Key Structural Patterns for miRNA Family Reconstruction German Conference on Bioinformatics 2019

Cristian A. Velandia Huerto¹

Advisor: Prof. Dr. Peter F. Stadler¹
Collaborations: Ali Yazbeck¹

18.09.2019

¹ Inst.f.Informatik, Universität Leipzig, Leipzig, Germany.

0000

Context: Do you know miRNAs?

What is a miRNA?

- a class of small RNA (\sim 21-24 bases).
- Endogenous and single strand RNAs.
- Function: Regulation of gene expression (via Post-transcriptional gene silencing).
- Produced by microbes, sponges, metazoan, plants and viruses.
- Important role in development and physiology.
- Biogenesis pathway is different between plants and animals [Compartmentalized].

miRNA structure

Bartel David P, Cell, Volume 173, Issue 1, (2018)

- Trimming Pri-miRNA.
- Transport Pre-miRNA.
- Cleavage stem-loop.
- Release miRNA duplex.

Current approaches of detection

Experimental

- Northern blot.
- Microarrays.
- *In situ* hybridization.
- Amplification techniques.

- Homology detection.
- De novo detection.

- Due experimental inability to detect all candidates: Computational approaches.
- Comprehensive understanding of evolution and functional adaptations of miRNAs requires a Comprehensive annotation.

Velandia-Huerto, CA. et. al, Evolution and Phylogeny of MicroRNAs-Protocols, Pitfalls, and Problems. Submitted manuscript (2019).

Cristian A. Velandia-Huerto

Whole context of miRNAs

0000

Current miRNA Annotations

 Until now annotation of miRNA precursors are concentrated on three main databases: miRBase v.22 (38 589), RFAM v.14.1 (4 026) and MirGeneDB v.2 (10 076).

Current miRNA Annotations

- Until now annotation of miRNA precursors are concentrated on three main databases: miRBase v.22 (38 589), RFAM v.14.1 (4 026) and MirGeneDB v.2 (10 076).
- Classification criteria are not the same

miRBase: seed homology
RFAM: Funcional, evolutionary
conserved and evidence
Secondary structure.

MirGeneDB: Collection of expression data.

18.09.2019

4/14

Current miRNA Annotations

- Until now annotation of miRNA precursors are concentrated on three main databases: miRBase v.22 (38 589), RFAM v.14.1 (4 026) and MirGeneDB v.2 (10 076).
- Classification criteria are not the same

miRBase: seed homology

RFAM: Funcional, evolutionary conserved and evidence Secondary structure.

MirGeneDB: Collection of expression data.

Different publications prone that miRBase report high number of false positives¹. Despite this, is the most referenced miRNA database

Bastian Fromm, et. al. MirGeneDB 2.0: The metazoan microRNA complement, 2019, bioRxiv 258749; doi: https://doi.org/10.1101/258749

000

Current resolution on databases

Table: A brief comparison between source miRNA databases

Database	Advantages	Disadvantages	
miRBase	Annotation of mature sequences	Automatic family assigment based on seed	
RFAM	Multiple alignments precursors	No mature sequences	
miRGeneDB	Hand curated based on experimental data	Low number of species	

Based on the last evidence...

Does it is possible to design a tool to annotate automatically miRNA candidates taking into account the last approaches?

miRNAture

Complete Experimental Design

- 10 blast strategies
- 5289 sequences from 10 metazoa species
- 1100 Metazoan-specific Covariance-Models
- 21 subject Chordata genomes

miRNAture

Experimental Design

- 10 blast strategies
- 5289 sequences from 10 metazoa species
- Metazoan-specific Covariance-Models
- 21 subject Chordata genomes

Homology on 21 chordata genomes

Clade	Families (F)	Loci (L)	Species (S)	L/(S*F)	
Echinodermata	8	20	2	1.25	
Hemichordata	8	86	1	10.8	
Cephalochordata	12	110	2	4.58	
Tunicata	13	319	14	1.75	
Vertebrata	10	113	2	5.65	

Homology on 21 chordata genomes

Clade	Families (F)	Loci (L)	Species (S)	L/(S*F)
Echinodermata	9	38	2	2.11
Hemichordata	10	188	1	18.8
Cephalochordata	12	143	2	5.96
Tunicata	13	435	14	2.39
Vertebrata	10	197	2	9.85

18.09.2019

8/14

Homology on 21 chordata genomes

Applying miRNAture the range of new candidates is increased.

