CLAIMS

T V T4 .		- 1		•	
What	1S	C	aım	ed	1S:

1 2

3

comprise:

detecting amplitude of the input signal;

1	1. A method for generating a linearized amplified output signal from an input signal having
2	amplitude information, the method comprising:
3	converting the input signal into two pre-distorted signals without amplitude information;
4	separately amplifying the two pre-distorted signals; and
5	combining the two amplified, pre-distorted signals to generate the linearized amplified output signal.
1	2. The invention of claim 1, wherein:
2	the input signal is an RF signal; and
3	the linearized amplified output signal is an RF signal having amplitude information.
1	3. The invention of claim 1, wherein converting the input signal comprises:
2	pre-distorting the input signal to generate a pre-distorted input signal; and
3	converting the pre-distorted input signal into the two pre-distorted signals without amplitude
4	information.
1	4. The invention of claim 3, wherein pre-distorting the input signal comprises pre-distorting both
2	amplitude and phase of the input signal.
1	5. The invention of claim 1, wherein converting the input signal comprises:
2	generating a phase pre-distortion term from the input signal;
3	generating an amplitude pre-distortion term from the input signal;
4	detecting phase of the input signal;
5	combining the phase pre-distortion term, the amplitude pre-distortion term, and the phase in a first
6	manner and modulating at a carrier frequency to generate a first pre-distorted signal without amplitude
7	information; and
8	combining the phase pre-distortion term, the amplitude pre-distortion term, and the phase in a second
9	manner and modulating at the carrier frequency to generate a second pre-distorted signal without
10	amplitude information.

1052.013 -7- 830

6. The invention of claim 5, wherein generating the phase and amplitude pre-distortion terms

4	retrieving the phase pre-distortion term from a first look-up table based on the detected amplitude;
5	and
6	retrieving the amplitude pre-distortion term from a second look-up table based on the detected
7	amplitude.
1	7. The invention of claim 5, wherein:
2	in the first manner, the amplitude pre-distortion term is subtracted from the sum of the phase pre-
3	distortion term and the phase; and
4	in the second manner, the amplitude pre-distortion term is added to the sum of the phase pre-
5	distortion term and the phase.
1	8. The invention of claim 1, wherein combining the two amplified, pre-distorted signals is
2	implemented using a transformer.
1	9. The invention of claim 1, wherein combining the two amplified, pre-distorted signals is
2	implemented using a transmission line tee with transmission stubs for impedance matching.
1	10. The invention of claim 9, wherein the transmission stubs comprise shunt reactances place an
2	electrical equivalent of one-quarter wavelength away from the transmission line tee.
1	11. An amplifier circuit adapted to generate a linearized amplified output signal from an input signal
2	having amplitude information, the amplifier circuit comprising:
3	means for converting the input signal into two pre-distorted signals without amplitude information;
4	means for separately amplifying the two pre-distorted signals; and
5	means for combining the two amplified, pre-distorted signals to generate the linearized amplified
6	output signal.
1	12. An amplifier circuit adapted to generate a linearized amplified output signal from an input signal
2	having amplitude information, the amplifier circuit comprising:
3	circuitry adapted to convert the input signal into two pre-distorted signals without amplitude
4	information;
5	two amplifiers adapted to separately amplify the two pre-distorted signals; and
6	a combiner adapted to combine the two amplified, pre-distorted signals to generate the linearized
7	amplified output signal.

2	the input signal is an RF signal; and
3	the linearized amplified output signal is an RF signal having amplitude information.
1	14. The invention of claim 12, wherein the circuitry adapted to convert the input signal comprises:
2	a pre-distorter adapted to pre-distort the input signal to generate a pre-distorted input signal; and
3	a LINC modulator adapted to convert the pre-distorted input signal into the two pre-distorted signals
4	without amplitude information.
1	15. The invention of claim 14, wherein the pre-distorter is adapted to pre-distort both amplitude and
2	phase of the input signal.
1	16. The invention of claim 12, wherein the circuitry adapted to convert the input signal comprises:
2	circuitry adapted to generate a phase pre-distortion term from the input signal;
3	circuitry adapted to generate an amplitude pre-distortion term from the input signal;
4	a phase detector adapted to detect phase of the input signal;
5	circuitry adapted to combine the phase pre-distortion term, the amplitude pre-distortion term, and the
. 6	phase in a first manner and modulating at a carrier frequency to generate a first pre-distorted signal
7	without amplitude information; and
8	circuitry adapted to combine the phase pre-distortion term, the amplitude pre-distortion term, and the
9	phase in a second manner and modulating at the carrier frequency to generate a second pre-distorted
10	signal without amplitude information.
1	17. The invention of claim 16, wherein the circuitry adapted to generate the phase and amplitude pre-
2	distortion terms comprises:
3	an envelope detector adapted to detect amplitude of the input signal;
4	a first look-up table adapted to provide the phase pre-distortion term based on the detected amplitude
5	and
6	a second look-up table adapted to provide the amplitude pre-distortion term based on the detected
7	amplitude.
	·

13. The invention of claim 12, wherein:

18. The invention of claim 16, wherein:

1

1

2	the circuitry adapted to combine the phase pre-distortion term, the amplitude pre-distortion term, and
3	the phase in the first manner is adapted to generate a signal corresponding to the amplitude pre-distortion
4	term subtracted from the sum of the phase pre-distortion term and the phase; and
5	the circuitry adapted to combine the phase pre-distortion term, the amplitude pre-distortion term, and
6	the phase in the second manner is adapted to generate a signal corresponding to the amplitude pre-
7	distortion term added to the sum of the phase pre-distortion term and the phase.
1	19. The invention of claim 18, wherein the circuitry adapted to generate the first and second pre-
2	distorted signals without amplitude information comprises:
3	a subtraction node adapted to subtract the amplitude pre-distortion term from the phase pre-distortion
4	term;
5	a first addition node adapted to add the amplitude pre-distortion term to the phase pre-distortion term;
6	a second addition node adapted to add the phase to the output from the subtraction node;
7	a first modulator adapted to modulate the output from the second addition node at the carrier
8	frequency to generate the first pre-distorted signal without amplitude information;
9	a third addition node adapted to add the phase to the output from the first addition node; and
10	a second modulator adapted to modulate the output from the third addition node at the carrier
11	frequency to generate the second pre-distorted signal without amplitude information.
1	20. The invention of claim 12, wherein the combiner comprises a transformer.
1	21. The invention of claim 12, wherein combiner comprises a transmission line tee with transmission
2	stubs for impedance matching.
\	
1	22. The invention of claim 21, wherein the transmission stubs comprise shunt reactances place an

electrical equivalent of one-quarter wavelength away from the transmission line tee.

2

1052.013 -10- 830