Churn Prediction: A Proactive Approach

This project aimed to develop a robust churn prediction model, equipping the organization with valuable insights to enhance customer retention strategies. By leveraging advanced analytics, the model identified key drivers of churn, empowering data-driven decision making.

### **Andrea Lolli**

503035

**Bachelor of Science in Artificial Intelligence** 



# Data Preparation: Laying the Foundation

# **1** Cleaning and Transforming

The dataset underwent a thorough cleaning process, addressing missing values, data type inconsistencies, and other discrepancies to ensure data integrity.

# **2** Exploratory Data Analysis

In-depth EDA provided valuable insights into the distribution of features, outliers, and relationships within the data, laying the groundwork for feature engineering.

# **3** Addressing Imbalance

Implemented SMOTE, a powerful technique for balancing the churn classes, enhancing the model's ability to learn from the minority class.



# Feature Engineering: Unlocking Insights

#### **Transformations**

Features like MultipleLines and internet-related variables were reencoded to reduce complexity and redundancy, optimizing the model's performance.

#### **New Feature Creation**

Developed a novel feature,
AutomaticPaymentMethod, which
distinguished between automatic
and non-automatic payment
methods, hypothesized to influence
churn.

## **Streamlined Pipelines**

Custom transformers were integrated into a pipeline, ensuring efficient and consistent data preprocessing, a critical step in the model development process.

# **Model Development: Optimizing for Performance**

#### **Feature Selection**

Utilized a comprehensive feature selection approach, identifying the most impactful attributes to be included in the model.

#### **Hyperparameter Tuning**

Optuna, a powerful hyperparameter optimization framework, was employed to fine-tune the RandomForest model for improved performance.

2

#### **Model Selection**

RandomForest was chosen for its ability to handle both categorical and continuous data, as well as its robustness to overfitting.

# **Model Evaluation: Ensuring Robustness**

### **Comprehensive Metrics**

The model was evaluated using a suite of performance metrics, including accuracy, precision, recall, F1-score, and ROC AUC.

#### **Cross-Validation**

Rigorous cross-validation was conducted to ensure the model's stability and reliability, confirming consistent performance across different data subsets.

### **Precision-Recall Analysis**

The precision-recall curve highlighted the model's strong ability to predict the minority churn class, a critical consideration for this business problem.

### **Feature Importance**

Analysis of feature importance revealed key drivers of churn, such as contract duration, tenure, and monthly charges, guiding targeted retention strategies.

# **Insights and Business Impact**



### **Contract Type**

Contract duration and type emerged as significant predictors of churn, enabling tailored interventions for atrisk customers.



#### **Tenure**

Tenure was identified as a critical factor, suggesting the need for personalized retention strategies for customers with shorter tenures.



## **Payment Method**

The model revealed that payment method, particularly automatic versus non-automatic, influences churn, guiding targeted customer outreach.



# **Strategic Recommendations**

**Targeted Interventions** 

Leverage the model's insights to implement tailored retention strategies, such as personalized offers or loyalty programs, for customers identified as high-risk.

**Customer Segmentation** 

Segment customers based on the model's key predictors, enabling focused attention and resource allocation towards the most vulnerable segments.

**Proactive Monitoring** 

Continuously monitor the model's performance and update it with new data to ensure the organization stays ahead of evolving churn patterns.



# **Conclusion: A Comprehensive Approach**

This churn prediction project demonstrates a robust framework for identifying customers likely to churn, leveraging advanced analytics and a systematic approach. The insights generated can significantly aid strategic decision-making, optimizing customer retention efforts and driving business growth.

# **Limitations and Future Work**

#### **Limitations**

The model's performance is dependent on the quality and completeness of the dataset.
Incorporating additional data sources could further enhance the predictive capability.

# **Explainability**

While RandomForest provides interpretable feature importance, exploring more explainable models could offer deeper insights into the underlying drivers of churn.

#### **Future Enhancements**

Integrating the model into a realtime monitoring system and continuously updating it with new data could enable proactive and adaptive churn management.