CS699 Lecture 4 Classification 1

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by class labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Prediction Problems: Classification vs. Numeric Prediction

Classification

- Predicts categorical class labels (discrete or nominal)
- Constructs a model based on the training dataset which has known class labels and uses it to classify new data (or determine the class labels of new data)

Numeric Prediction

- Models continuous-valued functions, i.e., class attribute is a numeric attribute
- Can be also used to predict missing values

Prediction Problems: Classification vs. Numeric Prediction

- Typical applications
 - Credit/loan approval:
 - Medical diagnosis: if a tumor is cancerous or benign
 - Fraud detection: if a transaction is fraudulent
 - Web page categorization: which category it is

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, mathematical formulae, etc.

Classification—A Two-Step Process

- Model usage: classify future or unknown tuples
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set
 - If the accuracy is acceptable, use the model to classify data tuples with unknown class labels.
 Otherwise, build another model and repeat.

Process (1): Model Construction

NAME	SALARY	YEARS	MANAGER
Mike	85K	3	no
Mary	105K	5	yes
Bill	75K	7	yes
Jim	90K	5	no
Dave	85K	6	yes
Anne	80K	3	no

IF salary > 100K OR years > 5 THEN manager = 'yes'

Process (2): Using the Model in Prediction

Example (training) Dataset

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- Simple and cheap
- Idea: Make rules based on a single attribute
- Compute the error rate for each attribute
- Choose the one with the smallest error rate

Algorithm

For each attribute

For each value of the attribute

count the frequency of each class

find the most frequent class

make rule: assign that class to this attribute-value

Compute the error rate of the rules (of this attribute)

Choose the rules with the smallest error rate

Example dataset

outlook	temperature	humidity	windy	play
sunny	hot	high	F	N
sunny	hot	high	T	N
overcast	hot	high	F	Υ
rainy	mild	high	F	Υ
rainy	cool	normal	F	Υ
rainy	cool	normal	T	N
overcast	cool	normal	T	Υ
sunny	mild	high	F	N
sunny	cool	normal	F	Υ
rainy	mild	normal	F	Υ
sunny	mild	normal	Т	Υ
overcast	mild	high	T	Υ
overcast	hot	normal	F	Υ
rainy	mild	high	Т	N

Make rules for each attribute and calculate error rate

Attribute outlook

```
sunny \rightarrow no (3/5), error rate = 2/5
overcast \rightarrow yes (4/4), error rate = 0
rainy \rightarrow yes (3/5), error rate = 2/5
total error = 4/14
```

Attribute temperature

```
hot \rightarrow no (2/4), error rate = 2/4 (arbitrary tie breaking)
mild \rightarrow yes (4/6), error rate = 2/6
cool \rightarrow yes (3/4), error rate = 1/4
total error = 5/14
```

Attribute humidity high \rightarrow no (4/7), error rate = 3/7 normal \rightarrow yes (6/7), error rate = 1/7

total error = 4/14

Attribute windy

```
false \rightarrow yes (6/8), error rate = 2/8
true \rightarrow no (3/6), error rate = 3/6 (arbitrary tie breaking)
total error = 5/14
```

 outlook and humidity have the same error rate of 4/14. If we (randomly) choose outlook, the rules are

outlook: sunny \rightarrow no

overcast \rightarrow yes

rainy \rightarrow yes

Bayesian Classification

- A statistical classifier: performs probabilistic prediction, i.e., predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
- <u>Performance:</u> A simple Bayesian classifier, naïve Bayesian classifier, has comparable performance with decision tree and selected neural network classifiers
- Incremental: Each training example can incrementally increase/decrease the probability that a hypothesis is correct prior knowledge can be combined with observed data
- Standard: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

Based on Bayes' rule (or Bayes' theorem) of conditional probability:

$$P(H | \mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})}$$
, where

- P(H) (prior probability), the initial probability
 - E.g., X will buy a computer, regardless of age, income, ...
- P(X) (evidence): probability that a sample data is observed
- P(X|H) (likelihood), the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that X buys a computer, the prob. that X is 31..40,
 medium income, ...

A simple example of using Bayes' theorem for inference: If a person has muscle pain, what is the probability that the person has flu?

