Statistics 305: Introduction to Biostatistical Methods for Health Sciences

Chapters 8-10: Review of Statistical Inference

Jinko Graham

2018-09-01

Goals for course

- ► The overarching goal is to get some idea of how to think statistically.
 - Specific techniques are less important than the general way of thinking.
 - Doing t tests, or chi-squared tests, etc. is all well and good. However there are bigger ideas to pursue.
- I'll try to bring in the bigger ideas: quantifying uncertainty and avoiding bias to make inference from data.
 - The syllabus is tilted towards quantifying uncertainty rather than bias, but I'll try to work in both throughout the course.

Sampling Distributions (Chapter 8).

Sampling Distributions

- ▶ A statistic is a number that can be computed from data
- Its sampling distribution is the distribution we obtain by repeatedly drawing random samples of data from the population, and recalculating the statistic
- ► A *parameter* is a population quantity, such as the population mean.
- Statistical inference: Using data from random samples to drawing conclusions about *parameters*.
- ► To make inference about a parameter, we need a statistic to estimate the parameter and the sampling distribution of the statistic.

Sampling Distribution of the Sample Mean

- Say that the population mean, μ , is the parameter that we are interested in
- ▶ The sample mean, \bar{X} , is a statistic that estimates μ .
- ▶ The sampling distribution of \bar{X} is the distribution of \bar{x} values obtained by repeated sampling from the population.
- ▶ We use lower-case to denote an *observed value* and upper-case to denote the corresponding *random variable*.
 - ▶ Recall that a variable is *random* if its value is determined by chance according to a sampling distribution.

Online demo: http://onlinestatbook.com/stat_sim/sampling_dist/index.html

Properties of the Sampling Distribution of \bar{X}

- 1. Centre and spread: When a population has mean μ and SD σ , the sampling distribution of \bar{X} has mean μ and SD σ/\sqrt{n} , where n is the size of the sample drawn from the population (e.g. n=5 in demo)
- ▶ Since \bar{X} has mean μ it is said to be an unbiased estimator of μ .
- Since the SD of \bar{X} decreases at rate $1/\sqrt{n}$ as the sample size n increases, \bar{X} is said to follow the "square-root law".

- 2. Shape (The Central Limit Theorem, CLT): If the sample size n is large, the sampling distribution of \bar{X} is approximately normal regardless of the shape of the population distribution
- ▶ Unfortunately no universal rule for what is "large" n.
- ▶ However, the CLT is a remarkable result. It tells us the approximate shape of the distribution of \bar{X} no matter the shape of the population distribution.
- ▶ In the demo, try drawing 100K samples of size N = 25 in 3rd panel from a skewed population distribution in 1st panel.
 - ▶ Can see that the sampling distribution of \bar{X} has the same mean as the population distribution and that its SD is approximately the SD of the population distribution divided by $5=\sqrt{25}$

Confidence Intervals (Chapter 9)

Confidence Intervals

- Estimates of a parameter without some indication of their precision are useless.
- ► Confidence intervals (CIs), sometimes called interval estimates, attach a measure of precision to an estimate.
- lacktriangle Intervals are often of the form estimate \pm margin of error.
 - ► These are called "2-sided" and will be the only type of CI that we consider in this course.
- The confidence level states how often the interval covers the true parameter value
 - ▶ Note: The coverage is a statement about the *random interval*, not about the value of the true parameter, which is fixed.

Online demo: http://wise.cgu.edu/portfolio/demo-confidence-interval-creation/

CI for a Mean - Known SD

▶ If the SD σ is known, a level-C CI for μ is

$$\bar{x} \pm z^* \times \sigma/\sqrt{n}$$
,

where z^* is the upper (1 - C)/2 critical value of the standard-normal distribution.

