

Giải tích số

Phương pháp lặp Seidel và Gauss Seidel

Lớp 125001 Nhóm 12

Ngày 28 tháng 5 năm 2021

Giải tích số

Phương pháp lặp Seidel và Gauss Seidel

Nhóm sinh viên thực hiện	
Họ và tên	MSSV
Huỳnh Văn Thuần	20195924
Nguyễn Hải Yến	20195944
Lê Minh Đức	20195857
Nông Thị Thủy	20195926
Nguyễn Mạnh Toản	20195928

Nội dung chính

- 1 Phương pháp lặp Seidel
 - Bài toán
 - Ý tưởng
- 2 Phương Pháp Gauss Seidel
 - Định lý
 - Phương pháp
 - Công thức sai số
 - Ví dụ

- 3 Cài đặt Thuật toán
 - Phương pháp lặp Seidel
 - Phương pháp lặp Gauss Seidel
 - Dánh giá phương pháp

Phương pháp lặp Seidel và Gauss Seidel

- Phương pháp lặp Seidel
 - Bài toán
 - Ý tưởng
- 2 Phương Pháp Gauss Seidel
 - Dịnh lýPhương pháp
 - Công thức sai số
 - Ví du
- 3 Cài đặt Thuật toán
 - Phương pháp lặp Seidel
 - Phương pháp lặp Gauss Seidel
 - Dánh giá phương pháp

Yêu cầu

Tìm nghiệm của hệ phương trình đại số tuyến tính:

$$Ax = b$$

Trong đó $A \in \mathbb{R}^{n \times n}$ là ma trận cấp $n \times n, b \in \mathbb{R}^n$ là *vector* cho trước, $x \in \mathbb{R}^n$ là *vector* nghiệm cần tìm

Phương pháp lặp Seidel 5/58

Phương pháp lặp đơn đã chứng tỏ dãy lặp

$$x^{(n)} = Bx^{(n-1)} + d, x^{(0)} \in \mathbb{R}^n \text{ khi } ||B|| < 1$$

thì xấp xỉ sau tốt hơn xấp xỉ trước đó

$$|| x^{(n)} - x^* || < || x^{(n-1)} - x^* ||$$

Phương pháp lặp Seidel 6/58

Ý tưởng

Ta có

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \dots & \dots & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{cases}$$

Phương pháp lặp Seidel 7/58

Phương pháp lặp Seidel

Ý tưởng

$$\Rightarrow \begin{cases} x_1 = 0 + b_{12}x_2 + b_{13}x_3 \dots + b_{1n}x_n + d_1 \\ x_2 = b_{21}x_1 + 0 + b_{23}x_3 + \dots + b_{2n}x_n + d_2 \\ \dots \\ x_n = b_{n1}x_1 + b_{n2}x_2 + b_{n3}x_3 + \dots + 0 + d_n \end{cases}$$

Phương pháp lặp Seidel 8/58

Phương pháp lặp Seidel

Ý tưởng (tiếp)

Từ phương trình lặp Jacobi

$$\begin{cases} x_1^{(n+1)} = 0 + b_{12}x_2^{(n)} + b_{13}x_3^{(n)} + \dots + b_{1m}x_m^{(n)} + d_1 \\ x_2^{(n+1)} = b_{21}x_1^{(n)} + 0 + b_{23}x_3^{(n)} + \dots + b_{2m}x_m^{(n)} + d_2 \\ x_3^{(n+1)} = b_{31}x_1^{(n)} + b_{32}x_2^{(n)} + 0 + \dots + b_{3m}x_m^{(n)} + d_3 \\ \dots \\ x_m^{(n+1)} = b_{m1}x_1^{(n)} + b_{m2}x_2^{(n)} + b_{m3}x_3^{n} + \dots + 0 + d_n \end{cases}$$

Phương pháp lặp Seidel 9/58

Phương pháp lặp Seidel

Ý tưởng (tiếp)

• Ta sẽ dùng các thành phần $x_j^{(n+1)}$ vừa tính được với $j=1,2,3,\ldots,i-1$ để tính $x_i^{(n+1)}$

$$\begin{cases} x_1^{(n+1)} = 0 + b_{12}x_2^{(n)} + b_{13}x_3^{(n)} + \dots + b_{1m}x_m^{(n)} + d_1 \\ x_2^{(n+1)} = b_{21}x_1^{(n+1)} + 0 + b_{23}x_3^{(n)} + \dots + b_{2m}x_m^{(n)} + d_2 \\ x_3^{(n+1)} = b_{31}x_1^{(n+1)} + b_{32}x_2^{(n+1)} + 0 + \dots + b_{3m}x_m^{(n)} + d_3 \\ \dots \\ x_m^{(n+1)} = b_{m1}x_1^{(n+1)} + b_{m2}x_2^{(n+1)} + b_{m3}x_3^{n+1} + \dots + 0 + d_n \end{cases}$$

