TEMA 2: ESPACIOS VECTORIALES.

ÍNDICE

TEMA 2: ESPACIOS VECTORIALES

- 2.1. Espacios y subespacios vectoriales.
- 2.2. Espacio columna y espacio nulo de una matriz.
- 2.3. Dependencia lineal.
- 2.4. Bases y dimensión de un subespacio.

Espacio vectorial

Definición

Un espacio vectorial V sobre \mathbb{R} es un conjunto no vacio de elementos, llamados vectores, con las operaciones:

- Suma: $V \times V \to V$, $(u, v) \to u + v$.
- Producto por un escalar: $\mathbb{R} \times V \to V$, $(\lambda, v) \to \lambda v$.

Además, para todo $u, v, w \in V$, $\lambda, \mu \in \mathbb{R}$ se cumple:

1)
$$u + v = v + u$$
.

5)
$$\lambda(\mu u) = (\lambda \mu)u$$
.

2)
$$(u+v)+w=u+(v+w)$$
.

6)
$$\lambda(u+v) = \lambda u + \lambda v$$
.

3) Existe
$$0 \in V$$
, $u + 0 = 0 + u = u$.

7)
$$(\lambda + \mu)v = \lambda v + \mu v$$
.

4) Para cada
$$u \in V$$
 existe $-u \in V$, $u + (-u) = 0$.

8)
$$1 \cdot u = u$$
, para todo $u \in V$.

Ejemplos

- 1) $V = \mathbb{R}^n$, siendo $\mathbb{R}^n = \{x = (x_1, ..., x_n) : x_i \in \mathbb{R}\}$ con las operaciones:
 - Suma: $u = (u_1, ..., u_n), v = (v_1, ..., v_n), u + v = (u_1 + v_1, ..., u_n + v_n).$
 - Producto por un escalar: $\lambda u = (\lambda u_1, ..., \lambda u_n)$.
- 2) $V = \mathfrak{M}_{m \times n}(\mathbb{R})$, siendo $\mathfrak{M}_{m \times n}(\mathbb{R})$ el conjunto de las matrices de orden $m \times n$ con las operaciones suma y producto por un escalar ya definidas.
- 3) $V = \{f \text{ continua en } [a, b]\}$ con las operaciones habituales.

$$(f+g)(x) = f(x) + g(x).$$
$$(\lambda f)(x) = \lambda f(x).$$

Subespacios vectoriales

Subespacio vectorial. Se llama subespacio vectorial de \mathbb{R}^n a todo subconjunto no vacío $S \subseteq \mathbb{R}^n$ que verifica que si dos vectores están en S, entonces también lo está cualquiera de sus combinaciones lineales, esto es,

si
$$u, v \in S$$
 y $\alpha, \beta \in \mathbb{R}$ entonces $\alpha u + \beta v \in S$.

Notas:

- (1) El vector nulo pertenece a cualquier subespacio vectorial.
- (2) $S = \{0\}$ y $S = \mathbb{R}^n$ son subespacios vectoriales llamados subespacios triviales.
- (3) En el espacio bidimensional \mathbb{R}^2 los subespacios son, además de los dos subespacios triviales, las rectas que pasan por el origen.
- (4) En el espacio tridimensional \mathbb{R}^3 los subespacios son, además de los dos subespacios triviales, las rectas y planos que pasan por el origen.

Subespacios vectoriales

Subespacio generado por un conjunto de vectores. Dado un conjunto de vectores $\{v_1, v_2, \dots, v_p\}$ de \mathbb{R}^n , se llama subespacio generado por dichos vectores al conjunto de todas las combinaciones lineales de dichos vectores,

Gen
$$\{v_1, v_2, \dots, v_p\} = \{\alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_p v_p : \alpha_1, \alpha_2, \dots, \alpha_p \in \mathbb{R}\}$$

Propiedades de los subespacios generados.

- (1) Gen $\{v_1, v_2, \dots, v_p\}$ es un subespacio vectorial de \mathbb{R}^n .
- (2) $Gen\{v_1, v_2, \dots, v_p\} \supseteq Gen\{v_2, \dots, v_p\}$.
- (3) $Gen\{v_1, v_2, \dots, v_p\} = Gen\{\alpha v_1, v_2, \dots, v_p\} \text{ si } \alpha \neq 0.$
- (4) $\operatorname{Gen}\{v_1, v_2, \dots, v_p\} = \operatorname{Gen}\{v_1 + \alpha v_2, v_2, \dots, v_p\}$.
- (5) El subespacio generado por un conjunto de vectores no cambia al añadir combinaciones lineales de dichos vectores.
- (6) El subespacio generado por un conjunto de vectores no cambia al quitar vectores que sean combinación lineal de los restantes.

