MEĐUISPIT IZ ELEKTRONIKE 1

ZADACI

ZADATAK 1. Za mrežu na slici 1 ulazni napon u_G zadan je slikom 2. Zadano je $R_2 = 300 \Omega$, $R_3 = 140 \Omega$ i $C = 5 \mu$ F. Vrijeme porasta t_r izlaznog signala u_{IZ} iznosi $t_r = 2,2$ ms. U trenutku t = 0 napon na kondenzatoru je $U_{C0} = 0$ V.

- a) Izračunati iznos otpornika R_1 (2 boda).
- b) Izračunati izlazni napon u_{IZ} na kondenzatoru C u trenucima t = 11 ms, t = 21 ms i t = 31 ms (3 boda).
- c) Skicirati izlazni napon u_{IZ} (1 bod).

ZADATAK 2. Silicijska pločica je homogeno dopirana jednom primjesom. Fermijeva energija nalazi se 0,15 eV od vrha valentnog pojasa. U istu silicijsku pločicu je dodana druga primjesa koncentracije $2 \cdot 10^{17}$ cm⁻³, pri čemu se Fermijev nivo pomaknuo prema dnu vodljivog pojasa. T = 300 K.

- a) Odrediti tip i koncentraciju primjesa prvog dopiranja (1 bod).
- b) Odrediti tip druge primjese i položaj Fermijevog nivoa nakon drugog dopiranja (2 boda).
- c) Izračunati specifičnu vodljivost nakon prvog te nakon drugog dopiranja (2 boda).
- d) Koliki je napon priključen na silicijsku pločicu nakon drugog dopiranja ukoliko kroz pločicu teče struja iznosa 43 mA (1 bod)?

Silicijska pločica je duljine 500 μ m i površine presjeka 0,01 mm². Pretpostaviti konstantne pokretljivosti nosilaca: 750 cm²/Vs i 320 cm²/Vs.

ZADATAK 3. U nekoj *pn*-diodi *p*-strana ima specifični otpor 12,5 Ω cm, dok je specifični otpor *n*-strane mnogo manji. Obje strane su uske. Mjerenje je pokazalo da kroz diodu teče struja 5 mA pri propusnom naponu od 0,5 V. Pokretljivosti slobodnih nosilaca su 1300 cm²/Vs i 500 cm²/Vs. Površina diode je 1 mm², temperatura je sobna T = 300 K, m = 1. Odrediti:

- a) širinu *p*-strane (**6 bodova**).
- b) vrijeme proleta i nakrcani naboj elektrona na *p*-strani pri propusnom naponu od 0,5 V (**1 bod**).
- c) dinamički otpor diode pri propusnim naponima 100 mV i 0,54 V (3 boda).

ZADATAK 4. Prijenosna karakteristika nekog MOSFET-a prikazana je na slici. Zanemariti porast struje odvoda u području zasićenja.

- a) Uz obrazloženje, odrediti tip MOSFET-a (n ili p kanalni, obogaćeni ili osiromašeni) (1 bod).
- b) Ako struja odvoda u točki A iznosi 1 mA, koliko iznosi struja odvoda u točki B (3 boda)?
- c) Izračunati debljinu oksida upravljačke elektrode t_{ox} ako je omjer širine i duljine kanala W/L = 10 te pokretljivost nosilaca iznosi μ =500 cm²/Vs (**2 boda**).
- d) Nacrtati izlazne karakteristike i na njima označiti položaj točaka A i B (2 boda).

