Cheeger の有限性定理

1 目標

このレポートでは、Cheeger の有限性定理の証明の概略について述べる。

定理 1.1. (Cheeger) $n \ge 2, K, D, v > 0$ について、「Diam $\le D, \mathrm{Vol} \ge v, |\sec| \le K$ なる n 次元閉 Riemann 多様体の族」は有限個の微分同相類で代表される。

2 準備

証明を記すうえで前提となる事実を列挙する。

- (1) Ricci 曲率 $Rc(v,w) = Tr(x \mapsto R(x,v)w) = \sum_i g(R(e_i,w)e_i)$ ($\{e_i\}$: 直交基底)
- (2) 断面曲率 $\sec(v, w) = \frac{g(R(w, v)v, w)}{g(v \land w, v \land w)}$
- (3) 単射半径 $\iota: \exp_p: T_pM \to M$ が微分同相となる半径の上界

定理 2.1. (Klingenberg's estimate) (M,g) を完備 Riemann 多様体とし sec $\leq C(const.)$ とする。このとき、 $\iota_M \geq \frac{\pi}{\sqrt{C}}$ となるか、最短の閉測地線 γ が存在して $\iota_M = \frac{L(\gamma)}{2}$ 。

定理 2.2. (Ambrose) (M,g),(N,h) を Riemann 多様体、 $f:M\to N$ を局所等長写像とする。 (M,g) が完備なら f は滑らかな被覆写像である。

定理 2.3. (Bishop-Gromov) (M,g) を完備 Riemann 多様体とし $\mathrm{Rc} \leq (n-1)k$ とする。このとき、 $r \mapsto \frac{\mathrm{Vol}B(p,r)}{v(n,k,r)}$ は単調非減少。ここで v(n,k,r) は断面曲率が k で一定の空間上で半径 r の閉球の体積。

定理 2.4. (分裂定理) 完備 Riemann 多様体 (M,g) が直線を含み Ric ≥ 0 を満たすとする。このとき、ある Riemann 多様体 (H,g_0) が存在して (M,g) は $(H \times \mathbb{R}, g_0 + dt^2)$ と等長同型 (M が分裂するという)。

3 Riemann 多様体の族上のノルム

基点つき Riemann 多様体 (M,g,p) 上の $C^{m,\alpha}$ -norm が $||(M,g,p)||_{C^{m,\alpha},r} \leq Q$ であることを、次の条件を満たす $C^{m+1,\alpha}$ -class chart $\varphi:B(0,r)\to U\ni p$ が存在することと定義する。

- (1) $|D\varphi|, |D\varphi^{-1}| \le \exp(Q)$
- (2) 任意の多重指数 $|I| \leq m$ について $r^{|I|+\alpha}||\partial^I g_{kl}||_{\alpha} \leq Q$

上の norm を入れた位相を pointed- $C^{m,\alpha}$ 位相と呼ぶ。Riemann 多様体の族自体には各点の sup を取ったものが そのままノルムになり、単に $C^{m,\alpha}$ 位相と呼ぶ。

Ascoli-Arzela の定理に対応する結果が次である。

定理 3.1. $Q>0, n\geq 2, m\geq 0, \alpha\in (0,1], r>0$ とする。「基点つき n 次元 Riemann 多様体 (M,g,p) で $||(M,g,p)||_{C^{m,\alpha},r}\leq Q$ なるものの族」は pointed- $C^{1,\beta}(\beta<\alpha)$ 位相でコンパクト。

系 3.2. 上の族の部分集合として、 $\operatorname{diam} \leq D$ という制限をつけたものは $C^{m,\beta}$ 位相でコンパクトであり、高々有限

個の微分同相類を含む。

証明. 直径とノルムの条件から定数個の chart で被覆でき、上の定理と合わせて前半が従う。

また、座標変換が C^1 ノルムで十分近い二つの Riemann 多様体は微分同相であること [2, Theorem 2.1.6] を用いると、任意の $C^{m,\beta}$ 位相でのコンパクト性は微分同相類の有限性を意味する。