Phương pháp lặp Seidel 10/58

Phương pháp lặp Seidel ý tưởng (Tiếp)

Thay ngay khi có giá tri mới

$$x^{(n+1)} = U.x^{(n)} + L.x^{(n+1)} + d$$

$$L = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ b_{ij} & \cdots & 0 \end{bmatrix} \qquad U = \begin{bmatrix} 0 & \cdots & b_{ij} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

$$x^{(n+1)} = (I - L)^{-1}.U.x^{n} + d$$

Phương pháp lặp Seidel 11/58

Phương pháp lặp Seidel và Gauss Seidel

- Phương pháp lặp Seidel
 - Bài toán
 - Ý tưởng
- 2 Phương Pháp Gauss Seidel
 - Định lý
 - Phương pháp
 - Công thức sai số
 - Ví dụ
- Cài đặt Thuật toán
 - Phương pháp lặp Seidel
 - Phương pháp lặp Gauss Seidel
 - Dánh giá phương pháp

Định lý 1

Giả sử B là ma trận vuông cấp m, khi đó các mệnh đề sau đây tương đương:

- 1. Ma trận B hội tụ, tức là $\lim_{n \to \infty} B^n = 0$
- $\lim_{n\to\infty} \parallel B \parallel^n = 0$
- 3. Mọi giá trị riêng đều có modun < 1

$$p(B) = \max_{i} |\lambda_i| < 1$$

Phương Pháp Gauss Seidel 13/58

Định lý 2

Cho ma trận B vuông thuộc $\mathbb{R}^{m\times m}$. Khi đó với $\epsilon>0$ tồn tại một chuẩn trên \mathbb{R}^m sao cho:

$$p(B) \leq \parallel B \parallel \leq p(B) + \epsilon$$

Phương Pháp Gauss Seidel 14/58

Hệ quả

Nếu $\parallel B \parallel < 1$ với một chuẩn nào đó thì B hội tụ.

Phương Pháp Gauss Seidel 15/58

Hệ quả

Nếu $\parallel B \parallel < 1$ với một chuẩn nào đó thì B hội tụ.

• Ta có:
$$A = D_A - L_A - U_A$$

 $\Rightarrow I - T.A = T.L_A + T.U_A$
mà $Ax = b$ nên
 $\Rightarrow TAx = Tb \Leftrightarrow (I - TL_A - TU_A)x = Tb$
 $\Leftrightarrow x = (TL_A + TU_A)x + Tb$

Phương Pháp Gauss Seidel 16/58

Xác định phép lặp

$$x^{(k+1)} = T.L_{A}.x^{(k+1)} + TU_{A}.x^{(k)} + Tb$$

$$\Leftrightarrow (I - T.L_{A}).x^{(k+1)} = T.U_{A}.x^{(k)} + Tb$$

$$\Leftrightarrow (D_{A} - L_{A})x^{(k+1)} = U_{A}.x^{(k)} + Tb$$

$$\Leftrightarrow x^{(k+1)} = (D_{A} - L_{A})^{-1}.U_{A}.x^{(k)} + (D_{A} - L_{A})^{-1}.Tb$$
(*)

• Đặt $M=(D_A-L_A)^{-1}.U_A$, ta sẽ chứng minh p(M)<1

Phương Pháp Gauss Seidel 17/58

Bổ đề

Nếu $|\lambda| \geq 1$ thì ma trận $\lambda(D_A - L_A) - U_A$ khả nghịch.

Phương Pháp Gauss Seidel 18/58

Bổ đề

Nếu $|\lambda| \geq 1$ thì ma trận $\lambda(D_A - L_A) - U_A$ khả nghịch.

