Problem 1:

- a) The prame (O numpheds >12 (dept) Deptof)
- b) The sname (student) The student. sname (Ostudent. age > d.age (student x (a (student)))
- C) $S1 \leftarrow Psi(Osex=female (Student × etol))$ $S2 \leftarrow Psi(S1)$ $S3 \leftarrow Psi(S1)$ $S4 \leftarrow Psi(S1)$ Ticno, cname, sectino (Osi, sname!= si, sname & si, sname!= si, sname & si, sname!= si, sname & si, sname
- d) In relational algebra, it's impossible to realize the count function, so there's no such answer.
- e) templ ← Odname = "Computer Science" (major) M Studient temp2 ← Odname = "Mechanical Engineering" (major) M Student result ← Tisname (templ ∩ temp2)
- f) In relational algebra, it's impossible to realize the count function, so there's no such answer
- 9) templ $\leftarrow \pi_{dname}(course) \pi_{dname}(O_{cname="Programming"}(course))$ result $\leftarrow \pi_{dname, numphds}(dept M templ)$
- h) Toprame (prof M Todrame (major M Tostd (Gage < 18 (Student))

Problem 2:

a) 1.a: The prome

Conjumphes > 12

dept prof

Thumphes > 12

dept prof

The sname

1.e:

Conjument Science

Major Student student major

Print the names of suppliers who both have red and green products, and the cost of these two products is less than 100.

Problem 3:

CREATE TABLE Employee (Emp_no NUMBER PRIMARY KEY, Emp_name CHAR (20) NOT NULL, Room_no integer NOT NULL);

CREATE TABLE Department
(Dept_no NUMBER PRIMARY KEY,
Dept_name CHAR (20) NOT NULL,
Dept_head VARCHAR (20) NULL,
FOREIGN KEY (Emp_no) REFERENCES Employee
ON DELETE SET DEFAULT ON UPDATE CASCADE);

ALTER TABLE Employee ADD
(FOREIGN KEY (Manager_id) REFERENCES Employee
ON DELETE SET DEFAULT ON UPDATE CASCADE,
FOREIGN KEY (Dept_no) REFERENCES Department
ON DELETE SET DEFAULT ON UPDATE CASCADE);

CREATE TABLE Project
(Proj_code INTEGER PRIMARY KEY,
Proj_name CHAR (20) NOT NULL,
Start_date DATE NULL,
End_date DATE NULL,
FOREIGN KEY (Emp_no) REFERENCES Employee
ON DELETE SET DEFAULT ON UPDATE CASCADE);

CREATE TABLE Works-on
(Proj_code INTEGER,
Emp_no NUMBER,
PRIMARY KEY (Proj_code, Emp_no),
FOREIGN KEY (Emp_no) REFERENCES Employee
ON DELETE CASCADE ON THE UPDATE CASCADE,
FOREIGN KEY (Proj_code) REFERENCES Project
ON DELETE CASCADE ON THE UPDATE CASCADE);

CREATE TABLE Job (Job_code INTEGER PRIMARY KEY, Job_title CHAR (20) DEFAULT 'worker' NOT NULL);

CREATE TABLE Salary
(Salary_level CHAR (20) PRIMARY KEY,
Mon_Salary INTEGER CHECK(>0),
FOREIGN KEY (Job_code) REFERENCES Job
ON DELETE CASCADE ON THE UPDATE CASCADE);

Create table Salary-hist
(Salary_level CHAR (20),
Emp_no NUMBER,
PRIMARY KEY (Salary_level, Emp_no),
FOREIGN KEY (Salary_level) REFERENCES Salary
ON DELETE CASCADE ON UPDATE CASCADE,
FOREIGN KEY (Emp_no) REFERENCES Employee
ON DELETE CASCADE ON UPDATE CASCADE);