

Justus Will

Machine Learning Researcher

Irvine, CA 92617, USA justuswill.com · jcwill@uci.edu

es GitHub, ORCID, LinkedIn,
Google Scholar

Skills

Fast Learner

Creative Problem Solving

Teamwork

Languages

German

English

French

Spanish

Swedish

Programming

Python, R, MATLAB, Java, C/C++, HTML/CSS/JS, SQL. Torch, TF, CUDA, Slurm, etc.

Publications

ClimSim: A Large Multi-Scale Dataset For Hybrid Physics-ML Climate Emulation, NeurIPS 2023 (Best Paper Award)

Understanding and Visualizing Droplet Distributions in Simulations of Shallow Clouds, NeurIPS Workshop 2023

Interests

Snowboarding, Surfing, Volleyball, Travel, Cooking

Profile

PhD student at University of California, Irvine, advised by <u>Stephan Mandt</u>. Expert programming knowledge with 10+ years experience across diverse languages including a long history of successful machine learning projects. Research with focus on Deep Generative Models, Neural Data Compression, and the application of Machine Learning to Climate Science.

Education

B. Sc. Mathematics / B. Sc. Computer Science, TU Kaiserslautern, Germany

2017 - 2020, GPA: 3.92 / 3.92

M. Sc. Mathematics, TU Kaiserslautern (Lund University, Sweden)

2020 - 2022, GPA: 3.92

Ph.D. Computer Science, UC Irvine, USA

2023 - Current

Experience

Student / Teaching Assistant, TU Kaiserslautern / UC Irvine

September 2018 - Current

Supported 1000+ students across 10+ courses in various roles as supervisor, mentor, advisor, educator, and examiner. Topics include probability theory, statistics, scientific computing, programming, machine learning, and more.

Research Assistant, German Research Center for Artificial Intelligence

October 2019 - May 2020

Developed an evolutionary algorithm to optimize the topology and hyperparameters of convolutional networks. Designed a front and back end providing 50+ users intuitive access to the local GPU computation cluster.

Research Assistant, TU Kaiserslautern, Machine Learning Group

October 2020 - December 2022

Conducted various research of use in chemical process engineering and beyond. Developed a new tensor completion framework to make predictions for sparse tabular data and style-transfer methods for time series. Ongoing collaboration, including as invited speaker at a Dagstuhl seminar.