Assignment-8.R

Kun Wang

2020-11-03

GitHub Link:

.R File: https://github.com/kunwangRU/Survival-Analysis-of-Patients-with-Heart-Failure/blob/master/Logistic%20Regression%20(Assignment%208).R

```
#Loading Packages
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
##
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.3
library(cowplot)
## Warning: package 'cowplot' was built under R version 3.6.3
library(regclass)
## Warning: package 'regclass' was built under R version 3.6.3
## Loading required package: bestglm
## Warning: package 'bestglm' was built under R version 3.6.3
## Loading required package: leaps
## Warning: package 'leaps' was built under R version 3.6.3
## Loading required package: VGAM
## Warning: package 'VGAM' was built under R version 3.6.3
## Loading required package: stats4
## Loading required package: splines
```

```
## Loading required package: rpart
## Loading required package: randomForest
## Warning: package 'randomForest' was built under R version 3.6.3
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
##
       margin
## The following object is masked from 'package:dplyr':
##
##
       combine
## Important regclass change from 1.3:
## All functions that had a . in the name now have an _
## all.correlations -> all_correlations, cor.demo -> cor_demo, etc.
library(caret)
## Warning: package 'caret' was built under R version 3.6.3
## Loading required package: lattice
## Warning: package 'lattice' was built under R version 3.6.3
##
## Attaching package: 'lattice'
## The following object is masked from 'package:regclass':
##
##
       qq
##
## Attaching package: 'caret'
## The following object is masked from 'package:VGAM':
##
##
       predictors
library(e1071)
## Warning: package 'e1071' was built under R version 3.6.3
library(pROC)
## Warning: package 'pROC' was built under R version 3.6.3
```

```
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
      cov, smooth, var
#Loading dataset
rawdata <-read.csv("C:/Users/wangk/Desktop/Rutgers/Rutgers Courseware/Fall</pre>
2020/Multivariate Analysis/heart failure clinical records dataset.csv")
View(rawdata)
#Identifying different columns names
names(rawdata)
## [1] "age"
                                  "anaemia"
## [3] "creatinine_phosphokinase" "diabetes"
## [5] "ejection_fraction"
                                  "high_blood_pressure"
## [7] "platelets"
                                  "serum creatinine"
## [9] "serum sodium"
                                 "sex"
## [11] "smoking"
                                  "time"
## [13] "DEATH_EVENT"
#Data Summary
str(rawdata)
## 'data.frame':
                   299 obs. of 13 variables:
                             : num 75 55 65 50 65 90 75 60 65 80 ...
## $ age
                             : int 0001111101...
## $ anaemia
## $ creatinine_phosphokinase: int 582 7861 146 111 160 47 246 315 157 123
. . .
## $ diabetes
                             : int 0000100100...
## $ ejection_fraction
                             : int 20 38 20 20 20 40 15 60 65 35 ...
## $ high blood pressure
                            : int 1000010001...
                             : num 265000 263358 162000 210000 327000 ...
## $ platelets
                             : num 1.9 1.1 1.3 1.9 2.7 2.1 1.2 1.1 1.5 9.4
## $ serum_creatinine
## $ serum_sodium
                            : int 130 136 129 137 116 132 137 131 138 133
                             : Factor w/ 2 levels "Female", "male": 2 2 2 2 1
## $ sex
2 2 2 1 2 ...
## $ smoking
                             : int 0010010101...
## $ time
                            : int 4 6 7 7 8 8 10 10 10 10 ...
## $ DEATH_EVENT
                            : Factor w/ 2 levels "Death", "No Death": 2 2 2
2 2 2 2 2 2 2 ...
summary(rawdata)
##
                                   creatinine_phosphokinase
                      anaemia
        age
## Min. :40.00 Min. :0.0000
                                   Min. : 23.0
```

```
1st Ou.:51.00
                     1st Ou.:0.0000
                                       1st Qu.: 116.5
##
                     Median :0.0000
    Median :60.00
                                       Median : 250.0
##
    Mean
           :60.83
                     Mean
                            :0.4314
                                       Mean
                                               : 581.8
##
    3rd Qu.:70.00
                     3rd Qu.:1.0000
                                       3rd Qu.: 582.0
##
    Max.
           :95.00
                     Max.
                             :1.0000
                                       Max.
                                               :7861.0
##
       diabetes
                      ejection_fraction high_blood_pressure
                                                                 platelets
##
    Min.
           :0.0000
                      Min.
                             :14.00
                                         Min. :0.0000
                                                                      : 25100
                                                              Min.
##
    1st Qu.:0.0000
                      1st Qu.:30.00
                                         1st Qu.:0.0000
                                                               1st Qu.:212500
##
    Median :0.0000
                      Median:38.00
                                         Median :0.0000
                                                               Median :262000
##
    Mean
           :0.4181
                      Mean
                             :38.08
                                         Mean
                                                 :0.3512
                                                              Mean
                                                                      :263358
##
    3rd Qu.:1.0000
                      3rd Qu.:45.00
                                         3rd Qu.:1.0000
                                                               3rd Qu.:303500
##
                                         Max.
   Max.
           :1.0000
                      Max.
                             :80.00
                                                 :1.0000
                                                              Max.
                                                                      :850000
                                                        smoking
##
    serum creatinine
                       serum sodium
                                           sex
    Min.
           :0.500
                      Min.
                             :113.0
                                       Female:105
                                                     Min.
                                                            :0.0000
##
    1st Qu.:0.900
                      1st Qu.:134.0
                                       male :194
                                                     1st Qu.:0.0000
##
    Median :1.100
                      Median :137.0
                                                     Median :0.0000
##
    Mean
           :1.394
                      Mean
                             :136.6
                                                     Mean
                                                             :0.3211
##
    3rd Qu.:1.400
                      3rd Qu.:140.0
                                                     3rd Qu.:1.0000
##
    Max.
           :9.400
                      Max.
                             :148.0
                                                     Max.
                                                            :1.0000
##
         time
                       DEATH EVENT
## Min.
           : 4.0
                             :203
                     Death
    1st Qu.: 73.0
                     No Death: 96
##
   Median :115.0
##
    Mean
           :130.3
##
    3rd Qu.:203.0
##
    Max.
           :285.0
head(rawdata)
     age anaemia creatinine_phosphokinase diabetes ejection_fraction
## 1
     75
                                        582
                                                    0
                                                                      20
## 2
     55
               0
                                       7861
                                                    0
                                                                      38
               0
                                                    0
                                                                      20
## 3
      65
                                        146
                1
## 4
      50
                                        111
                                                    0
                                                                      20
## 5
      65
                1
                                        160
                                                    1
                                                                      20
## 6
     90
                1
                                         47
                                                    0
                                                                      40
##
     high_blood_pressure platelets serum_creatinine serum_sodium
                                                                        sex
## 1
                        1
                             265000
                                                   1.9
                                                                 130
                                                                       male
## 2
                        0
                             263358
                                                   1.1
                                                                 136
                                                                       male
## 3
                        0
                                                   1.3
                                                                 129
                             162000
                                                                       male
                        0
## 4
                             210000
                                                   1.9
                                                                 137
                                                                       male
## 5
                        0
                                                   2.7
                                                                 116 Female
                             327000
## 6
                        1
                             204000
                                                   2.1
                                                                 132
                                                                       male
##
     smoking time DEATH_EVENT
## 1
           0
                 4
                      No Death
## 2
           0
                 6
                      No Death
           1
                 7
## 3
                      No Death
## 4
           0
                 7
                      No Death
                 8
## 5
           0
                      No Death
           1
                 8
## 6
                      No Death
```

```
dim(rawdata)
## [1] 299 13
#Data Cleaning
#Checking for missing values
is.null(rawdata)
## [1] FALSE
##The "FALSE" output shows there is no missing data in the dataset.
#Transforming data (Converting 0,1's to meaningful form)
data <- rawdata %>%
 mutate(anaemia = ifelse(anaemia ==1, "Yes", "No"),
         high blood pressure = ifelse(high blood pressure ==1, "Yes", "No"),
         diabetes = ifelse(diabetes ==1, "Yes", "No"),
         smoking =ifelse(smoking ==1, "Yes", "No"),
         DEATH_EVENT=ifelse(DEATH_EVENT=="No Death", "Survived", "Death")
 ) %>%
 mutate if(is.character, as.factor) %>%
 dplyr::select(age, anaemia, creatinine_phosphokinase, diabetes,
ejection_fraction, high_blood_pressure, platelets,serum_creatinine,
serum sodium, sex, smoking, time, DEATH EVENT)
View(data)
str(data)
## 'data.frame': 299 obs. of 13 variables:
## $ age
                              : num 75 55 65 50 65 90 75 60 65 80 ...
## $ anaemia
                              : Factor w/ 2 levels "No", "Yes": 1 1 1 2 2 2 2
2 1 2 ...
## $ creatinine phosphokinase: int 582 7861 146 111 160 47 246 315 157 123
## $ diabetes
                              : Factor w/ 2 levels "No", "Yes": 1 1 1 1 2 1 1
2 1 1 ...
## $ ejection_fraction
                            : int 20 38 20 20 20 40 15 60 65 35 ...
## $ high_blood_pressure
                             : Factor w/ 2 levels "No", "Yes": 2 1 1 1 1 2 1
1 1 2 ...
## $ platelets
                              : num 265000 263358 162000 210000 327000 ...
## $ serum_creatinine
                            : num 1.9 1.1 1.3 1.9 2.7 2.1 1.2 1.1 1.5 9.4
. . .
                             : int 130 136 129 137 116 132 137 131 138 133
## $ serum_sodium
. . .
                              : Factor w/ 2 levels "Female", "male": 2 2 2 2 1
## $ sex
2 2 2 1 2 ...
## $ smoking
                              : Factor w/ 2 levels "No", "Yes": 1 1 2 1 1 2 1
2 1 2 ...
## $ time
                              : int 4 6 7 7 8 8 10 10 10 10 ...
```

```
## $ DEATH EVENT
                              : Factor w/ 2 levels "Death", "Survived": 2 2 2
2 2 2 2 2 2 2 ...
summary(data)
##
                    anaemia
                              creatinine_phosphokinase diabetes
         age
## Min.
                    No :170
           :40.00
                              Min.
                                     : 23.0
                                                        No:174
                    Yes:129
                              1st Qu.: 116.5
                                                        Yes:125
## 1st Qu.:51.00
## Median :60.00
                              Median : 250.0
## Mean
                                     : 581.8
           :60.83
                              Mean
## 3rd Qu.:70.00
                              3rd Qu.: 582.0
## Max.
           :95.00
                              Max.
                                     :7861.0
   ejection_fraction high_blood_pressure
##
                                             platelets
                                                            serum_creatinine
## Min.
           :14.00
                      No :194
                                          Min.
                                                 : 25100
                                                            Min. :0.500
## 1st Qu.:30.00
                      Yes:105
                                           1st Qu.:212500
                                                            1st Qu.:0.900
## Median :38.00
                                          Median :262000
                                                            Median :1.100
## Mean
                                          Mean
                                                  :263358
                                                            Mean
                                                                   :1.394
           :38.08
## 3rd Qu.:45.00
                                           3rd Qu.:303500
                                                            3rd Qu.:1.400
## Max.
           :80.00
                                          Max.
                                                  :850000
                                                            Max.
                                                                   :9.400
##
    serum_sodium
                        sex
                                 smoking
                                                 time
                                                              DEATH_EVENT
## Min.
           :113.0
                    Female:105
                                 No :203
                                           Min.
                                                   : 4.0
                                                            Death
                                                                   :203
##
   1st Qu.:134.0
                    male :194
                                 Yes: 96
                                           1st Qu.: 73.0
                                                            Survived: 96
## Median :137.0
                                           Median :115.0
## Mean
           :136.6
                                           Mean
                                                   :130.3
## 3rd Qu.:140.0
                                            3rd Qu.:203.0
## Max.
           :148.0
                                           Max.
                                                   :285.0
dataset<-data
attach(dataset)
#Simple Logistic model 1
#Implementing simple logistic model using our independent variable sex to
predict patient's death or survival
xtabs(~ DEATH EVENT + sex, data=dataset)
##
              sex
## DEATH_EVENT Female male
##
                   71
                       132
      Death
##
      Survived
                   34
                        62
logistic_simple <- glm(DEATH_EVENT ~ sex, data=dataset, family="binomial")</pre>
summary(logistic simple)
##
## Call:
## glm(formula = DEATH_EVENT ~ sex, family = "binomial", data = dataset)
##
## Deviance Residuals:
##
       Min
                 10
                      Median
                                   3Q
                                           Max
## -0.8846 -0.8776 -0.8776
                               1.5017
                                        1.5105
##
```

```
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
                           0.20856 -3.531 0.000415 ***
## (Intercept) -0.73632
              -0.01935
                           0.25923 -0.075 0.940504
## sexmale
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 375.34 on 297 degrees of freedom
## AIC: 379.34
## Number of Fisher Scoring iterations: 4
#The intercept is the log(odds) a female that can survive.
#sexmale is the log(odds ratio) that tells us if a sample has sex=male, the
odds of survival are on a log scale 0.019 times lesser than if a sample has
sex=female
#However, sex is not a significant predictor for death event
#Calculating the overall "Pseudo R-squared" and its p-value
11.null <- logistic_simple$null.deviance/-2</pre>
11.proposed <- logistic simple$deviance/-2</pre>
ll.null
## [1] -187.6744
11.proposed
## [1] -187.6716
## McFadden's Pseudo R^2 = [ LL(Null) - LL(Proposed) ] / LL(Null)
(ll.null - ll.proposed) / ll.null
## [1] 1.483129e-05
## chi-square value = 2*(LL(Proposed) - LL(Null))
## p-value = 1 - pchisq(chi-square value, df = 2-1)
1 - pchisq(2*(11.proposed - 11.null), df=1)
## [1] 0.9405237
1 - pchisq((logistic_simple$null.deviance - logistic_simple$deviance), df=1)
## [1] 0.9405237
#Checking what logistic regression is predicting, given that a patient is
either female or male (and no other data about them).
predicted.data <-</pre>
data.frame(probability.of.death_event=logistic_simple$fitted.values,sex=datas
```

```
et$sex)
predicted.data
##
       probability.of.death_event
                                        sex
## 1
                         0.3195876
                                      male
## 2
                         0.3195876
                                      male
## 3
                         0.3195876
                                      male
## 4
                         0.3195876
                                      male
## 5
                         0.3238095 Female
## 6
                         0.3195876
                                      male
## 7
                                      male
                         0.3195876
## 8
                         0.3195876
                                      male
## 9
                         0.3238095 Female
## 10
                         0.3195876
                                      male
## 11
                         0.3195876
                                      male
## 12
                         0.3195876
                                      male
## 13
                         0.3195876
                                      male
## 14
                                      male
                         0.3195876
## 15
                         0.3238095 Female
## 16
                         0.3195876
                                      male
## 17
                         0.3195876
                                      male
## 18
                         0.3195876
                                      male
## 19
                         0.3238095 Female
## 20
                         0.3238095 Female
## 21
                         0.3238095 Female
## 22
                         0.3238095 Female
## 23
                         0.3195876
                                      male
## 24
                         0.3195876
                                      male
## 25
                         0.3238095 Female
## 26
                         0.3195876
                                      male
## 27
                         0.3238095 Female
## 28
                         0.3195876
                                      male
## 29
                         0.3195876
                                      male
## 30
                         0.3195876
                                      male
## 31
                         0.3195876
                                      male
## 32
                         0.3195876
                                      male
## 33
                         0.3238095 Female
## 34
                         0.3238095 Female
## 35
                         0.3195876
                                      male
## 36
                         0.3195876
                                      male
## 37
                         0.3195876
                                      male
## 38
                         0.3238095 Female
## 39
                         0.3195876
                                      male
## 40
                         0.3238095 Female
## 41
                         0.3195876
                                      male
## 42
                         0.3238095 Female
## 43
                         0.3195876
                                      male
## 44
                         0.3195876
                                      male
## 45
                         0.3238095 Female
## 46
                         0.3195876
                                      male
```

