1	
1	Things that look complicated can often
ļ	
1	be reduced to a single equivalent resistor:
ł	
ļ	Ex 2-14 5000
H	A O W WW
H	Ra -> 1612 8 15 kg 3 5 10
H	Reg -> 1 ET 38 1.5 Km \$ 1Ks2
H	Ba I I I I I I I I I I I I I I I I I I I
H	Go to the "For Side" and work your way
H	
H	back: 500 St 1 kr = 1.5 ks
+	101,1101-00-1
ł	1.5K/1.5K = 0.75K
ł	$\frac{3}{3} = \frac{3}{4} = \frac{3}{2} = \frac{3}{2} = \frac{1}{2} \times 12$
ł	$\frac{15R/1.)R = \frac{1}{4}k = \frac{1}{2}k\Omega}{2+\frac{2}{3}} = \frac{1}{9}k = \frac{1}{2}k\Omega$
ł	4+之 14
ł	は立k+立k=1ks2
H	12K+2K-1KJL
+	1kr//kr=500s2
H	[KJU][KJU-JOU_J]
H	
-	
_	

	It is useful to think about how you
	would measure the resistance of an
	unknown device; DUT= Device Under Test
	ammeter
	# TUTO ON 1
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(+) V DUT O Apply a known voltage across the a DUT V
0	Sicress the about, V
	1 Measure the current
•	thru the device Io
	$R_{ea} = \frac{V_1}{V_1}$
	Rref E0
	- Wh
	the VID Westerland
	+ DITT 30 (D) Apply known voltage
V	+ DUT 3 Red across DUT and Ref.
	(2) Measure VR across Rref.
	3) Calculate Reg from
	Voltage Division
	Voltage Division $V_R = \frac{R_{ref} - V_r}{R_{ref} + R_{eq}}$
	Rref + Rref (VR)
[]	

54)

What if the "Rest of Ckt" is the same in these two cases then we want a and it be the same under what values of Vis and RitRz will wand i be the same? A: KVL: Vp+V-V=0 $\begin{array}{ccc}
v_s = v_R + v & v_R \\
Ohm's & v_R = iR,
\end{array}$ -15+1R+1=0 $\frac{1s - 1R + 1}{Ohm's}$ $1R = \frac{1}{R^2}$ $\frac{V_5 \pm iR_1 + V}{\frac{N_5 - V}{R_1} = i}$ i= 13= R=

We want these to be the same so

the intercepts must be equal, or

y intercepts: = is

 γ intercepts: $V_3 = R_2 i_5 \rightarrow l_s = \frac{N_s}{R_2}$

 $\frac{N_3}{R_1} = \frac{N_3}{R_2} \implies R_1 = R_2 = R$

So is= R

and Vs=Rzis like Ohm's Law.

So, from the point of view of the

"Rest of the Ckt", these two are identical:

Where V3=Ris

	Now we can see why the lights dim when
	the refrigerator turns on:
	Vs to Rest Load"
	Voltage Division: $V_L = \frac{RL}{R+RL}V_S$
	Asher Devices in your house are in parallel:
	V _S (†) Refing. Oven
	Foirly Small large RL RE
•	

	Add a small R in parallel with a large R.
	gives & small Ri
	Vi= RtRLS -> decrease Ri and you
. A .	decrease VL. => dimming
	decrease V_7 decrease II Light.
•	We haven't said it yet, but here it is:
Id	al Voltage Srcs in series add:
L	Voltage Stes are never put in parallel. (No need)
	impossible)
Id	al Current Sres in parallel add:
1	Current Srcs are never put in series (No need)
	1, 12 (mpossible)