Análise matemática I

Pedro H A Konzen

2 de junho de 2018

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados temas introdutórios de análise matemática na reta. No primeiro capítulo, são discutidos alguns tópicos sobre funções e topologia, os quais são fundamentais nos desenvolvimentos demais capítulos. Na sequência são discutidos os conceitos e aplicações sobre limites e continuidade de funções, derivação e integração de funções, bem como sequências e séries de funções.

Agradeço aos(às) estudantes que assiduamente contribuem com correções, sugestões e críticas em prol do desenvolvimento deste material didático.

Pedro H A Konzen

Sumário

Capa Licença Prefácio								
					Sτ	ımár	io	v
					1	Inti	odução	1
2	Fun	damentos da análise	2					
	2.1	Funções	2					
		2.1.1 Definição de função	2					
		2.1.2 Classificações elementares	3					
		2.1.3 Operações elementares	5					
3	Lim	ites	7					
	3.1	Noções de topologia	7					
	3.2	Limites	9					
		3.2.1 Propriedades do limite	10					
	3.3	Limites laterais	13					
	3.4	Limites no infinito e limites infinitos	14					
4	Cor	tinuidade	17					
	4.1	Função contínua	17					
	4.2	Propriedades de funções contínuas	19					
	4.3	Continuidade uniforme	21					

5	Dif	erenciação	23	
	5.1	Derivada	23	
	5.2	Regras operacionais	25	
	5.3	Extremos e o teorema do valor médio	27	
6	Inte	e <mark>gração</mark>	29	
	6.1	Integral de Riemann	29	
	6.2	Integrabilidade de funções contínuas	30	
	6.3	Teorema fundamental do cálculo	32	
7	Seq	uências e séries de funções	34	
	7.1	Sequência de funções	34	
		7.1.1 Convergência pontual	34	
		7.1.2 Convergência uniforme	35	
	7.2	Algumas consequências da convergência uniforme	38	
	7.3	Séries de funções	40	
Respostas dos Exercícios				
R	Referências Bibliográficas			
Ín	ndice Remissivo			

Capítulo 1 Introdução

Em construção ...

Capítulo 2

Fundamentos da análise

2.1 Funções

2.1.1 Definição de função

Definição 2.1.1. (Função) Uma **função** $f: D \to Y$ é uma relação que associa cada elemento de um dado conjunto D com um único elemento de um dado conjunto Y. O conjunto D é chamado de **domínio** da função e o conjunto Y é chamado de **contradomínio** da função.

Comumente, uma dada função $f:D\to Y$ é acompanhada de sua **lei de correspondência**, a qual muitas vezes é denotada por y=f(x). Neste caso, temos que a função f associa $x\in D$ ao elemento $y\in Y$. Neste contexto, x é chamada de **variável independente** e y de **variável dependente**. Ainda, muitas vezes uma função é descrita apenas por sua lei de correspondência e, neste caso, os conjuntos domínio e imagem são inferidos no contexto em questão.

Observação 2.1.1. Neste livro, quando não especificado ao contrário, assumiremos que o domínio e o contradomínio das funções consideradas são subconjuntos dos números reais,

Exemplo 2.1.1. Vejamos os seguintes casos:

- a) A relação $f:\{1,2,3\} \rightarrow \mathbb{R}, \ y=f(x):=x^2+1, \ define \ uma \ função.$
- b) A relação $g: D = \{0,1,2,3,4\} \rightarrow \mathbb{Z}, \ x^2 + y^2 = 9 \ com \ x \in D \ e \ y \in Y, \ não é uma função. Com efeito, <math>0 \in D$ e relaciona-se com $3 \in Y$ e $-3 \in Y$ no seu contradomímio.

c) Da equação $y = \sqrt{x}$ pode-se inferir a função $h : x \in D \to y \in \mathbb{R}$, onde o domínio D é conjunto dos reais não negativos.

Definição 2.1.2. (Imagem de uma função) A **imagem** I_f de uma dada função $f: D \to Y$ é o conjunto de todos os elementos de Y que se relacionam com algum elemento de D, i.e.:

$$I_f := \{ y \in Y; \ \exists x \in D \ \text{tal que } y = f(x) \}.$$
 (2.1)

Exemplo 2.1.2. Vejamos os seguintes casos:

- a) A função $f: \{1,2,3\} \to \mathbb{R}, y = f(x) := x^2 + 1, \text{ tem imagem } I_f = \{1,4,9\}.$
- b) A imagem da função $f: \{0\} \cup \mathbb{N} \to \mathbb{R}, y = 2x+1, \text{ \'e conjunto dos n\'umeros \'impares.}$
- c) A imagem da função sen : $\mathbb{R} \to \mathbb{R}$, y = sen x, é $I_{\text{sen}} = [-1, 1]$.

Observação 2.1.2. Dada uma função $f: D \to Y$ e um conjunto $A \subset D$, definimos a imagem de A pela função f por

$$f(A) := \{ y \in Y; \exists x \in A \text{ tal que } y = f(x) \}. \tag{2.2}$$

Por exemplo, dada a função $f: \mathbb{R} \to \mathbb{R}, y = \sqrt{x}$, temos

$$f({0,1,4,9}) = {0,1,2,3}. (2.3)$$

Definição 2.1.3. (Gráfico) O **gráfico** de uma função $f: D \to Y$, y = f(x), é o conjunto de todos os pares ordenados (x,y) tal que $x \in D$ e y = f(x), i.e.

$$G_f := \{(x, y) \in D \times Y; \ y = f(x)\}.$$
 (2.4)

Exemplo 2.1.3. O gráfico da função $f: \{1,2,3\} \rightarrow \mathbb{R}, y = f(x) := x^2 + 1, \ \acute{e}$

$$G_f = \{(1,2), (2,5), (3,10)\}.$$
 (2.5)

2.1.2 Classificações elementares

Definição 2.1.4. (Função limitada) Seja dada uma função $f:D\to\mathbb{R},\,y=f(x)$. Dizemos que f é uma função limitada inferiormente (ou limitada à esquerda) quando existe $m\in\mathbb{R}$ tal que $m\leq f(x)$ para todo $x\in D$. Analogamente, dizemos que f é uma função limitada superiormente (ou limitada à direta) quando existe $M\in\mathbb{R}$ tal que $f(x)\geq M$ para todo $x\in D$. Ainda, f é dita ser limitada quando é limitada inferiormente e superiormente.

Exemplo 2.1.4. Vejamos os seguintes casos:

- a) A função $f: \mathbb{R} \to \mathbb{R}$, $y = x^2 + 1$, é limitada inferiormente. De fato, para cada $x \in \mathbb{R}$ temos $x^2 \ge 0$ e, portanto, $y = x^2 + 1 \ge 1$.
- b) A função seno é uma função limitada. Isto segue imediatamente da definição da função seno no círculo unitário (círculo trigonométrico).

Definição 2.1.5. Restrição/extensão de uma função Uma função $g:A\to Y$, y=g(x), é dita ser uma **restrição** da dada função $f:D\to Y$ quando $A\subset D$ e g(x)=f(x) para todo $x\in A$. Analogamente, f é uma **extensão** da função g.

Exemplo 2.1.5. A função $f: \mathbb{R} \to \mathbb{R}$, y = x + 1, é uma extensão da função $g: \mathbb{R} \setminus \{1\} \to \mathbb{R}$, $y = \frac{x^2 - 1}{x - 1}$.

Definição 2.1.6. (Função injetiva) Uma função $f: D \to Y$, y = f(x), é dita ser **injetiva** (**injetora** ou **inversível**) quando para todo $x_1, x_2 \in D$ com $x_1 \neq x_2$ temos $f(x_1) \neq f(x_2)$.

Observação 2.1.3. Uma função $f: D \to \mathbb{R}$, y = f(x), é injetiva se, e somente se, para todo $x_1, x_2 \in D$ tal que $f(x_1) = f(x_2)$ temos $x_1 = x_2$.

Exemplo 2.1.6. Vejamos os seguintes casos:

- a) A função $f(x) = x^2$ não é injetiva, pois tomando $x_1 = -1$ e $x_2 = 1$ temos $x_1 \neq x_2$, mas $f(x_1) = f(x_2)$.
- b) A função $f(x) = \sqrt{x+1}$ é injetiva. De fato, dados $x_1, x_2 \in \mathbb{D}$ tal que $f(x_1) = f(x_2)$, então $\sqrt{x_1} = \sqrt{x_2}$. Agora, tomando o quadrado dos dois lados, temos $x_1 = x_2$.

Definição 2.1.7. (Função sobrejetiva) Uma função $f: D \to Y$, y = f(x), é **sobrejetiva** quando f(D) = Y (ou, equivalentemente, $I_f = Y$).

Exemplo 2.1.7. A função $f:(0,\infty)\to\mathbb{R}$, $f(x)=\ln(x)$, é sobrejetiva. De fato, dado qualquer $y\in\mathbb{R}$ basta escolhermos $x=e^y$ para termos f(x)=y.

Observação 2.1.4. Uma função injetiva e sobrejetiva é dita ser bijetiva.

Definição 2.1.8. (Função inversa) Dada uma função invertível (i.e. injetora) $f: D \to Y, y = f(x)$, definimos sua **inversa** por $f^{-1}: f(D) \to D$ que associa cada elemento $y \in f(D)$ com $x \in D$ tal que f(x) = y.

Exemplo 2.1.8. Vejamos os seguintes casos:

- a) A inversa da função $f:(0,\infty)\to\mathbb{R},\ y=\ln(x),\ \acute{e}$ a função $f^{-1}:\mathbb{R}\to(0,\infty),\ y=e^x.$
- b) A inversa da função $f: [-1,\infty] \to [0,\infty)$, $y = \sqrt{x+1}$, é a função $f^{-1}: [0,\infty) \to [-1,\infty]$, $y = x^2 1$. De fato, f é sobrejetiva e dado $x \in [-1,\infty]$ temos $f(x) = y = \sqrt{x+1}$ e, então $y^2 = x+1$, logo $x = y^2 1$.

Definição 2.1.9. (Função monótona) Seja dada uma função $f: D \to Y$. Dizemos que f é **crescente** quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$, temos $f(x_1) < f(x_2)$. Agora, quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$ temos $f(x_1) \le f(x_2)$, dizemos que f é uma **função não-decrescente**. Analogamente, quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$ temos $f(x_1) > f(x_2)$ dizemos que f é uma função **decrescente**. Por fim, quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$ temos $f(x_1) \ge f(x_2)$ dizemos que f é uma função **não-crescente**.

Exemplo 2.1.9. Vejamos os seguintes casos:

- a) $f: \mathbb{R} \to \mathbb{R}$, $y = x^3$, é uma função crescente.
- b) $f: \mathbb{R} \to \mathbb{R}$, $y = e^{-x}$ é uma função decrescente.

Definição 2.1.10. (Paridade de uma função) Uma função $f: D \to Y$, y = f(x), é dita ser **par** quando para todo $x \in D$, temos f(x) = f(-x). Agora, quando para todo $x \in D$, temos f(x) = -f(-x), então dizemos se tratar de uma função **ímpar**.

Exemplo 2.1.10. Vejamos os seguintes casos:

- a) A função $f: \mathbb{R} \to \mathbb{R}$, y = |x|, é uma função par.
- b) A função $f: \mathbb{R} \to \mathbb{R}$, $y = x^3$, é uma função ímpar.

