Cash-in-Advance Model

Prof. Lutz Hendricks

Econ720

September 21, 2015

Cash-in-advance Models

- We study a second model of money.
- Models where money is a bubble (such as the OLG model we studied) have 2 shortcomings:
 - 1. They fail to explain rate of return dominance.
 - 2. Money has no transaction value.
- CIA models focus on transactions demand for money.

Environment

Demographics:

- a representative household of mass 1
- no firms; households operate the technology

Preferences: $\sum_{t=1}^{\infty} \beta^t u(c_t)$

Endowments at t = 1:

- $ightharpoonup m_{t-1}^d$ units of money;
- \triangleright k_1 units of the good

Technologies:

$$f(k_t) + (1 - \delta)k_t = c_t + k_{t+1}$$

Environment

Transactions technology

- requires that some goods are purchased with money.
- ► $m_t/p_t \ge c_t + k_{t+1} (1 \delta)k_t$

Government

ightharpoonup costlessly prints au_t units of money and hands it to households (lump-sum)

Markets:

- goods: price pt
- money: price 1

Timing within periods

- 1. Household enters the period with k_t and m_{t-1}^d .
- 2. He receives money transfer τ_t :

$$m_t = m_{t-1}^d + \tau_t$$

- 3. He produces and sells his output for money to be received at the "end of the period."
- 4. He uses m_t to buy goods from other households (c_t and k_{t+1}).
- 5. He is paid for the goods he sold in step 3, so that his end of period money stock is m_t^d .

Note that money earned in period t cannot be used until t+1.

Household problem

We simply add one constraint to the household problem: the CIA constraint.

The household solves

$$\max \sum_{t=1}^{\infty} \beta^t u(c_t)$$

subject to the budget constraint

$$k_{t+1} + c_t + m_t^d/p_t = f(k_t) + (1 - \delta)k_t + m_t/p_t$$

and the CIA constraint

$$m_t/p_t \ge c_t + k_{t+1} - (1-\delta)k_t$$

and the law of motion

$$m_{t+1} = m_t^d + \tau_{t+1}$$

Household problem

- Exactly what kinds of goods have to be bought with cash is arbitrary.
- ► The CIA constraint holds with equality if the rate of return on money is less than that on capital (the nominal interest rate is positive).

Houshold: Dynamic Program

Individual state variables: m, k.

Bellman equation:

$$V(m,k) = \max u(c) + \beta V(m',k') + \lambda (BC) + \gamma (CIA)$$

We need to impose

$$m_t = m_{t-1}^d + \tau_t$$

Then we can use m_{t+1} as a control (this would not work under uncertainty).

Bellman Equation

$$V(m,k) = \max u(c) + \beta V(m',k') + \lambda [f(k) + (1-\delta)k + m/p - c - k' - (m' - \tau')/p] + \gamma [m/p - c - k' + (1-\delta)k]$$

 $\lambda > 0$: multiplier on budget constraint

 γ : multiplier on CIA constraint - could be 0.

First-order conditions

$$u'(c) = \lambda + \gamma$$

 $\beta V_m(\bullet') = \lambda/p$
 $\beta V_k(\bullet') = \lambda + \gamma$

Kuhn Tucker:

$$\gamma[m/p-c-k'+(1-\delta)k] = 0$$

$$\gamma \geq 0$$

Household Problem

Thus:

$$u'(c) = \beta V_k(\bullet')$$

Envelope conditions:

$$V_m = (\lambda + \gamma)/p$$

$$V_k = \lambda [f'(k) + 1 - \delta] + \gamma [1 - \delta]$$

Eliminate V's

$$\beta[\lambda' + \gamma']/p' = \lambda/p$$

$$(\lambda + \gamma)/\beta = \lambda'f'(k') + [1 - \delta][\lambda' + \gamma']$$

$$\beta u'(c')p/p' = \lambda$$

$$u'(c) = \lambda + \gamma$$

Note: there are only 3 independent FOCs (one for each choice variable)

Household: Solution

A solution to the household problem: $\{c_t, m_{t+1}, k_{t+1}, \lambda_t, \gamma_t\}$ that solve

- 1. 3 FOCs
- 2. budget constraint
- 3. either CIA constraint or $\gamma = 0$
- 4. transversality conditions

$$\lim_{t\to\infty} \beta^t u'(c_t) k_t = 0$$

$$\lim_{t\to\infty} \beta^t u'(c_t) m_t/p_t = 0$$

Household: CIA does not bind

With $\gamma = 0$:

$$\beta \lambda'/p' = \lambda/p$$

$$\lambda/\beta = \lambda'[f'(k') + 1 - \delta]$$

$$u'(c) = \lambda$$

Standard Euler equation:

$$u'(c) = \beta u'(c') \left[f'(k') + 1 - \delta \right] \tag{1}$$

"No arbitrage" condition:

$$f'(k') + 1 - \delta = p/p' \tag{2}$$

When does the CIA constraint bind?

