

WORLD INTELLECTUAL PROPERTY ORGANIZATION

51) International Patent Classification 6:		UNDER THE PATENT COOPERATION TREATY (PCT) (11) International Publication Number: WO 97/4152
G06F 159:00	A1	(43) International Publication Date: 6 November 1997 (06.11.9)
(21) International Application Number: PCT/US (22) International Filing Date: 28 April 1997 ((30) Priority Data: 08/641,071 26 April 1996 (26.04.96) (71) Applicant: THE SCRIPPS RESEARCH INSTITUTE 10666 North Torrey Pines Road, La Jolla, CA 92 (72) Inventors: WILSON, Ian, A.; 1025 Newkirk Drive, CA 92037 (US). LIVNAH, Oded; 5240 Fior #3114, San Diego, CA 92122 (US). STURA A.; 5172 Park West Avenue, San Diego, CA 92 JOHNSON, Dana, L.; 1343 Lonely CoHage Road Black Eddy, PA 18972 (US). JOLLIFFE, Lind Davenport Way, Belle Mead, NJ 08502 (US). (74) Agent: LAND, John; Fish & Richardson, P.C., 4225 Square, Suite 1400, La Jolla, CA 92037 (US).	[US/U. (US/U. 037 (U. La Jole Terra A, Enri 117 (U. ad, Uppla, K.;	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, PI, GB, G HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, L LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, P PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, U, UG, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, S UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, T TM), European patent (AT, BE, CH, DE, DK, ES, FI, F GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (B BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TC Published With international search report.
(54) Title: SMALL MOLECULE MIMETICS OF ERY	THROP	OIETIN
(57) Abstract		100
The invention features computer-assisted methods 204) for identifying molecules which will bind to the erythropoietin (EPO) mimetic. Preferred EPO mimetics id invention act as agonists of the EPO receptor in one or measures of EPO activity.	entified	using the method of the Input 3D

assays of EPO activity.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

j AL	Albania	ES	Spain	LS	Lesotho		
AM	Armenia	FI	Finland	LT	Lithuania	SI	Slovenia
AT	Austria	FR	France	w		SK	Shvatia
AU	Australia	GA	Gabon	LV	Luxembourg	SN	Senegal
AZ	Azerbaijan	GB	United Kingdom		Letvia	SZ	Swaziland
BA	Bosnia and Herzegovina	GE	Georgia	MC	Monaco	TD	Chad
BB	Barbados	GH	Ghana	MD	Republic of Moldova	TG	Togo
BE	Belgium	GN		MG	Madagascar	TJ	Tajikistan
BF	Burkina Faso	GR	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BG	Bulgaria		Greece		Republic of Macedonia	TR	Turkey
BJ	Benin .	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BR	Brazil	IE	Ireland	MN	Mongolia	UA	Ukraine
BY		lL.	Israel	MR	Mauritania	UG	Uganda
	Belarus	LS.	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2W	Zimbabwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG			
				30	Singapore		

SMALL MOLECULE MIMETICS OF ERYTHROPOIETIN

BACKGROUND OF THE INVENTION

1. Field of the Invention

5

10

15

20

25

This invention relates to computer-assisted methods for identifying and designing small molecule mimetics of erythropoietin.

2. Description of Related Art

Erythropoietin (EPO) is the primary regulator of the proliferation and differentiation of immature erythroid cells. EPO is produced in the fetal liver and in the adult kidney in response to hypoxia (low oxygen levels in blood or tissue). It circulates in the blood stream where it targets the EPO receptor (EPOR) on committed progenitor cells in the bone marrow and other hematopoietic tissues. Recombinant human erythropoietin (rHuEPO) is widely used in therapy of patients with anaemia due to chronic renal failure, cancer chemotherapy and AZT treatment.

The EPO receptor belongs to the cytokine receptor superfamily which includes receptors for other hematopoietic growth factors such as interleukins (ILs), colony stimulating factors (CSFs) as well as growth hormone prolactin and ciliary neurotrophic factor (CNTF). The structural architecture of this family of receptors consists of three modules: a ligand binding extracellular domain, a short trans membrane region and a large cytoplasmic domain. It has been proposed that the extracellular domain of this superfamily comprises two discrete domains each containing approximately 100 residues that fold into a sandwich consisting of 7 antiparallel β -strands with the topology of an Ig constant domain. Members of the family share two characteristic motifs in their extracellular domain: a pair of conserved disulfide bridges in the N-terminal domain, and a WSXWS box (where X is any amino acid residue) in the C-terminal domain. For most members of this receptor superfamily, oligomerization of one or more polypeptide chains

10

is essential for forming high affinity receptor complexes. A homodimer complex has been demonstrated to be the active form of hGHR and a similar model has been suggested for G-CSF, prolactin and EPO receptors.

Erythropoietin induces dimerization of two EPO receptor molecules, which results in subsequent phosphorylation of the cytoplasmic domains by the association with two tyrosine kinase (JAK2) molecules to initiate a cascade of events that leads to the relevant biological.

Given the importance of erythropoietin, it would be very desirable to be able to identify molecules capable of binding the EPO receptor and eliciting the response normally elicited by EPO.

-3-

SUMMARY OF THE INVENTION

5

10

15

20

The invention features methods for identifying molecules which will bind to the EPO receptor and act as a EPO mimetic. Preferred EPO mimetics identified using the method of the invention act as agonists of the EPO receptor in one or more *in vitro* or *in vivo* biological assays of EPO activity. Preferred mimetics are molecules lacking peptide bonds, i.e., are non peptidic mimetics. Preferred peptide mimetics have 15 or fewer, more preferably 10 or fewer amino acids.

The methods of the invention entail identification and design of molecules having a particular structure. The methods rely on the use of precise structural information derived from x-ray crystallographic studies of the extracellular domain of EPO receptor (amino acids 1 to 225) complexed with a peptide, EMP1 (EPO Mimetic Peptide 1; described below), which acts as an EPO mimetic. This crystallographic data permits the identification of atoms in the peptide mimetic that are important for EPO receptor binding and dimerization. More importantly, this data defines a three dimensional array of the important contact atoms. Other molecules which include a portion in which the atoms have a similar three dimensional arrangement similar to some or all of these contact atoms are likely to be capable of acting as an EPO mimetic. Moreover, one can use the structural information to design or identify molecules having even more EPO activity than the peptide mimetic described herein.

The details of the preferred embodiment of the present invention are set forth in the accompanying drawings and the description below. Once the details of the invention are known, numerous additional innovations and changes will become obvious to one skilled in the art.

4.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a flowchart showing a first method for identifying potential mimetics of erythropoietin using a computer system.

FIGURE 2 is a flowchart showing a second method for identifying potential mimetics of erythropoietin using a computer system.

Like reference numbers and designations in the various drawings indicate like elements.

10

15

20

25

DETAILED DESCRIPTION OF THE INVENTION

Throughout this description, the preferred embodiment and examples shown should be considered as exemplars, rather than as limitations on the present invention.

Described below is the crystal structure of a small peptide mimetic of EPO bound to an EMP1 The peptide, **EPO** receptor. of the extracellular portion (GGTYSCHFGPLTWVCKPQGG; SEQ ID NO:1), is characterized by an intramolecular disulfide bridge. Several lines of evidence suggest that EMP1 can act as an EPO mimetic. For example, EMP1 competes with EPO in receptor binding assays and induces cellular proliferation of cell lines engineered to be responsive to EPO. Both EPO and peptide induce a similar cascade of phosphorylation events and cell cycle progression in EPO responsive cells. Further, EMP1 demonstrates significant erythropoietic effects in mice as monitored by two different in vivo assays of nascent red blood cell production. This data, when combined, strongly supports the notion that the peptide ligand, which has a sequence unrelated to that of EPO, is capable of binding to and inducing an agonist conformation or assembly of EPO receptor.

Design of small molecule mimetics

The structure of the EMP1 dimer demonstrates that a molecule substantially smaller than the natural hormone can act as an agonist and induce the appropriate biological response. The peptide is assumed to have a substantially smaller contact interface with the receptor than its natural hormone. The binding determinants in the EPO receptor form an almost flat surface which is mainly hydrophobic in nature, without any cavities or charged residues that may help in design of a small molecule ligand to interact with the receptor.

This simplified framework of interactions revealed by the structural data presented herein can be used to identify additional EPO mimetics. The atoms of EMP1 which are important for binding to the EPO receptor and forming dimeric EPO receptor include those involved in the contact between the EMP1 (peptide) and EBP (EPO receptor) and

-6-

those involved in contacts between the two EMP1 molecules in the dimeric complex (peptide-peptide contacts). In addition to the contacts listed in Table 2, the following EMP1-EMP1 hydrophobic contacts are significant: Tyr^{P4}, Cys^{P6}, Phe^{P4}, Trp^{P13}, and Cys^{P13} in each peptide. The following EMP1-EBP hydrophobic interactions are also significant: Tyr^{P4}, Phe^{P4}, and Trp^{P13} in each peptide. It will be understood by those skilled in the art that not all of the atoms present in a significant contact residue need be present in a mimetic. In fact, it is only those few atoms which actually from important contacts with the EPO receptor which are likely to be important for mimetic activity. Those skilled in the art will be able to identify these important atoms based on the model of the dimeric EMP1-EPO complex which can be constructed using the structural data herein.

5

10

25

Preferred mimetics will include atoms at postions similar to those of the EPO receptor contacting atoms of EMP1. Even more preferred mimetics will be structurally similar to the dimer of EMP1 found in the structure described below. This is because the dimerization of EMP1 is an important factor in the diemerization of the EPO receptor.

The methods of the invention employ a computer-based methods for identifying 15 compounds having a desired structure. More specifically, the invention uses the threedimensional coordinates of a subset of the atoms in the GGTYSCHFGPLTWVCKPQGG when the peptide is co-crystallized with a portion of the erythropoietin receptor comprising amino acids 1 to 225 of the human EPO receptor, to determine peptide and non-peptide mimetic candidates by means of computer methods. 20

These computer-based methods fall into two broad classes: database methods and *de novo* design methods. In database methods the compound of interest is compared to all compounds present in a database of chemical structures and compounds whose structure is in some way similar to the compound of interest are identified. The structures in the database are based on either experimental data, generated by NMR or x-ray crystallography, or modeled three-dimensional structures based on two-dimensional (*i.e.*, sequence)

10

15

20

25

data. In de novo design methods, models of compounds whose structure is in some way similar to the compound of interest are generated by a computer program using information derived from known structures, e.g., data generated by x-ray crystallography and/or theoretical rules. Such design methods can build a compound having a desired structure in either an atom-by-atom manner or by assembling stored small molecular fragments.

The success of both database and *de novo* methods in identifying compounds with activities similar to the compound of interest depends on the identification of the functionally relevant portion of the compound of interest. For drugs, the functionally relevant portion is referred to a pharmacophore. A pharmacophore then is an arrangement of structural features and functional groups important for biological activity, *e.g.*, EPO activity.

Not all identified compounds having the desired pharmacophore will act as an EPO mimetic. The actual activity can be finally determined only by measuring the activity of the compound in relevant biological assays. However, the methods of the invention are extremely valuable because they can be used to greatly reduce the number of compounds which must be tested to identify an actual mimetic.

Dimerization of the EPO receptor is important for activity. Accordingly, preferred mimetics will be based on the structure of the EMP1 dimer as it is bound to the EPO receptor dimer. Thus, preferred mimetics have include important contacts from both of the RWJ 61233 peptides present in the structure described below. Such mimetics will favor dimerization of the EPO receptor.

Programs suitable for generating predicted three-dimensional structures from two-dimensional data include: Concord (Tripos Associated, St. Louis, MO), 3-D Builder (Chemical Design Ltd., Oxford, U.K.), Catalyst (Bio-CAD Corp., Mountain View, CA), and Daylight (Abbott Laboratories, Abbott Park, IL).

Programs suitable for searching three-dimensional databases to identify molecules bearing a desired pharmacophore include: MACCS-3D and ISIS/3D (Molecular Design Ltd., San Leandro, CA), ChemDBS-3D (Chemical Design Ltd., Oxford, U.K.), and Sybyl/3DB Unity (Tripos Associates, St. Louis, MO).

Programs suitable for pharmacophore selection and design include: DISCO (Abbott Laboratories, Abbott Park, IL), Catalyst (Bio-CAD Corp., Mountain View, CA), and ChemDBS-3D (Chemical Design Ltd., Oxford, U.K.).

Databases of chemical structures are available from Cambridge Crystallographic Data Centre (Cambridge, U.K.) and Chemical Abstracts Service (Columbus, OH).

De novo design programs include Ludi (Biosym Technologies Inc., San Diego, CA) and Aladdin (Daylight Chemical Information Systems, Irvine CA).

Those skilled in the art will recognize that the design of a mimetic may require slight structural alteration or adjustment of a chemical structure designed or identified using the methods of the invention.

- In general, chemical compounds identified or designed using the methods of the invention can be sythesized chemically and then tested for EPO activity using any of the methods described below. The methods of the invention are particularly useful because they can be used to greatly decrease the number potential mimetics which must be screened for EPO activity.
- The invention may be implemented in hardware or software, or a combination of both. However, preferably, the invention is implemented in computer programs executing on programmable computers each comprising a processor, a data storage system (including volatile and non-volatile memory and/or storage elements), at least one input device, and at least one output device. Program code is applied to input data to perform the functions

10

15

20

described above and generate output information. The output information is applied to one or more output devices, in known fashion. The computer may be, for example, a personal computer, microcomputer, or workstation of conventional design.

Each program is preferably implemented in a high level procedural or object oriented programming language to communicate with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language.

Each such computer program is preferably stored on a storage media or device (e.g., ROM or magnetic diskette) readable by a general or special purpose programmable computer, for configuring and operating the computer when the storage media or device is read by the computer to perform the procedures described herein. The inventive system may also be considered to be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner to perform the functions described herein.

FIGURE 1 is a flowchart showing a first method for identifying potential mimetics of erythropoietin using a computer system. The method uses a programmed computer comprising a processor, a data storage system, at least one input device, and at least one output device, and comprises the steps of:

- (1) inputting into the programmed computer through an input device data comprising the three-dimensional coordinates of a subset of the atoms in the peptide GGTYSCHFGPLTWVCKPQGG when the peptide is co-crystallized with a portion of the erythropoietin receptor comprising amino acids 1 to 225 of the receptor, thereby generating a criteria data set (STEP 100);
- comparing, using the processor, the criteria data set to a computer database of chemical structures stored in the computer data storage system (STEP 102);

15

25

- (3) selecting from the database, using a program suitable for searching three-dimensional databases to identify molecules bearing a desired pharmacophore (such as those described above or equivalents), chemical structures having a portion that is structurally similar to the criteria data set (STEP 104);
- outputting to an output device the selected chemical structures having a portion similar to the criteria data set (STEP 106).

FIGURE 2 is a flowchart showing a second method for identifying potential mimetics of erythropoietin using a computer system. The method uses a programmed computer comprising a processor, a data storage system, at least one input device, and at least one output device, and comprises the steps of:

- (1) inputting into the programmed computer through an input device data comprising the three-dimensional coordinates of a subset of the atoms in the peptide GGTYSCHFGPLTWVCKPQGG when the peptide is co-crystallized with a portion of the erythropoietin receptor comprising amino acids 1 to 225 of the receptor, thereby generating a criteria data set (STEP 200);
- (2) constructing, using a program suitable for generating chemical structure models (such as those described above or equivalents), a model of a chemical structure having a portion that is structurally similar to the criteria data set (STEP 202);
- (3) outputting to the output device the constructed model (STEP 204).

20 Confirmation of Biological Activity

In order to determine whether a molecule identified using the methods of the invention can act as an EPO mimetic, one or more *in vitro* or *in vivo* assays of EPO activity should be performed. For example, mimetic molecules should be able to stimulate proliferation of TF-1 cells (Kitamura et al., J. Cell Physiol. 140:323, 1985) or B6Sut cells (Greenberger et al., Proc. Natl. Acad. Sci. USA 80:2931, 1983), but preferably do not stimulate proliferation of cells which do not bear the EPO receptor. Thus, preferred mimetics do not stimulate proliferation of Mo7e cells (Avanzi et al., Br. J. Haematol. 69:359, 1988).

Potential mimetics can also be tested in a murine model of erythropoiesis. In this assay a potential mimetic is administered to normal mice which express endogenous basal levels of EPO. Reticulocytes are counted, preferably by flow cytometry, to determine whether the candidate mimetic increases reticulocyte levels. An increase in reticulocyte levels indicates that the candidate mimetic is stimulating erythropoiesis. Because the mice used in this assay already express EPO, this assay may be relatively insensitive. As an alternative, candidate mimetics can be assayed in the exhypoxic-polycythemic mouse bioassay. In this assay polycythemia is induced by conditioning mice in a hypobaric chamber to reduce endogenous EPO levels. A potential EPO mimetic can be administered to a conditioned mouse. Incorporation of ⁹⁹Fe into blood serves as a measure of erythropoiesis. This erythropoiesis can be attributed to the candidate mimetic.

The assays described above are examples of suitable assays. Other assays for EPO activity known to those skilled in the art are also useful.

In order to determine the biological activity of a candidate mimetic it is preferable to measure biological activity at several concentrations of candidate mimetic. The activity at a given concentration of candidate mimetic can be compared to the activity of EPO itself.

Structural Data

5

10

15

20

The coordinates for amino acids 1 to 225 of the human EPO receptor bound to peptide EMP1 are presented in the attached appendix in standard Brookhaven database format. Also included in this appendix is a list of van der Waals interactions. These coordinates can be used in the design and identification of EPO mimetics according to the methods of the invention.

Structure of EBP-EMP1 Complex

The extracellular fragment of human EPO receptor (EPO binding protein, EBP), consisting of residues 1-225, was expressed in Escherichia coli and purified as described

-12-

(Johnson et al., Protein Express. Purif. 7:104, 1996). Rhomboidal-shaped crystals of an EBP complex with EMP1 were obtained in orthorhombic space group P2,2,2, with cell parameters a=59.2Å, b=75.5Å, c=132.2Å, with two EBP and two peptide molecules in the asymmetric unit and a $V_N=2.8$ Å'/dalton (Matthews, J. Mol. Biol. 33:491, 1968). The crystal structure was determined by multiple isomorphous replacement (MIR) using two heavy atom derivatives (Table 1). Residues 1-2 and 19-20 of each peptide as well as residues 1-9, 21-23, 164-166, 221-225 of receptor molecule I, and residues 1-9, 21-23, 133-135, 221-225 of receptor molecule II had poor or no electron density and are excluded from the structure analyses

5

10

15

20

25

An important break in the electron density that affects the structure interpretation occurs for the three residues (Arg¹¹ -Gly²² -Pro²³) that link the amino terminal α -helix to the first β-strand in D1 of both receptor molecules. A molecular packing diagram shows the proximity of a second non-crystallographically related dimer in the crystal that gives two possibilities of how this three-residue linker may be connected. The current choice of linker connectivity is based on a structure of another independent EBP-peptide complex at higher resolution (2.5 Å), which shares a similar molecular packing, but for which the electron density is clear for these three residues. At present there are no experimental data to verify whether this N-terminal \alpha-helix exists in solution or is a crystallization packing artifact. Notably, this helical region is not observed in the published structures of hGHbp (begins at residue 32; deVos et al., Science 255:306, 1992), PRLR (begins at residue 2, without any defined secondary structure until the first β-strand, residue 6; Somers et al., Nature 372:478, 1994), the INF-yRa (begins at residue 17; Walter et al., Nature 376:230, 1995) or the tissue factor (begins at residue 3 without any defined secondary structure until the first β-strand, residue 11; Muller et al., Nature 370:662, 1994).

The EBP monomer folds into two domains, D1 and D2, that form an L-shape with the long axis of each domain aligned at approximately 90° to each other; the overall molecular dimensions are $45 \text{ Å} \times 52 \text{ Å} \times 62 \text{ Å}$. The N-terminal domain (D1, residues 10-

114) and C-terminal domain (D2, residues 119-220) are connected by a short four residue α-helix linker. Both domains are more closely related in overall topology to Fibronectin type-III (FBN-III) domains than to Ig domains (Bork et al., J. Mol. Biol., 242:309, 1994). The FBN-III fold is composed of two antiparallel β -pleated sheets, consisting of strands A, B, E and strands G, F, C and C', and is found in the two domains of the human growth hormone (de Vos et al., Science 255:306, 1992) and prolactin (Somers et al., Nature 372:478, 1994) receptors, the D1 and D2 domains of the α chain of interferon-y receptor (IFN-YRa) (Walter et al., Nature 376:230, 1995), the D2 domain of CD4 (Wang et al, Nature 348:411, 1990; Ryu et al., Nature 348:419, 1990), the two domains of tissue factor (Muller et al., Biochemistry 33:10864, 1994; Harlos et al., Nature 370:662, 1994), the third fibronectin-type repeat of tenacin (Leagy et al., Science 258:987, 1992) and the D2 domain of the chaperone protein PapD (Holmgren et al., Nature 342:248, 1989). The FBN-III topology differs from an Ig constant domain by a shift of strand D from one βsheet (strands A, B, E and D) to the other (strands G, F, C, C'), where it is defined as the C' strand. Superposition of equivalent β -sheet core residues of the D1 and D2 domains in EBP gives an r.m.s. deviation of 2.3 Å for 77 Ca pairs, which is significantly larger than the corresponding domain overlaps for hGHbp (1.1Å) and PRLR (0.8Å), and reflects a difference in the subclass of fold between the two EBP domains.

5

10

15

20

25

In D1, a short α-helix (residues 10-20), precedes the first β-sandwich that is better described as a hybrid of the FBN-III fold with an Ig fold (residues 24-114), rather than strict FBN-III topology. In this h-type fold (Wang et al., Nature 348:411, 1990; Ryu et al., Nature 348:419, 1990), the C' strand is long and interacts first with strand C and then switches to interact with strand E (where C' changes its designation to strand D) forming a four-on-four strand β-sandwich. D1 contains the two conserved disulfide bridges linking Cys (βA) to Cys (βB) and Cys (βC') to Cys (βE). The number of residues between the cysteine pairs that form the two disulfide bridges are 9 and 15 for EBP, compared to 9 and 10 in both GHR and PRLR. The longer connection between strands C' and E enables the second half of strand C' to become strand D. This h-type topology is not found in either of the two s-type GHR domains. A potential glycoylation site exists

on residue Asn^{52} which is located towards the end of the loop region connecting the βB and βC strands. Although Asn^{52} is not glycosylated in this bacterially expressed protein, an external cavity around the Asn^{52} side chain could easily accommodate a carbohydrate moiety.

5

10

15

20

25

A helical linker (residues 115-118) connects D1 to D2 (The Φ, Ψ torsion angles for the interdomain helical linker for lle¹¹³, Asn¹¹⁴, Glu¹¹⁷ and Val¹⁸ are -50° -27°, -76°, -21°, -99°, 26°, and -151°, 38° respectively.) and has been observed in other members of this receptor family, hGHbp, PRLR, IFN-γRα and tissue factor. In EBP, the domain association is further restricted by a mixed assortment of hydrogen bonding, hydrophobic interactions and one salt bridge (between Arg¹¹ and Asp¹²²) from 11 residues of D1 and 12 residues of D2 with a total buried surface [The molecular surface areas buried by interaction were calculated using the program MS (Connolly, J. Appl. Crystallog, 16:439, 1983) using a 1.7Å probe sphere and standard atomic radii (as described in Davies, et al, Ann. Rev. Biochem. 59:439, 1990). There may be some discrepancies between values reported here and other (deVos et al., Scince 255:306, 1992) published values due to use of a different algorithm (Connolly) vs. Lee et al., J. Mol. Biol., 55: 379, 1971) and probe radii. For clarity all values reported here have been calculated in the same way for better comparison between the receptors] of 950 Ų for the two domains.

D2 (residues 119-220) folds into the standard FBN-III (s-type) topology with one free cysteine and no disulfide bridges, consistent with GHR and PRLR that have three and two disulfide bridges, respectively, in D1 but none in D2. After the α -helix linker, D2 begins with an irregular coil (residues 118-126) that contains Pro^{124} which is conserved in the structures of hGHbp, PRLR, tissue factor and IFN γ -R α , and based on sequence alignment, in most class-1 and class-2 cytokine receptors (Bazan, Proc. Natl. Acad. Sci. USA 87:6934, 1990). This short coil ends with Gly¹²⁴ which has a positive ϕ (ϕ , $\Psi \approx 52^{\circ}$,40°) consistent with the equivalent Ala¹³⁶ and Ala¹⁰¹ torsion angles in hGHbp (ϕ , $\Psi \approx 63^{\circ}$,68°) and PRLR (ϕ , $\Psi \approx 58^{\circ}$,38°). The Pro¹²⁴ region forms an analogous extended bulge conformation adjacent and parallel to a corresponding bulge containing the

WSXWS motif. The WSAWS sequence forms a modified wide β -bulge (Richardson, Adv. Prot. Chem. 34:167, 1981) and is located in an extended chain region immediately preceding the βG strand that would normally connect to the membrane spanning region of the EPOR.

The quaternary structure of the complex is composed of two peptides and two receptors that form a T-shapes assembly. A noncovalent peptide dimer interacts with two receptor molecules to generate an almost perfect 2-fold symmetrical arrangement. After superposition of D2 of the two EBP molecules in the dimer, the centers of mass of the two D1 domains are only 0.8 Å apart, sufficient to perturb perfect two-fold symmetry. Separate superposition of the corresponding D1 and D2 of each receptor in the dimer results in r.m.s. deviations of 0.53 Å (105 D1 Cα pairs) and 0.47 Å (93 D2 Cα pairs).

5

10

15

20

25

The cyclic EMP1 contains a single disulfide bridge between Cys^{P6} and Cys^{P15}, which links two short β-strands (residues 4-7 and 13-16) that are connected by a slightly distorted type 1 β -turn [Pro^{P10} (i+1) and Leu^{P11} (i+2) of the β -turn have ϕ , $\Psi \approx -62^{\circ}$, -38° and -99°, -60°, respectively. The carbonyl oxygen of LeuP11 has a hydrogen bond to EBP distorting the Ψ value from its normal 0°±30° (i+2) in a standard type I β -turn.] consisting of residues Gly^{P9}-Pro^{P10}-Leu^{P11}-Thr^{P12}. Each peptide has a very close association with its other peptide partner and buries 320 Å of its 1220 Å² molecular surface in this interaction (Connelly, J. Appl. Crystallog, 16:439, 1983; Davies et al., Ann. Rev. Biochem. 59:439, 1990; Richards, J. Mol. Biol. 55:379, 1971). Four hydrogen bonds between the mainchains of the two peptides results in formation of a four-stranded anti-parallel βpleated sheet (Table 2). Two symmetric hyrdophobic cores are assembled by peptide dimerization and are comprised of the disulfide bridges and the side chains of Tyr^{P4}, Phe^{P2} and Trp^{P13}. The construction of each hydrophobic core resembles a box which places the aromatic rings of PheP4, TrpP13 and TyrP4 (from the other peptide) and the disulfide bridge (Cys^{P6}-Cys^{P15}) at the corners. The two glycine residues at either end of the peptide are not structured.

The peptide dimer is embedded in a deep crevice between two EBP receptor molecules. A portion of each peptide monomer interacts with both receptor molecules. The binding sites of each EBP are practically identical due to the 2-fold symmetric interactions imposed on binding the peptide dimer. The four major contact areas on EBP come from segments on four loop regions (L1, L3, L5, L6) that connect strands A to B (L1 residues 33-34) and F to G (L6 residues 90-94) in D1 and strands B to C (L5 residues 148-153) and F to G (L6 residues 203-205) in D2. The total buried molecular surfaces in the peptide-EBP assembly are 840 Å² and 880 Å² for the two peptides and EBP's, respectively. The peptide-EBP interaction can be separated into distinct hydrophobic (67%) and polar (33%) areas. A hydrophobic core is formed between the peptide and receptor and comprises Phe93, Met150 and Phe205 from one EBP molecule and the peptide hydrophobic box consisting of PheP8 and TrpP13 from one peptide and TyrP4 and CysP15 from the other peptide. The polar interactions are located mainly at the bottom of the binding crevice and are mainly with loop L5 in D2. Five of the six hydrogen bonds are between the mainchain of the β-turn residues Gly^{P9}, Pro^{P10} and Leg^{P1} from one peptide with the mainchain and sidechain hydroxyl of conserved TyrP4, which crosses over its other peptide partner, to interact with loop L3 (Table 2). The EBP-EBP interaction makes a surprisingly minor contribution to the overall stability of the complex where the interreceptor buried molecular surface is only 75 Å², contributed by Leu¹⁷⁵ and Arg¹⁷² from each receptor molecule.

EMP1 is one of a family of sequences that contain several conserved residues, besides the cysteines (ELANGE, ALEXANDE MICROSCATIONS). The most structurally significant of these consensus residues appear to be Tyr^{P4} and Trp^{P13}, which along with the disulfide bridge have a major contribution to the hydrophobic core of the peptide-peptide interaction. Moreover, these two aromatic residues play a pivotal role in peptide-receptor interaction and in receptor dimerization.

Dimerization of EBP in Solution

5

10

15

2û

25

10

15

20

25

To explore the interaction of EMP1 with EBP in solution we employed a [1,4-di-(2'-pyridyldithio DPDPB, bifunctionalsulphydryl reactive crosslinker propionamido) butanel, in an attempt to stabilize a peptide-dependent dimeric structure. The choice of crosslinker was based on previous experiments with amine-reactive crosslinkers that were found to inactivate EBP. EBP contains a single free sulphydryl (Cys¹⁸¹) in D2 which is potentially reactive to crosslinking reagents (The DPDPB crosslinker itself does not inactivate the EPO binding potential of EBP nor the proliferative properties of EMP1). A dimeric EBP product is formed by co-incubation of EMP1, DPDPB and EBP. The amount of dimeric product increases with peptide concentration and no significant dimer product is observed in the absence of peptide. DPDPB-crosslinked products formed through disulfide-exchange reactions should be readily reversible by reduction as is seen for the covalently-linked EMP1-mediated dimer. Furthermore, we have constructed a covalently-linked dimeric form of EMP1 that demonstrates increased biological potency (Johnson et al, in preparation). The Cys¹⁸¹ residues in D2 of the EBP dimer are 20.7 Å apart (Sy-Sy distance) which approximates the 16 Å length (and approximately 2 Å in bond length at each end) of the DPDPB crosslinker. Thus EMP1 mediates formation of a soluble EBP dimer complex in solution consistent with the crystal structure.

The WSXWS motif

The WSAWS sequence (residues 209-213) corresponding to the WSXWS box occurs in a β -bulge (Richardson, Adv. Prot. Chem. 34:167, 1981; Chan et al., Protein Science, 2:1574, 1993) immediately preceding β -strand G in D2. Residues in this motif do not interact with ligand, have no role in receptor-receptor interactions and are located on the opposite side of the receptor-receptor and receptor-ligand interface. The WSAWS box represents only a segment of a complex array of interactions that involves several other conserved side chains from the four-stranded β -sheet in D2. The indole ring systems of Trp²⁰⁹ and Trp²¹² point toward an external concave surface of the β -sheet and are only partially solvent exposed, whereas the Ala²¹¹ side chain points directly out into solution. The amides and hydroxyls of both Ser²¹⁰ and Ser²¹³ form hydrogen bonds with the main

-18-

chain of residues 198 and 196 of adjacent strand F in a pseudo \beta-sheet type interaction that resembles a modified wide β-bulge (Richardson, Adv. Prot. Chem. 34:167, 1981; Chan et al., Protein Science, 2:1574, 1993) where the sidechain hydroxyl rather than the carbonyl oxygen makes the β -sheet interaction. The β -bulge architecture places the two Trp residues, which are spread four residues apart, on the same side of the β -sheet and not on opposite sides as in normal β-sheet or extended chain structures. The guanidinum group of Arg¹⁹⁷ from Strand F, the central residue (Richardson, Adv. Prot. Chem. 34: 167, 1981; Chan et al., Protein Science, 2:1574, 1993) in the bulge, is positioned exactly between the two Trp indole rings to form an extended π -cation system (Kumpf et al., Science 261:1708, 1993. The center of the pyrrole ring of Trp²⁰⁹, the NE of the Arg¹⁹⁷ and the center of the benzene ring of Trp212 are positioned on a straight line with the three planes of the conjugated systems stacked parallel to each other at approximately 4 Å spacing. In addition, the aliphatic portion of the Arg¹⁹⁹ side chain has hydrophobic interactions with the indole ring of Trp²⁰⁹, completing the alternating stacking of two aromatic and two positively-charged amino acid residues. The side chain of Glu¹⁵⁷ forms a hydrogen bond with Arg¹⁹⁷ presumably to help orient the guanidinium group and add some specificity and stabilization to the system.

5

10

15

20

25

It appears then that the linear WSXWS motif identified from sequence alignments of cytokine receptors represents only a component of a more complex conformational unit that contributes a significant structural feature to D2. Aromatic residues have previously been suggested to have a stabilizing effect and play a role as a folding nuclei in structures of antiparallel β -sandwiches (Finkelstein et al., Protein Eng. 6:367, 1993). The aminoaromatic parallel stacking between the guanidinium group of arginine and the aromatic rings is a common feature in protein structures (Burley et al., Adv. Prot. Chem., 39:125, 1988; Flocco et al., J. Mol. Biol., 235:709, 1994), but a parallel triple stacking of π -cation systems is rare (Kim et al., Biochemistry 32:8465, 1993) although observed in other class-1 cytokine receptors, hGHbp and PRLR.

10

15

20

25

30

The structural equivalents of the WSXWS motif in hGHbp (YGEFS) and PRLR (WSAWS) are involved in an even more intricate and complex array of π -cation interactions. The π -cation system is extended in hGHbp and PRLR to include an additional aromatic residue (Trp186 for hGHbp and Trp186 for PRLR) from the loop region that links βC and $\beta C'$ in D2 and a positively-charged residue (Arg²¹¹ for hGHbp and Arg147 for PRLR) that stacks between the Trp and the second aromatic residue. The additional Arg residue is contributed either from the βF strand as in hGHbp (Arg²¹¹) or from BC as in PRLR (Arg147); the glutamine residue that hydrogen bonds and orients the arginine also switches strands. Sequence alignments suggest that this Arg-Gln switch could be common to other members of the class-1 cytokine receptor family. The extended π -cation system in hGHbp and PRLR consists of five positively charged and three aromatic residues stacked in an alternating order which comprises of Lys215, Tyr222, Arg²¹³, Phe²²⁵, Arg²¹¹, Trp¹⁸⁶, Lys¹⁷⁹ for hGHbp and Lys¹⁸⁵, Trp¹⁹¹, Arg¹⁸³, Trp¹⁹⁴, Arg¹⁴⁷, Trp156, Lys149 for PRLR. The first aromatic-Arg-aromatic trio are approximately 4Å apart, as in EBP, but the second system is stacked closer together at approximately 3.6 Å spacings consistent with π - π interaction (Burley et al., Adv. Prot. Chem., 39:125, 1988; Flocco et al., J. Mol. Biol., 235:709, 1994). The outer lysines also use the aliphatic portions of their side chains to form hydrophobic interactions with the aromatic rings. Based on sequence alignments with other members of the class-1 cytokine receptor superfamily, such structurally extended π -cation systems could exist in human thrombopietin, IL-6 and ciliary neurotrophic factor receptors, and in human IL-4 receptor based on structural modeling (Gustchina et al., Proteins 21:140, 1995). Although IFNγRα and tissue factor do not have a WSXWS motif, the corresponding sequences TTEKS (residues 213-217) for IFN-γRα (Walter et al., Nature 376:230, 1995) and KSTDS (residues 201-205) for tissue factor (Muller et al., Biochemistry 33:10864, 1994; Harlos et al., Nature 370:662, 1994), maintain a very similar β -bulge. The consensus sequence among these five x-ray structures indicates that a serine or threonine in positions 2 and 5 maintain a common set of hydrogen bonds between their side chain hydroxyls and the mainchain of the neighboring strand. Only in hGHbp is there no hydroxyl-containing residue in position 2, but Ser²²⁶ still maintains the equivalent interaction. A Ser²²⁶ to Ala

10

15

25

mutation abrogates hGHR binding to hGH, and its expression on the cell surface is drastically reduced (Baumgartner et al., J. Biol. Chem., 269: 29094, 1994). In GM-CSFR α and IL-2R β , point mutations of the serine residues cause a substantial decrease in cell surface expression but little or no effect on ligand binding (Ronco et al., J. Biol. Chem. 269:277, 1994; Miyazaki et al., EMBO Journal 10:3191, 1991).

Conservation of the WSXWS motif in EPOR or its equivalent in other members of the class 1 cytokine receptors has been proposed to be essential for biological activity and was thus assumed to be part of the receptor binding site (Yoshimura et al., J. Biol. Chem. 267:11619, 1992; Quelle, Mol. Cell. Biol. 12:4553 1992). For EPOR, a systematic study of 100 mutations of the WSAWS sequence demonstrates that most of the mutations of the two tryptophan and serine resulted in molecules that did not reach the cell surface but were retained in the endoplasmatic reticulum (Hilton et al., Proc. Natl. Acad. Sci. USA 92:190, 1995; Hilton et al., J. Biol. Chem. 271:4699, 1996). Furthermore, an Ala²¹¹ to Glu mutation in the WSAWS sequence resulted in better transportation from the ER to the Golgi and a 3-5 fold increase of the number of EPOR molecules on the cell surface compared to the wild-type (Hilton et al., Proc. Natl. Acad. Sci. USA 92:190, 1995; Hilton et al., J. Biol. Chem. 271:4699, 1996). These results support our conclusion that the WSXWS sequence plays an important role in the structure and folding of D2 in EPOR and other related receptors.

20 Comparison with other cytokine-receptor complex structures

The overall quaternary structure of the peptide-EBP complex substantially from the equivalent arrangement in the hGH-hGHR complex. The non-symmetric nature of the single four-helix-bundle structure of the growth hormone ligand results in an asymmetric homo-dimerization of the receptor that corresponds to a 159° rotation between receptors compared to the almost perfect 2-fold (180°) rotation for the EBP-peptide complex. The tertiary arrangement of domains within EBP and hGHbp is also somewhat different. When the equivalent EBP and hGHbp D2 domains are superimposed on each other, their corresponding D1 domains differ by a 12° rotation and a 4.3Å translation.

10

15

20

25

The mechanism of hGH binding to its receptor has been well studied (Wells, Curr. Opin. Cell Biol. 6:163, 1994; Clackson et al., Science 267:383, 1995) and is sequential. Initial high affinity (nM) binding of the hormone with one receptor results is a buried surface of 1130 Å² on the receptor. The second hGHbp2 has a substantially smaller interface (deVos et al., Science 255:306, 1992) with the second binding site on hGH and interacts only with the preformed 1:1 complex to generate buried surface areas of 740 Å² with hGH and 440 Å² with the first hGHbp1 (deVos et al., Science 255:306, 1992; (Wells, Curr. Opin. Cell Biol. 6:163, 1994; Clackson et al., Science 267:383, 1995). The binding determinants of each hGHbp are comprised of the six recognition loops (L1-L6), three of which (L1-L3) come from one end of the β -sandwich structure in D1, one from the interdomain linker and two from D2.

Although these two receptor complexes, EBP-EMP1 and hGH-hGHbp, have different dimeric arrangements, which probably in this case represent differences in the size and shape of the natural versus synthetic ligand, both receptors share equivalent ligand recognition loops, L1, L3, L5 and L6 for the EBP and L1 to L6 for the hGHbp. A nonactive PRLR, complexed with only one molecule of hGH, also uses the same contact loops (L1 to L6) (Somers et al., Nature 372:478, 1994). Based on similarity of the ligand recognition sites in hGHbp and PRLR, one would expect that the binding site of EBP, when its natural EPO ligand is bound, would extend to include two additional loops, L2 and L4, that comprise residues 59-63 (L2) between strands C to C', and residues 110-118 (L4) from the carboxyl end of βG in D1 and the interdomain linker. These six loops in EBP, hGHbp and PRLR area in structurally equivalent positions but vary in size, amino acid composition and conformation although the interacting portions of each loop (side or tip) remain similar; L1, L2, L3, L5 interact mainly with their tips and L6 with its side. In EBP, the L5 loop is three residues shorter than in hGHbp and PRLR, where the L6 loop is three and four residues longer than in hGHbp and PRLR, respectively. The L2 loop also varies (6 to 10 residues) among the three receptors but in EBP does not participate in peptide binding, and in hGHbp is partially disordered, although it does contact the hormone. In one respect, this situation is similar to the complementaritydetermining regions (CDR's) in antibodies, where changes in length and sequence of the six binding loops impose specificity for different antigens, whereas the framework itself remains constant (Wilson et al., Ciba Foundation Symposium. Wiley, Chichester, 1991, Vol. 159, p. 13).

5

10

15

20

25

It has been shown for the hGH-hGHbp complex that only a subset of 9 out of 33 interacting residues that make up the structural epitope of the receptor constitute a functional epitope or hot spot (Wells, Curr. Opin. Cell Biol. 6:163, 1994; Clackson et al., Science 267:383, 1995) where high affinity binding interaction takes place. This reduced epitope is substantially smaller than the structural epitope and is comprised from residues (Arg43, Glu44, Ile103, Trp104, Ile105, Pro106, Asp163, and Trp169) which are located in contact loops L1, L3 and L5 with the most significant contribution (>4.5 kcal/mol) coming from two aromatic residues (Trp104 and Trp169) in L3 and L5 (Wells, Curr. Opin. Cell Biol. 6:163, 1994; Clackson et al., Science 267:383, 1995; Wells, Proc. Natl Acad. Sci. USA 93:1, 1996). In EBP, Phe⁹³ is equivalent to Trp¹⁰⁴ in hGHbp, as suggested previously (Wells, Curr. Opin. Cell Biol. 6:163, 1994; Clackson et al., Science 267:383, 1995; Wells, Proc. Natl Acad. Sci. USA 93:1, 1996; Jolliffe et al., Nephrol. Dial. Trans. 10; suppl. 2, 28, 1995), but there is no homologous residue to Trp¹⁶⁹ in the shorter L5 loop. In the EBP-EMP1 complex, the PhePt peptide aromatic side chain occupies the equivalent position of the Trp 169 side chain in hGHbp. One can assume that when EPO binds to its receptor, the hormone may provide an aromatic residue to the hydrophobic core of the binding interface and/or the L6 loop in EBP may play a more significant role in the hormone binding than in hGHbp, since it is 3 residues longer and contains the aromatic Phe²⁰⁵

In these three class-1 receptor structures, some loops are disordered which are in D2 for EBP for EBP (residues 164-166 in EBP1 and 133-135 in EBP2) and in D1 for both hGHbp (residues 55-58, 73-78 for hGHbp1 and 54-60, 73-75 for hGHbp2) and PRLR (residues 31-33, 84-86). Otherwise, these three class-1 cytokine receptors do not differ greatly in their over all tertiary structures; D1 and D2 have broadly similar general

10

15

20

25

arrangement in all three receptors such that the angle between the long axes of the two domains is approximately 90 degrees. I tis this arrangement of domains that allow these particular L1-L6 loops to be available for the recognition and binding of ligands. In a 2:2 complex between IFN-γ and its class-2 receptor IFN-γRα, D1 and D2 are related by a 125 degree angle, which elongates the receptor and restricts the binding determinants that can be used for interaction with hormone; the L1 loop now becomes buried in the D1-D2 interface, although the other five loops (L2-L6) are still available for ligand interaction. This elongated interdomain arrangement is also observed in tissue factor (Muller et al., Biochemistry 33:10864, 1994; Harlos et al., Nature 370:662, 1994) which has a distant relationship to the cytokine receptor superfamily.

A mutational analysis of the EBP molecule indicates that the most crucial amino acid residue for binding EPO is Phe⁹³ in the L3 loop (Jolliffe et al., Nephrol. Dial. Trans. 10:suppl 2,28, 1995). The Phe93Ala mutant shows an increase int he IC₅₀ compared to the wild-type by a factor of approximately 1000, whereas other mutants (Ser91Ala, Ser92Ala, Val94Ala, Met150Ala and His153Ala) show small relative increases in teh IC₅₀ of only 2.5-12.5 fold). The side chain of Phe⁹³ buries 66 Å² of molecular surface, which is the highest among interacting side chains. In hGHbp, the corresponding Trp104Ala mutation results in an increase in the K_d by a factor of more than 2,500 compared to the wild-type indicating the equivalent importance of this residue in hGH binding and its key contribution to the hydrophobic core of the functional epitope (Wells, Curr. Opin. Cell Biol. 6:163, 1994; Clackson et al., Science 267:383, 1995; Bass et al. Proc. Natl. Acad. Sci. USA 88:4498, 1991).

The role of dimerization on signal transduction

In the EBP-EMP1 complex structure, we surprisingly observe that a peptide, unrelated in sequence and probably in structure, to the natural ligand, can induce a biologically active dimerization of EPO receptor that promotes signal transduction and cell proliferation. Comparison of three class-1 cytokine receptor complexes, whose structures have been determined so far, suggests that when the natural EPO hormone, which is

10

15

20

25

proposed to have a structure of a four-helix bundle (Boissel et al., J. Biol. Chem. 268:15983, 1993), induces receptor dimerization, it is more likely to resemble the hGH-hGHbp assemblage. This would suggest that more than one mode of productive extracellular dimerization is permissive for intracellular dimerization of the cytoplasmic domains with two JAK2 molecules in order to initialize the cascade of events that produces the biologically relevant signal (Ihle et al., Seminars in Immunology 5:375, 1993; Klingmuller et al., Cell 80:729, 1995). The peptide-EBP structure would then represent only one possible dimeric arrangement that promotes signal transduction.

Mutant EPOR molecules, containing a single Arg to Cys mutation (Arg¹³⁰ in human and Arg¹²⁹ in murine), have been shown to form biologically active dimers in the absence of EPO (Yoshimura et al., J. Biol. Chem. 267:11619, 1992); Watowich et al., Proc. Natl. Acad. Sci. USA 89:2140, 1992; Watowich et al., Mol. Cell. Biol. 14:3535, 1994), suggesting that extracellular recptor homo-dimerization may be sufficient in itself for signal transduction. It has been shown in another system (Spencer et al., Science 262:1019, 1993) that activation of a specific set of transcription factors can be induced by the chemical crosslinking of cytoplasmic domains of modified cell membrane receptors that do not contain the extracellular and transmembrane domains. These receptors are not related to the cytokine receptor superfamily but illustrate that oligomerication plays a key role in activation of the receptor, and that the main functional role of the extracellular, ligand-binding domain is to allow (in the presence of ligand) dimerization or oligomerization and induce similar association of the cytoplasmic domains.

Mutageneses experiments originally suggested a role for the WSXWS motif in this cell signalling process (Yoshimura et al., J. Biol. Chem. 267:11619, 1992; Quelle et al. Mol. Cell. Biol. 12:4553, 1992; Chiba et al., Biochem. Biophys. Res. Comm. 184:485, 1992) possibly by promoting receptor homo-dimerization. However, truncation mutants of EPOR (Miura et al., Arch. Biochem. Biophys. 306:200, 1993) do not confirm this role for the WSXWS motif. The EBP-EMP1 complex structure shows that the WSXWS motif

10

15

20

25

of the EPOR, as for the hGH-hGHbp complex (deVos et al., Science 255:306, 1992) is located on the opposite face of the molecule from the receptor dimerization. In the absence of unliganded structures for the extracellular domains of EPOR, hGHR and PRLR, it is not possible to determine whether any conformation change occurs on ligand binding that would involve the WSXWS box. Apart from being a striking structural feature in D2, and its obvious proximity to the membrane spanning domain, one cannot rule out possible interactions of this region with some other cell surface molecules that are involved somehow in the signal transduction process.

Towards design of small molecule mimetics

The structure of the EMP1 dimer demonstrates that a peptide considerably smaller than the natural hormone can act as an agonist and induce the appropriate biological response. The peptide can be assumed to form a substantially smaller contact interface than the natural hormone with the receptor. The peptide binding site in EBP forms an almost flat surface, which is mainly hydrophobic in nature, without any cavities or charged residues that are normally essential for the specific targeting of small molecule ligands to a receptor binding site. The hGHbp study (Wells et al., Science 267:383, 1995; Wells, Proc. Natl. Acad. Sci. USA 93:1, 1996) shows that only a small part of the observed structural binding site, the so-called functional epitope (supra), contributes most of the binding energy and strongly implied that a "minimized" hormone designed to interact with this site could form sufficient interactions to activate the receptor. Furthermore, the limited site of interaction of the small agonist peptide with the EBP corresponds almost exactly to the smaller functional epitope derived from alanine scanning of hGH and hGHbp. Thus, by a different approach, we have arrived at the similar conclusion that a small number of key interactions can contribute to a functional epitope on a receptor. Understanding of this simplified interaction surface can be now combined with further mutational studies to assist in identifying the most crucial residues in the functional epitope, and consequently provide a more practical target for drug design.

5

10

15

20

25

30

The crystallographic data is summarized in Table 1. Native crystallographic data were collected on a Siemens multiwire area detector mounted on an Elliott GX-18 generator, operating at 40kV and 55mA, with a crystal-to-detector distance of 120mm. Two derivative data sets were collected on a MAR image plate mounted on a Siemens generator operating at 50kV and 80mA, with crystal-to-image plate distance of 150mm. Data were integrated, scaled and reduced using the programs XENGEN (Howard et al., J. App. Cryst. 20:383, 1987) for the native data and DENZO/SCALEPACK (Otwinowski et al., SERC Darsbury Laboratory, Warrington, 1993) for the derivative data. Initial multiple isomorphous replacement anomalous scattering (MIRAS) phases were calculated to 3.1 Å using the program package PHASES (Furey, American Crystallographic Association Fortieth Anniversary Meeting, New Orleans, LA, 1990) with a mean figure of merit of 0.64 (25.0-3.1 Å). Phases were refined in PHASES using the solvent flattening protocol to a mean figure of merit of 0.92 (25.0-3.1 Å). The quality of the map was generally good and most of the complex structure (94%) could be fitted using the graphics program O (Jone et al., Acta Crystallogr A47:110, 1991). The register of the amino acid residues was verified from the positions of the two disulfide bridges in D1, and the positions of the two Hg's from the mercury acetate derivative that were correctly assumed to bind to the free Cys¹⁸¹ residue. the peptide interpretation was verified from another data set from a complex between EBP and an iodinated peptide (TyrP4 was substituted for p-iodo-Phe), which diffracted to 3.3Å resolution, that in difference Fourier (Finds-F_{max})α_{MERAS} gave a clear indication of the location of the iodine atoms. The structure was refined using the slow-cooling protocol in X-PLOR 3.1(Brunger et al., Acta Crystallogr A46:585, 1990; Brunger, X-PLOR, Version 3.1: A System for X-ray and NMR, Yale Univ. Press, New Haven, CT, 1992) and rebuilt using Fo-Fc, 3Fo-2Fc and SIGMAA(Read, Acta Crystallogr. A42:140, 1986) weighted electron density maps. After every two cycles of refinement, a set of simulated annealing omit maps (7-10%) to reduce model bias was calculated and the entire structure rebuilt. After several cycles of refinement, individual temperature factors were calculated and after 10 cycles of refinement and model building, the R-value was 0.21 for 8.0-2.8 Å data with F>10 (13,984 reflections). The average thermal parameters for receptor I, receptor II and the

peptides are 10.5Å², 12.3Å and 10.7Å respectively. Only one non-glycine residue [Asn¹⁶⁴ in EBP2], located in a loop region in D1, is in a disallowed region in the Ramachandran plot. No solvent molecules were included in the model due to the moderate resolution (2.8 Å) of the structure determination.

5 Binding Contacts

10

15

Binding contacts are summarized, in part, in Table 2: Hydrogen bond interactions in the binding site of the EBP-EMP1 complex. Due to the symmetrical nature of the complex, peptide-1 and peptide-2 have equivalent interactions with the two EBP molecules. The hydrogen bond interactions were analyzed using HBPLUS (McDonald et al., J. Mol. Biol. 238:777, 1994), based upon both distance (3.9 Å cutoff) and geometrical considerations.

A number of embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrated embodiment, but only by the scope of the appended claims.

all.con		Thu J	pr 25	15	:08:	07 19	96	1	
EBP 1	-PEPTI	DEl							
VDW	1 LEU		CB		PHE	308	CE1	1	3.95
VDW VDW	1 LEU 1 PHE		CB 、 CE1	4	PHE	308 313	CD1	1	4.11
VDW	1 PHE		CZ.	4	TRP	313	CH2 CH2	1 1	3.74 3.98
VDW	1 PHE		.CZ	4	TRP	313	CZ2	i	4.08
VDW VDW		149	CA	4	GLY	309	0	1	3.59
VDW	1 PRO	-	CB C	4	GLY GLY	309 309	0	1	3.49
VDW	1 MET		N	4	PRO	310	Ö	1	3.66 3.35
VDW	1 MET		N	4	PRO	310	C	ī	3.62
VDW VDW	1 MET		CA CA	4	LEU	311	0	1	3.41
VDW	1 MET		CA	4	LEU	309 311	o C	1	3.78
VDW	1 MET		CG	4	PHE	308	CD2	1	3.87 3.50
VDW	1 MET		CG	4	PHE	308	CB	ī	3.70
VDW VDW	1 MET		CG SD	4	PHE	308	CG	1	3.79
VDW	1 MET		SD	4	PHE	308	CD2 C	1	3.52
VDW	1 MET	150	SD	4	THR	312	CA	1	3.55 3.58
VDW	1 MET	150	SD	4	TRP	313	N	ĩ	3.75
VDW VDW	1 MET	150 150	SD SD	4	PHE	308	CA	1	3.91
VDW	1 MET	150	CE	4	PHE	308 308	CB CD2	1 1	4.03 3.45
VDW	1 MET	150	CE	4	TRP	313	CE2	î	3.45
VDW VDW	1 MET	150	CE	4	PHE	308	CE2	1	3.79
VDW	1 MET	150 150	CE CE	4	TRP	313 313	CD2	1	3.83
VDW	1 MET	150	CE	4	TRP	313	NE1 CZ2	1 1	3.91
VDW	1 MET	150	С	4	LEU	311	0	i	4.10 3.41
VDW	1 THR		N	4	LEU	311	0	ì	3.45
VDW VDW	1 THR 1 THR		CA CB	4	PRO	310	0	1	3.82
VDW		151	OG1	4	PRO	310 311	O CD2	1 1	3.56
VDW	1 THR	151	OG1	4	LEU	311	CA	1	3.43 3. 9 1
VDW	1 THR		CG2	4	PRO	310	0	1	3.60
VDW VDW	1 SER 1 HIS	152 153	CB ND1	4	LEU	311	0	1	3.54
SHORTVDW	1 HIS	153	CEl	4	THR	311 312	0 0G1	1 1	3.57 2.87
VDW	1 HIS	153	CE1	4	THR	312	CB	i	3.48
VDW VDW	1 HIS	153	CE1	4	THR	312	CA	1	3.76
VDW	1 HIS 1 PHE	153 205	NE2 CE2	4	THR	312	0G1	1	3.57
VD#	1 PHE		CZ	-	PHE	308 308	CZ CE2	1	3.90 3.40
VDW	1 PHE	205	CZ	4	PHE	308	CZ	1	3.53
VDW E	BP2-PE		63		-				
VDW	.2 SER 2 SER	591	CA CB	4	TYR TYR		OH	1	3.44
VDW		591	CB	4			CB	1	3.88 3.95
VDW .		591	OG	4	TYR		OH	ī	3.44
VDW VDW		591	OG	4	PRO		СВ	1	3.61
VDW		591 591	OG OG	4	TYR TYR		CZ	1	3.83
VDW		591	C	4	TYR		CE2 OH	1	3.84 3.62
VDW	2 SER	592	N	.4	TYR	304	CE2	i	3.66
VDW VDW		592	N	4	TYR		CZ	1	3.68
VDW		592 592	CA CB	4	TYR TYR		OH OH	1	3.80
VDW	2 SER	592	C	4	TYR		CE2	1	3.73 4.00
VDW VDW		592	0	4	TYR	304	CE2	ī	3.53
NDM NDM	2 SER 2 PHE	592 593	O CB	4	PRO		CD	1	3.59
VDW		593	CD1	4	CYS CYS		O CB	1	3.74 3.55
VDW	2 PHE		CD1	4	TYR		CD2	i	3.72

all.com	Thu Apr 25 1	5:08:07 1996	2	
VDW	5 EUT 222 CO.	4 TYR 304 CE2	1 3	1.90 3.71
	2 FBD 333	4 CYS 315 CB 4 PRO 317 CG		3.17
0	C AND OAT			3.23
SHORTVDW	2 AVD 224 AGE	4 PRO 317 CD	•	
	-PEPTIDE2 1 SER 91 .CB	4 PRO 417 CB	1 3	3.84
•••	1 351 32 35	4 PRO 417 CG	1 3	3.90
VDW	1 SER 91 CB 1 SER 91 OG	4 PRO 417 CB	_	3.90
VDW VDW	1 SER 92 N	4 TYR 404 CE2	_	3.82
VDW	1 SER 92 CA	4 TYR 404 OH	-	3.85
VDW	1 SER 92 CB	4 TYR 404 OH	-	3.42 4.04
VDW	1 SER 92 CB	4 TYR 404 CZ 4 TYR 404 CE2	_	4.09
VDW	1 SER 92 CB	4 TYR 404 CE2 4 CYS 415 O	i	3.43
VDW	1 PHE 93 CB 1 PHE 93 CD1	4 TYR 404 CE2	ì	3.71
VDW	1 PHE 93 CD1 1 PHE 93 CD1	4 TYR 404 CD2	1	3.83
VDW VDW	1 PHE 93 CD1	4 CYS 415 CB	1	3.92
VDW VDW	1 PHE 93 CE1	4 CYS 415 CB	1	4.08
VDW	1 PHE 93 CE1	4 TYR 404 CE2	1	4.09 3.54
VDW	1 VAL 94 CG1	4 PRO 417 CG	1	3.54
VDW	1 VAL 94 CG1	4 PRO 417 CD 4 PRO 417 CG	1	4.11
VDW	1 VAL 94 CG2	4 PRO 417 CG	•	
	-PEPTIDE2 2 LEU 533 CB	4 PHE 408 CE1	1	3.14
SHORTVDW		4 PHE 408 CD1	1	3.77
VDW	2 LEU 533 CB 2 LEU 533 CB	4 PHE 408 CZ	1	4.00
VDW	2 LEU 533 CG	4 PHE 408 CE1	1	4.05
VDW VDW	2 LEU 533 CD1	4 PHE 408 CE1	1	3.75
VDW VDW	2 LEU 533 CD1	4 PHE 408 CZ	1	3.92
VDW	2 LEU 533 O	4 PHE 408 CE1	1	3.67 3.34
VDW	2 PHE 593 CE1	4 TRP 413 CE2 4 TRP 413 CZ2	1	3.41
VDW	2 PHE 593 CE1		i	3.67
VDW	2 PHE 593 CZ 2 PHE 593 CZ	4 TRP 413 CZ2 4 TRP 413 CB2	ī	3.96
VDW		4 GLY 409 O	1	3.79
VDW	2 PRO 649 CA 2 PRO 649 CB	4 GLY 409 O	1	3.56
VDW VDW	2 PRO 649 C	4 PRO 410 O	1	3.72
VDW	2 MET 650 CA	4 PRO 410 O	1	3.59
VDW	2 MET 650 CA	4 GLY 409 O	1	3.67 3.77
VDW	2 MET 650 CA	4 LEU 411 0	1	3.80
VDW	2 MET 650 CG	4 PHE 408 CD2 4 PHE 408 CG	1	3.92
VDW	2 MET 650 CG	4 PHE 408 CG 4 PHE 408 CB	i	4.05
VDW	2 MET 650 CG 2 MET 650 SD	4 TRP 413 N	ī	3.72
VDW	2 MET 650 SD	4 THR 412 C	1	3.75
VDW VDW	2 MET 650 SD	4 PHE 408 CD2	1	3.76
VDW	.2 MET 650 SD	4 THR 412 CA	1	3.78
VDW	2 MET 650 SD	4 PHE 408 CA	1 1	4.02 3.67
VDW	2 MET 650 CE	4 TRP 413 CE2 4 TRP 413 NE1	i	3.76
VDW	. 2 MET 650 CE	4 TRP 413 NE1 4 TRP 413 CD2	î	3.76
VDW	2 MET 650 CE 2 MET 650 CE	4 PHE 408 CD2	ī	3.83
VDW		4 TRP 413 CD1	1	3.88
VDW		4 TRP 413 N	1	3.89
VDW VDW	2 MET 650 CE 2 MET 650 CE	4 TRP 413 CG	1	3.90
VDW	2 MET 650 C	4 LEU 411 O	1	3.54
VDW	2 MET 650 C	4 PRO 410 O	1	3.57
VDW	2 THR 651 N	4 LEU 411 O	1	3.56 3.77
VDW	2 THR 651 N	4 PRO 410 C	1	3.77
VDW	2 TER 651 CA	4 PRO 410 O 4 PRO 410 O	1	3.03
SHORTVI		4 PRO 410 C	î	3.98
VDW VDW	2 THR 651 CB 2 THR 651 CB	4 LEU 411 CA	ī	4.02
VDW	2 THR 651 OG		1	3.62
-				

all.con		:	Thu I	Apr 25	15	: 08 : 0	7 19	996	3	
VDW	2	SER	652	N	4	LEU	411	С	1	3.83
VDW	2	SER	652	CA	4	LEU	411	Ō	ī	3.51
VDW	2	SER	652	CB	4	LEU	411	Ó	ī	3.18
VDW	2	SER	652	CB	4	LEU	411	Ċ	ĩ	4.09
VDW	2	SER	652	OG.	4	THR	412	CB	i	3.73
SHORTVDW	2	HIS	653	.CE1	4	THR	412	OG1	ī	3.00
VDW	2	HIS	653	CE1	4	THR	412	CB	ī	3.91
PEP	TI	DE1-1	PEPT:	IDE2					_	0.52
SHORTVDW	3	THR	303	0G1	4	HIS	407	CB	1	2.94
VDW	3	THR	303	OG1	4	HIS	407	CA	1	3.61
VDW	3	TYR	304	CB	4	CYS	406	0	ī	3.86
VDW	3	TYR	304	CD1	4	TRP	413	CZ3	1	3.81
VDW	3	TYR	304	CD1	4	TRP	413	CH2	ī	3.94
VDW	3	TYR	304	0	4	CYS	406	N	1	3.33
VDW	3	TYR	304	0	4	CYS	406	0	1	3.47
VDW	3	TYR	304	0	4	SER	405	CA	1	3.57
VDW	3	SER	305	CA	4	TYR	404	0	1	3.51
VDW	3	SER	305	С	4	TYR	404	0	1	3.77
VDW	3	CYS	306	0	4	THR	403	CB	1	3.50
VDW	3	CYS	306	0	4	TYR	404	CB	1	3.54
VDW	3	CYS	306	0	4	TYR	404	CD1	1	3.59
VDW	3	CYS	306	0	4	TYR	404	CA	1	3.75
VDW	3	CYS	306	CB	4	CYS	406	SG	1	3.81
VDW	3	CYS	306	SG	4	CYS	406	SG	1	3.75
VDW	3	CYS	306	SG	4	CYS	406	CB	1	4.06
VDW	3	PHE	308	CEl	4	TYR	404	OH	1	3.93
VDW	3	PHE	308	CE1	4	TYR	404	CE1	1	4.08
VDW	3	TRP	313	CG	4	TRP	413	CD1	1	3.85
SHORTVDW	3	TRP	313	CD1	4	TRP	413	CD1	1	3.04
VDW	3	TRP	313	CD1	4	TRP	413	NE 1	1	3.37
VDW	3	TRP	313	CD1	4	TRP	413	CG	1	4.09
VDW	3	TRP	313	NE1	4	TRP	413	CD1	1	3.31
VDW	3	TRP	313	CZ2	4	CYS	415	SG	1	3.84
VDW	3	TRP	313	CH2	4	CYS	415	SG	1	3.83
VDW	3	CYS	315	SG	4	TRP	413	CZ2	1	3.59
VDW	3	CYS	315	SG	4	TRP	413	CE2	1	3.95
VDW	3	CYS	315	SG	4	TRP	413	CH2	1	4.00
VDW	3	GLN	318	CD	4	GLN	418	NE2	1	3.28
VDW	3	GLN	318	OE1	4	SER	405	CB	1	3.80

ATOM

MOTA

MOTA

CD2 LEC

LEC

LEU

C

69

18

18

16

Thu Apr 25 12:27:47 1996 bref21c.pdb THE COMPLEX BETWEEN THE EXTRACELLULAR DOMAIN OF ERYTHROPOLETIC REMARK RECEPTOR (EBP) AND AN AGONIST EPO MIMETIC PEPTIDI: 1 (EMF1) REMARK REMARK **** WARNING **** RESIDUES 21-23 (521-523) and 164-166, 633-6:6 HAVE WEAK OP NO ELECTRON DENSITY MAP AND HAVE BEEN MODELED REMARK INTO THE STRUCTURE. THESE RESIDUES HAVE A HIGH B OF 90. REMARK REMARK THE STRUCTURE CONSISTS OF TWO RECEPTOR (RESIDUES 10-220, 510-720) REMARK AND PEPTIDE (RESIDUES 303-318, 403 418) MOLECULES.

