SECTION A-46 MARKS ATTEMPT ALL QUESTIONS IN THIS SECTION.

1.	(a). Co	mplete	e the follov	ving equa	tions to	r the nuc	lear reacti	ons.	
	i.	²⁷ ₁₄ Si		→ 27 13 ⁴	Al +			(01)	mark)
	ii.	$^{241}_{95}Am$	$1 + \frac{4}{2}He^{-\frac{1}{2}}$			$^{243}_{97}Bk + 1$		(01	mark)
	iii.	²³⁸ ₉₂ U	$+ {}_{0}^{1}n$			$^{239}_{93}Np +$		(01	mark)
	(b). In	an expe	eriment, tl	ne rate of	radioac	tive deca	y of bromi	ne decre	ased
	by	25% in	96 minut	es. Calcula	ate the l	nalf-life o	f bromine.	(02 n	narks)
				•••••					
2.	similar	condit	ions, the s	ame volu	me of ox	xygen gas	n 2 minute s diffuses i	n 1.75 mi	

		(ii). Determine the molecular formula of R .	(02 marks)
	b)	Write equations to show how R can be synthesized from	propanone. (02 marks)
3.		e manufacture of sulphuric acid, sulphur trioxide is not dis	solved in
		(i). State why water is not used as a solvent.	(01 mark)
		(ii).Write equation(s) to show the formation of sulphuric sulphur trioxide gas.	acid from (03 marks)

b)	Write equation for the reaction between sulphuric acid and
	hydrogen bromide. (01½ marks)
4. (a)	State one colligative property of a dilute solution other than
	depression of freezing point or elevation of boiling point of a solvent
	(01 mark)
(b)	Ethane-1, 2-diol HOCH ₂ CH ₂ OH, is used as an antifreeze for water in car radiators. Calculate the mass of ethane-1, 2-diol that should be added to 1kg of water to prevent it from freezing at -10°C .
	(03 marks)
	[Freezing point depression constant for water = 1.86 °Ckgmol ⁻¹]
••	
	H O 0 0, 6, $\frac{1}{N} - (CH_2)_6 NHCO (CH_2)_4 C_{n}$ is a synthetic polymer
Nylon-6	6, 6, $\frac{1}{N} - (CH_2)_6 NHCO (CH_2)_4 C_{n}$ is a synthetic polymer
	by condensation polymerisation.
	tate what is meant by the term condensation polymerization.
	(01 mark)

	Write the structural formulae of the monomers of nylon-6	(01 mark)
(c).N	ame: i. One natural polymer that is formed by condensation polymerization.	(01 mark)
	ii. The monomers of the polymer in (c) (i).	(0½ mark)
(d).S	tate one use of the polymer you have named in (c) (i).	
(a).	State two properties in which chromium behaves as a treelement.	ransition (01 mark)
(b).	Write the equation for the reaction that takes place who (III) sulphate is dissolved in water.	en chromium (01½ marks)

(c).	Magnesium ribbon was added to a solution of chromium (III)
	sulphate.

	State what was observed.	(01 mark)
i.	Write equation for the reaction that took place.	•

7. The graph below shows how the total vapour pressure of a mixture of water and nitrobenzene varies with temperature.

	a)	State the temperature at which the mixture boils at 760m pressure.	mHg (01 mark)
	b)	The partial vapour pressure of nitrobenzene at the boilin the mixture is 20mmHg .	
		Calculate the percentage of nitrobenzene by mass that will obtained when the mixture is steam distilled at normal at	
		pressure. $(H = 1, C = 12, N = 14, 0 = 16)$	(04 marks)
8.	(a).	State the condition(s) under which the following convers effected.	ions can be
	i). [CH_3 to CH_2Cl (01½ m	arks)
	Con	nditions:	

b) Lead (IV) chloride exists but lead (IV) bromide does not . (02 marks)	
SECTION B-54 MARKS	
ATTEMPT ANY SIX QUESTIONS IN THIS SECTION.	
10.Complete each of the following equations and write the suggested	
mechanism for the reaction.	
a) CH ₃ HBr (02½ mark	:s)
Mechanism:	
$CH_3COBr \xrightarrow{CH_3CH_2NH_2} Heat $ (03½ marks)	
b) Heat	
Mechanism:	

c)	HCHO KCN/H ⁺ (aq) Mechanism:	(03 marks)
11.(a). S	State what is meant by the term buffer solution .	(01 mark)
(b).	Calculate the pH of the solution formed when 0.61g of is dissolved in $1dm^3$ of a 0.02M sodium benzoate. (Ka of benzoic acid = 6.3×10^{-5} moldm ⁻³)	(02½ marks)

(c).	Explain what would happen to the pH of the soluti drops of the following reagents were added:	on in (b) if a few
	i. Potassium hydroxide solution.	(03 marks)
	ii. Hydrochloric acid.	(02½ marks)
12()		
12.(a).	When 0.1g of aluminium chloride was vaporized at pressure of 1atmosphere , 19.2cm ³ of vapour was for the characteristics.	ormed.
	i. Calculate the relative molecular mass of alumini	um chloride. (02 marks)

	ii. Write the molecular formula of aluminium chloride state at 350°C . (Al = 27, Cl = 35.5)	in the gaseous (01 mark)
(b).	Aluminium chloride is normally contaminated by trachloride. i. Name one reagent that can be used to detect the pro- (III) ion in a contaminated solution of aluminium cl	esence of iron nloride.
		(01 mark)
	ii. State what would be observed if the contaminated a chloride solution was treated with the named reage	
	iii. Write equation for the reaction leading to the observable have stated in (b) (ii).	vation you (01½ marks)
(c).	Water was added drop wise to aluminium chloride. i. State what was observed.	(01 mark)

i	i. Write equation for the reaction that took place.	(01½ marks)
(d).Si	tate one use of aluminium chloride in organic synthesis.	(0½ mark)
13.(a).	Draw the structure and name the shape of each of the stable below.	species in the $(04\frac{1}{2} \text{ marks})$

