BATTELLE-INSTITUT E V FRANKFURT AM MAIN (GERMANY F R) F/G 2/6 INVESTIGATION INTO A METHODOLOGY OF ESTABLISHING AN AREAL TERRA--ETC(U) DEC 79 P JESSEL, W KOEPPEL, K - MELZER DAJA37-79-C-0242 BF-R-64,056-2 NL AD-A090 333 UNCLASSIFIED 1 104 2 AF: A090-853

AD A 090333

Report

DAJA 37-79-C-0242

Investigation into a Methodology of Establishing an Areal Terrain-Data Base

Phase III

INC FILE COPY

BF-R-64.058-2

80 9 5 026

P

INVESTIGATION INTO A METHODOLOGY

OF ESTABLISHING AN AREAL

TERRAIN-DATA BASE.

PHASE III
(Report No. 2)

Final Technical Report

by

P./Jessl

,) W./Koppel

K. 2/

December 1979

PELECTE 9 1980

EUROPEAN RESEARCH OFFICE

United States Army

London

England

CONTRACT NO.: DA JA 37-79-C-0242

Battelle-Institut e.V.

Am Roemerhof 35
6000 Frankfurt am Main 90

1F-1- 11.1

Circulation of this Document Is Restricted to Officials of Defense Ministries or Defense Departments of the U.S. and the FRG and their Contractors. Other Requests for this Document Must be Forwarded to ERO London.

Approved for public release;
Distribution Unlimited

BATTELLE INSTITUTEA FRANKLURT AM MAIN

CONTENTS

		Page
FOREWORD		1
ABSTRACT		2
PART I:	INTRODUCTION	3
	Background	3
	Purpose and Scope	3
PART II:	SELECTION OF STUDY AREA	5
	Area Investigated	5
	Forest Ownership	5
	Management Scheme	5
	Species Encountered	6
	Bedrock and Surface Soil Types	7
PART III:	STATISTICAL VEGETATION DATA	9
	Stem Size-Spacing Relations for Dominant FRG	
	Forest Species	9
	Stand Tables	9
	Locality Classes and Methods of Thinning	10
PART IV:	CURRENT FORESTRY INVENTORY DATA	11
	Selection of Sites	11
	Mixed Stands	11
	Forest Office Inventory Data	12
	Testing of Statistical Data by Current Inventory	
	Data	13
PART V:	FIELD DATA SAMPLING	15
	Solection of Sites and Data Acquisition	15

		Page
	Comparison of Statistical Stand Tables,	
	Current Inventory Data and Field Data	15
	Vegetation Analysis	17
PART VI:	AIR PHOTO EVALUATION	24
	Prediction of Parameters for Some Sites Selected .	24
	Evaluation of Methodology	25
PART VII:	CONCLUSIONS AND RECOMMENDATIONS	26
	Conclusions	26
	Recommendations	26
LITERATURE	CITED	28
FIGURES 1 t	to 34	
TABLES 1 t	co 4	
PHOTOGRAPHS	5 1 to 4	
APPENDICES	A to K	

4

List of Figures

- Fig. 1 Area of Investigation Within the FRG
- Fig. 2 Forest Ownership Conditions for the State of Hesse
- Fig. 3 Management Scheme for the State of Hesse
- Fig. 4 Forest Ownership Conditions Within the Area Investigated
- Fig. 5 Forestry Office Areas for the Area Investigated
- Fig. 6 Dominant German Species and Associated or Sub-Species
- Fig. 7 Distribution of Species Associated with Each Dominant Species for the Area Investigated
- Fig. 8 Distribution of the Dominant Species for the Area Investigated
- Fig. 9 Distribution of the Dominant Species for the Entire FRG
- Fig. 10a Types of Bedrock Within the Study Area
- Fig. 10b Surface Soil Types Within the Study Area
- Fig. 11 Distribution of Species Within the Lauterbach Quad L5322
- Fig. 12 Distribution of Species Within the Hünfeld Quad L5324
- Fig. 13a Distribution of Bedrock Within the Management Area of the Hünfeld Forestry Office
- Fig. 13b Distribution of Species Within the Management Area of the Hünfeld Forestry Office
- Fig. 14a Distribution of Bedrock Within the Management Area of the Lauterbach Forstry Office
- Fig. 14b Distribution of Species Within the Management Area of the Lauterbach Forestry Office
- Fig. 15a German Forestry Management Book Data Sheet (in German)
- Fig. 15b German Forestry Management Book Data Sheet (Translation)
- Fig. 16 Site Conditions and Stand Information from Forestry Office Inventory Data
- Fig. 17 Forestry Classification of Site Conditions
- Fig. 18 Location of Sites Within the Lauterbach Quad L5322

- Fig. 19 Location of Sites Within the Hünfeld Quad L5324
- Fig. 20 Comparison of Inventory Data to Average Height-Age Stand Table Data for Oak
- Fig. 21 Comparison of Inventory Data to Average Height-Age Stand Table Data for Beech
- Fig. 22 Comparison of Inventory Data to Average Height-Age Stand Table Data for Pine
- Fig. 23 Comparison of Inventory Data to Average Height-Age Stand Table Data for Spruce
- Fig. 24 UTM-Coordinates of the Field Sites Visited
- Fig. 25 Comparison of Inventory Data and Field Data to Minimum Stem Spacing-Average Stem Diameter Stand Table Curves for Oak
- Fig. 26 Comparison of Inventory Data and Field Data to Minimum Stem Spacing-Average Stem Diameter Stand Table Curves for Beech
- Fig. 27 Comparison of Inventory Data and Field Data to Minimum Stem Spacing-Average Stem Diameter Stand Table Curves for Pine
- Fig. 28 Comparison of Inventory Data and Field Data to Minimum Stem Spacing-Average Stem Diameter Stand Table Curves for Spruce
- Fig. 29 Minimum Stem Spacing-Average Stem Diameter Stand Table Curves for Deciduous Species
- Fig. 30 Minimum Stem Spacing-Average Stem Diameter Stand Table Curves for Coniferous Species
- Fig. 31 Summary of Current Inventory Data, Measured Data and Interpolated Data for Selected Sites
- Fig. 32 Limestone Bedrock Area Investigated Within the Lauter-bach Quad L5322
- Fig. 33 Prediction of Site Characteristics by Air Photo Evaluation for 6 Compartments Within the Management Area of the Grebenau Forestry Office
- Fig. 34 Prediction of Site Characteristics by Air Photo Evaluation for 4 Compartments Within the Management Area of the Burghaun Forestry Office

List of Tables

Table	1.1	Statistical	Stand	Table	Data	for	Oak:	Average	Height
Table	1.2	Statistical Diameter	Stand	Table	Data	for	Oak:	Average	Stem
Table	1.3	Statistical Spacing	Stand	Table	DAta	for	Oak:	Minimum	Stem
Table	2.1	Statistical Height	Stand	Table	Data	for	Beech	n: Avera	ge
Table	2.2	Statistical Diameter	Stand	Table	Data	for	Beech	n: Avera	ge Stem
Table	2.3	Statistical Spacing	Stand	Table	Data	for	Beech	n: Minim	um Stem
Table	3.1	Statistical	Stand	Table	Data	for	Pine	: Averag	e Heigh
Table	3.2	Statistical Diameter	Stand	Table	Data	for	Pine	Averag	^e Stem
Table	3.3	Statistical Spacing	Stand	Table	Data	for	Pine	: Minimu	m Stem
Table	4.1	Statistical Height	Stand	Table	Data	for	Sprud	ce: Aver	age
Table	4.2	Statistical Stem Diamete		Table	Data	for	Sprud	ce: Aver	a ge
Table	4.3	Statistical Stem Spacing		Table	Data	for	Sprud	ce: Mini	mum

List of Photos

Photo 1	Typical Beech Understory Associated with Beech Overstory
Photo 2	Beech Stocking Area Associated with Limestone Bedrock
Photo 3	Forest Compartments Investigated Within the Grebenau Forest Office Area
Photo 4	Forest Compartments Investigated Within the Burghaun Forest Office Area

List of Appendices +)

Appendix A: Forestry Office Inventory Data for 90 Sites

Selected

Appendix B: Vegetation Field Data for 13 Sites Selected

Appendix C: Geological Survey Maps (Scale = 1:300,000)

of Hesse

Appendix D: Soils Survey Map (Scale=1:300,000) of Hesse

Appendix E: Hessian Forest Office Map (Scale = 1:200,000)

Appendix F: Topographical Map of Quad L 5322 Lauterbach

(Scale = 1:50,000)

Appendix G: Topographical Map of Quad L 5324 Hünfeld

(Scale=1:50,000)

Appendix H-K: Forest Office Maps (Scale=1:25,000) of the

Hünfeld, Burghaun, Grebenau and Schlitz

Forest Offices

Appendix L: Summary of Definitions of Forestry Terms

⁺⁾ Appendices C-K were forwarded to WES by 28 April 1980

FOREWORD

The study reported herein was conducted by Battelle-Institut e.V. (BIeV), Frankfurt am Main, FRG, on behalf of the USAE Waterways Experiment Station, CE, Vicksburg, Miss. (WES), under a contract from the US Army European Research Office, London. It is part of joint efforts by WES and BIeV to evaluate and improve the reliability of existing terrain data acquisition methods (e.g. /1/) at WES.

Under the current research contract (DAJA 37-79-C-0242) "Investigation into a Methodology of Establishing an Areal Terrain Data Base", BIeV published a report subtitled "Phase II"; as the research program has been restructured by ERO London, this report will be specified as report No. 1, while the study reported herein represents report No. 2. Further studies will be numbered consecutively as report No. 3, etc.

The personnel participating in the vegetation field work included: P. Jessl, W. Köppel and H.V. Wünscher, Automotive Engineering Section (BIeV). Forest inventory and stand table data were acquired and reduced by P. Jessl and W. Köppel. Dr. Röding (Hessian Institute of Forest Management, Giessen) provided the necessary maps and information on forest management regimes. The report was written by P. Jessl and W. Köppel. K.-J. Melzer was the principal investigator.

ABSTRACT

This volume contains a compilation of vegetation field data, statistical stand table data and current forestry inventory data for a selected area of the FRG within two 1 : 50,000 scale quadrangle sheets Lauterbach (L 5322) and Hünfeld (L 5324). The data were used for assessing the applicability of existing vegetation terrain data modeling at the WES and necessary improvements. For these purposes, the four dominant German forest species (beech, oak, pine, spruce) were investigated. An approach was made to analyze current inventory data from forestry management books for selected compartments, modifying stand table data from statistical data sources plus investigating some selected field sites according to the common WES vegetation sampling procedures. Finally, a first evaluation on the feasibility of aerial photo interpretation was made for selected species found in West German forests. General procedures for predicting vegetation characteristics were derived for the species investigated.

Key words:

Vegetation terrain data Mobility Terrain modeling

PART I: INTRODUCTION

Background

A major condition for the reliable prediction of a vehicle's mobility operating on a specific terrain is sufficient knowledge of the various terrain features encountered. Because of the extremely high cost involved, a complete ground truth data collection for mobility assessment is not feasible. Therefore, it becomes necessary to develop and apply methodologies (e.g. /1/) which consider derivation of terrain data from existing sources, such as topographic maps, land-use maps, soil maps, forestry maps and aerial photographs. WES and BIeV have contributed to establishing and improving such methodologies through various efforts and studies /1, 2/. Because of highly developed management guidelines and small forest compartment sizes, the methodologies used in evaluating forested areas of the US may not be applicable to the evaluation of forested areas of the FRG.

Purpose and Scope

The purpose of the study was to collect basic stand table data for selected species in the FRG and establish stem size-spacing relationships for the dominant and co-dominant species of a selected area. It had been intended to derive a vegetation analysis of FRG forests by reasonable estimates of stem size-spacing on the basis of data on species, forest height, age, tree per unit area and management regime. In order to accomplish these tasks, detailed information on forestry management, inventory data and stand tables plus field data were to be collected for a selected area (quad sheets L 5322, L 5324) in the Central Highlands of Hesse. Ninety forest compartments (units) were examined from current inventory sources, while 13 sites were sampled out of these various vegetation structures according to WES standard procedures

(Appendices A and B). Aerial photos of ten compartments were interpreted to allow a first careful assessment of the feasibility and effort involved in describing these vegegation terrain features.

PART II: SELECTION OF STUDY AREA

Area Investigated

The area selected for investigation was located within the two 1:50,000 scale quadrangle sheets L 5322 (Lauterbach) and L 5324 (Hünfeld) in the north-eastern part of the HIMO-strip (Fig. 1) within the Central Highlands of Hesse.

Forest Ownership

Within the state of Hesse a total forested area of 886,000 hectares (ha) are managed. Of these, 371,000 ha are state-owned, 306,000 ha corporationally-owned (i.e. municipal forests) while 32,000 ha belong to several private groups (called joint ownership forest) and 177,000 ha are private forests (see Fig. 2).

Management Scheme

Management is organized by the Ministry of Forestry of Hesse and implemented by 113 state forestry offices, 20 private forestry administrations and 4 private forestry offices. Each office manages an average area of approximately 7,000 ha which is then under the responsibility of about 7 district offices (see Fig. 3). Assuming an average compartment size of 5 ha each, one district forestry office will manage about 200 different units of vegetation (compartments). From such offices "Current Forestry Inventory Data" were obtained for the study reported herein.

Species Encountered

Within the Lauterbach and Hünfeld quad sheets approximately 60 percent and 35 percent, respectively are forested. This makes about 50 percent forested area for both quad sheets. Of this, 47 percent is under state ownership, 41 percent private forests and 12 percent municipal forests (see Fig. 4). Four forestry offices manage about 80 percent of the study area or approximately 5,600 compartments (see Fig. 5). Each of these compartments or units has some particular properties with respect to geological, topographical and soil aspects.

It has to be mentioned here that forestry authorities assign all associated or subspecies to the four dominant species. However, the associated species constitute approximately less than 5 percent for each dominant species, which does not call for separate recording. Fig. 6 shows the dominant and associated species for West Germany, while Fig. 7 depicts the distribution of species within the area associated with each of the dominant species investigated.

For the study area the frequency distribution for the dominant species is ${\rm shown}$ in Fig. 8 and for the entire FRG in Fig. 9, and is tabulated below.

Species	Frequency (%) of Occurrence for the					
species	Entire FRG	Area of Investigation (L 5322/L 5324)				
oak	7	3.4				
beech	23	21.5				
spruce	43	21.5				
pine	27	53.6				

The tabulation shows that the distribution of pine in the area investigated is about twice that in the entire FRG, spruce and oak about one-half and beech about equal.

Bedrock and Surface Soil Types

Four types of bedrock have been encountered within the area investigated. A broad qualitative classification is shown in Fig. 10. These rocks make up approximately 80 percent of the total area. New red sandstone covers about 60 percent, limestone 20 percent, basalt 10 percent and quartzite rock approximately 10 percent of both quad sheets. Basalt peaks occur within both limestone and sandstone areas (see Appendix C). The surface composition results in a predominance of clayey silts (ML) covering the limestone, while sands and silty sands (SM) are found on sandstone, quartzite and basalt. Clayey silts (ML) are superposed on the basalt peaks (see Fig. 10 and Appendix D).

Regarding the bedrock composition and related tree species for both quad sheets, some major associations can be identified. On the Hünfeld quad the large limestone areas are favorable for beech trees while these are rather rare within the adjacent western quad, Lauterbach. Red sandstone in the Lauterbach quad favors the predominant growth of pines and spruces (see Figs. 11, 12, 10). These relations are quite remarkable when examining the areas of the Hünfeld and Schlitz forestry offices.

Limestone and basalt covers approximately 55 percent and red sandstone 45 percent of the actual area for the Hünfeld office. Beech and pine trees occur almost equally with frequencies of 36.7 and 37 percent (see Fig. 13). Typical beech stocking also occurs on basalt peaks within the area.

However, most of the area managed by the Schlitz forestry office is red sandstone (96 %) and the remaining area is limestone and

basalt (4 %). Consequently pines and spruce (54 % and 24 %, re-spectively) dominate here, while beech make up 19 percent and oak 3 percent (Fig. 14).

PART III: STATISTICAL VEGETATION DATA

Stem Size-Spacing Relations for Dominant FRG Forest Species

Literature data sources which are useful in describing average stem size-spacing relationships for the dominant German forest species - oak, beech, pine and spruce - are comprehensively available in /3/, including additional information on some associated species. This data source is called "Statistical Vegetation Data" in this report.

Stand Tables

The tabulated data shown in /3/ were the main constituent of stand

tables to be compiled later in this report. These data were first published in 1912 and are the result of long-term observations of testing areas for the various species of interest. They are continuously being reexamined and corrected, if necessary, by the forestry research institutes concerned. They are the only reliable source available that provides average growth development of forest compartments based on long-range growth observations. Five characteristics were utilized from the tables in the investigations conducted. Starting with an age of 20 to 30 years up to the various cutting ages with a 5 years time increment, and for a given "locality class" and "method of thinning", values for heights (ft) stem diameters (in) and minimum stem spacing (ft) were tabulated for each species (Tables 1, 2, 3, 4). As all data within these tables represent average values (heights, stem diameters, spacing) it was not possible to make direct use of these data for establishing stand tables showing cumulative stem size-spacing relationships for given height, age and locality

classes.

^{*)} Minimum stem-spacing data were computed by $V = \frac{4}{N} = \frac{1000}{N}$ using number of stems per ha from the original tables.

Locality Classes and Methods of Thinning

<u>Locality classes</u> evaluate the general growth in height and thickness (stem diameters) of the trees. They are not defined in a quantitative way by forestry authorities. Class I stands for extremely good, class VI extremely bad growth conditions. Up to six locality classes are given for the various species investigated.

Methods of thinning are split into moderate and heavy thinning. Both thinning techniques are not quantitatively specified within forestry guidelines, again. However, Schober's tables/3/ indicate some guidance in the management of various species resulting from long-term experience of forest experimental institutes. Generally, thinning may improve growth of best trees (positive selection) or remove ill ones (negative selection). Types of thinning may be further subdivided into:

- low thinning (thinning in the understory)
- high thinning (thinning in the overstory)
- plenter thinning

<u>Low_thinning</u> aims at a single-storied stand and removes all retarded trees.

<u>High thinning</u> aims at an even-aged multy-storied stand by retaining the majority of the understory for soil improvement and removing overstory trees which are endangering choice trees.

<u>Plenter thinning</u> aims at a constant stem diameter by removing oversize trees and favoring better low-sized stems. Generally, it results in an even-sized and even-height stand.

Moderate or heavy thinning can be applied to all locality classes. Heavy thinning generally raises the average stem diameter for all species (theoretically) for about 1 to 1.5 inches. At early ages, heavy thinning procudes stem diameters that are extremely high at the cutting age.

