Threat Modeling and Attack Surface Analysis: A Technical Overview

Introduction

In today's cybersecurity landscape, understanding *how* attackers might target your systems is just as important as securing them. **Threat Modeling** and **Attack Surface Analysis (ASA)** are two proactive techniques used during software development and security assessments to identify and mitigate potential vulnerabilities before they are exploited.

Core Components of Threat Modeling

Component	Description
Assets	What are we trying to protect? (e.g., PII, credentials, IP)
Threats	What can go wrong? (e.g., SQLi, XSS, privilege escalation)
Attackers	Who might try to attack the system? (e.g., insiders, hackers, competitors)
Entry Points	How might an attacker gain access? (e.g., APIs, UI, open ports)
Mitigations	How can we reduce the risk? (e.g., validation, authN, monitoring)

What is Attack Surface Analysis?

Attack Surface Analysis (ASA) involves identifying all the points where an attacker could interact with your system — also known as **attack vectors**.

Think of ASA as mapping the doors and windows into your digital "house."

© Goals of ASA

- Minimize entry points.
- Harden each entry point with security controls.
- Continuously monitor for surface changes (e.g., via CI/CD pipelines).

Tools for Threat Modeling & ASA

Tool	Purpose	
Microsoft Threat Modeling Tool	STRIDE-based diagrams	
OWASP Threat Dragon	Open-source threat modeling tool	
attack surface analyzer	Microsoft's ASA CLI/GUI tool	
Burp Suite/ZAP	Active web/API surface discovery	
Nmap	Network port scanning	
Shodan	External internet-exposed surfaces	

Aspect	Threat Modeling	Attack Surface Analysis
Focus	Identifying threats	Identifying entry points
Goal	Understand attacker motivations & defenses	Map and reduce exposure
Timing	During design or review phase	During design and during/ after deployment
Approach	Conceptual + diagram- based	Empirical + discovery

Conclusion

Threat Modeling and Attack Surface Analysis are complementary practices that together build a resilient security posture. By identifying what can go wrong and how attackers could break in, teams can proactively defend systems — reducing costly vulnerabilities and protecting critical assets.

In the battle for secure systems, knowing your enemy—and how they might attack—is half the fight.