Спецкурс 2020/2021: "Геометрические и комбинаторные свойства матриц и аппроксимация" Блок лекций "Сложность матриц и аппроксимация" Лекция 0: "Вспомогательные факты из линейной алгебры"

10 октября 2020 г.

Матрицы и операторы

Пусть \mathbb{F} — поле (нам интересны \mathbb{R} , \mathbb{C} , \mathbb{F}_p).

 $\mathbb{F}^{m imes n}$ — пространство матриц размера m imes n над \mathbb{F} .

Матрица $A\in \mathbb{F}^{m\times n}$ задаёт линейное отображение (линейный оператор) $\mathbb{F}^n \to \mathbb{F}^m$ по правилу $x\mapsto Ax$.

Линейное отображение $\mathcal{A}\colon V o W$ после выбора базисов $V=\langle v_1,\ldots,v_n\rangle$ и $W=\langle w_1,\ldots,w_m\rangle$ можно отождествить с матрицей $\mathcal{A}\colon \mathcal{A}v_j=\sum A_{i,j}w_i$.

Иногда оператором называют только линейное отображение пространства в себя: $\mathcal{A}\colon V\to V$. В этом случае задаётся один базис $V=\langle v_1,\ldots,v_n\rangle$, матрица будет квадратной. При замене базиса матрица преобразуется по правилу $A'=C^{-1}AC$.

Композиция операторов \leftrightarrow умножение матриц (в подходящих базисах):

$$A \in \mathbb{F}^{m \times n}, \ B \in \mathbb{F}^{n \times k} \Rightarrow AB \in \mathbb{F}^{m \times k},$$

$$(AB)_{i,j} = \sum_{i=1}^{n} A_{i,s} B_{s,j} = \langle A_i, B^j \rangle.$$

Матрицы и операторы

Некоторые величины корректно определены для *операторов* $\mathcal{A}\colon V \to V$. Например, $\operatorname{tr} \mathcal{A} := \operatorname{tr} A = \sum_i A_{i,i}$ не зависит от выбора базиса, поскольку $\operatorname{tr}(C^{-1}AC) = \operatorname{tr}(CC^{-1}A) = \operatorname{tr} A$. Более общий инвариант — характеристический многочлен $\chi_{\mathcal{A}}(t) := \det(A - tE)$. Другой пример — $\operatorname{\textit{pahr}}$: $\operatorname{rank} \mathcal{A} = \operatorname{rank} A = \dim \operatorname{Im}(\mathcal{A})$.

Матрицы и операторы

Некоторые величины корректно определены для операторов $\mathcal{A}\colon V \to V$. Например, $\operatorname{tr} \mathcal{A} := \operatorname{tr} A = \sum A_{i,i}$ не зависит от выбора базиса, поскольку $\operatorname{tr}(C^{-1}AC) = \operatorname{tr}(CC^{-1}A) = \operatorname{tr} A$. Более общий инвариант — характеристический многочлен $\chi_{\mathcal{A}}(t) := \det(A - tE)$. Другой пример — ранг: $\operatorname{rank} \mathcal{A} = \operatorname{rank} A = \dim \operatorname{Im}(\mathcal{A})$.

Нас, однако же, будут интересовать в основном характеристики, не инвариантные относительно замены базиса и потому относящиеся к матрицам, а не операторам. Пример: $\mathrm{rank}_{\varepsilon}(A)$ — минимально возможный ранг, который можно получить, изменив каждый элемент матрицы A не более чем на ε .

Нормы в пространствах векторов и матриц

 ℓ_p^n — пространство \mathbb{R}^n с нормой

$$||x||_p := \begin{cases} (\sum_{i=1}^n |x_i|^p)^{1/p}, & 1 \leqslant p < \infty, \\ \max_{1 \leqslant i \leqslant n} |x_i|, & p = \infty. \end{cases}$$

В евклидовом случае пишем сокращённо $|x|:=\|x\|_2$. Пусть $A\in\mathbb{R}^{m\times n}$. Определим нормы:

- ullet норма Фробениуса $\|A\|_F := (\sum A_{i,j}^2)^{1/2}$;
- ullet (p,q)-нормы $\|A\|_{p o q} := \max_{\|x\|_p \leqslant 1} \|Ax\|_q;$
- ullet в частности, спектральная норма $\|A\|_{2 o 2} := \max_{|x|\leqslant 1} |Ax|;$
- ullet в частности, максимум $\|A\|_{\infty} := \|A\|_{1 o \infty} = \max_{i,j} |A_{i,j}|;$

Операторные нормы обладают свойством $\|AB\| \leqslant \|A\| \|B\|$; не все нормы таковы.

