Academic Analytics: Predictions around Argentine "Aprender"

National Evaluation

EPPS 6323 Knowledge Mining

Dr. Karl Ho

Student: Federico Ferrero

Objective

To conduct both an **Exploratory Data Analysis** and a **Predictive Analysis** that uses Machine Learning techniques with the purpose of finding the most accurate and adequate predictive hypotheses for the Argentine "Aprender" National Evaluation.

National Evaluation Operation "Aprer

- Argentine **Ministry of Education**, Culture, Science and Technology.
- **Annual** administration.
- Population: all high-school seniors in Argentina.
- Evaluation **purpose**: "to generate timely and quality information to better understand the achievements and pending challenges around students' learning" (Aprender, 2019).
- Traditionally, **predominant use of descriptive** techniques.
- Collects data on knowledge of Mathematics, Language, and contextual information of the respondent students.

Data

- 2019 edition.
- **N=34,191** high-school seniors (Cordoba Province).
- Dependent Variables (2):
 - Language Performance (ldesemp) and Math Performance (mdesemp):
 - o 4 categories: below basic level, basic, satisfactory, and advanced.
- Independent Variables (246):
 - gender, sector (public or private), ambit (rural or urban), student socio-economic situation, student cultural consumption, school climate, student self-perception, educational practices and use of technology, migration status, etcetera.

Analysis strategies

1. Exploratory Data Analysis using visualizations:

 Traditional variables: Sector, Ambit, Gender, Repetition, Student Employment, Student Socioeconomic Level.

2. Finding the Best Model using regsubsets with leaps package:

- Math Performance: Forward selection.
- Language Performance: Backward selection.

3. Supervised Learning techniques:

- Simple regression.
- Tree-Based-methods.

Exploratory Data Analysis

Positive and linear association between Language Performance and Math Performance.

Students' performa Sector Ambit

- Sector:
 - 1= Public
 - \circ 2= Private
- Ambit:
 - 1= Urban
 - \circ 2= Rural
- Language Scores: better performance at private schools and no differences between ambits. 50% of cases in private schools are between satisfactory and advanced. In the public system, 50% between basic and satisfactory.
- Math Scores: better performance in private and urban schools. 50 % of cases in private schools are between satisfactory and advanced. In public system, 50% between below basic and satisfactory. Performance in rural is worse than in urban schools.

Students' performa@considery

- Language Scores: better performance in women (39% at least obtain the satisfactory level while 31% of men achieve this level). Both groups have 13% of students in basic and low level.
- Math Scores: worse performance in women (32% obtain low and basic levels against 25% in the case of male students). Both groups have 19% of students in satisfactory and advanced levels.

Students' performa Repetitiond Work Experience

- Language Scores: clear better performance in non-repitent students and students who don't work.
- Math Scores: better performance in nonrepitent students. No apparent differences when considered worker students. A considerable number of missing values.

Language Performance by School Repetition

School Repetition
1= Repeated School Grade 2= Non Repeated School Grade 3= No answer

1= Yes 2= No 3= No answer

Math Performance by School Repetition

School Repetition
1= Repeated School Grade 2= Non Repeated School Grade 3= No answer

Math Performance by Students Who Work

Students Who Work 1= Yes 2= No 3= No answer

Students' Performasoeio by conomic Level

- Language Scores: predominantly middle socioeconomic level students who obtain at least a satisfactory level (44%).
- Math Scores: predominantly middle socioeconomic level students who obtain low and basic level (37%).

How Malware the ptimal umber When Predicting Language Performance

5 seems to be the better number of predictors for the model when predicting Language
 Performance: high AdjR2 and low BIC and Cp.

Whate the East Predictons anguage Performance?

5 Best redictors Language r formance

- 1. Math Performance (mdesemp)
- 2. Do you receive **payment for the job** you do outside your home? (ap22)
- 3. How difficult are the following activities for you? **Understanding a text** (a39_01)
- 4. Student's **socio-economical index** (isocioa)
- **5. Extra-age** (sobreedad)

How Malware the ptimal umber When Previathing Performance

 8 seems to be the better number of predictors for the model when predicting Math Performance: high AdjR2 and low BIC and Cp.

Whater the st Predictoffs ath Performance?

