Engenharia reversa de arquivos e documentos

Capítulo 6

Engenharia reversa de arquivos e documentos

Modelo relacional

Esquema de arquivo convencional ou documento

Engenharia reversa de arquivos convencionais

Engenharia reversa de BD relacional

Engenharia reversa de arquivos e normalização

- Entrada do processo:
 - qualquer conjunto de dados para os quais se disponha de uma descrição:
 - documentos,
 - arquivos manuais,
 - arquivos convencionais em computador,
 - bancos de dados gerenciados por SGBD não relacional,
 - •

Engenharia reversa de arquivos e normalização - motivação

- Sistemas legados:
 - Raramente documentados;
 - Necessidade de modelo ER:
 - Manutenção,
 - Migração para outro tipo de BD,
 - Integração com outros BDs.

Engenharia reversa passo #1

Normalização:

 Processo que transforma um esquema de dados qualquer em um modelo relacional.

Engenharia reversa - processo

 Normalização é executada para todos esquemas de documentos disponíveis.

Engenharia reversa - integração

Normalização Objetivo

- Reagrupar informações para:
 - eliminar redundâncias de dados.
- Reagrupar informações para:
 - eliminar estruturas inexistentes no modelo ER (atributos multivalorados).

Normalização passos

10

Documento exemplo para normalização

RELATÓRIO DE ALOCAÇÃO A PROJETO

CÓDIGO DO PROJETO: LSC001 TIPO: Novo Desenv.

DESCRIÇÃO: Sistema de Estoque

CÓDIGO DO	NOME	CATEGORIA	SALÁRIO	DATA DE INÍCIO	TEMPO
EMPREGADO		FUNCIONAL		NO PROJETO	ALOCADO AO
					PROJETO
2146	João	A1	4	1/11/91	24
3145	Sílvio	A2	4	2/10/91	24
C12C	locá	D1	0		10
6126	José	B1	9	3/10/92	18
1214	Carlos	A2	4	4/10/92	18
8191	Mário	A1	4	1/11/92	12
				•	

CÓDIGO DO PROJETO: PAGO2 TIPO: Manutenção

DESCRIÇÃO: Sistema de RH

CÓDIGO DO EMPREGADO	NOME	CATEGORIA FUNCIONAL	SALÁRIO	DATA DE INÍCIO NO PROJETO	TEMPO ALOCADO AO PROJETO
8191	Mário	A1	4	1/05/93	12
4112	João	A2	4	4/01/91	24
6126	José	B1	9	1/11/92	12

Normalização – passo #1

12

Tabela não normalizada

- Tabela não-normalizada ou tabela não-primeira-forma-normal:
 - possui uma ou mais tabelas aninhadas

Tabela aninhada

- Tabela não-normalizada ou tabela não-primeira-forma-normal:
 - possui uma ou mais tabelas aninhadas

Tabela aninhada
ou grupo repetido
ou coluna multi-valorada
ou coluna não atômica

Ε

coluna que ao invés de conter valores atômicos, contém tabelas aninhadas

Tabela não normalizada

- Tabela *não-normalizada* ou tabela *não-primeira-forma-normal*:
 - possui uma ou mais tabelas aninhadas.

Abreviatura: ÑN

Documento exemplo na forma ÑN

CódProj	Tipo	Descr	Emp					
			CodEmp	Nome	Cat	Sal	Datalni	TempAl
	Novo Desenv.	Sistema de Estoque	2146	João	A1	4	1/11/91	24
			3145	Sílvio	A2	4	2/10/91	24
			6126	José	B1	9	3/10/92	18
			1214	Carlos	A2	4	4/10/92	18
			8191	Mário	A1	4	1/11/92	12
PAG02	Manute nção	Sistema de RH	8191	Mário	A1	4	1/05/93	12
			4112	João	A2	4	4/01/91	24
			6126	José	B1	9	1/11/92	12

Tabela aninhada

CódProj	Tipo	Descr	Emp						
			CodEmp	Nome	Cat	Sal	Datalni	TempAl	
	Novo Desenv.	Sistema de Estoque	2146	João	A1	4	1/11/91	24	
			3145	Sílvio	A2	4	2/10/91	24	
			6126	José	B1	9	3/10/92	18	
			1214	Carlos	A2	4	4/10/92	18	
			8191	Mário	A1	4	1/11/92	12	
PAG02	Manuta Sistem		101	Mário	A1	4	1/05/93	12	
		tabela		João	A2	4	4/01/91	24	
		aninhada		José	B1	9	1/11/92	12	

Tabela ÑN Esquema

```
Proj (<u>CodProj</u>, Tipo, Descr,
(<u>CodEmp</u>, Nome, Cat, Sal, DataIni, TempAl)
)
```

Esquema de arquivo em Pascal

```
reg_aluno= record
type
      cod_al: integer;
      nome_al: char_60;
       ingressos_cursos_al: array [1..10] of record
             cod_curso: integer;
             semestre_ingresso: integer
             end:
      disciplinas_cursadas_al: array [0..200] of record
             cod_disc: integer;
             semestres_cursados: array [1..20] of record
                    semestre_disc: integer;
                    nota_disc: integer
                    end
             end
      end;
      arq_aluno= file of reg_aluno;
```

