2. Machine Learning

2.1 Supervised Learning Algorithms

2.1.1 Support Vector Machines (SVM)

הינו מודל למידה מונחית המשמש לניתוח נתונים לצורך סיווג, חיזוי ורגרסיה. Support Vector Machine (SVM) הינו מתויגות במרחב n-ממדי, ומנסה למצוא מישור המפריד בצורה טובה כמה שניתן בין דוגמאות השייכות לקטגוריות השונות.

המסווג הנוצר באמצעות מודל SVM הינו לינארי, כאשר חלוקת הדוגמאות במרחב הווקטורי נעשית באופן כזה שייווצר מרווח גדול ככל האפשר בין המישור המפריד לבין הנקודות הממוקמות הכי קרוב אליו. מרווח זה מכונה שוליים מחווח גדול ככל האפשר בין המישור המפריד לבין הנקודות המוקמות עם השני נמצאות הדוגמאות עם ה- אחד, ובצד השני נמצאות הדוגמאות עם הוא label השני. את המישור המפריד ניתן לייצג באמצעות אוסף הנקודות \vec{x} המקיימות label וקטור נורמלי של המישור.

ננסח את האלגוריתם באופן פורמלי: נתון אוסף של p נקודות (x_1,y_1) (x_n,y_n) מייצג את מייצר מישור $y_i\in\{-1,1\}$ מייצר מישור המתאים לדוגמא i. מודל ה-SVM התיוג המתאים לדוגמא i. ווא וקטור המאפיינים המתארים את דוגמא i. מודל ה-i0 מייצר מהם אמור להכיל בעיקר דוגמאות מסוג תיוג אחד. בנוסף, המודל מייצר שני מישורים מקבילים לו, אחד מכל צד, במרחק זהה וגדול ככל האפשר:

$$w^* = argmin_w \left(\frac{1}{2} ||w||^2\right), s. t \ \forall i \ y_i(w \cdot x_i) \ge 1$$

כלומר, רוצים למצוא את וקטור המשקולות w^* המייצר שוליים $margin=rac{1}{2}ig||w|ig|^2$ כלומר, רוצים למצוא את וקטור המשקולות w^* המייצר שוליים ($y_i(w\cdot x_i) < rac{1}{2}ig||w|ig|^2$ ואינן בתוך השוליים (לא מתקיים: $y_i(w\cdot x_i) < rac{1}{2}$

ישנם מספר גישות למציאת המפריד, ונפרט על כמה מהן.

Hard-Margin (hard SVM)

במצב הפשוט ביותר, המשוואה עבור כל אחד מצדדיו של המפריד הינה פונקציה לינארית של המאפיינים וכל הדוגמאות אשר סווגו נכונה. מצב זה מכונה "הפרדה קשיחה" בו האלגוריתם מוצא את המישור עם השול הרחב ביותר האפשרי, ולא מאפשר לדוגמאות להיות בין הווקטורים התומכים. זוהי למעשה הפרדה מושלמת, והווקטורים התומכים הם למעשה הנקודות בקצוות השוליים, כפי שניתן לראות באיור:

איור 2.1 סיווג באמצעות אלגוריתם SVM עם מפריד בעל השוליים הרחבים ביותר. הקו האמצעי מייצג את המפריד, הקווים המקווקוים מייצגים את מישורי השוליים. דוגמאות האימון המתלכדות עם מישורי השוליים נקראות וקטורים תומכים (support vectors), ומכאן נגזר שם האלגוריתם.

את המישורים בקצוות השוליים ניתן לייצג באמצעות $\vec{w}\cdot\vec{x}-b=1$ or $\vec{w}\cdot\vec{x}-b=-1$ גאומטרית, המרחק בין שני המישורים הוא $\frac{2}{||w||}$, ולכן על מנת למקסם את המרחק הזה, יש מהביא למינימום את ||w||. על מנת שדוגמאות האימון לא יכללו בשוליים המפרידים, יש להוסיף אילוץ לכל דוגמא i, באופן הבא:

$$y_i \cdot (\overrightarrow{w} \cdot \overrightarrow{x_i} - b) \ge 1$$

אילוץ זה מחייב שכל דוגמא תימצא בצד הנכון של המפריד. לכן, במקרה זה יש לקיים את הדרישה הבאה:

$$\label{eq:starting_equation} \begin{split} \min_{w,b} & \|w^2\| \\ s.t \ y_i \ (\overrightarrow{w} \cdot \overrightarrow{x_i} - b) \geq 1 \ \forall \, i = 1 \dots n \end{split}$$

Soft-Margin (soft SVM)

הפרדה מושלמת באמצעות מישור לינארי לעיתים קרובות איננה אפשרית, ולכן ניתן להרחיב את המודל כך שיאפשר לנקודות מסוימות לא להיות ב"צד" המתאים להן. הרחבה זו, היוצרת "הפרדה רכה", מאפשרת לטפל בבעיות שבהן אין הפרדה לינארית בין הקבוצות, כמו למשל שיש נקודות חריגות. משמעות ההרחבה היא שכל וקטור מפר לפחות אחד מהאילוצים, אך עם זאת, נרצה להגיע למצב בו האילוצים מופרים "כמה שפחות". הפרדה רכה יוצרת מצב בו יש trade-off בין רוחב השול לבין השגיאות ומציאת המשקלים האופטימליים של המסווג. בגרסת זו יש לרשום באופן מעט שונה את בעיית האופטימיזציה, כאשר מתווסף משתנה המתייחס לנקודות שאינן נמצאות בסיווג המתאים להן לפי המפריד:

$$\begin{aligned} \min \left| |w^2| \right| + C \sum_{i=1}^n \xi_i \\ s.t \ y_i \ (\overrightarrow{w} \cdot \overrightarrow{x_i} - b) \geq 1 - \xi_i \quad \forall \ i = 1 \dots n \ , \xi_i \geq 0 \end{aligned}$$

לשם קבלת אינטואיציה, נשים לב לתפקיד המשתנים:

אם $\xi_i=0$ אם מתקיים התנאי שנדרש בהפרדה קשיחה, כלומר הנקודה x_i גם נמצאת בצד הנכון של המפריד וגם מתקיימת הדרישה לשמירה על השוליים. אם $0<\xi_i<1$ אז הנקודה x_i נמצאת בצד הנכון של המפריד המסווג, אבל המסווג קרוב אליה, כך שהנקודה נמצאת בתוך השוליים. C הינו קבוע שאחראי על "ענישה" של דוגמאות שאינן בצד הנכון של המפריד. ערך C גבוה פירושו העדפת הסיווג הנכון על פני שוליים רחבים, ואילו C נמוך מעדיף הכללה (שוליים רחבים), גם במחיר שדוגמאות האימון הספציפיות אינן מסווגות נכון.

איור 2.2 סיווג באמצעות אלגוריתם SVM עם הפרדה רכה. המשתנה ξ_i שווה לאפס אם הנקודה ממוקמת בצד הנכון של המפריד. וגדול מאפס כאשר הנקודות נמצאות בצד הלא נכון של המפריד.

Non-linear Separation

מסווגים לינאריים מוגבלים ביכולת ההכללה שלהם בגלל הפשטות שלהם. לכן, כאשר לא ניתן להפריד אוסף דוגמאות באמצעות מפריד לינארי, משתמשים ב"הפרדה א-לינארית". גישה זו מאפשרת להשתמש ב-SVM לסיווג לא לינארי, על ידי טרנספורמציה לא לינארית, כמו למשל "תעלול הגרעין" (Kernel Trick). בגישה זו מבצעים מיפוי לדאטה למרחב אחר, בו ניתן למצוא עבורו הפרדה לינארית, וממילא יהיה אפשר להשתמש באלגוריתם SVM. כך למשל, קיימת אפשרות ליצור מאפיינים חדשים על ידי העלאת ערכי המאפיינים הקיימים בחזקה מסוימת, הכפלתם בפונקציות טריגונומטריות וכו'.

באופן פורמלי, נחפש פונקציית מיפוי להעתקת מרחב $\psi\colon \chi\to F$ כך שבמרחב $\psi\colon \chi\to F$ ניתן יהיה להפריד את הנתונים באופן פורמלי, נחפש פונקציית מיפוי להעתקת מרחב $\{\psi(x_i),y_i\}_{i=1}^N$ באמצעות מסווג לינארי. לשם כך, משתמשים בטריק קרנל שמקבל כקלט וקטורים במרחב המקורי (dot product) של הווקטורים במרחב החדש (נקרא גם מרחב התכונות – space):

$$K(\overrightarrow{x_i}, \overrightarrow{x_i}) = \psi(\overrightarrow{x_i})^T \psi(\overrightarrow{x_i})$$

דוגמאות של פונקציות קרנל נפוצות:

:קרנל לינארי

$$K(\overrightarrow{x_l}, \overrightarrow{x_l}) = \overrightarrow{x_l} \cdot \overrightarrow{x_l}$$

זוהי הפונקציה הכי פשוטה, המוגדרת על ידי מכפלה פנימית של הווקטורים. במקרה זה מרחב התכונות ומרחב הקלט זהים ונחזור לפתרון בעזרת SVM לינארי:

קרנל פולינומי:

$$K(\overrightarrow{x_l}, \overrightarrow{x_l}) = (\overrightarrow{x_l} \cdot \overrightarrow{x_l} + c)^d$$

היחס המפיע על היחס המקורי למרחב שמהווה פולינום ממעלה $c \geq 0$. $d \geq 2$ הוא פרמטר חופשי המשפיע על היחס העתקה מהמרחב המקורי למרחב שמהווה פולינום. כאשר c = 0 , הקרנל נקרא הומוגני.

:קרנל גאוסיאני

$$K(\overrightarrow{x_i}, \overrightarrow{x_j}) = \exp(-\gamma(\overrightarrow{x_i} - \overrightarrow{x_j})^2), \gamma > 0$$

הפרמטר γ ממלא תפקיד חשוב, ויש לבחור אותו בהתאם לבעיה העומדת בפנינו. אם הערך שלו קטן מאוד, האקספוננט ינהג כמעט באופן ליניארי וההטלה למרחב אחר מממד גבוה יותר יתחיל לאבד מכוחו הלא ליניארי. מצד שני, אם נעריך אותו יתר על המידה, הפונקציה לא תהיה סדירה וגבול ההחלטה יהיה רגיש מאוד לרעש בנתוני האימון.

המהות של טריק קרנל היא שניתן לבצע את ההעתקה גם מבלי לדעת מהי הפונקציה ψ , אלא הידיעה של K מספיקה. לצורך קבלת אינטואיציה והמחשה נביא דוגמא. נתון מערך הנתונים הבא:

ניתן לראות שלא ניתן להפריד בין הנקודות הצהובות לסגולות על ידי מישור הפרדה לינארי. לכן נחפש מרחב אחר, מאותו ממד או בעל ממד גבוה יותר, בו ניתן יהיה להפריד בין נקודות אלה באופן לינארי. לצורך כך נבצע את הפעולות הבאות:

- א. נמפה את התכונות המקוריות למרחב הגבוה יותר (מיפוי תכונות).
 - ב. נבצע SVM לינארי במרחב החדש.
- ג. נמצא את קבוצת המשקולות התואמות את מישור גבול ההחלטה.
- ד. נמפה את מישור המפריד בחזרה למרחב הדו-ממדי המקורי כדי לקבל גבול החלטה לא ליניארי.

ישנם הרבה מרחבים מממדים גבוהים יותר בהם נקודות אלה ניתנות להפרדה לינארית. נציג דוגמא אחת:

$$x_1, x_2 : \to z_1, z_2, z_3$$

$$z_1 = \sqrt{2}x_1x_2 \quad z_2 = x_1^2 \quad z_3 = x_2^2$$

 \mathbb{R}^n למעשה נעזרנו בטריק קרנל. כאמור, בהינתן שקיימת פונקציה שממפה \mathbb{R}^m את הווקטורים ממרחב ממרחב למרחב תכונות כלשהו \mathbb{R}^m , אז המכפלה הפנימית של \mathbb{R}^n במרחב הזה היא \mathbb{R}^m , אז המכפלה הפנימית של \mathbb{R}^n במרחב הזה היא פונקציית קרנל המקבילה למפת השייכת למכפלה פנימית זו, כלומר \mathbb{R}^n בפונקציה יחד עם \mathbb{R}^n אם נוכל למצוא פונקציית קרנל המקבילה למפת התכונות שלעיל, נוכל להשתמש בפונקציה יחד עם SVM לינארי וכך לבצע את החישובים ביעילות.

d=2 נבחר $K(x,x')=(x^Tx')^d$ מתברר שמרחב התכונות שלעיל תואם את השימוש בקרנל פולינומי ידוע: $x=(x_1,x_2)^T$ נכחר $x=(x_1,x_2)^T$

$$K\left(\binom{x_1}{x_2}, \binom{x_1'}{x_2'}\right) = (x_1 x_2' + x_2 x_2')^2 =$$

$$2x_1 x_1' x_2 x_2' + (x_1 x_1')^2 + (x_2 x_2')^2 = \left(\sqrt{2}x_1, x_2, x_1^2 x_2^2\right) \begin{pmatrix} \sqrt{2}x_1' x_2' \\ x_1'^2 \\ x_2'^2 \end{pmatrix}$$

$$K\left(\binom{x_1}{x_2}, \binom{x_1'}{x_2'}\right) = \varphi(x)^T \varphi(x')$$

$$\varphi\left(\binom{x_1}{x_2}\right) = \begin{pmatrix} \sqrt{2}x_1 x_2 \\ x_1^2 \\ x_2^2 \end{pmatrix}$$

איור 2.3 שימוש ב-SVM לצורך הפרדה לאחר ביצוע Kernel trick. המעגל באיור הימני ממופה למישור הפרדה לינארי במרחב מממד גבוה יותר, כפי שניתן לראות באיור השמאלי. ניתן לראות שאחרי המיפוי שנעשה בעזרת kernel trick, הנקודות אכן מופרדות בצורה לינארית.

2.1.2 Naive Bayes

סיווג בייסיאני הוא מודל המשתמש בחוק בייס על מנת לסווג אובייקט $x\in\mathbb{R}^n$ בעל n מאפיינים לאחת מ-K קטגוריות מפריות. יחד עם השימוש בחוק בייס, המודל מניח "נאיביות" – בהינתן סיווג של אובייקט מסוים, אין תלות בין אפשריות. יחד עם השימוש בחוק בייס, המודל מניח "נאיביות" המאפיינים השונים שלו.

נניח שיש מודל המקבל וקטור מאפיינים בינאריים (כאב ראש, משתעל, חום גבוה), ומסווג האם אדם בעל תכונות אלה חולה בשפעת או לא. באופן כללי ניתן לומר שיש תלות בין שיעול לבין חום גבוה, כלומר העובדה שיש לאדם אלה חולה את ההסתברות שהוא גם משתעל. למרות זאת, ניתן להניח באופן "נאיבי" שאם כבר יודעים שאדם חולה חום מעלה את ההסתברות שהוא גם משתעל. למרות בעל חום. באופן פורמלי, אמנם סביר להניח שמתקיים בשפעת, אז כבר אין יותר תלות בין היותו משתעל להיותו בעל חום. באופן פורמלי, אמנם סביר להניח שמתעלי p(שפעת) > p(שפעת משתעל) = p(

באופן כללי סיווג בייסיאני נאיבי מניח שבהינתן הסיווג של אובייקט מסוים, המאפיינים שלו בלתי תלויים. הנחה זו כמובן לא תמיד מדויקת, וממילא גם ערכי ההסתברויות הנובעים ממנה ומשמשים לסיווג אינם מדויקים, אך ההנחה מקלה מאוד על חישוב ההסתברויות של הסיווג הבייסיאני, ובמקרים רבים תחת ההנחה זו התקבלו תוצאות סיווג. הסיבה להצלחת המודל נעוצה בכך שבבעיית סיווג העיקר הוא למצוא את הסיווג הסביר ביותר לאובייקט (שפעת או

לא-שפעת לנבדק בדוגמא), ולאו דווקא לקבל הסתברות מדויקת לכל סיווג. במקרים רבים למרות שההסתברות הנובעת מההנחה הנאיבית אינה מדויקת עבור שני סיווגים אפשריים, היא בכל זאת שומרת על סדר ההסתברות שלהם

 $y=(y_1,...y_k)$ קטגוריות מ- $X\in\mathbb{R}^n=(x_1,...x_n)$ נתבונן בוקטור מאפיינים $p(x_i|y_k)$ דועה, ובנוסף ידועות ההתפלגויות המותנות של המאפיינים בהנתן הסיווג $p(y_k)$ דועה, ובנוסף ידועות ההתפלגויות המותנות של המאפיינים בהנתן הסיווג את $p(y_k|x)$ דועה הנתונים האלה רוצים לסווג את $p(y_k|x)$ לאחת מהקטגוריות, כלומר למצוא את $p(y_k|x)$ שעבורו הביטוי $p(y_k|x)$ הוא מקסימלי. באופן פורמלי ניתן לנסח זאת כך:

$$y = \arg \max_{k} p(y_k|x), k = 1...K$$

בשביל למצוא את y_k האופטימלי ניתן להיעזר בחוק בייס:

$$p(y_k|x) = \frac{p(y_k, x)}{p(x)}$$

:המכנה לא תלוי ב-k, ולכן מספיק למצוא את y_k שעבור המונה מקסימלי. לפי כלל השרשרת מתקיים

$$p(y_k, x) = p(y_k, x_1 \dots, x_n) = p(x_1 | y_k, x_2 \dots, x_n) \cdot p(y_k, x_2 \dots, x_n)$$

$$= p(x_1 | y_k, x_2 \dots, x_n) \cdot p(x_2 | y_k, x_3 \dots, x_n) \cdot p(y_k, x_3 \dots, x_n)$$

$$= \dots = p(x_1 | y_k, x_2 \dots, x_n) \cdot p(x_2 | y_k, x_3 \dots, x_n) \cdots p(x_{n-1} | y_k, x_n) \cdot p(x_n | y_k) p(y_k)$$

כעת נשתמש בהנחת הנאיביות, לפי בהינתן הסיווג y_k , אין תלות בין המאפיינים. לפי הנחה זו נוכל לפשט את הביטוי:

$$= p(x_1|y_k) \cdot p(x_2|y_k) \cdots p(x_{n-1}|y_k) \cdot p(x_n|y_k) p(y_k)$$
$$= p(y_k) \prod_{i=1}^{n} p(x_i|y_k)$$

בביטוי זה כל האיברים ידועים, ולכן כל שנותר זה רק להציב את הנתונים ולקבל את y_k עבורו ביטוי זה הכי גדול:

$$y = \arg\max_{k} p(y_k) \prod_{i=1}^{n} p(x_i|y_k)$$

בדוגמא שהובאה לעיל, המאפיינים קיבלו ערכים בדידים, ולכן היה ניתן לחשב את ההסתברות המותנית של כל מאפיין $p(x_i|y_k)$ על ידי ספירת כמות הפעמים שמופיע כל מאפיין באוכלוסייה הנדגמת ולחלק בגודל המדגם. עבור ערכים רציפים (כמו למשל מחיר מניה, גובה של אדם וכדו'), אין אפשרות לחשב כך את ההסתברות המותנית. במקרים כאלה יש להניח התפלגות מסוימת עבור המדגם, ולחשב את הפרמטרים של ההתפלגות שיטות שונות (למשל בעזרת נראות מרבית – MLE). עבור מדגם המתפלג נורמלית, ההסתברות המותנית היא גאוסיאן:

$$p(x_i|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} e^{-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}}$$

כאשר μ_y, σ_y^2 הם הפרמטרים של ההתפלגות, וכאמור הם משוערכים בעזרת MLE או שיטת שערוך אחרת. אם μ_y, σ_y^2 ההתפלגות, ניתן להשתמש באלגוריתם <u>Kernel density estimation</u> עבור שערוך ההתפלגות. גישה אחרת להתמודדות עם מאפיינים היכולים לקבל ערכים רציפים היא לבצע דיסקרטיזציה לערכים אותם המאפיינים יכולים לקבל.

במקרה <u>המולטינומי</u>, בו ההתפלגות היא רב ממדית ומציינת תוצאה של סדרה בלתי תלויה, יש לחשב את הנראות באופן המתאים להתפלגות מולטינומית. בכדי להבין את החישוב נביא קודם בדוגמא – נניח ורוצים לבנות מודל סיווג באופן המתאים להתפלגות מפאם. נתונות 12 הודעות, מתוכן 8 אמיתיות ו-4 ספאם. כעת נניח וכל ההודעות מורכבות מאוסף של ארבע מילים, בהתפלגות הבאה:

Real (R) – {Dear, Friend, Lunch, Money} = $\{8, 5, 3, 1\}$.

Spam (S) – {Dear, Friend, Lunch, Money} = $\{2, 1, 0, 4\}$.

נחשב את הנראות – ההסתברות של כל מילה בהינתן הסיווג:

$$p(Dear|R) = \frac{8}{17}, p(\text{Friend}|R) = \frac{5}{17}, p(\text{Lunch}|R) = \frac{3}{17}, p(\text{Money}|R) = \frac{1}{17}$$
$$p(Dear|S) = \frac{2}{7}, p(\text{Friend}|S) = \frac{1}{7}, p(\text{Lunch}|S) = 0, p(\text{Money}|S) = \frac{4}{7}$$

כעת נבחן מה ההסתברות שהצירוף "Dear friend" הוא מהודעה אמיתית (הצירוף הוא למעשה התפלגות מולטינומית, כיוון שהוא מכיל שתי מילים שאין בין ההסתברויות שלהן קשר ישיר):

$$p(\text{Dear friend is R}) = p(R) \cdot p(Dear|R) \cdot p(Friend|R) = 0.67 \cdot 0.47 \cdot 0.29 = 0.09$$

 $p(\text{Dear friend is S}) = p(S) \cdot p(Dear|S) \cdot p(Friend|S) = 0.33 \cdot 0.29 \cdot 0.14 = 0.01$

ממספרים אלה ניתן להסיק שהצירוף "Dear friend" אינו ספאם.

באופן הבא: $x \in \mathbb{R}^n = (x_1, ... x_n)$ באופן מחושבת באופן הבא.

$$p(x|y_k) = \frac{(\sum_i x_i)!}{\prod_i x_i!} \prod_i p(y_{ki})^{x_i}$$

על הציר הלוגריתמי, בעזרת נוסחה זו ניתן לבנות מסווג לינארי:

$$p(y_k|x) = \frac{p(y_k, x)}{p(x)} \propto p(y_k) \cdot \prod_i p(y_{ki})^{x_i}$$

$$\to \log p(y_k|x) \propto \log p(y_k) \cdot \prod_i p(y_{ki})^{x_i} = \log p(y_k) + \sum_i x_i \cdot \log p(y_{ki}) \equiv b + w^T x$$

החיסרון בשימוש במסווג בייסיאני נאיבי בבעיות מולטינומיות נעוץ בכך שיש הרבה צירופים שלא מופיעים יחד בסט האימון, ולכן הנראות שלהם תמיד תהיה 0, מה שפוגם באמינות התוצאות.

מקרה דומה להתפלגות מולטינומית הוא מקרה בו המאפיינים הם משתני ברנולי, המקבלים ערכים בינאריים. במקרה זו הנראות הינה:

$$p(x|y_k) = \prod_{i=1}^{n} p_i^{x_i} (1 - p(y_{ki}))^{1 - x_i}$$

עבור דאטה לא מאוזן, ניתן להשתמש באלגוריתם שנקרא complement naive Bayes (CNB). לפי אלגוריתם זה, בור דאטה לא מאוזן, ניתן להשתמש באלגוריתם שנקרא $rg \max_k p(y_k) \prod_{i=1}^n p(x_i|y_k)$ במקום לקחת את $rg \max_k p(y_k) \prod_{i=1}^n p(x_i|y_k)$ לוקחים את המינימום של הפונקציה ההופכית:

$$\arg\min_{k} p(y_k) \prod_{i=1}^{n} \frac{1}{p(x_i|y_k)}$$

שימוש באלגוריתם זה הוכח כיעיל במקרים בהם הדאטה אינו מאוזן והביצועים של מסווגים בייסיאנים אחרים (גאוסיאני או מולטינומי) היה לא מספיק טוב.

2.1.3 K-Nearest Neighbors (K-NN)

אלגוריתם השכן הקרוב הינו אלגוריתם של למידה מונחית, בו נתונות מספר דוגמאות ובנוסף ידוע ה-label של כל אחת מהן. אלגוריתם זה מתאים הן לבעיות סיווג (שיוך נקודה חדשה למחלקה מסוימת) והן לבעיות רגרסיה (נתינת אחת מהן. אלגוריתם זה מתאים הינו מודל חסר פרמטרים, והוא מבצע סיווג לנתונים בעזרת הכרעת הרוב. ערך מאפיין לנקודה חדשה). האלגוריתם הינו מודל חסר פרמטרים, והוא מבצע סיווג לנתונים בעזרת הכרעת הרוב. עבור כל נקודה במדגם, המודל בוחן את ה-labels של K הנקודות הקרובות אליו ביותר, ומסווג את הנקודה לפי ה-label שקיבל את מרבית הקולות. מספר הנקודות הקרובות, K, הוא היפר-פרמטר שנקבע מראש.

