Wydział Nauk Ekonomicznych i Zarządzania Studia podyplomowe - Data Science w Biznesie Raport: Projekt Transformatory Maria Kowalska Grudzień 2020

Spis treści

1	Cel biznesowy	2								
2 Eksploracyjna analiza danych										
	2.1 Opis danych	2								
	2.2 Dane ilosciowe, opis, wizualizacja, modyfikacja	2								
	2.3 Dane jakosciowe, opis, wizualizacja, modyfikacje	4								
	2.4 Cechy usunięte	5								
	2.5 Korelacje	5								
3	Podział na zbiór treningowy i testowy, trenowanie drzewa	6								
	3.1 Trenowanie klasyfikatora	7								
4	Wpływ cech uczących oraz parametrów na dokładnosć									
5	Ustalenie progu dotarcia; polityka konserwacji dla kolejnych									
	20 urzadzeń	12								

1 Cel biznesowy

Przykładowe przedsiębiorstwo E dysponując danymi historycznymi dotyczących awarii transformatorów oraz wykorzystując naukę o danych chce:

- 1. wskazanie najważniejszych czynników zwiększających prawdopodobieństwo zaistnienia awarii transformatora,
- 2. ustalenie progu dotarcia (odsetka populacji transformatorów), przy którym wykorzystanie predykcji awarii jest opłacalne (lepsze niż objęcie konserwacją zapobiegawczą całej populacji),
- 3. określenie optymalnej ze względu na koszty polityki konserwacji dla 20 kolejnych urządzeń w stanie Georgia

2 Eksploracyjna analiza danych

2.1 Opis danych

Dane do wykonania projeku 'awarie_transf_hist.xlsx' nie zawierają ani pustych wartosci czy też powtarzających się wierszy.

Jednak 2 cechy miały błedne wartosci: AssetZipCode oraz AssetCity. Folder './krok1' zawiera:

- 1. naiwną analize cech z opisem "./krok1/analiza_zmiennych.xlsx"
- 2. notebook: './krok1/Eksploracyjna analiza danych.ipynb'

2.2 Dane ilosciowe, opis, wizualizacja, modyfikacja

Do danych ilosciowych zaliczam: ['AssetZip','Lat', 'Long', 'AvgRepairCost', 'Age']

1. Age - cecha o rozkładzie:

Transformatory mamy w przedziale wiekowym do 80 lat. Większosc

transformatorow jest poniżej sredniej wieku. Cechę poddałam 2 obróbkom, logarytmowaniu i podzia na kubełki, i zapisałam 2 dwoch różnych zbiorach danych odpowiednio.

Rozkład cechy po zamianie logarytmicznej oraz podziale na przedziały wiekowe- [Old, Mid, Young]:

2. AvgRepairCost - cecha o rozkładzie:

Podobnie jak cecha Age, poddana została logarytmizacji oraz podziałowi na kubełki i zapisana w osobnych zbiorach odpowiednio:

3. Dla cechy: Lat, Long i AssetZip zauważalna jest zależność:

2.3 Dane jakosciowe, opis, wizualizacja, modyfikacje

Zbiór cech możemy podzielić na:

1. Binarne: 'PMLate', 'WaterExposure', 'MultipleConnects', 'Storm'

Cechy: Storm i Water Exposure nierówno rozłożone. Dodatkowo widoczna jest zależnosć położenia (Longx Lat) a cechy Wa-

2. Nominalne: 'Manufacturer', 'AssetType'
Mamy 4 kategorie producentów transformatorów, których umieszczenie zależy od położenia:

3. Porządkowe: 'Overloads', 'MilesFromOcean', 'Repairs' Widoczny nierównomierny rozkład dla cech 'Overloads' oraz 'MilesFromOcean'

2.4 Cechy usunięte

- 1. AssetId unikalna wartosc dla każdego wiersza w zbiorze
- 2. AssetLocation ulica, za duzy chaos informacyjny, trudno sprawdzić czy adresy są poprawne
- 3. AssetCity błędne nazwy miast w danych
- 4. AssetState w każdym wierszu ta sama wartosc: GA

2.5 Korelacje

Z macierzy korelacji można wyczytać:

- 1. Cechy: 'PMLate' i 'Storm' są najmocniej skorelowane ze zmienną celu 'Status'
- 2. Najsłabiej skorelowana ze zmienną celu 'Status' jest cecha 'Lat'.
- 3. Cechy najbardziej skorelowane ze sobą: 'Long' z 'WaterExposure', 'Other' oraz z 'GE'; 'AssetZip' z 'Lat'

3 Podział na zbiór treningowy i testowy, trenowanie drzewa

Modelem klasyfikującym jest drzewo z pakietu sklearn. Podział na zbiór treningowy i testowy z próbą zachowania rozkładu cech nominalnych nierówno rozłożonych w zbiorze.