BATTITLE INSTITUTEA FRANKLURT AM MAIN

PART IV: CURRENT FORESTRY INVENTORY DATA

Selection of Sites

While selecting sites of interest from this data source (obtained from the forestry offices of the study area) the following criterion (which represents a broad variety) was applied: dominant species, age and composition of associated species. Forest compartments were chosen for ages of 20-40, 40-70, 70-100 and 100-150 years. Data from these sources are called "Current Forestry Inventory Data" in this report.

Single species forests are rarely found in Germany. Within the study area, working criteria were set up with a dominance limit of 75 percent to be called single species forest. Mixed forests are characterized by a mixture of species where the dominant species is less than 75 percent. According to forestry office information the following mixed forests are to be generally encountered within the area of investigation:

- pines with beeches
- beeches with larches
- beeches with larches and pines
- beeches with larches, pines and spruces

The above sequence of species also defines the respective magnitudes of species' shares for the mix.

Mixed Stands

The German forestry authorities distinguish between <u>even-aged</u> and <u>uneven-aged</u> mixed stands while classifying mixed forests. Explanations are given below /4/.

The <u>even-aged mixed stands</u> are split into mixes of several species that are shade-tolerant like spruce-beech in Northern Germany and species that cannot tolerate shade, i.e. pine-oak, pine-birch, and mixes of the two, i.e. spruce and beech together with pine, oak and larch. Slow growing species that do not tolerate shade will always be naturally eliminated by shade-tolerant trees.

Mixed stands with areal mix or patch mix are growing just like pure stands. However, all stands are not only dependent on their height increments but also on site factors and thinning methods.

The uneven-aged mixed stand can increase the volume yield of compartments, however it strongly depends on favorable site conditions. While planning such a mix the following species are used as understory: beech, spruce, white fir and larch. The growth of these is mainly influenced by lack of sunlight, reduced assimilation, reduced frost, and lack of nutrients and water. Shade-tolerant overstory (beech, spruce) extremely restrics the growth of understory, especially stem diameters (see photo 1). Beech understory in pine forests is mainly to improve soil conditions. Generally, beech and spruce are the most important constituents of understory species for the German forests associated with pine and oak as overstory trees.

Forest Office Inventory Data

Each forestry office maintains a management book which contains detailed information for each compartment of the office's responsibility. Within the book, compartment data are stored for the entire life cycle which comprises information on the following:

- function (production goals, protective goals)
- site conditions (altitude, soil, slope, etc.)
- stand (species, understory, silvicultural needs)

BASSISSE SANTISES FRANKERRI AMEMAIN

- planning (logging schedules, limbing etc.)
- executional details (see Fig. 15 a/b)

Data for our purposes were mainly selected from site conditions and stand information and reduced to a format according to Fig. 16. Site data of nutrient supply, slope, water economy and canopy closure are classified by the forest authorities according to Fig. 17.

Data were taken from forestry offices at Grebenau, Schlitz, Burghaun and Hünfeld. These offices are managing approximately 80 percent of the total forested area within both quad sheets (see Fig. 5). According to most recent Hessian forest management procedures each office has to record compartment data in a standardized format applying ten-year periods for recording of current statistical changes. Extracted data were primarily from the last recording step in January 1975. However, Hünfeld data were taken from 1962 records. Ninety sites were investigated for five different forest types (4 dominant tree species plus mixed forests) (Appendix A). Figs. 18 and 19 depict the location of the sites.

Testing of Statistical Data by Current Inventory Data

Generally, stem diameters and stem spacing were not recorded in the management book. Thus, comparisons were based on age and height of the dominant species. By extracting data from the management books and inserting it into the statistical stand table data (Tables 1 to 4) comparisons were developed for each of the four species (oak, beech, pine and spruce). For that purpose, Tables 1 to 4 were converted into graphs indicating height versus age for appropriate locality classes and thinning intensities, then adding the inventory data (see Figs. 20, 21, 22 and 23) for each species. Compared to the statistical stand table curves, current inventory data fit quite well within the boundaries of

the selected statistical curves. It can be concluded that the current inventory data agree with the statistical stand table data by species, age, height and locality class. Also, this applies to mixed stands, when considering the dominant species of the mix. Therefore, each boundary curve represents a true average relation for each of the locality classes and thinning techniques, as shown for each of the selected forest species.

For the <u>oak</u> compartments investigated, most of the heights showed lower locality class values (locality classes II and III, i.e. growth conditions for heights and average stem diameters were comparatively poor); however, these results fit well into the given relationships (Fig. 20).

The majority of the <u>beech</u> sites selected also indicated poor locality classes (between classes II and III). For ages above 100 years the heights drop remarkably down to locality class III As these inventory data values do not exhibit poor site factors, this indicates decreasing accuracy for the table data when reaching high ages (Fig. 21).

For <u>pine</u> trees, heights were equally scattered across the given variations (Fig. 22).

Finally, <u>spruce</u> trees show a similar behavior as pines where heights are found equally scattered across the given band, too (Fig. 23).

BATTELLE INSTITUTION FRANKEURT AM MAIN

PART V: FIELD DATA SAMPLING

Selection of Sites and Data Acquisition

In order to verify the usefulness of the statistical stand table data and the inventory data collected by the forestry management offices for describing forested areas for mobility evaluation, it was felt necessary to select some sample sites to produce vegetation field data using the WES sampling procedure for quantifying vegetated terrain. These were compiled in order to allow assessment of some typical pure stands. Additional vegetation data are available from other terrain data investigations of WES and BIeV, but are not used here. For this evaluation, 13 sites were selected within the Lauterbach and Hünfeld quad sheets (Fig. 24). Sites were selected based on dominant species and a range in age of each species, to sufficiently allow comparisons between statistical and current forestry inventory data and the field data sampled according to WES procedures. Sites sampled were in 3 oak, 2 beech, 2 spruce, and 6 pine compartments. Vegetation data were recorded according to the WES terrain data acquisition procedures and forwarded to WES on 10 September 1979 (see Appendix B).

Comparison of Statistical Stand Tables, Current Inventory Data and Field Data

The available data sources were used in the following manner: in a <u>first step</u>, the minimum stem spacing data for the compartment sites visited (field data) were plotted for each species in a graph depicting minimum spacing versus the average diameter of all stems within the sample (e.g. Fig. 25).

As a limit within these graphs the statistical stand table data /3/ were plotted for each species and associated locality class for both methods of thinning in an envelope format (e.g. Fig. 25).

This was done by depicting the extreme curves - the best class I and the poorest class III - plus the end point of class III and connecting the end points of classes I and III together with end point II. Thus, a final enveloped area is obtained which will cover all statistical data values for the particular species and method of thinning applied. These results are shown on Figs. 25, 26, 27, 28; it is important to note that for each species and thinning method, the band width increases with increasing growth and/or age because the decrease in trees per unit area decreases more rapidly for the better locality classes than for the poorer ones. The coniferous trees are harvested at an earlier age at which time their average diameter and minimum spacing is less (or trees per acre is greater) than in the case of the deciduous trees (Fig. 29, 30).

Because of lacking availability (access) of pure <u>oak</u> sites pure oak stand samples were limited to only one. The other samples shown on the graph (Fig. 25) qualify as mixed forest which explains their greater deviation from the statistical data than the one pure site. Oaks will reach the biggest stem diameter and spacing per unit area because of their high cutting age of almost 200 years.

Regarding <u>beech</u>, this species will arrive at a cutting age of 150 years and an average spacing of 20 percent less than oaks (Fig. 26). Sites 3 and 5 fit well into the given band.

There are more <u>pines</u> found in the study area than any other species. Their cutting age is 140 years. Sites 16 and 86 correlate very well with the stand table data, while sites 14, 17, 20 and 87 do not fit with the bands shown.

Spruce has the lowest cutting age of 120 years. Site 12 fits into the high locality class band, while site 31 is located below the given band width (Fig. 28).

BALLETTE CASTILLER OF ANKLORIAM MAIN

Considerung the pure average characteristics of stand table data shown and the format needed for vegetation terrain data as input to mobility modeling (i.e. stem spacing versus stem diameter in a cumulative way for given ages, sites characteristics and heights) pure stand table data cannot be applied for the purposes required. The same applies to current inventory data, where stem diameters and stem spacing are not recorded at all.

When comparing the field data with the forest inventory data and the statistical data by minimum spacing, average stem diameter and locality class it can be concluded that for oak, one sample of pure oak is not sufficient to draw a conclusion. For beech, the data compares for all samples. For pine, only two of the sites agree with the forestry inventory data and statistical data. Considering spruce, one site agrees while another one does not (locality class was not identified in the forestry inventory data).

Thus, a combined approach using statistical stand table data, current inventory data and field data is proposed in the following paragraphs.

Vegetation Analysis

Vegetation characteristics should generally be predicted in the following way:

- 1. If possible, determine age and locality classes for the area of interest (i.e. of certain compartments) from <u>current inventory data sources</u> (i.e. forestry management books if available). Otherwise age and locality class have to be estimated as shown below.
- 2. Determine heights, stem sizes and stem spacings for the area of interest in the field according to the WES <u>field sampling</u> procedures.

BATTELLE INSTITUTEA FRANKFURT AM MAIN

3. Correlate age, locality class, height, stem size and stem spacing derived from 1. and 2. with the <u>statistical stand</u> table data sources. If necessary, carry out some interpolation procedures as inventory data (i.e. locality classes) do not always correspond satisfactorily with field data and associated values in the statistical stand table data sources.

Considering the most common and realistic case of processing pure vegetation <u>field data</u>, the procedure will be accomplished specifically as follows (e.g. for oak see Tables 1.1-1.3).

a) Stem heights H and diameters D are determined in the field according to the WES vegetation sampling methods. Stem diameters which are sampled in each of the 26 diameter classes (ranging from ≤ 1" to 100" are then averaged by computing

$$D_{A} = \sqrt{\frac{1}{N} \cdot \sum_{i=1}^{n} N_{i} \cdot D_{i}^{2}}$$

with N = No. of trees within the sample

 N_i = No. of trees within each diameter class

D; = Class diameter or class midpoint

n = No. of diameter classes

- b) Enter Table 1.1 with height H and determine a suitable age for each locality class and both thinning methods.
- c) Enter Table 1.2 with average diameter D_{A} and read off a suitable age for each locality class and both thinning methods.
- d) With two ages available for each locality class and associated thinning method the best corresponding ones are chosen from (b) and (c) and averaged to age A.
- e) Taking A and the actual height H the final locality class is now read off from Table 1.1, again by interpolation.

AND DELLE TANDELLE LEADER ANKHUR FAMILIAN

The procedure may be extended in such a way that, additionally, from field sampling activities a stem spacing value is averaged as SS_M for the entire sample area and processed in step a). Thus, step c) may be accomplished in accordance with Table 1.3 and confirm the selected locality class or necessitate some reexamination. Finally, the procedure may be repeated by using SS_M and D_A as field input data.

To give an example for the latter case of processing pure vegetation field data, site No. 87 (pine forest) within the Grebenau forest office compartments may be examined in the following way (the given age known from current forestry inventory data is omitted for demonstrating the most common data reduction procedure, if age is not available):

a) Stem height H is directly determined in the field while average diameter $\mathbf{D}_{\mathbf{A}}$ is developed from the vegetation field data sheet recorded.

Both values are H = 89' and
$$D_A = 12.4$$
" (see Appendix B)
$$(D_A = \sqrt{12x4^2 + 12x5^2 + 8x7^2 + 4x8^2 + 4x9^2 + 76x12.5^2 + 10x17.75^2 + 6x25^2 / 132} = 12.4$$
")

b) Entering Table 3.1 with H = 90' results in age-locality class arrays for both thinning methods:

Heavy Thinning

Locality Class	ı	11	III	IV	v	L
Age	90	137	> 140	_	-	Γ

Moderate Thinning

,						
Locality Class	I	II	III	IV	V	İ
Age	95	140	> 140	-	_	Γ

c) Entering Table 3.2 with D_A = 12.4" will yield two age-locality class arrays again:

Heavy Thinning

Locality Class	I	_II	III	IV	V	ĺ
Age	81.2	96.0	116.3	>140	_	

Moderate Thinning

Locality Class	I	ΙΙ	III	IV	v
Age	86	103	125	> 140	-

- d) The best corresponding ages are 90 and 81.2 years for locality class I and heavy thinning (slightly better than locality class I for moderate thinning). Averaging these ages produces A = 85.9 years.
- e) Taking A = 85.9 years and H = 90', a most probable locality class slightly better than I for heavy thinning can be read off from Table 3.1 by interpolation: 85.9 years yield a height of 88.1' for locality class I (heavy thinning).

Extending the procedure in such a way that a stem-spacing field value is introduced as ${\rm SS}_{\rm M}$ the following results are obtained:

a) Minimum stem spacing SS_M for all trees of the sample area is given as $SS_M = \frac{D}{\sqrt{N}}$ with D = Sample diameter N = No. of trees within the sample area

$$SS_M = \frac{200}{\sqrt{132}} = 17.4$$

b) The two age-locality class arrays for H = 90' were given (see c) as:

Heavy Thinning

Locality Class	I	II	III	IV	V	L
Age	90	137	> 140	-	-	Ī

Moderate Thinning

Locality Class	I	II	III	IV	v
Age	95	140	> 140	-	_

c) Entering Table 3.3 with $SS_{M} = 17.4$ ' will yield the following age-locality class arrays:

Heavy Thinning

Locality Class	I	_ II	III	IV	v	L
Age	68.6	80	93.3	111	140	-

Moderate Thinning

Locality Class	I	II	III	IV	v
Age	83.6	97	110	131.3	>140

- d) The best corresponding ages are 83.6 and 95 years for locality class I and moderate thinning which differs by thinning techniques from the above results gained by stem size information during step c). An average age of A = 89.3 years can be chosen.
- e) Taking 89.3 years and H = 90', a most probable locality class slightly better than I for moderate thinning can be read off from Table 3.1 by interpolation: 89.3 years yield a height of 87.8' for locality class I for moderate thinning.

Finally the procedure may be repeated by using minimum stem spacing SS_M and average stem diameter D_A . The following results are obtained:

a)
$$D_A = 12.4$$
"
 $SS_M = 17.4$ '

b) Entering Table 3.2 with D_A = 12.4 " yields the following agelocality class arrays:

Heavy Thinning

Locality Class	I	II	III	IV	V	L
Age	81.2	96.0	116.3	>14 0	-	

Moderate Thinning

Locality Class	I	11	111	IV	V
Age	86	103	125	>140	_

c) Entering Table 3.3 with SS_M = 17.4 results in:

Heavy Thinning

Locality Class	I	II	III	IV	v
Age	68.6	80	93.3	111	140

Moderate Thinning

Locality Class	I	II	III	IV	v
Age	83.6	97	110	131.3	> 140

- d) Best corresponding ages are 86 and 83.6 years for locality class I and moderate thinning. An average age of A = 84.8 years may be chosen.
- e) Taking A = 84.8 years and D_A = 12.4", a most probable locality class slightly better than I for moderate thinning can be read off from Table 3.2 by interpolation : 84.8 years yield a diameter of 12.3" for locality class I (moderate thinning).

Consistency for all predicted values seems to be quite sufficient, especially with regard to the fact that the site of investigation did not constitute a pure pine sample. This may affect the accuracy of the results derived from statistical pine stand tables.

The fact that different thinning techniques have been predicted does not necessitate a reexamination of locality class. Moreover, as current forestry inventory data indicate locality class I for that site, the above conclusions are confirmed. Fig. 31 shows the resulting locality classes and ages for all 13 sites visited predicted by processing field data on heights and average stem diameters, heights and minimum stem spacing as well as average stem diameters and minimum stem spacing in the way shown above.

Predictions confirm that integration of the WES sampling procedure is most adequate and a requisite for determining the required characterstics of forest species (stem spacing, stem diameter and locality class) most of which are lacking in the statistical and current inventory data bases.

PART VI: AIR PHOTO EVALUATION

Large-scale acquisition and mapping of vegetation terrain data obviously call for aerial photo interpretation in the data compilation process as this will ensure cost and time effectiveness. Aerial photo evaluation as a mapping tool can be extremely useful if combined with additional data sources, such as soil, geological, and land-use maps, ground truth sampling, etc.

Even 1:25,000 scale photos (orthoquads) will allow some preliminary forest type assessment. 1:12,000 scale stereo pairs are of course most suitable for evaluation. As an example, Figure 32 and Photo 2 show the preference for beech stocking on limestone bedrock. Fig. 32 shows the limestone within the red sandstone area on the geological map of Hesse (see also Appendix C) while Photo 2 depicts the entire beech stocking of that area on a 1:12,000 scale photo.

Adding the various forestry office maps of a 1:25,000 scale, forest compartments and forest trails are easily identified. An interesting data source in the Hessian forest offices is a forest trail network map which will allow for quick decisions on which of these trails are trafficable throughout the year for commercial trucks.

Prediction of Parameters for Some Sites Selected

Using a scanning stereoscope and a magnification of 4.5 x, various forest compartments were evaluated on 1:12,000-scale stereo pairs. Predictions were made for heights, canopy closure, composition and species. For the Grebenau forest office six compartments were examined (see Photograph 3), while four compartments were chosen for the Burghaun office (Photograph 4).

BALLELLE INSTITUTEA FRANKFURT AM MAIN

Inventory data were reported by the two offices later and are shown on Figs. 33 and 34. Height information were not recorded for compartments 123a, 123b and 119. Predictions for species, composition, heights and canopy closure are listed in Figs. 33 and 34.

Distinction between deciduous and coniferous trees does not cause major problems if the dominant species' share exceeds about 80 percent of the compartment. Generally, deciduous trees appear considerably brighter in tone. In the case of mature forests with an age over 80 years it proved to be rather easy to identify species after examining crown shapes - especially the typical round appearance of deciduous species. It should be possible to establish some translation routines for obtaining estimates of stem-size spacing after classifying crown diameters and heights for each compartment.

For younger mixed stands (less than 80 years) it was rather difficult to identify proportionate species. For these tone differences and crown shapes are not very distinct. Unique gray tone restricted reliable predictions. However, height and canopy closure were easily identified.

Evaluation of Methodology

Identification of species, height and crown diameter coupled with the statistical data should lead to an acceptable estimate of stem-size spacing. When this has been accomplished, air photo evaluation will replace field sampling. This is especially desirable when describing vegetation characteristics for large areas.

PART VII: CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Vegetation terrain data were compiled from three different sources: statistical stand tables, current forestry inventory books and field measurements. Considering the task of deriving stem-size spacing relationships for the dominant German species, the suitability of these data sources have been investigated. The ultimate objective of quantifying the vegetation in terms of stem-size spacing could not be accomplished because data were not readily available. The data available allowed the following conclusions to be drawn:

Current inventory data did well agree with statistical stand table data by species, age, height and locality class for both pure and mixed stands. A combined approach using statistical stand table data, current inventory data and field data has been proposed for quantifying vegetation parameters. Predictions of locality classes and ages for 13 sites showed satisfactory results when applying the above procedure. Evaluation of air photos for ten compartments allowed reliable estimates of species, height and crown diameter which should enable stem-size spacing assessment if combined with statistical data.

