Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning

Towards Heterogeneous Multi-core Systems-on-Chip for Edge Machine Learning

Journey from Single-core Acceleration to Multi-core Heterogeneous Systems

Vikram Jain ESAT-MICAS KU Leuven Leuven, Belgium Marian Verhelst ESAT-MICAS KU Leuven Leuven, Belgium

ISBN 978-3-031-38229-1 ISBN 978-3-031-38230-7 (eBook) https://doi.org/10.1007/978-3-031-38230-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

Preface

Machine Learning (ML), specifically deep learning (DL), has become the workhorse for emerging applications in vision, audio, sensing, and data analytics. State-of-theart DL models are incredibly costly regarding model size, computational resources required, and the energy consumption of running the models. Owing to their size and complexity, they can only be deployed on large devices like GPUs typically used in cloud servers or data centers. The cloud-computing paradigm, however, comes with several drawbacks. As the large amount of data collected at the end-user devices needs transmission to the resourceful cloud servers, the energy consumption of data communication increases. This is further exacerbated by the fact that there is an exponential growth in the number of end-user devices resulting in copious amounts of data that needs to be transmitted. Moreover, the security of the collected data is not guaranteed, and recent privacy concerns have also come to the forefront. Finally, issues like latency and reliability have additionally become concerns that degrade a seamless real-time experience. Given the drawbacks of cloud computing, the logical consequence is to process data closer to the end-user devices and only sparsely transmit the data necessary for further processing or making decisions.

The paradigm of near-end-user or near-sensor processing has been coined the term (extreme-)edge-computing. (Extreme-)edge-computing can alleviate the drawbacks (energy, privacy, latency, and reliability) of cloud computing by using (extreme) edge devices for data processing as close to the sensor as possible. However, it comes with new challenges, as these devices are battery-operated and severely resource-constrained. Furthermore, as the Internet of Things becomes more pervasive, the number of sensors connected to each edge device proliferates, thereby increasing the data to be processed. Computing at the (extreme) edge requires highly energy-efficient and flexible hardware to map diverse ML and DL workloads, enabling various applications on a single platform. Moreover, it needs algorithms and models specifically designed for resource-constrained devices, thereby requiring a careful co-optimization of hardware and software. This book focuses on the first aspect of the abovementioned challenges of (extreme-)edge-computing, i.e., the design of energy-efficient and flexible hardware architectures

vi Preface

and hardware-software co-optimization strategies to enable early design space exploration of hardware architectures.

The book first focuses on the design of the highly specialized single hardware accelerator optimized for the application of object detection in drones. As the application and model to be accelerated are fixed, the hardware is optimized for mapping only convolutional and dense layers of a DL model in an object detection pipeline. Emerging DL applications deployed on the (extreme) edge devices, however, require multi-modal support, which demands, on the one hand, the need for much more flexible hardware accelerators and, on the other hand, complete standalone systems with the always-on and duty-cycled operation. Heterogeneity in hardware acceleration can enhance a system's flexibility and energy efficiency by utilizing various energy-efficient hardware accelerators supporting multiple DL workloads on a single platform. With this motivation, the book presents a versatile all-digital heterogeneous multi-core system-on-chip with a highly flexible ML accelerator, a RISC-V core, non-volatile memory, and a power management unit. A highly energy-efficient heterogeneous multi-core system-on-chip is presented next by combining a digital and analog in-memory computing core controlled by a single RISC-V core.

Increasing the core count further can benefit the performance of a system. However, data communication in multi-core platforms can quickly become a bottleneck if the design is not optimized. Multi-core CPUs have extensively used classical network-on-chips (NoCs) to address the data communication bottleneck. However, these NoCs use serial packet-based protocols suffering from significant protocol translation overheads toward the endpoints. In the book's final part, an open-source, fully AXI-compliant NoC fabric is proposed to better address the specific needs of multi-core DL computing platforms requiring significant burst-based communication. The NoC enables scaling DNN platforms to multi-accelerator systems, thus allowing the journey toward high-performance heterogeneous multi-core systems.

