A categorical framework for Lyapunov stability

Joe Moeller

California Institute of Technology

A. Ames, J. Moeller, P. Tabuada. Categorical Lyapunov Theory I: Stability of Flows, arXiv:2502.15276

systems are monoid actions

notion of stability native to the setting

Theorem: if a Lyapunov morphism exists for the flow, then the point is

stable.

A. Ames. S. Mattenet. J. Moeller. Categorical Lyapunov theory II: Stability of

systems. arXiv:2505.22968

flow.

 \triangleright systems are \mathcal{F} -coalgebras borrows notion of stability from flows

► Theorem: if a Lyapunov morphism exists for the coalgebra, it is a

Lyapunov morphism for the solution

Theorem

Let x^* be an equilibrium point for a dynamical system $\dot{x} = \vec{f}(x)$, and $M \subset \mathbb{R}^n$ be a domain containing x^* . Let $V: M \to \mathbb{R}$ be a continuously differentiable

- function such that
 - (positive definite) $V(x) \ge 0$ and $V(x^*) = 0$
 - (decrescent) $\dot{V}(x) \leq 0$ in M.

Then x^* is a stable equilibrium point.

Theorem

Let x^* be an equilibrium point for a dynamical system $\dot{x} = \vec{f}(x)$, and $M \subset \mathbb{R}^n$ be a domain containing x^* . Let $V: M \to \mathbb{R}$ be a continuously differentiable function such that

- (positive definite) $V(x) \ge 0$ and $V(x^*) = 0$
- ightharpoonup (decrescent) $\dot{V}(x) \leq 0$ in M.

Then x^* is a stable equilibrium point.

- dynamical system
- solution curve
- equilibrium point
- stable equilibrium point
- Lyapunov function

Vector field: smooth map $\vec{f}: M \to \mathcal{T}(M)$ with $p_M \circ \vec{f} = \mathrm{id}_M$

- Vector field: smooth map $\vec{f}: M \to \mathcal{T}(M)$ with $p_M \circ \vec{f} = \mathrm{id}_M$
- ▶ M manifold, $\mathcal{T}(M)$ tangent bundle, $p_M \colon \mathcal{T}(M) \to M$ projection

As a commutative diagram:

- Vector field: smooth map $\vec{f}: M \to \mathcal{T}(M)$ with $p_M \circ \vec{f} = \mathrm{id}_M$
- ▶ M manifold, $\mathcal{T}(M)$ tangent bundle, $p_M \colon \mathcal{T}(M) \to M$ projection
- $ightharpoonup \mathcal{T}\colon \mathsf{Man} o \mathsf{Man}$ functor

As a commutative diagram:

- Vector field: smooth map $\vec{f}: M \to \mathcal{T}(M)$ with $p_M \circ \vec{f} = \mathrm{id}_M$
- ▶ M manifold, $\mathcal{T}(M)$ tangent bundle, $p_M \colon \mathcal{T}(M) \to M$ projection
- $ightharpoonup \mathcal{T}\colon \mathsf{Man} o \mathsf{Man} \ \mathsf{functor}$

Definition

Examples

- → T-systems are (continuous-time) dynamical systems (not necessarily sections).

Definition

Examples

- → T-systems are (continuous-time) dynamical systems (not necessarily sections).
- ▶ id_{Man} : Man → Man, id_{Man} -systems are discrete-time dynamical systems $f: M \rightarrow id_{Man}(M) = M$.

Definition

Examples

- → T-systems are (continuous-time) dynamical systems (not necessarily sections).
- ▶ id_{Man} : Man → Man, id_{Man} -systems are discrete-time dynamical systems $f: M \rightarrow id_{Man}(M) = M$.
- $ightharpoonup \mathcal{P}$: Set ightharpoonup Set the power set, \mathcal{P} -systems are graphs.

Definition

$$f: \{1,2,3,4,5\} \to \mathcal{P}(\{1,2,3,4,5\})$$

$$f(5) = \{2,4\}$$

Examples

- → T-systems are (continuous-time) dynamical systems (not necessarily sections).
- ▶ id_{Man} : Man → Man, id_{Man} -systems are discrete-time dynamical systems $f: M \rightarrow id_{Man}(M) = M$.
- $ightharpoonup \mathcal{P}$: Set ightharpoonup Set the power set, \mathcal{P} -systems are graphs.
- ▶ Fix a set L of "labels", $\mathcal{P}(L \times -)$: Set \rightarrow Set, $\mathcal{P}(L \times -)$ -systems are L-labeled transition systems.

