LATEX Refsheet Haoli Yin p. 1 of 2

Trig Identities

$$\begin{split} &tan(x) = \frac{sin(x)}{cos(x)} \text{ , } csc(x) = \frac{1}{sin(x)} \text{ , } sec(x) = \frac{1}{cos(x)} \\ &sin^2(x) + cos^2(x) = 1 \text{ , } tan^2(x) + 1 = sec^2(x) \\ &cot^2(x) + 1 = csc^2(x) \text{ , } sin(2\theta) = 2sin(\theta)cos(\theta) \\ &cos(2\theta) = cos^2(\theta) - sin^2(\theta) \\ &tan(2\theta) = \frac{2tan(\theta)}{1 - tan^2(\theta)} \text{ , } sin^2(x) = \frac{1 - cos(2x)}{2} \\ &cos^2(x) = \frac{1 + cos(2x)}{2} \end{split}$$

Derivatives

$$\begin{array}{l} d(sinx) = cosx \ , \ d(cosx) = -sinx \ , \ d(tanx) = \\ sec^2x \\ d(secx) = secxtanx \ , \ d(cscx) = -cscxcotx \\ d(cotx) = -csc^2x \\ d(sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}, \ d(cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}} \\ d(tan^{-1}x) = \frac{1}{1+x^2}, \ d(sec^{-1}x) = \frac{1}{|x|\sqrt{x^2-1}} \\ d(csc^{-1}x) = \frac{-1}{|x|\sqrt{x^2-1}}, \ d(cot^{-1}x) = \frac{-1}{1+x^2} \end{array}$$

Ch1: Basic Definitions

Ordinary: single independent variable. **Partial**: multiple independent variables. Order: highest derivative. Linear dif**feq**: additive combination of first powers: $a_n(x)\frac{d^ny}{dx^n} + a_{n-1}\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y =$

Example of linear:
$$t^3 \frac{dx}{dt} - x = t^3$$
. $\frac{dy}{dx} = sin(x)$ bc $0 * y$ **Nonlinear:** $\frac{d^2y}{dy^2} + y^3 = 0$ bc of y^3 term.

Another: $\frac{d^2y}{dx^2} - y\frac{dy}{dx} = \cos x$ be of ydy term. **Explicit Soln**: function $\phi(x)$ when sub for y in eqn satisfies for $\forall x$ in interval. **Implicit** Soln: Verify by differentiate implicit soln wrt ind. var on both sides to check = orig.

Note: Diff of y wrt x becomes $\frac{dy}{dx}$ **Existence & Uniqueness**: 1. Find the form of the differential equation $\frac{dy}{dx} = f(x,y)$. 2. Identify the function f(x,y) and the partial derivative $\frac{\partial y}{\partial x}$ such that both are continuous in the rectangle (x, f(x)). Autonomous eqns: y' = f(y), rhs is fxn of dependent var only. **Method of Isoclines:** v' = f(x, v) = c, solve for y to make isoclines (dotted lines), slope

same along isocline. **Euler's Method**: $y_{n+1} = y_n + hf(x_n, y_n)$, where h is step size $(\frac{dist}{numstep})$.

Ch2: Solving Linear 1st Order

Separable: y' = f(x)g(y), sep. into $\frac{dy}{g(y)} =$ f(x)dx, integrate both sides.

