Exam and Revision

CSIT375 AI for Cybersecurity

Dr Wei Zong

SCIT University of Wollongong

Disclaimer: The presentation materials come from various sources. For further information, check the references section

• Things to know for the final exam

Subject Revision

• Q&A

Final Exam – Online invigilated Moodle Quiz

- 3 Hours
- Close-book exam
 - No calculations.
 - Calculations have already been done in Quiz 2 and the assignment.
 - Knowledge and intuition are the key.

Final Exam – question types

- 21 31 questions (50 marks), including:
 - 7 multiple choice (14 marks in total)
 - 4 True or False (6 marks in total)
 - 10 20 short answer (30 marks in total)
 - Convince me that you understand the ideas.
 - Make sure your handwriting is clear enough.
- A minimum of 40% of the final exam marks
 - Get at least 20 marks to avoid TF.

Final Exam

- For all multiple-choice questions, one or multiple answers can be correct
- For each multiple-choice question, you'll receive
 - full marks if all options are checked correctly (i.e. all correct answers are checked, wrong answers are not checked)
 - partial marks if part of options are checked correctly (i.e. part of correct answers are checked, wrong answers are not checked)
 - zero otherwise
- No code or calculations in the final exam

How to prepare

- Scope: Lecture slides and lab notes
- Review the lectures and examples
- Review the lab notes
- Review the assignments
- Attempt the quiz "Sample Exam for CSIT375" (available on Moodle)

During the Exam

- Answer ALL questions
 - Read questions carefully
 - You can attempt the questions in any order, arrange your time wisely
- Short answer questions
 - BRIEFLY answer each question with important and the most relevant points.
 - There is no need to include explanation if the question does not require it.

Revision

Introduction

- AI, Machine learning, Deep learning
 - ML: classification/regression/clustering, supervised/unsupervised learning
- Cybersecurity: C-I-A triad
 - Confidentiality, Integrity, Availability
- Common types of cybersecurity threats
 - Phishing, ransomware, malware, social engineering
- Applications of AI in Cyber security
 - Monitoring (intrusion, privacy violation, exfiltration, ...)
 - Analysis (causation, consequence, correlation, summarization)
- Limitations of AI in Security
 - False negatives/false positives
 - False positives + inexplicable results → Signal fatigue

Linear regression

- How to learn a linear regression model $h_{\theta}(x) = \theta_0 + \theta_1 x$ given a labelled dataset (θ_0 = b, θ_1 = m, and $h_{\theta}(x)$ = y' when using y' = mx + b)?
 - By minimizing *mean squared error*. That is:

This problem is referred to as an optimization problem with the objective of:

minimizing
$$J(\theta_0, \theta_1)$$
 θ_0, θ_1

$$\min \frac{1}{2n} \sum_{i=1}^{n} \left(y'^{(i)} - y^{(i)} \right)^{2}$$

$$\equiv$$

$$\min_{\theta_{0},\theta_{1}} \frac{1}{2n} \sum_{i=1}^{n} \left((\theta_{0} + \theta_{1}x)^{(i)} - y^{(i)} \right)^{2}$$

$$\equiv$$

$$\min_{\theta_{0},\theta_{1}} \frac{1}{2n} \sum_{i=1}^{n} \left((\theta_{0} + \theta_{1}x)^{(i)} - y^{(i)} \right)^{2}$$

$$\equiv$$

$$\min_{\theta_{0},\theta_{1}} \frac{1}{2n} \int_{0}^{n} \left((\theta_{0} + \theta_{1}x)^{(i)} - y^{(i)} \right)^{2}$$

$$\equiv$$

$$\min_{\theta_{0},\theta_{1}} \frac{1}{2n} \int_{0}^{n} \left((\theta_{0} + \theta_{1}x)^{(i)} - y^{(i)} \right)^{2}$$

$$\equiv$$

$$\min_{\theta_{0},\theta_{1}} \frac{1}{2n} \int_{0}^{n} \left((\theta_{0} + \theta_{1}x)^{(i)} - y^{(i)} \right)^{2}$$

