

Website: http://jinwen18.github.io/

Email: jin951221@sjtu.edu.cn **Mob:** (+1) 217 904 9790

EDUCATION

Shanghai Jiao Tong University

Sep. 2017 – Mar. 2020 (Expected)

M.E. in Biomedical Engineering, GPA: 3.87/4.0, Rank: 2/86

Shanghai Jiao Tong University

Sep. 2013 - Jul. 2017

B.E. in Biomedical Engineering (with honor), GPA: 86.5/100, Rank: 2/45

University of Illinois at Urbana-Champaign

Jul. 2019 – Jul. 2020 (Expected)

Visiting scholar, Department of Electrical and Computer Engineering

Cold Spring Harbor Asia

Jul. 2019

Computational and Cognitive Neuroscience Summer School

RESEARCH INTEREST

My research interest lies in how we can improve Magnetic Resonance Imaging (MRI) to understand individual brain. More specifically, I am insterested in image processing and image analysis.

RESEARCH EXPERIENCE

Visiting scholar, Liang's Group

Jul. 2019 – Present

Supervised by Prof. Zhi-Pei Liang, ECE, University of Illinois at Urbana-Champaign

> Correcting Phase Discrepancies in Ultra-high Field Magnetic Resonance Spectroscopic Imaging

- Corrected the even-odd echo inconsistency based on physic models, the subspace method, and the low rank method
- Improved the water removal ability after combining both physical models, the subspace method, and the FIR filtering

Graduate Research Assistant, Neural Engineering Lab

Jun. 2017 - May. 2019

Supervised by Prof. Junfeng Sun and Prof. Shanbao Tong, BME, SJTU

Extracting Individual Neural Fingerprint Encoded in Functional Connectivity by Silencing Indirect Effects

- Obtained significantly improved subject discriminability by inferring direct functional connectivity from functional brain networks with the silencing method for the first time
- Elucidated the underlying reason for the improved performance, which is that reliable edges dominated the subject discriminability of functional brain networks
- Validated the results on different scan durations, spatial normalization approaches, parcellation schems, statistical association measures, brain states, and two additional datasets

> Inferring Vulnerable Nodes and Edges by Assessing Brain Network Resilience

- Observed the inverted-U relationship between brain networks resilience and age by resilience analysis in three lifespan-DTI datasets
- Identified the most critical anatomical areas for brain networks resilience: bi-hemispheric putamens and precuneus

Neuromodulation Effects of Low-intensity Transcranial Ultrasound Stimulation

- Demonstrated antidepressant-like effects of low-intensty TUS in rats for the first time
- Showed that neuromodulation effects of pulsed transcranial ultrasound stimulation were correlated with the initial brain state

Chun-Tsung Program

Sep. 2016 - May. 2017

Supervised by Prof. Junfeng Sun, BME, SJTU

Predicting and Validating the Effects of Transcranial Ultrasound Stimulation

- Implemented the neuronal intramembrane cavitation excitation model to predict suppression and excitation effects of different ultrasound parameters
- Validated the predictions by experiments results

SJTU-KTH Summer School

Sep. 2016 – May. 2017

Supervised by Prof. Qian Wang, BME, SJTU and Prof. Örjan Smedby, School of Technology and Health, KTH Royal Institute of Technology

- ➤ Using Convolutional Neural Networks to Segment Brain Glioma
 - Implemented a multi-channels (T1 and T2 FLAIR MRI channels) CNN to segment brain glioma
 - Evaluated segmentation performance using classification accuracy, Dice's coefficient, and visual inspection

TEACHING EXPERIENCE

Teaching Assistant, Biomedical Signals and Systems (1) BME, SJTU

Feb. 2019 – Jun. 2019

- Evaluated course assessments for 69 sophomore and junior level undergraduates
- Notified instructors of significant problems with assignments

PUBLICATIONS

- [1] <u>Jin, W.</u>, Zhu, H., Shu, P., Tong, S. Sun, J., Extracting individual neural fingerprint encoded in functional connectivity by silencing indirect effects, under review.
- [2] Shu, P., Jin, W., Zhu, H., Tong, S. Sun, J., Inferring vulnerable nodes and edges by assessing brain network resilience, under review.
- [3] Zhang, D., Li, H., Sun, J., Hu, W., <u>Jin, W.</u>, Li, S., & Tong, S. (2018). Antidepressant-like effect of low-intensity transcranial ultrasound stimulation. *IEEE Transactions on Biomedical Engineering*, 66(2), 411-420.
- [4] Li, H., Sun, J., Lu, H., <u>Jin, W.</u>, Lewin, P. A., Tong, S., Pulsed transcranial ultrasound modulates the cortical response to the functional electrical stimulation: in vivo animal study using optical neurovascular imaging, under review.

HONORS & AWARDS

>	Chun-Tsung Scholarship (established by Tsung-Dao Lee, 1%, university-wide)	2017
	Outstanding graduates of Shanghai Jiao Tong University (10%, university-wide)	2017
\triangleright	Academic Excellence Scholarship Class-A (5%, university-wide)	2016
\triangleright	Merit Student of Shanghai Jiao Tong University (3%, university-wide)	2015&2016
\triangleright	LUYUEJIAO Scholarship for Overseas Studies (university-wide)	2016
\triangleright	Biomedical Engineering Alumni Scholarship (10%, university-wide)	2015&2016&2017
	Academic Excellence Scholarship Class-B (10%, university-wide)	2014&2015

SKILLS

Courses in Master: Biomedical Signal Processing (A+). Matrix theory (A). Optimization Estimation Theory and System Identification (A+). Cognitive Visual Neuroscience (A+).

Courses in Undergraduate: Biomedical Image Processing (92). Digital Signal Processing (91). Principles of Automatic Control (92). Mathematical Methods in Physics (92). Probability and Statistics (96).

Programming: MATLAB, Python, C++

Software & Toolkits: SPM, FSL, Freesurfer, DPARSF/DPABI, PANDA

Languages: TOEFL: 107 (R30+L29+S23+W25); GRE: 328 (V158+Q170+AW4)