МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ

Факультет прикладной математики – процессов управления

ОТЧЕТ

по лабораторной работе №4

по дисциплине «Функциональное программирование» на тему «Параллельная обработка космических изображений»

Студент гр. 22.Б15	Суворов Н.В
Преподаватель	Киямов Ж.У.

Санкт-Петербург 2023 г.

Содержание

1.	Цель работы	2
	Задача	
	Теоретическая часть	
	Алгоритм метода	
	Описание программы	
	Рекомендации пользователю	
	Рекомендации программисту	
	Контрольный пример	
	Заключение	

1. Цель работы

Разработать программу для анализа космических данных с использованием параллельных вычислений, с целью сбора статистики.

2. Задача

- 1) Собрать базу данных космических изображений.
- 2) Разработать программу для анализа космических данных.

3. Теоретическая часть

Компьютерное зрение (OpenCV):

Компьютерное зрение — это область искусственного интеллекта и компьютерной науки, которая занимается обработкой и анализом изображений и видео. OpenCV (Open Source Computer Vision Library) является одной из наиболее популярных и мощных библиотек для разработки приложений в области компьютерного зрения. Важные аспекты OpenCV включают:

- Загрузка и обработка изображений и видео.
- Выделение объектов на изображениях (сегментация).
- Детекция объектов и паттернов (например, лица, автомобили).
- Измерение характеристик объектов (например, размер, яркость).

Итак, объединение компьютерного зрения с параллельными вычислениями позволяет эффективно анализировать изображения и обрабатывать большие объемы данных, что особенно важно в контексте задачи анализа космических данных.

4. Алгоритм метода

- Считывание всех изображений из заданной директории.
- Параллельная обработка всех выбранных изображений.
- Преобразование каждого изображения в оттенки серого.
- Применение пороговой фильтрации для создания двоичного изображения для каждого изображения.
- Поиск контуров на двоичном изображении для каждого изображения.

- Классификация на звезды и планеты.
- Сохранение обработанного изображения.
- Вывод статистики для каждого изображения.

5. Описание программы

В программе используется 2 класса: 1 связанный с интерфейсом программы, 1 связанный с обработкой изображений. В таблице 5.1 представлено описание классов.

Таблица 5.1. Описание классов

Имя класса	Описание
ImageAnalysis	Поиск объектов
ImageAnalysisApp	Создание интерфейса

Таблица 5.1. Описание фунуций

Имя	Описание
init	Инициализация переменных, настройка параметров интерфейса, запуск корректировки интерфейса
create_interface	Корректировка интерфейса
select_input_folder	Выбор папки для загрузки
select_output_folder	Выбор папки для отгрузки
start_threading	Запуск интерфейса в отдельном потоке
process_images	Распараллеливание обработки
process_image	Обработка

Github

https://github.com/AlexShinalov/functional_programming/tree/main/laba%204

6. Рекомендации пользователю

Выберете папку для загрузки изображений, а также папку для обработанных изображений. После выбора нажмите на кнопку «Process Images». Прогресс обработки изображений указывается в нижней части программы.

7. Рекомендации программисту

Для запуска программы необходима 64-битная операционная система Windows и Python версии не ниже 3.1. Для корректной работы программы рекомендуется использовать IDE PyCharm версии 2023.21 и рір install версии 23.1.0. Для корректной работы необходимо установить библиотеки: **os, cv2, time, timeit, logging, tinker, threadings.** Их установку рекомендуется производить через **pip install**. Пример pip install opency-forpython.

8. Контрольный пример

В данном разделе представлен контрольные пример, демонстрирующий способность выполнять комплексную параллельную обработку изображений.

Рисунок 8.1. Интерфейс программы

Рисунок 8.4–8.5. Пример обработки изображения

9. Заключение

В рамках представленной работы был разработан и успешно реализован алгоритм обработки и анализа изображений. Этот алгоритм направлен на изучение методик по оптимизации процессов машинного зрения.

10. Литература

https://en.wikipedia.org/wiki/Machine_vision