

CS-218 DATA STRUCTURE

Dr. Hashim Yasin

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

Algorithm

 An algorithm is a definite procedure for solving a problem in a finite number of steps.

 Algorithm is a well-defined computational procedure that takes some value (s) as input and produces some value (s) as output.

 Algorithm is finite number of computational statements that transform input into the output

Algorithm

□ Finite sequence of instructions.

Each instruction having a clear meaning.

Each instruction requires finite amount of effort.

□ Each instruction requires finite time to complete.

Evaluation of Algorithm

- Completeness: is the strategy guaranteed to find a solution when there is one?
- Optimality: does the strategy find the highestquality (least-cost) solution when there are several different solutions?
- Time complexity: how long does it take to find a solution?
- Space complexity: how much memory is needed to perform the search?

Analysis of an Algorithm

- What is the goal of analysis of algorithms?
 - To compare algorithms mainly in terms of running time but also in terms of other factors (e.g., memory requirements, programmer's effort etc.)

- What does it mean by running time analysis?
 - Determine how running time increases as the size of the problem increases.

- Ways of measuring efficiency:
 - Run the program and see how long it takes
 - Run the program and see how much memory it uses

- Lots of variables to control:
 - What is the input data?
 - What is the hardware platform?
 - What is the programming language/compiler?

Types of Analysis

□ Worst case

- Provides an upper bound on running time
- An absolute guarantee that the algorithm would not run longer, no matter what the inputs are.

□ Best case

- Provides a lower bound on running time
- Input is the one for which the algorithm runs the fastest

Types of Analysis

- □ Average case
 - Provides a prediction about the running time
 - Assumes that the input is random.

Lower Bound \leq Running Time \leq Upper Bound

Asymptotic Notation

- Asymptotic notations Asymptotic notations are the notations used to describe the behavior of the time or space complexity.
- \Box Let us represent the time complexity and the space complexity using the common function f(n).
 - O (Big Oh notation)
 - \triangleright Ω (Omega notation)
 - \rightarrow θ (Theta notation)
 - > o (Little Oh notation)

O - Big Oh notation

□ The big Oh notation provides an **upper bound** (a Worst Case of an algorithm) for the function f(n).

□ The function f(n) = O(g(n)) if and only if there exists positive constants c and n_0 such that

$$f(n) \leq cg(n)$$
 for all $n \geq n_0$

O - Big Oh notation

$$f(n) = 3n + 2$$

$$f(n) \le cg(n)$$
 for all $n \ge n_0$

Let us take
$$g(n) = n$$

 $c = 4$
 $n_0 = 2$

Let us check the above condition

$$3n + 2 \le 4n$$
 for all $n \ge 2$

The condition is satisfied. Hence f(n) = O(n).

O - Big Oh notation

$$f(n) = 10n^2 + 4n + 2$$
 $f(n) \le cg(n)$ for all $n \ge n_0$

Let us take
$$g(n) = n^2$$

 $c = 11$
 $n_0 = 6$

Let us check the above condition

$$10n^2 + 4n + 2 \le 11n$$
 for all $n \ge 6$

The condition is satisfied. Hence $f(n) = O(n^2)$.

Ω - Omega notation

The omega notation (Ω) provide s a **lower bound** for the function f(n).

The function $f(n) = \Omega(g(n))$ if and only if there exists positive constants c and n_0 such that

$$f(n) \geq cg(n)$$
 for all $n \geq n_0$

θ - Theta notation

The theta notation (θ) is used when the function f(n) can be bounded by both from above and below the same function g(n).

The function $f(n) = \theta(g(n))$ if and only if there exists positive constants c_1, c_2 and n_0 such that

$$c_1g(n) \le f(n) \le c_2g(n)$$
 for all $n \ge n_0$

□ The little o notation (o) is,

```
f(n) = o(g(n)) if and only if f(n) = O(g(n)) and f(n) \neq \Omega(g(n))
```

Asymptotic Notation

- □ O notation: asymptotic "less than":
 - $f(n) = O(g(n)) \text{ implies: } f(n) \leq g(n)$
- \square Ω notation: asymptotic "greater than":
- \square θ notation: asymptotic "equality":
 - $f(n) = \theta (g(n)) \text{ implies: } f(n) = g(n)$