Cuestión: ¿Qué son Gen{(1,0),(1,2)}, Gen{(1,0,0),(1,2,0)}, Gen{(1,0,1)}, Gen{(1,0,1),(2,0,2)}?

Espacio nulo de una matriz

Espacio nulo de una matriz. Se denomina espacio nulo de la matriz A al conjunto solución del sistema homogéneo Ax = 0,

$$Nul(A) = \{x \in \mathbb{R}^n : Ax = 0\}.$$

El espacio nulo de A es un subespacio vectorial contenido en \mathbb{R}^n .

Un vector
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
 pertenece al espacio nulo de A si y sólo si $Ax = 0$,

esto es, si y sólo si,
$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{bmatrix}$$
Estas ecuaciones son llamadas ecuaciones implícitas del espacio $Nul(A)$.

Cuestión: ¿Qué vector pertenece siempre a Nul(A), para cualquier matriz A?

Espacio columna de una matriz

Espacio columna de una matriz. Se denomina espacio columna de la matriz A al conjunto formado por todas las combinaciones lineales de las columnas de A, es decir, si $v_1, v_2, \ldots, v_n \in \mathbb{R}^m$ son los n-vectores columnas de A,

$$Col(A) = Gen \{v_1, v_2, \dots, v_n\}.$$

El espacio columna de A es un subespacio vectorial contenido en \mathbb{R}^m .

Un vector
$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} \in \mathbb{R}^m$$
 pertenece al subespacio columna de A si y sólo si existen $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$ tal que $y = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n = A \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$,

Espacio columna de una matriz

esto es, existen $\alpha_1, \alpha_2, \ldots, \alpha_n \in \mathbb{R}$ tal que

$$\begin{cases} y_1 = \alpha_1 a_{11} + \alpha_2 a_{12} + \dots + \alpha_n a_{1n}, \\ y_2 = \alpha_1 a_{21} + \alpha_2 a_{22} + \dots + \alpha_n a_{2n}, \\ \vdots \\ y_m = \alpha_1 a_{m1} + \alpha_2 a_{m2} + \dots + \alpha_n a_{mn}. \end{cases}$$

Estas ecuaciones son llamadas ecuaciones paramétricas del espacio Col(A). En particular ocurre que

$$Col(A) = \{ y \in \mathbb{R}^m : Ax = y \text{ es un sistema compatible} \}.$$

Cuestión: ¿Qué vector pertenece siempre a Col(A), para cualquier matriz A?

Ecuaciones implícitas y paramétricas.

Ecuaciones implícitas y paramétricas de un subespacio. Todo subespacio vectorial de \mathbb{R}^n puede describirse como el espacio nulo de una matriz. Se denominan ecuaciones implícitas del subespacio a unas ecuaciones implícitas de dicho espacio nulo. De forma análoga, todo subespacio vectorial de \mathbb{R}^n puede describirse como el espacio columna de una matriz. Se denominan ecuaciones paramétricas del subespacio a unas ecuaciones paramétricas de dicho espacio columna.

- 1. Espacio fila de A: $F(A) = L\{f_1, ..., f_m\} \subseteq \mathbb{R}^n$.
- 2. Espacio columna de A: $R(A) = L\{a_1, ..., a_n\} \subseteq \mathbb{R}^m$.
- 3. Espacio nulo de A: $N(A) = \{x \in \mathbb{R}^n : Ax = \mathbf{0}\} \subseteq \mathbb{R}^n$.
- 4. Espacio nulo de A^T : $N(A^T) = \{y \in \mathbb{R}^m : A^Ty = \mathbf{0}\} \subseteq \mathbb{R}^m$.

2.3. Dependencia lineal.

Conjunto linealmente dependiente.

Definición Sea $H = \{a_1, \ldots, a_p\} \subseteq \mathbb{R}^n$, se dice que el conjunto H es linealmente dependiente (l.d.) si existen escalares $h_1, \ldots, h_p \in \mathbb{R}$ no todos nulos de forma que $h_1a_1 + \cdots + h_pa_p = \mathbf{0}$. En cambio, diremos que el conjunto H es linealmente independiente (l.i.) si la igualdad $h_1a_1 + \cdots + h_pa_p = \mathbf{0}$ sólo se satisface para $h_1 = \cdots = h_p = 0$.

