Lecture 34: The projection method

Since \mathcal{P} is nonparametric, the exact distribution of any U-statistic is hard to derive. We study asymptotic distributions of U-statistics by using the method of *projection*.

Definition 3.3. Let T_n be a given statistic based on $X_1, ..., X_n$. The projection of T_n on k_n random elements $Y_1, ..., Y_{k_n}$ is defined to be

$$\check{T}_n = E(T_n) + \sum_{i=1}^{k_n} [E(T_n|Y_i) - E(T_n)].$$

Let $\psi_n(X_i) = E(T_n|X_i)$.

If T_n is symmetric (as a function of $X_1, ..., X_n$), then $\psi_n(X_1), ..., \psi_n(X_n)$ are i.i.d. with mean $E[\psi_n(X_i)] = E[E(T_n|X_i)] = E(T_n)$.

If $E(T_n^2) < \infty$ and $Var(\psi_n(X_i)) > 0$, then

$$\frac{1}{\sqrt{n\text{Var}(\psi_n(X_1))}} \sum_{i=1}^n [\psi_n(X_i) - E(T_n)] \to_d N(0,1)$$
 (1)

by the CLT.

Let \check{T}_n be the projection of T_n on $X_1, ..., X_n$.

Then

$$T_n - \check{T}_n = T_n - E(T_n) - \sum_{i=1}^n [\psi_n(X_i) - E(T_n)].$$
 (2)

If we can show that $T_n - \check{T}_n$ has a negligible order of magnitude, then we can derive the asymptotic distribution of T_n by using (1)-(2) and Slutsky's theorem.

The order of magnitude of $T_n - \check{T}_n$ can be obtained with the help of the following lemma.

Lemma 3.1. Let T_n be a symmetric statistic with $Var(T_n) < \infty$ for every n and \check{T}_n be the projection of T_n on $X_1, ..., X_n$. Then $E(T_n) = E(\check{T}_n)$ and

$$E(T_n - \check{T}_n)^2 = \operatorname{Var}(T_n) - \operatorname{Var}(\check{T}_n).$$

Proof. Since $E(T_n) = E(\check{T}_n)$,

$$E(T_n - \check{T}_n)^2 = \operatorname{Var}(T_n) + \operatorname{Var}(\check{T}_n) - 2\operatorname{Cov}(T_n, \check{T}_n).$$

From Definition 3.3 with $Y_i = X_i$ and $k_n = n$,

$$\operatorname{Var}(\check{T}_n) = n \operatorname{Var}(E(T_n|X_i)).$$

The result follows from

$$Cov(T_n, \check{T}_n) = E(T_n \check{T}_n) - [E(T_n)]^2$$

$$= nE[T_n E(T_n | X_i)] - n[E(T_n)]^2$$

$$= nE\{E[T_n E(T_n | X_i) | X_i]\} - n[E(T_n)]^2$$

$$= nE\{[E(T_n | X_i)]^2\} - n[E(T_n)]^2$$

$$= nVar(E(T_n | X_i))$$

$$= Var(\check{T}_n).$$

This method of deriving the asymptotic distribution of T_n is known as the method of projection and is particularly effective for U-statistics.

For a U-statistic U_n , one can show (exercise) that

$$\check{U}_n = E(U_n) + \frac{m}{n} \sum_{i=1}^n \tilde{h}_1(X_i),$$
(3)

where \check{U}_n is the projection of U_n on $X_1, ..., X_n$ and $\tilde{h}_1(x) = h_1(x) - E[h(X_1, ..., X_m)], h_1(x) =$ $E[h(x, X_2, ..., X_m)].$

Hence

$$Var(\check{U}_n) = m^2 \zeta_1 / n$$

and, by Corollary 3.2 and Lemma 3.1,

$$E(U_n - \check{U}_n)^2 = O(n^{-2}).$$

If $\zeta_1 > 0$, then (1) holds with $\psi_n(X_i) = mh_1(X_i)$, which leads to the result in Theorem 3.5(i) stated later.

If $\zeta_1 = 0$, then $\tilde{h}_1 \equiv 0$ and we have to use another projection of U_n .

Suppose that $\zeta_1 = \cdots = \zeta_{k-1} = 0$ and $\zeta_k > 0$ for an integer k > 1. Consider the projection \check{U}_{kn} of U_n on $\binom{n}{k}$ random vectors $\{X_{i_1}, ..., X_{i_k}\}, 1 \leq i_1 < \cdots < i_k \leq n$

We can establish a result similar to that in Lemma 3.1 and show that

$$E(U_n - \check{U}_n)^2 = O(n^{-(k+1)}).$$

Also, see Serfling (1980, §5.3.4).

With these results, we obtain the following theorem.

Theorem 3.5. Let U_n be a U-statistic with $E[h(X_1,...,X_m)]^2 < \infty$.

