Caractérisation d'une phase super-paramagnétique à haute température dans EuO sur graphène

Sacha Rejai

Faculté de Physique et Ingénierie Université de Strasbourg

24 Mai 2022

Sommaire

- Introduction
- Pabrication des échantillons
- 3 Loi de Langevin et analyse de données
- Observation d'un effet super-paramagnétique
- Conclusion

Introduction

L'objet de l'étude est d'étudier une phase super-paramagnétique pour des échantillons où est déposé sur du graphène une couche d'oxyde d'europium.

Domaine plus général : la spintronique

La graphène a un intérêt particulier ?

Quelques définitions

• Le paramagnétisme

• Le super-paramagnétisme

Fabrication des échantillons

Fabrication des échantillons :

Les échantillons réalisés sont composés de trois couches, chacune nécessaire pour permettre l'étude des propriétés super-paramagnétiques :

- Couche de graphène
- Couche d'EuO
- Couche de titane

Chaque couche a un rôle spécifique.

Fabrication des échantillons

Etape de la fabrication :

- Dégazage du graphène pendant plusieurs heures à 350°C
- Dépôt à température ambiante de Eu_2O_3
- Dépôt à 450°C de titane
- Chauffage pendant moins d'une heure à 450°C

La totalité de la fabrication se passe dans une chambre à vide afin d'éviter la pollution des échantillons (environ 10^9 torr).

Spéctrométrie à rayons X

Figure: Schéma du principe de la spectrométrie à rayons X

Formule de Bragg : $2d.sin(\theta) = n.\lambda$

Croix de Hall

Figure: Schéma d'une croix de Hall

$$R_{xy} = p.M + q.B \tag{1}$$

où M est l'aimantation, B le champ magnétique, R_{xy} la résistance transverse (entre 1 et 3 sur la figure); $10e = \frac{10^3}{4\pi}A_{xy}m^{-1}$

Loi de Langevin du paramagnétisme

Loi de Langevin du paramagnétisme :

N atomes ayant chacun un moment magnétique \overrightarrow{m} , l'énergie avec un champ magnétique \overrightarrow{B} appliqué :

$$E = -\overrightarrow{m}.\overrightarrow{B} \tag{2}$$

L'aimantation est alors :

$$M = N.m.L(a) \tag{3}$$

où M est l'aimantation, $L(a) = \coth(a) - \frac{1}{a}$ la fonction de Langevin, et

$$a = \frac{mB}{k_BT}$$

Fonction de Langevin

Figure: Fonction de Langevin sur [-50,50]

 $R_{xy} = p.M$ car p est grand devant q dans notre cas.

Résultats expérimentaux

Figure: tracé de $R_{xy}(\Omega)$ de de A.L(a) en fonction de a pour T = 200K

Les fits à différentes températrure

Figure: Les différents fits pour chaque température

Résultats obtenus

Température (K)	moment magnétique (μ_B)	Amplitude A (Ω)
2	0,76	340
10	3,472	333
25	8,993	307
50	18,22	286
75	27,39	272
100	37,96	254
150	55,21	239
200	75,48	217
250	106,8	174
300	107,8	119

 $1\mu_B \approx 9, 3.10^{-28} J.Oe^{-1}$

Tracé de m en fonction de la température

Figure: Evolution de m (μ_B) en fonction de T (K)

Tracé de A en fonction de la température

Figure: Evolution de A (Ω) en fonction de T (K)

Possible origine de l'effet super-paramagnétisme

Hypothèse des polarons :

Figure: Schéma d'un polaron

conclusion

- Résultat encourageant pour la spintronique.

- Résultat à nuancer : Encore un manque de compréhension