COMP2610 / COMP6261 Information Theory Lecture 13: Symbol Codes for Lossless Compression

Quanling Deng

Computational Mathematics Group School of Computing College of Engineering & Computer Science The Australian National University Canberra, Australia

Announcements

Assignment 2

- Available via Wattle
- Worth 20% of Course total
- Due Monday 29 September 2022, 5:00 pm
- Answers could be typed or handwritten

Last time

Proof of the source coding theorem

- Foundational theorem, but impractical
- Requires potentially very large block sizes

The theorem also only considers uniform coding schemes

- Could variable length coding help?
- Does entropy turn up for such codes as well?

This time

Variable-length codes

Prefix codes

Kraft's inequality

- Variable-Length Codes
 - Unique Decodeability
 - Prefix Codes

The Kraft Inequality

Summary

- Variable-Length Codes
 - Unique Decodeability
 - Prefix Codes

- 2 The Kraft Inequality
- Summary

Codes: A Review

Notation:

- If A is a finite set then A^N is the set of all strings of length N.
- $A^+ = \bigcup_N A^N$ is the set of *all finite strings*

Examples:

- $\bullet \ \{0,1\}^3 = \{000,001,010,011,100,101,110,111\}$
- $\bullet \ \{0,1\}^+ = \{0,1,00,01,10,11,000,001,010,\ldots\}$

Binary Symbol Code

Let X be an ensemble with $A_X = \{a_1, \ldots, a_l\}$.

A function $c: A_X \to \{0,1\}^+$ is a **code** for X.

- The binary string c(x) is the **codeword** for $x \in A_X$
- The **length** of the codeword for for x is denoted $\ell(x)$. Shorthand: $\ell_i = \ell(c_i)$ for $i = 1 \dots, I$.
- The extension of c assigns codewords to any sequence $x_1x_2...x_N$ from \mathcal{A}^+ by $c(x_1...x_N) = c(x_1)...c(x_N)$

Codes: A Review

Examples

$$X$$
 is an ensemble with $A_X = \{a, b, c, d\}$

Example 1 (Uniform Code):

- Let c(a) = 0001, c(b) = 0010, c(c) = 0100, c(d) = 1000
- Shorthand: $C_1 = \{0001, 0010, 0100, 1000\}$
- All codewords have *length* 4. That is, $\ell_1 = \ell_2 = \ell_3 = \ell_4 = 4$
- ullet The *extension* of c maps $\mathtt{aba} \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to 000100100001

Example 2 (Variable-Length Code):

- Let c(a) = 0, c(b) = 10, c(c) = 110, c(d) = 111
- Shorthand: $C_2 = \{0, 10, 110, 111\}$
- In this case $\ell_1 = 1$, $\ell_2 = 2$, $\ell_3 = \ell_4 = 3$
- ullet The *extension* of c maps $\mathtt{aba} \in \mathcal{A}_X^3 \subset \mathcal{A}_X^+$ to $\mathtt{0100}$

Unique Decodeability

Recall that a code is lossless if for all $x, y \in A_X$

$$x \neq y \implies c(x) \neq c(y)$$

This ensures that if we work with a <u>single</u> outcome, we can <u>uniquely</u> decode the outcome

When working with variable-length codes, it will be convenient to also require the following:

Uniquely Decodable

A code c for X is uniquely decodable if no two strings from \mathcal{A}_X^+ have the same codeword. That is, for all $\mathbf{x},\mathbf{y}\in\mathcal{A}_X^+$

$$\mathbf{x} \neq \mathbf{y} \implies c(\mathbf{x}) \neq c(\mathbf{y})$$

This ensures that if we work with a sequence of outcomes, we can still uniquely decode the individual elements

Examples of uniquely decodable codes

Examples:

- $C_1 = \{0001, 0010, 0100, 1000\}$ is uniquely decodable
 - ► Uniform + Lossless ⇒ Uniquely decodable
- $C_2 = \{1, 10, 110, 111\}$ is not uniquely decodable because

$$c(aaa) = c(d) = 111$$
 and $c(ab) = c(c) = 110$

- The code is of course lossless
- ▶ Lossless ⇒ Uniquely decodable
- $C_3 = \{0, 10, 110, 111\}$ is uniquely decodable
 - We can easily segment a given code string scanning left to right
 - e.g. 0110010 → 0, 110, 0, 10

