Correction du devoir surveillé 5.

Exercice 1

1°) a) Prenons x = y = 0 dans l'égalité (*) :

$$[1 - f(0)^2] f(0) = 2f(0)$$
 i.e. $f(0) (1 + f(0)^2) = 0$.

Comme f est à valeurs réelles, $1 + f(0)^2$ n'est pas nul, et f(0) = 0

b) Soit $x \in \mathbb{R}$; prenons y = -x dans l'égalité (*) :

$$[1 - f(x)f(-x)] f(0) = f(x) + f(-x)$$
 i.e. $0 = f(x) + f(-x)$.

On a donc f(-x) = -f(x), ceci pour tout $x \in \mathbb{R}$, donc f est impaire

- **2°) a)** Soit $x \in \mathbb{R}$. Il suffit de prendre y = x dans (*). On a bien : $(1 f(x)^2)f(2x) = 2f(x)$
 - b) Supposons par exemple que f ait $+\infty$ pour limite en $+\infty$.

Alors, par composition, $f(2x) \xrightarrow[x \to +\infty]{} +\infty$ et $1 - f^2(x) \xrightarrow[x \to +\infty]{} -\infty$.

Par produit $f(2x)(1-f(x)^2) \xrightarrow[x\to+\infty]{} -\infty$.

Donc, d'après la question précédente, $2f(x) \xrightarrow[x \to +\infty]{} -\infty$ puis $f(x) \xrightarrow[x \to +\infty]{} -\infty$: contradiction.

Le cas où $f(x) \underset{x \to +\infty}{\longrightarrow} -\infty$ est similaire.

Donc, f ne peut pas admettre de limite infinie en $+\infty$.

c) Supposons que f admette une limite en $+\infty$ alors, par la question précédente, f admet une limite finie ℓ en $+\infty$.

Par opérations, $(1 - f(x)^2)f(2x) \xrightarrow[x \to +\infty]{} (1 - \ell)^2 \ell$ et $2f(x) \xrightarrow[x \to +\infty]{} 2\ell$.

Ainsi, par unicité de la limite dans l'égalité de 2a :

$$(1 - \ell^2)\ell = 2\ell \text{ donc } \ell(1 + \ell^2) = 0$$

Puisque $1 + \ell^2 \neq 0$, il vient : $\ell = 0$

- **3°)** a) Par 1a, f(0) = 0 donc $0 \in \mathcal{S}$. Ainsi, $\mathcal{S} \neq \emptyset$
 - **b)** Soit $x \in \mathcal{S}$. Posons, pour tout $m \in \mathbb{N} : \mathcal{P}_m : mx \in \mathcal{S}$.
 - \mathcal{P}_0 est vraie puisque $0.x = 0 \in \mathcal{S}$.
 - Soit $m \in \mathbb{N}$ tel que \mathcal{P}_m soit vraie.

Par (*) appliquée avec x et mx: (1 - f(x)f(mx))f(mx + x) = f(mx) + f(x).

Puisque $x \in \mathcal{S}$ et aussi $mx \in \mathcal{S}$ par \mathcal{P}_m , on a : f(x) = f(mx) = 0.

D'où, f((m+1)x) = 0 ie $(m+1)x \in S$.

Donc \mathcal{P}_{m+1} est vraie.

- Conclusion: On a montré par récurrence que, pour tout $m \in \mathbb{N}$, $mx \in \mathcal{S}$.
- c) Soit $x \in \mathcal{S}$. Appliquons la propriété (*) à $\frac{x}{2}$ et $\frac{x}{2}$:

$$\left[1 - f\left(\frac{x}{2}\right)^2\right] f(x) = 2f\left(\frac{x}{2}\right)$$

Or $x \in \mathcal{S}$ donc f(x) = 0, d'où $f\left(\frac{x}{2}\right) = 0$. Ainsi $x \in \mathcal{S}$.

