Models for Probabilistic Programs with an Adversary

Robert Rand, Steve Zdancewic

University of Pennsylvania

Probabilistic Programming Semantics 2016

WHY SHOULD WE CARE?

- Mixing probability and nondeterminism is powerful.
- ► Private vs. public coins matter.

Let's Start with a Deterministic Semantics...

$$\frac{\sigma(a) = n}{x := a / \sigma \Downarrow \sigma[x \mapsto n]}$$

$$\frac{c_1 / \sigma \Downarrow \sigma' \quad c_2 / \sigma' \Downarrow \sigma''}{c_1; c_2 / \sigma \Downarrow \sigma''}$$

$$\frac{\sigma(b) = T \quad c_1 / \sigma \Downarrow \sigma'}{\text{if } b \text{ then } c_1 \text{ else } c_2 / \sigma \Downarrow \sigma'}$$

FOR POINT DISTRIBUTIONS

$$\left[\Theta ::= [\sigma] \mid \Theta \oplus_p \Theta
ight]$$

Toss in Some Probability

$$\left[\Theta ::= [\sigma] \mid \Theta \oplus_p \Theta\right]$$

$$\frac{c_1 / [\sigma] \Downarrow \Theta_1 \quad c_2 / [\sigma] \Downarrow \Theta_2}{(c_1 \oplus_p c_2) / [\sigma] \Downarrow \Theta_1 \oplus_p \Theta_2}$$

Toss in Some Probability

$$\Theta ::= [\sigma] \mid \Theta \oplus_p \Theta$$

$$\frac{c_1 / [\sigma] \Downarrow \Theta_1 \quad c_2 / [\sigma] \Downarrow \Theta_2}{(c_1 \oplus_p c_2) / [\sigma] \Downarrow \Theta_1 \oplus_p \Theta_2}$$

$$[\sigma] \xrightarrow{(x := 0 \oplus_{\frac{1}{3}} x := 1)} \xrightarrow{\bigoplus_{1/3}} \sigma[x \mapsto 0] \qquad \sigma[x \mapsto 1]$$

AND LIFT!

$$\frac{c / \Theta_1 \Downarrow \Theta_1' \quad c / \Theta_2 \Downarrow \Theta_2'}{c / \Theta_1 \oplus_p \Theta_2 \Downarrow \Theta_1' \oplus_p \Theta_2'}$$

AND LIFT!

$$\frac{c / \Theta_1 \Downarrow \Theta_1' \quad c / \Theta_2 \Downarrow \Theta_2'}{c / \Theta_1 \oplus_p \Theta_2 \Downarrow \Theta_1' \oplus_p \Theta_2'}$$

THE SKIP COMMAND

More Direct

DIRECT SEMANTICS

$$\frac{\sigma(a) = n}{x := a / \Theta \Downarrow \Theta[\sigma_i(x) \mapsto n]}$$

$$\frac{c_1 / \Theta \Downarrow \Theta' \quad c_2 / \Theta' \Downarrow \Theta''}{c_1; c_2 / \Theta \Downarrow \Theta''}$$

$$\frac{Pr_b(\Theta_1) = 1 \quad c_1 / \Theta_1 \Downarrow \Theta'_1 \quad c_2 / \Theta_0 \Downarrow \Theta'_0 \quad Pr_b(\Theta_0) = 0}{\text{if } b \text{ then } c_1 \text{ else } c_2 / \Theta_1 \oplus_p \Theta_0 \Downarrow \Theta'_1 \oplus_p \Theta'_0}$$

$$\frac{c_1 / \Theta \Downarrow \Theta_1 \quad c_2 / \Theta \Downarrow \Theta_2}{(c_1 \oplus_p c_2) / \Theta \Downarrow \Theta_1 \oplus_p \Theta_2}$$

THE DISTINCTION

Recursive

$$\frac{c_1 / [\sigma] \Downarrow \Theta_1}{(c_1 \sqcup c_2) / [\sigma] \Downarrow \Theta_1} \qquad \frac{c_2 / [\sigma] \Downarrow \Theta_2}{(c_1 \sqcup c_2) / [\sigma] \Downarrow \Theta_2}$$

vs.

$$\frac{c_1 / \Theta \Downarrow \Theta_1}{(c_1 \sqcup c_2) / \Theta \Downarrow \Theta_1} \qquad \frac{c_2 / \Theta \Downarrow \Theta_2}{(c_1 \sqcup c_2) / \Theta \Downarrow \Theta_2}$$

Direct

LET'S PLAY A GAME!

