Applied Probability for Computer Science

Isadora Antoniano-Villalobos isadora.antoniano@unive.it

Master in Computer Science Ca' Foscari University of Venice

Academic year 2023/2024

Central Limit Theorem and Law of Large Numbers

Let us consider a sequence of random variables, X_1, X_2, X_3, \ldots The sum of the first n elements of the series is, itself, a random variable,

$$S_n = X_1 + X_2 + \ldots + X_n$$

- If the X_i have a common mean, $\mu = \mathbb{E}\left[X_i\right]$, then $\mathbb{E}\left[S_n\right] = n\mu$
- If the X_i are independent and have common variance $\sigma^2={\rm Var}\,[X_i]$, then ${\rm Var}\,[S_n]=n\sigma^2$
- f C But what can we say about the sequence of sums, S_1, S_2, S_3, \ldots as n grows?

We can try to learn something by simulating various realizations of such series using ${\bf R}$

Example 1: $X_i \stackrel{i.i.d.}{\sim} N(0,1)$

• Plot of 20 realizations of S_n for $n=1,\ldots,1000$

• Plot of 20 realizations of S_n/n for $n=1,\ldots,1000$

• Plot of 20 realizations of S_n/\sqrt{n} for $n=1,\ldots,1000$

Example 2: $X_i \stackrel{i.i.d.}{\sim} \mathsf{Exp}(1)$

• Plot of 20 realizations of S_n for $n=1,\ldots,1000$

• Plot of 20 realizations of S_n/n for $n=1,\ldots,1000$

• Plot of 20 realizations of S_n/\sqrt{n} for $n=1,\ldots,1000$

We can summarize our observations as follows:

• The **pure sum** S_n diverges. This is because the variability of S_n grows unboundedly as n goes to infinity,

$$\operatorname{Var}\left[S_n\right] = n\sigma^2 \xrightarrow[n \to \infty]{} \infty$$

• The average S_n/n converges, because its variability vanishes as n grows

$$\operatorname{Var}\left[S_n/n\right] = \operatorname{Var}\left[S_n\right]/n^2 = \sigma^2/n \xrightarrow[n \to \infty]{} 0$$

• When we use the normalization factor $1/\sqrt{n}$, we see that S_n/\sqrt{n} has an interesting behavior. When $\mu=0$ (example 1), it takes values around 0, behaving like some random variable!

Theorem 1 (CENTRAL LIMIT THEOREM) Let $X_1, X_2, ...$ be independent random variables with the same expectation $\mu = \mathbf{E}(X_i)$ and the same standard deviation $\sigma = \mathrm{Std}(X_i)$, and let

$$S_n = \sum_{i=1}^n X_i = X_1 + \ldots + X_n.$$

As $n \to \infty$, the standardized sum

$$Z_n = \frac{S_n - \mathbf{E}(S_n)}{\operatorname{Std}(S_n)} = \frac{S_n - n\mu}{\sigma\sqrt{n}}$$

converges in distribution to a Standard Normal random variable, that is,

$$F_{Z_n}(z) = P\left\{\frac{S_n - n\mu}{\sigma\sqrt{n}} \le z\right\} \to \Phi(z)$$
 (4.18)

for all z.

Among the random variables discussed in Chapters 3 and 4, at least three have a form of S_n :

```
Binomial variable = sum of independent Bernoulli variables
Negative Binomial variable = sum of independent Geometric variables
Gamma variable = sum of independent Exponential variables
```

Hence, the Central Limit Theorem applies to all these distributions with sufficiently large n in the case of Binomial, k for Negative Binomial, and α for Gamma variables.

