

Part-1

- · The meaning of Statistics
 - > Eisenhower Matrix
 - > Characterization
 - Collection
 - Analyzing
 - Visualization
 - Inference
 - Presentation
 - Why Statistics
 - Importance of Statistics
 - Data Science vs Statistics
 - How much Statistics for us
 - Statistic Types
 - Descriptive
 - Inferential
 - Data Types
 - > Parameters and Statistics
 - Probability vs Statistics
 - Level of Measurement
 - Nominal
 - Ordinal
 - Interval
 - Ordinal

Part-2

- Data Visualization Graphical Represent
- Patterns

Cente

- > Spread
- Shape
 - Symmetric
- Number of peaks
- Skewness
- Uniform
- Unusual Features
 - Gaps
- Outliers
- Frequency Table
 - Relative Frequency
- Cumulative Frequency
- Bar Chart
- > Pie Chart
- Histogram
- Populations & Samples

 Parameters & Statistics
- Central Tendency (Measure of
- Centre) ➤ Mean
 - MeanMedian
 - ➤ Mode
- Dispersion (Measure of Spread)
 - Range
 - > IOB
 - Standard Deviation
 - Empirical Rule
 - > Variation

Part-3

- Scatter Plot
 - Linearity
 - > Slope
 - StrengthUnusual Features
 - Clusters
 - Gaps
 - Outliers
 - Box Plot
 - Min & Max Values
 - ➤ 1.5*IQR (John Tukey)
- Covariance
- Correlation
 - Pearson Correlation Coefficient
 - Correlation Linear Relationship

Part-4

- Linear Regression
- Dependent & Independent Variables
- Regression Equation
 - Pearson's r Calculation
 - Residual term (e)
- Coefficient of Determination –
 R²

Part-5

- Probability
 - ➤ Law of Large Estimates
 - Sample Space Event
 - Independent Dependent Event
 - Probability of 2 Independent Event
 - Intersection, Union,
 Complement
 - Permutation
 - Combination
 - Conditional Probability
 - Independency check
- Bayes Theorem

Part-6

- Random Variables
- Probability Distributions
 - Discrete Probability
 Distributions
 - Probability Mass Function (PMF)
 - Cumulative Distribution
 Function (CDF)
 - Binomial Distribution
 - Bernoulli Distribution
 - Poisson Distribution
 - Geometric, Hypergeometric,
 Negative Binominal
 - Continuous Probability
 Distributions
 - Uniform Distribution
 - Normal Distribution
 - Z Table
 - Standard Distribution
 - T Distribution (aka, Student's Test, T-Distribution)
 - Exponential, Gamma, Chi-square, F

Part-7

- Sample Distribution
 - Simple Random Sampling
 - Standard Error of the Mean
 - Central Limit Theorem
 - Normal Distribution Advantages
 - Confidence Interval

Part-8

- Hypothesis (Significance) Test
 - Hypothesis Test Steps
 - Assumptions
 - Hypotheses
 - Null Hypotheses
 - Alternative Hypotheses
 - Test Statistic
 - P Value
 - Conclusions
 - Significance Level (α alpha)
 - ➤ Type I II Error
 - One Two Tail Tests
 - Left Tail Test
 - Right Tail Test
 - Two Side (Two Tail) Test
 - T Test
 - Z Test

Part-9

- Independent Samples T Test
- Dependent T test (Paired T Test)
- One Way ANOVA
 - Test Statistics ANOVA Table
 - SSR: Regression Sum of Squares
 - SSE: Error Sum of Squares
 - SST: Total Sum of Squares
 - MSR: Regression Mean Squares
 - MSE: Mean Squares Error
 - F Statistic
- Categorical Data Analysis
- Chi-Square Test

Session - 3 Content

Content

- Scatter Plot
- Box Plot
- Covariance
- Correlation

Graphical Summarization for Data

Pattern of Data in Scatterplot

Box Plot

Box Plot - Kutu Grafiği

 Bir veri kümesinin en etkili grafik özetlerinden biri olan box plot genellikle ortalama, medyan, 25. ve 75. yüzdelikler ve outlier'ları gösterir.

