CS 103 Winter 2013-2014

Notes: The lecture notes reference [L1s12] means Lecture 1 Slide 12.

Syntax and Trees

Definition 1 (Abstract Syntax Tree). An abstract syntax tree is a concise tree representation of a linear notation. [L1s4]

The process of converting a linear notation to a syntax tree is called **parsing**. Parsing depends on the "relative stickness" of operators, called **precedence**. [L1s12-13]

Definition 2 (Assignment). The values of the variables can be captured in an assignment, which is a table that maps each variable to a value. An assignment that makes a logical formula true is called a satisfying assignment of that formula. [L1s18]

Definition 3 (Recursive Definition of Arithmetic Expressions). If α and β are arithmetic expressions, then the following are all arithmetic expressions:

- A number
- A variable name;
- −α
- \bullet $\alpha + \beta$

- \bullet $\alpha \beta$
- $\alpha * \beta$
- α/β
- α^β

[L1s22]

Propositional Logic

Definition 4 (Propositional Connectives). In propositional logic, the **truth values** are T for "true" and F for "false". The operators are **propositional connectives**, such as \neg for "NOT", \wedge for "AND" and \vee for "OR". [L2s5]

Definition 5 (Recursive Definition of Propositional Logic Formula). If α and β are propositional logic formulas, the following are all propositional logic formulas:

- One of the truth values T or F
- $\alpha \wedge \beta$
- A variable (typically P, Q)
- $\alpha \vee \beta$

¬α

The order of precedence of the connectives is: \neg , \wedge , \vee . [L2s6,7]

The assignment of truth values to variables in a propositional logic formula is called a **truth assignment**. [L2s9]

Definition 6 (Satisfiability of Propositional Formulas). The satisfiability problem (or "SAT") is, given a propositional formula t, does there exist a satisfying truth assignment a. [L2s10]

Definition 7 (Truth Table). Truth tables enumerate values of a propositional logical formula for all of the possible values of the propositional variables appearing in it. [L2s11]

Definition 8 (Tautology). A tautology is a propositional formula that is always true. I.e., the entire column for the sentence in the truth table is "T". [L2s15]

Theorem 1 (Propositional Connective Laws). [L2s17-18]

Identity	Name
$\neg \neg P \equiv P$	double negation
$P \wedge T \equiv P$	identity
$P \lor F \equiv P$	
$P \wedge F \equiv F$	domination
$P \lor T \equiv T$	
$P \land \neg P \equiv F$	inverse laws
$P \vee \neg P \equiv T$	
$P \wedge P \equiv P$	idempotence
$P \lor P \equiv P$	
$P \wedge Q \equiv Q \wedge P$	commutativity
$P \vee Q \equiv Q \vee P$	
$(P \land Q) \land R \equiv P \land (Q \land R)$	associativity
$(P \lor Q) \lor R \equiv P \lor (Q \lor R)$	
$(P \lor Q) \land R \equiv (P \land R) \lor (Q \land R)$	distributivity
$(P \land Q) \lor R \equiv (P \lor R) \land (Q \lor R)$	
$\neg (P \land Q) \equiv \neg P \lor \neg Q$	De Morgan's laws
$\neg (P \lor Q) \equiv \neg P \land \neg Q$	

Theorem 2 (Duality). If you swap \land and \lor and T and F in an identity, you get another identity. [L2s18]

Definition 9 (Implication). $P \rightarrow Q \equiv \neg P \lor Q$. [L2s19]

Given an implication $P \to Q$, there are several related implications:

implication name

$Q \to P$	converse
$\neg P \rightarrow \neg Q$	inverse
$\neg Q \rightarrow \neg P$	contrapositive

Important equivalence identities:

identity note

$P \to Q \equiv \neg Q \to \neg P$	$(statement \equiv contrapositive)$
$Q \to P \equiv \neg P \to \neg Q$	$(converse \equiv inverse)$

[L2s25]

Definition 10 (Biconditionals). $P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$.

 $P \leftrightarrow Q$ is true exactly when P and Q have the same truth value. In English, biconditionals are indicated by "P if and only if Q", "P iff Q.", "P is necessary and sufficient for Q" etc. [L2s26]

Theorem 3. $P \leftrightarrow Q$ is satisfiable. [L3s6]

Theorem 4 (Distributive Law of Implications).

$$P_1 \to (P_2 \land P_3) \equiv (P_1 \to P_2) \land (P_1 \to P_3)$$
 [L3s5]

Theorem 5 (Tautology and Satisfiability). ϕ is tautology iff its truth table has all T's iff the truth table for $\neg \phi$ has all F's.

