Suche mit Breitensuche

Carsten Gips (FH Bielefeld)

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.

Hole das Buch

Uninformierte ("blinde") Suche:

Keine Informationen über die Kosten eines Pfades: Nur die Pfadlänge (Anzahl der Schritte) zählt.

Breitensuche (BS, BFS)

- 1. Füge Startknoten in leere Datenstruktur (Stack, Queue, ...) ein
- 2. Entnehme Knoten aus der Datenstruktur:
 - Knoten ist gesuchtes Element: Abbruch, melde "gefunden"
 - Markiere aktuellen Knoten, und
 - Expandiere alle Nachfolger des Knotens und füge alle unmarkierten Nachfolger, die noch nicht in der Datenstruktur sind, in die Datenstruktur ein
- 3. Falls die Datenstruktur leer ist: Abbruch, melde "nicht gefunden"
- 4. Gehe zu Schritt 2

=> Was passiert, wenn wir eine Queue einsetzen?

Eigenschaften Breitensuche vs. Tiefensuche

	Tiefensuche	Breitensuche
Vollständigkeit	nein ¹	ja ²
Optimalität	nein	ja
Zeitkomplexität	$O(b^m)$	$O(b^{d+1})$
Speicherkomplexität	O(bm)	$O(b^{d+1})$

b: Verzweigungsfaktor, d: Ebene d. höchsten Lösungsknotens, m: Länge d. längsten Pfades

¹gilt für Tree-Search-Variante; vollständig in Graph-Search-Variante bei endlichem Suchraum

²falls *b* endlich

Praxisvergleich Breitensuche vs. Tiefensuche

 $\textbf{Breitensuche} : \ Annahme : \ b = 10, \ 10.000 \ \ Knoten/s, \ 1.000 \ \ Byte/Knoten$

Tiefe	exp. Knoten	Zeit	Speicher
2	10 ³	0.1 s	1 MB
4	10^{5}	10 s	100 MB
6	10 ⁷	20 min	10 GB
8	10^{9}	30 h	1 TB
10	10 ¹¹	130 d	100 TB

Praxisvergleich Breitensuche vs. Tiefensuche

Breitensuche: Annahme: b = 10, 10.000 Knoten/s, 1.000 Byte/Knoten

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Tiefe	exp. Knoten	Zeit	Speicher
5 10 ⁷ 20 min 10 GB 8 10 ⁹ 30 h 1 TB	2	10 ³	0.1 s	1 MB
8 10 ⁹ 30 h 1 TB	4	10 ⁵	10 s	100 MB
	6	10 ⁷	20 min	10 GB
10 10 ¹¹ 130 d 100 TB	8	10 ⁹	30 h	1 TB
	10	10 ¹¹	130 d	100 TB

Tiefensuche: Annahme: längster Pfad (Tiefe) m = 1000

=> Speicherbedarf ca. 10 MB

Wrap-Up

- Uninformierte Suchverfahren
 - Keine weiteren Pfadkosten (nur Anzahl der Schritte)
 - Breitensuche: Verfolge alle Pfade (baue den Suchbaum ebenenweise auf)

LICENSE

Unless otherwise noted, this work is licensed under CC BY-SA 4.0.