

Факультет Систем Управления и Робототехники

«Получение конструктивной постоянной двигателя»

Аннотация — В лабораторной работе мы изучили модель двигателя постоянного тока и построили графики зависимостей некоторых величин

Выполнили

Котуранова М.С. 1 Охрименко А. Д. 2 Авраменко Е. А. 3 Комарова О. И. 4

¹408879, @mariyka_kot 409290, @eva0_duduka 408103, @kate_avr 408835, @O_0lala

Проверил

Овчаров А.О.

Цель работы

Изучить внутреннее устройство и принцип работы электродвигателей постоянного тока на примере мотора EV3. Изучить математическую модель двигателя и конструктивные постоянные.

Теоретические вводные данные

В лабораторной работе рассматривается более полная модель двигателя постоянного тока по сравнению с первой лабораторной работой, а также вычисляются все константы, описывающие двигатель.

Так как новая модель учитывает ЭДС самоиндукции катушки, закон Ома принимает следующий вид(добавляется слагаемое в числителе):

$$I = \frac{Uctrl + Estat + Eself}{R}$$

Система уравнений, описывающих модель ненагруженного двигателя:

$$\begin{cases} \dot{\omega} = \frac{k_m}{J}I\\ \dot{I} = \frac{1}{L}U_{ctrl} - \frac{k_e}{L}\omega - \frac{R}{L}I. \end{cases}$$

Дифференциальное уравнение следующего вида:

$$\frac{L}{R}\ddot{\omega} + \dot{\omega} + \frac{k_m k_e}{JR}\omega = \frac{k_m}{JR}U_{ctrl}.$$

Домножим уравнение на полученную в прошлой работе электромеханическую постоянную времени $Tm = \frac{JR}{kmke}$ и получим конечное уравнение

$$T_{\rm A}T_m\ddot{\omega}+T_m\dot{\omega}+\omega=rac{1}{k_e}U_{ctrl}$$
 , $_{\rm TA}=rac{L}{R}$

Описание работы

Выполнение лабораторной работы можно разделить на следующие этапы:

- 1. Собирание эксперементальной конструкции с заблокированным двигателем, подключение к ноутбуку
 - 2. Написание программы для двигателя и для графиков на питоне.
 - 3. Получение данных
 - 4. построение графиков зависимостей величин(с апроксимацией).
- 5. Запуск программы на незаблокированном двигателе и снятие измерений.
 - 6. построение графиков зависимостей величин(с апроксимацией).
- 7. Создание схемы моделирования процесса разгона ненагруженного двигателя в Simulink.
- 8. Построение графика зависимости $\theta(t)$, описывающего разгон двигателя и сравнение его с графиком, полученным при помощи Simulink.
- 9. Обработка всех полученных данных и формирование отчёта о выполненной лабораторной работе.

Графики зависимостей

Рис. 1. График зависимости U(I) при напряжении от $10\ do\ 50\%$

Рис. 2. График зависимости U(I) при напряжении от -10 до -50%

 $Puc.\ 3.\ \Gamma$ рафик зависимости $U(\omega)$ при напряжении от $10\ {
m do}\ 50\%$

 $Puc.\ 4.\ \Gamma paфик$ зависимости $U(\omega)$ при напряжении от -10 до -50%

 $Puc\ 5.\ \Gamma paфик\ зависимости\ heta(t)\ npu\ напряжении\ 50\%$

Рис. 6. График зависимости I(t) при напряжении 50%

Результаты аппроксимации экспериментальных данных соответствующей функцией от времени в виде значений величин T_m и ω_{nls} сведены в таблицу 1. В четвертом ее столбце указаны результаты расчета величины Mst по значениям величин T_m и ω_{nls} из двух предшествующих столбцов

Таблица 1. Результаты измерений U, I при напряжении от 5% до 50%

Voltage, %	U _{изм.} , В	I _{изм.} , А
5	0.9	0.09
10	1,50	0,15
15	2,00	0,19

20	2,50	0,24
25	3,00	0,28
30	3,00	0,30
35	3,50	0,3
40	4,00	0,34
45	4,40	0,38
50	4,80	0,42

Таблица 2. Результаты измерений U, I при напряжении от -5% до -50%

Voltage, %	U _{изм.} , В	$I_{\scriptscriptstyle exttt{M3M.}}, A$
-10	-0,5	-0,09
-15	-0,9	-0,14
-20	-1,1	-0,19
-25	-1,3	-0,24

-30	-1,5	-0,27
-35	-1,8	-0,31
-40	-2,1	-0,35
-45	-2,3	-0,39
-50	-2,7	-0,44

Таблица 3. Используемые величины

J	0.0023
L	0.0047
R	7.0290
k _{e1}	0.5270
k_{e2}	0.5552
$k_{e}(k_{m})$	0.5411

Код в PYTHON (графики)

```
import pandas as pd
    import numpy as np
   import matplotlib.pyplot as plt
4
   data = pd.read_csv('U(I).csv', sep='\t', header=None)
   # Извлечение данных из столбцов
8 U = data[0]
9 I = data[1]
11
   degree = 1
   coefficients = np.polyfit(I, U, degree)
12
   polynomial = np.poly1d(coefficients)
13
   U_appr = polynomial(I)
   # Построение графика
   plt.plot(I, U, linestyle='-', label='Исходные данные')
18 plt.plot(I, U_appr, label='Аппроксимация '.format(degree))
   plt.title('Зависимость напряжения от силы тока')
20 plt.xlabel('Сила тока, A')
21 plt.ylabel('Напряжение, В')
22
   plt.grid(True)
23 plt.legend()
24 plt.show()
```

Код в Python.

```
#!/usr/bin/env python3
f = open('lab1.csv', 'w')
import ev3dev2.motor as motor
import time

motor_a=motor.LargeMotor(motor.OUTPUT_A)
for voltage in range(10, 51, 5):
    startTime=time.time()
    while (True):
        currentTime=time.time()-startTime
        motor_pose=motor_a.position
        motor_vel=motor_a.speed
        motor_a.run_direct(duty_cycle_sp=voltage)

f.write('{}, {}, {}, {}\n'.format(voltage, currentTime, motor_vel, motor_pose))

if currentTime>3:
        motor_a.run_direct(duty_cycle_sp=0)
        break
time.sleep(1)
```

Вывод

В процессе выполнения лабораторной работы №2 нами были достигнуты цели, которые были поставлены ранее. Мы изучили внутреннее устройство и функционирование электродвигателя, составили полную математическую модель работы незагруженного двигателя, включив в неё ЭДС самоиндукции катушки ротора. Также мы вычислили конструктивные постоянные для данного двигателя, которые пригодятся в дальнейших лабораторных работах.