

IS4242 INTELLIGENT SYSTEMS & TECHNIQUES

L2 – Pricing

Aditya Karanam

Pricing

- ▶ What are the ways to improve profits of a company?
 - Profit = (Price Cost)* Volume (or Sales Quantity)
- Assuming no decrease in price, improving unit volume by 1% yields a 3.3% increase in operating profit
- Assuming no loss of volume, a 1% improvement in price, increases operating profit by 11.1%
- ► The fastest and most effective for a company to realize its profits is by getting its pricing right
- ▶ What can be the right price for your product?
 - Simply, price above the cost of goods sold: cost-oriented pricing

Pricing Approaches: Cost-plus Pricing

- Cost-plus pricing:
 - Apply a pre-determined mark up to the cost in making or obtaining the product
 - E.g. Obtain total cost of production and add a mark up of 25% to obtain the price
 - Easy to estimate or measure
 - Easy to justify to various stakeholders
 - Costumers are generally willing to pay reasonable mark-up and investors have healthy profit margins
 - ► However, this strategy limits the orginization's ability to capture the customer's willingness to pay, which can be quite devastating!

Pricing Approaches: Value Oriented Pricing

- Value Oriented Pricing:
 - ► Focus on the economic value of your product to the consumers (EVC)
 - Capture a portion of this value for the firm using the price

- ▶ Using value-oriented pricing firms earned 24% higher profits compared to industry peers
 - However, this strategy is challenging to implement

Value Oriented Pricing

▶ Survey on the potential to capture the value that the firm creates by industry:

Percentage of managers answering yes to the question, "Does your company have a high ability to get the money you deserve for the value you deliver to your customers?"

Value Oriented Pricing

- ► Economic Value to Consumer (EVC) argues that customer will buy the product only when its value outweighs the value of the next best alternative
 - Let a be the product you want to price and b be the next best alternative in the market
 - ► Then:

$$Value_a - Price_a \ge Value_b - Price_b$$

 $Price_a \le Value_a - Value_b + Price_b$

$$Price_a \leq Price_b + DifferentialValue_{ab}$$

- ► This price captures the maximum willingness to pay by the customer or their economic value
- ► To sell a product, a firm needs to price *at or below* its competitor's price plus the differential value its product provides to the consumer

Practical Implementation of EVC

- ▶ Identify what benefit your product provides
 - Benefit not the feature of the product
 - Ex: Xerox charges per photocopy
- ▶ Identify the closest competitive offering and its price
 - ▶ Best alternative for Delta Airlines is American Airlines not trains or cars
- ▶ Identify potential sources of differentiation value
 - This follows from the benefit
- ► Measure how much value these create

Calculating Economic Value: Example

Server Alternatives for Toy Company

	New Product	Next Best Alternative
Probability of System Crash	1% over one year	20% over one year
Cost of system crash	\$100,000	\$100,000
Hours of operation	2,500	2,500
Operating cost per hour	\$15	\$10
Price	To be determined	\$75,000

► EVC = Price of the alternative + value differential

$$= \$75,000 + (20\% *\$100000 - 1\% *\$100000) - (\$15*2500 - \$10*2500)$$

$$= \$75,000 + \$19,000 - \$12500 = \$81,500$$

Value Oriented Pricing Stick

Better off charging the price lower than the maximum price to have strong customer relations

https://sloanreview.mit.edu/article/why-the-highest-price-isnt-the-best-price/

Price Customization or Segmentation

- ► The economic value a product varies greatly across consumers based on several factors:
 - ► Tastes, Nature of use, Intensity of use, etc.
- ▶ Hence, the idea of uniform pricing is sub-optimal

- ▶ Price customization is achieved based on two major aspects:
 - Consumer Characteristics
 - Product Attributes

Consumer-Based Pricing: Implementation

- ▶ Use observable characteristics that correlate with the EVC
 - ► The characteristic used should clearly identify the group member
 - E.g.: demographic, gender, etc.

