Lezione 03

1.3.4. Velocità scalare - definizione

Sia $\gamma:I o Rr^n$, $t\in I$

Dico

$$||\gamma'(t)||=\sqrt{\gamma_1'(t)^2+\ldots+\gamma_n'^2(t)}$$

la velocità scalare.

t è un valore regolare per la curva se $\exists \gamma'(t)$ e inoltre $\gamma'(t) \neq 0 \iff ||\gamma(t)|| > 0$ (quindi se esiste ed è non nullo).

Se γ è regolare al parametro t, definisco

$$\frac{\gamma'(t)}{|||\gamma(t)||}$$

il versore tangente o versore velocità.

Definisco la retta tangente alla curva γ in $\gamma(t_0)$:

$$r:x(t)=p+v(t-t_0)$$

con $p=\gamma(t_0)$ e $v=\gamma'(t_0)$

& Idea

Posso approssimare γ vicino a t_0 con la retta tangente

$$\gamma(t) = \gamma(t_0) + \gamma'(t_0)(t-t_0) + R(t)$$

con $\lim_{t o t_0} rac{||R(t)||}{t-t_0} o 0$.

1.3.4.1. Esercizio

$$\gamma(t)=(t^9,t^2)$$
 , $\ t\in [-1,1]$.

Svolgo:

$$x=t^{9}$$
 , $y=t^{2}=x^{2/9}$

$$Supp\,\gamma=$$
 grafico di $f(x)=x^{2/9}$ per il tratto in $[-1,1]$.

Eppure $\gamma_1(t)=t^9$ e $\gamma_2(t)=t^2$ cono \mathcal{C}^{∞} , tuttavia $\gamma'(t)=(9t^8,2t)$ si annulla in t=0, parametro corrispondente al punto $\gamma(0)=(0,0)$.

(!) Osservazione

Ecco perché chiediamo $\gamma'(t_0)
eq 0$ per dire che t_0 sia un valore regolare.

1.3.5. Esercizio

$$\gamma(t)=(t,t^2)$$
 , $\ t\in I=[0,1]$

Svolgo:

$$t,t^2\in\mathcal{C}^\infty(\mathbb{R})$$

$$\gamma'(t)=(1,2t)$$

$$||\gamma'(t)|| = \sqrt{1+4t^2} \geq 1$$
, quindi è regolare.

$$r: p = \gamma(0) = (0,0)$$
 , $v = \gamma'(0) = (1,0)$

$$x(t) = inom{0}{0} + inom{1}{0}t
ightarrow inom{x=t}{y=0} t \in \mathbb{R} \iff \{y=0\}$$

(!) Osservazione

Posso anche scrivere le "equazioni cartesiane" della retta, eliminando il parametro:

$$egin{aligned} \gamma(t)&=(t,f(t))\ \gamma'(t)&=(1,f'(t)) ext{ velocità} \ ||\gamma_0(t)||&=\sqrt{1+(f'(t))^2} ext{ velocità scalare} > 0 \ r: egin{aligned} x&=x_0+1\cdot t\ y&=f(x_0)+f'(x_0)t \end{aligned} \implies t=x-x_0, \ y&=f(x_0)+f'(x_0)(x-x_0) \end{aligned}$$

1.4. Lunghezza di curve

1.4.1. Lunghezza - definizione

Sia
$$\gamma:I o\mathbb{R}$$
, $\gamma_1,\ldots,\gamma_n\in C^1(I)$, $I=[a,b]$

Chiamo lunghezza di γ

$$L(\gamma,[a,b]):=\int_a^b||\gamma'(t)||\,dt$$

1.4.2. Integrale curvilineo

Sia $f:R^n o\mathbb{R}$ continua

Chiamo integrale curvilineo di prima specie di f lungo γ

$$\int_{\gamma}f\,ds:=\int_{a}^{b}f(\gamma_{1}(t),\ldots\gamma_{n}(t))\ ||\gamma'(t)||\ dt$$

(!) Osservazione

Se $f(x,y,z)\equiv 1$ allora $\int_{\gamma}1ds=\int_{a}^{b}1||\gamma'(t)||\,dt=L(\gamma,[a,b])$

1.4.3. Esercizio

$$\gamma(t) = inom{t}{a\cosh\left(rac{t}{a}
ight)}$$
 , $t \in \mathbb{R}$ dove $a>0$.

Studiarne le proprietà e calcolarne la lunghezza dell'arco per $t \in [0,1]$.

 γ è una curva? $t, a\cosh\left(rac{t}{a}
ight) \in \mathcal{C}^{\infty}$, quindi è una curva.

Calcolo il supporto:

$$x = t$$

 $y = a \cosh\left(\frac{t}{a}\right) = a \cosh\left(\frac{x}{a}\right)$

 $Supp(\gamma)$ è di punti interni a $\{y>0\}$? Se $p\in Supp(\gamma)$, $p=(x,a\cosh\left(\frac{x}{a}\right))$ ho che $B\left(p,\frac{a}{2}\right)\subseteq\{y>0\}$.

