Refinement Reflection: Complete Verification with SMT

Niki Vazou¹, Anish Tondwalkar², Vikraman Choudhury³, Ryan Scott³, Ryan Newton³, Philip Wadler⁴, and Ranjit Jhala²

> ¹University of Maryland ²UC San Diego ³Indiana University ⁴University of Edinburgh

$$i \le 1 \land v = 1 \Rightarrow 0 < v \land i \le v$$

SMT-Valid

not
$$i \le 1$$
 $0 < v_{i-1} \land i-1 \le v_{i-1}$
 $0 < v_{i-2} \land i-2 \le v_{i-2}$
 $v = v_{i-1} + v_{i-2}$

$$SMT-Valid$$

Verified

Verification with SMT To be **Practical**, SMT queries are **Decidable**

Can verification be Complete?

Complete Verification with SMT

Refinement Reflection

Reflect Function Definition in Result Type

Proof by Logical Evaluation

Simplify Proof Generation

Complete Verification with SMT

How to express theorems about functions?

```
\forall i. 0 \le i \Longrightarrow fib i \le fib (i+1)
```

How to express theorems about functions?

Step 1: Definition

In SMT fib is "Uninterpreted Function"
\forall i j. i = j => fib i = fib j

How to connect logic fib with target fib?

How to connect logic fib with target fib?

```
fib :: i:{Int|0≤i} > {v:Int|0<v∧iv⟩
 fib
    otherwise = Tib (i-1) + Tib
\foralli.
          then fibia = 1
         rib i = fib (i-1) + fib (i-2)
```

How to connect logic fib with target fib?

Refinement Reflection

```
fib :: i:{Int|0 \le i} -> {v:Int| v = fib i \land i \le 1 \text{ then fib } i = 1 \text{ else fib } i = fib (i-1) + fib (i-2)}
```

Refinement Reflection

```
fib :: i:{Int|0≤i} → {v:Int| v=fib i Λ
    if i≤1 then fib i = 1
    else fib i = fib (i−1) + fib (i−2)
}
```

Refinement Reflection

Step 1: Definition

Step 2: Reflection

```
fib :: i:{Int|0≤i} → {v:Int| v=fib i Λ
    if i≤1 then fib i = 1
    else fib i = fib (i−1) + fib (i−2)
}
```

Refinement Reflection

Step 1: Definition

Step 2: Reflection

```
fib :: i:{Int | 0≤i} → {v:Int | v=fib i Λ
    if i≤1 then fib i = 1
    else fib i = fib (i-1) + fib (i-2)
}
```

Step 3: Application

```
fib 0 :: {v:Int| v=fib 0 \( \lambda \) fib 0 = 1}
```

Application is Type Level Computation

fib 0

fib 0 = 1

Application Type Level Computation

```
fib 0 = 1
fib 0
fib 1
            fib 2 = fib 1 + fib 0
fib 2
fib i
```

? if $i \le 1$ then fib i = 1 else fib i = 1 (i-2)

Application Type Level Computation

```
fib 0 = 1
    fib 0
                       fib 1 = 1
    fib 1
                fib 2 = fib 1 + fib 0
    fib 2
if 1<i then
            fib i = fib (i-1) + fib (i-2)
    fib i
    if i \le 1 then fib i = 1
    else fib i = fib (i-1) + fib (i-2)
```

Application Type Level Computation

```
fib 0
                      fib 0 = 1
                      fib 1 = 1
    fib 1
                fib 2 = fib 1 + fib 0
    fib 2
if 1<i then
            fib i = fib (i-1) + fib (i-2)
    fib i
            \{fib (i+1) = fib i + fib (i-1)\}
  fib (i+1)
```

Theorem Proving

```
fibUp :: i:Nat -> {fib i ≤ fib (i+1)}
fibUp i
 i == 0
= fib 0 <. fib 1
*** QED
 i == 1
= fib 1 <=. fib 1 + fib 0 <=. fib 2
*** QED
 | otherwise
= fib i
<=. fib i + fib (i-1)
<=. fib (i+1)
*** QED
```

Reflection for Theorem Proving

Theorems are refinement types.

Proofs are functions.

Check that functions prove theorems.

Proofs are functions.

```
fibUp :: i:Nat -> {fib i ≤ fib (i+1)}
```

Proofs are functions.

```
fibUp :: i:Nat -> {fib i ≤ fib (i+1)}

Let's call them!
```

```
fibUp 4 :: {fib 4 \leq fib 5}
fibUp i :: {fib i \leq fib (i+1)}
fibUp (j-1) :: {fib (j-1) \leq fib j}
```

Proofs are functions. Let's call them!

```
fibMono :: i:Nat -> j:{Nat| i < j}</pre>
        \rightarrow {fib i \le fib j}
fibMono i j
 | i + 1 == j
 = fib i
 <=. fib (i+1) ? fibUp i
 ==. fib j
 *** QED
 | otherwise
 = fib i
 <=. fib (j-1) ? fibMono i (j-1)
 <=. fib j ? fibUp (j-1)
 *** 0ED
```

Proofs are functions. Let's call them!

```
fibMono :: i:Nat -> j:{Nat| i < j}</pre>
        \rightarrow {fib i \le fib j}
fibMono i j
 | i + 1 == j
 = fib i
 <=. fib (i+1) ? fibUp i
 ==. fib i
 *** QED
 | otherwise
 = fib i
 <=. fib (j-1) ? fibMono i (j-1)
 <=. fib j ? fibUp (j-1)
 *** 0ED
```

Proofs are functions. Let's abstract them!

```
fibMono :: i:Nat -> j:{Nat| i < j}
       -> fib:(Nat -> Int)
       -> (k:Nat -> \{fib k \leq fib (k+1)\})
       -> \{fib i \leq fib j\}
fibMono i j fib fibUp
| i + 1 == j
= fib i
<=. fib (i+1) ? fibUp i
 ==. fib j
                LiquidHaskell
*** QED
 otherwise
= fib i
<=. fib (j-1) ? fibMono i (j-1)
<=. fib j ? fibUp (j-1)
 *** QED
```

Proof by Logical Evaluation (PLE) Idea: Unfold if you can

Proof by Logical Evaluation (PLE) Idea: Unfold if you can

```
fibUp :: i:Nat -> {fib i ≤ fib (i+1)}
```

Proof by Logical Evaluation (PLE) Idea: Unfold if you can

```
fib i = ?
fib (i+1) = ?
```

Can't unfold!

