DM 10. un corrigé

Problème 1 : un anneau principal

Partie I

1°) a) Supposons que \sqrt{n} est un rationnel.

Il existe $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$ tels que $\sqrt{n} = \frac{p}{q}$ et $p \wedge q = 1$.

Ainsi, $q^2n = p^2$, donc $q \mid p^2$, mais $q \wedge p^2 = 1$, donc d'après le théorème de Gauss, $q \mid 1$, or $q \in \mathbb{N}^*$, donc q = 1, puis $n = p^2$ ce qui contredit les hypothèses de l'énoncé. Ainsi, $\sqrt{n} \notin \mathbb{Q}$.

b) Soit $\alpha \in \mathbb{Q}[\sqrt{n}]$. Supposons qu'il existe $a, b, a', b' \in \mathbb{Q}$ tels que $a + b\sqrt{n} = \alpha = a' + b'\sqrt{n}$. Alors $(a' - a) + \sqrt{n}(b' - b) = 0$.

Si $b \neq b'$, alors $\sqrt{n} = \frac{a-a'}{b'-b} \in \mathbb{Q}$, ce qui est faux, donc b = b', puis a' - a = 0, donc a = a'.

- **2°)** a) Soit $\alpha, \beta \in \mathbb{Q}[\sqrt{n}]$. Il existe $a, b, a', b' \in \mathbb{Q}$ tels que $\alpha = a + b\sqrt{n}$ et $\beta = a' + b'\sqrt{n}$.
 - $-1 = 1 + 0\sqrt{n} \in \mathbb{Q}[\sqrt{n}]:$
 - $--\alpha-\beta=(a-a')+(b-b')\sqrt{n}\in\mathbb{Q}[\sqrt{n}]\,;$
 - $-\alpha\beta = (aa' + nbb') + \sqrt{n}(ba' + b'a) \in \mathbb{Q}[\sqrt{n}].$

Ainsi, $\mathbb{Q}[\sqrt{n}]$ est un sous-anneau de \mathbb{R} .

Supposons que $\alpha \neq 0$. Si $a^2 - nb^2 = 0$, alors $|b|\sqrt{n} = |a|$, donc d'après l'unicité de la question précédente, |a| = |b| = 0, donc $\alpha = 0$ ce qui est faux. Ainsi, $a^2 - nb^2 \neq 0$ et

l'on peut écrire : $\frac{1}{\alpha} = \frac{a - b\sqrt{n}}{a^2 - nb^2} = \frac{a}{a^2 - nb^2} - \frac{b}{a^2 - nb^2}\sqrt{n} \in \mathbb{Q}[\sqrt{n}].$

Ainsi, $\mathbb{Q}[\sqrt{n}]$ est bien un sous-corps de \mathbb{R} .

- **b)** Soit $\alpha, \beta \in \mathbb{Z}[\sqrt{n}]$. Il existe $a, b, a', b' \in \mathbb{Z}$ tels que $\alpha = a + b\sqrt{n}$ et $\beta = a' + b'\sqrt{n}$.
 - $-1 = 1 + 0\sqrt{n} \in \mathbb{Z}[\sqrt{n}] :$
 - $-\alpha \beta = (a a') + (b b')\sqrt{n} \in \mathbb{Z}[\sqrt{n}];$
 - $-\alpha\beta = (aa' + nbb') + \sqrt{n}(ba' + b'a) \in \mathbb{Z}[\sqrt{n}].$

Or, $\mathbb{Z}[\sqrt{n}] \subset \mathbb{Q}[\sqrt{n}]$, donc $\mathbb{Z}[\sqrt{n}]$ est un sous-anneau de $\mathbb{Q}[\sqrt{n}]$.

3°) a) Posons $\varphi: \mathbb{Q}[\sqrt{n}] \longrightarrow \mathbb{Q}[\sqrt{n}]$.

Soit $\alpha, \beta \in \mathbb{Q}[\sqrt{n}]$. Il existe $a, b, a', b' \in \mathbb{Q}$ tels que $\alpha = a + b\sqrt{n}$ et $\beta = a' + b'\sqrt{n}$. $\varphi(\alpha + \beta) = \varphi((a + a') + (b + b')\sqrt{n}) = (a + a') - (b + b')\sqrt{n}$

et $\varphi(\alpha) + \varphi(\beta) = a - b\sqrt{n} + a' - b'\sqrt{n}$, donc $\varphi(\alpha + \beta) = \varphi(\alpha) + \varphi(\beta)$. Ainsi φ est un morphisme de groupes. De plus,

$$-- \varphi(1) = 1;$$

$$\varphi(\alpha\beta) = \varphi((aa' + nbb') + \sqrt{n}(ab' + ba')) = (aa' + nbb') - \sqrt{n}(ab' + ba')$$
 et
$$\varphi(\alpha)\varphi(\beta) = (a - \sqrt{n}b)(a' - \sqrt{n}b') = (aa' + nbb') - \sqrt{n}(ab' + ba') = \varphi(\alpha\beta).$$

Ainsi φ est un morphisme d'anneaux.

