1º Teste de Introdução à Investigação Operacional 2020/21 – 07 novembro 2020

Pergunta 1 - cotação: 1,5 val

A NOVA INSTITUIÇÃO pretende levar a cabo um upgrade do seu material informático, com um custo mínimo.

O seu Departamento Técnico determinou que

- devem ser adquiridos pelo menos 50 portáteis;
- por cada 10 portáteis adquiridos devem ser adquiridos 11 monitores;

No quadro seguinte são apresentados os custos unitários dos equipamentos (em u.m.) praticados pelas três empresas fornecedoras:

Custo	unitário	Empresa	Fornec	edora
	(u.m.)	1	2	3
	Portáteis	12	9	11
Equipamentos	Monitores	1,3	1,2	
	Impressoras	2,1		1,9

O Departamento Financeiro determinou que devem ser feitas aquisições globais de equipamentos à empresa 1 no valor mínimo de 430 u.m.

Sabendo que a empresa pretende minimizar os custos decorrentes da aquisição destes materiais, formule este problema como um modelo de Programação Linear que poderá incluir variáveis inteiras e/ou binárias.

Pergunta 2 - cotação: 1,0 val

Presuma que todas as variáveis abaixo indicadas são não negativas e que, adicionalmente, as variáveis Z, Z1, Z2, ... são do tipo binário, tomando apenas os valores 0 ou 1. M designará um valor positivo muito elevado.

Nas opções abaixo a conjunção de condições será apresentada do modo seguinte: e para assegurar algum "espaço visual".

Faça as associações mais adequadas. Classificação 1,0 val para todas as associações corretas, ou 0,0 caso contrário.

Para exprimir **X** = **0**, ou **X** ≥ **15**:

Pergunta 3 – cotação: 2,5 val

Considere o problema de PL seguinte:

MIN F = -3.X + Y

sujeito a X + 2Y ≤ 18

X + Y ≥ 8

6X - Y ≤ 18

 $X, Y \ge 0$

e a representação gráfica seguinte

onde se representam as zonas A, B, C, D, E, F e G e ainda os vértices 1, 2, ..., 6 e 7.

Admita que à 1ª, 2ª e 3ª restrições, associaria as variáveis de folga F1, F2 e F3, ao reescrever o problema na forma standard.

Escolha as afirmações verdadeiras. A escolha de afirmações não verdadeiras será penalizada.						
Select one or more:						
1. O espaço de soluções admissíveis é representado pela zona B.						
 2. O espaço de soluções admissíveis é representado pela zona C. 						
 3. O espaço de soluções admissíveis é representado pela zona D. 						
 4. O espaço de soluções admissíveis é representado pela zona E. 						
 5. O espaço de soluções admissíveis é representado pela zona F. 						
☐ 6. O espaço de soluções admissíveis é representado pela zona G.						
7. A solução ótima do problema é representada pelo vértice 1.						
8. A solução ótima do problema é representada pelo vértice 2.						
9. A solução ótima do problema é representada pelo vértice 3.						
10. A solução ótima do problema é representada pelo vértice 4.						
11. A solução ótima do problema é representada pelo vértice 5.						
12. A solução ótima do problema é representada pelo vértice 6.						
☐ 13. A base ótima do problema é (X; Y).						
☐ 14. A base ótima do problema é (X; Y; F1).						
☐ 15. A base ótima do problema é (X; Y; F2).						
☐ 16. A base ótima do problema é (X; Y; F3).						
17. Se tivesse o Quadro do Simplex correspondente à base (Y; F2; F3), o Algoritmo Simplex poderia na iteração seguinte conduzi-lo ao Quadro correspondente à base (Y; F2; X).						
18. Se tivesse o Quadro do Simplex correspondente à base (Y; F2; F3), o Algoritmo Simplex poderia na iteração seguinte conduzi-lo ao Quadro correspondente à base (Y; X; F3).						
19. Se considerar o mesmo espaço de soluções admissíveis e o objetivo: MIN G = -3.X + β. Y, com β real, existe um valor de β para o qual os vértices 1 e 2 serão simultaneamente soluções ótimas.						
20. Se considerar o mesmo espaço de soluções admissíveis e o objetivo: MIN G = -3.X + β. Y, com β real, os vértices 1 e 2 nunca serão simultaneamente soluções ótimas.						

