DISCRIMINANT ANALYSIS

1 Classification error

Linear discriminant analysis assumes that the random variables $(X,Y) \in \mathbb{R}^d \times \{0,1\}$ have the following distribution. For all $A \in \mathcal{B}(\mathbb{R}^d)$ and all $y \in \{0,1\}$,

$$\mathbb{P}(X \in A; Y = y) = \pi_y \int_A g_y(x) dx,$$

where π_0 and π_1 are positive real numbers such that $\pi_0 + \pi_1 = 1$ and g_0 (resp. g_1) is the probability density of a Gaussian random variable with mean $\mu_0 \in \mathbb{R}^d$ (resp. μ_1) and positive definite covariance matrix $\Sigma_0 \in \mathbb{R}^{d \times d}$ (resp. Σ_1). Define the classifier $h_* : \mathbb{R}^d \to \{0,1\}$ by

$$h_*: x \mapsto \mathbb{1}_{\{\pi_1 g_1(x) > \pi_0 g_0(x)\}}$$
.

1. Give the distribution of the random variable X and prove that

$$\mathbb{P}(h_*(X) \neq Y) = \min_{h:\mathbb{R}^d \to \{0,1\}} \left\{ \mathbb{P}(h(X) \neq Y) \right\} .$$

For all $A \in \mathcal{B}(\mathbb{R}^d)$,

$$\mathbb{P}(X \in A) = \mathbb{P}(Y = 0)\mathbb{P}(X \in A | Y = 0) + \mathbb{P}(Y = 1)\mathbb{P}(X \in A | Y = 1),$$
$$= \pi_0 \int_A g_0(x) dx + \pi_1 \int_A g_1(x) dx.$$

The probability density of the random variable X is given, for all $x \in \mathbb{R}^d$, by

$$g(x) = \pi_0 g_0(x) + \pi_1 g_1(x)$$
.

Then, note that

$$\eta(X) = \mathbb{P}(Y = 1|X) = \frac{\mathbb{P}(X|Y = 1)\,\mathbb{P}(Y = 1)}{g(X)} = \frac{\pi_1 g_1(X)}{\pi_0 g_0(X) + \pi_1 g_1(X)}\,,$$

and the condition $\eta(x) \leqslant 1/2$ can be rewritten as

$$\frac{\pi_1 g_1(x)}{\pi_0 g_0(x) + \pi_1 g_1(x)} \leqslant 1/2 \,,$$

that is $\pi_1 g_1(x) \leq \pi_0 g_0(x)$.

2. Assume that $\mu_0 \neq \mu_1$. Prove that when $\Sigma_0 = \Sigma_1 = \Sigma$, for all $x \in \mathbb{R}^d$,

$$h_*(x) = 1 \Leftrightarrow (\mu_1 - \mu_0)^{\top} \Sigma^{-1} \left(x - \frac{\mu_1 + \mu_0}{2} \right) > \log(\pi_0/\pi_1).$$

Provide a geometrical interpretation.

For all $x \in \mathbb{R}^d$,

$$\begin{split} \pi_{1}g_{1}(x) &> \pi_{0}g_{0}(x) \\ &\Leftrightarrow \log(\pi_{1}g_{1}(x)) > \log(\pi_{0}g_{0}(x)) \,, \\ &\Leftrightarrow -\frac{1}{2}(x-\mu_{1})^{\top}\Sigma^{-1}(x-\mu_{1}) + \frac{1}{2}(x-\mu_{0})^{\top}\Sigma^{-1}(x-\mu_{0}) > \log(\pi_{0}/\pi_{1}) \,, \\ &\Leftrightarrow -\frac{1}{2}\left(-\mu_{1}^{\top}\Sigma^{-1}x + \mu_{1}^{\top}\Sigma^{-1}\mu_{1} - x^{\top}\Sigma^{-1}\mu_{1} + \mu_{0}^{\top}\Sigma^{-1}x - \mu_{0}^{\top}\Sigma^{-1}\mu_{0} + x^{\top}\Sigma^{-1}\mu_{0}\right) > \log(\pi_{0}/\pi_{1}) \,, \\ &\Leftrightarrow x^{\top}\Sigma^{-1}\mu_{1} - x^{\top}\Sigma^{-1}\mu_{0} - \frac{1}{2}\mu_{1}^{\top}\Sigma^{-1}\mu_{1} + \frac{1}{2}\mu_{0}^{\top}\Sigma^{-1}\mu_{0} > \log(\pi_{0}/\pi_{1}) \,, \\ &\Leftrightarrow (\mu_{1}-\mu_{0})^{\top}\Sigma^{-1}\left(x - \frac{\mu_{1} + \mu_{0}}{2}\right) > \log(\pi_{0}/\pi_{1}) \,. \end{split}$$

Therefore, all $x \in \mathbb{R}^d$ is classified according to its position with respect to an affine hyperplane orthogonal to $\Sigma^{-1}(\mu_1 - \mu_0)$.

