Corso di Architettura degli Elaboratori e Laboratorio (M-Z)

Algebra Booleana della Commutazione

Nino Cauli

Dipartimento di Matematica e Informatica

Algebra booleana della commutazione

- L'Algebra Booleana della Commutazione è un sistema algebrico in cui ogni variabile può assumere solo 2 valori (0 e 1)
- Possiede 3 operazioni base definite su variabili binarie (FUNZIONI LOGICHE FONDAMENTALI):
- Somma logica o OR
- Prodotto logico o AND
- Complementazione, Negazione, Inversione o NOT
- Ciascuna operazione prende in ingresso una o più variabili binarie e rende in uscita una variabile binaria

OR o somma logica

- La somma logica o OR è una funzione che vale 1 solo se almeno uno dei suoi ingressi binari vale 1
- Si denota tramite gli operatori a due argomenti "+" o " ∨"
- La forma algebrica della somma è:

$$f(x_1, x_2) = x_1 + x_2 = x_1 \vee x_2$$

X ₁	X ₂	$f(x_1, x_2) = x_1 + x_2$
0	0	0
0	1	1
1	0	1
1	1	1

Proprietà base della somma logica

Proprietà commutativa:

$$x_1 + x_2 = x_2 + x_1$$

Proprietà associativa:

$$x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3$$

Estensione a più variabili:

$$f = x_1 + x_2 + \ldots + x_n$$

Proprietà dell'elemento neutro:

$$0 + x = x$$

AND o prodotto logico

- Il prodotto logico o AND è una funzione che vale 1 solo se tutti i suoi ingressi binari valgono 1
- Si denota tramite gli operatori a due argomenti "-" o "∧"
- La forma algebrica del prodotto è:

$$f(x_1, x_2) = x_1 \cdot x_2 = x_1 \wedge x_2$$

X ₁	X ₂	$f(x_1,x_2) = x_1 \cdot x_2$
0	0	0
0	1	0
1	0	0
1	1	1

Proprietà base del prodotto logico

Proprietà commutativa:

$$x_1 \cdot x_2 = x_2 \cdot x_1$$

Proprietà associativa:

$$x_1 \cdot (x_2 \cdot x_3) = (x_1 \cdot x_2) \cdot x_3$$

Estensione a più variabili:

$$f = x_1 \cdot x_2 \cdot \ldots \cdot x_n$$

Proprietà dell'elemento neutro:

$$1 \cdot x = x$$

NOT o complementazione

- La complementazione o NOT è una funzione che inverte il valore dell'unica variabile in ingresso
- Si denota tramite l'operatore di soprallineatura "¯" o di negazione "¬"
- La forma algebrica della complementazione è:

$$f(x) = \overline{x} = \neg x$$

Proprietà di involuzione (doppia negazione):

$$\overline{\overline{x}} = x$$

Х	f(x) = ¬x
0	1
1	0

Altre proprietà duali

SOMMA

Proprietà distributiva:

PRODOTTO

$$x + y \cdot z = (x + y) \cdot (x + z) | x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$

Proprietà di idempotenza:

$$x + x = x$$

$$x \cdot x = x$$

Proprietà di complemento:

$$x + \overline{x} = 1$$

$$x \cdot \overline{x} = 0$$

Proprietà dello 1 e dello 0:

$$1 + x = 1$$

$$0 \cdot x = 0$$

Teoremi di De Morgan

Addizione:

$$\overline{x_1 + x_2 + x_3 \dots} = \overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3} \dots$$

Prodotto:

$$\overline{x_1 \cdot x_2 \cdot x_3 \dots} = \overline{x_1} + \overline{x_2} + \overline{x_3} \dots$$

Funzioni logiche e tabelle di verità

- FUNZIONE LOGICA: Funzione con una o più variabili BINARIE di ingresso ed una variabile BINARIA di uscita
- Una Funzione Logica può essere espressa con una TABELLA DI VERITÀ
- Esiste una sola tabella di verità per ogni funzione logica
- Una tabella di verità ha 2ⁿ righe e n + 1 colonne, dove n è il numero di variabili di ingresso

X ₁	X ₂	 X _{n-1}	X _n	$f(x_1, x_2,, x_{n-1}, x_n)$
0	0	 0	0	y ₀₀₀₀
0	0	 0	1	y ₀₀₀₁