De plus, pour tout $\alpha = a + \sqrt{nb}$, $\varphi(\varphi(\alpha)) = \varphi(a - \sqrt{nb}) = a + \sqrt{nb} = \alpha$, donc $\varphi \circ \varphi = Id_{\mathbb{Q}[\sqrt{n}]}$. Ainsi φ est une involution, donc en particulier une bijection.

On a bien montré que φ est un automorphisme involutif d'anneaux.

b) \diamond Soit $z \in \mathbb{Q}[\sqrt{n}]$. $N(z) = 0 \iff z\overline{z} = 0$, or \mathbb{R} est intègre,

donc $N(z) = 0 \iff (z = 0) \lor (\overline{z} = 0)$.

Cependant $\overline{z} = 0 \Longrightarrow \varphi(\overline{z}) = 0 \Longrightarrow z = 0$, donc $N(z) = 0 \Longleftrightarrow z = 0$.

 \diamond Soit $z, z' \in \mathbb{Q}[\sqrt{n}]$. $N(zz') = (zz')\overline{(zz')} = zz'\overline{z}\overline{z'}$ car φ est un morphisme d'anneaux, donc $N(zz') = (z\overline{z})(z'\overline{z'}) = N(z)N(z')$.

c) Soit $z \in \mathbb{Z}[\sqrt{n}]$.

Supposons que z est inversible dans $\mathbb{Z}[\sqrt{n}]$: il existe $z' \in \mathbb{Z}[\sqrt{n}]$ tel que zz' = 1. Alors 1 = N(1) = N(zz') = N(z)N(z'), mais $N(z), N(z') \in \mathbb{Z}$, donc N(z) est un entier relatif inversible dans l'anneau \mathbb{Z} . On sait alors que |N(z)|=1.

Réciproquement, supposons que $N(z) = \varepsilon \in \{-1, 1\}$. On a vu que z est inversible dans $\mathbb{Q}[\sqrt{n}]$ avec $z^{-1} = \frac{\overline{z}}{N(z)} = \varepsilon \overline{z}$. Ainsi, $z^{-1} \in \mathbb{Z}[\sqrt{n}]$ et z est inversible dans $\mathbb{Z}[\sqrt{n}]$.

Partie II

4°) a) Soit $\alpha \in \mathbb{Q}$. Posons $a = \lfloor \alpha + \frac{1}{2} \rfloor \in \mathbb{Z}$. On a $a \le \alpha + \frac{1}{2} < a + 1$, donc $-\frac{1}{2} \le \alpha - a \le \frac{1}{2}$, donc $|\alpha - a| \le \frac{1}{2}$.

b) Soit $z = \alpha + \sqrt{n}\beta \in \mathbb{Q}[\sqrt{n}]$. D'après la question précédente, il existe $a, b \in \mathbb{Z}$ tels que $|\alpha - a| \le \frac{1}{2}$ et $|\beta - b| \le \frac{1}{2}$. Posons $q = a + b\sqrt{n} \in \mathbb{Z}[\sqrt{n}]$.

 $N(z-q) = N((\alpha-a) + \sqrt{n}(\beta-b)) = (\alpha-a)^2 - n(\beta-b)^2$. Or $0 \le (\alpha-a)^2 \le \frac{1}{4}$ et $-\frac{3}{4} \le -\frac{n}{4} \le -n(\beta-b)^2 \le 0$, donc en sommant ces encadrements, $-\frac{3}{4} \le N(z-q) \le \frac{1}{4}$. Ainsi, |N(z-q)| < 1.

5°) a) Soit $x,y\in\mathbb{Z}[\sqrt{n}]$ avec $y\neq 0$. Posons $z=\frac{x}{y}\in\mathbb{Q}[\sqrt{n}]$. D'après la question précédente, il existe $q \in \mathbb{Z}[\sqrt{n}]$ tel que $N(\frac{x}{y}-q) < 1$.

