1. (51.1) Show that if $h, h': X \to Y$ are homotopic and $k, k': Y \to Z$ are homotopic, then $k \circ h$ and $k' \circ h'$ are homotopic.

Proof. Suppose $h, h': X \to Y$ are homotopic and $k, k': Y \to Z$ are homotopic.

Define the map $H': X \times I \to Y \times I$ by H'(x,t) = (H(x,t),t). It is clear that this map is continuous because the component maps are continuous. Then the desired homotopy is the map $K \circ H': X \times I \to Z$ (continuous because composition of continuous maps are continuous). We have

$$K \circ H'(x,0) = K(H(x,0),0) = K(h(x),0) = k(h(x)) = (k \circ h)(x)$$
$$K \circ H'(x,1) = K(H(x,1),1) = K(h'(x),0) = k'(h'(x)) = (k' \circ h')(x)$$

as desired, meaning $k \circ h$ and $k' \circ h'$ are homotopic.

- 2. (51.3) A space X is said to be **contractible** if the identity map $i_X: X \to X$ is nulhomotopic.
 - (a) Show that I and \mathbb{R} are contractible.

Proof. Observe that I and \mathbb{R} are both convex, path connected sets. Let $f: I \to I$ and $g: \mathbb{R} \to \mathbb{R}$ be constant maps. Then the straight line homotopies

$$F: I \times I \to I$$
 given by $F(x,t) = tf(x) + (1-t)x$
 $G: \mathbb{R} \times I \to \mathbb{R}$ given by $G(x,t) = tg(x) + (1-t)x$

are continuous; furthermore, F(x,1) = f(x), G(x,1) = g(x), and $F(x,0) = \mathrm{id}_I(x)$, $G(x,0) = \mathrm{id}_{\mathbb{R}}(x)$. \square

(b) Show that a contractible space is path connected.

Proof. Suppose that X is a contractible space. Let a, b be any two points in X. Then for a constant map f on X sending any x to b, the identity map is homotopic to this map by some homotopy F. Then for any x, we can define a path $P_x \colon I \to X$ by $P_x(t) = F(x,t)$, which connects x (t = 0) to b (t = 1). So there are paths connecting any x to b, and in particular, P_a is a path connecting a to b. Since a, b were arbitrary it follows that X is path connected.

(c) Show that if Y is contractible, then for any X, the set [X,Y] has a single element.

Proof. Suppose Y is contractible and let X be any space. Let g be a constant map on Y mapping $y \in Y$ to b. There is a homotopy $F: Y \times I \to Y$ from the identity map on Y to the map g on Y such that $F(y,0) = id_Y(y)$ and F(y,1) = g(y) = b. We show that any continuous map f from X to Y is homotopic to g.

The homotopy required is the map $G: X \times I \to Y$ given by G(x,t) = F(f(x),t) so that G(x,0) = f(x) and G(x,1) = g(f(x)) = b. (It is clear that this map is continuous as it is a similar construction to the one given in the previous problem.)

Since any map from X to Y is homotopic to a constant map on Y, by transitivity it follows that all such maps from X into Y are homotopic to each other and hence there is only one element in [X,Y].

(d) Show that if X is contractible and Y is path connected, then [X,Y] has a single element.

Proof. Suppose X is contractible and Y is path connected. Let g be a constant map on X mapping $x \in X$ to a. There exists a homotopy $F: X \times I \to X$ from the identity map on X to the map g on X such that $F(x,0) = \mathrm{id}_X(x)$ and F(x,1) = g(x) = a. For any two continuous maps f, f' from X into Y, there are homotopies $f \circ F: X \times I \to Y$ from f(x) to the constant map sending elements of X to f(a) and $f' \circ F: X \times I \to Y$ from f'(x) to the constant map sending elements of X to f'(a). Because Y is path connected, the two constant maps are homotopic to each other (the homotopy needed is any path $H: X \times I \to Y$ given by H(x,t) = P(t) where P is any path connecting $f(a) = (f \circ g)(x)$ and $f'(a) = (f' \circ g)(x)$.

By transitivity again it follows that any two continuous maps from X into Y are homotopic so that [X,Y] only has one element.

- 3. (52.1) A subset A of \mathbb{R}^n is said to be **star convex** if for some point a_0 of A, all the line segments joining a_0 to other points of A lie in A.
 - (a) Find a star convex set that is not convex.

We first choose a star convex set S in \mathbb{R}^2 which is not convex in \mathbb{R}^2 , and take the direct product of S with \mathbb{R}^{n-2} to form the desired star convex subset of \mathbb{R}^n .

