Algolympics 2017

Solution Sketches

Problem H: Spoiled Children

- Everyone gets either floor(W/N) or ceil(W/N).
 ceil(W/N) for the younger ones, just enough so that the total is W.
- Solution 1: Give everyone floor(W/N). Then increase the first few until the total is W.
- Solution 2: Give ceil(W/N) to the first W mod N, then floor(W/N) to the rest.

Problem H: Spoiled Children

• Floor:

```
\circ W / N
```

Ceil:

```
O(W + N - 1) / N
O(W / N) + (W % N ? 1 : 0)
```

Problem G: Superstitious

- Each single letter substring is already a palindrome, giving us N already.
- Any more will make the string bad.

Problem G: Superstitious

- xx is a palindrome.
- xyx is a palindrome.
- Any palindrome of length ≥ 2 has one of these substrings.
- So we just need to ensure xx or xyx doesn't appear.

Problem G: Superstitious

- ABCABCABC...
- ABCDEFGABCDEFG...
- CAFECAFECAFE...
- DECAFDECAFDECAF...
- etc.

Problem D: Never Forget The C

- Looks like scary calculus at first, but it's not!
- Just straightforward simulation.

Problem D: Never Forget The C

 Solution 1: Combine each component then perform breadth-first search (BFS).

Problem D: Never Forget The C

- Solution 2: BFS with transition cost 0 or 1, depending on which, push in front or at the back of the queue.
 - Or just Dijkstra if you're lazy, but that risks TLE.

- Eulerian path
- Eulerian path exists iff at most two nodes have odd degree.
- In our graph, exactly two nodes with odd degree:

- The path starts and ends there.
- Let *f*(*n*) be the answer for *n*.

• The path can begin in three ways:

• Case 1:

• f(n - 1)

• Case 2:

• f(n - 1)

• Case 3:

- 2 choices on how to traverse the loop
- 2·f(n 2)

- $f(n) = 2 \cdot f(n 1) + 2 \cdot f(n 2)$
- Base case: f(2) = 12, f(3) = 32.
- Special case: f(1) = 6, doesn't follow recurrence.
 - Reason: no odd degrees, etc.

- $f(n) = 2 \cdot f(n 1) + 2 \cdot f(n 2)$
- DP can give up to $n \le 10^6$.
- Use matrix exponentiation:

$$\begin{bmatrix} 2 & 2 \\ 1 & 0 \end{bmatrix}^{n-2} \begin{bmatrix} f(3) \\ f(2) \end{bmatrix} = \begin{bmatrix} f(n+1) \\ f(n) \end{bmatrix}$$

O(log n).

Problem A: Donut Cross

• Everything possible.

Problem E: MechaMocha

- Left-right sweep.
 - Use x-coordinate as time.
- Events:
 - On rectangle left edge, range increment.
 - On rectangle right edge, range decrement.
- Between events:
 - Range query "how many 1s".

Problem E: MechaMocha

- Insight: "1" only appears as either the minimum or the second minimum.
- Segment tree with lazy propagation: Keep track of minimum and second minimum, and their counts.
- (m_1, c_1, m_2, c_2)
 - o (minimum, count, 2nd minimum, 2nd count)

Problem E: MechaMocha

- On increment $(m_1, c_1, m_2, c_2) \rightarrow (m_1 + 1, c_1, m_2 + 1, c_2)$
- On decrement $(m_1, c_1, m_2, c_2) \rightarrow (m_1 1, c_1, m_2 1, c_2)$
- On combine (m₁, c₁, m₂, c₂) + (m₁', c₁', m₂', c₂'), handle all cases

- $n \le 8$ suggests brute force.
- Cayley's formula gives $n^{n-2} \le 8^6 = 262,144$ trees. Just need to know how to enumerate them.
- No need to ensure each tree is enumerated only once, since we're taking max.

- Insight: Enumerate rooted trees instead. Easier.
- Idea 1: Guess a topological sort then guess the backward edges.
 - $n! \cdot (n 1)! \le 203212800$, too much.
- Improvement: The "root" can be node 1.
 - $(n-1)! \cdot (n-1)! \le 25401600$, might still be too tight.

- Idea 2: Enumerate rooted trees by enumerating each level recursively.
 - o $n^{n-1} \le 2097152$, good enough!

- More sophisticated method involves Prüfer sequences
 - Enumerates each tree exactly once
 - But might be tough to code, hence not recommended for this problem.
 - Still, learning it is useful!

Problem B: Adding Time

- 0:0
- 1: 10
- 2:19
- 3:199

Problem B: Adding Time

- Each number goes to the previous.
- Recurrence: $f(n) = 2.10^{(f(n-1)-1)/9} 1$.
- Euler-Fermat theorem
 - O If gcd(a,m) = 1, then $a^x = a^y \pmod{m}$ iff $x = y \pmod{\phi(m)}$
 - φ denotes Euler's totient theorem
- Need to extend to case gcd(a,m) ≠ 1.

