TPIC2810 8-BIT LED DRIVER WITH I²C INTERFACE

SLIS109A - DECEMBER 2001 - REVISED SEPTEMBER 2002

- Low r_{DS(on)} . . . 5 Ω Typical
- Eight Power DMOS Transistor Outputs of 100-mA Continuous Current
- 210-mA Current Limit Capability
- Drain Output ESD Protection . . . 3000 V
- Output Clamp Voltage . . . 40 V

description

The TPIC2810 device is a monolithic, medium-voltage, low-current, 8-bit shift register design to drive low-side switched resistive loads such as LEDs. The device is not recommended for switching inductive loads.

This device contains an 8-bit, serial-in, parallel-out shift register that feeds an 8-bit D-type storage register. Data transfers through the shift register via an I^2C bus interface. Data is transferred into the data shift register only after the group ID and device address have been verified. The subaddress directs the I^2C bus interface to read or write data to the device or transfer data to the output. When output enable (\overline{G}) is held high, all drain outputs are off. When \overline{G} is held low, data from the output storage register is transparent to the output buffers. When data in the output buffers is low, the DMOS transistor outputs are off. When data is high, the DMOS transistor outputs have sink-current capability.

The TPIC2810 device has an internal power-up clear to initialize all registers to an off state when power is applied to the device. It also has a thermal sensor to monitor the die temperature and shut the drain outputs off, if an over current condition occurs.

Outputs are low-side, open-drain DMOS transistors with output ratings of 40 V and 100 mA continuous sink-current capability. Each output provides a 210-mA maximum current limit at $T_C = 25^{\circ}C$. The current limit decreases as the junction temperature increases for additional device protection. The device also provides up to 3000 V of ESD protection on output terminals and 2000 V of ESD protection on input terminals when tested using the human-body model.

The TPIC2810 device is characterized for operation over the operating case temperature range of -40° C to 125° C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

functional block diagram

See the TPIC2810 subaddress and I^2C protocol definition section of this data sheet for definition of the 11H, 22H, and 44H control signals.

Terminal Functions

TERMI	NAL	1/0	DECORIDEION								
NAME	NO.	1/0	DESCRIPTION								
A0	9	I	Address input 0								
A1	10	Ι	Address input 1								
A2	7	- 1	Address input 2								
DRAIN0	3										
DRAIN1	4										
DRAIN2	5										
DRAIN3	6] _	in cutoute. The DRAIN terminals are law side autitables for registive leads								
DRAIN4	11	0	FET drain outputs. The DRAIN terminals are low-side switches for resistive loads.								
DRAIN5	12										
DRAIN6	13										
DRAIN7	14										
G	8	ı	Output enable. Active low input enables output FETs when low and disables output FETs when high.								
GND	16	0	Ground								
SCL	15	Ī	Serial clock								
SDA	2	I/O	Open drain, bidirectional serial data terminal								
V _C C	1	Ī	Supply voltage input								

schematic of inputs and outputs

SLIS109A - DECEMBER 2001 - REVISED SEPTEMBER 2002

absolute maximum ratings over the recommended operating case temperature range (unless otherwise noted)†

Logic supply voltage range, V _{CC} (see Note 1)	7 V
Logic input voltage range, V _I	–0.3 V to 7 V
Power DMOS drain-to-source voltage, V _{DS} (see Note 2)	40 V
Continuous source-to-drain diode anode current	210 mA
Pulsed source-to-drain diode anode current (see Note 3)	420 mA
Pulsed drain current, each output, all outputs on, I _D , T _C = 25°C (see Note 3)	210 mA
Peak drain current, single output, I _{DM} , T _C = 25°C (see Note 3)	
Continuous total dissipation	See Dissipation Rating Table
Operating virtual junction temperature range, T _J	–40°C to 150°C
Operating case temperature range, T _C	–40°C to 125°C
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to GND.

- 2. Each power DMOS source is internally connected to GND.
- 3. Pulse duration \leq 100 μ s and duty cycle \leq 2%.