Example: Normal approximation to the Binomial Distribution If $X_i \overset{i.i.d.}{\sim}$ Bern (p), then $S_n \sim \text{Bin}\,(n,p)$, so for sufficiently large n and moderate values of p, the Binomial (the distribution of S_n) can be approximated by a Normal with mean $\mu = np$ and variance $\sigma^2 = np(1-p)$

Law of Large Numbers

- Carlton-Devore textbook Section 4.5.4
 - A collection X_1, X_2, \dots, X_n of independent and identically distributed (i.i.d) random variables is called a **random sample**
 - ullet Their average is also called the sample mean and denoted $ar{X}=S_n/n$

LAW OF LARGE NUMBERS

If $X_1, X_2, ..., X_n$ is a random sample from a distribution with mean μ , then \overline{X} converges to μ

- 1. In mean square: $E\left[\left(\overline{X}-\mu\right)^2\right]\to 0$ as $n\to\infty$
- 2. In probability: $P(|\overline{X} \mu| \ge \varepsilon) \to 0$ as $n \to \infty$ for any $\varepsilon > 0$

4 D > 4 A > 4 B > 4 B > 9 Q P

Introduction to Stochastic Processes

Stochastic Process: Two (Equivalent) Definitions

Baron (B) textbook Section 6.1

DEFINITION 6.1

A stochastic process is a random variable that also depends on time. It is therefore a function of two arguments, $X(t,\omega)$, where:

- $t \in \mathcal{T}$ is time, with \mathcal{T} being a set of possible times, usually $[0, \infty)$, $(-\infty, \infty)$, $\{0, 1, 2, \ldots\}$, or $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$;
- $\omega \in \Omega$, as before, is an outcome of an experiment, with Ω being the whole sample space.

Values of $X(t, \omega)$ are called states.

Stochastic Process: Two (Equivalent) Definitions

At any fixed time t, we have a random variable $X_t(\omega)$, a function of a random outcome. On the other hand, if we fix the outcome ω , we obtain a function of time $X_\omega(t)$. This function is called a **realization**, a **sample path**, or a **trajectory** of the process $X = \{X(t) : t \in \mathcal{T}\}$

Carlton-Devore (CD) textbook Section 7.1

DEFINITION

For a given sample space \mathcal{S} of some experiment, a **random process** is any rule that associates a time-dependent function with each outcome in \mathcal{S} . Any such function that may result is a **sample function** of the random process. The collection of all possible sample functions is called the **ensemble** of the random process.

DEFINITION 6.2 -

Stochastic process $X(t,\omega)$ is discrete-state if variable $X_t(\omega)$ is discrete for each time t, and it is a continuous-state if $X_t(\omega)$ is continuous.

DEFINITION 6.3 ——

Stochastic process $X(t,\omega)$ is a **discrete-time process** if the set of times \mathcal{T} is discrete, that is, it consists of separate, isolated points. It is a continuous-time **process** if \mathcal{T} is a connected, possibly unbounded interval.

• CD Example 7.1:Some communication systems use phase-shift keying to transmit information. A quaternary phase-shift keying (QPSK) system can transmit four distinct symbols (often used to encode two bits at a time: 00, 01, 10, 11). The four symbols are distinguished by varying the phase at which they are transmitted; specifically, for $k \in \{1, 2, 3, 4\}$, the k-th symbol is transmitted for T seconds with the wave

$$x_k(t) = \cos(2\pi f_0 t + \pi/4 + k\pi/2), \quad 0 \le t \le T$$

for some predetermined frequency f_0 .

Consider the transmission of a single randomly selected symbol, and let X(t) denote the corresponding transmitted wave.

Each function $x_k(t)$ is a sample function and the set of these four functions is the ensemble of X(t)

This is a continuous-time, continuous-space process

• CD Example 7.2: Let X(t) be the fluctuation in the value of Apple Inc. stock (AAPL) during tan 8-hour trading day, measuring time from the opening bell on Wall Street. The ensemble of X(t) is subject to the constraint X(0) =yesterday's closing value. If, for example, if the closing value yesterday was \$580, the ensemble of X(t) consists of all possible paths that the price of Apple stock could hypothetically take tomorrow, starting at \$580 per share.

This is a continuous-time, continuous-space process

• CD Example 7.3: Consider modeling the number of people N(t)logged in to a specific server at time t (perhaps measured from midnight).

The ensemble of N(t) consists of all nonnegative integer-valued functions n(t) that might hypothetically arise from successive logins and logouts.

