Type I/II errors and Exam Practice

Shannon Pileggi

STAT 217

OUTLINE

Errors in Hypothesis Testing

Practice Problems

When we draw a conclusion about a hypothesis test (ie, reject or fail to reject H_0), do we always make the correct decision?

- 1. Yes
- 2. No

Unknown Truth	
H_0 true	H_0 false

Unknown Truth	
H_0 true	H_0 false
Correct Decision	

Unknown Truth		
H_0 true	H_0 false	
Correct Decision		
	Correct Decision	

Decision based on observed data Fail to reject H_0 Reject H_0

Unknown Truth	
H_0 true	H_0 false
Correct Decision	
Type I Error	Correct Decision

▶ A **Type I error** occurs when H_0 is true in reality but is rejected based on evidence from the test.

Unknown Truth	
H_0 true	H_0 false
Correct Decision	Type II Error
Type I Error	Correct Decision

- ▶ A **Type I error** occurs when H_0 is true in reality but is rejected based on evidence from the test.
- ▶ A **Type II error** occurs when H_0 is false in reality (or H_a true) but you fail to reject H_0 based on evidence from the test.

Jury trial

Decision by the jury Innocent Guilty

Unknown	Truth
Defendant is	Defendant is
innocent (H_0)	guilty (H_a)

Jury trial

Decision by the jury Innocent Guilty Unknown Truth

Defendant is Defendant is innocent (H_0) guilty (H_a) Correct Decision

Correct Decision

Jury trial

Decision by the jury Innocent Guilty

► A **Type I error** occurs when the jury finds a truly innocent man to be guilty.

Jury trial

Decision by the jury Innocent Guilty

- A Type I error occurs when the jury finds a truly innocent man to be guilty.
- ► A **Type II error** occurs when the jury finds a truly guilty man to be innocent.

Jury trial

Decision by the jury Innocent Guilty

- A Type I error occurs when the jury finds a truly innocent man to be guilty.
- ► A **Type II error** occurs when the jury finds a truly guilty man to be innocent.

Which error do you think is worse?

- 1. Type I
- 2. Type II

Decision based on screening test No suspicion of breast cancer

Suspicion of breast cancer

.6.0	
Unknown	Truth
Woman does not have	Woman has breast
breast cancer (H_0)	cancer (H_a)
Correct Decision	Type II Error
Type I Error	Correct Decision

Decision based on screening test No suspicion of breast cancer Suspicion of breast cancer

Unknown	Truth
Woman does not have	Woman has breast
breast cancer (H_0)	cancer (H_a)
Correct Decision	Type II Error
Type I Error	Correct Decision

▶ A Type I error occurs when the woman does not have breast cancer, but the mammogram indicates that she may. This is a false positive.

Decision based on screening test No suspicion of breast cancer Suspicion of breast cancer

	Unknown	Truth
ĺ	Woman does not have	Woman has breast
	breast cancer (H_0)	cancer (H_a)
	Correct Decision	Type II Error
	Type I Error	Correct Decision

- ▶ A Type I error occurs when the woman does not have breast cancer, but the mammogram indicates that she may. This is a false positive.
- ➤ A **Type II error** occurs when the woman does have breast cancer, but the mammogram indicates that does not. This is a false negative.

Decision based on screening testNo suspicion of breast cancer Suspicion of breast cancer

•	
Unknown	Truth
Woman does not have	Woman has breast
breast cancer (H_0)	cancer (H_a)
Correct Decision	Type II Error
Type I Error	Correct Decision

- ▶ A Type I error occurs when the woman does not have breast cancer, but the mammogram indicates that she may. This is a false positive.
- ▶ A **Type II error** occurs when the woman does have breast cancer, but the mammogram indicates that does not. This is a false negative.

Which error do you think is worse?

- 1. Type I
- 2. Type II

If I conduct a hypothesis test and I reject the null hypothesis based on evidence from my data, this could have been the result of... (mark all that apply)

- 1. a Type I error
- 2. a Type II error
- 3. a correct decision

Type I error

- ▶ A **Type I error** occurs when *H*₀ is true but is rejected.
- $ightharpoonup lpha = \Pr(\mathsf{Type} \; \mathsf{I} \; \mathsf{error}) = \Pr(\mathsf{reject} \; H_0 \; \mathsf{when} \; H_0 \; \mathsf{true})$
- The choice of significance level controls the probability of a Type I error.
- The more serious the consequences of a Type I error, the smaller α should be.

Type II error

- ▶ A **Type II error** occurs when H_0 is false (or H_a true) but H_0 is *not* rejected.
 - $Pr(Type\ II\ error)=Pr(fail\ to\ reject\ H_0\ when\ H_0\ false)$
- The Pr(Type II error) is a function of many things, including: α , n, s, and μ_0 you won't need to calculate this.

Suppose we interested in determining if the population mean length of the longest serious relationship among Cal Poly students differs from 9 months. That is, we test H_0 : $\mu = 9$ vs H_a : $\mu \neq 9$.

What would be an example of a Type I error? Finding that we (do/do not) have evidence that the population mean length of longest serious relationship differs from 9 when in reality the population mean length of longest serious relationship (equals/does not equal) 9 months.

- 1. do; equals
- 2. do not; does not equal
- 3. do; does not equal
- 4. do not; equals

We can't have it all

- We cannot simultaneously minimize Pr(Type I error) and Pr(Type II error).
- Pr(Type I error) and Pr(Type II error) are inversely related as one goes down the other must go up.
- If we minimize the chance of a Type I error by making α smaller, we increase our chances of committing a Type II error.

