

Scalars • A scalar is a quantity that does not depend on direction — In other words, it's just a regular number • i.e. 7 is a scalar • so is 13.5 • or -4

Vectors

- A <u>vector</u> is a list of *n* numbers referring to a direction and magnitude in n-D
- From a data structures perspective, a vector looks exactly the same as a point
 - -i.e. (2, 3, 4) is a vector in 3-D space
 - Vector does not have a fixed position

Rays

- A <u>ray</u> is just a vector with a starting point
 Ray = (Point, Vector)
- Let a ray be defined by point **p** and vector **d**
- The <u>parametric</u> form of a ray expresses it as a function as some scalar t, giving the set of all points the ray passes through:
 - $-r(t) = \mathbf{p} + t\mathbf{d}, 0 \le t \le \infty$

Middle Tennersee State Heiserits

Vectors

- We said that a vector encodes a direction and a magnitude in n-D
 - How does it do this?
- Here are two ways to denote a vector in 2-D:

$$\mathbf{V} = \langle V_x, V_y \rangle$$

$$\mathbf{V} = \left[egin{array}{c} V_x \ V_y \end{array}
ight]$$

and the world of the state of t

Vector Magnitude

- Geometrically, the magnitude of a vector is the Euclidean distance between its start and end points, or more simply, it's length
- Vector magnitude in n-D:

$$||\mathbf{V}|| = \sqrt{\sum_{i=1}^{n} V_i^2}$$

• Vector magnitude in 2-D:

$$||\mathbf{V}||=\sqrt{V_x^2+V_y^2}$$

Normalized Vectors

- Most of the time, we want to deal with normalized, or unit, vectors
- This means that the magnitude of the vector is 1: $||\mathbf{V}|| = 1$
- We can normalize a vector by dividing the vector by its magnitude:

$$\hat{\boldsymbol{V}} = \frac{V}{||\mathbf{V}||}$$

Points and Vectors

- Can define a vector by 2 points
 - Point Point = Vector
- Can define a new point by a point and a vector
 - Point + Vector = Point

Atiddle Tennessee State Heinesite

Vector Multiplication?

- What does it mean to multiply two vectors?
 - Not uniquely defined
- Two product operations are commonly used:
 - Dot (scalar, inner) product
 - Result is a scalar
 - Cross (vector, outer) product
 - Result is a new vector

ARIAN Toronto Cara Indiana

Dot Product Application: Lighting

- $P \bullet Q = ||P|| \bullet ||Q|| \cos(\alpha)$
- So what does this mean if P and Q are normalized?
 - Can get $\cos(\alpha)$ for just 3 multiplies and 2 adds (in 3D)
 - Very useful in lighting and shading calculations
 - Example: Lambert's cosine law

Middle Tennessee State Universit

Dot Product

$$\mathbf{P} \cdot \mathbf{Q} = \sum_{i=1}^{n} P_{i} Q_{i} = \begin{bmatrix} P_{1} & P_{2} & \dots & P_{n} \end{bmatrix} \begin{bmatrix} Q_{1} \\ Q_{2} \\ \dots \\ Q_{n} \end{bmatrix}$$

$$\mathbf{P} \cdot \mathbf{Q} = ||\mathbf{P}|| \; ||\mathbf{Q}|| \; \cos \alpha$$

$$\alpha = \cos^{-1}\left(\frac{\mathbf{P} \cdot \mathbf{Q}}{||\mathbf{P}|| \, ||\mathbf{Q}||}\right)$$

Cross Product Application: Normals

- A <u>normal</u> (or <u>surface normal</u>) is a vector that is perpendicular to a surface at a given point
 - This is often used in lighting calculations
- The cross product of 2 orthogonal vectors on the surface is a vector perpendicular to the surface
 - Can use the cross product to compute the normal

ARABI Tonor Charles Indiana

Columns and Rows

• In this class, we will generally assume that a list forms a column vector:

$$(a,b,c,d) \Longrightarrow \left[egin{array}{c} a \\ b \\ c \\ d \end{array} \right]$$

• The reason for this will become clear when we talk about matrices

Middle Tennessee State Heiserits

Matrices

- Reminder: A matrix is a rectangular array of numbers
 - An m x n matrix has m rows and n columns
- M_{ij} denotes the entry in the i-th row and j-th column of matrix M
 - These are generally thought of as 1-indexed
 - instead of 0-indexed
- ▶ Here, M is a 2x5 matrix:

$$\mathbf{M} = \left[\begin{array}{cccc} M_{11} & M_{12} & M_{13} & M_{14} & M_{15} \\ M_{21} & M_{22} & M_{23} & M_{24} & M_{25} \end{array} \right]$$

