实分析第七周作业

涂嘉乐 PB23151786

2025年4月10日

周一

T1.

证明 设 $A(x)=\sum\limits_{n=1}^{\infty}|a_n(x)|, \tilde{A}(x)=\sum\limits_{n=1}^{\infty}a_n(x)$,则由非负函数的逐项积分定理,我们有

$$\int_{E} A(x) dx = \sum_{k=1}^{\infty} \int_{E} |a_{k}(x)| dx < +\infty$$

所以 $A(x)<+\infty$ a.e $x\in E$,因此 $\tilde{A}(x)$ 在 E 上几乎处处绝对收敛,故 $\tilde{A}(x)$ 在 E 上几乎处处收敛。记 $\tilde{A}_k(x)=\sum\limits_{n=1}^k a_n(x)$,则 $\tilde{A}_k(x)\to \tilde{A}(x)$ a.e $x\in E$,且

$$|\tilde{A}_k(x)| \le \sum_{n=1}^k |a_n(x)| \le \sum_{n=1}^\infty |a_n(x)| = A(x)$$
 a.e $x \in E$

因此 $A(x) \in L^1(E)$ 即为 $\tilde{A}_k(x)$ 的控制函数, 由控制收敛定理

$$\lim_{k \to \infty} \int_{F} \tilde{A}_{k}(x) dx = \int_{F} A(x) dx$$

对于上式, 我们有

$$\begin{cases} LHS = \lim_{k \to \infty} \int_E \sum_{n=1}^k a_n(x) dx = \lim_{k \to \infty} \sum_{n=1}^k \int_E a_k(x) dx = \sum_{n=1}^\infty \int_E a_k(x) dx \\ RHS = \int_E A(x) dx = \int_E \sum_{n=1}^\infty |a_n(x)| dx \end{cases}$$
(1)

这样就证明了我们想要的结果

T2.

证明 在上周作业中我们补充证明了条件可以从 $f_k \nearrow f, \forall x \in E$ 下降为 $f_k \nearrow f$ a.e $x \in E$,所以我们可以不妨假设 $f_k \nearrow f, \forall x \in E$

Case 1. $\int_E f dx < +\infty$

因为 $0 \le f_k \le f$, 且 $f \in L^1(E)$, 则我们可以取 f 为控制函数, 由控制收敛定理

$$\lim_{k \to \infty} \int_E f_k(x) dx = \int_E f(x) dx$$

Case 2. $\int_E f dx = +\infty$

不妨设 $E = \mathbb{R}^d$, 否则用 $f\chi_E$ 代替 f, 由 $f_k \uparrow$ 知 $\int f_k(x) dx \uparrow$, 因此 $\{\int f_k(x) dx\}$ 极限存在(可能为无穷),由 Lebesque 积分的定义

$$\int f dx = \sup \left\{ \int \varphi dx : 0 \le \varphi \le f, \varphi \text{ simple} \right\} = +\infty$$

所以对 $\forall M>0$,存在简单函数 $0\leq \varphi \leq f$,使得 $M<\int \varphi \mathrm{d}x<+\infty$,令 $g_n(x)=\min\{f_n(x),\varphi(x)\}$,下面证明 $g_n(x)\to \varphi(x)$ (逐点收敛): 对任意固定的 $x\in\mathbb{R}^d$

$$(a)$$
. 若 $\varphi(x) = f(x)$, 则显然有 $g(x) = \min\{f_n(x), \varphi(x)\} = f_n(x) \to f(x) = \varphi(x)$

(b). 若 $\varphi(x) \neq f(x)$,则由 $\varphi \leq f$ 知 $\varphi(x) < f(x)$,由 $f_n(x) \nearrow f(x)$ 知,对 $\varepsilon = f(x) - \varphi(x)$, $\exists N_{\varepsilon} \gg 1$,s.t. $\forall n \geq N_{\varepsilon}$, 有 $|f(x) - f_n(x)| = f(x) - f_n(x) < \varepsilon$,即 $f_n(x) > \varphi(x)$,这就说明当 $n \geq N_{\varepsilon}$ 时, $g_n(x) = \min\{f_n(x), \varphi(x)\} = \varphi(x)$,故 $g_n(x) \to \varphi(x)$

