Inference for Regression with Variables Generated by AI or Machine Learning

Laura Battaglia (Oxford) Tim Christensen (Yale) Stephen Hansen (UCL) Szymon Sacher (Stanford)

August 28, 2025

Outline

1. Introduction

- 2. Example
- 3. Two-Step Inference is Biased
- 4. How to Do Valid Inference
- 5. Application: Remote Work and Wage Inequality
- 6. Application: Central Bank Communication
- 7. Conclusion

Motivation

Economists now routinely generate variables by AI/ML methods

- quantify unstructured data (text, images, ...)
- measure subtle concepts (uncertainty, sentiment, ...)
- generate variables previously too costly, labor-intensive, or infeasible to collect

The generated variables are inputs to downstream econometric models

Motivation

Economists now routinely generate variables by AI/ML methods

- quantify unstructured data (text, images, ...)
- measure subtle concepts (uncertainty, sentiment, ...)
- · generate variables previously too costly, labor-intensive, or infeasible to collect

The generated variables are inputs to downstream econometric models

Well-known examples:

- Baker Bloom Davis (2016): economic policy uncertainty measured from newspaper text
- Hoberg and Phillips (2016): latent industry type measured from corporate filings
- Hansen McMahon Prat (2018): policy deliberation measured from FOMC transcripts
- Magnolfi McClure Sorensen (2025): product differentiation measured from survey data
- Compiani Morozov Seiler (2023): substitutability measured from Amazon text + image data
- Gorodnichenko Pham Talavera (2023): tone-of-voice measured from FOMC press conferences

Formal Setup

Want: perform inference on γ and/or α in the model

$$Y_i = \gamma^T \theta_i + \alpha^T \mathbf{q}_i + \varepsilon_i, \qquad \mathbb{E}\left[\varepsilon_i | \theta_i, \mathbf{q}_i\right] = 0,$$

- θ_i is a latent variable of economic interest
- **q**_i are observed numeric covariates
- Unstructured/high-dim dataset \mathbf{x}_i available for estimating $\mathbf{ heta}_i$

Formal Setup

Want: perform inference on γ and/or α in the model

$$Y_i = \gamma^T \theta_i + \alpha^T \mathbf{q}_i + \varepsilon_i, \qquad \mathbb{E}\left[\varepsilon_i | \theta_i, \mathbf{q}_i\right] = 0,$$

- θ_i is a latent variable of economic interest
- **q**_i are observed numeric covariates
- Unstructured/high-dim dataset \mathbf{x}_i available for estimating $\boldsymbol{\theta}_i$

Two-Step Strategy:

- 1. Estimate $\hat{\theta}_i$ of θ_i obtained from unstructured data \mathbf{x}_i and ML/Al model.
- 2. Regress Y_i on $\hat{\theta}_i$ and \mathbf{q}_i . Perform inference treating $\hat{\theta}_i$ as regular numeric data.

Valid Inference Without Validation Data

Recent work (mainly stats/poli sci) has pointed out potential for generated variables to cause problems

- General ML-generated variables: Fong and Tyler (2021), Allon et al. (2023), Angelopoulos et al. (2023a, 2023b), Zhang et al. (2023), Zrnic and Candès (2024), and Miao and Lu (2024)
- LLM-generated variables: Egami et al. (2023, 2024), Ludwig et al. (2025), Carlson and Dell (2025).

Valid Inference Without Validation Data

Recent work (mainly stats/poli sci) has pointed out potential for generated variables to cause problems

- General ML-generated variables: Fong and Tyler (2021), Allon et al. (2023), Angelopoulos et al. (2023a, 2023b), Zhang et al. (2023), Zrnic and Candès (2024), and Miao and Lu (2024)
- LLM-generated variables: Egami et al. (2023, 2024), Ludwig et al. (2025), Carlson and Dell (2025).

Papers propose bias corrections assuming a validation subsample in which $(Y_i, \theta_i, \hat{\theta}_i)$ are observed

- Inference valid when size of labeled/unlabeled data approximately equal.
- Typically requires human labelers to construct validation set
 But use of ML/AI typically motivated by large cost of labeling.
- In economic data, unclear a true label is observed (sentiment, uncertainty).

