Optimization Models EECS 127 / EECS 227AT

Giuseppe Calafiore

EECS department UC Berkeley

Fall 2017

LECTURE 2

Vectors and Functions

Mathematicians are like Frenchmen: whatever you say to them, they translate into their own language, and turn it into something entirely different.

Goethe

Outline

- Introduction
 - Basics
 - Examples
 - Vector spaces
- 2 Inner product, angle, orthogonality
- 3 Projections
- 4 Functions and maps
 - Hyperplanes and halfspaces
 - Gradients

Introduction

- A vector is a collection of numbers, arranged in a column or a row, which can be thought of as the coordinates of a point in n-dimensional space.
- Equipping vectors with sum and scalar multiplication allows to define notions such
 as independence, span, subspaces, and dimension. Further, the scalar product
 introduces a notion of angle between two vectors, and induces the concept of
 length, or norm.
- Via the scalar product, we can also view a vector as a linear function. We can compute the projection of a vector onto a line defined by another vector, onto a plane, or more generally onto a subspace.
- Projections can be viewed as a first elementary optimization problem (finding the point in a given set at minimum distance from a given point), and they constitute a basic ingredient in many processing and visualization techniques for high-dimensional data.

Basics

Notation

• We usually write vectors in column format:

$$x = \left[\begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right].$$

Element x_i is said to be the *i*-th component (or the *i*-th element, or entry) of vector x, and the number n of components is usually referred to as the *dimension* of x.

- When the components of x are real numbers, i.e. $x_i \in \mathbb{R}$, then x is a real vector of dimension n, which we indicate with the notation $x \in \mathbb{R}^n$.
- We shall seldom need *complex* vectors, which are collections of complex numbers $x_i \in \mathbb{C}$, i = 1, ..., n. We denote the set of such vectors by \mathbb{C}^n .
- To transform a column-vector x in row format and vice versa, we define an operation called *transpose*, denoted with a superscript $^{\top}$:

$$x^{\top} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}; \quad x^{\top \top} = x.$$

Examples

Example 1 (Bag-of-words representations of text)

Consider the following text:

"A (real) vector is just a collection of real numbers, referred to as the components (or, elements) of the vector; \mathbb{R}^n denotes the set of all vectors with n elements. If $x \in \mathbb{R}^n$ denotes a vector, we use subscripts to denote elements, so that x_i is the i-th component of x. Vectors are arranged in a column, or a row. If x is a column vector, x^{\top} denotes the corresponding row vector, and vice-versa."

- Row vector c = [5, 3, 3, 4] contains the number of times each word in the list $V = \{vector, elements, of, the\}$ appears in the above paragraph.
- Dividing each entry in c by the total number of occurrences of words in the list (15, in this example), we obtain a vector x = [1/3, 1/5, 1/5, 4/15] of relative word frequencies.
- Frequency-based representation of text documents (bag-of-words).

Examples

Example 2 (Time series)

- A time series represents the evolution in (discrete) time of a physical or economical quantity.
- If x(k), k = 1, ..., T, describes the numerical value of the quantity of interest at time k, then the whole time series, over the time horizon from 1 to T, can be represented as a T-dimensional vector x containing all the values of x(k), for k = 1 to k = T, that is

$$x = [x(1) \ x(2) \ \cdots \ x(T)]^{\top} \in \mathbb{R}^{T}.$$

Adjusted close price of the Dow Jones Industrial Average Index, over a 66 days period from April 19, 2012 to July 20, 2012.

Example 3 (Images)

We are given a gray-scale image where each pixel has a certain value representing the luminance level (0=black). We can arrange the image as a vector of pixels.

Figure: Row vector representation of an image.

Vector spaces

- The operations of sum, difference and scalar multiplication are defined in an obvious way for vectors: for any two vectors $v^{(1)}, v^{(2)}$ having equal number of elements, we have that the sum $v^{(1)} + v^{(2)}$ is simply a vector having as components the sum of the corresponding components of the addends, and the same holds for the difference.
- If v is a vector and α is a scalar (i.e., a real or complex number), then αv is obtained multiplying each component of v by α . If $\alpha=0$, then αv is the zero vector, or origin.
- ullet A *vector space*, \mathcal{X} , is obtained by equipping vectors with the operations of addition and multiplication by a scalar.
- A simple example of a vector space is $\mathcal{X} = \mathbb{R}^n$, the space of n-tuples of real numbers. A less obvious example is the set of single-variable polynomials of a given degree.