Observación: Para estudiar la dependencia lineal de un conjunto $H = \{a_1, \ldots, a_p\}$ podemos escribir la ecuación vectorial $h_1a_1 + \cdots + h_pa_p = \mathbf{0}$ en forma matricial

$$[a_1|\cdots|a_p] \left[egin{array}{c} h_1\ dots\ h_p \end{array}
ight] = \mathbf{0} \quad \Leftrightarrow \quad Ah = \mathbf{0}$$

siendo $A = [a_1| \cdots |a_p]$. El conjunto H será l.i. cuando este sistema sólo posea la solución trivial $(\operatorname{rg}(A) = p)$. En cambio será l.d. cuando el sistema sea compatible indeterminado $(\operatorname{rg}(A) < p)$.

2.3. Dependencia lineal.

Propiedades

Proposición a) Cualquier conjunto de vectores que contenga al vector $\mathbf{0}$ es l.d. b) Si p > n, entonces $\{v_1, \ldots, v_p\}$ es l.d. Esto es, en \mathbb{R}^n no hay un subconjunto l.i. con más de n vectores.

Proposición a) Un conjunto H de dos o más vectores es linealmente dependiente si y sólo si al menos uno de ellos es combinación lineal de los demás.

- b) Un conjunto H de dos o más vectores es linealmente independiente si y sólo si ningún vector se puede expresar como combinación lineal de los demás.
- c) La expresión de un vector como combinación lineal de vectores de un conjunto l.i. es única.
- d) Sea $H = \{v_1, \ldots, v_p\}$ un conjunto l.d., entonces cualquier conjunto de vectores que contenga a H también es linealmente dependiente.
- e) Sea $H = \{v_1, \ldots, v_p\}$ un conjunto l.i., entonces cualquier subconjunto no vacío de H es l.i.

2.3. Dependencia lineal.

Propiedades

Teorema Sea S = L(H), siendo $H = \{v_1, \ldots, v_p\}$ un subconjunto de vectores de \mathbb{R}^n . Se obtiene un conjunto de vectores H', con la misma dependencia lineal de H, si se somete a los vectores de H a alguna de las transformaciones siguientes:

- a) Cambiar el orden de los vectores.
- b) Multiplicar un vector cualquiera por un escalar distinto de cero.
- c) Sumar a uno de los vectores un múltiplo de otro vector.

Además, se verifica que S = L(H) = L(H').

Corolario Sea $S = L\{u_1, \ldots, u_q\}$ un subespacio vectorial de \mathbb{R}^n . Si $\{u_1, \ldots, u_q\}$ es un conjunto l.d., entonces algún vector u_i es combinación lineal de los demás y se verifica que $S = L\{u_1, \ldots, u_{i-1}, u_{i+1}, \ldots u_q\}$; es decir, el vector u_i puede suprimirse del sistema generador.

Base de un subespacio vectorial.

Base de un subespacio. Dado un subespacio vectorial $S \subseteq \mathbb{R}^n$ distinto del subespacio nulo $S \neq \{0\}$, se dice que un conjunto de vectores $\{v_1, v_2, \dots, v_p\}$ de S es una base de S si:

- (1) $\{v_1, v_2, \ldots, v_p\}$ es un conjunto linealmente independiente.
- (2) $\{v_1, v_2, \dots, v_p\}$ generan S, esto es, $S = \text{Gen}\{v_1, v_2, \dots, v_p\}$.

Caracterización matricial de base. Sea $S \subseteq \mathbb{R}^n$ un subespacio no nulo. El conjunto $\{v_1, v_2, \dots, v_p\} \subset S$ es una base de S si y sólo si la matriz

$$A = \left[\begin{array}{cccc} \vdots & \vdots & \vdots & \vdots \\ v_1 & v_2 & \cdots & v_p \\ \vdots & \vdots & \vdots & \vdots \end{array} \right]$$

verifica que $Nul(A) = \{0\}$ y Col(A) = S.

Coordenadas de un vector.

Base canónica de
$$\mathbb{R}^n$$
.
$$\left\{e_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, e_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \right\}$$

Coordenadas de un vector respecto de una base. Sea S un subespacio vectorial con base $\{v_1, v_2, \ldots, v_p\}$, cada vector v de S se puede expresar de forma única como combinación lineal de los vectores de la base dada,

$$v = c_1 v_1 + c_2 v_2 + \dots + c_p v_p.$$

Los coeficientes que aparecen en dicha expresión (c_1, c_2, \dots, c_p) se denominan $coordenadas de v respecto a la base dada <math>\mathcal{B} = \{v_1, v_2, \dots, v_p\}$ y se suele denotar $[v]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$

Dimensión de un subespacio vectorial.