所以 $g_n(x) \to \varphi(x)$, $\forall x \in \mathbb{R}^d$, 又因为 $\varphi(x) \in L^1(\mathbb{R}^d)$, 且由 $g_n(x)$ 的定义知 $|g_n(x)| \le \varphi(x)$, 所以可取 $\varphi(x)$ 为控制函数,则由控制收敛定理知

$$\lim_{k \to \infty} \int g_k(x) dx = \int \varphi(x) dx$$

因此

$$\int f_n(x) dx \ge \int \min\{f_n(x), \varphi(x)\} dx = \int g_n(x) dx$$

同时令 $n \to \infty$ 得

$$\lim_{n \to \infty} \int f_n(x) dx \ge \lim_{n \to \infty} g_n(x) dx = \int \varphi(x) dx > M$$

因为 M 是任意正数, 这就说明了 $\lim_{n\to\infty}\int f_n(x)\mathrm{d}x = +\infty = \int f\mathrm{d}x$

T3.

解 (a). 设 t=1-x,则

$$\int_0^1 \frac{\log x}{1-x} dx = \int_0^1 \frac{\log(1-t)}{t} dt$$

因为
$$\frac{\log(1-t)}{t} = \frac{1}{t} \cdot \left(-\sum_{n=1}^{\infty} \frac{t^n}{n} \right) = -\sum_{n=1}^{\infty} \frac{t^{n-1}}{n} = -\sum_{n=0}^{\infty} \frac{t^n}{n+1}, \forall t \in (0,1),$$
 所以

$$\int_0^1 \frac{\log(1-t)}{t} dt = -\int_0^1 \sum_{n=0}^\infty \frac{t^n}{n+1} dt = -\sum_{n=0}^\infty \int_0^1 \frac{t^n}{n+1} dt$$
$$= -\sum_{n=0}^\infty \frac{1}{(n+1)^2} = -\sum_{n=1}^\infty \frac{1}{n^2} = -\frac{\pi^2}{6}$$

上面过程中使用了非负函数列的逐项积分定理, 其中 $a_n(x) = \frac{t^n}{n+1}$

(b). 设 $f_k(x) = \frac{x}{x^{2k} + x^2 + 1}$, 则当 $k \to \infty$ 时

$$f_k(x) \to f(x) = \begin{cases} 0, & x > 1\\ \frac{1}{3}, & x = 1\\ \frac{x}{x^2 + 1}, & 0 < x < 1 \end{cases}$$

且当 0 < x < 1 时, $f_k(x) = \frac{x}{x^{2k} + x^2 + 1} < x < 1$;当 $x \ge 1$ 时, $f_k(x) = \frac{x}{x^{2k} + x^2 + 1} < \frac{x}{x^{2k}} = \frac{1}{x^3}$ (当 $k \ge 2$ 时),因此我们可以取控制函数

$$g(x) = \begin{cases} 1, & x \in (0,1) \\ \frac{1}{x^3}, & x \in [1, +\infty) \end{cases}$$

因为 $\int_0^\infty g(x)\mathrm{d}x = \frac{3}{2}$,所以 $g(x) \in L^1ig((0,+\infty)ig)$,由控制收敛定理

$$\lim_{k \to \infty} \int_0^{+\infty} f_k(x) dx = \int_0^{+\infty} f(x) dx = \int_0^1 \frac{x}{x^2 + 1} dx = \frac{\log 2}{2}$$

T4.

证明 我们对 [a,b] 进行一列逐步精细的划分(即下一个划分是对上一个划分的再细分),记为 $\{\pi_k\}$,设 $\pi_k: a=x_0 < x_1 < \cdots < x_{a_k} < b$ (a_k 为 π_k 的总分点数)并定义了

$$\varphi_k(x) = \sum_{i=1}^{a_k} m_{ik} \chi_{I_i}, \quad \psi_k(x) = \sum_{i=1}^{a_k} M_{ik} \chi_{I_i}, \quad m_{ik} = \inf_{x \in I_i} f(x), \quad M_{ik} = \sup_{x \in I_i} g(x)$$

在上课中我们得到了 $\varphi_k \nearrow \tilde{\varphi} = \lim_{k \to \infty} \varphi_k, \psi_k \searrow \tilde{\psi} = \lim_{k \to \infty} \psi_k$,且 $\tilde{\varphi} \le f \le \tilde{\psi}, \tilde{\psi} = \tilde{\varphi}$ a.e $x \in [a,b]$ (此步骤是为了避开在分割点处 φ_k, ψ_k 的取值较为复杂,先挖去一个零测集)对于每个 π_k ,它

