Time series analysis

Dr Emanuele Giorgi Lancaster University e.giorgi@lancaster.ac.uk

Toowoomba 21-25 October 2019

Overview

- Autocorrelation.
- Linear and harmonic regression models, detecting residual autocorrelation.
- ▶ Auto-regressive models for discrete time series models.
- Gaussian process models for continuous time series models.

A meteorological time series

- ► maximum daily temperatures (degrees C) at Bailrigg (Lancaster) field-station, September 1995 to August 1996
- ▶ note that an unusually cold Christmas 1995 was followed by a mild period in January-February

Bailrigg temperature data: points for discussion

- what are the main features of the data?
- ▶ how did I fit the smooth curve to the data?
- what features are and are not explained by the fitted curve?

A harmonic regression model

$$Y(t) = \mu + \alpha \cos(2\pi t/p + \phi) + \text{residual}$$

= $\mu + \beta_1 \cos(2\pi t/p) + \beta_2 \sin(2\pi t/p) + \text{residual}$

- $\mu = \text{overall mean value (of time series } Y(t))$
- p = period
- ightharpoonup lpha = amplitude
- $ightharpoonup \phi = \mathsf{phase}$

Usually, the period is known, but the mean, amplitude and phase are not

Use the first form of the model,

$$Y(t) = \mu + \alpha \cos(2\pi t/p + \phi) + \text{residual}$$

Use the first form of the model,

$$Y(t) = \mu + \alpha \cos(2\pi t/p + \phi) + \text{residual}$$

Use the first form of the model,

$$Y(t) = \mu + \alpha \cos(2\pi t/p + \phi) + \text{residual}$$

Use the first form of the model,

$$Y(t) = \mu + \alpha \cos(2\pi t/p + \phi) + \text{residual}$$

Use the first form of the model,

$$Y(t) = \mu + \alpha \cos(2\pi t/p + \phi) + \text{residual}$$

Use the first form of the model,

$$Y(t) = \mu + \alpha \cos(2\pi t/p + \phi) + \text{residual}$$

Use the first form of the model,

$$Y(t) = \mu + \alpha \cos(2\pi t/p + \phi) + \text{residual}$$

Use the first form of the model,

$$Y(t) = \mu + \alpha \cos(2\pi t/p + \phi) + \text{residual}$$

Use the first form of the model,

$$Y(t) = \mu + \alpha \cos(2\pi t/p + \phi) + \text{residual}$$

Use the first form of the model,

$$Y(t) = \mu + \alpha \cos(2\pi t/p + \phi) + \text{residual}$$

Lifting, stretching, shifting

$$Y(t) = \mu + \alpha \cos(2\pi t/p + \phi) + \text{residual}$$

► Lifting

 μ : adjust to match observed and modelled average value

Stretching

 α : adjust to match observed and modelled range

► Shifting

 ϕ : adjust to match times of observed and modelled peak

Fitting the model 🖳

Use the second form of the model,

$$Y(t) = \mu + \beta_1 \cos(2\pi t/p) + \beta_2 \sin(2\pi t/p) + \text{residual}$$

Note that the following quantities are known, i.e. they can be calculated without having to estimate anything

- $> x_1(t) = \cos(2\pi t/p)$
- $> x_2(t) = \sin(2\pi t/p)$

Re-write the model as a linear model.

$$Y = \mu + \beta_1 x_1 + \beta_2 x_2$$

After fitting, amplitude and phase can be recovered using

$$\alpha = \sqrt{\beta_1^2 + \beta_2^2}$$
 $\phi = \tan^{-1}(\beta_2/\beta_1)$

Autocorrelation

- relationship between today's and yesterday's temperature?
- relationship between today's and yesterday's residual?

▶ how and why are the two relationships different?

Autocorrelation (2)

How does the relationship between residuals today and k days ago change as k increases?

Autocorrelation (3)

- ▶ lag-k autocorrelation is the correlation between pairs of values from the same time series k time-units apart
- correlogram is a plot of lag-k autocorrelation against k

- ▶ dashed lines at $\pm 2/\sqrt{n}$ are pointwise 95% limits for uncorrelated residuals
- but overall pattern is more important than individual numerical values

Exercise

Imagine that you have data on daily maximum temperatures for several years, up to today.

- 1. How would make a forecast of:
 - tomorrow's temperature?
 - ▶ the temperature one month from now?
- 2. In what ways are your two answers different, and why?

Time series models and random effects

$$Y(t) = \alpha + \beta_1 \cos(2\pi t/p) + \beta_2 \sin(2\pi t/p) + \text{residual}(t)$$

1. Model consists of a time-varying mean, also called the trend,

$$\mu(t) = \alpha + \beta_1 \cos(2\pi t/p) + \beta_2 \sin(2\pi t/p)$$

and stochastic variation, residual(t), about the trend.

2. Decompose the residual into two terms:

$$residual(t) = S(t) + Z_t$$

- $ightharpoonup Z_t$ uncorrelated N(0, τ^2) (noise/measurement error)

Modelling autocorrelation structure

Time: is a continuous variable in nature, but typically treated as discrete in text-books on time series analysis.

Sampling or aggregation?

$$S(t): t\geq 0$$
 $o Y_t=S(t): t=1,2,...$ sampling
$$o Y_t=\int_t^{t+1}S(u)du: t=1,2,...$$
 aggregation

Interpretation of the model parameters differs under the two scenarios – we will give an example later

Stationarity and the ARMA class of discrete-time processes

$$Y_t: t = 0, 1, ...$$

- ► To keep things simple, assume:
 - any non-zero mean has been removed, so $E[Y_t] = 0$
 - ▶ Y_t is Normally distributed (this is less important)
- Stationarity: $Var(Y_t) = \sigma^2$ $Corr(Y_t, Y_{t-u}) = \rho(u)$
- ▶ The ARMA(p,q) model

$$Y_{t} = \sum_{i=1}^{p} \alpha_{i} Y_{t-i} + \sum_{j=0}^{q} Z_{t-q}$$

where $Z_t \sim \mathrm{N}(0, \tau^2)$ are mutually independent (white noise)

Example: an exponentially correlated process

Notation: $S(t) \sim \text{SGP}(\mu, \sigma^2, \rho(u))$

One of many possible models for the correlation structure is $\rho(u)=\exp(-|u|/\phi):\phi>0$

An exponentially correlated process (continued)

$$S(t) \sim \text{SGP}(\mu, \sigma^2, \rho(u))$$
 $\rho(u) = \exp(-|u|/\phi)$

Discrete-time counterparts?

► Sampled version

$$Y_t = S(t) : t = 1, 2, ...$$

equivalent to AR(1)

$$Y_t = \alpha Y_{t-1} + Z_t$$
 $\alpha = \exp(-1/\phi)$

► Aggregated version

$$Y_t = \int_t^{t+1} S(u) du$$

equivalent to ARMA(1,1)

$$Y_t = \alpha Y_{t-1} + Z_t + \beta Z_{t-1}$$
 $\alpha = \exp(-1/\phi)$

Example: modelling reported plague cases in Madagascar from 2000 to 2008

