EEE6082 Computational Vision

How do we see the world?

- · Let's design a camera
 - Idea 1: put a piece of film in front of an object
 - Do we get a reasonable image?

Pinhole camera

- · Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the aperture
 - How does this transform the image?

Pinhole camera model

- Pinhole model:
 - Captures pencil of rays all rays through a single point
 The point is called Center of Projection (COP)

 - The image is formed on the Image Plane
 Effective focal length f is distance from COP to Image Plane

Dimensionality Reduction Machine (3D to 2D)

- What have we lost?
 - Angles
 - Distances (lengths)

Parallel lines aren't...

Distances can't be trusted...

We adapt

More illusions...

More illusions...

More illusions...

More illusions...

More illusions...

More illusions...

17

Home-made pinhole camera

Cameras with lenses

19

Camera Model

Focal length Aperture Exposure time

. .

Reciprocity

- · Assume we know how much light we need
- · What will guide our choice of a shutter speed?
 - Freeze motion vs. motion blur, camera shake
- What will guide our choice of an aperture?
 Depth of field, diffraction limit
- Often we must compromise
 - Open more to enable faster speed (but shallow DoF)

That operate they death of fields, but destine special motion from a final special state of the fields of the fiel

Image Sensors Images are formed by the interaction of the incident image irradiance with light sensitive elements on the image plane
 Light sensitive elements Charge Coupled Device (CCD)
 CMOS Imaging element Pixel Transfer Figure 1.22. A CCD Device.

Digital Snapshots

- A digital image is an array of numbers indicating the image irradiance at various points on the image plane
 Image intensities are spatially sampled
 The Image irradiance function across the retinal plane is sampled to obtain the digital image
 The spacing of the image elements limits the resolution of the image
 The frequency content of the irradiance function is limited by the effective aperture of the camera
 Intensity values are quantized (8-bits, 10-bits, 12-bits)

- Video Imagery
 For a video camera, Images are taken sequentially by opening and closing the shutter 30 times per second

Seeing in Colour Relative Absorbance Wavelength - nm Retina

Sensing Color

Bayer pattern used to capture color images on a single imaging surface

Any 2D matrix can be seen as an image

The Pinhole Camera

- Light enters a darkened chamber through a pinhole opening and forms an image on the further surface

Modeling (pinhole) projection

- · The coordinate system
 - We will use the pin-hole model as an approximation

 - we will use the pin-nole mouch as an approximation
 Put the optical center (Center Of Projection) at the origin
 Put the image plane (Projection Plane) in front of the COP

 Why?

 The camera looks down the negative z axis

 we need this if we want right-handed-coordinates

FOV depends of Focal Length

Field of View (Zoom) From London and Upton

Size of field of view governed by size of the camera retina: $\varphi = \tan^{-1}(\frac{d}{2f})$

Smaller FOV = larger Focal Length

Perspective

Field of View / Focal Length

Large FOV, small f Camera close to car Small FOV, large f Camera far from the car

43