

Computer Network Components

Presented: Tran Thanh Dien

Outline

- Types of computer networks
- Computer network architecture
- Hierarchy of computer network protocols
- Open System Interconnection Model

TYPE OF COMPUTER NETWORKS

Classifying Computer networks by data transmission method

Broadcasting Network:

- All computers shared a common communication channel
- One computer transmits, all others can receive
- At any instance, only one computer can transmit

Classifying Computer networks by data transmission method

Classifying Computer networks by data transmission method

Point to Point (Switched Network)

- Computers are connected toghether in pairs.
- Data are transmitted from source to destination through intermediate devices.
- Find the best path for packets.

Classifying Computer networks by network diameter

Diameter	Host location	Network Types
1 m	In a square meter	PAN - Personal Area Network
10 m	In a room	
100 m	In a building	LAN - Local Area Network
1 km	PAN - Personal Area Network	
10 km	In a city	MAN - Metropolitan Area Network
100 km	In a country	
1000 km	In a continent	WAN - Wide Area Network
10000 km	Planet	

www.ctu.edu.vn

LAN-Local Area Network

- Broadcast network
- High bandwidth network
- Topology: Bus, Star, Ring

Bus topology

- All computers connected to the cable
- Advantages: cheap and easy to install
- Disadvantages: Difficult to identify the problem if the network shutdown

Star Topology

- All computers or devices connected to a central device, called hub.
- All data transferred from one computer to another passes through hub
- Advantages: Easy to install and detect problem; network continue to work when adding or remove host
 - Disadvantages: More expensive; the network stops working if the hub failed

Ring Topology

- Each node connected to two nearest nodes
- Entire network forms a circle
- One method for controlling which device can transfer is token passing
- Advantages: no collision
- Disadvantages: high cost; metwork stop working when the ring breaks

MAN-Metropolitan Area Network

- Scope:
 - A city
 - A metropolitan area

WAN – Wide Area Network

Extend a network in:

- Number of hosts
- Network diameter

WAN – Wide Area Network

Router: Store and Forward technique

Wireless Network

- (a) Wireless devices: Replace the cabled devices
- (b) Wireless LAN

Wireless Network

Wireless WAN

Internetwork

Internetwork

- A network formed by inter-connecting several heterogeneous (hardware, software) networks
 - LAN = LAN + LAN
 - WAN = LAN + LAN
 - WAN = WAN + WAN

Computer Network Software

Components of computer network Software

Computer network Software is what makes computer network work. All network software implemented based on 3 core concepts:

- Service: What a component can provide for other components
- Interface: How/the way a component can access services provided by other component
- Protocol: a formal set of rules, conventions and data structure that governs how computers and other network devices exchange information over a network

Hierarchy of computer network protocols

CANTHO LINIVERSITY

To reduce the complexity in designing and implementing, the network software is organized into layers based on the principles:

- Relative services are grouped into a layer
- Each layer uses the services of the lower layer and provides services to upper layer
- Between two abjection layers exist an interface
- Two entities of two computer systems at the same layer have to use the same protocol to exchange data
- A protocol specifies rules for exchanging information: data format, handshaking, error detecting and handling, ...

Hierarchy of computer network protocols

Hierarchy of computer network protocols

Three layer file transfer model

A: Three layer file transfer model

B: Frame Transfer Layer

C: Bit Transfer layer

Network Service Types

Connection-oriented services

- Operate using the similar model as that of telephone network
- Establish and terminate communication Channel

Connectionless services

- Postal model
- Data sent in packets
- Packet header contains address of receiver

Network Services

Connectionoriented

Connectionless

Serv	ice	Example
Reliable mess	sage stream	Sequence of pages
Reliable byte	stream	Movie download
Unreliable co	nnection	Voice over IP
Unreliable datagram		Electronic junk mail
Acknowledged datagram		Text messaging
Request-reply		Database query

