Numerical ODE Solvers

Theorem 1 (Picard's Theorem²) Suppose that $f(\cdot, \cdot)$ is a continuous function of its arguments in a region U of the (x, y) plane which contains the rectangle

$$R = \{(x, y) : x_0 \le x \le X_M, \quad |y - y_0| \le Y_M\},\,$$

where $X_M > x_0$ and $Y_M > 0$ are constants. Suppose also, that there exists a positive constant L such that $|f(x,y) - f(x,z)| \le L|y-z|$

holds whenever
$$(x, y)$$
 and (x, z) lie in the rectangle R. Finally, letting

$$M = \max\{|f(x,y)| : (x,y) \in R\},\$$

suppose that $M(X_M - x_0) \leq Y_M$. Then there exists a unique continuously differentiable function $x \mapsto y(x)$, defined on the closed interval $[x_0, X_M]$

Lipschitz's condition

Euler's method

A simple derivation of Euler's method proceeds by first integrating the differential equation (1) between two consecutive mesh points x_n and x_{n+1} to deduce that

$$y(x_{n+1}) = y(x_n) + \int_{x_n}^{x_{n+1}} f(x, y(x)) dx, \qquad n = 0, \dots, N - 1, \qquad (14)$$

and then applying the numerical integration rule

$$\int_{x_n}^{x_{n+1}} g(x) \, \mathrm{d}x \approx hg(x_n) \;,$$

called the **rectangle rule**, with g(x) = f(x, y(x)), to get

$$y(x_{n+1}) pprox y(x_n) + hf(x_n, y(x_n)) \;, \qquad n = 0, \dots N-1 \;, \qquad y(x_0) = y_0 \;.$$

Euler's method - generalization

This then motivates the definition of Euler's method. The idea can be generalised by replacing the rectangle rule in the derivation of Euler's method with a one-parameter family of integration rules of the form

$$\int_{x_n}^{x_{n+1}} g(x) dx \approx h \left[(1-\theta)g(x_n) + \theta g(x_{n+1}) \right] ,$$

with $\theta \in [0,1]$ a parameter. On applying this in (14) with g(x) = f(x,y(x)) we find that

$$y(x_{n+1}) \approx y(x_n) + h[(1-\theta)f(x_n, y(x_n)) + \theta f(x_{n+1}, y(x_{n+1}))], \quad n = 0, \dots, N-1,$$

 $y(x_0) = y_0.$

This then motivates the introduction of the following one-parameter family of methods: given that y_0 is supplied by (2), define

$$y_{n+1} = y_n + h [(1 - \theta)f(x_n, y_n) + \theta f(x_{n+1}, y_{n+1})], \quad n = 0, \dots, N - 1.$$

Euler's method - analytical example

Given the initial value problem $y' = x - y^2$, y(0) = 0, on the interval of $x \in [0,0.4]$, we compute an approximate solution using the θ -method, for $\theta = 0$, $\theta = 1/2$ and $\theta = 1$, using the step size h = 0.1. The results are shown in Table 1. In the case of the two implicit methods, corresponding to $\theta = 1/2$ and $\theta = 1$, the nonlinear equations have been solved by a fixed-point iteration.

k	x_k	y_k for $\theta = 0$	y_k for $\theta = 1/2$	y_k for $\theta = 1$
0	0	0	0	0
1	0.1	0	0.00500	0.00999
2	0.2	0.01000	0.01998	0.02990
3	0.3	0.02999	0.04486	0.05955
4	0.4	0.05990	0.07944	0.09857

Table 1: The values of the numerical solution at the mesh points

Euler's method - analytical example 2

For comparison, we also compute the value of the analytical solution y(x) at the mesh points $x_n = 0.1 * n$, n = 0, ..., 4. Since the solution is not available in closed form, we use a Picard iteration to calculate an accurate approximation to the analytical solution on the interval [0,0.4] and call this the "exact solution". Thus, we consider

$$y_0(x) \equiv 0$$
, $y_k(x) = \int_0^x \left(\xi - y_{k-1}^2(\xi)\right) d\xi$, $k = 1, 2, \dots$

Hence,

$$y_0(x) \equiv 0,$$

$$y_1(x) = \frac{1}{2}x^2,$$

$$y_2(x) = \frac{1}{2}x^2 - \frac{1}{20}x^5,$$

$$y_3(x) = \frac{1}{2}x^2 - \frac{1}{20}x^5 + \frac{1}{160}x^8 - \frac{1}{4400}x^{11}.$$