2.1.3 Operações elementares

Operações elementares envolvendo funções são comumente definidas tomando o cuidado de restringir o domínio das funções operadas para um conjunto apropriado. Por exemplo, dadas as funções $f:A\to\mathbb{R},\ y=f(x),\ e\ g:B\to\mathbb{R},\ y=g(x),\ definimos a função soma de <math>f$ com g por $(f+g):A\cap B\to\mathbb{R},\ (f+g)(x):=f(x)+g(x).$ Agora, para estas mesmas função, definimos a função quociente de f com g por $(f/g):A\cap B\setminus\{0\}\to\mathbb{R},\ (f/g)(x):=f(x)/g(x).$

Exemplo 2.1.11. A função $f:[0,\infty] \to \mathbb{R}$, $y = \sqrt{x} - |x|$, é a subtração da função $f_1:[0,\infty] \to \mathbb{R}$, $y = \sqrt{x}$, com a função $f_2:\mathbb{R} \to \mathbb{R}$, y = |x|, i.e. $f(x) = (f_1 - f_2)(x) := f_1(x) - f_2(x)$.

Definição 2.1.11. (Composição de funções) Sejam dadas as funções $f: D_f \to Y_f$, y = f(x), e $g: D_g \to Y_g$, y = g(x), com $I_g \subset D_f$. Definição a **função composta** de f com g por $(f \circ g): D_g \to Y_f$ com $(f \circ g)(x) = f(g(x))$.

Exemplo 2.1.12. A função $f:[0,\infty] \to \mathbb{R}$, $y = \sqrt{x^2 + 1}$, é a composição da função $f_1:[0,\infty] \to \mathbb{R}$, $y = \sqrt{x}$, com a função $f_2:\mathbb{R} \to \mathbb{R}$, $y = x^2 + 1$.

Exercícios

- **E 2.1.1.** Sejam $f: D \to Y$, y = f(x), e $A, B \subset D$. Mostre que $f(A \cup B) = f(A) \cup f(B)$.
- E 2.1.2. Construa uma função crescente, limitada superiormente e com domínio igual ao conjunto dos números reais.
- **E 2.1.3.** Mostre que $f:[1,\infty)\to\mathbb{R},\,y=\sqrt{x^3-1},$ é injetora e construa sua inversa.
- **E 2.1.4.** Mostre que se $f: D \to Y$ é injetora, então f não é par.
- **E 2.1.5.** Mostre que uma dada função $f: \mathbb{R} \to \mathbb{R}, \ y = f(x)$, é limitada quando existe $c \in \mathbb{R}$ tal que $|f(x)| < c, \forall x \in \mathbb{R}$.

Capítulo 3

Limites

3.1 Noções de topologia

Definição 3.1.1. (Ponto interior) Diz-se que x é um **ponto interior** de um dado conjunto C quando existe um intervalo (a,b) que contém x e está contido em C, i.e. $x \in (a,b) \subset C$. O conjunto de todos os pontos interiores de C é chamado de seu **interior**.

Exemplo 3.1.1. a) Todo elemento de um intervalo aberto (a,b) é ponto interior deste.

b) O interior de um dado intervalo fechado [a,b] é o intervalo aberto (a,b).

Definição 3.1.2. (Conjunto aberto) Diz se que C é **conjunto aberto** quando todos seus elementos são pontos interiores.

Exemplo 3.1.2. Vejamos os seguintes casos:

- a) O intervalo $(a,b) := \{x \in \mathbb{R}; \ a < x < b\}$ é um conjunto aberto. De fato, dado $x \in (a,b)$ podemos tomar $0 < \varepsilon < \min\{x-a,b-x\}$ de forma que $x \in (x-\varepsilon,x+\varepsilon) \subset (a,b)$.
- b) O intervalo (a, b] não é aberto, pois $b \in (a, b]$ não é ponto interior.
- c) O conjunto vazio \emptyset é um conjunto aberto. Com efeito, se o conjunto \emptyset não é aberto, então existe um elemento $x \in \emptyset$ que não é ponto interior de \emptyset , o que é um absurdo pois \emptyset não contém elementos por definição.
- d) O conjunto dos números racionais Q não é aberto.

Definição 3.1.3. (Vizinhança) Uma **vizinhança** de um dado ponto x é qualquer conjunto V que contenha x como ponto interior. Também, a **vizinhança simétrica** de um ponto $x \in \mathbb{R}$ é todo intervalo $V_{\varepsilon}(x) := (x - \varepsilon, x + \varepsilon)$ com $\varepsilon > 0$. Mais estrito, a **vizinhança perfurada** de $x \in \mathbb{R}$ é uma vizinhança de x que não contém x. Aproveitamos para fixar a notação:

$$V_{\varepsilon}'(x) := V_{\varepsilon}(x) \setminus \{x\} = \{y \in \mathbb{R}; \ 0 < |x - y| < \varepsilon\}.$$

Exemplo 3.1.3. Podemos reescrever o Exemplo 3.1.2 da seguinte forma. Um intervalo (a,b) é um conjunto aberto, pois para cada $x \in (a,b)$ podemos escolher $0 < \varepsilon < \min\{x - a, b - x\}$ tal que $V_{\varepsilon}(x) \subset (a,b)$.

Definição 3.1.4. (Ponto de acumulação) Um ponto x é chamado de **ponto** de acumulação de um dado conjunto C quando toda vizinhança de x contém infinitos pontos de C.

Exemplo 3.1.4. Vejamos os seguintes casos:

- a) O número a é ponto de acumulação do intervalo (a,b] não degenerado. De fato, dado $\varepsilon > 0$, temos $(a,a+\varepsilon) \subset V_{\varepsilon}(a)$ e $(a,a+\varepsilon) \cap (a,b]$ é um conjunto infinito.
- b) Zero é o único ponto de acumulação do conjunto $\{1, 1/2, 1/3, \dots, 1/n, \dots\}$.

Definição 3.1.5. (Ponto isolado) Diz que x é **ponto isolado** de um dado conjunto C quando $x \in C$ não é ponto de acumulação de C. Diz-se que um conjunto é **discreto** quando todos seus elementos são pontos discretos.

Exemplo 3.1.5. Vejamos os seguintes casos:

- a) O conjunto dos números naturais N é discreto.
- b) O conjunto dos números racionais Q não é discreto.
- c) O conjunto $\{1, 1/2, 1/3, ..., 1/n, ...\}$ é discreto.

Definição 3.1.6. (Ponto aderente) Dizemos que x é **ponto aderente** de um dado conjunto C quando toda vizinhança de x contém algum ponto de C. O conjunto de todos os pontos aderentes de C é chamado de **fecho** (ou, conjunto de aderência) de C, o qual denotamos por \overline{C} .

Observação 3.1.1. Observe que todo ponto de um conjunto é aderente ao mesmo, bem como, todos os seus pontos de acumulação.

Exemplo 3.1.6. Vejamos os seguintes casos:

- a) O fecho de (a,b] é o intervalo fechado [a,b].
- b) O conjunto dos números reais \mathbb{R} é o fecho do conjunto dos números racionais \mathbb{Q} , i.e. $\overline{Q} = \mathbb{R}$.

Definição 3.1.7. Conjunto fechado Dizemos que um conjunto C é **fechado** quando é igual ao seu fecho, i.e. $C = \overline{C}$.

Exemplo 3.1.7. Vejamos os sequintes casos:

- a) O intervalo [a, b] é um conjunto fechado.
- b) O conjunto vazio \(\empty \) \(\empty \) fechado. Por qu\(\epsilon \)?
- c) O conjunto dos números reais \mathbb{R} é fechado.
- d) O conjunto dos números racionais Q não é fechado.

Definição 3.1.8. (Conjunto denso) Dizemos que um conjunto A é **denso** no conjunto B, quando todo ponto aderente de $\overline{A} \subset B$.

Exemplo 3.1.8. O conjunto dos números racionais \mathbb{Q} é denso no conjunto dos números reais \mathbb{R} .

Exercícios

- **E 3.1.1.** Seja dado um conjunto C. Mostre que x é ponto de acumulação de C se, e somente se, toda vizinhança de x contém pelo menos um elemento de C diferente de x.
- **E 3.1.2.** Seja dado um conjunto C. Mostre que x é ponto isolado de C se, e somente se, existe uma vizinhança de x tal que $(V(x) \setminus \{x\}) \cap C = \emptyset$.

3.2 Limites

Definição 3.2.1. (Limite) Sejam uma função $f: D \to \mathbb{R}$, y = f(x), e a um ponto de acumulação de D. Diz-se que $L \in \mathbb{R}$ é o **limite** de f(x) com x tendendo a a se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que

$$x \in D, 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon.$$
 (3.1)

Quando isso ocorre, escrevemos

$$\lim_{x \to a} f(x) = L,
\tag{3.2}$$

ou ainda, simplesmente, $f(x) \to L$ quando $x \to a$.

Exemplo 3.2.1. Vejamos os seguintes casos:

a) Temos $\lim_{x\to 1} x - 1 = 0$. Isto segue imediatamente, pois, neste caso, f(x) = x - 1, a = 1, L = 0 e, então, dado $\varepsilon > 0$, tomamos $\delta = \varepsilon$ de forma que

$$x \in \mathbb{R}, 0 < |x - 1| < \delta \Rightarrow |x - 1 - 0| < \varepsilon. \tag{3.3}$$

b) A função não precisa estar definida no ponto em o limite é tomado. Por exemplo, $\lim_{x\to 1} \frac{x^2-1}{x+1} = 0$. Verifique!

Observação 3.2.1. Quando nos referirmos a expressão "x tende a a" (ou similares), estaremos sempre assumindo que a é um ponto de acumulação do domínio da função de interesse.

3.2.1 Propriedades do limite

Teorema 3.2.1. Se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x\to a} f(x) = L$, então $\lim_{x\to a} |f(x)| = |L|$.

Demonstração. Seja $\varepsilon > 0$. Por hipótese, existe $\delta > 0$ tal que $x \in D$, $0 < |x-a| < \delta$ implica $|f(x)-L| < \varepsilon$. Tomando, então, um tal δ e observando que ||f(x)|-|L|| < |f(x)-L|, temos que para todo $x \in D$, $0 < |x-a| < \delta$, ocorre $||f(x)|-|L|| < \varepsilon$.

Teorema 3.2.2. Se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x \to a} f(x) = L$ e A < L < B, então existe $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$ implica A < f(x) < B.

Demonstração. De fato, por hipótese, para cada $\varepsilon > 0$, existe $\delta > 0$ tal que $x \in D$, $0 < |x-a| < \delta$ implica $|f(x) - L| < \varepsilon$. Então, o resultado segue escolhendo um tal δ quando $\varepsilon = \min\{L - A, B - L\}$.

Corolário 3.2.1. (Permanência do sinal) Se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x\to a} f(x) = L > 0$ (L < 0), então existe $\delta > 0$ tal que $x \in D$, $0 < |x-a| < \delta$, implica f(x) > 0 (f(x) < 0).

Demonstração. Quando L>0 (L<0) basta escolher A=0 (B=0) no teorema anterior.

