

Department of Mechanical Engineering

Introduction to Welding Technology

Professor Pedro Vilaça

Advanced Manufacturing and Materials (AM2)

Contacts:

Address: P.O. Box 14200, FI-00076 Aalto, Finland Visiting address: Puumiehenkuja 3, Espoo

pedro.vilaca@aalto.fi

April 2020

0

Contents

Summary

- ✓ Definition of welding
- ✓ Introduction and scope of welding technology
- ✓ Joining mechanisms governing welding technology
- ✓ Historical milestones of welding technology and allied techniques
- ✓ Introduction to fusion welding processes
- ✓ Introduction to brazing/soldering processes
- ✓ Introduction to solid-state welding processes with focus on friction based technology and applications
- √ Samples of advanced welding solutions
- √ Fundamental nomenclature
- ✓ Introduction to weldability concept

Department of Mechanical Engineering

Advanced Manufacturing and Materials

Learning Outcomes

At the end of the seminar the student should be able to

- 1. To identify the multiphysical character of welding technology
- 2. To classify the main joining mechanisms in welding technology
- 3. To distinguish between fusion, brazing and solid-state welding
- 4. To identify main historical milestones of welding technology
- 5. To identify main fusion welding processes
- 6. To identify main solid-state welding processes
- 7. To describe the weldability concept

Department of Mechanical Engineering

Advanced Manufacturing and Materials _

2

What is...?

(def.) welding - A joining process that produces coalescence of materials by...

- Applying energy: heating (Heat Energy) them to the welding temperature, with/without application of pressure (Mech Energy)
 or by the application of pressure alone (Mech Energy)
- With/without the use of filler metal
- With/without the use of shielding gas

Department of Mechanical Engineering

Advanced Manufacturing and Materials

Introduction to Welding

Classification... but many others exists

Fusion Welding

✓ Includes partial fusion of Base Material, with /without application of pressure, with/without filler metal added to weld pool

Welding Process Classification

Note: There are (many) others possible classifications

Brazing and Soldering

✓ No fusion of base material components which are joined by inserting melted filler metal in the overlap joint configuration

Solid State Welding

- ✓ Joining is obtained by solid state joining mechanisms
- ✓ In some processes, superficial melting layer is produced to then be expelled during forging
- ✓ Flash around weld zone is usual

Department of Mechanical Engineering

Advanced Manufacturing and Materials

40

12

Introduction to Welding

Dilution Rate... Formulation Supporting the Classification

- Autogeneous No filler material
- Homogeneous Filler metal similar to base material
- Filler metal dissimilar to base material

% Base Metal Dilution =

$$\frac{a+c}{a+b+c}$$
 x 100%

Dilution rate [DR] – (Def.) Contribution of Base Material into Weld Metal. Where the Weld Metal is made of Base Materials + Filler Metal:

- ✓ DR = 0 to 100 %
- ✓ DR = 0 % Brasing and soldering
- ✓ DR = 100 % Autogeneous conditions

Aalto University
School of Engineering

Department of Mechanical Engineering

Advanced Manufacturing and Materials

Joining Mechanism ...in Fusion Welding Fpitaxial Solidification by Nucleation and grain growth Fusion Zone Boundaries Oriented (e.g. epitaxial) grain growth Segregation of elements into last zone solidifying (middle of fusion Three types of boundaries zone), that may promote nucleation Boundaries are distinguishable metallographically effect Space between dendrites Cooling rate (e.g. welding parameters) Shape factor (penetration/width) Aalto University Advanced Manufacturing Department of Mechanical Engineering School of Engineering and Materials

14

Fusion Welding

Electric Arc Based Welding

✓ Overview of Techniques

Department of Mechanical Engineering

Advanced Manufacturing and Materials

Milestones of Electric Arc Welding (3/4)

Gas Tungsten Arc Welding

Aalto University
School of Engineering

Department of Mechanical Engineering

Advanced Manufacturing and Materials

21

Laser Welding

✓ Overview of Fundaments

Department of Mechanical Engineering

Advanced Manufacturing and Materials

Continuous Wave Laser Welding Applications Seam angle Position of beam Position Po

30

Aalto University School of Engineering

Fusion Welding

Department of Mechanical Engineering

Electron Beam Welding

✓ Overview of Fundaments

Department of Mechanical Engineering

Advanced Manufacturing and Materials

Advanced Manufacturing

and Materials

• Equipment: Level of Vacuum in Gun and Working Cameras

High-vacuum chamber equipment for EBW

Variants:

- ✓ **High-Vacuum**: 10⁻³ to 10⁻⁶ Torr
- ✓ **Fine-Vacuum**: 25 to 10⁻³ Torr
- ✓ Non-vacuum (1 atm ≈ 760 Torr)

Aalto University
School of Engineering

Department of Mechanical Engineering

Advanced Manufacturing and Materials

33

Brasing and Soldering

Interfacial Joining of Solid Base Materials by Third-body Fusion Filler Material

Department of Mechanical Engineering

Advanced Manufacturing and Materials

Brasing and Soldering

Parameter	Process	
	Soldering	Brazing
Joint formed	Mechanical	Metallurgical
Filler metal melt	<450 (<840)	>450 (>840) ^(a)
temperature, °c (°f)		
Base metal	Does not melt	Does not melt
Fluxes used to protect and	Required	Optional
to assist in wetting of base-		
metal surfaces		
Typical heat sources	Soldering iron;	Furnace; chemical
	ultrasonics; resistance; oven	reaction; induction; torch; infared

Aalto University
School of Engineering

Department of Mechanical Engineering

Advanced Manufacturing and Materials

38

38

Solid State Welding and Processing Technology

Solid State Welding

✓ Overview of Main Processes

Department of Mechanical Engineering

Advanced Manufacturing and Materials

40

40

Solid State Welding and Processing Technology

Friction Based Technology

√ "Third-Body" Region

Department of Mechanical Engineering

Advanced Manufacturing and Materials

48

48

Other Advanced Welding Techniques

- A-Tig Welding
- Micro-Plasma Welding
- Hot-Wire Welding and Coating
- Rarrow Gap Welding (w/ TIG hot wire; MIG; SAW)
- Advanced SAW: ICE Variant
- Advanced GMAW: Synergic Control + CMT + 3D Printing
- Hvbrid Laser Welding with GMAW
- Friction Stir Based Innovations: FSChannelling + FSpot Welding
- Friction Welding (conventional axisymmetric)
- Friction Based Techniques: FHydro Pillar + FRiveting
- Friction Surfacing

Department of Mechanical Engineering

Advanced Manufacturing and Materials

56

56

References

Literature supporting the achievement of the learning outcomes

- 1. J. F. Lancaster (1986) The Physics of Welding", 2nd ed., Pergamon Press.
- 2. Robert W. Messler (2004) Principles of Welding Processes Physics, Chemistry, and Metallurgy, Jr. Wiley-VCH ed.
 - Chapter 1: Introduction to the Process of Welding (pages 1–16)
 - Chapter 5: Energy for Welding
 - Closing Thoughts

Other references

- ✓ ASM Metals Handbook Vol. 6 Welding Brazing and Soldering. 1993. ASM International.
- ✓ AWS Welding Handbook Vol. 1 to 4 –9th ed. American Welding Society.

Department of Mechanical Engineering

Advanced Manufacturing and Materials

61