Poirot Lucas

Midouni Samy

SAE R5A21 Compléments de probabilités et statistique

Tests d'hypothèse avec l'application R

Exercice 1

1)a) Le seuil $\bar{x}_s = 1.9009234$

 $R = [1.9009234; +\infty[$

b) $\beta(\mu 1) = 0.7691$

c)

$ar{ extbf{X}}_{ ext{S}}$	R	β(μ1)	π(μ1)
1.9009234	[1.9009234;+∞[0.7691	0.23208956

2) a)

 $\bar{x} = 1.88776$

b)

 $\bar{x} \not\in R$ donc on ne peut pas rejeter H_0 au niveau 5%.

c)

 $Pc(\bar{x}) = 0.052529$

d)

Test non significatif car $Pc(\bar{x}) > 0.05$

e)

On ne peut pas rejeter H0 au niveau 1 % car $Pc(\bar{x}) > 0.01$

Exercice 2

1)a)

n	$ar{ extbf{X}}_{ ext{S}}$	R	$\beta(\mu_1)$	$\pi(\mu_1)$
20	2.103401	[2.103401 ;+∞[0.750445	0.249555
30	1.9009234	[1.9009234 ;+∞[0.6765674	0.3234326
40	1.7802226	[1.7802226;+∞[0.6081626	0.3918374

50	1.6978523	[1.6978523;+∞[0.5449011	0.4550989
100	1.4934561	[1.4934561 ;+∞[0.3009003	0.6990997
150	1.4029052	[1.4029052;+∞[0.1565448	0.8434552
200	1.34892615	[1.34892615;+∞[0.07790932	0.92209068
250	1.31208903	[1.31208903;+∞[0.03746054	0.96253946
300	1.28489701	[1.2848970;+∞[0.01751882	0.98248118
350	1.263 763	[1.263 763;+∞[0,008 006 732	0,991 993 3

$$\mu_1 = 1.65$$
 $\sigma = 3$
b)

Quand on augmente n, la puissance tend vers 1. 2)a)

α	$ar{ extbf{X}}_{ extsf{S}}$	R	$\beta(\mu_1)$	$\pi(\mu_1)$
0.01	2.2741932	[2.2741932;+∞[0.8727768	0.1272232
0.02	2.1248846	[2.1248846;+∞[0.8070336	0.1929664
0.03	2.0301531	[2.0301531;+∞[0.7561781	0.2438219
0.04	1.9588903	[1.9588903;+∞[0.7136072	0.2863928
0.05	1.9009234	[1.9009234;+∞[0.6765674	0.3234326
0.06	1.8515846	[1.8515846;+∞[0.6435788	0.3564212
0.07	1.8083240	[1.8083240;+∞[0.6137318	0.3862682
0.08	1.7695894	[1.7695894;+∞[0.5864176	0.4135824
0.09	1.734 ²⁶¹⁰	[1 72/261Q·±~[N 5610N/1	0.4387959
0.10	1.701	Puissance en fonction de	0.4622292	

Quand alpha augmente, la puissance augmente.

3) a)

μ_1	$\bar{\mathbf{X}}_{S}$	R	$\beta(\mu_1)$	$\pi(\mu_1)$
1.5	1.9009234	[1.9009234;+∞[0.7679104	0.2320896
1.6	1.9009234	[1.9009234;+∞[0.7086374	0.2913626
1.7	1.9009234	[1.9009234;+∞[0.6431287	0.3568713
1.8	1.9009234	[1.9009234;+∞[0.5730953	0.4269047
1.9	1.9009234	[1.9009234;+∞[0.5006726	0.4993274
2.0	1.9009234	[1.9009234;+∞[0.4282277	0.5717723
2.1	1.9009234	[1.9009234;+∞[0.3581297	0.6418703
2.2	1.9009234	[1.9009234;+∞[0.2925204	0.7074796
2.3	1.9009234	[1.9009234;+∞[0.2331199	0.7668801
2.4	1.9009234	[1.9009234;+∞[0.181099	0.818901
2.5	1.9009234	[1.9009234;+∞[0.1370303	0.8629697

b)

Puissance en fonction de mu1

Quand μ_1 augmente, la puissance augmente

Exercice 3

1)
$$\lambda = 4.35$$

2)

Nombre d'appels x _i	0	1	2	3	4	5
Nombre de minutes n _i observées	4	18	33	49	41	33
Nombre théorique de minutes attendu $th_i = nq_i$	3.0976350	13.4747123	29.3074993	42.4958740	46.2142630	40.2064088

Nombre d'appels x _i	6	7	8	9	10	11	12
Nombre de minutes n _i observées	19	16	8	6	6	4	3
Nombre théorique de minutes attendu $th_i = nq_i$	29.1496464	18.1144231	9.8497176	4.7606968	2.0709031	0.8189481	0.2968687

3)

Xi	0-1	2	3	4	5	6	7	8	9-10-11-12
n _i observés	22	33	49	41	33	19	16	8	19
$th_i = nq_i$	16.572 347 3	29.3074993		46.2142 630	40.2064 088	29.1496 464	18.1144 231	9.84971 76	7.947 416 7

5)

$$v=13-1-4=7$$

6)

$$\delta = 14.06714$$

7) R =
$$[14.06714; +\infty[$$

8)

 $d \in R$ donc on peut rejeter H_0 .

9)

Pc = 0.0008868198 < 0.001 donc le test est hautement significatif.

10)

On rejette H_0 à 1% car Pc < 0.01.