DISSIPATION RATING TABLE

PACKAGE	T _C = 25°C	DERATING FACTOR	T _C = 125°C
	POWER RATING	ABOVE T _C = 25°C	POWER RATING
D	1087 mW	8.7 mW/°C	217 mW

recommended operating conditions

	MIN	MAX	UNIT
Logic supply voltage, V _{CC}	3.0	5.5	V
High-level input voltage, V _{IH}	0.7V _{CC}		V
Low-level input voltage, V _{IL}		0.3 V _{CC}	V
Pulse drain output current, $T_C = 25$ °C, $V_{CC} = 5$ V, all outputs on (see Notes 3 and 4 and Figure 8)		210	mA
Operating case temperature, T _C	-40	125	°C

- NOTES: 3. Pulse duration \leq 100 μ s and duty cycle \leq 2%.
 - 4. Technique must limit $T_J T_C$ to 10°C maximum.

TPIC2810 8-BIT LED DRIVER WITH I²C INTERFACE

SLIS109A - DECEMBER 2001 - REVISED SEPTEMBER 2002

electrical characteristics, V_{CC} = 5 V, T_{C} = 25 $^{\circ} \text{C}$ (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
V _{CC}	Logic supply voltage			3		5.5	V
V _{(BR)DSX}	Drain-to-source breakdown voltage	I _D = 1 mA		40			V
V _{SD}	Source-to-drain diode forward voltage	IF = 100 mA			0.85	1.2	٧
V_{PUC}	Power-up clear voltage	V _{CC} rising no load,	See Note 5			2.84	V
lін	High-level input current	V _{CC} = 5.5 V,	$V_I = V_{CC}$			1	μΑ
IIL	Low-level input current	$V_{CC} = 5.5 \text{ V},$	V _I = 0			-1	μΑ
V _H YS	Digital input hysteresis				1.1		V
1	Logio gunnhu gurrant	V 55V	All outputs off		0.62	1	m 1
Icc	Logic supply current	V _{CC} = 5.5 V	All outputs on		0.7	1	mA
ICC(FRQ)	Logic supply current at frequency	f _{SCL} = 100 kHz, All outputs off,	C _L = 30 pF, See Figure 3		0.74	1	mA
loL	Low level output current; SDA	V _{OL} = 0.4 V			13		mA
IL	Leakage current; SDA	$V_I = V_{CC}$		-1		1	μΑ
IN	Nominal current	V _{DS(on)} = 0.5 V, T _C = 85°C,	I _N = I _D , See Notes 4, 6, 7		75		mA
	Off state due to summer	V _{DS} = 30 V	V 55V		0.3	0.6	
IDSX	Off-state drain current	$V_{DS} = 30 \text{ V}, T_{C} = 125^{\circ}\text{C}$	V _{CC} = 5.5 V		0.3	0.6	μΑ
T _{TSD}	Thermal shutdown set points			160			°C
THYS	Thermal shutdown hysteresis			10	20	30	°C
		$I_D = 100 \text{ mA}, V_{CC} = 3 \text{ V}$			8.0	10.8	
		$I_D = 100 \text{ mA}, V_{CC} = 4.5 \text{ V}$			5.1	6.9	
rDS(on)	Static drain-source on-state resistance	$I_D = 100 \text{ mA}, V_{CC} = 3.0 \text{ V},$ $T_C = 125^{\circ}\text{C}$	See Notes 4 and 6 and Figures 4 and 5		13.0	18.2	Ω
		I_D = 100 mA, V_{CC} = 4.5 V, T_C = 125°C			8.0	11.2	
					8.0	11.2	

NOTES: 4. Technique must limit $T_J - T_C$ to 10°C maximum

5. The power-up clear resets the I²C interface and clears all outputs.

^{6.} These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts.

^{7.} Nominal current is defined for a consistent comparison between devices from different sources. It is the current that produces a voltage of 0.5 V at $T_C = 85^{\circ}C$.

