Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 2p; B 4p; C 3p.
- 2. Problema Prolog (B) vor fi rezolvată în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- de flux, tipul predicatului determinist/nedeterminist).

 3. Problema Lisp (C) va fi rezolvată în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).
- A. Fie L o listă numerică și următoarea definiție de predicat PROLOG f(list, integer), având modelul de flux (i, o):

f([], 0). f([H|T],S):-**f(T,S1)**,S1<H,!,S is H. f([_|T],S):-**f(T,S1)**,S is S1.

Rescrieți această definiție pentru a evita apelul recursiv <u>f(T,S)</u> în ambele clauze, fără a redefini logica clauzelor. Justificați răspunsul.

B. Scrieţi un program PROLOG care determină dintr-o listă formată din numere întregi lista subşirurilor cu cel puţin 2 elemente, formate din elemente în ordine strict crescătoare. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite. **Exemplu**- pentru lista $[1, 8, 6, 4] \Rightarrow [[1,8],[1,6],[1,4],[6,8],[4,8],[4,6],[1,4,6],[1,4,8],[1,6,8],[4,6,8],[1,4,6,8]]$ (nu neapărat în această ordine)

C. Se dă o listă neliniară și se cere înlocuirea valorilor numerice pare cu numărul natural succesor. Se va folosi o funcție MAP.

 $\underline{\textit{Exemplu}}$ pentru lista (1 s 4 (2 f (7))) va rezulta (1 s 5 (3 f (7))).