In other words, $P \leftrightarrow P$ is a tautology, and $\neg (P \leftrightarrow P)$ is unsatisfiable. [L3s7]

First-Order Logic

Definition 11 (First Order Logic). First-order logic is usually defined with two levels of syntax (two types of trees): terms, which represent individuals (e.g., non-boolean values), and formulas, which represent properties or relationships (e.g. boolean expressions.) [L3s10]

Definition 12 (Predicates). Predicates are boolean (true/false) functions that have terms as arguments. They can be written using normal functional notation, e.g., P(x,y), or using infix (e.g., 1+2), prefix (e.g., -1), and postfix operators (e.g., 3!). [L3s12]

Definition 13 (Quantifiers). First order logic has two quantifiers: the universal quantifier \forall ("every") and the existential quantifier \exists ("exists").

Note that quantifiers go with variables, which are terms that represent non-Boolean values. (e.g., " $\forall x$ "). [L3s13]

Theorem 6. \forall is "AND over everything", \exists is "OR over everything." [L3s15]

For *finite sets*, quantified expressions can be rewritten by substituting all possible values for the quantified variables and ANDing or ORing the results together (depending on whether the quantifier is \forall or \exists).

E.g., if we're quantifying over the integers in the range 0...2

$$\forall x \ \mathsf{P}(x) = \mathsf{P}(0) \land \mathsf{P}(1) \land \mathsf{P}(2) \qquad \exists x \ \mathsf{P}(x) = \mathsf{P}(0) \lor \mathsf{P}(1) \lor \mathsf{P}(2)$$

Definition 14 (Recursive Definition of Terms). Let $\gamma_1, \gamma_2, \ldots$ be terms. A term can be any of the following:

- \bullet A variable, e.g., x.
- A function application: $f(\gamma_1, \gamma_2, \dots, \gamma_n)$.
- A constant, e.g. 0.

[L3s16]

Definition 15 (Recursive Definition of Formulas). Let α , β , ... be formulas and γ_1 , γ_2 , ... be terms. A formula can be:

- One of the truth values T or F.
- A predicate, e.g., $\gamma_1 \leq \gamma_2$, $\gamma_1 = \gamma_2$.
- Quantified formulas: $\forall x \ (\alpha) \ and \ \exists x \ (\alpha)$

[L3s17]

Definition 16 (Restricted Quantifiers). Quantifiers that apply to individuals with a particular property are restricted quantifiers (also known as Aristotelian forms):

"All P's are Q's"
$$\forall x \ (P(x) \to Q(x))$$
"Some P's are Q's" $\exists x \ (P(x) \land Q(x))$

Note that $\exists x \ (P(x) \to Q(x))$ is incorrect. [L3s19]

Definition 17 (Vacious Truth Sentences). $\forall x \ (P(x) \to Q(x))$ is true if P(x) is never true. When this occurs, the sentence is said to be **vacuously true**. [L3s23]

Theorem 7. Swapping two adjacent quantifiers of the same kind does not change the meaning of the sentence:

```
 \forall x \forall y \ (R(x,y)) \equiv \forall y \forall x \ (R(x,y))   \exists x \exists y \ (R(x,y)) \equiv \exists y \exists x \ (R(x,y))  [L3s25]
```

Theorem 8 (Precedence of Logic Connectives). The precedence order of logical connectives is $\forall x \text{ and } \exists x \text{ and } \neg \text{ (all equal precedence)}, \land, \lor, \rightarrow, \leftrightarrow$.

 \rightarrow is right-associative, so $P \rightarrow Q \rightarrow R$ is $P \rightarrow (Q \rightarrow R)$. All the other connectives are left-associative. [L4s6]

Theorem 9 (DeMorgan's Laws for Quantifiers). [L4s16]

$$\neg \forall x \ P(x) \equiv \exists x \ \neg P(x)$$

$$\neg \exists x \ P(x) \equiv \forall x \ \neg P(x)$$

Theorem 10 (DeMorgan's Laws for Restricted Quantifiers). [L4s18]

$$\neg \forall x \ (P(x) \to Q(x)) \equiv \exists x \ (P(x) \land \neg Q(x))$$

$$\neg \exists x \ (P(x) \land Q(x)) \equiv \forall x \ (P(x) \to \neg Q(x))$$

Definition 18 (Free and Bound Variables). ν is a bound variable in $\forall \nu$ P and $\exists \nu$ P. A free variable is an unbound variable (i.e., it is not acted upon by a quantifier). [L4s19]

Theorem 11 (Distributive Laws for Quantifiers). These laws always work

$$\forall x \ (P(x) \land Q(x)) \equiv (\forall x \ P(x)) \land (\forall x \ Q(x))$$

$$\exists x \ (P(x) \lor Q(x)) \equiv (\exists x \ P(x)) \lor (\exists x \ Q(x))$$

In general, \forall does not distribute over \vee and \exists does not distribute over \wedge . But, if x does not occur free in P,

```
 \forall x \ (P \lor Q(x)) \equiv P \lor (\forall x \ Q(x))   \exists x \ (P \land Q(x)) \equiv P \land (\exists x \ Q(x))  [L4s20]
```

Theorem 12 (Substitution Property). Let β and γ be terms. Let $\alpha[\beta]$ be a term in which β appears, and let $\alpha[\gamma]$ be the term where β is replaced by γ .

