Introduction to Networking!

The parts I think will be useful to you, anyway. I'm glossing over a lot, but this will give you a general sense of how stuff works

OSI Model

The Three Layers that Matter

- Transport
 - Handles data reliability and flow control
 - Address: Port number
 - Identifies a specific program on a device
 - Example: 80
- Network
 - Gets data from point A to point B across different networks
 - Address: IP Address
 - Identifies a computer between networks
 - (Except for private addresses...)
 - Example: 159.89.147.177
- Data Link
 - Gets data from point A to point B within a network
 - Address: MAC Address
 - Identifies a computer within a network
 - Example: 6c:40:08:bd:2a:d0

Transport Layer Protocols

- TCP
 - Most common
 - Reliable
 - Order guaranteed
- UDP
 - Unreliable (though in practice it's pretty reliable tbh)
 - Order not guaranteed
- ICMP
 - Used for control messages between routers, mostly
 - Also used for pings

Port Numbers

- Every program that's listening for connections has a port number
- Common ports:
 - 80 HTTP
 - 443 HTTPS
 - o 22 SSH
 - o 53 DNS
 - o 3389 RDP
- The connection initiator uses a random high port as the source

IP and Routing

- This was a lot simpler before 1996
- Every device had a public IP address and could easily talk to any other device in the world
- The general process:
 - o Is the computer I want to talk to part of my network?
 - If yes: send the data directly
 - If not: send the data to your router
 - Your router will send the data on to another router
 - The data will keep being passed through routers until it reaches its destination

DNS

 Remembering the IP address of every website would be a pain, fortunately DNS exists

The Problem with IPv4

- There are only 4,294,967,296 IPv4 addresses
- There are ~7,661,105,082 people alive right now
- A lot of them own more than one internet-connected device
- The solution? Private addressing

Private Addressing

- There are 3 blocks of private addresses
 - o 10.0.0.0 10.255.255.255
 - o 172.16.0.0 172.31.255.255
 - o 192.168.0.0 192.168.255.255
- Not publicly routable

Private Addressing Example

Open up a terminal and type "ipconfig" (or "ifconfig" if you're not on Windows).

Then Google "ip address".

They're different!

Private Addressing

- The translation between public and private addresses is called network address translation (NAT)
- You don't need to understand how it works, just remember that it exists

How IP Addresses Work

- 32-bit integers that we split into 4 octets to make things easier
- Separated into a network address and a host address by bitwise AND with a subnet mask
- Example:
 - o Address: 1.2.3.4
 - Subnet mask: 255.255.255.0
 - Network address = Address & subnet mask = 1.2.3.0
- Oh, also, the last address in a subnet is the broadcast address
- Let's try some more examples

A Note About IPv6

- There's a newer version of IP that uses 128-bit addresses, but adoption has been slow
- It works similarly to IP in most other ways
- I finished my networking classes the year before IPv6 was introduced to the curriculum, so I honestly don't know as much about it as I should

MAC Addresses

- Significant only within your local subnet.
- 48-bit integers expressed as 6 hexadecimal octets
- Example: 6c:40:08:bd:2a:d0
- Globally unique
 - The first 3 octets define the manufacturing organization
 - The last 3 define the specific network interface
 - o In the above example:
 - 6c:40:08 is one of Apple's vendor prefixes
 - bd:2a:d0 is my laptop's wifi card specifically
- Broadcast address: ff:ff:ff:ff:ff

Let's try making a human network

Hopefully this works and makes sense