Accumulating the learning from the results obtained throughout the book, the aim is to enable flexible, high-performance, and energy-efficient (extreme) edge hardware platforms through cross-domain optimization to cater to the needs of the evolving field of machine learning. This would help win the *hardware lottery*—the problem of hardware implementation lagging behind the pace of algorithmic evolution. It will also democratize the impressive power of artificial intelligence to build a more efficient world.

Leuven, Belgium

Vikram Jain Marian Verhelst

Acknowledgments

We would like to acknowledge several individuals and institutions for their support and contributions to this work.

We express our deepest gratitude to Peter Karsmakers, Luc Van Eycken, Hans Hallez, Luca Benini, and Ying Cao for the insightful discussions and detailed feedback that helped improve the previous versions of this manuscript. We would like to acknowledge several collaborators for their contributions to the works presented throughout this book: Linyan Mei, Ninad Jadhav, Sebastian Giraldo, Jaro De Roose, Kodai Ueyoshi, Giuseppe Sarda, Pouya Houshmand, Man Shi, and Matheus Cavalcante.

Finally, we would like to thank Magics Technologies and FOD Economie Belgium for their financial support under the ISAAC project (Energietransitiefonds (oproep II)). We would also like to thank Flanders AI (FAIR) and European Research Council (ERC) for supporting several projects presented in this book, and acknowledge the generous support from GlobalFoundries for the chip tapeouts.

Contents

1	Intr	oduction
	1.1	Machine Learning at the (Extreme) Edge
		1.1.1 Applications
		1.1.2 Algorithms
		1.1.3 Hardware
	1.2	Open Challenges for ML Acceleration at the (Extreme) Edge
	1.3	Book Contributions
2	Alge	orithmic Background for Machine Learning
	2.1	Support Vector Machines
	2.2	Deep Learning Models
		2.2.1 Neural Networks
		2.2.2 Training
		2.2.3 Inference: Neural Network Topologies
		2.2.4 Model Compression
	2.3	Feature Extraction.
	2.4	Conclusion
3	Sco	ping the Landscape of (Extreme) Edge Machine Learning
		cessors
	3.1	Hardware Acceleration of ML Workloads: A Primer
		3.1.1 Core Mathematical Operation
		3.1.2 General Accelerator Template
	3.2	Evaluation Metrics
	3.3	Survey of (Extreme) Edge ML Hardware Platforms
	3.4	Evaluating the Surveyed Hardware Platforms
	3.5	Insights and Trends
	3.6	Conclusion
4	Har	dware-Software Co-optimization Through Design Space
-		loration
	_	Motivation

x Contents

	4.2	Exploration Methodology	60
		4.2.1 ZigZag	60
		4.2.2 Post-Processing of ZigZag's Results	61
	4.3		62
			63
		4.3.2 Visualization of the Complete Trade-Off Space	64
		4.3.3 Impact of HW Architecture on Optimal Workload	66
		4.3.4 Impact of Workload on Optimal HW Architecture	67
	4.4	Conclusion	67
5	Fne	rgy-Efficient Single-Core Hardware Acceleration	71
	5.1	•	71
	5.2		74
	5.3		75
	5.4		77
			77
			78
	5.5		80
		<u>.</u>	80
			84
	5.6		86
			86
			87
	5.7	<i>c c</i> ,	88
	5.8	•	91
6	Tiny	yVers: A Tiny Versatile All-Digital Heterogeneous	
U			93
	6.1		93
	6.2		94
	0.2	e e	95
			95
			96
	6.3		97
	0.5	· · · · · · · · · · · · · · · · · · ·	98
			99
	6.4		00
	0.4		01
		6.4.2 Dataflow Reconfiguration	
		6.4.3 Efficient Zero-Skipping for Deconvolution and	כנ
		11 0	04
		6.4.4 Support Vector Machine	
	6.5	Deployment of Neural Networks on TinyVers	
	6.6	Design for Test and Fault-Tolerance 10	
	6.7		07 08
	0.7	6.7.1 Peak Performance Analysis	
		- V. / . 1 - 1 Can I CHUHHahCe /Maryoto	JO