Teorema 3.2.3. (Operações com limites) Sejam $f_1, f_2 : D \to \mathbb{R}, y = f_1(x), y = f_2(x)$, com $\lim_{x\to a} f_1(x) = L_1$ e $\lim_{x\to a} f_2(x) = L_2$, então (omitindo que $x\to a$)

- a) $\lim [f_1(x) + f_2(x)] = \lim f_1(x) + \lim f_2(x)$.
- b) para todo $k \in \mathbb{R}$, temos $\lim k f_1(x) = k \lim f_1(x)$.
- c) $\lim f_1(x) f_2(x) = \lim f_1(x) \cdot \lim f_2(x)$.
- d) $\lim \frac{f_1(x)}{f_2(x)} = \frac{\lim f_1(x)}{\lim f_2(x)}$, quando $L_2 \neq 0$.

Demonstração. Seja dado $\varepsilon > 0$.

a) Seja $\delta>0$ tal que $x\in D,$ $0<|x-a|<\delta$ implica $|f_1(x)-L_1|<\varepsilon/2$ e $|f_2(x)-L_2|<\varepsilon/2$. Logo, para tais δ e x temos

$$|(f_1(x)+f_2(x))-(L_1+L_2)| \le |f_1(x)-L_1|+|f_2(x)-L_2| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$
 (3.4)

- b) O resultado é imediato para k = 0. Sejam $k \neq 0$ e $\delta > 0$ tal que $x \in D$, $0 < |x a| < \delta$ implica $|f_1(x) L_1| < \varepsilon/|k|$. Então, para tais δ e x temos $|kf_1(x) kL_1| = |k||f_1(x) L_1| < |k|\varepsilon/|k| = \varepsilon$.
- c) Sejam M>0 e $\delta>0$ tal que $x\in D,$ $0<|x-a|<\delta$ implica $|f_1(x)-L_1|<\varepsilon/(2|L_2|),$ $|f_1(x)|< M$ (veja Teorema 3.2.2) e $|f_2(x)-L_2|<\varepsilon/(2M)$. Então

$$|f_1(x)f_2(x) - L_1L_2| = |f_1(x)f_2(x) - f_1(x)L_2 + f_1(x)L_2 - L_1L_2|$$
 (3.5)

$$= |f_1(x)(f_2(x) - L_2) + (f_1(x) - L_1)L_2|$$
(3.6)

$$\leq |f_1(x)||f_2(x) - L_2| + |f_1(x) - L_1||L_2|$$
 (3.7)

$$< M \frac{\varepsilon}{2M} + \frac{\varepsilon}{2|L_2|} |L_2| = \varepsilon.$$
 (3.8)

d) De c), basta mostrar que $1/f_2(x) \to 1/L_2$ quando $x \to a$. Para tando, seja $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$ implica $|f_2(x) - L_2| < \frac{\varepsilon L_2^2}{2}$ e

 $|f_2(x)| > |L_2|/2$ (veja Teorema 3.2.2). Então, para tais δ e x temos

$$\left| \frac{1}{f_2(x)} - \frac{1}{L_2} \right| = \frac{|f_2(x) - L_2|}{|f_2(x)L_2|} \tag{3.9}$$

$$<\frac{\frac{\varepsilon L_2^2}{2}}{|L_2|\frac{|L_2|}{2}} = \varepsilon. \tag{3.10}$$

Teorema 3.2.4. O limite de uma função $f: D \to \mathbb{R}$ é L quando $x \to a$ se, e somente se, para toda sequência $(x_n)_{n \in \mathbb{R}} \subset D \setminus \{a\}$ com $x_n \to a$, temos $f(x_n) \to L$.

Demonstração. a) Primeiramente, mostraremos que se $\lim_{x\to a} f(x) = L$, então dada qualquer sequência $(x_n)_{n\in\mathbb{R}} \subset D\setminus\{a\}$ com $x_n\to a$, temos $f(x_n)\to L$. De fato, sejam $\varepsilon>0$ e $(x_n)_{n\in\mathbb{R}}\subset D\setminus\{a\}$ com $x_n\to a$. Então, por hipótese, existe $\delta>0$ tal que $x\in D$, $0<|x-a|<\delta$ implica $|f(x)-L|<\varepsilon$. Agora, como $x_n\to a$, existe N suficientemente grande tal que n>N implica $|x_n-a|<\delta$ e, portanto, $|f(x_n)-L|<\varepsilon$. Ou seja, $f(x_n)\to L$.

b) Aqui, provaremos por absurdo que se para toda sequência $(x_n)_{n\in\mathbb{R}}\subset D\setminus\{a\}$ com $x_n\to a$ temos $f(x_n)\to L$, então $\lim_{x\to a}f(x)=L$. Ou seja, vamos assumir que existe um $\varepsilon>0$ tal que para todo $\delta>0$ existe algum $x\in D,\ 0<|x_n-a|<\delta$ com $|f(x)-L|>\varepsilon$. Sejam um tal ε e para cada $n\in\mathbb{N}$ um $x_n'\in D$ com $0<|x_n'-a|<1/n$ e $|f(x_n')-L|>\varepsilon$. Com isso, temos formado uma sequência $(x_n')\subset D\setminus\{a\},\ x_n'\to a,\ \text{mas } f(x_n')\not\to L$.

Corolário 3.2.2. Um função $f: D \to \mathbb{R}$, y = f(x), tem limite L quando $x \to a$ se, e somente se, para toda sequência $(x_n)_{n \in \mathbb{N}} \subset D \setminus \{a\}$ com $x_n \to a$ temos que $(f(x_n))_{n \in \mathbb{N}}$ é convergente.

Demonstração. Segue, imediatamente, do fato de que se (y_n) é uma sequência com $y_n \to L$, então toda subsequência de (y_n) é convergente e converge para L.

Teorema 3.2.5. (Critério de convergência de Cauchy) Uma condição necessária e suficiente para que uma função $f: D \to \mathbb{R}, y = f(x)$, tenha limite L quando $x \to a$ é que, para todo $\varepsilon > 0$, exista $\delta > 0$ tal que

$$x, y \in V'_{\delta}(a) \cap D \Rightarrow |f(x) - f(y)| < \varepsilon.$$
 (3.11)

Demonstração. a) A suficiência segue do critério de convergência de Cauchy para sequências e do Corolário 3.2.2.

b) Exercício 3.2.4.

Exercícios

E 3.2.1. Diga se é verdadeira ou falsa a seguinte afirmação: se $f : \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x\to a} f(x) = 0$, então f(a) = 0. Justifique sua resposta.

E 3.2.2. Mostre que se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x \to a} f(x) = L > 0$, então $\lim_{x \to a} \sqrt{f(x)} = \sqrt{L}$.

E 3.2.3. Demonstre o Teorema 3.2.3 como um corolário do Teorema 3.2.4.

E 3.2.4. Demonstre que se $f: D \to \mathbb{R}$, y = f(x), tem limite L quando $x \to a$, então para qualquer $\varepsilon > 0$, existe $\delta > 0$ tal que $x,y \in V'_{\delta}(a) \cap D$ implica $|f(x) - f(y)| < \varepsilon$.

3.3 Limites laterais

Definição 3.3.1. (Limite lateral) Sejam uma função $f: D \to \mathbb{R}$, y = f(x), e a um ponto de acumulação de D. Dizemos que $L \in \mathbb{R}$ é o **limite** de f(x) com x tendendo a a **pela direita** se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que

$$x \in D, 0 < x - a < \delta \Rightarrow |f(x) - L| < \varepsilon.$$
 (3.13)

Quando isso ocorre, escrevemos

$$\lim_{x \to a^+} f(x) = L,\tag{3.14}$$

ou ainda, simplesmente, $f(x) \to L$ quando $x \to a^+$. Analogamente, escreve-se $f(x) \to L$ quando $x \to a^-$, ou $\lim_{x \to a^-} f(x) = L$ se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que

$$x \in D, 0 < a - x < \delta \Rightarrow |f(x) - L| < \varepsilon.$$
 (3.15)

Exemplo 3.3.1. Vejamos os seguintes casos:

- a) $\lim_{x \to 0^+} \frac{x}{|x|} = 1$. De fato, dado qualquer $\varepsilon > 0$ podemos escolher, por exemplo, $\delta = 1$ e, com isso, para todo $x \in \mathbb{R}$, 0 < x 0 < 1 implica $|x/|x| 1| = 0 < \varepsilon$.
- b) $\lim_{x\to 0^-}\frac{x}{|x|}=-1$. De fato, dado qualquer $\varepsilon>0$ podemos escolher, por exemplo, $\delta=1$ e, com isso, para todo $x\in\mathbb{R},\ 0<0-x<1$ implica $|x/|x|-(-1)|=|-1+1|=0<\varepsilon$.

Definição 3.3.2. Ponto de acumulação lateral Seja C um conjunto. Dizemos que $a \in C$ é **ponto de acumulação à esquerda** de C se, para todo $\varepsilon > 0$ o conjunto $(a - \varepsilon, a) \cap C$ contém infinitos pontos de C. Analogamente, dizemos que $a \in C$ é **ponto de acumulação à direita** de C se, para todo $\varepsilon > 0$ o conjunto $(a, a + \varepsilon) \cap C$ contém infinitos pontos de C.

Teorema 3.3.1. Se $f: I \to \mathbb{R}$, y = f(x), é uma função monótona e limitada, definida em um intervalo I no qual a é ponto de acumulação à esquerda (ponto de acumulação à direita), então f tem limite com $x \to a^-$ ($x \to a^+$).

Demonstração. Consideremos o caso em que f é uma função não crescente e a seja ponto de acumulação à direita. Seja, então L o supremo do conjunto formado por f(x) com $x \in I$ e x > a. Afirmamos que $f(x) \to L$ quando $x \to a^+$. De fato, dado qualquer $\varepsilon > 0$, existe $\delta > 0$ tal que $L - \epsilon < f(a + \delta) \le L$. Agora, como f é não crescente, para todo $x \in I$, $0 < x - a < \delta$, temos $L - \epsilon < f(a + \delta) \le f(x) \le L$ e, portanto, $|f(x) - L| < \varepsilon$. Os outros casos são análogos e deixados para o leitor (veja, também, Exercício 3.3.1).

Exercícios

E 3.3.1. Demonstre o Teorema 3.3.1 para o caso de uma função crescente e a ponto de acumulação à esquerda.

3.4 Limites no infinito e limites infinitos

Definição 3.4.1. (Limites infinitos) Sejam $f: D \to \mathbb{R}$, y = f(x), e a um ponto de acumulação de D. Dizemos que o limite de f(x) é $+\infty$ quando $x \to a$ se, para todo k > 0 existe $\delta > 0$ tal que para todo $x \in D$, $0 < |x - a| < \delta$ temos f(x) > k. Analogamente, dizemos que o limite de f(x) é

 $-\infty$ quando $x \to a$ se, para todo k > 0 existe $\delta > 0$ tal que para todo $x \in D$, $0 < |x - a| < \delta$ temos f(x) < -k. Nestes casos escrevemos

$$\lim_{x \to a} f(x) = +\infty \qquad \text{ou} \qquad \lim_{x \to a} f(x) = -\infty, \tag{3.16}$$

respectivamente.

Exemplo 3.4.1. Vejamos os seguintes casos:

- a) $\lim_{x\to 0} 1/|x| = +\infty$. De fato, dado k > 0 basta tomarmos $\delta = 1/k$. Com isso, $0 < |x-0| < \delta$ implica |x| < 1/k e, portanto, 1/|x| > k, i.e. |1/|x| 0| > k.
- b) Seja $f:(-\infty,0)\to\mathbb{R},\ y=f(x):=1/x.$ Neste caso, $\lim_{x\to 0}f(x)=-\infty.$ Deixamos a verificação para o leitor.