Analysis of a Simple Program

```
// Input: int A[N], array of N integers
// Output: Sum of all numbers in array A
int Sum(int A[], int N){
   int s=0;
    for (int i=0; i < N; i++)
      s = s + A[i];
3.
    return s;
How should we analyse this?
```

Analysis of a Simple Program

```
// Input: int A[N], array of N integers
// Output: Sum of all numbers in array A
int Sum(int A[], int N) {
   int [s=0]; ←——
   for (int \underline{i=0}; \underline{i< N}; \underline{i++})
                                         1,2,8: Once
                                         3,4,5,6,7: Once per each iteration
   return s;
                                                   of for loop, N iteration but
                                                   (3) has one extra iteration
                                         Total: 5N + 3 + 1
                                         The complexity function of the
```

algorithm is : f(N) = 5N + 4

Analysis of a Simple Program

- Estimated running time for different values of N for 5N+4:
 - \square N = 10 => 54 steps
 - \square N = 100 => 504 steps
 - \square N = 1,000 => 5004 steps
 - \square N = 1,000,000 => 5,000,004 steps
- As N grows, the number of steps grow in linear proportion to N for this function "Sum"

Example 1 Constant time

```
void printFElementOfArray(int arr[]) {
    printf("First element of array = %d",arr[0]);
}
```

This function runs in O(1) time (or "constant time") relative to its input.

Constant time statements

- □ Simplest case: O(1) time statements
- Assignment statements of simple data types
 - \square int x = y;
- Arithmetic operations:
 - x = 5 * y + 4 z;
- □ Array referencing:
 - \Box A[i] = 5;
- □ Array assignment:
 - $\square \forall i, A[i] = i;$
- Most conditional tests:
 - \Box if (x < 12) ...

Example 2 Constant time

```
int sum = 0, j;
  for (j = 0; j < 100; j++)
    sum = sum + j;</pre>
```

- □ Loop executes 100 times
- \Box 4 = O(1) steps per iteration
- □ Total time is 100 * O(1) = O(100 * 1) = O(100) = O(1)

Example 3 Linear time

```
void printAllElementOfArray(int arr[], int size){
    for (int i = 0; i < size; i++) {
        printf("%d\n", arr[i]);
    }
}</pre>
```

- This function runs in O(n) time (or "linear time") relative to its input, where n is the number of items in the array.
 - □ If the array has 10 items, it prints 10 times. If it has 1000 items, it prints 1000 times.

Example 4 Quadratic time

```
void printAllPossibleOrderedPairs(int arr[], int size) {
    for (int i = 0; i < size; i++) {
        for (int j = 0; j < size; j++) {
            printf("%d = %d\n", arr[i], arr[j]);
        }
    }
}</pre>
```

- □ This function runs in $O(n^2)$ time (or "quadratic time") relative to its input, where n is the number of items in the outer array and n for inner array.
 - □ If the array has 10 items, it prints 100 times. If it has 1000 items, it prints 1000,000 times.

Example 5 Exponential time

```
int fibonacci(int num) {
    if (num <= 1)
        return num;
    return fibonacci(num - 2) + fibonacci(num - 1);
}</pre>
```

- \square An example of an $O(2^n)$ function is the recursive calculation of Fibonacci numbers.
- □ The growth curve of an $O(2^n)$ function is exponential.

Example 6 "Drop the Constants"

```
void printAllItemsTwice(int arr[], int size)
{
    for (int i = 0; i < size; i++) {
        printf("%d\n", arr[i]);
    }
    for (int i = 0; i < size; i++) {
        printf("%d\n", arr[i]);
    }
}</pre>
```

 \square This is O(2n), which we just call O(n)...

Example 7 "Drop the Constants"

```
void printItem100Times(int arr[], int size) {
    printf("First element of array = %d\n", arr[0]);
    for (int i = 0; i < size/2; i++) {
        printf("%d\n", arr[i]);
    }
    for (int i = 0; i < 100; i++) {
        printf("Hi\n");
    }
}</pre>
```

 \square This is O(1 + n/2 + 100), which we just call O(n).

