```
import pandas as pd
In [33]:
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
          import matplotlib.mlab as mlab
          import matplotlib
          plt.style.use('ggplot')
          from matplotlib.pyplot import figure
          %matplotlib inline
          matplotlib.rcParams['figure.figsize'] = (12,8)
          pd.options.mode.chained_assignment = None
          df = pd.read_csv(r'C:\Users\Sima\Desktop\movies.csv')
          df.head()
In [72]:
Out[72]:
                   rating genre year released score
                                                          votes director writer
                                                                                star country
                                                                                                budge
             name
          0
             6587
                        6
                              6 1980
                                          1705
                                                  8.4
                                                       927000.0
                                                                   2589
                                                                          4014
                                                                               1047
                                                                                          54 19000000.
              5573
                                 1980
                                          1492
                                                  5.8
                                                        65000.0
                                                                   2269
                                                                          1632
                                                                                327
                                                                                          55
                                                                                              4500000.
          1
          2
              5142
                              0 1980
                                          1771
                                                  8.7
                                                     1200000.0
                                                                   1111
                                                                          2567
                                                                               1745
                                                                                          55
                                                                                              18000000.
          3
               286
                              4 1980
                                          1492
                                                  7.7
                                                       221000.0
                                                                   1301
                                                                          2000
                                                                               2246
                                                                                          55
                                                                                              3500000.
              1027
                        6
                              4 1980
                                          1543
                                                  7.3
                                                       108000.0
                                                                   1054
                                                                           521
                                                                                410
                                                                                          55
                                                                                              6000000.
In [35]:
          #missing data
          for col in df.columns:
              pct_missing = np.mean(df[col].isnull())
              print('{} - {}%'.format(col, round(pct_missing*100)))
          name - 0%
          rating - 1%
          genre - 0%
          year - 0%
          released - 0%
          score - 0%
          votes - 0%
          director - 0%
          writer - 0%
          star - 0%
          country - 0%
          budget - 28%
          gross - 2%
          company - 0%
          runtime - 0%
          print(df.dtypes)
In [36]:
```

object name object rating object genre year int64 object released float64 score float64 votes director object object writer star object object country budget float64 gross float64 object company runtime float64 dtype: object

In [37]: df.boxplot(column=['gross'])

Out[37]: <AxesSubplot:>

In [38]: df.drop_duplicates()

Out[38]:		name	rating	genre	year	released	score	votes	director	writer	
	0	The Shining	R	Drama	1980	June 13, 1980 (United States)	8.4	927000.0	Stanley Kubrick	Stephen King	Nicho
	1	The Blue Lagoon	R	Adventure	1980	July 2, 1980 (United States)	5.8	65000.0	Randal Kleiser	Henry De Vere Stacpoole	Br Sh
	2	Star Wars: Episode V - The Empire Strikes Back	PG	Action	1980	June 20, 1980 (United States)	8.7	1200000.0	Irvin Kershner	Leigh Brackett	Н
	3	Airplane!	PG	Comedy	1980	July 2, 1980 (United States)	7.7	221000.0	Jim Abrahams	Jim Abrahams	Ro
	4	Caddyshack	R	Comedy	1980	July 25, 1980 (United States)	7.3	108000.0	Harold Ramis	Brian Doyle- Murray	C
	•••										
	7663	More to Life	NaN	Drama	2020	October 23, 2020 (United States)	3.1	18.0	Joseph Ebanks	Joseph Ebanks	Sha
	7664	Dream Round	NaN	Comedy	2020	February 7, 2020 (United States)	4.7	36.0	Dusty Dukatz	Lisa Huston	Mi Saq
	7665	Saving Mbango	NaN	Drama	2020	April 27, 2020 (Cameroon)	5.7	29.0	Nkanya Nkwai	Lynno Lovert	On <u>j</u>
	7666	lt's Just Us	NaN	Drama	2020	October 1, 2020 (United States)	NaN	NaN	James Randall	James Randall	Chri
	7667	Tee em el	NaN	Horror	2020	August 19, 2020 (United States)	5.7	7.0	Pereko Mosia	Pereko Mosia	Siyab Ma
	7668 rows × 15 columns										
4											•
	1.5										
In [39]:	at.sc	ort_values(by=['gr	oss'], in	ртасе	False , asc	ending	=False)			

Out[39]

