

Análisis en \mathbb{R}^n | 2025-I

Nestor Heli Aponte Avila¹ n267452@dac.unicamp.br

Aula 06/03/25

 \bigcirc Derivada Direccional. Sea $U^{ab} \subseteq \mathbb{R}^n$ y $f: U \to \mathbb{R}$ una función escalar. Para $\vec{v} \in \mathbb{R}^n$ y $p \in U$ definimos la derivada de f con dirección v en el punto p como:

$$\frac{\partial f}{\partial v}(p) := \lim_{h \to 0} \frac{f(p+hv) - f(p)}{h} \qquad \sim \qquad f(x+hv) = f(p) + \frac{\partial f}{\partial v}(p) \cdot h + \sigma(h)^{-1}.$$

Si $v = e_i$ entonces la llamamos *i*-ésima derivada o *derivada parcial* y la denotamos por $\frac{\partial f}{\partial x_i}(p)$.

Ejemplo $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(\mathbf{x}) = ||\mathbf{x}||^2$. Hint: α .

Ejercicio Sean $\lambda \in \mathbb{R}$ y $\vec{v}, \vec{\omega} \in \mathbb{R}^n$. Muestre que $\frac{\partial f}{\partial \lambda v}(p) = \lambda \frac{\partial f}{\partial v}(p)$. ¿Vale en general $\frac{\partial f}{\partial (v+\omega)}(p) = \frac{\partial f}{\partial v}(p) + \frac{\partial f}{\partial \omega}(p)$?

Ejemplo $g: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ tal que $g(x,y) = \arctan(y/x)$. Hint: voleo.

* En un punto, la existencia de todas las derivadas parciales no implica que exista la derivada en toda dirección y tampoco implica continuidad de f en p.

 $\textbf{Ejemplo} \ \ f: \mathbb{R}^2 \to \mathbb{R} \ \text{dada por} \ f(x) = \begin{cases} x+y, & \text{si } x=0 \ \text{o} \ y=0 \\ 0, & \text{e. o. c.} \end{cases}. \ \text{Hint: directiones.}$

Ejemplo $f: \mathbb{R}^2 \to \mathbb{R}$ dada por $f(x) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & \text{si } (x,y) = 0 \\ 0, & \text{e. o. c.} \end{cases}$. Hint: continuidad.

Ejercicio Muestre que la existencia de derivadas parciales acotadas en todo punto $p \in U$ implica f constante en U.

 \bigcirc Conexidad. Sea $X^{ab} \subseteq \mathbb{R}^n$, X es conexo sii no existen U^{ab} , $V^{ab} \subseteq \mathbb{R}^n$ disjuntos, tales que su intersección con X es no vacía y $X \subseteq U \cup V$.

 \square Ejercicio Sea $U^{ab}\subseteq\mathbb{R}^n$ conexo. Dados $p,q\in U$ existe un camino polígonal en U con vértices

$$p=p_0,p_1,\ldots,p_k=q,$$

tal que $p_{i+1}-p_i$ es colineal con algún e_j para cada $0 \le i \le k-1$ y algún $j \in \{1,\ldots,n\}$. ²

 \square Sea $U^{ab}\subseteq\mathbb{R}^n$ conexo y $f:U\to\mathbb{R}$ una función tal que $\frac{\partial f}{\partial x_i}=0$ en U para cada $1\leq i\leq n$, entonces f es constante.

¹Si existe $\alpha \in \mathbb{R}$ tal que $f(p+hv) = \alpha h + \sigma(h)$, entonces $\frac{\partial f}{\partial v}(p) = \alpha$.

 $^{^2}$ El lema solo vale cuando U es abierto, piense en \mathbb{S}^1 .

Aula 11/03/25

 \bigcirc Derivadas de orden superior. Sea $f:U^{ab}\subseteq\mathbb{R}^n\to$. Si existe $\frac{\partial f}{\partial x_i}(p)$ para cada $p\in U$ podemos definir $\frac{\partial f}{\partial x_i}:U\to\mathbb{R}$ y considerar la derivada de segundo orden

$$\frac{\partial^2 f}{\partial x_i \partial x_i}(p) := \frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i} \right)(p).$$

* El orden importa, en general.

 \bigcirc Sea $k \in \{0\} \cup \mathbb{N}$. Decimos que $f: U \to \mathbb{R}$ es de clase $C^k(U)$ si para cada $m \leq k$ todas las derivadas de orden m de f existen y son continuas en U. La función f es *smooth* en U si es de clase $C^\infty(U)$.

Ejemplo Los elementos de $\mathbb{R}[x_1,\ldots,x_n]$, el anillo de polinomios de n variables con coeficientes en \mathbb{R} es de clase C^{∞} .

Ejemplo $\det(T): M_{n \times n}(\mathbb{R}) \cong \mathbb{R}^{n^2} \to \mathbb{R}$ es de clase C^{∞} .

Ejemplo $x \mapsto x^{1/3}$ es de clase C^0 más no es de clase C^1 en 0.

Ejercicio Muestre que $C^k(U)$ es una \mathbb{R} -álgebra conmutativa, con la suma y el produto usual de funciones. Además de es eso pruebe que

$$C^0(U) \supseteq C^1(U) \supseteq \cdots \supseteq C^{\infty}(U),$$

Y note que los elementos inversos son aquellos que no se anulan. ⁴

 $\textbf{Ejemplo} \ \ f(x,y) = \begin{cases} \frac{xy(x^2+y^2)}{x^2+y^2}, & \text{ si } (x,y) \neq 0 \\ 0, & \text{ e.o.c.} \end{cases}. \ \ \text{Hint: averigue si esta en } C^2$

■ (Schwarz) Sea $f: U^{ab} \subseteq \mathbb{R}^n \to \mathbb{R}$ una función de clase $C^2(U)$, entonces para cada $1 \leq i, j \leq n$,

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

Ejercicio Colorario. Si $f \in C^k(U)$ entonces no importa el orden en que son tomadas las derivadas de orden $m \le k$.

 \bigcirc Diferenciabilidad. Decimos que una función $f:U^{ab}\subseteq\mathbb{R}^n\to\mathbb{R}$ es diferenciable en un punto $p\in U$ si existe un funcional lineal $\ell:\mathbb{R}^n\to\mathbb{R}$ tal que

$$f(p+v) = f(p) + \ell \cdot v + \sigma(\|v|\|) \text{ cuando } v \to 0.$$

- \square Si f es diferenciable en p entonces para cada $\vec{v_0} \in \mathbb{R}^n$, $\ell \cdot v = \frac{\partial f}{\partial v}(p)$. En particular $\ell_i = \frac{\partial f}{\partial x_i}(p)$.
- \bigcirc Diferencial. Si f es diferenciable en p el diferencial de f en p es una función lineal $df(p): \mathbb{R}^n \to \mathbb{R}$ dada por

$$df(p) \cdot v := \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(p) \cdot v_i.$$

* La existencia de derivadas direccionales sirve para definir df(p), sin embargo esto no garantiza que sea lineal y aún si lo fuera no es garantía de diferenciabilidad en el punto.

 $^{{}^{3}}C^{0}(U)$ es la clase de las funciones continuas en U.

⁴Colorario de esto es que las funciones racionales son $C^{\infty}(U)$ en dominios donde no se anulan.

⁵Esto también implica que las derivadas direccionales son lineales en esa dirección.

Aula 13/03/25

Ejemplo $f(\mathbf{x}) = ||x||^2$. Hint: separe y contemple.

Ejercicio El diferencial de una función lineal es él mismo.

 \square Si $f: U^{ab} \subseteq \mathbb{R}^n \to \mathbb{R}$ es diferenciable en p entonces es continua en p.

$$\textbf{Ejemplo} \ \ f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^2}, & \text{ si } (x,y) \neq 0 \\ 0, & \text{ e. o. c.} \end{cases}. \ \ \text{Hint: verifique derivadas, analice si } f(v) = \sigma(\|v\|). \ \ ^6$$

Ejercicio Estudie la diferenciabilidad de $f(x,y) = \begin{cases} \frac{xy^3}{x^2+y^2}, & \text{ si } (x,y) \neq 0 \\ 0, & \text{ e.o.c} \end{cases}$

- * Existencia de derivadas direccionales NO implica diferenciabilidad.
- Si $f: U^{ab} \subseteq \mathbb{R}^n \to \mathbb{R}$ es de clase $C^1(U)$ entonces es diferenciable en cada punto de U^{7}

Ejemplo Toda función polinomial es diferenciable.

Ejemplo La proyección i-ésima $x_i : \mathbb{R}^n \to \mathbb{R}$ es diferenciable. Además, puesto que es lineal $dx_i(p) = x_i$ para cada $p \in \mathbb{R}^n$. En particular notamos que $dx_i(p) \cdot e_j = \delta_{ij}$, osea que $\{dx_1(p), \dots, dx_n(p)\}$ es una base para $(\mathbb{R}^n)^*$ (espacio dual)⁸. Suponiendo que pasa para cada $p \in U$ el diferencial de f se escribe de forma única como

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i.$$

Ejemplo $\Theta(x,y) = \arctan(y/x)$ definida para $(x,y) \neq 0$. Hint: Cálcule e interprete $d\Theta$.

 \square **Ejercicio** Si $f,g:U^{ab}\subseteq\mathbb{R}^n\to\mathbb{R}$ son diferenciables, entonces $f+g,\ fg\ y\ f/g$ (para $g\neq 0$ en U) son funciones diferenciables en U y

$$d(f+g) = df + dg \; ; \; d(fg) = f \cdot dg + df \cdot g \; ; \; d\left(\frac{f}{g}\right) = \frac{df \cdot g - f \cdot dg}{g^2}$$

 \Diamond *Gradiente*. El gradiente de una función diferenciable en p es el vector compuesto por las derivadas parciales,

$$\nabla f(p) := \left(\frac{\partial f}{\partial x_1}(p), \dots, \frac{\partial f}{\partial x_n}(p)\right).$$

* Interpretando la definición tenemos que $\langle \nabla f, v \rangle = \frac{\partial f}{\partial v}$. En este sentido sea $\vec{u} \in \mathbb{R}^n$ un vector unitario, entonces

$$\left| \frac{\partial f}{\partial u}(p) \right| = \left| \langle \nabla f(p), u \rangle \right| \le \| \nabla f(p) \| \| u \|,$$

es decir, el gradiente apunta en la dirección de mayor crecimiento de f en p.

Ejercicio Muestre que si $f: U^{ab} \subseteq \mathbb{R}^n \to \mathbb{R}$ es diferenciable y f(p) es un extremo local, entonces $\nabla f(p) = 0$.

⁶Si la derivada direccional en un punto no es lineal (coordenadas v_i) entonces el diferencial en ese punto no existe.

 $^{^{7}}C^{1} \Rightarrow C^{0} \wedge \exists \frac{\partial f}{\partial v}$.

 $^{^8}dx_i$ mide los incrementos de las variables independientes y los relaciona con los de la variable dependiente, osea df.

⁹Esta es la base de lo que se conoce como método del gradiente, para minimizar una función.

Aula 18/03/25

 \square Sean $f: U^{ab} \to \mathbb{R}$, $p \in U$ y $\vec{v} \in \mathbb{R}^n$ tales que $[p, p + v] \subseteq U$. Considere $\varphi(t) = f(p + tv)$. Si para algún $t \in (0, 1)$ f es diferenciable en p + tv entonces φ es diferenciable en t y $\varphi'(t) = df(p + tv) \cdot v = \frac{\partial f}{\partial v}(p + tv)$.

* TVM implica que si f es continua en [p,p+v] y diferenciable en (p,p+v) entonces existe $\theta \in (0,1)$ tal que $f(p+v)-f(p)=df(p+\theta v)\cdot v=\frac{\partial f}{\partial v}(p+\theta v).$

 \diamondsuit Sea $\ell: R^n \to \mathbb{R}$ un operador lineal. La norma del operador $|\ell| := \sup \|\ell v\|$ tales que $v \in \mathbb{S}^n$.

 \square **Ejercicio** Muestre que $\exists \vec{w} \in \mathbb{R}^n$ tal que $\ell v = \langle w, v \rangle$.

* Del ejercicio resulta inmediato que $|\ell| = ||w||$. En particular, si f es diferenciable en p, entonces $|df(p)| = ||\nabla f(p)||$.

 \square Sea $K \subset U$ dominio convexo diferenciable de f y $c \ge 0$ tal que $\|df(x)\| \le c$ para cada $x \in K$. Entonces para cada $p,q \in K$ vale que $\|f(p) - f(q)\| \le c\|p - q\|$.

 $\diamondsuit \ f: X \subset \mathbb{R}^n \to \mathbb{R} \ \text{es Lipschitz continua} \ \text{si existe} \ c \geq 0 \ \text{tal que} \ \|f(p) - f(q)\| \leq c \|p - q\| \ \text{para cada} \ p, q \in X.$

* Osea que TVM también implica f Lipschitz.

Ejercicio Muestre que si $f \in C^1(U)$ y K es compacto y convexo, entonces la hipótesís de la proposición anterior es automaticamente satisfecha para algún $c \ge 0$.

Formula de Taylor

* La idea es aproximar funciones por polinomios, apuntando a una forma $f(p+v) = P_k[v] + \Gamma_k[v]$. Un polinomio en variable v de orden k y un error del orden $\sigma(\|v\|^k)$

 $\textbf{Ejemplo} \ \ \text{Si} \ f \in C^2 \ \text{entonces} \ f(p+v) = \underbrace{f(p) + \sum \frac{\partial f}{\partial x_i}(p) v_i + \frac{1}{2} \sum \frac{\partial f}{\partial x_i \partial x_j}(p) v_i v_j}_{P_2[v]} + \underbrace{\sigma(\|v\|^2)}_{\Gamma_2[v]}$

 \diamondsuit Para $k \geq 2$, decimos que f es k-diff en p si existe $B(p;\epsilon)$ donde existe df(p) y $\frac{\partial f}{\partial x_i}$ es (k-1)-diff.

Ejemplo $f \in C^k(U)$ implica que f es k-diff en cada $p \in U$.

Ejercicio Muestre que el Teorema de Schwarz vale en general para funciones 2-diff. Hint: Elon Musk.

 $\diamondsuit \text{ Sea } f \text{ una función } k\text{-diff en } p \text{ y } d^k f(p): \mathbb{R}^n \to \mathbb{R} \text{ tal que } v \mapsto d^k f(p) v^{\otimes k} = \sum \tfrac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}} (p) v_{i_1} \cdots v_{i_k}. \ ^{10}$

 $^{^{10}}$ Función polinomial y homógenea de grado $v_1 \cdots v_k$

Ejemplo Para $f: \mathbb{R}^2 \to \mathbb{R}$ tenemos: $d^2 f(p) v^{\otimes 2} = \sum \frac{\partial^2 f}{\partial x^2}(p) h^2 + 2 \sum \frac{\partial^2 f}{\partial x \partial y}(p) hk + \sum \frac{\partial^2 f}{\partial y^2}(p) k^2$. 11

 $\diamondsuit \text{ Sea } f \text{ 2-diff en } p \text{ entonces la Hessiana de } f \text{ en } p \text{ es } Hf(p) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(p)\right)_{i,j} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(p) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(p) \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(p) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(p) \end{pmatrix}$

 $* \ Hf(p) \text{ es única (Schwarz) y símetrica que representa a } d^2f(p)v^{\otimes k} = \langle Hf(p)\cdot v,v\rangle = \sum_{|\alpha|=2} \binom{2}{\alpha} \partial^\alpha f(p)v^\alpha.$

 $\textbf{Ejercicio} \ \ \text{Muestre que si} \ f \ \text{es} \ k\text{-diff en } p \ \text{entonces} \ d^k f(p) v^{\otimes k} = \sum_{|\alpha|=2} \binom{k}{\alpha} \partial^\alpha f(p) v^\alpha.$

Aula 20/03/25

 $\Diamond f$ se anula al orden k+1 en p si $\partial^{\alpha} f(p)=0$ para todo $|\alpha|\leq k$.

Ejercicio Si $f(x) = \sum c_{\alpha}x^{\alpha}$ se anula identicamente en una vecindad del origen entonces $c_{\alpha} = 0$ para cada α .

- Sean $k \ge 1$ y f una función k-diff en $0 \in \mathbb{R}^n$. Si f se anula al orden k+1 entonces $f(v) = \sigma(\|v\|^k)$.
- \square Colorario. Para $p \in \mathbb{R}^n$ tenemos $f(p+v) = \sum \frac{1}{i!} d^i f(p) v^{\otimes i} + \sigma(\|v\|^k)$.

Ejercicio Demuestre el colorario. Hint: $\Gamma_k(v) = \sigma(||v||)$?

Ejercicio Fórmula de Taylor infinitesimal de orden 5 de $f(x,y) = \frac{x}{1+xy}$ en 0. Hint: Geometría - Taylor?

 ${f Ejercicio}$ Sea f función k-diff. Use la fórmula de Taylor para provar el reves del Teorema, concluya la unicidad.

 $\square \textit{ Resto de Lagrange e Integral. Sea } U \subseteq \mathbb{R}^n \text{ e } f \in C^{k+1}(U), \text{ para cada } p \in U, \vec{v} \in \mathbb{R}^n \text{ tales que } [p,p+tv] \subseteq U \text{ tenemos: } (i) \ f(p+v) = T_k(v) + \frac{1}{(k+1)!} d^{k+1} f(p+\theta v) v^{\otimes (k+1)} = \\ (ii) \ T_k(v) + \frac{1}{k!} \int_0^1 (1-t)^k d^{k+1} f(p+tv) v^{\otimes (k+1)} dt.$

Aula 25/03/25

 \diamondsuit Sea $f:U^{\vee}\subseteq\mathbb{R}^n\to\mathbb{R}$ diferenciable. Un punto $p\in U$ es punto crítico de f sii $df(p)=0=\nabla f(p)$.

Ejemplo $f(x,y) = x^2 + 3y^4 + 4y^3 - 12y^2$. Hint: cálcule no sea flojo.

- \bigcirc La función f tiene un máximo (o mínimo) local en p si $f(x) \le f(p)$ en alguna vecindad de p^{-12} .
- \square Extremo local \Rightarrow punto crítico.

¹¹Una forma cuadrática de grado 2.

¹²Más generalmente decimos extremo local.

* El objetivo ahora es clasificar como máximo o mínimo o ninguno de los dos.

Ejemplo Sea f una forma cuadrática con Hessiana diagonal $H=(\lambda_1,\ldots,\lambda_n)$. En Taylor orden 2 tenemos $f(p+v)=f(p)+df(p)+\frac{1}{2}\sum \lambda_i v_i^2+\sigma(\|v\|^2)$. Entonces $\lambda_i>0$ para cada $i\Rightarrow$ mínimo local en p; en cambio si $\lambda_i<0$ para cada $i\Rightarrow$ máximo local en p.

 \diamondsuit Sea $A = A^T \in M_{n \times n}(\mathbb{R})$. La forma cuadrática $f: v \mapsto \langle Av, v \rangle$ es positiva si f(v) > 0, negativa si f(v) < 0 para todo $\vec{v} \in \mathbb{R}^n \setminus \{0\}$ o indefinida e.o.c.

Ejemplo (i) $v \mapsto ||v||^2$ – positiva y (ii) $v \mapsto t^2 - x^2 - y^2 - z^2$ – indefinida.

■ Toda matriz símetrica posee base ortonormal de autovectores, es diagonalizable.

Ejercicio Sea $A = A^T \in M_{n \times n}(\mathbb{R})$ e $\lambda_1, \dots, \lambda_n$ sus autovalores, muestre que A es positiva (o negativa) si $\lambda_i > 0$ (o $\lambda_i < 0$) para cada $1 \le i \le n$.

- Sea f función 2-diff en $p \in U$ punto crítico. Si Hf(p) es definida positiva (o negativa) entonces p es un mínimo (o máximo) isolado local de f en U.
- \bigcirc Un punto crítico p de f es punto de silla sii Hf(p) tiene por lo menos un $\lambda_i > 0$ y un $\lambda_j < 0$.
- * Sea $\lambda_1>0$ y $\lambda_2<0$ con autovectores w_1 y w_2 , entonces f tiene mínimo local en la dirección de w_1 y máximo local en la dirección de w_2 . Hint: $\langle Hf(p)\cdot v,v\rangle$.
- \bigcirc Un punto degenerado es un punto crítico donde la Hessiana es singular, Hf(p)=0.

Ejercicio Sea $f(x,y) = (y-x^2)(y-2x^2)$. Muestre que 0 es un punto degenerado. Muestre que la restricción de f a cualquier recta que pasa por el origen tiene mínimo local en 0 (sin embargo no lo tiene en f). Hint: considere conjunto donde f > 0 y f < 0.

Aula 27/03/25

- Sea $K \subseteq \mathbb{R}^n$ y $f: K \to \mathbb{R}$ continua, entonces f tiene máximo y mínimo global en K.
- * Podemos agregar condiciones para que funcione aún en conjuntos no compactos.

Ejemplo Sea $f(x,y)=\frac{x}{x^2+(y-1)^2+4}$. Estudie máximos y mínimos de f en $Q=\{(x,y):x\geq 0\ y\ y\geq 0\}$.

 \square Sea $F^{\nabla}\subseteq\mathbb{R}^n$ no acotado y $f:F\to\mathbb{R}^n$ continua. Tenemos (i) Si $f(x)\to\infty$ cuando $\|(x,y)\|\to\infty$, entonces f tiene un mínimo global y (ii) Si $f(x)\to 0$ cuando $\|(x,y)\|\to\infty$, entonces f tiene un máximo global.

Problems with Constraints - Optimización

El objetivo aquí es mínimizar o máximizar funciones en conjuntos de la forma $H = \{x \in \mathbb{R}^n : g(x) = 0\}$. Si $g \in C^k$ entonces H es una hipersuperficie de clase C^k definida por la ecuación g(x) = 0.

Ejemplo $\mathbb{S}^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$ definida por $(\sum x_i^2) - 1 = 0$.

Ejercicio Verifique bajo que condiciones $p \in \mathbb{S}^{n-1}$ implica $dg(p) \neq 0$.

* La condición encontrada en el ejercicio anterior es garantía de que H es una variedad de clase C^k (sin singularidades) y que el espacio tangente de H en p es $T_pH=\ker(dg(p))=\{v\in\mathbb{R}^n:dg(p)\cdot v=0\}.$

Ejemplo Máximos y mínimos de $f(x,y) = x^2 + y^2 + y$ en el disco $D = \{(x,y) : x^2 + y^2 \le 1\}$. Hint: Lagrange?.

■ Multiplicadores de Lagrange. Sea $f: U^{\vee} \subseteq \mathbb{R}^n \to \mathbb{R}$ de clase C^2 y $H = \{x \in \mathbb{R}^n : g(x) = 0\}$ una superficie de clase C^1 contenida en U. Si $p \in U$ es extremo local de $H_H: H \to \mathbb{R}$, entonces $\exists \lambda \in \mathbb{R}$ tal que $df(p) = \lambda dg(p)$.

Ejercicio Demuestre el Teorema espectral vía Multiplicadores de Lagrange.

Aula 03/04/25

- \bigcirc Llamamos función vectorial a una función $F:U^{\vee}\subseteq\mathbb{R}^n\to\mathbb{R}^m$ cuyas componentes son funciones escalares $F:x\mapsto (F_1(x),F_2(x),\ldots,F_m(x)).$
- $\diamondsuit \ \ F \ \text{es diferenciable en} \ p \in U \ \text{sii} \ \exists L : \mathbb{R}^n \to \mathbb{R}^m \ \text{lineal tal que} \ F(p+v) = F(p) + Lv + \sigma(\|v\|) \ \text{cuando} \ v \to 0.$
- * El resto $r(v) = (r_1(v), r_2(v), \dots, r_m(v)) = \sigma(\|v\|^k)$ sii $\forall i$ se tiene que $r_i(v) = \sigma(\|v\|^k)$.
- \square F es diferenciable en p sii $\forall i$ tenemos F_i diferenciable en p e $L_i = dF_i(p)$.

Ejercicio Pruebe (\Leftarrow) de la proposición anterior.

- \bigcirc Si F es diferenciable en p entonces $\exists !DF(p): \mathbb{R}^n \to \mathbb{R}^m$ lineal a la que llamamos derivada de F en p, la cual verifica $F(p+v)=F(p)+DF(p)v+\sigma(\|v\|)$ cuando $v\to 0$.
- * En resumén $DF(p) = (dF_1(p), dF_2(p), \dots, dF_m(p)).$

Ejemplo Si F es afín, digamos F(x) = Lx + b entonces DF(p) = L. En efecto F(p+v) = (Lp+b) + Lv + 0.

- \square Si F es diferenciable en p entonces es continua en p.
- \bigcirc Derivada Direccional. Sea $v \in \mathbb{R}^n$ la derivada de F en dirección v se define como $\frac{\partial F}{\partial v} = \lim_{t \to 0} \frac{F(p+t) F(p)}{t}$.
- * En caso de existir $\frac{\partial F}{\partial v}(p) = \left(\frac{\partial F_1}{\partial v}(p), \frac{\partial F_2}{\partial v}(p), \dots, \frac{\partial F_2}{\partial v}(p)\right)$. Es todo análogo, incluyendo las derivadas parciales.
- \bigcirc *Matriz Jacobiana*. Representa la derivada DF(p) en la base canónica.

$$M_{m \times n}(\mathbb{R}) \ni JF(p) = \left(\frac{\partial F_i}{\partial x_j}(p)\right) \quad 1 \le i \le m, \ 1 \le j \le n^{-13}.$$

 $^{^{13}}$ En otra notación $JF(p)=\frac{\partial(F_1,F_2,...,F_m)}{\partial(x_1,x_2,...,x_n)}(p).$

* Las filas de JF(p) son $dF_i(p) \in M_{1 \times n}(\mathbb{R}) \cong (\mathbb{R}^n)^*$ mientras las columnas son vectores $\left(\frac{\partial F}{x_i}\right) \in M_{m \times 1}(\mathbb{R}) \cong R^m$.

Ejemplo Si $f: U \to \mathbb{R}$ entonces $Jf(p) = (\nabla f)^T \in M_{1 \times n}(\mathbb{R})$.

Ejemplo Sea $c: I = (a, b) \subset \mathbb{R} \to \mathbb{R}^m$ un camino diferenciable, es decir, $c(t) = (c_1(t), c_2(t), \dots, c_m(t))$. Tenemos $Jc(t) = (c'_1(t), c'_2(t), \dots, c'_m(t))^T \in M_{m \times 1}(\mathbb{R}) \cong \mathbb{R}^m$, el vector tangente.

Ejemplo $U = \{(r, \theta) : r > 0, -\pi < \theta < \pi\}$ e $F : U \ni (r, \theta) \mapsto (r\cos(\theta), r\sin(\theta))$. Hint: cálcule.

 \diamondsuit $F:U\to\mathbb{R}^m$ es de clase C^k sii cada una de sus componentes es de clase C^k . Denotamos $F\in C^k(U;\mathbb{R}^m)$.

 \square Si $F \in C^k(U; \mathbb{R}^m)$ entonces F es diferenciable en U.

Derivadas de orden superior

díficil

Aula 08/04/25

■ Sean $U^{\vee} \subseteq \mathbb{R}^n$ e $V^{\vee} \subseteq \to \mathbb{R}^m$. Considere $F: U \to R^m$ differenciable, suponga también que $F(U) \subseteq V$ y $G: V \to \mathbb{R}^k$ differenciable. Entonces $G \circ F$ es differenciable y $D(G \circ F)(p) = DG(F(p)) \cdot DF(p)$.

Ejemplo Sea $c: I \to \mathbb{R}^n$ e $f: \mathbb{R}^n \to \mathbb{R}$, entonces $D(f \circ c)(t) = Df(c(t)) \cdot Dc(t) = df(c(t)) \cdot c'(t)$. Si tomamos c(t) = p + tv e $\varphi(t) = (f \circ c)(t)$ entonces $\varphi'(t) = df(p + tv) \cdot v$.

* En versión matricial el Teorema queda $J(G \circ F)(p) = JG(F(p)) \cdot JF(p)$.

References

[1] Lima, Elon Lages (2004). Análise real Vol. 2. IMPA, Rio de Janeiro.