Amendment to Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1	1. (original)	A method for compressing image data	
2	corresponding to an image comprising a plurality of pixels defining a grid,		
3	each pixel having at least one component value, comprising:		
4	dividing the grid into at least one rectangular area;		
5	for each rectangular area:		
6	dividing the re	ectangular area into a number of triangles, each	
7	triangle defining a boundary comprising three edges;		
8	for each of tria	angle:	
9	identify	ring the vertices of the triangle;	
10	determ	ining predicted pixel component values for at	
11	least a portior	of the pixels enclosed within and/or on the	
12	boundary of the	ne triangle;	
13	compa	ring the predicted pixel component values with	
14	actual values	of said at least one component value to	
15	determine if a	similarity threshold is met;	
16	proces	sing a next triangle if the similarity threshold is	
17	met, otherwise	e,	
18	dividing	g the triangle into two new triangles, each	
19	defining a bou	undary and comprising three edges; and	
20	reiteratively repeatin	g identifying the vertices, predicting pixel	
21	component values, and cor	mparing actual and predicted pixel component	
22	values to determine if a sim	nilarity threshold is met for each existing	
23	triangle and any new triang	les that are created; and	
24	generating co	mpressed image data defining each triangle	
25	that is created and a	ctual and predicted pixel component values	
26	within the triangle.		

- 1 2. (original) The method of claim 1, wherein the 2 compressed image data comprises at least one string, the method further 3 comprising compressing said at least one string using a data compression 4 algorithm.
- 3. (original) The method of claim 1, wherein at least a portion of the triangles are defined by data identifying pixels coincident with or proximate to a set of vertices for the triangle, and the predicted pixel component values for those triangles are determined by interpolating actual pixel component values at the vertices of each triangle.
- 4. (original) The method of claim 1, wherein the predicted pixel component values are determined by interpolating actual component values corresponding to pixels that lie on and/or proximate to the edges of each triangle.
- 1 5. (original) The method of claim 1, wherein the image is a 2 grayscale image, and said at least one component value comprises a 3 grayscale intensity level.
- 1 6. (original) The method of claim 1, wherein the image comprises a color image, and said at least one component value comprises three color component values.
- 7. (original) The method of claim 6, wherein the three color component values comprise a Red component value, a Green component value, and a Blue component value, further comprising converting the Red, Green, and Blue component values into luminance/chrominance component values.

- 1 8. (original) The method of claim 7, wherein said
 2 comparing of the predicted pixel component values to determine if the
 3 similarity threshold is met comprisés giving a similarity determination that
 4 compares predicted and actual luminance component values greater
 5 weight than a similarity determination that considers predicted and actual
 6 chrominance component values.
- 9. (original) The method of claim 1, further comprising:
 determining if a texture map can be applied to pixels of a given
 triangle to meet the similarity threshold; and
 storing data identifying the pixels within and/or on the triangle
 boundary and data corresponding to the texture map for any triangle for
 which it is determined that texture mapping can be applied.
- 1 10. (original) The method of claim 1, wherein each of said at 2 least one rectangle comprises a square.
 - 11. (original) The method of claim 10, wherein the image comprises a plurality of pixels contained within a rectangular grid, and wherein the rectangular grid is divided into a number of non-overlapping squares that contain all of the pixels within the rectangular grid.

1

2

3

4

- 1 12. (original) The method of claim 1, wherein at least one triangle comprises a right angle corner and a hypotenuse, and where dividing said at least one triangle into two triangles comprises dividing said at least one triangle along a line connecting a midpoint of the hypotenuse to the right angle corner.
- 1 13. (Currently amended) A method for reproducing an 2 image based on a set of compressed image data corresponding to an 3 original image comprising a plurality of pixels defining a grid, said