Posons $r = x - qy \in \mathbb{Z}[\sqrt{n}]$. $|N(r)| = |N(y(\frac{x}{y} - q))| = |N(y)| |N(\frac{x}{y} - q)| < N(y)$, car y étant non nul, $N(y) \neq 0$.

On a bien montré qu'il existe $q, r \in \mathbb{Z}[\sqrt{n}]$ tels que x = qy + r et |N(r)| < |N(y)|.

- b) Le couple (q,r) n'est pas unique, comme le montre le contre-exemple suivant : prenons x=1 et y=2. On peut écrire x=0.y+1 et 1=|N(1)|<|N(y)|=2, mais aussi x = 1.y - 1 et 1 = |N(-1)| < |N(y)|.
- **6°)** \diamond Posons $I = a_0 A$ et montrons que I est un idéal.

 $0 = a_0 \times 0 \in I$, donc $I \neq \emptyset$.

Soit $x, y \in I$. Il existe $a, b \in A$ tels que $x = a_0 a$ et $y = a_0 b$. Alors $x - y = a_0 (a - b) \in I$.

Ainsi I est un sous-groupe de A.

Soit $a \in A$ et $x \in I$. Il existe $b \in A$ tel que $x = a_0b$. Alors $ax = a_0(ab)$, car l'anneau est commutatif, donc $ax \in I$.

Ainsi I est un idéal de A, qui contient a_0 .

 \diamond Si J est un second idéal contenant a_0 , alors pour tout $x \in A$, J étant un idéal, $a_0x \in J$. Ainsi J contient a_0A .

On a bien prouvé que a_0A est le plus petit idéal de A contenant a_0 .

- **7°)** a) I contient $\{0\}$ en tant que sous-groupe, mais $I \neq \{0\}$, donc il existe $z_0 \in I \setminus \{0\}$. Alors $|N(z_0)| \in \{|N(z)|/z \in I \setminus \{0\}\}$, donc cet ensemble est une partie non vide de \mathbb{N} et à ce titre il possède un minimum.
- b) $y \in I$, donc d'après la question précédente, $yA \subset I$.

Réciproquement, soit $x \in I$. $y \neq 0$, donc d'après la question 5.a, il existe $q, r \in \mathbb{Z}[\sqrt{n}]$ tels que x = qy + r et |N(r)| < |N(y)|.

r = x - qy, or $x, y \in I$ et I est un idéal donc $r \in I$.

Si $r \neq 0$, $|N(r)| \in \{|N(z)|/z \in I \setminus \{0\}\}$ mais ce n'est pas compatible avec le fait que $|N(r)| < |N(y)| = k_0$.

Ainsi, r = 0 puis $x = qy \in yA$. Ceci montre que $I \subset yA$.

En conclusion, I = yA.

c) Soit A un sous-anneau de $\mathbb{Z}[\sqrt{n}]$. L'application $p: \mathbb{Z}[\sqrt{n}] \longrightarrow \mathbb{Z}$ est un morphisme de groupes, bien défini d'après la question 1.b, donc p(A) est un sous-groupe de \mathbb{Z} . D'après le cours, il existe $k \in \mathbb{N}$ tel que $p(A) = k\mathbb{Z}$.

 $1 \in A$ car A est un sous-anneau.

 $k \in p(A)$, donc il existe $\alpha \in A$ tel que $k = p(\alpha)$. Ainsi, il existe $a \in \mathbb{Z}$ tels que $\alpha = a + k\sqrt{n}$. Alors, $k\sqrt{n} = (a + k\sqrt{n}) - a \in A$.

Ainsi, $\{1, k\sqrt{n}\}\subset A$, donc A contient le sous-groupe engendré par $\{1, k\sqrt{n}\}$, c'est-àdire $B=\mathbb{Z}+k\sqrt{n}\mathbb{Z}=\{a+kb\sqrt{n}/a, b\in\mathbb{Z}\}.$

Réciproquement, si $\alpha \in A$, $p(\alpha) \in p(A) = k\mathbb{Z}$, donc il existe $a, b \in \mathbb{Z}$ tels que $\alpha = a + kb\sqrt{n}$, donc $\alpha \in B$.

On a ainsi montré que si A est un sous-anneau de $\mathbb{Z}[\sqrt{n}]$, alors il existe $k \in \mathbb{N}$ tel que $A = \mathbb{Z} + k\sqrt{n}\mathbb{Z}$.

