R-Blatt 3: Regressionsmodelle in R

Statistical Aspects (09-202-2413)

Janne Pott

Last compiled on 12 September, 2022

Session Setup

```
rm(list = ls())
time0<-Sys.time()
source("../sourceFile.R")
setwd(pathToExercise)
knitr::opts_chunk$set(echo = TRUE)</pre>
```

Lineare Regression

Bitte laden Sie den Datensatz SNP.RData mittels load().

Table 1: Parameterbeschreibung zu Aufgabe 1 & 2 (Blatt 3)

Variable	Beschreibung	Codierung / Einheit
id	Durchlaufende ID-Nummer	NA
trait	Merkmal/Phänotyp	kontinuierlich
sex	Geschlecht	1 = Mann; 2 = Frau
SNP	Genotyp	0 = AA; 1 = AB; 2 = BB

- a) Untersuchen Sie die Effekte von sex und SNP auf trait mittels linearer Regression!
- b) Untersuchen Sie die multiplen Effekte und die Interaktion der Einflussvariablen sex und SNP!
- c) Welche von den vier Modellen ist besser geeignet, um trait zu beschreiben? Begründen Sie Ihre Entscheidung!
- d) Welches genetische Modell wird hier verwendet?
- e) Erstellen Sie je einen Wahrscheinlichkeits-Vektor pro Genotyp $\mathbf{A}\mathbf{A}$, $\mathbf{A}\mathbf{B}$ und $\mathbf{B}\mathbf{B}$ (1 = dieser Genotyp trifft zu, 0 = trifft nicht zu).
- f) Erstellen Sie nun je einen Vektor pro genetischen Modell (additiv, dominant, rezessiv). (Hinweis: Überlegen Sie zuerst, welchen der Vektoren Sie bereits haben (Teilaufgabe d))
- g) Untersuchen Sie die Effekte der verschiedenen Modelle auf *trait* mittels lineare Regression (univariat)! Welches Modell ist am besten geeignet? Wie könnten Sie Ihr Ergebnis testen?
- h) Können wir annehmen, dass der SNP auf den Autosomen liegt, oder könnte es sich auch um einen X-chromosomalen SNP handeln? Begründen Sie Ihre Antwort.

Logistische / Proportional Odds Regression

Bitte laden Sie den Datensatz SNP.RData mittels load().

- a) Berechnen Sie den **Median** von *trait* und nutzen Sie diesen als Cut-off, um *trait* in einen binären Phänotyp *trait2* zu zerlegen.
- b) Untersuchen Sie die univariaten und multivariaten Effekte von sex und SNP auf trait2 mittels logistischer Regression! (Hinweis: Funktion qlm() mit family="binomial")
- c) Bestimmen Sie die **Quartile** von *trait*! Zerlegen Sie *trait* nun in einen 4-stufigen Phänotypen *trait3*, in dem Sie die Quartile als Kategorien nutzen.
- d) Untersuchen Sie die univariaten und multivariaten Effekte von sex und SNP auf trait3 mittels proportional odds regression! (Hinweis: Funktion polr() aus dem Paket MASS mit Hess=T)
- e) Vergleichen Sie Ihre Ergebnisse von b) und d) mit den Ergebnissen von Aufgabe 1

Nichtlineare Regression

Bitte laden Sie den Datensatz MichMenten. RData mittels load().

Table 2: Parameterbeschreibung zu Aufgabe 3 (Blatt 3)

Variable	Beschreibung	Codierung / Einheit
cS	Substratkonzentration	in 10^-5 mol
vA	Umsatzgeschwindigkeit, gemessen in Erwachsenen	in $mikromol/(mg Enzym)*min$
vE	Umsatzgeschwindigkeit, gemessen in Embryonen	in mikromol/(mg Enzym)*min

- a) Bestimmen Sie V_{max} und K_m für Erwachsene und Embryonen getrennt, indem Sie die Funktion nls() und folgende Startwerte nutzen: $V_{max} = max(v)$ und $K_m = \frac{1}{2}max(v)$
- b) Was passiert wenn man die Startwerte weglässt?
- c) Fassen Sie die Ergebnisse in einem Plot zusammen und interpretieren Sie diesen!

Session Information

```
sessionInfo()
message("\nTOTAL TIME : " ,round(difftime(Sys.time(),time0,units = "mins"),3)," minutes")
```