Subspaces and span

• A nonempty subset $\mathcal V$ of a vector space $\mathcal X$ is called a *subspace* of $\mathcal X$ if, for any scalars α,β ,

$$x, y \in \mathcal{V} \Rightarrow \alpha x + \beta y \in \mathcal{V}.$$

In other words, ${\cal V}$ is "closed" under addition and scalar multiplication.

- A *linear combination* of a set of vectors $S = \{x^{(1)}, \dots, x^{(m)}\}$ in a vector space \mathcal{X} is a vector of the form $\alpha_1 x^{(1)} + \dots + \alpha_m x^{(m)}$, where $\alpha_1, \dots, \alpha_m$ are given scalars.
- The set of all possible linear combinations of the vectors in $S = \{x^{(1)}, \dots, x^{(m)}\}$ forms a subspace, which is called the subspace generated by S, or the *span* of S, denoted with $\operatorname{span}(S)$.
- Given two subspaces \mathcal{X}, \mathcal{Y} in \mathbb{R}^n , the direct sum of \mathcal{X}, \mathcal{Y} , which we denote by $\mathcal{X} \oplus \mathcal{Y}$, is the set of vectors of the form x + y, with $x \in \mathcal{X}$, $y \in \mathcal{Y}$. It is readily checked that $\mathcal{X} \oplus \mathcal{Y}$ is itself a subspace.

Bases and dimensions

• A collection $x^{(1)}, \ldots, x^{(m)}$ of vectors in a vector space \mathcal{X} is said to be *linearly independent* if no vector in the collection can be expressed as a linear combination of the others. This is the same as the condition

$$\sum_{i=1}^m \alpha_i x^{(i)} = 0 \Longrightarrow \alpha = 0.$$

- Given a subspace S of a vector space X, a basis of S is a set B of vectors of minimal cardinality, such that $\operatorname{span}(B) = S$. The cardinality of a basis is called the dimension of S.
- If we have a basis $\{x^{(1)},\ldots,x^{(d)}\}$ for a subspace \mathcal{S} , then we can write any element in the subspace as a linear combination of elements in the basis. That is, any $x\in\mathcal{S}$ can be written as

$$x = \sum_{i=1}^{d} \alpha_i x^{(i)},$$

for appropriate scalars α_i

Affine sets

An affine set is a set of the form

$$A = \{ x \in \mathcal{X} : x = v + x^{(0)}, v \in \mathcal{V} \},$$

where $x^{(0)}$ is a given point and \mathcal{V} is a given subspace of \mathcal{X} . Subspaces are just affine spaces containing the origin.

- Geometrically, an affine set is a flat passing through $x^{(0)}$. The dimension of an affine set \mathcal{A} is defined as the dimension of its generating subspace \mathcal{V} .
- A *line* is a one-dimensional affine set. The line through x_0 along direction u is the set

$$L = \{x \in \mathcal{X} : x = x_0 + v, \ v \in \operatorname{span}(u)\},\$$

where in this case $span(u) = \{\lambda u : \lambda \in \mathbb{R}\}.$

Euclidean length

• The Euclidean length of a vector $x \in \mathbb{R}^n$ is the square-root of the sum of squares of the components of x, that is

Euclidean length of
$$x \doteq \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
.

This formula is an obvious extension to the multidimensional case of the Pythagoras theorem in \mathbb{R}^2 .

• The Euclidean length represents the actual distance to be "travelled" for reaching point x from the origin 0, along the most direct way (the straight line passing through 0 and x).

Basics

Norms and ℓ_p norms

• A *norm* on a vector space $\mathcal X$ is a real-valued function with special properties that maps any element $x \in \mathcal X$ into a real number $\|x\|$.

Definition 1

A function from \mathcal{X} to \mathbb{R} is a norm, if

$$\|x\| \ge 0 \ \forall x \in \mathcal{X}$$
, and $\|x\| = 0$ if and only if $x = 0$; $\|x + y\| \le \|x\| + \|y\|$, for any $x, y \in \mathcal{X}$ (triangle inequality); $\|\alpha x\| = |\alpha| \|x\|$, for any scalar α and any $x \in \mathcal{X}$.

