

Edwin Santiago Alférez Baquero

# CONTENIDO

#### Estadística descriptiva

- Conceptos básicos
- Organizar datos
- Resumir datos

## Introducción

## Estadística descriptiva

• Es la disciplina de resumir información cuantitativamente para describir las características principales de una colección de datos.



- Tablas & Gráficas
- Medidas de Tendencia Central
- Medidas de Variabilidad
- Ejemplos:
  - · Precipitación media en Bogotá el año pasado
  - · Número de robos de automóviles en el año pasado
  - Resultados de prueba
  - Porcentaje de hombres en nuestra clase



# TÉRMINOS ESTADÍSTICOS (I)



Representación de la realidad



## Población

• Conjunto completo de individuos, objetos o medidas

#### Muestra

· Un subconjunto de una población

# TÉRMINOS ESTADÍSTICOS (II)



## Parámetro

- · Una característica de una población
  - e.j., El *promedio* de la altura de todos los hombres de Hollywood.

#### Estadístico

- · Una característica de una muestra
  - e.j., La *media* de la altura de una muestra de hombres de Hollywood.

Solo en estadística descriptiva

# TÉRMINOS ESTADÍSTICOS (III)



## Variable

• Una característica que puede tomar diferentes valores

## Datos

• Números o mediciones recolectadas

Variable: Altura





## Manejo de datos: Definiciones



#### Variable cualitativa

- Es una característica que expresa distintas cualidades o modalidades
- Dicotómicas (si o no)
- Politómicas
  - ·Ordinal, p.e. Bueno, regular, malo
  - Nominal, p.e. colores

#### Variable cuantitativa

- Es una característica que solo puede expresarse numéricamente
- Variables discretas
  - Toman valores únicamente enteros, p.e. # veces que ocurre un suceso
- Variables continuas
  - Toman cualquier valor real en un intervalo, p.e. Magnitudes reales

# Organizar datos

- Tablas
  - Distribuciones de frecuencia
- Gráficas
  - Gráfico de tallo y hoja Gráfico de barras Histograma -Polígono de frecuencia - Gráfico circular o por sectores -

#### Resumir datos

- Tendencia Central
  - · Media- Mediana Moda
- Variabilidad / Dispersión
  - Desviación Típica Variance Rango Cuartil Rango Intercuartílico
- Distancias relativas
  - Percentiles- Rango intercuartílico Diagrama de cajas

#### DISTRIBUCIONES DE FRECUENCIA

#### Frecuencia Absoluta

• Número de veces que aparece un cierto valor de la variable en el estudio

 $n_i \perp n$ , a = n

i=1

#### Frecuencia Relativa

• Número de veces que aparece un cierto valor de la variable dividido por todos los resultados  $f_i = \frac{n_i}{n}$ 

#### Frecuencia Acumulativa

- Es la suma de todas las frecuencias que se encuentran debajo de un valor particular
  - Frecuencia acumulativa absoluta  $N_i$
  - Frecuencia acumulativa relativa  $F_i$

#### DISTRIBUCIONES DE FRECUENCIA

## Ejemplo I

- El conjunto de datos para el control de calidad del agua de diferentes reactores es el siguiente: 1, 5, 3, 1, 2, 3, 4, 5, 1, 4, 2, 4, 4, 5, 1, 4, 2, 4, 2, 2
- Donde cada número representa el reactor elegido como el mejor

| Reactor | Frecuencia<br>Absoluta | Frecuencia<br>Relativa | Frecuencia<br>Absoluta<br>Acum. | Frecuencia<br>Relativa<br>Acum. |
|---------|------------------------|------------------------|---------------------------------|---------------------------------|
| 1       | 4                      | 4/20 = 0.2             | 4                               | 0.2                             |
| 2       | 5                      | 5/20 = 0.25            | 9                               | 0.45                            |
| 3       | 2                      | 2/20 = 0.1             | 11                              | 0.55                            |
| 4       | 6                      | 6/20 = 0.3             | 17                              | 0.85                            |
| 5       | 3                      | 3/20 = 0.15            | 20                              | 1                               |

#### DISTRIBUCIONES DE FRECUENCIA



### Ejemplo II

• Las resistencias a la compresión de la aleación en libras por pulgada cuadrada (psi) de 80 muestras de una nueva aleación de aluminio y litio en evaluación como posible material para elementos estructurales de aeronaves.