Ранг матрицы

Эквивалентные определения ранга матрицы $A \in \mathbb{F}^{m \times n}$:

- размерность образа $\dim \operatorname{Im} \mathcal{A}$ оператора с матрицей A (т.е. ранг это операторное понятие);
- ullet размерность образа $\dim\{Ax\colon x\in\mathbb{F}^n\}$;
- ullet размерность пространства столбцов $\dim \langle \mathcal{A}^j
 angle$;
- ullet размерность пространства строк $\dim \langle A_i \rangle$; отсюда rank $A=\operatorname{rank} A^t$;
- ullet максимальный размер невырожденного минора: $\max\{|I|=|J|\colon\det A[I,J]\neq 0\};$
- ullet минимальное число одноранговых матриц (т.е. вида $R_{i,j}=a_ib_j)$ в представлении $A=R^{(1)}+R^{(2)}+\ldots+R^{(r)};$
- ullet минимальная размерность r, в которой найдутся вектора $x_i \in \mathbb{R}^r$, $y_j \in \mathbb{R}^r$, такие что $A_{i,j} = \langle x_i, y_j \rangle$ упражнение.

Собственные числа

Число λ называется собственным числом оператора \mathcal{A} , если найдётся ненулевой вектор v, для которого $\mathcal{A}v=v$. Собственные числа — корни многочлена $\chi_{\mathcal{A}}(t)$.

Пусть $\mathbb{F}=\mathbb{R}$, в пространстве V введено скалярное произведение $\langle\cdot,\cdot\rangle$. Оператор $\mathcal{A}\colon V\to V$ называется самосопряжённым, если $\langle Ax,y\rangle=\langle x,Ay\rangle$. Это равносильно тому, что его матрица симметрична: $A=A^t$ (не важно в каком базисе).

Самосопряжённый оператор диагонализуем в ортонормированном базисе. Следовательно, симметричная матрица представляется в виде $A=U^t \Lambda U$ с ортогональной U и диагональной Λ .

Сингулярное разложение

Сингулярное разложение, Singular Value Decomposition (SVD), матрицы $A \in \mathbb{R}^{m \times n}$:

$$A = U\Sigma V^t$$
,

где U и V — ортогональные матрицы, Σ — матрица размера $m \times n$, на диагонали которой стоят неотрицательные числа $\Sigma_{i,i} = \sigma_i$, причём

$$\sigma_1 \geqslant \sigma_2 \geqslant \ldots \geqslant \sigma_{\min(m,n)} \geqslant 0$$
,

а вне диагонали — нули. SVD всегда существует. То есть, любой оператор работает так: "поворачивает" вектор $(x \mapsto Vx)$, растягивает по осям, потом опять "поворачивает". Числа (σ_j) определены однозначно; они называются сингулярными числами матрицы A. В отличие от собственных чисел, они определены (и вещественны!) для любой матрицы.

Сингулярное разложение

Определим нормы Шаттена (Schatten):

$$||A||_{\mathcal{S}_p}:=||(\sigma_j(A))_{j=1}^{\min(m,n)}||_p, \quad 1\leqslant p\leqslant \infty.$$

Упражнения.

- Докажите существование SVD и однозначность Σ , рассмотрев матрицу AA^t . Выведите, что $\sigma_j^2(A) = \lambda_j(AA^t)$.
- Покажите, что сингулярные числа унитарно-инвариантны, т.е. $\sigma_j(U'A) = \sigma_j(AV')$ для любых ортогональных U', V'; сформулируйте следствие для S_p -норм.
- Докажите, что S_2 -норма равна норме Фробениуса: $\sum \sigma_j^2(A) = \sum A_{i,j}^2$, а S_∞ -норма равна $2 \to 2$ норме.
- ullet Покажите, что $\operatorname{tr} A \leqslant \sum |A_{i,i}| \leqslant \|A\|_{\mathcal{S}_1}$?
- Проверьте, что $\|A\|_{S_1} := \sum \sigma_j(A)$ является нормой (т.е. $\|A+B\|_{S_1} \leqslant \|A\|_{S_1} + \|B\|_{S_1}$);
- То же для S_p -нормы.

Сингулярное разложение и ранг

Пусть $\sigma_1(A) \geqslant \ldots \geqslant \sigma_r(A) > \sigma_{r+1}(A) = \ldots = 0$. Тогда rank A = r. То есть, ранг = кол-во ненулевых сингулярных чисел.

Ранг — разрывная функция на $\mathbb{R}^{m \times n}$, с ней сложно работать. Сингулярные числа позволяют связать ранг с непрерывными характеристиками матрицы.

