$$y = x\beta + \epsilon$$

$$\hat{\beta} = (X'X)^{-1}X'y$$

$$\hat{y} = X\hat{\beta} = Hy$$

$$H = X(X'X)^{-1}C'$$

$$\hat{\epsilon} = y - \hat{y} = y - Hy = (1 - Hy)$$

$$\hat{\theta} = C\hat{\beta}$$

$$V\hat{a}r(\hat{\theta}) = \hat{\sigma}^2(X'X)^{-1}$$

$$V\hat{a}r(\hat{\theta}) = \hat{\sigma}^2(C(X'X)^{-1}C')$$

$$SSH = (\hat{\theta} - \theta_0)'M^{-1}(\hat{\theta} - \theta_0)$$

$$SSE = (y - \hat{y})'(y - \hat{y}) = y'[I - H]y = \epsilon'\epsilon$$

$$Use \text{ MSE for } \hat{\sigma}^2, \text{ use diag}$$

$$se = \sqrt{V\hat{a}r} \quad MS* = SS*/DF*$$

$$F = MST/MSE \quad df_{total} = n - 1$$

$$t-value = \hat{\beta}/se \quad p-value = F(df_{model}, df_{error})$$

$$95\% \text{ CI } \hat{\theta} \pm 1.96\sqrt{MSE(M)}$$

$$95\% \text{ PI } \hat{y}_h \pm t(\alpha/2, n - r)se(\hat{y}_h)$$

$$F_{obs} = \frac{(\hat{\theta} - \theta_0)'M^{-1}(\hat{\theta} - \theta_0)/a}{\hat{\sigma}^2} \quad a = rank(C)$$

$$Matrix$$

$$(X_{n \times p})'(X_{n \times p})\hat{\beta} = (X_{n \times p})'y_{n \times 1}$$

$$(AB)' = B'A' \quad A^{-1}A = AA^{-1} = I$$

$$(AB)^{-1} = B^{-1}A^{-1} \quad (A')^{-1} = (A^{-1})'$$

$$|A^{-1}| = \frac{1}{|A|} \quad \frac{1}{|A|} \quad \frac{a_{22} - a_{12}}{a_{21}} \quad \frac{1}{a_{22} - \lambda}$$

$$\text{full rank } \Leftrightarrow \text{no } \lambda = 0 \quad \text{det} = 0 \Leftrightarrow \geq 1 \lambda = 0$$

$$X \text{ full rank for } \hat{\beta} \text{ unique}$$

$$E(\text{rand mat}) = \text{mat of E}$$

$$Cov(Y) = E[(Y - \mu)(Y - \mu)'] = \Sigma$$

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ \sigma_{n1} & \cdots & \sigma_{nn} \end{bmatrix}$$

$$\text{where } \sigma_{ij} = E[(Y_i - \mu_i)(Y_j - \mu_j)']$$

$$Cov(AY + b) = ACov(Y)A' = A\Sigma A'$$

$$Cov(W, Y) = E[(W - \gamma)(Y - \mu)']$$

$$MVN \Sigma \text{ pos def}$$
1)
$$\text{lin trans of mrn yields mvn.}$$
If $X \sim N_n(\mu, \Sigma)$ and $Y = AX + b$ with $A_{r \times n}$ matrix of constants and $b_{r \times 1}$ vector of constants.