例 3.3. (M,g) を完備平坦な Riemann 多様体とすると $\forall r\in\iota(M,g),||(M,g)||_{C^{m,\alpha},r}=0$ 。特に $\forall r>0,||(\mathbb{R}^n,g_{\mathbb{R}^n})||_{C^{m,\alpha},r}=0$ だが、実は任意の m,α,r で等式が成り立つことと Euclid 空間と等長同型 であることが後で示される。

4 調和座標と調和ノルム

Riemann 多様体上の調和座標 $(U, \{x_i\})$ とは、 $\Delta x_i = 0$ が成り立つことを指す。

命題 4.1. Riemann 多様体 (M,g) 上の各点 p について調和座標系 $p \in (U,\{x_i\})$ が存在する。

証明. まず適当な chart $(U,\{y_i\})$ を取り y(p)=0 とすると、座標変換 $y\mapsto x$ が満たすべき条件は

$$\Delta x_i = \frac{1}{\sqrt{\det g_{ij}}} \partial_i (\sqrt{\det g_{ij}} g^{ij} \partial_j x_k)$$

この解を見つけるためには、Dirchlet 問題 $\Delta x_k = 0, x_k = y_k(\text{on}\partial B(0,\epsilon))$ を解けばよい。

 $\{x_k\}$ が実際に座標系となることは elliptic estimates から従う。

補題 4.2. Riemann 多様体 (M,g) 上の調和座標系 $(U,\{x_i\})$ について、次が成り立つ。

- (1) $\Delta u = \frac{1}{\sqrt{\det g_{st}}} \partial_i (\sqrt{\det g_{st}} g^{ij} \partial_j u) = g^{ij} \partial_i \partial_j u$
- (2) $\frac{1}{2}\Delta g_{ij}+Q(g,\partial g)=-\mathrm{Rc}_{ij}$ (Q: 分子が g の多項式と ∂g の二次式で分母が $\sqrt{\det g_{ij}}$ にのみ依存する有理多項式)

証明. (1) 定義から

$$0 = \Delta x^{k}$$

$$= \frac{1}{\sqrt{\det g_{st}}} \partial_{i} (\sqrt{\det g_{st}} g^{ij} \partial_{j} x^{k})$$

$$= g^{ij} \partial_{i} \partial_{j} x^{k} + \frac{1}{\sqrt{\det g_{st}}} \partial_{i} (\sqrt{\det g_{st}} g^{ij}) \partial_{j} x^{k}$$

$$= g^{ij} \partial_{i} \delta_{j}^{k} + \frac{1}{\sqrt{\det g_{st}}} \partial_{i} (\sqrt{\det g_{st}} g^{ij}) \delta_{j}^{k}$$

$$= \frac{1}{\sqrt{\det g_{st}}} \partial_{i} (\sqrt{\det g_{st}} g^{ik})$$

$$\Delta u = \frac{1}{\sqrt{\det g_{st}}} \partial_{i} (\sqrt{\det g_{st}} g^{ij} \partial_{j} u)$$

$$= g^{ij} \partial_{i} \partial_{j} u + \frac{1}{\sqrt{\det g_{st}}} \partial_{i} (\sqrt{\det g_{st}} g^{ij}) \partial_{j} u$$

$$= g^{ij} \partial_{i} \partial_{j} u$$

(2) Bochner's formula を行列表示して得られる。詳細略。

上の等式を Einstein 計量の場合に適用する。つまり $\mathrm{Rc}_{ij}=(n-1)kg_{ij}$ のとき、 $\frac{1}{2}\Delta g_{ij}=-(n-1)kg_{ij}-Q(g,\partial g)$ 。このとき右辺は C^1 級で意味を持つ式になっている。つまり、g が $C^{1,\alpha}$ 級のとき左辺が C^{α} 級となるが、elliptic estimate から g は $C^{2,\alpha}$ 級になる。この議論を反復することで g の smoothness が従う。

harmonic norm $||(M,g,p)||_{C^{m,\alpha},r}^{har}$ を、選択する chart に調和性を課したときのノルムと定義する。

