GL INTERFACE APPLICATION

David Ocholi Business Analyst

September 2025

Statement of Work Overview

Client A currently uses SICS and SunSystems ("Sun") General Ledger software. There is a manual export of SICS GL data and import into Sun on a quarterly basis.

This project is to implement a GL Interface Application which extracts new GL data from SICS automatically on a schedule (assumed to be daily) and then connects and uploads this data in the required format to Sun using Sun's API functionality.

It will also provide sufficient automatic reconciliation features to ensure that the two systems are in alignment. This should reduce the amount of effort required by Client A to pass GL data to Sun and improve the efficiency of their periodend closing process. It will also make the mapping and transformation of data from SICS to Sun format more visible and maintainable by the users.

Analysis Synopsis

The current ("As-Is") process is manual, quarterly, and resource-intensive, with heavy user involvement in extraction, transformation, and reconciliation.

The proposed ("To-Be") process introduces a GL Interface Application that automates extraction, transformation, loading, and reconciliation. This proposed system will:

Streamline Transfer

Automate GL data movement between systems

Increase Frequency

Daily updates instead of quarterly

Improve Accuracy

Automated reconciliation reduces errors

Enhance Visibility

Clear mapping and maintainable processes

Process Workflows (Current)

Current System

The flowchart illustrates the existing process, which is largely manual and conducted on a quarterly basis. GL data is exported from SICS, then manually transformed into the required format before being uploaded into Sun. This approach is time-consuming, prone to human error, and places a significant burden on the Finance team during period-end closing.

Process Flow (Current System)

Current Manual System (As-Is)

The existing quarterly processing system requires significant manual intervention and creates bottlenecks in financial operations and reporting.

Processing Frequency

Quarterly operations ≈ 4 times per year

Manual Effort

2–3 Full-Time Equivalent (FTE) days per quarter spent on extraction, transformation, reconciliation and reporting.

Error Rate

5–10% manual reconciliation Adjustments required

Closing Cycle Impact

Adds **2–3 days** of effort to each quarter-end closing, creating delays in financial reporting and decision-making processes.

Limited Visibility

Lack of transparency into how data is transformed and mapped, making it difficult to track changes and ensure accuracy.

Process Workflows (Proposed)

Proposed System

The diagram outlines the proposed automated process supported by the **GL Interface Application**. In this design, GL data is automatically extracted from SICS on a daily schedule, transformed into the Sun-compatible format, and uploaded via API. Built-in reconciliation and exception handling ensure accuracy and transparency, while reducing manual effort and enabling faster, more efficient period-end closing.

Proposed Automated System (To-Be)

Transform operations in 24 hours with automated processing that delivers exceptional accuracy and transparency.

Daily Processing

≈ 240 runs per year

Continuous data processing eliminates quarterly bottlenecks.

Minimal Manual Effort

< 0.5 FTE days per month

Only for reviewing exceptions and monitoring system performance.

Superior Accuracy

< 1% error rate

Automated reconciliation and validation ensures data integrity.

Accelerated Closing

Saves 2–3 days per quarter-end closing, enabling faster financial reporting and improved decision-making timelines.

Enhanced Visibility

Configurable mapping and real-time dashboards provide complete transparency into data transformation processes and system performance.

Basic Functional Requirements

The table below outlines the key functional requirements that define what the GL Interface Application must do to deliver value.

Requirement	Description	Problem Addressed
Data Extraction	Automate GL data extraction from SICS on a scheduled basis (e.g., daily).	Manual extraction from SICS is time- consuming and only done quarterly.
Data Transformation	Convert extracted data into Sun format using configurable mapping rules.	Manual reformatting leads to errors and delays.
Data Loading	Load transformed data into Sun via API, supporting batch and incremental loads.	Manual uploads increase risk of mistakes and slow down reporting.
Reconciliation	Automatically reconcile SICS vs Sun balances and highlight discrepancies.	Discrepancies often go undetected until quarter-end, delaying close.
Exception Handling	Generate error logs and exception reports, enabling reprocessing after fixes.	No structured way to track or correct errors in the current process.
User Interface	Provide dashboards for monitoring status, managing mappings, and reviewing errors.	Current process lacks visibility, users can't easily monitor progress or errors.
Audit & Security	Maintain audit logs, enforce role-based access, and ensure secure data transfer.	Manual processes have weak audit trails and data risks.

