Algebraic Number Theory

Ikhan Choi

July 28, 2022

Contents

Ι	Algebraic numbers	2
1	1.1 Local fields	3
2	Adèles and idèles	4
II	Class field theory	5
3	Local class field theory 3.1 Lubin-Tate theory	6 6
4	Global class field theory	7
5		8
II	Arithmetic geometry	9
IV	Langlands program	10
6	Modular forms	11
7	L-functions 7.1 Dirichlet L-functions	12 12
Q	Automorphic representations	13

Part I Algebraic numbers

1.1 Local fields

- **1.1** (Absolute value). Let K be a field. An absolute value or a multiplicative valuation on K is a function $|\cdot|: K \to [0, \infty)$ such that
 - (i) x = 0 if |x| = 0,
 - (ii) |xy| = |x||y|,
- (iii) $|x + y| \le |x| + |y|$.

Non-archimedean

- ${f 1.2}$ (Local fields). A *local field* is a field with an absolute value with the induced topology that is locally compact.
- 1.3 (Ostrowski theorem).
- 1.4 (Places).

Adèles and idèles

Part II Class field theory

Local class field theory

3.1 Lubin-Tate theory

3.2 Kronecker-Weber theorem

3.1 (Local Kronecker-Weber theorem). Let K/\mathbb{Q}_p be a finite abelian extension.

Let m be a conductor of a finite abelian extension K/\mathbb{Q} . Then, we have a surjection

$$\operatorname{Gal}(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \to \operatorname{Gal}(K/\mathbb{Q})$$

by the Kronecker-Weber theorem. For a prime $p \in \mathbb{Z}$ that does not divide m so that p is not ramified, then the decomposition group $G_p \leq \operatorname{Gal}(K/\mathbb{Q})$ is a cyclic group generated by the Frobenius element $x \to x^p$, denoted by Frob_p or $\left(\frac{K/\mathbb{Q}}{p}\right)$. Artin map $I_{\mathbb{Q}}^m \to \operatorname{Gal}(K/\mathbb{Q})$ of K/\mathbb{Q} maps each prime $p \nmid m$ to the Frobenius element Frob_p .

Artin map factors through $Gal(\mathbb{Q}(\zeta_m)/\mathbb{Q}) \to Gal(K/\mathbb{Q})$

Global class field theory

Part III Arithmetic geometry

Part IV Langlands program

Modular forms

L-functions

Riemann $\zeta(s)$ Dedekind $\zeta_K(s)$ Hasse-Weil $\zeta_X(s)$

7.1 Dirichlet *L*-functions

7.1 (Hecke character). Dirichlet character can be understood as a group homomorphism $\chi: \widehat{\mathbb{Z}}^{\times} \to \mathbb{C}$ of finite order, which means that there is n such that χ factors through $(\mathbb{Z}/n\mathbb{Z})^{\times}$.

In order to construct an L-function from a character, we need to extend a character as a function of ideals. We interpret $(\mathbb{Z}/n\mathbb{Z})^{\times}$ as the ray class group modulo \mathfrak{m} .

To extend the order of a character to possibly infinite cases, Hecke character is defined a character of an idele class group $C_K := \mathbb{A}_K^\times/K^\times$.

Dirichlet (Hecke) *L*-functions for ray-class characters $\chi:C_K\to\mathbb{C}$:

$$L(\chi,s) = \sum_{\mathfrak{a}} \frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s} = \prod_{\mathfrak{p} \text{ prime}} \frac{1}{1 - \chi(\mathfrak{p})N(\mathfrak{p})^{-s}}$$

Artin *L*-functions for a Galois representation $\rho : Gal(L/K) \to GL_n(\mathbb{C})$:

$$L(\rho,s) = \prod_{\mathfrak{p} \text{ prime}} \frac{1}{\det(1 - \rho(\operatorname{Frob}_{\mathfrak{p}})N(\mathfrak{p})^{-s})}$$

Elliptic curves L(E,s)Modular forms L(f,s)

Automorphic representations