ゲーム数学 確認テスト4

氏名

1. 次の直角三角形において、 $sin\theta$ $cos\theta$ $tan\theta$ を求めなさい。

2. \triangle ABC において $\angle A = 60^{\circ}$ BC = 5 点 B から辺 AC に下した垂線 の長さが3であるとき、AB AC の長さを求めなさい。

- 3. 表を参照して、次の三角関数の値を求めなさい。
- (1) *sin*124°
- (2) cos131°
- $(3) sin 148^{\circ}$
- (4) cos 140°

θ(°)	sin θ	cos θ	tan θ
30	0.5000	0.8660	0.5774
31	0.5150	0.8572	0.6009
32	0.5299	0.8480	0.6249
33	0.5446	0.8387	0.6494
34	0.5592	0.8290	0.6745
35	0.5736	0.8192	0.7002
36	0.5878	0.8090	0.7265
37	0.6018	0.7986	0.7536
38	0.6157	0.7880	0.7813
39	0.6293	0.7771	0.8098
40	0.6428	0.7660	0.8391
41	0.6561	0.7547	0.8693
42	0.6691	0.7431	0.9004
43	0.6820	0.7314	0.9325

4. 次のベクトルの計算をしなさい。ただし、ベクトル・スカラー・座標点は以下のとおりとします。

$$\vec{a} = (4, -3)$$
 $\vec{b} = (2, -1)$ $M = 3$ $L = 2$ $p_1(2, 3)$

- (1) $\vec{a} + \vec{b}$ (2) $M\vec{a} L\vec{b}$ (3) $|\vec{a} + \vec{b}|$ (4) $p_1 + \vec{b}$

- (5) \vec{a} を正規化しなさい。 (6) $\vec{a} \cdot \vec{b}$ (内積) (7) $\vec{a} \times \vec{b}$ (外積)
- 5. 次のベクトルの x 成分 y 成分を求めなさい。ただし、 $cos65^\circ = 0.42$ $sin65^\circ = 0.9$ $cos27^{\circ} = 0.89 \ sin27^{\circ} = 0.45 \$ とします。
- (1) $\theta = 65^{\circ}$

(2) $|\vec{a}| = 10 \quad \theta = 27^{\circ}$

ゲーム数学 確認テスト4

6. 図のように点 P(3,4) から直線 $y=\frac{1}{2}$ x に下した垂線を PH 、直線上のベクトル $\vec{a}=(2,1)$ 、 $\vec{b}=\overrightarrow{OP}=(3,4)$ として、以下の問いに答えなさい。

- (1) 線分 OH の長さ l を求めなさい。
- (2)点 H の座標値を求めなさい。
- (3) 線分 PH の長さ m を求めなさい。
- 7. 3点 $p_1(-4,1)$, $p_2(8,6)$ $p_0(9,7)$ があります。
- (1) p_1 p_2 を通る直線と p_0 の最短距離を求めなさい。
- (2) p_1 p_2 を端点とする線分と p_0 の最短距離を求めなさい。
- 8. 解答用紙に与えられている \vec{a} , \vec{b} に対して、 \vec{a} + \vec{b} 、 \vec{a} $2\vec{b}$ を作図しなさい。