1. Having objective onpegarence gogunization:

a)
$$f(x) = \ln(x+2)$$
 $x+2 > 0$
 $x>-2$
 $2(f) = (-2; +\infty)$

8) $f(x) = 2^{\frac{1}{2}} + \arcsin \frac{x+2}{3}$
 $x \neq 0$
 $1 \ge \frac{x+2}{3} \ge -1$
 $3 \ge x+2 \ge -3$
 $1 \ge x \ge -5$
 $2(f) = [-5; 0) \cup (0; 1]$

2. Having unonvector znavenie gogunization

a) $f(x) = x^2 + 4x + 1$
 $x_0 = -\frac{6}{2a} - \text{Reputation napadous}$
 $x_0 = -\frac{4}{2} = -2$
 $y_0 = 2(x_0)^2 + 6x_0 + c$
 $y_0 = 4 + (-8) + 1 = -3$
 $(f) = [-3; +\infty)$

$$X = y^{2}$$

$$y = x^{2}$$

$$1) \lim_{x \to 2} (5x^{2} + 3x - 1) = 20 - 4 - 1 = 15$$

$$x \to 0$$

$$3) \lim_{x \to 5} \frac{x^{2} - 6x + 6}{x^{2} - 25} = \lim_{x \to 6} \frac{1}{(x - 5)(x + 1)} = \frac{4}{10} = 0.4$$

$$3) \lim_{x \to 5} \frac{x^{2} - 6x + 6}{x^{2} - 25} = \lim_{x \to 6} \frac{(x - 5)(x + 1)}{(x - 5)(x + 5)} = \frac{4}{10} = 0.4$$

$$4) \lim_{x \to -1} \frac{x^{3} + x + 2}{x^{3} + 1} = \lim_{x \to -1} \frac{x^{3} - x^{2} + x^{2} + 2x - x + 2}{(x + 1)(x^{2} - x + 1)} = \lim_{x \to -1} \frac{(x + 1)(x^{2} - x + 2)}{(x + 1)(x^{2} - x + 1)} = \lim_{x \to -1} \frac{(x + 1)(x^{2} - x + 2)}{(x + 1)(x^{2} - x + 1)} = \lim_{x \to -1} \frac{(x + 1)(x^{2} - x + 1)}{(x + 1)(x^{2} - x + 1)} = \lim_{x \to -1} \frac{(x + 1)(x^{2} - x + 1)}{(x - 2)(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x - 2)(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x - 2)(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 2 + 1)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 3 + 3)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 3 + 3)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 3 + 3)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 3 + 3)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 3 + 3)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 3 + 3)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 3 + 3)}{(x^{2} + 3 + 3)} = \lim_{x \to -1} \frac{2(x - 3)(x - 3 + 3)}{(x^{2} + 3 + 3$$

			= lim 1 ×+0 1+co.	
8) lim x · ct 9) lim x · co	g x = lim x > 0 s5x - cos3x x ²	Sinx = l Sinx = l lim -2 sin	$\lim_{x \to 0} \cos x = 1$ $\frac{5 \times + 3 \times}{2}, \sin \frac{5 \times - 3}{2}$ $\frac{5 \times + 3 \times}{2} = \frac{1}{2}$	3 %
$=\lim_{x\to 0}\frac{-2x}{-2}$ $=-2\lim_{x\to 0}\frac{-2x}{-2}$	$\frac{1}{4} \frac{4 \times \sin x}{x^2}$ $\frac{1}{4} \frac{4}{3} = -2$	eim -2 sin × >0 × 2im 4 sin y	4x = [x=4x] = -8	\=
10) lim25	1 + 3x = 0	im (1+3x) 2x	= [10] = [2]	= 3× 0, y+0]=
14) $\lim_{x\to 0} \frac{3}{3}$ $\lim_{x\to 0} \frac{3}{5x^2}$	$\frac{+5\times}{+2\times}\right)^{\frac{1}{x}} = \lim_{x \to 0}$	$\int_{0}^{\infty} \left(\frac{1+\frac{5x}{3}}{1+\frac{4x}{3}}\right)^{\frac{1}{x}}$	$\lim_{x\to 0} \frac{\left(\left(1+\frac{1}{3}\right)^{\frac{1}{3}}\right)}{\left(\left(1+\frac{1}{3}\right)^{\frac{1}{3}}\right)}$	学》。
= 6848 34	= e [∞]			