

Arhitektura i Razvoj Inteligentnih Sustava

Tjedan 6: Učenje, testiranje, metrika,

repozitoriji modela

Creative Commons

- imenovanje: morate priznati i označiti autorstvo djela na način kako je specificirao autor ili davatelj licence (ali ne način koji bi sugerirao da Vi ili Vaše korištenje njegova djela imate njegovu izravnu podršku).
- nekomercijalno: ovo djelo ne smijete koristiti u komercijalne svrhe.
- dijeli pod istim uvjetima: ako ovo djelo izmijenite, preoblikujete ili stvarate koristeći ga, preradu možete distribuirati samo pod licencom koja je ista ili slična ovoj.

U slučaju daljnjeg korištenja ili distribuiranja morate drugima jasno dati do znanja licencne uvjete ovog djela. Od svakog od gornjih uvjeta moguće je odstupiti, ako dobijete dopuštenje nositelja autorskog prava. Ništa u ovoj licenci ne narušava ili ograničava autorova moralna prava. Tekst licence preuzet je s http://creativecommons.org/

Programski jezici i okviri

- Nekoliko programskih jezika koji se ističu
 - python
 - interpreterski jezik većina okvira i modula pisana je u drugim programskim jezicima koju su prevedeni na konkretnu arhitekturu procesora i dostupni python-u kao bibilioteke (*library*)
 - programiranje na visokom nivou, bez (???) potrebe poznavanja konkretnih implementacijskih detalja
 - R
- vrlo slično kao i python
- drukčija namjena više orijentirana na masovnu obradu okvira podataka
- Java
 - općeniti programski jezik
 - JIT (just in-time) prevođeni jezik
 - i dalje se masovno koriste matematičke biblioteke za linearnu algebru pisane u drugim programskim jezicima

python moduli

- scikit-learn: https://scikit-learn.org/stable/
- PyTorch: https://pytorch.org
- Keras: https://keras.io
- TensorFlow: https://www.tensorflow.org

Učenje ANN - PyTorch

- Kriteriji ili funkcije gubitka
 - PyTorch funkcije gubitka
 - Početni korak u svakom koraku učenja
 - Računamo gradijent i spuštamo se u optimum
- Optimizacija Više pristupa (<u>PyTorch optimizatori</u>)
 - Batch Gradient Descend Gradijent računamo na cijelom skupu podataka za učenje, ponavljamo toliko epoha dok nam ažuriranje težina bude prihvatljivo malo
 - Stohastic Gradient Descend (SGD) Gradijent se računa za svaki uzorak u skupu podataka za učenje
 - Nezgodan jer se mogu dešavati fluktuacije
 - Mini-batch pristup Kombinacija oba prethodna pristupa
 - mini-batch-evi se obrađuju slijedno

Paralelizacija?

- Što kada imamo veliki prostor značajki?
 - Svaki prolaz po uzorku iz skupa za učenje traje dovoljno dugo, što utječe i na SGD
 - Spas leži u optimizaciji i paralelizaciji matematičkih operacija
 - Linearna algebra produkti nad matricama
 - Arhitektura procesora
 - ILP (*Instruction level parallelism*) Paralelno izvođenje instrukcija u CPU-u. RISC arhitekture su tu u prednosti u odnosu na CISC
 - SIMD (Single-instruction multiple-data parallelism) Jedna instrukcija koja barata s vektorom podataka
 - Kod standardnih CPU-ova postoje određene nadogradnje koje omogućavaju ovakve instrukcije. Recimo kod x86 to je MMX, SSE i slično
 - Ovdje primat ipak uzimaju grafički procesori (GPU)

Paralelizacija?

- A što kada imamo velike skupove podataka za učenje?
 - Multi-threading paralelizam
 - Više procesora i radnih dretvi (thread) koji koriste dijeljene memorijske segmente
 - Učenje kroz segmentaciju neuronske mreže paralelizacija modela
 - Raspodjela slojeva kroz niz procesora GPU cjevovod
 - Distribuirana računala
 - Više računala koja komuniciraju kroz mrežu
 - Učenje kroz horizontalnu segmentaciju skupa podataka za učenje (parallel SGD)
 - Skup podataka horizontalno segmentiramo svaki segment predstavlja mini-batch
 - Svaki mini-batch predamo jednom čvoru (trainer) na učenje nad istim početnim modelom
 - Ažuriranja hiperparametara od svakog se čvora skupe u glavni čvor (*parameter server*) radi se agregacija promjena hiperparametara
 - Novi model se dijeli prema svim čvorovima
 - Nova epoha
 - Sinkronizacija čvorova je usko grlo pristupa Što ako jedan čvor konzistentno bude sporiji od 200 drugih?

