Code: 13BS1001

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, April-2014
Engineering Mathematics - I
(Common to all Branches)

Time: 3 hours Max Marks: 70

PART-A

Answer all Questions

[10X1=10M]

- 1) a) Solve $x \frac{dy}{dx} + Coty = 0$
 - b) State Newton's law of Cooling
 - c) Find Particular integral of $[(D+2)(D-1)^2]y = e^{2x}$
 - d) Write Wronskian condition for linear independence and linear independence of solutions.
 - e) Write Chain rule for $\frac{du}{dt}$.
 - f) Write Mc Laurent's expansion for f(x, y).
 - g) Solve $\int_0^1 \int_0^1 (x^2 + y^2) dx dy$
 - h) Write the Jacobian to change Cartesian co-ordinates (x,y,z) to spherical polar co-ordinates (r,θ,ϕ) .
 - i) Evaluate div F at the point (1,2,3) given $F = [x^3y + y^3z + z^3x x^2y^2z^2]$
 - j) Define Solenoidal.

AR13

Part-B

Answer one question from each unit

[5X12=60M]

Unit-I

- 2. a) Form a differential equation of all circles of radius a and Centre (h,K)
 - b) Solve $(x^2y 2xy^2)dx (x^3 3x^2y)dy = 0$ (OR)

[6M+6M]

- 3. a) Solve $\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1$
 - b) Find the orthogonal trajectories of family of confocal conics

$$\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$$
, where λ is parameter.

[6M+6M]

- **Unit-II**
- 4. a) Solve $(D^4 1)y = e^x Cos x$
 - b) Solve $(D^4 + 2D^2 + 1)y = x^2 Cosx$

[6M+6M]

- (OR)
- 5. a) Solve $\frac{d^2y}{dx^2} 4y = x Sinhx$
 - b) Using method of variation of parameters Solve $\frac{d^2y}{dx^2} + 4y = tan2x$

[6M+6M]

Unit-III

6. a) If $u = x^2 - y^2$; v = 2xy and $x = r\cos\theta$; $y = r\sin\theta$ find $\frac{\partial(u,v)}{\partial(x,\theta)}$

b) If
$$u = x \log xy$$
 where $x^3 + y^3 + 3xy = 1$ find $\frac{du}{dx}$ (OR)

[6M+6M]

7. Expand $f(x,y) = tan^{-1}\left(\frac{y}{x}\right)$ in powers of (x-1) and (y-1) upto third terms. Hence compute f(1.1,0.9) approximately.

[12M]

Unit-IV

- 8.a) Evaluate $\iint xy(x+y)dxdy$ over the area between $y=x^2$ and y=x.
 - b) Evaluate $\int_0^1 \int_{x^2}^1 x dy dx$ by changing the order of integration.

[6M+6M]

- 9. Find the volume of the Sphere $x^2 + y^2 + z^2 = a^2$

[12M]

- 10. a) Prove that $\nabla^2 [f(r)] = f^{II}(r) + \frac{2}{r} f^I(r)$
 - b) Find the unit vector normal to the surface $x^3 + y^3 + 3xyz = 3$ at the Point (1, 2, -1).

[6M+6M]

- 11. Verify Stokes theorem for $F = (x^2 + y^2)I 2xyI$ taken around the rectangle bounded by the lines $x = \pm a$, y = 0, y = b.

[12M]