CS 228 : Logic in Computer Science

Krishna. S

What is this course about? A mini-zoo of logics.

What is this course about? A mini-zoo of logics. Here are some typical questions you will learn to answer:

2/2

What is this course about? A mini-zoo of logics. Here are some typical questions you will learn to answer:

▶ Q1: Given a formula φ in a logic L, is φ satisfiable?

2/2

- ▶ Q1: Given a formula φ in a logic L, is φ satisfiable?
- ▶ Q2: Given a formula φ in a logic L, is φ valid?

- ▶ Q1: Given a formula φ in a logic L, is φ satisfiable?
- ▶ Q2: Given a formula φ in a logic L, is φ valid?
- Q3: How easy is to answer Q1 and Q2?

- ▶ Q1: Given a formula φ in a logic L, is φ satisfiable?
- ▶ Q2: Given a formula φ in a logic L, is φ valid?
- Q3: How easy is to answer Q1 and Q2?
- Q4: Can you write an algorithm to answer Q1 and Q2?

- ▶ Q1: Given a formula φ in a logic L, is φ satisfiable?
- ▶ Q2: Given a formula φ in a logic L, is φ valid?
- Q3: How easy is to answer Q1 and Q2?
- Q4: Can you write an algorithm to answer Q1 and Q2?
- Q5: Can you "prove" any factually correct statement using the chosen logic L?

- ▶ Q1: Given a formula φ in a logic L, is φ satisfiable?
- ▶ Q2: Given a formula φ in a logic L, is φ valid?
- Q3: How easy is to answer Q1 and Q2?
- Q4: Can you write an algorithm to answer Q1 and Q2?
- Q5: Can you "prove" any factually correct statement using the chosen logic L?
- Q6: How is logic L used in computer science?

- ▶ Q1: Given a formula φ in a logic L, is φ satisfiable?
- ▶ Q2: Given a formula φ in a logic L, is φ valid?
- Q3: How easy is to answer Q1 and Q2?
- Q4: Can you write an algorithm to answer Q1 and Q2?
- Q5: Can you "prove" any factually correct statement using the chosen logic L?
- Q6: How is logic L used in computer science?
- Q7: What are the techniques needed to go about these questions?

We will restrict ourselves to the following members:

▶ Propositional Logic

- ▶ Propositional Logic
- ► First Order Logic

- ► Propositional Logic
- ► First Order Logic
- Monadic Second Order Logic

- Propositional Logic
- First Order Logic
- Monadic Second Order Logic
- ► Linear Temporal Logic

We will restrict ourselves to the following members:

- Propositional Logic
- First Order Logic
- Monadic Second Order Logic
- ▶ Linear Temporal Logic
- Their applications in CS

More if time permits!

References

- ► To start with, the text book of Huth and Ryan : Logic for CS. Already on Piazza.
- ▶ As we go ahead, lecture notes/monographs/other text books.
- Confirmed TAs: Karan Vaidya, Sai Sandeep Reddy, Saptarshi Sarkar, Shantanu Thakoor, Sourabh Ghurye, Vrunda Dave.
- ► Classes: Slot 6. Tutorial: Slot 14B (Fridays: 5.30 pm-7.00 pm)
- Who is the CR?

Propositional Logic

Finite set of propositional variables p, q, \dots

6/2

- Finite set of propositional variables p, q, \dots
- ► Each of these can be true/false

- Finite set of propositional variables p, q, \dots
- Each of these can be true/false
- ▶ Combine propositions using \neg , \lor , \land , \rightarrow

- Finite set of propositional variables p, q, \dots
- Each of these can be true/false
- ▶ Combine propositions using \neg , \lor , \land , \rightarrow
- Parantheses as required

- ▶ Finite set of propositional variables *p*, *q*, . . .
- Each of these can be true/false
- ▶ Combine propositions using \neg , \lor , \land , \rightarrow
- Parantheses as required
- ▶ Example : $[p \land (q \lor r)] \rightarrow [\neg r \land p]$
- ▶ ¬ binds tighter than \vee , \wedge , which bind tighter than \rightarrow . In the absence of parantheses, $p \rightarrow q \rightarrow r$ is read as $p \rightarrow (q \rightarrow r)$

Natural Deduction

▶ If it rains, Tia is outside and does not have any raingear with her, she will get wet. $\varphi = (R \land TiaOut \land \neg RG) \rightarrow TiaWet$

7/2

Natural Deduction

- ▶ If it rains, Tia is outside and does not have any raingear with her, she will get wet. $\varphi = (R \land TiaOut \land \neg RG) \rightarrow TiaWet$
- It is raining, and Tia is outside, and is not wet. ψ = (R ∧ TiaOut ∧ ¬TiaWet)

