Fractional Dynamics in Physical Science

Conrad Ho

Presented for Partial Fulfilment of Bachelor's of Science

Objectives

- History of Fractional Calculus (FC)
- Preliminaries
- Memory Effect
- Application in Physics
- Future of FC and its application to Physics

A Brief History of Fractional Calculus

From Leibniz To Us

Leibniz's Letter in 1695

Informal letter to L'Hoptial

Question:

What if the differentiation/integration order is non-integral arbitrary number?

What is half derivatives!? 3/2 integrals!? π order derivative!?

Fractional Calculus

Timeline (not to scale)

Fractional Calculus 5

Fractional Calculus 101 A crash course in basics of FC

Euler's Notation

Defining a new notation (aka Euler's Notation:

$$D_x^n f(x) \equiv J_x^{-n} f(x) \equiv f^{(n)}(x) \equiv \frac{d^n}{dx^n} f(x)$$

Example:

$$D_x^2 f(x) \equiv f''(x) \equiv \frac{d^2}{dx^2} f(x)$$

$$D_x^{-1} f(x) \equiv J_x^1 f(x) \equiv f^{(-1)}(x) \equiv \int f(x) dx$$

(N.B often subscript is dropped when it is apparent what we are applying the operator wrt.)

The Curious Question

$$D_x^n f(x) \equiv J_x^{-n} f(x) \equiv f^{(n)}(x) \equiv \frac{d^n}{dx^n} f(x)$$

'What if n is not an integer $(n \notin \mathbb{Q})$?'

The starting point

Intuition:

Derivatives are more "well behaved"

Start by generalising derivatives

```
Reality...? (often cruel...)
```

No:D

The starting point

Cauchy formula for repeated integration:

$$\left(J^nf
ight)(x)=rac{1}{(n-1)!}\int_0^x\left(x-t
ight)^{n-1}f(t)\,dt$$

 \rightarrow Only works for $n \in \mathbb{N}$ b.c. factorial is undefined otherwise!

A neat 'trick'

Gamma function:

Generally, well defined for n>0

Back to the drawing board...

We generalise the formula from:

$$\left(J^nf
ight)(x)=rac{1}{(n-1)!}\int_0^x\left(x-t
ight)^{n-1}f(t)\,dt$$

To:

$$\left(J^{lpha}f
ight)(x)=rac{1}{\Gamma(lpha)}\int_{0}^{x}\left(x-t
ight)^{lpha-1}f(t)\,dt$$

Where α is now the order of integral (can be fraction!)

Back to the drawing board...

Very useful property that we will use to verify results later on! (t) dt

Toolbox

From that fundamental, we can derive:

$${}_{a}D_{t}^{\alpha} f(t) = rac{d^{n}}{dt^{n}} {}_{a}D_{t}^{-(n-lpha)} f(t)$$
 $= rac{d^{n}}{dt^{n}} {}_{a}I_{t}^{n-lpha} f(t)$
 ${}_{t}D_{b}^{lpha} f(t) = rac{d^{n}}{dt^{n}} {}_{t}D_{b}^{-(n-lpha)} f(t)$
 $= rac{d^{n}}{dt^{n}} {}_{t}I_{b}^{n-lpha} f(t)$

RL Derivative ('left hand' and 'right hand')

$$_aD_t^{\alpha}\,f(t)=rac{d^n}{dt^n}\,_aD_t^{-(n-lpha)}\,f(t)$$
 $^CD_t^{lpha}\,f(t)=rac{1}{\Gamma(n-lpha)}\int_0^trac{f^{(n)}(au)}{(t- au)^{lpha+1-n}}\,d au.$ Caputo Derivative

$${}^{ ext{CF}}_a D_t^lpha \, f(t) = rac{1}{1-lpha} \int_a^t f'(au) \, e^{\left(-lpha rac{t- au}{1-lpha}
ight)} \, d au$$
 Caputo–Fabrizio Derivative

$$\mathcal{F}\left\{rac{\partial^{lpha}u}{\partial{\left|x
ight|}^{lpha}}
ight\}(k)=-{\left|k
ight|}^{lpha}\mathcal{F}\{u\}(k),$$

Riesz derivative

Standard Results:

