Arquitectura de Computadoras

Clase 6 RISC

Computadoras de repertorio reducido de instrucciones

Historia de evolución (1)

- El concepto de familia:
 - Introducido por IBM en su System/360 en 1964.
 - DEC PDP-8.
 - Separa la arquitectura de la implementación.
- Unidad de control microprogramada:
 - Idea propuesta por Wilkes en 1951.
 - Introducida por IBM en la línea S/360 en 1964.
- Memoria cache:
 - En 1968 en el IBM S/360 Modelo 85.

Historia de evolución (2)

- RAM de estado sólido
- Microprocesadores
 - comienzo con Intel 4004 en 1971.
 - Variantes
 - propósito general
 - embebidos/empotrados
- Procesadores múltiples

RISC

Computadoras de repertorio reducido de instrucciones

- Características principales:
 - Gran número de registros de uso general ó mejor tecnología de compiladores para optimizar el uso de los registros.
 - Repertorio de instrucciones limitado y sencillo.
 - Énfasis en la optimización de la segmentación de instrucciones.

Comparación de procesadores

	Complex Instruction Set (CISC)Computer			Reduced Instruction Set (RISC) Computer		Superscalar			
Characteristic	IBM 370/168	VAX 11/780	Intel 80486	SPARC	MIPS R4000	PowerPC	Ultra SPARC	MIPS R10000	
Year developed	1973	1978	1989	1987	1991	1993	1996	1996	
Number of instructions	208	303	235	69	94	225			
Instruction size (bytes)	2–6	2–57	1–11	4	4	4	4	4	
Addressing modes	4	22	11	1	1	2	1	1	
Number of general- purpose registers	16	16	8	40 - 520	32	32	40 - 520	32	
Control memory size (Kbits)	420	480	246	_	_		_	_	
Cache size (KBytes)	64	64	8	32	128	16-32	32	64	

Finalidad del CISC

- Facilitar el trabajo del escritor de compiladores.
- Mejorar la eficiencia de la ejecución:
 - Secuencias complejas de operaciones en microcódigo.
- Dar soporte a HLL más complejos.

Inconvenientes del CISC

- El software 'es' mucho más caro que el hardware.
- El nivel del lenguaje era cada vez más complicado.
- Salto semántico
 - Diferencias entre operaciones HLL y operaciones de la Arquitectura
- Todo esto conduce a:
 - Repertorios de instrucciones grandes
 - Más modos de direccionamiento
 - Varias sentencias de HLL implementadas en el Hardware
 - Por ejemplo, el CASE del VAX

Características de la ejecución

Estudios sobre programas escritos en HLL

- Operaciones realizadas
 - Funcionamiento del procesador e interacción con memoria
- Operandos usados
 - Tipos y frecuencia de uso
 - Organización de la memoria y modos de direccionamiento
- Secuenciamiento de la ejecución
 - Organización del control y del cauce

Estudios dinámicos: medir durante la ejecución

Frecuencia dinámica relativa

	Aparición		Instr	uc. máquina	Referencias a memoria			
	dinámica		(Pon	deradas)	(Ponderadas)			
	Pascal C		Pasc	al C	Pascal C			
Assign	45	38	13	13	14	15		
Loop	5	3	42	32	33	26		
Call	15	12	31	33	44	45		
If	29	43	11	21	7	13		
GoTo	_	3	_	-	_	-		
Otras	6	1	3	1	2	1		

Operaciones

- Asignaciones:
 - Movimiento de datos.
- Estamentos condicionales (IF, LOOP):
 - Control secuencial.
- El procedimiento llamada/retorno consume mucho tiempo.
- Algunas instrucciones HLL conducen a muchas operaciones de código máquina.

Operandos

- Principalmente variables escalares locales.
- La optimización debe concentrarse en el acceso a la variables locales.