4	compressed image data including data defining a plurality of triangles and
5	pixel component values corresponding to each of said plurality of
6	triangles, comprising:
7	extracting a first set of vertices for each of said pluralitya first of the
8	triangles;
9	determining first component values of pixels within each the first
10	triangle;
11	rendering each the first triangle in accord with the first set of
12	vertices and <u>first</u> component values determined for <u>the first</u> triangle;
13	extracting a second set of vertices for a second of the triangles, the
14	second triangle being nested within the first triangle;
15	determining second component values of pixels within the second
16	triangle;
17	rendering the second triangle in accord with the second set of
18	vertices and second component values determined for the second
19	triangle:

- 1 14. (Currently Amended) The method of claim 13, wherein 2 the compressed image data includes pixel component values for pixels 3 coincident with or proximate to each vertex, and at least either the pixel 4 first component values corresponding to other pixels within each triangle 5 are determined as a function of the pixel component values at the first 6 vertices of the first triangle, or the second component values are 7 determined as a function of component values at the second vertices of 8 the second triangle,.
- 1 15. (Currently Amended) The method of claim 14, wherein
 2 at least either the <u>firstpixel</u> component values corresponding to the other
 3 pixels within each triangle are determined by interpolating the pixel
 4 component values at the <u>first</u> vertices of the <u>first</u> triangle, or the second

- 5 component values are determined by interpolating component values at 6 the second vertices of the second triangle.
- 1 16. (Currently Amended) The method of claim 13, wherein 2 at least either the compressed image data includes data pertaining to sets 3 of pixels defining edges of at least a portion of said plurality of triangles 4 and including pixel component values for those pixels, further wherein the 5 firstpixel component values for the triangles are determined as a function 6 of the pixel-component values corresponding to the pixels defining the first 7 edges of the first triangles, or the second component values are 8 determined as a function of component values corresponding to pixels 9 defining second edges of the second triangle.
- 1 17. (Currently Amended) The method of claim 13, wherein the compressed image data includes texture mapping data, further 2 3 including: 4 determining any triangles from among said plurality of triangles to 5 which texture mapping is to be applied; and 6

7

1

2

3

4

5

6

7

8

second triangles.

applying texture mapping to the pixels contained within those the

18. (Currently Amended) The method of claim 13, wherein the compressed image data corresponds to a color image and includes pixel said determining of first and second component values data in accordance with a luminance/chrominance-color model, further comprising include converting the respective first and second luminance/chrominance color model data to <u>first and second</u> red, green and blue (RGB) color components for each the pixels of the first and second triangles.

1	19.	(Cancelled)	The method of claim 13, further comprising	
2	rendering said plurality of triangles such that enclosing larger triangles are			
3	rendered prior to enclosed smaller triangles.			
1	20.	, , ,	A system for compressing image data	
2	corresponding to an image comprising a plurality of pixels defining a grid,			
3	each pixel having at least one component value, comprising:			
4		a memory in	which machine instructions are stored; and	
5	a processor coupled to the memory for executing the			
6	machine instructions, said processor implementing a plurality of functions			
7	when executing the machine instructions, including:			
8	dividing the grid into at least one rectangular area;			
9	for each rectangular area:			
10		dividing the	rectangular area into a number of triangles, each	
11	triangle defining a boundary comprising three edges;			
12		for each of triangle:		
13	identifying the vertices of the triangle;			
14	determining predicted pixel component values for at			
15		least a portion	on of the pixels enclosed within and/or on the	
16		boundary of	the triangle;	
17		comp	aring the predicted pixel component values with	
18		actual value	s of said at least one component value to	
19		determine if	a similarity threshold is met;	
20		proce	essing a next triangle if the similarity threshold is	
21		met, otherw	·	
22		dividi	ng the triangle into two new triangles, each	
23		defining a b	oundary and comprising three edges; and	
24			ing identifying the vertices, predicting pixel	
25	component values, and comparing actual and predicted pixel component			
26	values for e	each existing tr	iangle and any new triangles that are created;	
27	and			