Definition

$$L = \{a, b\}$$

$$f \colon \{1, 2, 3, 4, 5\} \to \mathcal{P}(\{a, b\} \times \{1, 2, 3, 4, 5\})$$

$$f(5) = \{(a,2), (b,2), (b,4)\}$$

Theorem

Let $\mathcal{F}: \mathcal{C} \to \mathcal{C}$ be a functor. Let \mathbf{x}^* be an equilibrium point for a \mathcal{F} -system $f: X \to \mathcal{F}(X)$. Let $V: M \to \mathbb{R}$ be a morphism of \mathcal{C} such that

- (positive definite) $V(x) \ge 0$ and $V(x^*) = 0$
- ightharpoonup (decrescent) $\dot{V}(x) \leq 0$ in M.

Then x^* is a stable equilibrium point.

- $ightharpoonup \mathcal{F}$ -system
- solution curve
- equilibrium point
- stable equilibrium point
- Lyapunov function

Morphisms of \mathcal{F} -systems

A **map of vector fields** is a smooth function $\phi \colon M \to N$ such that

$$\frac{d\phi}{dx} \cdot \vec{f}(x) = \vec{g}(\phi(x)) \qquad \begin{array}{c} \mathcal{T}(M) \stackrel{d\phi}{\longrightarrow} \mathcal{T}(N) \\ \vec{f} \uparrow \qquad \qquad \uparrow \vec{g} \\ M \stackrel{}{\longrightarrow} N \end{array}$$

 \vec{f} and \vec{g} are " ϕ -related".

Morphisms of \mathcal{F} -systems

A **map of vector fields** is a smooth function $\phi \colon M \to N$ such that

$$\frac{d\phi}{dx} \cdot \vec{f}(x) = \vec{g}(\phi(x)) \qquad \begin{array}{c} \mathcal{T}(M) \stackrel{d\phi}{\longrightarrow} \mathcal{T}(N) \\ \vec{f} \uparrow \qquad \qquad \uparrow \vec{g} \\ M \stackrel{}{\longrightarrow} N \end{array}$$

 \vec{f} and \vec{g} are " ϕ -related".

Definition

A map of \mathcal{F} -systems is a map $\phi \colon X \to Y$ such that

$$\mathcal{F}(X) \xrightarrow{\mathcal{F}\phi} \mathcal{F}(Y)$$
 $f \uparrow \qquad \qquad \uparrow g$
 $X \xrightarrow{\phi} Y$

Time, solutions

A **solution curve** of $\vec{f}: M \to \mathcal{T}(M)$ is a smooth map $c: \mathbb{R}_{>0} \to M$ such that

$$egin{aligned} \mathcal{T}(\mathbb{R}_{\geq 0}) & \stackrel{dc}{\longrightarrow} \mathcal{T}(M) \ ec{g}(c(t)) = \dot{c}(t) & ec{i} & igcap_{ec{f}} \ \mathbb{R}_{\geq 0} & \stackrel{dc}{\longrightarrow} M \end{aligned}$$

Time, solutions

A **solution curve** of $\vec{f}: M \to \mathcal{T}(M)$ is a smooth map $c: \mathbb{R}_{\geq 0} \to M$ such that

$$egin{aligned} \mathcal{T}(\mathbb{R}_{\geq 0}) & \stackrel{dc}{\longrightarrow} \mathcal{T}(M) \ ec{ ext{i}} & & \uparrow ec{ ext{f}} \ \mathbb{R}_{\geq 0} & \stackrel{c}{\longrightarrow} M \end{aligned}$$

Definition

Assume C has a time object T with a unit clock system $1_T \colon T \to \mathcal{F}(T)$. A solution curve is a map:

$$\begin{array}{ccc}
\mathcal{F}(T) & \xrightarrow{\mathcal{F}(c)} & \mathcal{F}(X) \\
\downarrow^{1_T} & & \uparrow^f \\
T & \xrightarrow{c} & X
\end{array}$$

Theorem

Let $\mathcal{F}:\mathcal{C}\to\mathcal{C}$ be a functor. Let \mathbf{x}^* be an equilibrium point for a \mathcal{F} -system $f:X\to\mathcal{F}(X)$. Let $V:M\to\mathbb{R}$ be a morphism of \mathcal{C} such that

- (positive definite) $V(x) \ge 0$ and $V(x^*) = 0$
- ightharpoonup (decrescent) $\dot{V}(x) \leq 0$ in M.

