

Team Contest Reference Team:

Roland Haase Thore Tiemann Marcel Wienöbst

System.out.println(42);

Contents

1	Data	PataStructures 2						
	1.1	Range Maximum Query	2					
_	~							
2	Graph							
	2.1	readth First Search						
	2.2	BellmanFord						
	2.3	Bipartite Graph Check						
	2.4	Maximum Bipartite Matching						
	2.5	Single-source shortest paths in dag						
	2.6	Dijkstra	4					
	2.7	EdmondsKarp						
	2.8	eference for Edge classes	4					
	2.9	FenwickTree	5					
		FloydWarshall						
	2.11	terative DFS	5					
	2.12	Johnsons Algorithm	5					
	2.13	Kruskal	6					
	2.14	rim	6					
	2.15	Recursive Depth First Search	6					
	2.16	Strongly Connected Components	7					
	2.17	Topological Sort	7					
	2.18	eference for Vertex classes	7					
•	3.5 (0					
3	Mat		8					
	3.1	Binomial Coefficient						
	3.2	Binomial Matrix						
	3.3	Divisability						
	3.4	Iterative EEA						
	3.5	Polynomial Interpolation	9					
	3.6	Sieve of Eratosthenes	10					
4	Miso		10					
		Binary Search						
		Next number with n bits set						
	⊤. ∠	Total number with notes set	10					
5	Mat	h Roland	10					
	5.1	Divisability Explanation	10					
	5.2	Combinatorics	10					
	5.3	Polynomial Interpolation	10					
		5.3.1 Theory	10					
	5.4 Fibonacci Sequence							
		5.4.1 Binet's formula						
		5.4.2 Generalization						
		5.4.3 Pisano Period						
		3.4.5 Pisano renod	11					


```
Runtime 100 \cdot 10^6 in 3s
            [10, 11]
                           \mathcal{O}(n!)
                           \mathcal{O}(n2^n)
               < 22
             \leq 100
                           \mathcal{O}(n^4)
             \le 400
                           \mathcal{O}(n^3)
                           \mathcal{O}(n^2 \log n)
          \leq 2.000
        \leq 10.000
                           \mathcal{O}(n^2)
    \leq 1.000.000
                           \mathcal{O}(n \log n)
\leq 100.000.000
                           \mathcal{O}(n)
```

```
byte (8 Bit, signed): -128 ...127 short (16 Bit, signed): -32.768 ...23.767 integer (32 Bit, signed): -2.147.483.648 ...2.147.483.647 long (64 Bit, signed): -2^{63} \dots 2^{63} - 1
```

MD5: cat <string>| tr -d [:space:] | md5sum

1 DataStructures

1.1 Range Maximum Query

process processes an array A of length N in $O(N \log N)$ such $_8$ that query can compute the maximum value of A in interval $_9$ [i,j]. Therefore M[a,b] stores the maximum value of interval $_9$ $[a,a+2^b-1]$.

Input: dynamic table M, array to search A, length N of A, start index i and end index j

Output: filled dynamic table M or the maximum value of A in the interval [i,j]

```
public static void process(int[][] M, int[] A, int N)
                                                             18
    for(int i = 0; i < N; i++)</pre>
      M[i][0] = i;
                                                             19
                                                             20
    // filling table M
                                                             21
    // M[i][j] = max(M[i][j-1], M[i+(1<<(j-1))][j-1]),
                                                             22
    // cause interval of length 2^j can be partitioned
                                                             23
    // into two intervals of length 2^(j-1)
    for(int j = 1; 1 << j <= N; j++) {</pre>
                                                             24
                                                             25
       for(int i = 0; i + (1 << j) - 1 < N; i++) {</pre>
         if(A[M[i][j-1]] >= A[M[i+(1 << (j-1))][j-1]])</pre>
                                                             26
10
                                                             27
           M[i][j] = M[i][j-1];
11
                                                             28
         else
12
           M[i][j] = M[i + (1 << (j-1))][j-1];
13
14
    }
15
  }
16
17
public static int query(int[][] M, int[] A, int N,
                                          int i, int j) {
19
    // k = | log_2(j-i+1) |
    int k = (int) (Math.log(j - i + 1) / Math.log(2));
    if(A[M[i][k]] >= A[M[j-(1 << k) + 1][k]])
```

```
return M[i][k];
else
return M[j - (1 << k) + 1][k];
}</pre>
```

MD5: db0999fa40037985ff27dd1a43c53b80 | $\mathcal{O}(N \log N, 1)$

2 Graph

2.1 readth First Search

Iterative BFS. Needs testing. Uses ref Vertex class, no Edge class needed. In this version we look for a shortest path from s to t though we could also find the BFS-tree by leaving out t. emphInput: IDs of start and goal vertex and graph as AdjList emphOutput: true if there is a connection between s and g, false otherwise

```
public static boolean BFS(Vertex[] G, int s, int t) {
    //make sure that all Vertices vis values are false
         etc
    Queue<Vertex> q = new LinkedList<Vertex>();
    G[s].vis = true;
    G[s].dist = 0;
    G[s].pre = -1;
    q.add(G[s]);
    //expand frontier between undiscovered and
        discovered vertices
    while(!q.isEmpty()) {
  Vertex u = q.poll();
  //when reaching the goal, return true
  //if we want to construct a BFS-tree delete this
      line
  if(u.id = t) return true;
  //else add adj vertices if not visited
  for(Vertex v : u.adj) {
      if(!v.vis) {
    v.vis = true;
    v.dist = u.dist + 1;
    v.pre = u.id;
    q.add(v);
      }
 }
    }
```

MD5: 01c4dadba37bb0e95625e8522e3f6362 $\mid \mathcal{O}(|V| + |E|)$

2.2 BellmanFord

Finds shortest pathes from a single source. Negative edge weights are allowed. Can be used for finding negative cycles.

```
public static boolean bellmanFord(Vertex[] G) {
      //source is 0
     G[0].dist = 0;
      //calc distances
      //the path has max length |V|-1
      for(int i = 0; i < G.length-1; i++) {</pre>
          //each iteration relax all edges
         for(int j = 0; j < G.length; j++) {</pre>
            for(Edge e : G[j].adj) {
               if(G[j].dist != Integer.MAX_VALUE
10
                   && e.t.dist > G[j].dist + e.w) {
11
                   e.t.dist = G[j].dist + e.w;
12
               7
13
            }
14
         }
15
16
      //check for negative-length cycle
17
      for(int i = 0; i < G.length; i++) {</pre>
18
         for(Edge e : G[i].adj) {
19
            if(G[i].dist != Integer.MAX_VALUE && e.t.dist,,
20
                  > G[i].dist + e.w) {
               return true:
21
            }
22
         }
23
24
      return false:
25
  }
26
```

MD5: d101e6b6915f012b3f0c02dc79e1fc6f | $\mathcal{O}(|V| \cdot |E|)$

2.3 Bipartite Graph Check

Checks a graph represented as adjList for being bipartite. Needs a_{26} little adaption, if the graph is not connected.

Input: graph as adjList, amount of nodes N as int Output: true if graph is bipartite, false otherwise

```
public static boolean bipartiteGraphCheck(Vertex[] G)
      // use bfs for coloring each node
      G[0].color = 1;
      Queue<Vertex> q = new LinkedList<Vertex>();
      q.add(G[0]);
      while(!q.isEmpty()) {
    Vertex u = q.poll();
    for(Vertex v : u.adj) {
        // if node i not yet visited,
10
        // give opposite color of parent node u
11
        if(v.color == -1) {
12
      v.color = 1-u.color;
13
      q.add(v);
14
      // if node i has same color as parent node u
15
      // the graph is not bipartite
16
        } else if(u.color == v.color)
      return false;
        // if node i has different color
        // than parent node u keep going
21
    }
22
23
      return true;
```

MD5: e93d242522e5b4085494c86f0d218dd4 $|\mathcal{O}(|V| + |E|)$

2.4 Maximum Bipartite Matching

Finds the maximum bipartite matching in an unweighted graph using DFS.

Input: An unweighted adjacency matrix boolean[M][N] with M nodes being matched to N nodes.

Output: The maximum matching. (For getting the actual matching, little changes have to be made.)

```
// A DFS based recursive function that returns true
  // if a matching for vertex u is possible
  boolean bpm(boolean bpGraph[][], int u,
              boolean seen[], int matchR[]) {
  // Try every job one by one
    for (int v = 0; v < N; v++) {
  // If applicant u is interested in job v and v
  // is not visited
      if (bpGraph[u][v] && !seen[v]) {
        seen[v] = true; // Mark v as visited
  // If job v is not assigned to an applicant OR
  // previously assigned applicant for job v (which
  // is matchR[v]) has an alternate job available.
15 // Since v is marked as visited in the above line,
16 // matchR[v] in the following recursive call will
  // not get job v again
17
        if (matchR[v] < 0 | |
18
            bpm(bpGraph, matchR[v], seen, matchR)) {
19
          matchR[v] = u;
          return true;
21
22
23
24
    }
    return false;
  // Returns maximum number of matching from M to N
  int maxBPM(boolean bpGraph[][]) {
  // An array to keep track of the applicants assigned
  // to jobs. The value of matchR[i] is the applicant
  // number assigned to job i, the value -1 indicates
  // nobody is assigned.
    int matchR[] = new int[N];
  // Initially all jobs are available
    for(int i = 0; i < N; ++i)</pre>
      matchR[i] = -1;
  // Count of jobs assigned to applicants
    int result = 0;
    for (int u = 0; u < M; u++) {
  // Mark all jobs as not seen for next applicant.
      boolean seen[] = new boolean[N];
      for(int i = 0; i < N; ++i)</pre>
        seen[i] = false;
  // Find if the applicant u can get a job
      if (bpm(bpGraph, u, seen, matchR))
48
        result++;
49
51
    return result;
```

MD5: e559cef1fc0d34e0ba49b7568cfd480d | $\mathcal{O}(M\cdot N)$

2.5 Single-source shortest paths in dag

```
public static void dagSSP(Vertex[] G, int s) {
      //calls topological sort method
      LinkedList<Integer> sorting = TS(G);
      G[s].dist = 0;
      //go through vertices in ts order
      for(int u : sorting) {
    for(Edge e : G[u].adj) {
        Vertex v = e.t;
10
        if(v.dist > u.d + e.w) {
11
      v.dist = u.d + e.w;
12
      v.pre = u.id;
13
14
15
16
17
  }
```

MD5: 3fc829298eb1489b255acd3427d89d1a | $\mathcal{O}(|V| + |E|)$

2.6 Dijkstra

Finds the shortest paths from one vertex to every other vertex in_{22} the graph (SSSP).