- generating compressed image data defining each triangle that is 28 29 created and actual and predicted pixel component values within the 30 triangle.
 - 1 21. (original) The system of claim 20, wherein at least a 2 portion of the triangles are defined by data identifying pixels coincident 3 with or proximate to a set of vertices for the triangle, and the predicted 4 pixel component values are determined by interpolating actual pixel 5 component values at the vertices of each triangle.
 - 1 22. The system of claim 20, wherein the predicted (original) 2 pixel component values are determined by interpolating actual component 3 values corresponding to pixels that lie on and/or proximate to the edges of 4 each triangle.
 - 1 23. The system of claim 20, wherein the image (original) 2 comprises a color image, and said at least one component value 3 comprises a Red component value, a Green component value, and a Blue 4 component value, and wherein execution of the machine instructions by 5 the processor further implements the function of converting the Red. 6 Green, and Blue component values into luminance/chrominance 7 component values.
 - 1 The system of claim 20, wherein execution of (original) 2 the machine instructions by the processor further implements the 3 functions of: 4 determining if a texture map can be applied to pixels of a given 5 triangle to meet the similarity threshold; and 6 storing data identifying the pixels within and/or on the triangle 7 boundary and data corresponding to the texture map for any triangle for

which it is determined that texture mapping can be applied.

24.

8

2	comprises a plurality of pixels contained within a rectangular grid, and			
3	wherein the rectangular grid is divided into a minimum number of non-			
4	overlapping squares that contain all of the pixels within the rectangular			
5	grid.			
1	26. (original) An article of manufacture for compressing			
2	image data corresponding to an image comprising a plurality of pixels			
3	defining a grid, each pixel having at least one component value,			
4	comprising:			
5	a memory media adapted to be used with a computer; and			
6	a plurality of machine instructions stored on the memory			
7	media, said machine instructions effecting a plurality of functions when			
8	executed by the computer, including:			
9	dividing the grid into at least one rectangular area;			
10	for each rectangular area:			
11	dividing the rectangular area into a number of triangles, each			
12	triangle defining a boundary comprising three edges;			
13	for each of triangle:			
14	identifying the vertices of the triangle;			
15	determining predicted pixel component values for at			
16	least a portion of the pixels enclosed within and/or on the			
17	boundary of the triangle;			
18	comparing the predicted pixel component values with			
19	actual values of said at least one component value to			
20	determine if a similarity threshold is met;			
21	processing a next triangle if the similarity threshold is			
22	met, otherwise,			
23	dividing the triangle into two new triangles, each			
24	defining a boundary and comprising three edges; and			

The system of claim 20, wherein the image

25.

1

(original)

- reiteratively repeating identifying the vertices, predicting pixel component values, and comparing actual and predicted pixel component values for each existing triangle and any new triangles that are created; and
- generating compressed image data defining each triangle that is created and actual and predicted pixel component values within the triangle.
 - 1 27. (original) The article of manufacture of claim 26, wherein 2 at least a portion of the triangles are defined by data identifying pixels 3 coincident with or proximate to a set of vertices for the triangle, and the 4 predicted pixel component values are determined by interpolating actual 5 pixel component values at the vertices of each triangle.
 - 1 28. (original) The article of manufacture of claim 26, wherein 2 the predicted pixel component values are determined by interpolating 3 actual component values corresponding to pixels that lie on and/or 4 proximate to the edges of each triangle.
 - 1 29. The article of manufacture of claim 26, wherein (original) 2 the image comprises a color image, and said at least one component 3 value comprises a Red component value, a Green component value, and 4 a Blue component value, and wherein said functions effectuated when 5 executed by the computer further include the function of converting the 6 Red, Green, and Blue component values into luminance/chrominance 7 component values.
 - 1 30. (original) The article of manufacture of claim 26, wherein said functions effectuated when executed by the computer further include the functions of:

determining if a texture map can be applied to pixels of a given triangle to meet the similarity threshold; and storing data identifying the pixels within and/or on the triangle

4

5

5

rectangular grid.

- storing data identifying the pixels within and/or on the triangle boundary and data corresponding to the texture map for any triangle for which it is determined that texture mapping can be applied.
- 1 31. (original) The article of manufacture of claim 26, wherein 2 the image comprises a plurality of pixels contained within a rectangular 3 grid, and wherein the rectangular grid is divided into a minimum number of 4 non-overlapping squares that contain all of the pixels within the