Primitives of connection oriented services

- A service is formally specified by a set of primitives (functions) to a user process to us the service.
- Following are primitives of the connection-oriented service

Primitive	Function
LISTEN	Block and wait for a connection request
CONNECT	Request to establish a connection
RECIEVE	Block and wait for a message arrival
SEND	Send a message
DISCONNECT	Terminate a connection

Primitives of connection oriented services

Server	Client
LISTEN	
	CONNECT
RECIEVE	SEND
SEND	RECIEVE
DISCONNECT	DISCONNECT

Service vs Protocol

- Service: A set of operations that a layer provides for the upper layer.
- Protocol: A set of rules (data format, handshaking, error detecting and handling,...) that governs the communication between two systems on the network.
- Two entities at the same layer of two computer systems must use the same protocol to exchange data

www.ctu.edu.vn

Open System Interconnection Model

Open System Interconnection Model (OSI Model)

- Standardized by ISO (International Standard Organization)
- Composed from seven layers:
 - Physical layer
 - Data link layer
 - Network layer
 - Transport layer
 - Session layer
 - Presentation
 - Application layer

OSI Model

OSI Model

Physical layer

- Transmit raw bit on a physical link
- Define the hardware equipment, cabling, wiring, frequencies, pulses used to represent binary signals, ...
- Provide services to data link layer

Data link layer

- Data transmission unit Frame
- Establish mechanism for error detection and correction (01001 => 01011)
- Establish mechanism for flow control
- Control access into shared medium
- Require direct links between sending and receiving hosts

Network layer

- Data transmission unit Packet
- Routing and forwarding packets
- Detecting and avoiding network congestion

Transport layer

- Provide an end-to-end data transmission service
- Control packets loss and duplication
- Multiplexing / De-multiplexing

Session layer

- Session management: Responsible for establish and terminating the connection
- Synchronizing transmission data
- Example: Web browser opens a web page containing text, graphics, Macromedia Flash objects and perhaps a Java applet which all stored as separate files on the web server. To access them, a separate download must be started. Your web browser opens a separate session to the web server to download each of the individual files. The session layer keeps track of which packets and data belong to which file and keeps track of where they go (in this case, to your web browser).

Presentation layer

- Standardizing data exchanged between different computer architectures: Little Endian vs Big Endian, . .
- Compressing, encoding transmission data
- Example:
 - Conversion of a Sun .RAS raster graphic to JPG.
 - Conversion of ASCII to IBM EBCDIC
 - Conversion of .PICT on a MAC to .jpg
 - Conversion of .wav to .mp3

Application layer

- Responsible for displaying data and images to the user in a human-recognizable format
- Example: Email, Web, FTP, . . .
- Application protocols: HTTP, SMTP, POP,IMAP...

OSI MODEL

OSI Model

- n Entity (thực thể) = một tiến trình ở tầng n
- SAP = Service Access
 Point
- SDU = Service Data Unit
- PDU = Protocol Data Unit
- H=Header

Example of layer hierarchy

Example of layer hierarchy

- Application layer: Writing/reading letter
- Presentation layer: Translating, putting letter into an envelop, open an envelop
- Session layer: Collecting/Dispatching letters of different offices
- Transport layer: Role of office agent in a company.
- Network layer: Role of post office or Mail sorting center
- Data-link layer: Transport mail between two neighborhood post office.
- Physical: Transportation methods (by car, by train, by airplane).

OSI Model vs TCP/IP

Computer Network Operating Systems

OSI Application Presentation Session **Transport** Network Data-link Phisycal

UNIX **NFS** FTP, SMTP, ... TCP UDP IP Lan Driver MAC Phisycal

Netware **Netware Core Protocol** Named | NetBios Pipe SPX **IPX** Lan Driver **ODI-NDIS** Phisycal

NT File I/O SubEnv **NetBIOS NETBEUI** Lan Driver **NDIS** Phisycal

Questions