SCORE Search Results Details for Application 10573229 and Search Result 20090528_121112_Us-10-573-229a-1 inpbn

	THE THE MENT HE WAS TO SEE			
	(A. CONTROL OF CONTROL			20.000.200.00
WAX A COLOR COLOR COLOR COLOR COLOR			L 0 / 1	
		CAN GO WIGHTON	477 (MCC) 2000 000 000 000 000 000 000 000 000 0	\$ (\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
)				

This page gives you Search Results detail for the Application 10573229 and Search Result 20090528_121112_us-10-573-229a-1.rnpbn.

Go Back to previous page

GenCore version 6.3 Copyright (c) 1993 - 2009 Biocceleration Ltd.

OM nucleic - nucleic search, using sw model

Run on: May 31, 2009, 22:32:56; Search time 135 Seconds

(without alignments)

7905.435 Million cell updates/sec

Title: US-10-573-229A-1

Perfect score: 920

Sequence: 1 tctgtagagggaatggctg.....acccccaaagaaaccttcta 920

Scoring table: IDENTITY_NUC

Gapop 10.0 , Gapext 1.0

Searched: 1488000 seqs, 580018325 residues

Total number of hits satisfying chosen parameters: 2976000

Minimum DB seq length: 0

Maximum DB seq length: 200000000

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 45 summaries

Database: Published_Applications_NA_New:*

1: /ABSS/Data/CRF/ptodata/1/pubpna/US09_NEW_PUB.seq:*

2: /ABSS/Data/CRF/ptodata/1/pubpna/US10_NEW_PUB.seq:*

3: /ABSS/Data/CRF/ptodata/1/pubpna/US11_NEW_PUB.seq:*

4: /ABSS/Data/CRF/ptodata/1/pubpna/US12_NEW_PUB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

응

Result Query

No. Score Match Length DB ID Description

	1	77	8.4	32460	3	US-11-888-911-9	Sequence 9, Appli
С	2	67	7.3	1980090	4		Sequence 17676, A
	3	64.6	7.0	13633	4	US-12-287-505-17989	Sequence 17989, A
С	4	64.4	7.0	54854	4	US-12-287-505-17862	Sequence 17862, A
	5	64	7.0	333811	4	US-12-287-505-17681	Sequence 17681, A
С	6	63.8	6.9	267966	3	US-11-579-796-1	Sequence 1, Appli
	7	62	6.7	510510	4	US-12-287-505-17606	Sequence 17606, A
С	8	61.6	6.7	209822	4	US-12-287-505-17560	Sequence 17560, A
	9	61.2	6.7	112486	4	US-12-287-505-17642	Sequence 17642, A
С	10	61.2	6.7	161700	4	US-12-287-505-17590	Sequence 17590, A
С	11	60.8	6.6	293802	4	US-12-113-373-27	Sequence 27, Appl
С	12	60.8	6.6	293802	4	US-12-113-373-64	Sequence 64, Appl
С	13	59.4	6.5	321019	4	US-12-287-505-17566	Sequence 17566, A
С	14	59	6.4	364905	4	US-12-113-373-45	Sequence 45, Appl
С	15	58.8	6.4	12600	4	US-12-287-505-17891	Sequence 17891, A
	16	58.8	6.4	59247	4	US-12-287-505-17890	Sequence 17890, A
С	17	58.4	6.3	201	4	US-12-287-505-23507	Sequence 23507, A
С	18	56.2	6.1	201	4	US-12-287-505-41763	Sequence 41763, A
	19	55.2	6.0	8000	4	US-12-024-458-421	Sequence 421, App
	20	55.2	6.0	8000	4	US-12-024-534-421	Sequence 421, App
	21	55.2	6.0	8000	4	US-12-024-672-421	Sequence 421, App
	22	55.2	6.0	8000	4	US-12-024-769-421	Sequence 421, App
	23	55.2	6.0	8000	4	US-12-024-477-421	Sequence 421, App
	24	55.2	6.0	8000	4	US-12-024-701-421	Sequence 421, App
С	25	54.6	5.9	95173	4	US-12-264-501-72	Sequence 72, Appl
	26	54.2	5.9	15644	4	US-12-287-505-17591	Sequence 17591, A
С	27	54	5.9	201	4	US-12-287-505-22944	Sequence 22944, A
	28	54	5.9	201	4	US-12-287-505-30986	Sequence 30986, A
С	29	54	5.9	201	4	US-12-287-505-41764	Sequence 41764, A
	30	52.4	5.7	201	4	US-12-287-505-44301	Sequence 44301, A
С	31	51.8	5.6	53328	4	US-12-287-505-17632	Sequence 17632, A
	32	51.4	5.6	398287	4	US-12-287-505-17839	Sequence 17839, A
С	33	49.2	5.3	3269	4	US-12-064-797A-4273	Sequence 4273, Ap
С	34	48.6	5.3	84239	4	US-12-113-373-21	Sequence 21, Appl
С	35	48.2	5.2	201	4	US-12-287-505-23523	Sequence 23523, A
С	36	48.2	5.2	103660	4	US-12-287-505-17645	Sequence 17645, A
С	37	47.8	5.2	201	4	US-12-287-505-23505	Sequence 23505, A
С	38	47.6	5.2	201	4	US-12-287-505-23647	Sequence 23647, A
	39	47.6	5.2	201	4	US-12-287-505-31333	Sequence 31333, A
	40	47.6	5.2	1618	4	US-12-064-797A-4083	Sequence 4083, Ap
	41	47.6	5.2	3360	4	US-12-064-797A-4081	Sequence 4081, Ap
С	42	47.6	5.2	12815	4	US-12-287-505-17853	Sequence 17853, A
С	43	46.8	5.1	68123	4	US-12-287-505-17774	Sequence 17774, A
С	44	46.8		187791	4	US-12-113-373-4	Sequence 4, Appli
	45	46	5.0	659	4	US-12-064-797A-2808	Sequence 2808, Ap

