### IEEE 802.11acwith 5.8G:



Remark: A RBW of 500KHz can not be set for the Spectrum Analyzer, and the results of RBW 510KHz are worse than RBW of 500KHz, therefore, if results of the RBW 510KHz complies with limit, results of RBW 500KHz are deemed to comply with limit

# Bandwidth

#### 9.1 Test limit

Please refer section 15.407

For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

#### 9.2 Method of measurement

Details see the KDB558074 D01 Meas Guidance

- a) The bandwidth is measured at an amplitude level reduced 26dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.
- b) The test receiver set RBW = 1-5 % EBW, VBW≥3RBW, Sweep time set auto, detail see the test plot. Peak detector is used.

#### **Test Setup** 9.3



#### **Test Results** 9.4

PASS.

Antenna 0 and Antenna 1 port all have been tested, only worse case is reported

Detailed information please see the following page.

5.2G

| Frequency (MHz) | 26dB Bandwidth (MHz)                                                   | 99% Occupied<br>Bandwidth (MHz)                                                                                                                | Limit (MHz)                                                   | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11a:            |                                                                        |                                                                                                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5180            | 21.11                                                                  | 16.635                                                                                                                                         | /                                                             | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5200            | 21.24                                                                  | 16.634                                                                                                                                         | /                                                             | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5240            | 22.87                                                                  | 16.687                                                                                                                                         | /                                                             | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11n/HT20:       |                                                                        |                                                                                                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5180            | 22.27                                                                  | 17.804                                                                                                                                         | /                                                             | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5200            | 22.45                                                                  | 17.795                                                                                                                                         | /                                                             | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5240            | 22.77                                                                  | 17.807                                                                                                                                         | /                                                             | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11n/HT40:       |                                                                        |                                                                                                                                                |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5190            | 42.23                                                                  | 36.147                                                                                                                                         | /                                                             | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5230            | 42.71                                                                  | 36.192                                                                                                                                         | /                                                             | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11ac:           |                                                                        | m                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5210            | 82.11                                                                  | 75.569                                                                                                                                         | /                                                             | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | (MHz) 11a: 5180 5200 5240 11n/HT20: 5180 5200 5240 11n/HT40: 5190 5230 | (MHz) (MHz)  11a:  5180 21.11  5200 21.24  5240 22.87  11n/HT20:  5180 22.27  5200 22.45  5240 22.77  11n/HT40:  5190 42.23  5230 42.71  11ac: | MHz   MHz   Bandwidth (MHz   Hz   Hz   Hz   Hz   Hz   Hz   Hz | MHz   MHz |

### IEEE 802.11a







#### IEEE 802.11n HT20:







#### IEEE 802.11n HT40:





### IEEE 802.11ac



| Channel   | Frequency (MHz) | 26dB Bandwidth (MHz) | 99% Occupied<br>Bandwidth (MHz) | Limit<br>(MHz) | Result |
|-----------|-----------------|----------------------|---------------------------------|----------------|--------|
| IEEE 802. | 11a:            |                      |                                 |                |        |
| Low       | 5745            | 21.95                | 16.722                          | /              | PASS   |
| Mid       | 5785            | 22.33                | 16.686                          | /              | PASS   |
| High      | 5825            | 21.12                | 16.690                          | /              | PASS   |
| IEEE 802. | 11n/HT20:       |                      |                                 |                |        |
| Low       | 5745            | 23.02                | 17.777                          | /              | PASS   |
| Mid       | 5785            | 21.70                | 17.784                          | /              | PASS   |
| High      | 5825            | 22.31                | 17.824                          | /              | PASS   |
| IEEE 802. | 11n/HT40:       |                      |                                 |                |        |
| Low       | 5755            | 43.01                | 36.183                          | /              | PASS   |
| High      | 5795            | 42.02                | 36.200                          | /              | PASS   |
| IEEE 802. | 11ac:           |                      |                                 |                |        |
|           | 5775            | 81.12                | 75.391                          | /              | PASS   |

### IEEE 802.11a







#### IEEE 802.11n HT20:







#### IEEE 802.11n HT40:





### IEEE 802.11ac



| Channel   | Frequency (MHz) | 6dB Bandwidth<br>(MHz) | 99% Occupied<br>Bandwidth (MHz) | Limit<br>(MHz) | Result |
|-----------|-----------------|------------------------|---------------------------------|----------------|--------|
| IEEE 802. | 11a:            |                        |                                 |                |        |
| Low       | 5745            | 16.34                  | 16.717                          | 0.5            | PASS   |
| Mid       | 5785            | 16.15                  | 16.470                          | 0.5            | PASS   |
| High      | 5825            | 16.30                  | 16.469                          | 0.5            | PASS   |
| IEEE 802. | 11n/HT20:       |                        |                                 |                |        |
| Low       | 5745            | 17.29                  | 17.630                          | 0.5            | PASS   |
| Mid       | 5785            | 17.17                  | 17.680                          | 0.5            | PASS   |
| High      | 5825            | 16.32                  | 17.671                          | 0.5            | PASS   |
| IEEE 802. | 11n/HT40:       |                        |                                 |                |        |
| Low       | 5755            | 36.73                  | 36.144                          | 0.5            | PASS   |
| High      | 5795            | 36.73                  | 36.186                          | 0.5            | PASS   |
| IEEE 802. | 11ac:           |                        |                                 |                |        |
|           | 5775            | 71.36                  | 75.302                          | 0.5            | PASS   |

### IEEE 802.11a with 5.8G:

#### CH Low:



#### CH Mid:



## CH High:



#### IEEE 802.11n HT20:

#### CH Low:



### CH Mid:



### CH High:



### IEEE 802.11n/HT40:

#### CH Low:



### CH High:



### IEEE 802.11ac:



## 10 Undesirable emission

#### 10.1 Test limit

Except as shown in paragraph (7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits

#### 10.2 Test Procedure

- 12.2.1 Put the EUT on a 0.8m high table, power on the EUT. Emissions were scanned and measured rotating the EUT to 360 degrees, Find the maximum Emission
- 12.2.2 Check the spurious emissions out of band.
- 12.2.3 RBW 1MHz ,VBW 3MHz ,peak detector for peak value , RBW 1MHz ,VBW 3MHz , RMS detector for AV value.

### 10.3 Test Setup

Same as 5.2.2.

## 10.4 Test Result

PASS.

Detailed information please see the following page.

