Problems: - Too many weights

- Need features

Solution: Convolutional Newral Networks

1959- Hubel and Wiesel - [Cats vision]

* Simple and complex cells in the visual/primary cortex a cascaded model for 2 types of cells.

1979 - kunihiko Fukushima - [Neo Cognition for digital recognition

3 1989 - Lecun et.al-[CNN]

1) Hubel and wiese Highly complex cells

complex cells () line

simple cells

rough features

white black

Fukushima

Stimulus

	MLPs	CNNs
input	feature vectors	Data(raw)
connection	dense	sparse
weights	independent	share
learning	backprop	backprop
filtering	outside	inside
scheme	directly learn a non linearly separable problem via features of input	learn a (quasi) linear seperable problem via divide and conquering the raw input

Observations/ Motivations

- MLPs/AEs have too many weights

digit (ecognition 30 = 900 inputs \longrightarrow first layer has 80,000 weights face 156 = 65536 inputs \longrightarrow 1st layer has 600,000 weights recog.

lots of inputs because full/dense connectivity

Idea - weight sharing

How should we then get enough information (features) from the input?

Hubel-Wiesel discovered "receptive fields"

Specific sensivity towards specific patterns in Small fields of (cats) visual context.

simulate in convolution

What is convolution ?

In a physical system: An input acts on a linear system to produce an output.

$$y(t) = x(t) + h(t) = \int_{-\infty}^{+\infty} x(t) h(t-t) dt$$

output input unit impulse- ∞
response of dummy variable
the system

Convolutional sum: $y(n) = \sum \chi(K) \cdot h(n-k)$ KEN specific field

$$X = \begin{bmatrix} \frac{3}{10} & \frac{3}{10} \\ \frac{3}{10} \\ \frac{3}{10} & \frac{3}{10} \\ \frac{3}{10} & \frac{3}{10} \\ \frac{3$$

$$B = \begin{bmatrix} 10 & 10 & 10 \\ 50 & 50 & 50 \\ 100 & 100 & 100 \end{bmatrix} \times h$$

$$T = \begin{bmatrix} 100 & 100 & 100 \\ 100 & 100 & 100 \end{bmatrix}$$

$$T = \begin{bmatrix} 100 & 100 & 100 \\ 100 & 100 & 100 \\ 100 & 100 & 100 \end{bmatrix}$$

Idea: weights as filter coefficients

eg: (1000X 1000)

Weight sharing: One filter for all pixels

Problem: But we need many features

Solution: Learn several filters (32,64,128...)

So for we have:

Problem: Still non linear hence impossible for shallow MLPs.

Solution: Huble/Wiesel ----> cascade it [Neocognitron did it]

Some common Nets: AlexNet (2012)

Zf Net (2013)

Google Net (2014)

VGG (2014)

Resnet (2015)