Esquema de arquivo COBOL - parcial

```
FD
     Arq-Alunos
     Reg-Al.
01
           Cod-A1
     03
     03 Nome-Al
     03
           Ingr-Cursos-al OCCURS 1 TO 10
                 Cod-Curso
           05
           O5 Sem-ingresso
           Disc-Curs-Al OCCURS 0 TO 200
     03
           05 Cod-Disc
           05
                 Sem-Cursado OCCURS 1 TO 20
                 07 Sem-Disc-Cursada
                  07
                       Nota-Disc
```

Esquema ÑN para arquivos exemplo

```
Arq-Alunos (<u>Cod-Al</u>, Nome-Al,
(<u>Cod-Curso</u>, Sem-ingresso),
(<u>Cod-Disc,</u>
(<u>Sem-Disc-Cursada</u>,
Nota-Disc)))
```

Representação em esquema não normalizada

- Nenhuma transformação é feita no modelo do documento.
- Apenas é usada outra notação.
- Notação independe do tipo de documento/arquivo usado como entrada do processo de normalização.

Forma normal

- Regra que uma tabela deve obedecer para ser considerada "bem projetada".
- Há diversas formas normais, cada vez mais rígidas, para verificar tabelas relacionais.
- Aqui tratadas:
 - primeira forma normal (1FN),
 - segunda forma normal (2FN),
 - terceira forma normal (3FN),
 - quarta forma normal (4FN).

Passagem a 1FN

Primeira forma normal (1FN)

primeira forma normal (1FN)

=

diz-se que uma tabela está na primeira forma normal, quando ela não contém tabelas aninhadas

Passagem à 1FN - alternativas

Para chegar a 1FN há duas alternativas:

- 1. Construir uma única tabela com redundância de dados.
- 2. Construir uma tabela para cada tabela aninhada.

Passagem à 1FN – alternativa #1

 Uma tabela na qual os dados das linhas externas à tabela aninhada são repetidos para cada linha da tabela aninhada.

Dados do projeto aparecem repetidos para cada empregado do projeto.

Passagem à 1FN -alternativa #2

- Cria-se:
 - 1. uma tabela referente a própria tabela que está sendo normalizada e
 - 2. uma tabela para cada tabela aninhada

```
1FN:
```

Proj (CodProj, Tipo, Descr)

ProjEmp (CodProj, CodEmp, Nome, Cat, Sal, DataIni, TempAl)

Passagem à 1FN - alternativas

- Primeira alternativa (tabela única) é a correta.
- Segunda alternativa decompor uma tabela em várias tabelas:
 - podem ser perdidas relações entre informações.
- Ver exercício 6.17 do livro.

Passagem à 1FN - alternativas

- Para fins práticos:
 - preferimos a segunda alternativa (decomposição de tabelas)
- Quando houver diversas tabelas aninhadas, eventualmente com diversos níveis de aninhamento, fica difícil visualizar a tabela na 1FN na alternativa de tabela única.

Passagem à 1FN – passo #1

1. Criar uma tabela na 1FN referente a tabela não normalizada.

A chave primária da tabela na 1FN é idêntica a chave da tabela ÑN .

Passagem à 1FN criar tabela referente a tabela externa

Passagem à 1FN – passo #2

2. Para cada tabela aninhada:

- criar uma tabela composta pelas seguintes colunas:
 - a) a chave primária de cada uma das tabelas na qual a tabela em questão está aninhada;
 - b) as colunas da própria tabela aninhada.

Passagem à 1FN criar tabelas referentes a tabela aninhada

```
NN:
(CodProj, Tipo, Descr,
       (CodEmp, Nome, Cat, Sal, DataIni, TempAl))
1FN:
(CodProj, Tipo, Descr)
(CodProj, CodEmp, Nome, Cat,
                  Sal, DataIni, TempAl)
```

Passagem à 1FN - passo #3

3. Definir, na 1FN, as chaves primárias das tabelas que correspondem a tabelas aninhadas.

Passagem à 1FN – tabela externa definição de chave primária

```
(CodProj, Tipo, Descr,

(CodEmp Nome Cat Sal DataIni, TempAl))

Tabela de nível mais
externo:
basta transcrever a chave
primária

(CodProj, Tipo, Descr)
(CodProj, CodEmp, Nome, Cat,
Sal, DataIni, TempAl)
```

Passagem à 1FN – tabelas aninhadas definição de chave primária

Passagem à 1FN – tabelas aninhadas definição de chave primária

Documento exemplo para normalização

	RELATÓRIO DE ALOCAÇÃO A PROJETO						
	CÓDIGO D	O PROJETO): LSC001	TIPO: Novo Desenv.			
	DESCRIÇÃ	0: Sistema	de Esto	um empregado pode		e	
	CÓDIGO DO EMPREGADO	REGADO NOME CATEGORIA FUNCIONAL Trabalhar em vário			r em vários	TEMPO	
	2146	João	A1	pro	jetos	24	
	3145	Sílvio	A2	7	2/10/91	24	
	6126	José	B1	9	3/10/92	18	
	1214	Carlos	A2	4	4/10/92	18	
	8191	Mário	A1	4	1/11/92	12	
	CÓDIGO D	O PROJETO): PAG02	TIPO: Manutenção			
	DESCRIÇÃ	O: Sistema	de RH				
	CÓDIGO DO EMPREGADO	NOME	CATEGORIA FUNCIONAL	SALÁRIO	DATA DE INÍCIO NO PROJETO	TEMPO ALOCADO AO PROJETO	
	8191	Mário	A1	4	1/05/93	12	
	4112	João	A2	4	4/01/91	24	
©Carlos A. Heus	6126	José	B1	9	1/11/92	12	