5.2G Band

Radiated Method:

IEEE 802.11a CH LOW

| Band Edge Te  | st result                                                                                               |           |         |        |           |            |        |    |  |
|---------------|---------------------------------------------------------------------------------------------------------|-----------|---------|--------|-----------|------------|--------|----|--|
| EUT: Broadl   | oand Digital                                                                                            | Transmis  | sion Sy | stem   |           | M/N: FWBI  | D-2901 |    |  |
| Power: DC 4   | 8V From ad                                                                                              | lapter    |         |        |           |            |        |    |  |
| Test date: 20 | 16-05-05                                                                                                | Test site | : 3m Cł | namber | Tested by | : Simple C | Guan   |    |  |
| Test mode: N  | MIMO TX L                                                                                               | ow        |         |        |           |            |        |    |  |
| Antenna pola  | arity: Vertica                                                                                          | al        |         |        |           |            |        |    |  |
| Freq<br>(MHz) | $(MHz) \qquad (dBuV/m) \qquad (dB/m) \qquad B) \qquad (dB) \qquad (dBuV/m) \qquad (dBuV/m) \qquad (dB)$ |           |         |        |           |            |        |    |  |
| 5150          | 43.75                                                                                                   | 31.65     | 5.92    | 33.9   | 47.42     | 68.2       | 20.78  | PK |  |
|               |                                                                                                         |           |         |        |           |            |        |    |  |
|               |                                                                                                         |           |         |        |           |            |        |    |  |
|               |                                                                                                         |           |         |        |           |            |        |    |  |
|               |                                                                                                         |           |         |        |           |            |        |    |  |
| Antenna Pola  | arity: Horizo                                                                                           | ntal      |         |        |           |            |        |    |  |
| 5150          | 43.28                                                                                                   | 31.65     | 5.92    | 33.9   | 46.95     | 68.2       | 21.25  | PK |  |
|               |                                                                                                         |           |         |        |           |            |        |    |  |
|               |                                                                                                         |           |         |        |           |            |        |    |  |
|               |                                                                                                         |           |         |        |           |            |        |    |  |
|               |                                                                                                         |           |         |        |           |            |        |    |  |
| Note:         |                                                                                                         |           |         |        |           |            |        |    |  |

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

## IEEE 802.11a CH High

| Band Edge Tes | st result                               |           |         |        |           |            |        |    |
|---------------|-----------------------------------------|-----------|---------|--------|-----------|------------|--------|----|
| EUT: Broadb   | and Digital                             | Transmis  | sion Sy | stem   |           | M/N: FWBI  | D-2901 |    |
| Power: DC 4   | 8V From ad                              | apter     |         |        |           |            |        |    |
| Test date: 20 | 16-05-05                                | Test site | : 3m Cł | namber | Tested by | : Simple C | Juan   |    |
| Test mode: M  | IIMO TX H                               | ligh      |         |        |           |            |        |    |
| Antenna pola  | rity: Vertica                           | al        |         |        |           |            |        |    |
| Freq (MHz)    | - I I I I I I I I I I I I I I I I I I I |           |         |        |           |            |        |    |
| 5350          | 44.68                                   | 31.73     | 6.05    | 33.73  | 48.73     | 68.2       | 19.47  | PK |
|               |                                         | -         | 1       |        |           | -          |        | -  |
|               |                                         |           |         |        |           |            |        |    |
|               |                                         |           |         |        |           |            |        |    |
|               |                                         |           |         |        |           |            |        |    |
| Antenna Pola  | rity: Horizo                            | ntal      |         |        |           |            |        |    |
| 5350          | 42.69                                   | 31.73     | 6.05    | 33.73  | 46.74     | 68.2       | 21.46  | PK |
|               |                                         |           |         |        |           |            |        |    |
|               |                                         |           |         |        |           |            |        |    |
|               |                                         |           |         |        |           |            |        |    |
|               |                                         |           |         |        |           |            |        |    |

## Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

### IEEE 802.11n HT20 CH Low

Band Edge Test result

| Danu Euge Tes | st result                 |                             |                 |                       |                 |                   |                |        |
|---------------|---------------------------|-----------------------------|-----------------|-----------------------|-----------------|-------------------|----------------|--------|
| EUT: Broadb   | and Digital               | Transmis                    | ssion Sy        | stem                  |                 | M/N: FWBI         | D-2901         |        |
| Power: DC 48  | 8V From ad                | lapter                      |                 |                       |                 |                   |                |        |
| Test date: 20 | 16-05-05                  | Test site                   | : 3m Cl         | namber                | Tested by       | : Simple C        | Guan           |        |
| Test mode: M  | IIMO TX L                 | ow                          |                 |                       |                 |                   |                |        |
| Antenna pola  | rity: Vertica             | al                          |                 |                       |                 |                   |                |        |
| Freq (MHz)    | Read<br>Level<br>(dBuV/m) | Antenna<br>Factor<br>(dB/m) | Cable loss(d B) | Amp<br>Factor<br>(dB) | Result (dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark |
| 5150          | 43.12                     | 31.65                       | 5.92            | 33.9                  | 46.79           | 68.2              | 21.41          | PK     |
|               |                           |                             |                 |                       |                 |                   |                | -      |
|               |                           |                             |                 |                       |                 |                   |                |        |
|               |                           |                             |                 |                       |                 |                   |                |        |
|               |                           |                             |                 |                       |                 |                   |                |        |
| Antenna Pola  | rity: Horizo              | ntal                        |                 |                       |                 |                   |                |        |
| 5150          | 42.97                     | 31.65                       | 5.92            | 33.9                  | 46.64           | 68.2              | 21.56          | PK     |
|               |                           |                             |                 |                       |                 |                   |                |        |
|               |                           |                             |                 |                       |                 |                   |                |        |
|               |                           |                             |                 |                       |                 |                   |                |        |
|               |                           |                             |                 |                       |                 |                   |                |        |
| L -           |                           |                             |                 |                       |                 |                   |                |        |

## Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

### IEEE 802.11n HT20 CH High

|               |                           | <del></del>                 |                 |                       |                 |                |                |        |  |  |
|---------------|---------------------------|-----------------------------|-----------------|-----------------------|-----------------|----------------|----------------|--------|--|--|
| Band Edge Tes | st result                 |                             |                 |                       |                 |                |                |        |  |  |
| EUT: Broadb   | and Digital               | Transmis                    | sion Sy         | stem                  |                 | M/N: FWBI      | D-2901         |        |  |  |
| Power: DC 4   | 8V From ad                | apter                       |                 |                       |                 |                |                |        |  |  |
| Test date: 20 | 16-05-05                  | Test site                   | : 3m Cł         | namber                | Tested by       | : Simple C     | Guan           |        |  |  |
| Test mode: M  | IIMO TX H                 | ligh                        |                 |                       |                 |                |                |        |  |  |
| Antenna pola  | rity: Vertica             | al                          |                 |                       |                 |                |                |        |  |  |
| Freq (MHz)    | Read<br>Level<br>(dBuV/m) | Antenna<br>Factor<br>(dB/m) | Cable loss(d B) | Amp<br>Factor<br>(dB) | Result (dBuV/m) | Limit (dBuV/m) | Margin<br>(dB) | Remark |  |  |
| 5350          | 43.77                     | 31.73                       | 6.05            | 33.73                 | 47.82           | 68.2           | 20.38          | PK     |  |  |
|               |                           |                             |                 |                       |                 |                |                |        |  |  |
|               |                           |                             |                 |                       |                 |                |                |        |  |  |
|               |                           |                             |                 |                       |                 |                |                |        |  |  |
|               |                           |                             |                 |                       |                 |                |                |        |  |  |
| Antenna Pola  | rity: Horizo              | ntal                        |                 | I                     | l               |                | l              |        |  |  |
| 5350          | 43.27                     | 31.73                       | 6.05            | 33.73                 | 47.32           | 68.2           | 20.88          | PK     |  |  |
|               |                           |                             |                 |                       |                 |                |                |        |  |  |
|               |                           |                             |                 |                       |                 |                |                |        |  |  |
|               |                           |                             |                 |                       |                 |                |                |        |  |  |
|               |                           |                             |                 |                       |                 |                |                |        |  |  |
| NT - 4        | •                         |                             | 1               |                       | •               |                | •              |        |  |  |

#### Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

### IEEE 802.11n HT40 CH Low

Band Edge Test result

| Dand Edge Tes              | it i Couit   |           |         |        |           |            |        |    |  |  |
|----------------------------|--------------|-----------|---------|--------|-----------|------------|--------|----|--|--|
| EUT: Broadba               | and Digital  | Transmis  | sion Sy | stem   |           | M/N: FWBI  | D-2901 |    |  |  |
| Power: DC 48               | 3V From ad   | apter     |         |        |           |            |        |    |  |  |
| Test date: 201             | 6-05-05      | Test site | : 3m Cl | namber | Tested by | : Simple C | Guan   |    |  |  |
| Test mode: M               | IIMO TX L    | ow        |         |        |           |            |        |    |  |  |
| Antenna polarity: Vertical |              |           |         |        |           |            |        |    |  |  |
| Freq<br>(MHz)              | - 1          |           |         |        |           |            |        |    |  |  |
| 5150                       | 42.38        | 31.65     | 5.92    | 33.9   | 46.05     | 68.2       | 22.15  | PK |  |  |
|                            |              |           |         |        |           |            |        |    |  |  |
|                            |              |           |         |        |           |            |        |    |  |  |
|                            |              |           |         |        |           |            |        |    |  |  |
|                            |              |           |         |        |           |            |        |    |  |  |
| Antenna Pola               | rity: Horizo | ntal      |         |        |           |            |        |    |  |  |
| 5150                       | 43.63        | 31.65     | 5.92    | 33.9   | 47.3      | 68.2       | 20.9   | PK |  |  |
|                            |              |           |         |        |           |            |        |    |  |  |
|                            |              |           |         |        |           |            |        |    |  |  |
|                            |              |           |         |        |           |            |        | _  |  |  |
|                            |              |           |         |        |           |            |        |    |  |  |
| Notes                      |              |           |         | •      |           |            | •      |    |  |  |

### Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

## IEEE 802.11n HT40 CH High

Band Edge Test result

| Sund Edge Test Testat                                  |                                                                    |          |         |       |       |           |        |    |  |  |
|--------------------------------------------------------|--------------------------------------------------------------------|----------|---------|-------|-------|-----------|--------|----|--|--|
| EUT: Broadb                                            | and Digital                                                        | Transmis | sion Sy | stem  |       | M/N: FWBI | D-2901 |    |  |  |
| Power: DC 48                                           | Power: DC 48V From adapter                                         |          |         |       |       |           |        |    |  |  |
| Test date: 201                                         | Test date: 2016-05-05 Test site: 3m Chamber Tested by: Simple Guan |          |         |       |       |           |        |    |  |  |
| Test mode: M                                           | Test mode: MIMO TX High                                            |          |         |       |       |           |        |    |  |  |
| Antenna pola                                           | rity: Vertica                                                      | al       |         |       |       |           |        |    |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                                    |          |         |       |       |           |        |    |  |  |
| 5350                                                   | 46.39                                                              | 31.73    | 6.05    | 33.73 | 50.44 | 68.2      | 17.76  | PK |  |  |
|                                                        |                                                                    |          |         |       |       |           |        |    |  |  |
|                                                        |                                                                    |          |         |       |       |           |        |    |  |  |
|                                                        |                                                                    |          |         |       |       |           |        |    |  |  |
|                                                        |                                                                    |          |         |       |       |           |        |    |  |  |
| Antenna Pola                                           | rity: Horizo                                                       | ontal    |         |       |       |           |        |    |  |  |
| 5350                                                   | 43.12                                                              | 31.73    | 6.05    | 33.73 | 47.17 | 68.2      | 21.03  | PK |  |  |
|                                                        |                                                                    |          |         |       |       |           |        |    |  |  |
|                                                        |                                                                    |          |         |       |       |           |        |    |  |  |
|                                                        |                                                                    |          |         |       |       |           |        |    |  |  |
|                                                        |                                                                    |          |         |       |       |           |        |    |  |  |
|                                                        |                                                                    |          |         |       |       |           |        |    |  |  |

## Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

### IEEE 802.11ac

| Band Edge Tes  | st result                                          |           |         |        |                                       |            |        |    |  |
|----------------|----------------------------------------------------|-----------|---------|--------|---------------------------------------|------------|--------|----|--|
| EUT: Broadb    | and Digital                                        | Transmis  | sion Sy | stem   |                                       | M/N: FWBI  | D-2901 |    |  |
| Power: DC 48   | 3V From ad                                         | apter     |         |        |                                       |            |        |    |  |
| Test date: 201 | 16-05-05                                           | Test site | : 3m Cl | namber | Tested by                             | : Simple C | Guan   |    |  |
| Test mode: M   | IIMO TX L                                          | ow        |         |        |                                       |            |        |    |  |
| Antenna pola   | rity: Vertica                                      | al        |         |        |                                       |            |        |    |  |
| Freq (MHz)     | - I I I I I I I I I I I I I I I I I I I            |           |         |        |                                       |            |        |    |  |
| 5150           | ) 43.12 31.65 5.92 33.9 46.79 68.2 21.41 <b>PK</b> |           |         |        |                                       |            |        |    |  |
| 5350           | 44.32                                              | 31.73     | 6.05    | 33.73  | 48.37                                 | 68.2       | 19.83  | PK |  |
|                |                                                    | -         | -       |        |                                       | -          |        | -  |  |
|                |                                                    |           |         |        |                                       |            |        |    |  |
|                |                                                    |           |         |        |                                       |            |        |    |  |
|                |                                                    |           |         |        |                                       |            |        |    |  |
| Antenna Pola   | rity: Horizo                                       | ontal     |         |        |                                       |            |        |    |  |
| 5150           | 42.78                                              | 31.65     | 5.92    | 33.9   | 46.45                                 | 68.2       | 21.75  | PK |  |
| 5350           | 42.16                                              | 31.73     | 6.05    | 33.73  | 46.21                                 | 68.2       | 21.99  | PK |  |
|                |                                                    |           |         |        |                                       |            |        |    |  |
|                |                                                    | _         |         |        |                                       |            |        | _  |  |
|                |                                                    |           |         |        |                                       |            |        |    |  |
| 1              |                                                    | · ·       |         | · ·    | · · · · · · · · · · · · · · · · · · · |            |        |    |  |