- ► The CIA constraint binds unless the return on money equals that on capital
 - i.e. the nominal interest rate is zero.
- No arbitrage:

$$1 + i = (1 + r)(1 + \pi) = [f'(k) + 1 - \delta] p'/p = 1$$

- Holding money has no opportunity cost.
- The presence of money does not distort the intertemporal allocation.
- We have the standard Euler equation.

Binding CIA constraint

Euler equation:

$$u'(c) = \beta^2 u'(c'')(p'/p'')f'(k') + (1 - \delta)\beta u'(c')$$
(3)

Today:

• Give up $dc = -\varepsilon$.

Tomorrow:

- $\rightarrow dk' = \varepsilon$.
- ▶ Eat the undepreciated capital: $dc' = (1 \delta)\varepsilon$.
- ▶ Produce additional output $f'(k')\varepsilon$.
- ► Save it as money: $dm'' = f'(k')\varepsilon p'$.

The day after:

▶ Eat an additional dm''/p''.

Household Problem

- ▶ Why isn't there a simple Euler equation for the perturbation:
 - 1. $dc = -\varepsilon$. $dm' = p\varepsilon$.
 - 2. $dc' = \varepsilon p/p'$.
- Answer:
- ▶ Therefore, the Euler equation for this perturbation is:

$$u'(c) = \lambda + \gamma$$

= $\beta u'(c') p/p' + \gamma$

Equilibrium

Government

- The government's only role is to hand out lump-sum transfers of money.
- ► The money growth rule is

$$\tau_t = g m_{t-1}^d$$

Money holdings in period t are

$$m_t = m_{t-1}^d + \tau_t$$
$$= (1+g)m_{t-1}^d$$

Market clearing

- ► Goods: $c + k' = f(k) + (1 \delta)k$.
- ► Money market:

Equilibrium

An **equilibrium** is a sequence that satisfies

Steady State

Binding CIA constraint

- ▶ In steady state all real, per capita variables are constant (c,k,m/p).
- ▶ This requires $\pi = g$ to hold real money balances constant.
- ▶ The Euler equation implies

$$1 = \beta^{2}(1+\pi)^{-1}f'(k') + (1-\delta)\beta$$

▶ Using $1 + \pi = 1 + g$ this can be solved for the capital stock:

$$f'(k_{ss}) = (1+g)[1-\beta(1-\delta)]/\beta^2$$
 (4)

• Higher inflation reduces k_{ss} .

Steady State

Assuming that the CIA constraint binds:

$$f(k) = m/p \tag{5}$$

Goods market clearing with constant k implies

$$c = f(k) - \delta k \tag{6}$$

A steady state is a vector (c,k,m/p) that satisfies (4) through (6).

Properties of the Steady State CIA binding

Definition

Money is called **neutral** if changing the level of M does not affect the real allocation.

It is called **super neutral** if changing the growth rate of M does not affect the real allocation.

Money is not super neutral

- ▶ Higher inflation (g) implies a lower k.
- ▶ Inflation increases the cost of holding money, which is required for investment (inflation tax).

Properties of the Steady State CIA binding

Exercise:

- Show that super-neutrality would be restored, if the CIA constraint applied only to consumption $(m/p \ge c)$.
- What is the intuition for this finding?

CIA binding

The velocity of money is one

- Higher inflation reduces money demand only be reducing output.
- ► This is a direct consequence of the rigid CIA constraint and probably an undesirable result.
- ▶ Obviously, this would not be a good model of hyperinflation.
- This limitation can be avoided by changing the transactions technology (see RQ).

Steady State

CIA constraint does not bind

$$f'(k) + 1 - \delta = (1+g)^{-1}$$
 (7)
= $1/\beta$ (8)

$$f(k) - \delta k = c (9)$$

Result: A steady state only exists if $\beta = 1 + g$.

Then: The steady state coincides with the (Pareto optimal) non-monetary economy.

Steady State

CIA constraint does not bind

- ▶ Why is there no steady state with $1+g < \beta$?
- ▶ $\beta R = \beta/(1+g) > 1$.
- ▶ The household would choose unbounded consumption. Cf.

$$u'(c) = \beta R \ u'(c') \tag{10}$$

Optimal Monetary Policy

- ▶ The Friedman rule maximizes steady state welfare.
- Friedman Rule: Set nominal interest rate to 0.
- Proof: Under the Friedman rule, the steady state conditions of the CE coincides with the non-monetary economy's.
- Intuition:
 - ▶ It is optimal to make holding money costless b/c money can be costlessly produced.
 - This requires that the rate of return on money $\frac{1}{1+\pi}$ equal that on capital.

Is this a good theory of money?

Recall the central questions of monetary theory:

- 1. Why do people hold money, an asset that does not pay interest (rate of return dominance)?
- 2. Why is money valued in equilibrium?
- 3. What are the effects of monetary policy: one time increases in the money supply or changes in the money growth rate?

Is this a good theory of money?

Positive features:

- 1. Rate of return dominance.
- 2. Money plays a liquidity role.

Drawbacks:

- 1. The reason why money is needed for transactions is not modeled.
- 2. The form of the CIA constraint is arbitrary (and important for the results).
- 3. The velocity of money is fixed.

Reading

▶ Blanchard & Fischer (1989), 4.2.