A choice for a star convex subset of \mathbb{R}^2 which is not convex is the set given by

$$S = \left\{ (x, y) \colon \sqrt{x^2 + y^2} \le \frac{9}{8} + \frac{y}{\sqrt{x^2 + y^2}} \right\},\,$$

which in polar coordinates makes the picture clear. The set S is the set enclosed by (and including the boundary) the filled-in cardioid given by the inequality $r \le 9/8 + \cos(\theta)$:

Clearly, there are points of S in the second quadrant which are not connected by a line segment to some points of S in the third quadrant, meaning that S is not convex. But by construction (the polar inequality), every point in this set is connected by a line segment to the origin, so that S is star convex. Then the product $S \times \mathbb{R}^{n-2}$ (the "cylinder" of S) is the desired subset of \mathbb{R}^n which is also star convex but not convex. The origin is connected to any point $\vec{x} = (x, y, x_1, \dots, x_{n-2})$ by the line segment given by the parameterization $t\vec{x}$ for $t \in I$, but the points $(-1/4, 1/2, x_1, \dots, x_{n-2})$ and $(-1/4, -1/2, x_1, \dots, x_{n-2})$ cannot be connected by a line segment.

(b) Show that if A is star convex, A is simply connected.

Proof. Since A is star convex, there exists a point a_0 which is connected by line segments to every point in A. It follows that A is path connected because for any two points a, b in A, a line segment path from a to a_0 can be adjoined to a line segment path from a_0 to b by the path product * to form a path from a to b.

Then take any loop P starting at a_0 , and observe that for any point a on the loop P(I), the straight line path $ta_0 + (1-t)a$ connects a with a_0 . Hence the straight line homotopy $H: A \times I \to A$ given by $H(x,t) = te_{a_0}(x) + (1-t)P(x)$, where e_{a_0} is the constant map into a_0 , is the homotopy required to show that all loops in A starting from a_0 are homotopic to a constant map into a_0 , so that $\pi_1(A,a_0)$ is the trivial group.

4. (52.2) Let α be a path in X from x_0 to x_1 ; let β be a path in X from x_1 to x_2 . Show that if $\gamma = \alpha * \beta$, then $\hat{\gamma} = \hat{\beta} \circ \hat{\alpha}$.

Proof. We first prove a small lemma. Socks and shoes: With α, β, γ as given above, we have $\overline{\gamma} = \overline{\beta} * \overline{\alpha}$. This is clear since

$$\overline{\gamma}(t) = \gamma(1 - t) = \begin{cases} \alpha(1 - t) = \overline{\alpha}(t) & 0 \le t \le 1/2 \\ \beta(1 - t) = \overline{\beta}(t) & 1/2 \le t \le 1 \end{cases} = (\overline{\beta} * \overline{\alpha})(t)$$

for all $t \in I$.

Then for any $[f] \in \pi_1(X, x_0)$, we have $\hat{\gamma}([f]) = [\overline{\gamma}] * [f] * [\gamma] = [\overline{\beta} * \overline{\alpha}] * [f] * [\alpha * \beta] = [\overline{\beta}] * ([\overline{\alpha}] * [f] * [\alpha]) * [\beta] = (\hat{\beta} \circ \hat{\alpha})([f])$ so that $\hat{\gamma} = \hat{\beta} \circ \hat{\alpha}$.

5. (52.3) Let x_0 and x_1 be points of the path-connected space X. Show that $\pi_1(X, x_0)$ is abelian if and only if for every pair α and β of paths from x_0 to x_1 , we have $\hat{\alpha} = \hat{\beta}$.

Proof. Suppose that every pair α and β of paths from x_0 to x_1 satisfies $\hat{\alpha} = \hat{\beta}$. We show that for any loops f, g starting at x_0 , that [f] * [g] = [g] * [f].

Let α be any path from x_0 to x_1 , and choose $\beta = \overline{f} * \alpha$ so that

$$\hat{\alpha}([g]) = [\overline{\alpha}] * [g] * [\alpha]$$

$$\hat{\beta}([g]) = (\widehat{\overline{f} * \alpha})([g]) = [\overline{\overline{f} * \alpha}] * [g] * [\overline{f} * \alpha] = [\overline{\alpha}] * [f] * [g] * [\overline{f}] * [\alpha]$$

so that by cancellation of $[\overline{\alpha}]$ and $[\alpha]$ followed by right multiplication by [f], we have that [f] * [g] = [g] * [f]. Conversely, suppose that $\pi_1(X, x_0)$ is abelian so that for any paths f, g starting at x_0 , we have [f] * [g] = [g] * [f]. Because X is path connected, $\pi_1(X, x_0)$ is isomorphic to $\pi_1(X, x_1)$, meaning $\pi_1(X, x_1)$ is also abelian (conjugation is the trivial action).

