大學程式設計先修檢測

2018.06.10

實作題 注意事項

1. 請依題目敘述撰寫一完整程式,上傳送審之程式檔案副檔名 必須為 .c, .cpp, .java, 或.py,如下表所示。另若以 Java 撰 寫程式, class 名稱必須與檔名 (P1, P2, P3, 或P4) 一致。

	C	C++	Java	Python
特殊編碼	P1.c	P1.cpp	P1.java	P1.py
完全奇數	P2.c	P2.cpp	P2.java	P2.py
工作排程	P3.c	P3.cpp	P3.java	P3.py
反序數量	P4.c	P4.cpp	P4.java	P4.py

- 2. 上傳程式檔案前,請自行測試程式是否能正常編譯,程式執 行時輸入、輸出格式是否正確。評分時,若程式無法正常編 譯或執行,將以0分計算。
- 3. 程式內不應有開檔、讀檔、寫檔等程序,資料讀取皆應來自標準輸出入,資料輸出入格式詳各題說明。評分時,系統將自動導入測試資料,每行輸入資料最後一定有換行(UNIX格式)。

第 4 題 反序數量

問題敘述

考慮一個數列 A = (a[1], a[2], a[3], ..., a[n])。如果 A 中兩個數字 a[i]和 a[j]滿足 i < j 且 a[i] > a[j],則我們說(a[i], a[j])是 A 中的一個反序(inversion)。定義 W(A) 為數列 A 中反序的數量。例如,在數列 A = (3, 1, 9, 8, 9, 2)中,一共有 $(3, 1) \cdot (3, 2) \cdot (9, 8) \cdot (9, 2) \cdot (8, 2) \cdot (9, 2)$ 一共 6 個反序,所以 W(A) = 6。

給定一個數列A,計算W(A) 最簡單的方法是對所有 $1 \le i < j \le n$ 檢查數對(a[i], a[j]),但是在序列太長時,計算時間就會超過給定的時限。以下是運用分而治之 (divide and conquer) 的策略所設計的一個更有效率的計算方法。

- 1. 將 A 等分為前後兩個數列 X 與 Y, 其中 X 的長度是 n/2。
- 2. 遞迴計算 *W(X)* 和 *W(Y)*。
- 3. 計算 W(A) = W(X) + W(Y) + S(X, Y), 其中 S(X, Y)是由 X 中的數字與 Y 中的數字所構成的反序數量。

以 A = (3, 1, 9, 8, 9, 2) 為例, W(A) 計算如下。

- 1. 將 A 分為兩個數列 X=(3,1,9) 與 Y=(8,9,2)。
- 2. 遞迴計算得到 W(X) = 1 和 W(Y) = 2。
- 3. 計算 S(X, Y) = 3。因為有三個反序 $(3, 2) \cdot (9, 8) \cdot (9, 2)$ 是由 X 中的數字與 Y 中的數字所構成。所以得到 W(A) = W(X) + W(Y) + S(X, Y) = 1 + 2 + 3 = 6。

請撰寫一個程式,計算一個數列A的反序數量W(A)。

輸入格式

測試資料有兩列,第一列為一個正整數 n,代表 A 的長度。第二列有 n 個不大於 10^6 的 非負整數,代表 a[1], a[2], a[3], ..., a[n], 數字間以空白隔開。

輸出格式

輸出 A 的反序數量 W(A)。請注意 W(A)可能會超過一個 32-bit 整數所能表示的範圍。

範例一:輸入

6

3 1 9 8 9 2

節例二: 輸入

5

5 5 4 3 1

範例一:正確輸出

範例二:正確輸出

Ç

評分說明

6

輸入包含若干筆測試資料,每一筆測試資料的執行時間限制均為 1 秒,依正確通過測 資筆數給分。其中:

第 1 子題組 10 分: $1 \le n \le 10^3$ 。

第 2 子題組 30 分: $1 \le n \le 10^5$,n 為偶數,輸入數列保證 $a[1] \le a[2] \le a[3] \le ... \le a[m]$ 且 $a[m+1] \le a[m+2] \le a[m+3] \le ... \le a[n]$,其中 m=n/2。也就是數列前半與後半是各自排好序的。

第 3 子題組 60 分: $1 \le n \le 10^5$, 無其他限制。