Labirinto dei Codec Futuri

Suggerimenti per decidere quale codec usare (e non pentirsene troppo)

Presentazione

Chi sono: Luca Barbato

• Chi siete voi?

Codec Multimediali

Con codec si intendono algoritimi utili a codificare informazioni multimediali (audio, **video**, testo).

I codec si possono classificare in due gruppi principali, lossless e lossy.

- Lossless: senza perdite, tutta l'informazione viene preservata
- Lossy: con perdite, solo una parte di informazione viene preservata con precisione.

Codec Video

Il multimedia permea la nostra vita, tutti i mezzi di comunicazione attuali usano codec:

- La televisione usa MPEG2 e in casi fortunati H264 assieme ad MP2 ed AAC
- Il telefono usa varie codifiche audio (ad esempio AMR)
- I sistemi VOIP ovviamente usano anch'essi codec (Skype ad esempio usava SILK e vp7).

Molti passatempi dipendono da questo

- I cinema sono ormai tutti digitali (MXF+Jpeg2000)
- I DVD sono MPEG2, I "backup" degli stessi erano MPEG4 ed ora H264 o magari VP8.
- Youtube, Vimeo, etc usan una mistura di vari codec a seconda del browser in uso.

Oggi parliamo dei codec video che saranno importanti domani, oppure no.

Codec Video OpenSource

Se in certi ambiti l'opensource rimane qualcosa di nicchia per il multimedia siam rappresentati molto bene:

- x264 rimane ancora fra le miglior soluzioni per la codifica video.
- Chi non conosce VLC (ora disponibile per Android, iOS ed addirittura WindowsMobile e Tizen).
- Quasi tutti i siti web che servon video usan o GStreamer, FFmpeg o Libav in un modo o nell'altro.

Criteri di valutazione

I criteri di valutazione dipendono **sempre** dall'uso che si vuol fare di qualcosa:

- non importa a nessuno che l'auto abbia un motore da 9000 CV se poi l'auto è orribile a vedersi, si rompe a starnutire o starci dentro è scomodissimo.
- non è importante che l'auto sia velocissima, se magari consuma pochissimo e la usi solo per andare da un punto all'altro della città
- brutta o bella se bisogna macinare qualche migliaio di km il fattore importante è che sia comoda
- se sei il solo ad usarla avere il volate che sterza a sinistra quando lo giri a destra non è influente.

Criteri di valutazione

I criteri di valutazione che suggerisco sono 8 raggruppabili in 3 gruppi:

Diffusione

•

Creazione

Fruizione

Longevita`

- Implementazioni Indipendenti
- Specifiche
- Standard

Performanc

e

- Velocita`
- Qualita`
- Efficienza

Diffusione

Con diffusione si considerano due fattori:

- Quanto e` facile avere un modo per produrre tale formato
- Quanto e` facile avere un modo decodificare lo stesso

Avere una soluzione opensource che supporti Creazione e Fruizione aiuta.

Soprattutto se tale soluzione e` **portabile** su piattaforme ed architetture differenti.

Diffusione

In molti casi l'avere pero` delle implementazioni hardware diventa fondamentale:

- Se vuoi far vedere i tuoi contenuti HD sul cellulare sei costretto ad usare qualcosa che il cellulare supporti senza diventare un fornellino.
- Se vuoi guardare qualcosa direttamente sulla tua SmartTV, di nuovo hai poche scelte, la cpu non e` eccelsa ma i decoder hardware sono buoni.

La diffusione puo` essere aumentata o ridotta da fattori nontecnici ma puramente strategici:

- La presenza di brevetti che ne vincolino l'uso
- L'essere egemone ed implementarne il supporto ove si ha controllo (buon giorno VP8!)

Performance

Con performance ci sono tre concetti complementari:

- Velocita` di codifica e decodifica
- Qualita`, oggettiva e percepita
- Efficienza di codifica.

Si possono come tre vertici in un triangolo, piu` ci si avvicina da un lato e piu` ci si allontana da almeno uno dei due.

Velocita`

- Un encoder bene o male deve trovare un modo ottimo per tenere solo l'informazione utile, in un modo nell'altro prova in modo furbo o brutale a fare codifiche ripetute sino a quando non trova una soluzione che stia nei vincoli.
- Un decoder non ha da fare molte prove, ha da decodificare quanto riceve e fornire il piu` rapidamente possibile i pixel in modo che possano essere mandati a schermo o processati in qualche altro modo.

Qualita`

Ogni volta che si parla di qualita, ovvero di quanto l'immagine decodificata si scosti da quella attuale, si hanno due approcci differenti riguardo le metriche utili:

- Metriche che provano ad approssimare come gli occhi e la mente umana reagiscono a determinati errori di decodifica.
- Metriche che misurano in modo preciso le differenze pixel per pixel.