##	47	0.3195876	male
##	48	0.3195876	male
	49	0.3195876	male
	50	0.3238095	
##		0.3195876	male
	52	0.3238095	
##	53	0.3238095	
##	54	0.3238095	Female
##		0.3238095	Female
##	56	0.3195876	male
##	57	0.3195876	male
##	58	0.3195876	male
##	59	0.3195876	male
##	60	0.3195876	male
##	61	0.3195876	male
	62	0.3238095	
	63	0.3195876	
	64	0.3195876	
##		0.3238095	
	66	0.3195876	male
	67	0.3238095	
	68	0.3195876	male
	69	0.3238095	
	70	0.3238095	
			male
##		0.3195876	male
	72	0.3195876	male
##		0.3195876	
	74	0.3195876	male
##		0.3195876	male
##		0.3195876	male
##		0.3238095	
	78	0.3195876	male
##	79	0.3195876	male
##	80	0.3238095	Female
##	81	0.3238095	Female
##	82	0.3195876	male
##	83	0.3238095	
	84	0.3195876	male
	85	0.3238095	
##		0.3195876	male
	87	0.3195876	male
	88	0.3195876	male
	89	0.3195876	male
	90	0.3195876	male
##		0.3195876	male
	92	0.3195876	male
##		0.3238095	
	94	0.3195876	male
	95	0.3238095	
##	96	0.3195876	male

97	0.3195876	male	
98	0.3238095		
99	0.3238095		
100	0.3238095		
101	0.3195876	male	
102	0.3195876	male	
103	0.3195876	male	
104	0.3195876	male	
105	0.3238095		
106	0.3238095		
107	0.3195876	male	
108	0.3195876	male	
109	0.3195876	male	
110	0.3195876	male	
111	0.3195876	male	
112 113	0.3195876 0.3195876	male male	
114			
115	0.3238095 0.3195876	male	
116	0.3195876		
117	0.3238095		
118	0.3238095		
119	0.3238095		
120	0.3238095		
121	0.3195876	male	
122	0.3238095		
123	0.3238095		
124	0.3238095		
125	0.3195876	male	
126	0.3238095		
127	0.3238095		
128	0.3238095		
129	0.3195876	male	
130	0.3195876	male	
131	0.3195876	male	
132	0.3195876	male	
133	0.3238095		
134	0.3195876	male	
135	0.3195876	male	
136	0.3195876	male	
137	0.3238095		
138	0.3195876	male	
139	0.3238095		
140	0.3195876	male	
141	0.3195876	male	
142	0.3238095		
143	0.3238095		
144	0.3238095		
145	0.3195876	male	
146	0.3195876	male	

##	147	0.3195876	male
##	148	0.3195876	male
##	149	0.3195876	male
##	150	0.3195876	male
##	151	0.3238095	Female
##	152	0.3195876	male
##	153	0.3195876	male
##	154	0.3195876	male
##	155	0.3238095	Female
##	156	0.3195876	male
##	157	0.3238095	Female
##	158	0.3195876	male
##	159	0.3195876	male
##	160	0.3195876	male
##	161	0.3195876	male
##	162	0.3195876	male
	163	0.3195876	male
	164	0.3238095	
	165	0.3195876	male
	166	0.3238095	
	167	0.3195876	
	168	0.3195876	
	169	0.3238095	
	170	0.3238095	
	171	0.3195876	
	172	0.3195876	
	173	0.3195876	male
	174	0.3195876	male
	175	0.3195876	male
	176	0.3195876	male
	177	0.3195876	male
	178	0.3238095	
	179	0.3195876	male
	180	0.3195876	male
	181	0.3195876	male
	182	0.3195876	male
	183	0.3195876	male
	184	0.3195876	male
	185	0.3195876	male
	186	0.3195876	male
	187	0.31338095	
	188	0.3238095	
	189	0.3238095	
	190	0.3238095	
	191	0.3238095	male
	192		
	193	0.3238095	
		0.3195876	male
	194 195	0.3195876	male
		0.3195876	male
##	196	0.3195876	male