אלגוריתם השכן הקרוב הוא אחד המודל הנפוצים והפשוטים ביותר בלמידת מכונה, וכאמור בנוסף לסיווג הוא מתאים גם לבעיות רגרסיה. המודל יפעל בצורה דומה בשני המקרים, כאשר ברגרסיה יתבצע שקלול של ממוצע בין השכנים גם לבעיות רגרסיה. המודל יפעל בצורה דומה בשני המקרים, כאשר ברגרסיה יתבצע שקלול של המוצאה לא תהיה סיווג ל-label מסוים לפי הערך הנפוץ ביותר בקרב K השכנים. הקרובים, אלא חישוב ממוצע של כל ה-labels השכנים. התוצאה המתקבלת היא ערך רציף, המייצג את הערכים הקרובים, אלא חישוב ממוצע של כל ה-labels מהתצפית בצורה שווה (uniform), וניתן לתת משקל שונה בסביבת התצפית. ניתן להתחשב במרחק של כל שכן מהתצפית בצורה שווה (distance), וניתר לנקודה אותה רוצים לחשב כך הוא יותר ישפיע עליה, ביחס של הופכי המרחק בין השכן לבין הנקודה (distance).

איור 2.4 orilik בעזרת אלגוריתם K-NN: מסווגים את המרחב לאזורים בהתאם ל-K השכנים הקרובים ביותר, כך שאם תבוא נקודה חדשה היא תהיה מסווגת בהתאם לצבע של האזור שלה, הנקבע כאמור לפי השכנים הקרובים ביותר. ניתן לראות שיש הבדל בין ערכי אונים, וככל ש-K יותר גבוה ככה האזורים יותר חלקים ויש פחות מובלעות. b) רגרסיה בעזרת אלגוריתם K-K קביעת ערך ה-K בהתאם ל-K השכנים הקרובים ביותר. ניתן לתת משקלים שווים לכל השכנים, או לתת משקל ביחס למרחק של כל שכן מהנקודה אותה רוצים לחשב.

לעיתים נאמר על המודל שהוא "עצלן". הסיבה לכך היא שבשלב האימון לא מתבצע תהליך משמעותי, מלבד השמה של המשתנים וה-labels כאובייקטים של המחלקה, כלומר כל נקודה משויכת למחלקה מסוימת. עקב כך, כל מדגם של המשתנים וה-labels כאובייקטים של המחלית, מה שעשוי להפוך את המודל לאיטי כאשר יש הרבה דאטה. למרות זאת, המודל נחשב לאחד המודלים הקלאסיים הבולטים, בזכות היתרונות שלו. הוא פשוט וקל לפירוש, עובד היטב עם מספר רב של מחלקות, ומתאים לבעיות רגרסיה וסיווג. בנוסף הוא נחשב אמין במיוחד, כיוון שהוא לא מניח הנחות לגבי התפלגות הנתונים (כמו רגרסיה לינארית למשל).

מנגד, יש לו מספר חסרונות. עקב העובדה שהוא דורש את כל נתוני האימון בשביל התחזית, הוא עשוי להיות איטי כאשר מדובר על דאטה עשיר. מסיבה זו הוא גם אינו יעיל מבחינת זיכרון. מכיוון שהמודל דורש את כל נתוני האימון לצורך המבחן, כושר ההכללה שלו עשוי להיפגם (Generalization). ניקח לדוגמא מורה של כיתה בבית ספר, המנסה לסווג את התלמידים למספר קבוצות. אם יעשה זאת לפי צבע שיער ועיניים, לדוגמא, סביר להניח שלא יתקשה בכך; אם לעומת זאת הוא ינסה לסווג לפי צבע שיער, עיניים, חולצה, מכנסיים, נעליים, וכו' – סביר שיתקל בקושי. במצב כזה, כל תלמיד רחוק מרעהו באופן שווה כיוון שאין שני תלמידים שזהים לחלוטין בכל הפרמטרים, מה שמקשה על חישוב המרחק. בעיה זו מכונה קללת הממדיות (Curse of dimensionality), ולכן מומלץ להיעזר באמצעים להורדת הממד (Dimensionality reduction).

קושי נוסף הקיים במודל הוא הצורך בבחירת ה-K הנכון, מטלה שעשויה להיות לא קלה לעיתים. בכל מימוש של אלגוריתם השכן הקרוב, K הינו היפר-פרמטר שצריך להיקבע מראש. היפר פרמטר זה קובע את מספר הנקודות אשר האלגוריתם יתחשב בהן בעת בחירת סיווג התצפית. בחירת היפר-פרמטר קטן מידי, לדוגמא K=1, יכולה לגרום למצב בו המודל מותאם יתר על המידה לנתוני האימון, מה שמוביל לדיוק גבוה בנתוני האימון, ודיוק נמוך לגרום למצב בו המודל מותאם יתר על המידי, למשל K=100, נוצר המצב ההפוך – מודל שמתחשב יותר מדי בנתוני המבחן. מן העבר השני, כאשר K גבוה מידי, למשל K=100 אי-זוגי בגלל אופן הפעולה של האלגוריתם – הכרעת בדאטה ולא מצליח למצוא הכללה נכונה לסיווג. מומלץ לבחור K אי-זוגי בגלל לתוצאה מוטעית, ולכן כדי להימנע מתיקו כדאי לבחור K אי זוגי.

כמו אלגוריתמים רבים מבוססי מרחק, אלגוריתם השכן הקרוב רגיש לערכים קיצוניים (Outliers) ושימוש באלגוריתם ללא טיפול בערכים קיצוניים עשוי להוביל לתוצאות מוטות. מלבד זאת, חשוב לנרמל את הנתונים לפי שימוש במודל. הסיבה לכך היא שהאלגוריתם מבוסס מרחק; במצב זה, ייתכנו מרחקים בין תצפיות אשר עשויים להשפיע על החלטת המודל, למרות שמרחקים אלו הם חסרי משמעות לצורך הסיווג. דוגמא לכך היא משתנה שעושה שימוש ביחידות מידה שונות (מיילים/קילומטרים). ההחלטה האם להשתמש בקילומטרים או במיילים עלולה להטות את תוצאת המודל, למרות שבפועל לא השתנה דבר.

השיטה הנפוצה ביותר למדידת מרחק בין משתנים רציפים היא מרחק אוקלידי – עבור שתי נקודות במישור, המרחק ביניהם יחושב לפי הנוסחה: $d = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$. במידה ומדובר במשתנים בדידים, כגון טקסט, ניתן להשתמש במטריקות אחרות כגון מרחק המינג, המודד את מספר השינויים הדרושים בכדי להפוך מחרוזת אחת למחרוזת שנייה, ובכך למדוד את הדמיון ביניהן.

לפני שימוש באלגוריתם השכן הקרוב, יש הכרח לוודא שהמחלקות מאוזנות. במידה ומספר דוגמאות האימון באחת המחלקות גבוה מאשר בשאר המחלקות, האלגוריתם ייטה לסווג למחלקה זאת. הסיבה לכך היא שבשל מספרן הגדול, מחלקה זו צפויה להיות נפוצה הרבה יותר בקרב K השכנים של כל תצפית. הדבר עשוי להביא לתוצאות מוטות, ולכן יש לוודא מראש שאכן יש איזון בין המחלקות השונות.

2.1.4 Quadratic\Linear Discriminant Analysis (QDA\LDA)

סיווג של חנות, המניח שבהינתן סיווג של עוסף אינו מודל פוסף חינו מודל פוסף עומת, המניח שבהינתן סיווג של Quadratic Discriminant Analysis אובייקט מסוים – מתקבלת התפלגות נורמלית, כלומר בהינתן $y_k, k \in \{1, \dots, K\}$

$$x|y_k \sim N(\mu_k, \Sigma_k)$$

ובאופן מפורש, עבור $x \in \mathbb{R}^{n \times d}$ הפילוג המותנה הוא:

$$p(x|y = k; \mu_k, \Sigma_k) = \frac{1}{\sqrt{(2\pi)^d |\Sigma_k|}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \Sigma_k^{-1}(x - \mu_k)\right)$$

:בעזרת הנחה זו, ניתן למצוא מסווג אופטימלי עבור $y = \arg\max_k p(y_k|x)$ בעזרת הנחה זו, ניתן למצוא מסווג אופטימלי

$$p(y_k|x) = \frac{p(x|y=k)p(y)}{p(x)}$$

 $p(y=k)=rac{\mathbb{I}_{y=k}}{n}$ במדגם label ממכנה קבוע ביחס ל-p(y) ואת p(y) ואת ניתן לשערך בקלות על פי השכיחות של כל p(y=k) במזרת הנראות מרבית p(x|y=k) שכאמור מתפלג נורמלית, ניתן לשערך בעזרת הנראות מרבית p(x|y=k) שכאמור מתפלג p(x|y=k) שכאמור p(x|y=k) בסמן את הפרמטרים של המודל ב:p(x|y=k) ביח של הפרמטרים של המודל ב:p(x|y=k) ביח שכאמור מתפלג פין השכיח של המודל ב:p(y=k) ביח שכאמור מתפלג פין מתפלג פין השכיח של המודל ב:p(y=k) ביח שכאמור מתפלג פין השכיח של המודל ב:p(y=k)

$$\theta_{MLE} = \arg \max_{\theta} p(x|y) = \arg \max_{\theta} \log p(x|y;\theta)$$

$$= \arg \max_{\theta} \log \sum_{i=1}^{n} p(x_i|y_i; \theta)$$

ניתן לפרק את הסכום לפי ה-label של כל דגימה:

$$= \arg \max_{\theta} \log \sum_{i \in y_i = 1} p(x_i | y_i = 1; \theta) + \log \sum_{i \in y_i = 1} p(x_i | y_i = 2; \theta) + \dots + \log \sum_{i \in y_i = K} p(x_i | y_i = K; \theta)$$

כעת בשביל לחשב פרמטרים עבור כל מספיק מספיק אמספיק עבור עבורן עבורן אדגימות כעת בשביל לחשב כעת כלומר:

$$\theta_{k_{MLE}} = \arg\max_{\theta_k} \log \sum_{i \in y_i = k} p(x_i | y_i = k; \theta_k)$$

על ידי גזירה והשוואה ל-0 ניתן לחשב את הפרמטרים האופטימליים:

$$\mu_k = \frac{\sum_{i \in y_i = k} x_i}{\sum_i \mathbb{1}_{y_i = k}}$$

$$\Sigma_k = \frac{\sum_{i \in y_i = k} (x_i - \mu_k) (x_i - \mu_k)^T}{\sum_i \mathbb{1}_{y_i = k}}$$

ניתן לשים לב שהתוחלת μ_k היא למעשה ממוצע הדגימות עבורן y=k. בעזרת הפרמטרים המשוערכים ניתן לבנות את המסווג:

$$y = \arg\max_{k} p(y_k|x; \mu_k, \Sigma_k) = \arg\max_{k} \log p(x|y=k)p(y)$$
$$= \arg\max_{k} -\frac{1}{2}\log|\Sigma_k| -\frac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k) + \log p(y)$$

עבור המקרה בו מטריצת ה-covariance היא אלכסונית, כלומר אין תלות בין משתנים שונים, מתקבל המסווג הבייסיאני הגאוסיאני (תוצאה זו הגיונית כיוון שהמסווג הבייסיאני מניח שבהינתן סיווג של אובייקט מסוים אין יותר תלות בין המשתנים).

עבור המקרה הבינארי, בו $y \in \{0,1\}$, מתקבל סיווג בצורה של משוואה ריבועית:

$$y = 1 \Leftrightarrow -\frac{1}{2}\log|\Sigma_1| - \frac{1}{2}(x - \mu_1)^T \Sigma_1^{-1}(x - \mu_1) + \log p(y = 1) > -\frac{1}{2}\log|\Sigma_0| - \frac{1}{2}(x - \mu_0)^T \Sigma_0^{-1}(x - \mu_0) + \log p(y = 0)$$

:נסמן

$$a = \frac{1}{2} (\Sigma_1^{-1} - \Sigma_0^{-1})$$

$$b = \Sigma_1^{-1} \mu_1 - \Sigma_0^{-1} \mu_0$$

$$c = \frac{1}{2} (\mu_0^T \Sigma_0^{-1} \mu_0 - \mu_1^T \Sigma_1^{-1} \mu_1) + \log \frac{p(y=1)}{p(y=0)} - \log \frac{\sqrt{\Sigma_1}}{\sqrt{\Sigma_0}}$$

ונקבל:

$$y = 1 \Leftrightarrow x^T a x + b^T x + c > 0$$

וזהו משטח הפרדה ריבועי.

ה-ינו מקרה פרטי של Quadratic Discriminant Analysis, בו מניחים כי מטריצת ה-Linear Discriminant Analysis הינו מקרה פרטי של במקרה זה מתקבל: $\Sigma_k = \Sigma$ במקרה זה לכל ה-labels, כלומר

$$\log p(x|y = k)p(y) = -\frac{1}{2}(x - \mu_k)^T \Sigma^{-1}(x - \mu_k) + \log p(y)$$

הביטוי $(x-\mu_k)^T \Sigma^{-1} (x-\mu_k)$ נקרא מרחק מהלונביס, והוא מבטא את מידת הקשר בין x לבין תוך כדי ($x-\mu_k$) נקרא מרחק נקרא מחשבות בשונות של כל משתנה. למעשה ניתן להסתכל על מסווג LDA התחשבות בשונות של כל משתנה. למעשה ניתן להסתכל על ידי גזירה והשוואה ל-0 מתקבל השערוך:

$$\mu_k = \frac{\sum_{i \in y_i = k} x_i}{\sum_i \mathbb{1}_{y_i = k}}$$

$$\Sigma_k = \frac{1}{n} \sum_i (x_i - \mu_k) (x - \mu_k)^T$$

והמסווג המתקבל הינו:

$$y = \arg \max_{k} p(y_{k}|x; \mu_{k}, \Sigma)p(y) = \arg \max_{k} -\frac{1}{2}(x - \mu_{k})^{T} \Sigma^{-1}(x - \mu_{k}) + \log p(y = k)$$
$$= \arg \max_{k} -x^{T} \Sigma^{-1} \mu_{k} + \frac{1}{2} \mu_{k} \Sigma^{-1} \mu_{k} + \log p(y = k)$$

ניתן לסמן:

$$a = \Sigma^{-1} \mu_k$$
$$b = \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log p(y = k)$$

ומתקבל מסווג לינארי (ומכאן השם של האלגוריתם):

$$y = \arg\max_{k} \alpha x^{T} + b$$

מסווג זה מחלק כל שני אזורים בעזרת מישור לינארי, כאשר בסך הכל יש K קווי הפרדה. עבור המקרה הבינארי מתקיים:

$$a = \Sigma^{-1}(\mu_1 - \mu_0)$$

$$b = \frac{1}{2}(\mu_0^T \Sigma^{-1} \mu_0 - \mu_1^T \Sigma^{-1} \mu_1) + \log \frac{p(y=1)}{p(y=0)}$$

והסיווג הינו:

$$y = 1 \Leftrightarrow a^T x + b > 0$$

אלגוריתם LDA פשוט יותר מאלגוריתם QDA כיוון שיש פחות פרמטרים לשערך, אך יש לו שני חסרונות עיקריים – LDA אלגוריתם LDA פשוט יותר מאלגוריתם QDA כיוון שיש פחות פרמטריצת ה-labels, מה שיכול לגרום לשגיאות הוא לא גמיש אלא לינארי, ובנוסף הוא מניח שמטריצת ה-covariance המנסים למצוא את מטריצת ה-covariance בסיווג. כדי להתמודד עם הבעיה השנייה ניתן להשתמש באלגוריתמים המנסים למצוא את מטריצת השנייה ניתן להשתמש באלגוריתמים (Oracle Shrinkage Approximating).

באופן גרפי ניתן להסתכל על אלגוריתם LDA כמציאת כיוון ההפרדה בו יש את השונות הגדולה ביותר בין שתי התפלגויות נורמליות, ובנוסף יש בו את ההפרדה המקסימלית בין הקבוצות השונות. לאחר מציאת הקו האופטימלי, ניתן לחשב את ההתפלגויות של הקבוצות השונות כהתפלגויות נורמליות על הישר המאונך לקו ההפרדה:

איור 2.5 אלגוריתם LDA באופן גרפי: מציאת הכיוון של ההתפלגויות והטלת המידע על הציר האנכי לכיוון ההפרדה.

2.1.5 Decision Trees

1. הקדמה

עץ החלטה הינו אלגוריתם לומד היכול לשמש הן לבעיות סיווג והן לבעיות רגרסיה. באופן כללי, עצי החלטה לוקחים את המשתנה שברצוננו להסביר (משתנה המטרה/החיזוי), ומחלקים את המרחב שלו לקבוצות (segments). לכל קבוצה של סט האימון מחשבים "ממוצע" (Mean) או "שכיח" (Mode), וכאשר מתקבלת תצפית חדשה משייכים אותה לקבוצה של סט האימון מחשבים "ממוצע" (מאחר וכללי הסיווג לקבוצות השונות יכולים להצטייר בצורת עץ, אלגוריתם זה נקרא "עץ החלטה".

הגישות השונות בעצי החלטה פשוטות ואינטואיטיביות להבנה, אולם הן לא מצליחות להתחרות במדדי הדיוק של מודלים אחרים של Supervised Learning. לכן, בפרקים הבאים נציג שיטות ensembles, בהן מתבצעת בנייה של כמה עצי-החלטה במקביל, אשר משולבים בסופו של דבר למודל יחיד. ניתן להראות ששימוש במספר גדול של עצים יכול לשפר דרמטית את מדדי הדיוק של המודל. עם זאת, ככל שמשתמשים ביותר עצים כך יכולת הפרשנות של המודל נהיית מורכבת יותר ופחות אינטואיטיבית לצופה שאינו מעורב בבניית המודל (למשל גורם עסקי בארגון שאנחנו מעוניינים להסביר לו את תוצאות המודל).

ראשית נתבונן במבנה בסיסי של עץ ונגדיר עבורו את המושגים הרלוונטיים:

איור 2.6 דיאגרמה של עץ החלטה.

על מנת להבין את מבנה העץ ולייצר שפה משותפת נציג את השמות המקובלים בעבודה עם עצים:

- Root (שורש) נקודת הכניסה לעץ (חלקו העליון ביותר של העץ).
 - Node (צומת) נקודת ההחלטה/פיצול של העץ השאלות.
- .terminal nodes עלים) הקצוות של העצים התשובות. נקראים גם Leaves
 - (ענף) חלק מתוך העץ המלא (תת-עץ) Branch •
 - פותר בעץ. מספר ה- Depth עומק) מספר ה- Depth •

יסודות של עצי החלטה

עצי רגרסיה:

כאמור, עצי החלטה יכולים לשמש הן עבור סיווג והן עבור רגרסיה, ונתחיל עם דוגמא פשוטה לבניית עץ עבור בעיית רגרסיה – חיזוי שכר (באלפי שקלים) שחקני כדורסל באמצעות עצי החלטה. נרצה לחזות את השכר של שחקן בהתבסס על הנתונים הבאים:

- שנים מספר העונות שאותו ששחקן שיחק בליגת העל.
 - סלים מספר הסלים שהוא קלע בשנה הקודמת.

תחילה נסיר תצפיות ללא ערכים עבור המשתנה המוסבר שלנו, הלא הוא "שכר" ובנוסף נבצע על אותו משתנה -Log transform בכדי שהוא יהיה ככל הניתן בקירוב להתפלגות נורמלית (עקומת גאוס/פעמון).

איור 2.7 דוגמא של עץ החלטה עבור בעיית רגרסיה של עץ החלטה.

כאמור, האיור מתאר עץ המנסה לחזות את Log השכר (באלפי שקלים) של שחקן בהינתן מספר עונות הותק שלו וכמות הסלים שקלע בעונה הקודמת. ניתן לראות שחלקו העליון של העץ (ה-Root) מתחלק ל-2 ענפים. הענף וכמות הסלים שקלע בעונה הקודמת. ניתן לראות שחלקו של העניון והענף הימני מתייחס לשחקנים פחות (years < 4.5), והענף הימני מתייחס לשחקנים בעלי ותק של יותר מ-4.5 עונות (Internal nodes). המספר בכל עלה ותיקים. לעץ יש 2 צמתים (=שאלות/Internal nodes) ו-3 עלים (=תשובות/Terminal nodes). המספר בכל עלה שבתחתית העץ הוא הממוצע של כל התצפיות שסווגו לעלה הזה. לאחר שבניית העץ הסתיימה, כל תצפית חדשה שתסווג לעלה מסוים תקבל את הערך הממוצע של התצפיות שעל בסיסם נבנה העץ. בהמשך הפרק יוסבר כיצד לבנות את העץ וכיצד לקבוע את כללי הפיצול בהתאם לדאטה הקיים.

בסופו של דבר העץ מחלק את השחקנים לשלוש קבוצות:

שחקנים ששיחקו 4 עונות או פחות:

$$R_1 = \{X | Years < 4.5, Hoops\} = 5.11$$

• שחקנים ששיחקו 5 עונות או יותר וקלעו פחות מ- 118 סלים בעונה שחלפה:

$$R_2 = \{X | Years > 4.5, Hoops < 117.5\} = 6$$

• שחקנים ששיחקו 5 עונות או יותר ושקלעו יותר מ- 118 סלים בעונה שחלפה:

$$R_3 = \{X | Years > 4.5, Hoops > 117.5\} = 6.74$$

. או "עלים" של העץ, או "עלים" מכונות בשם Terminal nodes בהתאם לאנלוגיה של העץ, הקבוצות R_1, R_2, R_3

אפשר לפרש את עץ הרגרסיה שבדוגמא הצורה נוספת: Years הוא הפרמטר המרכזי ביותר בקביעה מה יהיה גובה השכר, ושחקנים עם פחות שנות ניסיון ירוויחו פחות משחקנים מנוסים יותר. עבור שחקן יחסית חדש (עד 5 שנים בליגה) הפרמטר של כמות הסלים אותה הוא קלע בעונה הקודמת מתברר כפחות משפיע על השכר. כלומר, כל עוד לשחקן אין 5 שנות ניסיון, כמות הסלים היא יחסית שולית ביחס לחוסר הניסיון עבור קביעת שכרו. לעומת זאת, בקרב שחקנים עם 4.5 שנות ניסיון או יותר, כמות הסלים שהם קלעו בשנה הקודמת כן משפיעה על השכר, ושחקנים שקלעו הרבה סלים בשנה הקודמת כנראה ירוויחו יותר כסף מאשר שחקנים עם אותו ניסיון אך קלעו פחות סלים.

עץ הרגרסיה שהובא בדוגמא מפשט קצת "יתר על המידה" את הקשר "האמיתי" בין Hoops ,years ו- Salary. מון החיזוי של העץ לא מספיק טוב ביחס למודלים אחרים של רגרסיה, כמו למשל רגרסיה לינארית שתוסבר בפרק 3. עם זאת, מודל זה פשוט יותר להבנה ופרשנות וקל יחסית לייצוג באמצעים גרפיים.

2. חיזוי באמצעות ריבוד (Stratification) של מרחב המשתנים:

עד כה הוסבר באופן אינטואיטיבי מהו עץ החלטה וכיצד הוא פועל. האתגר המרכזי הוא לבנות את העץ בצורה טובה כך שהחיזוי שלו אכן יהיה תואם למציאות. בכדי להבין כיצד בונים עץ בצורה יעילה, נציג את הדוגמא הקודמת באופן נוסף:

איור 2.8 דוגמא של עץ החלטה עבור בעיית רגרסיה של עץ החלטה.

באיור זה ניתן לראות שהנתונים נפרסו על פני מרחב דו ממדי, וחולקו בעזרת קווי החלטה בהתאם ל-Internal באיור זה ניתן לראות שהנתונים נפרסו על פני מרחב דו ממדי, וחולקו בעזרת קווי החלוקה והחיזוי בשני שלבים:

- R_1, \dots, R_J מחלקים את מרחב הערכים האפשריים של המשתנה אותו רוצים לחזות ל-J אזורים נפרדים . X_1, \dots, X_n כתלות בפרמטרים השונים
- מסט האימון שמרכיבות ערך הממוצע של הנקודות מסט האימון שמרכיבות R_i את הקבוצה, כל תצפית שנופלת באזור R_i את הקבוצה.

