Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

ОТЧЕТ по лабораторной работе №1 на тему

ПРИНЯТИЕ РЕШЕНИЙ В НЕСТРУКТУРИРОВАННЫХ ЗАДАЧАХ НА ОСНОВЕ МЕТОДОВ ЭКСПЕРТНОГО АНАЛИЗА

Вариант №7

Студент:	Кутняк А. В.
Руководитель:	Туровец Н. О.

1 ЦЕЛЬ РАБОТЫ

Цель лабораторной работы:

- изучение методов экспертного анализа, включая процедуры сбора экспертных оценок, их проверки и обработки;
- изучение возможностей по применению методов экспертного анализа поддержки принятия управленческих решений.

2 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Порядок выполнения работы:

- 1. Изучить теоретические сведения по лабораторной работе.
- 2. На основе оценок первого эксперта найти веса вариантов решения, используя алгоритм Саати. Выполнить проверку экспертных оценок на непротиворечивость.
- 3. Выбрать рациональное решение, используя метод предпочтений. Выполнить проверку экспертных оценок на согласованность. При выявлении несогласованности экспертных оценок указать ее причины, т.е. указать, для каких альтернатив имеются существенные различия в указанных экспертами оценках, или какие эксперты указали оценки, существенно отличающиеся от оценок других экспертов.
- 4. Выбрать рациональное решение, используя метод ранга. Выполнить проверку экспертных оценок на согласованность. При выявлении несогласованности экспертных оценок указать ее причины (аналогично тому, как указано для метода предпочтений).

3 ИСХОДНЫЕ ДАННЫЕ

Предлагается построить нефтеперерабатывающее предприятие. Район строительства предприятия находится вблизи от потребителей продукции, однако удален от мест добычи нефти.

Предлагаются следующие варианты действий:

- 1. организовать танкерные перевозки (А1);
- 2. доставлять нефть железнодорожным транспортом (А2);
- 3. построить нефтепровод (А3);
- 4. отказаться от предлагаемого строительства (А4).

Выбор одного из вариантов решения задачи производится с участием трех экспертов.

Мнения экспертов следующие:

- первый эксперт: лучшее решение строительство нефтепровода, хуже танкерные перевозки, еще хуже отказ от строительства, значительно хуже железнодорожные перевозки;
- второй эксперт: лучше всего танкерные перевозки, немного хуже строительство нефтепровода, значительно хуже - железнодорожные перевозки, еще хуже - отказ от строительства;
- третий эксперт: лучшее решение строительство нефтепровода, хуже
 отказ от строительства, еще хуже танкерные перевозки, значительно хуже
 железнодорожные перевозки.

4 ХОД ВЫПОЛНЕНИЯ РАБОТЫ

4.1 Метод Сааити

Метод Саати основан на сравнении альтернатив, выполняемом одним экспертом. Для каждой пары альтернатив эксперт указывает, в какой степени одна из них предпочтительнее другой.

На основе оценок первого эксперта заполняется матрица парных сравнений (см. рисунок 4.1) размером $N \times N$, где N - количество альтернатив.

	A1	A2	A3	A4
A1	1	5	1/3	3
A2	1/5	1	1/7	1/3
A3	3	7	1	5
A4	1/3	3	1/5	1

Рисунок 4.1 – Матрица парных сравнений

Находим цены альтернатив - средние геометрические строк матрицы:

$$C_i = \sqrt[N]{\prod_{j=1}^{N} X_{ij}}, \ i = \overline{1, N}.$$

Получим следующие цены альтернатив:

$$C_1 = 1.495, \ C_2 = 0.312, \ C_3 = 3.201, \ C_4 = 0.669.$$

Находим сумму цен альтернатив:

$$C = \sum_{i=1}^{N} C_i = 1.495 + 0.312 + 3.201 + 0.669 = 5.678.$$

После находим веса альтернатив:

$$V_i = C_i/C, i = \overline{1, N}.$$

Получим следующие значения весов альтернатив:

$$V_1 = 0.263, V_2 = 0.055, V_3 = 0.564, V_4 = 0.118.$$

4.2 Метод Сааити. Проверка оценок на непротиворечивость

Находим суммы столбцов матрицы парных сравнений:

$$R_j = \sum_{i=1}^{N} X_{ij}, \ j = \overline{1, N}.$$

Получим следующие суммы столбцов:

$$R_1 = 4.533, R_2 = 16.000, R_3 = 1.676, R_4 = 9.333.$$

Рассчитываем вспомогательную величину λ :

$$\lambda = \sum_{j=1}^{N} R_j V_j = 4.119.$$

Находим величину, называемую индексом согласованности:

ИС =
$$(\lambda - N)/(N - 1) = 0.040$$
.

В зависимости от размерности матрицы парных сравнений находится величина случайной согласованности: $C\pi C = 0.90$.

Находим отношение согласованности:

$$OC = UC/C\pi C = 0.044.$$

Значение отношения согласованности не превышает 0.20, значит, уточнение экспертных оценок не требуется.

4.3 Метод предпочтений

Метод основан на ранжировании альтернатив, выполняемом группой экспертов. Каждый из экспертов, независимо от других, выполняет ранжирование альтернатив, т.е. указывает, какая из альтернатив, по его мнению, является лучшей, какая — следующая за ней, и т.д.

Ранжирование альтернатив по предпочтению экспертов представлено на рисунке 4.2.

