

Become a

SUPER

LEARNER

Using {sl3} to build ensemble learning models

Kat Hoffman R-Ladies NYC September 10, 2019

What is **Ensemble Learning**?

Image source: Royal Philharmonic Society

What is **Ensemble Learning**?

Image source: Royal Philharmonic Society

Ensemble learning: The process of combining multiple models to improve the overall model's prediction performance

What is **Ensemble Learning**?

Image source: Royal Philharmonic Society

Ensemble learning: The process of combining multiple models to improve the overall model's prediction performance

Common techniques:

- 1. Bagging
- 2. Boosting
- 3. Stacking

Bootstrap Aggregating

Bootstrap Aggregating

sample data with replacement

```
bootstrap <-
  dplyr::sample_n(
   tbl = mtcars,
  size = 100,
  replace = T)</pre>
```

Bootstrap Aggregating

sample data with replacement

```
bootstrap <-
  dplyr::sample_n(
  tbl = mtcars,
  size = 100,
  replace = T)</pre>
```

combine multiple models

Bootstrap Aggregating

1 sample data with replacement

3 combine multiple models

fit a model on every bootstrapped data set

Bootstrap Aggregating

3 combine multiple models

fit a model on every bootstrapped data set

Bagging is most effective for unstable models, i.e. decision trees

Decision tree: repeatedly subsetting your data in whichever way best predicts the final outcome

Bagging is most effective for unstable models, i.e. decision trees

Decision tree: repeatedly subsetting your data in whichever way best predicts the final outcome

Bagging is most effective for unstable models, i.e. decision trees

Decision tree: repeatedly subsetting your data in whichever way best predicts the final outcome

A very common, slight variation of bagging:

Random Forest: aggregated predictions from different decision trees

- Bootstrapped samples (Bagging)
- Limiting and randomizing the predictors to choose from at each decision branch

A decision tree for the categorical outcome of: **Dinner Plans** Is there an R-Ladies event? yes no **R-Ladies** Do I have any dinner invitations? food yes no Do I have Eat out groceries? yes no Cook Eat out

Random Forests in R

• Basic implementation:

RandomForest

- o Main function: randomForest()
- Simple tuning: tuneRF()
- For increased speed and easier tuning of parameters:
 - o ranger
- Well-known interface for many models, not just random forests
 - o caret

Random Forests in R

Basic implementation:

RandomForest

- o Main function: randomForest()
- Simple tuning: tuneRF()
- For increased speed and easier tuning of parameters:
 - o ranger
- Well-known interface for many models, not just random forests
 - o caret

brickr + rayshader "random forest"

Source: <u>Twitter, @ryantimpe</u>

Ensembling Technique 2: BOOSTING

During **bagging**, models are fit **in parallel**, but in **boosting**, models are fit **sequentially** with the goal to learn from past mistakes

Ensembling Technique 2: BOOSTING

During **bagging**, models are fit **in parallel**, but in **boosting**, models are fit **sequentially** with the goal to **learn from past mistakes**

Ensembling Technique 2: BOOSTING

During **bagging**, models are fit **in parallel**, but in **boosting**, models are fit **sequentially** with the goal to **learn from past mistakes**

BOOSTING in R

- Adaptive boosting:
 - o Adabag
- Gradient boosting:
 - o gbm
 - Xgboost
 - Computationally efficient, adds regularization to help with overfitting
- Generalized interface:
 - caret
 - o h2o
 - o mlr/mlr3

Common Technique 3: STACKING

Stacking: Several different types of models are built to predict an outcome, and a **new, separate model** is used to decide how much weight each base model's predictions should receive

Common Technique 3: STACKING

Stacking: Several different types of models are built to predict an outcome, and a **new, separate model** is used to decide how much weight each base model's predictions should receive

Common Technique 3: STACKING

Stacking: Several different types of models are built to predict an outcome, and a new, separate model is used to decide how much weight each base model's predictions should receive

History of Stacking AKA SUPERLEARNING

Fun stats fact of the day! In the early 2000s, a group of statisticians proved that stacking or "superlearning" would always perform as good or better than the best base model in your stack as sample size approaches