Contents xi

		6.7.2 Workload Benchmarks	110
		6.7.3 Power Management	111
		6.7.4 Instantaneous Power Trace	113
	6.8	Comparison with SotA	115
	6.9	Conclusion	117
7	DIA	NA: DIgital and ANAlog Heterogeneous Multi-core	
		m-on-Chip	119
	7.1	Motivation	119
	7.2	Design Choices	121
		7.2.1 Dataflow Concepts	121
		7.2.2 Design Space Exploration	123
		7.2.3 A Reconfigurable Heterogeneous Architecture	125
		7.2.4 Optimization Strategies for Multi-core	125
	7.3	System Architecture	126
		7.3.1 The RISC-V CPU and Network Control	126
		7.3.2 Memory System	127
	7.4	AIMC Computing Core	129
		7.4.1 AIMC Core Microarchitecture	129
		7.4.2 Memory Control Unit (MCU)	129
		7.4.3 AIMC Macro	131
		7.4.4 Output Buffer and SIMD Unit	131
	7.5	Digital DNN Accelerator	132
	7.6	Measurements	133
		7.6.1 Efficiency vs. Accuracy Trade-Off in the Analog Macro	134
		7.6.2 Peak Performance and Efficiency Characterization	135
		7.6.3 Workload Performance Characterization	136
		7.6.4 SotA Comparison	139
	7.7	Conclusion	141
8	Netv	orks-on-Chip to Enable Large-Scale Multi-core ML	
	Acc	leration	143
	8.1	Motivation	143
	8.2	Background	145
		8.2.1 Network-on-Chips	145
		8.2.2 AXI Protocol	147
	8.3	Interconnect Architecture of PATRONoC	149
	8.4	Implementation Results	151
	8.5	Performance Evaluation	153
		8.5.1 Uniform Random Traffic	153
		8.5.2 Synthetic Traffic	154
		8.5.3 DNN Workload Traffic	156
	8.6	Related Work	159
	8.7	Conclusion	160

xii Contents

9	Con	clusion		163
	9.1	Overview and Contributions		164
	9.2	Suggestions for Future Work		166
			uits	
		9.2.2 Medium Term		168
		9.2.3 Moonshot		169
	9.3	Closing Remarks		169
Re	eferer	ices		171
In	dex			185

List of Abbreviations

AΕ

ΑI

AIMC analog in-memory compute. 18, 119–127, 129, 131–135, 138, 139, 141, 165 ANN artificial neural network. 28 **ASIC** application-specific integrated circuits. 72, 91 **AUC** area under curve. 9, 46 **CNN** Convolutional Neural Network. 31–35, 43, 47, 48, 54, 71–73, 75, 80, 81, 87, 94, 95, 103, 108–111, 115, 121, 132, 156, 158, 165 **CPU** central processing unit. 2, 3, 10, 13–15, 18, 43, 50, 76, 85, 91, 93, 97, 98, 126, 128, 141, 143–146, 153, 159, 161, 165, 166, 169 DL deep learning, 21, 27, 42, 48, 69 direct memory access. 86, 97, 107, 126-128, 148, 153, 154 **DMA DNN** deep neural networks. 9, 10, 15, 43, 46, 47, 59–61, 94, 95, 101, 108, 115, 119–121, 126, 132, 136, 139, 141, 143–147, 150, 153, 155, 156, 158-160, 167 **DSE** design space exploration. xiv, xviii, 59, 60, 63, 67 FC fully connected. 31, 34, 54, 94, 103, 110, 115, 136, 165 **FeRAM** ferroelectric random access memory. 100 **FIFO** First-in first-out. 87, 102, 104 field programmable gate array. 11, 17, 69, 71-78, 80, 82, 84, 86-89, **FPGA** 91, 100, 133, 164 **FPR** false positive rate. 9 **GOPS** giga operations per second. 51, 109, 117 **GPU** graphics processing unit. 2, 10, 11, 27, 30, 71, 72 HW hardware. 60, 61, 63, 66–68 **IMC** in-memory computing. 44, 50, 54, 57, 141 IoT internet of things. 1–3, 5, 10, 13, 14, 42, 49, 50, 54, 55, 57, 93–95, 98, 115, 116, 143, 163, 165 **KWS** keyword spotting. 4, 47, 110, 113, 115, 168 **LSTM** long short-term memory. 36, 37, 95