Documento exemplo para normalização

F	RELATÓRIO DE ALOCAÇÃO A PROJETO						
		O DROIFTO		TIPO: Nov	o Desenv.		
		or de Codl	, ba	IIE			
	(chave da tabela origem) aparece várias vezes no			SALÁRIO	DATA DE INÍCIO NO PROJETO	TEMPO ALOCADO AO PROJETO	
	do	cumento		4	1/11/91	24	
3	3145	Sílvio	A2	4	2/10/91	24	
6	5126	José	B1	9	3/10/92	18	
1	L 21 4	Carlos	A2	4	4/10/92	18	
8	3191	Mário	A1	4	1/11/92	12	
(CÓDIGO D	O PROJETO): PAG02	TIPO: Manutenção			
[DESCRIÇÃ	0: Sistema	de RH				
	ÓDIGO DO MPREGADO	NOME	CATEGORIA FUNCIONAL	SALÁRIO	DATA DE INÍCIO NO PROJETO	TEMPO ALOCADO AO PROJETO	
8	3191	Mário	A1	4	1/05/93	12	
	1112	João	A2	4	4/01/91	24	
©Carlos A. Heuser	5126	José	B1	9	1/11/92	12	

Passagem à 1FN – tabelas aninhadas definição de chave primária

Passagem à 1FN – tabelas aninhadas definição de chave primária

```
ÑN:
(CodProj, Tipo, Descr,
        (CodEmp, Nome,
                                                   pA1))
                             Caso um empregado
                             trabalhasse em único
                             projeto (um valor de
                             CodEmp aparece uma
1FN:
                               vez ao máximo)
(<u>CodProj</u>, Tipo, Descr)
(CodProj, CodEmp, Nome, Cat,
                    Sal, DataIni, TempAl)
```

Passagem à 1FN - exemplo

Proj:	<u>CódProj</u>	Tipo	Descr
	LSC001	Novo Desenv.	Sistema de Estoque
	PAG02	Manutenção	Sistema de RH

ProjEmp:

<u>CódPro</u>	<u>CodEmp</u>	Nome	Cat	Sal	Datalni	TempAl
1.00001	21.46	10~0	۸ 1	4	1/11/01	2.4
LSC001	2146	João	A1	4	1/11/91	24
LSC001	3145	Sílvio	A2	4	2/10/91	24
LSC001	6126	José	B1	9	3/10/92	18
LSC001	1214	Carlos	A2	4	4/10/92	18
LSC001	8191	Mário	A1	4	1/11/92	12
PAG02	8191	Mário	A1	4	1/05/93	12
PAG02	4112	João	A2	4	4/01/91	24
PAG02	6126	José	B1	9	1/11/92	12

Passagem à 1FN outro exemplo

```
ÑN:
Arq-Candidatos (<u>Cod-Curso</u>, Nome-Curso, Numero-Vagas-Curso, (<u>Cod-Cand</u>, Nome-Cand, Escore-Cand)
```

Passagem à 1FN decomposição em tabelas

Passagem à 1FN decomposição em tabelas

```
ÑN:
Arq-Candidatos (<u>Cod-Curso</u>, Nome-Curso, Numero-Vagas-Curso, (<u>Cod-Cand</u>, Nome-Cand, Escore-Cand)
```

1FN:

Cursos (Cod-Curso, Nome-Curso, Numero-Vagas-Curso)

Candidatos (Cod-Curso, Cod-Cand, Nome-Cand, Escore-Cand)

Passagem à 1FN definição da chave primária

Passagem à 1FN definição da chave primária

```
ÑN:
Arq-Candidatos (<u>Cod-Curso</u>, Nome-Curso, Numero-Vagas-Curso, (<u>Cod-Cand</u>, Nome-Cand, Escore-Cand)
```

1FN:

Cursos (Cod-Curso, Nome-Curso, Numero-Vagas-Curso)

Candidatos (Cod-Curso, Cod-Cand, Nome-Cand, Escore-Cand)

Passagem à 1FN definição da chave primária

```
NN:
Arq-Candidatos (Cod-Curso, Nome-Curso, Numero-Vagas-Curso, (Cod-Cand, Nome-Cand, Escore-Cand)
)

Um valor de Cod-Cand aparece uma única vez.

1FN:
Cursos (Cod-Curso, Nome-Curso, Numero-Vagas-Curso)
Candidatos (Cod-Curso, Cod-Cand, Nome-Cand, Escore-Cand)
```

