Chenxi Liao

Bethesda, MD 20814 | cl6070a@american.edu | (202)415-8261 | Github Repository

Research interest: Visual perception and cognition, Visual psychophysics, Computational models of perception, Human-machine alignment, Multimodal learning

Education

Ph.D Neuroscience, American University, Washington, DC	Expected Dec 2025
Advisor: Prof. Bei Xiao, Department of Computer Science	
M.S. Neuroscience, American University, Washington, DC	2020 - 2023
M.S. Industrial Engineering, Columbia University, New York, NY	2018 - 2020
B.S. Mechanical Engineering, George Washington University, Washington, DC	2014 – 2018

Technical Skills

Languages: Python, TensorFlow, PyTorch, Git, R, Matlab, SQL, JavaScript, P5.JS

Deep learning CNNs, RNNs, Autoencoders, GANs, StyleGANs, Transformers, Vision-language Models, Stable diffusion models, NeRFs

Modeling Paradigms Self-supervised Learning, Transfer Learning, Few-shot Learning, Unsupervised Representation Learning

Statistical modeling: Generalized Linear Model, Bayesian Multilevel Models

Selected Research Experience

Visual adaptation of material appearances, Bei Xiao Lab

2024 - Present

- Designed image stimuli with generative models to investigate mechanisms of visual adaptation.
- Applied Bayesian multilevel models to analyze adaptation effects.

Material categorization using deep learning feature representations, Bei Xiao Lab

2023 – Present

- Constructed self-supervised learning models (e.g., SimCLR) to examine category representations between humans and models.
- Quantified human-model alignment via statistical analysis and data visualizations.

Probing the vision-language connection in material perception, Bei Xiao Lab

2023 - 2024

- Built a deep-learning-based image morphing pipeline using a hybrid of generative model (StyleGAN) and transfer learning for high-quality stimulus synthesis.
- Applied latent space interpolation to generate controlled image stimuli for psychophysical experiments.
- Implemented vision-language models (e.g., OpenCLIP) for multimodal embedding analysis, quantifying human individual differences in vision-semantic alignment across material perception tasks.

Unsupervised learning of translucency perception, Bei Xiao Lab

2021 - 2023

- Curated a large-scale image dataset tailored for training machine learning models of translucency perception.
- Built an encoder-decoder image generative model to synthesize photorealistic material appearances.
- Integrated human behavioral data into model evaluation to discover perceptual dimensions aligned with human judgments of material properties.

Probing the effect of color on translucency perception, Bei Xiao Lab

2020 - 2021

- Designed and deployed online experiments for crowdsourcing human behavioral data over Pavlovia.
- Used image statistics to quantify visual attributes underlying translucency perception.

Fellowships & Awards

Center for Neuroscience and Behavior Summer Research Award, American University	2024
Center for Neuroscience and Behavior Travel Award, American University	2022
College of Arts and Sciences Graduate Student Research Award, American University	2021

Publications

Xiao, B & Liao, C. (2025). Material perception connects vision, cognition and action. *Nature Reviews Psychology*.

Liao, C., Sawayama, M., & Xiao, B. (2024). Probing the link between vision and language in material perception using psychophysics and unsupervised learning. *PLOS Computational Biology*, 20(10), e1012481.

Reinisch, M., He, J., **Liao, C.**, Siddiqui, S., & Xiao, B. (2024). CTP-LLM: Clinical trial phase transition prediction using large language models. *In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)* (pp. 3667-3672). IEEE.

Liao, **C.**, Sawayama, M., & Xiao, B. (2023). Unsupervised learning reveals interpretable latent representations for translucency perception. *PLOS Computational Biology*, 19(2), e1010878. (Issue cover story)

Liao, C., Sawayama, M., & Xiao, B. (2022). Crystal or jelly? Effect of color on the perception of translucent materials with photographs of real-world objects. *Journal of Vision*, 22(2), 6-6.

Conference Proceedings

Liao, C., Sawayama, M., & Xiao, B. (2024). Probing the link between vision and language in material perception. *Cognitive Computational Neuroscience Conference*. Boston, MA.

Liao, C., Sawayama, M., & Xiao, B. (2022). Translucency perception emerges in deep generative representations for natural image synthesis. *Cognitive Computational Neuroscience Conference*. San Francisco, CA.

Abstracts

Liao, C., Cheeseman, J., Schmidt, F., Fleming, R. W., & Xiao, B. (2025). Visual adaptation of complex material appearances. *Vision Sciences Society*. **Poster**. St. Pete's Beach, FL.

Liao, C., Sawayama, M., Cheeseman, J., Schmidt, F., Fleming, R. W., & Xiao, B. (2024). Probing the relationship between material categorization and material property estimation using ambiguous visual stimuli. *Vision Sciences Society*. **Poster**. St. Pete's Beach, FL.

Liao, C., Sawayama, M., & Xiao, B. (2023). Probing the link between vision and language in material perception using machine learning and psychophysics. *Society for Neuroscience Annual Meeting*. **Poster**. Washington, DC.

Liao, **C.**, Sawayama, M., & Xiao, B. (2023). Shared representation of different material categories: transfer learning from crystals to soaps. *Vision Sciences Society*. **Talk**. St. Pete's Beach, FL.

Liao, C., Sawayama, M., & Xiao, B. (2022). A perceptual evaluation of the StyleGAN2-ADA generated translucent objects. *Vision Sciences Society*. **Talk**. St. Pete's Beach, FL.

Sawayama, M., Liao, C., Nishida, S. Y., & Xiao, B. (2022). Replaceability of two deep generative models trained with a pair of translucent objects with different geometries. *Vision Sciences Society*. **Poster**. St. Pete's Beach, FL.

Liao, C., Sawayama, M., & Xiao, B. (2021). Individual differences in the classification of translucent materials using photos of real-world objects. *Vision Sciences Society*. **Poster**. Virtual Meeting.

Teaching

Teaching Assistant, Computer Vision2024Teaching Assistant, Cognition and Perception2023-2024Teaching Assistant, Introduction to Deep Learning, Applied Natural Language Processing,2021-2023Introduction to Programming.2021-2023