title: "Assign3" author: "Chen Ming" date: "May 20th" output: pdf_document: default html_document: default —

Part 1

1.1. Find descriptive statistics of the data and summarize them into a table

The table is constructed as follows.

##		Graduation.Rate	Number.of	.Classes	Under.2	20 Student	.Faculty.Ratio
##	1	85				39	13
##	2	79				68	8
	3	93				60	8
	4	85				65	3
	5	75				67	10
	6	72				52	8
	7	89				45	12
	8	90				69	7
	9	91				72	13
	10	94				61	10
##	11	92				68	8
##	12	84				65	7
##	13	91 97				54	10
## ##	14 15	89				73 64	8 9
##	16	81				55 55	11
##	17	92				65	6
##	18	72				63	13
	19	90				66	8
	20	80				32	19
##		95				68	5
##		92				62	8
##		92				69	7
##		87				67	9
##		72				56	12
##		83				58	17
##	27	74			3	32	19
##	28	74			4	42	20
##		78			4	41	18
##		80				48	19
##		70				45	20
##		84				65	4
##		67				31	23
##		77				29	15
##		83				51	15
##		82				40	16
##		94				53	13
##		90				65	7
##		76				63	10
##		70				53	13
##		66				39	21
	42	92				44	13
##	43	70				37	12

##	44	73	37 13
##	45	82	68 9
##	46	82	59 11
##		86	73 7
##	48	94	77 7
##		Alumni.Giving.Rate	
##		25	
##		33	
##		40	
##		46	
##		28	
##		31	
##		27	
## ##		31	
##		35 53	
##		45	
##		37	
##		29	
##		46	
##		27	
##		40	
##		44	
##	18	13	
##	19	30	
##		21	
##		67	
##		40	
##		34	
##		29	
##		17	
##		18	
##		7 9	
## ##		13	
##		8	
##		12	
##		36	
##		19	
##		23	
##	35	13	
##	36	26	
##		49	
##		41	
##		23	
##		22	
##		13	
##		28	
##		12	
##		13	
##		31	
##		38	
##		33 50	
##	40	50	

1.2. Use graphical analysis to investigate the relationship between Alumni Giving Rate and each of the other variables

Scatter plot is demonstrated as follows. In the first and the third graphs, we can find that points cluster closely around fitted lines. While in the second graph, points seem to drift away from fitted line. From the graphical analysis, we can reasonably assume that alumni giving rate is more closely related to both graduation rate and faculty rate than number of classes under 20.

Number.of.Classes.Under.20

Giving Rates vs. Student&Faculty.Rati

1.3.Develop a multiple linear regression model that could be used to predict the Alumni Giving Rate using the data provided