Autoencoders. 95, 103, 115, 165

artificial intelligence. 6, 26, 50

xiv List of Abbreviations

LVSR large vocabulary speech recognition. 4

MAC multiply-and-accumulate. 44, 45, 50, 60, 74, 84, 101, 104, 119, 121,

132, 134

MCU microcontroller unit. 2–4, 14, 15, 43, 93, 94, 98 MFCC mel-frequency cepstrum coefficient. 9, 27, 41 MFEC mel-frequency energy coefficient. 41, 113, 114

ML Machine learning. 1–4, 6, 7, 10–15, 17–19, 21, 28, 30, 34, 40, 42–

45, 47–52, 54–57, 93–95, 97, 100, 101, 103, 106, 110, 113, 115–117,

141, 160, 163–169

MLP multi-layer perceptron. 31

MOPS mega operations per second. 109

MRAM magneto-resistive random access memory. 13, 14, 94, 97, 100, 113,

117

NN neural network. 2, 28, 29, 31, 59, 60, 62–64, 66–68, 93, 94, 100, 102,

106, 107, 128

NoC networks-on-chip. 19, 126, 143–156, 158–160, 166, 169

NPU neural processing unit. 11, 14, 145, 146

NVM non-volatile memory. 14, 100

OC-SVM One-class support vector machines. 21, 96, 106, 110, 111

PCA principal component analysis. 21 PCM phase change memory. 100

PE processing element. 3, 44, 45, 59, 61, 63, 68, 69, 75, 81–85, 87, 89,

91, 95, 97, 101–104, 106, 108, 119, 126, 132, 145, 165

RBF radial basis function. 25, 96

ReRAM resistive random access memory, 13, 14, 100

RNN Recurrent Neural Networks. 36, 38, 43, 47, 48, 54, 55, 95, 103, 110,

115, 165

ROC receiver operator characteristic. 9, 46 RTL register-transfer level. 153, 157, 159

SIMD single-instruction multiple-data. 45, 84–86, 101–103, 129, 131, 132 SoC system-on-chip. 50–55, 57, 94, 97, 99, 100, 107–115, 117, 120, 121,

125, 126, 147, 157, 165, 168, 169

SotA state-of-the-art. 1, 43, 55, 56, 71, 73, 76, 80, 89, 94, 109, 119, 164–

169

SRAM static random access memory. 13, 14, 52–55, 97, 100, 102, 127, 128,

131, 133

SVM support vector machines. 21, 23–25, 43, 46, 48, 55, 95, 96, 100, 103,

110, 115, 165

TCN Temporal Convolutional Networks. 37–39, 43, 48, 94, 95, 103, 104,

110, 111, 113, 115, 165

TOPS/W tera operations per second per watt. 51, 109–111, 115, 117, 165

TPR true positive rate. 8, 9 ULP ultra-low power. 94

List of Figures

Fig. 1.1	IoT hierarchy showing the cloud–edge continuum	2
Fig. 1.2	Building blocks of ML at the edge	4
Fig. 1.3	(a) A speech recognition pipeline showing KWS and	
	LVSR systems running on edge device and cloud,	
	respectively, (b) an image recognition pipeline detecting	
	object, and (c) a machine monitoring pipeline for	
	industrial predictive maintenance application	5
Fig. 1.4	Machine learning pipeline overview. Based on source [60]	7
Fig. 1.5	Examples of optimum-fit, under-fit, and over-fit models	
	trained on a binary classification task	8
Fig. 1.6	Confusion matrix for a binary classification task (left) and	
Ü	an ROC curve example (right)	9
Fig. 1.7	Overview of the book contributions	16
Fig. 2.1	(Left) Possible hyperplanes in a binary SVM classifier	
Ü	and (right) optimal hyperplane with maximum margin	22
Fig. 2.2	(Left) Hyperplane in a 2D feature space is a line and	
	(right) hyperplane in a 3D feature space is a plane	22
Fig. 2.3	(Left) Hyperplane with a small margin and (right)	
	hyperplane with a large margin	23
Fig. 2.4	Kernel trick transforms the feature space from lower	
	dimension to higher dimension to make the classes easily	
	separable	25
Fig. 2.5	(Top) Classical Machine Learning with handcrafted	
	features and (bottom) deep learning with integrated	
	feature extraction and classification operating on raw input	26
Fig. 2.6	An example of a single hidden layer MLP with commonly	
	used non-linear activation functions	32
Fig. 2.7	An example of a multi-layer stacked convolutional neural	
-	network model	33
Fig. 2.8	An example of a multi-layer stacked residual neural	
-	network showing the internals of the residual block	34

