NTIN071 A&G: Tutorial 7 – Chomsky normal form, The CYK algorithm

Teaching goals: The student is able to

- give the formal definition of Chomsky Normal Form and related notions
- convert a given context-free grammar to ChNF
- explain the CYK algorithm, apply to a given word w and context-free grammar G

IN-CLASS PROBLEMS

Problem 1 (About the conversion to ChNF). Recall the process of converting a context-free grammar to Chomsky Normal Form. Then answer the following questions. Justify.

- (a) Find an example of a grammar in which there is a generating variable only reachable via nongenerating variables.
- (b) When reducing a grammar, which variables do we need to remove first: nongenerating or unreachable?
- (c) Is it possible for a reachable generating variable to become nongenerating after the removal of unreachable variables?
- (d) When we want to break up a production rule with long body, what is the minimal number of Chomsky Normal Form rules we need to create?

Problem 2 (Convert to ChNF). Convert the following context-free grammars to Chomsky normal form:

(a)
$$G_1 = (\{S, A, B\}, \{0, 1\}, S, \mathcal{P}), \text{ where}$$
 (b) $G_2 = (\{S, A, B\}, \{0, 1\}, S, \mathcal{P}), \text{ where}$ $\mathcal{P} = \{S \to 0A10B10, A \to 0A0 \mid 11, A \to 1A0 \mid \epsilon, B \to 0\}$ $B \to 1B00 \mid \epsilon\}$

Problem 3 (The CYK algorithm). Using the CYK algorithm determine if $w \in L(G)$. (a) w = 0110, $G = (\{S, A, B\}, \{0, 1\}, S, P)$, where

$$\mathcal{P} = \{ S \to 0 \mid AB,$$

$$A \to 1 \mid SA \mid SB,$$

$$B \to AS \mid BA \mid 0 \}$$

- (b) w = 001100, $G = G_1$ is the grammar from Problem 2(a)
- (c) w = 110011, $G = G_1$ is the grammar from Problem 2(a)

EXTRA PRACTICE AND THINKING

Problem 4 (Convert to ChNF). Convert the following to Chomsky normal form:

(a)
$$G = (\{S, A, B\}, \{0, 1\}, S, \mathcal{P})$$
 (b) $G = (\{S, E, F\}, \{(,), *, +, 1\}, S, \mathcal{P})$
 $\mathcal{P} = \{S \to A \mid 0SA \mid \epsilon,$ $\mathcal{P} = \{S \to (E),$
 $A \to 1A \mid 1 \mid B1,$ $E \to F + F \mid F * F,$
 $B \to 0B \mid 0 \mid \epsilon\}$ $F \to S \mid 1\}$

Problem 5 (The CYK algorithm). Using the CYK algorithm determine if $w \in L(G)$. (a) w = abcbb, $G = (\{S, A, B, C\}, \{a, b, c\}, S, \mathcal{P})$, where

$$\mathcal{P} = \{S \rightarrow CA \mid CB,$$

$$B \rightarrow CBA \mid CB \mid BA \mid BB,$$

$$C \rightarrow ABC \mid BC,$$

$$A \rightarrow a, B \rightarrow b, C \rightarrow c\}$$

- (b) w = 01010010, $G = G_2$ is the grammar from Problem 2(b)
- (c) $w=01010011,\,G=G_2$ is the grammar from Problem 2(b)