We can use function **stepAIC** to construct the best multi-linear regression model from a set of candidate variables. The experiment result indicates that, AIC value becomes smaller when the variable "Number of classes under 20" is deleted from the regression model. Since smaller AIC value means better fitting effect, we should construct a regression model with "Graduation Rates" and "Student & Faculty Ratios" as independent variables.

```
## Start: AIC=198.65
## Alumni.Giving.Rate ~ Graduation.Rate + Number.of.Classes.Under.20 +
##
       Student.Faculty.Ratio
##
##
                                 Df Sum of Sq
                                                 RSS
                                                         AIC
##
   - Number.of.Classes.Under.20
                                         2.52
                                              2550.5 196.70
                                  1
  <none>
                                               2547.9 198.65
   - Student.Faculty.Ratio
                                       550.17 3098.1 206.03
                                  1
  - Graduation.Rate
                                      1176.92 3724.9 214.88
##
## Step: AIC=196.7
```

```
## Alumni.Giving.Rate ~ Graduation.Rate + Student.Faculty.Ratio
##
                           Df Sum of Sq
##
                                            RSS
                                                   AIC
## <none>
                                         2550.5 196.70
## - Student.Faculty.Ratio
                            1
                                  1088.5 3639.0 211.76
## - Graduation.Rate
                                  1260.9 3811.4 213.98
                             1
##
## Call:
## lm(formula = Alumni.Giving.Rate ~ Graduation.Rate + Student.Faculty.Ratio,
##
       data = newdataframe)
##
  Coefficients:
##
             (Intercept)
                                 Graduation.Rate
                                                  Student.Faculty.Ratio
##
                -19.1063
                                          0.7557
                                                                 -1.2460
##
## Call:
  lm(formula = Alumni.Giving.Rate ~ Graduation.Rate + Student.Faculty.Ratio,
##
       data = newdataframe)
##
##
  Coefficients:
             (Intercept)
                                 Graduation.Rate
##
                                                  Student.Faculty.Ratio
                -19.1063
                                          0.7557
                                                                 -1.2460
##
##
## Call:
## lm(formula = Alumni.Giving.Rate ~ Graduation.Rate + Student.Faculty.Ratio,
##
       data = newdataframe)
##
##
  Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
##
   -11.9304 -6.1594 -0.5521
                                 3.5910
##
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
                                               -1.229
                                                         0.226
## (Intercept)
                         -19.1063
                                      15.5501
                           0.7557
                                       0.1602
                                                4.717 2.35e-05 ***
## Graduation.Rate
## Student.Faculty.Ratio
                          -1.2460
                                       0.2843
                                               -4.382 6.95e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 7.528 on 45 degrees of freedom
## Multiple R-squared: 0.6996, Adjusted R-squared: 0.6863
## F-statistic: 52.41 on 2 and 45 DF, p-value: 1.765e-12
```

1.4. Check the model assumptions

In Q-Q graph, points closely cluster around the line, which proves that the assumption of **normality** is satisfied; there is no reason to assume that graduation ratio and faculty to student ratio is related. Therefore, the assumption of **independence** is satisfied; from graph one, we can observe that residuals is no systematic relationship between residuals and the predicted values. The model well captures systematic variance in the data, thereby proves that the assumption of **Linearity** is satisfied; the Scale-Location graph shows that the points form a random band around the horizontal line. Hence the assumption of **Homoscedasticity** is satisfied.

Part 2

2.1. Calculate the mean of Fertility and partition the provinces into two groups

The mean of fertility in stated provinces is 70.14255. Group1 and group2 is illustrated as follows.

[1] 70.14255

##		Fertility	Agriculture	Examination	Education	Catholic
##	Courtelary	80.2	17.0	15	12	9.96
##	Delemont	83.1	45.1	6	9	84.84
##	${\tt Franches-Mnt}$	92.5	39.7	5	5	93.40
##	Moutier	85.8	36.5	12	7	33.77
##	Neuveville	76.9	43.5	17	15	5.16
##	Porrentruy	76.1	35.3	9	7	90.57
##	Broye	83.8	70.2	16	7	92.85
##	Glane	92.4	67.8	14	8	97.16
##	Gruyere	82.4	53.3	12	7	97.67
##	Sarine	82.9	45.2	16	13	91.38
##	Veveyse	87.1	64.5	14	6	98.61
##	Grandson	71.7	34.0	17	8	3.30
##	Oron	72.5	71.2	12	1	2.40
##	Payerne	74.2	58.1	14	8	5.23
##	Paysd'enhaut	72.0	63.5	6	3	2.56
##	Conthey	75.5	85.9	3	2	99.71
##	Herens	77.3	89.7	5	2	100.00
##	Martigwy	70.5	78.2	12	6	98.96

