Отчет

Автор Чашков М. С.

Проект Osanka

Оглавление

Список решаемых задач	3
Подбор фильтра для определения ориентации	
Постановка задачи	
Анализ литературы	
Математический алгоритм фильтра Калмана	
Выбор алгоритма фильтрации измеренных данных от ВЧ шумов	
Постановка задачи	
Подбор литературы	
Выбор Алгоритма	
Частотно-временной анализ данных датчика	
Постановка задачи	27
Подбор литературы	
Решение	

Список решаемых задач

- 1. Подбор фильтра для определения ориентации точки в пространстве
- 2. Выбор алгоритма фильтрации измеренных данных от высокочастотных шумов (ВЧ)
- 3. Частотно-временной анализ данных датчика (неокончено)

Подбор фильтра для определения ориентации

Постановка задачи

В общем случае решается следующая задача:

Имеется устройство, которое может быть описано некоторым вектором параметров. На каждой итерации зашумленных измерений оценить вектор параметров. Это можно представить в виде схемы

Рисунок 1: Схема фильтрации

Математически эту схему можно записать так:

$$x(k+1)=f(x(k),u(k),w(k))$$
 (1)

$$y(k)=h(x(k),v(k))$$
 (2)

Здесь

 $x \in \mathbb{R}^n$ - вектор параметров системы

f(.,.,.) - выражение определяющее физику системы

```
u \in R^m - вектор управляющих воздействий w - вектор системных ошибок y \in R^r - вектор наблюдений (измерений) h(.,.,.) - измерительное уравнение v - вектор ошибок измерения
```

При заданных

- f, h
- Параметрах шумов w, v
- Начальных условий
- Наборе управляющих воздействий *u(k)*
- Наборе наблюдений (измерений) *y(k)*

Определить

Наилучшую оценку x(k)

При выборе фильтра для определения ориентации рассматривались три варианта:

- 1. Комплементарный фильтр
- 2. Фильтр Маджвика
- 3. Фильтр Калмана

Была составлена оценочная таблица выбора фильтров по данным литературы

Таблица 1: Сравнение различных фильтров

	Матем. сложность	Вычисл. сложность	Скорость сходимости	Точность	Простота настройки	Наличие оптимизации	Использ. данные	Наличие готовых реализаций
Комплементарный фильтр	низкая	низкая	низкая	низкая	высокая	нет	акселером. гироскоп	нет
Фильтр Маджвика	высокая	средняя	высокая	высокая (статика)	средняя	есть	акселером. гироскоп магнетом.	есть
Фильтр Калмана	высокая	высокая	высокая	высокая (статика динамика)	низкая	есть	акселером. гироскоп магнетом.	есть (нужна доработка)

Эти данные необходимо было проверить для окончательного выбора реализуемого алгоритма фильтрации, для этого были реализованы алгоритмы фильтрации в программном пакете MathLab.

Анализ литературы.

В ходе анализа литературы обнаружены следующие источники Интернет статьи

Название	Сссылка	Комментарий
Снижаем погрешность GPS на Android с помощью фильтра Калмана и акселерометра	https://zen.yandex.ru/ media/id/ 5ad057638c8be3b50925 5191/snijaem- pogreshnost-gps-na- android-s-pomosciu- filtra-kalmana-i- akselerometra- 5ad06beddd2484cb6270 626b	Общее описание акселерометра, Пример работы с фильтром Калмана. Пример формирования матрицы измерения и матрицы управления.
3D kinematics using dual quaternions: theory and applications in neuroscience	https:// www.frontiersin.org/ articles/10.3389/ fnbeh.2013.00007/full	Хороший материал. Но на английском. Математика вращений.
Матрицы поворота, углы Эйлера и кватернионы (Rotation matrices, Euler angles and quaternions)	https://api-2d3d- cad.com/ euler_angles_quaternion s/	Матрица преобразования. Углы Эйлера. Кватернионы Приведены формулы перехода. Имеются куски С кода.
Матрицы и кватернионы.	http:// www.rossprogrammprod uct.com/translations/ Matrix%20and %20Quaternion %20FAQ.htm	Много статей про кватернионы и операции с ними. Есть код операций с кватернионами.
Вращение и кватернионы. Сборник	https://gamedev.ru/code/ articles/?	Кватернионы Приведены формулы перехода. Имеются