##	197	0.3238095	Female
	198	0.3238095	
	199	0.3238095	
	200	0.3195876	male
	201	0.3195876	
	202	0.3195876	male
	203	0.3195876	
	204	0.3195876	male
	205	0.3195876	male
	206	0.3238095	
	207	0.3238095	Female
##	208	0.3195876	male
##	209	0.3238095	Female
##	210	0.3238095	Female
##	211	0.3195876	male
##	212	0.3195876	male
##	213	0.3195876	male
##	214	0.3238095	Female
	215	0.3195876	male
	216	0.3195876	
	217	0.3238095	
	218	0.3238095	
	219	0.3195876	
	220	0.3238095	
	221	0.3195876	male
	222	0.3195876	male
	223	0.3195876	
	224	0.3195876	male
	225	0.3195876	male
	226	0.3238095	
	227	0.3195876	male
	228	0.3195876	
	229	0.3193676	
	230	0.3238095	
	231	0.3238095	
	232	0.3195876	male
	233	0.3195876	male
	234	0.3195876	male
	235	0.3195876	male
	236	0.3195876	male
	237	0.3195876	male
	238	0.3195876	male
	239	0.3238095	
	240	0.3195876	male
##	241	0.3238095	Female
##	242	0.3195876	male
##	243	0.3195876	male
##	244	0.3238095	Female
##	245	0.3195876	male
##	246	0.3195876	male

##	247	0.3195876	male
##	248	0.3195876	male
##	249	0.3195876	male
	250	0.3238095	
	251	0.3238095	
	252	0.3238095	
	253	0.3195876	male
	254	0.3238095	
	255	0.3195876	male
	256	0.3195876	male
	257	0.31338095	
	258	0.3195876	male
	259	0.3195876	
	260	0.3195876	male
	261	0.3195876	male
	262	0.3238095	
	263	0.3195876	male
	264	0.3238095	Female
##	265	0.3195876	male
##	266	0.3195876	male
##	267	0.3195876	male
	268	0.3195876	male
	269	0.3238095	
	270	0.3195876	male
	271	0.3195876	male
	272	0.3238095	
	273	0.3238095	
	274	0.3195876	male
	275	0.3195876	male
	276	0.3238095	
	277	0.3238095	
	278	0.3195876	male
	279	0.3238095	
	280	0.3238095	
	281	0.3195876	
	282	0.3195876	male
##	283	0.3195876	male
##	284	0.3195876	male
##	285	0.3195876	male
	286	0.3195876	male
	287	0.3195876	male
	288	0.3238095	
	289	0.3238095	
	290	0.3238095	
	291	0.3238095	
	292	0.3195876	male
	293	0.3195876	male
	294	0.3195876	male
	295	0.3195876	male
##	296	0.3238095	Female

```
## 297
                        0.3238095 Female
## 298
                        0.3195876
                                    male
## 299
                        0.3195876
                                    male
## There are only two probabilities (one for females and one for males), so we
can summarize the predicted probabilities.
xtabs(~ probability.of.death_event + sex, data=predicted.data)
##
                             sex
## probability.of.death event Female male
            0.31958762886608
##
            0.323809523809605
                                 105
                                        0
#Simple Logistic model 2
#Implementing simple logistic model using our independent variable age to
predict patient's death or survival
logistic simple2 <- glm(DEATH EVENT ~ age, data=dataset, family="binomial")</pre>
summary(logistic simple2)
##
## Call:
## glm(formula = DEATH_EVENT ~ age, family = "binomial", data = dataset)
## Deviance Residuals:
##
       Min
                 10
                      Median
                                   30
                                           Max
## -1.4276 -0.8993 -0.6922
                               1.2344
                                         1.9251
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -3.65433
                           0.70662 -5.172 2.32e-07 ***
                                     4.241 2.23e-05 ***
## age
                0.04695
                           0.01107
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 375.35 on 298 degrees of freedom
##
## Residual deviance: 355.99 on 297 degrees of freedom
## AIC: 359.99
##
## Number of Fisher Scoring iterations: 4
#Age is a significant predictor for death event
#For every one year increase in Age the odds of survival on a log scale is
expected to increase by 0.047
#Calculating the overall "Pseudo R-squared" and its p-value
11.null_age <- logistic_simple2$null.deviance/-2</pre>
11.proposed age <- logistic simple2$deviance/-2</pre>
ll.null age
```

```
## [1] -187.6744
11.proposed_age
## [1] -177.9964
## McFadden's Pseudo R^2 = [ LL(Null) - LL(Proposed) ] / LL(Null)
(ll.null age - ll.proposed age) / ll.null age
## [1] 0.051568
## chi-square value = 2*(LL(Proposed) - LL(Null))
## p-value = 1 - pchisq(chi-square value, df = 2-1)
1 - pchisq(2*(11.proposed_age - 11.null_age), df=1)
## [1] 1.084786e-05
1 - pchisq((logistic_simple2$null.deviance - logistic_simple2$deviance),
df=1)
## [1] 1.084786e-05
#Checking what logistic regression is predicting with Age as the predictor
predicted.data age <-
data.frame(probability.of.death_event=logistic_simple2$fitted.values,age=data
set$age)
predicted.data age
       probability.of.death_event
##
## 1
                        0.4667769 75.000
## 2
                        0.2550066 55.000
## 3
                        0.3537520 65.000
## 4
                        0.2130169 50.000
## 5
                        0.3537520 65.000
## 6
                        0.6390307 90.000
## 7
                        0.4667769 75.000
## 8
                        0.3020960 60.000
## 9
                        0.3537520 65.000
## 10
                        0.5253933 80.000
## 11
                        0.4667769 75.000
## 12
                        0.3222531 62.000
## 13
                        0.1763050 45.000
## 14
                        0.2130169 50.000
## 15
                        0.2052522 49.000
## 16
                        0.5487349 82.000
## 17
                        0.6059477 87.000
## 18
                        0.1763050 45.000
## 19
                        0.4090636 70.000
## 20
                        0.1976995 48.000
## 21
                        0.3537520 65.000
## 22
                        0.3537520 65.000
                        0.3865737 68.000
## 23
```

##	24	0.2375814	53.000
##	25	0.4667769	75.000
##	26	0.5253933	80.000
##	27	0.6912370	95.000
##		0.4090636	
##		0.2826740	
##		0.5487349	
##		0.6811277	
##		0.5833183	
##		0.2130169	
##		0.2130169	
##		0.3537520	
##		0.3977647	
##		0.6390307	
##		0.5487349	
##		0.3020960	
##		0.3020960	
##		0.4090636	
##		0.2130169	
##		0.4090636	
##		0.4319405	
##		0.3020960	
##		0.2130169	
##		0.2209936	
##		0.3020960	
##	49	0.5253933	80.000
##	50	0.2732518	57.000
##	51	0.3865737	68.000
##	52	0.2375814	53.000
##	53	0.3020960	60.000
##	54	0.4090636	70.000
##	55	0.3020960	60.000
##	56	0.6912370	95.000
##	57	0.4090636	70.000
##	58	0.3020960	60.000
##	59	0.2052522	49.000
##	60	0.4319405	72.000
##	61	0.1763050	45.000
##	62	0.2130169	50.000
##	63	0.2550066	55.000
##		0.1763050	
##		0.1763050	
##		0.3020960	
##		0.1567734	
##		0.4319405	
##		0.4090636	
##		0.3537520	
##		0.1506664	
##		0.2826740	
##	73	0.5833183	85.000

##	74	0.3537520	65.000
##	75	0.3977647	69.000
##	76	0.3020960	60.000
##	77	0.4090636	70.000
##	78	0.1567734	42.000
##	79	0.4667769	75.000
##	80	0.2550066	55.000
##	81	0.4090636	70.000
##	82	0.3755013	67.000
##	83	0.3020960	60.000
##	84	0.5136743	79.000
##	85	0.2922903	59.000
##	86	0.2209936	51.000
##	87	0.2550066	55.000
	88	0.3537520	
	89	0.1695902	
	90	0.2732518	
	91	0.4090636	
	92	0.3020960	
	93	0.1567734	
	94	0.3020960	
	95	0.2826740	
	96	0.2826740	
	97	0.3325916	
	98	0.4090636	
	99	0.3020960	
	100	0.3325916	
	101	0.3537520	
	102	0.4667769	
	103	0.5253933	
	104	0.1567734	
	105	0.3020960	
	106	0.4319405	
	107	0.2550066	
	108	0.1763050 0.3325916	
	109 110	0.3325916	
	111	0.5833183	
	112	0.2550066	
	113	0.2130169	
	114	0.4090636	
	115	0.3020960	
	116	0.2826740	
	117	0.3020960	
	118	0.5833183	
	119	0.3537520	
	120	0.5946833	
	121	0.3020960	
	122	0.3645575	
	123	0.3020960	

## 124	0.3020960 60.000
## 125	0.3020960 60.000
## 126	0.1630804 43.000
## 127	0.1832271 46.000
## 128	0.2826740 58.000
## 129	0.3120856 61.000
## 130	0.2375814 53.000
## 131	0.2375814 53.000
## 132	0.3020960 60.000
## 133	0.1832271 46.000
## 134	0.3325916 63.000
## 135	0.5370845 81.000
## 136	0.4667769 75.000
## 137	0.3537520 65.000
## 138	0.3865737 68.000
## 139	0.3222531 62.000
## 140	0.2130169 50.000
## 141	0.5253933 80.000
## 142	0.1832271 46.000
## 143	0.2130169 50.000
## 144	0.3120856 61.000
## 145	0.4319405 72.000
## 146	0.2130169 50.000
## 147	0.2291821 52.000
## 148	0.3430939 64.000
## 149	0.4667769 75.000
## 150	0.3020960 60.000
## 151	0.4319405 72.000
## 152	0.3222531 62.000
## 153	0.2130169 50.000
## 154	0.2130169 50.000
## 155	0.3537520 65.000
## 156	0.3020960 60.000
## 157	0.2291821 52.000
## 158	0.2130169 50.000
## 159	0.5833183 85.000
## 160	0.2922903 59.000
## 161	0.3645575 66.000
## 162	0.1763050 45.000
## 163	0.3325916 63.000
## 164	0.2130169 50.000
## 165	0.1763050 45.000
## 166	0.5253933 80.000
## 167	0.2375814 53.000
## 168	0.2922903 59.000
## 169	0.3537520 65.000
## 170	0.4090636 70.000
## 171	0.2209936 51.000
## 172	0.2291821 52.000
## 173	0.4090636 70.000

