Monte Carlo Methods

Derek Li

Contents

Pseudorandom Numbers	2
Monte Carlo Integration	3
Unnormalized Densities	4
Rejection Sampler	5
Auxiliary Variable Approach	6
Queueing Theory	7

Pseudorandom Numbers

We first generate an i.i.d. sequence $U_i \sim \text{Uniform}[0,1]$.

Algorithm (Linear Congruential Generator/LCG).

- Choose large positive integers m, a, and b.
- Start with a seed value x_0 , e.g., the current time in milliseconds.
- Recursively, $x_n = (ax_{n-1} + b) \mod m$, i.e., x_n is the remainder when $ax_{n-1} + b$ is divided by m. Hence $0 \le x_n \le m 1$.
- Let $U_n = \frac{x_n}{m}$, $\{U_n\}$ will seem to be approximately i.i.d. Uniform[0, 1].

Note. We need m large so many possible values; a large enough that no obvious pattern between U_{n-1} and U_n ; b to avoid short cycles of numbers. We want large period, i.e., number of iterations before repeat. One common choice: $m = 2^{32}$, a = 69069, b = 23606797.

Theorem. The LCG has full period (m) iff both gcd(b, m) = 1, and every "prime or 4" divisor of m also divides a - 1.

Once we have $U_i \sim \text{Uniform}[0,1]$, we can generate other distributions with transformations, using change of variable theorem.

Example. To make $X \sim \text{Uniform}[L, R]$, set $X = (R - L)U_1 + L$.

Example. To make $X \sim \text{Bernoulli}(p)$, set

$$X = \begin{cases} 1, & U_1 \le p \\ 0, & U_1 > p \end{cases}$$

Example. To make $Y \sim \text{Binomial}(n, p)$, either set $Y = X_1 + \cdots + X_n$ where

$$X_i = \begin{cases} 1, & U_i \le p \\ 0, & U_i > p \end{cases}$$

or set

$$Y = \max \left\{ j : \sum_{k=0}^{j-1} \binom{n}{k} p^k (1-p)^{n-k} \le U_1 \right\}$$

Generally, to make $P(Y = x_i) = p_i$ for some $x_1 < x_2 < \cdots$, where $p_i \ge 0$ and $\sum_i p_i = 1$, set

$$Y = \max \left\{ x_j : \sum_{k=1}^{j-1} p_k \leqslant U_1 \right\}$$

Example. To make $Z \sim \text{Exponential}(1)$, set $Z = -\ln(U_1)$. Generally, to make $W \sim \text{Exponential}(\lambda)$, set $W = \frac{Z}{\lambda} = \frac{-\ln(U_1)}{\lambda}$ so that W has density $\lambda e^{-\lambda x}$ for x > 0.

Example. If

$$X = \sqrt{2 \ln \left(\frac{1}{U_1}\right)} \cos(2\pi U_2)$$
$$Y = \sqrt{2 \ln \left(\frac{1}{U_1}\right)} \sin(2\pi U_2)$$

then $X, Y \sim \mathcal{N}(0, 1)$ and $X \perp Y$.

Algorithm (Inverse CDF Method).

- We want CDF $P(X \le x) = F(x)$.
- For 0 < t < 1, set $F^{-1}(t) = \min\{x; F(x) \ge t\}$ and $X = F^{-1}(U_1)$.
- $X \leqslant x$ iff $U_1 \leqslant F(x)$ and thus $P(X \leqslant x) = P(U_1 \leqslant F(x)) = F(x)$.

Monte Carlo Integration

We can rewrite an integral as an expectation and compute it with Monte Carlo.

Example. Estimate
$$I = \int_0^5 \int_0^4 g(x,y) dy dx$$
, where $g(x,y) = \cos(\sqrt{xy})$.

Solution. We have

$$\int_0^5 \int_0^4 g(x,y) dy dx = \int_0^5 \int_0^4 5 \cdot 4 \cdot g(x,y) \cdot \frac{1}{4} dy \frac{1}{5} dx = \mathbb{E}[20g(X,Y)]$$

where $X \sim \text{Uniform}[0,5]$ and $Y \sim \text{Uniform}[0,4]$. Hence, we let $X_i \sim \text{Uniform}[0,5]$ and $Y_i \sim \text{Uniform}[0,4]$ (all independent) and estimate I by

$$\frac{1}{M} \sum_{i=1}^{M} 20g(X_i, Y_i)$$

with standard error

$$SE = M^{-1/2}SE(20g(X_1, Y_1), \cdots, 20g(X_M, Y_M))$$

Example. Estimate $I = \int_0^1 \int_0^\infty h(x,y) dy dx$, where $h(x,y) = e^{-y^2} \cos(\sqrt{xy})$.

