Network Address Translation

Adresy prywatne

- RFC 1918
- **Niepubliczne** czyli do użycia w sieci wewnętrznej, ale nie w Internecie
- Z reguly filtrowane przez ISP

Klasa A - 1 10.0.0.0 10.0.0.0 /8 Klasa B - 16 172.16.0.0 - 172.31.255.255 172.16.0.0 /12 Klasa C - 256 192.168.0.0 - 192.168.255.255 192.168.0.0 /16

Idea NAT Network Address Translation

- Mechanizm NAT pozwala na podmianę adresów wewnętrznych (prywatne) na publiczne (rutowalne).
- Obsługuje go ruter graniczny (border gateway router) sieci końcowej (stub).

Cele zastosowania NAT

- Oszczędzenie zużycia adresów IP (multipleksacja PAT).
- Eliminacja konieczności readresacji (np.: przy zmianie dostawcy).
- Zwiększenie bezpieczeństwa sieci (ukrycie adresacji wewnętrznej).
- Przekierowanie ruchu TCP na inny port TCP.
- W czasie przebudowy sieci (po zmianie adresu serwera nie zrekonfigurowane maszyny nadal powinny go widzieć).
- Umożliwienie komunikacji sieciom o nakładającej się adresacji.

Terminologia NAT

Adresy:

- wewnętrzny lokalny adr. w sieci wewn., zazwyczaj prywatny a nie przypisany przez Network Information Center
- wewnętrzny globalny adr. oficjalny reprezentujący hosta lub grupę hostów z sieci wewn. w sieci zewn.
- zewnętrzny lokalny adr. maszyny zewn. tak, jak widzi go host wewn.
- zewnętrzny globalny adr. maszyny zewn. przypisane jej przez właściciela

Rozwiązania NAT

- NAT statyczny
 - odwzoruje <u>konkretne</u> adresy wewn. lokalne na <u>konkretne</u>, ustalone przez konfiguracje adresy globalne; wpisy są niezmienne w czasie.
- NAT dynamiczny
 odwzoruje adresy wewn. na <u>dowolne</u> adresy z przyznanej puli
 adresów globalnych dynamicznie w trakcie komunikacji; wpisy
 mają określony czas ważności!

PAT - Port Address Translation

- NAT polega na odwzorowaniu jeden-dojednego, zaś PAT – wiele-do-jednego. Nazywa się to <u>przeładowaniem</u>.
- Działanie PAT opiera się o użycie numerów portów do identyfikacji maszyn.
 Teoretycznie dostępnych jest 65536 portów, w rzeczywistości – ok. 4000.

- PAT przydziela kolejnym adresom:portom wewnętrznym, kolejne porty adresu zewnęrznego;
- Gdy dostępne porty się skończą bierze następny adres.
- PAT stara się odwzorowywać numery portów na identyczne.

Uwagi dodatkowe

- kierunek translacji adresów może być zarówno 'inside' jak i 'outside':
 - ip nat inside tłumaczy adresy źródłowe w pakietach z sieci wewn. oraz docelowe w pakietach z sieci zewn.
 - ip nat outside tłumaczy adresy docelowe w pakietach z sieci wewn. oraz źródłowe w pakietach z sieci zewn.
- kolejność czynności:
 - 'in → out' najpierw routing, potem translacja,
 - 'out → in' najpierw translacja, potem routing.

UWAGI

- NAT zwiększa opóźnienia:
 - CPU sprawdza każdy pakiet,
 - ewentualnie modyfikuje nagłówki (TCP, IP).
- Zastosowanie NAT powoduje utratę pewnej funkcjonalności (protokoły oparte o wysyłanie informacji o adresie IP)
- Tracimy zdolność śledzenia pakietów IP od nadawcy do odbiorcy (niektóre aplikacje mogą nie działać)

Warstwa aplikacji

Warstwa aplikacji

- Warstwa najwyższa
- Komunikuje się z użytkownikiem
- Obejmuje programy użytkowe:
 - Telnet zdalny terminal
 - FTP przesyłanie plików
 - SMTP poczta elektroniczna
 - DNS system nazw domen
 - HTTP usługa WWW
 - i inne