##	174	0.2130169	50.000
##	175	0.3537520	65.000
	176	0.3020960	
	177	0.3977647	
	178	0.2052522	
	179	0.3325916	
	180	0.2550066	
	181		
		0.1447564	
	182	0.2922903	
	183	0.3537520	
	184	0.4667769	
	185	0.2826740	
	186	0.3087390	
	187	0.2130169	
	188	0.3020960	
	189	0.3087390	
	190	0.1447564	
	191	0.5253933	
	192	0.3430939	
	193	0.2130169	
	194	0.4434953	
##	195	0.1763050	45.000
	196	0.4902041	77.000
##	197	0.1763050	45.000
##	198	0.3537520	65.000
##	199	0.2130169	50.000
##	200	0.3020960	60.000
##	201	0.3325916	63.000
##	202	0.1763050	45.000
##	203	0.4090636	70.000
##	204	0.3020960	60.000
##	205	0.5019403	78.000
##	206	0.2130169	50.000
##	207	0.1447564	40.000
##	208	0.5833183	85.000
	209	0.3020960	60.000
##	210	0.2052522	49.000
##	211	0.4090636	70.000
##	212	0.2130169	50.000
##	213	0.5019403	78.000
##	214	0.1976995	48.000
	215	0.3537520	
	216	0.4434953	
	217	0.4090636	70.000
##	218	0.2461902	
	219	0.3865737	
	220	0.2550066	
	221	0.4434953	
	222	0.3537520	
	223	0.1567734	