Dimensión de un subespacio vectorial. Dado un subespacio vectorial S de \mathbb{R}^n distinto del subespacio nulo $S \neq \{0\}$, se verifican:

- (1) S tiene base.
- (2) Todas las bases de S tienen el mismo número de elementos.

Al número de elementos de una base de S se le denomina dimensión de <math>S, que denotaremos como dim(S). Por definición, la dimensión del subespacio formado por el vector nulo es cero.

El espacio vectorial \mathbb{R}^n tiene dimensión n y si S es un subespacio vectorial de \mathbb{R}^n y dim(S) = n, entonces $S = \mathbb{R}^n$.

Cuestión: Si A es una matriz de dimensión nxm, ¿se verifica que R(A)=n y Nul(A)=m?

Teorema del rango

Relación de la dimensión de un subespacio con el rango de una matriz. Sea A una matriz $m \times n$ cualquiera.

- (1) dim(Col(A)) = r(A).
- (2) $r(A) = r(A^T)$.
- (3) Teorema del rango.

$$\dim(Col(A)) + \dim(Nul(A)) = n.$$

Si la matriz A representa la matriz de coeficientes de un sistema de ecuaciones lineales compatible, entonces el Teorema del rango se puede expresar mediante

(número de pivotes) + (número de variables libres) = n.

Teorema de la base.

Teorema de la base. Consideremos un subespacio vectorial S de \mathbb{R}^n de dimensión p ($p \le n$) y un conjunto de vectores $\{u_1, u_2, \dots, u_q\} \subset S$.

- (1) Si $\{u_1, u_2, \dots, u_q\}$ generan S, entonces $q \geq p$. Además, q = p si y sólo si $\{u_1, u_2, \dots, u_q\}$ es una base de S.
- (2) Si $\{u_1, u_2, \dots, u_q\}$ es linealmente independiente, entonces $q \leq p$. Además q = p si y sólo si $\{u_1, u_2, \dots, u_q\}$ es una base de S.

Observación: Como consecuencia del resultado anterior, de todo sistema generador se puede obtener una base suprimiendo vectores que sean combinación lineal de los demás.

Cuestión: ¿Cuántos vectores puede tener un sistema generador de \mathbb{R}^3 ? ¿Cuántos vectores puede tener una base de \mathbb{R}^3 ?

Cambio de base.

Cambio de base. Sean dos bases $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ y $\mathcal{U} = \{u_1, u_2, \dots, u_n\}$ de \mathbb{R}^n y las matrices B y U cuyas columnas son, respectivamente, los vectores de dichas bases, esto es,

$$B = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ v_1 & v_2 & \cdots & v_n \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \qquad U = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ u_1 & u_2 & \cdots & u_n \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}.$$

La matriz

$$\underset{\mathcal{B} \leftarrow \mathcal{U}}{P} = B^{-1}U$$

permite cambiar las coordenadas de cualquier vector respecto de la base \mathcal{U} a sus coordenadas respecto de \mathcal{B} , esto es, si $v \in \mathbb{R}^n$ entonces

$$[v]_{\mathcal{B}} = \underset{\mathcal{B} \leftarrow \mathcal{U}}{P} [v]_{\mathcal{U}}.$$

Cambio de base.

Propiedades de la matriz de cambio de base. Sean dos bases \mathcal{B} y \mathcal{U} de \mathbb{R}^n .

(1) Si $\mathcal{U} = \{u_1, u_2, \dots, u_n\}$, entonces

$$P_{\mathcal{B}\leftarrow\mathcal{U}} = \left[[u_1]_{\mathcal{B}} \mid [u_2]_{\mathcal{B}} \mid \cdots \mid [u_n]_{\mathcal{B}} \right],$$

esto es, las columnas de la matriz del cambio están formadas por las coordenadas de los vectores de la base \mathcal{U} respecto de la base \mathcal{B} .

(2) La matriz del cambio de base es invertible y se tiene que $P_{\mathcal{U}\leftarrow\mathcal{B}} = \begin{pmatrix} P \\ \mathcal{B}\leftarrow\mathcal{U} \end{pmatrix}^{-1}$.

Cuestión: ¿Cuál es la matriz del cambio de base de B a B?