Valid Inference Without Validation Data

Recent work (mainly stats/poli sci) has pointed out potential for generated variables to cause problems

- General ML-generated variables: Fong and Tyler (2021), Allon et al. (2023), Angelopoulos et al. (2023a, 2023b), Zhang et al. (2023), Zrnic and Candès (2024), and Miao and Lu (2024)
- LLM-generated variables: Egami et al. (2023, 2024), Ludwig et al. (2025), Carlson and Dell (2025).

Papers propose bias corrections assuming a validation subsample in which $(Y_i, \theta_i, \hat{\theta}_i)$ are observed

- Inference valid when size of labeled/unlabeled data approximately equal.
- Typically requires human labelers to construct validation set
 But use of ML/Al typically motivated by large cost of labeling.
- In economic data, unclear a true label is observed (sentiment, uncertainty).

Need for valid inference without validation data.

This Paper

1. Two-step strategy leads to invalid inference: Cls have right width but wrong centering (bias)

Bias depends on relative importance of

- (a) measurement error in $\hat{\theta}_i$
- (b) sampling error in downstream model

Valid two-step inference requires (a) \ll (b)

This is not the case in most leading applications

2. Two solutions: bias correction + one-step strategy

NB: Measurement error in AI/ML-generated variables is non-classical.

3. Shows empirical relevance in several empirical applications

Outline

1. Introduction

2. Examples

3. Two-Step Inference is Biased

4. How to Do Valid Inference

5. Application: Remote Work and Wage Inequality

6. Application: Central Bank Communication

7. Conclusion

Example 1: AI/ML-Generated Labels

- Leading use case: missing θ_i is binary (e.g., race indicator): Goldsmith-Pinkham and Shue (2023), Adams-Prassl et. al. (2023), Argyle et al. (2025), and Wu and Yang (2024)
- Generate estimate $\hat{\theta}_i$ of θ_i using unstructured data \mathbf{x}_i (e.g., voter registration data)
- Regress Y_i on $\hat{\theta}_i$ and controls \mathbf{q}_i

Example 1: AI/ML-Generated Labels

- Leading use case: missing θ_i is binary (e.g., race indicator): Goldsmith-Pinkham and Shue (2023), Adams-Prassl et. al. (2023), Argyle et al. (2025), and Wu and Yang (2024)
- Generate estimate $\hat{\theta}_i$ of θ_i using unstructured data \mathbf{x}_i (e.g., voter registration data)
- Regress Y_i on $\hat{\theta}_i$ and controls \mathbf{q}_i
- Measurement error due to misclassification error:

$$\mathsf{Pr}(heta_i = 1 | \mathbf{x}_i, \mathbf{q}_i)
eq \mathsf{Pr}(\hat{ heta}_i = 1 | \mathbf{x}_i, \mathbf{q}_i)$$

Example 2: Indices

- Several influential works generate indices by classifying documents + aggregating: Baker Bloom Davis (2016), Caldara and Iacoviello (2022), Gorodnichenko Pham Talavera (2023).
- Each month observe C_i documents (e.g., set of newspapers)
- Of these, X_i are classified as pertaining to concept (e.g., policy uncertainty)
- Latent true uncertainty $heta_i \in [0,1]$
- Naive estimator: $\hat{\theta}_i = X_i/C_i$ (cf. BBD's EPU measure)

Example 2: Indices

- Several influential works generate indices by classifying documents + aggregating: Baker Bloom Davis (2016), Caldara and Iacoviello (2022), Gorodnichenko Pham Talavera (2023).
- Each month observe C_i documents (e.g., set of newspapers)
- Of these, X_i are classified as pertaining to concept (e.g., policy uncertainty)
- Latent true uncertainty $\theta_i \in [0,1]$
- Naive estimator: $\hat{\theta}_i = X_i/C_i$ (cf. BBD's EPU measure)
- Natural model is $X_i | C_i, \theta_i \sim \text{Binomial}(C_i, \theta_i \beta_1 + (1 \theta_i)\beta_0)$ where β_x is the probability that a document with true label x is classified a one.
- Measurement error in $\hat{\theta}_i$ arises from misclassification error (β) and sampling error (C_i).

