随机分析基础

邓燕飞

https://idengyf.github.io/

2023年5月

内容提要

❶ 测度论 vs. 概率论

基本概念

空间:本质上是集合。

封闭:倘一个集合内的两个元素(注:在概率论中集合的元素是基本事件)

经某种运算的结果仍在该集合内,则该集合关于这种运算是封闭的。

数环:若集合的元素是数,它对加、减、乘运算是封闭的,则称其为数环。

数域: 若集合的元素是数, 它对加、减、乘、除运算都是封闭的, 则称其为数

域。

集类:集合组成的集合。以空间(集合) Ω 的某些子集为元素的集合称为 Ω 上的集类。集类一般假定为非空(一个集类并不包括 Ω 的所有子集,只包括某一类特性的子集),常用花体 $\mathscr F$ 等来表示。

测度:以集合为自变量的函数,被称为集函数。研究集类的目的就是要寻找这个集函数的定义域。最适合作测度定义域的集类就是 σ 域。

σ **环/域**:根据集类对不同运算的封闭特性区分出的集类的一种,类似于数环和数域的区别。

 σ 域 = σ 代数: 空间 Ω 上的集类 $\mathscr T$ 满足以下条件 (最少的一组),

- (1) \emptyset ∈ \mathcal{F} , Ω ∈ \mathscr{F} , 即 \mathscr{F} 包含了空间 Ω 自身和空集;
- (2) 若 $A \in \mathcal{F}$,则补集 $A^C \in \mathcal{F}$,即对取余封闭;
- (3) $A_n \in \mathscr{F}, n = 1, 2, \ldots$,则 $\bigcup_{n=1}^{\infty} A_n \in \mathscr{F}$,即对可数并封闭。

可测空间:由空间 Ω 及 Ω 上的 σ 域 \mathscr{F} 组成的空间称为可测空间,表示为 (Ω,\mathscr{F}) 。它可理解为具有 σ 域 \mathscr{F} 的空间 Ω 。任何属于 \mathscr{F} 的集合 A (即 $A \in \mathscr{F}$) 都称为一个 \mathscr{F} 可测集。

 σ 域是集合的集合, σ 域问题包括可测空间 (Ω,\mathscr{F}) 实际上就是探讨一类特殊函数——集函数的定义域。一般函数的定义域是集合,而集函数的定义域是集合的集合,即 σ 域。

最小 σ 域: 当 Ω 是一个可数集合时,其 σ 域是一个不太大的集类,可正常使用;当 Ω 是一个不可数集合时,仍可定义 σ 域,但其子集构成的 σ 域是一个太大的集类,不能正常使用,因此可考虑在 Ω 上构造一个最小的 σ 域以便正常使用。

 $\sigma(\mathscr{A})$: \mathscr{A} 为 Ω 的子集组成的集类,包含 \mathscr{A} 的所有 σ 域的交及 \mathscr{A} 本身的 σ 域是 \mathscr{A} 的最小 σ 域,并称为由 \mathscr{A} 生成的 σ 域。

Borel 域: 生成 σ 域的一个例子。实数空间 $\mathbb{R}=(-\infty,+\infty)$ 的所有开集生成的 σ 域称为 Borel 域,记为 $\mathscr{B}(\mathbb{R})$ 。其中的集合 $A\in\mathscr{B}(\mathbb{R})$ 是一维 Borel 集。 类似地,可定义 n 维 Borel 域 $\mathscr{B}(\mathbb{R}^n)$ 及 n 维 Borel 集。 Borel 域是实数轴上的一个 σ 域。

Borel 可测空间: 可测空间 \mathbb{R} , $\mathscr{B}(\mathbb{R})$ 称为 Borel 可测空间。

广义 Borel 可测空间: 可测空间 \mathbb{R} , $\mathscr{B}(\mathbb{R})$ 称为广义 Borel 可测空间; $\mathscr{A} \in \mathscr{B}(\mathbb{R})$ 称为广义 Borel 集。

集函数: 设 \mathcal{M} 为 Ω 上的一个集类,定义在 \mathcal{M} 上的广义实值函数 (即可取值 $\pm \infty$) μ 称为 (定义在 \mathcal{M} 上的) 集函数。若取值于 $\mathbb{R}_+ = [0, +\infty]$,则是非负集函数。

