ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ»

Кафедра ВС

Лабораторная работа №1 по дисциплине «Параллельные вычислительные технологии» по теме: «Оптимизация доступа к памяти, циклов и ветвлений»

Выполнил: ст. гр. ИВ-823 Шиндель Э. Д.

Проверил: Заведующий кафедрой ВС Курносов М. Г.

Содержание:

1. Задание 1	3
2. Задание 2	5
3. Задание 3	7
4. Листинг	9

Задание 1

dgemm_def	dgemm_	transpose	dgemm_block							
Time, s	Time, s	Speedup	BS = 2		BS = 4		BS = 8		BS = 16	
			Time,	Speedup	Time,	Speedup	Time,	Speedup	Time,	Speedup
			S		s		S		S	
1,727	1,299	1,33	1,457	1,19	1,077	1,6	0,966	1,788	0,941	1,84

Эксперимент проводился на кластере Jet

Аннотированный исходный текст программы, сформированный с помощью Valgrind

```
[shindel@jet Dgemm]$ perf record -e cache-misses ./dgemm
dgemm_def = 1.734455 sec.
dgemm_transpose = 1.302567 sec.
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.184 MB perf.data (4804 samples) ]
[shindel@jet Dgemm]$ ■
```

```
3K of event 'cache-misses:u', 4000 Hz, Event count (approx.): 89341
f /home/students/iv823/shindel/lab1/Dgemm/dgemm
                        void dgemm_def(double *a, double *b, double *c, int n)
                              for (i = 0; i < n; i++) {

ovl $8x8,-8x4(%rbp)

fpr fpr (j = 0; j < n; j++) {

ovl $8x8,-8x8(%rbp)
                            %rdx,%rax
0x0(,%rax,8),%rdx
-0x28(%rbp),%rax
%rdx,%rax
(%rax),%xmm1
0.08
0.20
                           imul -0x2c(%rbp),%eax
movslq %eax,%rdx
mov -0xc(%rbp),%eax
                                       %rdx,%rax

0x0(,%rax,8),%rdx

-0x18(%rbp),%rax

%rdx,%rax
(%rax),%xmm2
                       imul -0x2(%rbp),%eax
imul -0x2(%rbp),%eax
movslq %eax,%rdx
mov -0x8(%rbp),%eax
cltq
add %rdx,%rax
lea 0x8(,sax)
0.03
                                        %rdx,%rax
0x0(,%rax,8),%rdx
-0x20(%rbp),%rax
%rdx,%rax
(%rax),%xmm0
0.03
                           mov -0x4(%rbp),%eax
imul -0x2c(%rbp),%eax
movslq %eax,%rdx
mov -0x8(%rbp),%eax
0.06
                                        %ndx,%nax
%xmm1,%xmm0
%xmm0,%rax)
for (k = 0; k < n; k++) {
50x1,-0xc(%rbp)
-0xc(%rbp),%eax
-0x2c(%rbp),%eax
```

Аннотированный исходный текст программы, сформированный с помощью профилировщика perf

Задание 2

n	Время выполнения функции blend_map	Время выполнения функции blend_map_opt	Ускорение (speedup)		
100 000	0,000557	0,00039	1,43		
1 000 000	0,00603	0,004227	1,43		

```
[shindel@jet Branch]$ perf stat -e branch-misses ./branch
hpctimer: Initializing timer...
hpctimer: TSC ticks per second: 2493682740 (2.49 GHz)
First run (sec.): 0.015998
Mean of 20 runs (sec.): 0.004170

Performance counter stats for './branch':

4358 branch-misses:u

3.109905374 seconds time elapsed

0.092524000 seconds user

0.008045000 seconds sys
```

Количество ветвлений в bland_map

```
[shindel@jet Branch]$ perf record -e branch-misses ./branch
hpctimer: Initializing timer...
hpctimer: TSC ticks per second: 2493692612 (2.49 GHz)
first run (sec.): 0.066307
[perf record: Woken up 1 times to write data ]
[perf record: Woken up 1 times to write data ]
[seff record: Captured and wrote 0.001 MB perf.data (16 samples) ]
[shindel@jet Branch]$ __
```

Аннотированный исходный код программы bland_map

```
[shindel@jet Branch]$ perf stat -e branch-misses ./branch hpctimer: Initializing timer... hpctimer: TSC ticks per second: 2493697890 (2.49 GHz) First run (sec.): 0.014062 Mean of 20 runs (sec.): 0.004258 Performance counter stats for './branch':

4239 branch-misses:u

3.101422863 seconds time elapsed

0.001947000 seconds user
0.009093000 seconds sys
```

