Chapitre 1 : Espaces vectoriels, applications linéaires et matrices

Noyau et Image d'une application linéaire

On considère $E=\mathbb{R}^2$ et $F=R^3$ munis de leurs bases canoniques respectives. Soit l'application linéaire $f:E\to F$ telle que :

$$\forall x \in E, \ f(x) = \begin{pmatrix} x_1 - x_2 \\ x_1 + 2x_2 \\ x_1 + 2x_2 \end{pmatrix}$$

- Ker(f): On cherche $x \in E$ tel que $f(x) = 0_F$. Une résolution immédiate donne $x_1 = x_2$, puis $x_2 = 0$ et partant $Ker(f) = \{0_E\}$.
- Im(f): le Théorème du rang assure que l'on doit trouver un s.e.v. de F de dimension $\dim(E) \dim(Ker(f)) = 2$. D'après la définition de Im(f), on a pour tout $y := (y_1, y_2, y_3) \in F$, $y \in Im(f)$ si et seulement si il existe $x \in E$ tel que f(x) = y. Chercher Im(f) revient donc à résoudre le système d'équations suivant:

$$\begin{cases} x_1 - x_2 = y_1 & (L_1) \\ x_1 + 2x_2 = y_2 & (L_2) \\ x_1 + 2x_2 = y_3 & (L_3) \end{cases}$$

 L_1 nous donne que $x_2=x_1-y_1$. On utilise ensuite la technique du pivot de Gauss : L_2-L_3 donne immédiatement $y_2=y_3$ (qui est l'équation d'un hyperplan) et L_2, L_3 sont alors vérifiées pour $x_1=\frac{y_2+2y_1}{3}=\frac{y_3+2y_1}{3}$. On en déduit que L_1 est vérifiée pour $x_2=\frac{y_2-y_1}{3}=\frac{y_3-y_1}{3}$. On conclut que $y\in Im(f)$ si et seulement si y est de la forme $y=(y_1,y_3,y_3)$ avec $y_1,y_3\in\mathbb{R}$. Autrement dit,

$$(y \in Im(f)) \iff (y \in F)$$

où $F:=\{y\in F:y=(a,b,b)=a(1,0,0)+b(0,1,1),\ a,b\in\mathbb{R}\}.$ Il est immédiat que F est un s.e.v. de F (contient le vecteur nul, inclus dans F et stable par combinaison linéaire). Plus précisément,

$$F = Vect((1,0,0),(0,1,1))$$

Comme ((1,0,0),(0,1,1)) forment une famille libre (facile à montrer), on en déduit que ((1,0,0),(0,1,1)) est une base de F de cardinal 2. Au final:

$$Im(f) = F$$
 et $Dim(Im(f)) = Dim(F) = 2$