Solution. We have

$$\int_0^1 \int_0^\infty (e^y h(x,y)) e^{-y} dy dx = \mathbb{E}[e^Y h(X,Y)]$$

where $X \sim \text{Uniform}[0,1]$ and $Y \sim \text{Exponential}(1)$ are independent.

Hence we estimate I by

$$\frac{1}{M} \sum_{i=1}^{M} e^{Y_i} h(X_i, Y_i)$$

3

where $X_i \sim \text{Uniform}[0, 1]$ and $Y_i \sim \text{Exponential}(1)$ (all independent).

Alternatively, we could write

$$\int_{0}^{1} \int_{0}^{\infty} \frac{1}{5} e^{5y} h(x, y) \cdot 5e^{-5y} dy dx = \mathbb{E}\left[\frac{1}{5} e^{5Y} h(X, Y)\right]$$

where $X \sim \text{Uniform}[0,1]$ and $Y \sim \text{Exponential}(5)$ are independent.

Note. We can choose different λ to estimate I and the one minimizes the standard error is the best choice.

Algorithm (Importance Sampling). Suppose we want to evaluate $I = \int s(y) dy$.

- We rewrite $I = \int \frac{s(x)}{f(x)} f(x) dx$, where f is easily sampled from, with f(x) > 0 whenever s(x) > 0.
- Hence, $I = \mathbb{E}\left[\frac{s(X)}{f(X)}\right]$ where X has density f. Thus, we estimate $I \approx \frac{1}{M} \sum_{i=1}^{M} \frac{s(x_i)}{f(x_i)}$ where $x_i \sim f$.

Unnormalized Densities

Suppose $\pi(y) = cg(y)$ where we know g but do not know c or π . Hence,

$$c = \frac{1}{\int g(y) \mathrm{d}y}$$

which might be hard to compute.

Let

$$I = \int h(x)\pi(x)dx = \int h(x)cg(x)dx = \frac{\int h(x)g(x)dx}{\int g(x)dx}$$

where

$$\int h(x)g(x)dx = \int \frac{h(x)g(x)}{f(x)}f(x)dx = \mathbb{E}\left[\frac{h(X)g(X)}{f(X)}\right]$$

with $X \sim f$.

Hence.

$$\int h(x)g(x)dx \approx \frac{1}{M} \sum_{i=1}^{M} \frac{h(x_i)g(x_i)}{f(x_i)}$$

if $\{x_i\} \stackrel{\text{i.i.d.}}{\sim} f$.

Similarly,

$$\int g(x) dx \approx \frac{1}{M} \sum_{i=1}^{M} \frac{g(x_i)}{f(x_i)}$$

if
$$\{x_i\} \stackrel{\text{i.i.d.}}{\sim} f$$
.

Therefore,

$$I \approx \frac{\sum_{i=1}^{M} \frac{h(x_i)g(x_i)}{f(x_i)}}{\sum_{i=1}^{M} \frac{g(x_i)}{f(x_i)}}$$

Note. Since we take ratios of unbiased estimates, the resulting estimate is not unbiased, and its standard errors are less clear. But it is still consistent as $M \to \infty$.

Example. Compute $I = \mathbb{E}[Y^2]$ where Y has density $cy^3 \sin(y^4) \cos(y^5) \mathbf{1}_{0 < y < 1}$ where c > 0 is unknown.

Solution. Let $g(y) = y^3 \sin(y^4) \cos(y^5) \mathbf{1}_{0 < y < 1}$ and $h(y) = y^2$. Let $f(y) = 4y^3 \mathbf{1}_{0 < y < 1}$. Then

$$I pprox rac{\displaystyle \sum_{i=1}^{M} \sin(x_{i}^{4}) \cos(x_{i}^{5}) x_{i}^{2}}{\displaystyle \sum_{i=1}^{M} \sin(x_{i}^{4}) \cos(x_{i}^{5})}$$

where $\{x_i\} \stackrel{\text{i.i.d.}}{\sim} U^{1/4}$.

Note. It is good to use same sample $\{x_i\}$ for both numerator and denominator since it is easier to compute and leads to smaller variance.

Rejection Sampler

Suppose $\pi(x) = cg(x)$ where we only know g but hard to sample from.

Algorithm (Rejection Sampling). Suppose we want to sample $X \sim \pi$.

• We find easily-sampled density f and known K > 0 s.t.

$$Kf(x) \geqslant q(x)$$

for all x, i.e., $cKf(x) \ge \pi(x)$.

