

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECONT CERSSITIENTION OF THIS PAGE (WHILL DEED CHICAGO)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
383-024-F	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
	FINAL REPORT.
TRANSPERDED ELECTRON LOCIC DENICE (TELD)	10 (10 4) 74 to 5-14-79)
TRANSFERRED-ELECTRON LOGIC DEVICE (TELD)	6 PERFORMING ORG. REPORT NUMBER
DEVELOPMENT: 1105 662 (14	PRRL-79-CR-22
acouthon(s)	CONTRACT OR GRANT NUMBER(s)
(A-ROTHOR(S)	CONTRACT OR GRANT NUMBER(S)
L. C. Upadhyayula and R. E. Smith	NOØØ14-75-C-Ø1ØØ
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
RCA Laboratories	AREA & WORK UNIT NUMBERS
Princeton, New Jersey 08540	RF 34 582 001
11. CONTROLLING OFFICE NAME AND ADURESS	INGEPORT DATE
Office of Naval Research	December 1979
Department of the Navy	12 NUMBER OF PAGES
Washington, DC 22217	29
	15. SECURITY CLASS. (of this report)
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	Unclassified
(3)	150. DECLASSIFICATION/DOWNGRADING
$(1\alpha)^2$	SCHEDULE
	N/A
16. DISTRIBUTION STATEMENT (of this Report)	
Annroyed for nublic release, distribution	unlimited
Final rep 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if	
(1) Final rex	ot, <u>/</u>
	+1/ MA . HO
10 Oct 74-	LT May 11,
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if	different from Report)
ONR Scientific Officer; Telephone (202) 69	96-4218
18. SUPPLEMENTARY NOTES	
	Minimum road of a
(16/ 25/45)	
C/KF575	\
19. KEY WORDS (Continue on reverse side if necessary and identify by bi	ock number)
Transferred-electron logic device	
High-speed ADDER	
Field-effect transistor	
Microwave digital circuits	
20. ABSTRACT (Continue on reverse side if necessary and identify by block	
The objectives of this research prog	
planar GaAs transferred-electron logic de	
fabricate and evaluate a monolithic full	
The TELD-FET combination device prov	
ments in operating characteristics over T	ELD with resistive loads.
It has better trigger-sensitivity and sta	bility. The power dissipation

DD FORM 1473

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

299 000

ECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

can also be reduced to 0.16 to 0.2 of that for TELDs with resistive load. The capacitive output of TELD-FET makes direct interconnections possible without level shifting. Majority logic can be implemented with TELDs which reduces the component count substantially. The full ADDER circuit is a good example of this.

In the previous phase of this program a design of a full ADDER with GaAs TELD-FET devices was discussed. Uniformly doped material and 1.0-µm gate length devices have been used in the above design. The design is now extended to (i) FET and TELD sections with selective doping, and (ii) 0.5-µm gate length devices. Both the selective doping as well as smaller gate length substantially improve the device performance. The process schedule developed in the previous phase of the program for a 1.0-µm-long device has been debugged and several monolithic ADDER circuits were fabricated. Discrete test FET and TELD dc characteristics were evaluated on the curve tracer. FET characteristics were in close agreement with the design goals, but TELDs did not show any substantial current drop. A maximum current drop measured was 10 to 15%, and the design goals are 25 to 35%.

Technology was developed for the fabrication of small-scale GaAs integrated circuits. Further improvements are required in the growth of GaAs epitaxial layers which will result in improved device characteristics. The 25 to 30% current drop devices are required for the successful operation of TELD integrated digital circuits.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

PREFACE

This Final Report describes the work done in the Microwave Technology Center of RCA Laboratories, Princeton, NJ, under Contract No. N00014-75-C-0100 during the period of 10 October 1974 to 14 May 1979. F. Sterzer is the Center's Director, S. Y. Narayan is the Project Supervisor, and L. C. Upadhyayula the Project Scientist. Others who participated in the program are R. E. Smith, S. T. Jolly, J. P. Paczkowski, D. R. Capewell, E. E. Beck, and J. E. Brown. The draft of this report was submitted in May, 1979.

