Monday, 10 October 2022 18:00

Summary

- Independence of variables
- Chi-Square distribution
 - o Formulae for:
 - Expected frequency
 - Chi-Square statistic
 - df

Inferencing about association

Example: Brand preferences

 Suppose a survey is conducted in Mumbai and Chennai asking respondents their preferences about three brands. The result is summarized below.

	Preferred brand			
City	Brand A	Brand B	Brand C	Total
Mumbai	279	73	225	577
Chennai	165	47	191	403
Total	444	120	416	980

- Independent (explanatory) variable is the city.
- Dependent (response) variable is the brand preference.
- There are two categorical variables here:
 - 1. Brand (A, B, C), and
 - 2. City (Mumbai, Chennai)
- City => Independent (explanatory) variable
- Brand => Dependent (response) variable

Example: Brand preferences

- We know how to summarize the data by calculating the marginal and joint probabilities.
- What are the marginal probabilities? Joint probabilities?
- Now we want to answer the question: "Whether brand preference associated with city?" We use the basis of statistical independence/dependence for this.
- Two categorical variables are statistically independent if the population conditional distributions on one of them is identical to each category of the other.
- In the example, the two conditional distributions are not identical. e.g. Brand A is preferred more in Mumbai than in Chennai.
- Joint and Marginal Probabilities

	Brand A	Brand B	Brand C	
Mumbai	0.28	0.07	0.24	0.59
Chennai	0.17	0.05	0.19	0.41
	0.45	0.12	0.42	1

• Conditional Distribution: P(City | Brand)

	Brand A	Brand B	Brand C	
Mumbai	279 (48%)	73 (13%)	225 (39%)	577 (100%)
Chennai	165 (41%)	47 (12%)	191 (47%)	403 (100%)

- From conditional distribution, we can observe:
 - o Brand A is preferred more in Mumbai than in Chennai
 - Brand B preference is identical in both cities
 - $\circ~$ Brand C is preferred more in Chennai than in Mumbai
- Since the conditional distributions are not identical, so we conclude that brand preference is associated with city.
- Hence, both categorical variables are dependent on each other.

How to find conditional distribution

Given a joint distribution or contingency table:

	Y1	Y2	Y3	
X1	*	*	*	A
X2	*	*	*	В
	K	L	M	(total)

• Find Conditional Distribution

ш)11								
		$\mathbf{P} (\mathbf{Y} \mid \mathbf{X}) = \frac{\mathbf{P}(\mathbf{X}, \mathbf{Y})}{\mathbf{P}(\mathbf{X})}$							
		Y	1	Y	2	Y;	3		
	X1	*/	A	*/	A	*/.	A	A	
	X2	*/	В	*/	В	*/	В	В	3
	and								
	$\mathbf{P} (\mathbf{X} \mid \mathbf{Y}) = \frac{\mathbf{P}(\mathbf{X}, \mathbf{Y})}{\mathbf{P}(\mathbf{Y})}$								
			Y	1	Y	2	Y	3	

X1	*/K	*/L	*/M
X2	*/K	*/L	*/M
	K	L	M

• Two variables are independent if conditional distributions on one of them is identical to each category of the other.

- That is, you find any one of the conditional distributions, and the values in same shaded cells should be equal.
- Then we say both variables are independent of each other.

Example: Brand preferences

• Refer to the same example extended to a third city:

		Preferred brand				
City	Brand A	Brand B	Brand C	Total		
Mumbai	440 (44%)	140 (14%)	420 (42%)	1000 (100%)		
Chennai	44 (44%)	14 (14%)	42 (42%)	100 (100%)		
Delhi	110 (44%)	35 (14%)	105 (42%)	250 (100%)		

- Conditional distributions is same across the cities. Hence we can conclude that brand preference is independent of the cities.
- However, statistical independence is a symmetric property between two categorical variables.
- · Here, brand preference does not depend on city.
- This is a sample data.
- Statistical independence is a symmetric property, so:
 - o If brand preference is independent of city, P(City | Brand) = P(City), then
 - City is also independent of the brand, P(Brand | City) = P(Brand)
 - Proof:

	Brand A	Brand B	Brand C
Mumbai	440 (74%)	140 (74%)	420 (74%)
Chennai	44 (7%)	14 (7%)	42 (7%)
Delhi	110 (19%)	35 (19%)	105 (19%)
Total	594 (100%)	189 (100%)	567 (100%)

- Conclusion:
 - o If X is independent of Y, then
 - Y is also independent of X

Example: Brand preferences

- If the conditional distributions within the rows are identical, then so are the distributions within the columns.
- One can verify that the conditional distribution amongst columns equals (74%, 7%, 19%).
- However, the example was a sample data. What about the population?
- Based on this single sample information, can we draw inferences about the population, as we have been doing?
- Answer is in testing our hypothesis, of course!
- Expected frequency = ?
- Can you tell why we assume the variables to be independent in the null hypothesis?

Chi-square distribution

- Null hypothesis –
- H_0 : The categorical variables are independent.
- Alternate hypothesis –
- H_1 : The categorical variables are not independent.

Let f_{ϱ} be the observed frequencies (from the sample)

Let f_e be the expected frequencies, if the variables were independent.

The expected frequency for a cell equals the product of row and column totals for that cell, divided by the total sample size.

- Null hypothesis is always the no effect null hypothesis. Alternate hypothesis says the opposite thing.
- f_e , the expected frequencies, are calculated assuming that the null hypothesis is true.
- ullet Expected frequency, $m{f_e} = rac{ ext{Row total} imes ext{Column total}}{ ext{Total Sample size}}$
- Chi-square formula

Example: Brand preference

· Brand preference example, with expected frequencies in brackets for each cell.

	Preferred brand				
City	Brand A	Brand B	Brand C	Total	
Mumbai	279 (261.4)	73 (70.7)	225 (244.9)	577	
Chennai	165 (182.6)	47 (49.3)	191 (171.1)	403	
Total	444	120	416	980	

Chi-squared test statistic:

$$\chi^2 = \sum \frac{(f_0 - f_e)^2}{f_e}.$$

• One example:
$$0.261.4 = \frac{444 \times 577}{980}$$

•
$$\frac{(f_o - f_e)^2}{f_e}$$

	Brand A	Brand B	Brand C
Mumbai	1.185	0.075	1.617
Chennai	1.696	0.107	2.314

• Chi-square formula:

$$oldsymbol{\cdot} \quad \chi^2 \ = \ \Sigma rac{\left(f_o \ - \ f_e
ight)^2}{f_e}$$

$$\chi^2=6.\,994~pprox 7$$

How do we calculate df in a contingency table?

Chi-square distribution

- When the H_0 is true, expected and observed frequencies tend to be close for each cell, and the test statistic value is relatively small.
- If H_0 is false, at least some cells have a big gap between expected and observed frequencies, leading to a large test statistic value.
- The larger the χ^2 value, greater is the evidence against the null hypothesis of independence.
- Degrees of freedom for the chi-squared distribution is given by the expression: df =(r-1)*(c-1). r and c are the # of rows and columns respectively.
- Degrees of freedom,

 $Degrees\ of\ freedom = (Number\ of\ rows\ -1) \times (Number\ of\ columns\ -1)$

$$oldsymbol{df} = (oldsymbol{r} - oldsymbol{1}) imes (oldsymbol{c} - oldsymbol{1})$$

Given tabular and calculated chi-squared statistic, when do we accept H_0 ?

Chi-square distribution

- For the brand preference example, calculated test statistic value is the $\chi^2 = 7.0$.
- Degrees of freedom df = 2. So at $\alpha = 0.05$ (95% confidence), the tabular value of test statistic, $\chi^2 = 5.99$.
- So we reject the null hypothesis of independence.
- However, at $\alpha = 0.01$ (99% confidence), the tabular value of test statistic, $\chi^2 = 9.21$, and we can not reject the null hypothesis.
- df = (2-1) imes (3-1) = 1 imes 2 = 2
- Calculated Chi-square statistic: $\chi^2 = 7$
- At: df = 2 and $\alpha = 0.05$ (95% confidence) • Tabular Chi-squared statistic: $\chi^2 = 5.99$
 - Tabular value < Calculated value

» We reject the null hypothesis

- o Conclusion: cities and brand preferences are dependent.
- At: df = 2 and $\alpha = 0.01$ (99% confidence)
 - Tabular Chi-squared statistic: $\chi^2 = 9.21$

Tabular value ≥ Calculated value

» We accept the null hypothesis

- o Conclusion: cities and brand preferences are independent.
- When we are concluding about hypotheses, we're essentially inferencing about the entire population.