

Boletín informativo del CIM de la SSDF

Boletín informativo del CIM de la SSDF

OCT 2009 Número 4

Interacciones Farmacodinámicas de Medicamentos

SSDF

En este número:

- Interacciones Farmacodinámicas de Medicamentos
- 2 Epidemiología.
- 3 **Etiología**
- 4 Clasificación de receptores
- 5 Interacciones fármaco-receptor
- 6 Efectos aditivos
- 7 Prevención
- 8 Virus de la Influenza

"La naturaleza cada vez más predecible de las interacciones entre fármacos, acentúa la importancia para que todos los profesionales de la salud, comprendan los mecanismos de interacción, prevengan la posibilidad de ocurrencia e idealmente eviten sus causas. "(1)

El Centro de Información de Medicamentos (CIM)

de la SSDF, da continuidad en este boletín al tema de Interacción de Medicamentos, abordando las "Interacciones de tipo farmacodinámico", con el fin de ayudar al uso seguro de los fármacos.

EPIDEMIOLOGÍA (2)

ETIOLOGÍA⁽²⁾

El riesgo de interacciones entre medicamentos, parece incrementarse particularmente en los pacientes gravemente enfermos y los pacientes hospitalizados, que frecuentemente están tomando más de 10 medicamentos.

Existen básicamente dos tipos de interacción entre medicamentos, las interacciones farmacocinéticas de fármacos, causadas por un cambio en la cantidad de fármaco o metabolito activo en el sitio de acción; y las

Página 3 de 16

Boletín informativo SSDF

DE APETITO ES UN SÍNTOMA DI INTOXICACIÓN POR DIGOXINA

"usar fármacos con bajo índice terapéutico, puede incrementar las interacciones de medicamentos" interacciones farmacodinámicas del fármaco (sin un cambio en la farmacocinética), causadas por un cambio en el efecto del mismo.

Para que una interacción de medicamentos sea reconocida, el índice de sospecha debe ser alto, cada vez que múltiples fármacos se empleen conjuntamente.

Es imposible que un médico recuerde todos, o inclusive la mayoría de las posibles interacciones, por lo que varios entornos clínicos deben aumentar su preocupación acerca de la posibilidad de interacciones medicamentosas. A continuación se describen algunas:

- El uso de cualquiera de los fármacos con un bajo índice terapéutico (ejemplo, ver tabla 1), debe ser sospechoso.
- Como el número de fármacos que se emplean al mismo tiempo aumenta, existe un riesgo desproporcionadamente mayor de interacciones medicamentosas, en particular con más de 10 medicamentos.
- Pacientes gravemente enfermos, que tienen enfermedades multisistémicas con funciones renales, hepáticas, cardiacas o pulmonares comprometidas, tienen un mayor riesgo de interacciones medicamentosas. Este riesgo puede ser mayor en pacientes con síndrome de inmunodeficiencia adquirida, que tienen un estado inmunocomprometido, tomando también un gran número de medicamentos.
- Pacientes con diversos trastornos psiquiátricos y de comportamiento (por ejemplo: los consumidores de drogas, quienes no solo toman un gran número de medicamentos sin receta, sino también drogas ilícitas y alcohol), se encuentran en riesgo de desarrollar interacciones medicamentosas.

TABLA 1. MEDICAMENTOS CON BAJOS ÍNDICES TERAPÉUTICOS Y ALTO RIESGO DE RESPUESTA A REACCIONES ADVERSAS E INTERACCIONES MEDICAMENTOSAS.

Anticoagulantes (ejemplo: warfarina)
Antiarrítmicos (ejemplo: metoprolol)
Anticonvulsivantes (ejemplo: fenobarbital, fenitoína)
Digoxina
Carbonato de Litio
Hipoglucémicos orales (ejemplo: Clorpropamida, Tolbutamida)
Teofilina

De igual forma, un pequeño grupo de fármacos se encuentran involucrados en serias interacciones medicamentosas con alguna frecuencia ⁽¹⁾:

Tabla 2. FÁRMACOS COMUNMENTE INVOLUCRADOS EN INTERACCIONES GRAVES⁽¹⁾

Ciclosporina

Eritromicina

Fluconazol

Itraconazol

Ketoconazol

Inhibidores de la monoamino oxidasa (ejemplo: fenelzina, Isocarboxazida)

Meperidina

Fenitoína

Inhibidores de la proteasa (ejemplo: ritonavir, saquinavir)

Rifampina

Inhibidores selectivos de recaptación de la Serotonina (ISRS) (Ejemplo:

Fluoxetina, sertralina, paroxetina).

