

Mark Scheme (Results)

Summer 2021

Pearson Edexcel International Advanced Subsidiary Level in Physics (WPH13) Paper 01 Unit 3: Practical Skills in Physics I

Question Number	Answer		Mark
1(a)	Metre rule - 0.1 cm and Vernier calipers - 0.1 mm	(1)	1
1(b)	 Measure length and width of sheet in multiple positions and obtain mean Measure thickness for at least 20 sheets Measure total mass for at least 20 sheets Calculate density = mass / (length × width × thickness) MP2/3 – reference to number of sheets need only be seen once but the same number of sheets must be used for measurements of thickness and mass. 	(1) (1) (1) (1)	4
1(c)	 (Absolute) uncertainty would stay the same Or resolution of the measuring device is the same So, percentage uncertainty in thickness/mass would reduce MP2 dependent on MP1 	(1)	2
	Total for question 1		7

Question Number	Answer		Mark
2(a)	 Difficult to identifying when sound was loudest Or Difficulty hearing tuning fork due to background noise Tube moved when marking the water level 	(1)	
	Or Tube not vertical when water level was marked	(1)	2
2(b)(i)	 Calculation of the mean using 5 values Mean l = 18.8 cm to 3 s.f. 	(1) (1)	2
	Example of calculation Mean $l = (18.4 + 18.0 + 19.2 + 19.4 + 19.2) / 5$ Mean $l = 18.8$ cm		
2(b)(ii)	 Use of half the range Percentage uncertainty = 4 (%) 	(1) (1)	2
	 OR Use of value furthest from the mean (18.0) Percentage uncertainty = 4 (%) Allow ecf from 2(b)(i) for use of 4 values (e.g. ignoring 18.0) for both mark points. 		
	Example of calculation Range = $19.4 - 18.0 = 1.4$ cm Percentage uncertainty = $(0.7 \text{ cm} / 18.8 \text{ cm}) \times 100 \% = 3.7 \%$		
	Difference from mean = $18.8 - 18.0 = 0.8$ cm Percentage uncertainty = $(0.8 \text{ cm} / 18.8 \text{ cm}) \times 100 \% = 4.3 \%$		
2 (c)	• Use of $v = f\lambda$ • Speed of sound = 331 m s ⁻¹	(1) (1)	2
	Allow e.c.f from 2(b)(i)		
	Example of calculation $\lambda = 4 \times 0.188 \text{ m} = 0.752 \text{ m}$ $v = 440 \text{ Hz} \times 0.752 \text{ m} = 331 \text{ m s}^{-1}$		
2(d)	 Use of percentage uncertainty from (b)(ii) to calculate relevant maximum/minimum value for speed of sound from (c) Statement comparing this with 343 m s⁻¹ 	(1) (1)	
	MP1 – only needs to calculate one boundary – e.g. maximum if their value in (c) is below 343 m $\rm s^{-1}$, minimum if (c) is above 343 m $\rm s^{-1}$.		
	 OR Calculates the percentage difference between 343 m s⁻¹ and their speed of sound from (c) Statement comparing this with their percentage uncertainty from (b)(ii) 	(1) (1)	2
	Example of calculation Percentage uncertainty = 4 % $v = 331 \text{ m s}^{-1}$ Max $v = 331 \times 1.04 = 344 \text{ m s}^{-1}$		
	Total for question 2		10