Podatkovna paralelizacija?

- Što se dešava ako imamo segment podataka koji u sebi sadrži samo jednu labelu?
 - Lokalno nebalansirani skup podataka za učenje
- Problem bizantskog ispada (*Byzantine trainer*)
 - Imamo čvorove koji smetaju i rade kontraproduktivno

Paralelizam modela

- Model se razbija na slojeve i jednako raspoređuje i GPU-ovima
- Svaki GPU slijedno radi jedan posao
- Ulančavamo forward pass na jednom GPU, pa na drugom
- Obrnuto ulančavamo backward pass na drugom, pa na prvom GPU
- Odradimo određeni broj mini-batcheva, pa zatim ide sinkronizacija i ažuriranje hiperparametara
- Slijedi nova epoha

Praktični ANN paralelizam

- PyTorch podatkovni paralelizam
- PyTorch paralelizam modela
- PyTorch RPC distribuirano učenje

Paralelizam ostalih algoritama

- Regresija
 - Ima smisla jedino podatkovni paralelizam
- Algoritmi za grupiranje (clustering)
 - Teški za paralelizaciju
 - Slijed uzoraka definira pojavnost mikro i makro grupa
 - Kako agregirati dvije grupa s normalnom distribucijom?
 - Postoje mogućnosti kod metričkih algoritama za grupiranje
 - Podatkovni paralelizam
 - Zatim usklađivanje grupa između čvorova
 - Dosta otvorenog potencijala za znanstveno-istraživački rad

Repozitorij za eksperimente i učenje modela

• Faza eksperimentiranja

- Razmatranje koji algoritam i arhitektura najbolje odgovaraju datom skupu podataka za učenje
- Verzioniranje i formalni proces učenja i "peglanja" modela nije problem
- Bitno je da ML inženjeri mogu komunicirati međusobno i dijeliti modele, kao i metriku

Faza učenja

- U trenutku kada je cjevovod za učenje aktivan, i kada je učenje modela završeno imamo više zadataka
 - Provjeriti metriku to se može automatski, zadacima u cjevovodu
 - Odraditi verzioniranje modela
 - Staviti verziju s dobrom metrikom na odobravanje
 - Ažurira se status modela
 - Cjevovod za učenje inicira spuštanje modela u repozitorij modela, u kojem ga može pokupiti poslužitelj modela

MLflow

python modul koji instaliramo s

pip install mlflow

- Arhitektura 1 rad na datotekama vezanim uz projekt na disku
 - Koristimo python API, ne definiramo REST API URL kod rada s mlflow-om
 - Tracking API pozivi završavaju u datotekama mlruns direktorija u projektu
 - U direktoriju se može startati server s mlflow server, nakon čega ga možemo otvoriti s browserom na portu 5000

MLflow arhitekture

- MLflow server je povezan sa svojim repozitorijem koji se nalazi u bazi podataka (tipično MySQL ili PostgreSQL)
- Na MLflow server se povezujemo kroz mrežu korištenjem REST API-a
- U kodu definiramo URL MLflow servera
- Modele možemo spremiti u eksperimente (projekte) na MLflow serveru
- Za deployment model pohranjujemo direktno u cloud storage-u (AWS, GS, minIO)

MLflow arhitekture

- Arhitektura slična prethodnoj
- Model se iz MLflow-a prebaci direktno u repozitorij modela (AWS, GS, minIO)
- Verzioniranje modela
- Status modela

MLflow osnove

- MLflow server se koristi za
 - Definiranje projekta / eksperimenta
 - Definiranje jednog "pokretanja" (run) unutar tog projekta
 - Bilježenje parametara i metrika za modele
 - Bilježenje rezultata rada nad modelima
 - Spremanje raznih artefakata
 - Slike, grafovi, datoteke, konfiguracije
 - Struktura foldera
 - Modeli
 - Spremanje komentara, verzija i statusa modela
 - Prebacivanje modela u repozitorij modela (AWS, GS, minIO)

MLflow pokretanje

- Niz koraka koji se spoje u jednu cjelinu
 - U MLflow spremamo parametre, metriku, grafike, model, komentare
 - Mijenjamo verzije u ovisnosti u metrici
 - Odobravamo i prebacujemo u repozitorij modela (AWS, GS, minIO)
 - Workflow koristi MLflow da spremi produkte svojeg rada
 - Artefakti spremljeni u MLflow mogu utjecati na worflow

Cjev... za uče...

