Physics List Comparisons

Ermias ATOMSSA

Institut de Physique Nucleaire d'Orsay

November 13, 2013

Objective of study

- Understand the implication of using various available physics lists for Geant 4
 - Previous PiD algorithm work done using Geant 3
 - Feasibility of physics measurements $\bar{p}p \to \pi^0 e^+ e^-$ critically dependent on PiD
 - Tail of hadronic response plays dominant role in hadron rejection
- How does Geant 4 physics lists compare to the default option of Geant 3 (used so far)?
- Strategy: Select Geant 4 physics list with largest tail to be conservative?
- Geant 4 also offers other options with more or less cpu cost. What to use?
 - "Optical physics" simulation (very high cpu/storage cost)
 - "High precision neutron data" (very high cpu)
 - Most accurate parametrization of EM physics vs. tuned (for cpu) less accurate one
- PandaROOT setup
 - Full PANDA simulation vs. EMCal only simulation

PandaROOT setup

Events

- 50k π^+ and 50k π^- for each physics list
- Uniform in $\phi \in (0, 360^{\circ})$ and $\theta \in (85^{\circ}, 95^{\circ})$
- Acceptance cut to exclude $\phi \in (-100^{\circ}, 90^{\circ})$ and $\phi \in (90^{\circ}, 100^{\circ})$
- Each setup at 5 different momenta (in GeV/c: 0.5, 0.8, 1.0, 1.5, 3.0 and 5.0)
- All tracks start from $(v_x, v_y, v_z) = 0.0$

• Detector setup for transport stage

- More details on Geant physics lists next slide
- EMCal only setup used for most comparisons
- For sanity check, full panda setup compared to EMCal only in a few setups

Reconstruction of the EMCal

- Full EMCal reconstruction used with the following modules: PndEmcHitProducer, PndEmcHitsToWaveform, PndEmcWaveformToDigi,
 PndEmcMakeCluster, PndEmcHdrFiller, PndEmcMakeBump, PndEmcMakeRecoHit.
- Bug/Feature? Cluster, Bump and RecoHit containers have exactly the same multiplicity and same energy for all objects.

• Plotted quantity: E_{reco}/E_{true}

- Etrue: Energy of simulated pion track
- ullet E_{reco} : Energy of EmcRecoHit object with closest $heta_{reco}$ to $heta_{origin}$ of simulated pion

PandaROOT setup

Events

- 50k π^+ and 50k π^- for each physics list
- Uniform in $\phi \in (0, 360^{\circ})$ and $\theta \in (85^{\circ}, 95^{\circ})$
- Acceptance cut to exclude $\phi \in (-100^{\circ}, 90^{\circ})$ and $\phi \in (90^{\circ}, 100^{\circ})$
- Each setup at 5 different momenta (in GeV/c: 0.5, 0.8, 1.0, 1.5, 3.0 and 5.0)
- All tracks start from $(v_x, v_y, v_z) = 0.0$

Hadronic Physics Lists

Geant 3

- Limited number of choices for hadronic physics lists
- Default: HADR=3 (GEANH+NUCRIN)
- Other choices: HADR=4 (FLUKA), HADR=5 (MICAP), HADR=6 (GCALOR)

Geant 4

- Options depending on hadronic interaction and cascade (nuclear de-excitation) model
- Two "large" classes: Quark Gluon String (QGS) and Fritiof (FTF)
- Variations based on low energy hadronic interaction and nuclear de-excitation (cascade)
 - QGSP_BERT and FTFP_BERT (Bertini for LE interaction)
 → P="Precompound model": HE parametrisation for nuclear dexcitation
 - QGSP_BIC (Binary cascade for LE interaction)
 → P same as above, no FTFP_BIC list available
 - QGS_BIC and FTF_BIC
 - ightarrow (Binary cascade used for nuclear de-excitation for the high energy model)
 - High precision neutron data versions:
 QGSP_BERT_HP, QGSP_BIC_HP FTFP_BERT_HP
- Soon to be deleted in Geant 4.10
 - LHEP: both high and low energy interactions use parametrized models
 - Chiral Invariant Phase Space (CHIPS) model for all nuclear de-excitations QGSC_BERT, QGSC

