Concave

Convex

Submodular

Example:

Product recommendation: Men's shoes at Amazon

Ground set \mathcal{V} : n products, n usually large

Which subset $S \subseteq \mathcal{V}$ to recommend? Need to:

- 1, learn a submodular utility function $F(S) \implies$
- 2, conduct approximate inference

Mean Filed Approximation Applies

Given a parameterized $F(S) \rightarrow$ Graphical model: $p(S) \propto e^{F(S)}$

Mean field aims to approximate p(S) with a product distribution $q(S|\mathbf{x}) := \prod_{i \in S} x_i \prod_{i \notin S} (1 - x_j), \mathbf{x} \in [0, 1]^n$

$$\max_{\mathbf{x} \in [\mathbf{0}, \mathbf{1}]} f(\mathbf{x}) := \underbrace{\mathbb{E}_{q(S|\mathbf{x})}[F(S)]}_{\mathbf{x} \in [\mathbf{0}, \mathbf{1}]} - \sum_{i=1}^{n} [x_i \log x_i + (1 - x_i) \log(1 - x_i)]$$

$$= f_{\text{mt}}(\mathbf{x}) + \sum_{i \in \mathcal{V}} H(x_i), \qquad (ELBO)$$

Why mean field approximation?

Continuous DR-Submodular wrt X

1, Mean field as a differentiation technique \rightarrow learn F(S)end-to-end using modern deep learning framework

2, approximate inference using $q(S|\mathbf{x})$

Guaranteed Non-Convex Optimization: Continuous DR-Submodular (Diminishing Returns) Maximization

DR-submodular [Bian et al '17]: $\forall \mathbf{x} \leq \mathbf{y}, \ \forall i \in [n], \forall k \in \mathbb{R}_+$ it holds, DR-submodular

$$f(k\mathbf{e}_i + \mathbf{y}) - f(\mathbf{y}) \le f(k\mathbf{e}_i + \mathbf{x}) - f(\mathbf{x})$$

= continuous submodularity (i.e. $f(\mathbf{x}) + f(\mathbf{y}) \ge f(\mathbf{x} \vee \mathbf{y}) + f(\mathbf{x} \wedge \mathbf{y})$) + coordinate-wise concavity

Continuous DR-Submodular Maximization is NP-hard. There is no $(\frac{1}{2} + \epsilon)$ -approximation for any $\epsilon > 0$ unless RP=NP

Typical Applications

- Diversity models for recommendation [Tschiatschek et al '16, Djolonga et al '16]
- Data summarization [Lin et al '11]
- Model validation using posterior agreement [Bian et al '16]
- Variable selection [Krause et al '05]

Optimal Algorithm: DR-DoubleGreedy

Input: $\max_{\mathbf{x} \in [\mathbf{a}, \mathbf{b}]} f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) \text{ is } \mathbf{DR}\text{-submodular}$

$$\mathbf{1} \ \mathbf{x}^0 \leftarrow \mathbf{a}, \ \mathbf{y}^0 \leftarrow \mathbf{b};$$
 Maintain two solutions

2 for $k=1 \rightarrow n$ do

let v_k be the coordinate being operated;

find
$$u_a$$
 such that $f(\mathbf{x}^{k-1}|_{v_k}u_a) \ge \max_{u'} f(\mathbf{x}^{k-1}|_{v_k}u') - \frac{\delta}{n}$, Solve 1-D problem on \mathbf{x} solve 1-D problem on \mathbf{x}

find u_b such that $f(\mathbf{y}^{k-1}|_{v_k}u_b) \ge \max_{u'} f(\mathbf{y}^{k-1}|_{v_k}u') - \frac{\delta}{n}$, Solve 1-D problem on \mathbf{y} $\delta_b \leftarrow f(\mathbf{y}^{k-1}|_{v_k}u_b) - f(\mathbf{y}^{k-1})$;

8 $|\mathbf{x}^k \leftarrow \mathbf{x}^{k-1}|_{v_k} (\frac{\delta_a}{\delta_a + \delta_b} u_a + \frac{\delta_b}{\delta_a + \delta_b} u_b);$ Change coordinate to be a

9 $\mathbf{y}^k \leftarrow \mathbf{y}^{k-1}|_{v_k} (\frac{\delta_a}{\delta_a + \delta_b} u_a + \frac{\delta_b}{\delta_a + \delta_b} u_b);$ convex combination

Output: \mathbf{x}^n or \mathbf{y}^n ($\mathbf{x}^n = \mathbf{y}^n$)

DR-DoubleGreedy has a 1/2-approximation guarantee → Optimal Algorithm

 $f(\mathbf{x}^n) \ge f(\mathbf{x}^*)/2 + [f(\mathbf{a}) + f(\mathbf{b})]/4 - 5\delta/4$

 δ : Error level in solving

1-D subproblem

Multi-epoch Extensions

- 1 Option I: DG-MeanField-1/3: run Submodular-DoubleGreedy to get a 1/3 initializer $\hat{\mathbf{x}}$
- 2 Option II: DG-MeanField-1/2: run DR-DoubleGreedy to get a 1/2 initializer $\hat{\mathbf{x}}$;
- 3 beginning with $\hat{\mathbf{x}}$, optimize $f(\mathbf{x})$ coordinate by coordinate for T epochs;

Experimental Results

One-epoch Algorithms

- Submodular-DoubleGreedy (Sub-DG)

[Bian et al '17a]

BSCB

Alg. 4 in [Niazadeh et al '18], optimal algorithm

- DR-DoubleGreedy (DR-DG)

optimal one-epoch algorithm

Multi-epoch Algorithms

- CoordinateAscent-0 0 as initializer CoordinateAscent-1
- CoordinateAscent-Random random initializer
- BSCB-Multiepoch Multi-epoch extension of BSCB
- DG-MeanField-1/3
- DG-MeanField-1/2
 - Multi-epoch extension of DR-DoubleGreedy

FLID (facility location diversity model) [Tschiatschek et al '16]

$$F(S) := \sum_{i \in S} u_i + \sum_{d=1}^{D} (\max_{i \in S} W_{i,d} - \sum_{i \in S} W_{i,d})$$

Bach. Submodular functions: from discrete to continuous domains. Mathematical Programming, 2018

Bian, Mirzasoleiman, Buhmann, Krause. Guaranteed non-convex optimization: Submodular maximization over continuous domains. AISTATS 2017a.

