

OPTIMALIZÁCIA NELINEÁRNYCH ÚLOH - PRÍKLAD

Intenzita osvetlenia Svietivosť

- Vzdialenosť²

 100 m

 □ Intenzita osvetlenia je priamo úmerná svietivosti zdroja a
- ☐ Intenzita osvetlenia v mieste, kde stojí panáčik:

nepriamo úmerná druhej mocnine vzdialenosti od zdroja.

- $\circ \text{ Vysoká lampa: } \frac{50}{\left(l_1(x)\right)^2} = \frac{50}{\left(\sqrt{10^2 + x^2}\right)^2} = \frac{50}{100 + x^2}$
- $\circ \text{ Nízka lampa: } \frac{100}{\left(l_2(x)\right)^2} = \frac{100}{\left(\sqrt{5^2 + (100 x)^2}\right)^2} = \frac{100}{25 + (100 x)^2}$

OPTIMALIZÁCIA NELINEÁRNYCH ÚILOH - PRÍIKILAD

- □ Nájdite medzi dvomi lampami bod, ktorý je minimálne osvetlený. Lampy sú od seba vzdialené 100 m. Lampa 1 je na 10 m vysokom stožiari, lampa 2 je na 5 m vysokom stožiari. Svietivosť lampy 1 je 50 jednotiek a svietivosť lampy 2 je 100 jednotiek.
- ☐ Intenzita osvetlenia z rôznych zdrojov sa sčíta.

□ Intenzita osvetlenia je priamo úmerná svietivosti zdroja a nepriamo úmerná druhej mocnine vzdialenosti od zdroja.

OPTIMALIZÁCIA NELINEÁRNYCH ÚLOH - PRÍKLAD

Intenzita osvetlenia Svietivosť

Vzdialenosť²

- ☐ Intenzita osvetlenia v mieste, kde stojí panáčik:
- Vysoká lampa: ⁵⁰/_{100+x²}

Nízka lampa: $\frac{100}{25+(100-x)^2}$

□ Intenzita osvetlenia z rôznych zdrojov sa sčíta:

$$\frac{50}{100+x^2} + \frac{100}{25+(100-x)^2}$$

OPTIMALIZÁCIA NELINEÁRNYCH ÚLOH - PRÍIKLAD

$$Min \ f(x) = \frac{50}{10^2 + x^2} + \frac{100}{5^2 + (100 - x)^2}$$
Subject to $x \in <0$, $100 >$

- □ Funkcia f(x) môže byť zadaná analyticky.
- □ Funkcia f(x) môže byť výsledok programu so vstupom x.
- □ Funkcia f(x) môže byť výsledok časovo náročného merania.

PRÍSTUPY K OPTIMALIZÁCII: NEMÁME INFORMÁCIU O FUNKCII

□ Nemáme žiadnu informáciu o vlastnostiach minimalizovanej funkcie f(x) na danom intervale <a, b>, preto sa môžeme mýliť: skutočné minimum môže byť v bode x.

PRÍSTUPY K OPTIMALIZÁCII: NEMÁME INFORMÁCIU O FUNKCII

- □ Nájdite medzi dvomi lampami bod, ktorý je minimálne osvetlený. Lampy sú od seba vzdialené 100 m.
- □ Intenzitu osvetlenia v danom mieste získate meraním, ktoré trvá 10 minút

PRÍSTUPY K OPTIMALIZÁCII: MÁME INFORMÁCIU O FUNKCII

- □ Záleží na tom, akú máme informáciu o vlastnostiach minimalizovanej funkcie f(x) na danom intervale <a, b>.
- ☐ Máme analytický zápis funkcie f(x):

$$Min \ f(x) = \frac{50}{10^2 + x^2} + \frac{100}{5^2 + (100 - x)^2}$$

Subject to $x \in <0$, 100 >

- □ Vlastnosti tejto funkcie:
 - o je spojitá na intervale <0, 100>,
 - o na intervale <0, 100> má spojité derivácie,

HICADANIE MINIMA ANALYTICKY ZADANEJ FCIE JEDNEJ PREMENNEJ

Min
$$f(x) = \frac{50}{10^2 + x^2} + \frac{100}{5^2 + (100 - x)^2}$$

Subject to $x \in <0$, 100 >

- □ Ak je funkcia spojitá na intervale <0, 100> a má skoro všade aj spojité derivácie, potom sa minimum hľadá:
 - a) v krajných bodoch intervalu,
 - b) v bodoch, kde neexistuje prvá derivácia,
 - c) v bodoch, kde je prvá derivácia nulová (stacionárne body).
 V stacionárnom bode má funkcia minimum, ak je najnižšia párna derivácia kladná.

HICADANIE MINIMA ANALYTICKY ZADANEJ FCIE JEDNEJ PREMIENNEJ

- □ Záleží na tom, akú máme informáciu o vlastnostiach minimalizovanej funkcie f(x) na danom intervale <a, b>.
- ☐ Máme analytický zápis funkcie f(x):

Min
$$f(x) = \frac{50}{10^2 + x^2} + \frac{100}{5^2 + (100 - x)^2}$$

Subject to $x \in <0$, 100 >

- □ Vlastnosti tejto funkcie:
 - o je spojitá na intervale <0, 100>,
 - o na intervale <0, 100> má spojité derivácie,

HILADANIE MINIMA ANALYTICKY ZADANEJ FCIE JEDNEJ PREMENNEJ

$$f(x) = \frac{50}{100 + x^2} + \frac{100}{25 + (100 - x)^2}$$

Funkčná hodnota v krajných bodoch intervalu

- \circ f(0)=0,509975
- *f*(100)=4,00495

$$f'(x) = \frac{-50 \cdot 2 \cdot x}{(100 + x^2)^2} + \frac{100 \cdot 2 \cdot (100 - x)}{(25 + (100 - x)^2)^2}$$

HILAIDANTE MINTMA ANALYTTCKY ZAIDANEJ FCIE JEIDNEJ PREMIENNEJ

$$f(x) = \frac{50}{100 + x^2} + \frac{100}{25 + (100 - x)^2}$$

Hľadanie stacionárneho bodu môže byť numericky náročné:

$$f'(x) = \frac{-50*2*x}{(100+x^2)^2} + \frac{100*2*(100-x)}{(25+(100-x)^2)^2} = 0$$

$$\frac{100*2*(100-x)}{(25+(100-x)^2)^2} = \frac{50*2*x}{(100+x^2)^2}$$

$$2(100-x)(100+x^2)^2 = x(25+(100-x)^2)^2$$

A. Sz.1

HILADANIE MINIMA ANALYTICKY ZADANEJ FCIE JEDNEJ PREMENNEJ

$$f(x) = \frac{50}{100 + x^2} + \frac{100}{25 + (100 - x)^2}$$
$$f'(x) = \frac{-50 \cdot 2 \cdot x}{(100 + x^2)^2} + \frac{100 \cdot 2 \cdot (100 - x)}{(25 + (100 - x)^2)^2}$$

$$f''(x) = 200 \frac{x^2 - 100}{(100 + x^2)^3} + 200 \frac{3(100 - x)^2 - 25}{(25 + (100 - x)^2)^3}$$

- Druhá derivácia je v okolí x=0 záporná, teda ostrá konvexnosť na intervale <0, 100> nie je zaistená.
- O Teda bolo by potrebné vyšetriť všetky stacionárne body.

