S&DS 351: Stochastic Processes - Homework 8

Bryan SebaRaj

Professor Ilias Zadik

April 18, 2025

Chang Problems:

[5.8] The strong Markov property is an extension of the restarting property of Proposition 5.5 from fixed times c to random stopping times γ : For a stopping time γ , the process x defined by $X(t) = W(\gamma + t) - W(\gamma)$ is a Brownian motion, independent of the path of W up to time γ . Explain the role of the stopping time requirement by explaining how the restarting property can fail for a random time that isn't a stopping time. For example, let $M = \max\{B_t : 0 \le t \le 1\}$ and let $\beta = \inf\{t : B_t = M\}$; this is the first time at which B achieves its maximum height over the time interval [0,1]. Clearly β is not a stopping time, since we must look at the whole path $\{B_t : 0 \le t \le 1\}$ to determine when the maximum is attained. Argue that the restarted process $X(t) = W(\beta + t) - W(\beta)$ is not a standard Brownian motion.

Since $B_{\beta+t} \leq B_{\beta}$, $\forall t$ s.t. $0 \leq t \leq 1-\beta$, $X(1-\beta) = B_1 - B_{\beta} \leq 0$ w.p. 1; this contradicts the symmetry of a $N(0, 1-\beta)$ law and proves that X cannot be a standard Brownian motion, showing why the strong Markov property requires β to be a stopping time.

[5.9] [Ornstein-Uhlenbeck process] Define a process X by

$$X(t) = e^{-t}W(e^{2t})$$

for $t \geq 0$, where W is a standard Brownian motion. X is called an Ornstein-Uhlenbeck process.

(a) Find the covariance function of X.

Let the process X be obtained from a standard Brownian motion W by deterministic space—time change as given. Because W is Gaussian with mean 0, X is also Gaussian with mean 0. As such, its second-order behaviour is described by its covariance function. Suppose $s,t\geq 0$ and WLOG assume $s\leq t$. Then,

$$\mathbb{E}\big[X(s)X(t)\big] = \mathbb{E}\Big[e^{-s}W(e^{2s})\;e^{-t}W(e^{2t})\Big] = e^{-(s+t)}\,\mathbb{E}\Big[W(e^{2s})\,W(e^{2t})\Big]$$

Recall that Brownian motion has covariance $\mathbb{E}[W(u)W(v)] = \min\{u, v\}$.

$$\mathbb{E}[X(s)X(t)] = e^{-(s+t)}\min\{e^{2s}, e^{2t}\} = e^{-(s+t)}e^{2s} = e^{-(t-s)}$$

By symmetry in (s,t), this can be extended to all $s,t \geq 0$, yielding

$$Cov(X(s), X(t)) = e^{-|t-s|}, \quad s, t > 0$$

(b) Evaluate the functions μ and σ^2 , defined by

$$\mu(x,t) = \lim_{h \downarrow 0} \frac{1}{h} \mathbb{E}[X(t+h) - X(t) \mid X(t) = x]$$

$$\sigma^{2}(x,t) = \lim_{h\downarrow 0} \frac{1}{h} \text{Var}[X(t+h) - X(t) \mid X(t) = x].$$

Expand X(t+h) around t,

$$\Delta_h = W(e^{2(t+h)}) - W(e^{2t}),$$
 so that $X(t+h) = e^{-(t+h)}[W(e^{2t}) + \Delta_h]$

See that since W has independent increments, Δ_h is independent of $W(e^{2t})$ and is Gaussian with mean 0 and variance.

$$Var(\Delta_h) = e^{2(t+h)} - e^{2t} = e^{2t}(e^{2h} - 1)$$

Also see that when $\{X(t) = x\}$, the value of $W(e^{2t})$ becomes

$$X(t) = e^{-t}W(e^{2t}) = x$$
$$W(e^{2t}) = e^{t}x$$

Therefore, in this case,

$$\mathbb{E}[\Delta_h \mid X(t) = x] = 0 \quad \text{and} \quad \operatorname{Var}[\Delta_h \mid X(t) = x] = e^{2t} (e^{2h} - 1)$$