ALIGNMENTS

```
RESULT 1
```

US-11-888-911-9

- ; Sequence 9, Application US/11888911
- ; Publication No. US20090130109A1
- ; GENERAL INFORMATION:
- ; APPLICANT: Hart, Derek Nigel John

```
APPLICANT: Kato, Masato
  TITLE OF INVENTION: DCL-1 AND USES THEREOF
  FILE REFERENCE: DAVI257.002CP1
  CURRENT APPLICATION NUMBER: US/11/888,911
  CURRENT FILING DATE: 2007-09-18
  PRIOR APPLICATION NUMBER: US 10/537,839
  PRIOR FILING DATE: 2006-05-18
  PRIOR APPLICATION NUMBER: PCT/AU2003/01634
  PRIOR FILING DATE: 2003-05-12
  PRIOR APPLICATION NUMBER: AU 2002953223
  PRIOR FILING DATE: 2002-06-12
 NUMBER OF SEQ ID NOS: 31
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 9
  LENGTH: 32460
  TYPE: DNA
  ORGANISM: Homo sapiens
US-11-888-911-9
 Query Match
                     8.4%; Score 77; DB 3; Length 32460;
 Best Local Similarity 62.2%; Pred. No. 6e-13;
 Matches 171; Conservative 0; Mismatches 100; Indels 4; Gaps 3;
         2 CTGTAGAGGGGAATGGCTGTGTCATGGGGGTGCATGAGCAGCCCAGTGGAGAGGTGC 61
Qу
           6954 CTCTGGGGGAAGCTACCTGCCATGTCATAAGGACCCTCAAGCACCCCTGTGTAGAAGTCC 7013
        62 ACTTGGTGAGAAACCGATGCCT-CTGCCAACCACCTGCACTAACCTGCTGGGTCTGAGAC 120
Qу
           Db
       Qу
           7074 TGAGGCTTCTT-GAAGCTGACCTTTCAGCTCCAGTTCAGTGTTTAGATGGCTGCAGCCCT 7132
Db
       181 AGCCAACAACAAGACTGCAACCTCCTGGGGGATCCTGAGCCAGAATCCCCTGGCTA--AA 238
Qу
           7133 AGCCAGCATCTTCACTGTAACTTCATGGAGACCCCAAGCCAGAATCACCCAGACAAGCAA 7192
Db
       239 TTGCTCCTTGATTCTTAACCCACAGAAATTGTGTA 273
Qу
            7193 CTGCTTCAGAATTCCTGACCCAGAGAAACTGTATA 7227
Db
RESULT 2
US-12-287-505-17676/c
; Sequence 17676, Application US/12287505
; Publication No. US20090118217A1
; GENERAL INFORMATION
  APPLICANT: CARGILL, Michele et al.
  TITLE OF INVENTION: GENETIC POLYMORPHISMS ASSOCIATED WITH
  TITLE OF INVENTION: MYOCARDIAL INFARCTION, METHODS OF DETECTION AND USES THEREOF
 FILE REFERENCE: CL001499
  CURRENT APPLICATION NUMBER: US/12/287,505
  CURRENT FILING DATE: 2008-10-17
```

