Inferência Estatística com Abordagem Bayesiana

Rosangela Helena Loschi 1

¹Departamento de Estatística Universidade Federal de Minas Gerais

29 de outubro de 2021

MODELAGEM BAYESIANA

Modelagem Bayesiana

A modelagem Bayesiana é composta de duas fases:

- A construção da função de verossimilhança;
- A construção da distribuição a priori

Denotemos por

- ightharpoonup heta é o parâmetro de interesse e Θ é o espaço paramétrico;
- $\mathbf{x} = (x_1, \dots, x_n)$ é a amostra observada da população alvo e \mathcal{X} é o espaço amostral.
- $ightharpoonup \pi(\theta)$ é a distribuição *a priori* sobre θ .
- $ightharpoonup f(oldsymbol{x}\mid heta)$ é a função de verossimilhança
- $ightharpoonup \pi(\theta \mid \mathbf{x})$ é a distribuição *a posteriori* sobre θ .

A função de Verossimilhança: Resume a informação trazida pelos dados sobre θ . É construída considerando-se:

- considerações teóricas sobre a natureza do fenômeno estudo.
- considerações teóricas sobre as técnicas experimentais, etc.

Definição: A função de verossimilhança $f(\mathbf{x} \mid \theta)$ é uma função definida de $\Theta \times \mathcal{X}$ em \mathbb{R}_+ tal que:

- Fixado θ , $f(x \mid \theta)$ é uma medida de probabilidade, condicional em θ , representando a incerteza associada à observação de cada valor x de X, se θ é conhecido.
- Fixado X = x, $f(x \mid \theta)$ é uma função de θ (sem interpretação probabilística.)

Exemplo: Seja $\theta > 0$ a taxa de ocorrência de um evento e seja X_i o tempo até a ocorrência deste evento na unidade i. Assuma que dado θ , a amostra X_1, \ldots, X_n seja i.i.d. com distribuição exponencial com parâmetro θ . Construa a função de verossimilhança.

Solucao: Como a amostra é iid, temos que

$$f(\mathbf{x} \mid \theta) = \prod_{i=1}^{n} \theta \exp\{-\theta x_i\} = \theta^n \exp\{-\theta \sum_{i=1}^{n} x_i\}$$

Note que se n=2 e fixarmos $\theta=1$ a função de verossimilhança fornece a probabilidade de ocorrência de cada amostra retirada da população em que $\theta=1$.

Table: Exemplos-Verossimilhança fixado $\theta=1$

Amostra	verossimi hança)
(0,1)	$\exp\{-1\}$	$= f_{X_1,X_2}((0,1) \mid \theta = 1)$
(1,1)	$\exp\{-2\}$	
(1,2)	$exp{-3}$	
(0.5,0.5)	$\exp\{-1\}$	4 D > 4 A >

Se a função de verossimilhança é avaliada na amostra observada, obteremos uma função de θ .

Table: Exemplos-Verossimilhança fixada a amostra observada

Amostra	verossimilhança	Cor-gráfico
(0,0)	θ^2	(azul)
(1,0)	$\theta^2 \exp\{-\theta\}$	(laranja)

Note que a verossimilhança, quando vista como função de θ , pode assumir valores superiores a 1.

Distribuição a priori: Deve representar e modelar todo o conhecimento inicial, nao proveniente da amostra observada, que temos sobre θ . Existem vários métodos para construírmos a distribuição a priori. Discutiremos alguns.

- Método subjetivista (veremos o próximo exemplo.)
- Conjugação
- Distribuições de referência

A Inferência

Distribuição a posteriori: É uma atualização da distribuição a priori sobre θ . Usamos o Teorema de Bayes para misturar a informação dos dados e a informação a priori.

Se $\Theta = \{\theta_1, \dots, \theta_n\}$ é um conjunto finito ou é um conjunto infinito enumerável $\Theta = \{\theta_1, \theta_2, \dots\}$ e, a priori, $\pi(\theta_i) = P(\theta = \theta_i)$ então a distribuição a posteriori é

$$\pi(\theta_i \mid \mathbf{x}) = P(\theta = \theta_i \mid \mathbf{x}) = \frac{f(\mathbf{x} \mid \theta = \theta_i)P(\theta = \theta_i)}{\sum_{j=1}^{n} f(\mathbf{x} \mid \theta = \theta_j)P(\theta = \theta_j)}$$

Se $\Theta \subset \mathbb{R}$ é um conjunto denso e, *a priori*, $\pi(\theta)$ então a distribuição *a posteriori* é

$$\pi(\theta \mid \mathbf{x}) = \frac{f(\mathbf{x} \mid \theta)\pi(\theta)}{\int_{\Theta} f(\mathbf{x} \mid \theta)\pi(\theta)d\theta}$$

- ► Amostra: Pacientes com Síndrome de Down (Trisomia no cromossomo 21)
- Esta síndrome é consequência da não-disjunção meiótica.
- Meta: Determinar a probabilidade ϕ de que a não-disjunção ocorra na primeira fase da Meiosis.
- ▶ Importância:Identificar fatores que poderiam gerar tal doença.

