1. Grafo de escena

Para facilitar la representación del esquema, cuando introduzcamos en una casilla el nombre de otra clase del esquema en cursiva será equivalente a una flecha de dicha otra clase a la casilla en cuestión.

Bender
Tras(dist_lateral, 0, dist_lineal)
Esc(0.1, 0.1, 0.1)
Cuerpo
Cabeza
Tras(0.6, 5.5, 0)
Pierna
Tras(-1.2, 0, 0)
Pierna
Tras(0.6, 0, 0)
$Brazo_Derecho$
$Brazo_Izquierdo$

Cuerpo
$\operatorname{Esc}(2,2,2)$
Tras(0, 3.7, 0)
$Cilindro_deforme$

Cabeza
Tras(0, 9.4, 0)
Esc(2, 2, 2)
Cuello
Esc($0.5, 0.5, 0.5$)
Tras(0, 1.5, 0)
Rot(15*angulo,0,1,0)
Cilindro
Tras(0,1,0)
Ojo
Tras(-1, 0, 0)
Ojo
Tras(0.5, 0, -1)
Tras(0, 1, 0)
Esc(0.05, 0.1, 0.1)
Rot(180,1,0,0)
Cono
Esc(20,10,10)
Tras(0, -1.2, 0)
$\operatorname{Esc}(0.15, 0.15, 0.15)$
Esfera

Página 1 de 9

Ojo
Rot(90, 1, 0, 0)
Esc(0.25, 0.25, 0.25)
Semiesfera

Pierna
Esc(0.5, 0.5, 0.5)
Tras(0, -1, 0)
$Cilindro_deforme$
Tras(0,-2,0)
$\mathrm{Esc}(2,2,2)$
Semiesfera

Brazo_Derecho
Esc(0.4, 0.4, 0.4)
Tras(5.2, 8, 0)
Rot(-10*angulo,0,1,0)
$\operatorname{Esc}(1, \operatorname{proporción}, 1)$
Cilindro
Tras(0, 2*(proporción), 0)
Cilindro
Tras(0, 2*(proporción), 0)
Cilindro
Tras(0, 2*(proporción), 0)
Tras(0, 0.5, 0)
Rot(180, 1, 0, 0)
Esc(1, 2, 2)
Semiesfera

Brazo_Izquierdo
Esc(0.4, 0.4, 0.4)
Tras(-5.2, 8, 0)
Rot(10*angulo,0,1,0)
Esc(1, proporción, 1)
Cilindro
Tras(0, 2*(proporción), 0)
Cilindro
Tras(0, 2*(proporción), 0)
Cilindro
Tras(0, 2*(proporción), 0)
Tras(0, 0.5, 0)
Rot(180, 1, 0, 0)
Esc(1, 2, 2)
Semiesfera

Semiesfera

Clase derivada de MallaInd

Esfera

Clase derivada de MallaInd

Cuello

Clase derivada de MallaInd

Cilindro

cilindro.ply

 ${\bf Cilindro_deforme}$

cilindro_deforme.ply

2. Lista de grados de libertad

En total contaremos con cinco grados de libertad (aunque dos son muy parecidos, por lo que en realidad serían cuatro tipos de movimientos) que detallaremos a continuación. Para cambiar de un grado de libertad a otro utilizaremos la tecla 'G', la cual variará la variable p3_grado_libertad_activo. Dependiendo del valor de esta variable podemos encontrar:

2.1. Grado de libertad 0: Girar la cabeza

Figura 1: Sin aplicar movimiento.

Figura 2: Con una rotación de cabeza.

En este grado de libertad, Bender girará la cabeza de derecha a izquierda llegando a mover 90° desde la posición inicial (mirando al frente) a cada uno de los lados.

- Tipo de nodo: Cabeza.
- **Método que lo modifica:** Lo modifica el método *void girar_cabeza(float angulo)* de la clase *Bender*, que a su vez llama al método *void girar(float angulo)* de la clase *Cabeza*.
- Nodo del grafo al que afecta: Afecta al nodo 5 del grafo, que se corresponde con una matriz de rotación.
- Transformación asociada: Una rotación de ángulo dado.
- Atributos del parámetro:
 - 1. descripción: "Girar cabeza"
 - 2. valor_inicial: 0
 - 3. incremento: 0.1

Página 4 de 9

- 4. $valor_m\'inimo: -5$
- 5. valor_máximo: 5
- 6. velocidad_inicial: 1
- 7. aceleración: 2
- 8. magnitud_máxima_aceleración: 8

2.2. Grado de libertad 1: Desplazamiento lateral

Figura 3: Sin aplicar movimiento.

