Basic tail and concentration bounds (Part II)

Kaveh S. Nobari

Reading Sessions in High-Dimensional Statistics

Department of Mathematics and Statistics Lancaster University

Contents

- Motivation
- Martingale-based methods
 - Martingales, MDS and telescoping decomposition [Pages 32-35]
 - Concentration bounds for MDS [Pages 35-40]
- 3 Lipschitz functions of Gaussian variables [40-44]

Motivation

- In the previous session we reviewed the bounds on sums of independent random variables that had been outlined by Wainwright (2019) and Vershynin (2018).
- In what follows we provide bounds on more general functions of random variables.
- A classical approach is based on martingale decomposition.

Motivation

- Martingale-based methods
 - Martingales, MDS and telescoping decomposition [Pages 32-35]
 - Concentration bounds for MDS [Pages 35-40]

Lipschitz functions of Gaussian variables [40-44]

Consider the independent random variables X_1, \dots, X_n and consider a function $f(X) = f(X_1, \dots, X_n)$ with the mapping $f : \mathbb{R}^n \to \mathbb{R}$. Suppose our goal is to obtain bounds on the deviations of f from its mean. To achieve this, let us consider the sequence of r.v.s given by $Y_0 = \mathbb{E}[f(X)]$, $Y_n = f(X)$, and

$$Y_k = \mathbb{E}[f(X) \mid X_1, \cdots, X_k] \quad k = 1, \cdots, n-1,$$

where Y_0 is a constant and the variables Y_1, \dots, Y_n tend to exhibit more fluctuations as they move along the sequence. Based on this intuition the martingale approach is based on the telescoping decomposition

$$f(X) - \mathbb{E}[f(X)] = Y_n - Y_0 = \sum_{i=1}^n \underbrace{Y_i - Y_{i-1}}_{D_i}$$

Thus, $f(X) - \mathbb{E}[f(X)]$ is expressed as the sum of increments D_1, \dots, D_n . This is a specific example of a martingale sequence, most commonly referred to as Doob martingale, whereas D_1, \dots, D_n is a martingale difference sequence (MDS hereafter).

Example (Random Walk process): Let us consider a Random Walk process

$$x_t = x_{t-1} + \varepsilon_t$$
, $\varepsilon_t \sim N(0, \sigma^2)$ for $t = 1, \dots, n$

We know that $x_n = f(x_1, \dots, x_{n-1})$, since using backward iteration, we may express the above expressions

$$x_{n} = x_{n-1} + \varepsilon_{n}$$

$$= x_{n-2} + \varepsilon_{n-1} + \varepsilon_{n}$$

$$\vdots$$

$$x_{n} = x_{0} + \sum_{i=0}^{n-1} \varepsilon_{n-i}$$

where x_0 is a constant. Hence,

$$\mathbb{E}[x_n] = \mathbb{E}\left[x_0 + \sum_{i=0}^{n-1} \varepsilon_{n-i}\right]$$
$$= x_0 + \sum_{i=1}^{n-1} \mathbb{E}[\varepsilon_{n-i}]$$
$$= x_0$$

Hence.

$$f(x) - \mathbb{E}[f(x)] = x_n - \mathbb{E}[x_n]$$

$$= x_n - x_0$$

$$= \sum_{i=1}^n \underbrace{X_i - X_{i-1}}_{\varepsilon_i}$$

We now provide a quick recap of probability triples before providing definition for the next sections. For a quick recap see Williams (1991).

- A model for experiment involving randomness takes the form of a probability triple (Ω, \mathcal{F}, P) .
- Ω is the sample space, where a point ω in Ω is a sample point.
- The σ -algebra \mathcal{F} on Ω is called the family of events, so that an event is an element of \mathcal{F} , that is an \mathcal{F} -measurable subset of Ω .
- Finally, P is the probability measure on (Ω, \mathcal{F}) .

