DM N°6 (pour le 18/12/2015)

Partie I

- 1. Soit k un entier $\geqslant 1$. Montrer que la fonction $t \mapsto \frac{e^{-kt}}{\sqrt{t}}$ est intégrable sur $]0;+\infty[$. On note $J_k = \int_0^{+\infty} \frac{e^{-kt}}{\sqrt{t}} dt$.
- 2. Donner la valeur de J_k . On pourra utiliser l'égalité : $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.
- 3. Montrer que la fonction $t\mapsto \frac{1}{\sqrt{t}\,ch\,t}$ est intégrable sur $]0\,;+\infty[.$

On note
$$K = \frac{1}{2\sqrt{\pi}} \int_0^{+\infty} \frac{dt}{\sqrt{t} \, ch \, t}$$
.

- 4. a) Montrer que : $K=\frac{1}{\sqrt{\pi}}\int_0^{+\infty}\frac{e^{-t}}{\sqrt{t}(1+e^{-2t})}\ dt.$
 - b) En déduire que : $K = \sum_{k=0}^{+\infty} \frac{(-1)^k}{\sqrt{2k+1}}$.
- 5. Montrer que $\frac{1}{2} < K < 1$.

Partie II

Soit n un entier ≥ 1 . Pour tout réel x dans $]0;\pi[$, on pose :

$$u_n(x) = \frac{\sin(nx)}{\sqrt{n}}, \qquad f_n(x) = \sum_{k=1}^n u_k(x) \qquad \text{et} \qquad A_n(x) = \sum_{k=1}^n \sin(kx)$$

- **6. a)** Pour tout x dans $]0;\pi[$, montrer que $A_n(x)=\frac{\sin(nx/2)\sin((n+1)x/2)}{\sin(x/2)}$.
 - $\text{b) Si } n\geqslant 2, \text{ montrer que } f_n(x)=\sum_{k=1}^{n-1}A_k(x)\Big(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\Big)+\epsilon_n(x) \text{ où } \big(\epsilon_n(x)\big)_{n\geqslant 2} \text{ est une suite tendant vers } 0.$
- 7. En déduire la convergence de la série de terme général $\mathfrak{u}_n(x).$

On notera f(x) sa somme.

- 8. a) Montrer l'existence d'une constante C>0 telle que $f_{2n}\left(\frac{\pi}{4n}\right)-f_n\left(\frac{\pi}{4n}\right)\geqslant C\sqrt{n}$. Expliciter une telle constante.
 - **b)** La suite de fonctions $(f_n)_{n\geqslant 1}$ converge-t-elle uniformément sur $]0;\pi[$?

On désigne par i le nombre complexe de module 1 et d'argument $\frac{\pi}{2}$. Si z = a + ib est un nombre complexe avec a et b réels, on désigne par $\mathcal{I}m(z)$ sa partie imaginaire, c'est-à-dire b.

- 9. a) Soit $x \in]0;\pi[$. Déterminer le tableau de variations de la fonction $t \mapsto \left|e^{ix-t}-1\right|$ définie pour $t \in]0;+\infty[$.
 - b) Montrer que la fonction $t\mapsto \frac{e^{-t}}{\sqrt{t}(1-e^{ix-t})}$ est intégrable sur $]0\,;+\infty[.$
 - $\text{c) \'etablir alors que}: f_n(x) = \frac{1}{\sqrt{\pi}} \mathscr{I} m \left(\int_0^{+\infty} \frac{e^{ix-t} (e^{ix-t})^{n+1}}{\sqrt{t}(1-e^{ix-t})} \ dt \right).$
 - d) En déduire que : $f(x) = \frac{\sin x}{2\sqrt{\pi}} \int_0^{+\infty} \frac{dt}{\sqrt{t}(ch t \cos x)}$.
 - e) Montrer que f(x) > 0.
 - f) En comparant les valeurs de ch t et e^t sur]0; $+\infty[$, montrer que $\frac{1}{2} < f\left(\frac{\pi}{2}\right) < 1$.

Partie III

Dans cette partie, $x \in \left]0; \frac{\pi}{2}\right[$.

- 10. a) Établir que la fonction $u \mapsto \frac{1}{\sqrt{u}(sh^2 u + sin^2 x)}$ est intégrable sur $]0; +\infty[$.
 - **b)** Montrer que : $f(2x) = \frac{\sin 2x}{2\sqrt{2\pi}} \int_0^{+\infty} \frac{du}{\sqrt{u}(sh^2u + sin^2x)}$.
- **11.** Montrer que f est de classe \mathscr{C}^0 sur $]0;\pi[$.
- 12. Montrer que f est de classe \mathscr{C}^1 sur $]0;\pi[$.