Let α, β be any two paths from x_0 to x_1 . For elements $[\overline{\alpha} * \beta], [\overline{\alpha} * f * \alpha] \in \pi_1(X, x_1)$, we have

$$\begin{split} \widehat{\alpha}([f]) &= [\overline{\alpha}] * [f] * [\alpha] = [\overline{\alpha} * f * \alpha] = [\overline{\alpha} * \beta]^{-1} * [\overline{\alpha} * f * \alpha] * [\overline{\alpha} * \beta] \\ &= [\overline{\beta}] * [\alpha] * [\overline{\alpha}] * [f] * [\alpha] * [\overline{\alpha}] * [\beta] \\ &= [\overline{\beta}] * [f] * [\beta] = \widehat{\beta}([f]), \end{split}$$

as desired. \Box

6. (52.4) Let $A \subset X$; suppose $r: X \to A$ is a continuous map such that r(a) = a for each $a \in A$. (The map r is called a **retraction** of X onto A.) If $a_0 \in A$, show that

$$r_* \colon \pi_1(X, a_0) \to \pi_1(A, a_0)$$

is surjective.

Proof. Note that the formulation of r_* is correct because r sends $a_0 \in X$ to $a_0 \in A$.

For some element $[g] \in \pi_1(A, a_0)$ we seek to find a preimage of [g] under r_* ; that is, to find an element $[f] \in \pi_1(X, a_0)$ such that $[r \circ f] = [g]$. A choice of f which works is the path given by $i_A \hookrightarrow_X \circ g$, where $i_A \hookrightarrow_X i$ is the canonical inclusion map from A into X.

We have $r_*([i_A \hookrightarrow X \circ g]) = [r \circ i_A \hookrightarrow X \circ g] = [id_A \circ g] = [g]$. It follows that r_* is surjective.

Alternatively, we use the functorial properties of the induced homomorphism to see that since $r \circ i_A \hookrightarrow_X = \mathrm{id}_A$, we have that $\mathrm{id}_{\pi_1(A,a_0)} = (\mathrm{id}_A)_* = (r \circ i_A \hookrightarrow_X)_* = r_* \circ (i_A \hookrightarrow_X)_*$. Thus r_* has a right inverse and so must be surjective.

7. (52.6) Show that if X is path connected, the homomorphism induced by a continuous map is independent of base point, up to isomorphisms of the groups involved. More precisely, let $h: X \to Y$ be continuous, with $h(x_0) = y_0$ and $h(x_1) = y_1$. Let α be a path in X from x_0 to x_1 , and let $\beta = h \circ \alpha$. Show that

$$\hat{\beta} \circ (h_{x_0})_* = (h_{x_1})_* \circ \hat{\alpha}.$$

This equation expresses the fact that the following diagram of maps "commutes."

$$\pi_1(X, x_0) \xrightarrow{(h_{x_0})_*} \pi_1(Y, y_0)$$

$$\downarrow^{\hat{\alpha}} \qquad \qquad \downarrow^{\hat{\beta}}$$

$$\pi_1(X, x_1) \xrightarrow{(h_{x_1})_*} \pi_1(Y, y_1)$$

Proof. Let [f] be any element of $\pi_1(X, x_0)$. We apply the maps $\hat{\beta} \circ (h_{x_0})_*, (h_{x_1})_* \circ \hat{\alpha}$ to [f]:

$$(\hat{\beta} \circ (h_{x_0})_*)([f]) = \hat{\beta}([h \circ f]) = [\overline{h \circ \alpha}] * [h \circ f] * [h \circ \alpha] = [h \circ \overline{\alpha}] * [h \circ f] * [h \circ \alpha]$$
$$((h_{x_1})_* \circ \hat{\alpha})([f]) = (h_{x_1})_*([\overline{\alpha}] * [f] * [\alpha]) = [h \circ \overline{\alpha}] * [h \circ f] * [h \circ \alpha],$$

where the last equalities follow from $(\overline{h} \circ \alpha)(t) = (h \circ \alpha)(1-t) = h(\alpha(1-t)) = h(\overline{\alpha}(t)) = (h \circ \overline{\alpha})(t)$ and the fact that $(h_{x_1})_*$ is a homomorphism.

8. (53.3) For a connected space B, let $p: E \to B$ be a covering map. Show that if $p^{-1}(b_0)$ has k elements for some $b_0 \in B$, then $p^{-1}(b)$ has k elements for every $b \in B$. In such a case, E is called a k-fold covering of B.

Proof. Let $p: E \to B$ be a covering map, and let B be connected.