Example ((Ω, \mathcal{F}) **pairs):** Toss a coin once and following Shreve (2004), let us define A_H as the set of all sequences beginning with Head or $H = \{\omega; \omega_1 = H\}$ and A_T as the set of all sequences beginning with Tail or $T = \{\omega; \omega_1 = T\}$. The sample space is thus,

$$\Omega = \{A_H, A_T\}$$

where the σ -field

$$\mathcal{F}_1 = \mathcal{P}(\Omega) = 2^{\Omega} := \{H, T, \emptyset, \Omega\}$$

is the σ -field spanned by one coin toss. Now we toss the coin twice. The sample space would then be

$$\Omega = \{A_{HH}, A_{TT}, A_{HT}, A_{TH}\}$$

and

$$\mathcal{F}_2 = \left\{ \begin{aligned} &\Omega, \emptyset, A_H, A_T, A_{HH}, A_{TT}, A_{HT}, A_{TH}, A_{HH}^c, A_{TT}^c, A_{HT}^c, A_{TH}^c, \\ &A_{HH} \cup A_{TH}, A_{HH} \cup A_{TT}, A_{HT} \cup A_{TH}, A_{HT} \cup A_{TT} \end{aligned} \right\}$$

It is evident that $\mathcal{F}_1\subset\mathcal{F}_2$, and in fact we may generalize this for infinite independent coin tosses to

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_3 \subset \cdots$$

We now provide a general definition of a martingale sequence by first defining a filtration as follows

Filtration

Let $\{\mathcal{F}_i\}_{i=1}^{\infty}$ be a sequence of σ -fields that are nested, meaning that $\mathcal{F}_m \subseteq \mathcal{F}_n$ for $n \geq m$. Such a sequence is known as a filtration.

In the Doob martingale described earlier, the σ -field $\sigma(X_1, \cdots, X_m)$ is spanned by the first m variables X_1, \cdots, X_m and plays the role of \mathcal{F}_m . Let $\{Y_i\}_{i=1}^{\infty}$ be a sequence of random variables such that Y_i is measurable with respect to the σ -field \mathcal{F}_i . We say that $\{Y_i\}_{i=1}^{\infty}$ is adapted to the filtration $\{\mathcal{F}_i\}_{i=1}^{\infty}$.

Martingale

Given a sequence $\{Y_i\}_{i=1}^{\infty}$ of r.v.s adapted to a filtration $\{\mathcal{F}_i\}_{i=1}^{\infty}$, the pair $\{(Y_i,\mathcal{F}_i)\}_{i=1}^{\infty}$ is a martingale if, for all $i\geq 1$

$$\mathbb{E}[|Y_i|] < \infty$$
 and $\mathbb{E}[Y_{i+1} \mid \mathcal{F}_i] = Y_i$.

Example (Partial sums as martingales)

Let $\{X_i\}_{i=1}^{\infty}$ be a sequence of i.i.d random variables with mean μ , and define the partial sums $S_m:=\sum\limits_{i=1}^m X_i$. Define $\mathcal{F}_m=\sigma(X_1,\cdots,X_m)$, the r.v. S_m is measurable w.r.t to \mathcal{F}_m , and, we have

$$\mathbb{E}[S_{m+1} \mid \mathcal{F}_m] = \mathbb{E}[X_{m+1} + S_m \mid X_1, \dots, X_m]$$

$$= \mathbb{E}[X_{m+1} \mid X_1, \dots, X_m] + \mathbb{E}[S_m \mid X_1, \dots, X_m]$$

$$= \mathbb{E}[X_{m+1}] + S_m = \mu + S_m.$$

A closely related concept is that of the martingale difference sequence, which is an adapted sequence $\{(D_i, \mathcal{F}_i)\}_{i=1}^{\infty}$ such that, for all $i \geq 1$,

$$\mathbb{E}[|D_i|] < \infty$$
 and $\mathbb{E}[D_{i+1} \mid \mathcal{F}_i] = 0$.

Difference sequences arise naturally from martingales. Given a martingale $\{(Y_i, \mathcal{F}_i)\}_{i=0}^{\infty}$, define $D_i = Y_i - Y_{i-1}$ for $i \geq 1$. We then have

$$\mathbb{E}[D_{i+1} \mid \mathcal{F}_i] = \mathbb{E}[Y_{i+1} - Y_i \mid \mathcal{F}_i]$$

$$= \mathbb{E}[Y_{i+1} \mid \mathcal{F}_i] - Y_i$$

$$= Y_i - Y_i = 0$$

using the martingale property and the fact that Y_i is measurable w.r.t to \mathcal{F}_i . Thus, for any martingale sequence $\{Y_i\}_{i=0}^n$, we have the telescoping decomposition.

