Great circle distance

Given

City A (100°E, 10°N)
City B (130°E, 25°N)
How to calculate AB distance?

- Draw the great circles (half)
- Construct a spherical triangle
- Law of Cosines
 - $\cos c = \cos a \cos b + \sin a \sin b \cos \gamma$
 - Use co-latitude to get a and b
 - Use longitude difference to get γ
- Inverse trigonometric functions
- Radius * Radian of angle

Spherical excess

- Surface triangle: $\alpha + \beta + \gamma = 180^{\circ}$
- Spherical triangle: $\alpha + \beta + \gamma \neq 180^{\circ}$
- Spherical excess: $\alpha + \beta + \gamma 180^{\circ}$

Spherical excess

- $E = \alpha + \beta + \gamma 180^{\circ}$?
- Use Law of Cosines to get c
- $\sin \alpha = \sin \alpha * \sin \gamma / \sin c$
- $\sin \beta = \sin b * \sin \gamma / \sin c$