xvi List of Figures

Fig. 2.9	MobileNet's depthwise separable layer divides standard convolutional layer into depthwise and pointwise layers	35
Fig. 2.10	Example of a convolutional autoencoder	35
Fig. 2.11	(a) A recurrent neural network and its temporally	33
11g. 2.11	unrolled form (based on source [165]), (b) internal gates	
	of an LSTM network, and (c) notations used in (b)	
	(Source [165])	37
Fig. 2.12	Dilated convolution of input x_t to produce output y_t in a	31
14g. 2.12	temporal convolutional network	38
Fig. 2.13		30
Fig. 2.13	Pruning of weights and neurons to achieve model	40
Eig 2 14	compression	40
Fig. 2.14	* *	41
Eig. 2.1	computational steps	45
Fig. 3.1	General accelerator template for ML platforms	46
Fig. 3.2	An example dataflow	40
Fig. 3.3	Throughput vs. peak power for the surveyed hardware	51
Fig. 3.4	platforms. Each MAC is equivalent to two operations	31
Fig. 5.4	Data type and precisions vs. performance for the surveyed	52
Eig 25	hardware platforms On-chip SRAM memory size vs. energy efficiency for the	32
Fig. 3.5	· · · · · · · · · · · · · · · · · · ·	53
Eig 26	surveyed hardware platforms	33
Fig. 3.6	Area vs. area efficiency for the surveyed hardware	53
Eig 27	platforms Area vs. apergy officiency for the surveyed hardware	33
Fig. 3.7	Area vs. energy efficiency for the surveyed hardware	5.1
Eia 4.1	platforms [147]	54
Fig. 4.1	ZigZag framework diagram [147]	61
Fig. 4.2	Exploration results for MobileNetV2 for different layers	
	shown in bottom subplot as L1, L2, L3, etc. The top 3	
	subplots describe different memory hierarchies, with	
	the colored points representing memory sharing of one	
	or more operands (W/I/O) at memory level 0/1/2 and	
	black points indicating private memories at all memory	
	levels. The bottom plot shows the energy (stack bars) and area (black curve) of individual layers deployed on each	
	hierarchy. All results are derived with CACTI7 [8] 65 nm	
		62
Eia 12	technology node	02
Fig. 4.3	Memory hierarchy template for the DSE, visualizing	63
Ein 4.4	memory levels/sharing/bypassing of Table 4.1	03
Fig. 4.4	Energy-Latency-Area comparison for mapping 12	
	NNs on 720 accelerator architectures each. Each NN	
	architecture pair corresponds to two points in the figure,	
	one with min-energy mapping and one with min-latency	
	mapping. The Pareto-optimal accelerator architectures for	65
	each neural network are highlighted and connected [147]	65