- F: A patent has flu, M: A patient has muscle pain
- We know from historical data;
 - P(M|F) = 0.75 (if a person catches flu, he/she has muscle pain 75% of the time)
 - P(F) = 0.00002 (the probability that a person has flu) P(M) = 0.005 (the probability that a person has muscle pain)
- The probability that a person has flu if that person has muscle pain:

$$P(F|M) = \frac{P(M|F)P(F)}{P(M)} = 0.75 * 0.00002 / 0.005 = 0.003$$

 Given a data sample X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes theorem

$$P(H \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid H)P(H)}{P(\mathbf{X})}$$

Informally, this can be written as posteriori = (likelihood x prior)/evidence

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-(attribute value) vector $\mathbf{X} = (x_1, x_2, ..., x_n)$, here x_i is an attribute value of A_i .
- Suppose there are m classes C₁, C₂, ..., C_m.
- Classification is to derive the maximum posteriori
- In other words, compute P(C₁|X), P(C₂|X), ..., P(C_m|X) and predict X belongs to the class with the highest probability.
- Practical difficulty: require initial knowledge of many probabilities, significant computational cost

P(C_i | X) can be computed using Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Buys_computer dataset example: Given that we know properties of a (new) customer (i.e., an evidence X), the probability that the customer will buy a computer (C₁: buys_computer = yes) or the probability that the customer will not buy a computer (C₂: buys_computer = no)

Class label, buys_computer, has two values, Y and N:

$$P(class = Y | \mathbf{X}) = \frac{P(\mathbf{X}|class = Y)P(class = Y)}{P(\mathbf{X})}$$

$$P(class = N | \mathbf{X}) = \frac{P(\mathbf{X}|class = N)P(class = N)}{P(\mathbf{X})}$$

 And, assign the class with higher probability to X (or we predict the class label of X will be the class with higher probability).

In the equations, P(X) is the same for all classes. So we compute and compare only the numerators.

$$P(\mathbf{X}|C_i)P(C_i)$$

For class label with two values, Y and N, we compute and compare the following two:

$$P(\mathbf{X}|class=Y)P(class=Y)$$

$$P(\mathbf{X}|class=N)P(class=N)$$

Derivation of Naïve Bayes Classifier

- We need to compute $P(X | C_i)$ and $P(C_i)$.
- $P(C_i)$ can be easily estimated from the training dataset
- For the Buys_computer dataset, there are two classes, yes and no. Let yes be C_1 and no be C_2 .
- We can estimate $P(C_i)$ as follows:
 - $P(C_1) = (# \text{ yes tuples}) / (\text{total # tuples})$
 - $P(C_2) = (# \text{ no tuples}) / (total # tuples)$

Derivation of Naïve Bayes Classifier

- Computation of $P(X | C_i)$ is not easy.
- It can be simplified with class-conditional independence assumption (a naïve assumption)
- class-conditional independence assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):
- This greatly reduces the computation cost

Derivation of Naïve Bayes Classifier

- Based on this assumption, we compute $P(x_k | C_i)$ for each attribute x_i , and multiply them all to obtain $P(X | C_i)$ (this is possible because we assumed all attributes are independent of each other).
- If A_k is categorical, $P(x_k|C_i)$ is the # of tuples in C_i having value x_k for A_k divided by $|C_{i,D}|$ (# of tuples of C_i in D)

$$P(\mathbf{X}|C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

(Example follows in the next slides)

Naïve Bayesian Classifier: Training Dataset

Class:

C₁:buys_computer = 'yes' C₂:buys_computer = 'no'

Data sample

X = (age >40,

Income = high,

Student = no

Credit_rating = excellent)

age	income	<mark>student</mark>	redit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayesian Classifier: An Example

Class prior probabilities are:

$$P(C_1) = P(buys_computer = "yes") = 9/14 = 0.643$$

 $P(C_2) = P(buys_computer = "no") = 5/14 = 0.357$

Next, we compute P(X|C_i) for each class

```
P(age = ">40" | buys_computer = "yes") = 3/9 = 0.333
P(age = ">40" | buys_computer = "no") = 2/5 = 0.4
```

```
P(income = "high" | buys_computer = "yes") = 2/9 = 0.222
P(income = "high" | buys_computer = "no") = 2/5 = 0.4
```