4°) a) Supposons par l'absurde que f n'ait pas un signe constant strict sur \mathbb{R}_+^* :

 $\exists (a,b) \in]0; +\infty[^2, f(a) \ge 0 \text{ et } f(b) \le 0.$

Donc 0 est dans l'intervalle [f(b), f(a)]. Or f est continue sur \mathbb{R} d'après la question 1 donc est continue sur le segment de bornes a et b. D'après le théorème des valeurs intermédiaires, il existe donc un réel c compris entre a et b tel que f(c) = 0; donc $c \in \mathcal{S}$ et $c \in \mathbb{R}_+^*$, contradiction du fait que $\mathcal{S} = \{0\}$.

Donc f a un signe constant strict sur l'intervalle $]0; +\infty[$.

b) Soit x et y deux réels strictement positifs.

Appliquons la relation (*) avec y et -x:

$$[1-f(y)f(-x)]\ f(y-x)=f(y)+f(-x)$$
 i.e. $[1+f(y)f(x)]\ f(y-x)=f(y)-f(x)$ puisque f est impaire.

Comme f garde un signe constant strict sur $]0, +\infty[$ et que x et y sont dans cet intervalle, on a f(x)f(y) > 0. Donc 1 + f(x)f(y) > 0, ce qui implique que $\underline{f(y) - f(x)}$ et $\underline{f(y - x)}$ ont même signe au sens strict ce qui signifie :

$$\begin{cases} f(y-x) > 0 \iff f(y) - f(x) > 0 \\ f(y-x) = 0 \iff f(y) - f(x) = 0 \end{cases}$$

c) • Cas où f > 0 sur \mathbb{R}_+^* :

Soit $(x, y) \in \mathbb{R}_+^{*2}$ tels que x < y. On a y - x > 0 donc f(y - x) > 0. Donc f(y) - f(x) > 0. Ainsi, dans ce cas, f est strictement croissante sur \mathbb{R}_+^* .

Il nous reste à voir que si x > 0 alors f(x) > f(0). Comme f(0) = 0, c'est évident. Finalement, f est strictement croissante sur \mathbb{R}_+ .

- Cas où f < 0 sur \mathbb{R}_+^* : on montre de même que f est strictement décroissante sur \mathbb{R}_+ .
- d) Cas où f strictement croissante sur $[0, +\infty[$:

Par le théorème de la limite monotone, f admet donc une limite finie ou infinie en $+\infty$. Par la question 2c, on en déduit que f tend vers 0 en $+\infty$. Donc 0 est un majorant de f par croissance de f.

Comme f est strictement croissante sur \mathbb{R}_+ , on a alors :

pour tout x > 0, $f(0) = 0 < f(x) \le 0$. Exclu.

• Cas où f strictement décroissante sur $[0, +\infty[$:

Par le théorème de la limite monotone, f admet donc une limite finie ou infinie en $+\infty$. Par la question 2c, on en déduit que f tend vers 0 en $+\infty$. 0 est donc un minorant de f par décroissance de f.

Comme f est strictement décroissante sur \mathbb{R}_+ , on a alors : pour tout x > 0, $f(0) = 0 > f(x) \ge 0$. Exclu.

- Dans tous les cas, on arrive à une contradiction. On en déduit que $\mathcal{S} \neq \{0\}$.
- 5°) a) On sait que $S \neq \emptyset$ et, par la question précédente, S n'est pas réduit à $\{0\}$. Donc il existe un réel a_0 non nul qui est dans S.

Si $a_0 > 0$, on prend $a = a_0$.

Si $a_0 < 0$, alors $-a_0 > 0$ et $f(-a_0) = -f(a_0)$ par imparité de f d'où $f(-a_0) = 0$. On prend alors $a = -a_0$.

Dans les deux cas, a > 0 et $a \in \mathcal{S}$.

- **b)** Posons, pour tout $n \in \mathbb{N} : \mathcal{Q}_n : \frac{a}{2^n} \in \mathcal{S}$.
 - Q_0 est vraie puisque $\frac{a}{20} = a \in \mathcal{S}$.

• Soit $n \in \mathbb{N}$ tel que \mathcal{Q}_n soit vraie.

