SUBHADEEP JANA

(812) 916 3613 | Bloomington, IN | jsubhadeep1999@gmail.com | LinkedIn | Website

EDUCATION

Master of Science (M.S.) in Computer Science

Indiana University Bloomington

Aug 2022 - May 2024

GPA: 3.87/4.0

• Coursework: Software Engineering, Applied Algorithms, Applied Machine Learning, Time Series Analysis

Bachelor of Technology (B.Tech.) in Computer Science

Government College of Engineering and Ceramic Technology

Aug 2017 - Jul 2021 CGPA: 9.07/10.0

• Coursework: Data Structures, Software Development, Artificial Intelligence, Database Management Systems

WORK EXPERIENCE

Radiance Technologies

Jul 2025 - Present

Remote

 $Software\ Development\ Engineer$

- Developed a data visualization system for financial KPIs and P&L tracking, improving operational efficiency by 30%. Built an ETL pipeline for ingesting data from AWS S3 buckets, preprocessing, and feature engineering using Pandas and LangChain.
- Collaborated with a cross-functional team to gather and structure financial data for business analytics dashboards. Implemented data integrity checks and automated validation scripts to monitor data quality and information consistency.

Luddy School of Informatics, Computing, and Engineering

Jan 2024 - Jul 2025

Research Assistant

- Bloomington
- Architected a cognitive experiment using JavaScript and jsPysch to study *imminence* and *recency* perception in humans, analyzing 1000+ participant data collected over Amazon MTurk. Visualized trends on PowerBI and DAX powered dashboards.
- Utilized psiTurk, PHP, and jQuery to deploy experiment and store results on a Linux server. Applied Python and MATLAB for exploratory data analysis and visualization to study behaviour exhibited by participants.
- Improved accuracies by 35% by integrating a balanced probe distribution in the experiment, modifying key timeline parameters like inter-probe duration, and generating real-time accuracy feedbacks at regular intervals.

Ixxo Lambda Vision

Jan 2021 - Feb 2022

Data Analyst

Remote

- Developed a Flask-based dashboard to detect key physical features of a car through *computer vision* and *image processing*. Collaborated in a cross-functional Agile team of 5 for feature integrations, data collection, and resource documentation.
- Trained a YOLOv3 *object detection* model on TensorFlow and annotated 10,000+ images using Visual Object Tagging Tool (VoTT) to enhance detection. Utilized TensorBoard to monitor model training progress.
- Enhanced color detection accuracy to 85% leveraging histogram equalization, color mapping techniques from OpenCV, scikitimage and Pillow. Built visualizations on HSV clustering and dominant color frequency across image batches in PowerBI.

SKILLS

Languages Python, C++, JavaScript, HTML, CSS, SQL, Bash

Databases MySQL, PostgreSQL, MongoDB, Pinecone

Frameworks Flask, React, OpenCV, Keras, TensorFlow, Scikit-learn, Pytest, jsPsych, psiTurk, LangChain Tools Git, Jira, VS Code, Jupyter Notebook, Postman, PowerBI, Tableau, Docker, Adobe Creative Cloud

PROJECTS

Audio Genre Classification using Machine Learning

Paper

- Evaluated 10+ machine learning models for audio genre classification, including probabilistic models in scikit-learn and neural network models in TensorFlow. Led a team of 4 to optimize model performance and reduce training times by 23%.
- Engineered series and parallel hybrid CNN-RNN models using LSTM for improved classification, achieving 90% test accuracy for multi-class FMA_Small dataset on 48 input spectral features and audio mel-spectrograms.

World Bank Economic Data Analysis

GitHub

- Constructed an interactive PowerBI dashboard to analyze the World Development Indicators and economic growth factors, leveraging key metrics like GDP per capita and income trends over decades for 200+ countries.
- Implemented a star schema database design for optimized data modeling and query performance, DAX measures, and dynamic visualizations to analyze time series data from the past 50 years.

Comparative Study of OpenCV Inpainting Algorithms

Paper

- Analyzed Navier-Stokes, Frequency Selective Reconstruction, and Telea inpainting algorithms in OpenCV library on the basis of Peak Signal to Noise Ratio (PSNR), Structural Similarity Index (SSIM) and runtime metrics.
- Processed the *Kodak* image dataset and utilized custom error masks for a data-driven analysis, evaluating the algorithms over edge, pattern, and text inpainting. Results published in GJCST: Interdisciplinary, Volume 21, Issue 2.

CERTIFICATIONS

• AWS Solution Architect Associate (SAA-C03) — Badge