באופן תיאורטי, לכל אזור יכולה להיות כל צורה שהיא. אולם לטובת הפשטות, אנו בוחרים לחלק את המשתנה ל-"אזורים מרובעים". המטרה היא למצוא את האזורים שמביאים למינימום את סכום ריבועי ההפרשים בין התוויות של הנתונים בסט האימון לבין הערכים של כל אזור. מדד זה נקרא RSS) residual sum of squares), שמוגדר כך:

$$RSS = \sum_{j=1}^{J} \sum_{i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2$$

כאשר \hat{y}_{R_j} הוא ממוצע המשתנים של תצפיות האימון באזור j, ו- \hat{y}_{R_j} הוא המרחק בין כל תצפית לבין הערחק בין הממוצע באזור זה. כאמור, המטרה של מדד זה היא למצוא את מקבץ התצפיות בכל אזור, כך שריבוע המרחק בין הערך הממוצע לבין כל תצפית יהיה מינימלי. כיוון שבדיקת כל החלוקות השונות האפשריות אינה ריאלית מבחינה חישובית, לרוב משתמשים באלגוריתם חמדן (greedy) אשר עובד "מלמעלה למטה". גישה זו ביחס לעץ החלטה נקראת "פיצול בינארי רקורסיבי" (recursive binary splitting), והיא נקראת "מלמעלה למטה" כיוון שהיא מתחילה מראש העץ (root), היכן שכל התצפיות עדיין שייכות לקבוצה אחת גדולה. לאחר סימון נקודת ההתחלה, האלגוריתם מפצל את מרחב הערכים של המשתנה אותו רוצים לחזות, כאשר כל פיצול מסומן באמצעות שני ענפים חדשים בהמשר העץ.

האלגוריתם כאמור הוא חמדן, וזה מתבטא בכך שבכל שלב בתהליך בניית העץ בוחרים לבצע את הפיצול הטוב ביותר עבור השלב הנוכחי, מבלי להתחשב כמה שלבים קדימה. בגישה זו יתכן ובשלב הנוכחי יש פיצול יותר יעיל לטווח ארוך, אך הוא לא יבחר אם הוא לא הפיצול האופטימלי בשלב זה. ניתן להמחיש את דרך הפעולה של אלגוריתם חמדן לעמידה בפקק תנועה, ומתוך ניסיון לעקוף את הפקק נבחרת הפניה הראשונה שנראית פחות פקוקה, מבלי להתחשב בפקק שעשוי לבוא בהמשך. כמובן שפניה זו לא בהכרח תוביל לדרך יותר מהירה, ויתכן שבראייה יותר ארוכת טווח דווקא היה מוטב להימנע מפנייה זו כיוון שהיא מובילה לפקק גדול יותר בהמשך.

כדי לבצע את אותו "פיצול בינארי רקורסיבי", יש לבצע את התהליך האיטרטיבי הבא:

עבור כל פרמטר אפשרי X_i וקו חלוקה S, נקבל שתי קבוצות:

$$R_1(j,s) = \{X | X_j < s\}$$

$$R_2(j,s) = \{X | X_i \ge s\}$$

. עבור שתי קבוצות אלה נחפש את הערכים של sו-s שמביאים למינימום את המשוואה הבאה

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

מציאת ערכי j,s שמביאים למינימום את המשוואה יכולה להתבצע די בקלות כשכמות הפרמטרים לא גדולה מידי, אך זה תהליך שעלול להיות די סבוך כשיש הרבה פרמטרים.

למעשה תהליך זה מייצר ענף אחד שיוצא מה-root, ולו 2 עלים. כעת מבצעים את התהליך שוב, מתוך מטרה למצוא את הפרמטר הבא שמביא למינימום את RSS בכל קבוצה, ובכך לקבל 3 קבוצות. ובאופן דומה, נרצה לפצל את אחת מאותן 3 קבוצות שכבר יש לנו כדי לצמצם עוד את ה- RSS. התהליך הזה נמשך איטרטיבית עד שמגיעים "לקריטריון עצירה" מסוים, כמו למשל מספר פיצולים, מספר מקסימלי של תצפיות בכל אזור וכו'. אחרי שהתבצעה החלוקה לקבוצות 3, ניתן להפוך את הקבוצות לעץ, ולהשתמש בו בכדי לחזות נקודות חדשות

איור 2.9 חלוקה של משתנים לאזורים.

באיור המצורף ניתן לראות שתי חלוקות – החלוקה הימנית הינה חלוקה דו-ממדית של שני משתנים באמצעות פיצול בינארי רקורסיבי. החלוקה השמאלית היא גם חלוקה דו-ממדית של שני משתנים, אך היא לא יכלה להיווצר באמצעות פיצול בינארי רקורסיבי, כיוון שהיא מורכבת מידי ואינה תואמת את הגישה החמדנית שרוצה "חלוקה פשוטה ומהירה".

איור 2.10 תיאור אזורי חלוקה כעץ בינארי. מצד שמאל מוצג העץ התואם לחלוקה מהאיור הקודם, ומצד ימין ישנה פרספקטיבה רחבה כיצד חיזויים מתבצעים באמצעות העץ.

3. גיזום (pruning):

התהליך שתואר משקף את התהליך הקלאסי של יצירת עץ רגרסיה, והוא מסוגל לנפק חיזויים טובים (מבחינת מדד התהליך שתואר משקף את התהליך הקלאסי של יצירת עץ רגרסיה, והוא מסוגל לנפק חיזויים טובים לא RSS ושונות נמוכה). עם זאת העץ עשוי לבצע התאמת-יתר (Over-fitting) על הנתונים, מה שיוביל לנבוע מכך שהעץ שנבנה בתהליך האימון עשוי להיות "מורכב מידי" ומותאם יתר על המידה לנתוני האימון, מה שפוגע ביכולת ההכללה שלו. לעומת עץ מורכב, עץ דליל יותר בעל פחות פיצולים (כלומר פחות קבוצות R1, ..., R) ייתן חיזויים בעלי הטיה (Bias) גדולה יותר בהשוואה לאלטרנטיבה הראשונה, אך כנראה יוביל לשונות קטנה יותר בין סט האימון לבין סט המבחן, ובנוסף מודל כזה יהיה קל יותר לפרשנות.

גישה פשטנית בכדי להתמודד עם בעיה זו היא לקבוע רף כלשהו, כך שבכל פיצול הירידה ב-RSS תעלה על רף זה. כלומר, פיצול שמוביל לירידה שולית יחסית ב-RSS לא יתבצע. באופן הזה העצים שיתקבלו יהיו קטנים יותר ויש פחות over-fitting. החיסרון בגישה זו נעוץ בכך שהיא קצרת-ראייה. יתכן מצב בו יש פיצול בעל תרומה קטנה יחסית אך הוא יכול להוביל לפיצול אחר בעל תרומה גדולה, כזה שיביא לירידה גדולה ב-RSS בהמשך. שיטה זו תדלג על אותו פיצול בעל ערך קטן, מאחר והוא לא עובר את הרף שהוגדר.

גישה אחרת, שמתברר והיא טובה יותר, הולכת בכיוון ההפוך. בשלב הראשוני יבנה עץ גדול מאוד (T_0) , ולאחר מכן נגזום ממנו כל מיני פיצולים בכדי להימנע מ-over-fitting. את מקומם של הענפים שהסרנו יתפוס עלה בודד שמקבל ערך ממוצע המתחשב במספר גדול יותר של תצפיות. כמובן שצעד זה יגרום לירידה בביצועים על פני סט האימון, אך השאיפה היא שזה ישתלם בבדיקת השגיאה בסט המבחן.

השאלה הגדולה היא כמובן מהי הדרך הטובה ביותר לגזום את העץ. אינטואיטיבית, המטרה שלנו היא לבחור subtree מתוך העץ המקורי שמוביל לשגיאה הקטנה ביותר. אומדן זה יכול להתבצע על ידי בדיקת השגיאה של העץ subtree החדש ביחס לסט המבחן. כיוון שאי אפשר לבחון את כל תתי העצים האפשריים, נהוג להשתמש בגישה הנקראת subtree (ידועה גם בשם weakest link pruning). בגישה זו, במקום להתחשב בכל subtree אפשרי, אנו מסתכלים על רצף מסוים של subtrees שהם למעשה חלקים שונים המרכיבים את T_0 – העץ המקורי שנבנה בהתחלה:

.root-איור 2.11 חיפוש תת עץ אופטימלי ביחס ל- T_0 . מתחילים מ T_0 (העץ השמאלי) וכל פעם מורידים פיצול יחיד עד שמגיעים ל-

כעת מחשבים עבור כל אחד מרצף העצים שהתקבל את ה-RSS שלו. לפני שנסביר באיזה עץ לבחור, נסכם את השלבים שבוצעו עד כה:

- א. בניית עץ רגרסיה גדול מכל הדאטה (ולא רק מסט האימון) בגישת ה- recursive binary splitting (הגישה הית עד הדאטה (ולא רק מסט האימון) בניית עץ רגרסיה לעיל). העץ ימשיך להבנות עד קריטריון עצירה מסוים (כמו למשל הגעה למינימום של תצפיות). עץ הזה יסומן על ידי T_0 .
- ב. כל עלה בעץ מקבל את הערך הממוצע של תצפיות הפרמטר שבאותו עלה, ועבור כל עלה פיצול מחושב ה- RSS
 - T_0 של כל העץ RSS שקיבלנו בכל העלים. הסכום שהתקבל הוא ה-RSS של כל העץ מכימת כל ערכי ה-RSS שקיבלנו בכל העלים.
- ד. כעת מבצעים את שלבים א-ג ל-subtree הבא ברצף. זהו עץ-משנה שכמעט זהה לעץ המקורי, למעט שני subtree האחרון שמורכב עלים שנגזמו מהעץ הקודם. כך חוזרים על התהליך עבור כל ה-subtrees , עד ל-subtree האחרון שמורכב רק מה-root של העץ המקורי.

התוצר של השלב האחרון הוא RSS לכל subtree ברצף העצים. ניתן להבחין כי בכל פעם שענף מסוים הוסר, ה-subtree התוצר של השלב האחרון הוא subtree מהשלב הקודם. תוצאה זו הגיונית, שהרי כל פיצול במקור נועד להקטין שהתקבל נהיה גדול יותר לעומת ה-subtree מהשלב הקודם. תוצאה זו הגיונית, שהרי כל פיצול במקור נועד להמוע RSS, ואילו גיזום עושה את ההיפך – הוא נועד למנוע over-fitting, גם במחיר של שגיאה גדולה יותר.

. שהתקבל (subtree) איור 2.12 ביצוע גיזום וחישוב RSS לכל תת עץ

ה. כעת יש לבחור את אחד מה-subtrees, וכאמור זה נעשה בגישת subtrees. גישה זו cost complexity pruning. משקללת עבור כל תת עץ את מדד ה-RSS שלו יחד עם מספר העלים בעץ. באופן פורמלי:

$$Tree\ score = RSS + \alpha T$$

כאשר T הוא מספר העלים בעץ (Terminal nodes) ו-lpha הוא פרמטר רגולריזציה הקובע את היחס בין מספר העלים בעץ (Terminal nodes) ו-lpha בין מספר העלים בעץ (RSS- לבין מדד ה-RSS). פרמטר זה מחושב באמצעות מ-cross-validation המחובר RSS מכונה RSS ובכך להקטין את ה-RSS לבין הרצון להימנע עד כמה שניתן מ-over-fitting ובכך להקטין את ה-RSS לבין הרצון להימנע עד כמה שניתן מ-subtrees השונים שנבחנים. (Penalty הפרש במספר העלים שבין ה-RSS השונים שנבחנים.

משלב ד' כבר קיבלנו RSS לכל subtree, וכעת נשאר רק לחשב לכל אחד מהם את ה- subtree

נשים לב כי:

אזי Tree score הנמוך ביותר, כיוון שכאשר $\alpha=0$ אזי היה בהכרח בעל ה- $\alpha=0$ הנמוך ביותר, כיוון שכאשר $\alpha=0$ אזי $\alpha=0$ כאשר $\alpha=0$ היה בנוסחה שווה ל- $\alpha=0$ במקרה זה ה-score בנוסחה שווה ל- $\alpha=0$ במקרה זה ה-ביב מוחד ה-מדד ה

$$Tree\ score = RSS + \mathbf{0} \cdot T = RSS$$

,subtrees-ממילא שאר שלבי החישוב מיותרים, כי אנחנו כבר יודעים שהעץ T_0 הוא בעל ה-RSS הנמוך ביותר מכל ה-mustrees ממילא שאר שלבי הותר. לכן, נרצה לקבוע ש- $\alpha>0$. נתבונן מה קורה עבור ערכי α שונים:

ו. עבור α ביון של α הציון של α יהיה α 10,000. ולכן שווה לנו לגזום 2 עלים ולקבל עבור אותו α ציון נמוך α = 10,000 (העץ השני משמאל עם ציון של 35,500). ושוב, אם נשאר ב- 40,540 (העץ השני משמאל עם ציון של של 20,540 – שזה עדיין גבוה יותר מ- 20,240 עלים נוספים (אנחנו כעת בעץ השלישי משמאל), נקבל ציון של 39,240 שזה עדיין גבוה יותר מ- 35,500 ולכן זה לא טוב לנו.

עבור 15,000 הקודם. כעת נשים לב lpha ניתן לראות שהציון המתקבל יהיה נמוך יותר מה-subtree עבור (root -האחרון (ה-subtree) לא משנה אם lpha יגדל או יישאר אותו דבר, בכל מקרה הציון של ה-subtree שבמעבר ל-subtree הקודם.

יתנו רצף של α יתנו על אותם צעדים של α יתנו רצף של ממעשה חזרנו על אותם צעדים עד שאין יותר מה לגזום. בסופו של מתהליך ערכים שונים של α יתנו רצף שה-Tree עצים, מעץ מלא ועד לעלה בודד. יוצא מכך שלכל ערך של α קיים subtree עצים, מעץ מלא ועד לעלה בודד. יוצא מכך שלכל ערך של score

קטן ככל האפשר. Tree score איור 2.13 חישוב ערך lpha מותאם לכל עץ משנה כך שיתקבל

- ח. כעת, נבחר ב-subtree עם ה-score הנמוך ביותר כלומר העץ השני משמאל עם ציון של 35,500. במקביל יש לזכור מהם ערכי ה-lpha של ה-subtrees השונים שהתקבלו (בסעיף הקודם), כיוון שהם יהיו שימושיים יש לזכור מהם ערכי ה-lpha אופטימלי:
- עפוי להתקבל עץ אחר בעל ציון מינימלי. עד לשלב זה העץ נבנה α ערכי ה- α חשובים, כיוון שלכל α עשוי להתקבל עץ אחר בעל דרמוח (בלי חלוקה ל- Train ו-Train), אך המטרה היא לבחון מהו ערך ה- α שייתן את התוצאה האופטימלית בעזרת העץ הגזום עבור דאטה חדש.
- ט. כדי לבחור את ערך ה- α האופטימלי ניתן להשתמש ב-Cross-Validation. לשם כך, יש לקחת את הדאטה מדי לבחור את ערך ה- $(T_0 T_0)$, ולחלק אותו באופן הבא:

 $.K_{fold} = 5$ עם cross-validation 2.14 איור

- ב-cross-validation המודל מתאמן תחילה לפי 1 split (איור 2.14 לעיל) על התצפיות שבחלקים מ-cross-validation הירוקים, ובוחן את החיזויים על סט התצפיות הכחול.
- התהליך הזה נעשה K פעמים, כאשר בכל איטרציה האימון נעשה את התצפיות שבחלקים \circ הירוקים, ובחינת החיזויים (וחישוב ה-RSS) נעשה על התצפיות שבחלק הכחול.

- י. בכל אחד מה-splits ב-cross-validation המודל משתמש רק ב-splits כדי לבנות עץ מלא (נסמן scross-validation בכל אחד מה-splits) ורצף (sequence) אותו הפעם ב- (T_1) ורצף (sequence) חדש של פעולות כמו בסעיפים א'-ד'), בעזרת אותם ערכי α שהתקבלו בסעיף ז'.
- Subtree באמצעות שימוש ב-Test data באמצעות מיהו היא לכל RSS לכל subtree את ה-RSS באמצעות שימוש ב-RSS הנמוך ביותר. נניח שבאיטרציה הראשונה העץ שקיבל את ה-RSS הנמוך ביותר. נניח שבאיטרציה הראשונה העץ שקיבל את ה-RSS הוא דווקא העץ שבו $\alpha=10{,}000$.
- יב. את התהליך של סעיפים י-יא יש לבצע K פעמים פעם אחת עבור כל איטרציה האימון התהליך של סעיפים י-יא יש לבצע K פעמים הירוקים, ובחינת החיזויים (וחישוב ה-RSS) מתבצע על התצפיות שבחלקים הירוקים, ובחינת החיזויים (וחישוב ה-RSS) מתבצע על התצפיות שבחלק הרחול.
- יג. בסופו של התהליך, כל איטרציה תניב subtrees בעלי מסוים, וכן ערכי α שנקבעו כבר מראש בסעיף subtrees יג. לאחר α האיטרציות, ומהו ערך ה- α של ז'. לאחר α האיטרציות יש לבדוק מיהו העץ עם ה-RSS המינימלי מבין כל האיטרציות, ומהו ערך ה- α של α .
- וגם Training- שנבנו מה-data set שנבנו מה-subtrees שנבנו מה המקורי T_0 וה-subtrees יד. לבסוף, יש לחזור לעץ המקורי α וה-מקורי שיבחר. העץ שתואם לערך ה- α הנבחר. העץ שתואם לערך ה-מוחר את ה-מוחר את העץ שתואם לערך ה-מוחר את העץ שתוא העץ ש

לסיכום:

- .0verfit-אחרי כל החישובים מצאנו שהעץ T_0 הוא בעל ה-RSS הנמוך ביותר, אך יתכן והוא יסבול מ-Overfit אחרי כל החישובים מצאנו שהעץ T_0 הוא בעל מרחשב היותר, ו- כדי לפצות על כך, נוסף רכיב שנועד להתחשב גם ביתר העצים שהינם בעלי RSS גבוה יותר, ו- מעניש" את העץ המקורי (T_0) עקב ריבוי העלים שבו.
- הזה התקבל ציון המאפשר להשוות בין העצים ולבחור את העץ הטוב ביותר. העץ הזה התקבל ציון המאפשר להשוות בין העצים ולבחור את Train . מהווה מעין איזון בין הרצון ל-RSS מינימלי לבין שונות נמוכה בין ה-Train .
- אופטימלי ומצד שני נמנע כמה RSS בכדי למצוא את ה-lpha האופטימלי, שמצד אחד נותן עץ בעל Overfitting שניתן מ-lpha

4. עץ סיווג

עץ סיווג די דומה לעץ רגרסיה, רק שהמטרה היא שונה – במקום לקבל תשובה כמותית כמו ברגרסיה, עץ סיווג ייתן תווית (label) לתצפית המבוקשת. כאמור לעיל, עץ רגרסיה מספק חיזוי לתצפית מסוימת בהתאם לערך הממוצע של תווית (class) לאותו ששייכות לאותו terminal node. בעץ סיווג לעומת זאת, כל תצפית תשויך לקבוצה (class) בעל תווית משותפת. למשל, נניח ומעוניינים לסווג מטופל מסוים האם יש לו מחלת לב או לא. אנו יכולים לבנות עץ החלטה על בסיס מאפיינים של חולים שאובחנו בעבר ואנו יודעים להגיד מי מהם באמת חולה לב ומי לא, ועל בסיס העץ הזה להחליט עבור כל מטופל חדש האם הוא דומה במאפיינים שלו למטופלים שאובחנו בעבר כחולי לב או לא. כך שהתשובה שהעץ נותן היא לא "ערך ממוצע" כמו שראינו בעצי רגרסיה, אלא פשוט החלטה - "כן חולה לב" או "לא חולה לב". מלבד החיזוי של התווית, עץ סיווג מספק גם יחסים בין הקבוצות השונות בקרב תצפיות האימון שנופלים באותו אזור. נתבונן בדוגמא שתמחיש את העניין:

איור 2.15 השפעת פרמטרים שונים על הסיכוי לחלות במחלת לב.

באיור לעיל ניתן לראות שלושה פרמטרים (שבמקרה הזה הם סימפטומים של מטופל) בעזרתם מנסים לסווג האם למטופל יש מחלת לב או לא. כפי שניתן לראות אף אחד מהמשתנים אינו יכול לענות על שאלה זו בפני עצמו, כיוון שבאף אחד מהעלים אין אחידות בתצפיות. משתנים כאלה, אשר אינם יכולים בפני עצמם לספק סיווג מושלם, נקראים משתנים לא הומוגניים (impure - לא טהורים). כיוון שברוב המקרים כל המשתנים אינם הומוגניים, יש למצוא דרך כיצד לבחור באחד מהמשתנים להיות המשתנה שבראש העץ (Root node). כלומר, יש לייצר מדד הבוחן ומשווה את רמת ה-Entropy-I Gini index .

:Gini index א. מדד

נסמן את ההסתברות לשיוך תווית מסוימת לקבוצה p_i -בj, ונגדיר:

$$Gini = 1 - \sum_{i=1}^{J} p_j^2$$

באופן אינטואיטיבי, מדד Gini מייצג את הסיכוי לקבלת סיווג שגוי עבור בחירה רנדומלית של נקודה מהדאטה בהתאם לפרופורציות של כל class בדאטה. נדגים זאת על אחד הפרמטרים שבדוגמא הקודמת – Chest pain. עבור הענף הימני מתקיים:

$$Gini = 1 - \left(\frac{34}{34 + 125}\right)^2 - \left(\frac{125}{34 + 125}\right)^2 = 0.336$$

ועבור הענף השמאלי מתקיים:

$$Gini = 1 - \left(\frac{39}{39 + 105}\right)^2 - \left(\frac{105}{139 + 105}\right)^2 = 0.395$$

Gini impurity = 0.395 Gini impurity = 0.336

.Chest pain עבור הפרמטר Gini איור 2.16 חישוב מדד

אחרי שחישבנו את ה- Gini Impurity לשני העלים, נחשב את מדד Gini הכולל של כל המשתנה Chest Pain. בשביל חישוב זה יש לאזן בין מספר התצפיות שבכל עלה, באופן הבא:

Gini impurity for chest pain =
$$\left(\frac{144}{144 + 159}\right) \times 0.395 + \left(\frac{159}{144 + 159}\right) \times 0.336 = 0.364$$

באופן דומה ניתן לחשב את מדד Gini גם עבור יתר המשתנים ונקבל:

Gini impurity for good blood circulation = 0.36

Gini impurity for blocked arteries = 0.381

למשתנה Good blood Circulation יש את הציון הכי נמוך, מה שאומר שהוא מסווג הכי טוב את המטופלים עם ובלי מחלת לב, ולכן נשתמש בו כמשתנה המסווג הראשון בראש העץ (ה- root). בכדי לקבוע את הפיצול הבא, יש להתבונן כיצד שאר הפרמטרים מסווגים את התצפיות של ה-root. נניח למשל ומתקיים:

Gini impurity for Blocked Arteries = 0.290

.root-איור 2.17 חישוב מדד Gini עבור שאר הפרמטרים לאחר קביעת

כפי שניתן לראות, למשתנה Blocked arteries יש ציון Gini נמוך יותר, ולכן הוא זה שנבחר להיות הפיצול הבא. לבסוף נבחן כיצד הפרמטר האחרון מסביר את התצפיות של הפיצול שלפניו, ונקבל את העץ הבא:

. ביחס לשאר העץ Chest pain עבור פיצול לפי הפרמטר Gini ביחס לשאר העץ

נשים לב שניתן לפצל גם את העלה 13/102 לפי הפרמטר Chest pain, באופן הבא (המספרים כמובן תלויים בתצפיות האמיתיות):

Gini impurity for Chest Pain = 0.29

.13/102 ביחס לעלה Chest pain עבור פיצול לפי הפרמטר Gini איור 2.19 חישוב מדד

מדד Gini שהתקבל הינו 0.29, בעוד שבלי הפיצול המדד של העלה היה 0.2, ולכן במקרה הזה עדיף להשאיר אותו כפי שהיה לפני ניסיון הפיצול. כעת באופן דומה נבנה גם את הענף הימני של העץ:

- .Gini נחשב את מדדי
- .terminal node נמוך יותר, אז אין טעם לפצל עוד, והוא הופך להיות Gini אם לענף הקיים יש ציון.
 - 3. אם פיצול הענף הקיים מביא לשיפור, בוחרים את המשתנה המפצל בעל ציון Gini הנמוך ביותר.

