- 1. 填空题 (12 分)
 - (1) 考虑所有实系数一元多项式的集合 $\mathbb{P}(\mathbb{R})$,和 n 阶方阵空间 $M_{n\times n}$,作为实数域 \mathbb{R} 上的线性空间,请列出下列映射中是线性映射的是 ______:
 - (a) $\mathbb{P}(\mathbb{R}) \to \mathbb{P}(\mathbb{R})$, $f(x) \mapsto f'(x) + f''(x)$;
 - (b) $\mathbb{P}(\mathbb{R}) \to \mathbb{P}(\mathbb{R})$, $f(x) \mapsto f(x) + 1$;
 - (c) $M_{n\times n} \to M_{n\times n}$, $A \mapsto AA^{\mathrm{T}}$;
 - (d) $M_{n \times n} \to M_{n \times n}$, $A \mapsto A A^{\mathrm{T}}$.

解. (a) (d)

- (2) 设 T 是有限维线性空间 V 上的算子,Null(T), Range(T) 分别是 T 的零空间和 像空间. 请问 $Null(T) \oplus Range(T) = V$ 是否对任意的 T 都成立? ______:
 - (a) 是;
 - (b) 不是.

解 (6).

- (3) 设 T 为 5 维线性空间 V 上的算子,令 d_i 为零空间 $\text{Null}(T^i)$ 的维数,i = 1, 2, 3, 4, 5. 那么 $(d_1, d_2, d_3, d_4, d_5)$ 可能的取值有 ______:
 - (a) (1,2,3,4,5);
 - (b) (2,3,3,3,3);
 - (c) (1,1,2,2,2);
 - (d) (2,3,4,5,6).

解(人)(6).

- 2. (8 分) 设 \mathbb{F}^2 上的算子 $T: \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \mapsto \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$.
 - (1) 求 T 的所有特征值和特征子空间; (6分,每个特征值1分,每个特征子空间2分)

解. 在下 2 的自然 2 [$^{\circ}$] 和[$^{\circ}$] 下,下的矩阵为 $A=[^{\circ}$,].

解方程 det [\lambda I-A) = \lambda^2-1 = 0 得 下的特征值为 1, 十.

解方程 (I-A)X=0 得特征值 I 的一组线性无关的特征向量为 [[]] ,特征值 I 的特征子空间为 Span([]]) .

解方程(-I-A) X = 0 得特征值-1的-组线性无关的特征向量为[1],特征值-1的特征子空间为 Span([1]).

(2) 判断 T 是否可对角化,并简明说明理由. (2%)

解,丁可对角化.

取下的特征向量[|]和[|]组成于2的一组基, 下在这组基下的矩阵为对解阵['-|].

3. $(18\ \mathcal{G})$ 设 \mathbb{F} 上的二阶方阵 $A=\begin{bmatrix}2&1\\0&2\end{bmatrix}$. 考虑线性映射

$$\begin{array}{cccc} T_A: & M_{2\times 2} & \to & M_{2\times 2} \\ & X & \mapsto & AX - XA \end{array}$$

取 $M_{2\times 2}$ 的两组基

$$e_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, e_{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, e_{3} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, e_{4} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix},$$

$$t_{1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, t_{2} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, t_{3} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, t_{4} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

解,
$$i2N = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
 , 別 $A = 2I + N$.

$$T_{A}(X) = A X - X A$$

= (2I+N) X - X(2I+N)
= 2 X + NX - 2 X - X N
= NX - X N
= $T_{N}(X)$.

 $T_{A}(e_{1},e_{2},e_{3},e_{4}) = (T_{A}e_{1}, T_{A}e_{2}, T_{A}e_{3}, T_{A}e_{4})$ $= (T_{N}e_{1}, T_{N}e_{2}, T_{N}e_{3}, T_{N}e_{4})$ $= (-t_{2}, 0, t_{4}, t_{2})$ $= (t_{1},t_{2},t_{3}, t_{4}) \begin{bmatrix} 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$

(2) 将 T_A 看作 $M_{2\times 2}$ 上的算子. 在 $\{0\}$ 和 $M_{2\times 2}$ 之外,找到两个 $M_{2\times 2}$ 的 T_A 不变子空间 (不需证明). $\{ 4 \$

解
$$T_A(e_2) = 0$$
, 故 $T(Span(e_2)) = \{0\} \subset Span(e_2)$, 故 $Span(e_2)$ 为 T的 不变 子空间.

(3) 判断 T_A 是否是幂零算子,并说明原因. ($G \hookrightarrow$)

解, 是.

由TA:TN, 只需验证TN 幂零.

$$T_N(x) = NX - XN.$$

$$T_{N}^{2}(X) = T_{N}(T_{N}X) = T_{N}(NX-XN)$$

$$= N(NX-XN) - (NX-XN)N$$

$$= N^{2}X - NXN - NXN + XN^{2}$$

$$= 0$$

$$T_N^3(x) = T_N(T_N^2x) = T_N(-2NXN)$$

$$= N(-2NXN) - (-2NXN)N$$

$$= -2N^2XN + 2NXN^2$$

$$= 0$$

$$= 0$$

故下3=0,下8零.

- 4. (12 分) 设 $S: V_0 \to V_1, T: V_1 \to V_2$ 为有限维线性空间之间的线性映射,满足 TS = 0.
- (1) 证明: Range(S) 是 Null(T) 的子集; (4分)

$$T_{v} = TS_{u} = O_{u} = 0.$$

th Range (S) = Null (T).

(2) 令
$$W_0 = \text{Null}(S), W_1 = \text{Null}(T)/\text{Range}(S), W_2 = V_2/\text{Range}(T)$$
, 证明下列等式:

$$\dim(V_0) - \dim(V_1) + \dim(V_2) = \dim(W_0) - \dim(W_1) + \dim(W_2).$$
 (§ $\stackrel{\frown}{\nearrow}$)

证明. 对于以下有限维向量空间,有

$$dim(V_0) = dim(Null(S)) + dim(Range(S))$$

$$dim(V_1) = dim(Null(T)) + dim(Range(T))$$

故

=
$$dim(V_0) - dim(V_1) + dim(V_2)$$
.