Линейная алгебра. Теория

Александр Сергеев

1 Линейное отображение

1.1 Основные определения. Теорема о ранге и дефекте линейного отображения

Пусть V,U - линейные пространства над полем $K(\mathbb{R},\mathbb{C})$

Определение

 $\mathcal{A}:U\to V$ — линейное отображение, если $\forall\,\lambda\in K,u_1,u_2\in U$ $\mathcal{A}(\lambda u_1+u_2)=\lambda\mathcal{A}(u_1)+\mathcal{A}(u_2)$

Замечания

- 1. Обозначение: $\mathcal{A}(u) = \mathcal{A}u$
- 2. $\mathcal{A}(\mathbb{O}_U) = \mathbb{O}_V$
- 3. Для $\mathcal{A}, \mathcal{B}, \lambda, u$ поточечно определены $\mathcal{A}u + \mathcal{B}u, \lambda \mathcal{A}u$

Примеры

- 1. $\mathbb{O}u = \mathbb{O}_V$
- 2. $\epsilon v = v$
- 3. $V,U=P_n$ множество многочленов степени $\leq n,A=\frac{\mathrm{d}}{\mathrm{d}\,t}$ дифференциальный оператор
- 4. $U = \mathbb{R}^n, V = \mathbb{R}^m, B$ матрица $\mathcal{A}u = B \cdot u$

Определение

 $L(U,V) = \operatorname{Hom}_K(U,V) = \operatorname{Hom}(U,V)$ – множество всех линейных отображений $U \to V$

Определим операции

$$C = A + B \Leftrightarrow Cu = (A + B)u = Au + Bu$$

$$\mathcal{C} = \lambda \mathcal{A} \Leftrightarrow \mathcal{C}u = (\lambda \mathcal{A})u = \lambda \mathcal{A}u$$

L(U,V) — линейное пространство

Определение

 $\operatorname{Im} \mathcal{A} = \{v = \mathcal{A}u : u \in U\}$ – образ линейного отображения

Замечание

 $\operatorname{Im} \mathcal{A} \subset V$ – линейное подпространство

Если $\operatorname{Im} \mathcal{A}$ – конечномерное, то $\dim \operatorname{Im} \mathcal{A} =: \operatorname{rg} \mathcal{A}$

Определение

 $\operatorname{Ker} \mathcal{A} = \{u \in U : \mathcal{A}u = \mathbb{O}_V\}$ — ядро линейного отображения (прообраз \mathbb{O}_V)

Замечание

 $\operatorname{Ker} \mathcal{A} \neq \emptyset$

 $\mathbb{O}_U \in \operatorname{Ker} \mathcal{A}$

 $\operatorname{Ker} \mathcal{A} \subset U$ — линейное подпространство

Если $\operatorname{Ker} \mathcal{A}$ конечномерно, то $\dim \operatorname{Ker} \mathcal{A} = \operatorname{def} \mathcal{A}$

Замечание 2

Изоморфизм – частный случай линейного отображения

$$\mathcal{A}$$
 - изоморфизм $\Leftrightarrow \left\{ egin{array}{l} \mathcal{A} \in L(U,V) \ \operatorname{Im} \mathcal{A} = V \ \operatorname{Ker} \mathcal{A} = \mathbb{O}_U (\mathrm{тривиально}) \end{array} \right.$

Следствие

Если U, V – конечномерные

$$\mathcal{A}$$
 - изоморфизм $\Leftrightarrow \left\{ egin{aligned} \mathcal{A} \in L(U,V) \\ \operatorname{rg} \mathcal{A} = \dim V \\ \operatorname{def} \mathcal{A} = 0 \end{aligned} \right.$

Определение

 $\mathcal{A} \in L(U, V)$

- \mathcal{A} сюръективное $\Leftrightarrow \operatorname{Im} \mathcal{A} = V$
- \mathcal{A} инъективное $\Leftrightarrow \operatorname{Ker} \mathcal{A} = \{ \mathbb{O}_U \}$
- ullet $\mathcal A$ биективно \Leftrightarrow сюръективно + инъективно \Leftrightarrow изоморфизм

- \mathcal{A} эндоморфизм \Leftrightarrow линейный оператор $\Leftrightarrow \mathcal{A} \in L(V,V) \Leftrightarrow \mathcal{A} \in \operatorname{End}_K(V)$
- \mathcal{A} автоморфизм \Leftrightarrow эндоморфизм + изоморфизм $\Leftrightarrow \mathcal{A} \in \operatorname{Aut}_K(V)$

Примеры

- 1. $\mathbb{O} \in L(U, V)$
- 2. $\epsilon \in \operatorname{Aut}(V)$ автоморфизм
- 3. $\mathcal{A} = \frac{\mathrm{d}}{\mathrm{d}\,t}$ $\mathcal{A} \in L(P_n, P_{n-1})$ сюръекция, не инъекция, не эндоморфизм $\mathcal{A} \in L(P_n, P_n)$ не сюръекция, не инъекция, эндоморфизм
- 4. $U=\mathbb{R}^n, V=\mathbb{R}^m, A_{m \times n}$ матрица

Определение

 $\operatorname{Im} A=\{y=Ax\in\mathbb{R}^m:x\in\mathbb{R}^n\}$ — образ матрицы $\operatorname{Ker} A=\{x\in\mathbb{R}^n:Ax=\emptyset\}$ — ядро матрицы $\operatorname{def} A=\operatorname{dim}\operatorname{Ker} A$ — дефект матрицы $\operatorname{rg} A=\operatorname{dim}\operatorname{Im} A$ — согласуется со старыми определени

 $\operatorname{rg} A = \dim \operatorname{Im} A$ — согласуется со старыми определениями ранга матрицы

Доказательство

Для $y \in \operatorname{Im} A$ $y = Ax = x_1 A_1 + \ldots + x_n A_n$ $\operatorname{Im} A = \operatorname{span}(A_1, \ldots, A_n)$ $\dim \operatorname{Im} A = \operatorname{rg} A$

Утверждение

 $\operatorname{Ker} A$ - множество решений Ax = 0Тогда $\operatorname{def} A = \dim \operatorname{Ker}(A) = n - \operatorname{rg} A$

Отображение u = Av:

- (a) Сюръекция $\Leftrightarrow \operatorname{rg} A = m$
- (b) Инъекция $\Leftrightarrow \operatorname{rg} A = n$
- (c) Биекция $\Leftrightarrow n = m = \operatorname{rg} A$
- (d) Эндоморфизм $\Leftrightarrow n = m$
- (e) Автоморфизм $n = m = \operatorname{rg} A$

Определение

 $\mathcal{AB} = \mathcal{A} \circ \mathcal{B}$ – композиция

 $\mathcal{A} \circ \mathcal{B}$ – линейное отображение

Свойства

1.
$$(A_1 + A_2)\mathcal{B} = A_1\mathcal{B} + A_2\mathcal{B}$$

 $\mathcal{A}(\mathcal{B}_1 + \mathcal{B}_2) = \mathcal{A}\mathcal{B}_1 + \mathcal{A}\mathcal{B}_2$ – дистрибутивность

2.
$$(\lambda A)B = \lambda(AB) = A(\lambda B)$$
 – однородность

3.
$$(\mathcal{AB})\mathcal{C} = \mathcal{A}(\mathcal{BC}) = \mathcal{ABC}$$
 – ассоциативность

4.
$$A$$
, B — изоморфизм $⇒ AB$ — изоморфизм

Определение

Пусть $\mathcal{A} \in L(U,V)$ – изоморфизм

$$\forall v \in V \ \exists \, !u : \ \mathcal{A}u = v$$

Тогда зададим $\mathcal{A}^{-1}v = u$

$$\mathcal{A}^{-1}:V\to U$$

 \mathcal{A}^{-1} – изоморфизм, обратный к \mathcal{A}

$$\mathcal{A}\mathcal{A}^{-1} = \epsilon_V$$

$$\mathcal{A}^{-1}\mathcal{A}=\epsilon_U$$

Замечание

 $\operatorname{End}(V)$ - ассициативная унитарная алгебра

 $\operatorname{Aut}(V)$ - ассоциативная унитарная алгебра с делением

Определение

 $\mathcal{A} \in L(U,V), U_0 \subset U$ — линейное подпространство

Тогда $\mathcal{A}_0:U_0\to V$ называется сужением на линейное подпространство $U_0,$ если $\forall\,u\in U_0$ $\mathcal{A}_0u=\mathcal{A}u$

Очевидно $\mathcal{A}_0 \in L(U_0, V)$

$$A_0 =: A|_{U_0}$$

Утверждение

A изоморфизм $\Rightarrow A_0$ изоморфизм $\in L(U_0, \operatorname{Im} A_0)$

Доказательство

 $\mathcal{A}_0:U_0 o\operatorname{Im}\mathcal{A}_0$ - сюръекция

 $\operatorname{Ker} \mathcal{A}_0 \subset \operatorname{Ker} \mathcal{A} = \{\mathbb{O}_U\}$ – из изоморфизма

Отсюда Ker $\mathcal{A}_0 = \{ \mathbb{O}_U \}$

Тогда \mathcal{A}_0 инъекция, а значит изоморфизм

Теорема о ранге и дефекте линейного отображения

U, V – конечномерные

$$A \in L(U, V)$$

Tогда $\dim U = \operatorname{rg} A + \operatorname{def} A$

Доказательство

$$U_0 = \operatorname{Ker} A \subset U$$

Дополним U_0 до U: $U = U_0 \oplus U_1$

Пусть
$$\mathcal{A}_1 = \mathcal{A}|_{U_1} : U_1 \to \operatorname{Im} \mathcal{A}_1$$

 $\forall u \in U \ u = u_0 + u_1, u_0 \in U_0, u_1 \in U_1$ – единственным образом

$$\mathcal{A}u = \mathcal{A}u_0 + \mathcal{A}u_1 = \mathcal{A}u_1$$

Отсюда $\operatorname{Im} \mathcal{A} = \operatorname{Im} \mathcal{A}_1 \Rightarrow \dim \operatorname{Im} \mathcal{A} = \dim \operatorname{Im} \mathcal{A}_1 \Rightarrow \operatorname{rg} \mathcal{A} = \dim \operatorname{Im} \mathcal{A}_1$

Покажем, что A_1 изоморфизм:

Сюръекция, т.к. действует в $\operatorname{Im} \mathcal{A}_1$

$$\operatorname{Ker} A_1 \subset \operatorname{Ker} A = U_0, \operatorname{Ker} A_1 \subset U_1$$

Отсюда $\operatorname{Ker} \mathcal{A}_1 \subset U_0 \cap U_1 = \{0_U\}$ из дизъюнктности

Тогда
$$\operatorname{Ker} \mathcal{A}_1 = \{ \mathbb{O}_U \}$$
 – тривиально

Тогда \mathcal{A}_1 инъективно

Отсюда \mathcal{A}_1 изоморфизм, т.е. $\dim U_1 = \dim \operatorname{Im} \mathcal{A}_1 = \operatorname{rg} \mathcal{A}$

Тогда
$$\dim U = \dim U_0 + \dim U_1 = \det A + \operatorname{rg} A$$
, ч.т.д.

1.2 Матрица линейного отображения, изоморфизм алгебр изменение матрицы отображения при замене базиса

Далее будем говорить про конечномерные U, V

Определение

$$\mathcal{A} \in L(U, V)$$

$$\xi_1,\dots,\xi_n$$
 – базис U

$$u_1, \dots, \nu_m$$
 – базис V

$$\forall u \in U \ u = \sum_{i=1}^{n} u_{i} \xi_{i} \leftrightarrow u = \begin{pmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{n} \end{pmatrix}$$

$$\forall v \in V \ v = \sum_{i=1}^{m} v_{i} \nu_{i} \leftrightarrow v = \begin{pmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{m} \end{pmatrix}$$

$$\forall v \in V \ v = \sum_{i=1}^{m} v_i \nu_i \leftrightarrow v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{pmatrix}$$

$$\forall v \in \operatorname{Im} A \ v = Au = \sum_{i=1}^{n} u_i A \xi_i$$

 \mathcal{A} , как линейное отображение, полностью определяется значениями \mathcal{A} на базисных векторах

$$\mathcal{A}_{\xi_i} = \sum_{j=1}^m a_{ji} \nu_j \leftrightarrow \begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix}$$

 $A = (A_1 \dots A_n)$ - матрица линейного отображения в базисах (ξ, ν)

Если $\mathcal{A} \in \operatorname{End}(v)$ – линейный оператор, то считаем, что исходный и конечный базис совпадан

$$v = \sum_{j=1}^{m} v_j \nu_j$$

$$v = \mathcal{A}u = \sum_{i=1}^{n} u_i \mathcal{A}_{\xi_i} = \sum_{i=1}^{n} u_i \sum_{j=1}^{m} a_{ji} \nu_j = \sum_{j=1}^{m} (\sum_{i=1}^{n} a_{ji} u_i) \nu_j$$

Т.к. координаты введены единственным образом, то $\forall j \ v_j = \sum_{i=1}^n a_{ji} u_i \Leftrightarrow$

$$v = Au \Leftrightarrow v = Au$$

Примеры

1.
$$\epsilon: \underset{e_1...e_n}{V} \to \underset{e_1...e_n}{V}$$

Тогда $\epsilon \leftrightarrow E$

2.
$$\epsilon: V \to V$$
 Тогда $\epsilon \leftrightarrow T_{\nu \to \xi} = T_{e \to e'}$

Утверждение

 $L(U,V) \cong M_{m \times n}$ – пространство всех матриц $A_{m \times n}$, dim U=n, dim V=m (при фиксированных базисах U,V)

Доказательство

Соответствие между \mathcal{A} и A взаимооднозначное

Докажем линейность

$$(\mathcal{A} + \lambda \mathcal{B})_{\xi_i} = \mathcal{A}_{\xi_i} + \lambda \mathcal{B}_{\xi_i} = \sum_{i=1}^m a_{ji} \nu_j + \lambda \sum_{i=1}^m b_{ji} \nu_j = \sum_{i=1}^m (a_{ji} + \lambda b_{ji}) \nu_j \leftrightarrow A + \lambda B$$

Утверждение

$$\mathcal{AB} \leftrightarrow AB$$

Доказательство

$$U_{\xi_{1}\dots\xi_{n}} \xrightarrow{\mathcal{B}} W_{\theta_{1}\dots\theta_{r}} \xrightarrow{\mathcal{A}} V_{\nu_{1}\dots\nu_{m}} (\mathcal{AB})_{\xi_{i}} = \mathcal{A}(\mathcal{B}_{\xi_{i}}) = \mathcal{A}(\sum_{k=1}^{r} b_{ki}\theta_{k}) = \sum_{k=1}^{r} b_{ki}\mathcal{A}_{\theta_{k}} =$$

$$\sum_{k=1}^{r} b_{ki} \sum_{j=1}^{m} a_{jk} \nu_{j} = \sum_{j=1}^{m} \left(\sum_{k=1}^{r} a_{jk} b_{ki} \right) \nu_{i} = \sum_{j=1}^{m} A B_{ji} \nu_{j} \leftrightarrow \left(\vdots \right)$$

Утверждение

Пусть $\mathcal{A} \in \operatorname{Aut}(V)$

(В одном базисе)

$$\mathcal{A}^{-1} \leftrightarrow A^{-1}$$

Доказательство

Пусть $\mathcal{A}^{-1} \leftrightarrow B$

$$\mathcal{A}\mathcal{A}^{-1} = \epsilon \leftrightarrow AB = E$$

Отсюда $B = A^{-1}$

Утверждение

A изоморфно $\Rightarrow A_0$ изоморфно

Доказательство

 $A_0:U_0\to\operatorname{Im}\mathcal{A}_0$ – сюръекция

 $\operatorname{Ker} A_0 \subset \operatorname{Ker} A = \{ \mathbb{O}_U \}$

Отсюда $\operatorname{Ker} A_0 = \{ \mathbb{O}_U \}$

Отсюда A_0 - инъективно, а значит изоморфизм

Теорема о связи матриц линейных отображений в разных базиcax

$$\mathcal{A} \in L(U, V)$$

$$\mathcal{A}: \underset{\xi}{U} \to \underset{\nu}{V} \leftrightarrow A$$

$$\mathcal{A}: \overset{\zeta}{\underset{\varepsilon'}{U}} \to \overset{\nu}{\underset{\nu'}{V}} \leftrightarrow A'$$

 $T_{\xi \to \xi'} T_{\nu \to \nu'}$ – матрицы перехода

Тогда $A' = T_{\nu' \to \nu} A T_{\varepsilon \to \varepsilon'}$

Доказательство

Пусть
$$\xi_U : U \to U,$$

 $\xi_V : V \to V,$
 $A = \xi_v A \xi_u$

$$\xi_V: V \to V$$

$$\mathcal{A} = \xi_v \mathcal{A} \xi_u$$

$$A' = T_{\nu' \to \nu} A T_{\varepsilon \to \varepsilon'}$$

Следствие

$$\mathcal{A} \in \operatorname{End}(V)$$

$$\mathcal{A}: \underset{e}{V} \to \underset{e}{\overset{\frown}{V}} \leftrightarrow A$$

$$A: V \to V \leftrightarrow A'$$

$$A' = T_{e' \to e} A T_{e \to e'}$$

Определение

Матрицы $A_{n\times n}, B_{n\times n}$ подобны, если $\exists C$ невырожденная: $A = C^{-1}BC$ A и A' – матрицы одного и того же оператора в разных базисах – подобны

Утверждение

$$\mathcal{A} \in L(U, V) \leftrightarrow A$$

Тогда $\operatorname{Ker} A \leftrightarrow \operatorname{Ker} A$

 $\operatorname{Im} \mathcal{A} \leftrightarrow \operatorname{Im} A$

Доказательство

$$\operatorname{Im} \mathcal{A} = \operatorname{span}(\mathcal{A}_{\xi_1}, \dots, \mathcal{A}_{\xi_n}) \leftrightarrow \operatorname{span}(A_1, \dots, A_n) = \operatorname{Im} A$$

$$\operatorname{Ker} \mathcal{A} = \{ u \in U : \mathcal{A} = 0 \}$$

$$\mathcal{A}u = 0 \leftrightarrow Au = 0$$

Тогда $\operatorname{Ker} \mathcal{A} = \operatorname{Ker} A$

1.3 Инвариантность линейного отображения

Определение

Инвариантностью/инвариантном называется свойство, которое не меняется при определенного рода преобразованиях

Теорема 1

$$\mathcal{A} \in L(U,V)$$

 $\operatorname{rg} A$ и $\operatorname{def} A$, где $A \leftrightarrow \mathcal{A}$, не зависят от выбора базиса, т.е. являются инвариантами относительно выбора базиса

Доказательство

$$\mathcal{A}: U \to V \leftrightarrow A$$

$$\operatorname{Im} \tilde{\mathcal{A}} = \operatorname{span}(\mathcal{A}_{\xi_1}, \dots, \mathcal{A}_{\xi_n}) \leftrightarrow \operatorname{span}(A_1, \dots, A_n), \mathcal{A}_{\xi_i} \leftrightarrow A_i$$

$$\operatorname{rg} A = \dim \operatorname{Im} A = \dim \operatorname{span}(A_1, \dots, A_n) = \operatorname{rg} A$$

$$\operatorname{rg} A + \operatorname{def} A = n = \operatorname{rg} A + \operatorname{def} A \Rightarrow \operatorname{def} A = \operatorname{def} A$$

Следствие

 \mathcal{A} изоморфизм \Leftrightarrow $\exists A^{-1}$, где $A \leftrightarrow \mathcal{A}$

Определение

$$\mathcal{A} \in \operatorname{End}(V)$$

$$e_1,\ldots,e_n$$
 – базис V

Тогда $\det \mathcal{A} := \det(\mathcal{A}e_1, \dots, \mathcal{A}e_n)$ – определитель системы векторов в базисе e_1, \dots, e_n

Теорема 2

Значение $\det A$ не зависит от выбора базиса e_1, \ldots, e_n (т.е. является инвариантом), причем $\det A = \det A$, где A – матрица оператора в некотором базисе

Доказательство

Выберем базис e_1, \ldots, e_n

Тогда $\mathcal{A} \leftrightarrow A_{n \times n}$

$$\det A = \det(Ae_1, \dots, Ae_n) = \det(\sum_{i_1=1}^n a_{i_1 1} e_{i_1}, \dots, \sum_{i_n=1}^n a_{i_n n} e_{i_n}) =$$

$$\sum_{i_1=1}^n \dots \sum_{i_n=1}^n a_{i_1 1} \dots a_{i_n n} \det(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma \in S_n} (-1)^{\operatorname{inv}(\sigma)} a_{i_1 1} \dots a_{i_n n} \det(e_1, \dots, e_n) =$$

$$\sum_{\sigma \in S} (-1)^{\operatorname{inv}(\sigma)} a_{i_1 1} \dots a_{i_n n} = \det A$$

Т.о. в нашем базисе это верно

Теперь докажем, что в $e_1', \dots e_n'$ – базисе V – это тоже верно

$$\mathcal{A} \underset{e'}{\leftrightarrow} A'$$

 $\det A = \det A'$

$$T = T_{e \to e'}$$

$$A' = T^{-1}AT$$

Тогда $\det A' = \det(T^{-1}AT) = \det T^{-1} \det A \det T = \det A$

Следствие

 $\forall f$ – n-форма на V

$$\forall \xi_1, \dots, \xi_n \in V \ f(\mathcal{A}\xi_1, \dots, \mathcal{A}\xi_n) = \det \mathcal{A}f(\xi_1, \dots, \xi_n)$$

Доказательство

$$g(\xi_1,\ldots,\xi_n):=f(\mathcal{A}\xi_1,\ldots,\mathcal{A}\xi_n)$$

$$g$$
 — n-форма, т.к. f — n-форма

$$g(\xi_1,\ldots,\xi_n)=g(e_1,\ldots,e_n)\det(\xi_1,\ldots,\xi_n)$$

$$g(\xi_1,\ldots,\xi_n)=f(\mathcal{A}\xi_1,\ldots,\mathcal{A}\xi_n)=\det Af(e_1,\ldots,e_n)$$
 (см. доказательство теоремы)

$$g(\xi_1,\ldots,\xi_n) = g(e_1,\ldots,e_n)\det(\xi_1,\ldots,\xi_n) = \det \mathcal{A}f(e_1,\ldots,e_n)\det(\xi_1,\ldots,\xi_n) = \det \mathcal{A}f(\xi_1,\ldots,\xi_n)$$

Следствие 2

$$\mathcal{A}, \mathcal{B} \in \text{End}(V) \Rightarrow \det(\mathcal{AB}) = \det \mathcal{A} \det \mathcal{B}$$

Следствие 3

$$\mathcal{A} \in \operatorname{Aut}(V) \leftrightarrow \det \mathcal{A} \neq 0$$
Причем $\det \mathcal{A}^{-1} = \frac{1}{\det \mathcal{A}}$
 $\det \mathcal{A}^{-1} = \det A^{-1}$
Доказательство
 $\mathcal{A} \in \operatorname{Aut}(V) \Leftrightarrow \exists \mathcal{A}^{-1} \in \operatorname{Aut}(V)$
 $\mathcal{A}\mathcal{A}^{-1} = \epsilon$
 $\det \mathcal{A}\mathcal{A}^{-1} = \det \mathcal{A} \det \mathcal{A}^{-1} = \det \epsilon = 1$

Примеры

1. B V_3

$$f(a,b,c)=(a,b,c)=$$
 ориентированный объем = $\det(a,b,c)$ $\mathcal{A}:V_3\to V_3$ $(\mathcal{A}a,\mathcal{A}b,\mathcal{A}c)=\det\mathcal{A}\det(a,b,c)$

 $\lambda = \det A$ – коэффициент пропорциональности объемов

- (a) $Av = \mu v$ оператор подобия Тогда $\lambda = \mu^3$
- (b) Поворот

Пусть i, j, k перешли в e_1, e_2, e_3 поворотом

Тогда
$$e_i = \begin{pmatrix} \cos \alpha_i \\ \cos \beta_i \\ \cos \gamma_i \end{pmatrix}$$

Тогда $\mathcal{A} \underset{ijk}{\longleftrightarrow} \begin{pmatrix} \cos \alpha_1 & \cos \alpha_2 & \cos \alpha_3 \\ \cos \beta_1 & \cos \beta_2 & \cos \beta_3 \\ \cos \gamma_1 & \cos \gamma_2 & \cos \gamma_3 \end{pmatrix}$ — матрица поворота $f(\mathcal{A}a, \mathcal{A}b, \mathcal{A}c) = \det A \det(a, b, c)$ $\det A = (e_1, e_2, e_3) = 1$ — смешанное произведение Отсюда при повороте объем сохраняется

Определение

$$\operatorname{tr} A := \sum_{i=1}^n a_{ii}$$
 – след матрицы

Если матрицы подобные, то $\operatorname{tr} A = \operatorname{tr} B$

Доказательство

A,B – подобные $\Rightarrow \exists\,$ невырожденная $C:A=C^{-1}BC=SBC$

$$\operatorname{tr} A = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \sum_{k=1}^{n} S_{ik} (BC)_{ki} = \sum_{i=1}^{n} \sum_{k=1}^{n} S_{ik} \sum_{m=1}^{n} B_{km} C_{ki} = \sum_{m=1}^{n} \sum_{k=1}^{n} B_{km} \sum_{i=1}^{n} C_{mi} S_{ik} = \sum_{m=1}^{n} \sum_{k=1}^{n} B_{km} E_{mk} = \sum_{k=1}^{n} B_{kk} = \operatorname{tr} B$$

Следствие

A и A' матрицы $\mathcal{A} \in \mathrm{End}(V)$ в разных базисах

Тогда $\operatorname{tr} A = \operatorname{tr} A'$ (из формулы перехода)

Определение

 $\operatorname{tr} \mathcal{A} := \operatorname{tr} A$, где A – матрица \mathcal{A} в некотором базисе (не зависит от выбора базиса)

Определение

 $L \subset V, \mathcal{A} \in \text{End}(V)$

L называется инвариантным относительно \mathcal{A} , если $\forall x \in L \ \mathcal{A}x \in L$ Если L – линейное подпространство, то говорим об инвариантном линейном подпространстве

Примеры

- $1. \ \mathbb{O}, V$
- 2. Ker \mathcal{A} , Im \mathcal{A}
- 3. \mathcal{A} вращение пространства вокруг оси l на фиксированный угол Тогда $l, L \perp l$ инвариантное пространство (L плоскость) Линейные многообразия $P = x_0 + L$ линейные многообразия инвариантные пространства (хоть и не линейные пространства)

Теорема 4

 $L \subset V$ — инвариантное линейное подпространство относительно $\mathcal{A} \in \operatorname{End}(V)$

Тогда \exists базис V такой, что матрица оператора будет иметь в нем ступенчатый вид $A=\begin{pmatrix}A^1&A^2\\\emptyset&A^3\end{pmatrix}$, где $A^1_{k\times k}, k=\dim L$

Доказательство

Пусть L – инвариантное линейное подпространство относительно \mathcal{A} $\forall x \in L \ \mathcal{A}x \in L$

Пусть e_1, \ldots, e_k – базис L

Дополним его до базиса V:

$$V = \operatorname{span}(e_1, \dots, e_k, e_{k+1}, \dots, e_n)$$

$$\mathcal{A}e_{j\in 1...k} \in L \Rightarrow \mathcal{A}e_{j} = \sum_{i=1}^{k} a_{ij}e_{i} \leftrightarrow A_{j} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{k_{j}} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Отсюда Видим, что A имеет ожидаемый вид

Следствие 1

 $L_1, L_2 \subset V : L_1 \oplus L_2 = V$ – инвариантные линейные пространства относительно $\mathcal{A} \in \text{End}(V)$

Тогда существует базис V такой, что матрица оператора $\mathcal A$ имеет блочнодиагональный вид

$$A = \begin{pmatrix} A^1 & \mathbb{O} \\ \mathbb{O} & A^2 \end{pmatrix}$$
, где $A^i_{\dim L_i \times \dim L_i}$

Доказательство

Пусть e_1, \ldots, e_k – базис L_1

$$e_{k+1},\ldots,e_n$$
 – базис L_2

Тогда
$$\mathcal{A}e_{j\in 1...k}\in L_1\leftrightarrow \begin{pmatrix}A_j^1\\\emptyset\end{pmatrix}$$

Тогда
$$\mathcal{A}e_{j\in k+1...n}\in L_2\leftrightarrow \begin{pmatrix} \mathbb{Q}\\A_{j-k}^2 \end{pmatrix}$$

Следствие 2

$$V = \bigoplus_{i=1}^{m} L_i$$

 $L_i \subset V$ – инвариантные линейные пространства относительно $\mathcal{A} \in \operatorname{End}(V)$ Тогда существует базис V такой, что матрица оператора $\mathcal A$ имеет блочнодиагональный вид(аналогично предыдущему следствию)

Пусть $A|_{L_j}:L_j\to L_j$ (эндоморфизм)

Тогда $\mathcal{A}|_{L_j} \leftrightarrow A_i$

Следствие 3
$$V = \bigoplus_{i=1}^{m} L_i$$

 $L_i \subset V$ – инвариантные линейные пространства относительно $\mathcal{A} \in \operatorname{End}(V)$

Тогда
$$\operatorname{Im} \mathcal{A} = \bigoplus_{i=1}^m \operatorname{Im}(A|_{L_j})$$

Доказательство

$$V = \bigoplus_{i=1}^{m} L_i$$
 $\forall x \in V \; \exists \, ! x_1 \in L_1, \ldots, x_m \in L_m : \; x = \sum_{i=1}^{m} x_i$
 $\mathcal{A}x = \sum_{i=1}^{m} \mathcal{A}x_i$
 $\mathcal{A}x_i \in \operatorname{Im} \mathcal{A}_i$
Отсюда $\operatorname{Im} \mathcal{A} = \sum_{i=1}^{m} \operatorname{Im} \mathcal{A}_i$
Докажем дизъюнктность
Пусть $y_i \in \operatorname{Im} \mathcal{A}_i$
Тогда $\exists \, x_i \in L_i : y_i = \mathcal{A}x_i = \mathcal{A}_i x_i$
 $y_1 + \ldots + y_m = \emptyset \Leftrightarrow \mathcal{A}x_1 + \ldots + \mathcal{A}x_m = \emptyset$
 $\mathcal{A}x_i \in L_i$, т.к. L_i – инвариант
Т.к. $L_1 \ldots L_m$ – дизъюнктны, то $\mathcal{A}x_i = \emptyset$
Отсюда $y_i = \emptyset$
Отсюда $\operatorname{Im} \mathcal{A}_i$ дизъюнктны

1.4 Собственные числа и собственные векторы линейного оператора. Характеристический многочлен. Алгеброическое и геометрическое кратности собственного числа

V – линейное пространство над полем $K(\mathbb{R},\mathbb{C})$

Определение

 $\lambda \in K$ — собственное число $\mathcal{A} \in \operatorname{End}(V)$, если $\exists v \neq 0 \in V : \mathcal{A}v = \lambda v$ v — собственный вектор \mathcal{A} , отвечающий собственному числу λ

Отсюда
$$v - \mathrm{CB} \Leftrightarrow (\mathcal{A} - \lambda \epsilon)v = \emptyset$$
 $V_{\lambda} = \mathrm{Ker}(\mathcal{A} - \lambda \epsilon) = (\mathrm{множество} \ \mathrm{Bcex} \ \mathrm{CB} \ \mathcal{A}, \ \mathrm{отвечающиx} \ \lambda) \cup \{\emptyset\} - \mathrm{соб-}$
ственное подпространство \mathcal{A} , отвечающее λ
 $\gamma(\lambda) := \dim V_{\lambda}$ – геометрическая кратность числа λ
 $V_{\lambda}, \gamma_{\lambda}$ – инвариантны относительно оператора \mathcal{A} и выбора базиса **Примеры**

1. Оператор подобия:

$$\forall v \in V \ \mathcal{A}v := \lambda v$$

У него λ – собственное число, $V = V_x$
 $\mathcal{A} \underset{e}{\leftrightarrow} \lambda E$

- 2. \mathcal{A} поворот на плоскости относительно начала координат на угол $\alpha \in (-\frac{\pi}{2}, \frac{\pi}{2})$
- 3. $\lambda = 0$ собственное число \mathcal{A} \Leftrightarrow $\operatorname{Ker} \mathcal{A} \neq \{\emptyset\}$ $\Leftrightarrow \mathcal{A}$ не изоморфизм \Leftrightarrow $\det \mathcal{A} = \emptyset$
- 4. v_1,\ldots,v_n базис V, где v_j СВ ${\mathcal A}$ для стационарного числа λ_j

Научимся находить СЧ и СВ

 $\chi_{\mathcal{A}}(t)=\det(A-tE)=(-1)^nt^n+(-1)^{n-1}t^{n-1}\operatorname{tr} A+\ldots+\det A$ – характеристический могочлен $\mathcal{A}(A)$ λ – СЧ \Leftrightarrow $\chi_{\mathcal{A}}(\lambda)=0$ \wedge $\lambda\in K$

Из основной теоремы алгебры $\chi_{\mathcal{A}}(\lambda)$ имеет ровно n корней с учетом кратности (некоторые из которых могут быть комплексными)

Если $\lambda_{i\in 1...n}$ – корни, то $\det A=\lambda_1\lambda_2\dots\lambda_n$ (т.к. свободный член χ) Т.о. $\det A=0 \leftrightarrow \exists \ \lambda_i=0$

Также из теоремы Виета $\operatorname{tr} A = \lambda_1 + \ldots + \lambda_n$

$$\chi_{\mathcal{A}}(t) = (-1)^n \prod_{\substack{\lambda \ - \ \text{корень}}} (t-\lambda)^{\alpha(\lambda)},$$
 где $\alpha(\lambda)$ – алгебраическая кратность СЧ λ (кратность корня)

Рассмотрим пример с поворотом в \mathbb{R}^2 на $\alpha \in (-\pi, \pi)$

Найдем характеристический многочлен:

$$\chi_{\mathcal{A}}(t) = (\cos \alpha - t)^2 + \sin^2 \alpha = \cos^2 \alpha - 2t \cos \alpha + t^2 + \sin^2 \alpha = t^2 - 2t \cos \alpha + 1$$
 Очевидно, что у данного многочлена нет вещественных корней, а значит нет СЧ и СВ

$$\det A = 1, \operatorname{tr} A = 2\cos\alpha$$

Теорема 1

$$\forall A \in \text{End}(V), \lambda - \text{CY } 1 \leq \gamma(\lambda) \leq \alpha(\lambda)$$

Доказательство

$$1 \leq \gamma(\lambda)$$
 очевидно, т.к. $\gamma(\lambda) = \dim V_{\lambda} = \gamma$

Пусть v_1, \ldots, v_{γ} – базис V_{λ}

 V_{λ} – инвариант относительно ${\cal A}$

Тогда существует базис V_{λ} такой, что A имеет ступенчатый вид $A=\begin{pmatrix}A^1&A^3\\0&A^2\end{pmatrix}$

Отсюда $\chi_A(t) = \det(A - tE) = |A^1 - tE||A^2 - tE| = \chi_{A^1}(t)\chi_{A^2}(t)$

Пусть $v_1,\ldots,v_\gamma,e_{\gamma+1},\ldots,e_n$ – наш базис

Т.к. $\mathcal{A}v_{j\in 1...\gamma} = \lambda v_j$, то $A^1 = \lambda E_{\gamma\times\gamma}$

 $\chi_{A_1}(t) = (\lambda - t)^{\gamma}$

 $\chi_A(t)=(\lambda-t)^\gamma\chi_{A_2}(t)\Rightarrow \alpha(\lambda)\geq \gamma$, т.к. возможо λ – корень $\chi_{A_2}(t)$

Определение

Набор СЧ \mathcal{A} с учетом кратности является спектном оператора \mathcal{A} Спектр называется простым, если все СЧ попарно различны, т.е. $\forall \lambda$ – СЧ $\alpha(\lambda)=1$

Теорема 2

 $\lambda_1, \ldots, \lambda_m$ попарно различные СЧ \mathcal{A}

 v_1, \ldots, v_m – соответствующие СВ

Тогда v_1, \ldots, v_n – линейно независимые

Доказательство

Методом математической индукции:

- 1. m=1 очевидно (т.к. $v_1 \neq 0$)
- 2. Пусть верно для m

Докажем для m+1 от противного

Пусть $\lambda_{m+1} \neq \lambda_{j \in 1...m}, v_{m+1}$ – соответсвует λ_{m+1}

Пусть v_1, \dots, v_{m+1} линейно зависимые

Тогда
$$v_{m+1} = \sum_{i=1}^{m} \alpha_i v_i$$
//todo

Следствие 1

 $\lambda_1, \ldots, \lambda_m$ попарно различные СЧ $\mathcal A$

Тогда $V_{\lambda_1},\ldots,V_{\lambda_m}$ – дизъюнктные

Доказательство

$$v_1 + \ldots + v_m = \mathbb{O}, v_i \in V_{\lambda_i}$$

Пусть $v_i \neq \mathbb{0}$. Тогда v_i - СВ для λ_i (т.к. $v_i \in V_{\lambda_i}$)

Тогда линейная комбинация CB = 0, чего не может быть из теоремы Тогда $v_i = 0$, откуда дизъюнктность

Следствие 2

Пусть
$$V = \bigoplus_{\lambda - C^{\mathrm{q}}} V_{\lambda}$$
 $\mathcal{A}_{\lambda} = \mathcal{A}|_{V_{\lambda}} \in \mathrm{End}(V_{\lambda})$ Тогда $\chi_{\mathcal{A}}(t) = \prod_{\lambda - C^{\mathrm{q}}} \chi_{\mathcal{A}_{\lambda}}(t)$

Доказательство

$$V = \bigoplus_{\lambda - C\mathbf{Y}} V_{\lambda}$$

 V_{λ} – инвариант относительно ${\cal A}$

Тогда существует базис такой, что
$$A = \begin{pmatrix} A^{\lambda_1} & \dots & \mathbb{O} \\ \vdots & \ddots & \vdots \\ \mathbb{O} & \dots & A^{\lambda_m} \end{pmatrix}$$

$$A^{\lambda_k} \leftrightarrow \mathcal{A}_{\lambda_k}$$
$$A^{\lambda_k} = \lambda_k E$$

Тогда
$$V=\mathrm{span}(\dots,v_1^{\lambda_k},\dots,v_{\gamma(\lambda_k)}^{\lambda_k},\dots)$$
, где $v_1^{\lambda_k},\dots,v_{\gamma(\lambda_k)}^{\lambda_k}$ – базис V_{λ_k}

Тогда базис V — объединение базисов

Отсюда
$$\chi_A(t) = \det(A - tE) = \det(A^1 - tE) \dots \det(A^m - tE)$$

1.5 Операторы простой структуры(ОПС). Диагонализируемая матрица. Проекторы. Спектральное разложение ОПС. Функция от матрицы

Определение

 $\mathcal{A} \in \mathrm{End}(V)$ называется оператором простой структуры, если существует базис V такой, что матрица оператора в этом базисе имеет диагональный вид

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

Замечание

 \mathcal{A} – ОПС \Leftrightarrow в V существует базис из СВ

Теорема

Если все корни
$$\chi_{\mathcal{A}}(t) \in K$$
, т.е. являются СЧ (т.е. $\sum_{\lambda = \text{СЧ}} \alpha(\lambda) = n =$

$$\deg \chi_{\mathcal{A}}(t))$$

$$\mathcal{A} - O\PiC \Leftrightarrow \forall \lambda - CY \ \alpha(\lambda) = \gamma(\lambda)$$

Доказательство

$$\gamma(\lambda) \le \alpha(\lambda)$$

$$\mathcal{A}$$
 – ОПС \Leftrightarrow \exists базис из СВ \Leftrightarrow = \bigoplus_{λ – СЧ V_{λ} \Leftrightarrow n = \sum_{λ – СЧ $\gamma(\lambda)$

Отсюда
$$n = \sum_{\lambda \, - \, \mathrm{CY}} \alpha(\lambda), \alpha = \gamma$$

Следствие

Если $\lambda_1, \ldots, \lambda_n$ попарно различные СЧ \mathcal{A} , то \mathcal{A} - ОПС

Определение

Матрица называется *диагонализируемой*, если она подобна диагональной

 $\exists T$ невырожденная : $T^{-1}AT = \operatorname{diag}(\lambda_1, \dots, \lambda_n), \lambda_i - \operatorname{CB}$

Теорема о приведении матрицы к диагональному виду

Матрица A диагонализируема $\Leftrightarrow A$ – матрица ОПС $\mathcal A$ в некотором базисе Причем $T=T_{e\to v}$, где e_1,\ldots,e_n – базис, в котором была записана A,v_1,\ldots,v_n – базис из СВ $\mathcal A$, соответствующих $\lambda_1,\ldots,\lambda_n$

Доказательство ←

 \mathcal{A} – O Π C

 e_1,\dots,e_n – базис V v_1,\dots,v_n – CB, соответствующие $\lambda_1,\dots,\lambda_n$ – CЧ, базис V

$$\mathcal{A} \underset{e}{\leftrightarrow} A \mathcal{A} \underset{v}{\leftrightarrow} A' = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

$$T \stackrel{e}{=} T_{e \to v}$$

$$A' = T^{-1}AT$$

Отсюда A подобна диагональной

Доказательство ⇒

//todo

Определение

Пусть
$$V = \bigoplus_{i=1}^{m} L_i, L_i$$
 – линейное подпространство

Тогда
$$\forall v \in V \exists ! v_1, \dots v_m : v_i \in L_i, v = \sum_{i=1}^m v_i$$

Зададим $\rho_i \in \text{End}(V) : \rho_i v = v_i \in L_i$

 ho_i — оператор проектирования (проектор) на L_i Свойства:

1.
$$\forall i \neq j \ \rho_i \rho_j = 0$$

$$2. \sum_{i=1}^{m} \rho_i = \epsilon$$

3.
$$\rho_i^k = \rho_i, k \in \mathbb{N}$$
 – идемпотентность

4. Im
$$\rho_i = L_i$$

Ker $\rho_i = \sum_{j \neq i} L_j$

Утверждение

Пусть $\rho_1, \ldots, \rho_m \in \text{End}(V)$, удовлетворяющие свойствам 1 и 2

Тогда
$$V = \bigoplus_{i=1}^{n} \operatorname{Im} \rho_i$$
 (т.е. ρ – проектор на $L_i = \operatorname{Im} \rho_i$)

Доказательство

Докажем $1, 2 \Rightarrow 3$

$$\rho_i = \rho_i \epsilon = \rho_i \sum_{i=1}^m \rho_j = \rho_i^2$$

Докажем, что
$$V=\bigoplus_{i=1}^m {\rm Im}\, \rho_i$$

$$\forall\, v\in V\,\, v=\epsilon v=\sum_{i=1}^m \rho_i v\Rightarrow V=\sum_{i=1}^m {\rm Im}\, \rho_i$$

Докажем дизъюнктность

$$\mathbb{O} = v_1(\in \operatorname{Im} \rho_1) + \ldots + v_m(\in \operatorname{Im} \rho_m)$$

$$\forall i = 1 \dots m \ v_i = \rho_i \omega_i (\exists \, \omega_i \in V)$$

$$v_i=
ho_i\omega_i=$$
 из свойства $3=
ho_i(\sum_{j=1}^m
ho_j\omega_j)=
ho_i(\sum_{j=1}^mv_j)=
ho_i\mathbb{O}=\mathbb{O},$ ч.т.д.