Réciproquement, si $k \in \mathbb{N}$, posons $A = \mathbb{Z} + k\sqrt{n}\mathbb{Z}$. $1 \in A$ et si $\alpha, \beta \in A$, on vérifie que $\alpha - \beta \in A$ et que $\alpha\beta \in A$: en effet, lorsque $\alpha = a + kb\sqrt{n}$ et $\beta = a' + kb'\sqrt{n}$, $\alpha\beta = (aa' + k^2bb'n) + k\sqrt{n}(ab' + ba')$.

Ainsi, $\mathbb{Z} + k\sqrt{n}\mathbb{Z}$ est un sous-anneau de $\mathbb{Z}[\sqrt{n}]$.

En conclusion, les sous-anneaux de $\mathbb{Z}[\sqrt{n}]$ sont exactement les $\mathbb{Z} + k\sqrt{n}\mathbb{Z}$, où $k \in \mathbb{N}$.

Problème 2 : une intégrale dépendant d'un paramètre

 $\begin{array}{l} \textbf{1}^{\circ}\textbf{)} \quad \textbf{a)} \text{ Soit } x,y \in \mathbb{R}^{+*} \text{ tels que } x \leq y. \\ \text{Pour tout } t \in [0,1], \, \frac{1}{t^3+t+y} \leq \frac{1}{t^3+t+x}, \, \text{donc par croissance de l'intégrale}, \end{array}$

$$F(y) = \int_0^1 \frac{dy}{t^3 + t + y} \le \int_0^1 \frac{dx}{t^3 + t + x}$$
, ce qui montre que F est décroissante.

b) Pour tout $t \in [0, 1]$, $t^3 + t + x \ge x$, donc $0 \le \frac{1}{t^3 + t + x} \le \frac{1}{x}$, puis

 $0 \le F(x) \le \frac{1}{x} \xrightarrow[x \to +\infty]{} 0$, donc d'après le principe des gendarmes, $F(x) \xrightarrow[x \to +\infty]{} 0$. c) De plus, pour tout $t \in [0,1]$, $t^3 + t + x \le 2 + x$,

donc $\frac{1}{2+x} \le \frac{1}{t^3+t+x} \le \frac{1}{x}$, puis $\frac{x}{2+x} \le xF(x) \le 1$, or $\frac{x}{2+x} \xrightarrow[x \to +\infty]{} 1$, donc d'après le principe des gendarmes, $xF(x) \xrightarrow[x \to +\infty]{} 1$.

2°) **a)** Soit
$$a, x \in \mathbb{R}_+^*$$
. $F_a(x) = \int_0^1 \frac{dt}{at+x} = \left[\frac{1}{a}\ln(at+x)\right]_0^1 = \frac{1}{a}\ln\left(\frac{a+x}{x}\right)$.

Pour tout $t \in [0,1]$, $t^2 \le 1$, donc $t^3 \le t$. Ainsi $t + x \le t^3 + t + x \le 2t + x$, puis $\frac{1}{2t+x} \le \frac{1}{t^3+t+x} \le \frac{1}{t+x}$, donc en intégrant entre 0 et 1, $F_2(x) \le F(x) \le F_1(x)$.

- c) $F_2(x) = \frac{1}{2} \ln \left(\frac{2}{x} + 1 \right) \xrightarrow[x \to 0]{} +\infty$, donc $F(x) \xrightarrow[x \to 0]{} +\infty$.
- **d)** Soit $x \in \mathbb{R}^*$.

$$0 \le F_1(x) - F(x) = \int_0^1 \left(\frac{1}{t+x} - \frac{1}{t^3 + t + x} \right) dt = \int_0^1 \frac{t^3 dt}{(t+x)(t^3 + t + x)}.$$

Or, pour tout
$$t \in [0,1]$$
, $(t+x)(t^3+t+x) \ge (t+x)(t+x) = (t+x)^2 \ge t^2$, donc $0 \le F_1(x) - F(x) \le \int_0^1 t \ dt = \frac{1}{2}$, puis $0 \le \frac{F_1(x) - F(x)}{-\ln x} \le \frac{1}{-2\ln x} \xrightarrow[x \to 0]{} 0$.

