ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING DAY – 16 14 July 2025

Introduction to TensorFlow

TensorFlow is an open-source machine learning (ML) and artificial intelligence (AI) framework developed by Google Brain. It simplifies the process of building, training, and deploying ML models—especially deep learning models—across a variety of platforms.

TensorFlow supports applications in areas such as natural language processing (NLP), computer vision (CV), time series forecasting, and reinforcement learning.

Key Features

1. Scalability

TensorFlow scales from desktops to mobile and embedded devices. It supports distributed computing for efficient large-scale model training.

- 2. Comprehensive Ecosystem
 - TensorFlow Core Low-level API for building and executing computations
 - o Keras High-level API for rapid model development
 - o TensorFlow Lite Lightweight runtime for mobile/embedded devices
 - o TensorFlow.js Run ML models in the browser with JavaScript
 - TFX (TensorFlow Extended) Tools for production deployment
 - o TensorFlow Hub Pre-trained model repository
- 3. Automatic Differentiation
 Built-in autograd functionality simplifies backpropagation for training.
- 4. Multi-language Support Though Python-first, TensorFlow also supports C++, Java, and JavaScript.
- 5. Model Serving & Optimization Tools like TensorFlow Serving and Model Optimization Toolkit enable efficient deployment and faster inference.

Architecture Overview

- Tensors: Multi-dimensional arrays (scalars, vectors, matrices, etc.)—the basic data units.
- Graph: A computation graph where nodes represent operations and edges represent tensors.
- Session: Executes the operations defined in the graph (primarily in TensorFlow 1.x; replaced by eager execution in TensorFlow 2.x).

TensorFlow Workflow

- 1. Train the Model

 Develop and train on a PC or cloud using suitable datasets.
- 2. Convert the Model
 Use TFLite Converter to convert to .tflite for edge deployment.
- 3. Optimize the Model Apply techniques like quantization or pruning to reduce size and increase speed.
- 4. Deploy the Model Deploy to devices like Android, iOS, Raspberry Pi, or microcontrollers.
- 5. Run Inference
 Use TFLite Interpreter for real-time, low-latency predictions on-device without cloud dependence.

By : Aditi Tangri URN : 2302460 CRN : 2315004