"Self-punctuating" property

自同断无标记连续编码不会建歧义

The code $C_3 = \{0, 10, 110, 111\}$ has a "self-punctuating" property

Trivial to segment a given code string into individual codewords

- Keep scanning until we match a codeword
- Once matched, add new segment boundary, and proceed to rest of string

Once our current segment matches a codeword, no ambiguity to resolve

Why? No codeword is a prefix of any other

Not true for every uniquely decodable code, e.g. $C_4 = \{0, 01, 011\}$

ullet First bit $0 \rightarrow$ no certainty what the symbol is

Prefix Codes

a.k.a prefix-free or instantaneous codes

A simple property of codes **guarantees** unique decodeability

Prefix property

A codeword $\mathbf{c} \in \{0,1\}^+$ is said to be a **prefix** of another codeword $\mathbf{c}' \in \{0,1\}^+$ if there exists a string $\mathbf{t} \in \{0,1\}^+$ such that $\mathbf{c}' = \mathbf{c}\mathbf{t}$.

Can you create \mathbf{c}' by gluing something to the end of \mathbf{c} ?

• **Example**: 01101 has prefixes 0, 01, 011, 0110.

Prefix Codes

A code $C = \{\mathbf{c}_1, \dots, \mathbf{c}_l\}$ is a **prefix code** if for every codeword $\mathbf{c}_i \in C$ there is no prefix of \mathbf{c}_i in C.

In a stream, no confusing one codeword with another

Prefix Codes: Examples

Examples:

 $C_1 = \{0001, 0010, 0100, 1000\}$ is prefix-free

• $C_2 = \{0, 10, 110, 111\}$ is prefix-free

- $C_2' = \{1, 10, 110, 111\}$ is *not* prefix free since $c_3 = 110 = c_1c_2$
- $C_2'' = \{1, 01, 110, 111\}$ is *not* prefix free since $c_3 = 110 = c_110$

Prefix Codes as Trees

 $\textit{C}_1 = \{0001, 0010, 0100, 1000\}$

		000	0000
	00	000	0001
	00	001	0010
0		001	0011
0		0.10	0100
	01	010	0101
	01	011	0110
		011	0111
		100	1000
	10		1001
	10		1010
1		101	1011
1		110	1100
11	110	1101	
		111	1110
		111	1111

Prefix Codes as Trees

$$\textit{C}_2 = \{0, 10, 110, 111\}$$

		000	0000	
	00	000	0001	
	00	001	0010	
0		001	0011	
0		0.10	0100	
	01	010	0101	
	01	011	0110	
		011	0111	
		100	1000	
	10		1001	
	10	101	1010	
1		101	1011	
1		110	110	1100
11	110	1101		
		111	1110	
			1111	

Prefix Codes as Trees

$$C_2' = \{1, 10, 110, 111\}$$

				0000
		00	000	0001
		00	001	0010
	0		001	0011
	U		0.10	0100
		01	010	0101
		01	011	0110
			011	0111
I			100	1000
l		10		1001
l		10		1010
l	1		101	1011
l	1		110	1100
	11	110	1101	
l		-11	111	1110
			111	1111

尔可有在闰-行上 60.

Prefix Codes are Uniquely Decodeable

		000	0000
	00	000	0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011	0110
		011	0111
		100	1000
	10		1001
	10		1010
1		101	1011
1		110	1100
11	110	1101	
			1110
		111	1111

- If $\ell^* = \max\{\ell_1, \dots, \ell_l\}$ then symbol is decodeable after seeing at most ℓ^* bits
- Consider $C_2 = \{0, 10, 110, 111\}$
 - If $c(\mathbf{x}) = 0 \dots$ then $x_1 = a$
 - ▶ If $c(\mathbf{x}) = 1 \dots$ then $x_1 \in \{b, c, d\}$
 - If $c(\mathbf{x}) = 10...$ then $x_1 = b$
 - ▶ If c(x) = 11... then $x_1 \in \{c, d\}$

Uniquely Decodeable Codes are Not Always Prefix Codes

A uniquely decodeable code is not necessarily a prefix code

```
Example: C_1 = \{0, 01, 011\}
```

- 00 . . . → first codeword
- 010 . . . → second codeword
- 011 . . . → third codeword

Example:
$$C_2 = \{0, 01, 011, 111\}$$

• This is the reverse of the prefix code $C_2' = \{0, 10, 110, 111\}$

Relating various types of codes

Note that e.g.