Passagem a 1FN exemplo Pascal/COBOL

```
ÑN:
Arq-Alunos (<u>Cod-Al</u>, Nome-Al,
(<u>Cod-Curso</u>, Sem-ingresso)
(<u>Cod-Disc</u>,
(<u>Sem-Disc-Cursada</u>, Nota-Disc)))
```

```
1FN:
```

Alunos (Cod-Al, Nome-Al)

AlunoCurso (Cod-Al, Cod-Curso, Sem-ingresso)

AlunoDisc (Cod-Al, Cod-Disc)

AlunoDiscSem (Cod-Al, Cod-Disc, Sem-Disc-Cursada, Nota-Disc)

Passagem a 1FN exemplo Pascal/COBOL

```
ÑN:
Arq-Alunos (<u>Cod-Al</u>, Nome-Al,
(<u>Cod-Curso</u>, Sem-ingresso)
(<u>Cod-Disc</u>,
(<u>Sem-Disc-Cursada</u>, Nota-Disc)))
```

1FN:

Alunos (<u>Cod-Al</u>, Nome-Al)

AlunoCurso (Cod-Al, Cod-Curso, Sem-ingresso)

AlunoDisc (<u>Cod-Al</u>, <u>Cod-Disc</u>)

AlunoDiscSem (Cod-Al, Cod-Disc, Sem-Disc-Cursada, Nota-Disc)

Passagem às 2FN e 3FN

Dependência funcional

- Para entender 2FN e 3FN:
 - é necessário compreender o conceito de dependência funcional.

Em uma tabela relacional, diz-se que uma coluna C_2 depende funcionalmente de uma coluna C_1 (ou que a coluna C_1 determina a coluna C_2) quando, em todas linhas da tabela, para cada valor de C_1 que aparece na tabela, aparece o mesmo valor de C_2 .

Exemplo de dependência funcional

•••	Código		Salário	
	E1	•••	10	
•••	E3	•••	10	•••
•••	E1	•••	10	
	E2	•••	5	•••
	E3	•••	10	
	E2	•••	5	
	E1		10	

Código → Salário

A	В	С	D
В	5	2	20
С	4	2	15
В	6	7	20
В	5	2	20
С	2	2	15
С	4	2	15
Α	10	5	18
Α	12	3	18
Α	10	5	18
В	5	2	20
С	4	2	15
Α	10	5	18
С	4	2	15

А	В	С	D
В	5	2	20
С	4	2	15
В	6	7	20
В	5	2	20
С	2	2	15
С	4	2	15
Α	10	5	18
Α	12	3	18
Α	10	5	18
В	5	2	20
С	4	2	15
Α	10	5	18
С	4	2	15

Dependência funcional inexistente na tabela:

А	В	С	D
В	5	2	20
С	4	2	15
В	6	7	20
В	5	2	20
С	2	2	15
С	4	2	15
Α	10	5	18
Α	12	3	18
Α	10	5	18
В	5	2	20
С	4	2	15
Α	10	5	18
С	4	2	15

Dependência funcional existente na tabela

 $\overline{\mathsf{A} o \mathsf{D}}$

А	В	С	D
В	5	2	20
С	4	2	15
В	6	7	20
В	5	2	20
С	2	2	15
С	4	2	15
Α	10	5	18
Α	12	3	18
Α	10	5	18
В	5	2	20
С	4	2	15
Α	10	5	18
С	4	2	15

Uma coluna pode depender funcionalmente de uma combinação de mais de uma coluna

 $(A,B) \rightarrow C$

Passagem às 2FN e 3FN

Segunda forma normal - 2FN

- Objetiva eliminar um certo tipo de redundância de dados.
- Exemplo

(<u>CodProj</u>, <u>CodEmp</u>, <u>Nome</u>, <u>Cat</u>, <u>Sal</u>, <u>DataIni</u>, <u>TempAl</u>)

- Dados referentes a empregados (Nome, Cat e Sal) são
 - redundantes, para os empregados que trabalham em mais de um projeto.

Dados redundantes na 1FN

ProjEmp:

<u>CódProj</u>	CodEmp	Nome	Cat	Sal	Datalni	TempAl
LSC001	2146	João	A1	4	1/11/91	24
LSC001	3145	Sílvio	A2	4	2/10/91	24
LSC001	6126	José	B1	9	3/10/92	18
LSC001	1214	Carlos	A2	4	4/10/92	18
LSC001	8191	Mário	A1	4	1/11/92	12
PAG02	8191	Mário	A1	4	1/05/93	12
PAG02	4112	João	A2	4	4/01/91	24
PAG02	6126	José	B1	9	1/11/92	12

Segunda forma normal - 2FN

segunda forma normal (2FN)

uma tabela encontra-se na segunda forma normal, quando, além de estar na 1FN, não contém *dependências* parciais

Dependência funcional parcial

dependência parcial

Ξ

uma dependência (funcional) parcial ocorre quando uma coluna depende apenas *de parte de* uma chave primária composta

Dependências parciais

Dependências não parciais

- Tabela 1FN e que possui apenas uma coluna como chave primária:
 - Não contém dependências parciais.
 - É impossível uma coluna depender de uma parte da chave primária,
 quando a chave primária não é composta por partes.
- Conclusão:
 - Toda tabela 1FN que possui apenas uma coluna como chave primária já está na 2FN.

