Trees

Chapter 4 of textbook 1

Formal Definition

Tree is a sequence of nodes.

There is a starting node known as root node.

Every node other than the root has a parent node.

Nodes may have any number of children.

Nodes with no children are know as leaves

Some Terminologies: Father = ancestor Child= descendant brother = sibling Path to a node p is a sequence of nodes root, n_1 , n_2 ,p such that n_1 is a child of root, n_2 is a child of n_1

Path to E is?

A,B,E

How many paths are there to one node?

Just one!

Depth of a node is the length of the unique path from the root to the node (not counting the node).

Root is at depth 0

Depth of E is? 2

Leaves are nodes without any children.

D and E are leaf nodes.

Height of a non-leaf node is the length of the LONGEST path from the node to a leaf(not counting the leaf).

Height of a leaf is 0

Height of A is? 2

Application

Organization of a file system. Root Root directory EE220 CSE260 TCOM500 EE220, CSE260, TCOM 500 EE220: Lecture Notes, HW HWLec

Every node has one or more elements:

Directory example: element of a node is the name of the corresponding directory

Implementation

typedef struct TreeNode *PtrToNode; struct TreeNode ElementType Element; PtrToNode FirstChild; PtrToNode

Using pointers

A node has a pointer to all its children

Since a node may have many children, the child pointers

have a linked list.

A has a pointer to B, C, D each.

B has pointers to E and its other child.

E does not have any pointers.

Deletion of the root:

One of the children becomes the new root:

Other children of old root become the children of the new root

C becomes new root

B and D are children of C in addition to its original child

Tree Traversal (Tree Search)

Many algorithms involve walking through a tree, and performing some computation at each node

Walking through a tree is called a traversal

Depth-First Search (DFS):

- Pre-order
- Post-order
- In-order (applied for Binary Tree)

Breadth-First Search (BFS) or Level-order Search

DFS: Pre-order

Pre-order:

First visit a node, then with its children

A->B->E->F->C->G->D

DFS: Post-order Example

Post-order:

First visit its children, then return to the node.

BFS

BFS:

First visit all nodes having the same level, then with its children

A -> B->C->D->E->F-G

Binary Trees

A node can have at most 2 children, leftchild and rightchild

What is the largest depth of a binary tree of N nodes? N - 1

In-order Traversal

First visit the left subtree

Then visit the node

Then visit right subtree

1->2->4->5->3->6->7 pre-order

4->5->2->6->7->3->1 post-order

Implementation of a binary tree node

Implementation of Pre-order

Recursive function

```
void PreOrder(struct BinaryTreeNode *root){
    if(root) {
        printf("%d",root→data);
        PreOrder(root→left);
        PreOrder (root→right);
    }
}
```

Time complexity? 2T(N/2) + 1

Implementation of Pre-order (2): Non-recursive function

Implementation of Post-order

Recursive function

Non-recursive function

```
void PostOrder(struct BinaryTreeNode *root)(
   if(root)
                                         Stack treeStack:
                                                               Homework
        PostOrder(root→left);
                                         Stack auxStack; // Auxiliary stack to help with traversal
                                         currNode = root;
        PostOrder(root→right);
                                         Node* prevNode = NULL; // Previously traversed node
        printf("%d",root→data);
                                         while (!isEmpty(treeStack) || currNode != NULL) {
                                           if (currNode != NULL) {
                                              push(treeStack, currNode);
                                              currNode = currNode->left;
Time complexity?
                                              currNode = top(treeStack);
                                              if (currNode->right != NULL && currNode->right != prevNode) {
                                                 currNode = currNode->right;
                                                printf("%d ", currNode->data);
                                                pop(treeStack);
                                                prevNode = currNode;
                                                currNode = NULL;
```

Implementation of In-order

Non-recursive function

Recursive function

```
void InOrder(struct BinaryTreeNode *root){
    if(root) {
        InOrder(root→left);
        printf("%d",root→data);
        InOrder(root→right);
    }
```

Homework

```
Stack treeStack;
currNode = root;
while (!isEmpty(treeStack) || currNode != NULL) {
    if (currNode != NULL) {
        push(treeStack, currNode);
        currNode = currNode->left;
    } else {
        currNode = pop(treeStack);
        printf("%d ", currNode->data);
        currNode = currNode->right;
    }
}
```

Implementation of BFS

```
void LevelOrder(struct BinaryTreeNode *root){
    struct BinaryTreeNode *temp;
    struct Queue *Q = CreateQueue();
    if(!root)
        return;
    EnQueue(Q,root);
    while(!IsEmptyQueue(Q)) {
        temp = DeQueue(Q);
        //Process current node
        printf("%d", temp→data);
        if(temp→left)
            EnQueue(Q, temp→left);
        if(temp→right)
            EnQueue(Q, temp→right);
    }
    DeleteQueue(Q);
}
```

Queue is used here

Binary Search Tree (BST)

Time complexity of searching in a binary tree is O(n).

