Beampattern of ULA

main properties

[No Title]

ADSP

ULA Beampattern

Assumptions:

- Single source $s(t) = e^{\int \omega t}$
- Frequency relations: $\omega = 2\pi \cdot f = 2\pi \cdot c/\lambda$
- Wavenumber λ
- Speed of propagation: $c \ (\approx 343 \ [\text{m/sec}])$
- Directional Of Arrival (DOA): θ
- Far field ⇒ Plane wave
- ULA with distance d between sensors
- J omnidirectional sensors
- Array aperture size: $L = J \cdot d$
- No noise, no interferences: $\underline{\mathbf{x}}[k] = \underline{\mathbf{a}}(\theta) \cdot s[k]$
- ASP unit: Single complex weight for each sensor

国为证明心底图(财运生产和报》

ADSP

ULA Beampattern

$$\text{with: } (\underline{\mathbf{a}}(\theta))_i = \sum_{i=1}^J w_i^* x_i[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta) \cdot s[k]$$

ADSP

ULA Beampattern

Thus:
$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta) \cdot s[k] = r(\theta) \cdot s[k]$$

Array response:
$$r(\theta) = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)$$

Other names: angular repsonse or directivity pattern

Array beam pattern:
$$B\!\!\!/(heta)=rac{1}{J^2}\cdot |r(heta)|^2$$

$$\alpha(\theta) = e^{-jw(i-1)} \frac{d sin \theta}{c}$$

Other names: angular repsonse of directivity pattern

Array beam pattern:
$$B(\theta) = \frac{1}{J^2} \cdot |r(\theta)|^2$$

Comparison with FIR:

Frequency response: $W(\omega) = \sum_{i=1}^{J} w_i e^{-j\omega(i-1)T} = \underline{\mathbf{w}}^t \cdot \underline{\mathbf{a}}(\omega)$

With $a_i(\omega) = (\underline{\mathbf{a}}(\omega))_i = e^{-j\omega\cdot(i-1)\cdot T}$

with
$$a_i(\omega) = (\underline{\mathbf{a}}(\omega))_i = \mathrm{e}^{-\mathrm{j}\omega \cdot (i-1) \cdot T}$$

 \Rightarrow Depending on ω , **not** on θ !

ADSP

ULA Beampattern

Notes:

- Array response vector: (noise free) response to unit-amplitude plane wave from direction θ
- Nonideal sensor characteristics can be incorporated
- Weights effect both temporal and spatial response
- \bullet Vector space interpretation: Angle between $\underline{\mathbf{w}}$ and $\underline{\mathbf{a}}$ determine response

To evaluate beampattern: choose all weights equal

$$\underline{\mathbf{w}} = (1, \cdots, 1)^t$$

ADSP

ULA Beampattern

$$B(\theta) = \frac{1}{J^2} |\underline{\mathbf{1}}^t \cdot \underline{\mathbf{a}}(\theta)|^2 = \frac{1}{J^2} \left| \sum_{i=1}^J e^{-\mathbf{j}2\pi(i-1)\frac{d}{\lambda}\sin(\theta)} \right|^2$$

$$= \frac{1}{J^2} \left| \frac{1 - e^{-jJ2\pi \frac{d}{\lambda}\sin(\theta)}}{1 - e^{-j2\pi \frac{d}{\lambda}\sin(\theta)}} \right|^2 = \frac{1}{J^2} \left| \frac{\sin(J\pi \frac{d}{\lambda}\sin(\theta))}{\sin(\pi \frac{d}{\lambda}\sin(\theta))} \right|^2$$

Important parameters:

- \bullet DOA θ
- Ratio $\frac{d}{\lambda}$ (everything scales with wavelength)
- Number of sensors J
- Element spacing d
- \bullet Array aperture $L = J \cdot d$

ADSP

ULA Beampattern

Example: J=2 and $\frac{d}{\lambda}=\frac{1}{4}$ B = abs(a'*w*w'*a)

polar(theta,B)

ADSP

ULA Beampattern

$$J=$$
 2 and $\frac{d}{\lambda}=\frac{1}{2}$

ADSP

ULA Beampattern

Conclusions:

If
$$\frac{d}{\lambda} \ll \frac{1}{2} \implies$$

- No exact cancelling at $\theta = \pm 90^{\circ}$ in $\frac{1}{3}$ sensor in $\frac{1}{2}$
- Little difference with single sensor case!

