

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

Институт информационных технологий Кафедра вычислительной техники (ВТ)

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ №2

«Графический ввод схемы и симуляция в САПР QUARTUS II и описание логических схем при помощи языка AHDL» по дисциплине «Архитектура вычислительных машин и систем»

 Выполнил студент группы ИКБО-15-22
 Оганнисян Григор Амбрацумович

 Принял преподаватель кафедры ВТ
 Рыжова Анастасия Андреевна

 Практическая работа выполнена
 «__» ______ 2022 г.

 «Зачтено»
 «__» ______ 2022 г.

Содержание

Цель работы	ر .
Постановка задачи	. 3
Теоретический блок	
таблица истинностиТаблица истинности	. 5
Реализация схем и кодов	
Вывод	

Цель работы

Спроектировать логическую схему при помощи графического редактора САПР QUARTUS II. Исследовать работу схемы с использованием сигнального редактора САПР QUARTUS II.

Практическое применение навыков описания цифровых схем с помощью языка описания аппаратуры AHDL. Смоделировать логическую схему при

помощи текстового редактора CAПР QUARTUS II.

Постановка задачи

Нарисовать логический узел в графическом редакторе и сделать его описание при помощи текстового редактора, произвести симуляцию работы, зарисовать диаграммы работы и по их результатам заполнить таблицу истинности схемы.

№ варианта: 22 (3хсотрате A<B)

Теоретический блок

Компаратор - это комбинационная схема, способная сравнивать два входных сигнала и выдавать результат сравнения. Он обычно имеет два N-битных входа для сравнения, N выходов для сигнализации о результатах сравнения, а также дополнительные управляющие входы для настройки его работы.

Компараторы традиционно применяются:

- Для сравнения двух чисел или данных и выдачи сигнала о том, какое из них больше, меньше или равно.
- В различных цифровых системах для выполнения различных операций, таких как сравнение и управление потоком данных.

Таблица истинности

Таблица 1 – Таблица истинности

A0	A1	A2	ВО	B1	B2	A <b< th=""></b<>
0	0	0	0	0	0	0
0	0	0	0	0	1	1
0	0	0	0	1	0	1
0	0	0	0	1	1	1
0	0	0	1	0	0	1
0	0	0	1	0	1	1
0	0	0	1	1	0	1
0	0	0	1	1	1	1
0	0	1	0	0	0	0
0	0	1	0	0	1	0
0	0	1	0	1	0	1
0	0	1	0	1	1	1
0	0	1	1	0	0	1
0	0	1	1	0	1	1
0	0	1	1	1	0	1
0	0	1	1	1	1	1
0	1	0	0	0	0	0
0	1	0	0	0	1	0
0	1	0	0	1	0	0
0	1	0	0	1	1	1
0	1	0	1	0	0	1
0	1	0	1	0	1	1
0	1	0	1	1	0	1
0	1	0	1	1	1	1
0	1	1	0	0	0	0
0	1	1	0	0	1	0
0	1	1	0	1	0	0
0	1	1	0	1	1	0
0	1	1	1	0	0	1
0	1	1	1	0	1	1
0	1	1	1	1	0	1
0	1	1	1	1	1	1
1	0	0	0	0	0	0
1	0	0	0	0	1	0
1	0	0	0	1	0	0
1	0	0	0	1	1	0
1	0	0	1	0	0	0
1	0	0	1	0	1	1
1	0	0	1	1	0	1
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	0	1	0	0	1	0

	I		1		1	
1	0	1	0	1	0	0
1	0	1	0	1	1	0
1	0	1	1	0	0	0
1	0	1	1	0	1	0
1	0	1	1	1	0	1
1	0	1	1	1	1	1
1	1	0	0	0	0	0
1	1	0	0	0	1	0
1	1	0	0	1	0	0
1	1	0	0	1	1	0
1	1	0	1	0	0	0
1	1	0	1	0	1	0
1	1	0	1	1	0	0
1	1	0	1	1	1	1
1	1	1	0	0	0	0
1	1	1	0	0	1	0
1	1	1	0	1	0	0
1	1	1	0	1	1	0
1	1	1	1	0	0	0
1	1	1	1	0	1	0
1	1	1	1	1	0	0
1	1	1	1	1	1	0

Реализация схем и кодов

Рисунок 1 — Логическая схема

Рисунок 2 — Временная диаграмма для логической схемы

Рисунок 3 – Код, реализующий логическую схему

Рисунок 4 — Временная диаграмма для кода

Вывод

Были закреплены и применены навыки по работе с графическим и текстовым редакторами САПР QUARTUS II. Реализована логическая схема в обоих редакторах, произведена симуляция работы, зарисована диаграмма работы и построена таблица истинности. Результаты, полученные в первой работе, совпали с результатами второй.