Moving Beyond Linearity

The truth is never linear!

Or almost never!

But often the linearity assumption is good enough.

When its not ...

- polynomials,
- step functions,
- splines,
- local regression, and
- generalized additive models

offer a lot of flexibility, without losing the ease and interpretability of linear models.

Polynomial Regression

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \ldots + \beta_d x_i^d + \epsilon_i$$

Degree-4 Polynomial

Details

- Create new variables $X_1 = X$, $X_2 = X^2$, etc and then treat as multiple linear regression.
- Not really interested in the coefficients; more interested in the fitted function values at any value x_0 :

$$\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 + \hat{\beta}_2 x_0^2 + \hat{\beta}_3 x_0^3 + \hat{\beta}_4 x_0^4.$$

- Since $\hat{f}(x_0)$ is a linear function of the $\hat{\beta}_{\ell}$, can get a simple expression for *pointwise-variances* $\text{Var}[\hat{f}(x_0)]$ at any value x_0 . In the figure we have computed the fit and pointwise standard errors on a grid of values for x_0 . We show $\hat{f}(x_0) \pm 2 \cdot \text{se}[\hat{f}(x_0)]$.
- We either fix the degree d at some reasonably low value, else use cross-validation to choose d.

Details continued

• Logistic regression follows naturally. For example, in figure we model

$$\Pr(y_i > 250|x_i) = \frac{\exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}.$$

- To get confidence intervals, compute upper and lower bounds on *on the logit scale*, and then invert to get on probability scale.
- Can do separately on several variables—just stack the variables into one matrix, and separate out the pieces afterwards (see GAMs later).
- Caveat: polynomials have notorious tail behavior very bad for extrapolation.

Step Functions

Another way of creating transformations of a variable — cut the variable into distinct regions.

$$C_1(X) = I(X < 35), \quad C_2(X) = I(35 \le X < 50), \dots, C_3(X) = I(X \ge 65)$$

Piecewise Constant

Step functions continued

- Easy to work with. Creates a series of dummy variables representing each group.
- Useful way of creating interactions that are easy to interpret. For example, interaction effect of Year and Age:

$$I({\tt Year} < 2005) \cdot {\tt Age}, \quad I({\tt Year} \geq 2005) \cdot {\tt Age}$$

would allow for different linear functions in each age category.

• Choice of cutpoints or *knots* can be problematic. For creating nonlinearities, smoother alternatives such as *splines* are available.

Piecewise Polynomials

• Instead of a single polynomial in X over its whole domain, we can rather use different polynomials in regions defined by knots. E.g. (see figure)

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \epsilon_i & \text{if } x_i < c; \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \epsilon_i & \text{if } x_i \ge c. \end{cases}$$

- Better to add constraints to the polynomials, e.g. continuity.
- Splines have the "maximum" amount of continuity.

Piecewise Cubic

Continuous Piecewise Cubic

Linear Spline

Linear Splines

A linear spline with knots at ξ_k , k = 1, ..., K is a piecewise linear polynomial continuous at each knot.

We can represent this model as

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+3} b_{K+3}(x_i) + \epsilon_i,$$

where the b_k are basis functions.

$$b_1(x_i) = x_i$$

 $b_{k+1}(x_i) = (x_i - \xi_k)_+, \quad k = 1, \dots, K$

Here the $()_{+}$ means positive part; i.e.

$$(x_i - \xi_k)_+ = \begin{cases} x_i - \xi_k & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$

Cubic Splines

A cubic spline with knots at ξ_k , k = 1, ..., K is a piecewise cubic polynomial with continuous derivatives up to order 2 at each knot.

Again we can represent this model with truncated power basis functions

$$y_{i} = \beta_{0} + \beta_{1}b_{1}(x_{i}) + \beta_{2}b_{2}(x_{i}) + \dots + \beta_{K+3}b_{K+3}(x_{i}) + \epsilon_{i},$$

$$b_{1}(x_{i}) = x_{i}$$

$$b_{2}(x_{i}) = x_{i}^{2}$$

$$b_{3}(x_{i}) = x_{i}^{3}$$

$$b_{k+3}(x_{i}) = (x_{i} - \xi_{k})_{+}^{3}, \quad k = 1, \dots, K$$

where

$$(x_i - \xi_k)_+^3 = \begin{cases} (x_i - \xi_k)^3 & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$

Natural Cubic Splines

A natural cubic spline extrapolates linearly beyond the boundary knots. This adds $4 = 2 \times 2$ extra constraints, and allows us to put more internal knots for the same degrees of freedom as a regular cubic spline.

Knot placement

- One strategy is to decide K, the number of knots, and then place them at appropriate quantiles of the observed X.
- A cubic spline with K knots has K+4 parameters or degrees of freedom.
- A natural spline with K knots has K degrees of freedom.

Comparison of a degree-14 polynomial and a natural cubic spline, each with 15df.

Smoothing Splines

This section is a little bit mathematical

Consider this criterion for fitting a smooth function g(x) to some data:

$$\underset{g \in \mathcal{S}}{\text{minimize}} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

- The first term is RSS, and tries to make g(x) match the data at each x_i .
- The second term is a roughness penalty and controls how wiggly g(x) is. It is modulated by the tuning parameter $\lambda \geq 0$.
 - The smaller λ , the more wiggly the function, eventually interpolating y_i when $\lambda = 0$.
 - As $\lambda \to \infty$, the function g(x) becomes linear.

Smoothing Splines continued

The solution is a natural cubic spline, with a knot at every unique value of x_i . The roughness penalty still controls the roughness via λ .

Some details

- Smoothing splines avoid the knot-selection issue, leaving a single λ to be chosen.
- The algorithmic details are too complex to describe here.

- The vector of n fitted values can be written as $\hat{\mathbf{g}}_{\lambda} = \mathbf{S}_{\lambda} \mathbf{y}$, where \mathbf{S}_{λ} is a $n \times n$ matrix (determined by the x_i and λ).
- The effective degrees of freedom are given by

$$df_{\lambda} = \sum_{i=1}^{n} {\{\mathbf{S}_{\lambda}\}_{ii}}.$$

Smoothing Splines continued — choosing λ

- We can specify df rather than $\lambda!$
- The leave-one-out (LOO) cross-validated error is given by

$$RSS_{cv}(\lambda) = \sum_{i=1}^{n} (y_i - \hat{g}_{\lambda}^{(-i)}(x_i))^2 = \sum_{i=1}^{n} \left[\frac{y_i - \hat{g}_{\lambda}(x_i)}{1 - \{\mathbf{S}_{\lambda}\}_{ii}} \right]^2.$$

Smoothing Spline

Local Regression

Local Regression

With a sliding weight function, we fit separate linear fits over the range of X by weighted least squares.

Generalized Additive Models

Allows for flexible nonlinearities in several variables, but retains the additive structure of linear models.

$$y_i = \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_p(x_{ip}) + \epsilon_i.$$

GAMs for classification

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + f_1(X_1) + f_2(X_2) + \dots + f_p(X_p).$$