Linear regression

- Gradient Descent Steps
 - Have some cost function $J(\theta_0, \theta_1)$ (here we are using MSE)
 - Start with some guesses for θ_0 , θ_1
 - a common choice is to set them both initially to zero or random values.
 - Repeat until convergence{

$$temp_0 = \theta_0 - \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_0}$$

$$temp_1 = \theta_1 - \alpha \frac{\partial J(\theta_0, \theta_1)}{\partial \theta_1}$$

$$\theta_0 = temp_0$$

$$\theta_1 = temp_1$$

$$\frac{1}{n} \sum_{i=1}^n \left(h_\theta(x)^{(i)} - y^{(i)} \right)$$
Partial derivatives of MSE with respect to parameters
$$\frac{1}{n} \sum_{i=1}^n \left(h_\theta(x)^{(i)} - y^{(i)} \right) . x^{(i)}$$

Logistic regression

The Logistic Regression Model

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

- x is the **feature vector**: $x = [x_0, x_1, ..., x_m]^T$
- θ is the *parameter vector*: $\theta = [\theta_0, \theta_1, ..., \theta_m]^T$
- g(z) is the sigmoid function: $g(z) = \frac{1}{1+e^{-z}} \in [0,1]$
- $h_{\theta}(x)$: the probability of input belonging to the class labeled with 1
- *After* learning the model, we can then apply thresholding to predict the binary output as follows:

if
$$h_{\theta}(x) < 0.5$$
 predict 0
if $h_{\theta}(x) \ge 0.5$ predict 1

Logistic regression

- How to learn a logistic regression model $h_{\theta}(x) = g(\theta^T x)$, where $\theta = [\theta_0, ..., \theta_m]^T$ and $x = [x_0, ..., x_m]^T$?
 - By minimizing the following cost function:

$$\min_{\theta} \sum_{i=1}^{n} -y^{(i)} \log \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} \right) - (1 - y^{(i)}) \log \left(1 - \frac{1}{1 + e^{-\theta^T x^{(i)}}} \right)$$
Cross entropy loss

- where n is the total number of examples, the sum is over all training inputs, $y^{(i)}$ true label, log(predicted probability observation)
- cross entropy loss is also used in classification task using NN (lab task)

$$J = -\frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} \log(a^{(i)}) + (1 - y^{(i)}) \log(1 - a^{(i)}) \right)$$

Model evaluation

- Accuracy = $\frac{number\ of\ correctly\ predicted\ data\ points}{total\ number\ of\ data\ points}$
- Different types of errors
 - False positive, false negative
- Precision and Recall
 - Recall: TP/(TP + FN)
 - Precision: TP/(TP + FP)
- Confusion matrix
- F-score: A measure that combines Precision and Recall
 - F_{β} , F_{1}

		Predicted condition	
	Total population = P + N	Positive (PP)	Negative (PN)
Actual condition	Positive (P)	True positive (TP)	False negative (FN)
	Negative (N)	False positive (FP)	True negative (TN)

Spam detection

- Spam and phishing
- Spam Filtering Techniques
 - Challenge-Response Filtering, Blacklists and Whitelists, Rule based filters,
 Content based filters
- Pre-processing Text in Email Messages
 - Tokenization, Vectorization
 - Bag-of-words, n-grams, Vector Space Model,
 - TF-IDF
 - raw term frequency, log-frequency weight
 - document frequency, Inverse document frequency
 - TF-IDF Weighting: $= (\mathbf{1} + \boldsymbol{log}(tf_{t,d})) \times \boldsymbol{log}\left(\frac{N}{df_t}\right)$

Neural network

How to train a Neural Network: Summary (More details in the lab task)

- 1. Define the neural network structure (model representation)
- 2. Initialize the model's parameters initialize the weights matrices with random values initialize the bias vectors as zeros

3. Loop:

- Implement forward propagation
- Compute loss (cross-entropy loss as shown in the lab notes)
- Implement backward propagation to get the gradients
- Update parameters (gradient descent)

How to make predictions?

