「2023 국토교통 데이터 활용 경진대회」 정책 및 창업 아이디어 기획서

□ 아이디어명:

대구 지하철 공기 개선 프로젝트: 공기정화장치 추가 설치 후보 전철역 선정

□ 제안배경

- o 실내공기오염, 실외 미세먼지보다 해롭다
- 세계보건기구(WHO)는 대기오염으로 인한 연간 사망자 수가 최대 600만 명에 달하며 실내 공기 오염으로 인한 사망자 수는 280만 명에 이른다고 발표했습니다.
- 또한, 실내 오염물질이 실외 오염물질보다 폐에 전달될 확률이 약 1000배 높다고 추정되었습니다.
- o 지하철 승강장 실외 미세먼지 보다 위험하다.
- 매일 출퇴근하는 지하철이 안전할까요?

- SBS, 심우섭 [리포트+] "안에서도 목이 칼칼"에 따르면 지하철 승각 장이 222炯/㎡ 으로 매우나쁨 단계 의 심각성을 가지고 있다고 합니다.

□ 세부내용

데이터 수집 변수 위귀분석 분석을 통한 추천

- o 데이터 수집 및 탐색
- 각 변수들의 영향력을 동일하기 위해, feature-scaling을 진행했습니다.
- 정규화는 standard-scaler 진행 후 MinMax Scaler로 모든 feature의 범위를 0-1 사이로 변환했습니다.
- 공기질 점수는 기타A1. 에 나와있는 5가지 척도를 종합하여 평가했습니다.

- o 변수 클러스터링
- 지하철역은 원으로 나타냈으며, 색으로 공기질을 표시하고 원크기로 승객수를 표시했습니다.
- K-means 클러스터링을 통해 후보 전철역을 선정하였습니다.
- 변수 2개 (공기질점수, 평균혼잡도)를 사용하였습니다.

- 추세가 급격히 줄은 지점을 elbow-point로 선택하여 군집의 개수로 사용하였습니다.
- 공기질점수와 평균혼잡도 점수가 높은 0번 군집을 선택하였습니다.
- 하얀색 테두리가 후보 전철역으로 선정된 결과입니다.

o 휘귀분석

- 후보선정지수는 클러스터링에 포함되는 장소 중에서 가장 공기정화장 치가 필요한 곳을 찾기 위해 만들어진 지표입니다.
- 이 지표는 공기질척도, 즉 공기의 상태를 나타내는 변수를 기반으로 합니다.
- 각 변수들에 대해 가중치를 부여하여 최종적으로 후보선정지수를 생성합니다.
- 이 지표를 통해 공기정화 장치가 가장 필요한 장소를 식별할 수 있습니다.
- o 분석을 통한 추천
- 후보선정지수를 계산하여 가장 높은 지수역 3개를 최종 입지로 선정 합니다.
- 2호선 수정구청역, 담티역, 사월역

□ 기타 - 사용된 데이터

- o 대구교통공사 역별일별시간별승하차인원현황
- o 대구교통공사 공기질
- o 국가철도공단_대구_지하철_주소데이터
- o 대구교통공사_월별승차인원

- o 대구교통공사 공조설비 현황
- o 대구교통공사 역사 면적
- o 대구교통공사_역사심도 및 높이

A1. 공기질

구분	유지기준					
	미세먼지 (PM-10)	포름알데히드 (HCHO)	초미세먼지 (PM2.5)	일산화 탄소 (CO)	이산호 탄소 (CO ₂₎	
단위	μg/m³	µg/㎡	μg/m³	ppm	ppm	
기준	100	100	50	10	1,000	
주기	1회/년					

^{*} 실내공기질 관리법 시행규칙(2020. 4. 3. ~)

A2. 회귀분석

OLS Regression Results

Dep. Variable:	공기결심구	R-squared (uncentered):	0.500	
Model:	OLS	Adj. R-squared (uncentered): 0.465		
Method:	Least Squares	F-statistic:	14.31	
Date:	Wed, 28 Jun 2023	Prob (F-statistic):	1.32e-06	
Time:	13:01:15	Log-Likelihood:	1,0579	
No. Observations	s: 46	AIC:	3.884	
Df Residuals:	43	BIC:	9.370	
Df Model:	3			

Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

총승객수 0.6298 0.261 2.417 0.020 0.104 1.155 정거장깊이 0.0254 0.008 3.344 0.002 0.010 0.041 환기구 -0.1263 0.045 -2.807 0.007 -0.217 -0.036

 Omnibus:
 10.992
 Durbin-Watson:
 1.745

 Prob(Omnibus):
 0.004
 Jarque-Bera (JB):
 10.619

 Skew:
 1.072
 Prob(JB):
 0.00494

 Kurtosis:
 3.970
 Cond. No.
 149.

A3. K-means 클러스터링

군집	공기질점수	평균혼잡도
0	0.814314	0.460062
1	0.067416	0.206613
2	0.12578	0.320584
3	0.193762	0.279054

