PREGUNTAS (4 puntos)

1- A partir de las dos figuras siguientes, indicar qué operaciones se realizan si las instrucciones son 999Dh y C181h. Para cada caso, actualiza el PC si PC= 27₁₀ (0.75 p). enegiston edutiat be han die.

Instrucción	Código de Operación	Mnemónico	Dirección	Descripción	Bits de estado
MoverA	0000000	MOVA	DA, AA	R[DA]←R[AA]*	N,Z
Incrementar	0000001	INC	DA, AA	R[DA]←R[AA]+1*	N,Z
Sumar	0000010	ADD	DA, AA, BA	R[DA]←R[AA]+R[BA]*	N,Z
Restar	0000101	SUB	DA, AA, BA	R[DA]←R[AA]-R[BA]*	N,Z
Decrementar	0000110	DEC	DA, AA	R[DA]←R[AA]-1*	N,Z
AND	0001000	AND	DA, AA, BA	R[DA]←R[AA] and R[BA]*	N,Z
OR	0001001	OR	DA, AA, BA	R[DA]←R[AA] or R[BA]*	N,Z
XOR	0001010	XOR	DA, AA, BA	R[DA]←R[AA] xor R[BA]*	N,Z
NOT	0001011	NOT	DA, AA	R[DA]←notR[AA]*	N,Z
MoverB	0001100	MOVB	DA, BA	R[DA]←R[BA]*	
Desp. Dcha	0001101	SHR	DA, BA	R[DA]← sr R[BA]*	
Desp. Izqda	0001110	SHL	DA, BA	R[DA]←sl R[BA]*	
Cargarinm.	1001100	LDI	DA, OP	R[DA]←OP*	
Sumarinm.	1000010	ADI	DA, AA, OP	R[DA]←R[AA]+OP*	N,Z
Cargar	0010000	LD	DA, AA	R[DA]←M[AA]*	
Almacenar	0100000	ST	AA, BA	M[AA]←R[BA]*	
Saltarsi cero	1100000	BRZ	AA, AD	if R[AA]=0; PC←PC+AD else PC←PC+1	N,Z
Saltarsi negativo	1100001	BRN	AA, AD	if R[AA]<0; PC←PC+AD else PC←PC+1	N,Z
Salto incond.	1110000	JMP	AA	PC←R[AA]	

1001109 1001,1101 Kenze inmediate.

(cargan Sa en R6)

1100 000 01000 0001

PC= 7810.

Registro de destino (DR) (a) Registro (b) Inmediato Dirección (AD) (izquierda) Opcode

(e) Salto y bifurcación

Salta si negative Rg -> 110001 ? How hoheld alordy? 010 101 - 114+16: 21.

PC: 21+27: 488.

2- A partir de la siguiente figura, con PC=200₁₀, Actualiza el PC si:

a. Z = 0, N = 1, PL = 0; BC = 1; JB = 1; Offset $= 17_{10}$; Dir. Salto $= 25_{10}$. (0.25 p).

b. Z = 1, N = 1, PL = 0; BC = 1; JB = 0; Offset $= 17_{10}$; Dir. Salto $= 25_{10}$. (0.25 p).

Pc: 25.

4- A partir de la figura, explicar el funcionamiento del acceso directo a memoria (0.75 p).

5- Se quiere diseñar una memoria de 1GB a partir de la memoria de la figura. Realizar el diseño sin olvidar ninguna conexión ni detalle. ¿Cuántas direcciones de memoria podrán direccionarse? (0.5 p).

- 6 A partir de la siguiente figura justificar las respuestas.
- a) Características de los buses para ambos casos: multiplexados/dedicados, síncronos/semisíncronos/asíncronos, serie/paralelo (0.25).
- b) Para la figura 1: analizar el cronograma. ¿Cuál es la operación que se ejecuta?/¿Qué es lo que pasa en cada uno de los 6 ciclos de reloj? (0.75)

@ Buser blicate. 0.06

Figura 1

Figura 2

@ Ponclelor. - 0.05 Figure 1. La CPU va a leer un déta de 1 Se colora la dirección a le que se quive acceder en el bis de direccións. O CPU hace pedicion de nemoria activendo MREGO y de lectura con READ Ja menoria activa WAIT, no está lista. Cido de espera mintas que le memoria. accède a le dirección del bis de direccions. 1) de Memais colece el dete en el bos de De da Memoria desardire Whit pop ye ha de jado el dato en el fois. @ la CPU lee el date y desactiva MRINY RIAD .