Linear $a_1(x)\frac{dy}{dx} + a_0(x)y = b(x)$. Special cases: $a_0(x) = 0$ (no y term) then $y(x) = \int \frac{b(x)}{a_1(x)} dx + C$ $a_0(x) = a'_1(x)$ product rule y(x) = $\frac{1}{a_1(x)}(\int b(x)dx + C)$, Standard Form: $\frac{dy}{dx} + P(x)y = Q(x)$, Integrating Factor: $\mu(x) =$ $exp(\int P(x)dx)$, Solve: $\mu(x)\psi(x) = \int \mu(x)Q(x)dx +$ C, Exact: Form M(x,y)dx + N(x,y)dy = 0, check $M_v = N_x$ for exactness, Solving: 1. Text exactness, 2. $F(x,y) = \int M(x,y)dx + g(y)$, 3. $\frac{\partial F}{\partial y} = N(x, y)$ to get g'(y), 4. $g(y) = \int g'(y) dy$, 5. sub g(y) into F(x,y) = C, Exactness **Test Fail:** check $\frac{1}{N}(\frac{\partial M}{\partial v} - \frac{\partial N}{\partial x})$ only depends on x or $\frac{1}{M}(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y})$ only depends on y, then $\mu(\cdot) = exp((\cdot)d(\cdot))$, plug in $\mu(x,y)M(x,y)dx + \mu(x,y)N(x,y)dy = 0$, solve with exact. Homogenous: 1. Express dy/dx in terms of y/x, 2. Sub v = y/x = f(x, v), 3. x(dv/dx) + v = f(x, v) solve with separable, 4. Resub v = y/x. Solving dy/dx = G(ax + by): 1. sub z = ax + by, 2. diff dz/dx = a + b(dy/dx)then sub dy/dx = (dz/dx - a)/b, 3. solve separable 4. resub ax + by = z. Bernoul**li**: 1. $dy/dx + P(x)y = Q(x)y^n$, $v = y^{1-n}$, 2. 1/(1-n)dv/dx + P(x)v = Q(x), 3. solve linear w/ $\mu(x)$. Linear Coeff: Special cases: 1. $a_1b_2 = a_2b_1$ then z = ax + by, 2. $b_1 = a_2$ then exact, 3. $c_1 = c_2 = 0$ then homogenous. Coeff **Solve**: 1. solve system $a_1h + b_1k = -c$ and $a_2h + b_2k = -c$ for h, k, 2. sub in x = u + h and v = v + k for form M(u, v)du + N(u, v)dv = 0, 3. Rearr for dv/du, multiply by (1/u)/(1/u)then sub z = v/u, 4. u(dz/du) + z = step3, 5.

solve separable (partial frac) 6. resub z, u, v.

Mixing Problems: $dx/dt = r_{in} - r_{out}$, whe-

Ch3: 1st Order Applications

re r(t) can also be salt concentration, if so, then $dx/dt = r_{in}c_{in} - r_{out}x(t)/V$, where x(t) is [salt] **Malthusian/Exponential Model**: $dP/dt = kp, p(0) = p_0, p(t) = p_0 * exp(kt)$ **Logistic Model**: $dP/dt = k_1 p - k_2 \frac{p(p-1)}{2}$, p(t) = $\frac{p_0p_1}{p_0+(p_1-p_0)exp(-Ap_1t)}$ Newton's Law of Coo**ling**: $T(t) = exp(-kt) \left[exp(kt)(kM+H+U)dt + \right]$ C * exp(-kt), where M is initial temp, H is heat (≥ 0) , U is heating(+)/cooling rate(-). Os**cillating** M **Problem**: Given time constant (1/k) and M varies as sine wave w/ min/max time/temp given, find min/max time/temp of building. 1. Find period $\omega = 2\pi/24hr$, $T_{high} = M_0 + B$, $T_{low} = M_0 - B$, solve for $M_0 =$ B_0 , B 2. $T(t) = B_0 - BF(t) Cexp(-kt)$ dies off, $F(t) = \pm 1/\sqrt{1 + (k/\omega)^2}$, 3. Find T_{high} and T_{low} by plugging in F(t) w/ /pm1, 4. Find t_{high} and t_{low} by plugging in T_{high} and T_{low} into $T(t) = M_0 + (T_0 - M_0)exp(-kt).$

Physics:
$$F(t,v) = m\frac{dv}{dt} = mg - bv, v(0) = v_0$$

 $v(t) = \frac{mg}{b} + (v_0 - \frac{mg}{b})exp(-bt/m)$
 $x(t) = \frac{mg}{b}t + (v_0 - \frac{mg}{b})\frac{m}{b}(1 - exp(-bt/m))$