LET'S PLAY A GAME!

$$P := \bigoplus_{\frac{1}{3}} \left(\bigoplus_{\frac{1}{2}} \bigoplus_{\frac{1}{2}} \right)$$

$$O := \bigoplus \bigsqcup \bigoplus \bigsqcup \bigoplus$$

LET'S PLAY A GAME!

$$c_1$$
 $P := \bigcirc \bigoplus_{\frac{1}{3}} (\bigcirc \bigoplus_{\frac{1}{2}} \bigoplus)$
 c_2 $O := \bigcirc \sqcup \bigcirc \sqcup \bigoplus$

$$c_1: P:=\bigcirc \bigoplus_{\frac{1}{3}} (\bigcirc \bigoplus_{\frac{1}{2}} \clubsuit)$$

$$c_1: P:=\bigcirc \bigoplus_{\frac{1}{3}} (\bigcirc \bigoplus_{\frac{1}{2}} \bigoplus)$$

Knowledge

The two levels of operational semantics reflect whether the adversary knows the outcome of coin flips.

- 1. Adversary is blind to probabilistic outcomes.
 - ► Single choice in $((c_1 \sqcup c_2) \oplus (c_1 \sqcup c_2))$
 - ▶ Distinct choices in $((c_1 \sqcup c_2) \oplus (c_1 \sqcup c_2))$ (Direct)
- 2. Adversary can see current program state

- 3. Adversary recalls program history (Recursive)
- 4. Adversary can foresee all outcomes.
 - ► Single coin flip in $((c_1 \oplus c_2) \sqcup (c_1 \oplus c_2))$
 - ▶ Distinct coin flips in $((c_1 \oplus c_2) \sqcup (c_1 \oplus c_2))$

- 1. Adversary is blind to probabilistic outcomes.
 - ► Single choice in $((c_1 \sqcup c_2) \oplus (c_1 \sqcup c_2))$
 - ▶ Distinct choices in $((c_1 \sqcup c_2) \oplus (c_1 \sqcup c_2))$ (Direct)
- 2. Adversary can see current program state

- 3. Adversary recalls program history (Recursive)
- 4. Adversary can foresee all outcomes.
 - ► Single coin flip in $((c_1 \oplus c_2) \sqcup (c_1 \oplus c_2))$
 - ▶ Distinct coin flips in $((c_1 \oplus c_2) \sqcup (c_1 \oplus c_2))$

- 1. Adversary is blind to probabilistic outcomes.
 - ► Single choice in $((c_1 \sqcup c_2) \oplus (c_1 \sqcup c_2))$
 - ▶ Distinct choices in $((c_1 \sqcup c_2) \oplus (c_1 \sqcup c_2))$ (Direct)
- 2. Adversary can see current program state

- 3. Adversary recalls program history (Recursive)
- 4. Adversary can foresee all outcomes.
 - ► Single coin flip in $((c_1 \oplus c_2) \sqcup (c_1 \oplus c_2))$
 - ▶ Distinct coin flips in $((c_1 \oplus c_2) \sqcup (c_1 \oplus c_2))$

- 1. Adversary is blind to probabilistic outcomes.
 - ► Single choice in $((c_1 \sqcup c_2) \oplus (c_1 \sqcup c_2))$
 - ▶ Distinct choices in $((c_1 \sqcup c_2) \oplus (c_1 \sqcup c_2))$ (Direct)
- 2. Adversary can see current program state

- 3. Adversary recalls program history (Recursive)
- 4. Adversary can foresee all outcomes.
 - ► Single coin flip in $((c_1 \oplus c_2) \sqcup (c_1 \oplus c_2))$
 - ▶ Distinct coin flips in $((c_1 \oplus c_2) \sqcup (c_1 \oplus c_2))$

So...

What can we verify?