METÓDA POSTUPNÉHO VYHICADÁVANIA MINIMA OSTRO KVÁZIKONVEXNEJ FUNKCIE ƒ(x) NA KONEČNOM INTERVALE

Predpoklady: Ostrá kvázikonvexnosť funkcie a uzavretý interval < a. b >.

Princíp: Vo vnútri intervalu vyberieme dva body I a p a určíme funkčné hodnoty f(I) a f(p).

INÁ MOŽNÁ VLASTNOSŤ FUNKCIE f(x)

Ostrá kvázikonvexnosť funkcie

Vravíme, že funkcia f(x) je ostro kvázikonvexná na konvexnom definičnom obore $X \subseteq E^1$, ak pre každé $x, y \in X$ a pre každé $\alpha \in (0,1)$ platí

 $f(\alpha x + (1-\alpha)y) \leq max\{f(x), f(y)\}.$

Kvázikonvexná funkcia

Nekvázikonvexná funkcia

METÓDA POSTUPNÉHO VYHĽADÁVANIA MINIMA OSTRO KVÁZIKONVEXNEJ FUNKCIE ƒ(x) NA KONEČNOM INTERVALE

Ako **môže** vyzerať kvázikonvexná funkcia f za daných hodnôt f(I) a f(p)?

MIETÓDA POSTUPNÉHO VYHILADÁVANIA MIINIMA OSTRO KVÁZIKONVEXNEJ FUNKCIE f(x) NA KONEČNOM INTERVALE

Ako **môže** vyzerať kvázikonvexná funkcia f za daných hodnôt f(I) a f(p)?

METÓDA POSTUPNÉHO VYHILADÁVANIA MINIMA OSTRO KVÁZIKONVEXNEJ FUNKCIE f(x) NA KONEČNOM INTERVALE

Princip:

- Vo vnútri intervalu vyberieme dva body *I* a *p* a určíme funkčné hodnoty *f(I)* a *f(p)*.
- 2. Ak je $f(l) \le f(p)$, môžeme vylúčiť interval < p, b > a minimum ďalej hľadať v intervale < a, p >.
- 3. Premenujeme hranice intervalu a vnútorné body.

MIETÓDA POSTUPNÉHO VYHILADÁVANIA MINIMA OSTRO KVÁZIKONVEXNEJ FUNKCIE f(x) NA KONEČNOM INTERVALE

Ako **nemôže** vyzerať kvázikonvexná funkcia f za daných hodnôt f(I) a f(p)?

MIETÓDA POSTUPNÉHO VYHĽADÁVANIA MINIMA OSTRO KVÁZIKONVEXNEJ FUNKCIE ƒ(x) NA KONEČNOM INTERVALE

Princíp:

- Ďalej vo vnútri intervalu <a¹, b¹> vyberieme dva body l¹
 a p¹, resp. doplníme chybujúci a určíme f(l¹) a f(p¹).
- 2. Ak napr. $f(I^1) \ge f(\rho^1)$, môžeme vylúčiť interval $< a^1$, $I^1 > a$ minimum ďalej hľadať v intervale $< I^1$, $b^1 > a$.

METÓDA POSTUPNÉHO VYHICADÁVANIA MINIMA OSTRO KVÁZIKONVEXNEJ FUNKCIE #(x) NA KONEČNOM INTERVALE

Postup končí, ak dĺžka intervalu, ktorý musí obsahovať bod minima, zaručuje, že bod vnútri intervalu x^i , pre ktorý sme vypočítali hodnotu $f(x^i)$, nie je od skutočného minima vzdialený o viac než vopred zvolené α .

MIETÓDA ZLATÉHO REZU PRE VYHILADÁ-VANIE MINIMA OSTRO KVÁZIKONVEXNEJ FUNKCIE f(x) NA INTERVALE <@1, b1>

- Body lⁱ a pⁱ sa vyberajú tak, aby delili interval <aⁱ, bⁱ> v pomere zlatého rezu.
- Zlatý rez: Pomer kratšej časti intervalu k dlhšej musí byť rovnaký ako pomer dlhšej časti intervalu k jeho dĺžke.

MIETÓDA POSTUPNÉHO VYHILADÁVANIA MINIMA OSTRO KVÁZIKONVEXNEJ FUNKCIE ƒ(x) NA KONEČNOM INTERVALE

Podľa spôsobu, akým sa vyberajú zo súčasného intervalu body l_i a p_i rozlišujeme, rôzne metódy postupného vyhľadávania.

ZLATÝ REZ

Zlatý rez: Pomer kratšej časti intervalu k dlhšej musí byť rovnaký ako pomer dlhšej časti intervalu k jeho dĺžke.

$$\frac{1}{a} \frac{1}{p} \frac{1}{b}$$

$$\frac{b-a}{p-a} = \frac{p-a}{b-p}$$

$$(b-a)b-(b-a)p = (p-a)^2 \Rightarrow$$

$$(b-a)b-(b-a)a+(b-a)a-(b-a)p = (p-a)^2 \Rightarrow$$

$$(p-a)^2 + (b-a)(p-a)-(b-a)^2 = 0 \Rightarrow$$

$$(p-a) = \frac{-(b-a)\pm\sqrt{(b-a)^2+4(b-a)^2}}{2} = (b-a)\frac{-1\pm\sqrt{5}}{2}$$

ZLATÝ REZ

Zlatý rez: Pomer kratšej časti intervalu k dlhšej musí byť rovnaký ako pomer dlhšej časti intervalu k jeho dĺžke.

