利用反演变换证明多(圆

铁

(天津市实验中学,300074)

(本讲适合高中)

在所要证明的平面几何问题中有多个圆 出现时,不妨利用反演变换,将圆的问题转化 为直线问题来研究.

1 知识简介

1.1 反演的定义

已知一圆 C,圆心为 O,半径为 r.如果 P = P'在讨圆心 O 的直线上,且 $OP \cdot OP' =$ r^2 ,则称 P 与 P' 关于 O 互为反演.

1.2 反演的性质

定理1 除反演中心外,平面上的每一 个点,都有唯一的反演点,且这种关系是对称 的,即如果点 $P \in P'$ 的反演点,那么,P'也是 P 的反演点. 位于反演圆上的点,保持在原 处;位于反演圆内的点,变换为圆外部的点; 位于反演圆外的点,变换为圆内部的点.

定理 2 设 P 为反演圆 O(r) 外的一点. 则它的反演点 P'是OP 与P 到圆的切线的切 点连线的交点.

定理 1、2 的证明略.

定理 3 任意一条不过反演中心的直 线,它的反形是经过反演中心的圆,反之亦 然,特别地,过反演中心相交的圆,变为不过 反演中心的相交直线,

证明:如图 1.讨 O 引直线 l 的垂线 OC, C 为垂足, C'为 C 的反演点. 在直线 l上任取一点 M, M'为M的反演点,则

 $OM \cdot OM' = OC \cdot OC' = r^2$.

于是,M、M'、C'、C 四点共圆, $\angle OM'C' = 90^{\circ}$.

由 M 的任意性可知, l 的反形是以 OC'为直径的圆.

定理 4 不过反演中心的圆,它的反形 是一个圆,反演中心是这两个互为反形的圆 的一个位似中心,任一对反演点是逆对应点.

证明:如图 2,联结 OC_1 交O C_1 于点 BA,则 AB 是 \odot C_1 的直径. M 是 \odot C_1 上任意 一点,由反演定义知,

 $OA \cdot OA' = OB \cdot OB' = OM \cdot OM' = r^2$.

图 2

则 \triangle OMB $\hookrightarrow \triangle$ OB'M',

 \triangle OMA $\hookrightarrow \triangle$ OA'M'.

故∠A'M'B'

- $= 180^{\circ} \angle M'A'B' \angle M'B'A'$
- $= 180^{\circ} \angle M'MA \angle OMB$
- $= 90^{\circ}$.

由点 M 的任意性可知, $\odot C$, 的反形是 以 A'B' 为直径的圆.

定理 5 两条 直线或曲线的夹角在反演 变换下是不变的(两条曲线之间的夹角是指 它们的切线之间的夹角).

证明:仅就一条曲线和一条直线所成角 的特殊情况进行证明,

如图 3,设曲线 C 的反形 C' 交 OL 于反 演点 P'.

下面证明:直线 OL 与曲线 C 在点 P 的切线之间的夹角 x_0 在数值上等于相应的角 y_0 .

为此,选取曲线 C 上靠近 P 的任意一点 A,割线为 AP, A 的反演点 A',作割线 A'P'. 易得 \triangle $OPA \hookrightarrow \triangle$ OA'P'. 故

$$\angle OPA = \angle OA'P'$$
.
当 $A \rightarrow P$ 时, $x_0 = y_0^{[1]}$.

2 例题分析

2.1 在两圆相切时的应用

两圆相切时,通常以切点为反演中心,相 切的两圆变为不过反演中心的两平行直线, 过两圆切点的公切线也与之平行.

例1 两圆外切于点 A 且内切另一圆 $\odot T$ 于点 $B \times C$. $\odot D$ 是小圆内公切线割 $\odot T$ 的弦的中点. 证明: 当点 $B \times C \times D$ 不共线时, A 是 $\triangle BCD$ 的内心.

(2002,土耳其数学奥林匹克)

证明:以 A 为反演中心、r(r 为任意实数)为反演半径,作图 4 的反形得到图 5.

图 4

其中, $\odot T_1$ 、 $\odot T_2$ 成为两条平行直线 T_1 、 T_2 , $\odot T$ 成为与两条平行线相切的 $\odot T'$,切线 MN 反演后成为一条平行于直线 T_1' 的直线,点 D'在 $\odot T'$ 外.

欲证 A 为 \triangle BCD 的内心,只须证点 A 到 BC、CD、BD 的距离相等,且 A 在 \triangle BCD 的内部,即 \triangle AB'C'、 \triangle AB'D'、 \triangle AC'D' 的外接圆半径相等.

