TRABAJO PRÁCTICO DATA SCIENCE CoderHouse

INDICE

Conformación del equipo de trabajo.

Presentación del caso/problema específico.

Preguntas y objetivos de la investigación.

INDICE

EDA — Exploratory Data Analysis

Aplicación de algoritmos de ML

Conclusiones

CONFORMACIÓN DEL EQUIPO DE TRABAJO

EQUIPO DE TRABAJO

TAMARA FAYA

- Lic. Cs Físicas
- Analista Ssr de datos en Santander

GUADALUPE A. LAMAS

- Lic. en Administración y Sistemas
- Analista de datos en Santander

VITTORIA DEL SIGNORE

- Ing. Química
- Analista Data Management en BNP Paribas Cardif

PRESENTACIÓN DEL CASO

02

CASO: Dataset de empleados de IBM

- Corresponde a información de empleados de la empresa IBM.
- Incluye diferentes variables tanto personales como laborales de cada uno de los empleados.
- 1470 registros

+			+	+	+	+
+	Column	Туре	Non-Null	Nulls	Unique	Example
İ	Age	int64	1470	0	43	41
i	Attrition	object	1470	0	2	Yes
i	BusinessTravel	object	1470	i o	3	Travel Rarely
i	DailyRate	int64	1470	0	886	1102
i	Department	object	1470	0	3	Sales
i	DistanceFromHome	int64	1470	0	29	1 1
i	Education	int64	1470	0	5	2
İ	EducationField	object	1470	0	6	Life Sciences
İ	EmployeeCount	int64	1470	0	1	1
İ	EmployeeNumber	int64	1470	0	1470	1
Env	rironmentSatisfaction	int64	1470	0	4	2
1	Gender	object	1470	0	2	Female
Ì	HourlyRate	int64	1470	0	71	94
Ì	JobInvolvement	int64	1470	0	4	3
Ì	JobLevel	int64	1470	0	5	2
	JobRole	object	1470	0	9	Sales Executive
	JobSatisfaction	int64	1470	0	4	4
	MaritalStatus	object	1470	0	3	Single
	MonthlyIncome	int64	1470	0	1349	5993
	MonthlyRate	int64	1470	0	1427	19479
	NumCompaniesWorked	int64	1470	0	9	8
	Over18	object	1470	0	1	Y
	OverTime	object	1470	0	2	Yes
	PercentSalaryHike	int64	1470	0	15	11
	PerformanceRating	int64	1470	0	2	3
Rel	ationshipSatisfaction	int64	1470	0	4	1 1
	StandardHours	int64	1470	0	1	80
	StockOptionLevel	int64	1470	0	3	0
	TotalWorkingYears	int64	1470	0	39	8
Tr	ainingTimesLastYear	int64	1470	0	6	0
	WorkLifeBalance	int64	1470	0	4	1 1
	YearsAtCompany	int64	1470	0	36	6
	YearsInCurrentRole	int64	1470	0	18	4
	rsSinceLastPromotion	int64	1470	0	15	0
Y	earsWithCurrManager	int64	1470	0	17	5
+			+	+	+	·+

VARIABLE ATTRITION

SI

Los empleados deciden renunciar y tenemos que descubrir qué es aquello que los llevó a tomar esa decisión.

VO

Los empleados aún continúan en la empresa. Tenemos que entender que variables son las que los motivan a quedarse o descubrir quienes podrían ser los siguientes a renunciar para prevenirlo.

PREGUNTAS Y OBJETIVOS DE INVESTIGACIÓN

ALGUNAS PREGUNTAS SOBRE EL DATASET

- 1. ¿Qué porcentaje de empleados del estudio afirma tener desgaste en su trabajo?
- 2. ¿Es la **distancia** desde la casa al trabajo un factor determinante para que una persona quiera cambiar de trabajo?
- 3. ¿Cuántas personas hay de acuerdo a los **niveles de trabajo**?
- 4. ¿Qué **ramo de estudio** tienen las personas que trabajan en IBM?
- 5. ¿Los empleados están **satisfechos** con la empresa?
- 6. ¿Cuál es el **rango de salario** en la empresa?
- 7. ¿A mayor cantidad de años en la empresa mayor es el **salario**? ¿A mayor edad se incrementa el salario? o ¿El salario aumenta de acuerdo al nivel que tiene cada cargo?
- 8. ¿Cómo es en general el nivel de **balance entre el trabajo y la vida** de los empleados?
- 9. ¿Cuánto tiempo tienen los empleados con un **mismo jefe**?