- Note: The text calls this a 2-sided CI, and also discusses 1-sided intervals. We will restrict attention to 2-sided only.
- ▶ E.G. 95% CI: If \bar{X} is normally distributed, it will be within $z^* = 1.96$ of its SDs (i.e. within $1.96 \times \sigma/\sqrt{n}$) of μ 95% of the time.
 - ▶ So $\bar{X} \pm 1.96 \times \sigma / \sqrt{n}$ will cover μ 95% of the time.
- ▶ The margin of error gets smaller as:
 - ▶ the confidence level or coverage probability C gets smaller (e.g. C = 99 decreases to C = 95),
 - the population standard deviation σ gets smaller,
 - the sample size n gets bigger

CI for a Mean - Unknown SD

- ▶ If the SD σ is unknown, we estimate it by the sample SD, s.
- ▶ A level-C CI for μ is then

$$\bar{x} \pm t^* \times s/\sqrt{n}$$

where t^* is the upper (1 - C)/2 critical value of the appropriate t distribution

- ▶ t distributions are similar in shape to a standard-normal distribution, but with slightly heavier tails.
- t distributions are indexed by a parameter called the degrees of freedom (df).
 - ► Small df, heavy tails; large df, light tails (and approaching a normal distribution).
- ▶ Heavier tails mean extreme observations are more probable; they account for the extra uncertainty of not knowing σ .
- ▶ The appropriate df is n-1 when σ is estimated with a sample size of n data points.

Coverage of the CI

▶ When σ is known, the coverage of the CI can be derived from the following statement (details not shown):

$$rac{ar{X}-\mu}{\sigma/\sqrt{n}}$$
 is within z^* of 0 approximately $C imes 100\%$ of the time

▶ Similarly, when σ is unknown and is estimated by s, coverage of the CI can be derived from the statement:

$$rac{X-\mu}{s/\sqrt{n}}$$
 is within t^* of 0 approximately $C imes 100\%$ of the time

- $ightharpoonup rac{ar{X}-\mu}{\sigma/\sqrt{n}}$ and $rac{ar{X}-\mu}{s/\sqrt{n}}$ are called *pivotal quantities*.
- ▶ Pivotal quantities have a known distribution, which makes them useful for statistical inference. We'll come back to this later in the course.

Example

- Example from the text, page 223, summarizes data on plasma aluminum levels, in $\mu g/I$, for n=10 infants receiving antacids that contain aluminum.
 - ► The sample mean of the plasma aluminum levels is $\bar{x} = 37.20 \mu g/I$, and the sample SD is s = 7.13
- ▶ To calculate a 95% CI we need the upper (1-C)/2 = (1-0.95)/2 = 0.025 critical value for the *t*-distribution with n-1=9 df.
 - ▶ Statistical software tells us that the critical value is $t^* = 2.262$.
- ▶ The 95% CI is therefore $\bar{x} \pm t^* \times s/\sqrt{n}$, or

$$(37.2 - 2.262 \times 7.13/\sqrt{10}, 37.2 + 2.262 \times 7.13/\sqrt{10}) \approx (32.1, 42.3)$$

Hypothesis Tests (Chapter 10)

Hypothesis Tests

- ► Hypothesis tests assess the evidence provided by the data against a null hypothesis, H₀, in favour of an alternative hypothesis, H_a (denoted H_A in the text).
- Will illustrate with testing a null hypothesis about the value of a population mean
- Some key points to remember:
 - Hypotheses are phrased in terms of population parameters of interest (e.g. population means, not sample means)
 - ▶ The alternative hypothesis can be one-sided or two-sided
 - To assess the evidence for or against a hypothesis in a sample of data, we use a test statistic with a known sampling distribution under the null hypothesis
 - ► Extreme values of the test statistic are taken as evidence against the null hypothesis in favour of the alternative hypothesis.

Hypotheses for a Population Mean

- ▶ Consider a particular value μ_0 (e.g., $\mu_0 = 0$) for the population mean μ .
- ▶ A **two-sided** alternative hypothesis is H_a : $\mu \neq \mu_0$
- ▶ **One-sided** alternative hypotheses are H_a : $\mu > \mu_0$ or H_a : $\mu < \mu_0$.