• ℓ_p norms are defined as

$$||x||_p \doteq \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}, \quad 1 \leq p < \infty.$$

Basics

Norms and ℓ_p norms

• For p = 2 we obtain the standard Euclidean length

$$||x||_2 \doteq \sqrt{\sum_{k=1}^n x_k^2},$$

ullet or p=1 we obtain the sum-of-absolute-values length

$$||x||_1 \doteq \sum_{k=1}^n |x_k|.$$

ullet The limit case $p=\infty$ defines the ℓ_∞ norm (max absolute value norm, or Chebyshev norm)

$$||x||_{\infty} \doteq \max_{k=1,\ldots,n} |x_k|.$$

• The cardinality of a vector x is often called the ℓ_0 (pseudo) norm and denoted with $||x||_0$.

Inner product

• An inner product on a (real) vector space $\mathcal X$ is a real-valued function which maps any pair of elements $x,y\in\mathcal X$ into a scalar denoted as $\langle x,y\rangle$. The inner product satisfies the following axioms: for any $x,y,z\in\mathcal X$ and scalar α

$$\langle x, x \rangle \geq 0;$$

 $\langle x, x \rangle = 0$ if and only if $x = 0;$
 $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle;$
 $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle;$
 $\langle x, y \rangle = \langle y, x \rangle.$

- A vector space equipped with an inner product is called an inner product space.
- ullet The standard inner product defined in \mathbb{R}^n is the "row-column" product of two vectors

$$\langle x, y \rangle = x^{\top} y = \sum_{k=1}^{n} x_k y_k.$$

• The inner product induces a norm: $||x|| = \sqrt{\langle x, x \rangle}$.

F 2017 16 / 43

Angle between vectors

• The angle between x and y is defined via the relation

$$\cos \theta = \frac{x^\top y}{\|x\|_2 \|y\|_2}.$$

- When $x^{\top}y = 0$, the angle between x and y is $\theta = \pm 90^{\circ}$, i.e., x, y are orthogonal.
- When the angle θ is 0° , or $\pm 180^{\circ}$, then x is aligned with y, that is $y = \alpha x$, for some scalar α , i.e., x and y are parallel. In this situation $|x^{\top}y|$ achieves its maximum value $|\alpha||x||_2^2$.

Cauchy-Schwartz and Hölder inequality

• Since $|\cos\theta| \leq 1$, it follows from the angle equation that

$$|x^{\top}y| \leq ||x||_2 ||y||_2,$$

and this inequality is known as the Cauchy-Schwartz inequality.

- A generalization of this inequality involves general ℓ_p norms and it is known as the Hölder inequality.
- ullet For any vectors $x,y\in\mathbb{R}^n$ and for any $p,q\geq 1$ such that 1/p+1/q=1, it holds that

$$|x^{\top}y| \leq \sum_{k=1}^{n} |x_k y_k| \leq ||x||_p ||y||_q.$$

Maximization of inner product over norm balls

• Our first optimization problem:

$$\max_{\|x\|_p \le 1} x^\top y.$$

• For p = 2:

$$x_2^* = \frac{y}{\|y\|_2},$$

hence $\max_{\|x\|_2 \le 1} x^{\top} y = \|y\|_2$.

• For $p = \infty$:

$$x_{\infty}^* = \operatorname{sgn}(y),$$

and $\max_{\|x\|_{\infty} < 1} x^{\top} y = \sum_{i=1}^{n} |y_i| = \|y\|_1$.

• For *p* = 1:

$$[x_1^*]_i = \begin{cases} \operatorname{sgn}(y_i) & \text{if } i = m \\ 0 & \text{otherwise} \end{cases}, \quad i = 1, \dots, n,$$

where m is an index such that $|y_i| \le |y_m|$ for all i. We thus have $\max_{\|x\|_1 \le 1} x^\top y = \max_i |y_i| = \|y\|_{\infty}$.

Orthogonal vectors

- Generalizing the concept of orthogonality to generic inner product spaces, we say that two vectors x, y in an inner product space $\mathcal X$ are *orthogonal* if $\langle x, y \rangle = 0$. Orthogonality of two vectors $x, y \in \mathcal X$ is symbolized by $x \perp y$.
- Nonzero vectors $x^{(1)}, \ldots, x^{(d)}$ are said to be *mutually orthogonal* if $\langle x^{(i)}, x^{(j)} \rangle = 0$ whenever $i \neq j$. In words, each vector is orthogonal to all other vectors in the collection.

