$$y_{i} = \int_{0}^{1} + \int_{1}^{2} 2_{1} + \dots + \int_{1}^{2} 2_{k} + \xi_{i}$$

$$y_{i} = \int_{0}^{1} + \int_{1}^{2} 2_{1} + \dots + \int_{1}^{2} 2_{k} + \xi_{i}$$

$$y_{i} = \int_{0}^{1} 2_{k} + \dots + \int_{1}^{2} 2_{k} + \xi_{i}$$

$$y_{i} = \int_{0}^{1} 2_{k} + \dots + \int_{0}^{2} 2_{k}$$

$$y_{i} = \int_{0}^{1} 2_{k} + \dots + \int_{0}^{2} 2_{k}$$

$$y_{i} = \int_{0}^{1} 2_{k} + \dots + \int_{0}^{2} 2_{k}$$

$$y_{i} = \int_{0}^{1} 2_{k} + \xi_{i}$$

$$y_{i} = \int_{0}^{1} 2_{k$$

	1) Wrong specification
	,
	Endozeneity
	•
	- ommitted vaniable
	- Sihn Haneity
	- measurement wors
	Log-trungform
	U Y
	` · · ·
	2) X => st behaviric
	3) Homes cod asticity =>
	1 1 2 Accetication
<i>M</i>	net en oscerbastia ti
+	
+	
-	
-\	~~~·
_	1
	4) Autoernelation
	4) HUGUESVIEWIUM

Bi hany thoia; Panel Data

(N2)
$$Z=$$
 $Y=XB+Gi$

(N3). $P(X,Y)=P(X)\cdot P(Y)$ - independency

 $E(Y|X)=E(Y)$ - unpredictability

 $E(XY)=E(X)E(Y)$ - unpredictability

$$Ny \qquad X \qquad E(x) = Mx$$

$$Var(X) = 6x$$

$$V_{1}, \dots, X_{n}$$

$$Mx = \frac{Y_{1} + \dots + X_{2k-1}}{k}$$

$$Mx - \text{ un biased} \qquad E(Mx) = \frac{h + k}{k}$$

1)
$$\int_{X}^{X} - \text{unbiased} = \frac{h \cdot E(X_i)}{k}$$

2) is $\int_{X}^{X} - \text{efficient?}$

$$\frac{\sqrt{n}}{\sqrt{n}} = \frac{6^2}{k}$$

$$\sqrt{n}(\overline{x}) < \sqrt{n}(\overline{x})$$

$$\sqrt{n}(\overline{x}) = \frac{6^2}{k}$$

(NS)
$$X = \{X\} = \{\mu_{1}\} \quad \forall \lambda_{1} \in X = \delta_{2}^{2}$$

$$\begin{cases} \lambda_{2}, \dots, \lambda_{n} \end{cases} \quad \forall \lambda_{n} \in X = \delta_{2}^{2} \end{cases}$$

$$\begin{cases} \lambda_{2}, \dots, \lambda_{n} \end{cases} \quad \forall \lambda_{n} \in X = \delta_{2}^{2} \end{cases}$$

$$\begin{cases} \lambda_{2}, \dots, \lambda_{n} \end{cases} \quad \forall \lambda_{n} \in X = \delta_{2}^{2} \end{cases}$$

$$\begin{cases} \lambda_{2}, \dots, \lambda_{n} \end{cases} \quad \forall \lambda_{n} \in X = \delta_{2}^{2} \end{cases}$$

$$\begin{cases} \lambda_{2}, \dots, \lambda_{n} \end{cases} \quad \forall \lambda_{n} \in X = \delta_{2}^{2} \end{cases}$$

$$\begin{cases} \lambda_{2}, \dots, \lambda_{n} \end{cases} \quad \forall \lambda_{n} \in X = \delta_{2}^{2} \end{cases}$$

$$\begin{cases} \lambda_{2}, \dots, \lambda_{n} \end{cases} \quad \forall \lambda_{n} \in X = \delta_{2}^{2} \end{cases}$$

$$\begin{cases} \lambda_{2}, \dots, \lambda_{n} \end{cases} \quad \forall \lambda_{n} \in X = \delta_{2}^{2} \end{cases}$$

$$\begin{cases} \lambda_{2}, \dots, \lambda_{n} \end{cases} \quad \forall \lambda_{n} \in X = \delta_{2}^{2} \end{cases}$$

$$\begin{cases} \lambda_{2}, \dots, \lambda_{n} \end{cases} \quad \forall \lambda_{n} \in X = \delta_{2}^{2} \end{cases} \quad \forall \lambda_{n} \in X = \delta_{2}^{2} \end{cases}$$

$$\begin{cases} \lambda_{2}, \dots, \lambda_{n} \end{cases} \quad \forall \lambda_{n} \in X = \delta_{2}^{2} \end{cases} \quad \forall \lambda_{n} \in X = \delta$$

$$\frac{1}{2} + \dots + \frac{1}{2^{h}} \rightarrow 1$$

$$E(-2) \longrightarrow 1 \cdot \mu_{x} => \text{ as your totic ubiasalnes}$$

$$3) \quad \forall \mu(2) = \left(\frac{1}{4} + \dots + \frac{1}{2^{2n}}\right) \frac{2^{2n}}{2^{2n}} \left(\frac{1/4}{1 - 1/4}\right) \frac{2^{2n}}{2^{2n}} => \text{ sufficiency condition for}$$

Conci Sterry doesn't hald