Telescoping decomposition

Let $\{D_i\}_{i=1}^{\infty}$ be a MDS. Then for any martingale sequence $\{Y_i\}_{i=0}^{\infty}$, we have the telescoping decomposition

$$Y_n - Y_0 = \sum_{i=1}^n D_i$$

Example (Doob construction)

Consider the sequence on independent random variables X_1, \cdots, X_n , recall the sequence $Y_k = \mathbb{E}[f(X) \mid X_1, \cdots, X_k]$ previously defined, and suppose that $\mathbb{E}[|f(X)|] < \infty$. We claim that Y_0, \cdots, Y_n is a martingale w.r.t to X_1, \cdots, X_n . We have

$$\mathbb{E}[|Y_k|] = \mathbb{E}[|\mathbb{E}[f(X) \mid X_1, \cdots, X_k]|].$$

From Jensen's inequality, we have

$$\mathbb{E}[|\mathbb{E}[f(X) \mid X_1, \cdots, X_k]|] \leq \mathbb{E}[|f(X)|] < \infty.$$

From the 2nd property of martingales, we have

$$\mathbb{E}[Y_{k+1} \mid X_1^k] = \mathbb{E}[\mathbb{E}[f(X) \mid X_1^{k+1}] \mid X_1^k] = \mathbb{E}[f(X) \mid X_1^k] = Y_k$$

Motivation

- Martingale-based methods
 - Martingales, MDS and telescoping decomposition [Pages 32-35]
 - Concentration bounds for MDS [Pages 35-40]

Lipschitz functions of Gaussian variables [40-44]

We now turn to the derivation of concentration inequalities for martingales, either

- 1) as bounds for the difference $Y_n Y_0$; or
- 2) as bounds for the sum $\sum_{i=1}^{n} D_i$ of the associated MDS.

We begin by stating and proving a general Bernstein-type bound for a MDS, based on imposing a sub-exponential condition on the martingale differences. To do so, we adopt the standard approach of controlling the mgf of $\sum_{i=1}^{n} D_i$ and then applying the Chernoff bound.

Let $\{(D_i, \mathcal{F}_i)\}_{i=1}^{\infty}$ be a MDS and suppose that $\mathbb{E}[\exp(\lambda D_i) \mid \mathcal{F}_{i-1}] \leq \exp\left(\frac{\lambda^2 \nu_i^2}{2}\right)$ a.s. for any $|\lambda| < \frac{1}{\alpha_i}$

$$\mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^{n}D_{i}\right)\right] = \mathbb{E}\left[\mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^{n}D_{i}\right) \mid \mathcal{F}_{n-1}\right]\right]$$
$$= \mathbb{E}\left[\mathbb{E}\left[\exp(\lambda D_{n})\exp\left(\lambda\sum_{i=1}^{n-1}D_{i}\right) \mid \mathcal{F}_{n-1}\right]\right]$$

$$\begin{split} &= \mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^{n-1}D_i\right)\mathbb{E}\left[\exp\left(\lambda D_n\right) \;\middle|\; \mathcal{F}_{n-1}\right]\right] \\ &\leq \mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^{n-1}D_i\right)\right]\exp\left(\frac{\lambda^2\nu_n^2}{2}\right) \end{split}$$

we may iterate this procedure again for $\mathbb{E}[\exp(\lambda \sum_{i=1}^{n-1} D_i)]$ and we'd obtain.