For negative weights, add |min|+1 to each edge, later subtract from²⁴ result.

To get a different shortest path when edges are ints, add an $\epsilon = \frac{1}{k+1^{27}}$ on each edge of the shortest path of length k, run again.

Input: A source vertex s and an adjacency list G.

Output: Modified adj. list with distances from s and predcessor² vertices set.

```
public static void dijkstra(Vertex[] G, int s) {
      G[s].dist = 0;
       //Tuple class can be found at Prims Alg, maybe we
           should give this class its own space
      Tuple st = new Tuple(s, 0);
       PriorityQueue<Tuple> q = new PriorityQueue<Tuple</pre>
           >();
       q.add(G[s]);
      while(!q.isEmpty()) {
10
    Tuple sm = q.poll();
11
    Vertex u = G[sm.id];
12
13
    if(u.vis) continue;
14
    if(sm.dist > u.dist) continue;
15
    u.vis = true;
16
    for(Edge e : u.adj) {
17
         Vertex v = e.t;
18
         if(!v.vis && v.dist > u.dist + e.w) {
19
      v.pre = u.id;
20
      v.dist = u.dist + e.w;
21
      Tuple nt = new Tuple(v.id, v.dist);
22
      queue.add(nt);
23
         }
24
    }
25
      }
26
  }
27
```

MD5: 15598cf27ada41bf8cdf83dd5d3301bf $\mid \mathcal{O}(|E|\log|V|)$

2.7 EdmondsKarp

Finds the greatest flow in a graph. Capacities must be positive.

```
public static boolean BFS(Vertex[] G, int s, int t) {
   int N = G.length;
   for(int i = 0; i < N; i++) {</pre>
      G[i].vis = false;
   Queue<Vertex> q = new LinkedList<Vertex>();
   G[s].vis = true;
   G[s].pre = -1;
   queue.add(G[s]);
   while(!q.isEmpty()) {
      Vertex u = queue.poll();
      if(u.id == t) return true;
      for(int i : u.adj.keySet()) {
    Edge e = u.adj.get(i);
    Vertex v = e.t;
    if(!v.vis) {
        v.vis = true;
        v.pre = u.id;
        q.add(v);
    }
      }
   }
   return (G[t].vis);
//We store the edges in the graph in a hashmap
public static int fordFulkerson(Vertex[] G, int s, int
     t) {
   int maxflow = 0;
   while(BFS(rgraph, s, t)) {
      int pathflow = Integer.MAX_VALUE;
      for(int v = t; v!= s; v = v.pre) {
         int u = v.pre;
   pathflow = Math.min(pathflow, G[u].adj.get(v).rw);
      for(int v = t; v != s; v = v.pre) {
         int u = v.pre;
   G[u].adj.get(v).rw -= pathflow;
   G[v].adj.get(u).rw += pathflow;
      maxflow += pathflow;
   }
   return maxflow;
}
```

MD5: b5e1ff020addc8138cde5398ec518985 | $\mathcal{O}(|V|^2 \cdot |E|)$

2.8 eference for Edge classes

sed for example in Dijkstra algorithm, implements edges with weight. Needs testing.

```
//for Kruskal we need to sort edges, use:
class Edge implements Comparable<Edge> {}
class Edge {
   //for Kruskal it is helpful to store the start as
```

```
//moreover we might not need the vertex class
       int s:
       int t;
       public Edge(int s, int t, int w) {...}
11
       public int compareTo(Edge other) {
12
     return Integer.compare(this.w, other.w);
13
14
15
       //for EKarp we also want to store residual weights
16
       int rw;
17
18
       Vertex t;
19
       int w;
20
21
       public Edge(Vertex t, int w) {
22
23
     this.t = t;
     this.w = w;
24
     this.rw = w;
25
26
27
28
```

MD5: fd4ed227f042ee49ef9dac031ad2d5a0 | $\mathcal{O}(?)$

2.9 FenwickTree

Can be used for computing prefix sums.

```
int[] fwktree = new int[m + n + 1];
 int sum = 0;
    while (index > 0) {
       sum += fenwickTree[index];
                                                    16
       index -= (index & -index);
    }
                                                    18
    return sum;
9 }
public static int[] update(int index, int addValue,
                                                    21
     int[] fenwickTree) {
    while (index <= fenwickTree.length - 1) {</pre>
11
       fenwickTree[index] += addValue;
12
       index += (index & -index);
13
14
    return fenwickTree;
15
16 }
```

MD5: 97fd176a403e68cb76a82196191d5f19 | $\mathcal{O}(\log n)$

2.10 FloydWarshall

Finds all shortest paths. Paths in array next, distances in ans.

MD5: 4faf8c41a9070f106e68864cc131706d | $\mathcal{O}(|V|^3)$

2.11 terative DFS

Simple iterative DFS, the recursive variant is a bit fancier. Not tested.

```
//if we want to start the DFS for different connected
      components, there is such a method
  //in the recursive variant of DFS
  public static boolean ItDFS(Vertex[] G, int s, int t)
      //take care that all the nodes are not visited at
          the beginning
      Stack<Integer> S = new Stack<Integer>();
      s.push(s):
      while(!S.isEmpty()) {
    int u = S.pop();
    if(u.id == t) return true;
    if(!G[u].vis) {
        G[u].vis = true;
        for(Vertex v : G[u].adj) {
15
      if(!v.vis) S.push(v.id);
17
        }
    }
19
      }
      return false;
```

MD5: 1f83d8077e6252b6894eb5711298d79c | $\mathcal{O}(|V| + |E|)$

2.12 Johnsons Algorithm

```
public static int[][] johnson(Vertex[] G) {
    Vertex[] Gd = new Vertex[G.length+1];
    int s = G.length;
    for(int i = 0; i < G.length; i++) {</pre>
  Gd[i] = G[i];
   }
    //init new vertex with zero-weight-edges to each
        vertex
    Vertex S = new Vertex(G.length);
    for(int i = 0; i < G.length) {</pre>
  S.adj.add(new Edge(Gd[i], 0));
   }
    //bellman-ford to check for neg-weight-cycles and
        to adapt edges to enable running dijkstra
    if(!bellmanFord(G, s)) {
  System.out.println("False");
  return;
```

```
//change weights
       for(int i = 0; i < G.length; i++) {</pre>
     for(Edge e : Gd[i].adj) {
21
         e.w = e.w + Gd[i].dist - e.t.dist;
22
23
24
       //store distances to invert this step later
25
       int[] h = new int[G.length];
       for(int i = 0; i < G.length; i++) {</pre>
27
     h[i] = G[i].dist;
28
29
       //create shortest path matrix
31
       int[][] apsp = new int[G.length][G.length];
32
33
       //now use original graph G
34
35
       //start a dijkstra for each vertex
       for(int i = 0; i < G.length; i++) {</pre>
36
                                                               20
     //reset weights, maybe we should put that in the
37
                                                               21
         dijkstra
                                                               22
38
     for(int j = 0; j < G.length; j++) {</pre>
39
         G[j].vis = false;
40
         G[j].dist = Integer.MAX_VALUE;
41
42
     dijkstra(G, i);
43
     for(int j = 0; j < G.length; j++) {</pre>
         apsp[i][j] = G[j].dist + h[j] - h[i];
44
45
46
47
       return apsp;
48 }
```

MD5: 6bce8e864871064f450e0115a9ab77df | $\mathcal{O}(|V|^2 \log V + VE)$ 34

2.13 Kruskal

Computes a minimum spanning tree for a weighted undirected graph.