Teofilina

Warfarina

Adaptado de: Kohn LT, Corrigan JM, Donalson MS (eds): To Err is Human: Building a Safer Health System. Washington, DC, The Institute of Medicine, National Academy Press. 1999.

La mayoría de las interacciones farmacodinámicas conocidas, suceden cuando fármacos con efectos farmacológicos aditivos, sinérgicos o antagonistas, se usan de forma terapéutica (por ejemplo: sedantes, antihipertensivos y analgésicos). En otros casos, la respuesta de efectos aditivos los antagonistas, pueden producir efectos adversos. Aunque muchas interacciones farmacodinámicas no causan efectos adversos graves, es difícil anticipar cuáles interacciones pueden producir dificultades clínicas, cuando un paciente está recibiendo 5-10 de medicamentos para varias enfermedades.

Por lo tanto, los médicos deben

interacciones conocer las medicamentosas farmacocinéticas, las interacciones farmacodinámicas, para anticipar los efectos clínicos y reducir el de toxicidad empeoramiento de crisis, cuando un medicamento es agregado o eliminado del régimen medicación del paciente (1).

boletín este daremos continuidad al tema de interacciones de medicamentos, dada la importancia que representa para el uso racional de los mismos. Previamente en el boletín No.3 se habló acerca de las interacciones farmacéuticas previas administración; en éste número continuaremos con las interacciones farmacodinámicas.

"los médicos deben conocer las interacciones medicamentosas, para anticipar los efectos clínicos".

DEFINICIÓN DE INTERACCIONES FARMACODINÁMICAS (3)

"Las Interacciones farmacodinámicas son aquellas en las que, los efectos del fármaco son modificados por la presencia de otro fármaco en su sitio de acción. (3)"

"... los efectos del fármaco son modificados por otro en su sitio de acción.." Algunas veces los medicamentos compíten directamente por receptores particulares, pero frecuentemente la reacción es más indirecta e involucra la interferencia con mecanismos fisiológicos.

Estas interacciones son mucho menos fáciles de clasificar con claridad que las de tipo farmacocinético, ya que los tipos de interacciones que pueden ocurrir al nivel del receptor son variados, así como los efectos producidos por el fármaco con los receptores. La siguiente es una clasificación general.

Tabla 3. Mecanismos de Interacciones de medicamentos

MECANISMOS PRINCIPALES DE IMPORTANCIA CLÍNICA DE INTERACCIONES DE MEDICAMENTOS.

Farmacéutica

Compatibilidad de fármacos

Estabilidad del fármaco

Farmacocinética

Absorción

Distribución

Metabolismo

Excreción

Farmacodinámica

Agonistas

Antagonistas

CLASIFICACIÓN DE RECEPTORES (4)

La mayoría de los receptores son proteínas localizadas en la membrana celular, que interactúan con ligandos específicos fuera de la célula, dando lugar a un cambio conformacional que resulta en la activación de un

sistema de segundo mensajero dentro la célula y posteriormente a una respuesta celular típica.

Existen varias clases de receptores que son reconocidos. Los receptores de la superficie celular incluyen:

(1) receptores acoplados a la proteína G, que activan a segundos mensajeros para inducir una respuesta.; (2) receptores que accionan los canales de iones; (3) receptores enlazados a enzimas; y (4) receptores intracelulares, los cuales traslocan al núcleo para regular le expresión genética.

"efectos de los fármacos Agonistas y Antagonistas"

INTERACCIONES FÁRMACO-RECEPTOR (4) Agonistas y Antagonistas.

Después de unirse al receptor, la respuesta es activada por la vía del sistema del segundo mensajero. Diferentes agonistas pueden provocar grados variables de respuesta, la cual es descrita como eficacia.

Un fármaco que produce una respuesta menor a la máxima, es conocido como un *agonista* parcial.

Los antagonistas tienen cero eficacia. Los antagonistas bloquean los efectos de un agonista, al interferir con su enlace al receptor.