1	1	 1	0	У ₁₁₁₀
1	1	 1	1	У ₁₁₁₁

Espressioni logiche

- Combinando assieme più funzioni logiche fondamentali si ottengono le ESPRESSIONI LOGICHE
- Un'espressione logica è una possibile realizzazione di una funzione logica

 Esistono INFINITE espressioni logiche che realizzano la STESSA funzione (le tabelle di verità, al contrario, sono uniche)

$$(x_1 + x_2)(x_1 + \overline{x_2})(\overline{x_1} + x_2) = x_1x_2$$

X ₁	X ₂	$f(x_1,x_2) = x_1 \cdot x_2$
0	0	0
0	1	0
1	0	0
1	1	1

Equivalenza tra espressioni logiche

- Due espressioni logiche sono equivalenti se rappresentano la stessa funzione
- Per dimostrare l'equivalenza di due espressioni logiche si possono confrontare le loro tabelle di verità

$$(x_1 + x_2)(x_1 + \overline{x_2})(\overline{x_1} + x_2) = x_1 x_2$$

X ₁	X ₂	$X_1 \cdot X_2$	$(x_1 + x_2)(x_1 + \neg x_2)(\neg x_1 + x_2)$
0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

Precedenza tra operatori logici

 Per decidere quale operazione eseguire per prima in un'espressione bisogna seguire gli ordini di precedenza degli operatori

Operatore	Precedenza
Negazione - NOT	1
Prodotto - AND	2
Somma - OR	3

• Per forzare la precedenza di un operatore si possono usare le parentesi:

$$(x_1x_2) + (x_1\overline{x_2}) + (\overline{x_1}x_2) = x_1x_2 + x_1\overline{x_2} + \overline{x_1}x_2$$
$$x_1(x_2 + x_1)(\overline{x_2} + \overline{x_1})x_2 \neq x_1x_2 + x_1\overline{x_2} + \overline{x_1}x_2$$

Da espressione a funzione logica

- Per sapere quale funzione è rappresentata da una espressione logica basta calcolarne la tabella di verità
- Calcolare i valori assunti dall'espressione per tutti i valori delle variabili di ingresso

$$(x_1 + x_2)(x_1 + \overline{x_2})(\overline{x_1} + x_2)$$

X ₁	X ₂	X ₁ + X ₂	$X_1 + \neg X_2$	$\neg x_1 + x_2$	$f(x_1,x_2) = (x_1 + x_2)(x_1 + \neg x_2)(\neg x_1 + x_2)$
0	0	0	1	1	0
0	1	1	0	1	0
1	0	1	1	0	0
1	1	1	1	1	1

Da funzione a espressione logica

 Esistono infinite espressioni che rappresentano una funzione logica

• Esiste un metodo per trovarne almeno una a partire dalla tabella di verità della funzione?

 Esistono delle forme uniche per rappresentare una funzione?

X ₁	X ₂	X ₃	f ₁
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Mintermini

- Mintermine: funzione a n variabili che vale 1 solo per una specifica configurazione delle variabili
- Assumiamo di saper ottenere le espressioni rappresentanti i mintermini che valgono 1 per tutte le configurazioni in cui la funzione f₁ vale 1: {m₀, m₁, m₃, m₇}
- La somma logica dei mintermini equivale alla funzione cercata: $f_1 = m_0 + m_1 + m_3 + m_7$

X ₁	X ₂	X ₃	m _o	m ₁	m ₃	m ₇	m ₀ +m ₁ +m ₃ +m ₇	f ₁
0	0	0	1	0	0	0	1	1
0	0	1	0	1	0	0	1	1
0	1	0	0	0	0	0	0	0
0	1	1	0	0	1	0	1	1
1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0
1	1	1	0	0	0	1	1	1

Come rappresentare un mintermine

- Un mintermine di una configurazione c di n variabili può essere rappresentato come un prodotto delle sue variabili:
 - In forma diretta se in c la variabile vale 1
 - In forma negata se in c la variabile vale 0

X ₁	X ₂	X ₃	¬X ₁	¬X ₂	X ₃	$\neg X_1 \cdot \neg X_2 \cdot X_3$	m ₁
0	0	0	1	1	0	0	0
0	0	1	1	1	1	1	1
0	1	0	1	0	0	0	0
0	1	1	1	0	1	0	0
1	0	0	0	1	0	0	0
1	0	1	0	1	1	0	0
1	1	0	0	0	0	0	0
1	1	1	0	0	1	0	0