A não-disjunção meiótica pode ser representada da seguinte forma:

Coleta de los Datos

- Uma amostra de sangue da pessoa con síndrome de Down é submetida ao procedimento PCR (Polimerase chain reaction) seguido de uma análise via densitometria laser.
- Obtemos o número de alelos distintos que o indivíduo tem no loco de interesse.

Construção da função de verossimilhança

- Supõem-se que a hipótese do equilíbrio de Hardy-Weinberg é verificada para a população.
- ► Além disto, em pacientes trisômicos, é possivel identificar no loco de interesse o seguinte:
 - ▶ Três picos: (i) se a não-disjunção ocorre na Meiosis I, (ii) se a mãe é heterozigota e (iii) se o alelo do pai neste loco é distinto dos alelos maternos.
 - Dois picos:(i) se a não-disjunção ocorre ou na Meiosis I ou na Meiosis II e depende da combinação de cromossomos transmitido pelos pais.
 - Um pico: se a não-disjunção ocorre ou na Meiosis I ou na Meiosis II e os pais são homozigotos.
- Seleciona-se na população uma amostra i.i.d de *n* indivíduos com trissomia (síndrome de Down).

Sob tais supostos e denotanto por

- $\mathbf{Y} = (Y_1, Y_2, Y_3)$ e Y_i o número de indivíduos na amostra que têm i, i = 1, ..., 3, picos no loco de interesse;
- $ightharpoonup \phi$ probabilidade de que a não-disjunção ocorra na meiose I.
- p_i frequência do alelo i na população (conhecida);

A função de verossimilhança é

$$P(\mathbf{Y} = \mathbf{y} \mid \phi) = \frac{n!}{y_1! y_2! y_3!} [\theta_1(\phi)]^{y_1} [\theta_2(\phi)]^{y_2} [\theta_3(\phi)]^{y_3},$$

onde $\sum_{i=1}^{3} v_i = n$ e

$$\theta_1(\phi) = \phi \sum_{i=1}^m p_i^3 + (1-\phi) \sum_{i=1}^m p_i^2;$$

$$\theta_2(\phi) = 3\phi \sum_{i=1}^m \sum_{j=1}^m p_i^2 p_j + (1-\phi) \sum_{i=1}^m \sum_{j=1}^m p_i p_j, \text{ para } i \neq j;$$

$$\theta_3(\phi) = \phi \sum_{i=1}^m \sum_{j=1}^m \sum_{k=1}^m p_i p_j p_k, \quad \text{para } i \neq j \neq k$$

$$() \qquad \qquad 29 \text{ de outubro de } 2021$$

29 de outubro de 2021

Construção da distribuição a priori :

- ightharpoonup O parâmetro de interesse é $\phi \in (0,1)$
- Para construírmos a distribuição *a priori*, utilizados duas abordagens.
 - lacktriangle Assumimos que não tínhamos qualquer informação sobre ϕ

$$\phi \sim Uniforme(0,1) \equiv Beta(1,1)$$

Como não tínhamos contato com um especialista, buscamos outras fontes de informação, obtendo:

Table: Algumas estimativas de ϕ para outras populações

Referencia	n	$\hat{\phi}$	Referencia	n	$\hat{\phi}$
Lorber et al. (1992)	52	0.5192	Koehler <i>et al.</i> (1996)	776	0.7384
Petersen et al. (1992)	60	0.6833	Yoon <i>et al.</i> (1996)	103	0.6893
Zaragosa et al.(1994)	249	0.6867	Savage <i>et al.</i> (1998)	606	0.6930
Griffin (1996)	436	0.7133	Nicolaidis y Petersen (1998)	797	0.7189

Baseando-se nestas informações construímos a distribuição de ϕ como segue:

- * Consideramos a média 0.667 das estimativas de ϕ destas populações.
- * Como $\phi \in (0,1) \leftarrow$ Distribuições Beta são escolhas possíveis.
- * Qual? Fizemos uma análise de sensibilidade escolhendo distribuições *a priori* com média 0.667 e diferentes graus de incerteza (controlado pela variância de ϕ)

A distribução a posteriori:

Se a priori $\phi \sim \mathcal{B}(\alpha, \beta)$, $\alpha, \beta \in \mathcal{R}_+$,

$$\pi(\phi) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \phi^{\alpha - 1} (1 - \phi)^{\beta - 1} \ \phi \in (0, 1).$$

a distribuição *a posteriori* para ϕ é

$$\pi(\phi|\mathsf{y}) = \frac{[\theta_1(\phi)]^{y_1}[\theta_2(\phi)]^{y_2}[\theta_3(\phi)]^{y_3}\phi^{\alpha-1}(1-\phi)^{\beta-1}}{\int_0^1 [\theta_1(\phi)]^{y_1}[\theta_2(\phi)]^{y_2}[\theta_3(\phi)]^{y_3}\phi^{\alpha-1}(1-\phi)^{\beta-1}d\phi}, \ \ \phi \in (0,1).$$

- Não é completamente conhecida.
- Utilizamos métodos numéricos e de reamostragem para aproximá-la.

