Analysis I Homework 5

Nutan Nepal

November 21, 2022

Pack Pledge: I have neither given nor received unauthorized aid on this test or assignment.

1. Let $1 . Show that the dual space of <math>l^p$ is l^q .

Taking the Schauder basis $(e_k) = (\delta_{kj})$ for the space l^p , we see that every $x \in l^p$ has a unique representation $x = \sum_{i=1}^{\infty} \xi_i e_i$. For the linear and bounded operator $f \in (l^p)'$, we have

$$f(x) = \sum_{k=1}^{\infty} \xi_k \gamma_k$$
 where $\gamma_k = f(e_k)$.

We consider $x_n = (\xi_k^n)$ with

$$\xi_k^n = \begin{cases} |\gamma_k|^q / \gamma_k & \text{if } k \le n \text{ and } \gamma_k \ne 0\\ 0 & \text{if } k > n \text{ or } \gamma_k = 0 \end{cases}$$

where q is the conjugate of p. Then we obtain $f(x_n) = \sum_{k=1}^{\infty} \xi_k^n \gamma_k = \sum_{k=1}^n |\gamma_k|^q$ and

$$f(x_n) \le ||f|| ||x_n|| = ||f|| \left(\sum_{k=1}^{\infty} |xi_k^n|^p\right)^{1/p}$$
$$= ||f|| \left(\sum_{k=1}^{n} |\gamma_k|^{(q-1)p}\right)^{1/p}$$
$$= ||f|| \left(\sum_{k=1}^{n} |\gamma_k|^q\right)^{1/p}.$$

So we have, $\sum_{k=1}^{n} |\gamma_k|^q \le ||f|| \left(\sum_{k=1}^{n} |\gamma_k|^q\right)^{1/p} \implies \left(\sum_{k=1}^{n} |\gamma_k|^q\right)^{1/q} \le ||f||$. Letting $n \to \infty$, we see that $(\gamma_k) = (f(e_k)) \in l^q$ since the infinite sum is bounded. Now, conversely, for any sequence $b = (\beta_k) \in l^q$, we define the corresponding bounded linear functional $g \in l^p$ by $g(x) = \sum_{k=1}^{\infty} \xi_k \beta_k$

where $x = (\xi_k) \in l^p$. g is linear and bounded by Holder's inequality. Thus $g \in (l^p)'$.

Now, we show that the norm of the functional f is the norm on the space l^q . We have

$$|f(x)| = \left| \sum_{k=1}^{\infty} \xi_k \gamma_k \right| \le \left(\sum_{k=1}^{\infty} |\xi_k||^p \right)^{1/p} \left(\sum_{k=1}^{\infty} |\gamma_k||^q \right)^{1/q} = ||x|| \left(\sum_{k=1}^{\infty} |\gamma_k||^q \right)^{1/q}.$$

Taking sup over all x of norm 1 we obtain $||f|| \leq (\sum_{k=1}^{\infty} |\gamma_k|^q)^{1/q}$. But we also have $(\sum_{k=1}^n |\gamma_k|^q)^{1/q} \leq ||f||$ so $(\sum_{k=1}^n |\gamma_k|^q)^{1/q} = ||f||$. Thus we see that the mapping of $(l^p)'$ to l^q is linear and bijective and also norm preserving.

2. Prove the completion theorem for inner product spaces.

Theorem 1 (Completion). For any inner product space X there exists a Hilbert space H and an isomorphism A from X into a dense subspace $W \subset H$. The space H is unique except for isomorphisms.

Proof. By completion of Banach spaces, there exists a Banach space H and an isometry A from X onto a dense subspace W of H. For continuity, A preserves sums and scalar multiplications and hence, A is an isomorphism of normed spaces. By continuity of inner product, we can define an inner product on H by $\langle \hat{x}, \hat{y} \rangle = \lim_{n \to \infty} \langle x_n, y_n \rangle$ where $\{x_n\}$ and $\{y_n\}$ are sequences in X converging to x and y respectively and they are representatives of \hat{x} and \hat{y} in H. Since the inner product is continuous, the parallelogram and polarization identities are also preserved and hence, we see that A is an isomorphism of inner product spaces from X onto W.

The space H is unique except for isomorphisms by the completion of Banach spaces theorem. \Box

3. Kreyszig p.135 / Problem 4. If an inner product space X is real, show that the condition ||x|| = ||y|| implies $\langle x + y, x - y \rangle = 0$. What does this mean geometrically if $X = \mathbb{R}^2$? What does the condition imply if X is complex?