Prefix ⇒ Uniquely Decodable

but

Why prefix codes?

While prefix codes do not represent **all** uniquely decodable codes, they are convenient to work with

It will be easy to generate prefix codes (Huffman coding, next lecture)

Further, we can quickly establish if a given code is **not** prefix

Testing for unique decodability is non-trivial in general

- Variable-Length Codes
 - Unique Decodeability
 - Prefix Codes

The Kraft Inequality

Summary

- $L_1 = \{4, 4, 4, 4\}$
- $L_2 = \{1, 2, 3, 3\}$
- $L_3 = \{2, 2, 3, 4, 4\}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$

		000	0000
	00	000	0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01		0110
			0111
		100	1000
	10		1001
	10		1010
1		101	1011
1		110	1100
	11		1101
		111	1110
		111	1111

- $L_1 = \{4, 4, 4, 4\} C_1 = \{0001, 0010, 0100, 1000\}$
- $L_2 = \{1, 2, 3, 3\}$
- $L_3 = \{2, 2, 3, 4, 4\}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$

		000	0000
	00	000	0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011	0110
			0111
		100	1000
	10		1001
	10	101	1010
1		101	1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- $L_2 = \{1, 2, 3, 3\} C_2 = \{0, 10, 110, 111\}$
- $L_3 = \{2, 2, 3, 4, 4\}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$

		000	0000
	00		0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011	0110
		UII	0111
		100	1000
	10		1001
	10		1010
1		101	1011
1		110	1100
	11		1101
			1110
		111	1111

Suppose someone said "I want prefix codes with codewords lengths":

```
• L_1 = \{4, 4, 4, 4\} - C_1 = \{0001, 0010, 0100, 1000\}
• L_2 = \{1, 2, 3, 3\} - C_2 = \{0, 10, 110, 111\}
```

• $L_3 = \{2, 2, 3, 4, 4\} - C_3 = \{00, , , \}$

• $L_4 = \{1, 3, 3, 3, 3, 4\}$

			0000
	00	000	0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011	0110
			0111
		100	1000
	10		1001
	10		1010
1			1011
1			1100
11	110	1101	
	111	1110	
		111	1111

```
• L_1 = \{4, 4, 4, 4\} - C_1 = \{0001, 0010, 0100, 1000\}

• L_2 = \{1, 2, 3, 3\} - C_2 = \{0, 10, 110, 111\}

• L_3 = \{2, 2, 3, 4, 4\} - C_3 = \{00, 01, \dots, \dots\}
```

• $L_4 = \{1, 3, 3, 3, 3, 4\}$

		000	0000
	00	000	0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01		0110
			0111
		100	1000
	10		1001
	10		1010
1		101	1011
1		110	1100
11	110	1101	
		111	1110
		111	1111

Suppose someone said "I want prefix codes with codewords lengths":

```
• L_1 = \{4, 4, 4, 4\} - C_1 = \{0001, 0010, 0100, 1000\}
• L_2 = \{1, 2, 3, 3\} - C_2 = \{0, 10, 110, 111\}
```

•
$$L_3 = \{2, 2, 3, 4, 4\} - C_3 = \{00, 01, 100, \}$$

• $L_4 = \{1, 3, 3, 3, 3, 4\}$

			0000
	00	000	0001
	00	001	0010
		001	0011
0			0100
	01	010	0101
	01	011	0110
			0111
		100	1000
	10		1001
	10	101	1010
1		101	1011
1		110	1100
	11	110	1101
	"	111	1110
		111	1111

Suppose someone said "I want prefix codes with codewords lengths":

```
• L_1 = \{4, 4, 4, 4\} - C_1 = \{0001, 0010, 0100, 1000\}
• L_2 = \{1, 2, 3, 3\} - C_2 = \{0, 10, 110, 111\}
```

•
$$L_3 = \{2, 2, 3, 4, 4\} - C_3 = \{00, 01, 100, 1010,$$

• $L_4 = \{1, 3, 3, 3, 3, 4\}$

			0000	
	00	000	0001 0010	
	00	001		
0		001	0011	
U			0100	
	01	010	0101	
	01	011	0110	
			0111	
		100	1000	
	10		1001	
		101	1010	
1		101	1011	
1		110	110	1100
11	110	1101		
		111	1110	
		111	1111	

