Infinite Distance, Emergent Strings and Quantum Corrections in 4D $\mathcal{N}=1$

DK, S.J. Lee, T. Weigand, M. Wiesner arXiv:2011.00024

Daniel Kläwer

Seminar Series on String Phenomenology Februar 16, 2021

Outline

- Swampland essentials
- Infinite distance limits in F-theory on CY_4
- Uniqueness of emergent string
- Quantum obstructions
- Weak Gravity Conjecture

Swampland Essentials

Swampland Program

Vafa '05

Review: Palti '19

Landscape:

EFT + quantum gravity =

Swampland:

EFT + quantum gravity = -

Swampland conjectures:

landscape vs. swampland

Distance Conjecture

Ooguri, Vafa '06

 \exists ! Infinite tower of states with $m \sim e^{-\alpha \Delta \phi} M_p$

Weak Gravity Conjecture

Arkani-Hamed, Motl, Nicolis, Vafa '06

Extremal BH should decay \Rightarrow Need particle with $m \lesssim gqM_p$

Weak Coupling At Infinite Distance

Heidenreich, Reece, Rudelius '15, '16, '17, '18

DK, Palti '16

Lee, Lerche, Weigand '18, '19

- Connection: if $g\sim e^{-\gamma\phi}$, sub-lattice WGC predicts objects with $m_n\lesssim q_n e^{-\alpha\phi}M_p$
- Both consequence of approaching ∞ distance loci in field space

Emergent String Conjecture

Lee, Lerche, Weigand '19; DK, Lee, Weigand, Wiesner '20

Infinite distance limits in the moduli space of a consistent theory of quantum gravity fall into two classes:

- A) Decompactification (KK tower dominant)
- B) Emergent String (tensionless critical string dominant)

Emergent String Conjecture

This has been checked in many settings:

F-Theory on CY_3 Kähler moduli: D3 on \mathbb{P}^1 Lee, Lerche, Weigand '18

Type IIB on K3: D3 on $E_{ au}$

Type IIB on CY_3 hypermultiplet moduli: F1, D1, D3 on $E_{ au}$ Baume, Marchesano, Wiesner '19

IIA / M-Theory on CY_3 Kähler moduli: NS5 / M5 on K3 or T^4 Lee, Lerche, Weigand '19

F-Theory on CY_4 Kähler moduli: D3 on curve C_0 Lee, Lerche, Weigand '19 DK, Lee, Weigand, Wiesner '20

4D N=1 F-Theory

Infinite Distance Limits

F-Theory Realisation

Lee, Lerche, Weigand '18, '19

- F-Theory on elliptic $E_{\tau} \to CY_4 \to B_3 \ \Rightarrow \ 4D \ \mathcal{N} = 1$
- Interested in $h^{1,1}(B_3)$ Kähler moduli

$$J' = (v')^{\alpha} J_{\alpha} \implies \mathscr{V}_{B_3} = \frac{1}{3!} \int (J')^3 = \frac{1}{3!} k_{\alpha\beta\gamma} (v')^{\alpha} (v')^{\beta} (v')^{\gamma}$$

- Trivial ∞ distance limit: $J' = \mu J$ with $\mu \to \infty$
 - \rightarrow decompactification with $M_{KK}/M_s \sim \mu^{-1/2} \rightarrow 0$
- If $J_0^3 = 0$ for some J_0 we may have non-trivial **finite volume limit**
- General limit will be superposition:

$$J' = \mu \left(\lambda J_0 + \sum_i v^i(\lambda) J_i \right) = \mu J$$

F-Theory Realisation

Lee, Lerche, Weigand '18, '19

$$J = \lambda J_0 + \sum_{\mu \in \mathcal{I}_1} v^{\mu} J_{\mu} + \sum_{\nu \in \mathcal{I}_2} v^{\nu} J_{\nu} + \sum_{r \in \mathcal{I}_3} v^r J_r$$

$$J_0^2 \cdot J_\mu \neq 0 \qquad \forall \mu \in \mathcal{I}_1$$

 $J_0^3 = 0$

$$J_0^2 \cdot J_\nu = 0 \qquad \forall \nu \in \mathcal{I}_2 \qquad \text{and} \ \exists \nu' \in \mathcal{I}_2: \ J_0 \cdot J_\nu \cdot J_{\nu'} \neq 0$$

$$J_0^2 \cdot J_r = 0 \qquad \forall r \in \mathcal{I}_3 \qquad \text{and} \ \forall i \in \mathcal{I}_2 \cup \mathcal{I}_3: \ J_0 \cdot J_r \cdot J_i = 0$$