Prima forma canonica

 Quindi una funzione logica può essere rappresentata da una espressione nella forma di somma di prodotti (SOP):

$$\overline{x}_1\overline{x}_2\overline{x}_3 + \overline{x}_1\overline{x}_2x_3 + \overline{x}_1x_2x_3 + x_1x_2x_3$$

 Tale forma è unica ed è chiamata PRIMA FORMA CANONICA

X ₁	X ₂	X ₃	f ₁
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Maxtermini

- Maxtermine: funzione a n variabili che vale 0 solo per una specifica configurazione delle variabili
- Assumiamo di saper ottenere le espressioni rappresentanti i maxtermini che valgono 0 per tutte le configurazioni in cui la funzione f₁ vale 0: {M₂, M₄, M₅, M₆}
- Il prodotto logico dei maxtermini equivale alla funzione cercata: $f_1 = M_2 \cdot M_4 \cdot M_5 \cdot M_6$

X ₁	X ₂	X ₃	M ₂	M ₄	M ₅	M ₆	$M_2 \cdot M_4 \cdot M_5 \cdot M_6$	f ₁
0	0	0	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1
0	1	0	0	1	1	1	0	0
0	1	1	1	1	1	1	1	1
1	0	0	1	0	1	1	0	0
1	0	1	1	1	0	1	0	0
1	1	0	1	1	1	0	0	0
1	1	1	1	1	1	1	1	1

Come rappresentare un maxtermine

- Un maxtermine di una configurazione c di n variabili può essere rappresentato come una somma delle sue variabili:
 - In forma diretta se in c la variabile vale 0
 - In forma negata se in c la variabile vale 1

X ₁	X ₂	X ₃	X ₁	¬X ₂	X ₃	$X_1 + \neg X_2 + X_3$	M ₂
0	0	0	0	1	0	1	1
0	0	1	0	1	1	1	1
0	1	0	0	0	0	0	0
0	1	1	0	0	1	1	1
1	0	0	1	1	0	1	1
1	0	1	1	1	1	1	1
1	1	0	1	0	0	1	1
1	1	1	1	0	1	1	1

Seconda forma canonica

 Quindi una funzione logica può essere rappresentata da una espressione nella forma di prodotto di somme (POS):

$$(x_1 + \overline{x}_2 + x_3)(\overline{x}_1 + x_2 + x_3)(\overline{x}_1 + x_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + x_3)$$

 Tale forma è unica ed è chiamata SECONDA FORMA CANONICA

X ₁	X ₂	X ₃	f ₁
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Forma minima

- Una espressione si dice in forma minima quando non esiste nessun altra espressione equivalente con un costo inferiore
- Per espressioni SOP e POS usiamo il criterio di costo dei LETTERALI (ma ne esistono altri): il costo di un espressione è dato dal numero di comparse di variabili nell'espressione stessa
- Un'espressione in forma minima è più semplice ed economica da realizzare come circuito rispetto alle altre forme

$$(x_1 + x_2)(x_1 + \overline{x_2})(\overline{x_1} + x_2) = x_1 x_2$$

Costo 6

Costo 2

Da prima forma canonica a forma minima

Per passare da prima forma canonica a forma minima si possono seguire i seguenti passi:

• Usando la **proprietà distributiva**, associare le coppie di mintermini che posseggono una sola variabile in forma discordante (diretta e negata)

$$\overline{x}_1\overline{x}_2\overline{x}_3 + \overline{x}_1\overline{x}_2x_3 = \overline{x}_1\overline{x}_2(\overline{x}_3 + x_3)$$

• Usare la legge di complemento per trasformare in 1 le somme di variabili complementari

$$\overline{x}_1\overline{x}_2(\overline{x}_3+x_3)=\overline{x}_1\overline{x}_2$$

Usare la legge di idempotenza per duplicare dei mintermini nel caso fosse necessario

$$x + x = x$$

Minimizzazione esempio 1

$$\overline{x}_{1}\overline{x}_{2}\overline{x}_{3} + \overline{x}_{1}\overline{x}_{2}x_{3} + \overline{x}_{1}x_{2}x_{3} + x_{1}x_{2}x_{3} = \\
= \overline{x}_{1}\overline{x}_{2}(\overline{x}_{3} + x_{3}) + x_{2}x_{3}(\overline{x}_{1} + x_{1}) = (distributiva) \\
= \overline{x}_{1}\overline{x}_{2} \cdot 1 + x_{2}x_{3} \cdot 1 = (complemento) \\
= \overline{x}_{1}\overline{x}_{2} + x_{2}x_{3} = (forma\ minima)$$

