Korbinian Münster

Blatt 3

Repetitorium Theoretische Elektrodynamik, WS 07/08

3.1 (Eichtransformationen)

Gegeben sei das Vektorpotential $\mathbf{A} = (xy, yz, zx)^T$. Erfüllt es die Coulomb-Eichung $\nabla \cdot \mathbf{A} = 0$? Führen sie eine Eichtransformation, $\mathbf{A}' = \mathbf{A} - \nabla f$, durch, so dass \mathbf{A}' die Coulomb-Eichung erfüllt.

3.2 (Impuls zeitunabhängiger Felder)

Betrachten Sie ein Koaxialkabel aus zwei konzentrischen, unendlich langen Hohlzylindern mit Radien a und b, die von Strömen gleicher Stärke I in entgegengesetzter Richtung durchflossen werden. In einem idealisierten Bild seien diese Ströme durch die Bewegung von Elektronen ('-') mit konstanter Geschwindigkeit v relativ zum Hintergrund der ruhenden, positiv geladenen Atomrümpfe ('+') verursacht. Beide Leiter seien im stromlosen Zustand ('0') elektrisch neutral, d.h. die gesamte Ladung pro Längeneinheit $\lambda_0^{(a,b)} = \lambda_{-,0}^{(a,b)} + \lambda_+^{(a,b)}$ verschwindet auf jedem der Zylinder.

- a) Zeigen Sie, dass aufgrund der Lorentz-Kontraktion die beiden Leiter im stromführenden Zustand eine nichtverschwindende Gesamtladungsdichte $\lambda^{(a,b)} = \lambda_-^{(a,b)} + \lambda_+^{(a,b)} \neq 0$ besitzen und berechnen Sie das resultierende elektrische Feld **E** im Raum zwischen den beiden Hohlzylindern.
- b) Bestimmen das magnetische Feld **B** im Zwischenraum und ausserhalb der beiden Zylinder und die mit dem Gesamtfeld verbundene Impulsdichte $\mathbf{g} = \epsilon_0 \mathbf{E} \wedge \mathbf{B}$. Zeigen Sie, dass sich der Gesamtimpuls \mathbf{P}_{Feld}/L des elektromagnetischen Feldes pro Länge L sehr einfach durch die Stromstärke I und die Potentialdifferenz V zwischen den beiden Zylindern ausdrücken lässt.
- c) Verbinden Sie nun die beiden Hohlzylinder im Unendlichen zu einem geschlossenen Stromkreis. Als Folge der Differenz eV in der potentiellen Energie der Elektronen sind die Beträge ihrer Geschwindigkeiten $v^{(a,b)}$ im inneren und äusseren Zylinder verschieden. Berechnen Sie die daraus resultierende Differenz des relativistischen

Parameters γ und zeigen Sie, dass die Bedingung identischer Ströme $I = \lambda v$ in beiden Zylindern dazu führt, dass der Impuls, der im elektromagnetischen Feld steckt, exakt durch den mechanischen (relativistischen) Impuls der Elektronen (jeweils pro Längeneinheit) kompensiert wird.

3.3 (Feld einer Punktladung in bewegten Bezugsystemen)

Eine Ladung Q ruht im Koordinatenursprung eines Inertialsystems I. Mit Geschwindigkeit $\mathbf{v} = v\mathbf{e}_x$ bewegt sich relativ dazu ein Beobachter in einem Inertialsystem II. Im Moment $t_I = t_{II} = 0$ treffen sich Beobachter II und die punktladung im Koordinatenursprung des Inertialsystems II.

- a) Geben Sie einen Vierervektor A_I^μ an , der das Feld der Ladung im Bezugsystem I beschreibt. (ohne Rechnung)
- b) Berechnen Sie daraus den Vierervektor A_{II}^{μ} , der das Feld der Ladung im Bezugsystem II beschreibt, ausgedrückt durch die Koordinaten des Inertialsystems II.
- c) Berechnen Sie das elektrische und magnetische Feld, das Beobachter II sieht, ausgedrückt durch die Koordinaten des Inertialsystems II.
- d) In welchem Inertialsystem II kann der Beobachter der Punktladung ein magnetisches Feld wahrnehmen, das betragsmäßig größer als das von ihm gesehene elektrische Feld ist?

Begründung!

3.4 (Multiplikation von Lorentz-Transformationen)

Die Analogie von Lorentz-Transformationen (LT) und Drehungen im euklidischen Raum wird deutlich an der Darstellung

$$\Lambda = \begin{pmatrix} \cosh \chi & -\sinh \chi \\ -\sinh \chi & \cosh \chi \end{pmatrix}$$
(1)

der Matrix, die eine LT in ein mit $\beta = \tanh \chi$ entlang der x^1 -Achse bewegtes Bezugssystem beschreibt.

- a) Bestimmen Sie eine 2x2-Matrix σ_x so, dass $\Lambda = e^{-\chi \sigma_x}$ gilt.
- b) Verifizieren Sie, dass zwei LT's in derselben Richtung mit Parametern χ_1 und χ_2 unabhängig von ihrer Reihenfolge zu einer einzigen LT mit Parameter $\chi_1 + \chi_2$ äquivalent sind und bestimmen Sie daraus, wie sich die entsprechenden Geschwindigkeiten v_1 und v_2 relativistisch addieren.
- c) Bestimmen Sie die 4x4-Matrizen K1 und K2 mit denen LT's entlang der x_1 bzw. x_2 Achse allgemein in der Form $\Lambda_{1,2} = e^{-\chi_{1,2}K_{1,2}}$ dargestellt werden können. Zeigen Sie, durch explizite Berechnung des sogenannten Kommutators $[K_1, K_2] = K_1K_2 K_2K_1$, dass aufeinanderfolgende LT's in x_1 und x_2 -Richtung ähnlich wie zwei Rotationen um verschiedene Drehachsen nicht miteinander vertauschen.

Hinweis: Die Relation $e^A e^B = e^B e^A$ für zwei Matrizen A und B gilt nur, wenn sie miteinander kommutieren, d.h. [A, B] = 0 ist.