(此步骤是为了避开在分割点处 φ_k,ψ_k 的取值较为复杂,先挖去一个零测集)对于每个 π_k ,它有有限个分割点,记 N 为所有 $\{\pi_k\}$ 的分割点全体,它是可数个有限点集的并,仍然可数,因此 m(N)=0,所以 $\tilde{\varphi}=\tilde{\psi}$ a.e $x\in[a,b]\backslash N$;下面我们证明:若 $\tilde{\varphi}(x)=\tilde{\psi}(x),x\in[a,b]\backslash N$,则 f 在 x 处连续

若 $x\in [a,b]\backslash N$,,且 $\tilde{\varphi}(x)=\tilde{\psi}(x)$,则因为 $x\notin N$,故 x 不是分割点,因此对于每个分割 π_k ,存在唯一的闭区间包含 x,记为 I_k ,且 I_k 是递降的,因为 $\{\pi_k\}$ 是逐步精细的划分,所以我们得到了一列递降的闭区间列

$$I_1 \supset I_2 \supset I_3 \cdots, \quad x \in I_k, \forall k$$

由闭区间套定理, $\{x\} = \bigcap_{k=1}^{\infty} I_k$, 且

$$\varphi_k(x) = m(I_k), \psi(x) = M(I_k), \quad m(I_k) = \inf_{x \in I_k} f(x), M(I_k) = \sup_{x \in I_k} f(x)$$

由 $\tilde{\varphi}(x) = \tilde{\psi}(x) = f(x), \varphi_k \nearrow \tilde{\varphi}, \psi_k \searrow \tilde{\psi}$ 知,对 $\forall \varepsilon > 0$

$$\begin{cases} \exists N_1 \gg 1, \text{s.t. } \forall n \geq N_1, |\tilde{\varphi}(x) - \varphi_k(x)| < \frac{\varepsilon}{2} \Longrightarrow f(x) - m(I_n) < \frac{\varepsilon}{2} \\ \exists N_2 \gg 1, \text{s.t. } \forall n \geq N_2, |\tilde{\psi}(x) - \psi_k(x)| < \frac{\varepsilon}{2} \Longrightarrow M(I_n) - f(x) < \frac{\varepsilon}{2} \end{cases}$$

取 $N = \max\{N_1, N_2\}$, 则 $\forall n \geq N$, 有

$$f(x) - \frac{\varepsilon}{2} < m(I_n) \le M(I_n) < f(x) + \frac{\varepsilon}{2} \Longrightarrow M(I_n) - m(I_n) < \varepsilon$$

因为 $M(I_n) - m(I_n)$ 表示 f 在 I_n 上的振幅,设 $I_n = [a_k, b_k]$,则取 $\delta = \min\{x - a_k, b_k - x\} > 0$ ($\delta > 0$ 是因为 $x \in I_n^{\circ}$), 我们有

$$\forall |x - x'| < \delta, x, x' \in I_n \Longrightarrow |f(x) - f(x')| < M(I_n) - m(I_n) < \varepsilon$$

由 ε 的任意性知, f 在 x 处连续, 因此 $\forall x \in [a,b] \backslash N$, 若 $\tilde{\varphi}(x) = \tilde{\psi}(x)$, 则 f 在 x 处连续, 记 f 在 $[a,b] \backslash N$ 上的连续点集合为 C_1 , f 在 N 上的连续点集合为 C_2 , 则 $C_2 \subset N \Longrightarrow m(C_2) \le m(N) = 0$; 由于 $\tilde{\psi} = \tilde{\varphi}$ a.e $x \in [a,b] \backslash N$, 所以

$$m(C_1) = m([a, b] \setminus N) = m([a, b]) \Longrightarrow m([a, b] \setminus (C_1 \sqcup C_2)) = m([a, b]) - m(C_1) - m(C_2) = 0$$

这就说明了 f 在 [a,b] 上的不连续点构成一个零测集

周三

T1.