Evaluating the first conditional moment,

$$\mathbb{E}[X(t+h) - X(t) \mid X(t) = x] = \mathbb{E}[e^{-(t+h)}W(e^{2t}) - e^{-t}W(e^{2t}) + e^{-(t+h)}\Delta_h \mid X(t) = x]$$

$$= (e^{-(t+h)} - e^{-t}) e^t x + e^{-(t+h)}\mathbb{E}[\Delta_h \mid X(t) = x]$$

$$= (e^{-h} - 1)x$$

Therefore,

$$\mu(x,t) = \lim_{h \downarrow 0} \frac{1}{h} \mathbb{E} \big[X(t+h) - X(t) \, | \, X(t) = x \big] = \lim_{h \downarrow 0} \frac{e^{-h} - 1}{h} \, x = -x$$

Evaluating the second conditional moment,

$$\operatorname{Var}\left[X(t+h) - X(t) \mid X(t) = x\right] = \operatorname{Var}\left[e^{-(t+h)}\Delta_{h}\right]$$

$$= e^{-2(t+h)}\operatorname{Var}\left[\Delta_{h} \mid X(t) = x\right]$$

$$= e^{-2h}\left(e^{2h} - 1\right)$$

Therefore,

$$\sigma^{2}(x,t) = \lim_{h \downarrow 0} \frac{1}{h} \operatorname{Var} \left[X(t+h) - X(t) \,|\, X(t) = x \right] = 2$$

[5.10] Let W be a standard Brownian motion.

(i) Defining $\tau_b = \inf\{t : W(t) = b\}$ for b > 0 as above, show that τ_b has probability density function

$$f_{\tau_b}(t) = \frac{b}{\sqrt{2\pi}} t^{-3/2} e^{-b^2/(2t)}$$

for t > 0.

By the reflection principle, see that

$$P\{\tau_b \le t\} = P\{\sup_{0 \le s \le t} W(s) \ge b\} = 2P\{W(t) \ge b\}$$

Since $W(t) \sim \mathcal{N}(0, t)$,

$$P\{W(t) \ge b\} = 1 - \Phi\left(\frac{b}{\sqrt{t}}\right)$$

where Φ is the standard normal distribution function and $\varphi(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$ its density. Therefore,

$$F_{\tau_b}(t) = 2\left[1 - \Phi\left(\frac{b}{\sqrt{t}}\right)\right]$$
 when $t > 0$

Differentiating to obtain the density,

$$f_{\tau_b}(t) = 2\varphi\left(\frac{b}{\sqrt{t}}\right)\left(-\frac{b}{2}t^{-3/2}\right)(-1) = \frac{b}{\sqrt{2\pi}}t^{-3/2}e^{-b^2/(2t)}, \text{ when } t > 0$$

Thus, τ_b has a pdf as claimed.

(ii) Show that for $0 < t_0 < t_1$,

$$P\{W(t) = 0 \text{ for some } t \in (t_0, t_1)\} = \frac{2}{\pi} \tan^{-1} \left(\sqrt{\frac{t_1}{t_0} - 1}\right) = \frac{2}{\pi} \cos^{-1} \left(\sqrt{\frac{t_0}{t_1}}\right).$$

[Hint: The last equality is simple trigonometry. For the previous equality, condition on the value of $W(t_0)$, use part (i), and Fubini (or perhaps integration by parts).]

