Rechnernetze und Telekommunikation

NGNs und VoIP

Previous Generation Networks (1)

Previous Generation Networks (2)

- Dienste und Infrastrukturen sind eins und sind in einer Hand
- Infrastrukturen sind heterogen
 - Verschiedene Technologien
 - Leitungs- und paketvermittelt
 - Verbunden über Gateways

NGNs

- Ein Netz der nächsten Generation (NGN) nach ITU-Def.
 - ist ein paketvermittelndes Telekommunikationsnetz
 - das Telekommunikationsdienste bereitstellt
 - viele breitbandige, dienstgüteklassenfähige Transporttechnologien nutzt
 - bei dem dienstbezogene Funktionen unabhängig von der genutzten Transporttechnologien sind
 - bietet den Nutzern uneingeschränkten Zugang zu Netzen, zu konkurrierenden Dienstanbietern und/oder Diensten ihrer Wahl
 - "Netzneutralität"
 - unterstützt die allgemeine Mobilität, durch allgegenwärtige Bereitstellung von Diensten
 - Geräte und Nutzermobilität
 - erfüllt alle regulatorischen Anforderungen
 - z. B. Notfallkommunikation, Sicherheit, Lawful Interception usw.

Next Generation Networks

Prinzipien und Architektur des NGN

- Dienstunabhängiges Core-Network
 - Paketvermittelt
 - Mit durchgängiger QoS
 - Multicast-fähig
- Dienste in den Endpunkten realisiert
 - Services sind nur
 Software auf
 Terminals und Servern
- AAA-Server
 - zur zentralenAuthentifizierung

NGN - Wozu eigentlich?

Netzneutralität bringt

- Konkurrenz der Dienstanbieter und
- Innovationsfähigkeit

Mobilität der

- Nutzer und
- Endgeräte

Konvergenz der

- Dienste und
- Endgeräte

Was ist VoIP?

- VoIP ist die Übertragung von Sprache über IP (oder generell: Paket-vermittelte Netze wie z.B. das Internet).
- VoIP hat alle Features, die es zuvor im POTS (Plain Old telephone service) gab
- Spezielle Anforderungen:
 - Security
 - Abhörsicherheit
 - Authentifizierung
 - Kein SPIT (spam over internet telephony)!
 - Kompatibilität
 - Notrufe
 - Verfügbarkeit
 - Endgeräte und Server (wie im POTS!)
 - Mobile Clients

Vorteile von VoIP

- Geringere Kosten (insb. für Ferngespräche)
- Einfachere Integration von Software-Anwendungen (z.B. Voice-Mail, Call-Center, etc.)
- Unified Messaging
- Virtuelle Konferenzräume (Teleconferencing)
- Hosted PBX
- Alles implementierbar durch Software
 - Z.B. Asterisk (http://www.asterisk.org/)

MOS - Mean Opinion Score

Verfahren zur subjektiven Beurteilung der Qualität von Sprachund Bildübertragungen

- 5-Stufige Skala

POTS: 4,2, GSM: 3,7, schlechtes GSM: 3

- Anforderung VoIP (ideal): 4,5

Wert	Quality	Bedeutung
5	excellent	Es ist keine Anstrengung nötig, um die Sprache zu verstehen.
4	good	Durch aufmerksames Hören kann die Sprache ohne Anstrengung wahrgenommen werden.
3	fair	Die Sprache kann mit leichter Anstrengung wahrgenommen werden.
2	poor	Es bedarf großer Konzentration und Anstrengung, um die übermittelte Sprache zu verstehen.
1	bad	Trotz großer Anstrengung kann man sich nicht verständigen.

VoIP Codecs

- Wandeln die analoge Sprache in digitale Signale um und umgekehrt
- VoIP meistbenutzten Codecs für Sprache (inkl. Kompression)

```
G711 -> 64 kbps
G729 -> 8 kbps
G723.1 -> 6.4 kbps
```

 Alle beinhalten Echo-Unterdrückung

Benötigte Protokolle

- Signalisierungs-Protokolle um Anwesenheit von Nutzer zu erkennen, sie zufinden, Anrufe auf-, um- und abzubauen
 - ITU-T H.323 umbrella standard
 - IETF SIP
 - Angelehnt and HTTP and SMTP
- Media Transport Protokolle und die Audio/Video-Ströme in Paketform zu übertragen
 - RTP (Real Time Protocol) wird von allen offenen Standards genutzt
- Weitere Protokolle für
 - Gateway Location
 - QoS
 - Interdomain AAA (Authentication, Authorization and Accounting)
 - etc.

