CAPSTONE PROJECT - 2

Seoul Bike Sharing Demand Prediction

Created By: Sakshi Dhyani

Project Details

In many urban cities, rental bikes are introduced to ensure mobility comfort. It is required to make the rental bike available for public at the correct time. In this project, major concern is to predict the rented bikes required at each hour for the stable supply of bikes.

Steps performed

- Data cleaning
- Data visualizations
- Data preprocessing
- Model Implementation
- Evaluation metrics

Data Summary

Independent Features

Date: year-month-day Hour: Hour of the day

Temperature: (in Celsius)

Humidity: (in %) Windspeed: m/s Visibility: 10m

Dew Point Temperature (in celsius)

Solar Radiation: MJ/m2

Rainfall: mm Snowfall: cm

Seasons: Winter, Spring, Summer,

Autumn

Holiday - No Holiday/ Holiday

Functional Day - Yes/No

Dependent Feature

Rented Bike Count - Count of bikes rented at each hour

Exploratory Data Analysis

Bar Plots for categorical values

Distribution plots for numerical features (Independent and Dependent features)

Monthly, hourly, week-wise Rental Bike Count

Outlier Detection using Box Plot

Scatter Plots for features

Scatter Plots for features

Heatmap

Hour	1	0.12	-0.24	0.29	0.099	0.0031	0.15	0.0087	-0.022	7.9e-20	1.7e-20	0.0054	2.4e-19	-1.9e-19
Temperature(°C)	0.12	1	0.16	-0.036	0.035	0.91	0.35	0.05	-0.22	0.81	-0.056	-0.05		-0.0034
Humidity(%)	-0.24	0.16	1	-0.34	-0.54	0.54	-0.46		0.11	0.25	-0.05	-0.021	0.14	-0.0076
Wind speed (m/s)	0.29	-0.036	-0.34	1	0.17	-0.18	0.33	-0.02	-0.0036	-0.06	0.023	0.005	-0.16	-0.021
Visibility (10m)	0.099	0.035	-0.54	0.17	1	-0.18	0.15	-0.17	-0.12	-0.028	0.032	-0.026	0.065	-0.026
Dew point temperature(°C)	0.0031	0.91	0.54	-0.18	-0.18	1	0.094	0.13	-0.15	0.79	-0.067	-0.053		-0.014
Solar Radiation (MJ/m2)	0.15	0.35	-0.46	0.33	0.15	0.094	1	-0.074	-0.072	0.2	-0.0051	-0.0077	-0.032	0.011
Rainfall(mm)	0.0087	0.05	0.24	-0.02	-0.17	0.13	-0.074	1	0.0085	0.071	-0.014	0.0021	0.012	-0.018
Snowfall (cm)	-0.022	-0.22	0.11	-0.0036	-0.12	-0.15	-0.072	0.0085	1	-0.2	-0.013	0.032	0.053	-0.012
Seasons	7.9e-20	0.81	0.25	-0.06	-0.028	0.79		0.071	-0.2	1	-0.12	0.058	-0.011	0.0018
Holiday	1.7e-20	-0.056	-0.05	0.023	0.032	-0.067	-0.0051	-0.014	-0.013	-0.12	1	-0.028	0.042	-0.045
Functioning Day	0.0054	-0.05	-0.021	0.005	-0.026	-0.053	-0.0077	0.0021	0.032	0.058	-0.028	1	-0.14	0.019
month	2.4e-19		0.14	-0.16	0.065	0.24	-0.032	0.012	0.053	-0.011	0.042	-0.14	1	0.021
weekday	-1.9e-19	-0.0034	-0.0076	-0.021	-0.026	-0.014	0.011	-0.018	-0.012	0.0018	-0.045	0.019	0.021	1
	Hour	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	Dew point temperature(°C)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)	Seasons	Holiday	Functioning Day	month	weekday

Heatmap helps to find the correlation between the features. While implementing Linear Regression, features having high collinearity will be removed.

0.8

0.4

0.2

0.0

-0.2

-0.4

Data preparation

Initial Data Shape - 8760 Rows and 14 Columns (1 column is dependent)

After Train-Test Split:

Training Data - 7008 Rows and 14 Columns (1 column dependent)

Test Data - 1752 Rows and 14 Columns (1 column dependent)

Dependent column will be predicted as that is the target variable named "Rented Bike Count".

Linear Regression Model

Evaluation Metrics for training data

MSE is -> 82.54262440299173

RMSE is -> 9.085297155459019

R2 square -> 0.4651658504428886

MAE -> 6.714158886558394

Adjusted R2 score-> 0.464401474067932

Evaluation Metrics for test data

MSE -> 89.75365590130693 RMSE -> 9.473840609874484 R2 square -> 0.43008578964332533 MAE -> 6.967849529253253 Adjusted R2 score-> 0.42681230193306297

Polynomial Regression Model

Polynomial Regression is a special case of linear regression where the relationship between the independent variable x and the dependent variable y is modelled as an nth degree polynomial.

