SOCCER MATCH PREDICTION

Basso Matteo (807628) Ferri Marco (807130)

Università degli Studi di Milano-Bicocca Corso di Modelli Probabilistici per le Decisioni **OBIETTIVO**

Una Rete Bayesiana è in grado di predire il risultato di una partita di calcio?

DATI

10.000 giocatori 25.000 partite

Caratteristiche dei giocatori e delle squadre

SCHEMA

CREAZIONE DEL DATASET 02

ASSUNZIONI

- Le performance di una squadra derivano dai giocatori
- Il risultato della partita dipende unicamente dai giocatori che ne prendono parte
- Il **ruolo** del giocatore è fondamentale
- Le caratteristiche di due squadre che si scontrano sono fra loro **indipendenti**

DATA INTEGRATION

22 **join** SQL generate via Javascript

eliminazione delle righe incomplete

OVERALL RATING

Assegnazione di un punteggio a ciascun giocatore in base al **ruolo**

Valutazione di caratteristiche differenti per ciascun ruolo:

- Portiere: riflessi, presa, tuffo, ...
- Attaccante: tiro in porta, dribbling, ...
- **Difensore**: marcatura, contrasto, ...
- **Centrocampista**: cross, dribbling, ...

OVERALL RATING PER I PORTIERI

Correlazione con le caratteristiche tipiche dei **portieri** (sulla destra)

distribuzione di **gk_diving**

OVERALL RATING PER I DIFENSORI

Correlazione con le caratteristiche **difensive**

Distinguere un attaccante da un difensore?

COR(marking, finishing) = -0.6204823

OVERALL RATING PER GLI ATTACCANTI

Correlazione con le caratteristiche **offensive**

Distinguere un attaccante da un difensore?

COR(marking, finishing) = -0.6204823

RUOLI DEI GIOCATORI

Ruoli dei giocatori **non** definiti nel dataset

Assertiti attraverso le **posizioni** in campo

PUNTEGGI ASSEGNATI ALLA SQUADRA

• Una valutazione per ciascun **ruolo**

vista la correlazione di **overall_rating** con il ruolo si possono calcolare i **punteggi** attraverso la **media fra gli overall_rating dei giocatori nei diversi ruoli**

FEATURE

Distribuzione dei punteggi **continui** su scala da 1 a 100

DISCRETIZZAZIONE DELLE FEATURE

Sono state effettuate degli esperimenti per la scelta del numero di intervalli e il metodo di discretizzazione.

Distribuzione post-discretizzazione per frequenza a 6 intervalli

DISTRIBUZIONE DELLA VARIABILE TARGET

46.1% home 26.4% away 27.5% draw

SOFTWARE

Al fine di creare la struttura della Rete Bayesiana e stimare i parametri è stata utilizzata la libreria bnlearn del linguaggio di programmazione R

PROGETTAZIONE DI UNA RETE BAYESIANA

DEFINIZIONE DELLA STRUTTURA (DAG) STIMA DELLE PROBABILITÀ CONDIZIONATE PREDIZIONE E INFERENZA

FUNZIONI DI BNLEARN

- generazione della struttura
 - scored-based
 - constraint-based
 - o hybrid
- apprendimento delle CPT
- predizione
- inferenza
- cross fold validation

- bn.fit()
- predict()
- cpquery()
- bn.cv()

STRUTTURA RETE AUTO-GENERATA

Algoritmo

hill-climbing

greedy score-based

Viola le assunzioni per cui i nodi delle due squadre non devono essere raggiungibili con un cammino orientato

STRUTTURA RETE VINCOLATA

Introduzione di una **black-list**

- squadre indipendenti
- la squadra in casa punta sull'offensiva
- la squadra in trasferta preferisce la difensiva

04 PERFORMANCE

METRICHE DI VALUTAZIONE

Accuracy 0.5126

Classe	Precision	Recall	F1
HOME	0.5238946	0.849281	0.6477723
AWAY	0.482222	0.4263695	0.4516147
DRAW	0	0	0

Performance nulle per la classe DRAW (pareggio)

- Dataset con variabile target mal distribuita
- Difficile prevedere accuratamente un pareggio

RIDUZIONE A PROBLEMA BINARIO

A causa della cattiva distribuzione dei pareggi nella variabile target e alla conseguente impossibilità da parte della rete di classificarli, è stato deciso di ridurre il problema multiclasse a un problema di natura binaria.

