66. For the polynomial $a(x) = 2 + x + 2x^2 + x^3 + 0x^4 + 2x^5$ in $\mathbb{Z}_3[x]$, calculate a(c) for every $c \in \mathbb{Z}_3$. Are there any roots for a(x) in \mathbb{Z}_3 ?

$$a(0) = 2$$
 $a(1) = 2$ $a(2) = 0$

- The only root of a(x) in \mathbb{Z}_3 is 2. 67. Suppose A and K are commutative rings with unity and $f: A \to K$ is a nonzero ring homo
 - morphism. Prove: If $c \in A$ is a root for $a(x) \in A[x]$ then f(c) is a root for $\overline{f}(a(x))$ in K[x]. Suppose A and K are commutative rings with unity and $f: A \to K$ is a nonzero ring
 - Suppose A and K are commutative rings with unity and $f:A\to K$ is a nonzero ring homomorphism. Let $c\in A$ be a root for $a(x)\in A[x]$. Thus $a(c)=0_A$.
 - $a(x)=\sum\limits_{i=0}^{n}a_{i}x^{i}$ $\overline{f}(a(x))=\sum\limits_{i=0}^{n}f(a_{i})x^{i}$
 - By definition $a(c) = \sum_{i=0}^{n} a_i c^i$ and $\overline{f}(f(c)) = \sum_{i=0}^{n} f(a_i)((f(c))^i$. We see that $\overline{f}(f(c)) = 0_K$ below, so f(c) is a root of $\overline{f}(a(x))$ in K[x]

Answers for Chapter 7 Exercises

$$\overline{f}(f(c)) = \sum_{i=0}^{n} f(a_i)((f(c))^i = \sum_{i=0}^{n} f(a_i c^i) = f\left(\sum_{i=0}^{n} a_i c^i\right) = f(a(c)) = f(0_A) = 0_K$$

68. Complete the proof of Theorem 7.35 by showing that $h_c(a(x) + b(x)) = a(c) + b(c) = h_c(a(x)) + h_c(b(x))$ for $a(x), b(x) \in A[x]$.

Let A be an integral domain and $c \in A$. Recall $h_c : A[x] \to A$ is defined by $h_c(a(x)) = a(c)$. Let $a(x), b(x) \in A[x]$, and denote d(x) = a(x) + b(x). We need to show that $h_c(d(x)) = a(c) + b(c)$.

$$a(x) = \sum_{i=0}^{n} a_i x^i$$
 $b(x) = \sum_{i=0}^{n} b_i x^i$ $d(x) = \sum_{i=0}^{n} d_i x^i$

Using the fact that $d_i = a_i + b_i$ for each i we see that :

$$h_c(d(x)) = d(c) = \sum_{i=0}^n d_i c^i = \sum_{i=0}^n (a_i + b_i) c^i = \sum_{i=0}^n (a_i c^i + b_i c^i) = \sum_{i=0}^n a_i c^i + \sum_{i=0}^n b_i c^i$$

Thus $h_c(d(x)) = a(c) + b(c) = h_c(a(x)) + h_c(b(x))$ as we needed to show.

69. Suppose A is an integral domain and $a(x) \in A[x]$ with $a(x) \neq 0(x)$. Prove: If $a_0 = 0_A$ then 0_A is a root of a(x).

Assume A is an integral domain and $a(x) \in A[x]$ with $a(x) \neq 0(x)$. Thus $a(0_A) = \sum_{i=0}^{n} a_i(0_A)^i$. For i > 0 we know $(0_A)^i = 0_A$ and $(0_A)^0 = 1_A$, so $a(0_A) = a_0 + 0_A$. Since we assumed that $a_0 = 0_A$ then $a(0_A) = 0_A$ and 0_A is a root of a(x).

70. Define $S = \{a(x) \in \mathbb{Z}[x] : a(0) = 0 \text{ and } a(2) = 0\}$. Prove that S is an ideal of $\mathbb{Z}[x]$.

Let $S = \{a(x) \in \mathbb{Z}[x] : a(0) = 0 \text{ and } a(2) = 0\}$. Clearly $S \subseteq \mathbb{Z}[x]$. Since the zero polynomial 0(x) has 0(0) = 0 and 0(2) = 0 then $0(x) \in S$ and $S \neq \emptyset$. Let $a(x), b(x) \in S$. Using the fact that the substitution function is a ring homomorphism we find for c(x) = a(x) - b(x) that c(0) = a(0) - b(0) = 0 - 0 = 0 and c(2) = a(2) - b(2) = 0 - 0 = 0. Thus we know $c(x) \in S$ and S is closed under subtraction. Now let $a(x) \in S$ and $a(x) \in S$ and

1. Prove: If K is a field and $a(x) \in K[x]$ then every nonzero constant polynomial in K[x] is a factor of a(x).

Then $q(x) \in K[x]$ and $c(x)q(x) = c_0qa(x) = a(x)$. Thus c(x) is a factor of a(x).