Cuando los antagonistas interactúan con los agonistas en un receptor común, el antagonismo es competitivo.

Algunas veces un fármaco interfiere con un efecto agonista de una manera *no competitiva* mediante la inhibición de cualquiera de los pasos que conducen al efecto *agonista* típico.

Los fármacos que reducen la activación constitutiva de enlace al receptor, se conocen como agonistas inversos.

Otro tipo de antagonismo (que es relevante para las enfermedades pulmonares), es el antagonismo funcional, que describe una interacción entre dos agentes que tienen efectos funcionales opuestos a una misma respuesta celular.

Otra forma de clasificación ⁽⁵⁾, es por acción directa o indirecta sobre los receptores.

Efectos directos al receptor (5). Son interacciones de medicamentos que se producen a través de los antagonismos de los sitios receptores directos.

Efectos indirectos al receptor Las interacciones farmacodinámicas asociadas con los efectos indirectos en los receptores, son efectos secundarios de un fármaco imita el efecto farmacológico de otro. En la tabla 2, se muestran ejemplos de cada una de estas interacciones.

Tabla 4. Ejemplos de Interacciones Fármaco-Receptor.

DEFINICIÓN	EJEMPLO	FÁRMACOS	SITIO DE ACCIÓN
Agonista parcial	En el músculo liso bronquial, el isoproterenol es un agonista completo y produce una respuesta máxima, mientras que el albuterol y el salmeterol actúan como agonistas parciales, dando menos del 50% de la relajación máxima vista con el isoproterenol. (4)	Albuterol y salmeterol	En el músculo liso bronquial
Antagonismo competitivo	Por cierto antagonismo competitivo (entre un antagonista β 2 y un agonista β 6 en el músculo liso bronquial), el cambio es paralelo. La cantidad de cambio observada con cada concentración de agonista puede ser usada para calcular la afinidad de los antagonistas para un receptor particular. (4)	antagonista β2 y un agonista β	En el músculo liso bronquial
Agonista inverso	Muchos medicamentos de receptores acoplados a la proteína G (GPCR) son agonistas inversos, que son explicados por la estabilización del estado inactivo del receptor.	Receptores acoplados a la proteína G (GPCR)	En el músculo liso bronquial
Antagonista funcional	Los β-agonistas actúan como antagonistas funcionales en el músculo liso bronquial, debido a que contrarrestan los efectos de contracción de cualquier espasmógeno, incluyendo la histamina, LTD4, tromboxano, la bradicinina y la acetilcolina. (4)	β-agonistas vs cualquier espasmógeno, incluyendo la histamina, LTD4, tromboxano, la bradicinina y el acetilcolina	En el músculo liso bronquial
Antagonismo (efecto directo sobre el sitio receptor)	Un paciente asmático que está recibiendo un broncodilatador agonista β 2-adrenérgico, el albuterol y que desarrolla angina, que es tratada con propanolol. El bloqueador no selectivo propanolol, claramente tiene el potencial de inhibir el efecto broncodilatador del fármaco agonista β 2-adrenérgico. $^{(5)}$	Albuterol, un broncodilator β2- adrenérgico agonista vs. propanolol.	En el músculo liso bronquial
Agonista (efecto directo en receptor)	La quinidina parece aumentar la captación celular de la warfarina, aumentando su concentración efectiva en el sitio de acción. (5)	Warfarina y Quinidina	Terapia con anticoagulantes

