

M66, Modélisation et analyse numérique

TD1: Interpolation et splines

Interpolation

Exercice 1 (Différences divisées)

Soient x_0, x_1, \ldots, x_n des points distincts d'un intervalle I, et f, g et h des applications réelles définies sur cette intervalle. On note par $f[x_0, x_1, \ldots, x_n]$ la différence divisée de f en x_0, x_1, \ldots, x_n .

a) (1) Démontrer l'identité

$$f[x_0, x_1, \dots, x_n] = \sum_{j=0}^n f(x_j) \prod_{\substack{k=0\\k\neq j}}^n \frac{1}{x_k - x_j}.$$

(2) En déduire que la différence divisée $f[x_0, x_1, ..., x_n]$ est une fonction symétrique, c'est-à-dire, que pour toute permutation σ de l'ensemble $\{0, ..., n\}$ dans lui même,

$$f[x_{\sigma(0)}, x_{\sigma(1)}, \dots, x_{\sigma(n)}] = f[x_0, x_1, \dots, x_n]$$

b) Si $f = \alpha g + \beta h$ pour certains $\alpha, \beta \in \mathbb{R}$, alors

$$f[x_0,\ldots,x_n]=\alpha g[x_0,\ldots,x_n]+\beta h[x_0,\ldots,x_n].$$

c) Si f = gh, alors on a la formule suivante (appelée formule de Leibniz) :

$$f[x_0, \dots, x_n] = \sum_{j=0}^n g[x_0, \dots, x_j] h[x_j, \dots, x_n].$$

Exercice 2 (Interpolation quadratique)

a) Soit I un intervalle et $f \in C^3(I)$. On note $p_2(x)$ le polynôme de degré ≤ 2 qui interpole la fonction f aux points $x_i = x_0 + ih \in I$ pour i = 0, 1, 2. Montrer que

$$\forall x \in [x_0, x_2] \quad |f(x) - p_2(x)| \le \frac{h^3}{9\sqrt{3}}M,$$

où M est une constante ne dépendant que de la restriction de f à I.

b) On veut construire une table de valeurs de la fonction $f(x) = \sqrt{x+1}$ dans l'intervalle [0,1] pour des points équidistants $x_{i+1} = x_i + h$.

Quelle valeur doit prendre h pour garantir 7 chiffres décimaux corrects en faisant une interpolation quadratique?

Exercice 3 (Interpolation d'Hermite)

On se donne n+1 abscisses distinctes x_0, x_1, \ldots, x_n . On considère les polynômes $U_i(x)$ et $V_i(x)$, $0 \le i \le n$, de degré 2n+1 qui vérifient les conditions suivantes :

$$U_i(x_k) = \delta_{ik} \quad ; \quad U'_i(x_k) = 0 \qquad i, k = 0, \dots, n$$

$$V_i(x_k) = 0 \quad ; \quad V'_i(x_k) = \delta_{ik} \quad i, k = 0, \dots, n$$
(1)

a) Quelles conditions d'interpolation vérifie le polynôme

$$p(x) = \sum_{i=0}^{n} U_i(x)y_i + \sum_{i=0}^{n} V_i(x)y_i'?$$

b) En sachant que les polynômes de la base de Lagrange associée aux nœuds x_i vérifient $L_i(x_k) = \delta_{ik}$, montrer que

$$U_i(x) = [1 - 2L'_i(x_i)(x - x_i)] (L_i(x))^2$$

$$V_i(x) = (x - x_i)(L_i(x))^2$$

vérifient les conditions (1).

c) On considère le cas particulier de n=1, l'intervalle I=[0,1] et soient $x_0=0$ et $x_1=1$. Soit f(x) une fonction dans $C^4(I)$ et telle que

$$f(x_i) = y_i,$$
 $f'(x_i) = y'_i,$ $i = 0, 1.$

On définit la fonction S(x) par la relation

$$f(x) = p(x) + x^{2}(x-1)^{2}S(x).$$

(1) Soit x fixé dans I. On introduit la fonction F définie par

$$F(t) = f(t) - H(t) - t^{2}(t-1)^{2}S(x)$$

- (i) Montrer que F(t) s'annule en (au moins) 3 points distincts que l'on explicitera.
- (ii) Montrer qu'il existe 2 réels distincts t_1^1 et t_2^1 tels que

$$F'(t_1^1) = F'(t_2^1) = 0.$$

(2) Calculer F'(t), F'(0), F'(1).

