

DATABASES

INTRODUCTION TO DATA SCIENCE

TIM KRASKA

OTHER ANNOUNCEMENTS

Want to get involved in research?

We are offering several independent studies and summer research internship.

Sign-up available on: http://database.cs.brown.edu/
or directly: http://tinyurl.com/zxznf92

Possible Topics:

Infiniband

Tupleware

Interactive Data Exploration

BOOK

So far:

Database System Concepts Sixth Edition by Silberschatz.

Pieces of chapters 1, 2, 3, 6, 7 and (18)

DATABASES FOR DATA SCIENTIST

CLICKER QUESTION I

- A customer can have several orders
- An order belongs to a single customer
- Every order has exactly one shipping method (e.g., Post, Fexed, UPS,...)

CLICKER QUESTION II

- A customer can have several orders
- An order belongs to a single customer
- Every order has exactly one shipping method (e.g., Post, Fexed, UPS,...)

PROBLEM

- You are the new Data Scientist at Evil Market
- Evil Market is tracking all customer purchases with their membership or credit card
- They also have data about their customers (estimated income, family status,...) from surveys they have done in the past
- Recently, they are trying to improve their image for young mothers
- As a start they want to know the following information for mothers under 30 for 2015:
 - How much do they spend at Evil Market?
 - How does this compare to all customers under 30?
 - What are their favorite products?
 - Did they spend more in 2015 than in 2014?

Your first project: Design the schema for Evil Market to analyze Evil Market's purchase logs!

STAR SCHEMA

City

City ID

Name

Population

Shop:

Shop ID

Fact Table

Shop ID

Customer ID

Profit

Volume

Etc...

Product

Product ID

Type ID

Name

Brand ID

Time

Date ID

Month ID

Customer

Customer ID

Customer Group ID

Name

SNOWFLAKE SCHEMA

Shop:

Shop ID

Brand

Brand ID

Name

Product

Product ID

Type ID

Name

City

City ID

Name

Population

Fact Table

Shop ID

Customer ID

Profit

Volume

Etc...

Time

Date ID

Month ID

Customer

Customer ID

Name

Customer Group

Group ID

DATABASES FOR DATA SCIENTIST

SQL: RELATIONAL ALGEBRA

FORMAL DEFINITION OF REL. ALGEBRA

Atoms (basic expressions)

- A relation in the database
- A constant relation

Operators (composite expressions)

- Selection: σ (E1)
- Projection: Π (E1)
- Cartesian Product: E1 x E2
- **Rename**: $\rho_{V}(E1)$, $\rho_{A \leftarrow B}(E1)$
- Union: $E1 \cup E2$
- **Minus**: E1 E2

CLOSURE PROPERTY / COMPOSABILITY

Professor(<u>Person-ID:integer</u>, Name:varchar(30), Level:varchar(2))

Student(Student-ID:integer, Name:varchar(30), Semester:integer)

Lecture(Course-ID:varchar(10), Title:varchar(50), CP:float)

Gives(Person-ID:integer, Course-ID:varchar(10))

Attends(<u>Student-ID:integer</u>, <u>Course-ID:varchar(10)</u>)

Tests(Student-ID:integer, Course-ID:varchar(10), Person-ID:integer, Grade:char(2))

SELECTION AND PROJECTION

Professor(<u>Person-ID:integer</u>, Name:varchar(30), Level:varchar(2)) Student(<u>Student-ID:integer</u>, Name:varchar(30), Semester:integer)

Selection

$\sigma_{\text{Semester} > 10}$ (Student)						
Student-ID Name Semester						
24002	Xenokrates	18				
25403	Jonas	12				

Projection

Π_{Level} (Professor)
Level
FP
AP

CARTESIAN PRODUCT

X

L					
Α	В	С			
a ₁	b ₁	C ₁			
a ₂	b ₂	C ₂			

R				
D	Е			
d ₁	e ₁			
d ₂	e_2			

Result							
A	В	С	D	Е			
a_1	b ₁	C ₁	d_1	e ₁			
a_1	b_1	C ₁	d ₂	e ₂			
a ₂	b ₂	C ₂	d_1	e_1			
a ₂	b ₂	c ₂	d ₂	e ₂			

CARTESIAN PRODUCT (CTD.)

