Heterogeneous Graph Neural Network: Models and Applications

- Introduction
- Models
- Applications
- Conclusion

- Introduction
- Models
- Applications
- Conclusion

Introduction

Existing graph neural networks focus on homogeneous graph:

- Cannot handle multiple types of nodes and edges.
- Cannot capture rich semantic information.

- Introduction
- Models
- Applications
- Conclusion

(d) Meta-path based Neighbors

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, Philip S. Yu Heterogeneous Graph Attention Network WWW,2019

Heterogeneous Graph Attention Network

type-specific transformation

$$\mathbf{h}_i' = \mathbf{M}_{\phi_i} \cdot \mathbf{h}_i,$$

Importance of Neighbors

$$e_{ij}^{\Phi} = att_{node}(\mathbf{h}_i', \mathbf{h}_i'; \Phi).$$

$$\alpha_{ij}^{\Phi} = softmax_{j}(e_{ij}^{\Phi}) = \frac{\exp\left(\sigma(\mathbf{a}_{\Phi}^{\mathrm{T}} \cdot [\mathbf{h}_{i}' || \mathbf{h}_{j}'])\right)}{\sum_{k \in \mathcal{N}_{i}^{\Phi}} \exp\left(\sigma(\mathbf{a}_{\Phi}^{\mathrm{T}} \cdot [\mathbf{h}_{i}' || \mathbf{h}_{k}'])\right)},$$

Node-Level Aggregating

$$\mathbf{z}_{i}^{\Phi} = \sigma \left(\sum_{j \in \mathcal{N}_{i}^{\Phi}} \alpha_{ij}^{\Phi} \cdot \mathbf{h}_{j}' \right).$$

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, Philip S. Yu Heterogeneous Graph Attention Network WWW,2019

Heterogeneous Graph Attention Network

Semantic-Level Attention

$$(\beta_{\Phi_0}, \beta_{\Phi_1}, \dots, \beta_{\Phi_P}) = att_{sem}(\mathbf{Z}_{\Phi_0}, \mathbf{Z}_{\Phi_1}, \dots, \mathbf{Z}_{\Phi_P}).$$

Importance of Meta-path

$$w_{\Phi_i} = \frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} \mathbf{q}^{\mathrm{T}} \cdot \tanh(\mathbf{W} \cdot \mathbf{z}_i^{\Phi} + \mathbf{b}),$$

$$\beta_{\Phi_i} = \frac{\exp(w_{\Phi_i})}{\sum_{i=1}^P \exp(w_{\Phi_i})},$$

Semantic-Level Aggregating

$$\mathbf{Z} = \sum_{i=1}^{P} \beta_{\Phi_i} \cdot \mathbf{Z}_{\Phi_i}.$$

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, Philip S. Yu Heterogeneous Graph Attention Network WWW,2019

Baselines

- ◆ Deepwalk
- ◆ Esim
- ◆ Metapath2vec
- ◆ GCN

- **◆** GAT
- lacktriangle HAN_{nd}
- lacktriangle HAN_{sem}
- ◆ HAN

Table 2: Statistics of the datasets.

Dataset	Relations(A-B)	Number of A	Number of B	Number of A-B	Feature	Training	Validation	Test	Meta-paths
DBLP	Paper-Author	14328	4057	19645		800	400	2857	APA
	Paper-Conf	14328	20	14328	334				APCPA
	Paper-Term	14327	8789	88420					APTPA
IMDB	Movie-Actor	4780	5841	14340	1232	300	300	2687	MAM
	Movie-Director	4780	2269	4780	1232				MDM
ACM	Paper-Author	3025	5835	9744	1830	600	300	2125	PAP
	Paper-Subject	3025	56	3025	1030	000	300		PSP

Table 3: Qantitative results (%) on the node classification task.

