

DEPARTMENT OF COMPUTER SCIENCE - ARTIFICIAL INTELLIGENCE

Master's Thesis in Semantic Technologies and Knowledge Graphs

Automated Prompt Engineering using the Prompt Engineering Ontology for Querying Large Language Models

Supervisor:

Prof. Claudia d'Amato

Co-supervisor:

Dott. Roberto Barile

Dott. Andrea Nuzzolese

Candidate:

Francioso Donato

Our **objective** is to evaluate whether the integration of structured knowledge can lead to the automatic generation of prompts that are qualitatively better to those obtainable without it.

Context

- Large Language Models (LLM): artificial intelligence models capable of generating and understanding natural language
- Automated Prompt Engineering: generate highquality prompts automatically
- Ontology: shared conceptualisation of a specific domain.
 - We need an ontology that formalises prompt engineering

Research Question

LACAM - ARA

•**RQ**: Does the ontology improve the effectiveness of automatic prompt engineer compared to LLM?

Adopted Pipeline

Adopted ontology

LACAM - ARA

- PEO (Prompt Engineering Ontology): describes fundamental concepts related to LLMs and prompt engineering
 - Developed by LACAM-ARA
- Task description missing and we extend it

The **Linked Open Terms (LOT)** model methodology adopted.

Ontology pattern used:

- Classification
- o Parameter

Ontology extension

Task and adopted dataset

- The Civil Comments dataset was used
- Each comment is assigned a **toxicity score** (a numeric value)
- The labels were binarized, considering a comment toxic if its score is greater than 0.5
- 100 comments were selected, with a specific distribution: 60 non-toxic and 40 toxic

haha you guys are a bunch of losers. ur a sh*tty comment. 0.666667 hahahahahahahahahahahahahahahahahahah		
hahahahahahahahaha suck it. 0.457627 FFFFUUUUUUUUUUUUUUU The ranchers seem motivated	, , ,	0.893617
FFFFUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	ur a sh*tty comment.	0.666667
The ranchers seem motivated	hahahahahahahhha suck it.	0.457627
0	FFFFUUUUUUUUUUUUUU	0
		Θ

Experimental setup

Automatic Engineering and Testing of Ontology-Driven Prompts

- With varying characteristic configurations:
 - Language, Label Definition, Label Type, Format
 - Language, Label Definition, Label Type
 - Language, Label Definition

Automatic Engineering and Testing of Prompts without Ontology

- Based only on the LLM's intrinsic knowledge
- Tests Performed (multiple LLM and Technique adopted)

Experimental setup

LACAM - ARA

• SPARQL: to query ontology

Selected LLMs: Gemini 2.0 and DeepSeek
 V3

- Prompting Techniques:
 - Few-shot: Provide guide examples within the prompt.
 - Chain-of-Thought: Stimulates reasoning through a sequence of intermediate steps

```
SELECT DISTINCT ?label ?comment
WHERE {
    ?subClass rdfs:label ?label.
    ?subClass rdfs:comment ?comment .
    ?char rdf:type ?subClass .
    ?subClass rdfs:subClassOf* peo:Characteristic .
    ?view peo:hasCharacteristic ?char.
    ?view rdf:type ?viewClass.
    ?viewClass rdfs:subClassOf* peo:View.
    ?task peo:hasView ?view.
    ?task rdf:type peo:Task.
}
```

Query SPARQL to extract task chatacteristics

Experimental Results

⊙ Model	☑ Ontology	→ # Characteristics	Prompt technique	# Precision	# Recall	# F1-score
Gemini 2.0	~	Two	Few-shot	0,75	0,70	0,72
Gemini 2.0	\checkmark	Two	CoT	0,74	0,63	0,68
DeepSeek V3	\checkmark	Three	Few-shot	0,72	0,72	0,70
DeepSeek V3	\checkmark	Three	CoT	0,76	0,73	0,74
Gemini 2.0			Few-shot	0,70	0,59	0,64
Gemini 2.0			CoT	0,73	0,61	0,66
DeepSeek V3			Few-shot	0,70	0,70	0,67
DeepSeek V3			CoT	0,63	0,57	0,58

Ontology-driven prompts on varying LLMS

LACAM - ARA

Gemini

DeepSeek 😽

technique

Characteristics

Two	Few-shot	0,72	0,73	0,72
Two	CoT	0,74	0,69	0,71
Three	Few-shot	0,72	0,72	0,70
Three	CoT	0,76	0,73	0,74
Four	Few-shot	0,74	0,74	0,72
Four	СоТ	0,76	0,68	0,70

LLM failure in violation of syntactic requirements

LACAM - ARA

Error: LLM returns results in a format different from the one requested.

Gemini

☑ Ontology	# Characteristics	Prompt technique	# Errors	# Errors with Toxicity = 1
✓	Four	СоТ	8	4
~	Four	Few-shot	9	6
~	Three	СоТ	9	4
✓	Three	Few-shot	45	15
~	Two	СоТ	15	8
\checkmark	Two	Few-shot	4	1
		CoT	17	8
		Few-shot	16	7

DeepSeek 💓

☑ Ontology	# Characteristics	Prompt technique	TE LIFTORG TE	rrors with oxicity = 1
~	Four	СоТ	12	3
\checkmark	Four	Few-shot	1	0
\checkmark	Three	СоТ	4	1
\checkmark	Three	Few-shot	0	0
\checkmark	Two	СоТ	8	4
\checkmark	Two	Few-shot	0	0
		СоТ	11	3
		Few-shot	0	0

Conclusions

- Ontology-based automated prompt engineering outperforms LLMbased automated prompt engineering
- Ontology-based automated prompt engineering reduces the steps needed to engineer optimized prompts automatically with respect to LLM only
- Ontology-based automated prompt engineering enables full customization of the prompting environment

Future Works

• Extend PEO ontology with additional tasks

Further experiments with additional LLMs and/or datasets

• Develop a **hybrid solution** enabling an interactive user-LLM dialogue for dynamic ontology-driven prompt engineering

Thanks for your attention

