

9th - 14th of May 2022

Bucaramanga, Colombia

2022.iptnet.info

Problem no.13 - Chaotic Magnetic Pendulum IPT 2022

Team Slovenia Presenter: Rok Grgič Meško

University of *Ljubljana* Faculty of *Mathematics and Physics*

Official Problem Statement

Consider a pendulum consisting of a magnetic bob attached to a string. If the pendulum is allowed to swing over a structure of permanent magnets, it will display complex motion. Study the pendulum dynamics and its dependence on the number of permanent magnets and their arrangement.

Hypotheses

For certain initial parameters pendulum will display chaotic motion.

Theory

- For continuous dynamical systems, the Poincaré–Bendixson theorem shows that chaos only exist in 3 dimensions described by non-linear equations.
- Dynamical chaos can exist in systems starting with effective 3/2 (1/2 for no explicit time dependence) degrees of freedom.
- Integrals of motion (conserved) restrict the solution and make dynamical chaos less likely:

$$N_F = \frac{1}{2}(N - N_{int})$$

Theory

Chaotic pendulum:

$$N = 4$$
, $N_{int} = 1 \Rightarrow N_F = 3/2$

In the presence of dissipation, a mechanical system relaxes down to one of its local energy minima. Generally, dissipation tends to make chaotic motion regular.

Theoretical Description

We approximate magnets by magnetic dipoles.

Coordinate system origin at the top of the string.

Force between two dipoles:

$$\mathbf{F}_{\mathbf{m}}(\mathbf{r}', \mathbf{m}_{1}, \mathbf{m}_{2}) = \frac{3\mu_{0}}{4\pi r'^{5}} \left[(\mathbf{m}_{1} \cdot \mathbf{r}') \mathbf{m}_{2} + (\mathbf{m}_{2} \cdot \mathbf{r}') \mathbf{m}_{1} + (\mathbf{m}_{1} \cdot \mathbf{m}_{2}) \mathbf{r}' - \frac{5(\mathbf{m}_{1} \cdot \mathbf{r}')(\mathbf{m}_{2} \cdot \mathbf{r}')}{r'^{2}} \mathbf{r}' \right]$$
(1)

$$\mathbf{r} = (x, y, -l - h + \sqrt{l^2 - x^2 - y^2})$$
 (2)

All forces:

$$\mathbf{F} = \mathbf{F_g} + \mathbf{F_{mi}} - \mathbf{F_v} \tag{3}$$

$$\mathbf{F} = \mathbf{F_g} + \mathbf{F_{mi}} - \langle \mathbf{F_g} + \mathbf{F_{mi}}, \frac{\mathbf{r}}{r} \rangle \frac{\mathbf{r}}{r}$$
(4)

Theoretical Description

Dimensionless:

$$\{x, y, z\} = L\{\chi, \gamma, \zeta\}, \qquad \boldsymbol{r} = L\boldsymbol{\rho}, \qquad t = T\tau$$
 (5)

$$\|\mathbf{m_1}\| = \|\mathbf{m_2}\| \tag{6}$$

$$L = \sqrt[4]{\frac{\mu_0 \|\mathbf{m_1}\|^2}{mg}}, \qquad T = \sqrt{\frac{L}{g}}$$
 (7)

$$\mathcal{F}_{\mathbf{mi}}(\boldsymbol{\rho}, \boldsymbol{\rho}_i') = \frac{3}{4\pi\rho_i'^5} \left[(-\frac{\boldsymbol{\rho}}{\rho} \cdot \boldsymbol{\rho}_i') \hat{\mathbf{e}}_z + (\hat{\mathbf{e}}_z \cdot \boldsymbol{\rho}_i') - \frac{\boldsymbol{\rho}}{\rho} + (-\frac{\boldsymbol{\rho}}{\rho} \cdot \hat{\mathbf{e}}_z) \boldsymbol{\rho}_i' - \frac{5(-\frac{\boldsymbol{\rho}}{\rho} \cdot \boldsymbol{\rho}_i')(\hat{\mathbf{e}}_z \cdot \boldsymbol{\rho}_i')}{\rho_i'^2} \boldsymbol{\rho}_i' \right]$$
(8)

Theoretical Description

Dimensionless:

$$\boldsymbol{\rho} = \left(\chi, \gamma, -\lambda - \eta + \sqrt{\lambda^2 - \chi^2 - \gamma^2}\right) \tag{9}$$

$$\mathcal{F} = \mathcal{F}_{\mathbf{g}} + \mathcal{F}_{\mathbf{mi}} - \mathcal{F}_{\mathbf{v}} \tag{10}$$

$$\mathcal{F} = \mathcal{F}_{\mathbf{g}} + \mathcal{F}_{\mathbf{mi}} - \langle \mathcal{F}_{\mathbf{g}} + \mathcal{F}_{\mathbf{mi}}, \frac{\boldsymbol{\rho}}{\rho} \rangle \frac{\boldsymbol{\rho}}{\rho}$$
 (11)

Projection on x, y plane.

$$\begin{pmatrix} \ddot{\chi} \\ \ddot{\gamma} \end{pmatrix} = \begin{pmatrix} \langle \mathcal{F}, \, \hat{e}_x \rangle \\ \langle \mathcal{F}, \, \hat{e}_y \rangle \end{pmatrix} \tag{12}$$

We solve for χ, γ .

Experiment

- We used different magnetic configurations.
- We filmed throws at different initial parameters.

Figure 1: Example of an experiment.

Residual flux density on surface B_r

$$m_1 = \frac{B_r V}{\mu_0} \approx 0.1 \text{Am}^2, \quad l = 0.18 \text{cm}, \quad h = 0.02 \text{cm}, \quad m \approx 3 \text{g}$$

Experiment

We found three regimes.

- High kinetic energy: pendulum swings sinusoidally in a regular way.
- Medium kinetic energy: pendulum swings chaotically.
- Low kinetic energy: perturbed sinusoidal swinging in a minimum (spherical pendulum).

Experiment videos Animation \rightarrow

Figure 2: Example of stationary point.

Figure 3: Exchange of energy over time.

Figure 4: Fourier transformation, eigen frequencies. For higher energies motion is more chaotic. Second peak is redundant, arises form discrete model.

Figure 5: Motion looks like a random walk. Swinging in a minimum and jumping to other minimums.

Conclusion

- We found regular and chaotic regimes of motion in experiment.
- We showed in simulation that for certain initial parameters motion is chaotic.

References

[1] D. Garanin. *Dynamical Chaos*. (2008). https://www.lehman.edu/faculty/dgaranin/Mechanics/Dynamical_Chaos.pdf