Indian Institute of Technology Delhi MAL 526 Computer Based Operations Research II Semester 2014-2015

	Major Examination
	Weightage: 40% Time: 6 P.M. 8 P.M.
	Date: 30. 4.15
Q1.	(a) Let C ₁ , C ₂ and C ₃ be conditions such that C ₁ : Primal feasibility, C ₂ : Dual Feasibility, and C ₃ : Complementary Slack-ness. Then (i) Simplex method maintains in each iteration conditions and and stops when condition is satisfied. [1]
	(ii) Dual Simplex method maintains in each iteration conditions and stops when condition is satisfied. [1]
	(iii)Primal Dual method maintains in each iteration conditions and stops when condition is satisfied. [1]
(b)	Consider the LPP Min C ^T X Sub to AX=b,
	$L < x_i < U$, $i=1,2,,n$, where L and U are two fixed positive real numbers. If the above LPP is feasible, then prove that it admits an optimal solution. [2]
(c)	For a connected node weighted (demand/supply), edge weighted (cost) directed graph D which is an instance of the minimum cost flow problem, not every rooted spanning tree of D gives rise to a basic feasible solution. Give an example to illustrate this.
(d)	Describe the method of obtaining GOMORY CUT while solving ILP using cuttir plane method. [2]
(e)	Describe the branch and bound method of solving ILP. [3]
92.	Solve the following LPP using Dual Simplex Method.
	Minimize $2x_1 + 3x_2 + 4x_3$

subject to $x_1 + 2x_2 + x_3 \ge 3$ $2x_1-x_2+3x_3 \ge 4$ $x_i \ge 0$, i=1,2,3,4. Q3. Solve the following LPP by simplex method.

Minimize
$$x_1 + x_2 - 4 x_3$$

Subject to
$$x_1 + x_2 + 2x_3 \le 9$$

 $x_1 + x_2 - x_3 \le 2$
 $-x_1 + x_2 + x_3 \le 4$
 $x_1, x_2, x_3 \ge 0$

[4]

Q4. Solve the following problem using Primal Dual Method.

Minimize
$$3x_1 + 4x_2 + 6x_3 + 7x_4 + x_5$$

Subject to
$$2x_1-x_2+x_3+6x_4-5x_5-x_6=6$$
 $x_1+x_2+2x_3+x_4+2x_5-x_7=3$

$$x_i \ge 0$$
, $i=1,2,3,4,5,6,7$.

[8]

Q5. Describe the Simplex method for transportation problem. Use the Network simplex method for transportation problem to solve the transportation problem whose cost matrix is given by (use north-west Rule for starting feasible solution)

10	12	-13-	8	14	19
15	18	12	16	19	20
17	16	13	14	10	18
19	18	20	21	12	13

$$s=$$
 18
 22
 39
 14
 $d=$
 10
 11
 13
 20
 24
 15

[6]

Q6. Describe the Hungarian method to solve Assignment problem. Use this method to solve the assignment problem whose cost matrix is given by [6]

2	3	5	1	4
-1	1	3	6	2
-2	4	3	5	0
1	3	4	1	4
7	1	2	1	2

3