МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения» Тема: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студент гр. 8304	Птухов Д. А.
Преподаватель	Кирьянчиков В. А.

Санкт-Петербург

Цель работы.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Ход работы.

Равномерный закон распределения.

Был сгенерирован массив из 30-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 1.

Таблица 1 — Равномерное распределение, $n = 30 (100\%)$	Таблица	ца I – Равномерное рас	зпределение, <i>п</i>	= 30	(100%)
---	---------	------------------------	-----------------------	------	--------

i	1	2	3	4	5	6	7	8	9	10
X_i	0.881	1.634	1.88	1.922	2.791	3.454	5.117	5.917	5.947	6.154
i	11	12	13	14	15	16	17	18	19	20
X_i	6.921	7.37	7.771	8.284	9.034	9.113	9.288	10.358	12.586	12.777
i	21	22	23	24	25	26	27	28	29	30
X_i	12.99	14.37	14.462	15.577	15.707	16.659	17.077	18.019	18.934	19.531

Формула коэффициента: $A=\frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i}=20.42$. Условие сходимости $A>\frac{n+1}{2}$ выполнено: 20.42>15.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 2.

Таблица 2 – Расчёт значений функций для равномерного распределения (100%).

m	31	32	33	34	35	36
$f_n(m)$	3.99499	3.02725	2.5585	2.25546	2.03488	1.86345
g(m,A)	2.83619	2.59122	2.3852	2.20953	2.05796	1.92585
$ f_n(m)-g(m,A) $	1.1588	0.43603	0.17330	0.04594	0.02308	0.06240

Минимум разности достигается при m=35. Первоначальное количество ошибок B=m-1=34. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0070349$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где j=n+1,n+2...,n+k. Результат представлен в таблице 3.

Таблица 3 — Расчет времени обнаружения следующих ошибок для равномерного распределения (100%).

j	31	32	33	34
X_j (дней)	35.5367	47.3822	71.0734	142.147

Было рассчитано время до завершения тестирования $t_k=296.14$ дней. Было рассчитано общее время тестирования $t_{\rm общ}=588.671$ дней.

Был сгенерирован массив из 24-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 4.

Таблица 4 – Равномерное распре	еделение, $n=1$	24 (80%).
--------------------------------	-----------------	-----------

i	1	2	3	4	5	6	7	8
X_i	1.444	3.0224	3.3917	3.5371	3.7231	3.9485	4.8485	5.7457
i	9	10	11	12	13	14	15	16
X_i	6.6160	7.3213	7.7065	7.7139	8.2926	8.5112	8.9705	11.5989
i	17	18	19	20	21	22	23	24
X_i	13.0842	13.3621	16.5402	16.7665	16.7681	17.0268	18.1591	18.9217

Формула коэффициента: $A=\frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i}=16.4$. Условие сходимости $A>\frac{n+1}{2}$ выполнено: 16.4>12.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 5.

Таблица 5 — Расчёт значений функций для равномерного распределения (80%).

m	25	26	27	28	29
$f_n(m)$	3.77596	2.81596	2.35442	2.05812	1.84384
g(m,A)	2.78945	2.499	2.26333	2.06828	1.90418
$ f_n(m)-g(m,A) $	0.986504	0.316956	0.091087	0.010158	0.06034

Минимум разности достигается при m=28. Первоначальное количество ошибок B=m-1=27. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00911$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где } j = n+1, n+2 \dots, n+k. \ \text{Результат представлен в таблице 6}.$

Таблица 6 — Расчет времени обнаружения следующих ошибок для равномерного распределения (80%).

j	25	26	27
X_j (дней)	36.5875	54.8813	109.763

Было рассчитано время до завершения тестирования $t_k=201.232$ дней. Было рассчитано общее время тестирования $t_{\rm общ}=428.252$ дней.

Был сгенерирован массив из 18-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 7.

Таблица 7 — Равномерное распределение, n = 18 (60%).

i	1	2	3	4	5	6	7	8	9
X_i	3.9318	4.1958	5.6485	5.7143	7.7370	9.4858	11.7922	11.8012	12.2734
i	10	11	12	13	14	15	16	17	18
X_i	12.4475	13.5441	15.754	16.446	16.638	17.131	17.424	17.719	19.930

Формула коэффициента: $A=\frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i}=11.57$. Условие сходимости $A>\frac{n+1}{2}$ выполнено: 11.57>9.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 8.

Таблица 8 – Расчёт значений функций для равномерного распределения (60%).

m	19	20	21	22	23	24	25
$f_n(m)$	3.4951	2.5477	2.0977	1.8120	1.6075	1.4510	1.3260
g(m,A)	2.4214	2.1343	1.9080	1.7252	1.5743	1.4477	1.3399
$ f_n(m) $	1.0738	0.4135	0.1897	0.0869	0.0332	0.0033	0.01394
-g(m,A)							

Минимум разности достигается при m=24. Первоначальное количество ошибок B=m-1=23. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00659$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 9}.$

Таблица 9 — Расчет времени обнаружения следующих ошибок для равномерного распределения (60%).

j	19	20	21	22	23
X_j (дней)	30.3403	37.9254	50.5672	75.8509	151.702

Было рассчитано время до завершения тестирования $t_k=346.39$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=565.998$ дней.