The research done during 10 July 1974 to 14 March 1978 was reported earlier through Annual Reports.

This research was sponsored by the Office of Naval Research, and M. N. Yoder was the Contract Monitor.

TABLE OF CONTENTS

Secti	on	Page
I.	INTRODUCTION	1
II.	DEVICE DESIGN	2
	A. Introduction	2
	B. TELD Output Section	2
	1. Effect of Doping on Current Drop	3
	2. Effect of Doping on the Coupling Constant	3
	C. FET Section Design	5
	D. TELD-FET Integral Device	6
	E. MSI Test Vehicle	6
III.	TECHNOLOGY DEVELOPMENT	10
	A. Introduction	10
	B. Process Development	10
	C. Integrated Circuits	11
IV.	CONCLUSIONS	18
REFER	ENCES	19
DICTO	TDIMITON	21

LIST OF ILLUSTRATIONS

Figu	ire	Page
1.	Velocity-field characteristics for GaAs with low field mobility as	
	a parameter	4
2.	Schematic of the TELD-FET full ADDER	8
3.	Layout of a multigigabit-rate GaAs ADDER (TELD-FET	
	implementation)	9
4.	Process schedule for the fabrication of self-aligned gate TELD-	
	FET devices	11
5.	Photomicrograph of a test chip	12
6.	(a) TELD characteristic showing current saturation	12
	(b) TELD characteristic showing polarity dependence: (1) normal	
	polarity, (2) reverse polarity	13
	(c) TELD characteristic showing current drop	14
7.	FET transfer characteristics	14
8.	Photomicrograph of a fabricated GaAs full ADDER chip	15

LIST OF TABLES

Tabl	le	Page
1.	TELD Parameters Calculated As a Function of Doping	4
2.	FET Parameters Calculated As a Function of Doping	6
3.	TELD-FET Device (Uniformly Doped Material)	7
4.	TELD-FET Device (Selective Doping)	7
5.	Material Properties and Device Characteristics on the Wafers	
	Processed During this Phase of the Program	16

SECTION I

INTRODUCTION

The objectives of this research program are: (i) to develop planar GaAs transferred-electron logic devices (TELDs), and (ii) to fabricate and evaluate a monolithic full ADDER.

In the previous phase of this program a design of a full ADDER with GaAs TELD-FET devices was discussed. Uniformly doped material and 1.0-µm gate length devices have been used in the above design. The design is now extended to (i) FET and TELD sections with selective doping, and (ii) 0.5-µm gate length devices. Both the selective doping as well as smaller gate length substantially improve the device performance. The process schedule developed in the previous phase of the program for a 1.0-µm-long device has been debugged and several monolithic ADDER circuits were fabricated. Discrete test FET and TELD dc characteristics were evaluated on the curve tracer. FET characteristics were in close agreement with the design goals, but TELDs did not show any substantial current drop. A maximum current drop measured was 10 to 15%, and the design goals are 25 to 35%.

The effort in the design, fabrication, and evaluation of the ADDER circuit is described in the following sections.

SECTION II

DEVICE DESIGN

A. INTRODUCTION

The advantages of integral TELD-FET devices for logic applications were pointed out in our previous Annual Report [1]. Design of the 1.0-µm gate length devices with uniformly doped materials was also discussed. The improvement of the device characteristics by (i) reducing the gate length, and (ii) selective doping TELD and FET sections is discussed in this section. The improved devices can be incorporated in the fabrication of the monolithic ADDER for further improving its performance.

B. TELD OUTPUT SECTION

A detailed discussion on TELD design was given in the Annual Report [1]. In the TELD-FET combination, the TELD section is used to provide the output. A capacitive pickoff is used to eliminate the dc level shifting and stability problems. The output of a TELD with capacitive electrode is given by

$$\Delta V_{o} = \alpha K V_{th}$$
 (1)

where α = coupling coefficient,

K = percentage current drop,

and V_{th} = TELD threshold voltage.

