

Term End Examination - November 2011

Course: MAT101 - Multivariable Calculus and Differential Equations Slot: D2+TD2

Time : Three Hours Max.Marks:100

$PART - A (10 \times 3 = 30 \text{ Marks})$ Answer <u>ALL</u> the Questions

1. If
$$u = xy + yz + zx$$
 where $x = e^t$, $y = e^{-t}$ and $z = \frac{1}{t}$. Find $\frac{du}{dt}$.

2. If
$$u = x^2 - 4y, v = x + y + z, w = x - 2y + 3z$$
, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

- 3. Evaluate $\iint dxdy$ over the positive quadrant of the circle $x^2 + y^2 = 4$ by changing into polar coordinates.
- 4. Evaluate $\int_{0}^{\pi/2} \sqrt{\tan \theta} d\theta$ in terms of gamma function.
- 5. Find the unit normal vector to the surface $x^2y + 2xz^2 = 8$ at the point (1, 0, 2).
- 6. Find the value of b so that the vector

$$\vec{F} = (bx + 4y^2z)\hat{i} + (x^3\sin z - 3y)\hat{j} - (e^x + 4\cos x^2y)\hat{k}$$
 is Solenoidal.

- 7. Find the particular integral for $y'' 2y' 3y = e^t$
- 8. Find the solution for $x^2 \frac{d^2 y}{dx^2} 3x \frac{dy}{dx} + 3y = 0$.
- 9. Find Laplace transform of t^2e^{-3t} .
- 10. Find the inverse Laplace transform of $\frac{1}{s(s-1)}$.

PART – B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

- 11. (a) Find the Taylor's series expansion of e^{x+y} near the origin up to second degree [7] terms.
 - (b) Find the extreme values of $f(x, y) = x^3 + y^3 3xy$. [7]
- 12. (a) Change the order of integration in the integral $\int_{0}^{4} \int_{\frac{x^2}{4}}^{2\sqrt{x}} dy dx$ and hence evaluate. [7]

- (b) By changing into cylindrical co-ordinates, evaluate $\iiint_V (x+y+z) dx dy dz$ where V [7] is the region of space inside the cylinder $x^2 + y^2 = 1$, that is bounded by the planes z = 0 and z = 1.
- 13. (a) Find the work done in moving a particle in a force field given by [7] $\overline{F} = 3xy\overline{i} 5z\overline{j} + 10x\overline{k}$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2.
 - (b) Evaluate $\iint_S \vec{F} \cdot \hat{n} \, ds$, where $\vec{F} = 4x\hat{i} 2y^2\hat{j} + z^2\hat{k}$ and S is the surface bounding [7] the region $x^2 + y^2 = 4$, z = 0 and z = 3 using Gauss divergence theorem.
- 14. a) Solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$ by using method of variation of parameters. [8]
 - (b) Find the General solution for $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = e^x \sin x$ by the method of **[6]** undetermined coefficients.
- 15. (a) A function f(t) is periodic in (0, 2) and is defined as $f(t) = 1, \quad 0 < t < 1$ $= -1, \quad 1 < t < 2$

Find its Laplace transform.

- (b) Solve $y''(t) 3y'(t) + 2y(t) = e^{3t}$ using Laplace transformation given that [10] y(0) = 0 and y'(0) = 0.
- 16. (a) A rectangular box open at the top is to have volume of 32 cubic feet. Find the dimensions of the box requiring least material for its construction.
 - (b) Apply Convolution theorem to evaluate $L^{-1} \left[\frac{s}{(s^2 + 4)^2} \right]$ [6]
- 17. (a) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} ds$ where $\vec{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ and S is the part of the sphere $x^2 + y^2 + z^2 = 1$, which lies in the first octant

(b) Solve
$$x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y = e^x$$
. [7]

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow \Leftrightarrow$