COMMONWEALTH OF AUSTRALIA

Copyright Regulations 1969

WARNING

This material has been reproduced and communicated to you by or on behalf of Monash University pursuant to Part VB of the Copyright Act 1968 (the Act).

The material in this communication may be subject to copyright under the Act. Any further reproduction or communication of this material by you may be the subject of copyright protection under the Act.

Do not remove this notice.

Week 2

Two Column Table Methodology

David Taniar

READING MATERIALS:

- 1. Rob C and Coronel C, "Chapter 12: The Data Warehouse", *Database Systems:*Design, Implementation, and Management, Sixth Edition, Thomson Publishing, pp. 556-607, 2004.
- 2. Ralph Kimball, et al, *The Data Warehouse Lifecycle Toolkit*, 2nd ed., Wiley, 2008.
- 3. Ralph Kimball, et al, *The Data Warehouse ETL Toolkit*, Wiley, 2004.

A	В	С	В
X	4	r	5
у	3	S	3

D	В
k	1
m	1

p	2
q	5

One Fact Measurement:

When creating a star schema, you need to imagine that the data you want to analyse consists of **two columns**.

The first column is the **category** (e.g. A, C, D, E), and the second column is the statistical **numerical figure** (e.g. B).

The second column (e.g. B) has to be consistent throughout all the two-column tables.

Case Study 1: Analysis of Accountants

Suppose the CPA organization would like to analyse its members (i.e. accountants) in a particular city. Assume that the organization has the full details of its members.

Education	Number of Accountants	
Diploma	84953	
Bachelor	349203	
Higher Degree	98943	
Others	2322	

We can also look at the figures from the gender point of view, like:

Gender	Number of Accountants
Male	434322
Female	89932

Another way to analyse number of accountants is form the type of the accountant job itself; something like:

Type	Number of Accountants
Government	3843
Private Business	45303
Personal	45930
etc	
etc	

Note that the figures are fictitious, and the "Types" of Accountants (indicating different roles of accountants) are also fictitious.

You can further identify other example to analyse number of accountants. In the above three tables, the first angle to look at the number of accountants is from the educational background, the last one is from the type of the accountant itself, whether it is a private business accountant, etc, etc.

As you can see, the second column is CONSISTENTLY UNIFORM. In the above example, it is number of accountants. The first column changes depending on from which angle that you want to see.

Therefore, in this case study, the star schema could look like the following:

A	B1	B2	В3
X	4	0	1
У	3	2	7

С	B1	B2	В3
r	5	2	8
S	3	5	9

D	B1	B2	В3
k	1	0	4
m	1	0	6

Ε	B1	B2	В3
р	2	7	8
q	5	4	8

Multiple Fact Measurements:

The second column in the two-column tables, which is the numerical fact measurement (e.g. column B) can actually be multiple columns (call them: B1, B2, B3), as long as all of these columns (e.g. B1, B2, B3) relate to all of the categories (e.g. A, C, D, E).

Case Study 2: Student Enrollment

The University Administrator(s) needs to keep track of the number of enrollment for particular unit or campus and the students' performance each year in order to maintain the University performance. The head of admin has assigned you the task of developing a small Data Warehouse in which to keep track the enrollment and performance statistics.

For example:

B1	B2
· ·	

Subject	Number of Students	Total Score
Database	8	539
Java	5	327
SAP	1	63
Network	2	105

Another example could be something like this:

Semester	Number of Students	Total Score
One	9	618
Two	7	416

In analysing number of students (apart from the subject and semester as shown above), you could also see the number of student from another angle, for example from the campus and grade:

	DI	DZ M		
Campus	Number of Students	Total Score		
Main	9	658		
City	5	271		
DE	2	105		

For example:

B1 B2

Grade	Number of Students	Total Score
HD	3	253
D	4	300
С	4	256
Р	2	105
N	3	120

The first columns of the above examples are the **dimensions**, whereas the other columns that contain the statistical/ summarized/aggregated values is the **fact**.

In the above example, the fact is then STUDENT_ENROLLMENT_FACT, and the dimensions are SUBJECT, SEMESTER, GRADE and CAMPUS.

In more details, STUDENT_ENROLLMENT_FACT will have 5attributes: Ucode (from the Subject dimension), Sem_ID from the Semester dimension, Grade from the Grade dimension, and Campus from the Campus dimension, the total number of students and total scores.

Each dimension of subject has an ID, such as Ucode in the SUBJECT dimension, and other attributes, such as Utitle and Ucredit.

The star schema for the STUDENT ENROLLMENT is shown as follows:

Exercise-1

Analysis of Mobile Phone Calls

Telstra has implemented a billing system that records all mobile phone calls.

A data warehouse is now needed by the management in order to make strategic decisions, relating to the possibility for introducing discounts, etc.