History of Stacking AKA SUPERLEARNING

Fun stats fact of the day! In the early 2000s, a group of statisticians proved that stacking or "superlearning" would always perform as good or better than the best base model in your stack as sample size approaches

An important point:

The predictions you input to your meta-learner must come from out-of-sample data (using methods like bootstrapping or cross-validating)

K-fold cross-validation:

splitting your data into equal parts

K-fold cross-validation:

- splitting your data into equal parts
- Training a model on all but one parts of the data
- Validating, or testing, your model's performance on the remaining piece of data

K-fold cross-validation:

- splitting your data into equal parts
- Training a model on all but one parts of the data
- Validating, or testing, your model's performance on the remaining piece of data
- Repeating with each piece of data taking its turn as the validation set

One example of a super learner:

Step 1: Pick base learners

Random Forest

Gradient Boosting Model

Generalized Linear Model

One example of a super learner:

Step 1: Pick base learners

Step 2: 5X cross validation to get out of sample predictions

Stacking AKA SUPERLEARNING in R

There are many packages in R to implement stacking/ Superlearning. Some examples:

- SuperLearner
- mlr / mlr3
- caretEnsemble
- h2o

Stacking AKA SUPERLEARNING in R

There are many packages in R to implement stacking/ Superlearning. Some examples:

- SuperLearner
- mlr / mlr3
- caretEnsemble
- h2o

Fun R-Ladies fact of the day!

One of R-Ladies' co-founders, Erin Ledell, is the Chief Machine Learning Scientist at h2o (the software company which maintains h2o across a variety of programming platforms)

Stacking AKA SUPERLEARNING in R

There are many packages in R to implement stacking/ Superlearning. Some examples:

- SuperLearner
- mlr / mlr3
- caretEnsemble
- h2o

Why s13?

- Comprehensive, faster, modernized syntax update to the older SuperLearner package
- Open source, written entirely in R
- Syntax modeled after popular machine learning packages such as scikit-learn

Fun R-Ladies fact of the day!

One of R-Ladies' co-founders, Erin Ledell, is the Chief Machine Learning Scientist at h2o (the software company which maintains h2o across a variety of programming platforms)

s13 Demo

WASH Benefits data set: measures of water quality, sanitation, hand washing, and nutritional interventions in rural Bangladesh and Kenya

We will use it to predict: children's weight-to-height z-scores

SuperReview:

BAGGING

Aggregating bootstrapped predictions

RandomForest ranger

BOOSTING

Sequentially correcting models' mistakes

AdaBoost gbm xqboost

STACKING / SUPERLEARNING

Using a new model to blend together base models

caretEnsemble
mlr/mlr3
h2o

sl3

Fast, modern update to SuperLearner package

Similar syntax to popular machine learning packages in other languages

Written entirely in R, contributions welcomed

Helpful Resources:

Ensemble Learning:

- Towards Data Science articles:
 - "Understanding Random Forests"
 - "Ensemble Methods: Bagging, Boosting and Stacking"
- Bradley Boehmke's "Hands on Machine Learning with R," Chapters 10-15
- Datacamp's course: "Machine Learning with Tree-Based Models in R"
- Erin Ledell's "Introduction to Practical Ensemble Learning"

Superlearning and s13:

- Teaching materials from the authors of sl3:
 - https://tlverse.org/tlverse-handbook/ensemble-machine-learning.html
 - https://tlverse.org/acic2019-workshop/ensemble-machine-learning.html
 - https://github.com/tlverse/sl3_lecture
- Peterson and Balzar's Causal Inference Seminar, Lab #3:
 "Super Learner" https://www.ucbbiostat.com/labs
- Polley, Eric C. and van der Laan, Mark J., "Super Learner In Prediction" (May 2010). U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 266. https://biostats.bepress.com/ucbbiostat/paper266

Special thanks to one of \$13's authors, Nima Hejazi, for answering questions.

Thanks R-Ladies for listening!