	1
$y = x\beta + \epsilon$	$\mu = {\mu_1 \choose \mu_2}$ where μ_1 is $r \times 1$ and μ_2 is $(n-r) \times 1$
$\hat{\beta} = (X'X)^{-1}X'y$	$\Sigma = \begin{vmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{vmatrix}$
$\hat{y} = X\hat{\beta} = Hy$	$ \Sigma_{21} \Sigma_{22} $
$H = X(X'X)^{-1}X' \qquad Hy = \hat{y}$	where Σ_{11} is $r \times r$, Σ_{21} is $(n-r) \times r$ and Σ_{22} is $(n-r) \times (n-r)$
$M = C(X'X)^{-1}C'$	Marginals: $X_1 \sim N_r(\mu_1, \Sigma_{11})$
$\hat{\epsilon} = y - \hat{y} = y - Hy = (1 - Hy)$	$X_2 \sim N_{(n-r)}(\mu_2, \Sigma_{22})$
$\hat{\theta} = C\hat{\beta}$	4) Conditionals of mvn are mvn.
$\hat{Var}(\hat{\beta}) = \hat{\sigma^2}(X'X)^{-1}$	Suppose $X \sim N_n(\mu, \Sigma)$
$\hat{Var}(\hat{\theta}) = \hat{\sigma^2}(C(X'X)^{-1}C')$	Partition same way
$SSH = (\hat{\theta} - \theta_0)'M^{-1}(\hat{\theta} - \theta_0)$	$X_1 X_2 = x_2 \sim N_r(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2), \Sigma^*)$
$SSE = (y - \hat{y})'(y - \hat{y}) = y'[I - H]y = \epsilon' \epsilon$	where $\Sigma^* = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$
Use MSE for $\hat{\sigma}^2$, use diag	Estimable, Testable
$se = \sqrt{\hat{Var}} MS* = SS*/DF*$	If X is full rank, any (nonzero) C gives
$se = \sqrt{Var} MS* = SS*/DF*$ $F = MST/MSE df_{total} = n-1$	estimable θ
t-value= $\hat{\beta}/se$ p-value= $F(df_{model}, df_{error})$	rank(X) = rank(X'X) = number of estimable
	parameters, and for $\hat{\boldsymbol{\theta}} = \boldsymbol{C}\boldsymbol{\beta}$, check
95% CI $\hat{\theta} \pm 1.96\sqrt{MSE(M)}$	estimability.
95% PI $\hat{y_h} \pm t(\alpha/2, n-r)se(\hat{y_h})$	If X full rank then θ is testable \Leftrightarrow C is full rank a or M is full rank a (because
$F_{obs} = \frac{(\hat{\theta} - \theta_0)' M^{-1} (\hat{\theta} - \theta_0)/a}{\hat{\sigma}^2} \ a = rank(C)$	any $\boldsymbol{\theta}$ is estimable)
σ^2 Matrix	T-tests
$(X_{n\times p})'(X_{n\times p})\hat{\beta} = (X_{n\times p})'y_{n\times 1}$	One-sided Test (only for scalar hypothesis)
$(AB)' = B'A' A^{-1}A = AA^{-1} = I$	$F_{obs}(1, n-r) = tval^{2}(n-r)$
$(AB)^{-1} = B^{-1}A^{-1} (A')^{-1} = (A^{-1})'$	$H_A: \theta < \theta_0 \text{ Uses } \alpha H_A: \theta > \theta_0 \text{ uses } (1-\alpha)$
$(AB)^{-1} = B^{-1}A^{-1} (A^{-1})^{-1} = (A^{-1})^{-1}$	Two-sided $H_A: \theta \neq \theta_0$ uses $\alpha/2$ and $(1-\alpha/2)$
$ A^{-1} = \frac{1}{ A } \frac{1}{ A } \begin{vmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{vmatrix}$	In all cases reject H_0 if $ \text{test stat} > \text{crit value} $
$\det(\text{inv}) = \inf_{x \in A} A \text{ eval} = \lambda x \text{ e val} = \lambda$	F-tests
	Reject H_0 if $f_{obs} > f_{crit}$
char eqn $(A - \lambda I = 0) = det \begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix}$	Two-sided uses α crit value
full rank \Leftrightarrow no $\lambda = 0$ det=0 $\Leftrightarrow \geq 1$ $\lambda = 0$	One-sided $\theta < \theta_0$ uses 2α and requires appropriate sign of difference
X full rank for β unique E(rand mat)=mat of E	All linear model GLH tests correspond to
	comparing two models, the "full" model,
$Cov(Y) = E[(Y - \mu)(Y - \mu)'] = \Sigma$ $\begin{vmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ & & \end{vmatrix}$	$y = X\beta + \epsilon$ and a reduced model defined by
	constraints
σ_{21} : : :	For a single coefficient β_j we can test
	$H_0: \beta_j = 0 \text{ if } \beta_j \text{ is estimable}$
$\begin{vmatrix} \vdots & \vdots & \vdots \\ \sigma_{n_1} & \cdots & \cdots & \sigma_{n_n} \end{vmatrix}$	$t = \frac{\hat{\beta}_j - 0}{\sqrt{var(\hat{\beta}_j)}}$
where $\sigma_{ij} = E[(Y_i - \mu_i)(Y_j - \mu_j)']$	$\sqrt{var(\hat{eta}_j)}$
$Cov(AY + b) = ACov(Y)A' = A\Sigma A'$	Obtain estimate $\hat{\sigma}^2 = MSE$
$Cov(W, Y) = E[(W - \gamma)(Y - \mu)']$	if know σ^2 then $t \sim N(0,1)$
$\mathbf{MVN} \Sigma \text{ pos def}$	if estimate σ^2 from data then $t \sim t_{dfE}$
1) lin trans of mvn yields mvn.	Sum of Squares Decomp
If $X \sim N_n(\mu, \Sigma)$ and $Y = AX + b$	$USS(total) = y'y = \sum_{i=1}^{n} y_i^2$
with $A_{r\times n}$ matrix of constants and $b_{r\times 1}$ vector	$USS(model) = y'X(X'X)^{-1}X'y$
of constants.	$=y'Hy = \sum_{i=1}^{n} \hat{y}_i^2$
Then $Y \sim N_r(A\mu + b, A\Sigma A')$	USS(total) = USS(model) + SSE
2) lin combin of ind myns is myn	CSS(total) = USS(total) - SSI
X_1, \dots, X_k iid $X_i \sim N_n(\mu_i, \Sigma_i)$ Let $Y = a_1 X_1 + \dots + a_k X_k$	$=\sum_{i=1}^{n} (y_i - \bar{y})^2$
Then $Y \sim N(\mu^*, \Sigma^*)$ where $\mu^* = \sum_{i=1}^k a_i \mu_i$	$C\overline{SS}(total) = CSS(model) + SSE$
and $\Sigma^* = \sum_{i=1}^k a_i^2 \Sigma_i$	R squared, Corr $SSE/(n-r)$
3) Marginals of mvn are mvn	$R_{adj}^2 = 1 - \frac{SSE/(n-r)}{CSS(Total)/(n-1)}$ adjusted for the df. It will only increase on
If $X \sim N_n(\mu, \Sigma)$	
Partition: $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ where X_1 is $r \times 1$ and X_2	adding a variable to the model if the variable
is $(n-r) \times 1$	reduces the mean square for error $Cov(x,y)$
· / / · ·	$\rho = Corr(X, Y) = \frac{Cov(x, y)}{\sqrt{var(x)var(y)}}$