Теорема о спектральном разложении о.п.с.

$$orall$$
 $\mathcal{A}\in\mathrm{End}(V)$ — о.п.с.
Тогда $\mathcal{A}=\sum_{\lambda$ — С.Ч. $\lambda
ho_{\lambda}$, где ho_{λ} — проектор на V_{λ}

Доказательство

Обозначение: Пусть все λ – С.Ч. \mathcal{A} – о.п.с $\Leftrightarrow V = \bigoplus_{\lambda} V_{\lambda}$

$$v = \sum_{\lambda} v_{\lambda}, v_{\lambda} \in V_{\lambda}$$

$$\forall v \in V \ \mathcal{A}v = \mathcal{A}(\sum_{\lambda} v_{\lambda}) = \sum_{\lambda} (\mathcal{A}v) = \sum_{\lambda} \lambda v_{\lambda} = \sum_{\lambda} \lambda \rho_{\lambda}(v) = (\sum_{\lambda} \lambda \rho_{\lambda})v$$

Отсюда
$$\mathcal{A}=\sum_{\lambda}\lambda\rho_{\lambda}$$
 — спектральное разложение

Следствие

$$A$$
 – диагонализируема \Rightarrow \exists ρ_{λ}, λ – С.Ч. $A: A = \sum_{\lambda} \lambda \rho_{\lambda}$

Определение

 $(A_m)_{m=1}^{\infty}$ – последовательность матриц $A_{n\times n}=(a_{ij}^m)_{n\times n}, m$ – индекс, а не

$$\lim_{\substack{m \to \infty \\ m \to \infty}} A_m = A = (a_{ij})_{n \times n} \Leftrightarrow \forall i, j = 1 \dots n \ a_{ij} = \lim_{\substack{m \to \infty \\ m \to \infty}} a_{ij}^m$$

$$\sum_{m=1}^{\infty} a_m$$
 – числовой ряд $(a_m \in \mathbb{R}(\mathbb{C}))$

$$S_m = \sum_{i=1}^m a_k$$
 — частичная сумма ряда
Если S_m сходится, то ряд называется сходящимся

Определение

$$\sum_{m=1}^{\infty} A_m$$
 – ряд из матриц

$$\sum_{m=1}^{\infty} A_m$$
 – сходится $\Leftrightarrow \forall i,j=1\dots n$ $\sum_{m=1}^{\infty} a_{ij}^m$ – сходится

Далее про ряды

$$\sum_{n=1}^{\infty}u_n(x),u_n:\mathbb{R}\to\mathbb{R}$$
– функциональный ряд

При фиксированном x – числовой ряд

Множество x таких, что числовой ряд сходится – множество поточечной сходимости ряда = E

$$\sum_{m=1}^{\infty} C_m (x-x_0)^m$$
 – степенные ряды

Утверждается, что ряд сходится при $|x-x_0| < R$, где R – радиус сходи-

 $B \mathbb{C}$ – круг сходимости

В \mathbb{R} – интервал сходимости

Для
$$\mathbb{R}$$
 : $\frac{1}{R} = \overline{\lim_{m \to \infty} \sqrt[m]{|C_m|}}$

Для \mathbb{R} : $\frac{1}{R} = \overline{\lim_{m \to \infty}} \sqrt[m]{|C_m|}$ Примеры сходящихся рядов — ряды Тейлора-Маклорена

$$e^x = \sum_{m=1}^{\infty} \frac{x^m}{m!}$$
, сходится при $|x - x_0| \le \infty$

$$\sin x = \sum_{m=0}^{\infty} \frac{(-1)^m x^{2m+1}}{(2m+1)!}$$
, сходится при $|x| \leq \infty$

На окружности (при $|x-x_0|=R$) ряд может как сходиться, так и расходиться

Определение

Пусть
$$f(x) = \sum_{\substack{m=0 \ \infty}}^{\infty} C_m x^m, |x| \le R$$

Тогда
$$f(A) := \sum_{m=0}^{\infty} C_m A^m$$
 (если ряд сходится)

Теорема 1 (первый способ вычисления f(A) для диагонализируемой матрицы)

Пусть $A_{n\times n}$ диагонализируема

$$f(x) = \sum_{m=1}^{\infty} C_m x^m, |x| \le R$$

Тогда если
$$\forall \lambda$$
 – СЧ $|\lambda| < R$, то ряд $\sum_{m=1}^{\infty} C_m A^m$ сходится

$$f(A)=T\operatorname{diag}(f(\lambda_1),\ldots,f(\lambda_n))T^{-1},$$
 где $\Lambda=T^{-1}AT=\operatorname{diag}(\lambda_1,\ldots,\lambda_n)$ Доказательство

 $A_{n \times n}$ диагонализируема, а значит $\exists T : \Lambda = T^{-1}AT = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$

$$S_m = \sum_{k=0}^m C_k A^k, R = \infty$$

$$A^{k} = (T\Lambda T^{-1})^{k} = T\Lambda^{k} T^{-1} = T \operatorname{diag}(\lambda_{1}^{k}, \dots, \lambda_{n}^{k}) T^{-1}$$

Отсюда
$$S_m = T \operatorname{diag}(\sum_{k=0}^m C_k \lambda_1^k, \dots, \sum_{k=0}^m C_k \lambda_n^k) T^{-1}$$
 (т.к. $R = \infty$, то все ряды

сойдутся)

$$S = \lim_{m \to \infty} S_m = T \operatorname{diag}(f(\lambda_1), \dots, f(\lambda_n)) T^{-1}$$

Теорема 2 (второй способ вычисления f(A) для диагонализируемой матрицы)

Пусть $A_{n\times n}$ диагонализируема

$$f(x) = \sum_{m=0}^{\infty} C_m x^m, |x| \le R$$

Тогда если
$$\forall \lambda$$
 – СЧ $|\lambda| < R$, то ряд $\sum_{m=1}^{\infty} C_m A^m$ сходится

$$f(A)=\sum_{\lambda =\mathrm{CY}} f(\lambda)
ho_{\lambda}$$
, где $A=\sum_{\lambda =\mathrm{CY}} \lambda
ho_{\lambda}$ – спектральное разложение

$$A$$
 — диагонализируема $\Rightarrow A = \sum_{\alpha \in \mathcal{A}} \lambda \rho_{\lambda}$

Тогда
$$A^k = (\sum_{\lambda - CY} \lambda \rho_{\lambda})^k = \sum_{\lambda - CY} \lambda^k \rho_{\lambda}$$

Отсюда
$$S_m = \sum_{k=0}^m C_k A^k = \sum_{k=0}^m C_k \sum_{\lambda - CY} \lambda^k \rho_{\lambda} = \sum_{\lambda - CY} (\sum_{k=0}^m C_k \lambda^k) \rho_{\lambda} \xrightarrow[m \to \infty]{}$$

$$\sum_{\substack{\lambda \, - \, \mathrm{C}\mathrm{H} \\ \mathbf{C}}} f(\lambda)
ho_{\lambda}$$

$$A$$
 – диагонализируема, $f(x) = \sum_{m=0}^{\infty} C_m x^m, |x| < R$

$$\forall \lambda - \text{CY } |\lambda| < R$$

$$t \in \mathbb{R}(\mathbb{C}) : \forall \lambda - \mathrm{CY} |t\lambda| < R$$

Тогда
$$f(At) = T \operatorname{diag}(f(\lambda_1 t), \dots, f(\lambda_n t)) T^{-1}$$

или
$$f(At) = \sum_{\lambda = CY} f(\lambda t) \rho_{\lambda}$$

Пример

$$\exp At = e^{At} = \sum_{\lambda} e^{t\lambda} \rho_{\lambda} = T \operatorname{diag}(e^{\lambda_1 t}, \dots, e^{\lambda_n t}) T^{-1}$$

Свойства

1.
$$e^{A(t_1+t_2)} = e^{At_1}e^{At_2}$$

2.
$$e^{A0} = E$$

3.
$$(e^{At})' = Ae^{At} = e^{At}A$$

$$(e^{At})' = (\sum_{\lambda} f(\lambda t) \rho_{\lambda})' = \sum_{\lambda} \lambda e^{\lambda t} \rho_{\lambda} = (\sum_{\lambda} \lambda \rho_{\lambda}) (\sum_{\lambda} e^{t\lambda} \rho_{\lambda}) = A e^{At} = e^{At} A$$

Поиск обратной матрицы

Пусть A диагонализируема

$$\forall \lambda \ \lambda \neq 0 \Leftrightarrow \exists A^{-1}$$

$$A^{-1} = T \operatorname{diag}(\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n})T^{-1}$$

$$A^{-1} = \sum_{\lambda} \frac{1}{\lambda} \rho_{\lambda}$$

Определение

 $\sqrt[m]{A}$ – арифметический корень

Если $\forall \lambda \ \lambda \geq 0$, то результат определен однозначно $A^{-1} = T \operatorname{diag}(\sqrt[m]{\lambda_1}, \dots, \sqrt[m]{\lambda_n}) T^{-1}$

1.6 Комплексификация вещественного линейного пространства. Продолжение вещественного линейного оператора

V — линейное пространство над полем $K=\mathbb{R}(\mathbb{C})$ Рассмотрим все ситуации

- 1. Все корни $\chi_{\mathcal{A}}(t) \in K$ Т.е. все корни являются С.Ч. \mathcal{A} $\forall \lambda \ \alpha(\lambda) = \gamma(\lambda)$, т.е. \mathcal{A} – о.п.с. (тогда матрица диагонализируема)
- 2. Все корни $\chi_{\mathcal{A}}(t) \in K$ Т.е. все корни являются С.Ч. \mathcal{A} $\exists \lambda : \gamma(\lambda) < \alpha(\lambda)$, т.е. \mathcal{A} – не о.п.с. (тогда матрица приводится к жордановой форме)
- 3. При $K=\mathbb{R}$ не все корни $\chi_{\mathcal{A}}(t)\in\mathbb{R}$ Тогда применяется комплексификация пространства

Займемся комплексификацией

Определение

V – вещественное линейное пространство над $\mathbb R$

$$\forall x, y \in V(x, y) \sim z := x + iy$$

$$V_{\mathbb{C}} = \{ z = x + iy : x, y \in V \}$$

$$x+iy=x'+iy'\Leftrightarrow x=x'\wedge y=y'$$
 в V

$$\mathbb{O} = \mathbb{O} + i \mathbb{O}$$
 – нулевой в $V_{\mathbb{C}}$

$$\forall\,x\in V\ V_{\mathbb{C}}\ni x+\mathbb{O}i=x$$

$$z_1 + z_2 := (x_1 + x_2) + i(y_1 + y_2)$$

$$\forall \lambda = \alpha + i\beta \ \lambda z = (\alpha x - \beta y) + i(\alpha y + \beta x)$$

Утверждение

 $V_{\mathbb{C}}$ – линейное пространство

Теорема (о вещественном базисе $V_{\mathbb{C}}$)

Пусть $\dim V = n, e_1, \dots, e_n$ – базис $V, e_i \in V(V_{\mathbb{C}})$ Тогда e_1, \ldots, e_n – базис $V_{\mathbb{C}}(\dim V = \dim V_{\mathbb{C}})$

Доказательство

$$\forall z \in V_{\mathbb{C}} : z = x + iy, x, y \in V$$

$$x = \sum_{j=1}^{n} x_j e^j$$

$$y = \sum_{i=1}^{n} y_j e^j$$

Отсюда
$$z=\sum_{j=1}^n (x_j+iy_j)e_j$$
, т.е. e_1,\ldots,e_n – порождающая

//todoОтсюда e_1, \ldots, e_n – линейно независимые

Определение

$$z = x + iy$$

Тогда $\overline{z} = x - iy$ – сопряженный вектор

Утверждение

 z_1,\dots,z_m — линейно независимые в $V_{\mathbb C}\Leftrightarrow \overline z_1,\dots,\overline z_m$ — линейно независимые

$$(\Rightarrow \operatorname{rg}(z_1,\ldots,z_m) = \operatorname{rg}(\overline{z}_1,\ldots,\overline{z}_m))$$

Доказательство

$$\frac{c_1\overline{z}_1+\ldots c_m\overline{z}_m}{c_1\overline{z}_1+\ldots c_m\overline{z}_m}=\frac{\mathbb{O}}{\mathbb{O}}=\mathbb{O}=\overline{c}_1z_1+\ldots+\overline{c}_mz_m$$
 – линейно независимые

Отсюда
$$\bar{c}_i = 0 \Leftrightarrow c_i = 0$$

Определение

$$\mathcal{A} \in \mathrm{End}(V)$$

Продолжением \mathcal{A} на $V_{\mathbb{C}}$ называется $\mathcal{A}_{\mathbb{C}} \in \operatorname{End}(V_{\mathbb{C}})$ такой, что

$$\forall z = x + iy \in V_{\mathbb{C}} \ \mathcal{A}_{\mathbb{C}}z = \mathcal{A}x + i\mathcal{A}y \in V_{\mathbb{C}}$$

Свойства

1.
$$e_1, \ldots, e_n$$
 – базис V

$$\mathcal{A} \leftrightarrow A = (a_{ij})_{n \times n}, a_{ij} \in \mathbb{R}$$

$$A \leftrightarrow A = (a_{ij})_{n \times n}, a_{ij} \in \mathbb{R}$$

Тогда $A_{\mathbb{C}} \leftrightarrow A_{\mathbb{C}} = A = (a_{ij})_{n \times n}$

Доказательство

$$\mathcal{A}_{\mathbb{C}}e_j = \ldots = \mathcal{A}e_j = \sum_{k=1}^n a_{kj}e_k$$

Отсюда
$$A_{\mathbb{C}} = A$$

- 2. $\chi_{\mathcal{A}}(t)=\chi_{\mathcal{A}_{\mathbb{C}}}(t)$ (т.к. матрицы равны)
- 3. $\forall z \in V_{\mathbb{C}} \ \overline{\mathcal{A}_{\mathbb{C}}z} = \mathcal{A}_{\mathbb{C}}(\overline{z})$
- 4. $\alpha\pm i\beta$ пара сопряженных корней $\chi_{\mathcal{A}}(t)$ СЧ для $\mathcal{A}_{\mathbb{C}}$ Тогда z СВ, отвечающий СЧ $\alpha+i\beta\Leftrightarrow \overline{z}$ СВ, отвечающий СЧ $\alpha-i\beta$

Доказательство

$$\mathcal{A}_{\mathbb{C}}\overline{z} = \overline{\mathcal{A}_{\mathbb{C}}z} = \overline{(\alpha + i\beta)z} = (\alpha - i\beta)\overline{z}$$

Тогда:

Т.о. если $\chi_{\mathcal{A}}(t)$ имеет комплексные корни, то после комплексификации будет реализовываться случай 1 или 2

1.7 Минимальный многочлен линейного оператора. Теорема Кэли-Гамильтона

Определение

 $\mathcal{A} \in \operatorname{End}(V)$

Hормализованный многочлен — многочлен, старший коэффициент которого 1

Нормализованный многочлен $\psi(t)$ называется аннулятором элемента $x \in V$, если $\psi(\mathcal{A})x = \mathbb{O}$

$$\psi(t)=t^m+a_{m-1}t^{m-1}+\ldots+a_0=\prod_{\lambda \text{ - корень многочлена}}(t-\lambda)^{m(\lambda)},$$
 где $m(\lambda)$ –

кратность корня

$$\psi(\mathcal{A}) = \mathcal{A}^m + a_{m-1}\mathcal{A}^{m-1} + \ldots + a_0\epsilon = \prod_{\lambda \text{ - корень}} (A - \lambda\epsilon)^{m(\lambda)}$$

Определение

Mинимальный аннулятор x – аннулятор минимальной степени

Теорема о минимальном аннуляторе элемента

 $\mathcal{A} \in \mathrm{End}(V)$

- 1. $\forall\,x\in V$ $\exists\,!$ минимальный аннулятор x
- 2. Любой аннулятор x делится на минимальный

Доказательство 1

(алгоритм)

1.
$$x = 0, \psi \equiv 1$$

 $\epsilon = \psi(\mathcal{A})$

$$2. \ x \neq 0$$

Пусть $x, \mathcal{A}x, \ldots, \mathcal{A}^{m-1}x$ — линейно независимые и m максимальное $\exists \,! \alpha_1, \ldots, \alpha_{m-1} : \mathcal{A}^m x = \sum_{i=0}^{m-1} \alpha_i \mathcal{A}^i x$

$$(\mathcal{A}^m - \sum_{i=0}^{m-1} \alpha_i \mathcal{A}^i) x = 0$$

 $\psi(t)=t^m-\sum_{i=0}^{m-1}\alpha_it^i$ – минимальный и определен единственным образом

Доказательство 2

Пусть $\psi'(t) = a(t)\psi(t) + r(t), \deg r < \deg \phi$ – аннулятор $0 = \psi'(\mathcal{A})x = a(\mathcal{A})\underbrace{\psi(\mathcal{A})x}_{\mathbb{Q}} + r(\mathcal{A})x$

Отсюда r(A) = 0

Ho т.к. ψ – минимальный, то $r\equiv 0$

Определение

Нормализованный многочлен $\phi(t)$ называется аннулятором \mathcal{A} , если $\forall v \in V \ \phi(\mathcal{A})v = \mathbb{O}$ (т.е. $\phi(\mathcal{A}) = \mathbb{O}$)

Аннулятор \mathcal{A} минимальной степени – минимальный многочлен

Теорема о минимальном многочлене

 $\mathcal{A} \in \operatorname{End}(V)$

- 1. $\forall A \exists !$ минимальный многочлен
- 2. Любой аннулятор $\mathcal A$ делится на минимальный многочлен

Доказательство

(алгоритм)

1.
$$e_1, \ldots, e_n$$
 — базис V
По теореме 1 $\forall e_i \exists ! \psi_i(t)$ — минимальный аннулятор e_i
 $\phi(t) := \operatorname{lcm}(\psi_1, \ldots, \psi_n)$
Тогда $\forall j \phi(t) = a_j(t) \psi_j(t)$
Докажем, что $\phi(t)$ — аннулятор

$$\forall v \in V\phi(\mathcal{A})v = \phi(\mathcal{A})\sum_{j=1}^m v_j e_j = \sum_{j=1}^m \phi(\mathcal{A})v_j e_j = \sum_{j=1}^m a_j(t)\psi_j(t)v_j e_j = 0$$
 Т.о. ϕ – аннулятор

- 2. Докажем, что любой другой аннулятор делится на ϕ Пусть $\phi_1(t)$ – аннулятор \mathcal{A} $\forall v \in V \phi_1(\mathcal{A})v = \mathbb{O} \Rightarrow \forall j = 1 \dots n \ \phi_1(\mathcal{A})e_j = \mathbb{O}$ - тогда $\phi_1(\mathcal{A})$ – анну-Т.к. $\psi_i(t)$ – минимальный аннулятор e_i , то $\phi_1(t)$ делится на $\psi_i(t)$ Отсюда $\phi_1(t)$ делится на $\operatorname{lcm}(\psi_1,\ldots,\psi_n)=\phi(t)$ Отсюда $\deg \phi$ – минимальная из возможных, а значит ϕ – минимальный многочлен
- 3. Докажем, что минимальный многочлен единственный Пусть $\phi_2(t)$ – аннулятор \mathcal{A} такой, что $\deg \phi = \deg \phi_2 = m$ Тогда $\delta = \phi_2(t) - \phi(t) = a_{m-1}t^{m-1} + \ldots + a_0$ – степень меньше mНо тогда δ – аннулятор, $\deg \delta < m$ – противоречие Отсюда $\phi_2 = \phi$

Теорема Кэли-Камильтона

 $\forall A \in V$

$$\chi_{\mathcal{A}}$$
 – аннулятор \mathcal{A} (т.е. $\chi_{\mathcal{A}}(\mathcal{A}) \equiv 0$)

Доказательство

Пусть
$$\mathcal{A} \longleftrightarrow A$$

Пусть
$$\mathcal{A} \underset{e_1,\dots,e_n}{\longleftrightarrow} A$$

 $\chi_{\mathcal{A}}(t) = \chi(t) = \det(\mathcal{A} - t\epsilon) = \det(A - tE)$

Пусть μ не корень χ

Tогда $\det(A - \mu E) \neq 0$

$$(A-\mu E)^{-1}=rac{1}{\det(A-\mu E)}(b_{ij}:=A_{ji})$$
 b_{ij} - многочлен $n-1$ степени от μ

Отсюда
$$(A-\mu E)^{-1}=\frac{1}{\det(A-\mu E)}(\mu^{n-1}B_{n-1}+\ldots+B_0)$$
, где B_i – матрица

Отсюда
$$\det(A - \mu E)E = (A - \mu E)(\mu^{n-1}B_{n-1} + \dots + B_0) = -\mu^n B_{n-1} + \mu^{n-1}(AB_{n-1} - B_{n-2}) + \dots + \mu(AB_1 - B_0) + AB_0$$

$$\det(A - \mu E)E = \chi(\mu)E = \sum_{k=0}^{n} \alpha_k \mu^k E$$

$$\sum_{k=0}^{n} \alpha_k \mu^k E = -\mu^n B_{n-1} + \mu^{n-1} (AB_{n-1} - B_{n-2}) + \dots + \mu (AB_1 - B_0) + AB_0$$
 Отсюда $\alpha_0 E = AB_0$
$$\alpha_1 E = AB_1 - B_0$$

$$\vdots$$

$$\alpha_{n-1} E = AB_{n-1} - B_{n-2}$$

$$\alpha_n E = -B_{n-1}$$

$$\chi(A) = \sum_{k=0}^{n} \alpha_k A^k = AB_0 + A(AB_1 - B_0) + A^2 (AB_2 - B_1) + \dots + A^{n-1} (AB_{n-1} - B_{n-2}) = 0$$

Следствие

 $\forall \mathcal{A} \in \text{End}(V) \chi_{\mathcal{A}}$ делится на $\phi_{\mathcal{A}}$

Следствие 2

$$\deg \phi_{\mathcal{A}} = n = \dim V \Rightarrow \phi_{\mathcal{A}} \equiv (-1)^n \chi_{\mathcal{A}}$$

Теорема (о корнях минимального многочлена)

Множество корней характеристического многочлена и минимального многочлена совпадают (без учета кратности)

Доказательство ⇒

Пусть λ – корень $\chi(t)$

- 1. Пусть $\lambda \in K \Rightarrow \lambda \text{C.Ч. } \mathcal{A} \Rightarrow \exists v \neq 0 : (\mathcal{A} \lambda \epsilon)v = \mathbb{0}$ Отсюда $\psi(t) = (t - \lambda)$ – минимальный аннулятор элемента vТ.к. ϕ – минимальный многочлен, то $\phi(\mathcal{A})v = \mathbb{0} \Rightarrow \phi(\mathcal{A})$ аннулятор v
- Тогда по теореме 1 ϕ делится на $\psi \Rightarrow \lambda$ корень ϕ

2. Пусть
$$\lambda \notin K$$
, т.е. $K = \mathbb{R}, \lambda \in \mathbb{C}$ $V \to V_{\mathbb{C}}$

$$V o V_{\mathbb C}$$
 $\mathcal A o \mathcal A_{\mathbb C}$

$$e_1,\dots,e_n$$
 — базис $V o$ базис $V_{\mathbb C}$

$$\mathcal{A} \underset{V,e}{\longleftrightarrow} A \underset{V_{\mathbb{C}},v}{\longleftrightarrow} \mathcal{A}_{\mathbb{C}}$$

$$\chi_{\mathcal{A}}(t)=\chi_{\mathcal{A}_{\mathbb{C}}}(t)\Rightarrow\lambda$$
 – корень $\chi_{\mathcal{A}_{\mathbb{C}}}\Rightarrow\lambda$ – корень $\phi_{\mathcal{A}_{\mathbb{C}}}$

Заметим, что из алгоритма построения минимального многочлена

$$\phi_{\mathcal{A}} = \phi_{\mathcal{A}_{\mathbb{C}}}$$

Отсюда λ – корень $\phi_{\mathcal{A}_{\mathbb{C}}}$

Доказательство ←

Пусть λ – корень $\phi_{\mathcal{A}}(t)$

 $\chi_{\mathcal{A}}$ делится на $\phi_{\mathcal{A}}(t) \Rightarrow \lambda$ – корень $\chi_{\mathcal{A}}(t)$

Замечание

Получаем второй способ получения С.Ч. \mathcal{A} $m(\lambda) < \alpha(\lambda)$

1.8 Операторное разложение единицы. Корневое подпространство

$$\begin{split} \phi(t) &= \prod_{\lambda} (t-\lambda)^{m(\lambda)} = (t-\lambda)^{m(\lambda)} \prod_{\mu \neq \lambda} (t-\mu)^{m(\mu)} = (t-\lambda)^{m(\lambda)} \phi_{\lambda}(t), \phi_{\lambda}(t) := \\ &\prod_{\mu \neq \lambda} (t-\mu)^{m(\mu)} \\ &\deg \phi = m = \sum_{\lambda} m(\lambda) \end{split}$$

Определение

 $I_{\lambda} := \{ p \in P_{m-1} : p$ делится на $\phi_{\lambda} \}$ – главный идеал, порождающий многочлен ϕ_{λ}

 I_{λ} – линейное подпространство P_{m-1}

$$\begin{split} I_{\lambda} \ni p(t) &= a_{\lambda}(t)\phi_{\lambda}(t) \\ m-1 &\geq \deg p = \deg a_{\lambda} + \deg \phi_{\lambda} = \deg a_{\lambda} + m - m_{\lambda} \\ \deg a_{\lambda} &\leq m(\lambda) - 1 \\ I_{\lambda} &\cong P_{m(\lambda)-1} \\ p &\leftrightarrow a_{\lambda} \\ \dim I_{\lambda} &= m(\lambda) \end{split}$$
 Теорема

$$P_{m-1} = \bigoplus_{\lambda} I_{\lambda}$$

Доказательство

1. Проверим, что
$$I_{\lambda}$$
 дизъюнктны
$$\mathbb{O} = \sum_{\lambda} p_{\lambda}(t) = \sum_{\lambda} a_{\lambda}(t)\phi_{\lambda}(t) = a_{\lambda}(t) \underbrace{\phi_{\lambda}(t)}_{\text{не делится на } (t-\lambda)^{m(\lambda)}}_{\text{делится на } (t-\lambda)^{m(\lambda)}} + \underbrace{\sum_{\mu \neq \lambda} a_{\mu}(t)\phi_{\mu}(t)}_{\text{делится на } (t-\lambda)^{m(\lambda)}}$$
 Отсюда $a_{\lambda}(t)$ делится на $(t-\lambda)^{m(\lambda)}$, но $\deg a_{\lambda} \leq m(\lambda) - 1$

Отсюда $a_{\lambda}(t)$ делится на $(t-\lambda)^{m(\lambda)}$, но $\deg a_{\lambda} \leq m(\lambda)-1$ Тогда $a_{\lambda}(t) = 0 \Leftrightarrow p_{\lambda}(t) \equiv 0 \Rightarrow$ дизъюнктные

2.
$$\bigoplus_{\lambda} I_{\lambda} \subset P_{m-1}, \dim P_{m-1} = m$$
 $\dim \bigoplus_{\lambda} I_{\lambda} = \sum_{\lambda} m(\lambda) = m$ Отсюда $P_{m-1} = \bigoplus_{\lambda} I_{\lambda}$

Следствие

$$\forall p \in P_{m-1} \exists ! (p_{\lambda}) : p_i \in I_i, p = \sum_{\lambda} p_{\lambda}$$

В частности, для $p \equiv 1 \; \exists ! (p_{\lambda}) : p_i \in I_i, 1 = \sum_{\lambda} p_{\lambda}$ – полиноминальное

разложение единицы (порожденное многочленом ϕ)

$$p_{\lambda}(t) = a_{\lambda}(t)\phi_{\lambda}(t)$$

Замечание

1. $\lambda \neq \mu \Rightarrow p_{\lambda}p_{\mu}$ делится на ϕ

Доказательство

$$p_{\lambda}(t) = a_{\lambda}\phi_{\lambda}(t)$$

$$p_{\mu}(t) = a_{\mu}\phi_{\mu}(t)$$

$$p_{\lambda}(t)p_{\mu}(t) = a_{\lambda}(t)a_{\mu}(t)\phi_{\lambda}(t)\phi_{\mu}(t) = b(t)\phi(t)$$

2. Пусть все корни ϕ взаимно-простые, т.е. $\forall \lambda \ m(\lambda) = 1$

$$\phi(t) = \prod_{\lambda} (t - \lambda)$$

$$\deg a_{\lambda}(t) \leq m(\lambda) - 1 = 0$$

Отсюда $a_{\lambda}(t) = \text{const}$

Теорема Лагранжа

Пусть все корни $\phi(t)$ взаимно прострые

T.e.
$$\forall \lambda : m(\lambda) = 1 \ \phi(t) = \prod_{i=1}^{n} (t - \lambda)$$

Тогда
$$\forall p \in P_{m-1} \ p(t) = \sum_{\lambda=0}^{n} \frac{p(\lambda)}{\phi'(\lambda)} \phi_{\lambda}(t)$$

$$(a_{\lambda} = \frac{p(\lambda)}{\phi'(\lambda)})$$

Доказательство

$$\exists ! (p_{\lambda}) : p_i \in I_i, p(t) = \sum_{\lambda} \underbrace{a_{\lambda} \phi_{\lambda}(t)}_{\phi_{\lambda}(t) \in I_{\lambda}}$$

$$p(\lambda) = \sum_{\mu} a_{\mu} \phi_{\mu}(\lambda) = a_{\lambda} \phi_{\lambda}(\lambda) \Rightarrow a_{\lambda} = \frac{p(\lambda)}{\phi_{\lambda}(\lambda)}$$
$$\phi(t) = \prod_{\mu} (t - \mu) = (t - \lambda) \prod_{\substack{\mu \neq \lambda \\ \phi_{\lambda}(t)}} (t - \mu)$$

$$\phi'(t) = \sum_{\mu} \prod_{\xi \neq \mu} (t - \xi)$$
$$\phi'(\lambda) = \prod_{\xi \neq \lambda} (\lambda - \xi) = \phi_{\lambda}(\lambda)$$

Отсюда
$$a_{\lambda} = \frac{p(\lambda)}{\phi'(\lambda)}$$

Пусть
$$\forall \lambda : m(\lambda) = 1$$

Тогда
$$1 = \sum_{\lambda} p_{\lambda} \Rightarrow p(t) = t = \sum_{\lambda} \lambda p_{\lambda}$$

Доказательство

$$1 = \sum_{\lambda} a_{\lambda} \phi_{\lambda}(t) = \sum_{\lambda} \frac{1}{\phi'(\lambda)} \phi_{\lambda}(t)$$
$$t = \sum_{\lambda} \frac{\lambda}{\phi(\lambda)} \phi_{\lambda}(t) = \sum_{\lambda} \lambda p_{\lambda}(t)$$

$$t = \sum_{\lambda} \frac{\lambda}{\phi'(\lambda)} \phi_{\lambda}(t) = \sum_{\lambda} \lambda p_{\lambda}(t)$$

Пусть $\phi(t) = \prod (t-\lambda)^{m(\lambda)}$ – минимальный многочлен $\mathcal{A} \in \operatorname{End}(V)$

Построим полиноминальное разложение 1, порождающее многочлен ϕ

$$1 = \sum_{\lambda} p_{\lambda}(t) = \sum_{\lambda} a_{\lambda}(t)\phi_{\lambda}(t)$$

$$\epsilon = \sum_{\lambda} p_{\lambda}(A) = \sum_{\lambda} a_{\lambda}(A)$$

$$\epsilon = \sum_{\lambda}^{\lambda} \underbrace{p_{\lambda}(\mathcal{A})}_{\rho\text{- chektp. проектор оператора } \mathcal{A}} = \sum_{\lambda} a_{\lambda}(\mathcal{A}) \phi_{\lambda}(\mathcal{A})$$

 $\epsilon = \sum_{\lambda} \rho_{\lambda}$ – операторное разложение единицы (порожденное оператором)

Спектральный оператор действует не на собственное подпространство

Свойства

Пусть $\lambda \neq \mu$

Проверим, что
$$\rho_{\lambda}\rho_{\mu}=\mathbb{O}$$

$$\rho_{\lambda} = p_{\lambda}(\mathcal{A}) = a_{\lambda}(\mathcal{A})\phi_{\lambda}(\mathcal{A})$$

$$\rho_{\mu} = p_{\mu}(\mathcal{A}) = a_{\mu}(\mathcal{A})\phi_{\mu}(\mathcal{A})$$

$$\rho_{\lambda}\rho_{\mu} = (\rho_{\lambda}\rho_{\mu})(\mathcal{A}) = b(\mathcal{A})\phi(\mathcal{A}) = 0$$

Если λ единственный корень $\phi(t) = (t-\lambda)^{m(\lambda)} \cdot \underbrace{1}_{\phi_{\lambda}(t)}$

$$1 = 1 \Leftrightarrow p_{\lambda} = \epsilon$$

Если все корни взаимно прострые:

$$\forall \lambda \ m(\lambda) = 1$$

По следствию из т. Лагранжа:

$$\epsilon = \sum_{\lambda} p_{\lambda}$$

$$\mathcal{A} = \sum_{\lambda} \lambda p_{\lambda}$$

Далее покажем, что p_{λ} – проекторы на V_{λ} , т.е. совпадает со спектральным разложением о.п.с

T.e. \mathcal{A} – о.п.с.

