PAP

Projet: rapport3

4TIN804U

BERASATEGUY Tanguy, GOEDEFROIT Charles

Table des matières

1	4.5 AVX implementation
	1.1 4.5.1 The synchronous case
2	4.7 OpenCL Implementation 2.1 4.7.1 Basic OpenCL Implementation

1 4.5 AVX implementation

1.1 4.5.1 The synchronous case

On fait le speedup avec omp_tile entre les tailing opt et avx sur la machine UHURA on obtient 4483 pour opt et 4764 pour avx un speedup de $0.94 = \frac{4483}{4764}$. Il n'y a pas une grande différence entre les 2 version car gcc a une très bonne vectorization.

1.2 4.5.2 The asynchronous case

On a implémenter en suivant la consigne sur sujet. La version avx fonction avec la variante omp_tiled avec un speedup de TODO : Par-contre la version avx ne fonctionne pas avec la variante omp_lazy .

Le code de la fonction :

toto

2 4.7 OpenCL Implementation

2.1 4.7.1 Basic OpenCL Implementation

sur la machine troi on a executer la version ocl avec une taille de 1024x1024 et des tuiles de taille 16x16, les 69191 iterations sont executer en 1648ms.

sur la machine troi on a executer la version omp_tiled avec une taille de 1024×1024 et des tuiles de taille 16×16 et le tuilage opt, cela ce fini au bout de ...ms en ... iterations.

le speedup et de $4.81 = \frac{332871}{69191}$.