Lecture 7: Training III

Polynomial regression

Polynomial regression

So far we have considered only linear regression. Polynomial regression can also be performed with a model that is linear (in the parameters).

```
In [2]: # Common imports
    import os
    import numpy as np
    np.random.seed(42) # To make this notebook's output stable across runs

# To plot pretty figures
%matplotlib inline
    import matplotlib
    import matplotlib.pyplot as plt
    plt.rcParams['axes.labelsize'] = 14
    plt.rcParams['xtick.labelsize'] = 12
    plt.rcParams['ytick.labelsize'] = 12
```

Example data

```
In [4]: plt.figure(figsize=(10,5))
   plt.plot(X, y, "b.")
   plt.xlabel("$x_1$", fontsize=18)
   plt.ylabel("$y$", rotation=0, fontsize=18)
   plt.axis([-3, 3, 0, 10]);
```


Clearly a straight line will not fit the data well.

Construct new features

Can use a linear model by constructing additional features that are powers of existing features:

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 + \dots$$

Model remains linear in the parameters θ_j .

Generate polynomial features

```
In [5]: from sklearn.preprocessing import PolynomialFeatures
    poly_features = PolynomialFeatures(degree=2, include_bias=False)
    X_poly = poly_features.fit_transform(X)
    X[0], X_poly[0]

Out[5]: (array([-0.75275929]), array([-0.75275929, 0.56664654]))

In [6]: X.shape, X_poly.shape

Out[6]: ((100, 1), (100, 2))
```

Fit model

```
In [7]: from sklearn.linear_model import LinearRegression
    lin_reg = LinearRegression()
    lin_reg.fit(X_poly, y)
    lin_reg.intercept_, lin_reg.coef_
Out[7]: (array([1.78134581]), array([[0.93366893, 0.56456263]]))
```

Parameters are close to the model used to generate the data (2, 1 and 0.5 respectively).

Predictions

```
In [8]: X_new = np.linspace(-3, 3, 100).reshape(100, 1)
    X_new_poly = poly_features.transform(X_new)
    y_new = lin_reg.predict(X_new_poly)
    plt.figure(figsize=(10,5))
    plt.plot(X, y, "b.")
    plt.plot(X_new, y_new, "r-", linewidth=2, label="Predictions")
    plt.xlabel("$x_1$", fontsize=18)
    plt.ylabel("$y$", rotation=0, fontsize=18)
    plt.legend(loc="upper left", fontsize=14)
    plt.axis([-3, 3, 0, 10]);
```


Learning curves

How determine whether overfitting or underfitting?

Overfitting with high degree polynomials

```
In [9]: | from sklearn.preprocessing import StandardScaler
        from sklearn.pipeline import Pipeline
        plt.figure(figsize=(7,3))
        for style, width, degree in (("g-", 1, 300), ("b--", 2, 2), ("r-+", 2, 1)):
            polybig features = PolynomialFeatures(degree=degree, include bias=False)
            std scaler = StandardScaler()
            lin reg = LinearRegression()
            polynomial regression = Pipeline(
                 (("poly features", polybig features), ("std scaler", std scaler), ("lin re
        g", lin reg)))
            polynomial regression.fit(X, y)
            y newbig = polynomial regression.predict(X new)
            plt.plot(X new, y newbig, style, label=str(degree), linewidth=width)
        plt.plot(X, y, "b.", linewidth=3)
        plt.legend(loc="upper left")
        plt.xlabel("$x 1$", fontsize=18)
        plt.ylabel("$y$", rotation=0, fontsize=18)
        plt.axis([-3, 3, 0, 10]);
```


Learning curves provide another way to determine whether overfitted.	model underfitted or
Consider performance on training and validation set as size of	of the training set increases.