• Ta có: $\det(\lambda I - M) = \det\left[\lambda I - (D_A - L_A)^{-1}.U_A\right] = 0$ Do $\det(D_A - L_A) \neq 0$ nên $\det(D_A - L_A).\det\left[\lambda I - (D_A - L_A)^{-1}.U_A\right]$ $= \det\left[\lambda(D_A - L_A) - U_A\right] = 0$ $\Rightarrow |\lambda| < 1 \Leftrightarrow p(M) < 1$

Phương Pháp Gauss Seidel 19/58

Bổ đề

Nếu $|\lambda| \geq 1$ thì ma trận $\lambda(D_A - L_A) - U_A$ khả nghịch.

- Ta có: $\det(\lambda I M) = \det\left[\lambda I (D_A L_A)^{-1}.U_A\right] = 0$ Do $\det(D_A - L_A) \neq 0$ nên $\det(D_A - L_A).\det\left[\lambda I - (D_A - L_A)^{-1}.U_A\right]$ $= \det\left[\lambda(D_A - L_A) - U_A\right] = 0$ $\Rightarrow |\lambda| < 1 \Leftrightarrow p(M) < 1$
- Do p(M) < 1 nên tồn tại một chuẩn nào đó sao cho $\parallel M \parallel < 1$ nên (*) hội tụ về nghiệm x^* duy nhất

Phương Pháp Gauss Seidel 20/58

1. A là ma trận chéo trội hàng

$$\sum\limits_{j
eq i} |a_{ij}| < |a_{ii}|$$
 với $orall i$

Ta đưa hệ Ax = b về dạng x = Cx + d như sau.

Ta có hệ:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \\ \vdots &\vdots &\vdots \\ a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n &= b_n \end{cases}$$

Phương Pháp Gauss Seidel 21/58

Phương pháp (tiếp)

$$\Leftrightarrow x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$C = \begin{bmatrix} 0 & -\frac{a_{12}}{a_{11}} & \cdots & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & \cdots & -\frac{a_{2n}}{a_{2n}} \\ \cdots & \cdots & \cdots & \cdots \\ -\frac{a_{n1}}{a_{nn}} & -\frac{a_{n2}}{a_{nn}} & \cdots & 0 \end{bmatrix}$$

$$d = \begin{bmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \vdots \\ \frac{b_n}{a_{nn}} \end{bmatrix}$$

Phương Pháp Gauss Seidel 22/58

Phương pháp (tiếp)

$$\Leftrightarrow x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}; \qquad C = \begin{bmatrix} 0 & -\frac{a_{12}}{a_{11}} & \cdots & -\frac{a_{1n}}{a_{11}} \\ -\frac{a_{21}}{a_{22}} & 0 & \cdots & -\frac{a_{2n}}{a_{22}} \\ \vdots & \vdots & \ddots & \vdots \\ -\frac{a_{n1}}{a_{nn}} & -\frac{a_{n2}}{a_{nn}} & \cdots & 0 \end{bmatrix} ; d = \begin{bmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \vdots \\ \frac{b_n}{a_{nn}} \end{bmatrix}$$

Dãy lặp

$$x_i^{(k+1)} = -\sum_{i < i} \frac{a_{ij}}{a_{ii}} x_j^{(k+1)} - \sum_{i > i} \frac{a_{ij}}{a_{ii}} x_j^{(k)} + \frac{b_i}{a_{ii}} \quad (i = 1, 2, \dots, n)$$

Phương Pháp Gauss Seidel 23/58

Xét hiệu

$$\begin{aligned} x_i^{(k+1)} - x_i^* &= \sum_{j=0}^{i-1} C_{ij} (x_j^{(k+1)} - x_j^*) + \sum_{j=i}^n C_{ij} (x_j^{(k)} - x_j^*) \\ \Rightarrow |x_i^{(k+1)} - x_i^*| &\leq \sum_{j=0}^{i-1} |C_{ij}| \cdot ||x_j^{(k+1)} - x_j^*| + \sum_{j=i}^n |C_{ij}| \cdot ||x_j^{(k)} - x_j^*| \end{aligned}$$

Phương Pháp Gauss Seidel 24/58

Công thức sai số

• Đặt
$$\beta_i = \sum\limits_{j=0}^{i-1} |C_{ij}|$$
 và $\gamma_i = \sum\limits_{j=i}^{n} |C_{ij}|$ thì
$$|x_i^{(k+1)} - x_i^*| \le \beta_i. \parallel x_i^{(k+1)} - x_i^* \parallel_{\infty} + \gamma_i \parallel x^{(k)} - x^* \parallel_{\infty}$$