From that fundamental, we can derive:

$$D^{\alpha}e^{kx} = k^{\alpha}e^{kx} \tag{14}$$

$$D^{\alpha}\sin(kx) = k^{\alpha}\sin(kx + \alpha\frac{\pi}{2}) \tag{15}$$

$$D^{\alpha}\cos(kx) = k^{\alpha}\cos(kx + \alpha\frac{\pi}{2}) \tag{16}$$

$$D^{\alpha} x^{k} = \frac{\Gamma(k+1)}{\Gamma(k-\alpha+1)} x^{k-\alpha} \qquad ...$$

(17)

$$D^{\alpha}f(x)g(x) = \sum_{k=0}^{\lceil \alpha \rceil} {\lceil \alpha \rceil \choose k} f^{(k)}(x)g^{(\alpha)}(x)$$
 (18)

The Physics Bits

SHO, Memory Effect and Schrodinger

Tautochrone

Aim:

Curve such that time falling from a height to the lowest point is

independent of starting position

Time travelled is given by: $\underline{y_0}$

Source:

https://en.wikipedia.o<mark>rg/wiki/</mark>Tautoch<mark>rone_curve</mark>

Applying FC...

Time travelled is given by:
$$T(y_0) = \int_{y}^{y_0} \frac{F(y)}{\sqrt{y_0 - y}} dy$$

Recall:

$$\left(J^{lpha}f
ight)(x)=rac{1}{\Gamma(lpha)}\int_{0}^{x}\left(x-t
ight)^{lpha-1}f(t)\,dt$$

Fractional Calculus

Tautochrone using FC

Therefore, we can write:

$$T(y_0) = \int_{y}^{y_0} \frac{\phi(y)}{\sqrt{y_0 - y}} dy$$

RL Integral Definition:

$$\left(J^{lpha}f
ight)(x)=rac{1}{\Gamma(lpha)}\int_{0}^{x}\left(x-t
ight)^{lpha-1}f(t)\,dt$$

as:

$$T(y_0) = \sqrt{\pi} J^{\frac{1}{2}} \{ \phi(y_0) \}$$

and

$$\phi(y_0) = \frac{1}{\pi} \mathbf{D}^{\frac{1}{2}} \{ T(y_0) \}$$

SHO:

Recall:

$$\dot{x} + \omega^2 x = 0$$

$$x(t) = A\cos(\omega t + \varphi)$$

Plot:

(from an actual experimental result)

SHO:

$$\dot{x} + \omega^2 x = 0$$

What if it is to a fractional order?

$$D^{\alpha}x + \omega^2x = 0$$

Side Note:

$$D^{\alpha}x + \omega^2x = 0$$

It often hard to solve symbolically...

To save your life – Use Python:

- Differint Computing DifferIntegrals (hence the name)
- Fodeint Differential Equation Solver

Results in the following pages use the above 2 libraries!

Fractional Calculus

SHO Fractional:

Plot: (purple line)

Damping!?

Memory Effect

Mathematically:

Non-Local Operator (e.g. Fourier Transform)

Physically:

- Viscous material's behaviour
- Anomalous diffusion

- Plane Wave
- Infinite Potential Wall

FC applied to QM

TISE:

$$-\frac{\hbar^2}{2m}\nabla^2\psi(x)+V(x)\psi(x)=E\psi(x)$$

Generalise to fractional order (FTISE):

$$-\frac{\hbar^2}{2m}\nabla^{2\alpha}\psi(x)+V(x)\psi(x)=E\psi(x)$$

where $0 < \alpha < 1$

Time independent plane wave wavefunction:

$$\psi(t) = e^{ikx}$$

Applied to FTISE:

$$-\frac{\hbar^2}{2m}\nabla^{2\alpha}\psi(x)+V(x)\psi(x)=E\psi(x)$$

To simplify, we assume $V(x) \rightarrow 0$

28

Recall Standard Results:

$$D^{\alpha}e^{kx} = k^{\alpha}e^{kx} \quad k \ge 0 \tag{14}$$

$$D^{\alpha}\sin(kx) = k^{\alpha}\sin(kx + \alpha\frac{\pi}{2}) \quad k \ge 0$$
 (15)

$$D^{\alpha}\cos(kx) = k^{\alpha}\cos(kx + \alpha\frac{\pi}{2}) \quad k \ge 0$$
 (16)

$$D^{\alpha} x^{k} = \frac{\Gamma(k+1)}{\Gamma(k-\alpha+1)} x^{k-\alpha} \quad x \ge 0, k \ne -1, -2, -3, \dots$$
(17)

$$D^{\alpha}f(x)g(x) = \sum_{k=0}^{\lceil \alpha \rceil} {\lceil \alpha \rceil \choose k} f^{(k)}(x)g^{(\alpha)}(x)$$
 (18)

