Claims reserving with R: ChainLadder-0.1.5-2 Package Vignette

Markus Gesmann*

January 14, 2012

Abstract

The ChainLadder package provides various statistical methods which are typically used for the calculation of outstanding claims reserves in general insurance

The package has implementations of the Mack-, Munich-, Bootstrap, and multi-variate chain-ladder methods, as well as the loss development factor curve fitting methods of Dave Clark and generalised linear model based reserving models.

^{*}markus.gesmann@gmail.com

Contents

1	Intr	oductio	on and the second s	4				
	1.1	Claims	s reserving in insurance	4				
2	The	Chain	Ladder package	4				
	2.1	Motiva	ation	4				
	2.2	Brief p	package overview	5				
	2.3	Install	ation	6				
3	Usir	g the	ChainLadder package	7				
	3.1	Worki	ng with triangles	7				
		3.1.1	Plotting triangles	7				
		3.1.2	Transforming triangles between cumulative and incremental representation	9				
		3.1.3	Importing triangles from external data sources	10				
		3.1.4	Coping and pasting from MS Excel	12				
	3.2	Chain-	-ladder methods	13				
		3.2.1	Mack chain-ladder	13				
		3.2.2	Bootstrap chain-ladder	15				
		3.2.3	Munich chain-ladder	18				
	3.3	Multiv	variate chain-ladder	20				
	3.4	Clark's	s methods	20				
		3.4.1	Clark's Cap Cod method	20				
		3.4.2	Clark's LDF method	20				
	3.5	Genera	alised linear model methods	20				
4	Usir	ı g Chai	nLadder with RExcel and SWord	20				
5	Furt	her res	sources	21				
	5.1	Other	insurance related R packages	21				
	5.2	Presen	ntations	22				
	5.3	3 Further reading						

6 Training and consultancy	22
References	25
Thanks	26

1 Introduction

1.1 Claims reserving in insurance

Unlike other industries the insurance industry does not sell products as such, but promises. An insurance policy is a promise by the insurer to the policyholder to pay for future claims for an upfront received premium.

As a result insurers don't know the upfront cost of their service, but rely on data analysis and judgement to derive a sustainable price for their offering. In General Insurance (or Non-Life Insurance) most policies run for a period of 12 months, e.g. motor, property and casualty insurance. However, the claims payment process can take years or even decades.

In particular claims arising from casualty insurance can take a long time to settle, as claims can take years to materialise. A complex and costly example are the claims from asbestos liabilities. A research report by a Working Party of the Institute of Actuaries has estimated that the undiscounted cost of UK mesothelioma-related claims to the UK Insurance Market for the period 2009 to 2050 could be around £10bn [GBB $^+$ 09]. The cost for Asbestos related claims in the US for the worldwide insurance industry was estimate to be around \$120bn in 2002 [Mic02].

Thus, it should come to no surprise that the biggest item on the liability side of an insurer's balance sheet is often the provision or reserves for future claims payments. Those reserves can be broken down in case reserves (or out-standings claims), which are losses already reported to the insurance company and incurred but not reported (IBNR) claims.

Over the years several methods have been developed to estimate reserves for insurance claims, see [Sch11], [PR02] for an overview. Changes in the regulatory requirements, e.g. Solvency II^1 in Europe, have fostered further research into this topic, with a focus on stochastic and statistical techniques.

2 The ChainLadder package

2.1 Motivation

The ChainLadder [GMZ12] package provides various statistical methods which are typically used for the calculation of outstanding claims reserves in general insurance. The package started out of presentations given by Markus Gesmann at the Stochastic Reserving Seminar at the Institute of Actuaries in 2007 and 2008, followed by talks at Casualty Actuarial Society (CAS) meetings joined by Dan Murphy in 2008 and Wayne Zhang in 2010.