1 N LYS 10 40.090 29.257 22.042 1.00 22.57 REMARK MOTA 39.634 30.133 20.962 1.06 23.43 10 ATOM A. LYS 38.753 29.361 19.979 1.90 22.87 10 MOTA 3 CB LYS 38.334 30.155 18.735 1.00 22.92 CG LY5 10 ATOM 4 29.212 17.552 1.00 24.27 LYS 10 38.119 ATOM 5 CD 28.015 17.890 1.00 26.55 37.165 10 ATOM 6 CE LYS 35.685 28.367 17.998 1.00 26.18 7 N2 LYS 10 ATOM 38.921 31.427 21.420 1.00 22.91 8 С LYS 10 MOTA 32.442 21.636 1.00 24.17 39.589 ATOM 9 0 LYS 10 31.386 1.00 21.40 21.640 37.602 ATOM 10 N PHE 11 32.588 22.026 1.00 13.56 36.868 PHE 11 ATOM 11 CA 35.549 32.257 22.725 1.00 19.07 PHE 11 ATOM 12 CB 34.497 22.609 1.00 20.24 PHE 33.362 13 CG 11 ATOM 34.862 34.717 22,670 1.00 19.49 CD1 PHE 11 14 ATOM 1.00 19.51 33.038 22.400 CD2 PHE 33.142 :5 ATOM 22.527 35.728 1.00 19.64 CE1 PHE 33.910 11 ATOM 16 22.257 1.00 20.10 32.180 34.041 17 CE2 PHE 1: ATOM ..00 19.48 35.395 22.321 18 ÇZ PHE 11 32.568 MOTA 1.00 19.32 22.887 PHE 11 37.644 33.56? ATOM 19 34.740 1.00 18.89 22.516 PHE 11 37.77E MOTA 20 33.106 1.00 20.71 38.181 24.016 GLU 21 MOTA 1.00 20.59 24.886 12 38.905 34.036 22 CA GLU ATOM 26.246 1.00 21.48 GLU 39.253 33.423 CB 12 MOTA 23 27.123 1.00 23.60 34.309 CG GLU 12 40.185 24 ATOM 1.00 25.09 35.301 39,455 29.056 25 CD GLU 12 ATOM 28.275 40.024 36.417 26 OE1 GLU 12 ATOM 34.952 28.589 1.00 21.05 27 OE2 GLU 12 38.356 ATOM 24.172 1.00 19.22 GLU 40.137 34.539 12 28 С ATOM 40.513 35.703 24.334 1.00 18.49 GLU 12 ATOM 29 0 40.730 33.687 23.341 1.00 17.67 SER 13 MOTA 30 N 34.094 22.571 1.00 16.71 41.903 CA SEF. 13 ATOM 31 32.898 21.851 1.00 18.51 42.522 ATOM 32 CB SER 13 1.00 23.19 32.959 42.256 20.459 MOTA 33 OG SEE 13 41.570 35.202 21.554 1.00 15.57 SER 34 С 13 MOTA 21.546 1.00 15.13 42.239 36.248 SEF. 13 ATOM 35 0 LYS 40.563 34.955 20.698 1.00 12.00 N 14 ATOM 36 19.675 40.117 35.912 1.00 8.51 37 CA LYS 14 ATOM 39.063 25.287 13.769 1.00 5.96 LYS 14 38 CB MOTA 34.366 17.714 33.862 15.761 CG 39.629 1.00 2.36 LYE 14 39 MOTA CD 38.566 1.00 2.00 LYS 14 40 MOTA 39.191 33.270 15.496 ...00 2.27 CE. LYS 14 ATOM 41 38.193 32.742 14.528 1.00 2.00 NZ LYS 14 ATOM 42 39.586 37.198 20.295 1.00 3.05 С LYS 14 MOTA 43 38.290 19.755 39.782 1.00 7.15 MOTA 44 0 LYS 14 38.920 37.053 21.442 1.00 11.98 ATOM 45 N ALA 15 38.375 38.188 22.194 37.571 37.697 23.378 1.00 12.13 MOTA 46 CA ALA 15 1.00 11.49 47 CB ALA 15 ATOM 1.00 12.49 38.960 22.666 39.592 MOTA 48 C ALA 15 22.535 39.683 40.189 ATOM 49 O ALA 15 38.207 23.167 1.00 13.97 50 'N ALA 16 40.560 ATOM 41.792 38.796 23.615 1.00 14.37 MOTA 51 CA ALA 16 42.771 37.710 24.052 1.00 14.76 52 CB ALA 16 MOTA 1.00 15.45 42.361 39.56? 22.426 ALA 16 ATOM 53 42.624 40.759 22.537 1.00 15.35 0 ALA 16 MOTA 54 1.50 16.12 17 38.896 21.274 42.444 ATOM 55 N LEU 1.00 15.92 39.467 20.042 43,007 ATOM 56 CÀ LEU 39.428 13.910 1.00 15.72 57 CF LET 43.013 ATOM 58 CG 44.204 37.485 13.662 1.00 17.46 ATOM 45.474 38.294 18.506 1.00 15.45 CD1 LEU ATOM 59 17 17 17 36.462 13.774 1.00 16.32 MOTA 60 44.360 40.741 42.374 19.512 LEC ATOM 61 42.985 41.433 18.711 1.00 15.31 o LET ATOM 41.136 41,018 19,908 1.06 17.34 63 N LEU 12 MOTA 40.434 42.210 19.443 .00 15.72 MOTA CA LEU 18 5.00 13.72 41.367 19.022 ATOM 65 CB LEU 18 28.999 1.00 9.76 28.725 41.263 17.640 LEU ATOM 66 CG 18 ATOM 57 CD1 LEU 18 37.235 41.260 17.329 ..00 10.13

39.422

42.117

39.876 44.375 20.257

40.393 43.284

15.625

20.500

3.00 17.38

..00 19.32

bref21c.pdb			Thu	Apr 25 12	2:27:47	1996	2	
ATOM	71 N	ALA	19	40.921	42.981	21.680	1.00 19.88	;
MOTA	72 C		19	40.925	43.941	22.789	1.00 22.64	5
ATOM	73 C	B ALA	19	41.560	43.331	24.041	1.00 22.75	6
ATOM	74 C	ALA	19	41.601	45.273	22.445	1.00 25.13	έ
ATOM	75 0	ALA	19	42.026	45.499	21.294	1.00 25.03	3
MOTA	76 N		20	41.649	46.164	23.453	1.00 28.77	7
ATOM	77 C		20	42.246	47.514	23.323	1.00 28.51	ó
ATOM	78 C		50.	41.529	48.505	24.310	1.00 28.93	6
MOTA	79 C		20	43.770	47.526	23.562	1.00 27.54	5
MOTA	80 O		20 21	44.438 44.326	46.484	23.505	1.00 27.85	Ė
ATOM	82 C		2:	45.765	48.699 48.784	23.848	1.00 90.00	?
ATOM	83 C		21	46.562	48.353	22.819	1.00 90.00	5 6
ATOM	84 C		21	45.827	48.428	21.446	1.00 90.00	5
ATOM	85 C		21	45.719	49.838	20.863	1.00 90.00	6
ATOM	86 N	E ARG	21	44.765	50.675	21.591	1.00 90.00	7
MOTA	87 C		21	43.448	50.471	21.610	1.00 90.00	6
MOTA		H1 ARG	21	42.915	49.448	20.926	1.00 90.00	7
ATOM		H2 ARG	21	42.669	51.270	22.350	1.00 90.00	7
ATOM	90 C		21	46.298	50.118	24.590	1.00 90.00	5
MOTA	91 0		21	45.875	51.199	24.132	1.00 90.00	S
ATOM	92 N		22	47.158	50.016	25.614	1.00 90.00	7
atom atom	93 C 94 C		22	47.824	51.171	26.193	1.00 90.00	5
ATOM	94 C 95 O		22 22	49.053 48.939	51.371	25.314	1.00 90.00	ó
ATOM	96 N		23	50.230	51.174 51.765	24.089 25.872	1.00 90.00	3
ATOM	97 C		23	50.318	52.564	27.119	1.00 90.00	ó
ATOM	98 C		23	51.451	51.971	25.062	1.00 90.00	6
ATOM	99 C	B PP.O	23	51.713	53.452	25.287	1.00 90.00	5
ATOM	100 C	G PRO	23	51.527	53.517	26.850	1.00 90.00	5
ATOM	101 C		23	52.681	51.167	25.544	1.00 90.00	Ę.
ATOM	102 0		23	52.560	50.067	26.123	1.00 90.00	3
ATOM	103 N		24	53.863	51.758	25.308	1.00 28.27	7
MOTA		A GLU	24	55.136	51.178	25.741	1.00 24.32	ó
MOTA MOTA	105 C		24	56.332	52.009	25.238	1.00 24.01	6
ATOM	100 C		24 24	56.479 56.710	52.149 50.822	23.723	1.00 25.03	6
ATOM		E1 GLU	24	57.171	50.954	22.959 21.793	1.00 24.22	6 S
ATOM		E2 GLU	24	56.430	49.692	23.478	1.00 18.50	5
MOTA	110 C		24	55.117	51.264	27.268	1.00 23.39	5
ATOM	111 0		24	54.874	52.365	27.829	1.00 24.36	3
ATOM	112 N	GLU	25	55.342	50.124	27.925	1.00 18.35	7
ATOM	113 C	A GLU	25	55.371	5C.058	29.377	1.00 14.09	5
ATOM		B GLU	25	53.962	49.818	29.907	1.00 17.09	5
ATOM		C CLU	25	53.789	49.985	31.410	1.00 22.21	ó
ATOM		D GLU	25	53.199	51.348	21.799	1.00 27.17	÷
ATOM ATOM		E1 GLU E2 GLU	25	53.461	52.355	21.057	1.00 27.15	5
ATOM	119 0		25 25	52.461 56.249	51.401 48.872	32.837 29.725	1.00 26.11	÷
ATOM	120 0		25	56.056	47.779	29.181	1.00 14.38	3
ATOM	121 N		26	57.246	49.098	30.572	1.00 8.48	=
ATOM		A LEU	26	58.147	48.034	21.001	1.00 5.93	ž
ATOM	123 C	B LET	25	59.398	49.624	31.652	1.00 4.03	é
ATOM		G LEU	26	60.719	47.880	31.488	1.00 2.00	4
ATOM		D1 LEU	26	61.537	48.145	32.704	1.00 4.41	÷
MOTA		D2 LET	26	60.535	46.401	21.317	1.00 2.00	÷
ATOM	127 0		26	57.409	47.188	32.030	1.00 6.68	•
ATOM	128 .0		26	56.951	47.727	23.041	1.00 9.43	3
atom atom	129 N	i leu La leu	27 27	57.31C 56.612	45.880 44.996	21.797	1.00 5.17	7
ATOM		B LET	27	55.428	44.334	22.035	1.00 5.71	ě
ATOM		G LET	27	54.281	45.263	21.673	1.00 10.34	•
ATOM		D1 LET	2~	53.101	44.428	31.125	1.00 10.81	:
MOTA	134	D2 LEU	27	53.871	46.130	22.906	1.00 7.08	÷
ATOM	135 0	: LET	27	57.454	43.923	33.397	1.00 7.41	:
ATOM		LEU	27	58.003	43.037	32.742	1.00 7.62	
ATOM		N TYS	28	57.460	43.964	34.726	1.00 7.42	:
ATOM		CA CYS	28	58.208	43.02?	35.554	1.00 4.67	•
ATOM		CYS	28	57.246	42.359	36.529	1.00 4.38	÷
atom atom		D CYS	28 28	56.217 59.26€	42.345	25.861	1.00 2.56	:
ATOM		SG CYS	28 28	60.429	43.791 44.763	26.357 35.358	1.00 3.64	;
ATOM		N PHE	23	57.599	41.155	35.977	1.00 2.00	16
ATOM		CA PHE	29	56.817	40.403	37.943	1.00 2.00	÷
ATOM	145	CB PHI	25	55.474	39.899	37.322	1.00 4.36	•
ATOM		CG PHI	29	55.58€	38.643	36.437	1.00 3.43	•
MOTA		CD1 PHE	29	55.493	37.369	26.990	.00 2.00	
MOTA	148	CD2 PHE	29	55.790	38.747	25.058	00 2.30	4

bref21	c.pdl	•		Thu	Apr 25	12	: 27 : 47	1996		3	
ATOM		CEl		29	55.6		36.243	36.206	_		÷
ATOM		CE2		29	55.9		37.616	34.266 34.843			÷ ÷
MOTA		cz	PHE	29 29	55.8 57.6	-	36.365 39.260	34.843	-		•
atom Atom		င ၇	PHE PHE	29	58.7		38.897	27.957	1.00 2	.00	ŧ
ATOM ATOM		ĸ	THR	30	57.3	340	38.814	39.766			7
MOTA		CA	THP.	30	58.0		37.694	40.463			÷
MOTA	156	CB	THF.	30.	58.		38.116	41.820	-		é E
MOTA	157		THR	30	59.		36.982	42.408		.00	ś
ATOM	158		THP. THP.	30 30	57.° 56.		35.661 36.601	40.674			é
atom Atom	159 160	0	THR	30	55.		36.924	40.814	1.00 8	3.70	3
ATOM ATOM	161	N	GLU	31	57.	342	35.326	40.665		.95	7
TOM	162	CA	GLU	31	56.		34.219	40.786	_	3.18	€ ÷
MOTA	163	CB	GLU	31	56.		33.240	39.650 38.286		7.89 8.99	6
MOTA	164	CG	GLU GLU	31 31		490 651	33.821 32.750	37.248	1.00 10		6
MOTA MOTA	165 166	CD OE1	GLU	31		538	32.875	36.395	1.00 1		à
ATOM	167		GLU	31	55.	916	31.753	37.302	1.00 1		3
ATOM	168	С	GLU	31		453	33.432	42.079		8.38 9.78	6 8
MOTA	169	0	GLU	31		437	32.940 33.064	42.582 42.416		7.19	7
MOTA	170	N CA	ARG ARG	32 32		678 006	32.390	43.670		8.64	ŧ,
atom atom	171 172	CB	ARG	32		844	31.154	43.405	1.00	9.16	5
ATOM	173	ÇG	ARG	32	58.	284	30.364	42.261	1.00 1		ó
ATOM	174	CD	ARG	32		376	28.894	42.469	1.00 1		5 7
MOTA	175	NE	ARG	32		070	28.271	42.295	1.00 1		3
ATOM	176	CZ	ARG	32 32		.328 .763	28.350 29.036	41.187	1.00 1		7
ATOM	177		ARG 2 ARG	32		. 145	27.734	41.128	1.00 1		7
ATOM ATOM	178 179	C	ARG	32		. 834	33.536	44.224	1.00	9.21	6
ATOM	180	õ	ARG	32	59	.004	34.526	43.520	1.00 1		8
MOTA	181	N	LEU	33		.382	33.499	45.416	1.00	7.72 8.01	7
ATOM	182	CA	LEU	33 33		.084 .536	34.736 35.403	45.716 46.986	1.00	7.85	6
MOTA	183 184	CB CG		33		.323	36.310	46.699			6
ATOM	185		1 LEU	33		.061	35.584	47.032	1.00	3.91	6
ATOM	186		2 LEU	33	58	.381	37.604	47.464		2.00	6
ATOM	187	c	LEU	33		.610	34.893			8.52	€ ô
ATOM	188	0	LEU	33		.269	35.702 34.174			6.25	7
MOTA	189 190	N CA	GLU	34 34		.130	34.174			8.09	5
ATOM ATOM	190	CB		34		.315	33.005	44.733	1.00	10.89	5
ATOM	192	CG		34	63	.518	31.931	45.547			5
ATOM	193	CD		34		. 754	30.858			21.61 22.26	5 8
MOTA	194		1 GLU	34		810	30.224 30.645			22.26	3
ATOM	195		2 GLU	34 34		3.082 3.672				7.89	ě
ATOM	196 197		GLU	34		1.413				10.91	:
ATOM	198			35		2.978		41.93	1.00	6.40	7
ATOM	199			35	6	2.981				4.88	5
MOTA	200	C		35		2.215				5.00	6
ATOM	201			35		0.678 n 055				6.69 6.86	Ŷ
ATOM	202 203		D1 ASP	25 35		0.055 0.102				2.00	ě
MOTA MOTA	203		ASP	3:		2.33		6 40.01	5 1.00	3.42	ž.
ATOM	205		ASP	2:	ં દે	1.563	37.15			4.41	Ę
MOTA	206	5 · N		31		2.677				2.00 2.00	7
ATOM	207			30		2.098				2.00	÷
ATOM ATOM	208 209			3		2.21				2.40	ē.
ATOM	210		D1 LEU			0.99			5 1.00	2.31	÷
ATOM	21		D2 LEU	3		3.18	41.94	3 28.76	2 1.00		÷
ATOM	21		LEU	3	6 6	2.11					
MOTA	21	2 0	120			3.07					
ATOM	21					1.03					i ş
MOTA	21		A VAL			60.96 59.86					
MOTA MOTA	2i 21		:9 VAL :G1 VAL			59.86 50.00					
ATOM			GI VAL	. 3	- 9	59.95					5
ATOM				. 3	, -	50.55	5 39.9	70 34.3	29 1.00	3.99	÷
ATOM	22	0 0	. VAL	. 3	7	59.73					
ATOM						61.20					
MOTA			CA CYS			60.83 60.76					
MOTA MOTA			CYS			61.59					
ATOM		25 - 1	CB CYS		38	51.80	e 42.9	75 23.2 83 34.9			

bref2	lc.p	đЪ		Thu	Apr 25 1	2:27:4	7 1996	4	
ATOM	227	N	PHE	39	59.811	42.540	30.742	1.00 4.35	
ATOM	228	CA	PHE	39	59.621	42.507	29.286	1.00 5.38	•
ATOM	229	CB	PHE	39	58.865	41.225	28.900	1.00 4.80	
ATOM ATOM	230 231	CC	PHE	39	57.461	41.198	29.411	1.00 7.63	•
ATOM	232		PHE	39 39	56.416 57.190	41.686	28.636	1.00 8.61	÷
ATOM	233		PHE	39	55.123	40.807 41.795	20.709	1.00 7.97	•
ATOM	234		PHE	39	55.896	40.917	29.153 31.228	1.00 9.47	•
ATOM	235	CZ	PHE	39	54.868	41.411	30.451	1.00 3.33	: :
MOTA	236	C	PHE	39	58.826	43.713	23.794	1.00 3.75	
ATOM ATOM	237 238	0	PHE	39	58.262	44.451	29.560	1.00 4.23	3
ATOM	239	N CA	TRP	40 40	58.837 58.084	43.926	27.490	1.00 3.45	:
ATOM	240	CB	TRP	40	58.826	44.996 46.352	26.846 26.872	1.00 4.71	÷
ATOM	241	CG	TRP	40	60.014	46.517	25.928	1.00 4.45	÷
ATOM	242		TRP	40	61.386	46.185	26.200	1.00 9.31	5
ATOM	243		TRP	40	62.143	46.555	25.062	1.00 6.04	5
MOTA MOTA	244 245		TRP TRF	40 40	62.049	45.595	27.294	1.00 10.26	5
ATOM	246		TRP	40	60.003 61.277	47.056 47.087	24.661	1.00 0.12	•
MOTA	247		TRP	40	63.527	46.358	24.144 24.989	1.00 6.99	7
ATOM	248		TRP	40	63.431	45.395	27.217	1.00 10.63	6
ATOM	249		TRF	40	64.152	45.780	26.068	1.00 11.43	÷
ATOM ATOM	250 251	C	TRP	40	57.785	44.539	25.418	1.00 5.55	÷
ATOM	252	И С	TRP GLU	40 41	58.530 56.625	43.761	24.824	1.00 4.51	:
ATOM	253	CA	GLU	41	56.267	44.914 44.533	24.914 23.556	1.00 7.38	
MOTA	254	CB	GLU	4:	54.898	42.840	23.555	1.00 3.54	÷
ATOM	255	CG	GLU	41	54.860	42.586	24.450	1.00 11.7	÷
atom Atom	256 257	CD	GLU	41	53.619	41.687	24.254	1.00 13.67	÷
ATOM	258		GLU	41 41	53.418	40.748	25.055	1.00 15.11	3
ATOM	259	c	GLU	41	52.843 56.335	41.891 45.715	23.301	1.00 17.90	3
MOTA	260	0	GLU	41	56.456	46.888	22.558 22.956	1.00 9.08	5 3
ATOM	261	N	GLU	42	56.403	45.389	21.271	1.00 8.40	7
MOTA	262	CA	GLU	42	56.426	46.399	20.211	1.08 9.64	5
ATOM ATOM	263 264	CB	GLU	42	57.729	47.207	20.227	1.00 6.56	6
ATOM	265	CG CD	GLU	42 42	58.974 60.242	46.393	20.511	1.00 5.93	5
ATOM	266		CTf.	42	61.019	47.114 46.519	20.115 19.371	1.00 7.51	÷
ATOM	267		GLU	42	60.470	48.271	20.519	1.00 9.43	5 8
ATOM	268	C	GLU	42	56.167	45.737	18.853	1.00 9.90	5
ATOM ATOM	269	3	GLU	42	55.88G	44.532	18.795	1.00 9.59	•
ATOM	270 271	N CA	ALA	43 43	56.243	46.514	17.771	1.00 10.98	7
ATOM	272	CB	ALA	43	55.988 55.513	46.007 47.145	16.400 15.515	1.00 12.17	5
MOTA	273	C	ALA	43	57.164	45.291	15.731	1.00 12.56	÷
MOTA	274	9	ALA	43	58.309	45.583	15.930	1.00 13.41	
ATOM	275	N	ALA	44	56.87E	44.282	14.903	1.00 9.23	7
ATOM ATOM	276 277	CA CB	ALA ALA	44 44	57.928	43.514	14.208	1.00 3.02	÷
ATOM	278	C	ALA	44	57.326 58.828	42.507 44.442	13.263	1.90 4.97	•
MOTA	279	ō	ALA	44	58.407	45.534	13.438	1.00 9.51 1.00 9.61	•
atom	280	N	SER	45	60.086	44.068	13.275	1.00 3.34	÷
MOTA	281	CA	SER	45	60.962	44.326	12.508	1.00 10.5	•
ATOM ATOM	282	CB	SER	45	61.616	46.002	13.354	1.00 11.34	÷
ATOM	283 284	00	SER	45 45	61.479 61.996	47.244	12.695	1.00 10.35	3
ATOM	285	5	SEF	45	62.599	44.207 43.221	11.683	1.00 13.53	÷
MOTA	286	N	ALA	46	62.113	44.571	10.435	1.00 15.72	3
ATOM	287	CA	ALA	46	63.041	44.134	3.469	1.00 14.41	•
ATOM ATOM	288 289	CB	ALA	46	62.810	44.781	8.127	1.00 17.21	•
ATOM	290	С Э	ALA ALA	46 46	64.379 64.657	44.538	10.028	1.00 15.43	•
ATOM	291	31	GLY	47	55.140	45.746 43.525	10.203	1.00 16.67	•
ATOM	292	CA	GLY	47	66.450	43.762	11.009	1.00 15.71	:
MOTA	293	C	GLY	47	66.558	44.415	12.400	1.00 15.13	•
ATOM ATOM	294 295	0	GLY	47	67.231	45.457	12.546	1.00 15.53	•
ATOM	295	N CA	VAL VAL	48 46	65.873 55.950	43.843	13.399	1.00 13.37	:
ATOM	297	CF	VAL	48	64.825	44.302 45.230	14.799	1.00 17.23	
ATOM	298	CG1	VAL	48	64.572	45.071	15.231	1.00 8.24 1.00 8.28	•
ATOM	599	CG2		48	65.216	45.556	14.964	1.00 6.13	.:
ATOM ATOM	300 301	0	VAL VAL	48	65.904	43.069	15.642	1.00 3.65	:
ATOM	302	N	GLY	48 49	65.062 66.882	42.183	15.443	1.00 9.93	
ATOM	303	CA	GLY	49	56.948	42.949 41.798	16.521 17.393	1.00 3.48	•
ATOM	304	С	GLY	49	67.199	42.211	13.829	00 1.27 1.00 1.14	÷
									•

bref21	.c.pdb	Thu A	pr 25 12	:27:47	1996	5
ATOM	305 O GLY	49	67.294	43.396	9.152	00 3.06 5
ATOM	306 N PRO	50			9.732	1.00 4.49 7
ATOM	307 CD PRO	50	67.104			.00 2.00 5
ATOM	30B CA PRO	50	67.519			1.00 2.99 5 1.00 3.97 5
MOTA	309 CB PRO	50	67.545			1.00 3.97 5 1.00 2.00 5
MOTA	310 CG PRO	50	67.935 68.837			1.00 4.87 5
ATOM	311 C PRO 312 O PRO	50 50	68.962			1.00 7.36
atom atom	313 N GLY	51	69.787			1.00 5.60 7
ATOM	314 CA GLY	51	71.059			1.00 2.83 5
MOTA	315 C GLY	51	70.991			1.00 3.36 5
ATOM	316 0 GLY	51	72.025			1.00 5.85 P
MOTA	317 N ASN	52	69.792			•
MOTA	318 CA ASN	52	69.670 68.527			1.00 2.00 5 1.00 3.33 5
ATOM	319 CB ASN 320 CG ASN	52 52	68.768			1.00 7.97 €
MOTA MOTA	321 OD1 ASN	52	69.233	47.311		1.00 12.55 €
ATOM	322 ND2 ASN	52	68.442		18.079	1.00 10.05 7
MOTA	323 C ASN	52	69.505	47.144	-	1.00 3.59 5
. ATOM	324 O ASN	52	69.524	48.359	20.638	1.00 2.00 3 1.00 5.70 7
MOTA	325 N TYR	53	69.286	46.573	21.985	_
ATOM	326 CA TYR	53	69.148	47.350	23.229 23.770	1.00 5.58 6 1.00 5.70 5
MOTA	327 CB TYP.	53	67.707	47.412 47.547	22.768	1.00 4.84
ATOM	328 CG TYP. 329 CD1 TYP.	53 53	66.615 66.067	46.414	22.188	1.00 6.02 €
MOTA MOTA	329 CD1 TYR 330 CE1 TYR	53	65.080	46.495	21.282	1.00 5.48 -
MOTA	331 CD2 TYR	53	66.123	40.789	22.405	1.00 5.30 €
ATOM	332 CE2 TYP	53	65.119	48.891	21.495	1.00 6.56
MOTA	233 C2 TYP.	53	64.598	47.729	20.929	1.00 8.17 5
ATOM	334 OH TYF.	53	63.590	47.767	19.987 24.308	1.00 12.54 3 1.00 3.83 5
ATOM	335 C TYR 336 O TYR	53 53	69.943 70.176	46.667 45.465	24.245	1.00 4.09 \$
atom Atom	336 O TYR 337 N SEP.	54	70.257	47.428	25.346	1.00 3.81 7
MOTA	338 CA SER	54	70.977	46.921	26.501	1.00 6.59 8
ATOM	339 CB SER	54	72.296	47.682	26.710	1.00 8.72 5
ATOM	340 OG SEP.	54	73.405	46.867	26.341	1.00 13.32
ATOM	341 C SER	54	70.077	47.035	27.726	1.00 4.52 5
ATOM	342 O SER	54	69.495	48.089	27.982	1.00 5.58 3 1.00 3.52 7
MOTA	343 N PHE	55	69.931	45.926	28.443	
MOTA	344 CA PHE	55	69.095	45.878 44.676	29.641 29.574	1.00 3.38 ÷ 1.00 6.11 ÷
ATOM	345 CB PHE 346 CG PHE	55 55	68.141 67.052	44.700	30.596	1.00 6.96 5
atom Atom	347 CD1 PHE	55	65.741	44.865	30.214	1.00 10.17 5
ATOM	348 CD2 PHE	55	67.330	44.547	31.929	1.00 8.73 €
ATOM	349 CE1 PHE	55	64.713	44.879	31.154	1.00 12.64
ATOM	250 CE2 PHE	55	66.317	44.561	32.874	1.00 8.02 6
MOTA	351 CZ PHE	55	65.007	44.728	32.490	1.00 8.93 f 1.00 2.90 f
MOTA	352 C PHE	35	69.942	45.779 44.710	30.891	1.00 2.90 5 1.00 2.00 3
ATOM	353 O PHE 354 N SER	55 56	70.476 70.083	46.892	31.595	1.00 2.00 3 1.00 2.00 7
MOTA MOTA	354 N SER 355 CA SER	56	70.854	46.862	32.818	1.00 5.40 =
MOTA	356 CB SER	56	72.159	47.651	32.681	1.00 6.39 €
ATOM	357 OG SER	56	71.950	48.939	32.162	1.00 9.05 E
ATOM	358 C SER		70.089		34.108	1.00 8.43 7
ATOM	359 O SER		69.080		34.098	1.00 7.21 3 1.00 7.52 7
ATOM	360 N TYR		70.546 69.915		35.213 36.495	1.00 7.52 7 2.00 8.61 f
ATOM	361 CA TYR 362 CB TYR		69.915		36.883	
MOTA MOTA	363 CG TYP		69.863		37.004	1.00 3.65 f 1.00 4.17 f
ATOM	364 CD1 TYP		70.254		38.254	1.00 2.00 -
ATOM	365 CEL TYP		70.865	42.587	28.384	1.00 2.00 f 1.00 4.11 f
ATOM	366 CD2 TYP	57	70.11			1.00 4.11
MOTA	367 CE2 TYP		70.729			1.00 2.48 f 1.00 2.00 f
MOTA	368 CZ TY7	57	71.09			
ATOM ATOM	369 OH TYE 370 € TYE		71.67			
ATOM	370 € TY! 371 0 TY!		72.09			
ATOM	372 N GLI		70.35			1.00 11.03
MOTA	373 CA GLI	8 58	71.18	48.143	39.832	1.00 9.11
ATOM	374 CB GL		71.61			
MOTA	375 CG GL		72.16			1.00 13.28
ATOM	376 CD GLI 377 QE1 GLI		72.82 72.16			1.00 13.57 3 1.00 15.62 3
ATOM ATOM	377 OE1 GL		74.16			
ATOM	379 C GL		70.43			
ATOM	380 ° GL	82 N	69.48	9 48.583	41.468	3 :.00 7.60 3
ATOM	381 N LE		76.77			
MOTA	382 CA LE	ט 59	70.18	3 46.43	43.036	3 1.CC €.43 ∃

brefi	lc.pc	Ф		Thu	Apr	25	12:27:	i7 [.] 1996		6	
ATOM	383	СВ	LEU	59	7	C.53	44.99	3 43.313	1.00	4.10	ē.
ATOM	384	CC	LEU	5 9		9.81					ē
ATOM	385	CD1		59		8.34			1.00		÷
ATOM	386		LEU	59		0.24			1.00	6.03	5
atom atom	387 388	0	LEU	59 59		C. 92			1.00	9.36	5
ATOM	389	N	GLU	60		2.13			1.00	9.93	3
ATOM	390	CA	GLU	60		C.84				11.94	7
MOTA	391	CB	GLU	60		9.85				13.27 14.05	ó
MOTA	392	CG	GLU	60		0.44				15.91	•
ATOM	393	CD	GLÜ	60	6	9.44				16.83	5
ATOM	394		GLU	60	6	9.26				16.52	ā
MOTA	395		GLU	60		8.85		48.181		15.77	s
ATOM	396	С	GLU	60		2.15			1.00	14.73	6
ATOM	397	0	GLU	60		2.20				14.00	8
ATOM ATOM	398 399	n Ca	ASP	61		3.19				16.22	7
ATOM	400	CB	ASP ASP	61 61		4.56				17.32	6
ATOM	401	CG	ASP	61		4.28				22.61	5
ATOM	402		ASP	61		4.25				26.60 30.15	5
ATOM	403		ASP	61		4.03				27.62	6 3
MOTA	404	С	ASP	61		5.39				16.14	6
ATOM	405	O	ASP	61	7	6.58	48.742			16.58	S
ATOM	406	N	GLU	62		4.75				14.78	7
ATOM	407	CY	GLU	62		5.40			1.00	13.68	5
ATOM	408	CB	GLU	62		4.41				15.90	ક
atom atom	409	CG	GLU	62		4.59				20.15	÷
ATOM	410 411	CD	GLU	62		3.57				18.81	5
ATOM	412		GLU	62 62		3.324 3.04				19.09	9
ATOM	413	c	GLU	62		5.70				17.28	3
MOTA	414	ŏ	GLU	62		5.06			1.00	10.99	5 3
ATOM	415	N	PRO	63		6.74			1.00	9.01	,
MOTA	416	CD	PRO	63	7	7.78			1.00	9.66	ö
ATOM	417	CA	PRO	63		7.06		40.959	1.00	8.47	ε
ATOM	418	СB	PRO	63		8.51			1.00	5.33	5
ATOM	419	CG	PRO	63		B.504			1.00	7.09	6
MOTA MOTA	420 421	0	PRO PRO	63 63		6.14			1.00	6.19	5
ATOM	422	N	TRP	64		5.473 6.119			1.00	4.91	9
ATOM	423	CA	TRP	64		5.29			1.00	3.37 2.00	7
ATOM	424	CB	TP.P	64		5.44			1.00	2.40	5
ATOM	425	CG	TP.P	64		4.59			1.00	2.00	÷
ATOM	426	CD2	TRP	64	7	3.18	50.651		1.00	2.00	5
ATOM	427		TPF	64		2.84			1.00	2.28	÷
ATOM	428		TRP	64		2.17			1.00	2.18	÷
MOTA MOTA	429		TP.P	54		5.02			1.00	2.00	ó
ATOM	430 431	NE1	TP.P	54 64		3.99			1.00	2.00	7
ATOM	432		TPP	54		1.53			1.00	2.00	÷
ATOM	433		TRP	64		0.57			1.00	2.49	÷
MOTA	434	c	TP.F	64		5.70			1.00	2.00	÷
MOTA	435	3	TRP	64		6.87					3
ATOM	436	н	LYS	65	7	4.70					7
ATOM	437	SÀ	LYS	55		4.90	44.79	35.803	1.00		5
ATOM	438	CB	LYS	55		4.60					÷
ATOM ATOM	439 440	. CC	LYS	65 65		5.61					÷
ATOM	441	CE	LYS	5.5 5.5		5.20					•
ATOM	442	NZ	LYS	45		6.45				10.13	7
ATOM	443	c	LYS	55		4.01					
ATOM	444	3	LYS	55		3.12					÷
ATOM	445	23	LEU	56		4.20					;
ATOM	445	CA	LE:	56		2.42		2 32.558		3.38	÷
ATOM	447	23	LEU	÷ó		4.34					1
MOTA	448	CG	LET	56		5.13				2.42	÷
MOTA MOTA	449		LEU	56		5.36					* * *
ATOM	453 451		LEU	56 56		2.65					
ATCM	452	:	LEU	65 56		2.65					ş A
MOTA	453	N	CYS	57		1.47					:
MOTA	454	Cλ	CYS	57		6.68					
atom	455	-	CYS	57		:.56					
MOTA	456	÷.	CYS	57	-	4.50	6 41.98	29.512	1.00	11.12	.3
ATOM	457	28	CYS	57		9.33	1 41.27	32.363	00		;
MOTA MOTA	453	S.G	CYS	67		58.29			:.00	9.98	16
ATOM	459	X AC	ARG ARG	€£ 68:		7 67				10.38	•
	. • •	~~	-11.0	Qt.	,	76.56	7 39.53	4 28.187	00	11.77	:

bref21	c.pd	Ь		Thu	Apr	25	12:	27:47	1996	7	
ATOM	461	СВ	ARG	68		71.380		8.359	27.627	1.00 15.15	•
ATOM	462	CG	ARG	68		72.366		8.376	26.053	1.00 20.30	:
ATOM	463	CD	ARG	68		71.856		7.102	25.359	1.00 21.17	<u> </u>
ATOM	464	NE	ARG	68		71.030		5.943	25.653 26.288	1.00 25.20	£
MOTA	465	CZ	ARG	68		71.43		4.837 4.732	26.705	1.00 28.62	:
ATOM	466		ARG ARG	68 68		72.710 70.60		3.818	26.498	1.00 27.68	•
ATOM	467 468	Sn2	ARG	98.		69.14		9.327	27.751	1.00 9.76	•
ATOM ATOM	469	ō	ARG	68		68.44		8.504	28.317	1.00 9.75	•
ATOM	470	N	LEU	69		68.76		0.027	26.684	1.00 8.16	:
MOTA	471	CA	LEU	69		67.42		9.983	26.131	1.00 5.24	•
MOTA	472	C3	LEU	69		67.13		1.247	25.328	1.00 4.64	: :
MOTA	473	CG	LEU	69		67.43		12.587	25.960 25.026	1.00 5.82 1.00 9.48	ě.
ATOM	474		LEU	69		67.30		13.727 12.773	27.111	1.00 9.06	•
MOTA	475 476		LEU LEU	69 69		67.22		8.794	25.221	1.00 6.45	÷
MOTA	477	0	LEU	69		68.17		8.217	24.655	1.00 6.60	3
MOTA	478	8	RIS	70		65.94		8.430	25.133	1.00 6.17	•
ATOM	479	CA	HIS	70		65.44	8 3	37.374	24.296	1.00 4.34	ŧ
ATOM	480	CЗ	HIS	70		64.79		36.308	25.103	1.00 3.32	÷
ATOM	481	CG	HIS	70		65.75		35.494	25.871	1.00 4.94	÷
ATOM	482		HIS	70		66.77		34.706	25.460	1.00 7.46 1.00 8.83	# I · # I ·
MOTA	483		HIS	70 70		65.75		35.444 34.653	27.243 27.650	1.00 9.22	•
ATOM	484		HIS HIS	70		67.37		34.193	26.586	1.00 6.78	:
ATOM ATOM	485 486	C	HIS	70		64.40		38.097	23.546	1.00 6.62	₹.
ATOM	487	Š	HIS	70		64.12		39.240	23.863	1.00 7.52	:
ATOM	488	N	GLN	71		63.87		37.453	22.520	1.00 10.06	
ATOM	489	CA	GLN	71		62.82		36.028	21.676	1.00 12.44	•
MOTA	490	CB	GLN	71		63.44		38.691	20.442	1.00 12.64	:
MOTA	491	CG	GLN	71		62.5		39.628	19.675	1.00 12.33	÷
ATOM	492	CD	GLN	71		63.1		40.157	18.423	1.00 11.98	÷
ATOM	493		GLN	71 71		63.2		39.254	17.638	1.00 13.04	7
ATOM	494 495	C NE.	GLN GLN	71		61.8		36.915	21.278	1.00 14.54	÷
ATOM ATOM	496	ō	GLN	71		62.2		35.846	20.828	1.00 13.15	:
ATOM	497	N	ALA	72		60.5		37.148	21.510	1.00 16.60	
ATOM	498	CA	ALA	72		59.5	40	36.163	21.222	1.00 17.29	÷
ATOM	499	CB	ALA	72		59.1		35.462	22.513	1.00 18.25	:
ATOM	500		ALA	72		58.3		36.016	20.552	1.00 17.09	÷
MOTA	501	O	ALA	72		57.9 57.7		37.949 36.140	20.890 19.535	1.00 17.99	-
ATOM	502		PRO	73 73		58.2		34.944	18.833	1.00 15.56	4
ATOM ATOM	503 504			73		56.6		36.681	18.835	1.00 14.26	4
ATOM	505			73		56.5		35.789	17.608	1.00 14.62	÷
ATOM	506			73		57.0		34.500			:
ATOM	507		PRO	73		55.3		36.586		1.00 13.69	:
MOTA	508		PRO	73		55.2		35.678			:
ATOM	509		THP.	74		54.5		37.632 37.789			€.
ATOM	510			74 74		52.9		39.276			:
MOTA MOTA	511 512		1 THR	74		54.1		39.935			;
MOTA	513		2 THR	74		51.		39.484			÷
ATOM	514		THR	74		52.2	216	37.289	19.382		
ATOM	515		THR	74		52.2		37.637			ŧ
MOTA	516		ALA	75		51.		36.542			
ATOM	517			75		30.		36.076			:
MOTA	518			75 75		48.	612.	35.576			
MOTA	51! 52!		ALA ALA	75		49.		36.83			:
MOTA	52			76		49.		38.41		: 1.00 9.12	•
ATOM	52			76		49.		39.55	2 17.74	: 1.00 10.37	
ATOM	52			76	5	48.		40.78			
ATOM	52		G ARG	76		47.		40.72		9 1.00 16.08	•
MOTA	52			70			936	41.67			:
MOTA	52			70			298	41.16		. 1.50 23.03 5 1.00 25.3 4	
ATOM	52		Z ARG H1 ARG	71			700	40.06			-
MOTA MOTA	52 52		HI AKG	7			065	39.67			-
MOTA	53			7			026	40.04		: 1.:: 12.35	:
ATOM	53			7		49.	680	41.00	2 15.96	1 1.00 15.69	
MOTA	53	2 N	GLY	7			223	39.48		a 1.00 12.7°	•
ATOM	53		A GLY				121	39.98		3 1.10 11.3	:
MOTA	53						.079 				
ATOM ATOM	53 53						. 633 . 243	41.81			•
ATOM	53		ALA				.158				
ATOM	53		B ALA		8		. 465				

bref21	lc.pd	Ъ		Thu	Apr	25	12:	27:47	1996		8	
ATOM	539	С	ALA	78	5	5.263	3 4	1.329	18.357	1.00	11.11	5
ATOM	540	0	ALA	78		5.080		0.106	18.495		10.01	5
MOTA	541	N	VAL	79	5	6.416	8 4	1.923	18.640	1.00	9.69	7
MOTA	542	CA	VAL	79		7.546		1.178	19.192	1.00	7.22	5
ATOM	543	CB	VAL	79		8.844		1.391	19.354	1.00	6.05	5
ATOM	544		VAL	79	_	8.70	-	0.741	17.024	1.00	6.29	6
MOTA MOTA	545 546	C	VAL VAL	79 75		9.135		2.848	18.171	1.00	5.80	5
ATOM	547	0	VAL	79		7.786 7.633		1.500 2.637	20.672	1.00	5.75	<u>ن</u> -
ATOM	548	N	ARG	80		8.20		0.491	21.403	1.00	4.75 4.34	3 7
ATOM	549	CA	ARG	80		8.420		0.64B	22.813	1.00	7.09	ő
ATOM	550	CB	ARG	80		7.50		9.672	23.550	1.00	8.65	ě
MOTA	551	CG	ARG	80	5	7.465		9.838	25.052	1.00	7.34	5
ATOM	552	CD	ARG	8C	5	6.674	4 3	8.710	25.630	1.00	6.89	ő
ATOM	553	NE	ARG	90		5.272	_	8.809	25.237	1.00	6.67	7
ATOM	554	CZ	ARG	80		4.415		7.809	25.313	1.00	4.11	5
ATOM ATOM	555 556		ARG ARG	80 80		4.829 3.142		6.631 8.017	25.743	1.00	5.04	7
ATOM	557	c	ARG	80		9.84		0.484	25.063 23.297	1.00	2.00 5.10	7 6
ATOM	558	ŏ	ARG	80		0.46		9.434	23.114	1.00	3.27	9
ATOM	559	N	PHE	81		0.34		1.519	23.951	1.00	4.32	ž
ATOM	560	CA	PHE	81		1.688		1.481	24.488	1.00	5.56	6
ATOM	561	CB	PHE	91	6	2.385	5 4	2.814	24.305	1.00	4.97	6
MOTA	562	CC	PHE	81	6	2.744	4 4	3.102	22.915	1.00	5.07	÷
MOTA	563		PHE	81		1.86		3.781	22.091	1.00	6.98	ò
ATOM	564		PHE	2:		3.94		2.670	22.409	1.00	7.17	-
ATOM ATOM	565 566		PHE PHE	8: 9:		2.164		4.030	20.763	1.00	52.7	•
ATOM	567	CZ	PHE	ē:		3.37		2.908 3.594	21.086		10.89	5
ATOM	568	č	PHE	8:		1.54		1.209	25.955	1.00	10.08 7.23	6 6
ATOM	569	ō	PHE	81		0.72		1.848	26.604	1.00	8.68	ā
MOTA	570	N	TRP	82		2.30		0.240	26.469	1.00	7.82	7
ATOM	571	CA	TRP	82		2.26		9.911	27.891	1.00	8.83	8
MOTA	572	CB	TRP	82		1.25		18.789	28.199	1.00	9.85	6
ATOM	573	CG	TRP	62		1.58		7.412	27.697		12.09	5
ATOM	574	CD2		82		2.23		16.372	28.428		11.52	6
ATOM ATOM	575 576		TRP TRP	82 82		2.32		15.248	27.577		13.27	ε
ATOM	577		TRP	32		2.74 1.30		16.277 16.888	29.722		15.01	ż
ATOM	578		TRP	82		1.75		5.581	26.453 26.378		14.64	ŕ
ATOM	579		TRF	82		2.91		4.048	27.987		17.05	5
ATOM	580		TRF	22		3.33		35.071	30.137		16.75	÷
ATOM	581		TRF	82		3.41		3.980	29.272		17.82	5
ATOM	582	С	TRP	32	•	3.65	6 3	9.561	28.371	1.00	8.05	6
MOTA	583	0	TRP	82		4.60		9.733	27.623	1.00	7.22	3
ATOM	584	N	CYS	83		3.76		9.156	29.635	1.00	7.16	7
ATOM	585	CŸ	CYS	23		55.02		38.749	30.282	1.00	5.52	÷
atom atom	586 587	0	CYS	83 83		54.63. 53.73		38.373 38.969	31.702	1.00	4.93	÷
ATOM	588	СВ	CYS	83		56.02		39.909	32.271 30.319	1.00	5.95 7.79	ě
MOTA	589	SG	CYS	23		6.43		10.538	31.992		15.35	15
ATOM	590	N	SER	84		55.24		37.353	22.258	1.00	3.11	ij
ATOM	591	CA	SER	84		54.90		36.980	33.610	1.00	4.32	÷
ATOM	592	CB	SEF.	34		64.39		35.555	33.658	1.00	5.70	÷
MOTA	593	OG	SEP	54		55.09		34.752	32.731		12.40	3
ATOM	594	С	SEF.	8.4		56.12		37.135	34.483	1.00	7.36	÷
ATOM	595	0	SER	8,4		67.17		36.544	34.190		11.62	÷
ATOM ATOM	596 597	CA	LEU	85 85		66.00 67.11		37.940	35.546	1.00	7.67	7
ATOM	598	CB	LEU	85		66.67		38.209 39.160	36.457 37.546	1.00	4.88	5
ATOM	599	CG	LEU	35		66.73		40.624	37.197	1.00	5.43	÷
ATOM	600		LEU	3.5		67.01		41.388	38.482	1.00	7.87	÷
ATOM	601		LEU	35		67.84		40.844	25.232	1.00		
ATOM	602	c	LEU	35		67.70	9	36.991	27.110	1.00		÷ ÷ 7
ATOM	603	0	LEU	3.5		67.00		36.021	2 ? . 352	:.00	3.20	?
ATOM	604	N	PP.C	3.5		69.02		37.01?	37.388	1.00		7
MOTA	605	CD	PRO	3.5		69.95		38.092	35.989	1.00		÷
MOTA MOTA	606 607	CA	PPC.	35		69.76 71 21		35.918	38.036	1.00		4
MOTA	608	CB	PRO	86 36		71.21 71.20		36.361 37.343	37.921 35.772	1.00		4
ATOM	609	Ç	PRC	36		69.33		35.832	39.515	1.00		
MOTA	610	ó	PPO	36		59.14		36.847	40.187	1.00		3
ATOM	611	N	THR	3-		69.22		34.622	40.029	1.00		,
ATOM	612	CA	THR	₹*		68.79	93	34.399	41.394	00		:
ATOM	613	СВ	THR	ē -		60.96		32.949	41.727	1.00		÷
ATOM ATOM	614		THR	ē.		68.49		32.183	40.607	00		: 3
ATOM	615 616	C	RHT S	87 87		68.14		32.599	42.975		11.56	.;
41.	210	-	*111	Ç.		59.33	JE	35.263	42.531	1.00		• 5

bref21	c.pdb	Thu Ap	x 25 12:27:	17 1996	9
ATOM	617 O THR	e 7	68.606 35.73		1.00 9.13 E
ATOM	618 N ALA	88	70.661 35.47		1.00 8.99 T
ATOM	619 CA ALA	88	71.313 36.28		1.00 9.06
ATOM	620 CB ALA 621 C ALA	98 88	70.922 37.75		1.00 8.97
atom Atom	621 C ALA 622 O ALA	88	71.441 38.57	3 44.247	1.00 10.83
ATOM	623 N ASP	86	70.030 36.09		1.00 8.36 7
ATOM	624 CA ASP	3 9'	69.633 39.47 70.047 39.91		1.00 8.96 5
ATOM	625 CB ASP 626 CG ASP	8 9 8 9	70.047 39.91 71.563 39.91		1.20 6.73 5
atom atom	626 CG ASP 627 OD1 ASP	89	72.319 46.22		1.00 3.92 5
ATOM	628 CD2 ASP	89	72.012 39.64		1.00 6.25 3 1.00 9.65 4
ATOM	629 C ASP	89	68.141 39.74 67.668 40.88		1.00 9.65 5 1.00 9.22 5
ATOM	630 O ASP	89 90	67.668 40.88 67.420 38.72		1.00 7.69
atom atom	631 N THR 632 CA THR	90	66.010 38.86		1.00 5.03 6
ATOM	633 CB THP	90	65.298 37.60		1.00 3.78 5
MOTA	634 OG1 TER	90	65.905 36.40		1.00 2.00 3 1.00 3.18 6
ATOM	635 CG2 THR 636 C THR	90 90	65.464 37-44 65.667 39.23		1.00 8.87 6
ATOM ATOM	636 C THR 637 O THR	90	64.634 38.7		1.00 11.62 \$
ATOM	638 N SEP.	91	66.492 40.0		1.00 7.49
ATOM	639 CA SER	91	66.264 40.4		1.00 7.31 6 1.00 9.23 6
MOTA	640 CB SER	91 91	67.470 41.1 68.619 40.3		1.00 9.38
ATOM	641 OG SER 642 C SER	9:	65.008 41.2		1.00 8.55 🍜
atom Atom	643 O SER	91	64.779 42.1	97 46.263	1.00 9.93 ± 1.00 8.52 7
ATOM	644 N SER	92	64.287 41.0		
ATOM	645 CA SER	92	63.000 41.6 62.022 40.7		1.00 6.55 5 1.00 7.73 5
ATOM	646 CB SER 647 OG SER	92 92	62.022 40.7 61.127 40.1		1.00 9.02 €
ATOM ATOM	647 OG SER 648 C SER	92	62.732 42.9	92 48.963	1.00 6.08 5
ATOM	649 O SER	92	61.652 43.4		
ATOM	650 N PHE	93	63.600 43.5 63.132 44.8		
ATOM	651 CA PHE 652 CB PHE	93 93	62.881 44.6		
ATOM ATOM	652 CB PHE 653 CG PHE	93	61.836 43.5	85 52.207	1.00 2.00 5
ATOM	654 CD1 PHE	93	62.214 42.2		
ATOM	655 CD2 PHE	93	60.475 43.1		
ATOM	656 CE1 PHE	93 93	61.260 41.3 59.520 42.4		1.00 2.00 5
atom atom	657 CE2 PHE 658 CZ PHE	93	59.922 41.		1.00 2.00 %
MOTA	659 C PHE	93	63.923 46.		1.00 5.65
ATOM	660 O PHE		63.753 47. 64.671 46.		
ATCM	561 N VAL 662 CA VAL		64.671 46. 65.542 47.		1.00 4.07 5
atom atom	662 CA VAL		66.969 46.	501 49.23	8 :.00 3.20 4
ATOM	664 CG1 VA1	94	67.600 46.		
ATOM	665 CG2 VAI			177 47.52 525 47.04	
ATCM	666 C VAI			793 46.36	8 1.00 6.26 3
MOTA MOTA	667 O VAI			780 46.64	8 1.00 4.63 7
ATOM	669 CD PR			823 47.50	7 1.00 5.07 6 5 1.00 2.90 6
ATOM	670 CA PR			357 45.36 826 45.53	
ATOM	671 CB PR			.036 47.00	4 1.00 4.40 €
atom Atom	673 C PR		65.783 48.	.756 44.24	8 1.00 5.07 €
ATOM	674 'O PR			.592 44.39	
MOTA	675 N LE			.419 43.14 .852 41.9	1 0.05
ATOM ATOM	676 CA LE 677 CB LE			.531 41.54	13 1.00 3.04 €
ATOM	676 CG LE		65.571 45	.607 40.43	
ATOM	679 CD1 LE	U 96		.060 40.64	
ATOM	580 CD2 LE			.446 40.3 .886 40.8	
ATCM	681 C LE 582 C LE			.309 40.3	
atom atom	683 N GI	ר כ ט	66.881 49	.355 40.4	16 1.00 8.18
ATCM:	684 CA GI	.c 3?		.324 39.3	
ATOM				.069 39.4 .499 33.8	
atom Atom		-		.335 23.6	
ATOM		רק ט.	68.087 54	.545 23.7	34 1.30 14.20
ATOM	639 OE2 G	u F		2.787 27.6	
ATOM		רב טט רט פר		9.610 27.3 9.689 27.7	
atom atom		LU 97 EU 98		0.053 37.1	
ATOP		EU 38		9.400 35.8	121 1.30 3.77
HOTA		EU 9R	64.592 4	8.695 35.7	754 1.90 8.21

bref21	c.pc	Do		Thu	Apr 25 1	2:27:47	1996	10
ATOM	695	CG	LEU	98	64.366	47.487	35.686	1.00 9.97 4
ATOM	696		LEU	98	62.912	47.080	35.721	1.00 9.15 5
ATOM	697		LEU	98	65.203	46.309	35.266	1.00 3.89 5
ATOM ATOM	698 699	c	LEU	98	66.141	50.388	24.676	30 9.74 5
ATOM	700	N N	ARG	98 99	65.751 66.814	51.556 49.945	34.781	1.00 11.17 3
ATOM	701	CA	ARG	39	67.050	50.799	23.621 22.467	1.00 7.82 7 1.00 8.42 6
ATOM	702	CB	ARG	99	68.265	51.701	32.680	1.30 9.99 4
ATOM	703	CG	ARG	99	68.319	52.571	33.915	1.00 13.57 6
ATOM	704	CD	ARG	99	69.548	53.483	33.832	1.00 15.63
ATOM	705	NE	ARG	99	70.798	52.717	23.766	1.00 21.42 7
ATOM ATOM	706 707	CZ	ARG	99	71.623	52.634	32.709	1.00 23.75 5
ATOM	708		ARG	99 99	71.364 72.747	53.271	31.557	1.00 25.09
ATOM	709	c	ARG	99	67.294	51.921 50.002	32.818	1.00 24.11 7 1.00 7.84 5
ATOM	710	ŏ	ARG	99	68.179	49.159	31.118	1.00 7.84 5 1.00 8.53 2
ATOM	711	N	VAL	100	66.528	50.307	30.136	1.00 5.56 7
MOTA	712	CA	VAL	100	66.670	49.664	28.852	1.00 5.54 5
ATOM	713	СВ	VAL	100	65.321	49.097	28.397	1.00 8.61 5
ATOM	714		VAL	100	65.446	48.467	27.008	1.00 7.63 6
ATOM ATOM	715 716	C	VAL	100 100	64.821 67.146	48.100	29.419	1.00 7.70 6
ATOM	717	ŏ	VAL	100	66.556	50.745 51.831	27.877 27.819	1.00 6.61 6 1.00 3.63 ?
MOTA	718	N	THR	101	68.236	50.490	27.156	1.00 7.98 7
MOTA	719	CA	THP.	101	68.768	51.483	25.193	1.00 10.18 6
ATOM	720	CB	THP.	101	70.000	52.277	26.748	1.00 8.43 5
ATOM	721	OG 1	THP.	101	70.526	51.629	27.2CB	1.00 13.91
ATOM ATOM	722 723	C	THR	101 101	69.603	53.663	27.148	1.30 11.20 €
ATOM	724	ŏ	THR	101	69.115 69.483	50.926 49.758	24.792 24.645	1.00 11.66 ÷
ATOM	725	N	ALA	102	68.915	51.752	23.767	1.00 11.61 S 1.00 12.50 7
ATOM	726	CA	ALA	102	69.216	51.369	22.386	1.00 14.07 5
MOTA	727	СВ	ALA	102	68.735	52.465	21.399	1.00 14.73 5
ATOM	728	С	ala	102	70.721	51.154	22.249	1.00 13.24 6
ATOM	729	0	ALA	102	71.511	51.752	23.012	1.00 12.22 8
ATOM ATOM	730 731	N CA	ALA	103	71.111	50.332	21.270	1.00 12.73 7
ATOM	732	CB	ALA	103 103	72.520 72.631	50.004 48.712	21.021 20.183	1.00 13.74 6 1.00 15.06 6
ATOM	733	c	ALA	103	73.250	51.173	20.338	1.00 14.07 5
ATOM	734	0	ALA	103	73.958	51.013	19.345	1.00 16.53
ATOM	735	N	SER	104	73.105	52.341	20.931	1.00 12.51 7
ATOM	736	CA	SEP.	104	73.673	53.569	20.440	1.00 10.25
ATOM	737 738	CB OG	SEP. SER	104	72.834	54.066	19.266	1.00 9.41 4
ATOM	739	c	SER	104 104	71.434 73.507	54.033 54.528	19.565	1.00 8.47 3
ATOM	740	ō	SEP	104	73.557	55.746	21.412	1.00 11.58 6 1.00 11.80 3
ATOM	741	N	GLY	105	73.187	53.964	22.770	1.30 11.41 7
ATOM	742	CA	GLY	125	73.002	54.747	22.976	1.00 12.64 4
ATOM ATOM	743	Ç	GLY	105	71.737	55.568	23.980	1.00 13.51 4
MOTA	744 745	O N	GLY	105 - 106	71.507 70.929	56.335	24.921	1.00 15.64
ATOM	746	CA	ALA	106	69.668	55.433 56.166	22.930 22.837	1.00 12.54 T
ATOM	747	CB	ALA	106	69.068	56.040	21.444	1.00 11.65 5 1.00 13.77 6
ATOM	748	2	ALA	106	68.752	55.553	23.884	1.30 11.28 5
ATOM	749	0	ALA	196	68.501	54.338	23.899	1.00 10.70 5
ATOM	750	N	PPC	107	68.239	56.392	24.779	:.oc a.60 :
ATOM ATOM	751 752	CD	PP.C	107	68.390	57.855	24.686	1.00 9.28 6
ATOM	753	CB	PRO	197 197	67.354 67.282	56.019 57.314	25.882 25.683	1.00 7.77 6 1.00 8.42 6 1.00 9.15 6
ATOM	754	CG	PRO	197	67.302	58.358	25.605	1.00 9.15 6
ATOM	755	С	PRO	107	65.964	55.459	25.552	1.00 7.66 4
ATOM	756	0	Pro	107	55.224		24.761	1.00 8.78 8
ATOM	757	N	AP.G	108	65.595	54.353	25.196	1.00 7.20
ATOM ATOM	758 759	CA CB	ARG	108 108	64.290		25.993	1.00 4.63 5
ATOM	760	CG	ARG	108	64.439 63.168		25.258 24.695	1.01 7.43 4 1.00 10.88 4
ATOM	761	CD	ARG	198	62.783		23.460	1.00 14.12
ATOM	762	NE	ARG	::8	61.461	52.318	22.364	1.00 15.25
ATOM	763	cz	AP.G	108	61.086	51.084	22.550	1.00 15.01 6
ATOM	764		ARG	108	61.917		22.764	1.10 18.31
ATOM ATOM	765 766	NH2	ARG	108	59.858		22.236	1.00 19.47
ATOM	767	3	ARG ARG	108 108	63.455 62.420		27.253 27.404	1.00 5.36 5 1.10 5.86 1
ATOM	768	N	TYE	109	63.883		28.263	1.10 6.86
ATOM	769	CA	TYF.	109	63.102		29.509	1.20 4.72
ATOM	770	CF	TYR	109	62.419	51.350	23.631	1.31 7.62
ATOM ATOM	771	CG	TYP	109	61.455		23.544	1.11 8.20
A.Un	772	CUL	IYR	109	61.775	50.089	27.565	1.00 11.38

bref21	c.pdl	5		Thu	Apr 25	12:	27 : 47	1996	3	11
	773	CE1	TYR	109	60.89	97 49	9.788	26.557	1.00 12.	
ATOM ATOM	774	CD2		109	60.23	30 51	1.642	28.480	1.00 10.	
ATOM	775	CE2		109	59.3		1.347	27.476	1.00 12.	
ATOM	776		TYR	109	59.6		0.421	26.511	:.00 12.	
ATOM	777		TYR	109	58.7		0.152	25.481	1.00 14.	• •
ATOM	778		TYR	109	63.9		2.909 2.737	30.774		59
MOTA	779		TYR	109	65.1 63.1	_	3.259	31.835	:.00 10.	99 7
ATOM	780		HIS	110 110	63.7		3.467	23.174	1.00 14.	45 -
MOTA	781	CA CB	HIS HIS	110	64.4		4.830	33.296	1.00 16.	64 €
ATOM	782 783	CG	HIS	110	65.1		5.029	34.613	1.00 21.	
MOTA MOTA	784	CD2		110	66.3		4.616	25.048	1.00 21.	
ATOM	785	ND1		110	64.6		5.764	35.652	1.00 24.	
ATOM	786		HIS	110	65.4		5.803	26.662 26.321	1.00 23.	
ATOM	787		HIS	110	66.5 62. 6		55.114 53.380	34.214	1.00 12.	
MOTA	788	c	RIS	110	61.7		4.224	34.240	1.00 13	
ATOM	789	0	HIS ARG	110 111	62.6		32.361	35.062	1.00 11	.08 7
ATOM	790 791	N CA	ARG	111	61.		52.116	36.112	1.00 10	
ATOM ATOM	792	CB	ARG	111	60.1	378 5	50.881	35.742		.90 6
ATOM	793	CG	ARG	111	59.		50.590	36.641		.05 6 .40 5
MOTA	794	CD	ARG	111	58.	- :	50.465	35.862		.40 5 .93 7
ATOM	795	NE	ARG	111	57.		49.099	35.783 36.730		.80
ATOM	796	CZ	ARG	111	57.		48.521 49.182	37.840	:.00 10	
MOTA	797		ARG	111	56. 56.		47.308	36.550	1.00 10	
MOTA	798		ARG	111			51.850	37.369	1.00 11	
ATOM	799 800	C	ARG ARG	111		776	51.808	27.306	1.00 13	
ATOM ATOM	801	N	VAL	112		877	51.758		1.00 11	
ATOM	802	CA	VAL	112		493	51.471			
MOTA	803	CB	VAL	112		882	52.803			
MOTA	804		VAL	112		003	52.545 53.354			
ATOM	805		2 VAL	112		.235 .398	50.668			7.77 5
ATOM	806		VAL VAL	112 112		268	51.105			B.50 S
MOTA MOTA	807 808		ILE	113		709	49.480	41.049		5.20 7
ATOM	809		ILE	113	60	. 692	48.638			6.80 6
ATOM	810			113		. 223	47.52			5.60 6 6.45 5
ATOM	811		2 ILE	113		. 680	48.130			6.45 5 7.39 5
ATOM	812		1 ILE	113		.396	46.623		_	9.87 6
MOTA	813		1 ILE	113		.012 .105	47.93			7.16 5
ATOM	814		ILE	113 113		.141	48.23			9.02 ₺
MOTA	813 91		HIS	114		.267	47.00		3 1.00	2.78 7
MOTA	81			114	60	.503	46.18			2.00 5
ATOM	81			114		.793	46.75			2.00 5 2.00 5
ATOM	21					.554	47.82			4.32
MOTA	62		2 HIS			.337	47.78			4.03
MOTA	82		1 HIS			.368	49.85			2.34 ÷ 8.31 7
ATOM	82		E1 HIS E2 HIS			.835	49.05			
MOTA	82 82		HIS			.907	44.83	0 44.33		2.00 5
ATOM	82		KIS		4 58	3.705	44.68	8 44.22		2.00 \$
ATC%	02		ILI			3.741	43.92			2.00 5
ATOM	82				-	2.261	42.49			3.84
ATOM	82					1.439 0.953	40.0			4.23
MOTA	82		G2 IL		_	2.333				2.00
ATOM			G1 ILI		_	3.731			66 1.00	2.23
ATOM ATOM		-			_	9.107	42.0			3.56
ATOM					5 5	8.294				6.91
ATOM	. •			N 11		9.013				4.63 5.21
ATOM		35 3	A AS		-	7.936				5.21 5.33
ATOM	8:	-	B AS			8.317				5.94
ATOM		_	G AS			8.582 9.470				
ATOM			D1 AS			7.806				
ATOP			ND2 AS			6.589			4700	5.92
ATOM ATOM			AS	N 1	16	5.51		33 46.8	179 1.00	
ATOP			N SI	.U 1	1 -	56.664	4 43.8	52 45.8	41 1.00	
ATO		43 (CA GI	.: 1	17	55.48				
ATO	4 8		CB GI		-	55.73				12.42
ATO					_	55.95! 56.16				15.01
ATO			CD GI OE1 GI			56.64			056 DO	18.35
ATO ATO			OE2 G		-	55.81		757 45.0	002 1.00	15.71
ATO				LU 1	1 -	55.11	6 44.			
ATO				LU 1	17	54.44	G 45.	120 43.	428 1.30	9.90

bref21	c.pc	îь		Thu	Apr 25 12	2:27:47	1996		12	
ATOM	851	N	VAL	118	55.477	43.151	43.523	1.00 3	3.55	;
ATOM	852	ÇA	VAL	118	55,226	42.839	42.137		2.91	•
ATOM	853	CB	VAL	118	56.373	43.488	41.261		.00	i
ATOM	854		VAL	118	57.484	42.519	40.942		2.85	•
ATOM	855		VAL	118	55.828	44.165	40.062		2.00	Ē
ATOM	856	С	VAL	118	55.060	41.334	41.948	1.00 2	2.1B	÷
ATOM	857	0	VAL	118	55.453	40.755	40.936		1.50	3
ATOM	858	N	VAL	119	54.404	40.716	42.919		2.79	7
ATOM	859 860	CA	VAL	119	54.155	39.276	42.896		1.05	•
atom Atom	661	CB CG1	VAL	119 119	53.776 53.749	38.736	44.305		2.43	:
ATOM	B62		VAL	119	54.735	37.26? 39.231	44.292 45.352		2.00	÷
ATOM	B63	c	VAL	119	52.998	38.960	41.945		2.00	
ATOM	864	0	VAL	119	52.007	39.674	41.932		2.00	Ė
ATOM	B65	N	LEU	120	53.171	37.919	41.132		3.02	-
ATOM	866	CA	LEU	120	52.175	37.411	40.174	1.00	2.95	5
ATOM	867	CB	LED	120	52.446	37.894	38.745		6.65	5
ATOM ATOM	868 869	CG CD1	LEU	120	51.496	37.332	37.674	1.00 11		5
ATOM	870		LEU	120 120	50.125 52.053	37.938 37.605	37.790		9.95	÷
ATOM	871	c	LEU	120	52.289	35.887	36.306 40.262	1.00 11	2.40	ś
ATOM	872	0	LEU	120	52.985	35.241	39.487		2.00	3
MOTA	873	ĸ	LEU	121	51.600	35.340	41.250		2.39	=
MOTA	874	CA	LEU	121	51.629	33.924	41.552		2.77	•
MOTA	875	CB	LEU	121	51.063	33.689	42.964		1.57	•
ATOM	876	CG	LEU	121	52.050	33.227	44.062	1.00 10	.2;	÷
ATOM	877	CDI		121	52.939	32.076	43.550	1.00 14		•
atom atom	878 879		LEU	121	52.944	34.328	44.501		4.45	•
ATOM	880	0	LEU	121 121	50.974 50.256	32.995 33.420	40.554		.4:	•
ATOM	881	N	ASP	122	51.279	31.709	40.672		7.90 3.57	9
ATOM	882	CA	ASP	122	50.687	30.726	39.782		5.90	÷
ATOM	883	CB	ASP	122	51.493	29.421	39.773		7.76	5
ATOM	884	CG	ASF	122	52.701	29.437	38.795		.54	5
ATOM	685	OD1		122	52.927	30.429	38.066		9.98	5
atom atom	886 887	OD2	ASP	122 122	53.411 49.292	28.405	38.748	1.00 10		3
ATOM	888	ŏ	ASP	122	48.957	30.494 30.954	40.343		7.04	5 3
ATOM	889	N	ALA	123	48.464	29.813	29.568		5.44	7
ATOM	890	CA	ALA	123	47.107	29.562	40.010		1.75	÷
ATOM	891	CB	ALA	123	46.187	29.374	38.839		20.5	ŧ
ATOM	892	С	ALA	123	46.981	28.398	40.954	1.00	3.93	÷
ATOM ATOM	893 894	0	ALA	123	47.826	27.484	40.971		5.37	÷
ATOM	895	N CD	PRO	124 124	45.979 45.216	28.490 29.736	41.846		2.5:	7
ATOM	896	CA	PRO	124	45.652	27.478	42.096 42.845		2.90 2.91	÷
ATOM	897	CB	PRO	124	44.362	28.022	43.436		2.25	÷
ATOM	898	CG	PRO	124	44.602	29.485	43.432		2.::	•
ATOM	899	C	PRC	124	45.451	26.111	42.172	1.00	2.00	÷
ATOM	900	0	PRO	124	45.289	26.022	40.966		2.00	:
atom atom	901 902	N CA	VAL	125	45.524	25.042 23.715	42.944		2.21	-
ATOM	903	CB	VAL	125 125	45.345 46.724	23.715	42.381 42.025		4.05	÷
ATCH	904		VAL	125	47.474	23.806	40.974		2.01	:
ATOM	905		VAL	125	47.584	22.776	43.256		2.0:	•
MOTA	306	C	VAL	125	44.436	22.838	43.267	1.00	5.5:	Ė
ATOM .	907	0	VAL	125	44.002	23.281	44.316		6.33	÷
ATOM	908		SLY	126	44.068	21.661	42.768		5.23	
ATOM ATOM	909 910	CY	GLY	126	43.230	20.735	43.494		4.13	•
ATOM	911	C	GLY	126 126	41.939 41.588	21.283 20.981	44.035		5.5 . 8. 5	:
ATOM	912	N	LEU	127	41.248	22.113	45.170 43.268		5.83	:
ATOM	913	CA	LEU	127	39.971	22.667	43.718		7.8	
MOTA	914	CB	LEU	12-	39.594	23.949	42.935		9.72	:
ATOM	915	CC	LEU	12-	38.175	24.573	43.071		1.:4	:
ATOM	916		LEU	12"	37.954	25.322	44.424		7.43	÷
ATOM ATOM	917		LEU	127	37.942	25.516	41.892	1.00 1		:
ATOM	918 919	0	LEU	12-	38.846 38.585	21.523 21.083	43.612 42.538		6.35	:
ATOM	920	N	VAL	128	38.177	21.369	44.737		6.5f 7.55	:
MOTA	921	CA	VAL	128	37.087	20.406	44.815		6.22	•
ATOM	922	CB	VAL	128	37.485	19.147	45.616		7.:-	÷
atom atom	923	CG1		128	37.999	18.080	44.701	1.00	7.35	•
ATOM	924 925	CG2 C	VAL VAL	129 125	38.521 35.862	19.477	46.659	1.00	9.52	:
ATOM	926	ŏ	VAL	125	35.862	21.001 21.795	45.470 45.374	1.00	5.:	:
MOTA	927	N	ALA	129	34.691	20.574	45.031	1.00	6.9 ⁻	:
ATOM	928	CA	ALA	129	33.430	21.061	45.579	1.00	6. ć:	÷

bref21	c.pdl	b		Thu	Apr	25 1	2:27:4	17 1	996		13	
ATOM	929	СВ	ALA	129		2.585	21.680	-				÷ 5
ATOM	930	C	ALA	129		2.693	19.87				. 11 . 32	3
MOTA	931	0	ALA	129		2.730	18.76				.76	í
MOTA	932	N	ARG	130		2.018	20.10			.00 10		5
MOTA	933	CA CB	ARG	130 130	-	2.220	18.31			.00 11		é
ATOM ATOM	934 935	CG	ARG	130		1.765	:6.97		9.486	1.00 11	.87	6
ATOM	936	CD	ARG	130	3	2.108	16.87			.00 15		5
ATOM	937	NE	ARG	130	3	3.351	17.56	_		.00 15		7 F
ATOM	938	CZ	ARG	130		3.669	18.13			.00 20		;
MOTA	939	NHI		130		32.818	18.09	_		1.00 13 1.00 21		;
ATOM	940		ARG	130		34.840 30.028	18.79 19.47			1.00 10		5
MOTA	941	c o	arg arg	130 130		29.932	20.59			1.00 10		e
ATOM ATOM	942 943	N	LEU	131		29.065	18.58			1.00 12	.00	7
ATOM	944	CY	LEU	131		27.813	18.90	9 4		1.00 13		6
ATOM	945	CB	LEU	131	:	26.640				1.00 12		6
ATOM	946	CG	LEU	131		25.301	18.51			1.00 11		5 6
MOTA	947		LEU	131		25.035			9.487 8.531	1.00 10		6
MOTA	948		LEO	131		24.252			0.892	1.00 1		6
ATOM	949	C	LEU	131 131		27. 79 9 27.702		_	1.128	1.00 1		a
MOTA	950	0	leu Ala	132		27.968			1.834	1.00 1		7
ATOM	951 952	N CA	ALA	132		27.964			3.249	1.00 1	5.22	5
ATOM ATOM	953	CB	ALA	132		28.272			4.122	1.00 1		6
ATOM	954	c	ALA	132		26.638			3.656	1.00 1		.6
ATOM	955	0	ALA	132		25.719			4.109	1.00 1		5 7
ATOM	956	N	ASP	133		26.553			53.411 53.729	1.00 2		5
ATOM	957	CA	ASP	133		25.397			54.193	1.00 2		6
ATOM	958	CB	ASP	133		25.868 26.18			53.024	1.00 2		5
ATOM	959 960	CC	ASP 1 ASP	133		25.70			51.871	1.00 2		3
ATOM ATOM	961		2 ASP	133		26.89			53.284	1.00 2	5.03	3
ATOM	962	c	ASP	133		24.65	5 16.8		54.885	1.00 2		6
ATOM	963	0	ASP	133		23.57			54.715	1.00 2		8
ATOM	964	N	GLU	134		25.31			56.037	1.00 1		7
ATOM	965	CA		134		24.74			57.211	1.00 1		6 5
ATOM	966			134		25.47			58.482 58.287	1.00		5
ATOM	967			134		26.58 28.00			58.153	1.00		6
MOTA	968 969		GLU	134 134		28.98			58.020	1.00		ē
atom atom	970		2 GLU	134		28.13			58.183	1.00	18.81	3
MOTA	971		GLU	134		24.78			57.068	1.00		5
ATOM	972		GLU	134		25.84			57.197	1.00		9
ATOM	973		SER	135		23.64			56.657	1.00		÷
ATOM	974			135		23.37			57.166	1.00		÷
ATOM	97: 97:			135 135		25.62			15.400	1.00		=
ATOM ATOM	97		SER	135		22.9			55.124	1.00		5
ATOM	97		SEP.	135		22.3		501	54.991	1.00	17.96	â
ATOM	97		GLY	136		23.21	-	665	54.095		19.82	7
MOTA	98			136	i	22.9		109	52.753		21.54	5
MOTA	98:	1 0	GLY	136	5	23.7		335	52.372		22.07	6 ±
ATOM	98.			130		23.2		345 258	51.910 52.622		21.69	ĭ
ATOM	98			13		25.0 25.9		332	52.301		19.69	6
MOTA	98 98			13°		26.5		884	53.590		22.11	6
atom atom	98					25.7		968	54.204	1.00	25.43	ē
ATOM	98		D2 HIS			26.0		862	55.183		27.18	6
ATOM	98		D1 HIS		7	24.4		.256	53.777		26.89	7
ATOM	98	9 0	El HIS			24.0		.287	54.465		26.67	
ATOM	99		E2 HIS			24.9		. 674 . 863	55.325 \$1.329		26.59 19.46	
ATOM	99					27.0 27.4		. 666	51.301		20.08	
ATOM	99		HIS IAV			27.		.771	50.468		16.09	
ATOM ATOM	99		A VAI			28.5		. 427	49.52	1.00	12.40	
ATOM	99		B VAI			28.3	391 24	.107	48.14		12.43	4
ATOM		96 (CG1 VAI	. 13	s.	29.		.286	47.390		10.78	
MOTA	99	97 :	CG2 VAI			27.4		.258	47.29		12.93	
ATOM			: YAI			29.1 29.1		.877	50.15 50.70		11.10	2 3
ATOM			D VA			30.		.982				
ATOM ATOM	10		n vai Ca vai			32.		.268			10.3	
ATOM	10		CB VA			32.		.371	51.94	9 1.00	5.7	B ÷
ATOM			CG1 VA		39	33.	781 22	2.877				0 ÷
ATOM	10	04	CG2 VA	L 1	39	31.		2.393				
ATOM			C VA		39			3.095			10.0	
MOTA	10	06	AV C	L 1	39	33.	333 22	2.026	43.96	00	10.3	4 5

bref2	lc.pc	D		Thu	Apr 25 1	12:27:47	1996		14	
ATOM	1007	N	LEU	140	33.975	24.194	49.372	1.00	ð.25	;
ATOM	1008	CA	LEU	140	35.027	24.306	43.384	1.00	6.26	į.
ATOM	1009	CB	LEU	140	34.986	25.673	47.761	1.00	2.05	÷
ATOM	1010	CG	LEU	140	33.726	25.968	47.000	1.00	2.50	÷
MOTA	1011		LEU	140	33.806	27.395	46.505	1.00	2.00	5
MOTA	1012		LEU	140	33.594	24.972	45.869	1.00	2.00	5
ATOM	1013	c	LEU	140	36.354	24.170	49.069	1.00	3.88	દ
ATOM ATOM	1014	0	LEU ARG	140	36.566	24.774	50.115		10.60	Ė
ATOM	1015 1016	CA	ARG	141 141	37.279 38.618	23.481 23.235	48.409 48.929		11.24	:
ATOM	1017	CB	ARG	141	38.682	21.805	49.446		12.76 16.99	5 5
ATOM	1018	CG	ARG	141	39.347	21.645	50.793		21.35	5
ATOM	1019	CD	ARG	141	40.849	21.410	50.697		24.13	6
ATOM	1020	NE	ARG	141	41.431	21.433	52.042		29.12	7
ATOM	1021	CZ	ARG	141	42.344	22.314	52.482	1.00	30.00	ó
ATOM	1022	NH1	ARG	141	42.821	23.266	51.673		30.75	7
ATOM	1023		ARG	141	42.727	22.282	53.773		29.95	7
ATOM ATOM	1024 1025	0	ARG	141	39.632	23.383	47.804		13.10	6
ATOM	1025	N	ARG	141 142	39.289 40.871	23.227 23.715	46.639 48.154		13.55	3 7
ATOM	1027	CA	TRP	142	41.941	23.846	47.182	1.00	11.10	ó
ATOM	1028	CB	TRP	142	41.754	25.107	46.354	1.00	6.92	5
ATOM	1029	CG	TRP	142	41.661	26.356	47.155	1.00	9.55	5
ATOM	1030	CDS	TP.P	142	40.482	26.905	47.749	1.00	9.85	÷
MOTA	1031		TRP	142	40.852	28.094	48.397	1.00	9.31	5
MOTA	1032		TRP	142	39.145	26.50B	47.788		10.67	÷
MOTA	1033		TRF	142	42.671	27.216	47.456		10.90	٤
ATOM ATOM	1034	NE1	TRP TRF	142	42.196 39.937	28.267	48.209		11.52	:
ATOM	1036	CZ3	TRP	142 142	38.245	28.885 27.296	49.072 43.454		11.31	5
ATOM	1037	CHZ	TRP	142	38.645	28.474	49.089	1.00	9.80	ś
ATOM	1038	c	TRP	142	43.288	23.857	47.877	1.00	5.00	6
ATOM	1039	0	TRP	142	43.380	23.703	49.076	1.00	6.66	3
ATOM	1040	N	LEU	143	44.349	23.995	47.109	1.00	5.47	7
ATOM	1041	CA	LEU	143	45.700	24.039	47.656	1.00	3.56	6
ATOM	1042	CB	LEU	143	46.520	22.876	47.123	1.00	2.35	5
ATOM ATOM	1043	CC	LEU	143 143	46.031 46.832	21.474 20.483	47.408	1.00	2.00	6
ATOM	1045			143	46.182	21.223	46.601 43.862	1.00	2.00	6 5
ATOM	1046	c	LEU	143	46.310	25.326	47.158	1.00	2.00	5
MOTA	1047	0	LEU	143	45.765	25.970	46.274	1.00	4.81	š
MOTA	1048	N	PRO	144	47.411	25.759	47.762	1.00	2.00	7
ATOM	1049	CD	PRO	144	48.003	25.327	49.030	1.00	2.00	÷
ATOM	1050	CA	PRO	144	48.027	26.996	47.295	1.00	2.00	£.
MOTA MOTA	1051 1052	CB	PRO PRO	144 144	48.955 48.442		48.445 49.601	1.00	2.00	÷
ATOM	1053	c	PRO	144	48.821	26.750	46.011	1.00	2.00	÷
ATOM	1054	O.	PRO	144	48.999		45.580	1.00	2.00	•
ATOM	1055	N	PRO	145	49.249	27.823	45.342	1.00	2.00	7
ATOM	1056	CD	PRO	145	49.058		45.645	1.00	2.00	÷
ATOM	1057	CA	PRO	145	50.022		44.113	1.00	2.72	÷
ATOM	1058	CB	PRO	145	50.532		43.839	1.00	2.80	÷
ATOM	1059 1060	ce c	PRO	145 145	49.467 51.178		44.372 44.455	1.00	2.95	÷
ATOM	1061	Š	PRO	145	51.875		45.448	1.00	4.71 3.80	÷
ATOM	1062	N	PRO	146	51.396		43.639	1.00	9.22	=
ATOM	1063	CD	PRO	146	50.738		42.347	1.00	5.90	÷
HOTA	1064		PRO	146	52.462	24.665	43.857	1.00	6.83	÷
ATOM	1065	CB	PRO	146	52.356		42.622	1.00	7.88	€.
ATOM	1066	CG	PRO	146	50.972		42.167	1.00	5.28	÷
ATOM ATOM	10,67 1068	5	PRO	146	53.863		43.967	1.00	9.28	•
ATOM	1069	N	PRO GLU	146 147	54.272 54.604		43.135 44.975	1.00	10.56	;
ATOM	1070	CA	GLU	147	55.959		45.248	1.00	9.65	
ATOM	1071	23	G1	147	56.894		44.077	1.00		:
ATOM	1072	CG	GLU	147	56.73		43.456	1.00	18.10	•
ATOM	:073	CD	GLU	147	57.47		44.166	1.00	22.76	÷
ATOM	1074		GLU	147	58.33		45.061	1.00	25.12	:
ATOM	1075		GLU	147	57.20		43.789		23.73	:
HOTA HOTA	1076 1077	3	GLU GLU	147	56.05		45.624		10.12	÷
ATOM	1077	×	THR	148	57.099 54.979		45.453 45.124		12.66	;
ATOM	1079	CA.	THR	148	55.04		45.541	1.00		:
MOTA	1080	CB	THE	148	53.77		45.178	1.00		•
ATOM	1081	DG1	THR	148	53.58		44.765	1.00		•
ATOM	1082		THE	148	53.88		45.621	1.00	2.00	÷
atom atom	1083	C O	THR	148	55.27		43.048	00		•
R4 VII	1084		THR	146	54.60	9 28.080	43.789	1.00	4.53	,

bref21	.c.pd	ь		Thu	Apr 2	5 12	:27	:47	1996	1	.5	
ATOM	1085	N	PRO	149	56.		29.		48.503	1.00 7. 1.00 4.	_	
ATOM	1086	CD	PRO	149	57.		30. 29.		47.666 49.926	1.00 4.		
MOTA	1087	CA	PRO	149 149	56. 58.		30.		49.860	1.00 2.	62 :	
ATOM	1066 1089	CB CG	PRO PRO	149	58.		31.		48.698	1.00 2.		
ATOM ATOM	1090	c	PRO	149	55.			869	50.498	•	00 :	
ATOM	1091	٥	PRO	149	55.			600 012	49.737 51.814		83 : 26 -	
ATOM	1092	N	MET	15σ 150	55. 54.	916		048	52.464	-	41 -	
MOTA	1093	CA	MET	150		415		469	52.109		16	
ATOM	1095	CG	MET	150		864		812	52.512		51 1	
MOTA	1096	SD	MET	150		164		97B 706	54.292 54.546			•
ATOM	1097	CE C	MET MET	150 150		411		. 927	52.169		.15	
atom atom	1098 1099	Ö	MET	150	52	749	32	. 952	52.002		.08	É
MOTA	1100	N	THR	151		878		. 696	52.239 51.963			÷
ATOM	1101	CA	THR	151 151		.464 .157		. 405 . 902	51.799		. 22	÷
ATOM ATOM	1102	CB OG1	THR THR	151		.581		.183	52.955			:
ATOM	1104		THR	151		.821		.347	50.609		.84 .58	ē ē
ATOM	1105	С	THR	151		.403		.920	52.922 52.583		.24	
ATOM	1106	0	THP. SER	151 152		.774		.331	54.123	1.00 6	.42	=
ATOM ATOM	1107 1108	CA	SER	152		.755	31	.831	55.041		.44	•
ATOM	1109	CB	SER	152		.178		.598	36.476	_	.46	÷
MOTA	1110	OC	SER	152		.027		3.645	56.893 54.842		.14	•
MOTA	1111	C .	SER SER	152 152		.982		3.976	55.687	1.00 10	.30	=
MOTA MOTA	1112		HIS	153		.148		3.866	53.780		. 23	
ATOM	1114			153		.070		3.291	53.485).65 1.92	ž.
MOTA	1115			153		479 2.310		5.883 5.975	53.275 54.526		1.89	÷
ATOM	1116		HIS 2 HIS	153 153		2.810		7.048	55.182	1.00	3.84	ŧ
MOTA MOTA	1118		1 HIS	153	53	2.781	3	4.868	55.197		6.02 3.19	7 5
ATOM	1119	CE	1 HIS	153		3.540		5.254 6.570	56.204 56.215		2.00	-
MOTA	1120		HIS HIS	153 153		3.573 9.275		5.491	52.22		2.54	÷
MOTA MOTA	112		RIS	153		9.013	3	6.614	51.81	-	6.78	= ;
ATOM	112		ILE	154	_	8.937		4.385			2.00 2.00	
ATOM	112			154 154	_	8.201 8.491		4.412 3.116			2.00	÷
MOTA	112		B ILE	154		7.90		3.208		6 1.00	2.06	3.
ATOM	112		G1 ILE	154	4	9.98		2.883			2.50 2.00	į
ATOM	112		D1 ILE	154		6.70		1.72			2.05	:
ATOM	112 113					6.16		3.89		4 1.00	2.00	:
MOTA MOTA	113				, 4	6.06	8 3	35.39	49.88		4.56	:
ATOM	113	2 C	A ARG			4.63		35.64° 37.14			5.20	
ATOM	113					14.37 14.59	-	37.92			8.42	÷
ATOM ATOM	113		G ARG			44.38		39.39	9 50.84	18 1.00		•
ATOM		-	E ARC	15	5	44.20		40.10				-
ATOM			Z ARC		-	44.83 45.71		41.22 41.84			25.45	:
ATOM ATOM			NH1 ARC			44.60		41.70	7 53.7	25 1.00	28.94	:
ATOM		-	ARC	3 15	5	44.0		34.96			5.10 5.12	
ATOM	11) AR			44.80		34.76			5.08	3
ATON		42 . 1	n TY! Ca TY!			42.0		33.92		51 1.00	5.24	
ATO			CB TY	R 15	6	41.7		32.4		11 1.00	5.18	
ATO	4 11		CG TY			42.9		31.66		51	13.45	
ATO			CD1 TY CE1 TY		56	44.6		30.8		68 1.30	16.29	
ATO: ATO			CD2 TY		56	43.7	OC	31.0		41 1.00	14.47	
ATO			CE2 TY	P. 13	56	44.8		30.2		46 1.11	14.32	
ATO			CZ TY		56	45.3		30.2		289 1.22	14.23	
ATO			OH TY		56 56	40.7		34.6		365 1.00	7.25	
ATO		53	O TY	R 1	56	40.1	53	35.2	04 48.		8.19	
ATO	M 13	154	N G:	.: 1	57	40.2		34.5 35.0			4.99 4.80	
ATO		155	CA GI		57 57	38.9		36.2		813 1.30	4.31	
ATO ATO		156 157	CE G	LU 1	57	37.0	632	36.8	26 44.	614 1.55	3.57	
ATC	M 1	158	CD G	בט 1	57	37.5		38.0			2.35	
ATC	M 1	159	DE1 G		.57 .57	37.5 37.		39.1		514	5.11	
ATC ATC		160 161		LU 1	.57	38.		33.9	20 44.	997 1.00	6.19	}
ATC		162			57	36.	799	33.7	290 44.	102 1.30	10.44	•

