Теорема 1.2 (о проверке свойств отношения):

Отношение R на множестве A^2 :

- 1. R рефлексивно \Leftrightarrow I \subseteq R;
- 2. R симметрично \Leftrightarrow R = R⁻¹;
- 3. R транзитивно \Leftrightarrow R \circ R \subseteq R;
- 4. R антисимметрично \Leftrightarrow R \cap R⁻¹ \subseteq I;
- 5. R полно \Leftrightarrow R \cup I \cup R⁻¹ = U; доказательство теоремы 10 баллов

Матричный способ представления отношений Основные свойства матриц бинарных отношений:

1. Если бинарные отношения $P,Q \subseteq A \times B$,

[P] =
$$(p_{ij})$$
, [Q] = (q_{ij}) , to
$$[P \cup Q] = (p_{ij} + q_{ij}), \quad [P \cap Q] = (p_{ij} \cdot q_{ij}),$$

где умножение осуществляется обычным образом, а сложение — по логическим формулам (т.е. 0+0=0, во всех остальных случаях 1).

$$[P \cup Q] = [P] + [Q], [P \cap Q] = [P] * [Q].$$

- **2.** Если бинарные отношения $P \subseteq A \times B$, $Q \subseteq B \times C$, то $[Q \circ P] = [Q] \cdot [P]$,
- где умножение матриц [P] и [Q] осуществляется по обычному правилу, а произведение и сумма элементов из [P] и [Q] по правилам пункта 1.
- **3.** Матрица обратного отношения P^{-1} равна транспонированной матрице отношения P: $[P^{-1}]=[P]^{\mathrm{T}}$.

- **4.** Если Р \subseteq Q, [Р]=(p_{ij}), [Q]=(q_{ij}), то $p_{ij} \le q_{ij}$. $\forall i,j$.
- 5. Матрица тождественного отношения единична:

$$[I_A] = (I_{ij})$$
: $I_{ij} = 1 \Leftrightarrow i = j$.

6. Пусть R — бинарное отношение на A^2 . Отношение R является рефлексивным, если $\forall x \in A \ (x,x) \in R$, т.е. $I_A \in R$ (на главной диагонали R стоят единицы).

- Отношение R является *симметричным*, если $\forall x,y \in A \ (x,y) \in R \Rightarrow (y,x) \in R$, т.е. $R^{-1}=R$, или $[R]=[R]^T$ (матрица симметрична относительно главной диагонали).
- Отношение R является антисимметричным, если $R \cap R^{-1} \subseteq I_A$, т.е. в матрице $[R \cap R^{-1}] = [R]^*[R]^T$ вне главной диагонали все элементы равны 0.
- Отношение R является *транзитивным*, если $(x,y) \in R$, $(y,z) \in R \Rightarrow (x,z) \in R$, т.е. $R \circ R \subseteq R$.

1.3.4 Отношение эквивалентности

Бинарное отношение R на множестве A называется *отношением эквивалентности*, если оно является рефлексивным, симметричным и транзитивным.

Пусть R — отношение эквивалентности на множестве A.

Класс эквивалентности [x] для x∈A: [x] = {y / xRy}, т.е. это множество всех элементов A, которые R-эквивалентны x.

Утверждение 1.1.

Всякое отношение эквивалентности на множестве M определяет разбиение множества M, причем среди элементов разбиения нет пустых; и обратно, всякое разбиение множества M, не содержащее пустых элементов, определяет отношение эквивалентности на множестве M

Пусть E — эквивалентность на множестве M. Тогда семейство классов эквивалентности множества M называется фактор-множеством множества M по отношению E и обозначается

 $M/E = \{E(x) | x \in M\}.$

1.3.5 Отношение порядка

- Бинарное отношение R на множестве A называется отношением порядка, если оно антисимметрично и транзитивно.
 - Если отношение порядка рефлексивно, тогда оно называется отношением нестрогого порядка (обозначается ≤).
- Если отношение порядка антирефлексивно, то оно называется отношением строгого порядка (обозначается <).

Если отношение порядка полное (линейное), тогда оно называется отношением линейного порядка, а множество — вполне упорядоченным.

Если отношение порядка не обладает свойством полноты, то оно называется отношением частичного порядка, а множество с заданным на нем отношением частичного порядка называется частично упорядоченным множеством (чум).

- Пусть дано ч.у.м. M с отношением порядка \leq : $\tilde{\mathbf{U}} = \{M, \leq\}$.
- Элемент $a \in \tilde{\mathbf{U}}$ называется максимальным, если $\forall \mathbf{y} \in M \mid a \leq \mathbf{y} \Rightarrow a = \mathbf{y};$
- (во всем множестве нет элемента, большего чем a).
- Элемент $a \in \tilde{\mathbf{U}}$ называется минимальным, если $\forall y \in M \mid y \leq a \Rightarrow a = y$
- (во всем множестве нет элемента меньшего чем a).

- Элемент b ч.у.м. $\tilde{\mathbf{U}}$ называется наибольшим, если $x \leq \mathbf{b} \ \forall x \in M$
- (т.е. любой другой элемент множества меньше либо равен b).
- Элемент b называется наименьшим,
- если $b \le x \ \forall x \in M$ (т.е. любой другой элемент множества больше либо равен b).
- Наибольший (наименьший) элемент ч.у.м. $\tilde{\mathbf{U}}$ обычно обозначают **max** $\tilde{\mathbf{U}}$ (**min** $\tilde{\mathbf{U}}$).
- Наибольший элемент обычно называют единицей, а наименьший нулем множества M.

Пример. Отношение порядка:

 $1 \le 1, 1 \le 2, 2 \le 2, 3 \le 2, 3 \le 3.$

Для ч.у.м. $\tilde{U} = \{M, \leq \}$ и подмножеством $A \subseteq M$ элемент $a \in M$ называется верхней гранью множества A, если $\forall x \in A \ x \leq a$.

- элемент $b \in M$ называется нижней гранью множества A, если $\forall y \in A \ b \leq y$.
- Элемент $a \in M$ называется наименьшей верхней гранью множества A (sup A), если a является верхней гранью и для любого другого элемента a, являющегося верхней гранью, верно $a \le a$.

Элемент $b \in M$ называется наибольшей нижней гранью множества A (inf A), если b является нижней гранью и для любого другого элемента b, являющегося нижней гранью, верно $b \leq b$. Наименьший элемент множества A является inf A.

Пусть A – вполне упорядоченное множество. Введем отношение порядка на множестве упорядоченных наборов из A:

$$(a_1,...,a_m) \le (b_1,...,b_n) \Leftrightarrow$$
 $m \le n$ и $\forall i = 1,...,m$ $a_i = b_i$ или

$$\exists k \leq \min(n,m) \mid a_k \leq b_k \text{ и } a_i = b_i \forall i < k.$$

Такое отношение называется лексикографическим, или алфавитным порядком.

Пример:

$$(2,4,5) \le (2,4,5,2), (2,4,3,2,1) \le (2,4,5,2)$$