CAPSTONE PROJECT

SIGN-LINGUAL

BY SIMREN BASRA

THE PROBLEM

- Scenario: A deaf commuter uses public transport where there is a route diversion.
- Challenge: The commuter encounters difficulties in finding signers to translate announcements.

METHOD

DATA PREPARATION

Reshape input images to different sizes

Data augmentation

Original Input Image C

Train: 99.99

Validation: 99.98

<u>SCORE</u>

MODEL 2

Edges

Patterns

SCORE

Train: 99.03

Validation: 98.86

Colour Variations

MODEL 3

Train: 99.95

Validation: 99.93

SCORE

Train: 99.99

Validation: 99.99

MODEL 4

Transfer Learning

- Pre-defined model
- Trained on data outside of our dataset
- Detects even more patterns
- Fine-tuned to our dataset for optimal performance

EVALUATION

Predicted: h Actual: t

Predicted: v Actual: w

Predicted: a Actual: s

Predicted: i Actual: k

Confusion Matrix for Test Data

- 80

- 70

- 60

- 50

- 30

- 20

- 10

Predicted Y

LESSONS LEARNT

- Timings
- Importance of Image Dimensionality
- Google and Documentation
- Computer Vision

- Data Collection
- Testing
- Letter to Word

ANY QUESTIONS?

