

DIPARTIMENTO DI MATEMATICA E INFORMATICA

Grafi

- Si dice grafo un insieme di nodi legati "a due a due" da archi direzionati (o no)
- I grafi sono strutture dati di fondamentale importanza in informatica
- · Vi sono centinaia di problemi computazionali ad essi legati
- · Parleremo solo di alcuni algoritmi elementari sui grafi

$$G=(V,E)$$

- V insieme dei nodi
- E insieme degli archi (u,v)
- Se G è direzionato l'arco (u,v) è uscente da u ed entrante in v
- Se (u,v) è in E, v è adiacente a u

Grafi non direzionati

$$G=(V,E)$$

- V insieme dei nodi
- E insieme degli archi
- E consiste di coppie non ordinate di nodi
- Self-loops non ammessi
- In (u,v) u e v sono incidenti (sia entranti che uscenti)
- La relazione di adiacenza è simmetrica

Grado di un nodo (caso non direzionato)

· Numero di archi incidenti

Grado di un nodo (caso direzionato)

• Numero di archi entranti + numero di archi uscenti

Cammino (di lunghezza k) da u a v

• Sequenza v_0 , ..., v_k tale che $u=v_0$ e $v=v_k$

Il cammino **contiene** i vertici $v_0, ..., v_k$ e gli archi $(v_0, v_1), ..., (v_{k-1}, v_k)$

- Un nodo v è **raggiungibile** da u se esiste un cammino da u a v
- Il cammino è **semplice** se tutti i vertici in esso contenuti sono distinti

Cammino (di lunghezza k) da u a v

•Sequenza v_0 , ..., v_k tale che $u=v_0$ e $v=v_k$

Sottocammino: Sequenza di vertici di un cammino es: $v_i, ..., v_j$ per $0 \le i \le j \le k$

Ciclo: Cammino v_0 , ..., v_k in cui $v_0 = v_k$

•Il ciclo è semplice se tutti i suoi nodi sono distinti.

Un grafo senza cicli è detto aciclico.

- Grafo (non direzionato) **connesso**: ogni coppia di vertici è unita da un cammino.
- Componenti connesse: classi di equivalenza determinate dalla relazione "è raggiungibile da"

Componenti connesse: {1,2,3}, {3,6}, {4}

Un grafo non direzionato è connesso se ha 1 sola componente connessa

- Grafo (direzionato) **fortemente connesso**: per ogni coppia di vertici (u,v) esiste un cammino che unisce u a v e v a u.
- Componenti fortemente connesse: classi di equivalenza determinate dalla relazione "sono mutualmente raggiungibili"

Componenti fortemente connesse:

 $\{1,2,4,5\}, \{3\}, \{6\}$

- G'=(V',E') sottografo di G=(V,E) se V' sottoinsieme di V e E' sottoinsieme di E
- Un grafo (non direzionato) è completo se ogni coppia di vertici è adiacente

Rappresentare un grafo

 Sia |V| la cardinalità di V ovvero un numero naturale definito come il numero di elementi che costituiscono l'insieme.

Due modi fondamentali:

- Liste di adiacenza
 - Utile soprattutto per rappresentare grafi sparsi (con pochi archi)
 - Richiede O(max(|V|,|E|))=O(|V|+|E|) spazio
- Matrici di adiacenza
 - Richiede $O(|V|^2)$ spazio

Liste di adiacenza – Grafi non direzionati

- Array di /V/ liste (una per ogni vertice)
- Adj[u] contiene (puntatori a) tutti i vertici v per i
 quali (u,v) è in E
- La somma delle lunghezze di tutte le liste è 2/E/

Liste di adiacenza – Grafi direzionati

- Array di /V/ liste (una per ogni vertice)
- Adj[u] contiene (puntatori a) tutti i vertici v
 per i quali (u,v) è in E
- In tal caso, la somma delle lunghezze di tutte le liste è | E |

Matrici di adiacenza

- A=[a_{ij}]
- $a_{ij}=1$ se (i,j) è un arco in E (0 altrimenti)

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0 0 0 0 0	0	0	0	0	1

Ricerca in ampiezza (Breadth-First-Search)

- Dato un vertice *s*, "esploriamo" il grafo per scoprire ogni vertice *v* raggiungibile da *s*.
 - Calcola la distanza di ogni v da s.
 - L'algoritmo (implicitamente) produce un breadthfirst-tree (BFT)
 - Il campo predecessore fa riferimento proprio a tale albero.
 - Il cammino da s a v in BFT rappresenta il cammino più breve.
- Supporremo una rappresentazione tramite liste di adiacenza.

Ricerca in ampiezza -- Idee

- Inizialmente ogni nodo è colorato bianco
 - Poi i nodi diventeranno grigi o neri.
- Un nodo è scoperto quando è visitato la prima volta.
 - Diventa non-bianco
 - Nodi grigi: possono essere adiacenti (anche) a nodi bianchi.
 - Rappresentano la frontiera tra ciò che è già stato scoperto e ciò che non lo è ancora.
 - Nodi neri: possono essere adiacenti solo a nodi non bianchi.