由正弦定理可知,只须证 $\angle AB'C' = \angle AD'C'$, $\angle AC'B' = \angle AD'B'$. 设 M'N' 与 B'C'交于点 P. 由圆幂定理有 $\left(\frac{AM + AN}{2}\right)^2 - AD^2 = AM \cdot AN$,

即
$$\frac{1}{4} \left(\frac{AM' + AN'}{AM' \cdot AN'} \right)^2 - \left(\frac{1}{AD'} \right)^2 = \frac{1}{AM' \cdot AN'}$$
.

于是, $\left(\frac{AM' - AN'}{2AM' \cdot AN'} \right)^2 = \left(\frac{1}{AD'} \right)^2$.

则 $AD' = \frac{2AM' \cdot AN'}{AM' - AN'} = \frac{AM' \cdot AN'}{AP}$.

所以, $AD' \cdot AP = AM' \cdot AN'$.

故 $AP \cdot D'P = AM' \cdot AN' + AP^2$

$$= M'P \cdot N'P = B'P \cdot C'P$$
.

从而, $\frac{AP}{PB'} = \frac{PC'}{PD'}$,即
$$\tan \angle AB'C' = \tan \angle AD'C'$$
.

又 $\angle AB'C'$ 、 $\angle AD'C' \in (0, \frac{\pi}{2})$,则
$$\angle AB'C' = \angle AD'C'$$
.

同理, $\angle AC'B' = \angle AD'B'$. **例2** 在弓形中,内接一对相切的圆,对

每一对相切的圆,通过它们的切点引公切线.证明:所有的切线通过一个点.

证明:如图 6,设 P 是两圆 \odot O_1 、 \odot O_2 的 切点. 作以 P 为反演中心的反演变换,于是,在点 P 处相切的两圆反形为一对平行直线 $l_1/\!/l_2$,而和它们相切的弦和弧,变为 $\widehat{A'L'B'}$ 和 $\widehat{A'K'B'}$,且 $\widehat{A'L'B'}$ = $\widehat{A'K'B'}$,公切线 KL 变为 K'L',且与 l_1 、 l_2 平行(如图 7).

所以,直线 A'B'垂直平分 K'L'.换言之,过点 $A \setminus P \setminus B$ 的弧平分弓形角 $A \setminus B$ 且垂直直线 KL.然而,恰存在一个过点 $A \setminus B$ 的圆,平分 $\angle A \setminus \angle B$ (它的中心 O 是从点 $A \setminus B$ 分别向 $\angle A \setminus \angle B$ 的平分线引的垂线的交点),直线 KL 垂直这个圆,因此,通过它的中心.

于是,条件中所有直线都通过点0.

2.2 在两圆相交时的应用

两圆相交时,通常以其中一个交点为反 演中心,则两圆反形为两条相交的直线,交点 为两圆的另一个交点的反演点.

例 3 如图 8, Q 是以 AB 为直径的圆上的一点, $Q \neq A$ 、B, Q 在 AB 上的投影为 H. 以 Q 为圆心、QH 为半径的圆与以 AB 为直径的圆交于点 C、D. 证明: CD 平分线段 QH.

(2006,土耳其国家队选拔考试)

图 8

图 9

证明:作以 Q 为反演中心、 $\bigcirc Q$ 为反演圆的反演变换.则 $\bigcirc O$ 反演为直线 CD, AB 反演为以 QH 为直径且与 $\bigcirc Q$ 内切的圆(如图9).

因为 AB 是 $\odot O$ 的直径, 所以, AB 与 $\odot O$ 正交.

由反演的保角性知,CD 与以 QH 为直径的圆正交,故 CD 平分线段 QH.

例 4 如图 10, 在等腰 Rt \triangle ABC 中, $\angle A$ = 90°, AB = 1, D 为 BC 的中 点, E、F 为边 BC 上另外两点. M 为 \triangle ADE 的外接圆和 \triangle ABF 的外接。 的另一个交点, N

为直线 AF 与 \triangle ACE 的外接圆的另一个交点,P 为直线 AD 与 \triangle AMN 的外接圆的另一个交点,求 AP 的长.

(2003,中国国家集训队测试题)

证明:以 A 为反演中心、r=1 为反演半径作反演变换.在反演变换下,用 X' 表示点 X 的像.

由反演变换的性质得

 $B \ F \ D \ E \ C$ 共线

 $\Leftrightarrow A \setminus B' \setminus F' \setminus D' \setminus E' \setminus C' 共圆;$

M 是 \triangle ADE 的外接圆和 \triangle ABF 的外接圆的另一交点

 $\Leftrightarrow M'$ 是 D'E'与 B'F'的交点;

N 是直线 AF 与 $\triangle ACE$ 的外接圆的另一个交点

⇔N'是 AF'与 C'E'的交点;

P 是直线 AD 与 $\triangle AMN$ 的外接圆的另一个交点

⇔P'是 AD'与 M'N'的交点.