Appliquons la propriété de 3.c à $\frac{a}{2^n} \in \mathcal{S}$: $\frac{\frac{a}{2^n}}{2} = \frac{a}{2^{n+1}} \in \mathcal{S}$. Donc \mathcal{Q}_{n+1} est vraie.

• Conclusion : $\boxed{\text{pour tout } n \in \mathbb{N}, \frac{a}{2^n} \in \mathcal{S}}$.

Appliquons maintenant, pour chaque $n \in \mathbb{N}$, la propriété de 3.b à $\frac{a}{2^n}$: on obtient bien :

$$\forall (n,m) \in \mathbb{N}^2, \ \frac{ma}{2^n} \in \mathcal{S}$$
.

c) • Par définition de la partie entière, pour tout $n \in \mathbb{N}$,

$$\left| \frac{2^n x}{a} \right| \le \frac{2^n x}{a} < \left| \frac{2^n x}{a} \right| + 1$$

D'où

$$\left| \frac{2^n x}{a} - 1 < \left| \frac{2^n x}{a} \right| \le \frac{2^n x}{a}.$$

Comme $\frac{a}{2^n} > 0$, on en déduit :

$$x - \frac{a}{2^n} < u_n \le x.$$

Or $\frac{a}{2^n} \underset{n \to +\infty}{\longrightarrow} 0$ car 2 > 1; par le théorème d'encadrement, on en déduit que (u_n) converge vers x.

• Appliquons le résultat de la question précédente avec $n \in \mathbb{N}$ et $m = \left\lfloor \frac{2^n x}{a} \right\rfloor \in \mathbb{N}$ (car a > 0 et $x \ge 0$). On obtient que $u_n \in \mathcal{S}$, ceci pour tout $n \in \mathbb{N}$:

$$\forall n \in \mathbb{N}, \ f(u_n) = 0.$$

Or f est continue en x et (u_n) converge vers x donc $(f(u_n))$ converge vers f(x) donc, par unicité de la limite, on obtient : f(x) = 0. Ainsi $x \in \mathcal{S}$.

- **6°)** On a montré que si f vérifie les hypothèses demandées, alors pour tout $x \ge 0$, f(x) = 0. Comme f est impaire, on en tire que pour tout $x \in \mathbb{R}$, f(x) = 0.
 - Réciproquement, la fonction constante nulle sur \mathbb{R} est bien continue sur \mathbb{R} , et vérifie bien la relation (*) pour tout $(x, y) \in \mathbb{R}^2$.
 - On en conclut qu'<u>il</u> y a une unique fonction $f : \mathbb{R} \to \mathbb{R}$ continue qui vérifie la relation (*) : c'est la fonction constante nulle.

Exercice 2

1°)
$$f(x) = \underset{x\to 0}{=} \frac{x + o(x)}{x + o(x)} = \frac{1 + o(1)}{1 + o(1)}$$
, donc $f(x) \xrightarrow[x\to 0]{} \frac{1}{1} = 1$.

Comme il s'agit d'une limite finie, on peut prolonger f par continuité en 0 en posant f(0) = 1.

- **2°)** La fonction f est continue sur \mathbb{R} , car elle l'est sur \mathbb{R}^* par quotient, et parce qu'on l'a prolongée par continuité en 0.
 - $\bullet~$ Elle est dérivable sur \mathbb{R}^* par quotient.

Pour tout $x \in \mathbb{R}^*$,

$$f'(x) = \frac{\cos(x) \sinh(x) - \sin(x) \cot(x)}{\sinh^2(x)}$$

$$\stackrel{=}{=} \frac{(1 + o(x))(x + o(x^2)) - (1 + o(x))(x + o(x^2))}{(x + o(x))^2}$$

$$\stackrel{=}{=} \frac{(x + o(x^2)) - (x + o(x^2))}{(x + o(x))(x + o(x))}$$

$$\stackrel{=}{=} \frac{o(x^2)}{x^2 + o(x^2)}$$

$$\stackrel{=}{=} \frac{o(1)}{1 + o(1)}$$

Donc $f'(x) \xrightarrow[x \to 0]{} \frac{0}{1} = 0.$

D'après le théorème de la limite de la dérivée, on a donc $\frac{f(x) - f(0)}{x - 0} \xrightarrow[x \to 0]{} 0$.

