$$L_c = \{(x, y, z) \mid x^2 + y^2 - z^2 = c\}.$$

Para c=0, se obtiene el cono $z=\pm\sqrt{x^2+y^2}$ centrado en el eje z. Para c negativo, por ejemplo, $c=-a^2$, obtenemos $z=\pm\sqrt{x^2+y^2+a^2}$, que es un hiperboloide de dos hojas alrededor del eje z, que corta al eje z en los puntos $(0,0,\pm a)$. Para c positivo, por ejemplo, $c=b^2$, la superficie de nivel es el *hiperboloide de revolución de una hoja* alrededor del eje z definido por $z=\pm\sqrt{x^2+y^2-b^2}$, que interseca el plano xy en la circunferencia de radio |b|. Estas superficies de nivel se muestran en la Figura 2.1.13.

Figura 2.1.13 Superficies de nivel de la función $f(x, y, z) = x^2 + y^2 - z^2$.

Figura 2.1.14 La sección y=0 de la gráfica $f(x,y,z)=x^2+y^2-z^2$.

Se puede obtener otra vista de la gráfica a partir de una sección. Por ejemplo, el subespacio $S_{y=0}=\{(x,y,z,t)\mid y=0\}$ interseca la gráfica según la sección