ConvNet for Image Classification in the Study of Plankton Recognition

Xihuan Zeng, Rihan Chen, Jingxiang Li (G19)

School of Statistics, UMN

Problem Statement

Analysis Goal

- Classify ocean planktons given their images
- ▶ Input: 30,000 Images, each contains a single organism
- Output: 121 Labels of the plankton

Two Stages

- ▶ Pilot Study: 7,000 images with 8 labels
- ► Complete Study: 30,000 images with 121 different labels

Dataset

Table 1: Sample from Dataset, Part 1

1 acantharia_protist

2 appendicularian_s_shape

4 chaetognath_non_sagitta

4 copepod_calanoid

Dataset for Pilot Study

Table 2: Sample from Dataset, Part 2

6 trichodesmium_bowtie

7 trichodesmium_puff

8 trichodesmium_tuft

Data Augmentation

Transformation

- ► Flip
- Rotation
- Rescaling
- ► Translation

Figure 1: Original (Left) v.s. Augmented (Right)

Selected Models

Deep Learning

Convolutional Neural Network (Keras)

Ensemble Methods

- Random Forest (scikit-learn)
- ► Gradient Boost (dmlc-XGBoost)

Prediction Accuracy

Pilot Study (8 Classes)

- ConvNet: 0.9365
- ► Gradient Boost: 0.8464
- ▶ Random Forest: 0.8546

Complete Study (121 Classes)

► ConvNet: 0.674

ConvNet Structure

Pilot Study (8 Classes)

- ▶ Modify on the ConvNet structure for *cifar10* data set.
- Relatively simple structure in terms of **depth** in case of over-fitting.
- 4 Convolution Layers, 2 Max Pooling Layers and 2 Fully Connected Layers.

ConvNet Structure

Table 3: Structure of ConvNet for Pilot Study

Layer	Size	Output
input		(32, 1, 32, 32)
augmentation		(32, 1, 32, 32)
convolution	$32~3 \times 3$ kernels	(32, 32, 32, 32)
convolution	$32~3 \times 3$ kernels	(32, 32, 32, 32)
max-pooling	2×2 , stride 2	(32, 32, 16, 16)
dropout	p = 0.25	(32, 32, 16, 16)
convolution	$64~3 \times 3$ kernels	(32, 64, 16, 16)
convolution	$64~3 \times 3$ kernels	(32, 64, 16, 16)
max-pooling	2×2 , stride 2	(32, 64, 8, 8)
dropout	p = 0.25	(32, 64, 8, 8)
fully connected	512 hidden units	(32, 512)
dropout	p = 0.5	(32, 512)
fully connected	8 way soft-max	(32, 8)

Real-time Data Augmentation

Randomly modify the images during the process of optimization.

Advantages

- Greatly save the space for data storage: only the original data need to be kept.
- The amount of data augmentation is simply decided by how many epochs we run.

Price to Pay

Slow optimization compared with off-line data augmentation.

ConvNet Structure

Complete Study (121 Classes)

- ▶ Modify on the ConvNet structure for *cifar100* data set.
- Enlarge the image dimension for building more complicated model.
- Relatively complicated structure in terms of depth.
- 10 Convolution Layers, 4 Max Pooling Layers and 3 Fully Connected Layers.

Symbolic vs Imperative Programs

```
A = Variable('A')

import numpy as np

B = Variable('B')

C = B * A

b = np.ones(10) * 2

D = C + Constant(1)

C = b * a

d = C + 1

f = compile(D)

d = f(A=np.ones(10), B=np.ones(10)*2)
```

Figure 2: Imperative (Left) v.s. Symbolic (Right)

Symbolic vs Imperative Programs

Figure 3: Graph Optimization

Symbolic vs Imperative Programs

Imperative style deep learning libraries

- ► Torch, Chainer and Minerva
- Advantage is flexibility and easier to use native language features and inject them into computation flow.

Symbolic style deep learning libraries

- ► Theano, CGT and Tensorflow
- Advantage is efficiency and space-saving

Modern GPU and CUDA

- Modern GPUs are very efficient at manipulating computer graphics and image processing, and their highly parallel structure makes them more effective than general-purpose CPUs for algorithms where the processing of large blocks of visual data is done in parallel.
- CUDA is a parallel computing platform created by NVIDIA. The CUDA platform is designed to work with programming languages such as C, C++ and Fortran

Reference

- Challenge Home Page: https://www.kaggle.com/c/datasciencebowl
- Karas: http://keras.io/
- Symbolic Program: https://mxnet.readthedocs.org/en/latest/program_model.html
- CUDA: https://en.wikipedia.org/wiki/CUDA