¿Podemos generar un modelo de clasificación que nos ayude a conocer qué empleados tendrán mayor desgaste laboral y conocer qué variables lo generan? **OBJETIVO PRINCIPAL**

EDA : Exploratory Data Analysis

EDA - Exploratory Data Analysis

UNIVARIADO

Análisis individual de las variables

MULTIVARIADO

Análisis de relación y reducción de dimensionalidad.

BIVARIADO

Búsqueda de correlaciones

RESUMEN

Descripción de las variables disponibles y selección de variables irreducibles.

UNIVARIADO

UNIVARIADO

El 68% de los participantes se encuentra en el rango de edades de 28 a 46 Casi el 84 % de los empleados en este dataset dijo no tener desgaste laboral (attrition) mientras que el 16% si tuvo.

UNIVARIADO

Tenemos 6 rubros educacionales. Más del 70% tienen formación en Life Sciences o Medical. El 30% restante se dividen en Marketing Technical Degree Human Resources y otros

El 81% de los empleados raramente viaja o no lo hace directamente. Solo el 188 % viaja frecuentemente éste es un porcentaje parecido al indicado en attrition puede haber alguna relación?

Gender
Male
Female

BIVARIADO

Se observa que la mayor concentración de los empleados se encuentra en Bachelor (3).

También podemos observar que en cada pilar de educación la mayor concentración es en salarios mas bajos siendo pocos quienes cobran mas dinero

La participación laboral es media en general independientemente del nivel de sueldos.

BIVARIADO

La relación entre el ingreso mensual y el balance vida-trabajo resulta similar a la relación del ingreso con la variable

participación laboral. Se observa una aglomeración en los valores de bajos sueldos.

Los casos donde se ve el mayor desgaste laboral suele ser en aquellos donde los salarios son mas bajos

MULTIVARIADO

Corr Coef	Variable 1	Variable 2
0,95	MonthlyIncome	JobLevel
0,78	TotalWorkingYears	JobLevel
0,77	TotalWorkingYears	MonthlyIncome
0,77	PerformanceRating	PercentSalaryHike
0,77	YearsWithCurrManager	YearsAtCompany
0,76	YearsInCurrentRole	YearAtCompany
0,71	YearsWithCurrManager	YearsInCurrentRole
0,68	TotalWorkingYears	Age

Estas son las variables con mayor correlación

MULTIVARIADO

Altos coeficientes de correlación no siempre implica una real correlación. Del análisis de las variables con coeficientes de correlación superior a 0.6; observamos que existen reales correlaciones entre las variables `MonthlyIncome` `JobLevel` y `TotalWorkingYears`. Que tiene sentido cuando pensamos que el ingreso mensual suele ser mayor cuanto mayor es el nivel de responsabilidad en el trabajo y para acceder a estos altos puestos de seniority también se requiere haber trabajado una cierta cantidad de años; cuantos más años de trabajo haya tenido una persona más chance tendrá de haber accedido a puestos de mayor responsabilidad y por ende de mayor sueldo.

El resto de las variables muestran una falsa correlación por que cuanto mayor edad tienen los empleados mayor es la participación en la segunda variable analizada. Las variables sin implicancia temporal no muestran correlación más allá de lo mencionado.

MULTIVARIADO

Evaluando distintas variables respecto Monthly Income y haciendo la apertura para empleados con y sin desgaste laboral, podemos ver que por lo general los empleados con desgaste (color azul) se agrupan en menores rangos salariales; por lo cual esta variable pareciera influir en la posibilidad de que los empleados renuncien.

Aplicación de Algoritmos de ML

Algoritmos empleados

ÁRBOL DE DECISIÓN

REGRESIÓN LOGÍSTICA

RANDOM FOREST

XGBOOST

SUMMARY

A continuación se presenta un resumen con los principales resultados obtenidos para cada modelo aplicado al dataset con una división de 70/30 para train/test:

Métrica \ Modelo	arbol_1	arbol_2	forest_1	forest_2	LogReg	knn	XGboost
Accuracy	0.861678	0.809524	0.863946	0.759637	0.843537	0.836735	0.836735
Precision	0.500000	0.350650	1.000000	0.297300	0.277780	0.176470	0.351350
Recall	0.114750	0.442620	0.016390	0.016390	0.081970	0.049180	0.213110
ROC_curve	0.691390	0.696270	0.700630	0.707940	0.686500	0.510760	0.710960

^{*}En el apéndice se puede ver el detalle de modelos evaluados

Oversampling

EVALUACIÓN CON OVERSAMPLING

Debido a que el dataset utilizado es desbalanceado, contando con 83,9% de la muestra con Attrition=NO, y 16,1% de la muestra con Attrition=YES; se consideró la opción de hacer un oversampling; llevando la cantidad de casos con respuesta *Yes* a igualar la cantidad de casos con respuesta *No*.