Parachute Problem: Find distance (*d*) fallen after given t_1 w/o parachute w/ $x_1(t_1), b_1$, calc v(t) to use as v_0 in $v_2(t_2)$, distance left $d = h - x_1(t_1)$, Solve for t_2 in $x_2(t_2) =$ d, total time $t_{total} = t_1 + t_2$. RL Circuit: $exp(Rt/L)I(t) = \int exp(Rt/L)(E(t)/L)dt + K$ to $I(t) = I_{max}(1 - exp(-Rt/L))$, Resistor Voltage: $E_R(t) = I(t)$. Inductor Voltage: $E_I(t) =$ ge: $E_R(t) = I(t)$. Inductor Voltage: $E_L(t) = L(dI/dt)$. Capacitor Voltage: $E_C(t) = q/C$. Ca- $y_1 \int \frac{exp(-\int p(t)dt)}{v_t^2}dt$ pacitor Current: R(dq/dt)+q/C=E(t). **RC Circuit**: $exp(t/RC)q(t) = \int exp(t/RC)(E(t)/R)dt +$ K. If E(t) = V = const, then q(t) = CV + (Q - CV)CV)exp(-t/RC), Q is initial charge. If Q=0, then $V(t) = V_{max}(1 - exp(-t/RC))$.

Ch4: Linear 2nd Order Applications

Const coeff, Homogenous (= 0): Form ay'' +bv' + cv = 0 where $a, b, c \in \mathbb{R}$ and $a \neq 0$. Solve aux eqn $ar^2 + br + c = 0$ for r_1, r_2 . General form: $y(t) = c_1 y_1 + c_2 y_2$, Cases: 1. $r_1 \neq r_2 \in$ $\mathbb{R}, y_i = e^{r_i t}$ 2. $r_1 = r_2 \in \mathbb{R}, y_1 = e^{rt}, y_2 = te^{rt}$ 3. $r \in \mathbb{I}, y_1 = e^{\alpha t} \cos \beta t, y_2 = e^{\alpha t} \sin \beta t$

Method of Undetermined Coeffs: If f(t) = Ct^m then guess $y = A_m t^m + \cdots + A_1 t +$ A_0 . If $f(t) = Ce^{rt}$ then guess $y = Ae^{rt}$. If $f(t) = C\{cos|sin\}(\beta t)$ then guess $y = Asin(\beta t) +$ $Bcos(\beta t)$. If form $ay'' + by' + cy = Ct^m e^{rt}$ then

guess $y = t^s (A_m + \dots + A_1 t + A_0) e^{rt}$ where $r \in \mathbb{I} \rightarrow s = 0, r_1 \neq r_2 \in \mathbb{R} \rightarrow s = 1, r_1 =$ $r_2 \in \mathbb{R} \rightarrow s = 2$. If form ay'' + by' + cy' = $Ct^m\{cos|sin\}(\beta t)$ then guess $y = t^s(A_mt^m +$ $\cdots + A_1 t + A_0 e^{at} \cos(\beta t) + t^s (B_m t^m + \cdots + B_1 t +$ B_0) $e^{at}\sin(\beta t)$ where s=1 if $\alpha + i\beta$ from f(t)is a root of the aux eqn else s = 0. solving: 1. Get y_n guess with rules 2. find y, y', y'' and plug into original diffeq. Solve for coeffs by equating to f(t) then plug coeffs into y_n .

Variation of Parameters: $y_p = v_1 y_1 + v_2 y_2$, $v_1 = \int \frac{-f(t)y_2}{aW[y_1,y_2]} dt$ and $v_2 = \int \frac{f(t)y_1}{aW[y_1,y_2]} dt$. Solve: 1. find y_h with aux eqn to get y_1, y_2 2. Find $W[y_1, y_2] = y_1 y_2' - y_2 y_1'$ 3. Find v_1, v_2 4. Plug

Const coeff, Non-homogenous ($\neq 0$): Form $ay'' + by' + cy \neq 0$. General soln: $y = y_p + c_1y_1 + c_2y_2 + c_3y_3 + c_3y_4 + c_3y_5 +$ c_2y_2 where y_p is particular soln and y_1, y_2 are homogenous general soln. To find y_n , use method of undetermined coeffs if f(t) is a polynomial, exponential, or sin/cos function. Otherwise use variation of parameters to find homogenous general soln then compute v1, v2 to find y_p . Use superposition if f(t) is a sum of functions so solve for each function then add.

