Tanév,félév	2019 / 2020	2.
Tantárgy	Áramlástan BG11	
Mérés	A	X
	В	
Nap	csütörtök	14-16
Hét	páros	
	páratlan	X
A mérés dátuma	2020.04.	
A jegyzőkönyv feltöltés ideje	2020.04.26.	

MÉRÉSI JEGYZŐKÖNYV

M01. számú mérés

Tompa testek ellenállástényezőjének vizsgálata

Mérőcsoport: **8.** sz. mérőcsoport NEPTUN kód

(A1) Szabó DánielHSRD6T(A2) Kövér MártonZKGZN9(B1) Kocziha BarnabásG9RFG4(B2) Dabi Marcell JüzsefG9245F

Kijelentem, hogy a jegyzőkönyvet a fentebb megnevezett mérőcsoport által végzett mérés alapján én készítettem.

Jegyzőkönyvet készítette /mérésvezetők/: Szabó Dániel (A1)

szabo.dani1234gfdh@gmail.com

Kövér Márton (A2)

kover.marton4@gmail.com

Mérésvezető oktató: Tokaji Kristóf

Mérés helye: BME Áramlástan Tanszék, Nagy Laboratórium

Budapest

1. A mérés célja

Különböző, de valamilyen tulajdonságuk szerint összehasonlítható tompa testekre különböző sebességeken ható ellenálláserők meghatározása méréssel, melyekből az ellenállás-tényező Reynolds-számtól és az összehasonlított tulajdonságtól való függése megismerhető.

2. A mérés rövid leírása

A mérést a következőképpen végezzük el: a kör alapú kúp geometriájú próbatesteinket sorra a mérőkocsin elhelyezkedő kétkarú emelő hosszabbik karjára. Az emelő másik karja egy közlőtesttel érintkezik az elektronikus erőmérőcellánk mérőtüskéjéhez.

A test rögzítése után bekapcsoljuk a mérőkocsin található ventilátort, mely levegőt fog fújni a próbatestünkre. A ventilátoron lévő fojtások segítségével mind a három próbatestet öt különböző sebességű levegőárammal fújjuk meg, és mérjük az erőmérő cella segítségével a testre ható ellenálláserőt.

Az így mért erő tartalmazza a kétkarú emelő karjára ható ellenálláserőt is. Annak érdekében, hogy számíthassuk a csak a próbatestre ható ellenálláserőt, helyezzük a próbatestet egy fix tartórúdra az eredeti méréshez hasonló pozícióban. A kétkarú emelő karját pedig helyezzük a próbatest mögé akárcsak az eredeti mérésnél.

Ebben a konstrukcióban is elvégezve a mérést az erőmérő cella a kétkarú emelő karjára ható ellenálláserőt fogja mérni. A későbbiekben ezen két erő különbségeként számíthatjuk a próbatestünkre ható ellenálláserőt. Nagyon fontos, hogy az erőmérőt minden mérés előtt nullázzuk az esetleges mérési hibák elkerülése végett.

A méréshez használt eszközök:

- mozgatható szélcsatorna (mérőkocsi)
- segédállvány
- nyomásmérő berendezés

o típus: digitális multiméter

o száma: 19

o pontossága: 2 [Pa]

erőmérő

o típus: EMALOG ES-101

száma: 210072k1[m] 0,0454

k2[m] 0,355pontossága: 0,02 [N]

hőmérő

o típus: GMH3530

o felbontása: 0.1 [K]

barométer

típus: FISCHER 103
száma: 94322418

• tolómérő

méréshatára: 145 [mm]felbontása: 0,01 [mm]

o Betz-manométer

o gyári szám: 52049/7

• 3 különböző magasságú kúp

3. Mérési feladatok

Felhelyezzük a mérendő testet a tartórúdra, majd elindítjuk a ventilátort, de előtte az erőmerőt lenullázzuk. Elindítjuk a motort, majd az erőmerő segítségével megmérjük a testre ható erőt, a digitális nyomásmérővel pedig a

ventilátor nyomásesését, amiből majd az áramlási sebességet ki tudjuk számolni. Ezután hasonló módon meg kell mérni a test által módosított áramlás miatt a kétkarú emelőre ható erőt. A mért erők különbsége az áramlásból a testre ható erő lesz. Ebből ki tudjuk számolni a testek ellenállástényezőjét. Ezt a próbatestek jellemző paraméterének, illetve a Reynolds-számnak a függvényeként ábrázoljuk.