Minimizzazione esempio 2

$$\overline{x}_{1}\overline{x}_{2}\overline{x}_{3} + \overline{x}_{1}\overline{x}_{2}x_{3} + \overline{x}_{1}x_{2}\overline{x}_{3} + x_{1}\overline{x}_{2}\overline{x}_{3} + x_{1}\overline{x}_{2}x_{3} =$$

$$\overline{x}_{1}\overline{x}_{2}\overline{x}_{3} + \overline{x}_{1}\overline{x}_{2}x_{3} + \overline{x}_{1}x_{2}\overline{x}_{3} + \overline{x}_{1}x_{2}\overline{x}_{3} + x_{1}\overline{x}_{2}x_{3} + x_{1}\overline{x}_{2}x_{3} = (idempotenza)$$

$$= \overline{x}_{1}\overline{x}_{2}(\overline{x}_{3} + x_{3}) + \overline{x}_{1}\overline{x}_{3}(\overline{x}_{2} + x_{2}) + x_{1}\overline{x}_{2}(\overline{x}_{3} + x_{3}) = (distributiva)$$

$$= \overline{x}_{1}\overline{x}_{2} \cdot 1 + \overline{x}_{1}\overline{x}_{3} \cdot 1 + x_{1}\overline{x}_{2} \cdot 1 = (complemento)$$

$$= \overline{x}_{1}\overline{x}_{2} + \overline{x}_{1}\overline{x}_{3} + x_{1}\overline{x}_{2} =$$

$$= \overline{x}_{2}(\overline{x}_{1} + x_{1}) + \overline{x}_{1}\overline{x}_{3} = (distributiva)$$

$$= \overline{x}_{2} \cdot 1 + \overline{x}_{1}\overline{x}_{3} = (complemento)$$

$$= \overline{x}_{2} + \overline{x}_{1}\overline{x}_{3} = (forma\ minima)$$

Metodo di Karnaugh

- Semplificazione a forma minima può essere un processo complicato
- Il metodo di Karnaugh è un metodo geometrico che facilita il processo
- Si rappresenta la tabella di verità in forma differente (mappa di Karnaugh)
- Si effettua la minimizzazione raggruppando geometricamente i mintermini
- Vantaggioso per funzioni a poche variabili (3 o 4)

Mappe di Karnaugh

- Mappa bidimensionale che rappresenta una tabella di verità
- Per funzioni a 3 variabili le colonne rappresentano coppie di due variabili e le righe la terza variabile
- Sono ordinate in modo che caselle adiacenti abbiano solo una variabile dal valore differente
- Le mappe a 4 variabili sono un'estensione con 2 variabili nelle righe e le altre 2 nelle colonne

X ₁	X ₂	X ₃	f ₁
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Come usare le mappe di Karnaugh

 Raggruppare le caselle di valore 1 adiacenti orizzontalmente e verticalmente

- Continuare a raggruppare fino a formare gruppi di grandezza massima di un numero di caselle multiplo di 2 (2, 4, 8, ...)
- Ogni gruppo rappresenta il **prodotto delle sue variabili con lo stesso valore** (forma diretta se 1 e negata se 0)
- Si ottiene un espressione SOP in forma minima dove ogni gruppo rappresenta uno dei prodotti dell'espressione

Esempi mappe a 3 variabili

Esempi mappe a 4 variabili

Condizione di indifferenza

- Spesso capita che una funzione logica non sia definita su tutte le combinazioni di valori delle sue variabili
- Le variabili non usate si dice siano in **condizione di indifferenza** (don't care condition)
- Nella tabella di verità vengono indicate con il simbolo "X"
- Il loro valore (0 o 1) si può scegliere in modo da minimizzare il più possibile la forma minima (non sempre facile)

Condizione di indifferenza (esempio)

