Networks - Roads

Extended investigation Solutions and marking key

Part 2: In-class validation

Question 1(a)

	_	patition position of oders in potential
	Marks	Mathematical behaviours
7		oute could be given as no limitations are provided
		RMHSLEPTR or RTNRMHSLEPT
		Solution

8 2 3 =

Question 1(c)

Solution	
No	
Vertex R was re-visited	
Mathematical behaviours	Marks
 identifies network is not Hamiltonian 	1
explains conclusion	

Question 1(d)

•							
calculate		4	ω	2	_	Route	
calculates distance	Mar	т	Г	Z	R	Starting intersection	
	Mathematical behaviours	ELSHMRNTPE	LSHMRNTPEL	MHSLEPTNRM	RMHSLEPTNR	Route – order of roads travelled	Solution
	Ма	41 km	41 km	41 km	41 km	Distance	
_	Marks						

identifies four routes each with a different starting point

Question 1(e)

•	•		Ŧ		5
identifies two further routes on which not to travel	identifies one route other than RT on which not to travel	Mathematical behaviours	The driver should not travel on any route from R to H, S, E or T	Solution	4.00.00(0)
_	_	Marks			

Question 1(f)

•		$\leq \leq \leq$	
identifies 3 paths of different lengths		MHRSLEPTNR (29 km) MHSLERNTP (28 km)	
ifferent lengths	Mathematical behaviours	Other possibilities exist. Routes can start at any vertex.	Solution
ω	Marks	y vertex.	

Question 1(g)

	(6)	
	Solution	
7	MHSLERNTP	
=	It is the shortest route so less petrol used and lowest cost	
	Mathematical behaviours	Marks
•	identifies shortest route	_
•	links answer to context of question.	_

Marks
Construction School Street
نـ

Question 2(a)

700		
	Solution	
1	11 km	
	Mathematical behaviours	Marks
•	interprets network	

00

Ques

Interprets network		
Question 2(b)(i)		からという
	Solution	1 X R8 # 11 13
TNRH (12)		ナのことせい
TNRMH (24)	ーーのサ	7
TNRELSH (19)	2 1010	ナッスチッコ
TPERMH (28)	1	1000
TPELSRMH (38)	2 - Alolana	し、してつみして
Ma	Mathematical behaviours	Marks
 identifies 5 different routes 	es	5
Question 2(b)(ii)	38-12-26.	TRELSAH = 10

Question

Solution	on 2(b)(ii) 38-12 - 26.
	1

Solution	
かっていれ	
Mathematical behaviours	Marks
ntifies shortest and longest routes	1
rulates difference	_

Question 3(a)

Solution
Eulerian

of 2(b) in add include districes

_	 demonstrates knowledge of terminology
Marks	Mathematical behaviours

Question 3(b)

	1	
Ξ		From M to H and then R, you need to get back to M to go over RM and this means
	re	repeating the edge MH or MR to get back to the other edges.
		Mathematical behaviours
		describes an attempted route
		explains need to repeat edge

Question 3(c)

• identifies number of odd nodes	 demonstrates knowledge of odd nodes for Eulerian trail 	Mathematical behaviours	The number of odd nodes in the network is not 0 or 2	Solution
_	٦	Marks		
	• identifies number of odd nodes 2 all 2	 demonstrates knowledge of odd nodes for Eulerian trail identifies number of odd nodes 1 2 0 1 	ical behaviours I nodes for Eulerian trail	n trail

Question 3(d)

	_	X	 identifies a second pair of odd vertices to connect
	_		 identifies one pair of odd vertices to connect
	Marks		Mathematical behaviours
OVES	TS.	HE DY	Make roads ET or HS (connecting any two odd vertices)
			Solution

Question 3(e)

•	•		S	Ш	
uses second new road to make a route with no edges repeated	uses first new road to make a route with no edges repeated	Mathematical behaviours	SLEPTERTNRSHRMH	ELSH S RHMRTNREPT	Solution
2	2	Marks			

Question 3(f)

	•	•		回	Z	
^	identifies the same distance	identifies every edge is used	Mathematical behaviours	Every edge is travelled each time	Neither route is shorter	Solution
		>				
		-				
	_	_	Marks			

Question 4(a)

Solution	
 Add a loop at any intersection	
 Add an extra edge between any two vertices	
 Mathematical behaviours	Marks
 identifies first feature of a network that is not simple 	_
 identifies second feature of a network that is not simple 	_

Question 4(b)

describes planarity	Mathematical behaviours	It can be draw in the plane (2-D) without edges crossing	Solution
	Marks		

Question 4(c)

•	•	0	•		9	٧-	
substitutes using Euler's formula	identifies number of vertices	identifies number of faces	identifies number of edges	Mathematical behaviours	9+6-13=2	v+f-e=2	Solution
_	_	_	_	Marks			

т 4	$\begin{bmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & $
5 S	Mathematical behavior
	o R

Column	
(i) flyover, tunnel	
(ii) occupies less space on the ground	
(iii) costs more to build, pollution confined to smaller area	
Mathematical behaviours	Marks

relates theory to context in three specific ways.

ω

	r		
		Question 4(e)	•
ł		sti	X
		9	ec
		4(e	ge
		_	two edges cross
			088
	,,		
	Sol		
	Solution		
	٦		
			1
			-
			-

				·
two edges cross	all vertices maintained	all edges maintained	Mathematical behaviours	T N N N N N N N N N N N N N N N N N N N
_	_	_	Marks	

Question 4(d)

Solution