We introduce a binary search tree which is useful for searching with time complexity is O(log N) in average case.

What is a binary search tree?

All elements in the left subtree of a node are smaller than the element of the node, and all elements in the right subtree of a node are larger.

We will assume that in any binary tree, we are not storing duplicate values unless otherwise stated

Finding X in the Tree

Start from the root.

Each time we encounter a node, see if the element in the node equals the X. If yes stop.

If X is less, go to the left subtree.

If it is more, go to the right subtree.

Conclude that X is not in the list if we reach a leaf node and the element in the node does not equal X.

To determine membership, traverse the tree based on the linear relationship:

– If a node containing the value is found, e.g., 81, return 1(Found)

If an empty node is reached, e.g., 36, the object is not in the tree:

Recursive version of search

```
Search(root, X)

{
    node = root;
    If (node = NULL) return NOT FOUND;
    Else If (node->element == X) return FOUND;
    Else If (X < node->element) Search(node->leftchild, X);
    Else If (X > node->element) Search(node->rightchild, X);
    Complexity: O(d), d is the depth,

Average case d = log N

Worse case d = N
```


Search for 10

Sequence Traveled:

5, 8, 10

Found!

Search for 3.5

Sequence Traveled:

5, 3, 4

Not found!


```
TreeNode* searchIterative(TreeNode* root, int key) {
  while (root != NULL && root->data != key) {
    if (key < root->data) {
      root = root->left;
    } else {
      root = root->right;
}
```

return root:

Find Min and Find Max

Find Min: start at the root and go left as long as there is a left child. The stopping leaf is the smallest element.

Find Max: start at the root and go right as long as there is a right child. The stopping leaf is the greatest element.

Complexity: O(d)


```
Quiz: implementation | Function to create a new tree node | TreeNode* createNode(int data) { | TreeNode* newNode | (TreeNode*) malloc(sizedf(TreeNode)); | TreeNode* newNode | (TreeNode*)
                                                                                                                                                                                                                                                                                               newNode->data = data
                                                                                                                                                                                                                                                                                              newNode->left = NUL
                                                                                                                                                                                                                                                                                               newNode->right = NULL;
                                                                                                                                                                                                                                                                                              return newNode;
  Provide the recursive version and non-recursive
  version of Find Min and Find Max
                                                                                                                                                                                                                                                                                      // Non-recursive function to find the minimum value in the
                                                                                                                                                                                                                                                                                      BST
                                                                                                                                                                                                                                                                                      TreeNode* findMinIterative(TreeNode* root) {
    if (root == NULL) {
        return NULL;
    }
                                                                                                                                                                                              Find Min(root):
Find Min(root):
                                                                                                                                                                                                                                                                                               while (root->left != NULL) {
                                                                                                                                                                                               T = root;
                                                                                                                                                                                                                                                                                                       root = root->left;
T = root;
                                                                                                                                                                                                                                                                                               return root;
                                                                                                                                                                                              If(T != NULL)
If(T != NULL)
                                                                                                                                                                                                                                    if (T-> left! = NULL)
                                        while(T->left != NULL)
                                                                                                                                                                                                                                                                            Find Min(T-left);
                                                                               T=T->left;
                                                                                                                                                                                              return T;
return(T);
```

Insertion

An insertion will be performed at a leaf node:

 Any empty node is a possible location for an insertion

Insertion

For example, this node may hold 48, 49, or 50

Insertion

An insertion at this location must be 35, 36, 37, or 38

Insertion

This empty node may hold values from 71 to 74

Insertion Algorithm

Like find, we will step through the tree

- o If we find the object already in the tree, we will return
 - The object is already in the binary search tree (no duplicates)
- o Otherwise, we will arrive at an empty node
- o The object will be inserted into that location

