Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved. Figures reproduced with permission from Princeton University Press.

1.1: Introduction

Why Study Networks?

- Many economic, political, and social interactions are shaped by the local structure of relationships:
 - trade of goods and services, most markets are not centralized!...
 - sharing of information, favors, risk, ...
 - transmission of viruses, opinions...
 - access to info about jobs...
 - choices of behavior, education, ...
 - political alliances, trade alliances...
- Social networks influence behavior
 - crime, employment, human capital, voting, smoking,...
 - networks exhibit heterogeneity, but also have enough underlying structure to model
- Pure interest in social structure
 - understand social network structure

Primary Questions:

What do we know about network structure?

 How do networks form? Do the `right' networks form?

How do networks influence behavior? (and vice versa...)

Synthesize

- Many literatures deal with networks
 - Sociology
 - Economics
 - Computer Science
 - Statistical Physics
 - Math (random graph)...
- What have we learned? What are important areas for future research?

Three Areas for Research

- Theory
 - network formation, dynamics, design...
 - how networks influence behavior
 - coevolution?
- Empirical and experimental work
 - observe networks, patterns, influence
 - test theory and identify regularities
- Methodology
 - how to measure and analyze networks

Central Focus

- Models for analyzing and understanding networks:
 - Random graph methods
 - Strategic, game theoretic techniques
 - hybrids, statistical models

Goals

- Presume no prior knowledge
- Introduce you to a variety of approaches to modeling networks (more breadth than depth)

 Give a sense of different disciplines' techniques and perspectives

Models

- Provide insight into why we see certain phenomena:
 - Why do social networks have short average path lengths?
- Allow for comparative statics:
 - How does component structure change with density?
 Important in contagion/diffusion/learning...
- Predict out of sample:
 - What will happen with a new policy (vaccine, R&D subsidy, ...)?
- Allow for statistical estimation:
 - Is there significant clustering on a local level or did it appear at random?

Outline

- Part I: Background and Fundamentals
 - Definitions and Characteristics of Networks (1,2)
 - Empirical Background (3)
- Part II: Network Formation
 - Random Network Models (4,5)
 - Strategic Network Models (6, 11)
- Part III: Networks and Behavior
 - Diffusion and Learning (7,8)
 - Games on Networks (9)

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

1.2: Examples and Challenges

•

Outline

- Part I: Background and Fundamentals
 - Definitions and Characteristics of Networks (1,2)
 - Empirical Background (3)
- Part II: Network Formation
 - Random Network Models (4,5)
 - Strategic Network Models (6, 11)
- Part III: Networks and Behavior
 - Diffusion and Learning (7,8)
 - Games on Networks (9)

Two Examples

Idea of data

View of applications

Preview some questions

What do We Know?

- Networks play role in many settings
 - Job contacts, crime, risk sharing, trade, politics, ...
- Network position and structure matters
 - rich sociology literature
 - Medicis not the wealthiest nor the strongest politically,
 but the most central
- "Social" Networks have special characteristics
 - small worlds, degree distributions...

Embeddedness of Economic Activity

Few markets are centralized, anonymous

Specific relationships matter...

Networks in Labor Markets

- Myers and Shultz (1951)- textile workers:
 - 62% first job from contact
 - 23% by direct application
 - 15% by agency, ads, etc.
- Rees and Shultz (1970) Chicago market:
 - Typist 37.3%
 - Accountant 23.5%
 - Material handler 73.8%
 - Janitor 65.5%, Electrician 57.4%...
- Granovetter (1974), Ioannides and Loury (2004) ...

Other Settings

- Networks and social interactions in crime:
 - Reiss (1980, 1988) 2/3 of criminals commit crimes with others
 - Glaeser, Sacerdote and Scheinkman (1996) social interaction important in petty crime, among youths, and in areas with less intact households
- Networks and Markets
 - Uzzi (1996) relation specific knowledge critical in garment industry
 - Weisbuch, Kirman, Herreiner (2000) repeated interactions in Marseille fish markets
- Social Insurance
 - Fafchamps and Lund (2000) risk-sharing in rural Philippines
 - De Weerdt (2002) Tanzania, ...
- Diffusion
 - Hybrid corn adoption Ryan and Gross (1943), Griliches (1957)
 - Drug adoption Coleman, Katz, Menzel (1966)
- Sociology literature interlocking directorates, aids transmission, language, success of immigrant groups...