Problem B: Adding Time

- Extension:
 - If x, y ≥ lg m, then $a^x = a^y \pmod{m}$ iff $x = y \pmod{\phi(m)}$
- Mostly true in our case since $\lg m \le 2.10^7 < 25$.
- Recursion!
- $f(n) \mod m = (2 \cdot 10^{((f(n-1) \mod 9\varphi(m)) 1)/9) \mod m} 1) \mod m$.
 - For mod, just ensure the result is ≥ 25, adjust if necessary

- f(T, k) = # of ways to split tree T into up to k paths.
- Insight: each way of splitting into t paths corresponds to a choice of t - 1 edges to remove.

- Upper bound: $f(T,k) \leq \sum_{g=1}^{\min(n,k)} \binom{n-1}{g-1} \binom{k}{g} g!$
 - All selections of up to k 1 edges might be valid.
- Achieved by path graph.
 - Thus, this is the maximum.

- Lower bound: $f(T,k) \ge \sum_{g=n-2}^{n} {n-1 \choose g-1} {k \choose g} g!$
 - Keeping up to two edges always results in lines. [Why?]
- Achieved by star graph.
 - Thus, this is the minimum.

$$\sum_{g=1}^{\min(n,k)} \binom{n-1}{g-1} \binom{k}{g} g!$$

- O(min(n,k)).
 - Precompute inverses, etc.
 - o $nk \le 10^9$ → $min(n,k) \le sqrt(10^9) < 32000$.

Problem C: Wildcard List

• Problem: Find
$$\sum_{k=0}^{n} \binom{ak+b}{ck+d}$$

Lucas's Theorem: For prime p,

$$\binom{n}{r} \equiv \binom{\lfloor n/p \rfloor}{\lfloor r/p \rfloor} \binom{n \bmod p}{r \bmod p} \pmod{p}$$

Problem C: Wildcard List

$$\sum {ak+b \choose ck+d} \equiv \sum {\lfloor \frac{ak+b}{p} \rfloor \choose \lfloor \frac{ck+d}{p} \rfloor} {(ak+b) \bmod p \choose (ck+d) \bmod p}$$

- Solution: Let k = qp + r, and enumerate q and r independently.
 - Assume $L \equiv -1$ (mod p) so they're truly independent. We can add the "leftover terms" separately.

Problem C: Wildcard List

$$\sum {ak+b \choose ck+d} \equiv \sum {\lfloor \frac{ak+b}{p} \rfloor \choose \lfloor \frac{ck+d}{p} \rfloor} {(ak+b) \bmod p \choose (ck+d) \bmod p}$$

- k = qp + r
- (ak + b \equiv ar + b) and (ck + d \equiv cr + d), so the second term is constant. Factor it out.
- The sum reduces to a recursive call!
 - Just memoize. There will only be a few distinct calls.

Problem J: Expando

- Range update: range increase by x.
- Range query: sum a[i]·a[i+1].
- Segment tree with lazy propagation.
- Range update is tricky.

Problem J: Expando

- On range update, Σa[i]·a[i+1] becomes
 - \circ $\Sigma(a[i] + x)(a[i+1] + x)$
- So we need to keep track of subarray sums and counts as well.

2n 2n

• Problem: $\sum_{x=n} \sum_{\substack{y=n \\ \gcd(x,y)=1}} 1$

• Variant: $\sum_{\substack{n/2 < x, y \le n \\ \gcd(x,y)=1}} 1$

- This is almost the same (easy to convert), but turns out to give a cleaner solution.
- Define:

$$f(n) := \sum_{\substack{n/2 < x, y \le n \\ \gcd(x,y)=1}} 1$$

$$(n - \lfloor n/2 \rfloor)^2 = \sum_{n/2 < x, y \le n} 1$$

$$= \sum_{g} \sum_{n/2 < x, y \le n} 1$$

$$= \sum_{g \text{cd}(x,y)=g} \sum_{\text{gcd}(x,y)=1} 1$$

$$= \sum_{g} \sum_{n/g/2 < x, y \le n/g} \sum_{\text{gcd}(x,y)=1} 1$$

$$= \sum_{g} f(\lfloor n/g \rfloor)$$

- We get: $f(n) = (n \lfloor n/2 \rfloor)^2 \sum_{g \geq 2} f(\lfloor n/g \rfloor)$
- At this point, simple memoization already gives
 O(n log n), though this is not enough.

• We get:
$$f(n) = (n - \lfloor n/2 \rfloor)^2 - \sum_{g \ge 2} f(\lfloor n/g \rfloor)$$

- Insight: $\lfloor n/g \rfloor$ has at most $2\sqrt{n}$ distinct values.
- By cleverly compressing sums with the same arguments, we get $O(\sqrt{n})$ per n, and overall:

$$O\left(\sum_{i=1}^{\sqrt{n}} \sqrt{i} + \sum_{i=1}^{\sqrt{n}} \sqrt{\frac{n}{i}}\right) = O\left(\int_{1}^{\sqrt{n}} \left(\sqrt{x} + \sqrt{\frac{n}{x}}\right) dx\right) = O(n^{3/4})$$

- $O(n^{3/4})$ is fast, but it can still be improved! By sieving small values, we can get $O(n^{2/3}(\log n)^{1/3})!$ or, less precisely, simply $\tilde{O}(n^{2/3})$
- I won't give all the details, but one can learn these sorts of techniques from Project Euler!

Thank you!

- Kevin Charles Atienza
 - Problem setter + Judge
- Jared Guissmo Asuncion, M.Sc.
 - Theme supervisor