VERIFICATION: DIRECT

$$\frac{\{P\} c_1 \{Q\} \quad \{P\} c_2 \{Q\}}{\{P\} (c_1 \sqcup c_2) \{Q\}}$$

Verification: Recursive

Verification: Recursive

$$\{ True \} \ b := T \ \{ Pr(b) = 1 \}$$
 $\{ True \} \ b := F \ \{ Pr(b) = 0 \}$
 $\{ True \} \ (b := T \sqcup b := F) \ \{ Pr(b) = 1 \lor Pr(b) = 0 \}$

Q cannot include disjunctions

ICATION: RECURSIVE
$$\oplus_{1/2}$$
 $b = F$ $b = F$ $\{Pr(b) = \frac{1}{2}\} \text{ skip } \{Pr(b) = \frac{1}{2}\}$ $\{Pr(b) = \frac{1}{2}\} \ b := \neg b \ \{Pr(b) = \frac{1}{2}\}$ $\{Pr(b) = \frac{1}{2}\} \ (\text{skip } \sqcup b := \neg b) \ \{Pr(b) = \frac{1}{2}\}$

ICATION: RECURSIVE
$$\oplus_{1/2}$$
 $b = F$ $b = F$ $\{Pr(b) = \frac{1}{2}\} \text{ skip } \{Pr(b) = \frac{1}{2}\}$ $\{Pr(b) = \frac{1}{2}\} \ b := \neg b \ \{Pr(b) = \frac{1}{2}\}$ $\{Pr(b) = \frac{1}{2}\} \ (\text{skip } \sqcup b := \neg b) \ \{Pr(b) = \frac{1}{2}\}$

$$b = F$$
 $b = F$ $r(b) = \frac{1}{2}$

P cannot include probabilities in (0,1)

	non-probabilistic P	
$\{P\}$ c_1 $\{Q\}$	non-disjunctive Q	$\{P\}$ c_2 $\{Q\}$
	$\{P\} (c_1 \sqcup c_2) \{Q\}$	

$$(c_1 \sqcup c_2); (c_3 \sqcup c_4)$$

$$\{P\}\ (c_1\ \sqcup\ c_2); (c_3\ \sqcup\ c_4)\ \{R\}$$

$$\{P\}\ (c_1\ \sqcup\ c_2)\ \{Q\}\ (c_3\ \sqcup\ c_4)\ \{R\}$$

$$\{P\} (c_1 \sqcup c_2) \{Q\} (c_3 \sqcup c_4) \{R\}$$

non-probabilistic *P* non-disjunctive *Q*

$$\{P\}\ (c_1\ \sqcup\ c_2)\ \{Q\}\ (c_3\ \sqcup\ c_4)\ \{R\}$$

non-probabilistic *P* non-disjunctive *Q*

$$\{P\}\ (c_1 \sqcup c_2)\ \{Q\}\ (c_3 \sqcup c_4)\ \{R\}$$

Compositionality

non-probabilistic P non-probabilistic Q non-disjunctive R

$$\{P\}\ (c_1 \sqcup c_2)\ \{Q\}\ (c_3 \sqcup c_4)\ \{R\}$$

Compositionality

non-probabilistic
$$P$$
 non-probabilistic Q non-disjunctive Q

$$\{P\}\ (c_1\ \sqcup\ c_2)\ \{Q\}\ (c_3\ \sqcup\ c_4)\ \{R\}$$

APPLICATIONS

Are private coins applicable?

Theorem (Minimax Theorem)

For every two-person, zero-sum game with finitely many strategies, there exists a value V and a mixed strategy for each player, such that

- 1. Given player 2's strategy, the best payoff possible for player 1 is V, and
- 2. Given player 1's strategy, the best payoff possible for player 2 is -V.

ightharpoonup game \Longleftrightarrow program with nondeterminism

- ► game ⇔ program with nondeterminism
- ▶ zero sum ⇐⇒ returns a single value

- ► game ⇔ program with nondeterminism
- ▶ zero sum ⇐⇒ returns a single value
- ► finitely many strategies ← no unbounded loops

- ► game ⇔ program with nondeterminism
- ▶ zero sum ⇐⇒ returns a single value
- ► finitely many strategies ← no unbounded loops
- ► mixed strategy \iff choice of p, q, r annotating the \oplus s

Theorem (Minimax Theorem Restated)

Any finite program combining probability and nondeterminism with a single output value has a dual program with the probabilistic and nondeterministic choices inverted, that returns the same value in the worst case.

GAME THEORY QUESTIONS

- Can we use this to find and prove Nash Equilibria in games?
- ► Does this yield useful generalizations of Nash Equilibrium?
- ► Can we discover useful compositionality results from this formulation?

More Open Questions

- ► How does a semantics using infinite bit streams compare to our distribution semantics?
- ► Can we enumerate the possible interactions between probability and nondeterminism via algebraic equivalences?
 - Can we extend KAT to probabilistic-nondeterministic programs?
- ► Can we translate between Direct and Recursive Semantics?

THANK YOU

Questions?

THANK YOU

Questions? Answers?

THANK YOU

Questions? Answers? Rebuttals?