estimate ρ using pearsons coef of corr $\sum_{i=1}^{n} (X_i - \bar{X}) Y_i - \bar{Y}$ $\sqrt{(\sum_{i=1}^{n} (X_i - \bar{X})^2)(\sum_{i=1}^{n} (Y_i - \bar{Y})^2)}$ $\left| \begin{array}{c} .308 & -.06 & -.017 \\ -.06 & -.025 & -.004 \\ -.017 & -.004 & .006 \end{array} \right| \, X^{'}y = \left| \begin{array}{c} 405 \\ 1402 \\ 2350 \end{array} \right|$ Source DF SS MS Fval P > FModel 2 79 239.5 349.6 < .001 Error 97 11 .113 Ctotal 99 90
 x1
 1.35
 .053
 25.47
 < .001</th>

 x2
 1.61
 .026
 61.81
 < .001</td>
 2) c) Test $H_0: \beta_1 = 1$ t-test= $\frac{\hat{\beta}_1-1}{se(\hat{\beta}_1)}=6.6\sim t_{97}~6.6>1.96$ reject H_0 **d)** Test $H_0: \beta_1 = \beta_2 = 1$ $B_1 = 1$ $B_2 = 1$ $C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \theta_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} H_0 : C\theta = \theta_0 \hat{\theta} = \begin{bmatrix} 1.35 \\ 1.61 \end{bmatrix}$ calc M calc M⁻¹ F-test= $\frac{43.83}{113}$ = 387.8 ~ $F_{2,97}$ e) 95% ČI of $\beta_1 + \beta_2$ (θ) $\hat{\theta} = \hat{\beta}_1 + \hat{\beta}_2 = 2.96 \ C = [0, 1, 1]$ $se(\hat{\theta}) = \hat{\sigma}_{\hat{\theta}}^2 = \sqrt{.0026}$ $2.96 \pm 1.96\sqrt{.0026} = [2.86, 3.06]$ f) Transform x_1, x_2 to $z_1 = x_1 - 2, z_2 = x_2 - 4$ Refit with $y^* = \beta_0^* + \beta_1^* z_1 + \beta_2^* z_2$ $= (\beta_0^* - 2\beta_1^* - 4\beta_2^*) + \beta_1^* x_1 + \beta_2^* x_2$ $\beta_0^* = \beta_0^* + 2\beta_1^* + 4\beta_2^* = 9.8 \ C = [1, 2, 4]$ $\sigma^2 = \hat{\sigma}^2 C(X'X)^{-1}C^{-1} = .085 \ t = 115.3$ 3) f) is $H_0: \beta_0 - \beta_2 = 0$ and $\beta_1 + 2\beta_2 = 2$ and $2\beta_0 + \beta_1 = 2$ testable? Reduce to ETH? $y = \begin{vmatrix} 2 \\ 0 \\ 3 \\ 6 \\ 10 \end{vmatrix} X = \begin{vmatrix} 1 & 6 & 11 \\ 1 & 7 & 133 \\ 1 & 8 & 15 \\ 1 & 9 & 17 \\ 1 & 11 & 21 \end{vmatrix} \beta = \begin{vmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{vmatrix}$ $C = \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \end{vmatrix} \text{ reduces } \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 2 & 1 & 0 \end{vmatrix} \text{ 2pivots } \theta_0 = \begin{vmatrix} 0 \\ 2 \\ 2 \end{vmatrix}$ not FR, not testable, reduces to C^* testable $C^* = \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{vmatrix} \theta_0^* = \begin{vmatrix} 0 \\ 2 \end{vmatrix} H_0 : \begin{vmatrix} \beta_0 - \beta_2 = 0 \\ \beta_1 + 2\beta_2 = 2 \end{vmatrix}$ 1) a) $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim N(0, \Sigma) \Sigma = \begin{bmatrix} 1 & 0 & 6 \\ 0 & 1 & 5 \\ 0 & 6 & 5 & 1 \end{bmatrix}$ c = |21 - 1| $2x_1 + x_2 - x_3 \sim N(c\mu, c\Sigma c') = N(0, 2.6)$ **b)** $Cov(x_1 - x_2, 2x_2 + x_3) = c_1 \Sigma c_2' = -1.9$ $c_1 = |1 - 10| c_2 = |021|$ Quantity Definition Description Sample average of x Sample average of y SXX $\sum (x_i - \overline{x})^2 = \sum (x_i - \overline{x})x_i$ Sum of squares for the xs SXX/(n-1)Sample variance of the xs SD_x Sample standard deviation of the $\sqrt{SXX/(n-1)}$ $\sum (y_i - \overline{y})^2 = \sum (y_i - \overline{y})y_i$ Sum of squares for the ys SD^2 SYY/(n-1)Sample variance of the ys $\sqrt{\text{SYY}/(n-1)}$ Sample standard deviation of the SXY $\sum (x_i - \overline{x})(y_i - \overline{y}) = \sum (x_i - \overline{x})y_i$ Sum of cross-products SXY/(n-1)Sample covariance $s_v/(SD_vSD_v)$ Sample correlation In each equation, the symbol Σ means to add over all n values or pairs of values in the data

