

Heuristické optimalizačné procesy

Algoritmy založené na teórii hier, strategizácia

prednáška 7 Ing. Ján Magyar, PhD. ak. rok. 2024/2025 ZS

Teória hier

matematická odvetvie skúmajúce štruktúrované rozhodovanie skutočné správanie vs. optimálne správanie interaktívne výpočty

Charakteristiky hier

štruktúrovaná interakcia v kolách

počet hráčov

nulový/nenulový súčet

kooperatívne/antagonistické hry

úplná/neúplná informácia

Nashova rovnováha

pre nekooperatívne hry

berie do úvahy stratégiu ostatných hráčov

žiaden hráč nevie zmeniť svoju stratégiu tak, aby dosiahol lepší výnos

pre stratégiu hráča i s_i:

$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*)$$
 pre všetky $s_i \in S_i$

Väzňova dilema

hra s nenulovým súčtom rovnováha vedie k suboptimálnemu riešeniu viac iterácií môže viesť k optimálnej stratégii

Ľudské rozhodovanie

- 1. analýza
- 2. stratégia
- 3. taktika

Strojové prevedenie

na základe pravidiel

lačné rozhodovanie

preskúmanie všetkých možností

prezeranie (čo najviac) dopredu

Bodovacia funkcia

číselné ohodnotenie výsledných aj medzistavov

popísaná niekoľkými príznakmi alebo vlastnosťami:

$$g(f_1, f_2, ..., f_n)$$

zvyčajne lineárna polynomiálna funkcia: $c_1f_1 + c_2f_2 + ... + c_nf_n$

v pokročilejších stavoch počet príznakov klesá

Minimax algoritmus

dvaja hráči v adverzariálnej hre

hráč 1 sa snaží maximalizovať svoje výnosy, hráč 2 chce minimalizovať výnosy protivníka

algoritmus určuje optimálnu stratégiu oboch hráčov

Pseudokód Minimax

```
function minimax (node, maximizingPlayer):
if uzol je terminálny then
    return bodovacia hodnota uzla
if maximizingPlayer then
    value := -\infty
    foreach potomok uzla
        value := max(value, minimax(child, !maximizingPlayer))
    return value
else
    value := +\infty
    foreach potomok uzla
        value := min(value, minimax(child, !maximizingPlayer))
    return value
```

Alfa-beta orezávanie

umožní orezať vetvy, ak pred tým bolo dokázané, že existuje lepšie riešenie (pre maximalizujúceho aj minimalizujúceho hráča) alfa = minimálna hodnota, ktorú vie dosiahnuť maximalizujúci hráč beta = maximálna hodnota, ktorú vie dosiahnuť minimalizujúci hráč zložitosť algoritmu $O(b^d) \rightarrow O(\sqrt{b^d})$

Pseudokód alfa-beta orezávania

```
function alphabeta (node, \alpha, \beta, maximizingPlayer):
if uzol je terminálny then
     return bodovacia hodnota uzla
if maximizingPlayer then
     value := -\infty
     foreach potomok uzla
          value := max(value, alphabeta(child, \alpha, \beta, !maximizingPlayer))
          if value > \beta then
               break
          \alpha := \max(\alpha, \text{ value})
     return value
else
     value := +\infty
     foreach potomok uzla
          value := min(value, alphabeta(child, \alpha, \beta, !maximizingPlayer))
          if value < \alpha then
               break
          \beta := \min(\beta, \text{ value})
     return value
```

Učenie posilňovaním

cieľom je natrénovať agenta, ktorý reaguje na prostredie tak, aby dosiahol určený cieľ

učenie je umožnené cez interakciu s prostredím agent dostáva spätnú väzbu

Interakcia s prostredím

agent získa skúsenosti súčasne s učením

agent riadi interakciu štýlom pokus-omyl - potrebuje úspechy aj

neúspechy

akcie môžu ovplyvniť budúce možnosti agenta

Spätná väzba

zriedkavá/po každej akcii

oneskorená/okamžitá

často určená pre postupnosť akcií

ťažko odhadnúť (ne)správnosť akcií agenta

pre agenta je skôr relevantná kumulatívna odmena

Terminológia

stav prostredia

akcia agenta

prechod prostredia

politika agenta

odmena

model prostredia

Stav

typy stavu

- \circ stav prostredia s_t^e
- \circ agentov stav prostredia s_t^a
- \circ pozorovanie prostredia o_t

plná pozorovateľnosť

$$\circ$$
 $s_t^e = s_t^a = o_t$

čiastočná pozorovateľnosť

- \circ $s_t^e \neq s_t^a$
- \circ agent aktualizuje s_t^a na základe predošlých pozorovaní

$$\circ s_t^a = (P[s_t = s_1], P[s_t = s_2], ..., P[s_t = s_n])$$

Akcie

množina akcií, ktoré sú agentovi k dispozícii: $a \in A$ často diskrétne akcie, ale priestor akcií môže byť aj spojitý v každom stave môžu byť dostupné všetky akcie, alebo môžu byť aj limitované množina akcií je vždy daná