- Product must not be tradeable across group
 - Else, the products will be sold at a different price creating an alternate market

Consumer Based Pricing: Issues

- ▶ Price discrimination with anti-competitive intent
 - Lawful if the prices reflect different costs of dealing with different buyers or are the result of a seller's attempts to meet a competitors' offering
- ▶ Ethical issues with customer-based price discrimination
 - Must be culturally acceptable, else it may be perceived as illegal or unfair
- ► Irrespective of these cases customer-based pricing is important
 - In the early 2000s, 90% of those who suffer from AIDS could not afford the prices charged for AIDS drugs

Pricing Based on Product Attributes

- ▶ Design products such that customers signal their type (high or low value) through their choice of product
 - Ex: Incorporating a subscription price and authentication functionality in software products
- ▶ Requires you to find attributes that correlate with EVC
- ► Ensure that the integrity of the different products within the product line is maintained
 - Maintain fairness for low-segment users

How to obtain customized pricing?

► The main challenge in both cases is finding attributes that correlate with the EVC

Data: Surveys or historical data of consumers and product attributes

Regression techniques that help us to identify significant attributes

► EVC could be difficult to obtain, we can use prices as proxy

Techniques For Pricing

Application: Modeling House Prices

► A US-based company — Surprise Housing has ventured into Australian market

► Their strategy is to purchase houses at a price below their actual values and flip them on at a higher price

▶ For this purpose, the company has collected a data set from the sale of houses in Australia

Data Description: Attributes

- ► Sale Price
- ► MSZoning: Identifies the general zoning classification of the sale
 - A:Agriculture, C:Commercial, ..., RM:Residential Medium Density
- ► LotFrontage: Linear feet of street connected to property
- ► LotArea: Lot size in square feet
- ► Alley: Type of alley access to property: Gravl, Paved, etc.
- ▶ Utilities: Type of utilities available: AllPub, ELO: Electricity only
- OverallQual: Rates the overall material and finish of the house from 1-10
- ExterCond: Evaluates the present condition of the material on the exterior
- ▶ BsmtQual: Evaluates the height of the basement
- ▶ Other Attributes: Kitchen, fireplace, garage, etc.

Application: Modeling House Prices

▶ You are required to model the prices using available independent variables

► The management will use this model to understand how exactly the prices will vary with variables

► This model can be used to customize their prices accordingly to yield high return

Data Mining

Data Preprocessing

- ▶ Real world data is dirty, misaligned, overly complex and often inaccurate
 - Not ready for analytics
- ▶ Pre-processing:
 - Art no clear methodology
 - Develops and improves with experience

Data Preprocessing

Data Cleaning

Missing Values

Outliers

► Errors

Data Cleaning: Missing Values

- Missing Values
 - Do nothing
 - ► Remove columns or refrain from using them in the model
 - Remove Observations (if not many)
 - ► Impute with mean/median/mode/regression

- Outliers
- ► Errors

V1	V2				Vp
5				5	
	?				
	?				
		5	?	, ,	\$ P

Data Cleaning: Missing Values

- Missing Values
- Outliers
 - Extreme or unrealistic values
 - Identify using data distribution
 - Ex: Standardization or Inter Quartile Range
 - Treat as a missing value or error
- ► Errors

	V1	V2	•		Vp
1					
2					
3					
•	?			?	
		?			
		?			
n					

Data Cleaning: Missing Values

- Missing Values
- Outliers
- ► Errors
 - Odd Values, inconsistent class labels, odd distributions
 - E.g.: Total Assets of a company is negative
 - Use domain expertise to correct or remove

	V 1	V2	 		Vp
1					
2					
3					
	?			?	
		;			
		5			
n					

Scaling

► Aggregation/Discretization/Binning

► Construct new variables

- Scaling
 - Brining variables to same scale or range
 - In range [0, 1]: $\frac{V V_{min}}{V_{max} V_{min}}$
 - Normalization or standardization
 - $ightharpoonup rac{V-\mu_v}{\sigma_v} \mu_v$: Variable mean, σ_v : Standard deviation of the variable
- ► Aggregation/Discretization/Binning
- ► Construct new variables

	V1	V2			Vp
1	100	0.01			
2	150	0.03			
3	175	0.05			
	180	0.01		5	
		5			
		5			
n					