Euler's method - analytical example 3

Using MAPLE V, we obtain the solution in terms of Bessel functions:

$$dsolve(\{diff(y(x),x) + y(x)*y(x) = x, y(0)=0\}, y(x));$$

$$\sqrt{x} \left(\frac{\sqrt{3} \operatorname{BesselK}(\frac{-2}{3}, \frac{2}{3}x^{3/2})}{\pi} - \operatorname{BesselI}(\frac{-2}{3}, \frac{2}{3}x^{3/2}) \right)$$

$$y(x) = -\frac{\sqrt{3} \operatorname{BesselK}(\frac{1}{3}, \frac{2}{3}x^{3/2})}{\pi} + \operatorname{BesselI}(\frac{1}{3}, \frac{2}{3}x^{3/2})$$

k	x_k	$y(x_k)$
0	0	0
1	0.1	0.00500
2	0.2	0.01998
3	0.3	0.04488
4	0.4	0.07949

Table 2: Values of the "exact solution" at the mesh points

Euler's method - error analysis

$$|e_n| \le |e_0| \exp\left(L\frac{x_n - x_0}{1 - \theta L h}\right) + \frac{h}{L} \left\{ \left| \frac{1}{2} - \theta \right| M_2 + \frac{1}{3} h M_3 \right\} \left[\exp\left(L\frac{x_n - x_0}{1 - \theta L h}\right) - 1 \right]$$

Euler's method - General explicit one-step method

A general explicit one-step method may be written in the form:

$$y_{n+1} = y_n + h\Phi(x_n, y_n; h)$$
, $n = 0, ..., N-1$, $y_0 = y(x_0)$ [= specified by (2)],

where $\Phi(\cdot,\cdot;\cdot)$ is a continuous function of its variables. For example, in the case of Euler's method, $\Phi(x_n,y_n;h)=f(x_n,y_n)$, while for the improved Euler method

$$\Phi(x_n, y_n; h) = \frac{1}{2} \left[f(x_n, y_n) + f(x_n + h, y_n + h f(x_n, y_n)) \right].$$

Consider the general one-step method (22) where, in addition to being a continuous function of its arguments, Φ is assumed to satisfy a Lipschitz condition with respect to its second argument; namely, there exists a positive constant L_{Φ} such that, for $0 \le h \le h_0$ and for the same region R as in Picard's theorem,

$$|\Phi(x,y;h) - \Phi(x,z;h)| \le L_{\Phi}|y-z|,$$
 for $(x,y), (x,z)$ in R.

Then, assuming that $|y_n - y_0| \le Y_M$, it follows that

$$|e_n| \le e^{L_{\Phi}(x_n - x_0)} |e_0| + \left[\frac{e^{L_{\Phi}(x_n - x_0)} - 1}{L_{\Phi}} \right] T$$
, $n = 0, \dots, N$,

where $T = \max_{0 \le n \le N-1} |T_n|$.

Euler's method - no more theory

Forward method

$$y'(t) pprox rac{y(t+h)-y(t)}{h},$$

$$y_{n+1} = y_n + h f(t_n, y_n).$$

Backward method

$$y'(t)pprox rac{y(t)-y(t-h)}{h},$$

$$y_{n+1} = y_n + h f(t_{n+1}, y_{n+1}).$$

Euler's method - practical example

$$y'+2y=2-\mathbf{e}^{-4t}$$
 $y\left(0
ight) =1$

Use Euler's Method with a step size of h = 0.1 to find approximate values of the solution at t = 0.1, 0.2, 0.3, 0.4, and 0.5. Compare them to the exact values of the solution at these points.

Euler's method - practical example (2)

This is a fairly simple linear differential equation so we'll leave it to you to check that the solution is

$$y\left(t
ight)=1+rac{1}{2}\mathbf{e}^{-4t}-rac{1}{2}\mathbf{e}^{-2t}$$

n order to use Euler's Method we first need to rewrite the differential equation into the right form

$$y' = 2 - \mathbf{e}^{-4t} - 2y$$

From this we can see that $f(t,y) = 2 - e^{-4t} - 2y$. Also note that $t_0 = 0$ and $y_0 = 1$. We can now start doing some computations.

$$f_0 = f(0,1) = 2 - e^{-4(0)} - 2(1) = -1$$

 $y_1 = y_0 + h f_0 = 1 + (0.1)(-1) = 0.9$

Euler's method - practical example (3)

So, the approximation to the solution at t1 = 0.1 is y1=0.9

$$f_1 = f(0.1, 0.9) = 2 - \mathbf{e}^{-4(0.1)} - 2(0.9) = -0.470320046$$

 $y_2 = y_1 + h f_1 = 0.9 + (0.1)(-0.470320046) = 0.852967995$

Therefore, the approximation to the solution at

$$t_2 = 0.2$$
 is $y_2 = 0.852967995$.