NUMBER OF SEQ ID NOS: 73997

```
SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 17676
  LENGTH: 1980090
  TYPE: DNA
  ORGANISM: Homo sapiens
  FEATURE:
 NAME/KEY: misc_feature
 LOCATION: (1)...(1980090)
; OTHER INFORMATION: n = A, T, C or G, or insertion/deletion polymorphism (see Tables 1-2)
US-12-287-505-17676
 Query Match
                       7.3%; Score 67; DB 4; Length 1980090;
 Best Local Similarity 61.4%; Pred. No. 1.2e-09;
 Matches 148; Conservative 2; Mismatches 72; Indels 19; Gaps 2;
         37 CATGAGCAGCCCAGTGGAGAGGTGCACTTGGTGAGAAACCGATGCCTCTGCCAACCACCT 96
Qу
            759398 CTTCAGCATTCCTCTGGAGAGGTCCATGTGGTGAGGACCTGAGGCCTCCGCCAACTAC-- 759341
Db
         97 GCACTAACCTGCTGGGTCTGAGACTGAGCCACTTTGGAAGCTGATCTTGGAGCACCAGTC 156
Qу
                          759340 -----TATGTGAATGAGCTGMCTTGGGAGTAGATCTTCCAGCCCTGGCT 759297
Db
        157 AAGCCCTTAGCTGCCTGCAGCCACCACCAACAACAACAACCTCCTGGGGGATCCT 216
Qу
            Db
      759296 AAGCCTTCAGACCGCCGAAGCCCTGGCCACCAGGTGGAATGAAACCCTCATGAAAAACCCT 759237
        217 GAGCCAGAATCCCCT-GGCTAAATTGCTCCTTGATTCTTAACCCACAGAAATTGTGTAAG 275
Qу
            759236 GAGCCAGAACYGTCTAGGCCAAGATGCTCCCAGATTCCTGTCTAGTAGAAACTATGTGAG 759177
Db
        276 A 276
Qy
Db
      759176 A 759176
RESULT 3
US-12-287-505-17989
; Sequence 17989, Application US/12287505
; Publication No. US20090118217A1
; GENERAL INFORMATION
 APPLICANT: CARGILL, Michele et al.
  TITLE OF INVENTION: GENETIC POLYMORPHISMS ASSOCIATED WITH
  TITLE OF INVENTION: MYOCARDIAL INFARCTION, METHODS OF DETECTION AND USES THEREOF
  FILE REFERENCE: CL001499
  CURRENT APPLICATION NUMBER: US/12/287,505
  CURRENT FILING DATE: 2008-10-17
 NUMBER OF SEQ ID NOS: 73997
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 17989
  LENGTH: 13633
 TYPE: DNA
  ORGANISM: Homo sapiens
US-12-287-505-17989
```

```
Query Match
                      7.0%; Score 64.6; DB 4; Length 13633;
 Best Local Similarity 61.4%; Pred. No. 3e-09;
 Matches 148; Conservative 0; Mismatches 74; Indels 19; Gaps 2;
         37 CATGAGCAGCCCAGTGGAGAGGTGCACTTGGTGAGAAACCGATGCCTCTGCCAACCACCT 96
Qу
           Db
       1582 CTTCAGCATTCCTCTGGAGAGGTCCATGTGGTGAGGACCTGAGGCCTCCGCCAACTAC-- 1639
         97 GCACTAACCTGCTGGGTCTGAGACTGAGCCACTTTGGAAGCTGATCTTGGAGCACCAGTC 156
Qу
                         1640 -----TATGTGAATGAGCTGACTTGGGAGTAGATCTTCCAGCCCTGGCT 1683
Db
        157 AAGCCCTTAGCTGCTGCAGCCACAGCCAACAACAAGACTGCAACCTCCTGGGGGGATCCT 216
Qу
           1684 AAGCCTTCAGACCGCCGAAGCCCTGGCCACCAGGTGGAATGAAACCCTCATGAAAAACCCT 1743
Db
        217 GAGCCAGAA-TCCCCTGGCTAAATTGCTCCTTGATTCTTAACCCACAGAAATTGTGTAAG 275
Qу
           Db
       1744 GAGCCAGAACTGTCTAGGCCAAGATGCTCCCAGATTCCTGTCTAGTAGAAACTATGTGAG 1803
        276 A 276
Qу
Db
       1804 A 1804
RESULT 4
US-12-287-505-17862/c
; Sequence 17862, Application US/12287505
; Publication No. US20090118217A1
; GENERAL INFORMATION
  APPLICANT: CARGILL, Michele et al.
  TITLE OF INVENTION: GENETIC POLYMORPHISMS ASSOCIATED WITH