$$\mathbb{E}\left[\exp\left(\lambda \sum_{i=1}^{n-1} D_i\right)\right] = \mathbb{E}\left[\mathbb{E}\left[\exp\left(\lambda \sum_{i=1}^{n-1} D_i\right) \middle| \mathcal{F}_{n-2}\right]\right]$$

$$= \mathbb{E}\left[\mathbb{E}\left[\exp\left(\lambda D_{n-1}\right) \exp\left(\lambda \sum_{i=1}^{n-2} D_i\right) \middle| \mathcal{F}_{n-2}\right]\right]$$

$$= \mathbb{E}\left[\exp\left(\lambda \sum_{i=1}^{n-2} D_i\right) \mathbb{E}\left[\exp\left(\lambda D_{n-1}\right) \middle| \mathcal{F}_{n-2}\right]\right]$$

$$\leq \mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^{n-2}D_i\right)\right]\exp\left(\frac{\lambda^2\nu_{n-1}^2}{2}\right)$$

Continuously iterating this process yields,

$$\mathbb{E}\left[\exp\left(\lambda\sum_{i=1}^n D_i\right)\right] \leq \exp\left(\frac{\lambda^2\sum_{i=1}^n \nu_i^2}{2}\right),$$

valid for all $|\lambda|<\frac{1}{\alpha^*}$. Hence, by definition, it can be concluded that $\sum_{i=1}^n D_i$ is sub-exponential with parameters $(\sqrt{\sum_{i=1}^n \nu_i^2}, \alpha^*)$. The tail bounds can be derived by using the Chernoff-type approach as before. In other words we are interested in

$$P\left[\sum_{i=1}^{n} D_{i} \geq t\right] = P\left[\exp\left(\lambda \sum_{i=1}^{n} D_{i}\right) \geq \exp\left(\lambda t\right)\right] \leq \frac{\mathbb{E}\left[\exp\left(\lambda \sum_{i=1}^{n} D_{i}\right)\right]}{\exp(\lambda t)}$$

where from the definition of sub-exponential variables and the earlier results, we know that

$$P\left[\exp\left(\lambda\sum_{i=1}^{n}D_{i}\right)\geq\exp\left(\lambda t\right)\right]\leq\exp\left(\frac{\lambda^{2}\sum_{i=1}^{n}\nu_{i}^{2}}{2}-\lambda t\right),\quad\forall\lambda\in\left[0,\frac{1}{\alpha^{*}}\right)$$

where the Chernoff optimisation problem is

$$\log P\left[\sum_{i=1}^n D_i \geq t\right] \leq \inf_{\lambda \in [0,\alpha_*^{-1}]} \left\{\underbrace{\frac{\lambda^2 \sum_{i=1}^n \nu_i^2}{2} - \lambda t}_{g(\lambda,t)}\right\}.$$

To complete the proof, it remains to compute for each $t \geq 0$, the quantity $g^*(t) := \inf_{\lambda \in [0,\alpha^{-1})} g(\lambda,t)$, where using the same unconstrained optimisation approach as for the sub-Gaussian variables, we'd obtain $\lambda_{opt} = \frac{t}{\sum_{i=1}^n \nu_i^2}$ as the unconstrained minimum of the function g(.,t), which yields the minimum $-\frac{t^2}{2\sum_{i=1}^n \nu_i^2}$.

constrained optimum.

Recall the constraint $0 \le \lambda < \frac{1}{\alpha^*}$. This implies that the unconstrained optimal λ_{opt} must be between $0 \le \frac{t}{\sum_{i=1}^n \nu_i^2} < \frac{1}{\alpha^*}$, which implies that in the interval $0 \le t < \frac{\sum_{i=1}^n \nu_i^2}{2}$, the unconstrained optimum corresponds to the

Otherwise for $t \geq \frac{\sum_{i=1}^n \nu_i^2}{\alpha_*^2}$, considering that the function $g(.,t) = \frac{\lambda^2 \sum_{i=1}^n \nu_i^2}{2} - \lambda t$ is monotonically decreasing, in the interval $[0,\lambda_{opt})$, the constrained minimum is obtained at the boundary - i.e. $\lambda^\# = \frac{1}{\alpha}$, which leads to the minimum

$$g^*(t) = g(\lambda^\#, t) = -\frac{t}{\alpha^*} + \frac{1}{2\alpha^*} \frac{\sum_{i=1}^n \nu_i^2}{\alpha^*} \le -\frac{t}{2\alpha^*}$$

where this inequality used the fact that $\frac{\sum_{i=1}^n \nu_i^2}{\alpha} \leq t$, which leads to the following

