Homework4

Hermes Espínola González A01631677

17 April 2017

1 Red-Black Tree

The code is in rb-tree/rb-tree.cpp. An insertion takes O(lgn) time.

The plot shows the clock ticks it takes to execute n insertions in a Red-Black Tree, which follows a similar curve to $O(\lg n)$.

2 Disjoint Set

2.1 Weighted Union

The code is in disjoint-set/linked_disjoint_set.h. Find-Set takes O(1) and Union takes O(min|A|,|B|). n.

The plot demonstrates that m Union operations with n initial singletons take O(m + nlgn).

2.2 Union by Rank and Path compression

The code is in disjoint-set/disjoint_set.h. Union is supposed O(1) for all practical applications.

As before, the plot shows how m Union operations with n initial singletons take O(m + nlgn) but this one's time axis reaches a smaller value.

3 Kruskal

The code is in disjoint-set/kruskal.cpp. The time complexity is O(ElgV).

The plot shows how kruskal applied to a randomly generated graph of E edges and V vertices takes O(ElgV).

4 dijkstra

The code is in dijkstra/dijkstra.cpp. The time complexity is O(E + V lgV).

The plot shows how a dijkstra applied to a randomly generated graph takes O(E+VlogV).