COMP90042

Workshop Week 06

☐ Homework 3

Due: Sunday, April 15

☐ Workshop solutions released (week 2/3/4)

Syllabus

1	Introduction and Preprocessing	Text classification	
2	Lexical semantics	Distributional semantics	
3	Part of Speech Tagging	Hidden Markov Models	
4	Unsupervised Hidden Markov Models	Context-Free Grammars	
5	Probabilistic Parsing	Dependency parsing	
	Easter holiday break		
6	N-gram language modelling	Deep learning for language models	
		and tagging	
7	Information Extraction	Question Answering	
8	Topic Models	ANZAC day holiday	
9	Information Retrieval Boolean	Indexing and querying in the vector	
	search and the vector space model	space model, evaluation	
10	Index and vocabulary compression	Efficient query processing	
11	The Web as a Graph: Page-rank & HITS	Machine Translation (word based)	
12	Machine translation (phrase based)	Subject review	
	and neural encoder-decoder		

Outline

- ☐ Unsupervised Learning (HMMs)
 - ☐ Training set, extra data, and test set
- Probabilistic parsing
 - ☐ The PCYK algorithm
- Dependency parsing

Datasets

- ☐ Training set
 - \square tagged D_{train}
- Extra data without labels/tags
 - $\Box D_{extra}$
 - ☐ A potential training set, but can't be used directly
- ☐ Test set
 - \Box tagged D_{test}

- ☐ A baseline
 - \square tagged $D_{train} \rightarrow HMM$
 - $\square D_{test} \xrightarrow{HMM} tagged D_{test}$
- ☐ Problems to solve (modify pi/A/B properly)
 - Unseen words
 - Different tagsets
 - □ Some tags are the same but have different names
 - ☐ Special tags for test set

- A baseline
 - \square tagged $D_{train} \rightarrow HMM$
 - $\square D_{test} \xrightarrow{HMM} tagged D_{test}$
- ☐ With untagged extra data
 - \square tagged $D_{train} \rightarrow HMM$
 - $\square D_{extra} \xrightarrow{HMM} tagged D_{extra}$
 - \square tagged D_{train} & tagged $D_{extra} \rightarrow HMM_new$
 - $\square D_{test} \xrightarrow{HMM_new} tagged D_{test}$

- ☐ A baseline
 - \square tagged $D_{train} \rightarrow HMM$
 - $\square D_{test} \xrightarrow{HMM} tagged D_{test}$
- ☐ Hard-EM
 - \square tagged $D_{train} \rightarrow HMM^{(0)}$
 - \square for *i* in range(*n*):

Outline

- ☐ Unsupervised Learning (HMMs)
 - ☐ Training set, extra data, and test set
- Probabilistic parsing
 - ☐ The PCYK algorithm
- Dependency parsing

CFGs

$$S \rightarrow NP \ VP \ 1.0$$

$$t \rightarrow telescope 0.7$$

$$N \rightarrow telescope 0.7$$

$$N \rightarrow sandwich$$
 0.1

$$PN \rightarrow I$$
 1.0

 $N \to girl$ 0.2

$$V \rightarrow saw \ \text{0.5}$$

$$V \rightarrow ate \ 0.5$$

$$P \rightarrow with 0.6$$

$$P \rightarrow in$$
 0.4

$$D \rightarrow a$$
 0.3

$$D \rightarrow the \ \textbf{0.7}$$

$$VP \rightarrow V$$
 0.2

$$VP \rightarrow V \ NP \ \mbox{0.4}$$

$$VP \rightarrow VP \ PP \ \textbf{0.4}$$

$$NP \rightarrow NP \ PP \ \textbf{0.3}$$

$$NP \rightarrow D \ N \ \textbf{0.5}$$

$$NP \rightarrow PN$$
 0.2

$$PP \rightarrow P \ NP \ \textbf{1.0}$$

VP

S

NP

1.0

$$p(T) = 1.0 \times 0.2 \times 1.0 \times 0.4 \times 0.5 \times 0.3 \times 0.5 \times 0.3 \times 0.5 \times 0.3 \times 0.2 \times 1.0 \times 0.6 \times 0.5 \times 0.3 \times 0.7$$
$$= 2.26 \times 10^{-5}$$

NP

telescope

Intuition

covers all words

btw min and mid

$$C \rightarrow C_1 \ C_2$$

covers all words

btw mid and max

For every C choose C_1 , C_2 and mid such that

$$P(T_1) \times P(T_2) \times P(C \to C_1 C_2)$$

is maximal, where T_1 and T_2 are left and right subtrees.

Outline

- ☐ Unsupervised Learning (HMMs)
 - ☐ Training set, extra data, and test set
- Probabilistic parsing
 - ☐ The PCYK algorithm
- Dependency parsing

Why dependencies?

- □ Dependency tree more directly represents the core of the sentence: *who did what to whom?*
 - □ captured by the links incident on verb nodes, e.g., NSUBJ, DOBJ etc; easier to answer questions like:
 - □ what was the main thing being expressed in the sentence (eating)

more minor details are buried deeper in the tree (e.g., adjectives, determiners etc)

COPYRIGHT 2018, THE UNIVERSITY OF MELBOURNE

dependency vs head

- Close similarity with 'head' in phrase-structure grammars
 - □ the 'head' of an XP is (mostly) an X, i.e., noun in a NP, verb in a VP etc. see https://en.wikipedia.org/wiki/Head_(linguistics)
 - main dependency edges captured in rewrite rules

S^ate -> NP^rat VP^ate captures dependency rat ← ate

(Non-)projectivity

- ☐ A tree is *projective* if, for all arcs from head to dependent
 - ☐ there is a path from the head to every word that lies between the head and the dependent
- More simply, the tree can be drawn on a plane without any arcs crossing
- ☐ Most sentences are projective, however exceptions exist (fairly common in other languages)

JetBlue canceled our flight this morning which was already late

Constituent and dependency representations

Constituent trees can (potentially) be converted to dependency trees

Dependency trees can (potentially) be converted to constituent trees

Roughly: every word along with all its dependents corresponds to a phrase = to an inner node in the constituent tree

Example

I shot an elephant in my pyjamas

Buffer	Stack	Action		
I shot an elephant in my pyjamas		Shift		
shot an elephant in my pyjamas	1	Shift		
an elephant in my pyjamas	I, shot	Arc-left		
an elephant in my pyjamas	shot	Shift		
elephant in my pyjamas	shot, an	Shift		
in my pyjamas	shot, an, elephant	Arc-left		
in my pyjamas	shot, elephant	Arc-right		
in my pyjamas	shot	Shift		
•••	•••	•••		
	shot	<done></done>		
Generated parse: I shot an elephant in my pyjamas				

References

- ☐ Slides from Ivan Titov
 - □ http://ivan-titov.org/teaching/nlp1-15/index.html
 - http://ivan-titov.org/teaching/nlmi-15/node2.html