证明 因为 $(0,1] = \coprod_{n=1}^{\infty} \left(\frac{1}{n+1}, \frac{1}{n}\right]$,由积分区域的可数可加性知

$$\int_{\mathbb{R}} f(x) dx = \sum_{n=1}^{\infty} \int_{\left(\frac{1}{n+1}, \frac{1}{n}\right]} f(x) dx = \sum_{n=1}^{\infty} \int_{\frac{1}{n+1}}^{\frac{1}{n}} f(x) dx = \sum_{n=1}^{\infty} 2 \left(\sqrt{\frac{1}{n}} - \sqrt{\frac{1}{n+1}} \right) = 2$$

所以 $f \in L^1(\mathbb{R})$,进而 $\frac{f(x-r_n)}{2^n} \in L^1(\mathbb{R})$,且积分值为 $\frac{1}{2^{n-1}}$,设 $F_k(x) = \sum_{n=1}^k 2^{-n} f(x-r_n)$,则我们有 $F_k(x) \nearrow F(x)$, $\forall x \in \mathbb{R}^n$,由单调收敛定理

$$\int F(x)dx = \lim_{k \to \infty} \int F_k(x)dx = \lim_{k \to \infty} \int \sum_{n=1}^k 2^{-n} f(x - r_n) dx$$
$$= \lim_{k \to \infty} \sum_{n=1}^k \int 2^{-n} f(x - r_n) dx = \lim_{k \to \infty} \sum_{n=1}^k \frac{1}{2^{n-1}}$$
$$= 2 < +\infty$$

所以 F 是可积的, 且对任意区间 I, 总存在有理数 $r_i \in I^\circ$, 所以对 $\forall M > 0$

$$F(x) \ge \frac{f(x - r_i)}{2^i} > M \Longrightarrow x \in \left(r_i, r_i + \frac{1}{2^{2i}M^2}\right)$$

因此对于固定的 M,只需取 $x'\in \left(r_i,r_i+\frac{1}{2^{2i}M^2}\right)\cap I^\circ$,就有 f(x')>M,而由 M>0 的任意性知, F 在任意区间 I 上均无界

若 $F=\tilde{F}$ a.e $x\in\mathbb{R}$,记 J 为上面的 $\left(r_i,r_i+\frac{1}{2^{2i}M^2}\right)\cap I^\circ$,则 $F=\tilde{F}$ a.e $x\in J$,所以 $\exists x\in J,$ s.t. $\tilde{F}(x)=F(x)>M$,由 M 的任意性知, \tilde{F} 在任意区间 I 上均无界

T2.

证明 因为
$$\begin{cases} |\chi_{E_1}(x) + \chi_{E_2}(x)|^p = 1, & x \in E_1 \sqcup E_2 \\ |\chi_{E_1}(x) + \chi_{E_2}(x)|^p = 0, & \text{else} \end{cases}$$
, 所以

$$||f+g||_p = \left(\int |\chi_{E_1} + \chi_{E_2}|^p dx\right)^{\frac{1}{p}} = [m(E_1) + m(E_2)]^{\frac{1}{p}}$$

同理有

$$||f||_p = [m(E_1)]^{\frac{1}{p}}, \quad ||f||_p = [m(E_2)]^{\frac{1}{p}}$$

记 $m(E_1) = a, m(E_2) = b$, 即证明

$$(a+b)^t > a^t + b^t$$
, $\forall 0 < a, b < \infty, \forall t > 1$

即证 $1 > \left(\frac{a}{a+b}\right)^t + \left(\frac{b}{a+b}\right)^t$,设 $x = \frac{a}{a+b}$,即证 $1 > x^t + (1-x)^t$,以 $x \in (0,1)$,以t > 1,设 $f(x) = x^t + (1-x)^t$,则 $f'(x) = t[x^{t-1} - (1-x)^{t-1}]$,因为 t-1 > 0 为幂函数,所以当 $0 < x < \frac{1}{2}$ 时,f'(x) < 0;当 $\frac{1}{2} < x < 1$ 时,f'(x) > 0,故 $\max_{x \in (0,1)} f(x) < \max\{f(0), f(1)\} = 1$,即得证

T3.

证明 (a).Case 1. $(p,q) = (+\infty,1)$ 时,若不等式取等,则

$$\int_{E} |fg| dx = ||f||_{\infty} |g| \Longrightarrow \int_{E} |g| \cdot (|f| - ||f||_{\infty}) dx = 0$$

即 $|g|(|f|-||f||_{\infty})=0$ a.e $x\in E$,可能是 |g|=0 a.e $x\in E$,或者 $f=\pm ||f||_{\infty}$ a.e $x\in E$,或者两个因子组合起来满足乘积为零 a.e $x\in E$