	Pascal	С	Promedio
Constantes enteras	16	23	20
Variables escalares	58	53	55
Matrices/estructuras	26	24	25

Llamadas a procedimientos

- Se consume mucho tiempo.
- Depende del número de parámetros tratados.
- Depende del nivel de anidamiento.
 - La mayoría de los programas no tienen una larga secuencia de llamadas seguida por la correspondiente secuencia de retornos.
 - La mayoría de las variables son locales.
 - Las referencias a operandos están muy localizadas.

Ventana de profundidad

Consecuencias

- Se puede ofrecer mejor soporte para los HLL optimizando las prestaciones de las características más usadas y que más tiempo consumen.
 - Usar un gran número de registros:
 - Optimizar las referencias a operandos
 - Prestar cuidadosa atención al diseño de los cauces de instrucciones:
 - Predicción de bifurcaciones, etc.
 - Es recomendable un repertorio con instrucciones simples (reducido)

Amplio banco de registros

- Aproximación por Software:
 - El compilador es necesario para asignar registros.
 - Asignación de registros a las variables que se usen mas en un período de tiempo dado.
 - Requiere el uso de sofisticados algoritmos de análisis de programas.
- Aproximación por Hardware:
 - Utilización de más registros.
 - De esta manera, más variables pueden mantenerse en registros durante periodos de tiempo más largos.

Registros para variables locales

- Muchos Registros=>Reducir el acceso a memoria.
- Por estudios anteriores=> Almacenar las variables escalares locales en registros.

Problema: Cada llamada de procedimiento/función cambia la 'localidad'

- Los parámetros deben ser pasados.
- Los resultados tienen que ser devueltos.
- Las variables de los programas de llamada tienen que ser restauradas.

Ventanas de registro

Por estudios realizados y con los registros:

- Se requieren pocos parámetros y variables locales en cada llamada.
- Hay limitación en la 'profundidad' de llamadas.
- Utilización de múltiples conjuntos pequeños de registros para c/llamada distinta.
- La llamada cambia el conjunto de registros a usar.
- Los retornos vuelven a cambiar al anterior conjunto de registros utilizado.

Ventanas de registro (2)

- Tres áreas dentro de un conjunto de registros:
 - Registros de parámetros.
 - Registros de datos locales.
 - Registros temporales.
- Los registros temporales de un conjunto se solapan con los registros de parámetros del nivel más bajo adyacente.
 - Esto posibilita que los parámetros se pasen sin que exista transferencia de datos.

Ventanas de registro solapadas

Diagrama de buffer circular

Variables globales

- El compilador asigna posiciones de memoria a las variables:
 - Ineficiente para variables globales a las que se accede frecuentemente.
- Incorporar al procesador un conjunto de registros para variables globales.
 - Dividir registros de la ventana en curso

Amplio banco de registros vs cache

Banco de registros amplio

Todos los datos escalares locales

- Variables individuales
- Variables globales asignadas por el compilador
- Salvaguarda/restauración basadas en la profundidad de anidamiento

Cache

- Datos escalares locales recientemente usados
- Bloques de memoria
- Variables locales y globales usadas recientemente
- Salvaguarda/restauración basadas en el algoritmo de reemplazo
- Direccionamiento de registro Direccionamiento de memoria

Optimización de uso de registros basada en el compilador

- Supongamos un pequeño número de registros
 - por ejemplo 16 o 32.
- El uso optimizado es responsabilidad del compilador
- Los programas HLL no tienen referencias explícitas a los registros.
 - Normalmente pensando en C registro int.

Optimización de ... (2)

- Cada 'cantidad' del programa candidata se asigna a un registro simbólico o virtual.
- Asignar el número ilimitado de registros simbólicos a un número fijo de registros reales.
- Registros simbólicos que no se solapan pueden compartir el registro real.
- Si se agotan los registros reales, algunas de las variables se asignan a posiciones de memoria.
 - En la optimización se usa 'coloreado de grafos'

¿Por qué CISC?