Concentration inequalities for MDS

Let $\{(D_i,\mathcal{F}_i)\}_{i=1}^\infty$ be a martingale difference sequence and suppose that $\mathbb{E}[\exp(\lambda D_i)\mid \mathcal{F}_{i-1}] \leq \frac{\lambda^2 \nu_i^2}{2}$ a.s. for any $|\lambda| < \frac{1}{\alpha}$. Then the following hold

- The sum $\sum_{i=1}^n D_i$ is sub-exponential with parameters $\left(\sqrt{\sum_{i=1}^n \nu_i^2}, \alpha^*\right)$, where $\alpha^* := \max_{i=1,\cdots,n} \alpha_i$.
- The sum satisfies the concentration inequality

$$P\left[\left|\sum_{i=1}^{n} D_{i}\right| \geq t\right] \leq \begin{cases} 2\exp\left(-\frac{t^{2}}{2\sum_{i=1}^{n} \nu_{i}^{2}}\right), & 0 \leq t \leq \frac{\sum_{i=1}^{n} \nu_{i}^{2}}{\alpha^{*}} \\ 2\exp\left(-\frac{t}{2\alpha^{*}}\right), & t > \frac{\sum_{i=1}^{n} \nu_{i}^{2}}{\alpha^{*}} \end{cases}$$

For the concentration inequalities to be useful in practice, we must isolate sufficient easily checkable conditions for the differences D_i to be a.s. sub-exponential (or sub-Gaussian when $\alpha=0$). As mentioned earlier, bounded r.v.s are sub-Gaussian, which leads to the following corollary

Azuma-Hoeffding

Let $\{(D_i, \mathcal{F}_i)\}_{i=1}^{\infty}$ be a MDS for which there are constants $\{(a_i, b_i)\}_{i=1}^n$ such that $D_i \in [a_i, b_i]$ a.s. for all $k = 1, \dots, n$. Then for all $t \geq 0$

$$P\left[\left|\sum_{i=1}^n D_i\right| \ge t\right] \le 2\exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right)$$

Proof: All that needs showing is that the $\mathbb{E}[\exp(\lambda D_i \mid \mathcal{F}_{i-1})] \leq \exp\left(\frac{\lambda^2(b_i - a_i)^2}{8}\right)$ a.s. for each $i = 1, \dots, n$. But since $D_i \in [a_i, b_i]$ a.s., the conditioned variables $(D_i \mid \mathcal{F}_{i-1})$ also belongs to this interval a.s.

Bounded differences property

Given vectors $x,x'\in\mathbb{R}^n$ and an index $k\in\{1,2,\cdots,n\}$, define the vector $\{x^{\setminus k}\in\mathbb{R}^n\}$ via

$$x^{\setminus k} := (x_1, x_2, \cdots, x_{k-1}, x'_k, x_{k+1}, \cdots, x_n)'.$$

We say that $f: \mathbb{R}^n \to \mathbb{R}$ satisfies the bounded difference property with parameters (L_1, \dots, L_n) if, for each $k = 1, 2, \dots, n$,

$$|f(x) - f(x^{\setminus k})| \le L_k \quad \forall x, x' \in \mathbb{R}^n$$

Bounded differences inequality

Suppose that f satisfies the bounded difference property with parameters (L_1, \dots, L_n) and that the random vector $X = (X_1, X_2, \dots, X_n)'$ has independent components. Then

$$P[|f(X) - \mathbb{E}[f(X)]| \ge t] \le 2 \exp\left(-\frac{2t^2}{\sum_{i=1}^n L_{\nu}^2}\right), \quad \forall t \ge 0$$

Example

Say we have the bounded r.v.s $X_i \in [a, b]$ almost surely, and consider the function $f(x_1, \dots, x_n) = \sum_{i=1}^n (x_i - \mu_i)$, where $\mu_i = \mathbb{E}[X_i]$ is the mean of the i^{th} rv. For any index $I \in \{1, \dots, n\}$, we have

$$|f(x) - f(x^{\setminus k})| = |(x_k - \mu_k) - (x'_k - \mu_k)|$$

= $|x_k - x'_k| \le b - a$

which shows that f satisfies the bounded difference inequality in each coordinate with parameter L=b-a. Consequently, from the bounded inequality it follows

$$P\left[\left|\sum_{i=1}^{n}(x_{i}-\mu_{i})\right|\geq t\right]\leq2\exp\left(-\frac{2t^{2}}{n(b-a)^{2}}\right)$$

which is classical Hoeffding bound for independent r.v.s.