Plotting learning curves

```
In [10]: | from sklearn.metrics import mean_squared_error
         from sklearn.model selection import train test split
         def plot learning curves(model, X, y):
             X train, X val, y train, y val = train test split(X, y, test_size=0.2, random_
         state=10)
             train errors, val errors = [], []
             for m in range(1, len(X train)):
                 model.fit(X train[:m], y train[:m])
                 y train predict = model.predict(X train[:m])
                 y val predict = model.predict(X val)
                 train errors.append(mean squared_error(y_train_predict, y_train[:m]))
                 val errors.append(mean squared error(y val predict, y val))
             plt.figure(figsize=(8,4))
             plt.plot(np.sqrt(train errors), "r-+", linewidth=2, label="Training set")
             plt.plot(np.sqrt(val errors), "b-", linewidth=3, label="Validation set")
             plt.legend(loc="upper right", fontsize=14)
             plt.xlabel("Training set size", fontsize=14)
             plt.ylabel("RMSE", fontsize=14)
```

Underfitted learning curves

Learning curve for linear model

```
In [11]: lin_reg = LinearRegression()
   plot_learning_curves(lin_reg, X, y)
   plt.axis([0, 80, 0, 3]);
```


- RMSE on training set small for small training set size since model can fit data well for very few data points (perfect for one or two points).
- RMSE performance on training and validation eventually similar but high since linear model cannot fit the data well (recall data generated by quadratic).

Overfitted learning curves

Learning curve for poynomial model of degree 10

- RMSE now much smaller.
- But training and validation set errors remain quite different.

Model performs much better on training set than validation set, suggesting overfitting.

Well-fitted learning curves

Learning curve for poynomial model of degree 2

Bias-variance tradeoff

Bias-variance tradeoff refers to the problem of simultaneously reducing the two types of errors that prevents supervised learning algorithms from generalising to other data.

- Bias: Expected difference between data and prediction.
- Variance: Expected ability of the model to fluctuate.

One seeks a model that accurately fits the training data, while also generalising to unseen data. Typically impossible to do both simultaneously. • On one hand, high-variance models may fit training data well but typically overfit to noise or unrepresentative training data. • On the other hand, low-complexity models with a high bias typically underfit training data.

Contributions to the mean square error

Consider underlying (true) model:

$$y = f(x) + \epsilon,$$

where

- *y* is the target and *x* features.
- f is the true model, that we will approximate by h.
- ϵ is the noise, with zero mean and variance σ^2 .

Approximate f by h, which is fitted by a learning algorithm and training data.

Expected value of the mean square error is given by

\$\$\text{E} \left[\left(y - h(x)\right)^2 \right]

 $\text{Bias}^2\left[h(x)\right] + \text{Var}\left[h(x)\right] + \sin^22$$

Three contributions to the error:

1. Bias:

Bias
$$[h(x)] = E[h(x) - f(x)]$$
.

2. Variance:

$$Var[h(x)] = E[h^2(x)] - E[h(x)]^2.$$

3. Irreducible error σ^2 due to noise in observations.

Tradeoff

By choosing a complex model, the bias can be made small but the variance will be large.

By choosing a simple model, the variance can be made small but the bias will be large.

[Image source (http://francescopochetti.com/bias-v-s-variance-tradeoff/)]

Regularization

One approach to mitigate the bias-variance tradeoff is by regularization.

Consider a complex model but place additional constrains to reduce its variance.

As a consequence the bias is increased but can introduce a regularisation parameter to control the tradeoff.

Add regularization term $R(\theta)$ to the cost function:

$$C_{\lambda}(\theta) = C(\theta) + \lambda R(\theta).$$

The regularization parameter λ controls the amount of regularization.

Add regularization term $R(\theta)$ to the cost function:

$$C_{\lambda}(\theta) = C(\theta) + \lambda R(\theta).$$

The regularization parameter λ controls the amount of regularization.

Regularization should only be added when training. When using fitted model to make predictions, should evaluate cost without regularization term.

Tikhonov regularization

Tikhonov regularization adopts ℓ_2 regularising term (also called *Ridge regression*):

$$R(\theta) = \frac{1}{2} \sum_{j=1}^{n} \theta_j^2 = \frac{1}{2} \theta^{\mathrm{T}} \theta.$$

Acts to keep parameters small.