| 105 | 221 | 183 | 186 | 121 | 181 | 180 | 143 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 97  | 154 | 153 | 174 | 120 | 168 | 167 | 141 |
| 245 | 228 | 174 | 199 | 181 | 158 | 176 | 110 |
| 163 | 131 | 154 | 115 | 160 | 208 | 158 | 133 |
| 207 | 180 | 190 | 193 | 194 | 133 | 156 | 123 |
| 134 | 178 | 76  | 167 | 184 | 135 | 229 | 146 |
| 218 | 157 | 101 | 171 | 165 | 172 | 158 | 169 |
| 199 | 151 | 142 | 163 | 145 | 171 | 148 | 158 |
| 160 | 175 | 149 | 87  | 160 | 237 | 150 | 135 |
| 196 | 201 | 200 | 176 | 150 | 170 | 118 | 149 |
|     |     |     |     |     |     |     |     |

#### DISTRIBUCIONES DE FRECUENCIA

### Ejemplo II (cont)

- · La distribución de frecuencia se debe agrupar
- Divida el rango de los datos en intervalos (intervalos de clases, celdas o contenedores)
- · Si es posible, los contenedores deben tener el mismo ancho.
- El número de contenedores depende del número de observaciones y la cantidad de dispersión o dispersión en los datos (generalmente de 5 a 20 contenedores).

| Class                               | 70≤x<90 | 90≤ <i>x</i> <110 | 110≤x<130 | 130≤x<150 | 150≤ <i>x</i> <170 | 170≤x<190 | 190≤x<210 | 210≤x<230 | 230≤x<250 |
|-------------------------------------|---------|-------------------|-----------|-----------|--------------------|-----------|-----------|-----------|-----------|
| Frequency                           | 2       | 3                 | 6         | 14        | 22                 | 17        | 10        | 4         | 2         |
| Relative frequency                  | 0.0250  | 0.0375            | 0.0750    | 0.1750    | 0.2750             | 0.2125    | 0.1250    | 0.0500    | 0.0250    |
| Cumulative<br>relative<br>frequency | 0.0250  | 0.0625            | 0.1375    | 0.3125    | 0.5875             | 0.8000    | 0.9250    | 0.9750    | 1.0000    |

## ESTADÍSTICA DESCRIPTIVA Representaciones de distribuciones de frecuencia

### Gráfica de puntos

- Es un buen resumen de datos numéricos cuando el conjunto de datos es razonablemente pequeño o hay relativamente pocos valores de datos distintos.
- Cada observación está representada por un punto sobre la ubicación correspondiente en una escala de medición horizontal.
- Cuando un valor ocurre más de una vez, hay un punto para cada ocurrencia, y estos puntos se apilan verticalmente

#### Ejemplo I

| 0 |       | ····· | 0                                     |
|---|-------|-------|---------------------------------------|
| 0 | <br>Ö | 0     | 0                                     |
| 1 | 3     |       | · · · · · · · · · · · · · · · · · · · |

| Reactor | Absolute<br>Frequency |
|---------|-----------------------|
| 1       | 4                     |
| 2       | 5                     |
| 3       | 2                     |
| 4       | 6                     |
| 5       | 3                     |

#### Gráfica de barras

• Es un gráfico con barras rectangulares con longitudes proporcionales a la frecuencia de cada valor.



#### Ejemplo I

| Reactor | Absolute<br>Frequency |
|---------|-----------------------|
| 1       | 4                     |
| 2       | 5                     |
| 3       | 2                     |
| 4       | 6                     |
| 5       | 3                     |

#### Histograma

- Es una visualización de la distribución de frecuencia
  - X valor (o puntos medios de intervalos de clase) en el eje x
  - Dibuja cada f(x) con una barra, del mismo tamaño, tocando
  - Sin espacios entre barras





## Polígonos de frecuencia

• Representa la información de una tabla de frecuencias o una tabla de frecuencias agrupadas como un **gráfico de líneas** 



## Diagrama por sectores

- Es una torta divida en sectores, ilustrando numéricamente una proporción
- La longitud del arco de cada sector (y consecuentemente su ángulo y área central) es proporcional a la frecuencia de cada valor



#### Ejemplo I

| Reactor | Absolute<br>Frequency |
|---------|-----------------------|
| 1       | 4                     |
| 2       | 5                     |
| 3       | 2                     |
| 4       | 6                     |
| 5       | 3                     |

# ESTADÍSTICA DESCRIPTIVA RESUMEN DE DATOS

#### Medidas de Tendencia Central

• Se calculan para dar un "centro" alrededor del cual se distribuyen las mediciones en los datos

#### Medidas de Variación o Variabilidad

• Describen la "dispersión de datos" o cuán lejos están las mediciones del centro.