Определение

 $K_{\lambda} = \mathrm{Ker}(\mathcal{A} - \lambda \epsilon)^{m(\lambda)}$ называется корневым подпространством \mathcal{A} λ – CY \mathcal{A}

Очевидно, что $V_{\lambda} \subset K_{\lambda}$

$$V_{\lambda} = \operatorname{Ker}(A - \lambda \epsilon) \subset \operatorname{Ker}(A - \lambda \epsilon)^{m(\lambda)} = K_{\lambda}$$

Теорема о корневом подпространстве

- 1. K_{λ} инвариантно относительно \mathcal{A}
- 2. Im $\rho_{\lambda} = K_{\lambda} (\Rightarrow \bigoplus_{\lambda} K_{\lambda} = V)$
- 3. $(t-\lambda)^{m(\lambda)}$ минимальный многочлен для A $\in \operatorname{End}(K_{\lambda})$

Доказательство

1.
$$x \in \text{Ker}(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} = K_{\lambda}$$

$$(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \mathcal{A} x = \mathcal{A} (\mathcal{A} - \lambda \epsilon)^{m(\lambda)} x = 0$$
перестановочные, т.к. многочлены

Отсюда
$$\mathcal{A}x \in \mathrm{Ker}(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} = K_{\lambda}$$

 $\mathcal{A}^k = \mathcal{A}^{k-1}\mathcal{A} = \mathcal{A}\mathcal{A}^{k-1}$

2.
$$\forall x \in V \rho_{\lambda} x = a_{\lambda}(\mathcal{A}) \phi_{\lambda}(\mathcal{A}) x$$

$$(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \underbrace{\rho_{\lambda} x}_{\operatorname{Im} \rho_{\lambda}} = (\mathcal{A} - \lambda \epsilon)^{m(\lambda)} a_{\lambda}(\mathcal{A}) \phi_{\lambda}(\mathcal{A}) x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A})}_{\phi(\mathcal{A}) = 0} x = a_{\lambda}(\mathcal{A}) \underbrace{($$

$$\mathbb{O}$$

Отсюда $\rho_{\lambda} \ni \rho_{\lambda} x \in \text{Ker}(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} = K_{\lambda}$ Отсюда $\operatorname{Im} \rho_{\lambda} \subset K_{\lambda}$

Обратно

$$x \in K_{\lambda} = \operatorname{Ker}(A - \lambda \epsilon)^{m(\lambda)}$$

Пусть
$$\mu \neq \lambda$$

$$\rho_{\mu}x = a_{\mu}(\mathcal{A}) \underbrace{\phi_{\mu}(\mathcal{A})}_{b(\mathcal{A})(\mathcal{A} - \lambda \epsilon)^{m(\lambda)}} x = 0$$
$$x = \epsilon x = \sum_{\mu} \rho_{\mu}x = \rho_{\lambda}x \in \operatorname{Im} \rho_{\lambda}$$

$$b(\mathcal{A})(\mathcal{A}-\lambda\epsilon)^{m(\lambda)}$$

$$x = \epsilon x = \sum \rho_{\mu} x = \rho_{\lambda} x \in \operatorname{Im} \rho_{\lambda}$$

Отсюда $K_{\lambda}^{\rho} \subset \operatorname{Im} \rho_{\lambda}$

3.
$$\mathcal{B} = \mathcal{A} \bigg|_{K_{\lambda}} \in \operatorname{End}(K_{\lambda})$$

Проверим, что $(t-\lambda)^{m(\lambda)}$ – минимальный многочлен

 $(t-\lambda)^{m(\lambda)}$ – аннулятор \mathcal{B}

Докажем от противного, что он минимальный

Пусть $(t-\lambda)^k$ – минимальный многочлен, $k < m(\lambda)$

$$\phi_1(t) := (t - \lambda)^k \phi_{\lambda}(t), \deg \phi_1 \le \deg \phi$$

Покажем, что ϕ_1 – аннулятор ${\mathcal A}$

$$\forall v \in V = \bigoplus_{\mu} K_{\mu} \ v = \sum_{\mu} \underbrace{v_{\mu}}_{\in K_{\mu}}$$
 – раскладывается единственным об-

$$\phi_1(\mathcal{A})v = \sum_{\mu} (\mathcal{A} - \lambda \epsilon)^k \underbrace{\phi_{\lambda}(\mathcal{A})}_{\text{содержит множитель } (\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \in \text{Ker}(\mathcal{A} - \lambda \epsilon)^{m(\lambda)}}_{\text{содержит множитель } (\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \in \text{Ker}(\mathcal{A} - \lambda \epsilon)^{m(\lambda)}} = \sum_{\mu \neq \lambda} (\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \underbrace{v_{\mu}}_{\text{содержит множитель } (\mathcal{A} - \lambda \epsilon)^{m(\lambda)}}_{\text{содержит множитель } (\mathcal{A} - \lambda \epsilon)^{m(\lambda)}} = \sum_{\mu \neq \lambda} (\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \underbrace{v_{\mu}}_{\text{содержит множитель } (\mathcal{A} - \lambda \epsilon)^{m(\lambda)}}_{\text{содержит множитель } (\mathcal{A} - \lambda \epsilon)^{m(\lambda)}} = \sum_{\mu \neq \lambda} (\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \underbrace{v_{\mu}}_{\text{содержит множитель } (\mathcal{A} - \lambda \epsilon)^{m(\lambda)}}_{\text{содержит множитель } (\mathcal{A} - \lambda \epsilon)^{m(\lambda)}} = \sum_{\mu \neq \lambda} (\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \underbrace{v_{\mu}}_{\text{содержит множитель } (\mathcal{A} - \lambda \epsilon)^{m(\lambda)}}_{\text{содержит множитель } (\mathcal{A} - \lambda \epsilon)^{m(\lambda)}} = \sum_{\mu \neq \lambda} (\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \underbrace{v_{\mu}}_{\text{содержит множитель } (\mathcal{A} - \lambda \epsilon)^{m(\lambda)}}_{\text{содержит множитель } (\mathcal{A} - \lambda \epsilon)^{m(\lambda)}} = \sum_{\mu \neq \lambda} (\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \underbrace{v_{\mu}}_{\text{codepwise of the conditional of the conditional$$

$$\lambda \epsilon)^k b_\mu(\mathcal{A}) (\mathcal{A} - \lambda \epsilon)^{m(\lambda)} v_\mu + (\mathcal{A} - \lambda \epsilon)^k \phi_\lambda(\mathcal{A}) v_\lambda = 0$$

Отсюда ϕ_1 аннулятор \mathcal{A} , причем степени меньшей, чем ϕ , что противоречит минимальности ϕ

Отсюда $(t-\lambda)^{m(\lambda)}$ минимальный многочлен $\mathcal B$

Следствие 1

 $\forall \lambda \ m(\lambda) < \dim K_{\lambda}$ (очевидно из п.3 теоремы)

Следствие 2

$$\mathcal{A}$$
 – о.п.с $\Leftrightarrow \forall \lambda \ m(\lambda) = 1$

Доказательство \Rightarrow

$$V = \bigoplus_{\lambda} V_{\lambda}$$

Пусть
$$\phi(t) := \prod_{\lambda - \text{CЧ}} (t - \lambda)$$

Очевидно аннулятор \mathcal{A} , причем минимальный $\forall v \in V \ v = \sum_{\lambda} \underbrace{v_{\lambda}}_{\in V_{\lambda}}$ – раскладывается единственным образом

$$\phi(\mathcal{A}) = \prod_{\mu} \prod_{\lambda} (\mathcal{A} - \lambda \epsilon) \underbrace{v_{\mu}}_{\in V_{\mu} = \operatorname{Ker}(\mathcal{A} - \mu \epsilon)} = \prod_{\mu} \prod_{\lambda \neq \mu} (\mathcal{A} - \lambda \epsilon) (\mathcal{A} - \mu \epsilon) v_{\mu} = 0$$
Herepore we are a

$$\forall \lambda \ m(\lambda) = 1$$

$$\phi(t) = \prod_{\lambda} (t - \lambda)$$

$$\forall \lambda \ K_{\lambda} = \operatorname{Ker}(\mathcal{A} - \lambda \epsilon)^{1} = V_{\lambda}$$

Отсюда
$$\bigoplus_{\lambda} K_{\lambda} = V = \bigoplus_{\lambda} V_{\lambda} \Leftrightarrow \mathcal{A}$$
 – о.п.с.

Нильпотентные операторы. Разложение Жорда-1.9 на

Определение

 $\mathcal{B} \in \mathrm{End}(V)$ называется нильпотентным, если $\chi_{\mathcal{B}} = t^{\nu}, \nu \geq 1$

 ν – индекс нильпотентности ($\nu \leq n$)

(T.e.
$$\mathcal{B}^{\nu} = \mathbb{O}$$
)

Теорема (разложение Жордана)

 $\forall \mathcal{A} \in \text{End}(V)$

 $\exists \mathcal{D}$ – оператор простой структуры $\in \operatorname{End}(V), \mathcal{B}$ нильпотентный $\in \operatorname{End}(V)$:

$$\mathcal{A} = \mathcal{D} + \mathcal{B}$$
, причем $\mathcal{B}\mathcal{D} = \mathcal{D}\mathcal{B}$

Доказательство

 $\phi(t)$ – минимальный многочлен $\mathcal{A}(\text{все корни} \in K)$

$$\epsilon = \sum_{\lambda} \rho_{\lambda}$$

$$\epsilon = \sum_{\lambda} \rho_{\lambda}$$

$$\mathcal{D} := \sum_{\lambda} \lambda \rho_{\lambda}$$

Проверим, что \mathcal{D} – о.п.с.

Достаточно убедиться, что λ – СЧ \mathcal{D} , Im $\rho_{\lambda} = V_{\lambda}^{D}$ – собственное подпространство для \mathcal{D}

Пусть $v_{\lambda} \in \operatorname{Im} \rho_{\lambda}$

$$\mathcal{D}v_{\lambda} = \sum_{\mu} \mu \rho_{\mu} \underbrace{v_{\lambda}}_{\ell \in \operatorname{Im} \rho_{\lambda}} = \lambda \rho_{\lambda} v_{\lambda} = \lambda v_{\lambda} \Rightarrow \lambda - \operatorname{CY} \mathcal{D}$$

$$V = \bigoplus_{\mu} \operatorname{Im} \rho_{\mu} - \text{дизъюнктны}$$
Отсюда $\operatorname{Im} \rho_{\lambda} \subset V_{\lambda}^{\mathcal{D}}$

$$V = \bigoplus_{\lambda} \operatorname{Im} p_{\lambda} \subset \bigoplus_{\lambda} V_{\lambda}^{\mathcal{D}} \subset V$$
Отсюда $\operatorname{Im} p_{\lambda} = V_{\lambda}^{\mathcal{D}}$

$$\mathcal{D} - \text{о.п.c}$$

$$V = \bigoplus_{\lambda} V_{\lambda}^{\mathcal{D}}$$

$$D = \sum_{\lambda} \rho_{\lambda} - \operatorname{спектральное разложение} \mathcal{D}$$

$$\mathcal{B} := \mathcal{A} - \mathcal{D}$$

$$\nu := \max_{\lambda} m(\lambda)$$

$$\Pi_{\text{Окажем, что}} \mathcal{B}^{\nu} = \emptyset$$

Покажем, что
$$\mathcal{B}^{\nu} = \mathbb{O}$$

$$(\mathcal{A} - \mathcal{D})^{\nu} = (\mathcal{A} - \sum_{\lambda} \lambda \rho_{\lambda})^{\nu} = (\mathcal{A} \sum_{\lambda} \rho_{\lambda} - \sum_{\lambda} \lambda \rho_{\lambda})^{\nu} = (\sum_{\lambda} (\mathcal{A} - \lambda \epsilon) \rho_{\lambda})^{\lambda} = \sum_{\lambda} (\mathcal{A} - \lambda \epsilon)^{\nu} \rho_{\lambda} = \sum_{\lambda} b_{\lambda}(\mathcal{A})(\mathcal{A} - \lambda \epsilon)^{m(\lambda)} \phi_{\lambda}(\mathcal{A}) = \mathbb{O}$$

$$\mathcal{B}\mathcal{D} = (\mathcal{A} - \sum_{\lambda} \lambda \rho_{\lambda})(\sum_{\mu} \mu \rho_{\mu}) = (\sum_{\mu} \mu \rho_{\mu})(\mathcal{A} - \sum_{\lambda} \lambda \rho_{\lambda}) = \mathcal{D}\mathcal{B}$$

Теорема (единственность разложения Жордана)

Разложение Жордана $\mathcal{A} = \mathcal{D} + \mathcal{B}$ возможно единственным образом

Доказательство

Пусть
$$\mathcal{A} = \mathcal{D}' + \mathcal{C}$$
 пусть $\mathcal{A} = \sum_{\sigma, n, c}' + \mathcal{C}$ нильпот. $\mathcal{D}' = \sum_{\mu} \mu Q_{\mu}$ — спектральное разложение

Достаточно доказать, что

1. множество μ с.ч. \mathcal{D}' совпадает с множеством с.ч. \mathcal{A}

2.
$$\operatorname{Im} Q_{\lambda} = K_{\lambda}(D = \sum_{\lambda} \lambda \rho_{\lambda}, \operatorname{Im} \rho_{\lambda} = K_{\lambda})$$

$$\Rightarrow \mathcal{D} = \mathcal{D}'$$

3.
$$C = A - D' = A - D = B$$

 $\chi_{\mathcal{A}} \equiv \chi_{\mathcal{D}}$

Доказательство
$$\mathcal{D} = \sum_{\lambda} \lambda p_{\lambda}$$
 $\mathcal{B} = \mathcal{A} - \mathcal{D}$ $\mathcal{B}^{\nu} = \emptyset$, $\nu = \max m(\lambda)$ $\mathcal{A}, \mathcal{B}, \mathcal{D}$ — попарно перестановочные $\epsilon = \sum_{\lambda} \rho_{\lambda}$ $\operatorname{Im} p_{\lambda} = K_{\lambda} = \operatorname{Ker}(\mathcal{A} - \lambda \epsilon)^{m(\lambda)}$ $(\chi_{\mathcal{A}}(\mu))^{\nu} = (\det \mathcal{A} - \mu \epsilon)^{\nu} = \det(\mathcal{A} - \mu \epsilon)^{\nu}$ $t \in K, (\mathcal{A} - \mu \epsilon)^{\nu} - t^{\nu} \mathcal{B}^{\nu} = (\mathcal{A} - \mu \epsilon - t \mathcal{B})((\mathcal{A} - \mu \epsilon)^{\nu-1} + (\mathcal{A} - \mu \epsilon)^{\nu-2} t \mathcal{B} + \ldots + t^{\nu-1} \mathcal{B}^{\nu-1})$ $\det(\chi_{\mathcal{A}}(\mu))^{\nu} = \det(\mathcal{A} - \mu \epsilon - t \mathcal{B}) \det((\mathcal{A} - \mu \epsilon)^{\nu-1} + (\mathcal{A} - \mu \epsilon)^{\nu-2} t \mathcal{B} + \ldots + t^{\nu-1} \mathcal{B}^{\nu-1})$ $\det(\chi_{\mathcal{A}}(\mu))^{\nu} = \det(\mathcal{A} - \mu \epsilon - t \mathcal{B}) \det((\mathcal{A} - \mu \epsilon)^{\nu-1} + (\mathcal{A} - \mu \epsilon)^{\nu-2} t \mathcal{B} + \ldots + t^{\nu-1} \mathcal{B}^{\nu-1})$ $\det(\chi_{\mathcal{A}}(\mu))^{\nu} = \det(\mathcal{A} - \mu \epsilon - t \mathcal{B}) = \det((\mathcal{A} - \mu \epsilon)^{\nu-1} + (\mathcal{A} - \mu \epsilon)^{\nu-2} t \mathcal{B} + \ldots + t^{\nu-1} \mathcal{B}^{\nu-1})$ $\det((\mathcal{A} - \mu \epsilon)^{\nu-1} + (\mathcal{A} - \mu \epsilon)^{\nu-2} t \mathcal{B} + \ldots + t^{\nu-1} \mathcal{B}^{\nu-1}) = \det((\mathcal{A} - \mu \epsilon)^{\nu-1} + (\mathcal{A} - \mu \epsilon)^{\nu-1} \mathcal{B}^{\nu-1})$ $(\chi_{\mathcal{A}}(\mu))^{\nu} = \det(\mathcal{A} - \mu \epsilon) \det(\mathcal{A} - \mu \epsilon)^{\nu-2} t \mathcal{B} + \ldots + t^{\nu-1} \mathcal{B}^{\nu-1}) = \det((\mathcal{A} - \mu \epsilon)^{\nu-1})$ $(\chi_{\mathcal{A}}(\mu))^{\nu} = \det(\mathcal{A} - \mu \epsilon) \det(\mathcal{A} - \mu \epsilon)^{\nu-1}$ $(\chi_{\mathcal{A}}(\mu))^{\nu} = \det(\mathcal{A} - \mu \epsilon) \det(\mathcal{A} - \mu \epsilon)^{\nu-1}$ $(\chi_{\mathcal{A}}(\mu))^{\nu} = \chi_{\mathcal{D}}(\mu) = \det(\mathcal{A} - \mu \epsilon)^{\nu-1}$ $(\chi_{\mathcal{A}}(\mu))^{\nu} = \det(\mathcal{A} - \mu \epsilon) \det(\mathcal{A} - \mu \epsilon)^{\nu-1}$ $(\chi_{\mathcal{A}}(\mu))^{\nu} = \chi_{\mathcal{D}}(\mu) = \det(\mathcal{A} - \mu \epsilon)^{\nu-1}$ $(\chi_{\mathcal{A}}(\mu))^{\nu} = \det(\mathcal{A} - \mu \epsilon)^{\nu} = \mathcal{A}$ $(\chi_{\mathcal{A}}(\mu))^{\nu} = \det(\mathcal{A} - \mu \epsilon)^{\nu} = \det(\mathcal$

1.10 Жорданова форма матрицы. Жорданов базис. Функция от матрицы

Пусть все корни
$$\chi(t) \in K$$

$$V = \bigoplus_{\lambda} K_{\lambda}$$

$$K_{\lambda} = \operatorname{Ker}(\mathcal{A} - \lambda \epsilon)^{m(\lambda)}$$

Построим в каждом K_{λ} такой базис, что матрица оператора в нем будет иметь определенный вид. Этот вид и базис будут называться жордановыми

Пусть
$$K_{\lambda} =: K, m(\lambda) =: m, \mathcal{B} = (\mathcal{A} - \lambda \epsilon)$$

Пусть $K_{j} = \operatorname{Ker}(\mathcal{A} - \lambda \epsilon)^{j}, j = 1 \dots m$
 $V_{\lambda} = K_{1} \subset K_{2} \subset \ldots \subset K_{m} = K_{\lambda} = K$
 $K_{r} \neq K_{r+1}$

Пусть это не так

Тогда $\operatorname{Ker} \mathcal{B}^{r} = \operatorname{Ker} \mathcal{B}^{r+1}$
 $\dim K = \operatorname{rg} \mathcal{B}^{r} + \dim K_{r} = \operatorname{rg} \mathcal{B}^{r+1} + \dim K_{r+1}$

Отсюда $\operatorname{rg} \mathcal{B}^{r} = \operatorname{rg} \mathcal{B}^{r+1}$
 $\operatorname{Im} \mathcal{B}^{r+1} \subset \operatorname{Im} \mathcal{B}^{r}$

Т.о. $\operatorname{Im} \mathcal{B}^{r+1} = \operatorname{Im} \mathcal{B}^{r}$

Тогда $\operatorname{Im} \mathcal{B}^{r} = \operatorname{Im} \mathcal{B}^{r+1} = \ldots = \operatorname{Im} \mathcal{B}^{m} = \mathbb{O}$, что противоречит минимальности m

Рассмотрим $K_1 \dots K_m$

Найдем j_m – компоненту, которая лежит в K_m , но не лежит в K_{m-1}

$$j_m \in K_m \setminus K_{m-1} \ j_r := \mathcal{B}j_{r+1}, r = m-1 \dots 1$$

Заметим, что $j_r \in K_r$

$$j_r \in K_r = \operatorname{Ker} \mathcal{B}^r$$

$$j_{r-1} = \mathcal{B}j_r$$

$$\mathcal{B}^{r-1}j_{r-1} = \mathcal{B}^r j_r = 0$$

Отсюда $j_{r-1} \in K_{r-1} = \operatorname{Ker} \mathcal{B}^{r-1}$

$$Bi_1 = 0$$

 $\underbrace{j_1,\ldots,j_{m-1}}$, j_m — циклический базис, порожденный вектором j_m

присоединенные вектора

Далее повторяем это для всех векторов K_m, K_{m-1}, \ldots

Максимальная длина циклического базиса, порожденного $j_r = r$

 $j_1 \in V_{\lambda}$ – собственном подпространстве

Линейное подпространство, порожденное span циклических базисов – *башня* высоты, равной длине циклического базиса

Башни образуют замок Жордана

Ширина башни – число циклических базисов в ней

Высота башни – размер циклического базиса

Опорные вектора (фундамент башни) – вектора j_m

Крыша башни — вектора j_1

Крыша башна – собственное подпространство

Башню рисуют опорными подпространствами как сверху, так и снизу Если $\gamma(\lambda)=\alpha(\lambda),$ то $V_{\lambda}=K_{\lambda},$ то замок будет состоять из одной башни высоты 1

 $K=K_{\lambda}=\mathrm{span}(\ldots,j_1,j_2,\ldots,j_m,\ldots)$ – линейная оболочка всех векторов всех башен

$$j_r = \mathcal{B}j_{r+1}$$

$$j_r = (\mathcal{A} - \lambda \epsilon)j_{r+1}$$

$$\mathcal{A}j_{r+1} = j_r + \lambda j_{r+1}$$

$$\mathcal{A}j_{1} = \lambda j_{1}$$
 $\mathcal{A}j_{2} = j_{1} + \lambda j_{2}$
 \vdots
 $\mathcal{A}j_{m} = j_{m-1} + \lambda j_{m}$
 $\longleftrightarrow J_{m} = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & 0 & \lambda & 1 \\ 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$ – клетка Жордана

m-ого порядка (блок нижнего уровня)

Каждая клетка соответствует одному циклическому базису размера mРассмотрим теперь блочную матрицу diag($\underbrace{J_1,\ldots J_1}_{\text{блок среднего уровня}}$, . . . , $\underbrace{J_m,\ldots,J_m}_{\text{блок среднего уровня}}$

– блок верхнего уровня, отвечающий корневому подпространству K_{λ} Каждый блок среднего уровня соответствует башне соответствующей высоты

Объединим все блоки вернего уровня всех корневых пространств в блочнодиагональную матрицу

Получим жорданов базис пространства V

Матрица \mathcal{A} в этом базисе будет иметь блочно-диагональный вид, где на диагонали будут находиться клетки Жордана, отвечающие циклическим базисам – Жорданова форма матрицы

$$T_{e \to j} = T = (\dots, j_1, \dots j_m, \dots)$$

 $T^{-1}AT = J$

 $J = \operatorname{diag}(\mathsf{б}$ локи верхнего уровня всех корневых пространств)

Обоснование алгоритма

Пусть
$$\mathcal{B}K = \operatorname{Im} \mathcal{B}$$

$$Z_0 = \mathcal{B}K$$

$$Z_r = \mathcal{B}K + K_r, r = 1 \dots m$$

$$Z_m = \mathcal{B}K + K_m = K$$

$$Z_0 \subseteq Z_1 \subseteq \ldots \subseteq Z_m$$

$$\overline{K}_1 \subset K_1 : Z_1 = Z_0 \oplus \overline{K}_1$$
 $\overline{K}_2 \subset K_2 : Z_2 = Z_1 \oplus \overline{K}_2$
 $\overline{K}_r \subset K_r : Z_r = Z_{r-1} \oplus \overline{K}_r = K$
 $K = \overline{K}_1 \oplus \ldots \oplus \overline{K}_m \oplus \mathcal{B}K$ (1)
 $\overline{K}_i = \text{OHOPHME HOJUROCTPARCTBA$

\overline{K}_i – опорные подпространства

Теорема

$$1 \le r \le m$$

$$\mathcal{B}^r K = \mathcal{B}^r \overline{K}_{r+1} \oplus \mathcal{B}^r \overline{K}_{r+2} \oplus \ldots \oplus \mathcal{B}^r \overline{K}_m \oplus \mathcal{B}^{r+1} K$$

Доказательство

$$K = \overline{K}_1 \oplus \ldots \oplus \overline{K}_m \oplus \mathcal{B}K$$
 (1)

$$\forall x \in K : \exists ! (x_i \in \overline{K}_i) : x = x_1 + \ldots + x_m + \mathcal{B}x', x' \in K$$

$$K = K_1 \oplus \ldots \oplus K_m \oplus \mathcal{B}K \ (1)$$

$$\forall x \in K : \exists ! (x_i \in \overline{K}_j) : x = x_1 + \ldots + x_m + \mathcal{B}x', x' \in K$$

$$\mathcal{B}^r x = \sum_{j=1}^m \mathcal{B}^r \underbrace{x_j}_{\in K_j = \operatorname{Ker} \mathcal{B}^j} + \mathcal{B}^{r+1}x' = \sum_{j=r+1}^m \mathcal{B}^r x_j + \mathcal{B}^{r+1}x' \in \sum_{j=r+1}^m \mathcal{B}^r \overline{K}_j + \mathcal{B}^{r+1}K$$

Докажем дизъюнктность

$$\sum_{j=r+1}^{m} \mathcal{B}^r x_j + \mathcal{B}^{r+1} x' = 0$$

$$\mathcal{B}^r\left(\sum_{j=r+1}^m \underbrace{x_j}_{\in \overline{K}_j} + \mathcal{B}x'\right) = 0$$

$$\in K_r \subset Z_r \overline{K}_1 \oplus \overline{K}_r \oplus \mathcal{B}K$$

$$\mathcal{B}^{r}\left(\sum_{j=r+1}^{m}\underbrace{x_{j}}_{\in \overline{K}_{j}} + \mathcal{B}x'\right) = \mathbb{O}$$

$$\sum_{j=r+1}^{m}\underbrace{x_{j}}_{\in \overline{K}_{j}} + \mathcal{B}x' = \sum_{j=1}^{m}x_{j} + \mathcal{B}y'$$

В силу единственности разложения и дизъюнктности \overline{K}_j и $\mathcal{B}K \ \forall j \ x_j = 0$ $\mathbb{O} + \mathcal{B}^{r+1} = \mathbb{O}$ – дизъюнктность

$$K = \overline{K}_1 \oplus \ldots \oplus \overline{K}_m \oplus \mathcal{B}K$$

$$\mathcal{B}K = \mathcal{B}\overline{K}_2 \oplus \mathcal{B}\overline{K}_3 \oplus \ldots \oplus \mathcal{B}\overline{K}_m \oplus \mathcal{B}^2K$$

$$\mathcal{B}^{m-1}K = \mathcal{B}^{m-1}\overline{K}_m \oplus \underbrace{\mathcal{B}^mK}_{-n}$$

Отсюда следствие

Следствие

$$K = \overline{K}_1 \oplus \ldots \oplus \overline{K}_m \oplus \mathcal{B}\overline{K}_2 \oplus \ldots \oplus \mathcal{B}\overline{K}_m \oplus \mathcal{B}^3\overline{K}_3 \oplus \ldots \oplus \mathcal{B}^3\overline{K}_m \oplus \ldots \oplus \mathcal{B}^{m-1}\overline{K}_m$$
 Сумма представляется в виде пирамиды

$$\overline{K}_{m-1} \qquad \overline{\overline{B}}K_m$$

$$. \cdot \cdot \qquad . \cdot \qquad \vdots$$

$$\overline{K}_2 \qquad . \cdot \mathcal{B}^{m-3}\overline{K}_{m-1} \qquad \overline{\mathcal{B}}^{m-2}K_m$$

$$\overline{K}_1 \qquad \mathcal{B}\overline{K}_2 \qquad . \cdot \mathcal{B}^{m-2}\overline{K}_{m-1} \qquad \overline{\mathcal{B}}^{m-1}K_m$$
Данная таблица соответствует башням
$$\mathcal{B}^{r-1}\overline{K}_r \subset V_\lambda$$

$$\mathcal{B}(\mathcal{B}^{r-1}\overline{K}_r) = \mathcal{B}^r\overline{K}^r =$$
Отсюда $\mathcal{B}^{r-1}\overline{K}_r \subset \operatorname{Ker} \mathcal{B} = V_\lambda$
Если $\overline{K}_r \neq \emptyset$, то $J_r = \overline{K}_r \oplus \ldots \oplus \mathcal{B}^{r-1}\overline{K}_r$

$$\overline{K}_r - \text{ основание башни (опорное пространство, поорожденное } J_r)$$

$$V_\lambda = \overline{K}_1 \oplus \mathcal{B}\overline{K}_2 \oplus \ldots \oplus \mathcal{B}^{m-1}\overline{K}_m - \text{ основание (1 этаж - крыша)}$$
Верхние клетки каждого этажа – основание

$$l$$
-ый этаж: $\overline{K}_l \oplus \mathcal{B}\overline{K}_{l+1} \oplus \ldots \oplus \mathcal{B}^{m-l}\overline{K}_m \subset K_l$ $\mathcal{B}^l(\mathcal{B}^j\overline{K}_{l+j}) = \mathcal{B}^{l+j}\overline{K}_{l-j} = \mathbb{0}, j = 0\ldots m-l$ Отсюда $\mathcal{B}^j\overline{K}_{l+j} \subset K_l$

Первые j этажей соответствуют K_i

Отсюда каждый следующий этаж – прямое дополнение предыдущих

Теорема (о размерности башни)

Все этажи башни имеют однинаковую размерность $d_r=\dim \overline{K}_r=\dim \mathcal{B}^j\overline{K}_r, j=1\dots r-1$

Доказательство

Рассмотрим \mathcal{B}^{j} (очевидно, что \mathcal{B}^{j} – эндоморфизм)

Докажем, что \mathcal{B}^j – изоморфизм, т.е. сохраняет размерность, т.е. $\dim \overline{K}_r = \dim \mathcal{B}^j \overline{K}_r$

Для этого докажем тривиальность ядра

Пусть
$$x \in \overline{K}_r, \mathcal{B}^j(x) = 0$$

Тогда
$$x \in \operatorname{Ker} B^j = K^j$$

$$x \in \overline{K}_r \cap K^i, i = 1 \dots r - 1$$

$$K_1,\ldots,K_{r-1}$$
 дизъюнктны с \overline{K}_r

T.o. x = 0

Тогда ядро тривиально, ч.т.д.

Следствие

$$\dim V_{\lambda} = \gamma(\lambda) = \sum_{r=1}^{m} d_r$$

$$\dim K_{\lambda} = \alpha(\lambda) = \sum_{r=1}^{m} r d_r$$

Следствие 2 (теорема

Следствие 2 (теорема Фробениуса)

$$\forall r = 1 \dots m \ d_r = \operatorname{rg} \mathcal{B}^{r-1} - 2\operatorname{rg} \mathcal{B}^r + \operatorname{rg} \dot{\mathcal{B}}^{r+1}$$
 (при $r = m \ d_m = \operatorname{rg} \mathcal{B}^{m-1}$)

Доказательство

$$\rho_{j} = \operatorname{rg} \mathcal{B}^{j}$$

$$\underbrace{\mathcal{B}^{j} K}_{\operatorname{Im} \mathcal{B}^{j}} = \underbrace{\mathcal{B}^{j} \overline{K}_{j+1}}_{d_{j+1}} \oplus \ldots \oplus \underbrace{\mathcal{B}^{j} \overline{K}_{m}}_{d_{m}} \oplus \underbrace{\mathcal{B}^{j+1} K}_{\operatorname{Im} \mathcal{B}^{j+1}}$$

$$\rho_{j} = d_{j+1} + \ldots + d_{m} + \rho_{j+1}$$

$$\rho_{j} - \rho_{j+1} = d_{j+1} + \ldots + d_{m}$$

$$\rho_{0} = \operatorname{rg} \mathcal{B}^{0} = \operatorname{rg} \epsilon = \dim K_{\lambda} = \alpha(\lambda)$$

$$d_{1} + \ldots + d_{m} = \rho_{0} - \rho_{1}$$

$$d_{n-1} + d_m = \rho_{m-2} - \rho_{m-1}$$

$$d_m = \rho_{m-1} - \rho_m$$

Отсюда
$$d_r = \rho_{r-1} - 2\rho_r + \rho_{r+1}$$

$$d_m = \rho_{m-1} + 0 + 0$$

Замечание

На практике удобнее

$$\rho \mathcal{B}^j = \dim K_\lambda - \dim K_j$$

Рассмотрим башню

$$\underline{\dim}\,\overline{K}_r = d_r = d$$

$$\overline{K}_r = \operatorname{span}(g_1, \dots, g_d)$$
 $\overline{K}_r \mid g_1 \quad g_2 \quad \dots \quad g_d$
 $\mathcal{B}\overline{K}_r \mid \mathcal{B}g_1 \quad \mathcal{B}g_2 \quad \dots \quad \mathcal{B}g_d$
 $\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$
 $\mathcal{B}^{r-1}\overline{K}_r \mid \mathcal{B}^{r-1}g_1 \quad \mathcal{B}^{r-1}g_2 \quad \dots \quad \mathcal{B}^{r-1}g_d$
реходит в базис

реходит в базис

 $\mathcal{B}^j g_1 \dots \mathcal{B}^j g_d$ – базис $\mathcal{B}^j \overline{K}^r$ – циклический базис

Тогда
$$J_r = \bigoplus_{i=1}^d \operatorname{span}(\mathcal{B}^{r-1}g_i, \dots, \mathcal{B}g_i, g_i)$$

$$\mathcal{A}(\mathcal{B}^j g_i) = (\mathcal{B} + \lambda \epsilon) \mathcal{B}^j g_i = \mathcal{B}^{j+1} g_i + \lambda \mathcal{B}^j g_i$$

$$\mathcal{A}$$
 $\underset{\text{span}(\mathcal{B}^{r-1}g_i,\ldots,\mathcal{B}g_i,g_i)}{\longleftrightarrow}$ $\mathcal{A}_{\text{в цикл.базисе}}$ \mathcal{J}_r – клетка Жордана размерности $r\times r$ – блок нижнего уровн \mathcal{A} $\underset{\mathcal{J}_i}{\longleftrightarrow}$ $\operatorname{diag}(\underbrace{\mathcal{J}_r(\lambda),\ldots,\mathcal{J}_r(\lambda)}_{d_r\text{ штук}})=\mathcal{T}_{\mathcal{J}_r}(\lambda)$ \mathcal{A} $\underset{K=\bigoplus_{r=1}^m J_r}{\longleftrightarrow}$ \mathcal{A} \mathcal

1.11 Функция от матрицы, приводимой к жордановой форме

Пусть
$$f(x) = \sum_{k=0}^{\infty} c_k x^k, |x| < R$$

$$f(A) = \sum_{k=0}^{\infty} c_k A^k$$

$$\exists T(j_1, \dots, j_n), A = T \mathcal{J} T^{-1}$$
Пусть $\mathcal{J} = \operatorname{diag}(\mathcal{J}_1, \dots, \mathcal{J}_n)$ Тогда $\mathcal{J}^k = \operatorname{diag}(\mathcal{J}(\lambda_1)^k, \dots, \mathcal{J}(\lambda_n)^k)$

$$A^k = T \operatorname{diag}(\mathcal{J}(\lambda_1)^k, \dots, \mathcal{J}(\lambda_n)^k) T^{-1}$$

$$f(A) = T \operatorname{diag}(f(\mathcal{J}(\lambda_1)), \dots, f(\mathcal{J}(\lambda_n))) T^{-1}$$

$$\begin{bmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & 0 & \lambda & 1 \\ 0 & 0 & \dots & 0 & \lambda \end{bmatrix} = \lambda E_{r \times r} + I_r, I_r = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & 0 & 0 & 1 \\ 0 & 0 & \dots & 0 & 0 \end{bmatrix}$$

$$I_r^2 = \begin{bmatrix} 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & 0 & 0 & 0 & 1 \\ 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & 0 \end{bmatrix}$$

Т.е. ряд единиц "уезжает вверх"

Отсюда
$$J_r^k = (\lambda E_{r \times r} + I_r)^k = \sum_{m=0}^k C_k^m \lambda^{k-m} I_r^m = C_k^0 \begin{pmatrix} \lambda^k & 0 & 0 & \dots & 0 \\ 0 & \lambda^k & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & 0 & \lambda^k & 0 \\ 0 & 0 & \dots & 0 & \lambda^k \end{pmatrix} +$$

$$C_k^1 \begin{pmatrix} 0 & \lambda^{k-1} & 0 & \dots & 0 \\ 0 & 0 & \lambda^{k-1} & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & 0 & 0 & \lambda^{k-1} \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix} + \dots$$

$$= \begin{pmatrix} C_k^0 \lambda^k & C_k^1 \lambda^{k-1} & C_k^2 \lambda^{k-2} & \dots & C_k^{k-r+1} \lambda^{k-r+1} & 0 & 0 & \dots & 0 \\ 0 & C_k^0 \lambda^k & C_k^1 \lambda^{k-1} & C_k^2 \lambda^{k-2} & \dots & C_k^{k-r+1} \lambda^{k-r+1} & 0 & \dots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

$$=\begin{pmatrix} C_k^0 \lambda^k & C_k^1 \lambda^{k-1} & C_k^2 \lambda^{k-2} & \dots & C_k^{k-r+1} \lambda^{k-r+1} & 0 & 0 & \dots 0 \\ 0 & C_k^0 \lambda^k & C_k^1 \lambda^{k-1} & C_k^2 \lambda^{k-2} & \dots & C_k^{k-r+1} \lambda^{k-r+1} & 0 & \dots & 0 \\ 0 & 0 & \ddots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

