Runtime Analysis

Felie Marie Magbanua

Southern New Hampshire University

CS-300

DSA: Analysis and Design

Jonathan Norman

June 22, 2025

Runtime Analysis Chart: Vector

Code Step	Line Cost	# Times Execute	Total Cost
open file	1	1	1
for each line in file	1	n	n
split line by ',' into	1	n	n
tokens			
create new Course	1	n	n
object			
add tokens[i] to	1	n*p	n*p
course.prerequisites			
(per prereq)			
add course to courses	1	n	n
vector			
for each course: for	1	up to n^2	n^2
each prereq: validate			
existence			
Total Cost			$n^2 + 4n + n*p + 1$
Runtime			O(n^2)

[•] n = number of courses, p = avg prerequisites per course

Runtime Analysis Chart: Hash Table

Code Step	Line Cost	# Times Execute	Total Cost
open file	1	1	1
for each line in file	1	n	n
split line by ',' into tokens	1	n	n
create new Course object	1	n	n
add tokens[i] to course.prerequisites (per prereq)	1	n*p	n*p
insert course into hash table	1	n	n
for each course: for each prereq: validate existence	1	up to n*p	n*p
Total Cost			4n + 2n*p + 1
Runtime			$O(n*p) = O(n^2)$ worst, $O(n)$ avg

- n = number of courses, p = avg prerequisites per course
- Note: Hash table lookup is O(1) average, but O(n) worst case with collisions

Runtime Analysis Chart: Binary Search Tree (BST)

Code Step	Line Cost	# Times Execute	Total Cost
open file	1	1	1
for each line in file	1	n	n
split line by ',' into	1	n	n
tokens			
create new Course	1	n	n
object			
add tokens[i] to	1	n*p	n*p
course.prerequisites			
(per prereq)			
insert course into	log n*	n	n log n (avg), n^2
BST (by			(worst)
courseNumber)			
for each course (in-	n	n*p	n^2
order): for each			
prereq: validate			
Total Cost			$n^2 + n \log n + n p +$
			3n + 1
Runtime			$O(n^2)$ worst, $O(n$
			log n) avg

log n for balanced BST, up to n for degenerate/unbalanced tree