Implementing reserving methods in R has several advantages, as it provides:

 $^{^1} See \ \mathtt{http://ec.europa.eu/internal_market/insurance/solvency/index_en.htm}$

- Rich language for statistical modelling and data manipulations allowing fast prototyping
- Very active user base, which publishes many extension
- Many interfaces to data bases and other applications, such as MS Excel
- Established framework for documentation and testing
- Works well with version control tools
- Code is written in plain text files, allowing effective knowledge transfer
- Easy to collaborate over the internet
- Built in functions to create reproducible research reports²
- In combination with other tools such as LATEX and Sweave easy to set up automated reporting
- Academic research is often first implemented in R

2.2 Brief package overview

This vignette will give the reader a brief overview of the functionallity of the Chain-Ladder package. The functions are discussed and explained in more detail in the repective help files and examples. The help files contain the references to the research papers on which the methods are based.

The ChainLadder package has implementations of the Mack-, Munich- and Bootstrap chain-ladder methods [Mac93], [Mac99], [QM04], [EV99]. Since version 0.1.3-3 it provides general multivariate chain ladder models by Wayne Zhang [Zha10].

Version 0.1.4-0 introduced new functions on loss development factor (LDF) fitting and Cape Cod by Daniel Murphy following a paper by David Clark [Cla03]. Version 0.1.5-0 has added loss reserving models within the generalized linear model framework following a paper by England and Verrall [EV99] implemented by Wayne Zhang.

The package offers also some utility functions to convert quickly tables into triangles, triangles into tables, cumulative into incremental and incremental into cumulative triangles.

A set of demos is shipped with the packages and the list of demos names is available via:

R> demo(package="ChainLadder")

and can be executed via

²For an example see the project: Formatted Actuarial Vignettes in R, http://www.favir.net/

```
R> library(ChainLadder)
R> demo("demo name")
```

Further, the ChainLadder package comes with example files, which demonstrates how to the ChainLadder functions can be embedded in Excel and Word using the statconn interface[BN07].

For more information and examples see the project web site: http://code.google.com/p/chainladder/

2.3 Installation

We can install ChainLadder in the usual way from CRAN, e.g.:

```
R> install.packages('ChainLadder')
```

The installation was successful if the command library(ChainLadder) gives you the following message:

R> library(ChainLadder)

ChainLadder version 0.1.5-2 by:
Markus Gesmann
Markus.gesmann@gmail.com>
Wayne Zhang <actuary_zhang@hotmail.com>
Daniel Murphy <anielmarkmurphy@gmail.com>

Type library(help='ChainLadder') or ?ChainLadder to see overall documentation.

Type demo(ChainLadder) to get an idea of the functionality of this package.

See demo(package='ChainLadder') for a list of more demos.

Feel free to send us an email if you would like to keep informed of new versions or if you have any feedback, ideas, suggestions or would like to collaborate.

More information is available on the ChainLadder project web-site: $\verb|http://code.google.com/p/chainladder/|$

To suppress this message use the statement: suppressPackageStartupMessages(library(ChainLadder))

3 Using the ChainLadder package

3.1 Working with triangles

Historical insurance data is often presented in form of a triangle structure, showing the development of claims over time for each origin period. An origin period could be the year the policy was sold, or the accident year. Most reserving methods of the ChainLadder package expect triangles as input data sets with development periods along the columns and the origin period in rows. The package comes with several example triangles. The following R command will list them all:

```
R> require(ChainLadder)
R> data(package="ChainLadder")
```

Let's look at one example triangle more closely. The following triangle shows data from the Reinsurance Association of America (RAA):

```
R> ## Sample triangle
R> RAA
```

C	lev									
origin	1	2	3	4	5	6	7	8	9	10
1981	5012	8269			13539	16181	18009	18608	18662	18834
1982	106	4285	5396	10666	13782	15599	15496	16169	16704	NA
1983	3410	8992	13873	16141	18735	22214	22863	23466	NA	NA
1984	5655	11555	15766	21266	23425	26083	27067	NA	NA	NA
1985	1092	9565	15836	22169	25955	26180	NA	NA	NA	NA
1986	1513	6445	11702	12935	15852	NA	NA	NA	NA	NA
1987	557	4020	10946	12314	NA	NA	NA	NA	NA	NA
1988	1351	6947	13112	NA						
1989	3133	5395	NA							
1990	2063	NA								

The objective of a reserving exercise is to forecast the future claims development in the bottom right corner of the triangle and potential further developments. Eventually all claims for a given origin period wil be settled, but it is not always obvious to judge how many years or even decades it will take. We speak of long and short tail business depending on the time it takes to finalise all claims reporting.

