Lecture 2.3

Molecular Dating

Evolutionary timescales

Evolutionary timescales

The Molecular Clock

The molecular clock

The molecular clock

Sources of error

A brief history

Emile Zuckerkandl and Linus Pauling

1962 Assumed constant rate among species to estimate

timing of globin gene duplications

1965 Introduced the term 'molecular evolutionary clock'

Testing for clocklike evolution

Relative-rates test (Fitch, 1976)

Testing for clocklike evolution

Whole-tree methods (e.g., likelihood-ratio test)

Limitations

- Cannot identify instances in which all lineages experience simultaneous rate shift
- Failure to reject clock can be due to lack of power or lack of information

Departures from the clock

- Rates vary among lineages because of differences in:
 - Exposure to mutagens
 - Metabolic rate
 - Generation time
 - Population size
 - Strength and direction of selection

The assumption of rate constancy can be relaxed

Molecular-Clock Models

Molecular-clock models

Strict or 'global' molecular clock

$$k = 1$$

Multi-rate clocks

Relaxed clocks

$$k = n$$

Multi-rate clocks

- Small number of rates
 - More than 1 rate (i.e., not a strict clock)
 - Fewer than number of branches (i.e., not a relaxed clock)

Local clock

Same rate shared by neighbouring branches

Discrete clock

Small number of branch rates, distributed across tree

Local clocks

User-defined local clock

Fixed tree topology

Random local clock

- Each branch has a probability of inheriting rate from ancestor
- Tree estimated

Random local clock

Includes possibility of zero rate changes (= strict clock)

Random local clock

Note that tree is jointly estimated

Relaxed clocks

- We know that life-history characteristics:
 - Have effects on rates of molecular evolution
 - Are usually heritable to some degree
- Treat molecular rate as a heritable trait
- Relaxed clocks generally assume that closely related species share similar rates

Likelihood-based relaxed clocks

Penalised likelihood = $lnL - \lambda \Phi(r)$

- Allow a different rate in each branch
- Statistical models of rates among branches
- Rates can be autocorrelated or uncorrelated
 - Autocorrelated rates in neighbouring branches are related
 - Uncorrelated rates identically and independently distributed among branches

- In the uncorrelated lognormal relaxed clock, two statistics can be obtained:
 - 1. Coefficient of variation of rates

Measures the rate variation among branches A value of 0 indicates clocklike evolution

2. Covariance of rates

Measures autocorrelation of rates between adjacent branches

Rate autocorrelation

- Little evidence of rate autocorrelation in real data
- Uncorrelated relaxed clock probably appropriate in most cases
- Compare estimates from auto- and uncorrelated relaxed clocks

- Rates and times are non-identifiable
- Likelihood only depends on their product
 - Branch lengths in substitutions per site
- To separate rate and time, we need (prior) information about one or the other

Calibration: Fossil record

Useful references

- A practical guide to molecular dating Sauquet (2013) Comptes Rendus Palevol, 12: 355–367.
- Bayesian molecular clock dating of species divergences in the genomics era dos Reis, Donoghue, & Yang (2016) Nature Reviews Genetics, 17: 71–80.
- Molecular-clock methods for estimating evolutionary rates and timescales
 Ho & Duchêne (2014) Molecular Ecology, 23: 5947–5965.