STRUTTURA RETE VINCOLATA BINARIA

struttura della rete generata sul problema binario

in un problema binario le squadre giocano a pari capacità e obiettivi

INFERENZE

Causali

```
P(winner = not home | home_mid = terrible, away_mid = excellent) = 0.9086
P(winner = home | home_mid = terrible, away_mid = excellent) = 0.1244
P(winner = home | home_mid = terrible, away_mid = terrible) = 0.3825
```

Diagnostiche

```
P(away_mid = excellent | winner = home) = 0.1136
P(away_mid = bad | winner = home) = 0.2147
```

Intercausali

```
P(away_def = good | away_mid = excellent) = 0.0509
P(away_def = good | away_mid = terrible) = 0.0011
```

Diagnostiche + causali

```
P(home_mid = excellent | winner = home, home_def = good) = 0.1034
P(home_mid = bad | winner = home, home_def = excellent) = 0.0017
```

PERFORMANCE

Accuracy 0.6257

Classe	Precision	Recall	F1
HOME	0.636251	0.4293271	0.5117034

• peggioramento delle performance generali F1

MA

 risultato non completamente sbilanciato a sfavore di una certa classe, come nel caso binario

ROC CURVE

AUC 0.61

05 ESPERIMENTI

REWARD PER NUMERO DI GIOCATORI

Al fine di valutare l'impatto derivante dall'aggiunta o rimozione di un giocatore da uno dei ruoli è stata definita una nuova funzione per il calcolo del punteggio totale.

$$new_overall = overall + K * log(\frac{away_atk}{avg_atk_count})$$

Tuttavia, si è rivelata ininfluente dal punto di vista delle performance.

PUNTEGGIO DI ATTACCO E DIFESA

Si è provato ad aggiungere due feature come raggruppamento del potenziale **difensivo** (portiere + difesa + mid) e **offensivo** (mid + attacco) delle squadre.

Essi sono stati impiegati in una nuova Rete Bayesiana i cui risultati si sono rivelati analoghi a quelli delle precedenti.

PREDIZIONE RISULTATO

Nella pagina principale è possibile formare le squadre e predire il vincitore

INFERENZA

Un dialog aggiuntivo permette la visualizzazione della Rete Bayesiana e di effettuare inferenze tramite l'inserimento di evidenze e variabile query

CONCLUSIONI

Performance non particolarmente soddisfacenti

- dataset con variabile target mal distribuita
- difficile predire un vincitore se le due squadre sfidanti non presentano caratteristiche generali molto diverse
- il risultato di una partita dipende da numerosi fattori quali il mind-set della squadra e dei singoli individui

SE FOSSE FACILE STABILIRE A PRIORI IL RISULTATO DI UNA PARTITA CALCISTICA NON ESISTEREBBERO LO SPORT STESSO E IL MERCATO DELLE SCOMMESSE

CONSIDERAZIONI SULLE RETI BAYESIANE

- Comode per modellare domini con dipendenza causale fra variabili stocastiche
- Facili da implementare attraverso R con bnlearn

Le basse performance non sono causate dalla scelta del modello.

Anche **Naive Bayes** e **Random Forest** * hanno ottenuto risultati del tutto comparabili.

* Gli algoritmi di learning sono stati testati attraverso l'utilizzo di <u>Knime Analytics Platform</u> e hanno registrato la medesima accuracy dei modelli di Rete Bayesiane presentati in questo elaborato.

