16. Dar condiciones necesarias y suficientes sobre matrices A y B de tamaño $n \times n$ para que

(a)
$$(A+B)^2 = A^2 + 2AB + B^2$$

(b)
$$A^2 - B^2 = (A - B)(A + B)$$

a) $(A+B)^{2} = A^{2} + 2AB+B^{2}$

Tenemos que
$$(A+B)^2 = (A+B)(A+B) = A^2 + AB + BA + B^2$$

Entonces, por enunciado: $A^2 + AB + BA + B^2 = A^2 + 2AB + B^2$
restando $A^2 \times B^2$: $AB + BA = 2AB$
 $2AB = AB + AB$: $AB + BA = AB + AB$
restando AB : $BA = AB$

Por la conto (A+B) = A2+ZAB+B2 Si y sólo si AB=BA.

b) 12-B2 = (A-B) (A+B)

Tenemos que
$$(A-B)(A+B) = A^2 + AB - BA - B^2$$

Por enuncido $A^2 - B^2 = A^2 + AB - BA - B^2$
Pastemos $A^2 - B^2$: $O = AB - BA \Rightarrow AB = BA$.

Por lo tento, 12-B2 = (A-B) (A+B) si y sólo si AB=BA.