Графики функций (plot, fplot, ezplot)

Пакет MATLAB располагает большими возможностями для визуализации результатов вычислений. Прежде всего, это вывод численных результатов в виде диаграмм, графиков плоских и пространственных фигур, трехмерных поверхностей и некоторых геометрических фигур. Пользователю предоставлена возможность строить графики и диаграммы в приложении, а в случае необходимости редактировать их в графическом редакторе. Некоторые из вариантов двухмерной графики представлены на рис.:

Графики функции одной переменной

Для вывода графика функции y = f(x) необходимо сформировать вектор точек, в которых вычисляется функция f(x), и сформировать вектор значений функции в этих точках. После этого следует обратиться к функции **plot**, которая может вывести несколько графиков в одно окно:

```
x=[0:0.02:1]; %формируем вектор точек для ф-ции у y=x.*(1-x)+0.1; %задаем функцию у x1=[-0.5:0.05:1.5]; %вектор точек для ф-ции у1=(x1+0.5)/5) рlot(x,y,x1,(x1+0.5)/5) %вывод графиков двух ф-ций у и у1
```

После выполнения этих команд MATLAB сформирует (если нет других окон) окно с заголовком Figure 1, разместит в нем стандартное меню и линейку инструментов, выделит в окне прямоугольное поле с графиками функций, сделает разметку осей (рис. 1). В том случае, если уже есть какие-нибудь графические окна, то функция **plot** будет выводить графики в текущее графическое окно. Новое окно для вывода графиков можно вызвать командой **figure**.

Функция plot перед выводом графика очищает текущее графическое окно (если оно есть). После выполнения в командной строке (или в программе пользователя) команды hold on все последующие графики, формируемые функцией plot, будут выводиться на уже существующие в графическом окне оси. Отмена режима "наложения" графиков осуществляется командой hold off. Масштабно-координатная сетка наносится командой grid on, а убирается командой grid off. Подписи к осям делают функции xlabel и ylabel, а заголовок — title. Аргументом этих функций является текстовая переменная или последовательность символов в апострофах. Рис. 1 соответствуют команды

```
grid on;
xlabel('Time');
ylabel('Function');
```

```
title('Graphics')
```

Для создания легенды используется функция **legend('Name1', 'Name2',...).** Число аргументов у этой функции должно соответствовать числу линий на графике. Легенде на рис. 1 соответствует команда legend('G1', 'Line', -1). Более подробно о дополнительных возможностях функции **legend** можно ознакомиться в справочной системе.

Рис. 1.

Синтаксис обращения к функции plot:

```
plot(x,y)
plot(x, y, LineSpec, 'Property', Value)
Lines = plot(x, y, LineSpec, 'Property', Value)
```

В переменной LineSpec в апострофах указываются в соответствии с табл. 1 цвет линии, тип маркера и тип линии. Например, для сплошной линии красного цвета с маркером "кружок" LineSpec будет иметь вид 'ro-'. В переменной LineSpec задаются свойства линии, задаваемой парой векторов (x,y), за которой она стоит в обращении к функции plot. Указатель на LineSpec не является обязательным и может для некоторых линий отсутствовать.

Свойства линии Property приведены в табл. 2. Часть из них можно описать в переменной LineSpec. Более подробное описание можно найти в справочной системе. Свойство линии Property задается одновременно для всех линий, формируемых функцией plot. Использование команды **hold on** позволяет выводить графики поочередно с требуемыми свойствами линий и маркеров.

Например, после выполнения команд

```
x=linspace(0,1,50);
x1=[-0.5:0.05:1.5];
y=x.*(1-x)+0.1;
plot(x,y,'xr',x1,(x1+0.5)/5,'b','LineWidth',2,'MarkerSize',8)
grid on
```

В текущее графическое окно будет выведен график функции y = x(1-x) + 0.1, заданной на промежутке [0,1] в виде линии красного цвета с маркером на ней в виде крестика ('xr'), и график функции $y = (x_1 + 0.5)/5$, заданной на промежутке [-0.5, 1.5] в виде линии синего цвета ('b') (рис. 2). Толщина линий 2pt, размер маркера 8pt.

Рис. 2.

Графическое окно

Окно для вывода графиков является графическим объектом, которому можно присвоить имя. Задается оно с помощью функции **figure**:

```
Fig=figure('PropertyName', PropertyValue, ...).
```

Эта же функция при наличии нескольких окон делает окно Fig текущим:

figure (Fig)

Описание и свойства окна ('PropertyName') приведены в табл. 3.

Пример.