Ainsi,
$$\frac{F(x)}{-\ln x} = -\frac{F_1(x) - F(x)}{-\ln x} + \frac{\ln(1+x) - \ln x}{-\ln x} \xrightarrow[x \to 0]{} 1.$$

3°) a) Soit $n \in \mathbb{N}^*$. En intégrant par parties

$$I_n = \int_0^1 (3t^2 + 1)(t^3 + t)^n \frac{1}{3t^2 + 1} dt = \left[\frac{(t^3 + t)^{n+1}}{n+1} \frac{1}{3t^2 + 1} \right]_0^1 + \int_0^1 \frac{(t^3 + t)^{n+1}}{n+1} \frac{6t}{(3t^2 + 1)^2} dt,$$

Donc $I_n = \frac{2^{n+1}}{n+1} \frac{1}{4} + \frac{6}{n+1} \int_0^1 \frac{t(t^3+t)^{n+1}}{(3t^2+1)^2} dt$, ce qu'il fallait démontrer.

$$\left| \frac{1}{2^n} \int_0^1 \frac{t(t^3 + t)^{n+1}}{(3t^2 + 1)^2} dt \right| \le \frac{1}{2^n} \int_0^1 \frac{t(2t)^{n+1}}{1^2} dt = 2 \int_0^1 t^{n+2} dt = \frac{2}{n+3} \underset{n \to +\infty}{\longrightarrow} 0.$$

c)
$$I_n \times \frac{n}{2^{n-1}} = \frac{n}{n+1} + \frac{n}{n+1} \frac{12}{2^n} \int_0^1 \frac{t(t^3+t)^{n+1}}{(3t^2+1)^2} dt \xrightarrow[n \to +\infty]{} 1$$
, donc $I_n \sim \frac{2^{n-1}}{n}$.

4°) **a**) Soit $u \in \mathbb{R}_+$ et $n \in \mathbb{N}^*$.

 $-u \neq 1$, donc d'après le cours, $\sum_{k=1}^{n-1} (-u)^k = \frac{1 - (-u)^n}{1 + u}$,

donc
$$\frac{1}{1+u} - \sum_{k=0}^{n-1} (-1)^k u^k = \frac{(-1)^n u^n}{1+u}$$
, puis $\left| \frac{1}{1+u} - \sum_{k=0}^{n-1} (-1)^k u^k \right| \le \frac{u^n}{1+u} \le u^n$.

b) Soit $t \in [0,1], x \in \mathbb{R}_+^*$ et $n \in \mathbb{N}^*$. Appliquons l'inégalité précédente avec $u = \frac{t^3 + t}{r}$:

$$\left| \frac{1}{1 + \frac{t^3 + t}{x}} - \sum_{k=0}^{n-1} (-1)^k \frac{(t^3 + t)^k}{x^k} \right| \le \frac{(t^3 + t)^n}{x^n}.$$

On divise cette inégalité par $x: \left| \frac{1}{x+t^3+t} - \sum_{k=0}^{n-1} (-1)^k \frac{(t^3+t)^k}{x^{k+1}} \right| \le \frac{(t^3+t)^n}{x^{n+1}} \le \frac{2^n}{x^{n+1}}.$

c) D'après l'inégalité triangulaire relative aux intégrales

$$\left| \int_{0}^{1} \frac{dt}{x+t^{3}+t} - \sum_{k=0}^{n-1} (-1)^{k} \int_{0}^{1} \frac{(t^{3}+t)^{k}}{x^{k+1}} dt \right| = \left| \int_{0}^{1} \left(\frac{1}{x+t^{3}+t} - \sum_{k=0}^{n-1} (-1)^{k} \frac{(t^{3}+t)^{k}}{x^{k+1}} \right) dt \right|$$

$$\leq \int_{0}^{1} \left| \left(\frac{1}{x+t^{3}+t} - \sum_{k=0}^{n-1} (-1)^{k} \frac{(t^{3}+t)^{k}}{x^{k+1}} \right) \right| dt$$

$$\leq \int_{0}^{1} \frac{2^{n}}{x^{n+1}} dt = \frac{2^{n}}{x^{n+1}}.$$
Pour tout $k \in \{1, \dots, n\}$, posons $a_{k} = (-1)^{k-1} I_{k-1}$, puis notons, pour tout $x \in \mathbb{R}_{+}^{*}$,

$$\varepsilon(x) = x^n \Big(F(x) - \sum_{k=1}^n \frac{a_k}{x^k} \Big)$$
. D'après ce qui précède, $|\varepsilon(x)| \le \frac{2^n}{x} \underset{x \to +\infty}{\longrightarrow} 0$,

donc $F(x) = \frac{a_1}{x} + \frac{a_2}{x^2} + \dots + \frac{a_n}{x^n} + \frac{\varepsilon(x)}{x^n}$, où ε est une fonction telle que $\varepsilon(x) \underset{x \to +\infty}{\longrightarrow} 0$.