Introduction to Seaborn

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

What is Seaborn?

- Python data visualization library
- Easily create the most common types of plots

Why is Seaborn useful?

Advantages of Seaborn

- Easy to use
- Works well with pandas data structures
- Built on top of matplotlib

Getting started

```
import seaborn as sns
import matplotlib.pyplot as plt
```

Samuel Norman Seaborn (sns)

• "The West Wing" television show

Example 1: Scatter plot

Example 2: Create a count plot

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Using pandas with Seaborn

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Erin CaseData Scientist

What is pandas?

- Python library for data analysis
- Easily read datasets from csv, txt, and other types of files
- Datasets take the form of DataFrame objects

Working with DataFrames

```
import pandas as pd

df = pd.read_csv("masculinity.csv")

df.head()
```

participant_id	age	how_masculine	how_important
0 1	18 - 34	Somewhat	Somewhat
1 2	18 - 34	Somewhat	Somewhat
2 3	18 - 34	Very	Not very
3 4	18 - 34	Very	Not very
4 5	18 - 34	Very	Very

Using DataFrames with countplot()

4. Using DataFrames with countplot()

Now let's look at how to make a count plot with a DataFrame instead of a list of data. The first thing we'll do is import Pandas, Matplotlib and Seaborn as we have in past examples. Then, we'll create a Pandas DataFrame called "df" from the masculinity csv file. To create a count plot with a Pandas DataFrame column instead of a list of data, set x equal to the name of the column in the DataFrame - in this case, we'll use the "how_masculine" column. Then, we'll set the data parameter equal to our DataFrame, "df". After calling "plt dot show", we can see that we have a nice count plot of the values in the "how_masculine" column of our data. This plot shows us that the most common response to the question "how masculine or 'manly' do you feel?" is "somewhat", with "very" being the second most common response. Note also that because we're using a named column in the DataFrame, Seaborn automatically adds the name of the column as the x-axis label at the bottom.

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

		participant_id	age	how_masculine	how_importan
5. "Tidy" data Let's pause for an important	0	1	18 - 34	Somewhat	Somewha
note here. Seaborn works great with Pandas DataFrames, but only if the	1	2	18 - 34	Somewhat	Somewha
DataFrame is "tidy". "Tidy data" means that each	2	3	18 - 34	Very	Not very
observation has its own row and each variable has its	3	4	18 - 34	Very	Not very
own column. The "masculinity" DataFrame	4	5	18 - 34	Very	Very
shown here is tidy because each row is a survey	5	6	18 - 34	Very	Somewha
response with one answer to each survey question in	6	7	18 - 34	Somewhat	Not very
each column. Making a count plot with the "how	7	8	18 - 34	Somewhat	Somewha
masculine" column works just like passing in a list of that column's values.	8	9	18 - 34	Very	Not at al
iliai colullii 5 values.	9	10	18 - 34	Somewhat	Somewha

6. "Untidy" data
In contrast, here is an example of an "untidy"
DataFrame made from the same survey on masculinity.
In this untidy DataFrame, notice how each row doesn't contain the same information.

	AMONG ADULT MEN	Unnamed: 1	Adult Men	Age	Unnamed: 4	Unnamed: 5
0				18 - 34	35 - 64	65 and up
1	In general, how masculine or "manly" do you feel?					
2		Very masculine	37%	29%	42%	37%
3		Somewhat masculine	46%	47%	46%	47%
4		Not very masculine	11%	13%	9%	13%
5		Not at all masculine	5%	10%	2%	3%
6		No answer	1%	0%	1%	1%
7	How important is it to you that others see you as masculine?					
8		Very important	16%	18%	17%	13%
9		Somewhat important	37%	38%	37%	32%
10		Not too important	28%	18%	31%	37%
11		Not at all important	18%	26%	15%	18%
12		No answer	0%	0%	1%	0%

Always make sure to check if your DataFrame is tidy before using it with Seaborn.

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

Adding a third variable with hue

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

In this lesson, we'll see another big advantage that Seaborn offers: the ability to quickly add a third variable to your plots by adding color.

Erin CaseData Scientist

Tips dataset

```
import pandas as pd
import seaborn as sns
tips = sns.load_dataset("tips")
tips.head()
```

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

2. Tips dataset To showcase this cool feature in Seaborn, we'll be using Seaborn's built-in tips dataset. You can access it by using the "load dataset" function in Seaborn and passing in the name of the dataset. These are the first five rows of the tips dataset. This dataset contains one row for each table served at a restaurant and has information about things like the bill amount, how many people were at the table, and when the table was served. Let's explore the relationship between the "total_bill" and "tip" columns using a scatter plot.

A basic scatter plot

A scatter plot with hue

4. A scatter plot with hue

You can set the "hue" parameter equal to the DataFrame column name "smoker" and then Seaborn will automatically color each point by whether they are a smoker. Plus, it will add a legend to the plot automatically! If you don't want to use Pandas, you can set it equal to a list of values instead of a column name.

Setting hue order

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.scatterplot(x="total_bill",
                y="tip",
                data=tips,
                hue="smoker",
                hue_order=["Yes",
                            "No"])
plt.show()
```


5. Setting hue order

Hue also allows you to assert more control over the ordering and coloring of each value. The "hue order" parameter takes in a list of values and will set the order of the values in the plot accordingly. Notice how the legend for smoker now lists "yes" before "no".

Specifying hue colors

```
import matplotlib.pyplot as plt
import seaborn as sns
hue_colors = {"Yes": "black",
              "No": "red"}
sns.scatterplot(x="total_bill",
                y="tip",
                data=tips,
                hue="smoker",
                palette=hue_colors)
```


plt.show()

6. Specifying hue colors

You can also control the colors assigned to each value using the "palette" parameter. This parameter takes in a dictionary, which is a data structure that has key-value pairs. This dictionary should map the variable values to the colors you want to represent the value. Here, we create a dictionary called "hue colors" that maps the value "Yes" to the color black and the value "No" to the color red. When we set hue equal to "smoker" and the palette parameter equal to this dictionary, we have a scatter plot where smokers are represented with black dots and non-smokers are represented with red dots.

Color	Matplotlib name	Matplotlib abbreviation	HTML color co	ode
blue	"blue"	"b"	#0000ff	
green	"green"	"g"	#008000	
red	"red"	"r"	#ff0000	8. U code Here
green/blue	"cyan"	"c"	#00bfbf	HTN sure
purple	"magenta"	"m"	#bf00bf	in quat th
yellow	"yellow"	"y"	#bfbf00	
black	"black"	"k"	#000000	
white	"white"	"w"	#ffffff	

Using HTML hex color codes with hue

```
import matplotlib.pyplot as plt
import seaborn as sns
hue_colors = {"Yes": "#808080",
              "No": "#00FF00"}
sns.scatterplot(x="total_bill",
                y="tip",
                data=tips,
                hue="smoker",
                palette=hue_colors)
plt.show()
```


Using hue with count plots

9. Using hue with count plots

As a final note, hue is available in most of Seaborn's plot types. For example, this count plot shows the number of observations we have for smokers versus non-smokers, and setting "hue" equal to "sex" divides these bars into subgroups of males versus females. From this plot, we can see that males outnumber females among both smokers and non-smokers in this dataset.

Let's practice!

INTRODUCTION TO DATA VISUALIZATION WITH SEABORN