W folderze krok2 znajdują się:

- 1. Zbiory danych przygotowane w 'krok1': 'zb1.xlsx', 'zb2.xlsx', 'zb3.xlsx'
- 2. Notatnik: 'dobór cech i trenowanie drzewka.ipynb' z analizą treningu drzewa na podstawie doboru cech i parametrów.
- 3. Raport z wynikami: 'raport.xlsx'

3.1 Trenowanie klasyfikatora

Klasyfikator był trenowany na podstawie różnych parametrów:

- 1. Dobór cech na podstawie korelacji
- 2. Manualny dobór cech
- 3. Rekurencyjny dobór cech
- 4. Dostrajanie parametrów, pojedynczo: max_depth, min_samples_split, min_samples_leaf, max_features

Wszystkie wyniki zapisałam w raport.xlsx.

5 najlepszych wyników wg. miary dokładnosc w tabelce:

	o najiepszych wymkow we	, admidalidae II	taberee.	
1	Cechy	zbiór	parametry	dokładność
	['Age', 'Schneider Electric', 'Siemens', '1-			
	Phase Pole Transformer', '3-Phase		manualnu dobór	
	Transformer', 'Overloads',		cech, dobór cech	
2	'Miles From Ocean']	zb0	rekurencyjny	0.815533981
	['PMLate', 'WaterExposure', 'Storm',			
	'AssetZip', 'AvgRepairCost', 'Age',			
	'Schneider Electric', 'Siemens', '1-Phase			
	Pole Transformer', '3-Phase		manualnu dobór	
	Transformer', 'Overloads',		cech, max-depth=	
3	'MilesFromOcean']	zb0	12.0	0.811650485
	['PMLate', 'WaterExposure', 'Storm',			
	'AssetZip', 'AvgRepairCost_log10',			
	'Age_log10', 'Schneider Electric',			
	'Siemens', '1-Phase Pole Transformer', '3-		manualnu dobór	
	Phase Transformer', 'Overloads',		cech, max-depth=	
4	'Miles From Ocean']	zb1	12.0	0.80776699
	['PMLate', 'WaterExposure', 'Storm',			
	'AssetZip', 'AvgRepairCost', 'Age',			
	'Schneider Electric', 'Siemens', '1-Phase			
	Pole Transformer', '3-Phase		manualnu dobór	
	Transformer', 'Overloads',		cech, max-depth=	
5	'MilesFromOcean']	zb0	11.0	0.803883495
	['PMLate', 'WaterExposure', 'Storm',			
	'AssetZip', 'AvgRepairCost_log10',			
	'Age_log10', 'Schneider Electric',			
	'Siemens', '1-Phase Pole Transformer', '3-		manualnu dobór	
	Phase Transformer', 'Overloads',		cech, max-depth=	
6	'Miles From Ocean']	zb1	11.0	0.8

4 Wpływ cech uczących oraz parametrów na dokładnosć

W kroku3 dla 3 najlepszych wyników próbuję jeszcze różnych parametrów, plus obrazuję wagę cech dla klasyfikatora. Nazwy notatników: 1,2,3.

1. Przykład 1 z tabeli wyników, na zbiorze zb0 = zb1.xlsx, wyniki zmiany parametrów :

dokładnosć się poprawia przy ograniczeniu parametwó do 5. Najważniejsze cechy to: Age, MilesFromOcean, Overloads

Drzewko z parametrem max-depth=2 i parametrem max_features=5,

prezentuje się następująco:

```
--- Overloads <= 0.22
   --- Age <= -0.40
       --- 3-Phase Transformer <= 2.18
           |--- truncated branch of depth 15
        --- 3-Phase Transformer > 2.18
          |--- class: 0
      - Age > -0.40
       |--- MilesFromOcean <= 1.06
           |--- truncated branch of depth 13
       --- MilesFromOcean > 1.06
          |--- truncated branch of depth 11
   Overloads > 0.22
   |--- Age <= 1.41
       |--- 1-Phase Pole Transformer <= -0.20
          |--- truncated branch of depth 13
       |--- 1-Phase Pole Transformer > -0.20
          |--- truncated branch of depth 12
   --- Age > 1.41
       |--- Age <= 3.80
          |--- truncated branch of depth 4
       --- Age > 3.80
          |--- truncated branch of depth 6
```