Assume K is a field and $a(x) \in K[x]$. Let $c(x) = c_0$ be a constant polynomial, with $c_0 \neq 0$. Since K is a field then c_0 is a unit, so there is $q \in K$ with $qc_0 = 1_K$. Define b(x) = qa(x). (Answers will vary.) Let $a(x) = 2 + 5x + 3x^2 + 5x^3$ and $b(x) = 4 + 0x + 6x^2$. Then clearly $deg(a(x)) \neq deg(b(x))$. But for c = 2 we have $c \in \mathbb{Z}_{10}$ and ca(x) = b(x).

4. Find nonzero polynomials $a(x), b(x) \in \mathbb{Z}_{10}[x]$ which are associates but $deg(a(x)) \neq deg(b(x))$.

- $aeg(a(x)) \neq aeg(b(x))$. But for c = 2 we have $c \in \mathbb{Z}_{10}$ and ca(x) = b(x). 5. Suppose K is a field and $a(x) \in K[x]$ with $a(x) \neq 0(x)$. Prove: If $b(x), c(x) \in K[x]$ with
- a(x) = b(x)c(x) and $deg(c(x)) \neq 0$, then deg(b(x)) < deg(a(x)). Suppose K is a field and $a(x) \in K[x]$ with $a(x) \neq 0(x)$. Assume we have $b(x), c(x) \in K[x]$ with a(x) = b(x)c(x) and $deg(c(x)) \neq 0$. Let deg(c(x)) = n and deg(a(x)) = m, so we know

n>0 and $m\geq 0$. If b(x)=0(x) then a(x)=0(x)c(x)=0(x) but we assumed $a(x)\neq 0(x)$,

contradiction. Thus we must have m=k and so m+n=n+k or m+n=m. Subtracting

so we must have $b(x) \neq 0(x)$ as well. Let deg(b(x)) = k. We know $deg(b(x)) \geq 0$. We want to show that k < m so assume instead that $k \geq m$. By K a field, Theorem 7.20 tells us that deg(a(x)) = deg(b(x)) + deg(c(x)) so m = k + n. Since $n, m, k \in \mathbb{Z}$ we know that if k > m then k + n > m + n. Thus m > m + n or 0 > n. However n > 0 tells us this is a

214

we have n=0 which again contradicts n>0. Hence k>m is impossible and we must have k < m as needed.

19. Find two nonconstant polynomials $a(x), b(x) \in \mathbb{Z}_5[x]$ which have exactly the same roots in \mathbb{Z}_5 but are not associates.

Let a(x) = 1 + 4x and $b(x) = 1 + 3x + x^2$. Since the polynomials have different degrees they are not associates (exercise 3). From the list below we see both have only 1 as a root, thus they have the same roots. a(0) = 1 a(1) = 0 a(2) = 4 a(3) = 3 a(4) = 2

b(0) = 1 b(1) = 0 b(2) = 1 b(3) = 4 b(4) = 4

25. Prove Theorem 8.12.

- - Let K be a field and assume $p(x) \in K[x]$ is irreducible over K. Suppose we have $a(x), b(x) \in K[x]$ and p(x) is a factor of a(x)b(x). Since p(x) is irreducible over K then

p(x) is a factor of a(x). Similarly if $b(x) \in S$ then b(x) = p(x)r(x) for some $r(x) \in K[x]$ so p(x) is a factor of b(x). Thus either p(x) is a factor of a(x) or p(x) is a factor of b(x) as needed.

- we now have S as a prime ideal as well. Since $a(x)b(x) \in S$ and S is prime we know that either $a(x) \in S$ or $b(x) \in S$. If $a(x) \in S$ then a(x) = p(x)q(x) for some $q(x) \in K[x]$ so
- by Theorem 8.11 the ideal $S = \langle p(x) \rangle$ is a maximal ideal of K[x]. But by Theorem 6.23

28. Show that the assumption of p(x) irreducible in Theorem 8.12 was needed, by finding nonconstant polynomials $a(x), b(x), c(x) \in \mathbb{Z}_5[x]$ so that b(x) is a factor of a(x)c(x) but b(x) is not a factor of either a(x) or c(x). Let $a(x) = 1 + 3x + 3x^2 + x^3$, $b(x) = 3 + 4x + x^2$, and $c(x) = 2 + 2x + 4x^2 + x^3$. Notice that b(x)

so b(x) is not a factor of either a(x) or b(x).

is reducible by b(x) = (3+x)(1+x) Also $a(x)c(x) = b(x)(4+4x+2x^2+3x^3+x^4)$. But when using the division algorithm a(x) = b(x)(4+x) + (4+4x) and c(x) = b(x)(0+x) + (2+4x)