#### Note

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

5.8G Band Radiated Method: IEEE 802.11a CH LOW

| Band Edge Tes                                          | t result                   |                                             |         |        |           |            |        |    |  |  |
|--------------------------------------------------------|----------------------------|---------------------------------------------|---------|--------|-----------|------------|--------|----|--|--|
| EUT: Broadb                                            | and Digital                | Transmis                                    | sion Sy | stem   |           | M/N: FWBI  | D-2901 |    |  |  |
| Power: DC 48                                           | 3V From ad                 | apter                                       |         |        |           |            |        |    |  |  |
| Test date: 201                                         | 16-05-05                   | Test site                                   | : 3m Cł | namber | Tested by | : Simple C | Guan   |    |  |  |
| Test mode: M                                           | IIMO TX L                  | ow                                          |         |        |           |            |        |    |  |  |
| Antenna pola                                           | Antenna polarity: Vertical |                                             |         |        |           |            |        |    |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                            |                                             |         |        |           |            |        |    |  |  |
| 5460                                                   | 41.78                      | 31.81 6.11 33.68 46.02 68.2 22.18 <b>PK</b> |         |        |           |            |        |    |  |  |
| 5725                                                   | 43.28                      | 32.17                                       | 6.26    | 33.58  | 48.13     | 68.2       | 20.07  | PK |  |  |
|                                                        | -                          | -                                           | 1       |        | -         | -          |        |    |  |  |
|                                                        |                            |                                             |         |        |           |            |        |    |  |  |
|                                                        |                            |                                             |         |        |           |            |        |    |  |  |
| Antenna Pola                                           | rity: Horizo               | ntal                                        |         |        |           |            |        |    |  |  |
| 5460                                                   | 41.63                      | 31.81                                       | 6.11    | 33.68  | 45.87     | 68.2       | 22.33  | PK |  |  |
| 5725                                                   | 44.32                      | 32.17                                       | 6.26    | 33.58  | 49.17     | 68.2       | 19.03  | PK |  |  |
|                                                        |                            |                                             |         |        |           |            |        |    |  |  |
|                                                        |                            |                                             |         |        |           |            |        |    |  |  |
|                                                        |                            |                                             |         |        |           |            |        |    |  |  |
| 3 T                                                    |                            |                                             |         |        |           |            |        |    |  |  |

### Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

# IEEE 802.11a CH High Band Edge Test result

| EUT: Broadb                                            | EUT: Broadband Digital Transmission System M/N: FWBD-2901 |      |         |        |           |            |       |    |  |  |
|--------------------------------------------------------|-----------------------------------------------------------|------|---------|--------|-----------|------------|-------|----|--|--|
|                                                        | Power: DC 48V From adapter                                |      |         |        |           |            |       |    |  |  |
| Test date: 201                                         |                                                           | -    | : 3m Cł | namber | Tested by | : Simple C | Guan  |    |  |  |
| Test mode: MIMO TX High                                |                                                           |      |         |        |           |            |       |    |  |  |
| Antenna pola                                           | rity: Vertica                                             | al   |         |        |           |            |       |    |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                           |      |         |        |           |            |       |    |  |  |
| 5850                                                   | 43.55                                                     | 32.5 | 6.33    | 33.64  | 48.74     | 68.2       | 19.46 | PK |  |  |
|                                                        |                                                           |      |         |        |           |            |       |    |  |  |
|                                                        |                                                           |      |         |        |           |            |       |    |  |  |
|                                                        |                                                           |      |         |        |           |            |       |    |  |  |
|                                                        |                                                           |      |         |        |           |            |       |    |  |  |
| Antenna Pola                                           | rity: Horizo                                              | ntal |         |        |           |            |       |    |  |  |
| 5850                                                   | 42.78                                                     | 32.5 | 6.33    | 33.64  | 47.97     | 68.2       | 20.23 | PK |  |  |
|                                                        | -                                                         | -    | -       | -      |           | -          |       | -  |  |  |
|                                                        |                                                           |      |         |        |           |            |       |    |  |  |
|                                                        |                                                           |      |         |        |           |            |       |    |  |  |
|                                                        |                                                           |      |         |        |           |            |       |    |  |  |

## Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

### IEEE 802.11n HT20 CH Low

| Band Edge Test result                                              |                           |                             |                 |                       |                 |                   |                |        |  |  |
|--------------------------------------------------------------------|---------------------------|-----------------------------|-----------------|-----------------------|-----------------|-------------------|----------------|--------|--|--|
| EUT: Broadb                                                        | and Digital               | Transmis                    | sion Sy         | stem                  |                 | M/N: FWBI         | D-2901         |        |  |  |
| Power: DC 48V From adapter                                         |                           |                             |                 |                       |                 |                   |                |        |  |  |
| Test date: 2016-05-05 Test site: 3m Chamber Tested by: Simple Guan |                           |                             |                 |                       |                 |                   |                |        |  |  |
| Test mode: M                                                       | IIMO TX L                 | ow                          |                 |                       |                 |                   |                |        |  |  |
| Antenna pola                                                       | rity: Vertica             | al                          |                 |                       |                 |                   |                |        |  |  |
| Freq (MHz)                                                         | Read<br>Level<br>(dBuV/m) | Antenna<br>Factor<br>(dB/m) | Cable loss(d B) | Amp<br>Factor<br>(dB) | Result (dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark |  |  |
| 5460                                                               | 41.38                     | 31.81                       | 6.11            | 33.68                 | 45.62           | 68.2              | 22.58          | PK     |  |  |
| 5725                                                               | 43.86                     | 32.17                       | 6.26            | 33.58                 | 48.71           | 68.2              | 19.49          | PK     |  |  |
|                                                                    |                           |                             |                 |                       |                 | -                 |                |        |  |  |
|                                                                    |                           |                             |                 |                       |                 |                   |                |        |  |  |
|                                                                    |                           |                             |                 |                       |                 |                   |                |        |  |  |
| Antenna Pola                                                       | rity: Horizo              | ntal                        |                 |                       |                 |                   |                |        |  |  |
| 5460                                                               | 41.68                     | 31.81                       | 6.11            | 33.68                 | 45.92           | 68.2              | 22.28          | PK     |  |  |
| 5725                                                               | 43.83                     | 32.17                       | 6.26            | 33.58                 | 48.68           | 68.2              | 19.52          | PK     |  |  |
|                                                                    |                           |                             |                 |                       |                 |                   |                |        |  |  |
|                                                                    |                           |                             |                 |                       |                 |                   |                |        |  |  |
|                                                                    |                           |                             |                 |                       |                 |                   |                |        |  |  |
|                                                                    |                           |                             |                 |                       |                 |                   |                |        |  |  |

## Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

### IEEE 802.11n HT20 CH High

|                                                                    | irizo erring              | <del></del>                 |                 |                       |                 |                   |                |        |  |  |
|--------------------------------------------------------------------|---------------------------|-----------------------------|-----------------|-----------------------|-----------------|-------------------|----------------|--------|--|--|
| Band Edge Test result                                              |                           |                             |                 |                       |                 |                   |                |        |  |  |
| EUT: Broadb                                                        | and Digital               | Transmis                    | sion Sy         | stem                  |                 | M/N: FWBI         | D-2901         |        |  |  |
| Power: DC 48V From adapter                                         |                           |                             |                 |                       |                 |                   |                |        |  |  |
| Test date: 2016-05-05 Test site: 3m Chamber Tested by: Simple Guan |                           |                             |                 |                       |                 |                   |                |        |  |  |
| Test mode: N                                                       | IIMO TX H                 | ligh                        |                 |                       |                 |                   |                |        |  |  |
| Antenna pola                                                       | rity: Vertica             | al                          |                 |                       |                 |                   |                |        |  |  |
| Freq (MHz)                                                         | Read<br>Level<br>(dBuV/m) | Antenna<br>Factor<br>(dB/m) | Cable loss(d B) | Amp<br>Factor<br>(dB) | Result (dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark |  |  |
| 5850                                                               | 43.52                     | 32.5                        | 6.33            | 33.64                 | 48.71           | 68.2              | 19.49          | PK     |  |  |
|                                                                    |                           |                             |                 |                       |                 |                   |                |        |  |  |
|                                                                    |                           |                             |                 |                       |                 |                   |                |        |  |  |
|                                                                    |                           |                             |                 |                       |                 |                   |                |        |  |  |
|                                                                    |                           |                             |                 |                       |                 |                   |                |        |  |  |
| Antenna Pola                                                       | rity: Horizo              | ntal                        |                 |                       |                 |                   |                |        |  |  |
| 5850                                                               | 42.93                     | 32.5                        | 6.33            | 33.64                 | 48.12           | 68.2              | 20.08          | PK     |  |  |
|                                                                    |                           | -                           |                 | -                     |                 | -                 |                |        |  |  |
|                                                                    |                           |                             |                 |                       |                 |                   |                |        |  |  |
|                                                                    |                           |                             |                 |                       |                 |                   |                |        |  |  |
|                                                                    |                           |                             |                 |                       |                 |                   |                |        |  |  |
| NT-4-                                                              |                           |                             |                 |                       |                 |                   |                |        |  |  |

#### Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

### IEEE 802.11n HT40 CH Low

| Band Edge Test result                                  |                           |                             |                 |                       |                 |                |                |        |  |
|--------------------------------------------------------|---------------------------|-----------------------------|-----------------|-----------------------|-----------------|----------------|----------------|--------|--|
| EUT: Broadb                                            | and Digital               | Transmis                    | sion Sy         | stem                  |                 | M/N: FWBI      | D-2901         |        |  |
| Power: DC 48V From adapter                             |                           |                             |                 |                       |                 |                |                |        |  |
| Test date: 2016-05-05 Test site: 3m Chamber Tested by: |                           |                             |                 |                       |                 | : Simple C     | Guan           |        |  |
| Test mode: M                                           | IIMO TX L                 | ow                          |                 |                       |                 |                |                |        |  |
| Antenna pola                                           | rity: Vertica             | al                          |                 |                       |                 |                |                |        |  |
| Freq (MHz)                                             | Read<br>Level<br>(dBuV/m) | Antenna<br>Factor<br>(dB/m) | Cable loss(d B) | Amp<br>Factor<br>(dB) | Result (dBuV/m) | Limit (dBuV/m) | Margin<br>(dB) | Remark |  |
| 5460                                                   | 42.36                     | 31.81                       | 6.11            | 33.68                 | 46.6            | 68.2           | 21.6           | PK     |  |
| 5725                                                   | 44.06                     | 32.17                       | 6.26            | 33.58                 | 48.91           | 68.2           | 19.29          | PK     |  |
|                                                        |                           |                             |                 |                       |                 |                |                |        |  |
|                                                        |                           |                             |                 |                       |                 |                |                |        |  |
| Antenna Pola                                           | rity: Horizo              | ntal                        |                 |                       |                 |                |                |        |  |
| 5460                                                   | 41.32                     | 31.81                       | 6.11            | 33.68                 | 45.56           | 68.2           | 22.64          | PK     |  |
| 5725                                                   | 43.89                     | 32.17                       | 6.26            | 33.58                 | 48.74           | 68.2           | 19.46          | PK     |  |
|                                                        |                           |                             |                 |                       |                 |                |                |        |  |
|                                                        |                           |                             |                 |                       |                 |                |                |        |  |
| NI-4                                                   |                           |                             |                 |                       |                 |                |                |        |  |

#### Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

## IEEE 802.11n HT40 CH High

Band Edge Test result

| EUT: Broadba            | and Digital               | Transmis                    | sion Sy         | stem                  | M/N: FWBD-2901  |                   |                |        |  |
|-------------------------|---------------------------|-----------------------------|-----------------|-----------------------|-----------------|-------------------|----------------|--------|--|
| Power: DC 48            | BV From ad                | lapter                      |                 |                       |                 |                   |                |        |  |
| Test date: 201          | 16-05-05                  | Test site                   | : 3m Cl         | namber                | Tested by       | : Simple C        | Guan           |        |  |
| Test mode: MIMO TX High |                           |                             |                 |                       |                 |                   |                |        |  |
| Antenna polar           | rity: Vertica             | al                          |                 |                       |                 |                   |                |        |  |
| Freq (MHz)              | Read<br>Level<br>(dBuV/m) | Antenna<br>Factor<br>(dB/m) | Cable loss(d B) | Amp<br>Factor<br>(dB) | Result (dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Remark |  |
| 5850                    | 43.22                     | 32.5                        | 6.33            | 33.64                 | 48.41           | 68.2              | 19.79          | PK     |  |
|                         |                           |                             |                 |                       |                 |                   |                |        |  |
|                         |                           |                             |                 |                       |                 |                   |                |        |  |
|                         |                           |                             |                 |                       |                 |                   |                |        |  |
|                         |                           |                             |                 |                       |                 |                   |                |        |  |
| Antenna Polar           | rity: Horizo              | ntal                        |                 |                       |                 |                   |                |        |  |
| 5850                    | 42.83                     | 32.5                        | 6.33            | 33.64                 | 48.02           | 68.2              | 20.18          | PK     |  |
|                         |                           |                             |                 |                       |                 |                   |                |        |  |
|                         |                           |                             |                 |                       |                 |                   |                |        |  |
|                         |                           |                             |                 |                       |                 |                   |                |        |  |
|                         |                           |                             |                 |                       |                 |                   |                |        |  |

# Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

#### IEEE 802.11ac

| Band Edge Test result      |                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|
| and Digital                | Transmis                                                                                                               | sion Sy                                                                                                                                                          | stem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                             | M/N: FWBI                                                                                                                                                                             | D-2901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |  |  |
| Power: DC 48V From adapter |                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |
| 16-05-05                   | Test site                                                                                                              | : 3m Cl                                                                                                                                                          | namber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tested by                                                                                                                                                                                                                                                   | : Simple C                                                                                                                                                                            | Guan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |  |  |
| IIMO TX L                  | ow                                                                                                                     |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |
| rity: Vertica              | al                                                                                                                     |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |
| Read<br>Level<br>(dBuV/m)  | Factor                                                                                                                 | Cable loss(d B)                                                                                                                                                  | Amp<br>Factor<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result (dBuV/m)                                                                                                                                                                                                                                             | Limit<br>(dBuV/m)                                                                                                                                                                     | Margin<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Remark                                           |  |  |
| 42.72                      | 31.81                                                                                                                  | 6.11                                                                                                                                                             | 33.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.96                                                                                                                                                                                                                                                       | 68.2                                                                                                                                                                                  | 21.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PK                                               |  |  |
| 44.12                      | 32.17                                                                                                                  | 6.26                                                                                                                                                             | 33.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48.97                                                                                                                                                                                                                                                       | 68.2                                                                                                                                                                                  | 19.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PK                                               |  |  |
| 42.24                      | 32.5                                                                                                                   | 6.33                                                                                                                                                             | 33.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47.43                                                                                                                                                                                                                                                       | 68.2                                                                                                                                                                                  | 20.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PK                                               |  |  |
|                            |                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |
|                            |                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |
|                            |                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |
| rity: Horizo               | ntal                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |
| 41.57                      | 31.81                                                                                                                  | 6.11                                                                                                                                                             | 33.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45.81                                                                                                                                                                                                                                                       | 68.2                                                                                                                                                                                  | 22.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PK                                               |  |  |
| 43.76                      | 32.17                                                                                                                  | 6.26                                                                                                                                                             | 33.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48.61                                                                                                                                                                                                                                                       | 68.2                                                                                                                                                                                  | 19.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PK                                               |  |  |
| 42.03                      | 32.5                                                                                                                   | 6.33                                                                                                                                                             | 33.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 47.22                                                                                                                                                                                                                                                       | 68.2                                                                                                                                                                                  | 20.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PK                                               |  |  |
|                            |                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |
|                            |                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |
|                            |                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  |  |  |
|                            | and Digital 8V From ad 16-05-05 IIMO TX L rity: Vertica Read Level (dBuV/m) 42.72 44.12 42.24 rity: Horizo 41.57 43.76 | and Digital Transmis 8V From adapter 16-05-05 Test site IIMO TX Low rity: Vertical  Read Antenna Level Factor (dBuV/m) (dB/m) 42.72 31.81 44.12 32.17 42.24 32.5 | Read   Level   Factor   Gable   Level   Gable   Gable   Level   Factor   Gable   Level   Gable   Gab | Read   Antenna   Cable   Factor   (dBuV/m)   (dB/m)   B)   (dB)     42.72   31.81   6.11   33.68   44.12   32.17   6.26   33.58   42.24   32.5   6.33   33.64     41.57   31.81   6.11   33.68   43.76   32.17   6.26   33.58   42.03   32.5   6.33   33.64 | Read   Level   Factor   (dBuV/m)   (dB/m)   B)   (dB)   (dBuV/m)   (42.72   31.81   6.11   33.68   45.81   43.76   32.17   6.26   33.58   48.61   42.03   32.5   6.33   33.64   47.22 | Read   Antenna   Cable   Factor   (dBuV/m)   (dB)   (dBuV/m)   ( | And Digital Transmission System   M/N: FWBD-2901 |  |  |

#### Note:

- 1, Spectrum Set for PK measure: RBW=1MHz, VBW=1MHz, Sweep time=Auto, Detector: PK
- 2, Result = Read level + Antenna factor + cable loss-Amp factor
- 3, All the other emissions not reported were too low to read and deemed to comply with FCC limit.

# 11 Frequency stability

# 11.1 Test limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

# 11.2 Result

## 802.11a Mode:

| EUT: Broadband Digital Transmission System M/N: FWBD-2901 |         |                  |           |                |           |  |  |  |
|-----------------------------------------------------------|---------|------------------|-----------|----------------|-----------|--|--|--|
| Power: DC 48V From adapter                                |         |                  |           |                |           |  |  |  |
| Ambient Temperature:23°C Relative Humidity: 60%           |         |                  |           |                |           |  |  |  |
| Test date: 2016-05                                        | -05     | Test site: RF si | te        | Tested by: Sir | nple Guan |  |  |  |
| Conclusion: PASS                                          |         |                  |           |                |           |  |  |  |
| Mode                                                      | Voltage | $FH_L$           | Deviation | $FH_H$         | Deviation |  |  |  |
|                                                           | (V)     | (5180MHz)        | (KHz)     | (5240MHz)      | (KHz)     |  |  |  |
|                                                           | 132 V   | 5179.974         | 26        | 5239.975       | 25        |  |  |  |
| 5.2G Band                                                 | 120 V   | 5179.974         | 26        | 5239.975       | 25        |  |  |  |
|                                                           | 108 V   | 5179.974         | 26        | 5239.975       | 25        |  |  |  |
|                                                           | Voltage | FHL              | Deviation | FHH            | Deviation |  |  |  |
|                                                           | (V)     | (5745MHz)        | (KHz)     | (5825MHz)      | (KHz)     |  |  |  |
| 5.8G Band                                                 | 132 V   | 5744.936         | 24        | 5824.969       | 31        |  |  |  |
|                                                           | 120 V   | 5744.936         | 24        | 5824.969       | 31        |  |  |  |
|                                                           | 108 V   | 5744.936         | 24        | 5824.969       | 31        |  |  |  |

| Mode      | Temperature                        | $FH_L$                                                                            | Deviation                     | FH <sub>H</sub>                                                                   | Deviation                                 |
|-----------|------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------|
|           | (℃)                                | (5180MHz)                                                                         | (KHz)                         | (5240MHz)                                                                         | (KHz)                                     |
|           | -30                                | 5179.938                                                                          | 62                            | 5239.945                                                                          | 55                                        |
|           | -20                                | 5179.952                                                                          | 48                            | 5239.953                                                                          | 47                                        |
|           | -10                                | 5179.962                                                                          | 38                            | 5239.956                                                                          | 44                                        |
|           | 0                                  | 5179.951                                                                          | 49                            | 5239.961                                                                          | 39                                        |
| 5.2G Band | 10                                 | 5179.972                                                                          | 28                            | 5239.962                                                                          | 38                                        |
|           | 20                                 | 5179.975                                                                          | 25                            | 5239.967                                                                          | 33                                        |
|           | 30                                 | 5179.969                                                                          | 31                            | 5239.971                                                                          | 29                                        |
|           | 40                                 | 5179.978                                                                          | 22                            | 5239.976                                                                          | 24                                        |
|           | 50                                 | 5179.982                                                                          | 18                            | 5239.979                                                                          | 21                                        |
|           |                                    |                                                                                   |                               |                                                                                   |                                           |
|           | Temperature                        | $\mathrm{FH_L}$                                                                   | Deviation                     | $FH_H$                                                                            | Deviation                                 |
|           | Temperature $(^{\circ}\mathbb{C})$ | FH <sub>L</sub><br>(5745MHz)                                                      | Deviation<br>(KHz)            | FH <sub>H</sub> (5825MHz)                                                         | Deviation (KHz)                           |
|           | _                                  |                                                                                   |                               |                                                                                   |                                           |
|           | (℃)                                | (5745MHz)                                                                         | (KHz)                         | (5825MHz)                                                                         | (KHz)                                     |
|           | (°C)                               | (5745MHz)<br>5744.925                                                             | (KHz)<br>75                   | (5825MHz)<br>5824.939                                                             | (KHz)<br>61                               |
| 5.8G Band | (°C)<br>-30<br>-20                 | (5745MHz)<br>5744.925<br>5744.931                                                 | (KHz)<br>75<br>69             | (5825MHz)<br>5824.939<br>5824.928                                                 | (KHz)<br>61<br>72                         |
| 5.8G Band | -30<br>-20<br>-10                  | (5745MHz)<br>5744.925<br>5744.931<br>5744.934                                     | (KHz) 75 69 66                | (5825MHz)<br>5824.939<br>5824.928<br>5824.951                                     | (KHz)<br>61<br>72<br>49                   |
| 5.8G Band | -30<br>-20<br>-10<br>0             | (5745MHz)<br>5744.925<br>5744.931<br>5744.934<br>5744.947                         | (KHz)  75  69  66  53         | (5825MHz)<br>5824.939<br>5824.928<br>5824.951<br>5824.925                         | (KHz)<br>61<br>72<br>49<br>75             |
| 5.8G Band | -30<br>-20<br>-10<br>0             | (5745MHz)<br>5744.925<br>5744.931<br>5744.934<br>5744.947<br>5744.951             | (KHz) 75 69 66 53 49          | (5825MHz)<br>5824.939<br>5824.928<br>5824.951<br>5824.925<br>5824.953             | (KHz)<br>61<br>72<br>49<br>75<br>47       |
| 5.8G Band | -30<br>-20<br>-10<br>0<br>10<br>20 | (5745MHz)<br>5744.925<br>5744.931<br>5744.934<br>5744.947<br>5744.951<br>5744.953 | (KHz)  75  69  66  53  49  47 | (5825MHz)<br>5824.939<br>5824.928<br>5824.951<br>5824.925<br>5824.953<br>5824.979 | (KHz)<br>61<br>72<br>49<br>75<br>47<br>21 |