Mariana Tanana Cara da Santa d

Matrix Transposes

- The transpose of an m x n matrix is an n x m matrix
 - Denoted \mathbf{M}^{T}
 - $-M^{T_{ij}}=M_{ji}$

$$\mathbf{M}^T = \left[\begin{array}{ccccc} M_{11} & M_{12} & M_{13} & M_{14} & M_{15} \\ M_{21} & M_{22} & M_{23} & M_{24} & M_{25} \end{array} \right]^T = \left[\begin{array}{cccc} M_{11} & M_{21} \\ M_{12} & M_{22} \\ M_{13} & M_{23} \\ M_{14} & M_{24} \\ M_{15} & M_{25} \end{array} \right]$$

and the world of the state of t

Matrix Addition

- Only well defined if the dimensions of the 2 matrices are the same
 - That is, $m_1 = m_2$ and $n_1 = n_2$
 - Here, M and G are both 2 x 5

$$(\mathbf{M} + \mathbf{G})_{ij} = M_{ij} + G_{ij}$$

$$\mathbf{M} + \mathbf{G} = \left[\begin{array}{cccc} M_{11} + G_{11} & M_{12} + G_{12} & M_{13} + G_{13} & M_{14} + G_{14} & M_{15} + G_{15} \\ M_{21} + G_{21} & M_{22} + G_{22} & M_{23} + G_{23} & M_{24} + G_{24} & M_{25} + G_{25} \end{array} \right]$$

Matrix Scaling

- Just like vector scaling
 - Matrix * Scalar = Matrix

$$(a\mathbf{M})_{ij} = aM_{ij}$$

$$a\mathbf{M} = \left[\begin{array}{cccc} aM_{11} & aM_{12} & aM_{13} & aM_{14} & aM_{15} \\ aM_{21} & aM_{22} & aM_{23} & aM_{24} & aM_{25} \end{array} \right]$$

Properties of Matrix Addition and Scaling

Addition is Commutative

$$\mathbf{F} + \mathbf{G} = \mathbf{G} + \mathbf{F}$$

Addition is Associative

$$(\mathbf{F} + \mathbf{G}) + \mathbf{H} = \mathbf{F} + (\mathbf{G} + \mathbf{H})$$

Scaling is Associative

$$a(b\mathbf{F}) = (ab)\mathbf{F}$$

Scaling and Addition are Distributive

$$a(\mathbf{F} + \mathbf{G}) = a\mathbf{F} + a\mathbf{G}$$

$$(a+b)\mathbf{F} = a\mathbf{F} + b\mathbf{F}$$

Matrix Multiplication

- Only well defined if the number of columns of the first matrix and the number of rows of the second matrix are the same
 - Matrix * Matrix = Matrix
 - i.e. if F is m x n, and G is n x p, then FG if $m \times p$
- $(\mathbf{FG})_{ij} = \sum_{k=1}^{m} F_{ik} G_{kj}$ Let's do an example

The Identity Matrix

- Defined such that the product of any matrix M and the identity matrix I is M
 - IM = MI = M
- The identity matrix is a square matrix with ones on the diagonal and zeros elsewhere

$$(\mathbf{I}_n)_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

$$(\mathbf{I}_n)_{ij} = \left\{ \begin{array}{ccc} 0 & i \neq j \\ 1 & i = j \end{array} \right.$$
 $\mathbf{I}_3 = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)$

Back to Graphics...

- In computer graphics, we work with objects defined in a three dimensional world
- All objects to be drawn, and the cameras used to draw them, have shape, position, and orientation.
- We must write computer programs that somehow
 - describe these objects
 - describe how light bounces around illuminating them
 - so that the final pixel values on the display can be computed.

Middle Tennessee State University

Back to Graphics...

- The two fundamental sets of tools that come to our aid in graphics are *vector analysis* (Ch. 4) and *transformations* (Ch. 5).
- We develop methods to describe various geometric objects, and we learn how to convert geometric ideas to numbers.
- This provides a collection of crucial algorithms that we can use in graphics programs.