Definição 3.4.2. (Limite no infinito) Seja $f: D \to \mathbb{R}$, y = f(x). Quando D é ilimitado superiormente dizemos que f(x) tende a L quando $x \to +\infty$ se, para todo $\varepsilon > 0$ existe k > 0 tal que x > k implica $|f(x) - L| < \varepsilon$. Analogamente, quando D é ilimitado inferiormente dizemos que f(x) tende a L quando $x \to -\infty$ se, para todo $\varepsilon > 0$ existe k > 0 tal que x < -k implica $|f(x) - L| < \varepsilon$. Nestes casos escrevemos

$$\lim_{x \to +\infty} f(x) = L \quad \text{ou} \quad \lim_{x \to -\infty} f(x) = L, \tag{3.17}$$

respectivamente.

Exemplo 3.4.2. Vejamos os sequintes casos:

- a) $\lim_{x\to\infty} 1/x = 0$. De fato, dado $\varepsilon > 0$ escolhemos $\delta = 1/\varepsilon$. Com isso, $x > \delta$ implica $0 < 1/x < 1/\delta = \varepsilon$ e, portanto, $|1/x 0| < \varepsilon$.
- b) $\lim_{x\to-\infty} 1/x = 0$. Caso análogo ao anterior, verifique!

Observação 3.4.1. Observe que definições análogas às 3.3.1, 3.4.1 e 3.4.2 se aplicam para os casos:

$$\lim_{x \to a^{+/-}} f(x) = \pm/\mp \infty \qquad ou \qquad \lim_{x \to \pm \infty} f(x) = L. \tag{3.18}$$

Também, consideramos definições análogas para os casos:

$$\lim_{x \to a^{+/-}} f(x) = L^{\pm/\mp} \qquad ou \qquad \lim_{x \to +/-\infty} f(x) = L^{\pm/\mp}. \tag{3.19}$$

Teorema 3.4.1. Toda função monótona e limitada superiormente (inferiormente), cujo domínio contenha $[c, +\infty)$ $((\infty, c])$, possui limite quando $x \to +\infty$ $(x \to -\infty)$.

Demonstração. Consideremos o caso de $f:[c,+\infty)\to\mathbb{R},\ y=f(x)$, função não decrescente e limitada superiormente. Seja, então L o supremo do conjunto imagem de f. Mostraremos que $f(x)\to L$ quando $x\to+\infty$. De fato, dado $\varepsilon>0$ existe k>0 tal que $L-\varepsilon< f(k)\le L$. Agora, como f é não decrescente, para todo x>k temos $L-\varepsilon< f(k)< f(x)\le k$ e, portanto, $|f(x)-L|<\varepsilon$. Isto demostra o caso considerado e deixamos para o leitor a verificação dos demais (veja, também, Exercício 3.4.1).

Exercícios

E 3.4.1.) Demonstre o Teorema 3.4.1 para o caso de uma função decrescente e limitada inferiormente.

Capítulo 4

Continuidade

4.1 Função contínua

Definição 4.1.1. (Continuidade) Sejam $f: D \to \mathbb{R}$, y = f(x), e a um ponto de acumulação de D. Dizemos que f é **contínua** no ponto a se as seguintes condições são satisfeitas:

- a) $a \in D$.
- b) existe o limite de f(x) com $x \to a$.
- c) $f(x) \to f(a)$ quando $x \to a$.

Ainda, dizemos que f é uma **função contínua** (ou, simplesmente, contínua) quando f é contínua em todos os pontos de seu domínio.

Exemplo 4.1.1. Vejamos os seguintes casos:

- a) A função f(x) = x 1 é contínua em todo o seu domínio.
- b) A função $g(x) = \frac{x^2 1}{x + 1}$ é **descontínua** (i.e., não contínua) no ponto x = -1, pois este não é um ponto no domínio da função.
- c) A função

$$h(x) = \begin{cases} \frac{x^2 - 1}{x + 1}, & x \neq -1, \\ 1, & x = -1 \end{cases}$$
 (4.1)

 \acute{e} descontínua no ponto x=-1, pois

$$\lim_{x \to -1} h(x) = -2 \neq 1 = h(-1). \tag{4.2}$$

Teorema 4.1.1. Se f e g são funções contínuas no ponto x=a, então são contínuas nestes pontos as funções: (a) f+g, (b) kf, $\forall k \in \mathbb{R}$, (c) f/g, dado que $g(a) \neq 0$.

Demonstração. Decorre imediatamente da definição de função contínua (Definição 4.1.1) e do Teorema 3.2.3.

Teorema 4.1.2. (Continuidade da função composta) Sejam dadas funções $f: D_f \to \mathbb{R}$ e $g: D_g \to \mathbb{R}$ com $g(D_g) \subset D_f$. Se g é contínua no ponto g(a), então a função composta $f \circ g$ é contínua no ponto g(a), então a função composta $f \circ g$ é contínua no ponto g(a).

Demonstração. É claro do enunciado que a pertence ao domínio de $f \circ g$. Como $(f \circ g)(a) = f(g(a))$, nos resta mostrar que $(f \circ g)(x)$ tende para f(g(a)) quando $x \to a$. Seja, então, $\varepsilon > 0$. Pela continuidade da f no ponto g(a), tomemos $\delta' > 0$ tal que $g \in V'_{\delta'}(g(a)) \cap D_f$ implica $|f(g) - f(g(a))| < \varepsilon$. Agora, pela continuidade da g no ponto g(a), tomemos g(a) tal que g(a) de g(a) de

Definição 4.1.2. (Continuidade lateral) Dizemos que f é **contínua à direta** (**contínua à esquerda**) no ponto a, se está definida neste ponto, onde seu limite à direta (à esquerda) é f(a).

Exemplo 4.1.2. Vejamos os seguintes casos:

a) A função

$$f_1(x) = \begin{cases} x/|x| & , x \neq 0, \\ -1 & , x = 0 \end{cases}$$
 (4.3)

é contínua à esquerda no ponto x=0. De fato, $f_1(0)=-1$ e dado qualquer $\epsilon>0$ podemos escolher, por exemplo, $\delta=\epsilon$ tal que $0<0-x<\delta$ implica $|f_1(x)-(-1)|=|-1-(-1)|=0<\epsilon$.

b) A função

$$f_2(x) = \begin{cases} x/|x| & , x \neq 0, \\ 1 & , x = 0 \end{cases}$$
 (4.4)

é contínua à direta no ponto x = 0. Verifique!

Exercícios

- **E 4.1.1.** Mostre que se $f: D \to \mathbb{R}$ é uma função contínua no ponto a e f(a) > 0, então existe $\delta > 0$ tal que $x \in V_{\delta}(a) \cap D$ implica f(x) > 0. Além disso, se removermos a hipótese de que f seja contínua no ponto a essa afirmação continua verdadeira? Justifique sua resposta.
- **E 4.1.2.** Mostre que qualquer $f: D \to \mathbb{R}$ é contínua em no ponto a se, e somente se, f é contínua à esquerda e à direita neste ponto.

4.2 Propriedades de funções contínuas

Teorema 4.2.1. Teorema do valor intermediário Seja $f: D \to \mathbb{R}$ uma função contínua no intervalo fechado $I = [a, b] \subset D$, com $f(a) \neq f(b)$. Então, dado qualquer d compreendido entre f(a) e f(b) (inclusive), existe $c \in I$ tal que f(c) = d.

Demonstração. 1. Primeiramente, notamos que o resultado é imediato para os casos de d = f(a) e de d = f(b).

2. Suponhamos f(a) < 0 < f(b) e, mostraremos que se d = 0, então existe $c \in (a, b)$ tal que f(c) = d. Para tanto, usaremos o método da bisseção. Seja $I^{(1)} := [a^{(1)}, b^{(1)}] = [a, b], l^{(1)}$ o comprimento do intervalo $I^{(1)} \in p^{(1)}$ o ponto médio deste. Se $f(p^{(1)}) = 0$ temos demonstrado o que queríamos. Agora, se $f(p^{(1)}) > 0$, escolhemos $I^{(2)} = [a, p^{(1)}]$. Entretanto, se $f(p^{(2)}) < 0$, escolhemos $I^{(2)} = [p^{(1)}, b]$. Em qualquer um dos casos $I^{(2)} := [a^{(2)}, b^{(2)}] \subset I^{(1)}, l^{(2)} = l^{(1)}/2 \text{ e } f(a^{(2)}) < 0 < f(b^{(2)}).$ Com isso, repetimos o procedimento de bisseção para o intervalo $I^{(2)}$ com $p^{(2)}$ o ponto médio deste. Se $f(p^{(2)}) = 0$ temos o resultado desejado, caso contrário escolhemos o intervalo fechado $I^{(3)} := [a^{(3)}, b^{(3)}] \subset I^{(2)}$, $l^{(3)} = l^{(2)}/2$ e $f(a^{(3)}) < 0 < f(b^{(3)})$. No pior dos casos, repetimos infinitamente este procedimento e, com isso, temos construído uma sequência de intervalos fechados $I^{(1)} \subset I^{(2)} \subset I^{(3)} \subset \cdots \subset I^{(n)} \subset \cdots$ cujos comprimentos tendem a zero. Logo, pelo Teorema dos intervalos encaixados $I^{(1)} \cap I^{(2)} \cap I^{(3)} \cap \cdots \cap I^{(n)} \cap \cdots = \{c\} \subset I$, o qual é o limite da sequência $a^{(n)}$ e da $b^{(n)}$. Daí, da continuidade da f e do fato de $f(a^{(n)}) < 0 < f(b^{(n)})$ temos

$$0 \ge \lim f(a^{(n)}) = f(c) = \lim f(b^{(n)}) \ge 0, \tag{4.5}$$

donde segue que f(c) = 0, como queríamos demonstrar.

- 3. Suponhamos que f(a) < f(b) e $d \in (f(a), f(b))$. Neste caso, tomamos g(x) = f(x) d e, portanto, temos g(a) < 0 < g(b). Pelo demonstrado no item 2., existe $c \in [a, b]$ tal que g(c) = 0 e, por consequência, f(c) = d.
- 4. No caso de f(a) > f(b), tomamos g(x) = -f(x), de forma que g(a) < g(b). Então, pelo item 3., temos o resultado desejado.

Lema 4.2.1. Toda função contínua $f: I = [a, b] \to \mathbb{R}$ é limitada.

Demonstração. Demonstraremos por absurdo. Seja $f: I = [a,b] \to \mathbb{R}$ uma função contínua não limitada. Denotemos $I^{(1)} := I$. Como f é não limitada em $I^{(1)}$, temos que f é não limitada em pelo menos uma das metades do intervalo $I^{(1)}$. Seja, então $I^{(2)}$ uma das metades de $I^{(1)}$ na qual f é não limitada. Sucessivamente, construímos uma sequência de intervalos fechados $I^{(n)}$ nos quais f é ilimitada e cujos comprimentos tendem a zero. Então, pelo Teorema dos intervalos encaixados, existe um $c \in I^{(1)} \cap I^{(2)} \cap I^{(3)} \cap \cdots \cap I^{(n)} \cap \cdots \subset I$. Agora, pela continuidade de f, temos que $f(x) \to f(c)$ quando $x \to c$ e, portanto, existe $\delta > 0$ tal que $x \in V_{\delta}(c)$ implica f(c) - 1 < f(x) < f(c) + 1, i.e. f é limitada no intervalo $(c - \delta, c + \delta)$. Mas, como $I^{(n)} \subset (c - \delta, c + \delta)$ para n suficientemente grande, temos f limitada em $I^{(n)}$, o que é um absurdo. \square

Teorema 4.2.2. Toda função contínua $f: I = [a, b] \to \mathbb{R}$ tem valor máximo e mínimo.