Source of Variation		$^{\mathrm{df}}$	SS		MS		F_{obs}		
Int	Intercept		1	SSI	SSI			SSI/MSE	
Model(uncorrected)		q	USS(model)	USSM/q		(USS	(USSM/q)/MSE		
Model(corrected)		q-1	CSS(model)	CSSM/q-1		(CSSN	(CSSM/q-1)/MSE		
Error(residu	al)	N-q	SSE	SSE/(N-q)=MSI	E	-	-
Total(uncorrected)		eted)	N	USS(total)	-			-	
Total(corrected)		ed)	N-1	CSS(total)	-		-		-
Paramet	er l	Estimat	е	SE	t-v	alue	p-value		
Intercep	t	$\hat{\beta}_1$		$\hat{\sigma}^{2}\{(X'X)_{1,1}^{-1}\}$	Estin	ate/SE	p		
x_1		$\hat{\beta}_2$		$\hat{\sigma}^{2}\{(X'X)_{2,2}^{-1}\}$	Estin	ate/SE	P		
x_2		$\hat{\beta}_3$		$\hat{\sigma}^{2}\{(X'X)_{3,3}^{-1}\}$	Estin	ate/SE	p		
Source	DF	Тур	e I SS	MS		F-	value	p-value	
x1	1	Typ	e I SS	T1SS/df =	TISS	MS/MS	SE(model)	p-value	
x2	1	Typ	e I SS	T1SS/df =	T1SS	MS/MS	SE(model)	p-value	
x3	1		e I SS	T1SS/df =	T1SS	MS/MS	SE(model)	p-value	
		$=\Sigma_{i=1}^{q-1}$	$T1SS_{z}$	r _i					
Source		Formula		Alternate					
CSS(M	odel)	$\Sigma_{i=1}^{N}$	$\hat{y}_i^2 - N$	$I\bar{y}^2 = \sum_{i=1}^{N} (\hat{y}_i \cdot \bar{y}_i)$ $I\bar{y}^2 = \sum_{i=1}^{N} (y_i \cdot \bar{y}_i)$	$-\bar{y}^2$		USS(Moo	iel) - SSI	
CSS(Te	otal)	$\Sigma_{i=1}^{N}$	$y_i^2 - N$	$I\bar{y}^2 = \Sigma_{i=1}^N (y_i \cdot \bar{y}_i)$	$-\bar{y}^2$	USS(Tota	al) - SSI &	CSS(Model)	+ SSE
CSS(Error)/SSE CSS(T			SS(Tot	al) - CSS(Mode	USS(Total) - USS(model)				