Using arxiv.org as a Source of Edit Data

Samuel Stevens

Janueary 2020

Computer Science Engineering

Prof. Wei Xu

Abstract

- Abstract
 - summary of problem statement, objectives and methodology

1. Background and Motivation

Natural language processing has current applications in areas such as virtual assistants (Alexa, Siri), but also is applicable in machine translation (Google Translate) and automatic editing (Grammarly). Automatic editing results can be improved with additional examples of edits from which algorithms can learn. However, compared to web chats, translated texts, or free form prose, finding large repositories of text being edited (with before and after data) is more difficult.

arxiv.org is the "the standard repository for new papers in mathematics, physics, statistics, computer science, biology, and other disciplines" [Krant citation from Chenhao]. As noted in [chenhao citation], arxiv.org authors often submit multiple versions of their papers. At the time of writing, arxiv.org hosts 1.6M papers, with 611K with two or more versions. Can these papers be used to create a large dataset of examples of improving the quality of a sentence through editing? More concretely, can data from arxiv.org be used to improve current NLP metrics such as Split and Rephrase [CITATION NEEDED] or atomic insertions [WikiAtomicEdits citation here]?

Related Work

Previous work on using publicly available data for as a source of edit data has primarily focused on using Wikipeida [wikiatomicedits, wikisplit] (Chenhao has lots of sources here). arxiv.org has only been looked at by [Chenhao citation], examined all papers from 2011. Work on arxiv.org [Chenhao citation] and Wikipedia [WikiAtomicEdit citation] produced a dataset of 108,678 and 43 million sentence edits, respectively. I will look at all papers on arxiv.org with two or more revisions to create a larger dataset. In addition, [chenhao citation] does not look at how edit data in academic writing could improve model scores

in areas such as Split and Rephrase [split and rephrase citation] or phrases insertion with existing sentences [wiki atomic edits citation]. Given that Wikipedia edit data has been useful in many applications including (... big list here [with citations]...), arxiv.org could also be a valuable source of edit data with many similar applications.

• Significance

- discuss importances of research project. (seems quite similar to the previous point)

Significance

• Research Goals

- discuss hypotheses of project and/or overall objectives
- include what you hope to resolve after performing this research
- if working in a research group with multiple investigators, indicate your individual contribution to the project

Research Goals

Using arxiv.org as a source of data could improve current NLP models in previously established natural language edit metrics such as Split and Rephrase [citation here] or Inserting a Phrase [wikiatomicedits citation]. I will be working on this project with Prof. Wei Xu as my research advisor and Chao Jiang, a Ph.D. student at Ohio State.

Methodology

In order to use arxiv.org as a source of data, the papers available for download will be used as a source of academic writing. By finding papers with two or more versions, we can find edits made to papers and used as a source of data similar to WikiAtomicEdits [citation] or

the Academic Edits dataset [chenhao citation].

Finding Papers

To find papers, arxiv.org's Open Archives Initiative for metadata harvesting will be used.

Downloading Latex Source Code

To download the Latex source code, an automated web scraper will be developed using Python3. About 900K papers need to be downloaded. To not overly stress the arxiv.org server, a small delay will be introduced between requests. With this delay, it will require about 20 days to download all papers.

Converting Latex to Text

Because Latex is not a language with plain English text throughout, some processing is needed to extract the text from Latex. Several open source, free-to-use tools are available for extracting text from Latex. A tool will be chosen through the following process:

- 1. Extract the text from 5 documents using each of the potential tools.
- 2. Compare the tools' outputs with the final, true PDF document.
- 3. Aggregate the types and counts of errors made by each of the potential tools.
- 4. Select the tool with the best output.
- 5. Fix the most common errors previously seen.
- 6. Extract text from an additional 3 documents using v2 of the selected tool.
- 7. Compare the tool's output with v1 and the other original potential tools.
- 8. Aggregate the types and counts of errors made by each of the potential tools.
- 9. Fix errors until the selected tool does not make any errors not made by other candidates.

Tokenization

To convert the raw text from the papers to sentences, Stanford's CoreNLP tokenizer will be used [citation]. A wrapper for said tokenizer was written by Chao Jiang [citation] which will be used to interface with Stanford's code.

Alignment

To align non-identical sentences, a variety of models will be evaluated against a gold standard that is manually aligned.

Using Alignments in Models

After creating a dataset of aligned sentences, the data will be used in different models to evaluate how additional data could improve already existing models/metrics.

Timeline

Task	Start Date	End Date
Proposal	Jan 16, 2020	Feb 14, 2020
Gathering data	Jan 18, 2020	Jan 27, 2020
Taking 4999H (2nd session)	Feb 26, 2020	Apr 20, 2020
Evaluating models	Mar 2, 2020	Apr 5, 2020
Writing conference paper	Apr 6, 2020	May 10, 2020
Paper submission to EMNLP	May 11, 2020	
Summer break		
Taking 4999H	Aug 25, 2020	Dec 9, 2020
Writing Ohio State thesis	Aug 25, 2020	Sep 25, 2020
Oral defense	Oct, 2020	
Submission to Knowledge Bank	Oct, 2020 (after defense)	
Presenting at research forum	Nov, 2020	

Personal Statement

I am a third year Honors CSE student interested in artificial intelligence. Communicating with machines through natural language has been a challenge for researchers since the very start of AI research with the Turing test. The opportunity to work in NLP with Prof. Xu is unlike any experience I've had in industry internships. I'll be able to work with both current and future Ph.D.'s in a one-on-one setting on real project. I can't get that kind of experience anywhere else. Because this work is so different to what I experience in the classroom or in industry, I will learn more, and faster.

In addition, this project gives me an opportunity to apply the material taught in my AI and NLP classes in a real world project. So much of computer science is well-documented and

freely available online. Since NLP and AI are the cutting edge of computer science, they aren't as accessible to a student like me. The opportunity to work on a real project with the best of the best isn't something I can find on a video tutorial

Finally, working on a research project from start to finish will give me an first-person look into the lives of Ph.D. students. This opportunity will help inform my decision about graduate school and doing research in my future career. • List all references (should also be cited throughout the body)

References