Экспоненциальный закон распределения.

Был сгенерирован массив из 30-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y=-ln(t)/b. Массив был упорядочен по возрастанию. Результаты представлены в таблице 10.

Таблица 10 – Экспоненциальное распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.014	0.449	0.820	0.854	0.898	1.198	1.490	2.134	2.585	3.213
i	11	12	13	14	15	16	17	18	19	20
X_i	4.428	5.568	5.937	6.779	7.158	7.333	9.617	10.179	10.217	11.092
i	21	22	23	24	25	26	27	28	29	30
X_i	11.619	12.173	13.963	14.091	15.114	17.36	19.91	28.47	28.70	34.17

Формула коэффициента: $A=\frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i}=22.85$. Условие сходимости $A>\frac{n+1}{2}$ выполнено: 22.85>15.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 11.

Таблица 11 — Расчёт значений функций для экспоненциального распределения (100%).

m	31	32	33
$f_n(m)$	3.995	3.027	2.5585
g(m,A)	3.67903	3.27714	2.9544
$ f_n(m)-g(m,A) $	0.315961	0.249892	0.395909

Минимум разности достигается при m=32. Первоначальное количество ошибок B=m-1=31. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01140$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где $j=n+1,n+2\dots,n+k$. Результат представлен в таблице 12. (В таблице представлен не все X_j , так как по условию нужно указать 5 первых)

Таблица 12 — Расчет времени обнаружения следующих ошибок для экспоненциального распределения (100%).

j	31
X_j (дней)	87.7419

Было рассчитано время до завершения тестирования $t_k=87.74$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=375.28$ дней.

Был сгенерирован массив из 24-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Массив был упорядочен по возрастанию. Результаты представлены в таблице 13.

Таблица 13 – Экспоненциальное распределение, n=24 (80%).

i	1	2	3	4	5	6	7	8
X_i	0.183	1.016	1.559	2.070	2.669	2.777	4.755	5.526
i	9	10	11	12	13	14	15	16
X_i	6.172	6.464	10.106	10.693	11.088	11.711	12.111	12.210
i	17	18	19	20	21	22	23	24
X_i	12.705	13.195	14.370	15.006	18.821	19.992	21.250	21.306

Формула коэффициента: $A = \frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i} = 16.95$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 16.95 > 12.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 14.

Таблица 14 — Расчёт значений функций для экспоненциального распределения (80%).

m	25	26	27	28
$f_n(m)$	3.776	2.816	2.354	2.058
g(m,A)	2.98031	2.6511	2.38738	2.17139
$ f_n(m)-g(m,A) $	0.795646	0.164859	0.032963	0.113262

Минимум разности достигается при m=27. Первоначальное количество ошибок B=m-1=26. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01004$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где } j=n+1, n+2\dots, n+k. \ \text{Результат представлен в таблице 15}.$

Таблица 15 — Расчет времени обнаружения следующих ошибок для экспоненциального распределения (80%).

j	25	26
X_j (дней)	49.794	99.5879

Было рассчитано время до завершения тестирования $t_k = 149.38$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 387.14$ дней.

Был сгенерирован массив из 18-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Массив был упорядочен по возрастанию. Результаты представлены в таблице 16.

Таблица 16 - Экспоненциальное распределение, <math>n = 18 (60%).

i	1	2	3	4	5	6	7	8	9
X_i	0.212	0.455	0.960	1.561	4.435	5.081	5.336	5.789	6.928
i	10	11	12	13	14	15	16	17	18
X_i	6.943	7.313	7.445	11.387	14.066	25.496	25.909	27.237	30.145

Формула коэффициента: $A=\frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i}=13.90$. Условие сходимости $A>\frac{n+1}{2}$ выполнено: 13.90>9.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 17.

Таблица 17 – Расчёт значений функций для экспоненциального распределения (60%).

m	19	20
$f_n(m)$	3.495	2.547
g(m,A)	3.53167	2.9524
$ f_n(m)-g(m,A) $	0.0365639	0.40466

Минимум разности достигается при m=19. Первоначальное количество ошибок B=m-1=18. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01892$. Условие B>n не выполняется.

Было рассчитано общее время тестирования $t_{\text{общ}} = 186.7$ дней.

Релеевский закон распределения.

Был сгенерирован массив из 30-ти элементов, распределенных по релеевскому закону с параметром c = 8.0. Значения случайной величины Y с релеевским законом распределения с параметром «с» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = c * sqrt(-2 * ln(t)). Массив был упорядочен по возрастанию. Результаты представлены в таблице 18.

i	1	2	3	4	5	6	7	8	9	10
X_i	1.885	1.899	3.407	5.057	5.178	5.321	5.470	5.522	5.599	5.652
i	11	12	13	14	15	16	17	18	19	20
X_i	6.905	7.281	7.591	7.605	7.659	7.930	9.555	9.683	9.855	10.873
i	21	22	23	24	25	26	27	28	29	30
X_i	11.09	11.27	11.843	12.689	13.261	13.509	14.239	15.335	16.059	19.597

Таблица 18 – Релеевское распределение, n=30~(100%).