//todo 23.03 10:27

Черная магия

$$(\ln |x|)' = \frac{1}{x}$$

Отсюда $(\ln |y|)' = \frac{y'}{y}$
 $y' = y(\ln |y|)'$ (удобно)

3 Тензоры

Линейные формы. Сопряженное пространство. Ко-3.1вариантные и контрвариантные преобразования

V – линейное пространство над $K(\mathbb{R},\mathbb{C})$

Определение

Линейная функция $f:V \to K$ называется линейной формой(линейным функционалом)

Т.е.
$$f(x_1 + \lambda x_2) = f(x_1) + \lambda f(x_2)$$

Пример

- 1. Скалярное умножение на фиксированный вектор
- 2. $A_{n \times n}, f : M_{n \times n} \to \mathbb{R}(\mathbb{C})$ $f(A) = \operatorname{tr} A$
- 3. $P_n, t_0 \in \mathbb{R}$ Пусть $f^j = P_n \to \mathbb{R}, f^j(p) = \frac{p^{(j)}(t)}{j!}(t_0)$ Тогда f^0, f^1, \ldots линейная форма
- 4. f: C $(\mathbb{R}) \to \mathbb{R}$ функции, непрерывные на \mathbb{R} $\delta(f):=f(0)-\delta$ -функция Дирака $\delta(f)$ линейная форма на бесконечномерном пространстве

 $n:=\dim V$ $V^*=\{f:V\to K\,f$ — линейнаяя форма\} $\mathbb{O}(x):=0, \mathbb{O}\in V^*$ $\forall\,f\in V^*\;(-f)\in V^*$ Тогда V^* — линейное пространство над полем K V^* — $conparcenhoe(\partial yandhoe)$ к V

Вспоминаем правило Эйнштейна Выражение $\alpha^i \beta_i := \sum_i \alpha_i \beta_i$

иначе: $\alpha^i := \alpha_i$

$$f \in V^*$$

 $\forall x \in V \ f(x) = f(x^i e_i) = x^i \underbrace{f(e_i)}_{a_i \in K}$

 $a:=f(e_i)$ называется коэффициентами линейной формы f Тогда $f(x)=x^ia_i-f$ полностью описывается значениями на базисных элементах

Тогда $f \leftrightarrow a = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix}$ — зависит от выбора базиса Сопоставление — изоморфизм

Фанфакт

Естественный изоморфизм – изоморфизм, который не зависит от выбора базиса. Но это не наш случай

 $V^* \cong K_n(K^n)$ – пространство n-мерных строк

Определение

$$\omega^i \in V^*, x = x^i e_i$$

$$\forall\,x\in V\omega^i(x)=x_i$$
 – координатные функции

(очевидно, что
$$\omega^i \in V^*, w^i(x_1 + \lambda x_2) = x_1^i + \lambda x_2^i$$
)

$$($$
очевидно, что $\omega^i \in V^*, w^i(x_1 + \lambda x_2) = x_1^i + \lambda x_2^i)$ $w^i(e_j) = \delta^i_j = +(i == j) \leftrightarrow \begin{pmatrix} 0 & 0 & \cdots & 1 \\ & & & \ddots & 0 \end{pmatrix}$

Теорема

$$\omega^1,\ldots,\omega^n$$
 – базис V^*

Доказательство

$$\omega^1, \ldots, \omega^n$$
 – линейно независимые

$$\alpha_i \omega^i = \mathbb{O}$$

$$\alpha_i \in K$$

$$j=1\dots n$$
 $\alpha_i\omega^i(e_j)=\alpha_i\delta^i_j=\alpha_j\Rightarrow\alpha_j=0\Rightarrow$ линейно независимые $\dim V^*=n\Rightarrow$ базис

Следствие

 a_i – координаты f в базисе $\omega^1 \dots \omega^n$

Доказательство

$$f(x) = x^i a_i = \omega^i(x) a_i \Leftrightarrow f = a_i \omega^i$$

Определение

 $\omega = (\omega^1 \ldots \omega^n)$ называется сопряженным (дуальным) базисом к бази- $\mathrm{cy}\;e$ пространства V

Вопрос: есть другой базис в V^* . Будет ли он сопряженным к некоторому базису V

Теорема

$$\omega'^1,\ldots,\omega'^n$$
 – базис V^*

Тогда $\exists e_1', \dots, e_n'$ – базис в V такой, что ω' сопряжен с e'

Доказательство

Пусть
$$e_1', \dots, e_n'$$
 – базис в V

Базис
$$V \omega^1, \dots, \omega^n$$
 сопряжен с e

Базис
$$V$$
 $\omega^1, \ldots, \omega^n$ сопряжен с e $\omega'^1, \ldots, \omega'^n$ – базис $V^* \Rightarrow (\omega'^1, \ldots, \omega'^n) = (\omega^1, \ldots, \omega^n) T_{\omega \to \omega'}$

$$\begin{pmatrix} \omega'^1 \\ \vdots \\ \omega'^n \end{pmatrix} = \underbrace{T^T_{\omega \to \omega'}}_{=:S_{\omega \to \omega'}} \begin{pmatrix} \omega^1 \\ \vdots \\ \omega^n \end{pmatrix}$$

Построим новый базис e'

$$T_{e \to e'} = S^{-1} = T$$

$$(e_1' \ldots e_n') := (e_1 \ldots e_n) T$$
 – тоже базис по определению

 $(e'_1 \dots e'_n) := (e_1 \dots e_n) T$ – тоже базис по определению Покажем, что ω' сопряжен к e', т.е. ω'^i – координатные функции по отношению к e'

ношению к
$$e'$$
Пусть $s_j^i = s_{ij}, t_j^i = t_{ij}$
 $\forall x \in V \ \omega'^i(x) = s_k^i \omega^k(x) = s_k^i x^k = \underbrace{s_k^i t_j^k}_{E} \ x'^i = \delta_j^i x'^j = x'^i$

Отсюда ω'^i – координатная функция \Rightarrow базис сопряженный

Вообще говоря, базис e' существует и единственный (очевидно из доказательства)

$$\begin{pmatrix} \omega'^1 \\ \vdots \\ \omega'^n \end{pmatrix} = S \begin{pmatrix} \omega^1 \\ \vdots \\ \omega^n \end{pmatrix}, S = T^T_{\omega \to \omega'}$$
 Тогда $a' = aT$

$$T = S^{-1} = T_{e \to e'}$$

$$x' = Sx$$

Доказательство
$$X' = SX \text{ очевидно}(X = TX' = S^{-1}X')$$

$$(\omega'^1 \dots \omega'^n) = (\omega^1 \dots \omega^n) T_{\omega \to \omega'}$$

$$a^T = T_{\omega \to \omega'}(a')^T \ a = a'T_{\omega \to \omega'}^T = a'S \Leftrightarrow a' = aS^{-1}aT$$

Определение

Если координаты вектора при смене базиса изменяются по тому же закону(т.е. с той же матрицей), что и сам базис, то такой закон называется ковариантным (согласованным), координаты вектора называются ковариантными координатами, а сам вектор называется ковариантным или ковектором

Элементы V^* – это ковекторы (линейная форма \equiv ковектор)

В противном случае, если координаты вектора при смене базиса изменяются по закону, провоположному (т.е. с обратной матрицей) тому, по которому сам базис, то такой вектор называется контрвариантным, координаты – контрвариантными, вектор – контровариантным или просто вектором

Элементы V – контрвариантные векторы

Принято писать индекс координаты контрвектора сверзу, а ковариантного – снизу

$$\forall f \in V^*, x \in V \ f(x) = x' i a_i' = s_k^i x^k a_m t_i^m = \underbrace{t_i^m s_k^i}_{\delta_i^m} x^k a_m = x^k a_k$$

T.о. форма записи f – инвариант относительно замены базиса

Определение

$$V^{**} = (V^*)^*$$

 $\dim V^{**}=\dim V^*=\dim V$ — можем построить изоморфизм между V и V^{**}

Теорема 3 (естественный изоморфизм V и V^{**})

Вместо обозначения "х"буду использовать $\langle x \rangle$

$$\forall \, x \in V \to < x > \in V^{**}$$

$$\forall f \in V^* < x > (f) = f(x)$$

Отсюда $x \leftrightarrow < x >$

 $V\cong V^{**}$

Доказательство

$$\forall f_1, f_2 \in V^*, \lambda \in K < x > (f_1 + \lambda f_2) = (f_1 + \lambda f_2)(x) = f_1(x) + \lambda f_2(x) = < x > (f_1) + \lambda < x > (f_2)$$

Отсюда $< x > \in (V^*)^*$

Покажем, что V линейно вложено в V^{**} , т.е. $x \in V \to < x > \in V^{**}$ //todo 12:00 23.03

Покажем, что базис V $e_1, \dots e_n$ перейдет в базис V^{**}

$$e_j \rightarrow \langle e_j \rangle$$

$$\forall f \in V^* < e_j > (f) = f(e_j) = a_j$$
 – координата f в базисе $\omega^1, \dots \omega_n$, сопр. с e

T.o. $< e_j > -$ координатная функция в пространстве V^* относительно $\omega^1, \ldots \omega_n$

Т.о. по теореме 1 координатные функции – базис сопряженного пространства

Т.о.
$$< e_i >$$
 – базис V^{**}

Базис
$$V^*e_1, \dots, e_n \to$$
 базис $V^{**} < e_1 >, \dots, < e_n >$

Т.о. отображение линейно, то изоморфизм

Замечание

1. принято отождествлять элементы V и V^{**} с помощью изоморфиз-

ма, описанного в теореме 3

Поэтому <> не пишут

$$\forall f \in V^*, x \in V \ f(x) = a_i x^i = f(e_i) x^i = e_i(f) x^i = x(f)$$

$$a_i = f(e_i)$$

$$x^i = x(\omega^i)$$

2.
$$\omega^{i}(e_{j}) = \delta^{i}_{j} = e_{j}(\omega^{i})$$

Как найти на практике?

$$e_1, \dots, e_n \leftrightarrow \left(\vdots \right) \dots \left(\vdots \right)$$
 — столбцы $w^i(e_j) = \underbrace{\left(\dots \right)}_a \underbrace{\left(\vdots \right)}_b = \delta^i_j$

Отсюда
$$\underbrace{\begin{pmatrix} \omega^1 \\ \vdots \\ \omega^n \end{pmatrix}}_{S=T^{-1}} \underbrace{\begin{pmatrix} e_1 & \dots & e_n \end{pmatrix}}_{T} = E$$

3. Т.о. понятие сопряженного пространства и сопряженного базиса дуальны

 ω сопряженный базис к ee сопряженный базис к ω (здесь подразумевается элементы V^{**})

4. Задача о построении проекторов (разложение элемента на проекции)

$$V = \bigoplus_{\lambda} V_{\lambda}$$

$$\forall x \in V \exists ! x = \sum_{\lambda} x_{\lambda}, x_{\lambda} \in V_{\lambda}$$

$$\rho_{\lambda} : V \to V, \operatorname{Im} \rho_{\lambda} = V_{\lambda}, \sum_{\lambda} \rho_{\lambda} = \epsilon$$

$$\forall x \in V \ \rho x := x_{\lambda}, \rho_{\lambda} \rho \mu = 0$$

$$v_1,\dots,v_n$$
 — базис $V=$ объединение базисов V_λ $x=x^iv_i=\sum_\lambda\sum_{m_\lambda}x^{m_\lambda}v_{m_\lambda}=\omega^1,\dots,\omega^n$ — сопряженный базис $=$

$$\sum_{\lambda} \sum_{m_{\lambda}} \omega^{m_{\lambda}}(x) v_{m_{\lambda}}$$

$$\omega^{m_{\lambda}} \leftrightarrow (a_{i}^{m_{\lambda}})_{i} - \text{строка}$$

$$x \leftrightarrow X$$

$$\omega^{m_{\lambda}}(x) = a^{m_{\lambda}} X$$

$$v_{m_{\lambda}} \leftrightarrow (V_{m_{\lambda},i})_{i} - \text{столбец}$$

$$x = \sum_{\lambda} \sum_{m_{\lambda}} V_{m_{\lambda}} a^{m_{\lambda}} X = \sum_{\lambda} \left(\sum_{m_{\lambda}} V_{m_{\lambda}} a^{m_{\lambda}} \right) X = \sum_{\lambda} \left(\sum_{m_{\lambda}} \underbrace{(a^{m_{\lambda}} x)}_{\omega^{m_{\lambda}}(x)} V_{m_{\lambda}} \right)$$

3.2 Два определения тензора. Линейное пространство тензоров. Многомерная матрица

Определение

 V,V^* — сопряженные линейные пространства над полем $K(\mathbb{R},\mathbb{C})$

 $f: V^p \times (V^*)^q \to K, p, q \ge 0$ – линейная по каждому аргументу

f — тензор порядка (p,q) или p раз ковариантом, q раз контрвариантным Множество таких функций обозначим $T_{(p,q)}$

p,q — валентности

r = p + q — полная валентность/ранг тензора (не наш rg)

 $f \in T_{p,0}$ – ковариантный тензор валентности p

 $f \in T_{0,q}$ – контрвариантный тензор валентности q

r=0 – тензор нулевого ранга. $f=\mathrm{const}\in K$

Пример

$$\underbrace{x \in \mathbb{R}^n}_{V}$$
 — столбец $\underbrace{a \in \mathbb{R}_n}_{V^*}$ — строка $f(x,a) = ax \in \mathbb{R}, f \in T_{(1,1)}$

 \mathbb{O} – нулевой тензор

$$\forall \, \xi_1, \dots, \xi_p \in V, \nu^1, \dots, \nu^p \in V^* \, 0(\xi_1, \dots, \xi_p, \nu^1, \dots, \nu^q) = 0$$

$$\forall \, f \in T_{(p,q)} - f \in T_{(p,q)}$$

 $T_{(p,q)}$ — линейное пространство

$$e_1, \ldots, e_n$$
 – базис V $\omega^1, \ldots, \omega^n$ – базис V^*

 e, ω – сопряженные

Для
$$\xi \in V \xi = \xi^i e_i$$

Для
$$\xi \in V$$
 $\xi = \xi^i e_j$
Для $\nu \in V^*$ $\nu = \nu_i \omega^j$

Тогда
$$f(\xi_1,\ldots,\xi_p,\nu^1,\ldots,\nu^q)=f(\xi_1^{j_1}e_{j_1},\ldots,\xi_p^{j_p}e_{j_p},\nu^1_{i_1}\omega^{i_1},\ldots,\nu^q_{i_q}\omega^{i_p})$$

$$=\xi_1^{j_1}\dots\xi_p^{j_p}
u_{i_1}^1\dots
u_{i_q}^qf(e_{j_1},\dots,e_{j_p},\omega^1,\dots,\omega^{i_q})$$
 – любой тензор определяется значениями на всевозможных наборах e_j,ω^i

 $\alpha_{j_1,\dots,j_p}^{i_1,\dots,i_q}:=f(e_{j_1},\dots,e_{j_p},\omega^{i_1},\dots,\omega^{i_q})$ – коэффициенты тензона f относительно базисов e,ω

$$f(\xi_1, \dots, \xi_p, \nu^1, \dots, \nu^q) = \xi_1^{j_1} \dots \xi_p^{j_p} \nu_{i_1}^1 \dots \nu_{i_q}^q \alpha_{j_1, \dots, j_p}^{i_1, \dots, i_q}$$

Определение

S – множество элементов, записанных с помощью двух типов индексов $s_{j_1,\dots,j_p}^{i_1,\dots,i_q}$, где $i_k,j_m\in(1,\dots n)$ называется p+q-мерной матрицей порядка

Пример

n=3, трехмерная матрица

- 1. S^{ijk}
- S_k^{ij}
- 3. S_{ik}^i
- 4. S_{iik}

$$f\leftrightarrow lpha=(lpha_{j_1,\dots,j_p}^{i_1,\dots,i_q})$$
 — изоморфизм $T_{(p,q)}\cong S_(p+q)$

Правило записи элементов тензора в многомерной записи В $\alpha_{j_1,\ldots,j_p}^{i_1,\ldots,i_q}$ сначала читаются верхние индексы, потом нижние индексы Для двумерных матриц:

- 1. строка
- 2. столбец

Для трехмерных матриц:

- 1. строка
- 2. столбец
- 3. слой

Для четырехмерных матриц:

- 1. строка
- 2. столбец
- 3. слой
- 4. срез

Нижние индексы — ковариантные, т.к. при смене базиса соответствующая координата пересчитывается по ковариантному закону (т.е. через T)

Верхние индексы – контрвариантные

Пример

 $\forall x \in V \cong V^{**}, x$ – линейное отображение

$$x \leftrightarrow \begin{pmatrix} \alpha^1 \\ \vdots \\ \alpha^n \end{pmatrix} = \alpha, x \in T_{(0,1)}$$

$$\alpha'^r = \alpha^i s_i^r$$
 $\alpha' = S\alpha \Rightarrow \alpha = T\alpha'$
 $\forall f \in V^*, f$ — линейное отображение
 $f \leftrightarrow a = \begin{pmatrix} a_1 & \dots & a_n \end{pmatrix}, f \in T_{(0,1)}$
 $a_u' = a_j t_u^j$
 $a' = aT \Rightarrow a = a'S$

Определение 2

Геометрический объект на линейном пространстве V над полем K, описываемый p+q-мерной матрицей размерности $n(=\dim V)$ с элементами из поля K, которая при смене пространства V пересчитывается по формуле $\alpha_{j_1,..,j_p}^{i_1,...,i_q}t_{u_1}^{j_1}\cdot\ldots\cdot t_{u_p}^{j_p}s_{i_1}^{r_1}\cdot\ldots\cdot s_{i_q}^{r_q}=\alpha'^{r_1,...,r_q}_{u_1,..,u_p}$, где $(t_j^i)=T_{e\to e'},S=T^{-1}$, называется тензором типа (p,q) или p раз ковариантным и q раз контрвариантным

Пусть \mathbb{O} — нулевая матрица, $-\alpha$ — противоположная матрица, задано умножение на скаляр и сложение

Докажем, что + и λ \cdot сохраняют свойство тензоров

$$\begin{array}{l} \alpha,\beta\in T_{(p,q)},\forall\,\lambda\in K\\ (\alpha+\lambda\beta)^{i_1,\dots,i_q}_{j_1,\dots j_p}=\alpha^{i_1,\dots,i_q}_{j_1,\dots j_p}+\lambda\beta^{i_1,\dots,i_q}_{j_1,\dots j_p}\\ (\alpha+\lambda\beta)^{\prime r_1,\dots,r_q}_{u_1,\dots u_p}=(\alpha+\lambda\beta)^{i_1,\dots,i_q}_{j_1,\dots j_p}t^{j_1}_{u_1}\dots t^{j_p}_{u_p}s^{r_1}_{i_1}\dots s^{r_q}_{u_q}=\alpha^{\prime r_1,\dots,r_q}_{u_1,\dots u_p}+\lambda\beta^{\prime r_1,\dots,r_q}_{u_1,\dots u_p}-\\ \text{верно} \end{array}$$

3.3 Произведение тензоров. Базис пространства тензоров. Свойства тензоров

Определение

$$\begin{array}{l} \alpha \in T_{(p_1,q_1)} \\ \beta \in T_{(p_2,q_2)} \\ \gamma = \alpha \otimes \beta \in T_{(p_1+q_1,p_2+q_2)} \\ \gamma_{j_1,\ldots,j_{q_1},k_1,\ldots,k_{q_2}}^{i_1,\ldots,i_{q_1}} = \alpha_{j_1,\ldots,j_{q_1}}^{i_1,\ldots,i_{q_1}} \beta_{m_1,\ldots,m_{p_2}}^{k_1,\ldots,k_{q_2}} \\ \textbf{Доказательство корректности произведения} \\ \gamma_{u_1,\ldots u_{p_1}v_1,\ldots v_{p_2}}^{\prime r_1,\ldots r_{q_1}\sigma_1\ldots\sigma_{q_2}} = \gamma_{j_1,\ldots,j_{p_1},m_1,\ldots,m_{p_2}}^{i_1,\ldots,k_{q_2}} t_{u_1}^{j_1} \ldots t_{v_{p_2}}^{w_{p_2}} s_{i_1}^{r_1} \ldots s_{k_{q_2}}^{\sigma_{q_2}} \\ = \alpha_{j_1,\ldots,j_{p_1}}^{i_1,\ldots,i_{q_1}} t_{u_1}^{j_1} \ldots t_{u_{p_1}}^{j_{p_1}} s_{i_1}^{r_1} \ldots s_{r_{q_1}}^{r_{q_1}} \beta_{m_1,\ldots,m_{p_2}}^{k_1,\ldots,k_{q_2}} t_{v_1}^{m_1} \ldots t_{v_{p_2}}^{w_{p_2}} s_{k_1}^{\sigma_1} \ldots s_{k_{q_2}}^{\sigma_{q_2}} \\ = \alpha_{u_1,\ldots,u_{p_1}}^{\prime r_1,\ldots,r_{q_1}} \beta_{v_1,\ldots,v_{p_2}}^{\prime \sigma_1,\ldots,\sigma_{q_2}} \\ \mathbf{Замечаниe} \end{array}$$

1.
$$\lambda \in K \leftrightarrow \lambda \in T_{(0,0)}$$

$$\forall \alpha \in T_{(p,q)} \ \lambda \otimes \alpha = \lambda \alpha$$

2. \oplus ассоциативно, не коммутативно, дистрибутивно по сложению

$$lpha \in T_{(p_1,q_1)} \underset{e_1,\dots,e_n}{\longleftrightarrow} f: V^{p_1} imes (V^*)^{q_1} o K$$
 — полилинейная $eta \in T_{(p_2,q_2)} \underset{e_1,\dots,e_n}{\longleftrightarrow} f: V^{p_2} imes (V^*)^{q_2} o K$ — полилинейная $eta \in T_{(p_2,q_2)} \underset{e_1,\dots,e_n}{\longleftrightarrow} f: V^{p_2} imes (V^*)^{q_2} o K$ — полилинейная $eta \in T_{(p_1+p_2,q_1+q_2)} o t: V^{p_1+p_2} imes (V^*)^{q_1+q_2} o R$ $\forall \xi_1,\dots,\xi_{p_1},\zeta_1,\dots,\zeta_{p_2} \in V$ $\forall \eta^1,\dots,\eta^{q_1},\theta^1,\dots,\theta^{q_2} \in V^*$ $t(\xi_1,\dots,\xi_{p_1},\zeta_1,\dots,\zeta_{p_2},\eta^1,\dots,\eta^{q_1},\theta^1,\dots,\theta^{q_2})$ $= \gamma_{j_1,\dots,j_{p_1},k_1,\dots,k_{p_2}}^{i_1,\dots,i_{q_1}} \xi_1^{i_1}\dots\xi_{p_1}^{j_{p_1}} \zeta_1^{m_1}\dots\zeta_{p_2}^{p_2} \eta_{i_1}\dots\eta_{i_{q_1}}^{q_1} \theta_{k_1}^1\dots k_{q_2}^{q_2}$ $= \alpha_{j_1,\dots,j_{p_1}}^{i_1,\dots,i_{q_1}} \xi_1^{j_1}\dots\xi_{p_1}^{j_{p_1}} \eta_{i_1}\dots\eta_{i_{q_1}}^{q_1} eta_{k_1,\dots,k_{p_2}}^{k_1,\dots,k_{p_2}} \zeta_1^{m_1}\dots\zeta_{p_2}^{m_2} \theta_{k_1}^1\dots k_{q_2}^{q_2}$ $= f(\xi_1,\dots,\xi_{p_1},\eta^1,\dots,\eta^{q_1})g(\zeta_1,\dots,\zeta_{p_2},\theta^1,\dots,\theta^{q_2})$ Отсюда $\gamma = \alpha \otimes \beta \leftrightarrow t = fg$ В частности: $\forall f^1,\dots,f^p \in V^*,g_1,\dots,g_q \in V$ $f^1\otimes \dots\otimes f^p\otimes g_1\otimes \dots\otimes g_q(\xi_1,\dots,\xi_p,\eta^1,\dots,\eta^q) = f^1(x_1,\dots,x_p,y_1,\dots,y_q)$

$$f^1(\eta_1)\dots f^p(\eta_p)g_1(\eta^n)\dots g_q(\eta^q)$$

Пусть
$$e_1, \ldots, e_n$$
 – базис V

$$\omega^1, \ldots, \omega^n$$
 – базис V^*

$$\omega^{j_1} \otimes \ldots \otimes \omega^{j_p} \otimes e_{i_1} \otimes \ldots \otimes e_{i_q}(\xi_1, \ldots, \xi_p, \eta^1, \ldots, \eta^q) = \xi_1 j_1, \ldots, \xi_p^{j_p}, \eta_{i_1}^1, \ldots, \eta_{i_q}^q$$

Теорема о базисе пространства тензоров

Набор тензоров $\omega^{j_1} \otimes \ldots \otimes \omega^{j_p} \otimes e_{i_1} \otimes \ldots \otimes e_{i_q}$ по всем возможным i,j базис $T_{(p,q)}$

Доказательство

$$\omega^j \in T_{(1,0)}, e_i \in T_{(0,1)}$$
 $\{\omega^{j_1} \otimes \ldots \otimes \omega^{j_p} \otimes e_{i_1} \otimes \ldots \otimes e_{i_q}\}$ – набор из n^{p+q}

Система порождающая:

$$\forall \, \xi_1, \dots, \xi_p \in V$$

$$\forall \, \eta^1, \dots, \eta^q \in V^*$$

$$\forall \, f \in T_{(p,q)} \, f(\xi_1, \dots, \xi_p, \eta^1, \dots, \eta^q) = \alpha_{j_1, \dots, j_p}^{i_1, \dots, i_q} \underbrace{\xi_1^{j_1} \dots \xi_p^{j_p} \eta_{i_1}^1 \dots \eta_{i_q}^q}_{\omega^{j_1} \otimes \dots \otimes \omega^{j_p} \otimes e_{i_1} \otimes \dots \otimes e_{i_q}(\xi_1, \dots, \xi_p, \eta^1, \dots, \eta^q)}$$
 Отсюда $f = \alpha_{j_1, \dots, j_p}^{i_1, \dots, i_q} \quad \omega^{j_1} \otimes \dots \otimes \omega^{j_p} \otimes e_{i_1} \otimes \dots \otimes e_{i_q}$

$$\alpha = \underbrace{\alpha_{j_1,..,j_p}^{i_1,..,i_p}} \qquad \omega^{j_1} \otimes \ldots \otimes \omega^{j_p} \otimes e_{i_1} \otimes \ldots \otimes e_{i_p}^{i_p}$$

в будущем: координата

Система линейно независимая

Рассмотрим $\alpha_{j_1,..,j_p}^{i_1,...,i_q}\omega^{j_1}\otimes\ldots\otimes\omega^{j_p}\otimes e_{i_1}\otimes\ldots\otimes e_{i_q}$

Применим к
$$e_{u_1}, \dots, e_{u_p} \in V, \omega^{r_1}, \dots, \omega^{r_q} \in V^*$$

$$\alpha^{i_1,\dots,i_q}_{j_1,\dots,j_p} \underbrace{\omega^{j_1} \otimes \dots \otimes \omega^{j_p} \otimes e_{i_1} \otimes \dots \otimes e_{i_q}(e_{u_1},\dots,e_{u_p},\omega^{r_1},\dots,\omega^{r_q})}_{\delta^{j_1}_{u_1}\dots\delta^{j_p}_{u_p}\delta^{r_1}_{i_1}\dots\delta^{r_q}_{i_q}} = 0$$

Отсюда $\alpha_{j_1,...,j_p}^{i_1,...,i_q}=0$ Тогда все $\alpha_{j_1,...,j_p}^{i_1,...,i_q}$ нули \Rightarrow линейно независимые

Следствие

 $\dim T_{(p,q)} = n^{p+q}$

Замечание

//todo 14:20 30.03

Определение

Пусть $\alpha \in T(p,q), p,q \neq 0$

Тензор
$$\beta \in T_{p-1,q-1}$$
 называется сверткой тензора α , если $\beta_{j_1,\dots,\hat{j_m}\dots j_p}^{i_1,\dots,\hat{i_k},\dots,i_q} := \sum_{\kappa} \alpha_{j_1,\dots,\frac{\kappa}{\text{m-ая позиция}}\dots j_p}^{i_1,\dots,\hat{i_k},\dots,i_q}$, где $\hat{i_k}$ – отсутствие i_k

Доказательство корректности определения

$$\beta_{j_{1},\dots,\hat{j_{k}},\dots,j_{p}}^{i_{1},\dots,\hat{i_{k}},\dots,i_{q}} = \alpha_{u_{1},\dots,\kappa,\dots u_{p}}^{\prime r_{1},\dots,\kappa,\dots r_{q}} = \alpha_{u_{1},\dots,j_{m},\dots u_{p}}^{\prime r_{1},\dots,i_{k},\dots,r_{q}} t_{u_{1}}^{j_{1}} \dots t_{\kappa}^{j_{m}} \dots t_{u_{p}}^{j_{m}} s_{i_{1}}^{r_{1}} \dots s_{i_{k}}^{\kappa} \dots s_{i_{q}}^{r_{q}} t_{u_{1}}^{j_{m},\dots,j_{m},\dots u_{p}} t_{u_{1}}^{j_{1}} \dots t_{u_{p}}^{j_{m}} s_{i_{1}}^{r_{1}} \dots s_{i_{k}}^{\kappa} \dots s_{i_{q}}^{r_{q}}$$

$$\beta_{j_{1},\dots,j_{m},\dots j_{p}}^{i_{1},\dots,i_{k},\dots,i_{q}} = \underbrace{\alpha_{u_{1},\dots,\omega,\dots,v_{q}}^{\prime r_{1},\dots,\omega,\dots,r_{q}}}_{\beta_{j_{1},\dots,j_{m},\dots j_{p}}^{i_{1},\dots,i_{k},\dots,i_{q}}} t_{u_{1}}^{j_{1}} \dots t_{u_{p}}^{j_{m}} s_{i_{1}}^{r_{1}} \dots s_{i_{k}}^{\kappa} \dots s_{i_{q}}^{r_{q}}$$

Свертка может быть по нескольким парам индексов

Если в результате свертки получится тензор (0,0), т.е. число, то свертка полная

3.4 Транспонирование тензоров. Кососимметричные и симметричные тензоры

$$\alpha = (\alpha_{ij}) \leadsto A^T = B = (\beta_{ij}), \beta_{ij} = \alpha_{ji}$$

Обобщим операцию транспонирования

Пусть $\alpha \in T_{(p,q)}, p \geq 2$

 $\alpha^{i_1,...,i_q}_{j_1,...,*,...,\delta,...,j_p}$ — зафиксируем все, кроме *, δ

Т.о. мы извлекли из матрицы тензора слой – двумерную матрицу

Получили матрицу $\widetilde{\alpha}_{*\delta}$

Протранспонируем ее

Т.о.
$$\beta^{i_1,\dots,i_q}_{j_1,\dots,\delta,\dots,*,\dots,j_p}=\alpha^{i_1,\dots,i_q}_{j_1,\dots,*,\dots,\delta,\dots,j_p}$$
 Определение

$$\alpha \in T_{(p,q)}, p \ge 2$$

 $\beta = \sigma(\alpha)$ называется тензором, полученным транспонированием тензора α по перестановке σ , если $\beta_{j_1,...,j_p}^{i_1,...,i_q} = \alpha_{j\sigma_1,...,j\sigma_p}^{i_1,...,i_q}$

Замечание

Любая перестановка σ – конечное число транспозиций 2-х элементов

Заметим, что не любая многомерная матрица – тензор Проверим, что β – тензор

Корректность

Достаточно проверить для σ – транспозиции двух элементов

Достаточно проверить для
$$\sigma$$
 – транспозиции двух элементог Возьмем $\beta'^{k_1,\dots,k_q}_{m_1,\dots,*}$, ..., δ ,..., m_p $\beta'^{k_1,\dots,k_q}_{m_1,\dots,*,\dots,\delta,\dots,m_p} = \alpha^{k_1,\dots,k_q}_{m_1,\dots,\delta,\dots,*,\dots,m_p}$ Т.к. α – тензор: $\alpha^{k_1,\dots,k_q}_{m_1,\dots,\delta,\dots,*,\dots,m_p} = \underbrace{\alpha^{i_1,\dots,i_q}_{j_1,\dots,j_r,\dots,j_l,\dots,j_p}}_{\beta^{i_1,\dots,i_q}_{j_1,\dots,j_l,\dots,j_r,\dots,j_p}} t^{i_1}_{m_1} \dots t^{j_r}_{\delta} \dots t^{j_l}_{m_p} s^{k_1}_{i_1} \dots s^{k_q}_{i_q}$

Теперь посмотрим на операцию транспонирования с точки зрения полилинейной функции

$$\forall \xi_1, \dots, \xi_p \in V \ \forall \eta^1, \dots, \eta^q \in V^*$$

$$\beta = \sigma(\alpha)$$

$$\beta(\xi_1, \dots, \xi_p, \eta^1, \dots, \eta^q) = \beta_{j_1, \dots, j_p}^{i_1, \dots, i_q} \xi_1^{j_1} \dots \xi_p^{j_p} \eta_{i_1}^1 \dots \eta_{i_q}^q$$

$$= \alpha_{j\sigma_1, \dots, j\sigma_p}^{i_1, \dots, i_q} \xi_{\sigma_p}^{j\sigma_1} \dots \xi_{\sigma_p}^{j\sigma_p} \eta_{i_1}^1 \dots \eta_{i_q}^q = \alpha(\xi_{\sigma_1}, \dots, \xi_{\sigma_p}, \eta^1, \dots, \eta^q)$$

- 1. Транспониование тензора можно определить по аналогии по верхним индексам, если q > 2
- 2. Тензоры можно транспонировать только по одному типу индексов: либо по верхним, либо по нижним, в отличие от произвольной многомерной матрицы
- 3. Мы будем работать только с нижними индексами, но все свойства и теоремы работают и для верхних индексов

Свойства

- 1. Из определения очевидно, что σ линейная операция $\sigma(\alpha_1 + \lambda \alpha_2) = \sigma(\alpha_1) + \lambda \sigma(\alpha_2)$
- 2. $\alpha = f^1 \otimes \ldots \otimes f^p \otimes \widetilde{\alpha} \in T_{(p,q)}, f^i \in V^*, \widetilde{\alpha} \in T_{(0,q)}$ Тогда $\forall \sigma : \beta = \sigma(\alpha) \forall \xi_i \in V \forall \eta^j \in V^* \beta(\xi_1, \ldots, \xi_p, \eta^1, \ldots, \eta^q) = \alpha(\xi_{\sigma_1}, \ldots, \xi_{\sigma_p}, \eta^1, \ldots, \eta^q)$ $= f^1(\xi_{\sigma_1}) \cdot \ldots \cdot f^p(\xi_{\sigma_p}) \cdot \widetilde{\alpha}(\eta^1, \ldots, \eta^q) = f^{\sigma_1^{-1}}(\xi_1) \cdot \ldots \cdot f^{\sigma_p^{-1}}(\xi_p) \alpha(\eta^1, \ldots, \eta_q)$ Отсюда $\beta = f^{\sigma_1^{-1}} \otimes \ldots \otimes f^{\sigma_p^{-1}} \otimes \widetilde{\alpha}$

 α – называется симметричным тензором, если $\forall \sigma \ \sigma(\alpha) = \alpha$

 α – кососимметричная (антрисимметричная/альтернированная), если $\forall\,\sigma\,\sigma(\alpha)=(-1)^{\mathrm{inv}(\sigma)}\alpha$

Заметим, что симметричность ⇔ симметричность при транспозиции(свапе)

$$\Leftrightarrow \forall (n,k): \alpha(\xi_1,\ldots,\underbrace{\nu}_{\text{k-ag}},\ldots,\underbrace{\nu}_{\text{m-ag}},\ldots,\xi_p,\eta^1,\ldots) = \alpha(\xi_1,\ldots,\underbrace{\nu}_{\text{m-ag}},\ldots,\underbrace{\mu}_{\text{k-ag}},\ldots,\xi_p,\eta^1,\ldots)$$

Заметим, что кососимметричность \Leftrightarrow кососимметричность при транспозиции(свапе)

$$\Leftrightarrow \forall (n,k) : \alpha(\xi_1,\ldots,\underbrace{\mu}_{\text{k-ag}},\ldots,\underbrace{\nu}_{\text{m-ag}},\ldots,\xi_p,\eta^1,\ldots) = -\alpha(\xi_1,\ldots,\underbrace{\nu}_{\text{m-ag}},\ldots,\underbrace{\mu}_{\text{k-ag}},\ldots,\xi_p,\eta^1,\ldots)$$

Теорема

 α кососимметричная $\Leftrightarrow \forall \, (k,m) \, \alpha(\dots,\mu,\dots,\mu,\dots,\nu^1,\dots) = 0 \Leftrightarrow \forall \, (k,m) \alpha^{\dots}_{\dots,i,\dots,i,\dots} = 0$

Доказательство

Смотри доказательство для полилинейной ассиметричной формы

Примеры

- 1. $f(\vec{a}, \vec{b}, \vec{c}) := \vec{a}, \vec{b}, \vec{c} = (\vec{a} \times \vec{b}, \vec{c}) : V_3^3 \to \mathbb{R}$ $f \in T_{(3,0)}$ f кососимметричный тензор
- 2. $\beta \in T_{(3,0)}, n=3, \beta$ кососимметричная Тогда тензор имеет следующий вид

$$\left(\begin{array}{ccc|ccc|c}
0 & 0 & 0 & 0 & -b & 0 & b & 0 \\
0 & 0 & b & 0 & 0 & -b & 0 & 0 \\
0 & -b & 0 & b & 0 & 0 & 0 & 0
\end{array}\right), b = \beta(e_1, e_2, e_3)$$