Recommendations

Vegetation field data on file at the WES and BIeV for the Central Highlands of Hesse, the Northern Plains and Southern Germany should be analyzed assisted by air photo evaluation. Although all dominant German forest species are within the investigated area, there is a basic need for such an analysis and additional vegetation terrain data sampling (WES standard procedures) within Northern and Southern Germany. Thus, the feasibility of the

BOTTO OF STATE FOR FRANKFURT AM MAIN

proposed procedure for classifying large-scale vegetation terrain for the four dominant FRG species should be tested. During these efforts, stem-size spacing relationships will be obtained for the dominant species in three different geographical areas. After having identified the location of the compartments using forestry maps it is possible to complete sample site data by forestry inventory information on ages, locality classes, etc. (Appendices $\rm H-K$).

LITERATURE CITED

- /1/ Nuttall, C.J.; Randolph, D.D.: Mobility Analysis of Standard and High-Mobility Tactical Support Vehicles (HIMO). Techn.

 Report M-76-3, USAE Waterways Experiment Station, CE, Vicksburg, Miss., 1976
- /2/ Koeppel, W.; Jessl, P., et al.: Investigation into a Methodology of Establishing an Areal Terrain-Data Base, Phase I. BF Report BF-R-63.783-1, Grant No. DA-ERO-78-G-101, March 1979
- /3/ Schober, R.: Stand Tables of Important Species, 1975 (in German), J.D. Sauerländer's Verlag, Frankfurt a.M.
- /4/ Wiedemann, E.: Silvicultural and Yield Basis of Forest Economics, 1960 (in German), J.P. Sauerländer's Verlag, Frankfurt a.M.

BARROLL OF CANTEL TO CONTRACT RECALING AND A

Fig. 1: Area of Investigation Within the FRG $_{\rm PASSM}$ is a National Annal National Natio

· 4

Fig. 2: Forest Ownership Conditions for the State of Hesse

BALLELLE INSTITUTEV FRANKLURT AM MAIN

--- 40 E. /

...

Fig. 3: Management Scheme for the State of Hesse

Fig. 4: Forest Ownership Conditions Within the Area Investigated

ां

Fig. 5: Forestry Office Areas for the Area Investigated

BARTERIE - NATUELLEA - ERANKEURT AM MAIN

Dominant Species	Associated or Sub-Species
Oak (querais petraea)	Red oak
Beech (fagus, silvatica)	Water beech, ash, maple, elm, birch, alder, lime tree, mountain ash, poplar, cherry tree, false acacia, asp
Spruce (picea abies)	Fir, douglas fir
Pine (pinus silvestris)	European larch, black pine

Fig. 6: Dominant German Species and Associated or Sub-Species

everage	Percentage	Species	50	4		96.5						3.5	- ·						,		3 F		4		8	
Ä	Pel	oţ	96		8	8	_						_				_	8	97	_	_	$\overline{}$	8	92		8
	2.	(%)	16	m	<u>8</u>	16	_					3						8	16		2	_	<u>§</u>	84	16	8
	Schlitz	(ha)	72.3	1.8	74.1	501.8	4.0	0.2	2.8	;	0.2	3,9	2.5	0.2	1.8	! !	0.7	518.1	5.049	3.0	12.3	8.9	662.6	1.339.0	257.5	1,596.5
	าลน	(8)	94	9	8	98						√ 2					/	100	95	_	· 2	<u> </u>	91	94	9	8
State-Forests of	Grebenau	(ha)	82.3	4.8	87.1	622.9	9.0	0.7	2.0	0.1	0.1	0.3	3.4	1.	1.4	1.	0.4	632.1	1,146.5	7.6	26.3	19.0	1,201.9	3.068.4	204.4	3,272.8
ate-For	man	(8)	95	œ	18	8	_				_	01					<u> </u>	130	26	_	۳ -		100	16	6	5
St	Burghaun	(ha)	59.5	4.5	64.0	269.5	7.8	4.8	6.7	0.1	!	2.6	1.4	1,	0.7	ļ. -	3.8	300.4	260.4	1.4	7.3	1.2	270.3	825.8	70.2	904.9
	.d	(8)	26	м	18	96						<u>~</u>					_	<u>8</u>	46	_	۳		<u>8</u>	\$ 6	9	8
	Hünfeld	(pa)	197.2	8.9	204.0	7,650,1	11.8	43.3	13.6	0.2	0.4	18.4	9.1	0.1	9°6	0.1	1.0	1,167.3	712.6	9.0	17.6	1,5	732.3	1,233.3	93.9	1,317.2
Associated	Species		oak	red oak	Total Sum	beech	water beech	ash	maple	elm	false acacia	birch	alder	asp	lime-tree	mountain-ash	poplar	Total Sum	sprice	fir	douglas fir	strobe	Total Sum	pine	larch	Total Sum
Dominant	Species		oak			peech					. =								spruce					píne		

Fig. 7:
Distribution of Species
Associated with Each
Dominant Species for
the Area Investigated

Fig. 8: Distribution of the Dominant Species for the Area Investigated

Fig. 9: Distribution of the Dominant Species for the Entire FRG

Fig. 10a: Types of Bedrock Within the Study Area

Fig. 10b: Surface Soil Types Within the Study Area

BATTELLE-INSTITUTEV FRANKEURT AM MAIN

Fig. 11: Distribution of Species Within the Lauterbach Quad L 5322

Fig. 12: Distribution of Species Within the Hünfeld Quad L 5324

BATTEELE INSTITUTEN ERANKEURT AM MAIN

Fig. 13a: Distribution of Bedrock Within the Management Area of the Hünfeld Forestry Office

Fig. 13b: Distribution of Species Within the Management Area of the Hünfeld Forestry Office

Fig. 14a: Distribution of Bedrock Within the Management Area of the Lauterbach Forestry Office

Fig. 14b: Distribution of Species Within the Management Area of the Lauterbach Forestry Office

Holzproduktion

GRENZWERTSCHAFTSWALD

FUNKTIONEN Schutzfuni	ktionen	Flachenen Stu-	de rechtlich 2 ausgawes	Ausweieg lektier	23 A	, No.
v S M	vasserschutz noch aus landesptleg, oder naturkundt Grungen lama, immossons Sichtschutz odenschutz Straßerischutz			i		hsbezuk nszone sfeuchte Wasserhaush hte
STANDORT Erholung		10 x		† † x	1	3 4E - 5
31,-320 MINERINN UNTER 50-5 MAESSIG GENEIGT SEHR FLACH-BIS FLACHGRIEF	KIESELSCHIEF	SUBKONTINENT: ER Diger Lehm	AL GR	ENZSTANDOR	MAESSIG	₹ ₹ ÖF 62 33 42 TROCKEN ESOTROPH
BESTAND * ET-BAUMHOR BU-UNTERS' NICHT PELE	TAND		_			
•			PLAN	UNG		
•		3		Bnahmen	Ästung	Schälschutz
Anteir art hone lik yad	ne Fila Ne Mischungstorm Schaftqualit unter Schim Schim d hald	rat Vorrat	EN 10 Phege on ein VN X schlag LT VIm/hi		Stuck m	Stuck Art
100 E1 174 210 40 15 1	*	174	EN			
100 80 - 01	restan.		EN:		;	
	3	174	1		, 	
	1					
		0	1			
T.		1				
			1 1			
with the second			1			
		ļ				
		i				
]		•	
		÷				
1 1				i i		
		•			. !	!
		Fodou		Eiche	Etm o R	
Verjüngung Haupt Holz Art Mischungsform Flace		Endnu	nzung	Buche Fichte		
hoizard art der	. A second secon	1		Kiefer		Summe
FT ET NV 35.7	Sicherungsmaßnahmen	Vornu Lauter		Eiche Buche Fichte	Elm o R	Wirtschafts- einheit
	Dungung	Lauter	ung	Kiefer	.]	

Fig. 15a: German Forestry Management Book Data Sheet (in German)

Area

4

of ement
Spruce Pine Total of Pine Management Beeck Spruce Pine
Intermediate Vield Release Catting
Inter
M
Fertilizing
Ferti
•
R SOBW System
Distrih Area
aronidi cun xik
neurinod Dominio
Species Species Mixtan Thinnin Thinnin Thinnin

Fig. 15b: German Forestry Management Book Data Sheet (Translation)

ATTELL INSTITUTES OR ANKEURT AND MAIN

Stine Co. of Total Alice. Stine Co. of Total Alice Still Alice Sti		- 45 -	
Forest Office: Site No. of Twill Allie Soil Thrink Mater Species (Area Compo Age Height Location Many Many (Ma) Type Supply coorden (Ma) Siton (Years) (H) Thy Coorden (Ma) Siton		Remarks	
Forest Office: Site No. of Twill Allie Soil Thrink Mater Species (Area Compo Age Height Location Many Many (Ma) Type Supply coorden (Ma) Siton (Years) (H) Thy Coorden (Ma) Siton		Closure (%)	
Site '50, of Total Alia Alia Slope Soil 'Water Species: Inventory Da Site You of Total Alia		lity Class	
Forest Office: Site ''O. of Total Alti- Slope Soil Turiout Rater Species Area Total Alti- Slope Soil Turiout Rater (ha) Alove Sales (ha) Type Sules (ha) Alove Sales (ha) Type Sules (ha) Sales (ha) Alove Sales (ha) Alove Sales (ha) Sales (ha) Alove Sales (ha) Alove Sales (ha) Type Sules (ha) Alove Sales (ha) Type Sules (ha) Type Sul	te:	Height (ft)	
Forest Office: Site '70, of Total Alti- Slope Soil Turiout Rater Species Area to Anno Alove (%) The Conord Alove (%) The Supply conord (ha)	ory Da	Age (years)	
Site '70, of Total Alti- Slope Soil Turiout Species: '70, of Total Alti- Slope Soil Turiout Species '70, of Total Alti- Slope Species	Invent	Compo- sition (%)	
Site No. of Total Alti- Slope Soil "urient Kater No. of Total Alti- Slope Soil "urient Kater No. of Total Alti- (a) Type Suiply economy ment (b) Aniewl Aniewl Chi		Area (ha)	
Site No. of Total Alti- Slope Soil "urient Kater No. of Total Alti- Slope Soil "urient Kater No. of Total Alti- (a) Type Suiply economy ment (b) Aniewl Aniewl Chi	ies:	Species	
Forest Office: Site No. of Total Alti-Slope Soil So. Carrard Area Hole (%) Type mert (ha) Alove Area Hole Total Carrard Area Hole Total Carrad Are	1		
Forest Office: Site No. of Total Alti- Slope No. ment (ha) Above (%) ment (ha) Above (%) Total Alti- (%)	Domina	Supply Supply	
Forest Office: Site Wo. of Total Alti- No. ment (ha) Above ment (ha) Above (ft) (ft)		Soil	
Site No. of Total No. of Total Ment (ha)		Slope (%)	
Site No. of Total No. of Total Nea ment (ha)	ffice:	Alti-	
70. 70. 30. Bent	rest Of	Total Area (ha)	
	FOI	To. of ment ment	
		<u> </u>	

Site Conditions and Stand Information from Forestry Office Inventory Data Fig. 16:

Slope Condtions

Nutrient Supply

Condition	Slope (%)	Condition	Class
flat	0 - 3	eutrophic	1
slightly inclined	> 3 − 9	mesotrophic	2
moderately inclined	>9 - 17	oligotrophic	3
considerably inclined	>17 - 36	dystrophic	4
steep	>36 - 58		
precipitous	>58 - 100		
extremely precipitous	>100		

Water Economy

Canopy Closure*)

Condition	Class	Condition	(%)
fresh	1	densely closed	>100
extremely fresh	2	closed	> 90 - 100
moderately fresh	3	open .	>75 - 90
moderately dry	4	extremely open	> 50 - 70
wet	5		i
alternating wet	6		
extremely wet	7		
percolating wet	8		
dry	9		

Fig. 17: Forestry Classification of Site Conditions

^{*)} Canopy closure was derived from degree of stocking given by forestry inventory data.

Fig. 18: Location of Sites Within the Lauterbach Quad L 5322

Fig. 19: Location of Sites Within the Hünfeld Quad L 5324

erver in the experience of the Kind Kind Association

Comparison of Inventory Data to Average Height-Age Stand Table Data for Oak Fig. 20:

Comparison of Inventory Data to Average Height-Age Stand Table Data for Beech Fig. 21:

BATTELLE INSTITUTEN FRANKLURT AM MAIN

Comparison of Inventory Data to Average Height-Age Stand Table Data for Pine Fiq. 22:

Comparison of Inventory Data to Average Height-Age Stand Table Data for Spruce Fig. 23:

BALLOCE TO TANK TITLE OF A CONTROL OF A MARKET RELABILIST AND ALLAS

Site No.		UTM-Cooi	dinates
86		5288	6203
87	!	5285	6202
68		5351	6203
20		 5479	 6161
16		5497	6134
17		5492	6135
14		5502	6147
12		5529	6186
10		5537	6187
5		5605	6184
3		5618	6213
4		5613	6211
31		5564	6077

Fig. 24: UTM-Coordinates of the Field Sites Visited

· i

Fig. 25: Comparison of Inventory Data and Field Data to Minimum
Stem Spacing-Average Stem Diameter Stand Table Curves for Oak

Fig. 26: Comparison of Inventory Data and Field Data to Minimum Stem Spacing-Average Stem Diameter Stand Table Curves for Beech

Fig. 27: Comparison of Inventory Data and Field Data to Minimum Stem Spacing-Average Stem Diameter Stand Table Curves for Pine

RATE COLOR STATE OF THE FRANCISCO POLARS OF A

Fig. 28: Comparison of Inventory Data and Field Data to Minimum Stem Spacing-Average Stem Diameter Stand Table Curvesfor Spruce

the state of the s

Fig. 29: Minimum Stem Spacing-Average Stem Diameter Stand Table Curves for Deciduous Species

.

Fig. 30: Minimum Stem Spacing-Average Stem Diameter Stand Table Curves for Coniferous Species

. •

			Curr	Current Forestry	stry				Inte	Interpolated Data		+++ Using		
No.of	No.of Forestry Domin-	-uimod	Inve	Inventory Da	Data +)	Measure	Measured Field Data ++)	_	DA and H	-7-	H and SS _M	Æ	DA and SS _M	SS
COM	Office	arit	Locality	Age	Height	Minimum	Average	Height	Local.	Age	Local.	Age	Local.	Age
part-		Species Class	Class	(years)	(ft)	Stem Spacing	Stem Diameter	н	Class	(years)	Class	(years)	Class	(years)
ment						SS _w (ft)	DA (inch)	(ft)						
89	Grebenau	oak	11	104	0.77	18.0	13.0	75	u/II	26	ų/I	89	II/m	94
96	:	bine	11/1	22	ı	C. 80	4.3	45	m/I	27	1/m	8	I/h	25
87	F	эліс	—	84	80.3	17.4	12.4	8	I/h	82	1/m	85	I,'m	8
m	Burghaun	peech	11	49	49.2	16.4	10.3	54	I/h	59	1/h	26	I/h	72
4	E	Ş	111/111	28	48.5	7.7	7.5	Q	III/h	28	III/m	49	I/m	42
Ś	E .	peech	111/11	125	98.4	25.8	17.8	105	II/h	130	I/h	102	I/m	123
10	:	Saj.	11/1	25	26.2	9*9	4.3	45	I/m	31	I/m	28	I/m	29
12	r	spruce	17	46	80.3	14.6	10.6	74	III/h	79	III/h	76	I/h	8
14	=	pine	H	8.	78.7	12.1	6.3	72	I/h	54	I/m	53	I/m	52
16	•	2	11/11	56	29.5	7.5	4.7	36	III/m	38	III/h	35	m/II	32
17	ŧ	•	111/11	73	62.3	16.9	12.1	78	II/h	8	I/h	63	I/m	78
20	=	:	11	115	104.9	16.7	13.0	8	I/m	68	I/m	83	I/m	8
31	Hünfe 1d	spruce	ı	19	•	7.3	7.4	75	I/m	34	I/m	27	I/m	24

+) Data collected in 1975 (site 31 in 1962)

Fig. 31: Summary of Current Inventory Data, Measured Data and Interpolated Data for Selected Sites

⁺⁺⁾ Taken in 1979

⁺⁺⁺⁾ Ages were reduced to 1975 (and 1962 for site 31)

L 5322

Fig. 32: Limestone Bedrock Area Investigated Within the Lauter-bach Quad L 5322

 $\chi_{\rm const} = \chi_{\rm const} +

			Inver	Inventory Data	5	January 1975)	1975)] 6	Air Photo Evaluation	valuati	(+ Loo)
	Alti- S fude Above Sca Level	Slope (*)	Soil Type	tarient Supply	Water economy	Specier	Area (ha)	Age (years)	Loca- lity Class	Compc- sition (%)	Height (ft)	Height Cancpy (ft) Closure (%)	Spe- cies	sition (8)	(ft)	(ft) Closure (%)
-	(££)					Pine	2.9	24	I	89		> 1∞	Pine	88	49	20-1 00
	1147.5	%	<i>d</i>	2		Sprace	1.5	24	П	34		> 100	Spruce	&	49	20-100
	1213.1	9-17		l												
						Pine	-	34	11/1	8		<u>001-064</u>	Pine	18	72	√ 100
	1147.5	0-3				Beech			ΔI							Underst
	1213.1	9-17	SS SS	5	-											
						Ding	0	27 5	II	82		√ 1∞	Pine	8	88.5	88.5 > 90-100
	1245.9					Sprice	0.4	29	1I/I	18		№ 100	Spruce	10	88.5	>90-100
	1278.7	6	₩S	m 	_											
	2		 											5	6	
1						Pine	7.0	131	II/I	93		8 8 8	Pine	3	8	31-34
_		(; 			Spruce	0.2	8	II	7	97	2 90-100				
	1245.9	0	Σ S	7	٥	Oak							Oak	10	86	
						Beech							Beech	9	88	
+	7.4.0					Beech	5.2	8	II	100		×75-90	Beech	8	95	8-18
	6.047	å	8	^	-	Pine	1.8	136	H	8	92					
	1278.7		i	I 		Oak							Oak	9	95	
٦-						Pire	6.9	131	1/11	93	97	\$9-100	Pine	8	95	<u>8</u>
	1278.7					Spruce	0.4	110	II	2	8	\$6-18				
	1 7 7	0	ξ.	m	φ	Beech	0.1	110		2	-					
	1,344.3					Oak							oak	ဥ	92	

. 1

į

+) Photos Dated 1973

Fig. 33: Prediction of Site Characteristics by Air Photo Evaluation for 6 Compartments Within the Management Area of the Grebenau Forestry Office

