Бинарный поиск

Теперь мы перейдём к новой концепции, основанной на идеи *«разделяй и властвуй»* (или *«уменьшай (наполовину) и решай»*, по другой классификации). Смысл достаточно прост: пусть у нас есть какая-то большая задача, которую нужно решить, тогда разобьём её на две примерно равных подзадачи, решим их и после как-то объединим решения. Такой алгоритм нам уже встречался, когда мы проходили сортировку слиянием.

Ну что ж, приступим, наконец, к нашему бинарному поиску: пусть у нас есть функция f, у которой мы хотим найти корень x_0 на участке [l;r], при этом мы знаем, что функция всегда отвечает условию $f(x_1) \le f(x_2)$ для $l \le x_1 \le x_2 \le r$, а также $f(l) \cdot f(r) < 0$ (аналогично условию, что l < x < r). Тогда мы можем поступить следующим образом: возьмём точку $m = \frac{l+r}{2}$ и вычислим f(m). Теперь возможны три варианта:

- 1. Если окажется, что f(m) = 0, то корень мы точно нашли и его можно вернуть.
- 2. Если же $f(l) \cdot f(m) > 0$, то значит f(l) и f(m) одного знака, а следовательно x_0 точно не может лежать внутри отрезка [l; m], то есть мы можем присвоить l = m не потеряв решений.
- 3. Аналогично, при $f(m) \cdot f(r) > 0$, имеем f(m) и f(r) одного знака, а следовательно x_0 точно не может лежать внутри отрезка [m; r], то есть мы можем присвоить r = m не потеряв решений.

Во-первых, заметим, что такой алгоритм пользуется только свойством $f(l) \cdot f(r) < 0$, при этом, после одного шага это свойство сохраняется, а значит, такой алгоритм можно применять до тех пор, пока не будет достигнута нужная точность (на каждом шаге границы отрезка [l;r] сужаются и можно остановиться, когда отрезок станет достаточно маленьким согласно условию задачи). А во-вторых, поймём, что на каждом шаге длина отрезка уменьшается в 2 раза, а значит, наш поиск совершит $O(\log n)$ шагов, где n- длина диапазона, в котором мы ищем.

И, в-третьих, добавим, что главное от функции — неубывание или невозрастание (далее будем называть это свойство монотонностью, хотя это и не вполне корректно), поэтому функция, отвечающая условию $f(x_1) \ge f(x_2)$ для $l \le x_1 \le x_2 \le r$, тоже бы подошла.

Поиск элемента в наборе

Представим, что перед нами стоит такая задача: дан набор чисел a длины n, для которого нам нужно ответить на q запросов вида: есть ли элемент x внутри a.

Простое решение, которое можно придумать, будет работать за $O(q \cdot n)$: для каждого запроса будем перебирать все элементы и проверять, нашёлся ли запрошенный x. Но такой способ явно не оптимальный, ведь можно придумать решение с использованием множеств: сохраним набор a внутрь множества s и операции поиска будем выполнять уже внутри s, ведь там они будут работать за $O(\log n)$, а значит итоговая сложность алгоритма составит $O(q \log n)$. Но такой способ мы использовать не хотим, потому что он требует использование структуры данных, а это влечёт за собой дополнительные накладные расходы. Так что будем придумывать способ, использующий бинарный поиск.

Первое, что нам нужно — монотонная функция f, у которой мы будем искать корень. Поскольку требуется монотонность, то вполне логично будет отсортировать весь набор a (для конкретности будем сортировать по неубыванию, хотя по невозрастанию тоже можно). Теперь становится понятно, как нам нужно определить функцию f: $f(k) = a_k - x$, где x — искомое значение.

Теперь перейдём к самой реализации алгоритма. Для начала возьмём границы нашего исходного отрезка: l=-1 и r=n (наши элементы в a имеют индексы $0,\ 1,\ \ldots,\ n-1,$ а такие l и r как бы указывают на фиктивные элементы, которые можно считать $a_{-1}=-\infty$ и $a_n=\infty$).