Quantiles same as percentiles except for scale

Common quantiles have special names, such as quartiles (four groups), deciles (ten groups), and percentiles (100 groups).

Percentiles

▶ For data, the pth percentile is the value of x such that p% of the data is less than or equal to x

Percentiles & Quartiles & IQR

- ► Special percentiles:

 - Minimum: 0th percentile
 Median: 50th percentile
 - Maximum: 100th percentile
- ▶ Quartiles: 25th and 75th percentiles
 - Sometimes called: "lower fourth" and "upper fourth"

- ▶ IQR = 75th percentile 25th percentile
- Sometimes IQR is known as the "fourth spread"

25%

- Ortadaki quartiles denen kısım benim datamın tamamının %50'si
- Q3+1.5 IQR sonrası outlier, 03+**3** IOR extreme outlier.

Box Plot

- Box-and-whisker plot bir veri setinin önemli özelliklerini vurgulayan bir EDA keşif veri analizi aracıdır
- Beş tane değer, grafiği çizmek için kullanılır:
 - · minimum veri
 - · Q1
 - · Q2 (medyan)
 - Q3
 - · maximum veri

- Örnek
- Box-and-whisker plot çizmek için 15 sınav puanından verileri kullanın

28 30 33 37 37 38 42 43 43 44 45 48 48 51 55

 Median
 32

 Q3
 35

38

Box Plot - Min & Max Values

Weight, k		step	1: Order the	data	from	sma	illes	st to largest.
		2	25 28 29 29	30 3	4 35	35	37	38
38	_	Step	2: Find the	media	an.			
25		2	25 28 29 29	30.3	4 35	35	37	38
37				2000	ian = .			
28	5	Step	3: Find the	quarti	les.			
35		2	25 28 29 29	30 3	4 35	35	37	38
29			Q1 = 29		Q	3 = 3	5	
35	_ s	Step	4: Find the	min a	nd th	e m	ax.	
29	\dashv		Min = 25	٨	1ax =	38		
34	+							
			Chara 3 , Carda /	1-11				61
30	Min	25						ne five-number.
	Q1	29	25 28 29 Min = 25			<i>3</i> 3 3	1/ 3	0

34

Weight (grams)

25

Outliers Detection

1.5*IQR Kuralı

İstatistikçi John Tukey'e göre,

 Eğer gözlem değeri Q1'in altında ve Q3'ün üzerinde
 1.5*IQR dan daha fazla düşerse bu değer outlier'dır.

Box Plot - IQR

5, 7, 10, 15, 19, 21, 21, 22, 22, <mark>23</mark>, 23, 23, 23, 23, 24, 24, 24, 24, 25

Step 1: Find the median, quartiles, and interquartile range.

5, 7, 10, 15, 19, 21, 21, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24, 25

Step 1: Find the median, quartiles, and interquartile range. **Step 2:** Calculate 1.5 x IQR below the first quartile and check for low outliers.

$$Q1 - 1.5 \times IQR = 20 - 1.5 \times 3.5$$

= 14.75

Low Outliers: 5 7 10

5, 7, 10, 15, 19, 21, 21, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24, 25

Step 1: Find the median, quartiles, and interquartile range.

Step 2: Calculate $1.5 \times IQR$ below the first quartile and check for low outliers.

Step 3: Calculate 1.5 \times IQR above the third quartile and check for high outliers.

$$Q3 + 1.5 \times IQR = 23.5 + 1.5 \times 5$$

= 28.75

Box Plot Comments ??

boxplot of student's heights:

which are true and why?

- 1. the girls are taller on average
- 2. the boys are taller on average
- 3. the girls show less spread in height
- 4. the boys show less spread in height
- 5. the shortest person is a girl

- 6. the tallest person is a boy
- 7. both data sets are skewed to the left
- 8. half the boys are over 172 cm tall
- 9. half the girls are under 165cm tall

Covariance & Correlation

Cov (x,y) > 0

- İlişki pozitiftir.
- X artarken Y de artar

Cov(x,y) < 0

- İlişki negatiftir.
- X artarken Y azalır

Cov(x,y) = 0

 İki değişkenin arasında ilişki yoktur, birbirinden bağımısızlar.

