Modern Fizika Labor

Fizika BSC

A mérés dátuma: 2009-03-09	A mérés száma és címe: 21 PET (Pozitron Annihiláció vizsgálata)	Értékelés:
A beadás dátuma:	A mérést végezte: Meszéna Balázs – Tüzes Dániel	
uatuma.	Meszena Barazs Tuzes Barrer	

Mérés célja

Feladatunk a PET működésének megismerése, mind elméleti, mind gyakorlati szempontból. Az orvosi célokra használt készülékeket az orvosoknak nem kell menedzselniük, csupán azokkal a dolgokkal kell foglalkozniuk, mely az orvosra valóban tartozik. Ehhez természetesen a gépet valakinek le kell gyártania, kalibrálni kell és szoftvert kell rá fejleszteni, hogy a kórházi gépkezelő is biztosan kezelhesse a készüléket. A mérés során nem kapunk ilyen felhasználó-barát felületet, a mérést magunknak kell kiértékelni. Egy elektronika biztosítja a legalapvetőbb automatizálást, így a kivitelezési részletekkel nem kell foglalkoznunk jobbára.

Elméleti alapokat és a mérési elrendezésről bővebben a http://wigner.elte.hu/~koltai/labor/parts/21pet.pdf fileból olvashatunk.

A mérés kivitelezése, mérési eredmények

- 1. A laborvezető elhelyezett néhány pozitron bomló forrást a próbababában, majd a tartódobozba helyezte, végül a mérőberendezéshez erősítette.
- 2. A mérőműszert pontos igazítás nélkül úgy helyeztük, hogy a próbababából mind több sugárzást detektáljon. Ilyen elrendezés mellett 0,2*min* ideig végeztünk 1-1 mérést. A differenciál diszkriminátor csatornaszélességét 0,1*V*-ra állítva, az alapvonalat 0,5*V*-ról 0,1*V*-onként 2,8*V*-ig emelve végeztünk 1-1 mérést, melynek során vizsgáltuk az 1-es és 2-es detektor számlálóját, illetve a koincidencia számot. A mérés során az alábbi eredményeket kaptuk:

alapvonal (V)	det1 (db)	det2 (db)	koinc (db)	alapvonal (V)	det1 (db)	det2 (db)	koinc (db)
0,50	918,00	1542	4	1,70	128	242	0
0,60	807	1383	7	1,80	135	237	0
0,70	462	710	1	1,90	145	277	0
0,80	310	439	1	2,00	151	302	0
0,90	368	529	0	2,10	109	175	0
1,00	2514	4399	153	2,20	62	110	0
1,10	1855	4233	83	2,30	40	52	0
1,20	144	222	0	2,40	30	51	0
1,30	132	197	0	2,50	136	372	0
1,40	129	219	0	2,60	411	808	0
1,50	130	230	0	2,70	177	313	0
1,60	124	210	0	2,80	27	23	0

A könnyebb áttekinthetőségért a mérési eredmények pontjait mindig összekötöttem, a koincidencia számnak pedig a 10 szeresét vettem, hogy

- ugyanazon diagramon ábrázolva értékelhető legyen. A grafikus ábrázolásról különösen jól kivehető a két csúcs, melyek közül csak az egyik esetében mérhető koincidencia. Ezzel sikeresen azonosítottuk az 511keV energiájú fotonok energiáját az ábrán.
- 3. Az alapszintet 0.9V feszültségre állítottuk, mert így elméleti megfontolásokból következően tudhatóan minden, számunkra vizsgálandó koincidencia ezen szint fölött volt. Így a csatornaszélességet "kiengedve", vagyis a felső határ eltörlésével a mérési intervallum $[0.9V, \infty V)$ lett, ami gyakorlatilag egy (0.9V, 3V) csatornaszélességet jelentett. Így összességében elértük, hogy csak a számunkra fontos sugárzást érzékelhetjük. A koincidencia megkövetelésével érjük el, hogy a többi sugárzás csak nagyon kis mértékben zavarja a mérést.
- 4. Adott elrendezés mellett 1-1 percig mérve, 140°-tól 220°-ig 5 fokonként változtatva az egyik detektor helyzetét az alábbi mérési eredményre jutottunk:

A mérési eredményekből arra következtethetünk, hogy a vizsgált alanyban csak a két detektort összekötő egyenes mentén helyezkedik el sugárforrás. Látható, hogy a maximum 190°-nál volt. Ha úgy vesszük, hogy 165°-tól 215°-ig érkeztek a detektorba egyenesen a fotonok (a többit a szóródó fotonok illetve a detektor kiterjedése okozza), akkor azt mondhatjuk, hogy közel 10305 releváns becsapódást érzékeltünk, melyek 57%-a 185 és 195° közötti értékekből valók, vagyis egy 15°-os intervallumból.