Эконован	Альтернативы			
Эксперты	A1	A2	А3	A4
1	2	4	1	3
2	1	3	2	4
3	3	4	1	2

Рисунок 4.2 – Матрица ранжирования альтернатив

Затем производится преобразование матрицы оценок по формуле:

$$B_{ij} = N - X_{ij}, i = \overline{1, M}, j = \overline{1, N}.$$

Преобразованная таблица ранжирования альтернатив по предпочтению экспертов представлена на рисунке 4.3.

Экопорти	Альтернативы			
Эксперты	A1	A2	A3	A4
1	2	0	3	1
2	3	1	2	0
3	1	0	3	2

Рисунок 4.3 – Преобразованная матрица ранжирования альтернатив

Находим суммы преобразованных оценок по каждой из альтернатив:

$$C_j = \sum_{i=1}^{M} B_{ij}, \ j = \overline{1, N}.$$

Получим следующие суммы преобразованных оценок:

$$C_1 = 6.000, C_2 = 1.000, C_3 = 8.000, C_4 = 3.000.$$

Находим сумму всех преобразованных оценок:

$$C = \sum_{j=1}^{N} C_j = 6.000 + 1.000 + 8.000 + 3.000 = 18.000.$$

После находим веса альтернатив:

$$V_j = C_j/C, \ j = \overline{1, N}.$$

Получим следующие значения весов альтернатив:

$$V_1 = 0.333, V_2 = 0.056, V_3 = 0.444, V_4 = 0.167.$$

4.4 Метод предпочтений. Проверка согласованности оценок

Находим суммы оценок по каждой из альтернатив:

$$S_j = \sum_{i=1}^{M} X_{ij}, \ j = \overline{1, N}.$$

Получим следующие суммы оценок:

$$S_1 = 6.000, S_2 = 11.000, S_3 = 4.000, S_4 = 9.000.$$

Находим вспомогательную величину А:

$$A = \frac{M \cdot (N+1)}{2} = 7.500.$$

Находим вспомогательную величину S:

$$S = \sum_{j=1}^{N} (S_j - A)^2 = 29.000.$$

Последним шагом является нахождение коэффициента конкордации:

$$W = \frac{12 \cdot S}{M^2 \cdot N \cdot (N^2 - 1)} = 0.644.$$

Значение коэффициента конкордации превышает 0.5, значит, уточнение и согласование экспертных оценок не требуется.

4.5 Метод ранга

Метод основан на балльных оценках альтернатив, указываемых несколькими экспертами.

Каждый эксперт указывает оценки альтернатив по 10-балльной шкале. Оценки, указанные экспертами, сводятся в матрицу размером $M \times N$, где M - число экспертов, N - число альтернатив.

Матрица экспертных десятибалльных оценок альтернатив приведена на рисунке 4.4.

Swall on the	Альтернативы			
Эксперты	A1	A2	A3	A4
1	8	3	10	5
2	10	5	8	3
3	5	3	10	8

Рисунок 4.4 – Матрица экспертных оценок

Находятся суммы оценок по каждой из альтернатив:

$$C_j = \sum_{i=1}^{M} X_{ij}, \ j = \overline{1, N}.$$

Получим следующие суммы оценок:

$$C_1 = 23, C_2 = 11, C_3 = 28, C_4 = 16.$$

Находим сумму всех оценок:

$$C = \sum_{j=1}^{N} C_j = 23 + 11 + 28 + 16 = 78.$$

Находим веса альтернатив:

$$V_j = C_j/C, \ j = \overline{1, N}.$$

Получим следующие значения весов альтернатив:

$$V_1 = 0.295, V_2 = 0.141, V_3 = 0.359, V_4 = 0.205.$$

4.6 Метод ранга. Проверка согласованности оценок

Находим средние оценки каждой альтернативы:

$$\bar{X}_j = \frac{1}{M} \sum_{i=1}^{M} X_{ij}, \ j = \overline{1, N}.$$

Получим следующие средние оценки:

$$\bar{X}_1 = 7.667, \ \bar{X}_2 = 3.667, \ \bar{X}_3 = 9.333, \ \bar{X}_4 = 5.333.$$

Находим дисперсии оценок каждого эксперта:

$$D_i = \frac{1}{N-1} \sum_{j=1}^{N} (X_{ij} - \bar{X}_j)^2, \ i = \overline{1, M}.$$

Получим следующие значения дисперсий оценок:

$$D_1 = 0.370$$
, $D_2 = 4.815$, $D_3 = 5.037$.

Эта величина показывает отклонение оценок, указанных i-м экспертом для альтернатив, от средних оценок этих альтернатив. Чем больше эта величина, тем больше отличие мнения i-го эксперта от остальных экспертов.

Находим дисперсии оценок каждой альтернативы:

$$D_i = \frac{1}{M-1} \sum_{i=1}^{M} (X_{ij} - \bar{X}_j)^2, \ j = \overline{1, N}.$$

Получим следующие значения дисперсий оценок:

$$D_1 = 6.333, D_2 = 1.333, D_3 = 1.333, D_4 = 6.333.$$

Эта величина показывает различие оценок, указанных экспертами для j-й альтернативы. Чем больше эта величина, тем больше расхождение мнений экспертов в отношении данной альтернативы.

В данном случае следует отметить, что оценки второго и третьего эксперта сильно разнятся друг от друга; также следует повторно рассмотреть первую и четвертую альтернативы.