0

- * Datos: 34 indivíduos brasileiros com Síndrome de Down dos quais 6, 22 e 6, respectivamente, têm 1,2 e 3 alelos distintos no loco de interesse.
- * frequências alélicas: temos somente 6 alelos na população com frequências 0.12, 0.45, 0.09, 0.31, 0.01 e 0.02.
- * Estimador de máxima verosimilhança e variância assintótica são 0.6552 e 0.0481, respectivamente.

Figure: Distribuições a priori e a posteriori (método SIR) para ϕ

Table: Estimadores de Bayes

	Especificação a Priori				Resultados a Posteriori -SIR			Resultados a Posteriori-Simpson			
c	γ	β	Média	Var	Moda	Média	Var	Moda	Média	Var	Moda
1.	0	1.0	0.500	0.080	_	0.6571	0.0311	0.6690	0.6549	0.0305	0.6553
2.	0	1.0	0.667	0.060	1.000	0.7043	0.0268	0.6842	0.7015	0.0272	0.7244
4.	0	2.0	0.667	0.030	0.750	0.6498	0.0194	0.7147	0.6814	0.0195	0.7013
20	.0	10.0	0.667	0.007	0.677	0.6671	0.0065	0.6765	0.6670	0.0063	0.6753

A posteriori

- Temos mais certeza sobre o valor verdadeiro de ϕ , qualquer que seja a distribuição *a priori* escolhida.
- Se a priori $\phi \sim Uniforme(0,1)$ e usando Simpson, mais provavelmente ϕ é $\approx 0,6553$
- Curiosidade: a Estimativa de máxima verosimilhança é 0.6553. Coincide com a moda a posteriori se a distribuição a priori assumida é a Uniforme(0, 1).

Distribuição preditiva *a priori:* É a distribuição de **X**. Usamos o Teorema da probabilidade total e obtemos

Se $\Theta = \{\theta_1, \dots, \theta_n\}$ é um conjunto finito ou é um conjunto infinito enumerável $\Theta = \{\theta_1, \theta_2, \dots\}$ e, a priori, $\pi(\theta_i) = P(\theta = \theta_i)$ então a distribuição preditiva a priori é

$$f(\mathbf{x}) = \sum_{j=1}^{n} f(\mathbf{x} \mid \theta = \theta_j) P(\theta = \theta_j)$$

Se $\Theta \subset \mathbb{R}$ é um conjunto denso e, *a priori*, $\pi(\theta)$ então a distribuição preditiva *a priori* é

$$f(\mathbf{x}) = \int_{\Theta} f(\mathbf{x} \mid \theta) \pi(\theta) d\theta$$

Se **X** é um vetor/variável discreta esta distribuição fornece a probabilidade de ocorrência da amostra observada

←□ → ←□ → ← = → = → へ ○

29 de outubro de 2021

Exemplo: Seja X_i uma variável binária, i.é, $X_i \in \{0,1\}$, i=1,2. Denote por $\theta = P(X_i = 1)$. Se $\Theta = \{1/3, 1/2\}$ e, a priori temos que $P(\theta = 1/3) = P(\theta = 1/2) = 0,5$. Qual é a probabilidade de ocorrência da amostras (0,0)?

que função fornece resposta a esta pergunta: a função de verossimilhança ou a distribuição distribuição preditiva a priori?

Preditiva a priori

$$P(X_1 = x_1, X_2 = x_2) = P(X_1 = x_1, X_2 = x_2 \mid \theta = 1/3)P(\theta = 1/3) + P(X_1 = x_1, X_2 = x_2 \mid \theta = 1/2)P(\theta = 1/2)$$

$$= (1/3)^{x_1 + x_2}(2/3)^{2 - x_1 - x_2}0, 5$$

$$+ (1/2)^{x_1 + x_2}(1/2)^{2 - x_1 - x_2}0, 5$$

lacktriangle verossimilhança fixado, por exemplo, heta=1/3

$$P(X_1 = x_1, X_2 = x_2 \mid \theta = 1/3) = (1/3)^{x_1 + x_2} (2/3)^{2 - x_1 - x_2}$$