3. Prove that when $\pi_1 = \pi_0$,

$$\mathbb{P}(h_*(X) = 1|Y = 0) = \Phi(-d(\mu_1, \mu_0)/2),$$

where Φ is the cumulative distribution function of a standard Gaussian random variable and

$$d(\mu_1, \mu_0)^2 = (\mu_1 - \mu_0)^T \Sigma^{-1} (\mu_1 - \mu_0).$$

Let Z_0 be a Gaussian random variable with mean μ_0 and variance Σ . Note that

$$\mathbb{P}(h_*(X) = 1 | Y = 0) = \mathbb{P}\left(\underbrace{(\mu_1 - \mu_0)^\top \Sigma^{-1} (Z_0 - \frac{\mu_1 + \mu_0}{2})}_{Z} > 0\right),$$

where, using $\delta = d(\mu_1, \mu_0)$,

$$\mathbb{E}[Z] = (\mu_1 - \mu_0)^{\top} \Sigma^{-1} (\frac{\mu_0 - \mu_1}{2}) = -\frac{\delta^2}{2}$$

and

$$\mathbb{V}[Z] = \mathbb{V}\Big[(\mu_1 - \mu_0)^{\top} \Sigma^{-1} X\Big] = \Big((\mu_1 - \mu_0)^{\top} \Sigma^{-1}\Big) \Sigma \left(\Sigma^{-1} (\mu_1 - \mu_0)\right) = \delta^2.$$

Hence,

$$\mathbb{P}(h_*(X) = 1 | Y = 0) = \mathbb{P}\Big(-\frac{\delta^2}{2} + \delta\varepsilon > 0\Big) = \mathbb{P}\Big(\varepsilon > \frac{\delta}{2}\Big) = \Phi\Big(-\frac{\delta}{2}\Big).$$

4. Assume now that $\Sigma_1 \neq \Sigma_0$. What is the nature of the frontier between $\{x \, ; \, h_*(x) = 1\}$ and $\{x \, ; \, h_*(x) = 0\}$?

In this case, for all $x \in \mathbb{R}^d$,

$$\begin{split} \pi_1 g_1(x) &> \pi_0 g_0(x) \\ &\Leftrightarrow \log(\pi_1 g_1(x)) > \log(\pi_0 g_0(x)) \,, \\ &\Leftrightarrow -\frac{1}{2} (x - \mu_1)^\top \Sigma_1^{-1} (x - \mu_1) + \frac{1}{2} (x - \mu_0)^\top \Sigma_0^{-1} (x - \mu_0) > \log(\pi_0/\pi_1) \,, \\ &\Leftrightarrow \frac{1}{2} x^\top \Sigma_0^{-1} x - \frac{1}{2} x^\top \Sigma_1^{-1} x + x^\top \Sigma_1^{-1} \mu_1 - x^\top \Sigma_0^{-1} \mu_0 - \frac{1}{2} \mu_1^\top \Sigma^{-1} \mu_1 + \frac{1}{2} \mu_0^\top \Sigma^{-1} \mu_0 > \log(\pi_0/\pi_1) \,. \end{split}$$

As the quadratic term does not vanish anymore, the frontier between $\{x; h_*(x) = 1\}$ and $\{x; h_*(x) = 0\}$ is a quadric.

2 Maximum likelihood estimation

We assume that the joint distribution of (X,Y) belongs to a family of distributions parametrized by a vector θ with real components. For $k \in \{-1,1\}$, write $\pi_k = \mathbb{P}(Y=k)$. Assume that conditionally on the event $\{Y=k\}$, X has a Gaussian distribution with mean $\mu_k \in \mathbb{R}^d$ and covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$, whose density is denoted g_k . In this case, the parameter $\theta = (\pi_1, \mu_1, \mu_{-1}, \Sigma)$ belongs to the set $\Theta = [0,1] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^{d \times d}$. The parameter π_{-1} is not part of the components of θ since $\pi_{-1} = 1 - \pi_1$. In this case, the parameter $\theta = (\pi_1, \mu_1, \mu_{-1}, \Sigma)$ belongs to the set $\Theta = [0,1] \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^{d \times d}$. The parameter π_{-1} is not part of the components of θ since $\pi_{-1} = 1 - \pi_1$.