Warstwa aplikacji • Warstwa 7 modelu · Warstwa 4 modelu OSI/ISO TCP/IP warstwa aplikacji warstwa prezentacji warstwa aplikacji warstwa sesji warstwa transportowa warstwa transportowa warstwa sieci warstwa sieci warstwa łącza danych warstwa łącza warstwa fizyczna

HyperText Transfer Protocol HTTP

HyperText Transfer Protocol

- Przesyłanie zróżnicowanych rodzajów danych zasobów (ang. resource):
 - strony HTML,
 - pliki graficzne, dane multimedialne,
 - aplikacje,
 - inne.
- Zasoby identyfikowane przez
 - URL Uniform Resource Locator http://www.cs.agh.edu.pl/dydaktyka/index.html

HTTP

- Protokół klient-serwer
 - serwer: serwer WWW, httpd
 - klient:
 - najczęściej przeglądarka HTML
 - specjalizowane aplikacje wykorzystujące HTTP do transferu danych
- Protokół bezstanowy i bezpołączeniowy
 - działa w oparciu o model żądanie/odpowiedź
 - po dostarczeniu danych połączenie najczęściej jest zamykane

HTTP

- Domyślnie używa dobrze znanego portu TCP 80
 - można używać inne numery portów, np. 8080
 - http://www.server.com:8080/
 - możliwe wykorzystanie innego niż TCP, ale niezawodnego protokołu transportowego

Pakiet HTTP

- Nie ma ścisłego podziału na pola
- Komendy oddzielone są końcem linii
- Postać:
 - typ operacji, jedna linia
 - zero lub więcej linii z parametrami postaci:

nazwa: wartość

- pusta linia
- opcjonalne dane
 - zasób
 - treść formularza

Żądania i odpowiedzi HTTP

- Żądania HTTP
 - GET
 - POST
 - HEAD
 - inne PUT, DELETE
- Odpowiedzi
 - kod odpowiedzi + tekst
- Po uzyskaniu odpowiedzi połączenie TCP między klientem a serwerem najczęściej jest zamykane

Żądania HTTP - GET

- Używane najczęściej
- Ciąg znaków identyfikujący zasób na serwerze
 - najprościej: statyczny zasób serweraGET /dydaktyka/wyniki.html HTTP/1.0
 - parametry do skryptu lub bazy danych
 GET /dane/script.cgi?field1=value1
 &field2=value2 HTTP/1.0
- Stosowane do przesyłania małych ilości informacji

Żądania HTTP - POST

Żądanie nie jest zawarte w URL lecz w samym ciele informacji

```
POST /dane/script.cgi HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 76

Dane (z wypełnionego formularza; będą przetworzone przez powyższy skrypt)

home=Cosby&favorite+flavor=flies
```

 Często używane przy pobieraniu informacji dla stron generowanych dynamicznie lub do wysyłania formularzy

Żądania HTTP - HEAD

- Analogicznie jak GET; zwraca jedynie nagłówek strony, nie sam zasób
- Przydatne do zorientowania się w zawartości strony przed jej pobraniem (lub zamiast pobrania)

Inne żądania HTTP

- PUT
 - zapisuje dołączony zasób pod podanym URL
- DELETE
 - usuwa zasób podany w URL
 - nie ma gwarancji wykonania akcji

Odpowiedzi HTTP

- 1xx informacja
- **2xx** powodzenie, żądanie zrozumiane i zaakceptowane
 - np. 200 OK
- 3xx musi zostać podjęta dalsza akcja
 - np. 301 Moved Permanently, 304 Not Modified
- 4xx błąd po stronie klienta
 - najczęściej 404 Not Found, także 403 Forbidden, 401 Unauthorized
- 5xx błąd po stronie serwera
 - np. 500 Internal Server Error, 501 Not Implemented

Negocjowalne opcje

- Żądania od klienta do serwera
 - podanych może być kilka akceptowalnych wartości
 - parametr q=wartość określa preferencje klienta
 - możliwa odpowiedź serwera: 406 Not Acceptable
- Przykłady
 - standard kodowania znaków (Accept-Charset)

Accept-Charset: iso-8859-1, *, utf-8

- standard kompresji (Accept-Encoding)

Accept-Encoding: compress, gzip

- język naturalny (Accept-Language)

Accept-Language: pl, en-gb;q=0.8, en;q=0.7

Przykład połączenia HTTP

GET / HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows 98;

DigExt)

Host: www.google.com.pl

Accept-Language: pl # możliwość negocjacji wersji językowej

Connection: Keep-Alive

Cookie:

Ciasteczko - cookie

- Bezstanowość HTTP każde odwołanie do serwera HTTP jest takie samo
- Ciasteczka to sposób na:
 - utrzymanie stanu sesji,
 - zapewnienia personalizacji stron WWW,
 - prowadzenie statystyk przez administratorów serwera.