Example 2: Indices — Simulation Calibrated to Gorodnichenko et al. (2023)

		Bias			RMdSE			Coverage	•
Configuration	1	2	3	1	2	3	1	2	3
				,	n = 200				
2-Step	-0.433	-0.218	-0.037	0.048	0.025	0.018	0.378	0.824	0.931
Joint	-0.003	0.007	0.004	0.024	0.020	0.018	0.945	0.948	0.938
				,	n = 800				
2-Step	-0.215	-0.041	0.084	0.024	0.010	0.012	0.507	0.942	0.894
Joint	0.004	-0.006	-0.006	0.011	0.010	0.010	0.956	0.950	0.950
				n	= 3200				
2-Step	-0.042	0.085	0.158	0.006	0.009	0.017	0.887	0.739	0.353
Joint	-0.005	-0.002	-0.003	0.005	0.005	0.005	0.942	0.941	0.943

Outline

- 1. Introduction
- 2. Examples
- 3. Two-Step Inference is Biased
- 4. How to Do Valid Inference
- 5. Application: Remote Work and Wage Inequality
- 6. Application: Central Bank Communication
- 7. Conclusion

Asymptotics: General Case

• Consider a sequence of DGPs for $(Y_i, \theta_i, \hat{\theta}_i, \mathbf{q}_i, \mathbf{x}_i)_{i=1}^n$ indexed by sample size n, in which

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n\hat{\theta}_i(\hat{\theta}_i-\theta_i)^T\to_p\kappa\Omega,$$

(expressions are DGP-specific)

- Scalar $\kappa \geq 0$ measures the importance of measurement error relative to sampling error
- Positive κ allows both sampling error and measurement error to play a role

Asymptotics: General Case

• Consider a sequence of DGPs for $(Y_i, \theta_i, \hat{\theta}_i, \mathbf{q}_i, \mathbf{x}_i)_{i=1}^n$ indexed by sample size n, in which

$$\frac{1}{\sqrt{n}}\sum_{i=1}^n\hat{\theta}_i(\hat{\theta}_i-\theta_i)^T\to_p\kappa\Omega,$$

(expressions are DGP-specific)

- Scalar $\kappa \geq 0$ measures the importance of measurement error relative to sampling error
- Positive κ allows both sampling error and measurement error to play a role
- Example 1 expression is

$$\sqrt{n} imes \underbrace{\mathbb{E}\left[\hat{ heta}_i(1- heta_i)
ight]}_{ ext{false-positive rate}}
ightarrow \kappa, \qquad \mathbf{\Omega} = 1$$

ullet Reflects prevailing trend: increasingly large data sets + increasingly accurate algorithms

Theorem on Two-Step Inference

Theorem: Two-Step Inference is Invalid Unless $\kappa = 0$

1. OLS estimator $\hat{\psi}=(\hat{\gamma},\hat{\alpha})$ of $\psi=(\gamma,\alpha)$ from regressing Y_i on $\hat{\xi}_i=(\hat{\theta}_i,\mathbf{q}_i)$ has asy dist

$$\sqrt{n} \begin{pmatrix} \hat{\boldsymbol{\psi}} - \boldsymbol{\psi} \end{pmatrix} \rightarrow_{d} N \begin{pmatrix} -\kappa \mathbb{E}[\boldsymbol{\xi}_{i} \, \boldsymbol{\xi}_{i}^{T}]^{-1} \begin{pmatrix} \boldsymbol{\Omega} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \boldsymbol{\psi} \,, \underbrace{\mathbb{E}[\boldsymbol{\xi}_{i} \, \boldsymbol{\xi}_{i}^{T}]^{-1} \mathbb{E}[\boldsymbol{\varepsilon}_{i}^{2} \boldsymbol{\xi}_{i} \, \boldsymbol{\xi}_{i}^{T}] \mathbb{E}[\boldsymbol{\xi}_{i} \, \boldsymbol{\xi}_{i}^{T}]^{-1}}_{=: \mathbf{V}} \end{pmatrix}$$

where $\boldsymbol{\xi}_i = (\boldsymbol{\theta}_i, \mathbf{q}_i)$ are the "true" covariates