Bian, Levy, Krause, Buhmann. Continuous DR-submodular Maximization: Structure and Algorithms. NIPS 2017b

Niazadeh, Roughgarden, Wang. Optimal Algorithms for Continuous Non-monotone Submodular and DR-Submodular Maximization. NIPS 2018

Tschiatschek, Djolonga, Krause. Learning Probabilistic Submodular Diversity Models Via Noise Contrastive Estimation. AISTATS 2016

Statistics on one-epoch algorithms, boldface numbers indicate the best

		ELBO objective			PA-ELBO objective		
Category	D	Sub-DG	BSCB	DR-DG	Sub-DG	BSCB	DR-DG
carseats	2	2.089 ± 0.166	2.863 ± 0.090	3.045 ±0.069	1.015 ± 1.081	2.106 ± 0.228	2.348 ±0.219
	3	1.890 ± 0.146	3.003 ± 0.110	3.138 ±0.082	1.309 ± 1.218	2.414 ± 0.267	2.707 ± 0.208
n = 34	10	1.390 ± 0.232	3.100 ± 0.140	3.003 ± 0.157	1.599 ± 1.317	$2.684 {\pm} 0.271$	2.915 ± 0.250
safety	2	1.934 ± 0.402	2.727 ± 0.212	2.896 ±0.098	1.370 ± 1.203	2.049 ± 0.280	2.341 ±0.161
	3	1.867 ± 0.453	2.830 ± 0.191	2.970 ± 0.110	1.706 ± 1.296	$2.288 {\pm} 0.297$	2.619 ± 0.167
n = 36	10	1.546 ± 0.606	2.916 ± 0.191	2.920 ±0.149	1.948 ± 1.353	2.467 ± 0.270	2.738 ± 0.187
strollers	2	2.042 ± 0.181	2.829 ± 0.144	2.928 ±0.060	0.865 ± 0.952	1.933 ± 0.256	2.202 ±0.226
	3	1.814 ± 0.264	2.958 ± 0.146	2.978 ± 0.077	1.172 ± 1.063	2.181 ± 0.297	2.543 ± 0.254
n = 40	10	1.328 ± 0.544	3.065 ± 0.162	2.910 ± 0.140	1.702 ± 1.334	2.480 ± 0.304	2.767 ± 0.336
media	2	3.221 ± 0.066	3.309 ± 0.055	3.493 ± 0.051	0.372 ± 0.286	1.477 ± 0.128	1.336 ± 0.101
	3	3.276 ± 0.082	3.492 ± 0.083	3.712 ±0.079	0.418 ± 0.366	1.736 ± 0.177	1.762 ± 0.095
n = 58	10	2.840 ± 0.183	3.894 ± 0.122	3.924 ±0.114	0.653 ± 0.727	2.309 ± 0.244	2.524 ± 0.130
toys	2	3.543 ± 0.047	3.454 ± 0.091	3.856 ±0.044	0.597 ± 0.480	1.731 ± 0.182	1.761 ± 0.133
	3	3.362 ± 0.055	3.412 ± 0.070	3.736 ± 0.051	0.578 ± 0.520	1.738 ± 0.192	1.802 ± 0.151
n=62	10	3.037 ± 0.138	3.706 ± 0.108	3.859 ± 0.119	0.758 ± 0.871	2.140 ± 0.242	2.330 ± 0.177
bedding	2	3.406 ± 0.080	3.374 ± 0.088	3.620 ± 0.062	0.525 ± 0.121	1.932 ± 0.194	2.001 ± 0.080
	3	3.648 ± 0.106	3.564 ± 0.083	3.876 ± 0.081	2.499 ± 0.972	$2.250 {\pm} 0.269$	2.624 ± 0.066
n=100	10	3.355 ± 0.161	3.799 ± 0.144	3.912 ± 0.082	3.919 ± 0.045	2.578 ± 0.358	3.157 ± 0.091
apparel	2	3.560 ± 0.094	3.527 ± 0.046	3.784 ± 0.059	0.268 ± 0.109	1.552 ± 0.141	1.513 ± 0.191
	3	3.878 ± 0.092	3.755 ± 0.062	4.140 ±0.063	0.490 ± 0.677	1.900 ± 0.237	2.225 ± 0.136
n = 100	10	3.751 ± 0.087	4.084 ± 0.075	4.425 ± 0.066	0.820 ± 1.372	$2.351 {\pm} 0.337$	2.967 ± 0.150

 $\max_{\mathbf{x}\in[0,1]^n} \mathbb{E}_{q(S|\mathbf{x})}[F(S|\mathbf{D}')] + \mathbb{E}_{q(S|\mathbf{x})}[F(S|\mathbf{D}'')]$ $+\sum_{i\in\mathcal{V}}H(x_i)$ (PA-ELBO)

For ELBO, mean

and standard

FLID models

of the data,

respectively

For PA-ELBO,

deviation were

models trained

over 45 pairs of

calculated for

mean and

standard

folds

deviation were

calculated for 10

trained on 10 folds

PA (Posterior-Agreement) measures the agreement between two "noisy" posterior distributions

