Les questions de cours portent sur les éléments du chapitre 8 : suites numériques précédés d'un astérisque. Les exercices portent sur le chapitre 8 : suites numériques. Le sens direct de la caractérisation séquentielle de la continuité peut être utilisé, même si nous n'avons pas encore étudié les limites et la continuité des fonctions de \mathbb{R} dans \mathbb{R} .

Chapitre 8 : suites numériques.

K désigne le corps \mathbb{R} ou le corps \mathbb{C} .

Exemples de suites numériques: suites numériques, majorées, minorées, bornées. u est bornée ssi |u| est majorée. Suites monotones, opérations sur les suites monotones. Propriétés vérifiées à partir d'un certain rang. Suite $a^n/n!$ avec $a \in \mathbb{R}_+$ est décroissante àpcr, suites stationnaires. Suites récurrentes $u_{n+1} = f(u_n)$. (*) Si f est croissante, u est monotone selon le signe de $u_0 - u_1$. Si f est décroissante, $(u_{2n})_n$ et $(u_{2n+1})_n$ sont monotones de monotonies contraires, selon le signe de $u_0 - u_2$. Si $x \mapsto x - f(x)$ est de signe constant, u est monotone selon ce signe. Si f est continue et u convergente, sa limite est un point fixe de f. Suites implicites, arithmético-géométriques. Suites récurrentes linéaires homogènes d'ordre 2 à coefficients constants. Polynôme caractéristique. (*) Forme générale des solutions complexes. Fomes générale des solutions réelles.

Limites finies et infinies

$$\forall u \in K^{\mathbb{N}}, \forall l \in K, u \to l \iff \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, |u_n - l| \leq \varepsilon$$

u tend vers l ssi tout invervalle ouvert contenant l contient toutes les valeurs de la suite u à partir d'un certain rang. Suite convergente. (\star) Unicité de la limite. Suite divergente. (\star) Opérations sur les limites finies, combinaison linéaire, produit, quotient. Si u est convergente, elle est bornée. Si u est bornée et v de limite nulle, uv est de limite nulle. (\star) Passage à la limite dans les inégalités. Dans le cas réel,

$$u \to +\infty \iff \forall A \in \mathbb{R}, \exists \, N \in \mathbb{N}, \forall \, n \geq N, \, u_n \geq A$$

$$u \rightarrow -\infty \iff \forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, u_n \leq A$$

u tend vers +∞ ssi –u tend vers –∞. Dans le cas complexe,

$$u \to \infty \iff \forall A \in \mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, |u_n| \geq A$$

u tend vers ∞ ssi |u| tend vers $+\infty$. (**) Opérations sur les limites infinies.

Conditions nécessaires et/ou suffisantes de convergence u tend vers $l \iff u-l$ tend vers $0 \iff |u-l|$ tend vers 0. Convergente implique bornée. Limite infinie implique non bornée. En cas de limite non nulle, u est de signe constant àpcr. (*) Théorème d'encadrement (gendarmes). Si u tend vers l, |u| tend vers |l| et \overline{u} tend vers \overline{l} . u à valeurs complexes est convergente ssi $\Re (u)$ et $\operatorname{Im}(u)$ sont convergentes. u tend vers $+\infty$ ssi elle est minorée àpcr par une suite v de limite $+\infty$. u tend vers $-\infty$ ssi elle est majorée àpcr par une suite v de limite $-\infty$.

Exemples fondamentaux de suites convergentes/divergentes Limites des suites arithmétiques, (\star) géométriques. (\star) Théorème de convergence monotone : les quatre cas doivent être sus. Suites adjacentes. (\star) Théorème de convergence des suites adjacentes. Extractrice, sous-suite. Si u est convergente, toutes ses sous-suites sont convergentes de même limite. Il suffit que $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ soient convergentes de même limite pour que u converge. (\star) Théorème de Bolzano-Weierstrass, démonstration par dichotomie. Dans le cas réel, si u est non majorée (resp. non minorée), il existe une sous-suite de u de limite $+\infty$ (resp. $-\infty$).

Vocabulaire de topologie Boule ouverte, notion d'ouvert, de voisinage d'un scalaire, de $\pm \infty$ dans \mathbb{R} , de ∞ dans \mathbb{C} , de $+\infty$ dans \mathbb{N} . Traduction des limites en termes de voisinage. Point adhérent à une partie.

* * * * *