  TITLE OF INVENTION: MYOCARDIAL INFARCTION, METHODS OF DETECTION AND USES THEREOF
  FILE REFERENCE: CL001499
  CURRENT APPLICATION NUMBER: US/12/287,505
  CURRENT FILING DATE: 2008-10-17
  NUMBER OF SEQ ID NOS: 73997
  SOFTWARE: FastSEQ for Windows Version 4.0
 SEQ ID NO 17862
 LENGTH: 54854
  TYPE: DNA
 ORGANISM: Homo sapiens
US-12-287-505-17862
                      7.0%; Score 64.4; DB 4; Length 54854;
 Query Match
 Best Local Similarity 61.1%; Pred. No. 4.2e-09;
 Matches 138; Conservative 0; Mismatches 86; Indels 2; Gaps
                                                                2;
         41 AGCAGCCCAGTGGAGAGGTGCACTTGGTGAGAAACCGATGCCTC-TGCCAACCACCTGCA 99
Qу
           3710 AGTAACCCTGTGAAGAGGTCCATGTGGCAAGGAACTGAGGCTTCATGGCAGCAGCCGGCG 3651
Db
        100 CTAACCTGCTGGGTCT-GAGACTGAGCCACTTTGGAAGCTGATCTTGGAGCACCAGTCAA 158
Qу
                     Db
       3650 CCCACTTGCCCACTGTGGTGAAGAAGCCACTTTGGGACTGTATCCTCCGACCCTAGTCAA 3591
```

```
159 GCCCTTAGCTGGCTGCAGCCACAGCCAACAACAAGACTGCAACCTCCTGGGGGATCCTGA 218
Qу
            Db
       3590 GCCTTCAGAAGACAGTAGCCCCCACTGACATACTGACTGTGACTCCATGGAAGACCCCGG 3531
Qу
        219 GCCAGAATCCCCTGGCTAAATTGCTCCTTGATTCTTAACCCACAGA 264
            Db
       3530 GCCAGGACCGCCCAGCTAAACTGCTCTGAGTCCCTGACCACAGAAA 3485
RESULT 5
US-12-287-505-17681
; Sequence 17681, Application US/12287505
; Publication No. US20090118217A1
; GENERAL INFORMATION
  APPLICANT: CARGILL, Michele et al.
  TITLE OF INVENTION: GENETIC POLYMORPHISMS ASSOCIATED WITH
  TITLE OF INVENTION: MYOCARDIAL INFARCTION, METHODS OF DETECTION AND USES THEREOF
  FILE REFERENCE: CL001499
  CURRENT APPLICATION NUMBER: US/12/287,505
  CURRENT FILING DATE: 2008-10-17
 NUMBER OF SEQ ID NOS: 73997
  SOFTWARE: FastSEO for Windows Version 4.0
; SEQ ID NO 17681
 LENGTH: 333811
  TYPE: DNA
  ORGANISM: Homo sapiens
  FEATURE:
 NAME/KEY: misc_feature
 LOCATION: (1)...(333811)
  OTHER INFORMATION: n = A, T, C or G, or insertion/deletion polymorphism (see Tables 1-2)
US-12-287-505-17681
                      7.0%; Score 64; DB 4; Length 333811;
 Query Match
 Best Local Similarity 60.6%; Pred. No. 7.3e-09;
 Matches 137; Conservative 1; Mismatches 86; Indels
                                                     2; Gaps
                                                                2;
         41 AGCAGCCCAGTGGAGAGGTGCACTTGGTGAGAAACCGATGCCTC-TGCCAACCACCTGCA 99
Qу
           Db
      156491 AGTAACCCTGTGAAGAGGTCCATGTGGCAAGGAACTGAGGCTTCATGGCAGCAGCCGGCG 156550
        100 CTAACCTGCTGGGTCT-GAGACTGAGCCACTTTGGAAGCTGATCTTGGAGCACCAGTCAA 158
Qу
           156551 CCCACTTGCCCACTGTGGTGAAGAAGCCACTTYGGGACTGTATCCTCCGACCCTAGTCAA 156610
Db
        159 GCCCTTAGCTGCAGCCACAGCCAACAACAAGACTGCAACCTCCTGGGGGATCCTGA 218
Qу
           156611 GCCTTCAGAAGACAGTAGCCCCCACTGACATACTGACTGTGACTCCATGGAAGACCCCGG 156670
Db
        219 GCCAGAATCCCCTGGCTAAATTGCTCCTTGATTCTTAACCCACAGA 264
Qу
           156671 GCCAGGACCGCCCAGCTAAACTGCTCTGAGTCCCTGACCACAGAAA 156716
Db
```