37

```
42
  public static int kruskal(Edge[] edges, int n) {
                                                             43
      Arrays.sort(edges);
      //n is the number of vertices
                                                             45
      UnionFind uf = new UnionFind(n);
                                                             46
      //we will only compute the sum of the MST, one
                                                             47
          could of course also store the edges
      int sum = 0;
      int cnt = 0;
      for(int i = 0; i < edges.length; i++) {</pre>
    if(cnt == n-1) break;
    if(uf.union(edges[j].s, edges[j].t)) {
10
        sum += edges[j].w;
11
        cnt++;
12
13
14
15
      return sum;
16
```

MD5: aa6cc91ea8a00f6b38aa0433130d1be9 | $\mathcal{O}(|E| + \log |V|)$

2.14 rim

```
//make sure dists are maxint
    G[s].dist = 0;
    Tuple st = new Tuple(s, 0);
    PriorityQueue<Tuple> q = new PriorityQueue<Tuple</pre>
    q.add(st);
    //we will store the sum and each nodes predecessor
    int sum = 0;
    while(!q.isEmpty()) {
 Tuple sm = q.poll();
 Vertex u = G[sm.id];
  //u has been visited already
 if(u.vis) continue;
  //this is not the latest version of u
 if(sm.dist > u.dist) continue;
 u.vis = true;
  //u is part of the new tree and u.dist the cost of
      adding it
 sum += u.dist;
  for(Edge e : u.adj) {
      Vertex v = e.t;
      if(!v.vis && v.dist > e.w) {
    v.pre = u.id;
    v.dist = e.w;
   Tuple nt = new Tuple(v.id, e.w);
    q.add(nt);
      }
 }
    return sum;
class Tuple implements Comparable<Tuple> {
    int id;
    int dist;
    public Tuple(int id, int dist) {
  this.id = id;
  this.dist = dist;
    public int compareTo(Tuple other) {
  return Integer.compare(this.dist, other.dist);
    }
```

MD5: 1c35fcc2a3f44ab7c1658d2716805ee1 | $\mathcal{O}()$

2.15 Recursive Depth First Search

Recursive DFS with different options (storing times, connected/unconnected graph). Needs testing. *Input*: A source vertex s, a target vertex t, and adjlist G and the time (0 at the start) *Output*: Indicates if there is connection between s and t.

```
//if we want to visit the whole graph, even if it is
  not connected we might use this
public static void DFS(Vertex[] G) {
```

```
//make sure all vertices vis value is false etc
       int time = 0;
       for(int i = 0; i < G.length; i++) {</pre>
    if(!G[i].vis) {
         //note that we leave out t so this does not work 25
              with the below function
         //adaption will not be too difficult though
         //fix time
11
         recDFS(i, G, 0);
12
    }
13
14
15 }
17 //first call with time = 0
  public static boolean recDFS(int s, int t, Vertex[] G, 35
        int time){
19
       //it might be necessary to store the time of
20
           discovery
       time = time + 1;
21
       G[s].dtime = time;
22
23
24
       G[s].vis = true; //new vertex has been discovered
25
       //when reaching the target return true
26
       //not necessary when calculating the DFS-tree
       if(s == t) return true;
27
       for(Vertex v : G[s].adj) {
28
    //exploring a new edge
29
    if(!v.vis) {
30
         v.pre = u.id:
31
         if(recDFS(v.id, t, G)) return true;
32
33
    }
       }
34
35
       //storing finishing time
36
       time = time + 1;
37
       G[s].ftime = time;
38
39
       return false;
40
                                                             11
41
  }
```

MD5: e11b8416945db1004b13346a22341c87 $|\mathcal{O}(|V| + |E|)$

2.16 Strongly Connected Components

```
public static void fDFS(Vertex u, LinkedList<Integer>
       sorting) {
    //compare with TS
    u.vis = true;
                                                             19
    for(Vertex v : u.out) {
                                                             20
       if(!v.vis)
                                                             21
         fDFS(v, sorting);
                                                             22
                                                             23
    sorting.addFirst(u.id);
    return sorting;
  }
10
11
public static void sDFS(Vertex u, int cnt) {
    //basic DFS, all visited vertices get cnt
13
    u.vis = true;
14
    u.comp = cnt;
15
    for(Vertex v : u.in) {
16
      if(!v.vis)
17
         sDFS(v, cnt);
18
    }
19
20 }
```

```
public static void doubleDFS(Vertex[] G) {
  //first calc a topological sort by first DFS
  LinkedList<Integer> sorting = new LinkedList<Integer
  for(int i = 0; i < G.length; i++) {</pre>
    if(!G[i].vis)
      fDFS(G[i], sorting);
  for(int i = 0; i < G.length; i++){</pre>
    G[i].vis = false;
  //then go through the sort and do another DFS on G^T
  //each tree is a component and gets a unique number
  int cnt = 0;
  for(int i : sorting) {
    if(!G[i].vis)
      sDFS(G[i], cnt++);
  }
}
```

MD5: 67ac4aac19ee3ce07f23dd8ed9877b23 | $\mathcal{O}(|V| + |E|)$

2.17 Topological Sort

15

```
public static LinkedList<Integer> TS(Vertex[] G) {
  LinkedList<Integer> sorting = new LinkedList<Integer
      >();
  for(int i = 0; i < G.length; i++) {</pre>
    if(!G[i].vis)
      recTS(G[i], sorting);
    //check sorting for a -1 if the graph is not
        necessarily dag
    //maybe checking if there are too many values in
        sorting is easier?!
    return sorting;
}
public static LinkedList<Integer> recTS(Vertex u,
    LinkedList<Integer> sorting) {
  u.vis = true;
    for(Vertex v : u.adj) {
    if(v.vis)
        //the -1 indicates that it will not be
            possible to find an TS
        //there might be a much faster and elegant way
             (flag?!)
        sorting.addFirst(-1);
    else
        recTS(v, sorting);
    sorting.addFirst(u.id);
    return sorting;
```

MD5: b4fb592469cf03dcb788aba03b98263e | $\mathcal{O}(|V| + |E|)$

2.18 eference for Vertex classes

sed in many graph algorithms, implements a vertex with its edges. Needs testing.

```
class Vertex {
```

```
int id;
      boolean vis = false;
      int pre = -1;
      //for dijkstra and prim
      int dist = Integer.MAX_VALUE;
      //for SCC store number indicating the dedicated
          component
      int comp = -1;
      //for DFS we could store the start and finishing
           times
      int dtime = -1;
14
      int ftime = -1;
      //use an ArrayList of Edges if those information
17
           are needed
      ArrayList<Edge> adj = new ArrayList<Edge>();
18
      //use an ArrayList of Vertices else
19
      ArrayList<Vertex> adj = new ArrayList<Vertex>();
20
      //use two ArrayLists for SCC
21
22
      ArrayList<Vertex> in = new ArrayList<Vertex>();
23
      ArrayList<Vertex> out = new ArrayList<Vertex>();
24
25
      //for EdmondsKarp we need a HashMap to store Edges
      HashMap<Integer, Edge> adj = new HashMap<Integer,</pre>
26
           Edge>();
27
      //for bipartite graph check
28
      int color = -1;
29
30
      //we store as key the target
31
      public Vertex(int id) {
32
    this.id = id;
33
      }
34
35
36
```

MD5: f41108043e72983fc088f5851de6b932 | $\mathcal{O}(?)$

3 Math

3.1 Binomial Coefficient

Gives binomial coefficient (n choose k)

```
public static long bin(int n, int k) {
   if (k == 0) {
      return 1;
   } else if (k > n/2) {
      return bin(n, n-k);
   } else {
      return n*bin(n-1, k-1)/k;
   }
}
```

MD5: ceca2cc881a9da6269c143a41f89cc12 | O(k)

3.2 Binomial Matrix

Gives binomial coefficients for all $K \le N$.

```
public static long[][] binomial_matrix(int N, int K) { 18
long[][] B = new long[N+1][K+1]; 19
```

```
for (int k = 1; k <= K; k++) {
    B[0][k] = 0;
}
for (int m = 0; m <= N; m++) {
    B[m][0] = 1;
}
for (int m = 1; m <= N; m++) {
    for (int k = 1; k <= K; k++) {
        B[m][k] = B[m-1][k-1] + B[m-1][k];
    }
}
return B;
}</pre>
```

MD5: 0754f4e27d08a1d1f5e6c0cf4ef636df | $O(N \cdot K)$

3.3 Divisability

Calculates (alternating) k-digitSum for integer number given by M.

```
public static long digit_sum(String M, int k, boolean
    alt) {
  long dig_sum = 0;
  int vz = 1;
  while (M.length() > k) {
    if (alt) vz *= −1;
    dig_sum += vz*Integer.parseInt(M.substring(M.
        length()-k));
    M = M.substring(0, M.length()-k);
  }
  if (alt) vz *= −1;
  dig_sum += vz*Integer.parseInt(M);
  return dig_sum;
// example: divisibility of M by 13
public static boolean divisible13(String M) {
  return digit_sum(M, 3, true)%13 == 0;
```

MD5: 33b3094ebf431e1e71cd8e8db3c9cdd6 | $\mathcal{O}(?)$

3.4 Iterative EEA

Berechnet den ggT zweier Zahlen a und b und deren modulare Inverse $x=a^{-1} \mod b$ und $y=b^{-1} \mod a$.

```
// Extended Euclidean Algorithm - iterativ
public static long[] eea(long a, long b) {
  if (b > a) {
    long tmp = a;
    a = b;
    b = tmp;
 long x = 0, y = 1, u = 1, v = 0;
 while (a != 0) {
    long q = b / a, r = b % a;
    long m = x - u * q, n = y - v * q;
    b = a; a = r; x = u; y = v; u = m; v = n;
 }
 long gcd = b;
  // x = a^{-1} \% b, y = b^{-1} \% a
  // ax + by = gcd
 long[] erg = { gcd, x, y };
  return erg;
```