3.1.1 Plotting triangles

The first thing you often want to do is to plot the data to get an overview. For data set of class triangle ChainLadder provides default plotting methods to give a graphical overview of the data:

Figure 1: Claims development chart of the RAA triangle, with one line per origin period. Output of plot(RAA)

Setting the argument lattice=TRUE will produce individual plots for each origin period 3 , see Figure 2 .

R> plot(RAA, lattice=TRUE)

You will notice from the plots in Figures 1 and 2 that the triangle RAA presents claims developments for the origin years 1981 to 1990 in a cumulative form. For more information on the triangle plotting functions see the help pages of plot.triangle, e.g. via

R> ?plot.triangle

³ChainLadder uses the lattice package

Figure 2: Claims development chart of the RAA triangle, with individual panels for each origin period. Output of plot(RAA, lattice=TRUE)

3.1.2 Transforming triangles between cumulative and incremental representation

The ChainLadder packages comes with two helper functions, cum2incr and incr2cum to transform cumulative triangles into incremental triangles and vis versa:

```
R> raa.inc <- cum2incr(RAA)</pre>
\mbox{R>} ## Show first origin period and its incremental development
R> raa.inc[1,]
        2
              3
                   4
                         5
                              6
                                    7
                                         8
                                               9
                                                   10
5012 3257 2638
                 898 1734 2642 1828
                                       599
                                              54
                                                  172
R> raa.cum <- incr2cum(raa.inc)</pre>
R> ## Show first origin period and its cumulative development
R> raa.cum[1,]
```

```
1 2 3 4 5 6 7 8 9 10
5012 8269 10907 11805 13539 16181 18009 18608 18662 18834
```

3.1.3 Importing triangles from external data sources

In most cases you want to analyse your own data, usually stored in data bases. R makes it easy to access data using SQL statements, e.g. via an ODBC connection⁴ and the ChainLadder packages includes a demo to showcase how data can be imported from a MS Access data base, see:

R> demo(DatabaseExamples)

For more details see [Tea11].

In this section we use data stored in a CSV-file⁵ to demonstrate some typical operations you will want to carry out with data stored in data bases. In most cases your triangles will be stored in tables and not in a classical triangle shape. The ChainLadder package contains a CSV-file with some sample data in a long table format. We can read the data into R's memory with the read.csv command and look at the first couple of rows and summarise it:

```
R> filename <- file.path(system.file("Database",</pre>
+
                                        package="ChainLadder"),
                           "TestData.csv")
R> myData <- read.csv(filename)</pre>
R> head(myData)
  origin dev
             value lob
1
    1977
            1 153638 ABC
2
    1978
            1 178536 ABC
3
    1979
            1 210172 ABC
4
    1980
           1 211448 ABC
5
    1981
            1 219810 ABC
6
    1982
           1 205654 ABC
```

R> summary(myData)

origin			dev		value)		lob
Min.	:	1	Min.	: 1.00	$\mathtt{Min.}$:	-17657	AutoLiab	:105
1st Qu	.:	3	1st Qu.	: 2.00	1st Qu.:	10324	GeneralLiab	:105
Median	:	6	Median	: 4.00	Median :	72468	M3IR5	:105

⁴See the RODBC package

⁵Please ensure that your CSV-file is free from formatting, e.g. characters to separate units of thousands, as columns with those kind of formatting would be read as characters.

```
Mean
       : 642
                Mean
                        : 4.61
                                  Mean
                                          : 176632
                                                      ABC
                                                                          : 66
3rd Qu.:1979
                3rd Qu.: 7.00
                                                     CommercialAutoPaid: 55
                                  3rd Qu.: 197716
Max.
       :1991
                Max.
                        :14.00
                                  Max.
                                          :3258646
                                                     GenIns
                                                                          : 55
                                                      (Other)
                                                                          :210
```

Let us focus on one subset of the data set. We select the RAA data again:

```
R> raa <- subset(myData, lob %in% "RAA")
R> head(raa)
   origin dev value lob
67
               5012 RAA
     1981
            1
68
     1982
                 106 RAA
            1
69
     1983
            1
                3410 RAA
70
     1984
            1
               5655 RAA
```

