Linear Time-Invariant and Time-Varying Systems: A State Space Approach

Problem 1. (30 points) Consider the following linear system

$$\dot{x} = Ax + bu = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 1 \\ -3 \end{bmatrix} u$$
$$y = cx = \begin{bmatrix} 3 & 1 \end{bmatrix} x.$$

- (a) (4 pts) Is the system controllable? Find its controllable subspace.
- (b) (4 pts) Is the system observable? Find its unobservable subspace.
- (c) (4 pts) Is the system stabilizable? Justify your answer.
- (d) (4 pts) Does there exist a feedback gain $k \in \mathbb{R}^{1 \times 2}$ such that A bk has eigenvalues $\{-1, -1\}$?
- (e) (4 pts) Is the system detectable? Justify your answer.
- (f) (4 pts) Does there exist $l \in \mathbb{R}^{2\times 1}$ such that A lc has eigenvalues $\{-1, -1\}$?
- (g) (6 pts) Suppose $x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $u(t) \equiv 0$. Find the output y(t) for all $t \geq 0$.

Problem 2. (10 points) Given two linear systems (A, B, C) and (A, \tilde{B}, C) with $A \in \mathbb{R}^{n \times n}$, $B, \tilde{B} \in \mathbb{R}^{n \times m}$, and $C \in \mathbb{R}^{r \times n}$, suppose (C, A) is observable and both systems have the same transfer function $C(zI - A)^{-1}B = C(zI - A)^{-1}\tilde{B}$. Show that we must have $B = \tilde{B}$.

Problem 3. (25 points) Consider a linear system with state $x[k] = \begin{bmatrix} x_1[k] & x_2[k] & x_3[k] \end{bmatrix}^T \in \mathbb{R}^3$:

$$x[k+1] = A x[k] = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ 0 & \frac{1}{2} & \frac{1}{2} \end{bmatrix} x[k],$$

with an initial condition x[0]. It is known that A has eigenvalues $\lambda_1 = 1$, $\lambda_2 = \frac{1}{2}$, and $\lambda_3 = -\frac{1}{6}$.

- (a) (5 pts) Show that $\begin{bmatrix} 2 & \frac{3}{7} & \frac{2}{7} \end{bmatrix}$ is a left eigenvector of A, and $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is a right eigenvector of A, both corresponding to the eigenvalue 1.
- (b) (10 pts) Prove that $\frac{2}{7}x_1[k] + \frac{3}{7}x_2[k] + \frac{2}{7}x_3[k]$ for all k is a constant $\bar{x} = \frac{2}{7}x_1[0] + \frac{3}{7}x_2[0] + \frac{2}{7}x_3[0]$.
- (c) (10 pts) Show that x[k] converges to $\begin{bmatrix} \bar{x} & \bar{x} & \bar{x} \end{bmatrix}^T$ as $k \to \infty$.

Write in Exam Book Only

Problem 4. (15 points) Consider a single-input single-output system:

$$\begin{cases} \dot{x} = Ax + bu \\ y = cx. \end{cases}$$

where $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^{n \times 1}$, $c \in \mathbb{R}^{1 \times n}$ $(n \ge 2)$. Suppose its transfer function is known:

$$H(s) = c(sI - A)^{-1}b = \frac{1}{(s+1)^2}.$$

Determine true or false for the following statements. You do not need to justify your answers.

- (a) (3 pts) If (A, b) is controllable, then A is asymptotically stable.
- (b) (3 pts) If (c, A) is observable, then A is asymptotically stable.
- (c) (3 pts) If (A, b) is controllable and (c, A) is observable, then A is asymptotically stable.
- (d) (3 pts) If (c, A) is observable and x(0) = 0, then y(t) is bounded under all bounded u(t).
- (e) (3 pts) If (c, A) is observable and $u(t) \equiv 0$, then $y(t) \to 0$ as $t \to \infty$ for all x(0).

Problem 5. (20 points) Consider the following linear time-varying system

$$\dot{x}(t) = \begin{bmatrix} -\frac{1}{t+1} & 0\\ -\frac{1}{t+1} & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1\\ 0 \end{bmatrix} u(t), \quad t \ge 0.$$

- (a) (15 pts) Assume $u(t) \equiv 0$. Find the state transition matrix $\Phi(t,\tau)$ of the system.
- (b) (5 pts) Is the system asymptotically stable under $u(t) \equiv 0$?

