Assessment Schedule – 2016

Mathematics and Statistics: Apply geometric reasoning in solving problems (91031) Evidence Statement

ONE	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)(i)	$L = \sqrt{3^2 + 43^2}$ L = 43.10 m	Correctly calculates length (units not required).		
(ii)	$\tan x = \frac{3}{43}$ $x = 4.0^{\circ}$	Correctly calculates angle (units not required).		
(iii)	$k = \frac{4.05}{3}$ $k = 1.35$ $42.9 + p = 42.9 \times 1.35$ $42.9 + p = 57.915$ $p = 15.02 \text{ m}$ OR $\tan 86 = \frac{42.9 + p}{4.05}$ $42.9 + p = 4.05 \tan 86$ $p = 15.05 \text{ m}$ OR $\tan 86 = \frac{h}{4.05}$ $h = 57.92$ $p = 14.91$ Accept with 42.9 or 43 in calculation.	Multiplies the height, <i>h</i> , by <i>k</i> (1.35). OR Sets up trigonometric equation correctly.	Correctly calculates <i>p</i> using either method.	
(b)	$\frac{360}{8} = 45^{\circ}$ $\frac{45}{2} = 22.5^{\circ}$ $\sin 22.5 = \frac{x}{10}$ $x = 3.83 \text{ m}$ $d = 2 \times 3.83 - 2$ $d = 5.66 \text{ m}$	Forming a right-angled triangle (or similar) and finding correct angle to use.	Correct calculation of x. OR Consistent final answer from an incorrect length in the triangle.	Subtraction of 2 m off 2x.

(c)	$\angle KYS = \angle TKY = \frac{6 \times 180}{8}$	Correctly finds angle <i>x</i> or <i>y</i> .	Correctly finds angle <i>x</i> or <i>y</i> , with reasons.	Justifies the size of the other angle with
	=135° (∠s in a polygon)			reasons.
	$\angle TSY = \angle x$			
	(symmetry of isosceles trapezium)			
	$\angle x = \frac{360 - 270}{2}$			
	= 45° (sum \angle s in quad = 360°)			
	$\therefore \angle TSY = 45^{\circ}$			
	\angle SYO = 67.5° (135 ÷ 2)			
	\angle SYO = \angle YSO (base \angle s isos \triangle =)			
	so $\angle TSO = 67.5 - 45 = 22.5^{\circ}$			
	∴ $\angle y = 22.5^{\circ}$ which is half of $\angle x$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One incomplete step towards solution.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

TWO	Expected coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)(i)	∠LDB = 90° (BD perpendicular to LM) ∠ $x = 90 - 2 = 88$ ° OR equivalent. (Accept ∠'s on a line.) AND	BOTH x and y correct. OR Any one angle found with correct reason.	BOTH x and y correctly found with valid reasons.	
(ii)	\angle DHN = 92° (coint \angle s lines add to 180°) \angle ANH = \angle y = 92° (alt \angle s) Or equivalent.			
(iii)	Upper half of $\angle x$ is 2° (corr $\angle s$) Lower half of $\angle x = 6^{\circ}$ ($\angle s$ on st line) So $\angle x = 8^{\circ}$ Or equivalent. OR (also accept for merit) $\angle SYP = 6^{\circ}$ (coint $\angle s$) $\angle SYT = 172^{\circ}$ (alt $\angle s$) (\angle 's on a line) $\angle x = 8^{\circ}$ (coint $\angle s$) OR equivalent.	Angle <i>x</i> correct. OR ONE angle correct with reason.	Correct angle found with sufficient working and reasons (at least 2 of each).	
(iv)	Candidate adds a line between K and L. $\angle F = 176^{\circ}$ ($\angle s$ in a triangle) $\angle CFG = 176$ (vert opp) $\angle CFG$ and $\angle EGJ = 176$ and are (corr $\angle s$) Therefore AB and CD are parallel. OR Candidate adds a horizontal line through point F. (Label, e.g. RS.) They then create 2 angles of 2° each. $\angle DFS = 2^{\circ}$ (alt $\angle s$) $\angle JFS = 2^{\circ}$ (corres $\angle s$) $\angle DFJ = 4^{\circ}$ and $\angle JGB = 4^{\circ}$ (\angle on a line) $\angle DFJ$ and $\angle JBG$ are = (corres $\angle s$) Therefore AB and CD are parallel. OR equivalent.	Any angle correct with at least 1 reason leading towards a proof.	Any two angles correct with valid reasons leading towards proof.	Proof of parallel lines completed with valid justification.
(b)(i)	(1) Find lower height, x . Form a right angled triangle with 2° angle and hyp. length L . $\sin 2 = \frac{x}{L}$ $x = L \sin 2$ $x = 0.034899L$ OR $x = L \cos 88$ OR equivalent.	Finds the lower height, x , in terms of L .		

