CAD 电子设计 实操任务书

总时间 180 分钟

选手编号:	
比赛组号:	
工 位 早.	

CAD 电子设计任务书(高级组)

项目概述

CAD 电子设计技能是指使用计算机通过操作 CAD 软件,通过印制电路板将工程或产品设计中产生的各种图样,制作成可用于设计和后续应用所需的工程图样、电子元器件实体图形和其他有关的图形、模型和文档的能力,包括原理图的绘制、层次原理图的绘制、元器件子部件制作、封装制作、及印制电路板图设计、多层板设置等。

上交考试结果方式:

- 1. 选手须在裁判人员指定的硬盘驱动器下建立一个选手文件夹,文件夹名 称以 高级+工位号 阿拉伯数字来命名(如:工位号02的选手以"高级02"命 名建立文件夹);
 - 2. 选手根据题目要求完成作图,并将答案保存到选手文件夹中。

一、创建工程和文件

- 1. 在选手文件夹中新建一个工程项目文件。例: 2 号工位选手的文件名为: 02. Pr.jPcb; 然后在其内添加原理图文件夹中的原理图文件;
- 2. 在项目工程内新建原理图库文件,文件名为工位号. SchLib (如: 02. SchLib);
 - 3. 在项目工程内新建 PCB 封装库文件,文件名为工位号. PcbLib (如:

02. PcbLib):

- 4. 在项目工程内新建原理图模版文件,文件名为工位号. Schdot (如: 02. Schdot):
- 5. 在选手文件夹内新建一个 Gerber 文件夹,用于将 PCB 文件输出的钢网文件、贴片坐标文件、装配图文件、光绘文件等。

二、制作原理图库元件及 PCB 封装

- 1. 在原理图库文件工位号. SchLib 中,根据图 1 给出的元件示意图绘制原理图库元件,要求元器件管脚序号与图 1 标注的保持一致,命名为 W9825G6KH-6 并在抄画原理图中调用,图中每小格长度为 100mil;
- 2. 在 PCB 库文件工位号. PcbLib 中根据图 2 给出的相应参数创建 W9825G6KH-6 的 PCB 封装, 命名为 W9825G6KH-6, 并在生成电路板中调用; (注:设计单位为 mm)

30	DQ0	A0	$\triangleleft \frac{23}{24}$
41c	DQ1	A1	<24 25
-\$⊳	DQ2	A2	$\sqrt{\frac{23}{36}}$
-	DQ3	A3	$4\frac{20}{20}$
180°	DQ4	A4	$\sqrt{\frac{29}{30}}$
iio >	DQ5	A5	√30 /31 /31 /31 /31 /31 /31 /31 /31 /31 /31
†\$₽>	DQ6	A6	$\triangleleft \frac{31}{32}$
42°	DQ7	A7	< 33
44	DQ8	A8	$\triangleleft \frac{33}{34}$
45	DQ9	A9	$\frac{\sqrt{22}}{22}$
47.	DQ10	A10	.35
48	DQ11	A11	36
50	DQ12	A12/NC	7
51	DQ13 DQ14	BA0	20
53"	DQ14 DQ15	BA1	21
	DQIS	DAI	
16	WE	CKE	<37
17		CLK	38
18	CAS RAS	100000000	1.5
19	CS	LDQM	<13 20
1 1		UDQM	39
1			41
14	VDD0	VSS0	54
27	VDD1	VSS1	28
	VDD2	VSS2	
3	VDDOO	Vecon	6
9	VDDQ0 VDDQ1	VSSQ0 VSSQ1	12
43 49	VDDQ1 VDDQ2	VSSQ2	46
49	VDDQ2 VDDQ3	VSSQ2 VSSQ3	52

图1 元件示意图

Controlling Dimension : Millimeters

SYMBOL-	DIMENSION (MM)			DIMENSION (INCH)		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A			1.20	12.2		0.047
A1	0.05	(0.15	0.002		0.006
A2	0.95	1.00	1.05	0.037	0.039	0.041
ь	0.30	(eees	0.45	0.012	777	0.018
c	0.12	3555	0.21	0.005	277	0.008
D	22.09	22.22	22.35	0.870	0.875	0.880
E	11.56	11.76	11.96	0.455	0.463	0.471
E1	10.03	10.16	10.29	0.395	0.400	0.405
е	0.80 BASIC			0.031 BASIC		
L	0.40	0.50	0.60	0.016	0.020	0.024
L1	0.80 BASIC			0.031 BASIC		
R	0.12	97373	0.25	0.005		0.010
R1	0.12	82448	522	0.005		
ZD	0.71 REF			0.028 REF		
θ	0°	Xeees	8°	0,	***	8"
θ1	10"	15°	20°	10°	15°	20°
Y		25552	0.10			0.004

图 2 元件参数

三、抄画原理图

1. 在原理图模板文件工位号. schdot 中画出图 3 所示的动态标题栏, 要求:

设置图纸大小为A3, 边框直线为小号直线, 颜色为黑色, 文字大小为16磅, 颜色为黑色,字体为仿宋_GB2312; 并每页原理图调用模板文件工位号. schdot, 标题栏中各项内容均要从 organization 中输入或自动生成,其中在考生信息中第一行输入考生编号,第二行输入考生卷号(如A卷或B卷),第三行输入考生级别(如高级或中级),图名为: mydesign,不允许在原理图中用文字工具直接放置。

图 3 动态标题栏

2. 按照给定的内容补全原理图。

图 4 电路模块原理图

四、生成电路板

- 1. 在工程文件夹内新建 PCB 设计文件,文件名为工位号. PcbDoc (如02. PcbDoc)在 PCB 设计文件中,将所有原理图文件生成电路板。
- 2. 电路板规格为四层板(叠层: TOP、GND、VCC、BOTTOM)、双面布局、电路板尺寸80mm×80mm, 仅滤波电容允许放置在背面;
- 3. 电路无开路,短路,符合生产要求; PCB 网络与原理图保持一致;电路板的布局不能采用自动布局,要求按照信号流向合理布局(例如:从上至下,从下至上,从左至右,从右至左);

- 4. 过孔采用 10/20 类型 (即过孔内径为 10 mil, 外径为 20 mil), 须有螺丝孔 (螺丝孔内径为 80mil, 外径为 160mil); 螺丝孔需要接地;
- 5. 单端信号线线宽按 8mil, 电源线宽不得低于 10 mil; 整板线距不得于 5mil; PCB 布线应离板边 1mm 或以上;
 - 6. 差分线规则设置为: 特性阻抗 90 欧: 8/8/8 (线宽/线距/线宽);
 - 7. PCB 板双面覆铜并接地;
 - 8. 进行设计规则检查;
- 9. 将 PCB 文件输出钢网文件、贴片坐标文件、装配图文件、光绘文件,将输出的文件保存至新建的 Gerber 文件夹。

五、注意事项

- 1. 参赛选手统一着比赛服装(赛前提供);
- 2. 参赛选手应严格遵守用电安全,不得随意触碰接口、插座等,不得私自接 U 盘等外设;
- 3. 选手在比赛过程中应该遵守相关的规章制度和安全守则,如有违反,则 按照相关规定在比赛的总成绩中扣除相应分值;
 - 4. 提前结束或放弃均不得提前离开考场。