Natural Deduction

- ▶ If it rains, Tia is outside and does not have any raingear with her, she will get wet. $\varphi = (R \land TiaOut \land \neg RG) \rightarrow TiaWet$
- ▶ It is raining, and Tia is outside, and is not wet. $\psi = (R \land TiaOut \land \neg TiaWet)$
- So, Tia has her rain gear with her. RG
- ▶ Thus, $\chi = \varphi \wedge \psi \rightarrow RG$. You can deduce RG from $\varphi \wedge \psi$.
- ▶ Is χ valid? Is χ satisfiable?

An Application : Propositional Logic

Consider the following kid's version of Sudoku.

	2	4	
1			3
4			2
	1	3	

Rules:

- Each row must contain all numbers 1-4
- ► Each column must contain all numbers 1-4
- ► Each 2 × 2 block must contain all numbers 1-4
- No cell contains 2 or more numbers

1	2	3	4
4	3	2	1
3	4	1	2
2	1	4	3

▶ Proposition P(i,j,n) is true when cell (i,j) has number n

- ▶ Proposition P(i, j, n) is true when cell (i, j) has number n
- ▶ $4 \times 4 \times 4$ propositions

- ▶ Proposition P(i, j, n) is true when cell (i, j) has number n
- ▶ 4 × 4 × 4 propositions
- Each row must contain all 4 numbers
 - ▶ Row 1: $[P(1,1,1) \lor P(1,2,1) \lor P(1,3,1) \lor P(1,4,1)] \land$ $[P(1,1,2) \lor P(1,2,2) \lor P(1,3,2) \lor P(1,4,2)] \land$ $[P(1,1,3) \lor P(1,2,3) \lor P(1,3,3) \lor P(1,4,3)] \land$ $[P(1,1,4) \lor P(1,2,4) \lor P(1,3,4) \lor P(1,4,4)]$

- ▶ Proposition P(i, j, n) is true when cell (i, j) has number n
- ▶ $4 \times 4 \times 4$ propositions
- ► Each row must contain all 4 numbers
 - ▶ Row 1: $[P(1,1,1) \lor P(1,2,1) \lor P(1,3,1) \lor P(1,4,1)] \land$ $[P(1,1,2) \lor P(1,2,2) \lor P(1,3,2) \lor P(1,4,2)] \land$ $[P(1,1,3) \lor P(1,2,3) \lor P(1,3,3) \lor P(1,4,3)] \land$ $[P(1,1,4) \lor P(1,2,4) \lor P(1,3,4) \lor P(1,4,4)]$
 - ► Row 2: [P(2, 1, 1) ∨ . . .
 - ► Row 3: [P(3, 1, 1) ∨ . . .
 - ► Row 4: [P(4, 1, 1) ∨ . . .

Each column must contain all numbers 1-4

Each column must contain all numbers 1-4

```
► Column 1: [P(1,1,1) \lor P(2,1,1) \lor P(3,1,1) \lor P(4,1,1)] \land [P(1,1,2) \lor P(2,1,2) \lor P(3,1,2) \lor P(4,1,2)] \land [P(1,1,3) \lor P(2,1,3) \lor P(3,1,3) \lor P(4,1,3)] \land [P(1,1,4) \lor P(2,1,4) \lor P(3,1,4) \lor P(4,1,4)]
```

Each column must contain all numbers 1-4

- ► Column 1: $[P(1,1,1) \lor P(2,1,1) \lor P(3,1,1) \lor P(4,1,1)] \land [P(1,1,2) \lor P(2,1,2) \lor P(3,1,2) \lor P(4,1,2)] \land [P(1,1,3) \lor P(2,1,3) \lor P(3,1,3) \lor P(4,1,3)] \land [P(1,1,4) \lor P(2,1,4) \lor P(3,1,4) \lor P(4,1,4)]$
- ► Column 2: [*P*(1, 2, 1) ∨ . . .
- Column 3: [P(1,3,1) ∨ . . .
- **▶** Column 4: [*P*(1, 4, 1) ∨ . . .

