A Book of Abstract Algebra (2nd Edition)

Chapter 33, Problem 4EE	Bookmark	Show all steps: ON	
Pro	blem		
Let K be a finite extension of F , where K is a root group. As remarked in the text, we will assume Exercise D, let $H_0,, H_n$ be a solvable series for prime order. For any $i = 1,, n$, let F_i and F_{i+1} . Prove that F_i is the root field of $x^p - c^p$ over F_{i+1} .	that F contains the requestion G in which every question G the fixfields of H_i and	uired roots of unity. By otient H_{i+1}/H_i is cyclic of	
Step-by-step solution			
Step 1 of 4			
Here, objective is to prove that F_i is the root field Consider ω is a primitive p^{th} root of unity and $c^p \in F_{i+1}$			
Comment			
Step 2 of 4			
Root field: The field contains a given field in which every p factors. Comment	olynomial can be writte	en as a product of linear	

G = Gal(K : F) is a solvable group.

Step 3 of 4

F is the fixed	d field of G.
Where, K is	a the finite extension of <i>F</i> .
Consider F	F_{i} and F_{i+1} are the fixed fields of H_{i} and H_{i+1}
Comment	
	Step 4 of 4
Consider the	e polynomial $x^p - c^p$.
The root of a	above polynomial is a primitive p^{th} root of unity
$x^p - c^p = 0$)
$x^p = c^p$	
$x = \sqrt[p]{c^p} \ \omega$	
$x = \omega c$	
x = c	
$c^p \in F_{i+1}$	
F_i is the roo	of the field of $x^p - c^p$ over F_{i+1}
Hence, prov	ed
	at field of x^p-c^p over F_{i+1} red