	Codifica	
Cifra	binaria	b_3b_2
decimale	$# b_3 b_2 b_1 b_0$	$f \qquad b_1b_0 \qquad 00 01 11 10$
0	0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	1 0 0 0 1	0 1 5 13 9
	2 0 0 1 0	0 01 0 0 x 1
2 3	3 0 0 1 1	1
4	4 0 1 0 0	$0 11 1 0 7 x^{15} 11 x$
5	5 0 1 0 1	0
6	6 0 1 1 0	1 10 0 1 x x
7	7 0 1 1 1	0 2 6 14 10
	8 1 0 0 0	0
8	9 1 0 0 1	1
1	10 1 0 1 0	X
	11 1 0 1 1	X
Non	12 1 1 0 0	X
usate	13 1 1 0 1	X
	14 1 1 1 0	$f = b_3 b_0 + \bar{b}_0 b_1 b_0 + b_2 b_1 \bar{b}_2$
- 1	15 1 1 1 1	X
	(a) Tabella di verità	(b) Mappa a quattro variabili

Circuiti logici

- Le operazioni logiche base (AND, OR, NOT) possono essere realizzate da semplici circuiti elettronici
- Questi circuiti base vengono chiamati PORTE
- Una rete di porte logiche collegate tra loro è chiamata RETE COMBINATORIA
- Una rete combinatoria ha n ingressi binari ed m uscite binarie con n e $m \ge 1$

Porte logiche

Le porte delle operazioni fondamentali possono essere rappresentate graficamente:

Collegando entrate e uscite delle porte si possono rappresentare le reti combinatorie

Porte a più ingressi

- Grazie alla proprietà associativa AND e OR possono essere estese a più di 2 ingressi
- Graficamente rappresentati da una porta logica con più ingressi
- Equivale a mettere in due livelli a cascata o ad albero porte AND o OR a due ingressi

Esempio porta AND a 4 ingressi:

Equivalenza tra reti combinatorie e espressioni

Un espressione logica può essere rappresentata come rete combinatoria con:

- Una porta per ogni operatore logico presente nell'espressione
- Le porte collegate tra di loro ad albero seguendo i livelli di priorità nell'espressione

Le espressioni SOP e POS corrispondono a reti a due livelli:

Differenza simmetrica o XOR (OR esclusivo)

- La funzione che vale 1 solo se gli 1 nei suoi ingressi sono in numero dispari è chiamata differenza simmetrica o XOR
- Si denota tramite l'operatore a due argomenti "⊕"

Lo XOR è rappresentato dalla seguente porta logica:

X ₁	X ₂	$f(x_1,x_2) = x_1 \oplus x_2$
0	0	0
0	1	1
1	0	1
1	1	0

NAND e NOR

- Due funzioni di largo uso pratico sono l'AND negato (NAND) e l'OR negato (NOR)
- Si denotano tramite gli operatori a due argomenti:
- NAND "_"
- NOR "↓"

Sono rappresentati dalle seguenti porte logiche:

X ₁	X ₂	$\neg (x_1 + x_2)$	¬(x ₁ x ₂)
0	0	1	1
0	1	0	1
1	0	0	1
1	1	0	0

Porte universali

- NAND e NOR sono porte UNIVERSALI: Si può realizzare una qualsiasi funzione combinatoria con reti logiche di soli NAND o soli NOR
- Grazie alle leggi di De Morgan e alla legge di involuzione possiamo passare da una SOP ad una rete di NAND:

$$(x_1 \uparrow x_2) \uparrow (x_3 \uparrow x_4) = \overline{(\overline{x_1 \cdot x_2}) \cdot (\overline{x_3 \cdot x_4})} = (De\ Morgan)$$

$$= \overline{x_1 x_2} + \overline{x_3 x_4} = (Involuzione)$$

$$= x_1 x_2 + x_3 x_4 \quad (Sum\ of\ Products)$$

SOP come rete di NAND

- È possibile trasformare un'espressione SOP di porte binarie in una rete di NAND in questo modo:
 - Cambiare tutte le porte AND e OR con porte NAND
 - Mantenere gli ordini di priorità tra le operazioni dell'espressione di partenza
- Per essere in grado di realizzare con porte NAND qualsiasi espressione in forma SOP ci manca sapere:
 - Come rendere una porta NOT con porte NAND
 - Come realizzare le porte NAND a più ingressi

NOT come circuito di NAND

 Una porta NAND con ingressi unificati si comporta come una porta NOT negando la variabile di ingresso

Lo stesso vale per la porta NOR

Porte NAND a più ingressi

- Le operazioni NAND e NOR godono della proprietà commutativa
- Sfortunatamente non godono della proprietà associativa

Porte NAND a più ingressi

Grazie alla **legge di involuzione** e la **rappresentazione della porta NOR come NAND** possiamo rappresentare una porta NAND a più ingressi