I'll leave it to you to check the remainder of these computations.

$$f_2 = -0.155264954$$
 $y_3 = 0.837441500$
 $f_3 = 0.023922788$ $y_4 = 0.839833779$
 $f_4 = 0.1184359245$ $y_5 = 0.851677371$

Euler's method - practical example (4)

Time, t_n	Approximation	Exact	Error
$t_0 = 0$	$y_0 = 1$	y(0) = 1	0 %
$t_1 = 0.1$	$y_1 = 0.9$	y(0.1) = 0.925794646	2.79 %
$t_2=0.2$	$y_2 = 0.852967995$	y(0.2) = 0.889504459	4.11 %
$t_3 = 0.3$	$y_3 = 0.837441500$	y(0.3) = 0.876191288	4.42 %
$t_4=0.4$	$y_4 = 0.839833779$	y(0.4) = 0.876283777	4.16 %
$t_5=0.5$	$y_5 = 0.851677371$	y(0.5) = 0.883727921	3.63 %

Euler's method - practical example 2 (1)

Repeat the previous example only this time give the approximations at

$$t=1,\,t=2,\,t=3,\,t=4,$$
 and $t=5.$ Use $h=0.1,\,h=0.05,\,h=0.01,\,h=0.005,$ and $h=0.001$ 1

Approximations

Time	Exact	h = 0.1	h = 0.05	h = 0.01	h = 0.005	h = 0.001
t = 1	0.9414902	0.9313244	0.9364698	0.9404994	0.9409957	0.9413914
<i>t</i> = 2	0.9910099	0.9913681	0.9911126	0.9910193	0.9910139	0.9910106
<i>t</i> = 3	0.9987637	0.9990501	0.9988982	0.9987890	0.9987763	0.9987662
<i>t</i> = 4	0.9998323	0.9998976	0.9998657	0.9998390	0.9998357	0.9998330
<i>t</i> = 5	0.9999773	0.9999890	0.9999837	0.9999786	0.9999780	0.9999774

Euler's method - practical example 2 (2)

Percentage Errors

Time	h = 0.1	h = 0.05	h = 0.01	h = 0.005	h = 0.001
<i>t</i> = 1	1.08 %	0.53 %	0.105 %	0.053 %	0.0105 %
<i>t</i> = 2	0.036 %	0.010 %	0.00094 %	0.00041 %	0.0000703 %
<i>t</i> = 3	0.029 %	0.013 %	0.0025 %	0.0013 %	0.00025 %
<i>t</i> = 4	0.0065 %	0.0033 %	0.00067 %	0.00034 %	0.000067 %
<i>t</i> = 5	0.0012 %	0.00064 %	0.00013 %	0.000068 %	0.000014 %

We can see from these tables that decreasing h does in fact improve the accuracy of the approximation as we expected.

Euler's method - practical example 3 (2)

Use Euler's Method to find the approximation to the solution at

$$y' - y = -\frac{1}{2}e^{\frac{t}{2}}\sin(5t) + 5e^{\frac{t}{2}}\cos(5t) \quad y(0) = 0$$

$$t=1,\,t=2,\,t=3,\,t=4,\,$$
 and $t=5.$ Use $h=0.1,\,h=0.05,\,h=0.01,\,h=0.005,\,$ and $h=0.001$ for the approximations.

We'll leave it to you to check the details of the solution process. The solution to this linear first order differential equation is.

$$y(t) = \mathbf{e}^{\frac{t}{2}}\sin(5t)$$

Euler's method - practical example 3 (2)

Approximations

Time	Exact	h = 0.1	h = 0.05	h = 0.01	h = 0.005	h = 0.001
<i>t</i> = 1	-1.58100	-0.97167	-1.26512	-1.51580	-1.54826	-1.57443
<i>t</i> = 2	-1.47880	0.65270	-0.34327	-1.23907	-1.35810	- <mark>1.45453</mark>
<i>t</i> = 3	2.91439	7.30209	5.34682	3.44488	3.18259	2.96851
t = 4	6.74580	15.56128	11.84839	7.89808	7.33093	6.86429
<i>t</i> = 5	-1.61237	21.95465	12.24018	1.56056	0.0018864	-1.28498

Euler's method - practical example 3 (3)

Percentage Errors

Time	h = 0.1	h = 0.05	h = 0.01	h = 0.005	h = 0.001
t = 1	38.54 %	19.98 %	4.12 %	2.07 %	0.42 %
<i>t</i> = 2	144.14 %	76.79 %	16.21 %	8.16 %	1.64 %
<i>t</i> = 3	150.55 %	83.46 %	18.20 %	9.20 %	1.86 %
t = 4	130.68 %	75.64 %	17.08 %	8.67 %	1.76 %
<i>t</i> = 5	1461.63 %	859.14 %	196.79 %	100.12 %	20.30 %

Euler's method - practical example 3 (4)

So, with this example Euler's Method does not do nearly as well as it did on the first IVP. Some of the observations we made in Example 2 are still true however. Decreasing the size of **h** decreases the error as we saw with the last example and would expect to happen. Also, as we saw in the last example, decreasing **h** by a factor of **10** also decreases the error by about a factor of **10**.

However, unlike the last example increasing **t** sees an increasing error. This behavior is fairly common in the approximations. We shouldn't expect the error to decrease as **t** increases as we saw in the last example. Each successive approximation is found using a previous approximation. Therefore, at each step we introduce error and so approximations should, in general, get worse as **t** increases.

Below is a graph of the solution (the line)

as well as the approximations

(the dots) for h = 0.05