ATCH 1163 N VAL 158 37.022 33.675 43.406 1.00 5.00 2.00 7.000 1166 CG VAL 158 35.459 31.877 43.924 1.00 5.03 5.00 7.000 1166 CG VAL 158 35.459 31.877 43.924 1.00 5.03 5.00 7.000 1166 CG VAL 158 35.459 31.877 43.924 1.00 5.03 5.000 7.0	bref2	1c.pc	ь		Thu	Apr 25 1	2:27:47	7 1996	16
ATCH 1164 CA VAL 138 36.196 32.627 44.942 1.00 6.15 6 ATCH 1165 CB VAL 138 34.655 30.759 45.391 1.00 4.03 5 ATCH 1167 CG2 VAL 138 34.655 30.759 45.391 1.00 4.03 6 ATCH 1167 CG2 VAL 138 34.655 30.759 45.391 1.00 4.03 6 ATCH 1167 CG2 VAL 138 34.653 30.759 45.391 1.00 10.03 6 ATCH 1169 C VAL 138 35.154 33.186 43.878 1.00 9.07 6 ATCH 1169 C VAL 138 35.154 33.186 43.878 1.00 9.07 6 ATCH 1170 CA ASP 159 35.114 32.622 42.681 1.00 10.05 7 7 ATCH 1171 CA ASP 159 35.114 32.622 42.681 1.00 10.05 7 7 ATCH 1171 CA ASP 159 35.114 32.622 42.681 1.00 10.05 7 7 ATCH 1172 CG ASP 159 33.873 33.473 39.256 1.00 13.89 6 ATCH 1173 CG ASP 159 33.873 33.473 39.256 1.00 13.89 6 ATCH 1173 CG ASP 159 33.883 33.473 39.256 1.00 13.89 6 ATCH 1173 CG ASP 159 33.883 33.407 39.547 1.00 13.65 1 ATCH 1175 CA ASP 159 32.997 31.985 41.573 1.00 9.91 5 ATCH 1177 C ASP 159 32.997 31.985 41.573 1.00 9.91 5 ATCH 1177 C ASP 159 32.997 31.985 41.573 1.00 13.65 1 ATCH 1177 C ASP 159 32.997 31.985 41.573 1.00 5.95 1 ATCH 1179 CA VAL 160 31.766 32.485 41.637 1.00 11.05 7 ATCH 1178 CA VAL 160 31.766 32.485 41.637 1.00 7.83 7 ATCH 1179 CA VAL 160 30.582 31.642 41.535 1.00 5.49 6 ATCH 1180 CG VAL 160 30.362 31.642 41.535 1.00 5.49 6 ATCH 1181 CG VAL 160 30.362 31.642 41.535 1.00 5.49 6 ATCH 1182 CG VAL 160 30.362 31.642 41.535 1.00 5.49 6 ATCH 1182 CG VAL 160 30.362 31.642 41.535 1.00 5.49 6 ATCH 1185 CG VAL 160 30.362 31.642 41.535 1.00 5.90 6 ATCH 1185 CG VAL 160 30.362 31.642 41.535 1.00 5.90 6 ATCH 1185 CG VAL 160 30.362 31.602 44.091 1.00 2.00 6 ATCH 1185 CG VAL 160 30.362 31.602 44.091 1.00 2.00 6 ATCH 1185 CG VAL 160 30.362 31.602 44.091 1.00 2.00 6 ATCH 1185 CG VAL 160 30.362 31.602 44.091 1.00 2.00 6 ATCH 1185 CG VAL 160 30.362 31.00 62.32 40.00 61.00 62.20 6 ATCH 1185 CG VAL 160 30.362 31.00 62.32 40.00 61.00 62.20 6 ATCH 1185 CG VAL 160 30.362 31.00 62.32 40.00 62.30 1.00 62.20 6 ATCH 1185 CG VAL 160 30.362 31.00 62.32 40.00 62.30 1.00 62.30 62.30 62.30 62.30 62.30 62.30 62.30 62.30 62.30 62.30 62.30 62.30 62.30 62.30 62.30 62.30 62.30 62.30 62.30 62	MOTA	1163	N	VAL	158	37.022	33.675	45.406	1.00 5.40 :
ATOM 1166 CG VAL 158 35.459 31.877 45.954 1.00 3.03 5 ATOM 1166 CG VAL 158 36.429 31.369 46.962 1.00 3.03 5 ATOM 1168 C VAL 158 36.429 31.369 46.962 1.00 3.63 5 ATOM 1168 C VAL 158 36.429 31.369 46.962 1.00 3.63 5 ATOM 1169 C VAL 158 36.429 31.369 46.962 1.00 3.63 5 ATOM 1170 K ASP 159 35.114 32.622 42.661 1.00 10.57 7 ATOM 1171 CA ASP 159 34.477 33.012 41.672 1.00 10.09 5 ATOM 1171 CA ASP 159 34.147 33.012 41.672 1.00 10.09 5 ATOM 1173 CB ASP 159 34.147 33.012 41.672 1.00 10.09 5 ATOM 1173 CB ASP 159 33.883 32.822 38.172 1.00 13.65 7 ATOM 1174 ODI ASP 159 33.883 32.822 38.172 1.00 13.65 7 ATOM 1175 CC ASP 159 33.093 31.407 39.547 1.00 15.65 1 ATOM 1175 CC ASP 159 33.297 31.985 41.573 1.00 9.51 5 ATOM 1175 CC ASP 159 33.297 31.985 41.573 1.00 9.51 5 ATOM 1176 C ASP 159 33.297 31.985 41.573 1.00 9.51 5 ATOM 1178 N VAL 160 31.766 32.482 41.637 1.00 7.56 5 ATOM 1178 N VAL 160 31.766 32.482 41.637 1.00 7.56 5 ATOM 1178 CB VAL 160 30.582 31.602 41.031 1.00 7.63 7 ATOM 1178 CB VAL 160 30.582 31.602 41.031 1.00 7.03 7 ATOM 1181 CB VAL 160 29.842 32.132 40.227 1.00 33.00 5 ATOM 1181 CB VAL 160 29.842 32.132 40.286 1.00 3.00 6 ATOM 1183 C VAL 160 29.842 32.132 40.286 1.00 6.19 6 ATOM 1185 C VAL 160 29.842 32.132 40.286 1.00 6.19 6 ATOM 1185 C VAL 160 29.853 31.272 39.300 1.00 7.72 7 ATOM 1185 C SEE 161 29.853 31.272 39.300 1.00 7.72 7 ATOM 1185 C SEE 161 29.853 31.272 39.300 1.00 7.72 7 ATOM 1185 C SEE 161 29.853 31.272 39.300 1.00 7.72 7 ATOM 1186 C SEE 161 29.853 31.272 39.300 1.00 7.72 7 ATOM 1186 C SEE 161 29.853 31.272 39.300 1.00 7.72 7 ATOM 1186 C SEE 161 29.853 31.272 39.300 1.00 7.72 7 ATOM 1187 CB SEE 161 29.853 31.272 39.300 1.00 7.72 7 ATOM 1186 C SEE 161 29.853 31.272 39.300 1.00 7.72 7 ATOM 1186 C SEE 161 29.853 31.272 39.300 1.00 7.72 7 ATOM 1187 CB SEE 161 29.853 31.272 39.300 1.00 7.72 7 ATOM 1187 CB SEE 161 29.853 31.272 31.000 1.00 7.24 6 ATOM 1189 C SEE 161 29.853 31.272 31.000 31.00 7.24 6 ATOM 1189 C SEE 161 29.854 31.282 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00 31.00			CA	VAL	158	36.196			
ATCHO 1167 CGZ VAL 158 35.429 31.369 46.962 1.00 3.03 5 ATCH 1168 C VAL 158 34.400 34.103 44.208 1.00 9.77 5 ATCH 1170 K ASP 159 34.407 33.012 41.672 1.00 10.09 5 ATCH 1171 CB ASP 159 34.407 33.012 41.672 1.00 10.09 5 ATCH 1172 CB ASP 159 34.407 33.012 41.672 1.00 10.09 5 ATCH 1172 CB ASP 159 34.407 33.012 41.672 1.00 10.09 5 ATCH 1173 CB ASP 159 34.678 33.873 33.473 39.256 1.00 13.89 5 ATCH 1174 ODI ASP 159 33.893 33.473 39.566 1.00 13.89 5 ATCH 1175 ODZ ASP 159 33.093 34.407 39.547 1.00 11.565 1 ATCH 1176 C ASP 159 33.093 34.407 39.547 1.00 11.565 1 ATCH 1176 C ASP 159 33.093 34.407 39.547 1.00 11.565 1 ATCH 1176 C ASP 159 33.2997 31.995 41.575 1.00 9.916 ATCH 1178 N VAL 160 31.766 32.468 41.672 1.00 7.00 11.09 5 ATCH 1178 N VAL 160 30.592 31.642 41.535 1.00 9.916 ATCH 1178 N VAL 160 30.592 31.642 41.535 1.00 9.916 ATCH 1178 CB VAL 160 29.637 31.774 42.755 1.00 3.00 5 ATCH 1181 CGI VAL 160 29.637 31.774 42.755 1.00 3.00 5 ATCH 1182 CGI VAL 160 29.842 32.132 40.286 1.00 8.22 8 ATCH 1183 C VAL 160 29.842 32.132 40.286 1.00 8.22 8 ATCH 1185 C VAL 160 29.842 32.132 40.286 1.00 8.22 8 ATCH 1185 C VAL 160 29.842 32.132 40.286 1.00 8.22 8 ATCH 1186 C ASER 161 29.853 31.272 39.300 1.00 7.72 7 ATCH 1186 C ASER 161 29.853 31.272 39.300 1.00 7.72 7 ATCH 1186 C ASER 161 29.853 31.272 39.300 1.00 7.72 7 ATCH 1186 C ASER 161 29.853 31.272 39.300 1.00 7.72 7 ATCH 1189 C ASER 161 29.853 31.272 39.300 1.00 7.72 7 ATCH 1189 C ASER 161 29.853 31.272 39.300 1.00 7.72 7 ATCH 1189 C ASER 161 29.853 31.272 39.300 1.00 7.02 6 ATCH 1189 C ASER 161 29.853 31.272 39.300 1.00 7.02 6 ATCH 1189 C ASER 161 29.853 31.272 39.300 1.00 7.02 6 ATCH 1189 C ASER 161 29.853 31.272 39.300 1.00 7.02 6 ATCH 1189 C ASER 161 29.853 31.20 1.00 3.00 6 ATCH 1189 C ASER 161 29.853 31.20 1.00 3.00 6 ATCH 1189 C ASER 161 29.853 31.00 39.20 6 28.20 1.00 39.20 6 ATCH 1189 C ASER 161 29.853 31.00 39.20 6 ATCH 1190 C ASER 161 29.853 31.00 39.20 6 ATCH 1190 C ASER 161 29.853 31.00 39.20 6 ATCH 1190 C ASER 161 29.853 31.00 39.20 6 ATCH 1190 C ASER 161 29.854 30.00							31.877	45.954	
ATCH 1168 C VAL 158 35.154 33.186 43.878 1.00 9.87 5 ATCH 1169 O VAL 158 34.400 34.103 44.208 1.00 10.33 5 ATCH 1170 CA ASP 159 35.114 32.622 42.681 1.00 10.37 5 ATCH 1171 CA ASP 159 35.114 32.622 42.681 1.00 10.37 5 ATCH 1171 CA ASP 159 34.828 33.112 40.527 1.00 10.09 5 ATCH 1173 CG ASP 159 34.828 33.112 40.527 1.00 10.09 5 ATCH 1173 CG ASP 159 33.863 33.4373 35.256 1.00 13.865 2 ATCH 1175 ODZ ASP 159 33.863 33.4373 35.256 1.00 13.865 2 ATCH 1175 ODZ ASP 159 33.863 32.822 38.172 1.00 13.865 2 ATCH 1175 ODZ ASP 159 33.863 32.822 38.172 1.00 13.865 2 ATCH 1175 ODZ ASP 159 33.893 34.407 35.547 1.00 13.865 2 ATCH 1175 ODZ ASP 159 33.893 34.607 35.547 1.00 13.865 2 ATCH 1176 CA ASP 159 32.997 31.985 41.575 1.00 9.51 5 ATCH 1177 O ASP 159 32.997 31.985 41.575 1.00 9.51 5 ATCH 1177 O ASP 159 32.997 31.985 41.575 1.00 9.51 5 ATCH 1179 CA VAL 160 31.766 32.485 41.557 1.00 3.49 5 ATCH 1179 CA VAL 160 31.766 32.485 41.657 1.00 1.08 2 ATCH 1180 CB VAL 160 29.637 31.774 42.155 1.00 3.49 5 ATCH 1180 CB VAL 160 29.637 31.774 42.155 1.00 3.49 5 ATCH 1181 CGI VAL 160 29.364 33.280 40.93 1.00 0.82 1 ATCH 1185 N SER 161 29.364 33.280 40.238 1.00 6.82 2 ATCH 1186 CA SER 161 29.104 31.475 38.046 1.00 6.82 5 ATCH 1186 CB SER 161 29.104 31.475 38.046 1.00 6.82 5 ATCH 1189 C SER 161 29.104 31.475 38.046 1.00 6.82 5 ATCH 1189 C SER 161 30.637 32.991 2.8034 1.00 12.39 4 ATCH 1190 N SER 161 28.601 29.117 38.024 1.00 12.39 4 ATCH 1191 N ALA 162 25.793 29.612 77.784 1.00 1.00 7.794 1 ATCH 1191 N ALA 162 25.793 29.612 77.784 1.00 1.00 1.00 7.794 1 ATCH 1191 N ALA 162 25.793 29.612 77.784 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0									
ATCH 1169 O VAL 198 34.400 34.103 42.208 1.00 10.93 7 ATCH 1170 F ASP 159 31.114 32.222 42.681 1.00 10.57 7 ATCH 1171 CA ASP 159 34.147 33.012 41.672 1.00 10.57 7 ATCH 1172 CB ASP 159 34.147 33.012 41.672 1.00 10.57 1 ATCH 1172 CB ASP 159 34.147 33.012 41.672 1.00 10.57 1 ATCH 1174 ODI ASP 159 33.873 33.473 39.256 1.00 13.65 3 ATCH 1175 ODZ ASP 159 33.873 33.473 39.256 1.00 13.65 3 ATCH 1176 C ASP 159 33.093 34.607 39.547 1.00 13.65 3 ATCH 1176 C ASP 159 32.997 31.895 41.073 1.00 13.65 3 ATCH 1176 C ASP 159 32.997 31.895 41.073 1.00 13.65 3 ATCH 1178 N VAL 160 31.766 32.485 41.637 1.00 11.09 3 ATCH 1178 N VAL 160 31.766 32.485 41.637 1.00 11.09 3 ATCH 1178 N VAL 160 31.766 32.485 41.637 1.00 17.83 7 ATCH 1178 CB VAL 160 29.673 31.642 41.533 1.00 5.49 6 ATCH 1180 CB VAL 160 29.673 31.642 41.533 1.00 5.49 6 ATCH 1181 CGI VAL 160 29.673 31.642 41.533 1.00 5.49 6 ATCH 1181 CGI VAL 160 29.842 32.132 40.286 1.00 6.20 6 ATCH 1183 C VAL 160 29.842 33.2804 40.91 1.00 2.00 6 ATCH 1185 C VAL 160 29.842 33.2804 40.91 1.00 2.00 6 ATCH 1185 C VAL 160 29.842 33.2804 40.91 1.00 2.00 6 ATCH 1185 C VAL 160 29.842 33.2804 40.91 1.00 2.00 6 ATCH 1185 C VAL 160 29.842 33.2804 40.91 1.00 2.00 6 ATCH 1185 C VAL 160 29.842 33.2804 40.91 1.00 2.00 6 ATCH 1185 C VAL 160 29.842 33.2804 40.91 1.00 2.00 6 ATCH 1185 C VAL 160 29.842 33.2804 40.91 1.00 2.00 6 ATCH 1185 C VAL 160 29.842 33.2804 40.91 1.00 2.00 6 ATCH 1185 C VAL 160 29.842 33.2804 40.91 1.00 2.00 6 ATCH 1185 C VAL 160 29.842 33.2804 40.91 1.00 2.00 6 ATCH 1185 C VAL 160 29.842 33.2804 40.91 1.00 2.00 6 ATCH 1185 C VAL 160 29.842 33.2804 40.91 1.00 2.00 6 ATCH 1185 C VAL 160 29.842 33.2804 1.00 1.00 7.72 7 ATCH 1187 C VAL 160 29.842 33.2804 1.00 1.00 7.72 7 ATCH 1187 C VAL 160 29.842 33.2804 1.00 1.00 7.72 7 ATCH 1187 C VAL 160 29.842 33.2804 1.00 1.00 7.72 7 ATCH 1187 C VAL 160 29.842 33.2804 1.00 1.00 7.00 6 ATCH 1187 C VAL 160 29.842 32.93 33.293 1.00 1.00 7.94 4 ATCH 1189 C VAL 160 29.842 32.93 33.93 1.00 1.00 7.94 4 ATCH 1189 C VAL 160 29.842 32.93 33.93 1.00 1.00 1.00 6 A									
ATCH 1170 F. ASP 159									
ATOM 1172 CA ASP 159 34.147 33.012 41.672 1.00 10.0 9		_							
ATOM 1173 CG ASP 159 34.828 33.112 40.327 1.00 11.07 5 ATOM 1173 CG ASP 159 33.873 33.273 39.256 1.00 11.07 5 ATOM 1175 OD2 ASP 159 33.873 33.873 39.252 28.172 1.00 13.65 5 3 ATOM 1175 OD2 ASP 159 33.873 33.873 39.252 28.172 1.00 13.65 5 3 ATOM 1175 OD2 ASP 159 33.093 34.407 39.547 1.00 15.65 5 3 ATOM 1177 O ASP 159 32.993 14.905 14.573 1.00 19.91 5 ATOM 1177 O ASP 159 32.993 34.407 39.547 1.00 15.65 1 ATOM 1178 N VAL 160 31.765 32.885 41.657 1.00 17.09 1 5 ATOM 1179 CA VAL 160 31.765 32.885 41.657 1.00 1.09 9.91 5 ATOM 1179 CA VAL 160 31.765 32.885 41.657 1.00 5.49 5 ATOM 1180 CB VAL 160 30.592 31.642 41.535 1.00 5.49 6 ATOM 1181 CGI VAL 160 28.512 30.738 42.742 1.00 3.00 6 ATOM 1181 CGI VAL 160 28.512 30.738 42.742 1.00 3.00 6 ATOM 1182 CG2 VAL 160 29.842 32.132 40.266 1.00 6.19 6 ATOM 1183 C VAL 160 29.842 32.132 40.266 1.00 6.19 6 ATOM 1183 C VAL 160 29.842 32.132 40.266 1.00 6.22 5 ATOM 1186 C ASER 161 29.855 31.272 29.300 1.00 7.72 7 ATOM 1186 C ASER 161 29.855 31.272 29.300 1.00 7.72 7 ATOM 1187 C ASER 161 29.855 31.272 29.300 1.00 7.72 7 ATOM 1187 C ASER 161 29.855 31.272 39.300 1.00 7.72 7 ATOM 1187 C ASER 161 29.855 31.272 39.300 1.00 7.72 7 ATOM 1187 C ASER 161 29.855 31.272 39.300 1.00 7.72 7 ATOM 1187 C ASER 161 29.104 31.475 38.046 1.00 6.29 6 ATOM 1189 C ASER 161 30.637 32.951 26.891 1.00 10.26 6 ATOM 1189 C ASER 161 28.161 30.637 32.951 26.891 1.00 10.26 6 ATOM 1189 C ASER 161 28.161 30.637 32.951 26.891 1.00 10.26 6 ATOM 1189 C ASER 161 28.161 30.637 32.951 26.891 1.00 10.26 6 ATOM 1199 C ASER 161 28.161 30.637 32.951 26.891 1.00 10.26 6 ATOM 1199 C ASER 161 28.161 30.637 32.951 26.891 1.00 10.26 6 ATOM 1199 C ASER 161 28.161 30.637 32.951 26.891 1.00 10.26 6 ATOM 1199 C ASER 161 28.161 30.637 32.951 26.891 1.00 10.26 6 ATOM 1199 C ASER 161 28.161 30.637 32.951 26.891 1.00 10.26 6 ATOM 1199 C ASER 161 28.601 28.17 38.00 38.									
ATOM 1173 CC ASP 159 33.873 33.473 39.256 1.00 13.89 5 ATOM 1174 001 ASP 159 33.093 34.007 39.541 1.00 13.65 5 ATOM 1176 CC ASP 159 33.093 34.007 39.541 1.00 13.65 5 ATOM 1176 CC ASP 159 33.093 34.007 39.541 1.00 13.65 5 ATOM 1176 CC ASP 159 33.093 34.007 39.541 1.00 13.65 5 ATOM 1177 CC ASP 159 33.093 34.007 39.541 1.00 13.05 5 ATOM 1178 N VAL 160 31.766 32.485 41.637 1.00 7.83 61.00 1.00 9.91 ATOM 1178 N VAL 160 31.766 32.485 41.637 1.00 7.83 61.00 ATOM 1180 CB VAL 160 29.637 31.774 42.785 1.00 3.19 6 ATOM 1180 CB VAL 160 29.637 31.774 42.785 1.00 3.19 6 ATOM 1181 CCI VAL 160 29.637 31.774 42.785 1.00 3.19 6 ATOM 1182 CC VAL 160 30.582 31.602 44.091 1.00 2.00 6.19 6 ATOM 1183 C VAL 160 30.362 31.602 44.091 1.00 2.00 6.19 6 ATOM 1183 C VAL 160 29.364 33.280 40.238 1.00 8.22 1.00 3.00 6.19 6 ATOM 1185 N SER 161 29.104 31.475 38.046 1.00 6.19 6 ATOM 1186 C VAL 160 29.364 33.280 40.238 1.00 8.22 ATOM 1185 N SER 161 29.104 31.475 38.046 1.00 6.29 6 ATOM 1186 C SER 161 30.094 31.628 26.891 1.00 10.26 6 ATOM 1189 C SER 161 30.094 31.628 26.891 1.00 10.26 6 ATOM 1189 C SER 161 30.094 31.628 26.891 1.00 10.26 6 ATOM 1199 C SER 161 28.601 29.17 28.024 1.00 7.94 1.00 13.94 1.00									
ATOM 1175 OD2 ASP 159 33.863 32.822 38.172 1.00 13.65 2 ATOM 1176 C ASP 159 33.093 34.007 39.547 1.00 13.65 2 ATOM 1177 O ASP 159 32.997 31.985 41.575 1.00 9.91 5 ATOM 1177 O ASP 159 32.997 31.985 41.575 1.00 9.91 5 ATOM 1178 N VAL 160 31.766 32.485 41.637 1.00 7.83 7 ATOM 1179 CA VAL 160 31.766 32.485 41.637 1.00 3.00 6 ATOM 1180 CB VAL 160 29.637 31.774 42.755 1.00 3.19 5 ATOM 1181 CG1 VAL 160 29.637 31.774 42.755 1.00 3.19 5 ATOM 1181 CG1 VAL 160 29.637 31.774 42.755 1.00 3.19 5 ATOM 1182 CG2 VAL 160 29.637 31.774 42.755 1.00 3.19 5 ATOM 1183 C VAL 160 29.637 31.774 42.755 1.00 3.19 5 ATOM 1181 CG1 VAL 160 29.637 31.774 42.755 1.00 3.19 5 ATOM 1182 CG2 VAL 160 29.364 33.280 40.286 1.00 6.19 6 ATOM 1183 C VAL 160 29.363 33.280 40.288 1.00 6.22 5 ATOM 1185 C SER 161 29.855 31.272 39.300 1.00 7.72 7 ATOM 1186 CA SER 161 29.855 31.272 39.300 1.00 7.72 7 ATOM 1187 CB SER 161 30.034 31.273 29.300 1.00 7.72 7 ATOM 1189 C SER 161 30.034 31.622 26.891 1.00 10.26 6 ATOM 1189 C SER 161 30.034 31.622 86.891 1.00 10.26 6 ATOM 1189 C SER 161 28.161 30.275 7.7938 1.00 10.74 7 ATOM 1190 C SER 161 28.161 30.275 7.7938 1.00 7.24 6 ATOM 1191 C ALA 162 26.895 30.605 37.791 1.00 9.16 7 ATOM 1191 C ALA 162 25.993 30.605 37.791 1.00 9.16 7 ATOM 1192 C ALA 162 25.993 30.044 35.406 1.00 8.29 6 ATOM 1193 C ALA 162 25.993 30.35 38.736 1.00 15.24 6 ATOM 1195 C ALA 162 25.993 30.044 35.406 1.00 10.39 6 ATOM 1196 N GLY 163 23.598 27.913 35.150 1.00 16.65 6 ATOM 1197 C A GLY 163 23.598 27.913 35.150 1.00 16.80 3 ATOM 1198 C GLY 163 23.598 27.913 35.150 1.00 16.80 3 ATOM 1199 C ALA 162 23.598 30.305 38.736 1.00 15.24 6 ATOM 1199 C A GLY 163 23.598 27.913 35.150 1.00 16.80 3 ATOM 120 C A SAN 164 22.246 28.291 33.160 1.00 10.00 6.65 6 ATOM 120 C A SAN 164 22.246 32.393 33.726 1.00 90.00 6 ATOM 120 C C A SAN 164 22.256 28.36 31.30 1.00 10.00 10.00 6 ATOM 120 C C A SAN 164 22.256 28.30 33.30 1.00 13.00 10.00 6 ATOM 120 C C A SAN 164 22.256 28.30 33.30 1.00 13.00 90.00 6 ATOM 120 C C SAN 164 29.30 33.30 33.726 1.00 90.00 6 ATOM 120 C C SAN 164	ATOM		CG	ASP	159	33.873			
ATOM 1176 C ASP 159 32.997 31.985 41.575 1.00 9.91 5 ATOM 177 0 ASP 159 32.997 31.985 41.575 1.00 9.91 5 ATOM 177 0 ASP 159 33.227 30.761 42.755 1.00 1.00 1.09 1 ATOM 179 CA VAL 160 30.582 31.662 41.535 1.00 5.49 5 ATOM 179 CA VAL 160 30.582 31.662 41.535 1.00 5.49 6 ATOM 1810 CB VAL 160 29.637 31.774 42.785 1.00 3.00 6 ATOM 1811 CG1 VAL 160 29.637 31.774 42.785 1.00 3.00 6 ATOM 1812 CG2 VAL 160 30.362 31.602 44.031 1.00 0.00 6 ATOM 1818 CG1 VAL 160 29.842 32.132 40.286 1.00 6.19 6 ATOM 1818 CG1 VAL 180 29.842 32.132 40.286 1.00 6.19 6 ATOM 1818 CG1 VAL 180 29.842 32.132 40.286 1.00 6.19 6 ATOM 1818 CG1 VAL 180 29.843 32.280 40.288 1.00 6.22 8 ATOM 186 CA SER 161 29.835 31.272 29.300 1.00 7.72 7 ATOM 186 CA SER 161 29.835 31.272 29.300 1.00 7.72 7 ATOM 186 CA SER 161 30.094 31.628 26.891 1.00 10.26 6 ATOM 189 CG SER 161 30.637 32.951 26.991 1.00 10.26 ATOM 189 CG SER 161 30.637 32.951 26.991 1.00 10.26 ATOM 189 CG SER 161 30.637 32.951 26.991 1.00 10.26 ATOM 189 CG SER 161 28.161 30.275 27.998 1.00 13.94 5 ATOM 199 CG SER 161 28.161 30.637 32.951 26.991 1.00 10.26 ATOM 199 CG SER 161 28.161 30.637 32.951 26.991 1.00 10.26 ATOM 199 CG SER 161 28.161 30.637 32.951 26.991 1.00 10.26 ATOM 199 CG SER 161 28.161 30.637 37.991 1.00 10.26 ATOM 199 CG SER 161 28.161 30.637 37.991 1.00 10.26 ATOM 199 CG SER 161 28.161 30.637 37.991 1.00 10.26 ATOM 199 CG SER 161 28.161 30.637 37.991 1.00 10.26 ATOM 199 CG SER 161 28.161 30.637 37.991 1.00 10.26 ATOM 199 CG SER 161 28.161 30.637 37.991 1.00 10.20 3.91 ATOM 199 CG SER 161 28.161 30.637 37.991 1.00 10.20 3.91 ATOM 199 CG SER 161 28.161 30.637 37.991 1.00 10.20 3.91 ATOM 199 CG SER 161 28.161 30.637 37.991 1.00 10.20 3.91 ATOM 199 CG SER 161 28.161 30.00 30.00 3.891 30.00 3.91 ATOM 199 CG SER 161 30.00 30.00 ATOM 199 CG SER 161 30.00 ATOM 199 CG SER 161 3							32.822	38.172	
ATOM 1177 O ASP 159 33.227 30.761 41.479 1.00 11.03 1.767 ATOM 1178 N VAL 160 30.582 31.602 41.637 1.00 7.83 6.767 ATOM 1180 CB VAL 160 30.582 31.602 41.637 1.00 7.83 6.767 ATOM 1180 CB VAL 160 29.637 31.774 42.785 1.00 3.19 4.767 ATOM 1181 CG1 VAL 160 29.637 31.774 42.785 1.00 3.19 4.767 ATOM 1182 CG2 VAL 160 30.582 31.602 44.091 1.00 2.00 6.767 ATOM 1182 CG2 VAL 160 30.582 31.602 44.091 1.00 2.00 6.767 ATOM 1182 CG2 VAL 160 30.582 31.602 44.091 1.00 2.00 6.77 ATOM 1185 C VAL 160 29.842 32.132 40.286 1.00 6.19 6.19 6.19 6.19 6.19 6.19 6.19 6.19									
ATOM 1178 N VAL 160 31.766 32.485 41.637 1.00 7.83 7. ATOM 1179 CA VAL 160 30.582 31.642 41.535 1.00 3.89 6. ATOM 1180 CB VAL 160 29.637 31.774 42.755 1.00 3.19 6. ATOM 1181 CG VAL 160 29.637 31.774 42.755 1.00 3.00 6. ATOM 1182 CG2 VAL 160 30.362 31.602 40.91 1.00 2.00 6. ATOM 1183 C VAL 160 29.842 32.132 40.286 1.00 6.19 6. ATOM 1185 C VAL 160 29.364 32.232 40.286 1.00 6.19 6. ATOM 1185 C VAL 160 29.364 32.232 40.286 1.00 6.19 6. ATOM 1185 C VAL 160 29.364 32.232 40.286 1.00 6.19 6. ATOM 1185 C VAL 160 29.364 32.232 40.286 1.00 6.29 6. ATOM 1185 C VAL 160 29.364 32.232 40.286 1.00 6.29 6. ATOM 1185 C VAL 160 29.364 32.232 40.286 1.00 6.29 6. ATOM 1185 C VAL 160 29.364 32.232 40.286 1.00 1.00 7.72 7. ATOM 1187 CB SER 161 30.094 31.628 26.891 1.00 10.26 6. ATOM 1189 C SER 161 30.637 32.991 26.934 1.00 10.26 6. ATOM 1190 C SER 161 28.601 30.275 77.938 1.00 13.94 1. ATOM 1191 N ALA 162 26.883 30.605 37.791 1.00 13.94 1. ATOM 1192 CA ALA 162 25.793 29.612 27.784 1.00 12.39 6. ATOM 1193 CB ALA 162 25.793 29.612 27.784 1.00 12.39 6. ATOM 1195 C ALA 162 25.593 30.004 35.406 1.00 15.24 6. ATOM 1196 C ALA 162 25.593 30.004 35.406 1.00 15.24 6. ATOM 1197 CA GLY 163 24.220 28.499 36.369 1.00 15.24 6. ATOM 1198 C GLY 163 24.220 28.499 36.369 1.00 15.24 6. ATOM 1199 C GLY 163 22.561 28.761 34.370 1.00 18.80 2. ATOM 1202 CB ASN 164 22.416 28.231 33.146 0.00 10.391 6. ATOM 1203 CB ALN 164 22.416 28.231 33.146 0.00 10.391 6. ATOM 1204 C ALA 162 25.593 30.004 35.406 1.00 13.91 6. ATOM 1205 CB ASN 164 21.568 28.666 11.994 1.00 90.00 6. ATOM 1207 C ASN 164 21.568 28.666 11.994 1.00 90.00 6. ATOM 1208 C GLY 163 22.561 28.761 34.370 1.00 18.80 2. ATOM 1209 C A SN 164 21.568 28.666 11.994 1.00 90.00 6. ATOM 1200 C ASN 164 18.334 28.580 32.511 1.00 90.00 6. ATOM 1201 C A SN 164 18.334 28.580 32.511 1.00 90.00 6. ATOM 1202 C B ASN 164 21.568 28.664 11.994 1.00 90.00 6. ATOM 1203 C B SER 168 23.594 33.798 39.181 1.00 6.00 6.00 6.00 6.00 6.00 6.00 6.0									
ATOM 1190 CB VAL 160 29.637 31.642 41.535 1.00 5.49 5 ATOM 11810 CB VAL 160 29.637 31.774 42.755 1.00 3.19 6 ATOM 1182 CG2 VAL 160 30.362 31.602 44.091 1.00 2.00 6 ATOM 1183 C VAL 160 29.842 31.202 44.091 1.00 2.00 6 ATOM 1183 C VAL 160 30.362 31.602 44.091 1.00 2.00 6 ATOM 1183 C VAL 160 29.842 32.132 40.286 1.00 6.19 6 ATOM 1185 N SER 161 29.853 31.272 29.300 1.00 7.72 7 ATOM 1186 CA SER 161 29.853 31.272 29.300 1.00 7.72 7 ATOM 1187 CB SER 161 30.094 31.628 6.891 1.00 10.26 ATOM 1189 C SER 161 30.094 31.628 6.891 1.00 10.26 ATOM 1189 C SER 161 30.094 31.628 6.891 1.00 10.26 ATOM 1190 O SER 161 30.637 32.951 26.991 1.00 10.26 ATOM 1191 N ALA 162 26.885 30.605 37.791 1.00 7.24 ATOM 1191 N ALA 162 26.885 30.605 37.791 1.00 7.24 ATOM 1192 CA ALA 162 25.793 29.612 27.784 1.00 12.39 ATOM 1193 CB ALA 162 25.593 30.043 35.406 1.00 12.39 ATOM 1194 C ALA 162 25.593 30.043 35.406 1.00 15.24 ATOM 1195 O ALA 162 25.593 30.043 35.406 1.00 15.24 ATOM 1196 N GLY 163 23.598 27.913 35.150 1.00 16.65 ATOM 1197 CA GLY 163 23.598 27.913 35.150 1.00 16.65 ATOM 1198 C GLY 163 23.598 27.913 35.150 1.00 16.65 ATOM 1199 C ALA 162 25.593 30.043 35.406 1.00 13.91 ATOM 1196 N GLY 163 23.598 27.913 35.150 1.00 16.65 ATOM 1197 CA GLY 163 23.598 27.913 35.150 1.00 16.65 ATOM 1199 C ALA 162 25.593 30.043 35.406 1.00 13.91 ATOM 1190 CA SN 164 19.322 25.61 ATOM 1190 CA SN 164 19.322 25.61 ATOM 100 N SN 164 22.416 28.231 13.16 100 00.00 0 ATOM 1201 CA SN 164 19.322 25.61 ATOM 1202 CB ASN 164 19.337 27.730 32.702 1.00 90.00 ATOM 1202 CB ASN 164 19.337 27.730 32.702 1.00 90.00 ATOM 1202 CB ASN 164 19.337 27.730 32.702 1.00 90.00 ATOM 1202 CB ASN 164 19.337 27.730 32.702 1.00 90.00 ATOM 1202 CB ASN 164 19.337 27.730 32.702 1.00 90.00 ATOM 1202 CB ASN 164 19.322 27.623 31.660 1.00 10.16 ATOM 1203 CB ASN 164 19.322 27.623 31.660 1.00 10.16 ATOM 1204 CB ALA 166 19.500 33.406 33.760 1.00 10.65 ATOM 1202 CB ASN 164 19.322 27.623 31.600 37.704 1.00 90.00 ATOM 1202 CB ASN 164									
ATOM 1180 CB VAL 160 29.637 31.774 42.755 1.00 31.9 5 ATOM 1181 CGI VAL 160 30.362 31.602 44.091 1.00 3.00 6 ATOM 1183 C VAL 160 30.362 31.602 44.091 1.00 2.00 6 ATOM 1183 C VAL 160 29.842 32.132 40.286 1.00 6.19 6 ATOM 1184 O VAL 160 29.842 32.132 40.286 1.00 6.19 6 ATOM 1185 C VAL 160 29.842 32.132 40.286 1.00 6.19 6 ATOM 1186 C VAL 160 29.842 32.132 40.286 1.00 6.19 6 ATOM 1185 C VAL 160 29.842 32.132 40.286 1.00 6.19 6 ATOM 1186 C VAL 160 29.842 32.132 40.286 1.00 6.19 6 ATOM 1187 CB SER 161 30.094 31.628 26.891 1.00 10.26 6 ATOM 1189 C SER 161 30.637 32.951 26.934 1.00 10.26 6 ATOM 1189 C SER 161 30.637 32.951 26.934 1.00 10.26 6 ATOM 1189 C SER 161 28.601 29.117 28.602 4 1.00 7.94 6 ATOM 1191 N ALA 162 26.889 30.605 37.791 1.00 9.16 7 ATOM 1192 CA ALA 162 25.793 29.612 27.784 1.00 12.39 6 ATOM 1193 CB ALA 162 25.199 29.394 36.379 1.00 14.12 6 ATOM 1194 C ALA 162 25.199 29.394 36.379 1.00 14.12 6 ATOM 1195 O ALA 162 25.199 30.040 35.406 1.00 13.91 6 ATOM 1195 O ALA 162 25.593 30.044 35.406 1.00 13.91 7 ATOM 1196 C ALA 162 25.593 30.044 35.406 1.00 13.91 7 ATOM 1197 CA GLY 163 22.561 28.761 34.370 1.00 16.65 5 ATOM 1198 C GLY 163 22.561 28.761 34.370 1.00 16.65 5 ATOM 1199 O GLY 163 22.561 28.761 34.370 1.00 16.65 5 ATOM 1200 N ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1201 CA ASN 164 21.568 28.664 1.994 1.00 90.00 6 ATOM 1202 CB ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1204 ODI ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1205 O ALA 166 20.602 33.460 35.242 1.00 90.00 6 ATOM 1206 C ASN 164 19.337 37.730 32.702 1.00 90.00 6 ATOM 1207 O ASN 164 20.416 33.623 33.813 35.64 1.00 15.88 6 ATOM 1208 N GLY 165 20.544 32.321 31.161 1.00 90.00 7 ATOM 1204 ODI ASN 164 19.352 27.033 33.726 1.00 90.00 6 ATOM 1205 CB ASN 164 19.357 37.730 32.702 1.00 90.00 6 ATOM 1206 C ASN 164 19.357 37.730 32.702 1.00 90.00 6 ATOM 1207 O ASN 164 19.352 27.933 33.7421 1.00 90.00 7 ATOM 1208 N GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1208 C ALA 166 20.941 33.948 30.853 1.00 15.88 8 ATOM 1208 C ALA 166 20.941 33.948 33.									
ATOM 1182 CG2 VAL 160	ATOM	1180	CB						
ATOM 1183 C VAL 160					160	28.512			
ATOM 1185 N SER 161 29.364 33.280 40.238 1.00 8.22 3 ATOM 1185 N SER 161 29.104 31.475 38.046 1.00 8.29 7 ATOM 1187 CB SER 161 29.104 31.475 38.046 1.00 8.29 7 ATOM 1187 CB SER 161 30.637 31.475 38.046 1.00 13.94 ATOM 1189 CG SER 161 30.637 32.951 26.934 1.00 13.94 ATOM 1189 CS SER 161 28.161 30.637 32.951 26.934 1.00 13.94 ATOM 1190 N SER 161 28.610 29.117 28.024 1.00 7.94 ATOM 1191 N ALA 162 26.885 30.605 37.791 1.00 9.16 ATOM 1192 CA ALA 162 25.793 29.612 27.784 1.00 15.24 ATOM 1193 CB ALA 162 25.793 29.612 27.784 1.00 15.24 ATOM 1193 CB ALA 162 25.593 30.045 37.791 1.00 9.16 ATOM 1193 CB ALA 162 25.593 30.045 37.791 1.00 9.16 ATOM 1195 O ALA 162 25.593 30.045 35.706 1.00 15.24 ATOM 1195 O ALA 162 25.593 30.045 35.706 1.00 15.24 ATOM 1196 N GLY 163 24.220 28.499 36.389 1.00 15.85 ATOM 1196 N GLY 163 24.520 28.499 36.389 1.00 15.85 ATOM 1198 C GLY 163 22.561 28.761 34.370 1.00 18.26 5 ATOM 1198 C GLY 163 22.561 28.761 34.370 1.00 18.26 5 ATOM 1199 O GLY 163 22.561 28.761 34.370 1.00 18.26 5 ATOM 1199 O GLY 163 22.561 28.761 34.370 1.00 18.26 5 ATOM 1200 N ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1201 CA ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1202 CB ASN 164 20.505 27.623 31.665 1.00 90.00 7 ATOM 1202 CB ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1203 CG ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1209 CA GLY 165 20.544 32.321 33.1540 1.00 90.00 7 ATOM 1209 CA GLY 165 20.544 32.321 33.1540 1.00 90.00 7 ATOM 1209 CA GLY 165 20.544 32.321 33.5140 1.00 90.00 7 ATOM 1201 CA ASN 164 19.352 27.033 31.762 1.00 90.00 7 ATOM 1202 CB ASN 164 19.352 27.033 31.762 1.00 90.00 7 ATOM 1202 CB ASN 164 19.352 27.033 31.762 1.00 90.00 7 ATOM 1203 CG ASN 164 19.352 27.033 31.762 1.00 90.00 7 ATOM 1203 CG ASN 164 19.352 27.033 31.762 1.00 90.00 7 ATOM 1203 CG ASN 164 19.352 27.033 31.762 1.00 90.00 7 ATOM 1203 CG ASN 164 19.352 27.033 31.762 1.00 90.00 7 ATOM 1203 CG ASN 164 19.352 27.353 31.665 1.00 90.00 7 ATOM 1203 CG ASN 164 19.352 27.353 31.665 1.00 90.00 7 ATOM 1203 CG ASN 164 19.353 27.354 38.354 1.00									
ATOM 1186 N SER 161 29.835 31.272 39.300 1.00 7.72 7 ATOM 1186 CA SER 161 30.094 31.628 38.046 1.00 8.29 6 ATOM 1187 CB SER 161 30.094 31.628 36.891 1.00 10.26 6 ATOM 1189 C SER 161 30.094 31.628 36.891 1.00 10.26 6 ATOM 1189 C SER 161 30.637 32.951 26.934 1.00 10.26 6 ATOM 1190 O SER 161 28.161 30.275 27.938 1.00 7.24 6 ATOM 1191 N ALA 162 26.889 30.605 37.791 1.00 9.10 7.94 6 ATOM 1191 N ALA 162 26.889 30.605 37.791 1.00 9.10 1.00 10.26 7 ATOM 1192 CA ALA 162 25.793 29.612 27.784 1.00 12.39 6 ATOM 1193 CB ALA 162 25.199 29.334 36.379 1.00 14.12 6 ATOM 1194 C ALA 162 25.199 29.334 36.379 1.00 14.12 6 ATOM 1195 O ALA 162 25.199 29.334 36.379 1.00 14.12 6 ATOM 1196 N GLY 163 24.220 28.499 36.369 1.00 15.24 6 ATOM 1197 CA GLY 163 24.220 28.499 36.369 1.00 15.25 6 ATOM 1198 C GLY 163 22.561 28.761 34.370 1.00 16.65 5 ATOM 1199 O GLY 163 22.561 28.761 34.370 1.00 18.80 2 ATOM 1200 N ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1201 CA ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1202 CB ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1203 CG ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1204 OD1 ASN 164 19.332 27.933 33.726 1.00 90.00 6 ATOM 1206 C ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1207 O ASN 164 19.332 27.033 33.726 1.00 90.00 6 ATOM 1208 N GLY 165 20.274 33.048 32.817 1.00 90.00 6 ATOM 1206 C ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1207 O ASN 164 19.332 27.033 33.726 1.00 90.00 6 ATOM 1208 N GLY 165 20.274 33.048 32.817 1.00 90.00 6 ATOM 1207 O ASN 164 20.344 32.321 31.514 1.00 90.00 6 ATOM 1211 O GLY 165 20.274 33.048 32.817 1.00 90.00 6 ATOM 1212 N ALA 166 21.954 0.09 3.90 1.00 17.86 7 ATOM 1212 C ASN 164 20.328 29.929 1.00 90.00 6 ATOM 1213 CA ALA 166 21.795 33.467 1.00 90.00 6 ATOM 1221 C ASN 164 19.332 27.03 33.987 22.927 1.00 90.00 6 ATOM 1221 C ASN 164 19.332 27.03 33.987 22.927 1.00 90.00 6 ATOM 1221 C ASN 164 19.332 27.03 33.987 32.911 1.00 90.00 6 ATOM 1221 C ASN 164 19.332 27.03 33.987 32.911 1.00 90.00 6 ATOM 1222 C ASN 164 20.328 29.929 30.90 31.00 17.86 7 ATOM 1223 C C ALA 16									
ATOM 1186 CA SEP 161 29.104 31.475 38.046 1.00 8.29 5 ATOM 1187 CB SER 161 30.094 31.628 36.881 1.00 10.26 2 ATOM 1189 C SER 161 30.637 32.951 26.934 1.00 13.94 5 ATOM 1190 O SER 161 28.601 29.117 38.024 1.00 7.94 5 ATOM 1191 N ALA 162 26.885 30.605 37.791 1.00 9.16 7 ATOM 1191 N ALA 162 26.885 30.605 37.791 1.00 9.16 7 ATOM 1192 CA ALA 162 25.793 29.612 27.784 1.00 12.39 ATOM 1193 CB ALA 162 25.793 29.612 27.784 1.00 12.39 ATOM 1193 CB ALA 162 25.799 29.394 36.379 1.00 15.24 5 ATOM 1195 O ALA 162 25.599 29.394 36.379 1.00 15.24 5 ATOM 1196 N GLY 163 24.220 28.499 36.369 1.00 15.85 7 ATOM 1197 CA GLY 163 22.561 28.761 34.370 1.00 18.85 7 ATOM 1198 C GLY 163 22.561 28.761 34.370 1.00 18.26 5 ATOM 1199 O GLY 163 22.561 28.761 34.370 1.00 18.26 5 ATOM 1201 CA ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1201 CA ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1201 CA ASN 164 22.416 28.231 33.146 1.00 90.00 6 ATOM 1202 CB ASN 164 20.505 27.623 31.655 1.00 90.00 6 ATOM 1202 CB ASN 164 20.505 27.623 31.655 1.00 90.00 6 ATOM 1202 CB ASN 164 19.332 27.033 33.726 1.00 90.00 6 ATOM 1202 CB ASN 164 19.332 27.033 33.726 1.00 90.00 6 ATOM 1202 CB ASN 164 20.505 27.623 31.655 1.00 90.00 6 ATOM 1202 CB ASN 164 19.332 27.033 33.726 1.00 90.00 6 ATOM 1202 CB ASN 164 19.332 27.033 31.726 1.00 90.00 6 ATOM 1202 CB ASN 164 19.332 27.033 31.726 1.00 90.00 6 ATOM 1202 CB ASN 164 19.332 27.033 31.726 1.00 90.00 6 ATOM 1202 CB ASN 164 19.322 27.033 31.726 1.00 90.00 6 ATOM 1202 CB ASN 164 19.322 27.033 31.726 1.00 90.00 6 ATOM 1202 CB ASN 164 20.728 29.929 21.866 1.00 90.00 6 ATOM 1202 CB ASN 164 19.322 27.033 31.726 1.00 90.00 6 ATOM 1202 CB ASN 164 19.322 27.033 31.727 1.00 90.00 6 ATOM 1202 CB ASN 164 19.322 27.033 31.727 1.00 90.00 6 ATOM 1202 CB ASN 164 19.322 27.033 31.728 1.00 90.00 6 ATOM 1202 CB ASN 164 19.322 27.033 31.728 1.00 90.00 6 ATOM 1202 CB ASN 164 19.322 27.033 31.728 1.00 90.00 6 ATOM 1202 CB ASN 164 19.322 27.033 31.728 1.00 90.00 6 ATOM 1202 CB ASN 164 19.322 27.033 31.728 1.00 90.00 6 ATOM 1202 CB ASN 164 19.322									
ATOM 1187 CB SER 161 30.094 31.628 36.891 1.00 10.26 2 ATOM 1188 OG SER 161 30.637 32.951 36.934 1.00 13.94 3 ATOM 1189 C SER 161 28.161 30.275 37.938 1.00 7.24 6 ATOM 1190 O SER 161 28.601 29.117 38.024 1.00 7.94 3 ATOM 1191 N ALA 162 26.885 30.605 37.791 1.00 9.106 7.794 3 ATOM 1191 N ALA 162 26.885 30.605 37.791 1.00 9.106 ATOM 1193 CB ALA 162 24.689 30.055 38.736 1.00 15.24 4 ATOM 1193 CB ALA 162 24.689 30.055 38.736 1.00 15.24 ATOM 1194 C ALA 162 25.199 29.394 36.379 1.00 14.12 ATOM 1195 N GLY 163 24.220 28.499 30.055 38.736 1.00 15.24 ATOM 1196 N GLY 163 24.220 28.499 36.369 1.00 14.12 ATOM 1197 CA GLY 163 24.220 28.499 36.369 1.00 15.65 5 ATOM 1198 C GLY 163 22.591 30.044 35.406 1.00 13.91 3 ATOM 1196 C GLY 163 22.598 27.913 35.130 1.00 16.65 5 ATOM 1199 O GLY 163 22.598 27.913 35.130 1.00 18.80 2 ATOM 1201 CA ASN 164 22.466 28.221 33.146 1.00 90.00 7 ATOM 1201 CA ASN 164 22.466 28.221 33.146 1.00 90.00 6 ATOM 1201 CA ASN 164 22.466 28.221 33.146 1.00 90.00 6 ATOM 1201 CA ASN 164 20.505 27.625 31.665 1.00 90.00 6 ATOM 1202 CB ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1202 CB ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1208 N GLY 165 29.272 31.00 32.702 1.00 90.00 6 ATOM 1208 N GLY 165 29.273 31.00 32.702 1.00 90.00 6 ATOM 1208 N GLY 165 29.273 31.00 31.601 1.00 90.00 6 ATOM 1208 N GLY 165 29.273 31.00 32.702 1.00 90.00 6 ATOM 1208 N GLY 165 29.274 33.048 32.817 1.00 90.00 6 ATOM 1212 C GLY 165 20.274 33.048 32.817 1.00 90.00 6 ATOM 1212 C GLY 165 20.274 33.048 32.817 1.00 90.00 6 ATOM 1212 C GLY 165 20.274 33.048 32.817 1.00 90.00 6 ATOM 1212 C GLY 165 20.274 33.048 32.817 1.00 90.00 6 ATOM 1212 C GLY 165 20.274 33.048 32.817 1.00 90.00 6 ATOM 1212 C GLY 165 20.274 33.048 32.817 1.00 90.00 6 ATOM 1212 C GLY 165 20.274 33.048 32.817 1.00 90.00 6 ATOM 1212 C GLY 165 19.470 33.987 32.217 1.00 90.00 6 ATOM 1212 C GLY 165 19.470 33.987 32.217 1.00 90.00 6 ATOM 1212 C GLY 165 19.470 33.987 32.217 1.00 90.00 6 ATOM 1212 C GLY 165 19.470 33.987 32.217 1.00 90.00 6 ATOM 1212 C GLY 165 19.470 33.987 32.21									
ATOM 1188 OG SER 161 30.637 32.951 26.934 1.00 13.94 1 ATOM 1189 C SER 161 28.161 30.275 7.938 1.00 7.24 2 ATOM 1190 O SER 161 28.601 29.117 38.024 1.00 7.24 2 ATOM 1191 N ALA 162 26.885 30.605 37.791 1.00 9.16 7.24 3 ATOM 1192 CA ALA 162 25.793 29.612 27.784 1.00 12.39 7 ATOM 1193 CB ALA 162 25.793 29.612 27.784 1.00 12.39 7 ATOM 1193 CB ALA 162 25.793 29.612 27.784 1.00 12.39 7 ATOM 1194 C ALA 162 25.793 30.044 35.406 1.00 13.91 7 ATOM 1195 O ALA 162 25.593 30.044 35.406 1.00 13.91 7 ATOM 1197 CA GLY 163 24.220 28.499 36.369 1.00 13.85 7 ATOM 1197 CA GLY 163 22.561 28.761 34.370 1.00 16.26 5 ATOM 1199 C GLY 163 22.561 28.761 34.370 1.00 16.26 5 ATOM 1199 O GLY 163 22.561 28.761 34.370 1.00 18.26 5 ATOM 1190 O GLY 163 22.561 28.761 34.370 1.00 18.26 5 ATOM 1200 N ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1201 CA ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1202 CB ASN 164 20.505 27.625 31.685 1.00 90.00 7 ATOM 1202 CB ASN 164 20.505 27.625 31.685 1.00 90.00 7 ATOM 1203 CG ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1207 O ASN 164 19.337 27.730 32.702 1.00 90.00 7 ATOM 1207 CD ASN 164 19.337 27.730 32.702 1.00 90.00 7 ATOM 1207 O ASN 164 19.337 27.730 32.702 1.00 90.00 7 ATOM 1207 O ASN 164 19.337 27.730 32.702 1.00 90.00 7 ATOM 1207 O ASN 164 19.337 27.730 32.702 1.00 90.00 7 ATOM 1207 O ASN 164 19.655 29.874 32.837 1.00 90.00 7 ATOM 1207 O ASN 164 19.655 29.874 32.837 1.00 90.00 7 ATOM 1207 O ASN 164 19.655 29.874 32.837 1.00 90.00 7 ATOM 1207 O ASN 164 19.655 29.874 32.837 1.00 90.00 7 ATOM 1207 O ASN 164 19.655 29.874 32.837 1.00 90.00 7 ATOM 1207 O ASN 164 19.655 29.874 33.897 32.897 1.00 90.00 7 ATOM 1207 O ASN 164 19.655 29.874 33.897 32.897 1.00 90.00 7 ATOM 1207 O ASN 164 19.665 29.874 33.897 32.897 1.00 90.00 7 ATOM 1207 O ASN 164 19.665 29.874 33.987 32.897 1.00 90.00 7 ATOM 1207 O ASN 164 19.665 29.874 33.987 32.897 1.00 90.00 7 ATOM 1207 O ASN 164 19.665 29.874 33.987 32.897 1.00 90.00 7 ATOM 1207 O ASN 164 19.665 29.874 33.987 32.897 1.00 90.00 7 ATOM 1207 O ASN 164 19.665 29.874 39.898									
ATOM 1190 O SER 161 28.661 29.117 28.024 1.00 7.24 28.470 ATOM 1191 N ALA 162 26.885 30.605 37.791 1.00 9.16 ATOM 1192 CA ALA 162 25.793 29.612 27.784 1.00 12.39 ATOM 1193 CB ALA 162 25.793 29.612 27.784 1.00 12.39 ATOM 1193 CB ALA 162 25.199 29.394 36.379 1.00 14.12 ATOM 1195 O ALA 162 25.199 39.394 36.379 1.00 14.12 ATOM 1196 N GLY 163 24.220 28.499 36.369 1.00 15.85 ATOM 1197 CA GLY 163 22.561 28.761 34.370 1.00 18.85 ATOM 1198 C GLY 163 22.561 28.761 34.370 1.00 18.86 ATOM 1199 O GLY 163 22.561 28.761 34.370 1.00 18.86 ATOM 1199 C GLY 163 22.562 28.499 36.369 1.00 15.85 ATOM 1199 C GLY 163 22.562 28.694 36.369 1.00 15.85 ATOM 1200 N ASN 164 22.416 28.231 33.146 1.00 90.00 ATOM 1201 CA ASN 164 21.568 28.664 21.994 1.00 90.00 ATOM 1202 CB ASN 164 20.505 27.625 31.685 1.00 90.00 ATOM 1203 CG ASN 164 19.332 27.033 33.726 1.00 90.00 ATOM 1203 CG ASN 164 19.332 27.033 33.726 1.00 90.00 ATOM 1204 ODD ASN 164 19.332 27.033 33.726 1.00 90.00 ATOM 1205 ND2 ASN 164 19.332 27.033 33.726 1.00 90.00 ATOM 1206 C ASN 164 19.322 27.033 33.726 1.00 90.00 ATOM 1207 O ASN 164 19.322 37.033 33.726 1.00 90.00 ATOM 1208 N GLY 165 20.274 33.084 32.899 10.0 90.00 ATOM 1209 CA GLY 165 20.274 33.084 32.899 10.0 90.00 ATOM 1210 C GLY 165 20.274 33.087 22.927 1.00 90.00 ATOM 1210 C GLY 165 20.274 33.048 32.899 10.0 90.00 ATOM 1210 C GLY 165 20.274 33.048 32.899 10.0 90.00 ATOM 1210 C GLY 165 20.244 32.321 31.14 1.00 90.00 ATOM 1210 C GLY 165 20.244 32.321 31.514 1.00 90.00 ATOM 1210 C GLY 165 20.244 32.321 31.514 1.00 90.00 ATOM 1210 C GLY 165 20.244 32.321 31.514 1.00 90.00 ATOM 1210 C GLY 165 20.244 33.987 22.927 1.00 90.00 ATOM 1210 C GLY 165 20.244 32.321 31.514 1.00 90.00 ATOM 1210 C GLY 165 20.244 32.321 31.514 1.00 90.00 ATOM 1210 C GLY 165 20.244 32.906 38.937 1.00 11.66 ATOM 1212 N ALA 166 20.941 32.706 33.967 35.198 1.00 90.00 ATOM 1210 C GLY 167 23.701 36.494 32.895 1.00 90.00 ATOM 1210 C GLY 167 23.701 36.494 32.895 1.00 90.00 ATOM 1212 C ALA 166 20.9		1189	OG						1.00 13.94
ATOM 1191 N ALA 162 26.885 30.605 37.791 1.00 9.16 7 ATOM 1192 CA ALA 162 25.793 99.612 27.784 1.00 12.39 6 ATOM 1193 CB ALA 162 25.793 99.612 27.784 1.00 12.39 6 ATOM 1194 C ALA 162 25.199 29.394 36.367 1.00 13.91 7 ATOM 1195 O ALA 162 25.199 29.394 36.379 1.00 14.12 6 ATOM 1196 N GLY 163 24.220 28.499 36.367 1.00 15.85 7 ATOM 1197 CA GLY 163 22.561 28.761 34.370 1.00 18.86 8 ATOM 1198 C GLY 163 22.561 28.761 34.370 1.00 18.86 8 ATOM 1199 O GLY 163 22.561 28.761 34.370 1.00 18.80 8 ATOM 1200 N ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1201 CA ASN 164 21.568 28.664 31.994 1.00 90.00 7 ATOM 1202 CB ASN 164 20.505 27.625 31.685 1.00 90.00 7 ATOM 1203 CG ASN 164 19.337 27.730 32.702 1.00 90.00 7 ATOM 1204 OD1 ASN 164 19.337 27.730 32.702 1.00 90.00 7 ATOM 1205 ND2 ASN 164 19.337 27.730 32.702 1.00 90.00 7 ATOM 1206 C ASN 164 19.332 27.033 33.726 1.00 90.00 7 ATOM 1207 D ASN 164 19.332 27.033 33.726 1.00 90.00 7 ATOM 1208 N GLY 165 20.274 32.8390 32.511 1.00 90.00 7 ATOM 1209 CA GLY 165 20.274 32.8390 32.511 1.00 90.00 7 ATOM 1209 CA GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.048 32.859 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.048 32.859 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.048 32.859 1.00 90.00 7 ATOM 1211 D GLY 165 19.470 33.987 22.927 1.00 90.00 7 ATOM 1212 N ALA 166 20.602 33.060 35.242 1.00 90.00 7 ATOM 1213 CA ALA 166 20.602 33.060 35.242 1.00 90.00 7 ATOM 1214 CB ALA 166 19.550 32.609 36.015 1.00 90.00 7 ATOM 1217 N GLY 167 24.167 34.167 38.693 36.198 1.00 13.64 37 ATOM 1212 C GLY 167 24.167 34.185 36.400 1.00 13.62 7 ATOM 1212 N SER 168 23.543 37.742 39.465 1.00 90.00 7 ATOM 1213 CA GLY 167 24.167 34.167 38.693 37.421 1.00 90.00 7 ATOM 1214 CB ALA 166 20.602 33.068 35.198 1.00 13.844 37.847 37.847 39.465 30.467 30								37.938	
ATOM 1192 CA ALA 162 25.793 29.612 27.784 1.00 12.39 5 ATOM 1193 CB ALA 162 24.689 30.055 88.736 1.00 15.24 5 ATOM 1194 C ALA 162 25.199 29.394 36.379 1.00 14.12 5 ATOM 1195 O ALA 162 25.593 30.044 35.406 1.00 13.91 5 ATOM 1196 N GLY 163 24.220 28.499 36.369 1.00 15.85 7 ATOM 1197 CA GLY 163 24.220 28.499 36.369 1.00 15.85 7 ATOM 1199 C GLY 163 22.561 28.761 34.370 1.00 16.65 6 ATOM 1199 C GLY 163 22.561 28.761 34.370 1.00 18.80 3 ATOM 1200 N ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1200 N ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1201 CA ASN 164 20.505 27.625 31.685 1.00 90.00 6 ATOM 1202 CB ASN 164 20.505 27.625 31.685 1.00 90.00 6 ATOM 1203 CG ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1203 CG ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1205 ND2 ASN 164 19.332 27.033 33.726 1.00 90.00 6 ATOM 1205 ND2 ASN 164 18.334 28.580 32.511 1.00 90.00 7 ATOM 1205 CD ASN 164 18.334 28.580 32.511 1.00 90.00 7 ATOM 1205 CD ASN 164 19.322 27.033 33.726 1.00 90.00 6 ATOM 1200 CD ASN 164 19.656 29.874 22.817 1.00 90.00 7 ATOM 1205 CD ASN 164 19.656 29.874 22.817 1.00 90.00 7 ATOM 1200 CD ASN 164 19.656 29.874 22.817 1.00 90.00 7 ATOM 1200 CD ASN 164 19.656 29.874 22.817 1.00 90.00 7 ATOM 1200 CD ASN 164 19.656 29.874 22.817 1.00 90.00 7 ATOM 1200 CD ASN 164 19.656 29.874 32.817 1.00 90.00 7 ATOM 1210 CD GLY 165 20.274 33.048 32.859 1.00 90.00 6 ATOM 1210 CD GLY 165 20.274 33.048 32.859 1.00 90.00 6 ATOM 1210 CD GLY 165 20.274 33.048 32.859 1.00 90.00 6 ATOM 1210 CD GLY 165 20.274 33.048 32.859 1.00 90.00 6 ATOM 1210 CD GLY 165 20.274 33.048 32.859 1.00 90.00 6 ATOM 1210 CD GLY 165 20.274 33.048 32.859 1.00 90.00 6 ATOM 1210 CD GLY 165 20.274 33.048 32.859 1.00 90.00 6 ATOM 1210 CD GLY 165 20.274 33.048 32.859 1.00 90.00 6 ATOM 1210 CD GLY 165 20.274 33.048 32.859 1.00 90.00 6 ATOM 1210 CD GLY 167 24.167 34.150 38.467 36.150 1.00 90.00 6 ATOM 1210 CD GLY 167 24.167 34.150 38.467 36.150 1.00 90.00 6 ATOM 1210 CD GLY 167 24.167 34.150 38.467 36.150 1.00 90.00 6 ATOM 1210 CD GLY 167 24.167 34.150 38.467 36.150 1									
ATOM 1194 C ALA 162 24.689 30.055 38.736 1.00 15.24 5 ATOM 1195 O ALA 162 25.199 29.394 36.379 1.00 14.12 5 ATOM 1195 O ALA 162 25.199 30.044 33.406 1.00 13.91 5 ATOM 1196 N GLY 163 24.220 28.499 36.369 1.00 16.585 7 ATOM 1197 CA GLY 163 22.561 28.761 34.370 1.00 16.65 6 ATOM 1198 C GLY 163 22.561 28.761 34.370 1.00 16.826 6 ATOM 1199 O GLY 163 22.561 28.761 34.370 1.00 18.80 3 ATOM 1200 N ASN 164 22.416 28.221 33.146 1.00 90.00 7 ATOM 1201 CA ASN 164 21.568 28.664 21.994 1.00 90.00 7 ATOM 1202 CB ASN 164 20.505 27.625 31.683 1.00 90.00 6 ATOM 1203 CG ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1204 OD1 ASN 164 19.337 27.730 33.772 1.00 90.00 6 ATOM 1205 ND2 ASN 164 19.332 27.033 33.726 1.00 90.00 7 ATOM 1206 C ASN 164 19.332 27.033 33.726 1.00 90.00 7 ATOM 1207 D ASN 164 19.322 27.033 33.726 1.00 90.00 7 ATOM 1208 N GLY 165 21.227 31.00 431.601 1.00 90.00 7 ATOM 1209 CA GLY 165 21.227 31.00 431.601 1.00 90.00 7 ATOM 1209 CA GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.987 22.927 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.941 32.706 33.967 1.00 90.00 7 ATOM 1220 N ALA 166 20.991 32.706 33.967 1.00 90.00 7 ATOM 1210 C GLY 165 20.941 32.706 33.967 1.00 90.00 7 ATOM 1220 C SER 168 20.991 32.901 33.601 1.00 90.00 7 ATOM 1221 N SER 168 21.646 33.653 37									1.00 9.16
ATOM 1195 C ALA 162 25.199 29.394 36.379 1.00 14.12 2 ATOM 1195 O ALA 162 25.593 30.044 35.406 1.00 13.91 7 ATOM 1196 N GLY 163 24.220 28.499 36.369 1.00 15.85 7 ATOM 1197 CA GLY 163 22.561 28.761 34.370 1.00 16.65 6 ATOM 1198 C GLY 163 22.561 28.761 34.370 1.00 16.65 6 ATOM 1199 O GLY 163 22.561 28.761 34.370 1.00 18.26 6 ATOM 1199 O GLY 163 21.996 29.729 34.887 1.00 18.80 2 ATOM 1200 N ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1201 CA ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1202 CB ASN 164 20.505 27.625 31.685 1.00 90.00 6 ATOM 1202 CB ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1204 ODI ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1204 ODI ASN 164 19.337 27.730 32.702 1.00 90.00 7 ATOM 1204 ODI ASN 164 19.337 27.730 32.576 1.00 90.00 7 ATOM 1205 ND2 ASN 164 18.334 28.580 32.511 1.00 90.00 7 ATOM 1205 ND2 ASN 164 19.665 29.874 32.817 1.00 90.00 7 ATOM 1206 C ASN 164 19.665 29.874 32.817 1.00 90.00 7 ATOM 1208 N GLY 165 21.227 31.004 21.601 1.00 90.00 7 ATOM 1208 N GLY 165 21.227 31.004 21.601 1.00 90.00 7 ATOM 1209 CA GLY 165 20.274 33.948 32.839 1.00 90.00 6 ATOM 1210 C GLY 165 20.274 33.948 32.839 1.00 90.00 6 ATOM 1210 C GLY 165 20.274 33.948 32.839 1.00 90.00 6 ATOM 1210 C GLY 165 20.274 33.948 32.839 1.00 90.00 6 ATOM 1210 C GLY 165 20.274 33.948 32.839 1.00 90.00 6 ATOM 1212 N ALA 166 20.602 33.406 35.242 1.00 90.00 6 ATOM 1213 CA ALA 166 20.602 33.406 35.242 1.00 90.00 6 ATOM 1212 N ALA 166 20.602 33.406 35.242 1.00 90.00 6 ATOM 1213 CA ALA 166 21.646 33.653 37.421 1.00 90.00 6 ATOM 1213 CA ALA 166 21.646 33.653 37.421 1.00 90.00 6 ATOM 1213 CA ALA 166 21.646 33.653 37.421 1.00 90.00 6 ATOM 1213 CA ALA 166 21.646 33.653 37.421 1.00 90.00 6 ATOM 1213 CA ALA 166 21.646 33.653 37.421 1.00 90.00 6 ATOM 1213 CA ALA 166 21.646 33.653 37.421 1.00 90.00 6 ATOM 1213 CA ALA 166 21.646 33.653 37.421 1.00 90.00 6 ATOM 1214 CB ALA 166 21.646 33.653 37.421 1.00 90.00 6 ATOM 1222 CA SER 168 22.556 38.750 38.90 38.90 1.00 15.68 ATOM 1222 CA SER 168 22.556 38.750 38.90 37.90 1.00 15.68 ATOM 1222 CA SER									
ATOM 1195 O ALA 162 25.593 30.044 35.466 1.00 13.91 3 ATOM 1196 N GLY 163 24.220 28.499 36.369 1.00 15.85 5 ATOM 1197 CA GLY 163 22.561 28.761 34.370 1.00 18.26 5 ATOM 1199 C GLY 163 22.561 28.761 34.370 1.00 18.26 5 ATOM 1199 O GLY 163 21.996 29.729 34.887 1.00 18.26 5 ATOM 1200 N ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1201 CA ASN 164 21.568 28.664 31.994 1.00 90.00 6 ATOM 1202 CB ASN 164 20.505 27.625 31.685 1.00 90.00 6 ATOM 1203 CG ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1204 OD1 ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1205 ND2 ASN 164 19.332 27.033 33.726 1.00 90.00 6 ATOM 1205 ND2 ASN 164 19.322 27.033 33.726 1.00 90.00 6 ATOM 1206 C ASN 164 20.585 29.874 32.817 1.00 90.00 7 ATOM 1207 D ASN 164 19.665 29.874 32.817 1.00 90.00 7 ATOM 1208 N GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1209 CA GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1209 CA GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.048 32.859 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.083 32.859 1.00 90.00 7 ATOM 1211 D GLY 165 19.470 33.987 22.927 1.00 90.00 7 ATOM 1212 N ALA 166 20.941 32.706 33.967 1.00 90.00 7 ATOM 1213 CA ALA 166 20.691 33.406 35.222 1.00 90.00 7 ATOM 1213 CA ALA 166 20.692 33.406 35.222 1.00 90.00 7 ATOM 1214 CB ALA 166 19.550 32.609 36.015 1.00 90.00 7 ATOM 1215 C ALA 166 21.795 33.647 36.189 1.00 90.00 7 ATOM 1216 C ALA 166 21.795 33.647 36.189 1.00 90.00 7 ATOM 1217 N GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATOM 1221 N SER 168 24.504 30.939 37.999 1.00 17.86 7 ATOM 1222 C SER 168 23.543 37.788 39.465 1.00 15.88 7 ATOM 1222 C SER 168 24.504 36.99 37.909 1.00 17.86 7 ATOM 1222 C SER 168 24.504 36.99 37.909 1.00 17.86 7 ATOM 1222 C SER 168 23.543 37.788 39.465 1.00 15.88 7 ATOM 1222 C SER 168 24.504 39.425 38.506 1.50 18.81 7 ATOM 1223 CG SER 168 23.543 37.788 39.465 1.00 15.88 7 ATOM 1224 CG SER 168 24.504 39.425 38.506 1.50 18.61 7 ATOM 1225 C SER 168 22.556 38.730 39.118 1.00 10.0 13.44 7 ATOM 1226 CG VAL 169 28.218 37.799 39.401 37.197 1.00 18.24 7 ATOM 1226 CG SER 168									
ATOM 1196 N GLY 163 24.220 28.499 36.369 1.00 15.85 7 ATOM 1197 CA GLY 163 23.598 27.913 35.150 1.00 16.65 7 ATOM 1198 C GLY 163 22.561 28.761 34.370 1.00 18.26 5 ATOM 1199 O GLY 163 22.561 28.761 34.370 1.00 18.26 5 ATOM 1200 N ASN 164 21.996 29.729 34.897 1.00 90.00 6 ATOM 1201 CA ASN 164 20.505 27.625 31.685 1.00 90.00 6 ATOM 1202 CB ASN 164 20.505 27.625 31.685 1.00 90.00 6 ATOM 1203 CG ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1204 OD1 ASN 164 19.322 27.033 33.726 1.00 90.00 6 ATOM 1205 ND2 ASN 164 19.322 27.033 33.726 1.00 90.00 7 ATOM 1206 C ASN 164 19.322 27.033 33.726 1.00 90.00 7 ATOM 1207 D ASN 164 19.665 29.874 32.817 1.00 90.00 7 ATOM 1208 N GLY 165 21.227 31.004 31.601 1.00 90.00 7 ATOM 1209 CA GLY 165 20.274 33.048 32.899 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.048 32.899 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.048 32.899 1.00 90.00 7 ATOM 1211 D GLY 165 19.470 33.987 32.927 1.00 90.00 7 ATOM 1212 N ALA 166 20.602 33.406 35.242 1.00 90.00 7 ATOM 1212 N ALA 166 20.602 33.406 35.242 1.00 90.00 7 ATOM 1214 CB ALA 166 20.602 33.406 35.242 1.00 90.00 7 ATOM 1214 CB ALA 166 21.696 33.633 37.421 1.00 90.00 7 ATOM 1217 N GLY 167 22.964 33.897 32.927 1.00 90.00 7 ATOM 1218 CA ALA 166 21.795 33.647 36.198 1.00 90.00 7 ATOM 1214 CB ALA 166 21.795 33.647 36.198 1.00 90.00 7 ATOM 1214 CB ALA 166 21.795 33.647 36.198 1.00 90.00 7 ATOM 1214 CB ALA 166 21.795 33.647 36.198 1.00 10.01 10.62 7 ATOM 1228 CA SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1229 C GLY 167 24.167 34.185 36.400 1.00 15.68 7 ATOM 1229 C SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1229 CB VAL 169 28.218 37.762 39.149 1.00 15.88 7 ATOM 1222 C SER 168 24.504 36.099 37.999 1.00 17.86 7 ATOM 1223 CB SER 168 24.504 36.099 37.999 1.00 17.86 7 ATOM 1224 CB GLY 167 24.167 34.185 36.400 1.00 15.58 7 ATOM 1225 C SER 168 24.504 36.099 37.999 1.00 17.86 7 ATOM 1226 CB VAL 169 28.218 37.792 39.413 39.618 1.00 15.89 7 ATOM 1227 N VAL 169 28.203 39.261 38.769 1.00 19.01 38.400 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.0									
ATOM 1198 C GLY 163			N	GLY	163				
ATOM 1199 O GLY 163								35.150	
ATOM 1200 N ASN 164 22.416 28.231 33.146 1.00 90.00 7 ATOM 1201 CA ASN 164 21.568 28.664 21.994 1.00 90.00 6 ATOM 1202 CB ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1203 CG ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1204 OD1 ASN 164 19.332 27.033 33.726 1.00 90.00 6 ATOM 1205 ND2 ASN 164 19.332 27.033 33.726 1.00 90.00 7 ATOM 1205 ND2 ASN 164 18.334 28.580 32.511 1.00 90.00 7 ATOM 1206 C ASN 164 19.665 29.874 32.817 1.00 90.00 7 ATOM 1207 D ASN 164 19.665 29.874 32.817 1.00 90.00 7 ATOM 1208 N GLY 165 21.227 31.004 31.601 1.00 90.00 7 ATOM 1209 CA GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.948 32.819 1.00 90.00 7 ATOM 1211 D GLY 165 20.274 33.948 32.819 1.00 90.00 7 ATOM 1212 N ALA 166 20.602 33.406 32.819 1.00 90.00 7 ATOM 1213 CA ALA 166 20.602 33.406 35.242 1.00 90.00 7 ATOM 1214 CB ALA 166 20.602 33.406 35.242 1.00 90.00 7 ATOM 1215 C ALA 166 21.795 33.647 36.188 1.00 90.00 7 ATOM 1216 D ALA 166 21.795 33.647 36.188 1.00 90.00 7 ATOM 1217 N GLY 167 22.964 33.851 35.614 1.00 90.00 7 ATOM 1218 CA GLY 167 24.167 34.185 36.400 1.00 13.44 7 ATOM 1219 C GLY 167 24.167 34.185 36.400 1.00 13.44 7 ATOM 1220 O GLY 167 24.167 34.185 36.400 1.00 13.44 7 ATOM 1221 N SER 168 24.304 36.099 37.909 1.00 17.86 7 ATOM 1222 CA SER 168 24.304 36.099 37.909 1.00 17.86 7 ATOM 1222 CA SER 168 24.304 37.788 39.465 1.00 18.83 7 ATOM 1222 CA SER 168 22.555 38.700 38.505 1.00 18.83 7 ATOM 1222 CA SER 168 22.555 38.700 38.506 1.00 18.83 7 ATOM 1223 CB SER 168 22.555 38.700 38.506 1.00 18.83 7 ATOM 1223 CB SER 168 22.555 38.700 39.149 1.00 17.86 7 ATOM 1223 CB SER 168 22.555 38.700 38.506 1.00 18.83 7 ATOM 1223 CB SER 168 22.555 38.700 38.506 1.00 18.83 7 ATOM 1223 CB SER 168 22.555 38.700 38.506 1.00 18.83 7 ATOM 1223 CB SER 168 22.555 38.700 38.506 1.00 18.83 7 ATOM 1223 CG SER 168 22.555 38.700 39.149 1.00 17.86 7 ATOM 1223 CG VAI 169 28.218 37.762 29.149 1.00 17.86 7 ATOM 1233 CG UAI 169 28.221 38.845 41.231 1.00 10.0 15.54 7 ATOM 1233 CG UAI									
ATOM 1201 CA ASN 164 21.568 28.664 21.994 1.00 90.00 2 ATOM 1202 CB ASN 164 20.505 27.625 31.665 1.00 90.00 2 ATOM 1203 CG ASN 164 19.337 27.730 32.702 1.00 90.00 2 ATOM 1204 OD1 ASN 164 19.332 27.033 33.726 1.00 90.00 3 ATOM 1206 C ASN 164 18.334 28.580 32.511 1.00 90.00 3 ATOM 1207 D ASN 164 18.334 28.580 32.511 1.00 90.00 3 ATOM 1207 D ASN 164 19.665 29.874 32.817 1.00 90.00 3 ATOM 1207 D ASN 164 19.665 29.874 32.817 1.00 90.00 3 ATOM 1207 D ASN 164 19.665 29.874 32.817 1.00 90.00 7 ATOM 1208 N GLY 165 21.227 31.004 21.601 1.00 90.00 7 ATOM 1209 CA GLY 165 20.544 32.321 31.514 1.00 90.00 3 ATOM 1210 C GLY 165 20.274 33.048 32.839 1.00 90.00 7 ATOM 1210 D GLY 165 20.274 33.048 32.839 1.00 90.00 5 ATOM 1211 D GLY 165 20.274 33.048 32.839 1.00 90.00 6 ATOM 1212 N ALA 166 20.404 32.706 33.987 120.900.00 5 ATOM 1212 N ALA 166 20.602 33.406 35.242 1.00 90.00 5 ATOM 1213 CA ALA 166 20.602 33.406 35.242 1.00 90.00 5 ATOM 1214 CB ALA 166 19.550 32.609 36.015 1.00 90.00 5 ATOM 1215 C ALA 166 20.602 33.406 35.242 1.00 90.00 5 ATOM 1215 C ALA 166 21.646 33.653 37.421 1.00 90.00 5 ATOM 1216 C ALA 166 21.646 33.653 37.421 1.00 90.00 5 ATOM 1217 N GLY 167 22.964 33.851 35.614 1.00 90.00 5 ATOM 1212 N SER 168 21.646 33.653 37.421 1.00 90.00 5 ATOM 1212 N SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1220 C GLY 167 24.110 35.688 35.704 1.00 15.68 5 ATOM 1220 C GLY 167 24.110 35.688 35.704 1.00 15.68 5 ATOM 1222 CA SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1222 CA SER 168 23.543 37.782 39.465 1.00 15.68 5 ATOM 1222 CA SER 168 23.543 37.782 39.465 1.00 15.68 6 ATOM 1222 CA SER 168 23.543 37.782 39.465 1.00 15.68 6 ATOM 1222 CA SER 168 23.543 37.782 39.465 1.00 15.58 6 ATOM 1223 CB SER 168 23.543 37.782 39.465 1.00 15.58 6 ATOM 1223 CB SER 168 23.543 37.782 39.465 1.00 15.58 6 ATOM 1223 CB SER 168 23.543 37.782 39.465 1.00 15.58 6 ATOM 1223 CB SER 168 23.543 37.782 39.465 1.00 15.58 6 ATOM 1223 CB SER 168 23.543 37.796 29.199 1.00 17.78 6 ATOM 1223 CB CB SER 168 23.543 37.796 29.199 1.00 17.78 6 ATOM 1223 CB CB SER 168 23									
ATOM 1202 CB ASN 164 20.505 27.625 31.685 1.00 90.00 6 ATOM 1204 ODI ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1204 ODI ASN 164 19.322 27.033 33.726 1.00 90.00 6 ATOM 1205 ND2 ASN 164 18.334 28.580 32.511 1.00 90.00 7 ATOM 1206 C ASN 164 20.728 29.929 22.186 1.00 90.00 7 ATOM 1207 O ASN 164 19.665 29.874 32.817 1.00 90.00 7 ATOM 1208 N GLY 165 21.227 31.004 21.601 1.00 90.00 7 ATOM 1208 N GLY 165 20.544 32.321 21.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.048 32.859 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.048 32.859 1.00 90.00 6 ATOM 1211 O GLY 165 20.274 33.048 32.859 1.00 90.00 7 ATOM 1211 O GLY 165 20.274 33.048 32.859 1.00 90.00 6 ATOM 1212 N ALA 166 20.941 32.706 33.987 22.927 100 90.00 7 ATOM 1213 CA ALA 166 20.941 32.706 33.967 1.00 90.00 7 ATOM 1213 CA ALA 166 20.941 32.706 33.967 1.00 90.00 7 ATOM 1213 CA ALA 166 20.602 33.609 35.015 1.00 90.00 7 ATOM 1213 CA ALA 166 21.795 33.647 36.189 1.00 90.00 6 ATOM 1215 C ALA 166 21.795 33.647 36.189 1.00 90.00 6 ATOM 1216 C ALA 166 21.795 33.647 36.189 1.00 90.00 6 ATOM 1217 N GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATOM 1218 CA GLY 167 24.167 34.185 36.400 1.00 13.44 5 ATOM 1221 N SER 168 24.504 36.099 37.909 1.00 13.44 5 ATOM 1220 O GLY 167 24.167 34.185 36.400 1.00 13.68 5 ATOM 1221 N SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1222 CA SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1222 CA SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1222 CA SER 168 24.504 37.755 38.252 1.00 18.83 5 ATOM 1222 CA SER 168 23.543 37.785 39.455 1.00 21.81 5 ATOM 1223 CB SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1223 CB SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1223 CB SER 168 24.504 37.797 28.799 1.00 18.81 5 ATOM 1223 CB SER 168 24.504 37.797 28.799 1.00 18.61 5 ATOM 1223 CB SER 168 22.556 38.750 39.118 1.00 20.00 16.57 3 ATOM 1223 CB CA VAL 169 28.218 37.762 29.149 1.00 17.78 6 ATOM 1223 CB CA VAL 169 28.221 39.461 38.769 1.00 17.78 6 ATOM 1223 CG VAL 169 28.222 38.845 41.313 1.00 19.01 1.00 15.44 ATOM 1223 CB VAL 169 28.222 38.845 41.313 1.00 15.4									
ATOM 1203 CG ASN 164 19.337 27.730 32.702 1.00 90.00 6 ATOM 1205 ND2 ASN 164 19.332 27.033 33.726 1.00 90.00 6 ATOM 1205 ND2 ASN 164 18.334 28.580 32.511 1.00 90.00 7 ATOM 1206 C ASN 164 20.728 29.929 22.186 1.00 90.00 6 ATOM 1207 D ASN 164 19.665 29.874 32.817 1.00 90.00 7 ATOM 1208 N GLY 165 21.227 31.004 21.601 1.00 90.00 7 ATOM 1208 N GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1209 CA GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.048 32.859 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.048 32.859 1.00 90.00 7 ATOM 1211 D GLY 165 19.470 33.987 22.927 1.00 90.00 7 ATOM 1212 N ALA 166 20.602 33.406 35.242 1.00 90.00 7 ATOM 1213 CA ALA 166 20.602 33.406 35.242 1.00 90.00 7 ATOM 1214 CB ALA 166 20.602 33.406 35.242 1.00 90.00 7 ATOM 1215 C ALA 166 21.795 33.647 36.188 1.00 90.00 7 ATOM 1215 C ALA 166 21.795 33.647 36.188 1.00 90.00 7 ATOM 1216 C ALA 166 21.795 33.647 36.188 1.00 90.00 7 ATOM 1218 CA GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATOM 1218 CA GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATOM 1218 CA GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATOM 1218 CA GLY 167 24.167 34.185 36.400 1.00 13.44 ATOM 1221 N SER 168 24.534 37.345 38.252 1.00 18.83 ATOM 1222 CA SER 168 24.534 37.395 39.118 1.00 23.47 34.70 1222 CA SER 168 23.543 37.788 39.465 1.00 18.83 ATOM 1222 CA SER 168 22.556 38.750 39.118 1.00 23.47 34.70 1222 CA SER 168 22.556 38.750 39.118 1.00 23.47 34.70 1222 CA SER 168 22.556 38.750 39.118 1.00 23.47 34.70 1222 CA SER 168 22.556 38.750 39.118 1.00 23.47 34.70 1222 CA VAI 169 28.218 37.799 39.141 38.657 1.00 19.01 5.68 ATOM 1222 CA VAI 169 28.223 38.845 41.213 1.00 19.01 5.44 34.70 1223 CB SER 168 22.556 38.750 39.118 1.00 19.01 5.68 34.70 1223 CB SER 168 22.556 38.750 39.118 1.00 19.01 5.68 34.70 1223 CB SER 168 22.556 38.750 39.118 1.00 19.01 5.68 34.70 1223 CB SER 168 22.556 38.750 39.118 1.00 19.01 5.68 34.70 1223 CB SER 168 22.556 38.750 39.118 1.00 19.01 5.68 34.70 1223 CB SER 168 22.556 38.750 39.118 1.00 19.01 5.68 34.70 1223 CB SER 168 22.556 38.750 39.118 1.00 19									
ATOM 1204 OD1 ASN 164 19.322 27.033 33.726 1.00 90.00 5 ATOM 1205 ND2 ASN 164 18.334 28.580 32.511 1.00 90.00 7 ATOM 1206 C ASN 164 19.665 29.874 32.817 1.00 90.00 7 ATOM 1207 O ASN 164 19.665 29.874 32.817 1.00 90.00 7 ATOM 1208 N GLY 165 21.227 31.004 31.601 1.00 90.00 7 ATOM 1209 CA GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1211 O GLY 165 19.470 33.987 32.927 1.00 90.00 7 ATOM 1212 N ALA 166 20.941 32.706 33.967 1.00 90.00 7 ATOM 1213 CA ALA 166 20.941 32.706 33.967 1.00 90.00 7 ATOM 1213 CA ALA 166 20.941 32.706 33.967 1.00 90.00 7 ATOM 1214 CB ALA 166 19.550 32.609 36.015 1.00 90.00 7 ATOM 1215 C ALA 166 21.795 33.647 36.188 1.00 90.00 7 ATOM 1215 C ALA 166 21.795 33.647 36.188 1.00 90.00 7 ATOM 1218 CA GLY 167 24.167 34.185 36.400 1.00 11.62 7 ATOM 1218 CA GLY 167 24.167 34.185 36.400 1.00 11.62 7 ATOM 1219 C GLY 167 24.110 35.688 36.704 1.00 15.68 5 ATOM 1220 O GLY 167 23.701 36.494 25.863 1.00 15.58 3 ATOM 1221 N SER 168 24.504 36.099 37.909 1.00 15.58 5 ATOM 1222 CA SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1223 CB SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1224 OG SER 168 23.554 37.788 39.465 1.00 21.81 5 ATOM 1225 C SER 168 23.553 37.481 38.552 1.00 18.83 5 ATOM 1222 CA SER 168 23.543 37.788 39.465 1.00 21.81 5 ATOM 1223 CB SER 168 23.543 37.788 39.465 1.00 21.81 5 ATOM 1224 OG SER 168 23.554 37.788 39.465 1.00 18.61 5 ATOM 1225 C SER 168 23.543 37.788 39.465 1.00 18.61 5 ATOM 1226 OG SER 168 23.543 37.788 39.465 1.00 18.64 5 ATOM 1227 N VAL 169 28.279 39.141 38.657 1.00 18.01 5 ATOM 1223 C VAL 169 28.279 39.141 38.657 1.00 19.01 5 ATOM 1223 C VAL 169 28.279 39.141 38.657 1.00 19.01 5 ATOM 1223 C O GL VAL 169 28.279 39.441 37.197 1.00 18.24 6 ATOM 1233 C GG UN 170 28.925 36.631 41.201 1.00 15.54 6 ATOM 1233 C GG UN 170 28.925 36.631 41.201 1.00 15.91 6 ATOM 1233 C GG UN 170 28.925 36.631 41.201 1.00 15.91 6 ATOM 1233 O GG UN 170 28.925 36.635 44.264 1.201 1.00 19.39 6 ATOM 1233 O	ATOM								
ATOM 1205 ND2 ASN 164 18.334 28.580 32.511 1.00 90.00 7 ATOM 1206 C ASN 164 19.665 29.874 32.817 1.00 90.00 7 ATOM 1207 D ASN 164 19.665 29.874 32.817 1.00 90.00 7 ATOM 1208 N GLY 165 21.227 31.004 31.601 1.00 90.00 7 ATOM 1209 CA GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1211 D GLY 165 19.470 33.987 32.927 1.00 90.00 7 ATOM 1212 N ALA 166 20.941 32.706 33.967 1.00 90.00 7 ATOM 1213 CA ALA 166 20.602 33.406 35.242 1.00 90.00 7 ATOM 1214 CB ALA 166 19.550 32.609 36.015 1.00 90.00 7 ATOM 1215 C ALA 166 21.646 33.653 37.421 1.00 90.00 7 ATOM 1216 C ALA 166 21.646 33.653 37.421 1.00 90.00 7 ATOM 1217 N GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATOM 1218 CA GLY 167 24.167 34.185 36.400 1.00 15.68 7 ATOM 1219 C GLY 167 24.110 35.688 35.704 1.00 15.68 7 ATOM 1221 N SER 168 24.544 36.999 37.909 1.00 15.58 7 ATOM 1222 CA SER 168 24.543 37.545 38.252 1.00 18.83 7 ATOM 1223 CB SER 168 24.543 37.788 39.465 1.00 21.81 7 ATOM 1224 OG SER 168 25.563 38.750 39.118 1.00 23.47 7 ATOM 1225 C SER 168 25.580 38.506 1.00 21.81 7 ATOM 1226 C SER 168 25.580 38.506 1.00 21.81 7 ATOM 1227 N VAL 169 28.719 39.141 39.657 1.00 19.01 7 ATOM 1228 CA VAL 169 28.719 39.141 39.657 1.00 19.01 7 ATOM 1229 CE VAL 169 28.719 39.141 39.657 1.00 19.01 5.44 7 ATOM 1229 CE VAL 169 28.719 39.141 39.657 1.00 19.01 7 ATOM 1220 CG UN 169 28.719 39.141 39.657 1.00 19.01 7 ATOM 1221 N GLY 169 28.719 39.141 39.657 1.00 19.01 5.44 7 ATOM 1223 C VAL 169 28.719 39.141 39.657 1.00 19.01 5.44 7 ATOM 1224 OG SER 168 25.820 38.200 38.537 1.00 18.61 7 ATOM 1225 C GC VAL 169 28.807 39.411 39.657 1.00 19.01 5.44 7 ATOM 1226 C GLY 169 28.807 39.411 39.657 1.00 19.01 5.44 7 ATOM 1227 N VAL 169 28.725 36.631 41.201 1.00 15.44 7 ATOM 1238 CG VAL 169 28.807 39.411 39.657 1.00 19.01 5.44 7 ATOM 1236 CB GLN 170 28.925 36.647 42.647 1.00 15.91 7 ATOM 1236 CB GLN 170 27.928 35.459 43.231 1.00 19.39 7 ATOM 1237 CG GLN 170 27.928 35.459 43.231 1.00 19.39 7 ATOM 1238 CD GLN 170 27.928 35.459 43.231 1.00 19.39 7 ATOM 1238 C			OD1	ASN	164	19.322	27.033		
ATOM 1207 O ASN 164 19.665 29.874 32.817 1.00 90.00 3 ATOM 1208 N GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATOM 1210 C GLY 165 20.274 33.048 32.899 1.00 90.00 7 ATOM 1211 O GLY 165 19.470 33.987 32.927 1.00 90.00 7 ATOM 1212 N ALA 166 20.941 32.706 33.967 1.00 90.00 7 ATOM 1212 N ALA 166 20.602 33.406 35.242 1.00 90.00 7 ATOM 1213 GA ALA 166 20.602 33.406 35.242 1.00 90.00 7 ATOM 1214 CB ALA 166 20.602 33.406 35.242 1.00 90.00 7 ATOM 1215 C ALA 166 21.646 33.653 37.421 1.00 90.00 7 ATOM 1216 G ALA 166 21.646 33.653 37.421 1.00 90.00 7 ATOM 1217 N GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATOM 1218 CA GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATOM 1219 G GLY 167 24.167 34.185 36.400 1.00 13.44 5 ATOM 1219 G GLY 167 24.167 34.185 36.400 1.00 15.68 6 ATOM 1220 O GLY 167 24.110 35.688 35.704 1.00 15.68 6 ATOM 1221 N SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1222 CA SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1223 CB SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1223 CB SER 168 23.543 37.788 39.465 1.00 21.81 6 ATOM 1224 OG SER 168 23.543 37.788 39.465 1.00 21.81 6 ATOM 1224 OG SER 168 23.543 37.788 39.465 1.00 21.81 6 ATOM 1225 C SER 168 23.543 37.788 39.465 1.00 21.81 6 ATOM 1226 CA VAI 169 28.218 37.762 29.149 1.00 17.78 6 ATOM 1227 N VAI 169 28.218 37.762 29.149 1.00 17.78 6 ATOM 1227 N VAI 169 28.218 37.762 29.149 1.00 17.78 6 ATOM 1227 N VAI 169 28.218 37.762 29.149 1.00 17.78 6 ATOM 1228 CA VAI 169 28.218 37.762 29.149 1.00 17.78 6 ATOM 1230 CGI VAI 169 28.218 37.762 29.149 1.00 17.78 6 ATOM 1231 CG2 VAI 169 28.218 37.762 29.149 1.00 17.78 6 ATOM 1233 CGI VAI 169 28.228 38.407 39.441 37.197 1.00 18.24 6 ATOM 1233 CGI VAI 169 28.228 38.407 39.441 37.197 1.00 18.24 6 ATOM 1233 CGI VAI 169 28.228 38.407 39.441 37.197 1.00 18.24 6 ATOM 1233 CGI VAI 169 28.228 38.407 39.441 37.197 1.00 18.24 6 ATOM 1233 CGI VAI 169 28.222 38.845 41.313 1.00 19.39 ATOM 1233 CGI VAI 169 28.222 38.845 41.313 1.00 19.39 ATOM 1233 CGI VAI 169 28.222 38.845 41.313 1.00 19.3									1.00 90.00 7
ATCM 1208 N GLY 165 21.227 31.004 31.601 1.00 90.00 7 ATCM 1209 CA GLY 165 20.544 32.321 31.514 1.00 90.00 7 ATCM 1210 C GLY 165 20.274 33.048 32.859 1.00 90.00 7 ATCM 1211 D GLY 165 19.470 33.948 32.859 1.00 90.00 7 ATCM 1211 D GLY 165 19.470 33.948 32.859 1.00 90.00 7 ATCM 1212 N ALA 166 20.941 32.706 33.967 1.00 90.00 7 ATCM 1213 CA ALA 166 20.941 32.706 33.967 1.00 90.00 7 ATCM 1214 CB ALA 166 19.550 32.609 36.015 1.00 90.00 7 ATCM 1215 C ALA 166 21.795 33.647 36.105 1.00 90.00 7 ATCM 1217 N GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATCM 1218 CA GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATCM 1218 CA GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATCM 1219 C GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATCM 1219 C GLY 167 24.167 34.185 36.400 1.00 13.44 5 ATCM 1220 O GLY 167 23.701 36.494 25.863 1.00 15.58 3 ATCM 1221 N SER 168 24.504 36.099 37.909 1.00 17.86 7 ATCM 1222 CA SER 168 24.504 36.099 37.909 1.00 17.86 7 ATCM 1222 CA SER 168 24.504 36.099 37.909 1.00 17.86 7 ATCM 1222 CA SER 168 24.504 36.099 37.909 1.00 17.86 7 ATCM 1222 CA SER 168 24.504 36.099 37.909 1.00 17.86 7 ATCM 1222 CA SER 168 24.504 36.099 37.909 1.00 17.86 7 ATCM 1222 CA SER 168 24.504 36.099 37.909 1.00 17.86 7 ATCM 1222 CA SER 168 23.543 37.768 39.118 1.00 23.47 3 ATCM 1222 CA SER 168 23.543 37.768 39.118 1.00 23.47 3 ATCM 1223 CB SER 168 23.543 37.768 38.550 1.00 18.83 4 ATCM 1223 CB SER 168 25.961 39.425 38.506 1.00 21.81 5 ATCM 1224 OG SER 168 25.961 39.425 38.506 1.00 21.81 5 ATCM 1225 C SER 168 25.961 39.425 38.506 1.00 18.61 5 ATCM 1226 CA VAI 169 28.218 37.762 29.149 1.00 17.78 5 ATCM 1223 CG VAI 169 28.218 37.762 29.149 1.00 17.78 5 ATCM 1223 CG VAI 169 28.218 37.762 29.149 1.00 17.78 5 ATCM 1233 CG VAI 169 28.227 38.845 41.313 1.00 18.24 6 ATCM 1233 CG VAI 169 28.228 37.796 40.666 1.50 17.25 6 ATCM 1233 CG VAI 169 28.227 38.845 41.313 1.00 19.39 6 ATCM 1233 CG CG VAI 169 28.227 38.845 41.313 1.00 19.39 6 ATCM 1233 CG CG VAI 169 28.222 38.845 41.313 1.00 19.39 6 ATCM 1233 CG									
ATOM 1210 C GLY 165									
ATOM 1210 C GLY 165									
ATCM 1211 0 GLY 165 19.470 33.987 32.927 1.00 90.00 2 ATCM 1212 N ALA 166 20.941 32.706 33.967 1.00 90.00 7 ATCM 1213 CA ALA 166 20.602 33.406 35.242 1.00 90.00 7 ATCM 1214 CB ALA 166 20.602 33.406 35.242 1.00 90.00 6 ATCM 1215 C ALA 166 21.795 33.647 36.189 1.00 90.00 6 ATCM 1215 C ALA 166 21.795 33.647 36.189 1.00 90.00 5 ATCM 1217 N GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATCM 1218 CA GLY 167 24.167 34.185 36.400 1.00 13.44 6 ATCM 1218 CA GLY 167 24.167 34.185 36.400 1.00 13.44 6 ATCM 1220 O GLY 167 24.110 35.688 35.704 1.00 15.68 ATCM 1220 O GLY 167 23.701 36.494 25.863 1.00 15.58 3 ATCM 1221 N SER 168 24.504 36.099 37.909 1.00 17.86 7 ATCM 1222 CA SER 168 24.434 37.545 38.252 1.00 18.83 5 ATCM 1222 CA SER 168 24.434 37.545 38.252 1.00 18.83 5 ATCM 1223 CB SER 168 22.558 38.750 39.118 1.00 23.47 5 ATCM 1225 C SER 168 22.558 38.750 39.118 1.00 23.47 5 ATCM 1225 C SER 168 22.558 38.750 39.118 1.00 23.47 5 ATCM 1226 O SER 168 22.558 38.750 39.118 1.00 23.47 5 ATCM 1226 C SER 168 22.558 38.750 39.118 1.00 23.47 5 ATCM 1226 C SER 168 22.558 38.750 39.118 1.00 23.47 5 ATCM 1226 C SER 168 25.961 39.425 38.506 1.00 18.81 5 ATCM 1226 C SER 168 25.961 39.425 38.506 1.00 18.61 5 ATCM 1228 CA VAI 169 28.218 37.762 39.149 1.00 17.78 5 ATCM 1229 CB VAI 169 28.218 37.762 39.149 1.00 17.78 5 ATCM 1229 CB VAI 169 28.218 37.762 39.149 1.00 17.78 5 ATCM 1230 CG1 VAI 169 28.218 37.762 39.149 1.00 17.78 5 ATCM 1231 CG2 VAI 169 28.218 37.762 39.149 1.00 17.78 5 ATCM 1232 C VAI 169 28.223 38.845 41.213 1.00 19.01 5 ATCM 1233 CG CG1 VAI 169 28.223 38.845 41.213 1.00 15.91 7 ATCM 1235 CA GIN 170 28.222 38.845 41.213 1.00 15.91 7 ATCM 1235 CA GIN 170 28.222 38.845 41.213 1.00 15.91 7 ATCM 1235 CA GIN 170 28.222 38.845 41.213 1.00 15.91 7 ATCM 1235 CA GIN 170 28.222 38.845 41.213 1.00 15.44 7 ATCM 1235 CA GIN 170 28.222 38.845 41.213 1.00 15.44 7 ATCM 1235 CA GIN 170 28.222 38.845 41.213 1.00 15.44 7 ATCM 1235 CA GIN 170 28.222 38.409 45.247 1.00 27.24 7 ATCM 1239 OEI GIN 170 27.228 33.409 45.247 1.00 27.24 7 ATCM 1239 OEI GIN 170	ATOM								1.00 90.00 6
ATOM 1212 N ALA 166 20.941 32.706 23.967 1.00 90.00 F ATOM 1213 CA ALA 166 20.602 33.406 35.242 1.00 90.00 6 ATOM 1214 CB ALA 166 19.550 32.609 36.015 1.00 90.00 6 ATOM 1215 C ALA 166 21.795 33.647 36.188 1.00 90.00 6 ATOM 1216 O ALA 166 21.646 33.653 37.421 1.00 90.00 6 ATOM 1217 N GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATOM 1218 CA GLY 167 24.167 34.185 36.400 1.00 13.44 6 ATOM 1219 C GLY 167 24.110 35.688 35.704 1.00 15.68 6 ATOM 1220 O GLY 167 23.701 36.494 25.863 1.00 15.68 6 ATOM 1221 N SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1222 CA SER 168 24.434 37.545 38.252 1.00 18.83 6 ATOM 1223 CB SER 168 22.558 38.759 39.18 1.00 23.47 6 ATOM 1224 OG SER 168 22.555 38.759 39.18 1.00 23.47 6 ATOM 1225 C SER 168 22.558 38.759 39.18 1.00 23.47 6 ATOM 1227 N VAL 169 26.808 37.379 28.789 1.00 18.61 6 ATOM 1228 CA VAL 169 28.218 37.762 29.149 1.00 17.78 6 ATOM 1229 CB VAL 169 28.218 37.762 29.149 1.00 17.78 6 ATOM 1229 CB VAL 169 28.219 39.441 37.197 1.00 18.24 6 ATOM 1230 CG1 VAL 169 28.319 39.441 37.197 1.00 18.24 6 ATOM 1231 CG2 VAL 169 28.319 39.441 37.197 1.00 18.24 6 ATOM 1232 C VAL 169 28.319 39.441 37.197 1.00 18.24 6 ATOM 1233 CG2 VAL 169 28.329 38.845 41.213 1.00 15.91 7 ATOM 1234 N GLN 170 28.222 38.845 41.213 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.845 41.213 1.00 15.91 7 ATOM 1236 CB GLN 170 28.222 38.409 44.766 1.00 24.35 7 ATOM 1237 CG GLN 170 28.222 38.409 44.766 1.00 24.35 7 ATOM 1238 CD GLN 170 27.928 33.499 45.247 1.00 27.24 7 ATOM 1238 CD GLN 170 27.928 33.499 45.247 1.00 27.24			o	GLY	165	19.470	33.98?		
ATOM 1214 CB ALA 166 19.550 32.609 36.015 1.00 90.00 6 ATOM 1215 C ALA 166 21.795 33.647 36.188 1.00 90.00 6 ATOM 1216 O ALA 166 21.646 33.653 37.421 1.00 90.00 7 ATOM 1217 N GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATOM 1218 CA GLY 167 24.167 34.185 36.400 1.00 13.44 7 ATOM 1219 C GLY 167 24.167 34.185 36.400 1.00 13.44 7 ATOM 1219 C GLY 167 24.110 35.688 35.704 1.00 15.68 7 ATOM 1221 N SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1221 N SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1222 CA SER 168 24.434 37.545 38.252 1.00 18.83 6 ATOM 1222 CA SER 168 23.543 37.788 39.465 1.00 21.81 7 ATOM 1224 OG SER 168 23.543 37.788 39.465 1.00 21.81 7 ATOM 1225 C SER 168 25.820 38.200 38.537 1.00 18.61 8 ATOM 1226 O SER 168 25.820 38.200 38.537 1.00 18.61 8 ATOM 1227 N VAL 169 26.808 37.379 38.789 1.00 18.61 8 ATOM 1229 CB VAL 169 28.218 37.762 39.149 1.00 17.78 7 ATOM 1229 CB VAL 169 28.218 37.762 39.149 1.00 17.78 7 ATOM 1230 CG1 VAL 169 28.218 37.796 40.666 1.50 17.25 7 ATOM 1231 CG2 VAL 169 28.218 37.796 40.666 1.50 17.25 7 ATOM 1232 C VAL 169 28.218 37.796 40.666 1.50 17.25 7 ATOM 1233 O VAL 169 28.222 38.845 41.213 1.00 15.91 7 ATOM 1233 CG CA VAL 169 28.222 38.845 41.213 1.00 15.91 7 ATOM 1233 CA GLN 170 28.222 38.845 41.213 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.845 41.213 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.845 41.213 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.845 41.213 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.845 41.213 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.845 41.213 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.845 41.213 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.845 41.213 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.845 41.213 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.806 44.766 1.00 24.35 7 ATOM 1239 CD GLN 170 28.222 38.409 43.231 1.00 19.39 7 ATOM 1235 CA GLN 170 28.222 38.409 45.247 1.00 27.24 7 ATOM 1239 OEI GLN 170 28.222 38.409 45.247 1.00 27.24									1.00 90.00
ATOM 1215 C ALA 166 21.795 33.647 36.188 1.00 90.00 5 ATOM 1216 0 ALA 166 21.646 33.653 37.421 1.00 90.00 5 ATOM 1217 N GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATOM 1218 CA GLY 167 24.167 34.185 36.400 1.00 13.44 5 ATOM 1219 C GLY 167 24.167 34.185 36.400 1.00 15.68 5 ATOM 1220 O GLY 167 23.701 36.494 25.863 1.00 15.68 5 ATOM 1221 N SER 168 24.504 36.099 37.909 1.00 17.86 5 ATOM 1222 CA SER 168 24.504 36.099 37.909 1.00 17.86 5 ATOM 1222 CA SER 168 24.434 37.545 38.252 1.00 18.83 5 ATOM 1223 CB SER 168 24.434 37.545 38.252 1.00 18.83 5 ATOM 1223 CB SER 168 22.558 38.750 39.18 1.00 23.47 5 ATOM 1225 C SER 168 22.558 38.750 39.18 1.00 23.47 5 ATOM 1225 C SER 168 25.820 38.200 38.537 1.00 18.61 5 ATOM 1226 0 SER 168 25.961 39.425 38.506 1.00 21.81 5 ATOM 1227 N VAL 169 26.808 37.379 28.789 1.00 18.61 5 ATOM 1228 CA VAL 169 28.218 37.762 29.149 1.00 17.78 5 ATOM 1229 CB VAL 169 28.218 37.762 29.149 1.00 17.78 5 ATOM 1230 CG1 VAL 169 28.218 37.762 39.141 39.657 1.00 19.01 5 ATOM 1231 CG2 VAL 169 28.318 37.796 40.666 1.50 17.78 5 ATOM 1232 C VAL 169 28.318 37.796 40.666 1.50 17.25 5 ATOM 1232 C VAL 169 28.387 37.796 40.666 1.50 17.25 5 ATOM 1233 O VAL 169 28.387 37.796 40.666 1.50 17.25 5 ATOM 1233 CG CB GLN 170 28.222 38.845 41.213 1.00 15.91 5 ATOM 1233 CG CB GLN 170 28.222 38.845 41.213 1.00 15.91 5 ATOM 1233 CD GLN 170 28.222 38.845 41.213 1.00 15.91 5 ATOM 1235 CA GLN 170 28.222 38.845 41.213 1.00 15.91 5 ATOM 1236 CB GLN 170 28.222 38.845 41.201 1.00 15.91 5 ATOM 1236 CB GLN 170 28.222 38.845 41.201 1.00 15.91 5 ATOM 1238 CD GLN 170 28.222 38.409 45.2647 1.00 15.44 5 ATOM 1235 CA GLN 170 28.222 38.409 45.2647 1.00 15.44 5 ATOM 1235 CA GLN 170 28.222 38.409 45.365 1.00 24.35 5 ATOM 1238 CD GLN 170 28.222 38.409 45.366 44.766 1.00 24.35 5 ATOM 1239 CD GLN 170 28.222 38.409 45.247 1.00 27.24 5 ATOM 1239 CD GLN 170 28.222 38.409 45.247 1.00 27.24 5 ATOM 1239 OEI GLN 170 28.222 38.409 45.247 1.00 27.24									
ATOM 1216 0 ALA 166 21.646 33.653 37.421 1.00 90.00 3 ATOM 1217 N GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATOM 1218 CA GLY 167 24.167 34.185 36.400 1.00 13.44 5 ATOM 1219 C GLY 167 24.167 34.185 36.400 1.00 13.44 5 ATOM 1220 O GLY 167 24.110 35.688 35.704 1.00 15.68 6 ATOM 1221 N SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1221 N SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1222 CA SER 168 24.434 37.545 38.252 1.00 18.83 5 ATOM 1223 CB SER 168 23.543 37.788 39.465 1.00 21.81 6 ATOM 1224 OG SER 168 22.555 38.750 39.118 1.00 23.47 3 ATOM 1225 C SER 168 25.820 38.200 38.537 1.00 18.61 5 ATOM 1226 0 SER 168 25.820 38.200 38.537 1.00 18.61 5 ATOM 1226 0 SER 168 25.961 39.425 38.506 1.00 18.61 5 ATOM 1228 CA VAI 169 26.808 37.379 28.789 1.00 18.64 7 ATOM 1228 CA VAI 169 28.218 37.762 39.149 1.00 17.78 5 ATOM 1229 CB VAI 169 28.218 37.762 39.149 1.00 17.78 5 ATOM 1230 CG1 VAL 169 28.218 37.762 39.149 1.00 19.01 7 ATOM 1231 CG2 VAI 169 28.387 37.96 40.666 1.50 17.25 7 ATOM 1232 C VAI 169 28.387 37.96 40.666 1.50 17.25 7 ATOM 1233 D VAI 169 28.222 38.845 41.213 1.00 18.24 ATOM 1233 CG VAI 169 28.222 38.845 41.213 1.00 15.91 7 ATOM 1234 N GLN 170 28.222 38.845 41.213 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.845 41.201 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.631 41.201 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.407 42.647 1.00 15.91 7 ATOM 1235 CA GLN 170 28.222 38.409 44.5365 1.00 24.35 7 ATOM 1238 CD GLN 170 28.222 38.409 44.5365 1.00 24.35 7 ATOM 1238 CD GLN 170 28.222 38.409 44.55.365 1.00 24.35 7 ATOM 1238 CD GLN 170 28.222 38.409 45.347 42.647 1.00 27.24 7 ATOM 1239 OEI GLN 170 28.202 34.091 45.365 1.00 27.24									
ATCM 1217 N GLY 167 22.964 33.851 35.614 1.00 11.62 7 ATCM 1218 CA GLY 167 24.167 34.185 36.400 1.00 13.44 5 ATCM 1219 C GLY 167 24.110 35.688 35.704 1.00 15.68 6 ATCM 1220 °O GLY 167 23.701 36.494 25.863 1.00 15.58 3 ATCM 1221 N SER 168 24.504 36.099 37.909 1.00 17.86 7 ATCM 1222 CA SER 168 24.504 36.099 37.909 1.00 17.86 7 ATCM 1223 CB SER 168 23.543 37.788 39.465 1.00 21.81 6 ATCM 1224 OG SER 168 23.543 37.788 39.465 1.00 21.81 6 ATCM 1225 C SER 168 25.820 38.200 38.537 1.00 18.63 ATCM 1226 °O SER 168 25.820 38.200 38.537 1.00 18.61 5 ATCM 1226 °O SER 168 25.961 39.425 38.506 1.00 18.61 5 ATCM 1227 N VAL 169 26.808 37.379 28.789 1.00 18.64 ATCM 1229 CB VAL 169 28.218 37.762 39.149 1.00 17.78 5 ATCM 1220 CG VAL 169 28.218 37.762 39.149 1.00 19.01 7 ATCM 1230 CG1 VAL 169 28.218 37.762 39.141 38.657 1.00 19.01 ATCM 1231 CG2 VAL 169 28.387 37.96 40.666 1.50 17.25 6 ATCM 1232 C VAL 169 28.387 37.796 40.666 1.50 17.25 6 ATCM 1233 O VAL 169 28.387 37.796 40.666 1.50 17.25 6 ATCM 1233 CG VAL 169 28.387 37.796 40.666 1.50 17.25 6 ATCM 1233 CG CG									
ATOM 1218 CA GLY 167 24.167 34.185 36.400 1.00 13.44 5 ATOM 1219 C GLY 157 24.110 35.688 35.704 1.00 15.68 5 ATOM 1220 O GLY 167 23.701 36.494 25.863 1.00 15.58 5 ATOM 1221 N SER 168 24.504 36.099 37.909 1.00 17.86 7 ATOM 1222 CA SER 168 24.434 37.545 38.252 1.00 18.83 5 ATOM 1223 CB SER 168 23.543 37.788 39.465 1.00 21.81 5 ATOM 1224 OG SER 168 23.543 37.788 39.465 1.00 21.81 5 ATOM 1224 OG SER 168 22.558 38.750 39.118 1.00 23.47 3 ATOM 1225 C SER 168 25.820 38.200 38.537 1.00 18.61 3 ATOM 1226 O SER 168 25.961 39.425 38.506 1.00 18.81 3 ATOM 1227 N VAL 169 26.808 37.379 28.789 1.00 18.64 3 ATOM 1229 CB VAL 169 28.218 37.762 29.149 1.00 17.78 3 ATOM 1229 CB VAL 169 28.218 37.762 29.149 1.00 17.78 3 ATOM 1230 CG1 VAL 169 28.719 39.441 38.657 1.00 19.01 3 ATOM 1231 CG2 VAL 169 28.407 39.441 37.197 1.00 18.24 3 ATOM 1232 C VAL 169 28.387 37.796 40.666 1.50 17.25 3 ATOM 1233 O VAL 169 28.387 37.796 40.666 1.50 17.25 3 ATOM 1234 N GLN 170 28.925 36.476 42.647 1.00 15.91 3 ATOM 1235 CA GLN 170 28.925 36.476 42.647 1.00 15.91 3 ATOM 1236 CB GLN 170 28.925 36.476 42.647 1.00 19.39 3 ATOM 1238 CD GLN 170 28.925 35.459 43.231 1.00 19.39 3 ATOM 1238 CD GLN 170 28.925 36.491 43.231 1.00 19.39 3 ATOM 1238 CD GLN 170 28.925 36.491 43.231 1.00 19.39 3 ATOM 1238 CD GLN 170 28.925 36.491 43.231 1.00 19.39 3 ATOM 1238 CD GLN 170 28.920 34.091 45.365 1.00 27.24 3									
ATCM 1219 C GLY 157	ATOM	1218		GLY		24.167	34.185		
ATOM 1221 N SER 168 24.504 36.099 37.909 1.00 17.86 TATOM 1222 CA SER 168 24.434 37.545 38.252 1.00 18.83 58.404 1222 CA SER 168 24.434 37.545 38.252 1.00 18.83 58.406 1224 OG SER 168 22.558 38.750 39.118 1.00 23.47 12.406 1225 C SER 168 22.558 38.750 39.118 1.00 23.47 12.406 1225 C SER 168 25.820 38.200 38.537 1.00 18.61 12.406 1226 C SER 168 25.820 38.200 38.537 1.00 18.61 12.406 1227 N VAL 169 26.808 37.379 28.789 1.00 18.81 12.406 1227 N VAL 169 28.218 37.762 39.149 1.00 17.78 14.406 1229 CB VAL 169 28.218 37.762 39.149 1.00 17.78 14.406 1230 CG1 VAL 169 28.719 39.141 38.657 1.00 19.01 14.406 1230 CG1 VAL 169 28.407 39.441 37.197 1.00 18.24 14.406 1231 CG2 VAL 169 28.387 37.796 40.666 1.50 17.25 14.406 1231 CG2 VAL 169 28.387 37.796 40.666 1.50 17.25 14.406 1231 CG2 VAL 169 28.387 37.796 40.666 1.50 17.25 14.406 1231 CG2 VAL 169 28.387 37.796 40.666 1.50 17.25 14.406 1231 CG2 VAL 169 28.387 37.796 40.666 1.50 17.25 14.406 1231 CG2 VAL 169 28.387 37.796 40.666 1.50 17.25 14.406 1231 CG2 VAL 169 28.387 37.796 40.666 1.50 17.25 14.406 1231 CG2 VAL 169 28.222 38.845 41.313 1.00 15.44 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 14.406 123					157	24.110	35.688	35.704	1.00 15.68
ATOM 1222 CA SER 168 24.434 37.545 38.252 1.00 18.83 5 ATOM 1223 CB SER 168 22.558 38.759 39.168 1.00 21.81 6 ATOM 1225 C SER 168 22.558 38.759 39.118 1.00 23.47 5 ATOM 1225 C SER 168 25.820 38.200 38.537 1.00 18.61 5 ATOM 1226 C SER 168 25.961 39.425 38.506 1.00 18.61 5 ATOM 1227 N VAL 169 26.808 37.379 28.789 1.00 18.64 7 ATOM 1228 CA VAL 169 28.218 37.762 29.149 1.00 17.78 5 ATOM 1229 CB VAL 169 28.218 37.762 29.149 1.00 17.78 5 ATOM 1230 CG1 VAL 169 28.218 37.762 39.141 38.657 1.00 19.01 5 ATOM 1230 CG1 VAL 169 28.719 39.141 38.657 1.00 19.01 5 ATOM 1231 CG2 VAL 169 28.407 39.441 37.197 1.00 18.24 6 ATOM 1232 C VAL 169 28.807 39.441 37.197 1.00 18.24 6 ATOM 1233 O VAL 169 28.387 37.796 40.666 1.50 17.25 7 ATOM 1233 N GLN 170 28.387 37.796 40.666 1.50 17.25 7 ATOM 1235 CA GLN 170 28.222 38.845 41.213 1.00 15.91 7 ATOM 1235 CA GLN 170 28.925 36.631 41.201 1.00 15.91 7 ATOM 1235 CA GLN 170 28.925 36.475 42.647 1.00 17.12 7 ATOM 1236 CB GLN 170 27.928 33.459 43.231 1.00 19.39 5 ATOM 1237 CG GLN 170 27.928 33.459 43.231 1.00 19.39 5 ATOM 1238 CD GLN 170 27.928 33.4091 45.365 1.00 24.35 7 ATOM 1238 CD GLN 170 28.202 34.091 45.365 1.00 26.34 6 ATOM 1239 OEI GLN 170 27.369 33.192 45.247 1.00 27.24									1.00 15.58 3
ATOM 1223 CB SER 168 23.543 37.788 39.465 1.00 21.81 5 ATOM 1224 OG SER 168 22.558 38.750 39.118 1.00 23.47 3 ATOM 1225 C SER 168 25.820 38.200 38.537 1.00 18.61 5 ATOM 1226 O SER 168 25.961 39.425 38.506 1.00 18.81 5 ATOM 1228 CA VAL 169 26.808 37.379 28.789 1.00 18.64 ATOM 1228 CA VAL 169 28.218 37.762 29.149 1.00 17.78 5 ATOM 1229 CB VAL 169 28.218 37.762 29.149 1.00 17.78 5 ATOM 1230 CG1 VAL 169 28.719 39.141 39.657 1.00 19.01 5 ATOM 1230 CG1 VAL 169 28.262 39.261 38.769 1.00 19.01 5 ATOM 1231 CG2 VAL 169 28.407 39.441 37.197 1.00 18.24 5 ATOM 1232 C VAL 169 28.387 37.796 40.666 1.50 17.25 5 ATOM 1233 D VAL 169 28.387 37.796 40.666 1.50 17.25 5 ATOM 1233 D VAL 169 28.387 37.796 40.666 1.50 17.25 5 ATOM 1233 D VAL 169 28.387 37.796 40.666 1.50 17.25 5 ATOM 1233 D C VAL 169 28.387 37.796 40.666 1.50 17.25 5 ATOM 1235 CA GLN 170 28.725 36.631 41.201 1.00 15.91 5 ATOM 1235 CA GLN 170 28.725 36.631 41.201 1.00 15.91 5 ATOM 1235 CA GLN 170 28.925 36.476 42.647 1.00 17.12 5 ATOM 1237 CG GLN 170 27.928 33.459 43.231 1.00 19.39 5 ATOM 1238 CD GLN 170 27.928 33.459 43.231 1.00 19.39 5 ATOM 1238 CD GLN 170 28.202 34.091 45.265 1.00 24.35 5 ATOM 1238 CD GLN 170 28.202 34.091 45.265 1.00 24.35 5 ATOM 1239 OE1 GLN 170 28.202 34.091 45.267 1.00 27.24									1.00 17.86
ATOM 1224 OG SER 168 22.558 38.750 39.118 1.00 23.47 3 ATOM 1225 C SER 168 25.820 38.200 38.537 1.00 18.61 3 ATOM 1226 O SER 168 25.961 39.425 38.506 1.00 18.81 3 ATOM 1227 N VAL 169 26.808 37.379 28.789 1.00 18.64 3 ATOM 1228 CA VAL 169 28.218 37.762 39.149 1.00 17.78 3 ATOM 1229 CB VAL 169 28.719 39.141 38.657 1.00 19.01 3 ATOM 1230 CG1 VAL 169 30.262 39.261 38.769 1.00 19.01 3 ATOM 1231 CG2 VAL 169 28.807 39.441 37.197 1.00 18.24 3 ATOM 1232 C VAL 169 28.387 37.796 40.666 1.50 17.25 3 ATOM 1233 O VAL 169 28.387 37.796 40.666 1.50 17.25 3 ATOM 1233 O VAL 169 28.387 37.796 40.666 1.50 17.25 3 ATOM 1233 O VAL 169 28.222 38.845 41.213 1.00 15.44 3 ATOM 1235 CA GLN 170 28.725 36.631 41.201 1.00 15.91 3 ATOM 1235 CA GLN 170 28.725 36.631 41.201 1.00 15.91 3 ATOM 1235 CA GLN 170 28.925 36.475 42.647 1.00 17.12 3 ATOM 1236 CB GLN 170 28.925 36.475 42.647 1.00 17.39 3 ATOM 1237 CG GLN 170 27.928 33.459 43.231 1.00 19.39 3 ATOM 1238 CD GLN 170 27.928 33.459 43.231 1.00 19.39 3 ATOM 1238 CD GLN 170 28.202 34.091 45.365 1.00 24.35 3 ATOM 1238 CD GLN 170 28.202 34.091 45.365 1.00 24.35 3 ATOM 1239 OEI GLN 170 28.202 34.091 45.247 1.00 27.24									1.00 18.83
ATOM 1225 C SER 168 25.820 38.200 38.537 1.00 18.61 3 ATOM 1226 0 SER 16R 25.961 39.425 38.506 1.00 18.81 3 ATOM 1227 N VAL 169 26.808 37.379 28.789 1.00 18.64 3 ATOM 1228 CA VAL 169 28.218 37.762 29.149 1.00 17.78 4 ATOM 1229 CB VAL 169 28.719 39.141 38.657 1.00 19.01 5 ATOM 1230 CG1 VAL 169 30.262 39.261 38.769 1.00 16.57 3 ATOM 1231 CG2 VAL 169 28.407 39.441 37.197 1.00 18.24 5 ATOM 1232 C VAL 169 28.387 37.796 40.666 1.50 17.25 5 ATOM 1233 0 VAL 169 28.387 37.796 40.666 1.50 17.25 5 ATOM 1233 N GLN 170 28.387 37.796 40.666 1.50 15.44 ATOM 1233 C C C C C C C C C C C C C C C C C C									1.00 21.81 1
ATCH 1226 © SER 168 25.961 39.425 38.806 1.00 18.81 5									1.60 18.61
ATCM 1228 CA VAI 169 28.218 37.762 29.149 1.00 17.78 5 ATCM 1229 CB VAI 169 28.719 39.141 39.657 1.00 19.01 5 ATCM 1230 CG1 VAL 169 30.262 39.261 38.769 1.00 16.57 5 ATCM 1231 CG2 VAI 169 28.407 39.441 37.197 1.00 18.24 6 ATCM 1232 C VAI 169 28.387 37.796 40.666 1.50 17.25 6 ATCM 1233 D VAL 169 28.222 38.845 41.213 1.00 15.44 1 ATCM 1234 N GLN 170 28.725 36.631 41.201 1.00 15.91 7 ATCM 1235 CA GLN 170 28.925 36.476 42.647 1.00 15.91 7 ATCM 1236 CB GLN 170 28.925 36.476 42.647 1.00 17.12 5 ATCM 1237 CG GLN 170 27.928 35.459 43.231 1.00 19.39 6 ATCM 1238 CD GLN 170 27.928 35.459 43.231 1.00 19.39 6 ATCM 1238 CD GLN 170 27.921 35.468 44.766 1.00 24.35 6 ATCM 1239 OEI GLN 170 27.369 33.192 45.247 1.00 27.24 6			0	SER	16B				1.00 18.81
ATCM 1228 CA VAI 169 28.218 37.762 29.149 1.00 17.78 5 ATCM 1229 CB VAI 169 28.719 39.141 39.657 1.00 19.01 5 ATCM 1230 CG1 VAL 169 30.262 39.261 38.769 1.00 16.57 5 ATCM 1231 CG2 VAI 169 28.407 39.441 37.197 1.00 18.24 6 ATCM 1232 C VAI 169 28.387 37.796 40.666 1.50 17.25 6 ATCM 1233 D VAL 169 28.222 38.845 41.213 1.00 15.44 1 ATCM 1234 N GLN 170 28.725 36.631 41.201 1.00 15.91 7 ATCM 1235 CA GLN 170 28.925 36.476 42.647 1.00 15.91 7 ATCM 1236 CB GLN 170 28.925 36.476 42.647 1.00 17.12 5 ATCM 1237 CG GLN 170 27.928 35.459 43.231 1.00 19.39 6 ATCM 1238 CD GLN 170 27.928 35.459 43.231 1.00 19.39 6 ATCM 1238 CD GLN 170 27.921 35.468 44.766 1.00 24.35 6 ATCM 1239 OEI GLN 170 27.369 33.192 45.247 1.00 27.24 6									1.00 18.64
ATOM 1233 0 VAL 169 28.222 38.845 41.213 1.00 15.44 ; ATOM 1234 N GLN 170 28.725 36.631 41.201 1.00 15.91 - ATOM 1235 CA GLN 170 28.905 36.476 42.647 1.00 17.12 ; ATOM 1236 CB GLN 170 27.928 35.459 43.231 1.00 19.39 ; ATOM 1237 CG GLN 170 27.921 35.468 44.766 1.00 24.35 ; ATOM 1238 CD GLN 170 28.202 34.091 45.365 1.00 26.34 ; ATOM 1239 OE1 GLN 170 27.369 33.192 45.247 1.00 27.24 ;									1.00 17.78
ATOM 1233 0 VAL 169 28.222 38.845 41.213 1.00 15.44 ; ATOM 1234 N GLN 170 28.725 36.631 41.201 1.00 15.91 - ATOM 1235 CA GLN 170 28.905 36.476 42.647 1.00 17.12 ; ATOM 1236 CB GLN 170 27.928 35.459 43.231 1.00 19.39 ; ATOM 1237 CG GLN 170 27.921 35.468 44.766 1.00 24.35 ; ATOM 1238 CD GLN 170 28.202 34.091 45.365 1.00 26.34 ; ATOM 1239 OE1 GLN 170 27.369 33.192 45.247 1.00 27.24 ;									1.00 19.01
ATOM 1233 0 VAL 169 28.222 38.845 41.213 1.00 15.44 ; ATOM 1234 N GLN 170 28.725 36.631 41.201 1.00 15.91 - ATOM 1235 CA GLN 170 28.905 36.476 42.647 1.00 17.12 ; ATOM 1236 CB GLN 170 27.928 35.459 43.231 1.00 19.39 ; ATOM 1237 CG GLN 170 27.921 35.468 44.766 1.00 24.35 ; ATOM 1238 CD GLN 170 28.202 34.091 45.365 1.00 26.34 ; ATOM 1239 OE1 GLN 170 27.369 33.192 45.247 1.00 27.24 ;									1.00 18 34 4
ATOM 1233 0 VAL 169 28.222 38.845 41.213 1.00 15.44 ; ATOM 1234 N GLN 170 28.725 36.631 41.201 1.00 15.91 - ATOM 1235 CA GLN 170 28.905 36.476 42.647 1.00 17.12 ; ATOM 1236 CB GLN 170 27.928 35.459 43.231 1.00 19.39 ; ATOM 1237 CG GLN 170 27.921 35.468 44.766 1.00 24.35 ; ATOM 1238 CD GLN 170 28.202 34.091 45.365 1.00 26.34 ; ATOM 1239 OE1 GLN 170 27.369 33.192 45.247 1.00 27.24 ;	MOTA								1.00 10.24
ATOM 1234 N GLN 170 28.725 36.631 41.201 1.00 15.91 - ATOM 1235 CA GLN 170 28.905 36.475 42.647 1.00 17.12 3 ATOM 1236 CB GLN 170 27.928 35.459 43.231 1.00 19.39 3 ATOM 1237 CG GLN 170 27.921 35.468 44.766 1.00 24.35 3 ATOM 1238 CD GLN 170 28.202 34.091 45.365 1.00 26.34 3 ATOM 1239 OE1 GLN 170 27.369 33.192 45.247 1.00 27.24 3		1233	•	VAL	169	28.222	38.845		1.00 15.44
ATOM 1236 CB GLN 170 27.928 35.459 43.231 1.00 19.39 5 ATOM 1237 CG GLN 170 27.921 35.468 44.766 1.60 24.35 5 ATOM 1238 CD GLN 170 28.202 34.091 45.365 1.00 26.34 5 ATOM 1239 OE1 GLN 170 27.369 33.192 45.247 1.00 27.24									1.00 15.91
ATOM 1237 CG GLN 170 27.921 35.468 44.766 1.G0 24.35 ATOM 1238 CD GLN 170 28.202 34.091 45.365 1.G0 26.34 ATOM 1239 OE1 GLN 170 27.369 33.192 45.247 1.00 27.24									
ATOM 1239 DEI GLN 170 27.369 33.192 45.247 1.00 27.24 4									1.00 19.39
ATOM 1239 DEI GLN 170 27.369 33.192 45.247 1.00 27.24 4									1.00 24.35
A	ATOM	1239							
	ATOM	1240	NE2	GLN	170				

