Shape Fitting Methodology

Input Image

Microscope image of worms in liquid media

The contour of an

isolated worm can be

obtained by finding a

border pixel from the

wing the neighboring

border pixels until the

shape is closed.

distance map and follo-

Binary Image

A binary bitmap image that divided the image pixels in object pixels and background pixels

Distance Transf.

A distance transformation contains the distance of every pixel to the background. Is useful to trace the contour of isolated worms, automatic generation of shape descriptors and skeletonization

Shape Descriptor

A worm shape is described by N control points and a worm thickness profile. The contour can be calculated by expanding the control points.

Skeletonization

Calculates a 1-px thick path along the body of the worms. Allows to detect endpoints and divide the image into isolated worms and worm clusters

W. Rasterization

The worm shape is rasterized by triangulating the shape and rasterizing every generated triangle

Isolated Worms

Trace Contour

Manual Adjustment

Incorrect matches can be fixed manually by selecting the correct pair of endpoints

Worm clusters are those skeleton connections with more than two endpoints. A heuristical path guessing algorithm calculates the most likely skeleton paths to optimize the shape fitting process.

Optimization

Worm Clusters

A generic shape contour is generated around a worm skeleton path. An optimization algorithm deforms the shape until a match is found. After the match is slightly adjusted, the worm shape is completely fitted.