Combinatorial Decision Making and Optimization (Module 2)

Last update: 11 April 2024

Contents

	Satisfiability modulo theory (SMT)			
	1.1	First-order logic for SMT		
		1.1.1	Syntax	1
		1.1.2	Semantics	1
		113	\(\Sigma\) -theory	2

1 Satisfiability modulo theory (SMT)

1.1 First-order logic for SMT

1.1.1 Syntax

Remark. Only quantifier-free fragments will be considered in this course.

Functions The set of all the functions is denoted as $\Sigma^F = \bigcup_{k \geq 0} \Sigma_k^F$ where Σ_k^F denotes the Functions set of k-ary functions.

Constants Σ_0^F

Predicates The set of all the predicates is denoted as $\Sigma^P = \bigcup_{k \geq 0} \Sigma_k^P$ where Σ_k^P denotes Predicates the set of k-ary predicates.

Propositional symbols Σ_0^P

Signature The set of the non-logical symbols of FOL is denoted as:

Signature

$$\Sigma = \Sigma^F \cup \Sigma^P$$

Terms The set of terms over Σ is denoted as \mathbb{T}^{Σ} .

Terms

Formulas The set of formulas over Σ is denoted as \mathbb{F}^{Σ} .

Formulas

1.1.2 Semantics

\Sigma-model Pair $\mathcal{M} = \langle M, (\cdot)^{\mathcal{M}} \rangle$ defined on a given Σ where:

 Σ -model

- M is the universe of \mathcal{M} .
- $(\cdot)^{\mathcal{M}}$ is a mapping such that:

$$- \forall f \in \Sigma_k^F : f^{\mathcal{M}} \in \{ \varphi \mid \varphi : M^k \to M \}.$$

$$- \ \forall p \in \Sigma_k^P : p^{\mathcal{M}} \in \{\varphi \mid \varphi : M^k \to \{\mathtt{true}, \mathtt{false}\}\}.$$

Interpretation Extension of the mapping function $(\cdot)^{\mathcal{M}}$ to terms and formulas:

Interpretation

- $\top^{\mathcal{M}} = \mathtt{true} \text{ and } \bot^{\mathcal{M}} = \mathtt{false}.$
- $(f(t_1,\ldots,t_k))^{\mathcal{M}} = f^{\mathcal{M}}(t_1^{\mathcal{M}},\ldots,t_k^{\mathcal{M}})$ and $(p(t_1,\ldots,t_k))^{\mathcal{M}} = p^{\mathcal{M}}(t_1^{\mathcal{M}},\ldots,t_k^{\mathcal{M}}).$

$$\bullet \ \, \mathrm{ite}(\varphi,t_1,t_2)^{\mathcal{M}} = \begin{cases} t_1^{\mathcal{M}} & \mathrm{if} \ \varphi^{\mathcal{M}} = \mathrm{true} \\ t_2^{\mathcal{M}} & \mathrm{if} \ \varphi^{\mathcal{M}} = \mathrm{false} \end{cases}$$

Remark. ite is an auxiliary function to capture the if-else construct.

1.1.3 Σ -theory

Satisfiability A model \mathcal{M} satisfies a formula $\varphi \in \mathcal{F}^{\Sigma}$ if $\varphi^{\mathcal{M}} = \mathsf{true}$.

Satisfiability

\Sigma-theory Possibly infinite set \mathcal{T} of Σ -models.

 Σ -theory

 \mathcal{T} -satisfiability A formula $\varphi \in \mathbb{F}^{\Sigma}$ is \mathcal{T} -satisfiable if there exists a model $\mathcal{M} \in \mathcal{T}$ that

 \mathcal{T} -satisfiability

 \mathcal{T} -consistency A set of formulas $\{\varphi_1,\ldots,\varphi_k\}\subseteq\mathbb{F}^{\Sigma}$ is \mathcal{T} -consistent iff $\varphi_1\wedge\cdots\wedge\varphi_k$ is \mathcal{T} -satisfiable.

 \mathcal{T} -entailment A set of formulas $\Gamma \subseteq \mathbb{F}^{\Sigma}$ \mathcal{T} -entails a formula $\varphi \in \mathbb{F}^{\Sigma}$ $(\Gamma \models_{\mathcal{T}} \varphi)$ iff in every \mathcal{T} -entailment model $\mathcal{M} \in \mathcal{T}$ that satisfies Γ , φ is also satisfied.

Remark. Γ is \mathcal{T} -consistent iff $\Gamma \models \mathcal{T} \perp$.

 \mathcal{T} -validity A formula $\varphi \in \mathbb{F}^{\Sigma}$ is \mathcal{T} -valid iff $\varnothing \models_{\mathcal{T}} \varphi$.

 \mathcal{T} -validity

Remark. φ is \mathcal{T} -consistent iff $\neg \varphi$ is not \mathcal{T} -valid.

Theory lemma \mathcal{T} -valid clause $c = l_1 \vee \cdots \vee l_k$.

Theory lemma

 \mathcal{T} -expansion Given a Σ -model $\mathcal{M} = \langle M, (\cdot)^{\mathcal{M}} \rangle$ and $\Sigma' \supseteq \Sigma$, an expansion $\mathcal{M}' = \langle M', (\cdot)^{\mathcal{M}'} \rangle$ \mathcal{T} -expansion to Σ' is any Σ' -model such that:

- M' = M.
- $\forall s \in \Sigma : s^{\mathcal{M}'} = s^{\mathcal{M}}$

Remark. Given a Σ -theory \mathcal{T} , we implicitly consider the theory \mathcal{T}' as:

$$\mathcal{T}' = \{ \mathcal{M}' \mid \mathcal{M}' \text{ is an expansion of a } \Sigma\text{-model } \mathcal{M} \}$$

Ground \mathcal{T} -satisfiability Given a Σ -theory \mathcal{T} , determine if a ground formula is \mathcal{T} -satisfiable Ground \mathcal{T} -satisfiability over a Σ -expansion \mathcal{T}' .

Axiomatically defined theory Given a minimal set of formulas (axioms) $\Lambda \subseteq \mathbb{F}^{\Sigma}$, its cor-Axiomatically defined theory responding theory is the set of all the models of Λ .

Example. Let Σ be defined as:

$$\Sigma_0^F = \{a,b,c,d\} \qquad \Sigma_1^F = \{f,g\} \qquad \Sigma_2^P = \{p\}$$

A Σ-model $\mathcal{M} = \langle [0, 2\pi[, (\cdot)^{\mathcal{M}}) \rangle$ can be defined as follows:

$$a^{\mathcal{M}} = 0$$
 $b^{\mathcal{M}} = \frac{\pi}{2}$ $c^{\mathcal{M}} = \pi$ $d^{\mathcal{M}} = \frac{3\pi}{2}$

$$f^{\mathcal{M}} = \sin \qquad g^{\mathcal{M}} = \cos \qquad p^{\mathcal{M}}(x, y) \iff x > y$$

To determine if p(g(x), f(d)) is \mathcal{M} -satisfiable, we have to expand \mathcal{M} . Let $\Sigma' = \Sigma \cup \{x\}$. The expansion \mathcal{M}' such that $x^{\mathcal{M}'} = \frac{\pi}{2}$ makes the formula satisfiable.