

Deep Learning Clinic (DLC)

Lecture 2
A Brief Introduction to Machine Learning

Jin Sun

9/17/2019

Today

- Overview
- ☐ Formulation of Learning
- ☐ Learning Models
- Loss Function
- Optimization
- Data and Evaluation

Class Survey: https://www.surveymonkey.com/r/772LGRY

Overview

"Any plausible approach to artificial intelligence must involve learning, at some level, ... it's hard to call a system intelligent if it *cannot* learn."

-- CIML Book

What is Machine Learning (ML)?

"ML is about predicting the future based on the past." (CIML)

Core questions:

What to learn? How to learn? How good is the learning?

Machine Learning Paradigm

Training Data/Examples

Go until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat... Ok lar... Joking wif u oni... ham

spam Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to receive entry question(std txt rate)T&C's apply 08452810075over18's

U dun say so early hor... U c already then say...

Nah I don't think he goes to usf, he lives around here though ham

FreeMsg Hey there darling it's been 3 week's now and no word back! I'd like some fun you up for it still? Tb ok! XxX std chgs to send, å£1.50 to rcv

Even my brother is not like to speak with me. They treat me like aids patent.

As per your request 'Melle Melle (Oru Minnaminunginte Nurungu Vettam)' has been set as your callertune for all Callers. Press *9 to copy your friends Callertune

WINNER!! As a valued network customer you have been selected to receive a \$£900 prize reward! To claim call 09061701461. Claim code KL341. Valid 12 hours only. Had your mobile 11 months or more? UR entitled to Update to the latest colour mobiles with camera for Free! Call The Mobile Update Co FREE on 08002986030

Translate data into some easier to manipulate form

ham	Go until jurong point, crazy Available only in bugis n great world la e buffet Cine there got amore wat

nam	Ok lar Joking wit u oni	
spam	Free entry in 2 a wkly comp to win FA Cup final this 21st May 2005. Text FA to 87121 to receive entry question(std txt rate	e)T&C's apply 08452810075over18's

paili	riee enury	III Z a WKIY	Comp	to WIII FA Cu	Dillial this 21st May 2	003. TEXT FA 10 6/121	to receive entry	question	Stu txt late	liac 2 app	y 004320100730V	CI TO 3
	La Company	T		20 20 20 2								

ш	O dull say	30 Carry	1101 0	Calleauy	tileli say	

m	Nah I d	don't think he g	goes to usf, he	lives around here though	

Dictionary	Bag of Words Features
1. email 2163 2. order 1648 3. address 1645 4. language 1534 5. report 1384 6. mail 1364	171 1122 1192 1221 1251

A learning algorithm - Naive Bayes

A learning algorithm - Naive Bayes

A learning algorithm - Naive Bayes

$$p(C_k \mid \mathbf{x}) = rac{p(C_k) \ p(\mathbf{x} \mid C_k)}{p(\mathbf{x})}$$
 $p(C_k \mid x_1, \dots, x_n) \propto p(C_k, x_1, \dots, x_n)$
 $= p(C_k) \ p(x_1 \mid C_k) \ p(x_2 \mid C_k) \ p(x_3 \mid C_k) \ \cdots$
 $= p(C_k) \prod_{i=1}^n p(x_i \mid C_k)$, "Naive" assumption

Value comes from training data -> Learning!

 $p(C_k \mid x_1,\ldots,x_n)$

p(spam | 'reward'=1, 'homework'=0, ...)

~ p(spam) * p('reward'=1 | spam) * p('homework'=0 | spam) * ...

= 0.2 * 0.7 * 0.9 * ...

p(spam | 'reward'=0, 'homework'=1, ...)

~ p(spam) * p('reward'=0 | spam) * p('homework'=1 | spam) * ...

= 0.2 * 0.3 * 0.1 * ...

Machine Learning Paradigm - Spam Detection

Machine Learning Paradigm - Spam Detection

Example: Spam Detection - A Linear Model

X = ['reward'=1, 'homework'=0, ...]

If W*X > 0:

Spam;

Else:

Ham.

How do we know W?

Example: Spam Detection - A Linear Model

X = ['reward'=1, 'homework'=0, ...]

If W*X > 0:

Spam;

Else:

Ham.

We pick the 'W' that has the best spam prediction accuracy in training data.

Example: Spam Detection - A Linear Model

X = ['reward'=1, 'homework'=0, ...]

If W*X > 0:

Spam;

Else:

Ham.

$$W = \operatorname{argmin} || W*X - y||$$

Machine Learning Paradigm - Spam Detection

Another ML example:

1	real world goal	increase revenue
2	real world mechanism	better ad display
3	learning problem	classify click-through
4	data collection	interaction w/ current system
5	collected data	query, ad, click
6	data representation	bow ² , \pm click
7	select model family	decision trees, depth 20
8	select training data	subset from april'16
9	train model & hyperparams	final decision tree
10	predict on test data	subset from may'16
11	evaluate error	zero/one loss for \pm click
12	deploy!	(hope we achieve our goal)

* CIML Fig 2.4.

Types of Learning Problems

Classification

Predict Yes/No (Binary), or from a set of labels (Multi-class).

Regression

Predict a real value: e.g., tomorrow's stock price.

Structure Learning

Predict a graph, a ranking, etc.