Homology on 21 chordata genomes

- Applying miRNAture the range of new candidates is increased.
- Also, with miRNAture the number of possible true positives is greater.

Homology on 21 chordata genomes

- Applying miRNAture the range of new candidates is increased.
- Also, with miRNAture the number of possible true positives is greater.
- Because of the increasing number of candidates, additional filters have to be considered to improve sensitivity.

Correction of mature positions from miRBAse

- 48885 mature sequences (miRBase v.21)
- 38589 recursor sequences (miRBase v.21)

MIRFix + miRNAture

RFAM Mature annotation

- 462 miRNA-specific CM from RFAM 14.1.
- ~ 69.05% (319) CM have at least one sequence represented on miRBase
- \sim 30.95% (143) mature prediction were based on the block detection

Annotation of mature sequences RFAM sequences

RFAM Families: 5074*

Mature annotation: 4964

Discarted: 59 Flipped: 51

let-7 (RF00027): 70

Mature annotation: 59

18.09.2019

11 / 14

Discarted: 2

Flipped: 3

Annotation of mature sequences RFAM sequences

- Now is possible to annotate the position of mature sequences on miRNA precursors
- Based on the mature sequence, the miRNA is discarted or accepted
- Precursors could be corrected, based on the position of their mature (s) sequence (s)

Annotation mature sequences mir-1497 (RF00953)

```
# STOCKHOLM 1.0
B1566819522#1
B15668081046#0
uggcuguuAGCCCUUGUAAAUCUCCAACACUAAGCUUGGUUacaagcuc-UGUUGAAAAUUGCAGGUGGUAAGGUGCUaucca
B15668081046#0
uggcuguuAGGCCAACCACUUGUGAAUCUCCAACACUCGGCUUUGUccacgacuuUGUUGAAGAAUUGCAAGAUUGCAAGGUGGUAGGUGCUuccaa
# STOCKHOLM 1.0
B1566819522#1
uggcuguauAGCGCAACCACUUGUGAAUCUCCAACACUCGGCUUUGUccacgacuuUGUUGAAGAAUUGCAAGAUUGCAAGGUGGUAUccaa
# STOCKHOLM 1.0
B1566819522#1
uggcuguauaAGCGUAACCUCUUGUAAAUCUCCAACACUUGGCUUUGUccacgacuuUGUUGAAGAAUUGCAAGGUGGUAUccaa
# STOCKHOLM 1.0
B1566819522#1
uggcuguauaAGCGUAACCUCUUGUAAAUCUCCAACACUUGGCUUUGUccacgacuuUGUUGAAGAAUUGCAAGGUGGUAAGGUGCUuccaa
# STOCKHOLM 1.0
B1566819522#1
uggcuguauaAGCGUAACCUCUUGUAAAUCUCCAACACUUGGCUUUGUCccacgacuuUGUUGAAAAAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGAUUGCAAGA
```

Mature inferred from conservation block, no reported mature sequences.

Specie	Loci	Annotation	
B. schlosseri	2	miRNAture	
C. robusta	1	RFAM	
C. savignyi	1	RFAM	
C. oblonga	3	miRNAture	
D. vexillum	1	miRNAture	
H. aurantium	1	miRNAture	
H. roretzi	1	miRNAture	
P. fumigata	2	miRNAture	
P. mammilata	1	${\tt miRNAture}$	
Total	13		

Using miRNAture was possible to detect 11 new candidates on Tunicata clade.