Then x^* is a stable equilibrium point.

- $ightharpoonup \mathcal{F}$ -system
- solution curve
- equilibrium point
- ► stable equilibrium point
- Lyapunov function

Equilibrium Points

Every manifold M has a zero vector field $0_M \colon M \to \mathcal{T}(M)$.

Definition

A zero \mathcal{F} -system is a component of a natural transformation $0_X \colon X \to \mathcal{F}(X)$.

Equilibrium Points

Every manifold M has a zero vector field $0_M \colon M \to \mathcal{T}(M)$.

Definition

A zero \mathcal{F} -system is a component of a natural transformation $0_X \colon X \to \mathcal{F}(X)$.

A point $x \in M$ is the same as a map $x \colon \{*\} \to M$.

Definition

Assume C has a **terminal object** $1 = \{*\}$. A **point** in category theory is a map $x: 1 \rightarrow X$.

Equilibrium Points

Every manifold M has a zero vector field $0_M \colon M \to \mathcal{T}(M)$.

Definition

A zero \mathcal{F} -system is a component of a natural transformation $0_X \colon X \to \mathcal{F}(X)$.

A point $x \in M$ is the same as a map $x \colon \{*\} \to M$.

Definition

Assume C has a **terminal object** $1 = \{*\}$. A **point** in category theory is a map $x: 1 \to X$.

equilibrium point:

$$ec{f}(x) = ec{0} egin{array}{ccc} \mathcal{T}(1) & \stackrel{dx}{\longrightarrow} \mathcal{T}(M) \ ec{0} & & & & & \uparrow ec{f} \ 1 & & & & M \end{array}$$

Definition

Let $f: X \to \mathcal{F}(X)$ be an \mathcal{F} -system. A point $x: 1 \to X$ is an equilibrium point if

$$ec{f}(x) = ec{0} egin{array}{ccc} \mathcal{F}(1) & \stackrel{\mathcal{F}(x)}{\longrightarrow} \mathcal{F}(X) \ & & & & \uparrow_f \ & & & 1 & \stackrel{\chi}{\longrightarrow} X \end{array}$$

Theorem

Let $\mathcal{F}:\mathcal{C}\to\mathcal{C}$ be a functor. Let

 $x^*: 1 \to X$ be an equilibrium point for a

 \mathcal{F} -system $f: X \to \mathcal{F}(X)$. Let $V: M \to \mathbb{R}$

be a morphism of C such that

- (positive definite) $V(x) \ge 0$ and $V(x^*) = 0$
- (decrescent) $\dot{V}(x) \leq 0$ in M.

Then x^* is a stable equilibrium point.

- $ightharpoonup \mathcal{F}$ -system
- solution curve
- equilibrium point
- ► stable equilibrium point
- Lyapunov function

Measurement Object

Definition

An object $R \in \mathcal{C}$ is **posetal** if each $\mathcal{C}(X, R)$ has a partial order such that for any $f: X \to Y$, if $g_1 \geq g_2$, then $g_1 \circ f \geq g_2 \circ f$.

Definition

A measurement object $R \in \mathcal{C}$ is

- R is a posetal object
- \triangleright $\mathcal{F}(R)$ is a posetal object

Measurement Object

Definition

An object $R \in \mathcal{C}$ is **posetal** if each $\mathcal{C}(X,R)$ has a partial order such that for any $f: X \to Y$, if $g_1 \geq g_2$, then $g_1 \circ f \geq g_2 \circ f$.

Definition

A measurement object $R \in \mathcal{C}$ is

- R is a posetal object
- \triangleright $\mathcal{F}(R)$ is a posetal object
- comparison property:

$$\begin{array}{cccc}
T & \xrightarrow{c} & R & T & \xrightarrow{!} & 1 \\
\downarrow 1_T \downarrow & \swarrow & \downarrow 0_R & \leadsto c \downarrow & \leq & \downarrow 0_T \times \mathrm{id} \\
\mathcal{F}(T) \xrightarrow{\mathcal{F}(c)} \mathcal{F}(R) & R & \longleftarrow & T
\end{array}$$

Measurement Object

Definition

An object $R \in \mathcal{C}$ is **posetal** if each $\mathcal{C}(X, R)$ has a partial order such that for any $f: X \to Y$, if $g_1 \geq g_2$, then $g_1 \circ f \geq g_2 \circ f$.

