Name: Fuad Choudhury

CIS4400, HOMEWORK-2, SPRING 2025

Professor: Jefferson Bien-Aime

Data Sourcing:

IMDb movie rating data selected for this project because it allows us to analyze trends and identify toprated movies. The dataset was cleaned and uploaded to Azure Blob Storage. Since the raw dataset did not have a data dictionary, the data dictionary was created manually.

Data Sourcing Method:

Connection to Data Store (Azure Blob Storage)

Data Dictionary (Screenshots; Already uploaded on GitHub Repo):

fact_movie_ratings:

Column Name	Data Type	Description
rating_id	INT (PK)	Unique identifier for each rating record
movie_id	INT (FK)	Foreign key referencing dim_movie.movie_id
date_id	INT (FK)	Foreign key referencing dim_date.date_id
average_rating	FLOAT	Average IMDb rating of the movie
num_votes	INT	Number of user votes received by the movie

dim movie:

Column Name	Data Type	Description		
movie_id	INT (PK)	Unique internal identifier for the movie		
tconst	VARCHAR	IMDb title identifier (e.g., "tt1234567")		
primary_title	VARCHAR	Main movie title displayed to the user		
original_title	VARCHAR	Original or native title of the movie		
title_type	VARCHAR	Type of title (e.g., "movie", "short", "tvSeries")		
is_adult	INT	Indicates if the movie is adult content $(1 = Yes, 0 = No)$		
runtime_minutes	INT	Duration of the movie in minutes		
genre	VARCHAR	Genre or comma-separated list of genres (e.g., "Drama, War")		

dim date:

Column Name	Data Type	Description	
date_id	INT (PK)	Unique identifier for the date (year)	
year	INT	Release year of the movie	
decade	VARCHAR	Decade of the movie release (e.g., "1990s")	

Storage:

The cleaned datasets were stored in Azure Blob Storage in an organized manner. Each dataset was uploaded as a separate CSV file: dim movie.csv, dim date.csv, and fact movie ratings.csv.

Storage of Choice:

Azure Blob Storage

Scripts:

Python scripts were written to clean and upload the data, and Snowflake was used to create tables and load the data using SAS tokens/manually from the device.

Transformation:

The data transformation steps below:

- Converting all date formats to YYYY-MM-DD.
- Creating a separate dim_date table with columns for year and decade.
- Removing rows with null averageRating.
- Creating a surrogate key in the fact table.
- Ensuring correct datatypes and value ranges.
- Generating a data mapping to track transformations.

Data Mapping Tables:

Source File	Source Column	Transformed Field	Data Type	Description	Target Table
fact_movie_ratings.cs v	rating_id	rating_id	INTEGER	Surrogate key for fact table	fact_movie_rating s
fact_movie_ratings.cs v	movie_id	movie_id	INTEGER	FK to dim_movie	fact_movie_rating s
fact_movie_ratings.cs v	date_id	date_id	DATE	FK to dim_date	fact_movie_rating s
fact_movie_ratings.cs v	averageRating	averageRating	FLOAT	Average IMDb rating	fact_movie_rating s
fact_movie_ratings.cs v	numVotes	numVotes	INTEGER	Number of users voted	fact_movie_rating s
dim_movie.csv	movie_id	movie_id	INTEGER	Primary key	dim_movie
dim_movie.csv	original_title	original_title	VARCHA R	Title of the movie	dim_movie
dim_date.csv	full_date	full_date	DATE	The full date	dim_date

dim_date.csv	year	year	INTEGER	Year extracted from date	dim_date
dim_date.csv	decade	decade		Decade for time-based aggregation	dim_date

Modeling

For this project a star schema with one fact table fact_movie_ratings and two-dimension tables dim_movie and dim_date. Foreign keys were created between the fact and dimension tables using surrogate keys.

Modeling Tool:

Using Draw.io (ER diagram)

Fact Table:

fact_movie_ratings (rating_id, movie_id, date_id, averageRating, numVotes)

Dimension Tables:

- dim movie (movie id, original title, genres)
- dim date (date id, full date, year, decade)

Data Warehouse:

Created in AWS Redshift.

Data Warehouse Creation:

- SQL ran to CREATE TABLE scripts in Snowflake SQL-style for:
 - o dim_movie
 - o dim date
 - o fact movie ratings
- **Populated tables** using cleaned CSVs (via COPY INTO or equivalent commands).
- Verified the structure using DESCRIBE TABLE to confirm column names and data types.
- Used the dimensional model: fact table (with surrogate key rating_id) and dimension tables (with keys like movie id, date id).
- Connected it to Tableau to visualize and serve data from the warehouse.

Serving Data:

It's done by Tableau Public to the exported CSV datasets and created interactive visualizations.

Visualizations:

- 1. **Top 10 Movies by Average Rating** (Bar Chart with filter > 100 votes)
- 2. Movie Ratings and Votes Over Year (Line Chart with release year)
- 3. Movie Ratings and Votes by Genre (Column Chart)

Filter: Global filter added for year range.

Visualization:

Serving Tool: Tableau Public

Public Link: Tableau workbook uploaded on Brightspace assignment-2 submission with this word file.

A Screenshot of Tableau Dashboard:

