UPPSALA UNIVERSITET

FÖRELÄSNINGSANTECKNINGAR

Affin & Projektiv Geometri

Rami Abou Zahra

Contents

1.	Plana algebraiska kurvor	2
2.	Affina avbildningar	4
3.	Klassificering av andragradspolynom i två variabler	7
4.	Övningsuppgifter	8
5.	Komplexa planet \mathbb{C}^2	8
6.	Vad är bra med C-kurvor?	10
7.	Skärningstalet	12

1. Plana algebraiska kurvor

Vi inleder med definition:

Theorem 1.1: Plan affin algebraisk kurva

En **plan affin algebraisk kurva** är nollställesmängden till ett icke-konstant polynom $f(x,y) \in \mathbb{R}[x,y]$ där $\mathbb{R}[x,y]$ är mängden av alla polynom med 2 variabler med reella koefficienter.

Nollställesmängden kan betecknas $V(f) = \{(x, y) \in \mathbb{R}^2 : f(x, y) = 0\}$

Theorem 1.2: Affin-avbildning

En linjär avbildning är på formen $x\mapsto ax$, medan en affin avbildning är "ungefär linjär", dvs $x\mapsto ax+b$

Ett sätt att betrakta polynom är att de är ett ändligt antal utförande av operatorer på kropp-element.

Exempel:

Betrakta följande polynom i \mathbb{R}^2 , ax + by + c = f(x, y). Polynomet är av grad 1, och är därför därmed ett linjärt polynom.

Exempel:

Vi kan även ha nollställesmängden som parabel med följande funktion $f(x,y) = y - x^2$

Bygger vi vidare på föregående exempel kommer vi fram till följande mer generella formel för att "omvandla" ett endimensionellt polynom till en flerdimensionell:

$$f(x,y) = y - p(x)$$

Där p(x) är ett godtyckligt polynom.

Exempel:

Om vi betraktar följande funktion $f(x,y) = x^2 + y^2$ (enhetscirkeln) så har den en nollställesmängd som är en punkt.

Exempel:

Om vi betraktar tomma-mängden som nollställesmängd (dvs exempelvis $f(x,y) = x^2 + y^2 + 1$) så är det absolut en valid nollställesmängd, men en obehaglig sådan ty det inte finns en intuitiv geometrisk bild, kan vi kalla den för en kurva? $f(x,y) = x^2 + 1$ har ju samma nollställesmängd!

Exempel:

Betrakta följande funktion f(x,y) = xy. Denna har unionen av x-axeln och y-axeln som lösningsmängd

En affin funktion från flervarren som vi kanske minns är faktiskt linjäriseringen av f:

$$f(\bar{r}) \approx f(\bar{r}_0) + \nabla f(\bar{r}_0) \cdot (\bar{r} - \bar{r}_0)$$

I den här kursen tillåter vi allmänna linjära basbyten, alltså ej bara isometriska avbildningar utan vi kan skala om ena axeln och krympa den/deformera den!

Theorem 1.3: Singulära punkter

En punkt \bar{r}_0 sådant att $f(\bar{r}_0) = 0$ sådant att $\nabla f(\bar{r}_0 = (0,0))$ kallas **singulär**. Singulära punkter bevaras under affin transformation.

Theorem 1.4: Transversell skärning

Två kurvor $f(\bar{r})=0$ och $g(\bar{r})=0$ sägs skära varandra transversellt i $[r]_0$ om $f(\bar{r}_0)=0=g(\bar{r}_0)$ och $\nabla f(\bar{r}_0)\neq 0\neq \nabla g(\bar{r}_0)$ och $\nabla f(\bar{r}_0)\neq 0$ ar inte parallella (linjärkombinationer av varandra)

I linjär algebra 2 skiljde vi på t.ex ellipser med olika halvaxlar (och andra former) genom att undersöka egenvärden $\{\lambda_1, \lambda_2\}$ i motsvarande kvadratiska form.

I linjär algebra använde vi ortonormala avbildningar som var isometriska, det ska vi strunta i här eftersom vi vill kunna deformera kurvor utan att bevara längd/vinklar

2. Affina avbildningar

En affin avbildning är $n\ddot{a}stan$ samma sak som en linjär avbildning, men inte riktigt! Den tillåter translationer (flytta saker axel-parallellt). Alltså, ej en isometri.

