

Pruebas de Rendimiento

Autor: Ramiro Woutersen Uriarte Fecha: 14 / 06 / 2019

Ingeniería Informática | Curso 2018 - 2019.

Tabla de contenidos

1 Introducción	3
2 Medidas	3
3 Resultados e Interpretación	

1.- Introducción

Las pruebas de rendimiento son imprescindibles para cualquier aplicación. Comprobar los límites en los cuales se puede ejecutar un programa permite determinar las posibilidades para la gestión de la escalabilidad del producto.

Komet Kevin como aplicación al ser totalmente local no contiene elementos de concurrencia por peticiones por lo tanto no se darán las pruebas de rendimiento sobre este campo. Por otra parte se va a comprobar el consumo de recursos locales que puede llegar a alcanzar el programa. Los principales elementos que afectan al rendimiento son:

- Asteroides en juego
- Cantidad de imágenes a renderizar en un mismo momento

Debido a que estos dos campos están relacionados vamos a tomar medidas de ambos. Calcularemos a cuantas imágenes por segundo va la aplicación al aumentar el número de asteroides y al tener estos asteroides en la cámara del jugador (la parte que se ve cuando se está jugando una partida).

2.- Medidas

Pretendemos obtener un valor que represente el coste de procesamiento de cada asteroide.

Tomamos medidas para una cierta cantidad de asteroides de un tipo. Las medidas serán tanto como de procesamiento sin que las imágenes de los asteroides tengan que ser renderizadas en la cámara del jugador como un entorno con un número de imágenes acordes a mostrar. Destacar que se pretende que la aplicación procese 60 imágenes por segundo (o fps) como base de calidad.

*Las medidas se han obtenido sobre un ordenador con procesador i7-3632qm (2.2GHz-3.2GHz)

<u>Cantidad</u>	200	400	1000	1500	2000	2500	3000	3500	4000
<u>Imágenes</u>	por Segundo	o (fps)							
Pequeño									
No rend	60	60	60	60	60	60	60	20	1
Si rend	60	60	60	60	60	40	28	10	RIP
Mediano									
No rend	60	60	60	60	60	60	60	14	
Si rend	60	60	60	55	35	24	13	2	
Grande									
No rend	60	60	60	60	60	60	50	10	
Si rend	60	40	25	10	6	4	3	1	

3.- Resultados e Interpretación

Gracias a los datos obtenidos, y sabiendo que 60 fps es el 100% de rendimiento para la aplicación, podemos deducir a partir del momento en que el procesamiento del juego no es capaz de soportar a su máxima capacidad los asteroides dejamos de usar el 100% de la capacidad del ordenador y por lo tanto ese punto de máximo lo tomamos como valor de indicación.

Como se puede observar en los datos los puntos de corte son:

Pequeño: 2000Mediano: 1000Grande: 200

Sabiendo que este número de asteroides representa el 100% de capacidad de procesamiento sobre la aplicación, calculamos el valor unitario de cada asteroide:

Pequeño: [100 / (2000 * 1)] = 0.05
Mediano: [100 / (1000 * 1)] = 0.1
Grande: [100 / (200 * 1)] = 0.5

Valor Pequeño	0,05%
Valor Mediano	0,10%
Valor Grande	0,50%

Recordar que estos valores representan el consumo de procesamiento dentro de la aplicación de un asteroide.

La aplicación funcionará dentro de los parámetros definidos por el equipo siempre que la suma del valor de los asteroides no sobrepase el 100%.

En nuestro caso se ha decidido que el juego permita 400 asteroides pequeños, 200 asteroides medianos y 2 grandes:

400*0.05 + 200*0.1 + 2*0.5 = 41 %

La configuración propuesta para el juego consume un <u>41% de los recursos</u> del límite de capacidad que permite la aplicación.