Use forward propagation to predict results

Reminder: predictions =
$$y_{prediction} = 1\{\text{activation} > 0.5\} = \begin{cases} 1 & \text{if } activation > 0.5\\ 0 & \text{otherwise} \end{cases}$$

Neural network

Forward propagation

Assume 1 training example:

$$z^{[1]} = w^{[1]^T} a^{[0]} + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$
 $z^{[2]} = w^{[2]^T}a^{[1]} + b^{[2]}$
 $a^{[2]} = \sigma(z^{[2]})$

Assuming n examples

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = w^{[2]^T} a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

$$X = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & x_1^{(n)} \\ x_2^{(1)} & x_2^{(2)} & \dots & x_2^{(n)} \\ x_3^{(1)} & x_3^{(2)} & \dots & x_3^{(n)} \end{bmatrix}$$

$$Z^{[1]} = w^{[1]^T} A^{[0]} + b^{[1]}$$
 $A^{[1]} = \sigma(Z^{[1]})$
 $Z^{[2]} = w^{[2]^T} A^{[1]} + b^{[2]}$
 $A^{[2]} = \sigma(Z^{[2]})$

After Vectorization

Anomaly detection

- Anomalies (outliers)
 - data object that deviates significantly from the rest of the objects
- Types of anomalies
 - Global anomalies, Contextual anomalies, Collective anomalies
- Applications of anomaly detection
 - Fraud detection, Industrial damage detection, Cyber Intrusion detection
- Intrusion detection system (IDS)
 - Network-based, Host-based, signature-based, anomaly-based
 - Feature engineering for HIDS (IoCs), for NIDS (DPI)
- Anomaly detection techniques
 - With labels train classifiers, confidence score, softmax function
 - Without labels statistical methods, parametric (Gaussian), nonparametric (histogram)

SVM

- Linear SVM: Maximum margin linear classifier
 - Objective: select a hyperplane $\mathbf{w}^T \mathbf{x} + b = 0$ that maximizes the distance between the hyperplane and examples in the training set
 - Constraints that all data follows:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}^{\mathsf{i}} + b \ge 1 \text{ if } \mathbf{y}^{\mathsf{i}} = +1$$

 $\mathbf{w}^{\mathsf{T}}\mathbf{x}^{\mathsf{i}} + b \le -1 \text{ if } \mathbf{y}^{\mathsf{i}} = -1$

- For support vectors, the inequality becomes equality
- The margin is: $2\gamma = \frac{2}{\|w\|}$

X	У
[1, 2]	+1
[2, 1]	-1
[3, 4]	+1
[4, 3]	-1

Decision Tree

- Malware: malicious software, steal data, damage computer systems
- Common types of Malware
 - Virus, trojan, botnet, downloader, rootkit, ransomware...
- Malware analysis methodology
 - Static (code) analysis
 - Dynamic (behavioral) analysis
- Decision tree
 - Entropy: uncertainty
 - Information Gain: goodness of a split
 - Build a Decision Tree: ID3 algorithm

Entropy and Information gain

• Entropy H(Y) of a random variable Y with n different possible values:

$$H(Y) = -\sum_{i=1}^{n} P(y_i) \log_2 P(y_i)$$

• Conditional entropy $H(Y|X=x_i)$ of Y given $X=x_i$:

$$H(Y|X = x_j) = -\sum_{i=1}^{n} P(y_i|X = x_j) \log_2 P(y_i|X = x_j)$$

- The above equation: split the data according to the value of X, the entropy of random variable Y with $X=x_j$.
- Expected entropy H(Y|X) after split:

$$H(Y|X) = \sum_{j=1}^{k} P(x_j) H(Y|X = x_j)$$

- The above equation: X has k possible values, $P(x_i)$ is the probability that $X = x_i$.
- Information gain I(Y,X): expected reduction in entropy of target variable Y after split over variable X

$$I(Y,X) = H(Y) - H(Y|X)$$

Case study

- Explore and prepare the data
 - Data distribution, class imbalance
 - Feature scaling: standardization/normalization, consistent transformations to both training & test sets
- Multiclass classification: split into multiple binary classification problems
 - one-versus-all: train one classifier per class
 - one-versus-one: train one classifier per class pair
- Supervised learning: DT, Random Forest, SVM
- PCA

Adversarial Machine Learning

- Adversarial examples
 - White-box
 - Black-box
 - Physical
 - Detection
 - Adversarial training
- Backdoor attack
 - Visible triggers
 - Invisible triggers
 - Clean-label attack.

Deepfake detection

- GAN
- Detecting artifacts
- Watermarks

Good Luck!

Questions?