AlphaManager: A Data-Driven-Robust-Control Approach to Corporate Finance

Murillo Campello, Lin William Cong, Luofeng Zhou

Present by Long Zhen

Background

Causal Inference Predictive Analysis Prescriptive Analysis

- Econometrics
- \rightarrow causal tree
- New X or New $f(\cdot)$
- → supervised learning
- Operation management
- \rightarrow reinforcement learning

- How to apply AI techniques?
- How to combine the 3 paradigm?

Background

- Modern AI: intelligence → solve problems and achieve goals in reality
- Three ways of AI:
 - Larger model, greater computation
 - More data, more computation; pre-training
 - Clever goal-oriented algorithm; knowledge, logic, and expertise
- AI in finance: handle big data, low signal-to-noise, nonlinearity...
 - Relying mostly on statistical properties of data, or off-the-shelf models
- What about corporate finance?

Motivation

- What are managers' optimal decision-making?
 - Counterfactual statement:
 - Experiment & survey
 - Reduced-form models/ causal inference
 - Structural approach: need a theory for the general dynamics

- Manager actions interact with environment
 - High-dimension; interaction; fast evolving
- → stochastic control problem:
 - Information set
 - Dynamically learned, high-dimensional, and nonlinear

Reinforcement Learning

- Agenda: economically guided heuristic search and greedy search in a large decision/action space to achieve goals
- People learn by interacting with the environment to optimize rewards.

Research question

• How to develop a data-driven-robust-control system for corporate finance decision making?

- What they do:
 - Deep neural networks to accommodate high-dimension and nonlinearity
 - Offline deep reinforcement learning to incorporate managerial objective
 - Introduce ambiguity aversion

Contribution

- AI in finance
 - ML in CF
 - Textual analysis, e.g., Li et al., 2021. Cong, Liang, & Zhang, 2019, etc.;
 - Supervised learning, e.g., Erel et al., 2021, Lyonnet and Stern, 2022
 - New DDRC overcoming limitations and unifying framework.
- Robust Control:
 - Mostly theory, focus on macro time series rather than utilizing cross-sectional info (e.g., Ju and Miao, 2012).
 - Application in corporate finance.
- Artificial intelligence:
 - Goal-oriented search
 - Model-based offline RL (empirical).

AlphaManager architecture

Predictive Environment module (PEM, 10 auxiliaries, 300+64+5):

• Warm-up 1976Q1 - 1991Q4; quarterly rolling training & test.

AlphaManager Policy Module: RL 256:64+5:

$$\max_{\{u_{t_0},...,u_{t_0+T}\}} \mathbb{E}_{t_0} \sum_{t=t_0}^{t_0+T} r(X_t, u_t) \qquad s.t. \ \Delta X_{t+1} = f(X_t, u_t) + \varepsilon_{t+1}$$

2024/11/20

Predictive Environment Module

$$\Delta X_{t+1} = f(X_t, u_t) + \varepsilon_{t+1}, \ \varepsilon_{t+1} \sim N(0, \Sigma)$$

- X_t state variable: internal & external
- u_t managerial actions
- ΔX_{t+1} corresponds to current state and managerial actions
- Out-of-sample prediction
 - Overfitting: add penalty
 - Data shift: model ambiguity

Reinforcement Learning Module

$$\max_{\{u_{t_0},\dots,u_{t_0+T}\}} \mathbb{E}_{t_0} \sum_{t=t_0}^{t_0+T} r(X_t, u_t) \qquad s.t. \ \Delta X_{t+1} = f(X_t, u_t) + \varepsilon_{t+1}, \ \varepsilon_{t+1} \sim N(0, \Sigma),$$

- $r(X_t, u_t)$ reward function
- Assume decisions are contingent on the state variable

$$u_t = g(X_t),$$

$$\sum_{g(\cdot)}^{t_0+T} r(X_t, u_t)$$

$$s.t. \quad \Delta X_{t+1} = f(X_t, u_t) + \varepsilon_{t+1}, \quad \varepsilon_{t+1} \sim N(0, \Sigma)$$

$$u_t = g(X_t). \quad \text{AlphaManager}$$

Robust Control and Ambiguity

- Ambiguity: dispersion in the predictions across models
- A bag of PEMs, indexed by i=1,2,... I, and ambiguity aversion
 - Mapping (X_t, u_t) to \hat{X}_{t+1}^i
- Boosting error: the greatest dispersion among model predictions

BoostingError(
$$X_t, u_t$$
) = $\frac{1}{D} \sum_{d=1}^{D} \left(\max_{i=1,2,...,I} \hat{X}_{t+1,d}^i - \min_{i=1,2,...,I} \hat{X}_{t+1,d}^i \right)^2$,

• In Policy Module: objective function:

$$J(X_{t_0}) := \sum_{t=t_0}^{t_0+T} \min_{i=1,2,...,I} r^i(X_t, g(X_t)) - \delta \cdot \max \left\{ 0, \max_{t=t_0,...,t_0+T} \text{BoostingError}(X_t, g(X_t)) - \theta(X_{t_0}) \right\}$$

Data

- Data: Compustat (firm fundamentals), CRSP (market return andvolatility), and Chicago Fed (macro state variables)
- From 1976 to 2023, quarterly
 - 20,485 different firms ranging from 1976:Q1 to 2023:Q4, with 784,460 firm-quarter observations
- State variables
 - 12 fundamental + 2 market + 4 macro (+lag + growth)
- Decision variables
 - 9 dimensions of actions (+growth)
- PEM: input 268 → output 14 (12 fundamental change + ret/vol change)
- RLM: input 250 (268 18)→ output 9 (change)
- Baseline objective: mktcap/enterprise value growth in short/long horizon