1092 RAA

1513 RAA

71

72

1985

1986

1

1

To transform the long table of the RAA data into a triangle we use the function as.triangle. The arguments we have to specify are the column names of the origin and development period and further the column which contains the values:

```
R> raa.tri <- as.triangle(raa,
                          origin="origin",
                          dev="dev",
                           value="value")
R> raa.tri
      dev
origin
          1
                2
                     3
                          4
                                5
                                     6
                                          7
  1981 5012 3257 2638
                        898 1734 2642 1828 599
                                                  54 172
  1982 106 4179 1111 5270 3116 1817 -103 673
                                                 535
                                                      NA
  1983 3410 5582 4881 2268 2594 3479
                                        649 603
                                                  NA
                                                      NA
  1984 5655 5900 4211 5500 2159 2658
                                        984
                                             NA
                                                  NA
                                                      NA
  1985 1092 8473 6271 6333 3786
                                   225
                                         NA
                                             NA
                                                  NA
                                                      NA
  1986 1513 4932 5257 1233 2917
                                    NA
                                         NA
                                             NA
                                                  NA
                                                      NA
  1987 557 3463 6926 1368
                               NA
                                    NA
                                         NA
                                             NA
                                                 NA
                                                      NA
  1988 1351 5596 6165
                                    NA
                                                      NA
                         NA
                               NΑ
                                         NA
                                             NA
                                                 NA
  1989 3133 2262
                    NA
                         NA
                               NA
                                    NA
                                         NA
                                             NA
                                                  NA
                                                      NA
  1990 2063
              MΔ
                    NΑ
                         NA
                               NA
                                    NA
                                         NA
                                             NA
                                                  NA
                                                      NA
```

We note that the data has been stored as an incremental data set. As mentioned above, we could now use the function incr2cum to transform the triangle into a cumulative format.

We can transform a triangle back into a data frame structure:

R> raa.df <- as.data.frame(raa.tri, na.rm=TRUE)
R> head(raa.df)

	origin	dev	value
1981-1	1981	1	5012
1982-1	1982	1	106
1983-1	1983	1	3410
1984-1	1984	1	5655
1985-1	1985	1	1092
1986-1	1986	1	1513

This is particular helpful when you would like to store your results back into data base. Figure 3 gives you an idea of a potential data flow between R and data bases.

Figure 3: Flow chart of data between R and data bases.

3.1.4 Coping and pasting from MS Excel

Small data sets in Excel can be transfered to R backwards and forwards with via the clipboard under MS Windows.

Copying from Excel to R Select a data set in Excel and copy it into the clipboard, then go to R and type:

```
R> x <- read.table(file="clipboard", sep="\t", na.strings="")</pre>
```

Copying from R to Excel Suppose you would like to copy the RAA triangle into Excel, then the following statement would copy the data into the clipboard:

```
R> write.table(RAA, file="clipboard", sep="\t", na="")
```

Now you can paste the content into Excel. Please note that you can not copy lists structures from R to Excel.

3.2 Chain-ladder methods

R> demo(ChainLadder)

3.2.1 Mack chain-ladder

```
R> mack <- MackChainLadder(RAA, est.sigma="Mack")
R> mack
```

MackChainLadder(Triangle = RAA, est.sigma = "Mack")

	Latest	Dev.To.Date	Ultimate	IBNR	Mack.S.E	CV(IBNR)
1981	18,834	1.000	18,834	0	0	NaN
1982	16,704	0.991	16,858	154	206	1.339
1983	23,466	0.974	24,083	617	623	1.010
1984	27,067	0.943	28,703	1,636	747	0.457
1985	26,180	0.905	28,927	2,747	1,469	0.535
1986	15,852	0.813	19,501	3,649	2,002	0.549
1987	12,314	0.694	17,749	5,435	2,209	0.406
1988	13,112	0.546	24,019	10,907	5,358	0.491
1989	5,395	0.336	16,045	10,650	6,333	0.595
1990	2,063	0.112	18,402	16,339	24,566	1.503

Totals

Latest: 160,987.00
Dev: 0.76
Ultimate: 213,122.23
IBNR: 52,135.23
Mack S.E.: 26,909.01
CV(IBNR): 0.52

R> plot(mack)

