НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО Факультет систем управления и робототехники

Электроника и схемотехника **Лабораторная работа №2**

«Исследование характеристик биполярного транзистора и расчёт усилительного каскада»

Выполнил студент:

Мысов М.С.

Петров И.А.

Группа № R33372

Руководитель:

Николаев Н.А.

1. Цель работы

- 1. Получение входной характеристики и семейства выходных характеристик биполярного транзистора в схеме с общим эмиттером
- 2. Расчёт усилительного каскада с заданием рабочей точки транзистора с помощью отрицательной обратной связи по току.

2. Расчеты

1. Получение входной характеристики биполярного транзистора

Максимальный ток коллектора(I_c) = 2 A

Максимальное напряжение коллектор-эмиттер(U_{ce}) = 22 В

Коэффициент усиления по току $(h_FE) = 180...450$

Максимальная рассеиваемая мощность(P_{max}) = 2 Вт

$$Ib = Ic/h_FE = 2/200 = 10mA$$

Схема 1. Моделирование начальной системы

$$r_{\scriptscriptstyle \mathrm{BX}} = rac{\Delta U_{\scriptscriptstyle \mathrm{B} artheta}}{\Delta I_{\scriptscriptstyle \mathrm{B}}} = rac{\Delta U_{\scriptscriptstyle \mathrm{B} artheta 2} - \Delta U_{\scriptscriptstyle \mathrm{B} artheta 1}}{\Delta I_{\scriptscriptstyle \mathrm{B} 2} - \Delta I_{\scriptscriptstyle \mathrm{B} 1}} = rac{797 - 726}{7.18 - 1.52} = 12.62 \; \mathrm{Om}$$

2. Получение семейства выходных характеристик биполярного транзистора

График 2. Выходные характеристики

Статический коэффициент передачи тока

$$\beta_{DC} = \frac{I_k}{I_{\rm B}} = \frac{1.3}{0.007} = 168$$

Коэффициент передачи тока

$$\beta_{AC} = \frac{\Delta I_k}{\Delta I_E} = \frac{0.264}{0.0042} = 6.286$$

Расчет тока коллектора для каждой полученной выходной характеристики:

$$Ik = h_FE \cdot I6$$

$$Ik_{1} = 250 \cdot 0.4 = 100mA$$

$$Ik_2 = 250 \cdot 0.5 = 125mA$$

$$Ik_3 = 250 \cdot 0.4 = 187.5 mA$$

$$Ik_4 = 250 \cdot 1 = 250mA$$

$$Ik_{5} = 250 \cdot 1.4 = 350mA$$

$$Ik_{-}6 = 250 \cdot 1.75 = 437.5 mA$$

$$Ik_{-}7 = 250 \cdot 2.2 = 550 mA$$

$$Ik_{-}8 = 250 \cdot 2.75 = 687.5 mA$$

$$Ik_{9} = 250 \cdot 4.35 = 1087.5mA$$

$$Ik_{10} = 250 \cdot 5.25 = 1312.5 mA$$

3. Задание рабочей точки с помощью отрицательной обратной связи по току

График 3. С изображением семейства ВАХ, линии мощности, нагрузочной линии и выбранной рабочей точки А

Iка = 210 mA

Uк \ni а = 8.5 В

Iба = 0.72 mA

Uбэа = 0.7 B

 $I_{KH} = 500 \text{ mA}$

 $R_{K}=E_{K}/I_{KH}=37.5/0.3=125 \text{ Om } E96:124 \text{ Om}$

Iд = 5Iбa = 625 mA = IR1

 $I_{9}a = I_{6}a + I_{6}ka = 125.5 \text{ mA}$

 $Ur9 = Ek - Uk9a - Urk = 37.5 - 12 - Ika \cdot Rk = 25.5 - 0.125 \cdot 125 = 9.875 B$

 $R_9 = U_{r9}/I_{9}a = 9.875/0.1255 = 78.69 \text{ Om}$ E48: 78.7 Om

 $Ur2 = I \ni a \cdot R \ni + U6 \ni a = 0.1255 \cdot 78.69 + 0.95 = 10.83 B$

I1 = 5I6a = 625 mA

I2 = I1 - Iба = 2 mA

 $R2 = Ur2/I2 = 10.83/0.002 = 5412.79 \text{ Ом} \mid E192: 5.42 кОм}$

 $R1 = (E_K - U_r 2)/I1 = (37.5 - 10.83)/0.625 = 42.672 \text{ Om} \mid E96: 42.2 \text{ Om}$

Схема 2. Усилитель на биполярном транзисторе

График 4. Выходного напряжения

3. Вывод

Произведен расчёт элементов схемы усилителя, на выходе появляется сигнал небольшой амплитуды или половинчатый. Меняя все элементы, должного результата добиться не удалось.