Genetic algorithm for Quantum Support Vector Machines

Lorenzo Tasca

25 Novembre 2024

Quantum Machine Learning

Support Vector Machine

 La Support Vector Machine è un algoritmo supervisionato di classificazione binaria.

Support Vector Machine

- La Support Vector Machine è un algoritmo supervisionato di classificazione binaria.
- L'algoritmo trova il massimo margine separatore tra le classi.

Support Vector Machine

- La Support Vector Machine è un algoritmo supervisionato di classificazione binaria.
- L'algoritmo trova il massimo margine separatore tra le classi.
- La funzione da minimizzare dipende solo dai prodotti scalari tra le istanze (x_i, x_j).

Kernel Support Vector Machine

• Nel caso in cui i dati non siano linearmente separabili è possibile applicare una feature map $\phi(\mathbf{x})$.

Kernel Support Vector Machine

• Nel caso in cui i dati non siano linearmente separabili è possibile applicare una feature map $\phi(\mathbf{x})$.

Kernel Support Vector Machine

- Nel caso in cui i dati non siano linearmente separabili è possibile applicare una feature map $\phi(\mathbf{x})$.
- La funzione costo dipenderà solo da $K_{ij} = \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_i) \rangle$

Quantum Support Vector Machine

 È possibile usare una feature map quantistica applicata ai dati classici.

Quantum Support Vector Machine

- È possibile usare una feature map quantistica applicata ai dati classici.
- Consiste in un circuito parametrizzato $U(\mathbf{x})$, che agisce sullo stato iniziale $|0\rangle^{\otimes n}$, producendo uno stato $|\phi(\mathbf{x})\rangle = U(\mathbf{x})|0\rangle^{\otimes n}$.

Quantum Support Vector Machine

- È possibile usare una feature map quantistica applicata ai dati classici.
- Consiste in un circuito parametrizzato $U(\mathbf{x})$, che agisce sullo stato iniziale $|0\rangle^{\otimes n}$, producendo uno stato $|\phi(\mathbf{x})\rangle = U(\mathbf{x})|0\rangle^{\otimes n}$.
- Viene poi costruito il kernel $K_{ij} = \langle \phi(\mathbf{x}_i) | \phi(\mathbf{x}_j) \rangle$.

 Ci sono moltissime scelte possibili di circuiti. Un esempio è la ZZ feature map.

- Ci sono moltissime scelte possibili di circuiti. Un esempio è la ZZ feature map.
- La QSVM mostra il potenziale di separare complicati dataset, con pattern complessi.

- Ci sono moltissime scelte possibili di circuiti. Un esempio è la ZZ feature map.
- La QSVM mostra il potenziale di separare complicati dataset, con pattern complessi.

- Ci sono moltissime scelte possibili di circuiti. Un esempio è la ZZ feature map.
- La QSVM mostra il potenziale di separare complicati dataset, con pattern complessi.
- Questi dataset non sono gestibili coi kernel classici.

 Nonostante le grandi potenzialità, la scelta della feature map si rivela molto delicata.

- Nonostante le grandi potenzialità, la scelta della feature map si rivela molto delicata.
- Una scelta non congeniale porta a performance pessime, con accuretezze anche inferiori al 50%.

- Nonostante le grandi potenzialità, la scelta della feature map si rivela molto delicata.
- Una scelta non congeniale porta a performance pessime, con accuretezze anche inferiori al 50%.
- Il problema è che non ci sono regole generali valide per la scelta del circuito.