#### Medidas relativas

• Describa la "posición relativa" de las medidas específicas en los datos

#### TENDENCIA CENTRAL

#### Media

- · Más comúnmente llamado el "promedio".
- Es el "punto de equilibrio".
- Sume los valores para cada caso y divida por el número total de casos.

$$\overline{x} = \frac{x_1 + x_2 + x_3 + \dots + x_N}{N} = \frac{1}{N} \stackrel{N}{\underset{i=1}{\circ}} x_i$$

- Crucial para estadísticas inferenciales
- · No es muy resistente a los valores atípicos
- Una "media recortada" puede ser mejor para fines descriptivos

#### TENDENCIA CENTRAL

# Media (Ejemplo)

rim diameter (cm)

rim diameter (cm)

|         | <u>unit 1</u> | unit 2 |        | <u>unit 1</u> | unit 2 |
|---------|---------------|--------|--------|---------------|--------|
|         | 12.6          | 16.2   |        | >97           | >900   |
|         | 11.6          | 16.4   |        | 11.5          | 11.2   |
|         | 16.3          | 13.8   |        | 11.6          | 11.3   |
|         | 13.1          | 13.2   |        | 12.1          | 11.7   |
|         | 12.1          | 11.3   |        | 12.4          | 12.2   |
|         | 26.9          | 14.0   |        | 12.6          | 12.5   |
|         | 9.7           | 9.0    |        | 13.1          | 13.2   |
|         | 11.5          | 12.5   |        | 13.5          | 13.8   |
|         | 14.8          | 15.6   |        | 13.6          | 14.0   |
|         | 13.5          | 11.2   |        | 14.8          | 15.5   |
|         | 12.4          | 12.2   |        | 16.3          | 15.6   |
|         | 13.6          | 15.5   |        | >269          | 16.2   |
|         |               | 11.7   |        |               | >164   |
|         |               |        |        |               |        |
| n       | 12            | 13     | n      | 10            | 11     |
| total   | 168.1         | 172.6  | total  | 131.5         | 147.2  |
| total/n | 14.0          | 13.3   | total/ | n 13.2        | 13.4   |
|         |               |        |        |               |        |

TENDENCIA CENTRAL

### Media

• Si los datos están agrupados en una tabla de frecuencias, entonces

$$\overline{x} = \frac{x_1 \cdot n_1 + x_2 \cdot n_2 + x_3 \cdot n_3 + \dots + x_N \cdot n_N}{N} = \frac{1}{N} \stackrel{k}{\underset{i=1}{\circ}} x_i \cdot n_i$$

donde 
$$n_1 + n_2 + n_3 + ... + n_k = N$$

#### TENDENCIA CENTRAL

#### Mediana

- El elemento más central o más central en el conjunto de números ordenados; separa la distribución en dos mitades iguale
- Si n es impar, es el valor de la mitad de toda la secuencia
  - Si X = [1,2,4,6,9,10,12,14,17]
  - Entonces 9 es la mediana
- · Si n es par, es el promedio de los 2 valores del medio
  - Si X = [1,2,4,6,9,10,11,12,14,17]
  - Entonces 9.5 es la mediana; i.e., (9+10)/2
- · La Mediana no se ase afecta por los valores extremos

#### TENDENCIA CENTRAL

# Mediana (Ejemplo)

rim diameter (cm)

|      | <u>unit 1</u>        | unit 2               |      |
|------|----------------------|----------------------|------|
|      | 9.7                  | 9.0                  |      |
|      | 11.5                 | 11.2                 |      |
|      | 11.6                 | 11.3                 |      |
|      | 12.1                 | 11.7                 |      |
|      | 12.4                 | 12.2                 |      |
|      | 12.6                 | 12.5                 |      |
| 12.9 | <                    | 13.2                 | 13.2 |
|      | 13.1                 | 13.8                 |      |
|      |                      |                      |      |
|      | 13.5                 | 14.0                 |      |
|      |                      |                      |      |
|      | 13.5                 | 14.0                 |      |
|      | 13.5<br>13.6         | 14.0<br>15.5         |      |
|      | 13.5<br>13.6<br>14.8 | 14.0<br>15.5<br>15.6 |      |