- Scaling
- ► Aggregation/Discretization/Binning
 - Convert Numerical to categorical
 - Reduce categories using hierarchy/intervals

► Construct new variables

	V1	V2			Vp
1	100	0.01	A		
2	150	0.03	В		
3	175	0.05	С		
	180	0.01	D	?	
n					

- Scaling
- ► Aggregation/Discretization/Binning
- ► Construct new variables
 - Addition, multiplication, log-transformation
 - One-hot encoding or creating dummy variable

	V1	V2		Va	Vb	Vp
1	100	0.01	A	1	0	
2	150	0.03	В	0	1	
3	175	0.05	С	0	0	
	180	0.01	D	0	0	
n						

Data Mining

Statistical Modeling

► Task: Understand the relation between house attributes and price

- ▶ We want to compare the relation between two variables (house attributes and price)
 - Simply check the covariance or correlation between each variable and the price
 - Correlation only signals the direction of relationship, but does not help us in prediction
- ▶ Better way: Model it as a linear regression problem

Multiple (or Multivariate) Linear Regression

Quantitative Response: Y

- ▶ Predictor variables: $X_1, X_2, ..., X_p$: **X**
- ▶ Regression Y on **X** (predictor variables):
 - $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_p X_p$
 - $Y = \beta X$

Multiple Linear Regression

▶ Model Parameters: β_0 , β_1 , . . β_p

• Estimated from the data: $\widehat{\beta_0}$, $\widehat{\beta_1}$, ..., $\widehat{\beta_p}$

▶ Prediction: $\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_1} X_1 + \widehat{\beta_2} X_2 + ... + \widehat{\beta_p} X_p$

► How to obtain coefficient estimates?

Finding the Estimates

▶ Start with some initial guess and move forward by minimizing error

$$\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_1} X_1 + \widehat{\beta_2} X_2 + \dots + \widehat{\beta_p} X_p$$

For *i*-th observation, residual or error: $e_i = y_i - \widehat{y}_i$

▶ Obtain residual sum of squares (RSS):

$$RSS = e_1^2 + e_2^2 + ... + e_n^2$$

▶ Least Squares: Find $\widehat{\beta_0}$, $\widehat{\beta_1}$, ..., $\widehat{\beta_p}$ that minimizes RSS

Finding the Estimates: Decision Surface

Example: With one variable

$$\hat{Y} = \widehat{\beta_0} + \widehat{\beta_1} X_1$$

$$RSS = \sum_{i=1}^{n} e_i^2$$

$$e_i = y_i - \widehat{y}_i$$

```
import statsmodels.api as sm

# Added constant to X for the intercept
X = sm.add_constant(X)

# Fit the linear regression model
model = sm.OLS(y, X).fit()
model.summary()
```


Coefficient Estimates

Model Fit

R-squared: proportion of variability in Y that can be explained using X

•
$$R - Squared = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{i=1}^{n} (y_i - \widehat{y_i})^2}{\sum_{i=1}^{n} (y_i - \overline{y})^2}$$

- ► TSS: total variance in Y (before regression)
- RSS: variance left unexplained (after regression)
- ► ~1: Good fit, large proportion explained
- ► ~0: Regression did not explain much variability
 - Linear model wrong and/or inherent error high
- ► R2-Squared in our example: 0.857
 - Which variables have significant impact? Hypothesis Testing

Hypotheses Testing in Linear Regression

- ► Null Hypothesis:
 - ▶ There is no relationship between X_i and Y
 - ► H_0 : $\beta_i = 0$

- ► Alternate Hypothesis:
 - ▶ There is a non-zero relationship between X_i and Y
 - $H_1: \beta_i \neq 0$

▶ Hypothesis test: using *p*-values of the *t*-statistic

Hypothesis Test

- ► T-statistic of coefficient: $\frac{(Sample\ Coefficient\ Hypothesised\ Coefficient)}{SE(Coefficient)}$
- For simple linear regression: $\widehat{Y} = \widehat{\beta_0} + \widehat{\beta_1} X_1$

$$t = \frac{\widehat{\beta_1} - 0}{SE(\widehat{\beta_1})} = \frac{\widehat{\beta_1}}{SE(\widehat{\beta_1})}$$