$$(p-a) = (b-a)\frac{-1+\sqrt{5}}{2} \Rightarrow p = a+(b-a)\frac{-1+\sqrt{5}}{2}$$

$$\frac{a+b}{2} - l = p - \frac{a+b}{2} \Rightarrow l = \frac{a+b}{2} + \frac{a+b}{2} - p = a+b-p$$

$$l = a+b-a-(b-a)\frac{-1+\sqrt{5}}{2} = a+(b-a)(\frac{3-\sqrt{5}}{2})$$

URČENIE POTREBNÉHO POČTU KROKOV

Požadujeme, aby výsledný bod x^i , ktorý získame ako odhad bodu minima po i redukciách (i-1 vypočítaných hodnotách f), bol od bodu minima vzdialený najviac α .

$$a^{i}$$
 x^{i} $(b^{i} - a^{i}) \frac{-1 + \sqrt{5}}{2}$ b^{i}

Pri každom kroku sa interval zmenší (-1+ $\sqrt{5}$)/2 krát. Teda:

$$(b^{i} - a^{i}) = (b - a) \left(\frac{-1 + \sqrt{5}}{2}\right)^{i} \Rightarrow (b - a) \left(\frac{-1 + \sqrt{5}}{2}\right)^{i+1} \le \alpha$$

$$resp. (b - a) \left(\frac{2}{1 + \sqrt{5}}\right)^{i+1} \le \alpha$$

URČENIE POTREBNÉHO POČTU KROKOV

Stačí teda určiť najmenšie celé i tak, aby platilo:

$$(b-a)\left(\frac{2}{1+\sqrt{5}}\right)^{i+1} \le \alpha \implies \left(\frac{2}{1+\sqrt{5}}\right)^{i+1} \le \frac{\alpha}{b-a} \implies \log\left(\frac{2}{1+\sqrt{5}}\right)^{i+1}) \le \log\left(\frac{\alpha}{b-a}\right) \implies (i+1)\log\left(\frac{2}{1+\sqrt{5}}\right) \le \log\left(\frac{\alpha}{b-a}\right)$$

$$i \ge -1 + \frac{\log\left(\frac{\alpha}{b-a}\right)}{\log\left(\frac{2}{1+\sqrt{5}}\right)}$$

JPJRJUKJLAJD

S presnosťou 0.01 mm určte optimálnu šírku 3 m dlhého drôtika rozmrazovača skla tak, aby ste dosiahli maximálny výkon daného zariadenia.

Vlastné zariadenie (viď schéma) je napájané 12 V autobatériou s vnútorným odporom 3Ω , drôtik obdĺžnikového prierezu má výšku 0.05mm a jeho materiál má merný odpor ρ = $5*10^{-7}$ [Ω m].

Odpor drôtika sa vypočíta z merného odporu podľa vzorca R=pd/S. kde d je dĺžka a S je plocha prierezu.

PRÍSTUPY K OPTIMALIZÁCII NELINEÁRNYCH ÚLOH VIAC PREMENNÝCH PRÍKLAD

- □ Navrhnite čo najvýnosnejší výrobný program firme vyrábajúcej dva produkty P1 a P2, ak na výrobu každej jednotky P1 je potrebujeme dve a na každé jednotky P2 tri jednotky výrobnej kapacity o veľkosti 24.
- Predajná cena jednotky P1 a P2 je 6 a 8. Výrobné jednotkové náklady sú u P1 0.2x_I a u P2 0.4x₂, kde x_I a x₂ sú množstvá vyrábaných produktov.

PRÍSTUPY K OPTIMALIZÁCII NELIMEÁRNYCH ÚLOH VIAC PREMIENNÝCH PRÍKLAD

□ Navrhnite čo najvýnosnejší výrobný program firme vyrábajúcej dva produkty P1 a P2, ak na výrobu každej jednotky P1 je potrebujeme dve a na každé jednotky P2 tri jednotky výrobnej kapacity o veľkosti 24.

Subject to
$$2x_1 + 3x_2 \le 24$$

 $x_1, x_2 \ge 0$

PRÍSTUPY K OPTIMALIZÁCII NELINEÁRNYCH ÚLOH VIAC PREMIENNÝCH: PRÍKLAD

 \square Predajná cena jednotky P1 a P2 je 6 a 8. Výrobné **jednotkové náklady** sú u P1 o.2 x_1 a u P2 o.4 x_2 , kde x_1 a x_2 sú množstvá vyrábaných produktov.

Min
$$6x_1 + 8x_2 - (0.2x_1)x_1 - (0.4x_2)x_2 =$$

= $-0.2x_1^2 - 0.4x_2^2 + 6x_1 + 8x_2$
Subject to $2x_1 + 3x_2 \le 24$
 $x_1, x_2 \ge 0$

ITERAČNÉ MIETÓDY PRE RIEŠENIA NELINEÁRNYCH ÚLOH VIAC PREMIENNÝCH

- \square Začínajú prácu vždy v nejakom prípustnom riešení \pmb{x}^0 , bodu z E^n .
- $\square \quad$ Nájdu smer $\boldsymbol{h}^i,$ v ktorom od súčasného riešenia \boldsymbol{x}^i funkcie fklesá.
- $\ \square$ Vykonajú presun k ďalšiemu riešeniu podľa výrazu $x^{l+1} = x^l + \alpha_i h^l$, kde α kladné reálne číslo.

ITERAČNÉ METÓDY PRE RIEŠENIA NELINEÁRNYCH ÚLOH VIAC PREMIENNÝCH

- \square Začínajú prácu vždy v nejakom prípustnom riešení x^0 , bodu z E^n .
- \square Nájdu smer h^i , v ktorom od súčasného riešenia x^i funkcia f klesá.
- \Box Vykonajú presun k ďalšiemu riešeniu podľa výrazu $\mathbf{x}^{i+1} = \mathbf{x}^i + \alpha_i^{\mathbf{h}} \mathbf{l}^i$, kde α kladné reálne číslo.

ITERAČNÉ METÓDY PRE RIEŠENIA NELINEÁRNYCH ÚLOH VIAC PREMIENNÝCH

- \square Začínajú prácu vždy v nejakom prípustnom riešení \mathbf{x}^0 , bodu z E^n
- Nájdu smer hⁱ, v ktorom od súčasného riešenia xⁱ funkcia f klesá.
- □ Vykonajú presun k ďalšiemu riešeniu podľa výrazu $\mathbf{x}^{i+1} = \mathbf{x}^i + \alpha_i \mathbf{h}^i$, kde α kladné reálne číslo.