						- 63	-							
o t co	Canopy Closure (8)	21 8	∞1-06 <		×75-90		<u>√</u> 100						T	
Prediction by Air Photo Evaluation +)	Height (ft)	59	32		86		49	49						
tion by	Compo- sition (%)	8	8	9	<u>8</u>		8	10						
Prediction Evaluation	Spe- cies	Beech	Beech	Spruce	Beech		Beech	Spruce						
	Height Cancpy (ft) Closure (%)	\$1 2	>75-90 Beech		5-05 V		8 3	3				1		
	Height (ft)	53	72		102		62	92				1		
	Compc- sition (%)	5 X	8	2	95	,	95	٥						
	Loca- lity Class	II	III	24	111/111		1/11	ı						
	Age (years)	62	94	5	137	2	55	44						
.5)	Area (ha)	13.6	€ 0. L		12.0		14.8	1.2						
January 1975)	Species	Beech	Beech		Beech		Beech	Pine					1	
(1 Jan	Water economy	-		m		7		<u></u>		!				_!
y Data	Nutz ient Supply	-		-		-		-			-		-	,
Inventory Data	Soil Type													
	Slope (8)	9-17		9-17		3-17		9-6	17-36	- 				<u> </u>
	Alti- S tude Atove Sou Level	1311.5	1278.7	1344.3	1212 1	1409.8		1311.5	1475.4					
	Total Area (ha)	19.7		3.0		12.7		16.0						
	No. of Compart ment	23a		235		2 4 a		56						

Prediction of Site Characteristics by Air Photo Evaluation for 4 Compartments Within the Management Area of the Burghaun Forestry Office +) Photos Dated 1973 Fig. 34:

Table 1.1: Statistical Stand Table Data for Oak: Average Height (ft)

Locality Class/ Method of Thinning Age (years)	I/h*)	I/m ^{*)}	II/h*)	II/m ^{*)}	III/h ^{*)}	III/m*)	IV/m ^{*)}
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 165 170 175 180 185 190	26.9 34.8 42.3 47.6 52.8 57.1 61.0 64.6 68.2 71.2 74.1 76.1 78.0 82.0 84.0 85.6 89.2 92.8 91.2 92.8 97.1 101.7 103.3 104.7 103.3 104.7 103.3 104.7 103.6 108.9 110.9 111.2	25.6 32.8 41.3 46.3 51.2 56.1 60.4 67.2 73.8 78.1 82.0 78.3 88.9 90.5 93.8 99.7 101.4 102.7 104.0 105.3 106.3 110.9 111.5 112.2	- 25.8 30.8 36.1 45.6 45.7 56.7 56.7 65.6 67.5 67.5 67.7 77.7 7	- 23.6 29.5 35.1 43.6 47.8 558.7 64.3 558.7 64.6 70.8 84.6 77.3 83.0 66.9 97.8 84.1 78.1 87.9 89.9 99.1 99.1 99.1	- - 19.7 24.9 34.4 38.7 45.2 51.5 66.2 66.3 68.9 71.2 58.7 77.8 77.7 81.7 77.7 81.7 77.7 81.7 81		- - 17.1 20.7 24.3 27.6 30.1 37.4 40.6 44.4 47.2 51.5 55.4 17.6 61.4 65.6 65.9 66.9

^{*)} h ≜ heavy thinning

· .i

m ≜ moderate thinning

Table 1.2: Statistical Stand Table Data for Oak: Average Stem Diameter (in)

Iocality Class/ Method of Thinning Age (years)	I/h	I/m	II/h	II/m	III/h	III/m	IV/m
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190	2.5 3.1 3.8 4.5 5.3 6.0 6.7 7.4 8.9 9.6 10.4 11.9 12.6 13.3 14.8 15.3 17.7 18.5 19.0 20.7 21.4 22.8 23.6 24.4 25.9 26.3 28.7	1.7 2.6 3.5 4.9 5.6 6.3 7.7 8.4 9.8 10.3 12.7 13.4 14.9 15.3 17.7 18.4 19.9 20.6 21.3 22.7 23.6 24.9 25.3 26.9 27.6	- 2.3 3.0 3.7 4.4 5.1 5.8 6.5 7.8 9.9 10.6 11.9 12.6 13.3 14.7 15.4 16.1 18.8 17.4 16.1 18.1 19.5 20.9 21.5 22.2 23.5 24.1 24.8 25.4 26.1	1.8 2.8 3.5 4.1 4.8 5.4 6.7 7.4 8.3 9.4 10.7 11.4 12.8 13.4 14.8 15.4 16.7 18.8 19.4 10.7 11.8 13.4 14.1 16.7 18.8 19.1 19.1 20.7 21.3 21.3 22.3 21.3 24.3 24.3 24.3 24.3 24.3 24.3 24.3 24	- 2.0 2.5 3.1 3.8 4.5 5.9 6.3 7.9 9.0 10.6 11.3 12.6 13.9 14.5 15.6 16.8 17.4 18.5 19.7 20.8 21.4 22.5 23.1	- 1.5 1.9 2.4 3.0 3.6 4.3 5.6 6.8 7.9 8.9 9.4 9.9 10.9 11.5 12.6 13.8 14.4 15.6 16.8 17.5 18.7 19.9 19.9 19.9	- - 1.5 1.9 2.3 2.7 3.5 4.0 4.5 5.4 5.9 6.7 7.4 7.8 8.6 9.4 9.8 10.6 9.8 10.9 11.2

Table 1.3: Statistical Stand Table Data for Oak:
Minimum Stem Spacing (ft)

Locality Class/ Method of Thinning Age (years)	I/h	I/m	II/h	II/m	III/h	III/m	IV/m
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190	5.3 6.4 7.5 8.7 10.1 11.4 12.0 15.5 17.8 19.4 21.6 22.2 24.4 21.6 22.2 24.4 25.6 29.5 31.7 32.2 34.6 37.5 40.7 43.7 44.7 45.7 47.9 49.0	3.5 5.1 6.7 7.9 9.1 10.2 11.3 12.3 13.2 14.3 15.4 16.5 17.6 18.7 19.0 22.1 23.3 24.5 25.7 26.8 27.1 30.2 31.2	- 4.9 6.2 7.8 8.0 10.1 11.3 12.5 13.0 16.2 17.5 18.9 21.1 22.3 24.0 27.2 24.0 27.3 24.0 27.3 24.0 27.3 27.3 28.5 29.9 32.3 33.3 40.3 40.4 41.3 45.4 47.5	3.8 5.8 7.8 10.9 11.9 14.1 15.2 17.2 18.3 20.4 21.5 22.6 23.7 25.8 27.1 28.3 30.5 31.5 33.6 33.3 34.4 35.4 36.3 37.3 38.3 39.1 41.0	- 4.2 5.3 6.5 7.8 9.1 10.0 11.6 12.9 14.3 15.5 16.9 18.0 19.2 20.5 21.9 23.1 24.3 25.4 26.6 27.8 28.9 30.0 31.0 32.2 33.3 4.4 35.5 36.6 7.8 40.7 41.7 43.0 44.0	3.2 3.4 4.6 5.8 6.8 8.1 9.3 10.2 11.2 12.1 12.9 13.7 14.8 15.3 16.2 17.0 17.8 18.6 19.5 20.5 21.5 22.5 23.5 24.5 25.5 27.4 28.5 29.5 31.6 32.7 33.6 31.6 33.6 35.5	- - - 3.1 3.8 4.5 5.2 5.7 7.5 8.3 9.9 16.5 11.9 11.9 12.1 13.1 15.7 16.4 17.7 18.3 19.6 - - - - - - - - - - - - - - - - - - -

Table 2.1: Statistical Stand Table Data for Beech: Average Height (ft)

I mality Mace/								
with class/ Wethod of Thinning	I/h	I/m	II/h	II/m	III/h	m/III	IV/h	IV/m
0	8	8	2.	2.	5.	5	١ •	
5	35.8	35.8	27.9	27.9	20.0	20.0	12.1	12.1
0	ب	<u>.</u>	4.	4.	Ŋ.	5	9	9
5	0	0	.	-	.	-	٠	•
0	7	7.	7.	7	7.	7	7.	7.
5	4	4.	ش	ς,	2	2.	- :	.
0	6	6	8	ω.	7.	7.	9	9
5	4.	4.	ش	ъ.	2.	2.	<u>.</u>	-
0	6	6	7.	7.	9	9	4	4.
5	4.	4.	2.	2	。	0	φ.	о О
0	œ	ω.	9	9	4.	4.	<u>.</u>	-
5	2.	2.	6	6	7	7.	4.	4
0	ġ.	9	ع	ω,		0	7	7.
2	9	6	9	9	۳,	ب	0	0
0	ن	03.	6	9.	9	9	د	ω,
5	9	. 90	2.	2.	6	6	S	5.
0	ω.	08.	Ŋ.	5.	.	.	7	7.
5	.	11.	7.	7.	4.	4.	0	。
0	4.	14.	00	00	9	9	-	.
5	9	16.	02.	02.	۲.	7.	ع	ن
0	ω.	.	04.	04.	6	6	ъ.	5.
35	。	20.	05.	05.	- -	-	9	9
0	5.	22.	07.	07.	2	2	7.	7.
2	4.	4.	ω.	α	۳,	۳,	6	6
o	5	25.	10.	10.	5.	5.	0	0

Table 2.2: Statistical Stand Table Data for Beech: Average Stem Diameter (in)

Locality Class/ Method of Thirming Age (years)	I/h	m/I	11/h	m/II	III/h	m/III	IV/h	IV/m
30 44 40 50 60 60 60 60 60 60 60 60 60 6	28.4.2.0.001111122222222222222222222222222	22.84.7.7.89.90.00.00.00.00.00.00.00.00.00.00.00.00	- 1	- 2 6 6 7 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9				- 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
	•	•	•	•		•	•)	r

Statistical Stand Table Data for Beech: Minimum Stem Spacing (ft) Table 2.3:

	•
IV/m	- K 4 7 7 7 7 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7
IV/h	- K 4 7 8 8 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
m/III	8.46.00000000000000000000000000000000000
III/h	8 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
II/m	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
11/h	22222222222222222222222222222222222222
I/m	200.00 1 10.00
1/h	22.7 20.0 10.0
Locality Class/ Method of Thinning Age (year)	30 35 35 46 55 65 65 77 75 75 75 75 75 75 75 75 75 75 75 75
Age (yeë	

And the first of the state of t

Table 3.1: Statistical Stand Table Data for Pine: Average Height (ft)

-1

Locality Class/ Method of Thinning	I/h	m/I	II/h	m/II	III/h	m/III	IV/h	IV/m	V/h	u/n	VI/m
(years)											
25	34.4	ω.	ω.	ω.	<u>.</u>	<u>.</u>	ı	1	ı		ı
30	41.0	0	34.4	ж •	26.9	9	19.7	6	12.1	2.	9.9
35	1	و		ω,	1	0		۳,		5.	1
40	53.1	51.6	44.6	43.4	36.1	35.2	27.2	9.97	18.0	17.8	10.9
45	ı	9	I	7.	1	6.	ı	9.	t	0	ı
50	64.0	2.	53.5	2	44.0	7	33.8	2.	23.6	3	15.1
55	1	9		5.	ł	9	1	5.	ı	ي	ı
09	72.8	.	61.0	9	50.5	9.	39.4	œ	28.5	8	18.7
65	ı	4.		2.		5	1	:	1	0	1
70	80.1	œ	9.19	5.	56.4	4.	44.6	з.	33.1	2.	21.4
75	1	0	ı	φ.	t	7.	ı	5.	1	4.	•
80	85.6	ж •	72.8	<u>.</u>	61.0	9	48.6	7.	36.7	5.	23.7
85	ı	5.	ı	ж •	ı	.	t	6	1	7.	ı
06	89.9	8	76.8	5.	64.6	3.	51.5	0	39.7	α,	25.7
95	ı	0		7	1	ى ك	ı	2	ţ	0	ı
100	93.5	2.	80.4	9.	9.79	9	54.1	.	41.7	-:	27.3
105	ı	4.	ı	。	1	φ.		4.	ı	5	ı
110	8.96	ς.	83.7	2.	70.2	9	56.8	9	43.0	5	28.6
115	ı	7.		÷		.	t	7.	1	3	1
120	99.7	œ	86.0	5.	72.5	2	58.7	œ.	44.3	4.	29.9
125	1	00	1	9		3,	t	6	1	4.	ı
130	102.4	.	98.6	7.	74.8	4.	60.4	。	45.6	5.	30.9
135	i	02.		ω.		5.	ı	。	1	9	1
140	104.3	03.	90.6	9.	76.4	9	61.7	.	46.9	9	31.6

Statistical Stand Table Data for Pine: Average Stem Diameter (in) Table 3.2:

VI/m	1.1. 2 8 8 4 4 5 5 6 9 1 7 1 9 1 7 1 9 1 9 1 9 1 9 1 9 1 9 1
ш/Л	-228884440000000000000000000000000000000
V/h	1.1 2 2 1.7 7 1.1 2 1.6 1.1 2
IV/m	_ 2 4 4 4 7 7 7 8 8 8 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IV/h	2.6 3.7 4.7 5.2 7.2 8.0 8.0 8.7 9.5 10.9
III/m	2.8.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
111/h	2.6 3.3 4.5 7.9 6.9 8.9 10.0 11.9 12.7 13.5
II/m	EE 4 6 6 6 6 8 8 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1
II/h	3.2 4.0 5.5 7.0 7.0 7.1 8.3 1.2 1.3 1.3 1.4 1.5 1.5 1.6 1.6 1.7 1.7 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7
I/m	K4000886001111111111111111111111111111111
I/h	3.8 6.6 6.6 6.6 7.1 13.5 13.5 14.7 14.6 17.7 18.2
Locality Class/ Method of Thirning Age (years)	25 30 30 44 45 55 66 77 70 88 80 71 10 11 10 11 10 11 10 11 10 10 10 10 10

the control of the first of the first of the first of the second of the first of the second of the s

The second seconds.

Statistical Stand Table Data for Pine: Minimum Stem Spacing (ft) Table 3.3:

VI/m	3.9	5.4	7.1	9.6	11.5
M/W	1			10.1	
V/h	3.9	6.5	9.0	11.3	14.9
IV/m	1			21.21. 1.22. 1.22. 1.23. 1.24. 1.25.	88.765.
IV/h	4.9	8.5	11.1	13.8	18.1
m/III			33.7.	115.8 16.8 18.6 18.6 18.6	2 - 0 - 2
III/h	5.8 7.8	9.7	13.4	16.8 18.6 20.2	21.9 23.6 25.1
II/m			7 W 4 4 W	4.71 4.71 8.81 8.00 0.00	33.5
II/h	5.5	11.4	15.6	19.2 21.0 22.7	24.4 26.0 27.5
m/I	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3.5.	4.00.7	18. 19.2 20.0 20.0 7. 1. 1.	2 6 6 4 4
1/h	6.4 7.8 10.6	13.2	7.71	21.7 23.6 25.4	27.0 28.5
Locality Class/ Method of Thinning Age (years)				90 90 100 110 110	

Victoria de la Companya de la Compa

Table 4.1: Statistical Stand Table Data for Spruce: Average Height (ft)

Locality Class/ Method of Thinning Age (years)	I/h	m/I	II/h	II/m	111/h	III/m	IV/m	m/V
20	7	3.	7.	6.	2.	2.	1	1
25	4.	0	4.	2.	$_{\infty}$	9	ı	ı
30	6	7.	0	ω	2	0	٣,	ı
35	ω,	9	7	5.	7.	4.	ω	
40	57.1	54.5	44.9	42.0	32.8	30.5	22.6	•
45	5.	2	<u>.</u>	$_{\infty}$	6	7	7	$^{\circ}$
50	2	6	ω,	5.	5.	ع	2.	2
55	φ.	5.	5.	.	0	ω	7.	9
09	4.	-	0	7.	5.	۳,	-	0
65	ω	5.	5.	2.	0	7	5.	4.
70	۳,	6	9.	9	4.	2	6	ω,
75	7	ς,	÷	0	ω	5.	ع	7
80	0	7	7	4.	2.	9.	9	5.
85	04.	00	0	7.	5.	2	0	ω.
06	7.	03.	ش	0	ω ω	9	ش	.
95	9.	.90	9	ش	.	6	5.	4.
100	2.	.60	9	9	4.	2.	ω	9
105	4.	11.	2.	φ.	7.	5.	<u>.</u>	
110	7.	14.	4.		0	7	4.	ı
115	9	9	9	٠ ٣	2.	0	9	1
120	.	17.	ω.	5.	5.	5	ω	ı

Statistical Stand Table Data for Spruce: Minimum Stem Diameter (in) Table 4.2:

V/m	1 1 2 2 2 4 4 4 7 7 7 7 7 7 7
IV/m	
III/m	22.884483377888888788888888888888888888888
III/h	2.2.8.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0
II/m	2.8 8.8 8.8 8.0 6.0 7.0 7.0 8.8 8.3 7.0 7.0 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3
11/h	2.8.44.0.00 6.8.4.0.00 6.0.000 6.0000 6.00000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.
I/m	0.84700000000000000000000000000000000000
I/h	0.44 0.0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Locality Class/ Method of Thinr'g Age (years)	20 30 30 30 44 45 60 50 70 70 70 70 70 70 70 70 70 70 70 70 70

Table 4.1: Statistical Stand Table Data for Spruce: Average Height (ft)

	84 2 4 4 0 2 9 5 - 4
m//v	4622288844446 4822288844446 1111
IV/m	_ 18.0 2.2.2 2.2.2.2 3.2.2.2 5.0.0 6.0.0 6.0.0 6.0.0 6.0.0 6.0.0 6.0.0 7.44 7.44 7.64
III/m	12.8 24.9 24.9 30.5 37.1 443.0 57.7 76.1 65.9 65.9 65.9 65.9 65.9 76.1 87.0 90.2
III/h	12.8 222.3 222.3 327.6 320.9 550.9 66.4 68.6 68.6 68.6 68.6 69.7 7.2.2 90.2 90.2
m/II	222.0 282.0 352.0 442.0 555.4 661.7 772.2 80.4 80.4 90.6 103.3
11/h	106 - 6
I/m	23.3 37.7 446.3 546.3 662.3 662.3 687.6 887.6 100.7 1103.7 1116.1
I/h	27.3 34.4 38.7 5.7 65.0 7.2 7.2 88.9 93.2 100.7 100.7 1112.5 1114.8
Locality Class/ Method of Thinning Age (years)	20 30 30 30 440 50 60 70 100 110 110