En déduire qu'il existe (au moins) 4 réels distincts t_i^2 , i=1,2,3,4 tels que

$$F'(t_i^2) = 0, \forall i = 1, \dots, 4.$$

(3) En déduire alors qu'il existe un réel $\xi_x \in I$ tel que

$$S(x) = \frac{f^{(4)}(\xi_x)}{4!}.$$

(4) Donner alors une majoration de l'erreur d'interpolation |f(x) - H(x)|. (Indication : On pourra utiliser l'inégalité suivante :

$$\max_{x \in [0,1]} \left| x \left(x - \frac{1}{n} \right) \left(x - \frac{2}{n} \right) \cdots \left(x - \frac{n-1}{n} \right) (x-1) \right| \le \frac{1}{2^{n+1}}, \quad \forall n \ge 1.$$

d) Application: une déviation entre deux voies de chemin de fer parallèles doit être un polynôme de degré 3 qui unit les positions (0,0) et (4,2) et est tangent dans ces points, aux droites y=0 et y=2 respectivement. Obtenir ce polynôme. Utiliser la question précédente pour majorer l'erreur |f(x)-p(x)| dans l'intervalle [1,2].

Méthode des moindres carrés

Exercice 4 (Droite de régression)

Considérons les données $\{(x_i, y_i) | i = 0, ..., n\}$ où y_i peut être vue comme la valeur $f(x_i)$ prise par une fonction f au nœud x_i .

Soit

$$\Phi(b_0, b_1) = \sum_{i=0}^{n} \left[y_i - (b_0 + b_1 x_i) \right]^2.$$

a) Déterminer b_0 et b_1 qui minimise Φ .

La droite ainsi déterminée $x \mapsto b_0 + b_1 x$, est dite droite des moindres carrés, ou de régression linéaire. Elle est la solution de degré 1 du problème des moindres carrées pour les données $\{(x_i, y_i)\}$.

- b) Exprimer les coefficients b_0 et b_1 en fonction de la moyenne $M = \frac{1}{(n+1)} \sum_{i=0}^{n} x_i$ et de la variance $V = \frac{1}{(n+1)} \sum_{i=0}^{n} (x_i M)^2$.
- c) Vérifier que la droite de régression linéaire passe par le point dont l'abscisse est la moyenne des $\{x_i\}$ et l'ordonnée est la moyenne des $\{y_i\}$.

Exercice 5 (Le cas général)

Étant donnée $\{(x_i, y_i) | i = 0, ..., n\}$, une solution du problème des moindres carrées de degré m est la donnée d'un polynôme $P \in \mathbb{P}_m[\mathbb{R}]$ qui minimise la quantité :

$$\sum_{i=0}^{n} \left[y_i - P(x_i) \right]^2.$$

- a) Montrer que pour m = n il y a une solution unique et déterminer la.
- b) Que peut on dire de l'ensemble des solutions dans le cas m > n?

c) On munit $\mathbb{P}_m[\mathbb{R}]$ de la base canonique $1, X, \dots, X^m$. Soit (a_0, \dots, a_n) les coordonnées de P dans cette base et $\overline{P} = (a_0, \dots, a_n) \in \mathbb{R}^n$ ça représentation dans \mathbb{R}^n . Soit la matrice $V_m = \begin{bmatrix} x_i^k \end{bmatrix}_{\substack{i=0,\dots,n\\k=0,\dots,m}}$ et le vecteur $Y = (y_0,\dots,y_n)$. En considérant \overline{P} et Y comme des vecteurs colonnes, montrer que

$$\sum_{i=0}^{n} [y_i - P(x^i)]^2 = ||V_m \overline{P} - Y||_2^2.$$

- d) Montrer que pour $m \leq n$ la solution du problème des moindres carrées existe et est unique.
- e) Justifié que V_n est inversible, puis montrer que les coefficients du polynôme de Lagrange sont les coefficients du vecteur $V_n^{-1}Y$.
- f) Redémontrer la question b) en utilisant la question c).