RESULT 6 US-11-579-796-1/c

```
; Sequence 1, Application US/11579796
; Publication No. US20090041862A1
; GENERAL INFORMATION
 APPLICANT: Garvan Institute of Medical Research
  APPLICANT: Schofield, Peter
  APPLICANT: Kwok, John
  TITLE OF INVENTION: Novel Diagnostics and Therapeutics of Neurodegenerative Disorders
  FILE REFERENCE: 130534
  CURRENT APPLICATION NUMBER: US/11/579,796
  CURRENT FILING DATE: 2008-09-05
  PRIOR APPLICATION NUMBER: US 60/569,098
  PRIOR FILING DATE: 2004-05-07
  PRIOR APPLICATION NUMBER: US 60/626,455
  PRIOR FILING DATE: 2004-11-09
  PRIOR APPLICATION NUMBER: PCT/AU2005/000648
 PRIOR FILING DATE: 2005-05-06
 NUMBER OF SEQ ID NOS: 55
  SOFTWARE: PatentIn version 3.3
; SEQ ID NO 1
 LENGTH: 267966
 TYPE: DNA
; ORGANISM: Homo sapiens
US-11-579-796-1
 Query Match
                       6.9%; Score 63.8; DB 3; Length 267966;
 Best Local Similarity 61.8%; Pred. No. 8.1e-09;
 Matches 154; Conservative 0; Mismatches 87; Indels 8; Gaps 3;
         31 GGGGTGCATGAGCAGCCCAGTGGAGAGGTGCACTTGGTGAGAAACCGATGCCT-CTGCCA 89
Qу
            Db
      262481 GAGATACTTAAGTAGCACTATGGAGAGGGCCACTTATTGAGTGACTGAGGCTTCCTGCAT 262422
         90 ACCACCTGCACTAACCTGCT--GGGTCTGAGACTGAGCCACTTTGGAAGCTGATCTTGGA 147
Qу
                262421 ACAGGCAGCATATTTGATAACCACATGAATGAGAGCCACTGTGGAAGCAGAGCTTCTG 262362
Db
        148 GCACCAGTCAAGCCCTTAGCTGGCTGCAGCCACCAGCCAACAACAAGACTGCAACCTCCTG 207
Qу
             262361 CCTCCAGGCAAGTCATCAGACGACTGCATCCCTGGCTAATGTTTTTGACTATGTCAT---- 262306
Db
        208 GGGGATCCTGAGCCAGAATCCCCTGGCTAAATTGCTCCTTGATTCTTAACCCACAGAAAT 267
Qу
             262305 -GAGACTCTGACCCAGAACCACCTAGCTAAGCTGCTTCTAAATTCCTGACCCATAGAAAC 262247
Db
        268 TGTGTAAGA 276
Qу
            Db
      262246 TATGTGAGA 262238
RESULT 7
US-12-287-505-17606
; Sequence 17606, Application US/12287505
```