This is a continuous-time. discrete-space process

• **B Example 6.4** In a printer shop, let X(n) be the amount of time required to print the n-th job. \bigcirc This is a discrete-time, continuous-state stochastic process, because $n=1,2,3,\ldots$, and $X\in(0,\infty)$

Let Y(n) be the number of pages of the n-th printing job. Now, $Y=1,2,3,\ldots$ is discrete $\ref{eq:partial}$ This process is discrete-time and discrete-state.

• The listing X_1, X_2, \ldots , or more simply X_n , is a discrete-time random process, also called a **random sequence**

Note: The difference between discrete- and continuous-space processes is less important than distinguishing how we model time.

Random Processes as Collections of RVs

- At any fixed time point t_0 , the ensemble of a random process X(t) forms a probability distribution \mathcal{C} $X(t_0)$ is a random variable with support determined by the ensamble
- A random process is characterized by its simultaneous behavior at all time points ${\mathfrak C}$ To be precise, a random process X(t) is characterized only if we know the **joint distribution** of $X(t_1),\ldots,X(t_r)$ for all finite sets of time points $t_1<\ldots< t_r$ and $r\in\{1,2,3,\ldots\}$. The collection of all such joint distributions constitutes the **finite** dimensional distributions of the process.

In this course

From now on all stochastic processes considered will be in continuous time, unless otherwise stated

I. Antoniano-Villalobos Applied Probability 2023/2024 23 / 42

🖒 Ma

Main concepts from CD Subsection 7.2.1

Recall: Let $X=\{X(t):t\in\mathcal{T}\}$ be a stocastic process. For each fixed $t\in\mathcal{T},\,X(t):=X_t$ is a random variable. In particular, it has a mean and a variance which may depend on t

DEFINITION

The **mean function** of a random process X(t) is given by

$$\mu_X(t) = E[X(t)],$$

where E[X(t)] is the expected value of the random variable X(t) for the fixed time point t.

Similarly, we define the **variance function** of X(t) by

$$\sigma_X^2(t) = \text{Var}(X(t)) = E[(X(t) - \mu_X(t))^2] = E[X^2(t)] - [\mu_X(t)]^2$$

and the **standard deviation function** of X(t) by $\sigma_X(t) = \sqrt{\operatorname{Var}(X(t))}$.

◆ロト ◆団ト ◆豆ト ◆豆 * からで

24 / 42

Notice: $\mu_X(t), \sigma^2(t)$, and $\sigma(t)$ are deterministic (nonrandom) functions of t, just as the mean, variance, and standard deviation of a random variable are numbers and not random quantities.

CD Example 7.8:

An intended signal may have the form $\nu_0+a\cos(\omega_0t+\theta_0)$, but amplitude variation may occur (for instance, due to natural current or voltage variation), so we can model this as a random process

$$X(t) = \nu_0 + A\cos(\omega_0 t + \theta_0),$$

where A is a random variable whose distribution describes the amplitude variation. Engineers frequently model amplitude variation A with a Rayleigh distribution, $A \sim \text{Raleigh}(\sigma)$ with mean and variance

$$\mathbb{E}\left[A\right] = \sigma\sqrt{\pi/2}, \quad \operatorname{Var}\left[A\right] = \frac{4-\pi}{2}\sigma^2$$

(a) Rayleigh pdf for $\sigma=1$; (b) Ensemble of $X(t)=A\cos(2\pi t)$ (for the specifications $\nu_0=0, \omega_0=2\pi$, and $\theta 0=0$)

I. Antoniano-Villalobos

ightharpoonup Notice that for each fixed t, so we can apply the properties of expected value and variance to find the mean and variance functions of the process $X \cos(\omega_0 t + \theta_0)$ is a constant, so

$$\mu_X(t) = \mathbb{E}\left[X(t)\right] = \mathbb{E}\left[\nu_0 + A\cos(\omega_0 t + \theta_0)\right] = \nu_0 + \mathbb{E}\left[A\right]\cos(\omega_0 t + \theta_0)$$

$$\sigma_X^2(t) = \operatorname{Var}\left[X(t)\right] = \operatorname{Var}\left[\nu_0 + A\cos(\omega_0 t + \theta_0)\right] = \operatorname{Var}\left[A\right]\cos^2(\omega_0 t + \theta_0)$$

