Schedule: $r_1(x) w_2(y) r_3(z) r_1(y) w_2(t) r_2(z) w_3(x) w_3(z) r_3(y) r_1(t) r_3(t) w_1(y)$

1. individuare le relazioni leggi-da e indicare le restrizioni sull'ordine delle transazioni che ciascuna impone

Relazioni legge-da

LETTURA	Legge-da	Vincoli	Altri Vincoli
$r_1(x)$	_		$1 \rightarrow 3$
$r_3(z)$	_		
$r_1(y)$	$w_2(y)$	$2 \rightarrow 1$	
$r_2(z)$	_		$2 \rightarrow 3$
$r_3(y)$	$w_2(y)$	$2 \rightarrow 3$	
$r_1(t)$	$w_2(t)$	$2 \rightarrow 1$	
$r_3(t)$	$w_2(t)$	$2 \rightarrow 3$	

2. individuare, per ciascuna variabile, le scritture finali e le altre scritture, indicando le restrizioni sull'ordine delle transazioni che ciascuna variabile impone per le scritture e le eventuali restrizioni che derivano dalla combinazione delle scritture con le relazioni leggi-da "vuote" (cioè per le letture che non leggi-da nulla)

RISORSA	SCRITTURA FINALE	ALTRE SCRITTURE	VINCOLI
X	$w_3(x)$		
y	$w_1(y)$	$w_2(y)$	$2 \rightarrow 1$
Z	$w_3(z)$		
t	$w_2(t)$		

3. sulla base delle restrizioni trovate si può costruire un piccolo grafo: se è ciclico allora lo schedule non è VSR, se non è ciclico allora lo schedule è VSR

4. individuare gli schedule view equivalenti a quello dato seguendo gli ordinamenti topologici del grafo

Non è presente alcun ciclo e quindi lo schedule potrebbe essere VSR.

L'unico schedule seriale view-equivalente a quello dato potrebbe essere t_2 , t_1 , t_3 .

Provando le relazioni leggi-da e scritture finali ei si accorge che questo schedule seriale non è equivalente a quello dato $(r_3(y))$ leggerebbe da $w_1(y)$ e non da $w_2(y)$): quindi si può concludere che lo schedule non è VSR.

Di conseguenza lo schedule non è nemmeno CSR.

- 2. I conflitti presenti nello schedule sono i seguenti:
 - $r_1(x), w_3(x)$
 - $w_2(y), r_1(y)$
 - $w_2(y), r_3(y)$
 - $w_2(y), w_1(y)$
 - $w_2(t), r_1(t)$
 - $w_2(t), r_3(t)$
 - $r_2(z), w_3(z)$
 - $r_3(y), w_1(y)$

 se lo scedule è VSR, allora si passa al controllo di conflic-serializzabilità e per primi si individuano tutti i conflitti

Il grafo dei conflitti riportato di seguito è ciclico.

6. si costruisce il corrispondente grafo dei conflitti

7. se il grafo è ciclico allora lo schedule non è CSR, se non è ciclico allora lo schedule è CSR

Si conclude che lo schedule *non* è *CSR*.