Theorem on Two-Step Inference

Theorem: Two-Step Inference is Invalid Unless $\kappa = 0$

1. OLS estimator $\hat{\psi} = (\hat{\gamma}, \hat{\alpha})$ of $\psi = (\gamma, \alpha)$ from regressing Y_i on $\hat{\xi}_i = (\hat{\theta}_i, \mathbf{q}_i)$ has asy dist

$$\sqrt{n} \begin{pmatrix} \hat{\psi} - \psi \end{pmatrix} \rightarrow_{d} N \begin{pmatrix} -\kappa \mathbb{E}[\xi_{i} \xi_{i}^{T}]^{-1} \begin{pmatrix} \mathbf{\Omega} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \psi, \underbrace{\mathbb{E}[\xi_{i} \xi_{i}^{T}]^{-1} \mathbb{E}[\varepsilon_{i}^{2} \xi_{i} \xi_{i}^{T}] \mathbb{E}[\xi_{i} \xi_{i}^{T}]^{-1}}_{=: \mathbf{V}} \end{pmatrix}$$

where $\boldsymbol{\xi}_i = (\boldsymbol{\theta}_i, \mathbf{q}_i)$ are the "true" covariates

2. Eicker–Huber–White standard errors are consistent for all $\kappa \geq 0$:

$$\hat{\mathbf{V}} := \left(rac{1}{n} \sum_{i=1}^n \hat{m{\xi}}_i \hat{m{\xi}}_i^T
ight)^{-1} \left(rac{1}{n} \sum_{i=1}^n \hat{arepsilon}_i^2 \hat{m{\xi}}_i \hat{m{\xi}}_i^T
ight) \left(rac{1}{n} \sum_{i=1}^n \hat{m{\xi}}_i \hat{m{\xi}}_i^T
ight)^{-1}
ightarrow_{m{p}} m{V}$$

Implications

- $\kappa \in (0, \infty)$: two-step inference is **biased**
 - degree of bias is increasing in κ (relative importance of measurement vs sampling error)
 - no variance distortion, unlike generated regressors
- $\kappa=0$: two-step inference is **valid**: treat $\hat{\theta}_i$ as if they are the true latent θ_i
- Take-away: if κ is large, consider using resources to improve precision of $\hat{\pmb{\theta}}_i$

Implications

- $\kappa \in (0, \infty)$: two-step inference is **biased**
 - degree of bias is increasing in κ (relative importance of measurement vs sampling error)
 - no variance distortion, unlike generated regressors
- $\kappa = 0$: two-step inference is **valid**: treat $\hat{\theta}_i$ as if they are the true latent θ_i
- Take-away: if κ is large, consider using resources to improve precision of $\hat{\theta}_i$
- To the extent empirical papers flag concerns about 2-step inference, usually about std errors
- Common intuition is wrong: problem is measurement error not standard errors

Outline

- 1. Introduction
- 2. Examples
- 3. Two-Step Inference is Biased
- 4. How to Do Valid Inference
- 5. Application: Remote Work and Wage Inequality
- 6. Application: Central Bank Communication
- 7. Conclusion

How to Do Valid Inference

1. Explicit Bias Correction: use analytical expressions in Theorem to adjust two-step estimates/Cls

Advantage: Simple and scalable

Disadvantage: Not feasible in complex models; poor approximation with large κ

2. Joint Estimation: MLE using joint likelihood for upstream IR model + regression model

Advantage: General purpose and flexible

Disadvantage: More computationally demanding

Bias Correction

- First-order asymptotic bias of OLS estimator $\hat{\psi}$ is

$$-\kappa \mathbb{E} \left[oldsymbol{\xi}_i oldsymbol{\xi}_i^T
ight]^{-1} \left(egin{array}{cc} oldsymbol{\Omega} & oldsymbol{0} \ oldsymbol{0} & oldsymbol{0} \end{array}
ight) oldsymbol{\psi}$$