We have $\langle x+y, x-y \rangle = \langle x, x \rangle - \langle x, y \rangle + \langle y, x \rangle - \langle y, y \rangle = ||x||^2 - ||y||^2 - \langle x, y \rangle + \langle x, y \rangle = 0$. If $X = \mathbb{R}^2$, then we see that x+y and x-y are orthogonal for all x and y.

- 4. Kreyszig p.135 / Problem 6. Let $x \neq 0$ and $y \neq 0$.
 - (a) If $x \perp y$, show that $\{x, y\}$ is a linearly independent set.
 - (b) Extend the result to mutually orthogonal nonzero vectors x_1, \ldots, x_m .
 - (a) If $x \perp y$ then for the equation $\lambda_1 x + \lambda_2 y = 0$ we have,

$$0 = \langle \lambda_1 x + \lambda_2 y, y \rangle = \langle \lambda_1 x, y \rangle + \langle \lambda_2 y, y \rangle = \lambda_2 ||y||^2 \implies \lambda_2 = 0 \quad \text{and} \quad 0 = \langle \lambda_1 x + \lambda_2 y, x \rangle = \langle \lambda_1 x, x \rangle + \langle \lambda_2 y, x \rangle = \lambda_1 ||x||^2 \implies \lambda_1 = 0.$$

Thus, x and y are linearly independent.

(b) Using above method, we see that if $\sum_{i=1}^{m} \lambda_i x_i = 0$, then for any $i \in \{1, \dots, m\}$,

$$0 = \left\langle \sum_{i=1}^{m} \lambda_i x_i, x_i \right\rangle = \lambda_i \|x_i\|^2 \implies \lambda_i = 0.$$

Thys the mutually orthogonal vectors x_1, \ldots, x_m are linearly independent when $x_i \neq 0$ for all i.

5. Kreyszig p.135 / Problem 10. Let z_1 and z_2 denote complex numbers. Show that $\langle z_1, z_2 \rangle = z_1 \overline{z}_2$ defines an inner product, which yields the usual metric on the complex plane. Under what condition do we have orthogonality?

 $\langle z_1, z_2 \rangle = z_1 \overline{z}_2$. We check that this definition satisfies the axioms:

- (a) $\langle x+y,z\rangle = (x+y)\cdot \overline{z} = x\overline{z} + y\overline{z} = \langle x,z\rangle + \langle y,z\rangle$,
- (b) $\langle \alpha x, y \rangle = (\alpha x)\overline{y} = \alpha \langle x, y \rangle$,
- (c) $\langle x, y \rangle = x\overline{y} = \overline{y}\overline{x} = \overline{\langle y, x \rangle},$
- (d) $\langle x, x \rangle = x\overline{x} = ||x||^2$, where $||\cdot||$ denotes the usual metric on the complex plane. So, $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0 \iff x = 0$.

The inner product yields the usual metric by taking $\|\cdot\| = \langle \cdot, \cdot \rangle^{1/2}$. For two complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ where x_j and y_j are real numbers, we have $\langle z_1, z_2 \rangle = (x_1 + iy_1)(x_2 - iy_2) = (x_1x_2 + y_1y_2) + i(y_1x_2 - x_1y_2)$. So we have orthogonality where the two equations $x_1x_2 + y_1y_2 = 0$ and $y_1x_2 - x_1y_2 = 0$ satisfy.

6. Kreyszig p.141 / Problem 8. Show that in an inner product space, $x \perp y$ if and only if $||x+ay|| \geq ||x||$ for all scalars a.

If
$$x \perp y$$
, we have $||x + ay||^2 = \langle x + ay, x + ay \rangle = \langle x, x \rangle + \langle x, ay \rangle + \langle ay, x \rangle + \langle ay, ay \rangle$. Thus, $||x + ay||^2 = ||x||^2 + 2\Re \mathfrak{e}(\overline{a}\langle x, y \rangle) + a\overline{a}||y||^2 \ge ||x||^2$.

Taking square root, we get the required result.

Now, if $||x + ay|| \ge ||x||$, we have

$$\|x+ay\|^2 = \|x\|^2 + 2\mathfrak{Re}(\overline{a}\langle x,y\rangle) + a\overline{a}\|y\|^2 \ge \|x\|^2 \implies 2\mathfrak{Re}(\overline{a}\langle x,y\rangle) + |a|^2\|y\|^2 \ge 0.$$

If $\langle x,y\rangle=k\neq 0$, we can choose a=-k to get $-2k^2+k^2\|y\|^2\geq 0$. This gives rise to a contradiction when $\|y\|<\sqrt{2}$. Hence $\langle x,y\rangle=0$.