(ii)	(2) Find horizontal distance, t , between pillars. $t = \sqrt{L^2 - (0.034899L)^2}$ $t = \sqrt{0.99878L^2}$ OR $\tan 2 = \frac{0.034899L}{t}$ t = 0.9994L OR $t = \sin 88L$ (3) Find upper height, d . $d = \sqrt{10^2 - (0.99878L)^2}$ OR	Uses either trigonometry or Pythagoras to find horizontal distance, t.	Makes a consistent total height statement from finding height <i>d</i> and adding to height <i>x</i> .
	So total height, h is $x + d$: $h = 0.034899L + \sqrt{100 - 0.9988L^2}$		

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One incomplete step towards solution.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

THREE	Evidence	Achievement (u)	Merit (r)	Excellence (t)
(a)(i)	$\angle OQN = 19^{\circ} (\angle s \text{ in } \frac{1}{2} \text{ circle} = 90^{\circ})$ $\angle p = 19^{\circ} \text{ (base } \angle s \text{ isos } \Delta =)$ Or equivalent.	Angle <i>p</i> correct. OR 1 angle shown with reason	Angle <i>p</i> correct with at least 2 valid reasons.	
(ii)	37 + 75 + e = 180 (opp \angle s cyclic quad = 180°) $e = 68^{\circ}$ Or equivalent.	Angle <i>e</i> correct OR One angle shown with reason.	Angle <i>e</i> correct with valid reason(s)	
(iii)	∠RON = $180 - y$ (∠s on st line = 180°) ∠ORM = $\frac{180 - y}{2} = 90 - \frac{y}{2}$ (base ∠s isos $\Delta =$) So ∠SRM = $75 + 90 - \frac{y}{2} = 165 - \frac{y}{2}$ ∠SNO = $180 - (165 - \frac{y}{2})$ = $15 + \frac{y}{2}$ (opp ∠s of cyclic quad = 180°) ∴ $z = 360 - 75 - (180 - y)$ $-(15 + \frac{y}{2})$ = $90 + y - \frac{y}{2} = 90 + \frac{y}{2}$ (∠s in quad = 360°) OR ∠RMO = ∠ORM = $\frac{180 - y}{2}$ (base ∠s isos $\Delta =$) $z + \frac{180 - y}{2} = 180$ (opp ∠s cyclic quad = 180°) $z = 90 + \frac{y}{2}$ Or equivalent.	Finds 1 relevant angle with at least 1 reason towards proof.	Finds 2 relevant angles with at least 2 reasons towards proof.	Proof completed and well explained and justified.

AB : $\cos 59 = \frac{u}{3.54}$

u = 1.82 km

 $AC : \cos 38 = \frac{v}{2.45}$

v = 1.93 km

BC = 0.11 km

 $BF : \sin 59 = \frac{w}{3.54}$

w = 3.03 km (= CD)

 $EC : \sin 38 = \frac{x}{2.45}$

x = 1.51 km

 $tanz = \frac{0.11}{4.54}$

 $z = 1.4^{\circ}$

:. bearing is 091.4° (accept 091°)

Finds any 1 correct length using trigonometry or Pythagoras. Finds any 3 correct lengths using trigonometry or Pythagoras.

Correct bearing found with clear reasoning and working shown.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	One incomplete step towards solution.	1 of u	2 of u	3 of u	1 of r	2 of r	1 of t	2 of t

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 6	7 – 12	13 – 18	19 – 24