• Given estimators $\hat{\kappa}$ and $\hat{\Omega}$ of κ and Ω , can construct bias-corrected estimators:

Additive
$$\hat{\psi}^{bca} = \left(\mathbf{I} + \frac{\hat{\kappa}}{\sqrt{n}} \left(\frac{1}{n} \sum_{i=1}^{n} \hat{\xi}_{i} \hat{\xi}_{i}^{T}\right)^{-1} \begin{bmatrix} \hat{\Omega} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \right) \hat{\psi}$$

$$\hat{\psi}^{bcm} = \left(\mathbf{I} - \frac{\hat{\kappa}}{\sqrt{n}} \left(\frac{1}{n} \sum_{i=1}^{n} \hat{\xi}_{i} \hat{\xi}_{i}^{T}\right)^{-1} \begin{bmatrix} \hat{\Omega} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \right)^{-1} \hat{\psi}$$

• Bias-corrected CIs: center at $\hat{\psi}^{bca}$ or $\hat{\psi}^{bcm}$ and use 2-step std errors

Theory for Bias-Correction

Validity of Bias-Corrected Inference

If $\hat{\kappa} \to_{p} \kappa$ and $\hat{\Omega} \to_{p} \Omega$, the under conditions of previous theorem, have

1. Bias-corrected estimators are asymptotically equivalent and correctly centered

$$\sqrt{n}\left(\hat{\psi}^{bcm} - \psi
ight) = \sqrt{n}\left(\hat{\psi}^{bca} - \psi
ight) + o_{p}(1)
ightarrow_{d} \, \mathcal{N}\left(\mathbf{0}\,,\mathbf{V}
ight)$$

Theory for Bias-Correction

Validity of Bias-Corrected Inference

If $\hat{\kappa} \to_{p} \kappa$ and $\hat{\Omega} \to_{p} \Omega$, the under conditions of previous theorem, have

1. Bias-corrected estimators are asymptotically equivalent and correctly centered

$$\sqrt{n}\left(\hat{\psi}^{bcm} - \psi
ight) = \sqrt{n}\left(\hat{\psi}^{bca} - \psi
ight) + o_{p}(1)
ightarrow_{d} \, \mathcal{N}\left(\mathbf{0}\,,\mathbf{V}
ight)$$

2. Bias-corrected CIs have correct coverage:

$$\lim_{n\to\infty} \Pr\left(\boldsymbol{\psi}_i \in \hat{\boldsymbol{\psi}}_i^{bc} \pm 1.96\sqrt{\frac{\hat{\mathbf{V}}_{ii}}{n}}\right) = 0.95.$$

Bias Correction: Labels Example

- Here need to estimate $\kappa = \sqrt{n} \lim_{n o \infty} \mathbb{E}\left[\hat{ heta}_i (1 heta_i)
 ight]$
- Just need an estimate of FPR from an external sample (as in Bursztyn Chaney Hassan Rao (2024))

$$\hat{\kappa} = \sqrt{n}\widehat{FPR}, \qquad \widehat{FPR} = \frac{1}{m}\sum_{i=1}^{m}\hat{\theta}_i(1-\theta_i)$$

- We show $\hat{\kappa} \to_p \kappa$ provided $n/m^2 \to 0$ (small subsample)
- We also provide finite-sample correction to standard errors (complex expression).