Cela signifie que f est dérivable en 0 et que f'(0) = 0.

L'information $f'(x) \xrightarrow[x\to 0]{} 0$ se réécrit : $f'(x) \xrightarrow[x\to 0]{} f'(0)$. Ainsi la fonction f' est continue en 0. Comme f est par ailleurs de classe C^1 sur \mathbb{R}^* par quotient, on peut conclure que f est bien de classe \mathcal{C}^1 sur \mathbb{R}

Exercice 3

Partie 1 : Étude de f et de sa réciproque

- 1°) \star \mathbb{R} est un intervalle
 - \star f est continue sur \mathbb{R}
 - \star f est strictement croissante sur $\mathbb R$ comme somme de fonctions strictement croissantes Donc, par le théorème de la bijection, f réalise une bijection de $\mathbb{R} =]-\infty, +\infty[$ dans l'intervalle image $\lim_{x \to -\infty} f(x)$, $\lim_{x \to +\infty} f(x)$. $\lim_{x \to +\infty} f(x)$. Donc $\lim_{x \to +\infty} f(x) = x(x^2 + 1) \xrightarrow[x \to -\infty]{} -\infty$.

$$f(x) \xrightarrow[x \to +\infty]{} +\infty \text{ et } f(x) = x(x^2 + 1) \xrightarrow[x \to -\infty]{} -\infty$$

2°) f est dérivable sur \mathbb{R} et, pour tout $x \in \mathbb{R}$, $f'(x) = 3x^2 + 1$ donc $f'(x) \neq 0$. On en déduit que g est dérivable sur \mathbb{R} , et, pour tout $y \in \mathbb{R}$,

$$g'(y) = \frac{1}{f'(f^{-1}(y))} = \frac{1}{f'(g(y))}$$

Ainsi, pour tout $y \in \mathbb{R}$, $g'(y) = \frac{1}{3g(y)^2 + 1}$.

3°) g est dérivable en 0 donc g admet un $DL_1(0)$:

$$g(x) = g(0) + g'(0)x + o(x)$$

Comme f(0) = 0, il vient g(0) = 0. D'autre part, $g'(0) = \frac{1}{3g(0)^2 + 1}$. donc g'(0) = 1.

Ainsi,
$$g(x) = x + o(x)$$
.

4°) $\forall x \in \mathbb{R}, f(g(x)) = x$ puisque $f \circ g = \mathrm{id}_{\mathbb{R}}$. Donc, pour tout $x \in \mathbb{R}, g(x)^3 + g(x) = x$ ie $g(x) = x - g(x)^3$.

$$g(x) \underset{x\to 0}{=} x - (x + o(x))^3$$

$$\underset{x\to 0}{=} x - (x + o(x))(x + o(x))(x + o(x))$$

$$\underset{x\to 0}{=} x - (x^3 + o(x^3))$$

Ainsi,
$$g(x) = x - x^3 + o(x^3)$$
.

On recommence:

$$g(x) \underset{x \to 0}{=} x - g(x)^3 = x - (x - x^3 + o(x^3))^3$$

$$\underset{x \to 0}{=} x - (x - x^3 + o(x^3))(x - x^3 + o(x^3))(x - x^3 + o(x^3))$$

$$\underset{x \to 0}{=} x - (x^3 + x^5(-1 - 1 - 1) + o(x^5))$$

Ainsi,
$$g(x) = x - x^3 + 3x^5 + o(x^5)$$

Partie 2 : Approximation de g(1)

- 5°) f(0) = 0 et f(1) = 2. Or $f(\alpha) = 1$ donc $f(0) < f(\alpha) < f(1)$. Comme f est croissante, il vient : $0 < \alpha < 1$.
- 6°) Tracé de la courbe de f, de u_0 et u_1 :