It is obvious from Eq. (1) that $\Delta V_{\mbox{\scriptsize o}}$ is large when $\alpha,$ K and $V_{\mbox{\scriptsize th}}$ are large.

As discussed in our annual report, $V_{th} = \ell \cdot E_{th}$ and can not be made large indefinitely. The TELD length ℓ is clearly fixed by the maximum frequency of operation and also by power dissipation considerations. We have chosen the device transit length ℓ to be 20 μ m. V_{th} is therefore about 8 V. The only parameters which can be used to increase ΔV_{o} are thus α and K.

^{1.} L. C. Upadhyayula, R. E. Smith, and J. F. Wilhelm, "Transferred-Electron Logic Device (TELD) Development," ONR Contract No. N00014-75-C-0100, Annual Report, September 1978.

1. Effect of Doping On Current Drop

The fractional current drop K depends on the electron peak-and-valley velocity in the material. For GaAs, the electron velocity can be calculated as a function of the electric field using the relation

$$v(E) = \frac{\mu E + v_s \left| \frac{E}{E_c} \right|^4}{1 + \left| \frac{E}{E_c} \right|^4}$$
 (2)

Here μ is the low field mobility, E_c is the critical field (\geq 3.9 kV/cm for GaAs) and v_s is the saturation velocity (\geq 0.96x10⁷ cm/s). Figure 1 shows the v-E curves for GaAs using μ as a parameter. Note that the peak velocity (v_p) depends strongly on μ and is higher for material with higher μ . It is well known that high μ occurs with lower doping. Also note that for electric fields greater than 7 to 8 kV/cm, the valley velocity does not show a strong dependence on μ . For the values of typical domain fields, the valley velocity approaches v_s , the saturated velocity. The fractional current drop K is therefore higher for lower doped material.

2. Effect of Doping on the Coupling Constant

The coupling constant α is defined as

$$\alpha = \frac{c}{c_d + 2c_g} \tag{3}$$

where $C_d = domain capacitance$,

 C_{g}^{-} = input gate capacitance of the following device,

and Z = fanout factor.

The domain capacitance \mathbf{C}_{d} is given by

$$C_{d} = \sqrt{\frac{6\epsilon e/\mu'/en}{v_{p} \ell}} \quad Wd$$
 (4)

where μ' = negative differential mobility

l = transit length,

W = device width,

d = channel thickness,

v_n = peak velocity of electrons,

 ε = dielectric constant,

and e = electronic charge.

Figure 1. Velocity-field characteristics for GaAs with the field mobility as a parameter.

When the nd product is maintained constant, the domain capacitance varies as \sqrt{d} . For lower doped material the channel thickness d is higher (for nd = constant) and so is the domain capacitance. Also, for the same TELD threshold current (I_{th} = ne v_p Wd), W is larger for lower doped material, which results in an increase in the domain capacitance. Therefore, a lower doped material is preferable for the transferred-electron logic device section. For nd = 2×10^{12} cm⁻², TELD parameters have been calculated for two different doping densities and summarized in Table 1. A device width of 15 µm and device length for 20 µm were assumed.

TABLE 1. TELD PARAMETERS CALCULATED AS A FUNCTION OF DOPING

n	đ	V _n		Cd
(cm^{-3})	<u>(µm)</u>	cm/s	<u>K</u>	(fF)
2x10 ¹⁶	1.0	1.6x10 ⁷	0.35	5.18
8x10 ¹⁵	2.5	1.85×10 ⁷	0.46	7.62

from this table it is clear that K and $C_{\mbox{\scriptsize d}}$ are higher for the device with lower doping.

C. FET SECTION DESIGN

From Figs. 4 and 6 of R. B. Fair [2] one can conclude that the drain saturation current (I_{DSS}) and transconductance (g_m) increase with doping density for any given pinchoff voltage. Therefore, a heavily doped channel ($n \sim 10^{17} \text{ cm}^{-3}$) is preferable for the FET section.

