CS 218 Design and Analysis of Algorithms

Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Module 4: Coping with NP-hardness

Coping with NP-hardness

Understanding hard problems.

Heuristics. No provable guarantees, but may work well in practice.

Special cases and efficient algorithm for special cases.

Better-than-brute-force algorithms.

Approximation algorithms.

For optimization problems.

Maximization problem. Find a solution not less than OPT/c for some $c \ge 1$.

Minimization problem. Find a solution not more than $c \cdot \text{OPT}$ for some $c \geq 1$.

A c-approximation algorithm. Ideally should run in polynomial time.

Approximation Algorithms

We will present an approximation algorithm for the scheduling problem.

Given: processors p_1, \ldots, p_m and jobs j_1, \ldots, j_n with durations

 d_1, \ldots, d_n respectively

Find: a schedule for these jobs on *m* processors that minimises the total completion time.

Let S be a schedule with the following specifications.

Let A_i be the set of jobs scheduled on processor $i \in [m]$.

Let $T_i = \sum_{j \in A_i} d_j$.

Completion time = $\max_{i \in [m]} T_i$.

The problem is NP-complete. Even the version with 2 processors is NP-complete.

A greedy strategy is a 2-approximation

Recall one of the strategies we discussed.

Arrange the jobs in any arbitrary order.

Schedule jth job on the machine with the smallest load so far.

Let T be the completion time achieved by this schedule.

We know that there are instances where this will not be optimal.

Let T^* be the completion time for the OPT schedule.

We will show that $T \leq 2 \cdot T^*$.

A greedy strategy is a 2-approximation

Strategy for the proof of 2-approximation.

We want to show $T \leq 2T^*$. Without knowing what T^* is!

Suppose we can come up with some quantity T' such that

 $T' \leq T^*$ but it is not too much smaller than T^* .

This will give a guarantee that, no matter how small T^* is, it cannot be smaller than T'.

Now we will show that $T \leq 2T'$.

This will finish the proof.

Lower-bounding T*

Multiple ways of doing it.

$$T^* \geq \frac{1}{m} \sum_{j \in [n]} d_j$$
 (A)

Can be quite weak. Can you think of a situation where it will be weak?

$$T^* \ge \max_j d_j$$
. (B)

We will use both of these.

Proof of 2-approximation

We now prove that the greedy achieves a 2-approximation.

Say *i*th processor be such that $T = T_i$.

Let j be the last job to be scheduled on it.

This means, each processor $i' \neq i$ had at least $T_{i'} \geq T_i - d_j$ on it when j was scheduled on i.

Hence we have $\sum_{i \in [n]} T_i \ge m(T_i - d_j)$.

$$(T_i - d_j) \le \frac{1}{m} \sum_{i \in [n]} T_i$$

 $\le T^*$ (Using (A))

Proof of 2-approximation

We now prove that the greedy achieves a 2-approximation.

Say *i*th processor be such that $T = T_i$.

Let j be the last job to be scheduled on it.

This means, each processor $i' \neq i$ had at least $T_{i'} \geq T_i - d_j$ on it when j was scheduled on i.

Hence we have $\sum_{i \in [n]} T_i \ge m(T_i - d_j)$.

$$(T_i - d_j) \le \frac{1}{m} \sum_{i \in [n]} T_i$$

 $\le T^*$ (Using (A))

$$d_j \leq T^*$$
 (Using (B))

Proof of 2-approximation

We now prove that the greedy achieves a 2-approximation.

Say *i*th processor be such that $T = T_i$.

Let j be the last job to be scheduled on it.

This means, each processor $i' \neq i$ had at least $T_{i'} \geq T_i - d_j$ on it when j was scheduled on i.

Hence we have $\sum_{i \in [n]} T_i \ge m(T_i - d_j)$.

$$(T_i - d_j) \le \frac{1}{m} \sum_{i \in [n]} T_i$$

$$\le T^* \qquad \qquad \text{(Using (A))}$$

$$d_j \le T^*$$
 (Using (B))
 $\therefore (T_i - d_j) + d_j \le 2T^*$ Using the above two