ITERAČNÉ MIETÓDY PRE RIEŠENIA NELINEÁRNYCH ÚLOH VIAC PREMIENNÝCH

- \square Začínajú prácu vždy v nejakom prípustnom riešení \mathbf{x}^{o} , bodu z E^{n} .
- \square Nájdu smer h^i , v ktorom od súčasného riešenia x^i funkcia f klesá.
- □ Vykonajú presun k ďalšiemu riešeniu podľa výrazu $\mathbf{x}^{i+1} = \mathbf{x}^i + \alpha_i^{\mathbf{h}^i}$, kde α kladné reálne číslo.

ITERAČNÉ METÓDY PRE RIEŠENIA NELINEÁRNYCH ÚLOH VIAC PREMIENNÝCH

- ☐ Iteračné metódy vytvárajú tzv. minimalizujúcu postupnosť
 - $\mathbf{x}^0, \mathbf{x}^1, \mathbf{x}^2, \mathbf{x}^3 \dots$, kde $f(\mathbf{x}^0) > f(\mathbf{x}^1) > f(\mathbf{x}^2) > f(\mathbf{x}^3) > \dots$
- ☐ Otázka je: "Kedy iteračné metódy končia?"

PRAVIDLÁ ZAKONČENIA ITERAČNÝCHI MIETÓD

"Kedy iteračné metódy končia?"

- 1. Po zadanom počte krokov.
- 2. Ak majú po sebe idúce riešenia x^{i-1} a x^i medzi sebou vzdialenosť menšiu než vopred zvolené ε .

$$d = \sqrt{(x_1^{i-1} - x_1^i)^2 + (x_2^{i-1} - x_2^i)^2}$$

- Ak sa líšia funkčné hodnoty po sebe idúcich riešení xⁱ⁻¹ a xⁱ o menej než vopred zvolené ε.
 T.j. | f(xⁱ⁻¹) f(xⁱ)| < ε.
- 4. Ak je splnené kombinované pravidlo

ITERAČNÉ METÓDY PRE RIEŠENIA NELINEÁRNYCH ÚLOH VIAC PREMIENNÝCH

- \square Začínajú prácu vždy v nejakom prípustnom riešení \mathbf{x}^0 , bodu z E^n .
- \square Nájdu smer h^i , v ktorom od súčasného riešenia x^i funkcia f klesá.
- □ Vykonajú presun k ďalšiemu riešeniu podľa výrazu $\mathbf{x}^{i+1} = \mathbf{x}^i + \alpha_i \mathbf{h}^i$, kde α kladné reálne číslo.

ITTERAČNÉ MIETÓDY PRE RIEŠENIE NELI-NEÁJRNYCHI ÚTLOH VIAC PRIEMIENNÝCHI

- Podľa spôsobu, akým sa určuje smer h a koeficient α, rozlišujeme rôzne iteračné metódy.
- ☐ Súvisí s tým otázka: "V ktorom smere v blízkom okolí bodu xⁱ klesá hodnota účelovej funkcie najrýchlejšie?"

SMER NAJVÄČŠIEHO POKLESU FUNKCIE V OKOLÍ BODU xⁱ

- ☐ "V ktorom smere v blízkom okolí bodu *xi* klesá hodnota účelovej funkcie najrýchlejšie?"
- Hľadáme smer h taký, aby derivácia funkcie $g(\alpha)$ v $\alpha = 0$ bola čo najmenšia.

SMER NAJVÄČŠIEHO POKLESU

$$\frac{dg(\alpha)}{d\alpha} = \sum_{j=1}^{n} \frac{\partial f(\mathbf{x}^{i} + \alpha \mathbf{h})}{\partial x_{j}} h_{j} \quad pro \quad \alpha = 0 \quad dos \quad tan \quad en$$

$$\frac{dg(0)}{d\alpha} = \sum_{j=1}^{n} \frac{\partial f(\mathbf{x}^{i})}{\partial x_{j}} h_{j} = f'(\mathbf{x}) \cdot \mathbf{h} = |f'(\mathbf{x})| \cdot |\mathbf{h}| \cdot \cos \alpha$$

$$g(\alpha) = f(x^i + oh)$$

Hľadáme smer **h** taký, aby

derivácia

funkcie $g(\alpha)$ v α =0 bola čo najmenšia.

SMER NAJVÄČŠIEHO POKLESU

$$\frac{dg(\alpha)}{d\alpha} = \sum_{j=1}^{n} \frac{\partial f(\mathbf{x}^{i} + \alpha \mathbf{h})}{\partial x_{j}} h_{j} \quad pro \quad \alpha = 0 \quad dos \quad tan \quad en$$

$$\frac{dg(0)}{d\alpha} = \sum_{j=1}^{n} \frac{\partial f(\mathbf{x}^{i})}{\partial x_{j}} h_{j} = f'(\mathbf{x}) \cdot \mathbf{h} = |f'(\mathbf{x})| \cdot |\mathbf{h}| \cdot \cos \alpha$$

ω je uhol, ktorý zvierajú vektory

 $f'(\mathbf{x}^i)$ a \mathbf{h} .

Pre h konštantnej dížky bude mať výraz najmenšiu hodnotu pre $\omega = \pi$, kedy $\cos(\pi) = -1$.

SMER NAJVÄČŠIEHO POKLESU

$$\frac{dg(0)}{d\alpha} = \sum_{j=1}^{n} \frac{\partial f(\mathbf{x}^{i})}{\partial x_{j}} h_{j} = f'(\mathbf{x}^{i}).\mathbf{h} = |f'(\mathbf{x}^{i})|.|\mathbf{h}|.\cos$$

Pre h konštantnej dĺžky bude mať výraz najmenšiu hodno pre $\omega = \pi$, keď $\cos(\pi) = -1$.

Teda h má mať práve **opačný** smer než $f'(x^i)$, čo je vektor parciálnych derivácii funkcie $f^{(i)}$ bode x^i .

SMER NAJVÄČŠIEHO POKLESU FUNKCIE V OKOLÍ BODU x²

- □ Hľadáme smer h taký, aby derivácia feie $g(\alpha) = f(x^i + \alpha h)$ v α = 0 bola čo najmenšia.
- □ Nech $f'(x^i)$ je **gradient funkcie** f v bode x^i , čo je vektor parciálnych derivácii **funkcie** f v bode x^i .

$$f'(\mathbf{x}^{i}) = \begin{pmatrix} \frac{\partial f(\mathbf{x}^{i})}{\partial x_{1}} \\ \frac{\partial f(\mathbf{x}^{i})}{\partial x_{2}} \\ \frac{\partial f(\mathbf{x}^{i})}{\partial x_{n}} \end{pmatrix} f'(\mathbf{x}^{i})$$

$$Vektor \mathbf{h}^{i} \text{ má mať práve opačný smer než } f'(\mathbf{x}^{i})$$

PRÍKLAD: GRADIENTOVÁ METÓDA S KONŠTANTNÝM KROKOM

Minimalizujte $f(x) = (x_1)^2 + 4(x_2)^2 - 4x_1 - 8x_2$ pre $x \in E^2$ Zvoľme $x^0 = <0, 2>^T, \alpha = 0,5$.