TPIC2810 8-BIT LED DRIVER WITH I²C INTERFACE

SLIS109A – DECEMBER 2001 – REVISED SEPTEMBER 2002

switching characteristics, V_{CC} = 5 V, T_{C} = 25°C, C_{L} = 100 pF (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH}	Propagation delay time, low-to-high-level output from G	C _L = 30 pF,		1.15		
tPHL	Propagation delay time, high-to-low-level output from \overline{G}	$I_D = 75 \text{ mA},$		0.64		μs
t _{r(OUT)}	Rise time, drain output	See Figures 1, 2, and 6		1.05		
t _f (OUT)	Fall time, drain output	7		0.89		μs
					100	
f(SCL)	Serial clock frequency				400	kHz
(000)					2	MHz
		SCL = 100 kHz	4.7			
^t (BUF)	Bus free time between stop and start condition	SCL = 400 kHz	1.3			μS
t(SP)	Tolerable spike width on bus				50	ns
tpd(ACK)	SCL low to data out valid (acknowledge)			120		ns
		SCL = 100 kHz	4.7			
tLOW	SCL low time	SCL = 400 kHz	1.3			μS
		SCL = 2 MHz	250			ns
		SCL = 100 kHz	4.0			μs
^t HIGH	SCL high time	SCL = 400 kHz	600			
	-	SCL = 2 MHz	200			ns
		SCL = 100 kHz	250			
t _{su(DAT)}	$SDA \rightarrow SCL$ setup time	SCL = 400 kHz	100			ns
00(2711)	·	SCL = 2 MHz	10			
		SCL = 100 kHz	4.7			μs
t _{su(STA)}	Start condition setup time	SCL = 400 kHz	600			
00(01)	·	SCL = 2 MHz	300			ns
		SCL = 100 kHz	4			μs
t _{su(STO)}	Stop condition setup time	SCL = 400 kHz	600			
00(010)	·	SCL = 2 MHz	140			ns
th(DAT)	$SDA \rightarrow SCL$ hold time		50			ns
		SCL = 100 kHz	4			μs
^t h(STA)	Start condition hold time	SCL = 400 kHz	600			ns
(•,		SCL = 2 MHz	160			ns
		SCL = 100 kHz			1000	
t _{r(SCL)}	Rise time of SCL signal	SCL = 400 kHz			300	ns
.(00_)	·	SCL = 2 MHz			70	
		SCL = 100 kHz	1		300	
t _{f(SCL)}	Fall time of SCL signal	SCL = 400 kHz			300	ns
.(002)	-	SCL = 2 MHz			70	1
		SCL = 100 kHz			1000	
^t r(SDA)	Rise time of SDA signal	SCL = 400 kHz	1		300	ns
(,	- -	SCL = 2 MHz			70	1
		SCL = 100 kHz	1		300	
^t f(SDA)	Fall time of SDA signal	SCL = 400 kHz	1		300	ns
(-2,	-	SCL = 2 MHz			140	[

thermal resistance

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	All 8 outputs with equal power		115	°C/W

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The word generator has the following characteristics: $t_r \le 30$ ns, $t_f \le 30$ ns, pulsed repetition rate (PRR) = 400 kHz, $Z_O = 50 \ \Omega$.

B. C_L includes probe and jig capacitance.

Figure 1. Resistive-Load Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

NOTES: A. The word generator has the following characteristics: $t_r \le 30$ ns, $t_f \le 30$ ns, pulsed repetition rate (PRR) = 400 kHz, $Z_O = 50 \ \Omega$. B. C_L includes probe and jig capacitance.