:		name	rating	genre	year	released	score	votes	director	writer	!
	5445	Avatar	PG-13	Action	2009	December 18, 2009 (United States)	7.8	1100000.0	James Cameron	James Cameron	§ Worthing
	7445	Avengers: Endgame	PG-13	Action	2019	April 26, 2019 (United States)	8.4	903000.0	Anthony Russo	Christopher Markus	Rol Downe
	3045	Titanic	PG-13	Drama	1997	December 19, 1997 (United States)	7.8	1100000.0	James Cameron	James Cameron	Leona DiCa _l
	6663	Star Wars: Episode VII - The Force Awakens	PG-13	Action	2015	December 18, 2015 (United States)	7.8	876000.0	J.J. Abrams	Lawrence Kasdan	Daisy Ric
	7244	Avengers: Infinity War	PG-13	Action	2018	April 27, 2018 (United States)	8.4	897000.0	Anthony Russo	Christopher Markus	Rol Downe
	•••										
	7663	More to Life	NaN	Drama	2020	October 23, 2020 (United States)	3.1	18.0	Joseph Ebanks	Joseph Ebanks	Shan Bı
	7664	Dream Round	NaN	Comedy	2020	February 7, 2020 (United States)	4.7	36.0	Dusty Dukatz	Lisa Huston	Micl Saqu
	7665	Saving Mbango	NaN	Drama	2020	April 27, 2020 (Cameroon)	5.7	29.0	Nkanya Nkwai	Lynno Lovert	Onya La
	7666	It's Just Us	NaN	Drama	2020	October 1, 2020 (United States)	NaN	NaN	James Randall	James Randall	Chris
	7667	Tee em el	NaN	Horror	2020	August 19, 2020 (United States)	5.7	7.0	Pereko Mosia	Pereko Mosia	Siyabo Mab
	7668 r	ows × 15 c	columns								

```
In [70]: sns.regplot(x="gross", y="budget", data=df, scatter_kws={"color": "green"}, line_kws={
   Out[70]: <AxesSubplot:xlabel='gross', ylabel='budget'>
```


In [71]: sns.regplot(x="score", y="gross", data=df,scatter_kws={"color": "blue"})

Out[71]: <AxesSubplot:xlabel='score', ylabel='gross'>

In [44]: sns.regplot(x="runtime", y="votes", data=df)

Out[44]: <AxesSubplot:xlabel='runtime', ylabel='votes'>

In [45]: # Correlation Matrix between all numeric columns

df.corr(method ='pearson')

Out[45]:		year	score	votes	budget	gross	runtime
	year	1.000000	0.097995	0.222945	0.329321	0.257486	0.120811
	score	0.097995	1.000000	0.409182	0.076254	0.186258	0.399451
	votes	0.222945	0.409182	1.000000	0.442429	0.630757	0.309212
	budget	0.329321	0.076254	0.442429	1.000000	0.740395	0.320447
	gross	0.257486	0.186258	0.630757	0.740395	1.000000	0.245216
	runtime	0.120811	0.399451	0.309212	0.320447	0.245216	1.000000

```
In [46]: df.corr(method ='kendall')
```

```
Out[46]:
                       year
                                score
                                          votes
                                                  budget
                                                             gross runtime
              year 1.000000
                             0.067652  0.331465
                                                 0.224120 0.200618
                                                                    0.097184
             score 0.067652
                             1.000000
                                       0.300115
                                                -0.000566 0.086046 0.283611
             votes 0.331465
                             0.300115 1.000000
                                                 0.353702 0.548899
                                                                   0.198240
           budget 0.224120
                             -0.000566
                                       0.353702
                                                 1.000000 0.512637
                                                                    0.235483
             gross 0.200618
                             0.086046
                                       0.548899
                                                 0.512637 1.000000
                                                                    0.168933
          runtime 0.097184
                             0.283611
                                       0.198240
                                                 0.235483  0.168933
                                                                   1.000000
          df.corr(method ='spearman')
In [47]:
Out[47]:
                                          votes
                                                  budget
                                                             gross
                                                                    runtime
                       year
                                score
              year 1.000000
                             0.099045 0.469829
                                                 0.317336 0.293084
                                                                    0.142977
             score 0.099045
                             1.000000
                                       0.428138
                                                -0.001403 0.126116 0.399857
                             0.428138
             votes 0.469829
                                      1.000000
                                                 0.502466 0.742050 0.290159
           budget 0.317336
                             -0.001403
                                       0.502466
                                                 1.000000 0.693670
                                                                    0.336370
             gross 0.293084
                             0.126116 0.742050
                                                 0.693670
                                                          1.000000
                                                                    0.246243
          runtime 0.142977
                             0.399857 0.290159
                                                 0.336370
                                                          0.246243
                                                                   1.000000
In [48]:
          correlation matrix = df.corr()
          sns.heatmap(correlation_matrix, annot = True)
          plt.title("Correlation matrix for Numeric Features")
          plt.xlabel("Movie features")
```

plt.ylabel("Movie features")

plt.show()