Correlation

Korelasyon

- iki değişken arasındaki ilişkinin derecesini verir.
- Bu değer -1 ile 1 arasındadır.
- -1 mutlak strong negative ilişkinin varlığını, +1 mutlak strong pozitif ilişkinin varlığını söyler

Correlation doesn't imply causation

Correlation

 Correlation (r): measures the direction and strength of the linear relationship between two quantitative variables

r = correlation

r < 0 Negative association

Correlation does NOT equal slope!

r > 0 Positive association

r = 0 No correlation

Sample Correlation $r = \frac{Cov(x, y)}{s_x s_y}$

Population Correlation

Correlation

Pearson Katsayısı

- İki değişken arasındaki korelasyon katsayısını hesaplamak için farklı yöntemler vardır. En ünlüsü Pearson Korelasyon Katsayısı. Sample için r ile, Populasyon için R (veya ρ) ile gösterilir
- İlişkinin gücünü gösteren -1 ile 1 arasında bir sayıdır.

Correlation – Linear Relationship

Examples of Approximate r Value

Graph B (r = -1.0): perfect negative correlation between x and y

Graph C (r = 0.6): a moderately positive relationship: y tends to increase as x increases, but not necessarily at the steady rate we observed in Graph A

Graph D (r = -0.4): a relatively weak negative relationship: the correlation coefficient is closer to zero, negative r value so y tends to decrease as x increases

Graph E (r = 0): no relationship between x and y

r değerlerini plot'lar ile eşleştiriniz

Correlation - r Calculation

X)	Lung Capacity (Y)
	45
	42
	33
	31
	29

$$\begin{split} r &= \frac{n\Sigma(xy) - (\Sigma x)(\Sigma y)}{\sqrt{\left[n\Sigma x^2 - (\Sigma x)^2\right]\left[n\Sigma y^2 - (\Sigma y)^2\right]}} \\ r_{xy} &= \frac{(5)(1585) - (50)(180)}{\sqrt{\left[(5)(750) - 50^2\right]\left[(5)(6680) - 180^2\right]}} \\ &= \frac{7925 - 9000}{\sqrt{(3750 - 2500)(33400 - 32400)}} \\ &= \frac{-1075}{\sqrt{(1250)(1000)}} = -.9615 \end{split}$$

		35 Jan 25	Number of Cars Sold y	Number of TV Ads	Week
		B 20 -	13	3	1
		P 15	31	6	2
		5	19	4	3
		p 10	27	5	4
		F 5	23	6	5
 -	- :	0 +	19	3	6

	Number of TV Ads	Number of Cars Sold			
Week	Х	у	xy	x ²	y ²
1	3	13	39	9	169
2	6	31	186	36	961
3	4	19	76	16	361
4	5	27	135	25	729
5	6	23	138	36	529
6	3	19	57	9	361
	Σx = 27	Σy = 132	Σxy = 631	$\Sigma x^2 = 131$	$\Sigma y^2 = 3110$

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{\left[n\sum x^2 - (\sum x)^2\right]\left[n\sum y^2 - (\sum y)^2\right]}}$$

$$r = \frac{n \sum xy - (\sum x)(\sum y)}{\sqrt{[n \sum x^2 - (\sum x)^2]} \left[n \sum y^2 - (\sum y)^2\right]} = \frac{(6)(631) - (27)(132)}{\sqrt{[6)(131) - (27)^2]} \left[(6)(3110) - (132)^2\right]}$$
$$= \frac{222}{\sqrt{[57]} \left[1236\right]} = \frac{222}{266.43} \underbrace{(0.836)}$$

Variable 1	Variable 2
5	50
10	70
15	100
20	100
25	150
30	140
35	110

Online Calculator link

Python Calculation

input:

```
import numpy as np

temp=[93,84,82,78,98,70]

number_of_people=[13,10, 11, 8, 15, 9]

print("covariance: ", np.cov(temp, number_of_people))

print("correlation: ", np.corrcoef(temp, number_of_people))
```

output :

Do you have any questions?

Send it to us! We hope you learned something new.

EDUCATION