J-class A and J-class B

Lee, Lerche, Weigand '18, '19

Focus: J-class A

$$J_0^3 = 0$$

$$J_0^2 \cdot J_1 \neq 0$$

$$J_0^2 \cdot J_3 = J_0 \cdot J_3^2 = J_3^3 = 0$$

$$\mathcal{V}_{B_3} \sim J^3 \sim \lambda^0 J_0^2 \cdot J_1 + \mathcal{O}\left(\frac{1}{\lambda}\right)$$

Emergent String

Lee, Lerche, Weigand '18, '19

- We have a distinguished curve class $C_0 = J_0 \cdot J_0$ with $\mathcal{V}_{C_0} \sim \frac{1}{\lambda^2} \to 0$
- Two options: $\bar{K}_{B_3} \cdot C_0 = 2 2g \ge 0$

1)
$$\bar{K}_{B_3} \cdot C_0 = 2$$
 \Rightarrow $\mathbb{P}^1 \to B_3 \to B_2$

$$\mathbb{P}^1 \to B_3 \to B_2$$

2)
$$\bar{K}_{B_3} \cdot C_0 = 0$$
 \Rightarrow $T^2 \rightarrow B_3 \rightarrow B_2$

$$T^2 \rightarrow B_3 \rightarrow B_2$$

- Here we focus on the first case
- D3-brane wrapped on C₀ gives rise to emergent heterotic string

Some Puzzles...

Multiple emergent strings becoming light at the same rate?

e.g.
$$B_3 = \underline{\mathbb{P}^1} \times \underline{\mathbb{P}^1} \times \underline{\mathbb{P}^1}$$
 (J-class B)

- Compute: $M_{\rm KK}^2/M_{\rm het}^2 \sim \lambda \to \infty$
- → Naively, this limit decouples the KK tower and we are left with an intrinsically 4D N=1 heterotic string

Uniqueness of Emergent String

Uniqueness of Emergent String

DK, Lee, Weigand, Wiesner '20

Back to our example:
$$B_3 = \underbrace{\mathbb{P}^1_A}_{\lambda} \times \underbrace{\mathbb{P}^1_B}_{B} \times \underbrace{\mathbb{P}^1_C}_{\lambda^{1/2}}$$

- We have:

$$M_{KK}^2 \sim \frac{M_s^2}{\mathscr{V}_{\mathbb{P}^{\frac{1}{A}}}} \sim \frac{M_s^2}{\lambda}$$
 $T_{\text{str,A}} \sim T_{\text{str,B}} \sim M_s^2 \cdot \mathscr{V}_{\mathbb{P}^{\frac{1}{A}}} \sim \frac{M_s^2}{\lambda^{1/2}}$

- Clearly the **KK tower dominates** and we never enter the heterotic duality frame.
- We prove that this is the case in general.

Uniqueness of Emergent String

DK, Lee, Weigand, Wiesner '20

Sketch of Proof (J-class A):

- Suppose B_3 admits another rational or genus-one fibration with generic fiber \tilde{C}_0 that shrinks in the limit.
 - \Rightarrow \exists nef divisor $\tilde{D} \in \overline{\mathcal{K}(B_3)}$ such that $\tilde{D}^2 = \tilde{n} \tilde{C}_0$ and $\tilde{D}^3 = 0$.
- We can expand $\tilde{D}=p^0J_0+\sum_{\mu\in\mathcal{I}_1}p^\mu J_\mu+\sum_{\mu\in\mathcal{I}_3}p^r J_r$
- We show that at least one $p^{\mu_0} > 0$ and $p^0 = p^r = 0$
- Now one can show $\mathscr{V}'_{\tilde{D}^2} = J' \cdot \tilde{D}^2 \to 0$ implies $k_{00\mu_0} = 0 \; \Rightarrow \;$ contradiction

Quantum Obstructions

Quantum Corrections

Shrinking divisor volumes \Rightarrow Corrections to the effective action, e.g.

