Note on Trace Maximization Correction to the Multi-precision Polar Decomposition

Thomas Seleiro*

11 January 2021

1 Polar Decomposition

For $A \in \mathbb{C}^{m \times n}$, we can find a polar decomposition A = UH, where $U \in \mathbb{C}^{m \times n}$ has unitary columns and $H \in \mathbb{C}^{n \times n}$ is Hermitian positive semi-definite. The unitary polar factor U for an $n \times n$ matrix A can be computed via the scaled Newton iteration defined by the recursive step

$$X_{k+1} = \frac{1}{2}(\mu_k X_k + \mu_k^{-1} X_k^{-*}), \qquad X_0 = A.$$

Throughout the experiments performed, we used the $1, \infty$ -norm scaling factor

$$\mu_k = \left(\frac{\|X_k^{-1}\|_1 \|X_k^{-1}\|_{\infty}}{\|X_k\|_1 \|X_k\|_{\infty}}\right)^{1/4},$$

and we use a mixture of the stopping conditions $||X_k - X_{k-1}||_{\infty}/||X_k||_{\infty} \le nu$ and $||I - X_k^* X_k||_{\infty} \le nu$ suggested in [1, §8.4].

We try to evaluate the effectiveness of using this method for computing the polar decomposition of a matrix in multiple precision. The iterates converge quadratically to the unitary polar factor. Therefore once the iteration has converged to a lower precision, only one further iteration in the desired higher precision would be needed for convergence.

The computed matrix U_1 will be unitary to the desired precision, but the corresponding Hermitian factor $H_1 = U_1^* A$ need not be Hermitian positive semi-definite. Table ??. shows that H_1 is only Hermitian to single precision and the calculated matrices are inaccurate. We try to compensate for this inaccuracy

^{*}Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK (thomas.seleiro@postgrad.manchester.ac.uk)

	t_G	t_N	s_G	$ H_G - H_G^* /2$	$ H_N - H_N^* /2$
rand(25)	0.27	1.67e-3	245	1.91e-14	8.12e-15
rand(50)	4.88	1.83e-3	713	7.88e-14	3.90e-14
rand(75)	35.96	3.11e-3	1364	1.64e-13	9.17e-14
rand(100)	140.53	4.49e-3	2110	3.14e-13	1.46e-13

Table 2: Table showing t_G and t_N , the calculation times using maxtracePoldec and a double precision Newton iteration; s_G the number of sweeps of maxtracePoldec, and the norm skew-Hermitian parts of the calculated Hermitian polar factors.

by calculating the polar decomposition $H_1 = WH$. We then have $A = U_1H_1 = (U_1W)H =: UH$, where U is unitary to double precision and H is Hermitian positive semi-definite.

In general, H_1 is not unitary ($||A||_2 = ||U_1H_1||_2 = ||H_1||_2$). Therefore we cannot use the Newton method to compute this polar decomposition, since the iterates converge to a unitary matrix.

We instead use the property that for all unitary $W \in \mathbb{C}^{n \times n}$, trace (W^*A) is maximised if and only if W is a unitary polar factor of A (see [1, Prob. 8.13]).

An algorithm for computing the polar decomposition is proposed in [2, p.84]. We repeatedly loop through every 2×2 submatrix $A_{ij} = A([i,j],[i,j])$ and apply Givens transformations that make A_{ij} symmetric and maximise its trace. We do so until the matrix is symmetric. If the resulting matrix \tilde{A} is indefinite, we apply a Householder transformation W^* where $W = I - 2xx^*$ where x is the normalized eigenvector of the smallest eigenvalue of \tilde{A} . This makes the resulting matrix symmetric positive semi-definite and increases the trace of \tilde{A} .

References

- [1] N. J. Higham, Functions of Matrices: Theory and Computation, Society for Industrial and Applied Mathematics, Philadelphia, Pa, 2008.
- [2] M. I. SMITH, Numerical Computation of Matrix Function, PhD thesis, University of Manchester, Manchester, England, 2002.