

Manual de Usuario

FECHA DE ENTREGA : 07/03/2025

NOMBRE : Isaac Oña

ASIGNATURA : ESTADISTICA

NRC : 1270

TEMA:

Variable de Estudio

En los últimos seis meses, ¿cuánto dinero aproximadamente ha gastado en recursos para usar ChatGPT?

SANGOLQUI-ECUADOR

2024.

Introducción.

En este documento, exploraremos el uso de Excel para llevar a cabo análisis de datos a través de técnicas de muestreo. Usaremos datos recopilados de encuestas como base para nuestras aplicaciones. Comenzaremos organizando la información en Excel y generando gráficos que facilitarán su comprensión visual. A continuación, aplicaremos diversas técnicas de muestreo utilizando las funciones matemáticas de Excel, lo que nos permitirá calcular promedios y seleccionar muestras aleatorias eficazmente. Esta metodología nos ayudará a identificar patrones y diferencias significativas, optimizando así el análisis de la información recolectada.

Manual de Usuario

1. Prueba de ANOVA

ANOVA DE UN FACTOR								
Datos	Software	Biotecnologia	Mercadotecnia					
1	1 75		80					
2	82	50	100					
3	76	60	80					
4	80	41	80					
Total	313	231	340					

- -Ingresamos a la pestaña datos.
- -Seleccionamos la herramienta de MegaStat.

-Hacemos clic en análisis de varianza de un facto y aceptar

-Seleccionamos complementos y damos en aceptar.

-Obtenemos los resultados.

Análisis de varianza de un factor						n	
RESUMEN						n media global	
Grupos	Cuenta	Suma	Promedio	Varianza			
Software	4.00	313.00	78.25	10.92			
Biotecnologia	4.00	231.00	57.75	280.25			
Mercadotecnia	4.00	340.00	85.00	100.00			
ANÁLISIS DE	VARIANZA						
Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F	
Entre grupos	1611.17	2.00	805.58	6.18	0.02	4.26	
Dentro de los g	1173.50	9.00	130.39				
Гotal	2784.67	11.00					

JAMOVI

Regresión lineal multiple

En Excel Debemos ir a Archivos, y seleccionamos Opciones

Se selecciona los complementos y damos en Aceptar

-Y se observara en la pestaña Datos una nueva pestaña Análisis de datos y Para el análisis de regresión, damos click a Análisis de datos y seleccionamos Regresión

Y seleccionamos las variables dependientes e independientes que deseamos analiza.

			Pru	eba Global d	-			
Modelo	R	R ²	F	gl1	gl2	р		
1	0.967	0.934	49.6	2	7	< .001		
Nota. Mod	els estimated u	sing sample s	ize of N=1	10			•	
	nibus ANOVA							
ueba Omr	IIDUS ANOVA	Suma de C	uadrados	gl	Media Cu	uadrática	F	р
Variable In	dependiente 1		463.9	1		463.9	21.67	0.002
Variable Independiente 2 Residuos			42.5	1	42.5 21.4		1.98	0.202
			149.9	7				
Nota. Sum	a de cuadrados	tipo 3						
								[3]
		/a si a la la a da a a a	ndiente					
oeficientes	del Modelo - \	variable depe	TOTAL TIPE					
	del Modelo - \	Estimador	EE	t	р			
				t 3.87	p 0.006			

Wilcoxon

- -Ingresamos a la pestaña datos
- -Seleccionamos la herramienta de MegaStat

Seleccionamos las opciones que necesitamos que son: Noneparametrics test y Wilcox Signer ranked

Se abrirá una pestaña en donde tomaremos los valore del antes y después pero sin sus cabeceras y aplicando la opción "output ranked data" se da click enOK

Estudiantes	Antes	Después	diferencia	diferencia absoluta	rango	rango as	ignado	
1	80	90	-10	10	3		3	Wilcoxon Signed Ranks Test
2	10	80	-70	70	8		8	Wilcoxon Signed Ranks Test
3	60	50	10	10	3	3		
4	90	75	15	15	5	5		'PRIMERA FORMA DE WILCOXON'1\$C\$3:\$C\$10
5	70	60	10	10	3	3		
6	90	85	5	5	1	1		'PRIMERA FORMA DE WILCOXON'I\$D\$3:\$D\$10
7	50	80	-30	30	6		6	
8	10	70	-60	60	7		7	✓ Output ranked data Alternative:
						12	24	garan
								☐ Corrrect for ties

Mann-Whitney

- -Ingresamos a la pestaña datos
- -Seleccionamos la herramienta de MegaStat

Kruskal-Wallis & Spearman

- -Ingresamos a la pestaña datos
- -Seleccionamos la herramienta de MegaStat

Seleccionamos Non parametrics test y kruskal_wallis y en el caso de spearman.

Ji - Cuadrado

JAMOVI

1) Revisar que tengamos instalado el módulo JMV de Jamovi, caso contrario lo Instalamos

2) Ir al aparto análisis, opción frecuencias y seleccionar la segunda opción "N Resultados"

3) Observar la tabla y comparar el valor de Ji -Cuadrado con los que hemos obtenido.