7 Best redictors Matherformance

- 1. Language Performance (ldesemp)
- 2. **Sector** (either public or private) (sector)
- **3. Gender** (gender)
- **4. Absenteeism**. So far this year, how many times have you missed school? (ap26)
- 5. How difficult do you find the following activities? **Writing a text** (ap39_02)
- 6. To what extent do you agree with the following statements? **I enjoy studying Mathematics** (ap40_01)
- 7. Student's **socio-economical index** (isocia)

Comparing Regression Models Outputs

	Dependent variables		
Langu	age Performance (1)	Math Performance (2)	
Math Performance	0.467*** (0.005)		
Payment	-0.019*** (0.001)		
Understanding a text dif.	0.038*** (0.002)		
Language Performance		0.440*** (0.005)	
factor(Sector)= Private		0.312*** (0.009)	
factor(Gender)= Female		-0.170*** (0.008)	
Absenteeism		-0.033*** (0.003)	
Writing a text dif.		-0.048*** (0.002)	
Enjoy Maths		0.086*** (0.002)	
factor(Socioeconomic)= Low	-0.028 (0.026)	-0.096*** (0.026)	
factor(Socioeconomic)= Medium	0.219*** (0.024)	0.064*** (0.023)	
factor(Socioeconomic)= High	0.360*** (0.025)	0.218*** (0.024)	
Over-age	-0.005** (0.002)		
Constant	1.411*** (0.025)	0.813*** (0.026)	
Observations R2	33,014 0.319	33,014 0.368	
Adjusted R2 Residual Std. Error 0.74 F Statistic 2,210.380		0.368 0.720 (df = 33003)) 1,924.437*** (df = 10; 33003	
) 1,924.437*** (df = 10; 3300 *p<0.1; **p<0.05; ***p<0.0	

Linear Regressortputs

• Language Performance:

- Positive association:
 - Math performance, Difficulty in understanding a text, Student' medium and high socioeconomic level (p<0.01).
- Negative association:
 - Payment for a job (p<0.01), Student's low socioeconomic level (p<0.01), over-age (p<0.05).

• Math Performance:

- Positive association:
 - Language performance, Private sector, Enjoying Maths, Student' medium and high socioeconomic level (p<0.01).
- Negative association:
 - Absenteeism, Female, Difficulty in writing a text, Student's low socioeconomic level (p<0.01).

Decision tree: Language Performance

Accomplish at Least Satisfactory Language Performance Level

TreeBased Methods: Language Performan

Let's try a case: a student who has...

- **Math Performance** higher than 1.5 but less than 2.5 (basic level)
- Socioeconomic level lower than
 1.5 (low index)
- And a **job payment value** higher or equal to 1.5 (which means that the student doesn't work)

Has **4% of chances** of accomplishing at least satisfactory Language Performance Level.

Decision tree: Math Performance lang_perf < 2.5 enjoy_math < 1.5 enjoy_math < 2.5 enjoy math < 2.5 enjoy_math < 1.5 enjoy_math < 3.5

TreeBased Method Math Performance

Let's try another case: a student who...

- Language Performance lower than 3.5 but higher than 2.5 (satisfactory level)
- Attends to a public school (Sector value lower than 1.5)
- And the **enjoy math value** is lower than 2.5 (which means that does not agree with the sentence)

Has **10% of chances** of accomplishing at least satisfactory Math Performance Level.

TreeBased Methods: Which predictive method is more

		Language Performance	Math Performance
Decision Tree	Accuracy	0.7679725	0.7649435
	Predicted Accomplish rate	0.8090665	0.7415507
Conditional Inference Tree	Accuracy	0.7653473	0.7610057
	Predicted Accomplish rate	0.7986811	0.7513612

Code and Outputs

https://federico-jf.github.io/Knowledge-Mining/Final-Project.html

Final ideas

- Most accurate predictive hypotheses for the Argentine "Aprender" National Evaluation can be identified using Machine Learning techniques.
- Traditional/classic pedagogical variables are not always the ones that best predict performance according to the Machine Learning techniques used here.
- An analysis of this type can help to adequately identify the dimensions to promote in projects for the **design of educational public policies**.
- The prediction used to **identify students at risk** and then to make interventions aimed at strengthening desired performances can be an interesting pedagogical strategy.

References

Acharya, M. S., Armaan, A., & Antony, A. S. (2019, February). A comparison of regression models for prediction of graduate admissions. In *2019 International Conference on Computational Intelligence in Data Science (ICCIDS)* (pp. 1-5). IEEE.

Siegel, E. (2016). Predictive Analytics. The power to predict who will click, buy, lie or die. New Jersey: John Wiley and Sons.

Holmes, W., Bialik, M. and Fadel, C. (2019) Artificial intelligence in education: promises and implications for teaching and learning. Boston, MA: The Center for Curriculum Redesign.

Jayaprakash, S. M., Moody, E. W., Lauría, E. J., Regan, J. R., & Baron, J. D. (2014). Early alert of academically at-risk students: An open source analytics initiative. *Journal of Learning Analytics*, 1(1), 6-47.

Williamson, B. (2016). Digital education governance: data visualization, predictive analytics, and 'real-time' policy instruments. *Journal of Education Policy*, 31(2), 123-141.

Thank you!