次の命題も 3.1 とほとんど同様に示される。収束先でノルムの不等式が保たれることを示す際に Dirichlet 問題を解く必要がある。

命題 **4.3.** $Q>0, n\geq 2, m\geq 0, \alpha\in(0,1], r>0$ とする。「基点つき n 次元 Riemann 多様体 (M,g,p) で $||(M,g,p)||_{C^{m,\alpha}}^{har}{}_{r}\leq Q$ なるものの族」は pointed- $C^{1,\beta}(\beta<\alpha)$ 位相でコンパクト。

調和座標を用いるメリットとして、計量が Ricci 曲率によって制御されることが挙げられる。これは次の補題に集約される。

補題 4.4. Riemann 多様体 (M,g) が有界な Ricci 曲率 $|\mathrm{Rc}| \leq \Lambda$ を持ち、 $\forall r' > r, ||(M,g,p)||^{har}_{C^1,r'} \leq K$ が成り立つとき、 $\forall \alpha \in (0,1)$ について $C^{1,\alpha}$ ノルムが有界、つまり $||(M,g,p)||^{har}_{C^{1,\alpha}} \leq C$ 。

証明.調和座標を固定し計量成分 g_{ij} を評価する。 $\Delta=g^{ij}\partial_i\partial_j$ に注意する。elliptic estimate から

$$||g_{ij}||_{C^{1,\alpha},B(0,r)} \le C(||\Delta g_{ij}||_{C^0,B(0,r')} + ||g_{ij}||_{C^{\alpha},B(0,r')})$$

4.2(2)から、

$$||\Delta g_{ij}||_{C^0,B(0,r')} \le 2\Lambda ||g_{ij}||_{C^0,B(0,r')} + C' ||g_{ij}||_{C^1,B(0,r')}$$

上の二つの評価を合わせて結論を得る。

実は、分裂定理を用いると harmonic norm の評価を単射半径の評価に置き換えることができる。

定理 4.5. (Anderson) $n>2, \alpha\in(0,1), \Lambda, R>0$ が与えられるとき、任意の Q>0 について r>0 が存在し、 「 $|\mathrm{Rc}|\leq\Lambda, \iota\geq R$ なる n 次元閉 Riemann 多様体の族」は $||(M,g)||_{C^{1,\alpha},r}^{har}\leq Q$ を満たす。

証明. 背理法で示す。ある Q>0 と $\forall i\geq 1, (M_i,g_i)$ が存在して、

$$|\operatorname{Rc}| \leq \Lambda$$

$$\iota \geq R$$

$$||(M_i, g_i)||_{C^{1,\alpha}, i^{-1}}^{har} > Q$$

が成り立つとする。scale の連続性からある $r_i\in(0,i^{-1})$ で $||(M,g,p)||_{C^{m,\alpha},r_i}^{har}=Q$ となるので、 $\overline{g_i}=r_i^{-2}g_i$ と rescale すると上の条件は

$$|\operatorname{Rc}| \le r_i \Lambda$$

$$\iota \ge r_i^{-1} R$$

$$||(M_i, g_i)||_{C^{1,\alpha}, 1}^{har} = Q$$

となる。定義から $||(M_i, g_i, p_i)||_{C^{1,\alpha}}^{har} \in [\frac{Q}{2}, Q]$ なる $p_i \in M_i$ が存在する。

前の補題から $\forall \gamma \in (0,1)$ について $C^{1,\gamma}$ ノルムで有界なので、3.1 から pointed- $C^{1,\alpha}$ 位相で収束部分列が取れる。極限を (M,g,p) とすると、ノルムの連続性から $||(M,g,p)||_{C^{1,\alpha},1}^{har} \in [\frac{Q}{2},Q]$ が成り立つ。