EVALUACIÓN CON OVERSAMPLING

Luego se probaron todos los modelos nuevamente, pero en términos generales no se obtuvo mejora sustancial de los resultados:

División 70/30 dataset original

Dataset Balanceado (Oversampling)

Métrica \ Modelo	arbol_1	arbol_2	forest_1	forest_2	LogReg	knn	XGboost
Accuracy	0.861678	0.809524	0.863946	0.759637	0.843537	0.836735	0.836735
Precision	0.500000	0.350650	1.000000	0.297300	0.277780	0.176470	0.351350
Recall	0.114750	0.442620	0.016390	0.016390	0.081970	0.049180	0.213110
ROC_curve	0.691390	0.696270	0.700630	0.707940	0.686500	0.510760	0.710960

Métrica \ Modelo	arbol_1b	arbol_2b	forest_1b	forest_2b	LogRegb	knn_b	XGboost_b
Accuracy	0.646259	0.811791	NaN	NaN	0.673469	NaN	0.786848
Precision	0.176870	0.333330	NaN	NaN	0.221480	NaN	0.296300
Recall	0.426230	0.360660	NaN	NaN	0.540980	NaN	0.393440
ROC_curve	0.617470	0.641780	NaN	NaN	0.641780	NaN	0.620530

En general, al probar algunos modelos con el dataset balanceado, no se obtiene una mejoría respecto al dataset sin balancear; por lo cual es recomendable realizar la optimización de hiperparámetros

Validación y Optimización

RESULTADOS FINALES

Dataset con Original

Métrica \ Modelo	arbol_1	arbol_2	forest_1	forest_2	LogReg	knn	XGboost
Accuracy	0.861678	0.809524	0.863946	0.759637	0.843537	0.836735	0.836735
Precision	0.500000	0.350650	1.000000	0.297300	0.277780	0.176470	0.351350
Recall	0.114750	0.442620	0.016390	0.016390	0.081970	0.049180	0.213110
ROC_curve	0.691390	0.696270	0.700630	0.707940	0.686500	0.510760	0.710960

Dataset Oversampling

Métrica \ Modelo	arbol_1b	arbol_2b	forest_1b	forest_2b	LogRegb	knn_b	XGboost_b
Accuracy	0.646259	0.811791	NaN	NaN	0.673469	NaN	0.786848
Precision	0.176870	0.333330	NaN	NaN	0.221480	NaN	0.296300
Recall	0.426230	0.360660	NaN	NaN	0.540980	NaN	0.393440
ROC_curve	0.617470	0.641780	NaN	NaN	0.641780	NaN	0.620530

Dataset con Stratified Kfold y GridSearchCV

Métrica \ Modelo	arbol_ optimizado	Regresión Logística optimizada	XGboost_ optimizado
Accuracy	0.82337	0.866848	0.847826
Precision	0.22222	0.666670	0.600000
Recall	0.03333	0.366670	0.200000
ROC_curve	0.66523	0.796750	0.795830

Se adoptó el modelo de regresión logística luego de realizar la optimización de hiperparámetros, para predecir que empleados sufrirán Attrition, ya que es el que logra los mejores indicadores

CONCLUSIONES 06

CONCLUSIONES

- Se realizó el EDA sobre el dataset obteniendo una descripción general de las variables que lo componen.
- Con el dataset se pudo estudiar el riesgo que tienen los empleados de abandonar la empresa por desgaste laboral (Attrition).
- La variable objetivo, desgaste laboral (Attrition), se encuentra desbalanceada. El 16,1% indica tener desgaste laboral.
- El modelo adoptado de Regresión Logística, con los óptimos parámetros, permite predecir qué empleados pudieran estar sufriendo desgaste laboral, y tomar acciones para mejorar el ambiente.
- El modelo predice con una exactitud del 86,68%, una precisión del 66,67% y sensibilidad de 36,67%.

