

Improving the Representation of Land Surface Processes using the Data Assimilation Research Testbed (DART)

Brett Raczka¹, Xueli Huo², Daniel Hagan³, Andrew M. Fox⁴, Moha Gharamti¹, Kevin Raeder¹, Rolf Reichle⁴, Emmanuel Dibia⁵, Jeffrey Anderson¹

¹National Center for Atmospheric, ²University of Arizona, ³Nanjing University of Information Science and Technology ⁴NASA Goddard Space Flight Center, ⁵University of Maryland

American Meteorological Society Annual Meeting January 12th, 2023

Intro to DART

A flexible suite of software tools to accelerate Earth system research using ensemble Kalman filters

Educational Resource

<u>User community</u>:

- 50+ Universities
- 100+ other sites
- 1500+ registered users

Open Source. DART team & community members develop:

- Model interfaces (e.g. CLM5, WRF-Hydro, Noah (MP))
- Observation forward operators
- Assimilation algorithms:
 e.g. EnKF, RHF, Quantile Conserving (Anderson; ISDA June 2022)
- Adaptive Inflation

Contributions are reviewed, streamlined and tested before merging in public DART

CAM-DART (Atmospheric DA)

CESM (Atmosphere, Land, Ice, River)

Yrs: 2011-2020

Observations: > 300,000 obs per 6 hour time step

- Radiosondes: Surface balloon launches
- ACARS: NA aircraft
- AIRS: IR Soundings
- CDW: Cloud Drift Winds (satellites)
- GPS Refractivity: occultation

Product: CAM6 Reanalysis

CLM-DART Methodology

Bayesian Approach

Posterior ~ Prior · Observation Likelihood

'Analysis' 'Update'

CLM generated forecast Earth System Observations

e.g. satellite, surface data

Soil Moisture observations (CLM-DART)

CLM: CLM4.5 free run (no observations)

CLM-DART: CLM4.5 + ECV-CCI observations

 CLM-DART fills in gaps from ECV-CCI retrievals and improves surface correlation with ERA5 benchmark product

 CLM-DART also improves subsurface soil moisture correlation with in-situ site observations D. Hagan et al, (in prep)

CLM

CLM_ DART

Correlation w/ ERA5 Near Surface Soil Moisture

Soil Moisture Correlation (1-100 cm)

Jiangxi and Jiangsu provinces

Sub-Surface vertical profile

4 different sites

Soil Moisture - CDF matching

 CDF matching re-scales data products to match the bias and variability of the openloop model

Reichle & Koster 2004 (GRL)

Testing Filter/Inflation Algorithms

Soil Moisture Perfect Model Experiment

- NASA Catchment land surface model
- Merra-2 Met Forcing (AR perturbed)
- 18 global site locations
- EnKF vs Rank Histogram Filter
- Adaptive Inflation (Gharamti, 2018)

Dibia, E., Reichle, Anderson, Liang (in revision, Journal of Hydrometeorology)

Snow observations (CLM-DART)

Observation:

MODIS

Snow

Cover

Fraction

Zhang et al., (2014)

CLM4 – (CLM4_DART)

Observation:

MODIS SCF GRACE TWS

Zhao and Yang (2018)

 Implications for albedo, surface energy balance, soil moisture, carbon cycle

Layer Repartitioning for Snow/Ice

Standard Approach

Snow (SWE) Observations

4.5 3.5 3 Increments Model

Estimated SWE

Snow Layer Property _{i = n}

Snow updates not internally consistent

Δ Total SWE $\neq \Sigma(\Delta Layers)$

Δ Total Ice $\neq \Sigma(\Delta Layers)$

 Δ Total Liquid $\neq \Sigma(\Delta Layers)$

 Δ Total Depth $\neq \Sigma(\Delta Layers)$

i=2

i=3

i= n

Ground

Snow Layer, $+\Delta$

u n

" "

Added Snow repartitioning algorithm

Repartitioning Algorithm

Column **SWE**

Snow updates are internally consistent

Δ Total SWE

 $= \Sigma(\Delta Layers)$

Δ Total Ice $= \Sigma(\Delta Layers)$

 Δ Total Liquid = $\Sigma(\Delta Layers)$

 Δ Total Depth = $\Sigma(\Delta Layers)$

Challenge: Monitoring Terrestrial Carbon Cycle

Carbon stocks vulnerable to climate change, drastic change to landscape and ecosystem functioning

Western US: Fire, Drought, Disturbance

Arctic-Boreal: Greening/Browning, Permafrost Thaw

Improving simulated leaf area and biomass

- Assimilating LAI and biomass observations reduces CLM5 simulated values
- How does this impact component carbon fluxes and net carbon exchange?

Impact of leaf/biomass on carbon/water cycle

- Assimilating leaf/biomass brings most simulated carbon and water cycling in closer agreement with benchmarks
- What about net carbon exchange?

Impact of leaf/biomass on carbon/water cycle

 Simulating NEP, soil carbon and SWE (snow) is more challenging.

Additional Data Streams:

- Soil Moisture, Snow (SWE)
- Soil Carbon data (ER)
- EC flux tower (GPP, ER, NEE)
- Solar-Induced-Fluorescence (SIF-GPP)

Current and Future Work

Combine remote biomass, hydrology & emerging observations to constrain land surface processes

Develop bias-corrected CAM reanalysis to leverage site-based observations (tower fluxes, SIF etc.)

DART Tutorials

MATLAB

DART LAB

An introduction to Data Assimilation using MATLAB DART_LAB is a MATLAB®-based tutorial to demonstrate the principles of ensemble data assimilation. The DART_LAB tutorial begins at a more introductory level than the materials in the tutorial directory, and includes hands-on exercises. ...

Fortran

The DART tutorial

The DART Tutorial is intended to aid in the understanding of ensemble data assimilation theory and consists of step-by-step concepts and companion exercises with DART. ...

Fortran

WRF-DART tutorial

Overview The WRF-DART tutorial steps through a WRF-DART experiment. The experiment covers the continental United States and uses a 50 member ensemble initialized from NCEP's Global Forecast System (GFS) initial conditions at 2017/04/27 00:00 UTC. ...

Fortran

CLM5-DART Tutorial

The CLM5-DART tutorial provides a detailed description of the download, setup, executation and diagnostic steps required for a simple global assimilation run using CLM5. It is intended to be performed after the completion of the more general DART tutorial which covers the fundamental concepts of the Ensemble Kalman Filter used within DART.

For more information:

Thank You!

Questions?