Theorem 2.1: Affin Avbildning

En avbildning $F: \mathbb{R}^n \to \mathbb{R}^n$ på formen $F(\bar{v}) = L(\bar{v}) + \bar{b}$ Där \bar{b} är en konstant vektor och $L: \mathbb{R}^n \to \mathbb{R}^n$, kallas för en **affin** avbildning

Anmärkning: I en linjär avbildning är den konstanta vektorn $\bar{b} = 0$, alltså är alla linjära avbildning affina.

Exempel:

Betrakta följande avbildning: $\bar{F}(x,y) = (ax + by + e, cx + dy + f) \ a,b,c,d,e,f \in \mathbb{R}$ Det är +e och +f som gör avbildningen affin

Anmärkning:

I exemplet är det e, f som är "translationerna" (translationsfaktor). Det enda de gör är att flytta saker, de bevarar längder och vinklar Alternativ notation:

$$\bar{F}\begin{pmatrix} x \\ y \end{pmatrix} = \underbrace{\begin{pmatrix} 2 & 3 \\ 4 & 7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}}_{L(\bar{y})} - \underbrace{\begin{pmatrix} 1 \\ \pi \end{pmatrix}}_{\bar{h}}$$

Theorem 2.2: Affin Transformation

Om $det(\bar{L}) \neq 0$ så kallas \bar{F} för en **affin transformation**. En affin transformation är en bijektion.

Theorem 2.3: Euklidisk Transformation

En transformation som bevarar längd och vinklar, även kallad för ortonormal transformation

Notation: Mängden affina avbildningar noteras $Aff(n) = \{affina \text{ transformationer } \mathbb{R}^n \}$

Egenskaper:

- $F, G \in Aff(n) \Rightarrow F \circ G \in Aff(n)$
- Om $det(\bar{L}) \neq 0$ så är \bar{F} inverterbar (\bar{L} är inverterbar)
- id_{R^n} är affin

Proof 2.1: Egenskap 1

$$\begin{split} F(\bar{v}) = L(\bar{v}) + \bar{b} & G(\bar{w}) = M(\bar{w}) + \bar{c} \\ F(\bar{G}(\bar{w})) = F(\bar{M}(\bar{w}) + \bar{c}) = L(\bar{M}(\bar{w}) + \bar{c}) + \bar{b} = L(\bar{M}(\bar{w})) + L(\bar{c}) + \bar{b} \end{split}$$

Proof 2.2: Egenskap 2

$$\bar{y} = \bar{F}(\bar{x}) = \bar{L}(\bar{x}) + \bar{b}$$

 $\bar{F}^{-1}(\bar{y}) = \bar{L}^{-1}(\bar{y} - \bar{b})$

Anmärkning:

Man kan betrakta Aff(n) som en grupp, där identiteten är identitetsavbildningen $(\bar{b} = 0, \text{linjär identitet} = \text{enhetsmatrisen})$

Geometriska egenskaper hos Aff(n)

- Om l är en linjne, $\bar{F} \in AffA(n) \Rightarrow \bar{F}(l)$ är en linje
- Om l, l' är paralella linjer så är $\bar{F}(l) = \bar{F}(l')$
- Om två kurvor skär varandra transversellt så gäller detsamma bilderna av kurvorna
- $\bullet\,$ Säg att vi har 4 punkter på en linje, så bevarar \bar{F} längdförhållandet mellan dem:

$$\frac{\left|\bar{AB}\right|}{\left|\bar{CD}\right|} = \frac{\left|\bar{F(A)F(B)}\right|}{\left|\bar{F(C)F(D)}\right|}$$

Anmärkning:

Affina avbildningar bevarade nödvändigtvis inte längder och vinklar, men 4:e egenskapen här verkar tyda på att någonting bevaras.