3. $A = (\alpha_{ij}) \in T_{(2,0)}$. Тогда симметричность и антисимметричность согласуется с свойствами матриц

4.
$$(\alpha_{ijk}) \in T_{(3,0)}, n = 3$$

$$\begin{pmatrix} c & a & d & a & x & b & d & b & y \\ a & x & b & x & e & z & b & z & g \\ d & b & y & b & z & g & y & g & f \end{pmatrix}$$

3.5 Операция sim и alt для тензоров

Определение

 $\forall\,\alpha\in T_{(p\geq 2,q)}\,\,\sin\alpha=rac{1}{p!}\sum_{\sigma\in S_p}\sigma(\alpha)$ — симметрирование для тензора α по

нижним индексам

 $\forall \alpha \in T_{(p \ge 2,q)} \sin \alpha = \frac{1}{p!} \sum_{\sigma \in S_p} (-1)^{\operatorname{inv} \sigma} \sigma(\alpha)$ – альтернирование для тензора

 α по нижним индексам

Замечание

- 1. Т.к. σ линейный оператор, то sim, alt линейные
- 2. Для α симметричной $\sin \alpha = \alpha$ Для α кососимметричной alt $\alpha = \alpha$
- 3. Операции sim, alt можно проводить не по всем индексам. Тогда набор индексов, по которым проводится операция, заключается в круглые(для симметрирования) или квадратные(для альтернирования) скобки Если какие-то индексы внутри скобок не участвуют, их выделяют вертикальными чертами
- 4. Очевидно, что можно определить аналогичные операции по верхним индексам
- 5. Пусть $\gamma = \sin \alpha$ Тогда $\forall \sigma \ \gamma_{i_1,\dots,i_p} = \gamma_{i_{\sigma_1},\dots,i_{\sigma_p}}$ Пусть $\gamma = \operatorname{alt} \alpha$ Тогда $\forall \sigma \ \gamma_{i_1,\dots,i_p} = (-1)^{\operatorname{inv} \sigma} \gamma_{i_{\sigma_1},\dots,i_{\sigma_p}}$

Теорема о перестановочности σ и \sin , alt

$$\forall \alpha \in T_{(p \geq 2, q)} \forall \sigma \sin(\sigma(\alpha)) = \sigma(\sin(\alpha)) = \sin \alpha \, \forall \alpha \in T_{(p \geq 2, q)} \forall \sigma \, \operatorname{alt}(\sigma(\alpha)) = \sigma(\operatorname{alt}(\alpha)) = (-1)^{\operatorname{inv} \sigma} \, \operatorname{alt} \alpha$$

Доказательство

Доказать проще, чем затехать

Следствие 1

 $\forall \alpha \sin \alpha$ – симметричный, alt α – кососимметричный

Доказательство

 $\forall \alpha \ \sigma(\sin \alpha) = \sin \alpha - \text{симметричный}$

 $\forall \, \alpha \, \, \sigma(\mathrm{alt} \, \alpha) = (-1)^{\mathrm{inv} \, \sigma} \, \mathrm{alt} \, \alpha - \mathrm{кососимметричный}$

Следствие 2

 α – симметричный $\Leftrightarrow \alpha = \sin \alpha \ \alpha$ – кососимметричный $\Leftrightarrow \alpha = \operatorname{alt} \alpha$

Следствие 3

 $sim(sim \alpha) = sim \alpha$

 $alt(alt \alpha) = alt \alpha$

 $sim(alt \alpha) = 0$

 $alt(sim \alpha) = 0$

$$\begin{array}{l} \operatorname{alt}(\sin\alpha) = 0 \\ \operatorname{Доказательство} \\ \operatorname{sim}(\operatorname{alt}\alpha) = \operatorname{sim}(\frac{1}{p!} \sum_{\sigma} (-1)^{\operatorname{inv}\sigma} \sigma(\alpha)) = \frac{1}{p!} \sum_{\sigma} (-1)^{\operatorname{inv}\sigma} \operatorname{sim}(\sigma(\alpha)) = \operatorname{sim}\alpha \frac{1}{p!} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ 1 \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ 1 \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ 1 \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ 1 \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ 1 \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ 1 \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum_{\sigma} (-1)^{\operatorname{inv}\sigma}}_{ \begin{array}{c} | 1 \\ \vdots \\ \end{array}} \underbrace{\sum$$

 $alt(sim(\alpha))$ – аналогично

 $T_{(p,q)}^{\text{сим}}$ — симметрирование T по фиксированному набору $T_{(p,q)}^{\text{сим}}, T_{(p,q)}^{\text{кососим}}$ — линейные подпространства $T_{(p,q)}$

Для перестановки (k, m) (транспозиция):

 $T_{(p,q)}^{ ext{cum}} \oplus T_{(p,q)}^{ ext{kococum}} = T_{(p,q)}$

Свойства sim, alt сохраняются, если они производятся не по всем индексам

р-формы. Внешнее произведение р-формы 3.6

Определение

$$f$$
 — р-форма, если $f \in T_{(p,0)}, f$ — кососимметричный (или $p == 1$) $f: V^p \to K$ $f \in V^*$ — 1-форма — линейное подпространство $T_{(p,0)}$ — линейное подпространство $T_{(p,0)}$

 $\Lambda^p V^*$ – пространство р-форм

Определение

$$f-p_1$$
 — форма $(f \in \Lambda^{p_1}V^*)$ $g-p_2$ — форма $(f \in \Lambda^{p_2}V^*)$ $f \wedge g := \frac{(p_1+p_2)!}{p_1!p_2!} \operatorname{alt}(\underbrace{f \otimes g}_{\in T_{(p_1+p_2,0)}}) \in \Lambda^{p_1+p_2}V^*$ — внешнее произведение

Свойства

1.
$$f \wedge g = (-1)^{p_1 p_2} g \wedge f$$

В частности $f, g \in \Lambda^1 V^*(V^*)$
 $f \wedge g = -g \wedge f$
 $f \wedge f = 0$
Доказательство
 $f \in \Lambda^{p_1} V^* \leftrightarrow \alpha = (\alpha_{j_1, \dots, j_{p_1}})$
 $g \in \Lambda^{p_2} V^* \leftrightarrow \alpha = (\alpha_{j_2, \dots, j_{p_2}})$
 $f \otimes g \leftrightarrow \gamma = \alpha \otimes \beta \leftrightarrow \gamma_{j_1, \dots, j_{p_1}, m_1, \dots, m_{p_2}} = \alpha_{j_1, \dots, j_{p_1}} \beta_{m_1, \dots, m_{p_2}}$
 $g \otimes f \leftrightarrow \theta = \beta \otimes \alpha \leftrightarrow \theta_{m_1, \dots, m_{p_2}, j_1, \dots, j_{p_1}} = \beta_{m_1, \dots, m_{p_2}} \alpha_{j_1, \dots, j_{p_1}}$
alt $f \otimes g = \frac{1}{(p_1 + p_2)!} \sum_{\sigma} \sigma(\gamma)$
alt $g \otimes f = \frac{1}{(p_1 + p_2)!} \sum_{\tau} \tau(\theta)$
 $//\text{todo } 13.04 \ 13:12$

2.
$$(f+g) \wedge h = f \wedge h + g \wedge h$$

 $f \wedge (g+h) = f \wedge g + f \wedge h$

3.
$$(\lambda f) \wedge g = \lambda(f \wedge h) = f \wedge (\lambda g)$$

4.
$$f \wedge \underbrace{\mathbb{Q}}_{p_1\text{-}\text{форма}} = \mathbb{Q} \wedge f = \underbrace{\mathbb{Q}}_{(p_1+p_2)\text{-}\text{форма}}$$

5.
$$(f \wedge g) \wedge h = f \wedge (g \wedge h) = f \wedge g \wedge h$$

Доказательство

$$f \wedge g = \frac{1}{p_1! p_2!} \sum_{\sigma \in S_{p_1 + p_2}} (-1)^{\text{inv}\,\sigma} \sigma(f \otimes g)$$

$$(f \wedge g) \wedge h = \frac{(p_1 + p_2 + p_3)!}{(p_1 + p_2)! p_1! p_2! p_3!} \operatorname{alt}(\sum_{\sigma \in S_{p_1 + p_2}} (-1)^{\text{inv}\,\sigma} \sigma(f \otimes g) \otimes h)$$

$$F_{\sigma} = \frac{1}{p_1! p_2!} \sum_{\sigma \in S_{p_1 + p_2}} (-1)^{\text{inv}\,\sigma} \sigma(f \otimes g) \otimes h$$

Рассмотрим $\operatorname{alt}(\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \sigma(f \otimes g) \otimes h) = \sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)}) = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)} = \underbrace{\sum_{\sigma \in S_{p_1+p_2}} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(\underbrace{\sigma(f \otimes g) \otimes h}_{\tau(f \otimes g \otimes h)})}_{\tau(f \otimes g \otimes h)}$

59

Возьмем au – перестановку такую, что первые p_1+p_2 индексов переставляются, а последние p_3 индекса не меняются

$$(-1)^{\operatorname{inv}\sigma} = (-1)^{\operatorname{inv}\sigma}$$

$$\dots = \sum_{\sigma \in S_{p_1 + p_2}} (-1)^{\operatorname{inv}\sigma} (-1)^{\operatorname{inv}\sigma} \operatorname{alt}(f \otimes g \otimes h) = \operatorname{alt}(f \otimes g \otimes h) \sum_{\sigma \in S_{p_1 + p_2}} 1 = (p_1 + p_2)! \operatorname{alt}(f \otimes g \otimes h)$$

$$(f \wedge g) \wedge h = \frac{(p_1 + p_2 + p_3)!}{p_1! p_2! p_3!} \operatorname{alt}(f \otimes g \otimes h)$$

Аналогично
$$f \wedge (g \wedge h) = \frac{(p_1 + p_2 + p_3)!}{p_1! p_2! p_3!} \operatorname{alt}(f \otimes g \otimes h)$$

Пусть
$$f^i \in V^* = \Lambda^1 V^* - 1$$
-форма, $j = 1 \dots p$
$$f^1 \wedge \dots \wedge f^p = \frac{p!}{1! \dots 1!} \operatorname{alt}(f^1 \otimes \dots \otimes f^p) \in \Lambda^p V^*$$

$$\omega^{j_1} \wedge \dots \wedge \omega^{j_p} = p! \operatorname{alt}(\omega^{j_1} \otimes \dots \otimes \omega^{j_p}) \in \Lambda^p V^*$$

$$\omega^i \wedge \omega^j = 2 \operatorname{alt}(\omega^i \otimes \omega^j) = \omega^i \otimes \omega^j - \omega^j \otimes \omega^i$$

$$\omega^i \wedge \omega^j = -\omega^j \wedge \omega^i$$

$$\omega^i \wedge \omega_i = 0$$

$$\omega^{j_1} \wedge \dots \wedge \omega^\kappa \wedge \dots \wedge \omega^m \wedge \dots \wedge \omega^{j_p} = -\omega^{j_1} \wedge \dots \wedge \omega^m \wedge \dots \wedge \omega^{j_p}$$

$$\omega^{j_1} \wedge \dots \wedge \omega^\kappa \wedge \dots \wedge \omega^\kappa \wedge \dots \wedge \omega^{j_p} = 0$$

Теорема (о базисе пространства внешних форм)

 $\{\omega^{j_1} \wedge \ldots \wedge \omega^{j_p} : j_1 < \ldots < j_p\}$ — базис пространства $\Lambda^p V^*$

Доказательство

$$\forall f \in \Lambda^{p}V^{*} \Leftrightarrow \begin{cases} f \in T_{p,0} \\ \text{alt } f = f \end{cases}$$

$$f = \alpha_{j_{1},...,j_{p}}\omega^{j_{1}} \otimes ... \otimes \omega^{j_{p}}$$

$$\text{alt } f = \alpha_{j_{1},...,j_{p}}\omega^{j_{1}} \text{ alt } (\omega^{j_{1}} \otimes ... \otimes \omega^{j_{p}})$$

$$= \frac{\alpha_{j_{1},...,j_{p}}\omega^{j_{1}}}{p!}\omega^{j_{1}} \wedge ... \wedge \omega^{j_{p}} = \frac{1}{p!} \sum_{j_{1}<...< j_{p}} \sum_{\sigma \in S_{p}} \alpha_{j_{\sigma_{1}}...j_{\sigma_{p}}}\omega^{j_{\sigma_{1}}} \wedge ... \wedge \omega^{j_{\sigma_{p}}}$$

$$= \frac{1}{p!} \sum_{j_{1}<...< j_{p}} \sum_{\sigma \in S_{p}} \alpha_{j_{\sigma_{1}}...j_{\sigma_{p}}} (-1)^{\text{inv }\sigma} \omega^{j_{1}} \wedge ... \wedge \omega^{j_{p}}$$

$$= \sum_{j_{1}<...< j_{p}} \left(\frac{1}{p!} \sum_{\sigma \in S_{p}} \alpha_{j_{\sigma_{1}}...j_{\sigma_{p}}} (-1)^{\text{inv }\sigma} \right) \omega^{j_{1}} \wedge ... \wedge \omega^{j_{p}} - \text{порождающая}$$

$$\beta_{j_{1},...,j_{p}}$$

Существуют координаты p-формы f относительно базиса $\omega^{j_1} \wedge \ldots \wedge \omega^{j_p}, j_1 < \ldots < j_p$

Проверим линейную независимость

$$0 = \sum_{j_1 < \dots < j_p} \beta_{j_1, \dots, j_p} \underbrace{\omega^{j_1} \wedge \dots \wedge \omega^{j_p}}_{p!} = \sum_{j_1 < \dots < j_p} \sigma_{\sigma \in S_p} (-1)^{\operatorname{inv} \sigma} \omega^{j_{\sigma_1}} \otimes \underbrace{\operatorname{alt}(\omega^{j_1} \otimes \dots \otimes \omega^{j_p})}_{\sum_{\sigma \in S_n} (-1)^{\operatorname{inv} \sigma} \sigma(\omega^{j_1} \otimes \dots \otimes \omega^{j_p})} = \sum_{j_1 < \dots < j_p} \sigma_{\sigma \in S_p} (-1)^{\operatorname{inv} \sigma} \omega^{j_{\sigma_1}} \otimes \underbrace{\operatorname{alt}(\omega^{j_1} \otimes \dots \otimes \omega^{j_p})}_{\sum_{\sigma \in S_n} (-1)^{\operatorname{inv} \sigma} \sigma(\omega^{j_1} \otimes \dots \otimes \omega^{j_p})}$$

Т.к. базис $T_{(p,0)}, \forall \alpha_{j_1,...,j_p} = 0$

$$\beta_{j_1,\dots,j_p}=0$$

Тогда линейно независимые

Следствие 1

$$\dim \Lambda^p V^* = C_n^p = \frac{n!}{p!(n-p)!}$$

Следствие 2

$$\forall f \in \Lambda^P V^*$$

$$f = \sum_{j_1 < \dots < j_p} \beta_{j_1, \dots, j_p} \omega^{j_1} \wedge \dots \wedge \omega^{j_p}$$

$$\beta_{j_1,\dots,j_p} = \alpha_{j_1,\dots,j_p} = f(e_{j_1},\dots,e_{j_p}), j_1 < \dots < j_p$$

Доказательство

Из доказательства теоремы:

$$\beta_{j_1,\dots,j_p} = \frac{1}{p!} \sum_{\sigma \in S_p} \alpha_{j_{\sigma_1},\dots,j_{\sigma_p}} (-1)^{\text{inv }\sigma} = \alpha_{[j_1,\dots,j_p]}, j_1 < \dots < j_p$$

$$f = \operatorname{alt} f \Rightarrow \alpha_{[j_1, \dots, j_p]} = \alpha_{j_1, \dots, j_p}, \text{ T.K. } j_1 < \dots < j_p$$

Теорема

$$f^i \in \Lambda^1 V^*, j = 1 \dots p$$
 — 1-формы

$$\forall \, \xi_1, \dots, \xi_p \in V$$

$$(f^{1} \wedge \ldots \wedge f^{p})(\xi_{1}, \ldots, \xi_{p}) = \begin{vmatrix} f^{1}(\xi_{1}) & \ldots & f^{1}(\xi_{p}) \\ \vdots & \ddots & \vdots \\ f^{p}(\xi_{1}) & \ldots & f^{p}(\xi_{p}) \end{vmatrix}$$

 $f^j \leftrightarrow a^j = \begin{pmatrix} a_1^j & \dots & a_p^j \end{pmatrix}$ – координатные строки в V^* относительно ω^i

$$\xi_i \leftrightarrow \begin{pmatrix} \xi_i^1 \\ \vdots \\ \xi_i^n \end{pmatrix}$$
 — координаты в V относительно e_j

$$f^j(\xi_i) = a_k^j \xi_i^k = a^j \xi_i$$

$$f^1 \wedge \ldots \wedge f^p(\xi_1, \ldots, \xi_p) = \det\begin{pmatrix} a^1 \\ \vdots \\ a^p \end{pmatrix} \cdot (\xi_1 \quad \ldots \quad \xi_p)$$

Замечание

Если p = n: $f^1 \wedge \ldots \wedge f^p(\xi_1, \ldots, \xi_p) = \det A \det \xi$

Доказательство

$$f^1 \wedge \ldots \wedge f^p(\xi_1, \ldots, \xi_p) = p! \frac{1}{p!} \sum_{\sigma \in S_p} (-1)^{\operatorname{inv} \sigma} \sigma(f^1 \otimes \ldots \otimes f^p)(\xi_1, \ldots, \xi_p) =$$

$$\sum_{\sigma \in S_p} (-1)^{\operatorname{inv}\sigma} f^{\sigma_1} \otimes \ldots \otimes f^{\sigma_p}(\xi_1, \ldots, \xi_p) = \sum_{\sigma \in S_p} (-1)^{\operatorname{inv}\sigma} f^{\sigma_1}(\xi_1) \ldots f^{\sigma_p}(\xi_p) = \det(f^i(\xi_i))$$

Следствие 1

$$\forall \, \xi_1, \dots, \xi_p \in V \, \omega^{j_1} \wedge \dots \wedge \omega^{j_p}(\xi_1, \dots, \xi_p) = \begin{vmatrix} \xi_1^{j_1} & \dots & \xi_p^{j_1} \\ \vdots & \ddots & \dots \\ \xi_1^{j_p} & \dots & \xi_p^{j_p} \end{vmatrix}$$

Следствие 2

$$f^{1} \wedge \ldots \wedge f^{p} = \sum_{j_{1} < \ldots < j_{p}} \underbrace{\begin{vmatrix} a_{j_{1}}^{1} & \ldots & a_{j_{p}}^{1} \\ \vdots & \ddots & \vdots \\ a_{j_{1}}^{p} & \ldots & a_{j_{p}}^{p} \end{vmatrix}}_{\beta_{1} \cup \ldots \cup \beta_{p}} \omega^{j_{1}} \wedge \ldots \wedge \omega^{j_{p}}$$

Доказательство

$$\beta_{j_1 < \dots < j_p} = \alpha_{j_1, \dots, j_p} = (f^1 \land \dots \land f^p)(e_{j_1}, \dots, e_{j_p}) = \begin{vmatrix} f^1(e_{j_1}) & \dots & f^1(e_{j_p}) \\ \vdots & \ddots & \vdots \\ f^p(e_{j_1}) & \dots & f^p(e_{j_p}) \end{vmatrix} = f^p(e_{j_1}) + \dots + f^p(e_{j_p}) = f^p(e_{j_1})$$

$$\begin{vmatrix} a_{j_1}^1 & \dots & a_{j_p}^1 \\ \vdots & \ddots & \vdots \\ a_{j_1}^p & \dots & a_{j_p}^p \end{vmatrix},$$
 т.к. $a_j^i = f^i(e_j)$ по определению коэффициентов формы f

В частности, при p=n: $f^1\wedge\ldots\wedge f^n=\det A\omega^1\wedge\ldots\wedge\omega^n$

Следствие 3

$$\det\begin{pmatrix} a^{1} \\ \vdots \\ a^{p} \end{pmatrix} \cdot (\xi_{1} \dots \xi_{p}) = \sum_{j_{1} < \dots < j_{p}} \begin{vmatrix} a_{j_{1}}^{1} \dots a_{j_{p}}^{1} \\ \vdots & \ddots & \vdots \\ a_{j_{1}}^{p} \dots & a_{j_{p}}^{p} \end{vmatrix} \cdot \begin{vmatrix} \xi_{1}^{j_{1}} \dots \xi_{p}^{j_{1}} \\ \vdots & \ddots & \vdots \\ \xi_{1}^{j_{p}} \dots & \xi_{p}^{j_{p}} \end{vmatrix}$$

В частности, при p=n: $\det(A\xi)=\det A\det \xi$

Определение

Пусть $g \in T_{0,q}$, alt g = g:

g называется *поливектор*(q-вектор)

Если $q \in T_{(0,1)} - g - 1$ -вектор

Линейное пространство q-векторов $\mathcal{V}^q V$

Аналог внешнего произведения:
$$g_1 \in \mathcal{V}^{q_1}V, g_2 \in \mathcal{V}^{q_2}V, g_1 \vee g_2 = \frac{(p_1 + p_2)!}{p_1!p_2!}$$
 alt $(g_1 \otimes g_2)$ – по верхним индексам $\{e_{i_1} \vee \ldots \vee e_{i_q}, i_1 < \ldots < i_q\}$ – базис \mathcal{V}^qV Пусть $p = q$ $\forall f^1, \ldots, f^p \in V^*$ $V \cong V^{**} \ \forall \xi \in V \ \xi(f) = f(\xi)$ $\xi \in \mathcal{V}^1V$ $\xi_1 \vee \ldots \vee \xi_p(f^1, \ldots, f^p) = \begin{vmatrix} \xi_1(f^1) & \ldots & \xi_p(f^1) \\ \vdots & \ddots & \vdots \\ \xi_1(f^p) & \ldots & \xi_p(f^p) \end{vmatrix} = \begin{vmatrix} f^1(\xi_1) & \ldots & f^1(\xi_p) \\ \vdots & \ddots & \vdots \\ f^p(\xi_1) & \ldots & f^p(\xi_p) \end{vmatrix} = f^1(\xi_1) & \ldots & f^p(\xi_p) \end{vmatrix}$

3.7 Евклидовы и унитарные пространства

3.7.1 Скалярное и псевдоскалярное произведение. Евклидово и унитарное пространство. Норма в евклидовом и унитарном пространстве

Определение

Пусть V — линейное пространство над $\mathbb R$ (вещественное линейное пространство)

 $(\cdot,\cdot):V^2\to\mathbb{R}$ называется скалярным произведением, если $\forall\,x,y\in V,\lambda\in\mathbb{R}$

- 1. (x,y) = (y,x) симметричность
- 2. $(x_1 + x_2, y) = (x_1, y) + (x_2, y)$ аддитивность по первому аргументу
- 3. $(\lambda x, y) = \lambda(x, y)$ однородность по 1 аргументу
- 4. $(x,x) \ge 0$, причем $= 0 \Leftrightarrow x = 0$

Следствие

Линейность по второму аргументу

 $(V,(\cdot,\cdot))$ – вещественное линейное пространство с заданным на нем скалярным произведением – Евклидово пространство

Определение

Пусть V – линейное пространство над $\mathbb C$

 $(\cdot,\cdot):V^2\to\mathbb{R}$ называется псевдоскалярным произведением, если $\forall\,x,y\in V,\lambda\in\mathbb{C}$

- 1. $(x,y) = \overline{(y,x)}$
- 2. $(x_1 + x_2, y) = (x_1, y) + (x_2, y)$ аддитивность по первому аргументу
- 3. $(\lambda x, y) = \lambda(x, y)$ однородность по 1 аргументу

4.
$$(x,x) = \overline{(x,x)} \Rightarrow (x,x) \in \mathbb{R}$$
 $(x,x) \ge 0$, причем $= 0 \Leftrightarrow x = 0$

Следствие

 $(x, y_1 + y_2) = (x, y_1) + (x, y_2)$ – аддитивность по второму аргументу $(x, \lambda y) = (\lambda y, x) = \overline{\lambda}(x, y)$

Вместе: полуторолинейность

 $(\mathbb{C},(\cdot,\cdot))$ – унитарное пространство (псевдоевклидово)

Замечание

Иногда будем называть псевдоскалярное пространство скалярным (читай контекст)

Примеры

1.
$$V_3$$
, $(\vec{a}, \vec{b}) = |\vec{a}||\vec{b}|\cos\phi$

2.
$$\mathbb{R}^n, x \in \mathbb{R}^n, x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, x_i \in \mathbb{R}$$

$$(x, y) := \sum x_i y_i$$

3.
$$\mathbb{C}^n, x \in \mathbb{C}^n, x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, x_i \in \mathbb{C}$$

$$(x, y) = \sum x_i \overline{y_i}$$

Определение

Норма $\|\cdot\|:V\to K,V-$ V — линейное пространство над полем K

- 1. $||x|| = 0 \Rightarrow x = 0$ невырожденность
- 2. $\|\lambda x\| = |\lambda| \|x\|$ однородность

3.
$$||x + y|| \le ||x|| + ||y||$$

Определение

 $(V,(\cdot,\cdot))$ — евклидово/унитарное пространство $\|x\|:=\sqrt{(x,x)}$ — евклидова норма Докажем аксиомы

1. Очевидно

2.
$$\|\lambda x\| = \sqrt{(\lambda x, \lambda x)} = \sqrt{(\lambda \overline{\lambda})(x, x)} = |\lambda| \sqrt{(x, x)} = |\lambda| \|x\|$$

3. К.Б.Ш.

 $|(x,x)| \le \|x\| \|y\|$, причем $|(x,x)| = \|x\| \|y\| \Leftrightarrow x,y$ линейно зависимые

Доказательство

 $\forall \alpha, \beta \in \mathbb{C}$

$$0 \le (\alpha x + \beta y, \alpha x + \beta y) = \alpha \overline{\alpha}(x, x) + \alpha \overline{\beta}(x, y) + \overline{\alpha}\beta(y, x) + \beta \overline{\beta}(y, y) = \dots$$

Пусть $\alpha := (y, y) \in \mathbb{R}$

$$\beta := -(x,y) \in \mathbb{C}$$

$$\dots = \alpha(\|x\|^2 \|x\|^2 - \underbrace{(x,y)(x,y)}_{|(x,y)|^2} - (x,y)(y,x) + |(x,y)|^2) = \alpha(\|x\|^2 \|y\|^2 - \underbrace{(x,y)(x,y)}_{|(x,y)|^2} - \underbrace$$

$$(x,y)^2) \ge 0$$

$$\alpha \geq 0$$

Отсюда $||x|||y|| \ge (x,y)$

Если x=0 или y=0, то неравенство 0

Если $x, y \neq 0, |(x, y)| = ||x|| ||y||$

$$\alpha, \beta \neq 0$$
 Тогда $0 \leq (\alpha x + \beta y, \alpha x + \beta y) = \alpha(\underbrace{\|y\|^2 \|x\|^2 - |(x,y)|^2}_{0}) = 0$

Тогда $\exists\,\alpha,\beta\neq 0:\|\alpha x+\beta y\|=0\Leftrightarrow \alpha x+\beta y=0\Leftrightarrow x,y$ линейно зависимые

Пусть
$$\exists \alpha, \beta \neq 0 : \alpha x + \beta y = 0$$

$$\begin{cases} \underbrace{\alpha(x,x)}_{\neq 0} + \beta(y,x) = 0 & \Rightarrow & \alpha ||x||^2 = -\beta(y,x) \\ \underbrace{\alpha(x,y)}_{\neq 0} + \underbrace{\beta(y,y)}_{\neq 0} = 0 & \Rightarrow & \beta ||y||^2 = -\alpha(x,y) \end{cases}$$

Тогда $\alpha\beta \|x\|^2 \|y\|^2 = \alpha\beta(y,x)(x,y) = |(x,y)|^2$

Доказательство выполнения аксиомы

$$||x + y||^2 = (x + y, x + y) = ||x||^2 + (x, y) + (y, x) + ||y||^2 = ||x||^2 + ||x||$$

$$||y||^2 + 2\underbrace{\Re((x,y))}_{\leq |(x,y)|} \leq ||x||^2 + ||y||^2 + 2|(x,y)| \leq ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2 ||x + y|| \leq ||x|| + ||y||$$

Определение

$$\forall x,y\in (V,(\cdot,\cdot))$$
 $\|x\|$ — длина вектора $\cos\angle(x,y)=\frac{(x,y)}{\|x\|\|y\|}$ — косинус угла между векторами $|\cos\angle(x,y)|\leq 1$ — по КБШ

3.7.2 Процесс ортогональный Грама-Шмидта. О.Н.Б. (ортонормированный базис). Ортогональное дополнение

Определение

 $(V,(\cdot,\cdot))$ – евклидово/унитарное $\forall\,x,y\in V$ называются ортогональными, если (x,y)=0 $\mathbb O$ ортогонален всем векторам

Определение

Система векторов v_1, \dots, v_m называется ортогональной, если вектора попарно ортогональны

Система векторов называется ортонормированными, если вектора попарно ортогональны и нормированы($||v_i|| = 1$)

Утверждение

Ненулевые v_1, \ldots, v_m ортогональны $\Rightarrow v_1, \ldots, v_m$ система линейно независимая

Доказательство

Пусть
$$\sum_{k=1}^{m} \alpha_k v_k = \mathbb{O}$$

$$v_j(\sum_{k=1}^{m} \alpha_k v_k) = \sum_{k=1}^{m} \alpha_k v_j v_k = \mathbb{O}$$

$$\sum_{k=1}^{m} \alpha_k v_j v_k = \sum_{k=1}^{m} \alpha_k \underbrace{v_j v_k}_{\mathbb{O} \text{ при } k \neq j} = \alpha_j \underbrace{(v_j, v_j)}_{\neq 0}$$
 Тогда $\forall i \ \alpha_i = 0$

Отсюда вектора линейно независимые

Теорема (процесс ортогонализации Грама-Шмидта)

Любую систему векторов a_1, \ldots, a_m можно заменить на систему ортогональных векторов b_1, \ldots, b_k таким образом, что $\mathrm{span}(a_1, \ldots, a_m) = \mathrm{span}(b_1, \ldots, b_k)$, причем $k \leq m, \ k = m \Leftrightarrow$ система линейно независимая

Доказательство

- 1. Пусть a_1, \ldots, a_m линейно независимые Построим b индукционно:
 - (a) Возьмем a_1,a_2 $b_1:=a_1$ $b_2:=a_2-c_1a_1$ $c_1:(b_2,b_1)=0\Leftrightarrow 0=(a_2,b_1)-c_1(a_1,a_1)\Leftrightarrow c_1=\frac{(a_2,b_1)}{(a_1,a_1)}$ $\mathrm{span}(a_1,a_2)=\mathrm{span}(b_1,b_2),\,\mathrm{т.к.}\,\,b_2$ линейно независим с a_1,a_2
 - (b) $a_1, \dots, a_k \to b_1, \dots, b_k$ ортогональные $\underbrace{\operatorname{span}(a_1, \dots, a_k)}_{\text{линейно независимый}} = \underbrace{\operatorname{span}(b_1, \dots, b_k)}_{\text{попарно орт.}} \Rightarrow$ линейно независимые
 - (c) Покажем для k+1

$$b_{k+1}=a_{k+1}-\sum_{i=1}^kc_ib_i$$
 c_i такой, чтобы $\forall\,i=1\dots k\,\,(b_{k+1},b_i)=0\,\,c_i:=rac{(a_{k+1},b_i)}{(b_i,b_i)}$ $b_{k+1}\in\mathrm{span}(a_1,\dots,a_{k+1})$ $b_{k+1}\perp b_j,\,j=1\dots k$ $\mathrm{span}(a_1,\dots,a_k)=\mathrm{span}(b_1,\dots,b_k)$ b_{k+1} линейно независимый с (a_1,\dots,a_k) $\mathrm{span}(a_1,\dots,a_{k+1})=\mathrm{span}(b_1,\dots,b_{k+1})$

2. Если a_1, \ldots, a_m линейно зависимые, предварительно выполним прополку aЕсли без прополки, то некоторые b_i будут \mathbb{O}

Следствие 1

B $(V, (\cdot, \cdot))$ всегда существует о.н.б.