(i) If $\zeta_1 > 0$, then

$$\sqrt{n}[U_n - E(U_n)] \to_d N(0, m^2 \zeta_1).$$

(ii) If $\zeta_1 = 0$ but $\zeta_2 > 0$, then

$$n[U_n - E(U_n)] \to_d \frac{m(m-1)}{2} \sum_{j=1}^{\infty} \lambda_j (\chi_{1j}^2 - 1),$$
 (4)

where χ_{1j}^2 's are i.i.d. random variables having the chi-square distribution χ_1^2 and λ_j 's are some constants (which may depend on P) satisfying $\sum_{j=1}^{\infty} \lambda_j^2 = \zeta_2$.

We have actually proved Theorem 3.5(i).

A proof for Theorem 3.5(ii) is given in Serfling (1980, §5.5.2).

One may derive results for the cases where $\zeta_2 = 0$, but the case of either $\zeta_1 > 0$ or $\zeta_2 > 0$ is the most interesting case in applications.

If $\zeta_1 > 0$, it follows from Theorem 3.5(i) and Corollary 3.2(iii) that

$$amse_{U_n}(P) = m^2 \zeta_1/n = Var(U_n) + O(n^{-2}).$$

By Proposition 2.4(ii), $\{n[U_n - E(U_n)]^2\}$ is uniformly integrable.

If $\zeta_1 = 0$ but $\zeta_2 > 0$, it follows from Theorem 3.5(ii) that $\operatorname{amse}_{U_n}(P) = EY^2/n^2$, where Y denotes the random variable on the right-hand side of (4).

The following result provides the value of EY^2 .

Lemma 3.2. Let Y be the random variable on the right-hand side of (4). Then $EY^2 = \frac{m^2(m-1)^2}{2}\zeta_2$.

Proof. Define

$$Y_k = \frac{m(m-1)}{2} \sum_{j=1}^k \lambda_j (\chi_{1j}^2 - 1), \quad k = 1, 2, \dots$$

It can be shown (exercise) that $\{Y_k^2\}$ is uniformly integrable.

Since $Y_k \to_d Y$ as $k \to \infty$, $\lim_{k \to \infty} EY_k^2 = EY^2$ (Theorem 1.8(viii)).

Since χ_{1j}^2 's are independent chi-square random variables with $E\chi_{1j}^2=1$ and $Var(\chi_{1j}^2)=2$, $EY_k=0$ for any k and

$$EY_k^2 = \frac{m^2(m-1)^2}{4} \sum_{j=1}^k \lambda_j^2 \text{Var}(\chi_{1j}^2)$$
$$= \frac{m^2(m-1)^2}{4} \left(2 \sum_{j=1}^k \lambda_j^2 \right)$$
$$\to \frac{m^2(m-1)^2}{2} \zeta_2.$$

It follows from Corollary 3.2(iii) and Lemma 3.2 that

$$amse_{U_n}(P) = \frac{m^2(m-1)^2}{2}\zeta_2/n^2 = Var(U_n) + O(n^{-3})$$

if $\zeta_1 = 0$.

Again, by Proposition 2.4(ii), the sequence $\{n^2[U_n - E(U_n)]^2\}$ is uniformly integrable.

We now apply Theorem 3.5 to the U-statistics in Example 3.11.

For
$$U_n = \frac{1}{n(n-1)} \sum_{1 \le i < j \le n} X_i X_j$$
, $\zeta_1 = \mu^2 \sigma^2$.

Thus, if $\mu \neq 0$, the result in Theorem 3.5(i) holds with $\zeta_1 = \mu^2 \sigma^2$.

If $\mu = 0$, then $\zeta_1 = 0$, $\zeta_2 = \sigma^4 > 0$, and Theorem 3.5(ii) applies.

However, it is not convenient to use Theorem 3.5(ii) to find the limiting distribution of U_n . We may derive this limiting distribution using the following technique, which is further discussed in §3.5.

By the CLT and Theorem 1.10,

$$n\bar{X}^2/\sigma^2 \to_d \chi_1^2$$

when $\mu = 0$, where χ_1^2 is a random variable having the chi-square distribution χ_1^2 . Note that

$$\frac{n\bar{X}^2}{\sigma^2} = \frac{1}{\sigma^2 n} \sum_{i=1}^n X_i^2 + \frac{(n-1)U_n}{\sigma^2}.$$

By the SLLN, $\frac{1}{\sigma^2 n} \sum_{i=1}^n X_i^2 \to_{a.s.} 1$. An application of Slutsky's theorem leads to

$$nU_n/\sigma^2 \to_d \chi_1^2 - 1.$$

Since $\mu = 0$, this implies that the right-hand side of (4) is $\sigma^2(\chi_1^2 - 1)$, i.e., $\lambda_1 = \sigma^2$ and $\lambda_j = 0$ when j > 1.

For the one-sample Wilcoxon statistic, $\zeta_1 = \text{Var}(F(-X_1)) > 0$ unless F is degenerate. Similarly, for Gini's mean difference, $\zeta_1 > 0$ unless F is degenerate. Hence Theorem 3.5(i) applies to these two cases.