עץ טיפוסי לאחר סיום התהליך נראה כך:

.13/102 ביחס לעלה Chest pain עבור פיצול לפי הפרמטר Gini איור 2.20 חישוב מדד

מדד Gini שהתקבל הינו 0.29, בעוד שבלי הפיצול המדד של העלה היה

התהליך שתואר מתאים למצבים בהם הפרמטרים מתפצלים באופן בינארי, כלומר הפיצול של כל פרמטר נקבע על ידי שאלה שעליה יש תשובה של כן או לא. במקרים בהם ישנם משתנים רציפים, הפיצול דורש כמה שלבים מקדימים:

- 1. סידור ערכי הפרמטרים מהערך הנמוך ביותר לערך הגבוה ביותר
 - 2. חישוב הערך הממוצע בין כל 2 תצפיות.
- . לחישוב Gini impurity עבור כל ערך ממוצע שהתקבל בשלב הקודם.

.Gini איור 2.21 פיצול פרמטרים רציפים לפי מדד

.weight<205 של Threshold אנחנו מקבלים את ה-Gini הנמוך ביותר מתי שאנחנו קובעים

אז זהו ה-cutoff וערך ה-Gini שנשתמש בהם כשאנחנו משווים את המשתנה weight ליתר המשתנים.

עד עכשיו דיברנו על איך מחלקים משתנה רציף ואיך מחלקים משתנה בינארי (שאלות כן/לא). כעת נדבר איך מחלקים משתנים קטגוריאליים. למשל: משתנה מדורג שמקבל ערכים מ-1 עד 4. למשל: טיב מוצר מ-1-4. או משתנה שמכיל מספר קטגוריות. למשל: צבע מועדף (מכיל ערכים: אדום, ירוק, כחול וכו').

משתנה מדורג מאוד דומה למשתנה רציף, חוץ מזה שאנחנו צריכים לחשב בו את הציון עבור כל חלוקה אפשרית.

.Gini איור 2.22 פיצול פרמטרים קטגוריאליים לפי מדד

כשיש משתנה קטגוריאלי עם כמה קטגוריות, אפשר לחשב את ציון ה-Gini עבור כל קטגוריה, כמו גם עבור כל קומבינציה אפשרית:

.Gini איור 2.23 פיצול פרמטרים קטגוריאליים לפי מדד

ב. מדד Entropy & Information Gain:

information gain- מדד נוסף לפיצול צמתי העץ מתבסס על האנטרופיה של העלים, בעזרתה ניתן לבחון את המבסס על האנטרופיה ממרה. נניח המקסימלי מכל פיצול. אנטרופיה באה למדוד את השגיאה של התפלגות המשתנה הנבחן מול משתנה המטרה. נניח וישנן $\mathbf n$ תוצאות אפשריות, כל אחת מהן בעלת הסתברות $\mathbf p_i$, אז האנטרופיה מוגדרת באופן הבא:

$$H(x) = -\sum_{i=1}^{n} p_i \log p_i$$

בדומה למדד Gini, הפיצול האופטימלי נבחר על ידי המשתנה בעל מדד האנטרופיה הנמוך ביותר. אם כל התצפיות בעלה מסוים משויכות לאותו class, אזי מדד האנטרופיה יהיה 0. מאידך, כאשר בעלה מסוים יש התפלגות שווה בין בעלה מסוים של המשתנה המוסבר, מדד האנטרופיה יהיה 1 (שזה הערך המקסימלי שמדד אנטרופיה יכול לקבל).

לעיל פירטנו שלב אחרי שלב את חישוב מדד Gini ל- Use-Case של חולי לב. כעת ניקח דוגמא אחרת פשוטה יותר הנוגעת לקבלת מועמד לתפקיד מסוים, כאשר מטרת העץ היא להחזיר "Yes" אם רוצים לקבל את המועמד, אחרת יוחזר "No".

איור 2.23 עץ סיווג עבור קבלת מועמד לתפקיד מסוים.

הדוגמא מתארת את אחד המאפיינים העיקריים של עצי החלטה – ההחלטה מתקבלת על ידי הסתכלות היררכית על הפרמטרים השונים, כאשר בכל פעם מתמקדים בפרמטר אחד ולא על כולם בבת אחת. תחילה, נלקח בחשבון המאפיין החשוב ביותר (תואר רלוונטי במקרה שלפנינו), לאחר מכן נלקחים שנות הניסיון, וכך הלאה.

נניח שהסיכוי בקרב כלל העובדים להתקבל לעבודה הוא 20%, והסיכוי לא להתקבל הוא 80%. במקרה זה האנטרופיה תחושב באופן הבא (הלוגריתם יכול להיות מחושב בכל בסיס, פה נלקח הבסיס הטבעי):

$$H = -0.2 \ln 0.2 - 0.8 \ln 0.8 = 0.5004$$

כעת נניח בנוסף ש-30% מהמועמדים בעלי תואר רלוונטי מקבלים הצעת עבודה ואילו מתוך אלה שאינם בעלי תואר רלוונטי רק 10% מקבלים הצעת עבודה. האנטרופיה עבור מועמד בעל תואר הינה:

$$H = -0.3 \ln 0.3 - 0.7 \ln 0.7 = 0.61$$

ועבור מועמד ללא תואר רלוונטי לתחום:

$$H = -0.1 \ln 0.1 - 0.9 \ln 0.9 = 0.32$$

נניח והמועמדים מתפלגים באופן שווה בין בעלי תואר לכאלה שאינם בעלי תואר, כלומר ל-50% מהמועמדים יש תואר רלוונטי ול-50% אין, הרי שתוחלת האנטרופיה במקרה זה הינה:

$$\mathbb{E}_{H(x)} = 0.5 \times 0.61 + 0.5 \times 0.32 = 0.46$$

לאחר כל החישובים, נוכל לבחון את רמת ה-impurity שמתקבלת מהידיעה האם למועמד מסוים יש תואר רלוונטי או לא. כלומר, כמה הידיעה שלמועמד מסוים יש תואר רלוונטי מפחיתה מחוסר הוודאות שלו לקבל את המשרה. אם אי הוודאות נמדדת באמצעות מדד ה-Entropy, הרי שהרווח מהמידע הוא:

Information gain =
$$0.5004 - 0.4680 = 0.0324$$

הן עבור מועמדים בעלי תואר והן עבור כאלה ללא תואר, המשתנה שממקסם את הרווח מהמידע הצפוי (ירידה באנטרופיה הצפוי) הוא מספר שנות הניסיון. כאשר למועמד יש תואר רלוונטי, הסף עבור "שנות ניסיון" הממקסם את הרווח מהמידע הצפוי הוא 3 שנים. עבור הענף התואם למועמד שאין לו תואר רלוונטי, הסף של שנות ניסיון הממקסם את הרווח מהמידע הצפוי הוא 7 שנים. לפיכך, שני הענפים הבאים הם: "ניסיון > 7" ו- "ניסיון ≤ 7". באותו האופן בונים את יתר העץ.

Misclassification rate

לאחר בניית עץ הסיווג, יש לבדוק את רמת הדיוק שלו על דאטה חדש. בעץ רגרסיה זה נעשה בעזרת מדד RSS, ובבעיות סיווג מקובל למדוד את ה-Misclassification rate. מדד זה בא לכמת את היחס בין כמות התצפיות שהמודל סיווג באופן שגוי לכמות הכוללת של התצפיות. במקרה זה פונקציית המחיר תהיה:

$$\mathcal{L}(\tilde{y}, y) = I\{\tilde{y} \neq y\}$$

פונקציית מחיר זו נקראת zero-one loss, כאשר תחת פונקציה זו חיזויים נכונים יקבלו ציון 0 ושגיאות יקבלו ציון 1, ללא תלות בגודל השגיאה. פונקציית ה misclassification rate נראית כך:

$$R(h) = \mathbb{E}[I\{h(x) \neq y\}]$$

סיכום

עץ החלטה (Decision Tree) הינו אלגוריתם לסיווג או לחיזוי ערכו של משתנה, כאשר המאפיינים מסודרים לפי סדר (Entropy) ומדד ג'יני (Gini). החשיבות. לצורך סיווג, קיימים שני מדדים אלטרנטיביים לאי וודאות: מדד אנטרופיה (Entropy) ומדד ג'יני (מחשיבות. לצורך סיווג, קיימים שני מחזה, אי הוודאות נמדדת באמצעות RSS. חשיבותו של מאפיין הינו הרווח מהמידע הצפוי נמדד על ידי הירידה באי הוודאות הצפויה אשר הצפוי שלו (Expected Information Gain). הרווח מהמידע הצפוי נמדד על ידי הירידה באי הוודאות המאפיין.

במקרה של חלוקת **משתנה קטגוריאלי**, המידע המתקבל הינו על פי רוב אודות קטגוריה (Label) של המשתנה למשל: צבע מועדף (מכיל ערכים: אדום, ירוק, כחול וכו'). במקרה של **משתנה רציף** יש לקבוע ערך סף (Threshold) אחד (או יותר) המגדיר שני טווחים (או יותר) עבור ערכי המשתנה. ערכי סף אלו נקבעים באופן שממקסם את ה-information gain הצפוי.

אלגוריתם עץ ההחלטה קובע תחילה את צומת השורש (Root Node) האופטימלי של העץ באמצעות קריטריון "מקסום הרווח מהמידע" שהוגדר לעיל. לאחר מכן הוא ממשיך לעשות אותו הדבר עבור הצמתים העוקבים. הקצוות של הענפים הסופיים של העץ מכונים צמתי עלים (Leaf Nodes או Terminal Nodes).

במקרים בהם עץ ההחלטה משמש לסיווג, צמתי העלים כוללים בתוכם את ההסתברויות של כל אחת מהקטגוריות להיות הקטגוריה הנכונה. כאשר עץ ההחלטה משמש לחיזוי ערך נומרי לעומת זאת, אז צמתי העלים מספקים את להיות הקטגוריה הנכונה. כאשר עץ ההחלטה משמש לחיזוי ערך נומרי לעומת זאת, אז צמתי הטטיסטיקה ערך התוחלת של היעד. הגיאומטריה של העץ נקבעת באמצעות סט האימון (Test Set), אך הסטטיסטיקה שעוסקת ברמת הדיוק של העץ צריכה כמו תמיד בלמידת מכונה לבוא מתוך סט הבדיקה (Test Set) ולא רק מתוך סט האימון.

:אחרית דבר

מדדי RSS ומדד misclassification rate שהוצגו בפרק זה הינם רק חלק מהמדדים המקובלים. לכל מדד יתרונות וחסרונות, והמדד הרלוונטי יבחר בהתאם לסוג הנתונים והבעיה העסקית. נדון מעט בחוזקות ובחולשות של עצי החלטה:

<u>יתרונות:</u>

- בהשוואה לאלגוריתמים אחרים, עצי החלטה דורשים פחות השקעה בתהליך הכנת הנתונים (-pre). (processing
 - עץ החלטה לא דורש נרמול של הדאטה.
 - ערכים חסרים בדאטה לא משפיעים על תהליך בניית העץ.
- עץ החלטה תואם לאופן שבו מרבית בני האדם חושבים על בעיה מסוימת והוא פשוט להסבר למי שאינם מומחים.
 - אין שום דרישה שהקשר בין המשתנה המוסבר והמשתנים המסבירים יהיה לינארי.
 - העץ בוחר אוטומטית במשתנים הטובים ביותר על מנת לבצע את החיזוי.
 - עץ החלטה רגיש פחות לתצפיות חריגות מאשר רגרסיה.

<u>חסרונות:</u>

- שינוי קטן בנתונים יכול לגרום לשינוי גדול במבנה עץ ההחלטה ולגרום לחוסר יציבות.
 - לפעמים החישוב בעצי החלטה יכול להיות מורכב מאוד ביחס לאלגוריתמים אחרים.
- עצי החלטה לעיתים תכופות דורשים יותר זמן הרצה לאימון המודל, ומשכך מדובר באלגוריתם "יקר" רמשארים
 - האלגוריתם של עץ ההחלטה אינו מספיק ליישום רגרסיה ולניבוי ערכים רציפים.
 - עץ החלטה נוטה לעיתים תכופות לנטות ל-Overfitting

2.2 Unsupervised Learning Algorithms

2.2.1 K-means

אלגוריתם K-means הינו אלגוריתם של למידה לא מונחית, בו מתבצעת תחזית על נתונים כאשר ה-label אינו נתון. אלגוריתם זה מתאים לבעיות של חלוקה לאשכולות (Clustering), ובנוסף יכול לשמש בשלב הצגת וניקוי הנתונים אלגוריתם זה מתאים לבעיות של חלוקה לאשכולות (סנטרואיד - (WCSS). עבור כל נקודה במדגם, המודל ממזער את סכום ריבוע המרחקים (WCSS) מכל מרכז אשכול (סנטרואיד הוא centroid), ולאחר תהליך של התכנסות – נקבעים האשכולות והסנטרואידים הסופיים. מספר האשכולות הנדרש הוא היפר-פרמטר שנקבע מראש. כמו כל האלגוריתם השייכים ללמידה הבלתי-מונחית, ב-K-means לא מתבצע אימון, ולמעשה התחזית מתבצעת על כל הדאטה הנתון.

סנטרואיד הוא מונח מתחום הגיאומטריה, והוא מתאר את הממוצע האריתמטי של כל הנקודות שמתפרסות על פני צורה כלשהי. באופן אינטואיטיבי ניתן לחשוב על סנטרואיד כנקודת איזון של צורה גיאומטרית כלשהיא, כך שאם ננסה להניח צורה, משולש לדוגמא, באופן מאוזן, הסנטרואיד הוא הנקודה שבה המשולש יתאזן ולא ייפול לאחד הצדדים.

בפועל, סביר שהצורות איתן מתמודדים במציאות יותר מורכבות ממשולש. במצב כזה, הסנטרואיד יהיה הנקודה בה סכום המרחקים של כל נקודה באשכול מהסנטרואיד יהיה מינימלי. כלומר, המודל ימקם את מרכזו של כל אשכול כך שסכום המרחקים של כל הנקודות מהסנטרואיד יהיה נמוך ככל האפשר. למעשה, זוהי ההגדרה הבסיסית של -means אלגוריתם מבוסס סנטרואידים הממזער את סכום ריבוע המרחק של כל הנקודות באשכול. מדד זה נקרא WCSS, והוא מדד משמעותי ביותר בקרב אלגוריתמים שמבצעים חלוקה לאשכולות, K-means בפרט. הסיבה לחזקה במשוואה היא שאנו רוצים להגביר את ההשפעה של המרחק, מעין "עונש" לתצפיות רחוקות מהמרכז.

מדד WCSS הוא אחד הדרכים המקובלות ביותר להעריך את תוצאות החלוקה לאשכולות ב-K-means. היתרון של מדד זה הוא האפשרות לראות באופן כמותי את מידת ההצלחה של המודל, כלומר לקבל מספר ממשי שמכמת את מדד זה הוא האפשרות לראות באופן כמותי את מידת ההצלחה של המודל. מנגד, WCSS הוא מספר ללא תחום מסוים והוא דורש פרשנות, כיוון שהערך והמשמעות שלו משתנים ממודל למודל. ערך מסוים יכול להיחשב תוצאה טובה במקרה מסוים, ובמקרה אחר זאת עשויה להיחשב תוצאה רעה מאוד. ניתן להשוות WCSS בין מודלים אך ורק כאשר יש להם את אותו מספר אשכולות ואותו מספר תצפיות. באופן פורמלי, ערך זה מחושב באופן הבא:

$$WCSS = \sum_{i=1}^{k} \sum_{i=1}^{n} \left\| x_i^{(j)} - c_j \right\|^2$$

. כאשר K הוא מספר האשכולות, ו-n הוא מספר הנקודות במדגם

ישנו trade-off בין השאיפה למזער את מדד ה-WCSS ובין מספר האשכולות הרצוי: ככל שמספר האשכולות גדול יותר, כך ה- WCSS יקטן. הדבר מתיישב עם ההיגיון – פיזור סנטרואידים רבים (כלומר, חלוקה ליותר אשכולות) על פני הנתונים יוביל לכך שבהכרח סכום המרחקים של התצפיות מהסנטרואידים יקטן או לא ישתנה. כיוון שתצפית משויכת לסנטרואיד הקרוב אליה ביותר, אם התווסף סנטרואיד שקרוב לנקודה מסוימת –ה-WCSS קטן. ואם הסנטרואיד רחוק מכל שאר הנקודות במדגם יותר מהסנטרואידים הקיימים – חלוקת התצפיות לאשכולות לא תשתנה, וערך ה-WCSS לא ישתנה.

לכן מצד אחד, נרצה לבחור K גדול שימזער את ה-WCSS; מצד שני, הסיבה שהשתמשנו ב-K-means מלכתחילה היא בכדי לפשט את הנתונים למספר סביר של אשכולות, כזה שיאפשר לנו לערוך אנליזה נוחה. שיטת המרפק היא בכדי לפשט את הנתונים למספר סביר של אשכולות, כזה שיאפשר לנו לערוך אנליזה נוחה. שיטת המיפור (Elbow method) היא טכניקה שמשמשת לפתרון סוגייה זו. הרעיון הוא לבחור את ה-K הקטן ביותר שממנו השיפור במדד ה- WCSS הוא מתון במידה סבירה. שיטה זו היא היוריסטית ואין דרך חד משמעית לקבוע שה-K הנבחר הוא הנכון, אך ההחלטה הסופית נתונה לשיקול דעתו של המשתמש.

3- מ-2 K מיטית לראות שבמעבר של K שיטה היוריסטית למציאת מספר האשכולות האופטימלי. בדוגמא זו ניתן לראות שבמעבר של K מ-2 ל-3 לכן ניתן – Elbow method 2.6 שיטר הבאים). לכן ניתן יש ירידה משמעותית בערך של ה-WCSS. המעבר מ-3 ל-4 לעומת זאת מוביל לשינוי זניח ב-WCSS (וכך גם במעברים הבאים). לכן ניתן להסיק שבמקרה כזה בחירה של K=3 הינה בחירה טובה.

כאמור, האלגוריתם מחלק את הנתונים לאשכולות בדרך שממזערת את סך ריבועי המרחקים של כל תצפית ממרכז האשכול. באופן פורמלי האלגוריתם מתבצע ב-4 שלבים:

- א. **אתחול:** המודל מציב את הסנטרואידים באופן רנדומלי.
- ב. שיוך: כל תצפית משויכת לסנטרואיד הקרוב אליה ביותר.
- . עדכון: הסנטרואיד מוזז שכך שה-WCSS של המודל ימוזער.
- ד. חזרה על שלבים ב, ג עד אשר הסנטרואידים לא זזים לאחר העדכון, כלומר יש התכנסות.

איור 2.7 א**תחול** 6 סנטרואידים באופן רנדומלי. (b). שיוך כל נקודה לסנטרואיד הקרוב ביותר אליה, ועדכון הסנטרואידים (a .K-means איור (c .WCSS) איור (c .WCSS) חזרה על

K-means ידוע בכך שהוא אלגוריתם פשוט ומהיר. לרוב, הבחירה הראשונה בפתרון בעיות של חלוקה לאשכולות K-means יתהיה ב-K-means. עם זאת, לאלגוריתם ישנם גם חסרונות. ראשית, בחירת ה-K-means. עם זאת, לאלגוריתם ישנם גם חסרונות. ראשית, ומולה של האלגוריתם מאפשר לו ליצור המקרים. בנוסף, האלגוריתם רגיש מאוד לערכים קיצוניים (Outliers). אופן הפעולה של האלגוריתם מאפשר לו ליצור אשכולות רק בצורה של ספירות, והדבר אינו אופטימלי בחלק מן המקרים.

בעיה נוספת יכולה להתעורר בבחירת המיקום הראשוני של הסנטרואידים – כיוון שהבחירה היא רנדומלית, ניתן להיקלע להתכנסות במינימום מקומי שהוא אינו המינימום הגלובלי. כדי להתמודד עם בעיה זה ניתן להשתמש באלגוריתם ++K. בשלב ראשון האלגוריתם בוחר למקם סנטרואיד אחד באופן רנדומלי. לכל תצפית, האלגוריתם מחשב את המרחק בין התצפית לסנטרואיד הקרוב אליה ביותר. לאחר מכן, תצפית רנדומלית נבחרת להיות הסנטרואיד החדש. התצפית נבחרת בהתאם להתפלגות משוקללת של המרחקים, כך שככל שתצפית יותר רחוקה – כך גובר הסיכוי שהיא תבחר. שני השלבים האחרונים נמשכים עד שנבחרו K סנטרואידים. כאשר כל הסנטרואידים מוקמו, מבצעים K+H מוביל להתכנסות מהיכוי להתכנס לאופטימום מקומי.

2.2.2 Mixture Models

אלגוריתם K-means מחלק n נקודות ל-K קבוצות על פי מרחק של כל נקודה ממרכז מסוים. בדומה ל-K-means אלגוריתם אלגוריתם mixture model הוא אלגוריתם של נקודות כשייכות אלגוריתם של התפלגויות שונות. המודל מניח שכל קבוצה היא למעשה דגימות של התפלגוית שונות. המודל מניח שכל קבוצה היא למעשה דגימות של התפלגוית מסוימת, וכל הדאטה הוא ערבוב דגימות ממספר התפלגויות. הקושי בשיטה זה הוא האתחול של כל קבוצה – כיצד ניתן לדעת על איזה דוגמאות לנסות ולמצוא התפלגות מסוימת? עקב בעיה זו, לעיתים משתמשים קודם באלגוריתם ניתן לדעת על איזה דוגמאות לנסות ולמצוא התפלגות ולאחר מכן מנסים למצוא לכל קבוצה של נקודות התפלגות מסוימת.

:ראשית נניח שיש k אשכולות, אזי נוכל לרשום את ההסתברות לכל אשכול

$$p(y = i) = \alpha_i, i = 1, ... k$$

 $\sum_i \alpha_i = 1$ וכמובן לפי חוק ההסתברות השלמה מתקיים

בנוסף נניח שכל אשכול מתפלג נורמלית עם פרמטרים ($heta_i = (\mu_i, \sigma_i)$ בנוסף מחייכת לאשכול מתפלג נורמלית עם פרמטרים

$$x|y = i \sim \mathcal{N}(\mu_i, \sigma_i), i = 1 \dots k$$

אם מגיעה נקודה חדשה ורוצים לשייך אותה לאחד האשכולות, אז צריך למעשה למצוא את האשכול i שעבורו הביטוי אם מגיעה נקודה חדשה ורוצים לשייך אותה לאחד האשכולות, אז צריך למעשה למצוא את האשכול p(y=i|x)

$$p(y = i|x) = \frac{p(y = i) \cdot p(x|y = i)}{p(x)}$$

המכנה למעשה נתון, כיוון שההתפלגות של כל אשכול ידועה ונותר לחשב את המכנה:

$$f(x) = f(x; \theta) = \sum_{i} p(y = i) f(x|y = i) = \sum_{i} \alpha_{i} \mathcal{N}(x; \mu_{i}, \sigma_{i})$$

ובסך הכל:

$$p(y = i | x) = \frac{\alpha_i \cdot \mathcal{N}(x; \mu_i, \sigma_i)}{\sum_j \alpha_j \mathcal{N}(x; \mu_j, \sigma_j)}$$

איור (a 2.8 איור (a 2.8) תערובת של שני גאוסיאנים בממד אחד: בשלב ראשון מחלקים את הנקודות לשני אשכולות ומתאימים לכל אשכול התפלגות ($\mathcal{N}(8,5)$, ואשכול אחד (מסומן באדום) הותאם להתפלגות ($\mathcal{N}(8,5)$, ואשכול אחד (מסומן באדום) הותאם להתפלגות ($\mathcal{N}(8,5)$, ואשכול אחד (מסומן באדום) הנקודה $\mathcal{N}(8,5)$ באופן דומה, הנקודה $\mathcal{N}(8,5)$, מאדום אם $\mathcal{N}(8,5)$, באופן בתחום זה $\mathcal{N}(8,5)$, כיוון שבתחום זה ($\mathcal{N}(8,5)$, מאדום אם $\mathcal{N}(8,5)$

כאמור, כדי לשייך נקודה חדשה x לאחד מהאשכולות, יש לבדוק את ערך ההתפלגות בנקודה החדשה. ההתפלגות שעבורה ההסתברות p(x) היא הגדולה ביותר, היא זאת שאליה תהיה משויכת הנקודה. ההתפלגויות יכולות להיות בחד ממד, אך הן יכולות להיות גם בממד יותר גבוה. למשל אם מסתכלים על מישור, ניתן להתאים לכל אשכול בחד ממד, אך הן יכולות להיות. במקרה הn ממדי, התפלגות נורמלית $X \sim \mathcal{N}(\mu, \Sigma)$ היא בעלת הצפיפות:

$$f_X(x_1, ..., x_n) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2}(X-\mu)^T \Sigma^{-1}(X-\mu)}$$

.covariance-כאשר $|\Sigma|$ הוא הדטרמיננטה של מטריצת

 $\mu_1=[10,10]$ איור 2.9 תערובת של שני גאוסיאנים בדו-ממד: אשכול אחד מתאים לגאוסיאן עם וקטור תוחלות $\mu_1=[10,10]$ מטריצת בדו-ממד: אשכול אחד מתאים לגאוסיאן עם וקטור תוחלות $\mu_1=[15,15]$ ומטריצת בדו לגאוסיאן עם וקטור תוחלות $\Sigma=\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$: והאשכול השני מתאים לגאוסיאן עם וקטור תוחלות $\mu_1=[15,15]$

כיוון שהאלגוריתם mixture model מספק התפלגויות, ניתן להשתמש בו כמודל גנרטיבי, כלומר מודל שיודע לייצר דוגמאות חדשות. לאחר התאמת התפלגות לכל אשכול, ניתן לדגום מההתפלגויות השונות ובכך לקבל דוגמאות חדשות.