If
$$\beta = \gamma$$
, then $\alpha[\beta] = \alpha[\gamma]$. [L4s22]

Theorem 13 (Equality properties). Other properties of equality besides substitution:

- reflexivity: $\forall x \ (x = x)$
- symmetry: $\forall x, y \ (x = y \rightarrow y = x)$
- transitivity: $\forall x, y, z \ (x = y \land y = z \rightarrow x = z)$.

The quantifiers is often omitted with the mathematical convention of implicit quantification. [L4s24]

Proofs

Definition 19 (Big-Oh). If f and g are two functions from real numbers to real numbers, we say f(n) is O(g(n)) if

$$\exists c \ \exists n_0 \ \forall n(n > n_0 \to 0 \le f(n) \le cg(n))$$
 [L5s7]

Definition 20 (Proof). A proof is a demonstration of a theorem which is a mathematical truth (axiom). A proof begins with a set of initial assumptions that are explicitly stated (premises) or implicitly assumed as a known truth. A series of conclusions are drawn from these assumptions and previous conclusions. The theorem is the last of these conclusions. [L5s9,11]

A formal proof is a proof that is performed using a mathematically precise logical language and rules of inference. [L5s10]

Definition 21 (Even and Odd). [L5s16]

```
Even(n): \exists k \ (n=2k)
Odd(n): \exists k \ (n=2k+1)
```

Theorem 14 (Properties of Even and Odd Integers).

- Every integer is either even or odd. [L5s16]
- No integer is both even and odd. [L6s23]
- If n is odd, then n^2 is odd: $\forall n \ (Odd(n) \to Odd(n^2))$ [L5s28]
- $n^3 + n$ is even, for every integer n. [L5s31]
- n is even iff n^2 is even for every integer $n: \forall n \ (Even(n^2) \leftrightarrow Even(n))$ [L6s11]

Definition 22 (Rational Numbers). Every rational number can be written in the form p/q where:

- p and q are integers.
- \bullet $q \neq 0$.
- The only positive integer that evenly divides p and q is 1.

[L6s25]

Theorem 15. Between every two distinct rational numbers, there is another rational number. [L5s33]

Theorem 16 (Irrationality of $\sqrt{2}$). $\sqrt{2}$ is irrational. [L6s26]

Sets

Definition 23 (Sets). A set is an unordered collection of distinct objects. The empty set, written \emptyset , is the set that contains no objects. [L7s8]

Sets can be finite or infinite. Common infinite sets:

- The natural numbers, $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- The integers, $\mathbb{Z} = \{\ldots -2, -1, 0, 1, 2, \ldots\}.$
- The rational numbers, $\mathbb{Q} = \{p/q \mid \text{where } p \text{ and } q \text{ are integers and } q \neq 0\}$
- The **reals**, \mathbb{R} (rationals, plus π , e, $\sqrt{2}$, etc.)

[L7s10]

Definition 24 (Set Membership). We denote the predicate of whether an object is a **member** of a set as $x \in S$. (pronounced: "x is a member of S" or "x is in S")

The notation $x \notin S$ is an abbreviation for $\neg(x \in S)$. [L7s11]

Definition 25 (Set Equality). Another predicate on sets is =. $S_1 = S_2$ if both sets have exactly the same members, regardless of order and repetition. [L7s13]

Theorem 17 (Axiom of Extensionality). $\forall S_1, S_2, x \ ((x \in S_1 \leftrightarrow x \in S_2) \rightarrow S_1 = S_2)$ [L7s14]

Definition 26 (Subset). A is a subset of B if every member of A is also a member of B. If A is a subset of B then B is a superset of A $(B \supseteq A)$. [L7s15]

A is a proper subset of B $(A \subset B \text{ or } A \subsetneq B)$ if it is a subset but $A \neq B$. [L7s16]

Theorem 18. The empty set is a subset of every other set. [L7s17]

Theorem 19. $S_1 = S_2$ iff $S_1 \subseteq S_2$ and $S_2 \subseteq S_1$. [L7s18]

Theorem 20. There is at most one empty set. [L7s18]

Theorem 21 (Russell's Paradox). Let R be the set of all sets that do not contain themselves, i.e. $R = \{S \mid S \notin S\}$. The set R does not exist. [L7s22]

Definition 27 (Set Intersection). $A \cap B$ (set intersection) is the set of all values that are in both A and B, i.e. $A \cap B = \{x \mid x \in A \land x \in B\}$. [L7s26-28]