Passagem à 2FN Tabela com uma única coluna na chave

```
1FN:
    (CodProj, Tipo, Descr)
    (CodProj, CodErro, Nome, Cat, Sal, DataIni, TempAl)

2FN:
    (CodProj, Tipo, Descr)
```

- Idem para:
 - Tabela que contenha apenas colunas chave primária:
 - Impossível atributo não chave depender de parte da chave (tabela não tem colunas não chave).

Tabela sem colunas não chave já está na 2FN.

1FN:

ProjEmp (CodProj, CodEmp, Nome, Cat, Sal, DataIni, TempAl)

Tabela que possui *chave* primária com várias colunas e possui colunas não chave deve ser examinada

1FN:

ProjEmp (CodProj, CodEmp, Nome, Cat, Sal, DataIni, TempAl)

Pergunta a ser feita, para cada coluna não chave:

- "a coluna depende de toda a chave ou só de parte" ou
- "para identificar um valor da coluna necessita de toda chave ou só de parte dela"?

Colunas que dependem de toda a chave permanecem na tabela original

2FN:

ProjEmp (CodProj, CodEmp, DataIni, TempAl)

```
1FN:
ProjEmp (CodProj CodEmp Nome, Cat, Sal, DataIni, TempAl)
```

```
Colunas que dependem de

2FN:
    parte da chave vão para uma
    nova tabela

ProjEmp (Coarroj, Coaemp, Ini, TempAl)

Emp (CodEmp, Nome, Cat, Sal)
```

2FN resultante

```
2FN:
Proj (CodProj, Tipo, Descr)
ProjEmp (CodProj, CodEmp, DataIni, TempAl)
Emp (CodEmp, Nome, Cat, Sal)
```

Tabelas na 2FN - exemplo

Proj:	<u>CódProj</u>	Tipo	Descr
	LSC001	Novo Desenv.	Sistema de Estoque
	PAG02	Manutenção	Sistema de RH

Tabelas na 2FN - exemplo

Emp:

ProjEmp:

<u>CódProj</u>	<u>CodEmp</u>	Datalni	TempAl
LSC001	2146	1/11/91	24
LSC001	3145	2/10/91	24
LSC001	6126	3/10/92	18
LSC001	1214	4/10/92	18
LSC001	8191	1/11/92	12
PAG02	8191	1/05/93	12
PAG02	4112	4/01/91	24
PAG02	6126	1/11/92	12

CodEmp	Nome	Cat	Sal
2146	João	A1	4
3145	Sílvio	A2	4
1214	Carlos	A2	4
8191	Mário	A1	4
4112	João	A2	4
6126	José	B1	9

Terceira forma normal (3FN)

Trata de um outro tipo de redundância.

```
• Exemplo: 2FN: Emp (CodEmp, Nome, Cat, Sal)
```

- Se
 - salário (coluna Sal) é determinado pela categoria funcional (coluna Cat)
- Salário que é pago a uma categoria funcional é armazenado tantas vezes quantos empregados possui a categoria funcional

Terceira forma normal (3FN)

Emp:

CodEmp	Nome	Cat	Sal
2146	João	A1	4
3145	Sílvio	A2	4
1214	Carlos	A2	4
8191	Mário	A1	4
4112	João	A2	4
6126	José	B1	9

Dependências funcionais

Dependências funcionais

Dependência transitiva

Terceira forma normal 3FN

terceira forma normal (3FN)

=

uma tabela encontra-se na terceira forma normal, quando, além de estar na 2FN, não contém dependências transitivas

Colunas que dependem da chave permanecem na tabela original

```
3FN:
Emp (CodEmp, Nome, Cat)
```


Colunas que dependem de coluna não chave vão para outra tabela

3FN:

Cat(Cat, Sal)

3FN do exemplo

3FN:

```
Proj (<u>CodProj</u>, Tipo, Descr)

ProjEmp (<u>CodProj</u>, <u>CodEmp</u>, DataIni, TempAl)
```

Emp (<u>CodEmp</u>, Nome, Cat)

Cat (Cat, Sal)

Normalização do exemplo

```
1FN:
(CodProj, Tipo, Descr)
(CodProj, CodEmp, Nome, Cat, Sal, DataIni, TempAl)
```

```
Proj (<u>CodProj</u>, Tipo, Descr)
ProjEmp (<u>CodProj</u>, <u>CodEmp</u>, DataIni, TempAl)
Emp (<u>CodEmp</u>, Nome, Cat, Sal)
```

```
3FN:
Proj (CodProj, Tipo, Descr)
ProjEmp (CodProj, CodEmp, DataIni, TempAl)
Emp (CodEmp, Nome, Cat)
Cat (Cat, Sal)
```

Tabelas na 3FN - exemplo

Proj:

<u>CódProj</u>	Tipo	Descr
LSC001	Novo Desenv.	Sistema de Estoque
PAG02	Manutenção	Sistema de RH

ProjEmp:

<u>CódProj</u>	<u>CodEmp</u>	Datalni	TempAl
LSC001	2146	1/11/91	24
LSC001	3145	2/10/91	24
LSC001	6126	3/10/92	18
LSC001	1214	4/10/92	18
LSC001	8191	1/11/92	12
PAG02	8191	1/05/93	12
PAG02	4112	4/01/91	24
PAG02	6126	1/11/92	12

Tabelas na 3FN - exemplo

Emp:

CodEmp	Nome	Cat
2146	João	A1
3145	Sílvio	A2
1214	Carlos	A2
8191	Mário	A1
4112	João	A2
6126	José	B1

Cat:

Cat	Sal
A1	4
A2	4
B1	9

- Para a maioria dos documentos e arquivos:
 - a decomposição até a 3FN é suficiente.

