

Algorithmen und Komplexität **TIF 21A/B** Dr. Bruno Becker

Übungsblatt 8: Datenkompression

www.dhbw-loerrach.de

Gegeben ist folgende Häufigkeitsverteilung für eine Menge von Zeichen

- a) Generieren Sie einen Huffman-Code für die angegebene Menge von Zeichen
- b) Decodieren Sie die folgende Nachricht (von links nach rechts) mit dem in a) generierten Code:

0010110100110100111

Zeichen	R	1	С	н	Т	G
Häufigkeit	25	21	19	18	13	4
Code	00	10	11	010	0110	0111

b) 00 10 11 010 0110 10 0111

RICHTIG

Gegeben sei die folgende Häufigkeitsverteilung für eine Menge von Zeichen:

Zeichen	Е	L	F	G	I	0	R	V
Häufigkeit	2	2	2	2	2	1	1	1

- a) Generieren Sie einen Huffman-Code für die angegebene Menge von Zeichen und geben Sie entsprechenden Baum und Code-Tabelle an.
- b) Überführen Sie die Zeichenfolge: *VIELERFOLG*mittels des in a) generierten Code in eine Huffman-codierte
 Bitfolge.

Zeichen	E	L	F	G	I	0	R	V
Häufigkeit	2	2	2	2	2	1	1	1
	000	001	010	011	100	101	110	111

b) 11110000000100011001010101011

Gegeben sei der Algorithmus für den Huffman-Code aus der Vorlesung:

- a. Welche Datenstruktur sollte man für den Aufbau des Baumes verwenden?
- b. Welche Laufzeit hat in O-Notation der Algorithmus bei Verwendung der Datenstruktur aus a)?
- a. Priority Queue (PQ) -> Min-Heap
- b. Aufwand: N Zeichen:
 - Einfügen in PQ: N * O(log N)
 - (N-1) mal:
 - Die beiden Minima aus PQ entfernen O(log N);
 - Neuen Baum bauen O(1),
 - Baum wieder in PQ einfügen O(log N)
 - Codebuch aufbauen N * O (log N)
 - Aufwand Gesamt O (N log N)

Beweisen Sie, dass die beiden längsten Codewörter in einem Huffman-Code die gleiche Länge haben.

- Das längste Codewort C(w) gehört zu einem Eingangsbuchstaben w mit der geringsten Häufigkeit.
- Daher wird dieser Eingangsbuchstabe w zusammen mit einem anderen Eingangsbuchstaben w' bei Huffman-Algorithmus im 1. Schritt zu einem Teilbaum zusammengefasst.
 - → Die beiden Eingangsbuchstaben w und w´ haben gleichen Vater.
 - → Das Codewort des einen Wortes w ist Codewort(Vater) + 0 (bzw +1),
 - → Das Codewort von w` ist Codewort(Vater) +1 (bzw. 0)
- → Beide Codewörter sind gleich lang.