Verifico se è semplice:

x(t)=t è strettamente crescente, quindi è iniettiva $\implies t_1 \neq t_2$, $x(t_1) \neq x(t_2) \implies (x(t_1),y(t_1),z(t_1)) \neq (x(t_2),y(t_2),z(t_2)) \implies \gamma$ è iniettiva, quindi è semplice.

Controllo se è chiusa:

Siccome γ è iniettiva, non è chiusa.

$$\gamma'(t) = \left(1, \cancel{lpha} rac{1}{\cancel{lpha}} \sinh\left(rac{t}{a}
ight)
ight) = (1, f'(t))$$

$$||\gamma'(t)|| = \sqrt{1 + f'(t)^2} = \sqrt{1 + \sinh^2\left(rac{t}{a}
ight)} = \cosh\left(rac{t}{a}
ight)$$

$$L(\gamma,[0,t])=\int_0^t||\gamma'(r)||\,dr=\int_0^t\cosh\left(rac{r}{a}
ight)dr=\left[\sinh\left(rac{r}{a}
ight)a
ight]_0^t=a\sinh\left(rac{t}{a}
ight)$$

Posso anche calcolare una nuova curva $ilde{\gamma}$ in questo modo:

 $l = \phi(t) = a \sinh\left(\frac{t}{a}\right)$

$$\frac{t}{a} = \sinh^{-1}\left(\frac{l}{a}\right) = \sinh^{-1}\left(\frac{l}{a}\right) = \phi^{-1}(l)$$

 $t = a \sinh^{-1} \left(\frac{l}{a}\right)$

$$\tilde{\gamma}(l) = \left(a \sinh^{-1}\left(\frac{l}{a}\right), \ a \cosh\left(\sinh^{-1}\left(\frac{l}{a}\right)\right)\right)$$

Il parametro di $\tilde{\gamma}$ è la lunghezza percorsa.

1.4.4. Grafico di funzione - definizione

Sia f:A o B, si definisce

$$Graph f = \{(x, f(a) : a \in A\} \subseteq A \times B\}$$

il grafico di f.

Si chiama $\gamma:I \to \mathbb{R}^2$, $\gamma(t)=(t,f(t))$ la parametrizzazione canonica di grafico cartesiano.

1.4.4.1. Esercizio

 $\gamma(\theta)=(e^{\theta},\sin^2(e^{\theta}))$, $\theta\in[1,\ln 4]$ non è la parametrizzazione canonica di un grafico cartesiano, tuttavia posso scrivere:

$$t=e^{ heta}$$
 , $heta=\ln t$, $t\in [e,4]$, $ilde{\gamma}(t)=\gamma(\ln t)=(t,\sin^2(t))$, $e\leq t\leq 4$

 $ilde{\gamma}$ è una prametrizzazione canonica.

1.4.4.2. Esercizio

Studiare
$$ilde{\gamma}(r)=inom{\ln r}{a\cosh\left(rac{\ln r}{a}
ight)}$$
 , $r>0$, $I=\mathbb{R}^+$.

 $egin{aligned} t = \ln r, & r = e^t \,. & r \in \mathbb{R} \ \gamma(r(t)) = (t, a \cosh\left(rac{t}{a}
ight)), & ilde{I} = \mathbb{R} \,. \end{aligned}$

Quindi la curva è la stessa dell'esercizio 1.3.8.

1.4.5. Proposizione (derivata della composta)

Sia $\gamma:I o\mathbb{R}^n$, $ilde{\gamma}: ilde{I} o\mathbb{R}^n$, $\phi: ilde{I} o I\in\mathcal{C}^1$ Se $ilde{\gamma}(r)=\gamma(\phi(r))$, $ilde{\gamma}_i(r)=\gamma_i(\phi(r))$, allora

$$ilde{\gamma}'(r) = \gamma'(\phi(r)) \cdot \phi'(r)$$

1.4.5.1. Dimostrazione

Devo mostrare $rac{d}{dr} ilde{\gamma}_i(r)=\phi'(r)\cdot\gamma_i'(\phi(r))$, $i=1,\ldots,n$

 $rac{d}{dt} ilde{\gamma}_i(r) = \gamma_i'(\phi(r))\cdot\phi'(r)$ per la regola della catena! \sqcap

1.4.5.2. Esercizio

Considero $\gamma(t)=(e^{t^2},\sin(t^2))$, t>0.

Derivando componente per componente calcolo:

$$rac{d}{dt}\gamma(t)=(e^{t^2}\cdot 2t,\cos(t^2)\cdot 2t)=(e^{t^2},\cos(t^2))\cdot 2t$$

Applico ora la regola della catena alla composizione:

$$ilde{\gamma}(r)=(e^r,\sin(r))$$
, $r=\phi(t)=t^2$, $r>0$ e trovo lo stesso risultato

$$rac{d}{dt}\gamma(t) = rac{d}{dt}\gamma ilde = \phi'(t)\cdot ilde{\gamma}(r)ig|_{r=\phi(t)}$$

1.4.6. Curve equivalenti - definizione

Si dice $\tilde{\gamma}(t)$, $t\in \tilde{I}$, equivalente a $\gamma(r)$, $r\in I$, se $\phi\in \mathcal{C}^1(I;\tilde{I})$ biunivoco con $\phi'\neq 0$.