6-7. Elforgatva a mintát közel 120°-kal, majd újból, a mérések során rendre az alábbi eredményeket kaptuk:

szög (°)	koinciden- cia (db)	szög (°)	koinciden- cia (<i>db</i>)	szög (°)	koinciden- cia (db)	szög (°)	koinciden- cia (db)
140	262	195	288	140	615	200	337
145	309	200	304	145	1197	205	316
150	519	205	294	150	1972	210	280
155	896	210	287	155	2443	215	315
160	1573	215	305	160	2335	220	280
165	2123	220	338	165	1576		
170	2367	225	351	170	670		
175	2080	230	344	175	327		
180	1508	235	354	180	317		
185	905	240	376	185	284		
185	849	245	325	190	320		
190	430	250	345	195	312		

A mérési eredményekből arra következtethetünk, hogy mindkét esetben a detektorokkal egyvonalban helyezkedik el sugárforrás. Mind a 2, mind a 3-ik mérés esetében látható a maximum utáni csekély ingadozás. Ez betudható a mérés hibájának, és mivel ez az egyetlen mérés, melynek eredményére támaszkodva kellett megmondani a sugárforrások számát, így az 1db sugárforrás volt megindokolható. A mérés után az igazságot felfedve kiderült, hogy 2db sugárforrás volt. Ez utólag az eredményekkel igazolható, illetve egy hasonló mérés esetében most már mi is meg tudnánk mondani a jeleit annak, hogy 2 sugárforrás van. Vegyük szemügyre az alábbiakat:

- a 2-ik és 3-ik mérés során az ingadozás nagyobb, mint az első esetben a "sima" szakaszon, ez arra enged következtetni, hogy vagy az ingadozások értéke a mérés hibájából adódóan az első mérésben valamennyivel kisebb, vagy a 2-ik és 3-ik esetben egy gyenge sugárforrást láthattunk
- A maximumok alakja az első esetben eltér a többitől, jóval szélesebb a maximuma körül, míg a 2-ik s 3-ik esetben gaussibb görbét kaptunk. Ennek oka lehet, hogy habár az első mérésnél kimutatható lett volna a sugárforrás, túlságosan közel volt a két sugárforrás válasz egyenese.
 Mint utólag kiderült, azért volt ilyen kis hatása a második sugárforrásnak, mert nem esett abba a síkba, melyben a detektorok a koincidenciát vizsgálták. A mérési feladatokon túl 1 mérés erejéig megnéztük, hogy ugyan azon (2-ik) elrendezés mellett (185°-nál), 2db 1 perces mérés között mekkora különbség van. Az értéket a táblázatban és a grafikonon is feltüntettük.
- 8. A 4-es pont alapján most azt mondhatjuk, hogy a 2-ik elrendezésben a mérési eredmények 54%-a, 3-ik elrendezésben a mérési eredmények 66%-a esett a
 - maximum körüli 15°-os intervallumba. A konkrét geometria elrendezés ismeretének hiányában ezekből nem tudjuk megmondani, hogy mekkora távolság hibát jelentenek. Méréseink alapján csak 1*db* sugárforrást azonosítottunk biztosan, így a relatív aktivitást nem tudtunk számolni, vagy értéke a zajjal összemérhető.
- 9. Az ábra szerinti léptékben (a 694 egység megfelel közel 11,7cm-nek), az ábrán feltüntettem a sugárforrás helyét. A háromszög beírható körének sugara 50. Azért a beírható kör a releváns s nem a köré írható, mert a beírható kör középpontja van egyenlő távol az oldalaktól, márpedig mi az egyeneseket s nem a metszéspontokat mértük.

Mérési elrendezés, beállítások

A mérés során használt beállításokat a

dokumentum végére csatolt 2db fénykép, valamint az itt levő táblázat tartalmazza (bár a táblázat egyes részei a fotóról illetve a mérési leírásból kiderülnek):

Scaler	Mérõlánc	Mérés
Jobb oldali TENNELEC 512	HV	DD:
* MODE	31020 model, 0,8kV	dV=0,1 V:0,5-2,7, ASYM
* PROG PRESET,	(helip:4,05) positive	WINDOW
megjelenik az "Std Tmr A" felirat	Amp:	Szögfüggés:
* ENTER, idő beállítható a	TC246, Au=20*5,8(5,9)	dV=0,4 V:0,8 INTGR
nyilas gombokkal (12 s, 1 min)		Maci:
* ENTER		140-220 fok 3 állásban
* SCROLL		
* SCROLL		
* SCROLL, megjelenik az		
"EXIT"		
* ENTER		

