Regression with Multiple Features

Multiple Linear Regression

- y = b0 + b1x1 + b2x2 + b3x3 + ... + bnxn
- We are still computing a linear equation, this time with multiple features
- Classic problem: predict housing prices using a variety of factors:
 - square footage
 - crime rate
 - nearness to food stores
 - etc.

sklearn LinearRegression

Takes numpy arrays for features and target

from sklearn.linear_model import
 LinearRegression

- features should be in a numpy array of shape (samples, features) e.g. (506,13)
- target: numpy array of one row, shape=(13,0)

Boston Housing DataSet

```
from sklearn.datasets import load_boston

boston = load_boston()

# set up features and target values

features = boston.data
target = boston.target
```

```
1  # what are the datatypes?
2  print (type(features))
3  print (type(target))
4
5  # how many features?
6  print (features.shape)
7  print (target.shape)

<class 'numpy.ndarray'>
<class 'numpy.ndarray'>
(506, 13)
(506,)
```

```
1 # set up Linear Regression for multiple features
 2 from sklearn.linear_model import LinearRegression
 4 # create Linear Regression instance
5 bostonReg = LinearRegression()
 7 # generate the model
8 model = bostonReg.fit(features, target)
10 # print results of model computation
11 print (model.coef_)
12 print (model.intercept_)
13
14 # what is variance accounted for by the model?
15 print ("Variance accounted for by model")
16 score_model13 = model.score(features, target)
17 print (score_model13)
18
[-1.07170557e-01 4.63952195e-02 2.08602395e-02 2.68856140e+00
-1.77957587e+01 3.80475246e+00 7.51061703e-04 -1.47575880e+00
 3.05655038e-01 -1.23293463e-02 -9.53463555e-01 9.39251272e-03
-5.25466633e-01]
36.49110328036133
Variance accounted for by model
0.7406077428649428
```

What is the change in variance when you remove one feature?

removing one (last) feature

```
# do regression for 12 features
model = bostonReg.fit(features12, target)

# what is variance accounted for by the model?
print ("Variance accounted for by model")
score_model12 = model.score(features12, target)
print (score_model12)

# what is percent difference?
diff = (score_model13 - score_model12) / score_model13
print ("difference = ", diff)

Variance accounted for by model
0.6839521119105445
difference = 0.07649883693523579
```

Remove features that are highly correlated

Removing Highly Correlated Features

Use a correlation matrix to find highly correlated features

- 1. Convert feature matrix to DataFrame
- 2. Create correlation matrix: df.corr().abs()
- 3. Select upper triangle of correlation matrix
- 4. Find the index of the features with corr > 95%
- 5. Drop the features
- 6. Recompute compare results

Create Upper triangular matrix

numpy.triu

numpy.triu(m, k=0)

Upper triangle of an array.

Return a copy of a matrix with the elements below the k-th diagonal zeroed.

```
# creating upper triangle matrix
m1 = np.array([[1,2,3,4,5], [6,7,8,9,10], [22,33,44,55,66], [11,23,34,45,56], [54,43,76,54,43]])
dfupper = np.triu(m1, k=1)
dfupper

array([[0, 2, 3, 4, 5], [0, 0, 8, 9, 10], [0, 0, 0, 55, 66], [0, 0, 0, 0, 56], [0, 0, 0, 0, 0]])
```

pandas.DataFrame.where

DataFrame.where(cond, other=nan, inplace=False, axis=None, level=None, errors='raise', try_cast=False, raise_on_error=None)

Return an object of same shape as self and whose corresponding entries are from self where *cond* is True and otherwise are from *other*.