Доказательство

Применим Грама-Шмидта и нормируем

Следствие 2

В $(V,(\cdot,\cdot))$ любую ортогональную систему можно дополнить до ортонормированного базиса

Определение

 $L \subset V$ – линейное подпространство

$$L^{\perp} = \{y \in V : (x,y) = 0 \forall x \in L\}$$
 – ортогональное дополнение

Свойства

1. L^{\perp} – линейное подпространство

Доказательство

Доказательство
$$\forall y_1, y_2 \in L^{\perp}, \lambda \in K, x \in L \ (x, \lambda y_1 + y_2) = \overline{\lambda} \underbrace{(x, y_1)}_{0} + \underbrace{(x, y_2)}_{0}$$

Отсюда $\lambda y_1 + y_2 \in L^{\perp}$ – линейное подпространство

2.
$$V = L \oplus L^{\perp}$$

Доказательство

Докажем, что L, L^{\perp} – дизъюнктные

$$y \in L \cap L^{\perp} \Rightarrow (y,y) = 0 \Leftrightarrow y = 0$$
 – дизъюнктные

Пусть
$$L = \operatorname{span}(a_1, \ldots, a_k)$$

Дополним a_1,\ldots,a_k векторами a_{k+1},\ldots,a_n до базиса V

Тогда
$$V = L \oplus \operatorname{span}(a_{k+1}, \dots, a_n)$$

$$\forall a_{k+j} \ (a_i, a_{k+j}) = 0$$

Тогда
$$(a_i, \sum_{j=1}^{n-k} \alpha_j a_{k+j}) = 0$$

Тогда
$$(\sum_{i=1}^k \beta_i a_i, \sum_{j=1}^{n-k} a_{k+j}) = 0$$

Отсюда span $(a_{k+1},\ldots,a_n)\subset L^{\perp}$

$$V=L\oplus \mathrm{span}(a_{k+1},\ldots,a_n), L,L^\perp$$
 – дизъюнктные

Тогда
$$L^{\perp} = \operatorname{span}(a_{k+1}, \dots, a_n)$$

Тогда
$$V = L \oplus L^{\perp}$$

$$3. \ (L^{\perp})^{\perp} = L$$

Доказательство

$$L \oplus L^{\perp} = V = L \perp \oplus (L^{\perp})^{\perp}$$
 $\forall x \in L, y \in L^{\perp}(x, y) = 0 \Rightarrow x \in (L^{\perp})^{\perp} \Rightarrow L \subset (L^{\perp})^{\perp}$ Тогда $L = L^{\perp}$

4.
$$(L_1 \cap L_2)^{\perp} = L_1^{\perp} + L_2^{\perp}$$

 $(L_1 + L_2)^{\perp} = L_1^{\perp} \cap L_2^{\perp}$

Доказательство

Докажем 1

Пусть
$$y \in (L_1 + L_2)^{\perp}$$

Тогда $\forall \underbrace{x_1}_{\in L_1} + \underbrace{x_2}_{\in L_2} \in L_1 + L_2 \ (x_1 + x_2, y) = (x_1, y) + (x_2, y) = 0$

(a)
$$x_2 = 0$$

 $\forall x_1 \in L_1 \ (x_1, y) = 0 \Rightarrow y \in L^{\perp}$
 $(x_2, y) = 0$
Тогда $y \in L_1^{\perp} \cap L_2^{\perp}$
Отсюда $(L_1 + L_2)^{\perp} \subset L_1^{\perp} \cap L_2^{\perp}$ Обратно: $y \in L_1^{\perp} \cap L_2^{\perp}$
 $\forall x_1 \ (x_1, y) = 0$
 $\forall x_2 \ (x_2, y) = 0$
Отсюда $(x_1 + x_2, y) = 0 \Rightarrow y \in (L_1 + L_2)^{\perp}$
 $L_1^{\perp} \cap L_2^{\perp} \subset (L_1 + L_2)^{\perp}$

(b) Из предыдущего пункта
$$(L_1^{\perp} + L_2^{\perp})^{\perp} = (L_1^{\perp})^{\perp} \cap (L_2^{\perp})^{\perp} = L_1 \cap L_2$$

$$L_1^{\perp} + L_2^{\perp} = ((L_1^{\perp} + L_2^{\perp})^{\perp})^{\perp} = (L_1 \cap L_2)^{\perp}$$

5.
$$\mathbb{O}^{\perp} = V, V^{\perp} = \mathbb{O}$$

3.8 Матрица Грама и ее свойства. Ортогональные и унитарные матрицы

$$(V,(\cdot,\cdot))$$
 e_1,\ldots,e_n — базис
 $\forall x,y\in V\ x \stackrel{\leftarrow}{\leftrightarrow} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$
 $y \stackrel{\leftarrow}{\leftrightarrow} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$
 $(x,y)=(\sum_{i=1}^n x_ie_i,\sum_{i=1}^n y_ie_i)=\sum_i\sum_j jx_i\overline{y_j}(e_i,e_j)$
Пусть $g_{ij}=(e_i,e_j)$
 $\Gamma=(g_{ij})$ — матрица Грама базиса e_1,\ldots,e_n

 $(x,y)=x^{\perp}\Gamma\overline{y}$ – координатная форма записи скалярного произведения В частности, если e – о.н.б., то $g_{ij} = \sigma_{ij}$

$$\Gamma = E$$

$$(x,y) = x^{\perp} \overline{y} = \sum_{i=1}^{n} x_i \overline{y_i}$$
$$(x,x) = x^{\perp} \overline{x} = \sum_{i=1}^{n} x_i \overline{x_i} = \sum_{i=1}^{n} |x_i|^2$$

Замечание

Если V евклидово пространство, то, очевидно, все комплексные сопряжения можно убрать

Определение

$$A_{n\times n}$$

 A^* называется сопряженной к A, если $A^* = \overline{A^T}$

* - операция сопряжения

$$(A + \lambda B)^* = A^* + \overline{\lambda}B^*$$

Определение

Матрица $A_{n\times n}$ – самосопряженная, если $A^* = A$

Если $a_{ij} \in \mathbb{R}$, то самосопряженная = симметричная

Если $a_{ij} \in \mathbb{C}$, то самосопряженная = эрмитова

Очевидно, что $\Gamma^* = \Gamma$, т.е. самосопряженная

Определение

$$a_1, \ldots, a_k \in V$$

$$G(a_1,\ldots,a_k)=((a_i,a_j))_{k\times k}$$
 – матрица Грама для системы векторов $\Gamma=G(e_1,\ldots,e_n)$

$$G = G^*$$

Теорема об определителе матрица Грама

$$g(a_1,\ldots,a_k):=\det G(a_1,\ldots,a_k)$$

Применим к векторам алгоритм Грама-Шмидта

$$a_1,\ldots,a_k \leadsto b_1,\ldots,b_k$$

Тогда
$$g(a_1, \dots, a_k) = \prod_{i=1}^k \|b_i\|^2$$

Доказательство
$$g(a_1,\ldots,a_k) = \begin{vmatrix} (a_1,a_1) & (a_1,a_2) & \ldots & (a_1,a_k) \\ \vdots & \ddots & \ddots & \vdots \\ (a_k,a_1) & (a_k,a_2) & \ldots & (a_k,a_k) \end{vmatrix}$$
 Заменим в матрица все a_1 на b_1

2 строка -= 1 строка $\cdot c_1$

Тогда
$$\forall j=2\dots k$$
 $(a_2,a_j)-c_1(b_1,a_j)=(a_2-c_1b_1,a_j)=(b_2,a_j)$ $(a_2,b_1)-c_1(b_1,b_1)=(b_2,b_1)=0$

2 столбец -= 1 столбец $\cdot c_1$

$$\forall j = 3 \dots k \quad \begin{array}{l} (a_j, a_2) - c_1(a_j b_1) = (a_j, a_2 - c_1 b_1) = (a_j, b_2) \\ (b_1, a_2) - c_1(b_1, a_1) = (b_1, b_2) = 0 \end{array}$$

Тогда после этих двух шагов в матрице не осталось a_2

Применим аналогичные действия, зная, что $b_i = a_i - c_1 b_1 - \ldots - c_{i-1} b_{i-1}$

Таким образом мы получим матрицу, где вместо a_i будут b_i

По построению определитель не поменялся

Тогда
$$g(a_1,\ldots,a_k)=g(b_1,\ldots,b_k)=\det\operatorname{diag}(\|b_1\|^2,\ldots,\|b_k\|^2)=\prod_{i=1}^k\|b_i\|^2$$

Следствие 1

 a_1,\ldots,a_k – линейно независимые $\Leftrightarrow g(a_1,\ldots,a_k)>0$

Доказательство

Если a_1,\ldots,a_k линейно незавиимые $\underset{\Gamma}{\longleftrightarrow} b_1,\ldots,b_k$ – линейно независимые

$$\Leftrightarrow ||b_i||^2 > 0$$

Следствие 2

$$a_1,\dots,a_{k-1}$$
 — линейно независимые $\|b_k\|^2 = rac{g(a_1,\dots,a_k)}{g(a_1,\dots,a_{k-1})}$ —

Свойства матрицы Грама

$$\Gamma = G(e_1, \dots, e_n), e$$
 – базис

1 + 2 — положительно определенная матрица ($\Gamma > 0$)

- 1. $\Gamma = \Gamma^*$
- 2. $\forall x \neq 0 \ x^T \Gamma \overline{x} > 0$
- 3. $\forall \delta k = q(e_1, \dots, e_k) \ \delta_k > 0$

 δk – угловой минор В частности, при k=n $\delta_k=g>0$, т.е. Γ невырожденная

Доказательство

 e_1,\dots,e_k – линейно независимые $\Leftrightarrow g(e_1,\dots,e_k)>0$

4.
$$e_1, \ldots, e_n; e'_1, \ldots, e'_n$$
 – базисы V $T = T_{e \to e'}$ $\Gamma = G(e_1, \ldots, e_n)$ $\Gamma' = G(e'_1, \ldots, e'_n)$

Тогда
$$\Gamma' = T^T \Gamma \overline{T}$$

Доказательство

$$\begin{aligned} (x,y) &= x'^T \Gamma' \overline{y}' = x^T \Gamma \overline{y} \\ \Gamma' &= (g'_{ij}) \\ g'_{ij} &= (e'_1, \dots, e'_j) = T_i^T \Gamma \overline{T_j} \Leftrightarrow \Gamma' = T^T \Gamma \overline{T} \end{aligned}$$

В частности, если e, e' – о.н.б. V

$$\Gamma' = E = \Gamma$$

$$T^{T}\overline{T} = E \Leftrightarrow \overline{T^{T}}T = E \Leftrightarrow T^{*}T = E \Leftrightarrow T^{-1} = T^{*}$$

Определение

Невырожденная матрица Q вещественная/комплексная называется ортогональной/унитарной, если $Q^* = Q^{-1}$

Свойства унитарной/ортогональной матрицы

1. Q — унитарна/ортогональна \Leftrightarrow строки(столбцы) попарно ортогональны в стандартном скалярном произведении пространств $\mathbb{C}^n(\mathbb{R}^n)$

Доказательство

Q унитарна/ортогональна $\Leftrightarrow Q^*Q = QQ^* = E$

Пусть
$$Q = \begin{pmatrix} Q_1 & Q_2 & \dots & Q_n \end{pmatrix}$$

$$Q^*Q = \overline{Q^T}Q = \begin{pmatrix} \overline{Q_1^T} \\ \vdots \\ \overline{Q_n^T} \end{pmatrix} \cdot (Q_1 \quad Q_2 \quad \dots \quad Q_n) = ((Q_i, Q_j)) = E$$

2.
$$Q$$
 унитарна/ортогональна $\Leftrightarrow Q^{-1}$ унитарна ортогональна $\overline{A} \cdot (\overline{A})^{-1} \overline{A} \overline{A^{-1}} = \overline{E} = E \ (Q^{-1})^* = \overline{(Q^{-1})^T} = (\overline{Q^T})^{-1} = (Q^*)^{-1} = Q$ Тогда $Q = (Q^{-1})^{-1} = Q^{-1^*}$

3. Q унитарна/ортогональна $\Rightarrow |\det Q| = 1$

В частности, если Q ортогональная, то $\det Q = \pm 1$

Доказательство

$$Q^*Q = E$$

$$\det Q^* \det Q = 1$$

$$\det Q^* = \det(\overline{Q^*}) = \overline{\det Q}$$

$$\det Q(\det Q) = |\det Q|^2 = 1$$

4. Q, R унитарная/ортогональная $\Rightarrow QR$ унитарная/ортогональная Доказательство

$$(QR)^* = \overline{(QR)^T} = \overline{R^TQ^T} = \overline{R^TQ^T} = R^*Q^* = R^{-1}Q^{-1} = (QR)^{-1}$$

- 5. e, e' о.н.б. $V, T = T_{e \to e'}$ Тогда T унитарна/ортогональна (см. своство матрицы Γ)
- 3.9 Теорема Пифагора. Задача о наилучшем приближении и перпендикуляре. Расстояние от точки до линейного подпространства и многообразия. Объем k-мерного параллелепипеда в n-мерном пространстве

Теорема Пифагора

$$\forall y, z \in V : (y, z) = 0$$
$$||y + z||^2 = ||y||^2 + ||z||^2$$

Доказательство

$$||y + z||^2 = (y + z, y + z) = ||y||^2 + \underbrace{(z, y)}_{0} + \underbrace{(y, z)}_{0} + ||z||^2$$

Следствие

 x_1, \ldots, x_k попарно ортогональны

$$||x_1 + \ldots + x^k||^2 = \sum_{i=1}^{n} ||x_i||^2$$

Пусть $L \subset V$ — линейное подпространство

$$V = L \oplus L^{\perp}$$

$$\forall\,x\in V \; \exists\,!x=y+z,y\in L,z\in L^\perp$$

$$(y,z) = 0$$

y – ортогональная проекция x на L

z — ортогональной составляющей x относительно L или перпендикуляром, опущенном из x на линейное подпространство L

Теорема о наилучшем приближении

 $L \subset V$ — линейное подпространство

$$\forall x \in V \ \exists ! y \in L, z \in L^{\perp} : x = y + z$$

$$\forall l \neq y \in L ||x - y|| < ||x - l||$$

T.e. y является наилучшим приближением к x из элементов пространства L

(Любая наклонная длиннее перпендикуляра)

$$\forall l \neq y \in L \|x - l\|^2 = \|y + z - l\|^2 = \|y - l\|^2 + \|z\| > \|z\|^2 = \|x - y\|^2$$

Как найти перпендикуляр?

$$L=\mathrm{span}(a_1,\ldots,a_k), a$$
 — базис

$$x = y + z, y \in L, z \in L^{\perp}$$

Пусть
$$y = \sum_{i=1}^{k} c_i a_i$$

$$x = \sum_{i=1}^{k} c_i a_i + z$$

$$(x, a_j) = \sum_{i=1}^k c_i(a_i, a_j) + \underbrace{(z, a_j)}_{0}$$

$$(x, a_j) = \sum_{i=1}^k c_i(a_i, a_j)$$

$$G^T(a_1,\ldots,a_k)egin{pmatrix} c_1 \ dots \ c_k \end{pmatrix} = egin{pmatrix} (x,a_1) \ dots \ (x,a_k) \end{pmatrix}$$
 — СЛНУ относительно c_i a_1,\ldots,a_k — линейно независимые $\Leftrightarrow g(a_1,\ldots,a_k) > 0 \Leftrightarrow G(a_1,\ldots,a_k)$ —

невырожденная $\Leftrightarrow \exists !$ решение $\Rightarrow y = \sum_i c_i a_i$ – определен однозначно

Определение

$$\operatorname{dist}(x, L) = \min_{l \in L} \|x - l\| = \|x - y\| = \|z\|$$

Теорема о расстоянии до линейного подпространства

$$L = \mathrm{span}(a_1, \dots, a_k), a$$
 – базис

$$\operatorname{dist}^{2}(x,L) = \frac{g(a_{1},\ldots,a_{k},x)}{g(a_{1},\ldots,a_{k})}$$

$$\operatorname{dist}^{2}(x,L) = \|z\|^{2}$$

$$a_1,\ldots,a_k \leadsto b_1,\ldots,b_k$$

$$\mathrm{span}(a_1,\ldots,a_k)=\mathrm{span}(b_1,\ldots,b_k)$$

$$z = x - \sum_{i=1}^{k} c_i a_i = x - \sum_{i} \widetilde{c}_i b_i$$

$$(z,y) = 0$$

$$a_1, \dots, a_k, x = b_1, \dots, b_k, z =: b_{k+1}$$

$$||b_{k+1}||^2 = ||z||^2 = \frac{g(a_1, \dots, a_k, x)}{g(a_1, \dots, a_k)}$$

Определение

 $P = x_0 + L$ – линейное многообразие

$$\operatorname{dist}(x, P) = \min_{u \in P} \|x - u\| = \min_{u = x_0 + l, l \in L} \|x - x_0 - l\| = \operatorname{dist}(x - x_0, L)$$

Пусть
$$P_1, P_2: P_i = x_i + L_i, L_i \subset V, x_i \in V$$

$$\operatorname{dist}(P_1, P_2) = \min_{u_1 \in P_1, u_2 \in P_2} \|u_1 - u_2\| = \min_{l_1 \in L_1, l_2 \in L_2} \|x_1 - x_2 - (l_1 + l_2)\| = \operatorname{dist}(x_1 - x_2, L_1 + L_2) = \frac{\sqrt{g(a_1, \dots, a_k, x_1 - x_2)}}{\sqrt{g(a_1, \dots, a_k)}} = \frac{V(\Pi(a_1, \dots, a_k, x_1 - x_2))}{V(\Pi(a_1, \dots, a_k))}$$

Определение

 $(V,(\cdot,\cdot))$ – евклидово

 a_1,\ldots,a_k – линейно независимые

$$\Pi(a_1,\ldots,a_k)=\{x\in V|x=\sum_{i=1}^k \alpha_i a_i,_i\in[0,1]\}$$
 – k -мерный параллелепи-

(считаем, что все a_1, \ldots, a_k приложены к какой-то одной точке, к \mathbb{O} , натянутой на векторы a_1, \ldots, a_k)

Определение

$$V(\Pi(a_1,\ldots,a_k)) = \sqrt{g(a_1,\ldots,a_k)}$$
 — объем k -мерного параллелепипеда $V(\Pi(a_1,\ldots,a_k)) = V(\Pi(a_1,\ldots,a_{k-1}))\|h\|$

$$||h|| = \frac{g(a_1, \dots, a_k)}{g(a_1, \dots, a_{k-1})}$$

 $h \perp \operatorname{span}(a_1, \dots, a_{k-1})$ из алгоритма Г.Ш.

h – перпендикуляр, опущенный из a_k на подпространство $\mathrm{span}(a_1,\ldots,a_{k-1})$

Пусть e_1, \ldots, e_n – о.н.б V

$$\Pi(a_1,\ldots,a_k)$$
 – параллелепипед

$$a_{j} \underset{e}{\leftrightarrow} A_{j} = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix}$$

$$A = \begin{pmatrix} A_{1} & \dots & A_{k} \end{pmatrix}$$

$$V(\Pi(a_{1}, \dots, a_{k})) = \sqrt{\det G(a_{1}, \dots, a_{k})}$$

$$(a_{i}, a_{j}) = A_{i}^{T} A_{j}$$

Тогда
$$G = A^T A$$

Отсюда
$$V(\Pi(a_1,\ldots,a_k)) = \sqrt{\det G(a_1,\ldots,a_k)} = \sqrt{\det \underbrace{A}^T \underbrace{A}_{n\times k}}$$

В частности, если k=n, то $V(\Pi(a_1,\ldots,a_n))=|\det A|$

Также можно задать ориентацию базиса: если определитель матрицы перехода из одного базиса в другой >0, то базисы в одной ориентации. Иначе в разных

Тогда $\det A = +V(\Pi(a_1,\ldots,a_n)),$ если a_1,\ldots,a_n и базис в одной ориентации

Иначе $\det A = -V(\Pi(a_1,\ldots,a_n))$

Пусть $\mathcal{B} \in \mathrm{End}(V)$ – невырожденный (изоморфизм)

$$x \in \Pi(a_1, \dots, a_k) \leftrightarrow x = \sum_{i=1}^k \alpha_i a_i, \alpha_i \in [0, 1]$$

$$\mathcal{B}x = \sum_{i=1}^{k} \alpha_i \mathcal{B}a_i = \sum_{i=1}^{k} \alpha_i \beta_i \in \Pi(b_1, \dots, b_k)$$

$$\mathcal{B}(\Pi(a_1,\ldots,a_k)) = \Pi(b_1 := \mathcal{B}a_1,\ldots,b_k := \mathcal{B}a_k)$$

$$V(\Pi(b_1,\ldots,b_k)) = \sqrt{g(b_1,\ldots,b_k)} = \sqrt{\det(BA)^T(BA)} = \sqrt{\det A^TB^TBA}$$
 Если $k=n$, то $V(\Pi(b_1,\ldots,b_k)) = |\det A| |\det B| = V(\Pi(a_1,\ldots,a_k)) |\det B|$

3.10 Коэффициенты Фурье. Тождество Парсеваля. Неравенство Бесселя. Ортогональные проекторы. Полиномы Лежандра

 $(V,(\cdot,\cdot))$ – унитарное/евклидово пространство

 e_1,\ldots,e_n – ортогональный базис

$$\forall x \in V \ x = \sum_{i=1}^{n} \chi_i e_i$$

$$\forall x \in V \ (x, e_j) = \sum_{i=1}^n \chi_i(e_i, e_j) = \chi_j(e_j, e_i) = \chi_j ||e_j||^2$$

 $\chi_j = \frac{(x,e_j)}{\|e_j\|^2}$ — коэффициент Фурье элемента относительно ортогонального базиса

$$L_i = \operatorname{span}(e_i), i = 1 \dots n$$

$$V = \bigoplus_{i=1}^{n} L_i$$

$$\forall x \in V \ \exists \ !(x_i) : x = \sum_{i=1}^n x_i, x_i$$
 – ортогональная проекция x на e_i $x = \chi_i e_i$

Тогда по т. Пифагора $||x||^2 = \sum_{i=1}^n ||x_i||^2 = \sum_{i=1}^n |\chi_i|^2 ||e_i||^2$ – тождество Пар-

Неравенство Бесселя:
$$\forall k = 1 \dots n \sum_{i=1}^k |\chi_i| \|e_i\|^2 \le \|x\|^2$$
 – квадрат длины

вектора не меньше суммы квадратов длин его проекций

В частности, если e – ортонормированный базис

$$\chi_j = (x, e_j)$$
 – проекция x на вектор e_j

$$x = \sum_{i=1}^{n} (x, e_j) e_j$$

 $x_j = \stackrel{j=1}{\chi_j} e_j$ – проекция x на вектор e_j

$$||x||^2 = \sum_{i=1}^n |\chi_i|^2$$

$$||x||^2 \ge \sum_{i=1}^k |\chi_i|^2$$

$$ho_i: V o V$$
 — проектор $orall \, x \in V \
ho x := x_i$

$$\forall x \in V \ \rho x := x_1$$

$$\exists ! (x_i) : x = \sum_{i=1}^n \underbrace{x_i}_{\in L_i}$$
 ρ_i – оператор ортогонального проектирования

$$V = \bigoplus_{i=1}^k L_i, L_i \subset V$$
 — попарно ортогональные линейные подпространства

$$V = \operatorname{span}(e_1, \dots, e_n)$$
 – о.н.б.

$$V = \operatorname{span}(e_1, \dots, e_n)$$
 – о.н.б. $\forall x \in V \rho_i x = \sum_{e_j \in L_j} (x_i, e_j) e_j$

Примеры ортогональных систем

1. Рассмотрим множество полиномов степени не более n

$$(p,q) = \int_{-1}^{1} p(t)q(t) dt$$

Рассмотрим многочлены $1, t, t^2, t^3, \dots, t^n$

Найдем ортогональный базис

$$\underbrace{1, t, t^2 - \frac{1}{3}, t^3 - \frac{3}{5}t, \dots}_{1, t, t}$$

полиномы Лежандра

 $l_k = \lambda_k ((t^2-1)^k)^{(k)}, \deg l_k = k$ – общая формула полиномов Лежандра

Покажем, что
$$q_k(t) := ((t^2 - 1)^k)^{(k)}$$
 ортогональны $1, \dots, t^{k-1}$ $(q_k, t^m) = \int_{-1}^1 ((t^2 - 1)^k)^{(k)} t^m dt = \int_{-1}^1 t^m d((t^2 - 1)^k)^{(k-1)} =$

$$= t^m \underbrace{((t^2 - 1)^k)^{(k-1)}}_{\pm 1 - \text{корни}} \bigg|_{-1}^{1} - m \int_{-1}^{1} ((t^2 - 1)^k)^{(k-1)} t^{m-1} = \dots$$

$$= (-1)m! \underbrace{\int_{-1}^{0} ((t^{2} - 1)^{k})^{(k-m)} dt}_{((t^{2} - 1)^{k})^{k-m-1} \Big|_{-1}^{1}}$$

$$q_k \perp \operatorname{span}(1, \dots, t^{k-1}) \Rightarrow q_k \perp \operatorname{span}(l_1, \dots, l_{k-1}) \Rightarrow l_k \perp \operatorname{span}(l_1, \dots, l_{k-1})$$

$$(uv)^{(k)} = \sum_{m=0}^{k} C_k^m u^{(m)} v^{(k-m)}$$
 — формула Лейбница

$$q_{k}(1) = ((t^{2} - 1)^{k})^{(k)} \Big|_{t=1} = ((t - 1)^{k}(t + 1)^{k})^{(k)} \Big|_{t=1} = \sum_{m=0}^{k} C_{k}^{m}((t - 1)^{k})^{(m)}((t + 1)^{k})^{(k-m)} \Big|_{t=1} = C_{k}^{k} \underbrace{((t - 1)^{k})^{(k)}}_{k} \underbrace{((t + 1)^{k})^{(0)}}_{2k} \Big|_{t=1} = k!2^{k} = 0$$

(2k)!!

 $l_k = \frac{((t^2-1)^k)^{(k)}}{k!2^k}, l_k(1) = 1$ – формула многочлена Лежандра в форме Родрига

$$B(x,y) = \int_0^1 (1-t)^{x-1} t^{y-1} dt$$
$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

$$||l_k||^2 = \frac{1}{(2^k k!)^2} \int_{-1}^1 ((t^2 - 1)^k)^{(k)} dt = \frac{1}{(2^k k!)^2} \int_{-1}^1 ((t^2 - 1)^k)^{(k)} ((t^2 - 1)^k)^{(k)} dt = \frac{1}{(2^k k!)^2} \int_{-1}^1 ((t^2 - 1)^k)^{(k)} dt = \frac{1}{(2^k k!)^2} \int_{-1}^1 ((t^2 - 1)^k)^{(k)} dt = \frac{1}{(2^k k!)^2} \int_{-1}^1 ((t^2 - 1)^k)^{(k)} dt = \frac{(-1)^k}{((2k)!!)^2} \int_{-1}^1 (t^2 - 1)^k \underbrace{((t^2 - 1)^k)^{(2k)}}_{(2k)!} dt = \frac{(-1)^k (-1)^k (2k)!}{((2k)!!)^2} 2 \int_0^1 \frac{t(1 - t^2)^k}{t} dt = \frac{(2k)!}{((2k)!!)^2} \underbrace{\int_0^1 (1 - t)^k t^{-\frac{1}{2}} dt}_{B(k+1,\frac{1}{2})} = \frac{(2k)!}{((2k)!!)^2} \underbrace{\frac{\Gamma(k+1)\Gamma(\frac{1}{2})}{\Gamma(k+1+\frac{1}{2})}}_{(k+\frac{1}{2})(k-\frac{1}{2})+...+\frac{1}{2}\Gamma(k+1)} \frac{(2k)!k!2^{k+1}}{((2k)!!)^2(2k+1)!!} = \frac{2}{(2k+1)!(2k)!!} = \frac{2}{2k+1}$$

2.
$$f: [-\pi, \pi] \to \mathbb{R}(\mathbb{C})$$

$$(f, g) = \int_{-\pi}^{\pi} f(t)g(t) \, \mathrm{d} t$$

$$f \in L^{1}(-\pi, \pi) \lor f \in L^{2}(-\pi, \pi)$$

(a) вещественная ортогональная тригонометрическая система $1,\sin t,\cos t,\sin 2t,\cos 2t,\ldots$ – бесконечномерная ортогональная система

Несложно проверить, что $(\sin kt, \cos mt) = (\sin kt, \sin mt) = (\cos kt, \cos mt) = 0, k \neq m$

$$\|\cos kt\|^2 = \int_{-\pi}^{\pi} \cos^2 kt \, dt = \int_{-\pi}^{\pi} \frac{1 + \cos 2kt}{2} \, dt = \pi, k \neq 0$$

$$||1||^2 = 2\pi$$

$$\|\sin kt\|^2 = \pi$$

Пусть
$$f(t) = \sum_{i=1}^{\infty} c_n e_n$$
 – ряд Фурье

$$c_j = \frac{(f,e_j)}{\|e_j\|^2}$$
 – коэффициенты Фурье

Тогда
$$a_k := \frac{(f, \cos kt)}{\|\cos kt\|^2} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt = \mathrm{d}\,t$$

$$b_k := \frac{(f, \sin kt)}{\|\sin kt\|^2} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt \, dt$$

Теперь забьем на сходимость и сопоставим f с последователь-

ностью коэффициентов

$$f \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kt + b_k \sin kt$$
 — ряд Фурье по классической тригонометрической системе

(b) комплексная ортогональная тригонометрическая система

$$c_k = \widehat{f(k)} = \frac{1}{\|e^{ikt}\|^2} \int_{-\pi}^{\pi} f(t)e^{-itk} dt$$
 $\|e^{ikb}\|^2 = \int_{-\pi}^{\pi} e^{ikt}e^{-ikt} dt = 2\pi$ $f \sim \sum_{k=-\infty}^{\infty} c_k e^{ikt}$ – комплексный ряд Фурье

(c)
$$L^2([-1,1], \frac{\mathrm{d}\,t}{\sqrt{1-t^2}})$$

$$(f,g) = \int_{-1}^1 f(t)g(t) \frac{\mathrm{d}\,t}{\sqrt{1-t^2}}$$

$$T_n(t) = \cos(n - \arccos t) - \text{полиномы Чебышева}$$

$$\deg T_n = n$$

3.11 Изометрия евклидовых/унитарных пространств. Теорема Рисса. Естественный изоморфизм евклидова пространства своему сопряженному

$$(V,(\cdot,\cdot)_V),(V',(\cdot,\cdot)_{V'})$$

Определение

 V, V^{\prime} изометричны, если V, V^{\prime} изоморфны и сохраняется скалярное произведение

$$x,y\in V\leftrightarrow x',y'\in V'\Rightarrow (x,y)_V=(x',y')_{V'}$$
 Отсюда $\|x-y\|_V=\sqrt{(x,y)_V^2}=\sqrt{(x',y')_{V'}^2}=\|x'-y'\|_{V'}$ – расстояния сохраняются

Теорема

Любые два конечномерных линейных пространства одной размерности изометричны

Доказательство

Пространства изоморфны

Пусть e – о.н.б. V

$$e'$$
 – о.н.б. V'_n

Тогда $x = \sum_{i=1}^n x_i e_i \leftrightarrow \sum_{i=1}^n x_i e'_i = x'$
 $\Gamma = G(e_1, \dots, e_n) = E = G(e'_1, \dots, e'_n) = \Gamma'$
 $(x, y)_v = \sum_{i=1}^n x_i \overline{y_i} = (x', y')_{V'}$

Зафиксируем $y \in V$

$$\forall x \in V \ (x,y) =: f(x) \in V^*$$

$$(\cdot, y): V \to V^*$$

Теорема Рисса

$$\forall f \in V^* \exists ! y \in V : f(x) = (x, y) \forall x \in V$$

T.e. $V \leftrightarrow V^*$ — взаимооднозначное сопоставление

Доказательство

Докажем единственность

Пусть
$$y_1, y_2 \in V : f(x) = (x, y_1) = (x, y_2) \forall x \in V$$

Тогда
$$(x, y_1 - y_2) = 0$$

Пусть
$$x = y_1 - y_2$$

Тогда
$$||y_1 - y_2||^2 = 0 \Leftrightarrow y_1 = y_2$$

Докажем существование

Пусть
$$e_1, \ldots, e_n$$
 – о.н.б. в V

$$\forall x \in V \ x = \sum_{i=1}^{n} x_i e_i$$

$$\forall f \in V^* \ f(x) = \sum_{i=1}^n x_i f(e_i)$$

Пусть
$$y_i = \overline{f(e_i)}$$

$$y = \sum_{i=1}^{n} y_i e_i$$

$$f(x) = (x, y)$$

T.о. мы сопоставили f и y

Если V – евклидово (вещественное), то $V \stackrel{P}{\cong} V^*$ (изоморфизм)

Замечание

$$e_1,\ldots,e_n$$
 – о.н.б. V

$$\forall x \in V \ \omega^i(x) = \chi^i = (x, e_i)$$

$$x = \chi^i e_i$$

Тогда
$$\omega^i \overset{P}{\leftrightarrow} e_i$$

3.12 Тензоры в евклидовом пространстве. Метрические тензоры. Взаимные базисы. Операции опускания и поднимания индексов. Евклидовы тензоры

Пусть $(V,(\cdot,\cdot))$ — евклидово e_1,\ldots,e_n — базис V $\Gamma=G(e_1,\ldots,e_n)=(g_{ij})$ $g_{ij}=(e_i,e_j)$ Γ — тензор $\in T_{(2,0)}$ — 2 раза ковариантный метрический тензор Покажем, что Γ — тензор $T=T_{e\to e'}$ $\Gamma'=T^T\Gamma T$ $g'_{ij}=t_i^kg_{km}t_j^m=g_{km}t_i^kt_j^m$ — действительно тензор $\Gamma^{-1}=(g^{ij})\in T_{(0,2)}$ — 2 раза контрвариантный метрический тензор $\Gamma^{-1}\Gamma=E$ $(\Gamma^{-1})'=(\Gamma')^{-1}=(T^T\Gamma T)^{-1}=(T^T)^{-1}\Gamma^{-1}T^{-1}=S^T\Gamma^{-1}S$ $g'^{ij}=s_k^ig^{km}s_m^j=g^{km}s_k^is_m^j$

Свойства

1.
$$\Gamma = \Gamma^{T}$$

$$\Gamma^{-1} = (\Gamma^{-1})^{T}$$

$$g^{ij} = g^{ji}, g_{ij} = g_{ji}$$

2.
$$\Gamma\Gamma^{-1} = E = \Gamma^{-1}\Gamma \Rightarrow g^{ik}g_{kj} = g^{ki}g_{kj} = g^{ki}g_{jk} = g^{ik}g_{jk} = \sigma_i^j$$

3.
$$\forall x, y \in V (x, y) = g_{ij}x^iy^j, (x \neq 0 \Rightarrow (x, x) > 0) \Rightarrow (x \neq 0 \Rightarrow g_{ij}x^ix^j > 0)$$

Определение

Пусть
$$e_1, \dots, e_n$$
 — базис V e^1, \dots, e^n — базис V e_i, e^i — взаимные базисы, если $(e_i, e^j) = \sigma_i^j$

Теорема

 $\forall e_1, \dots, e_n$ – базис $V \exists ! e^1, \dots, e^n$ – взаимный базис

Пусть
$$e^1, \ldots, e^n$$
 – базис V
 $T_{e_i \to e^i} = (x^{km})_{n \times n}$
 $(e^1, \ldots, e^n) = (e_1, \ldots, e_n) T_{e_i \to e^i}$

$$(e_i,e^j)=(e_i,x^{kj}e_k)=x^{kj}\underbrace{(e_i,e_k)}_{g_{ik}}=\sigma_i^j$$
 $g_{ik}x^{kj}=\sigma_i^j\Leftrightarrow \Gamma T_{e_i\to e^i}=E$ $T_{e_i\to e^i}=\Gamma^{-1}$ e^1,\ldots,e^n — взаимооднозначное с e_1,\ldots,e_n

Следствие 1

- 1. e_i, e^i взаимные базисы $(e^1 \ldots e^n) = (e_1 \ldots e_n) \Gamma^{-1} \leftrightarrow e^j = g^{kj} e_k = g^{jk} e_k$ $(e_1 \ldots e_n) = (e^1 \ldots e^n) \Gamma \leftrightarrow e_j = g_{kj} e^k = g_{jk} e^k$
- 2. $\Gamma^{-1} = G(e^1, \dots, e^n)$ Доказательство $(e^i, e^j) = (e^i, g^{jk} e_k) = g^{jk} (e^i, e_k) = g^{jk} \sigma_k^j = g^{ji} \in \Gamma^{-1}$

Следствие 2

 e_1, \dots, e_n – о.н.б.

Тогда $e^i = e_i$

Доказательство

Очевидно, $\Gamma = E = \Gamma^{-1}$

Замечание

- 1. на практике скалярное произведение, в свою очередь, может быть задано какой-то матрицей Γ рамма, относительно какого-то другого базиса
- 2. e_1, \ldots, e_n и e'_1, \ldots, e'_n имеют один класс ориентации, если $\det T_{e \to e'} > 0$ Отсюда взаимные базисы принадлежат к одному классу ориентании

Теорема 2

Если e_1, \ldots, e_n – базис пространства V $\omega^1, \ldots, \omega^n$ – сопряженный базис V^*

Тогда $\omega^i \stackrel{P}{\leftrightarrow} e^i \in V \Rightarrow e^1, \dots, e^1, \dots, e^n$ – взаимный с e_1, \dots, e_n

$$\forall \omega^i \in V^* \exists ! e^i \in V : \omega^i(x) = (x, e^i) \forall x \in V$$

Пусть $x = e_j \underbrace{\omega^i(e_j)}_{\sigma^i_j} = (e_j, e^i) \Rightarrow$ взаимный базис

Замечание

e – о.н.б. из теоремы Рисса такой, что $\omega^i \overset{P}{\leftrightarrow} e_i$

Отсюда $e^i = e_i$ (снова следствие 2)

Определение

 e_1,\ldots,e_n и e^1,\ldots,e^n – взаимные базисы

 $\forall x = x^i e_i = x^j e^j$

 x_j — ковариантные координаты x^i — контрвариантные координаты

координатная функция относительно базиса $e^i \leftrightarrow (x, e_i) = (x_i e^j, e_i) =$

$$x_j(e^j, e_i) = x_j \sigma_i^j = x_i$$

$$\omega^j \leftrightarrow (x, e^j) = (x^i e_i, e^j) = x^i (e_i, e^j) = x^i \sigma_i^j = x^j$$

 $x=(x,e_i)e^i=(x,e^j)e_j$ — формула Гибса

$$T = T_{e \to e'}$$

$$\begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix} = T \begin{pmatrix} x'^1 \\ \vdots \\ x'^n \end{pmatrix} - контрвариантный$$

 $\omega^j \stackrel{P}{\cong} e^j$

$$x_i \omega^j \cong x_i e^j$$

 $\begin{pmatrix} x_j\omega^* = x_je^* \\ (x_1 \dots x_n) = \begin{pmatrix} x'^1 \dots x'^n \end{pmatrix} S$ — ковариантный

Рассмотрим координаты как тензоры

$$(x^i) \leftrightarrow T_{(0,1)}$$

$$(x_i) \leftrightarrow T_{(1,0)}$$

Рассмотрим свертку с соответствующим метрическим тензором

$$g_{ki}x^i = (e_k, e_i)x^i = (e_k, e_ix^i) = (e_k, x) = (x, e_k) = x_k$$

Свертка контрвариантного тензора с ковариантным метрическим тензором дает ковариантный тензор – опускание индекса

$$g^{jk}x_i = (e^j, e^k)x_i = (x_ie^j, e^k) = (x, e^k) = x^k$$

Свертка ковариантного тензора с контрвариантным метрическим тензором дает контрвариантный тензор – поднятие индекса

Определим операции для произвольных тензоров

Рассмотрим $\alpha \in T_{(p,q)}$

Операцией опускания поднятия индекса называется преобразование мат-

рицы тензора в результате его свертки с ковариантным/контрвариантным метрическим тензором. При этом, чтобы сохранить соответствия записи элементов в матрице тензора применяют следующие правила записи

- 1. Если опускается крайний правый верхний индекс, он становится крайним левым нижним $\alpha_{j_1,\dots,j_p}^{i_1,\dots,i_{q-1},\kappa}g_{\kappa,j_0}=\alpha_{j_0,\dots,j_p}^{i_1,\dots,i_{q-1}}$
- 2. Если поднимается крайний левый нижний индекс, он становится крайним правым верхним $\alpha_{\kappa,j_2,\dots,j_p}^{i_1,\dots,i_q}g^{\kappa,i_{q+1}}=\alpha_{j_2,\dots,j_p}^{i_1,\dots,i_{q+1}}$
- 3. Если происходит опускание или поднятие остальных индексов, его прежняя позиция обозначается точкой. Сам индекс при этом занимает крайнюю левую нижнюю/правую верхнюю позицию $\alpha_{j_1,\dots,j_p}^{i_1,\dots,i_q,\kappa}g_{\kappa,j_0}=\alpha_{j_0,\dots,j_p}^{i_1,\dots,\bullet_{j_1},\dots,i_q}$ $\alpha_{j_1,\dots,i_q}^{i_1,\dots,i_q}g^{\kappa,i_q+1}=\alpha_{j_1,\dots,\bullet,\dots,j_p}^{i_1,\dots,i_{q+1}}$
- 4. Если опускаются/поднимаются несколько индексов то их прежние позиции обозначаются точками, а сами они записываются по тем же правилам с сохранением исходного порядка

Если базис ортонормированный, то поднятие/опускание индексов не меняет тензор

Если
$$e_1, \ldots, e_n; e'_1, \ldots, e'_n$$
 – о.н.б. базисы, то $T = T_{e \to e'}$ – ортогональная (т.е. $T^{-1} = T^T$)

Тогда
$$\alpha'^{k_1,\dots,k_q}_{m_1,\dots,m_p} = \alpha^{i_1,\dots,i_q}_{j_1,\dots,j_p} t^{j_1}_{m_1} \cdot t^{j_p}_{m_p} s^{j_p}_{i_1} \dots s^{k_q}_{i_q} = \sum_{i_1} \sum_{i_2} \dots \sum_{i_q} \alpha^{i_1,\dots,i_q} t^{j_1}_{m_1} \cdot t^{j_p}_{m_p} t^{i_1}_{j_p} \dots t^{i_q}_{k_q}$$

После приведения к о.н.б. в V получаем тензоры, которые отличаются только расположением тензора сверху/снизу. Такие тензоры называются $ee\kappa nudoeu$ ранза r=p+q

Для них нет разницы, сверху или снизу индексы (пока мы переходим по ортонормированным базисам), поэтому пишем все внизу