#### TENDENCIA CENTRAL

#### Moda

- La moda es el número que ocurre con mayor frecuencia en una distribución
  - Si X = [1,2,4,7,7,7,8,10,12,14,17]
  - Entonces 7 es la moda
- Fácil de ver en una distribución de frecuencia simple
- Es posible no tener moda o que existan más de una moda
  - Bimodal y multimodal
- · No tiene que ser exactamente la misma frecuencia
  - mayor moda, menor moda
- · La moda no se ve afectada por valores extremos

TENDENCIA CENTRAL

Moda (Ejemplo)



#### Example I

| Reactor | Absolute<br>Frequency |
|---------|-----------------------|
| 1       | 4                     |
| 2       | 5                     |
| 3       | 2                     |
| 4       | 6                     |
| 5       | 3                     |

#### TENDENCIA CENTRAL

# Cuándo usar y qué usar?

- La media es una gran medida. Pero, hay momentos en que su uso es inapropiado o imposible.
  - Datos Nominales: Moda
  - · La distribución es bimodal: Moda
  - Datos ordinales: Mediana o moda
  - Son algunos puntajes extremos: Mediana



#### VARIABILIDAD

# Dispersión

• Qué tan estrechamente agrupados o qué tan variables son los valores en un conjunto de datos.

- Ejemplo
  - Data set 1: [0,25,50,75,100]
  - Data set 2: [48,49,50,51,52]
  - Ambos tienen una media de 50, pero el conjunto de datos 1 claramente tiene una mayor variabilidad que el conjunto de datos 2.

Rango-Varianza - Desviación Típica



#### VARIABILIDAD

## Rango

- La propagación entre los valores más bajos y más altos de una variable.
- Muy sensible a los valores atípicos, insensible a la forma.
- Ignora cómo se distribuyen los datos y solo toma en cuenta los puntajes extremos
- Muy sensible a los valores atípicos, insensible a la forma.

$$Range\_1 = 26.9 - 9.7 = 17.2$$

| Range_ | 2=1 | 16.4 - | 9 = | 7.4 |
|--------|-----|--------|-----|-----|
|--------|-----|--------|-----|-----|

| unit 1 | unit 2 |
|--------|--------|
| 9.7    | 9.0    |
| 11.5   | 11.2   |
| 11.6   | 11.3   |
| 12.1   | 11.7   |
| 12.4   | 12.2   |
| 12.6   | 12.5   |
| 13.1   | 13.2   |
| 13.5   | 13.8   |
| 13.6   | 14.0   |
| 14.8   | 15.5   |
| 16.3   | 15.6   |
| 26.9   | 16.2   |
|        | 16.4   |
|        |        |

#### VARIABILIDAD

#### Varianza

- Mide cuántos cada número en el conjunto es de la media
- El promedio de las diferencias al cuadrado de la media

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}$$

- Nota: las unidades de la varianza son cuadradas, y hace que la difícil de interpretar.
- Ex.: muestra de punto proyectil:
  - Media= 22.6 mm
  - Varianza = 38 mm<sup>2</sup>
- · Qué significa esto???

#### VARIABILIDAD

# Desviación Típica

· Raíz cuadrada de la Varianza

$$s = \sqrt{s^2} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$

- Las unidades están en las mismas unidades que las mediciones de base
- Ex.: muestra de punto proyectil:
  - media= 22.6 mm
  - Desviación típica= 6.2 mm
- Mean +/- sd (16.4—28.8 mm)
  - debería dar al menos un sentido intuitivo de dónde yacen la mayoría de los casos, salvo los efectos principales de los valores atípicos

#### VARIABILIDAD

# Varianza y Desviación Típica

• Cuanto mayor es la varianza, más lejos están los casos individuales de la media.



• Cuanto menor es la varianza, más cercanos son los puntajes individuales a la media.