A próbatestek paraméterei:

Testek		
	D [m]	H [m] magasság
1.	0,042	0,1204
2.	0,042	0,08
3.	0,0422	0,0596

1. táblázat-próbatestek adatai

4. Kiértékelés

Környezeti adatok:

2.táblázat					
	Mérés kezdetén	Mérés végén		Átlagok	
Légköri nyomás	99800	9980) Pa	99800	Pa
Terem hőmérséklet	24,1	24,3	5°C	297,375	K
			•	•	
	levegő sűrűsége		1,16934911	Kg/m^	3
levegő kinematikai viszkozitása			0,0000155	m^2/s	;
R			287	J/(KgK	()

2. táblázat – környezeti adatok

A digitális nyomásmérő kalibrációját az alábbi diagrammon szemléltetjük.

1. diagram – nyomásmérőműszer kalibrációja

3.táblázat					
Δp dig [Pa]	p (betz) [H2Omm]	Δp (betz) [Pa]			
0	0	0			
2,28	0,25	2,45425			
89,11	9,2	90,3164			
203,59	20,9	205,1753			
278,13	28,6	280,7662			
359,29	36,9	362,2473			
464,75	47,65	467,78005			
ró	1000	kg/m^3			
g	9,817	N/kg			
kp	1,0068				

3.táblázat – nyomásmérőműszer kalibrációjához szükséges adatok

A Betz manométer által kapott értékeket [Pa] ábrázoljuk a digitális nyomásmérő értékeinek a függvényében [Pa], majd regressziós egyenest állítunk a diagramm pontjaira. Ezen egyenes egyenletének meredekségéből megkapjuk a k_p -t, - a továbbiakban- a digitális nyomásmérő kalibrációs tényezőjét.

Méréshez használt eszközök, összefüggések

- 1. Mérőkocsi a dinamikus nyomás mérése és beállítása
- 2. Erőmérő mérleg -A testekre ható ellenállóerőt mérjük egy kétkarú emelős áttételen keresztül, egy elektronikus erőmérőcellával.
- 3. Ellenállás mérése, kiejtéses mérési elv

Összefüggések:

 $F_e = P_{din} \cdot c_e \cdot A$, ahol

o F_e: ellenálláserő [N]

o P_{din}: dinamikus nyomás [Pa]

o c_e: ellenállástényező [-]

o A: felület [m²]

 $c_e = f(alak, helyzet, érdesség, Re)$

 $Re = \frac{v \cdot H}{v}$, ahol

o v: áramlási sebesség [m/s]

o H: test jellemző mérete [m]

ο ν: kinematikai viszkozitás [m²/s]

 $\nu = \frac{\mu}{\rho}$, ahol

o v: kinematikai viszkozitás [m²/s]

μ: dinamikai viszkozitás

ο ρ : a közeg sűrűsége [kg/m³]

 $P_{din} = K \cdot \Delta p, K=0,908, \text{ ahol}$

ΔP: nyomáskülönbség [Pa]

K: kocsi állandója [-]

 $F_e = F \frac{k_2}{k_1}$, ahol

o Fe: tényleges erő [N]

o F: mérlegre ható erő [N]

o k₁, k₂: erőkar [m]

 $F_e = F_{e,test+kar} - F_{e,kar}$, ahol

o F_{e, test+kar}: A kalibrált mért test+kar ellenálláserő [N]

o F_{e, kar}: A kalibrált mért ellenálláserő [N]

 $\Delta P_{Betz} = \rho_{viz} \cdot g \cdot h_{Betz}$

o ρ_{viz} : víz sűrűsége [kg/m³]

o g: gravitációs erő [N/kg)

o h_{Betz}: magasság [m]

 $\Delta P \cong k_p \cdot \Delta P_{dig} + \Delta P_{0dig}$, ahol

kp: regressziós egyenes meredeksége

$$k_F = \frac{m \cdot g}{\frac{1}{n} \sum F_{dig,i}}$$
, ahol

o k_F: kalibrációs tényező [-]

o F_{dig}: mért erő [N]

o m: test tömege [kg]

$$\Delta P = k_P \frac{(\Delta P_{dig,test+kar} + \Delta P_{dig,kar})}{2}$$
, ahol

ΔP: átlagos kalibrált nyomáskülönbség

o ΔP_{dig, test+kar}: kar+testhez tartozó mért nyomáskülönbség

ο ΔP_{dig, kar}: karhoz tartozó mért nyomáskülönbség

$$F_{test+kar} = k_F \cdot F_{dig,test+kar}$$
, ahol

• F test+kar: test+karhoz tartozó kalibrált erőérték [N]

• kf: kalibrációs tényező [N]

• F dig, test+kar: test + karhoz tartozó leolvasott erőérték [N]

$$F_{kar} = k_F \cdot F_{dig,kar, ahol}$$

• F kar: karhoz tartozó kalibrált erőérték [N]

