COSE215: Theory of Computation

Lecture 15 — Turing Machines

Hakjoo Oh 2015 Spring

Turing Machine

A minimal yet complete model for digital computers.

- "minimal": with further restriction, no more as powerful as computers
- "complete": every algorithm has a Turing machine

Informal Overview of Turing Machines

A Turing Machine (TM) is a finite automaton with a tape. Three parts:

- a control unit (i.e., finite automaton)
- a tape
- a tape head

Informal Overview of Turing Machines

The Turing Machine moves based on

- the state of the control unit,
- the tape symbol, and
- the transition function.

For instance, the following transition

$$\delta(q_0,0)=(q_1,1,R)$$

means that

- ullet Change the state from q_0 to q_1 .
- Write 1 to the current tape cell.
- Move the tape head to the right.

Formal Definition of Turing Machines

Definition

A Turing machine M is defined by

$$M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$$

- Q: The finite set of internal states.
- ullet Σ : The finite set of *input symbols*. $(\Sigma \subseteq \Gamma \{B\})$
- Γ : The finite set of *tape symbols*.
- $oldsymbol{\delta}$: The transition function.
- $q_0 \in Q$: The initial state.
- $B \in \Gamma$: The *blank* symbol. Assume $B \not\in \Sigma$.
- $F \subseteq Q$: The set of final states.

Notes on Transition Function

• The type of δ :

$$\delta \in Q \times \Gamma \to Q \times \Gamma \times \{R,L\}$$

- ullet δ is a partial function.
- Assume that δ is undefined for final states.

$$M_1 = (\{q_0, q_1\}, \{a, b\}, \{a, b, B\}, \delta, q_0, B, \{q_1\})$$

 $\delta(q_0, a) = (q_0, b, R)$
 $\delta(q_0, b) = (q_0, b, R)$
 $\delta(q_0, B) = (q_1, B, L)$

$$M_1 = (\{q_0, q_1\}, \{a, b\}, \{a, b, B\}, \delta, q_0, B, \{q_1\})$$

$$\delta(q_0, a) = (q_0, b, R)$$

$$\delta(q_0, b) = (q_0, b, R)$$

$$\delta(q_0, B) = (q_1, B, L)$$

```
cf) compare with the same algorithm in C:
void f(char *str) {
  for (i = 0; i < strlen(str); i++)
    if (str[i] == 'a') str[i] = 'b';
}</pre>
```

Transition Graph


```
cf)
void f(char *str) {
  while (1);
}
```

Instantaneous Description for TMs

An instantaneous description for a TM:

$$X_1X_2\cdots X_{i-1}qX_iX_{i+1}\cdots X_n$$

- $X_1 X_2 \cdots X_n$: the contents of tape (non-blanks only)
- q: the state
- ullet The tape head is on X_i

E.g.,

Moves of TMs

- ⊢: one-step move
- ⊢*: zero or more moves

E.g.,

 $abq_1cd \vdash abeq_2d$

if

$$\delta(q_1,c)=(q_2,e,R)$$

Formal Definition of Moves

Definition

Let $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ be a Turing machine. Then, any string $X_1\cdots X_{i-1}qX_i\cdots X_n$ is an ID.

ullet Suppose $\delta(q,X_i)=(p,Y,L)$. Then

$$X_1 \cdots X_{i-1} q X_i \cdots X_n \vdash X_1 \cdots X_{i-2} p X_{i-1} Y X_{i+1} \cdots X_n$$

ullet Suppose $\delta(q,X_i)=(p,Y,R)$. Then

$$X_1 \cdots X_{i-1} q X_i \cdots X_n \vdash X_1 \cdots X_{i-1} Y p X_{i+1} \cdots X_n$$

M is said to halt from some initial configuration $X_1\cdots X_{i-1}qX_i\cdots X_n$ if

$$X_1 \cdots X_{i-1} q X_i \cdots X_n \vdash^* Y_1 \cdots Y_{j-1} q Y_j \cdots X_m$$

and $\delta(q, Y_j)$ is undefined.

The Language of Turing Machines

Definition

Let $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ be a Turing machine. Then the language accepted by M is

$$L(M) = \{w \in \Sigma^+ \mid q_0w \vdash^* x_1q_fx_2 \text{ for some } q_f \in F, x_1, x_2 \in \Gamma^* \}$$