R> plot(mack, lattice=TRUE)

3.2.2 Bootstrap chain-ladder

```
R\!\!>\! # See also the example in section 8 of England & Verrall (2002) on page 55. R\!\!>\!
```

R> B <- BootChainLadder(RAA, R=999, process.distr="gamma") R> B

BootChainLadder(Triangle = RAA, R = 999, process.distr = "gamma")

	Latest	Mean	${\tt Ultimate}$	Mean	IBNR	\mathtt{SD}	IBNR	IBNR	75%	IBNR	95%
1981	18,834		18,834		0		0		0		0
1982	16,704		16,865		161		671		191	1,	,416
1983	23,466		24,094		628	1	1,246	1,	,030	2,	,963
1984	27,067		28,825	1	758	1	1,949	2	,758	5,	,439
1985	26,180		29,064	2	2,884	2	2,409	4	,319	7,	,601
1986	15,852		19,636	3	3,784	2	2,469	5	,166	8,	,102
1987	12,314		17,981	5	6,667	3	3,162	7	,466	11,	,559
1988	13,112		24,255	11	1,143	5	5,060	13	,988	20,	,197
1989	5,395		16,368	10	,973	6	5,274	14	,483	22,	,697
1990	2,063		19,713	17	,650	13	3,555	25	,363	43,	,594

Totals
Latest: 160,987
Mean Ultimate: 215,636
Mean IBNR: 54,649
SD IBNR: 18,963
Total IBNR 75%: 65,835
Total IBNR 95%: 87,421

R> plot(B)

R> # Compare to MackChainLadder

R> MackChainLadder(RAA)

MackChainLadder(Triangle = RAA)

	Latest	Dev.To.Date	${\tt Ultimate}$	IBNR	Mack.S.E	CV(IBNR)
1981	18,834	1.000	18,834	0	0	NaN
1982	16,704	0.991	16,858	154	143	0.928
1983	23,466	0.974	24,083	617	592	0.959
1984	27,067	0.943	28,703	1,636	713	0.436
1985	26,180	0.905	28,927	2,747	1,452	0.529
1986	15,852	0.813	19,501	3,649	1,995	0.547
1987	12,314	0.694	17,749	5,435	2,204	0.405
1988	13,112	0.546	24,019	10,907	5,354	0.491
1989	5,395	0.336	16,045	10,650	6,332	0.595
1990	2,063	0.112	18,402	16,339	24,566	1.503

Totals

Latest: 160,987.00
Dev: 0.76
Ultimate: 213,122.23
IBNR: 52,135.23
Mack S.E.: 26,880.74
CV(IBNR): 0.52

R> quantile(B, c(0.75,0.95,0.99, 0.995))

\$ByOrigin

	IBNR 75%	IBNR 95%	IBNR 99%	IBNR 99.5%						
1981	0.0	0	0	0						
1982	190.9	1416	2663	3284						
1983	1030.5	2963	4617	5241						
1984	2758.2	5439	7767	9004						
1985	4319.1	7601	9666	9981						
1986	5165.6	8102	11686	12326						
1987	7465.9	11559	15167	15319						

```
1988 13987.6
                 20197
                          26489
                                      27254
1989 14482.7
                 22697
                          29008
                                      31582
1990 25362.6
                 43594
                          56806
                                      60296
$Totals
            {\tt Totals}
IBNR 75%:
             65835
IBNR 95%:
             87421
IBNR 99%:
            106253
IBNR 99.5%: 115272
R> # fit a distribution to the IBNR
R> library(MASS)
R> plot(ecdf(B$IBNR.Totals))
R> # fit a log-normal distribution
R> fit <- fitdistr(B$IBNR.Totals[B$IBNR.Totals>0], "lognormal")
R> fit
   meanlog
                 sdlog
  10.846301
               0.363454
 ( 0.011499) ( 0.008131)
R> curve(plnorm(x,fit$estimate["meanlog"], fit$estimate["sdlog"]), col="red", add=TRUE)
R>
```