Splines

Exercice 6 (Base de splines)

Soient $a = x_0 < x_1 < \cdots < x_n = b$ des points de l'intervalle [a, b] et $\mathcal{S}_k[a, b]$ l'ensemble des splines de degré k relativement à ces (n+1) points. Vérifier que tout $s_k \in \mathcal{S}_k[a, b]$ admet une écriture de la forme

$$s_k(x) = \sum_{i=0}^k b_i x^i + \sum_{i=1}^{n-1} c_i (x - x_i)_+^k,$$

où $(t)_{+} = \frac{t+|t|}{2}$ et $(t)_{+}^{k} = [(t)_{+}]^{k}$. Puis conclure que

$$\{1, x, x^2, \dots, x^k, (x - x_1)_+^k, \dots, (x - x_{n-1})_+^k\}$$

est une base de $S_k[a, b]$.

Exercice 7 (Splines normalisées)

Soit $a = x_0 < x_2 < \cdots < x_n = b$ les n + 1 nœuds des splines cubiques $S_3(Y)$ qui interpolent les valeurs $Y = (y_0, y_1, \dots, y_n)$.

- a) Montrer qu'il existe une unique spline $s \in S_3(Y)$, dit naturelle, telle que s''(a) = s''(b) = 0.
- b) Étant donnés deux nombre d_a et d_b , montrer qu'il existe une unique spline $s \in \mathcal{S}_3(Y)$, dit serrée ou tendue, telle que $s'(a) = d_a$ et $s'(b) = d_b$.
- c) Si $y_0 = y_n$, montrer qu'il existe une unique spline $s \in \mathcal{S}_3(Y)$, dit cyclique ou périodique, telle que $s^{(k)}(a) = s^{(k)}(b)$ pour k = 0, 1, 2.

Exercice 8 (Propriété de la norme minimale)

a) Soit $f \in C^2([a,b])$, et soit s_3 une spline cubique naturelle qui interpole f aux noeuds $\Delta = \{a = x_0 < x_2 < \dots < x_n = b\}$. Montrer que

$$\int_{a}^{b} [s_{3}''(x)]^{2} dx \le \int_{a}^{b} [f''(x)]^{2} dx$$

avec égalité si et seulement si $f = s_3$.

Indication: Commencer par la formule

$$\int_{a}^{b} [f''(x) - s_3''(x)] s_3''(x) dx = \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} [f''(x) - s_3''(x)] s_3''(x) dx$$

- b) Montrer que la propriété précédente est vrai également pour les splines serrées qui satisfont $s'_3(a) = f'(a)$ et $s'_3(b) = f'(b)$.
- c) Soit Δ^* un sous-ensemble de l'ensemble Δ des nœuds, et s_3^* la spline naturelle (resp. serrée) qui interpole f en Δ^* . Montrer que

$$\int_{a}^{b} [(s_{3}^{*})''(x)]^{2} dx \le \int_{a}^{b} [s_{3}''(x)]^{2} dx$$

avec égalité si et seulement si s_3 est un polynôme au voisinage des nœuds manquant à Δ^* .

Exercice 9 (Splines quartique)

Soit $f \in C^4([a, b])$, et soit s_4 une spline de degré 4 qui interpole f aux nœuds $\{a = x_0 < x_2 < \dots < x_n = b\}$. Montrer que

$$||f'' - s_4''||_{L^2[a,b]}^2 \le \int_a^b [f(x) - s_4(x)] f^4(x) dx$$

si l'une des conditions suivante est vérifiée :

- a) $f'(a) = s'_4(a)$ et $f'(b) = s'_4(b)$;
- **b)** $f''(a) = s_4''(a)$ et $f''(b) = s_4''(b)$;
- c) $f^{(i)}$ et $s_4^{(i)}$ sont périodiques pour $i \leq 2$.