Demonstração. Vamos, primeiramente, mostrar que f tem valor máximo em I. Por absurdo, seja $f:I=[a,b]\to\mathbb{R}$ função contínua, M seu supremo (pelo Lema 4.2.1, f(I) é um conjunto limitado) e f(x)< M para todo $x\in I$. Então, 1/(M-f(x)) é uma função positiva e contínua em I. Seja, então, M'>0 seu supremo (novamente garantido pelo Lema 4.2.1) e, então, para todo $x\in I$ temos

$$\frac{1}{M - f(x)} \le M' \Rightarrow f(x) \le M - \frac{1}{M'},\tag{4.6}$$

o que é um absurdo, pois isto contradiz o fato de M ser o supremo de f(I). Logo, existe algum $x \in I$ tal que f(x) = M. Analogamente, seja m o ínfimo de f(I). Então, -m é o supremo da função g(x) = -f(x) no intervalo I.

Pelo que acabamos de demonstrar, existe $x \in I$ tal que g(x) = -m e, por consequência, f(x) = m.

Teorema 4.2.3. Se $f: I = [a, b] \to \mathbb{R}$ é uma função contínua, então f(I) é um intervalo limitado e fechado.

Demonstração. Do Teorema 4.2.2 sejam m e M os valores mínimo e máximo de f, respectivamente. Logo, $f(I) \subset [m, M]$. Agora, sejam $c,d \in I$ tal que f(c) = m e f(d) = M. Pelo Teorema do valor intermediário, dado qualquer $d \in [m, M]$ existe $x \in I$ tal que f(x) = d, i.e. $d \in f(I)$. Portanto, $[m, M] \subset f(I)$.

Exercícios

E 4.2.1. Prove que todo o polinômio de grau ímpar $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ tem no mínimo uma raiz.

E 4.2.2. Dê um exemplo de:

- a) uma função contínua não limitada $f:I\to\mathbb{R}$ com I um intervalo limitado.
- b) uma função contínua $f:I\to\mathbb{R}$ definida em um intervalo ilimitado I no qual f tem valores mínimo e máximo.

4.3 Continuidade uniforme

Definição 4.3.1. (Continuidade uniforme) Uma função $f: D \to \mathbb{R}, y = f(x)$, é dita ser uniformemente contínua se, dado qualquer $\varepsilon > 0$ existe $\delta > 0$ tal que

$$x, y \in D, |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$$
 (4.7)

Exemplo 4.3.1. Vejamos os sequintes casos:

a) $f(x) = \sqrt{x}$ é uniformemente contínua. De fato, consideremos x,y > 0 e $|x-y| < \delta$ para $\delta > 0$ arbitrário. Então, se $y < \delta$ temos $x < y + \delta < 2\delta$ e

$$|\sqrt{x} - \sqrt{y}| \le \sqrt{x} + \sqrt{y} < \sqrt{2\delta} + \sqrt{\delta} < 3\sqrt{\delta}. \tag{4.8}$$

Agora, se $y >= \delta$, então

$$|\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} < \frac{\delta}{\sqrt{y}} < \frac{\delta}{\sqrt{\delta}} = \sqrt{\delta}. \tag{4.9}$$

Logo, em qualquer um dos casos $|\sqrt{x}-\sqrt{y}|<3\sqrt{\delta}$. Por tanto, dado $\varepsilon>0$, podemos escolher $\delta=\varepsilon^2/9$ de forma que

$$|x,y>0, |x-y|<\delta \Rightarrow |\sqrt{x}-\sqrt{y}|<\epsilon,$$
 (4.10)

o que conclui o resultado.

b) A função f(x) = 1/x não é uniformemente contínua. De fato, basta observar que, para qualquer escolha de $\delta > 0$, temos

$$\left| \frac{1}{x} - \frac{1}{x+\delta} \right| = \left| \frac{\delta}{x^2 + \delta x} \right| \to +\infty \quad com \quad x \to 0. \tag{4.11}$$

Teorema 4.3.1. (de Heine) Se $f:[a,b]\to\mathbb{R}$ é contínua em [a,b]=:I, então f é uniformemente contínua.

Demonstração. Suponhamos, por contradição, que f não é uniformemente contínua. Então, para algum $\epsilon > 0$ existem $x_n, y_n \in I$ tal que

$$|x_n - y_n| < \frac{1}{n}$$
 e $|f(x_n) - f(y_n)| > \epsilon$, (4.12)

para todo $n \in \mathbb{N}$. Agora, como $(x_n)_n$ é uma sequência limitada, pelo teorema de Bolzano-Weierstrass ela possui uma subsequência convergente. Seja, então, $(x_{n'})_{n'}$ uma tal subsequência e c o seu limite. Como $x_{n'} \in [a,b]$ para todo n', temos $c \in [a,b]$. Além disso, como $|x_{n'} - y_{n'}| \to 0$, temos $y_{n'} \to c$. Também, pela continuidade de f, temos $f(x_{n'}) \to f(c)$ e $f(y_{n'}) \to f(c)$. Logo, $|f(x_{n'}) - f(y_{n'})| \to 0$, o que é um absurdo.

Exercícios

E 4.3.1. Mostre que se f é uniformemente contínua em (a, b), então existem os limites $\lim_{x\to a+} f(x)$ e $\lim_{x\to b^-} f(x)$.

Capítulo 5

Diferenciação

5.1 Derivada

Definição 5.1.1. (Derivada) Dizemos que uma função $f: D \to \mathbb{R}, y = f(x)$, é **derivável** (ou **diferenciável**) no ponto $x = x_0 \in D$, se existe o limite da razão fundamental

$$\frac{f(x) - f(x_0)}{x - x_0} \tag{5.1}$$

quando $x \to x_0$. Neste caso, o valor do limite é chamado de derivada da função f no ponto x_0 e denotado por $f'(x_0)$, $Df(x_0)$ ou $\frac{df}{dx}(x_0)$.

Exemplo 5.1.1. Para $f(x) = \sqrt{x} \ temos \ f'(2) = 1/(2\sqrt{2})$. De fato,

$$\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2} = \lim_{x \to 2} \frac{x - 2}{(x - 2)(\sqrt{x} + \sqrt{2})} = \frac{1}{2\sqrt{2}}.$$
 (5.2)

Observação 5.1.1. Observemos que

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 (5.3)

usando a mudança de variável $x = x_0 + h$.

Definição 5.1.2. (Função derivada) Dizemos que $f: D \to \mathbb{R}$ é uma **função derivável** em todo o seu domínio (ou em toda parte) quando f é derivável em todos os pontos de seu domínio. Neste caso, definição a função derivada de f por $f': D \to \mathbb{R}$, y = f'(x), com

$$f'(x) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$
 (5.4)

Observação 5.1.2. A derivada lateral à direita ou à esquerda são definidas a partir da noção de limite lateral por

$$D_{+}f(x_{0}) = \lim_{h \to 0^{+}} \frac{f(x_{0} + h) - f(x_{0})}{h}$$
(5.5)

e

$$D_{-}f(x_{0}) = \lim_{h \to 0^{-}} \frac{f(x_{0} + h) - f(x_{0})}{h},$$
(5.6)

respectivamente. Além disso, é imediato que $Df(x_0)$ existe se, e somente se, existem e são iguais as derivadas laterais $D_+f(x_0)$ e $D_-f(x_0)$.

Teorema 5.1.1. Toda função derivável num ponto x_0 é contínua nesse ponto.

Demonstração. Seja $f: D \to \mathbb{R}$, y = f(x), uma função derivável no ponto $x_0 \in D$. Vamos mostrar que $f(x) - f(x_0) \to 0$ quando $x \to x_0$. De fato, para $x \neq x_0$ temos

$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0).$$
 (5.7)

Agora,

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \in \mathbb{R} \quad e \quad \lim_{x \to x_0} x - x_0 = 0, \tag{5.8}$$

$$\log_{10} f(x) - f(x_0) \to 0$$
 quando $x \to x_0$.

Definição 5.1.3. (Diferencial) A diferencial de uma função derivável f no ponto x_0 é o produto $dy := f'(x_0)\Delta x$, onde $\Delta x = x - x_0$.

Observação 5.1.3. De sorte que o diferencial da função identidade y = x é $dx = \Delta x$ e, portanto, o diferencial de uma dada função y = f(x) é $dy = f'(x_0)dx$ e, também $f'(x_0) = dy/dx$.

Exercícios

E 5.1.1. Dê um exemplo de uma função contínua num ponto x_0 e não derivável neste mesmo ponto. Justifique sua resposta.

E 5.1.2. Mostre, a partir da definição da derivada de uma função (Definição 5.1.2) que

1.
$$(x^n)' = nx^{n-1}, n \in \mathbb{N}$$
.

2.
$$(1/x)' = -1/x^2$$
.

3.
$$(\sqrt{x})' = 1/(2\sqrt{x})$$
.

5.2 Regras operacionais

Teorema 5.2.1. Regras operacionais Se $f: D \to \mathbb{R}$ e $g: D \to \mathbb{R}$ são funções diferenciáveis no ponto $x \in D$, então também são deriváveis no mesmo ponto as funções f+g, kf, fg e, no caso de $g(x) \neq 0$, f/g. Além disso, temos:

$$(f+g)'(x) = f'(x) + g'(x), (5.9)$$

$$(kf)'(x) = kf'(x),$$
 (5.10)

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x), (5.11)$$

$$(f/g)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}, \text{ se } g(x) \neq 0.$$
 (5.12)

Demonstração. Deixaremos como exercício a demonstração para as funções f+g e kf (veja, Exercício 5.2.1). Para o caso de fg, basta observar que:

$$\lim_{h \to 0} \frac{(fg)(x+h) - (fg)(x)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h}$$
(5.13)

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} g(x+h) + \lim_{h \to 0} f(x) \frac{g(x+h) - g(x)}{h}$$
 (5.15)

$$= f'(x)g(x) + f(x)g'(x). (5.16)$$

Agora, para mostrar que f/g é diferenciável no ponto $x \in D$ basta mostrar para o caso de $f \equiv 1$. De fato,

$$\lim_{h \to 0} \frac{1}{h} \left(\frac{1}{g(x+h)} - \frac{1}{g(x)} \right) = \lim_{h \to 0} -\frac{g(x+h) - g(x)}{h} \frac{1}{g(x+h)g(x)}$$
 (5.17)

$$= -\frac{g'(x)}{g^2(x)}. (5.18)$$

Teorema 5.2.2. (Regra da cadeia) Sejam $g: D_g \to \mathbb{R}$ derivável no ponto $x \in D_g$, $f: D_f \to \mathbb{R}$ com $g(D_g) \subset D_f$ e derivável no ponto y = g(x). Nestas condições, a função composta $f \circ g$ é diferenciável no ponto $x \in (f \circ g)'(x) = f'(g(x))g'(x)$.