3.2.3 Munich chain-ladder

R> MCLpaid

C	lev						
${\tt origin}$	1	2	3	4	5	6	7
1	576	1804	1970	2024	2074	2102	2131
2	866	1948	2162	2232	2284	2348	NA
3	1412	3758	4252	4416	4494	NA	NA
4	2286	5292	5724	5850	NA	NA	NA
5	1868	3778	4648	NA	NA	NA	NA
6	1442	4010	NA	NA	NA	NA	NA
7	2044	NA	NA	NA	NA	NA	NA

R> MCLincurred

dev
origin 1 2 3 4 5 6 7
1 978 2104 2134 2144 2174 2182 2174
2 1844 2552 2466 2480 2508 2454 NA

```
3 2904 4354 4698 4600 4644
                                   NA
                                        NA
     4 3502 5958 6070 6142
                                   NA
                                        NA
     5 2812 4882 4852
                              NA
                                   NA
                                        NA
     6 2642 4406
                   NA
                        NA
                              NA
                                   NA
                                        NA
     7 5022
              NA
                   NA
                        NA
                              NA
                                   NA
                                        NA
R> op <- par(mfrow=c(1,2))</pre>
R> plot(MCLpaid)
R> plot(MCLincurred)
R> par(op)
R> # Following the example in Quarg's (2004) paper:
R> MCL <- MunichChainLadder(MCLpaid, MCLincurred, est.sigmaP=0.1, est.sigmaI=0.1)
R> MCL
MunichChainLadder(Paid = MCLpaid, Incurred = MCLincurred, est.sigmaP = 0.1,
    est.sigmaI = 0.1)
 Latest Paid Latest Incurred Latest P/I Ratio Ult. Paid Ult. Incurred
        2,131
                         2,174
                                          0.980
                                                     2,131
1
                                                                    2,174
2
        2,348
                         2,454
                                          0.957
                                                     2,383
                                                                    2,444
        4,494
3
                         4,644
                                          0.968
                                                     4,597
                                                                    4,629
4
        5,850
                                          0.952
                                                     6,119
                                                                   6,176
                         6,142
5
                                          0.958
        4,648
                        4,852
                                                     4,937
                                                                   4,950
6
        4,010
                         4,406
                                          0.910
                                                     4,656
                                                                    4,665
7
        2,044
                        5,022
                                          0.407
                                                     7,549
                                                                   7,650
 Ult. P/I Ratio
1
           0.980
2
           0.975
3
           0.993
           0.991
5
           0.997
           0.998
7
           0.987
Totals
            Paid Incurred P/I Ratio
```

R> plot(MCL)

Ultimate: 32,371

25,525

29,694

32,688

Latest:

0.86

3.3 Multivariate chain-ladder

- 3.4 Clark's methods
- 3.4.1 Clark's Cap Cod method
- 3.4.2 Clark's LDF method

3.5 Generalised linear model methods

4 Using ChainLadder with RExcel and SWord

The spreadsheet is located in the Excel folder of the package. The R command

R> system.file("Excel", package="ChainLadder")

will tell you the exact path to the directory. To use the spreadsheet you will need the RExcel-Add-in [BN07]. The package also provides an example SWord file, demonstrating how the the functions of the package can be integrated into a MS Word file via SWord [BN07]. Again you find the Word file via the command:

```
R> system.file("SWord", package="ChainLadder")
```

The package comes with several demos to provide you with an overview of the package functionality, see

R> demo(package="ChainLadder")

5 Further resources

Other useful documents and resources to get started with R in the context of actuarial work:

- Introduction to R for Actuaries [DS06].
- An Actuarial Toolkit [MSH+06].
- Actuar package vignettes: http://cran.r-project.org/web/packages/ actuar/index.html
- Mailing list R-SIG-insurance⁶: Special Interest Group on using R in actuarial science and insurance

5.1 Other insurance related R packages

Below is a list of further R packages in the context of insurance. The list is by nomeans complete, and the CRAN Task Views 'Emperical Finance' and Probability Distributions will provide links to additional resources. Please feel free to contact us with items to be added to the list.

- cplm: Monte Carlo EM algorithms and Bayesian methods for fitting Tweedie compound Poisson linear models [Zha11].
- lossDev: A Bayesian time series loss development model. Features include skewed-t distribution with time-varying scale parameter, Reversible Jump MCMC for determining the functional form of the consumption path, and a structural break in this path [LS11].
- favir: Formatted Actuarial Vignettes in R. FAViR lowers the learning curve of the R environment. It is a series of peer-reviewed Sweave papers that use a consistent style [Esc11].
- actuar: Loss distributions modelling, risk theory (including ruin theory), simulation of compound hierarchical models and credibility theory [DGP08].