Pergunta 4 - cotação: 1,5 val

Considere o problema P, de Programação Linear Mista, com várias variáveis das quais X, Y e Z são inteiras. Os coeficientes de X, Y e Z na função objetivo são números reais.

Com vista à resolução de P através do algoritmo Branch and Bound começou por resolver-se a sua relaxação linear PL0 tendo-se feito mais umas iterações do método. Por questões de comodidade, apresentamos na árvore seguinte apenas os valores obtidos para as variáveis X,Y e Z.

De entre as afirmações seguintes selecione a(s) verdadeira(s). A indicação de afirmações não verdadeiras será penalizada.

Select one or more:

- 1. No problema P pretende-se minimizar a função objetivo.
- 2. No problema P pretende-se maximizar a função objetivo.
- 3. Deve-se prosseguir o Algoritmo Branch and Bound, ramificando PL5.
- 4. Analisando apenas a informação nos nós PL0 e PL1 podemos concluir que o valor ótimo de P pertence ao intervalo [468.4 , 469.6].
- 5. Com base na informação apresentada podemos afirmar que o valor ótimo de P é 466.
- 6. Com base na informação apresentada podemos afirmar que P terá uma solução ótima única.
- 7. Deve-se prosseguir o Algoritmo Branch and Bound, ramificando PL4.
- 8. Com base na informação apresentada nada podemos concluir sobre o valor ótimo de P.
- 9. Na árvore estão apresentadas 2 soluções incumbentes.

Pergunta 5 - cotação: 2,0 val

Considere o seguinte problema P de Programação Linear:

Max
$$F = 6 X + 3 Y + Z$$

sujeito a: $3 X + Y + Z \ge 100$
 $X + Y + Z \ge 140$
 $2 X + 2 Y + Z \le 220$
 $X, Y, Z \ge 0$

Sabe-se que a solução ótima de P é (X*, Y*, Z*) = (80, 0, 60).

Na sua folha de resolução comece por escrever o seu nome e resolva a questão, antes de responder no moodle. Terá de fazer o upload de uma imagem dessa folha de resolução, para validação das respostas no moodle.

Considere que Fi é a variável de folga da restrição i. Recorrendo à Formulação Matricial do Simplex, pretende-se que responda às questões que se apresentam em seguida.

No preenchimento das matrizes considere a seguinte ordem para as variáveis: X, Y, Z, F1, F2, F3. Por exemplo se decidir que as variáveis básicas são X e F1 então X será a primeira variável básica e F1 será a segunda variável básica de acordo com a ordenação estabelecida.

Considere que o quadro que se apresenta em seguida é o Quadro do Simplex correspondente à solução ótima indicada.

$$\begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1/2 & -1/2 & 0 \\ -1/2 & -1/2 & 1 \\ 0 & 2 & -1 \end{bmatrix} \qquad \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & -1 & 1 \\ 0 & 2 & -1 \\ 1 & 1 & -2 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 1 & -1 \\ 1 & 1 & 0 \\ 2 & 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & -1 & 1 \\ 0 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$
$$X \quad Y \quad Z \quad F1 \quad F2 \quad F3$$
$$A \quad B \quad C \quad D$$
$$E \quad F$$

Considere o seguinte quadro ótimo do Simplex. Fi é a variável de folga da restrição i.

	Х	Y	Z	F1	F2	F3	
Υ	0	1	0	0 0 1	-1	1	14
Z F1	1	0	1	0	2	-1	4
F1	-1	0	0	1	-3	1	4
F	2	0	0	0	2	1	68

Ao problema inicial foi adicionada uma nova restrição X + 3Z ≤ 6 tendo-se obtido o seguinte <u>quadro ótimo</u>:

	х	Υ	Z	F1	F2	F3	F4	
Υ				0				D
Z				0				
F1	В			1				
Α				0				
F				0			_	E

Pretende-se que selecione as opções corretas relativamente aos valores de A, B, D e E.

Escolha uma opção de entre as indicadas:

1) A corresponde à variável

1) O valor de B

é 14

é 15 é 13

não é nenhum dos valores indicados

3) O valor de E

