## 1 K-level learning implementation

## 1.1 k(1,1) (Standard EWA algorithm, Camerer & Ho 1999)

For a given player with k-level  $k_x=1$  and opponent (with strategies denoted by  $\bar{x_i}$ ) of k-level  $k_y=1$  the map is given by

$$x_{i}(t+1) = \frac{x_{i}(t)^{1-\lambda} \exp\left[\beta \sum_{j} a_{ij}\bar{x}_{j}(t)\right]}{\sum_{j} x_{j}(t)^{1-\lambda} \exp\left[\beta \sum_{l} a_{jl}\bar{x}_{l}(t)\right]}$$
(1)

And similarly for the opponent. We find the  $6 \times 6$  Jacobian for Rock-Paper-Scissors at the central fixed point  $(x_i = \frac{1}{3})$ :

$$\underline{\underline{J}} = (1 - \lambda)\hat{\mathbf{1}} - \frac{1}{3}(1 - \lambda)U + \frac{\beta}{3} \begin{pmatrix} 0 & 0 & 0 & 0 & -1 & 1\\ 0 & 0 & 0 & 1 & 0 & -1\\ 0 & 0 & 0 & -1 & 1 & 0\\ 0 & -1 & 1 & 0 & 0 & 0\\ 1 & 0 & -1 & 0 & 0 & 0\\ -1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

where U is a  $6 \times 6$  matrix with all elements equal to 1. This has distinct eigenvalues

$$\mu = (1 - \lambda) \pm i \frac{\beta}{\sqrt{3}}$$

Figure 1 shows the region in  $\lambda - \beta$  parameter space defined by the stability condition  $|\mu| < 1$ .

## 1.2 k(2,2)

For a player with k-level  $k_x = 2$  and opponent of k-level  $k_y = 2$  the map is defined recursively

$$x_{i}(t+1) = \frac{x_{i}(t)^{1-\lambda} \exp\left[\beta \sum_{j} a_{ij} \bar{x}'_{j}(t+1)\right]}{\sum_{j} x_{j}(t)^{1-\lambda} \exp\left[\beta \sum_{l} a_{jl} \bar{x}'_{l}(t+1)\right]}$$
(2)

with

$$\bar{x}_i'(t+1) = \frac{\bar{x}_i(t)^{1-\lambda} \exp\left[\beta \sum_j a_{ij} x_j(t)\right]}{\sum_j \bar{x}_j(t)^{1-\lambda} \exp\left[\beta \sum_l a_{jl} x_l(t)\right]}$$

In this case, we find the  $6 \times 6$  Jacobian at the RPS fixed point

$$\underline{\underline{J}} = (1-\lambda)\hat{\mathbf{1}} - \frac{1}{3}(1-\lambda)U + \frac{\beta}{3}(1-\lambda) \begin{pmatrix} 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} + \frac{\beta^2}{9} \begin{pmatrix} -2 & 1 & 1 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 & 0 & 0 \\ 1 & 1 & -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 & 1 & 1 \\ 0 & 0 & 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 & 1 & -2 \end{pmatrix}$$

which has distinct eigenvalues

$$\mu = \left(1 - \frac{\beta^2}{3} - \lambda\right) \pm i \frac{\beta}{\sqrt{3}} \left(1 - \lambda\right)$$

The stability condition  $|\mu| < 1$  defines the region shown in figure 2.

## 1.3 k(2,1)

For a player with k-level  $k_x = 2$ , with map given by equation (2) playing against an opponent with k-level  $k_y = 1$ , with the map given by equation (1), we find the Jacobian at the fixed point

This has distinct eigenvalues

$$\mu = \left(1 - \frac{\beta^2}{6} - \lambda\right) \pm \frac{\beta}{6} \sqrt{\beta^2 - 12(1 - \lambda)}$$

The eigenvalue with the minus sign and the condition  $|\mu| < 1$  defines the region shown in figure 5.



Figure 1: Stability region for k(1,1) RPS at  $x_i = \frac{1}{3}$ .



Figure 2: Stability region for k(2,2) RPS at  $x_i = \frac{1}{3}$ , with the boundary of the corresponding region for k(1,1) shown overlaid



Figure 3: The average variance of strategy components  $x_i$  in rounds 6600 - 10000 for k(2, 2) RPS, with the boundary of the analytic stability region (fig. 2) shown as a dashed line.



Figure 4: The largest Lyapunov exponent averaged over the attractor for k(2,2) RPS



Figure 5: The stability region for k(2,1), with boundaries of the corresponding regions for k(2,2) and k(1,1) overlaid.



Figure 6: The average variance of strategy components  $x_i$  in rounds 6600 - 10000 for k(2,1) RPS for high  $\beta$ , with the boundary of the analytic stability region (fig. 5) shown as a dashed line.



Figure 7: The average variance of strategy components  $x_i$  in rounds 6600 - 10000 for k(1,1) play in large random games (Galla, T., & Farmer, J. D. (2013). "Complex dynamics in learning complicated games").



Figure 8: The average variance of strategy components  $x_i$  in rounds 6600 - 10000 for k(2, 2) play in large random games.