Хэш-функции

Макаров Артём МИФИ 2024

Целостность сообщений

- Рассмотрим бесключевые хэш-функции
- Задача получить функцию, для которой нахождение коллизии является сложной задачей
- Хотим построить такую функцию $H: M \to T: m_0, m_1 \in M, |T| \le |M|$
- Коллизия $(m_0, m_1) \in M^2$: $m_0 \neq m_1$, $H(m_1) = H(m_2)$

Применение хэш-функций

- Расширение множества значений криптографических примитивов, обеспечивающих аутентичность и целостность (hash-then-mac, hash-then-sign). Возможно вычислить МАС или цифровую подпись для сообщения (произвольной длины), подписывая хэш от него, и используя только один вызов процедуры подписи на одном блоке.
- Обеспечение целостности файлов в файловой системе. Пусть существует n часто изменяющихся файлов. Хотим проверить их целостность (что они не были модифицированы злоумышленником или вирусом). Используем read-only память для хранения хэшзначения от этих файлов. Для проверки достаточно повторно пересчитать это значение и сверить с хранимым.

Атаки на основе парадокса дней рождений

Пусть $H: M \to T$, - хэш-функция. $T = \{0,1\}^n$

Алгоритм перебора для нахождения коллизии:

- ullet Выбрать $2^{n/2}$ случайных сообщений из M
- Вычислить $t_i = H(m_i)$
- Найти коллизию $t_i = t_j$, $i \neq j$

Вероятность успешного завершения алгоритма = ½ (из за парадокса дней рождений). Сложность атаки $\sim 2^{n/2} = \sqrt{|T|}$

Следовательно, чем меньше область определений хэш-функции, тем проще атаковать хэш-функцию используя алгоритм выше.

Другие атаки на нахождение коллизий

Алгоритм	Вычислительная сложность, оп	Затраты памяти, hash_size	Реальные параметры
Угадывание коллизии	2 ^b	1	$M = 1, t = 2^{128}$
Использование таблиц (b-day)	$2^b/M^{1/2}$	М	$M=2^{b/2}$, $t=2^{b/2}$
Квантовый алгоритм Brassard, Høyer, Тарр	$2^{b/2}/M^{1/2}$	М	$M = 1, t = 2^{b/2}$ $M = 2^{b/6}, t = 2^{5b/12}$ $M = 2^{b/3}, t = 2^{b/3}$
Параллельный алгоритм нахождения коллизий	$2^b/M^{3/2}$	1 × M	$M = 1, t = 2^{b}$ $M = 2^{b/6}, t = 2^{3b/4}$ $M = 2^{b/3}, t = 2^{b/2}$
Параллельный квантовый алгоритм нахождения коллизий Grover and Rudolph	$2^{b/2}/M^{1/2}$	1 × M	$M = 1, t = 2^{b/2}$ $M = 2^{b/6}, t = 2^{5b/12}$ $M = 2^{b/3}, t = 2^{b/3}$
М параллельный Ро-алгоритм Полларда	2 ^{b/2} /M	1 × M	$M = 1, t = 2^{b/2}$ $M = 2^{b/6}, t = 2^{b/3}$ $M = 2^{b/3}, t = 2^{b/6}$ $M = 2^{b/4}, t = 2^{b/4}$

Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum computers make SHARCS obsolete?

Парадигма Меркла-Дамгарда

Большинство современных хэш-функций стоится по итеративному принципу. Сначала описывается некоторая хэш-функция для сообщений малой фиксированной длины, которая затем итеративно используется для хэша для сообщений произвольной длины.

Пусть $h: X \times Y \to X$ — хэш-функция. Пусть $Y = \{0,1\}^l$. Функцией Меркла-Дамгарда H_{MD} на основе хэш-функции h называется следующий алгоритм:

- $M' \leftarrow M || PB \; \#$ дополнение до длины, кратной l
- $M' = m_1 || \dots || m_{\scriptscriptstyle S}$, где $m_i \in \{0,1\}^l$
- $t_0 \leftarrow IV \in x$
- For i = 1..s do: $t_i \leftarrow h(t_{i-1}, m_i)$
- Return t_s

Парадигма Меркла-Дамгарда

Функция h - называется **функцией сжатия**.

IV — некоторая **константа**, называемая **инициализирующим значением**. m_1, \ldots, m_s - блоки сообщений

PB — **блок дополнения**. Формат блока дополнения $PB = 100 \dots 00 | |\{s\}$, где $\{s\}$ — число блоков в сообщении в двоичном представлении. Обычно $\{s\}$ составляет 64 бита.

Для описания хэш-функции необходимо задать функцию сжатия, инициализирующее значение и дополнение.