Automated Extraction

Scheduled daily data pulls from SICS system

Smart Transformation

Configurable mapping rules for format conversion

Seamless Loading

API-based uploads with batch and incremental support

Non-Functional Requirements

The table below highlights the non-functional requirements, which sets the quality standards and operational expectations for the solution.

Non-Functional Requirement	Description	Problem Addressed
Performance	The system should process and upload daily GL data within an acceptable time of < 30 min per run.	Manual quarterly uploads delay financial reporting and cause bottlenecks.
Reliability	The interface should run on a stable schedule with >99% success rate, minimizing failures.	Current manual approach is error-prone and inconsistent.
Maintainability	Transformation rules should be configurable by users without code changes.	Current data transformations require IT intervention, slowing updates.
Scalability	The solution should handle increasing data volumes (allowing growth of 2-3x) without performance loss.	Current system cannot easily adapt to higher transaction volumes.
Security	Data transfers must be encrypted (e.g., TLS/HTTPS), with strict role-based access controls.	Manual data handling increases risk of unauthorized access or data leakage.
Auditability	The system should maintain a full audit log of extractions, uploads, and reconciliation activities.	Current process has poor visibility into changes and approvals.

< 30

Minutes Max

Processing time for daily GL operations

99.9%

Uptime Target

System availability during business hours

24/7

Monitoring

Continuous system health tracking

Potential Risks & Mitigation Strategies

The risks outlined below identify potential challenges that could impact the success of the project, along with their implications and mitigation strategies.

Risk	Description	Mitigation Strategy
Integration Risk	APIs or integration points in SICS or Sun may have limitations or undocumented behaviors, leading to extra development effort and workarounds.	Conduct early technical due diligence on APIs, engage with vendor support, and build flexible integration logic with error handling and logging.
Data Quality Risk	Poor or inconsistent SICS data may cause reconciliation mismatches and incorrect postings in Sun.	Implement data validation rules at extraction, introduce automated data cleansing, and involve business users in periodic data quality reviews.
Dependency Risk	Reliance on vendor timelines (for Sun or SICS upgrades, fixes, or documentation) could delay project progress.	Build contingency time into project plan, establish vendor SLAs, and prioritize early identification of dependencies in the project schedule.
Change Management Risk	Users may resist moving from manual to automated processes, risking adoption and efficiency gains.	Conduct stakeholder engagement, provide comprehensive training, and implement phased adoption with dual-running of old and new processes initially.
Operational Risk	Failures in reconciliation or unnoticed errors could compromise financial reporting accuracy.	Set up automated monitoring, alerts, and dashboards; enforce segregation of duties for reconciliation checks; and establish escalation protocols.
Timeline Risk	Delays in requirements gathering or scope changes may extend project delivery timelines.	Define and agree clear scope upfront, use phased/milestone-based delivery, and apply strong change control processes.

Key Questions (First Two Weeks)

The following key questions will guide discovery in the first two weeks, ensuring clarity on scope, design, and implementation.

- a) To ascertain the scope and volume of the data, what is the average and peak GL transaction volume expected daily?
- b) To clarify integration requirements, what file formats and API specifications are available for both SICS and Sun?
- c) To define the reconciliation process, what specific reconciliation rules should be applied (for example, should it be by account, totals, or both)?
- d) To establish ownership of mapping, who will be responsible for maintaining and updating account mappings, will it be Finance or IT?
- e) To determine the exception management approach, how should exceptions be reported (e.g., dashboard alerts/notifications, automated emails)?
- f) To meet security standards, what encryption protocols and access control policies must the application comply with?
- g) To align on timelines and meet up with deadlines, by what time each day must GL data be fully processed and updated in Sun?
- h) To anticipate dependencies, are there any upcoming system upgrades or changes to SICS/Sun that could impact the integration?

Conclusion

The implementation of the GL Interface Application will significantly improve efficiency, accuracy, and transparency in Client A's financial closing process. With clear functional and non-functional requirements, expanded risk considerations, and well-defined key questions, the project can be delivered with minimal disruption while providing high long-term value.

Thank You