Distributions

non-degenerate linear transformation Translation Invariance: Uniform

independent and for each $k X_k$ is normal with mean μ_k and variance σ_k . Then $S_n = \sum_{k=1}^n X_k$ is normal with mean $\sum_{k=1}^n \mu_k$ and variance $\sum_{k=1}^n \sigma_k$, or in other words normal densities are stable under convolution. Also stable under

Distributions		Sum of Independent Poisson RVs For independent
Discrete Combinatorial	Finite space, equally likely outcomes	random variables drawn from Poisson distribution mean is $\lambda_1 + \lambda_2$
Bernoulli	P(A) = card(A)/n Success probability of bent coin $p_0 = q = (1 - p)$ and $p_1 = p$	Sum of Independent Gamma RVs Given $X_1 \sim g_{n_1}(x_1, \alpha)$ and $X_2 \sim g_{n_2}(x_2, \alpha)$ then $Z = X_1 + X_2 \sim g_{n_1+n_2}(z, \alpha)$. Note the RV's must have the same mean $\frac{1}{\alpha}$
Binomial	$\mu = p, \sigma^2 = pq$ Probability of n heads in k tosses $p_k = \binom{n}{k} p^k (1-p)^{n-k}$ $\mu = np, \sigma^2 = npq$	The marginals of a multivariate normal are normal Note: a system of variables with marginal normal densities need not have a jointly normal density, and, in fact a joint density need not even exist
Geometric	Failures before 1st success, $k \ge 0$ $p_k = (1-p)^k p$ $\mu = \frac{q}{p}, \sigma^2 = \frac{q}{p^2}$	Sum of Exponentials Sum of independent exponential random variables from a common exponential density $\alpha e^{-\alpha x}$ for $x > 0$ is S_n , the sum $S_n = X_1 + X_2 + + X_n$ has the gamma density.
Negative Binomial	Failures before rth success $k \ge 0$ $w_r(k; p) = \binom{k+r-1}{k} q^k p^r$	σ -algebras
	Note the negative binomial is sum of	
	r independent geometric RVs.	Expectation Variance $Var(X) = E(X^2) - E(X)^2$
Poisson	$\mu = \frac{rq}{p}, \sigma^2 = \frac{rq}{(p)^2}$ Characterization of rare events	Covariance $Cov(X,Y) = E(XY) - E(X)E(Y)$
10155011	$p_k = e^{-\lambda} \lambda^k / k!$	Law of the Unconcious Statistician If X is a discrete $r.v.$
G II	$\mu = \lambda, \sigma^2 = \lambda$	and g is a function from $R \to R$ then, $E(g(X)) = \sum_{x} g(x)P(X = x)$
$egin{aligned} \mathbf{Continuous} \ & \\ \mathtt{Uniform} \end{aligned}$	Agnostic about outcome on interval	— •
	f(x) = 1/(b-a) on	Conditional Probability
	a < x < b and 0 o.w. $\mu = \frac{1}{2}(a+b), \sigma^2 = \frac{1}{12}(b-a)$	$P(A H) = \frac{P(A \cap H)}{P(H)}$
Gamma	Note $\Gamma = (n - 1)!$	$P_H: A \to P(A H)$ $P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_1 A_2 \cap \dots \cap A_n)$
	$g_n(t;\alpha) = \alpha \frac{(\alpha t)^{n-1}}{(n-1)!} e^{-\alpha t}$	$\times P(A_2 A_3\cap\cap A_n)\times P(A_{n-1} P(A_n)\times P(A_n)$
	Finite X_k $\mathcal{N}(0,1)$; $V^2 = \sum_{k=1}^n X_k^2$ $g_{n/2}(t;1/2) = \frac{1}{2^{n/2}\Gamma(\frac{n}{2})}$	Bayes Rule
Chi-squared	Finite $X_k \mathcal{N}(0,1); V^2 = \sum_{k=1}^n X_k^2$	·
	$g_{n/2}(t;1/2) = \frac{1}{2^{n/2}\Gamma(\frac{n}{2})}t^{\frac{n}{2}-1}e^{-\frac{n}{2}}$	$P(A_k H) = \frac{P(H A_k)P(A_k)}{\sum_{j\geq 1} P(H A_j)P(A_j)}$
Exponential	A model for true randomness $f(x) = \alpha e^{-\alpha x}$ for $x > 0$	Inclusion-Exclusion
Normal	The one to rule them all	Limit Laws
	$f(x) = \frac{1}{\sqrt{(2\pi)}\sigma} e^{-(x-\mu)^2/2\sigma^2}$	Weak Law of Large Numbers
Even function, strictly positive, dies monotonically		Strong Law of Large Numbers
Multivariate Normal Note that x and m are vectors $f(x) = \frac{1}{2\pi^{\frac{n}{2}} \det(A)^{\frac{1}{2}}} exp(-\frac{1}{2}(x-m)A^{-1}(x-m)^T)$		Central Limit Theorem
		Inequalities
Negative Binomial Trick: $\binom{r+k-1}{k}q^kp^r=\binom{-r}{k}(-q)^kp^r$		Convexity The chord lies above the curve
		$\Psi(\alpha x + (1 - \alpha)y) \le \alpha \Psi(x) + 1 - \alpha)\Psi(y)$
Properties of Distributions		Jensen If Ψ is convex , X is integrable, and $\Psi(x)$ is integrable then: $\Psi(E(x)) \leq E(\Psi(x))$
Shifting and Scaling <i>If two densities come from same type:</i> $\frac{1}{a}f(\frac{x-m}{a})$ then $\mu = a\mu + m$ $\sigma^2 = a^2\sigma^2$		Another of Jensen $E(X^2) \ge E(X)^2$
Convolution The convolution of any pair of distributions		AM-GM $x_1^{p_1} x_2^{p_2} x_n^{p_n} \le p_1 x_1 + p_2 x_2 + p_n x_n$
must necessarily be a distribution		Specialization of AM-GM $x^{1/p}y^{1/q} \le (1/p)x + (1/q)y$
Stability of the Normal Suppose X_1, X_2, X_n are		simplifies to: $xy \le (1/p)x^p + (1/q)y^p$

Holder's $|E(XY)| \le E(|XY|) \le E(|X|)^{1/p} E(|Y|)^{1/q}$

Cauchy-Schwarz If p = q = 2 in Holder's \rightarrow

Catchy-schwarz if p = q = 2 in Holder's \rightarrow $|E(XY)^2| \le E(X^2)E(Y^2)$ Minkowski $p \ge 1$ then $||x + y|_p \le ||x||_p + ||y||_p$ Chebyshev $P\{|S_n - n\mu| \ge n\epsilon\} \le \frac{n\sigma^2}{n^2\epsilon^2}$ Chernoff $P\{S_n \ge t \le (\inf_{\lambda \ge 0} e^{-\lambda t/n} M(\lambda))^n$ and

 $P\{S_n \le t \le (\inf_{\lambda \ge 0} e^{-\lambda t/n} M(-\lambda))^n$ Where $M(\lambda) = E(e^{\lambda X_j}) = \int_{\mathcal{R}} e^{\lambda x} dF(x)$ is the moment generating function $\mathbf{Markov}P\{Xa\} \leq \frac{E(X)}{a}$ Normal Tail Bound p 317 $\frac{\phi(x)}{x}(1-\frac{1}{x^2})<1-\Phi(x)<\frac{\phi(x)}{x}$ Normal Tail Bound p 165 $\int_{1}^{\infty}\phi(x)dx\leq\frac{1}{2}e^{-t^2/2}$