Cauchy-Euler Form: $at^2y'' + bty' + cy = 0$ then 1. solve $ar^2 + (b-a)r + c = 0$ 2. Calc y_1, y_2 for general soln. 3. Show $W[y_1, y_2] \neq 0$ for y_p . Cases: 1. $r_1 \neq r_2 \in \mathbb{R} \rightarrow y = t^r$ 2. $r_1 = r_2 \in \mathbb{R} \rightarrow$ $y = t^r, t^r \ln t$ 3. $r \in \mathbb{I} \rightarrow y = t^{\alpha} \{\cos|\sin\}(\beta \ln t)$ **Reduction of Order given** v_1 : Convert to

std form y'' + p(t)y' + q(t)y = 0 then $y_2 =$

Variable coeff, Homogenous (= 0): Form $a_2y'' + a_1y' + a_0y = 0$. No general method but can if Cauchy-Euler or Reduction of order given y_1 . General form $y = c_1y_1 + c_2y_2$.

Variable coeff, Non-homogenous ($\neq 0$): Form $a_2y'' + a_1y' + a_0y = f(t)$. To find y_n , 1. find homogenous general soln. 2. put into std form 3. find v_1, v_2 using variation of params. General form $y = y_p + c_1 y_1 + c_2 y_2$.

Spring Motion Eqns

Free Mech Vibrations ($F_{ext} = 0$): eqn of spring motion my'' + by' + ky = 0 where m is mass, b is damping, k is spring const, F_{ext} is external force.

Undamped (b = 0): Form my'' + ky = 0. $w = \sqrt{\frac{k}{m}}$ is natural freq. General soln y = $c_1 \cos wt + c_2 \sin wt$. Or $v = A\sin(wt + \phi)$ whe-

LATEX Refsheet Haoli Yin p. 2 of 2

re amplitude $A = \sqrt{c_1^2 + c_2^2}$, phase angle $\phi =$ $\tan^{-1}(\frac{c_1}{c_2})$, and period wt. How long after release does mass pass through equilibrium pos? Steps: 1. Find y(t) and y'(t). 2. Solve IVP. 3. Convert to A, ϕ form. 4. $t = (n\pi - \phi)/w$.

Underdamped (b < 4mk): Roots: $\alpha + i\beta$ where $\alpha = -b/2m$ and $\beta = (1/2m)\sqrt{4mk - b^2}$. Gen Soln: $y = c_1 e^{\alpha t} cos(\beta t) + c_2 e^{\alpha t} sin(\beta t) =$ $Ae^{\alpha t}sin(\beta t + \phi)$ when A, ϕ , same as undamped. Obs: y oscillates btwn $-Ae^{\alpha t}$ and $Ae^{\alpha t}$, with quasiperiod $2\pi/\beta$ as $t\to\infty$, $Ae^{\alpha t}\to0$ approach equilibrium.

Overdamped (b > 4mk): Roots: $r_{1,2} = \frac{-b}{2m} \pm$ $\frac{1}{2m}\sqrt{b^2-4mk}$. Gen Soln: $y=c_1e^{r_1t}+c_2e^{r_2t}$. Obs: as $t \to \infty$, $y \to 0$ approach equilibrium. y(t) has 1 min/max or none (max at t = 0). y' = 0 iff $c_1 r_1 + c_2 r_2 exp(r_2 - r_1) = 0$.

Critically Damped (b = 4mk): Roots: $r_1 =$ $r_2 = -b/2m$ Gen Soln: $y = (c_1 + c_2 t) exp(rt)$. Obs: Same as overdamped, but y' = 0 iff $c_2 + c_1 r + c_2 r = 0.$

Forced Mech Vibrations ($F_{ext} = F_0 cos(\gamma t)$): Gen Soln: $y = y_p + Ae^{\alpha t}sin(\beta t + \phi)$ where α, β from underdamped homogenous is transient part $(\rightarrow 0)$.