Naïve Bayesian Classifier: An Example

$P(X|C_i)$:

```
P(X|buys\_computer = "yes") = 0.333 \times 0.222 \times 0.333 \times 0.333 = 0.008 \\ P(X|buys\_computer = "no") = 0.4 \times 0.4 \times 0.8 \times 0.6 = 0.077 \\ P(X|C_i)*P(C_i): \\ P(X|buys\_computer = "yes") * P(buys\_computer = "yes") = 0.008 * 0.643 \\ = 0.005 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") = 0.077 * 0.357 \\ P(X|buys\_computer = "no") * P(buys\_computer = "no") * P(buys\_compute
```

Therefore, the model predicts that X belongs to class ("buys_computer = no")

= 0.027

Naïve Bayesian Classifier: Comments

- Advantages
 - Easy to implement
 - Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables:
 - patient_profile: age, height, weight, etc.
 - Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- How to deal with these dependencies? Bayesian Belief Networks (Chapter 9)

Decision Tree

- A popular classifier
- A model is built as a decision tree
- Internal node represents a test on an attribute
- Branch represents outcome of test
- Leaf node has a class label
- See example in the next slide

Decision Tree Induction Example

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down, recursive manner
 - Attributes are categorical (if continuousvalued, they are discretized first)
 - At start, all training samples are considered to be at the root.

Algorithm for Decision Tree Induction

- Basic algorithm (continued)
 - A test attribute is selected on the basis of a heuristic or statistical measure (e.g., information gain)
 - samples are partitioned based on the selected attribute – children nodes are created
 - The same process is repeated at each child node (recursively)

Algorithm for Decision Tree Induction

- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning – majority voting is employed for classifying the leaf
 - There are no samples left

Algorithm for Decision Tree Induction

• Initially all samples are in the same partition, associated with the root node.

Root

14 tuples

9 Y's

5 N's

Algorithm for Decision Tree Induction

Age is chosen as the test attribute, and samples are partitioned into three nodes based on the values of Age, i.e., "≤ 30", "31..40", and ">40."

Algorithm for Decision Tree Induction

The same process is repeated (recursively) on the left node and on the right node.

Attribute Selection Measure:

Consider the following dataset:

Temp	Wind	Class
high	east	Υ
low	west	N
low	east	N
high	west	Υ
high	west	Υ

Split by *Temp*

Which split is better?

Split by Wind

Attribute Selection Measure:

- Test attribute is selected based on "purity measure."
- Purity measures: information gain, gain ratio, Gini index
- Information gain is based on info.
- Info represents how pure a dataset is with regard to class labels.
- Suppose a dataset has 10 tuples with two class values, Y and N.
- If the dataset has all Y's or all N's, then the dataset is purest and the value of info is 0.
- If the dataset has 5 Y's and 5 N's, this is the extreme impure case, and the value of info is 1.

Attribute Selection Measure: Info Examples

- Notation: $I(x_1, x_2, ..., x_m)$, where m is the number of distinct class values, x_i is the number of tuples belonging to the i-th class $|D| = x_1 + x_2 + ... + x_m$
- Computation of info:

$$I(x_1, x_2, ..., x_m) = -\sum_{i=1}^{m} p_i \log_2(p_i), \text{ where } p_i = \frac{x_i}{|D|}$$

Info is also referred to as entropy

Attribute Selection Measure: Info Examples

Computing log base-2

$$\log_2 x = \frac{\log_{10} x}{\log_{10} 2} = \frac{\log_{10} x}{0.301}$$

$$\log_2 0.6 = \frac{\log_{10} 0.6}{\log_{10} 2} = \frac{-0.2218}{0.301} = -0.7369$$

Attribute Selection Measure: Info Examples

A dataset has 6 tuples with 5 Y's and 1 N:

$$I(5,1) = -\frac{5}{6}\log_2(\frac{5}{6}) - \frac{1}{6}\log_2(\frac{1}{6}) = 0.650$$

A dataset has 10 tuples with all Y's

$$I(10,0) = -\frac{10}{10}\log_2(\frac{10}{10}) - \frac{0}{10}\log_2(\frac{0}{10}) = 0$$

A dataset has 10 tuples with 5 Y's and 5 N's

$$I(5,5) = -\frac{5}{10}\log_2(\frac{5}{10}) - \frac{5}{10}\log_2(\frac{5}{10}) = 1$$

- Compute the information gain of each attribute
- Select the attribute with the highest information gain
- Informal description of information gain:
 - Info(D): The amount of information we need to classify a sample in D.