We prove a curious lemma first: For any positive integer j, the disjoint sets $S_j = \{b \in B \mid |p^{-1}(b)| = j\}$ and $S_{\omega} = \{b \in B \mid |p^{-1}(b)| \text{ is infinite}\}$ are open.

If S_j is empty, we are done. Otherwise, for any element $x \in S_j$, there exists an evenly covered neighborhood U_x of x whose preimage under p is the disjoint union of open sets of E given by $\coprod_{\alpha} V_{\alpha}$. But because the preimage of x under p contains only j elements, there are exactly j open sets V_{α} which form the preimage of U_x . (if there are fewer, then p must not be continuous). By relabeling, write $p^{-1}(U_x) = \coprod_{i=1}^{j} V_i$, and observe that because each V_i is mapped homeomorphically into U_x by p, it follows that $|p^{-1}(y)| = j$ for every $y \in U_x$. It follows that $U_x \subseteq S_j$, so that S_j is open.

The set S_{ω} is open due to a similar argument: Suppose S_{ω} is not empty, and consider $x \in S_{\omega}$. The preimage of an evenly covered neighborhood U_x of x is an infinite cardinality disjoint union of open sets V_{α} of E. Each V_{α} is mapped homeomorphically into U_x so that the preimage of any element $y \in U_x$ is also of infinite cardinality, and thus $U_x \subseteq S_{\omega}$. It follows that S_{ω} is open, and we have proved the lemma.

Suppose by way of contradiction that there exists (at least one) $b_1 \in B$ satisfying $|p^{-1}(b)| \neq k$. Observe that $b_0 \in S_k$ and $b_1 \in S' = S_\omega \cup (\bigcup_{i \neq k} S_i)$, and that every element of B lies in one of these two sets. Using the lemma, it follows that S_k and S' are nonempty disjoint open subsets of B whose union is B. This is impossible since B is a connected space, so there are no elements in B whose preimage under B has cardinality not equal to B, as desired.

9. (53.6b) Let $p: E \to B$ be a covering map. If B is compact and $p^{-1}(b)$ is finite for each $b \in B$, then E is compact.

Proof. Let S be an open cover of E.

Since each $b \in B$ is contained in an evenly covered open set U_b , the preimage of U_b under p is a collection $\{V_{b,\alpha}\}$ of disjoint open subsets of E which map homeomorphically to U_b by p. But because $p^{-1}(b)$ is finite, it follows that $\{V_{b,\alpha}\}$ is finite (that is, α takes on finitely many values). Relabeling, write the collection as $\{V_{b,1}, \ldots, V_{b,|p^{-1}(b)|}\}$.

Since E is covered by S, we can find open sets $S_{b,1}, \ldots, S_{b,|p^{-1}(b)|}$ from S such that $S_{b,\alpha}$ contains the point $p^{-1}(b) \cap V_{b,\alpha}$ (the single element of the preimage of b under p lying in the α -th slice $V_{b,\alpha}$). We apply p to each of the intersections $S_{b,1} \cap V_{b,1}, \ldots, S_{b,|p^{-1}(b)|} \cap V_{b,|p^{-1}(b)|}$ to produce a family of neighborhoods of b which lie in U_b given by $\{p(S_{b,\alpha} \cap V_{b,\alpha})\}_{\alpha=1}^{|p^{-1}(b)|}$, and so we take the (finite) intersection over this family to produce a small neighborhood W_b of b contained in U_b :

$$W_b = \bigcap_{\alpha=1}^{|p^{-1}(b)|} p(S_{b,\alpha} \cap V_{b,\alpha}).$$

Since b was arbitrary, the collection $W = \{W_b\}$ for all b constitutes an open cover of B, and by compactness of B we can find a finite subcover $W' = \{W_{b_n}\}_{n=1}^N$ of B. Note that the preimage of each W_b is contained in each $S_{b,\alpha}$ for $1 \le \alpha \le |p^{-1}(b)|$. It follows also that the preimage of each W_b is contained in the union $\bigcup_{\alpha=1}^{|p^{-1}(b)|} S_{b,\alpha}$ (the union is bigger than the intersection).

With W' being a finite subcover of B, we have that

$$E = p^{-1}(B) \subseteq p^{-1}\left(\bigcup_{n=1}^{N} W_{b_n}\right) \subseteq \bigcup_{n=1}^{N} \left[\bigcup_{\alpha=1}^{|p^{-1}(b_n)|} S_{b_n,\alpha}\right],$$

where the last set is a finite union of open sets of S so that S admits a finite subcover of E. Since S was an arbitrary open cover of E, it follows that E is compact.