Lecture 20

A = 5* is a CFL if 3 a CFG G = (N, E, P, S) t L(G) = A. 8-t L(G) = A.

Question. For all $A \subseteq \mathcal{E}^*$, is $A \circ CFL$?

Is is $A \circ CFL$?

No - $\mathcal{E}^n \circ \mathbb{I}^n \cap \mathcal{E}^n \cap \mathcal{E}$

Observation. For a grammar in Chomsky normal form, any parse tree for a long string should have a long path.

Any long path should have at least two occurrences of some nonterminal symbol.

For a grammar in CNF-the number of

Symbols can atmost double going down a level in the parse tree - RHS of each production Contains atmost 2 Symbols.

We have 1 symbol at level 0 atmost 2 symbols at level 1.

2 symbols at level i.

To have 2 symbols at the bottom level, the

tree must be of depth at least n - it must have at least n+1 levels.

Depth - number of edges in the longest path from the root to a leaf node.

G: S→ACIAB, A→a, B→b, C→SB.

CNF for Zanbnin≥13

Consider the derivation of a4b4.

G: S→ACIAB, A→a, B→b, C→SB.

CNF for Zanbnin≥13

Consider the derivation of a4 b4.

Pumping Lemma for CFLS.

if ASE is a CFL Hen Here exist R20 Such that for every ZEA of length at least & can be split into five substrings Z= UV W DC y Such that rx+E, Irwx| ≤k and for all i≥0, Uriwxiy ∈A.

Proof.
Lef G be a grammar for A in CNF.

Take $k=2^{n+1}$, where n is the number of nonterminous of G_1 .

Suppose $Z \in A$ and $|Z| \ge k$.

Any parse tree in G for 2 must be of depth at least n+1 (i.e. there are n+2 levels).

Consider the longest path in the tree (it is of length afleast n+1).

The longest path contains at least AHI occurrence of non terminals. This implies: Some nonterminal occurs more than once.

Take the first pair of occurrences of the some nonterminal along the path-traversing bottom to top.

Take the first pair of occurences of the some nonterminal along the path-traversing bottom to top.

Suppose X is the nonterminal with two occurrences.

Split Z = uvwxy such that.

W-String (of terminals) generated by lower occurrence of X & woc-String generated by the upper occurrence of X

Take the first pair of occurences of the some nonterminal along the path-traversing bottom to top.

Suppose X is the non-terminal with two occurrences. Split Z = uvwxy such that.

W-String (of terminals) generated by lower occurrence of X UWX-String generated by the upper occurrence of X

Let T-Subtree rooted at upper occurrence of X. t-Subtree rooted at the lower occurrence of X

Consider the string

We conreplace t with asmany copies of T to get a parse tree for upiwoity for all i=1.

We can cut I and replace it with tho get a parse tree for $uvwx^0y = uwy$

Note.

- 1. PX = E. Vand or are not both E.
- 2. 14 worl & R Since we chose the first repeated occurrence of a nonterminal from the bottom.

 Depth of the subtree under the upper occurrence of the repeated nonterminal X is atmost n+1

 it can have atmost 2 = k terminals

To show that a set is not a CFL- use pumping lemma in the contrapositive form.

For all $k \ge 0$, $\exists z \in A$ s.t. $|z| \ge k$ and for all split of z into substrings z = uvwxy with $yx \ne \epsilon$ and $|vwx| \le k$, there exists an $i \ge 0$ s.t. $uv^i w x^i y \notin A$

To show that a set is not a CFL- use pumping lemma in the contrapositive form.

For all $k \ge 0$, $\exists z \in A$ s.t $|z| \ge k$ and for all split of z into substrings z = uvwxy with $yx \ne \epsilon$ and $|vwx| \le k$, there exists an $i \ge 0$ s.t $uv^i w x^i y \notin A$

 $A = \{a^n b^n a^n | n \ge 0\}$ is not context free. Proof. Given k, let $z = a^k b^k a^k$. We have $z \in A$, |z| = 3k

Now Consider any split Z= UV wxy, Vx + 6 and IV wx | = k. Let i= 2. Consider He string uv wxy.

Case 1. Yorx contains at least one "a" and at least one "b".

Hen uv² w x²y is not of the form a* b* a*

Case 2. V and x Contains only a's.

Then uv^2wx^2y has more a's than b's.

Cose 3. If and & contains only b's. Then the number of b's is greater than the number of a's.

Cose 4. One of I or x contains only a's and the other only b's. Then up2wx2y is not of the form ambmam.

in all cases, He resulting string $uv^z wx^z y \notin A$. By pumping lemma A is not a CFL.

Closure properties of CFLS.

Union. Suppose A and B are CFLs Where $L(G_1)=A$, $L(G_2)=B$ and the stoot symbols are S_1 for G_1 and S_2 for G_2 .

Construct a grammer G st L(G) = AUB as follows:

Ensure that G, and G2 have disjoint set of non-terminals [rename the nonterminals if required]

- Combine the productions of 6,262.

- Add a new stort symbol S and the productions: $S \rightarrow S_1$, $S \rightarrow S_2$ $S \rightarrow S_1 \mid S_2$.

Closure properties of CFLS.

Union. Suppose A and B are CFLs Where $L(G_1)=A$, $L(G_2)=A$ and the stoot symbols are S_1 for G_1 and S_2 for G_2 .

Construct a grammer G st L(G) = AUB as follows:

Ensure that Grand G2 have disjoint set

[rename the nonterminals if required]

Combine the productions of G, 2G2.
Add a new stort symbol S and the productions: 5-5, ,5-52

Concatenation. if A and B are CFLS with $L(G_1)=A$ and $L(G_2)=B$ construct G_1 S_2 S_3 as follows:

- Combine He grammers Gil Gz.
- Add a new stortsymbol 5 with production 5->5,52

Closure properties of CFLS.

Union. Suppose A and B are CFLs Where $L(G_1)=A$, $L(G_2)=A$ and the stoot symbols are S_1 for G_1 and S_2 for G_2 .

Construct a grammer G st L(G) = AUB as follows:

Ensure that Grand G2 have disjoint set

[rename the nonterminals if required]

Combine the productions of G, 2G2.
Add a new stort Symbol S and the productions: 5->5, ,5->52

Concatenation. if A and B are CFLS with $L(G_1)=A$ and $L(G_2)=B$ with start symbols $S_1 \otimes S_2$. Construct $G_1 \otimes G_2 \otimes G_3 \otimes G_4 \otimes G_4$

- Combine He grammars Gil Giz.
- Add a new stort symbol 5 wilt production 5->5,52

Kleene star. if A is a CFL with L(G,) = A and Start symbol S1, construct G 8+ L(G) = A* as follows:

- Take G, along with a new stoot symbol S along with the production $S \rightarrow S, S \mid E$.

we know that this set is not a CFL.