Each 2 × 2 block must contain all numbers 1-4

Each 2×2 block must contain all numbers 1-4

Upper left block contains all numbers 1-4:

$$[P(1,1,1) \lor P(1,2,1) \lor P(2,1,1) \lor P(2,2,1)] \land [P(1,1,2) \lor P(1,2,2) \lor P(2,1,2) \lor P(2,2,2)] \land [P(1,1,3) \lor P(1,2,3) \lor P(2,1,3) \lor P(2,2,3)] \land [P(1,1,4) \lor P(1,2,4) \lor P(2,1,4) \lor P(2,2,4)]$$

Each 2 × 2 block must contain all numbers 1-4

Upper left block contains all numbers 1-4:

$$\begin{split} &[P(1,1,1)\vee P(1,2,1)\vee P(2,1,1)\vee P(2,2,1)]\wedge\\ &[P(1,1,2)\vee P(1,2,2)\vee P(2,1,2)\vee P(2,2,2)]\wedge\\ &[P(1,1,3)\vee P(1,2,3)\vee P(2,1,3)\vee P(2,2,3)]\wedge\\ &[P(1,1,4)\vee P(1,2,4)\vee P(2,1,4)\vee P(2,2,4)] \end{split}$$

Upper right block contains all numbers 1-4:

$$[P(1,3,1) \lor P(1,4,1) \lor P(2,3,1) \lor P(2,4,1)] \land \dots$$

Lower left block contains all numbers 1-4:

$$[P(3,1,1) \lor P(3,2,1) \lor P(4,1,1) \lor P(4,2,1)] \land \dots$$

▶ Lower right block contains all numbers 1-4:

$$[P(3,3,1) \lor P(3,4,1) \lor P(4,3,1) \lor P(4,4,1)] \land \dots$$

No cell contains 2 or more numbers

► For cell(1,1):

$$P(1,1,1) \rightarrow [\neg P(1,1,2) \land \neg P(1,1,3) \land \neg P(1,1,4)] \land \\ P(1,1,2) \rightarrow [\neg P(1,1,1) \land \neg P(1,1,3) \land \neg P(1,1,4)] \land \\ P(1,1,3) \rightarrow [\neg P(1,1,1) \land \neg P(1,1,2) \land \neg P(1,1,4)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,1) \land \neg P(1,1,2) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,1) \land \neg P(1,1,2) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,1) \land \neg P(1,1,2) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,1) \land \neg P(1,1,2) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,1) \land \neg P(1,1,2) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,1) \land \neg P(1,1,2) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,1) \land \neg P(1,1,2) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,1) \land \neg P(1,1,2) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,1) \land \neg P(1,1,2) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,1) \land \neg P(1,1,2) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,2) \land \neg P(1,1,3) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,2) \land \neg P(1,1,3) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,3) \land \neg P(1,1,3) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,3) \land \neg P(1,1,3) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,3) \land \neg P(1,1,3) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,3) \land \neg P(1,1,3) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,3) \land \neg P(1,1,3) \land \neg P(1,1,3)] \land \\ P(1,1,4) \rightarrow [\neg P(1,1,3) \land \neg P(1,1,3) \land \neg P(1,1,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,1,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,1,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,1,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,3)] \land \\ P(1,1,3) \rightarrow [\neg P(1,3,3) \land \neg P(1,3,3) \land \neg P(1,3,$$

Similar for other cells

Encoding Initial Configuration:

$$P(1,2,2) \land P(1,3,4) \land P(2,1,1) \land P(2,4,3) \land$$

$$P(3,1,4) \wedge P(3,4,2) \wedge P(4,2,1) \wedge P(4,3,3)$$

Solving Sodoku

To solve the puzzle, just conjunct all the above formulae and find a satisfiable truth assignment!

▶ In natural deduction, we have a collection of proof rules

- ▶ In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae

- ▶ In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae
- Given a set of premises, we deduce some formulae using proof rules. Recall how we deduced that Tia had rain gear with her, from the given premises

- ▶ In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae
- Given a set of premises, we deduce some formulae using proof rules. Recall how we deduced that Tia had rain gear with her, from the given premises
- ▶ $\varphi_1, \dots, \varphi_n \vdash \psi$: This is called a sequent. Given $\varphi_1, \dots, \varphi_n$, we can deduce or prove ψ . What was the sequent in Tia's case?

- In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae
- Given a set of premises, we deduce some formulae using proof rules. Recall how we deduced that Tia had rain gear with her, from the given premises
- ▶ $\varphi_1, \dots, \varphi_n \vdash \psi$: This is called a sequent. Given $\varphi_1, \dots, \varphi_n$, we can deduce or prove ψ . What was the sequent in Tia's case?
- ▶ For example, $\neg p \rightarrow q, q \rightarrow r, \neg r \vdash p$ is a sequent. How do you prove this?

