2019

FORMAL LANGUAGE AND AUTOMATA THEORY IT403

TIME ALLOTTED: 3HRS **FULL MARKS:70** The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable GROUP - A (Multiple Choice Type Ouestions) 1. Answer any ten from the following, choosing the correct alternative of each question: $10 \times 1 = 10$ CO No. IT403.2 1. i) In Moore machine, output is produced over the change of: a) Transitions b) State c) Both d) None of above IT403.2 ii) Which of the following is a not a part of 5-tuple finite automata? a) Input alphabet b) Transition Function c) Initial State d) Output Alphabet IT403.2 iii) Statement 1: Null string is accepted in Moore Machine. Statement 2: There are more than 5-Tuples in the definition of Moore Machine. a) Statement 1 is true and Statement 2 is true b) Statement 1 is false and Statement 2 is true c) Statement 1 is true and Statement 2 is false d) Both are false IT403.1 iv) A Turing machine is a a)real machine b) abstract machine c) hypothetical machine d) All of these IT403.1 v) A Turing machine operates over: a) finite memory tape b) infinite memory tape c) depends on the algorithm d) none of the mentioned IT403.3 vi) While applying Pumping lemma over a language, we consider a string w that belong to L and fragment it into _____ parts. a) 2 b) 5

c) 3 d) 6

vii) There are tuples in finite state machine.		IT403.1
a) 4		
b) 5 c) 6		
d) unlimited		
viii) Transition function maps.		
a) $\Sigma * Q \rightarrow \Sigma$		TT 102 1
b) $Q * Q \rightarrow \Sigma$		IT403.1
c) $\Sigma * \Sigma \rightarrow Q$		
d) $Q * \Sigma \rightarrow Q$		
ix) Language of finite automata is.		IT403.1
a) Type 0		
b) Type 1 c) Type 2		
d) Type 3		
w) Which of the following production is in CNE?		IT403.3
x) Which of the following production is in CNF?a) S ->aA		11403.3
b) SA -> AS		
c) S -> AB		
d) All of these		
xi) A language is regular if and only if		IT403.2
a) accepted by DFA		
b) accepted by PDA		
c) accepted by LBA d) accepted by Turing machine		
xii) Grammar that produce more than one Parse tree for same sentence		IT403.1
a) Ambiguous		
b) Unambiguous		
c) Complementation		
d) Concatenation Intersection		
GROUP – B		
(Short Answer Type Questions) (Answer any <i>three</i> of the following)		$3 \times 5 = 15$
·	02	CO No.
a) State Pumping lemma	02	IT403.3
b) Find whether the Language $L=\{a^{n!} \text{ where } n>=0\}$ is regular or not?	03	IT403.3
a) State the working principle of Turing m/c.	02	IT403.1

PS	NS,Z	
	X=0	X=1
Q0	Q1 , 1	Q2,1
Q1	Q3,0	Q0,1
Q2	Q4,0	Q3,1
Q3	Q1,0	Q4,0
Q4	Q2,1	Q4,0

- 4 Design a modulo 8 Binary Counter with T Flip-Flop implementation 05 IT403.4
- 5 a) Draw transition diagram for the regular expression 03 IT403.3 10+(0+11)+0*1
 - b) What is regular expression?
- 6 a) Draw a DFA for the language accepting strings ending with 'abba' 05 IT403.3 over input alphabets $\Sigma = \{a, b\}$

GROUP – C (Long Answer Type Questions) (Answer any *three* of the following)

 $3 \times 15 = 45$ CO No.

IT403.2

- 7. a) Design a 2-i/p and 2-o/p sequence detector which will detect a 09 IT403.1 sequence 1101 and produce one as Output else will produce zero as output.
 - b) Minimize the following completely specified m/c

06 IT403.1

PS	NS,Z	
	X=0	X=1
A	E,1	D,0
В	E,0	C,1
С	A,0	В,0
D	A,0	D,1
Е	A,1	В,0

8. a) Check the Definiteness of the following m/c, if definite, find out its 05 IT403.1 order

PS	NS,Z		
	X=0	X=1	
A	A,1	C,1	
В	E,0	B,1	
С	D,0	A,0	
D	C,0	В,0	
Е	B,1	A,0	

b) Convert the following grammar into FA

05 IT403.3

 $S \rightarrow aA/bB/a/b$

A→aS/bB/b

 $B \rightarrow aA/bS$

c) Design Merger Table & Merger Graph for the following

incompletely specified m/c

05 IT403.2

PS	NS,Z		
	I1	12	13
A	C,0	E,1	
В	C,0	E,	
С	В,	C,0	A,
D	В,0	С,	Е,
Е		Е,	A,

9. a) State and prove Arden's Theorem

05 IT403.2

IT403.3

05

b) Construct the regular expression corresponding to the state diagram

given below:

c) Prove that

$$(1+00*1)+(1+00*1)(0+10*1)*(0+10*1) = 0*1(0+10*1)*$$

05 IT403.3

IT403.3

05

10. a) Convert the following grammar to CNF.

 $S \rightarrow aA/B/C/a$

 $A \rightarrow aB/E$

 $B \rightarrow aA$

C ->cCD

D ->abd

b) Let G be the grammar S->0B|1A, A->0|0S|1AA, B->1|1S|0BB. For **07 1T403.3** the string 00110101, find,

i> the leftmost derivation.

ii> the rightmost derivation.

iii> the derivation tree.

c) Define non-generating and non-reachable symbols with example. 02

d) What is ambiguous grammar?

01 IT403.1

IT403.1

11. a) Construct a DFA from the NFA given below:

Q /∑	0	1
→ q0	q0,q3	q0,q4
q3	qf	
q4		qf
qf (final state)	qf	qf

b) Compare between DFA and NFA

03

c) Construct a PDA equivalent of the following CFG:

05 IT403.3

G=(V,T,P,S) with $V=\{S,E\},\ T=\{0,1\}$ and P is defined by transition function as follows:

S -> 0S1/A

A -> 1A0/S/€

Now check the string whether 001011 is acceptable by this PDA or not.

d) Define Push Down Automata. Discuss with an example. 02 IT403.1