Mariana Tanana Cara da Santa d

Easy Problems for Vectors

- Where is the center of the circle through the 3 points?
- What image shape appears on the viewplane, and where?
- Where does the reflection of the cube appear on the shiny cone, and what is the exact shape of the reflection?

Basics of Points and Vectors

 All points and vectors are defined relative to some coordinate system. Shown below are a 2D coordinate system and a right- and a left-handed 3-D coordinate system.

Standard Unit Vectors

- The standard unit vectors in 3D are i = (1,0,0), j = (0, 1, 0), and k = (0, 0, 1). k always points in the positive z direction
- In 2D, i = (1,0) and j = (0, 1).
- The unit vectors are orthogonal.

Finding a 2D "Perp" Vector

- If vector a = (a_x, a_y), then the vector perpendicular to a in the counterclockwise sense is a^{\(\pi\)} = (-a_y, a_x), and in the clockwise sense it is -a^{\(\pi\)}.
- In 3D, any vector in the plane perpendicular to a is a "perp" vector.

Miridle Tennessee State University

Properties of ___

- $(a \pm b)^{\perp} = a^{\perp} \pm b^{\perp}$
- $(sa)^{\perp} = s(a^{\perp})$
- (a[⊥])[⊥] = -a
- $\mathbf{a}^{\perp} \cdot \mathbf{b} = -\mathbf{b}^{\perp} \cdot \mathbf{a} = -\mathbf{a}_{\mathbf{y}} \mathbf{b}_{\mathbf{x}} + \mathbf{a}_{\mathbf{x}} \mathbf{b}_{\mathbf{y}}$
- **a**[⊥] · **a** = a · **a**[⊥] = 0
- $|a^{\perp}| = |a|$

Mary Mary

Orthogonal Projections and Distance from a Line

- We are given 2 points A and C and a vector **v**. The following questions arise:
 - How far is C from the line L that passes through A in direction $\ensuremath{\mathbf{v}}\xspace^2$
 - $-% \frac{1}{2}\left(-\right) =-\left(-\right) =-$
 - How do we decompose a vector c = C A into a part along L and a part perpendicular to L?

Answering the Questions

- We may write $\mathbf{c} = \mathbf{K}\mathbf{v} + \mathbf{M}\mathbf{v}^{\perp}$.
- If we take the dot product of each side with **v**,
 - we obtain $\mathbf{c} \cdot \mathbf{v} = K \mathbf{v} \cdot \mathbf{v} + M \mathbf{v}^{\perp} \cdot \mathbf{v} = K |\mathbf{v}|^2$,
 - or $K = c \cdot v / |v|^2$.
- Likewise, taking the dot product with v[⊥]
 - gives M = c·v[⊥]/|v|².
- When might this be useful?

Middle Tennessee State University

Practice Question

- Find the projection of the vector C=(6, 4) onto v=(1,2)
- How far is the point C=(6, 4) from the line that passes through A=(1, 1) and B=(4, 9)?

Notation used here: Capital letters for points, and lower letters for vectors.

and the Transcription of the Control of the Control

Reflections

- When light reflects from a mirror, the angle of reflection must equal the angle of incidence:
 - $\theta_1 = \theta_2$.
- Vectors and projections allow us to compute the new direction r, in either two-dimensions or three dimensions.

• Given: a=(4, -2) and surface normal n=(0, 3) what is a's reflected light about n?

Middle Tennessee State Heiserits

Properties (2)

- $a \cdot (a \times b) = 0$
- $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$, where θ is the smaller angle between \mathbf{a} and \mathbf{b} .
- **|a** x **b|** is also the area of the parallelogram formed by **a** and **b**.
- |a x b| = 0 if a and b point in the same or opposite directions, or if one or both has length 0.

Coordinate Systems and Frames

- A vector or point has coordinates in an underlying coordinate system.
- In graphics, we may have multiple coordinate systems
 - with origins located anywhere in space.
- We define a coordinate frame as a single point (the origin, *O*) with 3 mutually perpendicular <u>unit</u> vectors: **a**, **b**, and **c**.

Andrew Townson Control Control

Coordinate Frames

- A vector \mathbf{v} is represented by (v_1, v_2, v_3) such that $\mathbf{v} = v_1 \mathbf{a} + v_2 \mathbf{b} + v_3 \mathbf{c}$.
- A point $P O = p_1 \mathbf{a} + p_2 \mathbf{b} + p_3 \mathbf{c}$.

