Scatterplots

Topics

- Average response time for incidents in the neighborhood (if takes longer means more stations should be built? Table? plot?)
- Average response time vs neighborhood income (if poor take longer than something shou change)
- Fire size vs number of personnel (if no trend means city should take more action to prioritize urgency)
- High Casualty(3+,5+?) vs Income or high casualty vs dwelling density (means the area need more equipment if poor; or means area needs more inspection if more building gets more casualty)
- Avg financial loss in each origin? (loss more ones would get discount from insurance if purchase fire equipment?)
- Which neighborhoods have severe fires (large, extra large etc but least station)? Which has the most fire (but least station)?
- Does a certain premise type area have more fire (commercial neighborhood, apartment, condo, houses etc)

Top options

Average response time

Don't know how to automatically pick scale for object of type difftime. Defaulting to continuous.

Average response time vs Usual Density


```
plot_title <- "Average response time vs Average Household Sizes"

ggplot(fire_Incidents_Filtered, aes(x=AVERAGE_HOUSRHOD_SIZE, y=Avaerge_Response_Time)) +
    geom_point()+ ggtitle(plot_title)+ coord_flip()+
    xlab("Average households ")+ ylab("Avaerge Response Time")+
    theme(plot.title = element_text(color="Black", size=14, face="bold"))</pre>
```

Don't know how to automatically pick scale for object of type difftime. Defaulting to continuous.

Average response time vs Average Household Sizes

Casualty

geom_point()+ ggtitle(plot_title)+

xlab("Average Casualty")+ ylab("Population Density")+

theme(plot.title = element_text(color="Black", size=14, face="bold"))

```
# Group by date
fire_Incidents_Filtered <- fire_Incidents %>%
    group_by(Neighborhood) %>%
    summarise(Avaerge_Casualty = mean(Civilian_Casualties), .groups = 'drop') %>%
    na.omit()

fire_Incidents_Filtered <- merge(fire_Incidents_Filtered, neighbourhood_Shape, by.y = "AREA_NAME", by.x

# Plot the scatter plot
plot_title <- "Average Casualty vs Population Density"

ggplot(fire_Incidents_Filtered, aes(x=Avaerge_Casualty, y=POPULATION_DENSITY_PER_SQKM)) +</pre>
```

Average Casualty vs Population Density


```
# Plot the scatter plot
plot_title <- "Average Casualty vs Dwellings Density by Neibourghood Sizes"

ggplot(fire_Incidents_Filtered, aes(x=Avaerge_Casualty, y=DWELLINGS_OCCUPIED_BY_USUAL_RESIDENTS/LAND_ARD
geom_point()+ ggtitle(plot_title)+geom_smooth(stat = 'smooth',method = 'loess', formula = y ~ x)+
    xlab("Average Casualty")+ ylab("Dwellings Density by Neibourghood Sizes")+
    theme(plot.title = element_text(color="Black", size=14, face="bold"))</pre>
```

Average Casualty vs Dwellings Density by Neibourghood Sizes


```
# Plot the scatter plot
plot_title <- "Average Casualty vs Percentage Residents with No Certificate"

ggplot(fire_Incidents_Filtered, aes(x=Avaerge_Casualty, y=PERCENTAGE_NO_CERTIFICATE_DIPLOMA)) +
   geom_point()+ ggtitle(plot_title)+geom_smooth(stat = 'smooth',method = 'loess', formula = y ~ x)+
   xlab("Average Casualty")+ ylab("Percentage Residents with No Certificate")+
   theme(plot.title = element_text(color="Black", size=14, face="bold"))</pre>
```

Average Casualty vs Percentage Residents with No Certificate

Avg financial loss

```
# Group by date
fire_Incidents_Filtered <- fire_Incidents %>%
    group_by(Neighborhood) %>%
    summarise(Average_Financial_Loss = mean(Estimated_Dollar_Loss), .groups = 'drop') %>%
    na.omit()

fire_Incidents_Filtered <- merge(fire_Incidents_Filtered, neighbourhood_Shape, by.y = "AREA_NAME", by.x

# Plot the scatter plot
plot_title <- "Average Financial Loss vs Average Household Income"

ggplot(fire_Incidents_Filtered, aes(y=AVERAGE_HOUSEHOLD_INCOME, x=Average_Financial_Loss)) +
    geom_point()+ ggtitle(plot_title)+ geom_smooth(stat = 'smooth',method = 'loess', formula = y ~ x)+
    xlab("Average_Financial_Loss")+ ylab("AVERAGE_HOUSEHOLD_INCOME")+
    theme(plot.title = element_text(color="Black", size=14, face="bold"))</pre>
```