Question	Answer		Mark
Number 3(a)	Diameter value = 17.90 mm	(1)	
<i>3(a)</i>	• Use of half resolution (0.005 mm)	(1)	
	• Percentage uncertainty = 0.03 (%)	(1)	3
	1 electratinty = 0.03 (70)	(-)	
	Example of calculation		
	Percentage uncertainty = (0.005 mm / 17.90 mm) × 100 % = 0.028 %		
3(b)	Check for zero error	(1)	1
	Allow do not overtighten		
3(c)(i)	• When stationary, the reading on the force meter = weight (– upthrust)	(1)	
	• When moving (at a constant speed), the reading on the force meter = weight +		
	drag (- upthrust)	(1)	
	Subtracting the two readings gives the value of drag	(1)	3
	For MP1 and MP2 – accept descriptions given as an equation		
	e.g. When stationary $F_1 = W - U$		
	When moving $F_2 = W + D - U$		
3(c)(ii)	• Subtracts the two forces (F = 0.09 N)	(1)	
	• Use of $F = 6\pi \eta r v$	(1)	
	• $\eta = 1.7 \text{ (Pa s)}$	(1)	3
	Example of calculation		
	F = 0.29 N - 0.20 N F = 0.09 N		
	$F = 0.09 \mathrm{N}$ $F = 6\pi \eta r v$		
	$\eta = F/6\pi rv$		
	$\eta = 17000 \text{ V}$ $\eta = 0.09 \text{ N} / (6 \times \pi \times 0.00895 \text{ m} \times 0.32 \text{ m s}^{-1})$		
	$\eta = 0.67 \text{ Pa s}$		
3(d)	A comment assessing uncertainty in force	(1)	
	A comment assessing uncertainty in distance	(1)	
	A comment assessing uncertainty in time	(1)	4
	• Conclusion justified by their assessments	(1)	4
	MP4 requires some numerical comparison		
	Examples of assessments for MP1-3		
	Force		
	• Resolution of the force meter is 0.01 N, so percentage uncertainty is 11% (accept		
	 5.5% or 6%) Force difficult to keep constant, variation likely to be larger than 0.01 N 		
	Torce difficult to keep constant, variation likely to be larger than 0.01 iv		
	Distance		
	• Meter rule resolution of 1mm, so percentage uncertainty is small		
	• Percentage uncertainty in distance measurement is 0.2% (accept 0.4%)		
	Time		
	• Resolution of the stopwatch is 0.01 s, so percentage uncertainty is 0.6 % (accept		
	 1.2%) Time is short, so reaction time (0.2 s) will be a significant percentage (25%) or 		
	fraction (1/4) of the time measured		
	• Not enough time to move eyeline, so there may be parallax error when judging when the sphere has passed the rubber band.		

Question Number	Answer		Mark
4(a)	• Re-arranges equation $V_a = \frac{hc}{e} \frac{1}{\lambda} + \frac{W}{e}$ and compares to $y = mx + c$	(1)	
	• Identifies $gradient = \frac{hc}{e}$	(1)	
	• States that h, c and e are all constants	(1)	3
4 (b)(i)	 Correct values calculated Values correctly rounded to 3 sig. fig. 	(1) (1)	2
4(b)(ii)	Example	(1)	
4(b)(ii)	 Labels axes with quantities and units Sensible scales Plotting – 2 points furthest from their line Plotting – 2 points at the ends Line of best fit Refer to Mark Scheme Notes – Section 5 for guidance on axis labels, suitable scales & checking accuracy of plots. An example of the graph can be seen on page 11. Va/V 1/λ/× 10⁶ m⁻¹ 1.82 1.52 1.97 1.63 2.02 1.69 2.07 1.71 2.31 1.89 2.58 2.13 	(1) (1) (1) (1) (1)	5
4(b)(iii)	 Calculates gradient using large triangle - at least half their line of best fit Use of gradient = hc/e h = 6.65×10⁻³⁴ to 6.85×10⁻³⁴ J s Example calculation Gradient = (2.55 - 1.80) V / (2.10 - 1.60)×10 ⁶ m ⁻¹ = 1.25×10 ⁻⁶ V m h = 1.25×10 ⁻⁶ V m × 1.60×10 ⁻¹⁹ C / 3.00×10 ⁸ m s ⁻¹ = 6.67×10 ⁻³⁴ J s	(1) (1) (1)	3
4(b)(iv)	 Mathematical comparison between their value from (b)(iii) and 6.63×10⁻³⁴ J s Comparative statement consistent with MP1 MP2 is for a statement that is justified by their value for h. E.g. Difference between the values is 0.04 (×10⁻³⁴) is very small compared to 6.63 (×10⁻³⁴), so method is accurate. Or Percentage difference is 0.6%, which is small, so method is accurate. 	(1) (1)	2

	Total for question 5		19
	 OR Points for longer λ would shift 1/λ values less, decreasing the gradient Decreasing the value of h obtained. 	(1) (1)	4
	 EITHER Difference in wavelength would be small, so negligible shift in points (Accept shift would be the same for all points, so same gradient) No change in the value of h obtained. 	(1) (1)	
4(c)	 Manufacturer's wavelength would be shorter (than the wavelength of photons with least energy) Or Manufacturer's wavelength would be shorter (than the wavelength of photons emitted at V_a) A lower λ would give a higher 1/λ Or the line would shift to the right, 	(1) (1)	

Example of a graph for 4(b)(ii)