MD5: 81fe8cd4adab21329dcbe1ce0499ee75 $\mid \mathcal{O}(\log a + \log b)$

3.5 Polynomial Interpolation

```
public class interpol {
     // divided differences for points given by vectors x
3
          and y
     public static rat[] divDiff(rat[] x, rat[] y) {
                                                                67
       rat[] temp = y.clone();
                                                                68
       int n = x.length;
       rat[] res = new rat[n];
       res[0] = temp[0];
       for (int i=1; i < n; i++) {</pre>
         for (int j = 0; j < n-i; j++) {</pre>
10
           temp[j] = (temp[j+1].sub(temp[j])).div(x[j+i].
11
                sub(x[j]);
12
                                                                76
         res[i] = temp[0];
13
                                                                77
14
                                                                78
       return res;
15
                                                                79
16
17
                                                                81
     // evaluates interpolating polynomial p at t for
18
                                                                82
                                                                83
     // x-coordinates and divided differences
19
                                                                84
     public static rat p(rat t, rat[] x, rat[] dD) {
20
                                                                85
       int n = x.length;
21
       rat p = new rat(0);
22
                                                                87
       for (int i = n-1; i > 0; i--) {
23
                                                                88
         p = (p.add(dD[i])).mult(t.sub(x[i-1]));
24
                                                                89
       p = p.add(dD[0]);
       return p;
                                                                92
                                                                93
                                                                94
     public static void main(String[] args) {
                                                                95
31
       rat[] test = {new rat(4,5), new rat(7,10), new rat^{96}
32
            (3,4);
                                                                98
33
       test = rat.commonDenominator(test);
                                                                99
       for (int i = 0; i < test.length; i++) {</pre>
                                                                100
         System.out.println(test[i].toString());
35
                                                                101
                                                                102
37
                                                                103
       rat[] x = {new rat(0), new rat(1), new rat(2), new }
38
                                                                104
           rat(3), new rat(4), new rat(5)};
                                                                105
       rat[] y = {new rat(-10), new rat(9), new rat(0),}
39
           new rat(1), new rat(1,2), new rat(1,80)};
                                                                107
       rat[] dD = divDiff(x,y);
40
                                                                108
       System.out.println("p("+7+")_{\square}=_{\square}"+p(new rat(7), x,
41
                                                                109
           dD));
                                                                116
     }
42
                                                                111
43
                                                                112
44 }
45 // implementation of rational numbers
                                                                113
46 class rat {
                                                                11
47
                                                                115
     public long c;
48
                                                                116
     public long d;
49
                                                                117
                                                                118
     public rat (long c, long d) {
51
                                                                119
       this.c = c;
52
                                                                120
       this.d = d;
53
       this.shorten();
54
```

```
public rat (long c) {
    this.c = c;
    this.d = 1;
  }
  public static long ggT(long a, long b) {
    while (b != 0) {
      long h = a%b;
      a = b;
      b = h;
    }
    return a;
  public static long kgV(long a, long b) {
    return a*b/ggT(a,b);
  public static rat[] commonDenominator(rat[] c) {
    long kgV = 1;
    for (int i = 0; i < c.length; i++) {</pre>
      kgV = kgV(kgV, c[i].d);
    for (int i = 0; i < c.length; i++) {</pre>
      c[i].c *= kgV/c[i].d;
      c[i].d *= kgV/c[i].d;
    return c;
  }
  public void shorten() {
    long ggT = ggT(this.c, this.d);
    this.c = this.c / ggT;
    this.d = this.d / ggT;
    if (d < 0) {
      this.d *= -1;
      this.c *= -1;
  }
  public String toString() {
    if (this.d == 1) return ""+c;
    return ""+c+"/"+d;
  }
  public rat mult(rat b) {
    return new rat(this.c*b.c, this.d*b.d);
  public rat div(rat b) {
    return new rat(this.c*b.d, this.d*b.c);
  public rat add(rat b) {
    long new_d = kgV(this.d, b.d);
    long new_c = this.c*(new_d/this.d) + b.c*(new_d/b.
    return new rat(new_c, new_d);
  public rat sub(rat b) {
    return this.add(new rat(-b.c, b.d));
}
```

MD5: d98bd247b95395d8596ff1d5785ee06b | $\mathcal{O}(?)$

3.6 Sieve of Eratosthenes

Calculates Sieve of Eratosthenes.

Input: A integer N indicating the size of the sieve.

Output: A boolean array, which is true at an index i iff i is prime.

MD5: 95704ae7c1fe03e91adeb8d695b2f5bb | $\mathcal{O}(n)$

4 Misc

4.1 Binary Search

Binary searchs for an element in a sorted array.

Input: sorted array to search in, amount N of elements in array, element to search for a

Output: returns the index of a in array or -1 if array does not contain a

```
public static int BinarySearch(int[] array,
                                         int N, int a) {
    int lo = 0;
    int hi = N-1;
    // a might be in interval [lo,hi] while lo <= hi
    while(lo <= hi) {</pre>
       int mid = (lo + hi) / 2;
       // if a > elem in mid of interval,
       // search the right subinterval
10
      if(array[mid] < a)</pre>
        lo = mid+1;
11
       // else if a < elem in mid of interval,
12
       // search the left subinterval
13
       else if(array[mid] > a)
        hi = mid-1;
       // else a is found
16
       else
17
         return mid;
18
19
    // array does not contain a
20
21
    return -1;
22 }
```

MD5: 203da61f7a381564ce3515f674fa82a4 $\mid \mathcal{O}(\log n)$

4.2 Next number with n bits set

From x the smallest number greater than x with the same amount of bits set is computed. Little changes have to be made, if the calculated number has to have length less than 32 bits.

Input: number x with n bits set (x = (1 << n) - 1)*Output*: the smallest number greater than x with n bits set

```
public static int nextNumber(int x) {
   //break when larger than limit here
   if(x == 0) return 0;
   int smallest = x & -x;
   int ripple = x + smallest;
   int new_smallest = ripple & -ripple;
   int ones = ((new_smallest/smallest) >> 1) - 1;
   return ripple | ones;
}
```

MD5: 2d8a79cb551648e67fc3f2f611a4f63c $\mid \mathcal{O}(1)$

5 Math Roland

5.1 Divisability Explanation

 $D \mid M \Leftrightarrow D \mid \mathsf{digit_sum}(\mathsf{M},\mathsf{k},\mathsf{alt}),$ refer to table for values of D,k,alt.

5.2 Combinatorics

- Variations (ordered): k out of n objects (permutations for k = n)
 - without repetition: $M = \{(x_1, \dots, x_k) : 1 \le x_i \le n, \ x_i \ne x_j \text{ if } i \ne j\},$ $|M| = \frac{n!}{(n-k)!}$
 - with repetition: $M = \{(x_1, ..., x_k) : 1 \le x_i \le n\}, |M| = n^k$
- Combinations (unordered): k out of n objects
 - without repetition: $M = \{(x_1, \dots, x_n) : x_i \in \{0, 1\}, x_1 + \dots + x_n = k\}, |M| = \binom{n}{k}$
 - with repetition: $M = \{(x_1, \dots, x_n) : x_i \in \{0, 1, \dots, k\}, x_1 + \dots + x_n = k\}, |M| = \binom{n+k-1}{k}$
- Ordered partition of numbers: $x_1 + \ldots + x_k = n$ (i.e. 1+3 = 3+1 = 4 are counted as 2 solutions)
 - #Solutions for $x_i \in \mathbb{N}_0$: $\binom{n+k-1}{k-1}$
 - #Solutions for $x_i \in \mathbb{N}$: $\binom{n-1}{k-1}$
- Unordered partition of numbers: $x_1 + ... + x_k = n$ (i.e. 1+3 = 3+1 = 4 are counted as 1 solution)
 - #Solutions for $x_i \in \mathbb{N}$: $P_{n,k} = P_{n-k,k} + P_{n-1,k-1}$ where $P_{n,1} = P_{n,n} = 1$
- Derangements (permutations without fixed points): $!n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!} = \lfloor \frac{n!}{e} + \frac{1}{2} \rfloor$

5.3 Polynomial Interpolation

5.3.1 Theory

Problem: for $\{(x_0, y_0), \dots, (x_n, y_n)\}$ find $p \in \Pi_n$ with $p(x_i) = y_i$ for all $i = 0, \dots, n$.

Solution:
$$p(x) = \sum_{i=0}^{n} \gamma_{0,i} \prod_{j=0}^{i-1} (x-x_i)$$
 where $\gamma_{j,k} = y_j$ for $k=0$ and $\gamma_{j,k} = \frac{\gamma_{j+1,k-1} - \gamma_{j,k-1}}{x_{j+k} - x_j}$ otherwise. Efficient evaluation of $p(x)$: $b_n = \gamma_{0,n}$, $b_i = b_{i+1}(x-x_i) + \gamma_{0,i}$

5.4 Fibonacci Sequence

for i = n - 1, ..., 0 with $b_0 = p(x)$.

5.4.1 Binet's formula

$$\begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \begin{pmatrix} 0 \\ 1 \end{pmatrix} \ \Rightarrow \ f_n = \frac{1}{\sqrt{5}} (\phi^n - \tilde{\phi}^n) \ \text{where}$$

$$\phi = \frac{1+\sqrt{5}}{2} \text{ and } \tilde{\phi} = \frac{1-\sqrt{5}}{2}.$$

5.4.2 Generalization

$$g_n = \frac{1}{\sqrt{5}}(g_0(\phi^{n-1} - \tilde{\phi}^{n-1}) + g_1(\phi^n - \tilde{\phi}^n)) = g_0 f_{n-1} + g_1 f_n$$
 for all $g_0, g_1 \in \mathbb{N}_0$

5.4.3 Pisano Period

Both $(f_n \mod k)_{n \in \mathbb{N}_0}$ and $(g_n \mod k)_{n \in \mathbb{N}_0}$ are periodic.

