Frühjahr 14 Themennummer 3 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Es sei

$$u: \mathbb{R}^2 \to \mathbb{R}, \quad u(x,y) := (x^2 + 2y^2)\cos(x+y),$$

und $D:=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2<\frac{1}{2}\};\overline{D}$ bezeichne den Abschluss dieser Menge.

- (a) Berechnen Sie den Gradienten ∇u auf \mathbb{R}^2 .
- (b) Zeigen Sie, dass u auf \overline{D} Maximum und Minimum annimmt, und bestimmen Sie das Minimum. (Hinweis: Teil (a) wird hierzu nicht benötigt.)
- (c) Wir identifizieren \mathbb{R}^2 und \mathbb{C} . Gibt es eine holomorphe Funktion $f:D\to\mathbb{C}$ mit $u=\mathrm{Re} f$?

Lösungsvorschlag:

- (a) $\nabla u(x,y) = (2x\cos(x+y) (x^2+2y^2)\sin(x+y), 4y\cos(x+y) (x^2+2y^2)\sin(x+y))^{\mathrm{T}}$.
- (b) D ist beschränkt, denn es handelt sich um die offene Kugel mit Radius $\frac{1}{\sqrt{2}}$ um den Ursprung. Der Abschluss ist dann ebenfalls beschränkt und abgeschlossen, demnach als Teilmenge des \mathbb{R}^2 kompakt. u ist stetig und nimmt daher auf \overline{D} Minimum und Maximum an.

Für $(x,y) \in \overline{D}$ gilt $|x+y| \le |x| + |y| = \sqrt{x^2} + \sqrt{y^2} \le 2\sqrt{x^2 + y^2} < \sqrt{2} < \frac{\pi}{2}$, also $\cos(x+y) > 0$ und folglich sogar $u(x,y) \ge 0$ auf \overline{D} . Wegen $u(x,y) = 0 \iff (x^2 + 2y^2) = 0 \iff x = 0 = y$ für $(x,y) \in \overline{D}$ $(\cos(x+y) > 0)$ ist das Minimum 0 und wird genau in (0,0) angenommen.

(c) Nein, dann müsste u harmonisch sein. Für $(x,y) \in D$ ist $\partial_{xx}u(x,y) + \partial_{yy}u(x,y)$

$$= 2\cos(x+y) - 2x\sin(x+y) - 2x\sin(x+y) - (x^2+2y^2)\cos(x+y) + 4\cos(x+y) - 4y\sin(x+y) - 4y\sin(x+y) - (x^2+2y^2)\cos(x+y) = 6\cos(x+y) - (4x+8y)\sin(x+y) - 2(x^2+2y^2)\cos(x+y),$$

was für $(x,y)=(0,0)\in D$ nicht verschwindet, sondern 6 ergibt. Also ist u nicht harmonisch und daher kein Realteil einer auf D holomorphen Funktion.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$