## مصطفی دریس پور بخش اول:

.1

با استفاده از wireshark می توانیم بسته ها را بر روی interface های مختلف بررسی کنیم آن ها را فیلتر کنیم و در صورت نیاز به صورت hex یا با یک abstract جزئیات بسته ها را ببینیم.

مثلا می توانیم بسته های drop شده یا مشکلات تاخیر ارسال بسته ها را متوجه شویم. همچنین اگر فعالیت خرابکارانه در سطح شبکه رخ داده باشد آن را می بینیم.

برای مثال با استفاده از این ابزار می توانیم زمان های network burst را تشخیص دهیم. مثال دیگر اگر بر روی یک سرور بسته ها را مشاهده می کنیم می توانیم در صورت بروز حمله DOS تعداد زیادی بسته tcp syn که متناظرا از سمت کلاینت ack دریافت نمی شود را مشاهده کنیم. همه این موارد با استفاده از این ابزار قابل حصول است.

## بخش دوم:

توپولوژی ساخته شده در بخش دوم یک توپولوژی minimal است.

21

دو پروتکل tcp و openflow. می دانیم openflow از tcp استفاده می کند.

| 25 1.059508610 | 127.0.0.1 | 127.0.0.1 | TCP      |
|----------------|-----------|-----------|----------|
| 26 1.059547015 | 127.0.0.1 | 127.0.0.1 | TCP      |
| 27 1.059575388 | 127.0.0.1 | 127.0.0.1 | TCP      |
| 28 1.059805006 | 127.0.0.1 | 127.0.0.1 | OpenFlow |
| 29 1.059820714 | 127.0.0.1 | 127.0.0.1 | TCP      |
| 30 1.059936560 | 127.0.0.1 | 127.0.0.1 | TCP      |
| 31 1.859953618 | 127.0.0.1 | 127.0.0.1 | TCP      |

2.2



| 41 1.060167119 | 127.0.0.1 | 127.0.0.1 | TCP      | 66 6653 - 56334 [ACK] Seq=1 Act |
|----------------|-----------|-----------|----------|---------------------------------|
| 42 1.060208524 | 127.0.0.1 | 127.0.0.1 | OpenFlow | 74 Type: OFPT FEATURES REQUEST  |
| 43 1.060218655 | 127.0.0.1 | 127.0.0.1 | TCP      | 66 56330 - 6653 [ACK] Seg=9 Act |
| 44 1.060238301 | 127.0.0.1 | 127.0.0.1 | OpenFlow | 78 Type: OFPT_SET_CONFIG        |
| 45 1.868246876 | 127.0.0.1 | 127.0.0.1 | TCP      | 66 56330 - 6653 [ACK] Seg=9 Act |
| 46 1.060359198 | 127.0.0.1 | 127.0.0.1 | OpenFlow | 146 Type: OFPT_FLÖW_MOD         |
| 47 1.060369665 | 127.0.0.1 | 127.0.0.1 | TCP      | 66 56330 - 6653 [ACK] Seq=9 Act |
| 48 1.060463331 | 127.0.0.1 | 127.0.0.1 | OpenFlow | 74 Type: OFPT HELLO             |
| 49 1.060473612 | 127.0.0.1 | 127.0.0.1 | TCP      | 66 56332 - 6653 [ACK] Seg=9 Act |
| 50 1.060507997 | 127.0.0.1 | 127.0.0.1 | OpenFlow | 74 Type: OFPT FEATURES REQUEST  |
| 51 1.060516427 | 127.0.0.1 | 127.0.0.1 | TCP      | 66 56332 - 6653 [ACK] Seg=9 Act |
| 52 1.060533199 | 127.0.0.1 | 127.0.0.1 | OpenF1ow | 78 Type: OFPT_SET_CONFIG        |
| 53 1.060541313 | 127.0.0.1 | 127.0.0.1 | TCP      | 66 56332 - 6653 [ACK] Seg=9 Act |
| 54 1.060563275 | 127.0.0.1 | 127.0.0.1 | OpenFlow | 146 Type: OFPT_FLOW_MOD         |
| 55 1.060571656 | 127.0.0.1 | 127.0.0.1 | TCP      | 66 56332 - 6653 [ACK] Seq=9 Act |
| 56 1.868638217 | 127.0.0.1 | 127.0.0.1 | OpenFlow | 74 Type: OFPT_HELLO             |
| 57 1.060640019 | 127.0.0.1 | 127.0.0.1 | TCP      | 66 56334 - 6653 [ACK] Seg=9 Act |
| 58 1.060665187 | 127.0.0.1 | 127.0.0.1 | OpenFlow | 74 Type: OFPT FEATURES REQUEST  |
| 59 1.060673799 | 127.0.0.1 | 127.0.0.1 | TCP      | 66 56334 - 6653 [ACK] Seg=9 Act |
| 60 1.060689934 | 127.0.0.1 | 127.0.0.1 | OpenFlow | 78 Type: OFPT_SET_CONFIG        |
| 61 1.060698288 | 127.0.0.1 | 127.0.0.1 | TCP      | 66 56334 - 6653 [ACK] Seq=9 Act |
| 62 1.060717141 | 127.0.0.1 | 127.0.0.1 | OpenFlow | 146 Type: OFPT FLOW MOD         |
| 63 1.060725424 | 127.0.0.1 | 127.0.0.1 | TCP      | 66 56334 - 6653 [ACK] Seq=9 Act |
| 64 1.560522039 | 127.0.0.1 | 127.0.0.1 | OpenFlow | 98 Type: OFPT FEATURES REPLY    |
| 65 1.560552025 | 127.0.0.1 | 127.0.0.1 | TCP      | 66 6653 - 56330 [ACK] Seg=109 / |
|                |           | 221101012 |          | an annu annu   Heiri and-was    |

