

The 3-stage ARM pipeline

PC behaviour

• r15 increments twice before an instruction executes

- due to pipeline operation

• therefore r15 = address of instruction + 8

(+12 if used after first cycle, though this is architecturally 'undefined')

- in Thumb code the offset is +4

• normally the assembler makes the necessary adjustments, e.g. in branches

- Outline:
 - the ARM 3-stage pipeline
 - the ARM7TDMI core
 - → the ARM 5-stage pipeline
 - the ARM9TDMI core
 - the ARM10TDMI core

©2001 PEVE_{IT} Unit - ARM System Design

_ . . .

Getting higher performance

- Increase the clock rate
 - the clock rate is limited by the slowest pipeline stage
 - decrease the logic complexity per stage
 - increase the pipeline depth (number of stages)
- improve the CPI (clocks per instruction)
 - · fewer wasted cycles
 - better memory bandwidth

©2001 PEVE Unit - ARM System Design

ores - v4 -

The 5-stage ARM pipeline

- Fetch
- Decode
 - · instruction decode and register read
- Execute
 - · shift and ALU
- Memory
 - · data memory access

■ Write-back
©2001 PEVE_{rr} Unit - ARM System Design

Cores - v4 - 16

The 5-stage ARM pipeline

- Reducing the CPI
 - ARM7 uses the memory on nearly every clock cycle
 - for either instruction fetch or data transfer
 - therefore a reduced CPI requires more than one memory access per clock cycle
- Possible solutions are:
 - separate instruction and data memories
 - double-bandwidth memory (e.g. ARM8)

©2001 PEVE $_{IT}$ Unit - ARM System Design

Cores - v4 - 17

ARM9TDMI

- The ARM9TDMI is...
 - a 'classic' Harvard architecture 5-stage nineline
 - separate instruction and data memory ports
 - with full support for Thumb and EmbeddedICE debug
 - aimed at significantly higher performance than the ARM7TDMI
 - enhanced pipeline operates at 100-200 MHz

©2001 PEVE $_{IT}$ Unit - ARM System Design

Cores - v4 - l

