

ISTEMAS OPERATIVOS

Mg. Leandro Ezequiel Mascarello

<leandro.mascarello@uai.edu.ar>

 Gestión automática de la parte de la Jerarquía de Memoria formada por los niveles de memoria principal y de disco.

- Jerarquía de memoria: Niveles de almacenamiento
- Procesos exhiben proximidad de referencias
- Memoria virtual
 - Transferencias M. principal y M. secundaria (swap)
- Basada en paginación:
 - Página no residente se marca ausente
 - Se guarda dir. de bloque de swap que la contiene
- Disco → M. principal: por demanda:
 - Acceso a pág. no residente: Fallo de página
 - S.O. lee página de disco
- M. principal → Disco: por expulsión::
 - No hay espacio en M. principal para traer página
 - Se expulsa (reemplaza) una página residente
 - S.O. escribe página expulsada a disco

- Beneficios:
 - Protección y reubicación de procesos
 - Aumento grado de multiprogramación
 - ¡Cuidado con "hiperpaginación" [trashing]!
 - Ejecución de programas que no caben en M. ppal.
- El proceso sólo ve direcciones virtuales.
- El mapa virtual de un proceso está soportado en memoria secundaria (swap).
- No es necesario que todo el proceso esté cargado en memoria =>
 - Más procesos en MP, uso más eficiente del procesador.
 - Un proceso puede ser mayor que la MP.
 - Arranque más rápido.
- Conjunto residente: parte del proceso cargado en MP.

- Hardware [¡imprescindible!] más sofisticado
- Unidad de asignación: página: 2^p
- Mapa de memoria dividido en páginas
- Memoria física dividida en marcos de página
- Tabla de páginas (T.P.) por proceso:
 - Relaciona cada página con el marco que la contiene
- MMU usa T.P. para traducir direcciones lógicas
- S.O. mantiene T.P. de procesos y notifica a MMU cuál debe usar

Paginación

- Entrada de la T.P.
 - Protección (RWX)
 - "Bit de residencia": Página presente (P) o ausente (A)
- Fragmentación interna
 - En cada zona de memoria, puede desperdiciarse parte de último marco asignado a proceso
- ¿Cumple requisitos?
 - Espacios independientes: Mediante T.P.
 - Protección: Mediante T.P.
 - Compartir memoria: Páginas asociadas a mismo marco
 - Soporte de regiones: se usa información de la T.P.
 - Tipo de acceso no permitido: Protección
 - · Accesos a huecos: Página presente
 - No se reserva espacio para huecos
 - Maximizar rendimiento
 - · Buen aprovechamiento
 - · Permite memoria virtual

- Creación de regiones iniciales desde ejecutable
- No se asigna espacio en M. principal
- No se carga nada en M. principal
 - Se traerá bajo demanda
- Se rellena cada entrada de T.P.:
 - Protección: Depende de tipo de región
 - Ausente
 - Dir. en Disco donde está almacenada
- Último valor depende del tipo de gestión de swap

- Asignación de espacio de swap cuando se crea región
- Dos alternativas: con y sin preasignación
- Creación de región con preasignación
 - Se asigna espacio de swap
 - Se copia en él contenido inicial desde disco
 - Páginas se traen por demanda desde swap
 - En expulsión ya tiene espacio reservado
- Creación de región sin preasignación
 - No se asigna espacio de swap
 - Páginas se traen por demanda desde disco
 - En expulsión se reserva espacio de swap (si pág. "sucia")
- Sin preasignación se usa más actualmente
- Región compartida con soporte no usa swap

- S.O. reserva espacio en swap para regiones
- Copia del soporte al swap:
 - Código: del ejecutable
 - Datos "inicializados": del ejecutable
 - Pila: argumentos del programa
 - Datos no "inicializados": rellenar a 0
- Entradas T.P referencian a bloques del swap

- Región de código: compartida con soporte
- No es necesario usar swap
 - Se usa directamente ejecutable

- Entradas T.P. referencian a bloques del soporte (si hay):
 - Código: bloques del ejecutable
 - Datos "inicializados": bloques del ejecutable
 - Datos no "inicializados": valor que indica rellenar a 0
 - Pila: bloque del swap con argumentos del programa
- Al expulsar por primera vez una página modificada se reserva espacio de swap
 - Excepto si compartida y con soporte -> se actualiza soporte

- Soporte en almacenamiento secundario.
- Espacio virtual mayor que la memoria física => fallos en los accesos a memoria.
- Cuando se produce un fallo de acceso => trap al SO.
- Hay que continuar o reiniciar la instrucción en la que se produjo el fallo de acceso.
 - MOV (R1), (R2) => tres posibles fallos de página.
- Esquemas HW de memoria virtual:
 - Paginación.
 - Segmentación.
 - Segmentación paginada.