 7°) Soit $n \in \mathbb{N}$. La tangente à la courbe de f au point d'abscisse u_n a pour équation :

$$y = f'(u_n)(x - u_n) + f(u_n)$$

 u_{n+1} est l'abscisse du point d'intersection de la courbe de f avec la droite d'équation y=1

donc:

$$1 = f'(u_n)(u_{n+1} - u_n) + f(u_n)$$

$$f'(u_n)(u_{n+1} - u_n) = 1 - f(u_n)$$

$$u_{n+1} - u_n = \frac{1 - f(u_n)}{f'(u_n)} \quad \text{car } f'(u_n) \neq 0$$

$$u_{n+1} = \frac{1 - u_n^3 - u_n}{3u_n^2 + 1} + u_n$$

$$u_{n+1} = \frac{1 - u_n^3 - u_n + 3u_n^3 + u_n}{3u_n^2 + 1}$$

$$u_{n+1} = \frac{2u_n^3 + 1}{3u_n^2 + 1}$$

Remarque : cette méthode de construction de la suite (u_n) s'appelle méthode de Newton.

8°)

$$\varphi(\alpha) = \alpha \iff \frac{2\alpha^3 + 1}{3\alpha^2 + 1} = \alpha$$

$$\iff 2\alpha^3 + 1 = 3\alpha^3 + \alpha$$

$$\iff 1 = \alpha^3 + \alpha$$

$$\iff 1 = f(\alpha)$$

Or, on a bien $f(\alpha) = 1$ donc $\varphi(\alpha) = \alpha$

 9°) φ est dérivable sur \mathbb{R} comme quotient de fonctions dérivables et, pour tout $x \in \mathbb{R}$,

$$\varphi'(x) = \frac{6x^2(3x^2 + 1) - 6x(2x^3 + 1)}{(3x^2 + 1)^2}$$

$$= \frac{18x^4 + 6x^2 - 12x^4 - 6x}{(3x^2 + 1)^2}$$

$$= \frac{6x^4 + 6x^2 - 6x}{(3x^2 + 1)^2}$$

$$\varphi'(x) = \frac{6x(x^3 + x - 1)}{(3x^2 + 1)^2}$$

$$\varphi'(x) = \frac{6x(f(x) - 1)}{(3x^2 + 1)^2}$$

10°) Soit $x \in [\alpha, 1]$ ie $\alpha \le x \le 1$.

On rappelle que : $\varphi'(x) = \frac{6x(f(x) - 1)}{(3x^2 + 1)^2}$.

f est croissante sur \mathbb{R} donc $f(\alpha) \leq f(x)$ ie $1 \leq f(x)$.

Comme x > 0 (puisque $\alpha > 0$), on a : $\varphi'(x) \ge 0$.

Ainsi, φ est croissante sur $[\alpha, 1]$

- 11°) Soit $n \in \mathbb{N}$, on pose : $H_n : \alpha \leq u_n \leq 1$.
 - $\star u_0 = 1$ donc H_0 est vraie.
 - * Soit $n \in \mathbb{N}$ fixé. On suppose que H_n est vraie. Montrons que H_{n+1} est vraie. $\alpha \leq u_n \leq 1$ et φ est croissante sur $[\alpha, 1]$ donc $\varphi(\alpha) \leq \varphi(u_n) \leq \varphi(1)$.

Or
$$\varphi(\alpha) = \alpha$$
, $\varphi(1) = \frac{3}{4}$, $\varphi(u_n) = u_{n+1}$ donc $\alpha \le u_{n+1} \le 1$.

Ainsi, H_{n+1} est vraie.

- \star On a montré par récurrence que : $\forall n \in \mathbb{N}, \ \alpha \leq u_n \leq 1$
- 12°) Soit $x \in [\alpha, 1]$, on sait déjà que $\varphi'(x) \ge 0$ par 10.

$$\varphi'(x) \le \frac{2}{3} \iff \frac{6x(x^3 + x - 1)}{(3x^2 + 1)^2} \le \frac{2}{3}$$

$$\iff 18x(x^3 + x - 1) \le 2(3x^2 + 1)^2 \quad \text{car } (3x^2 + 1)^2 > 0 \text{ et } 3 > 0$$

$$\iff 18x^4 + 18x^2 - 18x \le 2(9x^4 + 6x^2 + 1)$$

$$\iff 6x^2 - 18x - 2 \le 0$$

$$\iff 3x^2 - 9x - 1 \le 0$$

Or, $3x^2 - 9x - 1 = 3x(x - 3) - 1$. Comme $x \le 1$, $3x^2 - 9x - 1 \le 0$. Ainsi, $\varphi'(x) \le \frac{2}{3}$.

