Midterm 2: Example

Overview

Model

Suppose we have some multiple regression model

$$y_i = b_0 + \sum_{j=1}^{p} b_j x_{ij} + e_i$$

with $e_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. In Notes 5, p represented the number of predictors in the model (because we had not yet introduced second order terms).

Note that the polynomial and interaction regression models (from Notes 7) are special cases of the multiple regression model. For example, a quadratic regression model

$$y_i = b_0 + b_1 x_i + b_2 x_i^2 + e_i$$

could be written using the above equation with p = 2 and $x_{i2} = x_{i1}^2$ by definition. As another example, the interaction regression model

$$y_i = b_0 + b_1 x_{i1} + b_2 x_{i2} + b_3 x_{i1} x_{i2} + e_i$$

could be written using the above equation with p = 3 and $x_{i3} = x_{i1}x_{i2}$ by definition.

ANOVA Table

Source	SS	df	MS	F	p-value		
	$\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$			F^*	p^*		
SSE	$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	n-p-1	MSE				
SST	$\sum_{i=1}^{n} (y_i - \bar{y})^2$	n-1					
$\overline{MSR} =$	$\frac{SSR}{p}$, $MSE = \frac{SS}{n-1}$	$\frac{SE}{p-1}, F^* = \frac{\Lambda}{\Lambda}$	$\frac{MSR}{MSE} \sim F_{1}$	p,n-p-	$p^* = P$	$(F_{p,n-p-1})$	$> F^*)$

 F^* -statistic and p^* -value are testing $H_0: b_1 = \cdots = b_p = 0$ versus $H_1: b_k \neq 0$ for at least one $k \in \{1, \ldots, p\}$

Note that the degrees of freedom for SSE is n-c where c=p+1 is the total number of columns of the model design matrix \mathbf{X} .

Testing Multiple Slopes

Assume that q < p and want to test if a reduced model is sufficient:

$$H_0: b_{q+1} = b_{q+2} = \dots = b_p = b^*$$

 $H_1:$ at least one $b_k \neq b^*$

Compare the SSE for full and reduced (constrained) models:

(a) Full Model: $y_i = b_0 + \sum_{j=1}^p b_j x_{ij} + e_i$ (b) Reduced Model: $y_i = b_0 + \sum_{j=1}^q b_j x_{ij} + b^* \sum_{k=q+1}^p x_{ik} + e_i$

Note: set $b^* = 0$ to remove X_{q+1}, \ldots, X_p from model.

Test Statistic:

$$F^* = \frac{SSE_R - SSE_F}{df_R - df_F} \div \frac{SSE_F}{df_F}$$

$$= \frac{SSE_R - SSE_F}{(n - q - 1) - (n - p - 1)} \div \frac{SSE_F}{n - p - 1}$$

$$\sim F_{(p - q, n - p - 1)}$$

where

- SSE_R is sum-of-squares error for reduced model
- SSE_F is sum-of-squares error for full model
- df_R is error degrees of freedom for reduced model
- df_F is error degrees of freedom for full model

Note that the numerator degrees of freedom p-q is the number of terms that are constrained in the reduced model specified by H_0 .

Also, note that this approach can be used to test a single slope; in this case, p-q=1 and $F^* = (t^*)^2$ where t^* is the single slope T test statistic (see Notes 5 Slide 40).

Example

Consider the regression model

$$y_i = b_0 + b_1 x_{i1} + b_2 x_{i2} + b_3 x_{i3} + b_4 x_{i1}^2 + b_5 x_{i2}^2 + b_6 x_{i1} x_{i2} + e_i$$

with $e_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$. Suppose that we have observed the following sample statistics from n = 20 observations:

- > length(y)
- [1] 20
- > sum(lm(y~1)\$residuals^2)
- [1] 1622.979
- $> sum(lm(y~x2+x3+I(x2^2))$residuals^2)$
- [1] 741.5935
- > sum(lm(y~x1+x2+x3+x1:x2)\$residuals^2)
- [1] 12.62165
- $> sum(lm(y~x1+x2+I(x1^2)+I(x2^2)+x1:x2)$ residuals^2)
- [1] 320.1572
- $> sum(lm(y~x1+x2+x3+I(x1^2)+I(x2^2))$residuals^2)$
- [1] 15.75573
- $> sum(lm(y~x1+x2+x3+I(x1^2)+I(x2^2)+x1:x2)$residuals^2)$
- [1] 10.91046
 - (a) Create ANOVA table for model:

Source	SS	df	MS	F	p-value
SSR	1612.069	6	268.6781	320.1345	< 0.0001
SSE	10.910	13	0.8393		
SST	1622.979	19			

(b) Perform the overall test of significance of the model at $\alpha = 0.05$, i.e., test $H_0: b_1 = \cdots = b_6 = 0$ versus $H_1:$ at least one $b_k \neq 0$ for $k \in \{1, \ldots, 6\}$.

Use F-test from ANOVA table. The observed test statistic is $F^* = 320.1345 \sim F_{6,13}$ and the p-value is nearly zero. Therefore, we reject H_0 and conclude that there is a significant relationship between Y and at least one of the model terms.

(c) Test if X_1 significantly adds to the regression model at $\alpha = 0.05$, i.e., test $H_0: b_1 = b_4 = b_6 = 0$ versus $H_1:$ at least one $b_k \neq 0$ for $k \in \{1, 4, 6\}$.

Use F-test for multiple slopes. The reduced model is the model containing only X_2 and X_3 , and the full model contains all of the terms. So, the F test statistic is

$$F^* = \frac{(741.5935 - 10.91046)/(16 - 13)}{10.91046/13} = \frac{243.561}{0.8392662} = 290.2071$$

which follows an $F_{3,13}$ distribution. Note that $P(F_{3,13} > F^*) < .0001$, so we Reject H_0 and conclude that X_1 significantly adds to the regression model.

(d) Test if X_3 significantly adds to the model at $\alpha = 0.05$ ($H_0: b_3 = 0$ versus $H_1: b_3 \neq 0$).

Use F-test for single slope. The reduced model is the model without X_3 , and the full model contains all of the terms. So, the F test statistic is

$$F^* = \frac{(320.1572 - 10.91046)/(14 - 13)}{10.91046/13} = \frac{309.2467}{0.8392662} = 368.4728$$

which follows an $F_{1,13}$ distribution. Note that $P(F_{1,13} > F^*) < .0001$, so we Reject H_0 and conclude that X_3 significantly adds to the regression model.

(e) Test the significance of the quadratic terms at $\alpha = 0.05$, i.e., test $H_0: b_4 = b_5 = 0$ versus $H_1:$ at least one $b_k \neq 0$ for $k \in \{4, 5\}$.

Use F-test for multiple slopes. The reduced model is the model containing only linear and interaction terms, and the full model contains all of the terms. So, the F test statistic is

$$F^* = \frac{(12.62165 - 10.91046)/(15 - 13)}{10.91046/13} = \frac{0.855595}{0.8392662} = 1.019456$$

which follows an $F_{2,13}$ distribution. Note that $P(F_{2,13} > F^*) = 0.3879047$, so we Retain H_0 and conclude that the polynomial terms do NOT significantly add to the model.

(f) Test the significance of interaction term at $\alpha = 0.05$ ($H_0: b_6 = 0$ versus $H_1: b_6 \neq 0$).

Use F-test for single slope. The reduced model is the model without X_1X_2 , and the full model contains all of the terms. So, the F test statistic is

$$F^* = \frac{(15.75573 - 10.91046)/(14 - 13)}{10.91046/13} = \frac{4.84527}{0.8392662} = 5.773222$$

which follows an $F_{1,13}$ distribution. Note that $P(F_{1,13} > F^*) = 0.03192008$, so we Reject H_0 and conclude that X_1X_2 significantly adds to the regression model.