## 802.11n20 Mode:

| EUT: Broadband Digital Transmission System M/N: FWBD-2901 |           |                   |                        |                 |           |  |  |  |
|-----------------------------------------------------------|-----------|-------------------|------------------------|-----------------|-----------|--|--|--|
| Power: DC 48V From adapter                                |           |                   |                        |                 |           |  |  |  |
| Ambient Temperat                                          | cure:23°C | Relative Humi     | Relative Humidity: 60% |                 |           |  |  |  |
| Test date: 2016-05                                        | -05       | Test site: RF si  | te                     | Tested by: Sir  | nple Guan |  |  |  |
| Conclusion: PASS                                          |           |                   |                        |                 |           |  |  |  |
| Mode                                                      | Voltage   | $\mathrm{FH_{L}}$ | Deviation              | FН <sub>н</sub> | Deviation |  |  |  |
|                                                           | (V)       | (5180MHz)         | (KHz)                  | (5240MHz)       | (KHz)     |  |  |  |
|                                                           | 132 V     | 5179.974          | 26                     | 5239.975        | 25        |  |  |  |
| 5.2G Band                                                 | 120 V     | 5179.974          | 26                     | 5239.975        | 25        |  |  |  |
|                                                           | 108 V     | 5179.974          | 26                     | 5239.975        | 25        |  |  |  |
|                                                           | Voltage   | FHL               | Deviation              | FHH             | Deviation |  |  |  |
|                                                           | (V)       | (5745MHz)         | (KHz)                  | (5825MHz)       | (KHz)     |  |  |  |
| 5.8G Band                                                 | 132 V     | 5744.936          | 24                     | 5824.969        | 31        |  |  |  |
| 212 2 2 4114                                              | 120 V     | 5744.936          | 24                     | 5824.969        | 31        |  |  |  |
|                                                           | 108 V     | 5744.936          | 24                     | 5824.969        | 31        |  |  |  |

| Mode      | Temperature | $FH_L$          | Deviation | FH <sub>H</sub> | Deviation |
|-----------|-------------|-----------------|-----------|-----------------|-----------|
|           | (℃)         | (5180MHz)       | (KHz)     | (5240MHz)       | (KHz)     |
|           | -30         | 5179.938        | 62        | 5239.945        | 55        |
|           | -20         | 5179.952        | 48        | 5239.953        | 47        |
|           | -10         | 5179.962        | 38        | 5239.956        | 44        |
|           | 0           | 5179.951        | 49        | 5239.961        | 39        |
| 5.2G Band | 10          | 5179.972        | 28        | 5239.962        | 38        |
|           | 20          | 5179.975        | 25        | 5239.967        | 33        |
|           | 30          | 5179.969        | 31        | 5239.971        | 29        |
|           | 40          | 5179.978        | 22        | 5239.976        | 24        |
|           | 50          | 5179.982        | 18        | 5239.979        | 21        |
|           | Temperature | $\mathrm{FH_L}$ | Deviation | $FH_H$          | Deviation |
|           | (℃)         | (5745MHz)       | (KHz)     | (5825MHz)       | (KHz)     |
|           | -30         | 5744.925        | 75        | 5824.939        | 61        |
|           | -20         | 5744.931        | 69        | 5824.928        | 72        |
|           | -10         | 5744.934        | 66        | 5824.951        | 49        |
| 5.8G Band | 0           | 5744.947        | 53        | 5824.925        | 75        |
|           | 10          | 5744.951        | 49        | 5824.953        | 47        |
|           | 20          | 5744.953        | 47        | 5824.979        | 21        |
|           | 30          | 5744.956        | 44        | 5824.965        | 35        |
|           | 40          | 5744.968        | 32        | 5824.957        | 43        |
|           | 50          | 5744.979        | 21        | 5824.983        | 17        |

## 802.11n40 Mode:

| EUT: Broadband Digital Transmission System M/N: FWBD-2901 |          |                   |           |                |           |  |  |  |
|-----------------------------------------------------------|----------|-------------------|-----------|----------------|-----------|--|--|--|
| Power: DC 48V From adapter                                |          |                   |           |                |           |  |  |  |
| Ambient Temperat                                          | ure:23°C | lity: 60%         |           |                |           |  |  |  |
| Test date: 2016-05                                        | -05      | Test site: RF si  | te        | Tested by: Sir | nple Guan |  |  |  |
| Conclusion: PASS                                          |          |                   |           |                |           |  |  |  |
| Mode                                                      | Voltage  | $\mathrm{FH_{L}}$ | Deviation | $FH_H$         | Deviation |  |  |  |
|                                                           | (V)      | (5190MHz)         | (KHz)     | (5230MHz)      | (KHz)     |  |  |  |
|                                                           | 132 V    | 5189.975          | 25        | 5229.977       | 23        |  |  |  |
| 5.2G Band                                                 | 120 V    | 5189.975          | 25        | 5229.977       | 23        |  |  |  |
|                                                           | 108 V    | 5189.975          | 25        | 5229.977       | 23        |  |  |  |
|                                                           | Voltage  | FHL               | Deviation | FHH            | Deviation |  |  |  |
|                                                           | (V)      | (5755MHz)         | (KHz)     | (5795MHz)      | (KHz)     |  |  |  |
| 5.8G Band                                                 | 132 V    | 5754.969          | 31        | 5794.965       | 35        |  |  |  |
|                                                           | 120 V    | 5754.969          | 31        | 5794.965       | 35        |  |  |  |
|                                                           | 108 V    | 5754.969          | 31        | 5794.965       | 35        |  |  |  |