When the material parameters (n, V_p) are fixed by I_{DS} and g_m considerations, the only parameter available for minimizing the gate capacitance is ℓ_g . When ℓ_g is reduced, C_g decreases in the same proportion. Optical photolithography limits ℓ_g to 1.5 to 2.0 μ m, self-aligned gate technology limits it to 0.7 to 1.0 μ m and side etching techniques limit it to 0.5 to 0.6 μ m.

The pertinent parameters of the FET input section calculated from Ref. [2] for channel dopings of $1 \times 10^{16} \, \text{cm}^{-3}$ and $8 \times 10^{16} \, \text{cm}^{-3}$ are shown in Table 2. In both cases the pinchoff voltage has been chosen to be 5 V, the gate width is 90 μm , and the drain current required is about 4 to 7 mA.

^{2.} R. B. Fair, "Graphical Design and Iterative Analysis of the DC Parameters of GaAs FETs," IEEE Trans. Electron Devices ED-21(6), 357 (1974).

TABLE 2. FET PARAMETERS CALCULATED AS A FUNCTION OF DOPING

Doping Density	Pinchoff Voltage	Gate Bias	Drain Current	Trans- conductance	Gate Capa- citance
(cm ⁻³)	<u>(v)</u>	(V)	(mA)	(mS)	(fF)
1×10 ¹⁶	5	-1.5	4.6	1.9	18
8×10 ¹⁶	5	-2.65	7.0	2.88	40

D. TELD-FET INTEGRAL DEVICE

We will now consider the TELD-FET combination device and its performance. Uniformly doped, as well as selectively doped channels for the two devices will be considered.

The parameters of interest are the output voltage ΔV_{o} and the corresponding current change $\Delta I = g_{m} \Delta V_{o}$. For our full ADDER implementation we require a fanout capability of at least 2-2/3. We will therefore assume this value for Z and calculate ΔV_{o} and ΔI for the TELD-FET with gate lengths of 1.0 μ m and 0.5 μ m for the compromise doping of 1-2x10 16 cm $^{-3}$ and the selective doping (FET section 8x10 16 cm $^{-3}$; TELD section 8x10 15 cm $^{-3}$) cases. The results are summarized in Tables 3 and 4.

Note that the use of selective doping increases ΔV_0 by about 12%, and ΔI by about 60%. The second conclusion is that the use of 0.5- μ m gate length results in a significant improvement in performance. Based on this theory, our ultimate technology development goals are to (i) use selective doping for the FET and TELD regions, and (ii) reduce gate length to submicrometer values.

E. MSI TEST VEHICLE

A full ADDER has been chosen as a test vehicle for TELD MSI technology development. In a full ADDER, the sum (S_n) and carry (C_n) for the n^{th} bit are generated from the data inputs X_n and Y_n and the carry from the previous bit C_{n-1} . The expressions used in generating S_n and C_n are:

$$S_{n} = (X_{n} \oplus Y_{n}) \oplus C_{n-1}$$
 (5)

$$c_{n} = X_{n}Y_{n} + X_{n}C_{n-1} + Y_{n}C_{n-1}$$
(6)

A full ADDER using TELD-FET devices is shown in Fig. 2. The sum output is generated in a two-stage, two-input exclusive-OR circuit and the carry

TABLE 3. TELD-FET DEVICE (UNIFORMLY DOPED MATERIAL)

	>°	2	7.0	0.71	0.63	1.1
		δ	0.145	0.254	0.197	0.328
TELD	р	(fF)	5.18	5.18	5.9	5.9
		×	0.35	0.35	07.0	0.40
	P	(mrl)	1.0	1.0	1.5	1.5
	Δ١	(mA)	8.0	1.42	1.21	2.1
	ئن	(fF)	23	11.4	18	6
	مه	≅ []	2	7	1.92	1.92
	Inc	(MA)	7	7	9.4	9.4
FET	Š	اح د	-2	-5	1.5	1.5
	 	8 E	1.0	0.5	1.0	0.5
	>	<u>a</u> S	7.	, rv	2	2
	Doping Density	(cm ⁻³)	2×10 ¹⁶	2x10 ¹⁶	1x10 ¹⁶	1x10 ¹⁶