Последовательность команд

```
Poz=[20 40 620 540];
Fig=figure('Position',Poz,'NumberTitle','off','Name','Graphics')
x=linspace(0,2*pi,500);
y=exp(-0.5*x).*sin(4*pi*x);
z=exp(-0.5*x);
plot(x,y,x,z,':r',x,-z,':r','LineWidth',2)
grid on
```

создает графическое окно с именем Fig шириной 600 пикселей и высотой 500 пикселей, с надписью Graphics в верхнем правом углу и отсутствующим номером. Левый нижний угол окна находится на расстоянии 20 пикселей от левого нижнего угла монитора и на высоте 40 пикселей. Затем формирует функции $y=e^{-0.5x}\sin(4\pi x)$ и $z=e^{-0.5x}$ на промежутке $[0,2\pi]$ и выводит график функции $y=e^{-0.5x}\sin(4\pi x)$ в виде сплошной линии синего цвета и графики функций $z=e^{-0.5x}$ и $z=-e^{-0.5x}$ в виде пунктирных линий красного цвета в графическое окно Fig (рис. 3).

Рис. 3.

Табл. 1.

Цвет*		Тип маркера		Тип линии	
У	желтый	•	точка	_	сплошная
m	розовый	0	кружок	:	пунктирная
С	голубой	x	крестик		штрих-пунктирная
r	красный	+	знак "плюс"		штриховая
g	зеленый	*	звездочка	пробел	без линии
b	синий	s	квадрат		
w	белый	d	ромб		
k	черный	р	пятиконечная		
			звезда		
		h	шестиконечная		
			звезда		

^{*} либо вектор [R G B]

Табл. 2.

Название свойства	Назначение	Значение
Color	20 70 07 77 77 77 77 77 77 77 77 77 77 77	
Color	Задает цвет линии	
LineStyle	Задает тип линии	
LineWidth	Определяет толщину линии в	Положительное
	пунктах	число
Marker	Задает тип маркера	Табл. 1
MarkerEdgeColor	Задает цвет границы маркера	Табл. 1
MarkerFaceColor	Задает цвет маркера	Табл. 1
MarkerSize	Задает размер маркера в пунктах	Положительное
		число

Табл. 3.

Свойство	Назначение	Значение	

Position	Указывает на	Вектор-строка из четырех
	местоположение и	чисел: координаты левого
	размеры окна на экране	нижнего угла окна, его ширина
		и высота
MenuBar	Задает режим вывода	'figure' 'non'
	меню графического окна	
Name	Указывает на	Последовательность символов
	необходимость добавить	в апострофах
	текст в названии	
	графического окна	
NumberTitle	Определяет вывод	'on' 'off'
	номера в названии фигуры	

В одном графическом окне можно создать нескольких осей с помощью функции **subplot**. Варианты синтаксиса обращения к этой функции:

```
subplot(n,m,k);
subplot(n,m,k,'replace');
subplot(n,m,[k l]);
Name=subplot(...)
```

Эта функция в графическом окне формирует матрицу для вывода графических осей размерами $m \times n$ (m строк, n столбцов) с физическими номерами ячеек от 1 до $m \times n$ (слева направо и сверху вниз). При обращении **subplot** (\mathbf{n} , \mathbf{m} , \mathbf{k}) в ячейке k сформируются оси, на которые можно вывести графики. При обращении **subplot** (\mathbf{n} , \mathbf{m} , \mathbf{k} , 'replace') в k-ой ячейке графического окна уничтожаются старые оси. После выполнения команды **subplot** (\mathbf{n} , \mathbf{m} , [\mathbf{k} 1]) графические оси выводятся в k-ую и l-ую ячейки одновременно. На рис. приведен пример формирования в графическом окне шести "ячеек" (три строки и два столбца — subplot (3, 2, ...)). После выполнения команды subplot (3, 2, [1 2]) объединяются первая и вторая ячейки, а после выполнения команды subplot (3, 2, [4 6]) — четвертая и шестая.

Пример:

```
x = linspace(0,2*pi);
subplot(2,2,1);
plot(x,sin(x)); axis([0 2*pi -1.5 1.5]); title('sin(x)');
subplot(2,2,2);
plot(x,sin(2*x)); axis([0 2*pi -1.5 1.5]); title('sin(2x)');
subplot(2,2,3);
plot(x,sin(3*x)); axis([0 2*pi -1.5 1.5]); title('sin(3x)');
subplot(2,2,4);
plot(x,sin(4*x)); axis([0 2*pi -1.5 1.5]); title('sin(4x)');
```


Варианты задания осей координат: axis square, axis tight, axis equal, axis xy, axis ij.