| Mode      | Temperature                        | $FH_L$                                                                            | Deviation                     | FH <sub>H</sub>                                                                   | Deviation                     |
|-----------|------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------|-------------------------------|
|           | (℃)                                | (5190MHz)                                                                         | (KHz)                         | (5230MHz)                                                                         | (KHz)                         |
|           | -30                                | 5189.968                                                                          | 32                            | 5229.957                                                                          | 43                            |
|           | -20                                | 5189.962                                                                          | 38                            | 5229.951                                                                          | 49                            |
|           | -10                                | 5189.957                                                                          | 43                            | 5229.944                                                                          | 56                            |
|           | 0                                  | 5189.972                                                                          | 28                            | 5229.953                                                                          | 47                            |
| 5.2G Band | 10                                 | 5189.977                                                                          | 23                            | 5229.957                                                                          | 43                            |
|           | 20                                 | 5189.975                                                                          | 25                            | 5229.938                                                                          | 62                            |
|           | 30                                 | 5189.968                                                                          | 32                            | 5229.962                                                                          | 38                            |
|           | 40                                 | 5189.972                                                                          | 28                            | 5229.968                                                                          | 32                            |
|           | 50                                 | 5189.978                                                                          | 22                            | 5229.975                                                                          | 25                            |
|           |                                    |                                                                                   |                               |                                                                                   |                               |
|           | Temperature                        | $\mathrm{FH_L}$                                                                   | Deviation                     | $FH_H$                                                                            | Deviation                     |
|           | Temperature $(^{\circ}\mathbb{C})$ | FH <sub>L</sub><br>(5755MHz)                                                      | Deviation<br>(KHz)            | FH <sub>H</sub> (5795MHz)                                                         | Deviation (KHz)               |
|           | *                                  |                                                                                   |                               |                                                                                   |                               |
|           | (℃)                                | (5755MHz)                                                                         | (KHz)                         | (5795MHz)                                                                         | (KHz)                         |
|           | (°C)                               | (5755MHz)<br>5754.938                                                             | (KHz)<br>62                   | (5795MHz)<br>5794.957                                                             | (KHz)<br>43                   |
| 5.8G Band | (°C)<br>-30<br>-20                 | (5755MHz)<br>5754.938<br>5754.947                                                 | (KHz)<br>62<br>53             | (5795MHz)<br>5794.957<br>5794.943                                                 | (KHz)<br>43<br>57             |
| 5.8G Band | (°C)<br>-30<br>-20<br>-10          | (5755MHz)<br>5754.938<br>5754.947<br>5754.952                                     | (KHz)<br>62<br>53<br>48       | (5795MHz)<br>5794.957<br>5794.943<br>5794.958                                     | (KHz)<br>43<br>57<br>42       |
| 5.8G Band | -30<br>-20<br>-10<br>0             | (5755MHz)<br>5754.938<br>5754.947<br>5754.952<br>5754.956                         | (KHz)<br>62<br>53<br>48<br>44 | (5795MHz)<br>5794.957<br>5794.943<br>5794.958<br>5794.957                         | (KHz)<br>43<br>57<br>42<br>43 |
| 5.8G Band | -30<br>-20<br>-10<br>0             | (5755MHz)<br>5754.938<br>5754.947<br>5754.952<br>5754.956<br>5754.957             | (KHz) 62 53 48 44 43          | (5795MHz)<br>5794.957<br>5794.943<br>5794.958<br>5794.957<br>5794.961             | (KHz) 43 57 42 43 39          |
| 5.8G Band | -30<br>-20<br>-10<br>0<br>10<br>20 | (5755MHz)<br>5754.938<br>5754.947<br>5754.952<br>5754.956<br>5754.957<br>5754.968 | (KHz) 62 53 48 44 43 32       | (5795MHz)<br>5794.957<br>5794.943<br>5794.958<br>5794.957<br>5794.961<br>5794.957 | (KHz)  43  57  42  43  39  43 |

## 802.11ac Mode:

| EUT: Broadband Digital Transmission System M/N: FWBD-2901 |           |                  |                        |                        |  |  |  |  |
|-----------------------------------------------------------|-----------|------------------|------------------------|------------------------|--|--|--|--|
| Power: DC 48V From adapter                                |           |                  |                        |                        |  |  |  |  |
| Ambient Temperat                                          | ture:23°C | Relative Humi    | Relative Humidity: 60% |                        |  |  |  |  |
| Test date: 2016-05                                        | -05       | Test site: RF si | te                     | Tested by: Simple Guan |  |  |  |  |
| Conclusion: PASS                                          |           |                  |                        |                        |  |  |  |  |
| Mode                                                      | Voltage   | $FH_L$           | Deviation              |                        |  |  |  |  |
|                                                           | (V)       | (5210MHz)        | (KHz)                  |                        |  |  |  |  |
|                                                           | 132 V     | 5189.975         | 25                     |                        |  |  |  |  |
| 5.2G Band                                                 | 120 V     | 5189.975         | 25                     |                        |  |  |  |  |
|                                                           | 108 V     | 5189.975         | 25                     |                        |  |  |  |  |
|                                                           | Voltage   | FHL              | Deviation              |                        |  |  |  |  |
|                                                           | (V)       | (5775MHz)        | (KHz)                  |                        |  |  |  |  |
| 5.8G Band                                                 | 132 V     | 5774.973         | 27                     |                        |  |  |  |  |
|                                                           | 120 V     | 5774.973         | 27                     |                        |  |  |  |  |
|                                                           | 108 V     | 5774.973         | 27                     |                        |  |  |  |  |

| Mode      | Temperature                        | $FH_L$                                                               | Deviation                        |  |
|-----------|------------------------------------|----------------------------------------------------------------------|----------------------------------|--|
|           | (℃)                                | (5210MHz)                                                            | (KHz)                            |  |
| 5.2G Band | -30                                | 5209.948                                                             | 52                               |  |
|           | -20                                | 5209.957                                                             | 43                               |  |
|           | -10                                | 5209.963                                                             | 37                               |  |
|           | 0                                  | 5209.968                                                             | 32                               |  |
|           | 10                                 | 5209.959                                                             | 41                               |  |
|           | 20                                 | 5209.972                                                             | 28                               |  |
|           | 30                                 | 5209.949                                                             | 51                               |  |
|           | 40                                 | 5209.963                                                             | 37                               |  |
|           | 50                                 | 5209.982                                                             | 18                               |  |
|           | Temperature                        | $\mathrm{FH_L}$                                                      | Deviation                        |  |
|           |                                    |                                                                      |                                  |  |
|           | (℃)                                | (5775MHz)                                                            | (KHz)                            |  |
|           | (°C)                               | (5775MHz)<br>5774.952                                                | (KHz)<br>48                      |  |
|           |                                    |                                                                      | ` ´                              |  |
|           | -30                                | 5774.952                                                             | 48                               |  |
| 5.8G Band | -30<br>-20                         | 5774.952<br>5774.956                                                 | 48 44                            |  |
| 5.8G Band | -30<br>-20<br>-10                  | 5774.952<br>5774.956<br>5774.949                                     | 48<br>44<br>51                   |  |
| 5.8G Band | -30<br>-20<br>-10<br>0             | 5774.952<br>5774.956<br>5774.949<br>5774.958                         | 48<br>44<br>51<br>42             |  |
| 5.8G Band | -30<br>-20<br>-10<br>0             | 5774.952<br>5774.956<br>5774.949<br>5774.958<br>5774.962             | 48<br>44<br>51<br>42<br>32       |  |
| 5.8G Band | -30<br>-20<br>-10<br>0<br>10<br>20 | 5774.952<br>5774.956<br>5774.949<br>5774.958<br>5774.962<br>5774.972 | 48<br>44<br>51<br>42<br>32<br>28 |  |

# 12 Antenna Requirement

## 12.1 Standard Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### 12.2 Antenna Connected Construction

The antenna connector is unique antenna and no consideration of replacement. Please see EUT photo for details.

### 12.3 Result

The EUT antenna is professional installed. It comply with the standard requirement.

-----END OF THE REPORT-----