Case 2. $1 < p, q < \infty$ 时

首先, 当 $||f||_p = 0$ 或 $||g||_q = 0$ 时, Hölder 不等式取等(上课已证) 其次, 若 $||f||_p, ||g||_q \neq 0$, 记 $a = |\tilde{f}(x)|^p, b = |\tilde{g}(x)|^q$, 问题约化为

$$a^{\frac{1}{p}}b^{\frac{1}{q}} \leq \frac{a}{n} + \frac{b}{a}$$

的取等条件: 即 $\left(\frac{a}{b}\right)^{\frac{1}{p}} \leq \frac{1}{p} \cdot \frac{a}{b} + 1 - \frac{1}{p}$, 设 $\frac{a}{b} = x, \frac{1}{p} = t, f(x) = x^t - tx - 1 + t$, 求导得

$$f'(x) = tx^{t-1} - t = t(x^{t-1} - 1)$$

因为 $t-1=\frac{1}{p}-1<0$,所以当 0< x<1 时,f'(x)>0,当 x>1 时,f'(x)<0,所以 $\min f(x)=f(1)=0$,即当 $\frac{a}{b}=1, a=b$ 时取等,因此取等条件为

$$|\tilde{f}(x)|^p = |\tilde{g}(x)|^q, \forall x \in E \Longrightarrow \frac{|f(x)|^p}{||f||_p^p} = \frac{|g(x)|^q}{||g||_q^q}, \forall x \in E$$

(b). 当 1 时

在证明 Minkowski 不等式过程中, 使用了 Hölder 不等式:

$$\left|\left||f|\cdot|f+g|^{p-1}\right|\right|_1\leq ||f||_p\cdot \left|\left||f+g|^{p-1}\right|\right|_q$$

若 $||f||_p=0$ 或 $|||f+g|^{p-1}||_q=0$ 时,则此时 f=0 a.e $x\in E$ 或 f+g=0 a.e $x\in E$; 若 f=0 a.e $x\in E$,则显然有 Minkowski 不等式成立;若 f+g=0 a.e $x\in E$ 时,取 g=-f,则未必有 Minkowski 不等式成立

若 $||f||_p$, $|||f+g|^{p-1}||_q$ 均不为零,则有 (a) 知,有

$$\frac{|f(x)|^p}{||f||_p^p} = \frac{|f+g|^{(p-1)q}}{\left|\left||f+g|^{p-1}\right|\right|_q^q} = \frac{|f+g|^p}{\left|\left||f+g|^{p-1}\right|\right|_q^q}$$
(2)

而

$$||f||_p^p = \int_E |f|^p dx, \quad \left| \left| |f + g|^{p-1} \right| \right|_q^q = \int_E |f + g|^{(p-1)q} dx = \int_E |f + g|^p dx$$

又因为证明过程中还使用了三角不等式: $|f+g| \leq |f| + |g|$, 取等时 f,g 始终同号,则 (2) 式即为

$$\frac{|f(x)|^p}{\int_E |f|^p dx} = \frac{|f(x) + g(x)|^p}{\int_E |f + g|^p dx}$$

由 f,g 同号知, $|f|^p + |g|^p = |f + g|^p$, 因此等号成立当且仅当

$$|f(x)|^p = \frac{\int_E |f|^p dx}{\int_E |f+g|^p dx}, \quad |g(x)|^p = \frac{\int_E |g|^p dx}{\int_E |f+g|^p dx}$$

这当且仅当

$$\frac{|f(x)|^p}{||f||_p^p} = \frac{|g(x)|^p}{||g||_p^p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|f(x)|}{||f||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|f(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|f(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|f(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|f(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|f(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|f(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|f(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline{\vdash}\,} \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline\vdash}\, \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline\vdash}\, \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline\vdash}\, \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline\vdash}\, \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline\vdash}\, \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline\vdash}\, \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline\vdash}\, \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline\vdash}\, \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline\vdash}\, \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline\vdash}\, \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline\vdash}\, \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{||g||_p} \ \, \mathbb{E}f, g \ensuremath{\,\overline\vdash}\, \xi \iff \frac{|g(x)|}{||g||_p} = \frac{|g(x)|}{$$

当 $p=+\infty$ 时, 即 |f+g| 的本性上确界等于 |f| 的本性上确界加上 |g| 的本性上确界

T4.