Table: Distribuição Preditiva a priori e função de verossimilhança avaliada em $\theta=1/3$

Amost ra	Preditiva a priori	Verossimi hança fixado $ heta=1/3$
(0,0)	$1/2((2/3)^2 + (1/2)^2) = 25/72$	$(2/3)^2 = 4/9$
	1/2((2/3)*(1/3)+(1/2)(1/2))=17/72	
(0, 1)	1/2((2/3)*(1/3)+(1/2)(1/2))=17/72	
(1,1)	$1/2((1/3)^2 + (1/2)^2) = 13/72$	$(1/3)^2 = 1/9$

- A função de verossimilhança fornece a probabilidade de ocorrência de cada amostra se soubessemos de que população a extraímos. No caso, extraímos da população em que $\theta=1/3$
- A distribuição preditiva a priori fornece a probabilidade de ocorrência de cada amostra. Note que ela agrega a incerteza que temos sobre a população da qual extraímos a amostra.

Distribuição preditiva a posteriori: Seja X a amostra observada e seja Y valores futuros da variável aleatória de interesse ainda não observados. Seja $\pi(\theta)$ a distribuição a priori descrevendo a incerteza inicial sobre o parâmetro populacional de interesse.

Se $\Theta \subset \mathbb{R}$ é um conjunto denso então a distribuição preditiva a posteriori é

$$f(\mathbf{Y} \mid \mathbf{X}) = \frac{f(\mathbf{Y}, \mathbf{X})}{f(\mathbf{X})} = \frac{\int_{\Theta} f(\mathbf{Y}, \mathbf{X} \mid \theta) \pi(\theta) d\theta}{f(\mathbf{X})}$$
$$= \int_{\Theta} f(\mathbf{Y} \mid \mathbf{X}, \theta) \frac{f(\mathbf{X} \mid \theta) \pi(\theta)}{f(\mathbf{X})} d\theta$$
$$= \int_{\Theta} f(\mathbf{Y} \mid \mathbf{X}, \theta) \pi(\theta \mid \mathbf{X}) d\theta.$$

 \triangleright Se, dado θ , \boldsymbol{X} e \boldsymbol{Y} são independentes, temos

$$f(\mathbf{Y} \mid \mathbf{X}) = \int_{\Theta} f(\mathbf{Y} \mid \theta) \pi(\theta \mid \mathbf{X}) d\theta.$$

4□ > 4∰ > 4½ > 4½ > ½ 90

Se Θ é um conjunto finito ou infinito enumerável temos a priori que $\pi(\theta_i) = P(\theta = \theta_i)$ então a distribuição preditiva a posteriori é

$$f(\mathbf{Y} \mid \mathbf{X}) = \sum_{i} f(\mathbf{Y} \mid \mathbf{X}, \theta_{i}) P(\theta = \theta_{i} \mid \mathbf{X})$$

ightharpoonup Se, dado θ , X e Y são independentes, temos

$$f(\mathbf{Y} \mid \mathbf{X}) = \sum_{i} f(\mathbf{Y} \mid \theta_{i}) P(\theta = \theta_{i} \mid \mathbf{X})$$

Exemplo: Seja $\Theta = \{1/3, 1/2\}$ e *a priori* assuma que $P(\theta = 1/3) = P(\theta = 1/2) = 0, 5$. Se, ao realizarmos o experimento, a amostra $(X_1, X_2) = (1, 1)$ foi observada, qual é a predição que se faz para uma próxima observação Y deste mesmo experimento?

Solução: A primeira coisa a fazer é encontrar a distribuição *a posteriori* de θ se a amostra $(x_1, x_2) = (1, 1)$ foi observada.

$$P(\theta = 1/3 \mid X_1 = 1X_2 = 1) = \frac{P(X_1 = 1X_2 = 1 \mid \theta = 1/3)P(\theta = 1/3)}{P(X_1 = 1X_2 = 1)}$$

$$= \frac{1/9 * 1/2}{13/72} = 4/13$$

$$P(\theta = 1/2 \mid X_1 = 1X_2 = 1) = 9/13$$
 (1)

Note que $Y \in \{0,1\}$. A distribuição preditiva *a posteriori* é

$$P(Y = 0 \mid X_{1} = 1X_{2} = 1) = P(Y = 0 \mid \theta = 1/3)P(\theta = 1/3 \mid X_{1} = 1X_{2} = 1) + P(Y = 0 \mid \theta = 1/2)P(\theta = 1/2 \mid X_{1} = 1X_{2} = 1) = 2/3 * 4/25 + 1/2 * 21/25 = 0,55128 = 1 - P(Y = 1 \mid X_{1} = 1X_{2} = 1)$$
(2)

Ou seja, se tivermos que apostar, temos uma chance um pouco maior de que o resultado de um experimento futuro seja zero.