2 Esercitazione 2

Esercitazione 2

- a) Partitori
- b) Teorema di Millman
- c) Principio di sovrapposizione degli effetti
- d) Circuiti equivalenti serie e parallelo

A1)

Pagina 1

Autore: Riccardo Zich

Calcolare V_{MN}.

Risultato: (5V).

A2)

Calcolare le tensioni e le correnti indicate mediante partitori.

 $R1 = 19\Omega$

 $R2 = 30\Omega$

 $R3 = 70\Omega$

A3)

Calcolare i1.

 $R1 = 32\Omega$

 $R2 = 60\Omega$

 $R3 = 10\Omega$

 $R4 = 40\Omega$

Risultato: (9.6a)

A4)

Calcolare V_{AB}.

$$R1 = 1\Omega$$
$$R2 = 2\Omega$$

Risultato: $(-\frac{10}{3}V)$.

B1)

Calcolare V.

$$R1 = \frac{1}{2}\Omega$$

$$R2 = \frac{1}{3}\Omega$$

$$R3 = 1\Omega$$

Risultato: (3V).

2 **Esercitazione 2**

B2) Calcolare i.

$$R1 = 10\Omega$$
$$R2 = 5\Omega$$

Risultato: $\left(-\frac{16}{5}A\right)$.

B3)

Calcolare i.

$$R = 1\Omega$$

$$E1 = 20V$$

$$E3 = 15V$$

Risultato: (10A).

C1)

Calcolare Va, Vb, Vc.

$$R1 = 8\Omega$$

$$R2 = 2\Omega$$

$$R3 = 12\Omega$$

$$R4 = 8\Omega$$

Risultato:
$$\begin{pmatrix} 12V \\ 6V \\ 16V \end{pmatrix}$$

C2)

Calcolare le tensioni Va,Vb,Vc, rispetto al nodo di riferimento.

$$R1 = 1\Omega$$

$$R2 = 30\Omega$$

$$R3 = 2\Omega$$

$$R4 = 10\Omega$$

Risultato: (60V,-10V,50V).

2 Esercitazione 2

C3) Determinare V2 e V5.

D1) Calcolare i₁.

Autore: Riccardo Zich

2 Esercitazione 2

D2) Calcolare i.

D3)Calcolare l'equivalente Norton del bipolo A-B.

Risultato: (i_{EQ} =0.18A , R_{EQ} =2.7 Ω).

2 Esercitazione 2

D4)

Calcolare i tramite equivalente Norton.

$$R1 = 3\Omega$$
$$R2 = 4\Omega$$

Risultato: (i=2.6A).

D5)

Calcolare V mediante sdoppiamento dei generatori e circuiti equivalenti Thevenin o Norton.

 $R1 = 2\Omega$ $R2 = 3\Omega$

 $R3 = 4\Omega$

 $R4 = 6\Omega$