Percezione contro Dettaglio

Esempi canonici di percezione contro dettaglio:

- In un film horror non importa molto se il colore del sangue e` leggermente meno rosso o piu` rosso
- In un film d'azione poco importa se i frame immediatamente prima e dopo un'esplosione sono poco precisi.

Il nostro cervello sara` impegnato ad elaborare l'esplosione per curarsi di eventuali difetti

Una buona codifica richiede modelli **psico-visuali** adeguati per decidere cosa e` trascurabile.

Per avere dettagli precisi avere un numero di bit adeguato a ridurre certi errori di arrotondamento (e.g. 10bit per canale al posto dei soliti 8) si e` rivelata una delle soluzioni migliori anche per i modelli percettivi.

Nota Bene: Un normale LCD spesso non ha neppure 8 bit per canale, eppure una codifica 10bit viene percepita migliore.

Efficienza

Con efficienza si intende il rapporto fra la dimensione dei dati non compressi e li stessi una volta compressi.

L'efficienza e` maggiore se si **omettono** dettagli, si approssimano colori e magari non si **compensano** a pieno i difetti di codifica oppure si spende molto tempo facendo una ricerca **esaustiva**.

Un encoder e` considerato buono se una volta deciso il bitrate l'encoder mantiene tale bitrate senza produrre video orribili a vedersi o senza impiegare ore.

Longevita`

Con longevita` di un codec si intende per quanto tempo qualcosa codificata in un certo modo abbia modo di esser decodificata.

- Questo criterio lo si puo` considerare come una stima della Diffusione nel tempo.
- E` decisamente importante per gli archivisti, ma anche per chiunque voglia magari **rivedere** i video o le foto che ha scattato 10 anni fa.
- Le migliori assicurazioni di longevita` sono date sicuramente dall'avere implementazioni opensource, ma, dato che il software si evolve e marcisce, considero fondamentali che vi siano specifiche aggiornate e magari siano il risultato di un processo di standardizzazione.

Valutiamo dei codec

Proviamo a valutare alcuni degli attuali codec presenti e futuri: H264, HEVC, VP9/10 e DAALA.

Va sempre tenuto presente che:

- I casi d'uso sono importanti: non tutti i martelli piantano le viti egualmente bene.
- La realta` e` un sistema complesso in costante evoluzione: oggi hai un uovo, domani uno pterodattilo
- Dettagli come brevetti e licenze d'uso smettono di essere dettagli se inizi a far soldi.

H264

H264 e` la nostra pietra di paragone

- Diffusione

- -[x] E` IL codec video maggiormente diffuso: ogni televisione e smartphone lo implementa
- -[] Ha molteplici implementazioni opensource.
- -[/] E` fortemente brevettato, ma MPEGLA ha delle richieste piuttosto moderate e ne lascia l'uso gratuito per molti scopi.
- -[x] Cisco con openh264 ha reso il vincolo dei brevetti ancora piu` blando.
- -[x] La maggior parte dei browser moderni lo supporta

- Performance

- -[x] Sia le implementazioni hardware sia le implementazioni software del decoder e dell'encoder sono veloci
- -[x] x264, il miglior encoder disponibile, fornisce una qualita` molto buona
- -[x] x264 offre un buon livello di compressione anche richiedendo una qualita decorosa processando i frame in tempo reale.

- -[x] Dispone di una specifica disponibile pubblicamente
- -[x] La specifica ha permesso di avere molteplici implementazioni interoperabili
- -[x] La specifica e` uno standard sia per ISO sia per ITU.
- -[x] Ha oltre 10 anni e continua ad essere usato per applicazioni nuove.

HEVC

- Diffusione

- -[] La sua diffusione e relativamente bassa solo i modelli piu` recenti di smartphone
- -[] E` fortemente brevettato
- -[x] Ha molteplici implementazioni opensource
- -[] Pare che si stiano formando due gruppi per richiedere Royalties e questo sta gelando l'intento di adozione.

- Performance

- -[] Non vi sono implementazioni adeguatamente veloci dell'encoder e non vi sono implementazioni puramete hardware
- -[x] x265, l'encoder piu` avanzato al momento, sta progredendo ed inizia ad offrire qualita` via via migliore, kvazaar sta facendo qualche passo avanti.
- -[x] Il codec e` nato per essere il successore di hevc, le attuali implementazioni riescono a fornire livelli di compressione migliori a parita` di qualita`, ma gli encoder sono ancora molto lenti.