Ciasteczka, cd.

- Ciąg znaków przechowywany w pamięci przeglądarki. Jeśli czas ważności jest dłuższy może być zapisany w pliku
- Przekazywane w nagłówku HTTP
- Wady:
 - związane z pojedynczym komputerem (a nie z użytkownikiem),
 - mogą być łatwo usunięte z komputera użytkownika.
- Wymagania/ograniczenia:
 - 300 ciasteczek,
 - 4 kB na ciasteczko,
 - 20 ciasteczek na domenę.

Ciasteczka, cd.

- Zawartość: sekwencje par nazwa-wartość
- Przekazywanie od serwera do klienta:

Set-Cookie: nazwa=wartość; expires=data; path=ścieżka; domain=nazwa-domeny; secure=true/false

secure=true/false - wskazuje, czy ciasteczko ma być używane jedynie w stronach zabezpieczonych kryptograficznie - domyślnie wyłączone

Przekazywanie od klienta do serwera:

Cookie: nazwa1=wartość1; nazwa2=wartość2 ...

 Przeglądarka na podstawie czasu i parametrów pobieranego URL podejmuje decyzję, czy i które ciasteczko przesłać

Ciasteczka - przykład

1. Pierwsze odwołanie do serwera www.pajacyk.pl

GET /cgi-bin/nzlicz.cgi HTTP/1.0
Referer: http://www.pajacyk.pl

Host: www.pajacyk.pl

Cookie: cc=cc

2. Odpowiedź serwera HTTP/1.0 200 ok.

Date: Tue, 07 Jan 2003 19:34:46 GMT

Set-Cookie: Mazurek=Mazurek;

expires=Tue, 7-Jan-2003 21:59:59 GMT

Content-type: text/html

zapis w pliku przeglądarki WWW:

www.pajacyk.pl FALSE /cgi-bin FALSE 1041976799 Mazurek Mazurek

(1041976799 : ilość sekund od 1.1.1970 = 7 stycznia 2003, 21:59:59)

Ciasteczka - przykład

3. Kolejne odwołanie do serwera www.pajacyk.pl (po chwili)

GET /cgi-bin/nzlicz.cgi HTTP/1.0
Referer: http://www.pajacyk.pl

Host: www.pajacyk.pl

Cookie: Mazurek=Mazurek; cc=cc

4. Odpowiedź serwera

HTTP/1.0 200 OK.

Date: Tue, 07 Jan 2003 19:44:11 GMT

Set-Cookie: Mazurek=Mazurek; expires=True,

7-Jan-2003 21:59:59 GMT Content-type: text/html

Proxy HTTP

- Program pośredniczący między klientem a serwerem HTTP:
 - przechwytuje żądania klienta, przekazuje do serwera, a odpowiedź kieruje do klienta,
 - możliwość buforowania danych,
 - funkcjonalność klienta i serwera równocześnie.
- Niezbędne przy ograniczeniach dostępu
- GET musi zawierać kompletny URL
 - nie może być tak:
 - GET index.html
 - musi być tak:

GET http://www.agh.edu.pl/index.html

Utrzymywanie połączenia TCP

- HTTP działa na zasadzie żądanie-odpowiedź

 po zakończeniu tej transakcji połączenie
 jest zamykane
 - proste,
 - nieefektywne (wolny start TCP, kosztowne fazy nawiązania i zakończenia).
- HTTP 1.0
 - Connection: Keep-Alive przesyłane w żądaniu i odpowiedzi,
 - domyślne lub jawne Connection: Close wygenerowane przez klienta lub serwer zamyka połączenie.

