Another case of interest is the generalization of the minimization problem involving the affine constraints of a linear program in standard form, that is, equality constraints Ax = b with $x \ge 0$, where A is an $m \times n$ matrix. In our formalism, this corresponds to the 2m + n constraints

$$a_i x - b_i \le 0,$$
 $i = 1, ..., m$
 $-a_i x + b_i \le 0,$ $i = 1, ..., m$
 $-x_j \le 0,$ $i = 1, ..., n.$

In matrix form, they can be expressed as

$$\begin{pmatrix} A \\ -A \\ -I_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \le \begin{pmatrix} b \\ -b \\ 0_n \end{pmatrix}.$$

If we introduce the generalized Lagrange multipliers λ_i^+ and λ_i^- for $i=1,\ldots,m$ and μ_j for $j=1,\ldots,n$, then the KKT conditions are

$$\nabla J_u + \begin{pmatrix} A^\top & -A^\top & -I_n \end{pmatrix} \begin{pmatrix} \lambda^+ \\ \lambda^- \\ \mu \end{pmatrix} = 0_n,$$

that is,

$$\nabla J_{u} + A^{\top} \lambda^{+} - A^{\top} \lambda^{-} - \mu = 0,$$

and $\lambda^+, \lambda^-, \mu \geq 0$, and if $a_i u < b_i$, then $\lambda_i^+ = 0$, if $-a_i u < -b_i$, then $\lambda_i^- = 0$, and if $-u_j < 0$, then $\mu_j = 0$. But the constraints $a_i u = b_i$ hold for $i = 1, \ldots, m$, so this places no restriction on the λ_i^+ and λ_i^- , and if we write $\lambda_i = \lambda_i^+ - \lambda_i^-$, then we have

$$\nabla J_u + A^{\top} \lambda = \mu,$$

with $\mu_j \geq 0$, and if $u_j > 0$ then $\mu_j = 0$, for $j = 1, \ldots, n$.

Thus we proved the following proposition (which is slight generalization of Proposition 8.7.2 in Matousek and Gardner [123]).

Proposition 50.8. If U is given by

$$U=\{x\in\Omega\mid Ax=b,\ x\geq 0\},$$

where Ω is an open convex subset of \mathbb{R}^n and A is an $m \times n$ matrix, and if J is differentiable at u and J has a local minimum at u, then there exist two vectors $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}^n$, such that

$$\nabla J_u + A^{\top} \lambda = \mu,$$