CHAPTER-5

सिद्शों का योग, अन्तर एवं वियोजन

[Addition, Subtraction and Resoulution of Vectors]

अदिश राशि (Scalar Quantity) -: रेनी भीतिक राशि जिसमें केवल परिमाण होता है। स्पिश शाशि (Vector Quantity) -: परिमाण व दिशा दोनो होता है।

सिद्दा राशि का निरूपण (Representation of a vector)

Terminology (शक्दावली)

(1) सिदश का मापांक (Modulus of a Ve dor) - ?

किसी सिदश का मापांक वह धनात्मक गार्श है जो उस सिदश के परिमाण की बताता है।

तैसे सिदश में या वं का मापांक = |मेंडे| था से किरिश करते हैं।

21-य सिदश (Null vector) -: जिस सिदश का आदि ही, श्रुन्य सिवा कहलाता है इसका मापांक श्रुन्य अरेर इसकी दिशा असात होती है इसे ठ या (iii) क्कांक या इकाई सिदेश (Unit Vector) -: जिस सदिश का मापांक इकाई हो उसे Unit vector कहते हैं। इकाई सिदश के उपर प्रतीक \लगाकर् सुचित करते हैं। जैसे - के, सिदश - के की दिशा में इकाई सदिश है। इसका मान वे सदिश में उसके माणंक से मागं देकर प्राप्त किया जाता है। अधित के = वं की दिशा में इकाई सदिश सदिश वे का मार्पाक |वे| (iv) समान सिदेश (Equal Vectors) -: (i) रादि दी सदिशों के मापांक ष्रराष्ट् हो (ii) और उनकी दिशा स्क शे दिशा में हो da AB = CD Sazillos IABJ = |CB| ? (v) संरेखीय सिदश (callinear Vectors)—: दो सिदश समरेष्ठ होंगे यदि वै रूक ही रेखा में हो या राक ही सरल रेखा के समान्तर हो।

समिदिश कंत असमिदिश सिदिश (Like Ve chook and Unlike Vectors)—:

By Jb, G

समतलीय सदिश (wplanar Vedor)—: वे सदिश जी रूक ही तल में हो या जिनकी दिशायें रूक ही तल के समानंतर हो,

त्रहण सिदिश (Negative Vectors) — धिद दी सिदिशों के मापांक बराबर ही किन्तु दिशाचें विपरीत हों तो वे परस्पर त्रहणात्मक सिदश -'If AB = वे तो BA = - वे

प्रियति सिदिश (Position Vector) —: माना ० मूल बिन्दु हैं और A कोई अन्य बिन्दु हैं, तो सिदेश ठें को मूल बिन्दु ० के सापेश बिन्दु म का स्थिति सिदेश (Position Vector) कहते हैं।

सिदिशों का योगफल (Addition of Vectors) (i) सदिश योग का त्रिभुन नियम—: यदि किसी त्रिभुन की कम से ली गयी दी भुनार, दी सदिशों के परिमान तथा दिशां को निरुपित करें ती विषरीत कमः में ली गई त्रिभुन ० के में की तीसरी भुजा सिदशों के योग अथवा परिणामी की स्वित करती है। यहाँ वं और के कोई दो सदिश है।
तथा स्थिति सदिश ०म = वं, ०छ = कं त्व - $0\vec{A} + 0\vec{B} = 0\vec{B} = \vec{a} + \vec{b}$ सिरों की घटाना (Subtraction of vector)-: वे से सिदश के को बराने का अर्थ है कि - के की वे से जी इना अयित् वे + (-के) = वे - के यहाँ - $\vec{a} - \vec{b} = \vec{o} \vec{A} - \vec{o} \vec{B} \vec{O} \vec{A} = \vec{o} \vec{A} + (\vec{B} \vec{O}) \vec{A} \vec{B} = \vec{O} \vec{B} - \vec{O} \vec{A}$ Properties of Addition of Vectors (i) \(\vec{a} + \vec{b} = \vec{b} + \vec{a} \) \(\vec{b} + \vec{c} \) \(\vec{a} + \vec{b} \) \(+ \vec{c} \) \(\vec{c} + \vec{c} + \vec{c} \) \(\vec{c} + \vec{c} + \vec{c} + \vec{c} \) \(\vec{c} + \vec{c} + \vec{c} + \vec{c} + \vec{c} + \vec{c} \) \(\vec{c} + \vec{c} + \vec{c} + \vec{c}

