

Estimating a Population Mean with Confidence

Brenda Gunderson

Cartwheel Study

- 25 team members/colleagues (all adults) asked to perform a cartwheel
- Variable: Cartwheel Distance (in inches)

Research Question

What is the **average** cartwheel distance (in inches) for adults?

- **Population**: All adults
- Parameter of Interest: population mean cartwheel distance μ

Construct a <u>95% confidence interval</u> for the mean cartwheel distance for the population of all such adults.

Cartwheel Study Data

	ID	Age	Gender	GenderGroup	Glasses	GlassesGroup	Height	Wingspan	CWDistance	Complete	CompleteGroup	Score
0	1	56	F	1	Υ	1	62.0	61.0	79	Υ	1	7
1	2	26	F	1	Y	1	62.0	60.0	70	Y	1	8
2	3	33	F	1	Y	1	66.0	64.0	85	Υ	1	7
3	4	39	F	1	N	0	64.0	63.0	87	Y	1	10
4	5	27	M	2	N	0	73.0	75.0	72	N	0	4

Cartwheel Distance Summary

Cartwheel Distance Summary


```
df.describe()["CWDistance"]
          25.000000
count
          82.480000
mean
std
          15.058552
min
          63.000000
25%
          70.000000
50%
          81.000000
75%
          92.000000
         115.000000
max
      CWDistance, dtype: float64
Name:
```

```
    n = 25 observations
    Minimum = 63 inches
    Maximum = 115 inches
    Mean = 82.48 inches
    Standard Deviation = 15.06 inches
```


Sampling Distribution of Sample Mean

If model for population of responses is approximately normal (or <u>sample</u> <u>size is 'large' enough</u>), distribution of sample mean is (approx.) normal.

All possible values of <u>sample mean</u>

Confidence Interval Basics

Best Estimate ± Margin of Error

Best Estimate = Unbiased Point Estimate

Margin of Error = "a few" Estimated Standard Errors

"a few" = multiplier from appropriate distribution based on desired confidence level and sample design

95% Confidence Level ➤ 0.05 Significance

95% Confidence Interval Calculations

Best Estimate ± Margin of Error

Sample mean ± "a few" · estimated standard error of sample mean

$$\bar{x}$$
 ± t^* $\left(\frac{s}{\sqrt{n}}\right)$

Small Sample size

 t^* multiplier comes from a t-distribution with n-1 degrees of freedom

95% confidence

$$n = 25 \rightarrow t^* = 2.064$$

 $n = 1000 \rightarrow t^* = 1.962$

95% Confidence Interval Calculations

Mean = 82.48 inches

Standard Deviation = 15.06 inches

$$n = 25$$
 observations $\rightarrow t^* = 2.064$

$$\bar{x}$$
 \pm $t^* \left(\frac{s}{\sqrt{n}}\right)$

$$82.48 \pm 2.064 \left(\frac{15.06}{\sqrt{25}}\right)$$

$$82.48 \pm 2.064(3.012)$$

$$82.48 \pm 6.22$$

(76.26 inches, 88.70 inches)

What if 99% Confidence?

$$\bar{x} \pm t^* \left(\frac{s}{\sqrt{n}}\right)$$

82.48 \pm 2.064\left(\frac{15.06}{\sqrt{25}}\right) \rightarrow (76.26 inches, 88.70 inches)

Think about it: What parts of this 95% confidence interval will change if we want to be 99% confident instead?

Q: Will the resulting 99% confidence interval be wider or narrower?

Interpreting the Confidence Interval

"range of reasonable values for our parameter"

With 95% confidence, the population mean cartwheel distance for all adults is <u>estimated</u> to be between 76.26 inches and 88.70 inches.

Interpreting the Confidence Level

If this procedure were repeated over and over, each time producing a 95% confidence interval estimate,

we would expect 95% of those resulting intervals to contain the population mean cartwheel distance.

Summary

- Confidence Intervals are used to give an *interval* estimate for our parameter of interest ~ a population mean
- Center of the Confidence Interval is our best estimate
 the sample mean
- Margin of Error is "a few" (estimated) standard errors
 for means we use t* multipliers
- Assumptions for Confidence Interval for Population mean

 \(\times \) data considered a random sample

 \(\times \) population of responses is normal (else n large helps)
- Know how to interpret the interval and the level