Suppose $0 < t_0 < t_1$ and define $\Delta = t_1 - t_0$. By the Markov property, conditioning on $W(t_0) = x$ and

$$\tau_{|x|} = \inf\{s > 0 : W_x(s) = 0\}$$
 s.t. $(W_x(0) = x)$

yields

$$P\{W(t) = 0, t \in (t_0, t_1)\} = \int_{\mathbb{R}} P\{\tau_{|x|} \le \Delta\} \frac{e^{-x^2/(2t_0)}}{\sqrt{2\pi t_0}} dx$$

Since $\tau_{|x|}$ has the density from part (i) with b = |x|

$$P\{\tau_{|x|} \le \Delta\} = \int_0^\Delta \frac{|x|}{\sqrt{2\pi}} s^{-3/2} e^{-x^2/2s} ds$$

Restricting to x > 0 based on symmetry,

$$P = 2 \int_0^\infty \frac{e^{-x^2/(2t_0)}}{\sqrt{2\pi t_0}} \int_0^\Delta \frac{x}{\sqrt{2\pi}} s^{-3/2} e^{-x^2/2s} \, ds \, dx$$

$$P = \frac{2}{2\pi\sqrt{t_0}} \int_0^{\Delta} s^{-3/2} \int_0^{\infty} x \exp\left(-x^2 \left(\frac{1}{2t_0} + \frac{1}{2s}\right)\right) dx ds$$

For $\alpha > 0$, see that $\int_0^\infty x e^{-\alpha x^2} dx = \frac{1}{2\alpha}$. Since

$$\alpha = \frac{1}{2t_0} + \frac{1}{2s} = \frac{s + t_0}{2st_0}$$

$$\frac{1}{2\alpha} = \frac{st_0}{s + t_0}$$

Therefore,

$$P = \frac{1}{2\pi\sqrt{t_0}} \int_0^{\Delta} \frac{2t_0 \, s^{-1/2}}{s + t_0} \, ds = \frac{\sqrt{t_0}}{\pi} \int_0^{\Delta} \frac{s^{-1/2}}{s + t_0} \, ds$$

Let $s = t_0 u^2$ $(u \ge 0)$. As such, $ds = 2t_0 u du$ and the upper limit becomes

$$u_{\text{max}} = \sqrt{\frac{\Delta}{t_0}} = \sqrt{\frac{t_1}{t_0} - 1}$$

Substituting this into the integral,

$$P = \frac{\sqrt{t_0}}{\pi} \int_0^{u_{\text{max}}} \frac{1}{\sqrt{t_0}u} \frac{2t_0u}{t_0(1+u^2)} du = \frac{2}{\pi} \int_0^{u_{\text{max}}} \frac{du}{1+u^2} = \frac{2}{\pi} \tan^{-1}(u_{\text{max}})$$

Given that $u_{\text{max}} = \sqrt{\frac{t_1}{t_0} - 1}$

$$P = \frac{2}{\pi} \tan^{-1} \left(\sqrt{\frac{t_1}{t_0} - 1} \right) = \frac{2}{\pi} \cos^{-1} \left(\sqrt{\frac{t_0}{t_1}} \right)$$

[5.13] Let (X(t), Y(t)) be a two-dimensional standard Brownian motion; that is, let $\{X(t)\}$ and $\{Y(t)\}$ be standard Brownian motion processes that are independent of each other. Let b > 0, and define $\tau = \inf\{t : X(t) = b\}$. Find the probability density function of $Y(\tau)$. That is, find the probability density of the height at which the two-dimensional Brownian motion first hits the vertical line x = b.

[Hint: The answer is a Cauchy distribution.]

Let $\tau = \inf\{t > 0 : X(t) = b \text{ when } b > 0$, so $(X(\tau), Y(\tau)) = (b, Y(\tau))$ is the first point where the two-dimentional Brownian motion hits x = b. Since X and Y are independent one-dimensional Brownian motions started at $0, Y(\tau)$ can be obtained. From the reflection principle,

$$f_{\tau}(t) = \frac{b}{\sqrt{2\pi}} t^{-3/2} e^{-b^2/(2t)}, \text{ when } t > 0$$