Theorem 2.4

Säg att vi har en affin transformation $\bar{F} \in Aff(n)$, vi inducerar en avbildning:

$$\mathbb{R}[x_1, x_2 \cdots, x_n] \xrightarrow{F^*} \mathbb{R}[x_1, x_2, \cdots, x_n]$$

$$\mathbb{R}^n \xrightarrow{f \circ F} \mathbb{R}^n \xrightarrow{f} \mathbb{R}$$

$$f \mapsto f \circ \bar{F}$$

Exempel:

Betrakta följande avbildning: $\bar{F}: \mathbb{R}^2 \to \mathbb{R}^2$ sådant att $(x, y) \mapsto (x + y, x - y)$. $f \in \mathbb{R}[x, y] = x^2 + y^2$ ger följande:

$$F^*(f)(x,y) = f \circ \bar{F}(x,y)$$
$$(x+y)^2 + (x-y)^2 = 2(x^2 + y^2)$$

Theorem 2.5

Om
$$deg(f) = k$$
 så $deg(F^*(f)) = k$

Anmärkning:

Det här $\mathbb{R}[x_1, \cdots, x_n]$ är en ring med 1:a (identitet). Det är också en \mathbb{R} -algebra (ett vektorrum över \mathbb{R} så att multiplikation med $\lambda \in \mathbb{R}$ beter sig civiliserat m.a.p ringstruktur).

Då är $F^*: \mathbb{R}[x_1, \dots, x_n] \to \mathbb{R}[x_1, \dots, x_n]$ en \mathbb{R} -algebraringhomomorfi, det vill säga:

- $F^*(f+g) = F*(f) + F*(g)$
- $F^*(fg) = F^*(f)F^*(g)$
- $F^*(1) = 1$
- $F^*(\lambda f) = \lambda F^*(f)$

6

Notation:

Mängden av alla \mathbb{R} -algebraringhomomorfi betecknas för $Auf(\mathbb{R}[x_1,\cdots,x_n])=\{\mathbb{R}$ -algebraringhomomorfi $\}$

Theorem 2.6

Avbildningen Aff $(n) \underbrace{\longrightarrow}_* Auf(\mathbb{R}[x_1,\cdots,x_n])$ $F \mapsto F^*$ har egenskapen $(F \circ G)^* = G^* \circ F^*$

Proof 2.3: Bevis av föregående sats

$$(F \circ G)^*(f) = f \circ (F \circ G) = (f \circ F) \circ G = G^*(F^*(f)) = (G^* \circ F^*)(f)$$

Theorem 2.7: Affint ekvivalens

Låt $f, g \in \mathbb{R}[x_1, \dots, x_n]$. Vi säger att f och g är **affint ekvivalenta** om det finns en affin transformation $\bar{F} : \mathbb{R}^n \to \mathbb{R}^n$ och ett tal $(\lambda \neq 0)$ så att:

$$F^*(f) = \lambda g$$

Detta är en ekvivalensrelation på $\mathbb{R}[x_1, \cdots, x_n]$ $(f \sim g)$

3. Klassificering av andragradspolynom i två variabler

Vi vill veta hur många "andragradskurvor" det finns och vilka. Det är planen.

Vi kikar på det allmänna fallet $f(x,y) = ax^2 + bxy + cy^2 + dx + ey + f$.

Vi försöker förenkla f(x,y) (som är ett allmänt polynom) m.h.a affina transformationer och multiplikation med konstanter $\lambda \neq 0$

Vi noterar från f(x,y) att vi har en bit som är en rent kvadratisk form $(ax^2 + bxy + cy^2)$, och vi vet att vi alltid kan diagnolisera kvadratiska former, m.h.a variabelbyte. Vi ser vad som händer om vi gör detta:

$$f(x,y) \Rightarrow x^2 + \lambda y^2 + Dx + Ey + f$$

Där $\lambda \in \{0, 1, -1\}$. Vi falluppdelar:

•
$$\lambda = \pm 1 \Rightarrow$$
 Vi kan kvadratkomplettera och vi får $\left(x + \frac{D}{2}\right)^2 - \frac{D^2}{4} + \lambda \left(y + \frac{E}{2\lambda}\right)^2 - \frac{E^2}{4\lambda} + f$

Vi samlar alla konstanter till en och gör ett variabelbyte på $x, y \Rightarrow x^2 + \lambda y^2 + F$

Theorem 3.1: Signaturen av en kvadratisk form

Hur många positiva resp. negativa egenvärden = signaturen. Betecknas som koordinater (x, y) där x = hur många positiva och y = hur många negativa.

Notera! Signaturen är oförändrad under affina transformationer (invariant)

Theorem 3.2

Om $f(x,y) = f_1(x,y) \cdot f_2(x,y)$, så är nollställesmängden unionen:

$$V(f) = V(f_1) \cup V(f_2)$$

Ur detta följer det att alla polynomringar $k[x_1, \dots, x_n]$ är faktoriella ringar (varje polynom har en entydig faktorisering i irreducibla polynom). Detta är inte så lätt att visa om vi har fler variabler än 1.