Postup: Určíme gradient $f'(x^0)$ a smer $h^0 = -f'(x^0)$.

$$f'(\mathbf{x}^{i}) = \begin{pmatrix} \frac{\partial f(\mathbf{x}^{i})}{\partial x_{1}} \\ \frac{\partial f(\mathbf{x}^{i})}{\partial x_{2}} \\ \frac{\partial f(\mathbf{x}^{i})}{\partial x_{n}} \end{pmatrix} \qquad \frac{\frac{\partial f(\mathbf{x}^{0})}{\partial x_{1}} = 2x_{1} - 4}{\frac{\partial f(\mathbf{x}^{0})}{\partial x_{2}} = 8x_{2} - 8}$$
$$f'(\begin{bmatrix} 0\\2 \end{bmatrix}) = \begin{bmatrix} -4\\8 \end{bmatrix}, \quad \mathbf{h}^{0} = \begin{bmatrix} 4\\-8 \end{bmatrix},$$
$$dlzka \, |\mathbf{h}^{0}| = \sqrt{(4)^{2} + (-8)^{2}} = \sqrt{80} = 8,94$$

PRÍKLAD: GRADIENTOVÁ METÓDA S KONŠTANTNÝM KROKOM

Minimalizujte $f(x) = (x_1)^2 + 4(x_2)^2 - 4x_1 - 8x_2$ pre $x \in E^2$ Zvoľme $x^0 = <0, 2>^T, \alpha = 0.5$.

Postup: Určíme gradient $f'(x^0)$ a smer $h^0 = -f'(x^0)$.

$$f'(\begin{bmatrix} 0\\2 \end{bmatrix}) = \begin{bmatrix} -4\\8 \end{bmatrix}, \quad \mathbf{h}^0 = \begin{bmatrix} 4\\-8 \end{bmatrix}, \quad dlzka \ |\mathbf{h}^0| = \sqrt{(4)^2 + (-8)^2} = \sqrt{80} = 8,94$$

Vykonáme presun v smere ${\it h}^{\it 0}$ o veľkosti kroku $\alpha \!\!=\!\! 0.5$

$$\mathbf{x} = \mathbf{x}^{0} + \alpha \left(\frac{1}{|\mathbf{h}^{0}|}\right) \mathbf{h}^{0} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} + 0.5 * \left(\frac{1}{8.94}\right) \begin{bmatrix} 4 \\ -8 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \begin{bmatrix} 0.22 \\ -0.45 \end{bmatrix} = \begin{bmatrix} 0.22 \\ 1.55 \end{bmatrix}$$

PRÍKLAD: GRADIENTOVÁ METÓDA S KONŠTANTNÝM KROKOM

Overíme, či funkcia f má v bode x menšiu HÚF než v x^0 :

$$x^0 = <0, 2>^T, x = <0.22, 1.55>^T$$
.

Minimalizuite $f(x) = (x_1)^2 + 4(x_2)^2 - 4x_1 - 8x_2$ pre $x \in E^2$

$$f(\mathbf{x}^0) = f(\begin{bmatrix} 0 \\ 2 \end{bmatrix}) = (0)^2 + 4(2)^2 - 4*0 - 8*2 = 0$$

$$f(\mathbf{x}) = f(\begin{bmatrix} 0.22 \\ 1.55 \end{bmatrix}) = (0.22)^2 + 4(1.55)^2 - 4*0.22 - 8*1.55 = -3.62$$

Pokiaľ áno, definujeme $x^I = x$, inak postup opakujeme so zmenšeným krokom α .

V tomto prípade $x^{I} = <0.22, 1.55 > ^{T}$.

PRÍKLAD: GRADIENTOVÁ METÓDA S KONŠTANTNÝM KROKOM

 $x^0 = <0, 2>^T, x^1 = <0.22, 1.55>^T, \alpha=0.5.$

Pokračujeme: Určíme gradient $f'(x^I)$ a smer $h^I = -f'(x^I)$.

$$f'(\begin{bmatrix} 0.22 \\ 1.55 \end{bmatrix}) = \begin{bmatrix} -3.56 \\ 4.40 \end{bmatrix}, \quad \mathbf{h}^1 = \begin{bmatrix} 3.56 \\ -4.40 \end{bmatrix}, \quad |\mathbf{h}^1| = \sqrt{(3.56)^2 + (-4.40)^2} = 5.66$$

Vykonáme presun v smere h^{I} o veľkosti kroku α =0.5

$$\mathbf{x} = \mathbf{x}^{1} + \alpha \left(\frac{1}{|\mathbf{h}^{1}|}\right) \mathbf{h}^{1} = \begin{bmatrix} 0.22\\1.55 \end{bmatrix} + 0.5 * \left(\frac{1}{5.66}\right) \begin{bmatrix} 3.56\\-4.4 \end{bmatrix} = \begin{bmatrix} 0.22\\1.55 \end{bmatrix} + \begin{bmatrix} 0.31\\-0.39 \end{bmatrix} = \begin{bmatrix} 0.53\\1.16 \end{bmatrix}$$

PRÍKLAD: GRADIENTOVÁ METÓDA S KONŠTANTNÝM KROKOM

Overíme, či funkcia f má v bode x menšiu HÚF než v x^I :

$$x^{I} = <0.22, 1.55>^{T}, x = <0.53, 1.16>^{T}.$$

Minimalizujte $f(x) = (x_1)^2 + 4(x_2)^2 - 4x_1 - 8x_2$ pre $x \in E^2$

$$f(\mathbf{x}) = f\left(\begin{bmatrix} 0.22\\1.55 \end{bmatrix}\right) = (0.22)^2 + 4(1.55)^2 - 4*0.22 - 8*1.55 = -3.62$$

$$f(\mathbf{x}) = f\left(\begin{bmatrix} 0.53\\1.16 \end{bmatrix}\right) = (0.53)^2 + 4(1.16)^2 - 4*0.53 - 8*1.16 = -5.74$$

Pokiaľ áno, definujeme $x^2=x$, inak postup opakujeme so zmenšeným krokom α .

V tomto prípade $x^2 = <0.53, 1.16 > ^T$.

PRÍKLAD: GRADIENTOVÁ METÓDA S KONŠTANTNÝM KROKOM

 $x^0 = <0, 2>^T, x^1 = <0.22, 1.55>^T, x^2 = <0.53, 1.16>^T \alpha = 0.5.$

Pokračujeme: Určíme gradient $f'(x^2)$ a smer $h^2 = -f'(x^2)$.

$$f'(\begin{bmatrix} 0.53\\ 1.16 \end{bmatrix}) = \begin{bmatrix} -2.94\\ 1.28 \end{bmatrix}, \ \mathbf{h}^2 = \begin{bmatrix} 2.94\\ -1.28 \end{bmatrix}, \ |\mathbf{h}^2| = \sqrt{(2.94)^2 + (-1.28)^2} = 3.20$$

Vykonáme presun v smere h^2 o veľkosti kroku α =0.5

$$\mathbf{x} = \mathbf{x}^2 + \alpha \left(\frac{1}{|\mathbf{h}^2|}\right) \mathbf{h}^2 = \begin{bmatrix} 0.53 \\ 1.16 \end{bmatrix} + 0.5 * \left(\frac{1}{3.20}\right) \begin{bmatrix} 2.94 \\ -1.28 \end{bmatrix} = \begin{bmatrix} 0.53 \\ 1.16 \end{bmatrix} + \begin{bmatrix} 0.46 \\ -0.20 \end{bmatrix} = \begin{bmatrix} 0.99 \\ 0.96 \end{bmatrix}$$

PRÍKLAD: GRADIENTOVÁ METÓDA S KONŠTANTNÝM KROKOM

Overíme, či funkcia f má v bode x menšiu HÚF než v x^2 :

$$x^2 = <0.53, 1.16>, x = <0.99, 0.96>^T$$

Minimalizuite $f(x) = (x_1)^2 + 4(x_2)^2 - 4x_1 - 8x_2$ pre $x \in E^2$

$$f(\mathbf{x}) = f(\begin{bmatrix} 0.53 \\ 1.16 \end{bmatrix}) = (0.53)^2 + 4(1.16)^2 - 4*0.53 - 8*1.16 = -5.74$$

$$f(\mathbf{x}) = f(\begin{bmatrix} 0.99 \\ 0.96 \end{bmatrix}) = (0.99)^2 + 4(0.96)^2 - 4*0.99 - 8*0.96 = -6.97$$

Pokiaľ áno, definujeme $x^3=x$, inak postup opakujeme so zmenšeným krokom α .

V tomto prípade $x^3 = <0.99, 0.96>^T$.

PRÍKLAD: GRADIENTOVÁ METÓDA S KONŠTANTNÝM KROKOM

 $x^1 = <0.22, 1.55 > ^T, x^2 = <0.53, 1.16 > ^T, x^3 = <0.99, 0.96 > ^T, \alpha = 0.5$

Pokračujeme: Určíme gradient $f'(x^3)$ a smer $h^3 = -f'(x^3)$.

$$f'(\begin{bmatrix} 0.99\\ 0.96 \end{bmatrix}) = \begin{bmatrix} -2.02\\ -0.32 \end{bmatrix}, \ \mathbf{h}^3 = \begin{bmatrix} 2.02\\ 0.32 \end{bmatrix}, \ |\mathbf{h}^3| = \sqrt{(2.02)^2 + (0.32)^2} = 2.05$$

Vykonáme presun v smere h^3 o veľkosti kroku α =0.5

$$\mathbf{x} = \mathbf{x}^3 + \alpha \left(\frac{1}{|\mathbf{h}^3|}\right) \mathbf{h}^3 = \begin{bmatrix} 0.99 \\ 0.96 \end{bmatrix} + 0.5 * \left(\frac{1}{2.05} \begin{bmatrix} 2.02 \\ 0.32 \end{bmatrix} = \begin{bmatrix} 0.99 \\ 0.96 \end{bmatrix} + \begin{bmatrix} 0.49 \\ 0.08 \end{bmatrix} = \begin{bmatrix} 1.48 \\ 1.04 \end{bmatrix}$$

PRÍKLAD: GRADIENTOVÁ METÓDA S KONŠTANTNÝM KROKOM

Overíme, či funkcia f má v bode x menšiu HÚF než v x^3 :

 $x^3 = <0.99, 0.96>, x = <1.48, 1.04>^T.$

Minimalizujte $f(x) = (x_1)^2 + 4(x_2)^2 - 4x_1 - 8x_2$ pre $x \in E^2$

$$f(\mathbf{x}) = f\left(\begin{bmatrix} 0.99 \\ 0.96 \end{bmatrix}\right) = (0.99)^2 + 4(0.96)^2 - 4*0.99 - 8*0.96 = -6.97$$

$$f(\mathbf{x}) = f(\begin{bmatrix} 1.48 \\ 1.04 \end{bmatrix}) = (1.48)^2 + 4(1.04)^2 - 4*1.48 - 8*1.04 = -7.72$$

Pokiaľ áno, definujeme $x^4=x$, inak postup opakujeme so zmenšeným krokom α .

V tomto prípade $x^4 = <1.48, 1.04>^T$.

PRÍKLAD: GRADIENTOVÁ METÓDA NAJVÄČŠIEHO POKLESU

Líši sa od gradientovej metódy s konštantným krokom spôsobom výpočtu α_i , ktoré je všeobecne v každom kroku iné a to také, aby v **danom smere** h^i nadobudla funkcia f v bode $x^{i+1} = x^i + \alpha_i h^i$ svoje minimum.

PRÍKLAD: GRADIENTOVÁ METÓDA S KONŠTANTNÝM KROKOM

Náš postup od x^0 k x^4 prebehol takto:

\boldsymbol{x}^{i}	X_I^{i}	X_2^i	$f(\mathbf{x}^i)$
x 0	0	2	0
x ¹	0.22	1.55	-3.62
x ²	0.53	1.16	-5.74
\mathbf{x}^3	0.99	0.96	-6.97
x ⁴	1.48	1.04	-7.72

To bola ukážka **gradientovej metódy s konštantným krokom**.

PRÍKLAD: GRADIENTOVÁ METÓDA NAJVÄČŠIEHO POKLESU

AKO SA URČÍ α_i ?