Также для удобства понимания работы с индексами договоримся, что у нас всегда будут выполняться условия $a_l < x \leqslant a_r$. Тогда наш алгоритм будет выглядеть следующим образом:

```
while (r-1>1) { // можно закончить поиск, когда l и r стали соседними l int m=(r+1) / 2; // вычисляем середину l (a[m] < x ? l : r) = m; // тернарным оператором очень удобно двигать границы :) l }
```

Понятно, что согласно изначальному условию если ответ и содержится, то только в элементе a_r , поэтому если r=n или $a_r>x$, то элемент не нашёлся, а иначе $a_r=x$ и это первый элемент равный x, и поэтому такой бинарный поиск называется «lower bound».

Можно было договориться об инварианте $a_l \leq x < a_r$, и тогда если x не нашёлся бы в случаях l=-1 и $a_l < x$, а иначе $a_l=x$ было бы последним подходящим элементом. Если бы наш алгоритм возвращал индекс r, то такой бинарный поиск назывался бы «upper bound»

И понятно, что алгоритм, решающих исходную задачу работал бы за $O(n \log n + q \log n)$, где первое слагаемое возникает из-за сортировки, а второе — ответы на запросы.

Встроенный бинарный поиск

Разумеется, в C++ уже есть встроенные функции, которые ищут значения внутри отсортированных контейнеров. Они называются lower_bound, upper_bound (откуда же взялись такие названия :)) и binary_search, использовать их можно так:

```
1 vector<int> p1 = {2, 3, 5, 7, 11};

2 int p2[] = {2, 3, 5, 7, 7, 11, 13};

3 upper_bound(p1.begin(), p1.end(), 8) - p1.begin();  // 4, maκ κακ 8 < p1[4] = 11

4 lower_bound(p2, p2 + 7, 7) - p2;  // 3, maκ κακ 7 <= p2[3] = 7

5 binary_search(p2, p2 + 7, 17);  // false, maκ κακ με μαμιος δ
```

Только перед этим необходимо подключить нужный файл:

```
1 #include <algorithm> // codepmum lower_bound, upper_bound u binary_search
```

И, кончено же, встроенные алгоритмы бинарного поиска работают за $O(\log n)^1$.

Бинарный поиск по ответу

Есть целый набор задач, в которых относительно легко понять, является ли какое-то число ответом, при этом выписать явную формулы для вычисления этого числа достаточно сложно. Именно в таких задачах используется «бинарный поиск по ответу».

Пусть у нас есть n>0 дипломов шириной w и высотой h, при этом дипломы нельзя поворачивать и накладывать друг на друга. Нужно найти минимальное целое x такое, что все дипломы войдут на квадратный стенд $x\times x$, не вылезая за его пределы.

Во-первых заметим, что в этой задаче присутствует монотонная функция: если x является ответом, то для всех x'>x стенд $x'\times x'$ также является ответом, а для всех x'< x стенд $x'\times x'$ ответом точно не является. Так что приняв l=0 и $r=n\cdot\max(w,h)$ мы сможем сделать бинарный поиск по ответу (стенда 0×0 точно не хватит, а вот $(n\cdot\max(w,h))\times(n\cdot\max(w,h))$ — точно хватит).

Теперь остаётся понять, является ли какое-то число m ответом. А сделать это действительно не сложно, ведь на стенд размером $m \times m$ войдёт $\left\lfloor \frac{m}{w} \right\rfloor$ дипломов по горизонтали и $\left\lfloor \frac{m}{h} \right\rfloor$ по вертикали

¹ Это справедливо для контейнеров, в которых есть доступ к произвольному элементу; для множеств и отображений нужно использовать методы самих контейнеров, которые мы изучили раньше: s.lower_bound(x);

(такие скобочки — это округление вниз к ближайшему целому). А значит итоговая функция, по которой совершается поиск является $f(m) = \left\lfloor \frac{m}{w} \right\rfloor \cdot \left\lfloor \frac{m}{h} \right\rfloor$, и если f(m) < n, то стенд слишком маленький, значит нужно сделать l = m; а иначе $f(m) \ge n$, а значит стенд достаточного размера, поэтому делаем r = m. Итоговый ответ окажется в границе r.