- ▶ In natural deduction, we have a collection of proof rules
- These proof rules allow us to infer formulae from some given formulae
- Given a set of premises, we deduce some formulae using proof rules. Recall how we deduced that Tia had rain gear with her, from the given premises
- ▶ $\varphi_1, \dots, \varphi_n \vdash \psi$: This is called a sequent. Given $\varphi_1, \dots, \varphi_n$, we can deduce or prove ψ . What was the sequent in Tia's case?
- ► For example, $\neg p \rightarrow q, q \rightarrow r, \neg r \vdash p$ is a sequent. How do you prove this?
- ▶ Proof rules to be carefully chosen, for instance you shouldnt end up proving something like $p \land q \vdash \neg q$

Rules for Natural Deduction

The and introduction rule denoted $\wedge i$

Rules for Natural Deduction

The and elimination rule denoted $\wedge e_1$

$$\frac{\varphi \wedge \psi}{\varphi}$$

The and elimination rule denoted $\wedge e_2$

$$\frac{\varphi \wedge \psi}{\psi}$$

A first proof using $\land i, \land e_1, \land e_2$

▶ Show that $p \land q, r \vdash q \land r$

- 1. $p \wedge q$ premise
- 2.

A first proof using $\wedge i$, $\wedge e_1$, $\wedge e_2$

▶ Show that $p \land q, r \vdash q \land r$

```
1. p \wedge q premise
```

2. r premise

3.

A first proof using $\land i, \land e_1, \land e_2$

▶ Show that $p \land q, r \vdash q \land r$

```
1. p \wedge q premise
2. r premise
```

3. $q \wedge e_2$ 1

4.

A first proof using $\land i, \land e_1, \land e_2$

▶ Show that $p \land q, r \vdash q \land r$

```
1. p \land q premise 2. r premise
```

3.
$$q \wedge e_2$$
 1

4.
$$q \wedge r \wedge i 3,2$$

Rules for Natural Deduction

The rule of double negation elimination $\neg \neg e$

$$\frac{\neg\neg\varphi}{\varphi}$$

The rule of double negation introduction $\neg \neg i$

$$\frac{\varphi}{\neg\neg\varphi}$$

Rules for Natural Deduction

The implies elimination rule or Modus Ponens MP

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1. $p \rightarrow (q \rightarrow \neg \neg r)$ premise

2.

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

- 1. $p \rightarrow (q \rightarrow \neg \neg r)$ premise
- 2. $p \rightarrow q$ premise
- 3.

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	$p ightarrow (q ightarrow \lnot \lnot r)$	premise
2	$n \rightarrow a$	nramica

3. p

premise

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	$p ightarrow (q ightarrow \lnot \lnot r)$	premise
2.	${m ho} o {m q}$	premise
3.	p	premise
4	$a \rightarrow \neg \neg r$	MP 1 3

5.

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	p o (q o eg eg r)	premise
2.	$ extcolor{p} ightarrow extcolor{q}$	premise
3.	p	premise
4.	$q ightarrow \lnot \lnot r$	MP 1,3
5.	q	MP 2,3
6.		

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	$ ho ightarrow (q ightarrow \lnot \lnot r)$	premise
2.	$ extcolor{p} ightarrow extcolor{q}$	premise
3.	p	premise
4.	$q ightarrow \lnot \lnot r$	MP 1,3
5.	q	MP 2,3
6.	$\neg \neg r$	MP 4,5
7		

▶ Show that $p, p \rightarrow q, p \rightarrow (q \rightarrow \neg \neg r) \vdash r$

1.	$p ightarrow (q ightarrow \lnot \lnot r)$	premise
2.	extstyle p o q	premise
3.	p	premise
4.	$q ightarrow \lnot \lnot r$	MP 1,3
5.	q	MP 2,3
6.	$\neg \neg r$	MP 4,5
7.	r	¬¬ <i>e</i> 6

Rules for Natural Deduction

Another implies elimination rule or Modus Tollens MT

▶ Show that $p \rightarrow \neg q, q \vdash \neg p$

- 1. $p \rightarrow \neg q$ premise
- 2.

▶ Show that $p \rightarrow \neg q, q \vdash \neg p$

- 1. $p \rightarrow \neg q$ premise
- 2. q premise
- 3.

▶ Show that $p \rightarrow \neg q, q \vdash \neg p$

1.	p ightarrow eg q	premise
2.	q	premise
3.	$\neg \neg q$	¬¬ <i>i</i> 2

4.

▶ Show that $p \rightarrow \neg q, q \vdash \neg p$

1.	$oldsymbol{p} ightarrow eg oldsymbol{q}$	premise
2.	q	premise
3.	$\neg \neg q$	¬¬ <i>i</i> 2
4.	$\neg \sigma$	MT 1.3