- -[x] Dispone di una specifica pubblica
- -[x] La specifica ha permesso di avere molteplici implementazioni interoperabili
- -[x] La specifica e` uno standard sia per ISO sia per ITU.
- -[x] Ha appena 2 anni

VP9

- Diffusione

- -[] Come per vp8, lo usa youtube ed e`implementato in Chrome ed Android...
- -[x] E` teoricamente esente da brevetti sebbene vi siano similitudini notevoli con HEVC
- -[x] Ha piu` di una implementazione opensource, ma poco altro
- -[x] Grazie al pasticcio dei brevetti di HEVC sta avendo molto piu` successo di quanto atteso...

- Performance

- -[] Sia encoder sia decoder non sono velocissimi al momento.
- -[] libvpx fornisce qualita` abbastanza buona se lo chiedi con le dovute maniere.
- -[] Il codec e` nato per confrontarsi con HEVC e come per vp8 ed h264 il confronto non porta ad averlo vincitore, indipendentemente da quanto possan dichiarare i "test" di gente di Google o ex-Google.
 - > Oste, il vino e` buono?

- -[] Non e` dispone di una specifica pubblica
- -[] Non vi sono molte implementazioni
- -[] Ha circa 2 anni (o 4 a seconda di come si conta) e si sta gia` parlando di VP10...

VP10

Vedi VP9, sottrai 1 anno.

Attualmente e` il principale **problema** di longevita` di VP9.

DAALA

- Diffusione

- -[] La sua diffusione e` nulla non essendo ancora finalizzato
- -[] E` teoricamente esente da brevetti ed non assomiglia a nessun codec video precedente
- -[x] Ha una singola implementazione (opensource), con piu` gruppi interessati ad farne ulteriori implementazioni completamente indipendenti.
- -[x] Pare che attorno a Daala si stia formando un gruppo di interesse per garantire lo sviluppo di un codec video esente da royalties. (Cosa fan Amazon, Cisco, Google, Intel Corporation, Microsoft, Mozilla e Netflix assieme? Un nuovo codec video.)

- Performance

- -[] Non vi sono implementazioni adeguatamente veloci dell'encoder e non vi sono implementazioni veloci neppure del decoder
- -[x] In vari test Daala risulta promettente
- -[] Daala e` un codec pensato per essere un concorrente del successore di HEVC, attualmente a seconda della giornata il codice puo` o meno fornire risultati sorprendenti per determinati test.

- -[x] Daala avra` una specifica pubblica ed e` gia` in bozza.
- -[x] A parte l'implementazione sperimentale non ve ne sono altre.
- -[x] Sta venendo standardizzato tramite l'IETF.
- -[x] Ha appena 2 anni (o 4 a seconda di come si conta)

OPUS

Codec ottimale per praticamente ogni uso. E` un codec audio, Daala in futuro potrebbe essere il suo equivalente per il video.

- Diffusione

- -[x] Ha una specifica ben definita
- -[x] E` libero da brevetti che ne vincolino l'implementazione
- -[x] Ha piu` di una implementazione utilizzata largamente (sia quella ufficiale di Xiph sia quella alternativa di Libav sono opensource, portabili e piuttosto veloci)
 - -[x] Disponibile dentro Android, Chrome, Firefox e la lista aumenta di giorno in giorno.

- Performance

- -[x] Fornisce una buona qualita` a bassi, medi ed alti bitrate, pur rimanendo un codec a bassa latenza.
- -[x] A parte alcuni audiofili estremi la qualita` percepita e` notevole
- -[x] Opus si mostra efficiente sia a bassi bitrate sia ad alti bitrate

- -[x] Opus ha una specifica completa (rfc6716)
- -[x] Vi sono piu` implementazioni (almeno 3)
- -[x] webrtc ed altri standard di comunicazione stanno adottando opus
- -[x] Ha 4 anni (o 7 a seconda di come si conta)

Cosa usare?

Per l'audio Opus e` una scelta ottima salvo casi specifici e mostra come un codec debba essere.

Per il video ad oggi H264 rimane la scelta migliore. Le implementazioni, software (ed hardware) dei concorrenti non sono all'altezza per uso diffuso.

- Per usi di nicchia HEVC inizia ad essere considerabile, non fosse per problemi strategico-legali.
- VP9/10 non e` male, **ma** non avendo una vera **specifica** ed avendo in pratica un **singolo** encoder, per giunta non **grandioso**, e` meno interessante di quanto potrebbe.
- Daala promette molto e vedremo nei prossimi anni se sara` l'Opus del video o meno.

Domande?

Implementazione contro Algoritmo

Spesso codec con caratteristiche stupende in **teoria** non vedono implementazioni che rispecchiano nella **pratica** tale teoria.

Non importa a nessuno che un codec Wavelet teoricamente possa essere 10 volte migliore di codec basati su DCT se non vi sono implementazioni che forniscano risultati.