9	Functions	f and	g are	defined	by
---	-----------	-------	-------	---------	----

$$f(x) = 2x^2 + 8x + 1 \quad \text{for } x \in \mathbb{R},$$

$$g(x) = 2x - k \quad \text{for } x \in \mathbb{R},$$

where k is a constant.

Find the value of k for which the line $y = g(x)$ is a tangent to the curve $y = f(x)$.	
	•••••
	•••••
	•••••
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	•••••
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	••••••
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	
In the case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.	

	In the case where $k = -1$, find $g^{-1}f(x)$ and solve the equation $g^{-1}f(x) = 0$.
•	
•	
•	
•	
•	
•	
•	
	Express $f(x)$ in the form $2(x + a)^2 + b$, where a and b are constants, and hence state the value of $f(x)$.
V	Express $f(x)$ in the form $2(x + a)^2 + b$, where a and b are constants, and hence state the value of $f(x)$.
V	Express $f(x)$ in the form $2(x + a)^2 + b$, where a and b are constants, and hence state the
	Express $f(x)$ in the form $2(x + a)^2 + b$, where a and b are constants, and hence state the value of $f(x)$.
	Express $f(x)$ in the form $2(x + a)^2 + b$, where a and b are constants, and hence state the value of $f(x)$.
	Express $f(x)$ in the form $2(x + a)^2 + b$, where a and b are constants, and hence state the value of $f(x)$.
	Express $f(x)$ in the form $2(x + a)^2 + b$, where a and b are constants, and hence state the value of $f(x)$.
	Express $f(x)$ in the form $2(x + a)^2 + b$, where a and b are constants, and hence state the value of $f(x)$.
	Express $f(x)$ in the form $2(x + a)^2 + b$, where a and b are constants, and hence state the value of $f(x)$.
	Express $f(x)$ in the form $2(x + a)^2 + b$, where a and b are constants, and hence state the value of $f(x)$.
	Express $f(x)$ in the form $2(x + a)^2 + b$, where a and b are constants, and hence state the value of $f(x)$.
	Express $f(x)$ in the form $2(x + a)^2 + b$, where a and b are constants, and hence state the value of $f(x)$.
	Express $f(x)$ in the form $2(x + a)^2 + b$, where a and b are constants, and hence state the value of $f(x)$.