Количество ветвлений в bland_map_opt

Задание 3

	Глубина раскрутки цикла									
n			2		4		8		16	
	Time	Time	Speedup	Time	Speedup	Time	Speedup	Time	Speedup	
16 MiB	0,073	0,048	1,52	0,039	1,87	0,037	1,97	0,035	2,09	
64 MiB	0,285	0,189	1,51	0,157	1,82	0,147	1,94	0,138	2,07	

```
[shindel@jet Loop]$ perf stat -e branch-misses ./loop
hpctimer: Initializing timer...
hpctimer: TSC ticks per second: 2493700077 (2.49 GHz)
Sum = 67108864
Elapsed time (sec.): 0.286126

Performance counter stats for './loop':

4350 branch-misses:u

3.812489618 seconds time elapsed

0.539931000 seconds user
0.191267000 seconds sys
```

Количество ветвлений в исходной программе

```
[shindel@jet Loop]$ perf record -e branch-misses ./loop
hpctimer: Initializing timer...
hpctimer: Tsc ticks per second: 2493688980 (2.49 GHz)
Sum = 6736864
Elapsed time (sec.): 0.287896
[ perf record: Woken up 1 times to write data ]
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.001 MB perf.data (9 samples) ]
[shindel@jet Loop]$ ____
```

```
### Office of a point of a point
```

Аннотированный исходный код программы

```
[shindel@jet Loop]$ perf stat -e branch-misses ./loop
hpctimer: Initializing timer...
hpctimer: TSC ticks per second: 2493691285 (2.49 GHz)
Sum = 67188864
Elapsed time (sec.): 0.136914

Performance counter stats for './loop':

4318 branch-misses:u

3.595893667 seconds time elapsed

0.399477000 seconds user
0.194745000 seconds sys
```

Количество ветвлений в программе с развёрнутым циклом

Листинг

```
/*
 * dgemm.c: DGEMM - Double-precision General Matrix Multiply.
 */
#include <stdio.h>
#include <stdlib.h>
#include "hpctimer.h"
enum {
    N = 512,
    NREPS = 3
};
double A[N * N], B[N * N], C[N * N];
void dgemm_def(double *a, double *b, double *c, int n)
{
    int i, j, k;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            for (k = 0; k < n; k++) {
                *(c + i * n + j) += *(a + i * n + k) * *(b + k * n + j);
            }
```

```
}
    }
}
void dgemm_transpose(double *a, double *b, double *c, int n)
{
    int i, j, k;
    for (i = 0; i < n; i++) {
        for (k = 0; k < n; k++) {
            for (j = 0; j < n; j++) {
                *(c + i * n + j) += *(a + i * n + k) * *(b + k * n + j);
            }
        }
    }
}
void dgemm_block(double *a, double *b, double *c, int n, int BS)
{
    int i, j, k, i0, j0, k0;
    double *a0, *b0, *c0;
    for (i = 0; i < n; i += BS) {
        for (j = 0; j < n; j += BS) {
            for (k = 0; k < n; k += BS) {
                for (i0 = 0, c0 = (c + i * n + j), a0 = (a + i * n + k);
                                         i0 < BS; ++i0, c0 += n, a0 += n) {
```

```
for (k0 = 0, b0 = (b + k * n + j);
                                                k0 < BS; ++k0, b0 += n) {
                        for (j0 = 0; j0 < BS; ++j0) {
                             c0[j0] += a0[k0] * b0[j0];
                        }
                    }
                }
            }
        }
    }
}
void init_matrix(double *a, double *b, double *c, int n)
{
    int i, j, k;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            for (k = 0; k < n; k++) {
                *(a + i * n + j) = 1.0;
                *(b + i * n + j) = 2.0;
                *(c + i * n + j) = 0.0;
            }
        }
    }
}
```

```
void print_matrix(double *a, int n)
{
    int i, j;
    printf("Matrix:\n");
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            printf("%12.2f", *(a + i * n + j));
        }
        printf("\n");
    }
}
int main(int argc, char **argv)
{
    int i;
    double t1, t2, tsum = 0.0;
    for (i = 0; i < 3; i++) {
        init_matrix(A, B, C, N);
        t1 = hpctimer_getwtime();
        dgemm_def(A, B, C, N);
        t1 = hpctimer_getwtime() - t1;
    tsum += t1;
    }
   t1 = tsum / 3;
    tsum = 0.0;
```

```
for (i = 0; i < 3; i++) {
       init_matrix(A, B, C, N);
   t2 = hpctimer_getwtime();
       dgemm_transpose(A, B, C, N);
       t2 = hpctimer_getwtime() - t2;
   tsum += t2;
   }
  t2 = tsum / 3;
   tsum = 0.0;
   /*int BS = 16;
   for (i = 0; i < 3; i++) {
       init_matrix(A, B, C, N);
       t3 = hpctimer_getwtime();
       dgemm_block(A, B, C, N, BS);
       t3 = hpctimer_getwtime() - t3;
       tsum += t3;
   }
  t3 = tsum / 3;
   printf("dgemm_def = %.6f sec.\ndgemm_transpose = %.6f sec.\ndgemm_block =
%.6f sec (BS = %d)\n", t1, t2, t3, BS);*/
   printf("dgemm_def = %.6f sec.\ndgemm_transpose = %.6f sec.\n", t1, t2);
   return 0;
```