For example, for the specifications $\nu_0=0, \omega_0=2\pi$, and $\theta_0=0$ with $\sigma=1$, we get $\mu_X(t)\approx 1.253\cos(t)$, which is again a sinusoid. Notice that in this case $0\leq \sigma_X^2(t)\approx 0.429\cos^2(t)\leq 0.429$ and the variance is 0 whenever $t=\{1/4,3/4,5/4,\ldots\}$, which we can clearly see on the right side (b) of the figure above.

◆ロト ◆個ト ◆重ト ◆重ト 重 める()

Autocovariance Function

Main concepts from CD Subsection 7.2.2

Notice: The mean and variance functions contain information about the behavior of the ensemble at each single point in time. For two different times t and s, the random variables X(t) and X(s) will typically be related \Rightarrow A complete statistical analysis of a random process should also include an exploration of that relationship.

DEFINITION

The **autocovariance function** of a random process X(t) is defined by

$$C_{XX}(t,s) = \text{Cov}(X(t),X(s)) = E[(X(t) - \mu_X(t))(X(s) - \mu_X(s))]$$

Notice that the autocovariance function is a nonrandom function of two time points, t and s.

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

Autocovariance Function

The autocovariance function is sometimes also denoted $\sigma_X(t,s)$ and, when t=s, we recover the variance function $\sigma_X(t,t)=\sigma^2(t)$

Properties of the autocovariance function follow directly from the properties previously derived for covariance. In particular,

PROPOSITION

Let $C_{XX}(t, s)$ denote the autocovariance function of a random process X(t).

- 1. $C_{XX}(t,s) = C_{XX}(s,t)$
- 2. $C_{XX}(t,s) = E[X(t)X(s)] \mu_X(t)\mu_X(s)$
- 3. $\sigma_X^2(t) = \text{Var}(X(t)) = \text{Cov}(X(t), X(t)) = C_{XX}(t, t) = E[X^2(t)] \mu_X^2(t)$

Autocovariance Function

f C The autocovariance function of X(t) has the same interpretation as the covariance between two variables:

- If $C_{XX}(t,s)>0$, when the process X is above its mean function at time t, it also tends to be above its mean function at time s (and vice versa)
- If $C_{XX}(t,s)<0$, then above-average values of the random process at time t are associated with below-average values at time s (and vice versa).
- $C_{XX}(t,s) = 0$ does not necessarily imply independence

30 / 42

I. Antoniano-Villalobos Applied Probability 2023/2024

Autocorrelation Function

Warning! The name **autocorrelation function** is used for two different things, depending on the context!

In the context of time series analysis, the autocorrelation function, denoted $\rho_X t, s$ is defined as

$$\rho_X t, s = \frac{\sigma_X(t, s)}{\sigma_X(t)\sigma_X(s)}$$

and its interpretation is analogous to that of the correlation between random variables. In particular, $0 \le \rho_X t, s \le 1$ indicates the magnitude and direction of the association between X(t) and X(s)

31 / 42

Autocorrelation Function

However, in the context of signal processing and in the engineering literature, the **autocorrelation function**, denoted $R_{XX}t,s$ is defined as

$$R_{XX}t, s = \mathbb{E}\left[X(t)X(s)\right]$$

and is equivalent to $\rho_X t, s$ only when the mean and variance functions are constant and equal to 0 and 1, respectively. In general, the sign of $R_{XX}t, s$ does not indicate the direction of the association between X(t) and X(s), and its magnitude is not bounded by 1

Our textbook CD uses this definition!

In this course

The autocorrelation function will not play an important role, as we will focus on other types of properties

Main concepts from **CD Section 7.3** (subsections 7.3.1 and 7.3.2 excluded)

Informally: We say that a stochastic process is **stationary** if its behavior remains stable over time. But what do we mean by stable?

