

Universidade Federal de Pelotas Centro de Desenvolvimento Tecnológico Bacharelado em Ciência da Computação Álgebra Linear e Geometria Analítica

IPPD - Implementação

1. Trabalho de implementação

- Individual

- Entrega: 30 de junho

Objetivo: desenvolver habilidades para a programação paralela.

Ferramentas de hardware: arquiteturas multiprocessadas, cluster e GPU. **Ferramentas de software:** Pthreads, Threads C++11, Cilk, TBB, OpenMP, MPI, CUDA, OpenCL.

Metodologia: Implementar uma das aplicações descritas em http://iss.ices.utexas.edu/?p=projects/galois (item Benchmarks) em pelo menos duas das ferramentas de software listadas. Conceber uma metodologia para avaliar o desempenho do programa implementado em uma (ou diferentes) arquitetura(s) paralela(s). Proceder a análise do desempenho.

Material a ser entregue: Um arquivo comprimido (com zip) contendo um diretório que contenha um subdiretório para cada implementação realizada e um documento PDF. Nos subdiretórios das implementações deve estar presentes todos os fontes do programa implementado, um arquivo Makefile para geração do executável e um arquivo Read.Me que descreva os requerimentos para compilar e executar o programa. Caso necessário para a aplicação, arquivos de dados necessários para a entrada devem estar disponibilizados. Não inclua arquivos objetos ou executáveis. No PDF deve ter o nome do aluno, a nome da implementação realizada, a identificação das ferramentas utilizadas, comentários que se fizerem necessários (por exemplo, maquinas em que o código foi verificado, restrições da implementação em relação a especificação do problema) e destaque de algum aspecto que o aluno julgar relevante em sua implementação (como o uso de algum recurso "complicado" da ferramenta selecionada ou do emprego de uma abordagem diferenciada na implementação).

Apresentação: O aluno deverá estar apto a apresentar seu trabalho em execução nas maquinas disponibilizadas nos laboratórios. Duas aulas serão previstas para este fim no calendário.

Avaliação: As duas implementações operacionais, entregues nas datas, receberão nota máxima. Uma implementação operacional, 50%. Implementações não operacionais serão avaliadas conforme o nível atingido. Código que não compila não será considerado.

Pontuação extra: Cada implementação extra realizada (outra aplicação ou outra

ferramenta) receberá pontuação extra de um (1) ponto em uma das provas.

2. Trabalho de implementação

2.1 Informações Básicas

Nome	Glauco Roberto Munsberg dos Santos	5
Implementação	Minimum Weight Spanning Tree	
Ferramenta 1	Cilk SP1	Composer XE 2013
Ferramenta 2	OpenMP SP1	Composer XE 2013

2.2 Máquina Executada

Modo(s) da CPU	32-bit, 64-bit	
Nome do modelo	Intel(R) Pentium(R) Dual CPU E2200 @ 2.20GHz	
CPU(s)	2	
Thread(s) per núcleo	1	
Метогу	2300932 kB	

2.3 Comentários

As *.h das bibliotecas do Composer XE tiveram que ser importadas manualmente, com isso será necessário modificar o path dentro do arquivo GraphCilk.cpp e GraphOpen.cpp que compile adequadamente caso o caminha base não seja.