Statistical Stand Table Data for Spruce: Minimum Stem Spacing (ft) Table 4.3:

m/V		ı	ı	ı	1	5.3	•	0.9	•	•	•	•	•	•	•	•	•	•	- 1	1	ı	1
IV/m		ı	1	•	•	0.9	•	•	•	•	•	•	•	•	。	0	-	-	2.	2	٠	÷.
m/III		•	•	•	•	6.4	•	•	•	•	•	•	。	。	.	2.	۳,	۳,	4.	δ.	•	7.
lII/h		•	•	•	•	7.7	•	•	0	÷	2	۳,	•	δ.	ن	9	7	φ.	9.	0	•	.
m/II		•	•	•	•	7.7	•	•	•	。	.	-	•	ъ.	4.	4.	5.	9	7.	α	6	6
II/h		•	•	•	•	8.8	•	0	•	5	۳,	4.	•	٠,	7.	œ	6	0	-	.	2	ش
m/I		•	•	•	•	8.5	•		。	<u>.</u>	2	3.	٠	4.	δ.	9	7.	7.	ъ	6	0	.
I/h		•	•	•	•	6.6	0	•	5.	ش	4.	5.	7.	œ	6	。	- :	2	.	4.	5.	9
Locality Class/ Method of Thinning	(years)	20	25	30	35	40	45	50	55	09	65	70	75	80	85	06	95	100	105	110	115	120

Photograph 2: Beech Stocking Area Associated with erstory Limestone Bedrock (Flight No. 2193/455)

Photograph 1: Typical Beech Understory
Associated with Beech Overstory

RATE PARTY OF THE TRANSPORT REAL AND MAIN

THE RESERVENCE OF A VENT AND A VENT

APPENDIX A: Forestry Office Invenvory Data for 90 Sites Selected

				- A 2 -			
	Remarks						
1962	Cancpy Closure (%)	II >90-100	>50-70 >50-70	>50-70 >50-70	v 100		
Oct	Loca- lity Class	11/11	II		111/11		
Date: 1	Height (ft)	60.7	75.4	72.1	39.3		
l	Age (years)	64	100	95	44		
Inventory	Composition (%)	10	30	80	75 25		
Oak	Area (ha)	1.7	0.8	0.4	3.2		
	Species	Oak Beech	Oak Beech	Oak	Oak Beech		
it Species:	rater conomy	-	-	2	2	<u>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' </u>	
Dominant	Surface Nutrient Soil Supply F	1	1	1	•		
g	Surface Soil Type	t	ı	ı	1		
Hünfel	9G0	ı	ı	ı	l		
fice:	al Alti- Si Tude Above Pattevel		ı	ı	1		
Forest Office: Hünfeld	ैंं और e (ha)	1.9	-:	0.5	5.0		
For	No. of Occipar- ment	90d	93d	92a	926		
	Site No.	28	30	29	27		

.1

V 49 5

				- A 3	-	
	Remarks				Understory	
1975	Cancpy Closure (%)	1/11 >75-90	> 100	> 100	1-1-1	
1 Jan 1975	Loca- lity Class	11/11	11/1	T1/11	II > 50-70 II/III > 50-70 V < 50	
	Height (ft)	75.4	26.2	48.5	93.4 32.8	
Inventory Date:	Age (years)	06	25	28	115 115 60	
Inven	Compcsition (%)	40	100	58	95 5 100	
ak	Area (ha)	0.2	1.1	1.2	0.1	
Dominant Species: Oak	Species	Oak Beech	Oak	Oak	oak spruce spruce	
nt Spec	Water Economy	9	-	ı	2	
Domina	Nutrient Water Supply Econom	2	м	t	2	
וחש	Sur- face Soil Type	Ą	SM	WS.	SM	
Burghaun	Slope - (8)	6-0	0	0	6-0	
fice:	Alti- tude Above Sca Lev	1147.5	1180.3	1213.1	1147.5	
Forest Office:	Total Area (ha)	0.4	1.1	1.2	1.7	
FO	No. of Compart ment	33a	38a	2d	77c ₁	
	. 0	-	10	4	18	

.1

	Renarks				Understory	
1975	Cancpy Closure (%)	> 100	▼75-90 ▼75-90	2 90-100	× 75-90 × 50 ×	
Jan 1975	Loca- lity Class		III		11/11	
te: 1	Height Loca- (ft) lity Class	1		68.9	88.5	
ory Da	Aqe (years)	22	50	81	80	
Inventory Date:	Composition (%)	100	60	100	100	
аk	Area (ha)	0.2	0.2	0.4	0.5	
Species: Oak	Species	Oak	Oak Beech	Oak	Oak Spruce	
nt Spec	Water Economy	2	-	ĸ	-	
Dominant	Nutrient Supply	2	2	Э	2	
	Sur- face Soil Type	SZ.	₩ W	ΣŠ	SM	
chlitz	Slope (%)	17-36	17-58	3-17	17-36	
Forest Office: Schlitz	Alti- tude Above Sea Lev-	950.8 - 1114.8	819.7	1016.4	819.7	
lest Of	Total Area (ha)	0.2	0.3	0.4	0.5	
For	No. of Total Corpart Area ment (ha)	406d ₂	518c3	518a ₃	22a 2	
	Site No.	09	57	بن بن	63	

+) different slopes were encountered within

the same compartment

	Remarks				
75	Cancpy Closurc (%)	>75-90 >75-90			
Jan 1975	Loca- lity Class	II			
Date: 1	Height Loca- (ft) lity Class	82.0			
ory Da	Age (years)	113			
Inventory	Compc- sition (%)	30			
Oak	Area (ha)	0.3			
Species: (Species	Oak Beech			
	Water Economy	-			
Dominant	Nutrient Supply	2			
au	Sur- face Soil Type	WS.			
Greben	Slope	9-36			
Forest Office: Greben	Alti- tude Above Sea Lev	1049.2			
est Of	Total Area (ha)	0.4			
For	No. of Total Compart Area ment (ha)	80d			
	Site 70.	71			

	Remarks					
962	Cancpy Closure (%)	II > 75-90 II/III > 75-90	v 100 v 100 v 100	> 50-70 > 50-70	001-06-111/11	
Oct 1962	Loca- lity Class	11/111	11/111	111/11	11/11	
Date: 1	Height Loca- (ft) lity Class	85.2 82.0 88.5	1 1 1		1 1	
1	Age (years)	114	17 15 8	144	30	
Inventory	Compc- sition (%)	90	40 30 20	95	10	
Beech	Area (ha)	0.3	2.5	14.4	3.6	
Species: B	Species	Beech Oak Spruce	Beech Oak Spruce	Beech	Beech	
	Water Economy	-	-	-	2	
Dominant	Nutricut Supply	l	ı	l	ı	
ש	Sur- face Soil Type	l	l	ME	l	
Hünfeld	Slope (%)	1	1	i	•	
Forest Office: Hünfel	Alti- -ude Licove Sm. Lev	-	ı	l	ļ	
Test Of	Total Area (ha)	5.2	5.6	15.2	4.0	
For	No. of Ocmpart ment	q69	75a	40a	ਕ 98 8	
	4	2:	24		25	

1;

	Remarks					Understory	
175	Cancpy Closure (%)	v 100 100 100	> 100 > 100 > 100	v 100 v 100	> 100	> 50-70 > 50-70 < 50	
Jan 1975	Loca- lity Class	1/11 1/11 1/11	11/1 11/1	11/1	II	1/111	
Date: 1	Height (ft)	86.9 86.9 78.7	78.7	1 1	49.2	98.4	
1	йте (years)	79 79 79	83 83 78	18	49	125 125 10	
Inventory	Compo- sition (%)	50 45 5	75 5 20	15	100	90 10 100	
eech	Area (Ea)	2.1	12.4	9.6	10.3	9.2	
Species: Beech	Species	Beech Oak Pine	Beech Oak Pine	Beech	Beech	Beech Oak Beech	
	Roman Roman	-		-		_	-
Lominant				-		-	
		; ; ;	 	Ĭ.	Ŋ.	Ř	
Burahaun		1	9-36	3-9	9-36	3-9	
Office:		2.2.	1409.8	1213.1	1377.0	1229.5	
Forest Of		· ·	15.6	2.1.5	16.3	ω. Θ.	
i č		28c	21a	.3a		44	
	C • • • • • • • • • • • • • • • • • • •	m	9	₹.	in.	1 ,	

	FOI	Forest Of	Office:	Schlitz	2	Dominant		Species: I	Beech	Inventory		Date: 1	Jan 1	1975	
, C	To part cont	Tctal Area (ha)	Alti- Fudo Afcve Eca Lev	Slope	Sur- face Soil Type	Natrich Supply	Water Economy	Species	Area (ha)	Composition (%)	Age (years)	Height (ft)	Loca- lity Class	Cancpy Closure (%)	Remarks
O)	4393,	©:	1442.6 - JO6.6	9-36	MI,-SM	7		Beech Oak Spruce Pine	4.3 2.1 0.4 0.3	30	97 89 76	85.2 83.6 95.1 101.6	11 1/11 1/11	V V 100 100 100 100	
1	535/2	,- iC	1049.2	9-36	MISM	2		Beech	1.5	100	129	1	II	> 50-70	
50	531/1	6.3	983.6	17–58	ML,-SM	2	-	Beech Spruce	6.3	100	147	101.6	II/III III	- 75-90	Spotted
Ţ.	447C	2.4	1114.8	17-36	MS'IW	2	-	Beech Oak Spruce	0.5	60 20 20 20	20 20 13	1 1 1	11/111 1/11 11	v 100 v 100 v 100	
4.5	706a	n) ਚਾ	918.0	9-17	ML-SM	2	2	Beech Pine Pine	2.8	30	49	59.0	1 1	> 100 > 100 > 100	Understory
65	910a	4.3	1245.9	17-36	MS-'IM	2	-	Beech	2.5	100	170	105.2	111/11	> 50-70	

				- A 9 -			
	Remarks						
375	Cancpy Closure (%)	V V V	v v v 100 100 100	▶ 75-90	100		
Jan 1975	Loca- lity Class	111/111	1/11 < 1 1	III	111/11		
te: 1	Height (ft)		90.2	67.2	49.2		
Inventory Date:	Age (years)	33 24 24	87 65 65	85	55		
Invent	Composition (%)	37	20 10	100	100		
Beech	Area (ha)	0.2	2.0	1.0	0.6		
Species: B	Species	Beech Pine Spruce	Beech Spruce Pine	Beech	Beech		
	J	ю	2	к	9		
Dominant	Nutrient Water Supply Econom	-	7	7	2		
lau	Sur- face Soil Type	Æ	₽.S.	₩.	æ		
Grebenau	Slope (%)	3-9	3-17	0-17	0-17		
fice:	Alti- tude Above Seg Lev-	1409.8	1447.5	1311.5	1245.9		
Forest Office:	Total Area (ha)	3.6	2.8	1.0	9.0		
For	No. of Compart ment	134	26	162b	171a		
	Site No.	75	69	84	83		

	Remarks					
62	Canopy Closure (%)	>75-90 >75-90	1 00 1 00 1 00	11 >90-100 11/11 >90-100 11/11 >90-100	\$ 50-70	
Oct 19	Loca- lity Class	1/11		11/111	II	
te: 1	Height Loca- (ft) lity Class	78.7		50.8	82.0	
ıry Da	Age (years)	109	28	62 62	118	
Inventory Date: 1 Oct 1962	Composition (%)	85	10	10	100	
Pine	Area (ha)	3.4	6.5	0.1	1.8	
	Species	Pine Oak Beech	Pine Beech	Pine Beech Spruce	Pine	
Dominant Species:		4	4	3	4	
Domina	Nutrient Water Supply Bonom	1	ı	•	ı	
ਾਰ -	Sur- face Soil Type	MI	WS.	SM-ML	WS	
Hünfel	Slope (%)	1	1	•	1	
	Alti- tude Above Sea Lev-	-	ı	1	ı	
Forest Office:	Total Area (ha)	4.Ú	7.2	2.1	1.8	
For	No. of Compart ment	7c	9a	47c	189c	
	Site No.	33	34	36	41	

 r			-	-1-	 	-1		ī	A	1	1	- 1			_,	_	 1	1	 _	 ,	 	
	Remarks																					
1975	Canopy Closure (%)	V 100	218	2 100	>90-100				▶ 75-90	> 75-90	>75-90		100	> 100								
Jan	Loca- lity Class	11/11	Ħ	Ħ	111/11				111/111	111/11	감		1	I								
Date: 1	Height (ft)	29.5	39.3	•	62.3				78.7	73.8	73.8		78.7	72.1								
	Age (years)	56	25	97	73				113	113	113		60	9								
Inventory	Composition (%)	80	10	10	100				100	1	-		96	10								
Pine	Area (ha)	3.4	0.4	0.4	9.9				16.5	0.1	0.1		6.5	6.0								
Species: F	Species	Pine	Pine	Sak	Pine				Pine	Oak	Spruce		Pine	Beech								
	Water Economy		٧	p		,	• <u> </u>				9			,	<u></u>				 <u> </u>			
Dominant	Nutrient Supply		ŗ	า		,	m				<u>π</u>			~								
นก	Sur- face Soil Type						8		SW-ML				SW-ML									
Burgha	Slope (8)		c	>		0			6-0			3-9										
fice:	Alti- tude Above Sea Lev		1295.1	1344.3		1327.9	1244	1.44.0		1295.1	1	1327.9		1114.8	1 1	1245.9			 			
Forest Office: Burghaun	Total Area (ha)		•	7.4			9.9				16.7				7.4							
For	No. of Total Compart Area ment (ha)			29a			ာ ၁၀၅				28				63							
	Site No.		,	9			17				15				14							

No. of Total Alti- Slope Sur- Nutrient Water Species Pine Inventory Da Compart Area Tuve (%) Face Suply Economy Species Area Component Compart Area Tuve (%) Soil Soil Suply Economy (%) Stition (Years) Salidite Type Soil Suply Economy Sprine Sp	I	•			•											
Alti- Slope Sur- Nutrient Water Species Area Components of the Sur- Supply Economy Species Area Components of the Supply Economy Sea Lev Type Soil Soil Soil Soil Soil Soil Soil Soil		Fol	rest Oi	ffice:	Schlitz		Domina			ine	Invent		Date: 1	Jan	1975	
4.3 1393.4 2SM 3 6 Spruce 0.2 5	2 0 g	of mpart nt		Alti- tude Above Sea Lev	Slope (8)	Sur- face Soil Type	Nutrient Supply	Water Economy	Species	Area (ha)	Composition (%)	Age (years)	Height (ft)	Loca- lity Class	Canopy Closure (%)	Remarks
4.3 1393.4 1409.8 3 6 Spruce 0.2 5 3.0 1000.0 3-17 SM 2 1 Beech 0.1 2 11.8 129.5 3-17 SM 2 1 Beech 0.1 5 11.4 2 3-17 SM 2 1 Beech 0.1 5 1.4 2 3-17 SM 2 1 Beech 0.1 5 2.5 1147.5 17-58 SW+ML 2 1 Beech 0.5 20 Beech 0.5 20 Pline 1.3 95 Pline 1.4 70 Beech 0.5 20 Pline 1.8 70 Pline 1.8 70 Beech 0.5 20 Beech				1202		3			Pine	4.0	93	23	,	п	> 100	
1409.8 ML Beech 0.1 2 3.0 1000.0 3-17 SM 2 1 Beech 0.2 10 1098.4 Beech 0.2 10 Spruce 0.2 10 Spruce - 20		935b		1393.4	6	My de	~	9	Spruce	0.2	5	20	_	11	▶ 100	
3.0 1000.0 3-17 SM 2 1 Beech - 80 50 1098.4 . 3-17 above 3 1 Spruce - 20 50 11.8 1229.5 3-17 SM 2 1 Beech - 20 50 11.4 - 20 11.8 100 11.4 - 20 11.		}	}	1409.8	\ >	Æ)	,	Beech	0.1	2	25		III	100	
3.0 1000.0 3.1 SM 2 1 Beech - 80 Spruce 0.2 10 Spruce - 20 Spruce - 50 Spruce - 50 Spruce - 20 Spruce - 50 Spruce - 20 Spruce	_								Pine	2.0	8	99	80.3	I	v 100	
3.0				1000.0					Spruce	0.2	10	99	77.0	11/1		
11.8		726a		1 9	3-17	8	7	-	Beech	-	80	20	-	III	₹ 50	Understory
11.8				1098.4					Spruce	1	20	20	_	III	c 50	Understory
11.8	1								Pine	11.8	100	93	83,6	1/11	▶ 100	
11.8 - 3-17 above 3 1 Spruce - 80 1163.9 1.4 - 3-17 SM 2 1 1229.5 17-58 SM-ML 2 1 Beech 0.1 5 2.5 - 17-58 SM-ML 2 1 Beech 0.5 20				1114.8	,	8	,	•	Beech		20	20	•	III/IV	€ 50	Understory
1.4 129.5 3-17 SM 2 1 Beech - 20 Pine 1.3 95 1.4 1229.5 3-17 SM 2 1 Beech 0.1 5 2 2.5 1147.5 SM-ML 2 1 Beech 0.5 20 10 147.5 SM-ML 2 1 Beech 0.5 20 10 10 10 10 10 10 10 10 10 10 10 10 10		607a		1220 E	3-17	above M	m	-	Spruce	•	80	15	-	III	c 50	Understory
1.4				1462.3					Beech	١	20	09	-	IV	€ 50	Understory
1.4 - 3-17 SM 2 1 Beech 0.1 5 1 1229.5 1 1032.8 SM-ML 2 1 Beech 0.5 20 2.5 1147.5 SM-ML 2 1 Beech 0.5 10	L								Pine	1,3	95	110	91.8	1/11	≥90-100	
1.4 - 3-17 SM 2 1	_			1163.9					Beech	0.1	5	100		٧	>90-100	
2.5 1147.5 SW-ML 2 1 Beech 0.5 20 Beech 0.2 10		921b ₂	4.	1220 5	3-17	Š	7	•-								
2.5 1147.5 SM-ML 2 1 Beech 0.5 20 Beech 0.2 10				1227:3												
2.5 1147.5 17-58 SM-ML 2 1 Beech 0.5 20 10 147.5 1147.5 17-58 SM-ML 2 1 Beech 0.2 10 10 10 10 10 10 10 10 10 10 10 10 10				1032.8					Pine	1.8	2	114	85.2	II	9	
2.2 1147.5 Beech 0.2 10		3	c	,	17-58	SMAKE	7	-	Beech	0.5	8	114	87.5	III	100	
		3	C.7	1147.5					Beech	0.2	10	8	9.59	111/IV	<u>8</u>	
			-			,,										
					-											