Insertion: example 1

In inserting the value 52, we traverse the tree until we reach an empty node

- The left sub-tree of 54 is an empty node

Insertion: example 1

A new leaf node is created and assigned to the member variable left of 54

Insertion: Example 2

In inserting 40, we determine the right sub-tree of 39 is an empty node

Insertion: example 2

A new leaf node storing 40 is created and assigned to the member pointer right of 39


```
SearchTree
        Insert( ElementType X, SearchTree T )
             if( T == NULL )
                 /* Create and return a one-node tree */
                  T = malloc( sizeof( struct TreeNode ) );
                 if( T == NULL )
                      FatalError( "Out of space!!!" );
                      T->Element = X;
/* 5*/
/* 6*/
                      T->Left = T->Right = NULL;
             if( X < T->Element )
                 T->Left = Insert( X, T->Left );
/* 8*/
             if( X > T->Element )
/* 9*/
             T->Right = Insert( X, T->Right );

/* Else X is in the tree already; we'll do nothing */
/*10*/
             return T; /* Do not forget this line!! */
/*11*/
Figure 4.22 Insertion into a binary search tree
                                      Complexity: O(d)
```

Quiz: Insertion

Blackboard example:

 In the given order, insert these objects into an initially empty binary search tree:

31 45 36 14 52 42 6 21 73 47 26 37 33 8

- What values could be placed:
 - To the left of 21? 15->20
 - To the right of 26? 27->30
 - To the left of 47? 46
- How would we determine if 40 is in this binary search tree?
- Which values could be inserted to increase the height of the tree?

Erase (Deletion)

A node being erased is not always going to be a leaf node

There are three possible scenarios:

- The node is a leaf node,
- It has exactly one child, or
- It has two children (it is a full node)

A leaf node simply must be removed and the appropriate member variable of the parent is set to NULL

- Consider removing 75

Erase

The node is deleted and left pointer of 81 is set to NULL

If a node has only one child, we can simply promote the sub-tree associated with the child

Consider removing 8 which has one left child

Erase

The node 8 is deleted and the left pointer of 11 is updated to point to 3.

There is no difference in promoting a single node or a sub-tree

- To remove 39, it has a single child 11

Erase

The node containing 39 is deleted and left_node of 42 is updated to point to 11

- Notice that order is still maintained

Consider erasing the node containing 99

Erase

The node is deleted and the left subtree is promoted:

- The member variable right pointer of 70 is set to point to 92.
- Again, the order of the tree is maintained.

Finally, we will consider the problem of erasing a full node, e.g., 42

We will perform two operations:

- Replace 42 with the minimum object in the right sub-tree
- Erase that object from the right sub-tree

Erase

In this case, we replace 42 with 47

 We temporarily have two copies of 47 in the tree

We now recursively erase 47 from the right sub-tree

 We note that 47 is a leaf node in the right sub-tree

Erase

Leaf nodes are simply removed and left pointer of 51 is set to NULL

- Notice that the tree is still sorted:
 - 47 was the least object in the right sub-tree

Suppose we want to erase the root 47 again:

- We must copy the minimum of the right sub-tree
- We could promote the maximum object in the left sub-tree and achieve similar results

Erase

We copy 51 from the right sub-tree

We must proceed by delete 51 from the right sub-tree

Erase

In this case, the node storing 51 has just a single child

We delete the node containing 51 and assign the member variable left pointer of 70 to point to 59.

Erase

Note that after seven removals, the remaining tree is still correctly sorted

In the two examples of removing a full node, we promoted:

- A node with no children
- A node with right child

Is it possible, in removing a full node, to promote a child with two children?

Erase

Recall that we promoted the minimum value in the right sub-tree

 If that node had a left sub-tree, that subtree would contain a smaller value

Pseudo Code

```
Delete(node) {
    If a node is childless, then
    {
        node->parent->ptr_to_node = NULL
        free node;
    }

If a node has one child
    {
        node->parent->child = node->child;
        free node;
    }
}
```

```
If a node has 2 children,

{

minnode = findmin(rightsubtree)->key;

node->key = minnode->key;

delete(minnode);

}

Complexity?

O(d)
```

Quiz: Erase

Blackboard example:

- In the binary search tree generated previously:
 - Erase 47
 - Erase 21
 - Erase 45
 - Erase 31
 - Erase 36

Next week

- Online Assignment 2
 - Duration :1h
 - Content: Linked List, Stack, Queue
- AVL Tree