Project Plan

Warehouse and Retail Sales Forecasting

Business Questions

> Primary:

How can we accurately forecast monthly warehouse sales to improve inventory management, supplier relations, and operational planning?

> Secondary:

- What are the key drivers of warehouse sales (supplier, item type, seasonality)?
- How can predictive models help identify trends and prevent overstock/understock situations?
- Can we generate actionable insights to support strategic decision-making in procurement and sales?

Dataset Used

Source: Warehouse and retail sales transaction records (307,645 rows, 9 columns: YEAR, MONTH, SUPPLIER, ITEM CODE, ITEM DESCRIPTION, ITEM TYPE, RETAIL SALES, RETAIL TRANSFERS, WAREHOUSE SALES) is a dataset from Montgomery County, Department of Liquor Control in the state of Alabama in the United of America. The dataset is updated monthly and is available at dataMontegomery public repository. It contains a list of sales and movement data by item and departments.

Content:

- Transactional sales data from warehouse and retail channels updated monthly.
- Supplier and item metadata for analysis and feature engineering.

Ethical Considerations:

- ✓ Dataset contains no personally identifiable information (PII) or customer data.
- ✓ All data usage is in compliance with Montgomery County, MD privacy policies and ethical standards for public use.

Methodology and Tools

Methodology:

- 1. **Exploratory Data Analysis (EDA):** Identify trends, outliers, missing data, and drivers of sales.
- 2. **Data Cleaning:** Remove or impute missing values, filter negative/outlier sales, prepare dataset for modeling.

3. **Feature Engineering:** Encode categorical variables, aggregate at relevant time intervals, and prepare for machine learning.

Model Development:

- Compare linear regression and tree-based regression (Random Forest) for sales prediction.
- Tune model hyperparameters and evaluate on hold-out/test data.

Validation & Interpretation: Visualize results, analyze feature importances, check for overfitting.

Deployment/Reporting: Save model and define recommendations for business integration.

Tools:

- Python (pandas, numpy, matplotlib, seaborn, scikit-learn, joblib)
- Jupyter Notebook for reproducible analysis and code sharing.
- Github for public sharing

Timeline and Milestone

Week	Milestone	Deliverables
1	Project kickoff, EDA, Data	EDA summary, initial plots,
	cleaning and feature engineering.	cleaned dataset, report.
2	Model development & baseline	Regression results, plots,
	evaluation, Model tuning,	Tuned model, diagnostics,
	validation, and interpretation,	Project report/notebook
	and Final reporting.	

Summary

This project will provide data-driven forecasts of warehouse sales, supporting better business planning and operational decisions. The approach combines rigorous data science with practical business application, and delivers clear, actionable recommendations.