For fixed t, Y(t) is independent of X and satisfies

$$Y(\tau) \mid \{\tau = t\} \sim \mathcal{N}(0, t)$$

$$g_t(y) = \frac{1}{\sqrt{2\pi t}} e^{-y^2/(2t)}, \quad y \in \mathbb{R}$$

Using the law-of-total-probability and Fubini,

$$f_{Y(\tau)}(y) = \int_0^\infty g_t(y) f_\tau(t) dt$$

$$= \int_0^\infty \frac{1}{\sqrt{2\pi t}} e^{-y^2/(2t)} \frac{b}{\sqrt{2\pi}} t^{-3/2} e^{-b^2/(2t)} dt$$

$$= \frac{b}{2\pi} \int_0^\infty t^{-2} e^{-(b^2 + y^2)/(2t)} dt$$

Evaluating the integral by substitution $u=(b^2+y^2)/(2t)$, s.t. $t=(b^2+y^2)/(2u)$ and $dt=-(b^2+y^2)/(2u^2)\,du$,

$$\int_0^\infty t^{-2} e^{-(b^2 + y^2)/(2t)} dt = \int_\infty^0 \left(\frac{2u}{b^2 + y^2}\right)^2 e^{-u} \left(-\frac{b^2 + y^2}{2u^2}\right) du$$

$$= \frac{1}{\frac{1}{2}(b^2 + y^2)} \int_0^\infty e^{-u} du$$

$$= \frac{2}{b^2 + y^2}$$

Therefore,

$$f_{Y(\tau)}(y) = \frac{b}{2\pi} \frac{2}{b^2 + y^2} = \frac{b}{\pi(b^2 + y^2)}, \quad \forall y \in \mathbb{R}$$

Finally, see that the density $y \longmapsto \frac{b}{\pi(b^2+y^2)}$ is the centered Cauchy density with b. Thus,

$$Y(\tau) \sim \text{Cauchy}(0, b)$$

[5.15] Let 0 < s < t < u.

(a) Show that $\mathbb{E}(W_s W_t \mid W_u) = \frac{s}{t} \mathbb{E}(W_t^2 \mid W_u)$.

Suppose. 0 < s < t < u. Note that $\{W_r\}_{r \geq 0}$ is a centred Gaussian process with independent increments. Since W_u is non-degenerate, any finite vector built from the path is jointly Gaussian. As such, conditional expectations can be obtained by linear regression. Let us decompose the Brownian bridge.

$$W_r = -\frac{r}{u}W_u + B_r, \qquad 0 \le r \le u$$

where $\{B_r\}_{0 \le r \le u}$ is a mean-0 Gaussian bridge independent of W_u with covariance

$$\mathbb{E}[B_r B_{r'}] = \frac{r(u - r')}{u}, \qquad r \le r'$$

Calculating the conditional moment of W_t .

$$W_t^2 = \left(\frac{t}{u} W_u\right)^2 + 2\frac{t}{u} W_u B_t + B_t^2$$

Note that B_t is independent of W_u and has mean 0. Taking conditional expectation given W_u yields

$$\mathbb{E}(W_t^2 \mid W_u) = \frac{t^2}{u^2} W_u^2 + \mathbb{E}(B_t^2) = \frac{t^2}{u^2} W_u^2 + \frac{t(u-t)}{u}$$

Using the same decomposition,

$$W_s W_t = \left(\frac{s}{u} W_u + B_s\right) \left(\frac{t}{u} W_u + B_t\right) = \frac{st}{u^2} W_u^2 + \frac{s}{u} W_u B_t + \frac{t}{u} W_u B_s + B_s B_t$$

Conditioning on W_u removes the linear terms in B_s, B_t and replaces B_sB_t with its covariance,

$$\mathbb{E}(W_s W_t \mid W_u) = \frac{st}{u^2} W_u^2 + \mathbb{E}(B_s B_t) = \frac{st}{u^2} W_u^2 + \frac{s(u-t)}{u}$$

Therefore,

$$\frac{s}{t} \mathbb{E}(W_t^2 \mid W_u) = \frac{s}{t} \left(\frac{t^2}{u^2} W_u^2 + \frac{t(u-t)}{u} \right) = \frac{st}{u^2} W_u^2 + \frac{s(u-t)}{u} = \mathbb{E}(W_s W_t \mid W_u)$$

