Intructor's Note: I recommend that you also look at the Chapter Review on pages 527-528 of Poole and skim the problems to see if there are any concepts or problems that seem challenging to you. Try some of these problems for more practice.

Let V be a vector space with subspaces U and W. Give an example with $V = \mathbb{R}^2$ to show that $U \cup W$ need not be a subspace of V.

Let \mathcal{B} and \mathcal{C} be bases for \mathscr{P}_2 . If $\mathcal{B} = \{x, 1+x, 1-x+x^2\}$ and the change-of-basis matrix from \mathcal{B} to \mathcal{C} is

$$P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ -1 & 1 & 1 \end{bmatrix},$$

 $\text{find } \mathcal{C}.$

Determine whether $T: M_{nn} \to M_{nn}$, defined by T(A) = AB - BA, where B is a fixed $n \times n$ matrix, is a linear transformation.

THEOREM 6.14:

Let $T: V \to W$ be a linear transformation. Then,

- a. T(0) = 0.
- b. $T(-\mathbf{v}) = -T(\mathbf{v})$ for all \mathbf{v} in V.
- c. $T(\mathbf{u} \mathbf{v}) = T(\mathbf{u}) T(\mathbf{v})$ for all \mathbf{u} and \mathbf{v} in V.

Prove Theorem 6.14(b).

$$T: M_{22} \to M_{22}$$
 defined by $T(A) = AB - BA$, where $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Find either the nullity or the rank of T and then use the Rank Theorem to find the other.

THEOREM 6.26:

Let V and W be two finite-dimensional vector spaces with bases \mathcal{B} and \mathcal{C} respectively, where $\mathcal{B} = \{\mathbf{v}_1, ..., \mathbf{v}_n\}$. If $T: V \to W$ is a linear transformation, then the $m \times n$ matrix A defined by

$$A = \begin{bmatrix} [T(\mathbf{v}_1)]_{\mathcal{C}} & [T(\mathbf{v}_2)]_{\mathcal{C}} & \cdots & [T(\mathbf{v}_n)]_{\mathcal{C}} \end{bmatrix}$$

satisfies

$$A[\mathbf{v}]_{\mathcal{B}} = [T(\mathbf{v})]_{\mathcal{C}}$$

for every vector \mathbf{v} in V.

Find the matrix $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$ of the linear transformation $T: V \to W$ with respect to the bases \mathcal{B} and \mathcal{C} of V and W, respectively. Verify Theorem 6.26 for the vector \mathbf{v} by computing $T(\mathbf{v})$ directly and using the theorem.

 $T: \mathscr{P}_1 \to \mathscr{P}_1$ defined by

$$T(a+bx) = b - ax,$$

$$\mathcal{B} = \{1+x, 1-x\},$$

$$\mathcal{C} = \{1, x\},$$

$$\mathbf{v} = p(x) = 4 + 2x$$

Use the method of Example 4.29 to compute

$$\begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}^k$$

(assume that k is a positive integer)

[*Hint*: Example 4.29 uses the equality $M^n = PD^nP^{-1}$.]

HW 3 —	Due May 19,	2016
	Extra Credit:	

Box #______ Math 65

Let $\{\mathbf{u}_1,...,\mathbf{u}_m\}$ be a set of vectors in an n-dimensional vector space V and let \mathcal{B} be a basis for V. Let $S = \{[\mathbf{u}_1]_{\mathcal{B}},...,[\mathbf{u}_m]_{\mathcal{B}}\}$ be on the set of coordinate vectors of $\{\mathbf{u}_1,...,\mathbf{u}_m\}$ with respect to \mathcal{B} . Prove that $\mathrm{span}(\mathbf{u}_1,...,\mathbf{u}_m) = V$ if and only if $\mathrm{span}(S) = \mathbb{R}^n$.

(Remember that to prove an if-and-only-if theorem, you need to prove both directions.)