- Na literatura, aparecem outras formas normais:
 - forma normal de Boyce/Codd,
 - a 4FN,
 - a 5FN.

Exemplo para 4FN Modelo original

Exemplo para 4FN Requisitos alterados

Exemplo – Implementação do relacionamento

CodProj	CodEmp	CodEquip
1	1	1
1	2	1
1	3	1
1	1	2
1	2	2
1	3	2
2	2	2
2	2	4
3	3	1
3	4	1
3	3	3
3	4	3
3	3	5
3	4	5
4	2	5

CodProj	CodEmp	CodEquip	
1	1	1	
1	2		quais são os
1	3		npregados que
1	1	2	trabalham no
1	2		projeto 1?
1	3	2	
2	2	2	
2	2	4	
3	3	1	
3	4	1	
3	3	3	
3	4	3	
3	3	5	
3	4	5	
4	2	5	

CodProj	CodEmp	CodEquip	
1	1	1	
1	2	1	
1	3	1	
1	1	2	
1	2	guais	são os
1	3		ados que
2	2		ham no
2	2		eto 1?
3	3		
3	4	1	
3	3	3	
3	4	3	
3	3	5	
3	4	5	
4	2	5	

CodProj	CodEmp	CodEquip
1	1	1
1	2	1
1	3	1
1	1	2
1	2	2
1	3	2
2 2	2	2
2	2	4
3	3	1
3	4	1
3	3	3
3	4	3
3	3	5
3	4	5
4	2	5

quais são os equipamentos usados no projeto 1?

Dependência funcional multivalorada

CodProj	CodEmp			CodEquip	
1		1		1	
1	→	2		1	
1		3		1	
1	1			2	
1	2			2	
1	3			2	
2	2			2	
_		า			

Dependência multivalorada

CodProj	CodEmp	CodEquip		
1	1	1		
1	2	1		
1	3	1		
1	1	2		
1	> 2	2		
1	3	2		
2	2	2		
2	7	Cod	Proj→> (CodEmp

4FN definição

quarta forma normal (4FN)

=

uma tabela encontra-se na quarta forma normal, quando, além de estar na 3FN, não contém mais de uma dependência multi-valorada

4FN

3FN:

Utilizacao(CodProj, CodEmp, CodEquip)

4FN:

ProjEmp (CodProj,CodEmp)
ProjEquip (CodProj,CodEquip)

Problemas da normalização

- 1. Chaves primárias omitidas ou incorretas
- 2. Atributos relevantes implicitamente representados
- 3. Atributos irrelevantes, redundantes ou derivados

Chaves primárias omitidas ou incorretas

- Arquivos convencionais:
 - o conceito de chave primária não é obrigatório;
 - é possível encontrar arquivos que não possuem chave primária.
- Quando um arquivo convencional não possui chave primária ou quando a chave primária nele usada difere da usual na organização:
 - deve-se proceder como se a chave primária aparecesse no arquivo;
 - deve-se inseri-la na forma ÑN.

Chaves primárias omitidas ou incorretas exemplo

- Arquivo com dados sobre empregados de uma organização enviado para fins de fiscalização a um órgão governamental.
- Identificador de empregado usado na organização é omitido, já que este é irrelevante para o órgão fiscalizador.

Chaves primárias omitidas ou incorretas - exemplo

- Outra situação:
 - uso de uma chave alternativa, ao invés da chave primária usual do arquivo.
- No caso mencionado acima:
 - Se o órgão governamental fosse a receita federal:
 - Arquivo poderia ter como chave primária o CIC do empregado, ao invés da chave primária normalmente usada na organização.

Atributos relevantes implicitamente representados

- Arquivos convencionais podem conter atributos de forma implícita:
 - ordenação de registros ou de listas;
 - ponteiros físicos, etc.

 Deve-se proceder como se o atributo aparecesse explicitamente no documento.

Atributo implícito Ordenação

- Exemplo:
 - arquivo contém registros referentes a cursos em um concurso vestibular;
 - para cada curso, há um grupo repetido aninhado, com as informações dos candidatos ao curso em questão;
 - informações dos candidatos ordenadas por classificação no concurso.

