Project Progress Review Hackathon by ValueHealth Inc.

Team Name: **FiveCare**Project Title: **SyncMyCare**

September 25, 2024

Abstract

This document reviews our project progress for the ValueHealth Hackathon. We cover workflows, dataset creation, architecture diagrams, and personas.

Contents

1	Workflow	2
2	Dataset Creation and Sources of Data	2
3	Architecture diagrams 3.1 System Architecture	5
4	List of Personas	7
5	UMR (Unified Medical Report) Format	8

1 Workflow

The process workflow maps the user journey from document upload to AI-driven report generation and notification.

Figure 1: User journey diagram

2 Dataset Creation and Sources of Data

The dataset will be custom-created from verified sources, ensuring model training with reliable, real-world data. Key steps will include:

Process	Details
Data Collection	
	• Medical records will be aggregated from hospitals. Privacy regulations will be strictly followed during data collection.
Synthetic Data Generation	 Tools like Faker will be used to generate synthetic prescription data. Patient conditions, medications, and prescriptions will be simulated to diversify the dataset. Existing datasets (e.g., MIMIC-III) will be augmented with hypothetical prescription data, such as drug types and dosages. Synthetic data will reflect real-world prescription patterns for better model training.
OCR and NLP for Prescriptions	OCR tools such as Tesseract and Google Vision API will be utilized to extract text from scanned or photographed prescriptions.
	• NLP techniques like entity recognition will be applied to identify key information such as medication names, dosages, and frequency from the OCR-extracted text.
Data Preprocessing	 Data will be cleaned and structured to ensure compatibility with machine learning algorithms. The data will be normalized to handle inconsistencies across various sources.
Public Data Sources	• Public datasets, including MIMIC-III and FDA's open drug data, will be leveraged for testing and validation. Public data will be cross-referenced with other verified medical records to enhance accuracy.
Research-Grade Data	 Research-grade data will be accessed through partnerships with academic and healthcare institutions. This data will be integrated into the project to ensure a robust and comprehensive training dataset.
Cross-Validation with Drug Databases	• Drug information will be cross-validated using trusted databases such as FDA, RxNorm, and DrugBank. Prescription data accuracy and consistency will be ensured by comparing it with official drug databases.

Table 1: Processes and Key Details for Data Collection and Preprocessing

3 Architecture diagrams

Architecture includes system, data flow, and backend structures.

3.1 System Architecture

The frontend, backend, AI module, and third-party APIs handle document processing, notifications, and user management.

Figure 2: System Architecture Diagram

3.2 Data Flow

Users upload documents, which are validated, processed, and stored. AI generates the report, and Twilio sends alerts when risks are identified.

Figure 3: Data Flow Diagram

3.3 Backend Architecture

The backend architecture diagram outlines the components of the backend server, detailing how it handles user management, data processing, and AI integration.

Figure 4: Backend Architecture Diagram

4 List of Personas

In this section, we outline the key personas involved in the solution and demonstrate how each one benefits from the Unified Medical Record (UMR) system. The comparison shows the stark contrast between the experiences of patients and doctors with and without UMR.

Persona	Key Benefit/Issue	Impact	Experience/Workflow
Patient With-	Lack of access to a	Increased risk of med-	Missed opportunity to
out UMR	centralized medical	ical errors and adverse	check for drug interac-
	record system leads	drug interactions, as	tions before prescribing
	to incomplete medical	the doctor cannot	new medications.
	information.	view the full medical	
		history in real-time.	
Patient With	Centralized access to	Reduced risk of drug	UMR ensures that the
UMR	medical history en-	interactions and med-	patient's health informa-
	sures that all prescrip-	ical errors. Saves time	tion is up-to-date and
	tions, reports, and al-	and avoids carrying	shared securely, enhanc-
	lergies are available to	multiple documents.	ing the overall quality of
	the doctor.		care.
Doctor Using	Saves time by provid-	Reduces the chances	UMR improves workflow
UMR	ing immediate access	of medical errors,	by allowing doctors to
	to patient records and	especially related to	focus more on diagnosis
	relevant health data.	drug interactions,	and treatment, as all rel-
		leading to better	evant information is in
		treatment outcomes.	one place.
Healthcare	Centralized records	Reduces adminis-	Scheduling and care co-
Administrator	make patient data	trative burden and	ordination between de-
	management more	errors, leading to	partments become seam-
	efficient.	more efficient record-	less as all necessary infor-
		keeping.	mation is easily accessi-
			ble.
Pharmacist	Access to a patient's	Improved patient	Pharmacists can consult
	complete prescription	safety by reducing	with doctors more effec-
	history helps prevent	medication errors.	tively using clear, up-
	harmful drug interac-		to-date records of a pa-
	tions.		tient's medication and
			treatment history.

Table 2: Key Personas and Benefits/Impacts of UMR System

5 UMR (Unified Medical Report) Format

This section demonstrates the Unified Medical Report (UMR) format that will be used in SyncMyCare. The UMR provides a detailed view of patient medical history, prescriptions, and other critical health data in an easily accessible manner.

Unified Medical Report

Patient Name: [Insert Name] Date: [Insert Date]
Doctor: [Insert Doctor's Name] Hospital/Clinic: [Insert Hospital Name]

Section	Details					
Medical Summary		Chief Complaints: [Complaints Here]				
		Diagnosis: [Diagnosis Here]				
	Physician's Comments: [Comments Here]					
Patient History	Medical History: [History Here]					
	Surgical History: [Surgical History Here]					
	Family History: [Family History Here]					
Doctor's Notes	Consultation Notes: [Notes Here]					
	Follow-up Instructions: [Instructions Here]					
		Special Considerations: [Considerations Here]				
Medication Name Dosa		ige	Fr	requency	Duration	
[Medication 1]	edication 1] [Dosa		[F	requency]	[Duration] Medica	
[Dosa		ige]	[F	requency]	[Duration]	
Test Name		Result Normal Range				
[Test 1]		[Result]		[Normal Range] Test 2;		
		[Result]		[Normal Range]		
Vital Sign	32		Res	ult		
Blood Pressure			[BP]			
Heart Rate		[Hea	[Heart Rate]			
Temperature		[Temperature] [Oxygen]				
Oxygen Saturation						
Next Visit Date			[Date of Next Visit]			
Upcoming Tests			[Upe	[Upcoming Tests Here]		
Referral			[Refe	[Referral Information Here]		

Table 1: Unified Medical Report: Summary, Prescription, Lab Results, Vital Signs, and Appointments

Figure 5: UMR Format Example

The UMR integrates AI-driven data extraction and medical insights, allowing healthcare providers to assess patient risks more effectively. The report is designed to improve patient outcomes by making critical information available at the point of care.