M2 Chapter 7: Application of Forces

Further Connected Particles

Connected particles involving friction

We have already encountered problems involving connected particles in Mechanics Year 1. We just now throw friction into the mix.

[Textbook] Two particles P and Q of masses 5kg and 10kg respectively are connected by a light inextensible string. The string passes over a small smooth pulley which is fixed at the top of a rough inclined plane. P rests on the inclined plane and Q hangs on the edge of the plane with the string vertical and taut. The plane is inclined to the horizontal at an angle α where $\tan \alpha = 0.75$, as shown in the diagram. The coefficient of friction between P and the plane is 0.2. The system is released from rest.

- (a) Find the acceleration of the system.
- (b) Find the tension in the string.

Connected particles involving friction

We have already encountered problems involving connected particles in Mechanics Year 1. We just now throw friction into the mix.

[Textbook] Two particles P and Q of masses 5kg and 10kg respectively are connected by a light inextensible string. The string passes over a small smooth pulley which is fixed at the top of a rough inclined plane. P rests on the inclined plane and Q hangs on the edge of the plane with the string vertical and taut. The plane is inclined to the horizontal at an angle α where $\tan \alpha = 0.75$, as shown in the diagram. The coefficient of friction between P and the plane is 0.2. The system is released from rest.

- (a) Find the acceleration of the system.
- (b) Find the tension in the string.

$$\sin \alpha = \frac{3}{5}, \cos \alpha = \frac{4}{5}$$

For *P*:

$$R(5): N = 5g \cos \alpha$$

$$N = 5g \times \frac{4}{5} = 4g$$

$$R(7): T - 5g \sin \alpha - 0.2N = 5a$$

$$T - 3.8g = 5a \quad (1)$$

At
$$Q: R(\downarrow): 10g - T = 10a$$
 (2)

Adding (1) and (2):
$$6.2g = 15a \rightarrow a = \frac{31g}{75} = 4.1 \text{ ms}^{-2}$$

$$T = 5a + 3.8g = 57 \text{ N (2sf)}$$

Further Example

[Textbook] One end of a light inextensible string is attached to a block A of mass 2kg. The block A is held at rest on a **smooth** fixed plane which is inclined to the horizontal at an angle of 30° . The string lies along the line of greatest slope of the plane and passes over a smooth light pulley which is fixed at the top of the plane. The other end of the string is attached to a block B of mass 5kg. The system is released from rest. By modelling the blocks as particles and ignoring air resistance,

- (a)(i) show that the acceleration of block B is $\frac{4}{7}g$
 - (ii) find the tension in the string.
- (b) State how you have used the fact that the string is inextensible in your calculations.
- (c) Calculate the magnitude of the force exerted on the pulley by the string.

Further Example

[Textbook] One end of a light inextensible string is attached to a block A of mass 2kg. The block A is held at rest on a **smooth** fixed plane which is inclined to the horizontal at an angle of 30°. The string lies along the line of greatest slope of the plane and passes over a smooth light pulley which is fixed at the top of the plane. The other end of the string is attached to a block B of mass 5kg. The system is released from rest. By modelling the blocks as particles and ignoring air resistance,

- (a)(i) show that the acceleration of block B is $\frac{4}{7}g$
 - (ii) find the tension in the string.
- (b) State how you have used the fact that the string is inextensible in your calculations.
- (c) Calculate the magnitude of the force exerted on the pulley by the string.

For A: $R(\nearrow)$: $T - 2g \sin 30^\circ = 2a$

 $T = 2a + g \quad (1)$

For B: $R(\downarrow)$: 5g - T = 5a (2)

Adding (1) and (2):
$$5g = 7a + g \rightarrow a = \frac{4}{7}g$$

 $T = 2a + g = \frac{8}{7}g + g = \frac{15}{7}g$

String is inextensible so acceleration at *A* and *B* the same.

Recall that tension acts away from object in direction of string, so two tensions acting on pulley. We want the resultant force.

Force =
$$\binom{T\cos 30^{\circ}}{T + T\sin 30^{\circ}} = \frac{T}{2} \binom{\sqrt{3}}{3}$$

Magnitude = $\frac{T}{2} \sqrt{\sqrt{3}^2 + 3^2} = \frac{15}{14} g \times \sqrt{12} = \frac{15\sqrt{3}}{7} g$ N

We can consider left and down directions the positive ones to avoid negatives. T is constant so can factor out.