What about the position of their mature sequences?

Conclusions

Annotation and expansion of a canonical miRNA

Annotation mature sequences mir-1497 (RF00953)

Mature inferred from conservation block, no reported mature sequences.

Inclusion and validation of detected miRNAs by miRNAture

```
# STOCKHOLM 1.0
H1568379444#11
              CUC------UJUGUIGAAGAAUJIGCAGCUGUACAUCUCCAGCAUJUI--CUCG---G-------UJUGUJIGAAGAAUJIGCAGGIJGGUAGGUGCCGGAGA----
              uauu-----ACGUCACCUCCGGCAACGCUUCAACAUUA--UACGcuuG------UUUGUUGAAGAAUUGCAGGUGGUAGGUGGUAGAUUC--
H1568379806#10
H1568383613#13
               -----CGCAUCACCACCUGUACAUCUCCAGCAUUU - GUuqaa - G------UUUGUUGAAGAAUUGCAGGUGGUAGGUGC - -
H1568376381#12
              CUC------UUIGUUGAAGAAUUGCAGCUGUACAUCUCCAGCAUUU--CUCG---G------UUUGUUGAAGAAUUGCAGGUGGUAGGUGCCGGAGA----
              GCUGG-UAUAAGCGUAACCUCUUGUAAAUCUCCAACACUA--AGCUUGGUUACAGCUC-UGUUGAAGAAUUGCAGGUGGUAGGUGCUAUCC-----
B1566810522#1
B1566808146#0
               - CUGGCUGUUAGCGCAACCACUUGUGAAUCUCCAACACUC - - GGCUUUGUCCACGACUUUGUUGAAGAAUUGCAGGUGGUAGGUGCUUUCA -
                                                                 -- UUUGUUGAAGAAUUGCAGGUGGUAGGUGUUUAUGC -- -
H1568382511#3
              UUG-----AAACAU<mark>UACCUCCGGCAGCGCUUCAGCAU</mark>UU--GCCAGU-----
H1568384316#2
              UUG-----UUGUUGAAGAUUGCAGGUGGUUCAGCAUUU--GUCAGU-------UUUGUUGAAGAAUUGCAGGUGGUAGGUGUUUAUGC---
H1568377768#5
              GCUGG-UAUAAGCGUAACCUCUUGUAAAUCUCCAACACUA--AGCUUGGUUACAGCUC-UGUUGAAGAAUUGCAGGUGGUAGGUGCUAUCCA
H1568375669#4
               - CUGGCUGUUAGCGCAACCACUUGUGAAUCUCCAACACUU- - GGCUUUGUCCACGACUUUGUUGAAGAAUUGCAGGUGGUAGGUGCUUUCAagccg
H1568380600#7
               -----UCUGUGCGUUACCAUCAGCAACCCUUCAGCAUUG--AACG---G-------UUUGUUGAAGAAUUGCAGGUGGUĀGGCGCCACAAA----
H1568375805#6
H1568379608#9
              C-----UCAGCACCACUAUCGGCAAGUCUUCAGCAagauaCUUG---G------UAUGUUGAAGAAUUGCAGGUGGUAGGUGCUUUgu-----
              -----UCUGUGCGU<mark>UACCAUCAGCAACCCUUCAGCAU</mark>UG--AACG---G-------UUUGUUGAAGAAUUGCAGGUGGUAGGCGCCACAAA----
H1568383969#8
#=GC SS cons
```

