

SRI LANKA INSTITUTE OF ADVANCED TECHNOLOGICAL EDUCATION

(Established in the Ministry of Higher Education, vide in Act No. 29 of 1995)

# Higher National Diploma in Information Technology First Year, First Semester Examination – 2018 HNDIT 1104- Data Representation and Organization

**Answer Script** 

Q1)

- I. Compare and contrast analog and digital signal.
  - Analog signal is a continuous wave that keeps on changing over a time period.
  - A digital signal is a discrete wave that carries information in binary form.





## (02 marks)

- II. Convert following decimal numbers into binary number system.
  - a. 39=100111<sub>2</sub>
  - b. 146=10010010<sub>2</sub>
  - c.  $0.25=0.01_2$

#### (Each answer 02 marks, $02 \times 3 = 06$ marks)

- III. Convert following decimal numbers into octal number system.
  - a.  $78=116_8$
  - b. 275=423<sub>8</sub>
  - c. 0.0625=0.048

(Each answer 02 marks, 02×3=06 marks)

- IV. Convert following decimal numbers into hexadecimal number system.
  - a.  $55=37_{16}$
  - b. 200=C8<sub>16</sub>
  - c.  $0.45=0.7_{16}$  **or**  $0.73...._{16}$

#### (Each answer 02 marks, 02×3=06 marks)

- V. Convert following data units into bits. (**Hint**: Answers would be given as multiples of numbers. Fully simplified answers are not required.)
  - a.  $512 \text{ bytes}=512\times8 \text{ bits}$
  - b. 50KB=50×1024×8 bits
  - c. 650MB=650×1024×1024×8 bits
  - d. 2.5GB(Gigabytes)=2.5×1024×1024×1024×8 bits
  - e. 0.5 TB(Terabytes)=0.5×1024×1024×1024×1024×8 bits

### (Each answer 01 mark, 01×5=05 marks)

Q2)

- I. Give two examples for non-positional number system.
  - Roman number system
  - Egyptian number system

#### (Each answer 01 mark, $01\times2=02$ marks)

- II. Draw the truth tables for following logic gates.
  - a. AND

AND gate

| Input A | Input B | Output |
|---------|---------|--------|
| 0       | 0       | 0      |
| 1       | 0       | 0      |
| 0       | 1       | 0      |
| 1       | 1       | 1      |

b. OR

OR gate

| Input A | Input B | Output |
|---------|---------|--------|
| 0       | 0       | 0      |
| 1       | 0       | 1      |
| 0       | 1       | 1      |
| 1       | 1       | 1      |

c. XOR

EX-OR gate

| Input A | Input B | Output |
|---------|---------|--------|
| 0       | 0       | 0      |
| 1       | 0       | 1      |
| 0       | 1       | 1      |
| 1       | 1       | 0      |

(Each answer 02 marks, 02×3=06 marks)

III. Write the following numbers as polynomial evaluation.

a. 
$$125.45_{10}$$
  
 $1\times10^2+2\times10^1+5\times10^0+4\times10^{-1}+5\times10^{-2}$ 

b. 
$$462.125_8$$
  
 $4\times8^2+6\times8^1+2\times8^0+1\times8^{-1}+2\times8^{-2}+5\times8^{-3}$ 

c. 
$$AB5.6F_{16}$$
  
 $10\times16^2+11\times16^1+5\times16^0+6\times16^{-1}+15\times16^{-2}$ 

(Each answer 02 marks, 02×3=06 marks)

IV. Convert following binary numbers into octal and hexadecimal numbers.

a. 
$$110111=67_8=37_{16}$$

b. 
$$1111000110=1706_8=3C6_{16}$$

(Each answer 02 marks, 02×3=06 marks)

V. Convert following numbers into decimal number system

a. 
$$10111.11_2$$
  
 $1\times 2^4 + 0\times 2^3 + 1\times 2^2 + 1\times 2^1 + 1\times 2^0 + 1\times 2^{-1} + 1\times 2^{-2}$   
 $16 + 0 + 4 + 2 + 1 + 0.5 + 0.25$   
 $23.75$ 

## **(02 marks)**

```
b. AB.1C_{16}

10\times16^{1}+11\times16^{0}+1\times16^{-1}+12\times16^{-2}

160+11+0.0625+0.0039

171.0664
```

#### **(03 marks)**

Q3)

- I. Name two disadvantages in 8-bits sign magnitude representation.
  - Two values for zero
  - Limited range -127 to +127
  - It requires complicated computer hardware

(Any 02 answer 02 marks)

