Module 5: Counting Molecules and Atoms in Chemical Equations

Mark Peever mpeever@gmail.com

October 24 - 31, 2025

1 Overview

- 1. Decomposition Reactions
- 2. Formation Reactions
- 3. Complete Combustion Reactions
- 4. Incomplete Combustion Reactions
- 5. Molecular Mass
- 6. A **Mole** is a fixed number of objects (usually molecules or atoms).

2 Classifying Chemical Reactions

2.1 Decomposition Reactions

Definition 1 (Decomposition Reaction) A reaction that changes a compound into its constituent elements

- these are reasonably easy to predict
- they often (not always) involve some sort of energy input¹
- we can think of our old friend: $2 H_2 O(1) \longrightarrow 2 H_2(g) + O_2(g)$

 $^{^{1}}$ A stable compound represents a *localized* low-energy state, so getting it to decompose can require some energy input.

2.2 Formation Reactions

Definition 2 (Formation Reaction) A reaction that starts with two or more elements and produces one compound

- these are really the opposite of decomposition reactions
- we can even write them by writing decomposition reactions backwards: $2 H_2(g) + O_2(g) \longrightarrow 2 H_2O(l)$

2.3 Complete Combustion Reactions

Definition 3 (Complete Combustion Reaction) A reaction in which O_2 is added to a compound containing carbon (C) and hydrogen (H), producing CO_2 and H_2O

- this is a narrow definition of burning²
- this definition excludes some really exciting combustion reactions, like $2 \text{ Mg (s)} + O_2(g) \longrightarrow 2 \text{ MgO (s)}$
- technically, our *formation* example is a combustion, but we're classifying that differently for now

2.4 Incomplete Combustion Reactions

- these are combustion reactions where insufficient O₂ means the combustion produces
 CO or even just C instead of CO₂
- these can be pretty harmful even dangerous (breathing CO can actually kill you)
 but they can also be beneficial³
- the main take-away here is just that a combustion reaction can go one of three ways, depending on the O₂ levels in the environment

3 Atomic Mass

We've already talked about The Law of Definite Proportions, and how that led Dalton to formulate theories about atoms. Now we're going to dig more into that...

- every element on the Periodic Table contains two important numbers: the *atomic* number (above the element symbol), and the *atomic* mass (below the symbol)
- remember that an element is made up of only one type of atom, so we'll use the terms "atom" and "element" interchangeably here

²This is really a glimpse into the exciting world of organic chemistry.

³This is, after all, how we make charcoal.

- the atomic number tells us the number of protons (and hence the number of electrons) in the atom⁴
- the atomic mass tells us how much mass the atom has, in atomic mass units (amu)
- the relationship between amu and grams is: $1g = 6.02214076 \times 10^{23} amu$
- so one H atom has the mass of 1.00794amu, the mass of $6.02214076 \times 10^{23}$ H atoms is 1.00794g
- that means our Periodic Table can help us calculate how many atoms of any given element we have, if we know the mass of the sample:

Example 1 How many atoms are in 1.00kg of gold (Au)?

$$m_{unit} = \frac{196.966569amu}{1atom}$$

$$m_{sample} = 1.00kg$$

$$= (1.00kg)(\frac{1000g}{1kg})(\frac{6.02214076 \times 10^{23}amu}{1g})$$

$$= (1.00kg)(\frac{1000g}{1kg})(\frac{6.02214076 \times 10^{23}amu}{1g})$$

$$= 6.02214076 \times 10^{26}amu$$

$$count = \frac{m}{m_{unit}}$$

$$= (6.02214076 \times 10^{26}amu)(\frac{1atom}{196.966569amu})$$

$$= (6.02214076 \times 10^{26}amu)(\frac{1atom}{196.966569amu})$$

$$= 3.0574430933 \times 10^{24}atoms$$

$$= 3.05744309 \times 10^{24}atoms$$

4 Molecular Mass

5 Mole

Definition 4 (Mole) A mole is $6.02214076 \times 10^{23}$ objects.

- a mole is a number of objects
- a mole is like a pair, or a dozen, or a gross (see Table 1)

⁴More on this later

- an element's mass in amu is the same as a mole of that element's mass in g^5
- because atoms and molecules are tiny⁶, we find it easier to measure out *moles* than *atoms*
- let's consider our old friend: $2 H_2 + O_2 \longrightarrow 2 H_2 O$
 - so it takes two H₂ molecules and one O₂ molecule to make two H₂O molecules
 - or, we could say it takes two dozen $\rm H_2$ molecules and one dozen $\rm O_2$ molecule to make two dozen $\rm H_2O$ molecules
 - or, we could say it takes two gross of H₂ molecules and one gross of O₂ molecule to make two gross of H₂O molecules
 - or, we could say it takes two moles of H_2 molecules and one mole of O_2 molecule to make two mole of H_2O molecules
- technically, chemical reactions occur "per each," but we find it much easier to measure them "per mole"
- so all our chemistry is going to be done "per mole"

6 Homework

Review Problems: p. 161 # 1–10 (not to be turned in) Practice Problems: p. 162 # 1–10 (due 2025-11-07) Experiment 5.1, p. 149 (due 2025-11-07)

References

[Wile, 2003] Wile, J. L. (2003). Exploring Creation with Chemistry. Apologia Educational Ministries, Inc., 2 edition.

 $^{^5}$ This is why there aren't mass units in the Periodic Table: a single H atom has a mass of 1.01amu, a mole of H atoms has a mass of 1.01g.

⁶Like really, really small.

Name	Number
pair	2
trio	3
half-dozen	6
dozen	12
baker's dozen	13
score	20
gross	144
\mathbf{mole}	6.022×10^{23}

Table 1: Names of collections of objects