Proposition 1

Mutually orthogonal vectors are linearly independent.

• A collection of vectors $S = \{x^{(1)}, \dots, x^{(d)}\}$ is said to be *orthonormal* if, for $i, j = 1, \dots, d$,

$$\langle x^{(i)}, x^{(j)} \rangle = \begin{cases} 0 & \text{if } i \neq j, \\ 1 & \text{if } i = j. \end{cases}$$

In words, S is orthonormal if every element has unit norm, and all elements are orthogonal to each other. A collection of orthonormal vectors S forms an *orthonormal basis* for the span of S.

Orthogonal complement

- A vector $x \in \mathcal{X}$ is orthogonal to a subset \mathcal{S} of an inner product space \mathcal{X} if $x \perp s$ for all $s \in \mathcal{S}$.
- The set of vectors in \mathcal{X} that are orthogonal to \mathcal{S} is called the *orthogonal* complement of \mathcal{S} , and it is denoted with \mathcal{S}^{\perp} ;

Theorem 1 (Orthogonal decomposition)

If S is a subspace of an inner-product space X, then any vector $x \in X$ can be written in a unique way as the sum of an element in S and one in the orthogonal complement S^{\perp} :

$$\mathcal{X} = \mathcal{S} \oplus \mathcal{S}^{\perp}$$
 for any subspace $\mathcal{S} \subseteq \mathcal{X}$.

- The idea of projection is central in optimization, and it corresponds to the problem of finding a point on a given set that is closest (in norm) to a given point.
- Given a vector x in an inner product space \mathcal{X} (say, e.g., $\mathcal{X} = \mathbb{R}^n$) and a closed set $\mathcal{S} \subseteq \mathcal{X}$, the projection of x onto \mathcal{S} , denoted as $\Pi_{\mathcal{S}}(x)$, is defined as the point in \mathcal{S} at minimal distance from x:

$$\Pi_{\mathcal{S}}(x) = \arg\min_{y \in \mathcal{S}} \|y - x\|,$$

where the norm used here is the norm induced by the inner product, that is $\|y-x\|=\sqrt{\langle y-x,y-x\rangle}.$

• This simply reduces to the Euclidean norm, when using the standard inner product, in which case the projection is called *Euclidean projection*.

Theorem 2 (Projection Theorem)

Let $\mathcal X$ be an inner product space, let x be a given element in $\mathcal X$, and let $\mathcal S$ be a subspace of $\mathcal X$. Then, there exists a unique vector $x^* \in \mathcal S$ which is solution to the problem

$$\min_{y\in\mathcal{S}}\|y-x\|.$$

Moreover, a necessary and sufficient condition for x^* being the optimal solution for this problem is that

$$x^* \in \mathcal{S}, \quad (x - x^*) \perp \mathcal{S}.$$

Corollary 1 (Projection on affine set)

Let $\mathcal X$ be an inner product space, let x be a given element in $\mathcal X$, and let $\mathcal A=x^{(0)}+\mathcal S$ be the affine set obtained by translating a given subspace $\mathcal S$ by a given vector $x^{(0)}$. Then, there exists a unique vector $x^*\in \mathcal A$ which is solution to the problem

$$\min_{y\in\mathcal{A}}\|y-x\|.$$

Moreover, a necessary and sufficient condition for x^* to be the optimal solution for this problem is that

$$x^* \in \mathcal{A}, \quad (x - x^*) \perp \mathcal{S}.$$

Euclidean projection of a point onto a line

• Let $p \in \mathbb{R}^n$ be a given point. We want to compute the Euclidean projection p^* of p onto a line $L = \{x_0 + \operatorname{span}(u)\}, \|u\|_2 = 1$:

$$p^* = \arg\min_{x \in I} \|x - p\|_2.$$

• Since any point $x \in L$ can be written as $x = x_0 + v$, for some $v \in \text{span}(u)$, the above problem is equivalent to finding a value v^* for v, such that

$$v^* = \arg\min_{v \in \text{Span}(u)} ||v - (p - x_0)||_2.$$

Euclidean projection of a point onto a line

• The solution must satisfy the orthogonality condition $(z - v^*) \perp u$. Recalling that $v^* = \lambda^* u$ and $u^\top u = ||u||_2^2 = 1$, we hence have

$$\boldsymbol{u}^{\top}\boldsymbol{z} - \boldsymbol{u}^{\top}\boldsymbol{v}^{*} = \boldsymbol{0} \iff \boldsymbol{u}^{\top}\boldsymbol{z} - \boldsymbol{\lambda}^{*} = \boldsymbol{0} \iff \boldsymbol{\lambda}^{*} = \boldsymbol{u}^{\top}\boldsymbol{z} = \boldsymbol{u}^{\top}(\boldsymbol{p} - \boldsymbol{x}_{0}).$$