Demonstração. Como f é derivável em y = g(x), temos

$$\frac{f(y+k) - f(y)}{k} = f'(y) + \eta(k), \tag{5.19}$$

com $\eta(k) \to 0$ quando $k \to 0$. Rearranjando temos

$$f(y+k) - f(y) = k[f'(y) + \eta(k)]$$
(5.20)

inclusive para k=0. Agora, para todo h suficientemente pequeno, pomos k=g(x+h)-g(x) e, então

$$\frac{f(g(x+h)) - f(g(x))}{h} = \frac{f(y+k) - f(y)}{h}$$
 (5.21)

$$=\frac{[f'(y)+\eta(k)]k}{h}\tag{5.22}$$

$$= [f'(y) + eta(k)] \frac{g(x+h) - g(x)}{h}$$
 (5.23)

$$\to f'(g(x))g'(x), \quad \text{com } h \to 0. \tag{5.24}$$

Teorema 5.2.3. (Derivada da função inversa) Seja $f: I = (a,b) \to \mathbb{R}$, y = f(x), uma função derivável em I com f'(x) sempre positiva ou sempre negativa. Então, sua inversa $x = f^{-1}(y)$ é derivável no intervalo J = f(I) e $(f^{-1})'(y) = 1/f'(g(x))$.

Demonstração. Sejam $y,y_0 \in J$, $x = f^{-1}(y)$ e $x_0 = f^{-1}(y_0)$. Notemos que

$$\frac{f^{-1}(y) - f^{-1}g(y_0)}{y - y_0} = \frac{x - x_0}{f(x) - f(x_0)} = \left[\frac{f(x) - f(x_0)}{x - x_0}\right]^{-1}.$$
 (5.25)

Agora, basta observar que quando $y \to y_0$, temos $x \to x_0$ pela continuidade da f^{-1} . Logo, tomando o limite nas expressões acima, temos o resultado desejado.

Exercícios

E 5.2.1. Mostre que se $f,g:D\to\mathbb{R}$ são funções diferenciáveis num ponto $x\in D$, então também são as funções f+g e kf, sendo:

$$(f+g)'(x) = f'(x) + g'(x)$$
 e $(kf)'(x) = kf'(x)$. (5.26)

5.3 Extremos e o teorema do valor médio

Teorema 5.3.1. Se $f: D \to \mathbb{R}$ é derivável num ponto $c \in D$ no qual ela assume valor máximo ou mínimo local, então f'(c) = 0.

Demonstração. No caso de c ser ponto de mínimo local de f, então existe $\delta > 0$ tal que $f(c+h) - f(c) \ge 0$ para todo $|h| < \delta$. Logo, temos

$$\lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} \ge 0 \quad \text{e} \quad \lim_{h \to 0^-} \frac{f(c+h) - f(c)}{h} \le 0.$$
 (5.27)

Mas, então, como f é diferenciável no ponto c, necessariamente f'(c) = 0. Um raciocínio análogo mostra o resultado para o caso de c ser ponto de máximo local (veja o Exercício 5.3.1.

Teorema 5.3.2. (de Rolle) Se $f : [a, b] \to \mathbb{R}$ é uma função contínua em todo o seu domínio, derivável no intervalo aberto (a, b) e f(a) = f(b), então existe $c \in (a, b)$ tal que f'(c) = 0.

Demonstração. Se f é constante, então f'(c) = 0 para todo $c \in (a, b)$. Caso contrário, f terá que assumir valores maiores ou menores que f(a) = f(b). Como f é contínua no intervalo fechado [a, b] ela assumirá valor máximo ou mínimo em algum ponto $c \in (a, b)$ (veja Teorema 4.2.2). Então, pelo Teorema 5.3.1, temos f'(c) = 0.

Teorema 5.3.3. (do valor médio) Se $f:[a,b] \to \mathbb{R}$ é uma função contínua em todo o seu domínio e derivável no intervalo (a,b), então existe $c \in (a,b)$ tal que

$$\frac{f(b) - f(a)}{b - a} = f'(c). \tag{5.28}$$

Demonstração. Seja

$$g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$
 (5.29)

Observamos que g é contínua em [a,b], derivável em (a,b) e g(a)=g(b)=0. Logo, pelo Teorema de Rolle, temos que existe $c \in (a,b)$ tal que g'(c)=0, mas daí f'(c) satisfaz o resultado desejado.

Exercícios

- **E 5.3.1.** Mostre que se $f: D \to \mathbb{R}$ é derivável num ponto $c \in D$ no qual ela assume valor máximo local, então f'(c) = 0.
- **E 5.3.2.** Use o teorema do valor médio para mostrar que se $f:[a,b] \to \mathbb{R}$ é contínua em todo o seu domínio e f'(x) > 0 para todo $x \in (a,b)$, então f é uma função crescente.
- **E 5.3.3.** Mostre que se $f:[a,b] \to \mathbb{R}$ é diferenciável em (a,b) e f' é limitada em (a,b), então f é uniformemente contínua.

Capítulo 6

Integração

6.1 Integral de Riemann

Definição 6.1.1. (Partição de um intervalo) Uma **partição** P de um intervalo [a,b] é um conjunto ordenado da forma

$$P([a,b]) = \{a = x_0 < x_1 < x_2 < \dots < x_n = b\}.$$
(6.1)

O valor $|P| = \max_{1 \le i \le n} \Delta x_i$, $\Delta x_i = x_i - x_{i-1}$, é chamado de **norma da partição**.

Definição 6.1.2. (Refinamento de uma partição) Um refinamento de uma partição $P_n([a,b]) := \{a = x_0, x_1, x_2, \dots, x_n = b\}$ é uma partição $P_m([a,b])$ com m > n tal que $P_n([a,b]) \subset P_m([a,b])$.

Definição 6.1.3. (Integral de Riemann) A **integral de Riemann** de uma função $f:D\to\mathbb{R},\ y=f(x),$ num intervalo $[a,b]\subset D,$ quando existe, é o número I tal que

$$I = \lim_{n \to \infty} \sum_{i=1}^{n} f(\xi_i) \Delta x_i, \tag{6.2}$$

onde arbitrariamente $\xi_i \in [x_{i-1}, x_i]$ e $\Delta x_i = x_i - x_{i-1}$ são tomados considerando todas as possíveis partições $P([a, b]) = \{a = x_0, x_1, x_2, \dots, x_n = b\}$, com $|P| \to 0$ quando $n \to 0$. Quando um tal I existe, dizemos que f é integrável em [a, b].

Observação 6.1.1. As somas parciais

$$S_n = \sum_{i=1}^n f(\xi_i) \Delta x_i \tag{6.3}$$

29

que aparecem na definição da integral de Riemann são chamadas de **somas** de Riemann.

6.2 Integrabilidade de funções contínuas

Teorema 6.2.1. Toda função $f:[a,b] \to \mathbb{R}$ contínua em [a,b] é integrável.

Demonstração. Seja dado $\varepsilon > 0$. Pelo teorema de Heine, f é uniformemente contínua e, portanto, existe $\delta > 0$ tal que

$$x, y \in I := [a, b], |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.$$
 (6.4)

Seja, agora, S_n uma sequência arbitrária de somas de Riemann com norma tendo a zero quando $n \to \infty$, i.e.

$$S_n = \sum_{i=1}^n f(\xi_i) \Delta x_i, \tag{6.5}$$

com $\max_{1 \leq i \leq n} \Delta x_i \to 0$ quando $n \to \infty$. Queremos provar que existe $I \in \mathbb{R}$ tal que

$$I = \lim_{n \to \infty} S_n \tag{6.6}$$

independentemente da escolha dos pontos x_i e ξ_i . Para tanto, iremos usar o critério de convergência de Cauchy. Para tanto, sejam

$$S_n := \sum_{i=1}^n f(\xi_i) \Delta x_i \tag{6.7}$$

a soma de Riemann para uma dada partição $P_n := \{a = x_0 < x_1 < x_2 < \cdots < x_n = b\}$ com $|P_n| < \delta$ e

$$S_M := \sum_{i=1}^{M} f(\eta_i) \Delta y_i \tag{6.8}$$

a soma de Riemann para um refinamento $P_M:=\{a=y_0< y_1< y_2< \dots< y_M=b\}$ de P_n . Como P_M é um refinamento de P_n , cada subintervalo $[x_{i-1},x_i]$ é a união de certos subintervalos $[y_{r-1},y_r],\dots,[y_{s-1},y_s]$ e, portanto $\Delta x_i=\Delta y_r+\dots+\Delta y_s$. Ainda, a diferença S_n-S_M conterá, então, termos da forma

$$f(\xi_i) \sum_{j=r}^{s} f(\eta_i) \Delta y_j = \sum_{j=r}^{s} [f(\xi_i) - f(\eta_j)] \delta y_j.$$
 (6.9)

Agora, como $|\xi_i - \eta_j| < \delta$, temos $|f(\xi_i) - f(\eta_j)| < \varepsilon$ e, portanto

$$\left| f(\xi_i) - \sum_{j=r}^s f(\eta_j) \Delta y_j \right| < \varepsilon \sum_{j=r}^s \Delta y_j = \varepsilon \Delta x_i.$$
 (6.10)

Estendendo este resultado, temos

$$|S_n - S_M| \varepsilon \sum_{i=1}^n \Delta x_i = \varepsilon(b-a).$$
 (6.11)

Por fim, sejam S_n e S_m somas de Riemann correspondentes às partições P_n e P_m , respectivamente, com $|P_n| < \delta$ e $|P_m| < \delta$. Ainda, seja P_M um refinamento de ambas partições. Então

$$|S_n - S_m| \le |S_n - S_M| + |S_M - S_m| < 2\varepsilon(b - a).$$
 (6.12)

Isto mostra que, dada uma sequência arbitrária de partições P_n com $|P_n| \to 0$ quando $n \to \infty$, então o limite das somas de Riemann S_n destas partições existe quando $n \to \infty$. Falta mostrar que este limite é único.

Sejam, agora, S_n e T_n diferentes sequências de somas de Riemann cujas partições têm norma tendendo a zero quando $n \to \infty$. Então, por exemplo, a sequência

$$S_1, T_1, S_2, T_2, S_3, T_3, \dots, S_n, T_n, \dots$$
 (6.13)

também é uma sequência de somas de Riemann cujas partições têm norma tendo a zero quando $n \to \infty$. Logo, pelo que mostramos acima, o limite desta sequência existe. Agora, como $(S_n)_n$ e $(T_n)_n$ são subsequências destas, elas convergem para o mesmo limite.

Exercícios

E 6.2.1. Mostre que se $f:[a,b] \to \mathbb{R}$ é integrável em [a,b], então

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx,$$
 (6.14)

para qualquer $c \in [a, b]$.

6.3 Teorema fundamental do cálculo

Teorema 6.3.1. (Teorema da média) Sejam $f:[a,b]=:I\to\mathbb{R},\ y=f(x),$ contínua em I e m e M os valores mínimo e máximo de f em I, respectivamente. Então, existe um número $c\in i$ tal que

$$\int_{a}^{b} f(x) dx = f(c)(b - a). \tag{6.15}$$

Demonstração. Observemos que toda a soma de Riemann satisfaz

$$m(b-a) \le \sum_{i=1}^{n} f(\xi_i) \Delta x_i \le M(b-a).$$
 (6.16)

Passando ao limite quando $n \to \infty$, temos

$$m(b-a) \le \int_a^b f(x) \, dx \le M(b-a),$$
 (6.17)

ou, equivalentemente, quando $a \neq b$,

$$m \le \frac{1}{b-a} \int_a^b f(x) \, dx \le M. \tag{6.18}$$

Agora, pelo teorema do valor intermediário (Teorema 4.2.1), existe $c \in I$ tal que

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx.$$
 (6.19)

Teorema 6.3.2. (Teorema fundamental do cálculo) Seja $f:[a,b]=:I\to\mathbb{R},$ y=f(x), contínua em I. Então, a função $F:(a,b)\to\mathbb{R}$ definida por

$$F(x) = \int_{a}^{x} f(t) dt \qquad (6.20)$$

é derivável em (a, b) e F'(x) = f(x).