Ricerca in ampiezza

```
BFS(G,s)
1.for each vertex u in V[G] - {s}
   color[u]=white;
                       Invariante di ciclo: la coda
  d[u]=MAX;
                       Q è formata dall'insieme
   pred [u]=NULL;
                          dei vertici grigi.
5.color[s]=gray;
6.d[s]=0; pred[s]=NULL;
7.Q.Enqueue(s);
8.while (Q.NotEmpty())
u=Q.Dequeue();
   for each v in Adj[u]
      if (color[v] == white)
11.
         color[v]=gray;
12.
         d[v] = d[u] + 1;
13.
         pred[v]=u;
14.
         Q.Enqueue(v);
15.
  color[u] = black;
```


Ricerca in ampiezza

```
BFS(G,s)
1.for each vertex u in V[G] - {s}
color[u]=white;
3. d[u]=MAX;
4. pred [u]=NULL;
5.color[s]=gray;
6.d[s]=0; pred[s]=NULL;
7.Q.Enqueue(s);
8.while (Q.NotEmpty())
u=Q.Dequeue();
10. for each v in Adj[u]
     if (color[v] == white)
11.
        color[v]=gray;
12.
        d[v] = d[u] + 1;
13.
        pred[v]=u;
14.
      Q.Enqueue(v);
15.
16. color[u] = black;
```


Ricerca in ampiezza

```
BFS(G,s)
1.for each vertex u in V[G] - {s}
2. color[u]=white;
3. d[u]=MAX;
4. pred [u]=NULL;
5.color[s]=gray;
6.d[s]=0; pred[s]=NULL;
7.Q.Enqueue(s);
8.while (Q.NotEmpty())
u=Q.Dequeue();
10. for each v in Adj[u]
     if (color[v] == white)
11.
        color[v]=gray;
12.
        d[v] = d[u] + 1;
13.
       pred[v]=u;
14.
Q.Enqueue (v);
16. color[u] = black;
```

Complessità: O(n+m)
n: numero di nodi
m: numero di archi

Breadth-first Trees

- La procedura BFS(G,s) costruisce un albero (grafo dei predecessori G_p)
 - Ad ogni nodo è associato un predecessore
- $V_p = \{v \text{ in } V : p[v] \neq NULL\} U \{s\} (V \text{ insieme dei nodi})$
- $E_p = \{(p[v], v) \text{ in } E : v \text{ in } V_p, v \neq s\}$ (E insieme degli archi)
- G_p è un albero in cui
 - C'è un unico cammino da s a v (in V_p) che è anche il cammino più breve
 - Gli archi in E_p sono chiamati **tree-edges**.

Breadth-first Trees

 $V_p = \{v \text{ in } V : p[v] \neq NULL\}$ $E_p = \{(p[v], v) \text{ in } E : v \text{ in } V_p, v \neq s\}$

Print-Path

Supponiamo di aver già eseguito BFS(G,s), la seguente procedura stampa i vertici di un cammino minimo da s a v.

```
Print-Path(G,s,v)
1.if (v==s) print s
2.else if pred[v]==NULL
3.     print "No path from s to v"
4.else Print-Path(G,s,pred[v])
5.     print v
```

Qual è la complessità di questa procedura?

$$T(n)=T(n-1)+1=T(n-1)+1+1-\dots=1+1+\dots=1$$

Print-Path

Supponiamo di aver già eseguito BFS(G,s), la seguente procedura stampa i vertici di un cammino minimo da s a v.

```
Print-Path(G,s,v)
1.if (v==s) print s
2.else if pred[v]==NULL
3.     print "No path from s to v"
4.else Print-Path(G,s,pred[v])
5.     print v
```

Qual è la complessità di questa procedura?

 $O(|V|) \rightarrow$ ogni chiamata ricorsiva riguarda un cammino che ha un vertice in meno.

Ricerca in Profondità: DFS

- Il grafo viene visitato in profondità piuttosto che in ampiezza
- Gli archi sono esplorati a partire dal nodo v che
 - Sia stato scoperto più di recente
 - Abbia ancora archi (uscenti) non esplorati
- Quando gli archi uscenti di v terminano, si fa backtracking
 - Si esplorano eventuali altri archi uscenti dal nodo precedente a v.
- Il processo è ripetuto fin quando vi sono nodi da esplorare.

Depth first forests

- Se v è scoperto scorrendo la lista di adiacenza di u, p[v]=u
- Come per BFS si definisce un grafo dei predecessori G_p
- *V_p=V*
- $E_p = \{(p[v], v) \text{ in } E : v \text{ in } V, p[v] \neq NULL\}$
- G_p non è un albero (ma una foresta)
 - Depth first forest

Timestamps

- DFS marca temporalmente ogni vertice visitato
 - Ogni v ha due etichette
 - La prima -- d[v] -- registra quando il nodo è stato scoperto (bianco-> grigio)
 - La seconda f[v] registra quando la ricerca finisce di esaminare la lista di adiacenza di v (grigio-> nero)
 - Per ogni v, d[v]<f[v]</p>

Tempo di esecuzione: θ (V+E)

