Seam Carving!

Slide to the Original Image

Labradoodle or fried chicken

Puppy or bagel

Sheepdog or mop

Chihuahua or muffin

Barn owl or apple

Parrot or guacamole

Raw chicken or Donald Trump

But, we human actually lose!

• A demo that shows We, human, lose, on the classification task, we are proud of, we have been

trained for millions of years!

• If we want to make it hard for bots, it has to be hard for human as well.

How would you crack it?

Chess: 10⁴⁷

Deep Blue, Feb 10, 1996

Go: 10^{170}

AlphaGo, March, 2016

We (will) lose on many specific tasks!

- Speech recognition
- Translation
- Self-driving
- ...
- BUT, they are not Al yet...
- Don't worry until it dates with your girl/boy friend...

Deep learning is so cool for so many problems...

A Brief Introduction to Deep Learning

- Artificial Neural Network
- Back-propagation
- Fully Connected Layer
- Convolutional Layer
- Overfitting

Artificial Neural Network

- 1. Activation function
- 2. Weights
- 3. Cost function
- 4. Learning algorithm

Live Demo

Neurons are functions

Let's start with a complex one!

$$f(x,y) = x + y$$

- Given x = a, y = b, how to update x and y to make f(x, y) larger?
- Follow gradient directions!

$$f(x,y) = x + y \qquad \rightarrow \qquad \frac{\partial f}{\partial x} = 1 \qquad \frac{\partial f}{\partial y} = 1$$

$$x = a + 0.01 * 1,$$

$$y = b + 0.01 * 1$$

$$f(x,y): a + b \rightarrow a + b + 0.02$$

Neurons are functions

A more complex one!

$$f(x,y) = x * y$$

- Given x = a, y = b, how to update x and y to make f(x, y) larger?
- Follow gradient directions!

$$f(x,y) = xy \qquad \rightarrow \qquad \frac{\partial f}{\partial x} = y \qquad \frac{\partial f}{\partial y} = x$$

$$x = a + 0.01 * b,$$

$$y = b + 0.01 * a$$

$$f(x,y): a * b \rightarrow (a + 0.01 * b)(b + 0.01 * a)$$

$$f(x,y): 4 * (-3) \rightarrow 3.97 * (-2.96)$$

Back-propagation

An extremely complex one!

$$f(x, y, z) = (x + y) * z$$

- Let q(x, y) = (x + y), then f(x, y, z) = q(x, y) * z
- Chain rule: $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$

Now, serious stuff, a bit...

Fully Connected Layers

"When in doubt, use brute force." --Ken Thompson

"If brute force is possible..."
--Yangyan Li

Convolutional Layers

Convolutional Layers

Convolution Filters

Computer vision features

and many others:

SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH,

Traditional Recognition Approach

Features are not learned

Feature Engineering vs. Learning

- Feature engineering is the process of using domain knowledge of the data to create features that make machine learning algorithms work.
- "When working on a machine learning problem, feature engineering is manually designing what the input x's should be."

-- Shayne Miel

 "Coming up with features is difficult, timeconsuming, requires expert knowledge."

--Andrew Ng

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

— John von Neumann —

AZQUOTES

Under- and Over-fitting examples

How to detect it in training process?

Dropout

Sigmod → ReLU

Sigmod → ReLU