Test Your Understanding

Edexcel M1(Old) May 2013(R) Q3

Figure 2

A fixed rough plane is inclined at 30° to the horizontal. A small smooth pulley P is fixed at the top of the plane. Two particles A and B, of mass 2 kg and 4 kg respectively, are attached to the ends of a light inextensible string which passes over the pulley P. The part of the string from A to P is parallel to a line of greatest slope of the plane and B hangs freely below P, as shown in Figure 2. The coefficient of friction between A and the plane

is $\frac{1}{\sqrt{3}}$. Initially A is held at rest on the plane. The particles are released from rest with the string taut and A moves up the plane.

Find the tension in the string immediately after the particles are released.

(9)

Test Your Understanding

Edexcel M1(Old) May 2013(R) Q3

Figure 2

Equation of motion of B: 4g - T = 4a

Equation of motion of A: $T - F - 2g \sin 30 = 2a$

OR: $4g - F - 2g \sin 30 = 6a$

Resolve perpendicular to the plane at A: $R = 2g \cos 30$

Use of
$$F = \mu R$$
 : $F = \frac{1}{\sqrt{3}} \times 2g \cos 30 (= g)$

$$T - g - g = T - 2g = 2a$$

$$2T - 4g = 4g - T$$
, $3T = 8g$, $T = \frac{8g}{3} (\approx 26) 26.1(N)$

M1A1

M1A2

B1

M1

DM1A1

A fixed rough plane is inclined at 30° to the horizontal. A small smooth pulley P is fixed at the top of the plane. Two particles A and B, of mass 2 kg and 4 kg respectively, are attached to the ends of a light inextensible string which passes over the pulley P. The part of the string from A to P is parallel to a line of greatest slope of the plane and B hangs freely below P, as shown in Figure 2. The coefficient of friction between A and the plane

is $\frac{1}{\sqrt{3}}$. Initially A is held at rest on the plane. The particles are released from rest with the string taut and A moves up the plane.

Find the tension in the string immediately after the particles are released.

(9)

Exercise 7.6

Pearson Stats/Mechanics Year 2 Pages 63-65

- 1 Two particles P and Q of equal mass are connected by a light inextensible string. The string passes over a small smooth pulley which is fixed at the top of a smooth inclined plane. The plane is inclined to the horizontal at an angle α where $\tan \alpha = 0.75$. Particle P is held at rest on the inclined plane at a distance of 2 m from the pulley and Q hangs freely on the edge of the plane at a distance of 3 m above the ground with the string vertical and taut. Particle P is released. Find the speed with which it hits the pulley.
- 2 A van of mass 900 kg is towing a trailer of mass 500 kg up a straight road which is inclined to the horizontal at an angle α where tan α = 0.75. The van and the trailer are connected by a light inextensible tow-bar. The engine of the van exerts a driving force of magnitude 12 kN and the van and the trailer experience constant resistances to motion of magnitudes 1600 N and 600 N respectively.
 - a Find the acceleration of the van.
 - **b** Find the tension in the tow-bar.
 - c Comment on the modelling assumption that the resistances to motion of the van and trailer are constant.
- 3 Two particles *P* and *Q* of mass 2 kg and 3 kg respectively are connected by a light inextensible string. The string passes over a small smooth pulley which is fixed at the top of a rough inclined plane. The plane is inclined to the horizontal at an angle of 30°. Particle *P* is held at rest on the inclined plane and *Q* hangs freely with the string vertical and taut. Particle *P* is released and it accelerates up the plane at 2.5 m s⁻². Find:

a the tension in the string (2 marks)

b the coefficient of friction between P and the plane (4 marks)

c the force exerted by the string on the pulley. (3 marks)

4 Two particles A and B, of mass m kg and 3 kg respectively, are connected by a light inextensible string. The particle A is held resting on a smooth fixed plane inclined at 30° to the horizontal. The string passes over a smooth pulley P fixed at the top of the plane. The portion AP of the string lies along a line of greatest slope of the plane and B hangs freely from the pulley, as shown in the figure. The system is released from rest with B at a height of 0.25 m above horizontal ground.

Immediately after release, B descends with an acceleration of $\frac{2}{5}g$. Given that A does not reach P, calculate:

a the tension in the string while B is descending

(2 marks)

b the value of m.

(4 marks)

The particle B strikes the ground and does not rebound. Find:

c the time between the instant when B strikes the ground and the instant when A reaches its highest point on the plane.

(6 marks)

5 Two particles A and B on back-toback rough slopes are connected by a light inextensible string that passes over a smooth pulley as shown in the diagram. A has mass 2 kg and B has mass m kg.

The coefficient of friction between *A* and the slope is 0.2 and the coefficient of friction between *B* and the slope is 0.4.

a Show that the maximum value that m can take before the particles begin to move is

$$\frac{10 + 2\sqrt{3}}{5 - 2\sqrt{3}} \tag{6 marks}$$

b Given that m = 10, find the acceleration of the particles. (6 marks)

inextensible.

6 A block of metal P of mass 1.5 kg rests on a rough horizontal work bench and is attached to one end of a light inextensible string. The string passes over a small smooth pulley fixed at the edge of the bench. The other end of the string is attached to a box Q of mass 1.6 kg which hangs freely below the pulley, as shown in the diagram. The coefficient of friction between P and the table is μ. The system is released from rest with the string taut. Two seconds after release, Q has velocity 6 m s⁻¹. Modelling P and Q as particles,

(1 mark)

a calculate the acceleration of Q (3 marks) b find the tension in the string c show that μ is 0.434 (3 s.f.). (5 marks) d State how in your calculations you have used the information that the string is

Challenge

Two particles of mass m_1 and m_2 lie in static equilibrium on a triangular wedge as shown in the diagram. The particles are connected by a light inextensible string that passes over a smooth pulley.

- **a** Given that the wedge is smooth, show that $\frac{m_1}{m_2} = \sqrt{3}$.
- **b** Given instead that the wedge is rough, and that the coefficient of friction between each particle and the wedge is μ , show that

$$\frac{\sqrt{3}-\mu}{1+\mu\sqrt{3}} \leqslant \frac{m_1}{m_2} \leqslant \frac{\sqrt{3}+\mu}{1-\mu\sqrt{3}}$$

Homework Answers

- $2.8 \, \mathrm{m \, s^{-1}}$
- a $1.12 \,\mathrm{m \, s^{-2}}$
- **b** 4100 N
- The resistances are unlikely to be constant as the resistance will increase as the speed increases.
- a 21.9 N
- **b** 0.418 (3 s.f.) **c** 38 N (2 s.f.)

- **a** 18 N (2 s.f.) **b** 2

a For particle on LHS

$$R(\mathbb{N})$$
: $R_1 = \sqrt{3} g$, $R(\mathbb{N})$: $T = \frac{\sqrt{3}}{5}g + g$

For particle on RHS

$$R(\nearrow): R_2 = \frac{\sqrt{3}}{2}mg, R(\searrow): T = \frac{1}{2}mg - \frac{\sqrt{3}}{5}mg$$

For maximum value of m, $R(\searrow)$ is equal to $R(\nearrow)$:

$$\frac{1}{2}mg - \frac{\sqrt{3}}{5}mg = \frac{\sqrt{3}}{5}g + g$$

$$\Rightarrow \frac{1}{2}m - \frac{\sqrt{3}}{5}m = \frac{\sqrt{3}}{5} + 1$$

$$\Rightarrow \left(\frac{1}{2} - \frac{\sqrt{3}}{5}\right) m = \frac{\sqrt{3}}{5} + 1$$

$$\Rightarrow m = \frac{10 + 2\sqrt{3}}{5 - 2\sqrt{3}}$$

- **b** $2.70 \,\mathrm{m}\,\mathrm{s}^{-2} \,(3 \,\mathrm{s.f.})$
- a 3 ms⁻²

b 10.88N

c R(
$$\rightarrow$$
): $T - 1.5\mu g = 4.5$
 $\mu = \frac{10.88 - 4.5}{1.5g} = \frac{319}{735} = 0.434 \text{ (3 s.f.)}$

d The string doesn't stretch so the tension in the string is constant.

Challenge

For particle on LHS: $R(\nearrow)$: $T = \frac{1}{2}m_1g$

For particle on RHS: $R(\mathbb{N})$: $T = \frac{\sqrt{3}}{2}m_2g$ To prove, equate values of T.

If (attempted) motion is down slope on RHS Consider particle on LHS

$$T = \frac{1}{2}m_1g + \frac{\sqrt{3}}{2}\mu \, m_1g$$

Consider particle on RHS

$$T = \frac{\sqrt{3}}{2} m_2 g - \frac{1}{2} \mu \, m_2 g$$

Equate values of T to find $\frac{m_1}{m_2}$

If (attempted) motion is down slope on LHS

Consider particle on LHS

$$T = \frac{1}{2}m_1g - \frac{\sqrt{3}}{2}\mu m_1g$$

Consider particle on RHS

$$T = \frac{1}{2}\mu \, m_2 g + \frac{\sqrt{3}}{2} m_2 g$$

Equate values of T to find $\frac{m_1}{m_2}$