• kf: kalibrációs tényező [N]

• F dig,kar: karhoz tartozó leolvasott erőérték [N]

$$F_e = F_{e,test+kar} - F_{e,kar} = \frac{k_1}{k_1} (F_{e,test+kar} - F_{e,kar}), \text{ ahol}$$

• Fe: összes kalibrált erőérték [N]

• Fe, test+kar: test+karhoz tartozó kalibrált erőérték [N]

• Fe, kar: karhoz tartozó kalibrált erőérték [N]

• k1: rövidebb kar [m]

• k2 hosszabb kar [m]

$$c_e = \frac{Fe}{Pdin \cdot A}$$
, ahol

• Fe: összes kalibrált erőérték [N]

• P din: dinamikus nyomás [Pa]

• A: testhez tartozó vetületi felület [mm²]

$$v = \sqrt{\frac{2 \cdot P_{din}}{\rho_0}}$$
, ahol

• v: sebesség [m/s]

• Pdin: dinamikus nyomás [Pa]

• Ró 0: közeg sűrűsége[kg/m^2]

$\rho = p_0/(R*T_0)$, ahol

• ρ: a levegő sűrűsége [kg/m³]

• R: univerzális gázállandó [J/KgK]

• T₀: hőmérséklet [K]

Mért és számított adatok

Az adatokat excelben, a segédlet utasításainak megfelelően egy nagy táblázatba rendeztük. A táblázatot a word formátuma miatt feldaraboljuk, és egymás alá szúrjuk be. A táblázat értelmezése: balról jobbra, fentről lefelé.

Test megnevezése	Δptest+kar [Pa] (dig)	Ftest+kar[N] (dig)	Δpkar [Pa] (dig)	Fkar [N] (dig)
1. test 1.	20,55	0,14	20,72	0,01
1. test 2.	48,6	0,32	48,25	0,08
1. test 3.	77	0,5	76,7	0,16
1. test 4.	104,8	0,7	105,73	0,22
1. test 5.	133,15	0,92	133,2	0,3
2. test 1.	45,2	0,24	44,8	0,06
2. test 2.	109,9	0,6	108,8	0,22
2. test 3.	172,3	0,96	173,41	0,38
2. test 4.	237,4	1,34	237,18	0,52
2. test 5.	303,55	1,7	303,78	0,68
3. test 1.	81,6	0,42	81,9	0,22
3. test 2.	197,9	1,04	196,18	0,5
3. test 3.	313,78	1,7	313,12	0,8
3. test 4.	428,46	2,34	428,9	1,08
3. test 5.	543,9	2,98	544,6	1,22
Δp [Pa]	Ftest+kar[N]	Fkar [N]	Fe [N]	Pdin [Pa]
20,775318	0,164399522	0,011742823	0,01952	18,86399
48,75429	0,375770335	0,093942584	0,03604	44,2689
77,37258	0,587141148	0,187885167	0,05106	70,2543
105,9808	0,821997608	0,258342105	0,07208	96,23057
134,08059	1,080339713	0,352284689	0,09311	121,7452
45,306	0,281827751	0,070456938	0,02703	41,13785
110,09358	0,704569378	0,258342105	0,05707	99,96497
174,03041	1,127311005	0,446227273	0,0871	158,0196
238,90357	1,573538278	0,610626794	0,12314	216,9244
305,72992	1,996279904	0,798511962	0,15318	277,6028
82,3059	0,493198565	0,258342105	0,03004	74,73376
198,37987	1,221253589	0,587141148	0,08109	180,1289
315,58146	1,996279904	0,939425837	0,13516	286,548
431,59502	2,747820574	1,26822488	0,18922	391,8883
547,9509	3,499361244	1,432624402	0,26431	497,5394
Sebesség [m/s)	d [m]	H [m]	Re [-]	A [m^2]
5,680148	0,042	0,1204	44122	0,001385442
8,701462	0,042	0,1204	67591	0,001385442
10,96174	0,042	0,1204	85148	0,001385442
12,8292	0,042	0,1204	99654	0,001385442
14,43008	0,042	0,1204	112089	0,001385442
8,388102	0,042	0,08	43293	0,001385442
13,07576	0,042	0,08	67488	0,001385442
16,43987	0,042	0,08	84851	0,001385442
19,26181	0,042	0,08	99416	0,001385442
21,78988	0,042	0,08	112464	0,001385442

Áramlástan Tanszék®

Budanesti	Műszaki	és	Gazdaságtudományi Egyetem
Dadapcou	IVIGOZGINI	\sim	Ouzauouquaomam, Egyctom

