally contained in the parchment remained when the scrolls were discovered in 1947?
- 10. (6.1-30) Hyperthyroidism is caused by a new growth of tumor-like cells that secrete thyroid hormones in excess to the normal hormones. If left untreated, a hyperthyroid individual can exhibit extreme weight loss, anorexia, muscle weakness, heart disease intolerance to stress, and eventually death. The most successful and least invasive treatment option is radioactive iodine-131 therapy.

This involves the injection of a small amount of radioactivity into the body. For the type of hyperthyroidism called Graves' disease, it is usual for about 40-80% of the administered activity to concentrate in the thyroid gland. For functioning adenomas ("hot nodules"), the uptake is closer to 20-30%. Excess iodine-131 is excreted rapidly by the kidneys. The quantity of radioiodine used to treat hyperthyroidism is not enough to injure any tissue except the thyroid tissue, which slowly shrinks over a matter of weeks to months. Radioactive iodine is either swallowed in a capsule or sipped in solution through a straw. A typical dose is 5-15 millicures. The half-life of iodine-131 is 8 days.

- (a) Suppose that it takes 48 hours for a shipment of iodine-131 to reach a hospital. How much of the initial amount shipped is left once it arrives at the hospital?
- (b) Suppose a patient is given a dosage of 10 millicures of which 30% concentrates in the thyroid gland. How much is left one week later?
- (c) Suppose a patient is given a dosage of 10 millicures of which 30% concentrates in the thyroid gland. How much is left 30 days later?