Prechody

ak agent vyberie niektorú akciu, prostredie na ňu zareaguje a aktualizuje svoj stav aktualizácia stavu je popísaná prechodom $T: S \times A \rightarrow S$ deterministické/nedeterministické v niektorých problémoch môžu byť časovo závislé

Politika

mapuje stav na akciu agenta $\pi: S \to A(s)$ deterministická $a = \pi(s)$ stochastická $\pi(a|s) = P[A_t = a|S_t = s]$

Odmena

agent ju obdrží po zásahu do prostredia číselná hodnota

kladná – odmena, nulová – neutrálna, záporná – trest

deterministická/stochastická agent by mal maximalizovať kumulatívnu odmenu

-1	-1	-1	-1		10
-1		-1	-1		-1
-1		-1	-1	-1	-1

Model

agentova nepovinná reprezentácia prostredia predikuje dynamiku a odmenu nie je perfektný model môže byť poskytnutý,

alebo ho agent sám zostrojí,

alebo ho vôbec nepotrebuje

-1	-1	-1			10
-1		-1	-1		-1
-1			-1	-1	-1

Interakcia agent-prostredie

Kumulatívna odmena

$$G_t = R_{t+1} + R_{t+2} + R_{t+3} + \dots + R_T$$

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=t+1}^{I} \gamma^{k-t-1} R_k$$

diskontný faktor $\gamma \in <0,1>$

- \circ $\gamma = 0$ uvažovanie iba okamžitej odmeny
- čím je väčšia γ, tým dlhšiu dobu berie agent do úvahy
- vyhneme sa nekonečne veľkej kumulatívnej odmene

Voľba akcií – politika

politika ja spôsob, ktorým agent volí svoje akcie formálne je to distribúcia pravdepodobnosti nad akciami v určitom stave:

$$\pi(a|s) = P[A_t = a|S_t = s]$$

zmyslom učenia posilňovaním je špecifikovať vhodnú politiku agenta na základe skúseností s pôsobením agenta v prostredí

Hodnotová funkcia stavu

$$V_{\pi}(s) = E_{\pi}[G_t|S_t = s] = E_{\pi}[R_{t+1} + \gamma G_{t+1}|S_t = s]$$

ako výhodné je byť v danom stave očakávaná kumulatívna odmena sekvencie začínajúcej v danom stave pri politike π

Bellmanova rovnica očakávania pre u_{π}

$$v_{\pi}(s) = \sum_{a \in A} \pi(a|s) q_{\pi}(s,a)$$

Hodnotová funkcia akcie

$$q_{\pi}(s,a) = E_{\pi}[G_t|S_t = s, A_t = a]$$

ako výhodné je v danom stave použiť danú akciu pri politike π

očakávaná kumulatívna odmena sekvencie začínajúcej v danom stave danou akciou, ak voľba nasledujúcich akcií je podľa politiky π

Bellmanova rovnica očakávania pre q_{π}

$$q_{\pi}(s, a) = r(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) v_{\pi}(s')$$

Optimálny výber akcií

cieľom je vybrať akcie, ktoré maximalizujú kumulatívnu odmenu hodnotová funkcia stavu umožňuje parciálne usporiadanie výberových politík

 $\pi \ge \pi'$ ak platí, že $v_{\pi}(s) \ge v_{\pi'}(s)$ pre všetky $s \in S$ optimálna politika π^*

- lepšia alebo rovnako dobrá ako ostatné politiky
- vždy existuje
- o môže ich byť viac

Optimálne hodnotové funkcie

- $v_*(s), q_*(s, a)$ hodnotové funkcie pri použití optimálnej politiky π^*
 - \circ všetky optimálne politiky produkujú rovnaké funkcie $v_*(s)$ a $q_*(s,a)$
- $v_*(s)$ je maximum hodnotovej funkcie stavu pri uvažovaní všetkých možných politík

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

 $q_*(s,a)$ je maximum hodnotovej funkcie akcie pri uvažovaní všetkých možných politík

$$q_*(s, a) = \max_{\pi} q_{\pi}(s, a)$$

Nájdenie optimálnej politiky

ak poznáme q_* (s, a), bezprostredný výber vhodnej akcie:

$$\pi^*(a|s) = \begin{cases} 1, & ak \ a = \operatorname{argmax}_a \ q(s, a) \\ 0, & inak \end{cases}$$

ak poznáme $v_*(s)$

- prehľadávanie všetkých akcií prípustných v danom stave
- hľadanie do hĺbky 1 (obmedzené iba na jeden krok)
- výber najlepšej možnosti (greedy princíp výberu)

otázky?