Utrzymywanie połączenia TCP

- HTTP 1.1
 - domyślne utrzymywanie połączenia (tzw. persistent connection)
 - wysłanie Connection: close w ostatnim żądaniu
 - czasami używa go serwer klient powinien zaprzestać używania tego połączenia
 - zamknięcie po czasie nieaktywności

HTTP, wersja 1.1

- Wiele poprawek w stosunku do wersji 1.0
 - rozbudowany mechanizm buforowania
 - lepsze wykorzystanie pasma
 - obsługa wielu domen z jednego adresu IP
 - **–** ...
- Serwer HTTP 1.1 musi obsługiwać żądania wersji 1.0

HTTP, wersja 2.0

- Opracowany przez IETF w oparciu o protokół SPDY (stworzony dla przeglądarki Google Chrome w 2009 roku)
 - Umożliwia jednoczesną obsługę wielu zapytań do serwera przez przeglądarki WWW.
- Bezpieczeństwo danych brak automatycznego szyfrowania ale przeglądarki Mozilla Firefox i Google Chrome nie obsłużą HTTP 2.0 w wersji bez szyfrowania danych
- Specyfikacja RFC 7540 (14.05.2015)
- Trwają prace nad HTTP/3 (HTTP/3.0)

Protokół HTTPS

- Wykorzystuje SSL (Secure Socket Layer)
 - otwarty standard opracowany przez Netscape
 - rozwiązanie oparte na kluczu publicznym
 - klucz o długości 128 bitów
 - szyfrowanie danych na czas transmisji kluczem sesji
 - uwierzytelnianie klienta i serwera
- Domyślnie używa portu 443 TCP
- Zastosowania
 - bankowe, biznesowe
 - medyczne
 - inne

Kiedy HTTPS?

- Zalety:
 - wprowadzenie poufności danych i uwierzytelniania obu stron
- Wady:
 - wymaga więcej mocy obliczeniowej
 - nie wszystko musi być szyfrowane (np. grafika)
 - nie każda przeglądarka go obsługuje

Dokumenty dotyczące HTTP

- RFC 1945 -> HTTP/1.0
- RFC 2616 -> HTTP/1.1
- RFC 7540 -> HTTP/2.0 (HTTP/2)
- RFC 2109 -> Cookie

TELecommunications NETwork protocol

TELNET

TELNET

- TELecommunications NETwork protocol
- Jedna z najstarszych aplikacji Internetu
 - Powstał w 1969 dla sieci ARPANET
- Standardowa aplikacja dostarczana wraz z implementacją TCP/IP (RFC 854)
- Łączy komputery z różnymi systemami operacyjnymi
- Pracuje w modelu klient-serwer

TELNET

- Praca pomiędzy dowolnymi systemami operacyjnymi
- Terminal klienta → NVT → terminal serwera
- Konieczność negocjacji parametrów, m.in.:
 - echo,
 - typ terminala,
 - rozmiar okna.
- Wykorzystanie zestawu znaków NVT ASCII
- Wprowadzenie sygnalizacji (in-band) z użyciem bajta IAC = 0xff

Polecenia TELNET

- Każde polecenie poprzedzone bajtem 0xff IAC (Interpret As Command)
- Wybrane polecenia:

EOF	236	Koniec pliku
SE	240	Koniec podopcji
SB	250	Początek podopcji
WILL	251	Negocjowanie opcji
WONT	252	
DO	253	
DONT	254	
IAC	255	Bajt danych 255
		,

File Transfer Protocol

FTP

File Transfer Protocol

- FTP protokół transmisji plików (RFC 959)
- Pozwala na kopiowanie pliku z jednego systemu na drugi
- Przeznaczony do pracy z różnymi systemami operacyjnymi
- Pracuje w modelu klient-serwer
- Pozwala przesyłać pliki, ale nie udostępnia ich
 - FTP to nie to samo co NFS lub "Udostępnianie Plików Windows"

FTP

Wykorzystuje dwa rodzaje połączeń:

- 1. Połączenie sterujące
 - służy do przesyłania poleceń do/od klienta od/do serwera
 - typowe połączenie: pasywne otwarcie serwera (port TCP 21), aktywne otwarcie klienta
 - aktywne przez cały czas trwania sesji
 - ToS "minimalizacja opóźnień"

FTP

Wykorzystuje dwa rodzaje połączeń:

- 2. Połączenie danych
 - służy do przesyłania danych (nie tylko plików) do/od klienta od/do serwera
 - tworzone za każdym razem, gdy potrzeba przesyłać dane (port TCP 20)
 - ToS "maksymalizacja przepustowości"

