Section 2.9 – Inverse Laplace Transform

Definition

If f is a continuous function of exponential order and $\mathcal{L}(f)(s) = F(s)$, then we call f the inverse Laplace transform of F,

$$f(t) = \mathcal{L}^{-1}(F(s))$$

$$F(s) = \mathcal{L}(f(t)) \iff f(t) = \mathcal{L}^{-1}(F(s))$$

$$f(t) \xrightarrow{Laplace \ tansform - \mathcal{L}} F(S)$$

$$Inverse \ Laplace$$

$$tansform - \mathcal{L}^{-1}$$

Note: Inverse transforms are not unique. If f_1 and f_2 are identical except at a discrete set of points, then $\mathcal{L}(f_1(t)) = \mathcal{L}(f_2(t))$. However, there is at most one continuous function f satisfying $\mathcal{L}\{f(t)\} = F(s)$

Laplace Transform Linear

Proposition

$$\mathcal{L}^{-1}[aF(s) + bG(s)] = a.\mathcal{L}^{-1}(F(s)) + b.\mathcal{L}^{-1}(G(s))$$
$$= af(t) + bg(t)$$

Example

Compute the inverse Laplace transform of $F(s) = \frac{1}{s-2} - \frac{16}{s^2+4}$

Solution

$$\mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} = e^{2t}$$

$$\mathcal{L}^{-1}\left\{\frac{2}{s^2+4}\right\} = \sin 2t$$

$$\mathcal{L}^{-1}\left\{\frac{1}{s-2} - 8\frac{2}{s^2+4}\right\} = \frac{e^{2t} - 8\sin 2t}{s^2+4}$$

Example

Compute the inverse Laplace transform of $F(s) = \frac{1}{s^2 - 2s - 3}$; s > 3

Solution

$$\frac{1}{s^2 - 2s - 3} = \frac{A}{s - 3} + \frac{B}{s + 1}$$

$$= \frac{As + A + Bs - 3B}{(s - 3)(s + 1)}$$

$$= \frac{(A + B)s + A - 3B}{(s - 3)(s + 1)}$$

$$\begin{cases}
A + B = 0 \\
A - 3B = 1
\end{cases}
\rightarrow A = \frac{1}{4} \quad B = -\frac{1}{4}$$

$$\frac{1}{s^2 - 2s - 3} = \frac{1}{4} \left(\frac{1}{s - 3} - \frac{1}{s + 1}\right)$$

$$\mathcal{L}^{-1} \{F(s)\} = \frac{1}{4} \mathcal{L}^{-1} \left\{\frac{1}{s - 3} - \frac{1}{s + 1}\right\}$$

$$= \frac{1}{4} \left(e^{3t} - e^{-t}\right)$$

Example

Compute the inverse Laplace transform of $F(s) = \frac{1}{s^2 + 4s + 13}$

Solution

$$s^{2} + 4s + 13 = s^{2} + 4s + 4 + 9$$

= $(s+2)^{2} + 3^{2}$

$$\mathcal{L}^{-1} \left\{ \frac{1}{3} \frac{3}{(s+2)^2 + 3^2} \right\} = \frac{1}{3} e^{-2t} \sin 3t$$

Example

Find the inverse Laplace transform of $F(s) = \frac{2s^2 + s + 13}{\left(s - 1\right)\left(\left(s + 1\right)^2 + 4\right)}$

Solution

$$\frac{2s^2 + s + 13}{(s-1)\left((s+1)^2 + 4\right)} = \frac{A}{(s-1)} + \frac{Bs + C}{(s+1)^2 + 4}$$

$$= \frac{As^2 + 2As + 5A + Bs^2 + (C - B)s - C}{(s-1)\left(s^2 + 2s + 5\right)}$$

$$= \frac{(A+B)s^2 + (2A+C-B)s + 5A - C}{(s-1)\left(s^2 + 2s + 5\right)}$$

$$\begin{cases} A+B=2 & \to B=2 - A\\ 2A-B+C=1 & 2A-2+A+5A-13=1 \Rightarrow A=2\\ 5A-C=13 & \to C=5A-13 \end{cases}$$