Пример. Мы знаем, что $\|\sigma(A)\|_{\infty} = \|A\|_{2\to 2}$ и $\|\sigma(A)\|_2 = \|A\|_F$. Поскольку $\|x\|_2 \leqslant r^{1/2} \|x\|_{\infty}$ для $x \in \mathbb{R}^r$, получаем следствие:

$$\operatorname{rank} A \geqslant \left(\frac{\|A\|_F}{\|A\|_{2\to 2}}\right)^2.$$

Отображение $A \mapsto \sigma(A)$ липшицево в евклидовой норме (Wielandt-Hoffman):

$$|\sigma(A) - \sigma(B)| = (\sum_{k} (\sigma_{k}(A) - \sigma_{k}(B))^{2})^{1/2} \leq ||A - B||_{F}.$$

Сингулярное разложение и ранг

Theorem (Ecckart-Young, 1936)

$$\min_{\operatorname{rank} B \leqslant r} \|A - B\|_F = (\sum_{k > r} \sigma_k^2(A))^{1/2}.$$

Напомним доказательство теоремы. Общий случай сводится к квадратным матрицам (всегда можно дополнить нулями). В силу унитарной инвариантности можно считать матрицу A диагональной: $A=\Sigma=\mathrm{diag}(\sigma_1,\ldots,\sigma_n)$. Ясно, что для оценки сверху можно взять $B=\mathrm{diag}(\sigma_1,\ldots,\sigma_r,0,\ldots)$. Оценка снизу. Величина $\|A-B\|_F^2$ равна $\sum_j |A^j-B^j|^2$ (по столбцам). Рассмотрим пространство L_r , натянутое на столбцы B^j , тогда $|A^j-B^j|$ не меньше расстояния $\rho(A^j,L_r)$, и

$$\min_{\mathsf{rank}\,B\leqslant r} \|A - B\|_F^2 = \min_{\mathsf{dim}\,L_r\leqslant r} \sum_{j=1}^n \rho^2(A^j, L_r) = \min_{\mathsf{dim}\,L_r\leqslant r} \sum_{j=1}^n \sigma_j^2 \rho^2(e_j, L_r).$$

Ecckart-Young, продолжение

Выберем в L_r ортонормированный базис $\{v_1,\ldots,v_r\}$. Тогда проекция на L_r имеет вид $P_{L_r}x=\sum_{k=1}^r v_k\langle v_k,x\rangle$, откуда

$$w_j := \rho(e_j, L_r)^2 = |e_j|^2 - |P_{L_r}e_j|^2 = 1 - \sum_{k=1}^r v_{k,j}^2,$$

$$\sum_{j=1}^{n} \sigma_{j}^{2} \rho^{2}(e_{j}, L_{r}) = \sum_{j=1}^{n} w_{j} \sigma_{j}^{2}.$$

Проанализируем коэффициенты $w_j, j=1,\ldots,n$. Имеем:

- (i) $w_j \in [0, 1]$;
- (ii) $\sum_{j=1}^n w_j = n-r$, так как $\sum_{j=1}^n \sum_{k=1}^r v_{k,j}^2 = r$.

В силу монотонности σ_j , при ограничениях (i), (ii) сумма $\sum w_j \sigma_j^2$ будет минимальна, если $w_1 = \ldots = w_r = 0$ и $w_{r+1} = \ldots = w_n = 1$. При таких w_j получаем как раз оценку $\sum_{i>r} \sigma_i^2$.

Положительная определённость

Пусть $A \in \mathbb{R}^{n \times n}$ — симметричная матрица. Назовём A неотрицательно определённой (positive semi-definite, PSD), если $x^t A x \geqslant 0$ для любого вектора x. Положительно определённая, если $x^t A x > 0$ для $x \neq 0$. Обозначение: $A \geqslant 0$ (соотв., A > 0).

Можно ввести частичный порядок на матрицах:

$$A\geqslant B\Leftrightarrow A-B\geqslant 0.$$

Упражнения.

- ullet Если $A \geqslant 0$, то $A = BB^t$ для некоторой B (т.е. A это матрица Γ рама).
- ullet Если $A\geqslant 0$, то $A=R^1+\ldots+R^r$, где R^j имеют вид aa^t .
- Если $A\geqslant 0$ и $B\geqslant 0$, то $A\circ B\geqslant 0$ и $A\otimes B$. Где $A\circ B$ произведение Шура-Адамара, поэлементное, $(A\circ B)_{i,j}=A_{i,j}B_{i,j}$. Произведение Кронекера $A\otimes B$ состоит из блоков вида $A_{i,j}B$.

Разное

Матрица = функция двух аргументов (дискретных). Если аргументы $x, y \in \{0,1\}^n$, эта структура может быть удобна. Например, для M(x,y) = p(x,y), где p — полином из m мономов, имеем rank $M \le m$ (упражнение!).