Phương Pháp Gauss Seidel 25/58

• Giả sử
$$\max_{1 \le i \le n} |x_i^{(k+1)} - x_i^*| = |x_{i_0}^{(k+1)} - x_{i_0}^*| = ||x^{(k+1)} - x^*||_{\infty}$$

Với $i = i_0$ ta có:

$$||x^{(k+1)} - x^*||_{\infty} \le \beta_{i_0} ||x^{(k+1)} - x^*||_{\infty} + \gamma_i. ||x^{(k)} - x^*||_{\infty}$$

$$||x^{(k+1)} - x^*||_{\infty} \le \frac{\gamma_{i_0}}{1 - \beta_i}. ||x^{(k)} - x^*||_{\infty} \le \max_{1 \le i \le n} \frac{\gamma_i}{1 - \beta_i} ||x^{(k)} - x^*||_{\infty}$$

Phương Pháp Gauss Seidel 26/58

Công thức sai số

• Ta có:
$$\beta_i + \gamma_i = \sum\limits_{j=1}^n |C_{ij}| \leq \max \sum\limits_{j=1}^n |b_i C_{ij}| = \parallel C \parallel_{\infty} < 1$$

$$\Rightarrow \beta_i + \gamma_i - \frac{\gamma_i}{1 - \beta_i} = \frac{\beta_i (1 - \beta_i - \gamma_i)}{1 - \beta_i} \geq 0$$

Phương Pháp Gauss Seidel 27/58

• Ta có: $\beta_i + \gamma_i = \sum_{j=1}^n |C_{ij}| \le \max \sum_{j=1}^n |b_i C_{ij}| = \|C\|_{\infty} < 1$

$$\Rightarrow \beta_i + \gamma_i - \frac{\gamma_i}{1 - \beta_i} = \frac{\beta_i (1 - \beta_i - \gamma_i)}{1 - \beta_i} \ge 0$$

Do đó:

$$\max_{1 \leq i \leq n} \frac{\gamma_i}{1 - \beta_i} \leq \max_{1 \leq i \leq n} (\beta_i + \gamma_i) = \parallel C \parallel_{\infty} < 1$$

Phương Pháp Gauss Seidel 28/58

• Ta có: $\beta_i + \gamma_i = \sum\limits_{j=1}^n |\mathcal{C}_{ij}| \leq \max \sum\limits_{j=1}^n |b_i \mathcal{C}_{ij}| = \parallel \mathcal{C} \parallel_{\infty} < 1$

$$\Rightarrow \beta_i + \gamma_i - \frac{\gamma_i}{1 - \beta_i} = \frac{\beta_i (1 - \beta_i - \gamma_i)}{1 - \beta_i} \ge 0$$

Do đó:

$$\max_{1 \le i \le n} \frac{\gamma_i}{1 - \beta_i} \le \max_{1 \le i \le n} (\beta_i + \gamma_i) = \parallel C \parallel_{\infty} < 1$$

• Hệ số co $\lambda = \max_{1 \leq i \leq n} \frac{\gamma_i}{1-\beta_i} \leq \parallel C \parallel_{\infty}$ nên dãy lặp Gauss - Seidel hội tụ nhanh hơn dãy lặp Jacobi

Phương Pháp Gauss Seidel 29/58

• Sai số

$$\parallel x^{(k+\rho)} - x^* \parallel_{\infty} \leq \lambda \parallel x^{(k)} - x^* \parallel_{\infty}$$

với p nguyên dương bất kỳ ta có:

$$\| x^{(k+p)} - x^{(k)} \|_{\infty} \le \| x^{(k+p)} - x^{(k+p-1)} \|_{\infty} + \dots + \| x^{(k+1)} - x^{(k)} \|_{\infty}$$

$$\le (\lambda^{p} + \lambda^{p-1} + \dots + \lambda) \cdot \| x^{(k)} - x^{(k-1)} \|_{\infty} = \lambda \cdot \frac{1 - \lambda^{p}}{1 - \lambda} \| x^{(k)} - x^{(k-1)} \|_{\infty}$$

Phương Pháp Gauss Seidel 30/58

Công thức sai số

• Cố định k, cho $p \to \infty$ thì $x^{(k+p)} \to x^*$

$$\| x^* - x^{(k)} \|_{\infty} \le \frac{\lambda}{1 - \lambda} \| x^{(k)} - x^{(k-1)} \|_{\infty}$$
 (**)