Joint Estimation: Computation

- Joint likelihood: $f(Y_i, \mathbf{x}_i, \boldsymbol{\theta_i} | \mathbf{q}_i; \gamma, \alpha, ...)$
- Integrated likelihood in terms of observables only:

$$f(Y_i, \mathbf{x}_i | \mathbf{q}_i; \gamma, \alpha, ...) = \underbrace{\int f(Y_i, \mathbf{x}_i, \boldsymbol{\theta}_i | \mathbf{q}_i; \gamma, \alpha, ...) d\boldsymbol{\theta}_i}_{\text{intractable}}$$

- Use Bayesian computation:
 - Integrates out θ_i as part of the sampling algorithm
 - Resulting credible sets are valid frequentist confidence intervals for large n by BvM theorem
- Sampling: Hamiltonian MC implemented in probabilistic programming language NumPyro ⇒ allows for estimation of models on large scale

Joint Estimation: Computation

- Joint likelihood: $f(Y_i, \mathbf{x}_i, \boldsymbol{\theta_i} | \mathbf{q}_i; \gamma, \alpha, ...)$
- Integrated likelihood in terms of observables only:

$$f(Y_i, \mathbf{x}_i | \mathbf{q}_i; \gamma, \alpha, ...) = \underbrace{\int f(Y_i, \mathbf{x}_i, \boldsymbol{\theta}_i | \mathbf{q}_i; \gamma, \alpha, ...) d\boldsymbol{\theta}_i}_{\text{intractable}}$$

- Use Bayesian computation:
 - Integrates out θ_i as part of the sampling algorithm
 - Resulting credible sets are valid frequentist confidence intervals for large n by BvM theorem
- Sampling: Hamiltonian MC implemented in probabilistic programming language NumPyro ⇒ allows for estimation of models on large scale
- Note: in examples, we are not attempting to specify a likelihood for the AI/ML algorithm

Outline

- 1. Introduction
- 2. Examples
- 3. Two-Step Inference is Biased
- 4. How to Do Valid Inference
- 5. Application: Remote Work and Wage Inequality
- 6. Application: Central Bank Communication
- 7. Conclusion

Hansen Lambert Bloom Davis Sadun Taska (WP, 2023)

- Consider n = 16,315 SD food+accom sector (NAICS code 72) job postings from January 2022
- Regress log wages Y_i on ML-generated remote work indicator $\hat{ heta}_i$
- Fixed effects for SOC code (job type) and full/part time

Hansen Lambert Bloom Davis Sadun Taska (WP, 2023)

- Consider n = 16,315 SD food+accom sector (NAICS code 72) job postings from January 2022
- Regress log wages Y_i on ML-generated remote work indicator $\hat{ heta}_i$
- Fixed effects for SOC code (job type) and full/part time
- For bias correction, use estimate $\widehat{\mathit{FPR}} \approx 0.009$.
- For joint estimation, use three-component Gaussian mixture for errors $arepsilon_i| heta_i$

Bias Correction with Minimal Human Effort

Advantage 1: Smaller Auxiliary Dataset

Existing papers: bias correction when m and n are comparable.

We estimate FPR with m = 1000. n/m = 16, $n/m^2 = 0.016$.

Bias Correction with Minimal Human Effort

Advantage 1: Smaller Auxiliary Dataset

Existing papers: bias correction when m and n are comparable.

We estimate FPR with m = 1000. n/m = 16, $n/m^2 = 0.016$.

Advantage 2: Only Need Partial Labeling

Existing papers: build full validation dataset by inspecting each posting.

This paper: only examine labeled "ones", 26 in this dataset.

Two-Step Estimates Smaller

		No Fixed	Effects		With Fixe	d Effects
	Est.	Std Err	95% CI	Est.	Std Err	95% CI
OLS	0.648	0.024	[0.599, 0.697]	0.363	0.021	[0.321, 0.406]
BC	1.052	0.140	[0.777, 1.326]	0.641	0.099	[0.446, 0.836]
1-Step	0.563	0.016	[0.532, 0.595]	0.448	0.017	[0.415, 0.480]

Corrected CIs to the right of Two-Step CIs

No Fixed Effects					With Fixed Effects			
	Est.	Std Err	95% CI	Est	. Std Err	95% CI		
OLS	0.648	0.024	[0.599, 0.697]	0.36	0.021	[0.321, 0.406]		
ВС	1.052	0.140	[0.777, 1.326]	0.64	0.099	[0.446, 0.836]		
1-Step	0.563	0.016	[0.532, 0.595]	0.44	8 0.017	[0.415, 0.480]		

