

UNIVERSIDAD DE SANTIAGO DE C FACULTAD DE INGENIERÍA DEPTO. DE INGENIERÍA INFORMA

PEP 2 Análisis de Datos

Prof: Max Chacón 93 junio 2022

1. El profesor de electro-fisiología cognitiva de la U de Mancheter Mastrit Merek, estudia los trastornos bipolares mediante experimentos de juegos de azar. Para modelar estos trastornos plantea un modelo de toma de decisiones Bayesiano. Aquí las probabilidades a priori corresponden a las expectativas que tiene los sujetos de ganar y las probabilidades a posteriori es lo que determina finalmente si el sujeto apostará o no. Para probar su hipótesis genera un experimento con dos grupos de sujetos (bipolares y sanos), los que realizan apuestas en un juego al azar, según el nivel de dinero apostado. Del experimento se obtienen las siguientes probabilidades a priori en

función del dinero apostado para sujetos sanos como: $Ps = \left(1 - \frac{d}{1020}\right)$, las probabilidades a

priori para los bipolares son: $Pb = \left(1 - \frac{d}{1990}\right)$. Además se tiene la siguiente tabla de verosimilitudes para ambos grupos:

Nivel de la apuesta (d)	Verosimilitud Bipolares P(d/b)	Verosimilitud Sanos P(d/s)
£ 1000	0.9	0,94
£ 900	0.93	0,85
£ 800	0,87	0,89
£ 700	0,86	0,86
£ 500	0,95	0,95
£ 400	0,91	0,88
£ 300	0,89	0,87
£ 200	0,87	0,89
£ 100	0,92	0,91

Deduzca primero, en literales, las probabilidades que se requieren para determinar la decisión de apostar para cada nivel de apuesta.

Usando éstas fórmulas, determine si hay diferencias entre bipolares y sanos. Si estas diferencias existen, indique a su juicio cuales son las causas de estas diferencias, en términos de las expectativas de los sujetos.

2. Para evaluar la diabetes Mellitus existen dos variables de interés, el nivel sobrepeso y el nivel de glucosa en la sangre del paciente. De un hospital se tiene la siguiente tabla dada a continuación.

Usando un clasificador Bayesiano ingenuo, determine si un paciente obeso con 90 mg/ml de glucosa en sangre, será diabético o no.

Peso	Glucosa [mg/ml]	Diabético
Sobrepeso	90	No
Normal	110	No
Obeso	70	No ×
Sobrepeso	120	/ Si -
Sobrepeso	130 /	- Si -
Obeso	80	No ⊁
Normal	140	No
Obeso	100 /	Si : J
Normal	150	Si -
Normal	160 v.	Si -

3. La clasificación general de las bacterias es de acuerdo a su Gram, Gram positivo G(+) y Gram negativo G(-). Para determinar la influencia de cada tipo de Gram en la infección (I) se cuenta con las siguientes probabilidades. La probabilidad de tener infección es de 40%, la probabilidad de que el Gram sea positivo es de 30% y la probabilidad de que el Gram sea negativo es de 40%. Además, para el análisis se calcularon las siguientes probabilidades conjuntas:

$$P(I \cap \overline{G(+)}) = 2/5$$
; $P(I \cap G(+)) = 1/5$; $P(I \cap \overline{G(-)}) = 6/10$; $P(I \cap G(-)) = 0$

Usando el método de árboles de decisión, determine cuál es el Gram más adecuado para detectar infección. (2,2)

- Ingenuo:
$$p(c_i/a_i) = p(c_i) \prod p(a_j/c_i)$$
; para $a_i = x$ continua $p(x/c_i) = e^{-\frac{(x-\bar{x})^2}{2\sigma^2}} / \sigma \sqrt{2\pi}$

Formulas

- Ingenuo:
$$p(c_i/a_i) = p(c_i) \prod_j p(a_j/c_i)$$
; para $a_i = x$ continua $p(x/c_i) = e^{\frac{(x-\overline{x})^2}{2\sigma^2}} / \sigma \sqrt{2\pi}$

- Árboles de decisión: $Ganancia(V) = -\sum_i p(c_i) ldp(c_i) + \sum_j p(v_j) \sum_i p(c_i/v_j) ldp(c_i/v_j)$; $P(x_i) = -\frac{(x-\overline{x})^2}{2\sigma^2} / \sigma \sqrt{2\pi}$