Today

- Overview
- **□** Formulation of Learning
- Learning Models
- ☐ Loss Function
- Optimization
- Data and Evaluation

Formal Definition of Learning

Notations and their meaning:

x: our input features (e.g., words frequency)

y: our ground truth labels (e.g., whether is a spam)

 $f(\cdot)$: the function we are learning to predict y from x

 $L(\cdot,\cdot)$: "loss function" -- how good a given function is on the training data

Formal Definition of Learning

A Concrete Example - Binary Classification

$$e \doteq \underset{(x,y) \sim D}{\mathbb{E}}[L(y,f(x))]$$

$$\dot{=} \frac{1}{N} \sum_{n=1}^{N} L(y_n,f(x_n))$$
Positive Samples

Negative Samples

http://playground.tensorflow.org/

A Simple Interactive Machine Learning Example

A Neural Network Playground <u>Link</u>

DATA

Which dataset do you want to use?

Ratio of training to test data: 50%

Noise: 0

Noise:

Batch size: 10

REGENERATE

Data:

(x,y) 2D Points

Binary Label

Train/Test Split

Noise Level

Batch Size

Feature Representation:

Learning problem becomes easier/harder with different feature representations, even with the same data!

A Learning Model:

Network Structure

Layers

Connectivity

No network works for all the problems!

Training:

Train/Test Loss

Epochs

Optimization Algorithm

Evaluation:

Metric (accuracy, distance, ...)

Cross-validation

OUTPUT Test loss 0.498 Training loss 0.504 -6 -5 -4 -3 -2 -1 **0** 1 2 3 4 5 6 Colors shows data, neuron and weight values. Show test data Discretize output

Today

- Overview
- ☐ Formulation of Learning
- **□** Learning Models
- ☐ Loss Function
- Optimization
- ☐ Data and Evaluation

A Concrete Example - Binary Classification

Choose Your Model

$$e \doteq \underset{(x,y)}{\mathbb{E}} [L(y,f(x))]$$

$$\doteq \frac{1}{N} \sum_{n=1}^{N} L(y_n,f(x_n))$$
 Positive Samples Linear Function

Choose Your Model

$$e \doteq \underset{(x,y) \sim D}{\mathbb{E}} [L(y, f(x))]$$
$$\doteq \frac{1}{N} \sum_{n=1}^{N} L(y_n, f(x_n))$$

Negative Samples _

Positive Samples

Non-linear Function

Pick a Model That Fits the Data Complexity

Linear Function Not Suitable

Generalization

So why not always pick the most complex model?

We care about our model's performance on unseen test data: the *generalization* ability.

If our model is over-complex, it can be *overfitted* to training and perform poorly on testing data.

Models

Decision Trees

Models

Linear Function

$$f(x) = Wx - b$$

Support Vector Machine (SVM)

Models

Neural Networks

Non-Parametric Models

Nearest Neighbor

Today

- Overview
- ☐ Formulation of Learning
- ☐ Learning Models
- **□** Loss Function
- Optimization
- Data and Evaluation

Loss Function

Measure how good a model is on the training data.

$$e \doteq \underset{(x,y) \sim D}{\mathbb{E}} [L(y, f(x))]$$
$$\doteq \frac{1}{N} \sum_{n=1}^{N} L(y_n, f(x_n))$$
Loss function

Loss/Cost/Objective Function

Choose a Loss Function

Classification:

	/
Hinge Loss	$\max(0, 1 - f(x) \cdot y)$

Cross Entropy
$$-(y \ln(f(x)) + (1-y) \ln(1-f(x)))$$

MSE Loss
$$(f(x) - y)^2$$

L1 Loss
$$|f(x) - y|$$

KL Divergence
$$\sum f(x) \ln \frac{f(x)}{x}$$

ce
$$\sum f(x) \ln \frac{f(x)}{y}$$

Today

- Overview
- ☐ Formulation of Learning
- ☐ Learning Models
- ☐ Loss Function
- Optimization
- Data and Evaluation

Get Training Started - Optimization

minimize_{$$\theta$$} $e \doteq \mathbb{E}_{(x,y)\sim D}[L(y, f(x; \theta))]$

Find the best θ that minimizing the expected loss.

Gradient Descent

1D Loss Function

Gradient Descent

2D Loss Surface

Gradient Descent

Non-Convex Loss Surface

Optimization Solvers

Dlib	Optimization library in C++	
SciPy	Numeric package for Python	
MATLAB	[Commercial]	
Gurobi	[Commercial]	
Deep Learning Frameworks (PyTorch, Tensorflow, and etc)	Built-in GD solvers	

Regularization

minimize_{\theta}
$$e \doteq \mathbb{E}_{(x,y)\sim D}[L(y,f(x;\theta))] + \lambda R(\theta)$$

E.g., L1, L2 norm

Today

- Overview
- ☐ Formulation of Learning
- ☐ Learning Models
- □ Loss Function
- Optimization
- **□** Data and Evaluation

Data

Training Set Testing Set

Both sets need to come from the same distribution.

Data Bias

Torralba, Antonio, and Alexei A. Efros. "Unbiased look at dataset bias." CVPR, 2011.

Different Types of Supervision

Fully Supervised

Different Types of Supervision

Semi-Supervised

Different Types of Supervision

Unsupervised / Clustering E.g., K-means

Evaluation of A Model

Cross-Validation:

Keep a hold-out set from the collected data to simulate the model's performance on unseen data.

Experiment 1	■ Total Number of Dataset ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	
Experiment 2 Experiment 3		Training
Experiment 4		Validatio
Experiment 5		

Performance Metrics - Classification

Precision = TP / (TP+FP)

Recall = TP / (TP+FN)

Performance Metrics - Classification

Confusion Matrix

ROC Curve

Summary

- Overview
- ☐ Formulation of Learning
- ☐ Learning Models
- □ Loss Function
- Optimization
- Data and Evaluation

Further Readings:

A Course in Machine Learning by Hal Daume III link
Introduction to Machine Learning by Alex Smola et al link
Pattern Classification by Richard O. Duda et al link
Pattern Recognition and Machine Learning by Christopher Bishop link