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if <code>cond</code> is <code>True</code> the element is used; otherwise the corresponding element from the DataFrame <code>other</code> is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

Examples

```
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
```

```
>>> s.where(s > 1, 10)
0     10.0
1     10.0
2     2.0
3     3.0
4     4.0
```

[source]

Setup DataFrame for correlation computation

Create Correlation Matrix from Dataframe

```
# create correlation matrix atrix = dfcorr.corr().abs() matrix.head(3)

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1.000000 0.199458 0.404471 0.055295 0.417521 0.219940 0.350784 0.377904 0.622029 0.579564 0.288250 0.377365 0.452220

1 0.199458 1.000000 0.533828 0.042697 0.516604 0.311991 0.569537 0.664408 0.311948 0.314563 0.391679 0.175520 0.412995

2 0.404471 0.533828 1.000000 0.062938 0.763651 0.391676 0.644779 0.708027 0.595129 0.720760 0.383248 0.356977 0.603800
```

We want an upper triangular matrix. how?

pandas.DataFrame.where

DataFrame.where(cond, other=nan, inplace=False, axis=None, level=None, errors='raise', try_cast=False, raise_on_error=None)

[source]

Return an object of same shape as self and whose corresponding entries are from self where *cond* is True and otherwise are from *other*.

The where method is an application of the if-then idiom. For each element in the calling DataFrame, if cond is True the element is used; otherwise the corresponding element from the DataFrame other is used.

The signature for DataFrame.where() differs from numpy.where(). Roughly df1.where(m, df2) is equivalent to np.where(m, df1, df2).

Examples

```
>>> s = pd.Series(range(5))
>>> s.where(s > 0)
0 NaN
1 1.0
2 2.0
3 3.0
4 4.0
```

2		ix_upper ix_upper		x.where(np.triu(np.ones(r	natrix.sh	nape), k=	1).astyp	e(np.boo	1))		
	0	1	2	3	4	5	6	7	8	9	10	11	12
0	NaN	0.199458	0.404471	0.055295	0.417521	0.219940	0.350784	0.377904	0.622029	0.579564	0.288250	0.377365	0.452220
1	NaN	NaN	0.533828	0.042697	0.516604	0.311991	0.569537	0.664408	0.311948	0.314563	0.391679	0.175520	0.412995
2	NaN	NaN	NaN	0.062938	0.763651	0.391676	0.644779	0.708027	0.595129	0.720760	0.383248	0.356977	0.603800
3	NaN	NaN	NaN	NaN	0.091203	0.091251	0.086518	0.099176	0.007368	0.035587	0.121515	0.048788	0.053929
4	NaN	NaN	NaN	NaN	NaN	0.302188	0.731470	0.769230	0.611441	0.668023	0.188933	0.380051	0.590879
5	NaN	NaN	NaN	NaN	NaN	NaN	0.240265	0.205246	0.209847	0.292048	0.355501	0.128069	0.613808
6	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.747881	0.456022	0.506456	0.261515	0.273534	0.602339
7	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.494588	0.534432	0.232471	0.291512	0.496996
8	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.910228	0.464741	0.444413	0.488676
9	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.460853	0.441808	0.543993
0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.177383	0.374044
1	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.366087
2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

Which features do we eliminate?

Which features do we eliminate?

drop_values = [column for column in matrix_upper.columns if any(matrix_upper[column] > 0.90)]
drop_values

[9]

How to remove a column from a DataFrame?

How to remove a column from a DataFrame?

```
# drop feature from data frame
dfadjusted = dfcorr.drop(dfcorr.columns[drop_values], axis=1)
dfadjusted.head()
```

	0	1	2	3	4	5	6	7	8	10	11	12
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	18.7	396.90	5.33

Extract numpy array from dataframe

Extract numpy array from dataframe

```
# get features from new dataframe
features2 = dfadjusted.values
print (features2.shape)

(506, 12)
```

Compute New Regression using reduced feature list

```
# do regression for 12 features
reg2 = LinearRegression()

reduced_model = reg2.fit(features2, target)

# what is variance accounted for by the model?
print ("Variance accounted for by model")
score2 = reduced_model.score(features2, target)
print (score2)
```

Variance accounted for by model 0.7349412039707595