NOM:	PRENOM :	Groupe :

Partiel Architecture - CORRIGE

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Associations de mémoires (5 points)

À l'aide de plusieurs ROM (M_1) possédant un bus d'adresse de 22 bits et un bus de donnée de 8 bits, on souhaite réaliser une ROM (M_2) possédant un bus d'adresse de 24 bits et un bus de donnée de 64 bits.

1. Donnez, en puissance de deux, la capacité en bits de la mémoire M_1 .

2. Donnez, à l'aide des préfixes binaires (Ki, Mi ou Gi), la capacité en octets de la mémoire M_2 . Vous choisirez un préfixe qui permet d'obtenir la plus petite valeur numérique entière.

3. Combien de mémoires doit-on assembler en série ?

d'assemblage sère permet d'augmenter la profondeur, Jui, elle est quadruptie. Il fant donc associet 4 minisiers en sère.

4. Combien de mémoires doit-on assembler en parallèle ?

d'anemblage // presu	et d'augmen	her la	largeur.
Doi, elle est multipliée	has 8. 21 t	but don	c anover
8 ministres en 11.			

5. Combien de bits d'adresse vont servir à déterminer le CS des RAM?

Exercice 2. Compteurs asynchrones (5 points)

1. Câblez les bascules ci-dessous afin de réaliser un compteur asynchrone modulo 13. (Les entrées Set et Reset des bascules sont actives à l'état bas.)

2. Câblez les bascules ci-dessous afin de réaliser un décompteur asynchrone modulo 13. (Les entrées Set et Reset des bascules sont actives à l'état bas.)

Exercice 3. Compteurs synchrones (6,5 points)

Rappel: Vous devez faire apparaître clairement les bulles dans un tableau de Karnaugh! Si une (ou plusieurs) solution vous semble(nt) évidente(s), vous pouvez directement indiquer son expression sans remplir le tableau de Karnaugh. On vous rappelle qu'une solution est dite évidente si elle est constante ou si elle ne fait intervenir qu'une seule variable, complémentée, ou non.

- A. On désire réaliser un compteur synchrone modulo 6 en code gray à l'aide de bascules *D* synchronisées sur front descendant.
 - 1. Remplissez le tableau ci-dessous.

Q_2	Q_1	Q_0	D_2	D_1	D_0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	Ô
0	1	0	1	1	0
Λ	1	0	1	1	1
1	1	1	0	0	0

2. Donnez les équations des entrées D_n des 3 bascules.

Q2 Q.Sp	00	04	11	10	
0	0	0	0	1	De = 9, 9.
Λ	φ	φ	0	1	
92	00	01	11	10	
0	0	1	1	1	D, = \(\overline{\pi}_2 \overline{\pi}_0 + \overline{\pi}_1 \overline{\pi}_0
1	φ	φ	0	1	
Q1 Q190	00	01	11	10	
0	1	1	0	0	Do = Q, + Q, Q0
1	4	φ	0	1	
		_	l		

- B. On désire réaliser un décompteur synchrone modulo 6 à l'aide de bascules JK synchronisées sur front descendant.
 - 1. Remplissez le tableau ci-dessous.

Q_2	Q_1	Q_0	J ₂	K ₂	J_1	K_1	Jo	K_0
1	0	1	Ψ	0	0	Φ	9	1
1	0	0	Ψ	Λ	1	9	1	φ
0	1	1	0	φ	φ	0	φ	1
0	1	0	0	φ	4	1	1	Ψ
0	0	1	0	φ	0	ψ	4	1
0	0	0	1	Ψ	Ø	4	1	φ

Solu	how	o évi	dente	<u>s</u> :	$ J_0 = \Lambda \qquad J_1 = \overline{Q}_0 \\ K_0 = \Lambda \qquad K_1 = \overline{Q}_0 $	K2 = 0
0,00	00	01	1/1	(A)	J2 = Q, Qo	
1	4	9	9	φ.10	_ 12-4170	
0	00	0	Ψ	φ	- J1= Q2 Q0	
Λ	1	0	φ	Ψ		

Fugurias A OCNA	25		
Exercice 4. QCIVI (3,5 points – Pas de poin	it negatif)	
Entauraz la hanna rán	onso		
Entourez la bonne rép			
		ore codé en simple précision	
a. 8 bits	b. 11 bits	(c.) 23 bits	d. 52 bits
2. En double précision normalisée ?	ı, quelle est la valeur maxi	mum du champ E pour un	codage à mantisse
a. 1023	b. 1024	c. 2 047	(d) 2046
3. En double précisio normalisée?	n, quelle est la valeur minii	male du champ E pour un c	odage à mantisse
a1	b. 0	(c) 1	d. 2046
		O	
4. Donnez la représen	tation IEEE 754, en simple p	orécision, du nombre suivar	nt : -120,25
a. 110000101	010000010000000000000000000000000000000	0000	
b. 110000100	010000010000000000000	0000	
c. 110000100	111000010000000000000000000000000000000	0000	
(d.) 110000101	111000010000000000000000000000000000000	0000	

5. Donnez la représentation décimale associée au codage IEEE 754 suivant :

4044 4000 0000 0000₁₆

Η

a. 40

b. 20

@ 40,5

d. 20,25

6. Soit le logigramme ci-contre :

A t=0, $Q_A=Q_B=0$. On considère Q_A comme poids faible.

Ce montage réalise un :

- a Décompteur asynchrone modulo 4
- b- Compteur synchrone modulo 3
- c- Décompteur asynchrone modulo 3

 J_B

d- Décompteur synchrone modulo 4

7. Soit le logigramme ci-contre :

Le signal Q_2 a une période :

 \bigcirc 4 fois plus élevée que celle de H.

- c- 2 fois plus faible que celle de H.
- d- 4 fois plus faible que celle de H.