Test Statistics

▶ When σ is known, we base the test on the "z statistic"

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}.$$

- ▶ Under H_0 : $\mu = \mu_0$, Z has a standard-normal distribution, written as $Z \sim N(0,1)$.
- ▶ When σ is unknown, we base the test on the "t statistic"

$$T = \frac{\bar{X} - \mu_0}{s / \sqrt{n}}.$$

▶ Under H_0 , T has a t distribution with n-1 df, written as $T \sim t_{n-1}$.

Extreme Values of the Test Statistic

- ▶ Observed values of Z or of T that are unlikely under H_0 , and more compatible with H_a than with H_0 , are taken as evidence against H_0 .
- ▶ The *p*-value is the chance of a test statistic that is as extreme as or more extreme than what we have observed, when the null hypothesis is true.
- ▶ How we define "extreme" depends on H_a .
- Illustrate with the t-test.

Extreme Values of T when H_a : $\mu \neq \mu_0$

- $H_a: \mu \neq \mu_0$ vs. $H_0: \mu = \mu_0$.
- lacktriangle Use the statistic X as a proxy for the parameter μ
- ▶ Observed values \bar{x} that are far from the hypothesized value μ_0 are taken as evidence in favour of H_a .
- ▶ Since the numerator of the t-statistic, T, is $\bar{X} \mu_0$, this is equivalent to T having an observed value t that is far from zero.
 - i.e. |t| much greater than zero, where |t| is the absolute value of t.

Extreme values of T when H_a : $\mu > \mu_0$

- $H_a: \mu > \mu_0$ vs. $H_0: \mu \leq \mu_0$.
- $ightharpoonup ar{x}$'s that are much greater than μ_0 are taken as evidence in favour of H_a .
 - i.e., $\bar{x} \mu_0$ much greater than zero.
 - ▶ i.e., t much greater than zero.
- Note that \bar{x} 's much *less* than μ_0 (i.e., t's much *less* than zero) are consistent with H_0 , and so not a basis for rejecting it.

Extreme values of T when H_a : $\mu < \mu_0$

- $H_a: \mu < \mu_0 \text{ vs. } H_0: \mu \geq \mu_0.$
- $ightharpoonup ar{x}$'s that are much less than μ_0 are taken as evidence in favour of H_a .
 - i.e., $\bar{x} \mu_0$ much less than 0.
 - ▶ i.e., t much less than zero.
- Note that \bar{x} 's much greater than μ_0 (t's much greater than 0) are consistent with H_0 , and so not a basis for rejecting it.

p-values

- ▶ The *p*-value, *p*, is the chance that the test statistic is as or more extreme than the observed value given that $H_0: \mu = \mu_0$ is true.
 - For the t-test, the statistic is T, a random variable having a t-distribution on n-1 df, and the observed value is t
- ► From our discussion of what "extreme" means under various alternative hypotheses, we can argue that:
 - ▶ For H_a : $\mu \neq \mu_0$, $p = 2P(T \geq |t|)$, where
 - \triangleright P(A) is the probability of event A,
 - t is the observed t-statistic, and
 - ightharpoonup |t| is the absolute value of t.
 - For $H_a: \mu > \mu_0, \ p = P(T \ge t)$.
 - ▶ For H_a : $\mu < \mu_0$, $p = P(T \le t)$.

Example

- ▶ Go back to the example on plasma aluminum levels in infants.
- Suppose that in the population of infants **not** taking antacids, the mean plasma aluminum levels are known to be $4.13\mu g/l$.
- ▶ Recall that in the sample of 10 infants taking antacids, the plasma aluminum levels had sample mean and sample SD of $\bar{x} = 37.20 \mu g/I$ and s = 7.13, respectively.
- Let the null hypothesis be H_0 : $\mu=4.13$, that the mean plasma aluminum for infants taking antacids is the same as for the population of infants not taking antacids.
- Let the alternative hypothesis be H_a : $\mu \neq 4.13$, that the mean plasma levels of aluminum for infants taking antacid is different from the population of infants not taking antacids.