Example 8 "Drop the less Significant Items"

```
void printAllNumbersAndPairSums(int arr[], int size) {
    for (int i = 0; i < size; i++) {
        printf("%d\n", arr[i]);
    }
    for (int i = 0; i < size; i++) {
        for (int j = 0; j < size; j++) {
            printf("%d\n", arr[i] + arr[j]);
        }
    }
}</pre>
```

□ Here our runtime is $O(n + n^2)$, which we just call $O(n^2)$.

Example 8 "Drop the less Significant Items"

□ Here our runtime is $O(n + n^2)$, which we just call $O(n^2)$.

Similarly,

 \Box O(n3 + 160n2 + 50000) is O(n3)

 \Box O((n + 40) * (n + 4)) is O(n2)

Example 9

```
bool arrayWithElement(int arr[], int size, int element) {
    for (int i = 0; i < size; i++) {
        if (arr[i] == element)
            return true;
    }
    return false;
}</pre>
```

- □ Generally, we say this is O(n) runtime and the "worst case" part would be implied.
- □ But to be more specific we could say this is worst case O(n) and the best-case O(1) runtime.

Example 10

```
for (int i = 1; i <= n; i *= c)
{
      // some O(1) expressions
}</pre>
```

```
for (int i = n; i > 0; i /= c)
{
      // some O(1) expressions
}
```

□ O(log n)

EFFICIENCY OF THE ALGORITHM

п	log ₂ n	n log ₂ n	n²	2"
1	0	0	1	2
2	1	2	2	4
4	2	8	16	16
8	3	24	64	256
16	4	64	256	65,536
32	5	160	1024	4,294,967,296

Growth rates of various functions

Time for f(n) instructions on a computer that billion instructions per second executes 1

п	f(n) = n	$f(n) = \log_2 n$	$f(n) = n \log_2 n$	$f(n) = n^2$	$f(n)=2^n$
10	0.01μs	0.003μs	0.033μs	0.1μs	1μs
20	0.02μs	0.004µs	0.086µs	0.4μs	1ms
30	0.03μs	0.005μs	0.147μs	0.9μs	1s
40	0.04µs	0.005μs	0.213μs	1.6μs	18.3min
50	0.05μs	0.006μs	0.282μs	2.5μs	13 days
100	0.10μs	0.007µs	0.664µs	10μs	4×10 ¹³ years
1000	1.00µs	0.010μs	9.966μs	1ms	
10,000	10μs	0.013μs	130μs	100ms	
100,000	0.10ms	0.017μs	1.67ms	10s	
1,000,000	1 ms	0.020μs	19.93ms	16.7m	
10,000,000	0.01s	0.023μs	0.23s	1.16 days	
100,000,000	0.10s	0.027μs	2.66s	115.7 days	

Dr Hashim Yasin

CS-218 Data Structure

Function $g(n)$	Growth rate of $f(n)$
g(n) = 1	The growth rate is constant and so does not depend on \emph{n} , the size of the problem.
$g(n) = \log_2 n$	The growth rate is a function of $\log_2 n$. Because a logarithm function grows slowly, the growth rate of the function f is also slow.
g(n) = n	The growth rate is linear. The growth rate of f is directly proportional to the size of the problem.
$g(n) = n \log_2 n$	The growth rate is faster than the linear algorithm.
$g(n) = n^2$	The growth rate of such functions increases rapidly with the size of the problem. The growth rate is quadrupled when the problem size is doubled.
$g(n)=2^n$	The growth rate is exponential. The growth rate is squared when the problem size is doubled.

Complexity	Growth Rate	
O(k) = O(1)	Constant Time	
$O(\log_b N) = O(\log N)$	Logarithmic Time	Incr
O(N)	Linear Time	ncreasing
O(N log N)		ing (
$O(N^2)$	Quadratic Time	Com
O(N ^p)	Polynomial Time	Complexity
• • • •		xity
$O(k^N)$	Exponential Time	

□ It can be shown that,

$$O(1) \le O(\log_2 n) \le O(n) \le O(n\log_2 n) \le O(n^2) \le O(2^n).$$

```
n dominates \log_2(n) (n 	imes \log_2(n)) dominates n n^2 dominates (n 	imes \log_2(n)) n^m dominates n^k when m > k a^n dominates n^m for any a > 1 and m \geq 0
```

Reading Materials

- □ Mark Allen Weiss Chapter#2
- □ Nell Dale: Chapter # 3 (Section 3.4)
- □ D. S. Malik Chapter#1