Definition

A measurement object $R \in C$ is

- R is a posetal object
- \triangleright $\mathcal{F}(R)$ is a posetal object
- comparison property:

$$T \xrightarrow{c} R \qquad T \xrightarrow{!} 1$$

$$1_{T} \downarrow \qquad \downarrow 0_{R} \qquad \leadsto c \downarrow \qquad \leq \qquad \downarrow 0_{T} \times \mathrm{id}$$

$$\mathcal{F}(T) \xrightarrow{\mathcal{F}(c)} \mathcal{F}(R) \qquad R \xleftarrow{c} T$$

Definition

A semi-metric is a map $d: X \times X \rightarrow R$ such that

- $ightharpoonup d \Rightarrow 0$
- $\blacktriangleright \ker(d) \cong \Delta \colon X \to X \times X$

For a fixed $x_* \colon 1 \to X$, let $\| \cdot \|_{x^*}$ denote the composite

$$X \xrightarrow{\mathrm{id}_X \times x^*} X \times X \xrightarrow{d} X$$

called the **semi-norm** relative to x^* .

Class K Morphisms

Definition

A morphism $\alpha \colon R \to R$ is class \mathcal{K} if:

- $\triangleright \alpha$ is an order-preserving map
- $\triangleright \alpha$ has an order-preserving inverse α^{-1}
- $ightharpoonup \alpha \circ 0_R = 0_R.$

Stable Equilibria

An equilibrium point $x^* \in M$ is **stable** if there is a class K function α such that for any solution curve c:

$$||c(t) - x^*|| \le \alpha(||c(0) - x^*||)$$

Definition

An equilibrium point $x^* \colon 1 \to X$ is **stable** if there is a class $\mathcal K$ morphism α such that the following diagram lax commutes for any solution curve c:

Theorem

Let $\mathcal{F} \colon \mathcal{C} \to \mathcal{C}$ be a functor. Let

 $x^*: 1 \to X$ be an equilibrium point for a

F-system $f: X \to \mathcal{F}(X)$. Let $V: M \to R$

- be a morphism of C such that
 - (positive definite) $V(x) \ge 0$ and $V(x^*) = 0$
 - ightharpoonup (decrescent) $\dot{V}(x) \leq 0$ in M.

Then x^* is a stable equilibrium point.

- $ightharpoonup \mathcal{F}$ -system
- solution curve
- ► equilibrium point
- ► stable equilibrium point
- Lyapunov function

Lyapunov morphisms

 $V: M \to R$ is a **Lyapunov morphism** for an \mathcal{F} -system $f: X \to \mathcal{F}(X)$ and equilibrium $x^*: 1 \to X$ if:

1. (positive definite) V is bounded by class \mathcal{K} morphisms:

$$V(x) \ge 0, V(x) = 0 \text{ iff } x = x^*.$$

2. (decrescent) the following diagram lax commutes:

$$X \xrightarrow{V} R$$

$$f \downarrow \qquad \downarrow 0_{R}$$

$$\mathcal{F}(X) \xrightarrow{\mathcal{F}(V)} \mathcal{F}(R)$$

$$\frac{\partial V}{\partial x} f(x) \leq 0$$

Theorem

Let $\mathcal{F} \colon \mathcal{C} \to \mathcal{C}$ be a functor. Let

 $x^*: 1 \to X$ be an equilibrium point for a \mathcal{F} -system $f: X \to \mathcal{F}(X)$. Let $V: M \to R$

be a morphism of C such that

► (positive definite)

$$\underline{\alpha} \circ \| \cdot \|_{X^*} \le V \le \overline{\alpha} \circ \| \cdot \|_{X^*}.$$

▶ (decrescent) $\mathcal{F}(V) \circ f \leq 0_R \circ V$.

Then x^* is a stable equilibrium point.