ابتدا کنترلر درخواست feature request را برای سوییچ ها می فرسند تا Data path ID را به دست آورد. سپس سوییچ در پاسخ بسته های feature reply می فرسند که شامل اطلاعاتی نظیر Data path ID, Capabilities می باشد.

|                     |          |          |        | 3        |      |        |     |
|---------------------|----------|----------|--------|----------|------|--------|-----|
| 21482 234.350991593 | 10.0.0.1 | 10.0.0.2 | OpenFl | 182 Type | 0FPT | PACKET | IN  |
| 21485 234.351124689 | 10.0.0.1 | 10.0.0.2 | OpenFl | 188 Type | 0FPT | PACKET | OUT |
| 21487 234.351926872 | 10.0.0.2 | 10.0.0.1 | OpenFl | 182 Type | 0FPT | PACKET | IN  |
| 21490 234.352056348 | 10.0.0.2 | 10.0.0.1 | OpenFl | 188 Type | 0FPT | PACKET | 0UT |

این پکت ها با زیر خط صورتی مشخص شده اند. نمونه ای دیگر از این پکت ها:

```
▶ Frame 2135: 126 bytes on wire (1008 bits), 126 bytes captured (1008 bits) on interface lo, id 0
Internet Protocol Version 4, Src: 127.0.0.1, Dst: 127.0.0.1
Transmission Control Protocol, Src Port: 48812, Dst Port: 6653, Seq: 205, Ack: 383, Len: 68
▼ OpenFlow 1.0
    .000 0001 = Version: 1.0 (0x01)
    Type: OFPT PACKET IN (10)
    Length: 60
    Transaction ID: 0
    Buffer Id: 0xffffffff
    Total length: 42
    In port: 2
    Reason: No matching flow (table-miss flow entry) (θ)
    Pad: 00
  Ethernet II, Src: a6:d4:6f:5b:cf:df (a6:d4:6f:5b:cf:df), Dst: c2:51:c1:f9:9f:0d (c2:51:c1:f9:9f:0d)
  Address Resolution Protocol (reply)
```

2.5

بسته در دو حالت: Reverse connection, Missing flow control ارسال می شود.

در این پکت ها دستور کار به کنترلر سپرده می شود که می تواند در بخش action ذکر شده باشد(send to controller) یا برای پکت مورد نظر هیچ این پیام حاوی بخشی از هدر بسته که 128 بایت است و یک شناسه بافر می باشد که کنترلر در زمان آماده سازی از آن استفاده می کند.

سوییچ هنگام ارسال بسته سوییچ های که بافر داخلی را ساپورت نمی کنند باید بسته کامل را به عنوان بخشی از پیام به کنترلکننده ارسال کنند. پس وقتی match برای پکت بیدا نشد در openflow sdn بسته برای پردازش دقیق تر به کنترلر فرستاده می شود.

2.6 بسته های ICMP:

| [J] icmp |               |          |             |                                  |
|----------|---------------|----------|-------------|----------------------------------|
| No.      | Time          | Source   | Destination | Protocol Length Info             |
| 21482    | 234.350991593 | 10.0.0.1 | 10.0.0.2    | OpenFl 182 Type: OFPT PACKET IN  |
| 21485    | 234.351124689 | 10.0.0.1 | 10.0.0.2    | OpenFl 188 Type: OFPT_PACKET_OUT |
| 21487    | 234.351926872 | 10.0.0.2 | 10.0.0.1    | OpenFl 182 Type: OFPT_PACKET_IN  |
| 21490    | 234.352056348 | 10.0.0.2 | 10.0.0.1    | OpenFl 188 Type: OFPT_PACKET_OUT |
|          |               |          |             |                                  |

از h1 ping h2.

## بخش سوم:

.3

mininet> iperf
\*\*\* Iperf: testing TCP bandwidth between h1 and h2
.\*\*\* Results: ['11.6 Gbits/sec', '11.7 Gbits/sec']

در این توپولوژی minimal ما دو host داریم که با این دستور همدیگر را ping می کنند مقدار bandwidth در اینترفیسی که این دو host را به هم وصل می کند متناظرا برای h1,h2 را نشان می دهد.

## بخش چهارم:

.4

.1

مثلا در حملات DOS در صورتی که تعداد زیادی بسته SYN دریافت کردیم ولی کلاینت ها متناظرا ACK نفرستادند یعنی ترافیک غیر عادی است و احتمالا حمله DOS است. در صورتی که client آی پی دامنه را با استفاده از پروتکل dns درخواست کند ولی پس از آن با یک ip دیگری ارتباط برقرار کند (ای پی که با آن کانکت می شود با آی پی دامنه متفاوت است) این یک رفتار غیر عادی (در سطح اینترنت ایران) می باشد و نشان می دهد که client دارد از یک proxy برای رفع فیلترینگ استفاده می کند. به این پدیده dns leaking نیز گفته می شود.