Theorem 22 (Properties of Intersection). [L7s29]

- $\emptyset \cap A = \emptyset$
- $A \cap A = A$ (idempotency)
- $A \cap B = B \cap A$ (commutativity)
- $(A \cap B) \cap C = A \cap (B \cap C)$ (associativity)
- $A \cap B = B$ iff $B \subseteq A$

Definition 28 (Set Union). $A \cup B$ is the set of all values that are in A or in B. [L7s30]

Theorem 23 (Properties of Union). [L7s31]

- $\emptyset \cup A = A$
- $A \cup A = A$ (idempotency)
- $A \cup B = B \cup A \ (commutativity)$
- $(A \cup B) \cup C = A \cup (B \cup C)$ (associativity)
- $A \cup B = B$ iff $A \subseteq B$

Theorem 24 (Distributive Laws of Union and Intersection). [L7s32]

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Definition 29 (Set Difference). A-B is the set of values in A that are not in B. Alternate notation: $A \setminus B$. [L7s34]

Definition 30 (Cardinality). The number of members of a set S is its cardinality, written as |S|. [L7s39]

Theorem 25. If $A \subseteq B$, then $|A| \le |B|$. [L7s38]

Definition 31 (Powerset). The powerset of a set A is the set of all subsets of A, $\mathscr{P}(A) = \{B \mid B \subseteq A\}$. $\mathscr{P}(A)$ is also written 2^A . [L7s42]

Definition 32 (Set of Sets). Let C be a set of sets. Then

 $\bigcap \mathcal{C}$ is the set of all values that are in every set $S \in \mathcal{C}$

 $\bigcup \mathcal{C}$ is the set of all values that is in some set $S \in \mathcal{C}$. [L7s43]

Relations

Definition 33 (Tuples). A tuple is an ordered list of values. [L8s7]

Definition 34 (Cartesian Product). The Cartesian product of sets A and B is the set of all pairs where the first element is from A and the second element from B: $A \times B = \{(x,y) \mid x \in A \land y \in B\}$. [L8s8]

Definition 35 (Binary Relations). If A and B are sets, a binary relation R from A to B is a subset of $A \times B$. A is the domain of the relation and B is the codomain. [L8s10]

Any set of pairs from two sets is a relation. \emptyset is the minimum possible relation from A to B. $A \times B$ is the maximum possible relation from A to B. [L8s11]

If R is a relation from A to B and $(x, y) \in R$, we say "x is related to y by R." The standard notation for this is is: x R y. [L8s12]

Definition 36 (Set Operations on Relations). Suppose R and S are relations from A to B. We define \overline{R} to be $(A \times B) - R$ for these examples.

 $R \cap S$ is a relation from A to B. $R \cup S$ is a relation from A to B. [L8s16]

Definition 37 (Endorelations). An endorelation is a relation whose domain and codomain are the same. If R is a relation with domain and codomain A, we can say R is a relation on A. [L8s17]

Example endorelations: [L8s17-20]

- $\bullet = <, <, \le, >, \ge \text{ on } \mathbb{R} \text{ (or } \mathbb{N}, \mathbb{Z}, \text{ or } \mathbb{Q}).$
- Any set of pairs from the same set.
- Relation on \mathbb{R} : $\{(x,y) \mid x=y\}$ (equality)
- Relation on \mathbb{R} : $\{(x,y) \mid x^2 + y^2 = 1\}$ (unit circle)

Definition 38 (Properties on Endorelations).

Let R be an endorelation on A.

- R is reflexive if $\forall x \in A \ (x R \ x)$
- R is symmetric if $\forall x, y \in A \ (x R y \rightarrow y R x)$
- R is transitive if $\forall x, y, z \in A \ (x R y \land y R z \rightarrow x R z)$.

[L8s23-27]

Definition 39 (Directed Graph). A directed graph (digraph for short) is an endorelation E on a set V. V is called the set of vertices (also called nodes). E is called the set of directed edges (also called arcs). [L8s22]

Definition 40 (Equivalence Relation). An endorelation R is an equivalence relation if it is reflexive, symmetric, and transitive. [L8s29]

Definition 41 (Partitions). An equivalence relation on A is a partition of A. A partition of a set A is a set of sets $\{A_i\}$, where each $A_i \subseteq A$ and

- $A_i \cap A_j = \emptyset$ if $i \neq j$ (the sets are mutually exclusive).
- $\bigcup \{A_i\} = A$ (the sets are collectively exhaustive).

[L8s30]

Theorem 26. || is an equivalence relation on lines. [L8s32]

Definition 42 (Congruence Relations). A congruence relation (or just congruence) is an equivalence relation that has a limited form of the substitutability for a defined set of operations. [L8s34]