Figure 2. Test Circuit, Switching Times and Voltage Waveforms

TYPICAL CHARACTERISTICS

Figure 3. Supply Current vs Frequency

Figure 4. Static Drain-Source On-State Resistance vs On-State Drain Current

TYPICAL CHARACTERISTICS

Figure 5. Static Drain-Source On-State Resistance vs Logic Supply Voltage

Figure 6. Switching Time vs Case Temperature

TYPICAL CHARACTERISTICS

Figure 7. Maximum Continuous Drain Current Of Each Output vs Number Of Outputs Conducting Simultaneously

Figure 8. Maximum Peak Drain Current Of Each Output vs Number Of Outputs Conducting Simultaneously

THERMAL INFORMATION

D PACKAGE†

† Device mounted on FR4 printed-circuit board with no heat sink

 $\begin{aligned} \text{NOTES:} \quad Z_{\theta A}(t) &= r(t) \; R_{\theta JA} \\ \quad t_W &= \text{pulse duration} \\ \quad t_C &= \text{cycle time} \\ \quad d &= \text{duty cycle} = t_W/t_C \end{aligned}$

Figure 9. Normalized Junction-to-Ambient Thermal Resistance vs Pulse Duration

TPIC2810 subaddress and I²C protocol definition

subaddress definition:

Summary:

HEX	R/W	
Value	Bit	Function
11H	1	Read data from the input register
11H	0	Write data to the data shift register, do not transfer to output register
22H	0	Command to transfer data from the data shift register to the output storage register
44H	0	Write data to the data shift register and transfer it to the output storage register immediately (extra load 22H command not needed)
Other	Х	No action on undefined subaddresses

All other undefined subaddress values are not acknowledged.

register definition:

- The data shift register receives serial data from the I²C interface.
- The data shift register receives data from the input interface and holds it until it is transferred to the output storage register.
- The output storage register controls whether the FET is on or off.

TPIC2810 I²C input interface protocol definition

	 	;	Slave	e Ado	dress	s and	d R/V	V		Subaddress													Data	l				 	
S	G3	G2	G1	G0	A2	A1	A0	RW	Α	S7 S6 S5 S4 S3 S2 S1 S0 A								D7	D6	D5	D4	D3 D2 D1 D0 A							

S Start Condition
G Group ID: Defined as 1100

A(0:2) Device Address Selectable Via Input Terminals

RW Read/Write Select Bit A Acknowledge

Subaddress Defined Per Subaddress Table

Data to Be Loaded Into the Shift and Output Registers

P Stop Condition

Case 1: Read/Write serial data, but do not load output register

This case loads the data shift register with data via the I²C interface. Data is not transferred to the output storage register.

write operation:

	Slave Address and R/W = 0									Subaddress 11H												Data	to S	lave				
s	G3	G2	G1	G0	A2	A1	A0	RW	Α	S7	S7 S6 S5 S4 S3 S2 S							Α	D7	D7 D6 D5 D4 D3 D2 D1 C						D0	Α	Р
] 									

G[3:0]: Fixed at 1100

A[2:0]: Selectable Via Input Terminals RW: 0 = Write Shift Register Subaddress: 11H (0001 0001)

Data: Output Data to the TPIC2810 Device

Acknowledge: Occurs After Valid Address Byte, After the Subaddress Byte, and After the Data Byte

read operation:

G[3:0]: Fixed at 1100

A[2:0]: Selectable Via Input Terminals

RW: 1 = Read Shift Register (Note the Slave Address RW Bit = 0)

Subaddress: 11H (0001 0001)

Data: Input Data From the TPIC2810 Device

Acknowledge: Occurs After Valid Address Byte and After the Subaddress Byte

Case 2: Transfer serial data to output storage register

This case transfers data from the data shift register to the output storage register. The transfer must occur during the subaddress acknowledge bit and the data byte is ignored.

			SI	ave /	Addr	ess a	and F	₹/W :	= 0				S	ubac	ldres	ss 22	Н			
	s	G3 G2 G1 G0 A2 A1 A0 RW									A S7 S6 S5 S4 S3 S2 S1 S0 A									Р
•		 																		

G[3:0]: Fixed at 1100

A[2:0]: Selectable Via Input Terminals RW: 0 = Write Shift Register Subaddress: 22H (0010 0010)

Data: Output Data to the TPIC2810 Device

Acknowledge: Occurs After Valid Address Byte and After the Subaddress Byte

Case 3: Read serial data and load output storage register

This case loads the data shift register with data via the I^2C interface and transfers the data to output storage register, if $R/\overline{W} = 0$. The transfer occurs during the acknowledge bit following the data byte. Data byte and transfer to the output register is ignored if $R/\overline{W} = 1$.

