科学与工程计算课程报告 基于 R 语言

黄湘云

中国矿业大学 (北京) 理学院

2015年12月28日

目录

- 1 常微分方程组初值问题
 - Lorenz 方程组
- 2 常微分方程边值问题
 - ■古典迭代解法
 - ■打靶法
- 3 偏微分方程
 - 一维热传导方程
 - 二维拉普拉斯方程
- 4 编程环境

Lorenz 方程组

$$\begin{cases}
\frac{dx}{dt} = \sigma(y - x) \\
\frac{dy}{dt} = \rho x - y - xz \\
\frac{dz}{dt} = xy - \beta z
\end{cases} \tag{1}$$

参数

$$\sigma=10, \rho=28, \beta=\frac{8}{3}$$

初始条件

$$x(0) = y(0) = z(0) = 1$$

Lorenz 方程组

```
library(deSolve)
library(bvpSolve)
parameters <-c(a = -8/3, b = -10, c = 28)
state <-c(X = 1, Y = 1, Z = 1)
times <- seq(0, 100, by = 0.01)
Lorenz<-function(t, state, parameters) {</pre>
  with(as.list(c(state, parameters)),{
    dX \leftarrow a*X + Y*Z
    dY \leftarrow b * (Y-Z)
    dZ \leftarrow -X*Y + c*Y - Z
    list(c(dX, dY, dZ))
  7)
out <- ode(y = state, times = times,
            func = Lorenz, parms = parameters)
```

Lorenz model

"蝴蝶"效应

Lorenz model

求解器的性能表现

```
print(system.time(out <- rk4 (state, times, Lorenz, parameters)))</pre>
##
     user system elapsed
##
     1.17 0.00 1.17
print(system.time(out <- lsode (state, times, Lorenz, parameters)))</pre>
##
     user system elapsed
##
     0.42 0.00 0.43
print(system.time(out <- lsoda (state, times, Lorenz, parameters)))</pre>
##
     user system elapsed
##
     0.60 0.00 0.59
```

求解器的性能表现

```
print(system.time(out <- lsodes(state, times, Lorenz, parameters)))</pre>
##
     user system elapsed
##
     0.39 0.00
                  0.39
print(system.time(out <- daspk (state, times, Lorenz, parameters)))</pre>
##
     user system elapsed
##
     0.58 0.00 0.58
print(system.time(out <- vode (state, times, Lorenz, parameters)))</pre>
##
     user system elapsed
##
     0.38 0.00 0.37
```

两点边值问题

$$\begin{cases} \epsilon \frac{d^2 y}{dx^2} + \frac{dy}{dx} = a, \ 0 < a < 1 \\ y(0) = 0, y(1) = 1 \end{cases}$$
 (2)

方程精确解

$$y = \frac{1 - a}{1 - e^{-\frac{1}{\epsilon}}} (1 - e^{-\frac{x}{\epsilon}}) + ax \tag{3}$$

为了把微分方程 (1) 离散,将 [0,1] 区间 n 等分,令 h=1/n,

$$x_i = ih, i = 1, 2, ..., n - 1$$
 (4)

得到差分方程

$$\epsilon \frac{y_{i-1} - 2y_i + y_{i+1}}{h^2} + \frac{y_{i+1} - y_i}{h} = a \tag{5}$$

两点边值问题

将方程 (4) 化简为

$$(\epsilon + h)y_{i+1} - (2\epsilon + h)y_i + \epsilon y_{i-1} = ah^2$$
(6)

```
## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.21 0.11 0.00 0.00 0.00
## [2,] 0.10 -0.21 0.11 0.00 0.00
## [3,] 0.00 0.10 -0.21 0.11 0.00
## [4,] 0.00 0.00 0.10 -0.21 0.11
## [5,] 0.00 0.00 0.00 0.10 -0.21
```

迭代次数

SOR 最佳松弛因子

```
w \leftarrow seq(0,2,length.out = 200); e \leftarrow c(1,0.1,0.01,0.0001)
SOR W \leftarrow rep(0,200); nmax=1000; iter num \leftarrow matrix(rep(0),200,4)
for(i in seq(length(e))){
  A<-CoefMatrix(e=e[i],h=1/n,n)
  b < -VecB(a=1/2,h=1/n,e=e[i],n)
  for(j in seq(200)){
    solution SOR<-SOR(A=A,b=b,x0=x0,w=w[j],nmax=nmax,eps=eps)
    iter_num[j,i] <- solution_SOR$iter_num
    SOR W[i] <- solution SOR$iter err[500] } }
Pivot<-function(x){return( which(x==min(x))[1] ) }
apply(iter_num[-1,],2,Pivot)
[1] 193 188 150 100
```

迭代法

打靶法

解析解

一维热传导方程

$$\left\{ \frac{\partial y}{\partial t} = D \frac{\partial^2 y}{\partial x^2} \right.$$
(7)