Datasets	Metrics	Training	DeepWalk	ESim	metapath2vec	HERec	GCN	GAT	HAN _{nd}	HAN_{sem}	HAN
ACM	Macro-F1	20%	77.25	77.32	65.09	66.17	86.81	86.23	88.15	89.04	89.40
		40%	80.47	80.12	69.93	70.89	87.68	87.04	88.41	89.41	89.79
		60%	82.55	82.44	71.47	72.38	88.10	87.56	87.91	90.00	89.51
		80%	84.17	83.00	73.81	73.92	88.29	87.33	88.48	90.17	90.63
	Micro-F1	20%	76.92	76.89	65.00	66.03	86.77	86.01	87.99	88.85	89.22
		40%	79.99	79.70	69.75	70.73	87.64	86.79	88.31	89.27	89.64
		60%	82.11	82.02	71.29	72.24	88.12	87.40	87.68	89.85	89.33
		80%	83.88	82.89	73.69	73.84	88.35	87.11	88.26	89.95	90.54
DBLP	Macro-F1	20%	77.43	91.64	90.16	91.68	90.79	90.97	91.17	92.03	92.24
		40%	81.02	92.04	90.82	92.16	91.48	91.20	91.46	92.08	92.40
		60%	83.67	92.44	91.32	92.80	91.89	90.80	91.78	92.38	92.80
		80%	84.81	92.53	91.89	92.34	92.38	91.73	91.80	92.53	93.08
	Micro-F1	20%	79.37	92.73	91.53	92.69	91.71	91.96	92.05	92.99	93.11
		40%	82.73	93.07	92.03	93.18	92.31	92.16	92.38	93.00	93.30
		60%	85.27	93.39	92.48	93.70	92.62	91.84	92.69	93.31	93.70
		80%	86.26	93.44	92.80	93.27	93.09	92.55	92.69	93.29	93.99
IMDB	Macro-F1	20%	40.72	32.10	41.16	41.65	45.73	49.44	49.78	50.87	50.00
		40%	45.19	31.94	44.22	43.86	48.01	50.64	52.11	50.85	52.71
		60%	48.13	31.68	45.11	46.27	49.15	51.90	51.73	52.09	54.24
		80%	50.35	32.06	45.15	47.64	51.81	52.99	52.66	51.60	54.38
	Micro-F1	20%	46.38	35.28	45.65	45.81	49.78	55.28	54.17	55.01	55.73
		40%	49.99	35.47	48.24	47.59	51.71	55.91	56.39	55.15	57.97
		60%	52.21	35.64	49.09	49.88	52.29	56.44	56.09	56.66	58.32
		80%	54.33	35.59	48.81	50.99	54.61	56.97	56.38	56.49	58.51

Figure 4: Meta-path based neighbors of node P831 and corresponding attention values (Different colors mean different classes, e.g., *green* means Data Mining, *blue* means Database, *orange* means Wireless Communication).

Figure 5: Performance of single meta-path and corresponding attention value.

Yukuo Cen, Xu Zou, Jianwei Zhang, Hongxia Yang, Jingren Zhou, Jie Tang Representation Learning for Attributed Multiplex Heterogeneous Network KDD,2019

GATNE-T

$$\mathbf{u}_{i,r}^{(k)} = aggregator(\{\mathbf{u}_{j,r}^{(k-1)}, \forall v_j \in \mathcal{N}_{i,r}\}),$$

$$\mathbf{U}_i = (\mathbf{u}_{i,1}, \mathbf{u}_{i,2}, \dots, \mathbf{u}_{i,m}).$$

$$\mathbf{a}_{i,r} = \operatorname{softmax}(\mathbf{w}_r^T \tanh(\mathbf{W}_r \mathbf{U}_i))^T,$$

$$\mathbf{v}_{i,r} = \mathbf{b}_i + \alpha_r \mathbf{M}_r^T \mathbf{U}_i \mathbf{a}_{i,r},$$

GATNE-I

$$\mathbf{v}_{i,r} = \mathbf{h}_z(\mathbf{x}_i) + \alpha_r \mathbf{M}_r^T \mathbf{U}_i \mathbf{a}_{i,r} + \beta_r \mathbf{D}_z^T \mathbf{x}_i,$$

- Introduction
- Models
- Applications
- Conclusion

Heterogeneous Graph

Dual-level Attention

Semi-supervised Training

Linmei Hu, Tianchi Yang, Chuan Shi, Houye Ji, Xiaoli Li Heterogeneous Graph Attention Networks for Semi-supervised ShortText Classification. EMNLP/IJCNLP (1),2019

Nodes

Text: Document in the corpus.

Topic: Mined by LDA.

Entity: Recognized by Tagme.

■ Edges

Text-topic: The text is assigned to the Top P topics.

Text-Entity: The text contains the entity.