On a montré : $\forall x \in [\alpha, 1], \ 0 \le \varphi'(x) \le \frac{2}{3}$.

13°) φ est dérivable sur $[\alpha, 1]$ et, pour tout $x \in [\alpha, 1], |\varphi'(x)| \leq \frac{2}{3}$.

Donc, par l'inégalité des accroissements finis : $\forall (x,y) \in [\alpha,1]^2$, $|\varphi(x) - \varphi(y)| \leq \frac{2}{3}|x-y|$. Soit $n \in \mathbb{N}$. On pose $x = u_n$ et $y = \alpha$. Alors x et y sont des éléments de $[\alpha,1]$.

Donc,
$$|\varphi(u_n) - \varphi(\alpha)| \le \frac{2}{3}|u_n - \alpha|$$
 ie $|u_{n+1} - \alpha| \le \frac{2}{3}|u_n - \alpha|$

- **14°)** Soit $n \in \mathbb{N}$, on pose $H_n : |u_n \alpha| \le \left(\frac{2}{3}\right)^n |u_0 \alpha|$.
 - \star H_0 est vraie.
 - \bigstar Soit $n\in\mathbb{N}$ fixé. On suppose que H_n est vraie.

$$|u_{n+1} - \alpha| \le \frac{2}{3}|u_n - \alpha|$$
 donc, par H_n , $|u_{n+1} - \alpha| \le \left(\frac{2}{3}\right)^{n+1}|u_0 - \alpha|$.
Ainsi, H_{n+1} est vraie.

 \bigstar On a montré par récurrence que, pour tout $n \in \mathbb{N}$, H_n est vraie.

Ainsi,
$$\forall n \in \mathbb{N}, |u_n - \alpha| \le \left(\frac{2}{3}\right)^n |u_0 - \alpha|$$
.

Or
$$-1 < \frac{2}{3} < 1$$
 donc $\left(\frac{2}{3}\right)^n \xrightarrow[n \to +\infty]{} 0$ donc $\left(\frac{2}{3}\right)^n |u_0 - \alpha| \xrightarrow[n \to +\infty]{} 0$.

On en déduit, par le théorème d'encadrement, que (u_n) converge vers α .

Exercice 4

1°) Soit $z \in \mathbb{C}$, on doit résoudre : $f(z) = -2 \iff z - z^2 = -2 \iff z^2 - z - 2 = 0$. Le discriminant de ce trinôme du second degré vaut $\Delta = 9 = 3^2$, donc ses racines, autrement dit les antécédents de -2, sont $\frac{1+3}{2} = 2$ et $\frac{1-3}{2} = -1$.

Comme il existe un élément de $\mathbb C$ avec plusieurs antécédents, on en tire que f n'est pas injective

 2°) Soit z_1 et z_2 deux complexes distincts.

$$f(z_1) = f(z_2) \iff z_1 - z_1^2 = z_2 - z_2^2$$

$$\iff z_1 - z_2 - (z_1^2 - z_2^2) = 0$$

$$\iff (z_1 - z_2) (1 - (z_1 + z_2)) = 0$$

$$\iff 1 - (z_1 + z_2) = 0 \quad \text{car } z_1 - z_2 \neq 0$$

$$\boxed{f(z_1) = f(z_2) \iff z_1 + z_2 = 1}$$

La condition s'écrit : $\frac{z_1 + z_2}{2} = \frac{1}{2}$. En notant M_1 le point d'affixe z_1 , M_2 le point d'affixe z_2 , et A le point d'affixe $\frac{1}{2}$, cette condition revient à dire que A est le milieu du segment $[M_1M_2]$.