; Publication No. US20090118217A1

; APPLICANT: CARGILL, Michele et al.

; GENERAL INFORMATION

```
TITLE OF INVENTION: GENETIC POLYMORPHISMS ASSOCIATED WITH
  TITLE OF INVENTION: MYOCARDIAL INFARCTION, METHODS OF DETECTION AND USES THEREOF
  FILE REFERENCE: CL001499
  CURRENT APPLICATION NUMBER: US/12/287,505
  CURRENT FILING DATE: 2008-10-17
 NUMBER OF SEQ ID NOS: 73997
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEO ID NO 17606
 LENGTH: 510510
 TYPE: DNA
 ORGANISM: Homo sapiens
US-12-287-505-17606
                      6.7%; Score 62; DB 4; Length 510510;
 Query Match
 Best Local Similarity 57.2%; Pred. No. 3.1e-08;
 Matches 135; Conservative 0; Mismatches 95; Indels 6; Gaps 1;
         41 AGCAGCCCAGTGGAGAGGTGCACTTGGTGAGAAACCGATGCCTCTGCCAACCACCTGCAC 100
Qу
            255021 AGCTGCCACGCTGGGAGGACACTTGGAGA-----GGTCCAGGTGGTAAGACACTGACT 255074
Db
        101 TAACCTGCTGGGTCTGAGACTGAGCCACTTTGGAAGCTGATCTTGGAGCACCAGTCAAGC 160
Qу
               Db
      255075 TCTTCTGCTATTAACCAGTACAAACTAGCTAACAAGTAAATCCAACAGGTCCAGTCTAGG 255134
        161 CCTTAGCTGGCTGCAGCCACCAACAACAAGACTGCAACCTCCTGGGGGATCCTGAGC 220
Qу
            Db
      255135 CTTCAGATGACTTCAACCCTGGCCAATATTTTGACCACAACCTTATCAGAGACCCTAAGC 255194
Qу
        221 CAGAATCCCCTGGCTAAATTGCTCCTTGATTCTTAACCCACAGAAATTGTGTAAGA 276
            Db
      255195 CAGAACCACCCAGCTATGCCACTCCCAGATTCTTGACTCACAAGAACAGTGTGAGA 255250
RESULT 8
US-12-287-505-17560/c
; Sequence 17560, Application US/12287505
; Publication No. US20090118217A1
; GENERAL INFORMATION
  APPLICANT: CARGILL, Michele et al.
  TITLE OF INVENTION: GENETIC POLYMORPHISMS ASSOCIATED WITH
  TITLE OF INVENTION: MYOCARDIAL INFARCTION, METHODS OF DETECTION AND USES THEREOF
  FILE REFERENCE: CL001499
  CURRENT APPLICATION NUMBER: US/12/287,505
  CURRENT FILING DATE: 2008-10-17
  NUMBER OF SEQ ID NOS: 73997
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 17560
 LENGTH: 209822
  TYPE: DNA
; ORGANISM: Homo sapiens
US-12-287-505-17560
                      6.7%; Score 61.6; DB 4; Length 209822;
 Query Match
 Best Local Similarity 66.7%; Pred. No. 3.6e-08;
 Matches 88; Conservative 0; Mismatches 44; Indels 0; Gaps
                                                                 0;
```

```
Qу
              166196 GGCACATCCCTGAGACCCAATCAAGTCTTCAGCCCCAGTCAACAGCTTGACTTCAATCTC 166137
Db
        205 CTGGGGGATCCTGAGCCAGAATCCCCTGGCTAAATTGCTCCTTGATTCTTAACCCACAGA 264
Qу
             Db
     166136 AAGAGAGATCCGGAAGCAGAATCACCCTGCTAAGCTGGCCCTAGATTCCTGACCCTCAGA 166077
        265 AATTGTGTAAGA 276
Qу
           Db
     166076 AACTGTCTGAGA 166065
RESULT 9
US-12-287-505-17642
; Sequence 17642, Application US/12287505
; Publication No. US20090118217A1
; GENERAL INFORMATION
 APPLICANT: CARGILL, Michele et al.
  TITLE OF INVENTION: GENETIC POLYMORPHISMS ASSOCIATED WITH
  TITLE OF INVENTION: MYOCARDIAL INFARCTION, METHODS OF DETECTION AND USES THEREOF
  FILE REFERENCE: CL001499
  CURRENT APPLICATION NUMBER: US/12/287,505
  CURRENT FILING DATE: 2008-10-17
 NUMBER OF SEQ ID NOS: 73997
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 17642
  LENGTH: 112486
  TYPE: DNA
  ORGANISM: Homo sapiens
  FEATURE:
  NAME/KEY: misc_feature
 LOCATION: (1)...(112486)
  OTHER INFORMATION: n = A, T, C or G, or insertion/deletion polymorphism (see Tables 1-2)
US-12-287-505-17642
                     6.7%; Score 61.2; DB 4; Length 112486;
 Query Match
 Best Local Similarity 66.9%; Pred. No. 4.3e-08;
 Matches 87; Conservative 0; Mismatches 43; Indels
                                                     0; Gaps
        147 AGCACCAGTCAAGCCCTTAGCTGGCTGCAGCCACAGCCAACAACAAGACTGCAACCTCCT 206
Qу
           Db
      38971 AGCCCCAGTGAAGCCCTCAGACGATGCAGCCCTAGGCTGACAACTGGACTGCAACCTTGT 39030
        207 GGGGGATCCTGAGCCAGAATCCCCTGGCTAAATTGCTCCTTGATTCTTAACCCACAGAAA 266
Qу
           39031 GAGAGGCCCTGAGCCAGAAGCACTCAGGAAAACCGCTCCTGGATTCCTGACCATTAGAAA 39090
Db
        267 TTGTGTAAGA 276
Qу
            Db
      39091 CTGTGGGAGA 39100
```