- We sample $X \sim f$ and $U \sim \text{Uniform}[0,1]$ (independent).
 - If $U \leq \frac{g(X)}{Kf(X)}$, then accept X (as a draw from π).
 - Otherwise, reject X and start over again.

Proof. Conditional on accepting, we have

$$P\left(X \leqslant y \middle| U \leqslant \frac{g(X)}{Kf(X)}\right) = \frac{P\left(X \leqslant y, U \leqslant \frac{g(X)}{Kf(X)}\right)}{P\left(U \leqslant \frac{g(X)}{Kf(X)}\right)}$$

for any $y \in \mathbb{R}$. Since $0 \leq \frac{g(x)}{Kf(x)} \leq 1$,

$$P\left(U \leqslant \frac{g(X)}{Kf(X)} \middle| X = x\right) = \frac{g(x)}{Kf(x)}$$

Hence, by the double expectation formula,

$$P\left(U \leqslant \frac{g(X)}{Kf(X)}\right) = \mathbb{E}\left[P\left(U \leqslant \frac{g(X)}{Kf(X)}\middle|X\right)\right] = \mathbb{E}\left[\frac{g(X)}{Kf(X)}\right]$$
$$= \int_{-\infty}^{\infty} \frac{g(x)}{Kf(x)}f(x)dx = \frac{1}{K}\int_{-\infty}^{\infty} g(x)dx$$

Similarly, for any $y \in \mathbb{R}$,

$$\begin{split} P\left(X \leqslant y, U \leqslant \frac{g(X)}{Kf(X)}\right) &= \mathbb{E}\left[\mathbf{1}_{X \leqslant y} \mathbf{1}_{U \leqslant \frac{g(X)}{Kf(X)}}\right] = \mathbb{E}\left[\mathbf{1}_{X \leqslant y} P\left(U \leqslant \frac{g(X)}{Kf(X)} \middle| X\right)\right] \\ &= \mathbb{E}\left[\mathbf{1}_{X \leqslant y} \frac{g(X)}{Kf(X)}\right] = \int_{-\infty}^{y} \frac{g(x)}{Kf(x)} f(x) \mathrm{d}x = \frac{1}{K} \int_{-\infty}^{y} g(x) \mathrm{d}x \end{split}$$

Therefore,

$$P\left(X \leqslant y \middle| U \leqslant \frac{g(X)}{Kf(X)}\right) = \frac{\frac{1}{K} \int_{-\infty}^{y} g(x) dx}{\frac{1}{K} \int_{-\infty}^{\infty} g(x) dx} = \int_{-\infty}^{y} \pi(x) dx$$

Note. Probability of accepting may be very small so that we get very few samples.

Auxiliary Variable Approach

Suppose $\pi(x) = cg(x)$ and (X, Y) chosen uniformly under graph of g, i.e.,

$$(X,Y) \sim \text{Uniform}\{(x,y) \in \mathbb{R}^2 : 0 \leqslant y \leqslant g(x)\}$$

then $X \sim \pi$ since for a < b

$$P(a < X < b) = \frac{\int_{a}^{b} g(x)dx}{\int_{-\infty}^{\infty} g(x)dx} = \int_{a}^{b} \pi(x)dx$$

Algorithm (Auxiliary Variable Rejection Sampling). Suppose support of g contained in [L, R] and $|g(x)| \leq K$.

- We sample $(X, Y) \sim \text{Uniform}([L, R] \times [0, K])$.
- We reject if Y > g(X); otherwise accept as sample with $(X,Y) \sim \text{Uniform}\{(x,y): 0 \leq y \leq g(x)\}$, where $X \sim \pi$.

Example. Suppose $g(y) = y^3 \sin(y^4) \cos(y^5) \mathbf{1}_{0 < y < 1}$. Then, L = 0, R = 1, K = 1. Hence, sample $X, Y \sim \text{Uniform}[0, 1]$ and keep X iff $Y \leq g(X)$.

Queueing Theory

Property. Consider a queue of customers and let Q(t) be the number of people in queue at time $t \geq 0$. Suppose service times follow Exponential(μ) (mean μ^{-1}) and inter-arrival times follow Exponential(λ) ("M/M/1 queue"). Hence, $\{Q(t)\}$ is a Markov process. Moreover, if $\mu \leq \lambda$, $Q(t) \rightarrow \infty$ as $t \rightarrow \infty$; if $\mu > \lambda$, then Q(t) converges in distribution as $t \rightarrow \infty$:

$$P(Q(t) = i) \rightarrow \left(1 - \frac{\lambda}{\mu}\right) \left(\frac{\lambda}{\mu}\right)^i, i = 0, 1, 2, \cdots$$