물리학 및 실험 1

스마트 게이트를 활용한 포사체 운동

과목	물리학및실험1
담당교수	전계진 담당조교
조 및 조원	2조, 김민수 김민규 김민서 김백준 김연주
제출일	2024-05-03
작성자	김민수 학번 20518009 학과 정보보호

1 실험목적

포사체의 운동을 통해 중력 가속도를 받으면서 운동하는 물체의 2차원 운동을 이해한다. 포사체의 수평도달거리와 비행시간을 측정하여 이론적으로 유도된 값과 잘 들어맞는지확인하고, 발사각에 따라 그 값이 또 어떻게 달라지는지 확인한다.

2 실험원리

포사체(projectile)는 초기 속도가 주어지고 이후에는 중력 가속도의 영향만으로 경로가 결정되는 물체이다 (실제로는 공기 저항도 포사체의 운동에 영향을 주지만, 이상적인 경우에는 이를 무시할 수 있다.)

Figure 1과 같이 공을 수평방향에 대해 각 θ , 초기속도 v_0 로 발사하는 경우를 생각해보자. Figure 1의 점선은 포사체의 경로를 나타내는 곡선으로 포물선이 된다.

이 운동을 기술하기 위해 포사체가 xy평면상에서 운동한다고 가정하고, x축을 수평, y축을 위쪽 수직 방향으로 정하자. 이 포사체가 받는 가속도의 x성분은 0이고, y성분은 -g이다. 다시 말해, 포사체가 받는 가속도 a의 성분은 다음과 같다.

$$a_x = 0, a_y = -g (1)$$

따라서 등가속도 운동식을 사용하여 다음과 같이 포사체의 속도와 위치를 구할 수 있다.

$$v_x = v_{0x} + a_x t = v_{0x} v_y = v_{0y} + a_y t = v_{0y} - gt$$
(2)

Figure 1: 포사체의 운동. 수평방향에 대해 각 θ , 초기속도 v_0 로 발사한 포사체는 포물선 궤적을 그리며 운동한다.

$$x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2 = x_0 + v_{0x}t$$

$$y = y_0 + v_{0y}t + \frac{1}{2}a_yt^2 = y_0 + v_{0y}t - \frac{1}{2}gt^2$$
(3)

위 식으로부터 포사체의 운동은 수평방향 $(x^{\frac{1}{2}})$ 과 연직방향 $(y^{\frac{1}{2}})$ 을 두 축으로 하는 2차원 운동이 되고, 공기의 저항을 무시할 때 수평방향으로는 등속도 운동, 수평방향으로는 등가속도 운동으로 기술할 수 있다.

공을 발사하는 순간을 t=0 으로 설정하면, 초기속도 $v_0=(v_0cos\theta,v_0sin\theta)$ 가 되고, t 초 후의 공의 속도 $\vec{v}=(v_x,v_y)$ 는 식 2로부터

$$v_x = v_0 cos\theta$$

$$v_y = v_0 sin\theta - gt$$
(4)

가 된다. 또한 공이 발사되고 t초 후의 공의 위치 (x,y)는

Figure 2: 포사체의 속도. 시간에 따른 포사체의 속도 $v_x(t)$ 와 $v_y(t)$.

$$x(t) = x_0 + (v_0 \cos \theta)t$$

$$y(t) = y_0 + (v_0 \sin \theta)t - \frac{1}{2}gt^2$$
(5)

가 된다. 여기서 x_0 와 y_0 는 공이 발사될 때의 초기 위치 (x_0, y_0) 이다.

Figure 3: 포사체의 위치. 시간에 따른 포사체의 위치 x(t)와 y(t).

2.1 최고점 높이, y_{max}

포사체가 최고 높이 (y_{max}) 에 이르렀을 때, 수직방향의 속도, 즉 $v_y=0$ 이 된다. 만약 포사체가 최고 높이에 도달했을때의 시간을 t_{max} , 바닥으로부터의 높이를 y_{max} 라고 하면, 식 4의 두 번째 식에서

$$v_y = v_0 sin\theta - gt_{max} = 0 (6)$$

이 되고, 이 식으로부터 최고점 도달 시간 t_{max} 는

$$t_{max} = \frac{v_0 sin\theta}{q} \tag{7}$$

이 된다. 이 값을 식 5의 두 번째 식에 대입하면, 최고 높이 y_{max} 는

$$y_{max} = y_0 + (v_0 sin\theta) \frac{v_0 sin\theta}{g} - \frac{g}{2} \left(\frac{v_0 sin\theta}{g}\right)^2$$

$$= y_0 + \frac{v_0^2 sin^2\theta}{2g}$$
(8)

이 된다.

