Problem Set 9

Question 1:

a. Let b_n be the sequence given by $b_0=0, b_1=.1, b_2=.01, b_3=.001,$ and in general b_n has a 1 in decimal spot n and 0's elsewhere.

Otherwise said: for $n \ge 1$ $b_n = \frac{1}{10^n}$. Show that

$$\lim_{n \to \infty} b_n = 0.$$

b. Let d_n be the sequence given by $d_0=0, d_1=.9, b_2=.99, d_3=.999, \ldots$ and in general d_n has a 9 in each decimal spot up to and including spot n and 0's after that.

Otherwise said: for $n \ge 1$, $d_n = \frac{10^n - 1}{10^n}$. Show that

$$\lim_{n\to\infty} d_n = 1.$$

Question 2: Observe that

$$10^6 = 142857 \times 7 + 1.$$

Explain why this implies that the decimal expansion of 1/7 is given by

$$\frac{1}{7} = 0.142857\overline{142857}...$$

Question 3: Using the definition of limit, show that if $a_n = \frac{6n+1}{3n-1}$, then

$$\lim_{n\to\infty}a_n=2.$$

Question 4:

- a. By negating the definition, express the condition " a_n is not a Cauchy sequence" so that the last inequality in your sentence has a symbol "greater than" (\geq).
- last inequality in your sentence has a symbol "greater than" (\geq). b. Show that $a_n = \frac{(-1)^n (6n+1)}{3n-1}$ is not a Cauchy sequence.

Question 5: Assume that a_n is a Cauchy sequence of real numbers. Prove that the sequence $b_n=a_{2n}$ is a Cauchy sequence.

Problem Set 9 due: 2025-11-03

Question 6: Let $d \in \mathbb{N}_{>0}$. Show that the sequence $a_n = 1/n^d$ is a Cauchy sequence.

Question 7: Let a_n and a'_n be sequences.

- a. If a_n+a_n' is a Cauchy sequence, is it true that a_n is Cauchy and a_n' is Cauchy? Give a proof or a counter-example.
- b. If $a_n \cdot a_n'$ is a Cauchy sequence, is it true that a_n is Cauchy and a_n' is Cauchy? Give a proof or a counter-example.

Question 8: Assume that a_n is a sequence for which

$$\lim_{n\to\infty}a_n=0.$$

If b_n is a sequence such that $\exists m \in \mathbb{N}$ for which

$$n \ge m \Rightarrow -a_n \le b_n \le a_n$$

prove that

$$\lim_{n\to\infty}b_n=0.$$