List of Figures xvii

Fig. 4.5	Box and whisker plots for energy (top) and latency (bottom) for individual NNs across 200 hardware	
Fig. 4.6	architectures	66
	are normalized to min-energy, respectively, latency, of that NN. The top 3 subplots show the memory hierarchy, with the colored points representing memory sharing of one or more operands at L1/L2 and black points	60
Fig. 5.1	indicating private memories at all levels An example object detection application for autonomous drones	68 72
Fig. 5.2	Estimated <i>DSP</i> _{efficiency} of PEs for C K spatial unrolling as a function of PE array size when running the layers of tiny-YOLOv2. L1, L2, shows the nine layers of the model	82
Fig. 5.3	Estimated <i>DSP</i> _{efficiency} of PEs for OX K spatial unrolling as a function of PE array size when running the layers of tiny-YOLOv2. L1, L2, shows the nine layers of the model	83
Fig. 5.4	Block diagram of the hardware implementation of the accelerator showing the SIMD array, activation unit, pooling unit, control unit, and input, weight, and output memories	84
Fig. 5.5	Timing diagram showing the simultaneous operation of read, write, and execute, without waiting for complete input data to be available. $L_1, L_2,$ represents the layers of the neural network	85
Fig. 5.6	System-level architecture showing the communication infrastructure between the accelerator and external memory (DRAM) of the CPU (ARM A9)	86
Fig. 5.7	Tiling scheme applied to the hardware implementation shown as a pictorial representation of the convolution operation between input feature maps with filters to generate output feature maps	88
Fig. 5.8	Demonstrating tiny-YOLOv2 on Xilinx xc7z035 with bounding box and class probability of a person (left) and airplane (right). The demo achieves an FPS of 11.54 enabling real-time operation	89
Fig. 6.1	Different ML models and their mathematical representation in terms of MMM and MVM. The nested <i>for</i> -loop representation can be mapped onto specialized	
	accelerators through spatial and temporal unrolling	96

xviii List of Figures

Fig. 6.2	Overview of the complete TinyVers SoC showing the different power domains (PDs) with their constituting	
	modules and the power modes supported	98
Fig. 6.3	Power simulation of post-synthesis netlist undertaken in	
	Cadence Genus tool for the three power modes. In all	
	three modes, I2S data is collected at a sampling frequency	
	of 44.1 kHz for a window of 2 seconds. Full active power	
	reported includes configuration of uDMA by RISC-V	
	core and interrupt handling procedure, in addition to data	
	collection	99
Fig. 6.4	Flow diagram showing the hierarchical FSM used in the	
0	WuC	100
Fig. 6.5	FlexML accelerator architecture overview with ucode	
	instruction	101
Fig. 6.6	Block diagram of the processing elements used in the	
	flexMl accelerator, showing the precision-scalable MAC	
	unit and the additional hardware to support SVM	102
Fig. 6.7	Diagram showing the dataflow reconfiguration used to	
	switch from OX K dataflow (left) for MMM to C K	
	dataflow for MVM. The nested for-loops below show the	
	addition of parfor loops for the spatial unrolling used	103
Fig. 6.8	Representation of deconvolution layer in software (top	
	left), control unit running the zero-skip operation (bottom	
	left), the architectural change required on the L0 FIFO	
	to support deconvolution (top right), and cycle-by-cycle	
	operation of the FIFO and PEs (bottom right)	105
Fig. 6.9	Blockwise structured sparsity applied to CNN and dense	
	layers (top) and control unit operation in tandem with	
	sparsity index memory to support zero-skipping (bottom)	105
Fig. 6.10	Compiler for ML deployment	107
Fig. 6.11	(Left) The step and hold mechanism and (right) the WuC	
	bypass shift register	108
Fig. 6.12	Measurement setup and chip microphotograph	109
Fig. 6.13	Peak performance analysis of CNN 3×3 layer	109
Fig. 6.14	Power breakdown of the peak perf. analysis with	
	$CNN3 \times 3$. MRAM power consumption is negligible	
	as it is OFF in active mode. MRAM(A) and MRAM(P)	
	represent MRAM array and MRAM periphery,	
	respectively	109