	l L	SI	ave /	Addr	ess a	and I	R/W :	= 0		Subaddress 44H												Data	to S	Slave				
s	G3	G2	G1	G0	A2	A1	A0	RW	Α	S7 S6 S5 S4 S3 S2 S1 S0 A									D7	D6	D5	D4	D3	D2	D1	D0	Α	Р

G[3:0]: Fixed at 1100

A[2:0]: Selectable Via Input Terminals RW: 0 = Write Shift Register Subaddress: 44H (0100 0100)

Data: Output Data to the TPIC2810 Device

Acknowledge: Occurs After Valid Address Byte, After the Subaddress Byte and After the Data Byte

Case 4: Undefined subaddress values

	Slave Address and $R/\overline{W} = x$							Subaddress Undefined							i		Don't Care	 				
s	G	3 G	2	G1	G0	A2	A 1	A0	RW	Α	S 7	S6	S5	S4	S3	S2	S1	S0	NA		Р	
	I																					

G[3:0]: Fixed at 1100

A[2:0]: Selectable Via Input Terminals

RW: Don't Care

Subaddress: All Bit Combinations Except 11H, 22H, and 44H

Data: Don't Care; Data Is Ignored

Acknowledge: Occurs After Valid Address Byte, But Is Not Issued After an Undefined Subaddress Byte or After the Data Byte

Following an Undefined Subaddress Byte

I²C bus operation

The I²C bus is a communications link between a controller and a series of slave terminals. The link is established using a two-wire bus consisting of a serial clock signal (SCL) and a serial data signal (SDA). The serial clock is sourced from the controller in all cases where the serial data signal is bidirectional for data communication between the controller and the slave terminals. Each device has an open drain output to transmit data on the serial data line. An external pullup resistor must be placed on the serial data signal to provide the high level portion of the data transmission.

Data transmission is initiated with a start bit from the controller as shown in Figure 10. Both the SCL and SDA signals must remain in a logic high state when the controller is not communicating with the slave devices. A start condition is recognized by the slave devices when the SDA line transitions from high to low during the high portion of the SCL signal. Upon reception of a start bit, the TPIC2810 device receives serial data on the SDA input and check for valid address and control information. If the appropriate group and address bits are set for the device, then the device issues an acknowledge pulse and prepares the receive subaddress data. The group ID for the TPIC2810 device is hard coded to be 1100. The slave address bits are set to correspond to the A(0:2) inputs for the device. Up to eight TPIC2810 devices can be placed on the bus. Subaddress data is decoded and responded to as per the *TPIC2810 subaddress and I²C protocol definition* section of this data sheet. Data transmission is complete by either the reception of a stop condition or the reception of the data word sent to the device. A stop condition is recognized as a low-to-high transition of the SDA input during the high portion of the SCL signal. All other transitions of the SDA line must occur during the low portion of the SCL signal.

An acknowledge is issued by the TPIC2810 device after the reception of valid address, subaddress and data words as per the *TPIC2810B subaddress and I²C protocol definition* section of this document. Reference Figure 10. The device acknowledges each byte of data that it receives from the controller.

Figure 10. Start/Stop/Acknowledge Protocol

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins		Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
TPIC2810D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TPIC2810	Samples
TPIC2810DG4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		TPIC2810	Samples
TPIC2810DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	TPIC2810	Samples
TPIC2810DRG4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		IC2810	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

11-Apr-2013

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jan-2013

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPIC2810DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

www.ti.com 26-Jan-2013

*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
I	TPIC2810DR	SOIC	D	16	2500	367.0	367.0	38.0	

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical

 Logic
 logic.ti.com
 Security
 www.ti.com/security

 Power Mgmt
 power.ti.com
 Space, Avionics and Defense
 www.ti.com/space-avionics-defense

Microcontrollers <u>microcontroller.ti.com</u> Video and Imaging <u>www.ti.com/video</u>

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity