Praktikum Data Mining

Gesichtserkennung

Oliver Fesseler Maria Florusß Stefan Seibert

Daniel Grießhaber

10. Juli 2014

Durchführung des Versuchs

Ausgabe des Scripts facerecognitionTemplate.py

Das Script zeigt nach Auswahl der Trainingsdaten und des zu klassifizierenden Bildes drei Bilder an.

- Das normalisierte Durchschnitsbild aus dem Trainingsdatensatz
- Die berechnete Differenz zwischen dem Testbild und dem closest match im Trainingsdatensatz
- Überlagerung der Differenz im roten Kannal über den closest match

Ab welcher Anzahl K von verwendeten Eigenvektoren treten Fehlklassifikationen ein?

Im empirischen Versuch haben wir herausgefunden, dass ab einer Merkmalsanzahl von K < 6 bei der Erkennung des Bildes 1-1.png aus dem Testdatensatz die erste Fehlklassifikation auftritt.

Wie groß ist dann die Mindestdistanz zwischen Testund nächstliegendem Trainingsbild?

Die niedrigste Distanz mit K=6 bei Klassifizierung des Bildes 1-1.png beträgt 841.01688805.

Wie ändert sich die Distanz zwischen Bildern, wenn die Anzahl der Eigenvektoren reduziert wird?

Distanzen werden mit einer höheren Anzahl von Merkmalen K größer, da die Anzahl an Dimensionen in denen die Distanz berechnet wird steigt.

$$K=5$$
 $K=6$
1-2.png 758.3467758 841.01688805
3-3.png 549.501226082 1226.39019008

Distanzen der kritischen Bilder bei unterschiedlicher Merkmalsanzahl

Wie könnte dieser Einfuss der Eigenvektor-Anzahl auf die Mindestdistanz reduziert werden?

Um die Abhängigkeit aufzulösen kann die Distanz mit der Eigenvektor-Anzahl normiert werden.

$$d_N = \frac{d}{K}$$

Nennen Sie zwei Algorithmus-unabhängige Parameter, die starken Einfluss auf die Rate korrekter Gesichtserkennungen haben

Eigenschaften der Bilder

- Gleicher Bildmodus, wie zum Beispiel RGB oder L (Grayscale)
- Aufnahmewinkel
- gleicher Hintergrund
- Beleuchtung
- Bildschärfe
- Gesicht klar erkennbar (Brillen, Haare im Gesicht, etc.)

Anzahl der Trainingsbildern

Mit steigender Anzahl an Trainingsbildern pro Person steigt die Erkennungsrate.