List of Figures xix

Fig. 6.15	Energy breakdown showing the distribution of measured energy of the chip modules for running a single inference	
	of the four real-time workloads on FlexML and RISC-V	
	with input data already available in L2 memory. The	
	power and latency measurements start from the setting	
	up of accelerator parameters by RISC-V, data movement	
	from L2 to L1, inference computations, and end with	
	post-processing by the RISC-V core. MRAM power	
	consumption is negligible as it is OFF in active mode	112
Fig. 6.16	Deep sleep power–latency–frequency trade-off	113
Fig. 6.17	Instantaneous power trace showing the KWS application	110
118. 0.17	scenario with one full period of smart sensing and TCN	
	processing followed by idling	114
Fig. 6.18	Instantaneous power trace showing the machine	
118. 0.10	monitoring application scenario with one period of smart	
	sensing, FE, and CAE processing followed by idling	115
Fig. 7.1	Computer vision networks exhibit different workloads:	113
11g. 7.1	the number of parameters per layer grows quadratically,	
	while the feature maps size decreases with the same	
	speed. The result is shallow layers with huge feature maps	
	and small-scale weights and deep layers with a large	
	number of weights but small features. A heterogeneous,	
	reconfigurable architecture is thus required to support	
	different workload characteristics	120
Fig. 7.2	(a) 7-nested loop representation of a 2D convolutional	120
1 16. 7.2	layer and of a matrix–matrix multiplication and how	
	different dataflows map the workload on the hardware, (b)	
	weight stationary FX, FY, C K dataflow for AIMC, and	
	(c) output stationary OX K dataflow and C K dataflows	
	for Digital	122
Fig. 7.3	A design space exploration of the AIMC core for different	122
1 18. 7.0	workloads is carried out (a) based on an AIMC core	
	hardware template or (b) exploring for different design	
	points by sweeping over the listed AIMC array and	
	activation buffer sizes. Pareto frontier points in (a) report	
	the optimal configurations for each network. The stars	
	indicate the configuration selected for the DIANA design	123
Fig. 7.4	By adopting the output pixel unrolling mapping of the	120
8. ///	array, weights are duplicated OX_u times in the array,	
	while a corresponding number of pixels are computed in	
	parallel (b) instead of a single one (a). As example (c)	
	describes the significant savings in latency that can be	
	achieved for the layers in the first ResBlock of ResNet18	
	with a 1152×512 array, linearly proportional with the	
	OX_u , with a negligible increase of extra weight loading (c)	124
	- u,	

xx List of Figures

Fig. 7.5	Architectural block diagram of the heterogeneous system	126
Fig. 7.6	Timing diagram of the system under different workloads;	
	each workload reports an indicative number of the time	
	duration of each task, in clock cycles at 270 MHz	127
Fig. 7.7	L1 memory design with detail of the analog core interfaces	128
Fig. 7.8	(a) AIMC core block diagram and (b) description of a	
	single bitcell in the analog domain (from [167]), and (c)	
	reports a timing diagram of the processing stages and	
	their synchronization signals	130
Fig. 7.9	Microarchitecture of the MCU (left) and example of	
	operation for data reuse of the activation buffer	130
Fig. 7.10	Microarchitecture of the output buffer and the SIMD unit	132
Fig. 7.11	Digital core architecture diagram	133
Fig. 7.12	Die photo	134
Fig. 7.13	(Left) Error and power measurements as a function of the	
	AIMC macro operating point for a uniform distribution	
	of accumulation values between [0:4096]; each grid	
	element corresponds to one operating point and the label,	
	its mean percent error on the ADC output. (Right) the	
	most accurate operating point of the macro for different	
	accumulation value ranges	135
Fig. 7.14	Peak performance and efficiencies at system level of the	
	(a) complete analog core and (b) complete digital core,	
	both including peripheries	136
Fig. 7.15	ResNet20 performance measurement (a) and energy	
	efficiency. (b) The network achieves low spatial	
	utilization of the AIMC macro, thus not achieving peak	
	efficiencies	137
Fig. 7.16	ResNet18 performance measurement (a) and efficiency.	
	(b) TOP/s and TOP/s/W are highly dependent on the	
	temporal and spatial utilization of the AIMC macro	137
Fig. 7.17	ResNet18 mapping of the ResBlock layers on the AIMC	
	core, with their relative spatial utilization and required	
	number of weight-write operations. OX unrolling of 4 is	
	used for the ResBlock64	138
Fig. 7.18	By immediate reuse of intermediate data, memory	
	requirements for the activations can be reduced by $7.2\times$,	
	allowing to keep only a subsection of the feature map in	
	memory as depicted in (a); furthermore, by scheduling	
	different layers on different cores, computations can be	
	overlapped in time (b) with subsequent latency savings (c)	139
Fig. 8.1	Roofline model showing requirements of DNN workloads	
	on NoC bandwidth	144
Fig. 8.2	Overview of traditional NoCs vs proposed AXI NoC	146