Exercice 10 (Splines cubiques à peu de nœuds)

Soit $a = x_0 < x_2 < \cdots < x_n = b$ les n + 1 nœuds des splines cubiques S_3 . Soit $s \in S_3$ qui satisfait les conditions aux bords $s^{(k)}(a) = s^{(k)}(b) = 0$ pour k = 0, 1, 2.

- a) Montrer que si n < 4 alors s = 0.
- b) Montrer que si n=4 alors s est uniquement déterminée par sa valeur en x_2 .
- c) Calculer explicitement s dans le cas des nœuds $\{-2, -1, 0, 1, 2\}$ en fonction de sa valeur c en 0.

Exercice 11 (Base cardinale des splines cubiques)

Soit $a = x_0 < x_2 < \cdots < x_n = b$ les n + 1 nœuds des splines cubiques S_3 .

Pour $i=0,\ldots,n$ on note par φ_i la spline naturelle telle que $\varphi_i(x_j)=\delta_{ij}$. Ainsi que les deux splines tendues φ_k pour $k\in\{n+1,n+2\}$ définies par $\varphi_k(x_i)=0$ pour $\forall i=0,\ldots,n,$ $\varphi'_{n+1}(x_0)=1, \ \varphi'_{n+1}(x_n)=0, \ \varphi'_{n+2}(x_0)=0$ et $\varphi'_{n+2}(x_n)=1$.

- a) Montrer que les $\{\varphi_k\}_{k=0,\dots,n+2}$ forment une base de \mathcal{S}_3 . Cette base est appeler base cardinale.
- b) Soit $x_i = i$ pour i = 0, 1, 2. Calculer la base cardinale dans ce cas.

Exercice 12 (B-splines)

Soit $a = x_0 < x_2 < \cdots < x_n = b$ les n + 1 nœuds des splines S_k de degré k. Soit les fonctions $B_{i,j}$ définies par récurrence comme suit

$$\begin{cases} B_{i,0}(x) &= \begin{cases} 1 & \text{si } x \in [x_i, x_{i+1}] \\ 0 & \text{sinon} \end{cases} & \text{pour } i = 0, \dots, n-1 \\ B_{i,k}(x) &= \frac{x - x_i}{x_{i+k} - x_i} B_{i,k-1}(x) + \frac{x_{i+k+1} - x}{x_{i+k+1} - x_{i+1}} B_{i+1,k-1}(x) & \text{pour } \begin{cases} \forall \ k \ge 1, i \ge 0 \\ i + k + 1 \le n \end{cases} \end{cases}$$

- a) Calculer et tracer les $B_{i,1}$ pour i = 0, ..., n-2.
- **b)** Montrer que la restriction des $B_{i,1}$ à $I_1 = [x_1, x_{n-1}]$ est une base de 1-splines respectivement aux nœuds $\{x_1, \ldots, x_{n-1}\}$.
- c) Montrer que le support de $B_{i,k}$ est contenu dans $[x_i, x_{i+k+1}]$.
- d) Montrer que

$$B_{i,k}(x) = (x_{i+k+1} - x_i) \sum_{j=0}^{k+1} \frac{(x_{i+j} - x)_+^k}{\prod_{\substack{m=k+1\\m \neq j}}^{m=0} (x_{i+j} - x_{i+m})}$$

- e) En déduire que les $B_{i,k}$ sont des splines de degré k linéairement indépendant. On appelle les $B_{i,k}$ les B-splines de degré k.
- f) Soit $I_k = [x_k, x_{n-k}]$ et $\mathcal{S}_k[I_k]$ les splines de degré k sur I_k ayant pour nœuds $\{x_k, \ldots, x_{n-k}\}$. Montrer $\{B_{i,k}|_{I_k} \mid i = -k+1, \ldots, n-1\}$ forme une base de $\mathcal{S}_k[I_k]$.
- g) Comment peut on construire une base de S_k avec des B-splines?