Dudapesti Muszaki es Ca	zuasagiuuomanyi Egye	CIII	Ai	arriasiair ranszek
11,3058	0,0422	0,0596	43473	0,001398668
17,55232	0,0422	0,0596	67492	0,001398668
22,13816	0,0422	0,0596	85125	0,001398668
25,88952	0,0422	0,0596	99549	0,001398668
29,17136	0,0422	0,0596	112169	0,001398668
Ce f-]	F test+kar hibtag	F kar hibatag	Δp hibatag	delta c
0,74700133	299,1923669	-299,1923669	- 2,198460643	9,53654941
0,58765726	127,4927102	-127,4927102	0,736980967	3,89564843
0,52458702	80,33616774	-80,33616774	- 0,414548609	2,41878525
0,54067929	58,65040128	-58,65040128	- 0,311930281	1,77231421
0,55201576	46,35880977	-46,35880977	- 0,251727445	1,40455624
0,47428838	137,196322	-137,196322	0,640076329	4,08620306
0,41204752	56,45939177	-56,45939177	0,228839142	1,66120431
0,39785841	35,71684065	-35,71684065	0,139781079	1,04819329
0,40974807	26,01809807	-26,01809807	0,104867103	0,76520689
0,39827948	20,33107039	-20,33107039	0,079651688	0,59670722
0,28734154	74,80676948	-74,80676948	0,213458003	2,15849473
0,32188114	31,03660883	-31,03660883	-0,09920714	0,89999172
0,33723327	19,51014007	-19,51014007	0,065337713	0,56709128
0,34521805	14,26577728	-14,26577728	- 0,048905992	0,41518322
0,37981351	11,23647847	-11,23647847	-0,04238125	0,32892467

táblázat -számolt adatok összesített megjelenítése

2. diagram – ellenálláserő és dinamikus nyomás kapcsolata

5. Hibaszámítás

Az ellenállástényező számítása:

$$c_e = \frac{Fe}{Pdin \cdot A}$$
, ahol

- Fe: a tényleges ellenálláserő [N] $(F_e = F_{e,test+kar} F_{e,kar})$
- o P_{din}: dinamikai nyomás (K*_{delta}P) [N]
- A: a test áramlás irányára merőleges felülete [m²]

$$\delta c_e = \sqrt{(\sum_{i=1}^{n} (\delta X_i \cdot \frac{\delta c_e}{X_i})^2)}, \text{ ahol}$$

- $\bullet \quad X_1 = F_{e, test+ kar}$
- X₂=F_{e,kar}
- $X_3=\Delta p$

Parciális deriváltak:

$$\frac{\partial c_e}{F_{e,test+kar}} = \frac{1}{K \cdot \Delta p \cdot A}$$

$$\frac{\partial c_e}{F_{e,kar}} = -\frac{1}{K \cdot \Delta p \cdot A}$$

$$\frac{\partial c_e}{\Delta p} = -\frac{F}{K \cdot \Delta p^2 \cdot A}$$

$$\frac{\partial c_e}{P_0} = 0$$

$$\frac{\partial c_e}{T_0} = 0$$

A hibaszámításhoz tartozó számítások is az előző bekezdésben található táblázatban vannak feltüntetve.

3. diagram – Reynolds szám és az ellenállástényező kapcsoalta

6. Kiértékelés

Ahogy megfigyeljük az ellenállástényezőket a Reynolds-számok függvényében, a két érték kezdetben közel lineáris összefüggést mutat majd magasabb Reynolds-számoknál a görbére illeszthető egyenes meredeksége csökken. Ahhoz, hogy pontosabban leírhassuk ezen összefüggést több mérést kéne végeznünk.

A hibaszámításokat szemlélve elmondható, hogy a legnagyobb hibatagok az erő mérésnél adódtak, ha pontosabb mérést akarunk véghez vinni ezen hibákat kell elsősorban orvosolnunk. Észrevehető az a jelenség, hogy a számított hibatagok a sebesség növekedésével egyre csökkentek, szóval, ha a mérést egy magasabb megfúvási sebesség tartományban végeznénk valószínűleg pontosabb eredményeket kapnánk.

Irodalomjegyzék

- Lajos Tamás Az áramlástan alapjai című könyv megfelelő fejezetei
- Méréshez tartozó segédlet
- http://www.mhtl.uwaterloo.ca/old/onlinetools/airprop/airprop.html

Tartalomjegyzék

1.	A mérés célja	.1
2.	A mérés rövid leírása	. 1
	érési feladatok	
4. Ki	értékelés	.3
	ibaszámítás	
	értékelés	
Iroda	alomjegyzék	.9
Tarta	alomiegyzék	.9