DEFINICIÓN	EJEMPLO	FÁRMACOS	SITIO DE ACCIÓN
Agonista (efecto indirecto al receptor)	El aumento del efecto hipoglucémico de la insulina y los agentes hipoglucemiantes orales, por agentes β -bloqueadores no selectivos, es un ejemplo de agentes con diferentes mecanismos de acción, que producen el mismo efecto clínico. $^{(5)}$	Insulina y agentes hipoglucemiantes con agentes β-bloqueadores no selectivos	Hipoglucemia
Agonista (efecto indirecto al sitio receptor)	Los bloqueadores del canal de calcio y los receptores de los antagonistas β -adrenérgicos con frecuencia aumentan los efectos depresores, de bradicardia e hipotensivos del miocardio del otro, cuando se emplean juntos. Otros efectos aumentados por la administración simultanea de fármacos vasoactivos y agentes bloqueadores β -adrenérgicos, incluyen la exacerbación de los efectos hipotensores en la primera dosis de prazosin y mejoran la respuesta hipertensiva en el retiro de clonidina.	Los bloqueadores del canal de calcio y los receptores de los antagonistas β-adrenérgicos	Corazón
Antagonistas (efecto indirecto al sitio receptor)	La proliferación de fármacos antiinflamatorios no esteroides AINES, (prescripción y OTC) ha enfocado su atención a un número de serias interacciones que pueden presentarse con estos agentes. La retención de sodio y agua que resulta de un largo tiempo de uso de estos agentes, puede atenuar los efectos antihipertensivos de los inhibidores de la enzima de conversión de la angiotensina (ejemplo, captopril, enalapril y otros), diuréticos de tiazida y agentes bloqueadores β -adrenérgicos. Estos efectos también pueden contrarrestar los beneficios de la terapia diurética, en la insuficiencia cardiaca congestiva de leve a moderada.	AINES vs. antihipertensivos de los inhibidores de la enzima de conversión de la angiotensina.	Corazón

EFECTOS ADITIVOS (4):

Cuando dos fármacos son administrados juntos У producen un efecto que es mayor que el efecto combinado de los fármacos cuando éstos son administrados por separado, se conoce como sinergia.

La potenciación ocurre cuando un fármaco que es administrado solo, no tiene efecto por sí mismo, pero aumenta la respuesta de un segundo fármaco.

La tolerancia se refiere a la disminución de la respuesta a un fármaco, que es administrado repetidamente.

La desensibilización consiste en la pérdida de respuesta rápida y a largo plazo.

La interacción entre un ligando y su receptor tiene varias características. El enlace es rápido, reversible y depende de la temperatura. Generalmente hay mayor estereoselectividad con los levo-isómeros, que se enlazan más efectivamente que los dextro-isómeros.

El siguiente cuadro muestra interacciones medicamentosas aditivas, sinérgicas o de adición. (3)

Tabla 5. Interacciones medicamentosas aditivas, sinérgicas o aditivas.

Fármaco	Resultado de la Interacción
Antipsicóticos + antimuscarínicos	Aumenta el efecto antimuscarínico; golpe de calor en condiciones de calor y humedad, íleo paralítico, psicosis tóxicas.
Antihipertensivos + fármacos que causan hipotensión (ejemplo: fenotiazinas, sildenafil)	Aumento de los efectos antihipertensivos, ortostasis.
Broncodilatadores beta-agonistas + fármacos que agotan el potasio.	Hipo-potasemia
Depresores del SNC + depresores del SNC Alcohol + antihistaminas, benzodiazepinas + anestésicos, opioides en general + benzodiazepinas	Habilidades psicomotoras deterioradas, alerta reducida, somnolencia, estupor, depresión respiratoria, coma, muerte.
Fármacos que prolongan el intervalo QT + otros fármacos que prolongan el intervalo QT (Amiodarona + disopiramida)	Prolongación aditiva del intervalo QT, riesgo aumentado de torsade de pointes
Metotrexato + co-trimoxazol	Megaloblastosis de la médula ósea debido al antagonismo del ácido fólico
Fármacos nefrotóxicos + fármacos nefrotóxicos (ejemplo: aminoglucósidos, ciclosporinas, cisplatino, vancomicina)	Nefrotoxicidad aumentada.
Bloqueadores neuromusculares + fármacos con efectos de bloqueo neuromuscular (ejem. Aminoglucósidos)	Bloqueo neuromuscular aumentado; retraso en la recuperación, apnea prolongada.
Suplementos de potasio + medicamentos ahorradores de potasio (ejemplo. Inhibidores ACE, antagonistas receptores de angiotensina III, diuréticos ahorradores de potasio	Hiperpopotasemia

"algunos de los síntomas son: agitación. Confusión, sudoración, fiebre, temblor, hiperflexia, mioclonus..".

El síndrome de serotonina (3).