When Σ and μ_1 and μ_{-1} are unknown, the discriminant analysis classifier cannot be computed explicitely. Assume that $(X_i, Y_i)_{1 \leqslant i \leqslant n}$ are independent observations with the same distribution as (X, Y).

1. Write the joint loglikelihood of the observations.

The loglikelihood of these observations is given by

$$\begin{split} \log \mathbb{P}_{\theta} \left(X_{1:n}, Y_{1:n} \right) \\ &= \sum_{i=1}^{n} \log \mathbb{P}_{\theta} \left(X_{i}, Y_{i} \right) \,, \\ &= -\frac{nd}{2} \log(2\pi) + \sum_{i=1}^{n} \sum_{k \in \{-1,1\}} \mathbb{1}_{Y_{i}=k} \left(\log \pi_{k} - \frac{\log \det \Sigma}{2} - \frac{1}{2} \left(X_{i} - \mu_{k} \right)^{\top} \Sigma^{-1} \left(X_{i} - \mu_{k} \right) \right) \,, \\ &= -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log \det \Sigma + \left(\sum_{i=1}^{n} \mathbb{1}_{Y_{i}=1} \right) \log \pi_{1} + \left(\sum_{i=1}^{n} \mathbb{1}_{Y_{i}=-1} \right) \log(1 - \pi_{1}) \\ &- \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{Y_{i}=1} \left(X_{i} - \mu_{1} \right)^{\top} \Sigma^{-1} \left(X_{i} - \mu_{1} \right) - \frac{1}{2} \sum_{i=1}^{n} \mathbb{1}_{Y_{i}=-1} \left(X_{i} - \mu_{-1} \right)^{\top} \Sigma^{-1} \left(X_{i} - \mu_{-1} \right) \,. \end{split}$$

2. Let M_d be the space of real-valued $d \times d$ symmetric positive matrices. Show that the function $\Sigma \mapsto \log \det \Sigma$ is concave on M_d .

Let $\Sigma, \Gamma \in M_d$ and $\lambda \in [0,1]$. Since $\Sigma^{-1/2}\Gamma\Sigma^{-1/2} \in M_d$, it is diagonalisable in some orthonormal basis and write μ_1, \ldots, μ_d the (possibly repeated) entries of the diagonal. Note in particular that $\det(\Sigma^{-1/2}\Gamma\Sigma^{-1/2}) = \prod_{i=1}^d \mu_i$. Then,

$$\begin{split} \log \det[(1-\lambda)\Sigma + \lambda\Gamma] &= \log \det[\Sigma^{1/2}\{(1-\lambda)I + \lambda\Sigma^{-1/2}\Gamma\Sigma^{-1/2}\}\Sigma^{1/2}] \\ &= \log \det \Sigma + \log \det[(1-\lambda)I + \lambda\Sigma^{-1/2}\Gamma\Sigma^{-1/2}] \\ &= \log \det \Sigma + \sum_{i=1}^d \log(1-\lambda + \lambda\mu_i) \\ &\geq \log \det \Sigma + \sum_{i=1}^d (1-\lambda)\underbrace{\log(1)}_{=0} + \lambda \log(\mu_i) := D \end{split}$$

where the last inequality follows from the concavity of the log. Now, rewrite the rhs D as:

$$D = (1 - \lambda) \log \det \Sigma + \lambda [\log \det \Sigma^{1/2} + \log \det \Sigma^{-1/2} \Gamma \Sigma^{-1/2} + \log \det \Sigma^{1/2}]$$

= $(1 - \lambda) \log \det \Sigma + \lambda \log \det \Gamma$

which completes the proof.

3. Show that the derivative of the real valued function $\Sigma \mapsto \log \det(\Sigma)$ defined on $\mathbb{R}^{d \times d}$ is given by:

$$\partial_{\Sigma} \{ \log \det(\Sigma) \} = \Sigma^{-1} ,$$

where, for all real valued function f defined on $\mathbb{R}^{d\times d}$, $\partial_{\Sigma} f(\Sigma)$ denotes the $\mathbb{R}^{d\times d}$ matrix such that for all $1 \leq i, j \leq d$, $\{\partial_{\Sigma} f(\Sigma)\}_{i,j}$ is the partial derivative of f with respect to $\Sigma_{i,j}$.

