

Apifix

Solving medical problems using deep learning

Content

- About me
- Problem overview
- How we tackle the problem
 Our system
 Results

- Demo Q&A

Alexandru Constantin ILIESCU

- Machine Learning experience:
 - 1st year of master in Machine Learning at Politehnica University Timisoara
 - Bachelor Thesis on High-Quality Point Clouds Generation
 - At CoreAl for approximately 3 months

- is a sideways curvature of the spine
- about 3% of adolescents have scoliosis
- there are different types of scoliosis
- surgery may be needed in order to solve the problem

TYPES OF SCOLIOSIS

Apifix and Scoliosis

When surgery is needed, e metal rod is attached to the spine with screws, such that the fusion will work ok.

- The angle of scoliosis of the patient
- Different measurements that are needed
- The positions of the screws needed for the metal rod

Flow of the system

Getting the vertebra data

- In order to use the image for getting the vertebra, a **local histogram equalization** is done
- This image is used for spine segmentation map and for calculating the bounding box of it
- Using the bounding box, the spine is cropped from the image
- The resulted image is used for getting the vertebra segmentation map
- This segmentation map is used for getting the vertebra data

Dilation for improving the model

Bad quality for spine segmentation map

Resulted measurements are bad and not useful

Spine segmentation map with better quality

Getting the final data

- We obtain the spline
- We calculate the inflection points, depending on the type of the scoliosis
- We calculate the angles, apexes
- Screws are placed according to the rules that we have to follow

$$an(heta) = rac{m_1 - m_2}{1 + m_1 m_2}$$

angle =
$$atan2(y2 - y1, x2 - x1)$$

Getting the final data

Demo

Q&A

Thank you for your attention!