Note that the bias term θ_0 is not regularized (i.e. sum starts from 1 not 0).

```
In [14]:
         from sklearn.linear model import Ridge
          np.random.seed(42)
          m = 20
          X = 3 * np.random.rand(m, 1)
          y = 1 + 0.5 * X + np.random.randn(m, 1) / 1.5
          X \text{ new} = \text{np.linspace}(0, 3, 100).\text{reshape}(100, 1)
          def plot model(model class, polynomial, alphas, **model kargs):
              # Use alpha for regularization parameter (lambda used already)
              for alpha, style in zip(alphas, ("b-", "g--", "r:")):
                  model = model class(alpha, **model kargs) if alpha > 0 else LinearRegressi
          on()
                  if polynomial:
                      model = Pipeline((
                               ("poly features", PolynomialFeatures(degree=10, include bias=F
          alse)),
                               ("std scaler", StandardScaler()),
                               ("regul reg", model),
                           ))
                  model.fit(X, y)
                  y new regul = model.predict(X new)
                  lw = 2 if alpha > 0 else 1
                  plt.plot(X new, y new regul, style, linewidth=lw, label=r"$\lambda = {}$".
          format(alpha))
              plt.plot(X, y, "b.", linewidth=3)
              plt.legend(loc="upper left", fontsize=15)
              plt.xlabel("$x 1$", fontsize=18)
              plt.axis([0, 3, 0, 4])
```

```
In [15]: plt.figure(figsize=(10,5))
   plt.subplot(121)
   plot_model(Ridge, polynomial=False, alphas=(0, 10, 100), random_state=42)
   plt.ylabel("$y$", rotation=0, fontsize=18)
   plt.subplot(122)
   plot_model(Ridge, polynomial=True, alphas=(0, 10**-5, 1), random_state=42)
```


Lasso regularization

Lasso regularization adopts \mathcal{C}_1 regularising term:

$$R(\theta) = \sum_{j=1}^{n} |\theta_j|.$$

Acts to promote sparsity.

Again, note that the bias term θ_0 is not regularized (i.e. sum starts from 1 not 0).

```
In [16]: from sklearn.linear_model import Lasso

plt.figure(figsize=(10,5))
plt.subplot(121)
plot_model(Lasso, polynomial=False, alphas=(0, 0.1, 1), random_state=42)
plt.ylabel("$y$", rotation=0, fontsize=18)
plt.subplot(122)
plot_model(Lasso, polynomial=True, alphas=(0, 10**-7, 1), tol=1, random state=42)
```


Differentiability

Note that the Lasso penality is non-differentiable at zero.

Gradient descent can still be used but with gradients replaced by <u>sub-gradients</u> (<u>https://en.wikipedia.org/wiki/Subderivative</u>) when any $\theta_j = 0$.

Elastic Net regularization

Provides a mix of Tikhonov and Lasso regularization, controlled by mix ratio r:

\$\$R(\theta)

 $r\sum_{j=1}^n \left(1-r\right)^2 \sum_{j=1}^n \left(1-r\right)^2 \sum_{j=1}^n \left(1-r\right)^2$

- For r = 0, corresponds to Tikhonov regularization.
- For r = 1, corresponds to Lasso regularization.

Stopping early

Compute RMSE on validation set as train and stop when starts to increase.

```
In [17]: | from sklearn.linear_model import SGDRegressor
         np.random.seed(42)
         m = 100
         X = 6 * np.random.rand(m, 1) - 3
         y = 2 + X + 0.5 * X**2 + np.random.randn(m, 1)
         X train, X val, y train, y val = train test split(X[:50], y[:50].ravel(), test siz
         e=0.5, random state=10)
         poly scaler = Pipeline((
                  ("poly features", PolynomialFeatures(degree=90, include bias=False)),
                  ("std scaler", StandardScaler()),
              ))
         X train poly scaled = poly scaler.fit transform(X train)
         X val poly scaled = poly scaler.transform(X val)
         sqd reg = SGDRegressor(max iter=1,
                                 penalty=None,
                                 eta0=0.0005,
                                 warm start=True,
                                 learning rate="constant",
                                 random state=42)
```


Note that for stochastic or mini-batch gradient	t descent the RMSE is noisy and may be
difficult to know when reach minimum (can em	