##	224	0.1903581	47.000
	225	0.2826740	
	226	0.4667769	
	227	0.2826740	
	228		
		0.2550066	
	229	0.3537520	
	230	0.4319405	
	231	0.3020960	
	232	0.4090636	
	233	0.1447564	
	234	0.2375814	
	235	0.2375814	
	236	0.4902041	
##	237	0.4667769	75.000
##	238	0.4090636	70.000
##	239	0.3537520	65.000
##	240	0.2550066	55.000
##	241	0.4090636	70.000
##	242	0.3537520	65.000
##	243	0.1447564	40.000
##	244	0.4434953	73.000
##	245	0.2461902	54.000
##	246	0.3120856	61.000
	247	0.2550066	55.000
	248	0.3430939	
	249	0.1447564	
	250	0.2375814	
	251	0.2130169	
	252	0.2550066	
	253	0.2130169	
	254	0.4090636	
	255	0.2375814	
	256	0.2291821	
	257	0.3537520	
	258	0.2826740	
	259	0.1763050	
	260	0.2375814	
	261	0.2550066	
		0.3222531	
	262	0.3537520	
	263		
	264	0.3865737	
	265	0.3120856	
	266	0.2130169	
	267	0.2550066	
	268	0.2640282	
	269	0.1763050	
	270	0.1447564	
	271	0.1695902	
	272	0.2209936	
##	273	0.3755013	67.000

```
## 274
                        0.1567734 42.000
## 275
                        0.3020960 60.000
## 276
                        0.1763050 45.000
## 277
                        0.4090636 70.000
## 278
                        0.4090636 70.000
## 279
                        0.2130169 50.000
## 280
                        0.2550066 55.000
## 281
                        0.4090636 70.000
## 282
                        0.4090636 70.000
## 283
                        0.1567734 42.000
## 284
                        0.3537520 65.000
## 285
                        0.2130169 50.000
## 286
                        0.2550066 55.000
## 287
                        0.3020960 60.000
## 288
                        0.1763050 45.000
## 289
                        0.3537520 65.000
## 290
                        0.6390307 90.000
## 291
                        0.1763050 45.000
## 292
                        0.3020960 60.000
## 293
                        0.2291821 52.000
## 294
                        0.3325916 63.000
## 295
                        0.3222531 62.000
## 296
                        0.2550066 55.000
## 297
                        0.1763050 45.000
## 298
                        0.1763050 45.000
## 299
                        0.2130169 50.000
#Implementing multiple logistic model using all the variables
logistic <- glm(DEATH EVENT ~ ., data=dataset, family="binomial")</pre>
summary(logistic)
##
## Call:
## glm(formula = DEATH EVENT ~ ., family = "binomial", data = dataset)
##
## Deviance Residuals:
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -2.1848 -0.5706 -0.2401
                               0.4466
                                        2,6668
##
## Coefficients:
##
                              Estimate Std. Error z value Pr(>|z|)
                                                    1.801 0.071774
## (Intercept)
                             1.018e+01 5.657e+00
## age
                             4.742e-02 1.580e-02
                                                    3.001 0.002690 **
## anaemiaYes
                            -7.470e-03 3.605e-01 -0.021 0.983467
## creatinine phosphokinase 2.222e-04
                                        1.779e-04
                                                    1.249 0.211684
## diabetesYes
                            1.451e-01 3.512e-01
                                                    0.413 0.679380
## ejection_fraction
                            -7.666e-02 1.633e-02 -4.695 2.67e-06 ***
## high_blood_pressureYes -1.027e-01 3.587e-01 -0.286 0.774688
## platelets
                            -1.200e-06 1.889e-06 -0.635 0.525404
                        6.661e-01 1.815e-01 3.670 0.000242 ***
## serum creatinine
```

```
## serum sodium
                            -6.698e-02 3.974e-02 -1.686 0.091855 .
## sexmale
                            -5.337e-01 4.139e-01 -1.289 0.197299
                            -1.349e-02 4.126e-01 -0.033 0.973915
## smokingYes
## time
                            -2.104e-02 3.014e-03 -6.981 2.92e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 375.35 on 298 degrees of freedom
## Residual deviance: 219.55 on 286 degrees of freedom
## AIC: 245.55
##
## Number of Fisher Scoring iterations: 6
#Based on the summary, we can say age, ejection_fraction, serum_creatinine
and time are significant variables for predicting death event
#For every one year increase in Age the odds of survival on a log scale is
expected to increase by 0.047, holding all the other variables constant
#For every one percent increase in ejection fraction the odds of survival on
a log scale is expected to decrease by 0.076, holding all the other variables
constant
#For every one mg/dL increase in serum creatinine the odds of survival on a
log scale is expected to increase by 0.66, holding all the other variables
constant
#For every one day increase in follow-up period the odds of survival on a log
scale is expected to decrease by 0.021, holding all the other variables
constant
#Calculating the overall "Pseudo R-squared" and its p-value
11.null2 <- logistic$null.deviance/-2</pre>
11.proposed2 <- logistic$deviance/-2</pre>
## McFadden's Pseudo R^2 = [ LL(Null) - LL(Proposed) ] / LL(Null)
(11.null2 - 11.proposed2) / 11.null2
## [1] 0.4150663
## The p-value for the R^2
1 - pchisq(2*(11.proposed2 - 11.null2), df=(length(logistic$coefficients)-1))
## [1] 0
#Plot the data
predicted.data2 <-
data.frame(probability.of.death_event=logistic$fitted.values,DEATH_EVENT=data
set$DEATH EVENT)
predicted.data2 <-</pre>
predicted.data2[order(predicted.data2$probability.of.death_event,
decreasing=FALSE),]
predicted.data2$rank <- 1:nrow(predicted.data2)</pre>
ggplot(data=predicted.data2, aes(x=rank, y=probability.of.death event)) +
```

```
geom_point(aes(color=DEATH_EVENT), alpha=1, shape=4, stroke=2) +
xlab("Index") +
ylab("Predicted probability of Survival")
```



```
#Confusion Matrix
confusion_matrix(logistic)
                    Predicted Death Predicted Survived Total
##
## Actual Death
                                187
                                                     16
                                                           203
## Actual Survived
                                 27
                                                     69
                                                            96
                                214
                                                     85
                                                           299
## Total
pdata <- predict(logistic,newdata=dataset,type="response" )</pre>
pdata
                                          3
##
              1
                            2
                                                                     5
## 0.9793073820 0.9067149740 0.9570132585 0.8998995179 0.9953911997
                                          8
##
## 0.9470249475 0.9665948236 0.3304746994 0.3889735944 0.9993527922
                           12
                                         13
                                                       14
                                                                    15
             11
## 0.9685325921 0.7888549332 0.7021269470 0.5074851512 0.6844173509
##
             16
                           17
                                         18
                                                       19
                                                                    20
## 0.7702631162 0.8179328418 0.9148003004 0.8997178303 0.7777244922
##
             21
                           22
                                         23
                                                       24
                                                                    25
## 0.9066767238 0.9011333759 0.6393118753 0.1557585354 0.9550761551
                           27
                                         28
## 0.8393907390 0.9020743771 0.6095748828 0.9747028378 0.9280890356
```

```
## 31 32 33 34
## 0.9385809020 0.9147338133 0.7471777699 0.7334826829 0.3581656449
               37
     36
                               38
                                           39
## 0.9509908151 0.7359553845 0.5993106534 0.9080717450 0.8551062002
          41
                     42
                                43
                                           44
## 0.9385259276 0.7586802972 0.5619806901 0.5094117878 0.2675407498
                     47
                               48
                                           49
## 0.6188645962 0.7547723020 0.3810741199 0.9927237792 0.6318486141
                     52
                               53 54
          51
## 0.7851493399 0.7842762388 0.9444024848 0.5162619559 0.8415566938
                      57
          56
                                58
                                            59
## 0.9435669099 0.8075643832 0.3328296287 0.6419562917 0.8643877667
                     62
          61
                                 63
                                            64
## 0.7769259139 0.6666495055 0.3639674646 0.1735805857 0.0237291876
          66
                      67
                                 68
                                            69
## 0.9478586912 0.7946040072 0.6779812327 0.7737882333 0.7608804713
                     72
          71
                               73
                                           74
## 0.1019430790 0.4080523162 0.9097212170 0.2844243526 0.8137059736
                     77 78
          76
                                           79
##
## 0.5811662333 0.1220379662 0.1576972850 0.5223566391 0.1964405102
          81 82 83 84
## 0.6332520973 0.2324247683 0.9034577751 0.4772643585 0.5941891923
                    87 88 89
          86
## 0.0569575440 0.3036732295 0.0636962347 0.1134280994 0.3919251701
                    92 93
                                           94
          91
## 0.2907571900 0.2908714510 0.0614628641 0.6723733875 0.2520900088
                    97
                               98
          96
                                          99
## 0.0445136022 0.6704862295 0.1734651449 0.6538056760 0.3863843064
                     102
                                103
          101
                                           104
## 0.4943149263 0.3202369931 0.6882833309 0.4191760614 0.2470874833
          106
                     107
                                108
                                           109
## 0.6319411124 0.1821007909 0.2477920851 0.3840529029 0.0981006911
                     112
                                113
                                           114
## 0.2304142893 0.3026544365 0.5231874578 0.1548905226 0.4215619668
                     117
          116
                                118
                                          119
## 0.3087609160 0.0787251124 0.4831822056 0.0934640215 0.8033632326
                    122
                                          124
##
         121
                                123
## 0.0864589139 0.4537855903 0.2958473090 0.3740274799 0.6830300680
                    127
                                128
          126
                                          129
## 0.1151429894 0.8589178599 0.0644979297 0.2750398670 0.4376849402
                    132
                                133
                                          134
## 0.0303635301 0.8967572521 0.1677982416 0.0297029145 0.7078888336
          136
                     137
                                138
                                           139
## 0.3345708565 0.0982498578 0.7591174037 0.4177665248 0.2187830430
          141
                    142
                                143
                                          144
## 0.4645497176 0.1481755844 0.3959698154 0.1802048594 0.5781942743
                     147
                                148
                                          149
## 0.1296345117 0.1933096070 0.0609660520 0.6514053794 0.2707977142
          151
                     152
                                153
                                           154
                                                      155
## 0.5047835199 0.0315179140 0.0692556725 0.2092043894 0.3024749905
```

```
## 156 157 158 159
## 0.4417145641 0.2570049451 0.2431913414 0.2902174211 0.0657354759
           161
                       162
                                    163
                                                164
## 0.1989961836 0.0814535296 0.1168817669 0.2452025047 0.1794601269
           166
                        167
                                    168
                                                 169
## 0.5343327748 0.0192403470 0.6843262164 0.2022509509 0.2913151203
                                    173
                        172
                                                 174
## 0.1373227695 0.0893313081 0.0183791751 0.1722622760 0.1343270196
                       177
                                    178
                                                179
## 0.0154090848 0.1919585844 0.0362649306 0.0159363280 0.0485935443
           181
                        182
                                    183
                                                 184
## 0.0766684346 0.2369616329 0.3031166637 0.3155436536 0.1517264800
                                    188
           186
                       187
                                                 189
## 0.1434887697 0.0285556070 0.3488701344 0.0961830070 0.0149776716
                        192
                                    193
                                                 194
           191
## 0.3492802398 0.0307853801 0.0424645873 0.1522858366 0.1628268752
           196
                       197
                                    198
                                                 199
## 0.0671893288 0.0464337149 0.1266277312 0.2023944130 0.4046519018
           201
                        202
                                    203
                                                 204
##
## 0.0415688917 0.0040153990 0.0106405152 0.3796646692 0.0629106092
                       207
                                    208
           206
                                                 209
## 0.0284131170 0.0165001172 0.1355694216 0.0798109326 0.0872443260
           211
                        212
                                    213
                                                 214
## 0.2454660433 0.0030820518 0.0330756155 0.1454391737 0.0520072769
                        217
                                    218
                                                 219
## 0.1191573382 0.0275590066 0.4691565071 0.1037258914 0.0384074871
                                                224
           221
                        222
                                    223
## 0.3704402368 0.0108993974 0.0135508102 0.0608954966 0.0608506722
           226
                        227
                                    228
                                                 229