2.2 수평 도달 거리, R

다음에는 포사체가 바닥에 닿을 때까지 날아간 거리, 즉 포사체의 수평도달거리 R을 구하는 식을 유도해 보자

포사체가 바닥에 닿는 지점은 (R,0)인 점이다. 만약 포사체가 바닥에 떨어질 때까지 날아간 시간을 t_r 이라고 하면, 식 5의 두 번째 식에서

$$0 = y_0 + (v_0 \sin \theta)t_r - \frac{1}{2}gt_r^2 \tag{9}$$

을 만족한다. 따라서 t_r 은 2차 방정식의 근의 공식을 이용하여

$$t_{r\pm} = \frac{v_0 sin\theta \pm \sqrt{v_0^2 sin^2\theta + 2gy_0}}{g} \tag{10}$$

임을 알 수 있다. 여기서 우리가 구하는 답은 t_{r+} 가 된다 $(t_{r+}>0)$ 이고 $t_{r-}<0$ 인데, 음의 값은 공이 발사되기 전 시간이므로 t_{r+} 가 구하는 답이 된다). 수평도달거리 R은 t_{r+} 를 식 5의 첫 번째 식에 대입하여 다음과 같이 구할 수 있다.

$$R = x_0 + (v_0 cos\theta) t_{r+}$$

$$= x_0 + (v_0 cos\theta) \frac{v_0 sin\theta + \sqrt{v_0^2 sin^2\theta + 2gy_0}}{g}$$
(11)

2.3 포사체의 초기 속도, v_0

이론적으로 포사체의 최고점 도달 높이와 수평도달거리를 알아내려면 포사체의 발사각 θ 와 초기위치 (x_0,y_0) 외에 포사체의 발사속도 v_0 도 알아야 한다. v_0 는 다음과 같은 방법으로 알아낼 수 있다.

[방법 1] 스마트 게이트를 이용하여 발사속도를 측정한다.

포사체 발사 장치에 스마트 게이트를 장착하여 공이 발사되는 순간의 초기 속도 v_0 를 직접 측정할 수 있다. 이 실험에서는 이 방법을 사용할 것이다.

3 실험장치 및 방법

스마트 게이트를 이용한 포사체 운동 실험에 필요한 실험 장치 및 기구는 다음과 같다.

3.1 역학 실험장치

- 포사체 발사장치, 발사체(공), 테이블 클램프
- 측량 추, 줄자, 종이, 먹지

3.2 센서 실험장치

- 컴퓨터, PASCO 550 Interface, 데이터 분석 소프트웨어(Capstone)
- 스마트 게이트(고정막대, 케이블, 고정 볼트 포함), Time of Flight

3.3 실험 방법

3.3.1 실험 장치 구성

- 1. 책상 한쪽 끝에 발사 장치를 단단히 고정하고, 발사구에 연직추를 매달아서 수평 이동거리의 기준점을 표시한다.
- 2. 550 인터페이스와 스마트 게이트를 연결한다.
- 3. 발사강도를 1단(또는 2단)으로 하여 공을 장전하여 발사한다. 막대로 공을 발사구에 밀어 넣어서 공을 발사한 다음 공이 날아가는 거리에 맞추어, 'Time of Flight' 장치를 갖다 놓고 스마트 게이트에 연결한다.
- 4. 공이 바닥에 떨어지는 지점에 흰 종이를 고정시키고, 그 위를 먹지롤 덮어서 떨어진 지점이 종이 위에 표시되게 한다.
- 5. 줄자를 이용하여 테이블에서 발사구까지 높이에서 Time of Flight 높이를 뺀 y_0 를 측정한다.