Out[49]:

In [49]: df.apply(lambda x: x.factorize()[0]).corr(method='pearson')

		nama	rating	gonro	V02F	released	score	votes	director	
•		name	rating	genre	year	reieaseu	score	votes	airector	w
	name	1.000000	0.143938	0.036367	0.965761	0.959015	-0.046733	0.287776	0.745905	0.80
	rating	0.143938	1.000000	-0.086723	0.156713	0.146606	0.012595	0.099972	0.085520	0.10
	genre	0.036367	-0.086723	1.000000	0.037184	0.035940	-0.002437	0.023285	0.047288	0.03
	year	0.965761	0.156713	0.037184	1.000000	0.993190	-0.044981	0.312401	0.770497	0.82
	released	0.959015	0.146606	0.035940	0.993190	1.000000	-0.045761	0.299905	0.770876	0.81
	score	-0.046733	0.012595	-0.002437	-0.044981	-0.045761	1.000000	-0.009749	-0.022687	-0.03
	votes	0.287776	0.099972	0.023285	0.312401	0.299905	-0.009749	1.000000	0.192220	0.22
	director	0.745905	0.085520	0.047288	0.770497	0.770876	-0.022687	0.192220	1.000000	0.74
	writer	0.805211	0.103623	0.033688	0.824770	0.819617	-0.034685	0.224122	0.748340	1.00
	star	0.731565	0.093116	0.038649	0.756400	0.754468	-0.009896	0.179601	0.682385	0.67
	country	0.142828	0.000494	-0.015795	0.140216	0.148468	0.023097	-0.045914	0.155471	0.15
	budget	0.277488	0.193353	0.073008	0.300621	0.285691	-0.012642	0.398519	0.106617	0.18
	gross	0.947324	0.158582	0.038616	0.980873	0.976423	-0.047041	0.286180	0.750911	0.80
	company	0.591667	-0.028035	0.009566	0.601571	0.607954	-0.028432	0.008900	0.552258	0.54
	runtime	0.048955	0.032741	0.001462	0.050647	0.048235	0.026436	0.106024	-0.011070	0.03

```
In [50]: correlation_matrix = df.apply(lambda x: x.factorize()[0]).corr(method='pearson')
    sns.heatmap(correlation_matrix, annot = True)
    plt.title("Correlation matrix for Movies")
    plt.xlabel("Movie features")
    plt.ylabel("Movie features")
    plt.show()
```



```
1.000000
         name
                   name
                   rating
                               0.143938
                               0.036367
                   genre
                               0.965761
                   year
                               0.959015
                   released
                                 . . .
         runtime
                  country
                               0.124154
                   budget
                               0.112097
                               0.042978
                   gross
                               0.005137
                   company
                               1.000000
                   runtime
         Length: 225, dtype: float64
         sorted pairs = corr pairs.sort values(kind="quicksort")
In [52]:
          print(sorted_pairs)
                             -0.092249
         budget
                   company
         company
                  budget
                             -0.092249
                             -0.086723
         genre
                  rating
                             -0.086723
         rating
                   genre
         budget
                             -0.082082
                   country
         year
                  year
                              1.000000
                              1.000000
         genre
                  genre
                              1.000000
         rating
                  rating
         company company
                              1.000000
         runtime runtime
                              1.000000
         Length: 225, dtype: float64
         strong_pairs = sorted_pairs[abs(sorted_pairs) > 0.5]
In [53]:
          print(strong_pairs)
                               0.527116
         star
                    company
                               0.527116
         company
                    star
                               0.546151
                   writer
         writer
                               0.546151
                    company
         director
                   company
                               0.552258
                               1.000000
         year
                   year
                    genre
                               1.000000
         genre
                               1.000000
         rating
                   rating
                    company
         company
                               1.000000
                               1.000000
         runtime
                   runtime
         Length: 71, dtype: float64
In [54]:
         CompanyGrossSum = df.groupby('company')[["gross"]].sum()
          CompanyGrossSumSorted = CompanyGrossSum.sort_values('gross', ascending = False)[:15]
          CompanyGrossSumSorted = CompanyGrossSumSorted['gross'].astype('int64')
          CompanyGrossSumSorted
```

```
company
Out[54]:
                                       56491421806
         Warner Bros.
         Universal Pictures
                                       52514188890
         Columbia Pictures
                                       43008941346
         Paramount Pictures
                                       40493607415
                                       40257053857
         Twentieth Century Fox
         Walt Disney Pictures
                                       36327887792
         New Line Cinema
                                       19883797684
         Marvel Studios
                                       15065592411
         DreamWorks Animation
                                       11873612858
         Touchstone Pictures
                                       11795832638
         Dreamworks Pictures
                                       11635441081
         Metro-Goldwyn-Mayer (MGM)
                                        9230230105
         Summit Entertainment
                                        8373718838
         Pixar Animation Studios
                                        7886344526
         Fox 2000 Pictures
                                        7443502667
         Name: gross, dtype: int64
         df.groupby(['company', 'year'])[["gross"]].sum()
In [55]:
```