 $^{^{6} \}verb|https://stat.ethz.ch/mailman/listinfo/r-sig-insurance|$

- fitdistrplus: Help to fit of a parametric distribution to non-censored or censored data [DMPDD10].
- mondate: R packackge to keep track of dates in terms of months [Mur11].
- lifecontingencies: Package to perform actuarial evaluation of life contingencies [Spe11].

5.2 Presentations

Over the years the contributors of the ChainLadder package have given numerous presentations and most of those are still available online:

- Bayesian Hierarchical Models in Property-Casualty Insurance, Wayne Zhang, 2011
- ChainLadder at the Predictive Modelling Seminar, Institute of Actuaries, November 2010, Markus Gesmann, 2011
- Reserve variability calculations, CAS spring meeting, San Diego, Jimmy Curcio Jr., Markus Gesmann and Wayne Zhang, 2010
- The ChainLadder package, working with databases and MS Office interfaces, presentation at the "R you ready?" workshop, Institute of Actuaries, Markus Gesmann, 2009
- The ChainLadder package, London R user group meeting, Markus Gesmann, 2009
- Introduction to R, Loss Reserving with R, Stochastic Reserving and Modelling Seminar, Institute of Actuaries, Markus Gesmann, 2008
- Loss Reserving with R, CAS meeting, Vincent Goulet, Markus Gesmann and Daniel Murphy, 2008
- The ChainLadder package R-user conference Dortmund, Markus Gesmann, 2008

5.3 Further reading

Other papers and presentation which cited ChainLadder: [Orr07], [Nic09], [Zha10], [MNNV10], [Sch10], [MNV10], [Esc11], [Spe11]

6 Training and consultancy

Please contact us if you would like to discuss tailored training or consultancy.

References

- [BN07] Thomas Baier and Erich Neuwirth. Excel :: Com :: R. *Computational Statistics*, 22(1), April 2007. Physica Verlag.
- [Cla03] David R. Clark. LDF Curve-Fitting and Stochastic Reserving: A Maximum Likelihood Approach. Casualty Actuarial Society, 2003. CAS Fall Forum.
- [DGP08] C Dutang, V. Goulet, and M. Pigeon. actuar: An R package for actuarial science. *Journal of Statistical Software*, 25(7), 2008.
- [DMPDD10] Marie Laure Delignette-Muller, Regis Pouillot, Jean-Baptiste Denis, and Christophe Dutang. *fitdistrplus: help to fit of a parametric distribution to non-censored or censored data*, 2010. R package version 0.1-3.
- [DS06] Nigel De Silva. An introduction to r: Examples for actuaries. http://toolkit.pbwiki.com/RToolkit, 2006.
- [Esc11] Benedict Escoto. *favir: Formatted Actuarial Vignettes in R*, 0.5-1 edition, January 2011.
- [EV99] Peter England and Richard Verrall. Analytic and bootstrap estimates of prediction errors in claims reserving. *Mathematics and Economics*, Vol. 25:281 293, 1999.
- [GBB+09] Brian Gravelsons, Matthew Ball, Dan Beard, Robert Brooks, Naomi Couchman, Brian Gravelsons, Charlie Kefford, Darren Michaels, Patrick Nolan, Gregory Overton, Stephen Robertson-Dunn, Emiliano Ruffini, Graham Sandhouse, Jerome Schilling, Dan Sykes, Peter Taylor, Andy Whiting, Matthew Wilde, and John Wilson. B12: Uk asbestos working party update 2009. http://www.actuaries.org.uk/research-and-resources/documents/b12-uk-asbestos-working-party-update-2009-5mb, October 2009. Presented at the General Insurance Convention.
- [GMZ12] Markus Gesmann, Dan Murphy, and Wayne Zhang. ChainLadder: Mack-, Bootstrap and Munich-chain-ladder methods for insurance claims reserving, 2012. R package version 0.1.5-2.
- [LS11] Christopher W. Laws and Frank A. Schmid. *lossDev: Robust Loss Development Using MCMC*, 2011. R package version 3.0.0-1.
- [Mac93] Thomas Mack. Distribution-free calculation of the standard error of chain ladder reserve estimates. *Astin Bulletin*, Vol. 23:213 25, 1993.
- [Mac99] Thomas Mack. The standard error of chain ladder reserve estimates: Recursive calculation and inclusion of a tail factor. *Astin Bulletin*, Vol. 29(2):361-266, 1999.