3.3.2 센서와 캡스톤 프로그램 설정

- 1. 550 인터페이스의 스위치를 켠 후 Capstone 프로그램을 실행한다.
- 2. 550 인터페이스가 정상적으로 인식되면, 좌측 [Tools]의 [Hardware Setup]을 클릭하면 다음 그림과 같이 화면에 550 인터페이스가 나타난다.
- 3. 550 인터페이스가 스마트 게이트를 인식하면, 다음과 같이 [Timer Setup]과 스마트 게이트 아이콘이 나타난다.
- 4. [Hardware Setup] 선택 후 Smart Gate 아이콘에서 3을 선택하여 Time of Flight Accessory를 선택하다.
- 5. [Timer Setup]에서 Time of Flight 설정을 해준다. (전부 Next)
- 6. [Display] 팔레트에서 [Table] 아이콘을 드래그하여 데이터 테이블을 생성한다. 오른쪽 [Display] 팔레트에서 [Table] 을 화면 가운데로 드래그하면 테이블이 생성된다. Table에 1열은 Initial Speed(m/s)와 2열은 Time of Flight(s)를 선택한다.

3.3.3 본 실험

실험 장치 구성과 센서 설정이 모두 끝났으면, 이제부터 포사체 운동 실험을 시작한다.

1. 발사구에 공을 넣고, 발사 강도를 1단으로 하여 장전한다.

- 2. 발사각을 15°로 고정하고 시험 발사하여 공이 떨어지는 위치를 확인한다.
- 3. 위 2에서 확인한 위치에 Time of Flight 패드를 두고, 그 위에 흰 종이를 붙인 다음 먹지로 덮는다.
- 4. 실험 준비가 완료되면, [Controls] 메뉴의 [Record] 버튼을 클릭한다. [Record] 버튼을 클릭하면 측정이 시작되고, [Record] 버튼은 [Stop] 버튼으로 바뀐다. 공을 발사하면 Initial Speed(m/s)와 2열은 Time of Filght(s)가 화면의 표에 나타난다. 측정을 종료할 때에는 [Stop]을 클릭한다. 이때의 수평 이동거리(비행거리 R)를 줄자로 재어서 표에 기록한다.
- 5. 측정된 모든 데이터는 메모리에 저장된다. 저장된 데이터는 자동으로 이름이 부여 되고 목록에 표시되여 그래프 또는 테이블에서 언제든지 불러올 수 있다. 불필요한 데이터는 [Controls]메뉴의 [Delete Last Run] 및 하위메뉴에서 삭제할 수 있다.
- 6. [Controls] 메뉴의 [Stop] 버튼을 클릭하여 측정을 완료한다.
- 7. 공의 발사속도 v와 비행시간 T, 그리고 비행거리 R을 실험표에 기록한다.
- 8. 위 $1 \sim 7$ 의 과정을 3번 되풀이하고, 평균값과 표준오차를 기록한다.
- 9. 발사각을 15° 씩 증가시키면서 위 $1 \sim 8$ 의 과정을 되풀이한다.
- 10. 위의 결과로부터 발사각에 따른 도달거리의 변화를 보여주는 그래프를 그린다.

4 실험 결과 및 분석

Figure 4: $\theta = 15^{\circ}$ 일 때의 포사체의 운동.

이론값의 계산은 우선 비행 시간 T의 경우 식 10에서 t_{r+} 가 된다. $(t_{r+}>0$ 이고 $t_{r-}<0$ 인데, 음의 값은 공이 발사되기 전 시간이므로 t_{r+} 가 구하는 답이 되기 때문.)

비행 거리 R은 식 10에서 구한 값을 토대로 식 11에서 구할 수 있다.

Figure 5: $\theta = 30^{\circ}$ 일 때의 포사체의 운동.

Figure 6: $\theta = 45^{\circ}$ 일 때의 포사체의 운동.

Figure 7: $\theta = 60^{\circ}$ 일 때의 포사체의 운동.

Figure 8

발사각 θ	측정값	1차	2차	3차	평균	표준오차
15°	초기 속도 <i>v</i>	2.73	2.92	2.92	2.86	0.06
	비행 거리 R	0.9180	0.9200	0.9160	0.9180	0.0012
	비행 시간 <i>T</i>	0.31	0.32	0.32	0.32	0
30°	초기 속도 <i>v</i>	2.99	2.98	2.99	2.99	0
	비행 거리 R	1.115	1.113	1.129	1.119	0.0050
	비행 시간 <i>T</i>	0.42	0.42	0.43	0.42	0
45°	초기 속도 v	3.07	3.06	3.08	3.07	0.01
	비행 거리 R	1.178	1.174	1.170	1.174	0.0023
	비행 시간 <i>T</i>	0.53	0.53	0.53	0.53	0
60°	초기 속도 v	3.15	3.14	3.15	3.15	0
	비행 거리 R	0.9800	0.9820	0.9720	0.9780	0.0031
	비행 시간 <i>T</i>	0.63	0.64	0.63	0.63	0

Figure 9: 실험 결과 기록표.