Polynomial regression of degree 2 was implemented for this case.

Evaluation Metric for training data

MSE is 69.15939833595111 RMSE is 8.316212980434731

R2 square is 0.5518823364241219

MAE is 5.9847987628546795

Adjusted R2 score is 0.5512418938579137

Evaluation Metric for test data

MSE is 78.4882252924261 RMSE is 8.85935806322479 R2 square is 0.501618574857646 MAE is 6.281442419541594 Adjusted R2 score is

0.49875595897515124

Decision Tree Model

Feature Importances

```
Feature: 0, Score: 0.28233
Feature: 1, Score: 0.34606
Feature: 2, Score: 0.09697
Feature: 3, Score: 0.00321
Feature: 4, Score: 0.00415
Feature: 5, Score: 0.02088
Feature: 6, Score: 0.07751
Feature: 7, Score: 0.01524
Feature: 8, Score: 0.00079
Feature: 9, Score: 0.01571
Feature: 10, Score: 0.00244
Feature: 11, Score: 0.08176
Feature: 12, Score: 0.01909
Feature: 13, Score: 0.03387
```



```
Feature 0: 'Hour', Feature 1: 'Temperature(°C)', Feature 2: 'Humidity(%)', Feature 3: 'Wind speed (m/s)', Feature 4: 'Visibility (10m)', Feature 5: 'Dew point temperature(°C)',

Feature 6: 'Solar Radiation (MJ/m2)', Feature 7: 'Rainfall(mm)', Feature 8: 'Snowfall (cm)',

Feature 9: 'Seasons', Feature 10: 'Holiday', Feature 11: 'Functioning Day', Feature 12: 'month',

Feature 13: 'weekday'
```

Decision Tree Model

Evaluation metric for training data

MSE is 5667.104023972603 RMSE is 75.28017019091152 R2 square is 0.9863523196242828 MAE is 38.87678367579909 Adjusted R2 score is 0.986324996940848

Evaluation metric for testing data

MSE is 52755.21314133054 RMSE is 229.68503029438062 R2 square is 0.8739489466120322 MAE is 131.53125 Adjusted R2 score is 0.8729329910867405

KNN Regressor Model

Evaluation metric for training data:

MSE is 0.0 RMSE is 0.0 R2 square is 1.0 MAE is 0.0 Adjusted R2 score is 1.0 Evaluation metric for test data:

MSE is 73199.23857056774

RMSE is 270.55357800363265

R2 square is 0.8251008653059814

MAE is 163.76097089242106

Adjusted R2 score 0.8236912004322242

Using grid search CV, k parameter value chosen: 5

Random Forest Regressor

Evaluation metric for training data:

MSE is 22022.431171319764 RMSE is 148.39956594046953 R2 square is 0.9469649576836751 MAE is 96.05389103308234 Adjusted R2 score is 0.9468587814227816

Evaluation metric for test data:

MSE is 48032.2201217954

RMSE is 219.16254269786933

R2 square is 0.8852338644392338

MAE is 142.79673689986572

Adjusted R2 score is 0.8843088639223364

XGBoost Regressor

Best parameters selected using grid search CV:

```
{'colsample_bytree': 0.7, 'learning_rate': 0.07,
'max_depth': 5, 'n_estimators': 500, 'nthread': 4,
'objective': 'reg:linear', 'subsample': 0.9}
```

Evaluation metric for training data:

MSE is 8028.853311451494

RMSE is 89.60386884198412

R2 square is 0.9806646881167718

MAE is 59.030774724563436

Adjusted R2 score is 0.9806259787836722

Evaluation metric for test data:

MSE is 25350.051165979992 RMSE is 159.21699396100905 R2 square is 0.9394296703085964 MAE is 97.85649094004269 Adjusted R2 score is 0.938941481122828

Conclusion

All metrics were evaluated for each model, MSE(Mean Squared Error), MAE (Mean Absolute Error), RMSE(Root Mean squared Error),R2 Score, Adjusted R2 Score

At the end, comparison of models stated that some models showed improvement or were able to handle the overfitting issues when hyperparameter tuning was performed.

Adjusted R2 score was used to compare models as it is a special form of R2 score. Adjusted R2 indicates how well terms fit a curve or line, and also adjusts for the number of terms in a model.

If only adjusted R2 score is considered, then XG Boost regressor performed much better in test data as compared to other models

THANK YOU