# Review

# Relations

#### Definition

 An equivalence relation on a set S is a set R of ordered pairs of elements of S such that

```
(a,a) \in R for all a in S. Reflexive (a,b) \in R implies (b,a) \in R Symmetric (a,b) \in R and (b,c) \in R imply (a,c) \in R Transitive
```

# Antisymmetry

• A relation R on a set A is antisymmetric if for all  $a, b \in A$ ,

$$(a, b) \in R$$
 and  $(b, a) \in R \rightarrow a = b$ .

• This is equivalent to

$$(a, b) \in R$$
 and  $a \neq b \rightarrow (b, a) \notin R$ .

- The following relations are antisymmetric.
  - $b \mid a$ , on  $\mathbb{Z}^+$ .
  - $x \le y$ , on  $\mathbb{R}$ .

#### Partial Order Relations

- A relation R on a set A is a partial order relation if
  - R is reflexive.
  - *R* is antisymmetric.
  - R is transitive.
- We use  $\leq$  as the generic symbol for a partial order relation.

**Problem 2.** (10 points). You are given three relations  $P, Q, R \subseteq \{a, b, c, d\} \times \{a, b, c, d\}$ :

| Р | a | b | С | d |
|---|---|---|---|---|
| a | Y | Ν | Y | Ν |
| b | N | Υ | Ν | Υ |
| С | Y | Ν | Υ | Ν |
| d | Ν | Y | Ν | Y |

| Q | a | b | С | d |
|---|---|---|---|---|
| a | Υ | Υ | Ν | Y |
| b | Ν | Υ | Ν | Υ |
| С | Ν | Ν | Υ | Υ |
| d | Ν | Ν | Ν | Y |

| $\mathbf{R}$ | a | b | С | d |
|--------------|---|---|---|---|
| a            | Υ | Ν | Ν | Ν |
| b            | Ν | Ν | Ν | Y |
| C            | Ν | Ν | Ν | Y |
| d            | Ν | Ν | Y | Ν |

For each relation tell (write Y or N) whether it is:

|   | Reflexive | Transitive | Symmetric | Partial order | Equivalence |
|---|-----------|------------|-----------|---------------|-------------|
| Р |           |            |           |               |             |
|   |           |            |           |               |             |
| Q |           |            |           |               |             |
|   |           |            |           |               |             |
| R |           |            |           |               |             |
|   |           |            |           |               |             |

# Logic

**Problem 3.** (10 points). For each sentence (a)-(e) below, tell which of the sentences (i)-(v) is its negation.

#### (a) "If X is green, then X is a vegetable."

- (i) "X is not green and X is not a vegetable."
- (ii) "X is not green or X is a vegetable."
- (iii) "X is green and X is not a vegetable."
- (iv) "If X is green then X is not a vegetable."
- (v) None of the above.

#### (b) " $\forall x \, \exists y : y < x + 10$ "

- (i) " $\exists x \; \exists y : y > x + 10$ ."
- (ii) " $\forall x \; \exists y : y \ge x + 10.$ "
- (iii) " $\forall y \; \exists x : x + 10 < y$ ."
- (iv) " $\exists x \ \forall y : y > x + 10$ ."
- (v) None of the above.

For each of the statements below, tell whether it is true or false.
Justify your answer.

| statement                                                               | T/F |
|-------------------------------------------------------------------------|-----|
| $\exists  x \in \mathbb{R}  :  x^2 + x = 2$                             |     |
| $\exists  x \in \mathbb{R}  :  x^2 + x = -2$                            |     |
| $\forall x \in \mathbb{R} : (x^2 > 4) \implies (x > 2)$                 |     |
| $\forall  x \in \mathbb{R}  \exists  y \in \mathbb{R}  :  xy^2 + x = 1$ |     |
| $\exists  x \in \mathbb{R}  \forall  y \in \mathbb{R} : xy^2 + 2^x = 1$ |     |

For each of the statements below, tell whether it is true or false. Justify your answer.

| statement                                                               | T/F |
|-------------------------------------------------------------------------|-----|
| $\exists  x \in \mathbb{R}  :  x^2 + x = 2$                             | Т   |
| $\exists  x \in \mathbb{R}  :  x^2 + x = -2$                            | F   |
| $\forall x \in \mathbb{R} : (x^2 > 4) \implies (x > 2)$                 | F   |
| $\forall  x \in \mathbb{R}  \exists  y \in \mathbb{R}  :  xy^2 + x = 1$ | F   |
| $\exists  x \in \mathbb{R}  \forall  y \in \mathbb{R} : xy^2 + 2^x = 1$ | Т   |

# Principle of Mathematical Induction

Let P(n) be a predicate defined for int.  $n \in N_0$ .