bre£21	lc.pd	b		Th	u Aį	pr	25	12	:2	7:47	1	996			17		
ATOM	1241	С	GLN	170			0.3			.030		.047		14		6	
MOTA	1242	0	GLN	170			0.7			. 892		.819		0 10 0 13		5	
ATOM	1243	N	ARG	171			1.1 2.4			. 932 . 643		.674 .094		0 13			
ATOM	1244	CA	ARG	171			3.4			.718		.573		0 13		ó	
MOTA	1245 1245	CB CG	ARG	171			3.			.814		.049		0 12		5	
MOTA MOTA	1247	CD	ARG	171			4.4			.758		.425		0 13		5	
ATOM	1248	NE	ARG	171			4.			.922		.969 .376	1.0		.48	5	
ATOM	1249	CZ	ARG	173			:5.			.932 .899		1.105	1.0		.37	7	
MOTA	1250 1251		ARG	173				304		.000		. 045	1.0	0 6	. 87	7	
MOTA MOTA	1252	C	ARG	17				581		.543		6.630		0 15		5	
ATOM	1253	0	ARG	17				706		.062		5.350 5.131		0 1		3	
ATOM	1254	N	VAL	17				651 816		. 916		7.565	1.0		9.19	5	
MOTA	1255	CA CB	VAL VAL	17 17				473		.260		8.000		0 1		6	
ATOM	1256 1257		VAL					300	24	.155		9.521	1.0		5.41	5	
atom Mota	1258		VAL	_				236		.745		7.262			1.43	5	
ATOM	1259	С	VAL					216		5.966		8.031	1.0		9.92 0.28	9	
· ATOM	1260	0	VAL	_				134 365		5.398 5.778		7.507 9.062			4.35	7	
MOTA	1261	N	GLU					671		7.041		9.657			4.21	5	
ATOM	1262 1263	CA CB	GLU					760		B.463		0.218			7.07	6	
ATOM ATOM	1264	CG	GLU					.591		9.569		9.173			1.96	5	
ATOM	1265	CD	GL					. 267		0.903		9.573			5.14	5	
ATCM	1266		GL					.709		1.647 1.206		8.649			6.88	į	
ATOM	1267		GLI GLI					.359 .910		6.016		0.779			3.64	4	
atom atom	1268 1269	0	GLI					.017		5.720	. :	1.592			3.24		
ATOM	1270	N	IL		74			.087		5.40		0.719			4.30		}
MOTA	1271	CA	IL	-	74			. 557		4.40		51.669 50.966			14.95		5 6
MOTA	1272	CB	IL		74			.915		3.08		51.689			13.06		5
MOTA	1273		2 IL 1 IL	-	74 74			.679		2.18	-	50.893			13.75		6
atom atom	1274 1275		i IL		74			. 625		2.62	9	49.917			12.34		6
ATOM	1276		IL		74			.802		5.05		52.250			15.60		6
ATOM	1277		IL		74			. 563		35.69		51.532			17.19 16.67		8 7
ATOM	1278		LE		75			982		34.95 35.58		53.558 54.166			16.56		é
ATOM	1279		_		75 75			.136).838		35.97	-	55.609			15.47		6
ATOM	1280				75			.46		37.46		55.733			16.91		ó
MOTA MOTA	1282		1 LE		75		40	1.100		38.11		54.394			14.03		6
ATOM	1283		2 LE		75			3.34		37.62		56.733			16.66		5 5
atom	128		LE		75			2.39 2.32		34.75 33.53		54.031			17.23		ŝ
ATOM	128		LE GI	-	.75 .76			3.54		35.43		54.08			17.10		7
MOTA MOTA	128				76			4.84		34.76		53.94	-		16.6		5
ATOM	128				76			6.00		35.73		54.14			21.3		5 5
ATOM	128				176			5.96		36.4		55.43 55.18			22.8		5
MOTA	129				176			6.14 7.33		37.92		55.21			23.6		Š
ATOM	129 129		E1 G E2 G		176 176			5.11		38.6		54.91			23.2		3
ATOM ATOM	129	-			176		4	5.06	8	33.6		54.85	2 1	.00	12.9	3	÷
ATOM				LU	176			4.87		33.6		56.06		00 L.00	16.3		3
MOTA					177			5.57		32.5 31.3		54.25 55.00		1.00			÷
atom					177 177			4.73		20.3		54.82		1.00			ć
MOTA MOTA		7 C		LY	177			4.9		29.1		54.96	2	1.00	9.0	0	õ
ATOM				RG	178			13.5		30.7	87	54.49	_	1.00			7
ATOM				RG	178			12.3		29.8		54.31		1.00	8.2		:
ATOM				LRG	178			41.1: 41.1:		30.6		54.47			14.		÷
ATOM				LRG LRG	178 178			40.9		30.9		56.9			20.1		•
ATOP ATCP				ARG	178			41.9		31.2		57.9		1.00	24.	00	7
7.01				ARG	178			42.4	ec	32.5		58.1			26.		÷ 7
ATO		06 1	NH1	ARG	178			42.0		33.5		57.3			27. 26.		7
ATC	4 13		NH2		178			43.3		32.		59.0 52.9		1.00			- 4
ATO				arg Arg	178 178			42.4		29.		51.9		1.0			? 7
nota Pota				THF.	179			42.2		27.	906	52.9	34	1.0			
ATO				THR	179			42.1	45	27.		51.6		1.0			÷
ATO	M 13	12	CB	THR	179			43.3		26.		51.5 52.8		1.0	D 9. C 12.	72 75	ó 3
ATO			OC1		179 179			44.5		25. 27.		_		1.0		02	÷
ATO ATO		14	CG2 C	THR	179			40.8		26.					0 14.		ń
ATO		116		THR	179			40.0	92	25.	102	51.1	55		0 15.		3
710	M 13	117	N	GLU	180			29.		26.					0 13.		7
ATC	M 13	15	CA	GLU	180			3E.	469	26.	188	52.1	.02	1.0	0 12.	54	•