Example: we need 0.9

• $Info_A(D)$: After splitting D on an attribute A, the amount of information needed to classify a sample.

Example: after splitting on A, now we need only 0.3

• $Gain(A) = Info(D) - Info_A(D)$.

Example: the gain is 0.9 - 0.3 = 0.6

- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:
 - m: # classes $Info(D) = -\sum_{i=1}^{n} p_i \log_2(p_i)$
- Information needed to classify D, after using attribute A to split D into v partitions:
 - v: # distinct values of A Info_A(D) = $\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$
- Information gained by splitting by A

$$Gain(A) = Info(D) - Info_A(D)$$

Let D be the Buys_computer dataset

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

- There are 14 tuples in *D*
- 9 Yes's and 5 No's

Info (D) =
$$I(9,5) = -\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$$

- If we split D based on Age, three partitions are created.
- Let's call them Node-1 (≤ 30), Node-2 (31..40), and Node-3(> 40).

■ Info of Node-1 is:
$$I(2,3) = -\frac{2}{5}\log_2(\frac{2}{5}) - \frac{3}{5}\log_2(\frac{3}{5}) = 0.971$$

- Info of Node-2 is: I(4,0) = 0
- Info of Node-3 is: I(3,2) = I(2,3) = 0.971
- After splitting by Age, the amount of information needed to classify a tuple is computed as the weighted average of above three:

Info _{age}
$$(D) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

So, information gain obtained by splitting by Age is:

$$Gain(age) = Info(D) - Info_{age}(D) = 0.246$$

Information Gain - Another Example

If we split by income

Information Gain – Another Example

- high: 4 tuples; 2 yes's and 2 no's
- medium: 6 tuples; 4 yes's and 2 no's
- low: 4 tuples; 3 yes's and 1 no

Info income
$$I(D) = \frac{4}{14}I(2,2) + \frac{6}{14}I(4,2) + \frac{4}{14}I(3,1) = 0.911$$

$$I(2,2) = -\frac{2}{4}\log_2(\frac{2}{4}) - \frac{2}{4}\log_2(\frac{2}{4}) = 1.0 \quad I(4,2) = -\frac{4}{6}\log_2(\frac{4}{6}) - \frac{2}{6}\log_2(\frac{2}{6}) = 0.918$$

$$I(3,1) = -\frac{3}{4}\log_2(\frac{3}{4}) - \frac{1}{4}\log_2(\frac{1}{4}) = 0.811$$

$$Gain(income) = Info(D) - Info_{income}(D) = 0.940 - 0.911 = 0.029$$

Attribute Selection: Information Gain

- We can compute Gain(student) and Gain(credit_rating)
 in the same way.
- Then, we have:

```
Gain(Age) = 0.246
```

Gain(income) = 0.029

Gain(student) = 0.151

 $Gain(credit_rating) = 0.048$

 We select Age as the test attribute because it has the highest information gain.

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values.
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem.

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

Here, attribute A has v distinct values, $|D_j|$ is the number of tuples with the j-th value.

- $GainRatio(A) = Gain(A)/SplitInfo_A(D)$
- The attribute with the maximum gain ratio is selected as the splitting attribute.

Other Attribute Selection Measures

- GINI index
- CHAID
- C-SEPG-statisticMDL (Minimal Description Length) principle
- Multivariate splits (partition based on multiple variable combinations)
 - Example: CART
- Which attribute selection measure is the best?
 - Most give good results, none is significantly superior than others

Overfitting and Tree Pruning

Overfitting:

- A model reflects every details of the training dataset, even an anomaly or noise.
- A model becomes complex.
- Accuracy on the training dataset is high.
- Accuracy on the test dataset becomes low.
- So, an overfitted model does not generalize well.

Overfitting and Tree Pruning

- Overfitting of decision tree:
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning (more common): Remove branches from a "fully grown" tree get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

References

- Han, J., Kamber, M., Pei, J., "Data mining: concepts and techniques," 3rd Ed., Morgan Kaufmann, 2012
- http://www.cs.illinois.edu/~hanj/bk3/
- Ian H. Witten, E. Frank, and M.A. Hall, "Data Mining Practical Machine Learning Tools and Techniques,"
 Third Ed., 2011, Morgan Kaufmann