Out[55]: gross

company	year	
"DIA" Productions GmbH & Co. KG	2003	44350926.0
"Weathering With You" Film Partners	2019	193457467.0
.406 Production	1996	10580.0
1+2 Seisaku linkai	2000	1196218.0
10 West Studios	2010	814906.0
	•••	
i am OTHER	2015	17986781.0
i5 Films	2001	10031529.0
iDeal Partners Film Fund	2013	506303.0
micro_scope	2010	7099598.0
thefyzz	2017	62198461.0

4536 rows × 1 columns

```
company
                                 year
Out[56]:
         Walt Disney Pictures
                                         5773131804
                                 2019
         Marvel Studios
                                 2018
                                         4018631866
         Universal Pictures
                                 2015
                                         3834354888
         Twentieth Century Fox
                                 2009
                                         3793491246
         Walt Disney Pictures
                                 2017
                                         3789382071
         Paramount Pictures
                                 2011
                                         3565705182
         Warner Bros.
                                 2010
                                         3300479986
                                 2011
                                         3223799224
         Walt Disney Pictures
                                 2010
                                         3104474158
         Paramount Pictures
                                 2014
                                         3071298586
         Columbia Pictures
                                 2006
                                         2934631933
                                 2019
                                         2932757449
         Marvel Studios
                                 2019
                                         2797501328
         Warner Bros.
                                 2018
                                         2774168962
         Columbia Pictures
                                 2011
                                         2738363306
         Name: gross, dtype: int64
         CompanyGrossSum = df.groupby(['company'])[["gross"]].sum()
In [57]:
          CompanyGrossSumSorted = CompanyGrossSum.sort_values(['gross','company'], ascending = F
          CompanyGrossSumSorted = CompanyGrossSumSorted['gross'].astype('int64')
          CompanyGrossSumSorted
         company
Out[57]:
         Warner Bros.
                                       56491421806
         Universal Pictures
                                       52514188890
         Columbia Pictures
                                       43008941346
         Paramount Pictures
                                       40493607415
         Twentieth Century Fox
                                       40257053857
         Walt Disney Pictures
                                       36327887792
         New Line Cinema
                                       19883797684
         Marvel Studios
                                       15065592411
         DreamWorks Animation
                                       11873612858
         Touchstone Pictures
                                       11795832638
                                       11635441081
         Dreamworks Pictures
         Metro-Goldwyn-Mayer (MGM)
                                        9230230105
         Summit Entertainment
                                        8373718838
         Pixar Animation Studios
                                        7886344526
         Fox 2000 Pictures
                                        7443502667
         Name: gross, dtype: int64
         plt.scatter(x=df['budget'], y=df['gross'], alpha=0.8)
          plt.title('Budget vs Gross Earnings')
          plt.xlabel('Gross Earnings')
          plt.ylabel('Budget for Film')
          plt.show()
In [59]:
         df numerized = df
          for col name in df numerized.columns:
              if(df_numerized[col_name].dtype == 'object'):
                  df numerized[col name]= df numerized[col name].astype('category')
                  df numerized[col name] = df numerized[col name].cat.codes
          df_numerized
```