bref2	lc.pd	ь		Thu	Apr 25 12	:27:47	1996	18	
ATOM	1319	CB	GLU	180	38.329	25.242	53.340	1.00 14.42	÷
ATOM	1320	CG	GLU	180	37.418	24.052	53.048	1.00 18.37	ó
ATOM	1321	CD	GLU	180	37.112	23.255	54.299	1.00 19.86	÷
ATOM	1322	OE1		180	36.526	23.877	55.216	1.00 21.31	à
MOTA	1323	OE2		180	37.473	22.045	54.387	1.00 18.58	ö
ATOM	1324	C	GLU	180	37.442	27.288	52.301	1.00 14.56	÷
ATOM	1325	0	GLU	180	37.742	28.385	52.782	1.00 14.76	à
ATOM	1326	N	CYS	181	36.209	26.986	51.934	1.00 13.82	7
ATOM	1327	CA	CYS	181	35.149	27.967	22.034	1.00 12.64	5
ATOM	1328	CB	CYS	181	35.382	28.990	50.936	1.00 12.66	5
ATOM	1329	SG	CYS	181	33.911	29.643	50.288	1.00 13.38	15
ATOM	1330	С	CYS	181	33.766	27.287	51.905	1.00 13.84	€.
ATOM	1331	0	CYS	181	33.606	26.383	51.086	1.00 15.56	8
ATOM	1332	N	VAL	182	32.790	27.639	52.743	1.00 13.12	7
ATOM	1333	CA	VAL	182	31.478	26.985	:2.613	1.00 11.97	ó
atom	1334	CB	VAL	182	31.093	26.072	53.820	1.00 9.54	5
ATOM	1335		VAL	182	32.003	26.307	55.003	1.00 10.81	6
ATOM	1336		VAL	182	29.669	26.255	54.193	1.00 8.15	5
ATOM	1337	c	VAL	182	30.353	27.910	52.171	1.00 12.84	6
ATOM	1338	0	VAL	182	29.930	28.828	52.872	1.00 13.90	3
MOTA	1339	N	LEU	183	29.954	27.715	50.930	1.00 11.79	7
ATOM	1340	CA	LEU	183	28.921	28.515	53.338	1.00 12.76	5
MOTA	1341	CB	LEU	183	29.052	28.500	48.817	1.00 13.26	5
ATOM	1342	CG	LEU	183	30.193	29.380	43.350	1.00 11.81	5
ATOM	1343		LEU	183	30.636	28.956	46.970	1.00 8.24	5
ATOM	1344		LEU	183	29.734	30.852	43.398	1.00 13.01	5
ATOM	1345	C	LEU	163	27.564	28.027	53.778	1.00 14.24	5
ATOM	1346	0	LEU	183	27.139	26.887	50.514	1.00 15.09	9
ATOM	1347	Ŋ	SER	184	26.897	28.909	51.487	1.00 14.69	7
ATOM	1348	CA	SER	184	25.583	28.642	51.998	1.00 16.60	6
MOTA	1349	CB	SER	184	25.558	29.046	53.461	1.00 17.40	6
ATOM	1350	00	SER	184	26.601	28.369	54.144	1.00 18.79	ð
ATOM	1351	C	SER	184	24.671	29.537	51.208	1.00 17.61	6
ATOM	1352	0	SER	184	25.115	30.545	53.679	1.00 18.84	3
ATOM	1353	N	ASN	185	23.422	29.140	51.048	1.00 18.50	7
HOTA	1354	CA	ASN	185	22.479	29.998	53.338	1.00 21.04	6
MOTA	1355	CB	ASN	185	22.463	31.389	51.008	1.00 27.82	6
ATOM	1356	CG	ASN	185	22.274	31.330	52.546	1.00 33.52	6
ATOM	1357		ASN ASN	185 185	22.899 21.392	32.131	53.270 53.050	1.00 36.61 1.00 36.25	3 7
ATOM ATOM	1358 1359	C	ASN	185	22.641	30.414 30.149	49.794	1.00 19.48	6
ATOM	1360	Ö	ASN	185	22.967	31.228	43.263	1.00 19.46	â
ATOM	1361	N	LEU	186	22.329	29.062	43.093	1.00 17.53	7
ATOM	1362	CA	LEU	186	22.384	28.972	46.635	1.00 15.82	Ġ
ATOM	1363	CB	LEU	186	23.632	28.170	46.201	1.00 14.99	6
ATOM	1364	CG	LEU	196	25.006	28.318	45.924	1.00 15.24	5
ATOM	1365		LEU	186	25.951	27.172	45.540	1.00 13.51	ş
ATOM	1366		LEU	136	25.689	29.663	46.637	1.00 14.02	÷
ATOM	1367	ε	LEU	136	21.069	28.230	45.261	1.00 16.15	é
MOTA	1368	ŏ	LEU	186	20.449	27.566	47.116	1.00 16.68	â
ATOM	1369	N	ARG	187	20.611	28.382	45.019	1.00 15.66	7
ATOM	1370	CA	ARG	187	19.371	27.749	44.576	1.00 14.27	Ę
ATOM	1371	CB	ARG	187	18.845	28.415	43.327	1.00 14.63	ŧ
ATOM	1372	CG	ARG	187	19.153	29.870	43.263	1.00 19.73	Ş
ATOM	1373	CD	ARG	187	18.525	30.512	42.054	1.00 23.74	5
MOTA	1374	NE	ARG	187	19.218	30.197	40.905	1.00 25.90	7
ATOM	1375	CZ	ARG	187	18.997	29.109	43.060	1.00 23.07	÷
ATOM	1376	· NH1	ARG	187	18.110	28.181	40.430	1.00 29.72	7
ATOM	1377	NH	AP.G	187	19.594	29.001	33.874	1.00 31.36	7
MOTA	1378	C	ARG	187	19.528	26.264	44.298	1.00 16.07	5
MOTA	1379	Э	ARG	137	20.608	25.788	43.872	1.00 14.20	3 7 8
MOTA	1380	N	GLY	138	18.413	25.557	44.483	1.00 15.94	-
ATOM	1381	CA	GLY	188	18.369	24.124	44.291	1.00 17.35	÷
ATOM	1382	C	GLY	188	19.304	23.695	42.842	1.00 19.74	5
atom	1383	3	GLY	188	17.760	24.421	42.016	1.00 20.69	ş
ATOM	1384	N	ARG	139	18.823	22.492	42.563	1.00 23.12	7
ATOM	1385	CA	ARG	129	18.891	21.885	41.239	1.00 20.15	4. 6
ATOM	1386	CB	AP.G	169	17.495	21.501	40.731	1.30 22.54	÷
MOTA	1387	CG	ARG	189	17,450	20.203	33.871	1.00 25.04	ó
ATOM	1388	CD	AP.G	159	17.780	20.44?	38.38C	1.00 25.92	÷ 7
ATOM	1389	NE	AP.G	169	18.576	19.373	37.756	1.00 27.40	7
HOTA	1390	CZ	ARG	189	18.076	18.215	37.299	1.00 29.60	÷
HOTA	1391		1 AF.G	169	16.768	17.337	37.405		;
MOTA	1392		2 ARG	189	18.886		35.686		1
ATOM	1393	c	ARG	189	19.610				4
ATOM	1394	5	ARG	199	19.40€				3
ATOM	1395	N	THR	130	20.432				?
ATOM	1396	CA	THE	190	21.195	24.611	33.812	1.00 17.05	÷

bref21	.c.pd	Ь		T	hu	Apr	25	12	:27	1:47	19	96		:	19	
ATOM	1397	СВ	THR	19			21.4		25. 26.		40. 41.			15.		÷
MOTA	1398		THP.	19 19			20.3 21.8		26.			390	1.00	10.	48	•
MOTA	1399 1400	C	THR	19		:	22.5	76		017				17. 17.		.
ATOM	1401	0	THR	19			23.0 23.2			222 460		428 563		18.		÷
MOTA	1402 1403	N CA	ARG	19			23.2 24.6			01B	38.	253	1.00	18.	64	÷
atom Atom	1404	CB	ARG	19	1.		24.7			686		746		23.		÷
ATOM	1405	CG	ARG				26.2 26.8			. 477 . 032		.27B .502		29.		
ATOM ATOM	1406	CD NE	ARG		91		26.8			206		274	1.00	31.	. 41	?
ATOM	1408	CZ	ARG	1	91		27.6			. 329		.236 .198		0 30 0 30		÷ 7
ATOM	1409		ARG		91 91		28.6			.261 .481		.210		0 30		7
atom atom	1410	C	ARG		91		25.4		25	.213	38	. 627		0 15		é
ATOM	1412	0	ARC		91		25.1			.344 .950		.233 .417		0 14 0 12		5 7
ATOM	1413	N CA	TYF		92 92		26.4			.971		.901		0 11		÷
ATOM ATOM	1414	CB	TYF		92		27.	283	26	.027		.411		0 10		5 5
MOTA	1416	CG	TY		92		26. 26.			.759		.890 .101		0 13		5
MOTA MOTA	1417		TYI TYI		92 92		24.			.867		. 435	1.0	0 14	. 60	÷
MOTA	1419		Z TYI		92		24.	837		.111		.039		0 14		ē.
ATOM	1420		2 TY		92			670 745		.840 1.217		.371		0 15 0 13		
MOTA MOTA	1421	CZ OH	TY:		92			618		972		. 755	1.0	10 14	. 24	Ē
ATOM	1423	c	TY		92		28.	759		3.557		.508		00 13		₹. B
ATOM	1424	0	TY		192			134 511		1.402 5.491		9.680 3.954		00 10		-
atom Atom	1425 1426	N CA	TH TH		193 193			875	20	5.230	38	3.535	1.0	00	7.97	•
ATOM	1427	CB	TH	R	193			036		6.551		7.028 5.283	1.0		7.66 5.74	6 3
ATOM	1428		1 TH	-	193 193			.030 .399		5.849 6.130		6.529	1.		7.11	é
MOTA MOTA	1429		2 TH TH		193		31.	. 68 8	2	7.182	3	9.383	1.		7.05	á
MOTA	1431		TF	IR.	193			. 370		8.369		9.425 0.113			7.20 8.39	3 7
ATOM	1432		Pi Pi		194 194			. 685 . 487		6.682 7.571		0.967			5.90	5
MOTA MOTA	1433				194			. 421	. 2	7.133	3 4	2.427	1.	00	6.97	á
ATOM	1435	S C	3 PI		194			.030		6.778		2.900 2.723		00 00	8.68 5.87	÷
ATOM	143		01 PI 02 PI		194 194			.531		7.73		3.519		00	8.15	÷
ATOM ATOM	143		E1 P		194		30	. 27	3 2	5.170		3.150		.00	8.14	s s
ATOM	143		E2 P		194			. 95		27.41 26.12		13.946 13.763		.00	7.24	
MOTA	144			HE HE	194			. 92		27.56	5 4	10.524	1.	.00	5.55	5
ATOM	144	2 0	P	HE	194			. 36		26.59		29.934 40.849		.00 .00	6.55 5.34	3
MOTA	144			LA LA	195			. 64) . 05		28.53 28.78	5	40.49		. 00	4.57	÷
MOTA ATOM	144			LA	19:			1.17	3 3	29.29	8	33.04	7 1	.00	5.31	÷
ATOM	144			LA	19:			7.74 7.10		29.75 30.69		41.46° 41.92°		.00	3.32 2.79	÷
ATOM	144			LA 7AL	19:		_	9.03		29.53		41.77		.00	2.76	7
ATOM ATOM	144	-		7 <u>A1</u>	19			9.83	19	30.39	8	42.68	9 1	.00	2.78	÷
ATOM	145			/AL	19			0.52 0.23		29.60		43.86 45.21	9 1 4 1	.00	2.00	
ATOM ATOM			:G1 \ :G2 \		19			0.13		28.17	73	43.86	9 1	.00	4.34	÷
ATOM			٠ ١	VAL	19	6	*4	1.00	00	31.08		41.99		.00	2.07	÷
ATOM		4 .		VAL ARG	19 19			1.43		30.60		40.93		.00	2.00	7
ATOM ATOM				ARG	19		4	2.6	87	32.8	60	42.12	9 1	.00	2.30	
ATOM	1 14	57		ARG	19			2.2		33.9		41.06		00	2.00	
ATON				arg arg	19 19			1.3		36.0		40.50		1.00	2.00) -
ATO:				ARG	19		4	10.3	45	37.1		41.0		1.00	3.47	7
ATO	1 14	61	CZ	ARG	19			10.2 10.8		38.3 38.5		40.53 39.33		1.00 1.00	2.00	
ATO			NH1 NH2		19			39.7		39.3		41.1	93	1.00	4.0	2 -
ATO		64	C	ARG	1:	97		43.3	74	33.4	89	43.3		1.00	2.0	9 :
ATO	M 14	65	0	ARG		97 98		42.6 44.7		33.9		44.2		1.00		3 -
ATO ATO		66	N CA	ALA		98		45.4		33.9	996	44.5	50	1.00	2.4	7 -
ATO	M 14	68	CB	ALA	1	36		46.4		32.9		45.0		1.00		
ATO ATO		169 170	0	ALA		98 98		46.2 46.6		35.3 35.3		43.3		1.00	2.1	9 3
ATC		171	N	ARG	1	96		46.	542	35.5	901	45.6	12	1.00		
ATC	M 1	472	CA	ARG		99		47.3		37.: 38.:		45.6 45.5		1.00		
ATC ATC		473 474	CF CG	ARG		98 95		46.		39.		45.		1.0		
	_	-	-													

bref2	1c.pd	Ъ		Thu	Apr 2	25 1:	2:27:47	1996		20	
ATOM	1475	CD	ARG	199	45	. 93B	40.737	45.915	1.00	9.17	5
ATOM	1476	NE	ARG	:99	46	.306	42.120	45.579		13.78	÷
ATOM	1477	CZ	ARG	199		.187	42.662	44.363		15.94	٤
ATOM	1478	NH1		199		.738	41.950	43.329		18.32	:
ATOM	1479	NH2		199		.417	43.954	44.181		18.45	7
ATOM	1480	C	ARG	:99		.030 .555	37.321	47.023	1.00	5.53	5
atom atom	1481 1482	O N	MET	199 200		.243	36.916 37.864	48.058	1.00	8.08	į
ATOM	1483	CA	MET	200		.015	38.096	46.984 48.197	1.00	5.53	;
ATOM	1484	СВ	MET	200		. 484	38.423	47.891	1.00	4.85	s s
ATOM	1485	CG	MET	200		.311	37.271	47.346	1.00	4.67	ઠ
MOTA	1486	SD	MET	200	±3	.261	36.286	48.538	1.00	9.73	15
ATOM	1487	CE	MET	200		.284	34.975	48.812	1.00	2.41	5
ATOM	1488	c	MET	200		.340	39.289	48.874	1.00	7.02	ę
ATOM ATOM	1489 1490	N	MET ALA	200 201		.074	40.314	48.228	1.00	6.42	3
ATON	1491	CA	ALA	201		.369	39.126 40.140	50.167 50.962	1.00	7.96 10.65	. 5
ATOM	1492	СВ	ALA	201		. 633	39.474	52.117	1.00	4.85	6
ATOM	1493	c	ALA	201		.261	41.285	51.464		12.36	5
MOTA	1494	0	ALA	201	50	.488	41.204	51.453		13.02	5
ATOM	1495	N	GLU	202	48	. 622	42.360	51.901		15.72	7
ATOM	1496	CA	GLU	202		.336	43.527	52.421	1.00	19.04	5
ATOM	1497	CB	GLU	202		.428	44.756	52.276		23.13	s,
MOTA	1498	CG	GLU	202		.650	44.796	50.914		28.94	5
ATOM	1499	CD	GLU	202		.360	45.575	49.757		31.22	÷
ATOM ATOM	1500 1501	OE1	GLU	202 202		.466	46.164 45.613	49.968 48.634		32.80	1
ATOM	1502	C	GLU	202		.785	43.317	53.903		19.11	į
ATOM	1503	Ö	GLU	202		.394	42.327	54.561		20.41	3
MOTA	1504	N	PRO	293		. 696	44.173	54.411		16.25	-
ATOM	1505	CD	PRO	203	51	.150	44.143	55.820		15.32	5
ATOM	1506	CA	PRO	203		. 322	45.290	53.714	1.00	14.26	6
ATOM	1507	CB	PRO	203		.339	46.367	54.782		13.02	δ
ATOM	1508	CC	PRO	203		.846	45.538	55.984		16.38	5
atom atom	1509 1510	Ç	PRO PRO	203 203		.740	44.892	53.356		12.03	6
ATOM	1511	N	SEP.	204		.073	45.743	52.985 53.540	1.00	15.28 8.98	3
ATOM	1512	CA	SER	204		.420	43.146	53.222		11.79	5
ATOM	1513	CB	SEP.	204	-	. 674	41.764	53.868		11.87	5
ATOM	1514	OG	SEP.	204		.093	41.856	55.224		12.48	•
MOTA	1515	С	SEP.	204	54	.686	43.060	51.696		11.88	5
ATOM	1516	0	SER	204		. 632	43.660	51.152	1.00	11.24	3
ATOM	1517	N	PHE	205		.818	42.309	51.031		10.89	7
MOTA	1518	CA	PHE	205		. 901	42.074	49.624	1.00	8.76	é
MOTA MOTA	1519 1520	CB	PHE	205 205		.911	40.573 39.862	49.390 20.052	1.00	8.70	5
ATOM	1521		PHE	205		.854	38.885	51.029		12.81	÷
ATOM	1522		PHE	205		.388	40.136	49.668		11.00	4
ATOM	1523		PHE	205		.921	38.198	51.599	1.00	7.35	÷
ATOM	1524	CE2	PHE	205	57	. 452	39.449	50.237		11.11	•
MOTA	1525	CZ	PHE	275		.215	38.480	51.202	1.00	8.98	÷
ATOM	1526	С	PHE	205		.743	42.728	48.900	1.00	8.87	÷
ATOM	1527	Ö	PHE	205		.756	43.147	49.500	1.00	9.29	÷
ATOM	1528 1529	N CA	GLY GLY	206 206		.892	42.864 43.459	47.592 46.751	1.00	8.14	:
ATOM	1530	c	GLY	206		.007	42.855	45.367	1.00	7.24	ž
ATOM	1531	5	GLY	206		.956	42.124	45.081	1.00	8.58	***************************************
ATOM	1532		GLY	297		.020	43.080	44.520	1.00	7.18	-
ATOM	1533	CA	GLY	207	51	.122	42.534	43.176	1.00	7.59	÷
MOTA	1534	С	SLY	207		.825	42.355	42.430	1.00	4.80	÷
ATOM	1535	٥	GLY	207		1.857	43.048	42.656	1.00	5.05	:
ATOM	1536	N	PHE	228		7B4	41.332	41.608	1.00	3.71	-
atom atom	1537	CA	PHE	208		3.621	41.069	40.805	1.00	3.73	•
ATOM	1536 1539	CB	PHE	208 208		9.034 3.158	41.071	39.322 39.011	1.00		•
ATOM	1540		PHE	238		9.956		39.004	1.00		:
ATOM	1541		PHE	208		1.441		28.793	1.00		
ATOM	1542		PHE	258		.022			1.00		÷
ATOM	1543		PHE	208		2.506			1.00		4
ATOM	1544	CZ	PHE	208		2.292			1.00	6.95	4. 46. 41. 41. 41. 41. 41.
ATOM	1545	C	PHE	208		7.896		41.149	1.00		•
atom atom	1546 1547	ů	2HS	208		B.463 6.602			1.00		;
ATOM	1548	N SA	TP.P TP.P	209 209		5.766			1.00		;
ATOM	1549	CB	TPP	209		4.302			1.00		
MOTA	1550	CG	TRP	209		3.505			1.00		
ATOM	1551		TP.P	209	4	3.156	38.550	43.104	1.00		
ATOM	1552	CE	TP.P	209	4.	2.347	39.316	43.959	1.00		

bref2	1c.pd	l b		Thu	Apr 25	12:	27:47	1996	21	
ATOM	1553	CE3	TRP :	209	43.4	45 3		43.446	1.00 2.00	
ATOM	1554	CD1		209	42.9			42.240	1.00 2.25	
ATOM	1555	MEI		209	42.2		0.554	43.396	1.00 2.00 7 1.00 4.70 8	
MOTA	1556	CZ2		209	41.8		6.809 6.729	45.148	1.00 4.57 5	
ATOM	1557	C23		209	42.9 42.1		7.513	45.461	1.00 4.76	
MOTA	1558	CH2		209 209	46.2		7.604	40.033	1.00 3.17 5	
ATOM	1559	Ç	TRP TRP	209	46.5		7.969	33.920	1.00 3.26 3	
ATOM	1560 1561	N	SER	210	46.2	35 3	6.335	40.412	1.00 4.99	
ATOM ATOM	1562	CA	SEP	210	46.6		5.269	39.533	1.00 5.25	
MOTA	1563	CB	SER	210	46.9		4.002	49.327	1.00 4.60 5	
ATOM	1564	OG	SEP.	210	45.		32.363	40.660	1.00 3.40 3	
ATOM	1565	C	SER	210	45.	-	4.968 35.689	28.313	1.00 13.86	
MOTA	1566	Ĉ.	SER	210 211	44. 45.		23.924	37.735	1.00 10.41	7
ATOM	1567	N CA	ALA	211	44.		33.423	26.757	1.00 10.30	É
ATOM ATOM	1568 1569	CB	ALA	211	45.	639	32.571	35.768		÷
MOTA	1570	c	ALA	211	43.		32.550	27.567		á
ATOM	1571	0	ALA	211			32.175	38.706		ē 7
ATOM	1572	N	TPP	212			32.263	37.014 27.734		, Ş
MOTA	1573		TRP	212			31.433 31.434	36.993	1.00 9.05	÷
MOTA	1574		TRP	212 212			32.765	35.942	1.00 4.98	÷
MOTA	1575		TPP TRP	212			33.399	33.030	1.00 2.00	÷.
MOTA	1576 1577		TRP	212			34.597	37.547	1.00 2.33	÷
ATOM ATOM	1578		TRP	212			33.063	23.367	1.00 2.00	÷
MOTA	1579		TRP	212	39.	566	33.576	25.867	1.00 2.00	5
MOTA	1580		TP.P	212		850	34.680	15.219	1.00 2.00	• •
ATOM	1581		7RP	212		.811	35.470	33.359 43.167	1.00 4.55 1.00 2.47	ક
ATOM	1582		TRP	212		.162 .640	33.921	39.671	1.00 2.13	,
MOTA	1583		2 TRP	212 212		. 340	30.012	37.771	1.00 8.93	ó
ATOM	1584 1585		TRP TRP	212		. 262	29.696	27.043	1.00 8.63	3
MOTA MOTA	158		SEF.	213		.771	29.145			7
ATOM	158		SEF.	213	42	. 222	27.747			ż
ATOM	158		SER	213		.041	27.183			ક ક
ATOM	158	9 OG		213		.667	27.131			5
MOTA	159		SER	213		.303	26.959			
MOTA	159		SER	213		.265 .644	27.471			3
MOTA			GLU	214 214		.694	24.971			÷
ATOM ATOM				214		.307	23.662		1.00 16.37	5
ATOM				214		.107	23.797			÷
ATOM				214		249	24.29			
ATOM			1 GLU	214		. 627	25.33° 23.63°			÷
ATOM			2 GLU	214		3.218 3.550	24.81			4
ATOM			GLU	214 214		9.793	24.62			÷
ATOM			GLU PRO	215		8.301	25.03			-
ATOM ATOM				215		7.959	25.36	3 35.86		÷
ATOM	-	_		215		7.068	24.96			5
ATON				215	. 3	6.155	25.89			£
ATOM				215		6.430	25.44 23.60			
ATON				215	_	6.37E 6.664	22.65			ŧ
ATO				215 216	_	5.440			-	:
ATC:			A VAL		_	4.669		6 29.43		÷
ATO		10 · C			_	4.740	21.92			
ATO		11 C	G1 VAL	210		5.569				é
ATO		12 0	G2 VA1		_	5.226				5
ATO	_	13 9			•	3.261 3.001				•
ATC			YAL		-	2.35				:
ATC			i sep Ca sep			0.952				ŧ
ATC ATC			ia sef ib sef			20.545			02 1.00 10.53	•
ATC			G SEF			29.610	23.1			•
ATC			SEF	21	. ר	20.127			01 1.00 10.91	:
ATC) SEI	: 21		30.424				:
ATC	× 10	521	N LE			29.06°				,
ATC			CA LE			28.22 28.60	_			į
ATC			CB LES			27.99				-
OTA OTA			CG LE		-	28.20			9850 9.37	
ATO			CD2 LE			28.64		35 45.0		
ATC			2 15			26.72	7 21.2			
AT			o LE	U 21	LB	26.30				
AT	CM 1	629	N LE		19	25.95				
AT	OM 1	630	CA LE	U 2	19	24.48	€ 20.1	164 40.	760 1.00 13.92	

bref2	1c.pd	Ъ		Thu	Apr 25	12:2	27 : 47	1996		22	
ATOM	1631	CB	LEU	219	23.86	67 18	3.372	40.209	1.00	13.95	÷
ATOM	1632	CG	LEU	219	23.81		3.429	23.736		16.57	5
ATOM	1633	CD1	LEU	219	22.8		3.303	37.947		18.05	÷
MOTA	1634	CD2		219	25.20		3.413	23.096	1.00	15.67	5
ATOM	1635	C	LEU	219	24.08		.226	42.248		12.96	÷
ATOM	1636	0	LEC	219	24.3		2.295	42.986		12.64	ż
MOTA	1637	N	THP.	220	23.50		339	42.692		12.52	7
MOTA	1638	CA	THP.	220	23.0		.472	44.068		10.27	÷
ATOM	1639	CB	THP.	220	22.28		2.744	44.250		10.53	÷
ATOM	1640	OG1 CG2	THE	220	22.03		3.230	42.967		14.44	•
MOTA	1642	C	THP.	220	23.07		3.704	45.099		13.55	:
ATOM	1643	õ	THP	220 220	22.11 21.19).325).053	44.368		11.61	÷
ATOM	1644	N	THE	303	67.91		2.384	43.582 64.372		13.03	7
ATOM	1645	Ċ.	THR	303	67.7		. 634	65.597	1.00	9.49	•
ATOM	1646	C3	THP.	303	66.40		2.008	66.344		10.05	5
ATOM	1647	0G1	THP.	303	65.98		3.329	65.963		12.85	š
ATOM	1648	CG2	THF.	303	66.59		2.023	67.861		12.80	5
ATOM	1649	С	THR	303	67.73		.103	65.280	i.co	9.93	÷
MOTA	1650	0	THP	303	68.52	25 39	3.342	65.838	1.00	9.37	ž
ATOM	1651	N	TYP.	304	66.88	92 39	9.690	64.343	1.00	10.17	7
ATOM	1652	CA	TYP.	304	€6.7		3.201	63.973	1.00	9.53	5
MOTA	1653	C3	TYF.	304	65.30		7.326	64.148	1.00	7.06	÷
ATOM	1654	CG	TYP.	304	64.83		7.927	65.585	1.00	7.97	•
ATOM	1655	CD1	TYF.	304	64.31		2.123	66.072	1.00	4.80	•
ATOM ATOM	1656 1657	CE1	TYF.	304	64.00		2.268	67.389	00	3.80	÷
ATOM	1658	CE2	TYF.	304 304	65.00 64.7		5.880	65.486	1.00	6.93	÷
ATOM	1659	CZ	TYP	304	64.2		7.315 3.211	67.809 68.261	1.00	4.43	÷
ATOM	1660	СH	TYF	304	63.B		3.359	69.598	1.00	4.88	÷
ATOM	1661	c	TYR	204	67.11		3.065	62.554	1.00	8.23	ě
ATOM	1662	ō	TYP.	304	67.2		9.024	61.804		11.69	5
ATOM	1663	N	SEF.	305	67.4		5.819	62.201	1.00	9.34	ž
ATOM	1664	CA	SEF.	305	67.8		5.442	60.843	1.00	9.43	6
MOTA	1665	CB	SEF.	305	69.2		5.705	60.838		13.12	5
MOTA	1666	OG	SEP.	305	70.2	26 36	6.516	61.427		18.03	3
ATOM	1667	С	SEP.	305	66.7	36 35	5.557	60.273	1.00	10.05	6
ATOM	1668	9	SER	305	66.4	90 34	4.433	60.754	1.00	10.34	3
ATOM	1669	N	CYS	306	66.0		6.051	59.218	1.00	8.05	7
ATOM	1670	CA	CXE	306	64.9		5.364	58.619	1.00	5.52	ó
ATOM	1671	5	CYS	306	64.9		5.039	57.131	1.00	6.70	ž
ATOM	1672	0	CYS	306	65.6		5.702	56.302	1.00	6.69	3
atom Atom	1673	22	CYS	306	63.7		6.188	58.889	1.00	6.36	
ATOM	1674 1675	3G N	HIS	306 307	63.7 64.1		6.826	60.556	1.00	8.87	1 5
ATOM	1676	CA	HIS	307	64.0		4.026 3.604	56.808 55.459	1.00	6.09	7 5
ATOM	1677	23	HIS	307	65.0		2.519	15.083	1.00	7.50	ŧ
ATOM	1678	SS	RIS	297	64.8		1.183	55.746	1.30	14.32	•
ATOM	1679		HIS	307	64.0		C.124	55.420		16.07	ķ
ATOM	1680	ND1	218	307	65.7		0.723	55.734	1.00	16.54	,
ATOM	1681	CEL	HIS	307	65.4		9.443	\$5.976		14.82	ş
ATOM	1682	NE2	HIS	307	64.4		9.056	\$6.192		17.24	-
atom	1663	0	HIS	307	62.5	76 3	3.175	55.236	1.00	9.06	÷
ATOM	1684	÷	HIS	307	61.8	11 3	2.390	56.188	1.00	11.93	÷
MOTA	1685	::	PHE	308	62.1		3.136	53.980	1.00	9.50	7
ATOM	1686	ΞÀ	PHE	308	50.8		2.725	53.647	1.00	5.53	÷
ATOM	1687	CB	PHE	308	50.4		3.092	52.167	1.00	7.92	÷
ATOM	1688		PHE	308	60.5		4.55?	51.891	:00	5.48	5
ATOM	1689		PHE	338	51.1		5.016	50.747	1.00	6.64	*****
MOTA MOTA	1690 1691		PHE	308 308	59.9 51.1		5.482	52.73B	1.20	9.42	:
MOTA	1692		PHI	308	59.9		6.402 €.870	50.448 52.445	1.00	3.48	:
ATOM	1693	52	PHE	308	60.5		7.324	51.307	1.30	3.15 6.33	
ATOM	1694	5	PHE	308	60.6		1.207	53.849	00	5.44	
ATOM	1695	:	PHI	128	61.4		G.424	53.322	1.20		:
MOTA	1696	8	SLY	309	59.7		C.803	54.691	50	5.25	:
ATOM	1697	CA	SI Y	239	59.5		9.33:	54.922	1.00		
ATOM	1698	0	51.	209	50.3	15 2	8.375	54.098	1.56	6.57	
ATOM	1699	:	SLY	309	57.8		9.765	53.316	1.00		3
ATOM	1700	N.	PF:	210	57.7		7.756	54.233	1.00		3 7
ATOM	1701	CD	PF.	310	58.4		6.582	54.742	1.30	9.04	÷
atom atom	1702	CY	PA:	310	56.6		7.429	53.384	:. 00		•
ATOM	1703 1704	23	PF.:	316	56.5		5.337	53.449		2.33	. . :
ATOM	1705	53 5	PR.I	310 210	57.9		5.437	53.857	30		:
ATOM	1706	:	27.	310	55.3 54.3		8.077	53.909 53.137	1.30		:
ATOM	1707	,	LET	311	55.3		8.513	55.161	1.00	12.07 9.08	•
MOTA	1708	CA	LET	311	54.1		9.114	55.756	50		÷
								_		•	

bref21	lc.pd	b		Thu	Apr	25	12	: 27 : 4	17]	1996		23	
ATOM	1709	CЗ	LEU	311		53.83		28.437		7.080		4.94	:
MOTA	1710			311		52.83		27.277		7.127 7.619		5.34 5.36	÷
MOTA	1711	CD1		311 311		51.52 52.68		27.802 26.580		5.781		5.32	•
MOTA MOTA	1712 1713	CD2 C	LEU	311		54.34		30.580		6.002		4.95	Ŧ.
ATOM	1714	c	LEU	311		53.50		31.41		5.540		4.76	•
ATOM	1715	33	THP.	312		55.39		30.89		6.741	1.00	5.31	:
ATOM	1716	CA	THR	312		55.68		32.28		7.075 8.256	1.00	7.52 7.52	•
ATOM	1717	CB	THR THR	312		54.7		34.14		8.476		2.56	•
ATOM ATOM	1718		THP.	312		55.1		31.95	1 5	9.526	1.00	6.36	
ATOM	1720	c	THR	312		57.1		32.34		7.444	1.00	6.58	•
ATOM	1721	5	THR	312		57.8		31.35 33.47		7.215	1.00	7.15 5.96	<u>:</u>
MOTA	1722 1723	!! CA	TRP TRP	313 313		57.6		33.65		8.382	1.00	€.32	•
ATOM ATOM	1724	C3	TRP	313		59.2		35.03	2 :	8.992	1.00	3.13	•
MOTA	1725	CG	TRP	313		58.9		36.21		8.158	1.00	5.28	€ ₹
MOTA	1726		TRP	313		59.6 59.0		36.77		37.066 36.682	1.00	6.34 4.38	÷
ATOM	1727	CE2	TRP TRP	313 313		60.8		36.40		6.382	1.00	3.66	<i>:</i>
MOTA MOTA	1728 1729		TRP	313		57.8		37.04		58.359	1.00	4.69	:
ATOM	1730		TRP	313		57.9	33	38.10		7.488	1.00	5.00	•
MOTA	1721		TRP	313		59.4		38.78		55.656	1.00	4.75	÷
MOTA	1732		TRP	313		61.3		37.22		55.350 55.004	1.00	3.72	
MOTA	1723	CHZ	TRP	313 313		59.6		32.51		59.389	1.00	3.38	•
MOTA MOTA	1735	-	TRP	313		58.9		32.10	B 6	60.359	1.00	9.40	÷
ATOM	1736	N	VAL	314		60.8		32.2		59.139	1.00	1.40 5.87	•
ATOM	1737	CY	VAL	314		61.5		31.2		60.013 59.249	1.00	4.82	•
ATOM ATOM	1738 1739	CB	VAL VAL	314 314		62.1		29.2		60.190	1.00	3.24	÷
ATOM	1740		VAL	314		61.0		29.3		58.536	1.00	3.95	-
ATOM	1741	С	VAL	314		62.		32.1		60.499	1.60	8.62	÷
ATOM	1742	0	VAL	314		63.		32.5 32.6		59.730 61.724	1.00	11.03 9.61	<u> </u>
MOTA MOTA	1743 1744	К Са	CYS CYS	315 315		63.		33.5		62.250		12.57	ŧ
ATOM	1745	S	CYS	315		64.		32.9		63.293		10.10	÷
ATOM	1746	Ċ	CYS	315		64.		31.8		63.748		11.69	:
ATOM	1747	CB	CYS	315		62.		34.e 35.8		€2.757 €1.399		10.52	÷ : 4
MOTA	1748		CYS LYS	315 316		62. 65.		33.7		63.715		10.83	•
ATOM ATOM	1750		LYS	316		66.		33.2		64.650	1.00	3.33	•
ATOM	1751		LYS	316		67.		32.3		63.860		13.47	€
MOTA	1752			316			200			64.637 63.708		12.32	÷
MOTA MOTA	1753 1754			316 316			242 213			63.178		17.21	÷
ATOM	1755			316			029			€4.288		17.34	
MOTA	1756	2	FÄZ	316			141			65.092			:
MOTA	175		LYS	316			193 592			64.359 65.355			÷
MOTA	1758 1759		PRO PRO	217			284			67.471			E
ATOM	1760			317			344	35.		66.85		10.51	4
ATOM	176			317			. 36.	35.	412	68.348	3 1.00 5 1.00		:
MOTA	176		PRO	317			.3B1 .773			65.28	5 1.00	14.13	•
MOTA MOTA	176. 176		PRO	31			.53			66.33	9 1.00	14.55	:
ATOM			GLN	31	3		.10			65.71		14.42	•
ATOM		6 ° C		311			.41		137 436	65.14- 64.32		15.93	:
ATOM	176 176			31: 31:			.36		335	62.94		18.24	•
ATOM ATOM	176			31			. 60		482	€2.06	4 1.0	17.19	•
ATOM	177	0 0	E1 GLN		8		.73		341	61.18		15.50	:
ATOM			E2 GLN				.19		642	62.30	5 1.0	0 16.42 0 16.25	;
ATOM							. 27 . 90		.385 .227	66.36 67.17			:
ATOM ATOM							.25		791	55.61	4 1.0	C 11.35	-
ATOM			A THR			69	.39	3 36	. 052		5 1.0	0 12.39	:
ATOM	177	6 0	F THP				3.33		. 931			C 15.65 O 15.85	
ATOM			G1 THR				3.91 7.86		:28. :88:				
ATOM			G2 THR				. 75		.471		1 1.0	c ::.:3	. :
ATOM	178	30 :	THE	40	2	6	9.14	9 38	.341	53.75	37 1.0	0 11.39	
ATON	178	31 :	TY?				7.77		. 634			C 3.55	
ATCN ATON			A TYP				7.19 5.69		.041				
ATO			G TY				5.3		. 954	53.9	10 1.0	10 E.42	
ATO	1 17	85 ′	COL TYP	R 40)4	6	5.0	36 37	.70				
ATO	4 17	66 (CE1 TY	R 40	04	6	4.7	23 37	.54	52.0	42 :.0	oc 2.50	•

bref2	lc.pd	lb		Thu	Apr 25	12:27:47	1996		24	
ATOM	1787	CD2	TYR	404	65.299	40.071	53.050	1.00	2.00	ž.
ATOM	1788		TYF.	404	64.992		51.710	1.00	2.00	
ATOM	1789	CZ	TYR	404	64.709		51.219	1.00	2.53	•
MOTA	1790	ОН	TYR	404	64.447		49.891	1.00	6.21	÷
ATOM ATOM	1791 1792	0	TYP	404 404	67.374		57.169	1.00	6.87	•
MOTA	1793	ĸ	SER	405	67.459 67.453		59.006 57.500	1.00	5.71	:
MOTA	1794	ÇA	SER	425	67.581		58.894	1.00	7.44	: f
ATOM	1795	CB	SEP.	405	68.842		59.094	1.00	9.81	
ATOM	1796	OG	SER	405	69.985		59.888		14.61	į
MOTA	1797	C	SEF.	405	66.332		59.305	1.00	10.09	÷
ATOM	1798	0	SER	405	66.154		58.975		10.03	÷
ATOM ATOM	1799 1800	N CA	CYS	406 406	65.466 64.220		60.046		10.45	7
ATOM	1801	c	CYS	406	64.192		60.452 61.938		10.00	6 6
ATOM	1802	0	CYS	406	64.900		62.709		12.25	•
MOTA	1803	CB	CYS	406	63.096		60.107		12.32	5
ATOM	1804	SG	CYS	406	63.277		58.514		12.21	: €
ATOM ATOM	1805 1806	N CA	HIS	407 407	63.363 63.162		62.332		10.98	7
ATOM	1807	СВ	HIS	407	64.007		63.721 64.165	1.00	0.89 11.52	5 5
MOTA	1808	CG	HIS	407	63.779		63.370		12.77	ě
ATOM	1809	CD2	HIS	407	64.324		62.204		11.11	
MOTA	1810	ND1		407	62.968	46.832	63.812		10.97	÷
MOTA	1811	CEI		467	63.025		62.954		10.32	÷
ATOM	1812	NE 2		407	63.840		61.969		19.00	
ATOM ATOM	1813 1814	5	HIS	467 467	51.687 61.078		63.801	1.00	3.26	:
ATOM	1815	N	PHE	438	61.099		62.789 64.976	1.30	7.42	7
MOTA	1816	CA	PHE	408	59.690		65.168	1.00	6.36	ą.
HOTA	1817	CB	PHE	408	59.281		66.643	1.00	5.63	•
ATOM	1818	CG	PHE	408	59.441		67.218	1.00	3.30	÷
ATOM ATOM	1819 1820	CD1	PHE	408	59.675		68.562	1.00	4.11	5
ATOM	1821		PHE	408 408	59.411 59.888		66.409 69.095	1.00	4.22	÷
ATOM	1822		PHE	408	59.626		66.935	1.00	2.80 4.80	ę
ATOM	1823	CZ	PHE	408	59.866		68.282	1.00	4.71	5
ATOM	1824	С	PHE	408	59.459		64.736	1.00	6.02	÷
ATOM	1825	0	PHE	408	60.370		64.744	1.00	8.84	3
ATOM ATOM	1826 1827	N CA	GLY	409 409	58.231 57.868		64.347	1.00	4.91	7
ATOM	1828	c	GLY	409	56.494		63.936 64.509	1.00	2.33	÷
ATOM	1829	ō	SLY	429	55.996		€5.196	1.00	4.33	7
ATOM	1830	N	PRO	410	55.879		64.299	1.00	2.00	
ATOM	1831	CD	PRO	410	56.497		63.693	1.00	2.98	÷
ATOM ATOM	1832	CA	PRC	410	54.544		64.788	1.00	3.72	÷
ATOM	1833 1834	63 83	PRO	410 410	54.276 55.623		64.166 64.195	1.00	5.67	•
ATOM	1835	5	PP.C	410	53.525		64.313	1.00	5.29 7.04	÷
ATOM	1836	·ɔ	PPC	410	52.831		65.137	1.00	8.58	•
MOTA	1837	N	LEU	411	53.471		62.987	1.00	6.97	-
ATOM	1838	CA	LEU	411	52.544		€2.329	1.00	5.66	£
ATOM ATOM	1939	CB	LEU	411 411	52.254 51.310		60.898	1.00	8.28	5
ATOM	1841		LEU	411	50.007		60.553 61.244		11.17	:
ATOM	1842		LEU	41)	51.888		60.961		15.07 14.05	÷
ATOM	1843	Ç	LEU	411	53.052		62.192	1.00	4.04	
MOTA	1844	o	LEU	411	52.365	43.870	62.481	1.00	2.7B	•
MOTA	1845	N	THR	412	54.237		61.643	1.00	3.16	-
MOTA MOTA	1846 1847	CA CB	THR	412 412	54.749		61.431	1.00	2.09	÷
ATOM	1848		THR	412	53.985 54.152		60.244	1.00	2.00	;
ATOM	1849		THR	412	54.41		58.976	1.00	4.84	; ;
ATOM	1850	2	THR	412	56.252		61.220	1.00	2.54	
ATOM	1851	0	THR	412	56.722		£1.376	1.90	3.93	:
ATOM	1852	N	TRP	412	57.003		60.964	1.00	3.38	:
atom Atom	1953 1854	CA GD	TRP	413 413	38.468		60.747	1.00	4.26	•
ATOM	1855	CC	TRP	413	59.003 58.912		60.115 60.909	1.00	3.65	:
ATOM	1856		TEP	413	59.72		€2.023	1.00	2.26 4.36	÷ ;
ATOM	1857	CE2	TPP	413	59.37		62.398	00	2.99	.5
ATOM	1858		TP.P	413	50.71		62.745	1.00	5.37	
ATOM ATOM	1859		TPP	413	58.12		60.667	35.3	2.00	
ATOM	1860 1861		TR.P	413 413	58.395 59.975		61.546	1.00	3.14	
ATOM	1862		TPP	413	61.31		63.459 63.801	1.00	7.15 7.56	÷ -\$
MOTA	1863	CH2	TEP	412	50.94		64.152	50	3.1	:
ATOM	1864	C	TF:P	413	58.96	0 43.720	59.832	:.00	3.50	•

bref21	.c.pdb		Thu	Apr 25	12:2	27:47	1996	25
ATOM	1865	TRF	413	58.1				1.00 7.06
MOTA	1866	VAL	414	60.2	-			1.00 6.50 ; 1.00 5.63 f
MOTA		A VAL	414	60.9 61.0	•			1.00 7.88
MOTA		G1 VAL	414 414	62.1				1.00 6.76
ATOM ATOM		CG2 VAL	414	59.7			59.547	1.00 3.37 5
ATOM		VAL	414	62.2		1.340	50.533	1.00 9.59 5
MOTA	1872	VAL	414	63.1		1.296	59.303 57.314	1.00 11.73 ? 1.00 9.75 ?
MOTA	-	: CYS	415	62.2 63.5	•	3.820 3.222	56.809	1.00 9.19 5
ATOM	-	CA CYS	415 415	64.2		4.007	55.767	1.00 9.05 €
MOTA MOTA		CYS	415	63.7	· .	4.949	55.189	1.00 8.76
MOTA		CB CYS	415	63.2	07 4	1.882	56.222	1.00 3.11 5
MOTA		SG CYS	415	62.0		1.071	57.341	1.00 14.13 14 1.00 7.88 7
ATOM		Z LYS	416	65.4		3.622	55.581 54.585	1.00 7.88 7
MOTA	-	Ch LYS	416	66.3 67.3		4.197 5.349	55.135	1.00 14.71 5
ATOM		CB LYS	416 416	66.4		6.235	56.144	1.00 19.54 5
ATOM	1082 1883	CS LYS		66.		5.629	57.541	1.00 23.24 6
MOTA MOTA	1884	CE LYS		65.1	351 4	6.404	58.599	1.00 23.74 6
ATOM	1885	NZ LYS		66.		5.088	59.937	1.00 27.08 7 1.00 12.10 5
ATOM	1886	C LYS		67.		3.008 2.187	54.278 55.175	1.00 10.95
MOTA	1887	C LYS	_	67. 67.		2.817	52.990	1.00 12.45
MOTA	1888	:: PRO		€7.		13.561	51.771	1.00 11.38 ÷
ATOM ATOM	1889 1890	CA PRO	_	66.		11.684	\$2.671	1.00 11.76
ATOM	1891	CB PRO		68.	-	11.647	\$1.144	1.30 10.58
ATOM	1892	CG PRO		68.		43.047	50.780	1.00 11.41 1
ATOM	1893	C PRO				41.868	53.221 53.325	1.00 14.43 5 1.00 14.95 \$
MOTA	1894	O PRO				42.990 40.762	53.700	1.00 15.69
ATOM	1895	% CI				40.741	54.209	1.00 16.01 5
ATOM	1896 1897	CA GLI				39.562	55.165	1.00 15.85
MOTA	1898	CG GL			-	39.963	56.620	1.00 13.51
ATOM	1899	CD GL				38.823	57.530	1.00 16.21 6
ATOM	1900	OE1 GL				37.66B	57.098	1.00 16.54 3 1.00 16.18 7
ATOM	1901	NE2 GL				39.131	58.807 52.990	1.00 16.18 7 1.00 17.91 6
MOTA	1902	C GL			. 660 . 470	40.583 39.656	52.172	1.00 20.26 5
MOTA	1903	% FA			. 636	45.747	96.455	1.00 20.08 7
MOTA MOTA	1904 1905	CA LY			. 983	44.827		1.00 22.39
ATOM	1906	CB LY			. 004	45.503		
ATOM	1907	CS LY			.794		100.099	
ATOM	1908	CD LY			. 382	44.786	99.984 101.309	1.00 25.09
MOTA	1909	NZ LY		-	.149 .281	42.907		
MOTA	1910 1911	NZ LY			. 035	43.642		1.50 21.11 -
ATOM	1912	. L			.117	42.777		
ATOM	1913	:: P1	1E 51		.089	43.650		
MOTA	1914		HE 51		.207	42.501		
ATOM	1915		HE 51	-	.903	42.833		
ATOM	1916		HE 51 HE 51		.470	40.35		2 . 1.00 17.10 ÷
ATOM	1917				.594	41.80		5 1.00 19.23
ATOM ATOM					. 630	39.23		9 1.00 16.04 -
ATOM			HE 51	.1 2	9.732	40.69		
ATOM	1921		HE 51		2.271	39.39		4 1.00 17.16
ATOM			HE 51		5.064 5.406	41.62		
ATOM			HE 51		5.416	42.20		ZUU 1/117
HOTA HOTA					6.244	41.50	9 93.40	6 1.30 18.20
ATON					6.536	42.39		
ATO	_	7 23 6			7.498	41.75		
ATO:					6.851 7.346	40.68		
ATC					5.869	40.01		1 1.30 30.27
ATO:					7.507	41.18	94.16	2 1.20 15.96
ATO					938	40.02	20 94.16	130 15.76
ATO				13	7.984		53 94.93	30 1.20 13.17
ATO	M 193	4 CA :	SER S		9.184			
ATO	M 193				9.534			
ATO					10.319 39.122			
ATO ATO					40.041			466 14.35
ATO					28.056	40.8	44 97.5	73 36 11.94
ATC		10 TA	LYS :	514	37.903	39.7		
ATC	M 194	n CB	LYS !		36.839			
ATC	M 194	12 CS	LYS	514	37.258	: 41.1	65 100.6	27 1.50 3.11

bref2	lc.pd	Ъ		Thu	Apr 25 12	2:27:47	1996	26	
ATOM	1943	CD	LYS	514	36.388	41.093	101.842	1.00 2.50	:
ATOM	1944	CE	LYE	514	36.374	42.393		1.00 2.00	4
ATOM	1945	NZ	LYS	514	35.665	42.215	103.798	1.00 3.28	:
ATOM	1946	С	LYS	514	37.621	38.443	97.959	1.00 11.50	:
ATOM	1947	0	LYS	514	37.841	37.435	98.620	1.00 13.26	÷
ATOM	1948	K	ALA	\$15	37.138	38.401	96.716	1.00 10.50	:
MOTA	1949	CA	ALA	515	36.876	37.117	96.038	1.00 9.26	•
ATOM	1950	CB	ALA	515	36.187	37.366	94.719	1.00 10.39	÷
ATOM	1951	C	ALA	515	38.165	36.299	95.806	£3.6 00	÷
ATOM	1952	0	ALA	515	38.176	35.068	95.920	1.00 7.Tã	•
MOTA	1953	N	ALA	516	39.241	37.026	95.494	1.90 a.76	7
ATOM	1954	CA	ALA	516	40.562	36.478	95.204	1.00 7.65	÷
ATOM	1955	CB	ALA	516	41.457	37.533	94.614	1.00 €.46	ź
ATOM	1956	Ç	ALA	516	41.205	35.872	96.419	1.00 7.97	÷
ATOM ATOM	1957 1958	Ŋ	ALA LEU	516 517	41.690 41.226	34.751	96.353	1.00 8.85	÷
ATOM	1959	CA	LEU	517	41.809	36.599 36.040	97.530 98.743	1.00 8.04	7
ATOM	1960	CB	LEU	517	41.445	36.874	99.947	1.00 5.52	5
ATOM	1961	CG	LEU	517	42.141		100.158	1.00 4.53	Š
ATOM	1962		LEU	517	41.717	39.177	99.108	1.00 9.66	5
ATOM	1963		LEU	517	41.754	38.683		1.00 4.29	5
ATOM	1964	Ç	LEU	517	41.271	34.634	98.992	1.00 7.39	ě
ATOM	1965	Ċ	LEU	517	42.009	33.751	99.437	1.00 10.93	•
ATOM	1966	N	LEU	518	39.997	34.433	43.648	1.00 3.49	-
ATOM	1967	CA	LEU	518	39.297	33.177	98.857	1.00 7.25	•
ATOM	1968	CB	LEU	51B	37.845	33.467	99.273	1.00 5.35	•
MOTA	1969	CG	LEU	51 B	37.614		160.773	1.00 5.58	•
ATOM	1970	CDI		516	36.802		100.936	1.00 3.48	•
MOTA	1971		LEU	518	36.951	_	1C1.495	1.00 6.87	÷
MOTA	1972	Ç	LEU	518	39.239	32.158	97.733	1.00 9.11	5
MOTA	1973	0	LEU	518	39.185	30.955	97.979	1.00 8.10	Ė
ATCM	1974	N	ALA	519	39.55?	32.623	96.505	1.00 11.23	5
ATOM	1975	CA	ALA	519	39.603	31.726	95.342	1.00 13.35	5
MOTA	1976	CB	ALA	519	39.310	32.481	94.072	1.00 12.74	á
ATOM	1977	С	ALA	519	40.908	30.949	95.209	1.00 15.14	÷
ATOM	1978	C	ALA	519	41.733	31.215	94.311	1.00 15.55	Ē
MOTA	1979	N	ALA	520	41.047	29.935	96.068	1.00 17.93	7
ATOM	1980	CA	Ala	520	42.228	29.064	96.115	1.00 19.81	÷
ATOM	1981	CB	ALA	520	42.169	28.165	97.371	1.00 20.83	₹.
ATOM	1982	С	ALA	520	42.579	28.212	94.865	1.00 19.53	÷
ATOM	1983	0	ALA	520	41.764	27.430	94.339	1.00 19.29	:
ATOM	1984	N	ARG	521	43.834	28.352	94.449	1.00 90.00	7
ATOM	1985	CA	ARG	521	44.407	27.633	\$3.322	1.00 90.20	•
ATOM	1986	СЗ	ARG	521	45.499	28.484	92.652	1.00 90.00	•
ATOM	1987	CG	ARG	521	45.117	29.950	92.441	1.00 90.00	÷
ATOM	1988	CD	ARG	521	45.751	30.871	93.500	1.00 90.00	÷
ATOM	1989	NE	ARG	521	45.512	30.373	94.854	1.00 92.30	
ATOM	1990	CZ	ARG	521	46.279	29.452	95.464	1.00 95.55	:
MOTA	1991	NHI		521	47.351	28.957	94.843	1.00 95.00	
ATOM	1992	NH2		521	45.888	28.889	96.620	1.00 90.00	
ATOM ATOM	1993 1994	S	ARG	521	45.018	26.343	93.866	1.00 90.00	÷
ATOM	1995	γ. Ο	ARG	521	44.842	26.022	95.032	1.00 90.00	=
MOTA		CA	GLY	522	45.710	25.592	93.022	1.00 90.30	
ATOM	1997	č	GLY	522	47.851	24.578	93.500 93.549	1.00 92.20	•
ATOM	1998	Č	GLY	322	48.288	25.677	93.891	1.00 90.00	÷
ATOM	1999	N	PRO	523	18.672	23.533	93.225	00 93.10	•
MOTA	2000		PRC	523	48.070	22.203	92.929	1.00 90.30	
ATOM	2001	CÀ	PRC	523	50.157	23.469	93.185	1.00 91.20	
ATOM	2002	CB	PRC	523	50.429	22.304	92.201	1.00 90.00	
MOTA	2003	CG	PRO	523	49.277	21.315	92.486	1.00 95.22	:
MOTA	2004	S	PRO	523	50.968	24.731	92.741	1.00 92.33	
ATOM	2005	Š	PRO	523	50.499	25.61?	91.984	1.00 93.30	:
ATOM	2006	N	SLU	524	52.222	24.761	93.180	1.00 24.71	:
ATCM	2007	CA	SLT	524	53.121	25.85!	22.829	00 23.63	÷
ATOM	2009	CF	GL:	524	54.289	25.979	93.857	1.00 27.67	:
ATOM	2009	CS	GLU	524	55.487	24.958	93.730	00 29.39	:
ATCM	2013	CD	GLU	524	55.207	23.507	94.250	1.00 31.85	:
ATOM	2611		GL:	524	54.910	22.603	93.413	1.00 29.10	3
ATOM	2012		GLU	524	55.343	23.263	25.484	00 31.26	÷
MOTA	2013	ć	GLU	524	53.672	25.532	91.428	1.00 21.32	4
MOTA	2014	•	CLU	524	53.705	24.359	91.016	1.00 21.22	•
ATOM	2015	N.	GLU	525	54.163	25.564	90.747	1.00 25.22 1.00 16.30	•
ATOM	2016	CA	GLU	525	54.722	26.411	89.427	1.06 13.58	:
MOTA	2017	CB	GL:	525	53.557	26.334	88.442	1.00 18.50	•
ATOM	2018	CC	CLU	525	53.857	25.543		OC 27.12	•
ATOM ATOM	2019	CD	GLU	525	52.595	25.163			•
VI OG	2020	UE	CLU	525	52.474	23.956	85.991	1.00 32.25	i

bref21	.c.pdl	b		Thu .	Apr 25	12:2	27:47	1996	27	
•	2021	OE2	GLU	525	51.73		.066	£5.119		•
MOTA MOTA	2022		GLU	525	55.5			29.150		! !
ATOM	2023	¢.	GLU	525	55.30			69.733 88.331	1.00 9.70 1.00 5.52	:
MOTA	2024	R	LEU	526	56.61 57.4		1.638	87.940	1.00 4.14	÷
MOTA	2025	CA	LEU LEU	526 526	58.8		3.182	87.485	1.30 4.80	•
ATOM	2026 2027	CB CG	LEU	526	60.1		9.082	87.590	• • • • • • • • • • • • • • • • • • • •	:
MOTA	2028	CD1		526	61.1	i i	8.507	B6.706	1.30 2.30	•
ATOM	2029	CD2	LEU	526	59.8		0.499	67.193 86.751	1.00 2.00 1.00 2.64	
ATOM	2030	5	LEU	526	56.6 56.5		9.24B 8.607	25.733	1.00 2.80	
ATOM	2031	0	LEU	526 527	56.2		0.474	86.892	1.00 2.00	-
atom Atom	2032 2033	N CA	LEU	527	55.4		1.107	85.854	1.00 2.00	:
ATOM	2034	CB	LEU	527	54.1		1.638	86.441	1.00 4.05 1.00 2.65	: :
ATOM	2035	CG	LEU	527	53.0		1.429	86.824 87.441	1.00 2.65	÷
ATOM	2036		LEU	527 527	51.9 52.5		9.889	85.620	1.00 2.00	÷
MOTA	2037 2038	CD2	LEU LEU	527	56.1		2.256	85.176	1.00 4.04	•
ATOM ATOM	2039	ō	LEU	527	56.4		3.252	85.836	1.00 5.30	:
ATOM	2040	N	CYS	528	56.2		2.176	83.844	1.00 3.62 1.00 2.97	•
MOTA	2041	CA	CYS	528	56.5 55.5		33.199 33.810	83.051 82.044	1.00 2.18	
MOTA	2042	c	CYS CYS	528 528	55.0		33.127	81.560	1.00 2.61	÷
ATOM	2043 2044	O CB	CYS	52B	58.		32.593	62.282	1.00 2.00	•
MOTA	2045	SG	CYS	528	59.		31.832	83.234	00 2.00	- :
ATOM	2046	N	PHE	529	56.		35.088	61.743		•
MOTA	2047	CA	PHE	529	55.		35.792 36.143	£0.758		÷
ATOM	2048	CB	PHE	529 529	54. 53.		37.315	B2.231		:
MOTA	2049	CC	PHE PHE	529			38.611	81.733		÷.
ATOM ATOM	2050 2051		2 PHE	529			37.123	83.611		•
ATOM	2052		1 PHE	529			39.697	62.590		•
ATOM	2053	CE	2 PHE	529			38.207 39.490	84.471 E3.961		•
ATOM	2054		PHE	529 529		.801 .100	37.031	80.200		•
ATOM	2055 2056		PHE PHE	529		078	37.511		5 1.00 6.52	= =
ATOM ATOM	2057		THR	530		. 665	37.471			Ţ
ATOM	2058			530		.225	38.655			÷
MOTA	2059			530		. 228	38.280			:
MOTA	206		1 THE	530		.683 .637	37.355			=
ATOM	206		2 THP. THP.	530 530		.076	39.5B2			•
MOTA	206 206		THP.	530		.999	39.124			:
ATOM	206		GLU	531		. 275	40.882			:
ATOM	206					.246	41.854			•
MOTA	206					.046	42.34			:
MOTA	206 206					.771	43.41		8 1.00 14.12	:
atom atom	206		E1 GLU		54	.085	44.60			:
MOTA			E2 GLU			1.227	43.05			:
ATOM						1.462 3.505	42.48			:
ATOM						3,659	43.02			•
atom atom		-	A ARC			6.039	43.52	9 74.8		:
ATOM			B AR	5 532	_	6.900	44.79			•
ATOM	20		G AR		_	6.141 5.682	46.05			
ATOP			D AR		- :	4.531	46.93			
HOTA HOTA			Z AR		-	4.158	47.39	77.8		
ATO			H1 AR		2 5	4.877	47.09		75 1.00 13.74	
ATO			H2 AR		-	2.998	48.0			i I
ATO			AR			6.934	42.3			
ATO			AR			7.767		_		
ATO:			N LE Ch le	-		8.606			25 30 12.12	ż
ATO			CB LE			8.326				•
OTA		87	CG LE	y 53	2 5	6.884				
ATO	M 20	88	CD1 LE		_	6.531				Ó
ATO			CD2 LE		•	56.773 50.064				5
ATO ATO			o li			60. B97	_	90 72.	53500 12.7	3
ATO				53	34	60.36	42.1	15 74.		
ATC		92	Ch G	LU 53	4	61.722				
ATC	M 20	94		LU 53		61.999				
ATC		095		LU 51 LU 51		51.000 60.76				-
ATC ATC		096 097	OE1 S			59.84				
ATO		098	DE2 G		34	61.46		93a 72.	625 25.8	3

bref2	lc.pd	Ъ		Thu	Apr .	25	12:2	27 : 47	7 1996		28	
ATOM	2099	С	GLU	534	61	. 892	42	.579	75.527	1.20	10.35	•
ATOM	2100	C	GLU	534	62	. 651		.380	77.066		10.92	
ATOM	2101	N	ASP	535		. 251		. 637	77.194	1.00	9.01	
MOTA	2102	CA	ASP	535	61	.247	41	.578	78.638	1.06	6.92	:
ATOM	2103	CB	ASP	535		.188	_	.544	73.128	1.00	8.31	÷
MOTA	2104	CG	ASP	535		. 848		.334	78.430	1.00	8.75	?
ATOM	2105		ASP	525		. 020		.541	78.913		11.89	:
atom atom	2106 2107	002	ASP	535		. 635		.949	77.372		15.77	£
ATOM	2108	õ	ASP ASP	535 535		.793		.201	79.033	1.00	6.27	•
ATOM	2109	N	LEU	536		.178		.731	73.295	1.00	6.65	•
ATOM	2110	CA	LEU	536		.717		.436	80.204 80.651	1.00	5.28	7
ATOM	2111	CB	LEC	536		. 614		.315	80.149	1.00	4.48	÷
ATOM	2112	CG	LEU	536		.012		. 958	80.495	1.00	2.00	÷
ATOM	2113	CD1	LEU	536		. 697		. 789	73.782	1.00	2.00	•
ATOM	2114	CD2	LEU	536	61	. 955	34	.853	80.152	1.00	2.00	÷
ATOM	2115	C	LEU	536	60	.725	38	.468	82.154	1.00	5.42	÷
ATOM	2116	0	LEU	536		.701		.896	82.751	1.00	5.81	3
ATOM	2117	N	VAL	537		. 606		.093	82.767	1.00	6.59	7
MOTA	2118	CA	VAL	537		.514		.050	84.219	1.00	4,71	ó
ATOM ATOM	2119 2120	CB	VAL VAL	537 537		.439		.006	84.761	1.00	3.90	6
ATOM	2121	CG2		537		.754		.900	B6.262	1.00	7.66	÷
ATOM	2122	C	VAL	537		.111		. 652	E4.386 E4.604	1.00	6.66	÷
ATOM	2123	ō	VAL	537		.232		.096	83.977	1.00	2.70 5.62	÷
ATOM	2124	N	CYS	538		.812		.048	E5.553	1.00	3.31	-
ATOM	2:25	CA	CYS	538		. 452		.711	£5.055	1.00	4.73	
ATOM	2126	С	CYS	538	59	.375	34	.771	27.597	1.30	5.86	÷
ATOM	2127	٥	CYS	538		.165		. 457	ē3.257	1.00	6.30	ŧ
ATOM	2128	СВ	CYS	538		.438		. 619	E5.600	1.00	2.00	٤
MOTA	2129	SC	CYS	538		. 634		. 421	83.795	1.00	3.79	15
ATOM ATOM	2130 2131	N CA	PHE	539		.426		.059	88.178	1.06	3.78	7
ATOM	2132	CB	PHE PHE	539 539		.267		.099	89.621	1.00	4.15	5
ATOM	2133	CG	PHE	539		. 852		.009	29.997 29.515	1.00	4.88	6
ATOM	2134		PHE	539		. 835		.690	90.420	1.00	7.86 5.60	6 6
ATOM	2135		PHE	539		.519		.104	88.147	1.00	9.65	é
ATOM	2136		PHE	539		. 540		.470	89.986	1.00	4.81	5
ATOM	2137	CE2	PHE	539		. 201		.878	87.706	1.00	7.22	ě
ATOM	2138	cz	PHE	539		. 223		.562	88.630	1.00	5.52	5
MOTA	2139	C	PHE	539		. 689		.807	90.123	1.00	3.30	÷
ATOM	2140	0	PHE	539		.39		. 913	29.352	1.00	5.07	3
ATOM ATOM	2141 2142	N CA	TF.F TP.P	540		. 60		. 696	91.436	1.00	2.62	7
ATOM	2143	CB	TRP	540 540		.965 .859		575	92.102	1.00	5.41	5
ATOM	2144	CG	TP.P	540		. B90		380	92.252 93.315	1.00	5.13 7.06	ŧ
ATOM	2145	CD2	TRP	540		. 25		.807	93.175	1.56	4.64	•
MOTA	2146	CE2	TRP	540		.861		.65?	94.430	1.50	5.73	
MOTA	2:47	CE3	TP.P	540	61	.008	3 2 2	. 299	92.110	1.00	5.86	4
ATOM	2148	CD1	TPP	540		.738		9.995	94.610	1.56	8.29	5
ATOM	2149	NE1	TRP	540		.914		161	95.286	1.30	8.36	7
ATOM	2150		TRP	540		201		.984	94.657	1.00	8.15	÷
ATOM	2151 2152		ŢÞÞ	540		.33		. 623	92.328	1.00	7.58	÷
ATOM ATOM	2153	C	TP.P TP.P	540 540		. 92		.465	93.596	1.00	8.06	÷
ATOM	2154	õ	TRP	546				2.189	93.417 93.668	1.00	6.24	÷
ATOM	2:55	19	GLU	541		. 691		.467	94.186	1.00	7.32 8.81	3
MOTA		'CA	GLU	541		.18		. 399	95.452		10.45	÷
MOTA	2157	CB	GLU	541		. 76		2.565	95.270		11.89	÷
MOTA	2158	CG	GLU	541	53	.59	2 3:	3.523	94.070		14.89	5
MOTA	2,59	CD	CLU	541		2.20		1.134	93.991		16.24	÷
MOTA	2160		GLU	541		2.09		5.229	93.415	1.50	17.33	ė.
atom Atom	2:61		GLU	541		.21		3.550	94.516		16.64	3
MOTA	2162 2163	e e	GLU GLU	541 541		. 14		0.925 9.811	95.507		10.03	÷
ATOM	2164	N	GLU	542		.55		1.242	95.232 97.724	1.00	10.32 10.91	:
ATOM	21.65	CA	GLU	542		5.52		0.222	93.766	1.00	10.79	
MOTA	2156	СБ	GLU	542		6.87		9.482	98.833	1.00	10.78 10.24	•
ATOM	2167	CS	GLU	542	51	9.12	2 3	0.359	98.738	1.30	14.40	÷
atom	2:68	CD	SLU	542		9.40		9.571	99.006	1.00	15.37	÷
MOTA	2169		GLU	542		9.71			100.188	1.00	17.03	3
ATOM	2170		GLU	542		0.09		9.263	98.026	1.00	17.30	3
atom atom	2171 2172	Ş	GLU	542		5.C8			100.128	1.30	9.66	:
ATOM	2173	3	GLU	542 543		4.74			100.248	1.00	9.88	.;
ATOM	2:74	CA	ALA	543		5.05 4.65			101.135	1.00		
ATOM	2175	62	ALA	543		4.46			102.493	1.00	7.10 4.26	- 5
atom	2176	С	ALA	543		5.71			103.108	1.00		- -

bref2	lc.pd	ь		Thu	Apr	25	12:	27:47	7 19	96		29	
ATOM	2177	o	ALA	543	:	6.91		0.849			.00 10		
ATOM	2178	N	ALA	544	_	5.28		2.253			.00 9.	.48 .43	
MOTA	2179	CA	ALA	544		6.19		3.185			.00 10		
ATOM	2180	CB	ALA	544		55.42 56.86		2.397			.00 11		
MOTA	2181	0	ALA ALA	544 544		56.16	-	3.744		216 :	.00 13	. 61	: :
MOTA MOTA	2102 2183	ĸ	SER	545		8.20		32.393		456 :	.00 12		
MOTA	2184	CA	SER	545		58.99	-	31.669			.00 13		£
ATCM	2185	CB	SER	545		59.33		30.25i 29.628			.00 12	. 56	€ ≟
ATOM	2186	oc	SER SEP.	545 545		60.29 60.24		32.440		891 :	.00 14	. 68	₹
ATOM ATOM	2187 2188	c C	SER.	545		60.8	65 :	33.184	166.	117 :	.00 15	. 67	:
ATOM	2189	N	ALA	546		60.5		32.271			.00 17		- -
ATOM	2190	CA	ala	546		61.6		32.942 32.215		882	.00 17	78	Ž
ATOM	2191	CB	ALA	546		61.9	-	32.213 33.213			.00 18		
MOTA	2192	c	ala Ala	546 546		63.6		32.297			.00 19		3
ATOM	2193 2194	Ç N	GLY	547		63.2		34.495		965	00 19	.34	•
ATOM ATOM	2195	CA	GLY.	547		64.4	38	34.8B9		300	00 20	.46	•
ATOM	2196	c	GLY	547		64.8		34.140			1.00 20		ક
ATOM	2197	O	GLY	547		66.0		34.046			1.00 23 1.00 10		-
ATOM	2198	N	VAL	548 548		63.8		32.882			1.00 1		5 - - -
MOTA	2199 2200	CA CB	VAL VAL	54B		63.1		31.749		. B26	1.00 1	2.71	ŧ
ATOM ATOM	2200		VAL	548		63.1		31.309	9 1C2	.363	1.00 1	3.62	•
ATOM	2202		2 VAL	548		63.4		30.57			1.00 1		ŧ.
ATOM	2203		VAL	54B		63.8		33.97			1.00 1		3
ATOM	2204		VAL GLY	548 549		62.		34.61			1.00 1		-
MOTA MOTA	2205 2206			549		64.		35.66	7 101	. 551	1.00 1	2.34	£
MOTA	2207		GLY	549		65.		35.18	0 100	. 263	1.00 1		5
ATOM	2208		GLY	549		65.		33.99		.117	1.00 1		;
ATOM	2209		PRO	550		65. 65.		36.06 37.45		.186	1.00 1		ě
MOTA	2210			550 550		66.		35.63		.017	1.00 1		÷
ATOM ATOM	2212	-		550		66.	333	36.94		1.199	1.00		5
ATOM	2213			550		66.		38.01		1.199	1.00 1		÷
MOTA	221		PRO	550			647	34.96		3.157	1.00 1		•
MOTA	221		PRO	550			991 384	34.06 35.34		7.377 9.204	1.00		7
ATOM	221		GLY GLY	551 551			714	34.79		3.443	1.00		÷
ATOM ATOM	221 221		GLY	551			775	33.30		9.601	1.00	9.01	÷ :
MOTA	221		GLY	551		70.	854	32.73		9.588	1.00		:
ATOM	222		ASN	552			625	32.6		3.726	1.00	6.84 6.10	; ;
ATOM	222			552			573	31.2		9.888 9.904	1.00	4.08	÷
MOTA	222						797			2.226	1.00	6.03	•
MOTA MOTA			DI ASN				789	31.1	12 10	2.850	1.00	7.24	3
ATOM			D2 ASN				. 991			2.631	1.00	3.39	
ATOM							.287	30.5 29.2		8.590 9.580	1.00	7.54 7.91	÷
ATOM							.176 .157	31.2		7.506	1.00	5.28	- 3
ATOM							.867	30.7		4.186	1.00	4.43	÷
ATOM		-	B TYP			56	. 432			5.779	1.00	4.87	÷
ATOM		31 0	G TY				.367			5.520	1.00	4.46	÷
ATOM			D1 TY				.491 .574			7.373 3.117	1.00	3.40	:
ATOM			E1 TYI				. 280	-		5.423	1.00	3.40	: -
HOTA HOTA			E2 TY				. 355		243	37.167	1.00	3.44	÷
ATO			Z TY				.516			93.012		2.00	:
ATO		3,7 (H TY				. 650			33.778 35.114		3.67 5.08	:
MOTA			TY				3.791 9.432			35.298		4.35	:
CTA			: TY K Se				84			22.980		5.81	7
OTA OTA			r se				9.62	2 31.	169	;2.3€5	1.00	£.70	:
OTA			CR SE	R 55	4		0.99	9 30.	456	32.332	1.00	3.42	:
ATO	M 22	43	OG SE				0.95			\$2.214		11.53 5.93	:
ATO			C SE				8.80 8.28		783 584	\$1.621 \$1.502			
ATO			O SE N PH				8.28 8.57		783	99,773			
ATO ATO			N PR				7.81		640	83.530	5 1.00	5.02	:
ATO		48	CB PF	!E 55	5		6.73		730	£3.48			
ATO	M 22	249	CG PI				5.72		595	88.325 88.56			
ATO		250	CD1 PI				4.42 6.24		509 554	\$7.31			
ATC ATC		251 252	CE1 PI		55		3.54		382	27.50	736	5.29	
ATC		253	CE2 PI	HE 5	55	5	5.37	9 32.	427	85.96			
ATO		254			55	6	4.03	32.	. 339	E5.19	6 1.0	5.62	