Hadronic Physics List Table

	Low Energy			High Energy			
Phys. List	h-N	de-ex.	$R(\pi^\pm)$	h-N	de-ex.	$R(\pi^\pm)$	С
QGSP_BERT	Bert.	Bert.	0 - 9.9	QGS	Prec.	12 - ∞	LEP: 9.5 - 25
QGSP_BIC	LEP	LEP	0 - 9.9	QGS	Prec.	12 - ∞	G4 Bug?
QGS_BIC	Bin.	Bin.	0 - 1.3	QGS	Bin.	12 - ∞	LEP: 1.2 - 25
FTFP_BERT	Bert.	Bert.	0 - 5	FTF	Prec.	4 - ∞	
FTF_BIC	Bin.	Bin.	0 - 5	FTF	Bic	4 - ∞	

h-N: Hadron-Nucleus interaction

de-ex: Nuclear de-excitation

R: Range

C: Comments (patching model when gap between LE & HE)

LEP: Low Energy Parametrization

Full PANDA simulation vs. EMCal only

0.6 0.8

- Slight difference at low E_{reco}/E_{true} but the high end tail looks very similar
- Large gain in CPU usage with EMCal only simulation
- For purpose of comparison, will use EMCal only simulation consistently

Momentum dependence

π^+ and π^- G3 HADR=3 (GEISHA, NUCRIN)

π^+ and π^- G4 QGSP, Binary cascade, param. EM processes (QGSP_BIC_EMV)

π^+ and π^- G4 QGSP, Bertini cascade, param. EM processes (QGSP_BERT_EMV)

Performance tuned EM parameters and optical physics options

QGSP_BERT W and W/O EMV and optical physics

- ullet No visible difference whether EMV parameters are tuned or not (\Longrightarrow Use EMV)
- ullet No visible difference whether optical physics is turned on or not (\Longrightarrow Do not use optical)

QGSP_BERT W and W/O EMV and optical physics

- ullet No visible difference whether EMV parameters are tuned or not (\Longrightarrow Use EMV)
- ullet No visible difference whether optical physics is turned on or not (\Longrightarrow Do not use optical)

High precision neutron data

for neutron transport below 20 MeV

QGSP_BERT_EMV vs. QGSP_BERT_HP

lacktriangle No visible difference whether HP neutron data is used (\Longrightarrow Do not Use HP)

E_{reco}/E_{true}, G3 vs. G4

— QGSP_BERT_EMV

— QGSP_BERT_HP

QGSP_BERT_EMV vs. QGSP_BERT_HP

ullet No visible difference whether HP neutron data is used (\Longrightarrow Do not Use HP)

Geant3 vs. Geant4

G4 π^+ G3 vs. QGSP_BERT_EMV vs. QGSP_BIC_EMV

G4 π^- G3 vs. QGSP_BERT_EMV vs. QGSP_BIC_EMV

Backup

G3 options

HADR=1: GEANH

HADR=3: GEANH+NUCRIN (Default)

- GEANH: Transport
- NUCRIN: ?

HADR=4: FLUKA

- GEANH: Transport ?
- FLUKA: The FLUKA fragmentation model is utilized for interactions above the HETC limit

HADR=5: MICAP

- GEANH: Transport ?
- MICAP: Neutron code from the Monte-carlo-Ionization-Chamber-Analysis-Program for neutrons with a kinetic energy below 20 MeV.

HADR=6: GCALOR

- HETC: The High-Energy-Transport-Code is transporting charged hadrons up to an energy of 10 GeV through the materials of the setup
- FLUKA and MICAP are also used in their validity domain

π^+ vs π^- G4 QGSP, Bertini cascade, Full EM Physics + Optical physics (QGSP_BERT_OPTICAL)

π^+ vs π^- G4 QGSP, Binary cascade, param. EM processes + Optical physics (QGSP_BIN_EMV_OPTICAL)

π^+ vs π^- G4 QGSP, Binary cascade, High Precision Neutron Package (QGSP_BERT_HP)