DEFINITION

A random process X(t) is (**strict-sense**) **stationary** if all of its statistical properties are invariant with respect to time. More precisely, X(t) is stationary if, for any time points t_1, \ldots, t_r and any value τ , the joint distribution of $X(t_1)$, ..., $X(t_r)$ is the same as the joint distribution of $X(t_1+\tau)$, ..., $X(t_r+\tau)$.

This definition requires that the statistical properties of $\boldsymbol{X}(t)$ remain stable over time

- In particular X(t) and $X(t+\tau)$ must have the same distribution for all t and all τ \Rightarrow it follows that X(t) must have the same mean, variance, standard deviation, etc. at all times t
- However, the definition requires more. Since the joint distribution of $X(t_1)$ and $X(t_2)$ must be translation-invariant, the autocovariance function of X(t) must be translation-invariant as well
- And this is true for the joint distribution the process at any number of points in time!
- It is rarely practical to determine whether a particular random process model is strict-sense stationary. Fortunately, a weaker version of stationarity suffices for the purposes of many analyses.

DEFINITION

A random process X(t) is **wide-sense stationary (WSS)** if the following two conditions hold:

- 1. The mean function of X(t), $\mu_X(t)$, is a constant.
- 2. The autocovariance function of X(t), $C_{XX}(t, s)$, depends only on s t.
- A wide-sense stationary process is also called weakly stationary, as opposed to a strict-sense stationary process, which is also called strongly stationary

Condition 2 states that the degree of association between X(t) and X(s), measured by the covariance, depends only on the distance between the times s and t, but not on the position of those times on an absolute scale.

For a weakly stationary, X both the mean function $\mu_X(t)=\mu_X$ and the covariance function $C_{XX}(t,t+\tau)=C_{XX}(\tau)$ are independent of t

I. Antoniano-Villalobos Applied Probability 2023/2024 35 / 42

(a) and (b) seem weakly stationary; (c) clearly is not

(ロ) (部) (注) (注) (注) の(○)

Markov Processes

Initial definitions from B Section 6.2 and CD Section 7.7

DEFINITION 6.4

Stochastic process X(t) is **Markov** if for any $t_1 < ... < t_n < t$ and any sets $A; A_1, ..., A_n$

$$P\{X(t) \in A \mid X(t_1) \in A_1, \dots, X(t_n) \in A_n\}$$

$$= P\{X(t) \in A \mid X(t_n) \in A_n\}.$$
(6.1)

- For a **Markov process**, the conditional distribution of X(t) is the same under two different conditions:
 - $oldsymbol{1}$ given observations of the process X at several moments in the past;

• In other words, knowing the present, there is no additional information from the past that can be used to better predict the future,

$$\mathbb{P}\left[\mathsf{future}|\mathsf{past},\;\mathsf{present}\right] = \mathbb{P}\left[\mathsf{future}|\mathsf{present}\right]$$

- For the future development of a Markov process, only its present state is important, and it does not matter how the process arrived to this state.
- Some processes satisfy the Markov property, and some don't

(B) Example 6.5: Internet connections

Let X(t) be the total number of internet connections registered by some internet service provider by the time t

- Typically, people connect to the internet at random times, regardless of how many connections have already been made.
- Therefore, the number of connections in a minute will only depend on the current number.
- This process is Markov.

(B) Example 6.6 Stock prices

Let Y(t) the value of some stock or some market index at time t

- If we know Y(t) and we want to predict Y(t+1), is it useful to also know Y(t-1)?
- One may argue that if Y(t-1) < Y(t), then the market is rising, therefore, Y(t+1) is more likely to exceed Y(t). On the other hand, if Y(t-1) > Y(t), we may conclude that the market is falling and may expect Y(t+1) < Y(t)
- It looks like knowing the past in addition to the present does help us to predict the future.
- This process is NOT Markov.

41 / 42

DEFINITION 6.5 -

A Markov chain is a discrete-time, discrete-state Markov stochastic process.

- More generally, the term Markov Chain is used to refer to any discrete-space stochastic process with the Markov property
 - → Over the next lessons, we will focus on the study of Continuous Time Markov Chains (CTMC)

42 / 42