ALGEBRAIC GEOMETRY - LOTHAR GÖTTSCHE LECTURE 17

WANG YUNLEI

Theorem 1 (Existence of a Primitive Element). Let k be a field of characteristic 0, L/k is a finite field extension. Then $\exists b \in L$ such that L = k(b).

Proof of Theorem 2. K(X) is function field of X, let a_1, \ldots, a_r be a transcendence basis of K(X)/k, then $K(X)/k(a_1, \ldots, a_r)$ is a finite algebraic extension. By theorem 1, there exists a primitive element $b \in K(X)$ such that $K(X) = k(a_1, \ldots, a_r)(b)$ and b is algebraic over $k(a_1, \ldots, a_r)$. Since b is algebraic, there exists a polynomial $F \in k(a_1, \ldots, a_r)[x]$ such that F(b) = 0. Write

$$F = \sum_{l} \frac{G_l(a_1, \dots, a_r)}{H_l(a_1, \dots, a_r)} x^l$$

where $G_l(x_1, ..., x_r), H_l(x_1, ..., x_r) \in k[x_1, ..., x_r]$.

Now we view it as $F(x_1,\ldots,x_r,x)\in k(x_1,\ldots,x_r,x)$. Multiply F by producting H_l 's and then divide it by the greatest common devisor of the new coefficients. We get $f=\tilde{h}F\in k[x_1,\ldots,x_r,x]$, it is a primitive polynomial. Let $Y=Z(f)\subset \mathbb{A}^{r+1}$, it is a irreducible hypersurface. Then $A(Y)=k[x_1,\ldots,x_r,x]/\langle f\rangle$, $K(Y)=Q(k[x_1,\ldots,x_r,x]/\langle f\rangle)\simeq Q(k[a_1,\ldots,a_r,x]/\langle f\rangle)\simeq k(a_1,\ldots,a_r)(b)\simeq K(X)$. Then X is birational to Y.

This proof also implies $\dim X = \operatorname{trdeg} K(X)$.

1. TANGENT SPACE, SINGULAR AND NONSINGULAR POINTS

First we talk about cases of hypersurfaces in \mathbb{A}^n .

Definition 1. Let $X = Z(f) \subset \mathbb{A}^n$ be a hypersurface, assume $I(X) = \langle f \rangle$. A point $p \in X$ is called a singular point if and only if $\frac{\partial f}{\partial x_i}(p) = 0$ for $i = 1, \ldots, n$. Otherwise, p is called a nonsingular point. Let

$$X_{\text{reg}} := \{ p \in X | p \text{ is nonsingular.} \}.$$

X is called smooth or nonsingular if and only if $X = X_{reg}$.

Example 1. (1) $X = Z(y - x^2)$ is nonsingular.

- (2) $X = Z(y^2 x^2(x+1))$ has a singular point (0,0).
- (3) $X = Z(y^2 x^3)$ has a nonsingular point (0,0).

Proposition 1. Let $X \subset \mathbb{A}^n$ be an irreducible hypersurface and chark = 0, then X_{reg} is open and dense in X.

 $Date \hbox{: June 19, 2017}.$

Proof. Let $F \in k[x_1, ..., x_n]$ be irreducible such that X = Z(F), then $I(X) = \langle F \rangle$. Define

$$X_{\text{sing}} := \{ \text{singular points of } X \}.$$

By definition $X_{\text{sing}} = Z(F, \frac{\partial F}{\partial x_1}, \dots, \frac{\partial F}{\partial x_n}) \subset X$ is closed. Since Z(F) is irreducible, the only thing we have to show is $X \neq X_{\text{sing}}$. Assume $X = X_{\text{sing}} \Rightarrow Z(\frac{\partial F}{\partial x_i}) \supset X$ $\forall i = 1, \dots, n \Rightarrow \frac{\partial F}{\partial x_i} = 0 \ \forall i = 1, \dots, n$. Since char k = 0, we get F is constant, it is impossible.

Second we talk about cases of affine algebraic sets.

Definition 2. Let $f \in k[x_1, \ldots, x_n], p \in \mathbb{A}^n$. The differential of f at p is defined as

$$d_p f = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(p) x_i.$$

Let $X \subset \mathbb{A}^n$ be an affine algebraic set, the tangent space to X at $p \in X$ is defined as

$$T_p(X) = Z(d_p f | f \in I(X)).$$

 $p \in X$ is called nonsingular if

$$\dim T_p(X) = \dim_p X$$

where $\dim_p X$ is the maximum of dimensions of irreducible components of X passing through p.