4 Линейные операторы в унитарном/евклидовом пространстве

4.1 Сопряженные операторы в унитарном/евклидовом пространстве

```
Определение
\mathcal{A} \in L(U,V)
\mathcal{A}^*:V^*\to U^* – сопряженное к \mathcal{A}
\forall f \in V^* \ \forall x \in U \ (\mathcal{A}^* f)(x) = f(\mathcal{A} x)
Заметим, что \mathcal{A} – линейное отображение
Пусть \mathcal{A}^*f = g
g(x)=f(\mathcal{A}x)\in K – линейно по x, т.к. \mathcal{A},f – линейные
Тогда g \in U^*
Тогда \mathcal{A}^*:V^*\to U^*
\forall \lambda \in K \forall f_1, f_2 \in V^*
\forall x \in U (A^*(\lambda f_1 + f_2))(x) = (\lambda f_1 + f_2)(Ax) = \lambda f_1(Ax) + f_2(Ax) =
\lambda(\mathcal{A}^*f_1)(x) + (\mathcal{A}^*f_2)(x)
U \stackrel{\mathcal{A}}{\to} V
U^* \underset{g = \mathcal{A}^* f}{\leftarrow} V^*
Пусть (V, (\cdot, \cdot)) – унитарное/евклидово, \mathcal{A} \in \mathrm{End}(V)
V^* \stackrel{P}{\leftrightarrow} V — естественный изоморфизм
f \in V^* \stackrel{P}{\leftrightarrow} y \in V
\forall x \in V \ f(x) = (x, y)
\mathcal{A}^*: V^* \to V^*
\exists ! z \in V \stackrel{P}{\leftrightarrow} q \in V^*
\exists\,!y\in V\stackrel{P}{\leftrightarrow}f\in V^*
\forall x \in V \ g(x) = (x, z), f(x) = (x, y)
По определению \mathcal{A}^*: g(x) = (\mathcal{A}^*f)(x) = f(\mathcal{A}x) = (\mathcal{A}x, y)
\mathcal{A}^*: V^* \to V^*
         \stackrel{P}{\leftrightarrow}V
Определение
\mathcal{A} \in \mathrm{End}(V)
\mathcal{A}^* \in \mathrm{End}(V) называется сопряженным к \mathcal{A}, если \forall x, y \in V \ (x, \mathcal{A}^*y) =
(\mathcal{A}x,y)
```

Замечание

 \mathcal{A}^* зависит от скалярного произведения

При фиксированном скалярном произведении \mathcal{A}^* определен однозначно Если поменять скалярное произведение, получим другое евклидово/унитарное пространство

Тогда и \mathcal{A}^* будет другим

Свойства сопряженного оператора

1. $A, A^{(*)}$ – матрицы \mathcal{A} и \mathcal{A}^* в некотором базисе e_1, \dots, e_n пространства V

Тогда
$$A^{(*)}=\overline{\Gamma^{-1}}A^*\overline{\Gamma}=\overline{\Gamma^{-1}A^T\Gamma}$$

Доказательство

 $\forall x, y \in V$

$$(x, \mathcal{A}^*y) = \sum_{i=1}^n \sum_{j=1}^n g_{ij} x_i \overline{\mathcal{A}^{(*)}y}_j = x^T \Gamma \overline{\mathcal{A}^{(*)}y}$$

$$(\mathcal{A}x, y) = \sum_{i=1}^{n} \sum_{j=1}^{n} g_{ij} (Ax)_{i} \overline{y}_{j} = (Ax)^{T} \Gamma y$$

$$x^T \Gamma A^{(*)} \overline{y} = x^T A^T \Gamma \overline{y}$$

Пусть
$$x = e_i, y = e_j$$

$$(\Gamma \overline{A^{(*)}})_{ij} = (A^T \Gamma)_{ij}$$

$$\underline{\Gamma}\overline{A^{(*)}} = A^T \Gamma$$

$$\overline{A^{(*)}} = \Gamma^{-1} A^T \Gamma$$

В частности, если о.н.б., то $T=E\Rightarrow A^{(*)}=A^*=\overline{A^T}$

2. $\forall \lambda \in K (A + \lambda B)^* = A^* + \overline{\lambda} B^*$

Если евклидово пространство, то * – линейное, если унитарное – полуторолинейное

- 3. $(\mathcal{A} \circ \mathcal{B})^* = \mathcal{B}^* \mathcal{A}^*$
- 4. Если $\exists A^{-1}$, то $\exists (A^*)^{-1}$, причем $(A^*)^{-1} = (A^{-1})^*$

Доказательство

$$(\mathcal{A}\mathcal{A}^{-1})^* = (E)^* = \varepsilon$$

$$(\mathcal{A}^{-1})^*\mathcal{A}^* = \varepsilon$$

Отсюда $\exists (\mathcal{A}^*)^{-1} = (\mathcal{A}^{-1})^*$

5. $(\mathcal{A}^*)^* = \mathcal{A}$

$$\frac{(x,\mathcal{A}^*y)}{(\mathcal{A}^*y,x)} = \frac{(\mathcal{A}x,y)}{(y,\mathcal{A}^x)}$$
 (\mathcal{A}^*y,x) = $(y,\mathcal{A}x)$
Тогда по определению $\mathcal{A} = (\mathcal{A}^*)^*$

- 6. $\operatorname{Ker} A^* = (\operatorname{Im} A)^{\perp}$ $\operatorname{Im} A^* = (\operatorname{Ker} A)^{\perp}$ Доказательство
 - Пусть $y \in \operatorname{Ker} \mathcal{A}^*$

$$(x, \underbrace{\mathcal{A}^* y}_0) = (\mathcal{A}x, y)$$

Тогда $y \perp \mathcal{A}x \Rightarrow y \perp \operatorname{Im} \mathcal{A}$

Тогда Ker $\mathcal{A}^* \subset (\operatorname{Im} \mathcal{A})^{\perp}$

 $\dim \operatorname{Ker} \mathcal{A}^* = \dim \operatorname{Ker} A^{(*)} = \operatorname{Ker} \overline{\Gamma^{-1} A^T \Gamma} = n - \operatorname{rg}(\Gamma^{-1} A^T \Gamma) = n - \operatorname{rg} A^T = n - \dim \operatorname{Im} \mathcal{A} = \dim(\operatorname{Im} \mathcal{A}) \perp$

Тогда $\operatorname{Ker} \mathcal{A}^* = (\operatorname{Im} \mathcal{A})^{\perp}$

 $\operatorname{Ker} \mathcal{A} = (\operatorname{Im} \mathcal{A}^*) \perp$

Тогда $\operatorname{Im} \mathcal{A}^* = (\operatorname{Ker} \mathcal{A})^{\perp}$

7. $\chi(\lambda) = 0 \Leftrightarrow \chi_{\mathcal{A}^*}(\lambda) = 0$

Доказательство

$$\chi_{\mathcal{A}^*}(t) = \det(\mathcal{A}^{(*)} - tE) = \det(\overline{\Gamma^{-1}A^T\Gamma} - tE) = \overline{\det(\Gamma^{-1}A^T)\Gamma - \overline{t}} \underbrace{\Gamma^{-1}\Gamma}_{E} = \overline{\det(\Gamma^{-1}(A^T - \overline{t}E)\Gamma)} = \overline{\det(A^T - \overline{t}E)} = \overline{\chi_{\mathcal{A}}(\overline{t})}$$

8. λ – с.ч., u – с.в. \mathcal{A} $\mu \neq \overline{\lambda}$ – с.ч., v – с.в. \mathcal{A}^* Тогда $u \perp v$

Доказательство

$$\lambda(u,v) = (\lambda u, v) = (\mathcal{A}u, v) = (u, \mathcal{A}^*v) = (u, \mu v) = \overline{\mu}(u, v)$$
$$(\lambda - \overline{\mu})(u, v) = 0 \Leftrightarrow (u, v) = 0$$

9. $L\subset V$ — инвариантное относительно $\mathcal{A}\Rightarrow L^\perp$ - инвариантное относительно \mathcal{A}^*

$$\forall x \in L, y \in L^{\perp} (x, \mathcal{A}^* y) = (u \underbrace{\mathcal{A}x}_{\in L}, \underbrace{y}_{\in L^{\perp}}) = 0 \Rightarrow \mathcal{A}^* y \in L^{\perp}$$

4.2 Нормальные операторы и их свойства

Определение

 $\mathcal{A} \in \mathrm{End}(V), (V, (\cdot, \cdot))$

 ${\cal A}$ – нормальный, если ${\cal A}{\cal A}^*={\cal A}^*{\cal A}$

Или $(\mathcal{A}x, \mathcal{A}y) = (\mathcal{A}^*x, \mathcal{A}^*y)$

Свойства

- 1. \mathcal{A} нормальный $\Leftrightarrow A^{(*)}A = AA^{(*)}$, где $A, A^{(*)}$ матрицы операторов в некотором базисе
- 2. $\operatorname{Ker} A^* = \operatorname{Ker} A$

 $\operatorname{Im} \mathcal{A}^* = \operatorname{Im} \mathcal{A}$

 $\operatorname{Ker} \mathcal{A}^2 = \operatorname{Ker} \mathcal{A}$

Тогда $V = \operatorname{Ker} \mathcal{A} \oplus \operatorname{Im} \mathcal{A}$

Доказательство

 $x \in \operatorname{Ker} \mathcal{A} \Leftrightarrow \mathcal{A}x = \mathbb{O} \Leftrightarrow (\mathcal{A}x, \mathcal{A}x) = 0 \Leftrightarrow (\mathcal{A}^*x, \mathcal{A}^*x) = 0 \Leftrightarrow \mathcal{A}^*x = 0$

 $\mathbb{0} \Leftrightarrow x \in \operatorname{Ker} \mathcal{A}^*$

 $(\operatorname{Im} \mathcal{A})^{\perp} = \operatorname{Ker} \mathcal{A}^* = \operatorname{Ker} \mathcal{A}$

 $\operatorname{Im} \mathcal{A} = (\operatorname{Ker} \mathcal{A})^{\perp} = \operatorname{Im} \mathcal{A}^*$

Пусть $x \in \operatorname{Ker} A^2 \Leftrightarrow (A^2 x A^2 x) = 0 \Leftrightarrow (A^* A x, A^* A x) = 0 \Leftrightarrow$

 $\mathcal{A}^*(\mathcal{A}x) = 0 \Rightarrow \underbrace{\mathcal{A}x}_{\bullet} \in \operatorname{Ker} \mathcal{A}^* = \operatorname{Ker} \mathcal{A}$

 $\mathcal{A}x \in \operatorname{Im} \mathcal{A} \cap \operatorname{Ker} \mathcal{A} \Rightarrow \mathcal{A}x = 0$

 $x \in \operatorname{Ker} \mathcal{A}$

Тогда $\operatorname{Ker} A^2 \subset \operatorname{Ker} A$

Очевидно также, что $\operatorname{Ker} \mathcal{A}^2 \supset \operatorname{Ker} \mathcal{A}$

Отсюда $\operatorname{Ker} \mathcal{A} = \operatorname{Ker} \mathcal{A}^2$

3. Если \mathcal{A} — нормальный, то $\mathcal{B} = \mathcal{A} - \lambda \varepsilon$ — нормальный оператор Доказательство

$$\mathcal{B}^* = \mathcal{A}^* - \overline{\lambda}\varepsilon$$

$$\mathcal{B}\mathcal{B}^* = (\mathcal{A} - \lambda \varepsilon)(\mathcal{A}^* - \overline{\lambda}\varepsilon) = \mathcal{A}\mathcal{A}^* - \lambda \mathcal{A}^* - \overline{\lambda}\mathcal{A} + |\lambda|^2 \varepsilon$$

Аналогично $\mathcal{B}^*\mathcal{B} = \mathcal{A}^*\mathcal{A} - \overline{\lambda}\mathcal{A} - \lambda\mathcal{A}^* + |\lambda|^2 \varepsilon$

Отсюда ч.т.д.

4. λ – c.y., u – c.b. $\mathcal{A} \Rightarrow \overline{\lambda}$ – c.y., u – c.b. \mathcal{A}^*

$$\chi_{\mathcal{A}}(\lambda) = 0 \Leftrightarrow \chi_{\mathcal{A}^*}(\overline{\lambda}) = 0$$

$$u - \text{c.b. } \mathcal{A} \Leftrightarrow \mathcal{A}u = \lambda u \Leftrightarrow \mathcal{B}u = 0 \Leftrightarrow u \in \text{Ker } \mathcal{B} = \text{Ker } \mathcal{B}^* \Leftrightarrow \mathcal{B}^*u = 0 \Leftrightarrow \mathcal{A}^*u = \overline{\lambda}u \Leftrightarrow u - \text{c.b. } \mathcal{A}^*$$

5.
$$\lambda$$
 – с.ч., u – с.в. A

$$\mu \neq \lambda$$
 – c.y., v – c.b. \mathcal{A}

Тогда $u \perp v$

T.o. собственные подмножествва $V_{\lambda} \perp V_{\mu}$

Доказательство

$$\lambda(u,v) = (\lambda u,v) = (\mathcal{A}u,v) = (u,\mathcal{A}^*v) = (u,\overline{\mu}v) = \mu(u,v)$$

Отсюда $(u, v) = 0 \Leftrightarrow u \perp v$

Теорема о каноническом виде матрицы нормального оператора в унитарном пространстве

 $\mathcal{A} \in \mathrm{End}(V), (V, (\cdot, \cdot))$ – унитарное

 \mathcal{A} — нормальный оператор $\Leftrightarrow \exists$ о.н.б. такой, что матрицы оператора \mathcal{A} в этом базисе будет иметь диагональный вид $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$

Причем, матрица \mathcal{A}^* в этом базисе также будет иметь диагональный вид $\overline{\Lambda}=\mathrm{diag}(\overline{\lambda}_1,\ldots,\overline{\lambda}_n)$

Замечание $\lambda_1,\ldots,\lambda_n$ – с.ч. $\mathcal A$

$$\overline{\lambda}_1,\ldots,\overline{\lambda}_n$$
 – с.ч. \mathcal{A}^*

 \mathcal{A} – нормальный $\Rightarrow \mathcal{A}$ – о.п.с., но не наоборот

о.н.б. – из собственных векторов

Доказательство

Пусть λ_1, v_1 – с.ч. и с.в. \mathcal{A}

Рассмотрим $L = \operatorname{span}(v_1), V - L \oplus L^{\perp}$

L – инвариантное относительно $\mathcal{A} \Rightarrow L^{\perp}$ – инвариантное относительно \mathcal{A}^*

Также по свойству 4 v_1 – с.в. $\mathcal{A}^* \Rightarrow L$ – инвариантное относительно $\mathcal{A}^* \Rightarrow L^\perp$ инвариантное относительно \mathcal{A}

Тогда $\mathcal{A} \begin{vmatrix} & & \\ & \mathcal{A}^* \end{vmatrix}_{L^\perp}$ — остаются взаимосопряженными и нормальными

Применим метод математической индукции:

База: n = 1 – очевидно

Пусть для n = k выполнено. Докажем для k + 1

Пусть λ_1, v_1 – с.ч. и с.в. \mathcal{A}

 $L = \operatorname{span}(v_1)$

 $V = L \oplus L^{\perp}, \dim L^{\perp} = k$

По индукционному предположению для $\mathcal{A} \bigg|_{L^{\perp}}$ \exists о.н.б. v_2,\ldots,v_{k+1} в L^{\perp}

из с.в., матрицы \mathcal{A} имеет диагональный вид $\mathrm{diag}(\lambda_2,\dots,\lambda_{k+1})$

Т.к. $V=L\oplus L^{\perp}$, матрица $\mathcal A$ имеет диагональный вид $\operatorname{diag}(\lambda_1,\dots,\lambda_{k+1})$ $v_1\perp v_2,\dots,v_{k+1}$

В обратную сторону очевидно

Следствие 1

 \mathcal{A} – нормальный в унитарном пространстве $\Leftrightarrow V = \bigoplus_{\lambda} V_{\lambda}, V_{\lambda} \perp V_{\mu}, \lambda! = \mu$

Следствие 2

 $AA^* = A^*A$ — нормальная матрица

 $a_{ij}\in\mathbb{C}\Rightarrow\exists$ унитарная матрица $T:T^*AT=\overline{T^T}AT=\Lambda=\mathrm{diag}(\lambda_1,\ldots,\lambda_n),\lambda_i$ — с.ч. $\mathcal A$

Доказательство

 A^* – матрица \mathcal{A}^* в о.н.б.

A – матрица \mathcal{A}

Тогда по теореме существует базис и о.н.с.в. A

$$T = \begin{pmatrix} v_1 & v_2 & \dots & v_n \end{pmatrix} - \text{o.H.c.b.} = T_{e \to v}$$

 $T^{-1} = AT = \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ – т.к. v_1, \dots, v_n – попарно ортогональны и нормированы

$$\Leftrightarrow T$$
 – унитарная матрица $\Leftrightarrow T^{-1} = \overline{T^T} = T^*$

Что будет в евклидовом пространстве?

A – вещественная матрица $\Rightarrow \chi_{\mathcal{A}}$ – вещественные коэффициенты

Не все корни $\chi_{\mathcal{A}}$ – собственные числа, а только вещественные

Определение

V – линейное пространство над $\mathbb R$

 $(V,(\cdot,\cdot))$ – евклидово пространство

 $V_{\mathbb{C}}$ – комплексификация V

 $\forall z = x + iy, w = u + iv \in V_{\mathbb{C}}, x, y, u, v \in V \ (z, w) := (x, y) + (y, v) + i(-(x, v) + (y, u))$

 $(V_{\mathbb{C}},(\cdot,\cdot))$ – унитарное пространство

Упражнение

$$\overline{(z_1, z_2)} = (\overline{z}_1, \overline{z}_2)$$

$$\mathcal{A} \in \mathrm{End}(V)$$
 $\mathcal{A}_{\mathbb{C}} \in \mathrm{End}(V_{\mathbb{C}})$

$$\mathcal{A}_{\mathbb{C}}(x+iy) = \mathcal{A}x + i\mathcal{A}y$$

Напоминание

и с.п. $\mathcal{A}_{\mathbb{C}}$

$$e_1,\ldots,e_n$$
 — базис $V\Rightarrow$ базис $V_{\mathbb{C}}$ $\chi_A(t)=\chi_{A_{\mathbb{C}}}(t)$ $\overline{\mathcal{A}_{\mathbb{C}}z}=\mathcal{A}_{\mathbb{C}}(\overline{z})$ λ,z — с.ч., с.в. $\underline{\mathcal{A}_{\mathbb{C}}}\Rightarrow\overline{\lambda},\overline{z}$ — с.ч., с.в. $\mathcal{A}_{\mathbb{C}}$ $\mathcal{A}_{\mathbb{C}}\overline{z}=\overline{\mathcal{A}_{\mathbb{C}}z}=\overline{\lambda z}=\overline{\lambda z}$ Свойства

1. $\lambda \in \mathbb{R}, V_{\lambda}$ – с.ч. и собственное подпространство $\mathcal{A} \Rightarrow \lambda, (V_{\lambda})_{\mathbb{C}}$ – с.ч.

Доказательство //todo 12:10 11.05

2.
$$\lambda, z$$
 — с.ч. и с.в. \mathcal{A} $\overline{\lambda}, \overline{z}$ — с.ч. и с.в. $\mathcal{A}_{\mathbb{C}}$ $z = u + iv, \overline{z} = u - iv$ Тогда $(z, \overline{z}) = 0 \Rightarrow u \perp v, \|u\| = \|v\|$ Доказательство $0 = (z, \overline{z}) = (u + iv, u - iv) = \underbrace{(u, u) - (v, v)}_{0} + \underbrace{i(v, u) + i(u, v)}_{0}$

3.
$$(\mathcal{A}_{\mathbb{C}})^* = (\mathcal{A}^*)_{\mathbb{C}}$$

Доказательство

$$e_1, \dots, e_n$$
 – о.н.б. $V \to e_1, \dots, e_n$ – о.н.б. в $V_{\mathbb{C}}$ $\mathcal{A} \leftrightarrow A, \mathcal{A}^* \leftrightarrow A^T \Rightarrow (\mathcal{A}^*)_{\mathbb{C}} \leftrightarrow A^T$ $\mathcal{A}_{\mathbb{C}} \leftrightarrow A, (\mathcal{A}_{\mathbb{C}})^* \leftrightarrow A^T$

4.
$$(\mathcal{AB})_{\mathbb{C}} = \mathcal{A}_{\mathbb{C}}, \mathcal{B}_{\mathbb{C}}$$
 Доказательство $(\mathcal{AB})_{\mathbb{C}}z = (\mathcal{AB})x + i(\mathcal{AB})y = \mathcal{A}_{\mathbb{C}}(\mathcal{B}x + i\mathcal{B}y) = \mathcal{A}_{\mathbb{C}}\mathcal{B}_{\mathbb{C}}z$

5.
$$\exists \mathcal{A}^{-1} \Rightarrow (\mathcal{A}_{\mathbb{C}})^{-1}$$
, причем $(\mathcal{A}_{\mathbb{C}})^{-1} = (\mathcal{A}^{-1})_{\mathbb{C}}$ Доказательство $\chi_{\mathcal{A}} = \chi_{\mathcal{A}_{\mathbb{C}}} \Rightarrow \exists (\mathcal{A}_{\mathbb{C}})^{-1} \ \mathcal{A}_{\mathbb{C}} \mathcal{A}_{\mathbb{C}}^{-1} = \varepsilon = (\mathcal{A} \mathcal{A}^{-1})_{\mathbb{C}} = \mathcal{A}_{\mathbb{C}} (\mathcal{A}^{-1})_{\mathbb{C}}$

 $6.~\mathcal{A}$ нормальный $\Rightarrow \mathcal{A}_{\mathbb{C}}$ нормальный

Теорема о каноническом виде матрицы нормального оператора в евклидовом пространстве $\mathcal{A} \in \mathrm{End}(V), (V, (\cdot, \cdot))$ – евклидово пространство

 \mathcal{A} – нормальный оператор $\Leftrightarrow \exists$ о.н.б. пр-ва V такой, что матрица оператора \mathcal{A} в этом базисе будет иметь блочно-диагональный вид $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_k, \Phi_1, \dots, \Phi_m)$, где $\lambda_i \in R$ – с.ч. \mathcal{A}

$$\Phi_i = \begin{pmatrix} \alpha_i & \beta_i \\ -\beta_i & \alpha_i \end{pmatrix}, \alpha_i, \beta_i \in \mathbb{R}$$
, где $\alpha_i \pm i\beta_i$ – комплексные сопряженные кор-

ни характеристического многочлена ${\cal A}$

Причем, матрица \mathcal{A}^* имеет вид $\Lambda^* = \Lambda^T = \operatorname{diag}(\lambda_1, \dots, l_k, \Phi_1^T, \dots, \Phi_m^T)$

Причем, матрица
$$\mathcal{A}$$
 имеет вид $\Lambda = \Lambda^{-} = \text{diag}$ Доказательство \Leftarrow Очевидно: $\Phi_{i}^{T}\Phi_{i} = \begin{pmatrix} \alpha_{i}^{2} + \beta_{i}^{2} & 0 \\ 0 & \alpha_{i}^{2} + \beta_{i}^{2} \end{pmatrix} = \Phi_{i}\Phi_{i}^{2}$ Доказательство \Rightarrow

Доказательство \Rightarrow

Если все корни $\chi_{\mathcal{A}}$ вещественные, все очевидно

Иначе применим комплексификацию

 \mathcal{A} – нормальный $\Rightarrow \mathcal{A}_{\mathbb{C}}$ нормальный, $V_{\mathbb{C}}$ – унитарное пространство Тогда по теореме \exists о.н.б. w_1, \ldots, w_n из с.в. $\mathcal{A}_{\mathbb{C}}$ такой, что матрица $\mathcal{A}_{\mathbb{C}}$ будет иметь диагональный вид

$$V = \bigoplus_{\lambda \text{- c.b. } A_{\mathbb{C}}} V_{\lambda} = \bigoplus_{i=1, \lambda_i \in \mathbb{R}}^k V_{\lambda_i}^{\mathbb{C}} \oplus \bigoplus_{\mu, \overline{\mu}} \operatorname{span}(z_j^{\mu}, \overline{z}_j^{\overline{\mu}})$$

 $\mu,\overline{\mu}$ – комплексные сопряженные корни $\chi_{\mathcal{A}}$

 z, \overline{z} – с.в., пусть они нормированные

$$(z,\overline{z})=0$$

$$z = u + iv, u, v \in V$$

$$V_{\lambda} \perp V_{\mu}$$

$$V_{\lambda} \perp V_{\mu}$$
 $V_{\lambda_i}^{\mathbb{C}} = \text{по свойству } 1 = (V_{\lambda_i})_{\mathbb{C}} = \text{span}^{\mathbb{C}}(\omega_1, \dots, \omega_k)$
 $(z, \overline{z}) = 0 \Rightarrow u \perp v, ||u|| = ||v||$
 $\text{span}^{\mathbb{C}}(z, \overline{z}) = \text{span}^{\mathbb{C}}(u, v) = (\text{span}(u, v))_{\mathbb{C}}$
Toria $V^{\mathbb{C}} = \text{span}^{\mathbb{C}}(z, z) \perp V^{\mathbb{C}} = \text{span}^{\mathbb{C}}(\overline{z}, z)$

$$(z,\overline{z}) = 0 \Rightarrow u \perp v, ||u|| = ||v||$$

$$\operatorname{span}^{\mathbb{C}}(z,\overline{z}) = \operatorname{span}^{\mathbb{C}}(u,v) = (\operatorname{span}(u,v))_{\mathbb{C}}$$

Span
$$(z,z)$$
 — Span (u,v) — (Span (u,v)) \mathbb{C}
Тогда $V_{\mu}^{\mathbb{C}} = \operatorname{span}^{\mathbb{C}}(z_1,\ldots,z_r) \perp V_{\overline{\mu}}^{\mathbb{C}} = \operatorname{span}^{\mathbb{C}}(\overline{z}_1,\ldots,\overline{z}_r)$

 $V_{\mathbb{C}} = \operatorname{span}^{\mathbb{C}}(\omega_1, \dots, \omega_k, u_1, v_1, u_2, v_2, \dots), \omega, u, v$ – вещественные вектора

$$||z_i||^2 = 1 = ||u_i||^2 + ||v_i||^2, ||u_i|| = ||v_i|| \Rightarrow ||u_i|| = ||v_i|| = \frac{1}{\sqrt{2}}$$

 $\mathcal{A}_{\mathbb{C}} \leftrightarrow A \leftrightarrow \mathcal{A}$ – в вещественном базисе

$$\mathcal{A}_{\mathbb{C}}z_i = \mu_i z_i$$

$$\mu_i = \alpha_i + i\beta_i$$

$$\mathcal{A}_{\mathbb{C}}z_{i} = \frac{1}{2}\mathcal{A}_{\mathbb{C}}(z_{i} + \overline{z}_{i}) = \frac{1}{2}(\mu_{i}z_{i} + \overline{\mu}_{i}\overline{z}_{i}) = \operatorname{Re}(\mu_{i}z_{i}) = \operatorname{Re}((\alpha_{i} + i\beta_{i})(u_{i} + ib_{i})) =$$

$$\alpha_i u_i - \beta_i v_i \leftrightarrow \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \alpha_i \\ -\beta_i \\ 0 \\ \vdots \end{pmatrix}$$

$$\mathcal{A}_{\mathbb{C}}v_{i} = \frac{1}{2i}\mathcal{A}_{\mathbb{C}}(z_{i} - \overline{z}_{i}) = \frac{1}{2i}(\mu_{i}z_{i} - \overline{\mu}_{i}\overline{z}_{i}) = \Im(\mu_{i}z_{i}) = \beta_{i}u_{i} + \alpha_{i}v_{i} \leftrightarrow \begin{pmatrix} 0 \\ \vdots \\ 0 \\ \beta_{i} \\ \alpha_{i} \\ 0 \\ \vdots \end{pmatrix}$$

Осталось ортогонализовать базис. Заменим u_i на $\sqrt{(2)}u_i, v_i$ – на $\sqrt{(2)}v_i$ Т.о. мы получили матрицу из теоремы

Следствие

$$AA^* = A^*A(AA^T = A^TA)$$

 $a_{ii} \in \mathbb{R}$

Тогда \exists ортогональная матрица T такая, что $T^TAT = \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_k, \Phi_i, \dots, \Phi_m)$

Доказательство

$$T = \begin{pmatrix} \omega_1 & \dots & \omega_k & u_1 & v_1 & \dots \end{pmatrix}$$

 $T = (\omega_1 \ldots \omega_k \ u_1 \ v_1 \ldots)$ T – ортогональная матрица $\Leftrightarrow T^{-1} = T^* = T^T$

Самосопряженные операторы и их свойства. Изо-4.3 метрические операторы и их свойства

Определение

 \mathcal{A} – называются самосопряженный, если $\mathcal{A}=\mathcal{A}^*$

Если V унитарное, то – эрмитовый

Если V евклидово, то – симметричный

$$\Leftrightarrow (\mathcal{A}x, y) = (x, \mathcal{A}y)$$

Замечание

Если \mathcal{A} – самосопряженный, то \mathcal{A} – нормальный

Свойства

- 1. \mathcal{A} самосопряженный $\Leftrightarrow \exists$ о.н.б. такой, что $A^* = A$
- 2. \mathcal{A}, \mathcal{B} самосопряженные $\Rightarrow \forall \lambda \in \mathbb{R} \ \mathcal{A} + \lambda \mathcal{B}$ самосопряженный
- 3. \mathcal{A}, \mathcal{B} самосопряженные и перестановочные $\Rightarrow \mathcal{AB}, \mathcal{BA}$ самосопряженные
- 4. Если $\exists \mathcal{A}^{-1}, \mathcal{A}$ самосопряженный $\Rightarrow \mathcal{A}^{-1}$ самосопряженный

Доказательство

$$(\mathcal{A}^{-1}\mathcal{A})^* = \varepsilon^* = \varepsilon$$

$$\mathcal{A}^*(\mathcal{A}^{-1})^* = \varepsilon$$

$$\mathcal{A}(\mathcal{A}^{-1})^{*} = \varepsilon \Rightarrow (\mathcal{A}^{-1})^{*} = \mathcal{A}^{-1}$$

5. \mathcal{A} самосопряженный $\Leftrightarrow \mathcal{A}$ нормальный и все корни $\chi_{\mathcal{A}}$ веществен-

Доказательство для унитарного пространства

По теореме о каноническим виде матрицы

$$\mathcal{A} \leftrightarrow \underline{\Lambda} = \operatorname{diag}(\lambda_{\underline{1}}, \dots, \lambda_{\underline{n}})$$

$$\mathcal{A}^* \leftrightarrow \overline{\Lambda^T} = \operatorname{diag} \overline{\lambda}_1, \dots, \overline{\lambda}_n$$

$$\mathcal{A}^* \leftrightarrow \overline{\Lambda^T} = \operatorname{diag} \overline{\lambda}_1, \dots, \overline{\lambda}_n$$
$$\mathcal{A} = \mathcal{A}^* \leftrightarrow \Lambda = \overline{\Lambda^T} \Leftrightarrow \lambda_i = \overline{\lambda}_i \Leftrightarrow \lambda_i \in \mathbb{R}$$

Доказательство для евклидова пространства

По теореме о каноническом виде матрицы

$$\mathcal{A} = \mathcal{A}^* \Leftrightarrow \Lambda = \Lambda^T$$

$$\Phi_i = \Phi_i^T \Leftrightarrow \beta_i = 0$$

Тогда нет блоков $\Phi_i \Rightarrow \Lambda$ – диагональная $\Rightarrow \lambda_i$ вещественные

- 6. $L \subset V$ линейное подпространство
 - L инвариантно относительно $\mathcal{A} \Rightarrow L^{\perp}$ инвариантно относительно \mathcal{A}

//todo 11.05 13:56 Следствие **2**

 $\mathcal{A}^* = \mathcal{A} \Rightarrow \exists$ унитарная/ортогональная T такая, что T^*AT имеет диагональный вид

Определение

Qневырожденный $\in \operatorname{End}(V)$ называется изометрическим, если $Q^{-1}=Q^*$

Если V – унитарная, то называется унитарным

Если V – евклидово, то называется ортогональным

$$\Leftrightarrow (Qx, Qy) = (x, Q^*Qy) = (x, y)$$

Замечание

Изометрический ⇒ нормальный

Свойства

- 1. Q изометрический $\Leftrightarrow \exists$ базис такой, что $\overline{Q^T} = Q^* = Q^{-1}$
- 2. Q изометрический \Rightarrow переводит ортонормированный базис в ортонормированный базис

Доказательство ⇒

$$e_1,\dots,e_n$$
 – о.н.б.

$$(Qe_i, Qe_j) = (e_i, e_j) = \delta_{ij}$$

Доказательство ←

$$e_1, \dots, e_n$$
 – о.н.б.

$$\forall x, y \in V \ Qe_1, \dots, Qe_n$$
 – о.н.б.

Тогда
$$(Qe_i, Qe_j) = \delta_{ij}$$

$$(Qx, Qy) = \sum_{ij} x_i \overline{y_j}(Qe_i, Qe_j) = \sum_i x_i \overline{y_i} = (x, y)$$

- 3. Q, R изометрические $\Rightarrow QR$ изометрические
- 4. Q изометрический $\Rightarrow Q^{-1}$ изометрический
- 5. Q изометрический $\Leftrightarrow Q$ нормальный и все корни χ_Q по модулю равны 1

Доказательство для унитарного пространства

По теореме о каноническом виде

$$\exists$$
 о.н.б. такой, что $Q \leftrightarrow \Lambda = \mathrm{diag}(\lambda_1, \dots, \lambda_n)$

$$Q^* \leftrightarrow \overline{\Lambda^T} = \operatorname{diag}(\overline{\lambda_1}, \dots, \overline{\lambda_n})$$

$$QQ^* = \varepsilon \Leftrightarrow \Lambda \overline{\Lambda^T} = E = \operatorname{diag}(\|\lambda_1\|^2, \dots, \|\lambda_n\|^2) \Rightarrow \|\lambda\| = \pm 1$$

Доказательство для евклидова пространства

$$QQ^* = \varepsilon \Leftrightarrow \Lambda \overline{\Lambda^T} = E = \operatorname{diag}(\|\lambda_1\|^2, \dots, \|\lambda_k\|^2, |\Phi_1 \Phi_1^T|, \dots, |\Phi_k \Phi_k^T|)$$

$$\Phi_i \Phi_i^T = \operatorname{diag}(\alpha_i^2 + \beta_i^2, \alpha_i^2 + \beta_i^2)$$

$$\alpha_i^2 + \beta_i^2 = 1$$

В частности, если корни χ_Q вещественные, то ± 1

6. $L\subset V$ — линейное подпространство, инвариантное относительно Q. Тогда L^\perp инвариантно относительно Q

Доказательство

//todo 11.05 14:19

Теорема о каноническом виде матрицы изометрического опера-

 $Q \in \mathrm{End}(V), (V, (\cdot, \cdot))$ – унитарное/евклидово

Q – изометрический $\Leftrightarrow \exists$ о.н.б. такой, что матрица имеет диагональный/блочнодиагональный вид

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n) / \Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_k, \Phi_1, \dots, \Phi_m), \lambda_i = \pm 1, \Phi_i = \begin{pmatrix} \cos \phi_i & \sin \phi_i \\ -\sin \phi_i & \cos \phi_i \end{pmatrix}, \cos \phi_i \pm i \sin \phi_i - \operatorname{корни} \chi_Q$$

Доказательство

$$\Lambda^{-1} = \overline{\Lambda^T}$$

Замечание

Q ортогональный в евклидовом пространстве \Rightarrow композиция поворотов и отражений

Следствие

 $Q^* = Q^{-1}$ — унитарная/ортогональная матрица

Тогда \exists унитарная/ортогональная матрица T такая, что $T^*QT = \Lambda$ – из теоремы

Разложение матриц. LU(LDU), Холецкого, QR-4.4 разложение, полярное

Определение

$$L = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ & 1 & \ddots & 0 & 0 \\ & & \ddots & \ddots & 0 \\ & & e_{ij} & & \ddots & \vdots \\ & & & 1 \end{pmatrix} - \text{нижняя унитреугольная матрица}(\text{левая})$$
 Аналогично верхнетреугольная матрица U

Аналогично верхнетреугольная матрица U

Определение

$$A = (a_{ij})_{n \times n}$$

$$1 \leq k \leq n \ A_k = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \dots & a_{kk} \end{pmatrix}$$
 — угловая матрица

Теорема

 $\Delta_k \neq 0, \forall k = 1 \dots n-1 \Leftrightarrow \exists !$ унитреугольная нижняя L, унитреугольная верхняя $U,D=\mathrm{diag}(d_1,\ldots,d_n),d_k\neq 0,k=1\ldots n-1$ такие, что A=LDU

Замечание

1. A невырожденная $\Leftrightarrow \det A = \det L \det D \det U = \det D = \underbrace{d_1 d_2 \dots d_{n-1}}_{\neq 0} d_n \Leftrightarrow$

$$d_n \neq 0$$

2.
$$A = LDU$$

$$LD = \begin{pmatrix} d_1 & 0 & 0 & \dots & 0 \\ & \ddots & 0 & \vdots & 0 \\ & & \ddots & 0 & 0 \\ & * & & \ddots & 0 \\ & & & & d_n \end{pmatrix} = \text{H.y.o.} = L \Rightarrow A = LU$$

$$DU = \begin{pmatrix} d_1 & & & & \\ 0 & \ddots & & * & \\ 0 & 0 & \ddots & & \\ 0 & \ddots & 0 & \ddots & \\ 0 & 0 & \ddots & 0 & d_n \end{pmatrix} = \text{H.y.o.} = U \Rightarrow A = LU$$

Называется LU-разложением. Оно неоднозначно, а отличие от LDU

$$A = LDU \Rightarrow A_k = L_k D_k U_k$$

$$A = LDU \Rightarrow A_k = L_k D_k U_k$$

$$a_{ij} = \sum_{s=1}^n \sum_{t=1}^n \sum_{s>i \Rightarrow =0}^n l_{is} d_{st} \underbrace{u_{ti}}_{t>j \Rightarrow =0} = \sum_{s=1}^i \sum_{t=1}^j l_{is} d_{st} u_{ij} = \underbrace{\sum_{s=1}^k \sum_{t=1}^k l_{is} d_{st} u_{ij}}_{(L_k D_k U_k)_{ij}}$$

$$\Delta_k = \det A_k = \underbrace{\det L_k}_{1} \det D_k \underbrace{\det U_k}_{1} = d_1 \dots d_k \neq 0$$

$$d_k = \frac{\Delta_k}{\Delta_{k-1}}$$

Доказательство ⇒

Методом мат. индукции

1.
$$k = 1.a_{11} = \underbrace{1}_{L} \underbrace{d_{1}}_{D} \underbrace{1}_{U}$$

2. Пусть верно для k

Тогда
$$\Delta_1, \ldots, \Delta_k \neq 0$$

 $A_k = L_k D_k U_k$ – единственным образом, $d_1, \dots, d_k \neq 0$ Докажем для k+1

$$A_{k+1} = \begin{pmatrix} A_k & b_{k+1} \\ c_{k+1} & a_{k+1,k+1} \end{pmatrix}$$
 $L_{k+1} = \begin{pmatrix} L_k & 0 \\ X & 1 \end{pmatrix}$
 $U_{k+1} = \begin{pmatrix} U_k & y \\ 0 & 1 \end{pmatrix}$
 $D_{k+1} = \operatorname{diag}(d_1, \dots, d_k, d_{k+1})$
Докажем, что $A_{k+1} = L_{k+1}D_{k+1}U_{k+1}$
//todo 18.05 10:38

Алгоритм LDU-разложения

Рассмотрим матрицу $\begin{pmatrix} A & E \end{pmatrix}$

Методом Гаусса приведем к верхнедиагональному виду $\begin{pmatrix} A' & A'' \end{pmatrix}$

Здесь не переставляем строки и столбцы во время преобразований, а также не прибавляем к строке i значения из строк j < i (чтобы получить справа нижнедиагольный вид)

Получим A' — верхнедиагональную и A'' нижнедиагональную $A' = DU, A'' = L^{-1}$

Определение

 $L_{ij}(\lambda)$ — элементарная унитарная нижняя матрица, если $\exists ! i, j : i > j, L_{ij} \neq 0$, при этом $L_{ij} = \lambda$ (единственный ненулевой элемент под диагональю)

$$AL_{ij}(\Lambda) = \begin{pmatrix} \dots & a_{1j} & \dots & a_{1i} & \dots \\ a_{j1} & a_{jj} & \dots & a_{ji} & \dots \\ \dots & \ddots & \ddots & \ddots & \vdots \\ a_{i1} & a_{ij} & \dots & a_{ni} & \dots \\ \dots & a_{nj} & \dots & a_{ni} & \dots \end{pmatrix} \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ & 1 & \ddots & 0 & 0 \\ & & \ddots & \ddots & 0 \\ & & & \ddots & \ddots & 0 \\ & & & & \ddots & \vdots \\ & & & & & 1 \end{pmatrix} = \begin{pmatrix} \dots & (A_j + \lambda A_i) & \dots & A_i & \dots \end{pmatrix}$$

$$L_{ij}(\Lambda)A = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ & 1 & \ddots & 0 & 0 \\ & & \ddots & \ddots & 0 \\ & & & \ddots & \vdots \\ & & & & 1 \end{pmatrix} \begin{pmatrix} \dots & a_{1j} & \dots & a_{1i} & \dots \\ a_{j1} & a_{jj} & \dots & a_{ji} & \dots \\ & \vdots & \ddots & \vdots & \vdots \\ a_{i1} & a_{ij} & \dots & a_{ni} & \dots \end{pmatrix} = \begin{pmatrix} \vdots \\ (S_j + \lambda S_i) \\ \dots \\ S_i \\ \dots \end{pmatrix}$$

 $L_{ij}(\lambda)$ – невырожденная $\Rightarrow \exists L_{ij}^{-1}(\lambda) = L_{ij}(-\lambda)$ *Возвращаемся к методу Гаусса*

$$\begin{pmatrix} \underbrace{L_m \dots L_2 L_1}_{\text{эл. нижн.унитр., соотв. м. Гаусса}} A = DU & \underbrace{L_m L_{m-1} \dots L}_{L^{-1}} E \end{pmatrix}$$

$$A = L_1^{-1} \dots L_m^{-1} DU = LDU$$

$$L_1^{\stackrel{\kappa}{-}1}L_2^{-1}\dots L_m^{\stackrel{\kappa}{-}1}=(L_m\dots L_1)^{-1}=L_m^{\stackrel{\kappa}{-}1}$$

Следствие

 $A^* = A$

 $\Delta_1, \ldots, \Delta_{n-1} \neq 0$

 $\Leftrightarrow \exists !, L, D = \operatorname{diag}(d_1, \ldots, d_n), U : d_i \in \mathbb{R}, d_i \neq 0, A = LDL^* = U^*DU$

Доказательство

Из теоремы $\exists !L, D, U$

 $LDU = A = A^* = L^*D^*U^* = L^*DU^*$

Из единственности $L=U^*, U=L^*$

Определение

 $\mathcal{A} = \mathcal{A}^*$ – самосопряженный оператор

V – унитарное/евклидово

 \mathcal{A} – положительно(отрицательно) определенным ($\mathcal{A}>0$), если $\forall x\neq 0$ $0 (\mathcal{A}x, x) = (x, \mathcal{A}x) \geqslant 0$

 ${\cal A}$ — положительный (отрицательный) полуопределенный (${\cal A} \geq 0$), если $\forall x \neq 0 \ (\mathcal{A}x, x) = (x, \mathcal{A}x) \geq 0$ и $\exists x \neq 0 : (\mathcal{A}x, x) = 0$

> 0 не является ч.с. ≥ 0

 $\mathcal{A} \geqslant 0$ — неопределенный, если $\exists\, x \in V: (\mathcal{A}x,x) = (x,\mathcal{A}x) > 0$ и $\exists\, y \in V: (\mathcal{A}y,y) = (y,\mathcal{A}y) < 0$

 \mathcal{A} — самосопряженный $\Leftrightarrow V = \bigoplus_{\lambda \text{- c.q.}} V_{\lambda}$ — о.п.с.

