Microarquitectura AMD Opteron X4 (Barcelona)

O ARM Cortex-A8 e o Intel Core i7-920 (Nehalem)

Processor	ARM A8	Intel Core i7 920
Market	Personal Mobile Device	Server, Cloud
Thermal design power	2 Watts	130 Watts
Clock rate	1 GHz	2.66 GHz
Cores/Chip	1	4
Floating point?	No	Yes
Multiple Issue?	Dynamic	Dynamic
Peak instructions/clock cycle	2	4
Pipeline Stages	14	14
Pipeline schedule	Static In-order	Dynamic Out-of-order with Speculation
Branch prediction	2-level	2-level
1st level caches / core	32 KiB I, 32 KiB D	32 KiB I, 32 KiB D
2nd level cache / core	128–1024 KiB	256 KiB
3rd level cache (shared)	-	2–8 MiB

Pipeline do ARM Cortex-A8

Pipeline do Intel Core i7-920 (Nehalem)

Bottlenecks

Factores que influenciam negativamente o aproveitamento do ILP

- ► Instruções que não é possível traduzir para poucas operações RISC (acontece nas arquitecturas CISC, como a x86)
- Saltos condicionais difíceis de prever, originando desperdícios de tempo por erros na especulação
- Dependências longas
- Acessos à memória

Organização da memória

Memória

Problemas

Problema 1

Latência da memória RAM típica: 50 ns

Relógio de processador com frequência de 1 GHz: $T=1\,\mathrm{ns}$

Um acesso à memória leva 50 ciclos

Problema 2

A memória tem uma dimensão limitada

Problema 3

O computador precisa de memória

Hierarquia de memória

Tecnologia	Tempo de acesso	Preço/GB		
SRAM	0.5 – 2.5 ns	\$500 - \$1000		
DRAM	50 – 70 ns	\$10 - \$20		
Flash	5 000 - 50 000 ns	\$0.40 - \$1		
Disco magnético	5 000 000 - 20 000 000 ns	\$0.05 - \$0.10		

Memória mais perto do processador é a mais rápida

Memória mais rápida é mais cara e, por isso, mais pequena

Cache

Hit and miss

- Hit O conteúdo da posição de memória acedida está na cache
- Hit time Tempo (geralmente, medido em ciclos de relógio) que demora o acesso ao conteúdo de uma posição de memória na cache
- Miss O conteúdo da posição de memória acedida não está na cache
- Miss penalty Tempo (também medido em ciclos) que demora transferir o conteúdo de uma posição de memória de um nível inferior da hierarquia para o nível acima (podendo substituir o seu anterior conteúdo) e tê-lo disponível para utilização
- Hit rate Fracção das posições de memória acedidas cujo conteúdo foi encontrado na cache

 $Miss\ rate = 1 - hit\ rate$

Associatividade da cache

Para uma cache com 8 posições

One-way set associative

(direct mapped)

	(
	Block	Tag	Data		
	0				
	1				
	2				
posição/conjunto	3				
(8 conjuntos)	4				
	5				
	6				
	7				
		•			

I WO-Way Set associative						
Set	Tag	Data	Tag	Data		
0						
1						
2						
3						

Two way oot accoming tive

2 posições/conjunto (4 conjuntos)

Four-way set associative

4 posições/conjunto (2 conjuntos)	Set	Tag	Data	Tag	Data	Tag	Data	Tag	Data
	0								
	1								

Eight-way set associative (fully associative)

8 posições/conjunto (1 conjunto)

Tag Data Tag Data

Associatividade da cache

O que significa

Direct mapped

Colocação numa posição fixa da cache

2-way set associative

Colocação em qualquer uma de um conjunto de 2 posições da cache

4-way set associative

Colocação em qualquer uma de um conjunto de 4 posições da cache

n-way set associative

Colocação em qualquer uma de um conjunto de *n* posições da cache

Fully associative

Colocação em qualquer posição da cache

Implementação de uma cache direct-mapped

Address (showing bit positions)

Implementação de uma cache 4-way set associative