Excepcionalmente, éste síndrome puede ocurrir después de tomar solamente un fármaco, que causa una sobre estimulación de los receptores 5-HT, pero por lo general, se desarrolla más frecuentemente cuando dos más fármacos 0 (llamados fármacos serotonérgicos o serotomiméticos) actúan concertadamente. Los síntomas característicos (ahora conocidos como síndrome de serotonina), caen dentro de tres áreas principales, denominadas como: estado mental (agitación, alterado confusión, manía), disfunción autonómica (sudoración, fiebre, diarrea, escalofrío) alteraciones У neuromusculares (hiperflexia, falta coordinación. mioclonus, temblor).

El síndrome, puede aparecer poco después de que se añade un fármaco serotonérgico a otro, o inclusive si uno es sustituído por otro, sin permitir un período suficientemente largo de lavado entre ellos; el problema generalmente se resuelve dentro de las siguientes 24 horas, si ambos fármacos son retirados y son tomadas medidas de apoyo. La mayoría de los pacientes se recuperan sin problemas, sin embargo se han reportado pocas muertes.

Aún no está claro el porqué muchos pacientes pueden tomar dos, o algunas veces varios medicamentos serotonérgicos juntos sin problemas, mientras que un número muy pequeño desarrolla esta grave reacción tóxica, que ciertamente sugiere que hay otros factores implicados que tienen que todavía identificados. probable que la historia completa sea mucho más compleja, que solamente el simple efectos aditivo de los dos fármacos.

Algunos otros ejemplos de interacciones antagónicas son listadas en las siguiente tabla.

Tabla 6. Interacciones opuestas o antagónicas

Fármaco afectado	Fármaco que interactúa	Resultado de la Interacción
Inhibidores ACE o diuréticos de asa	AINES	Efectos antihipertensivos opuestos
Anticoagulantes	Vitamina K	Efectos anticoagulantes opuestos
Antidiabéticos	Glucocorticodes	Efectos de disminución de glucosa en sangre opuestos
Antineoplásticos	Megestrol	Efectos antineoplásticos posiblemente opuestos
Levodopa	Antipsicóticos (éstos con efectos antagonistas de la dopamina)	Efectos antiparkinsonianos opuestos
Levodopa	Tacrina	Efectos antiparkinsonianos opuestos

Interacciones de reabsorción de neurotransmisores o fármacos (3).

Un número de fármacos, con acciones que suceden en las neuronas adrenérgicas, pueden impedir el alcance a los sitios de acción por la presencia de otros fármacos.

Los antidepresivos tricíclicos, impíden la recaptación de noradrenalina (norepinefrina) hacia las neuronas adrenérgicas periféricas. Así que los pacientes que toman tricíclicos y noradrenalina parenteral, tienen un marcado incremento en la repuesta (hipertensión, taquicardia).

Ejemplos de ello son:

Antidepresivos tricíclicos + Inotropos y vasopresores.

Del mismo modo, la incorporación de

guanetidina (y los fármacos relacionados: guanoclor, betanidina, debrisoquina, etc.) es bloqueada por la cloropromazina, haloperidol, tiotixeno, y una serie de "fármacos como las anfetaminas" y los antidepresivos tricíclicos, de modo que el efecto antihipertensivo sea prevenido.

Los efectos antihipertensivos de la clonidina, son también impedidos por los antidepresivos tricíclicos; una posible razón es que sea bloqueada la absorción de clonidina dentro del SNC. (clonidina + tricíclicos y antidepresivos relacionados).

Algunas de estas interacciones en las neuronas adrenérgicas son ilustradas en la siguiente figura:

"interacciones farmacodinámicas que suceden en las neuronas adrenérgicas".

Fig. 1. Interacciones en las neuronas adrenérgicas. La composición de un diagrama altamente simplificado de una neurona adrenérgica (moléculas de la noradrenalina (norepinefrina) indicadas como (•), están contenidas en una sola vesícula en las terminaciones nerviosas), para ilustrar a grandes rasgos, algunos de los diferentes sitios donde los fármacos pueden interactuar (3).

