实验三 负反馈放大电路

作者: GeorgeDong32

一、实验目的

- 1. 研究负反馈对放大电路性能的影响。
- 2. 掌握负反馈放大电路性能的测试方法。

二、实验仪器

- 1. 双踪示波器。
- 2. 音频信号发生器。
- 3. 数字万用表。

三、预习要求

- 1. 认真阅读实验内容要求,估计待测量内容的变化趋势。
- 2. 图 3.1 电路中晶体管 β 值为 40, 计算该放大电路开环和闭环电压放大倍数。

四、实验内容

- 1. 负反馈放大电路开环和闭环放大倍数的测试
- (1) 开环电路

图 3.1 反馈放大电路

- ① 按图 3.1 接线, R_F 先不接入,使放大电路处于开环状态。调整 R_{P1} 使 U_{C1} =6V,记录此时三极管 V1、V2 的工作点。
- ② 在输入端 A 接入幅值 100 mV f=1 kHz 的正弦波,经 R_1 、 R_2 衰减后, U_i 约为 1 mv。 调整接线和参数使输出不失真且无自激振荡(参考实验二方法)。
- ③ 表 3.1 要求进行测量并填表。
- ④根据实测值计算开环放大倍数和输出电阻 ro。

(2). 闭环电路

- ①接通 R_F,引入反馈回路使放大电路处于闭环,此时三极管工作点应与(1)相同。
- ②在输入端 A 接入幅值 2V、f=1kHz 的正弦波,经 R_1 、 R_2 衰减后, U_i 约为 20mv。接表 3.1 要求测量并填表,计算 A_{uf} 和开环闭环时的输出电阻。
- ④ 据实测结果,验证 $A_{uf} \approx \frac{1}{F}$,并研究负反馈对放大电路各方面的影响。

表 3.1

	$R_L(k\Omega)$	U _i (mV)(实测值)	U _{i2} (mV)	U _o (V)	$A_{u}(A_{uf})$
开	∞	1 (0. 75)	5. 7	0.612	816
环	1k5	1 (0. 75)	6.0	0. 206	274. 7
闭	∞	20 (15. 1)	7. 5	0.397	26. 3
环	1k5	20 (15. 1)	13.8	0.368	24. 4

开环时 $R_O=R_{10}\mid\mid r_{be}=3k\Omega$ 闭环时 $R_O=2.9k\Omega$

2. 负反馈对失真的改善作用

(1) 断开反馈电阻 R_F ,将实验电路开环,逐步加大 U_i 的幅度,使输出信号出现失真(注意不要过份失真)记录失真波形幅度。

波形幅度为 1.464V

(2) 接入反馈电阻 R_F ,将电路闭环,观察输出情况,并适当增加 U_i 幅度,使输出幅度接近开环时失真波形幅度。

(3) 若 R_F =3k 不变,不接入 R_1 、 R_2 和信号源,将 R_F 接入 V1 的基极,会出现什么情况? 实验验证之。

引入了正反馈

总结:

闭环后引入负反馈,稳定了放大电路,减小失真度,改善失真情况。

3. 测放大电路频率特性

- (1) 将图 3.1 电路先开环,选择 U_i 适当幅度(频率为 1kHz) 使输出信号在示波器上有较大不失真正弦波显示。
- (2) 保持输入信号幅度不变逐步增加频率,直到波形减小为原来的 70%,此时信号频率 即为放大电路 $f_{\rm H}$ 。
- (3)条件同上, 但逐渐减小频率, 测得 f_L。
- (4)将电路闭环,重复1~3步骤,并将结果填入表3.2。

表 3.2

	f _H (Hz)	$f_L(Hz)$	
开环	460K	312	
闭环	821.7K	203	

五、实验分析:

- 1. 实验值与理论值的对比 实测值 $R_o=2.9$ K Ω ,理论值 3. 0K Ω ,通过 A_F 计算得到的 F=0. 0371,比 理论值 0. 0323 偏大,误差应该来自电压测量仪器波动。
- 2. 负反馈对放大电路的影响 提高放大电路放大倍数稳定性,改善失真情况,展宽频带