шш	M + 1	70.4	64.0	7	2	00.00
	Monthey	79.4	64.9	7	3	98.22
	Sierre	92.2	84.6	3		99.46 96.83
	Sion	79.3	63.1	13	13	
	Boudry	70.4	38.4	26	12	5.62
	Le Locle	72.7	16.7	22	13	11.22
	Val de Ruz	77.6	37.6	. 15	7	4.97
##	~	Infant.Mort				
	Courtelary		22.2	1		
	Delemont		22.2	1		
	Franches-Mnt		20.2	1		
	Moutier		20.3	1		
	Neuveville		20.6	1		
##	Porrentruy		26.6	1		
	Broye		23.6	1		
##	Glane		24.9	1		
##	Gruyere		21.0	1		
##	Sarine		24.4	1		
##	Veveyse		24.5	1		
##	Grandson		20.0	1		
##	Oron		21.0	1		
##	Payerne		23.8	1		
##	Paysd'enhaut		18.0	1		
##	Conthey		15.1	1		
##	Herens		18.3	1		
##	Martigwy		19.4	1		
##	Monthey		20.2	1		
##	Sierre		16.3	1		
##	Sion		18.1	1		
##	Boudry		20.3	1		
	Le Locle		18.9	1		
##	Val de Ruz		20.0	1		
шш		P+:1:+ A		F	P4+	0-+1-1:-
##	A : 7 -	-	_	Examination		
	Aigle	64.1	62.0	21	12	8.52
	Aubonne	66.9	67.5	14	7	2.27
	Avenches	68.9	60.7	19	12	4.43
	Cossonay	61.7	69.3	22	5	2.82
	Echallens	68.3	72.6	18	2	24.20
	Lausanne	55.7	19.4	26	28	12.11
	La Vallee	54.3	15.2	31	20	2.15
	Lavaux	65.1	73.0	19	9	2.84
	Morges	65.5	59.8	22	10	5.23
	Moudon	65.0	55.1	14	3	4.52
	Nyone	56.6	50.9	22	12	15.14
	Orbe	57.4	54.1	20	6	4.20
	Rolle	60.5	60.8	16	10	7.72
	Vevey	58.3	26.8	25	19	18.46
	Yverdon	65.4	49.5	15	8	6.10
	Entremont	69.3	84.9	7	6	99.68
	St Maurice	65.0	75.9	9	9	99.06
	La Chauxdfnd	65.7	7.7	29	11	13.79
##	Neuchatel	64.4	17.6	35	32	16.92
##	${\tt ValdeTravers}$	67.6	18.7	25	7	8.65
##	V. De Geneve	35.0	1.2	37	53	42.34

```
## Rive Droite
                      44.7
                                  46.6
                                                 16
                                                           29
                                                                  50.43
## Rive Gauche
                      42.8
                                  27.7
                                                 22
                                                            29
                                                                  58.33
##
                 Infant.Mortality ynprovinces
## Aigle
                             16.5
                             19.1
## Aubonne
                                             0
## Avenches
                             22.7
                                             0
## Cossonay
                             18.7
                                             0
## Echallens
                             21.2
                                             0
## Lausanne
                             20.2
                                             0
## La Vallee
                             10.8
                                             0
## Lavaux
                             20.0
                                             0
## Morges
                             18.0
                                             0
## Moudon
                             22.4
                                             0
## Nyone
                                             0
                             16.7
## Orbe
                             15.3
                                             0
## Rolle
                             16.3
                                             0
## Vevey
                             20.9
                                             0
## Yverdon
                             22.5
                                             0
## Entremont
                                             0
                             19.8
## St Maurice
                             17.8
                                             0
## La Chauxdfnd
                             20.5
                                             0
## Neuchatel
                             23.0
                                             0
## ValdeTravers
                             19.5
                                             0
## V. De Geneve
                             18.0
                                             0
## Rive Droite
                                             0
                             18.2
## Rive Gauche
                             19.3
                                             0
         [,1]
##
   [1,]
##
            1
##
  [2,]
## [3,]
            1
## [4,]
            1
## [5,]
            1
## [6,]
            1
## [7,]
            1
## [8,]
            1
## [9,]
            1
## [10,]
            1
## [11,]
            1
## [12,]
            0
## [13,]
            0
## [14,]
            0
## [15,]
            0
## [16,]
            0
## [17,]
            1
## [18,]
            0
## [19,]
            0
## [20,]
            0
## [21,]
## [22,]
            0
## [23,]
            0
## [24,]
            0
## [25,]
            1
## [26,]
            1
```

```
## [27,]
             1
## [28,]
             0
## [29,]
             0
## [30,]
             0
## [31,]
             1
## [32,]
             0
## [33.]
             1
## [34,]
             1
## [35,]
             1
## [36,]
             0
## [37,]
             1
## [38,]
             1
## [39,]
             1
## [40,]
             0
## [41,]
             1
## [42,]
## [43,]
             1
## [44,]
## [45,]
             0
## [46,]
             0
## [47,]
```