如图 11,设 B'C' 交AD' 于O'. 对圆内接六边形 AF'B'C'E'D',由 帕斯卡定理的 点、D'E' 与B'F'的 交点、AD' 与B'C'的交点点,AD' 与B'C'的型点,AD' 与AD' 与 点共线,即 AD' 、AD' 三 点共线,

又 P'是 M'N'

与 AD' 的交点,则 P' = O',即 P' 在直线 B'C'上.由反演的性质知, $A \setminus B \setminus P \setminus C$ 四点共圆.于是,

$$AD \cdot DP = BD \cdot DC$$

$$\Rightarrow AD = BD = DC = DP = \frac{\sqrt{2}}{2}$$
.

所以, $AP = \sqrt{2}$.

2.3 巧设反演幂

除了选择恰当的点作反演点外,反演幂 选择得是否巧妙,也决定了反演后的图形是 否简洁,证明是否"巧".

例 5 如图 12,四 边形 ABCD 内接于 $\odot O$,对角线 AC 交 BD 于 P. 设 \triangle ABP、 \triangle BCP、 \triangle CDP、 \triangle DAP 的外接圆圆 心分别为 O_1 、 O_2 、 O_3 、 O_4 . 求证: OP、 O_1O_3 、 O_2O_4 三线共点.

证明:作以 P 为反演中心、P 关于 \odot O 的幂为反演幂的反演变换.则 \odot O 反演为本身, \odot O_i (i=1,2,3,4)反演为四边形 ABCD 各边所在的直线,过点 P 的直线也反演为本身.

由于直线 PO_2 与 $\bigcirc O_2$ 正交,因此,它们的反形也正交,即 $PO_2 \perp AD$.

又易知 $O_4O \perp AD$,则 $PO_2//O_4O$.

同理, $PO_4//O_2O$.

因此,四边形 PO_2OO_4 为平行四边形, $PO = O_2O_4$ 互相平分.

同理,PO与 O_1O_3 互相平分.

故 $PO \setminus O_1 O_3 \setminus O_2 O_4$ 交于 PO 的中点^[2].

例 6 如图 13, H 是 $\triangle ABC$ 的垂心, P 是 $\triangle ABC$ 内任意一点, 由 H 向 PA、PB、PC 引垂线 HL、HM、HN,与 BC、CA、BA 的延长线交于 X、Y、Z.求证: X、Y、Z 三点共线.

证明:设 \triangle ABC 的高线分别为 AD、BE、CF, 垂足为 D、E、F. 于是,

 $HA \cdot HD = HB \cdot HE = HC \cdot HF$.

又 $A \setminus L \setminus D \setminus X$ 四点共圆,则 $HL \cdot HX = HA \cdot HD$.

同理, $HM \cdot HY = HB \cdot HE$,

 $HN \cdot HZ = HC \cdot HF$.

作以 H 为反演中心、 $k = HL \cdot HX$ 为反演 幂的反演变换,则 L 与 X 、N 与 Z 、M 与 Y 均 互为反演点.

又 L、P、N、H, L、P、M、H 分别四点共圆, 所以, X、Y、Z 三点共线.

M7 如图 14,在线段 AB 上取点 C,以线段 AC、BC、AB 为直径作圆,过点 C 引垂直于 AB 的直线,构成曲边 $\triangle ACD$ 、 $\triangle BCD$,

图 14

其内切圆分别为 $\odot O_1$ 、 $\odot O_2$.求证:这两个圆的半径相等.

证明:设 $AC = 2r_1$, $BC = 2r_2$.则 $AB = 2(r_1 + r_2)$.

下面利用反演计算 $\odot O_1$ 、 $\odot O_2$ 的半径.

作以 C 为反 演中心、k = AC · BC = $4r_1r_2$ 为反演 幂的反演变换(如 图 15),则 AB、AC、 BC 分别反演为 A'B'、A'C、B'C,且 $A'C = 2r_2$,B'C = $2r_1$,以 AC 为直经 的圆反演为首线

A'E. 同样,以 BC 为直径的圆反演为直线 B'F,直线 CD 仍位于原处,且 A'E、B'F、CD 均垂直于 A'B',以 AB 为直径的圆反演为以 A'B' 为直径的圆.

设 A'B'的中点为 M, \odot O_2 反演为 \odot O_2' , 且切 CD 于点 P, 切 B'F 于点 Q, 切以 A'B'为 直径的圆于点 R. 则 $2r'_2 = PQ = 2r_1$ (设 \odot O_2 , \odot O_2' 的半径分别为 r, r_2'). 因为 $\bigcirc O_2$ 与 $\bigcirc O_2'$ 关于反演中心 C 位似,所以, $\frac{r}{r_0'} = \frac{k}{CP^2}$.