Undamped: use cos/sin from methods of undetermined variables.

Underdamped: use $y_p = Ae^{\alpha t}cos(\gamma t) +$ $Be^{\alpha t}sin(\gamma t)$ that matches format of F_{ext} . Then General Laplace Solving: 1. Take Laplace of find $A = \frac{F_0(k-m\gamma^2)}{(k-m\gamma^2)^2+b^2\gamma^2}$, $B = \frac{F_0b\gamma}{(k-m\gamma^2)^2+b^2\gamma^2}$. Or $y_p = (F_0/\sqrt{(k-m\gamma^2)^2 + b^2\gamma^2})sin(\gamma t +$ θ), $\theta = \tan^{-1}(\frac{k-m\gamma^2}{b\gamma})$ is steady-state solution where period matches external sinusoidal force. Frequency Gain/Factor: $M(\gamma) =$ $1/\sqrt{(k-m\gamma^2)^2+b^2\gamma^2}$. Freq-Response Curve: M(0) = 1/k bc $F_{ext} = F_0$ constant force. As $\gamma \to \infty$, $M(\gamma) \to 0$. Graphing: over- **Fxn**: $\Pi_{a,b}(t) = u(t-a) - u(t-b)$. Creates lidamped $\gamma = 0$, underdamped $\gamma = 0$, $\gamma_r =$ $\sqrt{k/m - b^2/2m^2}$. Resonance Freq = $\gamma_r/2\pi$. Vertical Spring Mass System: If $F_{ext} = mg$,

then $y_p = mg/k$. If $F_{ext} = mg + F_0 cos(\gamma t)$ then solve for $F_{ext} = F_0 cos(\gamma t)$ as above, $y_{actual} =$ y + mg/k. Note: k = F/x, m = weight/g, g = y $32 f t/s^2$.

Ch7: Laplace Transforms

Definition: $f(t) \in [0, \infty)$ has exponential order α if exists T > 0 and M > 0 such that

 $|f(t)| \leq Me^{\alpha t}$ for $t \geq T$. $F(s) = \mathcal{L}\{f(t)\} =$ $\int_{0}^{\infty} e^{-st} f(t) dt$. Laplace is linear operator.

Laplace Transform Table:

Lupiuce Trunstorm Tuble.		
f(t)	F(s)	В
1	$\frac{1}{s}$	s > 0
e^{at}	$\frac{1}{s-a}$	s > a
t^n	$\frac{n!}{s^{n+1}} = \frac{\Gamma(n+1)}{s^{n+1}}$	s > 0
$\sin bt$	$\frac{b}{s^2 + b^2}$	s > 0
$\cos bt$	$\frac{s \cdot \frac{1}{5}b}{s^2 + b^2}$	s > 0
$e^{at}t^n$	$\frac{n!}{(s-a)^{n+1}}$	s > a
$e^{at} \sin bt$	$\frac{b}{(s-a)^2+b^2}$	s > a
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$	s > a
$e^{at}f(t)$	F(s-a)	s > a
$t^n f(t)$	$(-1)^n F^{(n)}(s)$	s > a
y'(t)	$sY(s)-y(\cdot)$	s > a
y''(t)	$s^2Y(s)-sy(\cdot)-y'(\cdot)$	s > a
ty'(t)	-Y(s)-sY'(s)	s > a
u(t-a)	$\frac{e^{-as}}{s}$	s > 0
$\Pi_{a,b}(t)$	$\frac{e^{-as} - e^{-bs}}{s}$	s > 0
f(t-a)u(t-a)	$e^{-as^{S}}F(s)$	s > a
g(t)u(t-a)	$e^{-as}\mathcal{L}\{g(t+a)\}$	s > a
$\delta(t-a)$	e^{-as}	s > 0