Γ			\neg	П		П	\neg	ᅱ	Ţ	1	Ţ			T	丁		젊	7	\prod		Π	
		Remarks						Understory									Understory					
	1975	Canopy Closure (%)			▶90-100	▶90-100	ੲੀ	- 1	v 100				1	2 100		001-06∢	~ 50		>90-100	>90-10d		
	Jan 1	Loca- lity Class			11/11	ᄖ	111/11	Δ	II				111/11	Ħ		11	ΛI		1/11	I		
	te: 1	Height (ft)	1		83.6	88.5	83.6	59.5	1				29.0	9.59		86.9	49.2		82.0	101.6		
	Inventory Date:	Age (years)	19		8	96	96	•	7				41	41		148	100		84	84		
	Inven	Composition (%)	100		8	5	5	100	100				100	•		100	100		70	S.		
	Pine	Area (ha)	7.9		4.2	0.5	0.5	1	5.6				5.1	0.1		2.1	2.1		3.6	بر -	2	
	Species: P	Species	Pine		Pine	Spruce	Beech	Beech	Pine				Pine	Spruce		Pine	Beech		ine	Christo	3	
		Aurient Water Supply Economy	,	-			-				_			~)		-				-	
	Dominant	Nutrient Supply		ro.			7			,	7			,	1		2)			7	
	ne	Sur- face Soil Type		₹			₹				8		ML-SW				& 				8	
	Grebena	Slope (%)	ł	3-17		3-17				0-3		9-17		17–58			3-17	3-17		0-3		7
	Forest Office: Grebena	Alti- tude Above Sea Lev-	1147.5	1213.1		1213.1	1	1344.3		1245.9		1344.3		1278.7			1016.4		1131.1		1	1245.9
	est Of	Total Area (ha)		7.9			4.4				2.6			,	7.0		,				5.2	
	Foi	No. of Compart ment		8			149a				151a			Ş	060		2283	20077			153a,	•
		Site No.		73			81				79				7/		77	•		-	80	
							_				_									_		_

	*			V 14 -		
	Remarks					
975	Canopy Closure (%)	• 100	100	100	4 4 100 100	
Jan 1975	Loca- lity Class	111/11	1/11	I	111/11	
te: 1	Height (ft)			98.4	45.9	
Inventory Date:	Age (years)	35	22	84	19	
Invent	Composition (%)	100	100	25	30	
ne	Area (ha)	4.3	7.9	3.6	1.7	
Dominant Species: Pine	Species	Pine	Pine	Pine Spruce	Pine Spruce	
nt Spec	Water Economy	-	-	-	9	
Domina	Nutrient Supply	м	7	7	ъ	
ng	Sur- face Soil Type	8	8	8	SM above SC	
Forest Office: Grebena	Slope (%)	6-0	0-3	9-17	6-0	
fice:	Alti- tude Above Sea Lev	1245.9 - 1344.3	1131.1	1245.9	1311.5 - 1344.3	
rest Of	Total Area (ha)	4.3	7.9	4.8	5.7	
For	No. of Compart ment	160	152	154	166b ₁	
	Site No.	78	98	87	85	

r					- A 15 -			
		Remarks						
	962	Canopy Closure (%)	> 90-100	II/III > 75-90 II > 75-90 II > 75-90	100	2 90-100 2 90-100		
	1 Oct 1962	Height Loca- (ft) lity Class	111/111	11/111 11 11	ii II	1 1		
		Height (ft)	73.8	82.0 72.1 82.0	55.7			
	Inventory Date:	Age (years)	08	89 59 99	52	15.		
	Invent	Composition (%)	100	85 10 5	100	20		
	Spruce	Area (ha)	11.3	0.7	11.6	0.9		
		Species	Spruce	Spruce Spruce Pine	Spruce	Spruce		
	Dominant Species:		6	æ	4	ю		
	Domina	Nutrient Water Supply Econom	ı	ı	1	1		
	77	Sur- face Soil Type	I	I	-	ML	_	,
	Hünfeld	Slope (%)	1	-	-	•		
	fice:	Alti- tude Above Feg lev	-	-	l	_		
	Forest Office: Hünfeld	Total Area (ha)	11.3	7.0	11.6	1.1		
	For	No. of Compart ment	21	32c	33	51b		
		Site No.	40	39	32	31		
				L				

						-	Α	16	_			_					
75	Remarks																
Jan 1975	Canopy Closure (%)	¥ 100	100	▶ 90-100		▶ 100	▶ 100			1				1	+	1	
'Y	Loca- lity Class	II I	ı	II		< I	1			Ħ							
Inventory Date:	Height Loca- (ft) lity Class	72.1	72.1	104.9		80.3	75.4			25.4							
In Da	Age (years)	65 65	65	115		46	46			22							
	Composition (%)	20 02	10	100		8	20			100			1	1			
Spruce	Area (ha)	9.8	1.4	2.7		2.2	9.0			3.9							
	Species	Spruce	Oak	Spruce		Spruce	Pine			Spruce							
ıt Spec	Water Economy	m	<u>.</u>		~ .		c	<u>'1</u>			-		 <u></u>			_	
Dominant Species:	Nutrient Water Supply Economy	-			7		,	٧			2						
ផ្ន	Sur- face Soil Type	ME				SM-ML			SW-ML								
Burgha	Slope (%)		36-58	0-3		0			3-9								
Forest Office: Burghaun	Alti- tude Above Sea Level (ft)	1475.4	1718.0	1147.5	1213.1	!	1147.5	1213.1		1295.1		1360.7					
rest Of	Total Area (ha)	14.0			2.7			8.7			3.9			-		 	
For	No. of Total Compart Area ment (ha)	22a			77c		į	3/8			34d						
	Site No.	7			50		(71			13						

				- A 17 -			
75	Remarks					Understory	
Jan 1975	Canopy Closure (%)	7 90-100	V 100 V 100	100	>90-10(> 50-70 > 50-70 < 50	4 4 100
y.	Loca- lity Class	III	HH	Z I	11/1	III	Ħ
Inventory Date:	Height (ft)	68.9	1 1	75.4	83.6	106.6	1 1
In	Age (years)	79	24	51	69	101	24 24
	Composition (%)	100	95	100	100	57 43 100	95
Spruce	Area (ha)	1.2	1.8	3.0	2.0	1.9	2.0
Species: S	Species	Spruce	Spruce	Spruce	Spruce	Spruce Beech Spruce	Sprice
	Water Economy	4	-	9	-	-	-
Dominant	Nutrient Water Supply Econom	۳	3	3	2	2	е
2	Sur- face Soil Type	S.	SM-ML	SM above ML	SM above ML	SM above	above ML
Schlit	Slope (%)	36-58	3–9	•	6-0	0	3-9
fice:	Alti- tude Above Sea Lev	983.6	852.5	1344.3	1311.5	1344.3	852.5
Forest Office: Schlitz	1,-	1.2	2.2	3.0	2.0	3.3	2.2
For	No. of Tota Compart Area ment (ha)	540a ₂	735b ₁	527a	533b	527c1	755b ₁
	Site No.	53	44	48	51	52	45

				- A 18 -		
975	Remarks					
1 Jan 1975	Canopy Closure (%)	>90-100 >90-100	> 75-90	> 100 > 100	290-100	
	Loca- lity Class	111	17/11	11/1	11/1	
Inventory Date:	Height (ft)	68.9	1	93.4	85.2	
Da	Age (years)	79	28	121	29	
	Composition (%)	95	100	34	100	
Spruce	Area (ha)	0.2	-	1.0	3.0	
	Species	Spruce Pine	Spruce	Spruce	Spruce	
Dominant Species:	Water Economy	٣	-	7	-	
Domina	Nutrient Water Supply Econom	2	2	2	2	
au	Sur- face Soil Type	AS.	NS.	Σ	8	
Greben	Slope (8)	0-3	0-3	0-3	0	
Forest Office: Grebenau	Alti- tude Above Sea Lev-	918.0	1245.9	1213.1	1344.3	
rest Of	Total Area (ha)	4.8	1.1	2.8	3.0	
Fol	No. of Compart ment	1 a	151	318b	150a	
	Site No.	88	88	1.1	82	

			- 	A 19 -			
52	Remarks						
Oct 1962	Canopy Closure (%)	>75-90 >75-90 >75-90		100		v v 100 100 100	>50-70 >50-70
'Y 1	Loca- lity Class	HIII	111/111	III		11/1 11/11	111 \$50-70 111/11 \$50-70 11/11 \$50-70
Inventory Date:	Height (ft)	86.9 68.9 80.3	93.4	55.7		1 1	72.1
In	Age (years)	85 119	96	51		49 49 25	110
Forest	Composition (%)	70 25 5	40	30		70 5 25	30 20
Mixed Fo	Area (ha)	3.6 0.7	2.6	0.7		3.1	0.0
1	Species	Pine Beech Oak	Beech	Spruce Beech		Beech Oak Spruce	Oak Beech Pine
t Species:		<u> </u>	-	2		-	4
Dominant	Nutrient Water Supply Economy	1	_	ı		_	l
	Sur- face Soil Type	Ŋ	ı	M		1	ΣS
Hünfeld	Slope (%)	ı	l	•		i	1
fice:	Alti- tude Above Sep 1847	1	ı	-		l	ı
Forest Office: Hünfeld	Total Area (ha)	14.4	4.3	2.4		12.3	1.1
For	No. of Compart ment	10a	q89	74b		85a	19
	Site No.	35	22	23		26	38

	· · · · · · · · · · · · · · · · · · ·			- A 20 -	_
75	Remarks	Understory			
1 Jan 1975	Canopy Closure (%)	001 4 100 4	>50-70 >50-70	v v 100	
	Loca- lity Class	1 1 1 1 1 1	IV	111/11 111/11 V1/111	
Inventory Date:	Height (ft)	_ _ _ _ 75.4	77.0	47.5 45.9 72.1	
Ir Da	Age (years)	20 20 20 134	149	50 48 169	
orest	Compcsition (%)	45 25 30	40	60 40	
ixed F	Area (ha)	0.3	1.0	0.6	
ies: N	Species	Oak Beech Pine	Beech Pine	Pine Beech Pine	
Dominant Species: Mixed Forest	Nutrient Water Supply Economy	2	m	т	
Domina	Nutrient Water Supply Econom	2	-	-	
ur ur	Sur- face Soil Type	SW-ML	Æ	Ř	
Burgha	Slope (%)	6-0	3-17	3-9	
Forest Office: Burghaun	Alti- tude Above Sea Lev- el (ft)	1213. 1 - 1262. 3	1114.8	1245.9	
rest Of	Total Area (ha)	1.2	2.6	1.0	
Foi	No. of Compart ment	17£	221b	222d	
	Site No.	19	2	-	

							- 1	2	1 -		_		_						
75	Remarks																		
Jan 1975	Canopy Closure (%)	v 100	> 100		001	200	001-06	90-100		100	2 100			200	100	v 100			_
-	Loca- lity Class	11/11	11/1	\vdash		Т	7	Ìμ	1	111	11			1/11	III	II			
Inventory Date:	Height (ft)	90.2	100.0	103.3	2 8		93.4	65.6		95.1	91.8			-	1	•			
In	Age (years)	122	66	91	91	66	69	3 5		138	138			34	34	34			
Forest	Composition (%)	30	65	25	2	2	63	15		55	45			63	25	12			
Mixed F	Area (ha)	2.3	3.2	1.2	0.2	0.3	4.6	0.0		1.0	6.0			0.5	0.2	0.1			
Species: M	Species	Pine Beech	Booch	Spruce	Pine	Sak Sak	Spruce	Spring		Poorh	Pine			Spruce	Beech	Şak			
1	Water Economy	-		^				7				-			•	-			
Dominant	Nutrient Water Supply Econom	7		٠	7			2				7				7			
	Sur- face Soil Type	SM		MS (apode tj			ME				X				- WILL			
Schlitz	Slope (%)	3-9			بر ا			17-58				3-17			,	3-17			
Forest Office: Schlitz	Alti- tude Above Sca Lev-	1082.0		1311.5	1360.7			978.0	983.6		1082.0	1040	7.047		885.2	1 6	983.6		
est Of		3.2		(2.0			α ~)			1.9				8.0			
For	No. of Total Compart Area ment (ha)	442a ₁		(528a			51.3h	3			914d ₂				755a ₂			
	Site No.	59			49			72	3			99				46			

1

	· · · · · ·			- A 22	_	
75	Remarks					
Jan 1975	Canopy Closure (%)	v v v 100	V 100	> 90-100 > 90-100 > 90-100	> 100 > 100	
γ 1	Loca- lity Class	11 11/1	11/11	117111 117111	1/11	
Inventory Date:	Height (ft)	77.0 86.9 85.2	70.5 77.0 93.4	1 1 1	73.8	
In	Age (years)	104	78 78 78	20 20	59	
Forest	Composition (%)	50 20 30	40	55 20 35	51	
Mixed F	Area (ha)	2.4	0.6	1.9 0.7 0.9	2.8	
Species: M	Species	Oak Spruce Pine	Oak Beech Spruce	Beech Pine Spruce	Beech	
	Water Economy	-	-	т	7	
Dominant	Nutrient Supply	2	2	-	2	
na	Sur- face Soil Type	₹.	₩.	Ř	<i>₹</i> 5	
Grebena	Slope (%)	6-0	9-36	0-3	3-17	
fice: (Alti- tude Above Sea Lev	1311.5	1213.1	1311.5	1114.8	
Forest Office: Grebenau	Total Area (ha)	4.7	1.3	3.5	5.5	
For	No. of Compart ment	æ	19a	136a	325b	
	Site No.	89	70	96	9/	

APPENDIX B: Vegetation Field Data for 13 Sites Selected

SITE NO:	68		DA	TE;	4 UL 13	1/8/7	79
11. GENERAL FOREST		_				·	
□NO FOREST (GO TO BLO APPROXIMATE COM	, cr + 2 /	CONFIERO	us 🕱 D	ECIDUOUS	□wīxi	שׁב	
CONDION NA	ME			APPROX.	PERCENT (of Hilms	
1 oak			0 🗖75-9	9 🕱 50-	74 🔲 26-50) [J10-2	A
2 beed	<u> </u>					13	Ø
3 pine	·			. D		K	
11a.MANAGEMENT							
☐ INDETERMINAT		-			TURAL, MAN	AGI:II	ם מיאמותד 🗖
116.GROWTH STAGE	DED, BROAD	CAST	DRC	W-PLANTI	D U_		
☐ INDETERMINAT	E	Z	ATURE				
-	ED/PLANTED	<i>,</i> ,	: E	RECENTLY	Y REPLANTE	TAILL O	ERMEDIATE
FOR NATU	RAL FOREST	: D E/			H DVD	VANCID S	UCCESSIONAL OWTH
11c.GROUND COVER:	GRASS		VINES	BRUSH	, DECIDUOU	s IJRR	USH, CONIF.
	•	MIXED .					
PERCENT CO GENERAL HE		•	25 🗖 21 i	6-50 F	51-75	□ ⁷⁶ ·10	iU
11d CHARACTERISTIC			EIGHT, FT	_			
jx (0-3 □:	3 -8 🗀 9)-13	□14-30	□31-6	2 🛮 63-	95 🗆	96-164
11e.CANOPY CLOSURE	PERCENT	□ >1	64				
□ <25	-) [] 51-75	[2]	6-2.00		
REMARKS LL	iplets o	$\mathcal{L} \alpha$	Ast a	1, 12 ") = 3	-/	
<u>(</u>			iks (g	1 8 2) = 73 ") = 4	201	
	/ 4	n f	nues f	4 10	/-/		
NA POD DOU DI AVIO	arm marred (ONL A)					
11f. FOR ROW-PLANT	TED TREES (ONDIT		 .	Compas	s Dinnell	lon
Mean I	Row Spacing	, ft	L 15	161	Nagnet	ic A.mut.t	10
) STA		1-1					
SAMPLE SAMPLE					└ <i>──</i>	—}—	. 1

BALLELLE INSTITUTEV FRANKFURT AM MAIN

· -

Stem	Stem 1	Number of	Stems		
Diam Class	Diam, in.	Coniferous (C)	Deciduous (D)	(C + U)	Sample Cell 200
1	<u><1</u>				
	1				
2	1.5		<u> </u>	_	
	2			<u> </u>	
	2.5			_}	
3	3		8	_]	
	3.5				
	4				
4	4.5				
	5				
	5.5			7	
	6		14		
5	6.5				
	7		14		
	7.5				
6	8		8		
	8.5				
	9				
7	9.5			7	
	10-15		80		
8	15.5-20		4		
	20-30	8	<u> </u>		
}	30-40				
	40-50				
1	60-100				
	100	1		1	

ESTIMATED DIST TO NEXT TREE OF LARGEST SIZE ABOVE, FT $D_{A} = \sqrt{8x3^2+4x6^2+\cdots+8x25^2/116} = 13.0''$ $S_{A} = \sqrt{1000} = 18.6'$

SITE	NO:	86	·		DAT	E:	18/79) :	
11. GENER	AL FORE	ST_DESCR							•
		ST BLOCK 13 COMPOSIT	• •	NF1EROU:	S 🗖 DE	CIDUOUS	□wtxer	J	
	COMMON	NAME				APPROX.	PERCENT OF	Zati;;	
1	be	ech		100	□ 75-99	50-	74 🔲 26-50	[]10-25	조 <10
2	n	ines			×			13	
- <u> </u>	1	erch		п		Д.	D	M	
11a.MANA	GEMENT	<u> </u>					_	•	
	NDETERMI	NATE		☐ NAT	URAL	MAT	URAL, MANA	GED 🗖	ס־אמואד (
					□RO1				
116.GROW	TH STAGE								
	NDETERMI			□ MA					
	FOR S	EEDEU/PL	ANTED I	FOREST:		RECENTLY	REPLANTED	MINTER	MEDIATE
	FOR N	ATURAL F	OREST:	☐ EAF	RLY SECON	D GROWTH	i 🗖 VDV	_{'AN('} 11) SUC GROW	CESSIONAL TH
llc.GROU	ND COVER	: D	GRASS	ים	INES	□ BRUSH,	DECIDUOUS	RRUS	H, CONIF.
				MIXED .					
	PERCEN1	COVER:	□ 0	0-2	5 🗖 26	-50	51-75	⊠ 70 ·100	
		HEIGHT:				_			
11d CHAR	ACTER IS	LIC CVNO	PY OR S	HRUB HE	IGHT, FT				
Þ	1 0-3	□3-8	□9-	13]14-30	□31-6	2 📙 63-9	95 🗀 96	5-164
-				□ >16	4				
		JRE, PER					. 100		
(J<25] 26-50	•	51-75	A	6-300		
REMA	ARKS	Welst	1 0	ni	en la	12-5	1) = 4	45/	
		- Cy .c/		110		11	5") = 4	<u> </u>	
		A.	, c	la	rches.	192-	5") = 9	<u> </u>	
						•	•		
11f. F	OR ROW-PI	LANTED T	REES (O	NLY)					
							Compass	Di Llo	n o
	Me	an Row Si	pacing,	ft	<u>.</u> 14 5	161	Magneti 7 8	c // million .	10
) 5	TA	1-1-	 			╅		T 1	1
CAMPING	T							+	
[3,	HD	l	ı l	į.	į.	l l	1	ــا. ا	

item	Stem	Number of	25608		· · · · · · · · · · · · · · · · · · ·	,
Diam Class	Diam, in.	Coniferous (C)	Deciduous (D)	(C + D)	Sample Cell Diam, ft	100
1	<u><</u> 1	(0)		1(4 - 5)	mam, Et	1
	1	1				
2	1.5					
	2	19	30	1		
1	2.5			-		Í
3	3	20			İ	
	3.5			7	ļ	
	4	24				ĺ
4	4.5			7		<u>.</u>
	5	37		7		
	5.5			7		1
	6	13				
5	6.5			7		
	7	8				
	7.5					
6	8	/				
	8.5		Ì	7		
~	9					
7	9.5			7		
	10-15	2				
8	15.5-20					
	20-30					
	30-40					1
	40-60					
	60-100					1
						-