TABLE 4. TELD-FET DEVICE (SELECTIVE DOPING)

	>°	2	0.45	0.80
		81	0.122	0.218
	ಶ	(fF)	7.62	7.62
TELD		×	97.0	97.0
	ਰ	(2.5	2.5
	Doping	(cm ⁻³)	8x10 ¹⁵	8x10 ¹⁵
	VΙ	(fF) (mA)	1.29	2.3
	Cg	(fF)	70	20
	8	(Sm)	2.88	2.88
	IDS	(mA)	7	7
FET	> 2	· ව	-2.65	-2.65
	Ig	(<u>m</u>	1.0	0.5
	>6	· 8	'n	· ν
	Doping	(cm ⁻³)	8×10 ¹⁶	8x10 ¹⁶

Figure 2. Schematic of the TELD-FET full ADDER.

output is generated in a two-out-of-three MAJORITY gate. Figure 3 shows the layout of the monolithic ADDER. The transit time for TELDs is about 200 ps, and therefore the circuit is expected to work at 2 to 3-gigabit rates.

Figure 3. Layout of a multigigabit-rate GaAs ADDER (TELD-FET implementation).

SECTION III

TECHNOLOGY DEVELOPMENT

A. INTRODUCTION

The technology development started in the final quarter of last-year's program was continued. The process schedule was debugged. Several wafers were processed and the ADDER IC was completed. The dc characteristics were measured on discrete test FETs and TELDs. In most of the wafers TELDs did not show any current drop. In a few wafers TELDs showed 5 to 15% current drop which is not adequate for the successful operation of the IC.

B. PROCESS DEVELOPMENT

A process schedule has been developed for fabricating GaAs integrated circuits. Self-aligned gate technology was used for realizing micrometer-size gates and dry etching was used instead of wet chemical etching wherever possible for better geometry control. The starting wafers for our processing are n^+ -n-SI GaAs epitaxial wafers grown in our laboratory by either vapor hydride or trichloride synthesis. The fabrication steps are schematically shown in Fig. 4, and summarized below.

- 1. Ohmic contact metallization was deposited over the n^+ face.
- Device active regions were delineated by mesa etching. The etching was done partly with ion-beam milling for better geometry definition and partly with a preferential chemical etch for gradual sloping mesa edges for gates.
- 3. FET channels were opened with ion-beam etching (IBE). A chemical touch-up etch was used to undercut the source-drain regions and provide overhangs for self-registration of gates.
- 4. Ti/Pd/Au metallization was deposited to form FET gates and some of the interconnections.
- 5. TELD active regions are opened using IBE and the channel thickness is adjusted so that the TELD and FET currents are compatible.
- SiO₂ and/or Si₃N₄ dielectric layers were deposited either by CVD or by plasma deposition.
- 7. Capacitive-pickoff and interconnect regions were defined.
- 8. Ti/Pd/Au second-level interconnections and bonding pads were formed.

Figure 4. Process schedule for the fabrication of self-aligned gate TELD-FET devices.

C. INTEGRATED CIRCUITS

The integrated circuit consisted of test and ADDER chips. The device geometries on the test chip are identical to those on the ADDER chip. The contact pads on the test chip are made much bigger (50 μ m x 50 μ m instead of 10 μ m x 10 μ m) to facilitate testing during the process.

Figure 5 shows a photomicrograph of a test chip. Three different types of I-V characteristics observed on discrete TELDs are shown in Fig. 6. In Fig. 6(a) the device does not exhibit any current drop. As far as we can determine, the nd and nl products are greater than the critical values required. In Fig. 6(b) the device shows asymmetry in the characteristic. When the anode is biased positive, the device exhibits current saturation, and when biased in the opposite polarity it exhibits current thresholding. The TELD has a rectangular active channel, and we do not understand the origin of the asymmetry. In Fig. 6(c) the device exhibits 15% current drop. The threshold current and voltage are close to the design values. However, a current drop of 25 to 30% is required for the successful operation of the ADDER circuit.