Average Financial Loss vs Average Household Income


```
# Plot the scatter plot
plot_title <- "Average Financial Loss vs Average Household Size"

ggplot(fire_Incidents_Filtered, aes(y=AVERAGE_HOUSRHOD_SIZE, x=Average_Financial_Loss)) +
    geom_point()+ ggtitle(plot_title)+ geom_smooth(stat = 'smooth',method = 'loess', formula = y ~ x)+
    xlab("Average Financial Loss")+ ylab("Average Household Size")+
    theme(plot.title = element_text(color="Black", size=14, face="bold"))</pre>
```

Average Financial Loss vs Average Household Size


```
\#\# Total Incidents
```

```
ggplot(neighbourhood_Shape, aes(x=TOTAL_STATION, y=TOTAL_INCIDENTS)) +
  geom_point()+ ggtitle(plot_title)+ coord_flip()+
  xlab("TOTAL_STATION")+ ylab("TOTAL_INCIDENTS")+
  theme(plot.title = element_text(color="Black", size=14, face="bold"))
```

Total Incidents vs Total Stations


```
plot_title <- "Total Incidents vs Population Density"

ggplot(neighbourhood_Shape, aes(x=POPULATION_DENSITY_PER_SQKM, y=TOTAL_INCIDENTS)) +
    geom_point()+ ggtitle(plot_title)+ coord_flip()+
    xlab("Population Density")+ ylab("TOTAL_INCIDENTS")+
    theme(plot.title = element_text(color="Black", size=14, face="bold"))</pre>
```

Total Incidents vs Population Density


```
\# Other Options
```

```
# Plot the scatter plot
plot_title <- "Fire size vs number of personnel"

ggplot(fire_Incidents, aes(x=Fire_Size_Case, y=Number_of_responding_personnel)) +
    geom_bar(stat='identity')+ ggtitle(plot_title)+ coord_flip()+
    xlab("Fire Size")+ ylab("Number of responding personnel")+
    theme(plot.title = element_text(color="Black", size=14, face="bold"))</pre>
```

Fire size vs number of personnel


```
# Group by date
fire_Incidents_Filtered <- fire_Incidents %>%
    group_by(Neighborhood) %>%
    summarise(Avaerge_Response_Time = mean(TFS_Response_Time), .groups = 'drop') %>%
    na.omit()

fire_Incidents_Filtered <- fire_Incidents_Filtered[which(order(fire_Incidents_Filtered$Avaerge_Response

# Plot the scatter plot
plot_title <- "Average response time for incidents top 40"

ggplot(fire_Incidents_Filtered, aes(x=Neighborhood, y=Avaerge_Response_Time)) +
    geom_bar(stat='identity')+ ggtitle(plot_title)+ coord_flip()+
    xlab("Neighborhood")+ ylab("Avaerge_Response_Time")+
    theme(plot.title = element_text(color="Black", size=14, face="bold"))</pre>
```

Don't know how to automatically pick scale for object of type difftime. Defaulting to continuous.

Average response time for incidents top 40

fire_Incidents_Filtered

```
## # A tibble: 9 x 2
     Neighborhood
                                        Avaerge_Response_Time
##
     <chr>
                                        <drtn>
## 1 Bayview Village (52)
                                        5.503175 mins
## 2 Casa Loma (96)
                                        4.807345 mins
## 3 Greenwood-Coxwell (65)
                                       14.792786 mins
## 4 Kensington-Chinatown (78)
                                        4.325322 mins
## 5 Lawrence Park South (103)
                                         4.722449 mins
## 6 Oakridge (121)
                                        4.855628 mins
## 7 Rexdale-Kipling (4)
                                        4.770513 mins
## 8 Runnymede-Bloor West Village (89) 4.218254 mins
## 9 South Riverdale (70)
                                        5.194470 mins
plot_title <- "Does a certain premise type area have more fire?"</pre>
ggplot(fire_Incidents, aes(x=Area_Orgin_Case)) +
  geom_bar()+ ggtitle(plot_title)+ coord_flip()+
 xlab("Area_Orgin_Case")+ ylab("TOTAL_INCIDENTS")+
  theme(plot.title = element_text(color="Black", size=14, face="bold"))
```

Does a certain premise type area have more fire?