Necesario una Tabla de Páginas, TP.

- La información de traducción se organiza en tablas de páginas.
- La tabla de páginas está formada por entradas de tablas de página (ETP).
- Cada entrada permite traducir una página virtual.
- Permite saber si una página:
 - Está en Memoria => marco de página (MP).
 - Está en almacenamiento secundario => página en disco.

Paginación: Tabla de Paginas

Si la página no se encuentra en MP => fallo de página (trap al SO).

- Otra información:
 - Copy-on-write
 - No paginada (fija en memoria física).
 - Cache desactivada.
 - Rellenar a ceros.
 - Rellenar de fichero.

- Procesos no se carga inicialmente: ninguna página en MP.
- SO: crea previamente la TP: todas ETP a no residentes
- A medida que se producen fallos de página se van subiendo.
- Ventajas:
 - Sólo se cargan en MP las páginas que se referencian.
 - Acelera la carga de un proceso (no se cargan páginas que no se referencian).
 - Mejor uso de la MP.
- Esquema implementado en los SO actuales.
 - UNIX.
 - LINUX.
 - Windows NT y siguientes.

- Hw → trap "fallo de página".
- UC: Salva estado del proceso actual y bifurcar a la Rut. de Gestión Fallo de Página.
- SO: qué página hace falta => el Hw lo pasa como parámetro.
- SO: el acceso está permitido (consulta TP)?. Si no está permitido, se "mata" al proceso o se envía una señal.
- SO: busca MP libre. Si no hay, se ejecuta el algoritmo de reemplazo.
- SO: Si MP "víctima" está "sucio" → escribir en disco: activar otro proceso.
- SO:Cuando el MP queda libre, se bloquea en M. Pral, se manda leer: se activa otro proceso.
- SO: Cuando interrupción de E/S de la lectura, se actualiza la ETP correspondiente: MP se desbloquea.
- SO: El proceso pasa a ejecutable.
- Se continúa o se reinicia la instrucción que produjo el fallo.

Ejemplo de código.

```
#include <math.h>
#include <stdio.h>
main()
 double x = 30;
 double res;
 void *p;
 p= sbrk(40000);
 res = sin(x);
  printf("res = %f \n", res);
```

- Bibliotecas:
 - libc.so, libm.so

Mandato strace

- open("/lib/libm.so", O_RDONLY)
- mmap () => se proyecta el código.
- open("/lib/libc.so", O_RDONLY)
- mmap () => se proyecta el código.
- Comienza a ejecutar el proceso

Fichero /proc/PID/maps

direccion	perms offset	dev	nodo-i	
08048000-08049000	r-xp 000000	000 08:11	630795	Código
08049000-0804a000	rw-p 000000	000 08:11	630795	Datos sin VI
0804a000-08054000	rwxp 000000	00:00	0	Datos dinámicos
40000000-4000a000	r-xp 000000	000 08:01	30602	ld.so
4000a000-4000b000	rw-p 000090	000 08:01	30602	
40010000-40028000	r-xp 000000	000 08:01	30614	libm.so
40028000-40029000	rw-p 000170	000 08:01	30614	
40029000-400ba000	r-xp 00000	000 08:01	30606	libc.so
400ba000-400c2000	rw-p 000900	000 08:01	30606	
400c2000-400ce000	rw-p 000000	00:00	0	
bfffc000-c0000000	rwxp ffffd000	00:00	0	Pila

- Objetivo: reducir la tasa de fallos.
- Algoritmos:
 - Óptimo.
 - FIFO.
 - NRU.
 - Segunda oportunidad.
 - Algoritmo del reloj.
 - LRU.
- Buffering de páginas.
- "Demonio" [daemon] de paginación.
 - Se activa cuando se necesitan páginas.
 - Objetivo: disponer de páginas libres.

 Solución: reducir el grado de multiprogramación, suspendiendo uno o más procesos