Professor X Attends

	Professor	Atten	ds		
Person-ID	Name	Level	Room	Student-ID	Course- ID
2125	Ugur	FP	226	26120	5001
•••	•••	•••		•••	•••
2125	Ugur	FP	226	29555	5001
	•••	•••		•••	•••
2137	Jeff	AP	7	29555	5001

- Huge result set (n * m)
- Usually only useful in combination with a selection (-> Join)

NATURAL JOIN

Two relations:

```
\bullet R(A_1,...,A_m,B_1,...,B_k)
```

•
$$S(B_1,...,B_k,C_1,...,C_n)$$

$$\mathbf{R} \bowtie \mathbf{S} = \prod_{\text{Al},\dots,\text{Am},\text{R.Bl},\dots,\text{R.Bk},\text{Cl},\dots,\text{Cn}} (\sigma_{\text{R.Bl}=\text{S.Bl}} (\mathbf{RxS}))$$

	$R \bowtie S$										
	R -	- S			R	S			S -	- R	
A_1	A_2		A _m	B_1	B ₂		B_k	C_1	C_2		C_n
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$										

THREE-WAY NATURAL JOIN

(Student ⋈ attends) ⋈ Lecture

(Student ⋈ attends) ⋈ Lecture

Student -ID	Name	Semester	Course- NR	Title	СР	Person-ID
26120	Fichte	10	CS1951 a	Intro to Data Science	2	9999
27550	Jonas	12	CS18	Programming	2	2134
28106	Carnap	3	CS19	More Programming	3	2126
			:	•••	•••	•••

THETA-JOIN

Two Relations:

- R(A1, ..., An)
- S(B1, ..., Bm)

$$R \bowtie_{\theta} S = \sigma_{\theta} (R \times S)$$

$\mathbf{R}\bowtie_{\theta}\mathbf{S}$								
R S								
$oldsymbol{A}_1 \qquad oldsymbol{A}_2 \qquad \dots \qquad oldsymbol{A}_n$				B ₁	B ₂		B _m	
		÷	:	i	÷	i	:	

• natural join

L					
Α	В	O			
a_1	b_1	C_1			
a_2	b_2	C_2			

	R	
С	D	Е
C_1	d_1	e_1
C ₃	d_2	e_2

	Result						
=	Α	В	C	D	Е		
	a_1	b_1	C_1	d_1	e_1		

• left outer join

L		
Α	В	C
a_1	b_1	C_1
a_2	b_2	C ₂

		R	
_	C	D	Е
T	C_1	d_1	e_1
	C ₃	d_2	e_2

	Result				
	Α	В	C	D	Е
=	a_1	b_1	C ₁	d_1	e_1
	a ₂	b ₂	C ₂	1	1

• right outer join

L		
Α	В	С
a_1	b_1	C ₁
a ₂	b_2	C ₂

R		
U	D	Е
C_1	d_1	e_1
C ₃	d_2	e_2

Result				
Α	В	C	D	Е
a_1	b_1	C ₁	d_1	e_1
-	-	C ₃	d_2	e_2

• (full) outer join

L		
Α	В	С
a_1	b_1	C_1
a_2	b_2	C ₂

	R	
С	D	Е
C_1	d_1	e_1
C ₃	d_2	e_2

	Result				
	Α	В	C	D	Е
=	a_1	b_1	C_1	d_1	e_1
	a_2	b ₂	C ₂	1	1
	1	-	C ₃	d_2	e_2

• left semi join

7		
Α	В	С
a_1	b_1	C ₁
a ₂	b_2	C ₂

	K		
	C	D	Е
	C_1	d_1	e_1
	C ₃	d_2	e_2
-			

Result		
Α	В	C
a_1	b_1	C_1

• right semi join

L			
Α	В	C	
a_1	b_1	C ₁	
a_2	b_2	C ₂	

R			
O	D	Ш	
C_1	d_1	e_1	
C ₃	d_2	e_2	

Resultat			
С	D	Е	
C_1	d_1	e_1	

RENAME OPERATOR

Renaming of relation names

- Needed to process self-joins and recursive relationships
- E.g., two-level dependencies of lectures ("grandparents")

SET DIFFERENCE (-)

Notation: Relation₁ - Relation₂

R - S valid only if:

- 1. R, S have same number of columns (arity)
- 2. R, S corresponding columns have same domain (compatibility)

Example:

loanbnamelnoamountDowntownL-171000RedwoodL-232000PerryL-151500DowntownL-14500PerryL-16300

bname	acct_no	balance
Mianus	A-215	700
Brighton		
Redwood	A-222	700
Brighton		

account

bname

Mianus
Redwood

(B)

bname

Downtown
Redwood
Perry

Result?

(C)

Downtown Perry

INTERSECTION

$$\Pi_{Person-ID}(Lecture) \cap \Pi_{Person-ID}(\sigma_{Level=FP}(Professor))$$

Only works if both relations have the same schema

Same attribute names and attribute domains

Intersection can be simulated with minus:

$$\mathbf{R} \cap \mathbf{S} = \mathbf{R} - (\mathbf{R} - \mathbf{S})$$

Union works similarly...

CODD'S THEOREM

3 Languages:

- Relational Algebra
- Tuple Relational Calculus (safe expressions only)
- Domain Relational Calculus (safe expressions only)

are equivalent.

Impact of Codd's theorem:

- SQL is based on the relational calculus
- SQL implementation is based on relational algebra
- Codd`s theorem shows that SQL implementation is correct and complete.

NOT COVERED

Set Division

Aggregate Functions

Codd's Proof