рецептов. (3 стр)	id=4215&page=3	куски С кода.
Доступно о кватернионах и их преимуществах	https://habr.com/ru/post/ 426863/	Хороший обзор кватернионов. Есть формулы. Нет кода
Комплементарный фильтр	https://robotclass.ru/ articles/complementary- filter/	Реализация инклинометра на ардуино. Только Гироскоп+ Акселерометр. Есть пример кода.
Фильтр Маджвика	https://x-io.co.uk/open- source-imu-and-ahrs- algorithms/	Описание алгоритма фильтрации Маджвика. Все 9 осей. Есть примет кода
Определение угла наклона акселерометром	http://bitaks.com/ resources/inclinometer/ content.html	Только акселерометр. Есть описание калибровки акселерометра
Использование инерциальной навигационной системы (ИНС) с несколькими датчиками на примере задачи стабилизации высоты квадрокоптера	https://habr.com/ru/post/ 137595/	Общее описание работы инклинометра Акселеромет + Гироскоп. Магнитометра нет.
Оценивание пространственной ориентации, или Как не бояться фильтров Махони и Маджвика	https://habr.com/ru/post/ 438060/	Ориентация. Общее сравнение фильтров Маджвика и Махони
Kalman filter toolbox for Matlab	https://www.cs.ubc.ca/ ~murphyk/Software/ Kalman/kalman.html	Пример реализации фильтра Калмана на матлабе

Фильтр Калмана— Введение	https:// baumanka.pashinin.com /IU2/sem11/	Лекции по Калмановской фильтрации из бауманки
How a Kalman filter works, in pictures	http://www.bzarg.com/p/ how-a-kalman-filter- works-in-pictures/	Забавное описание фильтра Калмана в картинках.

Книги

Автор	Название	Ссылка	Комментарий
Dan Simon	Optimal State Estimation Kalman	http:// en.bookfi.net/ book/503063	Теория фильтрации Калмана. Линейная и Нелинейная. На английском
Gelb A.	Applied optimal estimation	http:// en.bookfi.net/ book/1501549	Введение в идентификацию систем. На английском
Д. Гроп	Методы идентификации систем	http:// en.bookfi.net/ book/509530	Различные методы идентификации систем
Э. П. Сейдж	Идентификация систем управления	http:// en.bookfi.net/ book/792631	Теория идентификации систем
Кузовков Н. Т.	Инерциальная навигация	http:// en.bookfi.net/ book/728305	Неплохая книга по навигации. Правда описана

			на механических измерительных устройствах.
Гордеев	Кватернионы и бикватернионы	http:// eqworld.ipmnet.ru /ru/library/books/ Gordeev2016ru.p df	Очень хорошая книга по теории кватернионов и бикватернионов. Подробная математика. Нет готового кода.
	Кинематика твердого тела		
	Фильтр Калмана для чайников		Минимальное описание линейного фильтра Калмана. Минимум математики. Нет готового кода
	Фильтр Калмана простым языком		Использование фильтра Калмана в определении GPS координат. Кода нет. Минимум формул. Фильтр строится на координатах + скорость объекта.
	Indirect Kalman Filter for 3D Attitude Estimation	http:// mars.cs.umn.edu/ tr/reports/ Trawny05b.pdf	Очень хороший пример реализации фильтра

			Калмана для ориентации. Отсутствует магнитометр
Шпекторов А. Г. В. Г. Фам	Анализ применения микромеханическ их измерительных систем для управления морскими подвижными объектами	https://izv.etu.ru/ assets/files/izv- etu-5-2017-16- 20.pdf	Статья. Использования фильтрации Калмана. Нет готового кода
Terence Tong	Kalman Filter Made Easy	https:// www.ocf.berkeley. edu/~tmtong/ howto/kalman/ writeup.pdf	Простое описание фильтра Калмана. На английском
M. I. Ribeiro	Kalman and Extende Kalman Filters	http:// users.isr.ist.utl.pt/ ~mir/pub/ kalman.pdf	Хорошая книга по математике фильтрации Калмана
S. Madgwick	Madgwick internal report	https:// www.samba.org/ tridge/UAV/ madgwick_interna I_report.pdf	Статья Маджвика о его фильтре. Базовая статья по фильтрации Маджвика
Иванов Д. С.	Алгоритм оценки параметров ориентации малого космического корабля с использованием		Неплохая статья по практическому применения фильтра Калмана. Рассматриваютс

фильтра Калмана	я вопросы настройки фильтра
Sensor Fusion Kalman Filter	Алгоритм фильтра Калмана из Матлаба.

Математический алгоритм фильтра Калмана

Задача: Реализовать по полученным данным с использованием фильтра Калмана

- 1. определение ориентации
- 2. угол отклонения тела от вертикали

Реализация здесь:

https://gitlab.fablite.tech/chashkov.ms/osanka_filtering_data/commit/cb786a58666b9c9d438d43022a7a7f48476a5b51\

Графики:

Accelerometr Y
Положение сидя 1 мин - Шапель

Accelerometr Z
Положение сидя 1 мин - Шапель

Time in second

Body angle – угол отклонения тела от вертикали, в градусах

Accelerometr Y Приседания 10 - Шапель

Accelerometr Z Приседания 10 - Шапель

Time in second

Body angle – угол отклонения тела от вертикали, в градусах

Time in second

Body angle – угол отклонения тела от вертикали, в градусах

Программа комплекса

- 1. Положение стоя
- 2. Положение сидя
- 3. Положение стоя
- 4. Движение вперед
- 5. Спуск по лестнице
- 6. Положение лежа
- 7. Движение + подъем по лестнице

- 8. 5 приседаний
- 9. Положение стоя
- 10. Наклон корпуса вперед
- 11. Положение стоя

Выбор алгоритма фильтрации измеренных данных от ВЧ шумов

Постановка задачи

Необходимо подобрать фильтр для очистки сырых данных от ВЧ шумов.