Signalisierungsprotokolle Prinzipiell: Anrufen mit VoIP

Media Transport Protokolle - RTP

- Definiert in RFC 1889
- Für Video und Audio-Streaming
- RTP kann als Sublayer des Transport Layers gesehen werden
- Üblicherweise auf UDP
 - 8-Byte Header
 - klein = schnell
 - Kein Setup-Overhead wie z.B. in TCP
 - Kein Verbindungsaufbau
 - Aufgabe z.B. des Signalisierungs-Protokolls

RTP Paket Header

- Payload type (7 bits)
 - the type of audio/video encoding
- Sequence number (16 bits)
- Time stamp (32 bits)
 - Zur Jitter Entfernung
 - abgeleitet von der Sampling Clock des Senders
- Synchronization Source Identifier (SSRC) (32 bits): Quelle des RTP Stroms
 - Random Stream-Number
 - Nicht IP-Adress des Senders

RTP Header

RTP: Beispiel im Wireshark

RTCP (RTP Control Protocol)

- RTCP Pakete werden periodisch zwischen Sender and Empfänger ausgetauscht
- Zur Ermittlung der Statistik:
 - Anzahl der gesendeten Pakete
 - Anzahl der verlorenen Pakete
 - Jitter
- RTP und RTCP Pakete laufen über unterschiedliche Ports

QoS-Anforderungen an VoIP

Bandbreite

- Anhängig vom Codec
- Vergleich
 - PSTN: 1.5 Mbps mit 64kpbs pro Kanal: 24 simultane Anrufe
 - VoIP: 1 Mbps mit G.729 codec (8kpbs) 128 simultane Anrufe

Latenz

RTT von 150-250 ms möglich, besser kleiner

Jitter

Akzeptabel: 75 msec, besser kleiner

Paketverlustrate

- Laut Anbieter: max. 2-3%

Signalisierungs-Protokolle: SIP – Architektur und Komponenten

User Agents

- Eine Einheit, die Anrufe initiiert, empfängt und beendet
 - User Agent Clients (UAC)
 - initiiert Anrufe
 - User Agent Server (UAS)
 - empfängt Anrufe
- UAC und UAS können Anrufe beenden

Proxy Server

- Ein zwischengelagerter Server, der sowohl als Server als auch als Client Anfragen im Auftrage anderer bearbeiten kann.
- Anfragen werden intern bearbeitet oder indem sie möglicherweise nach einer änderung der Adresse an andere Server weitergeleitet werden.
- Kann SIP-Nachrichten interpretieren, umschreiben oder übersetzten bevor er sie weiterleitet

Redirect Server

- Ein Server, der eine SIP Anfrage annimt und die Adresse auf keine, eine oder mehrere neue Adressen abbildet und diese an den Clinet zurücksendet
- Anders als ein Proxy Server, initiiert der Redirect Server keine eigenen Requests
- Anders als ein User Agent Server, kann der Redirect Server keine Anrufe annehmen oder beenden.

NGNs und VoIP Martin Gergeleit

Registrar Server

 Ein Server, der REGISTER Anforderungen empfängt

 Ein Registrar Server kann eine Authentifizierung verlangen

 Ein Registrar Server ist typischerweise co-located mit einem Proxy oder einem Redirect Server

SIP Nachrichen – Methoden und Antworten

-SIP Methods:

- INVITE Initiates a call by inviting user to participate in session.
- ACK Confirms that the client has received a final response to an INVITE request.
- BYE Indicates termination of the call.
- CANCEL Cancels a pending request.
- REGISTER Registers the user agent.
- OPTIONS Used to query the capabilities of a server.
- INFO Used to carry out-of-bound information, such as DTMF digits.

- SIP Responses:

- 1xx Informational Messages.
- 2xx Successful Responses.
- 3xx Redirection Responses.
- 4xx Request Failure Responses.
- 5xx Server Failure Responses.
- 6xx Global Failures Responses.

SIP Headers

- Ähnliche Syntax und Semantik zu HTTP

- Beispiel

```
SIP Header

INVITE sip:5120@192.168.36.180 SIP/2.0

Via: SIP/2.0/UDP 192.168.6.21:5060

From: sip:5121@192.168.6.21

To: <sip:5120@192.168.36.180>

Call-ID: c2943000-e0563-2a1ce-2e323931@192.168.6.21

CSeq: 100 INVITE

Expires: 180

User-Agent: Cisco IP Phone/ Rev. 1/ SIP enabled

Accept: application/sdp

Contact: sip:5121@192.168.6.21:5060

Content-Type: application/sdp
```

SIP: Auf- und Abbbau einer Verbindung

NGNs und VoIP Martin Gergeleit

Folie: 26

Typisches Problem bei der SIP/VoIP-Telefonie (zu Hause)

NAT und Firewalls

- SIP Nachrichten enthalten IP-Adressen im Datenteil
- Interne Adressen sind von außen nicht sichtbar
- RTP benutzt keine festen Layer 4 Portnummern
 - Variabel im Bereich von 1024 65534
- → A ruft B an, B bekommt SIP-Nachrichten von A, aber nicht umgekehrt
- → RTP wird gar nicht zugestellt ⊗
- Das Problem kann mittels SIP/RTP-Proxy auf dem NAT-Router behoben werden
 - Der Proxy korrigiert die SIP-Packete, und leitet die RTP-Packete über sich selbst zum jeweiligen Gesprächspartner

Warum ist VoIP-Security ein Thema?

