GEOMETRÍA Y TOPOLOGÍA DE SUPERFICIES 2016/17 RELACIÓN 3.

- **Ejercicio 1.** Probar que si $f: X \longrightarrow S^n$ no es epiyectiva entonces es homotópica a la aplicación constante.
- Ejercicio 2. Probar que todo retracto de un espacio métrico es un subespacio cerrado.
- Ejercicio 3. Probar que A es retracto de X si y sólo si toda función continua de A en un espacio arbitrario Z admite una extensión continua sobre X.
- Ejercicio 4. Probar que si A y B son retractos de deformación de X e Y respectivamente, entonces $A \times B$ es retracto de deformación de $X \times Y$.
- Ejercicio 5. Probar que si A es retracto de deformación de X y B lo es de A, entonces B lo es de X.
- Ejercicio 6. Dar un ejemplo de un espacio X y de dos subconjuntos A y B homeomorfos tales que A sea retracto de deformación de X y B no lo sea.
- **Ejercicio 7.** Probar que S^{n-1} es retracto de deformación de $\mathbb{R}^n \{0\}$. Encontrar retractos de deformación (compactos) de los siguientes espacios.
 - (1) $\mathbb{R}^2 \{p_1, p_2, \dots, p_k\},\$
 - (1) $\mathbb{R}^3 = \{P^1, P^2, \dots, P^n\},$ (2) $S^1 \times S^1 \{*\}$ (el toro menos un punto), (3) $\mathbb{R}^3 OZ, \mathbb{R}^3 S^1 \vee S^1,$

 - (4) la banda de Möbius y la banda de Möbius menos un punto,
 - (5) $\mathbb{R}^3 (OZ \cup S^1)$,
 - (6) el complementario de un disco en el plano proyectivo y
 - (7) el complementario en \mathbb{R}^3 de dos rectas paralelas.
- Ejercicio 8. Probar que si X es contráctil e Y arcoconexo, dos aplicaciones cualesquiera de X en Y son homotópicas.
- Ejercicio 9. Indicar cuántos elementos tiene el conjunto de las clases de homotopía de aplicaciones continuas de $(S^1, \{1\})$ en (X, *) rel. $\{1\}$, en los casos siguientes:
 - (1) X tiene la topología discreta.
 - (2) X tiene la topología indiscreta.
- **Ejercicio 10.** Sea $f: X \longrightarrow Y$ una aplicación continua. Sobre la unión disjunta $(X \times I) \sqcup Y$ se considera la relación de equivalencia generada por la relación resultante de identificar (x, 1) con f(x). El espacio cociente obtenido se llama cilindro de la aplicación f, y se denotará por M_f . Probar que Y es retracto de deformación de M_f .
- **Ejercicio 11.** Probar que toda aplicación continua $f: Y_0 \longrightarrow Y_1$ da lugar a una aplicación $f_*:$ $[X, Y_0] \longrightarrow [X, Y_1]$ con las siguientes propiedades :
 - (1) Si $f': Y_0 \longrightarrow Y_1$ es homotópica a f, entonces $f_* = f'_*$.
 - (2) Para $id: Y \longrightarrow Y$ se tiene que id_* es la identidad.
 - (3) Si $g: Y_1 \longrightarrow Y_2$ es continua, entonces $(gf)_* = g_*f_*$.
 - (4) Si f es una equivalencia de homotopía, entonces f_* es biyectiva.
- (1) Si $f: Y_0 \longrightarrow Y_1$ es tal que f_* es biyectiva para todo X, entonces f es una equivalencia de homotopía.
 - (2) Si $g: X_0 \longrightarrow X_1$ es tal que g^* es biyectiva para todo Y, entonces g es una equivalencia de
- Ejercicio 13. Probar que las siguientes aplicaciones son equivalencias de homotopía:

- (1) Toda aplicación continua que sea homotópica a una equivalencia de homotopía.
- (2) Toda aplicación continua entre espacios contráctiles.

Ejercicio 14. Sean $f_1, g_1 : X_1 \longrightarrow Y_1$ y $f_2, g_2 : X_2 \longrightarrow Y_2$ aplicaciones continuas tales que $f_1 \sim g_1$ y $f_2 \sim g_2$. Probar que $f_1 \times f_2 \sim g_1 \times g_2$. Como consecuencia, si f_1 y f_2 son equivalencias de homotopía, también lo es $f_1 \times f_2$. Así pues, $X \times Y$ es contráctil si y sólo si X e Y lo son.

Ejercicio 15. Se dice que el par (X, A) tiene la *Propiedad de Extensión de Homotopía* (PEH) si para toda aplicación continua $f: X \longrightarrow Y$ en un espacio arbitrario Y y toda homotopía $F: A \times I \longrightarrow Y$ de la aplicación f|A, existe una homotopía $G: X \times I \longrightarrow Y$ que extiende a $F \cup f$. Probar que si A es cerrado, (X, A) tiene la PEH si y sólo si $(X \times 0) \bigcup A \times I$ es retracto de $X \times I$

Ejercicio 16. Sea $A \subseteq X$ cerrado y * un punto de A considerado como punto base de X. Supongamos que (X, A) tiene la PEH y que $\{*\}$ es un retracto de deformación fuerte de A. Entonces $p:(X, *) \longrightarrow (X/A, [A])$ es una equivalencia de homotopía.

Ejercicio 17. Sea $\Pi_0(X)$ el conjunto de las componentes conexas por caminos de X. Dada una aplicación $f: X \to Y$ sea $f_*: \Pi_0(X) \to \Pi_0(Y)$ la aplicación que lleva la componente C_x en la componente $C_{f(x)}$. Probar las siguientes propiedades:

- (1) $(g \circ f)_* = g_* \circ f_*$.
- (2) Si f es homotópica a g entonces $f_* = g_*$.
- (3) Si f es una equivalencia de homotopía entonces f_* es una biyección. Además C_x es del mismo tipo de homotopía que $C_{f(x)}$.

Ejercicio 18. Probar que un retracto de un espacio contráctil es contráctil.