参数

$$D = 0.01$$

边界条件

$$y_{t,x=0} = 0, y_{t,x=1} = 1$$

初始条件

$$y_{t=0,x}=\sin(\pi x)$$

一维热传导方程

```
rm(list = ls())
library(ReacTran)
N < -100
xgrid \leftarrow setup.grid.1D(x.up = 0, x.down = 1, N = N)
x <- xgrid$x.mid
D.coeff <- 0.01
Diffusion <- function (t, Y, parms){
  tran \leftarrow tran.1D(C = Y, C.up = 0, C.down = 1,
                   D = D.coeff. dx = xgrid)
  list(dY = tran$dC, flux.up = tran$flux.up,
       flux.down = tran$flux.down) }
Yini <- sin(pi * x)
times \leftarrow seq(from = 0, to = 5, by = 0.01)
out <- ode. 1D(y = Yini, times = times, func = Diffusion,
                 parms = NULL, dimens = N)
```

一维热传导方程

二维拉普拉斯方程

$$\begin{cases}
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0
\end{cases}$$
(8)

边界条件

$$\begin{cases} u_{x=0,y} = u_{x=1,y} = 0\\ \frac{\partial u_{x,y=0}}{\partial y} = 0\\ \frac{\partial u_{x,y=1}}{\partial y} = \sin(\pi x)\pi \sinh(\pi) \end{cases}$$
 (9)

解析解

$$u(x, y) = sin(\pi x)cosh(\pi y)$$

二维拉普拉斯方程

二维拉普拉斯方程

并行计算

单核

17.41

elapsed user system 8核 0.01 0.02 7.56 6核 0.02 0.01 8.14 4核 0.01 0.02 9.50 2核 0.00 15.06 0.01

0.00

17.41

編程环境

并行效果

	RRO	GotoBLAS	IntelMKL	R3.1.3	R3.2.3	Atlas
1	7.70	8.36	10.99	7.73	7.47	7.03
2	7.62	8.33	9.83	7.68	7.31	6.93
3	7.66	8.17	10.09	7.75	7.33	6.96

R is a free software environment for statistical computing and graphics.

```
platform
               x86 64-w64-mingw32
arch
               x86_64
               mingw32
os
               x86_64, mingw32
system
status
major
minor
               1.3
               2015
year
month
               0.3
day
               09
               67962
svn rev
language
               R
version.string R version 3.1.3 (2015-03-09)
nickname
               Smooth Sidewalk
```

R 扩展包

```
package
             * version date
                                  source
bvpSolve
             * 1.2.4
                       2013-08-15 CRAN (R 3.1.2)
deSolve
             * 1.11
                       2014-10-29 CRAN (R 3.1.2)
devtools
               1.6.1
                       2014-10-07 CRAN (R 3.1.2)
evaluate
              0.8
                       2015-09-18 CRAN (R 3.1.3)
format.R.
               1.2.1
                       2015-09-18 CRAN (R 3.1.3)
highr
               0.5.1
                       2015-09-18 CRAN (R 3.1.3)
knitr
             * 1.11
                       2015-08-14 CRAN (R 3.1.3)
                       2014-11-22 CRAN (R 3.1.3)
magrittr
               1.5
RColorBrewer * 1.1.2
                       2014-12-07 CRAN (R 3.1.3)
ReacTran
             * 1.4.2
                       2014-12-26 CRAN (R 3.1.3)
```

R 扩展包

```
package
              * version date
                                   source
rootSolve
              * 1.6.5.1 2014-11-06 CRAN (R 3.1.2)
                       2015-12-09 CRAN (R 3.1.3)
rstudioapi
               0.4.0
scatterplot3d * 0.3.36 2015-07-30 CRAN (R 3.1.3)
                       2014-11-05 CRAN (R 3.1.2)
shape
              * 1.4.2
showtext
               0.4.4
                        2015-10-30 CRAN (R 3.1.3)
showtextdb
               1.0
                        2015-03-10 CRAN (R 3.1.3)
               0.4.1
                       2014-12-14 CRAN (R 3.1.3)
stringi
stringr
               1.0.0
                       2015-04-30 CRAN (R 3.1.3)
sysfonts
               0.5
                        2015-04-27 CRAN (R 3.1.3)
```

Thank you!

黄湘云

Email: xiangyunfaith@outlook.com

Q & A

参考文献

Karline Soetaert, Thomas Petzoldt, R. Woodrow Setzer (2010)

Solving Differential Equations in R: Package deSolve

Journal of Statistical Software 33(9), 1 – 25.

Ligges, U. and Machler, M. (2003)

Scatterplot3d - an R Package for Visualizing Multivariate Data

Journal of Statistical Software 8(11), 1-20.

Karline Soetaert, Jeff Cash and Francesca Mazzia (2013)

bvpSolve: Solvers for boundary value problems of ordinary differential equations

R package version 1.2.4 http://CRAN.R-project.org/package=bvpSolve.

Charlie Sharpsteen and Cameron Bracken (2015)

tikzDevice: R Graphics Output in LaTeX Format

R package version 0.8.1 http://CRAN.R-project.org/package=tikzDevice.

参考文献

Yihui Xie (2013)

animation: An R Package for Creating Animations and Demonstrating Statistical Methods Journal of Statistical Software 53(1), 1-27.

R Core Team (2015)

R: A language and environment for statistical computing.

R Foundation for Statistical Computing https://www.R-project.org/.

Soetaert, Karline and Meysman, Filip (2012)

Reactive transport in aquatic ecosystems: Rapid model prototyping in the open source software $\ensuremath{\mathsf{R}}$

Environmental Modelling & Software 32(3), 49-60.