SECTION 3-3: DERIVATIVE RULES

Read Section 3.2. Work the embedded problems.

1. Fill in the following rules:

(a)
$$\frac{d}{dx}[c] = \mathbf{O}$$

(b) $\frac{d}{dx}[x^n] = \mathbf{N} \mathbf{X}^{\mathbf{N}-\mathbf{I}}$

2. Apply the rules to find the derivative of:

(a)
$$f(x) = e^3$$
 f(x)=0

(b)
$$f(x) = x^{-4}$$
 $f(x) = -4x^{-5}$

3. Fill in the following rules:

(a)
$$\frac{d}{dx}[f(x)g(x)] = \mathbf{f'g} + \mathbf{f \cdot g'}$$

(c)
$$\frac{d}{dx}[c f(x)] = c f(x)$$

(d)
$$\frac{d}{dx}[f(x) + g(x)] = f(x) + g(x)$$

(c)
$$H(x) = 4x^{1/2}$$
 $H'(x) = 4 \cdot \frac{1}{2} \times \frac{1}{2} = 2x^{1/2}$

(d)
$$j(x) = \frac{\sqrt{2}}{2} + x - x^{2.3}$$

 $j'(x) = 0 + 1 - 2.3x$

(b)
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g \cdot f' - f \cdot g'}{g^2}$$

4. Find the derivative of each of the following: (a) $H(x) = (3x^2 + 1)(\frac{1}{x} + x) = (3x^2 + 1)(\frac{1}{x} + x)$

a)
$$H(x) = (3x^{2} + 1)(\frac{1}{x} + x) = (3x^{2} + 1)(-x^{2} + 1)$$

 $H'(x) = (6x)(\frac{1}{x} + x) + (3x^{2} + 1)(-x^{2} + 1)$
 $= (6 + 6x^{2} - 3 + 3x^{2} - x^{2} + 1)$
 $= 9x^{2} - x^{2} + 4$

(b)
$$G(x) = \frac{x^2}{x^2+1}$$

$$G'(x) = \frac{(x^2+1)(2x) - x^2(2x)}{(x^2+1)^2}$$

5. Notation:

6. Higher order derivatives

Example:
$$y = x^3 - 2\sqrt{x} + \pi = x^3 - 2x^2 + 77$$

$$y' = 3x^2 - x^2 + 0$$

$$y'' = 6x + \frac{1}{2}x^{-3/2}$$

$$y''' = 6 - \frac{3}{4}x^{-5/2}$$

7. The vertical height of an object is given by $s(t) = -16t^2 + 20t + 100$. Find s'(t) and s''(t). Include units.

$$S''(t) = -32$$

$$S''(t) = -32t + 20$$
 units $ft/sec/sec = ft/s^2$

$$S'=V=$$
 velocity
 $S''=V'=a=a$ c celeration