Подробная справка по функции plot находится по адресу: http://www.mathworks.com/help/matlab/ref/plot.html

Построение графика вектор-функциии

График функции одной переменной, описанной в файл-функции Name.m, на отрезке $[x_{min}, x_{max}]$ строит также и функция **fplot**:

где tol – точность, LineSpec – спецификация кривых (толщина линии, маркер, цвет – табл. 1). *tol* и *LineSpec* – не обязательные аргументы.

При обращении

в *Workspace* формируются вектор-столбец *х* узловых точек и вектор-столбец *у* значений функции в этих точках.

Функция **fplot** может построить несколько графиков, если выходным аргументом функции Name является вектор:

```
function F=Name(x)

F=[f1(x),...,fn(x)];
```

По умолчанию первый график рисуется синим цветом, второй – зеленым, третий – красным.

Пример. Построить графики функций $f_1(x) = \sin x$ и $f_2(x) = x^2 - x - 1$ на промежутке $[0, \pi]$.

Вариант решения:

Описание файл-функции, вычисляющей f_1 и f_2 :

```
function F=Fun(x)
F=[sin(x),x.*x-x-1];
```

Графики будут построены после выполнения команды

```
fplot('Fun',[0,pi])
или
fplot(@Fun,[0,pi])
```

Если заранее не задавать файл-функцию, вычисляющую f_1 и f_2 , то график может быть построен после выполнения команды

```
fplot('[\sin(x), x^2-x-1]', [0,pi])
```

Построение графика функции, заданной в неявном виде

График функции, заданной уравнением f(x,y) = 0, в прямоугольнике $[x_{min}, x_{max}, y_{min}, y_{max}]$ (по «умолчанию» $[-2\pi, 2\pi, -2\pi, 2\pi]$) строится с помощью функции **ezplot**:

```
ezplot(@(x,y)f(x,y),[x_min,x_max,y_min,y_max])
```

(допустимы и другие варианты обращения к ф-ции ezplot, см. help)

Пример. Построить конхоиду Никомеда, задаваемую уравнением $(x-a)^2(x^2+y^2)=b^2x^2$ с параметрами a=0.4 и b=1 в прямоугольнике [-1,2,-4,4]:

Вариант решения:

```
a=0.4; b=1;

F=@(x,y)(x-a).^2*(x.^2+y.^2)-b^2*x.^2;

C=ezplot(F,[-1 2 -4 4]);

grid on

set(C,'LineWidth',3,'Color',[0 0 1]) %задание свойств линии
```

График конхоиды приведен на рис.

Иногда требуется сравнить поведение двух функций, значения которых сильно отличаются друг от друга. График функции с небольшими значениями практически сливается с осью абсцисс, и установить его вид не удается. В этой ситуации помогает функция **plotyy**, которая выводит

графики в окно с двумя вертикальными осями, имеющими подходящий масштаб. При этом цвет графика совпадает с цветом соответствующей ему оси ординат. Синтаксис:

```
plotyy(X1,Y1,X2,Y2)
plotyy(X1,Y1,X2,Y2,'function1','function2')
```

Пример:

```
x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);
figure % новое графическое окно
[hAx,hLine1,hLine2] = plotyy(x,y1,x,y2);
                                               Decay
title('Multiple Decay Rates')
xlabel('Time (\musec)')
ylabel(hAx(1),'Slow Decay') % левая ось у
ylabel(hAx(2),'Fast Decay') % правая ось у
%{В версиях до R2015а
                                               200
set(get(ax(1), 'YLabel'), 'String',
                                                150
Frequency')
set(get(ax(2), 'YLabel'), 'String',
                                      'High
Frequency')
%}
hLine1.LineStyle = '--'; % обращение к
                                               -100
элементу объекта через «.» - начиная с
                                               -150
версии R2015a. До этого - функция set.
hLine2.LineStyle = ':'; % верно начиная с
версии R2015a
```


plotyy(x,y1,x,y2,'plot','stem') % комбинация разных стилей графиков

Пример 1: Построить график функции $y = \ln\left(\sin\frac{\pi}{x}\right)$

Пример 2: Построить график функции $r = \frac{\sin \varphi}{\varphi}$ в ДПСК

Пример: построить график встроенной функции humps (x). Указать на графике точку, соответствующую максимальному значению функции. Указать на графике множество значений функции, лежащих в интервале [20,40].

