

Sintaxis: El Lenguaje Simbólico de la Lógica de Predicados

En el ámbito de la lógica matemática, el lenguaje simbólico es fundamental para expresar y analizar razonamientos. La lógica de predicados, una extensión de la lógica proposicional, emplea un lenguaje más rico y complejo que permite expresar relaciones entre objetos y propiedades. Este lenguaje simbólico, que se compone de un alfabeto, una gramática y una semántica, nos proporciona las herramientas necesarias para formular y manipular enunciados de una manera formal y precisa.

by Pablo Argañaras

Made with Commo

1

Alfabeto del Lenguaje

1 Constantes

Las constantes, representadas por símbolos como c_1 , c_2 , etc., representan objetos específicos dentro del dominio de discurso. Por ejemplo, " c_1 " podría representar el número 0 o la persona llamada Juan.

3 Funciones

Las funciones, simbolizadas por f^1_1 , f^1_2 , etc., representan operaciones o relaciones entre objetos. Por ejemplo, " f^1_1 " podría representar la función sucesor, que toma un número como entrada y devuelve su sucesor. Las funciones pueden ser unarias, binarias o de mayor aridad, dependiendo del número de argumentos que toman.

2 Variables

Las variables, denotadas por símbolos como x_1, x_2 , etc., representan objetos genéricos dentro del dominio. Se utilizan para expresar propiedades que se aplican a cualquier objeto dentro del dominio.

4 Predicados

Los predicados, denotados por símbolos como P^1_1 , P^1_2 , etc., representan propiedades o relaciones entre objetos. Por ejemplo, " P^1_1 " podría representar la propiedad "es mendocino". Los predicados pueden ser unarios, binarios o de mayor aridad, dependiendo del número de argumentos que toman.

Made with Gamma

Gramática del Lenguaje

Términos

Los *términos* son las expresiones que denotan objetos del dominio. Son las unidades básicas que se usan para construir fórmulas bien formadas. Se pueden formar a partir de constantes, variables y la aplicación de funciones.

- 1. Las constantes y las variables son términos.
- 2. Si t_1 , ..., t_n son términos y f^n $_i$ es un símbolo de función, entonces f^n $_i$ $(t_1$, ..., t_n) es un término.

Fórmulas Bien Formadas

Las *fórmulas bien formadas* son las expresiones que se utilizan para expresar relaciones entre objetos y propiedades. Se construyen a partir de átomos y mediante la aplicación de conectivas lógicas y cuantificadores.

- Si t₁, ..., t_n son términos y Pⁿ_i es un símbolo de predicado, entonces Pⁿ_i (t₁, ..., t_n) es una fórmula bien formada (átomo).
- 2. Si A y B son fórmulas bien formadas, entonces $(\neg A)$, $(A \land B)$, $(A \land B)$, $(A \rightarrow B)$ y $(A \leftrightarrow B)$ también lo son.
- 3. Si A es una fórmula bien formada y x es un símbolo de variable, entonces (∀x) A y (∃x) A son fórmulas bien formadas.

Made with Gamma

3

Alcance de los Cuantificadores

Los cuantificadores, \forall (universal) y \exists (existencial), determinan el ámbito de aplicación de una variable dentro de una fórmula. El alcance del cuantificador define las variables que quedan ligadas por él. Por ejemplo, en la fórmula $(\forall x)$ $(P^1_{1}(x) \rightarrow P^1_{2}(x))$, el cuantificador universal \forall liga la variable x, mientras que en la fórmula $(\forall x)$ $P^1_{1}(x) \rightarrow P^1_{2}(x)$, el cuantificador liga solo la primera ocurrencia de x. Las variables que no están *ligadas* por un cuantificador se denominan variables *libres*.

Made with Gamma

4

Fórmulas Abiertas y Cerradas

Fórmulas Abiertas

Las *fórmulas abiertas* contienen al menos una variable libre. Estas fórmulas no tienen un valor de verdad definido hasta que las variables libres no son reemplazadas por constantes o términos. Por ejemplo, la fórmula P_1 (x) es abierta, ya que x es una variable libre.

Fórmulas Cerradas

Las *fórmulas cerradas*, también conocidas como sentencias, no tienen variables libres. Todas las variables están ligadas por cuantificadores. Las sentencias tienen un valor de verdad definido, ya sea verdadero o falso. Por ejemplo, $(\forall x)$ $(P_1^1(x) \rightarrow P_2^1(x))$ es una fórmula cerrada.

Made with Gamma

_

Ejemplos de Representación Aritmética

Fórmula	Interpretación
$\forall P_{1}^{2}(f_{1}^{1}(c_{1}), c_{1})$	El sucesor del cero no es igual a cero.
$(\forall x) P_{1}^{2} (f_{1}^{2} (x, c_{1}), x)$	El cero es el neutro de la suma.
$(\forall x)(\forall y) P_{1}^{2}(f_{1}^{2}(x,y), f_{1}^{2}(y,x))$	La suma es conmutativa.
$(\forall x)(\forall y) P_{1}^{2} (f_{1}^{2} (x, f_{1}^{1} (y)), f_{1}^{1} (f_{1}^{2} (x, y)))$	La suma de x y el sucesor de y es igual al sucesor de la suma de x e y.
$(\forall x) P_{1}^{2} (f_{2}^{2} (x, c_{1}), c_{1})$	Todo número multiplicado por cero da cero.
$(\forall x) P_{1}^{2} (f_{2}^{2}(x, f_{1}^{1}(c_{1})), x)$	El uno es el neutro de la multiplicación.

Made with Gamma

6

Conclusiones

El lenguaje simbólico de la lógica de predicados, con su alfabeto, gramática y semántica, proporciona un marco formal para expresar y manipular razonamientos sobre relaciones y propiedades entre objetos. Este lenguaje, al igual que un lenguaje natural, se basa en símbolos y reglas para construir enunciados con significado preciso. Su capacidad para expresar ideas complejas, como las propiedades de la aritmética o las relaciones entre personas, lo convierte en una herramienta esencial para el estudio de la lógica matemática y la inteligencia artificial.

8