Sposoby przesyłania

- Typ pliku
 - ASCII, EBCDIC, binarny, lokalny
- Format
 - **Niedrukowalny**, format Telnet, format Fortran
- Struktura
 - Plik, rekord, strona
- Typ przesyłania
 - **Strumieniowy**, blokowy, z kompresją

Sposoby przesyłania

- W praktyce stosuje się:
 - Typ: ASCII lub binarny
 - Format: tylko Niedrukowalny
 - Struktura: tylko Plik
 - Tryb przesyłania: tylko Strumieniowy
- Stąd tylko dwa sposoby przesyłania:
 - ASCII lub binarny

Polecenia FTP

- Format NVT ASCII
 - każde polecenie zakończone <CR><LF>
- Polecenia specjalne (Telnet)
 - przerwanie procesu <IAC, IP>
 - przerwanie wysyłania pliku
 - synchronizacja <IAC, DM>
 - wysłanie zapytania do serwera w trakcie przesyłania pliku
- Polecenia FTP
 - ciągi 3 lub 4 dużych liter
 - część z poleceń posiada argumenty
 - istnieje ponad 30 różnych poleceń

Polecenia FTP

• Najczęściej wykorzystywane polecenia

USER	Nazwa użytkownika na serwerze
PASS	Hasło użytkownika na serwerze
LIST	Wyświetla listę plików i katalogów
RETR	Pobranie pliku z serwera
STOR	Umieszczenie pliku na serwerze
TYPE	Typ przesyłanego pliku
ABOR	Przerywa polecenie FTP i transmisję danych
SYST	Odczytanie rodzaju systemu serwera
QUIT	Wylogowanie z serwera

Odpowiedzi FTP

- 3-cyfrowe numery, po których może występować opcjonalny komunikat
- Każda cyfra ma inne znaczenie

1xx	Wstępna odpowiedź pozytywna
2xx	Końcowa odpowiedź pozytywna
3xx	Pośrednia odpowiedź pozytywna
4xx	Wstępna odpowiedź negatywna
5xx	Stała odpowiedź negatywna

Odpowiedzi FTP

- Przykładowe odpowiedzi
 - 125 połączenie danych otwarte; rozpoczęcie przesyłania
 - 200 polecenie OK
 - 221 zakończenie połączenia
 - 331 nazwa użytkownika OK, wymagane hasło
 - 452 błąd przy zapisie pliku
 - 500 błąd składni; nierozpoznane polecenie
 - 501 błąd składni; niewłaściwe argumenty

Połączenie dla danych

- Każde przesłanie pliku lub zawartości katalogu w osobnym połączeniu
- Zamknięcie połączenia oznacza koniec pliku
- Wykorzystanie polecenia PORT
- Aktywne otwarcie serwera na port efemeryczny klienta
- Aktywne zamknięcie serwera

Połączenie dla danych

Otwarcie pasywne

- Serwer nie może otworzyć połączenia do klienta, jeśli ten posiada adres prywatny (lub znajduje się za firewall'em)
- Rozwiązanie: tryb pasywny

Zasoby FTP

- Korzystanie z FTP wymaga posiadania konta na serwerze
- Anonimowy FTP to sposób rozpowszechniania oprogramowania w Internecie

USER: anonymousPASS: <adres e-mail>

Simple Mail Transfer Protocol

SMTP

Simple Mail Transfer Protocol

- Protokół do przesyłania wiadomości poczty elektronicznej
- Jedna z najbardziej popularnych aplikacji Internetu
- Protokół klient-serwer
- Korzysta z dobrze znanego portu 25 TCP

SMTP

• Definiuje 8 podstawowych poleceń:

```
    HELO – identyfikacja klienta (domena)
```

MAIL – identyfikacja nadawcy

- RCPT - identyfikacja odbiorcy

- DATA - zawartość wiadomości

- QUIT - zamknięcie połączenia

- RSET - przerwanie bieżącej transakcji

VRFY - weryfikacja adresu odbiorcy

NOOP – polecenie testowe (odp. 200 OK)

często używane

rzadko używane

MIME

- Multipurpose Internet Mail Extensions
- Dodanie nowych nagłówków do wiadomości:

Mime-Version:

Content-Type:

Content-Transfer-Encoding:

Content-ID:

Content-Description:

Domain Name System

System Nazw Domen

Definicja DNS

- DNS to rozproszona baza danych używana przez aplikacje TCP/IP do odwzorowywania nazw hostów na adresy IP i odwrotnie.
- Rozproszenie polega na tym, że żaden system nie posiada pełnej informacji o odwzorowaniu -> informacja ta jest współdzielona pomiędzy niezależne serwery.