$$\begin{cases} B=2-2=0\\ C=5(2)-13=-3 \end{cases}$$

$$F(s) = \frac{2}{(s-1)} - \frac{3}{(s+1)^2 + 4}$$

$$f(t) = \mathcal{L}^{-1} \left\{ \frac{2}{(s-1)} - \frac{3}{(s+1)^2 + 4} \right\}$$
$$= 2\mathcal{L}^{-1} \left\{ \frac{1}{(s-1)} \right\} - 3\frac{1}{2}\mathcal{L}^{-1} \left\{ \frac{2}{(s+1)^2 + 4} \right\}$$
$$= 2e^{-t} - \frac{3}{2}e^{-t}\sin 2t$$

Exercises Section 2.9 – Inverse Laplace Transform

Find the inverse Laplace transform of

1.
$$Y(s) = \frac{1}{3s+2}$$

2.
$$Y(s) = \frac{2}{3-5s}$$

3.
$$Y(s) = \frac{1}{s^2 + 4}$$

4.
$$Y(s) = \frac{3}{s^2}$$

5.
$$Y(s) = \frac{3s+2}{s^2+25}$$

6.
$$Y(s) = \frac{2-5s}{s^2+9}$$

7.
$$Y(s) = \frac{5}{(s+2)^3}$$

8.
$$Y(s) = \frac{1}{(s-1)^6}$$

9.
$$Y(s) = \frac{4(s-1)}{(s-1)^2 + 4}$$

10.
$$Y(s) = \frac{2s-3}{(s-1)^2+5}$$

11.
$$Y(s) = \frac{2s-1}{(s+1)(s-2)}$$

12.
$$Y(s) = \frac{2s-2}{(s-4)(s+2)}$$

13.
$$Y(s) = \frac{7s^2 + 3s + 16}{(s+1)(s^2+4)}$$

14.
$$Y(s) = \frac{1}{(s+2)^2 (s^2+9)}$$

15.
$$Y(s) = \frac{s}{(s+2)^2(s^2+9)}$$

16.
$$Y(s) = \frac{1}{(s+1)^2 (s^2-4)}$$

17.
$$Y(s) = \frac{7s^2 + 20s + 53}{(s-1)(s^2 + 2s + 5)}$$

18.
$$F(s) = \frac{1}{s^3}$$

19.
$$F(s) = \frac{1}{s^4}$$

20.
$$F(s) = \frac{1}{s^2} - \frac{48}{s^5}$$

21.
$$F(s) = \frac{1}{s^2} - \frac{1}{s} + \frac{1}{s-2}$$

22.
$$F(s) = \frac{4}{s} + \frac{4}{s^5} + \frac{1}{s-8}$$

23.
$$F(s) = \frac{1}{4s+1}$$

24.
$$F(s) = \frac{1}{5s-2}$$

25.
$$F(s) = \frac{s+1}{s^2+2}$$

26.
$$F(s) = \frac{2s-6}{s^2+9}$$

27.
$$F(s) = \frac{10s}{s^2 + 16}$$

28.
$$F(s) = \left(\frac{2}{s} - \frac{1}{s^3}\right)^2$$

29.
$$F(s) = \frac{(s+1)^3}{s^4}$$

30.
$$F(s) = \frac{(s+2)^2}{s^3}$$

31.
$$F(s) = \frac{1}{s^4 - 9}$$

32.
$$F(s) = \frac{1}{s^3 + 5s}$$

33.
$$F(s) = \frac{5}{s^2 + 36}$$

34.
$$F(s) = \frac{10s}{s^2 + 16}$$

35.
$$F(s) = \frac{4s}{4s^2 + 1}$$

36.
$$F(s) = \frac{1}{4s^2 + 1}$$

37.
$$F(s) = \frac{1}{s^2 + 3s}$$

38.
$$F(s) = \frac{s+1}{s^2 - 4s}$$

39.
$$F(s) = \frac{1}{s^3 + 5s}$$

40.