PREVENCIÓN

Pueden seguirse varios pasos para prevenir las interacciones de medicamentos (2):

- El historial médico, es importante para documentar todos los medicamentos que esté tomando el paciente (y ha tomado recientemente), incluyendo los fármacos de prescripción, OTC y otros fármacos adictivos.
- Es deseable reducir al mínimo el número de medicamentos que el paciente esté tomando, por medio de una revisión frecuente del listado de medicamentos del paciente y asegurar que cada medicamento sigue siendo necesario.
- Debería haber un alto grado de sospecha, cuando los medicamentos con un bajo índice terapéutico conocido y que tienen un riesgo elevado de interacciones medicamentosas (ver tabla 1), son usados.
- Entornos clínicos de alto riesgo, como ocurre en los pacientes enfermos críticamente, deberían despertar sospechas de interacciones farmacológicas adversas.
- Interacciones adversas de medicamentos deben ser consideradas en el diagnóstico diferencial, cada vez que ocurra cualquier cambio en el curso de los pacientes.

Ya que el número total de fármacos debe de mantenerse al mínimo para no aumentar la frecuencia en las interacciones medicamentosas, idealmente un medicamento debería ser empleado para tratar múltiples síntomas, disminuyendo la frecuencia de las interacciones fármaco-fármaco. El limitar el número de medicamentos a

clases de fármacos esenciales y mantener un manejo efectivo de los síntomas, mejora también el costo-efectividad y la fármacoeconomía. (6)

En cuidados paliativos, una hábil prescripción a menudo hace la diferencia entre un pobre y un excelente control de los síntomas.

Portmanteau (6)

En medicina paliativa, un medicamento portmanteau es aquel que es usado para tratar varios síntomas adicionales adjuntos a su fin primordial. Entre los fármacos que son considerados esenciales en los cuidados paliativos, hay 7 principales que son capaces de tratar 14 síntomas comunes.

Aplicados apropiadamente, el portmanteau tiene la ventaja adicional de reducir al mínimo las interacciones de medicamentos y maximiza la efectividad en el manejo de los síntomas, al tiempo que mejora su cumplimiento.

El portmanteau refleja la prescripción calificada y la

experiencia clínica. También reduce los errores medicación y proporciona un beneficio psicológico, reduciendo la carga de consumo de múltiples medicamentos por paciente.

Veinticuatro fármacos esenciales en los cuidados paliativos

FÁRMACO	CLASE TERAPÉUTICA
Morfina (liberación-normal)	Opioide
Haloperidol	Antipsicótico
Metoclopramida	Antiemético
Dexametasona	Corticoesteroide
Morfina (liberación controlada)	Opioide
Amitriptilina	Antidepresivo
Midazolam	Benzodiazepina
Lactulosa	Laxante
Paracetamol (acetaminofén)	No opioides
Metadona	Opioide
Butil Hioscina (glicopirrolato)	Antiespasmódico
Fentanilo transdérmico	Opioide
Diclofenaco	No opioide
Clonazepam	Anticonvulsivante
Acetato de Megestrol	Progestina
Diazepam	Benzodiazepina
Codeína	Opioide
Nistatina	Antifúngico
Tramadol	Opioide
Ciclizina (meclizina)	Antihistamina
Ibuprofeno	No opioide
Prednisona	Corticosteroide
Ranitidina	Antagonista de Histamina2
Docusato de sodio	Laxante
Metilfenidato	Psicoestimulante

Permítanos ayudarle:

En el Centro de Información de Medicamentos (CIM) de la Secretaría de Salud del D.F. contamos con las siguientes fuentes de información: MD consult (con 53 referencias de libros, 35 referencias del área clínica, 53 publicaciones como Journals, Lancet); Libros como el: Goodman & Gilman. Las Bases Farmacológicas de la terapéutica; Stockley's. Drug Interactions; consultas en fuentes como FDA, EMEA, OMS, CDC), y con gusto atenderemos sus solicitudes de información sobre interacción de medicamentos.

Virus de la Influenza ⁽⁷⁾

La OMS mantiene actualizada constantemente información acerca de la Pandemia (H1N1) 2009. en su página web⁽⁷⁾.

Un documento de utilidad es la "Guía para el manejo farmacológico de la pandemia de influenza A (H1N1) y otros virus de la influenza", ya que vienen recomendaciones para el uso correcto de los antivirales.

También se encuentra una "Guía de Documentos para la Pandemia (H1N1) 2009", en donde encontrará una serie de documentos de utilidad, ordenados alfabéticamente.