Atributo implícito - Ordenação

ÑN:

Arq-Candidatos (<u>Cod-Curso</u>, Nome-Curso, Numero-Vagas-Curso, (<u>Cod-Cand</u>, Nome-Cand))

4FN:

Cursos (<u>Cod-Curso</u>, Nome-Curso, Numero-Vagas-Curso) Candidatos (Cod-Curso, <u>Cod-Cand</u>, Nome-Cand)

Atributo implícito Ordenação

- Informação da classificação dos candidatos em um curso foi perdida no processo de normalização.
- Procedimento correto:
 - incluir explicitamente na tabela, já na forma ÑN, a informação que aparece implicitamente no arquivo na forma da ordenação dos registros (coluna Ordem-Cand).

```
ÑN:
Arq-Candidatos (<u>Cod-Curso</u>, Nome-Curso, Numero-Vagas-Curso,
(<u>Cod-Cand</u>, Nome-Cand, <mark>Ordem-Cand</mark>)
)
```

Atributo implícito - Ordenação

ÑN:

```
Arq-Candidatos (<u>Cod-Curso</u>, Nome-Curso, Numero-Vagas-Curso, (<u>Cod-Cand</u>, Nome-Cand, <mark>Ordem-Cand)</mark>
)
```


4FN:

Cursos (<u>Cod-Curso</u>, Nome-Curso, Numero-Vagas-Curso) Candidatos (Cod-Curso, <u>Cod-Cand</u>, Nome-Cand, <u>Ordem-Cand</u>)

Atributos irrelevantes, redundantes ou derivados

- Atributos irrelevantes, redundantes ou derivados:
 - Devem ser eliminados já quando da passagem a forma não normalizada.

Integração de modelos

©Carlos A. Heuser

114

Integração de modelos

- Normalização de cada um dos arquivos/documentos conduz à definição de um conjunto de tabelas.
- Passo seguinte :
 - integrar os modelos obtidos para cada arquivo no modelo global do banco de dados.
- Processo é conhecido por:
 - integração de visões;
 - integração de esquemas .

Integração de modelos objetivos

- Os atributos de uma mesma entidade (ou de um mesmo relacionamento) podem estar armazenados em diferentes arquivos:
 - juntar as tabelas em uma única tabela que representa a entidade ou relacionamento em questão.
- Tabelas dentro de um modelo livres de redundâncias.
- Tabelas entre diferentes modelos podem ter redundâncias entre si
 - integração elimina estas redundâncias.

Integração de modelos passos

- 1. integração de tabelas com a mesma chave;
- 2. integração de tabelas com chave contida;
- 3. verificação de 3FN

Integração de tabelas com mesma chave

- Junção de tabelas que possuem a *mesma* chave primária.
- "mesma" chave primária =
 - domínios e conteúdos das colunas que compõem a chave primária são iguais.

```
Proj (<u>CodProj</u>, Tipo, Descr)
ProjEmp (<u>CodProj</u>, <u>CodEmp</u>, DataIni, TempAl)
Emp (<u>CodEmp</u>, Nome, Cat)
Cat (<u>Cat</u>, Sal)
```

Documento2:

```
Proj (<u>CodProj</u>, DataInicio, Descr, CodDepto)

Depto (<u>CodDepto</u>, NomeDepto)

ProjEquipamento (<u>CodProj, CodEquipam</u>, DataIni)

ProjEmp (<u>CodProj, CodEmp</u>, FunçãoEmpProj)

Equipamento (<u>CodEquipam</u>, Descrição)
```

Documento 1:

```
Proj (CodProj, Tipo, Descr)
ProjEmp (CodProj, CodEmp, DataIni, TempAl)
Emp (CodEmp, Nome, Cat)
Cat (Cat, Sal)
```

Documento2:

```
Proj (<u>CodProj</u>, DataInicio, Descr, CodDepto)

Depto (<u>CodDepto</u>, NomeDepto)

ProjEquipamento (<u>CodProj</u>, <u>CodEquipam</u>, DataIni)

ProjEmp (<u>CodProj</u>, <u>CodEmp</u>, FunçãoEmpProj)

Equipamento (<u>CodEquipam</u>, Descrição)
```

```
Proj (<u>CodProj</u>, Tipo, Descr)

ProjEmp (<u>CodProj</u>, <u>CodEmp</u>, DataIni, TempAl)

Emp (<u>CodEmp</u>, Nome, Cat)

Cat (<u>Cat</u>, Sal)
```

Documento2:

```
Proj (<u>CodProj</u>, DataInicio, Descr, CodDepto)

Depto (<u>CodDepto</u>, NomeDepto)

ProjEquipamento (<u>CodProj</u>, <u>CodEquipam</u>, DataIni)

<u>ProjEmp (<u>CodProj</u>, <u>CodEmp</u>, FunçãoEmpProj)

Equipamento (<u>CodEquipam</u>, Descrição)</u>
```

```
Modelo integrado:

Proj (CodProj, Tipo, Descr, DataInicio, CodDepto)

ProjEmp (CodProj, CodEmp, DataIni, TempAl, FunçãoEmpProj)

Emp (CodEmp, Nome, Cat)

Cat (Cat, Sal)

Depto (CodDepto, NomeDepto)

ProjEquipamento (CodProj, CodEquipam, DataIni)

Equipamento (CodEquipam, Descrição)
```

Integração de modelos problemas

- Processo baseia-se na comparação dos nomes de colunas e de tabelas dentro dos diferentes modelos.
- Problema :
 - conflitos de nomes:
 - Homônimos
 - Sinônimos

- Tabelas são fundidas:
 - uma tabela contém somente a chave primária e
 - a chave primária é subconjunto da chave primária de outra tabela.
- Chave primária está contida dentro da outra:
 - chave primária deve ter o mesmo domínio e os mesmos valores.

