

Projection Matrices

Ed Angel Professor Emeritus of Computer Science University of New Mexico

Objectives

- Derive the projection matrices used for standard OpenGL projections
- Introduce oblique projections
- Introduce projection normalization

Normalization

- Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume
- This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping

Pipeline View

Notes

- We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
 - Both these transformations are nonsingular
 - Default to identity matrices (orthogonal view)
- Normalization lets us clip against simple cube regardless of type of projection
- Delay final projection until end
 - Important for hidden-surface removal to retain depth information as long as possible

Orthogonal Normalization

Ortho(left, right, bottom, top, near, far)

normalization ⇒ find transformation to convert specified clipping volume to default

Orthogonal Matrix

Two steps

- Move center to origin

T(-(left+right)/2, -(bottom+top)/2, (near+far)/2))

- Scale to have sides of length 2

S(2/(left-right),2/(top-bottom),2/(near-far))

$$\mathbf{P} = \mathbf{ST} = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right - left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & \frac{2}{near - far} & \frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Final Projection

- Set z = 0
- Equivalent to the homogeneous coordinate transformation

$$\mathbf{M}_{\text{orth}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Hence, general orthogonal projection in 4D is
 P = M_{orth}ST

Oblique Projections

 The OpenGL projection functions cannot produce general parallel projections such as

 Oblique Projection = Shear + Orthogonal Projection

General Shear

Shear Matrix

xy shear (z values unchanged)

$$\mathbf{H}(\theta,\phi) = \begin{bmatrix} 1 & 0 & -\cot\theta & 0 \\ 0 & 1 & -\cot\phi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Projection matrix

$$\mathbf{P} = \mathbf{M}_{\text{orth}} \; \mathbf{H}(\theta, \phi)$$

General case: $P = M_{orth} STH(\theta, \phi)$

Equivalency

The University of New Mexico

Effect on Clipping

• The projection matrix P = STH transforms the original clipping volume to the default clipping volume

object top view z = 1DOP x = -1far plane z = -1clipping near plane distorted object volume (projects correctly)

Simple Perspective

Consider a simple perspective with the COP at the origin, the near clipping plane at z = -1, and a 90 degree field of view determined by the planes

$$x = \pm z$$
, $y = \pm z$

Perspective Matrices

Simple projection matrix in homogeneous coordinates

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Note that this matrix is independent of the far clipping plane

Generalization

$$\mathbf{N} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

after perspective division, the point (x, y, z, 1) goes to

$$x'' = x/z$$

$$y'' = y/z$$

$$Z'' = -(\alpha + \beta/z)$$

which projects orthogonally to the desired point regardless of α and β

Picking α and β

If we pick

$$\alpha = \frac{\text{near} + \text{far}}{\text{far} - \text{near}}$$
$$\beta = \frac{2\text{near} * \text{far}}{\text{near} - \text{far}}$$

the near plane is mapped to z = -1the far plane is mapped to z = 1and the sides are mapped to $x = \pm 1$, $y = \pm 1$

Hence the new clipping volume is the default clipping volume

Normalization Transformation

Normalization and Hidden-Surface Removal

- Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if $z_1 > z_2$ in the original clipping volume then the for the transformed points $z_1' > z_2'$
- Thus hidden surface removal works if we first apply the normalization transformation
- However, the formula z'' = -(α + β /z) implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small

OpenGL Perspective

•glFrustum allows for an unsymmetric viewing frustum (although Perspective does not)

OpenGL Perspective Matrix

• The normalization in Frustum requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthogonal transformation

The University of New Mexico

Why do we do it this way?

- Normalization allows for a single pipeline for both perspective and orthogonal viewing
- We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading
- We simplify clipping