The Challenge:

How many networks on just 30 nodes?

Person 1 could have 29 possible links, person 2 could have
 28 not counting 1, total = 435

• So 435 possible links, each could either be present or not, so $2 \times 2 \times 2 \dots 435$ times = 2^{435} networks

Atoms in the universe: between 2¹⁵⁸ and 2²⁴⁶

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

1.25: Background Definitions and Notation

•

Representing Networks

- N={1,...,n} nodes, vertices, agents, actors, players...
- edges, links, ties: connections between nodes
 - They may have intensity (weighted)
 - How many hours do two people spend together per week?
 - How much of one country's GDP is traded with another?
 - They may just be 0 or 1 (unweighted)
 - Have two researchers written an article together?
 - Are two people "friends" on some social platform?
 - They may be ``undirected'' or ``directed''
 - coauthors, friends,..., relatives, spouses,, are mutual relationships
 - link from on web page to another, citations, following on social media..., one way

Undirected Network:

$$g = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

"`Adjacency matrix

g_{ij}=1 iff i & j are linked undirected, so symmetric,

Undirected Network:

$$g = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Or list the links:

$$g = \{ \{1,2\}, \{1,4\}, \{2,4\}, \{3,4\} \}$$

Undirected Network:

$$g = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Or list the links: (why?) $g = \{ 12, 14, 24, 34 \}$

Directed Network:

$$g = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

``Adjacency matrix"

Directed Network:

$$g = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

$$g = \{ 12, 14, 24, 41, 43 \}$$

Directed Network:

$$g = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

g = { 12, 14, 24, 41,43 } order of pairs matters

Weighted Directed Network:

$$g = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/2 & 1/2 & 0 \\ 0 & 1/4 & 3/4 \end{pmatrix}$$

"row stochastic"

Weighted Directed Network:

$$g = \begin{pmatrix} 0 & 7 & 2 \\ 5 & 0 & 0 \\ 0 & 4 & 0 \end{pmatrix}$$

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

1.3: Definitions and Notation

Simplifying the Complexity

- Global patterns of networks
 - degree distributions, path lengths...
- Segregation Patterns
 - node types and homophily
- Local Patterns
 - Clustering, Transitivity, Support...
- Positions in networks
 - Neighborhoods, Centrality, Influence...

Representing Networks

- N={1,...,n} nodes, vertices, players
- g in $\{0,1\}^{n\times n}$ adjacency matrix (unweighted, possibly directed)
- g_{ij} = 1 indicates a link, tie, or edge between i and j
- Alternative notation: ij in g a link between i and j
- Network (N,g)

Basic Definitions

Walk from i₁ to i_K: a sequence of nodes (i₁,i₂,..., i_K) and sequence of links (i₁i₂,i₂i₃,...,i_{K-1}i_K) such that i_{k-1}i_k in g for each k

Convenient to represent it as the corresponding sequence of nodes $(i_1, i_2, ..., i_K)$ such that $i_{k-1}i_k$ in g for each k

Basic Definitions

- Path: a walk (i₁,i₂,... i_K) with each node i_k distinct
- Cycle: a walk where $i_1 = i_K$
- Geodesic: a shortest path between two nodes

Paths, Walks, Cycles...

Path (and a walk) from 1 to 7: 1, 2, 3, 4, 5, 6, 7

Simple Cycle (and a walk) from 1 to 1: 1, 2, 3, 1

Walk from 1 to 7 that is not a path: 1, 2, 3, 4, 5, 3, 7

Cycle (and a walk) from 1 to 1: 1, 2, 3, 4, 5, 3, 1

Counting Walks:

$$g = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$g^2 = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 3 \end{pmatrix}$$

number of walks of length 2 from i to j

Counting Walks:

$$g = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

$$g^{3} = \begin{pmatrix} 2 & 3 & 1 & 4 \\ 3 & 2 & 1 & 4 \\ 1 & 1 & 0 & 3 \\ 4 & 4 & 3 & 2 \end{pmatrix}$$

number of walks of length 3 from i to j

Components

 (N,g) is connected if there is a path between every two nodes

- Component: maximal connected subgraph
 - (N',g') is a subset of (N,g)
 - (N',g') is connected
 - i in N' and ij in g implies j in N' and ij in g'

A network with four components:

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

1.4: Diameter

Diameter, Average Path Length

How close are nodes to each other:

- How long does it take to reach average node?
- How fast will information spread?...

