INT 1. Докажите, что:

- а) код Шеннона-Фано является префиксным;
- б) если центральный отрезок относить туда, куда попала его большая часть, то кодирование Шеннона—Фано не является сбалансированным (то есть не существует константы d, для которой выполнено $\ell(c_i) < -\log p_i + d$ для любых k и любых исходных вероятностей p_1, \dots, p_k);
- в) если центральный отрезок всегда относить к правой половине, то кодирование Шеннона-Фано также не является сбалансированным.

INT 2. Докажите, что арифметическое кодирование сбалансировано с константой 2.

[INT 3.] Приведите пример такого распределения вероятностей, что код Шеннона-Фано не является оптимальным.

[InT 4.] Пусть последовательность $lpha o eta o \gamma$ образует цепь Маркова. Докажите, что:

- a) $I(\alpha; \gamma) \leq I(\alpha; \beta)$;
- б) $I(\alpha:\gamma) \leq I(\beta:\gamma)$.

INT 5. Пусть $\{a_1,a_2,\dots,a_n\}$ — произвольный алфавит и p_1,p_2,\dots,p_n — вероятности букв этого алфавита. Докажите, что для любого инъективного кодирования букв этого алфавита средняя длина кода не меньше $h-2\log(h+1)-2$, где h — энтропия распределения с вероятностями p_1,p_2,\dots,p_n .

Определение

Определим общую информацию трёх случайных величин:

$$I(\alpha:\beta:\gamma) := I(\alpha:\beta) - I(\alpha:\beta \mid \gamma).$$

Соотношения на информационные величины имеют удобную геометрическую интерпретацию. При помощи диаграмм Эйлера можно сопоставить площади каждой из получившихся замкнутых области некоторую информационную величину. В частности, прощать каждого круга соответствует энтропии указанной случайной величины.

InT 6. Постройте три таких случайных выличины α, β, γ , что $I(\alpha: \beta: \gamma) < 0$.

Определение

Коммуникационный протокол для функции $f\colon X\times Y\to Z$ — это корневое двоичное дерево, которое описывает совместное вычисление Алисой и Бобом функции f. В этом дереве каждая внутренняя вершина v помечена меткой a или b, означающей очередь хода Алисы или Боба соответственно. Для каждой вершины, помеченной a, определена функция $g_v\colon X\to \{0,1\}$, которая говорит Алисе, какой бит нужно послать, если вычисление находится в этой вершине. Аналогично, для каждой вершины v с пометкой b определена функция $h_v\colon Y\to \{0,1\}$, которая определяет бит, который Боб должен отослать в этой вершине. Каждая внутренняя вершина имеет двух потомков, ребро к первому потомку помечено 0, а ребро ко второму потомку помечено 1. Каждый лист помечен значением из множества Z.

Каждая пара входов (x,y) определяет путь от корня до листа в описанном двоичном дереве естественным обрзом. Будем говорить, что коммуникационный протокол вычисляет функцию f, если для всех пар $(x,y)\in X\times Y$, этот путь заканчивается в листе с пометкой f(x,y).

Коммуникационной сложностью функции f назовем наименьшую глубину протокола, вычисляющего функцию f, и будем ее обозначать $\mathrm{D}(f)$.

INT 7. Пусть $f\colon X\times Y\to\{0,1\}$. Рассмотрим матрицу M^f , строки которой соответствуют элементам множества X, столбцы элементам множества Y, а в ячейке $M_{x,y}$ написано значение f(x,y). Покажите, что:

- а) $\operatorname{rk}_{\mathbb{R}}(M_{x,y})$ не превосходит числа листьев в коммуникационном протоколе для f (*nod-сказка*: для вершины протокола опишите множество входов, которое приводит в нее);
- б) $D(\mathsf{EQ}_n) \geq n$, где $\mathsf{EQ}_n \colon \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ и $\mathsf{EQ}_n(x,y) = 1 \Leftrightarrow x = y$.

INT (S 1 P 3). Для множества $A\subseteq \mathbb{N}^4$ будем обозначать $\pi_{ijk}(A)$ проекцию A на координатную плокость, задаваемую осями i,j,k (индексы $i,j,k\in [4]$). Докажите, что для любого конечного A выполняется:

$$3\log|A| \leq \log|\pi_{123}(A)| + \log|\pi_{124}(A)| + \log|\pi_{134}(A)| + \log|\pi_{234}(A)|.$$

INT (S 2 P 6). Имеется набор из n камней. Сколько взвешиваний необходимо, чтобы найти самый тяжелый и самый лёгкий камни (на каждую чашу можно класть не более одного камню)?