$$F(s) = \frac{3}{s^2 + 9}$$

41.
$$F(s) = \frac{2}{s^2 + 4}$$

42.
$$F(s) = \frac{3}{(2s+5)^3}$$

43.
$$F(s) = \frac{6}{(s-1)^4}$$

44.
$$F(s) = \frac{5}{(s+2)^4}$$

45.
$$F(s) = \frac{s-1}{s^2 - 2s + 5}$$

46.
$$F(s) = \frac{3s+2}{s^2+2s+10}$$

47.
$$F(s) = \frac{s}{s^2 + 2s - 3}$$

48.
$$F(s) = \frac{1}{s^2 + 2s - 20}$$

49.
$$F(s) = \frac{s+1}{s^2 + 2s + 10}$$

50.
$$F(s) = \frac{1}{s^2 + 4s + 8}$$

51.
$$F(s) = \frac{2s+16}{s^2+4s+13}$$

52.
$$F(s) = \frac{2s+16}{s^2+4s+13}$$

53.
$$F(s) = \frac{s-1}{2s^2 + s + 6}$$

54.
$$F(s) = \frac{s^2 + 1}{s^3 - 2s^2 - 8s}$$

55.
$$F(s) = \frac{6s+3}{s^4+5s^2+4}$$

56.
$$F(s) = \frac{s-3}{\left(s-\sqrt{3}\right)\left(s+\sqrt{3}\right)}$$

57.
$$F(s) = \frac{1}{\left(s^2 + 1\right)\left(s^2 + 4\right)}$$

58.
$$F(s) = \frac{2s - 4}{\left(s^2 + s\right)\left(s^2 + 1\right)}$$

59.
$$F(s) = \frac{s}{(s+2)(s^2+4)}$$

60.
$$F(s) = \frac{s^2 + 1}{s(s-1)(s+1)(s-2)}$$

61.
$$F(s) = \frac{s}{(s-2)(s-3)(s-6)}$$

62.
$$F(s) = \frac{7s-1}{(s+1)(s+2)(s-3)}$$

63.
$$F(s) = \frac{s^2 + 9s + 2}{(s-1)^2(s+3)}$$

64.
$$F(s) = \frac{2s^2 + 10s}{\left(s^2 - 2s + 5\right)\left(s + 1\right)}$$

65.
$$F(s) = \frac{s^2 - 26s - 47}{(s-1)(s+2)(s+5)}$$

66.
$$F(s) = \frac{-s-7}{(s-1)(s+2)}$$

67.
$$F(s) = \frac{-8s^2 - 5s + 9}{\left(s^2 - 3s + 2\right)\left(s + 1\right)}$$

68.
$$F(s) = \frac{-2s^2 + 8s - 14}{\left(s + 1\right)\left(s^2 - 2s + 5\right)}$$

69.
$$F(s) = \frac{-5s - 36}{(s+2)(s^2+9)}$$

70.
$$F(s) = \frac{3s^2 + 5s + 3}{s^4 + s^3}$$

71.
$$F(s) = \frac{7s^3 - 2s^2 - 3s + 6}{s^3(s-2)}$$

72.
$$F(s) = \frac{7s^2 - 41s + 84}{\left(s - 1\right)\left(s^2 - 4s + 13\right)}$$

73.
$$F(s) = \frac{6s-5}{s^2+7}$$

74.
$$F(s) = \frac{1 - 3s}{s^2 + 8s + 21}$$

75.
$$F(s) = \frac{3s-2}{2s^2-6s-2}$$

76.
$$F(s) = \frac{s+7}{s^2 - 3s - 10}$$

77.
$$F(s) = \frac{86s - 78}{(s+3)(s-4)(5s-1)}$$

78.
$$F(s) = \frac{2-5s}{(s-6)(s^2+11)}$$

79.
$$F(s) = \frac{25}{s^3(s^2 + 4s + 5)}$$

80.
$$F(s) = \frac{5e^{-6s} - 3e^{-11s}}{(s+2)(s^2+9)}$$