The optimal point p* is thus given by

$$p^* = x_0 + v^* = x_0 + \lambda^* u = x_0 + u^\top (p - x_0) u,$$

• The squared distance from *p* to the line is

$$\|p-p^*\|_2^2 = \|p-x_0\|_2^2 - \lambda^{*2} = \|p-x_0\|_2^2 - (u^\top(p-x_0))^2.$$

Euclidean projection of a point onto an hyperplane

A hyperplane is an affine set defined as

$$H = \{z \in \mathbb{R}^n : a^\top z = b\},\$$

where $a \neq 0$ is called a *normal direction* of the hyperplane, since for any two vectors $z_1, z_2 \in H$ it holds that $(z_1 - z_2) \perp a$.

- Given $p \in \mathbb{R}^n$ we want to determine the Euclidean projection p^* of p onto H.
- The projection theorem requires $p-p^*$ to be orthogonal to H. Since a is a direction orthogonal to H, the condition $(p-p^*)\bot H$ is equivalent to saying that $p-p^*=\alpha a$, for some $\alpha\in\mathbb{R}$.

Euclidean projection of a point onto an hyperplane

• To find α , consider that $p^* \in H$, thus $a^\top p^* = b$, then consider the optimality condition

$$p - p^* = \alpha a$$

and multiply it on the left by a^{\top} , obtaining

$$\mathbf{a}^{\top}\mathbf{p} - \mathbf{b} = \alpha \|\mathbf{a}\|_{2}^{2}$$

whereby

$$\alpha = \frac{\mathbf{a}^{\top} \mathbf{p} - \mathbf{b}}{\|\mathbf{a}\|_2^2},$$

and

$$p^* = p - \frac{a^\top p - b}{\|a\|_2^2} a.$$

• The distance from p to H is

$$\|p - p^*\|_2 = |\alpha| \cdot \|a\|_2 = \frac{|a^T p - b|}{\|a\|_2}.$$

Projection on a vector span

ullet Suppose we have a basis for a subspace $\mathcal{S}\subseteq\mathcal{X}$, that is

$$S = \operatorname{span}(x^{(1)}, \dots, x^{(d)}).$$

- Given $x \in \mathcal{X}$, the Projection Theorem states that the unique projection x^* of x onto S is characterized by $(x x^*) \perp S$.
- Since $x^* \in \mathcal{S}$, we can write x^* as some (unknown) linear combination of the elements in the basis of \mathcal{S} , that is

$$x^* = \sum_{i=1}^d \alpha_i x^{(i)}.$$

Then $(x - x^*) \perp S \Leftrightarrow \langle x - x^*, x^{(k)} \rangle = 0, \ k = 1, \dots, d$:

$$\sum_{i=1}^d \alpha_i \langle x^{(k)}, x^{(i)} \rangle = \langle x^{(k)}, x \rangle, \quad k = 1, \dots, d.$$

• Solving this system of linear equations (aka the Gram equations) provides the coefficients α , and hence the desired x^* .

Projection onto the span of orthonormal vectors

- If we have an orthonormal basis for a subspace S = span(S), then it is immediate to obtain the projection x^* of x onto that subspace.
- This is due to the fact that, in this case, the Gram system of equations immediately gives the coefficients

$$\alpha_k = \langle x^{(k)}, x \rangle, \quad i = 1, \dots, d.$$

• Therefore, we have that

$$x^* = \sum_{i=1}^d \langle x^{(i)}, x \rangle x^{(i)}.$$

• Given a basis $S = \{x^{(1)}, \dots, x^{(d)}\}$ for a subspace $S = \operatorname{span}(S)$, there are numerical procedures to construct an orthonormal basis for the same subspace (e.g., the Gram-Schmidt procedure and QR factorization).