Подбор литературы

Интернет статьи

Название	Сссылка	Комментарий
Сглаживание цифровых сигналов	https://habr.com/ru/post/ 184728/	Использование КИХ фильтра
Практическое применение преобразования Фурье для обработки сигналов	https://habr.com/ru/post/ 324152/	Использование КИХ фильтра. Есть пример фильтрации. Имеется пример кода.
Вейвлетная очистка от шумов и сжатие сигналов.	https://moglobi.ru/stati/ vejvletnaya-ochistka-ot- shumov-i-sjatie-signalov/ main.html	Статья по вейвлет фильтрации. Рассмотрен выбор вейвлета. Есть матлаб код.
Вейвлет анализ в MatLAB реальных осциллограмм	https://www.kipis.ru/ upload/kipis_articles/ article_Dyakonov_3- 2010.pdf	Статья про использование вейвлет анализа.

Книги

Автор	Название	Ссылка	Комментарий
Сергиенко	Цифровая обработка сигналов	http:// en.bookfi.net/ book/445600	Учебник по цифровой обработке. Есть готовые коды

Выбор Алгоритма

Для ВЧ фильтрации нашел 2 разных метода и 1 комбинированный

- 1. ВЧ фильтр с конечной импульсной характеристикой (КИХ)
- 2. Метод на основе вейвлет декомпозиции
- 3. Вейвлет декомпозиция с последующей фильтрацией

Все три метода были реализованы.

Реализация здесь:

https://gitlab.fablite.tech/chashkov.ms/osanka_filtering_data/commit/c8d80676fcf0788ecb0c74b6d7296aa1953efe26

Графики:

Time in second

Time in second

Time in second

Time in second

Результат:

1. FIR обеспечивает приемлемое качество

- 2. Время работы фильтра на основе вейвлетов на порядок больше классического FIR
- 3. Рекомендую использовать для ВЧ фильтрации КИХ фильтр
- 4. После фильтрации необходимо корректировать параметры Калмановского фильтра, поскольку расходится угол отклонения тела от вертикали.

Частотно-временной анализ данных датчика

Постановка задачи

- 1. Определить частотно временной спектр (ЧВС) сырых данных (акселерометра)
- 2. Выделить особенности ЧВС отдельных движений
- 3. На основе выделенных особенностей ЧВС определить различные движения в комплексе упражнений

Подбор литературы

Интернет статьи

Название	Сссылка	Комментарий
Оконное преобразование Фурье	https://bstudy.net/ 617314/ekonomika/ okonnoe_preobrazovani e_fure	Теория быстрого преобразования Фурье (БПФ). Понятие ЧВС, неопределенность ЧВС.

Решение

При реализации были решены следующие задачи:

- 1. Выбор окна
- 2. Выбор перекрытия окна
- 3. Реализоваг алгоритм определения ЧВС.

Не решены, по причине закончившегося времени:

- 1. Выделение характерных фрагментов ЧВС
- 2. Определение различных движений в комплексе упражнений.

Реализация фильтра на MathLab здесь:

https://gitlab.fablite.tech/chashkov.ms/osanka_filtering_data/commit/cb786a58666b9c9d438d43022a7a7f48476a5b51

Графики:

В качестве окна использовал окно Ханна с различными перекрытиями Формула окна Ханна

$$w(n) = 0.5 - 0.5 \cos\left(\frac{2\pi n}{N-1}\right)$$

где N – это размер (size) окна.

Количество отсчетов

Количество отсчетов

Количество отсчетов

ЧВС комплекса сигналов при различном оконном перекрытии

Accelerometr Y Furier Transform Комплекс упражнений

Accelerometr Z Furier Transform Комплекс упражнений

Accelerometr Y Furier Transform Комплекс упражнений

Accelerometr Z Furier Transform Комплекс упражнений

Accelerometr Y Furier Transform Комплекс упражнений

Accelerometr Z Furier Transform Комплекс упражнений

n

Time

(in seconds)

Accelerometr Z Furier Transform Комплекс упражнений

Алфавитный указатель

БПФ	
быстрое преобразование Фурье	27
ВЧ	
высокочастотный шум	3, 21
КИХ	
FIR	
фильтр с конечной импульсной характеристикой	22
ЧВС	
частотно временной спектр	27