Entity-Entity: The similarity score between two entities

Type-level Attention

$$a_{\tau} = \sigma(\mu_{\tau}^T \cdot [h_v||h_{\tau}]), \qquad \alpha_{\tau} = \frac{\exp(a_{\tau})}{\sum_{\tau' \in \mathcal{T}} \exp(a_{\tau'})}.$$

Node-level Attention

$$b_{vv'} = \sigma(\nu^T \cdot \alpha_{\tau'}[h_v||h_{v'}]), \quad \beta_{vv'} = \frac{\exp(b_{vv'})}{\sum_{i \in \mathcal{N}_v} \exp(b_{vi})}.$$

Dual-level Attention Based Hete. Graph Conv.

$$H^{(l+1)} = \sigma(\sum_{\tau \in \mathcal{T}} \mathcal{B}_{\tau} \cdot H_{\tau}^{(l)} \cdot W_{\tau}^{(l)}).$$

Linmei Hu, Tianchi Yang, Chuan Shi, Houye Ji, Xiaoli Li Heterogeneous Graph Attention Networks for Semi-supervised ShortText Classification. EMNLP/IJCNLP (1),2019

Taobao App Homepage

(b) Network schema

(c) Metapaths

Figure 3: The framework of MEIRec.

Handle large and Dynamic data Capture rich semantics Task-specific loss

Parameter share

Queries and items are constituted by the same term embedding

$$\{w_1, w_2, \cdots, w_{n-1}, w_n\}$$

 $q_2 = (1, 0, \cdots, 0, 1)$
 $i_2 = (1, 0, \cdots, 1, 1)$

Reduce parameter space complexity
Traditional latent factor model:
MEIRec:

New objects

The embedding of new objects (item, query) can be computed by trained term embedding in the testing phase

Initial embedding

$$E_{q_2} = g(\boldsymbol{e}_{w_1}, \boldsymbol{e}_{w_n}), E_{i_2} = g(\boldsymbol{e}_{w_1}, \boldsymbol{e}_{w_{n-1}}, \boldsymbol{e}_{w_n}),$$

Neighbor aggregation

$$I_j^{\text{UIQ}} = g(E_{q_1}, E_{q_2}, \cdots),$$

$$U_i^{\text{UIQ}} = g(I_1^{\text{UIQ}}, I_2^{\text{UIQ}}, \cdots),$$

Meta-path Aggregating

$$U_i = g(U_i^{\rho_1}, U_i^{\rho_2}, \cdots, U_i^{\rho_k}),$$

Spammers normally take the following two adversarial tricks to circumvent the anti-spam system:

- Camouflage: Using different expressions with similar meaning.
- Deforming the comments:
 Spammers replace some keywords in the comments with rarely used Chinese characters or typos deliberately.

classifier z_u p_e Heterogeneous GCN GCN KNNGraph Xianyu Graph Comment Graph

Heterogeneous graph

- Item-comment-user
- Metapaths
- 2-hop neighborhood aggregation

Homogeneous graph

- comment-comment
- Made by KNNGraph
- Smoothing process

Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, Dong Li Spam Review Detection with Graph Convolutional Networks CIKM,2019

$$\begin{split} h_{e}^{l} &= \sigma\left(W_{E}^{l} \cdot AGG_{E}^{l}(h_{e}^{l-1}, h_{U(e)}^{l-1}, h_{I(e)}^{l-1})\right) \\ AGG_{E}^{l}\left(h_{e}^{l-1}, h_{U(e)}^{l-1}, h_{I(e)}^{l-1}\right) &= concat\left(h_{e}^{l-1}, h_{U(e)}^{l-1}, h_{I(e)}^{l-1}\right) \\ h_{N(u)}^{l} &= \sigma\left(W_{U}^{l} \cdot AGG_{U}^{l}(\mathcal{H}_{IE}^{l-1})\right) \\ h_{N(i)}^{l} &= \sigma\left(W_{I}^{l} \cdot AGG_{I}^{l}(\mathcal{H}_{UE}^{l-1})\right) \\ h_{u}^{l} &= concat\left(V_{U}^{l} \cdot h_{u}^{l-1}, h_{N(u)}^{l}\right) \end{split}$$

 $h_i^l = concat\left(V_I^l \cdot h_i^{l-1}, h_{N(i)}^l\right)$

Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, Dong Li Spam Review Detection with Graph Convolutional Networks CIKM,2019

the Comment Graph is constructed as follows:

- Remove all the duplicated comments.
- Generate comments embeddings by the method described in.
- Obtain the similar comment pairs by employing the approx- imate KNN Graph algorithm.
- Remove comment pairs posted by same user or posted un- der same item, since the local context has been taken into consideration on Xianyu Graph.

- Introduction
- Models
- Applications
- Conclusion

Thanks