Ta có

Công thức sai số hậu nghiệm

$$\parallel x^k - x^* \parallel_{\infty} \leq \frac{\lambda}{1-\lambda} \parallel x^{(k)} - x^{(k-1)} \parallel_{\infty}$$

với
$$\lambda = \max_{1 \leq i \leq n} \frac{\gamma_i}{1-\beta_i}$$
 và $egin{cases} eta_i = \sum\limits_{j=0}^{i-1} |C_{ij}| \ \gamma_i = \sum\limits_{i=i}^{n} |C_{ij}| \end{cases}$

Phương Pháp Gauss Seidel 31/58

Công thức sai số

Tiếp tục xét

$$\parallel x^{(k+p)} - x^{(k+p-1)} \parallel_{\infty} \leq \lambda. \parallel x^{(k+p-1)} - x^{(k+p-2)} \parallel_{\infty}$$

Phương Pháp Gauss Seidel 32/58

Công thức sai số

Tiếp tục xét

$$\| x^{(k+p)} - x^{(k+p-1)} \|_{\infty} \le \lambda. \| x^{(k+p-1)} - x^{(k+p-2)} \|_{\infty}$$

• Truy hồi bất đẳng thức này ta được:

$$\| x^{(k+p)} - x^{(k+p-1)} \|_{\infty} \le \lambda^p. \| x^{(k)} - x^{(k-1)} \|_{\infty}$$

Phương Pháp Gauss Seidel 33/58

Công thức sai số

• Cho k=1 ta được:

$$\parallel x^{(1+\rho)} - x^{(\rho)} \parallel_{\infty} \leq \lambda^{\rho}. \parallel x^{(1)} - x^{(0)} \parallel_{\infty}$$

Ta có

Công thức sai số tiên nghiệm

$$\| x^{(k)} - x^{(*)} \|_{\infty} \le \frac{\lambda^k}{1 - \lambda} \| x^{(1)} - x^{(0)} \|_{\infty}$$

Phương Pháp Gauss Seidel 34/58

Phương pháp (tiếp)

2. A là ma trận chéo trội cột

$$\sum_{j
eq i} |a_{ij}| < |a_{jj}|$$

Ta có hệ phương trình.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\ \dots & \dots & \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n &= b_n \end{cases}$$

Phương Pháp Gauss Seidel 35/58

Đặt
$$y_i = a_{ii}.x_i$$
 với $i = \overline{1,n}$ ta có:

$$\begin{cases} y_1 + \frac{a_{12}}{a_{22}} y_2 + \ldots + \frac{a_{1n}}{a_{nn}} &= b_1 \\ \frac{a_{21}}{a_{11}} y_1 + y_2 + \ldots + \frac{a_{2n}}{a_{nn}} y_n &= b_2 \\ \vdots &\vdots &\vdots \\ \frac{a_{n1}}{a_{11}} y_1 + \frac{a_{n2}}{a_{22}} y_2 + \ldots + y_n &= b_n \end{cases}$$

Phương Pháp Gauss Seidel 36/58

Phương pháp (tiếp)

$$\begin{cases} y_1 = 0y_1 - \frac{a_{12}}{a_{22}}y_2 - \dots - \frac{a_{1n}}{a_{nn}} + b_1 \\ y_2 = -\frac{a_{21}}{a_{11}}y_1 + 0y_2 - \dots - \frac{a_{2n}}{a_{nn}}y_n + b_2 \\ \dots \\ y_n = -\frac{a_{n1}}{a_{11}}y_1 - \frac{a_{n2}}{a_{22}}y_2 - \dots + 0y_n + b_n \end{cases}$$

Phương Pháp Gauss Seidel 37/58

Phương pháp (tiếp)

$$\text{Dặt } C = \begin{bmatrix} 0 - \frac{a_{12}}{a_{22}} - \dots - \frac{a_{1n}}{a_{nn}} \\ -\frac{a_{21}}{a_{11}} + 0 - \dots \frac{a_{2n}}{a_{nn}} \\ \vdots \\ -\frac{a_{n1}}{a_{11}} - \frac{a_{n2}}{a_{22}} - \dots + 0 \end{bmatrix}$$

Phương Pháp Gauss Seidel 38/58

Phương pháp (tiếp)

Ta được
$$y=Cy+b$$
 với $\parallel C\parallel_1<1$
Nên y sẽ hội tụ về nghiệm y^* duy nhất $\Rightarrow x$ sẽ hội tụ về x^* với

$$x^* = y^*.T$$
 với $T = \operatorname{diag}\left(rac{1}{a_{ii}}
ight)_{i=\overline{1,n}}$