- Durch den Einsatz von IP-Netzwerken sinken die Angriffshürden
 - Offenes Netzwerk
 - Erreichbare Server und Endgeräte
 - Gängige Multi-Purpose-Betriebssysteme
 - Verfügbare Tools
- VoIP hat anderen Schutzbedarf
 - als herkömmliche Telefonie
 - als die restlichen Netzwerkanwendungen

Vergleich mit klassischer Telefonie

- VoIP-Sicherheitsmechanismen theoretisch besser als bei klassischerTelefonie
- Aber:
 - MangeInde Umsetzung
 - Offene Infrastruktur
 - Werkzeuge, Wissen und Zugänge verfügbar
 - Integrierte Sprach-, Signalisierungs-, und Management-Ebene
 - Konvergenz
 - bei Endgeräten, Infrastruktur-Komponenten, Betriebssystemen, Anwendungen
 - Minimale Verbindungskosten

Technische Sicherheitsmaßnahmen für VoIP

Maßnahmen in der Netzwerkschicht

- Trennung von Sprach- und Datennetz
- Schutz vor unbefugtem Netzwerkzugang
- Schutz vor Umleitung von Nachrichten
- Multi-Port-Switch auf VolP-Phones deaktivieren
- Schutz gegen DoS-Attacken

Maßnahmen in der Anwendungsschicht

- Authentifikation und Verschlüsselung der Signalisierung
- Verschlüsselung der Sprachdaten
- Authentifizierte und verschlüsselte Management-Zugänge
- Überwachte Registrierung der Endgeräte
- Eingeschränkte Nutzung von Soft-Phones

Maßnahmen in der Anwendungsschicht (1) Signalisierungsebene

- Authentifizierung und Verschlüsselung der SIP-Signalisierung
 - Schutz gegen z.B. Caller-ID Spoofing, unautorisierte Nutzung, MitM-Attacks
 - Signalisierungssicherheit ohne Sprachdatensicherheit weitestgehend überflüssig

Maßnahmen

- Mittels TLS-gesicherten Verbindungen oder S/MIME (nicht verbreitet)
 - "SIPS": Sip over TLS, Problem: Sicherheit nur für 1. Hop
 - S/MIME: Sicherung durch PKI, Zertifikatsverteilung aufwändig, Probleme: Proxies können SIP-Nachrichten nicht umschreiben
- Verzicht im vollständig geschlossenen Netz akzeptabel (siehe PSTN)
 - Gesichert durch Maßnahmen auf der Netzwerkschicht (s.o.)

Maßnahmen in der Anwendungsschicht (2) Datenebene

- Verschlüsselung der Sprachdaten
 - Schutz gegen Abhören, Mitschneiden, Manipulation
 - Standard ist SRTP
 - Verzicht im vollständig geschlossenen Netz akzeptabel (siehe PSTN)
 - Gesichert durch Maßnahmen auf der Netzwerkschicht (s.o.)
 - Mandatorisch, falls die VolP-Telefonie auf unsichere Netze ausgeweitet werden sollte
 - Sicherheit des Schlüsselaustausches (meistens Signalisierungs-ebene) erforderlich

Verschlüsselung der Sprachdaten

SRTP

- RTP Profil, sehr geringer Overhead
- AES-128 Verschlüsselung
- Schlüssel muss in den verschlüsselten SIP-Nachrichten übertragen werden Location, Redirect Servers

Alternative: Verschlüsselung NUR der Sprachdaten

- ZRTP (Phil Zimmermann's RTP)
 - Diffie-Hellman Schlüsselaustausch für SRTP
 - siehe auch: http://www.youtube.com/watch?v=YEBfamv-_do
 - gemeinsamer sym. Schlüssel
 - Aber: Man in the Middle?

- Schlüssel-Hash wird via Spache in der Session geprüft und

autentifiziert

- Nachfolgende Sessions mit dem gleichen Partner nutzen den vorherigen Schlüssel
- Implementiert in "Zfone"
 - Implementiert direkt in der RTP-Verbindung
 - Keine Änderung an SIP

Folie: 34