Google File System

DS 5110: Big Data Systems (Spring 2023) Lecture 3a

Yue Cheng

Google file system (GFS)

- Goal: a global (distributed) file system that stores data across many machines
 - Need to handle 100's TBs

- Google published details in 2003
- Open source implementation:
 - Hadoop Distributed File System (HDFS)

Workload-driven design

- MapReduce workload characteristics
 - Huge files (GBs)
 - Almost all writes are appends
 - Concurrent appends common
 - High throughput is valuable
 - Low latency is not

Scalability

Example workloads: Bulk Synchronous Processing (BSP) data parallelism. | Markellow

*Leslie G. Valiant, A bridging model for parallel computation, Communications of the ACM, Volume 33 Issue 8, Aug. 1990

MapReduce as a BSP system

- Read entire dataset, do computation over it
 - Batch processing
- Producer/consumer: many producers append work to file concurrently; one consumer reads and does work

Workload-driven design

 Build a global (distributed) file system that incorporates all these application properties

- Only supports features required by applications
- Avoid difficult local file system features, e.g.:
 - links

Replication

Replication

Resilience against failures

Resilience against failures

Replicating A to maintain a replication factor of 2

Replicating C to maintain a replication factor of 3

Machine may be dead forever, or it may come back

Machine may be dead forever, or it may come back

Data Rebalancing

Deleting one A to maintain a replication factor of 2

Data Rebalancing

Deleting one C to maintain a replication factor of 3

Question: how to maintain a global view of all data distributed across machines?

GFS architecture: logical view

GFS architecture: logical view

BTW, what is RPC?

RPC = Remote procedure call

Motivation: Why RPC?

 The typical programmer is trained to write singlethreaded code that runs in one place

- Goal: Easy-to-program network communication that makes client-server communication transparent
 - Retains the "feel" of writing centralized code
 - Programmer needn't think about the network
 - Avoid tedious socket programming

What's the goal of RPC?

- Within a single program, running in a single process, recall the well-known notion of a procedure call:
 - Caller pushes arguments onto stack,
 - jumps to address of callee function
 - Callee reads arguments from stack,
 - executes, puts return value in register,
 - returns to next instruction in caller

What's the goal of RPC?

- Within a single program, running in a single process, recall the well-known notion of a procedure call:
 - Caller pushes arguments onto stack,
 - jumps to address of callee function
 - Callee reads arguments from stack,
 - executes, puts return value in register,
 - returns to next instruction in caller

RPC's Goal: make communication appear like a local procedure call: transparency for procedure calls – way less painful than sockets...

1. Client calls stub function (pushes parameters onto stack)

- 1. Client calls stub function (pushes parameters onto stack)
- 2. Stub marshals parameters to a network message

- 2. Stub marshals parameters to a network message
- 3. OS sends a network message to the server

- 3. OS sends a network message to the server
- 4. Server OS receives message, sends it up to stub

- 4. Server OS receives message, sends it up to stub
- 5. Server stub unmarshals params, calls server function

- 5. Server stub unmarshals params, calls server function
- 6. Server function runs, returns a value

- 6. Server function runs, returns a value
- 7. Server stub marshals the return value, sends message

- 7. Server stub marshals the return value, sends message
- 8. Server OS sends the reply back across the network

- 8. Server OS sends the reply back across the network
- 9. Client OS receives the reply and passes up to stub

- 9. Client OS receives the reply and passes up to stub
- 10. Client stub unmarshals return value, returns to client

Back to GFS

GFS architecture: physical view

Data chunks

 Break large GFS files into coarse-grained data chunks (e.g., 64-128MB)

 GFS chunkservers store physical data chunks in local Linux file system

 Centralized master keeps track of mapping between logical and physical chunks

HDFS demo

Writing to a file

Chunk map: the metadata

Client contacts the GFS master

GFS master creates file metadata

Client writes replicas to chunkservers

Client writes replica to s2

S2 streams replica to s9

chunk map logical phys 924 s2,s5,s7 521 s2,s9,s11

S9 streams replica to s11

chunk map logical phys 924 s2,s5,s7 521 s2,s9,s11

Client

replicate a chunk of 64MB

Chunkserver s2

Local fs

chunks/924 => data1 chunks/521 => data2

Chunkserver s9

Local fs

chunks/521 => data1

Chunkserver s11

Local fs

chunks/521 => data1

Primary replica s9 acks back

chunk map logical phys 924 s2,s5,s7 521 s2,s9,s11

reply to client

Chunkserver s2

Local fs

chunks/924 => data1 chunks/521 => data2

Chunkserver s9

Local fs

chunks/521 => data1

Chunkserver s11

Local fs

chunks/521 => data1

Reading a file

Chunk map: the metadata

Master			
chunk map			
logical	phys		
924 521 	s2,s5,s7 s2,s9,s11		

Chunkservers {s2,s5,s7} hold a data chunk

Master			
chunk map			
logical	phys		
924 521 	s2,s5,s7 s2,s9,s11		

Client asks for the location

Client asks for the location

File namespace

path names mapped to logical names

Discussion

Aggregate read rate

10

Number of clients N

(a) Reads

15

List your takeaways from "Figure 3: Aggregate

Read rate (MB/s)

50

/ What does the N/W Limitation mean?

2. What is the scalability trend?

GFS scale

The evaluation in Table 2 shows clusters with up to 180 TB of data. What part of the design/configuration would need to change if we

instead had 180 PB of data?

Cluster	A	R
Chunkservers	342	227
Available disk space	72 TB	180 TB
Used disk space	55 TB	155 TB
Number of Files	735 k	737 k
Number of Dead files	22 k	232 k
Number of Chunks	992 k	1550 k
Metadata at chunkservers	13 GB	21 GB
Metadata at master	48 MB	60 MB

Table 2: Characteristics of two GFS clusters

Master.

Increase chunk SZ.

Metadata explosion

X lovox -> 60 GB.