19 Offene Untervarietäten

"Offene Teilmengen von affinen Varietäten (abgeschlossene beliebige Prävarietäten) sind wieder Prävarietäten" (aber i.A. nicht affin!)

Lemma 44 (orig. 41). Sei X affine Varietät, $f \in \mathcal{O}_X(X)$, $\mathcal{D}(f) \subseteq X$. Die Lokalisierung von $\Gamma(X) = \mathcal{O}_X(X)$ in f,

$$\Gamma(X)_f = \Gamma(X)[T]/(Tf - 1)$$

ist eine integere endlich erzeugte k-Algebra. Dabei (Y, \mathcal{O}_Y) bezeichnet die zugehörige Varietät. Es folgt:

$$(D(f), \mathcal{O}_{X|_{D(f)}}) \cong (Y, \mathcal{O}_Y)$$

als Räume mit Funktionen, d.h. $(D(f), \mathcal{O}_{X|_{D(f)}})$ ist affine Varietät.

Proof. $\mathcal{O}_X(\mathcal{D}(f)) = \mathcal{O}_X(X)_f$ muss affiner Koordinatenring von $(\mathcal{D}(f), \mathcal{O}_{X|_{\mathcal{D}(f)}})$ sein, wenn letzterer Raum von Funktionen affin ist. $X \subseteq \mathbb{A}^n(k)$ korrespondiert zu dem Radikalideal:

$$\mathfrak{A} = I(X) \subseteq k[T_1, \dots, T_n] \subset \mathfrak{A}' = (\mathfrak{A}, fT_{n+1} - 1) \subseteq k[T_1, \dots, T_{n+1}]$$

mit Koordinatenringen:

$$\Gamma(X) = k[T_1, \dots, T_n]/\mathfrak{A}$$

$$\Gamma(Y) = \Gamma(X)_f = (k[T_1, \dots, T_n]/\mathfrak{A})[T_{n+1}]/(T_{n+1}f - 1)$$

$$= k[T_1, \dots, T_{n+1}]/\mathfrak{A}'$$

Für $Y = V(\mathfrak{A}') \subseteq \mathbb{A}^{n+1}(k)$ induziert die Abbildung

$$Y \subseteq \mathbb{A}^{n+1}(k) \qquad (x_1, \dots, x_{n+1}) \qquad T_i$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \subseteq \mathbb{A}^n(k) \qquad (x_1, \dots, x_n) \qquad T_i$$

eine Bijektion $Y \xrightarrow{j} \mathcal{D}_X(f)$ mit Umkehrabbildung $(x_0, \dots, x_n, \frac{1}{f(x_0, \dots, x_n)}) \longleftrightarrow (x_0, \dots, x_n)$ Claim. j ist Isomorphismus von Räumen mit Funktionen:

- (i) j ist stetig (als Einschränkung stetiger Funktionen) \checkmark
- (ii) j ist offen: $g \in \Gamma(X)$, $\Gamma(Y) = \Gamma(X)_f$, $\frac{g}{f^n} \in \Gamma(X)_f$,

$$j\left(D_Y\left(\frac{g}{f^n}\right)\right) = j\left(\mathcal{D}_Y(gf)\right)$$
 f Einheit $= \mathcal{D}_X(gf)$ offen

- $\Rightarrow j$ Homömorphismus.
- (iii) j induziert $\forall g \in \Gamma(X)$ Isomorphismen:

$$\mathcal{O}_X(\mathcal{D}(fg)) \longrightarrow \Gamma(Y)_g$$

 $s \longmapsto s \circ j$

mit $\mathcal{O}_X(\mathcal{D}(fg)) = \Gamma(X)_{fg} = (\Gamma(X)_f)_g = \Gamma(Y)_g$. Mit dem Verklebungsaxiom folgt: j ist Morphismus von Raum mit Funktionen.

Proposition 45 (orig. 42). Sei (X, \mathcal{O}_X) Prävarietät, $\emptyset \neq U \subseteq X$ offen. Dann ist $(U, \mathcal{O}_{X|_U})$ eine Prävarietät und $U \hookrightarrow X$ ist Morphismus von Prävarietäten.

Proof. X ist irreduzibel, also folgt mit Satz 13, dass U zusammenhängend ist. Nach Voraussetzung ist $X = \bigcup X_i$ eine affine offene Überdeckung. Es folgt:

$$U = \bigcup_{i} (\underbrace{X_i \cap U}_{\text{offen in } X_i}) = \bigcup_{i,j} \mathcal{D}_{X_i}(f_{i_j})$$

und $\mathcal{D}_{X_i}(f_{i_j})$ ist eine affine Varietät nach Lemma 44. Da X noethersch ist, folgt mit Lemma 20, dass U quasikompakt ist.

 \Rightarrow Es reicht eine endliche Überdeckung.

 $\Rightarrow U$ Prävarietät. \checkmark

Die Abbildung $U \overset{i}{\hookrightarrow} X$ ist stetig. (Klar.) Für $f \in \mathcal{O}_X(V)$ gilt mit dem Einschränkungsaxiom

$$\mathcal{O}_{X|_U}(U \cap V) = \mathcal{O}_X(U \cap V) \ni f \circ i = f|_{U \cap V}$$

Also ist i Morphismus von Prävarietäten.

Die offenen affinen Teilmengen einer Prävarietät X ($\hat{=}U \subset X$ offen und $(U, \mathcal{O}_{X|_U})$ affine Varietät) bilden eine Basis der Topologie von X, da X durch offene affine Untervarietäten überdeckt wird und letzere diese Eigenschaft haben nach Lemma 44.