- 1) Perturbative α' -corrections to the Kähler potential
- 2) Non-perturbative (instanton) corrections to the superpotential

The superpotential 2) can receive corrections from D3-branes wrapping vertical divisors of the fibration of B_3 . Intuitively, at least for the shrinking \mathbb{P}^1 limit, we nevertheless expect that the heterotic superpotential vanishes.

$$W_{\rm np} \sim e^{-S_{\rm het}} \rightarrow 0$$

We argue that the superpotential indeed vanishes in all limits which are not already obstructed by 1).

 \Rightarrow study perturbative α' -corrections

The α' -Obstruction

Grimm, Keitel, Mayer, Pugh, Savelli, Weissenbacher 2013-2019

Higher derivative corrections to M-theory lead to corrections to the 4D
 F-theory K\u00e4hler potential and coordinates

$$e^{K/2} = \mathcal{V}_{B_3} = \mathcal{V}_{B_3}^0 + \alpha^2 \left((\tilde{\kappa}_1 + \tilde{\kappa}_2) \mathcal{Z} + \tilde{\kappa}_2 \mathcal{T} \right)$$

$$T_{\alpha} = \frac{K_{\alpha}}{2} + \alpha^2 \left((\kappa_3 + \kappa_5) \frac{K_{\alpha} \mathcal{Z}}{2 \mathcal{V}_{B_3}^0} + \kappa_5 \frac{K_{\alpha} \mathcal{T}}{2 \mathcal{V}_{B_3}^0} + \kappa_4 \mathcal{Z}_{\alpha} \log(\mathcal{V}_{B_3}) + \kappa_6 \mathcal{T}_{\alpha} + \kappa_7 \mathcal{Z}_{\alpha} \right)$$

$$\mathcal{Z}_{\alpha} = \int_{Y_4} c_3(Y_4) \wedge \pi^*(J_{\alpha}) , \qquad \mathcal{Z} = v^{\alpha} \mathcal{Z}_{\alpha}$$

$$\mathcal{T}_{\alpha} = -18(1 + \alpha_2) \frac{1}{T_{\alpha}^0} \int_{D_{\alpha}} c_1(B_3) \wedge J \int_{D_{\alpha}} J_{\alpha} \wedge J , \qquad \mathcal{T} = v^{\alpha} \mathcal{T}_{\alpha}$$

The α' -Obstruction

$$e^{K/2} = \mathcal{V}_{B_3} = \mathcal{V}_{B_3}^0 + \alpha^2 \left((\tilde{\kappa}_1 + \tilde{\kappa}_2) \mathcal{Z} + \tilde{\kappa}_2 \mathcal{T} \right)$$

- Perturbative control: $\frac{\mathcal{Z}}{\mathcal{V}_{B_3^0}^0} \ll 1$ and $\frac{\mathcal{T}}{\mathcal{V}_{B_3^0}^0} \ll 1$
- In our limit $J' = \mu \left(\lambda J_0 + \frac{a}{\lambda^2} J_1 + b J_3 \right)$ ($\mu = 1$ is the finite volume limit)

$$\Rightarrow \frac{\mathcal{Z}}{\mathcal{V}_{B_3}^0} \sim \frac{\mu \lambda \mathcal{Z}_0 + \dots}{\mu^3} \sim \frac{\lambda}{\mu^2} \mathcal{Z}_0$$

- The finite volume limit is not under control! $\mu \sim \lambda^{1/2}$ is marginally OK
- For this limit, the heterotic string and KK scale coincide parametrically

$$M_{\rm KK}/M_{\rm het} \rightarrow {\rm const.}$$

Weak Gravity Conjecture

Emergent String and WGC

Lee, Lerche, Weigand '18, '19

- Any divisor **S** with $\mathbf{S} \cdot C_0 \equiv 2m \neq 0$ grows in the limit as $\mathscr{V}_{\mathbf{S}} \sim \mu^2 \lambda^2$
- If S is wrapped by a 7-brane: weak coupling limit for gauge theory
- In order to prove the WGC we need two ingredients:

$$\underbrace{\mathscr{V}_{C_0}}_{M_{\text{het}}} \cdot \underbrace{\mathscr{V}_{S}}_{\frac{1}{g_{\text{YM}}^2}} = 2m \underbrace{\mathscr{V}_{B_3}}_{M_p^2} \qquad \qquad + \qquad \qquad \exists \text{ tower of states with} \\ q_k^2 \geq 4mn_k \qquad \qquad \qquad \\ \text{classical geometry} \qquad \qquad \qquad \qquad \\ \text{elliptic genus} \qquad \qquad \qquad \\ \text{of the limit} \qquad \qquad \qquad \qquad \\ \end{aligned}$$

 $M_k \ge g_{YM} q_k M_{nl}$

WGC States from the Elliptic Genus

Lee, Lerche, Weigand '18, '19; DK, Lee, Weigand, Wiesner '20

- A tower of WGC states has already been identified in Lee, Lerche, Weigand '18, '19
- The relevant states can be read off from the elliptic genus.
- In 6D the elliptic genus is a meromorphic Jacobi-form. This property was used in Lee, Lerche, Weigand '18 to prove sub-lattice WGC for F-theory on CY_3 .
- In 4D the elliptic genus is generally not a Jacobi-form, so the result does not carry over directly. As a result, Lee, Lerche, Weigand '18 were only able to identify a tower as opposed to a sub-lattice of states generically.
- Building on recent results Lee, Lerche, Weigand '20 on the decomposition of the 4D elliptic genus in terms of Jacobi-form building blocks we are now able to show that the **sub-lattice WGC holds for generic** U(1) **fluxes**! In the non-generic case, the sub-lattice may be shifted.

α' -Corrections and the WGC

Another subtlety in 4D comes from α' -corrections to the relation $\mathcal{V}_{C_0} \cdot \mathcal{V}_{S} = 2m \mathcal{V}_{B_3}$ $M_{\text{het}}^2 = \frac{1}{g_{\text{NA}}^2}$ M_p^2

• We find
$$\frac{\mathscr{V}_{\mathbf{S}} \cdot \mathscr{V}_{C_0}}{2m\mathscr{V}_{B_3}} = 1 + \Delta_0 + \Delta_1 + \dots$$

where Δ_0 represents corrections from the classical geometry away from the limit and Δ_1 are the leading α' -corrections. They can be mapped to heterotic threshold corrections.

Before including α' -corrections the WGC tower satisfies the repulsive force condition

$$|F_{\text{Coulomb}}| \ge |F_{\text{Grav}}| + |F_{\text{Yuk}}|$$
 \Rightarrow $g_{YM}^2 q_k^2 \ge \frac{M_k^2}{M_{pl}^2} \left(\frac{d-3}{d-2} + \frac{1}{4} \frac{M_{pl}^4}{M_k^4} g^{rs} \partial_r \left(\frac{M_k^2}{M_{pl}^2} \right) \partial_s \left(\frac{M_k^2}{M_{pl}^2} \right) \right)$

• If we demand that this still holds after including the α' -corrections, this implies that the masses M_k are also corrected.

As a result, we conclude that the WGC relation is modified:

$$\frac{g_{YM}^2 q_k^2}{M_k^2} \ge \frac{1}{M_{pl}^2} \left(1 - \frac{1}{2} (\Delta_0 + \Delta_1) \right)$$

Summary

- Infinite distance limits in the Kähler moduli space of F-Theory on elliptic CY_4 can be classified by the dominant tower of states that becomes light:
- 1. Excitations of unique heterotic string
- 2. Excitations of unique type II string
- 3. Kaluza-Klein tower
- In a regime of controlled α' -corrections, the KK tower can never be decoupled.
- Generically, we can show that the excitations of the heterotic string furnish a sub-lattice WGC tower. We analyse α' -corrections to the WGC relation.

Thank You!