

Министерство образования Российской Федерации Московский Государственный Технический Университет имени Н.Э. Баумана Кафедра ИУ8

Интеллектуальные технологии информационной безопасности

ЛАБОРАТОРНАЯ РАБОТА № 1

Исследование однослойных нейронных сетей на примере моделирования булевых выражений

Вариант 16

Группа ИУ8-61 Свойкина Н.Г.

Цель работы

Исследовать функционирование простейшей нейронной сети (HC) на базе нейрона с нелинейной функцией активации и её обучение по правилу Видроу-Хоффа.

Постановка задачи

Получить модель булевой функции (БФ) на основе однослойной НС (единичный нейрон) с двоичными входами $x_1x_2x_3x_4 \in \{0,1\}$, единичным входом смещения $x_0 = 1$, синаптическими весами $\omega_0\omega_1\omega_2\omega_3\omega_4$, двоичным выходом $y \in \{0,1\}$ и заданной нелинейной функцией активации (ФА): $f: R \rightarrow (0,1)$.

Рис. 1.1. Однослойная НС

Для заданной БФ реализовать обучение НС для двух случаев:

- 1) с использованием всех комбинаций переменных $x_1x_2x_3x_4$;
- 2) с использованием части возможных комбинаций переменных $x_1x_2x_3x_4$; остальные комбинации используются в качестве тестовых.

Мой вариант функции представлен в таблице 1.

Таблица 1. Вариант БФ и ФА

Tuomiqu 1. Duphum D4 h 411						
Bap.	Моделируемая БФ	ФА				
16	$\overline{(x_1 + x_2 + x_3)(x_2 + x_3 + x_4)}$	$f(net) = \{1, net < 0; 0, net \ge 0 \};$ $f(net) = \frac{1}{2} (\frac{net}{1 + net } + 1)$				

Таблица истинности БФ

0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0

На начальном шаге l=0 (эпоха k=0) весовые коэффициенты возьмем в виде $\omega_0^{(0)}=\omega_1^{(0)}=\omega_2^{(0)}=\omega_3^{(0)}=\omega_4^{(0)}=0\,.$

1. Используем пороговую ΦA (1.4). Динамика HC при норме обучения $\eta = 0,3$ представлена в табл. 3. График ошибки приведен на рис. 1.

Таблица 3. Параметры НС на последовательных эпохах (пороговая ФА)

Номер эпохи, k	Вектор весов W, выходной сигнал Y, суммарная ошибка Е
0	Y=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1	Y=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2	Y=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
3	Y=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
4	Y=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
5	Y=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
6	Y=[1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0] W=[0.60, -0.60, -2.40, -2.40, -0.60], E=0

Рисунок 1. График суммарной ошибки HC по эпохам обучения (пороговая ФА)

2. Используем сигмоидальную функцию $f(net) = \frac{1}{2}(\frac{net}{1+|net|}+1)$. Её производная равна $\frac{df(net)}{d\ net} = \frac{1}{2}(1-|f(net)|)^2$. Для полного обучения (при нулевых начальных весах и норме обучения $\eta=0,3$) потребовалось 8 эпох (табл. 4). График ошибки приведён на рис. 2.

Таблица 4. Параметры НС на последовательных эпохах (сигмоидальная ФА)

Номер	in Hapamerphi He ha Heart-Abhani and hair (an mangambhan 111)
эпохи,	Вектор весов W, выходной сигнал Y, суммарная ошибка Е
k	
0	Y=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1	Y=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2	Y=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
3	Y=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
4	Y=[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
5	Y=[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
6	Y=[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], W=[0.15, -0.14, -0.53, -0.53, -0.25], E=1
7	Y=[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], W=[0.18, -0.14, -0.53, -0.53, -0.19], E=1
8	Y=[1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], W=[0.21, -0.14, -0.53, -0.53, -0.13], E=0

Рисунок 2. График суммарной ошибки HC по эпохам обучения (пороговая ФА)

3. Рассматривая предыдущий случай, попытаемся последовательно увеличивать размер обучающей выборки до тех пор, пока не достигнем нулевой ошибки. В рассматриваемом примере будет найден минимальный набор из четырёх векторов:

$$X^{(1)} = (0, 0, 0, 0), X^{(2)} = (0, 0, 0, 1), X^{(3)} = (0, 1, 1, 1), X^{(4)} = (1, 1, 1, 1)$$

При этом для полного обучения потребовалось лишь 3 эпохи (при норме обучения $\eta=0,3$).

Таблица 5. Параметры НС на последовательных эпохах

Номер эпохи, k	Вектор весов W, выходной сигнал Y, суммарная ошибка Е
0	Y=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
1	Y=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2	Y=[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
3	Y=[1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], W=[0.06, -0.04, -0.09, -0.10, -0.03], E=0

Выводы

В результате проведения работы было исследовано функционирование простейшей нейронной сети (НС) на базе нейрона с нелинейной функцией активации. Было проведено обучение НС по правилу Видроу-Хоффа. Было получено минимальное число векторов, на котором нейронная сеть может обучиться.