Species	Structure	Shape
BF ₃		
SnCl ₂		
ClO ₃ -		

(b). Write equation for the reaction between:

	i. Boron trifluorude an	d ammonia.	(01½ marks)
	, ,	iron (III) ions.	(01½ marks)
	iii. Acidified potassium i chlorate (V) solution		sodium (01½ marks)
14.(a). W i	Vrite: i. Equation for the ioni	zation of methanoic acid in v	vater. (01½ marks)
ii	The expression for the methanoic acid.	ne acid dissociation constant	Ka, for (01 mark)
(b).	The molar conductivities of 25°C are given in the table		e dilute at
	Electrolyte	molar conductivity at infindilution (Scm²/mol)	nite
	Sodium chloride	113.0	
	Sodium methanoate	101.0	
	Sodium hydroxide	225.2	
	Hydrochloric acid	397.8	

Hydrochloric acid 397.8

Calculate the **molar conductivity** of methanoic acid at infinite dilution. (03 marks)

(c).	The molar conductivity of a 0.05M methanoic acid sol 24.328Scm²/mol at 25°C .	lution is
	Calculate the:	
	i. Degree of ionization of methanoic acid at 25°C .	(01½ marks)
	ii. Dissociation constant Ka of methanoic acid at 2	
follov equat	e one functional group that can be identified using each wing reagents. In each case state what would be observ tion for the reaction that would take place:	
•	romine water:	(04
Fu	ınctional group.	(01 mark)
Ob	oservation.	(01 mark)

	Equation.	(01 mark)
b)	2, 4-dinitrophenyl hydrazine. Functional group.	(01 mark)
	Observation.	(01 mark)
	Equation.	(01 mark)
c)	Sodium carbonate. Functional group.	(01 mark)
		(04 1)
	Observation.	(01 mark)
	Equation.	(01 mark)

16.During the extraction of copper from copper pyrites, copper crushed and agitated with water/oil mixture. Compresse through the mixture which is then filtered, roasted and filmolten copper is obtained.	d air is bubbled
a) State the role of:i. Oil.	(01 mark)
ii. Compressed air.	(01 mark)
b) Write equation for the reaction that occurs when copproasted.	(01½ marks)
c) Explain briefly how impure copper can be refined.	(04 marks)

, -	n why it is advant near a copper extr	raction p	lant.	•		(01^{1})	∕₂ mark	_
` '	what is meant by	the tern	n:					
i. Oro	der of a reaction.					(01 marl	K)
								• • • •

ii. Hal	lf-life of a reaction	1.				(01 mar	k)
					•••••			
					•••••			
` '	table below shov thyl ethanoate in			ta obtai	ned for	the hyd	rolysis	of
	OCH ₃](mol/dm ³)		0.161	0.109	0.073	0.046	0.034	
Time (n		0.211	60	120	180	240	320	

Plot a graph of **concentration** of methyl ethanoate **against time**. (03arks)

(c).U	se the graph in (b) above to determine the:	
i.	Half-life of the reaction.	(01½ marks)
ii.	Order of the reaction with respect to CH ₃ COOCH ₃ your answer.	(01 mark)
(d).C	alculate the rate constant and indicate its units .	(01½ marks)

THE PERIODIC TABLE

1	2											3	4	5	6	7	8
1.0 H 1								18 h - Tarrio 1800 - A del								1.0 H	4.0 He 2
6.9 Li 3	9.0 Be	ł										10.8 B 5	12.0 C 6	14.0 N 7	16.0 O 8	19.0 F 9	20.2 Ne 10
Na	24.3 Mg 12											27.0 Al 13		31.0 P 15	32.1 S 16	35.4 Cl 17	
39.1 K 19	40.1 Ca 20				52.0 Cr 24	54.9 Mn 25	55.8 Fe 26	58.9 Co 27	58.7 Ni 28				72.6 Ge 32			79.9 Br 35	83.8 Kr 36
85.5 Rb 37	87.6 Sr 38	88.9 Y 39	91.2 Zr 40	D. 75	95.9 Mo 42		101 Ru 44		106 Pd 46	108 Ag 47	112 Cd 48	115 In 49	119 Sn 50	122 Sb 51	128 Te 52	127 I 53	131 Xe 54
Cs 55	137 Ba 56	139 La 57	178 Hf 72	1	184 W 74	186 Re 75		1	195 Pt 78	197 Au 79	201 Hg 80	204 TI 81	207 Pb 82	209 Bi 83	209 Po 84	210 At 85	222 Rn 86
223 Fr 87	226 Ra 88	227 Ac 89			L I S	2 10	4 1	9 -85 In									2 13
		6		140 Ce 58		144 Nd 60	147 Pm 61	150 Sm 62	152 Eu 63	157 Gd 64	159 Tb 65	162 Dy 66	165 Ho 67	167 Er 68	169 Tm 69	173 Yb 70	175 Lu 71
		7	227 Ac 89	232 Th 90			237 Np 93			247 Cm 96	247 Bk 97		Es	Fm	256 Md 101	No	Lw

♥ ===END===

WELCOME TO SENIOR SIX, YEAR 2018
This is the last page of the printed paper, Page 20