Claim: $(M,g) = (\mathbb{R}^n, g_{std})$

この主張が成り立てば $||(M,g,p)||_{C^{1,\alpha},1}^{har}\in [rac{Q}{2},Q]$ と矛盾し背理法が成立する。

収束する調和座標を取ると 4.2 から各 (M_i, \overline{g}_i) で $\frac{1}{2}\Delta \overline{g}_{kl} + Q(\overline{g}, \partial \overline{g}) = -\mathrm{Rc}_{kl}$ が成り立っているが、Ricci 曲率の評価から $|-\mathrm{Rc}| \leq r_i^{-2}\Lambda \overline{g} \to 0$ であり、極限では $\frac{1}{2}\Delta g_{kl} + Q(g,\partial g) = 0$ が分かる。これは (M,g) が Einstein 方程式 $\mathrm{Rc} = 0$ の弱解であることを意味し、4.2 の系から smooth で Ricci 平坦な多様体であることが従う。また、 $\iota \geq r_i^{-1}R \to \infty$ であり任意の (M,g) 上の測地線は (M_i,g_i) 上の測地線の極限であることから $\iota(M,g) = \infty$ が分かる。よって分裂定理から (M,g) が標準的な Euclid 空間になることが分かった。

上の Ricci 曲率に対する評価を断面曲率に対する評価に取り替えて次を得る。

定理 4.6. $n \geq 2, \alpha \in (0,1), R, K > 0$ が与えられるとき、任意の Q > 0 について r > 0 が存在し、「 $|\sec| \leq K, \iota \geq R$ なる n 次元閉 Riemann 多様体の族」は $||(M,g)||_{C^{1,\alpha}}^{har} \leq Q$ を満たす。

5 主定理の証明

前節の内容から、後は単射半径が制御できれば有限性定理を示すことが出来る。これは半径1の球の体積による評価から実現される。

補題 5.1. $n \geq 2, v, K > 0$ が与えられるとき、R > 0 が存在し、「 $|\sec| \leq K, \operatorname{Vol} B(p, 1) \geq v(p \in M)$ なる n 次元 閉 Riemann 多様体 (M,g) は $\iota_M \geq R$ を満たす。

証明・補題の条件を満たし $\iota M_i \to 0$ となる列 (M_i,g_i) を取る。 $\iota(M_i,p_i)=\iota_{M_i}$ とし $\overline{g_i}=(\iota M_i)^{-2}g_i$ と正規化すると、 $\iota(M,\overline{g_i})=1,|\sec(M,\overline{g_i})|\leq (\iota M_i)^2K=K_i\to 0$ となる。上の定理からこれは pointed- $C^{1,\alpha}$ 位相で収束部分列を持ち、収束先 (M,g,p) は平坦となる。

まず $\iota(M,p) \leq 1$ を導く。 $\frac{\pi}{\sqrt{K_i}} \to \infty$ と Klingenberg's estimate から、 (M_i,g_i,p_i) は長さ 2 の閉測地線を持つ。 これは pointed- $C^{1,\alpha}$ 位相で長さ 2 の閉測地線に収束するから $\iota \leq 1$ が得られる。

一方で、 $\operatorname{Vol} B(p_i,1) \geq v$ と Bishop-Gromov 不等式から、ある v' が存在し r < 1 について $\operatorname{Vol} B(p_i,r) \geq v'r^n$ が成り立つ。このとき収束先では $\forall r, \operatorname{Vol} B(p_i,r) \geq v'r^n$ が成り立ち、 (M,g) の平坦性から $(M,g) = (\mathbb{R}^n, g_{std})$ である。

上の主張をもう少し詳しく説明する。Ambrose の定理から普遍被覆 $p: M=\mathbb{R}^n \to M$ が存在し、基本群の元は \mathbb{R}^n の等長写像として実現される。位数が有限の元が存在するとき、その等長写像はある点を中心に回転するものであり、特に固定点を持つ。これは作用が自由であることに反するので基本群は torsion-free。よって M 自身が単連結でないとすると Galois 対応から部分群 \mathbb{Z} に対応する被覆 $\widehat{M} \to M$ が取れる。これは $\widehat{M} = \mathbb{R}^{n-1} \times S^1$ を意味し、体積の増大度が r^{n-1} のオーダーであることから矛盾。よって $M = \mathbb{R}^n$ であり、 $\iota(M,p) \leq 1$ と合わせて列 (M_i,g_i) の存在が否定される。

References

- [1] Petersen, Peter. Riemannian geometry. Vol. 171. New York: Springer, 2006.
- [2] Hirsch, Morris W. Differential topology. Vol. 33. Springer Science & Business Media, 2012.