Homogeneous Coordinates

- It is useful to represent both points and vectors by the same set of underlying objects, (a, b, c, O).
- A vector has no position, so we represent it as (a, b, c, O)(v₁, v₂, v₃,0)^T.
- A point has an origin (O), so we represent it by (a, b, c, O)(v₁, v₂, v₃,1)^T.

Changing to and from Homogeneous Coordinates

- To: if the object is a vector, add a 0 as the 4th coordinate;
 if it is a point, add a 1.
- From: simply remove the 4th coordinate.
- OpenGL uses 4D homogeneous coordinates for all its vertices.
 - If you send it a 3-tuple in the form (x, y, z), it converts it immediately to (x, y, z, 1).
 - If you send it a 2D point (x, y), it first appends a 0 for the zcomponent and then a 1, to form (x, y, 0, 1).
- All computations are done within OpenGL in 4D homogeneous coordinates.

Middle Tennessee State Univers

Combinations

- · Why? Easy math
- Linear combinations of vectors and points:
 - The difference of 2 points is a vector: the fourth component is 1-1=0
 - The sum of a point and a vector is a point: the fourth component is 1 + 0 = 1
 - The sum of 2 vectors is a vector: 0 + 0 = 0
 - A vector multiplied by a scalar is still a vector: a x 0 =
 0.
 - Linear combinations of vectors are vectors.

Middle Tennessee State Universit

Combinations (2)

- The sum of 2 points:
 E=a₁·P₁ + a₂·P₂ is a point only if the points are part of an affine combination, so that a₁ + a₂ = 1. The sum is a vector only if a₁ + a₂ = 0.
- We require this rule to remedy the problem shown at right:

ndayayk

Combinations (3)

- If we form any linear combination of two points, say E = fP + gR, when f + g is different from 1, a problem arises if we translate the origin of the coordinate system.
- Suppose the origin is translated by vector u, so that P is altered to P + u and R is translated to R + u.
- If *E* is a point, it must be translated to *E'* = *E* + **u**.
- But we have E' = fP + gR + (f + g)u, which is not E + u unless f + g = 1.

Point + Vector

- Suppose we add a point A and a vector that has been scaled by a factor t:
 - The result is a point, P = A + tv.
- Now suppose v = B A, the difference of 2 points, then: P = tB + (1-t)A,
 - P is an affine combination of two points, A and B
 - P is always on the line connecting A and B
 - The position of P on line AB is proportional to t

Linear Interpolation of 2 Points

- P = (1-t)A + tB is a linear interpolation (lerp or tween) of 2 points. This is very useful in graphics in many applications,
 - $-P_x$ (t) provides an x value that is fraction t of the way between A_x and B_x . (Likewise P_v , P_z).

```
float Tween (float A, float B, float t)
{
  return A + (B - A) * t; // return float
}
```

Maria di Carante del Carante d

Tweening and Animation

- Tweening takes 2 polylines and interpolates between them (using lerp) to make one turn into another (or vice versa).
- We are finding here the point P(t) that is a fraction t of the way along the straight line (not to be drawn) from point A to point B.
- To start, it is easiest if you use 2 polylines with the same number of lines.

A PORTUGE TO A STATE OF THE STA

Tweening

- We use polylines A and B, each with n points numbered 0, 1, ..., n-1.
- We form the points P_i(t) = (1-t)A_i + tB_i, for t = 0.0, 0.1, ..., 1.0 (or any other set of t in [0, 1]), and draw the polyline for P_i.

Middle Tennessee State University

Use of Tweening in animation

- In films, artists draw only the key frames of an animation sequence (usually the first and last).
 - Tweening is used to generate the in-between frames.

- Tweening demo

Practice Questions

- What is the effect of tweening when all of the points A_i in polyline A are the same? How is polyline B distorted in its appearance in each tween?
- Polyline A is a square with vertices (1, 1), (-1, 1), (-1, -1), (1, -1) and polyline B is a wedge with vertices (4, 3), (5, -2), (4, 0), (3, -2). Sketch the shape P(t) for t=-1, -0.5, 0.5, and 1.5.

and the Transport of State (1) to the State (1)

Other uses of Tweening

- We want a smooth curve that passes through or near 3 points (A, B, and C). We expand ((1-t) + t)² and write: P(t) = (1-t)²A + 2t(1-t)B + t²C
 - This is called the Bezier curve for points A, B, and C.
 - It can be extended to 4 points by expanding
 ((1-t) + t)³ and using each term as the coefficient of a point.

