week3

方科晨

2024年3月24日

Problem. 1

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}| = 1.1$$

$$||A||_{1} = \max_{1 \le j \le n} \sum_{i=1}^{n} |a_{ij}| = 0.8$$

$$||A||_{2} = \sqrt{\lambda_{max}(A^{T}A)} = 0.6853$$

Problem. 3

由于 $\|\cdot\|$ 为向量范数,则有: 正定性 $\forall x \in \mathbb{R}^n, \|x\|_p = \|Px\| \ge 0$,且有 $\|x\|_p = 0 \Leftrightarrow \|Px\| = 0 \Leftrightarrow Px = 0 \Leftrightarrow x = 0$ 正其次性 $\forall \alpha \in \mathbb{R}, \|\alpha x\|_p = \|\alpha Px\| = |\alpha|\cdot\|Px\| = |\alpha|\cdot\|x\|_p$ 三角不等式 $\forall x, y \in \mathbb{R}^n, \|x+y\|_p = \|P(x+y)\| = \|Px+Py\| \le \|Px\| + \|Py\| = \|x\|_p + \|y\|_p$

综上, $\|\cdot\|_p$ 是 \mathbb{R}^n 上向量的一种范数。

Problem. 4

由矩阵范数的性质可知, $\operatorname{cond}(A)_{\infty} = \|A\|_{\infty} \|A^{-1}\|_{p} \geq \|AA^{-1}\|_{\infty} = \|I_{n}\|_{\infty} = 1$,同时,当 $\lambda = \frac{2}{3}$ 时,可以求得 $\|A\|_{\infty} = 2$, $\|A^{-1}\|_{\infty} = \frac{1}{2}$ 因此取到了 cond 的最小值 1 。当 $\lambda = -\frac{2}{3}$ 时同理,故得证。

Problem. 6

 $\operatorname{cond}(AB) = \|AB\| \cdot \|(AB)^{-1}\| \le \|A\| \cdot \|B\| \cdot \|B^{-1}\| \cdot \|A^{-1}\| = (\|A\| \cdot \|A^{-1}\|) \cdot (\|B\| \cdot \|B^{-1}\|) = \operatorname{cond}(A) \cdot \operatorname{cond}(B) , 得证。$

Problem. 7

不妨设 $B = \begin{pmatrix} a_{11} & a_1^T \\ 0 & A_2 \end{pmatrix}$ 则由高斯消元法的过程可得, $b_{ij} = a_{ij} - \frac{a_{1j}*a_{i1}}{a_{11}}, \forall i \geq 2, j \geq 2$,又由于 A 为对称阵,故 $a_{1j} = a_{j1}, a_{i1} = a_{1i}$ 。由此两式不难得出 $b_{ij} = b_{ji}, \forall i \geq 2, j \geq 2$,故 A_2 为对称阵。

Problem. 11

从最后一行往上,设当前为第 i 行,通过一次除法可算出解 x_i ,之后,对于第 $j \in [1, i-1]$ 行,把 (j, i) 消成 0 ,通过一次乘法一次除法,从 b_j 中减去相应的值。综上,乘除法次数共为 $n + \frac{n(n-1)}{2} \cdot 2 = n^2$ 次

(A)
$$A = LU \not \exists r$$
, $L = \begin{pmatrix} 0.5 & 0.5 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $U = \begin{pmatrix} 2 & -2 & 1 \\ 0 & 4 & -1 \\ 0 & 0 & 1 \end{pmatrix}$
(C) $C = LU \not \exists r$, $L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$, $U = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$