Definuje sa funkcia g premennej $\alpha \ge 0$ takto: $g(\alpha) = f(x^i + \alpha h^i)$. Hodnota α_i sa nájde ako bod minima funkcie $g(\alpha)$ pre $\alpha \in <0, \infty$).

Minimalizácia g môže byť vykonaná prostriedkami natematickej analýzy alebo numericky.

PRÍKLAD: GRADIENTOVÁ METÓDA NAJVÄČŠIEHO POKLESU

Minimalizujte $f(x) = (x_1)^2 + 4(x_2)^2 - 4x_1 - 8x_2$ pre $x \in E^2$ Zvoľme $x^0 = <0, 2>^T$.

Postup: Určíme gradient
$$f'(\mathbf{x}^0)$$
 a smer $\mathbf{h}^0 = -f'(\mathbf{x}^0)$.

$$\frac{\partial f(\mathbf{x}^i)}{\partial x_1} = 2x_1 - 4$$

$$\frac{\partial f(\mathbf{x}^i)}{\partial x_2} = 8x_2 - 8$$

$$f'(\begin{bmatrix} 0 \\ 2 \end{bmatrix}) = \begin{bmatrix} -4 \\ 8 \end{bmatrix}, \quad \mathbf{h}^0 = \begin{bmatrix} 4 \\ -8 \end{bmatrix},$$

$$\frac{\partial f(\mathbf{x}^0)}{\partial x_n} = 8x_2 - 8$$

$$\frac{\partial f(\mathbf{x}^0)}{\partial x_2} = 8x_2 - 8$$

PRÍKLAD: GRADIENTOVÁ METÓDA NAJVÄČŠIEHO POKLESU

Vykonáme presun v smere h^0 o veľkosti kroku α =0.15.

$$\mathbf{x} = \mathbf{x}^0 + \alpha \,\mathbf{h}^0 = \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \alpha \begin{bmatrix} 4 \\ -8 \end{bmatrix} = \begin{bmatrix} 4\alpha \\ 2 - 8\alpha \end{bmatrix} = \begin{bmatrix} 0.6 \\ 0.8 \end{bmatrix}$$

PRÍKLAD: GRADIENTOVÁ METÓDA NAJVÄČŠIEHO POKLESU

Minimalizujte $f(x) = (x_1)^2 + 4(x_2)^2 - 4x_1 - 8x_2$, pre $x \in E^2$

Pre smer h^0 definujeme $g(\alpha)$.

$$g(\alpha) = f(\mathbf{x}^0 + \alpha \mathbf{h}^0) = f(\begin{bmatrix} 0 \\ 2 \end{bmatrix} + \alpha \begin{bmatrix} 4 \\ -8 \end{bmatrix}) = f(\begin{bmatrix} 4\alpha \\ 2 - 8\alpha \end{bmatrix}) =$$
$$= (4\alpha)^2 + 4(2 - 8\alpha)^2 - 4(4\alpha) - 8(2 - 8\alpha)$$

Nájdeme minimum g na intervale $\alpha \in <0, \infty$).

$$g'(\alpha) = 2(4\alpha)4 + 4*2(2 - 8\alpha)(-8) - 4(4) - 8(-8) = 0$$

$$(2\alpha) + (2 - 8\alpha)(-4) - (1) - (-4) = 0$$

$$-5 + 34\alpha = 0 \Rightarrow \alpha = 5/34 = 0.15$$

$$g''(\alpha) = 32 + 4*2(64) > 0$$

PRÍKLAD: GRADIENTOVÁ METÓDA NAJVÄČŠIEHO POKLESU

Pre $x^l = <0.6, 0.8>^T$ určme gradient $f'(x^l)$ a smer $h^l = -f'(x^l)$

$$f'(\mathbf{x}^{i}) = \begin{pmatrix} \frac{\partial f(\mathbf{x}^{i})}{\partial x_{1}} & \frac{\partial f(\mathbf{x}^{1})}{\partial x_{1}} = 2x_{1} - 4 = -2.8, \\ \frac{\partial f(\mathbf{x}^{i})}{\partial x_{2}} & \frac{\partial f(\mathbf{x}^{1})}{\partial x_{2}} = 8x_{2} - 8 = -1.6, \\ \frac{\partial f(\mathbf{x}^{i})}{\partial x_{n}} & f'(\begin{bmatrix} 0.6 \\ 0.8 \end{bmatrix}) = \begin{bmatrix} -2.8 \\ -1.6 \end{bmatrix}, \quad \mathbf{h}^{1} = \begin{bmatrix} 2.8 \\ 1.6 \end{bmatrix},$$

PRÍKLAD: GRADIENTOVÁ METÓDA NAJVÄČŠIEHO POKLESU

Minimalizujte $f(x) = (x_1)^2 + 4(x_2)^2 - 4x_1 - 8x_2$ pre $x \in E^2$

Pre smer h^{I} definujeme $g(\alpha)$.

$$g(\alpha) = f(\mathbf{x}^1 + \alpha \,\mathbf{h}^1) = f(\begin{bmatrix} 0.6 \\ 0.8 \end{bmatrix} + \alpha \begin{bmatrix} 2.8 \\ 1.6 \end{bmatrix}) = f(\begin{bmatrix} 0.6 + 2.8\alpha \\ 0.8 + 1.6\alpha \end{bmatrix}) = = (0.6 + 2.8\alpha)^2 + 4(0.8 + 1.6\alpha)^2 - 4(0.6 + 2.8\alpha) - 8(0.8 + 1.6\alpha)$$

Nájdeme minimum g na intervale $\alpha \in <0, \infty$).

 $g'(\alpha) = 2(0.6 + 2.8\alpha) * 2.8 + 4 * 2(0.8 + 1.6\alpha)(1.6) - 4(2.8) - 8(1.6) = 0$

 $(0.6+2.8\alpha)*0.7+(0.8+1.6\alpha)(1.6)-(1.4)-(1.6)=0$

 $4.52\alpha - 1.3 = 0 \Rightarrow \alpha = 1.3/4.52 = 0.29$

 $g''(\alpha) = 2*2.8*2.8+4*2(1.6)*1.6>0$

POWELLOVA METÓDA

Líši sa od gradientových metód spôsobom určovania smeru minimalizácie h^i , k čomu **nepotrebujeme** výpočet parciálnych derivácií.

Smer h^i je tu určený na základe množiny elementárnych smerov $\{e^{il}, e^{i2}, ..., e^{in}\}$, ktoré je po každom kroku i aktualizovaná smerom minimalizácie hⁱ.