- II. Convert following numbers into 8 bits sign magnitude form.
  - a. 43=00101011
  - b. -29=10011101
  - c. -124=11111100

(Each answer 02 marks,  $02\times3=06$  marks)

- III. Perform the following binary calculations.
  - a. 11101+1010=100111
  - b. 10001-100=1101
  - c. 1011\*11=100001
  - d. 11001/101=101

(Each answer 02 marks= calculation 01 mark+ answer 01 mark) (02×4=08 marks)

- IV. Perform the following calculations.
  - a. 75<sub>8</sub>+45<sub>8</sub> 111101+100101

1100010 **or** 142<sub>8</sub>

- b.  $CD_{16}+BE_{16}$  11001101+10111110110001011 **or**  $18B_{16}$
- c. AB<sub>16</sub> 6F<sub>16</sub> 10101011-01101111 111100 **or** 3C<sub>16</sub>

(Each answer 03 marks= conversion 01 + calculation 01 + answer 01)  $(03\times3=09 \text{ marks})$ 

Q4)

- I. Convert following decimal numbers into 8 bits one's complement form.
  - a. 23

10111

00010111 (1's complement)

b. -89

1011001

01011001

10100110 (1's complement)

(Each answer 02 marks= conversion 01 mark+ one's complement 01 mark)  $(02\times2=04 \text{ marks})$ 

- II. Convert following numbers into two's complements form.
  - a. 63

111111

00111111(2's complement)

```
b. -110
01101110
10010001+1 (add 1)
10010010(2's complement)
(Each answer 02 marks= conversion 01 mark+ two's complement 01 mark)
(02×2=04 marks)
Convert following two's complement binary number into decimal format.

a. 111011002
Left most bit is 1 hence negative
00010100(mark first bit from right most then flip the bits)
-20

b. 111101112
Left most bit 1 hence negative
00001001(marks first bit from right most then flip the bits)
-9
```

IV. Perform following arithmetic calculation with 8-bits sign magnitude.

(Each answer 02 marks= calculation 01 mark+ answer 01 mark)

```
a. (-65)+(-33)

-65=11000001(sign magnitude)

-33=10100001(sign magnitude)

11000001+10100001

11100010
```

 $(02\times2=04 \text{ marks})$ 

III.

b. (-76)+56 -76=11001100(sign magnitude) 56=00111000(sign magnitude) 11001100-00111000 10010100

(Each answer 04 marks= conversion 02 mark+ answer 02 mark) (04×2=08 marks)

- V. Perform following calculation with two's complement.
  - -39+92
  - -39=11011001(2's complement)
  - 92=01011100(2's complement)
  - =11011001+01011100
  - =00110101(Discard the carry out)

### (05 marks= 2's complement 02×2 +answer 01 mark)

Q5)

I. Name two data types used in the computer.

Numeric Data

Numbers (Integer, real)

Non-numeric Data

Letters, Symbols

Alphanumeric data

Image data

Audio data

Video data

(Any 02 answers 02 marks)

- II. The following numbers in 4 bits BCD code. Identify the equivalent decimal value.
  - a. 101010110=156
  - b. 10000110111=437
  - c. 10010110011000=2598

(Each answer 02 marks,  $02 \times 3 = 06$  marks)

III. Express the word "ATI" using ASCII format.(hint ASCII value of E is 69)

| Character   | A       | T       | I       |
|-------------|---------|---------|---------|
| ASCII value | 65      | 84      | 73      |
| ASCII code  | 1000001 | 1010100 | 1001001 |

IV. Display 79.625 using IEEE single-precision floating point format.

 $79.625 = 1001111.101 \times 2^{0} (02 \text{ marks})$ 

 $1.001111101 \times 2^6$  (normalized form)

Exponent=6+127=133=10000101

Fraction=001111101

Sign bit=0

| 0 | 10000101 | 001111101000000000000000 |
|---|----------|--------------------------|
|---|----------|--------------------------|

## (Each step 01 mark 01×6=06 marks)

V. Convert following IEEE single precision format into decimal value.

| 1 01111100 | 110000000000000000000000000000000000000 |
|------------|-----------------------------------------|
|------------|-----------------------------------------|

Sign bit=1

Exponent=01111100=124<sub>10</sub>

Fraction=0.11000=0.75<sub>10</sub>

Apply IEEE formula= (-)  $\times$  (1+0.75)  $\times$ 2<sup>(124-127)</sup>

- $-1.75 \times 2^{-3}$
- $-0.21875_{10}$

(Each step 01 mark  $01 \times 5 = 05$  marks)