- U cjevovodu možemo kombinirati pokretanja kako nam je potrebno
- Primjer: odabir modela koji najbolje odgovara ulaznim podacima
- Odobrenje, ažuriranje verzija, statusa
- Prebacivanje u rad

MLflow API – učenje modela

- Definiramo tracking server URL
- Potražimo ili stvorimo naš projekt / eksperiment
- Definiramo shemu ulaz / izlaz
- Stvorimo run i u njega s log_model upišemo model koji smo naučili
- Na kraju definiramo verziju i stage

```
mlflow.set_tracking_uri("http://localhost:5000")
exps = mlflow.search_experiments(filter_string="name LIKE '%Diabetes%'")
if len(exps)==0:
    exp_id = mlflow.create_experiment("Linear regression - Diabetes dataset")
else:
    exp_id = exps[0].experiment_id
```


MLflow API rezultat učenja

Linear regression - Diabetes dataset >

Training diabetes linear regression model

Run ID: 578c10b24b684aa3a936e4891fc0d90e

Status: FINISHED

Date: 2023-04-07 08:35:15

Lifecycle Stage: active

MLflow API – automatsko testiranje

- Učitamo model sa MLflow servera
- Stvorimo novi run
- Odradimo automatsku evaluaciju na MLflow serveru s evaluate – šaljemo testni skup podataka
- Završimo aktualni run

MLflow API – automatsko testiranje

Linear regression - Diabetes dataset >

Testing diabetes linear regression model, version:1

Run ID: 4733b2089f9b4710bf59338b338d4d99

Date: 2023-04-07 08:35:20

Status: FINISHED

Lifecycle Stage: active

Artifacts

MLflow API – ručno testiranje

- Učitamo model sa MLflow servera
- Odradimo testiranje
- Sa log_metric upišemo određenu metriku

Metrics (3)

Name	Value
MAE 🗠	44.15
R2 🗠	0.557
RMSE <u>₩</u>	55.02

MLflow API - PyTorch

```
with mlflow.start_run(run_name="Training CIFAR10 CNN",
experiment id=exp id) as run:
model = ConvCifar10Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr = 0.001, momentum = 0.5)
mlflow.log_param("learning_rate", 0.001)
mlflow.log param("momentum", 0.5)
epochs = 10
mlflow.log param("epochs", epochs)
dataiter = iter(trainloader)
images, labels = next(dataiter)
plt = imshow(images)
mlflow.log_figure(plt.gcf(), "examples.png")
plt.close()
schema = None
for epoch in range(epochs):
 running loss, met loss = 0.0,0.0
 for i, data in enumerate(trainloader, 0):
   inputs, labels = data
   optimizer.zero grad()
   outputs = model(inputs)
   if schema is None:
     schema = infer signature(inputs.detach().numpy(), outputs.detach().numpy())
   loss = criterion(outputs, labels)
   loss.backward()
   optimizer.step()
```

```
running loss += loss.item()
   met loss += loss.item()
   if i \% 50 == 49:
     mlflow.log metric("loss", met loss/50, (epoch*len(trainloader))+i)
     met loss = 0.0
   if i % 2000 == 1999:
     print(f'[\{epoch + 1\}, \{i + 1:5d\}] \ loss: \{running \ loss / 2000:.3f\}')
     running loss = 0.0
mlflow.pytorch.log model(model, artifact path="pytorch-model", signature=schema)
name="CIFAR10 CNN"
client = MlflowClient()
rms = client.search registered models("name=""+name+""")
if len(rms)==0: client.create registered model(name)
model uri = "runs:/{}/pytorch-model".format(run.info.run id)
model src = RunsArtifactRepository.get underlying uri(model uri)
v = client.create model version(name, model src, run.info.run id,
description="CNN model for CIFAR10")
mlflow.end run()
```

• Primijetite korištenje *log_param, log_metric* i *log_figure*

MLflow API – PyTorch učenje

Artifacts

Evaluacija

- Razne metrike
 - Ponovite gradivo iz Strojnog Učenja
 - scikit-learn metrika
 - PyTorch metrika

