Supporting Transparent Snapshot for Bare-metal Malware Analysis on Mobile Devices

Le Guan, Shijie Jia, Bo Chen, Fengwei Zhang, Bo Luo, Jingqiang Lin, Peng Liu, Xinyu Xing, Luning Xia

Background

- ARM TrustZone and Its Usage in Android
- Flash-based Block Devices

Design

- Threat Model and Assumptions
 - Malware can obtain ultimate privilege in the normal-world Android system
 - Secure world is resilient to attacks from normal world

Overview-OS

Overview Architecture

Work-flow

Memory Recovery

- partition the physical memory into two regions
 - one is guest system
 - one is snapshot region
- registers, TTBR, SCTLR, ASID

Flash Recovery

- Malware analysis in-preparation
 - back up the valid pages and erases the blocks
- Malware analysis in-motion
 - Read: None
 - Write: page containing clean-state data or backup data is never selected
 - GC: blocks storing clean-state data are never selected as victim blocks
- Recovery from malware analysis

Implementation

- i.MX 6Quad SABRE experiment board
 - ARM Cortex-A9 processor
 - 1GB DDR3 DRAM and 256 KB SoC internal RAM
- Flash board: LPC-H3131

Evaluation

- Memory Restoration
 - 384MB: 2092653
 - 448MB: 2445271
 - 512MB: 2798087
- Flash Restoration
 - -433917

Evaluation

Flash Runtime Performance