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- $L_2 = \{1, 2, 3, 3\} C_2 = \{0, 10, 110, 111\}$
- $L_3 = \{2, 2, 3, 4, 4\} C_3 = \{00, 01, 100, 1010, 1011\}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$

	00	000	0000
			0001
	00	001	0010
0		001	0011
U		010	0100
	01	010	0101
	01	011	0110
			0111
	10	100	1000
			1001
		101	1010
1			1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

- $\bullet \ L_1 = \{4,4,4,4\} C_1 = \{0001,0010,0100,1000\}$
- $L_2 = \{1, 2, 3, 3\} C_2 = \{0, 10, 110, 111\}$
- $L_3 = \{2, 2, 3, 4, 4\} C_3 = \{00, 01, 100, 1010, 1011\}$
- $L_4 = \{1, 3, 3, 3, 3, 4\}$ Impossible!

			0000
		000	0001
	00		0010
		001	0010
0			
		010	0100
	01	010	0101
	0.	011	0110
			0111
	10	100	1000
			1001
	10	101	1010
1			1011
1		110	1100
	11	110	1101
		111	1110
		111	1111

The Kraft Inequality

a.k.a. The Kraft-McMillan Inequality

Kraft Inequality

For any prefix (binary) code C, its codeword lengths $\{\ell_1, \dots, \ell_l\}$ satisfy

$$\sum_{i=1}^{l} 2^{-\ell_i} \le 1 \tag{1}$$

Conversely, if the set $\{\ell_1, \dots, \ell_l\}$ satisfy (1) then there exists a prefix code C with those codeword lengths.

Examples:

- **1** $C_1 = \{0001, 0010, 0100, 1000\}$ is prefix and $\sum_{i=1}^4 2^{-4} = \frac{1}{4} \le 1$
- ② $C_2 = \{0, 10, 110, 111\}$ is prefix and $\sum_{i=1}^4 2^{-\ell_i} = \frac{1}{2} + \frac{1}{4} + \frac{2}{8} = 1$
- **1** Lengths $\{1,2,2,3\}$ give $\sum_{i=1}^4 2^{-\ell_i} = \frac{1}{2} + \frac{2}{4} + \frac{1}{8} > 1$ so no prefix code

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

		000	0000
	00	000	0001
		001	0010
0		001	0011
		010	0100
	01	010	0101
	0.	011	0110
	l	011	0111
		100	1000
	10		1001
		101	1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

• 2 x 2-bit codewords: {00,01}

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

		000	0000
	00	000	0001
	30	001	0010
0		001	0011
0			0100
	01	010	0101
	01 01	0110	
		011	0111
		100	1000
	10		1001
100	10		1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

			0000	
	00	000	0001	
	00	001	0010	
0		001	0011	
		010	0100	
	01	010	0101	
	٠.	011	0110	
		011	0111	
		100	1000	
	10		1001	
			101	1010
1		101	1011	
		110	1100	
	11	110	1101	
		111	1110	
		111	1111	

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

			0000
	00	000	0001
	001	0010	
0		001	0011
		010	0100
	01	010	0101
	01	011	0110
		011	0111
		100	1000
	10		1001
	101		1010
1		101	1011
•		110	1100
	11	110	1101
		111	1110
		111	1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ-bit codeword excludes
 - $2^{k-\ell}$ x k-bit codewords

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

			0000
		000	0001
	00		
		001	0011
0			0100
	01	010	0101
	01	011 01	0110
		011	0111
			1000
	10		1001
			1010
1		101	1011
		110	1100
	11	110	1101
		111	1110
		111	1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ-bit codeword excludes
 - $2^{k-\ell}$ x k-bit codewords

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

			0000
	00	000	0001
		001	0010
0		001	0011
		010	0100
	01	010	0101
	01	011	0110
		011	0111
		100	1000
	100	100	1001
			1010
1		101	1011
		110	1100
11	- 11	110	1101
		111	1110
			1111

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000, 001, 010, 011}
- 8 x 4-bit codewords: {0000, 0001, ..., 0111}
- In general, an ℓ-bit codeword excludes
 2^{k-ℓ} x k-bit codewords

For lengths $L = \{\ell_1, \dots, \ell_I\}$ and $\ell^* = \max\{\ell_1, \dots, \ell_I\}$, there will be

$$\sum_{i=1}^{l} 2^{\ell^* - \ell_i}$$

excluded ℓ^* -bit codewords.