Demonstração. Observemos que

$$F(x+h) - F(x) = \int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt = \int_{x}^{x+h} f(t) dt.$$
 (6.21)

Agora, do teorema da média (Teorema 6.3.1), existe $\xi \in [x, x+h]$ tal que

$$\frac{F(x+h) - F(x)}{h} = f(\xi_h). \tag{6.22}$$

Logo,

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} f(\xi_h) = f(x).$$
 (6.23)

Exercícios

E 6.3.1. Seja $f:[a,b]=:I\to\mathbb{R},\,y=f(x),$ contínua em I. Então, a função $F:(a,b)\to\mathbb{R}$ definida por

$$F(x) = \int_{a}^{x} f(t) dt \qquad (6.24)$$

é derivável à direta no ponto a e à esquerda no ponto b sendo, respectivamente, F'(a+) = f(a) e F'(b-) = f(b).

Capítulo 7

Sequências e séries de funções

7.1 Sequência de funções

Definição 7.1.1. Uma sequência de funções $(f_n)_{n\in\mathbb{N}}$ é um conjunto de funções $f_n: D \to \mathbb{R}$, $y = f_n(x)$, indexadas por $n \in \mathbb{R}$. Comumente, utiliza-se a notação $(f_n(x))_{n\in\mathbb{N}}$ (ou, simplesmente, $f_n(x)$) para explicitar que trata-se de uma sequência de funções.

Observação 7.1.1. Salvo explicitado ao contrário, ao longo deste capítulo assumiremos que as funções que compõe uma dada sequência têm todas o mesmo domínio.

Exemplo 7.1.1. Vejamos os sequintes exemplos:

- a) $f_n(x) = x + 1/n$, $n \in \mathbb{N}$, é uma sequência de funções afins.
- b) $g_n(x) = x^n$ é uma sequência de polinômios.
- c) $h_n(x) = 1 + x + x^2 + \dots + x^n$ é, também, uma sequência de polinômios.

7.1.1 Convergência pontual

Definição 7.1.2. Limite pontual Diz-se que uma sequência de funções $(f_n(x))_{n\in\mathbb{R}}$, $f_n: D \to \mathbb{R}$, **converge pontualmente** (ou simplesmente) para uma função

¹Um sequência deste tipo também é chamada de série de funções, como definiremos logo adiante no texto.

 $f(x), f: D \to \mathbb{R}$, se, dado qualquer $\varepsilon > 0$, para cada $x \in D$, existe N tal que

$$n > N \Rightarrow |f_n(x) - f(x)| < \varepsilon.$$
 (7.1)

Exemplo 7.1.2. Vejamos os seguintes casos.

a) A sequência de funções $f_n(x) = x + 1/n$ converge pontualmente para a função identidade f(x) = x. De fato, sejam $\varepsilon > 0$ e x no domínio da f. Escolhendo $N > 1/\varepsilon$, temos

$$n > N \Rightarrow |f_n(x) - f(x)| = \left| x + \frac{1}{n} - x \right| = \left| \frac{1}{n} \right| < \frac{1}{N} < \varepsilon. \tag{7.2}$$

b) A sequência de funções $g_n(x) = x/n$ converge pontualmente para a função nula $f(x) \equiv 0$. De fato, sejam $\varepsilon > 0$ e x no domínio da f. Escolhendo $N > |x|/\varepsilon$, temos

$$n > N \Rightarrow \left| \frac{x}{n} - 0 \right| < \frac{|x|}{n} < \frac{|x|}{N} < \varepsilon.$$
 (7.3)

7.1.2 Convergência uniforme

Definição 7.1.3. Convergência uniforme Diz-se que uma sequência de funções $(f_n(x))_{n\in\mathbb{R}}$, $f_n:D\to\mathbb{R}$, **converge uniformemente** para uma função $f(x), f:D\to\mathbb{R}$, se, dado qualquer $\varepsilon>0$, existe N tal que

$$x \in D, n > N \Rightarrow |f_n(x) - f(x)| < \varepsilon.$$
 (7.4)

Exemplo 7.1.3. Vejamos os seguintes casos:

- a) No Exemplo 7.1.2 a), vimos que a sequência de funções $f_n(x) = x + 1/n$ é pontualmente convergente para a função f(x). Agora, observando a demonstração vemos que a convergência é também uniforme. Verifique!
- b) A sequência de funções $f_n(x) = x/n$ é pontualmente convergente para $f(x) \equiv 0$, mas não é uniformemente convergente. De fato, dado $\varepsilon > 0$ e x no domínio, escolhemos $N > |x|/\varepsilon$ e, então, temos

$$n > N \Rightarrow |f_n(x) - f(x)| = \left|\frac{x}{n} - 0\right| \le \frac{|x|}{N} < \varepsilon.$$
 (7.5)

35

Isto mostra a convergência pontual. Entretanto, por exemplo, tomemos $\varepsilon = 1$. Então, dado qualquer $n \in \mathbb{N}$ escolhemos x = 2/n. Logo, temos

$$|f_n(x) - f(x)| = \left| \frac{x}{n} \right| = \frac{x}{n} = 2 > \varepsilon. \tag{7.6}$$

Isto mostra que a convergência de $f_n \to 0$ não é uniforme.

Teorema 7.1.1. (Critério de convergência de Cauchy) Uma sequência de funções $f_n: D \to \mathbb{R}$ é uniformemente convergente para uma função $f: D \to \mathbb{R}$ se, e somente se, dado qualquer $\varepsilon > 0$, exista $N \in \mathbb{N}$ tal que

$$x \in D, \ n,m > N \Rightarrow |f_n(x) - f_m(x)| < \varepsilon.$$
 (7.7)

Demonstração. Mostraremos, separadamente, que a condição é necessária e suficiente.

a) Necessidade. Seja $\varepsilon > 0$. Por hipótese, $f_n(x) \to f(x)$ uniformemente, ou seja, existe N tal que

$$x \in D, n > N \Rightarrow |f_n(x) - f(x)| < \frac{\varepsilon}{2}.$$
 (7.8)

Logo, para este mesmo N, temos

$$x \in D, n, m > N \Rightarrow |f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f_m(x) - f(x)| < \varepsilon.$$
(7.9)

Isto mostra que (f_n) satisfaz o critério de Cauchy.

b) Suficiência. Comecemos construindo nosso candidato a limite. Para cada $x \in D$, $(f_n(x))$ é uma sequência de números reais que, pela hipótese, satisfaz o critério de Cauchy e, portanto, $f_n(x)$ converge quando $n \to \infty$. Seja, então, $f: D \to \mathbb{R}$ a função tal que f(x) é o limite de $f_n(x)$ para cada $x \in D$. Mostraremos, agora, que f_n converge uniformemente para f. Seja dado $\varepsilon > 0$. Por hipótese, existe N tal que

$$x \in D, \ n,m > N \Rightarrow |f_n(x) - f_m(x)| < \frac{\varepsilon}{2}.$$
 (7.10)

Agora, observemos que $f_n(x) - f_m(x) \to f_n(x) - f(x)$ pontualmente quando $m \to \infty$. Logo, passando ao limite na afirmação (7.10), temos

$$x \in D, n > N \Rightarrow |f_n(x) - f(x)| \le \frac{\varepsilon}{2} < \varepsilon,$$
 (7.11)

o que mostra a convergência uniforme.

Exemplo 7.1.4. No exemplo anterior (Exemplo 7.1.3 a)) vimos que $f_n(x) = x + 1/n$ converge uniformemente para f(x) = x. Aqui, mostraremos que f_n satisfaz o critério de Cauchy para sequência de funções. Seja $\varepsilon > 0$. Observemos que $1/n \to 0$ quando $n \to \infty$ e, portanto, satisfaz o critério de Cauchy para sequências de números. A saber, existe N tal que

$$n, m > N \Rightarrow \left| \frac{1}{n} - \frac{1}{m} \right| < \varepsilon.$$
 (7.12)

Daí, temos também que

$$x \in \mathbb{R}, \ n,m > n \Rightarrow |f_n(x) - f_m(x)| = \left| x + \frac{1}{n} - x - \frac{1}{m} \right| = \left| \frac{1}{n} - \frac{1}{m} \right| < \varepsilon.$$
 (7.13)

O que concluí que f_n satisfaz o critério de Cauchy.

Exercícios

- **E 7.1.1.** Mostre que a sequência de funções $f_n : \mathbb{R} \setminus \{0\}$, $f_n(x) = 1/(nx)$, converge pontualmente para a função nula $f(x) \equiv 0$.
- **E 7.1.2.** Mostre que a sequência de funções $f_n(x) = \cos(x/n)$ converge pontualmente para função constante $f(x) \equiv 1$.
- **E 7.1.3.** Mostre que a sequência de funções $f_n(x) = e^{-(x-n)^2}$ é pontualmente convergente para $f(x) \equiv 0$.
- **E 7.1.4.** Mostre que a sequência de funções $f_n(x) = e^{-(x-n)^2}$ não é uniformemente convergente para $f(x) \equiv 0$.
- **E 7.1.5.** Mostre que a sequência de funções $f_n : [-1,1] \to \mathbb{R}$, $f_n(x) = e^{x/n}$, é uniformemente convergente para a função $f(x) \equiv 1$.
- **E 7.1.6.** Mostre que a sequência de funções $f_n(x) = x^2/(1 + nx^2)$ satisfaz o critério de convergência de Cauchy para sequências de funções. Dica: observe que $0 \le f_n(x) < 1/n$.

7.2 Algumas consequências da convergência uniforme

Teorema 7.2.1. Seja $f_n: D \to \mathbb{R}$ uma sequência de funções contínuas. Se f_n converge uniformemente para uma função $f: D \to \mathbb{R}$, então f é contínua.

Demonstração. Primeiramente, observemos que para quaisquer $x,a \in D$ e $n \in \mathbb{N}$, temos

$$|f(x) - f(a)| = |f(x) - f_n(x) + f_n(x) - f_n(a) + f_n(a) - f(a)|$$
(7.14)

$$\leq |f(x) - f_n(x)| + |f_n(x) - f_n(a)| + |f_n(a) - f(a)|.$$
 (7.15)

Seja, então, $\varepsilon > 0$. Como f_n converge uniformemente para f, existe $N \in \mathbb{N}$ tal que, para todo n > N temos

$$|f(x) - f_n(x)| < \frac{\varepsilon}{3}$$
 e $|f_n(a) - f(a)| < \frac{\varepsilon}{3}$. (7.16)

Fixemos um n > N. Como f_n é contínua, para cada $a \in D$, existe $\delta > 0$ tal que

$$x \in D, |x - a| < \delta \Rightarrow |f_n(x) - f_n(a)| < \frac{\varepsilon}{3}.$$
 (7.17)

Portanto, usando a desigualdade em (7.14), vemos que para cada $a \in D$, existe $\delta > 0$ tal que

$$x \in D, |x - a| < \varepsilon \Rightarrow |f(x) - f(a)| < \varepsilon.$$
 (7.18)

Isto mostra a continuidade de f.