If
$$\frac{d}{\lambda} = \frac{1}{2} \Rightarrow \frac{1}{\sqrt{2}} \approx 1$$

- Main lobe beamwidth (DOA 0°): 60°
- Nulls at: $\theta = \pm 90^{\circ}$

ADSP

ULA Beampattern

ADSP

ULA Beampattern

Conclusions:
$$\iint \frac{d}{\lambda} = 1 \Rightarrow \bullet \text{ Nulls migrate to: } \theta = \pm 30^{\circ}$$

• Another two sidelobes at: $\theta = \pm 90^{\circ}$

If
$$\frac{d}{\lambda} > \frac{1}{2} \Rightarrow \bullet$$
 Main lobe beamwidth decreases

● More nulls ⇒ Spatial aliasing は大 事級了芸術派記 sing:

Spatial aliasing:

- Ambiguity in source locations
- Same response for sources at different positions
- Occurs if sensors are too far away (relative to λ)

ADSP

ULA Beampattern

Increase aperture $L=J\cdot d$ by $J\uparrow$, fixed $\frac{a}{\lambda}=\frac{1}{2}$

ADSP

ULA Beampattern

Conclusions Beampattern:

- For $J \uparrow \Rightarrow$ Mainlobe smaller \Rightarrow more sensitive
- \bullet For $J\uparrow \Rightarrow$ array aperture \uparrow
- For $d/\lambda < 1/2 \Rightarrow$ No spatial aliasing
- For $d/\lambda \geq 1 \Rightarrow \text{Pattern repeats at } \theta = \arcsin(\frac{\lambda}{d})$
- $\bullet \text{ Zeros occur at } \theta = \arcsin\left(i \cdot \frac{1}{J} \cdot \frac{\lambda}{d}\right) \text{ with } i \in \mathcal{Z}$
- Main lobe at $\theta = 2\arcsin\left(\frac{1}{J} \cdot \frac{\lambda}{d}\right)$

ADSP

ULA Beampattern

Variable element spacing d, fixed $L = J \cdot d = 10\lambda$

ADSP

ULA Beampattern

Conclusion fixed aperture:

• $d < \frac{\lambda}{2} \Leftrightarrow$ Oversampling:

No additional info 且 sensor 数日並为

• $d > \frac{\lambda}{2} \Leftrightarrow$ Undersampling:

Grating lobes = spatial ambiguities

ADSP

ULA Beampattern

Variable aperture size $L = J \cdot d$ and fixed $d = \frac{\lambda}{2}$

ADSP

ULA Beampattern

Conclusion fixed element spacing:

$$\frac{d}{1} = \frac{1}{2}$$

- Variable aperture ⇔ variable resolution
- $L\uparrow \Leftrightarrow \text{Improved resolution} \Leftrightarrow$ Better angle estimation capabilities

ADSP

ULA Beampattern

Near field:
$$|\underline{\mathbf{p}}| < \frac{2L^2}{\lambda}$$

近场衰减不够

ADSP

ULA Beampattern: frequency dependence

Variable frequency, fixed J and d

ULA Far field: J=5, d=0.035, f=0 to 5000 Hz [gp] (\$)8 -604000 50 2000 0 $f = \frac{c}{\lambda}$ $f [Hz] \qquad 0 \qquad -50$ $\phi [degree]$ $f \Rightarrow 0 \sim 5 \cdots , \qquad \frac{d}{\lambda} = \frac{c}{\lambda} \cdot \frac{d}{c} = f \cdot \frac{0.035}{350} = f \cdot 10^{-4}$ φ [degrees]

ADSP

ULA Beampattern: frequency dependence

Wish: Frequency "independence" over angular range

Use J different FIR filters (each of length N) for each sensor:

空: Jx1

ADSP

ULA Beampattern: frequency dependence

$$\underbrace{a(f, \theta) = [l, e^{-j2\lambda f \cdot d \sin \theta} \cdots e^{-j2\lambda f \cdot (J-1)} \underbrace{d \sin \theta}_{c} \underbrace{d \sin \theta}_{c}]^{t}}_{\text{Nx}} \text{ Array response: } \underline{r(f, \theta) = \underline{\mathbf{w}}^{h} \cdot \underline{\mathbf{a}}(f, \theta)}_{\text{Nx}} \Rightarrow \underbrace{\sum_{i=0}^{J-1} \underbrace{N_{i}^{+1} a_{i}}_{i} a_{i}(f, \theta)}_{\text{Nx}}$$

 \Rightarrow Frequence response for ULA: (T_s is sampling frequency)

$$W(f,\theta) = \sum_{i=0}^{J-1} \sum_{l=0}^{N-1} w_{i,l}^* e^{-j2\pi \cdot f \cdot l \cdot T_s} e^{-j2\pi f \frac{d \sin(\theta)}{c} i}$$
Normalized temporal frequency: $f_1 = f \cdot T_s = \frac{1}{f_s}$
Normalized spatial frequency: $f_2 = \frac{f d \sin(\theta)}{C} = \frac{1}{\sqrt{c}}$

$$\frac{1}{\sqrt{c}} \int_{C} \frac{1}{\sqrt{c} \sin(\theta)} dc$$

ADSP

ULA Beampattern: frequency dependence

$$\Rightarrow W(f_1, f_2) = \sum_{i=0}^{J-1} \sum_{l=0}^{N-1} w_{i,l}^* e^{-\mathrm{j}2\pi l f_1} e^{-\mathrm{j}2\pi i f_2} : 2D\text{-DFT of } w_{i,l}^*$$

Note:
$$f_2 = \left(\frac{d\sin(\theta)}{cT_s}\right) \cdot f_1 \implies \text{Slope through origin of } f_1, f_2 \text{ plane}$$

