PATTERN RECOGNITION LAB CSE 4214

LAB EXPERIMENT 6

IMPLEMENTING K-NEAREST NEIGHBOR (K-NN) CLASSIFIER FOR A GIVEN DATASET AND MEASURE PERFORMANCE OF THE ALGORITHM BY GENERATING F-MEASURE SCORE.

SUBMITTED BY

MD. MUKITUL ISLAM 14.02.04.076

SECTION: B1

AHSANULLAH UNIVERSITY OF SCIENCE & TECHNOLOGY

Implementing K-nearest neighbor (K-NN) classifier for a given dataset and measure performance of the algorithm by generating F-measure score.

Md. Mukitul Islam (140204076)

Dept. of Computer Science & Engineering Ahsanullah University of Science & Technology

I. OBJECTIVE

Objective of this experiment is to understand and implement K-nearest neighbor (K-NN) classifier for a given dataset and measure performance of the algorithm by generating F-measure score.

II. PROBLEM DESCRIPTION

In this experiment, using Nearest Neighbor clustering algorithm and Euclidean distance we have to design a classifier to classify the feature point of IRIS dataset.

We also have to determine the accuracy of the IRIS dataset using F-measure score for individual classes. Considering the threshold value 4 as the nearest neighbor. We will use lower 10% for the IRIS dataset as the test data.

III. ALGORITHM DESCRIPTION

Steps of K-Nearest Neighbor algorithm-

- 1. Determine parameter K = number of nearest neighbor.
- 2. Determine the distance between the query-instance and all the training samples.
- 3. Sort the distance and determine nearest neighbors based on the K-th minimum distance.
- 4. Gather the category of the nearest neighbors.
- 5. Use majority of the category of nearest neighbors as the prediction value of the query-instance.

IV. IMPLEMENTATION

In IRIS dataset there are 3 different classes and 150 rows of data. Among them 90% data is used as training data and rest 10% data is used as testing data.

For calculating distance of each testing data from training data Euclidean distance calculation technique is used.

V. MATLAB CODE OUTPUT

There are 150 data of 3 different classes in IRIS dataset. These data are divided into two parts for testing and training.

TABLE I TESTING & TRAINING DATA

Training Data	Testing Data
135	15

TABLE II CONFUSION MATRIX

		C1	C2	C3	
	C1	7	0	0	7
ĺ	C2	0	3	0	3
	C3	1	0	4	5

TABLE III PRECISION, RECALL & F1-SCORE

Precision	Recall	F1-Score
93.33	95.83	94.55

Final Accuracy: 93.33%

VI. CONCLUSION

This matlab implementation of K-Nearest Neighbor (K-NN) algorithm follows all the steps properly for predicting class of IRIS dataset So, the K-NN algorithm is successfully implemented.