समकोणिक इकाई सिदश [Rectangular Unit Vectors]
निर्दर्शां हो ० X, 0 Y तथा 0 Z तीन
परस्पर लाइब दिशाओं में इकाई
सिदशों को कमरा: î, î, k से
व्यक्त किया जाता है। तथा
इस सिदशों के लिए
|î| = |î| = |ệ| = 1

भामकोणीय इकाई सिदिशों के पदीं में किसी बिदु का स्थित सिदिश (Position Vector of a point in Toums of Perpendicular Unit Vectors)

(i) (Two - dimensional space) - यदि दिनिमीय कोई विन्दु है तो

Part Position Vector $\overrightarrow{OP} = \overrightarrow{r} = \overrightarrow{OQ} + \overrightarrow{QP}$ $|\overrightarrow{r}| = -xi + y\hat{j} \quad (equation)$ $|\overrightarrow{r}| = \sqrt{x^2 + y^2}$

(ii) Three-démensional space-: तिविभीय आकाश में कोई विन्ड P(x, 4, 7) है तब Pका स्थित सिंदश 0P = 7 P(x, 4,2) $\overrightarrow{OP} = \overrightarrow{r} = \overrightarrow{x} + y \overrightarrow{j} + z \widehat{k}$ प्रमेय-: यदि दी सिदरा वे तथा है के घटक $\vec{a} = \alpha \hat{i} + \alpha \hat{j} + \alpha \hat{k}$ $\frac{1}{b} = b_1\hat{c} + b_2\hat{j} + b_3\hat{l}c$ de à ant |a| = \ a2 + a2 + a2 इसी प्रकार

 $\frac{3211 \text{ york}}{5^3 \text{ ont } |6|} = \sqrt{|b|^2 + b_2^2 + c_2^2}$

रिक् कीज्यार (Direction Cosinus)

कोई सिदेश समकोणिक अभी की धनातमक दिशाओं के साथ जो कोण बनाता है, अकी कोज्याओं (whime) को दिक कोज्यायें कहलाती हैं। माना कोई सिद्धा ०० समकोणिक अभी ०४, ०५ तथा ०० की धनातमक दिशाओं के अख्य साथ कमशः , ते, ह तथा ४ कोण बनाता है, तो (wsd., cosp., cost उनकी दिक कोज्यायें कहलान ती हैं। इसे सामायतः 1, m, n से denote करते हैं। अधीत 1 = copa, m = cops, m = cops जहाँ ८, ६,४ (direction angles) है। तथा ०८ ८, ६,४) रा

If
$$DP = \vec{x} = xi + yj + zk$$

$$|\vec{y}| = \sqrt{x^2 + y^2 + z^2}$$

$$delt DP = \vec{x} = \sqrt{x^2 + y^2 + z^2}$$

$$delt DP = \vec{x} = \sqrt{x^2 + y^2 + z^2} = \frac{i}{i} \text{ on } y_0 \text{ in }$$

$$delt DP = \vec{x} = \frac{x}{x^2 + y^2 + z^2} = \frac{i}{\vec{x}} \text{ on } y_0 \text{ in }$$

$$delt = \frac{x}{|\vec{y}|} = \frac{y}{x^2 + y^2 + z^2} = \frac{i}{\vec{x}} \text{ on } y_0 \text{ in }$$

$$delt = \frac{z}{|\vec{y}|} = \frac{z}{\sqrt{x^2 + y^2 + z^2}} = \frac{i}{\vec{x}} \text{ on } y_0 \text{ in }$$

$$delt = \frac{z}{|\vec{y}|} = \frac{z}{\sqrt{x^2 + y^2 + z^2}} = \frac{i}{\vec{x}} \text{ on } y_0 \text{ in }$$

$$delt = \frac{z}{|\vec{y}|} = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 + z^2}{x^2 + y^2 + z^2} = 1$$

$$delt = \frac{x^2 + y^2 +$$