bref2	lc.pd	Ъ		Thu	Apr 25 1	2:27:47	1996		30	
ATOM	2255	С	PHE	555	68.779	31.759	E8.337	1.00	6.86	÷
ATOM	2256	0	PHE	555	69.184	32.858	87.945	1.00	8.43	3
MOTA	2257	N	SER	556	69.095	30.616	£7.740	1.00	7.22	í
ATOM	2258	CA	SER	556	70.019	30.503	86.619	1.00	6.83	÷
MOTA	2259	CB	SER	556	70.969	29.315	86.879	1.00	4.30	÷
ATOM	2260	OG	SER	556	71.923	29.587	87.891	1.00	8.78	3
ATOM	2261	2	SER	556	69.336	30.298	85.257	1.00	5.62	
ATOM	2262	ō	SER	556	68.535	29.389	85.117	1.00	8.35	÷
ATOM	2263	N	TYR	557	69.682	31.102	84.255	1.00		7
ATOM	2264	CA	TYP.	557	69.123	30.943	62.924	1.00	3.08 3.30	÷
ATOM	2265	CB	TYP	55?	68.198	32.089	82.569	1.00		
ATOM	2266	CG	TYP.	557	68.832	33.434	62.422	1.00	2.00	ř
ATOM	2267	CD1	TYP.	557	69.405	33.825	81.218	1.00	2.00	÷
MOTA	2268	CE1	TYP.	557	69.851	35.126	£1.023	1.00	2.00	ó
MOTA	2269		TYR	557	68.737	34.368	83.434	1.00	2.56 2.00	5
MOTA	2270		TYR	557	69.184	35.667	83.260	1.00	2.00	÷
ATOM	2271	CZ	TYR	557	69.734	36.047	82.051	1.00	3.10	6
MOTA	2272	ОН	TYR	557	70.124	37.356	81.865	1.00	3.23	9
MOTA	2273	c	TYR	557	70.191	30.834	81.870	1.00	3.33	÷
MOTA	2274	0	TYR	557	71.316	31.196	82.090	1.00	4.25	:
ATOM	2275	N	GLN	558	69.839	30.360	80.695	1.00	3.52	7
ATOM	2276	CA	GLN	55B	70.831	30.227	79.648	1.00	3.20	÷
ATOM	2277	CB	GLN	558	71.603	28.925	79.828	1.00	3.66	÷
MOTA	2278	CG	GLN	558	72.506	28.598	78.648	1.00	6.55	÷
MOTA	2279	CD	GLN	558	73.171	27.282	73.788	:.30	5.14	÷
MOTA	2280	OEl		558	72.552	26.320	79.163	1.00	6.68	:
MOTA	2281	NE2	GL1:	558	74.447	27.229	78.477	1.90	7.23	7
ATOM	2282	c	GLN	558	70.204	36.208	73.279	1.50	3.24	÷
ATOM	2283	0	GLN	558	69.420	29.309	77.977	1.00	2.96	•
ATOM	2284	N	LEU	559	70.518	31.189	77.445	1.00	2.00	7
ATOM	2285	CA	LEU	559	69.945	31.139	76.120	1.00	2.89	5
ATOM	2286	CB	LEU	559	70.036	32.487	75.399	1.00	2.00	÷
MOTA	2287	CG	LEU	559	68.975	33.527	75.792	1.00	2.00	6
MOTA	2288	CD1	LEU	559	69.103	34.810	75.005	1.00	2.00	ş
MOTA	2289	CD2	LEU	559	67.612	32.955	75.564	1.00	2.00	5
ATOM	2290	С	LEU	559	70.764	30.060	75.447	1.00	5.30	5
MOTA	2291	0	LEU	559	71.951	29.947	75.728	1.00	4.67	3
ATOM	2292	N	GLU	560	70.091	29.169	74.718	1.00	6.97	7
ATOM	2293	CA	GLU	560	70.737	28.064	73.997	1.00	11.03	5
ATOM	2294	CB	GLU	560	69.787	27.517	72.938	1.00	14.40	÷
ATOM	2295	CG	GLU	560	70.290	26.305	72.163		19.08	ó
ATOM	2296	CD	GLU	560	69.701	26.207	70.738		20.20	÷
ATOM	2297	OE1	GLU	560	69.790	27.202	69.983		25.39	3
MOTA	2298	OE2	GLU	560	69.200	25.130	70.346		21.83	ŧ
ATOM	2299	C	GLU	560	71.995	28.572	73.310	1.00		÷
ATOM	2300	0	GLU	560	71.919	29.491	72.505		10.88	3
MOTA	2301	N	ASP	561	73.140	27.970	73.648		12.36	-
ATOM	2302	CÀ	ASF	561	74.460	28.345	73.118		13.20	÷
ATOM	2303	CB	ASP	561	74.478	28.398	71.589		11.29	÷
ATOM	2304	CG	ASP	561	74.440	27.038	70.968		13.29	÷
MOTA	2305		ASP	561	74.530	26.039	71.725		14.53	Ē
MOTA	2306		ASP	561	74.296	26.963	69.729		11.84	Ē
ATOM	2307	Č	ASP ASP	561	74.995	29.667	73.661	1.00	17.27	÷
ATOM	2308 2309	O N		561	75.663	30.426	72.931		21.27	3
ATOM	2310	Ĉλ	GLU	562 562	74.714 75.220	29.972	74.926		17.40	7
ATOM	2311	CB	GLU	562	74.093	31.218	75.504 75.652		16.45	:
ATOM	2312	, cc	GLC	562	73.224	32.450	74.408		20.22	•
ATOM	2313	ÇD	GLU	562	73.909	33.234	73.289		23.17	:
ATOM	2314		GLU	562	74.330	34.407	73.511		22.18	•
ATOM	2315	OE 2	GIU	562	73.981	32.670	72.169	. 20	27 47	
ATOM	2316	5	SLU	562	75.764	30.847	75.871	- 50	27.47 14.28	3
ATOM	2317	5	STE	562	75.431	29.759	77.373		15.04	:
ATOM	2318	N	PRO	563	76.662	31.581	77.465	1.30	11.29	:
ATOM	2319	CD	PR:	563	77.200	23.000	77.084	1.11	8.24	
ATOM	2320	CA	PEC	563	77.156	31.287	73.794	1.50	11.69	:
ATOM	2321	CR	PRC	563	78.186	32.376	79.111	30	7.10	the the the tell and the control of the the the the
ATOM	2322	CG	PRI	563	77.655	23.548	73.404	1.30	5.79	
ATOM	2323	c	PRC	563	75.965	31.27?	79.788	1.30	10.73	:
ATOM	2324	3	PRC	563	74.981	32.001	79.558	1.20	11.36	:
MOTA	2325	N	TF.F	564	75.995	30.362	80.772	1.00	8.20	÷
MOTA	2326	CA	TP.P	564	74.945	30.255	81.306	1.00	5.30	
ATOM	2327	CR	TF.F	5 6 4	75.304	29.199	62.845	:	2.55	:
MOTA	2328	CC	TRP	564	74.650	27.885	€2.700	1.00	5.38	:
ATOM	2329		TRF	564	73.27€	27.585	82.941	25	5.62	**
ATOM	2330	CE2		564	73.116		£2.761	30	5.36	
ATOM	2331		TRE	564	72.156		€3.29€	:.::	8.59	•
MOTA	2332	CDI	TP.F	564	75.250	26.700	82.387	50	6.26	;

bref21	c.pd	•		Thu i	Apr	25	12	: 27	: 47	1996		31	
ATOM	2333	NE 1		564		4.3		25.		82.422	1.00	5.06 6.49	: {
ATOM	2334	CZ2		564		11.80 70.92		25. 27.		52.929 83.461	1.00	6.79	•
MOTA	2335	CZ3 CH2		564 564		70.8			328	83.279	1.GO	3.18	ŧ
atom atom	2336 2337	C	TRP	564		14.8		31.	597	62.525	1.00	5.66	?
ATOM	2338	ō	TRP	564		75.9			259	62.740	1.00	9.32	! :
MOTA	2339	N	LYS	565		73.6			997	82.927 £3.612	1.00	3.69 2.30	:
ATOM	2340	CY	175	565 565		73.5 73.0			256 332	62.625	1.00	2.00	÷
ATOM	2341 2342	CB	LYS LYS	565		74.2			886	81.791	1.00	2.20	•
ATOM ATOM	2343	CD	LYS	565	•	73.8	27	35.	197	E0.371	1.00	3.81	•
MOTA	2344	CE	LYS	565		74.B			116	79.711	1.00	3.15	•
MOTA	2345	NZ	LYS	565		74.8			.374 .171	80.497 84.878	1.00	6.31 3.24	<i>₹</i>
ATOM	2346	C	LYS LYS	565 565		72.6 71.8			270	85.043	1.00	2.93	E
ATOM ATOM	2347 2348	O N	LEU	566		72.8			.113	85.783	1.00	3.46	7
ATOM	2349	CA	LEU	566		72.1			.100	87.042	1.00	5.16	:
ATOM	2350	CB	LEU	566		73.1			.857	88.143	1.00	7.13	÷ •
MOTA	2351	CG	LEU	566		72.9			.890 .292	89.641 90.343		13.73	÷
ATOM	2352		LEU	566 566		72.6			.299	90.155		11.29	÷
atom Atom	2353 2354	CDZ	LEU	566		71.			.418	87.265	1.00	6.69	•
ATOM	2355	Ċ	LEU	566		72.1	175		. 430	B7.315	1.00	6.50	÷ ;
MOTA	2356	N	CYS	567		70.1			. 446	£7.406	1.00	7.27	· •
ATOM	2357	CA	CYS	567		69.			.732	67.658 69.124		10.28	•
ATOM	2358	C	CYS	567 567		69.			.013	E9.983		13.64	į
ATOM	2359 2360	O CB	CYS	567		68.			.017	86.707		12.07	÷
ATOM ATOM	2361	56	CYS	567		67.			.797	86.808		17.22	
ATOM	2362	N	ARG	568		69.			. 293	89.405		15.13	
MOTA	2363	CA	ARG	568		68. 68.).777).310	90.727 90.7 9 8		14.78 17.37	
MOTA	2364	CB	arg arg	568 568			037). B29			20.45	
ATOM ATOM	2365 2366	CD	ARG	568			329		711	90.681		20.67	•
ATOM	2367	NE	ARG	568		72.	045	41	. 996			22.26	_
ATOM	2368	CZ	ARG	568			587		2.642			7 22.85	
ATOM	2369		1 ARG	568			531		2.151			20.25 24.23	
ATOM	2370		2 ARG	568			191 185		3.816 8.399			14.39	, . , .
ATOM ATOM	2371 2372	. c	ARG	568 568			247		8.690		_	15.75	
ATOM	2373		LEU	569		67.	. 046		7.752			11.3	
ATOM	2374			569			. 782		7.304				
MOTA	2375			569			.005 .069		6.101 4.91				
MOTA	2376		LEU 1 LEU	569 569			. 374		4.90				0 €
MOTA MOTA	2378		2 LEU	569			. 852		2.67				0 =
ATOM	2379		LEU	569			.318		8.46				
ATOM	2380		LEU	569			.121		9.22				
MOTA	2381		HIS HIS	570 570			.015		B. 64			0 19.8	
MOTA	2382 2382			570			.841		0.81			0 11.0	4 :
ATOM	238			570		63	. 820) 4	11.54			0 10.3	
atom:	236	5 C	D2 HIS	570			.73		12.49 11.42			0 13.1	
ATOM	238		DI RIS	570 570			.845		12.26			0 14.1	-
MOTA MOTA	238 238		El HIS E2 HIS	570			. 28		42.92			0 12.6	
ATOM				570			.35		39.07	6 95.39			
ATOM		0 . 0	HIS	570			2.09		37.88			00 14.4	
MOTA							.72 3.65		39.86 39.36				
ATOM			A GLN B GLN				1.18		38.80			00 11	
MOTA ATOM			B GLN G GLN				0.15		38.01			00 19.3	
ATOM			D GLN				0.18			2 100.6		00 21.	
ATOM		6 0	E1 SLN				1.16			37 101.3		00 22.	
ATON			E2 SLN				9.11 9.71		40.5	62 101.1 04 97.3		90 22. 90 3.	
ATOM							0.09		41.5			00 2.	20
MOTA MOTA			o Gli V Ala				8.44		40.1	52 97.4	19 :.	οε i.	26
ATON			CA ALA	57	2		7.34		41.0			00 5.	
ATON	1 24	02 9	SE ALI				6.92		41.7				27 95
ATO			C ALI				6.2		40.2				25
ATO! ATO!			: ALI N PR:				5.2		40.3				54
ATO			CD PR				5.0		42.1	02 99.	502 1.	οc 5.	45
ATO	M 24	07	CA PR	c 57	3		4.2		39.8				. 35
ATO			CP PR				3.7			37 100.			. 62 . 39
ATO			CG PR C PR				54.7 53.0		39.7	199 100. 134 93.			. 33
OTA	. 44	10	. FF.	,	•	•		• •			•		

bref2	lc.pd	Ъ		Thu	Apr 25 12	2:27:47	1996	32	
ATOM	2411	0	PRO	573	52.768	40.608	97.552	1.00 7.72	;
ATOM	2412	N	THR	574	52.428	38.574	98.476	1.00 8.95	;
ATOM	2413	CA	THR	574	51.255	38.232	97.727	1.00 10.96	÷
ATOM ATOM	2414	CB	THP	574	51.075	36.738	97.733	1.00 10.37	ē
ATOM	2415 2416	OG1 CG2	THE.	574 574	52.135 49.712	36.153 36.324	96.980	1.00 14.24	3
ATOM	2417	c	THR	574	50.119	38.852	97.155 98.515	1.00 13.72 1.00 12.85	÷
ATOM	2418	0	THR	574	50.163	38.874	99.753	1.00 14.59	3
ATOM	2419	N	ALA	575	49.087	39.324	97.812	1.00 14.88	7
ATOM ATOM	2420 2421	CA CB	ALA	575 575	47.934	39.946	98.467	1.00 14.50	6
ATOM	2422	C	ALA	575	46.933 47.282	40.433 38.960	97.439 99.443	1.00 14.72	5 5
ATOM	2423	ō	ALA	575	46.480		100.286	1.00 15.91	3
ATOM	2424	N	ARG	576	47.663	37.695	99.344	1.00 12.79	÷
ATOM	2425	CA	AP.G	576	47.178	36.637		1.00 11.82	6
ATOM ATOM	2426 2427	CB	ARG	576	46.877	35.414	99.328	1.00 15.95	6
ATOM	2428	CD	ARG	576 576	45.534 45.633	35.451 34.631	98.604 97.302	1.00 20.92	5
ATOM	2429	NE	ARG	576	44.350	34.081	96.848	1.00 24.61	6 7
ATOM	2430	CZ	ARG	576	44.171	33.438	95.687	1.00 28.99	6
ATOM	2431		ARG	576	45.188	33.261	94.833	1.00 29.46	7
ATOM	2432		ARG	576	42.979	32.928	95.391	1.00 27.90	7
atom atom	2433 2434	С 0	ARG	576 576	48.090 47.843	36.216 35.177		1.00 9.90	5
ATOM	2435	Ŋ	GLY	577	49.167	36.963	101.972	1.00 8.14	8 7
ATOM	2436	CA	GL Y	577	50.066	36.615		1.00 9.58	
ATOM	2437	С	GLY	577	51.201	35.638	102.435	1.00 11.02	4
MOTA	2438	0	GLY	577	51.959	35.280		1.00 10.42	å
atom Atom	2439 2440	N CA	ALA	578 578	51.263	35.140		1.00 11.51	7
ATOM	2441	CB	ALA	578	52.332 51.842	34.245	99.617	1.00 10.32	ē 5
ATOM	2442	c	ALA	578	53.443	35.158		1.00 10.21	é
ATOM	2443	Ō	ALA	578	53.278	36.384		1.00 9.88	8
MOTA	2444	N	VAL	579	54.597	34.593	99.905	1.00 9.95	7
ATOM ATOM	2445 2446	CA C9	VAL VAL	579 579	55.673 56.957	35.431 35.294	99.406	1.00 10.55	6
ATOM	2447		VAL	579	56.734		101.618	1.00 9.32	6
ATOM	2448		VAL	579	57.363	33.860		1.00 11.44	6
ATOM	2449	С	VAL	579	55.923	35.128	97.939	1.00 9.09	÷
ATOM	2450	0	VAL	579	55.599	34.044	97.452	1.00 8.40	5
ATOM	2451 2452	N	ARG	580	56.460	36.104	97.229	1.00 7.06	7
MOTA	2453	CA CB	ARG	590 580	56.721 55.769	35.917 36.792	95.816 94.991	1.00 7.86 1.00 8.84	6 6
ATOM	2454	ĊG	ARG	580	55.926	36.721	93.503	1.00 7.88	5
ATOM	2455	CD	ARG	580	55.080	37.813	92.844	1.00 B.7B	5
ATOM	2456	NE	ARG	580	53.652	37.517	92.913	1.00 6.85	-
ATOM ATOM	2457 2458	CZ NH1	ARG ARG	590 580	52.719 53.050	38.362 39.581	93.341 93.731	1.50 5.69 1.00 5.12	* *
ATOM	2459	NH2	ARG	580	51.470	37.952	93.466	1.00 5.12	-
MOTA	2460	C	ARG	580	58.159	36.282	95.523	1.00 7.72	ę.
MOTA	2461	5	ARG	580	58.664	37.321	45.954	1.00 7.66	å
MOTA MOTA	2462	N	PHE	581	58.827	35.387	94.827	1.00 6.07	7
ATOM	2463 2464	CA CB	PHE	581 581	60.200 60.982	35.596 34.355	94.45 <u>2</u> 94.803	1.00 5.52 1.00 4.84	ó
ATOM	2465	CG	PHE	581	61.274	34.214	96.250	1.00 4.90	
ATOM	2466		PHE	531	60.510	22.372	97.045	1.00 3.60	
MOTA	2467		PHE	591	62.371	34.883	56.822	1.00 5.69	÷
ATOM ATOM	2468 2469	. CE1		531	60.835	33.191	98.390	1.00 4.44	
MOTA	2470	CZ	PHE	581 581	62.694 61.92€	34.700 33.854	98.165 98. 94 4	1.00 5.88	
ATOM	2471	5	PHE	581	60.287	35.839	92.961	1.00 5.46	
ATOM	2472	5	PHE	581	59.68ē	35.101	92.194	1.00 5.33	
MOTA	2473	И	TPP	522	61.037	26.844	92.525	00 6.16	;
ATCM	2474	CA	TRP	532	61.129	37.054	91.090	1.00 7.26	
aton: Atom	2475 2476	CB	TRP	582 532	59.861 59.462	27.778 38.933	90.589 91.423	1.00 9.34	
ATOM	2477		TPP	582	59.916	40.268	91.280	1.00 10.74	
MOTA	2478		TPP	582	59.366	41.017	92.359	1.06 11.22	
ATOM	2479	CE3	TP.P	532	60.744	40.906	90.356	1.00 11.65	• •
ATOM	2480		TPP	582	58.663	28.915	92.530	1.06 14.19	٠ -
ATOM ATOM	2481 2482		TP.P	582 582	58.604 59.618	40.165 42.365	93.105 92.538	1.00 12.18	
ATOM	2483		TRF	582	61.001	42.247	90.524	1.00 12.31	
ATOM	2484	CHZ	TPP	592	60.43€	12.973	91.617	1.00 16.33	;
ATOM	2485	?	TF.P	582	62.409	37.522	90.429	1.00 7.94	
atom Atom	2486 2487	C.	TRP	582 583	63.21°9 62.55€	38.299	91.041 89.150	1.00 6.37	3
ATOM	2488	CA	CYS	583	63.65ē	27.312 27.766	83.334	1.00 7.90	
						-			•

		_		en.		- 25	12	:27:4	7 19	996		33	
bref2	ic.pd	b									1.00 8	. 52	÷
ATOM	2489	C	CYS	583		63.15		38.449				.13	à
ATOM	2490	0	CYS	583		62.14		38.055			1.00 11		÷
MOTA	2491	CB	CYS	583		64.50		36.591 36.996		.470	1.00 12		÷
ATOM	2492	SG	CYS	583		65.60		39.453		.606	1.00 11		7
MOTA	2493	N	SER	584		63.89	-	40.150		.375	1.00 11		÷
MOTA	2494	CA	SER	584				41.612		. 649	1.00 14		5
MOTA	2495	CB	SEP	584		63.2		42.141		. 680	1.00 22		3
ATOM	2496	og C	SER	584 584		64.8		40.052		.531	2.00 11		Ę
MOTA	2497	5	SER	584		65.8		40.485		. 990	1.00 14	1.12	•
ATOM	2498	<u>ي</u>	SER LEU			64.7		39.357		.390		8.82	7
ATOM	2499	N	LEU			65.8		39.214		.500	1.00	7.31	÷
MOTA	2500	CA CB	LEU			65.6		38.192		.374	1.00	5.24	÷
MOTA	2501 2502	CS	LEU			65.2		36.731		.541	1.00	2.00	ē
MOTA MOTA	2503		LEU			65.9		35.888	ec	.486		2.00	ć
ATOM	2504		LEU			65.6	33	36.271		2.912		5.67	5
ATOM	2505	σ	LEU		5	66.1	34	40.562		L.832	_	8.79	5
ATOM	2506	0	LEU	58	5	65.1	88	41.282		1.508		7.56	3
ATOM	2507	N	PRO	59	6	67.4		40.929		1.637	1.00 1		7
ATOM	2508	CD	PRO	58	6	68.€		40.279		2.160	1.00 1		6
ATOM	2509	CX	PRO			67.7		42.20	_	0.993	1.00 1		ń
MOTA	2510	CB	PR			69.2		42.304	_	1.191			÷
MOTA	2511	CC	PR			69.5		41.470	. ב	2.416	1.00 1		6
MOTA	2512	ε	PR			67.4		42.01		9.520	1.00 1		ā
ATOM	2513	0	PP.			67.6		41.01		3.912 3.957	1.00 1		7
ATOM	2514	N	TH			66.		42.98	_	7.569	1.00 1		÷
MOTA	2515	CA	TH			66.2		42.94	_	5.969	1.00 1		ē.
MOTA	2516	CB	TH			66.	_	45.33	_	3.002	1.00 1		\$
MOTA	2517		1 TH			65.		44.40	-	5.929	1.00 1		6
MOTA	2518		2 TH			67.		42.18		5.657	1.00 1		6
MOTA	2519	C	TH		37 37	66.		41.30	_	5.948	1.00 1		ર
ATOM	2520	Ö	TH		88		472	42.53		6.700	1.00		7
MOTA	2521	N	AL		B8		513	41.92	_	5.849	1.00	7.86	ő
MOTA	2522	CA		_	88		896	42.34		6.320	1.00	8.95	é
ATOM	2523		AL AL		88		435	40.42		5.700	1.00	7.36	ó
ATOM	2524		AL		88		825	39.89		4.681	1.00	8.37	à
ATOM	2525 2526		AS		89		877	39.74		76.693	1.00	7.82	7
MOTA MOTA	2527				89		745	38.30		76.651	1.00	7.85	5
MOTA	2528				89		173	37.66	34 '	77.976	1.00	5.24	÷
ATOM	2529				89		673	37.68		73.168	1.00	5.26	5
ATOM	2530)1 A		89	71.	088	38.04		79.298		6.3B	•
ATOM	2531)2 A	_	89	71.	422	37.29	-	77.230		2.00	:
ATOM	2532		A.	SP 5	39		. 341	37.8		75.376		7.96	:
ATOM	2533		A:	SP S	89		.080			75.383		7.86	5
MOTA	2534	13	T		90		. 435			75.133		8.88	÷
MOTA	253	5 C			90		.040			75.899		10.02	? 4
ATOM	253				90		.118			75.426		8.46 7.66	3
ATOM	253		G1 T		90		. 49€			75.845			ŝ
ATOM	253	B C	G2 T		590		. 269			77.926		10.59	÷
ATOM	253				590		. 696			74.465		15.28	ě
MOTA	254				590		. 610			74.00°		11.68	7
MOTA			_		591		.592			72.39	1.00	11.91	5
ATOM					591		. 692			71.69		13.98	
ATOM					591 591		. 04			73.79		16.79	
ATOM					591		.40			72.17		11.64	
ATOM		5 C			391 391		. 45			72.88		12.56	
ATOM ATOM					592		.58			71.13		9.34	7
ATOM				EP.	592		. 60			70.80	3 i.00		5
ATOM				EF.	592		.39			70.11	9 :.00	5.26	
ATOM				ER	592	60	.79	5 36.4	53B	70.91	6 1.00		
ATOP				EF.	592	63	3.21	6 33.9	945	€9.88			
ATON				EF.	592		1.38		974	63.56			
ATO		12		HE	593	62	2.38			€9.53			
ATOR				PHE	593		2.71			€3.62			
ATO				PHE	593		2.86			€7.18			
ATO		56 :	cg :	PHE	593		1.74			55.79			
ATO			ומס		592		2.04			65.19			
ATO		58	CD2	PHE	533		0.39			£7.04			
ATO	M 25	59	CE1		593		1.02			65.86			
ATO	M 25		CE2		533		9.38			(5.7)			
ATO	M 25			PHE	593		9.66		262	15.13			
ATO				PHE	593		3.84		947	63.00			
ATO				PHE	593		4.30		177	63.13 70.2		0 11.0 0 9.3	
ATO				VAL.	594		4.2		958 113	70.9			
ATO		65	CA	VAL	594		5.2		909	71.1			
ATO	m 25	66	CF	VAI	594	•	6.5	oc 30.	. ,,,,				

bref2	lc.pd	Ь		Thu	Apr	25	12	:27:47	1996		34	
ATOM	2567		YAL	594		7.08		31.490	69.894	1.00	11.27	÷
ATOM	2568		VAL	594		6.35		32.005	72.175	1.00	3.98	•
ATOM	2569	С	YAL	594		4.87		29.552	72.261	1.00	6.86	•
MOTA	2570	5	VAL	594		4.20		30.239	73.037	1.00	9.44	₹.
ATOM	2571	N	PRO	595		5.28		28.308	72.572	1.00	4.06	- 7
ATOM	2572	CD	PRO	595		5.91		27.414	71.592	1.00	4.50	•
ATOM	2573	CA	PRO	595		5.04		27.55B	73.802	1.00	4.33	•
ATOM	2574	CB	PRO	595·		5.62		26.185	73.468	1.00	4.07	•
ATOM	2575 2576	CC	PRO	595		5.44		26.084	72.064	1.00	2.00	:
ATOM ATOM		C	PRO	595		5.72 6.95		28.142	75.048	1.30	3.58	:
ATOM	2577 2578	O N	PRO LEU	595 596		4.92		28.077	75.180	1.00	3.03	:
MOTA	2579	CA	LEU	596		5.42		28.692 29.282	75.955	1.00	3.21	
ATOM	2580	CE	LEU	596		4.67		30.596	77.199 77.561	1.00	4.16	:
ATOM	2581	CS	LEU	596		5.38		31.870	78.068	1.00	3.29	:
MOTA	2582		LEU	596		4.50		32.639	79.002	1.00	2.00	÷
ATOM	2583		LEU	596		6.64		31.534	78.783	1.00	3.47	
ATOM	2584	C	LEU	596		5.25		28.293	78.347	1.00	2.16	÷
ATOM	2585	ō	LEU	596		4.12		27.938	73.721	1.00	4.67 2.52	
ATOM	2586	ĸ	GLU	597		6.38		27.861	78.900	1.00	4.53	=
ATOM	2587	CA	GLU	597		6.40		26.943	80.031	1.00	3.76	÷
MOTA	2588	CB	GLU	597		7.56		25.980	79.909	1.00	2.00	÷
ATOM	2589	CG	GLU	597	6	7.69		25.125	81.113	1.00	2.00	÷
MOTA	2590	CD	GLU	597	•	8.54	18	23.955	80.855	1.00	5.62	ŧ
MOTA	2591	OE1	CLU	597	6	9.20) 6	23.971	79.805		10.01	÷
ATOM	2592	OE2	GLIJ	597	6	8.56	52	23.014	81.675	1.00	6.65	÷
MOTA	2593	С	ระบ	597	•	6.48	33	27.704	81.367	1.00	2.57	
MOTA	2594	O	GLU	597	6	7.32	22	28.596	81.536	1.00	3.19	
MOTA	2595	N	LEU	598		5.59		27.358	82.296	1.00	3.03	:
MOTA	2596	CA	LEU	598	•	5.51	9	28.001	E3.600	1.00	2.16	÷
MOTA	2597	CB	LEU	598		4.15		28.670	83.777	1.00	2.00	÷
MOTA	2598	CG	LEU	598		3.75		29.657	82.681	1.00	2.00	•
ATOM	2599		LEU	598		2.27		29.702	82.601	1.00	2.00	÷
MOTA	2600		LEU	59B		4.36		31.027	82.888	1.00	2.00	÷
ATOM	2601	C	LEU	59B		5.76		26.988	64.700	1.00	2.92	5
MOTA	2602	0	LEU	598		55.33		25.833	84.605	1.00	2.64	=
ATOM	2603	N	ARG	599		6.46		27.428	85.736	1.00	2.34	
ATOM	2604	CA	ARG	599		6.80		26.580	86.862	1.00	3.62	÷
ATOM	2605	CB	ARG	599		8.25		26.115	86.710	1.00	6.78	Ę
ATOM	2606	CG	ARG	599		58.47		24.611	26.512		10.90	÷
ATOM	2607	CD	ARG	599		59.38		24.359	85.308		14.84	- -
ATOM	2608	NE	ARG	599		59.65		22.945	65.047		17.19	
ATOM	2609	CZ	ARG	599		70.17 70.47		22.100	£5.942		17.80	•
ATOM ATOM	2610 2611		ARG ARG	599 599		70.45		22.515 20.845	£7.182		17.23	
ATOM	2612	C	ARG	599		56.71		27.367	65.580 68.150		15.70	
ATOM	2613	5	ARG	599		57.39		28.364	68.259	1.00	3.41	•
ATOM	2614	N	7AL	600		65.84		26.379	e9.081	1.20	4.23 2.87	=
ATOM	2615	CA.	7A1	500	,	55.75		27.644	90.387	1.00	2.57	:
ATOM	2616	C3	7AL	600		64.32		28.001	90.825	1.00	2.02	:
ATOM	2617	CG1	7AL	600		64.33		28.512	\$2.248	1.36	2.00	•
ATOM	2618		VAL	600		63.73		29.035	89.917	1.00	2.30	-
ATOM	2619	C	YAL	600		66.2		26.622	91.371	1.00	3.23	
ATOM	2620	5	VAL	600		65.74		25.525	91.426			:
ATOM	2621	N	THE	601		67.30		26.963	92.124	1.00	5.21	:
MOTA	2622	CA	THR	601		67. BI	81	25.043	93.098	1.00	6.74	•
ATOM	2623	CB	THE.	601		69.2	96	25.601	92.688	1.00	8.50	:
ATOM	2624	· 0G1	THE	601		69.22	28	24.939	91.430	1.00		•
MOTA	2625	CG2	THP.	601		69.8	90	24.631	93.684	1.30	8.70	: :
ATOM	2626	C	THE	601		67.9	95	26.634	94.481	1.00	9.74	:
ATOM	2627	÷	TER	601		68.2		27.822	\$4.637	1.00	11.77	:
ATOM	2628	N	hĿċ	602		67.7		25.792	95.484	1.00	9.57	
MOTA	2629	CA	ALA.	602		67.9		26.196	96.877	1.50	3.62	:
ATOM	2630	CB	ALA	602		67.2		25.191	97.745	1.00	3.55	•
MOTA	2631	5	ALA	602		69.4		26.180	97.153	1.33	10.39	:
MOTA	2632	0	hih	602		70.1		25.324	96.613		11.56	:
MOTA	2633	N.	hih	603		69.8		27.969	93.036	:.::	9.75	
ATOM	2634	CA	YIY	503		71.2		27.162	98.415	::::	7.22	:
ATOM	2635	CB	hih	603		71.5		28.370	99.300		5.77	:
atom atom	2636	5	ALA	603		71.B		25.882	99.070		5.23	:
MOTA	2637 2638) N	ALA	603 604		73.0 71.0		25.785	99.320	:.::	4.90	:
ATOM	2639	N CA	SER SER	604 604		71.4		24.892 23.639	99.324 99.897		5.87	:
ATOM	2640	CB	SER	604		70.4			100.749		7,44	
ATOM	2641	SG	SER	604		69.7		22.024	59.997	::::		:
ATOM	2642	č	SER	604		71.9		22.629	98.777	1.30	5.42 2.18	:
ATOM	2643	5	SER	604		72.4		21.617	93.042	1.::	11.68	:
ATOM	2644	N	SLY	605		71.6		23.070	\$7.535	1.33		