实数空间: $\mathbb{R}=(-\infty,+\infty)$ 表示的是空间内的元素为有限实数,位于 $-\infty$ 和 $+\infty$ 之间,但不包括 $-\infty$ 和 $+\infty$ 。

广义实数空间: $\bar{\mathbb{R}} = [-\infty, +\infty]$, 或 $\bar{\mathbb{R}} \triangleq \mathbb{R} \cup \{(-\infty)\} \cup \{(+\infty)\}$ 。

测度: μ 表示定义在 \mathcal{M} 上的非负集函数,它满足,

- (1) $\mu(\emptyset) = 0$;
- (2) 非负性,即对任意的 $A \in \mathcal{F}$, $\mu(A) \geq 0$;
- (3) σ 可加性 (或可数可加性),即对任意两两不相交的集合序列 $A_1,A_2,\ldots\in\mathscr{F},\bigcup_{n=1}^\infty A_n\in\mathscr{F}$,均有 $\mu(\bigcup_{n=1}^\infty A_n)=\sum_{n=1}^\infty \mu(A_n)$ 。

则称非负集函数 μ 为 \mathcal{M} 上的一个测度。由于此测度取非负值,因此也叫正测度。

需要注意的,不只是 σ 域上可定义测度,在小集类上也可定义测度,如在域(或称代数)、半域,环、半环等集类上亦可定义测度。但在 σ 域上定义的测度使用最方便。 $_{6/10}$

有限测度和**有限测度空间**: 若 $\mu(\Omega) < \infty$, 则称 μ 为有限测度,称 $(\Omega, \mathscr{F}, \mu)$ 为有限测度空间; 若集合序列 $\{A_n, n \geq 1\}$ 满足 $\bigcup_{n=1}^{\infty} A_n = \Omega$ 并使 $\mu(A_n) < \infty$ 对一切 $n \geq 1$ 都成立,则称 μ 为 σ 有限测度,称 $(\Omega, \mathscr{F}, \mu)$ 为 σ 有限测度空间。

测度空间: 若 μ 为可测空间 (Ω,\mathscr{F}) 上的测度,则 (Ω,\mathscr{F},μ) 为测度空间。测度空间是一个集函数空间,它的基础是空间(或集合) Ω ,在 Ω 上构造了测度的定义域 \mathscr{F} ,最后建立了一个特殊的集函数——测度。

测度(概率测度)一般要有非负性、正规性、 σ 可加性,这需要把测度定义在 σ 域上,但有时 σ 域之外的其他集类更易测度,若能将其他集类上定义的测度扩张到 σ 域上就解决了这个矛盾。

测度扩张理论: 设 \mathcal{M}_1 , \mathcal{M} 是 Ω 上的一个集类, $\mathcal{M}_1 \subset \mathcal{M}_2$, μ_1 , μ_2 分别是 \mathcal{M}_1 , \mathcal{M}_2 上的测度, 若对每一个 $A \in \mathcal{M}_1$ 都有 $\mu_1(A) = \mu_2(A)$, 则 μ_2 称为 μ_1 由 \mathcal{M}_1 到 \mathcal{M}_2 的扩张, 或 μ_2 为 μ_1 由 \mathcal{M}_1 扩张到 \mathcal{M}_2 的扩张测度, μ_1 为 μ_2 在 \mathcal{M}_1 上的限制。

测度扩张就是要把一个集类上的测度扩张到比它更大的集类上,即扩大集函数或测度的定义域。

半环: 令 \mathscr{F} 是 Ω 的所有子集构成的集类, \mathscr{C} 是 \mathscr{F} 的非空子集, 若称其为半环, 则应满足,

- 1. $\emptyset \in \mathscr{C}$;
- 2. 如果 $A, B \in \mathcal{C}$, 则 $A \cap B \in \mathcal{C}$;
- 3. 如果 $A, B \in \mathcal{C}$, $A \supset B$, 则 A 与 B 之差 $A \setminus B$ 可表示为 \mathcal{C} 中有限个互不相交集合之并。

参考文献

崔殿超,2008,《高级经济学数学基础》,黑龙江大学出版社。