2.2.3 Expectation-maximization (EM)

אלגוריתם מקסום התוחלת הינו שיטה איטרטיבית למציאת הפרמטרים האופטימליים של התפלגויות שונות, במקרים אלגוריתם מקסום התוחלת הינו שיטה איטרטיבית למציאת הפרמטרים. נתבונן על מקרה של Mixture of Gaussians, ונניח שיש אשכול מסוים בהם אין נוסחה סגורה למציאת הפרמטרים. נתבונן על מקרה של ומשויכות אליו n נקודות. כדי לחשב את ההתפלגות של אשכול זה המתפלג נורמלית עם תוחלת ושונות $\theta = (\mu, \sigma)$, ומשויכות אליו n נקודות. כדי לחשב את ההתפלגות של אשכול יניתן להשתמש בלוג הנראות המרבית:

$$L(\theta|x_1, ..., x_n) = \log \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x_i - \mu)^2}{2\sigma^2}} = \sum_{i=1}^{n} \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{(x_i - \mu)^2}{2\sigma^2}$$

כדי למצוא את הפרמטרים האופטימליים ניתן לגזור ולהשוות ל-0:

$$\frac{\partial L(\theta)}{\partial \mu} = \sum_{i=1}^{n} \frac{x_i - \mu}{\sigma^2} \to \mu_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\frac{\partial L(\theta)}{\partial \sigma^2} = \frac{1}{2\sigma^2} \left(-n + \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 \right) \to \sigma_{MLE}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

כעת נניח ויש k אשכולות וכל אחד מתפלג נורמלית. כעת סט הפרמטרים אותם צריך להעריך הינו:

$$\theta = \{\mu_1, \dots, \mu_k, \sigma_1^2, \dots, \sigma_k^2, \alpha_1, \dots, \alpha_k\}$$

עבור מקרה זה, הלוג של פונקציית הנראות המרבית יהיה:

$$L(\theta|x_1, \dots, x_n) = \log \prod_{i=1}^n \sum_{j=1}^k \alpha_j \mathcal{N}(x_i, \mu_j, \sigma_j^2) = \sum_{i=1}^n \log \left(\sum_{j=1}^k \alpha_j \mathcal{N}(x_i, \mu_j, \sigma_j^2) \right)$$

אם נגזור ונשווה ל-0 נקבל בדומה למקרה הפשוט:

$$\sum_{i=1}^{n} \frac{1}{\sum_{j=1}^{k} \alpha_{j} \mathcal{N}(x_{i}, \mu_{j}, \sigma_{j}^{2})} \alpha_{j} \mathcal{N}(x_{i}, \mu_{j}, \sigma_{j}^{2}) \frac{(x_{i} - \mu_{j})}{\sigma_{j}^{2}} = 0$$

נוסחה זו אינה ניתנת לפתרון אנליטי, ולכן יש הכרח למצוא דרך אחרת בכדי לחשב את הפרמטרים האופטימליים של ההתפלגויות הרצויות. נתבונן בחלק מהביטוי שקיבלנו:

$$\frac{1}{\sum_{i=1}^k \alpha_i \mathcal{N}\left(x_i, \mu_i, \sigma_i^2\right)} \alpha_j \mathcal{N}\left(x_i, \mu_j, \sigma_j^2\right) = \frac{p(y_i = j) \cdot p(x_i | y = j)}{p(x_i)} = p(y_i = j | x_i) \equiv w_{ij}$$

קיבלנו למעשה את הפוסטריור y_i (האשכול אליו רוצים לשייך את $(x_i$ אך הוא לא נתון אלא הוא חבוי. כדי לחשב את קיבלנו למעשה את הפרמטרים במחלתי ל- θ ובעזרתו נחשב את y_i ואז בהינתן y_i נבצע עדכון לפרמטרים θ ובעזרתו פורמלי שני השלבים הפרמטרים שמסביר בצורה הטובה ביותר את האשכולות שהתקבלו בחישוב ה- y_i . באופן פורמלי שני השלבים מנוסחים כך:

בהינתן אוסף נקודות x וערך עבור הפרמטר θ נחשב את האשכול המתאים לכל נקודה, כלומר כל נקודה – E-step θ תותאם לאשכול מסוים y_i . עבור כל הנקודות y_i נחשב תוחלת ובעזרתה נגדיר את הפונקציה ($Q(\theta,\theta_0)$, כאשר x_i הוא פרמטר חדש ו- θ הוא סט הפרמטרים הנוכחי:

$$Q(\theta, \theta_0) = \sum_{i=1}^{n} \sum_{j=1}^{k} p(y_i = j | x_i; \theta_0) \log p(y_i = j, x_i; \theta) = \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log p(y_i = j, x_i; \theta)$$
$$\sum_{i=1}^{n} \mathbb{E}_{p(y_i | x_i; \theta_0)} \log p(y_i = j, x_i; \theta)$$

:שואז מעדכנים את θ_0 ל- θ_0 ואז מעדכנים את שיביא למקסימום את - M-step

$$\theta = \arg\max_{\theta} Q(\theta, \theta_0)$$
$$\theta_0 \leftarrow \theta$$

חוזרים על התהליך באופן איטרטיבי עד להתכנסות.

עבור Mixture of Gaussians נוכל לחשב באופן מפורש את הביטויים:

$$Q(\theta, \theta_0) = \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log p(y_i = j, x_i; \theta)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log p(y_i = j; \theta) + \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log p(x_i | y_i = j; \theta)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log \alpha_j + \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log \mathcal{N}(\mu_j, \sigma_j^2)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \log \alpha_j - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{k} w_{ij} \left(\log \sigma_j^2 + \frac{(x_i - \mu_j)^2}{\sigma_j^2} \right)$$

וכעת ניתן לגזור ולמצוא אופטימום:

$$\hat{\alpha}_{j} = \frac{1}{n} \sum_{i=1}^{n} w_{ij}$$

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} w_{ij} x_{i}}{\sum_{i=1}^{n} w_{ij}}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} w_{ij} (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} w_{ij}}$$

עבור התפלגויות שונות שאינן בהכרח נורמליות יש לחזור לביטוי של $Q(heta, heta_0)$ ולבצע עבורו את האלגוריתם.

איור 20 2.10 איטרציות של אלגוריתם EM. מתחילים מניחוש אקראי של ההתפלגויות, ובכל איטרציה יש שיפור כך שההתפלגויות מייצגות בצורה יותר טובה את הדאטה המקורי.

 $\log p(x;\theta) \ge \log p(x;\theta_0)$ מתקיים: (θ,θ_0) מתקיים, כלומר שעבור בכל איטרציה, כלומר שעבור כל

$$\log p(x;\theta) = \sum_{y} p(y|x;\theta_0) \log p(x;\theta) = \sum_{y} p(y|x;\theta_0) \frac{\log p(x,y;\theta)}{\log p(y|x;\theta)}$$
$$= \sum_{y} p(y|x;\theta_0) (\log p(x,y;\theta) - \log p(y|x;\theta))$$
$$= \sum_{y} p(y|x;\theta_0) \log p(x,y;\theta) - p(y|x;\theta_0) \log p(y|x;\theta)$$

נשים לב שהאיבר הראשון הוא בדיוק $Q(\theta,\theta_0)$. האיבר השני לפי הגדרה הוא האנטרופיה של ההתפלגות נשים לב $p(x|y;\theta_0)$

$$H(\theta, \theta_0) = -\sum_{y} p(y|x; \theta_0) \log p(y|x; \theta_0)$$

:כעת עבור שני ערכים שונים של heta מתקיים

$$\begin{split} \log p(x;\theta) - \log p(x;\theta_0) &= Q(\theta,\theta_0) + H(\theta,\theta_0) - Q(\theta_0,\theta_0) - H(\theta_0,\theta_0) \\ &= Q(\theta,\theta_0) - Q(\theta_0,\theta_0) + H(\theta,\theta_0) - H(\theta_0,\theta_0) \end{split}$$

לכן: $H(\theta, \theta_0) \ge H(\theta_0, \theta_0)$ לכן, לכן מתקיים מתקיים

$$\log p(x;\theta) - \log p(x;\theta_0) \ge Q(\theta,\theta_0) - Q(\theta_0,\theta_0)$$

ולכן עבור כל עדכון של $Q(\theta,\theta_0)-Q(\theta_0,\theta_0)$ הביטוי , הביטוי אופטימום את שמביא לאופטימום את פיפור בל עדכון של פור ביל שמביא לאופטימום את ולכן עבור כל שיפור ב- $\log p(x;\theta)$ -ם שיפור ב-

2.2.4 Hierarchical Clustering

אונחית עבור חלוקת אשכולות נקרא K-א נקודות עבור חלוקת עבור חלוקת עבור חלוקת אונחית עבור חלוקת אונוחית עבור חלוקת מחולק לשתי שיטות שונות: n

agglomerative clustering – בשלב הראשוני מגדירים כל נקודה כאשכול, ואז בכל פעם מאחדים שני אשכולות – agglomerative clustering ובכך מורידים את מספר האשכולות ב-1, עד שמגיעים ל-K אשכולות. האיחוד בכל שלב נעשה על ידי מציאת שני האשכולות הקרובים ביותר זה לזה ואיחודם לאשכול אחד. ראשית יש לבחור מטריקה לחישוב מרחק בין שתי נקודות (למשל מרחק אוקלידי, מרחק מנהטן ועוד), ולאחר מכן לחשב מרחק בין האשכולות, כאשר יש מספר דרכים להגדיר את המרחק הזה, למשל:

complete-linkage clustering: $\max\{d(a,b): a \in A, b \in B\}$.

single-linkage clustering: $min\{d(a, b): a \in A, b \in B\}$.

Unweighted average linkage clustering (UPGMA): $\frac{1}{|A| \cdot |B|} \sum_{a \in A} \sum_{b \in B} d(a, b)$.

Centroid linkage clustering (UPGMC): $||c_s - c_t||$ where c_s , c_t are centroids of clusters s, t, respectively.

עם התקדמות התהליך יש פחות אשכולות, כאשר האשכולות כבר לא מכילים נקודה אחת בלבד אלא הם הולכים וגדלים. שיטה זו מכונה "bottom-up" כיוון שבהתחלה כל נקודה הינה אשכול עצמאי ובכל צעד של האלגוריתם מספר האשכולות קטן באחד. במילים אחרות, האלגוריתם בונה את האשכולות ממצב שבו אין למעשה חלוקה לאשכולות למצב שבו נוצרים אשכולות ההולכים וגדלים.

divisive clustering — בשיטה זו מבצעים פעולה הפוכה — מסתכלים על כל הנקודות כאשכול אחד, ואז בכל שלב — divisive clustering מבצעים חלוקה של אחד האשכולות לפי כלל חלוקה שנקבע מראש, עד שמגיעים ל-K אשכולות. כיוון שיש 2ⁿ דרכים מבצעים חלוקה של אחד האשכולות לפי כלל חלוקה שנקבע מראש, עד שמגיעים לחלק את המדגם, יש הכרח לנקוט בשיטות היוריסטיות כדי לקבוע את כלל החלוקה המתאים בכל שלב. שיטה מקובלת לביצוע החלקה נקראת (DIANA (DIvisive ANAlysis Clustering), ולפיה בכל שלב בוחרים את האשכול יחיד ובכל בעל השונות הכי גדולה ומחלקים אותו לשניים. שיטה זו מכונה "top-down" כיוון שבהתחלה יש אשכול יחיד ובכל צעד של האלגוריתם מתווסף עוד אשכול.

את התצוגה של האלגוריתם ניתן להראות בצורה נוחה באמצעות dendrogram – דיאגרמה הבנויה כעץ המייצג קשרים בין קבוצות.

איור 2.11 תצוגה של Hierarchical Clustering בעזרת מלוטים התחלה מאשכול יחיד ופיצול עד שמגיעים למספר Hierarchical Clustering איור 2.11 תצוגה של Hierarchical Clustering בעזרת בעזרת אשכולות עד האשכולות עד במקרה זה (K=4) בהתחלה כל נקודה הינה אשכול, ובכל צעד מחברים שני אשכולות עד שמגיעים למספר האשכולות הרצוי.

2.2.5 Local Outlier Factor (LOF)

אלגוריתם Local Outlier Factor הינו אלגוריתם של למידה לא מונחית למציאת נקודות חריגות (Outliers). אלגוריתם האלגוריתם מחשב לכל נקודה ערך הנקרא (Local Outlier Factor (LOF), ועל פי ערך זה ניתן לקבוע עד כמה האלגוריתם מחשב לכל נקודה ערך הנקרא ווצאת דופן.

בשלב ראשון בוחרים ערך k מסוים. עבור כל נקודה x_i , נסמן את k השכנים הקרובים ביותר שלה ב- $N_k(x_i)$. כעת נגדיר את k-distance של כל נקודה כמרחק שלה מהשכן הרחוק ביותר מבין השכנים ב- $N_k(x_i)$. אם למשל k-distance נגדיר את אזי $N_k(x_i)$ הוא סט המכיל את שלושת השכנים הקרובים ביותר ל- $N_k(x_i)$ וה- $N_k(x_i)$ שלה הוא המרחק מנהטן השלישי הכי קרוב. חישוב המרחק בין שני שכנים נתון לבחירה – זה יכול להיות למשל מרחק אוקלידי, מרחק מנימלי המכיל את k-distance ועוד. עבור בחירה של מרחק אוקלידי, ניתן להסתכל על $N_k(x_i)$ -הרדיוס של מעגל המינימלי המכיל את cdistance כל הנקודות השייכות ל- $N_k(x_i)$ - הוא ה- $N_k(x_i)$ -

לאחר חישוב ה-k-distance של כל נקודה, מחשבים לכל נקודה (Local Reachability Density (LRD באופן הבא:

$$LRD_k(x_i) = \frac{1}{\sum_{x_j \in N_k(x_i)} \frac{RD(x_i, x_j)}{k}}$$

כאשר $RD(x_i,x_j)=\max\left(\mathbf{k}-\mathrm{distance}\,\mathrm{of}\,x_i,\mathrm{distance}(x_i,x_j)\right)$ הגודל CRD מחשב את ההופכי של ממוצע שלה בין k השכנים הקרובים אליו. ככל שנקודה יותר קרובה לk השכנים שלה כך ה-LRD שלה גדול יותר, ו-LRD קטן משמעותו שהנקודה יחסית רחוקה מאשכול הקרוב אליה.

,LOF- של היחס הזה הוא ה- $N_k(x_i)$ של LRD- שלה היחס בין ה- x_i את היחס הזה הוא ה- x_i היחס הזה הוא ה-LRD שלה והוא מחושב באופן הבא:

$$LOF_k(x_i) = \frac{\sum_{x_j \in N_k(x_i)} LRD(x_j)}{k} \times \frac{1}{LRD(x_i)}$$

הביטוי הראשון במכפלה הוא ממוצע ה-LRD של k השכנים של נקודה x_i , ולאחר חישוב הממוצע מחלקים אותו ב-LOF של הנקודה x_i עצמה. אם הערכים קרובים, אז ה-LOF יהיה שווה בקירוב ל-1, ואם הנקודה x_i באמת לא שייכת LDF של הנקודות, אז ה-LRD שלה יהיה נמוך משמעותית מהממוצע של ה-LRD של השכנים שלה, וממילא ה-LRD שלה יהיה גבוה. אם עבור נקודה x_i מתקבל x_i מתקבל x_i שלה יהיה גבוה. אם עבור נקודה x_i מתקבל x_i

 $k=(0,0), B=(1,0), C=(1,1), D=(0,3)\}$ נדי להמחיש את התהליך נסתכל על האוסף הבא: $\{A=(0,0), B=(1,0), C=(1,1), D=(0,3)\}$ של כל נקודה במונחים של מרחק מנהטן:

נחשב את ה-LRD:

$$LRD_2(A) = \frac{1}{\frac{RD(A,B) + RD(A,C)}{k}} = \frac{2}{1+2} = 0.667$$

$$LRD_2(B) = \frac{1}{\frac{RD(B,A) + RD(B,C)}{k}} = \frac{2}{2+2} = 0.5$$

$$LRD_2(C) = \frac{1}{\frac{RD(C,B) + RD(C,A)}{k}} = \frac{2}{1+2} = 0.667$$

$$LRD_2(A) = \frac{1}{\frac{RD(D,A) + RD(D,C)}{k}} = \frac{2}{3+3} = 0.334$$

ולבסוף נחשב את ה-LOF:

$$LOF_{2}(A) = \frac{LRD_{2}(B) + LRD_{2}(C)}{k} \times \frac{1}{LRD_{2}(A)} = 0.87$$

$$LOF_{2}(B) = \frac{LRD_{2}(A) + LRD_{2}(C)}{k} \times \frac{1}{LRD_{2}(B)} = 1.334$$

$$LOF_{2}(C) = \frac{LRD_{2}(B) + LRD_{2}(A)}{k} \times \frac{1}{LRD_{2}(C)} = 0.87$$

$$LOF_{2}(D) = \frac{LRD_{2}(A) + LRD_{2}(C)}{k} \times \frac{1}{LRD_{2}(D)} = 2$$

.outlier היא D היא נסיק כי נקודה באופן יחסי לשאר הנקודות, נסיק כי נקודה $LOF_2(D)\gg 1$

k של LRD – מציאת נקודות חריגות על ידי השוואת ערך ה-LRD של כל נקודה לממוצע ה-Local Outlier Factor (LOF) איור 2.12 בעל ה-LRD – מציאת נקודות הכחול), ככה הנקודה יותר רחוקה מאשכול של נקודות.

יש שני אתגרים מרכזיים בשימוש באלגוריתם זה – ראשית יש לבחור k מתאים, כאשר k יחסית קטן יהיה טוב עבור נקודות רועשות, אך יכול להיות בעייתי במקרים בהם יש הרבה מאוד נקודות הצמודות אחת לשנייה, ונקודה שמעט רחוקה מאוסף תזוהה כחריגה למרות שהיא באמת כן שייכת אליו. k גדול לעומת זאת יתגבר על בעיה זו, אך הוא לא יזהה נקודות חריגות שנמצאות בקירוב לאשכולות של נקודות. מלבד אתגר זה, יש צורך לתת פרשנות לתוצאות המתקבלות, ולהחליט על סף מסוים שך LOF, שהחל ממנו נקודה מסווגת כחריגה. LOF קטן מ-1 הוא בוודאי לא outliner אך עבור ערכי LOF גדולים מ-1 אין כלל חד משמעי עבור איזה ערך הנקודה היא בסטטיסטיקות שונות היא לא. כדי להתמודד עם אתגרים אלו הוצעו הרחבות לשיטה המקורית, כמו למשל שימוש בסטטיסטיות העוזרות לתת המורידות את התלות בבחירת הערך k (Loop – Local Outlier Probability), או שיטות סטטיסטיות העוזרות לתת פרשנות לערכים המתקבלים (Interpreting and Unifying Outlier Scores).

2.3 Dimensionally Reduction

הורדת ממד (Dimensionality Reduction) הינה טרנספורמציה הממפה דאטה לממד נמוך יותר מהממד המקורי, כאשר נרצה שהורדת הממד לא תשנה באופן מהותי את מאפייני הדאטה המקורי. הורדת הממד של דאטה נתון נדרשת משתי סיבות עיקריות – אחת טכנית והשנייה מהותית:

- א. ביצוע חישובים ופעולות על מערכת מרובת ממדים הינה בעלת סיבוכיות גבוהה, ולעיתים אף בלתי ניתנת לביצוע.
- ב. הורדת הממד של הדאטה קשורה לניסיון להבין מהם המשתנים העיקריים ומהם המשתנים המשניים, הפחות חשובים להבנת הדאטה (אלו שפחות מאפיינים דוגמא נתונה ביחס לדוגמאות אחרות). לעיתים התחשבות במשתנים המשניים משפיעה לרעה על ביצועי המודל, למשל על ידי הוספת רעש ולא מידע. תופעה זו נקראת קללת הממדיות (curse of dimensionality). יתרון נוסף של הורדת ממד טמון בוויזואליזציה של המידע, כך שניתן להציגו על ידי 2 או 3 ממדים עיקריים, בעזרת גרף דו-ממדי או תלת-ממדי בהתאמה.

דוגמא למערכת מרובת ממדים יכולה להיות מדידת רמות חלבונים (פרוטאינים) של גנים (genes) המבוטאים בתא חי, כאשר כל ממד, או מאפיין (פיצ'ר), מתאים לגן אחר. באופן כללי, ייתכן ונמדדים בכל ניסוי מאות תאים, כאשר לכל חי, כאשר כל ממד, או מאפיין (פיצ'ר), מתאים לגן אחר. באופן כללי, ייתכן ונמדדים בכל (אלפי תאים ואלפי גנים בכל תא נמדדות רמות ביטוי של מאות או אלפי גנים. כמות עצומה זו של מידע בממד גבוה (אלפי תאים ואלפי גנים ביותר, תא) מאתגרת את המחקר – הן מבחינת זיהוי המאפיינים, או רמות הגנים המבוטאים, הרלוונטיים והמשפיעים ביותר, והן מבחינת ניסיון למדל את הדאטה בצורה כמה שיותר פשוטה. במחקר משנת 2007 נלקחו 105 דגימות של תאי מרטן שד, כאשר לכל דגימה (או דוגמא) נמדדו רמות התבטאות של 27,648 גנים שונים. כמובן שלנתח את המידע בצורה הגולמית זו משימה בלתי אפשרית, ויש הכרח לבצע עליו מניפולציה כלשהיא כדי שיהיה אפשר לעבוד איתו.

ישנן שיטות מרובות לביצוע הורדת ממד לדאטה, כאשר ניתן לסווגן לשתי קטגוריות עיקריות: בחירת מאפיינים (features projection). השיטות השייכות לקטגוריה הראשונה מנסות לבחור (features projection). השיטות השייכות לקטגוריה השנייה, המתוארות בפרק את המידע הנתון. שיטות מהקטגוריה השנייה, המתוארות בפרק זה, נוקטות בגישה של הטלה, טרנספורמציה, של המאפיינים הקיימים לייצוג על ידי סט של מאפיינים חדשים במרחב

אחר (ולרוב פשוט יותר). חשוב להדגיש שבשיטות מהקטגוריה הראשונה, מאפיינים פחות רלוונטיים מושמטים. בניגוד לכך, בשיטות שנדון בהן בפרק זה, המבוססות על הטלת המאפיינים, כל מאפיין חדש הינו טרנספורמציה של כל האחרים, ולא רק של חלקם. כך, המאפיינים החדשים מכלילים, או לוקחים בחשבון, כל אחד מהמאפיינים הנמדדים המקוריים, ללא השמטה.

ניתן לבצע הטלת מאפיינים באמצעות טרנספורמציות ליניאריות או לא-ליניאריות. בפרק זה נעסוק בטרנספורמציה לא-לינארית אחת, הנקראת ניתוח גורמים ראשיים (Principle Component Analysis) ובשתי טרנספורמציות לא-לינארית (t-SNE, UMAP). נציין כי קיימות עוד טרנספורמציות, ליניאריות ולא-ליניאריות, המשמשות להורדת ממד של דאטה שאינן יוזכרו כאן.

2.3.1 Principal Components Analysis (PCA)

כפי שהוזכר לעיל, ניתוח גורמים ראשיים מבוסס על טרנספורמציה לינארית של המאפיינים הקיימים. המטרה של אלגוריתם זה היא לבנות ייצוג חדש ובעל ממד נמוך יותר מאשר הממד המקורי של הדאטה, מתוך מטרה לשמר כמה שיותר את השונות של המאפיינים (features) של הדאטה המקורי. מדוע השונות כה משמעותית? ניקח למשל מאפיין המופיע בכל הדוגמאות בדאטה הנתון, ובכולן מאפיין זה הוא בעל אותו ערך. מאפיין כזה הוא בעל שונות אפס, ולמעשה הוא לא מכיל שום מידע על הדאטה ונרצה להיפטר ממנו. בדומה לכך, אם יש שני מאפיינים בעלי תלות לינארית – אין טעם לשמור את שניהם כיוון שידיעת האחד מאפשרת לדעת גם את השני. במקרה זה הקורלציה בין שני המאפיינים היא 1, והשארת המאפיין השני לא תתרום "לשונות הכוללת" של ייצוג הדאטה. נראה בהמשך שייצוג שנבנה באמצעות PCA לא יכיל פיצ'רים כאלו. עוד נעיר כי האלגוריתם דואג לכך שהמקדמים של כל צירוף לינארי יהיו וקטורים בעלי אורך של 1, בכדי לא לנפח באופן מלאכותי את השונות של המאפיינים החדשים (לאחר הורדת ממד).

לאחר הקדמה זו, נפרט כיצד מחושבים המאפיינים החדשים, הנקראים למעשה "הגורמים העיקריים". הגורם הראשי האחר הקדמה זו, נפרט כיצד מחושבים המאפיינים החדשים, הנקראים למעשה "הגורמים בעל השונות הגדולה (first principal component, PCA_1) הוא גם צירוף לינארי של המאפיינים הנתונים, ביותר. הגורם הראשי השני העדולה ביותר, ובנוסף דורשים ש- $PCA_1 \perp PCA_2$: $PCA_1 \perp PCA_2$: $PCA_1 \perp PCA_1$: הוא צירוף לינארי בעל השונות השלישית הגדולה ביותר, ומאונך לשני הגורמים הראשונים – $PCA_1 \perp PCA_2 \perp PCA_3$: וגם $PCA_1 \perp PCA_1 \perp PCA_1$: וכן הלאה כך שהגורם הראשי מסדר i, הוא בעל השונות ה-i-ית הגדולה ביותר תחת אילוץ של גורמים מאונכים $PCA_1 \perp PCA_2$: $PCA_1 \perp PCA_3$. הורדת הממד מתבצעת על ידי לקיחת מספר גורמים ראשיים ראשונים, והזנחת הקטנים ביותר.

לאחר שאפיינו את הגורמים הראשיים בהם אנו מעוניינים, עולה השאלה כיצד ניתן לבצע טרנספורמציה לינארית M דוגמאות שבעזרתה ניתן למצוא את הגורמים הראשיים האלו. נניח שבידינו דאטה $\hat{X} \in \mathbb{R}^{M \times N}$, כלומר נתונות M דוגמאות שנות, שכל אחת מהן היא בעלת M מאפיינים [למשל, עבור הדוגמא של תאי סרטן השד, נתון מידע מ-105 תאים שונים, כאשר עבור כל תא נמדדו רמות ביטוי של M=27,648 גנים שונים.] מטריצה זו לעיתים נקראת ה-design matrix של הדאטה, ונסמן אותה באופן הבא:

$$\hat{X} = \begin{bmatrix} \vec{X}_1 \\ \vdots \\ \vec{X}_M \end{bmatrix} = \begin{bmatrix} \vec{X}^1, \dots, \vec{X}^N \end{bmatrix} \in \mathbb{R}^{M \times N}$$

כאשר כל וקטור שורה, $\vec{X}_m, m \in \{1, ..., M\}$, הינו נתוני המדידות של המאפיינים השונים בדוגמא מספר $\vec{X}^n, n \in \{1, ..., N\}$ ובהתאמה, וקטור עמודה $\vec{X}^n, n \in \{1, ..., N\}$ (שימו לב לשינוי סימון, אינדקס עליון עבור וקטורי עמודה), הינו נתוני המדידות של מאפיין מסוים על כל הדוגמאות. נניח שממוצע המדידות עבור כל מאפיין הוא אפס, זאת אומרת שלכל מאפיין -n מאפיין -n

$$mean(\vec{X}^n) = \sum_{m=1}^{M} X_{m,n} = \vec{0}$$

מכיוון שכל עמודה של המטריצה מסמלת ערכים של מאפיין מסוים במדידות שונות, סכום כל עמודה במטריצה \hat{X} הוא אפס. כעת, נרצה לבצע הטלה (טרנספורמציה) לינארית, זאת אומרת נכפיל את מטריצה \hat{X} במטריצת משקלים \hat{W} :

$$\hat{T} = \hat{X} \cdot \hat{W}$$

אם נסמן את השורה ה-m-ית במטריצה \widehat{T} על ידי, נקבל:

$$\vec{T}_m = \vec{X}_m \cdot \widehat{W}$$

K כאשר הטרנספורמציה נשארים רק $\widehat{T} \in \mathbb{R}^{M imes K}$, כך ש $\widehat{W} \in \mathbb{R}^{N imes K}$ כאשר המטריצה $K \leq N$ מאפיינים. כיוון שאנו מעוניינים בהורדת הממד, קרי הורדת מספר המאפיינים, נדרוש

את תהליך מציאת מטריצת המשקלים ניתן לנסח באופן פורמלי על ידי שלושה תנאים:

1) כל עמודה של מטריצת המשקלים הינה בעלת נורמה השווה ל-1, כלומר:

$$\|\widehat{W}^k\|^2 = \sum_{m=1}^M (W_{m,k})^2 = 1$$

- $.s_k^2>s_{k+1}^2$ מקיימת: $.s_k^2=\left(\vec{T}^k\right)^T\vec{T}^k=\sum_{m=1}^M(T_{mk})^2$ השונות עבור המאפיין ה.kי, המוגדרת על ידי $\widehat{W}^k\perp\widehat{W}^{k\prime}$ לכל שתי עמודות \widehat{W} אורתוגונליות זו לזו, זאת אומרת .k

נראה זאת באופן מפורש: נתחיל במציאת העמודה הראשונה $\widehat{\mathcal{W}}^1$. נדרוש:

$$\widehat{W}^1 = \underset{\|\widehat{W}\|=1}{\operatorname{argmax}}(s_1^2)$$

זאת אומרת:

$$\begin{split} \widehat{W}_{1} &= \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} \left(\widehat{\boldsymbol{S}}_{1}^{2} \right) = \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} \left(\left(\widehat{\boldsymbol{T}}^{1} \right)^{T} \cdot \widehat{\boldsymbol{T}}^{1} \right) = \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} \left(\left(\widehat{\boldsymbol{X}} \widehat{\boldsymbol{W}}^{1} \right)^{T} \cdot \widehat{\boldsymbol{X}} \widehat{\boldsymbol{W}}^{1} \right) \\ &= \underset{\|\widehat{\boldsymbol{W}}\|=1}{\operatorname{argmax}} \left(\left(\widehat{\boldsymbol{W}}^{1} \right)^{T} \left(\widehat{\boldsymbol{X}} \right)^{T} \cdot \widehat{\boldsymbol{X}} \widehat{\boldsymbol{W}}^{1} \right) \end{split}$$

ידי: על ידי \widehat{W}^1 נתונה על ידי:

$$\widehat{W}^{1} = \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} ((\widehat{W}^{1})^{T} \cdot \widehat{S} \cdot \widehat{W}^{1})$$

 $\hat{S} = \left(\hat{X}
ight)^T \cdot \hat{X}$ ידי על ידי (covariance), המוגדרת מטריצת השונות המשותפת $\hat{S} \in \mathbb{R}^{(N imes N)}$ $S_{
u_1,
u_2} = \sum_{m=1}^M X_{
u_1,m} X_{m,
u_2}$ כאשר מסדר, כאשר בין צמד מאפיינים, מגדירה את השונות המשותפת בין צמד מאפיינים, מאריצה זו, מסדר . ניתן לשים לב כי מטריצה זו סימטרית וממשית (ולכן הרמיטית).

 \hat{S} , עבור \hat{S} מטריצה הרמיטית (קורנט-פישר-ויל, מובא כנספח לפרק): עבור לפי משפט המינימום-מקסימום (קורנט-פישר-ויל, מובא כנספח :בעלת ערכים עצמיים עצמיים $\lambda_1 \geq \cdots \geq \lambda_K$ מתקיים

$$\lambda_1 = \max_{\|\widehat{W}\|=1} \left(\widehat{(W^1)^T} \cdot \widehat{S} \cdot \widehat{W}^1 \right)$$

 $.\lambda_1: \hat{S}$ הינו הווקטור העצמי המתאים לערך העצמי המקסימלי של \widehat{W}^1 כאשר

 $:\!\! ilde{X}$ כעת, כדי למצוא את הווקטור העצמי הבא, \widehat{W}^2 , והערך העצמי המתאים לו

$$\begin{split} \tilde{X} &= \hat{X} - \hat{X} \widehat{W}^1 \big(\widehat{W}^1 \big)^T \\ \widehat{W}^2 &= \underset{\|\hat{W}\|=1}{\operatorname{argmax}} \big(\big(\vec{T}^2 \big)^T \cdot \vec{T}^2 \big) \\ &= \underset{\|\hat{W}\|=1}{\operatorname{argmax}} \left(\big(\widehat{W}^2 \big)^T \big(\tilde{X} + \hat{X} \widehat{W}^1 \big(\widehat{W}^1 \big)^T \big)^T \cdot \left(\tilde{X} + \hat{X} \widehat{W}^1 \big(\widehat{W}^1 \big)^T \right) \hat{W}^2 \right) \\ &= \underset{\|\hat{W}\|=1}{\operatorname{argmax}} \left(\big(\widehat{W}^2 \big)^T \big(\tilde{X} \big)^T \cdot (\tilde{X}) \, \widehat{W}^2 \right) \end{split}$$

כאשר \widehat{W}^2 הינו הווקטור העצמי המתאים לערך העצמי המקסימלי של \widehat{X} , ובעצם הוא הערך העצמי השני בגודלו לערך העצמי המתאים לערך בחישוב השתמשנו בעובדה כי $\widehat{W}^1 \perp \widehat{W}^2$).

באופן הבא: $ilde{X}$ באופה חדשה גדיר מטריצה מתאים לו λ_k , נגדיר מטריצה השרה והערך העצמי המתאים לו \widehat{W}^k

$$\tilde{\tilde{X}} = \hat{X} - \sum_{i=1}^{k-1} \hat{X} \hat{W}^i (\hat{W}^i)^T$$

$$\widehat{W}^{k} = \underset{\|\widehat{W}\|=1}{\operatorname{argmax}} \left(\left(\widehat{W}^{k} \right)^{T} \left(\widetilde{\widetilde{X}} \right)^{T} \cdot \left(\widetilde{\widetilde{X}} \right) \widehat{W}^{k} \right)$$

 $\hat{S} = \hat{X}^T\hat{X}$ הינו הערך העצמי המקסימלי ה-k-י של מטריצת השונות המשותפת λ_k

ניתן גם, באופן פשוט יותר, להשתמש בשיטת פירוק לערכים סינגולריים (SVD), כאשר נמצא את הפירוק המתאים למטריצת השונות המשותפת:

$$\hat{S} = \widehat{W} \cdot \widehat{\Lambda} \cdot \widehat{W}^T$$

- כאשר $\hat{\Lambda}$ הינם מטריצה אלכסונית, ו- $\Lambda_{ii}=\lambda_i$ הינם הערכים העצמיים של $\hat{\Lambda}$ המסודרים לפי גודלם מהגדול לקטן $\hat{\Lambda}$ מורכבת מווקטורי עמודה שהינם הווקטורים העצמיים המתאימים לערכים \hat{W} מורכבת מווקטורי עמודה שהינם הווקטורים העצמיים בהגדרתם הינם אורתוגונליים זה לזה, וכיוון ש-1 $\|\hat{W}^k\|=1$ לכל $\|\hat{W}^k\|=1$ אורתונורמליים.

 $: \! \hat{X}$ לסיכום, על מנת למצוא את הגורמים הראשיים עבור המידע הנתון

- $\hat{X}^m = \hat{X}^m mean_n(\hat{X}^m)$ מרכז" את הנתונים כך שהממוצע עבור כל מאפיין הוא אפס:
 - $\hat{S} = (\hat{X})^T \hat{X}$ מצא את מטריצת השונות המשותפת.
 - $\hat{S} = \hat{S} \cdot \hat{\Lambda} \cdot \hat{W}^T$ של SVD-ט של $\hat{S} = \hat{S} \hat{\Lambda} \cdot \hat{W}^T$ של
 - $.\widehat{T}=\widehat{X}\cdot\widehat{W}$ ד. חשב
- ה. הגורמים הראשיים נתונים על ידי וקטורי העמודה $PCA_k \equiv \overrightarrow{W}^k$, וההטלה של מדידה m למערכת הגורמים החדשה נתונה על ידי $\overrightarrow{T}^m = \overrightarrow{X}^m \widehat{W}$

נציין שלשיטת הניתוח של גורמים ראשיים יש מספר מגבלות. ראשית, היא נותנת "משקל יתר" על מאפיינים שהשונות בהם גדולה, ללא קשר לחשיבותם, או ליחידות שבהן המאפיין נמדד (זאת אומרת לדוגמא שלגובה שנמדד בסנטימטרים יינתן "משקל" גבוה יותר מאשר גובה הנמדד במטרים). שנית, שיטת זו מניחה כי המדד החשוב הוא השונות המשותפת שהיא בעצם קורלציה לינארית בין שני משתנים, אולם ייתכן במערכות מסוימות שדווקא הקורלציה הלא-לינארית היא החשובה יותר. כמו כן, לעיתים "מרכוז" המידע גורם לתוצאות לאבד ממשמעותן.

כדי להתגבר על המגבלות בשיטת ה-PCA שהצגנו לעיל פותחו שיטות נוספות או משלימות. לדוגמא, ניתן למזער את השפעת יחידות המידה על המאפיינים על ידי הפיכתם לחסרי יחידות. בנוסף, יש שיטות הלוקחות בחשבון קורלציות לא-לינאריות ,לדוגמא שיטת kernel PCA, או שיטות להתמודדות עם בעיית המרכוז על ידי דרישת משתנים חיוביים (NMF).

לצורך המחשה של תהליך חישוב הגורמים העיקריים ניתן שתי דוגמאות. ראשית נחזור לדוגמא שהזכרנו בתחילת פרק זה – מחקר שפורסם בשנת 2007 ובו נלקחו 105 דגימות של תאי סרטן שד, כאשר לכל דגימה נמדדו רמות פרק זה – מחקר שפורסם בשנים. לשם הדגמה, נשתמש בניתוח שפורסם כשנה לאחר מכן (ב-2008) על ידי אחד התבטאות של 27,648 גנים שונים. לשם הדגמה, נשתמש בניתוח שפורסם כשנה לאחר מכן (ב-2008), כאשר מעורכי המחקר המקורי. שם, החוקר מציג רמות של שני חלבונים; האחד בשם GATA3, והשני בשם TBP1, כאשר דגימות תאי הסרטן מסווגות לפי סוג קולטני האסטרוגן שלהם (+ או -). כעת, על ידי "סיבוב" מערכת הצירים – בעזרת טרנספורמציה לינארית PCA כפי שהוסבר לעיל – נמצא כי ניתן לסווג, ללא איבוד מידע רב, את מצב קולטני האסטרוגן בתאי סרטן השד על ידי הגורם הראשי הראשון PCA, כפי שניתן לראות באיור. יש לשים לב שהגורם הראשי הראשון, PCA, מכיל מידע משני החלבונים.

איור 2.13 c) רמות ביטוי של שתי חלבונים GATA3 (ציר ה-X) ו-XBP1 (ציר ה-Y). קולטני אסטרוגן חיוביים או שלילים מסומנים באדום (a 2.13 רמות ביטוי של שתי חלבונים GATA3 (ציר ה-X). בהתאם לתיאוריה, ניתן להבחין כי השונות של המידע על גבי (b מציאת הגורמים הראשיים, וסיבוב מערכת הצירים. בהתאם לתיאוריה, ניתן להבחין כי השונות של המדע על גבי PCA₁ הינה מקסימלית. (c) הצגת תוצאות המדידה כפונקציה של PCA₁ בלבד. בגרף זה ניתן לראות בבירור כיצד הורדת הממד מסייעת למצוא הבחנה פשוטה (בממד אחד) בין קולטני האסטרוגן.

נביא בנוסף דוגמא חישובית מפורטת. נניח ונתון המערך הדו-ממדי הבא:

$$X = \begin{pmatrix} -0.5 & -0.4 \\ -0.4 & -0.1 \\ 0.1 & 0 \\ 0.3 & 0.3 \\ 0.5 & 0.2 \end{pmatrix}$$

מערך הנתונים מכיל 5 דוגמאות, ולכל דוגמא נמדדו שני מאפיינים (M=5,N=2). שורות המטריצה מציגות את המדידות השונות, והעמודות מייצגות את מאפיינים.

מערך זה כבר ממורכז, כלומר המאפיין הראשון מקיים:

$$mean_1(X^m) = \sum_{m=1}^{5} X_{m1} = -0.5 - 0.4 + 0.1 + 0.3 + 0.5 = 0$$

ועבור המאפיין השני:

$$mean_2(X^m) = \sum_{m=1}^{5} X_{m2} = -0.4 - 0.1 + 0 + 0.3 + 0.2 = 0$$

נחשב את מטריצת השונות המשותפת:

$$S = (\hat{X})^T \hat{X} = \begin{pmatrix} -0.5 & -0.4 & 0.1 & 0.3 & 0.5 \\ -0.4 & -0.1 & 0 & 0.3 & 0.2 \end{pmatrix} \begin{pmatrix} -0.5 & -0.4 \\ -0.4 & -0.1 \\ 0.1 & 0 \\ 0.3 & 0.3 \\ 0.5 & 0.2 \end{pmatrix}$$
$$= \begin{pmatrix} 0.5^2 + 0.4^2 + 0.1^2 + 0.3^2 + 0.5^2 & 0.5 \cdot 0.4 + 0.4 \cdot 0.1 + 0.1 \cdot 0 + 0.3^2 + 0.5 \cdot 0.2 \\ 0.5 \cdot 0.4 + 0.4 \cdot 0.1 + 0.1 \cdot 0 + 0.3^2 + 0.5 \cdot 0.2 & 0.4^2 + 0.1^2 + 0^2 + 0.3^2 + 0.2^2 \end{pmatrix}$$
$$= \begin{pmatrix} 0.76 & 0.43 \\ 0.43 & 0.3 \end{pmatrix}$$

על מנת ללכסן מטריצה זו, נמצא את הערכים העצמיים שלה המהווים שורשים של המשוואה האופיינית הבאה:

$$0 = |\hat{S} - \lambda \hat{I}| = \begin{vmatrix} 0.76 - \lambda & 0.43 \\ 0.43 & 0.3 - \lambda \end{vmatrix} = (0.76 - \lambda)(0.3 - \lambda) - 0.43^2 \approx (\lambda - 1.02)(\lambda - 0.04)$$

 $(\lambda_1>\lambda_2)$ יש לשים לב שבחרנו (יש לשים לב שבחרנו 1.02, אבר לפולינום אופייני זה שני שורשים: $\lambda_1>\lambda_2\approx 0.04$

 $\widehat{\mathcal{M}}^1$ נמצא כעת את הווקטור העצמי המתאים לערך העצמי הגדול מבין השניים – λ_1 . וקטור זה, המסומן על ידי מקיים:

$$\widehat{S}\widehat{W}^1 = \lambda_1 \widehat{W}^1$$

:כך ש

$$0 = (\hat{S} - \lambda_1 \vec{I}) \widehat{W}^1 \approx \begin{pmatrix} -0.83 & 0.107 \\ 0.107 & -0.94 \end{pmatrix} \begin{pmatrix} W_{11} \\ W_{21} \end{pmatrix} \Rightarrow \widehat{W}^1 \approx \begin{pmatrix} 0.86 \\ 0.51 \end{pmatrix}$$

 $\hat{W}^2pprox inom{0.51}{-0.86}$:מחושב באותו אופן, ומתקבל: $\lambda_2pprox 0.04$ המתאים לערך העצמי לערך המשקלים נתונה על \hat{W}^2

$$\widehat{W} = (\widehat{W}^1 \quad \widehat{W}^2) = \begin{pmatrix} 0.86 & 0.51 \\ 0.51 & -0.86 \end{pmatrix}$$

הטלת המדידות למערכת המאפיינים החדשה נתונה על ידי:

$$\widehat{T} = \widehat{X} \cdot \widehat{W}$$

לכן, המדידות של הגורם הראשי הראשון, נתונות על ידי

$$\widehat{T}^{1} = \widehat{X} \cdot \widehat{W}^{1} \approx \begin{pmatrix} -0.5 & -0.4 \\ -0.4 & -0.1 \\ 0.1 & 0 \\ 0.3 & 0.3 \\ 0.5 & 0.2 \end{pmatrix} \begin{pmatrix} 0.86 \\ 0.51 \end{pmatrix} = \begin{pmatrix} -0.5 \cdot 0.86 - 0.4 \cdot 0.51 \\ -0.4 \cdot 0.86 - 0.1 \cdot 0.51 \\ 0.1 \cdot 0.86 \\ 0.3 \cdot 0.86 + 0.51 \cdot 0.3 \\ 0.5 \cdot 0.86 + 0.2 \cdot 0.51 \end{pmatrix} \approx \begin{pmatrix} -0.63 \\ -0.39 \\ 0.09 \\ 0.41 \\ 0.53 \end{pmatrix}$$

נראה זאת באופן גרפי:

Point	Initial	Encoded	Decoded
Α	(-0.50, -0.40)	-0.63	(-0.54, -0.33)
В	(-0.40, -0.10)	-0.39	(-0.34, -0.20)
C	(0.10, 0.00)	0.09	(0.07, 0.04)
D	(0.30, 0.30)	0.41	(0.35, 0.21)
E	(0.50, 0.20)	0.53	(0.46, 0.27)

איור 2.14 הורדת ממד של דאטה דו-ממדי לממד אחד.

נספח: משפט המינימום- מקסימום (קורנט-פישר-ויל):

. מתקיים: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_M$ מטריצה ערכים ערכים $(S_{ij} = S_{ji}^*)$ מטריצה הרמיטית $\hat{S} \in \mathbb{R}^{M \times M}$

$$\lambda_{m} = \min_{U} \left\{ \max_{\substack{\vec{x} \in U, \\ \|x\| = 1}} \left\{ x^{\dagger} S^{\dagger} x \middle| x \in U, x \neq 0 \right\} \middle| \dim(U) = M - m + 1 \right\}$$
$$= \min_{U} \left\{ \max_{\vec{x} \in U, } \left\{ \frac{x^{\dagger} S^{\dagger} x}{x^{\dagger} x} \middle| x \in U, x \neq 0 \right\} \middle| \dim(U) = M - m + 1 \right\}$$

הערך העצמי המקסימלי מקיים:

$$\lambda_1 = \max_{\|\widehat{W}\|=1} \left(\widehat{(W}^1)^T \cdot \widehat{S} \cdot \widehat{W}^1 \right)$$

 $.\hat{S}$ טאשר \widehat{W}^1 , הינו הערך העצמי המתאים ל- λ_1 ערך העצמי המקסימלי של

2.3.2 t-distributed Stochastic Neighbors Embedding (t-SNE)

אלגוריתם הורדת הממד PCA פועל באופן לינארי, מה שמקל על תהליך החישוב שלו, אך מגביל את יכולות ההכללה שלו. אלגוריתם אחר, לא לינארי, נקראת t-SNE, והוא מנסה לקחת את הדאטה בממד גבוה ובאמצעות שימוש בכלים סטטיסטיים למפות אותו למערכת דו-ממדית או תלת-ממדית.

איור 2.15 הדגמה של מגבלת שיטת PCA ויתרונות השיטות הלא-לינאריות להורדת ממד. באיור השמאלי העליון מוצג דאטה תלת ממדי בעל מבנה בצורת האות S. בנוסף, לדאטה ישנו מאפיין נוסף המתבטא בצבעים שונים ובמעבר שלהם מכחול לאדום. טרנספורמציה בעל מבנה בצורת האות S. בנוסף, לדאטה ישנו מאפיין נוסף הדאטה כגרדיאנט צבע מאדום לכחול (ראה איור עליון ימני). אולם, שיטות לינארית PCA (סיבוב/מתיחה) אינה מצליחה לשמר את מבנה הדאטה כגרדיאנט צבע מאדום לכחול (ראה שני איורים תחתונים). לא לינאריות יכולות ומצליחות להוריד את הממדיות של הבעיה ולשמר את מבנה היריעה הטופולוגית (ראה שני איורים תחתונים).