ATOM 2445 CR GIY 605	bref2	lc.pd	Ь		Thu	Apr 25	12	: 27 : 47	1996		35	
NTOM 2646 C GLY 605	A TOM	2645	CL	GLY	605	71.94	14	22.262	96.378			
ATOM 2647 O CLY 605 70.711 21.198 94.631 1.00 8.81 7.007										1.00 ?	. 43	
ATCH 2648 N ALA 606 69,639 21,606 96,732 1,00 7,11								21.198	94.631	-		•
ATOM 2649 CA ALA 606 66.376 21.001 96.194 1.00 6.20 ATOM 2651 CB ALA 606 67.492 20.885 97.387 1.00 2.66 ATOM 2652 O ALA 606 67.650 21.770 95.113 1.00 2.68 ATOM 2652 O ALA 606 67.650 21.770 95.113 1.00 6.88 ATOM 2653 N PRO 607 67.450 22.974 95.234 1.00 7.80 ATOM 2654 CD PRO 607 67.457 16.636 93.821 1.00 6.21 ATOM 2655 CB PRO 607 66.545 20.587 91.885 1.00 7.27 ATOM 2655 CB PRO 607 66.656 20.873 91.885 1.00 7.27 ATOM 2656 CB PRO 607 66.656 20.873 91.885 1.00 7.27 ATOM 2657 CG PRO 607 67.655 19.620 93.235 1.00 5.40 ATOM 2650 N ARG 608 66.656 20.897 93.220 1.00 6.88 ATOM 2660 N ARG 608 66.866 46.565 23.159 93.220 1.00 6.82 ATOM 2661 CA ARG 608 63.198 25.105 93.295 1.00 6.25 ATOM 2663 CG ARG 608 63.198 25.105 93.599 1.00 6.25 ATOM 2665 NE ARG 608 63.198 25.105 93.599 1.00 6.27 ATOM 2665 NE ARG 608 63.198 25.105 93.599 1.00 6.27 ATOM 2666 NE ARG 608 63.198 25.105 93.599 1.00 6.28 ATOM 2667 NRIA ARG 608 62.608 24.474 93.992 1.00 14.22 ATOM 2668 NRIA ARG 608 61.169 24.719 95.820 1.00 14.28 ATOM 2669 C ARG 608 61.169 24.719 95.820 1.00 14.28 ATOM 2669 C ARG 608 61.169 24.719 95.820 1.00 14.28 ATOM 2669 C ARG 608 61.193 26.817 96.773 1.00 15.96 ATOM 2667 NRIA ARG 608 62.566 23.358 95.200 1.00 14.39 ATOM 2667 NRIA ARG 608 62.566 23.358 95.200 1.00 14.39 ATOM 2667 C ATOM 609 61.03 22.358 96.200 1.00 14.39 ATOM 2668 NRIA ARG 608 62.566 23.358 96.200 1.00 14.39 ATOM 2669 C ARG 608 63.052 25.828 95.200 1.00 14.28 ATOM 2669 C ARG 608 60.30 25.828 96.200 1.00 11.39 ATOM 2669 C ARG 608 60.30 25.828 96.200 1.00 11.39 ATOM 2669 C ARG 608 60.30 25.828 96.200 1.00 11.39 ATOM 2679 C C TYR 609 60.00 22.100 89.20 ATOM 2691 C C TYR 609 60.00 22.100 89.20 ATOM 2692 C C TYR 609 60.00 22.100 89.20 ATOM 2693 C C TYR 609 60.00 22.00 22.100 10.10 1.00 1.00 1.00 1						69.6	39	21.606	\$6.573			-
ATOM 2610 CB ALA 606 61.492 20.885 97.387 1.200 2.888 1.200 2.884 ATOM 2652 C ALA 606 607 67.665 21.770 95.113 .00 6.888 1.200 22.974 95.234 1.000 7.80 ATOM 2652 N PRO 607 67.457 12.22 21.063 94.074 1.000 6.22 1.200 ATOM 2655 CA PRO 607 67.457 19.636 93.821 1.000 6.78 ATOM 2655 CA PRO 607 66.520 21.660 92.950 1.000 7.75 1.200 ATOM 2655 CB PRO 607 66.656 20.587 91.885 1.000 7.75 1.200 ATOM 2658 C PRO 607 66.656 20.587 91.885 1.000 7.77 ATOM 2658 C PRO 607 65.046 21.969 93.220 1.000 6.86 ATOM 2659 O PRO 607 65.046 21.969 93.220 1.000 6.86 ATOM 2650 C ARG 608 63.284 23.658 93.095 1.000 6.25 ATOM 2660 C ARG 608 63.1284 23.658 93.095 1.000 6.25 ATOM 2660 C ARG 608 63.1284 23.658 93.095 1.000 6.25 ATOM 2665 C ARG 608 63.150 25.320 95.066 1.000 1.000 1.27 ATOM 2660 C ARG 608 63.150 25.320 95.066 1.000 1.000 1.22 ATOM 2660 C ARG 608 63.150 25.320 95.066 1.000 1.000 1.22 ATOM 2660 C ARG 608 63.150 25.320 95.066 1.000 1.000 1.22 ATOM 2660 C ARG 608 60.530 25.828 95.925 1.000 14.22 ATOM 2660 NA RG 608 61.690 24.719 95.820 1.000 14.22 ATOM 2660 NA RG 608 61.690 24.719 95.820 1.000 14.22 ATOM 2660 NA RG 608 60.530 25.828 96.200 1.000 14.23 ATOM 2660 C ARG 608 60.530 25.828 96.200 1.000 14.39 ATOM 2661 NH ARG 608 61.690 24.799 95.820 1.000 14.23 ATOM 2660 C ARG 608 62.986 23.986 91.000 13.38 ATOM 2669 C ARG 608 62.986 23.986 91.000 13.38 ATOM 2669 C ARG 608 62.986 23.986 91.000 13.38 ATOM 2669 C ARG 608 62.986 23.986 91.000 13.38 ATOM 2669 C ARG 608 62.986 23.986 91.000 13.38 ATOM 2669 C ARG 608 62.986 23.989 91.000 13.38 ATOM 2670 C ARG 608 62.986 23.989 91.000 13.700 ATOM 2670 C ARG 608 62.986 23.989 91.000 13.700 ATOM 2670 C ARG 608 62.986 23.999 91.000 13.700 ATOM 2670 C ARG 608 62.986 23.999 91.000 13.700 ATOM 2680 C ATOM 2680 C ARG 608 62.986 23.999 91.000 13.700 ATOM 2680 C ATOM 268					606	68.3	76	21.001				
ATOM 2651 C ALA 606 67.665 21.770 95.113 1.00 7.80 ATOM 2652 O ALA 606 67.650 21.700 95.113 1.00 7.80 ATOM 2653 N PRO 607 67.222 21.063 44.074 1.00 6.21 ATOM 2655 CA PRO 607 67.457 19.636 93.821 1.00 6.78 ATOM 2655 CB PRO 607 66.550 21.660 22.950 1.00 7.75 ATOM 2656 CB PRO 607 66.550 21.660 22.950 1.00 7.75 ATOM 2658 C PRO 607 66.550 21.660 22.950 1.00 7.77 ATOM 2658 C PRO 607 66.550 21.699 93.200 1.00 6.86 ATOM 2650 N ARG 608 64.564 23.215 92.950 1.00 6.25 ATOM 2660 N ARG 608 64.564 23.215 92.950 1.00 6.25 ATOM 2661 CA ARG 608 63.284 23.658 93.095 1.00 6.25 ATOM 2665 C PRO 608 63.198 23.105 93.951 1.00 7.75 ATOM 2665 C PRO 608 63.198 23.105 93.951 1.00 7.55 ATOM 2665 C PRO 608 63.198 23.105 93.951 1.00 7.55 ATOM 2665 C PRO 608 63.198 23.105 93.951 1.00 7.55 ATOM 2665 C PRO 608 63.198 23.105 93.951 1.00 7.55 ATOM 2665 C PRO 608 63.198 23.105 93.951 1.00 7.55 ATOM 2665 C PRO 608 608 63.198 23.105 93.951 1.00 7.55 ATOM 2665 C PRO 608 608 63.198 23.105 93.951 1.00 7.55 ATOM 2665 NH ARG 608 61.169 24.719 95.820 1.00 14.22 ATOM 2665 NH ARG 608 61.169 24.719 95.820 1.00 14.22 ATOM 2669 C ARG 608 61.199 25.320 95.066 1.00 14.39 ATOM 2669 C ARG 608 61.193 25.828 96.200 1.00 14.39 ATOM 2670 O ARG 608 61.613 22.938 91.739 1.00 6.91 ATOM 2671 N TYP 609 63.095 24.194 90.700 1.00 15.96 ATOM 2671 N TYP 609 63.095 24.194 90.700 1.00 1.03 ATOM 2672 C TYP 609 60.502 23.194 90.700 1.00 7.03 ATOM 2673 C TYP 609 60.502 23.194 90.700 1.00 7.03 ATOM 2670 C TYP 609 60.502 23.194 90.700 1.00 1.01 1.75 ATOM 2680 C TYP 609 60.502 23.210 89.100 11.75 ATOM 2681 C TYP 609 60.502 23.210 89.920 1.00 11.75 ATOM 2682 C TYP 609 60.502 23.210 89.920 1.00 11.75 ATOM 2683 C B TS 610 62.803 23.416 87.137 1.00 12.36 ATOM 2684 C ARG 611 63.066 23.938 23.416 87.137 1.00 12.36 ATOM 2689 C THE 609 60.502 22.808 63.100 13.00 3.94 ATOM 2680 C B TS 610 63.503 20.803 32.220 1.00 1.00 1.00 1.00 1.00 1.00 1.00					606	67.4						
ATOM 2652 O ALA 606			¢	ALA	606							
ATCH 2654 CD PRO 601 66-6-65-6 20. 21-66-92-21-16-60 92-95-8 1.00 7.75 5-7-75 1.00 6.78 5-7		2652	0	ALA	606					-		:
ATCH 2553 CA PRO 601 66.520 21.660 92.950 1.00 7.75 6 7 7 7 7 8 7 8 7 8 9 9 9 9 9 9 9 9 9 9 9		2653	N	PRO								
ATCH 2556 CB PRO 607	MOTA	2654										
ATOM 2658 C ARG 608 63.198 25.109 59.255 1.00 5.40 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	MOTA									_		
ATOM 2658 C PRO 607 63.046 21.969 93.220 1.00 6.55 1. ATOM 2660 N ARG 608 61.64 256 23.215 92.951 1.00 6.25 1. ATOM 2661 CA ARG 608 63.64 256 23.215 92.951 1.00 6.52 1. ATOM 2661 CA ARG 608 63.98 25.105 93.951 1.00 7.55 2. ATOM 2662 CB ARG 608 63.98 25.105 93.951 1.00 7.55 2. ATOM 2665 NR ARG 608 63.98 25.105 93.951 1.00 11.99 1. ATOM 2665 NR ARG 608 60.500 24.474 95.992 1.00 14.22 2. ATOM 2665 NR ARG 608 60.500 25.266 1.00 11.99 1. ATOM 2665 NR ARG 608 61.169 24.719 95.820 1.00 14.22 2. ATOM 2665 NR ARG 608 61.169 24.719 95.820 1.00 14.22 2. ATOM 2665 NR ARG 608 61.169 24.719 95.820 1.00 14.23 1. ATOM 2669 C ARG 608 61.193 25.928 96.073 1.00 15.96 1. ATOM 2669 NR ARG 608 61.193 25.936 96.088 1.00 13.38 1. ATOM 2669 C ARG 608 61.193 25.936 96.088 1.00 13.38 1. ATOM 2679 O ARG 608 61.613 25.936 96.088 10.00 13.38 1. ATOM 2679 O ARG 608 61.613 25.936 96.088 10.00 13.38 1. ATOM 2679 O ARG 608 61.613 25.936 96.088 10.00 13.38 1. ATOM 2679 O ARG 608 61.633 25.936 96.088 10.00 13.38 1. ATOM 2679 O ARG 608 61.633 25.936 96.088 10.00 13.38 1. ATOM 2679 O ARG 608 61.633 25.936 99.700 10.00 7.03 1. ATOM 2679 O ARG 608 61.633 25.936 99.700 10.00 7.03 1. ATOM 2679 O ARG 608 61.633 25.936 99.700 10.00 7.03 1. ATOM 2679 O ARG 608 61.633 25.936 99.700 10.00 7.03 1. ATOM 2679 C DT TYR 609 60.540 25.684 90.293 1.00 11.75 1. ATOM 2679 C DT TYR 609 60.540 25.684 90.298 1.00 11.75 1. ATOM 2679 C DT TYR 609 60.540 25.684 90.298 1.00 11.75 1. ATOM 2679 C DT TYR 609 59.768 27.078 92.15 1.00 13.98 1. ATOM 2680 C DT TYR 609 59.768 27.078 92.15 1.00 13.98 1. ATOM 2680 C DT TYR 609 59.768 27.078 92.15 1.00 13.98 1. ATOM 2680 C DT TYR 609 59.768 27.078 92.15 1.00 13.98 1. ATOM 2680 C DT TYR 609 59.768 27.078 92.15 1.00 13.98 1. ATOM 2680 C DT TYR 609 50.3316 24.032 88.193 1.00 7.45 1. ATOM 2680 C DT TYR 609 50.3316 24.032 88.193 1.00 1.45 1. ATOM 2680 C DT TYR 609 50.3316 24.032 88.193 1.00 1.45 1. ATOM 2680 C DT TYR 609 50.3316 24.032 88.193 1.00 1.45 1. ATOM 2680 C DT TYR 609 50.3316 24.032 88.193 1.00 1.00 1.00 1. ATOM 2680 C DT TYR 60												
ATOM 2639 O PRO 607 64.287 21.084 93.599 1.00 6.25 1 ATOM 2660 CA ARG 608 61.884 23.688 93.095 1.00 6.55 1 ATOM 2661 CA ARG 608 63.198 23.105 93.591 1.00 7.55 6 ATOM 2666 CG ARG 608 63.198 23.105 93.591 1.00 7.55 6 ATOM 2666 CG ARG 608 63.198 23.105 93.591 1.00 7.55 6 ATOM 2666 CG ARG 608 63.108 23.029 93.066 1.00 11.99 6 ATOM 2666 CC ARG 608 62.608 24.474 95.992 1.00 14.22 6 ATOM 2666 CC ARG 608 60.169 24.719 93.820 1.00 14.28 6 ATOM 2666 CC ARG 608 60.150 23.20 95.066 1.00 14.29 6 ATOM 2666 CC ARG 608 60.150 23.20 95.066 1.00 14.29 6 ATOM 2668 NHZ ARG 608 61.193 25.80 96.00 1.00 14.29 6 ATOM 2669 C ARG 608 60.150 23.828 96.200 1.00 14.28 6 ATOM 2660 C ARG 608 62.506 23.508 91.73 1.00 14.28 6 ATOM 2671 N TTP 609 63.095 24.194 97.700 1.00 13.96 6 ATOM 2671 C C TTP 609 61.53 25.348 91.612 1.00 8.99 1 ATOM 2674 CG TTP 609 61.53 25.348 91.612 1.00 8.99 1 ATOM 2675 CD TTP 609 60.700 26.799 91.137 1.00 12.36 6 ATOM 2676 CE TTP 609 59.768 70.708 92.137 1.00 12.36 ATOM 2678 CC TTP 609 59.434 24.825 90.499 1.00 11.75 4 ATOM 2678 CC TTP 609 59.434 24.825 90.499 1.00 13.63 6 ATOM 2679 CZ TTP 609 59.434 24.825 90.499 1.00 13.63 6 ATOM 2679 CZ TTP 609 59.434 24.825 90.499 1.00 13.63 6 ATOM 2679 CZ TTP 609 59.434 24.825 90.499 1.00 13.63 6 ATOM 2679 CZ TTP 609 59.434 24.82 90.499 1.00 13.63 6 ATOM 2680 N HTS 610 62.805 23.168 81.307 1.00 15.98 6 ATOM 2681 C TTP 609 59.434 24.82 90.499 1.00 13.63 6 ATOM 2680 N HTS 610 62.805 23.168 81.300 10.10 1.3 63 6 ATOM 2680 C B HTS 610 63.316 24.032 88.133 1.00 7.45 6 ATOM 2680 C B HTS 610 63.36 62.208 83.753 1.00 2.00 7.37 6 ATOM 2680 C B HTS 610 63.53 62.208 83.753 1.00 2.00 7.37 6 ATOM 2680 C B HTS 610 63.53 62.23 88.86 1.00 3.51 7 ATOM 2680 C B HTS 610 63.36 62.23 89.85 2.756 1.00 2.00 7 ATOM 2680 C B HTS 610 63.53 62.23 88.86 1.00 3.51 7 ATOM 2680 C B HTS 610 63.53 62.23 88.86 1.00 3.51 7 ATOM 2690 C B HTS 610 60.700 22.43 68.13 80.00 0.00 1.00 1.00 7 ATOM 2690 C B HTS 610 60.700 22.43 68.13 80.00 0.00 1.00 1.00 1.00 1.00 1.00 1.0												
ATOM 2661 CA ARG 608 63.284 23.558 93.095 1.00 6.82 ATOM 2662 CB ARG 608 63.284 23.558 93.095 1.00 6.82 ATOM 2663 CB ARG 608 63.284 23.558 93.095 1.00 6.82 ATOM 2666 CD ARG 608 63.284 23.589 93.095 1.00 14.22 ATOM 2666 NP3 ARG 608 61.69 24.744 95.992 1.00 14.22 ATOM 2666 RM2 ARG 608 61.69 24.749 95.920 1.00 14.28 ATOM 2666 NP3 ARG 608 61.69 24.749 95.920 1.00 14.28 ATOM 2668 NP3 ARG 608 61.59 23.282 96.200 1.00 14.28 ATOM 2669 NP3 ARG 608 61.59 24.193 95.820 1.00 13.99 ATOM 2669 CA ARG 608 62.586 23.548 91.739 1.00 15.86 ATOM 2669 CA ARG 608 62.586 23.548 91.739 1.00 15.86 ATOM 2670 O ARG 608 62.586 23.548 91.739 1.00 6.91 ATOM 2671 N TYP 609 63.095 24.194 99.700 1.00 7.03 ATOM 2672 CA TYP 609 61.532 25.394 99.203 1.00 9.92 ATOM 2673 CB TYP 609 60.543 25.684 90.298 1.00 11.75 ATOM 2675 CD1 TYP 609 60.540 25.684 90.298 1.00 11.75 ATOM 2676 CE1 TYP 609 59.768 27.078 91.137 1.00 12.36 ATOM 2677 CD2 TYP 609 59.768 27.078 91.137 1.00 13.98 ATOM 2679 CZ TYP 609 59.684 26.235 92.226 1.00 13.86 ATOM 2679 CZ TYP 609 59.684 26.235 92.226 1.00 13.65 ATOM 2679 CZ TYP 609 59.6864 26.235 92.226 1.00 13.63 ATOM 2680 OR TYP 609 59.686 26.529 92.325 1.00 7.36 ATOM 2680 CM TYP 609 59.6864 26.235 92.226 1.00 13.63 ATOM 2680 CM TYP 609 61.532 23.418 87.137 1.00 12.36 ATOM 2680 CM TYP 609 64.488 24.512 91.90 1.00 13.65 ATOM 2680 CM TYP 609 64.488 24.512 88.193 1.00 7.45 ATOM 2680 CM TYP 609 64.488 24.512 88.193 1.00 7.45 ATOM 2680 CM TYP 609 63.3316 24.032 88.193 1.00 7.45 ATOM 2680 CM TYP 609 63.3316 24.032 88.193 1.00 7.45 ATOM 2680 CM TYP 609 63.3316 24.032 88.193 1.00 7.36 ATOM 2680 CM TYP 609 63.3316 24.032 88.193 1.00 7.35 ATOM 2680 CM TYP 609 63.3316 24.032 88.193 1.00 7.35 ATOM 2680 CM TYP 609 63.3316 24.032 88.193 1.00 7.35 ATOM 2680 CM TYP 609 63.3316 24.032 88.193 1.00 7.35 ATOM 2680 CM TYP 609 63.3316 24.032 88.193 1.00 7.35 ATOM 2680 CM TYP 609 63.3316 24.032 88.193 1.00 7.35 ATOM 2680 CM TYP 609 63.3316 24.032 88.193 1.00 7.35 ATOM 2680 CM TYP 6												÷
ATOM 2662 CB ARG 608 63.198 23.658 93.099 1.00 6.92 5 ATOM 2665 CD ARG 608 63.198 23.105 93.591 1.00 7.55 6 ATOM 2666 CD ARG 608 62.608 24.474 95.992 1.00 14.22 6 ATOM 2666 CD ARG 608 61.193 24.719 95.820 1.00 14.22 7 ATOM 2666 CD ARG 608 61.193 24.719 95.820 1.00 14.22 7 ATOM 2666 CD ARG 608 61.193 24.719 95.820 1.00 14.22 7 ATOM 2666 CD ARG 608 61.193 26.817 96.773 1.00 14.23 7 ATOM 2668 NRI ARG 608 61.193 26.817 96.773 1.00 14.23 7 ATOM 2669 CD ARG 608 61.193 26.817 96.773 1.00 13.56 ATOM 2670 OD ARG 608 62.586 23.548 91.739 1.00 6.91 ATOM 2670 OD ARG 608 61.193 22.836 91.612 1.00 8.99 1 ATOM 2671 OD ARG 608 62.586 23.548 91.739 1.00 6.91 ATOM 2671 OD ARG 608 61.613 22.836 91.612 1.00 8.99 1 ATOM 2671 OD ARG 608 61.613 22.836 91.612 1.00 8.99 1 ATOM 2671 OD ARG 609 62.405 24.194 99.700 1.00 7.03 ATOM 2672 CD TTP 609 61.532 25.394 89.203 1.00 7.03 ATOM 2673 CD TTP 609 61.532 25.394 89.203 1.00 7.02 ATOM 2674 CD TTP 609 60.543 25.684 90.298 1.00 11.75 ATOM 2676 CD TTP 609 60.543 25.684 90.298 1.00 11.75 ATOM 2676 CD TTP 609 59.768 27.078 92.156 1.00 13.86 ATOM 2676 CD TTP 609 59.768 27.078 92.156 1.00 13.86 ATOM 2678 CD TTP 609 59.768 27.078 92.156 1.00 13.63 ATOM 2678 CD TTP 609 58.664 26.235 92.326 1.00 15.21 ATOM 2681 C TTP 609 58.664 26.235 92.326 1.00 13.65 ATOM 2681 C TTP 609 58.664 26.235 92.326 1.00 15.21 ATOM 2681 C TTP 609 58.664 26.235 92.326 1.00 13.65 ATOM 2681 C TTP 609 64.448 24.852 90.499 1.00 10.10 13.66 ATOM 2681 C TTP 609 64.448 24.852 90.499 1.00 10.10 13.66 ATOM 2681 C TTP 609 64.448 24.852 90.499 1.00 10.10 13.66 ATOM 2681 C TTP 609 64.448 24.852 90.499 1.00 10.10 13.66 ATOM 2681 C TTP 609 64.448 24.852 90.499 1.00 13.66 1.00 13.65 ATOM 2681 C TTP 609 64.448 24.852 90.499 1.00 13.66 1.00 13.65 ATOM 2681 C TTP 609 64.448 24.852 90.499 1.00 13.66 1.00 13.65 ATOM 2681 C TTP 609 64.448 24.852 90.499 1.00 13.66 1.00 13.65 ATOM 2681 C TTP 609 64.448 24.852 90.499 1.00 13.66 1.00 13.65 ATOM 270 0 A											5.55	
ATCH 2662 CB ARG 608 63.510 23.20 93.591 1.00 7.53 5 ATCH 2663 CG ARG 608 62.608 24.474 95.992 1.00 14.22 5 ATCH 2665 NE ARG 608 62.608 24.744 95.992 1.00 14.22 5 ATCH 2666 CZ ARG 608 60.503 25.828 96.200 1.00 14.28 7 ATCH 2668 NH2 ARG 608 61.50 25.828 98.200 1.00 14.28 7 ATCH 2669 NE2 ARG 608 61.50 25.828 98.200 1.00 14.28 7 ATCH 2669 CZ ARG 608 61.50 25.828 98.200 1.00 14.28 7 ATCH 2669 CZ ARG 608 61.50 25.828 98.200 1.00 14.28 7 ATCH 2669 CZ ARG 608 61.50 25.828 98.200 1.00 13.98 7 ATCH 2670 0 ARG 608 62.586 23.548 91.739 1.00 6.91 1 ATCH 2671 N TYE 609 62.405 24.140 89.406 1.00 7.62 ATCH 2673 CB TYE 609 62.405 24.140 89.406 1.00 7.62 ATCH 2673 CB TYE 609 60.542 25.684 90.298 1.00 11.75 ATCH 2673 CB TYE 609 60.542 25.684 90.298 1.00 11.75 ATCH 2675 CD1 TYE 609 60.542 25.684 90.298 1.00 11.75 ATCH 2675 CD1 TYE 609 60.700 26.798 91.137 1.00 12.36 ATCH 2675 CD2 TYE 609 59.434 24.852 90.499 1.00 13.98 ATCH 2675 CD2 TYE 609 59.434 24.852 90.499 1.00 13.98 ATCH 2675 CD2 TYE 609 59.434 24.852 90.499 1.00 13.98 ATCH 2676 CE2 TYE 609 58.694 25.120 91.506 1.00 13.98 ATCH 2678 CE2 TYE 609 58.694 25.120 91.506 1.00 13.63 ATCH 2680 OH TYE 609 59.664 26.235 52.26 1.00 13.63 ATCH 2681 C TYE 609 58.694 25.120 91.506 1.00 13.63 ATCH 2681 C TYE 609 59.664 26.235 52.26 1.00 15.21 ATCH 2682 CD TYE 609 59.664 26.235 52.26 1.00 15.21 ATCH 2682 CD TYE 609 59.664 26.235 52.26 1.00 10.10 1.0 1.0 1.0 1.0 1.0 1.0 1.0									93.095	1.00	5.82	
ATOM 2663 CC ARG 608 62.506 24.74 95.820 1.00 11.99 1 ATOM 2666 NE ARG 608 62.608 24.74 95.820 1.00 14.22 ATOM 2666 NE ARG 608 62.608 24.74 95.820 1.00 14.22 ATOM 2666 NE ARG 608 61.159 24.719 95.820 1.00 14.22 ATOM 2666 NE ARG 608 61.159 24.719 95.820 1.00 14.22 ATOM 2666 NE ARG 608 61.159 24.719 95.820 1.00 14.22 ATOM 2666 NE ARG 608 61.159 24.719 95.820 1.00 14.28 ATOM 2667 NET ARG 608 61.159 24.719 95.820 1.00 14.28 ATOM 2668 NET ARG 608 61.159 24.719 95.820 1.00 14.39 ATOM 2671 N TTP 609 52.28 95.28 96.700 1.00 15.96 ATOM 2671 N TTP 609 62.405 24.194 97.700 1.00 8.99 ATOM 2673 CB TTP 609 61.532 25.394 89.202 1.00 7.02 ATOM 2674 CG TTP 609 61.532 25.394 89.202 1.00 7.02 ATOM 2676 CE1 TTP 609 60.542 25.694 90.298 1.00 11.75 ATOM 2676 CE1 TTP 609 59.768 27.078 92.156 1.00 13.98 ATOM 2676 CE1 TTP 609 59.768 27.078 92.156 1.00 13.98 ATOM 2676 CE2 TTP 609 59.768 27.078 92.156 1.00 13.66 ATOM 2679 CZ TTP 609 59.768 27.078 92.156 1.00 13.98 ATOM 2678 CE2 TTP 609 59.768 27.078 92.156 1.00 13.98 ATOM 2679 CZ TTP 609 59.684 24.822 90.499 1.00 15.216 ATOM 2679 CZ TTP 609 59.684 24.822 90.499 1.00 15.216 ATOM 2680 N TTR 609 59.768 27.078 92.156 1.00 13.68 ATOM 2681 C TTP 609 59.684 24.822 90.499 1.00 15.216 ATOM 2680 CH TTP 609 59.684 24.822 90.499 1.00 15.216 ATOM 2681 C TTP 609 59.684 24.822 90.499 1.00 15.216 ATOM 2681 C TTP 609 59.684 24.822 90.325 1.00 17.45 ATOM 2681 C TTP 609 59.684 24.822 90.325 1.00 17.45 ATOM 2681 C TTP 609 64.448 25.120 91.506 1.00 13.68 ATOM 2681 C TTP 609 64.448 25.120 91.506 1.00 13.68 ATOM 2681 C TTP 609 64.448 25.120 91.506 1.00 13.68 ATOM 2681 C TTP 609 64.448 25.120 91.506 1.00 13.63 ATOM 2681 C TTP 609 64.448 25.120 91.506 1.00 13.65 ATOM 2681 C TTP 609 65.600 65.200 01.00 13.60 ATOM 2681 C TTP 609 65.600 65.200 01.00 13.60 ATOM 2681 C TTP 609 65.600 65.200 01.00 13.60 ATOM 2680 NB HIS 610 62.800 01.00 01.00 ATOM 2680 C B HIS 610 62.800 01.00 01.00 ATOM 270 01.00 AT								25.105	93.591	1.00	7.55	
ATOM 2664 CD ARC 608 62.608 24.474 95.992 1.00 14.22 1.00 14.28 1.						63.5	10		95.066			
ATOM 2665 NE ARC 608 61.169 24.719 95.820 1.00 14.28 ATOM 2666 CZ ARC 608 60.530 25.828 96.200 1.00 14.39 1 ATOM 2668 NH1 ARG 608 60.530 25.828 96.200 1.00 14.39 1 ATOM 2669 C ARG 608 60.530 25.828 96.200 1.00 14.39 1 ATOM 2670 0 ARC 608 62.586 23.548 91.739 1.00 6.91 1 ATOM 2671 N TY 609 62.095 24.194 90.700 1.00 7.03 1 ATOM 2671 N TY 609 62.095 24.194 90.700 1.00 7.03 1 ATOM 2673 CB TYR 609 62.095 24.194 89.200 1.00 7.03 1 ATOM 2673 CB TYR 609 61.532 25.394 89.203 1.00 9.92 1 ATOM 2673 CB TYR 609 60.500 26.798 89.203 1.00 9.92 1 ATOM 2673 CB TYR 609 60.500 26.798 99.201 1.00 13.75 1 ATOM 2675 CD1 TYR 609 60.700 26.798 99.107 1.00 12.36 1 ATOM 2676 CE1 TYR 609 59.434 24.852 90.499 1.00 13.63 6 ATOM 2676 CE2 TYR 609 59.684 94 25.120 91.506 1.00 13.63 6 ATOM 2679 CZ TYR 609 59.684 24.032 88.193 1.00 17.45 6 ATOM 2680 OR TYR 609 63.316 24.032 88.193 1.00 7.45 6 ATOM 2681 C TYP 609 64.448 24.514 68.207 1.00 10.16 1 ATOM 2682 O TYR 609 64.484 24.514 68.207 1.00 10.16 1 ATOM 2685 CB BIS 610 63.316 24.032 88.193 1.00 7.45 6 ATOM 2680 CB BIS 610 63.36 22.308 85.886 1.00 3.51 1 ATOM 2680 CB BIS 610 65.346 22.308 85.886 1.00 3.51 1 ATOM 2680 NDI HIS 610 65.346 22.308 85.886 1.00 3.51 1 ATOM 2680 CB BIS 610 65.346 22.308 83.753 1.00 2.00 1 ATOM 2680 CB BIS 610 65.346 22.308 83.753 1.00 2.00 1 ATOM 2680 CB BIS 610 66.230 22.889 82.786 1.00 2.00 1 ATOM 2690 CB HIS 610 66.200 22.894 82.794 1.00 2.00 1 ATOM 2690 CB HIS 610 66.200 22.895 82.795 1.00 2.00 1 ATOM 2690 CB HIS 610 66.200 22.895 82.795 1.00 2.00 1 ATOM 2690 CB HIS 610 66.200 22.895 83.793 1.00 2.00 1 ATOM 2690 CB HIS 610 66.200 22.895 83.793 1.00 2.00 1 ATOM 2690 CB HIS 610 66.200 22.894 82.794 1.00 2.00 1 ATOM 2690 CB HIS 610 66.200 22.894 82.794 1.00 2.00 1 ATOM 2690 CB HIS 610 66.200 22.894 82.794 1.00 2.00 1 ATOM 2690 CB HIS 610 66.200 22.894 82.794 1.00 2.00 1 ATOM 2700 NH1 ARG 611 55.602 27.711 81.138 1.00 2.00 1 ATOM 2700 CB ARG 611 55.602 27.711 81.138 1.00 2.00 2.00 1 ATOM 2700 CB ARG 611 55.602 27.711 81.138 1.00 2.00 2.00 1 ATOM 2700 CB ARG 611 55.602 2					608	62.6	808	24.474	95.992			
ATOM 2666 CZ ARG 608 60.530 25.828 96.200 1.00 14.39 1 ATOM 2667 NH1 ARG 608 61.93 26.817 96.773 1.00 15.96 1 ATOM 2668 NH2 ARG 608 61.83 26.817 96.773 1.00 15.96 1 ATOM 2669 C ARG 608 62.586 23.548 91.739 1.00 6.91 6 ATOM 2671 N TYP 609 62.405 24.140 90.700 1.00 7.03 1 ATOM 2672 CA TYP 609 62.405 24.140 89.406 1.00 7.22 6 ATOM 2673 CB TYP 609 61.532 25.394 89.203 1.00 7.22 6 ATOM 2674 CG TYP 609 60.543 25.684 90.298 1.00 11.75 1 ATOM 2675 CD1 TYP 609 60.543 25.684 90.298 1.00 11.75 1 ATOM 2676 CD1 TYP 609 60.543 25.684 90.298 1.00 11.75 1 ATOM 2677 CD2 TYP 609 59.768 27.078 92.155 1.00 13.86 6 ATOM 2678 CE2 TYP 609 58.494 25.120 91.506 1.00 13.86 6 ATOM 2679 CZ TYP 609 58.494 25.120 91.506 1.00 13.81 1 ATOM 2680 OR TYP 609 58.694 26.235 93.255 1.00 13.81 1 ATOM 2681 C TYP 609 63.316 24.032 88.193 1.00 1.7.35 1 ATOM 2680 CR BIS 610 62.802 23.416 88.207 1.00 10.10 1 ATOM 2681 C TYP 609 63.316 24.032 88.193 1.00 1.7.36 1 ATOM 2682 O TYP 609 63.316 24.032 88.193 1.00 1.7.36 1 ATOM 2680 CR BIS 610 62.802 23.416 88.207 1.00 10.10 1 ATOM 2680 CR BIS 610 65.502 22.808 85.886 1.00 3.51 1 ATOM 2680 CR BIS 610 65.502 22.808 83.753 1.00 2.85 1 ATOM 2680 CR BIS 610 65.502 22.808 83.753 1.00 2.00 1 ATOM 2680 CR BIS 610 65.303 22.819 84.524 1.00 2.00 1 ATOM 2680 CR BIS 610 65.304 20.881 83.896 1.00 2.00 1 ATOM 2690 CR BIS 610 65.302 22.893 82.756 1.00 2.00 1 ATOM 2691 C BIS 610 65.302 22.808 83.753 1.00 2.00 1 ATOM 2693 N ARG 611 60.964 25.703 82.2224 84.774 1.00 3.94 1 ATOM 2690 C B ARG 611 60.856 25.775 82.224 84.774 1.00 3.94 1 ATOM 2690 C B ARG 611 60.856 25.775 82.224 84.774 1.00 3.94 1 ATOM 2690 C B ARG 611 60.856 25.775 82.224 84.774 1.00 3.94 1 ATOM 2690 C B ARG 611 60.856 25.770 83.222 1.00 2.00 1 ATOM 2690 C B ARG 611 60.856 25.770 83.222 1.00 2.00 1 ATOM 2690 C B ARG 611 60.856 25.770 83.222 1.00 2.00 1 ATOM 2700 NH1 ARG 611 60.857 27.711 61.138 1.00 2.00 1 ATOM 2700 C B ARG 611 60.857 27.711 61.138 1.00 2.00 1 ATOM 2700 C B ARG 611 60.857 27.711 61.138 1.00 2.00 1 ATOM 2700 C B ARG 611 60.857 27.711 61.138 1.00 2				ARG	608	61.1	69	24.719				
ATOM 2668 NH2 ARG 608 61.193 26.817 96.773 1.00 13.98 ATOM 2669 C ARG 608 62.586 59.218 25.936 66.048 1.00 13.38 ATOM 2670 O ARG 608 62.586 39.218 91.739 1.00 6.91 ATOM 2671 N TYP 609 62.506 22.836 91.612 1.00 8.99 ATOM 2671 N TYP 609 62.405 24.140 89.406 1.00 7.03 ATOM 2673 CB TYP 609 61.532 25.394 89.203 1.00 11.75 ATOM 2673 CB TYP 609 60.700 26.798 91.137 1.00 12.55 ATOM 2675 CD1 TYP 609 60.700 26.798 91.137 1.00 12.55 ATOM 2675 CD1 TYP 609 59.768 27.078 92.156 1.00 13.98 ATOM 2676 CE1 TYP 609 59.768 27.078 92.156 1.00 13.98 ATOM 2677 CD2 TYP 609 59.644 24.852 90.499 1.00 13.63 ATOM 2678 CE2 TYP 609 58.644 25.235 92.326 1.00 15.21 ATOM 2680 OR TYP 609 53.316 24.032 88.193 1.00 17.36 1.00 ATOM 2681 C TYP 609 64.448 24.514 88.207 1.00 10.10 1.00 ATOM 2680 N HIS 610 62.802 23.416 87.137 1.00 4.17 ATOM 2681 CB HIS 610 63.336 22.308 85.886 1.00 3.51 1.00 ATOM 2683 CB HIS 610 63.356 22.308 85.886 1.00 3.51 1.00 ATOM 2680 CB HIS 610 65.122 1.888 88.203 1.00 10.10 1.00 ATOM 2680 CB HIS 610 65.346 20.803 83.896 1.00 2.00 ATOM 2689 CB HIS 610 66.030 20.893 84.524 1.00 2.00 1.00 ATOM 2689 CB HIS 610 66.030 20.893 82.786 1.00 2.00 ATOM 2689 CB HIS 610 66.030 20.893 82.786 1.00 2.00 ATOM 2690 CB HIS 610 66.300 20.893 82.786 1.00 2.00 ATOM 2690 CB HIS 610 66.200 22.850 83.753 1.00 2.00 ATOM 2690 CB HIS 610 66.200 22.890 83.753 1.00 2.00 ATOM 2690 CB HIS 610 66.200 22.890 82.786 1.00 2.00 ATOM 2690 CB HIS 610 66.200 22.890 83.753 1.00 2.00 ATOM 2690 CB HIS 610 66.200 22.893 82.786 1.00 2.00 ATOM 2690 CB HIS 610 66.200 22.893 82.786 1.00 2.00 ATOM 2690 CB HIS 610 66.200 22.893 82.786 1.00 2.00 ATOM 2690 CB HIS 610 66.200 22.893 82.786 1.00 2.00 ATOM 2690 CB HIS 610 66.200 22.893 82.786 1.00 2.00 ATOM 2690 CB HIS 610 66.200 22.893 82.786 1.00 2.00 ATOM 2690 CB HIS 610 66.200 22.893 82.786 1.00 2.00 ATOM 2690 CB HIS 610 66.200 22.893 82.786 1.00 2.00 ATOM 2690 CB HIS 610 66.200 22.893 82.292 1.00 2.00 ATOM 2700 NH ARG 611 52.600 22.803 82.292 1.00 2.00 ATOM 2700 NH ARG 611 52.600 22.803 82.292 1.00 2.00 ATOM 2700 CB ARG 611 5			CZ	ARG	608	60.	530					:
ATOM 2669 N. ARG 608 59,216 25,936 96,048 1.00 13.38 ATOM 2670 0 ARG 608 62,586 23,548 91,632 1.00 6.91 1 ATOM 2671 N TYR 609 63,095 24,194 90,700 1.00 7.03 ATOM 2673 CB TYR 609 61,532 25,394 89,202 1.00 7.03 ATOM 2674 CG TYE 609 60,543 25,684 90,298 1.00 11.75 ATOM 2675 CD1 TYR 609 60,543 25,684 90,298 1.00 11.75 ATOM 2676 CD1 TYR 609 60,543 25,684 90,298 1.00 11.75 ATOM 2676 CD1 TYR 609 60,543 25,684 90,298 1.00 11.75 ATOM 2677 CD2 TYR 609 59,768 27,078 91,137 1.00 12.35 ATOM 2677 CD2 TYR 609 59,768 27,078 92,135 1.00 13.86 ATOM 2679 CZ TYR 609 59,768 27,078 92,135 1.00 13.86 ATOM 2679 CZ TYR 609 58,644 25,120 91,506 1.00 13.63 ATOM 2680 OR TYR 609 58,664 26,235 92,326 1.00 15,21 6 ATOM 2680 OR TYR 609 63,316 24,032 88,193 1.00 7,45 6 ATOM 2680 OR TYR 609 63,316 24,032 88,193 1.00 7,45 6 ATOM 2680 CG RIS 610 62,803 23,416 88,207 1.00 10.10 ATOM 2680 CB RIS 610 62,803 23,416 88,207 1.00 10.10 ATOM 2680 CB RIS 610 64,306 21,995 85,775 1.00 2,805 67 ATOM 2680 CB RIS 610 65,532 93,3255 1.00 2,805 67 ATOM 2680 ND HIS 610 65,543 22,308 85,886 1.00 3,51 1.00 ATOM 2680 CB RIS 610 64,306 21,995 85,775 1.00 2,805 67 ATOM 2680 ND HIS 610 65,692 22,830 83,733 1.00 2,00 1.00 ATOM 2680 ND HIS 610 65,030 20,893 82,786 1.00 2,00 1.00 ATOM 2680 ND HIS 610 65,030 20,893 82,786 1.00 2,00 1.00 ATOM 2693 N ARG 611 65,942 22,824 84,794 1.00 3,94 1.00 ATOM 2693 N ARG 611 62,895 22,830 83,733 1.00 2,00 1.00 ATOM 2694 CA ARG 611 60,946 23,703 83,222 1.00 2.00 1.00 ATOM 2695 CB ARG 611 60,946 23,703 83,222 1.00 2.00 1.00 ATOM 2695 CB ARG 611 60,946 23,703 83,222 1.00 2.00 1.00 ATOM 2696 CC VAL 612 63,806 23,507 63,222 1.00 2.00 1.00 ATOM 2700 NH1 ARG 611 75,602 24,306 83,807 1.00 4.10 1.00 ATOM 2700 NH ARG 611 75,602 27,711 11.13 1.00 4.17 1.00 ATOM 2700 NH ARG 611 75,602 27,711 11.13 1.00 4.17 1.00 ATOM 2700 CR ARG 611 62,657 24,948 81.558 1.00 2.00 2.00 ATOM 2700 CR ARG 611 62,657 24,948 81.558 1.00 2.00 2.00 ATOM 2700 CR ARG 611 61,800 25,300 81,800 1.00 3.11 1.00 4.11 1.00 4.10 1.00 1.00 1.00 1		2667	NHI	ARG	608							
ATOM 2670 0 ARG 608 61.613 22.836 91.612 1.00 8.99 ATOM 2671 N TYP 609 63.095 24.194 90.700 1.00 7.03 1.00 ATOM 2672 CA TYP 609 62.405 24.194 89.406 1.00 7.82 f. ATOM 2673 CB TYP 609 61.532 25.394 89.203 1.00 9.92 f. ATOM 2674 CG TYP 609 60.532 25.684 90.298 1.00 11.75 f. ATOM 2675 CD1 TYP 609 60.532 25.684 90.298 1.00 11.75 f. ATOM 2676 CE1 TYR 609 59.768 27.078 91.137 1.00 12.36 ATOM 2677 CD2 TYP 609 59.434 24.852 90.499 1.00 11.75 f. ATOM 2678 CE2 TYP 609 59.434 24.852 90.499 1.00 13.86 f. ATOM 2679 CZ TYP 609 58.694 25.120 91.506 1.00 13.89 f. ATOM 2679 CZ TYP 609 58.694 25.120 91.506 1.00 13.86 f. ATOM 2680 OR TYP 609 59.6864 26.235 92.326 1.00 15.21 f. ATOM 2681 C TYP 609 63.316 24.032 88.193 1.00 7.45 f. ATOM 2683 N HIS 610 62.803 23.416 87.137 1.00 4.17 ATOM 2680 OR TYP 609 64.448 24.514 88.207 1.00 10.10 f. ATOM 2680 CG HIS 610 63.536 23.308 85.886 1.00 3.51 f. ATOM 2680 CG HIS 610 63.536 23.308 85.886 1.00 3.51 f. ATOM 2680 CG HIS 610 65.312 21.883 84.524 1.00 2.00 f. ATOM 2680 CG HIS 610 65.312 21.883 84.524 1.00 2.00 f. ATOM 2680 CG HIS 610 65.346 20.681 83.895 1.00 7.45 f. ATOM 2680 CG HIS 610 65.346 20.681 83.895 1.00 2.00 f. ATOM 2690 CH HIS 610 65.346 20.681 83.895 1.00 2.00 f. ATOM 2690 CH HIS 610 65.200 22.189 82.786 1.00 2.00 f. ATOM 2690 CH HIS 610 65.200 22.189 82.676 1.00 2.00 f. ATOM 2690 CH HIS 610 65.200 22.189 82.776 1.00 2.00 f. ATOM 2690 CH JIS 610 66.230 2.893 82.786 1.00 2.00 f. ATOM 2690 CH JIS 610 66.230 22.189 82.676 1.00 2.00 f. ATOM 2690 CH JIS 610 66.230 22.189 82.676 1.00 2.00 f. ATOM 2690 CH JIS 610 66.230 22.189 82.676 1.00 2.00 f. ATOM 2690 CH JIS 610 66.230 22.189 82.786 1.00 2.00 f. ATOM 2690 C ARG 611 61.858 24.561 82.756 1.00 2.00 f. ATOM 2690 C ARG 611 60.862 80.807 1.00 4.31 f. ATOM 2690 C ARG 611 60.808 80.808		2668	NH2	ARG	608							
ATCH 2670 0 ARC 300 AR		2669										
ATOM 2672 CA TYPE 609 62.405 24.140 89.406 1.00 7.82 ATOM 2673 CB TYPE 609 61.532 25.394 89.202 1.00 9.92 1.00 ATOM 2676 CE1 TYPE 609 60.507 25.394 89.202 1.00 11.75 4.00	ATOM											:
ATOM 2673 CB TYR 609 61.532 25.394 69.203 1.00 9.92 ATOM 2675 CDI TYR 609 60.543 25.684 90.298 1.00 11.75 6 ATOM 2675 CDI TYR 609 60.700 26.798 91.137 1.00 12.36 ATOM 2676 CEI TYR 609 59.768 27.078 92.156 1.00 13.98 ATOM 2679 CZ TYR 609 59.434 24.852 90.499 1.00 13.86 ATOM 2679 CZ TYR 609 58.694 25.120 91.506 1.00 13.98 ATOM 2679 CZ TYR 609 58.694 25.120 91.506 1.00 15.21 6 ATOM 2680 OH TYR 609 57.689 26.529 93.255 1.00 17.36 ATOM 2680 OH TYR 609 57.689 26.529 93.255 1.00 17.36 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2680 OH TYR 609 64.448 24.514 68.207 1.00 0.2.00 ATOM 2680 NB HIS 610 65.346 20.681 83.886 1.00 2.00 ATOM 2689 OH TYR 610 65.346 20.681 83.886 1.00 2.00 ATOM 2689 OH TYR 610 65.346 20.681 83.886 1.00 2.00 ATOM 2689 OH TYR 610 66.030 20.893 82.786 1.00 2.00 ATOM 2693 N ARG 611 62.00 22.456 64.774 1.00 3.944 ATOM 2693 N ARG 611 62.00 22.456 64.774 1.00 3.944 ATOM 2693 N ARG 611 62.00 22.456 64.774 1.00 3.944 ATOM 2693 N ARG 611 62.697 22.824 84.794 1.00 4.37 ATOM 2695 CB ARG 611 50.402 20.00 ATOM 2695 CB ARG 611 50.402 20.202 22.202 20.00 2.00 ATOM 2700 NH1 ARG 611 55.605 27.711 61.138 1.00 2.00 2.00 ATOM 2700 NH1 ARG 611 56.607 22.893 82.203 1.00 2.00 2.00 ATOM 2700 CB ARG 611 50.608 20.203 ATOM 2700 C												2
ATOM 2674 CG TYR 609 60.543 25.684 90.298 1.00 11.75 ATOM 2675 CD1 TYR 609 50.700 26.798 91.137 1.00 12.36 FATOM 2676 CD1 TYR 609 59.434 24.832 90.499 1.00 13.98 FATOM 2678 CE2 TYR 609 59.434 24.832 90.499 1.00 13.63 ATOM 2679 CZ TYR 609 58.664 26.235 92.326 1.00 15.21 FATOM 2680 OR TYR 609 57.689 26.529 93.255 1.00 17.36 ATOM 2680 OR TYR 609 63.316 24.032 88.193 1.00 7.45 ATOM 2681 C TYR 609 63.316 24.032 88.193 1.00 7.45 ATOM 2681 C TYR 609 64.448 24.514 88.207 1.00 10.10 In ATOM 2683 N HIS 610 63.536 22.308 65.886 1.00 3.51 ATOM 2685 CB HIS 610 63.536 22.308 65.886 1.00 3.51 ATOM 2686 CG HIS 610 65.112 21.883 84.524 1.00 2.05 ATOM 2680 ND1 HIS 610 65.692 22.830 83.753 1.00 2.00 ATOM 2689 CE HIS 610 65.362 20.883 84.524 1.00 2.00 ATOM 2689 CE HIS 610 66.230 22.485 87.100 2.00 ATOM 2689 CE HIS 610 66.230 22.485 87.100 2.00 ATOM 2689 CE HIS 610 66.230 22.485 87.100 2.00 ATOM 2689 CE HIS 610 66.230 22.485 87.775 1.00 2.00 ATOM 2689 CE HIS 610 66.230 22.485 87.775 1.00 2.00 ATOM 2689 CE HIS 610 66.230 22.485 87.775 1.00 2.00 ATOM 2689 CE HIS 610 66.230 22.485 87.775 1.00 2.00 ATOM 2690 CE HIS 610 66.230 22.189 82.676 1.00 2.00 ATOM 2690 CE HIS 610 66.230 22.189 82.676 1.00 2.00 ATOM 2690 CE HIS 610 66.230 82.893 82.786 1.00 2.00 ATOM 2690 CE HIS 610 66.230 82.893 82.786 1.00 2.00 ATOM 2690 CE HIS 610 62.250 22.456 64.774 1.00 3.94 ATOM 2695 CB ARG 611 60.962 57.703 83.222 1.00 2.00 ATOM 2695 CB ARG 611 60.862 57.703 83.222 1.00 2.00 ATOM 2695 CB ARG 611 60.862 57.703 83.222 1.00 2.00 ATOM 2695 CB ARG 611 50.462 57.703 83.222 1.00 2.00 ATOM 2695 CB ARG 611 50.462 57.703 83.222 1.00 2.00 ATOM 2695 CB ARG 611 50.462 57.703 83.222 1.00 2.00 ATOM 2700 NH1 ARG 611 52.667 27.834 81.931 1.00 4.31 ATOM 2700 NH2 ARG 611 50.462 57.703 83.222 1.00 2.00 ATOM 2700 CD ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2700 CD ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2700 CD ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2700 CD ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2700 CD ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2700 CD ARG												
ATOM 2675 CD1 TYR 609 50.700 26.798 91.137 1.00 12.36 ATOM 2676 CE1 TYR 609 59.768 27.078 92.156 1.00 13.98 ATOM 2677 CD2 TYR 609 59.768 27.078 92.156 1.00 13.98 ATOM 2678 CE2 TYR 609 58.494 25.120 91.506 1.00 13.65 ATOM 2680 OR TYR 609 57.689 26.529 93.255 1.00 17.36 ATOM 2680 OR TYR 609 57.689 26.529 93.255 1.00 17.36 ATOM 2681 C TYP. 609 63.316 24.032 88.193 1.00 7.45 ATOM 2682 O TYR 609 64.488 24.514 68.207 1.00 10.10 ATOM 2683 N HIS 610 62.802 23.416 87.137 1.00 4.17 ATOM 2684 CA HIS 610 63.536 22.308 65.886 1.00 3.51 ATOM 2685 CB HIS 610 64.306 21.995 65.775 1.00 2.85 ATOM 2686 CG HIS 610 65.112 21.883 84.524 1.00 2.00 ATOM 2680 ND HIS 610 65.346 20.2803 83.956 1.00 2.00 ATOM 2680 ND HIS 610 65.346 20.2803 83.753 1.00 2.00 ATOM 2680 ND HIS 610 66.300 20.893 82.786 1.00 2.00 ATOM 2690 NEZ HIS 610 66.300 20.893 82.786 1.00 2.00 ATOM 2690 NEZ HIS 610 66.300 20.893 82.786 1.00 2.00 ATOM 2690 NEZ HIS 610 66.230 22.189 82.676 1.00 2.00 ATOM 2690 NEZ HIS 610 62.2500 23.456 64.774 1.00 3.94 ATOM 2693 N ARG 611 61.858 24.561 82.756 1.00 2.00 ATOM 2690 NEZ HIS 610 62.790 24.306 83.807 1.00 4.10 ATOM 2690 NEZ HIS 610 62.790 24.306 83.807 1.00 4.10 ATOM 2690 NEZ HIS 610 62.790 22.2456 64.774 1.00 3.94 ATOM 2690 NEZ HIS 610 62.500 22.189 82.676 1.00 2.00 ATOM 2690 NEZ HIS 610 62.500 22.456 64.774 1.00 3.94 ATOM 2690 NEZ HIS 610 62.500 22.456 64.774 1.00 3.94 ATOM 2690 NEZ HIS 610 62.500 22.456 84.774 1.00 3.94 ATOM 2690 NEZ HIS 610 62.500 22.456 84.774 1.00 3.94 ATOM 2690 NEZ HIS 610 62.500 22.456 84.774 1.00 3.94 ATOM 2690 NEZ HIS 610 62.500 22.456 84.774 1.00 3.94 ATOM 2690 NEZ HIS 610 62.500 22.456 84.774 1.00 3.94 ATOM 2690 NEZ HIS 610 62.500 22.456 84.774 1.00 3.94 ATOM 2690 NEZ HIS 610 62.500 22.456 84.774 1.00 3.94 ATOM 2690 NEZ HIS 610 62.500 22.456 84.774 1.00 3.94 ATOM 2690 NEZ HIS 610 62.500 22.00 82.50												
ATOM 2676 CE1 TYR 609 59.768 27.078 92.156 1.00 13.98 f ATOM 2677 CD2 TYR 609 59.434 24.852 90.499 1.00 13.86 f ATOM 2678 CEZ TYR 609 58.694 24.852 90.499 1.00 13.63 f ATOM 2679 CZ TYR 609 58.694 22.120 91.506 1.00 13.63 f ATOM 2680 ON TYR 609 57.689 26.529 93.256 1.00 15.21 f ATOM 2681 C TYP 609 63.316 24.032 88.193 1.00 7.45 f ATOM 2681 C TYP 609 63.316 24.032 88.193 1.00 7.45 f ATOM 2683 N HIS 610 62.802 23.416 87.137 1.00 4.17 ATOM 2683 N HIS 610 63.536 23.308 65.886 1.00 3.51 f ATOM 2686 C RIS 610 64.306 21.995 65.775 1.00 2.85 f ATOM 2687 CD2 RIS 610 65.362 22.830 83.753 1.00 2.00 f ATOM 2687 CD2 RIS 610 65.362 20.893 82.786 1.00 2.00 f ATOM 2689 C RIS 610 65.362 20.893 82.786 1.00 2.00 f ATOM 2689 C RIS 610 66.030 20.893 82.786 1.00 2.00 f ATOM 2689 C RIS 610 66.030 20.893 82.786 1.00 2.00 f ATOM 2689 C RIS 610 66.230 22.189 82.676 1.00 2.00 f ATOM 2690 C RIS 610 66.230 22.189 82.676 1.00 2.00 f ATOM 2693 N ARG 611 62.2500 22.456 64.774 1.00 3.94 ATOM 2693 C RIS 610 61.459 22.824 84.794 1.00 4.37 ATOM 2693 C RIS 610 61.858 24.561 82.756 1.00 2.00 f ATOM 2694 C A ARG 611 62.795 24.306 83.807 1.00 4.10 ATOM 2695 C ARG 611 61.858 24.561 82.756 1.00 2.00 f ATOM 2699 C ARG 611 50.796 25.773 82.826 1.00 2.00 f ATOM 2699 C ARG 611 50.796 25.793 82.222 1.00 2.00 f ATOM 2699 C ARG 611 50.796 25.793 82.222 1.00 2.00 f ATOM 2699 C ARG 611 50.796 25.793 82.826 1.00 2.00 f ATOM 2700 NH1 ARG 611 50.701 25.299 82.920 1.00 2.76 f ATOM 2700 NH2 ARG 611 50.605 27.711 E1.138 1.00 2.00 f ATOM 2700 C ARG 611 62.805 24.668 78.198 1.00 4.99 f ATOM 2700 C ARG 611 62.805 24.668 78.198 1.00 2.00 f ATOM 2700 C ARG 611 62.805 24.668 78.198 1.00 2.00 f ATOM 2700 C ARG 611 62.805 24.668 78.198 1.00 2.00 f ATOM 2700 C ARG 611 62.805 24.668 78.198 1.00 2.00 f ATOM 2700 NH2 ARG 611 62.805 27.711 E1.138 1.00 2.00 f ATOM 2700 C ARG 611 62.805 24.668 78.198 1.00 2.00 f ATOM 2700 C ARG 611 62.805 24.668 78.198 1.00 2.00 f ATOM 2700 C ARG 611 62.805 24.668 78.198 1.00 2.00 6.00 6.00 6.00 6.00 6.00 6.00 6												•
ATOM 2679 CZ TYR 609 58.494 24.852 90.499 1.00 13.86 f ATOM 2679 CZ TYR 609 58.664 25.235 92.326 1.00 15.21 f ATOM 2680 OR TYR 609 57.689 26.529 93.255 1.00 17.36 f ATOM 2680 OR TYR 609 63.316 24.032 88.193 1.00 7.45 f ATOM 2682 O TYR 609 63.316 24.032 88.193 1.00 7.45 f ATOM 2682 O TYR 609 64.448 24.514 68.207 1.00 10.10 f ATOM 2683 N HIS 610 62.802 23.416 87.137 1.00 4.17 ATOM 2685 CB HIS 610 64.306 21.995 65.775 1.00 2.85 f ATOM 2685 CB HIS 610 65.356 22.308 65.886 1.00 3.51 f ATOM 2687 CD HIS 610 65.366 20.893 82.785 1.00 2.00 f ATOM 2687 CD HIS 610 65.366 22.2830 83.753 1.00 2.00 f ATOM 2687 CD HIS 610 65.366 20.681 83.896 1.00 2.00 f ATOM 2689 CE HIS 610 65.366 20.681 83.896 1.00 2.00 f ATOM 2689 CE HIS 610 66.030 20.893 82.786 1.00 2.00 f ATOM 2691 C HIS 610 66.030 20.893 82.786 1.00 2.00 f ATOM 2692 O HIS 610 62.2506 22.456 64.774 1.00 3.94 f ATOM 2692 O HIS 610 62.790 24.306 83.807 1.00 4.10 ATOM 2692 O HIS 610 61.459 22.828 84.794 1.00 3.94 f ATOM 2695 CB ARG 611 60.946 25.703 83.222 1.00 2.00 f ATOM 2695 CB ARG 611 60.946 25.703 83.222 1.00 2.00 f ATOM 2699 D ARG 611 50.946 25.703 83.222 1.00 2.00 f ATOM 2699 C ARG 611 50.946 25.703 83.222 1.00 2.00 f ATOM 2699 C ARG 611 50.946 25.703 83.222 1.00 2.00 f ATOM 2699 C ARG 611 50.946 25.703 83.222 1.00 2.00 f ATOM 2700 NH1 ARG 611 56.850 28.973 62.342 1.00 4.91 f ATOM 2700 NH1 ARG 611 56.850 28.973 62.342 1.00 4.91 f ATOM 2700 NH2 ARG 611 56.647 27.834 81.931 1.00 4.91 f ATOM 2700 C ARG 611 62.657 24.994 81.558 1.00 2.00 f ATOM 2705 C ARG 611 62.657 24.994 81.558 1.00 2.00 f ATOM 2705 C ARG 611 62.657 24.994 81.558 1.00 2.00 f ATOM 2705 C ARG 611 62.657 24.994 81.558 1.00 2.00 6.70 ATOM 2705 C ARG 611 62.657 24.994 81.558 1.00 2.00 6.70 ATOM 2705 C ARG 611 62.657 24.994 81.558 1.00 2.00 6.70 ATOM 2705 C ARG 611 62.850 28.973 62.342 1.00 62.39 ATOM 2705 C ARG 611 62.857 29.997 79.471 1.00 2.00 6.70 ATOM 2705 C ARG 611 62.857 29.997 79.471 1.00 2.00 6.70 ATOM 2705 C ARG 611 62.857 29.997 79.471 1.00 2.00 6.70 ATOM 2705 C ARG 611 62.857 29.997 79.471 1.00 2												•
ATCH 2678 CE2 TYR 609 58.494 25.120 91.506 1.00 13.63 f ATCH 2679 CZ TYR 609 58.664 26.235 92.326 1.00 17.36 f ATCH 2680 OR TYR 609 57.689 26.529 93.255 1.00 17.36 f ATCH 2681 C TYP 609 63.316 24.032 88.193 1.00 7.45 f ATCH 2681 C TYP 609 63.316 24.032 88.193 1.00 7.45 f ATCH 2683 N HIS 610 62.803 23.416 87.137 1.00 4.17 f ATCH 2685 CB HIS 610 63.536 22.308 85.886 1.00 3.51 f ATCH 2685 CB HIS 610 64.306 21.995 85.775 1.00 2.85 f ATCH 2686 CG HIS 610 65.342 22.830 83.753 1.00 2.00 f ATCH 2687 CD2 HIS 610 65.346 20.681 83.896 1.00 2.00 f ATCH 2689 CE1 HIS 610 66.030 20.893 82.786 1.00 2.00 f ATCH 2689 CE1 HIS 610 66.030 20.893 82.786 1.00 2.00 f ATCH 2690 NE2 HIS 610 66.030 20.893 82.786 1.00 2.00 f ATCH 2690 NE2 HIS 610 66.250 22.189 82.676 1.00 2.00 f ATCH 2690 C HIS 610 66.250 22.189 82.676 1.00 2.00 f ATCH 2690 NE2 HIS 610 66.250 22.189 82.676 1.00 2.00 f ATCH 2690 C HIS 610 66.250 22.189 82.676 1.00 2.00 f ATCH 2690 NE2 HIS 610 66.250 22.189 82.676 1.00 2.00 f ATCH 2690 NE2 HIS 610 66.250 22.189 82.676 1.00 2.00 f ATCH 2690 C HIS 610 61.459 22.824 84.794 1.00 4.37 f ATCH 2690 C ARG 611 61.858 24.561 82.756 1.00 2.00 f ATCH 2690 C ARG 611 60.858 24.561 82.756 1.00 2.00 f ATCH 2690 C ARG 611 60.858 24.561 82.756 1.00 2.00 f ATCH 2690 C ARG 611 50.701 25.890 92.920 1.00 2.00 f ATCH 2700 NHL ARG 611 50.761 25.890 92.920 1.00 2.00 f ATCH 2700 NHL ARG 611 50.761 25.890 92.920 1.00 2.00 f ATCH 2700 NHL ARG 611 50.664 27.913 81.931 1.00 4.31 f ATCH 2701 NH2 ARG 611 50.666 27.711 1.138 1.00 5.17 f ATCH 2702 C ARG 611 62.657 24.994 81.558 1.00 2.00 f ATCH 2703 C ARG 611 62.852 25.256 79.118 1.00 5.17 f ATCH 2704 N VAL 612 62.657 24.994 81.558 1.00 2.00 f ATCH 2705 CG VAL 612 63.905 24.668 73.198 1.00 5.17 f ATCH 2707 CG VAL 612 63.905 24.567 76.967 1.00 6.96 f ATCH 2708 CG VAL 612 63.905 24.668 73.198 1.00 5.17 f ATCH 2707 CG VAL 612 63.905 24.668 73.198 1.00 5.17 f ATCH 2708 CG VAL 612 63.905 24.668 73.198 1.00 2.00 f ATCH 2709 C VAL 612 63.905 25.906 73.464 1.00 2.00 6.90 f ATCH 2707 CG VAL 612 613 60.895 25.909 73.										1.00 1	3.86	•
ATOM 2680 OH TYR 609 57.689 26.529 93.256 1.00 17.36 ATOM 2681 C TYP 609 63.316 24.032 88.193 1.00 7.45 ATOM 2682 O TYR 609 64.448 24.514 68.207 1.00 10.10 ATOM 2683 N HIS 610 62.803 23.416 87.137 1.00 4.17 ATOM 2684 CA HIS 610 63.536 22.308 65.886 1.00 3.51 ATOM 2686 CB HIS 610 64.306 21.995 65.775 1.00 2.85 ATOM 2686 CB HIS 610 65.112 21.883 84.524 1.00 2.00 ATOM 2687 CD2 HIE 610 65.692 22.830 83.753 1.00 2.00 ATOM 2688 ND1 HIS 610 65.346 20.681 83.896 1.00 2.00 ATOM 2689 CEI HIS 610 65.346 20.681 83.896 1.00 2.00 ATOM 2690 NE2 HIE 610 65.346 20.681 83.896 1.00 2.00 ATOM 2690 NE2 HIE 610 66.030 20.893 82.786 1.00 2.00 ATOM 2690 NE2 HIS 610 66.250 22.189 82.676 1.00 2.00 ATOM 2693 N ARG 611 62.500 23.456 64.774 1.00 3.94 ATOM 2694 CA ARG 611 62.500 23.456 64.774 1.00 3.94 ATOM 2695 CB ARG 611 62.500 23.456 64.774 1.00 3.94 ATOM 2696 CG ARG 611 60.946 25.703 83.222 1.00 2.00 ATOM 2698 NE ARG 611 59.476 25.773 82.826 1.00 2.00 ATOM 2699 CZ ARG 611 57.501 26.833 22.093 1.00 4.99 ATOM 2699 CZ ARG 611 56.685 24.561 82.756 1.00 2.00 ATOM 2699 CZ ARG 611 57.501 26.833 22.093 1.00 4.99 ATOM 2701 NH2 ARG 611 56.685 27.731 61.138 1.00 4.31 ATOM 2702 C ARG 611 56.657 24.994 81.558 1.00 2.00 ATOM 2703 O ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2704 N VAL 612 62.677 24.833 80.388 1.00 2.00 ATOM 2705 CB VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2706 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2707 CG1 VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2708 CG2 VAL 612 63.966 24.068 78.198 1.00 5.276 ATOM 2709 C VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2713 CB ILE 613 60.857 77.710 77.968 1.00 2.00 ATOM 2714 CC2 ILE 613 60.857 77.710 77.968 1.00 2.00 ATOM 2715 CB ILE 613 60.857 77.710 77.961 1.00 2.00 ATOM 2716 CD1 ILE 613 60.857 77.709 1.00 2.00 ATOM 2717 C ILE 613 60.857 77.709 1.00 2.00 ATOM 2719 N HIS 614 60.252 00.00 77.4241 1.00 2.00 ATOM 2719 N HIS 614 60.252 00.00 77.4241 1.00 2.35 ATOM 2719 N HIS 614 60.252 00.00 77.4241 1.00 2.00 ATOM								25.120	91.506	1.00 1	3.63	
ATOM 2680 OH TYE 609 57.689 26.529 93.255 1.00 17.36 E ATOM 2681 C TYP. 609 63.316 24.032 88.193 1.00 7.45 E ATOM 2682 O TYR 609 64.448 24.514 88.207 1.00 10.10 E ATOM 2683 N HIS 610 62.802 23.416 87.137 1.00 4.17 ATOM 2684 CA HIS 610 63.536 22.308 65.886 1.00 3.51 ATOM 2685 CB HIS 610 64.306 21.995 85.775 1.00 2.85 E ATOM 2686 CG HIS 610 65.312 21.883 84.524 1.00 2.00 E ATOM 2686 CD HIS 610 65.312 21.883 84.524 1.00 2.00 ATOM 2688 ND1 HIS 610 65.346 20.681 83.895 1.00 2.00 ATOM 2689 CEI HIS 610 66.030 20.893 82.786 1.00 2.00 ATOM 2689 CEI HIS 610 66.030 20.893 82.786 1.00 2.00 ATOM 2690 NE2 HIS 610 66.230 22.189 82.676 1.00 2.00 ATOM 2690 C HIS 610 61.459 22.824 84.794 1.00 3.94 ATOM 2692 C HIS 610 61.459 22.824 84.794 1.00 3.94 ATOM 2695 CB ARG 611 61.858 24.561 82.756 1.00 2.00 ATOM 2695 CB ARG 611 61.858 24.561 82.756 1.00 2.00 ATOM 2695 CB ARG 611 61.858 24.561 82.756 1.00 2.00 ATOM 2695 CB ARG 611 61.858 24.561 82.756 1.00 2.00 ATOM 2697 CD ARG 611 59.476 25.573 82.222 1.00 2.00 ATOM 2698 CA ARG 611 59.476 25.573 82.222 1.00 2.00 ATOM 2698 CA ARG 611 59.476 25.573 82.222 1.00 2.00 ATOM 2698 CA ARG 611 59.476 25.573 82.222 1.00 2.00 ATOM 2698 CA ARG 611 59.476 25.573 82.222 1.00 2.00 ATOM 2698 CA ARG 611 59.476 25.573 82.222 1.00 2.00 ATOM 2698 CA ARG 611 59.476 25.573 82.222 1.00 2.00 ATOM 2698 CA ARG 611 59.476 25.573 82.222 1.00 5.34 ATOM 2700 NM1 ARG 611 56.687 27.814 71.11 1.138 1.00 2.00 ATOM 2700 NM1 ARG 611 56.687 27.711 1.118 1.00 2.00 ATOM 2700 NM1 ARG 611 56.687 27.711 1.118 1.00 2.00 ATOM 2700 CC ARG 611 56.647 27.834 81.931 1.00 4.31 ATOM 2700 CC ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2700 CC ARG 611 56.647 27.834 81.931 1.00 4.31 ATOM 2700 CC ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2700 CC ARG 611 62.800 25.7711 1.138 1.00 2.00 ATOM 2700 CC ARG 611 62.800 25.7711 1.138 1.00 2.00 ATOM 2700 CC ARG 611 62.800 25.7711 1.138 1.00 2.00 ATOM 2700 CC ARG 611 62.800 25.7711 1.138 1.00 2.00 ATOM 2700 CC ARG 611 62.800 25.7711 1.138 1.00 2.00 ATOM 2700 CC ARG 611 62.800 25.7711 1.138 1.00 2.00						58.	664	26.235	92.326			
ATOM 2681 C TYP. 609 63.316 24.032 88.193 1.00 7.45 ATOM 2683 N HIS 610 62.803 23.416 87.137 1.00 4.17 ATOM 2683 N HIS 610 62.803 23.416 87.137 1.00 4.17 ATOM 2686 CB HIS 610 63.536 23.308 85.886 1.00 3.51 ATOM 2686 CG BIS 610 65.312 21.883 84.524 1.00 2.00 ATOM 2686 CG BIS 610 65.112 21.883 84.524 1.00 2.00 ATOM 2687 CD2 HIS 610 65.346 20.581 83.896 1.00 2.00 ATOM 2689 CEI HIS 610 65.346 20.581 83.896 1.00 2.00 ATOM 2689 CEI HIS 610 66.030 20.893 82.786 1.00 2.00 ATOM 2689 CEI HIS 610 66.030 20.893 82.786 1.00 2.00 ATOM 2691 C HIS 610 66.250 22.189 82.676 1.00 2.00 ATOM 2692 0 HIS 610 62.250 22.189 82.676 1.00 2.00 ATOM 2693 N ARG 611 62.790 24.306 83.807 1.00 4.37 ATOM 2695 CB ARG 611 62.858 24.551 82.756 1.00 2.00 ATOM 2695 CB ARG 611 62.858 24.551 82.756 1.00 2.00 ATOM 2695 CB ARG 611 62.858 24.551 82.756 1.00 2.00 ATOM 2695 CB ARG 611 59.476 25.573 82.822 1.00 2.00 ATOM 2699 CD ARG 611 59.476 25.573 82.822 1.00 2.00 ATOM 2699 CD ARG 611 59.476 25.573 82.826 1.00 5.34 ATOM 2699 CD ARG 611 55.605 27.711 61.138 1.00 2.00 ATOM 2700 NH1 ARG 611 55.605 28.773 82.826 1.00 5.34 ATOM 2700 NH1 ARG 611 56.850 28.773 82.826 1.00 3.11 ATOM 2700 NH1 ARG 611 56.850 28.773 82.826 1.00 2.00 ATOM 2700 NH1 ARG 611 56.850 28.773 82.826 1.00 2.00 ATOM 2700 C ARG 611 63.806 28.4068 78.198 1.00 2.00 ATOM 2700 C ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2700 C ARG 611 63.800 25.350 21.600 3.11 ATOM 2700 C ARG 611 63.800 25.350 21.600 3.11 ATOM 2700 C ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2701 CB VAL 612 63.800 24.567 76.967 1.00 2.00 ATOM 2702 C ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2702 C ARG 611 62.800 25.350 21.600 73.464 1.00 2.00 ATOM 2701 CB VAL 612 63.800 24.567 77.11 61.138 1.00 2.00 ATOM 2701 CB VAL 612 63.800 24.567 77.11 61.138 1.00 2.00 ATOM 2701 CB VAL 612 63.800 24.567 77.11 61.00 2.00 3.11 ATOM 2701 CB VAL 612 63.800 24.567 77.11 61.00 2.00 3.11 ATOM 2701 CB VAL 612 63.800 24.567 77.11 61.00 2.00 3.11 ATOM 2701 CB VAL 612 63.800 24.567 77.11 61.00 2.00 2.00 ATOM 2712 CB HIS 613 60.800 25.350 77.709 1.						57.	689					
ATOM 2682 O TYR 609 64.448 24.514 88.207 1.00 1.10 1.10 1.10 2683 N HIS 610 62.803 23.416 87.137 1.00 4.17 ATOM 2684 CA HIS 610 63.336 23.308 85.886 1.00 3.51 1.00 1.10 1.10 1.10 1.10 1.10 1.10 1			C	TYP.	609	63.	316					
ATOM 2683 N HIS 610 62.803 23.416 87.13 1.00 2.17 ATOM 2685 CB HIS 610 63.536 22.308 85.886 1.00 3.51 1.00 ATOM 2685 CB HIS 610 64.306 21.995 85.775 1.00 2.85 1.00 ATOM 2686 CG HIS 610 65.112 21.883 84.524 1.00 2.00 1.00 ATOM 2687 CD2 HIS 610 65.692 22.830 83.753 1.00 2.00 1.00 ATOM 2688 ND1 HIS 610 65.692 22.830 83.753 1.00 2.00 1.00 ATOM 2689 CEI HIS 610 66.030 20.893 82.786 1.00 2.00 1.00 ATOM 2690 NE2 HIS 610 66.250 22.189 82.676 1.00 2.00 1.00 ATOM 2691 C HIS 610 66.250 22.189 82.676 1.00 2.00 1.00 ATOM 2691 C HIS 610 62.500 22.456 84.774 1.00 3.94 1.00 ATOM 2693 N ARG 611 62.500 22.456 84.774 1.00 3.94 1.00 ATOM 2694 CA ARG 611 61.858 24.561 82.756 1.00 2.00 1.00 ATOM 2695 CB ARG 611 60.946 25.703 83.222 1.00 2.00 ATOM 2696 CG ARG 611 59.476 25.573 82.826 1.00 2.00 1.00 ATOM 2699 C2 ARG 611 50.701 25.890 92.920 1.00 2.76 1.00 ATOM 2699 C2 ARG 611 55.605 27.711 11.138 1.00 4.31 1.00 ATOM 2700 NH1 ARG 611 55.605 27.711 11.138 1.00 4.99 1.00 ATOM 2701 NH2 ARG 611 63.800 25.350 81.680 1.00 2.00 ATOM 2702 C ARG 611 63.800 25.350 81.680 1.00 2.00 ATOM 2703 D ARG 611 63.800 25.350 81.680 1.00 2.00 ATOM 2704 N VAL 612 62.657 24.994 81.558 1.00 2.00 ATOM 2705 CB VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2707 CCI VAL 612 63.806 25.350 73.464 1.00 5.17 ATOM 2708 CCZ VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2707 CCI VAL 612 63.806 25.350 73.464 1.00 5.17 ATOM 2708 CCZ VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2712 CB ILE 613 60.857 27.874 77.340 1.00 2.00 ATOM 2712 CB ILE 613 60.857 77.874 77.340 1.00 2.00 ATOM 2712 CB ILE 613 60.857 77.874 77.340 1.00 2.00 ATOM 2713 CB ILE 613 60.867 30.015 73.669 1.00 2.00 ATOM 2714 CCZ ILE 613 60.867 30.015 73.669 1.00 2.00 ATOM 2716 CDI ILE 613 60.867 30.015 73.669 1.00 2.00 ATOM 2717 CB ILE 613 60.867 30.015 73.669 1.00 2.00 ATOM 2718 O ILE 613 60.867 30.015 73.669 1.00 2.00 ATOM 2719 N HIS 614 60.012 29.173 75.412 1.00 2.35 ATOM 2719 CB HIS 614 60.012 29.173 75.412 1.00 2.05			0	TYR	609	64.	448					:
ATOM 2685 CB HIS 610 64.306 21.995 85.775 1.00 2.85 1 ATOM 2686 CG HIS 610 65.112 21.883 84.524 1.00 2.00 1 ATOM 2688 DI HIS 610 65.692 22.830 83.753 1.00 2.00 1 ATOM 2688 DI HIS 610 65.346 20.681 83.896 1.00 2.00 1 ATOM 2689 CEI HIS 610 66.030 20.893 82.786 1.00 2.00 1 ATOM 2690 NE2 HIS 610 66.030 20.893 82.786 1.00 2.00 1 ATOM 2691 C HIS 610 66.250 22.189 82.676 1.00 2.00 1 ATOM 2692 D HIS 610 61.459 22.824 84.794 1.00 3.94 1 ATOM 2693 N ARG 611 62.796 24.306 83.807 1.00 4.10 1 ATOM 2694 CA ARG 611 61.858 24.561 82.756 1.00 2.00 1 ATOM 2695 CB ARG 611 60.946 25.703 83.222 1.00 2.00 1 ATOM 2696 CG ARG 611 50.946 25.573 83.222 1.00 2.00 1 ATOM 2699 CD ARG 611 50.701 26.833 82.093 1.00 4.99 1 ATOM 2699 RE ARG 611 50.701 26.833 82.093 1.00 4.99 1 ATOM 2699 CZ ARG 611 56.647 27.834 81.931 1.00 4.31 1 ATOM 2700 NH1 ARG 611 56.856 28.973 62.542 1.00 2.00 1 ATOM 2701 NH2 ARG 611 56.856 28.973 62.542 1.00 2.00 1 ATOM 2702 C ARG 611 55.605 27.711 61.138 1.00 2.00 1 ATOM 2703 D ARG 611 55.605 27.711 61.138 1.00 2.00 1 ATOM 2704 N VAL 612 62.657 24.994 81.558 1.00 2.00 1 ATOM 2705 CB VAL 612 62.657 24.994 81.558 1.00 2.00 1 ATOM 2706 CB VAL 612 63.806 25.350 81.680 1.00 3.11 1 ATOM 2706 CB VAL 612 63.806 25.350 81.680 1.00 3.11 1 ATOM 2707 CGI VAL 612 63.806 25.350 81.680 1.00 3.11 1 ATOM 2708 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 1 ATOM 2708 CG2 VAL 612 63.806 25.350 81.680 1.00 3.11 1 ATOM 2708 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 1 ATOM 2708 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 1 ATOM 2709 C VAL 612 63.806 25.968 73.464 1.00 5.276 1 ATOM 2706 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 1 ATOM 2707 CG1 VAL 612 63.806 24.567 76.967 1.00 6.96 1 ATOM 2708 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 1 ATOM 2709 C VAL 612 63.806 24.567 76.967 1.00 6.96 1 ATOM 2710 C VAL 612 63.806 24.567 76.968 1.00 2.00 1 ATOM 27110 N HE 613 60.890 30.015 73.669 1.00 2.00 1 ATOM 2712 CB ILE 613 60.890 30.015 73.669 1.00 2.00 1 ATOM 2713 CB ILE 613 60.252 30.007 73.241 1.00 2.06 1 ATOM 271	ATOM	2683	N	HIS	610							
ATCM 2686 CG HIS 610 65.112 21.883 84.524 1.00 2.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ATOM	2684	CA	HIS								
ATOM 2687 CD2 RIE 610 65.692 22.830 83.753 1.00 2.00 E ATOM 2688 ND1 RIS 610 65.346 20.681 83.896 1.00 2.00 E ATOM 2689 CE1 RIS 610 66.030 22.189 82.786 1.00 2.00 E ATOM 2690 NE2 RIE 610 66.250 22.189 82.676 1.00 2.00 E ATOM 2690 NE2 RIE 610 66.250 22.189 82.676 1.00 2.00 E ATOM 2692 C RIS 610 61.459 22.824 84.794 1.00 3.94 E ATOM 2692 C RIS 610 61.459 22.824 84.794 1.00 3.94 E ATOM 2692 C RIS 610 61.858 24.561 82.756 1.00 2.00 E ATOM 2693 N ARG 611 61.858 24.561 82.756 1.00 2.00 E ATOM 2694 CA ARG 611 61.858 24.561 82.756 1.00 2.00 E ATOM 2695 CB ARG 611 59.476 25.703 82.826 1.00 2.00 E ATOM 2695 CB ARG 611 59.476 25.703 82.826 1.00 2.00 E ATOM 2699 CZ RRG 611 59.476 25.737 82.826 1.00 2.76 E ATOM 2699 CZ RRG 611 56.647 27.834 81.931 1.00 4.99 ATOM 2700 NR1 ARG 611 56.647 27.834 81.931 1.00 4.31 E ATOM 2700 NR1 ARG 611 56.647 27.834 81.931 1.00 4.31 E ATOM 2700 NR1 ARG 611 56.647 27.834 81.931 1.00 2.00 ATOM 2701 NR2 ARG 611 56.647 27.834 81.931 1.00 2.00 ATOM 2703 O ARG 611 52.650 28.973 62.542 1.00 9.07 ATOM 2703 O ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2704 N VAL 612 62.657 24.994 81.558 1.00 2.00 ATOM 2705 CB VAL 612 63.80C 25.350 21.680 1.00 3.11 ATOM 2706 CB VAL 612 63.80C 25.350 21.680 1.00 3.11 ATOM 2706 CB VAL 612 63.056 24.068 78.198 1.00 5.17 ATOM 2706 CB VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CBI VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CBI VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CBI VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CBI VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CBI VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CBI VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CBI VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CBI VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CBI VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CBI VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CBI VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CBI VAL 612 63.056 24.068 78.198 1.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	ATOM	2685										
ATOM 2688 ND1 HIS 610 65.346 20.881 83.896 1.00 2.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ATOM											
ATOM 2689 CEL HIS 610 66.030 20.893 82.786 1.00 2.00 E ATOM 2690 NE2 HIS 610 66.250 22.189 82.676 1.00 3.94 E ATOM 2691 C HIS 610 61.459 22.824 84.794 1.00 3.94 E ATOM 2692 C HIS 610 61.459 22.824 84.794 1.00 4.37 E ATOM 2693 N ARG 611 61.858 24.561 82.756 1.00 2.00 E ATOM 2695 CB ARG 611 61.858 24.561 82.756 1.00 2.00 E ATOM 2695 CB ARG 611 50.946 25.703 83.222 1.00 2.00 E ATOM 2695 CB ARG 611 50.701 25.890 82.826 1.00 5.34 E ATOM 2696 CG ARG 611 50.701 25.890 82.826 1.00 5.34 E ATOM 2697 CD ARG 611 50.701 26.833 82.093 1.00 4.99 E ATOM 2699 NE ARG 611 57.501 26.833 82.093 1.00 4.99 E ATOM 2700 NH1 ARG 611 55.605 27.711 61.138 1.00 4.31 E ATOM 2700 NH2 ARG 611 55.605 27.711 61.138 1.00 2.00 E ATOM 2702 C ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2702 C ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2703 D ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2705 CA VAL 612 62.074 24.833 80.388 1.00 2.76 ATOM 2706 CB VAL 612 63.80C 25.350 81.680 1.00 3.11 ATOM 2706 CB VAL 612 63.80C 25.350 81.680 1.00 3.11 ATOM 2706 CB VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CG1 VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2708 CG2 VAL 612 63.917 23.089 78.935 1.00 4.40 ATOM 2707 CG1 VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2712 CA ILE 613 60.557 27.917 77.968 1.00 2.30 ATOM 2712 CA ILE 613 60.557 27.917 77.968 1.00 2.30 ATOM 2712 CA ILE 613 60.557 27.917 77.968 1.00 2.30 ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.00 ATOM 2712 CA ILE 613 60.896 30.015 73.669 1.00 2.30 ATOM 2712 CA ILE 613 60.896 30.015 73.669 1.00 2.00 ATOM 2713 CB ILE 613 60.896 30.015 73.669 1.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 2.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 2.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 2.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 2.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 2.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 2.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 2.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 2.00 2.00 ATOM 2717 C												-
ATOM 2690 NE2 HIS 610 66.250 22.189 82.676 1.00 2.00 ATOM 2691 C HIS 610 62.500 22.456 84.774 1.00 3.94 ATOM 2692 C HIS 610 61.459 22.824 84.794 1.00 4.37 ATOM 2693 N ARG 611 62.790 24.306 83.807 1.00 4.10 ATOM 2694 CA ARG 611 61.858 24.561 82.756 1.00 2.00 ATOM 2695 CB ARG 611 60.946 25.703 83.222 1.00 2.00 ATOM 2695 CB ARG 611 59.476 25.573 82.826 1.00 5.34 ATOM 2695 CD ARG 611 59.476 25.573 82.826 1.00 2.00 ATOM 2698 NE ARG 611 57.501 26.833 82.093 1.00 4.99 ATOM 2699 CZ ARG 611 57.501 26.833 82.093 1.00 4.99 ATOM 2699 CZ ARG 611 56.647 27.834 81.931 1.00 4.31 ATOM 2700 NH1 ARG 611 55.605 27.711 61.138 1.00 2.00 ATOM 2701 NH2 ARG 611 55.605 27.711 61.138 1.00 2.00 ATOM 2703 O ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2703 O ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2705 CB VAL 612 62.669 25.256 79.118 1.00 5.17 ATOM 2706 CB VAL 612 62.669 25.256 79.118 1.00 5.17 ATOM 2706 CB2 VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2709 C VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2709 C VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2709 C VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2709 C VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2709 C VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2701 CB VAL 612 613 60.896 25.350 81.680 1.00 2.39 ATOM 2712 CB ILE 613 60.557 27.874 77.340 1.00 2.39 ATOM 2712 CB ILE 613 60.896 28.933 78.270 1.00 2.00 ATOM 2712 CB ILE 613 60.896 28.933 78.270 1.00 2.00 ATOM 2712 CB ILE 613 60.896 28.933 78.270 1.00 2.00 ATOM 2714 CC2 ILE 613 60.896 28.933 78.270 1.00 2.00 ATOM 2714 CC2 ILE 613 60.896 28.933 78.270 1.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 2.35 ATOM 2719 N HIS 614 60.012 29.173 75.412 1.00 2.00 ATOM 2711 C ILE 613 60.996 28.601 76.094 1.00 2.35 ATOM 2710 C A RIS 614 60.012 29.173 75.412 1.00 2.00 ATOM 2711 C ILE 613 60.996 28.601 76.094 1.00 2.35 ATOM 2712 CB HIS 614 60.012 29.173 75.412 1.00 2.00 3.35 ATOM 2713 CB HIS 614 60.012 29.173 75.412 1.00 2.00 3.35 ATOM 2713 CB HIS 614 60.012 29.173 75.412 1.00 2.00 3.35 ATOM 2713 CB HIS 614 60.012 29.173 75.412 1.00 2.00 3.35 A												
ATOM 2691 C HIS 610												-
ATOM 2692 0 HIS 610 61.459 22.824 84.794 1.00 4.37 ATOM 2693 N ARG 611 62.790 24.306 83.807 1.00 4.10 ATOM 2694 CA ARG 611 60.946 25.703 83.222 1.00 2.00 ATOM 2695 CB ARG 611 50.946 25.703 82.826 1.00 5.34 ATOM 2696 CG ARG 611 50.476 25.573 82.826 1.00 5.34 ATOM 2697 CD ARG 611 50.701 25.890 82.826 1.00 5.34 ATOM 2698 NE ARG 611 57.501 26.833 82.093 1.00 4.99 ATOM 2698 NE ARG 611 57.501 26.833 82.093 1.00 4.99 ATOM 2699 CZ ARG 611 56.647 27.834 81.931 1.00 4.31 ATOM 2701 NH2 ARG 611 55.605 27.711 81.138 1.00 2.00 ATOM 2702 C ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2703 O ARG 611 63.80C 25.350 81.680 1.00 3.11 ATOM 2703 O ARG 611 63.80C 25.350 81.680 1.00 3.11 ATOM 2705 CA VAL 612 62.074 24.833 60.388 1.00 2.76 ATOM 2706 CB VAL 612 62.074 24.833 60.388 1.00 2.76 ATOM 2706 CG VAL 612 63.056 24.068 78.198 1.00 5.17 ATOM 2706 CG VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2709 C VAL 612 63.917 23.009 78.935 1.00 9.67 ATOM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.00 ATOM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.00 ATOM 2713 CB ILE 613 60.557 27.874 77.340 1.00 2.00 ATOM 2714 CG2 ILE 613 60.557 27.874 77.340 1.00 2.00 ATOM 2716 CD1 ILE 613 60.967 31.241 79.182 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.967 31.241 79.182 1.00 2.00 ATOM 2716 CD1 ILE 613 60.996 28.601 76.094 1.00 2.00 ATOM 2716 CD1 ILE 613 60.996 28.601 76.094 1.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 2.00 ATOM 2718 O ILE 613 60.996 28.601 76.094 1.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 2.00 ATOM 2718 O ILE 613 60.252 30.007 74.241 1.00 2.00 ATOM 2719 N HIS 614 60.252 30.007 74.241 1.00 2.05 ATOM 2719 N HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2721 CB HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2721 CB HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2721 CB HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2721 CB HIS 614 60.2												•
ATOM 2693 N ARG 611 62.790 24.306 E3.807 1.00 4.10 ATOM 2694 CA ARG 611 61.858 24.561 82.756 1.00 2.00 E ATOM 2695 CB ARG 611 60.946 25.703 83.222 1.00 2.00 E ATOM 2696 CG ARG 611 59.476 25.573 82.826 1.00 2.00 E ATOM 2697 CD ARG 611 50.701 25.890 82.920 1.00 2.76 E ATOM 2698 NE ARG 611 57.501 26.833 82.093 1.00 4.99 E ATOM 2699 CZ ARG 611 56.647 27.834 81.931 1.00 4.31 E ATOM 2700 NH1 ARG 611 56.850 28.973 82.542 1.00 9.07 E ATOM 2701 NH2 ARG 611 55.605 27.711 E1.198 1.00 2.00 E ATOM 2702 C ARG 611 62.657 24.994 81.558 1.00 2.00 E ATOM 2703 O ARG 611 63.800 25.350 81.680 1.00 3.11 E ATOM 2704 N VAL 612 62.657 24.994 81.558 1.00 2.00 E ATOM 2705 CA VAL 612 62.669 25.256 79.118 1.00 5.17 E ATOM 2706 CB VAL 612 63.806 24.567 76.967 1.00 6.96 E ATOM 2706 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 E ATOM 2706 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 E ATOM 2706 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 E ATOM 2706 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 E ATOM 2706 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 E ATOM 2706 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 E ATOM 2706 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 E ATOM 2707 CG1 VAL 612 63.806 24.567 76.967 1.00 6.96 E ATOM 2708 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 E ATOM 2708 CG2 VAL 612 63.806 24.567 77.968 1.00 2.39 E ATOM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 E ATOM 2712 CB ILE 613 59.889 28.933 78.270 1.00 2.00 E ATOM 2714 CG2 ILE 613 59.889 28.933 78.270 1.00 2.00 E ATOM 2715 CG1 ILE 613 60.890 30.015 73.669 1.00 2.00 E ATOM 2716 CD1 ILE 613 60.890 30.015 73.669 1.00 2.00 E ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 3.35 E ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 E ATOM 2719 N H35 614 60.252 30.007 74.241 1.00 4.63 E ATOM 2720 CA H35 614 60.252 30.007 74.241 1.00 4.63 E ATOM 2721 CB H35 614 59.604 29.427 72.970 1.00 2.35												÷
ATOM 2694 CA ARG 611 61.858 24.561 82.756 1.00 2.00 ATOM 2695 CB ARG 611 50.946 25.703 83.222 1.00 2.00 ATOM 2696 CG ARG 611 59.476 25.573 82.826 1.00 5.34 ATOM 2697 CD ARG 611 50.701 25.890 82.820 1.00 2.76 ATOM 2698 NE ARG 611 50.701 25.890 82.820 1.00 2.76 ATOM 2698 NE ARG 611 56.647 27.834 81.931 1.00 4.31 ATOM 2700 NH1 ARG 611 56.667 27.814 81.931 1.00 4.31 ATOM 2701 NH2 ARG 611 55.605 27.711 61.138 1.00 2.00 ATOM 2702 C ARG 611 62.657 24.994 81.556 1.00 2.00 ATOM 2703 O ARG 611 63.80C 25.350 81.680 1.00 3.11 ATOM 2704 N VAL 612 62.657 24.994 81.556 1.00 2.00 ATOM 2705 CA VAL 612 62.669 25.256 79.118 1.00 5.17 ATOM 2706 CB VAL 612 63.056 24.068 78.198 1.00 5.17 ATOM 2706 CG VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2709 C VAL 612 63.056 24.567 76.967 1.00 6.96 ATOM 2709 C VAL 612 63.806 25.350 78.464CC 4.40 ATOM 2709 C VAL 612 63.806 25.436 78.481 1.00 5.97 ATOM 2701 N ILE 613 60.557 27.874 77.340 1.00 2.39 ATOM 2711 N ILE 613 60.557 27.874 77.340 1.00 2.39 ATOM 2712 CA ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2714 CC2 ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2715 CG1 ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.252 30.007 74.241 1.00 2.00 ATOM 2717 C ILE 613 60.89C 30.015 73.669 1.00 2.00 2.00 ATOM 2718 O ILE 613 60.252 30.007 74.241 1.00 2.35 ATOM 2719 N HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2721 CB HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2721 CB HIS 614 60.252 30.007 74.271 1.00 2.35 ATOM 2721										1.00	4.10	•
ATOM 2695 CB ARG 611 59.476 25.573 82.826 1.00 2.00 ATOM 2696 CG ARG 611 59.476 25.573 82.826 1.00 5.34 ATOM 2697 CD ARG 611 50.701 26.820 82.820 1.00 2.76 ATOM 2698 NE ARG 611 57.501 26.833 82.093 1.00 4.99 ATOM 2698 NE ARG 611 57.501 26.833 82.093 1.00 4.99 ATOM 2700 NH1 ARG 611 56.647 27.834 81.931 1.00 4.31 ATOM 2701 NH2 ARG 611 55.605 27.711 61.138 1.00 2.00 ATOM 2702 C ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2703 O ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2703 O ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2703 O ARG 611 62.657 24.994 81.558 1.00 2.10 ATOM 2704 N VAL 612 62.669 25.256 79.118 1.00 5.17 ATOM 2706 CB VAL 612 63.056 24.068 78.198 1.00 5.17 ATOM 2706 CB VAL 612 63.056 24.068 78.198 1.00 5.17 ATOM 2706 CG2 VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2706 CG2 VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CG1 VAL 612 63.056 24.068 78.198 1.00 5.76 ATOM 2708 CG2 VAL 612 63.056 24.068 78.198 1.00 5.76 ATOM 2708 CG2 VAL 612 63.056 24.068 78.198 1.00 5.76 ATOM 2708 CG2 VAL 612 63.056 24.068 78.198 1.00 5.77 ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.00 5.97 ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.39 ATOM 2712 CA ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2714 CC2 ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.996 28.601 76.094 3.35 ATOM 2719 N HIS 614 60.252 30.007 74.241 1.00 2.06 ATOM 2719 N HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2720 CA HIS 614 50.252 30.007 74.241 1.00 2.35 ATOM 2721 CB HIS 614 50.252 30.007 74.241 1.00 2.35 ATOM 2721 CB HIS 614 50.252 30.007 74.241 1.00 2.35 ATOM 2721 CB HIS 614 50.252 30.007 74.241 1.00 2.35 ATOM 2721 CB HIS 614 50.252 30.007 74.241 1.00 2.35 ATOM 2721 CB HIS 614 50.252 30.007 74.241 1.00 2.35 ATOM 2721 CB HIS 614 50.252 30.007 74.241 1.00 2.35 ATOM 2721 CB						61	. 858			1.00		:
ATOM 2696 CG ARG 611 59.476 25.573 82.826 1.00 5.34 arom 2697 ED ARG 611 50.701 26.890 82.920 1.00 2.76 arom 2698 NE ARG 611 57.501 26.833 82.093 1.00 4.99 arom 2699 CZ ARG 611 56.647 27.834 81.931 1.00 4.31 arom 2700 NH1 ARG 611 56.850 28.973 62.542 1.00 9.07 arom 2701 NH2 ARG 611 55.605 27.711 61.138 1.00 2.00 arom 2702 C ARG 611 62.657 24.994 81.558 1.00 2.00 arom 2702 C ARG 611 62.657 24.994 81.558 1.00 2.00 arom 2703 0 ARG 611 63.800 25.350 81.680 1.00 3.11 arom 2704 N VAL 612 62.074 24.833 80.388 1.00 2.16 arom 2705 CA VAL 612 62.669 25.256 79.118 1.00 5.17 arom 2706 CB VAL 612 63.056 24.068 78.198 1.00 5.17 arom 2706 CG2 VAL 612 63.056 24.068 78.198 1.00 5.26 arom 2707 CG1 VAL 612 63.806 24.567 76.967 1.00 6.96 arom 2708 CG2 VAL 612 63.917 23.089 78.935 1.00 9.67 arom 2708 CG2 VAL 612 63.917 23.089 78.935 1.00 9.67 arom 2710 0 VAL 612 61.490 25.968 73.464 .00 4.40 arom 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 arom 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.39 arom 2713 CB ILE 613 59.889 28.933 78.270 1.00 2.00 arom 2714 CG2 ILE 613 59.889 28.933 78.270 1.00 2.00 arom 2716 CD1 ILE 613 60.890 30.015 73.669 1.00 2.00 arom 2716 CD1 ILE 613 60.890 30.015 73.669 1.00 2.00 arom 2716 CD1 ILE 613 60.890 30.015 73.669 1.00 2.00 arom 2716 CD1 ILE 613 60.996 28.501 73.094 .00 2.00 arom 2716 CD1 ILE 613 60.996 28.501 73.094 .00 2.00 arom 2716 CD1 ILE 613 60.996 28.501 73.094 .00 2.00 arom 2716 CD1 ILE 613 60.996 28.501 73.094 .00 2.00 arom 2716 CD1 ILE 613 60.996 28.501 73.094 .00 2.00 arom 2716 CD1 ILE 613 60.996 28.501 73.094 .00 2.00 arom 2716 CD1 ILE 613 60.996 28.501 73.094 .00 2.00 arom 2716 CD1 ILE 613 60.900 30.015 73.669 1.00 2.00 arom 2716 CD1 ILE 613 60.900 30.015 73.669 1.00 2.00 arom 2716 CD1 ILE 613 60.252 30.007 74.241 1.00 4.63 arom 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 arom 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 arom 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 arom 2721 CB HIS 614 59.604 29.427 72.970 .00 2.35						60	. 946	25.70				:
ATOM 2698 NE ARG 611 57.501 26.833 82.923 1.00 4.99 ATOM 2698 NE ARG 611 57.501 26.833 82.093 1.00 4.99 ATOM 2699 CZ ARG 611 56.647 27.834 81.931 1.00 4.31 ATOM 2700 NH1 ARG 611 56.85C 28.973 62.542 1.00 9.07 ATOM 2701 NH2 ARG 611 65.605 27.711 61.138 1.00 2.00 ATOM 2702 C ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2703 O ARG 611 63.80C 25.350 81.680 1.00 3.11 ATOM 2704 N VAL 612 62.074 24.833 60.388 1.00 2.76 ATOM 2705 CA VAL 612 62.066 75.198 1.00 5.17 ATOM 2706 CB VAL 612 63.056 24.068 78.198 1.00 5.17 ATOM 2706 CG VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CG1 VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2708 CG2 VAL 612 63.917 23.089 78.935 1.00 9.67 ATOM 2710 0 VAL 612 60.382 25.436 78.481 1.00 5.97 ATOM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.00 ATOM 2714 CG2 ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2714 CG2 ILE 613 60.557 27.874 77.340 1.00 2.00 ATOM 2715 CG1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.90C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.90C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.90C 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.90C 30.015 73.669 1.00 2.00 ATOM 2717 C ILE 613 60.90C 30.015 73.669 1.00 2.00 ATOM 2718 O ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2719 N HIS 614 60.252 30.007 74.241 1.00 2.06 ATOM 2719 N HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2721 CB HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2721 CB HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2721 CB HIS 614 59.604 29.427 72.970 .00 2.35				ARG	611							
ATOM 2699 CZ ARG 611 56.647 27.834 81.931 1.00 4.31 ATOM 2700 NH1 ARG 611 55.85C 28.973 62.542 1.00 9.07 ATOM 2701 NH2 ARG 611 55.60C 27.711 61.138 1.00 2.00 ATOM 2702 C ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2703 O ARG 611 63.80C 25.350 81.680 1.00 3.11 ATOM 2704 N VAL 612 62.074 24.833 80.388 1.06 2.76 ATOM 2705 CA VAL 612 62.074 24.833 80.388 1.00 2.76 ATOM 2706 CB VAL 612 63.056 24.068 78.198 1.00 5.17 ATOM 2706 CB VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CG1 VAL 612 63.80C 24.567 76.967 1.00 6.96 ATOM 2707 CG1 VAL 612 63.917 23.089 78.935 1.00 9.67 ATOM 2706 CG2 VAL 612 63.917 23.089 78.935 1.00 9.67 ATOM 2710 0 VAL 612 61.49C 25.968 73.464CC 4.40 ATOM 2711 N ILE 613 61.674 27.187 77.968 1.00 5.97 ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.00 ATOM 2713 CB ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2714 CC2 ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.0C 2.90 ATOM 2716 CD1 ILE 613 60.90C 30.015 73.669 1.0C 2.00 ATOM 2716 CD1 ILE 613 60.90C 30.015 73.669 1.0C 2.00 ATOM 2716 CD1 ILE 613 60.90C 30.015 73.669 1.0C 2.00 ATOM 2716 CD1 ILE 613 60.90C 30.015 73.669 1.0C 2.00 ATOM 2716 CD1 ILE 613 60.90C 30.015 73.669 1.0C 2.00 ATOM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2716 CD1 ILE 613 60.90C 30.015 73.669 1.0C 2.00 ATOM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2719 N HIS 614 60.252 30.007 74.241 1.0C 4.63 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.0C 4.63 ATOM 2720 CA HIS 614 59.604 29.427 72.9700C 2.35		269	7 (1									:
ATOM 2700 NH1 ARG 611 56.85C 28.973 82.342 1.00 9.07 ATOM 2701 NH2 ARG 611 55.605 27.711 81.138 1.00 2.00 ATOM 2702 C ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2703 O ARG 611 63.80C 25.350 21.680 1.00 3.11 ATOM 2704 N VAL 612 52.074 24.833 80.388 1.00 2.16 ATOM 2705 TA VAL 612 52.669 25.256 79.118 1.00 5.17 ATOM 2706 TB VAL 612 63.056 24.068 78.198 1.00 5.17 ATOM 2707 CG1 VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CG1 VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2707 CG1 VAL 612 63.917 23.089 78.935 1.00 9.67 ATOM 2708 CG2 VAL 612 63.917 23.089 78.935 1.00 9.67 ATOM 2710 0 VAL 612 60.382 25.436 78.481 1.00 5.97 ATOM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.39 ATOM 2712 CA ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2714 CG2 ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2715 CG1 ILE 613 60.89C 30.015 73.669 1.0C 2.90 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.0C 2.00 ATOM 2716 CD1 ILE 613 60.996 28.601 73.094 3.35 ATOM 2718 D ILE 513 62.164 28.553 75.709 1.00 2.00 ATOM 2718 D ILE 513 62.164 28.553 75.709 1.00 2.00 ATOM 2718 D ILE 513 62.164 28.553 75.709 1.00 2.00 ATOM 2719 N HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2720 CA HTS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2721 CB HIS 614 59.604 29.427 72.970 00 2.35	MOTA											:
ATOM 2701 NH2 ARG 611 55.605 27.711 61.138 1.00 2.00 ATOM 2702 C ARG 611 62.657 24.994 81.558 1.00 2.00 ATOM 2703 O ARG 611 63.80C 25.350 81.680 1.00 3.11 ATOM 2704 N VAL 612 62.074 24.833 80.388 1.06 2.76 ATOM 2705 CA VAL 612 52.669 25.256 79.118 1.00 5.17 ATOM 2706 CB VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CG1 VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2708 CG2 VAL 612 63.917 23.089 78.935 1.00 9.67 ATOM 2708 CG2 VAL 612 63.917 23.089 78.935 1.00 9.67 ATOM 2709 C VAL 612 63.917 23.089 78.935 1.00 9.67 ATOM 2710 C VAL 612 61.49C 25.966 73.464 .0C 4.40 ATOM 2710 C VAL 612 61.49C 25.966 73.464 .0C 4.40 ATOM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 ATOM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.00 ATOM 2714 CG2 ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2714 CG2 ILE 613 60.89C 30.015 73.669 1.0C 2.90 ATOM 2715 CG1 ILE 613 60.89C 30.015 73.669 1.0C 2.90 ATOM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 2.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 2.00 ATOM 2718 D ILE 613 60.267 31.241 79.182 1.00 2.00 2.00 ATOM 2718 D ILE 613												
ATOM 2702 °C ARG 611 62.657 24.994 81.556 1.00 2.00 ATOM 2703 0 ARG 611 63.80C 25.350 21.680 1.00 3.11 ATOM 2704 N VAL 612 52.074 24.833 80.388 1.06 2.76 ATOM 2705 CA VAL 612 52.669 25.256 79.118 1.00 5.17 ATOM 2706 CB VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2706 CG VAL 612 63.056 24.567 76.967 1.00 6.96 ATOM 2706 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2708 CG2 VAL 612 63.917 23.089 78.935 1.00 9.67 ATOM 2709 C VAL 612 51.49C 25.966 73.464CC 4.40 ATOM 2710 0 VAL 612 51.49C 25.966 73.464CC 4.40 ATOM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.00 ATOM 2713 CB ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2714 CG2 ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2714 CG2 ILE 613 60.89C 30.015 73.669 1.0C 2.90 ATOM 2716 CD1 ILE 613 60.89C 30.015 73.669 1.0C 2.90 ATOM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 O ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 O ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 O ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 O ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 O ILE 613 60.252 30.007 74.241 1.00 2.06 ATOM 2718 O ILE 613 60.252 30.007 74.241 1.00 3.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 3.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 3.35 ATOM 2721 CB HIS 614 59.604 29.427 72.97000 2.35												
ATOM 2703											_	
ATOM 2704 N VAL 612 52.074 24.833 60.388 1.06 2.76 ATOM 2705 CA VAL 612 52.669 25.256 79.118 1.00 5.17 ATOM 2706 CB VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CG1 VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2708 CG2 VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2709 C VAL 612 63.917 23.089 78.935 1.00 9.67 ATOM 2709 C VAL 612 51.490 25.966 73.46400 4.40 ATOM 2710 0 VAL 612 50.382 25.436 73.481 1.00 5.97 ATOM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.00 ATOM 2713 CB ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2714 CG2 ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2715 CG1 ILE 613 60.890 30.015 73.669 1.00 2.16 ATOM 2716 CD1 ILE 613 60.890 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.890 30.015 73.669 1.00 2.00 ATOM 2717 C ILE 613 60.890 30.015 73.669 1.00 2.00 ATOM 2718 D ILE 613 60.967 31.241 79.182 1.00 2.00 ATOM 2719 N HIS 614 60.252 30.007 74.241 1.00 2.06 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2721 CB HIS 614 59.604 29.427 72.97000 2.35												
ATOM 2705 TA VAL 612 52.669 25.256 79.118 1.00 5.17 ATOM 2706 TB VAL 612 63.056 24.068 78.198 1.00 5.26 ATOM 2707 CG1 VAL 612 63.806 24.567 76.967 1.00 6.96 ATOM 2708 CG2 VAL 612 63.917 23.089 78.935 1.00 9.67 ATOM 2709 C VAL 612 61.490 25.966 73.464 00 4.40 ATOM 2710 0 VAL 612 60.382 25.436 73.481 1.00 5.97 ATOM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.00 ATOM 2713 CB ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2714 CG2 ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2715 CG1 ILE 613 60.890 30.015 73.669 1.00 2.16 ATOM 2716 CD1 ILE 613 60.890 30.015 73.669 1.00 2.00 ATOM 2717 C ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 D ILE 613 60.996 28.501 76.094 00 2.00 ATOM 2719 N HIS 614 60.252 30.007 74.241 1.00 2.06 ATOM 2719 N HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63						· .						
ATOM 2706 CB VAL 612 63.056 24.668 78.198 1.00 5.26 ATOM 2707 CG1 VAL 612 53.806 24.567 76.967 1.00 6.96 ATOM 2708 CG2 VAL 612 63.917 23.089 78.935 1.00 9.67 ATOM 2709 C VAL 612 51.490 25.968 73.464												
ATCM 2707 CG1 VAL 612 53.806 24.567 76.967 1.00 6.96 ATCM 2708 CG2 VAL 612 63.917 23.089 78.935 1.00 9.67 ATCM 2709 C VAL 612 61.490 25.968 73.464 00 4.40 ATCM 2710 D VAL 612 60.382 25.436 78.481 1.00 5.97 ATCM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 ATCM 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.00 ATCM 2713 CB ILE 613 59.889 28.933 78.270 1.00 2.00 ATCM 2714 CG2 ILE 613 59.889 28.933 78.270 1.00 2.00 ATCM 2715 CG1 ILE 613 60.890 30.015 73.669 1.00 2.90 ATCM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATCM 2717 C ILE 613 60.267 31.241 79.182 1.00 2.00 ATCM 2718 D ILE 613 62.164 28.553 75.709 1.00 2.00 ATCM 2718 D ILE 613 62.164 28.553 75.709 1.00 2.00 ATCM 2718 D ILE 614 60.012 29.173 75.412 1.00 2.06 ATCM 2719 N HIS 614 60.252 30.007 74.241 1.00 4.63 ATCM 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63											5.26	
ATOM 2706 CG2 VAL 612 63.917 23.089 78.935 1.00 9.67 ATOM 2709 C VAL 612 51.490 25.968 73.464 .00 4.40 ATOM 2710 0 VAL 612 60.382 25.436 78.481 1.00 5.97 ATOM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.06 2.00 ATOM 2713 CB ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2714 CG2 ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2715 CG1 ILE 613 60.890 30.015 73.669 1.00 2.90 ATOM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2717 C ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 D ILE 613 62.164 28.553 75.709 1.00 2.00 ATOM 2719 N HIS 614 60.252 30.007 74.241 1.00 2.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2721 CB HIS 614 59.604 29.427 72.970 .00 2.35										7 1.00	6.96	
ATCM 2709 C VAL 612 61.49C 25.968 73.464 0C 4.40 ATCM 2710 D VAL 612 60.382 25.436 78.481 1.00 5.97 ATCM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 ATCM 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.00 ATCM 2713 CB ILE 613 59.889 28.933 78.270 1.00 2.00 ATCM 2714 CG2 ILE 613 59.889 28.933 78.270 1.00 2.00 ATCM 2715 CG1 ILE 613 60.89C 30.015 73.669 1.0C 2.00 ATCM 2716 CD1 ILE 613 60.267 31.241 73.182 1.00 2.00 ATCM 2717 C ILE 613 60.267 31.241 73.182 1.00 2.00 ATCM 2718 D ILE 613 60.267 31.241 73.182 1.00 2.00 ATCM 2719 N HIS 614 60.012 29.173 75.412 1.00 2.06 ATCM 2720 CA HIS 614 60.252 30.007 74.241 1.0C 4.63 ATCM 2721 CB HIS 614 59.604 29.427 72.9700C 2.35						-			19 78.93	5 :.00		
ATCH 2710 0 7AL 612 60.382 25.436 78.481 1.00 5.97 ATCH 2711 N ILE 613 61.674 27.107 77.968 1.00 2.39 ATCH 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.00 ATCH 2713 CB ILE 613 59.889 28.933 78.270 1.00 2.00 ATCH 2714 CC2 ILE 613 59.244 28.279 79.471 1.00 2.16 ATCH 2715 CGI ILE 613 60.890 30.015 73.669 1.00 2.00 ATCH 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATCH 2717 C ILE 613 60.267 31.241 79.182 1.00 2.00 ATCH 2718 D ILE 613 60.96 28.601 76.094 1.00 2.00 ATCH 2718 D ILE 613 62.164 28.553 75.709 1.00 2.06 ATCH 2719 N HIS 614 60.012 29.173 75.412 1.00 3.35 ATCH 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 ATCH 2721 CB HIS 614 59.604 29.427 72.970 .00 2.35							.49	£ 25.96	68 73.46			
ATOM 2711 N ILE 613 61.674 27.187 77.968 1.00 2.39 ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.00 2.00 ATOM 2713 CB ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2714 CG2 ILE 613 59.849 28.933 78.270 1.00 2.00 ATOM 2715 CG1 ILE 613 60.890 30.015 73.669 1.00 2.16 ATOM 2716 CD1 ILE 613 60.890 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.267 31.241 73.182 1.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 3.35 ATOM 2718 N HIS 614 60.012 29.173 75.412 1.00 3.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2721 CB HIS 614 59.604 29.427 72.970 1.00 2.35						2 50						
ATOM 2712 CA ILE 613 60.557 27.874 77.340 1.36 2.00 ATOM 2713 CB ILE 613 59.889 28.933 78.270 1.00 2.00 ATOM 2714 CG2 ILE 613 59.244 28.279 79.471 1.30 2.16 ATOM 2715 CG1 ILE 613 60.890 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2717 C ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 76.094 1.00 3.35 ATOM 2718 D ILE 613 62.164 28.553 75.709 1.00 2.06 ATOM 2719 N HIS 614 60.012 29.173 75.412 1.00 3.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2721 CB HIS 614 59.604 29.427 72.970 1.00 2.35					E 61	3 6						
ATOM 2714 CG2 ILE 613 59.244 28.279 79.471 1.00 2.16 ATOM 2715 CG1 ILE 613 60.890 30.015 73.669 1.00 2.00 ATOM 2716 CD1 ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2717 C ILE 613 60.267 31.241 79.182 1.00 2.00 ATOM 2718 D ILE 613 60.996 28.601 75.094 1.00 2.00 ATOM 2718 D ILE 613 62.164 28.553 75.709 1.00 2.06 ATOM 2719 N HIS 614 60.012 29.173 75.412 1.00 3.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2721 CB HIS 614 59.604 29.427 72.970 .00 2.35		1 273	2 3									
ATOM 2715 CG1 ILE 613 60.89C 30.015 73.669 1.0C 2.90 ATOM 2716 CD1 ILE 613 50.267 31.241 73.182 1.0C 2.00 ATOM 2717 C ILE 613 60.996 28.601 75.094 1.0C 2.35 ATOM 2718 D ILE 613 62.996 28.501 75.094 1.0C 2.06 ATOM 2718 D ILE 613 62.164 28.553 75.709 1.0C 2.06 ATOM 2719 N HIS 614 60.012 29.173 75.412 1.0C 3.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.0C 4.63 ATOM 2721 CB HIS 614 59.604 29.427 72.970C 2.35												
ATOM 2716 CDI ILE 613 50.267 31.241 79.182 1.00 2.00 ATOM 2717 C ILE 613 60.996 28.601 75.094 3.35 ATOM 2718 O ILE 613 62.164 28.553 75.709 1.00 2.06 ATOM 2719 N HIS 614 60.012 29.173 75.412 1.00 2.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 2.63 ATOM 2721 CB HIS 614 59.604 29.427 72.970 00 2.35						-						
ATOM 2717 C ILE 613 60.996 28.601 76.094 3.35 ATOM 2718 O ILE 613 62.164 28.553 73.709 1.00 2.06 ATOM 2719 N 835 614 60.013 29.173 75.412 1.00 3.35 ATOM 2720 CA 815 614 60.252 30.007 74.241 1.00 4.63 ATOM 2721 CB 835 614 59.604 29.427 72.970 00 2.35												
ATOM 2718 0 ILE 513 62.164 28.553 75.709 1.00 2.06 ATOM 2719 N HIS 614 60.013 29.173 75.412 1.00 3.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2721 CB HIS 614 59.604 29.427 72.970 .00 2.35												
ATOM 2719 N HIS 614 60.012 29.173 75.412 1.00 3.35 ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2721 CB HIS 614 59.604 29.427 72.970 .00 2.35											_	
ATOM 2720 CA HIS 614 60.252 30.007 74.241 1.00 4.63 ATOM 2721 CB HIS 614 59.604 29.427 72.970 .00 2.35												
ATOM 2721 CB RYS 614 59.604 29.427 72.97000 2.35												
											2.35	
						. 4 . ć	(1.44	7 28.4	10 72.2	11 1.00	2.10)