Out[59]:		name	rating	genre	year	released	score	votes	director	writer	star	country	bu
	0	6587	6	6	1980	1705	8.4	927000.0	2589	4014	1047	54	19000
	1	5573	6	1	1980	1492	5.8	65000.0	2269	1632	327	55	4500
	2	5142	4	0	1980	1771	8.7	1200000.0	1111	2567	1745	55	18000
	3	286	4	4	1980	1492	7.7	221000.0	1301	2000	2246	55	3500
	4	1027	6	4	1980	1543	7.3	108000.0	1054	521	410	55	6000
	•••		•••						•••	•••		•••	
	7663	3705	-1	6	2020	2964	3.1	18.0	1500	2289	2421	55	7
	7664	1678	-1	4	2020	1107	4.7	36.0	774	2614	1886	55	
	7665	4717	-1	6	2020	193	5.7	29.0	2061	2683	2040	55	58
	7666	2843	-1	6	2020	2817	NaN	NaN	1184	1824	450	55	15
	7667	5394	-1	10	2020	391	5.7	7.0	2165	3344	2463	44	

7668 rows × 15 columns

										•				
In [60]:	df_numerized.corr(method='pearson')													
Out[60]:		name	rating	genre	year	released	score	votes	director	w				
	name	1.000000	-0.008069	0.016355	0.011453	-0.011311	0.017097	0.013088	0.009079	0.00				
	rating	-0.008069	1.000000	0.072423	0.008779	0.016613	-0.001314	0.033225	0.019483	-0.00				
	genre	0.016355	0.072423	1.000000	-0.081261	0.029822	0.027965	-0.145307	-0.015258	0.00				
	year	0.011453	0.008779	-0.081261	1.000000	-0.000695	0.097995	0.222945	-0.020795	-0.00				
	released	-0.011311	0.016613	0.029822	-0.000695	1.000000	0.042788	0.016097	-0.001478	-0.00				
	score	0.017097	-0.001314	0.027965	0.097995	0.042788	1.000000	0.409182	0.009559	0.01				
	votes	0.013088	0.033225	-0.145307	0.222945	0.016097	0.409182	1.000000	0.000260	0.00				
	director	0.009079	0.019483	-0.015258	-0.020795	-0.001478	0.009559	0.000260	1.000000	0.29				
	writer	0.009081	-0.005921	0.006567	-0.008656	-0.002404	0.019416	0.000892	0.299067	1.00				
	star	0.006472	0.013405	-0.005477	-0.027242	0.015777	-0.001609	-0.019282	0.039234	0.02				
	country	-0.010737	0.081244	-0.037615	-0.070938	-0.020427	-0.133348	0.073625	0.017490	0.01				
	budget	0.023970	-0.176002	-0.356564	0.329321	0.014683	0.076254	0.442429	-0.012272	-0.03				
	gross	0.005533	-0.107339	-0.235650	0.257486	0.001659	0.186258	0.630757	-0.014441	-0.02				
	company	0.009211	-0.032943	-0.071067	-0.010431	-0.010474	0.001030	0.133204	0.004404	0.00				
	runtime	0.010392	0.062145	-0.052711	0.120811	0.000868	0.399451	0.309212	0.017624	-0.00				
										•				
[61]:	correlat	ion_matri	x = df_nu	merized.co	orr(method	d='pearsor	n')							

```
sns.heatmap(correlation_matrix, annot = True)

plt.title("Correlation matrix for Movies")

plt.xlabel("Movie features")

plt.ylabel("Movie features")

plt.show()
```



```
In [62]: for col_name in df.columns:
    if(df[col_name].dtype == 'object'):
        df[col_name] = df[col_name].astype('category')
        df[col_name] = df[col_name].cat.codes
In [66]: sns.swarmplot(x="rating", y="gross", data=df)
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 53.2% of the points cannot be placed; you may want to decrease the size of the marker s or use stripplot. warnings.warn(msg, UserWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 48.4% of the points cannot be placed; you may want to decrease the size of the marker s or use stripplot. warnings.warn(msg, UserWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 60.9% of the points cannot be placed; you may want to decrease the size of the marker s or use stripplot. warnings.warn(msg, UserWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 80.6% of the points cannot be placed; you may want to decrease the size of the marker s or use stripplot. warnings.warn(msg, UserWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 84.4% of the points cannot be placed; you may want to decrease the size of the marker s or use stripplot. warnings.warn(msg, UserWarning) C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning:

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1296: UserWarning: 88.2% of the points cannot be placed; you may want to decrease the size of the marker s or use stripplot.

warnings.warn(msg, UserWarning)