PITANJA

1. Za pojačalo na slici naponsko pojačanje uz odspojen izlaz je $A_v = 150$, ulazni otpor $R_{ul} = 2 \text{ k}\Omega$ i izlazni otpor $R_{iz} = 2 \text{ k}\Omega$. Uz koji će otpor trošila R_T strujno pojačanje biti $A_I = i_{iz}/i_{ul} = 60$? Koliko je pri tome naponsko pojačanje $A_V = u_{iz}/u_{ul}$ (2 boda)?

a)
$$R_T = 1 \text{ k}\Omega, A_V = 50$$

b)
$$R_T = 2 \text{ k}\Omega, A_V = 60$$

c)
$$R_T = 2 \text{ k}\Omega, A_V = 75$$

d)
$$R_T = 3 \text{ k}\Omega, A_V = 90$$

e)
$$R_T = 3 \text{ k}\Omega, A_V = 100$$

- **2.** Uzorak silicija je na sobnoj temperaturi, a Fermijeva energija se nalazi 0,2 eV iznad sredine zabranjenog pojasa. Ako se temperatura povisi za 100° C koji tip primjesa treba dodati da $E_F E_{Fi}$ ostane nepromijenjen? Ako se nakon dodavanja druge primjese temperatura dodatno povisi za 100° C, što se dogodi s Fermijevom energijom (**2 boda**)?
 - a) treba dodati akceptore, E_F se približi sredini zabranjenog pojasa
 - b) treba dodati donore, E_F se približi vodljivom pojasu
 - c) treba dodati donore, E_F se približi sredini zabranjenog pojasa
 - d) treba dodati akceptore, E_F se ne mijenja
 - e) treba dodati akceptore, E_F se približi vodljivom pojasu

- **3.** Dioda D_1 ima jednu usku i jednu široku stranu. Uska strana je 100 puta jače dopirana od široke. Druga dioda D_2 ima sve tehnološke parametre jednake kao dioda D_1 osim što ima dvostruko veću širinu slabo dopirane široke strane. Za odnos struja zasićenja (I_S), kapaciteta osiromašenih područja (C_B) i serijskih otpora dioda (R_S) vrijedi (**2 boda**):
 - a) $I_{S1} > I_{S2}$, $C_{B1} > C_{B2}$, $R_{S1} = R_{S2}$
 - b) $I_{S1} < I_{S2}, C_{B1} < C_{B2}, R_{S1} < R_{S2}$
 - c) $I_{S1} = I_{S2}$, $C_{B1} = C_{B2}$, $R_{S1} = R_{S2}$
 - d) $I_{S1} = I_{S2}$, $C_{B1} = C_{B2}$, $R_{S1} < R_{S2}$
 - e) $I_{S1} = I_{S2}$, $C_{B1} > C_{B2}$, $R_{S1} < R_{S2}$
- **4.** pn-dioda ima struju zasićenja 40 pA. Serijski otpor neutralnih strana iznosi 2,5 Ω . Ako kroz diodu potekne struja i_D =20+1·sin ω t [mA], koji napon ćemo izmjeriti na stezaljkama diode? Pretpostaviti U_T = 25 mV (**2 boda**).
 - a) $u_D = 500 + 3.75 \sin \omega t \text{ [mV]}$
 - b) $u_D = 550 + 2,50 \text{ sin}\omega t \text{ [mV]}$
 - c) $u_D = 500 + 1.25 \sin \omega t \text{ [mV]}$
 - d) $u_D = 550 + 3.75 \sin \omega t \text{ [mV]}$
 - e) $u_D = 550 + 1.25 \sin \omega t \text{ [mV]}$
- 5. Kolika je širina zabranjenog pojasa E_G poluvodičkog materijala iz kojeg je napravljena svjetleća dioda i kakva mora biti polarizacija te diode da bi emitirala svjetlo zelene boje valne duljine 540 nm (2 boda)?
 - a) $E_G = 0.67$ eV, propusna polarizacija
 - b) $E_G = 2.3$ eV, zaporna polarizacija
 - c) $E_G = 2.3$ eV, propusna polarizacija
 - d) $E_G = 0.67$ eV, zaporna polarizacija
 - e) $E_G = 1,24$ eV, propusna polarizacija

6. Na ulaz sklopa ispravljača priključen je sinusni ulazni napon. Kako izgleda izlazni napon (**2 boda**)?

a)

b)

c)

d)

e)

7. Na slici su prikazane karakteristike nekog MOSFET-a. Odrediti poprečni presjek koji odgovara radnoj točki A **(2 boda)**:

p-podloga

