產品機台押出段產能分析

第九組

目錄

01 前言

02 機械效率

03 產速

温度、電流、線速度與 04 效率的關係 05 總結

06 Q&A

前言

在期中報告我們提到我們如何分析押出段的資料,包括透過 資料來推算出動用率再估算出機械效率,還有我們在分析中遇到 的問題等。

接下來除了會接續做法外,我們會從押出段資料的螺桿溫度、線速度、電流等欄位來觀察可能為影響產能的異常部分(預備時間或是製造異常、故障的時間),觀察有沒有週期性的變化或是可以預測的可能性。

機械效率

為了定義出出異常值計算效率,我們會針對幾個欄位計算:

• 螺桿溫度:+-3度之間為標準值

厚度:刪除空值

● 線速度:刪除為0的值,藉此估算出較準確的效率值。

螺桿温度的設定大約都在275度,所以螺桿温度以272~278度作為標準。

In [22]: setting[setting['screwSettingTemp_1'] == 285]

Out[22]:

	date	device	coefficient	width	thickness	production Specification	screwSettingTemp_1	screwSettingTemp_2	screwSettingTemp_3	screw
1777	2020- 11-30 18:52:00	2	1.42	1055	0.44	123456.0	285.0	285.0	285.0	
1778	2020- 12-01 05:51:00	2	1.42	1055	0.38	123456.0	285.0	285.0	285.0	
1779	2020- 12-01 17:22:00	2	1.42	1055	0.46	123456.0	285.0	285.0	285.0	
1780	2020- 12-01 18:57:00	2	1.42	1055	0.44	123456.0	285.0	285.0	285.0	
1781	2020- 12-02 06:29:00	2	1.42	1055	0.46	123456.0	285.0	285.0	285.0	
1782	2020- 12-02 12:08:00	2	1.42	1055	*				· · · · · · · · · · · · · · · · · · ·	,
1783	2020- 12-03 06:42:00	2	1.42	1055		设定標準溫			Z I Z JIZ	
1784	2020- 12-03 19:04:00	2	1.40	1055						
1785	2020- 12-03 19:42:00	2	1.40	1055	Ū	显分出異常	值後,我	战們把將獲	与厚度為3	之 上
1786	2020- 12-04 13:58:00	2	1.40	1055		直、線速度	為0的行	刪除,得	到最後的	
1787	2020- 12-04 19:26:00	2	1.40	1055	T.	答案。 				

從2020年11月末到整個12月螺 桿溫度設定都在285度。

所以我們將2020年12月分開計 算,以282~288度作為標準。

```
In [24]: wrong_value = []
         for i in record_2020_12['average_Temp']:
             if i < 282:
                 a = "異常"
             elif i > 288:
                 a = "異常"
             else:
                 a = "非異常"
             wrong_value.append(a)
In [25]: record_2020_12['Outliers'] = wrong_value
```

以2020年12月為例,雖然在紀錄檔中有43917行(12月為44640行),但厚度大多都是空值(38420行)。所以我們把這些排除後,最後得到有在生產的時間大多在前5天而已。

In [89]:	record	_2020_12				
	667337	2020- 12-04 23:28:00	2	287.0	287.0	284.0
	667338	2020- 12-04 23:29:00	2	283.0	283.0	286.0
	667339	2020- 12-04 23:30:00	2	287.0	287.0	285.0
	667340	2020- 12-04 23:31:00	2	287.0	287.0	285.0
	667341	2020- 12-04 23:32:00	2	286.0	283.0	285.0

經過上述計算流程,右圖為2020和2021兩年內各月份的機械效率表。 達到80%機械效率的月份有: 20年4、6、7、10、11月; 21年1、3、6、7月。

	2020年		2021年	
	生產時數	機械效率	生產時數	機械效率
1月		54.09%		82.10%
2月	0	0		70.49%
3月		37.61%		95.52%
4月		90.51%		22.21%
5月		23.20%		4.47%
6月		92.20%		95.19%
7月		92.57%		94.06%
8月		22.77%		
9月		7.18%		
10月		85.51%		
11月		90.91%		
12月		14.29%		

(紅字代表停機時數長,影響機械開動率所以造成機械效率低。)

產速

先將設定檔裡的設定寬度依照 每個月分類算出平均,再代入 紀錄檔裡計算,得出的結果是 扣除異常值時數後其餘生產時 數的產能。

	<mark>2020</mark> 年	<mark>2021</mark> 年
1月	0.04	5.83
2月	0	2.17
3月	7.35	9.23
4月	1.39	8.07
5月	8.03	2.00
6月	5.82	9.72
7月	8.07	7.50
8月	8.43	
9月	5.81	
10月	0.64	
11月	4.75	
12月	8.63	

2021年6月 電流和螺桿溫度散布圖

温度、電流、線速 度與效率的關係

溫度的起伏變化大多發生在預備時間或剛開機的時候,電流也會比較不穩定。

2020年12月的線速度、厚度折線圖

在12月2號晚上6點48分開始,可以發現此時間負相關比較不明顯,直到晚上9點半才回穩。

產能

731.446597

在紀錄檔裡,晚上6點48到晚上8點44分應該是正在處於預備時間(厚度為空值且線速度不穩定)

悠然古

可以從統計後的結果看出2021年的產能明顯比2020年進步, 平均的機械效率也比2020年好,且沒有發生大量厚度為空值的狀況。

溫度和電流方面目前我們還無法確切觀察出週期性或者規律,只看出當處於預備時間沒有生產時,起伏會特別大。但這只是一個機台的數據如果能和其他機台的數據互相比對,或許能發現更明顯的關係。