RESULT 10

```
US-12-287-505-17590/c
; Sequence 17590, Application US/12287505
; Publication No. US20090118217A1
; GENERAL INFORMATION
  APPLICANT: CARGILL, Michele et al.
  TITLE OF INVENTION: GENETIC POLYMORPHISMS ASSOCIATED WITH
  TITLE OF INVENTION: MYOCARDIAL INFARCTION, METHODS OF DETECTION AND USES THEREOF
  FILE REFERENCE: CL001499
  CURRENT APPLICATION NUMBER: US/12/287,505
  CURRENT FILING DATE: 2008-10-17
  NUMBER OF SEQ ID NOS: 73997
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 17590
  LENGTH: 161700
  TYPE: DNA
  ORGANISM: Homo sapiens
  FEATURE:
; NAME/KEY: misc_feature
  LOCATION: (1)...(161700)
 OTHER INFORMATION: n = A, T, C or G, or insertion/deletion polymorphism (see Tables 1-2)
US-12-287-505-17590
                        6.7%; Score 61.2; DB 4; Length 161700;
 Query Match
 Best Local Similarity 66.9%; Pred. No. 4.6e-08;
 Matches 87; Conservative 0; Mismatches 43; Indels 0; Gaps
                                                                       0;
         147 AGCACCAGTCAAGCCCTTAGCTGGCTGCAGCCACAGCCAACAACAAGACTGCAACCTCCT 206
Qу
             122413 AGCCCCAGTGAAGCCCTCAGACGATGCAGCCCTAGGCTGACAACTGGACTGCAACCTTGT 122354
Db
         207 GGGGGATCCTGAGCCAGAATCCCCTGGCTAAATTGCTCCTTGATTCTTAACCCACAGAAA 266
Qу
             122353 GAGAGGCCCTGAGCCAGAAGCACTCAGGAAAACCGCTCCTGGATTCCTGACCATTAGAAA 122294
Db
         267 TTGTGTAAGA 276
Qу
              Db
      122293 CTGTGGGAGA 122284
RESULT 11
US-12-113-373-27/c
; Sequence 27, Application US/12113373
; Publication No. US20090130096A1
; GENERAL INFORMATION
; APPLICANT: Siemens Medical Solutions USA, Inc.
  APPLICANT: Maastro
  TITLE OF INVENTION: Gene Signature of Early Hypoxia to Predict Patient Survival
  FILE REFERENCE: 2007P09225US01
  CURRENT APPLICATION NUMBER: US/12/113,373
  CURRENT FILING DATE: 2008-05-01
  PRIOR APPLICATION NUMBER: 60/915,531
  PRIOR FILING DATE: 2007-05-02
  NUMBER OF SEQ ID NOS: 209
  SOFTWARE: PatentIn version 3.5
; SEQ ID NO 27
  LENGTH: 293802
```

```
; TYPE: DNA
; ORGANISM: Homo sapiens
US-12-113-373-27
 Query Match
                    6.6%; Score 60.8; DB 4; Length 293802;
 Best Local Similarity 61.6%; Pred. No. 6.6e-08;
                                                           2;
 Matches 133; Conservative 0; Mismatches 77; Indels 6; Gaps
        46 CCCAGTGGAGAGGTGCACTTGGTGAGAAACCGATGCCTCTGCCAACCACCTGCACTAACC 105
Qу
           Db
Qу
       106 TGCT---GGGTCTGAGACTGAGCCACTTTGGAAGCTGATCTTGGAGCCACCAGTCAAGCCC 162
          Db
     175928 TCATTACGCATATGAGAGTGAAACATCATGGAAGTGGATCCTCTAGCCCCAGGTAAGCCT 175869
       163 TTAGCTGGCTGCAGCCACA---GCCAACAACAAGACTGCAACCTCCTGGGGGGATCCTGAG 219
Qу
           Db
     175868 TCAGATAACTGCAACCCTCTTGGCTGACACCTTAACTGCAATGTTATAAGAGAATTTGAG 175809
       220 CCAGAATCCCCTGGCTAAATTGCTCCTTGATTCTTA 255
Qу
           Db
     175808 CCAGAAACACCCAGCTAAGCTGCTCCTCAATTCTTA 175773
RESULT 12
US-12-113-373-64/c
; Sequence 64, Application US/12113373
; Publication No. US20090130096A1
; GENERAL INFORMATION
 APPLICANT: Siemens Medical Solutions USA, Inc.
 APPLICANT: Maastro
  TITLE OF INVENTION: Gene Signature of Early Hypoxia to Predict Patient Survival
  FILE REFERENCE: 2007P09225US01
  CURRENT APPLICATION NUMBER: US/12/113,373
  CURRENT FILING DATE: 2008-05-01
  PRIOR APPLICATION NUMBER: 60/915,531
  PRIOR FILING DATE: 2007-05-02
  NUMBER OF SEQ ID NOS: 209
  SOFTWARE: PatentIn version 3.5
; SEQ ID NO 64
 LENGTH: 293802
  TYPE: DNA
  ORGANISM: Homo sapiens
US-12-113-373-64
 Query Match
                    6.6%; Score 60.8; DB 4; Length 293802;
 Best Local Similarity 61.6%; Pred. No. 6.6e-08;
 Matches 133; Conservative 0; Mismatches 77; Indels 6; Gaps
                                                            2;
        46 CCCAGTGGAGAGGTGCACTTGGTGAGAAACCGATGCCTCTGCCAACCACCTGCACTAACC 105
Qу
           Db
       106 TGCT---GGGTCTGAGACTGAGCCACTTTGGAAGCTGATCTTGGAGCCACCAGTCAAGCCC 162
Qу
```

```
175928 TCATTACGCATATGAGAGTGAAACATCATGGAAGTGGATCCTCTAGCCCCAGGTAAGCCT 175869
Db
Qу
       163 TTAGCTGGCTGCAGCCACA---GCCAACAACAAGACTGCAACCTCCTGGGGGGATCCTGAG 219
           175868 TCAGATAACTGCAACCCTCTTGGCTGACACCTTAACTGCAATGTTATAAGAGAATTTGAG 175809
Db
       220 CCAGAATCCCCTGGCTAAATTGCTCCTTGATTCTTA 255
Qу
           Db
     175808 CCAGAAACACCCAGCTAAGCTGCTCCTCAATTCTTA 175773
RESULT 13
US-12-287-505-17566/c
; Sequence 17566, Application US/12287505
; Publication No. US20090118217A1
; GENERAL INFORMATION
  APPLICANT: CARGILL, Michele et al.
  TITLE OF INVENTION: GENETIC POLYMORPHISMS ASSOCIATED WITH
  TITLE OF INVENTION: MYOCARDIAL INFARCTION, METHODS OF DETECTION AND USES THEREOF
 FILE REFERENCE: CL001499
  CURRENT APPLICATION NUMBER: US/12/287,505
  CURRENT FILING DATE: 2008-10-17
  NUMBER OF SEQ ID NOS: 73997
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEQ ID NO 17566
  LENGTH: 321019
  TYPE: DNA
 ORGANISM: Homo sapiens
  FEATURE:
 NAME/KEY: misc_feature
 LOCATION: (1)...(321019)
 OTHER INFORMATION: n = A, T, C or G, or insertion/deletion polymorphism (see Tables 1-2)
US-12-287-505-17566
 Query Match
                    6.5%; Score 59.4; DB 4; Length 321019;
 Best Local Similarity 63.8%; Pred. No. 1.8e-07;
 Matches 90; Conservative 0; Mismatches 51; Indels 0; Gaps
                                                           0;
       Qу
           308156 CACCTTGGAAGTGGGTCTGCCTCCCCAGGCAAGCCTTCAGATGACTGCAGCCCCGGCGG 308097
Db
       186 ACAACAAGACTGCAACCTCCTGGGGGATCCTGAGCCAGAATCCCCTGGCTAAATTGCTCC 245
Qу
           Db
       246 TTGATTCTTAACCCACAGAAA 266
Qу
             Db
     308036 TGCGTTCCTCGCCTTCAGAAA 308016
```