Понятно, что сложность такого решения будет $O(\log(n \cdot \max(w,h)))$, ведь мы ищем среди $n \cdot \max(w,h)$ потенциальных ответов. Также понятно, что при любом бинарном поиске по ответу нам нужно будет делать $O(\log t)$ операций поиска, где t — размер диапазона, в котором мы ищем ответ.

Вещественный бинарный поиск

Теперь рассмотрим ещё одну задачу, чтобы понять широту применимости бинарного поиска. Пусть нам нужно вычислить квадратный корень числа n с точностью 10^{-6} , при этом использовать встроенные функции корня (и возведения в степень) запрещается.

Здесь достаточно очевидно, что бинарный поиск у нас будет по функции $f(m) = m^2$. Если оказалось, что f(m) = n, то m — искомое число; если же f(m) < n, то такого m ещё мало, поэтому нужно сделать l = m; а иначе f(m) > n и делаем r = m.

Единственным отличием от предыдущих задач будет то, что l и r должны быть вещественными числами, ведь используя целые числа мы не сможем достичь нужной точности. Останавливать же поиск мы можем когда разность r-l станет слишком маленькой, например меньше 10^{-7} . Но поскольку операции с вещественными числами имеют погрешности, то заданная разность может не достигаться и может получиться бесконечный цикл. Поэтому иногда делают бинарный поиск с заданным числом итераций (например 120, потому что $\log_2 10^{36} \approx 120$, а диапазона 10^{36} почти всегда хватает, ведь положительные числа в задачах почти всегда лежат в диапазоне $[10^{-18}; 10^{18}]$).

Такой бинарный поиск называется «вещественным» (потому что работает с вещественными числами), его сложность, как обычно, пропорциональна $O(\log t)$, где t — размер диапазона. Также приятным свойством вещественного бинарного поиска является факт, что после окончания поиска обе границы $(l \ u \ r)$ оказываются достаточно близки к ответу, поэтому ответом можно считать любое из чисел.

Тернарный поиск

Теперь рассмотрим алгоритм, очень похожий на бинарный поиск — тернарный поиск. Его суть заключается в следующем: пусть у нас есть функция f(x), у которой ровно один минимум x_0 (с максимумом аналогично) на отрезке [l;r], разбивающий функцию на две монотонных части $[l;x_0]$ и $[x_0;r]$.

Тогда на каждом шаге мы можем делить текущий отрезок на три части: $m_1 = l + \frac{r-l}{3} = \frac{2l+r}{3}$ и $m_2 = r - \frac{r-l}{3} = \frac{l+2r}{3}$. И если оказалось, что $f(m_1) \leqslant f(m_2)$, то на участке $[m_2; r]$ точно нет ответа, поэтому можем присвоить $r = m_2$. Аналогично при $f(m_1) \geqslant f(m_2)$, на участке $[l; m_1]$ точно нет ответа, поэтому можем присвоить $l = m_1$.

Заканчивать такой поиск нужно, когда отрезок станет достаточно маленьким или после достаточного числа итераций. Сложность тернарного поиск $O(\log t)$, где t — длина диапазона (на самом деле понятно, что тернарного поиск основание логарифма 1.5, а бинарного — 2, но эта константа в асимптотике опускается, поэтому у поисков одинаковые сложности).

Применять тернарный поиск можно, например, в задачах по геометрии, когда вам не хочется выводить явную формулу. Ещё стоит отметить, что достаточно часто можно обойтись без тернарного поиска, заменив его на бинарный поиск по производной.