List of Figures xxi

Fig. 8.3	Multi-channel architecture of AXI read-and-write interfaces	147
Fig. 8.4	Transaction ordering requirement for AXI protocol	148
Fig. 8.5	PATRONoC instances as a 2×2 mesh (left) and a 4×4	
	mesh (right). The AXI masters and slaves are not shown	
	in the 4×4 mesh for ease of readability. Elementary	
	blocks used for the NoC are also shown: XP (bottom-left)	
	and XBAR (bottom-right). Red XP is 3-master and	
	3-slave, light blue XP is 4-master and 4-slave, and dark	
	blue XP is 5-master and 5-slave	149
Fig. 8.6	Implementation results showing area versus bisection	
	bandwidth of PATRONoC and ESP-NoC [74] in 2×2	
	mesh configurations. PATRONoC's configurations are	
	represented as AXI_AW_DW_IW	152
Fig. 8.7	Implementation results showing area vs. bisection	
	bandwidth of PATRONoC in 4×4 mesh	
	configurations (left). Configurations are represented	
	as AXI_AW_DW_IW. Area vs. MOT trade-off for	
	DW = 64 bits (right)	152
Fig. 8.8	Uniform Random Traffic with Poisson distribution using	
	Noxim simulator for a 4×4 2D mesh and uniform	
	random traffic on the slim PATRONoC with increasing	
	DMA burst length	154
Fig. 8.9	Synthetic traffic patterns for the performance evaluation.	
	(a) All global access. (b) Max two-hop access. (c) Max	
T. 0.10	single-hop access	154
Fig. 8.10	Throughput versus injected load for the synthetic random	
	traffic running on the slim and wide PATRONoC using all	
	global access, max 2 hop, and max 1 hop traffic patterns	150
E'. 0.11	with different DMA burst sizes	156
Fig. 8.11	NoC utilization at maximum injected load for the	
	synthetic random traffic running on the slim and wide	
	PATRONoC using all global access, max 2 hop, and max	157
Dia 9.12	1 hop traffic patterns with different DMA burst sizes	137
Fig. 8.12	Overview of the DNN workloads used for PATRONOC	
	evaluation. FWD and BWD in (a) represent the forward	
	and backward propagation workloads used in DNN	
	training. (a) Distributed training. (b) Convolution	150
Eig 9 12	parallelized. (c) Convolution pipelined	138
Fig. 8.13	Throughput analysis for DNN workload traffic on the PATRONoC	150
	TATRONUC	139

List of Tables

Table 1.1	Models commonly used in machine learning	10
Table 3.1	Surveyed hardware platforms	49
Table 3.2	Flexibility of the surveyed hardware platforms	55
Table 3.3	Power management and autonomy of the surveyed	
	hardware platforms	56
Table 4.1	Memory pool for design space exploration	64
Table 5.1	YOLO networks comparison based on the required	
	accuracy, the number of operations, and memory	78
Table 5.2	YOLO networks comparison based on the required	
	throughput and DSPs	78
Table 5.3	Accuracy of tiny-YOLOv2 with quantization applied	
	using two schemes: PTQ and QAT	79
Table 5.4	Comparison with SoTA in object detection	
	implementation on FPGA	90
Table 6.1	Workload benchmarks	110
Table 6.2	Measurement results of different low power modes	112
Table 6.3	Performance comparison with state-of-the-art	116
Table 7.1	Network end-to-end accuracy and performance summary	139
Table 7.2	State of the art DNN accelerators comparison	140
Table 8.1	Main parameters of the PATRONoC 2D mesh	150
Table 8.2	Comparison of PATRONoC with state-of-the-art NoCs in SoCs	160