Outline

- 1. Introduction
- 2. Examples
- 3. Two-Step Inference is Biased
- 4. How to Do Valid Inference
- 5. Application: Remote Work and Wage Inequality
- 6. Application: Central Bank Communication
- 7. Conclusion

Central Bank Communication

• Does written central bank communication drive long rates? Estimate

$$Y_i = \gamma \theta_i + \alpha' \mathbf{q}_i + u_i$$

- Y_i is the path factor from Gürkaynak, Sack, and Swanson (2005) (mkt perceptions of future rates)
- θ_i is a hawkish/dovish index (cf. Gorodnichenko, Pham, Talavera (2023))
- **q**_i are controls (including shadow short rate)

Central Bank Communication

Does written central bank communication drive long rates? Estimate

$$Y_i = \gamma \theta_i + \alpha' \mathbf{q}_i + u_i$$

- Y_i is the path factor from Gürkaynak, Sack, and Swanson (2005) (mkt perceptions of future rates)
- θ_i is a hawkish/dovish index (cf. Gorodnichenko, Pham, Talavera (2023))
- qi are controls (including shadow short rate)
- Hawkish/dovish index:
 - ullet classify FOMC sentences as hawkish/dovish/neutral using fine-tuned BERT + aggregate
 - sentiment estimate

$$\hat{\theta}_i = \frac{N_i^H - N_i^D}{N_i^H + N_i^D}$$

Central Bank Communication

Does written central bank communication drive long rates? Estimate

$$Y_i = \gamma \theta_i + \alpha' \mathbf{q}_i + u_i$$

- Y_i is the path factor from Gürkaynak, Sack, and Swanson (2005) (mkt perceptions of future rates)
- θ_i is a hawkish/dovish index (cf. Gorodnichenko, Pham, Talavera (2023))
- qi are controls (including shadow short rate)
- Hawkish/dovish index:
 - ullet classify FOMC sentences as hawkish/dovish/neutral using fine-tuned BERT + aggregate
 - · sentiment estimate

$$\hat{\theta}_i = \frac{N_i^H - N_i^D}{N_i^H + N_i^D}$$

 \bullet Compare two-step and joint estimation over 02/1995-06/2023

Central Bank Communication: Joint Estimation Effect Size 3x Larger

	Estimation Strategy				
	Two-Step	Joint			
Sentiment (θ_i)	0.039	0.114			
	[0.012, 0.066]	[0.027, 0.198]			
Policy Rate (q_i)	-0.004	-0.003			
	[-0.011, 0.003]	[-0.011, 0.004]			
$eta_{f 0}$		0.009			
		[0.001, 0.026]			
eta_1		0.676			
		[0.585, 0.768]			
Observations	200	200			
R^2	0.0425	0.1429			

Central Bank Communication: Material Misclassification Error

	Estimation Strategy				
	Two-Step	Joint			
Sentiment (θ_i)	0.039	0.114			
	[0.012, 0.066]	[0.027, 0.198]			
Policy Rate (q_i)	-0.004	-0.003			
	[-0.011, 0.003]	[-0.011, 0.004]			
$eta_{ extsf{0}}$		0.009			
		[0.001, 0.026]			
eta_1		0.676			
		[0.585, 0.768]			
Observations	200	200			
R^2	0.0425	0.1429			

Outline

- 1. Introduction
- 2. Examples
- 3. Two-Step Inference is Biase
- 4. How to Do Valid Inference
- 5. Application: Remote Work and Wage Inequality
- 6. Application: Central Bank Communication
- 7. Conclusion

Conclusion

- Empirical work routinely uses AI/ML algorithms to generate new variables
- · Common empirical practice leads to invalid inference
- \bullet We propose two solutions: bias correction + joint estimation. Neither requires validation data.
- ullet Illustrate important differences in simulations + applications
- Packages: ValidMLInference (Python) and MLBC (R)
- \bullet Works in progress: specific methods tailored to important use cases, e.g. VARs and impulse response analysis w/ Hansen and Shin