Phương Pháp Gauss Seidel 39/58

Công thức sai số hậu nghiệm

$$\| x^{(k)} - x^* \|_1 \le \frac{\epsilon}{(1-s)(1-\epsilon)} \cdot \| x^{(k)} - x^{(k-1)} \|_1$$

Với
$$s=\max_{j}\sum_{i=j+1}^{n}|a_{ij}|,\quad \epsilon=\max_{j}rac{\sum\limits_{i=1}^{J}|a_{ij}|}{1-\sum\limits_{i=j+1}^{n}|a_{ij}|}\leq \parallel C\parallel_1<1$$

Phương Pháp Gauss Seidel 40/58

Công thức sai số (tiếp)

Công thức sai số tiên nghiệm

$$\| x^{(k)} - x^* \|_1 \le \frac{\epsilon^k}{(1-s)(1-\epsilon)} \cdot \| x^{(1)} - x^{(0)} \|_1$$

Với
$$s=\max_{j}\sum_{i=j+1}^{n}|a_{ij}|,\quad \epsilon=\max_{j}rac{\sum\limits_{i=1}^{J}|a_{ij}|}{1-\sum\limits_{i=i+1}^{n}|a_{ij}|}\leq \parallel C\parallel_1<1$$

Phương Pháp Gauss Seidel 41/58

Ví dụ: Xét phương trình Ax = b với các dữ liệu:

$$A = \begin{pmatrix} 10 & 1 & 1 \\ 2 & 10 & 1 \\ 2 & 2 & 10 \end{pmatrix}; \quad b = \begin{pmatrix} 12 \\ 13 \\ 14 \end{pmatrix}; \quad \epsilon = 0,0001$$

Phương Pháp Gauss Seidel 42/58

Phương pháp Gauss Seidel Ví dụ (tiếp)

• Do A là ma trận chéo trội, ta có thể đưa phương trình trên về dạng sau với ma trận B có chuẩn $\parallel B \parallel_{\infty} < 1$:

$$\begin{cases} x_1 = -0.1x_2 - 0.1x_3 + 1.2 \\ x_2 = -0.2x_1 - 0.1x_3 + 1.3 \\ x_3 = -0.2x_1 - 0.2x_2 + 1.4 \end{cases}$$

Phương pháp Gauss - Seidel có dạng:

$$x_1^{(k+1)} = -0.1x_2^{(k)} - 0.1x_3^{(k)} + 1.2$$

 $x_2^{(k+1)} = -0.2x_1^{(k+1)} - 0.1x_3^{(k)} + 1.3$

Phương Pháp Gauss Seidel 43/58

Phương pháp Gauss Seidel Ví dụ (tiếp)

• Với $x_1^{(0)} = 1.2$; $x_2^{(0)} = x_3^{(0)} = 0$ ta có kết quả tính toán trong bảng sau:

k	$x_1^{(k)}$	$x_{2}^{(k)}$	$x_3^{(k)}$
0	1.2	0.	0.
1	1.2	1.06	0.948
5	1.0000	1.0000	1.0000

Nghiệm đúng $x^* = (1; 1; 1)^T$.

Phương Pháp Gauss Seidel 44/58

Phương pháp lặp Seidel và Gauss Seidel

- Phương pháp lặp Seidel
 - Bài toán
 - Ý tưởng
- Phương Pháp Gauss Seidel
 - Định lý
 - Phương pháp
 - Công thức sai số
 - Ví dụ
- Cài đặt Thuật toán
 - Phương pháp lặp Seidel
 - Phương pháp lặp Gauss Seidel
 - Dánh giá phương pháp

Phương pháp lặp Seidel với sai số tiên nghiệm

Cài đặt Thuật toán 46/58

Sơ đồ khối

Cài đặt Thuật toán

Các bước thực hiện

Các bước thực hiện:

- Bước 1: Nhập các giá trị $n, B, g, x_0, \varepsilon$.
- Bước 2: Nếu $||B||_p < 1$ thì chuyển sang bước 3, 4 và 5, nếu không thì kết luận phương pháp không hội tụ, kết thúc.