Functions and maps

- A function takes a vector argument in \mathbb{R}^n , and returns a unique value in \mathbb{R} .
- We use the notation

$$f:\mathbb{R}^n\to\mathbb{R},$$

to refer to a function with "input" space \mathbb{R}^n . The "output" space for functions is \mathbb{R} .

• For example, the function $f: \mathbb{R}^2 \to \mathbb{R}$ with values

$$f(x) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$$

gives the Euclidean distance from the point (x_1, x_2) to a given point (y_1, y_2) .

We allow functions to take infinity values. The domain of a function f, denoted dom f, is defined as the set of points where the function is finite.

Functions and maps

- We usually reserve the term *map* to refer to vector-valued functions.
- That is, maps are functions that return more a vector of values. We use the notation

$$f:\mathbb{R}^n\to\mathbb{R}^m$$

to refer to a map with input space \mathbb{R}^n and output space \mathbb{R}^m .

• The *components* of the map f are the (scalar-valued) functions f_i , $i=1,\ldots,m$.

Sets related to functions

- Consider a function $f: \mathbb{R}^n \to \mathbb{R}$.
- The graph and the epigraph of a function $f: \mathbb{R}^n \to \mathbb{R}$ are both subsets of \mathbb{R}^{n+1} .
- The graph of f is the set of input-output pairs that f can attain, that is:

graph
$$f = \left\{ (x, f(x)) \in \mathbb{R}^{n+1} : x \in \mathbb{R}^n \right\}.$$

 The epigraph, denoted epif, describes the set of input-output pairs that f can achieve, as well as "anything above":

$$\operatorname{epi} f = \left\{ (x, t) \in \mathbb{R}^{n+1} : x \in \mathbb{R}^n, \ t \ge f(x) \right\}.$$

F 2017 33 / 43

Sets related to functions

• A *level set* (or *contour* line) is the set of points that achieve exactly some value for the function f. For $t \in \mathbb{R}$, the t-level set of the function f is defined as

$$C_f(t) = \{x \in \mathbb{R}^n : f(x) = t\}.$$

• The t-sublevel set of f is the set of points that achieve at most a certain value for f:

$$L_f(t) = \{x \in \mathbb{R}^n : f(x) \leq t\}.$$

Linear and affine functions

- Linear functions are functions that preserve scaling and addition of the input argument.
- A function $f: \mathbb{R}^n \to \mathbb{R}$ is *linear* if and only if

$$\forall x \in \mathbb{R}^n \text{ and } \alpha \in \mathbb{R}, f(\alpha x) = \alpha f(x);$$

 $\forall x_1, x_2 \in \mathbb{R}^n, f(x_1 + x_2) = f(x_1) + f(x_2).$

- A function f is affine if and only if the function $\tilde{f}(x) = f(x) f(0)$ is linear (affine = linear + constant).
- Consider the functions $f_1, f_2, f_3 : \mathbb{R}^2 \to \mathbb{R}$ defined below:

$$f_1(x) = 3.2x_1 + 2x_2,$$

 $f_2(x) = 3.2x_1 + 2x_2 + 0.15,$
 $f_3(x) = 0.001x_2^2 + 2.3x_1 + 0.3x_2.$

The function f_1 is linear; f_2 is affine; f_3 is neither linear nor affine (f_3 is a quadratic function).

Linear and affine functions

- Linear or affine functions can be conveniently defined by means of the standard inner product.
- A function $f: \mathbb{R}^n \to \mathbb{R}$ is affine if and only if it can be expressed as

$$f(x) = a^{\top} x + b,$$

for some unique pair (a, b), with a in \mathbb{R}^n and $b \in \mathbb{R}$.

- The function is linear if and only if b = 0.
- Vector $a \in \mathbb{R}^n$ can thus be viewed as a (linear) map from the "input" space \mathbb{R}^n to the "output" space \mathbb{R} .
- For any affine function f, we can obtain a and b as follows: b = f(0), and $a_i = f(e_i) b$, i = 1, ..., n.

Hyperplanes and halfspaces

• A hyperplane in \mathbb{R}^n is a set of the form

$$H = \left\{ x \in \mathbb{R}^n : a^\top x = b \right\},$$

where $a \in \mathbb{R}^n$, $a \neq 0$, and $b \in \mathbb{R}$ are given.