Thus,

$$\mathbb{E}(W_s W_t \mid W_u) = \frac{s}{t} \, \mathbb{E}(W_t^2 \mid W_u)$$

(b) Find $\mathbb{E}(W_t^2 \mid W_u)$ [you know $\text{Var}(W_t \mid W_u)$ and $\mathbb{E}(W_t \mid W_u)$!] and use this to show that

$$Cov(W_s, W_t \mid W_u) = \frac{s(u-t)}{u}.$$

Recall that we have already shown that

$$\mathbb{E}(W_t^2 \mid W_u) = \frac{t(u-t)}{u} + \frac{t^2}{u^2} W_u^2$$

For conditional covariance,

$$Cov(W_s, W_t \mid W_u) = \mathbb{E}(W_s W_t \mid W_u) - \mathbb{E}(W_s \mid W_u) \mathbb{E}(W_t \mid W_u)$$

Since $\{W_r\}$ is a martingale,

$$\mathbb{E}(W_r \mid W_u) = \frac{r}{u} W_u \quad \text{for some } 0 \le r \le u$$

As such,

$$\mathbb{E}(W_s \mid W_u) \, \mathbb{E}(W_t \mid W_u) = \frac{st}{u^2} W_u^2$$

Thus,

$$Cov(W_s, W_t \mid W_u) = \frac{s}{t} \left(\frac{t(u-t)}{u} + \frac{t^2}{u^2} W_u^2 \right) - \frac{st}{u^2} W_u^2 = \frac{s(u-t)}{u}$$

[5.17] Verify that the definitions (5.13) and (5.14) give Brownian bridges.

(5.13)
$$X(t) = W(t) - tW(1)$$
 for $0 \le t \le 1$.

(5.14)
$$Y(t) = (1-t)W\left(\frac{t}{1-t}\right)$$
 for $0 \le t < 1$, $Y(1) = 0$

Recall that a centred, continuous Gaussian process $\{B(t)\}_{0 \le t \le 1}$ is called a Brownian bridge given that

$$B(0) = B(1) = 0, \quad \text{and} \quad \operatorname{Cov} \big(B(s), B(t) \big) = \min\{s, t\} - st, \ \text{ given } 0 \le s, t \le 1$$

When $s \leq t$, covariance is s(1-t). To demonstrate that (5.13) is Brownian bridge, consider the required properties.

- (1) End points. X(0) = W(0) = 0, X(1) = W(1) W(1) = 0.
- (2) Gaussianity. X(t) is a fixed linear combination of $\{W(r)\}_{0 \le r \le 1}$, so every finite-dimensional distribution is multivariate normal.
- (3) Mean. $\mathbb{E}[X(t)] = \mathbb{E}[W(t)] t\mathbb{E}[W(1)] = 0.$
- (4) Covariance. For $0 \le s \le t \le 1$,

$$Cov(X(s), X(t)) = \mathbb{E}[(W(s) - sW(1))(W(t) - tW(1))] = \min\{s, t\} - ts - s(1) + st = s(1 - t)$$

See that this is $\min\{s, t\} - st$.

(5) Continuity. X inherits almost–sure continuity from W. Given that all axioms are satisfied, X is a Brownian bridge.

To demonstrate that (5.14) is Brownian bridge, consider the required properties.

Let $\theta(t)=\frac{t}{1-t}$, s.t. $\theta:[0,1)\to[0,\infty)$ is strictly increasing. (1) End points. Y(0)=(1-0)W(0)=0, Y(1)=0 by definition.

- (2) Gaussianity. For t < 1, Y(t) is a scalar multiple of $W(\theta(t))$; any finite vector $(Y(t_1), \dots, Y(t_k))$ is thus a linear image of $(W(\theta(t_1)), \ldots, W(\theta(t_k)))$, and is Gaussian.
- (3) Mean. Trivially, $\mathbb{E}[Y(t)] = 0$

continuous version on [0, 1].