How does it depend on network density?

Diameter

- Diameter largest geodesic (largest shortest path)
 - if unconnected, of largest component...

Average path length
 (less prone to outliers)

Diameter:

K levels has $n = 2^{K+1}-1$ nodes so, $K = log_2(n+1) -1$ diameter is 2K

diameter is either n/2 or (n-1)/2

diameter is on order of $2 \log_2(n+1)$

Small average path length and diameter

- Milgram (1967) letter experiments
 - median 5 for the 25% that made it
- Co-Authorship studies
 - Grossman (2002) Math mean 7.6, max 27,
 - Newman (2001) Physics mean 5.9, max 20
 - Goyal et al (2004) Economics mean 9.5, max 29
- WWW
 - Adamic, Pitkow (1999) mean 3.1 (85.4% possible of 50M pages)
- Facebook
 - Backstrom et al (2012) mean 4.74 (721 million users)

Neighborhood and Degree

Neighborhood: N_i(g) = { j | ij in g }
 (usual convention ii not in g)

• Degree: $d_i = \# N_i(g)$

Erdos-Renyi (1959,1960) Random Graphs

start with n nodes

 each link is formed independently with some probability p

Serves as a benchmark ``G(n,p)''

Sequences of Networks

 Links are dense enough so that network is connected almost surely:

$$d(n) \ge (1+\epsilon) \log(n)$$
 some $\epsilon > 0$

d(n)/n → 0:
 network is not too complete

Theorem on Network Structure

If $d(n) \ge (1+\epsilon) \log(n)$ some $\epsilon > 0$ and $d(n)/n \to 0$

Then for large n, average path length and diameter are approximately proportional to log(n)/log(d)

(Proven for increasingly general models:

Erdos-Renyi 59 - Moon and Moser 1966, Bollobas 1981; Chung and Lu 01; Jackson 08; ...)

Theorem on Network Structure

If $d(n) \ge (1+\epsilon) \log(n)$ some $\epsilon > 0$ and $d(n)/n \rightarrow 0$

$$\frac{\text{AvgDist(n)}}{\log(n)/\log(d(n))} \rightarrow^{P} 1$$

same for diameter

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

1.5: Diameter and Trees

•

Diameter

 Bounds can be difficult – theorems are narrow, but intuition is easy

Let's start with an easy calculation --

 Cayley Tree: each node besides leaves has degree d

Intuition:

1 step: Reach d nodes,

Ideas:

1 step: Reach d nodes,

then d(d-1),

Ideas:

1 step: Reach d nodes,

then d(d-1),

then $d(d-1)^2$,

Ideas:

1 step: Reach d nodes,

then d(d-1),

then $d(d-1)^2$, $d(d-1)^3$, ...

After ℓ steps, totals roughly d ℓ

• Moving out ℓ links from root in each direction reaches $d + d(d-1) + d(d-1)^{\ell-1}$ nodes

• This is $d((d-1)^{\ell}-1)/(d-2)$ nodes: roughly $(d-1)^{\ell}$

• To reach n-1, need roughly $(d-1)^{\ell} = n$

or ℓ on the order of log(n)/log(d)

What if not a tree, but E-R random graph?

- all have same degree really are random
 - show that fraction of nodes that have nearly average degree is going to 1
- some links may double back
 - most nodes until the last step are still not reached!

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

1.6: Diameters of Random Graphs

Theorem on Network Structure

If $d(n) \ge (1+\epsilon) \log(n)$ some $\epsilon > 0$ and $d(n)/n \rightarrow 0$

$$\frac{\text{AvgDist(n)}}{\log(n)/\log(d(n))} \rightarrow^{P} 1$$

same for diameter

• This is $d((d-1)^{\ell}-1)/(d-2)$ nodes or roughly $(d-1)^{\ell}$

• To reach n-1, need roughly $(d-1)^{\ell} = n$ or

ℓ on the order of log(n)/log(d)

What if not a tree, but Erdos-Renyi random graph?