Partial Fraction Decomp: Non-repeated factors (s-r): f(s)/(s-r)(s-b) = A/(s-r) + B(s-b)**Repeated Linear (s-r)**ⁿ: $f(s)/(s-r)^n = A_1/(s-r)^n$ $r) + \cdots + A_n/(s-r)^n$. Irreducible Quadratic $s((s-\alpha)^2+\beta^2)^m$ has no real root, repeated if m>1. $\frac{f(s)}{((s-\alpha)^2+\beta^2)^m} = \frac{A_m(s-\alpha)+\beta B_m}{[(s-\alpha)^2+\beta^2]^m}$

both sides. 2. Solve for Y(s). 3. Find y(t) by taking inverse Laplace of Y(s).

Variable coeff Laplace: see $\mathcal{L}ty'(t)$ in table. 1. Take Laplace of both sides with special prop 2. Solve for Y'(s) with integrating factor 3. Get rid of +C term 4. Inverse Laplace for y(t).

Ch7.6: Periodic Stuff

Unit Step Fxn: Mu(t-a) = 0 if t < a, M if t > a. Steps M units up at x=a. Window ne segment from (a, b) and 0 elsewhere. Current I in LC circuit IVP: Steps: 1. convert g(t) to step and window fxns \rightarrow reduce to u(t-a) terms. 2. Take $\mathcal{L}\{\cdot\}$ of both sides 3. Before dividing [c] from [c]Y(s), factor out e^{-as} from Y(s) to leave F(s). 4. Find f(t) from F(s)and use that for $y(t) = \mathcal{L}^{-1}\{g(t)F(s)\}\$ to get in terms of f(t-a)u(t-a). f(t) of Period T: $f_T(t+T) = f_T(t)$ where T is the period, e.g. $T = 2\pi$ for cos/sin. $f_T(t) = f(t)\Pi_{0,T}(t)$ windowed version of t. Steps to finding f(s) from

graph: 1. Find period T. 2. Find $f_T(t)$ from f(t) by windowing. 3. Find $F_T(s)$ from $f_T(t)$ by taking Laplace. 4. $F(s) = F_T(s)/(1 - e^{-Ts})$. □ 5. Find $f(t) = \mathcal{L}^{-1}{F(s)}$

Gamma Fxn Props: $\Gamma(t) = \int_0^\infty e^{-u} u^{t-1} du, t > 0$ 0. Other props: $\Gamma(t+1) = t\Gamma(t)$, $\Gamma(1) = 1$, $\Gamma(1/2) = \sqrt{\pi}$, $\Gamma(n+1) = n!$.

Ch7.8: Convolution

 $(f * g)(t) = \int_0^t f(t-v)g(v)dv$. **Props**: f * g = g * f, $f * (g * h) = (f * g) * h, f * (g + h) = f * g + f * h, f * 0 = 0, Note <math>f * 1 \neq f$ in general. **Laplace Convolution Thm:** $\mathcal{L}\{f*g\} = F(s)G(s)$. **Convo**lution Thm: $\mathcal{L}^{-1}{F(s)G(s)} = f * g$. Laplacian **Products**: Given F(s)G(s), use inverse Laplace to find f(t), g(t) then convolve f * g.

Integro-Diff Eqn: 1. Given $y'(t) = 1 - \int_0^t y(t-t) dt$ v)f(v)dv, 2. write as conv y'(t) = 1 - y(t) * f(t). 3. Take Laplace of both sides. 4. Rearr for Y(s). 5. Solve with partial frac 6. Inverse Laplace to get y(t).

Transfer/Impulse-Response Fxn: 1. Transfer $fxn H(s) = 1/(as^2 + bs + c)$ 2. Impulse-response $fxn h(t) = \mathcal{L}^{-1}{H(s)}. 3. v(t) = h(t) * g(t) + v_k(t)$ 4. $y_k(t)$ is the solution to homogenous IVP.

Dirac Delta Fxn: $\delta(t-a) = \int_{-\infty}^{\infty} f(t)\delta(t-a)dt =$ f(a). Hammer on mass-spring system: g(t) = $\delta(t-a)$ where a is the time of the hammer strike.