7. Kreyszig p.141 / Problem 10. (Zero operator) Let $T: X \to X$ be a bounded linear operator on a complex inner product space X. If $\langle Tx, x \rangle = 0$ for all $x \in X$, show that T = 0.

Show that this does not hold in the case of a real inner product space. Hint: Consider a rotation of the Euclidean plane.

Let $x = \alpha p + q$ for some $p, q \in X$ and a scalar α , then we get

$$\langle Tx,x\rangle = \langle \alpha Tp + Tq, \alpha p + q\rangle = \alpha \overline{\alpha} \, \langle Tp,p\rangle + \alpha \, \langle Tp,q\rangle + \overline{\alpha} \, \langle Tq,p\rangle + \langle Tq,q\rangle = \alpha \, \langle Tp,q\rangle + \overline{\alpha} \, \langle Tq,p\rangle \, .$$

Taking $\alpha = 1$, we get $\langle Tp, q \rangle + \langle Tq, p \rangle = 0$ and taking $\alpha = i$, we get $\langle Tp, q \rangle - \langle Tq, p \rangle = 0$. Solving these two equations we get $\langle Tp, q \rangle = 0$ and $\langle Tq, p \rangle = 0$. Since these are true for all p and q we take q = Tp to get $||Tp||^2 = \langle Tp, q \rangle = 0$. Thus T must equal 0.

If we take the linear operator on the real inner product space \mathbb{R}^2 defined by the matrix

$$T = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right],$$

we see that $\langle T(x,y),(x,y)\rangle = \langle (-y,x),(x,y)\rangle = -yx + xy = 0$. But $T \neq 0$.

- 8. Kreyszig p.150 / Problem 7. Let A and $B \supset A$ be nonempty subsets of an inner product space X. Show that
 - (a) $A \subset A^{\perp \perp}$
 - (b) $B^{\perp} \subset A^{\perp}$
 - (c) $A^{\perp\perp\perp} = A^{\perp}$
 - (a) If $x \in A$, then $\langle x, y \rangle = 0$ for all $y \in A^{\perp}$ and $x \perp A^{\perp}$. So $x \in A^{\perp \perp}$.
 - (b) If $x \in B^{\perp}$, $x \perp B$. Since $B \supset A$, $x \in A^{\perp}$. Thus $B^{\perp} \subset A^{\perp}$.
 - (c) From (a), $A^{\perp} \subset A^{\perp \perp \perp}$. Also from (a) and (b), $A^{\perp \perp} \supset A \implies A^{\perp} \supset A^{\perp \perp \perp}$. Thus, $A^{\perp \perp \perp} = A^{\perp}$.
- 9. Kreyszig p.150 / Problem 8. Show that the annihilator M^{\perp} of a set $M \neq \emptyset$ in an inner product space X is a closed subspace of X.

Let $\{x_n\}$ be a sequence in M^{\perp} which converges to some $x \in X$. Then for all n and all $y \in M$, $\langle x_n, y \rangle = 0$. By the continuity of inner product, we have,

$$0 = \lim_{n \to \infty} \langle x_n, y \rangle = \langle x, y \rangle.$$

Thus $x \in M^{\perp}$ and M^{\perp} is a closed subspace.

10. Kreyszig p.150 / Problem 10. If $M \neq \emptyset$ is any subset of a Hilbert space H, show that $M^{\perp \perp}$ is the smallest closed subspace of H which contains M, that is, $M^{\perp \perp}$ is contained in any closed subspace $Y \subset H$ such that $Y \supset M$.

Let $Y \supset M$ be a closed subspace of H. Then $Y = Y^{\perp \perp}$. By **Kreyszig p.150 / Problem 7**, $Y^{\perp} \subset M^{\perp}$ and $Y^{\perp \perp} \supset M^{\perp \perp}$. Thus, $M^{\perp \perp}$ is contained in the closed subspace Y which contained M.

11. Let Y be a closed subspace of a Hilbert space H. Show that the projection operator $P: H \to Y$ is a bounded linear operator.