Recall that for all $i \in \{1, \ldots, d\}$ we have $\det(\Sigma) = \sum_{k=1}^d \sum_{i,k} \Delta_{i,k}$ where $\Delta_{i,j}$ is the (i,j)-cofactor associated with Σ . For any fixed i,j, the component $\Sigma_{i,j}$ does not appear anywhere in the decomposition $\sum_{k=1}^d \Sigma_{i,k} \Delta_{i,k}$, except for the term k=j. This implies

$$\frac{\partial \log \det(\Sigma)}{\partial \Sigma_{i,j}} = \frac{1}{\det \Sigma} \frac{\partial \det(\Sigma)}{\partial \Sigma_{i,j}} = \frac{\Delta_{i,j}}{\det \Sigma}.$$

Recalling the identity Σ $[\Delta_{j,i}]_{1 \leq i,j \leq d} = (\det \Sigma)$ I_d so that $\Sigma^{-1} = [\Delta_{j,i}]_{1 \leq i,j \leq d}^{\top} / \det \Sigma$, we finally get

$$\left(\frac{\partial \log \det(\Sigma)}{\partial \Sigma_{i,j}}\right)_{1 \le i,j \le d} = (\Sigma^{-1})^{\top} = \Sigma^{-1},$$

where the last equality follows from the fact that Σ is symmetric.

4. Provide the maximum likehood estimator of θ .

The gradient of $\log \mathbb{P}_{\theta}(X_{1:n}, Y_{1:n})$ with respect to θ is therefore given by

$$\begin{split} &\frac{\partial \log \mathbb{P}_{\theta}\left(X_{1:n}, Y_{1:n}\right)}{\partial \pi_{1}} = \left(\sum_{i=1}^{n} \mathbb{1}_{Y_{i}=1}\right) \frac{1}{\pi_{1}} - \left(\sum_{i=1}^{n} \mathbb{1}_{Y_{i}=-1}\right) \frac{1}{1 - \pi_{1}} \,, \\ &\frac{\partial \log \mathbb{P}_{\theta}\left(X_{1:n}, Y_{1:n}\right)}{\partial \mu_{1}} = \sum_{i=1}^{n} \mathbb{1}_{Y_{i}=1} \left(2\Sigma^{-1}X_{i} - 2\Sigma^{-1}\mu_{1}\right) \,, \\ &\frac{\partial \log \mathbb{P}_{\theta}\left(X_{1:n}, Y_{1:n}\right)}{\partial \mu_{-1}} = \sum_{i=1}^{n} \mathbb{1}_{Y_{i}=-1} \left(2\Sigma^{-1}X_{i} - 2\Sigma^{-1}\mu_{-1}\right) \,, \\ &\frac{\partial \log \mathbb{P}_{\theta}\left(X_{1:n}, Y_{1:n}\right)}{\partial \Sigma^{-1}} = \frac{n}{2}\Sigma - \frac{1}{2}\sum_{i=1}^{n} \mathbb{1}_{Y_{i}=1} \left(X_{i} - \mu_{1}\right) \left(X_{i} - \mu_{1}\right)^{\top} - \frac{1}{2}\sum_{i=1}^{n} \mathbb{1}_{Y_{i}=-1} \left(X_{i} - \mu_{-1}\right) \left(X_{i} - \mu_{-1}\right)^{\top} \,. \end{split}$$

The maximum likelihood estimator is defined as the only parameter $\hat{\theta}^n$ such that all these equations are set to 0. For $k \in \{-1,1\}$, it is given by

$$\begin{split} \widehat{\pi}_k^n &= \frac{1}{n} \sum_{i=1}^n \mathbbm{1}_{Y_i = k} \,, \\ \widehat{\mu}_k^n &= \frac{1}{\sum_{i=1}^n \mathbbm{1}_{Y_i = k}} \sum_{i=1}^n \mathbbm{1}_{Y_i = k} \, X_i \,, \\ \widehat{\Sigma}^n &= \frac{1}{n} \sum_{i=1}^n \left(X_i - \widehat{\mu}_{Y_i}^n \right) \left(X_i - \widehat{\mu}_{Y_i}^n \right)^\top \,. \end{split}$$