Choose:
$$T_s = \frac{d}{c} \left(= \frac{d}{\lambda_{min}} \cdot \frac{1}{f_{max}} = \frac{1}{2} \cdot \frac{1}{f_{max}} \right) \implies f_2 = \sin(\theta) \cdot f_1$$

ADSP

Array response with DFT

ULA is related to regular temporal sampling:

Spatial frequency : $U = \frac{\sin(\theta)}{\sqrt{1 + \frac{1}{2}}}$

Normalized spatial frequency : $u = \frac{U}{U} = \frac{d\sin(\theta)}{1}$ [-1,1]

⇒ Steering vector:

$$\underline{\mathbf{a}}(u) = \left(1, e^{-\mathbf{j}2\pi u}, \cdots, e^{-\mathbf{j}2\pi(J-1)u}\right)^t$$

Note: Avoid aliasing $\Rightarrow -\frac{1}{2} \le u \le \frac{1}{2} \Leftrightarrow d \le \frac{\lambda}{2}$

since range of unambiguous angles: $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

ADSP

Array response with DFT

Notes:

X[h]: Z xp[n] e j Zn

• Definition of length *J* DFT:

$$F_l = \sum_{i=0}^{J-1} f_i \mathrm{e}^{-\mathrm{j} \frac{2\pi}{J} i l}$$
 for $l=0,\cdots,J-1$ (resolution $\frac{2\pi}{J}$)

Zero padding for improved resolution: (ス以主 投 体内)

$$F_l = \sum_{i=0}^{J-1} f_i e^{-j\frac{2\pi}{N}il}$$
 for $l = 0, \dots, N-1$

with $N \geq J$ and $f_i \equiv 0$ for $i \geq J \Rightarrow$ resolution $\frac{2\pi}{N}$

ADSP

Array response with DFT

Array response with $u = \frac{d\sin(\theta)}{\epsilon}$:

$$r(u) = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(u) = \sum_{i=1}^J w_i^* \mathrm{e}^{-\mathrm{j} 2\pi(i-1)u} = \sum_{i=2}^{J-\mathrm{j}} w_{i,i}^* \in \mathbb{Z}^{\mathrm{j}} \text{ in } \mathbf{w}$$

$$\text{Zero padded DFT:} \qquad \text{(ii) if } \text{if } \mathbf{w} \text{ if } \mathbf{w$$

With $N \geq J$ and $w_i \equiv 0$ for $i \geq J \Rightarrow$

$$r_l = \sum_{i=0}^{J-1} w_{i+1}^* e^{-j\frac{2\pi}{N}il}$$
 for $l = 0, \dots, N-1$

with
$$l=N\cdot u=N\cdot \frac{d\sin(\theta)}{\lambda}$$
 is an any response and the second of the s

ADSP

Array response with DFT

w=(1/J)*ones(J); abs_r=fftshift(abs(fft(w,N)))

Compute corresponding angle via: $\theta = \arcsin(\frac{l \cdot \lambda}{N \cdot d})$

ADSP

Data independent beamforming

Conventional approach:

- Beamsteering
- Tapering

Other data independent approaches:

- Null-steering
- Array response design

ADSP

Data independent beamforming

w=(1/J)*ones(J); abs_r=fftshift(abs(fft(w,N)))

Compute corresponding angle via: $\theta = \arcsin(\frac{l \cdot \lambda}{N \cdot d})$

ADSP

Data independent beamforming

For ULA choose: $\tau_i = (i-1)\tau \leftrightarrow w_i^* = \mathrm{e}^{\mathrm{j}(i-1)\omega\tau}$

ADSP

Data independent beamforming

$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta) \cdot s[k]$$

$$w_i^* = e^{\mathbf{j}(i-1)\omega\tau}$$

$$B(\theta) = \frac{1}{J^2} |\underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)|^2 = \frac{1}{J^2} \left| \sum_{i=1}^J e^{-\mathbf{j}(i-1)\omega(\frac{d\sin(\theta)}{c} - \tau)} \right|^2$$

Thus mainlobe beampattern shifted over:

$$\theta_0 = \arcsin(\frac{c \cdot \tau}{d})$$

ADSP

Data independent beamforming

Example:
$$J = 4$$
; $d/\lambda = 1/2$; $\tau \leftrightarrow 30^{\circ}$

ADSP

Data independent beamforming

Electronic vs Mechanical beamsteering:

(with omnidirectional sensors)

Delay:
$$e^{-j\omega_0 \frac{d\sin(\theta_0)}{c}} = e^{-j2\pi \frac{d}{\lambda_0}\sin(\theta_0)}$$

Delay is the same for $s_{f 0}$ and $s_{f 1}$

ADSP

Data independent beamforming

$$\Rightarrow w_i^* = e^{j2\pi(i-1)\frac{d}{\lambda}\sin(\theta_0)}$$

ADSP

Data independent beamforming

Result electronic beamsteering:

ADSP

Data independent beamforming

Result mechanical beamsteering:

