ИССЛЕДОВАНИЕ МЕТОДОВ БЕЗУСЛОВНОЙ КОНЕЧНОМЕРНОЙ ОПТИМИЗАЦИИ

Лабораторная работа № 2

МЕТОДЫ ПРЯМОГО ПОИСКА ЭКСТРЕМУМА ДЛЯ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

<u>Целью работы</u> являются изучение и моделирование в среде MATLAB различных методов прямого поиска минимума и сравнение эффективности их применения для конкретных целевых функций нескольких переменных.

1. Краткие теоретические сведения

1.1. Постановка задачи конечномерной безусловной оптимизации

Пусть имеется некоторый арифметический вектор $x = [x_1, ..., x_n]$ и некоторая функция f(x), называемая целевой функцией и отражающая качество решения той или иной прикладной задачи. В силу эквивалентности двух типов оптимизационных задач (максимизации и минимизации) далее рассматривается задача конечномерной минимизации. Задача поиска минимума целевой функции формулируется в виде:

$$x = arg \min f(x), x \in X$$

где X – множество допустимых решений, среди которых ищется точка x^* , дающая минимум f(x) целевой функции.

Другая распространенная запись задачи минимизации:

$$f(x) \to \min_{x \in X}$$
.

Когда $X=R^n$, где R^n-n -мерное евклидово пространство вещественных чисел, то говорят о конечномерной безусловной задаче минимизации, т.е. целевая функция f(x) имеет только несколько (в данном случае n) аргументов, и множество допустимых решений X есть все пространство R^n .

Ниже приводится краткое описание алгоритмов методов прямого поиска минимума для функции n переменных.

1.2. Метод покоординатного спуска (метода Гаусса-Зайделя)

Идея метода заключается в последовательном поиске точки минимума $x^* \in \mathbb{R}^n$ целевой функции f(x) вдоль каждой координаты x_i , i=1,...,n. Соответствующий алгоритм содержит следующие шаги.

1. Положить k = 1, i = 1, задать точность вычислений ϵ и выбрать точку начального приближения

$$x^{(0)} = [x_1^{(0)}, x_2^{(0)}, ..., x_n^{(0)}] \in \mathbb{R}^n$$
.

2. На итерации с номером k для точки $x^{(k)}$ произвести поиск минимума вдоль направления координаты x_i и найти соответствующую точку $x^{(i,k)}$. Это означает, что функция многих переменных становится как бы функцией одной переменной $f(x_i) = f(x_1^{(k)}, ..., x_i, ..., x_n^{(k-1)})$, здесь координаты $x_j^{(k)}$; $j = \overline{1,i-1}$, и $x_j^{(k-1)}$; $j = \overline{i+1,k}$, определены на настоящей, k-й, и предыдущей, (k-1)-й, итерациях соответственно. Точка $x^{(i,k)}$, которая обеспечивает минимум функции f(x) в данном i-м направлении, находится с помощью любого из известных методов одномерной оптимизации (см. описание лабораторной работы $\mathbb{N} 1$ [7]). 3. Если выполняются условия окончания поиска $\|x^{(k+1)} - x^{(k)}\| \le \varepsilon$, то осуществляется останов алгоритма и $x^{(i,k)} \approx x^*$. В противном случае

проверяется: если i < n, то переход к шагу 2, положив при этом i=i+1; иначе также переход к шагу 2, но i=1, k=k+1.

Таким образом, вышеописанная процедура выполняется по всем координатам.

1.3. Симплексный метод

1. Выбрать базовую точку x^0 . Задать масштабный множитель α . Вычислить

$$\delta_1 = \left\lceil \frac{(n+1)^{1/2} + n - 1}{n\sqrt{2}} \right\rceil \alpha;$$

$$\delta_2 = \left\lceil \frac{(n+1)^{1/2} - 1}{n\sqrt{2}} \right\rceil \alpha.$$

Определить остальные вершины симплекса:

$$x^{i} = \begin{cases} x_{j}^{o} + \delta_{1}, & ecnu \quad j \neq i, \\ x_{j}^{o} + \delta_{2}, & ecnu \quad j = i. \end{cases} i, j = 1, 2, ..., n.$$

2. На k-й итерации определить $x_c = \frac{1}{n} \sum_{\substack{i=1 \ j \neq 1}}^{n+1} x^i$, где x^j - вершина с

наибольшим значением функции. Отразить x^j относительно x_c :

$$x=2x_c-x^j$$
.

3. Проверка условий окончания поиска. Если условие сходимости выполнено, то останов алгоритма. Если не выполнено условие сходимости или некоторая вершина не исключается на протяжении более чем $M = 1,65n + 0,05n^2$ итераций, то необходимо уменьшить размеры симплекса, построить новый симплекс, выбрав в качестве

базовой точку, которой соответствует минимальное значение целевой функции, и перейти к шагу 2.

1.4. Метод Нелдера–Мида

- 1. Задать точность вычислений ε и параметры α , β , γ . Выбрать аргументы целевой функции $x_1, ..., x_{n+1}$ и вычислить ее значения в этих точках $f_1, ..., f_{n+1}$.
- 2. Найти x_h , x_g , x_z , f_h , f_g , f_z ; f_h наибольшее, f_g следующее за ним, f_z наименьшее значение функции.
- 3. Найти $x_0 = \frac{1}{n} \sum_{i \neq h} x_i$.
- 4. Найти x_r, f_r , отразив точку x_h относительно x_0 :

$$x_r = (1 + \alpha) x_0 - \alpha x_h$$
.

5. Если $f_r < f_z$, то производится растяжение симплекса, и находятся

$$x_e = \gamma x_r + (t - \gamma) x_0, f_e = f(x_e).$$

6. Если $f_e < f_z$, то $x_h = x_e$.

Проверка на сходимость осуществляется по следующему принципу. Необходимо вычислять оценку дисперсии значений целевой функции

$$\sigma^2 = \sum_{i=1}^{n+1} (f_i - \bar{f})^2 / (n-1)$$
 , где $\bar{f} = \frac{\sum f_i}{n+1}$.

и сравнивать с заданной точностью ϵ . Если $\sigma < \epsilon$, то сходимость достигнута, и производится останов алгоритма. В противном случае переход к шагу 2.

7. Если $f_e \ge f_z$, то $x_h = x_r$.

Проверка на сходимость. Если сходимость достигнута, то останов алгоритма. В противном случае перейти к шагу 3.

8. Если $f_r > f_z$, но $f_r \le f_g$, то $x_h = x_r$.

Проверка на сходимость. Если сходимость не достигнута, то возвратиться к шагу 2.

- 9. Если $f_r > f_z$ и $f_r > f_g$, то перейти к шагу 10.
- 10. Если $f_r > f_h$, то перейти к шагу 11.

Если $f_r < f_h$, то $x_h := x_r$ и $f_h = f_r$. Перейти к шагу 11.

11. Так как $f_r > f_h$, то производится переход к шагу сжатия:

$$x_c = \beta x_h + (1 - \beta)x_0.$$

- 12. Если $f_c < f_h$, то $x_h = x_c$, и если сходимость не достигнута, то возвратиться к шагу 2.
- 13. Если $f_c > f_h$, то перейти к шагу 14.
- 14. Уменьшить размерность симплекса $x_i = (x_i + x_z)/2$. Вычислить f_i для i=1,..., n+1. Проверить на сходимость. Если условие сходимости не выполняется, то возвратиться к шагу 3.

1.5. Метод Хука–Дживса

Условные обозначения:

 x^{K} - текущая базовая точка;

 x^{K-1} - предыдущая базовая точка;

 x_p^{K+1} - точка, построенная при движении по образцу;

 x^{K+1} - следующая (новая) базовая точка.

- 1. Задаются начальная точка $x^{(0)}$, приращение Δ_i , i = 1,..., n, а также коэффициент уменьшения шага $\alpha > 1$ и параметр окончания поиска ϵ .
- 2. Проводится исследовательский поиск.
- 3. Если исследовательский поиск удачный (найдена точка с меньшим значением целевой функции), то выполнить переход к шагу 5. Иначе переход к шагу 4.

4. Проверка условий окончания поиска: если условие $\Delta_i < \epsilon$ выполнено, то останов алгоритма. Иначе надо уменьшить приращение

$$\Delta_i = \frac{\Delta_i}{\alpha}, \quad i = \overline{1, n},$$

и перейти к шагу 2.

5. Провести поиск по образцу

$$x_p^{(K+1)} = x^K + (x^K - x^{K-1}).$$

- 6. Провести исследующий поиск, используя x_p^{K+1} в качестве базовой точки. Пусть x^{K+1} полученная в результате поиска точка.
- 7. Если выполняется неравенство $f(x^{K+1}) < f(x^K)$, то положить $x^{K-1} = x^K$ и $x^K = x^{K+1}$. Перейти к шагу 5. В противном случае перейти к шагу 4.

2. Порядок выполнения лабораторной работы

- 2.1. Изучить предлагаемые методы конечномерной безусловной оптимизации, используя дополнительную литературу и конспект лекций, если необходимо.
- 2.2. В соответствии с вариантом задания, определенным преподавателем, в среде MATLAB составить программы, реализующие вышеописанные методы поиска (метод покоординатного спуска; симплексный метод; метод Нелдера—Мида; метод Хука—Дживса), и найти точку минимума функции f(x) с заданной точностью ε , изменяемой в ходе исследования.
- 2.3. Оформить отчет о выполнении задания с приведением условия задачи, алгоритмов и программ указанных методов поиска, графиков зависимостей количества итераций от точности решения, таблицы результатов сравнения рассмотренных методов, заключения по результатам сравнения методов.

3. Варианты заданий

Ŋoౖ	Целевая функция	Точность &
1	$(x_1 + 3x_2)^2 + 3(x_3 - x_4)^2 + (x_2 - 4x_3)^4$	$10^{-3}, 10^{-5}, 10^{-10}, 10^{-15}$
2	$5(x_2-x)^2+(4-x_1)^2$	$10^{-3},5*10^{-5},10*10^{-10},5*10^{-15}$
3	$(x_1 + 2x_2)^2 + (x_3 - x_4)^2 + 3(x_1 - x_4)^2$	$2*10^{-3}$, $4*10^{-5}$, $8*10^{-10}$, 10^{-15}
4	$(x_3-x)^2+(2-x_2)^2$	$10^{-3}, 10^{-5}, 10^{-7}, 10^{-10}$
5	$(x_1 - x_2)^2 - 4(x_3 - x_4)^2 + (x_2 - 6x_3)^4 + 2(x_1 - x_4)^2$	10 ⁻² ,10 ⁻⁴ ,10 ⁻⁶ ,10 ⁻⁸
6	$(x_1 - x_2)^2 + 4(x_1 - x_4)^2 + (x_2 + 3x_4)^4$	5*10 ⁻³ , 2*10 ⁻⁵ , 5*10 ⁻¹⁰ , 2*10 ⁻¹⁵
7	$3(x_1-x_2)^2-4(x_2-x_3)^2+(x_1-2x_3)^4$	$10^{-3}, 10^{-5}, 10^{-10}, 10^{-15}$
8	$(x_3-x_2)^2+(x_3-x_4)^2+(x_2-6x_1)^2$	$10^{-3}, 10^{-5}, 10^{-15}, 10^{-20}$
9	$(x_1 - x_2)^2 + 4(x_3 - x_4)^2 + (x_2 + 6x_4)^4 + 2(x_1 - x_3)^2$	$10^{-5}, 10^{-7}, 10^{-9}, 10^{-12}$
10	$3(x_1-x_2)^2 + (x_3-x_4)^2 + (x_2+26x_3)^4 + 4(x_1-x_4)^2$	10 ⁻³ ,10 ⁻⁵ ,10 ⁻⁷ ,10 ⁻⁹

4. Контрольные вопросы

- 1. Назовите достоинства и недостатки прямых методов поиска для функций и переменных.
- 2. В чем преимущество метода Хука-Дживса по сравнению с методом покоординатного спуска?
- 3. В каких случаях удобно использовать симплексный метод?
- 4. Обеспечивают ли эти методы глобальную сходимость?
- 5. Для решения каких задач целесообразно использовать метод Нелдера-Мида?
- 6. Дайте геометрическую иллюстрацию всех четырех методов оптимизации.
- 7. Какой из приведенных методов целесообразно использовать для оптимизации технологических процессов в условиях производства?