ESTIMATED DIST TO NEXT TREE OF LARGEST SIZE ABOVE. FT $D_{A} = \sqrt{\frac{1}{12} + \frac{100}{155}} = 8.0^{\circ}$

SIT	E NO:		87				DAT	E:	7/8/79		
11. <u>GE</u> N	ERAL	FORES	T DESCR	IPTION							
APF			T BLOCK 1: OMPOSIT) <i>'</i>	ONF I ER	ROUS	D DE	CIDUOUS	S □MIX	ED	
	<u>c</u> c	MOM	NAME					APPROX.	PERCENT	OF TIMS	
1 _		Dine	·		0	00	⊒ 75-99	⊠ 50-	-74 D26-5	-10 لي ه	2 5 🗆 <10
2	··· •	spru	ce	_			3			t3	
		he	ch					ם	п	M	
11a.MA	NAGEMI	ENT			U		J	ب.		7 •	
			ATE		D :	NATUR	\L	DENA"	TURAL, MAN	AGLU	ם דוונאס ס
			EEDED,					-PLANTI			
115.GR	HTWC	STAGE									
	INDE	rermin	ATF		Œ	MATU	RE				
	1	FOR SE	EDEU/PI	ANTED	FORES	Γ:	□ R	ECENTL	Y REPLANTE	ED JINT	ERMEDIATE
	1	FOR NA	TURAL I	OREST:		EARLY	SECOND	GROWT	H 🗖 AD	O PHANAVI GR	SUCCESSIONAL COWTH
llc.GR	ם מעטכ	COVER:		GRASS	1	MIA	ES [BRUSH	, DECIDUOU	is)2(RR	NUSH, CONIF.
					MIXED					·	
	PE	RCENT	COVER:	□ 0	D 0	-25	□ 26-	S0 🏂	[51-75	□76·10	00
			HEIGHT								
11d CH			C CANOI				•				
	D 0-	3	4 3-8	1 9-			-30	□ 31-6	2 🗀 63-	-95 🗖	96-164
11 a CA	NODY /	Ct Ocur	e nen	CENT	□ >	164					
11e.CA			E, PER			E1	7 C	•	6 100		
	□ <2	3	L.	26-50		-		•	6-100		
RE	MARKS	14	icht	5 01	· •	146	2 [0	15-1	9") =	901	
	~		1)	7	#	1 000	/ 	/ -	, ,	<u> </u>	
	_		· h	<u> </u>	501	ucc	2 (9	15-13	(°) =	<u>55</u> /	
					7		•				
116.	FOR R	OW-PLA	HTED TE	REES (O	NLY)						
}		Γ		 -			·····		Compas	s Dine L	lon
		Mean 0	Row Sp	acing,	ft 3 -	<u>},</u>	1 5	161	Mngnet 7 8	ic Armutil	10
) [*]	STA		 				1			 	
ROW SAMPLE	FT									╌╂╌	
)	3HD	1	1	i i	ŀ		1	1 1	1	_lll	

BATTILLE INSTITUTES FRANKFURI AM MAIN

SITE NO:

12. TREE STEM SIZE/SPACING (Standing Trees)

em	Stem 1	Mumber of	Stens		
am ass	Diam, in.	Coniferous (C)	Deciduous (D)	(C + D)	Sample Cell Diam, ft
1	<1	(0)	(0)	1	DIAM. IL
				-	
	1		<u> </u>	_	Į
2	1.5			_	
	2		1	<u> </u>	
	2.5				
3	3			_]	
	3.5			7	
	4	8	4		
4	4.5				
	5		12	7	
	5.5			7	
	6				
5	6.5				
	7	4	14	_	
	7.5				
6	8	4			
	8.5				
	9		4		
7	9.5				
	10-15	60	16		
8	15.5-20	10			
	20-30	6			
	30-40				
	40-50				
	60-100				
	100			_	

ESTIMATED DIST TO NEXT TREE OF LARGEST SIZE ABOVE, FT $D_A = 12.4$ SSA = 17.4

SITE N	o:	3				DAT	E:	2	18/79	?
11. GENERA	L FORES	T DESC	RIPTIO	N					•	
□N APPROX	O FORES (GO TO IMATE C	T BLOCK 1 OMPOSIT	3) D	CONFIE	ROUS	DE	CIDUOUS	□MIXE	ט	
	СОММОИ	NAME					APPROX.	PERCENT OF	E HTTMS	
1	beec	1_			100	⊠ 75-99	D 50-7	4 🔲26-50	[]10-25	□ <10
2	oak								DET	
3							ם		L.I	
11a.MANAGE	MENT									
□ IND	ETERMIN	ATE		ם	NATUR	AL	∑ NATI	IRAL, MANA	GI:I) 🗖	ם מאווד (
	Ds	EEDED,	BROAD	CAST		□ROW	-PLANTE	D_		
116.GROWTH	STAGE									
□ IND		IATE		_	-					
	FOR SE	EDED/P	LANTED	FORES	T:	₽R	ECENTLY	REPLANTED	MINTER	MEDIATE
	FOR NA	TURAL 1	FOREST	: 🗆	EARLY	SECOND	GROWTH	☐ ∧DV.	ANCID SUC GROW	CESSIONAL TH
11c.GROUND	COVER:		GRASS		KI VIN	ies r	TBRUSH.	DECIDUOUS		
		_	_]MIXED			_ ,		• • • • • • • • • • • • • • • • • • • •	•
P	ERCENT	COVER:	•			□26-	50 🗖	51-75	□76-100	
G	ENERAL	HEIGHT	FT.		21			·		
11d CHARAC	TERISTI	C CANO	PY OR	SHRUB	HEIGH	IT, FT				
₽ (0	-3]3-8	□ 9	-13	□ 14	-30	□31-62	□ 63-9	s 🗀 96	-164
11: 01100	0.00			□>	164					
11é.CANOPY		-			F \	~-				
u.	25	L	j 20-5U)	□ 21-	-75	76	-1.00		
REMARK	s Li	eigh	te	of	50	och	(dis	-14h)= 5	41	
	/- /-	1)		17		<u> </u>	(year	-16") = .		
		() a		Vi.	CC	enc_	C\$ 7	-16"/ = .	50/	
				_						
llf. FOR	ROW-PLA	NTED TR	EES (C	ONLY)					• '	
	Τ							Compass	Di Lion	
	Mean 0	Row Sp	acing,	, ft 3	14	15 1	6	Nagnetic	7.math _	0
ROW TT										
SAMPLE	1									

Stem Diam	Stem Diam,	Alumber of Coniferous	Stems Deciduous		10 1 0 11
lass	in.	(C)	(D)	(C + D)	Sample Cell Diam, ft
1	<u><1</u>		1		
	1				
2	1.5				
	2		1	İ	
	2.5				
3	3		8		
	3.5			7	
	4		16		
4	4.5				
	5	·	17		
	5.5				
	6		14		
5	6.5			1	
	7		14		
	7.5				
6	8		8		
	8.5				
7	9		8		
	9.5				
	10-15		80		
8	15.5-20		3		
	20-30				
	30-40				
	40-60				
	60-100			_]	
	100				

ESTIMATED DIST TO NEXT TREE OF LARGEST SIZE ABOVE, FT $D_{AB} = 10.3''$ $S_{AB} = 16.4'$

SI	TE NO:	:	4	·			DAT	E:	40117	2/8/7	9
11. <u>GE</u>	NERAL	FORES	T DESC	RIPTIO	<u>v</u>					<u>-</u> -	•
AP			T BLOCK 1 OMPOSI	,	CONFIE	ROUS	D DE	CIDUOU	S 🔲 MIX	ED	
	C	NOMMO	NAME					APPROX	. PERCENT	of Hilm	S
1	•	0	al			100	□ 75-99	∑ 50	-74 □ 26-5	۵۱ زا ۵۵	-25 🔲 <10
2		60	ech	<i>~</i> .					Ø	[]	
3						ì		h		IJ	
lla.MA	NAGEM	ENT				,		ب.	U.	4	
E	INDE	rermin	IATE		D	NATUR	AL	MANA	TURAL MAN	IAGED	ם־אמוחד 🗖
							□ROW	- /			
115.GR	HTWO										
]INDE	rerm in	IATE		מ]MATU	RE				
	3	FOR SE	EDED/P	LANTED	FORES	T:	₽R	ECENTL	Y REPLANTE	ED MIN	TERMEDIATE
	1	FOR NA	TURAL	FOREST	: 🗆	EARLY	SECOND	GROWT	н 🗖 vi	C PANACI DI	SUCCESSIONAL ROWTH
llc.GR	OUND (COVER:	Þ	C GRASS		□ VIN	ES [BRUSH	, DECIDUOL	is IJR	RUSH, CONIF.
			,		MIXEC						
	PE	RCENT	COVER:	□0		-25	□26-	·50 [151-75	⊠ 76 · 1	00
			HEIGHT							•	
11d CH		_					IT, FT				
	□ 0-:	3	₹3~8	□ 9			-30	□31-6	2 📙 63-	-95 C]96-164
110 CA	NODV (Ct Ocut	RE, PER	CENT	D,	164					
116.CA	□<2.		-	1 26-50		m51-	.75	lev?	6-100		
D.C.									6-100		
KE	CARAIT	140	ciphi	6 p	1 C	nle	5 6	8-10	") = H	7/	
		<u> </u>	0		be	che	3/	66%	") = 40 1 = 40	/	
	_										
	•										
llf.	FOR R	OW-PLA	NTED T	REES (O	NLY)						, _
		Mean	Row Sp	acing,	rt				Compas Magnet	ic A. mul.	h
1	STA	0	1	1 2	3	14	5	6	7 8	┼╜ -┪	10
ROW	FT		ļ								
SAMPLE	SHD			1 1			1			1 1	

Stem	Stem	Number of	Stems .		
Diam Class	Diam, in.	Coniferous (C)	Deciduous (D)	(C + D)	Sample Cell Diam, ft
1	<u><1</u>		1		mam, IL
	1		4		
2	1.5				
	2		16		
	2.5		1		
3	3		13	7	
	3.5			7	
	4		14		
4	4.5			7	
	5		3	_	
	5.5			7	
	6		6		
5	6.5			7	
	7		1	_	
	7.5				
6	8		/3		
	8.5				
	9		2		
7	9.5			7	
	10-15		9		1
8	15.5-20				
	20-30			7	
	30-40				
	40-50				
	60-100				
	100				<u> </u>

ESTIMATED DIST TO NEXT TREE OF LARGEST SIZE ABOVE, FT $D_{A} = 7.5'' \qquad SS_{A} = 7.7'$

SIT	E NO:		5				DATE		ر در بار ب	18/79	
11. GEN	□NO _G	FORES		3) 🗆 C	•	ous	∑ DEC	CIDUOUS	s П игх	KED	·
	<u>c</u> o	MMON	NAME				I	APPROX.	. PERCENT	OF STIMS	1
1 _	8	eec	h			00 🗖	75-99	D 50-	-74 🔲 26	50 LJ10-	25 🗖 <10
2										13	
3							İ			LJ	
lla.MAN	AGEME	NT		-							
	INDET	TERMIN	ATE		□ NA	ATURAI		DX NA'	TURAL, MA	NAGED.	☐ THINP®D
			EEDED,	BROADC	AST		□ ROW	-PLANT	ED 🗀.		
115.GRC											
			ATE			IATURI				() () ()	PEDMED TATE
											TERMEDIATE
	1	OR NA	TURAL I	OREST:	☐ E	ARLY S	SECUND	GROWT	н Пу	CI DAVMILIA	SUCCESSIONAL ROWTH
11c.GR0	OUND (COVER:	72	GRASS	Ε	VINE	s [BRUSH	, DECIDUC	us IJRI	RUSH, CONIF.
			-7		MIXED	_					
	PE	RCENT	COVER:	□0	□ 0-	25	□26-	50 C	1 51-75	$\boxtimes^{\gamma_{i_1} \cdot 1_i}$	00
			HEIGHT							·	
11d CH	ARACT	ERISTI	C CANO	PY OR S	HRUB H	EIGHT	, FT				
	D 0-3	3 Ç	₹ 3-8	□ 9-	13	□ 14-	30	□31-6	2 🗀 63	-95 E	196-164
					□ >1	64					
11 é. CA			RE, PER								
	□<2	5		26-50	C] 51-7	5	X 7	76-100		
RE	MARKS	1	lesale	5 n	1 6	000	les	(d)	17/1) =	1051	
	~		Ciru	1	<u> </u>	10	<u> </u>	<u> </u>	_ /- /		
	_		<u> </u>								
nr.	- g gog	OW_PLA	NTED TE	RES (O	NI.Y)		· · · · · · · · ·				
1111		1							Compa	ss Dinn L	ion
			Row SI	_		,			Magne	tic A.mil	h 10
)	STA	0	1-1-	$\frac{2}{2}$	3	- 4	5	6	7 8		
ROW SAMPLE	FT		<u> </u>					<u> </u>	 -		
D. Wife Dr.	BHD			1			1	1			

Stem	Stem	Number of	Stems			
Diam Class	Diam, in.	Coniferous (C)	Deciduous (D)	(C + D)	Sample Cell Diam, ft	200
1	<u><1</u>		1		(mag. II	
	1					
2	1.5					
	2			1		
	2.5					
3	3	· · · · · · · · · · · · · · · · · · ·				
	3.5					
	4					1
4	4.5					
	5			7		
	5.5			7		
	6]
5	6.5					
	7					
	7.5					
6	8					
	8.5					j
	9					
7	9.5			Ī		
	10-15					
8	15.5-20		60			
	20-30					
}	30-40					
	40-50					i
	60-100					
	100					

ESTIMATED DIST TO NEXT TREE OF LARGEST SIZE ABOVE, FT $D_{A} = 17.75'' \qquad SS_{B} = 25.8'$

SITE NO: 10		DATE		2/6	8/79	
11. GENERAL FOREST DESCRIPTION ON FOREST (GO TO BLOCK 13) APPROXIMATE COMPOSITION	NFIEROUS	İZ DEC	CIDUOUS	□MIXED		
COMMON NAME		A	APPROX. P	ERCENT OF	SMITT	
1_oak	100	5 75-99	50-74	□ 26-50	()10-25	□ <10
1 <u>oak</u> 2 larch	_口				汝	
3	_0		ם	п	Ó	口
11a.MANAGEMENT		_			•	
☐ INDETERMINATE	■ NATU	RAL	NATUR	AL, MANAG	and 🗖	ם־אמואד
□SEEDED, BROADCAS	ST	□ROW-	-PLANTED	Δ		
116 GROWTH STAGE						
☐ INDETERMINATE						
FOR SEEDED/PLANTED FO						
FOR NATURAL FOREST:	EARL	Y SECOND	GROWTH	☐ VDVV	GROW)	lh Leggional
11c.GROUND COVER: GRASS	ŻζVΙ	NES C]BRUSH, D	ECIDUOUS	[]BRUSH	, CONIF.
Дм.	IXED					
PERCENT COVER: 0	□ 0-25	□ 26-	50 🗖 51	-75	¥70 -100	
GENERAL HEIGHT: FT.	<u> 72'</u>			•		
11d CHARACTERISTIC CANOPY OR SHI					A	
≱ 0-3 □3-8 □9-1:		4-30	□31-62	☐ 63-95	5 🗀 96	-164
11e.CANOPY CLOSURE, PERCENT	□ >164					
□<25 □ 26-50	r: 51	-75	KV 76-1	00		
	_		76-1			
REMARKS Height C	of co	les /	657)	= 45/	/	
	1 00	chesi	(dui)) - 45	-/	
		caes (47		.,	
11f. FOR ROW-PLANTED TREES (ONL	ΥL				-	
Mean Row Spacing, f	`+			Compass Magnetic	Dinn Lion	0
0 1 1 2 1	3 4	5	6 7		<u> </u>	<u> </u>
ROW STA FT					_	
BAMPLE (BHD				- I	i	1

Stem	Stem	Mumber of	Stems			_
Diam Class	Diam, in.	Coniferous (C)	Deciduous (D)	(C + D)	Sample Cell Diam, ft	100
1	<1	(0)		((C + D)	Diam, it	1
	1					
2	1.5					
	2		4			
	2.5		·			
3	3	20	136			į
	3.5			1		
	4	32	144]		1
4	4.5					
	5	15	74			
	5.5			7		}
	6]
5	6.5					1
	7		14			
	7.5					
6	8					
	8.5			7		
-	9					
7	9.5			1		
	10-15]
8	15.5-20					
	20-30					
	30-40					
	40-50					
	60-100					
	100				<u> </u>	

ESTIMATED DIST TO NEXT TREE OF LARGEST SIZE ABOVE, FT. $D_{\mathcal{H}} = 4.3'' \qquad S_{\mathcal{H}} = 6.6'$

SITE NO	: <u> </u>	·	DATE	:	2	18/79	
□ N9	FOREST DESCRIPTI FOREST GO TO BLOCK 13) MATE COMPOSITION	ON CONFIEROUS	☐ DEC	IDUOUS	□MIXEU	ı	·
	OMMON NAME		A	PPROX.	PERCENT OF	SMITT	
1	Smuce	5100	□ 75-99	□ 50-7	74 □26-50	[]10-25	□ <10
·						13	
-			-			IJ	
3	ECNT.	u	U	נו	U	4	
11a.MANAGEM	ETERMINATE	T NATI	IRAI.	NONATI	JRAL. MANAG	an O	ם פעאווד
£3 x110 x	☐SEEDED, BROA						
116.GROWTH			_				
☐ INDI	ETERMINATE						
	FOR SEEDED/PLANTE	ED FOREST:	□R	ECENTLY	REPLANTED	INTER	HEDIATE
	FOR NATURAL FORES	ST: 🗖 EAR	LY SECOND	GROWTH	XVDV.	ANCT () SUCC	Cessional Th
llc.GROUND	COVER: GRAS	ss 🗖 v	INES [BRUSH.	DECIDUOUS	MRUS	H, CONIF.
		MIXED				•	
P.	ERCENT COVER:				51-75	⊠ 76 ·100	
	ENERAL HEIGHT: F				·		
11d CHARAC	TERISTIC CANOPY O	R SHRUB HEL	GHT, FT				
jz to	-3 🔲 3-8 🗀]9-13	14-30	□31-62	☐ 63-9	5 🗀 96	-364
		□>164					
	CLOSURE, PERCENT			رميد	. 100		
□ <	25 🗖 26-	S0 []S	1-75	X)-1.00 	_	
REMARK	s Height	M Spi	rices /	d 10%	y = 7	4	····
		1		//			
	V	7				,	
llr. FOR	ROW-PLANTED TREES	(ONLY)					
	T	<u> </u>			Compass	Direction c A.math	, •
1	Mean Row Spacis		4 5	6	7 8	1 1	10
ROW (FT							
SAMPLE BHD							