NIST 1993

Размер выхода – 160 бит

Построена с использованием парадигмы Меркла-Дамгарда

Являлась де-факто и де-юре стандартом (до сих пор используется во множестве legacy систем)

Сложность современной атаки - 2^{60} . Получена префиксная коллизия (т.е. добавление префикса к любым сообщением одинаковой длины даст одинаковый хэш)

A, B, C, D, E — 32 бита F — нелинейная функция W_t - слово (32 бита) полученное из сообщения K_t - раундовая константа

NIST 2002

Построена с использованием парадигмы Меркла-Дамгарда

Функция сжатия Девиеса-Меера

Блочный шифр – SHACAL-2

Современный стандарт хэш-функции

Размер выходы 256 или 512 бит Атаки на полную схему не известны

One iteration in a SHA-2 family compression function. The blue components perform the following operations:

$$\operatorname{Ch}(E,F,G)=(E\wedge F)\oplus (\neg E\wedge G)$$

$$Ma(A, B, C) = (A \wedge B) \oplus (A \wedge C) \oplus (B \wedge C)$$

$$\Sigma_0(A) = (A \gg 2) \oplus (A \gg 13) \oplus (A \gg 22)$$

$$\Sigma_1(E) = (E \gg 6) \oplus (E \gg 11) \oplus (E \gg 25)$$

The bitwise rotation uses different constants for SHA-512. The given numbers are for SHA-256.

The red ⊞ is addition modulo 232 for SHA-256, or 264 for SHA-512.

Аещё

- RIPEMD-160
- ΓΟCT 34.11-94
- ГОСТ 34.11-2012 (Стрибог)
- MD-5 СЛОМАН! (коллизии второго рода, хотя много где используется)

NIST 2015

Размер выхода – произвольный

Построена с использованием губчатой функции Keccak f1600 (f800)

Атаки на полную схему не известны

Стандарт на замену sha-2

Губчатая конструкция

Основа губчатой конструкции – «волшебная» перестановка на некотором множестве.

Вводится понятие состояния — некоторого вектора, разделённого на 2 части — открытую и закрытую.

На каждом раунде открытая часть может изменяться входными данными или выдаваться в качестве входа, после чего вычисляется новое состояние с использованием перестановки.

Две основных операции – «поглощение» и «выжимание» губки

Губчатая конструкция (SHA-3)

Модели хэш-функций

До этого мы рассматривали стойкие хэш-функции, как функции стойкие к коллизиям. (стойкие к коллизиям второго рода)

Существуют и другие модели. Пусть H — хэш-функция на (M,T)

- H **односторонняя хэш-функция**, если имея t = H(m) для случайного $m \in M$ вычислительно сложно найти $m' \in M$: H(m') = t (т.е. сложно обратить) (preimage resistant)
- H стойкая к коллизиям первого рода, если имея случайное сообщение $m \in M$ сложно найти $m' \neq m$: H(m) = H(m') (2nd-preimage resistant)
- H **случайный оракул**, если оракул H реализует случайную функцию

Модели хэш-функций

Взаимосвязь моделей

Случайный оракул => стойкость к коллизиям второго рода => стойкость к коллизиям первого рода => односторонняя хэш-функция

Random oracle => collision resistance => 2nd-preimage resistant => one-way (preimage resistant)

Обратное вообще говоря не верно. Пример — SHA-1 сейчас считается стойкой односторонней хэш-функцией, но не стойкость к коллизиям второго рода.

Модели хэш-функций

	Русская терминология	Английская терминология	Отношение стойкости
1	Односторонняя хэш-функция	Preimage resistant, one-way (preimage resistant) (aka стойкость к нахождению прообраза)	=> 1
2	Стойкая к коллизиям первого рода	2nd-preimage resistant (aka стойкость к нахождению второго прообраза, когда один уже дан)	⇒ 12
3	Стойкие к коллизиям второго рода	Collision Resistant (aka стойкость к коллизиям)	⇒ 123
4	Случайный оракул (в старой терминологии не используется)	Random oracle	⇒ 1234

Нахождение коллизий методом Полларда

- Отличительная точка вектор, первый q бит которого нулевые
- Имеется несколько потоков. Каждый инициализирован некоторым исходным значением y_0 (сохраняется в памяти).
- Каждый поток вычисляет последовательно цепочку хэшей с инъективной функцией $y_i = P(H(y_{i-1}))$.
- Если y_i отличительная точка сохраняем (i,y_i) в общую для потоков память. Если (j,y_i) уже сохранено в памяти для некоторого j=> переходим ко второму этапу, иначе продолжаем вычислять y_i

Нахождение коллизий методом Полларда

- Имеем $(i, y_i), (j, y_j)$. Пусть i > j, тогда d = i j. Применим d итераций к начальной точке y_0 цепочки большей длины.
- Далее синхронно итерируем 2 цепочки двух потоков, пока не найдём первую коллизию (т.е. совпадение значений).
- Основная идея если нашли коллизию на особой точке значит коллизия была и где-то раньше.
- В качестве инъективной функции можно использовать дописывание k нулевых бит в конец вектора.

Пример нахождения коллизии на двух потоках

- 2 потока красный и синий.
- Точка в круге особая точка
- Нашли общую особую точку (фиолетовая в круге) за j=7, i=9.
- D= i-j=2. Итерируем длинную (синюю) цепочку 2 раза.
- Итерируем синхронно обе цепочки, пока не найдём коллизии, которые дадут точки в зелёных квадратах.

Пример нахождения коллизии на одном потоке

- Возможна ситуацию, когда поток найдёт коллизию сам на себе.
- Работаем на втором этапе, как будто с двумя цепочками, но по факту с одной.
- $(i, y_i), (j, y_i)$ коллизия (красная точка), d = i j Итерируем цепочку d раз, оказываемся на цикле. Далее идём по циклу, ожидая коллизию