Nazwy w DNS

www.cs.agh.edu.pl

- Każdy węzeł drzewa może mieć etykietę do 63 znaków (A-Z,a-z,0-9,-). Wyjątkiem jest korzeń, który nie ma nazwy (ma nazwę pustą).
- Nazwy nie rozróżniają wielkości liter.
- Nazwa zakończona kropką jest nazywana absolutną nazwą domeny lub w pełni określoną nazwą domeny (ang. FQDN).
- Zakłada się, że nazwa bez końcowej kropki musi być uzupełniona:
 - jeśli składa się z dwóch lub więcej członów może być traktowana jako w pełni określona,
 - może ona też być uzupełniona przez dodanie nazwy zależnej od lokalizacji węzła.
- Można używać znaków narodowych.

Obszary i ich obsługa

- Obszar jest częścią drzewa DNS, która jest oddzielnie administrowana.
 - może być podzielony na mniejsze obszary następuje wtedy delegacja odpowiedzialności.
- Delegowanie odpowiedzialności za zarządzanie etykietami sprawia, że rozwiązanie staje się skalowalne:
 - Nigdy pojedyncza jednostka nie zarządza wszystkimi etykietami w drzewie,
 - Odpowiedzialność jest delegowana w dół.

Podstawowy i drugoplanowy serwer nazw

- Każdy obszar musi zawierać podstawowy serwer nazw i jeden lub więcej drugoplanowych serwerów nazw.
- Serwer drugoplanowy otrzymuje informacje poprzez transfer obszaru.

Zapytania

- Rozwiązywanie nazw polega na wysyłaniu zapytań i otrzymywaniu odpowiedzi
- Każdy serwer zna adresy hostów ze swojej domeny, adresy hostów do których delegował odpowiedzialność, adresy głównych serwerów nazw adres serwera domeny macierzystej itd... (ftp.rs.internic.net/domain/named.root),
- Rekurencyjne i iteracyjne

O co pytamy? Zapytania proste

- Najczęściej występujące
 - Jaki jest adres IP urządzenia o nazwie www.internic.net ?

O co pytamy? Zapytania wskazujące

- Po podaniu adresu IP dostajemy nazwę DNS: 149.156.98.14 -> x.y.z?
- Wykorzystywana jest domena in-addr.arpa.
 - 149.156.98.14 -> 14.98.156.149.in-addr.arpa.

Bez oddzielnej gałęzi drzewa DNS należałoby przeszukiwać wszystkie domeny.

O co pytamy? Inne typy

- MX serwer poczty dla określonej nazwy
 maciek@poczta.pl -> mail.poczta.pl
- NS autorytatywny serwer DNS dla danej domeny
- CNAME nazwa kanoniczna (alias)
- HINFO informacje na temat komputera
- inne

Pamięć podręczna

- Wszystkie serwery DNS stosują pamięć podręczną aby zredukować wymianę komunikatów DNS i zwiększyć efektywność działania:
 - odpowiedzi autorytatywne pochodzą od serwerów z odpowiedniej domeny,
 - odpowiedzi z pamięci podręcznej nie są autorytatywne,
 - zawierają informacje na temat serwera od którego zostały uzyskane – klient ma możliwość osobistej kontroli,
 - wraz z odpowiedzią autorytatywną serwer otrzymuje TTL określający jak długo należy przechowywać daną informację w pamięci podręcznej.