Details

▶ The t-statistic is

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{37.20 - 4.13}{7.13/\sqrt{10}} \approx 14.67$$

- ▶ The *p*-value is $2P(T \ge |14.67|)$ for T with 10 1 = 9 df, which computer software reports to be 1.36833e-07.
 - Mhat??? This is the computer representation of 1.36833×10^{-7} , or 0.000000136833
 - ▶ Move the decimal point 7 places to the left of its current position in 1.36833.

Hypothesis Tests

- ► Small *p*-values are evidence against the null hypothesis, in favour of the alternative hypothesis.
- We may set a level α in advance that marks the point at which evidence against the null hypothesis is considered strong enough to "reject" it.
 - ▶ If we don't reject the null hypothesis we **retain** it.
 - ▶ **Caution**: Some people are really bothered by 'accept H_0 '. Best say 'retain H_0 ' to avoid offending them (and losing marks).
- ▶ If the *p*-value is less than α , we say that we "reject H_0 at level α ".
- ► Historically, such a test result was described as "statistically significant", but this terminology is going out of style.
 - In part because statistical significance says nothing about practical significance.
 - ► For example, in a large clinical trial with thousands of subjects, a drug may lower cholesterol ever-so-slightly, to the point of statistical significance (because the trial is so large), but without any clinical significance.

Hypothesis Testing Errors and Error Rates

- ▶ Important point: Statistical hypothesis testing can make errors.
- ► The "confusion matrix" for the true state of nature (rows) and the action of a hypothesis test (columns) is

	Reject null	Retain null
$\operatorname{null}(H_0)$	false positive	true negative
alternative (H_a)	true positive	false negative

► False positives and negatives are called type-I and II errors, respectively.

False-Positive or Type-I Error Rate

- ▶ Mistakenly rejecting H_0 (i.e., rejecting H_0 when it is true) is a **type-I error**.
- ► The probability of making a type-I error, known as the type-I error rate, is written

$$P(\text{reject } H_0 \mid H_0 \text{ true}),$$

where $P(A \mid B)$ denotes probability of event A given event B.

(more on probability soon)

False-Negative or type-II Error Rate

- ▶ We define the false-negative error rate for completeness, but will not use it in this course.
- ▶ Mistakenly retaining H_0 (i.e., retaining H_0 when it is false) is a type-II error.
- The probability of making a type-II error, known as the type-II error rate, is written

$$P(\text{retain } H_0 \mid H_0 \text{ false}),$$

and is denoted by β .

Statistical Power

- As with type-II error, we define **power** but do not use it in this course.
- ▶ The **power** of a test is the probability that it correctly rejects H_0 ; i.e., the probability that the test rejects H_0 when H_0 is false:

$$P(\text{reject } H_0 \mid H_0 \text{ false}) \text{ or } 1 - \beta,$$

where β is the type-II error rate.

- ▶ For a given alternative hypothesis, one can compute the sample size required to achieve a given power (text, Section 10.6).
- ► Such "sample-size calculations" are frequently required by health-funding agencies in proposals for research studies.

Summary of Statistical Inference of a Population Mean

- Statistical inference: Learning about population parameters from data of a random sample from the population that are subject to random variation.
- ► Key point: We know the (approximate) distribution of pivotal quantities such as

$$\frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$
, σ known; or $\frac{\bar{X} - \mu}{s / \sqrt{n}}$, σ unknown;

regardless of the shape of the population distribution.

- ▶ This result relies on the CLT, which tells us that sample averages such as \bar{X} are approximately normally distributed.
- Many of the statistics we will study are based on averages, so inference of a population mean is a useful template.
- ► Knowing the distribution of the pivotal quantity allows us to construct confidence intervals, calculate *p*-values, test statistical hypotheses, calculate power, etc.