```
KeyboardInterrupt
                                          Traceback (most recent call last)
Input In [66], in <cell line: 1>()
----> 1 sns.swarmplot(x="rating", y="gross", data=df)
File C:\ProgramData\Anaconda3\lib\site-packages\seaborn\_decorators.py:46, in _deprec
ate positional args.<locals>.inner f(*args, **kwargs)
            warnings.warn(
     37
                "Pass the following variable{} as {}keyword arg{}: {}. "
     38
                "From version 0.12, the only valid positional argument "
   (\ldots)
     43
                FutureWarning
     44
     45 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 46 return f(**kwargs)
File C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:3019, in swarm
plot(x, y, hue, data, order, hue order, dodge, orient, color, palette, size, edgecolo
r, linewidth, ax, **kwargs)
   3014
            edgecolor = plotter.gray
   3015 kwargs.update(dict(s=size ** 2,
   3016
                           edgecolor=edgecolor,
   3017
                           linewidth=linewidth))
-> 3019 plotter.plot(ax, kwargs)
   3020 return ax
File C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1420, in Swar
mPlotter.plot(self, ax, kws)
   1418 def plot(self, ax, kws):
            """Make the full plot."""
  1419
-> 1420
            self.draw swarmplot(ax, kws)
            self.add legend data(ax)
   1421
   1422
            self.annotate_axes(ax)
File C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1416, in Swar
mPlotter.draw swarmplot(self, ax, kws)
   1414 for center, swarm in zip(centers, swarms):
   1415
            if swarm.get_offsets().size:
-> 1416
                self.swarm points(ax, swarm, center, width, s, **kws)
File C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1318, in _Swar
mPlotter.swarm points(self, ax, points, center, width, s, **kws)
            orig xy = orig xy[:, [1, 0]]
  1315
  1317 # Do the beeswarm in point coordinates
-> 1318 new xy = self.beeswarm(orig xy, d)
   1320 # Transform the point coordinates back to data coordinates
   1321 if self.orient == "h":
File C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1270, in Swar
mPlotter.beeswarm(self, orig_xy, d)
   1267 candidates = candidates[np.argsort(offsets)]
   1269 # Find the first candidate that does not overlap any neighbours
-> 1270 new xy i = self.first non overlapping candidate(candidates,
  1271
                                                        neighbors, d)
   1273 # Place it into the swarm
   1274 swarm.append(new_xy_i)
File C:\ProgramData\Anaconda3\lib\site-packages\seaborn\categorical.py:1229, in Swar
mPlotter.first non overlapping candidate(self, candidates, neighbors, d)
  1226 dx = neighbors x - x i
```

```
1227 dy = neighbors_y - y_i
-> 1229 sq_distances = np.power(dx, 2.0) + np.power(dy, 2.0)
1231 # good candidate does not overlap any of neighbors
1232 # which means that squared distance between candidate
1233 # and any of the neighbours has to be at least
1234 # square of the diameter
1235 good_candidate = np.all(sq_distances >= d_square)
```

KeyboardInterrupt:


```
In [67]: sorted_pairs = corr_pairs.sort_values()
    sorted_pairs
```

budget company -0.092249 Out[67]: company budget -0.092249 rating genre -0.086723 rating genre -0.086723 budget country -0.082082 1.000000 year year genre genre 1.000000 rating rating 1.000000 company company 1.000000 runtime runtime 1.000000 Length: 225, dtype: float64

```
In [69]: high_corr = sorted_pairs[(sorted_pairs) > 0.5]
high_corr
```

```
star
                   company
                              0.527116
Out[69]:
                              0.527116
         company
                   star
                   writer
                              0.546151
         writer
                   company
                              0.546151
         director
                   company
                              0.552258
                                 . . .
         year
                   year
                              1.000000
         genre
                   genre
                              1.000000
         rating
                   rating
                              1.000000
                              1.000000
         company
                   company
         runtime
                   runtime
                              1.000000
         Length: 71, dtype: float64
         # company has low correlation
 In [ ]:
         #votes and budget have the highest correlation
```