Przykład konfiguracji serwera

```
Nazwa bieżącego hosta
 edu.pl.
                    SOA dns.edu.pl hostmaster.edu.pl
        Wersja pliku { 123456
                                   ;serial
                                    ;minimum of a day
        Minimalny TTL { 86400
                        dns2.edu.pl
                   NS
                        dns3.edu.pl
agh.edu.pl. 86400 NS dns.agh.edu.pl
                 NS dns2.agh.edu.pl
                   A 10.5.32.241
        Priorytet MX
                         10 dns2.edu.pl
                                            Rekord wymiany poczty
            A 10.5.32.242
A 10.5.32.243
dns2.edu.pl
                         10.5.32.242
                                            Rekord prosty
dns3.edu.pl
243.32.5.10.in-addr.arpa PTR dns3.edu.pl
                                              Rekord wskazujący
242.32.5.10.in-addr.arpa PTR dns2.edu.pl
ftp.edu.pl
                  CNAME
                               dns.edu.pl
                                            Nazwa kanoniczna
```

UDP i TCP

- DNS obsługuje zarówno UDP jak i TCP:
 - Dobrze znany port UDP i TCP nr 53,
 - UDP stosowane jest najczęściej,
 - TCP wykorzystywane jest jeśli odpowiedź od serwera nazw przekracza 512 bajtów — jest to wielkość pakietu UDP jaki musi być w stanie odebrać każdy host,
 - jeśli odpowiedź UDP zawiera informację o tym, że ilość informacji została obcięta do wymaganych 512 bajtów to resolver ponawia zapytanie po TCP,
 - TCP jest używane do transmisji obszarów,
 - przy stosowaniu UDP programy muszą same obsługiwać czasy oczekiwania i retransmisje.

Podstawy bezpiecznych sieci komputerowych

Wprowadzenie

- Bezpieczeństwo to nie produkt
 - nie jest urządzeniem
 - nie jest oprogramowaniem
 - nie można go kupić
- Bezpieczeństwo to podejście
 - które musi nadążać za ewolucją sprzętu i oprogramowania
 - które powinno być stosowane dogłębnie
- Bezpieczeństwo to ciągła praca

Co jest przedmiotem ochrony?

- Poufność
- Integralność
- Dostępność

Rodzaje ataków

- Rodzaje ataków:
 - zależą od pomysłowości atakującego
 - zależą od warstwy, w którą wycelowany jest atak
- 4 klasy ataków
 - Rekonesans
 - Uzyskanie dostępu
 - Denial of service (DoS lub DDoS)
 - Robaki, wirusy, konie trojańskie

Przykłady

- przechwycenie haseł (słowniki, brute-force)
- sniff-owanie pakietów (telnet, ftp, smtp...)
- skanowanie portów, badanie poprzez ping
- Man-in-the-middle
- wirusy, robaki, konie trojańskie
- DoS or DDoS:
 - ping of death,
 - packet fragmentation
 - e-mail bomb,
 - SYN flood,
 - SMURF,
 - Stacheldraht ...

Nmap Nessus ...

Co jest przedmiotem ochrony?

- Na uwadze trzeba mieć:
 - warstwę fizyczną
 - warstwę łącza danych
 - warstwę sieciową
 - warstwę transportową
 - warstwę aplikacji

efekt domina

Zagrożenia fizyczne

- Sprzet:
 - autoryzowany dostęp (konsole, porty hub-a)
 - zabezpieczenia: klucz, karta, karta/PIN, metody biometryczne
 - logowanie, kamery przemysłowe
- Środowisko:
 - temperatura, wilgotność, alarmowanie zmian
- Zasilanie:
 - UPS, zasilanie zapasowe, alarmowanie
- Utrzymanie:
 - dokumentacja, etykietowanie kabli, dostęp do konsol

Warstwa łącza danych

- Ataki ograniczone do domeny rozgłoszeniowej
- Wycelowane w przełącznice:
 - wykorzystanie protokołu STP,
 - zalewanie tablic FDB (+ BPDU),
 - skakanie po VLAN-ach (podwójne tagowanie),
 - inne możliwości: CDP, VTP, ISL.
- Zabezpieczanie przełącznic
 - Port security
 - VMPS
 - Identity Based Network Services (IBNS) 803.1x

Warstwa sieciowa

- Atak może być prowadzony z wnętrza, jak i spoza granic sieci!
- Często opiera się na :
 - ARP Spoofing (analogicznie wykorzystanie protokołu DHCP)
 - IP Address Spoofing generowanie adresu źródłowego,
 - ICMP,
 - RIP, OSPF, BGP
- Może być wycelowany w:
 - host, router
 - protokół routingu

Atak przy użyciu gratuitous ARP gARP: mój adres IP: 1.2.3.1 IP: 1.2.3.4 IP: 1.2.3.5 IP: 1.2.3.6 MAC: A MAC: B MAC: C