- ¿Simplificación del compilador?
 - Ésta primera razón parece obvia
 - Instrucciones de máquina complejas son difíciles de aprovechar
 - La optimización es más difícil:↓ tamaño, † velocidad.
- ¿Programas más pequeños?
 - El programa ocupa menos memoria, pero la memoria hoy día es muy barata.
 - El número de bits de memoria que ocupa no tiene porqué ser más pequeño al tener menos instrucciones
 - Más instrucciones necesitan códigos de operación más largos.
 - Las referencias a registros necesitan menos bits.

¿Por qué CISC? (2)

- ¿Programas más rápidos?
 - Propensión a usar las instrucciones más sencillas.
 - Unidad de control más compleja.
 - Memoria de control del microprograma más grande.
 - Aumenta el tiempo de ejecución de las instrucciones simples.
- No está nada claro que la tendencia hacia CISC fuera la apropiada.

Características del RISC

- Una instrucción por ciclo de reloj.
- Operaciones registro a registro.
- Modos de direccionamiento sencillos.
- Formatos de instrucción sencillos.

- Diseño cableado (sin microcódigo).
- Formato de instrucción fijo.
- Mayor tiempo/esfuerzo de compilación.

RISC frente a CISC

No existe una clara barrera diferenciadora.

- Muchos diseños incluyen características de ambos criterios.
 - Por ejemplo, PowerPC y Pentium II

Algunos procesadores

Processor	Number of instruc- tion sizes	Max instruc- tion size in bytes	Number of addressing modes	Indirect addressing	Load/store combined with arithmetic	Max number of memory operands	Unaligned addressing allowed	Max Number of MMU uses	Number of bits for integer register specifier	Number of bits for FP register specifier
AMD29000	1	4	1	no	no	1	no	1	8	3"
MIPS R2000	1	4	1	no	no	1	no	1	5	4
SPARC	1	4	2	no	no	1	no	1	5	4
MC88000	1	4	3	no	no	1	no	1	5	4
HP PA	1	4	10"	no	no	1	no	1	5	4
IBM RT/PC	2°	4	1	no	no	1	no	1	4"	3"
IBM RS/6000	1	4	4	no	no	1	yes	1	5	5
Intel i860	1	4	4	no	no	1	no	1	5	4
IBM 3090	4	8	25	no*	yes	2	yes	4	4	2
Intel 80486	12	12	15	no*	yes	2	yes	4	3	3
NSC 32016	21	21	23	yes	yes	2	yes	4	3	3
MC68040	11	22	44	yes	yes	2	yes	8	4	3
VAX	56	56	22	yes	yes	6	yes	24	4	0
Clipper	4"	8"	9°	no	no	1	0	2	4"	3"
Intel 80960	2°	8 e	9°	no	no	1	yes 4	_	5	3"

a RISC that does not conform to this characteristic.

CISC that does not conform to this characteristic.

Controversia RISC y CISC

Cuantitativa:

 Comparación del tamaño de los programas y su velocidad de ejecución

Cualitativa:

 Revisión de soporte de lenguajes de alto nivel y uso óptimo de los recursos VLSI.

Controversia RISC y CISC (2)

- Problemas de las comparaciones:
 - No existe un par de máquinas RISC y CISC directamente comparables.
 - No hay un conjunto de programas de prueba definitivo.
 - Dificultad para separar los efectos del hardware de los del compilador.
 - Mayoría de comparaciones con máquinas de "juguete", no con productos comerciales.
 - La mayoría de las máquinas son una mezcla de ambas.

Lecturas recomendadas

- Organización y Arquitectura de Computadoras, William Stallings, Capítulo 12, 5^{ta} ed.
 - Procesador ARM, capítulo 12.6 de 8^{va} ed.
- Diseño y evaluación de arquitecturas de computadoras,
 M. Beltrán y A. Guzmán, Capítulo 1, 1^{er} ed.

www.cpu-world.com