3°) Soit $w \in \mathbb{C}$. On s'intéresse à l'équation d'inconnue $z \in \mathbb{C}$:

$$f(z) = w \Longleftrightarrow -z^2 + z - w = 0$$

Il s'agit d'une équation du second degré à coefficients complexes, donc elle admet toujours au moins une solution dans \mathbb{C} . Donc f est surjective.

L'équation admet une unique solution si et seulement si son discriminant est nul. Son discriminant est $\Delta = 1^2 - 4(-w)(-1) = 1 - 4w$, donc $\Delta = 0 \iff w = \frac{1}{4}$.

Ainsi, li y a un seul élément de $\mathbb C$ qui admet un seul antécédent, c'est $\frac{1}{4}$.

4°) Soit $z \in \mathbb{C}$. On a : $z \in f^{-1}(\mathbb{R}) \iff f(z) \in \mathbb{R}$.

Notons x = Re(z) et y = Im(z).

On a f(z)=(x+iy)(1-x-iy) donc $\operatorname{Im}(f(z))=y(1-x)-xy=y-2xy=y(1-2x)$. Ainsi :

$$z \in f^{-1}(\mathbb{R}) \iff y(1-2x) = 0$$

 $\iff y = 0 \text{ ou } x = \frac{1}{2}$
 $\iff z \in \mathbb{R} \text{ ou } z = \frac{1}{2} + iy, y \in \mathbb{R}$

Donc $f^{-1}(\mathbb{R}) = \mathbb{R} \cup \{\frac{1}{2} + iy/y \in \mathbb{R}\}$. Géométriquement, il s'agit de la réunion de l'axe des abscisses (droite d'équation y = 0) et de la droite verticale d'équation $x = \frac{1}{2}$.

 5°) a) Soit $\theta \in \mathbb{R}$.

$$f\left(\frac{1}{2} + e^{i\theta}\right) = \left(\frac{1}{2} + e^{i\theta}\right) \left(1 - \frac{1}{2} - e^{i\theta}\right)$$
$$= \left(\frac{1}{2} + e^{i\theta}\right) \left(\frac{1}{2} - e^{i\theta}\right)$$
$$f\left(\frac{1}{2} + e^{i\theta}\right) = \frac{1}{4} - e^{i2\theta}$$

b) Par définition, $\Gamma = \left\{ z \in \mathbb{C} \ / \ \left| z - \frac{1}{2} \right| = 1 \right\}$; mais comme les complexes de module 1 sont les nombres s'écrivant $e^{i\theta}$ avec $\theta \in \mathbb{R}$, on peut obtenir une forme paramétrée :

$$\Gamma = \left\{ z \in \mathbb{C} \ / \ \exists \, \theta \in \mathbb{R}, \ z - \frac{1}{2} = e^{i\theta} \right\} = \left\{ \frac{1}{2} + e^{i\theta} \ / \ \theta \in \mathbb{R} \right\}.$$

Cela permet d'affirmer que $f(\Gamma) = \left\{ f\left(\frac{1}{2} + e^{i\theta}\right) \ / \ \theta \in \mathbb{R} \right\}$.

D'après la question a, on a donc $f(\Gamma) = \left\{ \frac{1}{4} - e^{i2\theta} \ / \ \theta \in \mathbb{R} \right\} = \left\{ \frac{1}{4} + e^{i(\pi + 2\theta)} \ / \ \theta \in \mathbb{R} \right\}$; et comme $\pi + 2\theta$ décrit \mathbb{R} quand θ décrit \mathbb{R} , $f(\Gamma) = \left\{ \frac{1}{4} + e^{i\theta} \ / \ \theta \in \mathbb{R} \right\}$.

Comme plus haut, on peut réécrire : $f(\Gamma) = \left\{ z \in \mathbb{C} \ / \ \left| z - \frac{1}{4} \right| = 1 \right\}$.

Il s'agit du cercle Γ' de centre $\frac{1}{4}$ et de rayon 1.