Fractional Calculus

Then:

$$\nabla^{2\alpha}\psi(x) = i^{2\alpha}k^{2\alpha}\,\psi(x)$$

$$D^{\alpha}e^{kx} = k^{\alpha}e^{kx} \quad k \ge 0 \tag{14}$$

$$D^{\alpha}\sin(kx) = k^{\alpha}\sin(kx + \alpha\frac{\pi}{2}) \quad k \ge 0$$
 (15)

$$D^{\alpha}\cos(kx) = k^{\alpha}\cos(kx + \alpha\frac{\pi}{2}) \quad k \ge 0$$
 (16)

$$D^{\alpha} x^{k} = \frac{\Gamma(k+1)}{\Gamma(k-\alpha+1)} x^{k-\alpha} \quad x \ge 0, k \ne -1, -2, -3, \dots$$
(17)

$$D^{\alpha}f(x)g(x) = \sum_{k=0}^{\lceil \alpha \rceil} {\lceil \alpha \rceil \choose k} f^{(k)}(x)g^{(\alpha)}(x)$$
 (18)

Putting back into FTISE and yield:

$$-\frac{\hbar^2}{2m}i^{2\alpha}k^{2\alpha} = E$$

How to simplify further?

Euler's Identity:

$$e^{i\pi} = -1$$

Taking sqrt both side:

$$e^{i\pi/2}=i$$

Hence, $i^{2\alpha}$ from our previous equation becomes:

$$e^{i\pi\alpha} = i^{2\alpha}$$

$$e^{i\pi\alpha} = i^{2\alpha}$$

Hence, our expression for the eigenvalues:

$$E = -\frac{\hbar^2}{2m} i^{2\alpha} k^{2\alpha}$$

$$E = -\frac{\hbar^2}{2m} k^{2\alpha} e^{i\pi\alpha}$$

Plot this on an Argand Diagram

$$E = -\frac{\hbar^2}{2m} k^{2\alpha} e^{i\pi\alpha}$$

- Fractional order α rotates the Energy "vector" in the Re-Im Plane
- similar to a Phasor in PH1420
- Neat U(1) Symmetry

Decomposed:

By Euler's equation:
$$E=-\frac{\hbar^2}{2m}k^{2\alpha}e^{i\pi\alpha}$$

$$\frac{\frac{\hbar^2}{2m}k^2}{\Re{\{\vec{E}\}}} \qquad E = -\frac{\hbar^2}{2m}k^{2\alpha}(\cos{\pi\alpha} - i\sin{\pi\alpha})$$

- Real corresponds to observables
- Imaginary encodes some additional information?

Quick Check:

We know the property where $\alpha \to 1$, we recover the "typical" case

$$\Re(E) = \lim_{\alpha \to 1} -\frac{\hbar^2}{2m} k^{2\alpha} \cos \pi \alpha$$

$$\Re(E) = \frac{\hbar^2 k^2}{2m}$$

Let's see this on the diagram.

Does this make sense?

Sort Of...

The Hamiltonian in the Fractional order does not satisfy self-adjoint -> Non-Hermitian

Weird Properties like these are sort of expected!

Particle in a Box

It's Weird!

Open Problems

Open Problems

- Physical Interpretation?
 - What does the fractional derivative of something physically mean?
 - Does it make sense physically?
- Applications to other fields
 - For example, in SR:
 - Can some order of derivative of a coefficient acts be in analogus to Lorentz Transformation?
 - Does this generalise to GR?

Summary

Summary

- A topic of relatively long history but advancements are fairly recent
- Definition
- Common Function
- Physics
 - Classical Mechanics: Tautochrone, SHO
 - QM: Plane Wave, Infinite Potential Well/Particle in a Box
- Memory Effect
 - Strange Behaviour!
- Open Problems
 - Physical Interpretation
 - Application to other fields

The End