6 Java Knowhow

6.1 System.out.printf() und String.format()

Syntax: %[flags][width][.precision][conv]

flags

left-justify (default: right)

+ always output number sign

0 zero-pad numbers

(space) space instead of minus for pos. numbers

, group triplets of digits with,

width specifies output width

precision is for floating point precision

conv

d byte, short, int, long

f float, double

c char (use C for uppercase)

s String (use S for all uppercase)

6.2 Modulo: Avoiding negative Integers

```
int mod = (((nums[j] % D) + D) % D);
```

6.3 Speed up IO

Use

```
BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
```

Use

```
Double.parseDouble(Scanner.next());
```

	Theoretical	Computer Science Cheat Sheet				
	Definitions	Series				
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$				
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \ge cg(n) \ge 0 \ \forall n \ge n_0$.	$i=1$ $i=1$ $i=1$ In general: $ \frac{n}{2} $				
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} - 1 - \sum_{i=1}^{n} \left((i+1)^{m+1} - i^{m+1} - (m+1)i^{m} \right) \right]$				
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$				
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon > 0$, $\exists n_0$ such that $ a_n - a < \epsilon$, $\forall n \ge n_0$.	Geometric series:				
$\sup S$	least $b \in$ such that $b \geq s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 - c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 - c}, c < 1,$				
$\inf S$	greatest $b \in \text{ such that } b \leq s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} - (n+1)c^{n+1} + c}{(c-1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1-c)^{2}}, c < 1.$				
$\displaystyle \liminf_{n o \infty} a_n$	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \}.$	Harmonic series: $n = n + 1 $ $n(n+1) = n(n-1)$				
$\limsup_{n\to\infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2}H_n - \frac{n(n-1)}{4}.$				
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n - n, \sum_{i=1}^{n} {i \choose m} H_i = {n+1 \choose m+1} \left(H_{n+1} - \frac{1}{m+1} \right).$				
$\begin{bmatrix} n \\ k \end{bmatrix}$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	$1. \ \binom{n}{k} = \frac{n!}{(n-k)!k!}, \qquad 2. \ \sum_{k=0}^{n} \binom{n}{k} = 2^{n}, \qquad 3. \ \binom{n}{k} = \binom{n}{n-k},$				
$\left\{ egin{array}{c} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an <i>n</i> element set into <i>k</i> non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}, \qquad \qquad 5. \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n-k}{m-k}, \qquad \qquad 7. \sum_{k=0}^{n} \binom{r+k}{k} = \binom{r+n+1}{n},$				
$\binom{n}{k}$	1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	$8. \ \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad \qquad 9. \ \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n-k} = \binom{r+s}{n},$				
$\langle\!\langle {n \atop k} \rangle\!\rangle$	2nd order Eulerian numbers.	10. $\binom{n}{k} = (-1)^k \binom{k-n-1}{k}$, 11. $\binom{n}{1} = \binom{n}{n} = 1$,				
	Catalan Numbers: Binary trees with $n+1$ vertices.	$12. \begin{Bmatrix} n \\ 2 \end{Bmatrix} = 2^{n-1} - 1, \qquad 13. \begin{Bmatrix} n \\ k \end{Bmatrix} = k \begin{Bmatrix} n-1 \\ k \end{Bmatrix} + \begin{Bmatrix} n-1 \\ k-1 \end{Bmatrix},$				
		$16. \ {n \brack n} = 1,$ $17. \ {n \brack k} \ge {n \brack k},$				
I		$\begin{Bmatrix} n \\ -1 \end{Bmatrix} = \begin{bmatrix} n \\ n-1 \end{bmatrix} = \binom{n}{2}, 20. \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} = n!, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n},$				
$22. \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n} \right\rangle$	$\binom{n}{-1} = 1,$ 23. $\binom{n}{k} = \binom{n}{k}$	$\binom{n}{n-1-k}$, $24. \left\langle \binom{n}{k} \right\rangle = (k+1) \left\langle \binom{n-1}{k} \right\rangle + (n-k) \left\langle \binom{n-1}{k-1} \right\rangle$,				
$25. \left\langle {0 \atop k} \right\rangle = \left\{ {1 \atop 0} \right\}$	if $k = 0$, otherwise 26. $\binom{n}{1}$					
$28. \ \ x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n}, \qquad 29. \ \left\langle {n \atop m} \right\rangle = \sum_{k=0}^m {n+1 \choose k} (m+1-k)^n (-1)^k, \qquad 30. \ \ m! \left\{ {n \atop m} \right\} = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {k \choose n-m}, $						
		32. $\left\langle \left\langle \begin{array}{c} n \\ 0 \end{array} \right\rangle = 1,$ 33. $\left\langle \left\langle \begin{array}{c} n \\ n \end{array} \right\rangle = 0$ for $n \neq 0$,				
$34. \left\langle \!\! \left\langle \begin{array}{c} n \\ k \end{array} \right\rangle \!\! \right\rangle = (k + 1)^n$	$+1$ $\left\langle \left\langle \left$	$ \begin{array}{c c} -1 \\ -1 \end{array} \right), \qquad \qquad 35. \ \sum_{k=0}^{n} \left\langle \!\! \left\langle \!\! \begin{array}{c} n \\ k \end{array} \right\rangle \!\! \right\rangle = \frac{(2n)^n}{2^n}, $				
$36. \left\{ \begin{array}{c} x \\ x-n \end{array} \right\} = \frac{1}{k}$	$\sum_{k=0}^{n} \left\langle \!\! \left\langle n \right\rangle \!\! \right\rangle \left(x + n - 1 - k \right), $ $2n$	37. $\binom{n+1}{m+1} = \sum_{k} \binom{n}{k} \binom{k}{m} = \sum_{k=0}^{n} \binom{k}{m} (m+1)^{n-k},$				

Identities Cont.

$$\mathbf{38.} \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\frac{n-k}{2}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad \mathbf{39.} \begin{bmatrix} x \\ x-n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \!\!\! \begin{pmatrix} n \\ k \end{pmatrix} \!\!\! \right\rangle \binom{x+k}{2n},$$

40.
$$\binom{n}{m} = \sum_{k} \binom{n}{k} \binom{k+1}{m+1} (-1)^{n-k},$$

42.
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$

44.
$$\binom{n}{m} = \sum_{k} \binom{n+1}{k+1} \binom{k}{m} (-1)^{m-k},$$

46.
$$\left\{ n - m \right\} = \sum_{k} {m \choose m+k} {m+k \choose n+k} {m+k \choose k},$$

48.
$${n \choose \ell+m} {\ell+m \choose \ell} = \sum_{k} {k \choose \ell} {n-k \choose m} {n \choose k}$$

39.
$$\begin{bmatrix} x-n \end{bmatrix} = \sum_{k=0}^{\infty} \langle k \rangle / \langle 2n \rangle$$
,
41. $\begin{bmatrix} n \end{bmatrix} = \sum_{k=0}^{\infty} \begin{bmatrix} n+1 \\ k \end{pmatrix} (-1)^{m-k}$,

41.
$$\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} {k \choose m} (-1)^{m-k},$$

43.
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

44.
$$\binom{n}{m} = \sum_{k} {n+1 \brace k+1} {k \brack m} (-1)^{m-k}, \quad \textbf{45.} \ (n-m)! \binom{n}{m} = \sum_{k} {n+1 \brack k+1} {k \brack m} (-1)^{m-k}, \quad \text{for } n \ge m,$$

46.
$${n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose n+k} {m+k \choose k},$$
 47.
$${n \choose n-m} = \sum_{k} {m-n \choose m+k} {m+n \choose n+k} {m+k \choose k},$$

48.
$${n \brace \ell + m} {\ell + m \choose \ell} = \sum_{k} {k \brace \ell} {n - k \brack m} {n \brack k},$$
 49.
$${n \brack \ell + m} {\ell + m \brack \ell} {n \choose \ell} {n - k \brack m} {n \brack \ell + m} {\ell \choose \ell}.$$

Trees

Every tree with nvertices has n-1edges.

Kraft inequality: If the depths of the leaves of a binary tree are d_1, \ldots, d_n :

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n)=aT(n/b)+f(n),\quad a\geq 1, b>1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have

$$t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = \frac{1}{2},$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T(n) = 3T(n/2) + n, \quad T(1) = 1.$$

Rewrite so that all terms involving Tare on the left side

$$T(n) - 3T(n/2) = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) - 3T(n/2) = n)$$
$$3(T(n/2) - 3T(n/4) = n/2)$$
$$\vdots \qquad \vdots \qquad \vdots$$

Let $m = \log_2 n$. Summing the left side we get $T(n) - 3^m T(1) = T(n) - 3^m =$ $T(n) - n^k$ where $k = \log_2 3 \approx 1.58496$. Summing the right side we get

 $3^{\log_2 n - 1} (T(2) - 3T(1) = 2)$

$$\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2}\right)^i.$$

Let $c = \frac{3}{2}$. Then we have

$$n \sum_{i=0}^{m-1} c^i = n \left(\frac{c^m - 1}{c - 1} \right)$$

$$= 2n(c^{\log_2 n} - 1)$$

$$= 2n(c^{(k-1)\log_c n} - 1)$$

$$= 2n^k - 2n.$$

and so $T(n) = 3n^k - 2n$. Full history recurrences can often be changed to limited history ones (example): Consider

$$T_i = 1 + \sum_{j=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} - T_i = 1 + \sum_{j=0}^{i} T_j - 1 - \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^i g_i$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

$$\sum_{i \geq 0}^{\text{Multiply and sum:}} g_{i+1} x^i = \sum_{i \geq 0}^{} 2g_i x^i + \sum_{i \geq 0}^{} x^i.$$

We choose $G(x) = \sum_{i \geq 0} x^i g_i$. Rewrite in terms of G(x):

$$\frac{G(x) - g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1-x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1-x)(1-2x)}.$$

Expand this using partial fractions:
$$G(x) = x \left(\frac{2}{1-2x} - \frac{1}{1-x}\right)$$

$$= x \left(2\sum_{i \geq 0} 2^i x^i - \sum_{i \geq 0} x^i\right)$$

$$= \sum_{i \geq 0} (2^{i+1} - 1)x^{i+1}.$$

So
$$g_i = 2^i - 1$$
.