Theorem 3.3: Irreducibla komponenter

Det faktoriserade polynomet kommer ha bitar (faktorer) som korresponderar till element i nollställesmängden. Dessa kallar vi för **irreducibla komponenter**

Theorem 3.4

Två irreducibla kurvor f och g sammafaller (skär varandra) i högst $\ddot{a}ndligt$ många punkter

4. Övningsuppgifter

Vi påminner att om $f(x,y) = a^2 + bxy + cy^2 + dx + ey + f$ så är f(x,y) affint ekvivalent med exakt en av följande:

- $x^2 + y^2 1$ (cirkel) $x^2 y^2 1$ (hyperbel)

- x y 1 (hyperber) $x^2 y$ (parabel) $x^2 y^2$ (linjekon) $x^2 + y^2$ (punkt) x(x 1) (två parallella linjer)
- x^2 ("dubbellinje")
- $x^2 + 1$ (tom)
- $x^2 + y^2 + 1$ (tom)

Man skulle kunna säga att målet med första halvan av kurvan är att bevisa följande sats:

Theorem 4.1: Bezoutes Pseudosats

Om f, g är algebraiska kurvor så skär de varandra precis (deg f)(deg g) gånger

I nuläget är det här väldigt fel, vi kan hitta motexempel, men det ska inte stoppa oss! Vi vill gärna att den ska vara sann, för den är så elegant, så vi skapar en miljö där detta stämmer (eskapism i matematisk

Det finns 3 huvudsakliga skäl till varför den är falsk:

- Betrakta $f(x,y) = y x^2$ och g(x,y) = y + 1 (har inga reella lösningar)
- Betrakta $f(x,y) = y x^2$ och g(x,y) = y (ej transversell skärning)
- Betrakta 2 parallella linjer f(x,y)=x oh g(x,y)=x-1 (måste införa projektiv geometi, från affina planet till det projektiva)

5. Komplexa planet \mathbb{C}^2

 $\mathbb{C}^2 = \mathbb{C} \times \mathbb{C}$, består alltå av ordnade par (a+ib,c+id). Man kan tänka på det som $\mathbb{R}^4 \Rightarrow (a,b,c,d)$. Naturligtvis kan vi generalisera, upp till $\mathbb{C}^n = \{x_1, \dots, x_n : x_i \in \mathbb{C}\}.$

Man kan addera dessa vektorer precis som vanligt, multiplicera med $\lambda \in \mathbb{C}$ osv, hela den grundläggande teorin bakom vektorrum bevaras. Vi har alltså bara vektorrum över $\mathbb C$ istället för över $\mathbb R$

Vi kan exempelvis definiera en parametriserad linje på samma sätt som i \mathbb{R}^2 :

$$\bar{r}(t) = \bar{r}_0 + t\bar{v}$$
 $t \in \mathbb{C}$

Kuriosa:

Detta är en linje:

$$\mathbb{C}x\{0\} \subseteq \mathbb{C}^2$$

Theorem 5.1

Genom två olika punkter i \mathbb{C}^n går endast en linje

Theorem 5.2

 \mathbb{C}^2 , om två linjer inte är parallella (skiljer sig åt med en komplex faktor) så skär de varandra i en entydig punkt

Nu kan vi prata om V(f) till polynom $f(x,y) \in \mathbb{C}[x,y]$. Det är vad vi menar med plana affina algebraiska kurvor (nu har vi någonstans där de kan bo).

Vi definierar singularitet på samma sätt, det vill säga om Taylorutvecklingen inte har en linjär faktor så är den singulär i den punkten.

Vi kan nu tala om linjära & affina avbildningar över \mathbb{C}^n , dvs $\mathrm{Aff}_{\mathbb{C}}(n)$. De definieras på samma sätt:

$$\bar{F}(\bar{v}) = \bar{L}(\bar{v}) + \bar{b} \qquad \bar{L} \in \mathrm{GL}(n, \mathbb{C})$$

Där $GL(n, \mathbb{C})$ = mängden av alla inverterbara $n \times n$ -matriser

Vi kan även här på samma sätt definiera $F^*:\mathbb{C}[x_1,\cdots,x_n]\to\mathbb{C}[x_1,\cdots,x_n]$