Mantente informado del virus de la Influenza. La información sobre documentación se encuentra en la pagina electrónica de la OMS, entrando a la siguiente dirección electrónica: http://www.who.int/csr/resources/publications/swineflu/en/

Bibliografía

- 1. Shannon: Haddad and Winchester's Clinical Management of Poisoning and Drug Overdose, 4th ed. Elsevier, 2007. Chapter 5 Drug Interactions. Disponible en: http://www.mdconsult.com/das/book/body/164856374-6/902161203/2045/10.html#4-u1.0-B978-0-7216-0693-4..50010-4 261 [Consulta: octubre 2009].
- Goldman: Cecil Medicine, 23rd ed. Elsevier 2007. INTERACTIONS BETWEEN DRUGS. Disponible en: http://www.mdconsult.com/das/book/body/164856374-6/902161203/1492/131.html#4-u1.0-B978-1-4160-2805-5..50032-X--cesec79_1159. [Consulta: octubre, 2009].
- 3. Stockley's Drug Interactions. Pharmaceutical Press. Eighth edition 2008.
- 4. Mason: Murray & Nadel's Textbook of Respiratory Medicine. 4th ed. DRUG-RECEPTOR INTERACTIONS. Disponible en: http://www.mdconsult.com/das/book/body/1516809273/867472404/1288/65.html#4-u1.0-B0-7216-0327-0..50011-2--cesec32 375 [consulta: octubre 2009].
- **5.** Ettinger: Managing Epilepsy and Co-Existing Disorders, 1st ed. 2002, Butterworth-Heinemann Chapter 26 Drug Interactions. Disponible en: http://www.mdconsult.com/das/book/body/164856374-3/902158787/1129/229.html#4-u1.0-B0-7506-7241-2..50031-8 830 [consulta: octubre 2009]
- 6. Walsh: Palliative Medicine , 1st ed. CHAPTER 124 Interactions, Side Effects, and Management. Randy D. Miller, Kirk V. Shepard, Edwin D. Dickerson. 2008. Disponible en: http://www.mdconsult.com/das/book/body/151680927-3/867472404/2038/129.html#4-u1.0-B978-0-323-05674-8..50128-6--cesect_2070 [consulta: octubre 2009].
- 7. WHO Guidelines for Pharmacological Management of Pandemic (H1N1) 2009 Influenza and other Influenza Viruses. 20 August 2009. Disponible en:

 http://www.who.int/csr/resources/publications/swineflu/h1n1_guidelines_pharmaceutical_mn_gt.pdf. [consulta: octubre 2009]

Xocongo No.225 • 4o Piso • Col. Tránsito • C.P. 06820

Delegación Cuauhtémoc
 Tel. 51 32 12 00 Ext. 1707
 México, D.F.

TELÉFONO: (55) 51321200 (55) 51320900

FAX: (55) 51321200 ext 1567

CORREO ELECTRÓNICO rocio.mejia@salud.df.gob.mx

Boletín informativo SSDF

Página 16 de 16

Directorio

Lic. Marcelo Ebrad Casaubón Jefe del Gobierno del D.F,

Dr. Armando Ahued Ortega Secretaría de Salud del D.F.

Dr. Ignacio Villaseñor Ruiz.Subsecretario de Servicios Médicos e Insumos.

Dr. Jorge Camarillo MuñozDirector de Medicamentos, Insumos y Tecnología

Q.F.B. Héctor Salgado Schoelly Coordinador de Medicamentos

M. en A. Francisco Tomás Delgado Cruz Subdirector de Farmacoterápia

Q.F.B. Rocío Mejía Vázquez JUD de Información Farmacológica

Comentarios....

Para cualquier duda sobre este boletín diríjase al Centro de Información de Medicamentos de la Dirección de Medicamentos, Insumos y Tecnología de la Secretaría de Salud del Distrito Federal, ubicada en la calle de Xocongo No. 225. 4º. Piso en la Col. Tránsito, con un horário de atención de 9:00 a 17:00; o bien al Teléfono 51321200 ext. 1707, o envíenos un correo electrónico a: rocio.mejia@salud.df.gob.mx

Autores de la publicación :

Rocío Mejía Vázquez, Francisco Tomás Delgado Cruz, Héctor Salgado Schoelly, Jorge Camarillo Muñoz.