Remark. If $I(X) = \langle f_1, \ldots, f_r \rangle$, then $T_p(X) = Z(\mathrm{d}_p f_1, \ldots, d_p f_r)$. By definition, $T_p(X) \subset Z(\mathrm{d}_p f_1, \ldots, \mathrm{d}_p f_r)$. If $h \in I(X)$, we can write $h = \sum_{i=1}^r h_i f_i$ with $h_i \in k[x_1, \ldots, x_n]$. Using Leibniz rule we get

$$d_p h = \sum_{i=1}^r (d_p h_i \cdot f_i(p) + h_i(p) \cdot d_p f_i).$$

Since $f_i(p) = 0$, we get $d_p h \in \langle d_p f_1, \dots, d_p f_r \rangle$. Hence $T_p(X) = Z(d_p f_1, \dots, d_n f_r)$.

Example 2. If $X = Z(F) \subset \mathbb{A}^n$ and $I(X) = \langle F \rangle$, then $T_p(X) = Z(\mathrm{d}_p F)$ and $\mathrm{d}_p F = \sum_{i=1}^n \frac{\partial F}{\partial x_i} x_i$. Let $\frac{\partial F}{\partial x_i}(p) = 0 \ \forall i = 1, \ldots, n$ for some point $p \in X, \ \forall i = 1, \ldots, n$, then $T_p(X) = \mathbb{A}^n$. Since $\dim T_p(X) \neq \dim_p X$, p is a singular point. If $\frac{\partial F}{\partial x_i}(p) \neq 0$ for some i, then $\dim T_p(X) = n - 1$ and p is nonsingular.

Third we talk about cases of general affine varieties.

Definition 3 (Jacobian). Jacobian of $f_1, \ldots, f_r \in k[x_1, \ldots, x_n]$ is a matrix defined as

$$J(f_1, \dots, f_r) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_r}{\partial x_1} & \frac{\partial f_r}{\partial x_2} & \dots & \frac{\partial f_r}{\partial x_n} \end{pmatrix}.$$

Definition 4. Let $X \subset \mathbb{A}^n$, $Y \subset \mathbb{A}^m$ be closed subvarieties. Let $p \in X$, $q \in Y$ and $\varphi = (f_1, \ldots, f_m) : X \to Y$ with $f_i \in k[x_1, \ldots, x_n]$ for $i = 1, \ldots, m$. Assume $\varphi(p) = q$. The differential of φ at p is

$$d_p \varphi = (d_p f_1, \dots, d_p f_m).$$

One can verify that $d_p\varphi$ maps $T_p(X)$ into $T_q(Y)$. We can write $T_p(X) = \ker(J(f_1,\ldots,f_m)(p))$. $d_p\varphi$ can also be written as $J(f_1,\ldots,f_m)\cdot x$.

Proposition 2. (1)
$$d_p Id = Id$$
. (2) $d_p(\psi \circ \varphi) = J_{\varphi(p)} \circ d_p \varphi$.

At last we talk about tengent spaces for general varieties.

Definition 5. Let X be a variety, $p \in X$ be a point. The tangent space $T_p(X)$ is

$$T_p(X) := (\mathfrak{m}_p/\mathfrak{m}_p^2)^*$$

where \mathfrak{m}_p is the maximal ideal of the local ring $\mathcal{O}_{X,p}$, the symbol * denotes the dual of vector space. In other words,

$$T_p(X) = \{k \text{ linear maps } \nu : \mathfrak{m}_p/\mathfrak{m}_p^2 \to k\}$$

or

$$T_p(X) = \{k \text{ linear maps } \nu : \mathfrak{m}_p \to k \text{ with } \nu|_{\mathfrak{m}_p^2} = 0\}$$

 $p \in X$ is called nonsingular if $\dim T_p(X) = \dim X$. Similarly we have definition of X_{sing} and X_{reg} . If $X = X_{\text{reg}}$, X is called nonsingular or regular.

2. Conclusions We Need From Previous Lectures

In lecture 16:

Theorem 2. Every variety X is birational to a hypersurface in $\mathbb{A}^{\dim X+1}$.

E-mail address: wcghdpwyl@126.com