θ	비행	시간 <i>T</i> [s]	비행 거리 $R~[{ m m}]$		
	이론치	상대 오차[%]	이론치	상대 오차[%]	
15°	0.31	3	0.87	5.3	
30°	0.43	2	1.10	1.5	
45°	0.54	2	1.17	0.4	
60°	0.64	2	1.00	2.7	

Figure 10: 이론값 계산 및 오차.

5 실험 고찰

5.1 고찰질문: 교수가 제시하는 문제에 답하기

5.1.1 각도에 따른 비행시간 t_r 와 비행거리 R를 그래프로 그려 보세요

Figure 11, Figure 12 참조.

Figure 11

5.1.2 발사각이 30°인 경우와 60°인 경우의 도달거리가 같은가? 다르다면 다른 이유는 무엇인가?

Figure 12를 보면 θ 가 30°일 때와 60°일 때의 도달 거리는 다른데, 그 이유는 포사체의 발사 위치가 원점이 아닌 $(0,y_0)$ 위치에 있기 때문이다. Figure 13을 보면 더 확실해지는데, $y_0=0$ 이고 공기저항이 없는 환경에서의 포사체는 θ 가 30°와 60°인 두 포사체는, 같은 지점에 도달한다. 그러나 $y_0=0.3m$ 와 같이 주어지면 θ 가 30°와 60°인 두 포사체는 도달거리가 차이가 나는 것을 알 수 있다.

5.1.3 도달거리가 최대인 발사각은 얼마인가?(이것은 초기 발사 높이에 따라 달라지는 지 살펴보세요)

Figure 12에 따르면, 도달거리가 제일 먼 발사각은 $\theta=45^{\circ}$ 일 때이며, 이것은 초기 발사각에 따라 차차 도달거리가 증가하다가 $\theta=45^{\circ}$ 이후의 $\theta=60^{\circ}$ 인 포사체에선 오히려도달거리가 줄어드는 것을 확인할 수 있다.

Figure 12

Figure 13

5.2 오차원인:

실험 측정결과 표 9를 보면 $\theta=15^{\circ}$ 인 포사체의 측정결과가 특히 부정확한 것을 알 수 있는데, $\theta=15^{\circ}$ 인 포사체를 측정할 때에 포사체 발사장치를 고정하는 클램프의 힘이 약하여 발사장치가 살짝 움직였던 것이 원인이 아닐까 한다. 또한 모든 데이터의 상대 오차가 $\theta=15^{\circ}$ 인 포사체의 측정 데이터를 제외하고 $1\%\sim3\%$ 정도의 상대 오차를 보이고 있는데,

이는 아마도 공기의 저항이 아닌가 한다. 통상적으로는 공기 저항에 의해 더 가까운 곳까지 도달했어야 할 $\theta=15^{\circ}$ 인 포사체가 오히려 먼 곳까지 도달한 것은 단순 측정 실수로 보여진다. 이러한 오차원인을 제거하기 위해선, 클램프를 꽉 조이고 되도록 조작에 과도한 힘을 사용하지 않도록 하여 포사체 발사장치의 움직임을 줄여야 할 것이다.

5.3 실험을 통해 배우게 된 것

- 초기 속도 v_0 와 θ 가 주어지면 해당 포사체의 도달 거리와 시간을 구하는 법을 배웠다.
- 스마트 게이트와 Time of Flight장비의 사용법을 배웠다.
- 포사체의 투사각도 θ 가 $\theta=45^{\circ}$ 일때 무조건 제일 멀리 도달하진 않는다는 사실을 배웠다.

etc..

5.4 실험원리의 실생활에서의 예

- 1. 총기의 탄도학이나 대륙간 탄도미사일의 탄도계산
- 2. 인공위성의 안정적인 궤도 유지를 위한 계산
- 3. 게임 안의 물리엔진의 동작 원리

 ${\rm etc..}$