Cvičenie č. 1 (iterácia, zlatý rez)

A) Iteračná schéma I

Úlohou bolo naprogramovať iteračnú schému $g_{n+1}=g_{n-1}-g_n$, ktorá počíta g_n pre $n\to\infty$, kedy $g_n\to0$. Pri takomto počítaní však vznikajú numerické nestability a výpočet pre veľké n exponenciálne vzrastá, vznikajú oscilácie.

Na grafoch vidieť, kedy začnú tieto nestability vznikať, ak máme dané hodnoty g_0 a g_1 . Pri presnosti g_1 na 8 desatinných miest schéma zlyháva skôr – pri $n{\sim}30$. Pri väčšej presnosti (na 16 desatinných miest) začne zlyhávať neskôr – pri $n{\sim}65$.

B) Iteračná schéma II

Ďalej sme podobným spôsobom pracovali so schémou $x_{n+1}=a$. x_n-x_{n-1} a overovali výsledok pre rôzne hodnoty čísla a. Postupnosť x_n osciluje.

Pre hodnoty |a| < 2 by mala byť schéma stabilná. Pre a blízke 0 bude postupnosť nadobúdať približne hodnoty $\pm x_1$ a 0. Pre hodnoty |a| > 2 schéma stabilná nie je.

C) Úloha 1-ITER

Táto úloha je zameraná na riešenie rovníc pomocou iterácií.

Majme rovnice

$$x_{n+1} - [4+0.1\cos(\pi n)]x_n + x_{n-1} = 0$$
 (1)

$$x_0 = X \tag{2}$$

Postupnosť čísel $x_0, x_1, ..., x_n$ pre $n \to \infty$ konverguje do 0. Keby sme postupovali ako v úlohe **A)**, dostali by sme tomu ekvivalentný výsledok, preto využijeme možnosť iterovať opačným smerom.

Povedzme, že začneme v 0 a chceme skončiť v 4, čiže $x_0=4$ a $x_N=0$, kde $N\gg 0$. Zvoľme si predposledný člen $x_{N-1}=0.678$. Potom

$$x_{N-2} = [4 + 0.1\cos(\pi(N-1))]x_{N-1} - x_N$$

a každý nasledujúci člen, resp. predchádzajúci, dostaneme ako

$$x_{N-n} = [4+0.1\cos(\pi(N-n+1))]x_{N-n+1} - x_{N-n+2}$$
 pre $n=2,3,...N$

To bude náš prvý krok. Po prebehnutí výpočtu dostaneme posledný člen x_0^* , ktorý predstavuje maximum.

V tomto konkrétnom prípade je to cca $x_0^*=5.6*10^{34}$. Výpočet musíme zrealizovať tak, aby posledná hodnota bola rovná $x_0=4$, takže všetky čísla vynásobíme výrazom $\frac{x_0}{x_0^*}$, resp. stačí, keď tak urobíme pre hodnoty vstupujúce do cyklu: $x_{N-1}=x_{N-1}*\frac{x_0}{x_0^*}$ a $x_N=0$. Dostaneme postupnosť s nami zvolenou počiatočnou hodnotou.