Variance of
$$\widehat{\beta_1} = \frac{RSS}{n-2} \left[\frac{1}{\sum_{k=1}^{n} (x_i - \bar{x})^2} \right]$$

- ▶ Is our estimate($\widehat{\beta_1}$) sufficiently far from zero to confidently reject the null hypothesis?
 - ► If SE is low, then smaller non-zero estimates may be sufficient
 - ► If SE is high, then larger estimates required

P-value

- ▶ Probability, *under the null hypothesis*, of observing a value of the test statistic that is same as or more extreme than what was actually observed
 - A measure of evidence against the null hypothesis
 - Smaller the p-value, stronger is the evidence.
 - P < 0.1 or 0.05 is used

P-Values of the coefficients

- ► Almost all of the coefficients are significant
- ► Model is complex

► Not a good model in identifying the variables that make an impact on the sales

```
P-values for coefficients:
                5.111732e-02
const
LotArea
                3.147398e-07
OverallQual
                7.169965e-17
OverallCond
                6.865579e-11
MasVnrArea
                1.162264e-10
ExterQual
                5.525251e-07
ExterCond
                3.844129e-02
BsmtQual
                3.249227e-12
BsmtExposure
                1.869802e-08
TotalBsmtSF
                1.253316e-11
HeatingQC
                1.258589e-01
1stFlrSF
                1.722300e-02
2ndFlrSF
                1.465454e-02
GrLivArea
                6.112155e-01
BsmtFullBath
                5.757695e-05
FullBath
                5.916593e-01
BedroomAbvGr
                7.251462e-07
KitchenAbvGr
                5.863971e-06
KitchenOual
                8.496024e-07
TotRmsAbvGrd
                6.077111e-04
Fireplaces
                1.795845e-02
GarageCars
                4.478288e-01
GarageArea
                4.979587e-03
GarageQual
                1.713422e-02
MSZoning_RL
                8.621630e-03
MSZoning_RM
                1.206461e-01
CentralAir_Y
                1.385401e-01
dtype: float64
```

Feature Selection in Linear Regression

- If there are p features, then possible subsets of predictors: 2^p
 - ► Identify best subset of features based on R-square

► The complexity of feature selection increases exponentially with number of variables

- ► Alternate: Regression that penalize these coefficient values or regularizes the model complexity
 - Least Absolute Shrinkage and Selection Operator(LASSO) Regression

Least Absolute Shrinkage and Selection Operator (LASSO)

- Least Square Model with an additional penalty term based on the absolute values of the coefficients.
 - This term helps in shrinking the coefficients values to zero and thus helps in feature selection procedure
 - Also called L1 regularization
 - Regularization: helps in reducing the complexity of the model
 - L1: Absolute values of the coefficients
- ► L1 regularization term: $\lambda * (|\beta_0| + |\beta_1| + \cdots + |\beta_p|)$
 - λ : penalty term

LASSO: Objective Function

- Find the values of the coefficients that minimize the sum of the squared differences between the predicted values and the actual values and L1 regularization term
 - Minimize: RSS+ $\lambda *(|\beta_0| + |\beta_1| + \cdots + |\beta_p|)$

LASSO regression estimates are given by the first point at which an ellipse contacts the diamond region

LASSO: Shrinkage Property

- ► LASSO shrinks coefficient estimates to zero
 - Useful for feature selection, as the variables with zero coefficients are effectively removed from the model.

- ▶ The choice of the regularization parameter λ is crucial in LASSO regression.
 - A larger λ value increases the amount of regularization, leading to more coefficients being pushed towards zero.
 - A smaller λ value reduces the regularization effect, allowing more variables to have non-zero coefficients.
 - λ can be obtained through cross-validation technique

LASSO- Parameter Results

from sklearn.linear_model import Lasso

lm = Lasso(alpha=0.01)
lm.fit(X_train,y_train)
y = lm.predict(X)

Feature Selection in Linear Regression

► Simple Way: Adding Features iteratively to identify the best sub-set

Thank You