לשם כך, נשתמש באותו מערך נתונים, $\hat{X} \in \mathbb{R}^{M imes N}$, כאשר M הוא מספר הדוגמאות, ו-N הוא מספר המאפיינים (או המשתנים/פיצ'רים). חשוב לשים לב כי כל מדידה מיוצגת על ידי וקטור שורה \hat{X}_m . הרעיון הכללי של השיטה הוא למפות את סט המדידות באופן כזה שמדידות דומות יותר, קרי מדידות "קרובות" יותר במרחב ה-N ממדי, יוצגו על ידי נקודות קרובות יותר במרחב חדש K-ממדי, כאשר לרוב $K \leq 3$. נסמן את המרחב המקורי ה-K ואת המרחב החדש ב-K, כאשר בשני המרחבים המדידות מוצגות על ידי נקודות בגרף פיזור (scatter plot). המטריקה המשמשת למדידת דמיון (gimilarity) בין שתי נקודות במרחב המקורי K הינה הסתברותית. עבור שתי מדידות במרחב במרחב המקורי K-הינה:

$$P_{m_1,m_2} = \frac{Z_1^{-1}}{2N} \exp\left(-\frac{\left\|\vec{X}_{m_1} - \vec{X}_{m_2}\right\|^2}{2\sigma_1^2}\right) + \frac{Z_2^{-1}}{2N} \exp\left(-\frac{\left\|\vec{X}_{m_1} - \vec{X}_{m_2}\right\|^2}{2\sigma_2^2}\right)$$

כאשר σ_i נקרא פרפלקסיות (perplexity) והוא פרמטר שנקבע מראש, ו- \mathcal{Z} הינו קבוע הנורמליזציה, המוגדר על ידי (perplexity) נקרא פרפלקסיות ($Z_i = \sum_{k \neq i} \exp\left(-\frac{\|\vec{X}_i - \vec{X}_k\|^2}{2\sigma_i^2}\right)$ עבור נקודות קרובות יותר, עבורן הביטוי $\vec{X}_{m_1} - \vec{X}_{m_2}$ קטן, ההסתברות $\vec{X}_{m_1} - \vec{X}_{m_2}$ עכנה של $\vec{X}_{m_1} - \vec{X}_{m_2}$ גדולה. לעומת זאת כאשר הנקודות רחוקות זו מזו, כלומר $\vec{X}_{m_1} - \vec{X}_{m_2}$ שהנקודה שהנקודה של שכנה של \vec{X}_{m_2} קטנה מאוד עד אפסית.

3 כעת, כפי שהוזכר לעיל, נרצה למפות את סט המדידות:
$$\begin{bmatrix} \vec{X}_1 \\ \vdots \\ \vec{X}_M \end{bmatrix} o \begin{bmatrix} \vec{Y}_1 \\ \vdots \\ \vec{Y}_M \end{bmatrix}$$
 מר, כפי שהוזכר לעיל, נרצה למפות את סט המדידות: $\begin{bmatrix} \vec{Y}_1 \\ \vdots \\ \vec{Y}_M \end{bmatrix}$

ממדים). בנוסף, נדרוש שנקודות דומות ("שכנות") במרחב \mathcal{X} , ישארו שכנות לאחר המיפוי למרחב \mathcal{Y} . מתברר שפונקציית ההסתברות המותנית, המתאימה לתיאור דמיון בין נקודות שכנות במרחב החדש \mathcal{Y} , הינה התפלגות לנדון בין נקודות שכנות בפונקציות הסתברות אלו בהמשך). כך, הנקראת גם התפלגות סטודנט עם דרגת חופש אחת (נדון ברעיון לבחור בפונקציות הסתברות אלו בהמשך). כך, נכמת את הדמיון בין m_1 לבין m_2 , על ידי ההסתברות המשותפת m_1 , ממוגדרת באופן הבא:

$$Q_{m_1, m_2} = 3^{-1} \frac{1}{1 + \left\| \vec{Y}_{m_1} - \vec{Y}_{m_2} \right\|^2}$$

. כאשר
$$\mathfrak{Z} = \sum_{k
eq j} \left(1 + \left\| \overrightarrow{Y}_k - \overrightarrow{Y}_j \right\|^2 \right)^{-1}$$
 כאשר

המיפוי בין מרחב המקורי ${\mathcal X}$ לבין המרחב החדש ${\mathcal Y}$ הוא מיטבי אם הוא "משמר" את השכנות של נקודות (מדידות) קרובות. לשם כך נגדיר את פונקציית המחיר על ידי Kullback-Leibler divergence, הבוחן מרחק בין שתי התפלגויות:

$$C = \mathcal{D}_{KL}(P|Q) \equiv \sum_{m_1} \sum_{m_2} P_{m_1, m_2} \log \left(\frac{P_{m_1, m_2}}{Q_{m_1, m_2}} \right)$$

 $ec{Y}_{m_i}$ נרצה למצוא את הווקטור נידיאנט לפי פונקציית המחיר מינימלית, ולשם כך נשתמש בגרדיאנט לפי נרצה למצוא את הווקטור יו

$$\begin{split} \frac{\delta C}{\delta \vec{Y}_{m_i}} &= \frac{\delta}{\delta \vec{Y}_{m_i}} \left[\sum_{m_1} P_{m_1, m_i} \log \left(\frac{P_{m_1, m_i}}{Q_{m_1, m_i}} \right) + \sum_{m_2} P_{m_1, m_2} \log \left(\frac{P_{m_i, m_2}}{Q_{m_i, m_2}} \right) \right] \\ &= 4 \sum_{m_1} \left(P_{m_1, m_i} - Q_{m_1, m_i} \right) \left(1 + \left\| \vec{Y}_{m_1} - \vec{Y}_{m_i} \right\|^2 \right)^{-1} \left(\vec{Y}_{m_1} - \vec{Y}_{m_i} \right) \end{split}$$

,gradient descent חישוב המינימום באופן אנליטי לא תמיד אפשרי או לא תמיד יעיל, ולכן מקובל להשתמש בשיטת שהינה שיטה איטרטיבית למציאת נקודת המינימום של פונקציה (פירוט על שיטה זו ווריאציות שונות שלה מופיע בחלק 4.3.5). עבור הורדת הממד, חישוב המינימום בעזרת שיטה זו יעשה באופן הבא:

- $X \in \mathbb{R}^{M \times N}$ א. אתחול: * נתון
- σ^2 היפר-פרמטר לפונקציית הדמיון: בחירת לפונקציית *
- $,\epsilon$ בחירת שיטת אופטימיזציה (למשל: ADAM, SGD), והיפר פרמטרים כגון: קצב הלמידה *.'וכו'. batch-מומנטום lpha(t), גודל ה
 - P_{m_1,m_2} ב. חשב את
- אתחל את הערכים ההתחלתים לפי וז"א בחר את $\psi^{(0)}=\{\vec{Y}_1,\vec{Y}_2,...\vec{Y}_M\}\sim N(0,s\hat{I}_M)$ אתחל את המיפוי [.מטריצת יחידה \hat{l}_M . ($s=10^{-4}$ נניח קטן, נניח s) s וסטיית תקן אוסיאנית עם ממוצע s וסטיית תקן

 - . תבחר batch- עבור ע Q_{m_1,m_2} חשב את $rac{\delta \mathcal{C}}{\delta y}$ חשב את הגרדיאנט של פונקציית המחיר *

$$y^{(t)}=y^{(t-1)}+\etarac{\delta \mathcal{C}}{\delta y}+lpha(t)[y^{(t-1)}-y^{(t-2)}]$$
 עדכן: *

נעיר כי בשפות תכנות רבות, האלגוריתם עצמו כבר מוגדר על ידי פונקציות מובנות, ויש רק להגדיר את הפרמטרים הדרושים.

במאמר המקורי שהציג את השיטה הובאה דוגמא של שימוש באלגוריתם עבור הטלה של הספרות 0 עד 9, המיוצגות על ידי תמונות בממד גבוה $\mathbb{R}^{28 imes 28}$, למרחב דו ממדי. בדוגמא זו נלקחו 6,000 תמונות של ספרות ומיפו אותן למרחב דו-ממדי. במרחב זה ניתן לראות בבירור כיצד כל תמונה מופתה לאזור אחר, כיוון שבפועל נוצרו עשרה אשכולות שונים, המובחנים בצורה ברורה אחד מהשני. בייצוג הדו-ממדי אין משמעות לצירים, כיוון שבאלגוריתם זה יש חשיבות רק למרחק היחסי בין הנקודות.

איור 2.15 באגה (ויזואליזציה) דו-ממדית של מערך נתונים עבור כתב-יד של ספרות (MNIST) על ידי שיטת t-SNE. כל דוגמא \vec{X}_m מאופיינת על ידי 28 \times 28 ערכים (פיקסלים בגווני אפור) ומסווגת להיות ספרה בין 0 ל-9. באיור מוצגות 6000 נקודות (מדידות) מאופיינת על ידי 284 \times 28 ערכים (פיקסלים בגווני אפור) ומסווגת להיות ספרה בין הספרות דומות קרובות זו לזו גם במרחב כאלו, כאשר צבעים שונים מייצגים ספרות שונות. מלבד ההבחנה בין הספרות, ניתן לראות שספרות דומות קרובות זו לזו גם במרחב החדש (למשל הספרה 1 קרובה לספרה 7).

כאמור, פונקציית הדמיון בין שתי נקודות במרחב המקורי הינה הפילוג הנורמלי המשותף של שתי הנקודות, ואילו במרחב החדש פונקציית הדמיון הינה התפלגות t. שתי הערות חשובות על בחירות אלו:

א. סימטריה:

פונקציית הדמיון הגאוסיאנית בין שתי נקודות במרחב \mathcal{X} הינה פונקציה סימטרית, כלומר $P_{m_1,m_2}=P_{m_2,m_1}$. אולם ניתן להגדיר גם פונקציית דמיון א-סימטרית, המבוססת על התפלגות מותנית (במקום התפלגות משותפת). הפונקציה המותנית נתונה על ידי:

$$P_{m_1|m_2} = Z_2^{-1} \exp\left(-\frac{\|\vec{X}_{m_1} - \vec{X}_{m_2}\|^2}{2\sigma_2^2}\right)$$

:כך ש

$$P_{m_1,m_2} = \frac{P_{m_1|m_2} + P_{m_2|m_1}}{2N}$$

:t בחירת פונקציית הדמיון במקום פונקציית:

באלגוריתם שתואר, פונקציית הדמיון בין שתי נקודות במרחב ה- \mathcal{Y} נתונה על ידי התפלגות t. ניתן להגדיר גם פונקציה אחרת, למשל את פונקציית דמיון גאוסיאנית עבור שתי מדידות במרחב \mathcal{Y} . שיטה זו נקראת SNE, והגרדיאנט של פונקציית המחיר במקרה זה נתונה על ידי:

$$\frac{\delta C}{\delta \vec{Y}_{m_i}} = 4 \sum_{m_1} (P_{m_1, m_i} - Q_{m_1, m_i}) (\vec{Y}_{m_1} - \vec{Y}_{m_i})$$

אולם, פונקציית דמיון גאוסיאנית במרחב $\mathcal Y$ יכולה לגרום לכך שנקודות לא מאוד קרובות במרחב $\mathcal X$, ימופו לנקודות קרובות במרחב $\mathcal Y$. זה קורה מכיוון שהתפלגות גאוסיאנית במרחב $\mathcal Y$ גורמת לאטרקטור (משיכה) יחסית חזק בין שתי נקודות, גם במקרים בהם הנקודות אינן מאוד קרובות. לעומת זאת, כאשר פונקציית הדמיון הינה התפלגות סטודנט $\mathcal Y$ שהינה התפלגות עם זנב כבד יותר, שתי נקודות שאינן מאוד קרובות ימופו בצורה ראויה למרחב $\mathcal Y$ כך שאינן "נמשכות" או מתקרבות זו לזו. שיטה אחרת, הנקראת UNI-SNE, מציעה להשתמש בהתפלגות אחידה, אך גם לה חסרון דומה ל-SNE, כאשר שתי נקודות לא מאוד דומות זו לזו, אינן "דוחות" אחת את השנייה.

יש שלוש מגבלות עיקריות t-SNE לשיטת

א. הורדת ממד: השיטה משמשת לוויזואליזציה של מידע מממד גבוה בדו-ממד או תלת-ממד. אולם, באופן עקרוני, ייתכן ונרצה להוריד את הממד לא לשם הצגתו, אלא לצרכים אחרים, כאשר הממד החדש הינו גדול מ-3. ייתכן ובממד גבוה פונקציית התפלגות סטודנט t עם דרגת חופש אחת, אשר לה משקל גבוה יחסית

- במרחקים גבוהים, לא תשמר את המבנה של המידע המקורי. לכן, כאשר נרצה להוריד לממד גבוה מ-3, פונקציית התפלגות t עם יותר מדרגת חופש אחת מתאימות יותר.
- ב. קללת הממדיות: t-SNE מבוססת על מאפיינים מקומיים בין נקודות. השיטה, המבוססת על מטריקת מרחק אוקלידית, וכך מניחה לינאריות מקומית על גבי היריעה המתמטית בה מתקיימות הנקודות. אולם, במערך נתונים בו הממד הפנימי גבוה, שיטת t-SNE עלולה להיכשל כיוון שהנחת הלינאריות לא מתקיימת. למרות שישנן מספר שיטות למזער תופעה זו, עדיין, בהגדרה, כאשר הממד הפנימי גבוה, לא ניתן להוריד ממד כך שמבנה המידע ישמר באופן מלא.
- ג. פונקציית מחיר לא קמורה: הרבה שיטות למידה מבוססות על פונקציית הפסד קמורה, כך שתיאורטית מציאת אופטימיזציה (יחידה) לפונקציה זו אפשרית תמיד. אולם, בשיטת t-SNE, פונקציית המחיר אינה קמורה, והפתרון המתקבל על ידי האופטימיזציה משתנה בהתאם לפרמטרים הנבחרים.

2.3.3 Uniform Manifold Approximation (UMAP)

DMAP הינה שיטה לא לינארית נוספת עבור הורדת ממד, המבוססת על קירוב של יריעה טופולוגית (manifold). השיטה מתבססת על מספר הנחות בסיס: ראשית, מניחים כי הנקודות/הדוגמאות מתפלגות באופן אחיד על גבי יריעה טופולוגית כלשהיא. בנוסף, מניחים כי יריעה זו קשירה באופן מקומי. מטרת קירוב זה היא לשמר את המבנה של הדוגמאות על גבי היריעה. נעיר כי הוכחה ריגורוזית של השיטה מערבת מתמטיקה מתקדמת (מעבר לנלמד בתואר הראשון), אך ניתן להבין את הרעיון העיקרי גם ללא ההוכחה המדויקת, ועל כן נציג ראשית את הרעיון העיקרי, ולאחר מכן את עיקרי הבסיס המתמטי העומד מאחוריו. השיטה מחולקת לשני שלבים עיקריים – בשלב הראשון מחשבים משקל של קשת בין כל שתי דוגמאות במרחב, ולאחר מכן מבצעים את הורדת הממד על סמך משקלי הקשתות:

- 1. ראשית, נרצה לתאר את היריעה הטופולוגית בה נמצאות כל הדוגמאות במרחב המקורי, \hat{X} , על ידי גרף ממושקל-קשיר. על מנת ליצור גרף זה יש לבצע את השלבים הבאים עבור כל דוגמא X_{m_i} (שהיא כאמור נקודה במרחב המקורי ה-N-ממדי):
 - $d_{i,j} \equiv d(X_{m_i}, X_{m_i})$ א. מציאת את א השכנים הקרובים ביותר על ידי שימוש במרחק האוקלידי k
 - $.
 ho_i$ ב. חישוב המרחק לנקודה הקרובה ביותר נסמן אותו ב-
 - ג. חישוב הגודל σ_i על ידי פתרון המשוואה:

$$\log_2(k) = \sum_{j=1}^k \exp\left(-\frac{\max\{0, d_{ij} - \rho_i\}}{\sigma_i}\right)$$

המשקל (הסימטרי) של קשת בין שתי נקודות - X_{m_i} הינו:

$$P_{ij} \equiv P_{i|j} + P_{j|i} - P_{i|j} \cdot P_{j|i}$$

:כאשר

$$P_{i|j} = \exp\left(-\frac{\max\{0, d_{ij} - \rho_i\}}{\sigma_i}\right)$$

כלומר: עבור $P_{i|j}=0$, ואם שתי הנקודות הן כן הקרובים של X_{m_i} מתקיים: R שאינו בקבוצת אינו בקבוצת א השכנים הקרובים של $P_{i|j}=\exp\left(\frac{\rho_i-d_{ij}}{\sigma_i}\right)$ "שכנות", אז מתקיים: $P_{i|j}=\exp\left(\frac{\rho_i-d_{ij}}{\sigma_i}\right)$

כעת, על מנת לבצע הורדת ממד, נרצה לייצר הצגה של הגרף הממושקל בממד נמוך ממרחב \hat{Y} , כאשר לגרף \hat{Y} כאשר לגרף החדש יש "מבנה דומה" לגרף המקורי. לשם כך, נגדיר פונקציית דמיון באופן הבא:

$$q_{i,j} \equiv \left(1 + a \left\| \overrightarrow{Y}_{m_1} - \overrightarrow{Y}_{m_2} \right\|^{2b} \right)^{-1}$$

כאשר פונקציית המחיר הינה:

$$C = \sum_{i \neq i} P_{ij} \log \left(\frac{P_{ij}}{q_{ij}} \right) + (1 - P_{ij}) \log \left(\frac{1 - P_{ij}}{1 - q_{ij}} \right)$$

נעיר כי מספר השכנים הקרובים k, והמרחק המינימלי האפקטיבי (הנקבע על ידי (a,b) הינם היפר-פרמטרים הנבחרים על ידי המשתמש.

:UMAP לבין t-SNE הבדלים עיקריים בין שיטת

- א. בשיטת t-SNE המרחקים האוקלידיים מחושבים כל זוג נקודות. בשיטת t-SNE, נלקחים בחשבון רק קבוצת שכנים קרובים.
- UMAP נתונה על ידי: $P_{i,j}=\frac{P_{i|j}+P_{j|i}}{2N}$ לעומת זאת, הסימטריזציה בשיטת t-SNE ב. $P_{i,j}=P_{i|j}+P_{j|i}$ נתונה על ידי $P_{i,j}=P_{i|j}+P_{j|i}-P_{i|j}\cdot P_{j|i}$
- פונקציית UMAP הינה לעומת זאת, בשיטת t-SNE הינה גאוסיאנית. לעומת זאת, בשיטת בשיטת הדמיון במרחב במרחב המקורי בשיטת הדמיון במרחב $\mathcal X$ הינה אקספוננט.
- $q_{i,j} \equiv \left(1+a\left\| \overrightarrow{Y}_{m_i} \overrightarrow{Y}_{m_j} \right\|^{2b} \right)^{-1}$ הינה \mathcal{Y} הינה שמחקל (הדמיון) במרחב במרחם פונקציית המשקל (מוכפלת במקדם a=b=1), אנו מקבלים את פונקציית המשקל a=b=1 של מרחב \mathcal{Y} עבור \mathcal{Y}
- ה. לפונקציית המחיר (או הפוטנציאל) עבור שיטת UMAP נוסף איבר מהצורה (או הפוטנציאל) איבר זה (או הפוטנציאל) עבור שיטת מוריד את סיכוי קבלת שתי נקודות קרובות מאוד במרחב החדש (זאת אומרת כאשר $(q_{ij}\sim 1)$ כאשר הם אינן קרובות במרחב המקורי.

תיאור מתמטי של השיטה:

נניח שהיריעה הטופולוגית בה המידע (data) נמצא, אינה ידועה מראש, אולם בכל זאת נרצה להגדיר מרחקים גאודזיים על גבי יריעה זו. בנוסף, נניח כי הדוגמאות מפוזרות באופן אחיד על גבי יריעה זו. באופן כללי, הגדרת מטריקת רימן (מטריקה, פונקציה מסויימת, שמאפשרת לנו הגדרת מרחקים, ראה דוגמא למטה), תלויה בסביבת הנקודה. המטרה הראשונית שלנו היא להגדיר את היריעה הטופולוגית בה הנקודות נמצאות על ידי גרף ממושקל קשיר.

כעת, נניח שבסביבת נקודה p המטריקה g_p אלכסונית וקבועה. לכן, ניתן להגדיר את המרחק בין נקודה p לנקודה שנמצאת בסביבת p ע"י המטריקה הקיימת במרחב הp ממדי.

מתוך ההנחה שהנקודות מפוזרות בצורה אחידה על גבי היריעה, מתקיים הדרישה הבאה. רדיוס של כדור סביב נקודה X_i הדוגמא ה-i-ית של מערך הנתונים הרב ממדי) כך שהכדור מכיל i שכנים קרובים לi, הוא קבוע ואינו משתנה בין הנקודות.

אם כך, בידנו משפחת מטריקות מקומיות, אחת לכל דוגמא i-ית, שעל ידה ניתן להגדיר את המרחקים לk שכנים לרובים. נרצה "לאחד" את משפחת המטריקות המקומיות הללו, למרחב גלובלי. לשם כך, נשתמש ב-fuzzy קרובים. נרצה "לאחד" את משפחת המטריקות המקומיות הללו, למרחב גלובלי. לשם כך שלכל איבר יש דרגת simplicial sets [לצורך הדיון קבוצות אלו מכילות סימפלקס – מבנה מסוים של גרף/רשת - כך שלכל איבר יש דרגת שייכות לקבוצה]. נשים לב כי על ידי איחוד הקבוצות הללו, יצרנו גרף ממושקל-קשיר. עבור גרף זה, כל נקודה מקושרת אך ורק לקבוצת k השכנים הקרובים לה, כאשר עבור שכנים קרובים ביותר, משקל הקשת המחברת גבוה יותר ממשקל קשת עבור שכנים קרובים בלבד מאפשרת לשחזר את מבנה היריעה הטופולוגית ביתר דיוק (ראה איור).

נניח, בדומה לפרק הקודם, כי מערך נתונים המקורי מסומן על ידי, $\hat{X} \in \mathbb{R}^{M imes N}$, כאשר M הוא מספר הדוגמאות, ו- X_m הוא מספר המאפיינים (או המשתנים). חשוב לשים לב כי כל מדידה מיוצגת על ידי וקטור שורה X_m . נרצה למפות מדידות אלו ל $X_i: \mathcal{X}_i: \mathcal{X}_i$ מיוצגת על ידי וקטור חדש $X_i: X_i: \mathcal{X}_i: \mathcal{X}_i$ מיוצגת על ידי וקטור חדש $X_i: \mathcal{X}_i: \mathcal{X}_i: \mathcal{X}_i$ מיוצגת על ידי וקטור חדש $X_i: \mathcal{X}_i: \mathcal{X}_i: \mathcal{X}_i: \mathcal{X}_i$ מהממד המקורי. במרחב החדש $\mathcal{X}_i: \mathcal{X}_i: \mathcal{X}_i:$

כעת, על מנת להשוות בין ייצוג ב-fuzzy simplicial sets עבור \hat{X} נשתמש ב-cross entropy. נניח שדרגת געת, על מנת להשוות בין ייצוג ב-fuzzy set עבור (A,μ) הסימון המקובל עבור (A,μ) זה הוא (A,μ) הייכות של איבר (A,μ) עבור (A,μ) ו (A,μ) מוגדרת להיות:

$$C[(A,\mu),(A,\nu)] \equiv \sum_{a \in A} \left[\mu(a) \log \left(\frac{\mu(a)}{\nu(a)} \right) + \left(1 - \mu(a) \right) \log \left(\frac{1 - \mu(a)}{1 - \nu(a)} \right) \right]$$

עבור קבוצת המדידות במרחב המקורי: $\hat{X}=\{\vec{X}_1,\vec{X}_2,\dots,\vec{X}_M\}$, נסמן מטריקה $d:\hat{X}\times\hat{X}\to\mathbb{R}^+\cup\{0\}$ המכמתת את עבור קבוצת המדידות שאינן דומות בהן המרחק אי-הדמיון בין שתי מדידות; קרי מדידות דומות יציגו מרחק קטן ביניהן, לעומת מדידות שאינן דומות בהן המרחק , של המוגדר על ידי המטריקה ימצא להיות גדול. נגדיר תת-קבוצה של k השכנים הקרובים, על פי המטריקה ימצא להיות גדול.