Teorema 7.2.2. Seja $f_n:[a,b]\to\mathbb{R}$ uma sequência de funções contínuas. Se f_n converge uniformemente para uma função $f:[a,b]\to\mathbb{R}$, então

$$\lim \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} [\lim f_{n}(x)] dx = \int_{a}^{b} f(x) dx.$$
 (7.19)

Demonstração. Seja $\varepsilon > 0$. Como f_n converge uniformemente para f, temos que existe $N \in \mathbb{N}$ tal que

$$x \in [a, b], n > N \Rightarrow |f_n(x) - f(x)| < \frac{\varepsilon}{(b-a)}.$$
 (7.20)

Além disso, do teorema anterior (Teorema 7.2.1), temos que f é contínua em [a,b] e, portanto, assim como f_n , é integrável neste intervalo (veja Teorema 6.2.1). Por tudo isso, temos

$$n > N \Rightarrow \left| \int_a^b f_n(x) \, dx - \int_a^b f(x) \, dx \right| = \left| \int_a^b \left| f_n(x) - f(x) \right| \, dx \right| \tag{7.21}$$

$$\leq \frac{\varepsilon}{(b-a)}(b-a) = \varepsilon.$$
(7.22)

O que concluí a demonstração.

Teorema 7.2.3. Seja $f_n : [a,b] \to \mathbb{R}$ uma sequência de funções com derivadas contínuas em [a,b], tal que f'_n converge uniformemente para uma função $g : [a,b] \to \mathbb{R}$. Suponhamos, ainda, para algum ponto $c \in [a,b]$, $f_n(c)$ é uma sequência convergente. Então, f_n converge uniformemente para uma função f para a qual f' = g, i.e.

$$\frac{d}{dx}\lim f_n(x) = \lim \frac{d}{dx}f_n(x). \tag{7.23}$$

Demonstração. Do teorema fundamental do cálculo (Teorema 6.3.2), para todo $x \in [a, b]$ temos

$$f_n(x) = f_n(c) + \int_c^x f'_n(t) dt.$$
 (7.24)

Como, por hipótese, $f_n(c)$ é convergente e f'_n é uniformemente convergente para a função g, temos, do teorema anterior (Teorema 7.2.2), que tomando o limite de $n \to \infty$ nesta última equação, obtemos

$$f(x) = f(c) + \int_{c}^{x} g(t) dt.$$
 (7.25)

Observemos que f' = g. Fica de exercício, mostrar que f_n converge uniformemente para f, o que completa a demonstração.

Exercícios

E 7.2.1. Complete a demonstração do Teorema 7.2.3.

7.3 Séries de funções

Definição 7.3.1. (Séries de funções) Sejam dadas funções $f_i: D \to \mathbb{R}$, $i = 1, 2, 3, \ldots$ A série das funções f_i é a sequência das somas parciais

$$\sum_{i=1}^{n} f_i(x) := f_1(x) + f_2(x) + f_3(x) + \dots + f_n(x). \tag{7.26}$$

Comumente, denotamos uma tal série por

$$\sum_{i=1}^{\infty} f_i(x). \tag{7.27}$$

Tendo em vista de uma série de funções $\sum_i f_i(x)$ é uma sequência de funções, os conceitos de convergência de séries são aplicações diretas das definições de convergência de sequências de funções. Ou seja, dizemos que uma série de funções é **pontualmente convergente** para a função $f: D \to \mathbb{R}$ quando, para cada $\varepsilon > 0$ e para cada $x \in D$, existe N tal que

$$n > N \Rightarrow \left| \sum_{i=1}^{n} f_i(x) - f(x) \right| = \left| \sum_{i=n+1}^{\infty} f_i(x) \right| < \varepsilon.$$
 (7.28)

Ainda, dizemos uma série de funções é **uniformemente convergente** quando, para cada $\varepsilon > 0$, existe N tal que

$$x \in D, n > N \Rightarrow \left| \sum_{i=n+1}^{\infty} f_i(x) \right| < \varepsilon.$$
 (7.29)

Assim como as definições de séries de funções, os seguintes teoremas são consequências diretas dos relacionados a sequências de funções.

Teorema 7.3.1. (Critério de Cauchy) Uma série de funções $\sum f_i(x)$, $f_i: D \to \mathbb{R}$, é uniformemente convergente se, e somente se, para qualquer $\varepsilon > 0$, existe N tal que

$$x \in D, p \in \mathbb{N}, n > N \Rightarrow \left| \sum_{i=n+1}^{n+p} f_{n+i}(x) \right| < \varepsilon.$$
 (7.30)

Demonstração. Do critério de convergência de Cauchy para sequências de funções, temos que $\sum f_i(x)$ é uniformemente convergente se, e somente se, para qualquer $\varepsilon > 0$, existe N tal que

$$x \in D, n, m > N \Rightarrow \left| \sum_{i=1}^{n} f_i(x) - \sum_{i=1}^{m} f_i(x) \right| < \varepsilon.$$
 (7.31)

Agora, assumindo m > n s.p.g. e denotando p = m - n temos

$$\left| \sum_{i=1}^{n} f_i(x) - \sum_{i=1}^{m} f_i(x) \right| = \left| \sum_{i=1}^{m} f_i(x) - \sum_{i=1}^{n} f_i(x) \right|$$
 (7.32)

$$= \left| \sum_{i=m+1}^{n} f_i(x) \right| \tag{7.33}$$

$$= \left| \sum_{i=n+1}^{m} f_i(x) \right| \tag{7.34}$$

$$= \left| \sum_{i=n+1}^{n+p} f_i(x) \right|. \tag{7.35}$$

Teorema 7.3.2. Seja $\sum f_i(x)$ uma série de funções $f_i: D \to \mathbb{R}$ contínua em D. Se $\sum f_i(x)$ converge uniformemente para $f: D \to \mathbb{R}$, então f é contínua em D.

Demonstração. Sejam

$$S_n(x) = \sum_{i=1}^n f_i(x)$$
 (7.36)

as somas parciais da série $\sum f_i(x)$. Como a soma finita de funções contínuas em um conjunto D é uma função contínua no mesmo, temos que S_n é uma função contínua. Logo, como $S_n \to f$ uniformemente, temos do Teorema 7.2.1 que f é contínua em D.

Teorema 7.3.3. Seja $\sum f_i(x)$ uma série de funções $f_i:[a,b] \to \mathbb{R}$ contínua em [a,b]. Se $\sum f_i(x)$ converge uniformemente para $f:D \to \mathbb{R}$, então

$$\sum_{i=1}^{\infty} \int_{a}^{b} f_i(x) \, dx = \int_{a}^{b} \sum_{i=1}^{\infty} f_i(x) \, dx. \tag{7.37}$$

Demonstração. Exercício 7.3.1.

Licença CC-BY-SA 4.0 41

Exercício

E 7.3.1. Mostre o Teorema 7.3.3.

Resposta dos Exercícios

- **E 3.1.1.** Basta considerar sucessivas vizinhanças $V_{1/n}(x)$ com $n \in \mathbb{R}$.
- E 3.1.2. A implicação segue imediatamente por negação.
- **E 3.2.1.** Veja a Definição 3.2.1.
- E 3.2.2. Use o Teorema 3.2.2 observando que

$$|\sqrt{f(x)} - \sqrt{L}| = |(\sqrt{f(x)} - \sqrt{L})\frac{\sqrt{f(x)} + \sqrt{L}}{\sqrt{f(x)} + \sqrt{L}}| = \frac{|f(x) - L|}{|\sqrt{f(x)} + \sqrt{L}|}.$$
 (3.12)

- E 3.2.3. Basta usar as propriedades de limites de sequências.
- **E 3.2.4.** Observe que $x,y \in V'_{\delta/2}(a)$ implica $|x-a| < \delta/2$ e $|y-a| < \delta/2$.
- E 3.3.1. Análogo ao caso da considerado na demonstração do Teorema 3.3.1.
- E 3.4.1. Análogo ao caso demonstrado no Teorema 3.4.1.
- E 4.1.1. Segue imediatamente do Corolário 3.2.1.
- **E 4.1.2.** Observe que f tem limite no ponto a se, e somente se, são iguais os limites à esquerda e à direita de f neste ponto.
- E 4.2.1. Use o Teorema do valor intermediário.
- **E 4.3.1.** Dica: 1) mostre que toda sequência $x_n \in (a,b)$ com $x_n \to a$ é tal que $f(x_n)$ é converge. Seja L o limite desta sequência; 2) mostre, então, que qualquer outra sequência $y_n \in (a,b)$ com $y_n \to a$ é tal que $f(y_n) \to L$.

 ${\bf E}$ 5.2.1. Segue da definição de derivada.

Referências Bibliográficas

- [1] R.G. Bartle and D.R. Sherbert. *Introduction to real analysis*. John Wiley & Sons, 3. ed. edition, 2000.
- [2] C.I. Doering. Introdução à análise matemática na reta. SBM, 1. ed. edition, 2015.
- [3] E.L. Lima. Análise real. IMPA, 12. ed. edition, 2017.
- [4] G. Ávila. Análise matemática para licenciatura. Blucher, 3. ed. edition, 2006.

Índice Remissivo

Cauchy, 12, 30	fecho, 8
conjunto	função, 2
discreto, 8	impar, 5
fechado, 9	bijetiva, 4
interior, 7	composta, 6
conjunto aberto, 7	contínua, 17
conjunto de	crescente, 5
aderência, 8	decrescente, 5
continuidade, 17	descontínua, 17
lateral, 18	injetiva, 4
uniforme, 21	inversa, 4
contradomínio, 2	não-decrescente, 5
convergência	função contínua
pontual, 34	à direta, 18
simples, 34	função derivável, 23
uniforme, 35	função limitada, 3
critério de	à direita, 3
Cauchy, 36, 40	à esquerda, 3
definicão de	inferiormente, 3
definição de	superiormente, 3
função, 2	função par, 5
denso, 9	função sobrejetiva, 4
derivável, 23 derivada, 23	fundamentos da análise, 2
lateral, 24	gráfico, 3
diferenciável, 23	granco, o
diferenciação, 23	imagem de
domínio, 2	uma função, 3
dominio, 2	integração, 29
extensão	integral de
de uma função, 4	Riemann, 29

integral de Riemann, 29	do valor intermediario, 21, 4
lei de correspondência, 2	dos intervalos encaixados, 19
limite, 9	fundamental do cálculo, 32
infinito, 14	teorema de
no infinito, 15	Bolzano-Weierstrass, 22
pontual, 34	Cauchy, 36
limite de	Rolle, 28
função, 9	Teorema do
limite lateral, 13	valor intermediário, 19
limites	variável
de funções, 7	dependente, 2
de funções, 7	independente, 2
método da	vizinhança, 8
bisseção, 19	perfurada, 8
3 /	simétrica, 8
norma da partição, 29	simetrica, o
partição, 29	
ponto	
isolado, 8	
ponto aderente, 8	
ponto de acumulação, 8	
à direita, 14	
à esquerda, 14	
ponto interior, 7	
restrição	
de uma função, 4	
séries de	
funções, 40	
séries de funções, 34	
sequência de funções, 34	
somas de	
Riemann, 30	
teorema	
dos intervalos encaixados, 20	
da média, 32	