1.4.6.1. Proposizione

Due curve equivalenti hanno

- Stessa immagine;
- Stesso versore velocità, quindi retta tangente;
- Stessa lunghezza/stesso integrale curvilineo.

1.4.6.2. Esercizio

$$egin{aligned} f(x,y,z) &= e^{x+y+z} \ \gamma(t) &= (t,t^2,t^3)$$
 , $\ t \in [1,e] = I$; $\ ilde{\gamma}(t) &= (e^t,e^{2t},e^{3t})$, $\ t \in [0,1] = ilde{I}$, $\phi(t) &= e^t \in \mathcal{C}^1$, $\ \phi'(t) &= e^t > 0$, $\ t = \ln r$

Ho verificato che sono equivalenti: ora calcolo l'integrale curvilineo di f lungo le due curve:

1.
$$\int_{\gamma} f \, ds = \int_{1}^{e} e^{t+t^2+t^3} \sqrt{1+4t^2+9t^4} \, dt$$

2.
$$\int_g f\,ds=\int_0^1 e^{e^r+e^{2r}+e^{3r}\sqrt{1+4e^{2r}+9e^{4r}}}e^r\,dr$$
 Facendo la sostituzione $r=\phi(t)=e^t$ mi accorgo che sono uguali, quindi hanno la stessa lunghezza.

1.4.7. Curve associate a grafici di funzione

Data $f:I o\mathbb{R}$ continua, I intervallo, $\gamma:egin{cases} x(t)=t\ y(t)=f(t) \end{cases}$ $t\in I$. Allora γ è:

- Mai chiusa, siccome x(t) è crescente, quindi iniettiva;
- Sempre semplice siccome x(t) è crescente, quindi iniettiva;

• Se
$$f$$
 derivabile in $I^0 \implies \gamma'(t) = inom{1}{f'(t)} \implies$ sempre regolare

- La retta tangente a tempo $t=x_0$ è $\begin{cases} x_0=x_0'+1(s-x_0') \\ y=f(x_0)+f'(x_0)(s-x_0)' \end{cases}$ $s\in\mathbb{R}$, cioè $\$y=f(x\{0\})+f'(x\{0\})$ $(x-x_{0})$ $(x-x_{0})$
- $L(\gamma;I) = \int_I \sqrt{q + (f'(t))^2} dt$

1.4.8. Esercizio (spirale logaritmica)

$$ho(heta)=e^{- heta}$$
 , $heta\in\mathbb{R}$ $(heta\in[-M,M])$ $\gamma(heta)=(
ho(heta)\cos heta,
ho(heta)\sin heta)$

Figura 1.22: La spirale logaritmica

$$\begin{split} x^2+y^2&=\rho^2(\theta)\cos^2\theta+\rho^2(\theta)\sin^2(\theta)=\rho^2(\theta)=e^{-2\theta}\\ \rho(\theta)&=||\gamma(\theta)||=\text{ distanza del punto dall'origine}\\ \theta&=\text{ angolo con l'asse delle }x \end{split}$$

$$\gamma(0) = (e^0 \cos 0, e^0 \sin 0) = (1, 0)$$

$$ho(heta)=e^{- heta}$$
 è decrescente \implies se $heta$ cresce, tende a zero.

 γ è non chiusa e semplice siccome è iniettiva (ed è piana, banalmente, perché ha due componenti).

Iniettività: $\theta_1 < \theta_2 \to \gamma(\theta_1) \in \partial B(0, e^{-\theta_1})$, $\gamma(\theta_2) \in \partial B(0, e^{-\theta_2}) \Longrightarrow \gamma(\theta_1) \neq \gamma(\theta_2)$ (sono su circonferenze di stesso centro ma raggio diverso, quindi non si intersecano mai)

Velocità vettoriale:

$$\begin{split} \gamma'(\theta) &= (\rho'(\theta)\cos\theta - \rho(\theta)\sin\theta,\; \rho'(\theta)\sin\theta + \rho(\theta)\cos\theta) = e^{-\theta}(-\cos\theta - \sin\theta,\; -\sin\theta + \cos\theta) \\ ||\gamma'(\theta)||^2 &= \rho'(\theta)\cos\theta - \rho(\theta)\sin\theta)^2 + (\rho'(\theta)\sin\theta + \rho(\theta)\cos\theta)^2 = (\rho'(\theta))^2 + (\rho(\theta))^2 = e^{-2\theta} + e^{-2\theta} = 2\pi \\ \int_0^L ||\gamma'(\theta)|| \, d\theta &= \int_0^L \sqrt{2}e^{-\theta} \, d\theta = \sqrt{2}[-e^{-\theta}]_0^L = \sqrt{2}[1-e^{-L}] \end{split}$$