מדידה \vec{X}_i , ונסמנה באופן הבא: $\{\vec{X}_{i_1}, \vec{X}_{i_2}, \dots, \vec{X}_{i_k}\}$. עבור כל מדידה \vec{X}_i , נחפש את המרחק הקטן ביותר בינה לבין השכנים שלה. זאת אומרת:

$$\rho_i = \min \left\{ d\left(\vec{X}_i, \vec{X}_{i_j}\right) \colon 1 \le j \le k, d\left(\vec{X}_i, \vec{X}_{i_j}\right) > 0 \right\}$$

:בנוסף, נחפש σ_i כך שמתקיים

$$\sum_{j=1}^{k} \exp \left[-\frac{\max\left(0, d\left(\vec{X}_{i}, \vec{X}_{i_{j}}\right) - \rho_{i}\right)}{\sigma_{i}} \right] = \log_{2} k$$

רינה V כעת, נוכל להגדיר גרף מכוון וממושקל (weighted directed graph) כעת, נוכל להגדיר גרף מכוון וממושקל (edges) נקבעת על ידי \hat{K} השכנים הקרובים לכל נקודת מדידה:

$$E = \left\{ \left(\vec{X}_i, \vec{X}_{i_j}\right) : 1 \le i \le M, 1 \le j \le k \right\}$$

והמשקל עבור כל קשת מוגדר על ידי:

$$w\left[\left(\vec{X}_{i}, \vec{X}_{i_{j}}\right)\right] = \sum_{j=1}^{k} \exp\left[-\frac{\max\left(0, d\left(\vec{X}_{i}, \vec{X}_{i_{j}}\right) - \rho_{i}\right)}{\sigma_{i}}\right] \equiv p_{i|j}$$

איור 2.16 לפנינו נקודות הנמצאות על גבי יריעה טופולוגית שהינה בקירוב בצורת סינוס. באיור מימין ניתן לראות כי הנקודות אינן מפוזרות באופן אחיד על גבי יריעה זו, לכן אם נקשר רק נקודות שכונות (הנמצאות בתוך סביבת כל נקודה) נקבל גרף / יריעה שאינה קשירה. אם לעומת זאת נדרוש שסביבת הנקודה המכילה k שכנים קרובים הינו כדור בעל רדיוס מסוים, נמצא כי רדיוס כדור זה אינו קשירה. אם לעומת זאת נדרוש שסביבת הנקודה המכילה k שכנים קרובים הינו כדור בעל רדיוס מסוים, נמצא כי רדיוס כדור זה אינו קבוע בין הנקודות (ראה איור אמצעי). לשם כך, ההנחה הבסיסית של שטית של הנדיר את משקל הקשתות בין שכנים קרובים (ראה היריעה. כעת, לאחר שהנחנו התפלגות אחידה של הנקודות על ידי הגרף הקשיר אכן נראה בצורת סינוס כנדרש.

:ספח מתמטי

$$\|\gamma(x_i, x_f)\|_g \equiv \int_{\gamma} \sqrt{\sum_{\mu} \sum_{\nu} g_{\mu, \nu}(p) dx_{\mu} dx_{\nu}} = \int_{x_i}^{x_f} \sqrt{\sum_{\mu} \sum_{\nu} g_{\mu, \nu}(p) \frac{\partial x_{\mu}}{\partial t} \frac{\partial x_{\nu}}{\partial t}} dt$$

. כאשר הסכימה הכפולה (μ, ν) על וקטורי הבסיס של העקומה. נבחר את העקומה שנותנת מרחק מינימלי

<u>דוגמאות</u>:

דוגמא ליריעה דו-ממדית הינו משטח אוקלידי דו-ממדי \mathbb{R}^2 מטריקת רימן עבור יריעה זו, אינו תלוי בנקודה p, ומוגדר על $\gamma(t)=(t,f(t))$ ידי: $g_{\mu,\nu}=\delta_{\mu,\nu}$. פרמטריזציה של עקום זה נתונה על ידי ממד: $g_{\mu,\nu}=(x,f(x))$. פרמטריזציה של עקום זה נתון על ידי . אורך עקום זה נתון על ידי

$$\|\gamma(x_i, x_f)\| \equiv \int_{x_i}^{x_f} \sqrt{\sum_{\mu = \{x, y\}} \sum_{\nu = \{x, y\}} \delta_{x, y} \frac{\partial x_{\mu}}{\partial t} \frac{\partial x_{\nu}}{\partial t}} dt = \int_{x_i}^{x_f} \sqrt{\left(\frac{\partial x}{\partial t}\right)^2 + \left(\frac{\partial f(t)}{\partial t}\right)^2} dt$$

. כך ש: $\gamma(t)=(t,mt+n)$ כאשר קונימלי בין נקודות מוגדרת על ידי $\gamma(t)=(t,mt+n)$ כאשר $\gamma(t)=(t,mt+n)$

$$\int_{x_f}^{x_f} \sqrt{1 + m^2} dt = \sqrt{1 + m^2} (x_f - x_i) = \sqrt{(x_f - x_i)^2 + m^2 (x_f - x_i)^2} = \sqrt{(x_f - x_i)^2 + (y_f - y_i)^2}$$

כמצופה.

גם ספירה דו-ממדית (מסומנת לעיתים על ידי \mathbb{S}^2 , לדוגמא גלובוס) מהווה יריעה דו ממדית. שם, מטריקת רימן מוגדרת על ידי $g=\begin{pmatrix} 1 & 0 \\ 0 & \sin^2\theta \end{pmatrix}$ נקבל:

$$\|\gamma\| \equiv \int_{x_i}^{x_f} \sqrt{\left(\frac{\partial \theta}{\partial t}\right)^2 + \sin^2 \theta \left(\frac{\partial \phi}{\partial t}\right)^2} dt$$

2.4 Ensemble Learning

2.4.1 Introduction to Ensemble Learning

נניח ויש בידינו אוסף נתונים מסוים, ורוצים לבנות מודל המנתח את הנתונים האלו שמתבסס על אלגוריתם מסוים. כמעט תמיד, המודל לא יהיה מדויק במאה אחוז, והוא יהיה בעל שונות או בעל הטיה. ניתן להשתמש במכלול (Ensemble) של מודלים שונים המבוססים על אותו אלגוריתם רצוי, ובכך לקבל מודל משוקלל בעל שונות/הטיה נמוכים יותר מאשר מודל שמתבסס על אותו אלגוריתם אך נבנה באופן פשוט.

בכדי להבין את יותר טוב את החשיבות של שימוש ב-ensembles, יש להרחיב על ה-Trade off בין שונות המודל להטיה שבו. מודל אופטימלי יתאפיין בשונות נמוכה ובהטיה נמוכה. כלומר, השוני בין התחזיות לא יהיה מהותי, ובממוצע התחזית תהיה קרובה מאוד לערך האמיתי. מודל כזה יהיה מודל אמין, ונוכל לבסס עליו את צעדנו. למרבה הצער, מודל שכזה לרוב אינו אפשרי. סוג אחר של מודל יהיה המודל הגרוע, ההפוך למודל האופטימלי. זהו מודל עם שונות גבוהה והטיה גדולה. מודל שכזה יציג טווח רחב של תחזיות על אותם נתונים, ובממוצע יהיה רחוק מאוד מהערך האמיתי. מודל זה כלל אינו שימושי.

בפועל, המודלים במציאות ינועו לאורך שני קצוות: מודלים עם שונות גבוהה והטיה נמוכה, ומודלים עם שונות נמוכה והטיה נמוכה, ומודלים עם שונות נמוכה והטיה גבוהה. הזיהוי של המיקום שלנו לאורך ציר זה קריטי, כיוון שהוא מאפשר לנו לבחור את דרך ההתמודדות Bagging and Boosting, ושני העיקריים שבהם נקראים Boosting. ושני העיקריים שבהם נקראים באנסמבל מסוג כאשר ניתקל במודלים עם שונות גבוהה, כלומר מודל הסובל מ-Overfitting, לרוב נרצה להשתמש באנסמבל מסוג Bagging על-מנת להוריד את השונות במודל הסופי. אלגוריתם מסוג Boosting יטפל במקרה השני, בו ההטיה גבוהה והשונות נמוכה.

2.4.2 Bootstrap aggregating (Bagging)

Bagging היא משפחת אלגוריתמים אשר פועלת כ-ensemble, כלומר – מספר אלגוריתמים שפועלים ביחד, על-מנת להגיע לתוצאה משופרת. כאמור, אלגוריתמים מסוג bagging נועדו להגדיל את יציבות המודל והעלאת הדיוק שלו, זאת תוך הורדת השונות והימנעות מ-overfitting מורכב ממספר רב של אלגוריתמים, המכונים "לומדים מאת תוך הורדת השונות והימנעות מ-Weak learners מורכב ממספר הולק מן הנתונים, מתוך מטרה להגיע חלשים" (Weak learners), כאשר כל אחד מהם מבצע למידה ותחזית על חלק מן הנתונים, אם כי הוא עשוי להיות לתוצאה איכותית. אלגוריתם bagging הינו שיטה נפוצה ופשוטה יחסית לשיפור ביצועים, אם כי הוא עשוי להיות יקרה מבחינה חישובית.

מודל "פשוט" יקבל את הנתונים, יתאמן עליהם ויבצע תחזית על נתונים חדשים. זהו תהליך הלמידה והמבחן אשר ידוע לנו ממודלים כגון עץ החלטה (Decision Tree), רגרסיה לינארית וכו'. כפי שהוסבר לעיל, מצב כזה עשוי להוביל לנו ממודלים כגון עץ החלטה (דבר שעשוי להוביל למודל בעל שונות גבוהה. בכדי להתמודד עם בעיה זו, להתאמת יתר של המודל לנתוני האימון, דבר שעשוי להוביל למודל בעל שונות גבוהה. בכדי להתמודד עם בעיה זו, Bootstrapping and Aggregating.

בשלב ה-Bootstrapping, יוצרים מהנתונים המקוריים קבוצות חדשות, כאשר כל קבוצה נוצרת על ידי דגימה (עם חזרות) של איברים מהקבוצה המקורית, באופן כזה שגודל כל קבוצה חדשה הוא בגודל של הדאטה המקורי. בשלב השני, ה-Aggregating, הקבוצות החדשות נכנסות כקלט ל"לומדים חלשים", אלגוריתמים פשוטים יותר, אשר עובדים במקביל על תחזית, כלומר, יוצרים מודל נפרד לכל קבוצה של נתונים. בשלב הסופי, יתבצע איחוד של כל המודלים על מנת ליצור מודל משוקלל בעל שונות קטנה יותר מאשר מודל המסתמך על הדאטה המקורי כפי שהוא.

אופן חיבור המודלים המתבצע ב-bagging מבוסס על אותו רעיון של K-NN, כאשר מודלים אלו יכולים לשמש הן למטרות סיווג והן למטרות רגרסיה. כאמור לעיל (בפרק 2.1.3), באלגוריתם השכן הקרוב כל "שכן" העיד על התווית שלו, ולאחר הכרעת הרוב נקבעה התווית של התצפית החדשה. במקרה שבו נספור את תדירות כל התוויות השכנות, שלו, ולאחר הכרעת ההיה של התצפית הנפוצה ביותר; נעשה זאת כאשר K-NN יעבוד כמסווג. במקרים בהם bagging יעבוד כמסווג, כל יעבוד כמסווג, כל

weak learner יבצע תחזית, והתווית השכיחה ביותר תהיה התוצאה של האנסמבל (-הכרעת הרוב). כאשר weak learner יעבוד כרגרסיה, כל מודל יבצע תחזית, אבל התוצאה של האנסמבל תהיה הממוצע של כל המודלים.

– באופן פורמלי, עבור דאטה המקורי אניצור $X\in\mathbb{R}^{n imes d}$, ניצור $X\in\mathbb{R}^{n imes d}$, ניצור אטה חלטה תתקבל על פי הצבעת געבור בעיות סיווג ההחלטה תתקבל על פי הצבעת X_m (בנה מודל $X_m\in\mathbb{R}^{n imes d}$), ועבור כל קבוצה X_m (בנה מודל פי הצבעת הרוב:

$$C(x) = \text{majority}(\{c_1(x), ..., c_M(x)\})$$

ועבור בעיות רגרסיה ההחלטה תתבצע בעזרת מיצוע כל המודלים:

$$C(x) = \frac{1}{M} \sum_{m=1}^{M} c_m(x)$$

איור 2.17 a) אלגוריתם Bagging: בשלב ראשון יוצרים הרבה מחלקות שונות שנוצרות מהדאטה המקורי (Bootstrapping), לאחר מכן בשלב ראשון יוצרים הרבה מחלקות שונות שנוצרות מהדלים הקודמים. b) דוגמא לבניית מודל בניית מודל יחיד המבוסס על כל המודלים הקודמים. b דוגמא לבניית מודל רגרסיה בעזרת אלגוריתם Bagging: ניתן לראות שהמודל המשוקלל הוא בעל שונות קטנה יותר מכל שאר המודלים.

בין אם משתמשים בהכרעת הרוב ובין אם משתמשים במיצוע של המודלים, המודל המשוקלל שנוצר הופך להיות חלק יותר ובעל פחות שיפועים חדים, מה שמקטין את ה-overfitting, וממילא מפחית את השונות. ניתן להבין זאת חלק יותר ובעל פחות שיפועים חדים, מה שמקטין את ה- $\frac{\sigma^2}{n}$. כעת על ידי דוגמא פשוטה – נניח ויש התפלגות נורמלית n נקודות, ובין כל שתי קבוצות יש קורלציה n. השונות הממוצעת של הניסויים הינה:

$$Var\left(\frac{1}{m}\sum_{i=1}^{m}\text{single cycle}\right) = \frac{1}{m}(1-\rho)\sigma^2 + \rho\sigma^2$$

אם נבצע הרבה מאוד ניסויים, כלומר ניקח m גדול מאוד, נקבל:

$$\lim_{m \to \infty} \frac{1}{m} (1 - \rho)\sigma^2 + \rho\sigma^2 = \rho\sigma^2$$

ובסך הכל השונות הסופית הינה בקירוב $ho\sigma^2$, וביטוי זה לרוב קטן מאשר השונות של מודל המבוסס על הדאטה , ובסך הכל שימוש ב-ensembles. ניתן לשים לב שככל שהקורלציה בין הקבוצות קטנה, כך השונות של המודל המשוקלל גם כן קטנה יותר.

מודל נפוץ מאוד מסוג bagging הוא Random Forest. אלגוריתם זה משלב בין עצי החלטה לבין הרעיון הבסיסי של bagging. כאשר הוא מפצל את הנתונים ואת המשתנים לעצי החלטה רבים, וכל אחד מהם מקבל חלק מסוים מן bagging, כאשר הוא מפצל את הנתונים ואת הקורלציה השלם. העצים הם בעלי שונות גבוהה, כלומר – כל אחד מהם הוא overfitting בפני עצמו, אך עם זאת הקורלציה ביניהם נמוכה, מה שמקל על הורדת השונות והימנעות מ-overfitting. לבסוף, השקלול של כל המודלים ביחד מצליח לייצר מודל בעל שונות נמוכה, ומוביל לתוצאות טובות.

ל-bagging יתרונות רבים. הוא מוריד את השונות, והוא גם חסין לערכים קיצוניים (Outliers). יכולת העבודה שלו במקביל עשויה לאפשר לו להגיע לתוצאות באופן מהיר יותר.

עם זאת, ל-bagging יש גם חסרונות. הוא אינו מוריד את ההטיה, ולכן עשוי לא להתאים במקרים רבים. במודלים של בינה מלאכותית יש חשיבות רבה ליכולת הפרשנות של המודל; לרוב, יידרש הסבר פחות טכני של תוצאות המודל למקבלי ההחלטות או לצרכנים. הם עשויים לא לקבל כלל החלטות של מודל שיראה כ"קופסא שחורה". יש קושי רב לתת פרשנות להחלטות של מודלים מבוססי bagging, והדבר מקשה על השימוש בו. מעבר לכך, bagging עשוי להיות יקר מבחינה חישובית. עקב כך, הוא שימושי מאוד במקרים בהן שיפור זעיר עשוי להוביל להצלחה, אך לרוב תינתן עדיפות למודלים פשוטים יותר של ensembles.

2.4.3 Boosting

כאמור, המושג boosting מתייחס למשפחת אלגוריתמים המשתמשים באוסף של מודלים "חלשים" על מנת ליצור מודל אחוד "חזק", כאשר מודלים אלו מתמקדים בניסיון להפחית את ההטיה שיש למודל. מבחינה אינטואיטיבית, מודל אחוד "חזק", כאשר מודלים אלו מתמקדים בניסיון להפחית את ההטיה שיש למודל. מבחינים אופטימליים. מודל חלש הוא כזה שתוצאותיו מעט טובות יותר מניחוש אקראי בעוד שאחד חזק מתקרב לביצועים אופטימליים. בניגוד לטכניקות ensemble אחרות שפועלות במקביל, העקרון המנחה כאן הוא לשרשר את המודלים באופן כזה שכל מודל שמתווסף יטפל בשגיאות שקודמיו פספסו. היופי נעוץ בכך ש-boosting מוכיח כי למידה חלשה בהכרח מצביעה על קיום של שיטת למידה חזקה, לרוב, מודלים מבוססי boosting מתמקדים בבעיות סיווג בינארי.

באופן פורמלי, המושגים "לומד חלש" ו-"לומד חזק" עבור בעיית סיווג בינארי מוגדרים כך: אלגוריתם נקרא לומד חזק $p(c(x)\neq y)<$ שמקיים c(x) שמקיים אם לכל $\epsilon,\delta>0$ האלגוריתם מסוגל (עבור אוסף נתונים גדול מספיק) לבנות מסווג $\epsilon,\delta>0$ שמקיים אלגוריתם חלש הינו אלגוריתם שלכל $\delta>0$ קיים $\delta>0$ קיים חלש בור אוסף נתוני מספיק בהסתברות גדולה מ- $\delta-1$. כאמור, המטרה גדול, האלגוריתם מסוגל לבנות מסווג שמקיים $\delta>0$ באוד בעזרתם ליצור מודל חזק, כאשר הצליחו להוכיח שניתן להפוך של לומד חלש ללומד חזק על ידי בניית קומבינציה לינארית של מסווגים אשר נוצרו בעזרת הלומד החלש.

נמחיש את הרעיון של boosting בעזרת דוגמא: נניח ויש בידינו אוסף נתונים X, המחולק באופן אקראי לשלוש קבוצות (כל אחת מכילה שליש מהנתונים) x_1,x_2,x_3 . כעת בונים מודל לצורך סיווג בינארי, המסומן ב- x_1 . נמצא כי x_1,x_2 אר מהעים בצורה טובה רק לקבוצות x_1,x_2 אך מסווג בצורה לא טובה את פריטי הקבוצה x_2 . כיוון ש- x_1,x_2 מכיל שליש מסך הנתונים, שגיאת הסיווג גדולה ו- x_1,x_2 הוא מודל חלש, ונרצה לשפר אותו. בכדי לעשות זאת ניקח רק חלק מהנתונים, x_1,x_2 ונדאג לכך ש- x_1,x_2 יכיל הרבה מאיברי x_2,x_3 . כעת נבנה מודל נוסף x_1,x_2 על בסיס x_2,x_3 , מתוך כוונה שמודל זה יתמקד גם בקבוצה x_1,x_2 ויסווג את איבריה בצורה טובה. כעת נניח שמודל זה אכן מסווג בצורה נאותה את איברי x_1,x_2 , אך הפעם המודל שוגה בצורה גסה בסיווג איברי x_2,x_3 . עקב השגיאה בסיווג x_2,x_3 המודל השני גם הוא מודל חלש, אך כעת יש בידינו שני מודלים חלשים שהחולשה בכל אחד נובעת מקבוצת איברים אחד של אוסף הנתונים המקורי x_1,x_3 . אם נמצא דרך הולמת לחבר את שני המסווגים, נוכל ליצור מודל בעל פוטנציאל להצליח לסווג את x_2 שצריך.

באים: באים הבאים לאמן מודל $\mathcal{C}(x)$ בעזרת אלגוריתם על אוסף הנתונים \mathcal{D} , יש לבצע את השלבים הבאים:

```
\mathcal{D}_1=\mathcal{D} אתחול הנתונים: \mathcal{D}_1=\mathcal{D} אתחול הנתונים: t=1,...,T .2 .2 .2 .c_t(x)=L(\mathcal{D}_t):\mathcal{D}_t אימון מודל חלש על c_t=1 .c_t=1 .c_
```

יש כל מיני שיטות כיצד לבצע את השלבים השונים באלגוריתם boosting, ונפרט את המרכזיות שבהן.

איור 2.18 – סכמה כללית של boosting. המודלים (במקרה זה מדובר בעץ החלטה רדוד, אך זה תקף לכל מודל חלש) מחוברים אחד לשני באופן שכל אחד לומד מהתפלגות המשוקללת בהתאם לשגיאות של המודלים הקודמים.

Adaptive-Boosting (AdaBoost)

Adaboost נוספות, boosting היא אחת הטכניקות הראשונות של boosting, ועל אף שקיימות טכניקות boosting נוספות, היא בין הפופולריות ביותר בתחום (אם כי יש לה מספר לא מבוטל של וריאנטים). העוצמה הגלומה בטכניקה זו נובעת מכך שגם בהינתן מספר מאפיינים רב, האלגוריתם מצליח להיפגע פחות מ"קללת הממדיות" ולשמור על יכולות ניבוי טובות, בניגוד לאלגוריתמים אחרים של סיווג, כמו למשל SVM או אפילו רשתות נוירונים.

 $\mathcal{C}(x)$ מטרה היא למצוא דרר להפור אותו למודל חזק מטרה היא למצוא דרר להפור אותו למודל חזק מכזכור. תחת ההנחה שקיים אלגוריתם לומד חלש באופן אינטואיטיבי היה ניתן לחשוב שאפשר פשוט לאמן מספר מודלים על תת קבוצות של הדאטה המקורי (עם אפשרות לחפיפיות בין תת-קבוצות), להשתמש ב-majority vote, ובכך לשרשר את ההיפותזות של כל המודלים לפלט אחד. גישה זו כמובן נאיבית ופשטנית, ואינה לוקחת בחשבון מקרה בו מרבית המודלים שוגים. גישה טובה יותר תהיה לבנות מודל על בסיס חלק מהדאטה, לבחון את מידת ההצלחה של המודל על יתר הדאטה, ולפי ההצלחה שלו במשימה זו לתת משקל ל-vote של המודל. ניתן להוסיף תחכום לרעיון זה, כך שבכל שלב יינתן יותר דגש איברים בדאטה שהמודלים הקודמים שגו בסיווג שלהם, ובכך בכל שלב בו מאמנים מודל נוסף תהיה הצלחה יותר גדולה מאשר המודל הקודם. חלק זה הינו החלק האדפטיבי (Adaptive) באלגוריתם, על שמו נקרא האלגוריתם הינו החלק האדפטיבי

 $X \in \mathbb{R}^N$ כעת, נסביר כיצד ניתן להרכיב מסווג חזק באמצעות אוסף של מסווגים חלשים עבור אוסף נתונים

- $w_i^{t=0} = \frac{1}{N} ראשית יש לאתחל משקולות באופן אחיד עבוד כל אחת מ<math>N$ הדוגמאות בסט הנתונים.
 - 2. לאחר מכן יש לבצע איטרציות באופן הבא:

בניית מסווג אופטימלי $c_t(x)$ ביחס לאוסף הנתונים המשוקלל.

 $\epsilon_t = \sum_i w_i^t \{c_t(x) \neq y_i\} : c_t(x)$ חישוב שגיאת הסיווג של

 $lpha_t = rac{1}{2} \ln\left(rac{1-\epsilon}{\epsilon}
ight)$:חישוב משקל עבור מסווג זה $w_i^{t+1} = w_i^t \exp\left(-lpha_t y_i c_t(x_i)
ight)$ עדכון המשקלים:

 $N_{t+1} = \sum_i w_i^t o w_i^{t+1} = rac{w_i^t}{N_{t+1}}$: נרמול המשקלים בהתאם לסכומם הכולל:

3. חישוב המסווג המשוקלל, שהינו קומבינציה לינארית של המסווגים החלשים:

$$C(x) = \operatorname{sign}\left(\sum_{t} \alpha_t c_t(x)\right)$$

. עבור מודל סיווג בינארי AdaBoost- איור 2.19 – דוגמא לשימוש ב

2. References

SVM:

https://commons.wikimedia.org/wiki/File:Svm max sep hyperplane with margin.png

https://svm.michalhaltuf.cz/support-vector-machines/

<u>https://medium.com/analytics-vidhya/how-to-classify-non-linear-data-to-linear-data-bb2df1a6b781</u>

https://xavierbourretsicotte.github.io/Kernel feature map.html

Naïve Bayes:

https://en.wikipedia.org/wiki/Naive Bayes classifier

https://scikit-learn.org/stable/modules/naive bayes.html

K-NN:

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

EM:

https://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/13_mog.pdf

https://stephens999.github.io/fiveMinuteStats/intro_to_em.html

Hierarchical Clustering:

https://www.datanovia.com/en/lessons/agglomerative-hierarchical-clustering/

LOF:

https://towardsdatascience.com/local-outlier-factor-lof-algorithm-for-outlier-identification-8efb887d9843

PCA:

Saal, L.H. et al. (2007). Proc. Natl. Acad. Sci. USA 104, 7564-7569.