Trajectory Inference

Ahmed Mahfouz

Department of Human Genetics, Leiden University Medical Center Pattern Recognition and Bioinformatics, TU Delft

Clustering of differentiating cells

Clustering of differentiating cells

When do continuous structures pop up?

Embryonic development

When do continuous structures pop up?

Embryonic development

When do continuous structures pop up?

Cell differentiation

- Individual cells will differentiate in an unsynchronized manner
- Each cell is a snapshot along the differentiation trajectory

Hematopoiesis

Trajectory inference / pseudotime inference

Trajectory inference / pseudotime inference

Trajectory structure

Saelens et al. (https://doi.org/10.1038/s41587-019-0071-9)

Trajectory structure

Saelens et al. (https://doi.org/10.1038/s41587-019-0071-9)

Liu et al. 2017

Trajectory structure

Methodology

General trajectory inference pipeline

- 1. Dimensionality reduction
- 2. Trajectory fitting
- 3. Pseudotime assignment

Trajectory inference methods

Four methods will be discussed

- Monocle 1, Slingshot Trapnell et al., 2014, Street et al., 2018
 - o Apply the general pipeline of dimensionality reduction, curve fitting, and pseudotime assignment
- Monocle 2 Cole et al., 2017
 - A popular tool in trajectory inference
- Ouija Campbell et al., 2018
 - Gene-based fitting
- RNA velocity La Manno et al., 2018
 - O Biologically-driven identification of trajectories

Slingshot

Fit multiple principle curves simultaneously, ensuring a shared trunk

Principle curves

Figure 3. Each point on a principal curve is the average of the points that project there.

Principle curves

Monocle 1

Minimum spanning tree (MST)

Robustness: principal curves vs MST

Monocle 2

- Successor to Monocle 1
- End goal: Fit any arbitrary graph on the data
 - O Curves, bifurcations, loops

Monocle 2

$$\min_{\boldsymbol{W}, \boldsymbol{B}, \boldsymbol{R}, \boldsymbol{Y}, \mathcal{Z}} \sum_{i=1}^{N} ||\boldsymbol{x}_{i} - \boldsymbol{W}\boldsymbol{z}_{i}||^{2} + \frac{\lambda}{2} \sum_{k, k'} b_{k, k'} ||\boldsymbol{W}\boldsymbol{y}_{k} - \boldsymbol{W}\boldsymbol{y}_{k'}||^{2}$$

$$+ \gamma \left[\sum_{k=1}^{K} \sum_{i=1}^{N} r_{i, k} (||\boldsymbol{z}_{i} - \boldsymbol{y}_{k}||^{2} + \sigma \log r_{i, k}) \right]$$

Ouija

- Model a small set of marker genes instead of fitting trajectory on complete transcriptome
- Switch focus to interpretability

Interpretable function parameters

$$f(t)=rac{2\eta}{1+\exp(-k(t-t^0))}$$

$$f(t) = \eta \cdot \exp(b \cdot (t-p)^2)$$

Ouija intuition

True ordering:

Random cell ordering:

Goodness-of-fit: low

Ouija intuition

True ordering:

Optimize iteration: 100

Goodness-of-fit: mid

Ouija intuition

True ordering:

Optimize iteration: 500

Goodness-of-fit: high

Marker gene x

Goodness-of-fit: high

Goodness-of-fit: high

Marker gene x

Goodness-of-fit: high

Goodness-of-fit: high

Marker gene y

Goodness-of-fit: high

Goodness-of-fit: mid

Ouija probabilistic modelling

Fundamental limits on dynamic inference from single-cell snapshots

Caleb Weinreb^a, Samuel Wolock^a, Betsabeh K. Tusi^b, Merav Socolovsky^b, and Allon M. Klein^{a,1}

"The general challenge, even with perfect data, is that many regulatory mechanisms can generate the same dynamic process, and many dynamic processes can give rise to the same distribution."

No unique solution

Entry and exit points direct the flow of cells

No unique solution

Entry and exit points direct the flow of cells

Rotations in state space do not alter cell density

Simple fluctuations

Periodic oscillations

No unique solution

Entry and exit points direct the flow of cells

Rotations in state space do not alter cell density

Periodic oscillations

Net velocity may not equal actual velocity

RNA velocity of single cells

Transcription $\int \alpha$ Unspliced mRNA u Splicing $\oint \beta = 1$ Degradation ψ_{γ}

RNA velocity of single cells

RNA velocity of single cells

The ratio unspliced-to-spliced is proportional to length of (de)activation of a gene

- u/s > 1: gene was recently activated
- u/s < 1: gene was recently deactivated

RNA velocity of single cells

RNA velocity of single cells

- The velocity of a gene is the predicted increase or decrease of its expression in the cell
- Used to extrapolate future state of a cell

Which method should you use?

http://guidelines.dynverse.org/

Pseudotime analysis

Interpretation of gene behaviour

- Plot the gene expression as a function of pseudotime
- What do we see?

Pseudotime-gene expression pattern

Interpretation of gene behaviour

Charrout et al., 2020

- KLF5 member of Kruppel-like family of transcription factors
 - Repressor of neurite growth, down-regulation linked to cell cycle arrest
- VIM, highly variable gene
 - Known marker of gliogenesis

Differential activation testing

Branch-dependent gene expression

Null model:

y ~ pseudotime

Alternative model:

y ~ pseudotime + branch + pseudotime:branch

Likelihood ratio test:

ratio = L(alternative) / L(null) if ratio >= 0 -> branch-dependent expression

Dynamic time warping

"CellAlign", Alpert et al., 2018

Applications

Mouse embryogenesis

Mouse embryogenesis

Transcription factors overexpression / silencing results in transdifferentiation:

Efficiency of transdifferentiation

- Overexpression of C/EBPa (macrophages) and OSKM (iPSC) in B cells
- Homogenous final cell population, but variability in speed of differentiation
- Linked to Myc expression in initial state of the B cells

• COVID infected patients show a beta-to-alpha cell trans-differentiation in pancreatic islets

Thank You!

- a.mahfouz@lumc.nl
- mahfouzlab.org
- @ahmedElkoussy