Bước 3:
$$k = 1, x^{(1)} = L_B \times x^{(1)} + U_B \times^{(0)} + g$$

Bước 4: Tính được số lần lặp k dự kiến bằng công thức tiên nghiệm $k = ceil \left(\log_{\lambda} \frac{(1-q)\varepsilon}{||x-x_0||_p} \right)$

- Bước 5: Lặp $x^{(i)} = L_B \times x^{(i)} + U_B \times x^{(i-1)} + g$, cho đến khi số lần lặp bằng k thì đến bước 6.
- Bước 6: Kết luận nghiệm x và số lần lặp k.

Cài đặt Thuật toán 48/58

```
Step 1: Input n, B, g, x0, epsi.
Step 2: If ||B|| < 1
             then go to step 3
             else end.
Step 3: k = 1;
        x \leftarrow L * x + U * x0 + g:
Step 4: J = ((log(1-q)*epsi)/log lamda)/||x - x0||
        k \leftarrow ceil(J)
Step 5: for k = 2 to k do
        x \leftarrow L * x + U * x0 + g:
```

Cài đặt Thuật toán 49/58

Phương pháp lặp Seidel với sai số hậu nghiệm

Cài đặt Thuật toán 50/58

Sơ đồ khối

Cài đặt Thuật toán 51/58

Các bước thực hiện

INPUT: cỡ ma trận n, ma trận lặp B, vecto g, vecto x_0 , ε

OUTPUT: Nghiệm x và số lần lặp k.

Các bước thực hiện:

Bước 1: Nhập các giá trị $n, B, g, x_0, \varepsilon$.

Bước 2: Nếu $||B||_p < 1$ thì chuyển sang bước 3, nếu không thì kết luận phương pháp không hội tụ, kết thúc.

Bước 3: Lặp $x^{(k)} = L_B \times x^{(k)} + U_B \times^{(k-1)} + g$ cho đến khi $\frac{\lambda||x-x_0||}{(1-\lambda)} < \varepsilon$.

Bước 4: Kết luận nghiệm x và số lần lặp k.

Cài đặt Thuật toán 52/58

Mã giả

STEP 3.

```
Step 1: Input n, B, g, x0 epsi.
Step 2: If ||B|| < 1
            then go to step 3
            else end.
Step 3: x \leftarrow L * x + U * x0 + g;
Step 4: If |x - x0| < (1 - lamda) * epsilon
            then output x, k
            else
                x0 < -x:
```

Cài đặt Thuật toán 53/58

Phương pháp lặp Gauss - Seidel với ma trận chéo trội

Cài đặt Thuật toán 54/58

Kiểm tra chéo hàng

```
bool row diag dom(double temp[N][N]) {
    double sum row;
    for i from 1 to n do
        sum row = 0.0;
        for i = 0 to n do
            sum row = sum row + fabs(temp[i][j]);
        sum row = sum row - fabs(temp[i][i]);
        if(abs(temp[i][i]) < sum row) return false;</pre>
    return true:
```

Cài đặt Thuật toán 55/58

Kiểm tra chéo cột

```
bool col diag dom(double temp[N][N]) {
    double sum col:
    for i = 1 to n do
        sum col = 0.0;
        for i = 1 to n do
            sum col = sum col + fabs(temp[i][j]);
        sum col = sum col - fabs(temp[i][i]);
        if(abs(temp[j][j]) < sum col) return false;</pre>
    return true:
```

Cài đặt Thuật toán 56/58

Gauss Seidel

```
while(true) {
        k = k + 1:
        z = x:
        for i = 1 to n do {
            temp = 0;
            for j = 1 to n do
                if (i != i) temp = temp + (a[i][j]/a[i][i])* x[j];
            x[i] = b[i]/a[i][i] - temp;
        norm = 0:
        for (int i = 0; i < n; i++)
            norm = norm + fabs(x[i] - z[i]):
        if(norm < epsi) {
            cout << "So lan lap: " << k << endl;
            break:
```

Cài đặt Thuật toán 57/58

Đánh giá phương pháp

- 1. Độ phức tạp thuật toán $O(kn^2)$
- 2. Phương pháp Gauss Seidel hội tụ phụ thuộc vào hệ số co $\lambda = \max_{1 \leq i \leq n} \frac{\gamma_i}{1 \beta_i}$
- 3. Phương pháp Gauss Seidel hội tụ nhanh hơn Jacobi vì hệ số co $\lambda \leq \parallel B \parallel$
- 4. Hai phương pháp chéo trội hàng và cột có số lần lặp xấp xỉ nhau.

Cài đặt Thuật toán 58/58