Warstwa transportowa

- Protokoły TCP i UDP
- Atak typu TCP SYN Flood
- Zapobieganie przez
 - TCP Interception
 - SYN Cookies

Denial-of-Service

- Powoduje zablokowanie wybranej usługi przez:
 - zużycie zasobów np.: przepustowości łącza, CPU,
 - zablokowanie przepływu informacji konfiguracyjnej np. pakietów routingu dynamicznego,
 - zablokowanie urządzenia sieciowego.
- Zwykle przez ręczny wpis adresu źródłowego
- Warianty:
 - atak typu smurf
 - atak rozproszony tzw. DDoS

Koń trojański

- Oprogramowanie "kuszące", by je uruchomić
 - np. prosta gra komputerowa
- Zawiera złośliwy kod
- Działa poza świadomością użytkownika
 - Może niszczyć dane
 - Może tworzyć luki w bezpieczeństwie tzw. backdoor
- Wirusy (kod dołączony), robaki (samoklonujące)...

Metody zabezpieczeń

- szyfrowanie (klucz symetryczny/asymetryczny),
- SSH, HTTPS
- kontrola integralności (MD5 hash), certyfikaty,
- autoryzacja pakietów protokółów rutingu
- AAA Autentykacja, Autoryzacja, Audyt
 RADIUS, TACACS, Kerberos
- ACL listy kontroli dostępu
- IDS systemy wykrywania ataków sygnatury
- TCP interception kontrola połączeń TCP

Podział sieci

- Wprowadzenie podsieci
 - możliwość umieszczenia firewalla pomiędzy podsieciami
- Sieci tego samego typu należy budować na tego samego typu switch'ach
 - sieci zaufane łączymy na "zaufanym" switchu,
 - sieci strefy DMZ łączymy na switchu DMZ,
 - sieci niezaufane na "niezaufanym" switchu.
- Wydzielenie specjalnej podsieci do zarządzania i administracji

Access Control Lists

listy kontroli dostępu

Listy kontroli dostępu (ACL)

- w celu uniemożliwienia niektórych rodzajów transmisji (przepuszczanie/blokowanie)
- zestaw reguł
- definiowany dla KAŻDEGO rutowanego protokołu
- do/z określonego portu rutera

ACL - zastosowania

- filtr bezpieczeństwa
 - zapewnia bezpieczeństwo sieci, do/z której kontroluje ruch
 - ochrona przed niepowołanym dostępem
- filtr ruchu
 - zapobiega niepotrzebnemu ruchowi w łączach o ograniczonej przepustowości (zmniejszenie obciążenia)
- identyfikacja pakietów
 - narzędzie wyboru pakietów dla innych mechanizmów ruterów Cisco (dialer list, route maps itp)

ACL - zastosowania

- przykłady:
 - stworzenie 'strefy zdemilitaryzowanej'
 - udostępnienie tylko usługi HTTP na zewnątrz danej sieci
 - zablokowanie możliwości konfiguracji routera poprzez telnet
 - "droga jednokierunkowa"
 - ...

ACL – różne rodzaje

- ACL standardowy
- ACL rozszerzony
- Reflexive ACL
 - CBAC Context-based Access Control
- Czasowe ACL
- Lock-and-Key ACL
- Turbo ACL

ACL – podstawy

- Listy kontroli dostępu składają się z sekwencji warunków (filtrów) określających sposób postępowania z danym pakietem
- Kryterium mogą być:
 - adres źródłowy/docelowy,
 - protokół warstwy wyższej,
 - numer portu,
 - ustawienie flagi...
- Akcje są dwojakiego rodzaju:
 - permit przepuszcza pakiet,
 - denygubi pakiet.

ACL – działanie listy

Pakiet 'przechodzi' sekwencyjnie przez listę dostępu

Zasady funkcjonowania ACL

- lista sprawdzana jest do momentu napotkania pierwszego warunku dotyczącego danego pakietu
- polecenie permit any na początku listy powoduje, że dalej nie jest sprawdzana
- jeśli lista zostanie sprawdzona do końca, a mimo to odpowiedni dla danego pakietu warunek nie zostanie znaleziony, pakiet jest gubiony - na końcu listy znajduje się domyślne (implicit) polecenie deny any

KONIEC		