Importance of conditions

We always have some conditions we need for *valid* inference. When these conditions are violated, but we use the statistical method anyway, this results in *invalid* inference. Invalid inference can mean:

- > your confidence interval isn't capturing the parameter as often as it should (ie, lower than 95%)
- you commit Type I errors more than you should (ie, more than 5%)
- basically, can't trust your CI or your p-value

Errors in Hypothesis Testing

Practice Problems

For which of the following p-values would I reject the null hypothesis at the $\alpha=0.10$ level of significance? Mark all that apply.

- 1. 0.01
- 2. 0.08
- 3. 0.15
- 4. 0.36
- **5**. 0.89

Clicker

We are interested in describing the math SAT scores of Cal Poly students. Assume that math SAT scores of Cal Poly students are right-skewed with $\mu=600$ and $\sigma=75$. Consider the sampling distribution of the sample mean when we take a sample of size n=100.

Can we assume that the sampling distribution of the sample mean is approximately normally distributed?

- 1. Yes, because n is bigger than 30.
- 2. Yes, because n is bigger than 10.
- 3. Yes, because np > 10 and n(1 p) > 10.
- 4. No, because np or n(1-p) is not greater than 10.
- 5. No, because the population is right-skewed.

Below are the summary statistics of the data and output from the analysis testing if the population average birth weight of the monkeys is 0.4kg.

```
t = 1.0853, df = 9, p-value = 0.306
alternative hypothesis: true mean is not equal to 0.4
95 percent confidence interval:
    XXXXXXX    XXXXXXX
```

Which is the correct calculation to estimate the population average birth weight of rhesus monkeys with a 95% CI?

- 1. $0.44 \pm 1.0853 \times 0.12/\sqrt{10}$
- 2. $0.44 \pm 1.0853 \times 0.12$
- 3. $0.44 \pm 2.26 \times 0.12/\sqrt{10}$
- 4. $0.39 \pm 1.96 \times 0.12$
- 5. $0.39 \pm 2.26 \times 0.12/\sqrt{9}$

Suppose I test if the average age of retirement for Americans differs from 65 (H_0 : $\mu=65$ vs H_a : $\mu\neq65$), and I get a test statistic of 1.5. Which figure corresponds to the p-value?

The level of significance α at which the test is performed (and hence, the corresponding confidence level of a CI) affects...

- 1. both the value of the test statistic and the width of a confidence interval.
- only the value of the test statistic and not the width of a confidence interval.
- only the width of a confidence interval and not the value of the test statistic.
- neither the value of the test statistic nor the width of a confidence interval.

Number of states visited

> favstats(survey\$States)

min Q1 median Q3 max mean sd n missing 1 5 8 13 35 9.820896 6.797783 67 0

Are conditions satisfied for the following one-sample t-test? H_0 : $\mu=8$ vs H_a : $\mu\neq 8$, where $\mu=$ population mean number of states visited

- 1. yes, $n \ge 30$
- no, distribution is right skewed
- 3. yes, $n\hat{p} \ge 10$ and $n(1-\hat{p}) \ge 10$
- 4. no, $n\hat{p} < 10 \text{ OR}$ $n(1 - \hat{p}) < 10$

One Sample t-test

```
data: survey$States
t = 2.1926, df = 66, p-value = 0.03187
alternative hypothesis: true mean is not equal to 8
95 percent confidence interval:
    8.162786 11.479005
sample estimates:
mean of x
    9.820896
```

Which of the following statements are true at $\alpha = 0.05$?

- 1. 67 individuals were included in this sample
- 2. the null hypothesis is $\mu \neq 8$
- 3. the z distribution was used to calculate the p-value
- 4. there is evidence that the null hypothesis is true
- all are true
- 6. none are true

Suppose Cal Poly administrators want to determine the proportion of students that graduate within 4 years, and they calculate a 95% confidence interval to be (0.4, 0.8). They aren't happy with the interval because it is so wide, and hence not very informative. What would you recommend that they do?

- 1. increase their confidence level
- 2. take a larger sample
- 3. perform a hypothesis test
- 4. reduce the standard deviation of whether or not students graduate
- 5. more than one of these items

The percentage of Cal Poly students that participate in Greek life is 20%. Suppose I were to repeatedly sample groups of n=100 Cal Poly students. Describe the sampling distribution of the sample proportion in terms of the

- shape
- mean
- standard deviation

of the distribution.

Clicker

We tested if the average amount of hours worked per week differs from 38 at the $\alpha=0.01$ level of significance. (H_0 : $\mu=38$ vs H_a : $\mu\neq38$) In the data, $\bar{x}=37.1$, and we get a p-value equal to 0.0299.

What can be said about a 99% confidence interval for the population mean?

- 1. A 99% confidence interval would contain 38.
- 2. A 99% confidence interval would not contain 38.
- 3. A 99% confidence interval would not contain 37.1.
- 4. A 99% confidence interval would contain 0.0299.
- 5. A 99% confidence interval would contain 0.
- 6. Not enough information to determine.

Clicker

Supposed I used a one-sample t-test to determine if average income of US citizens is less than \$45,000.

 H_0 : $\mu = 45000$ vs H_a : $\mu < 45000$

What would a Type II error be in the context of this research question? Finding that we (do/do not) have evidence that the population average income is less than \$45,000, when in reality the population average income (equals \$45,000/is less than \$45,000).

- 1. do not; is less than \$45,000
- 2. do not; equals \$45,000
- 3. do; equals \$45,000
- 4. do; is less than \$45,000