2. Przykład 2 z tabeli wyników, na zbiorze zb0 = zb1.xlsx, wyniki zmiany parametrów nie przyniosły poprawy:

Najważniejsze cechy to: Age, AvgRepairCost, AssetZip, Overloads

Drzewko z parametrem max-depth=2 , prezentuje się następująco:

```
--- Overloads <= 0.22
   --- PMLate <= 0.31
       --- Age <= -0.40
           |--- truncated branch of depth 10
        --- Age > -0.40
           |--- truncated branch of depth 10
      - PMLate > 0.31
       --- AvgRepairCost <= -2.76
           |--- truncated branch of depth 3
       --- AvgRepairCost > -2.76
          |--- truncated branch of depth 10
--- Overloads > 0.22
   |--- Age <= 1.41
       --- 1-Phase Pole Transformer <= -0.20
           |--- truncated branch of depth 10
       |--- 1-Phase Pole Transformer > -0.20
          |--- truncated branch of depth 10
   --- Age > 1.41
       |--- Age <= 3.80
           |--- truncated branch of depth 2
       |--- Age > 3.80
           |--- truncated branch of depth 5
```

3. Przykład 3 z tabeli wyników, na zbiorze zb1 = zb2.xlsx, wyniki zmiany

Najważniejsze cechy, które należy brać pod uwagę to Age, AVGRepairCost, AssetZip oaz Overloads i MilesFromOcean:

Drzewko z parametrem max-depth=2, prezentuje się następująco:

```
Overloads <= 0.22
--- PMLate <= 0.31
    |--- Age log10 <= -0.31
       |--- truncated branch of depth 10
    --- Age log10 > -0.31
      |--- truncated branch of depth 10
--- PMLate > 0.31
    --- AvgRepairCost log10 <= -3.70
       |--- truncated branch of depth 3
    --- AvgRepairCost log10 > -3.70
    | |--- truncated branch of depth 10
Overloads > 0.22
--- Age log10 <= 1.77
    |--- 1-Phase Pole Transformer <= -0.20
       |--- truncated branch of depth 10
    |--- 1-Phase Pole Transformer > -0.20
       |--- truncated branch of depth 10
--- Age log10 > 1.77
    --- Age_log10 <= 2.67
      |--- truncated branch of depth 2
    --- Age log10 > 2.67
       |--- truncated branch of depth 5
```

Cechy wspólne, które wydają się być najważniejsze:Age, MilesFromOcean, Overloads.

5 Ustalenie progu dotarcia; polityka konserwacji dla kolejnych 20 urządzeń

W folderze krok4, notatniku pt. zestawienie, analiza progu dotarcia oraz polityki konserwacji dla 20 nowych urządzeń.

Funkcja kosztu = $tp^*(100) + tn^*(-30) + fp^*(-100) + fn^*(0)$, gdzie tp - liczba uszkodzonych transformatorów, które zostały zaklasyfikowane jako uczkodzone. Mamy dla pojedynczego poprawnie sklasyfikowanego transformatora zysk +100 tys. dolarów.

tn - transformatory przewidziane jako niepoprawnie jako uszkodzone. Koszt sprawdzenia -30tys. dolarów.

fp - uszkodzone transformatory, które sklasyfikowane zostały jako działające. Koszt $\text{-}100\mathrm{tys}.$ dolarów.

fn - transformatory działające, sklasyfikowane jako działające. Nie ma kosztów.

Dla tak zdefiniowanej funkcji kosztu na na zbiorze testowym nie mamy strat od momentu, gdy:

	próg	precyzja	czułość	dokładność	tp	tn	fp	fn	zysk_lub_strata
3	0.0	0.672926	0.905263	0.703963	348.0	90.0	418.0	860.0	-9700.0
1	0.0	0.667279	0.764211	0.658508	404.0	224.0	362.0	726.0	-2520.0
0	0.0	0.664403	0.721053	0.643939	420.0	265.0	346.0	685.0	-550.0
5	0.0	0.732699	0.891579	0.759907	457.0	103.0	309.0	847.0	11710.0
2	0.0	0.714747	0.698947	0.678904	501.0	286.0	265.0	664.0	15020.0
4	0.0	0.756917	0.806316	0.749417	520.0	184.0	246.0	766.0	21880.0
6	0.0	0.797820	0.847368	0.796620	562.0	145.0	204.0	805.0	31450.0

Procent błędnie sklasyfikowanych transformatorów, a zmiany parametrów klasyfikatora:

Dla najlepszego klasyfikatora, estymujemy błędnie ponizej 20 procent populacji. Czułosc i precyzja sa nie mniejsze niż dokładnosc na poziomie 0,81, natomiast nie wieksze niż 0,85.

Jeżeli procent błednie zaklasyfikowanych transformatorów nie będzie większy niż 27%, to klasyfikacjia nie przyniesie strat.

Wykorzystując najlepszy klasyfikator, predykcja dla danych: awarie_transf_new.xlsx wygląda następująco:

```
nowe['Predykcja'].value_counts()

OK 16
Fail 4
Name: Predykcja, dtype: int64
```

Wyniki zostały zapisane w pliku: predykcja.xlsx