The dc transfer characteristics of a typical FET are shown in Fig.7. The drain saturation current (I_{DSS}) is 8 to 10 mA, and the transconductance (g_m) is 2.0 to 4.0 mS. These values are in good agreement with the design goals.

Figure 5. Photomicrograph of a test chip.

Figure 6(a). TELD characteristic showing current saturation.

Figure 6(b). TELD characteristic showing polarity dependence:
(1) normal polarity (current saturates), and
(2) reverse polarity (current dropback observed).

Figure 6(c). TELD characteristic showing current drop.

Figure 7. FET transfer characteristics.

The material parameters used and device characteristics observed on most of the wafers processed during the reporting period are summarized in Table 4. It can be seen that we had difficulty in getting FETs and TELDs working together satisfactorily.

A photomicrograph of a fabricated ADDER chip is shown in Fig. 8. We were able to successfully go through all the processing steps and complete the ADDER circuit. We could not evaluate the ADDER operation as the current drop in TELDs was too small.

+Mary Spece

Figure 8. Photomicrograph of a fabricated GaAs full ADDER chip.

MATERIAL PROPERTIES AND DEVICE CHARACTERISTICS ON THE WAFERS PROCESSED DURING THIS PHASE OF THE PROGRAM. TABLE 5.

		1	Comments			IC being completed.	TELDs saturating.	Very light-sensitive	Current saturates	Current saturates	Current saturates	Current saturates		Contacts nonohmic; metal bubbling	Metal bubbled; hard to open FETs	FET current very low	Has 1.0-um undoped buffer	FET unstable; TELDs saturate	Has undoped buffer; after etching 3.1-µ-	deep for mesas, no isolation; low Vp	TELDs completed first. Difficulty in	completing FETs	Electrolytically etched; no current	drop; electron trapping ellects	observed. TELD saturates	No current drop in normal polarity;	current drop seen in the opposite polarity. IC completed.
	TELD Characteristics	Percentage	Current Drop			15.0	•	ş	•	•	,	,	\$	•	•	•	\$				20		•		•	12	
		Threshold	Current (EA)			16.0	9.0	14.0	13.0	20.0	12.0	15.0	0.04	•	•	,	18.0	3.0	•		20.0		0.0		25.0	8.0	
	FET Characteristics	E 8	(Sm)			8.0	•	•	•			•	5.0	•	•			4-5	•				ı			1.0	
	FET Chara	IDSS	(4)			14.0	•	٠	•	•		•	18-20	•	,	<0.5	•	14.0	•		16.0		(•	16.0	
	Layer	Thickness	(mrl)	9.0	4.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0	•		•	7.0	•	7.0		7.0	,	•		0.0	0.2	
Parameters	n tapping Layer	Doping	$(x10^{18}cm^{-3})$	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	•	•	ŧ	0.5	•	0.2		0.5	1			0.2	0.2	
Material P	hannel	Thickness	(a	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.4	1.4	1.4	1.0	1.4	1.0		1.0	ď	3.3		1.4	1.4	
	Active Channel	Doping	(x10 ¹⁶ cm ⁻³)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0		2.0	c	7.0		2.0	2.0	
			Vafer #	C-285	C-314	C-315	C-316	C-332	C-333	C-348	C-349	C-350	C-351	C-413	C-416	C-417	C-448	C-471	065-0		C- 4 91	677-5	7-047		C-643	779-3	

TABLE 5. (Continued)