RESULT 14 US-12-113-373-45/c ; Sequence 45, Application US/12113373 ; Publication No. US20090130096A1

```
; GENERAL INFORMATION
 APPLICANT: Siemens Medical Solutions USA, Inc.
  APPLICANT:Maastro
 TITLE OF INVENTION: Gene Signature of Early Hypoxia to Predict Patient Survival
 FILE REFERENCE: 2007P09225US01
  CURRENT APPLICATION NUMBER: US/12/113,373
; CURRENT FILING DATE: 2008-05-01
 PRIOR APPLICATION NUMBER: 60/915,531
; PRIOR FILING DATE: 2007-05-02
 NUMBER OF SEQ ID NOS: 209
 SOFTWARE: PatentIn version 3.5
; SEQ ID NO 45
; LENGTH: 364905
; TYPE: DNA
; ORGANISM: Homo sapiens
US-12-113-373-45
                      6.4%; Score 59; DB 4; Length 364905;
 Query Match
 Best Local Similarity 61.3%; Pred. No. 2.4e-07;
 Matches 95; Conservative 0; Mismatches 60; Indels 0; Gaps
                                                                  0;
        Qу
            Db
      23961 GAGTGAACTTGGAAGCAGATCCTCCATCCTCAACCTGGCTTTGAGGGGACTGCAGCCCCA 23902
        182 GCCAACAACAAGACTGCAACCTCCTGGGGGATCCTGAGCCAGAATCCCCTGGCTAAATTG 241
Qу
             Db
      23901 ACCAGTAGTTGGAATGCCATCTCATGAGAGATCCTGAGCTAGTACCACCCAACTAAGCAG 23842
        242 CTCCTTGATTCTTAACCCACAGAAATTGTGTAAGA 276
Qу
             Db
       23841 TTCGCAAAAGTCTGACCCTTAGAAAATGTGTGAAA 23807
RESULT 15
US-12-287-505-17891/c
; Sequence 17891, Application US/12287505
; Publication No. US20090118217A1
; GENERAL INFORMATION
; APPLICANT: CARGILL, Michele et al.
  TITLE OF INVENTION: GENETIC POLYMORPHISMS ASSOCIATED WITH
  TITLE OF INVENTION: MYOCARDIAL INFARCTION, METHODS OF DETECTION AND USES THEREOF
 FILE REFERENCE: CL001499
 CURRENT APPLICATION NUMBER: US/12/287,505
  CURRENT FILING DATE: 2008-10-17
 NUMBER OF SEQ ID NOS: 73997
  SOFTWARE: FastSEQ for Windows Version 4.0
; SEO ID NO 17891
 LENGTH: 12600
; TYPE: DNA
; ORGANISM: Homo sapiens
US-12-287-505-17891
                      6.4%; Score 58.8; DB 4; Length 12600;
 Query Match
 Best Local Similarity 61.8%; Pred. No. 1.7e-07;
```

Matche:	s 110); Conservative	0;	Mismatches	67 ;	Indels	1;	Gaps	1;
Qy	115	TGAGACTGAGCCACTTT	GGAAG	GCTGATCTTGGAGC	CACCAG	TCAAGCCCT:	ragct	GGCTGC	174
Db	9944	TGTGACTGATCCATGTT	ICATG	GTGAATCCT-CAGC	CCCAG	TGAAGCCCT	CAGAT	GATGCA	9886
Qy	175	AGCCACAGCCAACAACAA	AGACT	GCAACCTCCTGGG	GGATC	CTGAGCCAG	AATCC	CCTGGC	234
Db	9885	GGCCTAGACTGACAACT	GGACI	'GCAACCTTGTGAG	SAGGCC	CTTAGCAAG	AAGCA	CTCAGG	9826
Qy	235	TAAATTGCTCCTTGATT	CTTAA	CCCACAGAAATTG	TGTAA	GACCTCCAT	CAGGT	GTCG 29	92
Db	9825	GAAACTTCTCCTGGATT	CCTGA	CAATTGGAAACTG	TGGGA	.GATGATCAA	rattī	GTTG 9	768

Search completed: May 31, 2009, 22:35:53

Job time : 177 secs