Annotation and expansion of a canonical miRNA

Inclusion and validation of detected miRNAs by miRNAture

# STOCKHOLM 1.0	
H1568379444#11	CUCCCGCAUUACCACCUGUACAUCUCCAGCAUUUCUCGG
H1568379886#18	uauuACGUCACCUCCGGCAACGCUUCAACAUUAUACGcuuGUUUGUUGAAGAAUUGCAGGUGGUAGGUGUagauac
H1568383613#13	CGCAUCACCACCUGUACAUCUCCAGCAUUUGUugaa-GUUUGUUGAAGAAUUGCAGGUGGUAGGUGC
H1568376381#12	CUCCCGCAU <mark>UACCACCUGUACAUCUCCAGCAU</mark> UUCUCGGU <mark>UUGUUGAAGAAUUGCAGGUGGUA</mark> GGUGCCGGAGA
B1566810522#1	GCUGG-UAUAAGCGUAACCUCUUGUAAAUCUCCAACACUAAGCUUGGUUACAGCUC-UGUUGAAGAAUUGCAGGUGGUAGGUAGCUAUCC
B1566808146#0	- CUGGCUGUUAGCGCAACCACUUGUGAAUCUCCAACACUC - GGCUUUGUCCACGACUUUGUUGAAGAAUUGCAGGUGGUAGGUGCUUUCA
H1568382511#3	UUGAAACAU <mark>UACCUCCGGCAGCGCUUCAGCAU</mark> UUGCCAGUU <mark>UUGUUGAAGAAUUGCAGGUGGUA</mark> GGUGUUUAUGC
H1568384316#2	UUGAAACAU <mark>UACCUCCGGCAGCGCUUCAGCAU</mark> UUGUCAGUUUUGUUGAAGAAUUGCAGGUGGUAGGUGUUUAUGC
H1568377768#5	GCUGG-UAUAAGCGUAACCUCUUGUAAAUCUCCAACACUAAGCUUGGUUACAGCUC-UGUUGAAGAAUUGCAGGUGGUAGCUAUCCa
H1568375669#4	- CUGGCUGUUAGCGCAACCACUUGUGAAUCUCCAACACUU GGCUUUGUCCACGACUUUGUUGAAGAAUUGCAGGUGGUAGGUGCUUUCAagc
H1568380680#7	UCUGUGCGUUACCAUCAGCAUCAGCAUUCAGCAUUGAACGGUUUGUUGAAGAAUUGCAGGUGGUAGGCGCCACAAA
H1568375805#6	UCUGUGCGUUACCAUCAGCAACCCUUCAGCAUUGAACGGUUUGUUGAAGAAUUGCAGGUGGUAGGCGCCACAAA
H1568379688#9	CUCAGCACCACUAUCGGCAAGUCUUCAGCAagauaCUUGGUAUGUUGAAGAAUUGCAGGUGGUAGGUGCUUUgu
H1568383969#8	UCUGUGCGUUACCAUCAGCAACCCUUCAGCAUUGAACGGUUUGUUGAAGAAUUGCAGGUGGUAGGCGCCACAAA
#=GC SS cons	((((,(((,((,((,((,(,(,(,(,(,(,(,(

Specie	Loci	Annotation	tation Validated	
B. schlosseri	2	miRNAture	2	
C. robusta	1	RFAM	1	
C. savignyi	1	RFAM	1	
C. oblonga	3	miRNAture	3	
D. vexillum	1	miRNAture	1	
H. aurantium	1	miRNAture	0	
H. roretzi	1	miRNAture	1	
P. fumigata	2	miRNAture	2	
P. mammilata	1	miRNAture	1	
Total	13		12	

RF00953

Conclusions

Based on the miRNAture + MIRFix combination

- An improved miRNA annotation could be reached combining different homology searches + SS validation. As implemented on miRNAture.
- Annotation of miR and miR* (matures) sequences has to be considered when a *canonical* miRNA is going to be annotated.
- The combination of the approaches opens the door for create new multiple alignments, new covariance models and even scale for a new way to classify miRNA families.

Thanks!, Vielen Dank!, Obrigado!, ¡Gracias!

Ali Yazbeck

Instituto de Biociências

Getting DNA, RNA data

CM re-definition scores