PRÍKLAD: GRADIENTOVÁ METÓDA NAJVÄČŠIEHO POKLESU

Vykonáme presun v smere h^{I} o veľkosti kroku α =0.29.

$$\mathbf{x} = \mathbf{x}^1 + \alpha \,\mathbf{h}^1 = \begin{bmatrix} 0.6 \\ 0.8 \end{bmatrix} + \alpha \begin{bmatrix} 2.8 \\ 1.6 \end{bmatrix} = \begin{bmatrix} 0.6 + 2.8\alpha \\ 0.8 + 1.6\alpha \end{bmatrix} = \begin{bmatrix} 1.41 \\ 1.26 \end{bmatrix}$$

POWELLOVA MIETÓDA

Určenie smeru minimalizácie hⁱ.

Ideme z bodu x^i a položíme $y^{il} = x^i$.

Na **priamke** $y(\beta) = y^{il} + \beta e^{il}$ vykonáme minimalizáciu f pre $\beta \in R$. Získame β_l a príslušný bod $\mathbf{y}^{i2} = \mathbf{y}^{il} + \beta_l \mathbf{e}^{il}$.

Ďalšiu priamku definujeme: $y(\beta) = y^{i2} + \beta e^{i2}$ a z nej získame vⁱ³. Nakoniec dostaneme $\mathbf{v}^{i,n+1}$ a potom

POWELLOVA METÓDA

Určenie smeru minimalizácie hⁱ.

Bod \mathbf{x}^{i+l} získame minimalizáciou funkcie g premennej $\alpha \ge 0$ takto: $g(\alpha) = f(\mathbf{x}^i + \alpha, \mathbf{h}^i)$. $\mathbf{x}^{i+l} = \mathbf{x}^i + \alpha, \mathbf{h}^i$.

Množinu elementárnych smerov $\{e^{iI}, e^{i2}, ..., e^{in}\}$ aktualizujeme pre krok i+1 takto: $\{e^{i2}, ..., e^{in}, h^i\}$.

PRÍKLAD: POWELLOVA METÓDA

Minimalizujte $f(x) = (x_1)^2 + 4(x_2)^2 - 4x_1 - 8x_2$ pre $x \in E^2$

$$\mathbf{y}(\beta) = y^{02} + \beta \mathbf{e}^{02} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 + \beta \end{bmatrix}$$

$$g^{2}(\beta) = f(\mathbf{y}(\beta)) = (y_{1}(\beta))^{2} + 4(y_{2}(\beta))^{2} - 4y_{1}(\beta) - 8y_{2}(\beta) = (2)^{2} + 4(2 + \beta)^{2} - 4 \cdot 2 - 8 \cdot (2 + \beta)$$

$$g^{2}(\beta) = 8(2 + \beta) - 8 = 0 \Rightarrow \beta_{1} = -1 \Rightarrow \mathbf{y}^{03} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

PRÍKLAJD: POWEILILOVA MIETÓDA

Minimalizujte $f(\mathbf{x}) = (x_1)^2 + 4(x_2)^2 - 4x_1 - 8x_2$ pre $\mathbf{x} \in E^2$ Zvoľme $\mathbf{x}^0 = <0, 2>^T$ a množinu elementárnych smerov ako $\{<1, 0>^T, <0, 1>^T\}$.

$$\mathbf{y}(\beta) = \mathbf{x}^{0} + \beta \mathbf{e}^{01} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \beta \\ 2 \end{bmatrix}$$

$$g^{1}(\beta) = f(\mathbf{y}(\beta)) = (y_{1}(\beta))^{2} + 4(y_{2}(\beta))^{2} - 4y_{1}(\beta) - 8y_{2}(\beta) = (\beta)^{2} + 4(2)^{2} - 4\beta - 8*2$$

$$g^{1}(\beta) = 2\beta - 4 = 0 \Rightarrow \beta_{1} = 2 \Rightarrow \mathbf{y}^{02} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

PRÍKLAD: POWELLOVA METÓDA

Minimalizujte $f(x) = (x_1)^2 + 4(x_2)^2 - 4x_1 - 8x_2$ pre $x \in E^2$

$$\mathbf{h}^0 = \mathbf{y}^{03} - \mathbf{x}^0 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

$$\mathbf{x}(\alpha) = \mathbf{x}^{0} + \alpha \mathbf{h}^{0} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \alpha \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 2\alpha \\ 2 - \alpha \end{bmatrix}$$

$$g(\alpha) = f(\mathbf{x}(\alpha)) = (x_1(\alpha))^2 + 4(x_2(\alpha))^2 - 4x_1(\alpha) - 8x_2(\alpha) =$$

$$= (2\alpha)^2 + 4(2-\alpha)^2 - 4(2\alpha) - 8*(2-\alpha)$$

$$g'(\alpha) = 2(2\alpha)2 + 4 * 2(2-\alpha)(-1) - 4 * 2 - 8(-1) = 0$$

$$2\alpha - 2 = 0 \Rightarrow \alpha = 1 \Rightarrow x^1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

V kroku i=1 bude východiskový bod $\mathbf{x}^I = <2, 1>^T a$ množina elementárnych smerov bude $\{\mathbf{e}^{02}, \mathbf{h}^0\} = \{<0, 1>^T, <2, -1>^T\}$.

ITERAČNÉ METÓDY PRVÉHO RÁDU

- Uvedené iteračné metódy patria do skupiny iteračných metód prvého rádu, podľa toho, že v okolí xⁱ aproximujú minimalizovanú funkciu nadrovinou a postupujú v smere hⁱ, v ktorom táto nadrovina najrýchlejšie klesá.
- Ďalšou metódou prvého rádu je napr. "Metóda združených smerov" (Fletcher-Reevesova metóda).
- Metódy druhého rádu aproximujú minimalizovanú funkciu kvadratickou formou a postupujú od súčasného riešenia k bodu minima kvadratické formy.

ITERAČNÉ METÓDY PRVÉHO RÁDU

- Ak sú iteračné metódy prvého rádu používané ako heuristiky, bez nároku na konvergenciu ku globálnemu minimu, stačí, ak existujú spojité prvé parciálne derivácie minimalizovanej funkcie.
- Predpoklady pre konvergenciu minimalizujúcich postupností ku globálnemu sú podstatne prísnejšie: konvexnosť funkcie f, platnosť Lipschicovej podmienky pre f'a obmedzenosť množiny $\{x: x \in E^n, f(x) \le f(x^0)\}$.