bref	21c.pc	s b		Thu	Apr 25 1	2:27:47	1996		36	
ATOM	2723		HIS	614	61.353	28.536	71.281	1.00	2.96	÷
MOTA	2724 2725		HIS HIS	614	60.442	27.075	72.609	1.00	4.63	7
ATOM	2726		HIS	614 614	61.310 61.875	26.419 27.284	71.865	1.00	2.00	÷
ATOM	2727	c	HIS	614	59.580	31.311	71.051 74.664	1.00	6.31 3.58	7 5
ATOM	2728	٥	HIS	614	58.419	31.306	75.046	1.00	2.50	3
MOTA	2729	N	ILE	615	60.315	32.412	74.674	1.00	2.76	7
ATOM	2730	CA	ILE	615	59.717	33.661	75.108	1.00	2.55	5
MOTA	2731	CB	ILE	615	60.770	34.768	75.221	1.00	2.49	÷
MOTA	2732 2733	CG2	ILE	615	60.102	36.115	75.507	1.00	2.99	÷
ATOM	2734		ILE	615 615	61.785 63.067	34.387 35.246	76.307	1.00	2.00	÷
ATOM	2735	c	ILE	615	58.569	34.079	76.351 74.205	1.00	2.00 3.27	÷
ATOM	2736	0	ILE	615	57.609	34.687	74.651	1.00	5.04	÷
ATOM	2737	N	ASN	616	58.639	32.673	72.943	1.00	5.73	7
ATOM	2738	CA	ASN	616	57.618	34.015	71.945	1.00	4.76	÷
MOTA	2739 2740	CB	ASN	616	58.205	33.893	70.513	1.00	2.00	ó
ATOM	2741	CG	ASN ASN	616 616	58.860 55.410	32.539	70.236	1.00	2.00	6
ATOM	2742		ASN	616	59.954	31.767 32.273	69.399 70.910	1.00	2.00	3
ATOM	2743	c	ASN	616	56.287	33.247	72.124	1.00	2.00 4.60	7
MOTA	2744	0	ASN	616	55.265	33.632	71.581	1.00	6.70	3
ATOM	2745	N	GLU	617	56.280	32.240	72.989	1.00	4.63	7
ATOM	2746	CA	CLU	617	55.088	31.444	73.242	1.00	5.16	6
ATOM	2747	CB	GLU	617	55.424	29.951	73.185	1.00	4.92	÷
ATOM	2748	CC	GLU	617	56.381	29.633	72.086	1.00	8.53	÷
ATOM	2749 2750	CD CE1	GLU	617 617	56.433 56.653	28.180	71.704		11.83	÷
ATOM	2751		CLU	617	56.276	27.922 27.297	70.498 72.575		15.40 14.68	5
ATOM	2752	c	GLU	617	54.438	31.744	74.507	1.00	4.18	ð
ATOM	2753	3	GLU	617	53.440	31.127	74.930	1.00	7.74	á
ATOM	2754	N	VAL	618	54.995	32.667	75.354	1.00	3.63	ž
MOTA	2755	CA	VAL	618	54.433	32.988	76.655	1.00	2.00	5
MOTA	2756 2757	CB	VAL	618	55.365	32.566	77.870	1.00	2.00	6
ATOM	2758		VAL	618 618	55.666 56.651	31.109 33.337	77.838	1.00	2.00	6
ATOM	2759	c	VAL	618	54.119	34.459	77.890 76.727	1.00	2.00 2.00	6 6
MOTA	2760	e	VAL	618	54.600	35.167	77.616	1.00	2.77	â
MOTA	2761	N	VAL	619	53.333	34.937	75.778	1.00	2.00	ž
ATOM	2762	CA	VAL	619	52.970	36.345	75.792	1.00	3.10	6
ATOM	2763	CB	VAL	619	52.765	36.886	74.407	1.00	2.32	5
ATOM ATOM	2764 2765		VAL	619 619	52.741 53.884	38.409	74.449	1.00	2.43	5
ATOM	2766	5	VAL	519	51.700	36.412 36.587	73.519 76.589	1.00	7.61 4.11	5
ATOM	2767	ō	VAL	619	50.817	35.731	76.610	1.00	6.41	÷ 3
MOTA	2768	N	LEU	620	51.639	37.734	77.268	1.00	2.53	7
ATOM	2769	ÇÀ	LEU	620	50.492	38.143	78.080	1.00	3.37	÷
MOTA	2770	CB	LEU	620	50.702	37.790	79.554	1.00	3.39	÷
ATOM	2771	CG.	LEU	620	49.613	37.183	80.438	1.00	3.95	÷
MOTA MOTA	2772 2773		LEU	520 620	50.233	37.141	81.775	1.00	5.62	÷
MOTA	2774	C	LEU	620	48.306 50.382	37.985 39.654	80.529	1.00	3.31	•
ATOM	2775	Š	LEU	620	50.858	40.437	77.920 78.736	1.00	5.44 7.07	å
MOTA	2776	N	LEU	621	49.739	40.044	76.834	1.00	7.07	î
MOTA	2777	CA	LEU	621	49.549	41.432	76.465	1.00	5.70	ń
MOTA	2778	CB	LEU	621	48.832	41.498	75.111	1.00	5.58	÷
ATOM	2779	CS	LEU	621	:9.469	40.971	73.845	1.00	2.00	•
MOTA	2780			621	48.395	40.832	72.831	1.00	2.42	ń
ATOM	2781 2782	502	LEU	621 621	50.545 48.730	41.903	73.377	1.00	2.00	5
ATOM	2783	5	LEU	621	47.941	42.253 41.728	77.427 78.198	1.00 i.00	7.59	÷
ATOM	2784	,	ASP	622	48.926	43.565	77.355		8.04	7
ATOM	2785	SA	ASF	622	48.148	44.513	78.128		10.55	÷
ATOM	2786	CB	ASP	522	48.678	45.938	77.968	1.00	9.98	ń
ATCM	2767	26	ASP	522	49.746	46.300	78.963	1.00	11.16	:
MOTA	2788		ASF	622	50.398	47.342	78.724		12.42	3
HOTA MOTA	2789 2790		ASF	622	49.927	45.580	79.976		11.12	ą
ATOM	2791	5	ASP ASP	622 622	46.855 46.867	44.429 44.075	77.336 76.152		10.98	;
ATOM:	2792	3	ALA	623	45.754	44.808	77.965		11.16	3
ATOM	2793	SA	ALA	623	44.452	44.764	77.326		12.49	÷
ATOM	2794	ac.	ALA	623	43.375	44.723	78.402		13.24	3
ATOM	2795	=	ALA	623	44.267	45.975	75.399		10.77	4
ATOM	2796	2	ALA	523	45.013	46.953	76.489	1.00	11.45	.3
ATON	2797	:: ::	PRO	624	43.311	45.890	75.462	1.00	7.62	7
ATCM MOTA	2798 2799	CD	PRC- PRC	624 624	42.607	44.628	75.175	1.00		•
ATOM	2800	CB	PRO		42.969 41.933	46.928	74.486	1.20		4
				727	41.933	46.241	73.632	00	6.32	٠;

bref21	ic.pd	b		Thu	y bz	25	12	: 27 :	: 47	1996		3	7	
ATOM	2801	CG	PRO	624		42.33		44.7		73.736 75.095	1.00	9.9		
ATOM	2802	C	PRO	624		42.30		48.1		76.05E		13.3		
ATOM	2803	2	PRO	624		41.5		48.1 49.3	-	74.518		11.2		:
ATOM	2804	N CA	VAL VAL	625 625		42.1		50.6		74.969	1.00		57	5
ATOM	2805 2806	CB	VAL	625		43.2		51.6	76	75.160	1.00			
ATOM ATOM	2807		VAL	625		44.0	97	51.3	-	76.386		10.	7	5
ATOM	2808		VAL	625		44.1		51.7		73.933	1.00	6.		.
ATOM	2809	C	VAL	625		41.1		51.1		73.950	1.00	11.	25	·
MOTA	2810	•>	VAL	625		40.7		50.5		72.970	1.00	10.	53	7
ATOM	2811	Ŋ	GLY	626 626		39.6		53.0		73.389		12.		÷
ATOM	2812	ΞÀ	GLY	626		38.3		52.4		72.843		14.	18	÷
MOTA	2813	3	GLY	626		37.9		52.		71.775	1.00	14.	32	3
ATOM	2814 2815	N	LEU	627		37.8		51.5		73.565		16.		-
ATOM	2816	CA	LEU	627		36.5	76	50.		73.112		17.		•
ATOM	2817	CB	LEU			36.1		49.		74.092		0 13.		ė
ATOM	2818	CG	LEU			34.9		48.		73.631 72.467		D 13. D 15.		6
MOTA	2819		LEU			35.3		48.		74.740		0 12.		6
MOTA	2820		LEU			34.4			869	72.928		0 18.		6
MOTA	2821	S S	LEU			35.			548	73.881		0 17.		3
MOTA	2822 2823	Ŋ	VAL			34.		52.	005	71.682		0 19.		?
ATOM	2824	CA	VAL			23.	B14		862	71.355		0 19		•
ATOM	2825	CB	VAL		3	34.			119	70.490		0 18		÷
ATOM	2826		1 VAI			34.			151	71.318		0 19		•
MOTA	2827		2 VAI			34.	942 787		723	70.609		0 21		÷
ATOM	2828	5	VAI				146		171	69.743		0 19		9
ATOM	2829	N N	VAI				528		157	71.036	1.0	0 21		?
atom Atom	2830 2831	CA					393	51.	. 453	70.440		0 21		÷
ATOM	2832						532		. 850	71.533		00 25		÷
ATOM	2833		AL	A 62	9		593		. 496	69.664		00 22 00 23		8
MOTA	2834	3	AL				684		. 693	69.980 68.65		00 22		7
MOTA	2835		AR				823		.061 .979	67.84		00 19		÷
ATOM	2836						014 873		.703			00 19		6
MOTA	2837						.087		.154	67.17		00 22		5
ATOM	2838 2839						. 565		.016	65.99		00 24		Ś
MOTA MOTA	2840						. 366	57	.461			00 20		7
ATOM	284			G 6:	30		. 627		.112			00 2		5 7
ATOM	284		il AP		30		.108		.460			00 2		7
ATOM	284		H2 AF	_	30 30		.421).440 2.308			00 1		÷
MOTA	284		A.F A.F		30		. 945		.133			00 1		ŝ
MOTA MOTA	284 284		_		31		.787		.049	66.94		00 1		7
ATOM	284				31	24	. 650		2.498			30 1		•
ATOM	284		B Li		31.		.379		3.267			00 1 00 1		6 5
ATOM	284				31		. 269		2.406			00 1		5
MOTA	285		D1 L	_	31		. 27		0.967 2.322			00 1		÷
ATOM	285	_	D2 L		31 31		1.82		2.770			.00 2		5
ATOM					31		.73		3.91			.00 2	3.22	8
MOTA MOTA					32		5.09		1.75			.00 2		7
ATOM					32		5.17		1.97			.00 2		÷
ATOM		6 0			32		5.60		0.69			.00 2	24.54	÷
ATOM			-		32		3.77 2.96		2.42				25.46	8
ATOM					532 533		2.90 3.54		3.70				90.20	-
ATOM					633		2.23		4.36			.00	90.00	÷
10ta 10ta					633		2.43		5.08				90.30	÷
ATO					632		2.35		56.77				90.30	÷
ATO			נסכ	ASP	633		1.77		56.36			00	90.30 90.10	.3 3
ATO	3 28	64	OD2 /		633		2.85		57.97				90.20	
ATO				ASP	£33		1.4		53.89 53.60		147	.00	96.20	.3
ATO		66		ASP GLU	633 634		2.1		53.74				90.20	7
ATO ATO		67 68		GLU GLU	634		1.4	28	53.4	65 58.	554 :		91.00	.;
ATO				CLU	634	2	22.3	49	53.7				90.00	
ATO		70	CC	GLU	634		22.8		55.2				90.00	
ATO		71		GLU	634		23.7		55.53 54.6				90.00	
ATO		372	DE1		634 634		24.0 24.2		55.6		343	:.::	90.00	
ATC ATC		373 374	OE2	CLU	634		20.9		52.0				90.30	
ATC		875		CLU	634		20.0		51.7	26 57.	553		90.00	
ATO		B76	N	SER	635		21.4	65	51.1				90.00	
ATC	M 21	877	CA	SER	625		21.0		49.7				90.00	
ATC	DM 2	878	CB	SER	635		22.2	288	48.8	20 36.	354	00	90.0	o •

bref2	lc.pc	I b		Thu	Apr 25 1	2:27:47	1996	3	В
ATOM	2879	OG	SEP.	635	23.189	49.037	60.063	1.00 90.0	0 }
ATOM	2880	С	SER	635	20.328	49.370	60.435	1.00 90.0	
ATOM	2681	0	SER	635	19.394	48.552	60.427	1.00 90.0	
ATOM	2882	N	GLY	636	20.780	50.010	61.488	1.00 90.0	
ATOM	2883	CA	GLY	636	20.217	49.834	62.821	1.00 90.0	
ATOM	2884 2885	0	GLY	636 636	20.996	48.771	63.586	1.00 90.0	
ATOM	2886	N	HIS	637	20.541 22.203	47.640	63.790	1.00 90.0	
ATOM	2887	CA	HIS	637	22.920	49.107 48.155	64.010 64.847	1.00 29.3	
ATOM	2888	CB	RIS	637	23.190	46.817	64.148	1.00 27.4	
MOTA	2889	CG	HIS	637	23.915	46.854	62.796	1.00 26.3	
ATOM	2890		HIS	637	25.124	47.337	62.400	1.00 26.1	
MOTA	2891		HIS	637	23.338	46.289	61.665	1.00 26.5	
ATOM	2892 2893		HIS	637 637	24.176	46.428	60.659	1.00 26.9	
ATOM	2894	c	HIS	637	25.247 24.223	47.050 48.651	61.079 65.427	1.00 26.3	
ATOM	2895	Ō	HIS	637	24.505	49.862	65.452	1.00 27.3	
ATOM	2896	N	VAL	638	24.921	47.631	65.868	1.00 25.9	
MOTA	2897	CA	VAL	638	26.119	47.770	66.646	1.00 22.6	
ATOM	2898	CB	VAL	638	26.169	46.693	67.730	1.00 23.9	3 5
ATOM	2899		VAL	638	26.966	47.127	68.963	1.00 24.6	
ATOM ATOM	2900 2901	CG2 C	VAL VAL	638 638	24.781	46.310	68.251	1.00 23.20	
ATOM	2902	ò	VAL	638	27.422 27.763	47.694	65.877	1.00 21.1	
ATOM	2903	N	VAL	639	28.129	46.687 48.808	65.236 65.940	1.00 17.80	
ATOM	2904	CA	VAL	639	29.417	48.927	65.309	1.00 21.4	
MOTA	2905	CB	VAL	639	29.362	49.967	64.127	1.00 22.9	
ATOM	2906	CCI	VAL	639	30,383	51.140	64.296	1.00 22.3	
MOTA	2907	CG2	VAL	639	29.531	49.189	62.796	1.00 21.0	
ATOM	2908	C	VAL	639	30.503	49.131	66.402	1.00 18.7	
ATOM ATOM	2909 2910	O N	VAL	639	30.569	50.164	67.103	1.00 15.6	
ATOM	2911	CA	LEU	640 640	31.245 32.312	48.035 47.853	66.588	1.00 17.2	
ATOM	2912	СВ	LEU	640	32.296	46.385	67.567 68.002	1.00 15.0	
ATOM	2913	CG	LEU	640	31.948	45.925	69.398	1.00 9.3	
ATOM	2914	CD1	LEU	64 D	30.755	46.635	69.940	1.00 6.9	
ATOM	2915		LEU	640	31.703	44.456	69.328	1.00 7.6	5
ATOM	2916	С	LEU	640	33.727	48.158	67.106	1.00 15.19	
ATOM ATOM	2917 2918	0 N	LEU	640	34.319	47.345	66.393	1.00 13.5	
ATOM	2919	CA.	ARG	641 641	34.320 35.717	49.236	67.616	1.00 16.40	
ATOM	2920	CB	ARG	641	35.744	49.564 50.820	67.269 66.406	1.00 18.0	
ATOM	2921	CG	ARG	641	36.505	50.60B	65.100	1.00 23.8	
ATOM	2922	CD	arg	641	35.742	51.114	63.884	1.00 25.9	
ATOM	2923	NE	ARG	641	34.649	50.212	63.502	1.00 26.13	
ATOM	2924	CZ	ARG	641	33.446	50.620	63.025	1.00 27.2	
ATOM	2925 2926	NHI	arg arg	641	33.173	51.935	63.013	1.00 24.0	_
ATOM	2927	C	ARG	641 641	32.538 36.638	49.716 49.707	62.685	1.00 23.7	
ATOM	2928	õ	ARG	641	36.119	49.879	68.527 69.655	1.00 17.8	
ATOM	2929	N	TP.P	642	37.972	49.598	68.366	1.00 16.8	
ATOM	2930	CA	TRP	642	38.925	49.723	69.515	1.00 14.6	
ATOM	2931	CB	TRP	642	39.765	48.534	70.453	1.00 13.7	
ATOM	2932	CG	TRP	642	39.106	47.243	63.819	1.00 9.7	
ATOM	2933 2934		TRP TP.P	642	38.203	46.359	69.133	1.00 10.1	6 -
ATOM	2935		TP.P	642 642	38.926 36.855	45.195 46.438	68.814 68.760	1.00 10.0	
ATOM	2936			642	40.304	46.612	69.860	1.00 7.4	, ,
ATOM	2937		TPP	642	40.208	45.37?	69.267	1.00 10.1	6 :
ATOM	2938		TP.P	642	38.345	44.116	68.150	1.00 8.5	3 :
ATOM	2939		TRP	642	36.289	45.374	68.098	1.00 7.2	6 ÷
ATOM	2940		TRF	642	37.035	44.225	67.803	1.00 7.1	3 ÷
ATOM ATOM	2941 2942	CO	TRE	642	40.424	49.824	69.178	1.00 15.1	4 ÷
ATOM	2743	N	TP.P LEU	642 643	40.79E 41.275	49.704 49.382	68.006 70.207	1.00 17.5	
ATOM	2944	CA	LEU	643	42.747	50.063	70.039	1.00 13.3	4 :
ATOM	2945	CB	LET	643	43.310	51.312	70.676	1.00 9.2	
MOTA	2946	CG	LET	643	42.887	52.62?	70.081	1.00 9.0	5 ÷
ATOM	2947		LEC	643	43.784	53.715	70.583	1.00 7.0	0 -
ATOM	2948		LET	643	43.012	52.525	68.601	1.00 9.9	8 :
ATOM ATOM	2949 2950	Ç	LEU	643	43.508	48.891	70.662	1.00 15.4	2 🔅
ATOM	2951	N	LEU PRO	643 644	43.096 44.645	48.351 48.493	71.697	1.00 19.6	
ATOM	2952	CD	PP.	644	45.206	49.056	70.059 68.817	1.00 15.9	
ATOM	2953	CA	PP.	644	45.481	47.381	70.556	1.00 13.2	6 :
ATOM	2954	CB	PRC	644	46.485	47.175	69.412	1.00 15.1	7 ÷
ATOM	2955	CC	PRC	644	46.642	48.573	69.867	1.00 15.0	8 :
MOTA	2956	C	PP.C	644	46.192	47.793	71.851	1.00 11.5	7 :

bref2	lc.pd	ъ		Thu	Apr	25	12:2	27:47	1996		39		
ATOM	2957	٥	PRO	644	4	6.14		.978	72.209		12.33		
ATOM	2958	N	PRO	645		6.80		.824	72.588		10.67		
ATOM	2959	CD	PRO	645		6.83		.392	72.229	1.00	3.59		
MOTA	2960	CA	PRO	645		7.53		1.049	73.851		10.22		
ATOM	2961	CB	PRO	645		8.27		5.746 1.742	73.502	1.00	9.51	_	
MOTA	2962	CG	PRO	645		17.32	_	3.178	73.572	1.00	9.5	_	
ATOM	2963	С	PRO	645		8.47		B.142	72.605		11.7	_	
ATOM	2964	0	PRO	645		19.21 18.43		9.229	74.375	1.00		37	
ATOM	2965	N	PRO	646		47.68		9.431	75.618	1.00			;
MOTA	2966	CD	PRO	646 646		49.33		0.350	74.105	1.00		0 - 5	
MOTA	2967	CA	PRO	646		49.00	_	1.345	75.217	1.00	9.9		
ATOM	2968	CB	PRO PRO	646		47.61		0.941	75.674		11.9		
ATOM	2969	CC	PRO	646		50.80		9.956	74.116		13.0		
MOTA	2970 2971	ŏ	PRO	646		51.20		8.918	74.679		14.2	-	5
ATOM ATOM	2972	N	GLU	647		51.62		0.786	73.470		13.3	-	?
ATOM	2973	CA	GLU	647		53.04		0.546	73.383		14.5		5 5
ATOM	2974	СВ	GLU	647		53.7		1.217	74.552		15.6		ě
ATOM	2975	CG	GLU	647		53.7		2.737	74.380) 19.1 0 20.1		<u>-</u> 6
ATOM	2976	CD	GLU	647		54.2		3.470	75.640 76.715		0 22.7		ŝ
ATOM	2977		GLU	647		53.6		3.215	75.563		0 19.4		à
MOTA	2978	QE 2	GLU	647		55.1		34.305	73.218		0 14.		Ş
MOTA	2979	С	GLU	647		53.4		19.082 18.697	73.795		0 18.3	-	•
ATOM	2980	0	GLU	647		54.5		48.316	72.384		0 11.		7
MOTA	2981	N	THR	648		52.7		46.899	72.062				÷
ATOM	2982		THP.	€48		53.0 51.8		45.984	72.452				÷
MOTA	2983		THR	648		51.5		46.119	73.852		0 10.		ā
MOTA	2984		1 THR	648 648		52.1		44.533					÷
MOTA	2985		2 THR THR	648		53.2	_	46.761		4 1.0	0 9.	27	÷
MOTA	2986		THR	648		52.5		47.370		5 1.0	0 9.	52	3
MOTA	2987 2988		PRO	649		54.3		45.968	70.13	7 1.0		20	7
ATOM	2989			649		55.3		45.245				54	÷
MOTA	2990			649		54.6	610	45.819				88	5
ATOM	299	-				56.3		45.495				46	6
ATOM	299	_				56.	233	44.592				39	6
ATOM	299		PRO)	53.1		44.707				17	5
ATOM	299		PRO		1	52.		44.10				10	ā 7
ATOM	299		MET	650)	54.		44.40				.01	ż
ATOM	299		MET			53.		43.363				. 79 . 66	5
MOTA	299	7 CI					158	41.96				. 85	ş
ATOM	299						676	41.83				. 28	15
ATOM	299						219 577	40.14				.00	5
MOTA	300						112	43.35			00 11		5
ATOM			MET				478	42.28			00 13		3
ATOM							581	44.54			00 11	. 63	3
ATOM							136	44.80		06 1.	00 12	.15	÷
MOTA							858	46.19		23 1.	00 13	.04	÷
ATOM		-	G1 TH				419	47.19	7 66.1		00 14		Ē
ATOM			G2 TH	_			. 364	46.50			.00 15		ř
ATOM						49	. 353	43.78	4 65.0		00 12		5
ATO						ÝŸ	, 309	43.26			.00 16		ā
ATON			_		2		. 966	43.47			.00 13	1.13 5.89	÷
ATON			A SE	R 65			.110	42.62				5.16	ķ
ATO	1 30		B SE				.510	42.9				4.04	
ATO			G SE				.405	41.9				7.54	ě
ATO		14 '			52		.034	40.2				9.34	5
ATO	-		O SE		52		.523	40.7				7.77	:
ATO			N H		53 53		.584					6.49	÷
ATO		• -	CA HI CB HI		53		.991				.00	6.61	÷
ATO					53		.892				.00	9.79	÷
ATO			CG HI		53		2.285					9.28	÷
ATO			ND1 H	75 4	53		2.471		71 63.		.00 1		
710 710			CE1 H		53	53	3.171	39.6				5.42	÷
ATO			NE2 H		53	5	3.071					7.91	
ATO					53		8.476					4.62	:
ATC				IS 6	53		7.989				.00	5.90	-
ATC				LE S	54		8.046				1.00	5.11	
ATC		027	CA I	LE 🤄	54		7.072				1.00	4.75	4
ATC	M 3	028			54		7.059				1.00	3.95 5.93	
λTC	2M 3	029	CG2 I		554		6.252				1.00 1.00	3.24	
ATC		030	CG1 I	_	554		8.46				1.00	2.00	
ATC		031	CD1 I		654		8.56				1.00	5.10	
ATC		032		-	654 654		5.63 4.98			395	1.00	7.39	
ATC		033			654 655		5.21				1.00	5.70	
λT	UM J	034	N 3	IRG		7				_	-	-	

bref2	lc.pd	Ъ		Thu	Apr	25	12	:27:47	1996	40	
ATOM	3035	CA	ARG	655	4	3.8	56	38.107	67.582	1.00 4.70	5
ATOM	3036	CB	ARG	655	4	3.9	47	36.60B	67.851	1.00 6.54	6
MOTA	3037	CG	ARG	655		2.7		35.835	67.393	1.00 12.78	5
MOTA	3038	CD	ARG	655		2.9		35.234	66.013	1.00 19.16	•
MOTA MOTA	3039 3040	NE CZ	ARG ARG	655 655		1.6		35.243	65.243	1.00 25.22	1
ATOM	3041	NH1		655		2.4		34.509 33.699	64.155 63.683	1.00 28.18	5
ATOM	3042		ARG	655		0.3		34.523	63.465	1.00 29.93	7
ATOM	3043	С	ARG	655		3.0		38.786	68.687	1.00 4.93	6
ATOM	3044	0	ARG	655	4	3.5	61	39.225	69.706	1.00 4.78	9
ATOM	3045	N	TYR	656		1.7		38.916	68.485	1.00 3.05	7
ATOM	3046	CA	TYR	656		0.B		39.533	69.491	1.00 4.57	6
atom Atom	3047 3048	CB CG	TYR TYR	656 656		0.3		40.886	69.041	1.00 5.74	6
ATOM	3049		TYP	656		1.3		41.973	69.131 67.995	1.00 11.08	6 6
ATOM	3050		TYR	656		3.0		43.341	68.077	1.00 13.79	6
ATOM	3051		TYR	656		1.7		42.482	70.366	1.00 13.83	6
MOTA	3052	CE2	TYR	656	4	2.7	79	43.407	70.461	1.00 14.75	6
MOTA	3053	CZ	TYR	656		3.4		43.826	69.307	1.00 14.26	6
ATOM	3054	OH	TYR	656		4.4		44.701	69.373	1.00 19.33	8
ATOM ATOM	3055 3056	0	TYR TYP	656 656		9.6		38.646	69.848	1.00 7.31	5
ATOM	3057	N	GLU	657		8.9		37.608 39.048	69.210 70.905	1.00 7.58 1.00 9.63	8 7
ATOM	3058	CA	GLU	657		7.7		38.359	71.431	1.00 9.06	, 5
ATOM	3059	CB	GLU	657		8.1		37.385	72.555	1.00 11.39	6
ATOM	3060	CG	GLU	657	3	6.8	74	36.766	73.217	1.00 14.76	6
ATOM	3061	CD	CLU	657		6.7		35.254	72.977	1.00 17.29	6
ATOM	3062		GLU	657		6.1		34.838	71.945	1.00 19.32	8
atom Atom	3063 3064	QE2 C	GLU	657 657		7.2		34.472 39.366	73.826 72.006	1.00 18.57	6
ATOM	3065	ŏ	GLU	657		7.1		40.033	72.985	1.00 10.04 1.00 8.78	6 8
ATOM	3066	N	VAL	658		5.6		39.428	71.412	1.00 13.32	7
ATOM	3067	CA	VAL	658		4.5		40.334	71.819	1.00 15.04	6
ATOM	3068	CB	VAL	658		3.8		40.908	70.578	1.00 17.13	6
MOTA	3069	CG1		658		2.3		41.228	70.903	1.00 18.15	6
ATOM	3070	CG2		658		4.5		42.151	70.055	1.00 15.29	6
MOTA HOTA	3071 3072	0	VAL VAL	658 658		13.5 13.0		39.602 38.519	72.697	1.00 15.57	6
ATOM	3073	N	ASP	659		13.1		40.225	73.818	1.00 15.80	8 7
ATOM	3074	CA	ASP	659		12.2		39.660	74.762	1.00 16.22	6
ATOM	3075	CB	ASP	659		12.8		39.583	76.152	1.00 18.33	6
ATOM	3076	CG	ASP	659		11.6		39.320	77.262	1.00 17.02	6
ATOM	3077		ASP	659		11.7		40.220	78.127	1.00 16.96	9
ATOM ATOM	3078 3079	C	ASP ASP	659 659		31.1 30.9		38.238 40.488	77.248	1.00 15.05	a
ATOM	3080	ō	ASP	659		30.9		41.480	75.641	1.00 16.55	6 3
ATOM	3081	N	VAL	660		29.9		40.096	74.127	1.00 17.40	ř
MOTA	3082	CA	VAL	660		28.6		40.775	74.150	1.00 18.10	÷
ATOM	3083	CB	VAL	660		27.8		40.550	72.857	1.00 15.37	5
ATOM	3084		VAL	660		28.7		40.397	71.683	1.00 16.34	5
ATOM ATOM	3085 3086	C	VAL VAL	660 660		26.9 27.7		39.368 40.299	72.990	1.00 15.04	5
ATOM	3087	ŷ	VAI	550		27.7		39.092	75.335 75.635	1.00 20.40	5 8
ATOM	3088	Ň	SER	661		27.0		41.218	75.943	1.00 22.33	7
ATOM	3089	CA	SER	661		26.2		40.865	77.104	1.00 23.37	6
ATOM	3090	CB	SER	661		27.1		40.683	78.308	1.00 23.56	6
ATOM:	3091	OG	SER	661		20.0		39.569	78.169	1.00 25.08	8
ATOM	3092 3093	.c	SER	661		25.1		41.882	77.544	1.00 25.29	6
atom Atom	3094	O N	SER	661 662		24.E 24.6		42.901 41.596	76.839 78.784	1.00 24.57	а 7
ATOM:	3095	CA	ALA	662		23.6		42.325	79.598	1.00 23.48	á
ATOM	3096	CB	ALA	662		23.9		43.856	79.493	1.00 24.66	5
ATOM	3097	C	ALA	662		22.2		41.933	73.339	1.00 22.08	ń
ATOM	3098	0	ALA	662		21.9		40.739	79.266	1.00 16.69	13
ATOM	3099	N Sh	GLY	663		21.3		42.948	79.300	1.00 23.15	7
atom atom	3100 3101	CA C	GLY	663 663		19.9 19.1		42.775 41.953	79.047 80.038	1.00 24.87	5
ATOM	3102	ŏ	GLY	663		18.		40.929	79.649	1.00 23.33	5 3
ATOM	3103	N	ASN	664		19.0		42.452	81.277	1.00 24.09	7
ATOM	3104	CA	ASN	654		18.		41.815	82.410	1.00 25.56	ં
MOTA	3105	40	ASN	664		17.		42.706	82.938	1.00 27.33	5
atom atom	3106 3107	CG	ASN ASN	664 664		15.		42.725	82.013	1.00 28.05	5
ATOM	3107		ASN	664		15.		43.57%	81.114 82.294	1.00 29.36	3
ATCM	3109	C	ASN	664		17.		40.352	82.334	1.00 25.76	
MOTA	3110	ŏ	ASN	664		16.		39.992	81.488	1.00 25.92	13
ATOM:	3111	N	GLY	665		18.	250	39.517	83.243	1.00 24.45	
atom	3112	CA	GLY	665		17.	91 B	38.123	82.294	1.00 24.29	

bref21	lc.pd	ь		Thu	ybı	25 1	2:27:4	7 1	996	4	1
ATOM	3113	С	GLY	665	1	8.560	37.239			.00 23.9	
ATOM	3114	ō	GLY	665		8.754	36.011			1.00 24.0 1.00 22.3	
MOTA	3115	N	ALA	666		LB.767	37.805 37.054			1.00 22.7	_
MOTA	3116	CA	ALA	666		19.331	37.724			1.00 21.9	-
ATOM	3117	CB C	ALA ALA	666 666		20.893	37.166			1.00 24.3	
ATOM ATOM	3118 3119	Ö	ALA	666		21.300	38.225			1.00 25.1	
ATOM	3120	N	GLY	667		21.579	36.03			1.00 25.5 1.00 26.4	
MOTA	3121	CA	GLY	667		22.941	36.050 35.940		.159 . 94 9	1.00 28.1	
MOTA	3122	C	GLY	667 667		23.838 24.789	35.14		.937	1.00 29.4	
ATOM	3123	O N	GLY SER	668		23.483	36.68		.896	1.00 28.	73 7
MOTA	3124. 3125	CA	SER	668		24.256	36.66	9 77	. 641	1.00 28.	_
MOTA	3126	CB	SER	668		23.634	37.60		.547	1.00 28.	
ATOM	3127	05	SER	668		24.312	37.57 37.20		3.278 3.057	1.00 24.	
ATOM	3128	C	SER	668 668		25.597 25.647			3.798	1.00 27.	
ATOM	3129 3130	O N	SER Val	669		26.623			7.762	1.00 26.	59 7
ATOM ATOM	3131	CA	VAL	669		28.049	36.71		7.987	1.00 23.	
ATOM	3132	СВ	VAL	669		28.665			9.266	1.00 20.	_
ATOM	3133		VAL	669		28.460			9.178 9.456	1.00 19.	-
MOTA	3134		VAL	669		30.175			6.644	1.00 21.	
ATOM	3135	C	VAL VAL	669 669		29.846			6.545	1.00 20.	
ATOM	3136 3137	Ŋ	GLN	670		27.845			5.598	1.00 20.	
MOTA	313B	CA	GLN	670		28.193			4.245	1.00 18.	
ATOM	3139	CB	GLN	670		27.00		_	3.312	1.00 17.	
ATOM	3140		GLN	670		27.182			0.902	1.00 22	
ATOM	3141 3142	CD	GLN L GLN	670 670		28.50			1.234	1.00 24	.66 8
ATOM ATOM	3142		2 GLN	670		27.91	2 35.9	95 6	9.634	1.00 23	
ATOM	3144	-	GLN	670		29.51			3.696	1.00 17	
MOTA	3145		GLN	670		29.79			73.770 73.157	1.00 15	
ATOM	3146		ARG	671		30.33 31.63			2.639	1.00 16	
MOTA	3147		ARG ARG	671 671		32.67			73.517	1.00 17	.57 6
atom atom	3148 3149			671		32.94			74.887	1.00 19	
ATOM	3150			671		32.49	3 35.2		76.139	1.00 18	
ATOM	3151	NE	ARG	671		32.98			77.368	1.00 19	
ATOM	3152			671		33.86 34.37			78.218 78.021	1.00 17	
ATOM	3153		1 ARG	671 671		34.30			79.241	1.00 17	
MOTA	3154 315		ARG			31.86			71.158	1.00 18	
ATOM	315	-	ARG			31.42			70.645	1.00 20	
ATOM	315	7 N	VAL			32.5			70.460 69.049		
ATOM	315					32.8°			68.160		
MOTA	315		B VAI SI VAI			30.6			68.682		7.58 5
HOTA MOTA	316 316		SZ VAI			32.7			68.133		
ATOM	_	-	VAI			34.3			68.849		
ATOM			VAI			34.9			69.358		
ATOM						35.0 36.4			68.184		
ATOM						36.9		409	67.15		7.98 6
NTOM ATOM						36.6		525	65.60	1.00 2	1.07 5
ATOM			D GL		13	36.9		299	64.75		
ATOM	310	69 C	E1 GL			36.9 37.2		153 501	63.53		
ATOM			E2 GL			36.6		859	66.97		4.79 5
ATOM ATOM					13	35.6	i88 37.	420	66.45	6 1.00 1	5.66 9
ATO			IL		74	37.6		. 192	66.70	8 1.00 1	5.73 7
ATO			A II		74	38.2		.270	65.79		
ATO		75 (B 11		74	38.		. 659	66.49		16.72 ÷
ATO			G2 II		74	38.1 37.1		.718 .044	65.48 67.28		15.11
ATO			CG1 II		74 74	35.		.386	66.48		12.07 5
ATO			CD1 II C II		74	39.		. 922	65.19		16.94 5
ATO			o II		74	40.	511 37	.502	65.90	9 1.00	15.56 3
ATO			N LI	EU 6	75	39.		.012	63.88		18.65 7 16.13 ÷
ATO	M 31	82	CA LI		75	41.		.737 .553	63.25		16.13 ÷ 16.02 ÷
ATO			CB LI		75 75	40. 40.		.155	61.3		17.94 5
ATO ATO			CG LI CD1 LI		75 75			. 050	61.3	26 1.00	13.53 5
ATO			CD2 L		375	40.	967 35	.743	60.0		18.65
ATC	M 31	87	C L	EU 6	575			. 895		85 1.00	16.58 6 16.45
ATC		88			575 576			0.013 3.587	63.9 63.5		14.67
ATC		189 190			576 576			.514			12.70
~				'	-						

bref2	lc.p	d b		Thu	Apr 25	12:27:4	7 1996	42	
ATOM	3191	CB	GLU	676	45.667	38.907	63.526	1.00 12.08	:
ATOM	3192	CG	GLU	676	45.627		62.478	1.00 11.18	:
ATOM	3193	CD	SLU	676	45.494		63.080	1.00 13.77	ž.
ATOM ATOM	3194 3195	OE1		676	46.538		63.546	1.00 16.32	፥
ATOH	3196	OE2	GLU	676 676	44.367		63.108	1.00 13.00	:
ATOM	3197	ŏ	613	676	44.268 43.569		63.146	1.00 12.13	•
ATOM	3198	N	SLY	677	45.030		62.159 63.699	1.00 12.89	•
ATOM	3199	CA	GLY	677	45.121		63.145	1.00 11.52 1.00 11.07	:
ATOM	3200	C	SLY	677	43.796		62.961		:
ATOM	3201	0	SLY	677	43.770		62.523		÷
ATOM	3202	N	ARG	678	42.700		63.329		-
atom Atom	3203 3204	CA CB	arg arg	678 678	41.387		63.174		÷
ATOM	3205	CG	ARG	678	40.342 39.529		62.927		•
ATOM	3206	CD	ARG	678	40.401		61.695 60. 5 04		į
ATOM	3207	NE	ARG	678	41.014		60.643	1.00 22.61	÷
ATOM	3208	CZ	ARG	678	41.887		59.787		÷
ATOM	3209	NH1		678	42.274		58.700		-
ATOM ATOM	3210 3211	C C	ARG ARG	678 678	42.380		60.037		
ATOM	3212	ŏ	ARG	678	41.001 41.199		64.420		÷
ATOM	3213	N	TUP	679	40.462		63.529 64.249		:
ATOM	3214	CA	TEP	679	40.027		65.390		÷
MOTA	3215	CB	THP	679	40.996		65.669		•
ATOM	3216	OGI	THP	679	41.204	48.405	64.448		:
ATOM	3217	CG2	THP.	679	42.332		66.229		•
ATOM ATOM	3218 3219	0	THR	679	38.637		65.182		÷
ATOM	3220	N	THR GLU	679 680	38.393 37.732		65.540		•
ATOH	3221	CA	GLU	680	36.358		64.604	2.00 .0.07	-
ATOM	3222	CB	GLU	680	36.289		64.332 63.128		÷
ATOM	3223	CG	GLU	680	36.140		61.755		÷
ATOM	3224	CD	GLU	680	35.086	47.782	60.847		į
ATOM	3225		GLU	680	34.342		60.138	1.00 16.53	3
ATOM ATOM	3226 3227	OE2 C	GLU	680	35.019		60.825		3
ATOM	3228	ò	GLU	680 680	35.489 35.887		64.076		÷
ATOM	3229	N	CYS	681	34.299		63.364 64.654	1.00 22.54	=
ATOM	3230	CA	CYS	681	33.382		64.498		÷
ATOM	3231	CB	CYE	681	33.617		65.603		-
ATOM ATOM	3232	SG	CYS	681	32.134	42.836	66.606		÷
ATOM	3233 3234	С 0	27.2 27.2	681 681	31.958		64.540	1.00 24.30	•
ATOM	3235	N	YAL	682	31.579 31.181	45.763 44.688	65.448	1.00 23.84	=
ATOM	3236	CA	72.1	682	29.818		63.517 63.511		•
ATOM	3237	CB	722	682	29.433		62.131	1.00 18.07	:
ATOM	3238	CG1	711	682	.30.190	45.270	60.969	1.00 16.40	÷
MOTA	3239	CG3	77.L	682	27.952		61.867	1.00 17.19	÷
ATOM ATOM	3240 3241	0	yal yal	682	28.861	44.077	64.001		÷
ATOM	3242	N	LEU	682 683	28.659 28.449		63.342		•
ATOM	3243	CA	LEU	683	27.485		65.258 65.859	1.00 17.47	-
ATOM	3244	CB	122	683	27.326		67.348		: :
MOTA	3245	CC	LET	683	28.420	43.127	68.299	1.00 13.82	:
ATOM	3246	CD1	-==	683	28.201		69.667	1.00 13.45	ŧ
ATOM ATOM	3247 3248 ·	CD2	LEU	683	28.376		68.387	1.00 15.36	:
ATOM	3249	0	120 120	683 683	26.228 25.446		65.104	1.00 24.03	:
ATOM	3250	N	SER	684	26.087		65.544 63.914	1.00 24.27	:
MOTA	3251	CA	SEP.	684	25.003		63.028		:
ATOM	3252	CB	SER.	684	25.222		61.629	1.00 31.20	•
ATOM	3253	OC	SEP.	684	26.502		61.067		•
ATOM	3254	Ç	327	684	23.614		63.491	1.00 26.69	:
ATOM ATOM	3255 3256	Ó N	eer Aen	584 685	22.800		63.699	1.00 27.76	:
ATOM	3257	CA	ASS	685	23.397 22.049		63.826		<u>-</u>
ATOM	3258	CB	AIX	685	21.716		64.131 63.083	1.00 25.85 1.00 27.66	:
ATOM	3259	CG	ZZA	685	22.993		62.504	1.00 27.66	: :
ATOM	3260	ODI	AJ:	685	23.994	40.433	62.186	1.00 26.41	:
ATON	3261		ZEZ	685	22.972		62.407	1.00 28.57	-
ATOM ATOM	3262 3263	0	ASX	685	21.748		65.533	1.00 26.76	•
ATOM	3264	N	YE:	685 686	22.271 20.899		65.923	1.00 27.14	:
ATOM	3265	CA	:::	686	20.593		66.287 67.649	1.00 25.95 1.00 24.26	:
ATOM	3266	CB	LET	686	21.779		68.584		:
ATOM	3267	CG	LEU	686	22.718	42.760	68.474		•
ATOM	3268	CD1		686	23.700	42.840	€9.708		÷

bref21	c.pd	b		Thu	y bz	25	12	:27	: 47	199			43	
ATOM	3269	CD2	LEU	686		3.56		42.		67.1		00 20.		5 5
ATOM	3270	C	LEU	686		9.23		41.5		68.4		.00 27.		á
ATOM	3271	0	LEU ARG	686 687	_	.8.36 9.03		42.		68.8		00 25		7
ATOM ATOM	3272 3273	N CA	ARG	687		7.83		43.		69.6	36 1	.00 21		5
ATOM	3274	CB	ARG	687		8.11		42.		71.1		.00 21		5
ATOM	3275	CG	ARG	687		7.25		41.		71.7		.00 18 .00 20		5 5
ATOM	3276	CD	ARG	687		17.77		40.4 39.4		71.4		.00 23		i
MOTA	3277	NE	ARG	687 687		16.88 16.83		38.		71.4		.00 24		÷
ATOM	3278	CZ	ARG	687		17.6	_	37.		70.4		.00 25		7
MOTA MOTA	3279 3280		ARG	687		15.9			303	71.9		.00 23		1
ATOM	3281	c	ARG	687		17.3	58		587	69.5	_	.00 23		á
ATOM	3282	0	ARG	687		17.B			369	68.6 70.4		.00 24		a 7
ATOM	3283	N	GLY	688		16.4 15.8			939 263	70.4		.00 22		4
MOTA	3284	CA	CL1 CL1	688 688		15.5			644	71.6		.00 23		6
ATOM	3285 3286	0	GLY	688		15.3			760	72.7	726 1	.00 21		8
MOTA MOTA	3287	N	ARG	689		15.7	12		944	72.1		.00 23		7
ATOM	3288	CA	ARG	689		15.5			533	73.		.00 23		6
ATOM	3289	CB	ARG	689		14.0	_		518	73.9		.00 22 00 20		6
ATOM	3290	CG	ARG	689		13.5			. 919 . 988	73.		1.00 1		6
MOTA	3291	CD	ARG	689		13.3			.266	73.		.OD 1		7
ATOM	3292	NE	ARG	689 689		14.2			. 828	75.		1.00 1		5
ATOM	3293	CZ	ARG L ARG	689		13.7			. 253	76.		1.00 1		7
MOTA	3294 3295		2 ARG	689		14.			.066	75.	213	1.00 1		7
ATOM	3296	С	ARG	689		16.4			. 958	74.		1.00 2		رَ ع
ATOM	3297	0	ARG	689		16.			.542	75.		1.00 2 1.00 2		ั8 7
MOTA	3298	N	THR	690		17.			.887 .127			1.00 2		6
MOTA	3299	CA	THR	690 690		18.			.902			1.00 2		6
ATOM	3300 3301		THR 1 THP.	690		17.			.550			1.00 2	4.96	8
MOTA MOTA	3302		2 THR	690		18.		43	.736		355	1.00 2		6
MOTA	3303		THR	690		19.			. B21		661	1.00 2		6
ATOM	3304	_	THR	690		20.			. 436		841	1.00 2		8 7
ATOM	3305	N	ARG	691		19.			. 704		. 966 . 514	1.00 2		6
MOTA	3306			691			920 908		1.275 1.426		.055	1.00 2		6
ATCH	3307			691 691			668		5. 3 03		. B 60	1.00		5
ATOM	3308 3309			691			736		5.597		.403	1.00		5
MOTA MOTA	3310			691			360	4:	5.549	82	.240	1.00		7
ATOM	3311	C2		691			6B1		4 . 632		. 957	1.00		5 7
MOTA	3312		11 ARG	691			331		4.612 3.775		.931 .768	1.00		'n
ATOM	3313	-	12 ARG	691 691			.337 .024		6.269		.114	1.00		ń
MOTA	3314 331		ARG ARG	691			. B 6 3		5.02		. 231	1.00		3
ATOM ATOM	331		TYR	692			. 157		6.78		. 682	1.00		7
ATOM	331			692		24	.213		5.89		.256	1.00		5
ATOM	331		B TYR	692			.237		5.88		.744	1.00	24.61 23.60	ó ó
ATOH	331			692			.317		4.90 3.57		.100	-	23.69	5
ATOM	332		D1 TYR	692 692			.303 .544		2.63		. 833		23.82	6
ATOM	33 <u>2</u> 332		E1 TYR D2 TYR				. 53		5.28		.014		24.04	5
ATOM ATOM			E2 TYR			21	.75	5 4	4.34	5 72	. 325		24.91	6
ATOM			Z TYR		!		.77		3.02		.745		24.40	5
ATOM			H TYR				.02		2.08		2.059 5.739		27.00 22.44	8
ATOM							.53		16.43 17.64		5.606		21.10	
ATOH							.30		15.56	-	7.302		19.16	
ATOM ATOM			A THE				7.71		15.98		7.758	1.00	14.99	
ATOM			B THE			27	7.87		45.98		9.301		13.81	
ATOM			GI THE		3		5.74		46.64		9.909		14.05	
ATOM		32 (CG2 THI				9.15		46.74		9.685 7.062		12.28	
ATOM			C TH				B.73 B.45		45.0° 43.8°		6.926		11.0	
ATO			O TH				9.81		45.6	_	6.604		15.3	
ATO:			n Phi Ca Phi				0.84		44.9		5.845	1.00	15.6	8 6
ATO			CB PH				0.83	33	45.5	01 7	4.405		18.1	
ATO		38	CG PH	E 69	4		9.4		45.6		3.816		19.4	
ATO	H 33	39	CD1 PH				8.74		46.8		4.043		18.6	
ATO			CD2 PH				8.81 7.4		44.6		73.481		19.7	
ATO			CE1 PH				7.6		44.8		72.450		16.4	
ATO		42	CZ PH				6.9		46.0		72.67		16.7	9 6
ATO		144	C PH		94	3	2.2	37	45.2	10	76.374		14.8	
ATO	M 33	45	O PH	E 69	94		2.5		46.3		76.83		14.7	
ATO	es 33	346	N AI	.A 6	95	3	13.1	12	44.2	27	76.15	1.00	0 14.2	

bref2	lc.po	£Ъ		Thu	Apr 25 1	2:27:47	1996	44
ATOM	3347	CA	ALA	695	34.532	44.271	76.533	1.00 14.58 6
ATOM	3348	CB	ALA	695	34.704	43.821	77.959	1.00 15.52 6
ATOM	3349	C	ALA	695	35.331	43.352	75.579	1.00 16.59 6
ATOM ATOM	3350 3351	0	ALA	695	34.739	42.503	74.883	1.00 16.77 6
ATOM	3352	N CA	VAL VAL	696 696	36.663 37.475	43.475	75.554	1.00 18.89 7
ATOM	3353	CB	VAL	696	37.455	42.637 43.242	74.640 73.198	1.00 18.54 6 1.00 19.19 6
ATOM	3354	CG1	VAL	696	37.867	44.705	73.223	1.00 17.15 6
ATOM	3355	CG2	VAL	696	38.335	42.446	72.255	1.00 20.60 6
ATOM	3356 3357	0	VAL VAL	696 696	38.923	42.284	75.047	1.00 18.64 6
ATOM	3358	N	ARG	697	39.654 39.321	43.093 41.055	75.637 74.738	1.00 18.43 8 1.00 18.97 7
ATOM	3359	CA	ARG	697	40.675	40.563	75.050	1.00 18.97 7 1.00 18.67 6
ATOM	3360	CB	ARG	697	40.593	39.173	75.664	1.00 17.03 6
ATOM	3361	CG	ARG	697	39.772	39.078	76.889	1.00 15.40 6
ATOM ATOM	3362 3363	CD NE	ARG	697 697	39.842 39.077	37.650	77.417	1.00 18.07 6
ATOM	3364	CZ	ARG	697	39.077	36.676 35.467	76.632 77.081	1.00 17.47 7
ATOM	3365	NH1	ARG	697	39.061	35.078	78.309	1.00 19.24 6 1.00 20.70 7
ATOM	3366		ARG	697	38.014	34.643	76.318	1.00 18.93 7
ATOM	3367	c	ARG	697	41.625	40.494	73.818	1.00 18.98 6
ATOM	3368	0	ARG	697	41.180	40.255	72.677	1.00 19.20 8
ATOM ATOM	3369 3370	N CA	ALA	698 698	42.926	40.660	74.077	1.00 17.10 7
ATOM	3371	CB	ALA	698	43.973 44.816	40.609 41.858	73.057 73.146	1.00 14.99 5
ATOM	3372	c	ALA	698	44.638	39.366	73.296	1.00 15.98 6 1.00 14.49 6
ATOM	3373	٥	ALA	698	45.073	38.999	74.432	1.00 16.90 8
MOTA	3374	N	ARG	699	45.349	38.753	72.234	1.00 13.57 7
ATOM	3375	CA	ARG	699	46.174	37.540	72.325	1.00 10.72 5
ATOM ATOM	3376 3377	CB CG	ARG	699	45.229	36.331	72.392	1.00 12.04 6
ATOM	3378	CD	ARG ARG	699 699	45.692 46.738	35.014 34.349	71.794	1.00 12.63 6
ATOM	3379	NE	ARG	699	46.913	32.910	72.399	1.00 20.39 6 1.00 21.37 7
MOTA	3380	CZ	ARG	699	46.119	31.955	72.895	1.00 21.92 6
ATOM	3381	NH1	ARG	699	45.069	32.257	73.672	1.00 21.47 7
MOTA	3382	NH2		699	46.442	30.682	72.710	1.00 22.33 7
ATOM	3383 3384	0	ARG ARG	699 699	47.090 46.680	37.470	71.094	1.00 9.38 6
ATOM	3385	N	MET	700	48.355	37.820 37.109	69.991 71.282	1.00 10.86 8 1.00 8.21 7
ATOM	3386	CA	MET	700	49.263	37.029	70.140	1.00 8.21 7 1.00 7.21 6
ATOM	3387	CB	MET	700	50.724	36.955	70.551	1.00 6.01 6
ATOM	3388	CG	MET	700	51.322	38.292	70.963	1.00 5.33 6
ATOM	3389	SD	MET	700	52.092	39.250	69.678	1.00 9.84 16
ATOM ATOM	3390 3391	CE	MET HET	700 700	51.368 48.875	40.792	69.955	1.00 8.49 6
ATOM	2392	ŏ	MET	700	48.609	35.808 34.755	69.375 69.939	1.00 6.64 6 1.00 6.32 8
ATOM	2393	N	ALA	701	48.849	35.943	68.069	1.00 7.50 7
ATOM	3394	CA	ALA	701	48.425	34.837	67.250	1.00 8.94 6
ATOM	3395	CB	ALA	701	47.605	35.361	66.065	1.00 7.41 6
ATOM ATOM	3396 3397	0	ALA ALA	701 701	49.483 50.679	33.855	66.779	1.00 9.12 6
ATOM	3398	N	GLU	702	48.980	34.165 32.669	66.639 66.491	1.00 9.86 3 1.00 10.01 7
ATOM	3399	CA	GLU	702	49.763	31.574	65.987	1.00 13.16 6
ATOM	3400	CB	GLU	702	48.971	30.275	66.108	1.00 15.92 6
MOTA	3401	CG	GLU	702	49.724	29.784	67.501	1.00 18.17 6
ATOM ATOM	3402 3403	CD OE1	GLU	702	48.597	28.284	67.507	1.00 21.01 5
ATOM		OE2		702 702	47.904 49.233	27.731 27.652	66.611 68.377	1.00 22.10 8
ATOM	3405	c	GLU	702	50.126	31.770	64.510	1.00 24.81 8 1.00 13.07 6
MOTA	3406	0	GLU	702	49.560	32.617	63.802	1.00 12.10 8
ATOM	3407	N	PRO	703	51.106	30.986	64.037	1.00 14.95 7
MOTA	3408	CD	PRC	703	51.501	30.820	62.625	1.00 17.31 6
ATOM	3409 3410	CA	PRC-	703 703	51.782 51.896	30.007	64.899	1.00 14.84 5
ATOM	3411	CG	PRO	703	52.253	28.794 29.467	63.999 62.635	1.00 14.77 6 1.00 19.35 6
MOTA	3412	c	PRC	703	53.150	30.488	65.409	1.00 19.35 6 1.00 13.50 5
ATOM	3413	0	PRC	703	53.801	29.774	66.157	1.00 15.09 N
MOTA	3414	N	SER	704	53.587	31.681	65.002	1.00 11.82 7
ATOM ATOM	3415	CA	SER	704	54.873	32.218	65.461	1.00 9.78 5
ATOM	3416 3417	CP OG	SER SER	704 704	55.156 55.301	33.574 33.474	64.798	1.00 9.23 6
ATOM	3418	c	SER	704	54.860	32.386	63.394 67.003	1.00 8.65 8 1.00 11.09 5
ATOM	1419	0	SER	704	55.621	31.729	67.736	1.00 11.09 B
ATOM	3420	N	PHE	705	53.937	33.229	67.468	1.00 8.75 7
ATOM ATOM	3421	CA	BHE	705	53.767	33.532	68.857	1.00 3.52 6
ATOM	3422 3423	CB	PHE PHE	705 701	53.323	34.973	68.988	1.00 5.09 6
ATOM	3424		PHE	705	54.159 53.696	35.924 36.417	68.184 66.957	1.00 7.49 6
			_		-5.070	J J J J J	U	1.00 8.92 6

												45	
bref21	lc.pd	ь		Thu	Apr	25	12:	27:4	7 1	996		45	
ATOM	3425	CD2	PHE	705		55.44		6.284			1.00	8.54	:
ATOM	3426	CEl	PHE	705		54.5		37.252			1.00 1.00	7.44 4.91	÷
ATOM	3427		PHE	705		56.2° 55.80		37.115 37.598			1.00	5.19	÷
MOTA	3428	CZ	PHE	705 705		52.7		32.591		.505	1.00	5.11	÷
ATOM ATOM	3429 3430	С 0	PHE	705		52.2	57	31.697	68	.878	1.00	4.57	3
ATOM	3431	N	GLY	706		52.6		32.751		.809	1.00	8.69	7. 6
ATOM	3432	CA	GLY	706		51.7		31.956		. 622	1.00	7.99 9.39	•
MOTA	3433	C	GLY	706		51.6 52.3		32.72(33.73!		.069	1.00	9.05	į
MOTA	3434	0	GLY	706 707		50.8		32.29		. B7B	1.00		7
ATOM	3435 3436	N CA	GLY	707		50.7		32.99		1.162	1.00	9.87	÷
MOTA	3437	c	GLY	707		49.4	65	32.82	_	3.977	1.00	7.80	•
ATOM	3438	0	CLY	707		48.8		31.73		6.063 6.540	1.00	7.37	3
MOTA	3439	N	PHE	708		48.9		33.92 33.91		7.372	1.00	B.42	,
ATOM	3440	CA	PHE	708 708		48.1	_	33.98	_	8.874	1.00	9.14	5
MOTA	3441 3442	CB	PHE	708		49.3		33.12	6 7	9.277	1.00	8.19	•
ATOM	3443		PHE			49.		31.78		9.592	1.00	5.98	÷ ÷
ATOM	3444		PHE			50.		33.67		9.352 9.974	1.00	6.32 8.74	÷
ATOM	3445		PHE			50.		31.01		9.731	1.00	5.05	Ę
ATOM	3446		PHE			51.		31.58		0.040	1.00	4.00	÷
ATOM	3447 3448	CZ C	PHE			46.		35.06		7.077	1.00	7.99	•
ATOM ATOM	3449		PHE			47.		36.18		6.721	1.00	6.94	\$ 7
ATOM	3450		TPF			45.		34.7		7.285	1.00	9.09 12.14	÷
ATOM	3451		TRE				475 114	35.78 35.08	_	7.119		11.59	÷
MOTA	3452		TRE				417	34.5	_	6.165		12.07	÷
ATOM ATOM	3453 3454		2 TRI				098	35.3		4.999	1.00	9.80	5
ATOM	3455		2 TRI				465	34.4		4.092	1.00	9.82	÷
ATOM	3456						283	36.6		74.634 75.929	1.00	9.79 11.53	÷
ATOM	3457						971 398	33.3 33.2	Ŧ.,	74.688		12.13	i
ATOM	3458		1 TR				018	34.8		72.841	1.00	9.03	ź
ATOM ATOM	3459 3460						838	37.1		73.399		11.59	5
ATOM	3461		2 TR			41.	.214	36.2		72.513		10.54	ķ
ATOM	346		TR				. 635	36.9		78.056		10.56	á
ATOM	346		TR				.770 .620	36.8 38.1		79.268 77. 5 08		11.52	3
MOTA	346		SE A SE				.765	39.3		78.351		12.14	÷
ATOM	346 346		_				.040	40.5		77.501			5
ATOM	346			P. 71			.847	41.3		77.157		10.05	S S
ATOM	346		SE	_			.522 .531	39.5 38.6		79.216 79.139) 12.22) 17.16	į
MOTA	346				10 11		.580			80.076		12.01	7
ATOM ATOM	347 347				li		.435	_		20.894	1.0	12.49	
ATOM		-			11	42	.855			81.99		12.98	
ATOM					11		.432			79.96		D 13.23 D 14.99	
ATOM					11		810			78.91 80.32		0 13.85	_
ATOM					12 12).155).159			79.52		0 12.59	
ATOM					12		7.751		031	80.09			
ATOM					12		7.202		647	79.84			
ATOM	34		D2 T		12		6.79		091	78.57			
ATOM			E2 T		12		6.416 6.71		745	78.80			
ATOM	34	82 · /	E3 T		12		7.03		647	80.76		0 8.2	9 ÷
ATO			NE1 T	RP .	112	3	6.57	4 38.	499	80.15			0 -
ATON		84 (CZ2 1		112		5.96		906	77.78 76.26			
ATO			C23 1		712		6.27 5.90		.776 .434	76.52			e :
ATO			CH2 T		712 712		9.49		.747	79.52	0 1.0	0 12.5	<u> </u>
ATO:					712		0.12		.269	80.46	0 1.0	00 12.3	c ÷
ATO					713	3	9.17	4 44	.385	78.3	95 1.	20 15.3	
ATO			CA S	SER	713		9.36		.819	78.10		00 15.4 00 14.5	5 -
ATO	M 34				713		9.29		.108	76.63	19 .	30 11.8	0 :
ATO					713 713		38.16		.480	78.7	99 :.	00 15.8	8 ÷
ATO ATO		193 194			713		37.08		.908	78.7	64	oc 18.6	4 :
ATO		195			714	:	38.30	9 47	.705	79.2	79 1.	00 17.0	4
ATO		196	CA	<u>erc</u>	714		37.16		.391	79.8	88 I.	00 20.2	9 -
ATO	M 34	497		GLU	714		37.52		.809			50 21.8 00 24.0	
ATO		498		GLU	714 714		38.4° 38.6		.836 .236		78 :	00 26.	47 4
ATC		499 500	OE1 CD	GLU GLU	714		39.8	60 51	.479	B2.4	20 1.	00 27.5	51 ÷
OTA		501		CTC	714		37.7	35 52	2.074	81.9		00 25.	
ATO		502	С	GLU	714		35.B	B5 48	B.366	79.0	27	00 21.	46

bref2	lc.p	i b		Thu	Apr 2	5 1	2:27:47	1996		46	
ATOM	3503	٥	GLU	714	35.	867	48.844	77.886	1.00 21	. 24	а
ATOM	3504	N	PRO	715	34.	787	47.852	79.611	1.00 20		7
ATOM	3505	CD	PRO	715	34.	703	47.767	81.090	1.00 21		5
ATOM	3506	CA	PRO	715	33.	460	47.694	79.015	1.00 19		5
ATOM	3507	CB	PRO	715	32.	627	47.183	80.182	1.00 21	.32	5
MOTA	3508	CG	PRO	715	33.		47.974	81.352	1.00 19	. 98	5
ATOM	3509	c	PRO	715	32.		48.959	78.473	1.00 20	0.02	5
ATOM	3510	0	PRO	715	33.		50.060	78.922	1.00 20	0.10	à
ATOM	3511	N	VAL	716	31.		48.769	77.562	1.00 20	1.51	7
MOTA	3512	CA	VAL	716	31.		49.858	76.910	1.00 19	7.79	5
MOTA	3513	CB	VAL	716	31.		50.100	75.440	1.00 18	3.56	5
ATOM	3514		VAL	716	30.		49.293	74.396	1.00 18	8.80	5
ATOM	3515		VAL	716	31.		51.563	75.099	1.00 16	. 95	5
MOTA	3516	C	VAL	716	29.		49.366	76.908	1.00 21	79	5
ATOM	3517	0	VAL	716	29.		48.182	76.624	1.00 20	.72	а
ATOM	3518	N	SER	717	28.		50.269	77.264	1.00 22	2.27	7
ATOM	3519	CA	SER	717	27.		49.971	77.331	1.00 21	.09	5
ATOM	3520	CB	SER	717	26.		50.181	78.764	1.00 23	1.89	6
ATOM	3521	OG	SER	717	27.		49.064	79.607	1.00 24		8
ATOM	3522	Ç	SER	717	26.		50.748	76.375	1.00 20		6
ATOM	3523	0	SER	717	26.		51.970	76.394	1.00 19		а
ATOM	3524	N	LEU	718	25.		50.014	75.523	1.00 21		7
ATOM	3525	CA	LEU	718	24.		50.583	74.585	1.00 21		5
ATOM	3526	CB	LEU	718	25.		49.949	73.188	1.00 17		5
ATOM	3527	CG	LEU	718	24.		50.860	72.057	1.00 15		5
ATOM	3528		LEU	718	25.		52.197	72.069	1.00 11		6
MOTA	3529		LEU	718	24.		50.165	70.733	1.00 11		5
ATOM	3530	C	LEU	718	23.		50.236	75.183	1.00 27		5
ATOM ATOM	3531	0	LEU	718	23.		49.506	76.191	1.00 24		3
ATOM	3532 3533	. CY	LEU	719	22.		50.723	74.564	1.00 23		7
ATOM	3534	CB	LEU	719. 719	21. 20.		50.470	75.054	1.00 23		5
MOTA	3535	CG	LEU	719	20.		51.586	76.069	1.00 23		6
ATOM	3536		LEU	719	21.		51.746	77.325	1.00 2		6
ATOM	3537		LEU	719	21.		53.039 50.545	78.084 78.254	1.00 1		5
ATOM	3538	C	LEU	719	19.		50.393	73.904	1.00 20		6
ATOM	3539	ŏ	LEU	719	18.		50.958	74.036	1.00-23		6
ATOM	3540	N	THR	720	20.		49.657	72.828	1.00 24		8
ATOM	3541	CA	THP.	720	19.		49.515	71.597	1.00 2		7
ATOM	3542	CB	THE	720	19.		48.042	71.295	1.00 2		6
ATOM	3543	0G1		720	18.		47.332	72.513	1.00 2		
ATOM	3544	CG2		720	20.		47.288	70.444	1.00 2		8 6
ATOM	3545	c	THP	720	18.		50.417	71.492	1.00 2		5
ATOM	3546	ō	THE	720	17.		49.947	71.240	1.00 2		ā
		-								v s	

-
•
ユ
ם
ñ
• •

Data Set	Resolution	Reflections	Completeness	. E.	Sites Riso		R _{cull} is	RKraut	Phasing Power	Power
4 2	(Å) 25.0-2.8	(#) 14158	0.93(0.91)	0.05	•	ı	1	1	ı	•
HgAc ₂	25.0-3.0	11496	0.93 (0.91)	0.10	7	0.102	95.0	0.114	IBO 1.87 (3.1Å) Ano 1.35 (4.0Å)	(3.1Å) (4.0Å)
UO ₂ (NO ₃) 2	25.0-3.0	11931	0.96 (0.94)	0.14	₹	0.116	0.62	0.137	180 1.95 (3.1Å) Ano 1.72 (3.9Å)	(3.1Å) (3.9Å)
efinement	Refinement Statistics:			RHS	from 1de	RMS from ideal values	81	Average	Average B Value (A ²)	(A ²)
lesolution	Resolution Relflections	Total Number of atoms	R-value	Bond Length	ength	Bond Angle	Ingle	8891	EBP2	Peptides
8-0-2.8	13894	3462	0.21		0.01	0.016(Å) 2.1*	2.1•	10.5	12.3	10.7

*Rsym=[1-<1 / /21.

tRiso-El FpH-Fp / LFp.

TRKraut = [] FpH(obs) - FpH(obs) - FPH(calc) | / L(FPH(obs) + FPH(obs) for all acentric relfections (anamalous case). *Rculis El FpH + Fp - FM(calc) / FpH - Fp for all centric reflections.

SPhase Power=(El FpH(calc) 2/El FpH(obs) Fp(calc) | FpH(obs) Fp(calc) is the lack of closure error to maximum resolution indicated. Hean Figure of Merit=4 $P(\alpha)e^{i\alpha}/\Gamma P(\alpha)i$ > where $P(\alpha)$ is the phase probability.

^aCompleteness of data in the outer shell, $(2.9-2.8\mbox{\AA})$ for the native and $(3.1-3.0\mbox{Å})$ for both derivatives.

•	~
•	e
•	Oel

Peptidel-EBP1	Peptidel-EBP2	Peptidel-EBP2	Peptide2-EBP1	Peptidel-Peptide2	
Gly ^{P9} O-Met ¹⁵⁰ N	Tyr ^{P4} OH-Ser ⁹² N	GlyP9 O-Met 150N	Tyr ^{p4} OH-Ser ⁹² N Tyr ^{p4} O-Cys ^{p6} N	Tye ^{p4} 0-cy8 ^{p6} n	
Pro ^{P10} 0-Thr ¹⁵¹ N		Pro ^{P10} 0-Thr ¹⁵¹ N		Tyrp4N-CysP6O	
Pro ^{P10} 0-Thr ¹⁵¹ 07		$Pro^{110}O-Thr^{151}O\gamma 1$		Cyb ^{P6} 0-Tyr ^{P4} N	
Leu ^{P11} 0-Ser ¹⁵² N		Leu ^{P11} 0-Ser ¹⁵² N		Cys ^{p6} n-Tyr ^{p4} o	
Leu ^{P11} 0-Ser 15207		Leu P110-Ser 15207			

5

10

CLAIMS

What is claimed is:

- 1. A computer-assisted method for identifying potential mimetics of erythropoietin, using a programmed computer comprising a processor, a data storage system, an input device, and an output device, comprising the steps of:
 - (a) inputting into the programmed computer through said input device data comprising the three-dimensional coordinates of a subset of the atoms in the peptide GGTYSCHFGPLTWVCKPQGG when said peptide is co-crystallized with a portion of the erythropoietin receptor comprising amino acids 1 to 225 of said receptor, thereby generating a criteria data set;
 - (b) comparing, using said processor, said criteria data set to a computer database of chemical structures stored in said computer data storage system;
 - (c) selecting from said database, using computer methods, chemical structures having a portion that is structurally similar to said criteria data set;
- 15 (d) outputting to said output device the selected chemical structures having a portion similar to said criteria data set.

5

10

20

- 2. A computer-assisted method for identifying potential mimetics of erythropoietin, using a programmed computer comprising a processor, a data storage system, an input device, and an output device, comprising the steps of:
 - (a) inputting into the programmed computer through said input device data comprising the three-dimensional coordinates of a subset of the atoms in the peptide GGTYSCHFGPLTWVCKPQGG when said peptide is cocrystallized with a portion of the erythropoietin receptor comprising amino acids 1 to 225 of said receptor, thereby generating a criteria data set;
 - (b) constructing, using computer methods, a model of a chemical structure having a portion that is structurally similar to said criteria data set;
 - (c) outputting to said output device the constructed model.
- 3. A compound having a chemical structure selected using the method of claim 1, said compound being an EPO mimetic.
 - 4. The compound of claim 3 wherein said compound is not a peptide.
 - 5. The compound of claim 3 wherein said compound is a peptide.
 - 6. The compound of claims 5 wherein said peptide has 15 of fewer amino acids.

1/2

FIG. 1

FIG. 2

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/07218

	SIFICATION OF SUBJECT MATTER			•
He Cl .	G06F 159:00 864/496		d IDC	1
	International Patent Classification (IPC) or to both na	tional classification	and IPC	
	DS SEARCHED cumentation searched (classification system followed b	v classification sym	bols)	
		,, 0220111001110111101111		
	64/496, 497,498,578			
	on searched other than minimum documentation to the e			
Electronic da	ata base consulted during the international search (nam	e of data base and,	where practicable,	scarch terms used)
aps, dialo search te	g rms: erythropoietin, receptor, 3d, pdb or databa	S8		
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where app	ropriate, of the rele	vant passages	Relevant to claim No.
x	US, 5,331,573 A (BALAJI et al.) 19 46-66, col. 13, lines 20-55, col. 14	July 1994, (4, lines 12-23	col. 7, lines	1-6
A,P	US 5,557,535 A (SRINIVASAN et (abstract, fig. 1, col. 4, line 57 - co	al.) 17 Septe ol. 6,line 55)	mber 1996,	1,2
A,P	US 5,555,366 A (TEIG et al.) 10 Se fig. 8, fig. 12)	ptember 199	6, (abstract,	1,2
A	US 5,265,030 A (SKOLNICK et al.) 2, line 20 - col. 3, line 20)	23 November	1993, (col.	1,2
A,P	MCCARTHY, "Small Peptide De Erythropoietin" Lancet, 8/96 vol. 3	signed that 348, no. 24,	can Mimic p.395	1-6
X Furt	her documents are listed in the continuation of Box C.	. See pate	ent family annex.	
• s	pecial extegories of cited documents: ocument defining the general state of the art which is not considered	"T" later docum	ent published after the in in conflict with the appli theory underlying the in	ternational filing date or priority cation but cited to understand the vention
"	ocument detuning the general state of the art which is not considered to be part of particular relevance artier document published on or after the international filing date	"X" document o	f particular relevance; I lovel or cannot be consid	he claimed invention cannot be lered to involve an inventive step
.r. q	ocument which may throw doubts on priority claim(s) or which is ited to establish the publication date of another citation or other	when the do	cument is taken alone (he claimed invention cannot be
.0. 4	pecial reason (as specified) ocument referring to an oral disclosure, use, exhibition or other neess	combined w	to involve an inventive ith one or more other su us to a person skilled in	e step when the document is ch documents, such combination the art
·p· d	ocument published prior to the international filing date but later than ne priority date claimed		sember of the same pater	
	e actual completion of the international search	Date of mailing of		earch report
05 JULY	(1997	0 4 AUG	1997	
Box PCT	mailing address of the ISA/US ioner of Patents and Trademarks on, D.C. 20231	Authorized officer MELANIE KE	MPER /	
Facsimile		Telephone No.	(703) 305-3900	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US97/07218

		PCT/US97/072	10
C (Continue	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevan	nt passages	Relevant to claim N
K,P	LIVNAH ET AL., "Functional Mimicry of a Protein Ho a Peptide Agonist" Science 26 July 1996, vol. 273 no. 2 464-471.	ormone by 74, p.	1-6
		·	
i			