- $ightharpoonup \mathcal{F}$ -system
- solution curve
- ▶ equilibrium point
- ► stable equilibrium point
- ► Lyapunov morphism

Theorem

Let $\mathcal{F} \colon \mathcal{C} \to \mathcal{C}$ be a functor. Let

 $x^*: 1 \to X$ be an equilibrium point for a \mathcal{F} -system $f: X \to \mathcal{F}(X)$. Let $V: M \to R$

be a morphism of C such that

- ► (positive definite)
 - $\underline{\alpha} \circ \| \cdot \|_{X^*} \le V \le \overline{\alpha} \circ \| \cdot \|_{X^*}.$
- $\qquad \qquad (\textit{decrescent}) \ \mathcal{F}(V) \circ f \leq 0_R \circ V.$

Then x^* is a stable equilibrium point.

Examples

- ightharpoonup cts-time: $\frac{\partial V}{\partial x}f(x) \leq 0$
- discrete-time:

$$\nabla V(X) = V(f(x)) - V(x) \le 0$$

► transition system: $\max_{s' \in f(s)} V(s') \leq V(s)$

Theorem (AMT + AMM)

Let $\mathcal{F} \colon \mathcal{C} \to \mathcal{C}$ be a functor. Let $x^* \colon 1 \to X$ be an equilibrium point for a \mathcal{F} -system $f \colon X \to \mathcal{F}(X)$. Let $V \colon M \to R$ be a Lyapunov morphism. Then x^* is a stable equilibrium point.

Theorem (AMT + AMM)

Let $\mathcal{F}: \mathcal{C} \to \mathcal{C}$ be a functor. Let $x^*: 1 \to X$ be an equilibrium point for a \mathcal{F} -system $f: X \to \mathcal{F}(X)$. Let $V: M \to R$ be a Lyapunov morphism. Then x^* is a stable equilibrium point.

Proof:

$$T \xrightarrow{c} X \xrightarrow{V} R$$

$$1_{T} \downarrow \qquad \qquad f \downarrow \qquad \swarrow \qquad \downarrow 0_{R}$$

$$\mathcal{F}(T) \xrightarrow{\mathcal{F}(c)} \mathcal{F}(X) \xrightarrow{\mathcal{F}(V)} \mathcal{F}(R)$$

Theorem (AMT + AMM)

Let $\mathcal{F}: \mathcal{C} \to \mathcal{C}$ be a functor. Let $x^*: 1 \to X$ be an equilibrium point for a \mathcal{F} -system $f: X \to \mathcal{F}(X)$. Let $V: M \to R$ be a Lyapunov morphism. Then x^* is a stable equilibrium point.

Proof:

$$T \xrightarrow{c} X \xrightarrow{V} R$$

$$\downarrow 1_{T} \qquad \qquad f \qquad \downarrow 0_{R}$$

$$\mathcal{F}(T) \xrightarrow{\mathcal{F}(c)} \mathcal{F}(X) \xrightarrow{\mathcal{F}(V)} \mathcal{F}(R)$$

comparison property:

Theorem (AMT + AMM)

Let $\mathcal{F}: \mathcal{C} \to \mathcal{C}$ be a functor. Let $x^*: 1 \to X$ be an equilibrium point for a \mathcal{F} -system $f: X \to \mathcal{F}(X)$. Let $V: M \to R$ be a Lyapunov morphism. Then x^* is a stable equilibrium point.

Proof:

$$T \xrightarrow{c} X \xrightarrow{V} R$$

$$\downarrow 1_{T} \qquad \qquad \downarrow 0_{R}$$

$$\mathcal{F}(T) \xrightarrow{\mathcal{F}(c)} \mathcal{F}(X) \xrightarrow{\mathcal{F}(V)} \mathcal{F}(R)$$

comparison property:

positive definite:

Existence and Uniqueness Theorem

Theorem (Existence and Uniqueness)

Assume that the unit clock $1_T \colon T \to \mathcal{F}T$ is itself T-complete. If $\mathrm{D}\phi$ is T-complete for all T-flows ϕ , then

$$\phi = \int D\phi, \qquad f = D \int f$$

Therefore, \int is an isomorphism of categories with inverse D:

$$T$$
-Sys $_{\mathcal{F}}$ $\stackrel{\int}{\simeq}$ T -Flow

Converse Lyapunov Theorem

Theorem (Converse Lyapunov Theorem)

Assume a converse setting such that R has local suprema commuting with whiskering.

Let $x^*: 1 \to E$ be an equilibrium point of a T-complete system $f: E \to \mathcal{F}E$. If x^* is stable, then there exists a Lyapunov morphism $V: E \to R$.

Thanks!

Part I: flows

