Question	Scheme	Marks
7(a)	$v = 1^2 - 10 \times 1 + 28 = 19$ [m/s]	B1
		[1]
(b)	$s = \int (t^2 - 10t + 28) dt = \frac{t^3}{3} - \frac{10t^2}{2} + 28t(+c)$	M1
	$24 = \frac{3^{3}}{3} - \frac{10 \times 3^{2}}{2} + 28 \times 3 + c \Rightarrow c = -24 \Rightarrow \left[s = \frac{t^{3}}{3} - \frac{10t^{2}}{2} + 28t - 24 \right]$	M1A1
	$t = 5$, $s = \frac{5^3}{3} - \frac{10 \times 5^2}{2} + 28 \times 5 - 24 = \frac{98}{3}$ [m]	M1A1 [5]
(c)	dv_{-2t} 10	M1
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 2t - 10$	A1
	when $t = 9$, acceleration = 8 [m/s ²]	[2]
(d)	(i) $v = (t-5)^2 + 3$	M1
	Irrespective of the value of t $v \ge 3$ so the particle never comes to rest. ALT	A1
	$b^2 - 4ac < 0 \Rightarrow (-10)^2 - 4 \times 1 \times 28 = -12$	[M1
	No real solutions so the particle never comes to rest.	A1]
	(ii) Least value of v is 3 [m/s]	B1
		[3]
Total 11		

Question	Notes	Marks	
7(a)	$v = t^2 - 10t + 28$		
	$v = 1^2 - 10 \times 1 + 28 = 19$ [m/s]	B1 [1]	
(b)	For an attempt to integrate the given expression for v [See general guidance for the definition of an attempt] $s = \int (t^2 - 10t + 28) dt = \frac{t^3}{3} - \frac{10t^2}{2} + 28t(+c)$	M1	
	For finding the value of c. They cannot score this mark without $+c$ $24 = \frac{3^3}{3} - \frac{10 \times 3^2}{2} + 28 \times 3 + c \Rightarrow c =$	M1	
	For the correct expression for s. This need not be explicitly stated. $s = \frac{t^3}{3} - \frac{10t^2}{2} + 28t - 24$	A1	

	Award for the correct value of c seen -24 [m]		
	For using their integrated expression for s to find a value of the		
	displacement when $t = 5$		
	$s = \frac{5^3}{3} - \frac{10 \times 5^2}{2} + 28 \times 5 - 24 = \dots$	M1	
	$3 - \frac{3}{3} - \frac{1}{2} + 28 \times 3 - 27 - \dots$		
	For the correct value of $s = \frac{98}{3}$ [m] Accept $s = 32.7$ [or better]	A1	
		[5]	
(c)	For an attempt to differentiate the given v and substituting $t = 9$	3.64	
	into their differentiated expression.	M1	
	$\frac{\mathrm{d}v}{\mathrm{d}t} = 2t - 10 \Rightarrow \frac{\mathrm{d}v}{\mathrm{d}t} = 2 \times 9 - 10 = \dots$		
	For acceleration = $8 \text{ [m/s}^2\text{]}$	A 1	
	roi acceletation – o [m/s]	A1 [2]	
(d)(i)	Method A	<u> </u>	
	Completes the square to give $v = (t-5)^2 + 3$		
		M1	
	Concludes that at the minimum velocity [3 m/s] $t = 5$ so P never	A1	
	comes to rest		
	Method B	N/1	
	Finds the value of the discriminant	M1	
	$b^2 - 4ac < 0 \Rightarrow (-10)^2 - 4 \times 1 \times 28 = -12$		
	Concludes that as there are no real solutions, so <i>P</i> does not come	A1	
	to rest.		
	Method C Solves the 2TO to give the following two [non-need] values of the	N/ 1	
	Solves the 3TQ to give the following two [non-real] values of t :	M1	
	$5 + \sqrt{3}i$ and $5 - \sqrt{3}i$ or $\left(t - \left[5 + \sqrt{3}i\right]\right)\left(t - \left[5 + \sqrt{3}i\right]\right) = 0$		
	Concludes that as there are no real solutions, so <i>P</i> does not come	A1	
	to rest.		
	Method D	_	
	Uses their result from (c) $\frac{dv}{dt} = 2t - 10 = 0 \Rightarrow t = 5$	M1	
	Concludes that at the minimum velocity [3 m/s] $t = 5$ so P never comes to rest	A1	
(ii)	For the correct value of $v = 3$ [m/s]	B1	
		[3]	
	Total 11 mark		