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

		000	0000	
	00	000	0001	
	00	001	0010	
0		001	0011	
0		010	0100	
	01	010	0101	
	01	011	0110	
		011	0111	
		100	1000	
	10	10		1001
				1010
1		1011		
		110	1100	
,	11	110	1101	
		111	1110	
		111	1111	

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ-bit codeword excludes
 2^{k-ℓ} x k-bit codewords

For lengths $L = \{\ell_1, \dots, \ell_I\}$ and $\ell^* = \max\{\ell_1, \dots, \ell_I\}$, there will be

$$\sum_{i=1}^{l} 2^{\ell^* - \ell_i} \leq 2^{\ell^*}$$

excluded ℓ^* -bit codewords. But there are only 2^{ℓ^*} possible ℓ^* -bit codewords

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

			0000	
	00	000	0001	
	00	001	0010	
0		001	0011	
		010	0100	
	01	010	0101	
	01	011	0110	
		011	0111	
		100	1000	
	10		1001	
	10	101		1010
			101	1011
		110	1100	
	11	110	1101	
		111	1110	
		1111	1111	

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ-bit codeword excludes
 2^{k-ℓ} x k-bit codewords

For lengths $L = \{\ell_1, \dots, \ell_I\}$ and $\ell^* = \max\{\ell_1, \dots, \ell_I\}$, there will be

$$\frac{1}{2^{\ell^*}} \sum_{i=1}^{l} 2^{\ell^* - \ell_i} \le 1$$

excluded ℓ^* -bit codewords. But there are only 2^{ℓ^*} possible ℓ^* -bit codewords

We are constrained when constructing prefix codes, as selecting a codeword eliminates a whole subtree

Choosing a prefix codeword of length 1 — e.g., c(a) = 0 — excludes:

			0000	
	00	000	0001	
	00	001	0010	
0		001	0011	
			0100	
	01	010	0101	
	011	0110		
		011	0111	
		100	1000	
	10	10	100	1001
			101	1010
1		101	1011	
		110	1100	
	11	110	1101	
		111	1110	
		111	1111	

- 2 x 2-bit codewords: {00,01}
- 4 x 3-bit codewords: {000,001,010,011}
- 8 x 4-bit codewords: {0000,0001,...,0111}
- In general, an ℓ -bit codeword excludes $2^{k-\ell} \times k$ -bit codewords

For lengths $L = \{\ell_1, \dots, \ell_I\}$ and $\ell^* = \max\{\ell_1, \dots, \ell_I\}$, there will be

$$\sum_{i=1}^{l} 2^{-\ell_i} \leq 1$$

excluded ℓ^* -bit codewords. But there are only 2^{ℓ^*} possible ℓ^* -bit codewords

Kraft inequality: other direction

Suppose we are given lengths satisfying

$$\sum_{i=1}^{l} 2^{-\ell_i} \le 1$$

Then, we can construct a code by:

- Picking the first (remaining) node at depth ℓ_1 , and using it as the first codeword
- Removing all descendants of the node (to ensure the prefix condition)
- Picking the next (remaining) node at depth ℓ_2 , and using it as the second codeword
- Removing all descendants of the node (to ensure the prefix condition)
- •

Kraft inequality: comments

Kraft's inequality actually holds more generally for uniquely decodable codes

Harder to prove

Note that if a given code has lengths that satisfy

$$\sum_{i=1}^{l} 2^{-\ell_i} \leq 1$$

it does not mean the **given** code necessarily is prefix

Just that we can construct a prefix code with these lengths

Summary

Key ideas from this lecture:

- Prefix and Uniquely Decodeable variable-length codes
- Prefix codes are tree-like
- Every Prefix code is Uniquely Decodeable but not vice versa
- The Kraft Inequality:
 - ▶ Code lengths satisfying $\sum_i 2^{-\ell_i} \le 1$ implies Prefix/U.D. code exists
 - ▶ Prefix/U.D. code implies $\sum_{i} 2^{-\ell_i} \le 1$

Relevant Reading Material:

- MacKay: §5.1 and §5.2
- Cover & Thomas: §5.1, §5.2, and §5.5

Acknowledgement

These slides were originally developed by Professor Robert C. Williamson.