Figura 4: Aplicado desplazamiento lateral.

En este grado de libertad, Bender se desplaza lateralmente (sobre el eje x) de izquierda a derecha con unos máximos (que detallaremos a continuación).

- Tipo de nodo: Bender
- **Método que lo modifica:** Lo modifica el método *void desplazarse_lateralmente(float distancia)* de la clase *Bender*.
- Nodo del grafo al que afecta: Afecta al nodo 0 del grafo (primer nodo), siendo este una matriz de traslación que afecta a todo el dibujo de *Bender* que le sigue.
- Transformación asociada: Traslación.
- Atributos del parámetro:
 - 1. descripción: "Desplazamiento lateral"
 - 2. valor_inicial: 0
 - 3. incremento: 0.01

- 4. valor_mínimo: -1
- 5. valor_máximo: 1
- 6. velocidad_inicial: 1
- 7. aceleración: 2
- 8. magnitud_máxima_aceleración: 8

2.3. Grado de libertad 2: Desplazamiento lineal hacia delante.

Figura 5: Sin aplicar movimiento.

Figura 6: Con un desplazamiento hacia delante.

Similar al grado de libertad 2, con este movimiento *Bender* se desplaza por el eje z dando la sensación de que se desplaza hacia delante y hacia detrás.

- Tipo de nodo: Bender.
- **Método que lo modifica:** Lo modifica el método *void desplazamiento_lineal(float distancia)* de la clase **Bender**.
- Nodo del grafo al que afecta: Afecta al nodo 0, que es una matriz de traslación que afecta a todo el dibujo del mismo.
- Transformación asociada: Traslación.
- Atributos del parámetro:
 - 1. descripción: "Desplazamiento lineal"
 - $2.\ valor_inicial{:}\ 0$

3. incremento: 0.01

4. valor_mínimo: -1

5. valor_máximo: 1

 $6.\ velocidad_inicial:\ 1$

7. aceleración: 2

 $8. \ magnitud_m\'{a}xima_aceleraci\'{o}n{:}\ 8$

2.4. Grado de libertad 3: Saludo.

Figura 7: Sin aplicar movimiento.

Figura 8: Con saludo aplicado.

Este grado de libertad llamado "Saludo", consiste en el movimiento de los brazos de forma que parezca que Bender está saludando.

- Tipo de nodo: Brazo_izquierdo y Brazo_derecho.
- **Método que lo modifica:** Lo modifica el método *void saludar(float angulo)* de la clase *Bender*, que a su vez llama al método *void mover(float angulo)* de cada una de las subclases Brazo_derecho y Brazo_izquierdo.
- Nodo del grafo al que afecta: Afecta al nodo 2, que es una matriz de rotación que añadirá una rotación en función de un ángulo pasado como argumento.
- Transformación asociada: Rotación.
- Atributos del parámetro:
 - 1. descripción: "Saludo"

 $2. \ valor_inicial: 12$

3. incremento: 0.1

4. valor_mínimo: 6

 $5. \ valor_m\'{a}ximo: \ 12$

 $6. \ velocidad_inicial: 1$

7. aceleración: 2

 $8. \ magnitud_m\'axima_aceleraci\'on: \ 8$

2.5. Grado de libertad 3: Estirar los brazos.

Figura 9: Sin aplicar movimiento.

Figura 10: Con brazos estirados.

Este grado de libertad llamado "estirar brazos", consiste en la expansión de los brazos de forma que aumenten su tamaño (se estiren).

- Tipo de nodo: Brazo_izquierdo y Brazo_derecho.
- Método que lo modifica: Lo modifica el método void estirar_brazos(float proporcion) de la clase Bender, que a su vez llama al método void estirar(float proporcion) de cada una de las subclases Brazo_derecho y Brazo_izquierdo.
- Nodo del grafo al que afecta: Afecta al nodo 3, que es una matriz de escalado, que añadirá un escalado en la coordenada de la y (solo alargará), cada uno de los cilindros que componen los brazos de *Bender*.
- Transformación asociada: Escalado.

■ Atributos del parámetro:

1. descripción: "Estirar brazos"

 $2.\ valor_inicial{:}\ 1$

3. incremento: 0.01

 $4.\ valor_m\'inimo:\ 1$

5. valor_máximo: 2

 $6.\ velocidad_inicial{:}\ 2$

 $7. \ aceleraci\'on{:}\ 2$

 $8. \ magnitud_m\'axima_aceleraci\'on: \ 4$