#### **DISTANCIA RELATIVA**

#### Percentiles

- El percentil p-ésimo es un número tal que, como máximo, el p% de las mediciones están por debajo de él y, como máximo, el 100-p por ciento de los datos están por encima de él.
  - $P_{25} = Q_1 \Rightarrow Primer cuartil$
  - $P_{50} = Q_2 \Rightarrow$  Segundo cuartil  $\Rightarrow$  Mediana
  - $P_{75} = Q_3 =$  Tercer cuartil



0 250 500 750 1000

#### **DISTANCIA RELATIVA**

## Rango intercuartílico

• Diferencia entre tercer y primer cuartil

$$IQR = Q_3 - Q_1$$

- Contiene el 50% de la información
- No se ve afectado por valores extremos



0 250 500 750 1000

#### REPRESENTACIÓN DE VARIABILIDAD Y DISTANCIAS

# Diagrama de cajas

- Un gráfico que tiene un recuadro de Q1 a Q3, y contiene también un número para resumir los datos: Mínimo, Q1, Mediana, Q3, Máximo
- También indica valores atípicos identificados por separado
- Extremo = observación extrema
- abajo LQ 1.5(IQR)



REPRESENTACIÓN DE VARIABILIDAD Y DISTANCIAS

# Diagrama de cajas



## EJERCICIO 1

De gran importancia para residentes de la región central de Florida es la cantidad de material radiactivo presente en el suelo de zonas recuperadas de la explotación minera de fosfatos. Las mediciones de la cantidad de <sup>238</sup>*U* en 25 muestras de suelo fueron como sigue (mediciones en picocurios por gramo):

| .74  | 6.47 | 1.90 | 2.69 | .75   |
|------|------|------|------|-------|
| .32  | 9.99 | 1.77 | 2.41 | 1.96  |
| 1.66 | .70  | 2.42 | .54  | 3.36  |
| 3.59 | .37  | 1.09 | 8.32 | 4.06  |
| 4.55 | .76  | 2.03 | 5.70 | 12.48 |

Construya un histograma de frecuencia relativa para estos datos.

## EJERCICIO 2

Una compañía farmacéutica desea saber si un medicamento experimental tiene efecto sobre la presión sistólica de la sangre. A 15 pacientes seleccionados al azar se les aplicó el medicamento y, después de un tiempo suficiente para que el medicamento tuviera efecto, se registraron sus presiones sistólicas. Los datos aparecen a continuación:

172 140 123 130 115 148 108 129 137 161 123 152 133 128 142

- a) Dibuje un histograma de frecuencias relativas
- b) Calcule el valor de s usando la aproximación del rango.
- c) Calcule los valores de  $\bar{y}$  y s para las 15 lecturas de presión sanguínea.
- d) Use el teorema de Tchebysheff para hallar valores de a y b tales que al menos 75% de las mediciones de presión sanguínea se encuentren entre a y b.
- ¿Funcionó el teorema de Tchebysheff? Es decir, use la información para hallar el porcentaje real de lecturas de presión sanguínea que están entre los valores de a y b hallados en el inciso d. ¿Este porcentaje real es mayor que 75%?

#### Teorema de Tchebysheff

Para cualquier conjunto de n mediciones, la fracción incluida en el intervalo  $\bar{y} - ks$  a  $\bar{y} + ks$  es al menos  $(1 - \frac{1}{12})$ 



Ejemplo II

### Diagramas de tallo y hojas

- Es un dispositivo para presentar datos cuantitativos en un formato gráfico para ayudar a visualizar la forma de una distribución.
- Es una tabla especial donde cada valor de datos se divide en una "hoja" (generalmente el último dígito) y un "tallo" (los otros dígitos).
- Da información sobre la ubicación, propagación, extremos y huecos.

| Stem | Leaf                | Frequency |
|------|---------------------|-----------|
| 7    | 6                   | 1         |
| 8    | 7                   | 1         |
| 9    | 7                   | 1         |
| 10   | 5 1                 | 2         |
| 11   | 5 8 0               | 3         |
| 12   | 103                 | 3         |
| 13   | 4 1 3 5 3 5         | 6         |
| 14   | 29583169            | 8         |
| 15   | 471340886808        | 12        |
| 16   | 3073050879          | 10        |
| 17   | 8 5 4 4 1 6 2 1 0 6 | 10        |
| 18   | 0 3 6 1 4 1 0       | 7         |
| 19   | 960934              | 6         |
| 20   | 7 1 0 8             | 4         |
| 21   | 8                   | 1         |
| 22   | 189                 | 3         |
| 23   | 7                   | 1         |
| 24   | 5                   | 1         |
|      |                     |           |

Stem: Tens and hundreds digits (psi); Leaf: Ones digits (psi).