1. Base case:

P(n) is true for n = a (a 
$$\in$$
 N<sub>0</sub>)

2. Induction hypothesis:

P(n) is true for 
$$n = k (k \ge a)$$
 implies that

3. Inductive step:

$$P(n)$$
 is true for  $n = k + 1$ .

Then for all integers  $n \ge a$ , P(n) is true.

## Example: Sum of Odd Integers

$$1 + 3 + ... + (2n-1) = n^2$$
 (P(n))

for all integers n≥1.

#### **Proof (by induction on n):**

1. Base case:

The statement (P(n)) is true for n = 1:  $1=1^2$ .

2. Induction hypothesis:

Assume the statement is true for  $n = k \ge 1$ :

$$1 + 3 + \dots + (2k-1) = k^2$$

3. Inductive step:

Show that the assumption implies that P(n) is true for k + 1:

$$1 + 3 + ... + (2(k+1) - 1) = (k + 1)^2$$

### Example: Sum of Odd Integers

#### **Proof (cont.):**

The statement is true for k:

$$1+3+...+(2k-1)=k^2$$
 (1)

We need to prove:

1+3+...+(2(k+1)-1) = (k+1)<sup>2</sup> (2)  
Proof: 1+3+...+(2(k+1)-1) = 1+3+...+(2k+1) = 
$$= (1+3+...+(2k-1)) + (2k+1) = by (1)$$

$$= k^2 + (2k+1) = (k+1)^2.$$

We proved that:

P(n) is true for n = 1, and P(k)  $\rightarrow$  P(k + 1) for all  $n \ge 1$ , thus P(n) is true for all integers  $n \ge 1$ .

# Important theorems proved by mathematical induction

#### ➤ Theorem 1 (Sum of the first n integers):

For all integers n≥1,

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

#### ➤ Theorem 2 (Sum of a geometric series):

For any real number r except 1, and any integer n≥0,

$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}$$

## Proving a divisibility property by math. induction

Prove, that for any integer  $n \ge 1$ ,  $7^n - 2^n$  is divisible by 5. (P(n))

- **Proof** (by induction):
  - 1. Base case:

The statement is true for n=1: (P(1))

 $7^1 - 2^1 = 7 - 2 = 5$  is divisible by 5.

2. Induction hypothesis:

Assume that P(n) is true for  $n = k (k \ge 1)$ :

 $7^k - 2^k$  is divisible by 5. (P(k))

3. Inductive step: show that P(n) is true for n = k+1:

 $7^{k+1} - 2^{k+1}$  is divisible by 5. (P(k+1))

## Proving a divisibility property by math. induction

**Proof (cont.):** We are given that 
$$7^k - 2^k$$
 is divisible by 5. (1)

Then 
$$7^k - 2^k = 5b$$
 for some  $b \in \mathbb{N}$ . (by definition) (2)

We need to prove:

$$7^{k+1} - 2^{k+1}$$
 is divisible by 5. (3)

$$7^{k+1} - 2^{k+1} = 7 \cdot 7^k - 2 \cdot 2^k = (5+2) \cdot 7^k - 2 \cdot 2^k = 5 \cdot 7^k + 2 \cdot 7^k - 2 \cdot 2^k =$$

$$= 5 \cdot 7^k + 2 \cdot (7^k - 2^k) = 5 \cdot 7^k + 2 \cdot 5b \quad (by (2))$$

=  $5 \cdot (7^k + 2b)$  which is divisible by 5. (by def.)

Thus, P(n) is true for all integers  $n \ge 1$ .

## The sum of consecutive squares

Prove, using math. induction, the closed form expression for the sum of consecutive squares

$$\sum_{i=1}^{n} i^2 = \frac{(2n+1)(n+1)n}{6}$$

**False Theorem 5.1.3.** In every set of  $n \ge 1$  horses, all the horses are the same

color.



Bogus proof. The proof is by induction on n. The induction hypothesis P(n) will be

In every set of n horses, all are the same color. (5.3)

**Base case**: (n = 1). P(1) is true, because in a size-1 set of horses, there's only one horse, and this horse is definitely the same color as itself.

**Inductive step**: Assume that P(n) is true for some  $n \ge 1$ . That is, assume that in every set of n horses, all are the same color. Now suppose we have a set of n + 1 horses:

$$h_1, h_2, \ldots, h_n, h_{n+1}.$$

By our assumption, the first n horses are the same color:

$$h_1, h_2, \ldots, h_n, h_{n+1}$$

Also by our assumption, the last n horses are the same color:

$$h_1, \underbrace{h_2, \ldots, h_n, h_{n+1}}_{\text{same color}}$$