The projection operator P maps a point $x \in H = Y \bigoplus Y^{\perp}$ to the point $y \in Y$ such that x = y + z for some $z \in Y^{\perp}$. We note that this representation is unique and hence the map P is well-defined.

If $p = y_1 + z_1$ and $p_2 = y_2 + z_2$ are two points in H written as the sum in $Y \bigoplus Y^{\perp}$ then $\alpha p_1 + p_2 = \alpha y_1 + y_2 + z_1 + z_2$. Since $z_1 + z_2 \in Y^{\perp}$ and $\alpha y_1 + y_2 \in Y$ we see that $P(\alpha p_1 + p_2) = \alpha y_1 + y_2 = \alpha P(p_1) + P(p_2)$. Hence, P is linear.

To show that P is bounded we first note that if x = y + z as above, then

$$||x||^2 = \langle y+z, y+z \rangle = ||y||^2 + ||z||^2.$$

Then $||P(x)||^2 = ||x||^2 - ||z||^2 \le ||x||^2$. Hence, P is bounded.

12. For any subset $M \neq \emptyset$ of a Hilbert space H, $\mathrm{Span}(M)$ is dense in H if and only if $M^{\perp} = \{0\}$.

Assume that $\operatorname{Span}(M)$ is dense in H and let $x \in M^{\perp}$. There exists a sequence (x_n) in $\operatorname{Span}(M)$ such that $x_n \longrightarrow x$. We have $\langle x_n, x \rangle = 0$ for all n and by continuity of inner product, $\lim_{n \to \infty} \langle x_n, x \rangle = \langle x, x \rangle = 0 \implies x = 0$. Hence $M^{\perp} = \{0\}$.

Now, if $M^{\perp} = \{0\}$, then since $M \oplus M^{\perp} = H$, the subspace $\mathrm{Span}(M)$ is dense in H.

13. **Kreyszig p.194** / **Problem 6.** Show that Theorem 3.8-1 defines an isometric bijection $T: H \to H'$, $z \mapsto f_z = \langle \cdot, z \rangle$ which is not linear but conjugate linear, that is, $\alpha z + \beta v \mapsto \overline{\alpha} f_z + \overline{\beta} f_v$.

We see that $T(\alpha z + \beta v)(x) = \langle x, \alpha z + \beta v \rangle = \langle x, \alpha z \rangle + \langle x, \beta v \rangle = \overline{\alpha} \langle x, z \rangle + \overline{\beta} \langle x, v \rangle = \overline{\alpha} T(z)(x) + \overline{\beta} T(v)(x)$. Thus $\alpha z + \beta v \mapsto \overline{\alpha} f_z + \overline{\beta} f_v$ and the map is conjugate linear and isometric. The fact that T is a bijection comes from the statement of Theorem 3.8-1.

14. Kreyszig p.194 / Problem 7. Show that the dual space H' of a Hilbert space H' is a Hilbert space with inner product $\langle \cdot, \cdot \rangle_1$ defined by

$$\langle f_z, f_v \rangle_1 = \overline{\langle z, v \rangle} = \langle v, z \rangle,$$

where $f_z(x) = \langle x, z \rangle$, etc.

By Riesz's Theorem, we know that every linear bounded functional on H can be represented as f_z for some $z \in H$. Also, f_x is a linear and bounded functional for all $x \in H$. Here, $f_{x+y}(p) = \langle p, x+y \rangle = f_x(p) + f_y(p)$ and $f_{\alpha x}(p) = \langle p, \alpha x \rangle = \overline{\alpha} f_x(p)$. Now, we show that the given inner product satisfies the axioms:

- (a) $\langle f_x + f_y, f_z \rangle_1 = \langle z, x + y \rangle = \langle z, x \rangle + \langle z, y \rangle = \langle f_x, f_z \rangle_1 + \langle f_y, f_z \rangle_1$
- (b) $\langle \alpha f_x, f_y \rangle_1 = \langle f_{\overline{\alpha}x}, f_y \rangle = \langle y, \overline{\alpha}x \rangle = \alpha \langle f_x, f_y \rangle_1$
- (c) $\langle f_x, f_y \rangle_1 = \langle y, x \rangle = \overline{\langle x, y \rangle} = \overline{\langle f_y, f_x \rangle}_1$,
- (d) $\langle f_x, f_x \rangle_1 = \langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0 \iff x = 0$ so $\langle f_x, f_x \rangle = 0 \iff f_x = 0$.

Since $x + y \mapsto f_x + f_y$, we also see that the map is isometric.