## 0.0668953402 0.1150933760 0.0419386004 0.7933814662 0.2438555978
           231
                        232
                                    233
                                                 234
## 0.2615818011 0.0726026980 0.0121871592 0.0253174306 0.0123110291
                        237
                                    238
                                                 239
## 0.0189728557 0.0101710435 0.1249018695 0.0646063860 0.0131484281
           241
                        242
                                    243
                                                 244
## 0.0651459275 0.0903769651 0.0137518690 0.0542663536 0.0473135723
##
           246
                        247
                                    248
                                                 249
## 0.0363141287 0.0691433689 0.1913641876 0.0088378852 0.0543461698
                        252
           251
                                    253
                                                 254
## 0.0372647778 0.0303225759 0.0102365430 0.1227338442 0.0026485134
                        257
                                    258
                                                 259
## 0.0196392330 0.0609922401 0.0143742576 0.0263795292 0.0041658398
           261
                        262
                                    263
                                                 264
## 0.0108066400 0.0296381264 0.1324948593 0.0069219640 0.0197666677
                       267
           266
                                    268
                                                 269
## 0.0075506559 0.1029223514 0.0183755862 0.0100017625 0.0116898012
                        272
                                    273
                                                 274
           271
## 0.0294131610 0.0186204951 0.0462272307 0.0033243461 0.0302263065
           276
                        277
                                    278
                                                 279
## 0.0075890060 0.0332975887 0.0287535899 0.0301428442 0.0194953196
```

```
281
                         282
                                      283
                                                   284
                                                                285
## 0.0339186983 0.0682835446 0.0981659815 0.0197277171 0.0038837855
##
            286
                         287
                                      288
                                                   289
                                                                290
## 0.0105702565 0.0184985489 0.0032980392 0.0277978553 0.0357715039
##
            291
                         292
                                      293
                                                   294
                                                                295
## 0.0020211380 0.0165845423 0.0053715227 0.0133320619 0.0067397574
            296
                         297
                                      298
## 0.0140111896 0.0008008297 0.0059965251 0.0026973899
dataset$DEATH EVENT
     [1] Survived Survived Survived Survived Survived Survived
##
##
     [8] Survived Survived Survived Survived Survived Survived
##
    [15] Death
                  Survived Survived Survived Survived Death
##
    [22] Survived Survived Death
                                    Survived Survived Survived
    [29] Survived Survived Survived Survived Death
##
    [36] Survived Survived Survived Death
                                             Survived Survived Survived
##
    [43] Survived Death
                           Survived Survived Survived Survived
    [50] Survived Survived Survived Survived Survived Survived
##
##
    [57] Death
                  Death
                           Survived Survived Survived Death
##
    [64] Survived Death
                           Survived Survived Survived Survived
##
    [71] Death
                           Survived Death
                                             Survived Survived Death
                  Death
##
    [78] Death
                  Death
                           Death
                                    Death
                                             Death
                                                      Survived Death
    [85] Survived Death
##
                           Death
                                    Death
                                             Death
                                                      Death
                                                               Death
##
   [92] Death
                           Survived Death
                                             Death
                                                      Death
                  Death
                                                               Death
   [99] Death
##
                  Death
                           Death
                                    Death
                                             Death
                                                      Death
                                                               Death
## [106] Survived Death
                           Death
                                    Death
                                             Death
                                                      Survived Death
## [113] Death
                  Survived Death
                                    Death
                                             Death
                                                      Death
                                                               Death
## [120] Survived Death
                           Death
                                   Death
                                             Death
                                                      Survived Death
## [127] Survived Death
                           Death
                                    Death
                                             Death
                                                      Death
                                                               Death
## [134] Death
                  Death
                           Death
                                    Death
                                             Death
                                                      Death
                                                               Death
## [141] Survived Death
                           Death
                                    Death
                                             Survived Death
                                                               Death
## [148] Death
                  Survived Death
                                    Survived Death
                                                      Death
                                                               Death
## [155] Death
                  Death
                           Death
                                    Death
                                             Death
                                                      Death
                                                               Death
## [162] Death
                           Survived Survived Death
                  Death
                                                               Survived
                                             Death
## [169] Death
                 Death
                           Death
                                    Death
                                                      Death
                                                               Death
                                                      Death
## [176] Death
                  Death
                           Death
                                    Death
                                             Death
                                                               Survived
## [183] Survived Survived Survived Survived Survived Death
## [190] Death
                  Death
                           Death
                                    Death
                                             Death
                                                      Survived Survived
## [197] Death
                  Death
                           Death
                                    Death
                                             Death
                                                      Death
                                                               Death
## [204] Death
                  Death
                           Death
                                    Death
                                             Death
                                                      Death
                                                               Death
                  Death
## [211] Death
                                    Survived Death
                           Death
                                                      Death
                                                               Death
## [218] Survived Death
                           Death
                                    Survived Death
                                                      Death
                                                               Death
## [225] Death
                  Death
                           Death
                                    Death
                                             Death
                                                      Death
                                                               Survived
## [232] Death
                 Death
                                    Death
                                             Death
                                                               Death
                           Death
                                                      Death
## [239] Death
                 Death
                           Death
                                    Death
                                             Death
                                                      Death
                                                               Death
## [246] Death
                  Survived Death
                                    Death
                                             Death
                                                      Death
                                                               Death
## [253] Death
                  Death
                           Death
                                             Death
                                                      Death
                                                               Death
                                    Death
## [260] Death
                  Death
                           Death
                                    Survived Death
                                                      Death
                                                               Death
## [267] Survived Death
                           Death
                                    Death
                                             Death
                                                      Death
                                                               Death
```

```
## [274] Death
                  Death
                           Death
                                    Death
                                              Death
                                                       Death
                                                                Death
                                                       Death
                                                                Death
## [281] Death
                  Death
                           Death
                                    Death
                                              Death
## [288] Death
                  Death
                           Death
                                    Death
                                              Death
                                                       Death
                                                                Death
## [295] Death
                           Death
                  Death
                                    Death
                                              Death
## Levels: Death Survived
pdataF <- as.factor(ifelse(test=as.numeric(pdata>0.5) == 0, yes="Death",
no="Survived"))
confusionMatrix(pdataF, dataset$DEATH_EVENT)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Death Survived
##
     Death
                187
                          27
##
     Survived
                 16
                          69
##
##
                  Accuracy : 0.8562
##
                    95% CI: (0.8112, 0.8939)
##
       No Information Rate: 0.6789
##
       P-Value [Acc > NIR] : 1.627e-12
##
##
                     Kappa: 0.6599
##
##
   Mcnemar's Test P-Value: 0.1273
##
##
               Sensitivity: 0.9212
##
               Specificity: 0.7188
            Pos Pred Value : 0.8738
##
##
            Neg Pred Value : 0.8118
##
                Prevalence: 0.6789
            Detection Rate: 0.6254
##
##
      Detection Prevalence: 0.7157
##
         Balanced Accuracy: 0.8200
##
          'Positive' Class : Death
##
##
#ROC curve
roc(dataset$DEATH_EVENT,logistic$fitted.values,plot=TRUE)
## Setting levels: control = Death, case = Survived
## Setting direction: controls < cases</pre>
##
## Call:
## roc.default(response = dataset$DEATH_EVENT, predictor =
logistic$fitted.values,
                          plot = TRUE)
##
```

```
## Data: logistic$fitted.values in 203 controls (dataset$DEATH_EVENT Death) <
96 cases (dataset$DEATH_EVENT Survived).
## Area under the curve: 0.8972

par(pty = "s")
roc(dataset$DEATH_EVENT,logistic$fitted.values,plot=TRUE)

## Setting levels: control = Death, case = Survived
## Setting direction: controls < cases</pre>
```



```
##
## Call:
## roc.default(response = dataset$DEATH_EVENT, predictor =
logistic$fitted.values,
                            plot = TRUE, legacy.axes = TRUE, xlab = "False
                          ylab = "True Postive Percentage", col = "#377eb8",
Positive Percentage",
lwd = 4)
##
## Data: logistic$fitted.values in 203 controls (dataset$DEATH EVENT Death) <</pre>
96 cases (dataset$DEATH_EVENT Survived).
## Area under the curve: 0.8972
roc.info <- roc(dataset$DEATH_EVENT, logistic$fitted.values,</pre>
legacy.axes=TRUE)
## Setting levels: control = Death, case = Survived
## Setting direction: controls < cases
str(roc.info)
## List of 15
## $ percent
                        : logi FALSE
  $ sensitivities
                        : num [1:300] 1 1 1 1 1 1 1 1 1 1 ...
##
## $ specificities
                        : num [1:300] 0 0.00493 0.00985 0.01478 0.0197 ...
## $ thresholds
                        : num [1:300] -Inf 0.00141 0.00233 0.00267 0.00289
                        : chr "<"
## $ direction
## $ cases
                        : Named num [1:96] 0.979 0.907 0.957 0.9 0.995 ...
```

```