	Theoretical Computer Science Cheat Sheet								
	$\pi \approx 3.14159, \qquad e \approx 2.75$		1828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx$	1.61803, $\hat{\phi} = \frac{1-\sqrt{5}}{2} \approx61803$					
i	2^i	p_i	$\operatorname{General}$	Probability					
1	2	2	Bernoulli Numbers $(B_i = 0, \text{ odd } i \neq 1)$:	Continuous distributions: If					
2	4	3	$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30},$	$\Pr[a < X < b] = \int_{a}^{b} p(x) dx,$					
3	8	5	$B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}.$	then p is the probability density function of					
4	16	7	Change of base, quadratic formula:	X. If					
$\frac{5}{a}$	32	11	$\log_b x = \frac{\log_a x}{\log_a b}, \qquad \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\Pr[X < a] = P(a),$					
$\frac{6}{7}$	64	13	$\log_a \theta$ Za Euler's number e :	then P is the distribution function of X . If					
7	128	17	$e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	P and p both exist then					
$\begin{bmatrix} 8 \\ 9 \end{bmatrix}$	$256 \\ 512$	$\begin{array}{c} 19 \\ 23 \end{array}$	2 0 24 120	$P(a) = \int_{-a}^{a} p(x) dx.$					
$\begin{bmatrix} 9 \\ 10 \end{bmatrix}$	1,024	23 29	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$J-\infty$ Expectation: If X is discrete					
11	2,048	31	$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$.	$E[g(X)] = \sum g(x) \Pr[X = x].$					
12	4,096	37	$\left(1 + \frac{1}{n}\right)^n = e - \frac{e}{2n} + \frac{11e}{24n^2} - O\left(\frac{1}{n^3}\right).$	x					
13	8,192	41		If X continuous then c^{∞}					
14	16,384	43	Harmonic numbers:	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$					
15	32,768	47	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	$J-\infty$ $J-\infty$ Variance, standard deviation:					
16	65,536	53	$ \ln n < H_n < \ln n + 1, $	$VAR[X] = E[X^2] - E[X]^2,$					
17	131,072	59		$\sigma = \sqrt{\text{VAR}[X]}.$					
18	262,144	61	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	For events A and B :					
19	524,288	67	Factorial, Stirling's approximation:	$\Pr[A \vee B] = \Pr[A] + \Pr[B] - \Pr[A \wedge B]$					
20	1,048,576	71	$1, 2, 6, 24, 120, 720, 5040, 40320, 362880, \dots$	$\Pr[A \wedge B] = \Pr[A] \cdot \Pr[B],$					
21	2,097,152	73	$(n)^n$ (1)	iff A and B are independent.					
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	$\Pr[A B] = \frac{\Pr[A \land B]}{\Pr[B]}$					
23	8,388,608	83	Ackermann's function and inverse:	[]					
24	16,777,216	89	$\begin{cases} 2^j & i = 1 \end{cases}$	For random variables X and Y : $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y],$					
25	33,554,432	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i-1,2) & j = 1\\ a(i-1,a(i,j-1)) & i,j \ge 2 \end{cases}$	if X and Y are independent.					
26	67,108,864	101	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[X+Y] = E[X] + E[Y],					
27	134,217,728	103	Binomial distribution:	E[cX] = c E[X].					
$\begin{array}{c} 28 \\ 29 \end{array}$	268,435,456 536,870,912	107 109		Bayes' theorem:					
30	1,073,741,824	113	$\Pr[X=k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 - p,$	$\Pr[A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{i=1}^n \Pr[A_i]\Pr[B A_i]}.$					
31	2,147,483,648	127	$E[X] = \sum_{k=1}^{n} k \binom{n}{k} p^{k} q^{n-k} = np.$	$\sum_{j=1}^{n} \prod_{A_j} $					
32	4,294,967,296	131	k=1	n n					
Pascal's Triangle			Poisson distribution: $e^{-\lambda}\lambda^k$	$\Pr\left[\bigvee_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \Pr[X_i] +$					
	1		$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \operatorname{E}[X] = \lambda.$	$\sum_{k=1}^{n} (1)^{k+1} \sum_{k=1}^{n} [\Lambda V]$					
1 1 1 2 1			Normal (Gaussian) distribution:	$\sum_{k=2}^{n} (-1)^{k+1} \sum_{i_i < \dots < i_k} \Pr\left[\bigwedge_{j=1}^{k} X_{i_j}\right].$					
	1 3 3 1		$p(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	Moment inequalities:					
1 4 6 4 1			The "coupon collector": We are given a	$\Pr\left[X \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$					
1 5 10 10 5 1			random coupon each day, and there are n	^					
1 6 15 20 15 6 1			different types of coupons. The distribu- tion of coupons is uniform. The expected	$\Pr\left[\left X - \mathrm{E}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$					
1 7 21 35 35 21 7 1			number of days to pass before we to col-	Geometric distribution: $P_{n}[Y h] n^{k-1} a 1 b$					
1 8 28 56 70 56 28 8 1			lect all n types is	$\Pr[X=k] = pq^{k-1}, \qquad q = 1 - p,$					
1 9 36 84 126 126 84 36 9 1			nH_n .	$\mathbb{E}[X] = \sum_{k=1}^{\infty} kpq^{k-1} = \frac{1}{p}.$					
$1\ 10\ 45$	5 120 210 252 210 1	20 45 10 1		k=1 P					

Trigonometry

Pythagorean theorem:

$$C^2 = A^2 + B^2$$

Definitions:

$$\sin a = A/C, \quad \cos a = B/C,$$

$$\csc a = C/A, \quad \sec a = C/B,$$

$$\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$$

Area, radius of inscribed circle:

$$\frac{1}{2}AB$$
, $\frac{AB}{A+B+C}$

Identities:
$$\sin x = \frac{1}{\csc x}, \qquad \cos x = \frac{1}{\sec x},$$

$$\tan x = \frac{1}{\cot x}, \qquad \sin^2 x + \cos^2 x = 1,$$

$$1 + \tan^2 x = \sec^2 x, \qquad 1 + \cot^2 x = \csc^2 x,$$

$$\sin x = \cos\left(\frac{\pi}{2} - x\right), \qquad \sin x = \sin(\pi - x),$$

$$\cos x = -\cos(\pi - x), \qquad \tan x = \cot\left(\frac{\pi}{2} - x\right),$$

$$\cot x = -\cot(\pi - x), \qquad \csc x = \cot\frac{x}{2} - \cot x,$$

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y,$$

$$\tan x \pm \tan y$$

$$\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y},$$
$$\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$$

$$\sin 2x = 2\sin x \cos x, \qquad \qquad \sin 2x = \frac{2\tan x}{1 + \tan^2 x}$$

$$\cos 2x = \cos^2 x - \sin^2 x$$
, $\cos 2x = 2\cos^2 x - 1$,

$$\cos 2x = 1 - 2\sin^2 x,$$
 $\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x},$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x},$$
 $\cot 2x = \frac{\cot^2 x - 1}{2\cot x},$

$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y,$$

$$\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y.$$

Euler's equation:

$$e^{ix} = \cos x + i\sin x, \qquad e^{i\pi} = -1.$$

v2.01 ©1994 by Steve Seiden sseiden@acm.org http://www.csc.lsu.edu/~seiden Multiplication:

$$C = A \cdot B, \quad c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}.$$

Matrices

Determinants: det $A \neq 0$ iff A is non-singular. $\det A \cdot B = \det A \cdot \det B,$

$$\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$$

 2×2 and 3×3 determinant:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc,$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} - h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$$

Permanents:

$$\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$$

-ceg - fha - ibd.

Hyperbolic Functions

Definitions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$$

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$$

$$\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{1}{\tanh x}.$$

Identities:

 $\cosh^2 x - \sinh^2 x = 1, \qquad \tanh^2 x + \operatorname{sech}^2 x = 1,$ $\coth^2 x - \operatorname{csch}^2 x = 1,$ $\sinh(-x) = -\sinh x,$ $\cosh(-x) = \cosh x,$ $\tanh(-x) = -\tanh x,$ $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y,$ $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$ $\sinh 2x = 2\sinh x \cosh x,$ $\cosh 2x = \cosh^2 x + \sinh^2 x,$ $\cosh x + \sinh x = e^x, \qquad \cosh x - \sinh x = e^{-x},$ $(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$ $2 \sinh^2 \frac{x}{2} = \cosh x - 1, \quad 2 \cosh^2 \frac{x}{2} = \cosh x + 1.$

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
0	0	1	0
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
$\frac{\pi}{3}$ $\frac{\pi}{2}$	1	0	∞

 \dots in mathematics you don't understand things, you just get used to them.