		Material Parameters	rameters						
	Active Channel	hannel	n Capping Layer	Layer	FET Characteristics		TELD Characteristics	teristics	
	Doping	Thickness	Doping	Thickness	IDSS		Threshold Current	Percentage Current	
Wafer #	(x10 ¹⁰ cm ⁻³)	(a	$(x10^{18}cm^{-3})$	(m)	(¥a)	3	(V ®)	Drop	Comments
D-92	2.0	1.0	3.0	4.0	1		,		Has 5-μm buffer. After milling 2.4 μ,
6	ć	•							no intermesa isolation.
.6-d	2.0	0.	,	•		•	• ;	•	No intermesa isolation.
D-94	2.0	0.0	• ;	•]			0.9	•	TELDs saturating.
D-97	2.0	1.0	3.0	7.0					Has 5-pm buffer; TELDs caturating
D-122	2.0	1.4	•	•	•	1	12-14	20-25	TELES saturate in the normal polarity
									and unresnoids in the opposite polarity. Has 5-1m undoped buffer.
D-123	2.0	1.4	•	•	,	,	•	•	Contacts nonohmic; has 5-pm undoped
D-132	2.0	1.0	3.0	7.0	•	•	•		Has 5-pm undoped buffer; no mesa isola-
;		,							lation after milling deep into buffer layer.
D-149	2.0	7.		•	٠ ;	, ,	١ (Contacts nonohmic.
D-150	2.0	7. 1.	,	•	æ	0.4	0.4	,	TELD saturate; IC completed.
D-168	2.0	j	•	•		,	o. •		TELLS saturate.
7/1-0	0.4	5 (•	,	,	•		Contacts nononmic.
D-183	2.0	1.2	•	•	•	•	2.5-3.0	10-15	Has 6-um butter; TELDs low current; FFTs not completed
D-195	2.0	1.4	•	•	16.0	7.0	1.0	•	Has 5-um buffer; FETs unstable;
•	,	,							TELDs saturate.
D-200	2.0	1.4	ı				90.0		TELDs saturate; have to mill 5 um for isolation.
D-258	2.0	7.1		1	•		0.4		Has 5-um butter; TELDs saturate.
D-29/	2.0	† · · ·	, ,	· ~	' '	. 0	0.0	. ,	IELUS SATUTATE. FFT unctable: hurning out during measurements
	; i	;	7.	?		>			on the curve tracer
D-386	2.0	1.2	0.2	0.3	16.0	4.0	0.9	1	TELDs saturate.
D-390	2.0	1.4	0.5	0.2		0.4	5.0	•	FETs have positive slope in saturation;
D-201	ć	7 -	c	c		4	2	¥	TELDs saturate.
767-U	9.0	* ~	2.0	7.0	2 '	· •	9.0	, ,	to completed. No current drop in TRIDs: current
?	ì	7	7.	7			?		iumps above threshold voltage.
D-423	1.0	3.5	,	•	•		7.5	•	Current jumps above threshold voltage.
D-493	2.0	1.0	0.1	7.0	•		2.0	•	Electron trapping effects observed.
B-1053	1-1.5	1.0	3.0	0.3	•	,	•		Contacts nonohmic.
B-69 ⁺	2.0	1.5	•	ı	,		25.0	•	No thresholding; has 1.5-µ undoped buffer.
B-138 [†]	1.0	1.6	1.0	7.0	1	•	6.0	ŧ	TELD saturates; trapping effects observed.

+Wafers grown after the semi-automated control system was installed.

SECTION IV

CONCLUSIONS

The TELD-FET combination device provides substantial improvements in operating characteristics over TELD with resistive loads. It has better triggersensitivity and stability. The power dissipation can also be reduced to 0.16 to 0.2 of that for TELDs with resistive load. The capacitive output of TELD-FET makes direct interconnections possible without level shifting. Majority logic can be implemented with TELDs which reduces the component count substantially. The full ADDER circuit is a good example of this. Technology was developed for the fabrication of small-scale GaAs integrated circuits. Further improvements are required in the growth of GaAs epitaxial layers which will result in improved device characteristics. The 25 to 30% current drop devices are required for the successful operation of TELD integrated digital circuits.

REFERENCES

- L. C. Upadhyayula, R. E. Smith, and J. F. Wilhelm, "Transferred-Electron Logic Device (TELD) Development," ONR Contract No. N00014-75-C-0100, Annual Repeat, September 1978.
- 2. R. B. Fair, "Graphical Design and Iterative Analysis of the DC Parameters of GaAs FETs," IEEE Trans. Electron Devices ED-21(6), 357 (1974).