- Equivalently, we can think of hyperplanes as the level sets of linear functions.
- When b = 0, the hyperplane is simply the set of points that are orthogonal to a (i.e., H is a (n-1)-dimensional subspace).

Hyperplanes and halfspaces

• An hyperplane *H* separates the whole space in two regions:

$$H_{-} = \left\{ x : a^{\top} x \leq b \right\}, \quad H_{++} = \left\{ x : a^{\top} x > b \right\}.$$

- These regions are called halfspaces (H_{-} is a closed halfspace, H_{++} is an open halfspace).
- the halfspace H_- is the region delimited by the hyperplane $H = \{a^\top x = b\}$ and lying in the direction opposite to vector a. Similarly, the halfspace H_{++} is the region lying above (i.e., in the direction of a) the hyperplane.

Gradients

• The gradient of a function $f: \mathbb{R}^n \to \mathbb{R}$ at a point x where f is differentiable, denoted with $\nabla f(x)$, is a column vector of first derivatives of f with respect to x_1, \ldots, x_n :

$$\nabla f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} & \cdots & \frac{\partial f(x)}{\partial x_n} \end{bmatrix}^\top.$$

- ullet When n=1 (there is only one input variable), the gradient is simply the derivative.
- An affine function $f: \mathbb{R}^n \to \mathbb{R}$, represented as $f(x) = a^\top x + b$, has a very simple gradient: $\nabla f(x) = a$.

Example 4

The distance function $ho(x) = \|x - p\|_2 = \sqrt{\sum_{i=1}^n (x_i - p_i)^2}$ has gradient

$$\nabla \rho(x) = \frac{1}{\|x - p\|_2} (x - p).$$

Affine approximation of nonlinear functions

- A non-linear function $f: \mathbb{R}^n \to \mathbb{R}$ can be approximated locally via an affine function, using a first-order Taylor series expansion.
- Specifically, if f is differentiable at point x_0 , then for all points x in a neighborhood of x_0 , we have that

$$f(x) = f(x_0) + \nabla f(x_0)^{\top} (x - x_0) + \epsilon(x),$$

where the error term $\epsilon(x)$ goes to zero faster than first order, as $x \to x_0$, that is

$$\lim_{x\to x_0}\frac{\epsilon(x)}{\|x-x_0\|_2}=0.$$

 In practice, this means that for x sufficiently close to x₀, we can write the approximation

$$f(x) \simeq f(x_0) + \nabla f(x_0)^{\top} (x - x_0).$$

Geometric interpretation of the gradient

- The gradient of a function can be interpreted in the context of the level sets.
- Indeed, geometrically, the gradient of f at a point x_0 is a vector $\nabla f(x_0)$ perpendicular to the contour line of f at level $\alpha = f(x_0)$, pointing from x_0 outwards the α -sublevel set (that is, it points towards higher values of the function).

Geometric interpretation of the gradient

- The gradient $\nabla f(x_0)$ also represents the direction along which the function has the maximum rate of increase (steepest ascent direction).
- Let v be a unit direction vector (i.e., $\|v\|_2 = 1$), let $\epsilon \ge 0$, and consider moving away at distance ϵ from x_0 along direction v, that is, consider a point $x = x_0 + \epsilon v$. We have that

$$f(x_0 + \epsilon v) \simeq f(x_0) + \epsilon \nabla f(x_0)^\top v$$
, for $\epsilon \to 0$,

or, equivalently,

$$\lim_{\epsilon \to 0} \frac{f(x_0 + \epsilon v) - f(x_0)}{\epsilon} = \nabla f(x_0)^{\top} v.$$

- Whenever $\epsilon > 0$ and v is such that $\nabla f(x_0)^\top v > 0$, then f is increasing along the direction v, for small ϵ .
- The inner product $\nabla f(x_0)^{\top} v$ measures the rate of variation of f at x_0 , along direction v, and it is usually referred to as the *directional derivative* of f along v.

Geometric interpretation of the gradient

- The rate of variation is thus zero, if v is orthogonal to $\nabla f(x_0)$: along such a direction the function value remains constant (to first order), that is, this direction is tangent to the contour line of f at x_0 .
- Contrary, the rate of variation is maximal when v is parallel to $\nabla f(x_0)$, hence along the normal direction to the contour line at x_0 .