故
$$r = \frac{kr_2'}{CP^2} = \frac{4r_1^2r_2}{MN^2} = \frac{4r_1^2r_2}{MO'_2^2 - NO'_2^2}$$

$$= \frac{4r_1^2r_2}{(r_1 + r_1 + r_2)^2 - r_2^2} = \frac{r_1r_2}{r_1 + r_2}.$$

同理, $\odot O_1$ 的半径也为 $\frac{r_1 r_2}{r_1 + r_2}$.

因此,这两个圆的半径相等.

练习题

1.在四个圆中,每个圆都和其他的两个 圆外切,证明:四个切点位于同一个圆上.

(提示:作以某一切点为中心的反演变换,在该变换下,这些给定的圆变成一对平行直线和两个相切的圆.)

2.给定 4 个圆 \odot S_1 \odot S_2 \odot S_3 \odot S_4 , 设 \odot S_1 和 \odot S_2 \odot S_2 和 \odot S_3 \odot S_3 和 \odot S_4 \odot S_4 和 \odot S_1 分别交于点 A_1 和 A_2 \odot B_1 和 B_2 \odot C_1 和 C_2 \odot D_1 和 D_2 . 若 A_1 \odot B_1 \odot C_1 O_1 四点共圆 (或共线),证明: A_2 \odot O_2 \odot O_2 四点共圆 (或共线).

(提示:作以 A_1 为反演中心的反演变换,于是, $\odot S_1$ 、 $\odot S_2$ 反形为直线 $A_2'D_1'$ 、 $A_2'B_1'$, $\odot S_3$ 、 $\odot S_4$ 反形为 \triangle $B_2'C_1'B_1'$ 、 \triangle $D_2'C_1'D_1'$ 的外接圆,这两个圆交于 C_2' .只要证 A_2' 、 B_2' 、 C_2' 、 D_2' 四点共圆即可.)

3.如图 16,在线段 AB 上取点 C,以线段 AC、BC、AB 为直径分别作圆, $\odot O$ 与这三个圆都相切.证明: $\odot O$ 的直径等于它的圆心到直线 AB 的距离.

图 16

(提示:以点 C 为反演中心作反演变换. 以 $AC \setminus BC \setminus AB$ 为直径的圆分别反演成以直 线 $A'D \setminus B'E \setminus A'B'$ 为直径的圆,且直线 $A'D \setminus$ $B'E \cup A'B'$ 垂直, $\bigcirc O$ 反演成 $\bigcirc O'$,且与直 线 $A'D \setminus B'E$ 及以 A'B' 为直径的圆都相切.由于 $\odot O \setminus \odot O'$ 关于点 C 位似, 所以, $\odot O$ 的直径与圆心到 AB 的距离的比等于 $\odot O'$ 的直径与圆心到 A'B' 的距离的比. 易知后者的比值为 1.)

4. 凸五边形 ABCDE 的边延长构成一个五角星形 AHBKCLDMEN,作星形周围五个三角形的外接圆.证明:这些外接圆异于 $A \ B \ C \ D \ E$ 的另五个交点位于同一个圆上.

图 17

(提示:如图 17,设 $P \setminus Q \setminus R \setminus S \setminus T$ 是在条件中所说的 $\odot O_1 \setminus \odot O_2 \setminus \odot O_3 \setminus \odot O_4 \setminus \odot O_5$ 的交点. 下证 $P \setminus Q \setminus R \setminus S$ 四点共圆. 作 $\triangle NKD$ 的外接圆 $\odot O'$,得 $\odot O_4 \setminus \odot O_5$ 和 $\odot O'$ 交于一点 $P \setminus \odot O_2 \setminus \odot O_3$ 和 $\odot O'$ 同样交于另一点 $S \setminus B \setminus O'$ 过点 $P \setminus S \setminus \odot O'$ 、 $\odot O_1 \setminus \odot O_2 \setminus \odot O_5$ 的八个交点中的四个交点共线. 因此,剩下的四个点 $P \setminus Q \setminus R \setminus S \mapsto B^{[3]}$)

5.双心四边形是指既有内切圆又有外接圆的四边形.求证:这样的四边形的双心与对角线交点共线.

(第 30 届 IMO 预选题)

(提示:以内心为反演中心、内切圆为反演圆作图形的反形.)

参考文献:

- [1] [美]R.A.约翰逊著.近代欧氏几何学[M].单 增译. 上海教育出版社,1997年.
- [2] 沈文选著.平面几何证明方法全书[M].哈尔滨工业 大学出版社,2005年.
- [3] [俄]B.B.博拉索洛夫著.平面几何问题集及其解答 [M].周春荔,张同君译.长春:东北师范大学出版社, 1988年.