BIBLIOGRAPHY

TECHNICAL REPORTS

- L. C. Upadhyayula, R. E. Smith, and J. F. Wilhelm, "Microwave Shift Register," ONR Contract No. N00014-75-C-0100, Annual Report, February, 1976.
- L. C. Upadhyayula, R. E. Smith, and J. F. Wilhelm, "Transferred-Electron Logic Device (TELD) Development," ONR Contract No. N00014-75-C-0100, April, 1977.
- 3. L. C. Upadhyayula, R. E. Smith, and J. F. Wilhelm, "Transferred-Electron Logic Devices (TELD) Development," ONR Contract No. N00014-75-C-0100, September, 1978.

PUBLICATIONS AND PRESENTATIONS

The following articles were published in technical journals, or presented at technical conferences.

- L. C. Upadhyayula et al., "Transferred-Electron Logic Devices (TELDs) for Gigabit Rate Signal Processing," Digest of Technical Papers, 1976 IEEE-MTTS International Microwave Symposium, p. 164.
- 2. L. C. Upadhyayula, "Trigger Sensitivity of Transferred-Electron Logic Devices," IEEE Trans. Electron Devices ED-23, 1049-1052 (Sept. 1976).
- 3. L. C. Upadhyayula et al., "Transferred-Electron Logic Devices (TELDs) for Gigabit Rate Signal Processing," IEEE Trans. Microwave Theory and Techniques MTT-2 (12), 920 (Dec. 1976).
- 4. L. C. Upadhyayula, "Monolithic Logic Circuits with Transferred-Electron Logic Devices (TELDs)," Digest of Technical Papers, First Specialty Conference on Gigabit Logic for Microwave Systems, May 1979, Orlando, Florida, p. 136.

DISTRIBUTION LIST TECHNICAL REPORTS

Contract N00014-75-C-0100

Code 427 Office of Naval Research Arlington, VA 22217	4	Mr. Sven Roosild AFCRL/LQD Hanscom AFB, MA 01731	1
Naval Research Laboratory 4555 Overlook Avenue, S.W. Washington, D.C. 20375 Code 5211 5250	1	Commander U.S. Army Electronics Command V. Gelnovatch (DRSEL-TL-IC) Fort Monmouth, NJ 07703	1
Defense Documentation Center Building 5, Cameron Station Alexandria, VA 22314	12	RCA Microwave Technical Center Dr. F. Sterzer Princeton, NJ 08540	1
Dr. Y. S. Park AFAL/DHR Building 450 Wright-Patterson AFB, OH 45433	1	Hewlett-Packard Corp Dr. Robert Archer Page Mill Road Palo Alto, CA 94306	1
ERADCOM DELET-M Fort Monmouth, NJ 07703	1	Commandant Marine Corps Scientific Advisor (Code AX)	1
Dr. Daniel Chen Rockwell International Science Center P. O. Box 1085 Thousand Oaks, CA 91360	1	Washington, D.C. 20380 Microwave Associates Northwest Industrial Park Drs. F. A. Brand/J. Salcom Burlington, MA 01803	1
Dr. C. Krumn Hughes Research Laboratory 3011 Malibu Canyon Road Malibu, CA 90265	1	Commander, AFAL AFAL/DHM Mr. Richard L. Remski Wright-Patterson AFB, OH 45433	1
Mr. Lothar Wandinger ECOM/AMSEL/ TL/IJ Fort Monmouth, NJ 07003 Dr. Harry Wieder	1	Commander Harry Diamond Laboratories Mr. Horst W. A. Gerlach 2800 Powder Mill Road	1
Naval Ocean Systems Center Code 922 271 Catalina Blvd. San Diego, CA 92152		Adelphia, MD 20783 Advisory Group on Electron Devices 201 Varick Street, 9th floor New York, NY 10014	1
	_		

Distribution List, Technical Reports (continued)

Contract N00014-75-C-0100

D. Claxton 1
MS/1414
TRW Systems
One Space Park
Redondo Beach, CA 90278
Dr. W. Wisseman, MS 118 1

Texas Instruments P. O. Box 225936 Dallas, Texas 75265