Eric Wan - ezw23@drexel.edu - Lab 1

Table of Contents

Question 1	1
Question 2	2
Question 3	
Question 4	
Question 5	4
Question 6	4
Question 7	4
Question 8	5
Question 9	5
Question 10	. 5

```
B = 0.5;
k = 150;
V = 0:1:170;
n = numel(V);
pts = zeros(1,n);
for i = 1:n
    dV = B*V(i)*log(k/V(i));
    pts(i) = dV;
end
figure
plot(V, pts)
hold on
grid on
legend show
xlabel('V')
```



```
eq = [0 V(151); 0 pts(151)];
scatter(eq(1,:), eq(:,1),'r','filled')
```



```
d2V = gradient(pts);
plot(V, d2V)
legend('dV', 'equilibrium pt','d^2V')
```


Question 4

```
%{
Regions of Attraction
@ V = 0, [0], unstable
@ V = 150, (0,infinity) stable
%}
```

Question 5

```
\ No as there is no indication of time past \
```

Question 6

```
%{
x' = 0.5*x*log(150/x)
independant var = t
min/max of t = -30/30
min/max of x = 0/170
```

왕}

Question 8

```
%{
The results show that the direction fields go to 150 and away from 0
%}
```

Question 9

```
%{
The results show that it would take 15 seconds to have V = 140
%}
```

Question 10

```
%{
The results show that it would take 20 seconds to have V = 140.
This takes longer than in question 9.
%}
```

Published with MATLAB® R2015a