- [Mic02] APH: Darren Michaels. how the love carnal and implants silicone nearly destroyed Lloyd's (slides). http://www.actuaries.org.uk/research-andresources/documents/aph-how-love-carnal-and-siliconeimplants-nearly-destroyed-lloyds-s, December 2002. sented at the Younger Members' Convention.
- [MNNV10] Maria Dolores Martinez Miranda, Bent Nielsen, Jens Perch Nielsen, and Richard Verrall. Cash flow simulation for a model of outstanding liabilities based on claim amounts and claim numbers. CASS, September 2010.
- [MNV10] Maria Dolores Martinez Miranda, Jens Perch Nielsen, and Richard Verrall. *Double Chain Ladder*. ASTIN, Colloqiua Madrid edition, 2010.
- [MSH+06] Trevor Maynard, Nigel De Silva, Richard Holloway, Markus Gesmann, Sie Lau, and John Harnett. An actuarial toolkit. introducing The Toolkit Manifesto. http://www.actuaries.org.uk/sites/all/ files/documents/pdf/actuarial-toolkit.pdf, 2006. General Insurance Convention.
- [Mur11] Dan Murphy. mondate: Keep track of dates in terms of months, 2011. R package version 0.9.8.24.
- [Nic09] Luke Nichols. *Multimodel Inference for Reserving*. Australian Prudential Regulation Authority (APRA), December 2009.
- [Orr07] James Orr. A Simple Multi-State Reserving Model. ASTIN, Colloqiua Orlando edition, 2007.
- [PR02] P.D.England and R.J.Verrall. Stochastic claims reserving in general insurance. *British Actuarial Journal*, 8:443–544, 2002.
- [QM04] Gerhard Quarg and Thomas Mack. Munich chain ladder. Munich Re Group, 2004.
- [Sch10] Ernesto Schirmacher. Reserve variability calculations, chain ladder, R, and Excel. http://www.casact.org/affiliates/cane/0910/schirmacher.pdf, September 2010. Presentation at the Casualty Actuaries of New England (CANE) meeting.
- [Sch11] Klaus D. Schmidt. A bibliography on loss reserving. http://www.math.tu-dresden.de/sto/schmidt/dsvm/reserve.pdf, 2011.
- [Spe11] Giorgio Alfredo Spedicato. *Introduction to lifecontingencies Package*. StatisticalAdvisor Inc, 0.0.4 edition, November 2011.
- [Tea11] R Development Core Team. *R Data Import/Export*. R Foundation for Statistical Computing, 2011. ISBN 3-900051-10-0.

- [Zha10] Y. Zhang. A general multivariate chain ladder model. *Insurance: Mathematics and Economics*, 46:588 599, 2010.
- [Zha11] Wayne Zhang. cplm: Tweedie compound Poisson linear models, 2011. R package version 0.4-1.

Thanks

Many thanks to all who provided ideas, suggestions, corrections and bug reports:

- Nigel de Silva for all the ideas on how to use arrays efficeently
- Florian Leitenstorfer for a bug report on MackChainLadder
- $\bullet \ \ \mathsf{Beat} \ \mathsf{Huggler} \ \mathsf{for} \ \mathsf{comments} \ \mathsf{on} \ \mathsf{MunichChainLadder}$
- Daniel Murphy for comments on MackChainLadder
- Mark Hoffmann for a bug report on MackChainLadder
- Christophe Dutang for ideas and code on utility functions to deal with triangles
- Stefan Pohl for comments on tail factors with MunichChainLadder
- Ben Escoto for providing a patch to a bug on returning latest incomplete triangle positions
- Przemyslaw Sloma for reporting a bug in MackChainLadder
- Ernesto Schirmacher for reporting a bug in residuals.MackChainLadder