Nome complet	Número	

COMPUTAÇÃO GRÁFICA E INTERFACES

LEI/FCT/UNL — Ano Letivo 2011/12 EXAME da ÉPOCA NORMAL — 2012/01/12

Atenção:

Responda no próprio enunciado, que entregará. Em caso de engano, e se o espaço para a resposta já não for suficiente, poderá usar o verso das folhas desde que feitas as devidas referências.

Não desagrafe as folhas! A prova de exame, com duração de 2H, é sem consulta.

1. (3 valores em 18)

Uma janela encontra-se definida, em coordenadas do mundo real (WC), por $x_1 \le x \le x_2$ e $y_1 \le y \le y_2$ e deverá ser totalmente mapeada, <u>sem distorção</u>, num determinado visor de um ecrã com largura W e altura H, expressas em pixels. Também se sabe que o formato (*aspect ratio*) do ecrã é de **5:3**. A origem do sistema de coordenadas localiza-se no canto superior esquerdo do ecrã, como é característica comum a este tipo de equipamentos.

a) Exprima matematicamente a condição adicional que as coordenadas da janela terão de satisfazer para que a imagem possa ser visualizada ocupando <u>toda a largura</u> do ecrã mas não necessariamente toda a altura do mesmo.

- b) Pretende-se que o visor tenha o seu <u>canto superior esquerdo</u> no centro do ecrã, ocupando a maior área possível (desde que não cause distorção). Especifique a necessária transformação de enquadramento janela—visor por uma matriz M (para usar na forma P'=M.P) deduzida e apresentada em termos da mais simples composição de transformações geométricas elementares (S, R, ou T) em 2D, com a instanciação apropriada de todos os parâmetros. Para tal, considere separadamente as duas situações seguintes, devendo ter soluções o mais idênticas possível.
 - b.1) Quando o formato da janela for **4:3**:

M =

b.2) Quando o formato da janela for **16:9**:

M =

2. (3,5 valores em 18)

É dado o polígono P=[A,B,C,D,E,F,G], ao qual irá ser aplicado o algoritmo de recorte de Sutherland-Hodgman no polígono Q=[1,2,3,4]. As convenções quanto à orientação dos eixos cartesianos são as mesmas que se usaram nas aulas teóricas.

Não renomeie pontos que já estejam identificados na figura!

- a) Quantas arestas irá ter o polígono, denotado por P', que será o resultado final do recorte de P em Q?_____
- b) Escreva o resultado obtido ao terminar a primeira fase do processamento de recorte de P, admitindo que a ordem dessas fases é a seguinte: Clip Left \rightarrow Clip Bottom \rightarrow Clip Right \rightarrow Clip Top

Indique qual será, no final do processamento, a especificação do polígono P':

P'=[

c) Este problema particular de recorte poderá ilustrar o inconveniente que usualmente se atribui ao algoritmo de Sutherland-Hodgman? _____ Justifique:

d) Na figura dada, pinte as regiões que ficariam preenchidas pela aplicação do algoritmo de FILL

- AREA (par-ímpar) ao polígono P'.
- e) Indicando como referência pontos já marcados na figura, entre que linhas de varrimento se verificará o menor comprimento da Tabela de Arestas Activas (quando não vazia) na execução do algoritmo de FILL AREA?

Qual é esse valor? _____

E entre que linhas se verificará o maior comprimento da TAA? ___

_____ Com que valor? _____

a) Na figura seguinte encontram-se três triângulos equiláteros cujos vértices deverão ser todos usados para pontos de controlo de uma curva cúbica Q(t) de Catmull-Rom que, não apresentando nenhuma auto-intersecção, será uma curva fechada e o mais suave possível. Esboce essa curva e identifique claramente todos os troços constituintes. Para cada troço i, escreva, no espaço abaixo da figura, o vetor de geometria Gi que lhe corresponda.

Nome __

 Para cada ponto de junção de troços da curva anterior indique, com rigor matemático, a direção do vetor dQ(t)/dt :

c) A curva Q(t) apresenta controlo local ou global? _____ Justifique: _____

d) Em termos de interpolação de pontos, como se comportaria uma curva B-spline que fosse gerada com os mesmos vetores de geometria da alínea a)? Justifique a resposta:

Pág	4/7

Nome	Número

mas qu	Indique uma propriedade goemétrica que se verifique tanto para curvas B-spline como de Bézier mas que não se verifique para a curva Q(t) da alínea a) e exponha, <u>por palavras</u> e não por fórmulas, as condições matemáticas de que resulta necessariamente tal propriedade.			
A (0.5. 1.	10)			
	o modelo de reflexão uintes cores poderão			b COS θ), indique quais n objeto amarelo claro
☐ Cinze	ento (0.5,0.5,0.5)	l Laranja (1,0.5,0)	□ Vermelho (1,0,0)	☐ Cião claro (0.5,1,1)
Justifiqu	ue completamente a re	esposta dada, interpreta	ando-a também do po	nto de vista físico:
b) Comple	te o quadro seguinte o	com a especificação da	s cores A e B nas célu	ulas em branco:
	Modelo	Cor A	Cor B	
	RGB	(1,0,1)	(0,1,0)	
	CMY			
	HSV			
Qual o		nterpolação linear d m HSV?		B no modelo RGB? Justificando a resposta
com bas	_	ológicos da cor, qual	dessas interpolações	tem um resultado mais
				· · · · · · · · · · · · · · · · · · ·

5. (3 valores em 18)

Considere o modelo de um cubo, opaco e sujeito a uma projeção geométrica.

a) Ao aplicar-se o algoritmo de Z-buffer a esse objeto, no máximo quantas vezes poderá ser escrito um determinado pixel no *frame buffer* se se utilizar previamente o método do produto interno (*culling* de faces)? ______ E no caso de não se utilizar? ______ Justifique as respostas:

b) Admita que a projeção geométrica possa ser a oblíqua, a axonométrica ou a perspectiva, a que se seguirá a aplicação do algoritmo de Z-buffer. Na vista correspondente a cada uma das referidas projeções, qual o número máximo possível de faces visualizadas exatamente como quadrados? Explique porquê:

6. (3 valores em 18)

Para servir de suporte à programação em OpenGL e em X3D, a figura anterior é um grafo de cena no qual os diversos Pi representam sólidos primitivos em cuja implementação se admite não terem sido usadas transformações geométricas. Recorda-se que, em X3D, a <u>ordem de execução</u> das transformações geométricas num nó Transform é S-R-T.

Ja ·	programação do grafo de cena em X3D, quantos nós Transform seriam estrita
	essários? Explique pormenorizadamente porquê:

Pág. 7/7	Nome	Número
		· · · · · · · · · · · · · · · · · · ·