Stem	Stem	Mumber of	Stems			_
Diam Class	Diam, in.	Coniferous (C)	Deciduous (D)	(C + D)	Sample Cell Diam, ft	2
1	<1	(0)	(0)	1((+ 1)	Diam, ft	aoo
	1					
2	1.5					
	2				<u> </u>	1
	2.5					
3	3					
	3.5					ł
	4			Ţ		1
4	4.5					
	5	8				
	5.5]
	6					
5	6.5			1		1
	7	12				
	7.5					
6	8	23		7		
	8.5]
7	9	KB				
<i>'</i>	9.5					
	10-15	96				
8	15.5-20					
	20-30			\Box		
	30-40			_		
	40-50		1			i
	60-100			_		
	100	1			1]

ESTIMATED DIST TO NEXT TREE OF LARGEST SIZE ABOVE, FT $D_{A} = 10.6''$ $SS_{A} = 14.6'$

SITE NO:	14		DATE	:	2/8/7	9	
11. GENERAL FO	REST DESCRIPTION						-
□NO FOI (GO : APPROXIMAT	REST TO BLOCK 13) CO E COMPOSITION	NFIEROUS	☐ DEC	IDUOUS	□MIXEU)	
COMM	ON NAME		A	PPROX.	PERCENT OF	ZMTT:	
1	ine	X 100	□ 75-99	50-7	4 🛛 26-50	じ 10-25	□ <10
2						t)	
3				<u>.</u>		LJ.	
11a.MANAGEMENT							
☐ INDETER	MINATE	☐ NATU	IRAL	MATU	RAL, MANAG	(i) (i)	סיאאואד
	SEEDED, BROADCA	ST	□ROW-	PLANTED	Δ		
116.GROWTH STA		hed MAY	MINE				
	MINATE SEEDED/PLANTED F			CENTLY	REPLANTED	[]INTER	MEDIATE
FOR	NATURAL FOREST:	☐ EARI	LY SECOND	GROWTH	□ ∧DV	AN(11) SUC	CESSIONAL
11c.GROUND COV	YER: ☐ GRASS	□ v:	INES [BRUSH,	DECIDUOUS	1]BRUS	H, CONIF.
			ble				
				50 🗖 5	51-75	⊠ (/a -100	
	RAL HEIGHT: FT.						
	ISTIC CANOPY OR SI		•		17.62.0	s 🗖 96	-164
Ц0-3	□3-8 ∑ 79-	ıз ⊔ □>164		∐31-62	☐ 63-9	2 m	
11è.CANOPY CLO	SURE, PERCENT						
□ <25	□ 26-50	⋈ 5	1-75	1 76	-1.00		
REMARKS	1/5	ſ	/			721	
******	lleyhts of	pi	nis/	G 6-1	2/-	74	
	O_{-}	/	(′ 			
11f FOR ROW	-PLANTED TREES (ON	ILY)	····				
	- I pricing induction				Compass	Dinution	
1	Mean Row Spacing,	ft	. 15 1	6 1	Nagnetic 7 8	e Л. шийп _	0
ROW STA	- - - 						
SAMPLE BHD							1

Stem	Stem	Mumber of	Stons		.,	•
Diam Class	Diam, in.	Coniferous (C)	Deciduous (D)	(C+D)	Sample Cell Diam. ft	200
1	<1	<u></u>		100 101	Main, IL	
	1					
2	1.5					
	2					1
	2.5			_		
3	3					
	3.5					
	4	4				1
4	4.5					
	5	4				
	5.5			7		1
	6	44]
5	6.5			7		
	7	48				
	7.5					
6	8	44				
	8.5					
7	9	48				
7	9.5					
	10-15	80				
8	15.5-20					
	20-30					
	30-40					
ĺ	40-50					ĺ
	60-100			_		
<u> </u>	100	<u> </u>			<u></u>	ال

ESTIMATED DIST TO NEXT TREE OF LARGEST SIZE ABOVE, FT $D_A = 9.3''$ $SS_A = 12.1'$

SIT	TE NO	:	16				DAT	E:	2/8/	79	
11. <u>G</u> EI	NERAL	FORES	ST DESC	RIPTIO	N					<u></u>	
API	□NO PROXIN	FORES	BLOCK I	L3) 🕱	CONFIE	ROUS	□ DE	CIDUOUS	□MIXE	υ	
	<u>c</u>	NOMMO	NAME					APPROX.	PERCENT OF	e ::Tims	
1.		pi	ne		\	(1 00	□ 75-99	50-7	4 🔲 26-50	10-25 ل	□ <10
2_		· · · · · · · · · · · · · · · · · · ·				i				IJ	
3						3		ם	п	Ø	口
lla.MA	NAGEMI	ENT					_	_	_	•	
E	INDE	TERMIN	IATE		D	NATUR	AL	TANATI	IRAL, MANA	GI:D E	ם פאאווד (
			SEEJED,	BROAD	CAST		□ROW-	-PLANTE			
116.GR	OWTH S	STAGE								_	
	INDET	rermin	IATE] MATU	RE				
	J	FOR SE	EDEU/P	LANTED	FORES	T:	□RI	ECENTLY	REPLANTED	INTER	MEDIATE
	1	FOR NA	TURAL	FOREST	: 13	EARLY	SECOND	GROWTH	□ ADV	ANCI I) SUC GROW	CESSIONAL TH
llc.GRO	OUND (OVER:]GRASS		□ VIN	ES C	BRUSH,	DECIDUOUS	RRUS	H, CONIF.
					MIXED			- •		, ,	
	PE	RCENT	COVER:	□0		-25	26 -9	50 🗖 5	1-75	Z (76-100	
	GE	NERAL	HEIGHT	: FT.		·/			`		
11d CH/	ARACTI	ERISTI	C CANO	PY OR	SHRUB	HEIGH	T, FT				
	D 0-3	s c	X 3-8	□ 9	-13	1 14	-30	□31-62	□ 63-9	5 🗀 96	-164
. 1 - 64	VODV.	31 Oct.			□ >	164					
.lè.CA								_			
	□<25	•] 26-50		□ 51-		X 76-			
REN	MARKS	/	Kigh	to 1	0/	$\mathcal{Q}_{\mathcal{U}}$		160) = 30	<i>(</i>	
	~		recy c	11.7	7-	/ / U	21	93			
	-		<u>//</u>								
ilf. I	 FOR RO	W_DI A	NTED T	erre (o	NIV)						
11	7			TELO (C					Company	Di Lion	
j			Row SI			 ,			Magnetic		`
)	STA	0	 1	2	_3	4	5	6	7 8	<i>-"</i> ⁺⁺	<u> </u>
ROW \$	FT		 								
SAMPLE(3KD				Ì		1				

Stem	Stem	Mumber of	Stens			
Diam Class	Diam, in.	Coniferous (C)	Deciduous (D)	(C + D)	Sample Cell Diam. ft	1001
1	<1	(0)	1	1(0 + 0)	/// Am. IL	
	1					
2	1.5					
	2	12		<u> </u>		
	2.5			_		
3	3	12				
	3,5					
	4	40				
4	4.5			_		
	5	85				
	5.5					
	6	24				
5	6.5					
	7	4				
	7.5			_		
6	8					
1	8.5					
	9					
7	9.5					}
	10-15					
8	15.5-20					
	20-30					
	30-40			1		
	40-50					
	60-100					
	100		1	<u> </u>		}

ESTIMATED DIST TO NEXT TREE OF LARGEST SIZE ABOVE, FT $\mathcal{D}_{\mathcal{A}} = 4.7'' \qquad \mathcal{S}_{\mathcal{A}} = 7.5'$

	SITE NO:		7		DATE		2/8/	79	
1		FOREST DESC FOREST O TO BLOCK ATE COMPOS	13) XCO	NFIEROUS	□ DEC	IDUOUS	□MIXED		
	CO	MMON NAME			A	PPROX. P	ERCENT OF	zmit;	
	1 /	sine.		2\ 100	□ 75-99	□50-74	□26-50	()10-25	□ <10
	-/-	<u></u>	<u>.</u>					i)	
	²			_11				•	Ц
	3					.口		IJ	ليا
1	la.MANAGEME				_				TUTENED
	☐ INDET	ERMINATE		_		,	RAL, MANAC	(i) L	THTWI- O
	AS CROWELL C		, BROADCA	ST	□ком-	PLANTED	Δ		
Ĵ	15.GROWTH S	ERMINATE		КУМАТ	7100				
		OR SEEDED/	PLANTED F	DAMAT OREST:		ECENTLY I	REPLANTED	INTER	MEDIATE
	F	FOR NATURAL	FOREST:	☐ EARI	Y SECOND	GROWTH	□ ∧DV	N(11) SUC	CESSIONA
•	llc.GROUND (COVER:	☐ GRASS	∐VI MIXED /	ines E	JBRUSH, I	DECIDUOUS	1 Jurus	H, CONIF
	PE	RCENT COVE					1-75	⊠ 7α-100	
	GE	NERAL HEIGH		"			•		
	11d CHARACTI	ERISTIC CA			•				
	D 0-3	3 🔲 3-8)X 9-:	13	14-30	□31-62	□ 63-9	5 🗆 🤉	-164
				□ >164					
	lle.CANOPY	-				76	100		
	□<2:	5	□ 26-50	X 5	1-75	76-	-2.00		
	REMARKS	140	clif	of n	iuco	へかば	フル)ニ '	781	
	~	/	Y I	TP	, dees	PRA			
	_	<u> </u>						*******	
	-								
	11f. FOR R	OW-PLANTED	TREES (ON	ILY)				I lor	<u> </u>
		1 .	Spacing,				Magnetic	Diraction Amuth	0
	STA	0 1 1	12	3 4		6	7 8	T' T	
(:	ROW FT	 							
J	P. 1 13HD	1 1	1 1	1	1 1		ı	1 I	1

Stem		Mumber of	Storis			
iam	Diam,	Conferous	Deciduous		Sample Cell	200
lass	in.	(C)	(D)	(C + U)	Diam, ft	400
1	<u><1</u>					1
	1		}		1	}
			1	7		
2	1.5			4	1	
	2		1			1
	2.5			}	1	
3	3			7	j	
J	<u> </u>		}	-	1	
	3.5		<u> </u>			4
	4					1
4	4.5		1			
	5	4				
			<u>}</u>			
	5.5			-}	_	-{
	6	4		_	İ	
5	6.5		1			1
				-{		1
	7	8				4
	7.5				1	
6	8				1	
	8.5			-		
						· {
7	9					}
′	9.5					
	10-15	120				
	15.5-20	T				
8		4	_ 	_		
Į	20-30	<u> </u>				
1	30-40			_	1	
	40-50		_1		- {	İ
1	60-100					
	100	Ì	Ť		\	}

ESTIMATED DIST TO NEXT TREE OF LARGEST SIZE ABOVE, FT 24 = 12.1'' $55_{A} = 16.9'$

	SITE NO	: <u>-</u>	_2	0		DA	TE:		2/8/7	9
11.	GENERAL	FORES	T DESCR	IPTION						
	□NO APPROXIM				NF I EROU	s 🗖 D	ECIDUOUS	□MIX	EU	
	<u>c</u>	NOMMO	NAME				APPROX.	PERCENT	of thims	
	1	sine) *	····	(S (100	□75-9	9 🗖 50-7	4 🔲 26-5	io (310-2	25 🛮 <10
	2								13	
	3						ь	п	1.3	
11a.	.MANAGEM	ENT				_	_			
	☐ INDE	TERMIN	ATE		☐ NAT	URAL	TANATI	JRAL, MAN	IAGED	ם־אאווד 🗅
		□s					W-PLANTE			
116	.GROWTH	STAGE								
	☐ INDE				IS (MA					
	1	FOR SE	EDED/PI	ANTED F	OREST:		RECENTLY	REPLANTE	D INT	ERMEDIATE
	1	FOR NA	TURAL F	OREST:	☐ EAR	LY SECON	D GROWTH			UCCESSIONAI DWTH
11c	.GROUND	COVER:		GRASS	ΠV	INES	□BRUSH,	DECIDUOL	IS IJRRI	USH, CONIF
					AIXED	blues	berries	<u></u>		
			COVER:	_		☐ 26	5-50 D	51-75	X70.10	0
				-					•	
11d	CHARACT					_				
	□0-	3 2	4 3-8	1 9-1			□31-62	□ 63-	-95 🚨	96-164
11ė	.CANOPY	CLOSUR	E. PER	CENT	□ >164					
	□<2		-	26-50	1025	1-75	1 76	-1.00		
	REMARKS				,					. /
			487	45	Cf 1	Dinco	10/	2-14"	1-90	2/
					/ /		('			
	•				·····					
	_									
11f	FOR R	OW-PLA	NTED TR	EES (ON	LY)					 1
		Mean	Row Sp	acing,	£t.			Compas	s Direction	on o
	1 674	0	1	2	3 1 4	5	6	7 8	17+	10
ROW	·) [
SAMPL	E (BHD									1

BATTELLE-INSTITUTEV. FRANKEURT AM MAIN

Stem (Stem 1	Number of	Stems	1		_
Diam Class	Diam, in.	Confrerous	Deciduous	(C + D)	Sample Cell Diam, ft	2
1	<1	(C)	(D)	1(C + D)	Diam, ft	1
	1					
2	1.5					
	2		1			
	2.5			_}		
3	3					
	3.5					
	4]
4	4.5			_		
	5					
	5.5			7		
	6					
5	6.5					
	7					
	7.5					
6	8	12				
	8.5		Ì	7		}
7	9					
7	9.5					
	10-15	120				
8	15.5-20	8				
	20~30	4				
	30-40					
	40-50					
	60-100					
	100					1

ESTIMATED DIST TO NEXT TREE OF LARGEST SIZE ABOVE, FT $DA = 13'' \qquad SSA = 16.7'$

BATTETEL INSTITUTEA FRANKET REAM MAEN

SITE	NO:	3/			DAT		ر ديان ب	2/8/79	7
	ERAL FORE NO FORE (GO TO ROXIMATE	ST BLOCK I	3) LXC 0	NFIEROUS	□ DE	CIDUOUS	□міхв	Ü	
	COMMON	NAME				APPROX.	PERCENT O	e grims	
1	50	ru ce	<u>.</u>	37100	□ 75-99	□50-2	74 □26-50	10-25 ل	□ <10
2							<u> </u>	IJ	
~				~ 				IJ	
11a.MANA	GEMENT		 	Li	L	. L. l	Ц	\ /	—
		INATE		☐ NATU	IRAL	TANATI	JRAL. MANA	(GI:I)	םפאאווד
					□ROW				-
116.GROW	TH STAGE								
[2]	NDETERMI	NATE		☐ MAT	URE				
	FOR S	SEEDED/P	LANTED F	OREST:	□R	ECENTLY	REPLANTED	MINTER	MEDIATE
	FOR N	NATURAL	FOREST:	□ EARI	Y SECOND	GROWTH	□∧DV	ANCT D SUC GROW	CESSIONAL TH
llc.GROU	IND COVER	۲: []GRASS	□ v i	NES [∃BRUSH,	DECIDUOUS	RRUS	H, CONIF
				IXED					
	PERCENT	COVER:	Πo	0-25	26 -	50 🗖	51-75	⊠ 76-100	
							·		
	RACTERIST				-				
L]0-3	₩ 3-8	□ 9-1		.4-30	□31-62	□ 63-9	os 🗖 96	-164
11ė.CANO	PY CLOSI	JRE. PER	CENT	□ >164					
]<25			[] 51	1-75	76	-1.00		
REMA	ARKS					•		- 7-)
	•	HEIGH	uto c	7 1	raceo	/ S	-12"/	= 75	
		9	,	, ,					
llf. Fo	ROW-PI	ANDED OF	PER (ON	v)		· - · <u>- · · ·</u>			
111. 1	N NOW-F1	ANTED II	TEES (ON				Compass	Direction	
		_	cacing,	· ——	1 = 1	<i>c</i> 1	Magnetic	7.muth _	_^
	TA O	1-1-	2	3 4	5	6	7 8	\vdash \vdash	
ROW SE									
1 jar	10		i I	1	i 1	l l	1	1 1	ŀ

· .i

BATTELLE INSTITUTEA FRANKLERI AM MAIN

tem iam	Stem Diam,	Mumber of Conicerous	Deciduous		[Sample Cell
lass	in.	(C)	(D)	(C + D)	Sample Cell Diam. ft
1	<u><1</u>				
!	1				
2	1.5				
	2		1	<u> </u>	
	2.5				
3	3			_	1
	3.5				
	4				
4	4.5				
	5	14			
	5.5				
	6	8			
5	6.5				
	7	20			
	7.5				
6	8	10			
	8.5				
7	9	12			
7	9.5				
	10-15	3			
8	15.5-20				
	20-30			_]	
	30-40				
	40-50				
	60-100				
	100				

ESTIMATED DIST TO NEXT TREE OF LARGEST SIZE ABOVE, FT $D_{A} = 7.4''$ $SS_{A} = 7.3'$

APPENDIX L: Summary of Definitions of Forestry Terms

Locality class

Locality classes evaluate the general growth in height and thickness of trees and range from class I (extremely good conditions) to class VI (extremely bad).

Thinning

Thinning fosters growth of best trees (positive selection) or removes ill ones (negative relection) in order to control volume yield of stands.

Method of thinning

Methods of thinning are split into moderate and heavy thinning and are not quantitatively specified within forestry guidelines. Application depends on numerous individual site factors. Generally, heavy thinning raises the average stem diameter for all species for 1 to 1.5 inches.

Type of thinning

Types of thinning are split into <u>low</u>, <u>high</u> and <u>plenter</u> thinning. Low thinning aims at a single-storied stand, while high thinning aims at an even-aged multy-story stand. Plenter thinning results in even-sized and even-height stands.

Average tree height

Average height describes the height to top of trees for a sample area.

Dominant height

Dominant height or top height describes the height to top of trees for the 50 thickest trees of a sample area. It applies to such speices where extreme height growth variations occur (beech, japanese larch, douglas fir, sitka).

and thicknditions)

on) or ol volume

hinning idelines.
Generor all

thinning.
thinning
g results

a sample

op of plies to ur (beech,

granical and the same of the s

DATE