Motivation Martingale-based method ipschitz functions of Gaussian variables [40-44] References

Motivation

- Martingale-based methods
 - Martingales, MDS and telescoping decomposition [Pages 32-35]
 - Concentration bounds for MDS [Pages 35-40]
- 3 Lipschitz functions of Gaussian variables [40-44]

Consider a Gaussian random variable $X \sim N(0, I_n)$ and a function $f : \mathbb{R}^n \to \mathbb{R}$. When does the random vector f(X) concentrate about its mean, i.e.,

$$f(X) \approx \mathbb{E}f(X)$$

with high probability?

In the case of linear functions f this question is easy, where f(X) has a normal distribution, and it concentrates around its mean well. However, we must also consider the the case of non-linear functions f(X) of random vectors X. We cannot expect to have good concentration for completely arbitrary f. However, if f does not oscillate too wildly, we might expect concentration. The concept of Lipschitz functions will help us to rule out functions that have wild oscillations.

L-Lipschitz functions

We say a function $f: \mathbb{R}^n \to \mathbb{R}$ is *L*-Lipschitz w.r.t the Euclidean norm $\|.\|_2$ if

$$|f(x) - f(y)| \le L||x - y||_2, \quad \forall x, y \in \mathbb{R}^n$$

In other words, Lipschitz functions may not blow up distance between points too much. The following guarantees that any such function is sub-Gaussian with parameter at most L:

Let (X_1,\cdots,X_n) be a vector of i.i.d. standard Gaussian variables, and let $f:\mathbb{R}^n\to\mathbb{R}$ be L-Lipschitz w.r.t the Euclidean norm. Then the variable $f(X)-\mathbb{E}[f(X)]$ is sub-Gaussian with parameter at most L, and hence

$$P[|f(X) - \mathbb{E}[f(X)]| \ge t] \le 2 \exp\left(-\frac{t^2}{2L^2}\right), \quad \forall t \ge 0$$

The earlier result is of great importance, as it guarantees that any L-Lipschitz function of a standard Gaussian random vector, regardless of the dimension, exhibits concentration like a scalar Gaussian variable with variance L^2 .

Any Lipschitz function is differentiable almost everywhere and the Lipschitz property further guarantees $\|\nabla f(x)\|_2 \leq L$ for all $x \in \mathbb{R}^n$. Therefore, to prove the earlier results, we first begin by providing the following Lemma:

Lemma

Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable. Then for any convex function $\phi: \mathbb{R} \to \mathbb{R}$, we have

$$\mathbb{E}_{X}[\phi(f(X) - \mathbb{E}(f(X)))] \leq \mathbb{E}_{X,Y}\left[\phi\left(\frac{\pi}{2}\left\langle \nabla f(X), Y\right\rangle\right)\right]$$

where $X, Y \sim N(0, I_n)$ are standard multivariate and independent.

Proof: For any fixed $\lambda \in \mathbb{R}$ applying the inequality in above Lemma to the convex function $f: t \to \exp(\lambda t)$ yields

$$\mathbb{E}_{X}[\exp(\lambda\{f(X) - \mathbb{E}[f(X)]\})] \leq \mathbb{E}_{X,Y}\left[\exp\left(\frac{\pi}{2}\langle \nabla f(X), Y\rangle\right)\right]$$

References

- Shreve, S. E. (2004). Stochastic calculus for finance II: Continuous-time models, volume 11. Springer Science & Business Media.
- Vershynin, R. (2018). *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press.
- Wainwright, M. J. (2019). *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cambridge University Press.
- Williams, D. (1991). *Probability with martingales*. Cambridge university press.