– J. von Neumann

More Trig.

 $c^2 = a^2 + b^2 - 2ab\cos C.$

$$A = \frac{1}{2}hc,$$

$$= \frac{1}{2}ab\sin C,$$

$$= \frac{c^2 \sin A \sin B}{2 \sin C}$$

Heron's formula:

$$A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c},$$

$$s = \frac{1}{2}(a+b+c),$$

$$s_a = s-a,$$

$$s_b = s-b,$$

$$s_c = s-c.$$

More identities:

More identities:

$$\sin \frac{x}{2} = \sqrt{\frac{1 - \cos x}{2}}$$

$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}}$$

$$\tan \frac{x}{2} = \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

$$= \frac{1 - \cos x}{\sin x},$$

$$= \frac{\sin x}{1 + \cos x},$$

$$\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 - \cos x}},$$

$$\cot \frac{x}{2} = \frac{1 + \cos x}{1 - \cos x},$$

$$= \frac{1 + \cos x}{\sin x},$$

$$= \frac{\sin x}{1 - \cos x},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2},$$

 $\sin x = \frac{\sinh ix}{i}$ $\cos x = \cosh ix$

 $\tan x = -i\frac{e^{ix} - e^{-ix}}{e^{ix} + e^{-ix}}$

 $\tan x = \frac{\tanh ix}{i}$

Theoretical Computer Science Cheat Sheet Number Theory Graph Theory The Chinese remainder theorem: There ex-Definitions: ists a number C such that: LoopAn edge connecting a vertex to itself. $C \equiv r_1 \mod m_1$ DirectedEach edge has a direction. Graph with no loops or Simple: : : multi-edges. $C \equiv r_n \mod m_n$ WalkA sequence $v_0e_1v_1\ldots e_\ell v_\ell$. if m_i and m_j are relatively prime for $i \neq j$. TrailA walk with distinct edges. Path trail with distinct Euler's function: $\phi(x)$ is the number of vertices. positive integers less than x relatively ConnectedA graph where there exists prime to x. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime faca path between any two torization of x then vertices. $\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1} (p_i - 1).$ Componentmaximalconnected subgraph. Euler's theorem: If a and b are relatively TreeA connected acyclic graph. prime then Free tree A tree with no root. $1 \equiv a^{\phi(b)} \mod b$. DAGDirected acyclic graph. EulerianGraph with a trail visiting Fermat's theorem: each edge exactly once. $1 \equiv a^{p-1} \bmod p.$ Hamiltonian Graph with a cycle visiting The Euclidean algorithm: if a > b are ineach vertex exactly once. tegers then CutA set of edges whose re $gcd(a, b) = gcd(a \mod b, b).$ moval increases the number of components. If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of xCut-setA minimal cut. $S(x) = \sum_{d \mid x} d = \prod_{i=1}^n \frac{p_i^{e_i+1}-1}{p_i-1}.$ Cut edge A size 1 cut. k-Connected A graph connected with the removal of any k-1vertices. Perfect Numbers: x is an even perfect num- $\forall S \subseteq V, S \neq \emptyset$ we have ber iff $x = 2^{n-1}(2^n - 1)$ and $2^n - 1$ is prime. k-Tough $k \cdot c(G - S) \le |S|.$ Wilson's theorem: n is a prime iff k-Regular A graph where all vertices $(n-1)! \equiv -1 \mod n$. Möbius inversion: $\mu(i) = \begin{cases} 1 & \text{if } i = 1.\\ 0 & \text{if } i \text{ is not square-free.}\\ (-1)^r & \text{if } i \text{ is the product of}\\ r & \text{distinct primes.} \end{cases}$ have degree k. k-Factor Α k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. CliqueA set of vertices, all of Tf which are adjacent. $G(a) = \sum_{d|a} F(d),$ $Ind. \ set$ A set of vertices, none of which are adjacent. then Vertex cover A set of vertices which $F(a) = \sum_{d \mid a} \mu(d) G\left(\frac{a}{d}\right).$ cover all edges. Planar graph A graph which can be embeded in the plane. Prime numbers: $p_n = n \ln n + n \ln \ln n - n + n \frac{\ln \ln n}{\ln n}$ Plane graph An embedding of a planar $+O\left(\frac{n}{\ln n}\right)$

 $\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$

 $+O\left(\frac{n}{(\ln n)^4}\right).$

$$\sum_{v \in V} \deg(v) = 2m.$$

If G is planar then n-m+f=2, so

$$f \le 2n - 4, \quad m \le 3n - 6.$$

Any planar graph has a vertex with degree < 5.

Notation: E(G)Edge set V(G)Vertex set c(G)Number of components G[S]Induced subgraph Degree of vdeg(v) $\Delta(G)$ Maximum degree $\delta(G)$ Minimum degree $\chi(G)$ Chromatic number $\chi_E(G)$ Edge chromatic number G^c Complement graph K_n Complete graph Complete bipartite graph

Ramsey number

Projective coordinates: (x, y, z), not all x, y and z zero. $(x, y, z) = (cx, cy, cz) \quad \forall c \neq 0.$

Geometry

Cartesian Projective (x, y)(x, y, 1)

(m, -1, b)y = mx + bx = c(1,0,-c)

 K_{n_1,n_2}

 $r(k,\ell)$

Distance formula, L_p and L_{∞}

$$\sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2},$$

$$\left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p},$$

 $\lim_{n\to\infty} \left[|x_1 - x_0|^p + |y_1 - y_0|^p \right]^{1/p}.$ Area of triangle $(x_0, y_0), (x_1, y_1)$

and (x_2, y_2) :

$$\frac{1}{2}$$
 abs $\begin{vmatrix} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{vmatrix}$.

Angle formed by three points:

$$(x_{2}, y_{2})$$

$$(0, 0) \qquad \ell_{1} \qquad (x_{1}, y_{1})$$

$$\cos \theta = \frac{(x_{1}, y_{1}) \cdot (x_{2}, y_{2})}{\ell_{1}\ell_{2}}.$$

Line through two points (x_0, y_0) and (x_1, y_1) :

$$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$$

Area of circle, volume of sphere:

$$A = \pi r^2$$
, $V = \frac{4}{3}\pi r^3$.

If I have seen farther than others. it is because I have stood on the shoulders of giants.

- Issac Newton

Wallis' identity:

$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregrory's series:
$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots$$

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 - \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} - \frac{1}{3^3 \cdot 7} + \dots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} - \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x-a)D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)},$$

$$A = \left[\frac{N(x)}{D(x)} \right]_{x=a}.$$

For a repeated factor

$$\frac{N(x)}{(x-a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)},$$

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Derivatives:

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
,

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$, 3. $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

3.
$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$4. \frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}.$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$$
, **5.** $\frac{d(u/v)}{dx} = \frac{v\left(\frac{du}{dx}\right) - u\left(\frac{dv}{dx}\right)}{v^2}$, **6.** $\frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$

$$\mathbf{6.} \ \frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx},$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$

$$8. \ \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx},$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$$

$$10. \ \frac{d(\cos u)}{dx} = -\sin u \frac{du}{dx},$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx},$$

$$12. \ \frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx},$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

14.
$$\frac{d(\csc u)}{dx} = -\cot u \csc u \frac{du}{dx}$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx}$$

16.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{\sqrt{1-u^2}} \frac{du}{dx}$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{-1}{1 - u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

20.
$$\frac{d(\arccos u)}{dx} = \frac{-1}{u\sqrt{1-u^2}} \frac{du}{dx}$$

21.
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx}$$

$$20. \quad \frac{dx}{dx} = \frac{1}{u\sqrt{1-u^2}} \frac{dx}{dx}$$

$$\frac{du}{dx} = \cosh u \frac{du}{dx},$$

22.
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

$$23. \ \frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx},$$

24.
$$\frac{d(\coth u)}{dx} = -\operatorname{csch}^{2} u \frac{du}{dx}$$
$$d(\operatorname{csch} u) \qquad du$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = -\operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = -\operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

$$27. \ \frac{d(\operatorname{arcsinh} u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx}$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 - 1}} \frac{du}{dx}$$

$$29. \ \frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 - u^2} \frac{du}{dx},$$

30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 - 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{-1}{u\sqrt{1-u^2}}\frac{du}{dx},$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{-1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

1.
$$\int cu\,dx = c\,\int u\,dx,$$

$$2. \int (u+v) \, dx = \int u \, dx + \int v \, dx,$$

3.
$$\int x^n dx = \frac{1}{n+1} x^{n+1}$$
, $n \neq -1$, 4. $\int \frac{1}{x} dx = \ln x$, 5. $\int e^x dx = e^x$,

4.
$$\int \frac{1}{x} dx = \ln x$$
, **5.** $\int e^x$

$$6. \int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = -\cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

$$\mathbf{10.} \int \tan x \, dx = -\ln|\cos x|,$$

$$\mathbf{11.} \int \cot x \, dx = \ln|\cos x|,$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, **13.** $\int \csc x \, dx = \ln|\csc x + \cot x|$,

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 - x^2}, \quad a > 0,$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} - \sqrt{a^2 - x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} - \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax) dx = \frac{1}{2a} (ax - \sin(ax)\cos(ax)),$$