First of all, you need to create a number of 2-column tables, like in the previous case studies. After this, you can then create a star schema.

Date Time	Туре	Location	Numbe	er	Rate	Duration
15 Jun 05:03pm	National	Strathdale	131008		Peak	01:05
15 Jun 06:15pm	National	Bendigo	041	913	Peak	04:54
15 Jun 08:48pm	National	Spencer St	041	321	Off Peak	00:14
15 Jun 08:54pm	National	Spencer St	041	321	Off Peak	00:10
16 Jun 03:15pm	National	Bundoora	043	975	Peak	00:04
17 Jun 12:37pm	National	Kew East	040	985	Peak	00:03
17 Jun 01:57pm	National	Kew East	041	913	Peak	04:53
17 Jun 02:15pm	National	Kew East	041	114	Peak	17:53
17 Jun 02:36pm	National	Kew East	039	753	Peak	12:45
17 Jun 04:09pm	National	Kew East	042	397	Peak	41:42
17 Jun 05:14pm	National	Kew East	042	397	Peak	00:54
17 Jun 05:54pm	National	Kew	042	109	Peak	20:00
20 Jun 01:31pm	National	Macleod	040	985	Peak	00:03
20 Jun 05:07pm	National	Kew East	041	321	Peak	00:22
24 Jun 11:42am	National	Hawthorn	041	321	Peak	01:25
24 Jun 01:07pm	National	Kew East	041	321	Peak	00:18
24 Jun 01:08pm	National	Kew East	045	278	Peak	00:03
24 Jun 01:14pm	National	Kew East	039	241	Peak	04:39
24 Jun 01:58pm	National	Kew East	039	761	Peak	00:07
24 Jun 02:34pm	National	Kew East	039	241	Peak	03:32
24 Jun 03:05pm	National	Kew East	039	761	Peak	00:05
24 Jun 03:05pm	National	Kew East	039	715	Peak	01:12
24 Jun 03:40pm	National	Kew East	039)53	Peak	02:46
24 Jun 03:48pm	National	Kew East	039	753	Peak	05:04
24 Jun 10:06pm	National	Kew East	043	528	Off Peak	04:01
26 Jun 05:23pm	National	Melb CBD	041	321	Off Peak	00:02
26 Jun 09:53pm	National	Kew East	043	528	Off Peak	29:40
27 Jun 06:17pm	National	Heidelberg	043	528	Peak	06:56
28 Jun 04:48pm	National	Bundoora	043	975	Peak	01:11
28 Jun 07:01pm	National	Macleod	043	975	Off Peak	31:24
28 Jun 07:41pm	National	Macleod	043	975	Off Peak	08:32
29 Jun 05:42pm	National	Heidelberg	043	975	Peak	06:57
30 Jun 02:48pm	National	Macleod	039	216	Peak	00:35
30 Jun 04:15pm	National	Heidelberg	045	299	Peak	01:40
30 Jun 04:26pm	National	Macleod	042	104	Peak	05:20
30 Jun 06:15pm	National	Macleod	045	299	Peak	03:10
30 Jun 06:33pm	National	Macleod	042	397	Peak	06:25
30 Jun 06:47pm	National	Macleod	046	333	Peak	00:16
30 Jun 07:39pm	National	Heidelberg	043	358	Off Peak	19:43
01 Jul 03:28pm	National	Kew East	039	115	Peak	09:16
01 Jul 07:12pm	National	Hawthorn	041	321	Off Peak	00:21
01 Jul 09:47pm	National	Kew East	043	358	Off Peak	35:20
02 Jun 05:00pm	National to Telstra Mobiles	Bundoora	043	117	Peak	16:00
06 Jun 11:09am	National to Telstra Mobiles	Heidelberg	045	398	Peak	00:15
06 Jun 11:12am	National to Telstra Mobiles	Macleod	045	398	Peak	02:37
09 Jun 05:39pm	National to Telstra Mobiles	Heidelberg	042	323	Peak	10:56
09 Jun 08:28pm	National to Telstra Mobiles	Macleod	042	959	Off Peak	17:00
10 Jun 04:59pm	National to Telstra Mobiles	Kew East	043	117	Peak	00:29
17 Jun 02:09pm	National to Telstra Mobiles	Kew East	041	3 56	Peak	05:22
17 Jun 02:15pm	National to Telstra Mobiles	Kew East	040	286	Peak	00:03
17 Jun 02:34pm	National to Telstra Mobiles	Kew East	043	117	Peak	00:09
20 Jun 11:33am	National to Telstra Mobiles	Macleod	040)54	Peak	16:11
20 Jun 01:32pm	National to Telstra Mobiles	Heidelberg	045	311	Peak	00:07
20 Jun 01:33pm	National to Telstra Mobiles	Macleod	042	∋ 59	Peak	01:49

End of Two Column Table Methodology