## ..- attr(*, "names")= chr [1:96] "1" "2" "3" "4" ...
## $ controls : Named num [1:203] 0.684 0.907 0.156 0.733 0.908 ...
   ... attr(*, "names")= chr [1:203] "15" "21" "24" "34" ...
##
## $ fun.sesp
                      :function (thresholds, controls, cases, direction)
                       : 'auc' num 0.897
## $ auc
     ... attr(*, "partial.auc")= logi FALSE
... attr(*, "percent")= logi FALSE
##
    ..- attr(*, "roc")=List of 15
##
    .. ..$ percent : logi FALSE
.. ..$ sensitivities : num [1:300] 1 1 1 1 1 1 1 1 1 1 ...
.. ..$ specificities : num [1:300] 0 0.00493 0.00985 0.01478 0.0197
##
##
##
. . .
   ....$ thresholds : num [1:300] -Inf 0.00141 0.00233 0.00267
##
0.00289 ...
     .. ..$ direction : chr "<"
##
                            : Named num [1:96] 0.979 0.907 0.957 0.9 0.995
##
    .. ..$ cases
. . .
    .... attr(*, "names")= chr [1:96] "1" "2" "3" "4" ...
                             : Named num [1:203] 0.684 0.907 0.156 0.733
## ....$ controls
0.908 ...
     .. .. - attr(*, "names")= chr [1:203] "15" "21" "24" "34" ...
     ....$ fun.sesp :function (thresholds, controls, cases,
##
direction)
##
     .. ..$ auc
                             : 'auc' num 0.897
    .. .. - attr(*, "partial.auc")= logi FALSE
.. .. - attr(*, "percent")= logi FALSE
##
##
    ..... attr(*, "roc")=List of 8
##
     ..... percent : logi FALSE
##
    ..... sensitivities: num [1:300] 1 1 1 1 1 1 1 1 1 1 ...
     ..... specificities: num [1:300] 0 0.00493 0.00985 0.01478 0.0197
##
. . .
   .....$ thresholds : num [1:300] -Inf 0.00141 0.00233 0.00267
##
0.00289 ...
    .. .. .. $ direction : chr "<"
                             : Named num [1:96] 0.979 0.907 0.957 0.9 0.995
##
     .. .. .. ..$ cases
     ..... attr(*, "names")= chr [1:96] "1" "2" "3" "4" ...
##
    .....$ controls : Named num [1:203] 0.684 0.907 0.156 0.733
0.908 ...
    ..... attr(*, "names")= chr [1:203] "15" "21" "24" "34" ...
## ......$ fun.sesp :function (thresholds, controls, cases,
direction)
     ..... attr(*, "class")= chr "roc"
     .. ..$ call : language roc.default(response =
dataset$DEATH EVENT, predictor = logistic$fitted.values, legacy.axes =
TRUE)
##
    .. ..$ original.predictor: Named num [1:299] 0.979 0.907 0.957 0.9 0.995
     ..... attr(*, "names")= chr [1:299] "1" "2" "3" "4" ...
##
     .. ..$ original.response : Factor w/ 2 levels "Death", "Survived": 2 2 2
```

```
2 2 2 2 2 2 2 ...
## ....$ predictor
                            : Named num [1:299] 0.979 0.907 0.957 0.9 0.995
    ..... attr(*, "names")= chr [1:299] "1" "2" "3" "4" ...
##
                             : Factor w/ 2 levels "Death", "Survived": 2 2 2
##
    .. ..$ response
2 2 2 2 2 2 2 ...
                            : chr [1:2] "Death" "Survived"
    .. ..$ levels
    ....- attr(*, "class")= chr "roc"
                       : language roc.default(response =
dataset$DEATH_EVENT, predictor = logistic$fitted.values,
                                                             legacy.axes =
TRUE)
## $ original.predictor: Named num [1:299] 0.979 0.907 0.957 0.9 0.995 ...
   ... attr(*, "names")= chr [1:299] "1" "2" "3" "4" ...
## $ original.response : Factor w/ 2 levels "Death", "Survived": 2 2 2 2 2 2
2 2 2 2 ...
                       : Named num [1:299] 0.979 0.907 0.957 0.9 0.995 ...
## $ predictor
    ... attr(*, "names")= chr [1:299] "1" "2" "3" "4" ...
                       : Factor w/ 2 levels "Death", "Survived": 2 2 2 2 2 2
## $ response
2 2 2 2 ...
## $ levels
                       : chr [1:2] "Death" "Survived"
## - attr(*, "class")= chr "roc"
roc.df <- data.frame(tpp=roc.info$sensitivities*100, ## tpp = true positive
percentage
                    fpp=(1 - roc.info$specificities)*100, ## fpp = false
positive precentage
                    thresholds=roc.info$thresholds)
roc.df
##
                         fpp thresholds
             tpp
## 1
      100.000000 100.0000000
## 2
      100.000000 99.5073892 0.001410984
      100.000000 99.0147783 0.002334826
## 3
## 4
      100.000000 98.5221675 0.002672952
## 5
      100.000000 98.0295567 0.002889721
## 6
      100.000000 97.5369458 0.003190045
## 7
      100.000000 97.0443350 0.003311193
## 8
      100.000000 96.5517241 0.003604066
## 9
      100.000000 96.0591133 0.003949592
## 10
      100.000000 95.5665025 0.004090619
## 11
      100.000000 95.0738916 0.004768681
## 12
      100.000000 94.5812808 0.005684024
## 13
      100.000000 94.0886700 0.006368141
## 14
      100.000000 93.5960591 0.006830861
## 15
      100.000000 93.1034483 0.007236310
## 16
      100.000000 92.6108374 0.007569831
## 17
      100.000000 92.1182266 0.008213446
## 18
      100.000000 91.6256158 0.009419824
## 19
      100.000000 91.1330049 0.010086403
## 20
      100.000000 90.6403941 0.010203793
```

```
## 21
       100.000000
                    90.1477833 0.010403400
## 22
       100.000000
                    89.6551724 0.010605386
##
   23
       100.000000
                    89.1625616 0.010723578
## 24
       100.000000
                    88.6699507 0.010853019
       100.000000
## 25
                    88.1773399 0.011294599
## 26
       100.000000
                    87.6847291 0.011938480
## 27
       100.000000
                    87.1921182 0.012249094
##
   28
       100.000000
                    86.6995074 0.012729729
## 29
       100.000000
                    86.2068966 0.013240245
## 30
       100.000000
                    85.7142857 0.013441436
## 31
       100.000000
                    85.2216749 0.013651340
## 32
       100.000000
                    84.7290640 0.013881529
##
  33
       100.000000
                    84.2364532 0.014192724
## 34
       100.000000
                    83.7438424 0.014675965
## 35
       100.000000
                    83.2512315 0.015193378
##
  36
       100.000000
                    82.7586207 0.015672706
##
   37
       100.000000
                    82.2660099 0.016218223
##
  38
       100.000000
                    81.7733990 0.016542330
## 39
       100.000000
                    81.2807882 0.017480064
## 40
                    80.7881773 0.018377381
       100.000000
## 41
       100.000000
                    80.2955665 0.018438862
## 42
       100.000000
                   79.8029557 0.018559522
## 43
       100.000000
                    79.3103448 0.018796675
## 44
       100.000000
                    78.8177340 0.019106601
## 45
       100.000000
                    78.3251232 0.019367833
## 46
       100.000000
                    77.8325123 0.019567276
## 47
       100.000000
                   77.3399015 0.019683475
## 48
       100.000000
                    76.8472906 0.019747192
## 49
       100.000000
                    76.3546798 0.021747928
       100.000000
## 50
                    75.8620690 0.024523309
## 51
       100.000000
                   75.3694581 0.025848480
## 52
       100.000000
                    74.8768473 0.026969268
## 53
       100.000000
                    74.3842365 0.027678431
## 54
       100.000000
                    73.8916256 0.028105486
## 55
       100.000000
                    73.3990148 0.028484362
## 56
        98.958333
                   73.3990148 0.028654598
## 57
        98.958333
                    72.9064039 0.029083375
## 58
        98.958333
                   72.4137931 0.029525644
## 59
        98.958333
                   71.9211823 0.029670520
## 60
        98.958333
                   71.4285714 0.029922879
## 61
        98.958333
                    70.9359606 0.030184575
## 62
        98.958333
                    70.4433498 0.030274441
## 63
        98.958333
                    69.9507389 0.030343053
## 64
        98.958333
                   69.4581281 0.030574455
## 65
        98.958333
                    68.9655172 0.031151647
## 66
        98.958333
                    68.4729064 0.032296765
## 67
        98.958333
                    67.9802956 0.033186602
## 68
        98.958333
                    67.4876847 0.033608143
## 69
        98.958333
                    66.9950739 0.034845101
## 70
        98.958333
                   66.5024631 0.036018217
```

```
## 71
                   66.0098522 0.036289530
        98.958333
## 72
        98.958333
                   65.5172414 0.036789453
## 73
        98.958333
                   65.0246305 0.037836132
## 74
        98.958333
                   64.5320197 0.039988189
## 75
        98.958333
                   64.0394089 0.041753746
## 76
        98.958333
                   63.5467980 0.042201594
## 77
        98.958333
                   63.0541872 0.043489095
##
  78
        98.958333
                   62.5615764 0.045370416
## 79
        98.958333
                   62.0689655 0.046330473
## 80
        98.958333
                   61.5763547 0.046873644
## 81
        98.958333
                   61.0837438 0.047953558
## 82
        98.958333
                   60.5911330 0.050300411
## 83
        98.958333
                   60.0985222 0.053136815
## 84
        98.958333
                   59.6059113 0.054306262
        98.958333
                   59.1133005 0.055651857
## 85
## 86
        98.958333
                   58.6206897 0.058904108
## 87
        98.958333
                   58.1280788 0.060873084
## 88
        98.958333
                   57.6354680 0.060930774
## 89
        98.958333
                   57.1428571 0.060979146
## 90
        98.958333
                   56.6502463 0.061227552
## 91
        98.958333
                   56.1576355 0.062186737
## 92
        98.958333
                   55.6650246 0.063303422
## 93
        98.958333
                   55.1724138 0.064097082
## 94
        98.958333
                   54.6798030 0.064552158
## 95
        98.958333
                   54.1871921 0.064876157
## 96
        98.958333
                   53.6945813 0.065440702
## 97
        98.958333
                   53.2019704 0.066315408
## 98
        98.958333
                   52.7093596 0.067042335
## 99
        97.916667
                   52.7093596 0.067736437
## 100
        97.916667
                   52.2167488 0.068713457
## 101
        96.875000
                   52.2167488 0.069199521
## 102
                   51.7241379 0.070929185
        96.875000
## 103
        96.875000
                   51.2315271 0.074635566
## 104
        96.875000
                   50.7389163 0.077696774
## 105
        96.875000
                   50.2463054 0.079268022
## 106
                   49.7536946 0.080632231
        96.875000
                   49.2610837 0.083956222
## 107
        96.875000
## 108
        96.875000
                   48.7684729 0.086851620
## 109
        96.875000
                   48.2758621 0.088287817
## 110
        96.875000
                   47.7832512 0.089854137
## 111
        96.875000
                   47.2906404 0.091920493
## 112
        96.875000
                   46.7980296 0.094823514
        96.875000
## 113
                   46.3054187 0.097141849
## 114
        96.875000
                   45.8128079 0.098133336
## 115
        96.875000
                   45.3201970 0.098207920
                   44.8275862 0.100096468
## 116
        96.875000
## 117
        96.875000
                   44.3349754 0.102432715
## 118
        95.833333
                   44.3349754 0.103324121
## 119
        95.833333
                   43.8423645 0.108576995
## 120
       95.833333 43.3497537 0.114260738
```

```
## 121
        95.833333
                  42.8571429 0.115118183
## 122
        95.833333
                   42.3645320 0.116012378
## 123
        95.833333
                   41.8719212 0.118019553
## 124
        95.833333
                   41.3793103 0.120597652
## 125
        95.833333
                   40.8866995 0.122385905
## 126
        95.833333
                   40.3940887 0.123817857
## 127
        95.833333
                    39.9014778 0.125764800
## 128
        95.833333
                    39.4088670 0.128131121
## 129
        95.833333
                    38.9162562 0.131064686
## 130
        94.791667
                    38.9162562 0.133410939
## 131
        94.791667
                    38.4236453 0.134948221
## 132
        94.791667
                    37.9310345 0.136446096
## 133
        94.791667
                    37.4384236 0.140405770
## 134
        93.750000
                    37.4384236 0.144463972
## 135
        92.708333
                    37.4384236 0.146807379
## 136
        92.708333
                    36.9458128 0.149951032
## 137
        91.666667
                    36.9458128 0.152006158
## 138
        91.666667
                    36.4532020 0.153588180
## 139
        90.625000
                    36.4532020 0.155324529
## 140
        90.625000
                   35.9605911 0.156727910
## 141
        90.625000
                    35.4679803 0.160262080
## 142
        89.583333
                    35.4679803 0.165312558
## 143
        89.583333
                    34.9753695 0.170030259
## 144
        89.583333
                    34.4827586 0.172863710
## 145
        89.583333
                    33.9901478 0.173522865
## 146
        88.541667
                    33.9901478 0.176520356
## 147
        87.500000
                    33.9901478 0.179832493
## 148
        87.500000
                    33.4975369 0.181152825
## 149
        87.500000
                    33.0049261 0.186732489
## 150
        87.500000
                    32.5123153 0.191661386
## 151
        87.500000
                    32.0197044 0.192634096
## 152
                    31.5270936 0.194875059
        87.500000
## 153
        87.500000
                    31.0344828 0.197718347
## 154
        87.500000
                    30.5418719 0.200623567
## 155
        87.500000
                    30.0492611 0.202322682
## 156
                   29.5566502 0.205799401
        87.500000
## 157
        87.500000
                    29.0640394 0.213993716
## 158
        87.500000
                    28.5714286 0.224598666
## 159
        86.458333
                    28.5714286 0.231419529
## 160
        86.458333
                    28.0788177 0.234693201
## 161
        85.416667
                    28.0788177 0.240076487
## 162
        85.416667
                    27.5862069 0.243523470
                    27.0935961 0.244529051
## 163
        85.416667
## 164
        84.375000
                    27.0935961 0.245334274
## 165
        84.375000
                    26.6009852 0.246276763
## 166
        84.375000
                    26.1083744 0.247439784
## 167
        84.375000
                    25.6157635 0.249941047
## 168
        84.375000
                    25.1231527 0.254547477
## 169
        84.375000
                    24.6305419 0.259293373
## 170
        83.333333
                  24.6305419 0.264561275
```

```
## 171
                   24.6305419 0.269169232
        82.291667
## 172
        82.291667
                    24.1379310 0.272918791
## 173
        82.291667
                    23.6453202 0.279732110
## 174
        82.291667
                    23.1527094 0.287320887
## 175
        82.291667
                    22.6600985 0.290487306
## 176
        82.291667
                    22.1674877 0.290814320
## 177
        82.291667
                    21.6748768 0.291093286
## 178
        82.291667
                    21.1822660 0.293581215
## 179
        82.291667
                    20.6896552 0.299161150
## 180
        82.291667
                    20.1970443 0.302564713
## 181
        82.291667
                    19.7044335 0.302885550
## 182
        81.250000
                    19.7044335 0.303394947
## 183
        81.250000
                   19.2118227 0.306217073
## 184
        81.250000
                    18.7192118 0.312152285
## 185
        80.208333
                    18.7192118 0.317890323
## 186
        80.208333
                    18.2266010 0.325355846
## 187
        79.166667
                    18.2266010 0.331652164
## 188
        79.166667
                    17.7339901 0.333700243
## 189
        79.166667
                    17.2413793 0.341720495
## 190
        78.125000
                    17.2413793 0.349075187
## 191
        78.125000
                    16.7487685 0.353722942
## 192
        77.083333
                    16.7487685 0.361066555
## 193
        77.083333
                    16.2561576 0.367203851
## 194
        76.041667
                    16.2561576 0.372233858
## 195
        76.041667
                    15.7635468 0.376846075
## 196
        76.041667
                    15.2709360 0.380369395
## 197
        75.000000
                    15.2709360 0.382563511
## 198
        75.000000
                    14.7783251 0.385218605
## 199
        75.000000
                    14.2857143 0.387678950
## 200
        73.958333
                    14.2857143 0.390449382
## 201
        73.958333
                    13.7931034 0.393947493
## 202
                    13.3004926 0.400310859
        73.958333
## 203
        73.958333
                    12.8078818 0.406352109
## 204
        73.958333
                    12.3152709 0.412909420
## 205
        73.958333
                    11.8226601 0.418471293
## 206
        73.958333
                    11.3300493 0.420369014
## 207
        73.958333
                    10.8374384 0.429623454
## 208
        73.958333
                    10.3448276 0.439699752
## 209
        73.958333
                     9.8522167 0.447750077
## 210
        73.958333
                     9.3596059 0.459167654
## 211
        72.916667
                     9.3596059 0.466853112
## 212
        71.875000
                     9.3596059 0.473210433
## 213
        71.875000
                     8.8669951 0.480223282
## 214
        71.875000
                     8.3743842 0.488748566
## 215
        71.875000
                     7.8817734 0.499549223
## 216
        70.833333
                     7.8817734 0.506134336
## 217
        69.791667
                    7.8817734 0.508448469
## 218
        69.791667
                     7.3891626 0.512836872
## 219
        68.750000
                    7.3891626 0.519309297
## 220
        68.750000
                     6.8965517 0.522772048
```

```
## 221
        68.750000
                     6.4039409 0.528760116
## 222
        67.708333
                     6.4039409 0.548156732
## 223
        66.666667
                     6.4039409 0.570087482
## 224
        65.625000
                     6.4039409 0.579680254
## 225
        64.583333
                     6.4039409 0.587677713
## 226
        63.541667
                     6.4039409 0.596749923
## 227
        62.500000
                     6.4039409 0.604442768
## 228
        61.458333
                     6.4039409 0.614219739
## 229
        60.416667
                     6.4039409 0.625356605
## 230
        59.375000
                     6.4039409 0.631894863
## 231
        58.333333
                     6.4039409 0.632596605
## 232
        58.333333
                     5.9113300 0.636281986
## 233
                     5.9113300 0.640634083
        57.291667
## 234
        56.250000
                     5.9113300 0.646680836
## 235
        55.208333
                     5.9113300 0.652605528
## 236
        55.208333
                     5.4187192 0.660227591
## 237
        54.166667
                     5.4187192 0.668567868
## 238
        54.166667
                     4.9261084 0.671429809
## 239
        53.125000
                     4.9261084 0.675177310
## 240
        52.083333
                     4.9261084 0.680505650
## 241
        51.041667
                     4.9261084 0.683678142
## 242
        50.000000
                     4.9261084 0.684371784
## 243
        50.000000
                     4.4334975 0.686350341
## 244
        50.000000
                     3.9408867 0.695205139
## 245
        48.958333
                     3.9408867 0.705007890
##
  246
        48.958333
                     3.4482759 0.720685758
        48.958333
## 247
                     2.9556650 0.734719034
## 248
        47.916667
                     2.9556650 0.741566577
## 249
        46.875000
                     2.9556650 0.750975036
## 250
        45.833333
                     2.9556650 0.756726300
## 251
        44.791667
                     2.9556650 0.758898850
## 252
                     2.4630542 0.759998937
        44.791667
## 253
        43.750000
                     2.4630542 0.765571794
## 254
        42.708333
                     2.4630542 0.772025675
## 255
        41.666667
                     2.4630542 0.775357074
## 256
        40.625000
                     2.4630542 0.777325203
## 257
                     2.4630542 0.781000366
        39.583333
## 258
                     2.4630542 0.784712789
        38.541667
## 259
        37.500000
                     2.4630542 0.787002137
## 260
        36.458333
                     2.4630542 0.791118200
## 261
        36.458333
                     1.9704433 0.793992737
## 262
        35.416667
                     1.9704433 0.798983620
## 263
        34.375000
                     1.9704433 0.805463808
        34.375000
## 264
                     1.4778325 0.810635178
## 265
        33.333333
                     1.4778325 0.815819408
## 266
        32.291667
                     1.4778325 0.828661790
## 267
        31.250000
                     1.4778325 0.840473716
## 268
        30.208333
                     1.4778325 0.848331447
##
  269
        29.166667
                     1.4778325 0.857012030
## 270
        28.125000
                     1.4778325 0.861652813
```

```
## 271
        27.083333
                     1.4778325 0.880572509
## 272
                     0.9852217 0.898237541
        27.083333
## 273
        26.041667
                     0.9852217 0.899808674
## 274
                     0.9852217 0.900516447
        25.000000
## 275
        23.958333
                     0.9852217 0.901603877
## 276
                     0.9852217 0.902766076
        22.916667
## 277
        21.875000
                     0.9852217 0.905067249
## 278
        21.875000
                     0.4926108 0.906695849
## 279
        20.833333
                     0.4926108 0.907393360
## 280
        20.833333
                     0.0000000 0.908896481
## 281
        19.791667
                     0.0000000 0.912227515
## 282
        18.750000
                     0.0000000 0.914767057
## 283
        17.708333
                     0.0000000 0.921444668
## 284
        16.666667
                     0.0000000 0.933307482
## 285
        15.625000
                     0.0000000 0.938553415
## 286
        14.583333
                     0.0000000 0.941073906
## 287
        13.541667
                     0.0000000 0.943984697
## 288
        12.500000
                     0.0000000 0.945713716
## 289
        11.458333
                     0.0000000 0.947441819
## 290
        10.416667
                     0.0000000 0.949424753
## 291
         9.375000
                     0.0000000 0.953033485
## 292
         8.333333
                     0.0000000 0.956044707
## 293
                     0.0000000 0.961804041
         7.291667
## 294
         6.250000
                     0.0000000 0.967563708
## 295
         5.208333
                     0.0000000 0.971617715
## 296
         4.166667
                     0.0000000 0.977005110
## 297
         3.125000
                     0.0000000 0.986015581
## 298
                     0.0000000 0.994057489
         2.083333
## 299
                     0.0000000 0.997371996
         1.041667
## 300
         0.000000
                     0.0000000
                                        Inf
head(roc.df)
##
                     thresholds
     tpp
               fpp
## 1 100 100.00000
                           -Inf
## 2 100
          99.50739 0.001410984
## 3 100
          99.01478 0.002334826
## 4 100
          98.52217 0.002672952
## 5 100
          98.02956 0.002889721
## 6 100
          97.53695 0.003190045
tail(roc.df)
            tpp fpp thresholds
## 295 5.208333
                      0.9716177
                  0
## 296 4.166667
                      0.9770051
## 297 3.125000
                      0.9860156
## 298 2.083333
                      0.9940575
## 299 1.041667
                   0
                      0.9973720
## 300 0.000000
                            Inf
```

```
#Setting thresholds between TPP 60% and 80%
roc.df[roc.df$tpp > 60 & roc.df$tpp < 80,]</pre>
##
                      fpp thresholds
            tpp
## 187 79.16667 18.226601
                            0.3316522
## 188 79.16667 17.733990
                            0.3337002
## 189 79.16667 17.241379
                            0.3417205
## 190 78.12500 17.241379
                            0.3490752
## 191 78.12500 16.748768
                            0.3537229
## 192 77.08333 16.748768
                            0.3610666
## 193 77.08333 16.256158
                            0.3672039
## 194 76.04167 16.256158
                            0.3722339
## 195 76.04167 15.763547
                            0.3768461
## 196 76.04167 15.270936
                            0.3803694
                            0.3825635
## 197 75.00000 15.270936
## 198 75.00000 14.778325
                            0.3852186
## 199 75.00000 14.285714
                            0.3876790
## 200 73.95833 14.285714
                            0.3904494
## 201 73.95833 13.793103
                            0.3939475
## 202 73.95833 13.300493
                            0.4003109
## 203 73.95833 12.807882
                            0.4063521
## 204 73.95833 12.315271
                            0.4129094
## 205 73.95833 11.822660
                            0.4184713
## 206 73.95833 11.330049
                            0.4203690
## 207 73.95833 10.837438
                            0.4296235
## 208 73.95833 10.344828
                            0.4396998
## 209 73.95833
                 9.852217
                            0.4477501
## 210 73.95833
                 9.359606
                            0.4591677
## 211 72.91667
                 9.359606
                            0.4668531
## 212 71.87500
                 9.359606
                            0.4732104
## 213 71.87500
                 8.866995
                            0.4802233
## 214 71.87500
                 8.374384
                            0.4887486
## 215 71.87500
                 7.881773
                            0.4995492
## 216 70.83333
                 7.881773
                            0.5061343
## 217 69.79167
                 7.881773
                            0.5084485
## 218 69.79167
                 7.389163
                            0.5128369
## 219 68.75000
                 7.389163
                            0.5193093
## 220 68.75000
                 6.896552
                            0.5227720
## 221 68.75000
                 6.403941
                            0.5287601
## 222 67.70833
                 6.403941
                            0.5481567
## 223 66.66667
                 6.403941
                            0.5700875
## 224 65.62500
                 6.403941
                            0.5796803
## 225 64.58333
                 6.403941
                            0.5876777
## 226 63.54167
                 6.403941
                            0.5967499
## 227 62.50000
                 6.403941
                            0.6044428
## 228 61.45833
                 6.403941
                            0.6142197
## 229 60.41667
                 6.403941
                            0.6253566
roc(dataset$DEATH_EVENT,logistic$fitted.values,plot=TRUE, legacy.axes=TRUE,
xlab="False Positive Percentage", ylab="True Postive Percentage",
```

```
col="#377eb8", lwd=4, percent=TRUE, print.auc=TRUE, partial.auc=c(100, 90),
auc.polygon = TRUE, auc.polygon.col = "#377eb822", print.auc.x=45)

## Setting levels: control = Death, case = Survived
## Setting direction: controls < cases</pre>
```



```
##
## Call:
## roc.default(response = dataset$DEATH EVENT, predictor =
logistic$fitted.values,
                            percent = TRUE, plot = TRUE, legacy.axes = TRUE,
xlab = "False Positive Percentage",
                                        ylab = "True Postive Percentage", col
= "#377eb8", lwd = 4, print.auc = TRUE, partial.auc = c(100, 90),
auc.polygon = TRUE, auc.polygon.col = "#377eb822", print.auc.x = 45)
## Data: logistic$fitted.values in 203 controls (dataset$DEATH EVENT Death) <</pre>
96 cases (dataset$DEATH EVENT Survived).
## Partial area under the curve (specificity 100%-90%): 5.271%
# Plotting and comparing two ROC's (one using Age as single predictor and
other using all variables as predictors)
roc(dataset$DEATH_EVENT, logistic_simple2$fitted.values, plot=TRUE,
legacy.axes=TRUE, percent=TRUE, xlab="False Positive Percentage", ylab="True
Postive Percentage", col="#377eb8", lwd=4, print.auc=TRUE)
## Setting levels: control = Death, case = Survived
## Setting direction: controls < cases
```

```
##
## Call:
## roc.default(response = dataset$DEATH_EVENT, predictor =
logistic simple2$fitted.values,
                                   percent = TRUE, plot = TRUE, legacy.axes
= TRUE, xlab = "False Positive Percentage", ylab = "True Postive
Percentage", col = "#377eb8", lwd = 4,
                                       print.auc = TRUE)
##
## Data: logistic simple2$fitted.values in 203 controls (dataset$DEATH EVENT
Death) < 96 cases (dataset$DEATH_EVENT Survived).</pre>
## Area under the curve: 63.46%
plot.roc(dataset$DEATH EVENT, logistic$fitted.values, percent=TRUE,
col="#4daf4a", lwd=4, print.auc=TRUE, add=TRUE, print.auc.y=40)
## Setting levels: control = Death, case = Survived
## Setting direction: controls < cases
legend("bottomright", legend=c("Simple", "Non Simple"), col=c("#377eb8",
"#4daf4a"), lwd=4)
```


#Based on the plot, we can say the model using all variables as predictors is better