- all have same degree really are random
 - show that fraction of nodes that have nearly average degree is going to 1
- $E[d] > (1+\epsilon) \log(n)$

• Chernoff Bounds:

X is binomial variable then

$$Pr(E[X]/3 \le X \le 3E[X]) \ge 1 - e^{-E[X]}$$

• Chernoff Bounds:

X is binomial variable then

$$Pr(E[X]/3 \le X \le 3E[X]) \ge 1 - e^{-E[X]}$$

http://en.wikipedia.org/wiki/Chernoff bound

• Chernoff Bounds: Links binomial implies

Probability that node has degree close to average:

$$Pr(d/3 \le d_i \le 3d) \ge 1 - e^{-d}$$

Pr (d/3 \leq all degrees \leq 3d) \geq (1 - e^{-d})ⁿ

(missing steps: degrees not quite ind.)

Chernoff Bounds:

Pr (d/3 \leq all degrees \leq 3d) \geq (1 - e^{-d})ⁿ

• If d> (1+ ϵ) log(n) then Pr (d/3 \le all degrees \le 3d) > (1 - 1/n^{1+\epsilon})^n $\rightarrow \exp(-n^{-\epsilon}) \rightarrow 1$

• So:

• If d> (1+ ϵ) log(n) then Pr (d/3 \leq all degrees \leq 3d) \rightarrow 1

• Thus:

• If $d > (1+\epsilon) \log(n)$ then with prob $\rightarrow 1$:

 $\log(n)/\log(3d) < \ell < \log(n)/\log(d/3)$

Avg distance and diameter:

Large d: log(3d) & log(d/3) tend to log(d)

• $\log(n)/\log(3d) < \ell < \log(n)/\log(d/3)$

• $\log(n)/\log(d) \approx \ell$

some links may double back

 most nodes until the last step are still not reached, so most links still reaching new nodes!

After k steps reached around d^k nodes and n - d^k still unreached

if k< log(n)/log(d) then n - d^k (much) bigger than d^k
 so most nodes that link to are still unreached...

Ideas:

Most at maximum distance (100, 10000, 1000000, 1000000)

so average distance is actually same order as diameter

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

1.7: Diameters in the World

Theorem on Network Structure

If $d(n) \ge (1+\epsilon) \log(n)$ some $\epsilon > 0$ and $d(n)/n \to 0$

Then for large n, average path length and diameter are approximately proportional to log(n)/log(d)

(Proven for increasingly general models:

Erdos-Renyi 59 - Moon and Moser 1966, Bollobas 1981; Chung and Lu 01; Jackson 08; ...)

Small Worlds/Six Degrees of Separation

n = 6.7 billion (world population)

d = 50 (friends, relatives...)

log(n)/log(d) is about 6!!

Examine data and diameter

Add Health data set

 Schools vary in average degree and homophily

Does diameter match log(n)/log(d)?

Average Shortest Path vs Log(n)/Log(d) 84 High Schools – Ad Health

Erdos Numbers

- Number of links in co-authorship network to Erdos
- Had 509 co-authors, more than 1400 papers
- 2004 auction of co-authorship with William Tozier (Erdos #=4) on E-Bay, winner paid > 1000\$
- Kevin Bacon site....

Density: Average Degree

HS Friendships (CJP 09) 6.5

Romances (BMS 03) 0.8

Borrowing (BCDJ 12) 3.2

Co-authors (Newman 01, GLM 06)

Bio 15.5

Econ 1.7

Math 3.9

Physics 9.3

Facebook (Marlow 09) 120

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

1.8: Degree Distributions

Degree Distributions

Average degree tells only part of the story:

Degree Distribution, G(n,p):

probability that node has d links is binomial
 [(n-1)! / (d!(n-d-1)!)] p^d (1-p)^{n-d-1}

Large n, small p, this is approximately a **Poisson** distribution:
 [(n-1)^d / d!] p^d e^{-(n-1)p}

hence name ``Poisson random graphs''

Random network p=.02, 50 nodes

Degree Distribution p=.02

Note

many isolated nodes

several components

 no component has more than a small fraction of the nodes, just starting to see one large one emerge

Random Network p=.08, 50 nodes

Degree Distribution p=.08

Distribution of links per node: Fat tails (Price 1965)

- More high and low degree nodes than predicted at random
 - Citation Networks too many with 0 citations, too many with high numbers of citations to have citations drawn at random
 - ``Fat tails'' compared to random network
- Related to other settings (wealth, city size, word usage...): Pareto (1896), Yule (1925), Zipf (1949), Simon (1955),

Degree – ND www Albert, Jeong, Barabasi (1999)

Scale Free Distributions

• $P(d) = c d^{-a}$

• log(P(d)) = log(c) -a log(d)

Bearman, Moody, and Stovel's 04 High School Romance

Romance Network

Bearman et al HS Network

fit: Uniform at Random .99

fit: Power .84

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

1.9: Clustering

Clustering

- What fraction of my friends are friends of each other?
- $Cl_i(g) = \#\{kj \text{ in } g \mid k, j \text{ in } N_i(g)\} / \#\{kj \mid k, j \text{ in } N_i(g)\}$
- Average clustering:

$$Cl^{avg}(g) = \sum_{i} Cl_{i}(g) / n$$

Clustering

- What fraction of my friends are friends?
- $Cl_i(g) = \#\{ kj \text{ in } g \mid k, j \text{ in } N_i(g) \} / \#\{ kj \mid k, j \text{ in } N_i(g) \}$
- Average clustering: $Cl^{avg}(g) = \sum_{i} Cl_{i}(g) / n$
- Overall clustering:

 $Cl(g) = \sum_i \#\{kj \text{ in } g \mid k, j \text{ in } N_i(g)\} / \sum_i \#\{kj \mid k, j \text{ in } N_i(g)\}$

Differences in Clustering

Overall tends to 0

Clustering in a Poisson Random Network

 Average and Overall clustering tend to 0, if max degree is bounded and network becomes large:

Cl(g) =
$$\sum_i$$
 #{ kj in g | k, j in N_i(g)} / \sum_i #{ kj | k, j in N_i(g)} is simply p

If degree is bounded, then p (n-1) is bounded

So p goes to 0 as n grows

High? Clustering Coefficients -

- Prison friendships
 - .31 (MacRae 60) vs .0134
- co-authorships
 - .15 math (Grossman 02) vs .00002,
 - .09 biology (Newman 01) vs .00001,
 - .19 econ (Goyal et al 06) vs .00002,
- www
 - .11 for web links (Adamic 99) vs .0002

Week 1 Wrap

- Many relationships are ``networked'' and understanding network structure can help understand behavior and outcomes
- Networks are complex, but can be partly described by some characteristics
 - degree distributions
 - clustering
 - diameter ...
- Tree-like structures are generated by random links lead to short paths
- Many observed social networks are more clustered than would arise at random

Week 1: References In Order Mentioned

- Jackson, M.O. (2008) Social and Economic Networks, Princeton University Press
- Padgett, J.F., and C.K. Ansell (1993) "Robust Action and the Rise of the Medici, 1400–1434," American Journal of S
- Kent, D. (1978) The Rise of the Medici: Faction in Florence 1426–1434, Oxford: Oxford University Press.
- Elliott, M.L., B. Golub and M.O. Jackson (2012) ``Financial Networks and Contagion," SSRN working paper 2175056
- Myers C.A., and G.P. Shultz (1951) *The Dynamics of a Labor Market*, New York: Prentice-Hall.
- Rees AJ, Shultz GP. 1970. Workers in an Urban Labor Market. Chicago: Univ. Chicago Press
- Granovetter M. 1973. The strength of weak ties. Am. J. Sociol. 78: 1360 80
- Ioannides YM, Datcher-Loury L. 2004. Job information networks, neighborhood effects and inequality. J. Econ. Lit. 424: 1056 93
- Reiss AJ. 1980. Understanding changes in crime rates. In Indicators of Crime and Criminal Justice: Quantitative Studies. Washington, DC: Bur. Justice Stat.
- Reiss AJ. 1988. Co-offending and criminal careers. In Crime and Justice: A Review of Research, Vol. 10, ed. M Tonry. Chicago: Univ. Chicago Press
- Glaeser E, Sacerdote B, Scheinkman J. 1996. Crime and social interactions. Q. J Econ. 111: 507 48
- Uzzi B. 1996. The sources and consequences of embeddedness for the economic performance of organizations: the network effect. Am. Sociol. Rev. 61: 674 98
- Weisbuch, G., A. Kirman, and D. Herreiner (2000) "Market Organization," Economica 110:411–436.
- Fafchamps M, Lund S. 2003. Risk-sharing networks in rural Philippines. J. Dev. Econ. 71: 261 87
- De Weerdt J. 2004. Risk-sharing and endogenous network formation. In Insurance Against Poverty, ed. S Dercon. Oxford: Oxford Univ. Press
- Ryan, B., and N.C. Gross (1943) "The Diffusion of Hybrid Seed Corn in Two Iowa Communities," Rural Sociology 8:15–24.
- Griliches, Z. (1957) "Hybrid Corn: An Exploration in the Economics of Technological Change," Econometrica 25(4):501–522.
- Coleman, J.S., E. Katz, and H. Menzel (1966) *Medical Innovation: A Diffusion Study,* Indianapolis, Ind.: Bobbs-Merrill.

Week 1: References Cont'd

- Milgram, S. (1967) "The Small-World Problem," *Psychology Today* 2:60–67.
- Grossman, J.W. (2002) "The Evolution of the Mathematical Research Collaboration Graph," in *Proceedings of the . Conference on Combinatorics* (Congressus Numerantium, Vol. 158).
- Newman, M.E.J. (2001) Scientific collaboration networks. I. Network construction and fundamental results Phys. Rev. E 64, 016131
- Goyal, S., M. van der Leij, and J.-L. Moraga-Gonz´alez (2006) "Economics: An Emerging Small World," *Journal of Political Economy* 114(2):403–412.
- Adamic, L.A. (1999) The SmallWorldWeb, in Proceedings of the ECDL. Lecture Notes in Computer Science 1696, Berlin: Springer-Verlag.
- Backstrom, L., P. Boldiy, M. Rosay, J. Ugander S. Vignay (2012) "Four Degrees of Separation" arXiv 1111.4570v3
- Erd"os, P., and A. R'enyi (1959) "On Random Graphs," Publicationes Mathematicae Debrecen 6:290–297.
- ---(1960) "On the Evolution of Random Graphs," Publication of the Mathematical Institute of the Hungarian Academy of Sciences 5:17–61.
- --- (1961) "On the Strength of Connectedness of a Random Graph," ActaMathamatica Academy of Sciences of Hungarica 12:261–267.
- JW Moon, L Moser (1966) "Almost all (0, 1) matrices are primitive," Studia Sci. Math. Hungar,
- B Bollobás (1981) "Diameter of Random Graphs," Trans. Am. Math. Soc., 1981 ams.org
- Chung, F., and L. Lu (2002) The Average Distances in Random Graphs with Given Expected Degrees, Proceedings of the National Academy of Sciences 99:15879 15882.
- Jackson, M.O. (2008b) Average Distance, Diameter, and Clustering in Social Networks with Homophily, arXiv:0810.2603v1, in the Proceedings of the Workshop in Internet and Network Economics (WINE 2008), Lecture Notes in Computer Science, Edited by C. Papadimitriou and S. Zhang, Springer Verlag, Berlin Heidelberg.
- Golub, B. and M.O.Jackson (2012) "Network Structure and the Speed of Learning: Measuring Homophily Based on its Consequences," *Annals of Economics and Statistics* 107/108 July-Dec., 2012.

Week 1: References Cont'd

- Currarini, S., M.O. Jackson, and P. Pin (2010) "Identifying the roles of race-based choice and chance in high school friendship network formation," in the Proceedings of the National Academy of Sciences, 107(11): 4857 4861
- Bearman, P., J. Moody, and K. Stovel (2004) "Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks," Chicago, University of Chicago, manuscript.
- Banerjee, A., A.G.Chandrasekhar, E. Duflo, M.O. Jackson (2012) "Diffusion of Microfinance," *Science*, 26 July 2013: Vol. 341 no. 6144, DOI: 10.1126/science.1236498.
- Marlow, C. (2009). Maintained Relationships on Facebook. mimeo
- Price DJS. 1965. Networks of scientific papers. Science 149: 510 15
- Pareto, V. (1896) Cours d'Economie Politique, Geneva: Droz
- Yule, G. (1925) "A Mathematical Theory of Evolution Based on the Conclusions of Dr. J.C. Willis," F.R.S. Philosophical Transactions of the Royal Society of London B 213:21–87.
- Zipf, G. (1949) *Human Behavior and the Principle of Least Effort*, Cambridge, Mass.: Addison-Wesley.
- Simon, H. (1955) "On a Class of Skew Distribution Functions," Biometrika 42(3–4):425–440.
- Albert, R., H. Jeong, and A.L. Barab´asi (1999) "Diameter of theWorldWideWeb," Nature 401:130–131.
- MacRae, J. (1960) "Direct Factor Analysis of Sociometric Data," Sociometry 23:360–371.