(4) Covariance. Fix $0 \le s \le t < 1$. $\theta(s) \le \theta(t) \implies \min\{\theta(s), \theta(t)\} = \theta(s)$

$$Cov(Y(s), Y(t)) = (1 - s)(1 - t) \mathbb{E}\Big[W(\theta(s)) W(\theta(t))\Big] = (1 - s)(1 - t) \theta(s) = (1 - s)(1 - t) \frac{s}{1 - s} = s(1 - t)$$

Therefore, $\operatorname{Cov}(Y(s),Y(t)) = \min\{s,t\} - st \ \forall s,t \leq 1$. (5) Continuity and the value at t=1. Computing the variance, $\operatorname{Var}[Y(t)] = t(1-t) \xrightarrow[t\to 1^-]{} 0$. As such, $Y(t)\to 0$ is in L^2 and therefore in probability as $t \to 1^-$. Since W admits a continuous modification, we can choose a modification and confirm $t \mapsto Y(t)$ is continuous w.p. 1 on [0,1) and converges to 0 at t=1. Therefore, redefining Y(1)=0 yields a

Thus, X and Y both satisfy the defining properties of a Brownian bridge on [0,1].

Problem 1. (15 points) Let $W(t), t \ge 0$ be a standard Brownian motion. Prove that it is a Gaussian process, i.e., for all $n \in \mathbb{N}, t_1, \dots, t_n \geq 0$ and $a_1, \dots, a_n \in \mathbb{R}$, the distribution of $\sum_{i=1}^n a_i W(t_i)$ is Gaussian.

Recall the definition of standard Brownian motion $\{W(t)\}_{t\geq 0}$,

$$W(0) = 0, \quad \text{for } 0 \leq s < t \;,\; W(t) - W(s) \sim N(0, t - s), \quad \text{s.t. } \{W(t) - W(s)\}_{0 \leq s < t} \text{ are independent}$$

Let $n \in \mathbb{N}, t_1, \dots, t_n \geq 0, a_1, \dots, a_n \in \mathbb{R}$, and set $S = \sum_{i=1}^n a_i W(t_i)$. Note that if some of the t_i are equal, we can merge coefficients and if they are unordered, we can re-label indices s.t.

$$0 \le t_{(1)} < t_{(2)} < \dots < t_{(m)}, \qquad b_j := \sum_{i: t_i = t_{(j)}} a_i, \quad 1 \le j \le m \le n,$$

and denote $S = \sum_{j=1}^{m} b_j W(t_{(j)})$. Hence WLOG $0 < t_1 < \cdots < t_n$. Defining the independent Gaussian increments as

$$\Delta_1 := W(t_1) - W(0) = W(t_1)$$
 and $\Delta_k := W(t_k) - W(t_{k-1}), \ 2 \le k \le n$

As such, S can be rewritten as

$$S = \sum_{i=1}^{n} a_i \left(\Delta_1 + \dots + \Delta_i \right) = \sum_{k=1}^{n} \left(\sum_{i=k}^{n} a_i \right) \Delta_k = \sum_{k=1}^{n} c_k \Delta_k$$

where $c_k = \sum_{i=k}^n a_i$. Note that each increment Δ_k is Gaussian.

$$\Delta_k \sim N(0, t_k - t_{k-1})$$
 s.t. $t_0 = 0$

and the vector $(\Delta_1, \ldots, \Delta_n)$ has independent components through the definition of Brownian motion. Because independent Gaussian variables are also jointly Gaussian, any deterministic linear combination of them must also be Gaussian. $S = \sum_{k=1}^{n} c_k \Delta_k$ is a sum of independent $N(0, \sigma_k^2)$ variables multiplied by deterministic scalars c_k . As such,

$$S \sim N(0, \sum_{k=1}^{n} c_k^2 (t_k - t_{k-1}))$$

or S is Gaussian.