Формула коэффициента: $A = \frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i} = 19.50$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 19.50 > 15.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 19.

Таблица 19 – Расчёт значений функций для релеевского распределения (100%).

m	31	32	33	34	35	36	37	38
$f_n(m)$	3.99	3.02	2.55	2.25	2.035	1.863	1.725	1.609
g(m,A)	2.61	2.40	2.22	2.07	1.94	1.82	1.71	1.62
$ f_n(m) - g(m, A) $	1.39	0.63	0.34	0.19	0.10	0.045	0.010	0.013

Минимум разности достигается при m=37. Первоначальное количество ошибок B=m-1=36. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.006378$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 20}.$

Таблица 20 – Расчет времени обнаружения следующих ошибок для релеевского распределения (100%).

j	31	32	33	34	35	36
X_j (дней)	26.1299	31.3559	39.1949	52.2598	78.3897	156.779

Было рассчитано время до завершения тестирования $t_k = 384.11$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 652.93$ дней.

Был сгенерирован массив из 24-ти элементов, распределенных по релеевскому закону с параметром c=8.0. Массив был упорядочен по возрастанию. Результаты представлены в таблице 21.

i	1	2	3	4	5	6	7	8
X_i	1.151	1.710	3.072	3.998	4.380	5.006	6.294	6.298
i	9	10	11	12	13	14	15	16
X_i	7.119	7.871	7.991	8.487	8.588	8.998	9.308	11.308
i	17	18	19	20	21	22	23	24
X_i	11.389	14.039	14.952	15.311	16.247	18.512	18.919	22.650

Формула коэффициента: $A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 16.40$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 16.40 > 12.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 22.

Таблица 22 – Расчёт значений функций для релеевского распределения (80%).

m	25	26	27	28	29
$f_n(m)$	3.776	2.816	2.354	2.058	1.844
g(m,A)	2.7902	2.4996	2.2638	2.069	1.9045
$ f_n(m)-g(m,A) $	0.9857	0.3163	0.0905	0.01057	0.06070

Минимум разности достигается при m=28. Первоначальное количество ошибок B=m-1=27. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.008855$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где } j = n+1, n+2\dots, n+k. \ \text{Результат представлен в таблице 23}.$

Таблица 23 – Расчет времени обнаружения следующих ошибок для релеевского распределения (80%).

j	25	26	27
<i>X_j</i> (дней)	37.6403	56.4604	112.921

Было рассчитано время до завершения тестирования $t_k = 207.02$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 440.62$ дней.

Был сгенерирован массив из 18-ти элементов, распределенных по релеевскому закону с параметром c=8.0. Массив был упорядочен по возрастанию. Результаты представлены в таблице 24.

Таблица 24 – Релеевское распределение, n = 18 (60%).

i	1	2	3	4	5	6	7	8	9
X_i	2.508	2.656	2.862	2.884	3.999	4.998	5.679	5.717	6.430
i	10	11	12	13	14	15	16	17	18
X_i	6.838	9.403	10.121	10.471	10.597	12.106	12.340	12.945	19.606

Формула коэффициента: $A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 12.32$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 12.32 > 9.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 25.

Таблица 25 – Расчёт значений функций для релеевского распределения (60%).

m	19	20	21	22
$f_n(m)$	3.495	2.548	2.098	1.812
g(m,A)	2.694	2.343	2.073	1.859
$ f_n(m)-g(m,A) $	0.8016	0.2048	0.0247	0.047

Минимум разности достигается при m=21. Первоначальное количество ошибок B=m-1=20. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0145828$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где } j = n+1, n+2 \dots, n+k. \ \text{Результат представлен в таблице 26}.$

Таблица 26 – Расчет времени обнаружения следующих ошибок для релеевского распределения (60%).

m	19	20
X_j (дней)	34.2871	68.5741

Было рассчитано время до завершения тестирования $t_k=102.86$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=245.02$ дней.

Результаты расчетов.

В таблицах 27 и 28 представлены сводные результаты оценки первоначального числа ошибок и полного времени проведения тестирования соответственно.

Таблица 27 – Оценка первоначального числа ошибок.

n	Входные	Распределение					
	данные, %	Равномерное Экспоненциальн		е Релеевское			
30	100	34	31	36			
24	80	27	26	27			
18	60	23	18	20			

Таблица 28 – Оценка полного времени проведения тестирования.

n	Входные	Распределение				
	данные, %	Равномерное	авномерное Экспоненциальное			
30	100	588.7	375.3	652.9		
24	80	428.3	387.1	440.6		
18	60	565.9	186.7	252.0		

Результаты при равномерном распределении ниже, чем при экспоненциальном или релеевском.

Выводы.

В ходе выполнения данной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.