Все корни $\lambda \in \mathbb{R}$

$$V_{\lambda} \perp V_{\mu}, \lambda \neq \mu$$

Теорема

 $\mathcal{A} > 0 \Leftrightarrow$ все с.ч. $\lambda > 0$

 $A \ge 0 \Leftrightarrow \text{BCE C.Y. } \lambda \ge 0, \exists \lambda = 0$

 $\mathcal{A} \geqslant 0 \Leftrightarrow \exists \text{ c.y. } \lambda > 0, \exists \text{ c.y. } \lambda < 0$

Доказательство \Rightarrow

Пусть A > 0

$$\forall x \in V, x \neq 0 \ (\mathcal{A}x, x) > 0$$

$$x = \sum_{\lambda} x_{\lambda}$$

$$(\mathcal{A}x, x) = \sum_{\mu} \sum_{\lambda} (\lambda x_{\lambda}, x_{\mu}) = \sum_{\lambda} (\lambda x_{\lambda}, x_{\lambda}) > 0$$

$$\lambda(x_{\lambda}, x_{\lambda}) > 0 \Rightarrow \lambda > 0$$

Аналогично для всех остальных случаев

Доказательство ←

$$\forall x : (\mathcal{A}x, x) = \sum_{\lambda} \lambda(x_{\lambda}, x_{\lambda})$$

Пусть все
$$\lambda > 0 \Rightarrow \forall x \neq \mathbb{O}(\mathcal{A}x, x) = \sum_{\lambda} \lambda ||x_{\lambda}||^2 > 0 \Rightarrow \mathcal{A} > 0$$

Замечание

Для самосопряженных матриц теорема аналогичная

Замечание

$$A > 0 \Leftrightarrow \det A \neq 0$$

Теорема (разложение Холецкого или метод квадратного корня)

 $\forall\,A>0 \exists\,! L>0$ — нижнетреугольная U>0— верхнетреугольная: $A=LL^*=U^*U$

Пусть
$$x \neq 0, A > 0, A = L_0 D_0 U_0 = L_0 D_0 L_0^* = U_0^* D_0 U_0$$

$$0 < (Ax, x) = (L_0 D_0 U_0 x, x) = (D_0 \underbrace{U_0 x}_{y}, L_0^* x) = (D_0 y, y) = \sum_{j=1}^n d_j y_j^2$$

$$U_0$$
 — унитреугольная \Rightarrow невырожденная $\Rightarrow y \neq 0$, т.к. $x \neq 0$ Пусть $y = e_j$ Тогда $\forall j = 1 \dots n \ d_j > 0$ $\sqrt{D_0} = \mathrm{diag}(\sqrt{d_1}, \dots, \sqrt{d_n})$ $\sqrt{D_0}\sqrt{D_0} = D_0$ $A = \underbrace{L_0\sqrt{D_0}}_{L} \sqrt{D_0}L_0^* = U_0^*\sqrt{D_0}\underbrace{\sqrt{D_0}U_0}_{U}$

$$L^* = (L_0 \sqrt{D_0})^* = \sqrt{D_0} L_0^* = L_0^* \sqrt{D_0}$$

$$U^* = \sqrt{D_0} U_0$$

Теорема (QR-разложение)

 \forall невырожд. A (компл./вещ.) \exists унит./ортог. Q, правотреугольная (верхнетреугольная)

$$R: A = QR$$

Доказательство

$$A = \begin{pmatrix} A_1 & \dots & A_n \end{pmatrix}$$

Т.к. \hat{A} невырожденная, то A_1, \ldots, A_n – линейно независимые

Применим алгоритм Грамма-Шмидта

Получим попарно ортогональные и нормированные столбцы q_1,\dots,q_n

 $Q = \begin{pmatrix} q_1 & \dots & q_n \end{pmatrix}$ – унитарная/ортогональная по построению

Q – унитарная/ортогональная по построению

$$q_1 = u_{11}A_1$$

$$q_2 = u_1 2A_1 + u_2 2A_2$$

$$q_n = u_{1n}A_1 + \ldots + u_{nn}A_n$$

$$\underbrace{A}_{\text{невыр.}} U = \underbrace{Q}_{\text{невыр.}}$$

Тогда U — невырожденная

Тогда $\exists U^{-1} = R$

R — верхнетреугольная

$$A = QU^{-1} = QR$$

Следствие

 \forall невыр. $A\exists Q$ – унит./ортог., L – левотреугольная(нижнетреугольная)

$$A = LQ$$

$$A^* = \widetilde{Q}R$$
 $A = (\widetilde{Q}R)^* = R^* \underbrace{\widetilde{Q}^*}_{\text{унит./орт.}} = R^* \widetilde{Q}^{-1} = LQ$

Теорема (полярное разложение)

В унитарном: $A = \underbrace{H}_{\text{эрмитова унитарная}} \underbrace{U}_{\text{в римитова унитарная}}$ В евклидовом: $A = \underbrace{S}_{\text{симметричная ортогональная}} \underbrace{Q}_{\text{ортогональная}}$

 $\forall A_{n\times n}\exists !$ ортогональная H(симметричная $S), H\geq 0 (S\geq 0)$ и \exists унитарная U(ортогональная Q): A = HU(A = SQ)

Причем, если A невырожденная, то U(Q) – единственные, H > 0(S > 0)Сформуриуем докажем соответствующую теорему для операторов, т.к. в о.н.б. этим матрицам соответствуют матрицам операторов

Теорема (полярное разложение эндоморфизма в унитарном/евклидовом пространстве)

 $(V,(\cdot,\cdot))$ – унитарное/ортогональное

 $\forall \mathcal{A} \in \operatorname{End}(V) \exists !$ самосопряженный $H \geq 0 (S \geq 0), \exists U$ – изомерический $: \mathcal{A} = HU(\mathcal{A} = SQ)$

Причем, если A невырожденный, то $\exists ! U(Q), H > 0, S > 0$

Лемма

Пусть \mathcal{A} – о.п.с.

Bce c.ч. $\lambda \in \mathbb{R}, \lambda > 0$

Тогда $\exists ! \mathcal{B}$ – о.п.с такой, что с.ч. $\mu \in \mathbb{R}, \mu \geq 0, \mathcal{B}^2 = \mathcal{A}$

$$\mathcal{B} := \sqrt{\mathcal{A}}$$

Доказательство существования

$$\mathcal{A}$$
 – о.п.с., $V = \bigoplus_{\lambda} V_{\lambda} = \mathrm{span}(v_1, \ldots, v_n), v_n$ – с.в.

Определим \mathcal{B} :

$$\forall v_j \ \beta v_j = \sqrt{\lambda_j v_j}$$

$$\mathcal{B}^2 v_j = \sqrt{\lambda_j} \sqrt{\lambda_j} v_j = \lambda_j v_j = \mathcal{A} v_j$$

 $\mathcal{B}^2 = \mathcal{A}$, т.к. их значения совпадают на базисных векторах

Очевидно из определения \mathcal{B} , что β – о.п.с., $\sqrt{\lambda_i} = \mu_i$ – с.ч. \mathcal{B}

$$v_j$$
 – c.b. \mathcal{B}

$$V_{\lambda}^{\alpha}=V_{\mu}^{\beta}$$
 – c.b. eta

Доказательство единственности

$$\mathcal{B}, \mathcal{C}$$
 – о.п.с.

$$\nu \geq 0$$
 – с.ч. C

$$u \geq 0$$
 – с.ч. C

$$V = \bigoplus V_{\nu}^{C} = \operatorname{span}(\omega_{1}, \dots, \omega_{n}) - \operatorname{c.b.} C$$

$$\mathcal{A}\omega_j=\overset{\iota}{\mathcal{C}^2}\omega_j=
u_j^2\omega_j\Rightarrow\lambda_j^2$$
 – с.ч. \mathcal{A} $V_
u^\mathcal{C}=V_\lambda^\mathcal{A}=V_\mu^\mathcal{C}$

$$\mathcal{C}\omega_i = \mathcal{C}\omega_i, \mu \Longrightarrow \mathcal{C} = \mathcal{B}$$

Доказательство теоремы

 $\mathcal{A}\mathcal{A}^*$, $\mathcal{A}^*\mathcal{A}$ — самосопряженные

$$(\mathcal{A}\mathcal{A}^*)^* = \mathcal{A}\mathcal{A}^*$$

$$\forall x \neq 0 \ (\mathcal{A}\mathcal{A}^*x, x) = (\mathcal{A}^*x, \mathcal{A}^*x) \geq 0, (\mathcal{A}^*\mathcal{A}x, x) = (\mathcal{A}x, \mathcal{A}x) \geq 0$$

Тогда $\mathcal{A}\mathcal{A}^*, \mathcal{A}^*\mathcal{A} \geq 0$

Рассмотрим $\mathcal{A}^*\mathcal{A}$

Он самосопряженный ⇔ он о.п.с. и его собственные подпространства попарно ортонормированы

$$V = \bigoplus_{\lambda} V_{\lambda}, V_{\lambda} \perp V_{\mu}, \forall \lambda \ \lambda > 0$$

 $V = \operatorname{span}^{\lambda}(v_1, \dots, v_n)$ – попарно ортогональные и нормированные с.в. $\mathcal{A}^*\mathcal{A}$ $(\mathcal{A}v_j, \mathcal{A}v_k) = \underbrace{(\mathcal{A}^* \mathcal{A}v_j, v_k)}_{\geq 0} = (\lambda_j v_j, v_k) = \lambda \sigma_{jk}$

1.
$$\lambda_j \neq 0 \ (\mathcal{A}v_j, \mathcal{A}v_j) = \lambda > 0, \|\mathcal{A}v_j\|^2 \neq 0 \Leftrightarrow \mathcal{A}v_j \neq 0$$

2.
$$\mathcal{A}v_i, \mathcal{A}v_k \neq 0, \lambda_i, \lambda_k \neq 0, \mathcal{A}v_i \perp \mathcal{A}v_i$$

Тогда \mathcal{A} переводит попарно ортогональную нормированную систему с.в. в попарно ортогональную, но, возможно, неполную

Дополним получившуюся систему до базиса

Пусть о.н.б.
$$z_1, \ldots, z_n$$
 такой, что $\mathcal{A}\lambda_j \neq 0, z_j = \frac{\mathcal{A}v_j}{\sqrt{\lambda_j}}$

$$(z_j, z_j) = \frac{(\mathcal{A}v_j, \mathcal{A}v_j)}{\lambda_j} = \frac{\lambda_1}{\lambda_1} = 1$$

Определим $H \in \text{End}(V)$

$$Hz_j := \sqrt{\lambda_j z_j}$$

Очевидно, H – о.п.с., $\sqrt{\lambda_i}$ – с.ч.

$$H \ge 0$$

Определим $U \in \text{End}(V)$

$$U\underbrace{v_j}_{ ext{o.н.6.}}:=\underbrace{z_j}_{ ext{o.н.6.}}$$
 Тогда U — изометрический

$$HUv_j = Hz_j = \sqrt{\lambda_j}z_j = \mathcal{A}v_j$$

Т.к. совпадает на базисных векторах, то HU = A

$$\mathcal{A}^* = U^*H^* = U^*H = U^{-1}H$$
 $\mathcal{A}\mathcal{A}^*$
о.п.с., все с.ч. ≥ 0

Отсюда
$$\exists ! H$$
 — о.п.с., все с.ч. ≥ 0 $H = \sqrt{\mathcal{A}\mathcal{A}^*}$ — левый модуль \mathcal{A} \mathcal{A} — невырожденный $\Rightarrow \mathcal{A}^*$ — невырожденный $\Rightarrow \mathcal{A}^*\mathcal{A} > 0, \mathcal{A}\mathcal{A}^* > 0$ \Rightarrow все $\lambda_j > 0 \Rightarrow H > 0$ — невырожденный $\mathcal{A} = \mathcal{A} =$

Аналогично для вещественного случая

Следствие

Аналогично для разложений $\mathcal{A} = UH(\mathcal{A} = QS)$

Доказательство

Построим разложение $\mathcal{A}^* = H_0 U_0$

$$H_0 = \sqrt{\mathcal{A}^*\mathcal{A}}$$
 — правый модуль

$$H_0 = \sqrt{\mathcal{A}^*\mathcal{A}}$$
 — правый модуль $\mathcal{A} = (H_0U_0)^* = U_0^*H_0^* = \underbrace{U_0^{-1}}_{\text{изометрия}} H_0 = U_0'H_0$

5 Квадратичные формы

5.1 Основные понятия

Определение

Квадратичной формой называется $f: \mathbb{R}^n \to \mathbb{R}$ такая, что $f(x) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$,

где
$$a_{ij} \in \mathbb{R}, a_{ij} = a_{ji}$$

$$f(x) = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$

$$A = (a_i j)_{n \times n}$$

$$A^T = A$$

 $f(x) = x^{T}A = (x, Ax) = (Ax, x)$ – в стандартном скалярном произведении в \mathbb{R}^n

Определение

$$\operatorname{rg} F = \operatorname{rg} A$$

Определение

Говорят, что к квадратичной форме f применили линейное преобразование Q, если $x = Qy, y \in \mathbb{R}^n$

$$g(y)=f(Qy)=(Qy)^TA(Qy)=y^tQ^TAQy$$
 – снова квадратичная форма $A_a=Q^TA_fQ$

Если Q невырожденное, то $\operatorname{rg} A_g = \operatorname{rg} A_f$

Мы будем рассматривать только невырожденные преобразования Если матрица квадратичной формы имеет диагональный вид, то говорят, что форма приведена к каноническому виду

$$f(x) = \sum_{i=1}^{n} a_{ii} x_i^2$$

 σ^+ — положительный индекс инерции — число $a_{ii}>0$ в каноническом виде

 σ^- – отрицательный индекс инерции – число $a_{ii} < 0$ в каноническом виде σ^0 – число $a_{ii} = 0$ в каноническом виде

 $(\sigma^+,\sigma^-,\sigma^0)$ – сигнатура квадратичной формы

$$\operatorname{rg} f = \sigma^+ + \sigma^- = n - \sigma^0$$

Нормальный вид квадратичной формы – канонический, где все все $a_{ii}\pm 1$ или 0

5.2 Методы приведения квадратичной формы к каноническому виду

- 1. $\underbrace{A}_{=A^T}\Rightarrow\underbrace{\Lambda}_{Q^TAQ}=\mathrm{diag}(\lambda_1,\dots,\lambda_n)$ //todo когда-то 18.05 между 14:00 и 15:30
- 2. Метод Лагранжа(метод выделения полного квадрата)

метод Лагранжа (метод выделен
$$f(x) = x^T A x, A = A^T, x = \underbrace{Q}_{\text{невыр.}} y$$

$$g(y) = y^T B y = \sum_{i=1}^n b_{ii} y_i^2, B = Q^T A Q$$

(а) Пусть $i=1\dots n, a_{ii}=0$ (в квадратичной форме нет квадратов) Пусть $a_{ij}\neq 0, i\neq j$

$$x_i = y_i + y_j$$

$$x_j = y_i - y_j$$

$$x_k = y_k, k \neq i, j$$

$$f(x) = \dots + 2a_{ij}x_ix_j + \dots = \dots + 2a_{ij}y_i^2 - 2a_{ij}y_j^2 + \dots = g(y) - 2a_{ij}y_j^2 + \dots = g(y) - 2a_{ij}y_i^2 + \dots =$$

есть ненулевые слагаемые с квадратами

(b) $\exists a_{ii} \neq 0$ (есть слагаемые с квадратом, тогда предыдущий шаг

не нужен)

Выпишем из f все слагаемые, содержащие x_i :

$$a_{ii}x_{i}^{2} + 2\sum_{j \neq i} a_{ij}x_{i}x_{j} = \frac{1}{a_{ii}} (a_{ii}^{2}x_{i}^{2} + 2\sum_{j \neq i} a_{ij}a_{ii}x_{i}x_{j}) = \frac{1}{a_{ii}} (\sum_{j=1}^{n} a_{ij}x_{j})^{2} - \frac{1}{a_{ii}} (\sum_{j \neq i} a_{jj}^{2}x_{j}^{2} + 2\sum_{j,k \neq i} a_{ij}a_{ik}x_{j}x_{k})$$

$$\underbrace{\sum_{j \neq i} a_{jj}^{2}x_{j}^{2} + 2\sum_{j,k \neq i} a_{ij}a_{ik}x_{j}x_{k}}_{\text{Het }x_{i}}$$

$$f(x) = \frac{1}{a_{ii}} (\sum_{j} a_{ij}x_{j})^{2} + \widetilde{f}(x_{1}, \dots, \underbrace{\hat{x}_{i}}_{\text{6e3}}, \dots, x_{n})$$

$$\underbrace{\sum_{j \neq i} a_{ij}x_{j}}_{\text{KB. форма}} + \widetilde{f}(x_{1}, \dots, \underbrace{\hat{x}_{i}}_{\text{6e3}}, \dots, x_{n})$$

$$\underbrace{\sum_{j \neq i} a_{ij}x_{j}}_{\text{KB. форма}} + \widetilde{f}(x_{1}, \dots, \underbrace{\hat{x}_{i}}_{\text{6e3}}, \dots, x_{n})$$

$$f(x) = \frac{1}{a_{ii}} \left(\sum_{j} a_{ij} x_{j} \right)^{2} + \underbrace{\widetilde{f}(x_{1}, \dots, \underbrace{\widehat{x}_{i}}_{\text{6es}}, \dots, x_{n})}_{\text{6es}}$$

$$y_i = \sum_j a_{ij} x_j, y_k = x_k, k \neq i, y = Q^{-1} x$$

$$Q^{-1} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ii} \neq 0 & \dots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$
 — невырожденная $x = Qu \ a(u) = \frac{1}{2}u^2 + \widetilde{a}(u_1 - u_2)$

$$x=Qy,g(y)=rac{1}{a_{ii}}y_i^2+\underbrace{\widetilde{g}(y_1,\ldots,\hat{y_i},\ldots,y_n)}_{ ext{кв.форма}\Rightarrow\ ext{повторим алгори}}$$

Метод универсальный: можно применить ко всем квадратичным формам, но заранее неизвестен канонический вид в отличие от ортогонональго преобразования

3. Метод Якоби

$$\Delta_k \neq 0, k = 1 \dots n - 1, \Delta_i$$
 – угловые миноры (возможно, $\delta_n = 0$) $f(x) = x^T A x$

Если $A = A^* = A^T$, $\exists !$ унитреугольная нижняя L, верхнетреугольная $U, D = \operatorname{diag}(d_1, \ldots, d_n), d_i \in \mathbb{R}$

L,U – унитр. $\Rightarrow U,L$ – невырожденные $L^*=L^T,U^T=U^*$

$$L^* = L^T, U^T = U^*$$

$$L^* = L^T, U^T = U^*$$
 $D = L^{-1}A(L^{-1})^T = (U^{-1})^T$
 A
 U^{-1}

 $x = Qy, Q = U^{-1} = (L^{-1})^T$ — верхнетреугольная матрица (матрица Якоби)

См. алгоритм LDU преобразования

 d_1, \dots, d_n – из алгоритма(числа на диагонали слева)

$$f(x) = g(y) = d_1 y_i^2 + \ldots + d_n y_n^2 = \Delta_1 y_1^2 + \frac{\Delta_2}{\Delta_1} y_2^2 + \ldots + \frac{\Delta_n}{\Delta_{n-1}} y_n^2, \operatorname{rg} f \ge n-1$$

Теорема Якоби

 \forall кв.ф. $f\exists$! верхнетреуг. преобр. Q: x = Qy такое, что кв. форма будет приведена к каноническому виду $g(y) = \Delta_1 y_1^2 + \frac{\Delta_2}{\Delta_1} y_2^2 + \ldots + \frac{\Delta_n}{\Delta_{n-1}} y_n^2$

Причем
$$Q = \begin{pmatrix} 1 & q_{12} & q_{13} & \dots & q_{1n} \\ 0 & 1 & q_{23} & \dots & q_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & 1 & q_{n-1,n} \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

$$q_{i} = \begin{pmatrix} q_{1i} \\ \vdots \\ q_{i-1,i} \end{pmatrix}$$

$$b_{i} = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{i-1,i} \end{pmatrix}$$

 $A_{k-1}q_k = -b_k, k = 2 \dots n$

Доказательство

Методом мат. индукции

1.
$$k = 2$$

$$a_{11} = \Delta_1 \neq 0$$

$$Q = \begin{pmatrix} 1 & q_{12} \\ 0 & 1 \end{pmatrix}$$

$$Q^T A Q = D = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}$$

$$a_{11}q_{12} = -a_{12}$$

$$q_{12} = -\frac{a_{12}}{a_{11}}$$

$$Q^T A^Q = \operatorname{diag}(\Delta_1, \frac{\Delta_2}{\Delta_1})$$

2. Пусть верно для
$$k:A_{j-1}q_j=-b_j, j=1\dots k, Q_k^TA_kQ_k=\mathrm{diag}(d_1,\dots,d_k)$$
 $\Delta_1,\dots,\Delta_k\neq 0$ Покажем для $k+1$ $Q_{k+1}=\begin{pmatrix}Q&q_{k+1}\\0&1\end{pmatrix}$ Пусть q_{k+1} – решение СЛНУ $A_kq_{k+1}=-b_{k+1}$ $A_{k+1}=\begin{pmatrix}A_k&b_{k+1}\\b_{k+1}^T&a_{k+1,k+1}\end{pmatrix}$ $Q_{k+1}^TA_{k+1}Q_{k+1}=\begin{pmatrix}Q_k^T&0\\q_{k+1}^T&1\end{pmatrix}\begin{pmatrix}A_k&b_{k+1}\\b_{k+1}^T&a_{k+1}a_{k+1}\end{pmatrix}\begin{pmatrix}Q_k^T&0\\q_{k+1}^T&1\end{pmatrix}=\begin{pmatrix}Q_k^TA_k&Q_k^Tb_{k+1}\\q_{k+1}^TA_k+b_{k+1}^T&q_{k+1}^Tb_{k+1}+a_{k+1,k+1}\end{pmatrix}\begin{pmatrix}Q_k^T&0\\q_{k+1}^T&1\end{pmatrix}=\begin{pmatrix}Q_k^TA_kQ_k&Q_k^TA_kq_{k+1}+Q_k^Tb_{k+1}\\Q_k^TA_kQ_k&Q_k^TA_kq_{k+1}+Q_k^Tb_{k+1}\\Q_k^TA_kq_{k+1}+b_{k+1}q_{k+1}+a_{k+1,k+1}\end{pmatrix}\begin{pmatrix}Q_k^TA_kQ_k&Q_k^TA_kq_{k+1}+b_{k+1}=0\\0&q_{k+1}^Tb_{k+1}q_{k+1}+a_{k+1,k+1}\end{pmatrix}$ $\det(Q_{k+1}^TA_{k+1}Q_{k+1})=(\det Q_{k+1})^2\det A_{k+1}=d_1\dots d_kx=\Delta_kx$ $x=\frac{\Delta_{k+1}}{\Delta_k}=d_{k+1}$ Т.о индукционный переход доказан, нигде не использовано, что

 $\Delta_{k+1} \neq 0$

Отсюда можно применить до $k=n-1 \leadsto n$

Метод Якоби не универсальный, но позволяет сразу записать канонический вид, не находя самого преобразования

5.3 Закон инерции кв. форм. Критерий Сильвестра

Теорема (Закон инерции кв. форм)

Каким бы линейным невырожденным преобразованием кв. ф. f не была приведена к канон. виду, сигнатура этого вида будет одна и та же $f(x) = x^T A x$

$$\Pi_{y \text{сть } x} = \underbrace{Q_1}_{\text{невыр}} y, g(y) = y^T B y$$

$$x = \underbrace{Q_2}_{\text{невыр}} z, t(z) = z^T C z$$

$$\sigma(g) = \sigma(t) \text{ (сигнатуры)}$$

Доказательство

$$g(y) = \sum_{i=1}^{p} \underbrace{b_{ii}}_{>0} y_i^2 + \sum_{j=p+1}^{r} \underbrace{b_{ii}}_{<0} y_i^2, r = \operatorname{rg} f = \operatorname{rg} g$$

$$\sigma(g) = (p, r - p, n - r)$$

$$t(z) = \sum_{i=1}^{s} c_{ii} z_i^2 + \sum_{j=s+1}^{r} c_{ii} z_i^2$$

$$\sigma(t) = (s, r - s, n - r)$$

Пусть p < s

Т.к. Q_1, Q_2 невырожденные, рассмотрим системы:

 $y = Q_1^{-1}x$ — по любому y однозначно находится x $z = Q_2^{-1}x$ — по любому z однозначно находится x

Возьмем первые p строк системы $Q_1^{-1}x$ и приравняем к нулю

$$(Q_1^{-1})_{1\dots p}x = 0$$

Возьмем последнте n-s строк системы $Q_2^{-1}x$ и приравняем к нулю

$$(Q_2^{-1})_{n-s\dots n}x = 0$$

Рассмотрим систему

$$(Q_1^{-1})_{1\dots p}x = \mathbb{O}$$
$$(Q_2^{-1})_{n-s\dots n}x = \mathbb{O}$$

Мы получили СЛОУ

Уравнений p+n-s < n. Тогда существует нетривиальное решение $x_0 \neq 0$ Подставим x_0 в наши системы

 $y_0=Q_1^{-1}x_0$ – первые p координат решения – нули, но сам он $\neq 0$ в силу невырожденности Q_1^{-1}

Аналогично с $z_0 = Q_2^{-1} x_0$

$$f(x) = g(y) = t(z)$$

$$f(x) = g(y) = t(z)$$
 $f(x_0) = \underbrace{g(y_0)}_{\leq 0} = \underbrace{t(z_0)}_{>0}$ – противоречие

Определение

f>0 – положительно определенная, если $\forall\,x\neq0 f(x)>0$

Тогда
$$f(x) = x^T A x > 0 \Leftrightarrow A > 0, A^T = A$$

Аналогично f < 0

$$f \ge 0 \Leftrightarrow \forall x : f(x) \ge 0, \exists x \ne 0 : f(x) = 0 \Leftrightarrow A \ge 0$$

$$f \geqslant \Leftrightarrow \exists x : f(x) > 0, y : f(y) < 0 \Leftrightarrow A \geqslant$$

$$f \geqslant \Leftrightarrow \exists x : f(x) > 0, y : f(y) < 0 \Leftrightarrow A \geqslant$$

$$f > 0 \Leftrightarrow \forall \text{ c.ч.} > 0 \Leftrightarrow \lambda_1 y_1^2 + \ldots + \lambda_n y_n^2 = g(y) > 0 \Leftrightarrow \sigma(f) = (n, 0, 0)$$

$$f < 0 \Leftrightarrow \forall \text{ c.ч.} < 0 \Leftrightarrow \sigma(f) = (0, n, 0)$$

$$f < 0 \Leftrightarrow \forall$$
 с.ч. $< 0 \Leftrightarrow \sigma(f) = (0, n, 0)$

$$f \geq 0 \Leftrightarrow \sigma(f) = (r, 0, n - r), r < n$$

$$f \leq 0 \Leftrightarrow \sigma(f) = (0, r, n-r), r < n$$
 $f \geq 0 \Leftrightarrow \sigma(f) = (r, s, n-r-s), r, s > 0$ Замечание $f > 0 \Rightarrow -f < 0$ и т.д.

Теорема (критерий Сильвестра) Если $\Delta_k \neq 0, k = 1 \dots n$ Тогда $f > 0 \Leftrightarrow \Delta_k > 0 \forall k$ Тогда $f < 0 \Leftrightarrow (-1)^k \Delta_k > 0 \forall k$ ($\Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0, \dots$) Доказательство Берем метод Якоби

5.4 Приведение уравнения ПВП к каноническому виду

$$i,j,k$$
 - о.н.б. V_3 – лин.пр-во геом. векторов $a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_{1}x + 2a_{2}y_2 + 2a_{3}z + a_0 = 0$ $a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$ $f(v) = v^T A v + 2a^T v + a_0 = 0$ $i,j,k \stackrel{Q \text{ opt}}{-} e'_1, e'_2, e'_3 - \text{ o.h.6}.$ $Q = T_{ijk \to e'} - \text{поворот}$ $Q = \begin{pmatrix} \cos \alpha_1 & \cos \alpha_2 & \cos \alpha_3 \\ \cos \beta_1 & \cos \beta_2 & \cos \beta_3 \\ \cos \gamma_1 & \cos \gamma_2 & \cos \gamma_3 \end{pmatrix}$ $Q = \begin{pmatrix} e'_1 & e'_2 & e'_3 \end{pmatrix}$ Т.к. ориентация не меняется, $\det A = 1 > 0$ $A \stackrel{Q}{-}$ диагональная (канонический вид) $v = Qv'$ $v^T A v = v' Q^T A Q v$

Для кв.ф. f построим ортогональное преобразование f такое, что $f \stackrel{Q}{\leadsto}$ канонический вид

Q — матрица поворота $\det Q=1\Rightarrow$ столбцы Q — координаты нового базиса \Rightarrow оси

После преобразования получим $\lambda_1 x'^2 + \lambda_2 y'^2 + \lambda_3 z'^2 + 2 \underbrace{a^T Q v'}_{2a'_1 x' + 2a'_2 y + 2a'_3 z} + a_0 = 0$

1.
$$\lambda_1, \lambda_2, \lambda_3 \neq 0$$

 $\lambda_1 x'^2 + 2a'_1 x' = \lambda_1 (x' + \frac{a'_1}{x_1})^2 - \frac{a_1^2}{\lambda_1}$

Аналогично с y, z

Получили параллельный перенос. $O'=(-\frac{a_1'}{\lambda_1},-\frac{a_2'}{\lambda_2},-\frac{a_2'}{\lambda_2})$

Получили $\lambda_1 x''^2 + \lambda_2 x''^2 + \lambda_3 x''^2 + a'_0 = 0$ Если $a'_0 \neq 0$ $\alpha x''^2 + \beta y''^2 + \gamma z''^2 = 1$

$$\alpha, \beta, \gamma > 0$$
 — эллипсоид

$$\alpha, \beta, \gamma < 0 - \varnothing$$

 $lpha, eta > 0, \gamma < 0$ — однополостной

$$lpha,eta<0,\gamma>0$$
 — двуполостной

Если
$$a'_0 = 0$$

$$\alpha, \beta > 0$$
 — конус

$$\alpha \cdot \beta < 0$$
 – конус

$$\alpha, \beta$$
 — точка

2.
$$\lambda_1 \neq 0, \lambda_2 \neq 0, \lambda_3 = 0$$

Выполним перенос

$$x'' = x' + \frac{a_1'}{\lambda_1}$$

$$y'' = y' + \frac{a_2'}{\lambda_2}$$

Если
$$a_3' \neq 0$$

$$z'' = z' + \frac{a_0}{2a_3'}$$

$$2a_3'z' + a_0 = 2a_3'(z + \frac{a_0}{2a_3'})$$

Получили $\alpha x''^2 + \beta y''^2 = z''$

 $\alpha \cdot \beta > 0$ – эллиптический парабороид

 $\alpha \cdot \beta < 0$ — гиперболический парабороид

Если
$$a_3'=0$$

$$\lambda_1 x''^2 + \lambda_2 y''^2 + a_0 = 0$$

Если
$$a_0 \neq 0$$
 $\alpha x''^2 + \beta y''^2 = 1$ $\alpha, \beta > 0$ — эллиптический цилинд $\alpha, \beta < 0$ — \varnothing $\alpha \cdot \beta < 0$ — гиперболический цилинд Если $a_0 = 0$ $y''^2 = \alpha x''^2$ $\alpha > 0 \Rightarrow + \pm \sqrt{\alpha} x''$ — пересекающиеся плоскости $\alpha < 0 \Rightarrow x = y = 0$ — прямая

3.
$$\lambda_1 \neq 0, \lambda_2, \lambda_3 = 0$$

 $\lambda_1 x''^2 + 2a_2'y'' + 2a_3'z'' + a_0' = 0$
Если $a_2', a_3' \neq 0$

Выполним поворот в плоскости O''Y''Z'' на $\alpha: \operatorname{tg} \alpha = \frac{\alpha_3'}{\alpha_2'}$

Получили $\lambda_1 x''^2 + 2a_2''y''' + a_0' = 0$ — параболический цилиндр Если $a_3' = 0, a_2' \neq 0$

Аналогично

$$a'_2 = a'_3 = 0$$

 $\lambda_1 x''^2 \neq a'_0 = 0$
 $x''^2 = \alpha$