• Exemplo:

Modelo #1:

AlunoDisc (<u>Cod-Al</u>, <u>Cod-Disc</u>)

Modelo #2:

AlunoDiscSem (<u>Cod-Al,Cod-Disc</u>, Sem-Disc-Cursada, Nota-Disc)

Exemplo:

Modelo #1:

AlunoDisc (<u>Cod-Al</u>, <u>Cod-Disc</u>)

Modelo #2:

AlunoDiscSem (<u>Cod-Al, Cod-Disc</u>, Sem-Disc-Cursada, Nota-Disc)

- Primeira tabela:
 - informa que um aluno cursou uma disciplina.

Exemplo:

Modelo #1:

AlunoDisc (<u>Cod-Al</u>, <u>Cod-Disc</u>)

Modelo #2:

AlunoDiscSem (<u>Cod-Al</u>, <u>Cod-Disc</u>, Sem-Disc-Cursada, Nota-Disc)

- Primeira tabela:
 - informa que um aluno cursou uma disciplina.
- Segunda tabela:
 - informa a nota obtida pelo aluno em uma disciplina em um semestre.

Modelo #1:

AlunoDisc (<u>Cod-Al</u>, <u>Cod-Disc</u>)

Modelo #2:

AlunoDiscSem (<u>Cod-Al</u>, <u>Cod-Disc</u>, Sem-Disc-Cursada, Nota-Disc)

- Caso as colunas Cod-Al e Cod-Disc da tabela AlunoDisc
 - contenha os mesmo dados que as colunas Cod-Al e Cod-Disc da tabela AlunoDiscSem:
 - Informações contidas na tabela AlunoDisc já estão na tabela AlunoDiscSem;
 - Tabela AlunoDisc é redundante e pode ser eliminada sem perda de informações.

Não integrar quando tabela contém dados além da chave primária.

Modelo #1:

AlunoDisc (<u>Cod-Al, Cod-Disc, BolsaSimNao</u>)

Modelo #2:

AlunoDiscSem (<u>Cod-Al, Cod-Disc</u>, Sem-Disc-Cursada, Nota-Disc)

- Garantir que primeira tabela efetivamente contida na segunda.
- Exemplo:

Modelo #1:

AlunoDisc (<u>Cod-Al</u>, <u>SemDisc</u>)

Modelo #2:

AlunoDiscSem (<u>Cod-Al</u>, <u>Cod-Disc</u>, <u>SemDisc</u>, Nota-Disc)

- Garantir que primeira tabela efetivamente contida na segunda.
- Exemplo:

Modelo #1: AlunoDisc (Cod-Al, SemDisc)

Modelo #2:

AlunoDiscSem (Cod-Al, Cod-Di

representa o fato de um aluno estar matriculado em um semestre

c)

- Garantir que primeira tabela efetivamente contida na segunda.
- Exemplo:

Modelo #1:

AlunoDisc (<u>Cod-Al</u>, <u>SemDisc</u>)

Modelo #2:

AlunoDiscSem (Cod-Al, Cod-Disc, SemDisc, Nota-Disc)

representa a nota que o aluno obteve em uma disciplina em um semestre

Volta à 2FN

- A integração de dois modelos 4FN pode conduzir a um modelo que está na 2FN mas não na 3FN.
- Exemplo:

Modelo #1:

Departamento (CodDepto, NomeDepto, CodGerenteDepto)

Modelo # 2:

Departamento (CodDepto, LocalDepto, NomeGerenteDepto)

Volta à 2FN

- Integração destes dois modelos resultaria no modelo integrado abaixo mostrado.
- Modelo integrado:

Modelo #1:

Departamento (<u>CodDepto</u>, NomeDepto, CodGerenteDepto, LocalDepto, NomeGerenteDepto)

Volta à 2FN

- Integração destes dois modelos resultaria no modelo integrado abaixo mostrado.
- Modelo integrado:

Modelo #1: Departamento (CodDepto, NomeDepto, CodGerenteDepto, LocalDepto, NomeGerenteDepto)

Não está na 3FN

Verificação do modelo ER Limitações da Normalização

- Obtido o modelo relacional normalizado pode ser construído o modelo ER correspondente (regras apresentadas no capítulo 5).
- O processo de normalização não conduz necessariamente a um modelo ER perfeito.
- Normalização apenas elimina:
 - campos multivalorados ;
 - redundâncias de dados detectadas pelas formas normais descritas.

Verificação do modelo ER Limitações da Normalização

- Optamos pela alternativa de decompor tabelas na passagem à 1FN:
 - alternativa, apesar de mais simples de tratar na prática, pode levar a imperfeições no modelo.

Há outras formas normais (Boyce/Codd e a quinta forma normal) .

Construção do modelo ER

- Último passo da engenharia reversa:
 - construção do modelo ER através das regras para engenharia reversa de modelos relacionais;
 - verificação do modelo ER obtido, procurando corrigir imperfeições ainda existentes.