EMAT101L

Engineering Calculus

Tutorial Sheet 8

(Applications of Integrals)

1. Find the area of the region bounded by the given curves.

(a)
$$f(x) = 2x^2 + 5x - 3$$
 and $g(x) = x^2 + 4x - 1$
Ans. $\frac{9}{2}$

(b)
$$f(x) = \sin x$$
 and $g(x) = \cos x$ from $x = 0$ to $x = \frac{\pi}{4}$
Ans. $\sqrt{2} - 1$

(c)
$$x = 2y^2$$
 and $x + y = 1$
Ans. $\frac{9}{8}$

(d)
$$y = 2x, y = 5x \text{ and } x = 3$$

Ans. $\frac{27}{2}$

(e)
$$y = x^2$$
 and $x = y^2$
Ans. $\frac{1}{3}$

2. Use the Disk/Washer to find the volume of the solid of revolution formed by rotating the region about each of the given axes. Region bounded by: $y = \sqrt{x}, y = 0$ and x = 1. Rotated about

(a) the x-axis Ans.
$$\frac{\pi}{2}$$
 unit³

(b)
$$y = 1$$
 Ans. $\frac{\pi}{6}$ unit³

(c) the y-axis Ans.
$$\frac{\pi}{5}$$
 unit³

(d)
$$x = 1$$
 Ans. $\frac{8}{15}\pi$ unit³

3. Find the volume of the following solids of revolution using the Shell method.

Region bounded
$$y = \sqrt{x}, y = 0$$
 and $x = 1$ and rotated about $x = 3$.

Hint:
$$r(x) = 3 - x$$
 and $h(x) = \sqrt{x}$, Ans. $\frac{16\pi}{5}$ unit³.

4. Find the volume of the solid of revolution where $y = \sin x$ on $[0, \pi/2]$ is revolved around the x-axis.

Hint: Use disk method, Ans.
$$\frac{\pi^2}{4}$$
 unit³

5. Find the volume of the solid created when the area between $f(x) = x^2 + 1$ and g(x) = x on [0,1] is rotated about x-axis.

Hint: Use the Washer method, Ans.
$$\frac{23}{15}\pi$$
 unit³

6. Find the volume of the solid created when the area contained by $f(x) = x^2$ and $g(x) = x^3$ is revolved around the x-axis.

Hint: Use the Washer method, Ans.
$$\frac{2}{35}\pi$$
 unit³

7. Using the Shell method, find the volume of the region enclosed by $y = \sqrt{x}, x = 1$ and x = 4 when revolved about y-axis.

Ans.
$$2\pi \int_{1}^{4} x \sqrt{x} \ dx = \frac{124}{5} \pi \text{ unit}^{3}$$