Återigen, på samma sätt kan vi definiera ekvivalens mellan polynom samt att det bara finns en linje i \mathbb{C}^2 precis som i \mathbb{R}

En kvadratisk form över \mathbb{C}^n är ekvivalent med en diagonalform med bara ettor och nollor I \mathbb{C}^2 har vi alltså följande kvadratiska former:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Theorem 5.3: Klassificering av andragradskurvor i \mathbb{C}^2

- $x^2 + y^2 1$ (cirkel)
- $x^2 y$ (parabel) (här kan vi använda T(x, y) = (x, iy) för att få cirkel)
- $x^2 + y^2$ (linjekors)
- x(x-1) (parallell linje)
- x^2 ("dubbellinje")

Exempel:

Betrakta följande polynom: $f(x,y) = x^2 + 2xy + y^2 + 2x - 3y + 1$

Vi behöver nldvändigtvis inte finna den kvadratiska formen här, utan vi kan göra det för hand genom att kvadratkomplettera alla kvadratiska termer med x och och xy:

$$\Rightarrow \underbrace{(x+y)^2}_{\text{kvadratiskt}} + \underbrace{2x - 3y + 1}_{\text{linjärt}}$$

$$x = x + y$$

$$y = 2x - 3y + 1$$

$$\Rightarrow \det\begin{pmatrix} 1 & 1 \\ 2 & -3 \end{pmatrix} \neq 0$$

$$\Rightarrow X^2 + Y \Rightarrow \text{Parabel}$$

Theorem 6.1

Om $f(x,y)=\mathbb{C}[x,y]$ samt icke-konstnat polynom, då har $V(f)\subseteq\mathbb{C}^2$ o
ändligt många punkter (överuppräknerligt)

Här är det lite intuitivt lätt att klura ut hur vi skall bevisa detta. Vi arbetar med komplexa tal, så rimligtvis någon sats inom komplexa polynom, såsom algebrans fundamentalsats!

Proof 6.1: Bevis av föregående sats

Vi vill hitta en massa lösningar genom att använda att vi vet lösnignarna till envariabelpolynom. Det vi kan göra är att undersöka hur V(f) skär linjen y=k (där k är en godtycklig konstant). Matar vi in detta i polynomet har vi f(x,c) som är ett polynom i en variabel, som har nollställen förutsatt att det inte är konstant $\neq 0$

Vi behöver nu undersöka vad som händer om polynomet är konstant allt för ofta, men för att göra detta behöver vi svara på frågan "vad betyder det att f(x,c) är konstant, säg = d?"

Då skulle f(x,c) - d = 0 alltid, vilket innebär att alla koefficienter i f beror på c, men om det skall vara 0 så måste c vara en gemensam rot till alla koefficienterna i f - d

Det finns max ändligt många sådana rötter, eftersom koefficienterna är bara polynom. Det finns ändligt många komplexa tal $c \in \mathbb{C}$ så att f(x,c) - d = 0

Exempel:

Givet $\hat{f}(x,y) = yx^2 + y^2x + 3$. Sätt y = c, vi får då:

$$f(x,c) = cx^2 + c^2x + 3$$

Typiskt sett har detta polynom 2 rötter, ty det är ett andragradspolynom, men det finns vissa undantag såsom när c är valt så att det blir konstant

I detta fall gäller detta när c=0, för det är då vi får ett konstant polynom

Theorem 6.2: Hillberts nollställessats

Denna sats gäller i allmän dimension, men vi ska formulera den för kurvor.

Tag 2st polynom $f, g \in \mathbb{C}[x, y]$

Vi har sett att V(f) = V(g) oavsett hur olika polynomen ser ut (för reella fall), vi kikar på hur det ser ut i den komplexa världen:

$$V(f) = V(g) \Leftrightarrow f, g$$
 har samma irreducibla faktorer

Exempel:

Givet V(f) finns ett "enklaste" polynom med denna nollställesmängd, nämligen den som har en irreducibel faktor (faktorer av multiplicitet 1), exempelvis:

$$V((x^{2} + y^{2} - 1)^{2})(x + y)^{3} = V((x^{2} + y^{2} - 1)(x + y))$$

Detta är det värsta som kan hända! Nollställesmängden bestämmer mer eller mindre polynomet upp till multiplicitet (i \mathbb{C})

Hur ser V(f) ut? Vi kikar närmare på definitionen av f(x,y) = 0:

$$f: \mathbb{C}^2 \to \mathbb{C} \Leftrightarrow f: \mathbb{R}^4 \to \mathbb{R}^2$$

Detta är två rella ekvationer i fyra rella variabler, vi förväntar oss (rell) dimension 2 (tänk gausseliminering, 2 ekvationer, 4 variabler, ger oftast 2 parametrar (om de är oberoende)).