No information about i

```
if i=0, then
    fib i = ?
fib (i+1) = ?
```

```
if i=0, then
    fib i = 1
    fib (i+1) = 1
```

```
if i=1, then
    fib i = ?
fib (i+1) = ?
```

```
if i=1, then
    fib i = 1
    fib (i+1) = fib 1 + fib 0
```

```
if i=1, then
    fib i = 1
    fib (i+1) = fib 1 + fib 0
    fib 1 = 1
    fib 0 = 1
```

```
if i>1, then
    fib i = ?
    fib (i+1) = ?
```

Idea: Unfold if you can, using context.

```
if i>1, then
```

```
fib i = fib (i-1) + fib (i-2)
fib (i+1) = fib i + fib (i-1)
```

Idea: Unfold if you can, using context.

```
if i>1, then
```

```
fib i = fib (i-1) + fib (i-2)
fib (i+1) = fib i + fib (i-1)
fib (i-1) = ?
fib (i-2) = ?
```

Can't unfold!

```
fibUp :: i:Nat -> {v:() | fib i ≤ fib (i+1)}
fibUp i
    | i == 0
    = ()
    | i == 1
    = ()
    | otherwise
    = ()
```

Idea: Unfold if you can, using context.

Prop I: Termination.

Prop II: Completeness.

Application: Proof Simplification.

Evaluation

(Spec + Proof) / Impl

x2.4

x1.6

Benchmark	Common				Without PLE Search				With PLE Search			
	Imp	l (l)	Spec (l)	Pı	roof (l)	Time (s)	SMT (q)	Pr	oof (l)	Time (s)	SMT (q)	
Total	1	176	1279		1524	148.76	1626		638	150.88	4068	

Evaluation

(Spec + Proof) / Impl x2.4

x1.6

Benchmark	Com	mon	Witho	out PLE S	earch	With PLE Search					
Dencimark	Impl (l)	Spec (l)	Proof (l)	Time (s)	SMT (q)	Proof (l)	Time (s)	SMT (q)			
Arithmetic											
Fibonacci	7	10	38	2.74	129	16	1.92	79			
Ackermann	20	73	196	5.40	566	119	13.80	846			
Class Laws											
Monoid	33	50	109	4.47	34	33	4.22	209			
Functor	48	44	93	4.97	26	14	3.68	68			
Applicative	62	110	241	12.00	69	74	10.00	1090			
Monad	63	42	122	5.39	49	39	4.89	250			
Higher-Order Properties											
Logical Properties	0	20	33	2.71	32	33	2.74	32			
Fold Universal	10	44	43	2.17	24	14	1.46	48			
Functional Corre	Functional Correctness										
SAT-solver	92	34	0	50.00	50	0	50.00	50			
Unification	51	60	85	4.77	195	21	5.64	422			
Deterministic Parallelism											
Conc. Sets	597	329	339	40.10	339	229	40.70	861			
<i>n</i> -body	163	251	101	7.41	61	21	6.27	61			
Par. Reducers	30	212	124	6.63	52	25	5.56	52			
Total	1176	1279	1524	148.76	1626	638	150.88	4068			

Evaluation

Spec + Pro	of)/	Imp	l	x2.4		>	<1.6		
Dl l-	Com	mon	Without PLE Search			With PLE Search			
Benchmark	Impl (l)	Spec (l)	Proof (l)	Time (s)	SMT (q)	Proof (l)	Time (s)	SMT (q)	
Arithmetic							•		
Fibonacci	7	10	38	2.74	129	16	1.92	79	
Ackermann	20	73	196	5.40	566	119	13.80	846	
Class Laws		•					•	•	
Monoid	33	50		Service Service Control of the Service					
Functor	48	44		\/\landa/			VO		
Applicative	62	110		x 4			XX		
Monad	63	42					B. Joseph Br. La. (1984) areas in 1950 (1957) in palacelle. Joseph		
Higher-Order Pro	perties						elektik dan Silakatan ela	All and Silver Sales	
Logical Properties	0	20	33	2.71	32	33	2.74	32	
Fold Universal	10	44	43	2.17	24	14	1.46	48	
Functional Correctness									
SAT-solver	92	34	0	50.00	50	0	50.00	50	
Unification	51	60	85	4.77	195	21	5.64	422	
Deterministic Par	rallelism	l			•				
Conc. Sets	597	329							
<i>n</i> -body	163	251		$\mathbf{X} \mathbf{I} \mathbf{I}$	7		$\langle 1.5 \rangle$	5	
Par. Reducers	30	212		14.	U		14,(
Total	1176	1279	1524	148.76	1626	638	150.88	4068	

Complete Verification with SMT

In the paper!

PLE is Complete & Terminating
Comparison with other verifiers
Encoding of Natural Deduction (Sec 3!)

Complete Verification with SMT

Refinement Reflection

Reflect function definition in result type Function application gives type level computation

Proof by Logical Evaluation

Unfolds function definitions, if it can Complete & Terminating Procedure

Thanks