Empirical results

• PEM's Predictions of Firm Outcomes

	Ignoring C	Control	With Control		
State Variable	Training R^2	Test \mathbb{R}^2	Training R^2	Test \mathbb{R}^2	
Book Asset Growth	-9.39%	-12.39%	61.28%	62.65%	
Current Asset Growth	-2.16%	-5.94%	53.34%	57.01%	
Gross Revenue Growth	36.43%	32.35%	38.76%	35.10%	
Accounts Payable Growth	26.84%	26.17%	30.50%	30.02%	
COGS Growth	34.95%	30.92%	36.45%	32.78%	
Net Interest Paid Growth	81.36%	82.77%	81.58%	82.97%	
Inventory Growth	16.48%	13.78%	21.08%	18.17%	
Current Liability Growth	10.59%	6.93%	28.30%	25.61%	
Receivables Growth	24.95%	22.86%	30.30%	28.33%	
Net Income Growth	36.89%	32.88%	39.19%	35.58%	
Trading Volume Growth	18.92%	15.90%	21.99%	19.92%	
Log Gross Return Growth	49.86%	42.73%	52.34%	45.99%	
Market Cap Growth	3.26%	-9.62%	12.98%	2.42%	
Enterprise Value Growth	-2.29%	-12.83%	19.40%	10.57%	

Empirical results

• Heterogeneous PEM performance

		full sample		pre-dotcom		dotcom-GFC		post-GFC	
variable		mean	std	mean	std	mean	std	mean	std
log_book_asset	low	2.95%	9.34%	3.33%	9.89%	2.96%	9.07%	2.66%	9.04%
	high	1.60%	6.28%	1.82%	6.58%	1.79%	6.70%	1.32%	5.75%
log_cogs	low	4.12%	12.40%	4.18%	12.10%	4.01%	12.25%	4.14%	12.70%
	high	2.75%	10.55%	3.09%	11.64%	2.66%	10.25%	2.53%	9.82%
log_current_liabilities	low	6.55%	15.11%	6.52%	14.43%	6.40%	14.87%	6.66%	15.74%
	high	5.23%	13.24%	5.65%	13.76%	5.46%	13.75%	4.78%	12.50%
log_market_cap	low	12.53%	21.42%	12.99%	21.63%	13.62%	22.77%	11.55%	20.38%
	high	7.68%	15.70%	9.92%	18.70%	8.30%	16.43%	5.55%	11.96%
log enternrise val	low	10.34%	18.96%	11.53%	20.69%	11.55%	20.10%	8.73%	16.65%
	high	6.06%	13.67%	8.59%	17.98%	6.14%	12.80%	4.05%	9.24%
macro1 (risk)	low	4.91%	5.78%	4.62%	5.33%	4.63%	5.37%	4.97%	6.11%
	high	6.00%	6.71%	6.42%	6.80%	5.99%	6.54%	4.84%	5.88%

- Subsample episodes: pre-dot com, dot com to GFC, post-GFC
- Book asset: small firms has higher prediction error and std, pre-dotcom has the highest mean and std
- COGS: both higher and lower halves have declining average MSE
- Market cap, enterprise value, and macr1 (risk): highest prediction error during dotcom to GFC

 AlphaManager

Empirical results

• PEM Application: Recapitalization Analysis

How does enterprise value change if a firm:

- 1. raises \$1 more debt and put that \$1 into its cash savings
- 2. raises \$1 more equity and put that \$1 into its cash savings
- 3. raises \$1 more debt and \$1 less equity
- 4. puts \$1 cash into investment
- 5. raises \$1 more debt and put that \$1 into investment
- 6. raises \$1 more equity and put that \$1 into investment

Optimal policy

Figure 6: Out-performance of AlphaManager with Short-term Objectives

- Mktcap: 10.03%; enterprise value:2.71%
- Great dispersion

Optimal policy

• Long-term performance under short-termist

• historical actions may generate better long-term performance

Optimal policy

- Long-term oriented
 - Mktcap: 8.73% (3.09% in the 1st quarter)
 - Enterprise value: 4.43% (1.28% in the 1st quarter)

Table 9: Heterogeneous Performance of AlphaManager Across Firms

		full sample		pre-dotcom		dotcom-GFC		post-GFC	
variable		mean	std	mean	std	mean	std	mean	std
log_at	low	8.11%	3.73%	8.13%	4.00%	6.48%	4.74%	6.67%	4.92%
	high	1.99%	4.62%	4.54%	4.02%	0.74%	5.07%	0.17%	3.50%
log_act	low	10.13%	4.73%	6.75%	4.35%	5.14%	5.63%	4.96%	6.41%
	high	3.16%	4.68%	5.30%	4.29%	2.18%	5.38%	2.04%	3.74%
log_sale	low	8.80%	4.24%	7.98%	3.87%	6.18%	4.88%	6.08%	5.48%
	high	2.25%	4.68%	4.37%	4.11%	1.15%	5.31%	1.00%	3.93%
log_ap	low	8.40%	3.96%	7.66%	4.30%	5.69%	5.29%	5.97%	5.45%
	high	2.52%	4.69%	4.83%	4.05%	1.43%	5.27%	0.82%	3.81%
log cogs	low	8.64%	$4.06\%_{ m Alp}$	7.81% haManager	3.89%	6.02%	4.90%	5.82%	5.56%

Optimal vs. empirical

• Similar trend, but different

Conclusion

- They build a predictive environment module through supervised neural networks, and then add a policy module through deep reinforcement learning.
- This framework not only better explains and predicts corporate outcomes in- and out-of-sample, but also identifies important managerial decisions while offering effective dynamic policies

Extension

- Manager behavior characteristics
- Combined objective function
- New hypothesis generation
- Market risk premium prediction with ambiguity control