

$$N S \longleftrightarrow S N$$

$$= 92\vec{x} \times \vec{B}$$

$$= 9(\vec{E} + \vec{V} \times \vec{B})$$

$$\vec{B} = \mu \vec{H}$$
 \iff $\vec{D} = \vec{E} \vec{E}$

Flux density field intensity

$$\frac{dH = Idl}{4\pi R^2} \longrightarrow \frac{d\vec{H} = Id\vec{l} \times \vec{R}}{4\pi R^2} = \frac{Id\vec{l} \times \vec{R}}{4\pi R^3}$$

Biot Savart
$$\overrightarrow{H} = \frac{1}{4\pi} \int_{a}^{b} \frac{I d\vec{e} \times \vec{R}}{R^{3}}$$

$$R \times dl = O$$

$$R \times R = O$$

$$Z = R$$

$$R \times R = O$$

$$R \times R =$$

Magnetic field due to the wire inside the wire is zero because de and R are perpendicular so the cross will be zero.

Example 8.2 Magnetic Field Intensity and Magnetic Flux Density Due to a Half-Loop A current *I* [A] flows in the circuit shown in **Figure 8.5**. Calculate the magnetic flux density and the magnetic field intensity at the center of the half-loop assuming the circuit is in free space.

Example 8.3 Magnetic Field Intensity of a Circular Loop

- (a) Calculate the magnetic field intensity **H** at point P in **Figure 8.6** generated by the current I [A] in the loop. Point P is at a height h [m] along the axis of the loop.
- **(b)** Calculate the magnetic field intensity at the center of the loop (point *O*).

Figure 8.6 Calculation of the magnetic field intensity at height *h* above a current-carrying loop

Example 8.4 Magnetic Field Intensity Due to a Rectangular Loop: Superposition of Fields A rectangular loop carries a current *I* [A] as shown in **Figure 8.7a**. Calculate the magnetic field intensity at the center of the loop.

$$dI = \frac{1}{2d} dn \Rightarrow d\vec{l} = \hat{x} dx$$

and the total contribution due to this differential wire is found using Eq. (8.8):

$$d\mathbf{H}(x,y,z) = \left[\int_{z'=-L}^{z'=+L} \frac{I \, dx'}{2d} \, \frac{d\mathbf{l}' \times \hat{\mathbf{R}}}{4\pi |\mathbf{r} - \mathbf{r}'|^2} \right] \quad \left[\frac{\mathbf{A}}{\mathbf{m}} \right]$$
(8.11)

where integration is on $d\mathbf{l}$ and \mathbf{r} is the vector connecting $d\mathbf{l}$ and P(x,y,z) (see **Figure 8.3**). To obtain the total field intensity, we integrate over the width of the current sheet in **Figure 8.9a**. We get

$$\mathbf{H}(x,y,z) = \int_{x'=-d}^{x'=+d} \left[\int_{z'=-L}^{z'=+L} \frac{I}{2d} \frac{d\mathbf{l}' \times \hat{\mathbf{R}}}{4\pi |\mathbf{r} - \mathbf{r}'|^2} \right] dx' \quad \left[\frac{\mathbf{A}}{\mathbf{m}} \right]$$
(8.12)

Example 8.6 Application: Field Intensity Due to a Single, Thin Wire–Magnetic Field of Overhead Transmission Lines Calculate the magnetic field intensity due to a long filamentary conductor carrying a current *I* at a distance *h* from the wire. The conductor is very long (infinite). Compare this result with the result in **Example 8.1c**.

