What's in the Job Title?

Sylvia Lee

Thinkful Capstone Project

Problem

- Gap between actual salary and job seekers' expectation
- Job seekers spend time on researching salaries

Solution

 Allow job seekers to estimate salary based on job titles Job Title Location Years of Experience M

Purpose of Study

- Build an algorithm to estimate annual income based on target job title, employment length, and location
- Examine the importance of job title in predicting income

Data

- Subset from Lending Club loan dataset
- 2018
- 495,242 records
- 4 fields
 - o 2 numeric variables: annual income, employment length
 - o 1 geographic variable: zip code
 - o 1 natural language variable: job title

Exploratory Data Analysis

- Drop missing values
 - o job title (11%)
 - employment length (8%)
- 440,555 records

Target Variable

• Exclude records with salary less than 2.5K

Predictors

Predictor	Example	Туре	Cardinality
Job Title	Chef	Natural Language	129,443
Zip Code	109xx	Categorical	895
Employment Length	10+ years	Categorical	11

Feature Engineering

- Employment Length
 - Categorical → Ordinal
- Zip Code
 - One-hot encoding
- Job Title
 - NLP: abbreviations
 - spaCy: En_core_web_lg
 - 300 dimensional vectors

0	1	2	3	4	5	6	7	8	9	10	11
-0.190910	-0.286760	0.325610	-0.815440	0.50561	0.789190	0.788340	-0.39848	-0.017570	1.94030	-0.313080	-0.182890
0.234640	0.698470	-0.400190	-0.652680	-0.04554	0.095587	0.021045	-0.91542	-0.186420	0.97901	-0.154840	-0.180760
-0.148010	-0.413780	0.523630	0.240100	-0.41241	0.078526	0.185500	-0.15445	0.137410	2.89810	-0.503730	-0.251790
-0.053464	-0.026130	-0.014067	-0.029245	0.08011	0.243942	0.007125	-0.46131	-0.184965	2.62500	-0.156605	0.053418
0.074737	-0.009538	-0.354550	-0.007188	0.21565	-0.327910	-0.574090	-0.35732	-0.416150	1.49760	0.162470	0.172090

Final Dataset

```
X = pd.get_dummies(job_feats, drop_first=True).values
y = job_final['annual_inc'].values

print(X.shape)
print(y.shape)

(440419, 1195)
(440419,)
```

Build Models

- Stochastic Gradient Descent
- Ridge Regression
- Lasso Regression
- Neural Network (Deep Learning)
 - o 2-5 Layers

Hyperparameters

- Alpha
- Loss function
- Eta0
- Learning Rate
- L1_Ratio
- PCA zip code

Final Model

Model	Layer	Epochs	Loss	R-squared Train	R-squared Test	RMSE Train	RMSE Test
Neural Network	2	100	MSE	0.16	0.14	\$81K	\$78K

Semantic Analysis

- Use only job title to predict salary for zip code 112xx
 - Sort data by annual income
 - Segment data based on quartiles
 - Select two job titles to represent each group as reference
 - Compute cosine similarity on the 300d word2vec vectors to determine the similarity between each job title and each reference job title
 - Use 10 similarity scores as features to predict annual income

INCOME	JOB TITLE						
Ton	INVESTMENT ANALYST						
Тор	SURGEON						
75%ile	MANAGEMENT CONSULTANT						
/5/olle	STRATEGIST						
50%ile	SENIOR TECH ANALYST						
50%ile	ASSISTANT FACILITY MANAGER						
25%ile	FINANCIAL SERVICE REP						
25%ile	ADVISORY ANALYST						
Bottom	BOOKSELLER						
DOLLOIN	DAY CARE PROVIDER						

Final Model

Model	R-squared	R-squared	RMSE	RMSE
	Train	Test	Train	Test
Polynomial Ridge Regression	0.13	0.12	\$55k	\$48k

Future Work

- Add time series data
- Find more data for each zip code
- Incorporate numeric geographic variables if possible
- Chose those titles more rigorously by looking for the most common title in each of the 5 levels in the income range