Álgebra matricial Tarea 1

1. Si A es una matriz $m \times n$ dada por bloques de vectores columna como

$$(a_1 \quad a_2 \quad \cdots \quad a_n)$$

y B es una matriz $n \times p$ dada por bloques de vectores renglón como

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

demuestre que

$$AB = \sum_{i=1}^{n} a_i v_i.$$

2. Sean A y B matrices cuadradas del mismo orden. Demuestre que $(A-B)(A+B)=A^2-B^2$ si y solo si AB=BA.

3. Sean A y B matrices $n \times n$, $A \neq 0$, $B \neq 0$, tales que AB = BA. Demuestre que $A^pB^q = B^qA^p$ para cualesquiera $p, q \in \mathbb{N}$.

4. Se dice que una matriz cuadrada A es antisimétrica si $A=-A^t$. Demuestre que $A-A^t$ es antisimétrica.

5. Demuestre que dada cualquier matriz cuadrada A, esta se puede escribir como la suma de una matriz simétrica y una matriz antisimétrica.

6. Se dice que una matriz cuadrada P es idempotente si $P^2 = P$. Si

$$A = \begin{pmatrix} I & P \\ 0 & P \end{pmatrix}$$

y P es idempotente, encuentre A^{500} .

7. Sean A y B matrices de tamaño $m \times n$. Demuestre que $\operatorname{tr}(AB^t) = \operatorname{tr}(A^tB)$

8. Encuentre matrices A, B y C tales que $tr(ABC) \neq tr(BAC)$.

9. Sea L una matriz triangular inferior $n \times n$. Demuestre que $L = L_1 L_2 \cdots L_n$ donde L_i es la matriz $n \times n$ que se obtiene reemplazando la i-ésima columna de I_n por la i-ésima columna de L. Demuestre un resultado análogo para matrices triangulares superiores.

10. Sea $A=(a_{ij})$ una matriz cuadrada de tamaño n tal que $a_{ii}=0$ para $i=1,\ldots,n$. Demuestre que para $i=1,\ldots,n$ y $j=1,\ldots,\min(n,i+p-1)$ se cumple que $b_{ij}=0$ donde $A^p=(b_{ij})$ y p es un entero positivo.