2.2. Use logistic regression to show the relationship between y and the other variables and then interpret the regression results

The experiment result indicates that fertility in selected provinces is significantly related to **Agriculture** and **Examination** under significance level of 0.05. It implies that fetility is closely related to agriculture situation and examination circumstance in the provinces.

```
##
## Call:
## glm(formula = y ~ Agriculture + Examination + Education + Catholic +
       Infant.Mortality, family = binomial(), data = swiss)
##
## Deviance Residuals:
##
       Min
                   1Q
                         Median
                                       3Q
                                                Max
## -1.85403 -0.45960
                        0.03648
                                  0.55548
                                            2.32911
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     4.82826
                                5.25607
                                          0.919
                                                  0.3583
                                         -2.397
## Agriculture
                    -0.09615
                                0.04011
                                                  0.0165 *
## Examination
                    -0.32116
                                0.13844
                                         -2.320
                                                  0.0203 *
## Education
                    -0.12078
                                0.08610
                                         -1.403
                                                  0.1607
                     0.02078
## Catholic
                                0.01376
                                          1.509
                                                  0.1312
## Infant.Mortality 0.29078
                                0.21051
                                          1.381
                                                  0.1672
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 65.135 on 46 degrees of freedom
## Residual deviance: 32.887 on 41 degrees of freedom
## AIC: 44.887
##
```

2.3. Choose a model selection criterion, for instances, AIC, BIC, adjusted R square or Cp, and use it to select a reasonable model

We can construct the best multi-linear regression model from a set of candidate variables. Under AIC criterion, regression model with smaller AIC value is considered better. The experiment result indicates that AIC value gets smaller when the variables "Catholic" and "Education" are deleted from the regression model. Hence we should construct a regression model with "Infant.Mortality", "Agriculture" and "Examination" as independent variables.

```
## Start: AIC=-84.75
## y ~ Agriculture + Examination + Education + Catholic + Infant.Mortality
##
##
                      Df Sum of Sq
                                       RSS
                                               ATC
                           0.25537 6.2545 -84.792
## - Education
## - Infant.Mortality 1
                           0.25579 6.2549 -84.789
## <none>
                                    5.9991 -84.751
## - Catholic
                       1
                           0.40468 6.4038 -83.683
## - Examination
                       1
                           0.93170 6.9308 -79.966
## - Agriculture
                           1.06427 7.0634 -79.075
                       1
##
## Step: AIC=-84.79
## y ~ Agriculture + Examination + Catholic + Infant.Mortality
##
##
                                       RSS
                      Df Sum of Sq
                                               AIC
## - Catholic
                           0.20534 6.4598 -85.274
## <none>
                                    6.2545 -84.792
## - Infant.Mortality 1
                           0.36465 6.6191 -84.129
## - Agriculture
                           0.82599 7.0805 -80.962
                       1
## - Examination
                       1
                           2.43417 8.6887 -71.342
##
## Step: AIC=-85.27
## y ~ Agriculture + Examination + Infant.Mortality
##
                      Df Sum of Sq
                                        RSS
                                                ATC
## <none>
                                    6.4598 -85.274
## - Infant.Mortality
                      1
                            0.4546 6.9144 -84.077
## - Agriculture
                       1
                            0.7943 7.2542 -81.823
## - Examination
                       1
                            3.7161 10.1760 -65.916
##
## lm(formula = y ~ Agriculture + Examination + Infant.Mortality,
##
       data = swiss)
##
## Coefficients:
##
        (Intercept)
                          Agriculture
                                             Examination Infant.Mortality
##
            1.05056
                             -0.00811
                                                -0.05017
                                                                    0.03501
##
## Call:
## lm(formula = y ~ Agriculture + Examination + Infant.Mortality,
##
       data = swiss)
##
## Coefficients:
```