Задание для самостоятельной работы: построить графики функций:

1.
$$y = x + \frac{1}{x^2}$$

2. Серпантин Ньютона
$$y = \frac{2x}{1+x^2}$$
,

3.
$$y = (x-2)\sqrt{\frac{1+x}{1-x}}$$
,

4.
$$y = \ln(x^2 - 4)$$

4.
$$y = \ln(x^2 - 4)$$
,
5. $y = \sqrt{\sin(\pi \sqrt{x})}$,

$$\mathbf{6.} \quad y = \left(x + |x|\right) \sqrt{x \sin^2 \pi x}$$

7.
$$y = x \cdot \sin \pi x$$

8.
$$r = \frac{a}{a + (\varphi - \pi/2)^n} (b - \sin k\varphi - \cos m\varphi), \ \varphi \in [-\pi/2, 3\pi/2]$$

$$a = 100, b = 2, n = 4, k = 14.$$

$$y = \left(1 + \frac{n}{m}\right)\cos\frac{n}{m}\varphi - a\frac{n}{m}\cos\left(1 + \frac{n}{m}\right)\varphi,$$

$$y = \left(1 + \frac{n}{m}\right)\sin\frac{n}{m}\varphi - a\frac{n}{m}\sin\left(1 + \frac{n}{m}\right)\varphi,$$

$$\varphi \in \left[0, 2m\pi\right]$$

10.
$$x = a \sin(n\varphi + \varphi_0),$$
$$y = b \sin(m\varphi).$$

12. Построить множество точек $\left(\frac{x}{k}, \frac{y}{k}\right)$,

 $k \in [1, s]$ – целые числа. $x = \cos t - a \cos mt + b \sin nt$ $y = \sin t + a \sin mt + b \cos nt$

 $t \in [-5,5], \ a = \frac{1}{4}, \ b = \frac{1}{16}, \ m = 8, \ n = 8.$

13. Построить графики функций:

$$y = \frac{1}{x} - \frac{1}{x-1} + \frac{1}{x-2}$$

$$y = \frac{2x}{1+x^2}$$

$$y = \sqrt{\cos(\pi x^2)}$$

$$y = \frac{\sqrt{x}}{\sin \pi x}$$

$$y = \arccos(2\sin x)$$

$$y = \cot(2x)$$

$$y = e^{-0.2^*x} \sin x$$

$$y = e^{0.2x} \cos x$$

$$y = x^2 \sin^2 \pi x$$

$$r = a \cos \varphi - b$$

$$r = 1/\varphi$$

$$r = 1/\varphi$$

$$r = 1/\varphi$$

$$r = a \cos \varphi - b$$

$$r = 1/\varphi$$

$$r = 1/\varphi$$

$$r = a \cos \varphi - b$$

$$r = 1/\varphi$$

$$r = a \cos \varphi - b$$

$$r = 1/\varphi$$

$$r = a \cos \varphi - b$$

$$r = 1/\varphi$$

$$r = a \cos \varphi - b$$

$$r = 1/\varphi$$

$$r = a \cos \varphi - b$$

$$r = 1/\varphi$$

$$r = a \cos \varphi - b$$

$$r = 1/\varphi$$

$$r = a \cos \varphi - b$$

$$r = 1/\varphi$$

$$r = a \cos \varphi - b$$

$$r = 1/\varphi$$

$$r = a \cos \varphi - b$$

$$r = 1/\varphi$$

$$r = a \cos \varphi - b$$

$$r = a \cos \varphi - b$$

$$r = 1/\varphi$$

$$r = a \cos \varphi - b$$

$$r = a \cos \varphi - b$$

$$r = 1/\varphi$$

$$r = a \cos \varphi - b$$

$$r = a \cos \varphi - \phi$$

$$r = a \cos$$

- 14. Найти, каким уравнением задаётся кривая и построить график этой кривой:
- 1) лемниската Бернулли
- 2) Розы Гранди
- 3) улитка Паскаля
- 4) полукубическая парабола (парабола Нейля)
- 5) спираль Архимеда (три витка вокруг начала координат)
- 6) трезубец Ньютона
- 7) конхоида Никомеда
- 8) инволюта окружности
- 9) Декартов лист
- 10) локон Аньези
- 11) цепная линия
- 12) эвольвента окружности
- 13) эвольвента квадрата
- 14) гиперболическая спираль
- 15) трактриса
- 16) спираль Кейли
- 17) логарифмическая спираль
- 18) дельтоид

- 19) нефроида
- 20) строфоида
- 21) циссоида Диоклеса
- 22) спираль Ферма (обе ветви)
- 23) спираль Галилея
- 24) кривая лист щавеля
- 25) трисектриса Маклорена
- 26) трилистник
- 27) кардиоида
- 28) эвольвента правильного треугольника.
- 29) циклоида
- 30) Бабочка Темпла Фея
- 31) Гипоциклоида
- 32) овал Кассини
- 33) лист Хабенихта

$$R(t) = 1 + 7\cos at + 4(\sin at)^2 + 3(\sin at)^4$$

, $a = 8$.