证明 (a). 若 $p_2 = +\infty$, 对 $\forall f \in L^{\infty}(E), ||f||_{\infty} < +\infty$, 我们可以不妨设 $f \leq ||f||_{\infty} \forall x \in E$, 因为 $m(\{f > ||f||_{\infty}\}) = 0$, 而在零测集上积分并不影响积分值

$$\int_{E} |f|^{p_1} \mathrm{d}x \le \int_{E} ||f||_{\infty} \mathrm{d}x = m(E) \cdot ||f||_{\infty}$$

所以

$$||f||_{p_1} \le m(E)^{\frac{1}{p}} \cdot ||f||_{\infty} < +\infty$$

故 $f \in L^{p_1}(E)$, 即 $L^{\infty}(E) \subset L^{p_1}(E)$

若 $0 < p_1 < p_2 < \infty$, 对 $\forall f \in L^{p_2}(E), ||f||_{p_2} < +\infty$, 设 $g(x) = \chi_E \equiv 1$, 首先对 $\forall p > 0$

$$\left(\int_{E} |\chi_{E}|^{p} \mathrm{d}x\right)^{\frac{1}{p}} = m(E)^{\frac{1}{p}} < \infty \Longrightarrow \chi_{E} \in L^{p}(E), \forall p > 0$$

对 $F=|f|^{p_1},g=\chi_E$ 使用 $H\ddot{o}lder$ 不等式,其中共轭指标取为 $\frac{p_2}{p_1},\frac{p_2}{p_2-p_1}$, 我们有

$$||Fg||_1 \le ||F||_{\frac{p_2}{p_1}} ||g||_{\frac{p_2}{p_2 - p_1}}$$

$$= \left(\int_E |f|^{p_2} dx \right)^{\frac{p_1}{p_2}} \cdot m(E)^{\frac{p_2 - p_1}{p_2}}$$

因为 $Fg \equiv F$, 对上式两边同时开 p_1 次方得

$$\left(\int_{E} |f|^{p_{1}} dx\right)^{\frac{1}{p_{1}}} \leq m(E)^{\frac{p_{2}-p_{1}}{p_{1}p_{2}}} \cdot \left(\int_{E} |f|^{p_{2}} dx\right)^{\frac{1}{p_{2}}} < +\infty$$

所以 $f \in L^{p_1}(E)$, 故 $L^{p_2}(E) \leq L^{p_1}(E)$

(b). 若 $0 < p_1 < p_2 < \infty$, 考虑

$$f(x) = \begin{cases} |x|^{-a}, & |x| \le 1\\ 0, & |x| > 1 \end{cases} \qquad g(x) = \begin{cases} |x|^{-b}, & |x| > 1\\ 0, & |x| \le 1 \end{cases}$$
(3)

上周作业已证明: $f \in L^1(\mathbb{R}^d) \iff a < d, g \in L^2(\mathbb{R}^d) \iff b > d$, 注意到对于任意函数 f 均有

$$||f||_{p}^{p} = ||f^{p}||_{1}$$

则 $f \in L^{p_1}(\mathbb{R}^d) \iff f^{p_1} \in L^1(\mathbb{R}^d) \iff ap_1 < d$,同理 $f \in L^{p_2}(\mathbb{R}^d) \iff ap_2 < d$,选取 $\frac{d}{p_2} < a < \frac{d}{p_1}$,则 $p_1 < \frac{d}{a} < p_2$,故此时 $f \in L^{p_1}(\mathbb{R}^d)$ 但 $f \notin L^{p_2}(\mathbb{R}^d)$,同理当 $\frac{d}{p_2} < a < \frac{d}{p_1}$ 时,即 $p_1 < \frac{d}{a} < p_2$ 时, $g \in L^{p_2}(\mathbb{R}^d)$ 但 $g \notin L^{p_1}(\mathbb{R}^d)$,故 $L^{p_1}(\mathbb{R}^d)$,没有包含关系

若 $p_1 < p_2 = +\infty$, 取 $a < \frac{d}{p_1}$, 则 $f \in L^{p_1}(\mathbb{R}^d)$, 但是 f 没有本性上确界,因为对 $\forall M > 0$,当 $0 < |x| < M^{-a}$ 时,就有 f(x) > M,故 $||f||_{\infty} = +\infty$;另一方面,取 $a < \frac{d}{p_1}$,则 $g \notin L^{p_1}(\mathbb{R}^d)$,但

 $||g||_{\infty}=1,g\in L^{\infty}(\mathbb{R}^d)$, 故 $L^{p_1}(\mathbb{R}^d),L^{\infty}(\mathbb{R}^d)$ 没有包含关系