Minimális költségű *m*-áram feladat:

Adott: D = (V, A) irányított gráf, $f: A \to \mathbb{R} \cup \{-\infty\}$ és $g: A \to \mathbb{R} \cup \{+\infty\}$ alsó illetve felső korlátok az éleken, $m: V \to \mathbb{R}$ előírás, és $c: A \to \mathbb{R}$ költségek. Feltesszük, hogy van megengedett m-áram, vagyis olyan $x: A \to \mathbb{R}$, hogy $f(e) \le x(e) \le g(e)$ minden $e \in A$ élre és $\varrho_x(v) - \delta_x(v) = m(v)$ minden $v \in V$ csúcsra. Keresünk: minimális költségű m-áramot $(x \text{ költsége: } \sum_{e \in A} c(e)x(e))$

- 1. Mutasd meg, hogy feltehető, hogy $f \equiv 0$ és $g \equiv +\infty!$
- 2. Tegyük fel, hogy $f \equiv 0$ és $g \equiv +\infty$, és legyen x megengedett m-áram. A D_x segédgráf álljon az összes uv A élből (előre élek) és az olyan vu élekből, amire $uv \in A$ és x(uv) > 0. Ekkor ekvivalensek:
 - (a) x min. költségű
 - (b) D_x -ben nincs negatív kör c'-re nézve, ahol $c'(e) = \begin{cases} (e) \text{ ha } e \text{ előre \'el} \\ -c(e) \text{ ha } e \text{ hátra \'el} \end{cases}$
 - (c) $\exists \pi : V \to \mathbb{R}: c_{\pi}(uv) \geq 0$ minden $uv \in A$ élre és x(uv) > 0-ra $c_{\pi}(uv) = 0$, ahol $c_{\pi}(uv) := c(uv) \pi(v) + \pi(u)$ ("eltolt költség") (Emlékeztető: ha D = (V, A) irányított gráf és $d : A \to \mathbb{R}$, akkor d-re pontosanakkor nincs negatív kör, ha $\exists \pi : V \to \mathbb{R}: \pi(v) \pi(u) \leq c(uv)$ minden $uv \in A$ élre (π neve: megengedett potenciál))
- 3. Ha nem korlátos a célfüggvény, akkor D_x -ben van olyan c'-re negatív kör, amin korlátlanul javíthatunk.
- 4. **Beadandó**: Van olyan x minimális költségű áram, amire azok az e élek, ahol f(e) < x(e) < g(e), egy erdőt alkotnak.