Vi kan användan implicita funktionssatsen för att visa att lokalt kring icke-singulära punkter är V(f) en 2D disk

Sammanfattning:

- \bullet Komplexa kurvor har **många** punkter (med bevis)
- \bullet Komplexa kurva bestämmer f nästan entydigt (Hillberts nollställessats)
- Komplexa kurvor är rella ytor (Implicita funktionssatsen)

Tricket går i någon mening ut på att reducera till en variabel och sedan använda algebrans fundamentalsats, precis som man i flervarren reducerade till en variabel och bevisade envariabelfallet.

7. Skärningstalet

Vi vill försöka hitta ett sätt att räkna skärningen mellan kurvor med multiplicitet.

Sättet vi kommer göra detta på är inte genom att definiera skärningstalet (detta gör vi sista föreläsningen), utan att vi komma lista upp de egenskaper vi vill ha och hitta axiom som gör att vi kan arbeta med dessa egenskaperna och hitta det vi vill hitta.

Vi vill definiera en funktion $I_p(f,g)$ där $p \in \mathbb{C}^2$ och $f,g \in \mathbb{C}[x,y]$. Tanken är att $I_p(f,g)$ = antalet gånger f,g skär varandra i p, det vill säga i \mathbb{C}^2

Denna funktion $I_p(f,g) \in \mathbb{N} \cup \{\infty\}$ (vi behöver o
ändligheten om exempelvis 2 kurvor är lika så sammanfaller de o
ändligt mycket).

Axiom 0:

Vi vill kunna titta på skärningen i vilket affint koordinatssystem som helst (bevaras under affin transformation): (Affint invariant)

$$I_p(f,g) = I_{F^{-1}(p)}(F^*f, F^*g) \qquad \forall F \in \text{Aff}_{\mathbb{C}}(2)$$

Axiom 1:

Säger att f och g skär varandra lika många gånger som g och f skär varandra:

$$I_p(f,g) = I_p(g,f)$$

Axiom 2:

Skärningstalet mellan f och g skall vara nollskillt omm punkten p ligger på båda kurvorna:

$$I_p(f,g) \neq 0 \Leftrightarrow f(p) = g(p) = 0$$

Axiom 3:

Koordinataxlarna (speciella kurvor) skär varandra i en enda punkt, alltså borde de har skärningstalet 1:

$$I_0(x,y) = 1$$

Axiom 4:

$$I_p(f,gh) = I_p(f,g) + I_p(f,h)$$

Axiom 5:

Skärningstalet i p mellan f och g är detsamma som skärningstalet mellan f och g + fh:

$$I_p(f,g) = I_p(f,g+fh) \quad \forall h \in \mathbb{C}[x,y]$$

Motivering: Antag först att $p \in V(f) \cap V(g) \Leftrightarrow f(p) = 0 = g(p)$. Då gäller:

$$\underbrace{g(p)}_{=0} + \underbrace{f(p)}_{=0} h(p) = 0 \Leftrightarrow I_p(f, g + fh) \neq 0$$

Dvs $I_p(f,g) = 0$ omm $I_p(f,g+fh) = 0 \forall h$.

Vi kan också se att f,g skär varandra transversellt i p omm ,g+fh skär varandra transversellt i p

Exempel: Hur kan axiomen användas för beräkning?

Vi vet vad vi vill i vissa situationer, betrakta $f(x,y) = y - x^2$, vi vill hitta $I_0(y,y-x^2)$. Rimligtvis borde detta vara 2

Vi använder axiom 5, och adderar -y i andra inputen så vi får $I_0(y, -x^2)$

Nu kan vi använda axiom 4, ty det är samma sak $I_0(y, x^2) + \underbrace{I_0(y, -1)}_{=0}$ (vi använder axiom 2, eftersom

de skär ej varandra)

$$\Rightarrow I_0(y, x^2) = I_0(y, x) + I_0(y, x) = 2I_0(x, y) = 2I_0(x, y)$$