}

```
* branch.c:
 */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "hpctimer.h"
enum {
    n = 1000000,
    nreps = 20
};
double x[n], y[n], z[n];
void blend_map(double *z, double *x, double *y, int size, int blend)
{
    int i = 0;
    for (i = 0; i < size; i++) {
        if (blend == 255) {
            z[i] = x[i];
        } else if (blend == 0) {
            z[i] = y[i];
        } else {
```

```
z[i] = x[i] * blend + y[i] * (255 - blend) / 256.0;
        }
    }
}
void blend_map_opt(double *dest, double *a, double *b, int size, int blend)
{
    int i = 0;
    if (blend == 255) {
        for (i = 0; i < size; i++) {
            z[i] = x[i];
    }
    } else if (blend == 0) {
        for (i = 0; i < size; i++) {
        z[i] = y[i];
    }
    } else {
   for (i = 0; i < size; i++) {
            z[i] = x[i] * blend + y[i] * (255 - blend) / 256.0;
        }
    }
}
int main()
{
    double tfirst, t;
```

```
int i;
/* First run: warmup */
tfirst = hpctimer_wtime();
//blend_map(z, x, y, n, 0);
blend_map_opt(z, x, y, n, 0);
tfirst = hpctimer_wtime() - tfirst;
/* Measures */
t = hpctimer_wtime();
for (i = 0; i < nreps; i++) {
    //blend_map(z, x, y, n, 0);
    blend_map_opt(z, x, y, n, 0);
}
t = (hpctimer_wtime() - t) / nreps;
printf("First run (sec.): %.6f\n", tfirst);
printf("Mean of %d runs (sec.): %.6f\n", nreps, t);
return 0;
```

}

```
/*
 * loop.c:
 */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "hpctimer.h"
enum { n = 64 * 1024 * 1024 };
int main()
{
    int *v, i, sum;
    double t;
    if ( (v = malloc(sizeof(*v) * n)) == NULL) {
        fprintf(stderr, "No enough memory\n");
        exit(EXIT_FAILURE);
    }
    for (i = 0; i < n; i++)
        v[i] = 1;
    t = hpctimer_wtime();
```

```
for (sum = 0, i = 0; i < n; i++) {
        sum += v[i];
    }
    /*int t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15,
t16;
    t1 = t2 = t3 = t4 = t5 = t6 = t7 = t8 = t9 = t10 = t11 = t12 = t13 = t14
                                                            = t15 = t16 = 0;
    for (sum = 0, i = 0; i < n; i += 16) {
        t1 += v[i];
        t2 += v[i + 1];
        t3 += v[i + 2];
        t4 += v[i + 3];
        t5 += v[i + 4];
        t6 += v[i + 5];
        t7 += v[i + 6];
        t8 += v[i + 7];
        t9 += v[i + 8];
        t10 += v[i + 9];
        t11 += v[i + 10];
        t12 += v[i + 11];
        t13 += v[i + 12];
        t14 += v[i + 13];
        t15 += v[i + 14];
        t16 += v[i + 15];
    }
    sum = t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 + t10 + t11 + t12 + t13
                                                      + t14 + t15 + t16;*/
```

```
t = hpctimer_wtime() - t;

printf("Sum = %d\n", sum);

printf("Elapsed time (sec.): %.6f\n", t);

free(v);

return 0;
}
```