18.
$$\int \cos^2(ax) dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax)),$$

$$\mathbf{19.} \int \sec^2 x \, dx = \tan x,$$

$$20. \int \csc^2 x \, dx = -\cot x,$$

21.
$$\int \sin^n x \, dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx,$$

22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx,$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n \neq 1,$$

24.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

26.
$$\int \csc^n x \, dx = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, dx, \quad n \neq 1,$$
 27. $\int \sinh x \, dx = \cosh x,$ **28.** $\int \cosh x \, dx = \sinh x,$

29.
$$\int \tanh x \, dx = \ln |\cosh x|$$
, **30.** $\int \coth x \, dx = \ln |\sinh x|$, **31.** $\int \operatorname{sech} x \, dx = \arctan \sinh x$, **32.** $\int \operatorname{csch} x \, dx = \ln |\tanh \frac{x}{2}|$,

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) - \frac{1}{2}x,$$
 34.
$$\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x,$$

35.
$$\int \operatorname{sech}^2 x \, dx = \tanh x,$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} - \sqrt{x^2 + a^2}, \quad a > 0,$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 - x^2|,$$

$$\mathbf{38.} \ \int \operatorname{arccosh} \frac{x}{a} dx = \left\{ \begin{aligned} x \operatorname{arccosh} \frac{x}{a} - \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{aligned} \right.$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + r^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44. $\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|,$ **45.** $\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}},$

$$44. \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right|,$$

$$\int \frac{dx}{(a^2 - x^2)^{3/2}} = \frac{1}{a^2 \sqrt{a^2 - x^2}}$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln \left| x + \sqrt{x^2 - a^2} \right|, \quad a > 0,$$

48.
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

49.
$$\int x\sqrt{a+bx}\,dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2},$$

50.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

52.
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

53.
$$\int x\sqrt{a^2-x^2}\,dx = -\frac{1}{3}(a^2-x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

55.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|,$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 - x^2}} = -\sqrt{a^2 - x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

59.
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

62.
$$\int \frac{dx}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0, \qquad 63. \int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x}$$

63.
$$\int \frac{dx}{x^2 \sqrt{x^2 + a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 \pm a^2},$$

65.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

66.
$$\int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

67.
$$\int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

69.
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = (\frac{1}{3}x^2 - \frac{2}{15}a^2)(x^2 + a^2)^{3/2},$$

72.
$$\int x^n \sin(ax) \, dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

73.
$$\int x^n \cos(ax) \, dx = \frac{1}{a} x^n \sin(ax) - \frac{n}{a} \int x^{n-1} \sin(ax) \, dx$$

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

75.
$$\int x^n \ln(ax) \, dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} - \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m - \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) - f(x),$$

$$E f(x) = f(x+1).$$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum f(x)\delta x = F(x) + C.$$

$$\sum_{a}^{b} f(x)\delta x = \sum_{i=a}^{b-1} f(i).$$

Differences:

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \operatorname{E} v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1},$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x,$$

$$\Delta(c^x) = (c-1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

Sums:

$$\sum cu\,\delta x = c\sum u\,\delta x,$$

$$\sum (u+v) \, \delta x = \sum u \, \delta x + \sum v \, \delta x,$$

$$\sum u \Delta v \, \delta x = uv - \sum \mathbf{E} \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{x^{\underline{n+1}}}, \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x-1)\cdots(x-n+1), \quad n > 0,$$

 $x^{\underline{0}} = 1$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

 $x^{\underline{n+m}} = x^{\underline{m}}(x-m)^{\underline{n}}.$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+n-1), \quad n > 0,$$

$$x^{o} = 1$$

$$x^{\overline{n}} = \frac{1}{(x-1)\cdots(x-|n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}} (x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (-1)^n (-x)^{\overline{n}} = (x - n + 1)^{\overline{n}}$$

$$= 1/(x + 1)^{\overline{-n}},$$

$$x^{\overline{n}} = (-1)^n (-x)^{\underline{n}} = (x + n - 1)^{\underline{n}}$$

$$= 1/(x - 1)^{\underline{-n}},$$

$$x^{\underline{n}} = (x + n - 1)^{\underline{n}}$$

$$x^n = \sum_{k=1}^n \left\{ n \atop k \right\} x^{\underline{k}} = \sum_{k=1}^n \left\{ n \atop k \right\} (-1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (-1)^{n-k} x^k,$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x-a)^i}{i!}f^{(i)}(a).$$

Expansions:

Expansions:
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1-cx} = 1 + cx + c^2x^2 + c^3x^3 + \cdots = \sum_{i=0}^{\infty} c^ix^i,$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$x^k \frac{d^n}{dx^n} \left(\frac{1}{1-x}\right) = x + 2^nx^2 + 3^nx^3 + 4^nx^4 + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} x^i i,$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \cdots = \sum_{i=0}^{\infty} (-1)^{i+1} \frac{x^i}{i},$$

$$\ln \frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 - \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$\tan^{-1}x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (-1)^{i} \frac{x^{2i+1}}{(2i+1)!},$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + \binom{n-2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{120}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + x + 2x^2 + 6x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + (2+n)x + \binom{4+n}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = 1 + (2+n)x + \binom{4+n}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{\sqrt{1-4x}} = \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{1}{\sqrt{1-4x}} = \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{24}x^4 + \cdots = \sum_{i=0}^{\infty} \frac{H_{i-1}x^i}{i},$$

$$\frac{1}{\sqrt{1-4x}} = \frac{x}{1-x-x^2} = x + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{ni}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power serie

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theore:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}.$$

For ordinary power series:

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i$$

$$x^k A(x) = \sum_{i=k}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) - \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i+k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) - A(-x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$

Summation: If $b_i = \sum_{j=0}^i a_i$ then

$$B(x) = \frac{1}{1-x}A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j}\right) x^i.$$

God made the natural numbers: all the rest is the work of man. - Leopold Kronecker

Escher's Knot

Expansions:
$$\frac{1}{(1-x)^{n+1}} \ln \frac{1}{1-x} = \sum_{i=0}^{\infty} (H_{n+i} - H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{-n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^i, \qquad x^{\overline{n}} = \sum_{i=0}^{\infty} \begin{bmatrix} n \\ i \end{bmatrix} x^i, \qquad (e^x - 1)^n = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n!x^i}{i!}, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^i B_2}{(2i)!}, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{\phi(i)}{(2i)!}, \qquad x \cot x = \sum_{i=0}^{\infty} \frac{\phi(i)}{(2i)!}, \qquad x \cot x = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^x}, \qquad x \cot x = \sum_{i=1}^{\infty} \frac{\phi(i)}$$

$$\left(\frac{1}{x}\right)^{\frac{-n}{n}} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^{i},$$

$$(e^{x} - 1)^{n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n! x^{i}}{i!},$$

$$x \cot x = \sum_{i=0}^{\infty} \frac{(-4)^{i} B_{2i} x^{2i}}{(2i)!},$$

$$\frac{1) B_{2i} x^{2i-1}}{2i!},$$

$$\zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^{x}},$$

$$\frac{\zeta(x-1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^{x}},$$

Stieltjes Integration

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_a^b G(x) \, dF(x)$$

exists. If a < b < c then

$$\int_{a}^{c} G(x) \, dF(x) = \int_{a}^{b} G(x) \, dF(x) + \int_{b}^{c} G(x) \, dF(x).$$

If the integrals involved exis

$$\int_{a}^{b} \left(G(x) + H(x) \right) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d\left(F(x) + H(x) \right) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d\left(c \cdot F(x) \right) = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) - G(a)F(a) - \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x) F'(x) dx.$$

Cramer's Rule

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff $\det A \neq 0$. Let A_i be A with column i replaced by B. Then

$$x_i = \frac{\det A_i}{\det A}$$
.

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

- William Blake (The Marriage of Heaven and Hell)

 $00 \ \ 47 \ \ 18 \ \ 76 \ \ 29 \ \ 93 \ \ 85 \ \ 34 \ \ 61 \ \ 52$ $86 \ 11 \ 57 \ 28 \ 70 \ 39 \ 94 \ 45 \ 02 \ 63$ $59 \ 96 \ 81 \ 33 \ 07 \ 48 \ 72 \ 60 \ 24 \ 15$ $73 \ 69 \ 90 \ 82 \ 44 \ 17 \ 58 \ 01 \ 35 \ 26$ $68 \ 74 \ 09 \ 91 \ 83 \ 55 \ 27 \ 12 \ 46 \ 30$ $37\ \ 08\ \ 75\ \ 19\ \ 92\ \ 84\ \ 66\ \ 23\ \ 50\ \ 41$ $14 \ 25 \ 36 \ 40 \ 51 \ 62 \ 03 \ 77 \ 88 \ 99$ 21 32 43 54 65 06 10 89 97 78 42 53 64 05 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

$$n = F_{k_1} + F_{k_2} + \dots + F_{k_m},$$

where $k_i \ge k_{i+1} + 2$ for all i , $1 \le i < m$ and $k_m \ge 2$.

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_{i} = F_{i-1} + F_{i-2}, \quad F_{0} = F_{1} = 1,$$

$$F_{-i} = (-1)^{i-1} F_{i},$$

$$F_{i} = \frac{1}{\sqrt{5}} \left(\phi^{i} - \hat{\phi}^{i} \right),$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} - F_i^2 = (-1)^i.$$

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$

Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$