CYK Probabiliste

Lapraye & Lévêque & Viegas

Paris VII

30 juin 2016

• Un algorithme de parsing ascendant

- Un algorithme de parsing ascendant
- Complexité $\mathcal{O}(|G|n^3)$

- Un algorithme de parsing ascendant
- Complexité $\mathcal{O}(|G|n^3)$
- Parsing tabulaire

- Un algorithme de parsing ascendant
- Complexité $\mathcal{O}(|G|n^3)$
- Parsing tabulaire
- Extention aux grammaire hors-contexte probabilistes (PCFG)

```
function CKY(w[1..n], G :< NT, T, P, \rho >, R[1..n, 1..n])
   for all i de 1 à m do
       if N \rightarrow w; then
           R[i, i+1] \leftarrow N
       end if
   end for
   for all k de 2 à n do
       for all i de 1 à n-i+2 do
           for all j de i+1 à i+k do
               for all A \in R[i,j] do
                   for all do
                       for all NT \in P do
                           if NT \rightarrow AB then
                               R[i, i+k] = R[i, i+k] \cup \{NT\}
                           end if
                       end for
                   end for
               end for
           end for
       end for
   end for
   if S \in R[0, n] then return True
   end if
end function
```

• Les CFG : un quadruplet (Σ, V, S, P)

- Les CFG : un quadruplet (Σ, V, S, P)
- Les CFG pondérées : ajout d'une fonction de poids $f: p \mapsto \alpha, w \in W, \alpha \in \mathbb{R}$

• Les CFG : un quadruplet (Σ, V, S, P)

• Les CFG probabilistes : les poids correspondent à des probabilités pour une réécriture donnée.

$$f: p \mapsto \alpha, p \in P, \alpha \in [0, 1]$$

 $\forall X \in V, \sum_{X \to \alpha} p(X \to \alpha) = 1$

• Les CFG : un quadruplet (Σ, V, S, P)

• Les CFG probabilistes : les poids correspondent à des probabilités pour une réécriture donnée.

$$f: p \mapsto \alpha, p \in P, \alpha \in [0, 1]$$

 $\forall X \in V, \sum p(X \to \alpha) = 1$

 $(X, C, V, \sum_{X \to \alpha} p(X, V, \alpha) = 1)$

 Les CFG probabilistes représentent un modèle de prédiction déduit à partir du corpus dont elles sont extraites.

• Les CFG : un quadruplet (Σ, V, S, P)

• Les CFG probabilistes : les poids correspondent à des probabilités pour une réécriture donnée.

$$f: p \mapsto \alpha, p \in P, \alpha \in [0, 1]$$

$$\forall X \in V, \sum_{X \to \alpha} p(X \to \alpha) = 1$$

- Les CFG probabilistes représentent un modèle de prédiction déduit à partir du corpus dont elles sont extraites.
- Extraction des PCFG

La forme normale de Chomsky (CNF)

- l'axiome S est inaccessible
- Les règles de production adoptent une des formes suivantes, avec ε la production vide, $A,B,C,D\in V$, et $e\in\Sigma$:

$$A \rightarrow BC$$

$$D \rightarrow e$$

Transformer la grammaire en CNF

- Faire en sorte que l'axiome n'apparaisse plus dans les parties droites de règles
- ② Supprimer les règles d'effacement (c'est à dire de la forme $A \to^* \varepsilon$) pour les non-terminaux autres que l'axiome.
- Faire en sorte que tout les terminaux apparaissent uniquement dans la partie droite de règles unaires
- Remplacer les règles de production n-aire par des règles binaires équivalentes.
- § Supprimer les productions singulières de non-terminaux, c'est à dire les règles de la forme $A \to B$ avec $A, B \in V$

Transformer la grammaire en CNF

- Faire en sorte que l'axiome n'apparaisse plus dans les parties droites de règles
- ② Supprimer les règles d'effacement (c'est à dire de la forme $A \to^* \varepsilon$) pour les non-terminaux autres que l'axiome.
- Faire en sorte que tout les terminaux apparaissent uniquement dans la partie droite de règles unaires
- Remplacer les règles de production n-aire par des règles binaires équivalentes.
- § Supprimer les productions singulières de non-terminaux, c'est à dire les règles de la forme $A \to B$ avec $A, B \in V$

Le corpus Sequoia

- Un corpus diversifié
- Des phrases de longueur variable
- Extraction de la grammaire

Notre implémentation du CYK

Evaluation

Références

Brian Roark, Richard Sproat.

Computational Approaches to Morphology and Syntax.

Oxford University Press, 2007.

Mariana Romanyshyn, Vsevolod Dyomkin.

The Dirty Little Secret of Constituency Parser Evaluation, 2014.

http://tech.grammarly.com/blog/posts/The-Dirty-Little-Secret-of-Constituency-Parser-Evaluation.html

Martin Lange, Hans Leiss

 \ll To CNF or not to CNF : An Efficient Yet Presentable Version of the CYK Algorithm », 2009

Informatica Didactica Nº 8

E. Black, S.Abney et al.

 \ll Procedure for Quantitatively Comparing the Syntactic Coverage of English Grammars \gg

1991, DARPA Speech and Natural Language Workshop

