Höhere Mathematik

Jil Zerndt, Lucien Perret May 2024

Rechnerarithmetik

Zahlendarstellung und Maschinenzahlen -

Maschinendarstellbare Zahlen M zur Basis B:

$$M = \left\{ x \in \mathbb{R} \mid x = \pm 0. m_1 m_2 m_3 \dots m_n \cdot B^{\pm e_1 e_2 \dots e_l} \right\} \cup \{0\}$$

Dabei gilt $m_1 \neq 0, m_i, e_i \in \{0, 1, \dots, B-1\}$ für $i \neq 0$ und $B \in \mathbb{N}(B > 1)$

Der Wert $\widehat{\omega}$ einer solchen Zahl ist definiert als

$$\widehat{\omega} = \sum_{i=1}^{n} m_i B^{\hat{\mathbf{e}}-i}, \quad \widehat{\mathbf{e}} = \sum_{l=1}^{l} e_i B^{l-i}$$

 \boldsymbol{x} wird als n -stellige Gleitpunktzahl zur Basis \boldsymbol{B} bezeichnet.

Beispiel:
$$\underbrace{0.3211}_{n=4} \cdot \underbrace{4^{12}}_{l=2}$$

1.
$$\hat{e} = 1 \cdot 4^1 + 2 \cdot 4^0 = 1$$

1.
$$\hat{e} = 1 \cdot 4^1 + 2 \cdot 4^0 = 6$$

2. $\hat{\omega} = 3 \cdot 4^5 + 2 \cdot 4^4 + 1 \cdot 4^3 + 1 \cdot 4^2 = 3664$

Gleitpunktzahlen

- Single Precision (32 Bit) V = 1 Bit E = 8 Bit M = 23 Bit
- Double Precision (64 Bit) V = 1 Bit E = 11 Bit M = 52 Bit Bei allgemeiner Basis B gilt (Maschinengenauigkeit = eps)

eps :=
$$\frac{B}{2} \cdot B^{-n}$$
, $eps_{10} := 5 \cdot 10^{-n}$

Sie bezeichnet den maximalen relativen Fehler, der durch Rundungen entstehen kann.

$$\left| \frac{rd(x) - x}{x} \right| \le 5 \cdot 10^{-n} \quad \left(\operatorname{da} x \ge 10^{e-1} \right)$$

Approximations- und Rundungsfehler -

Die Maschinenzahlen sind nicht gleichmässig verteilt. Bei jedem Rechner gibt es eine grösste (x_{max}) und kleinste (x_{min}) positive Maschinenzahl.

- $x_{\text{max}} = B^{e_{\text{max}}} B^{e_{\text{max}}-n} = (1 B^{-n}) \cdot B^{e_{\text{max}}}$
- $x_{\min} = B^{e_{\min}-1}$

Definition

Gegeben sei eine Näherung \tilde{x} zu einem exakten Wert x

- Absoluter Fehler $|\tilde{x}-x|$
- Relativer Fehler $\frac{\tilde{x}-x}{r} |bzw \cdot \frac{|\tilde{x}-x|}{|x|}$

remerrortphanzung der Funktionsauswertungen / Kondi-

Näherung für den absoluten und relativen Fehler bei Funktionsauswertungen

$$\underbrace{\left|f(\tilde{x}) - f(x)\right|}_{} \approx \left|f'(x)\right| \cdot \underbrace{\left|\tilde{x} - x\right|}_{}$$

$$\underbrace{\frac{|f(\tilde{x}) - f(x)|}{|f(x)|}}_{|f(x)|} \approx \underbrace{\frac{|f'(x)| \cdot |x|}{|f(x)|}}_{|f(x)|}$$

Den Faktor K nennt man Konditionszahl.

$$K := \frac{\left| f'(x) \right| \cdot |x|}{|f(x)|}$$

Relative Fehlervergrösserung von x, bei einer Funktionsauswertung von

- Gut konditionierte Probleme Konditionszahl ist klein (< 1)
- Schlecht konditionierte Probleme Konditionszahl ist gross (>1)

Lösung von Nullstellenproblemen

Problemstellung NSP ---

Eine Gleichung der Form F(x) = x heisst Fixpunktgleichung.

• Ihre Lösungen \bar{x} , für die $F(\bar{x}) = \bar{x}$ erfüllt ist, heissen Fixpunkte.

Fixpunktiteration -

Gegeben sei $F:[a,b]\to\mathbb{R}$, mit $x_0\in[a,b]$. Die rekursive Folge

$$x_{x+1} \equiv F(x_n), \quad n = 0, 1, 2, \dots$$

Heisst Fixpunktiteration von F zum Startwert x_0 .

Sei $F:[a,b]\to\mathbb{R}$ mit stetiger Ableitung F' und $\bar{x}\in[a,b]$ ein Fixpunkt von F. Dann gilt für die Fixpunktiteration $x_{n+1} = F(x_n)$

- $|F'(\bar{x})| < 1$ x_n konvergiert gegen \bar{x} , falls x_0 nahe genug bei \bar{x} liegt anziehend
- $|F'(\bar{x})| > 1$ x_n konvergiert für keinen Startwert $x_0 \neq \bar{x}$ abstossend

Banachscher Fixpunktsatz

Sei $F:[a,b] \to [a,b]$ und es existiere eine Konstante α , wobei gilt

- $\alpha(0 < \alpha < 1)$: Lipschitz-Konstante
- $\forall x,y (x,y \in [a,b])$

$$|F(x) - F(y)| \le \alpha |x - y|, \quad \frac{|F(x) - F(y)|}{|x - y|} \le \alpha$$

Dann gilt

- F hat genau einen Fixpunkt \bar{x} in [a, b]
- Die Fixpunktiteration $x_{n+1} = F(x_n)$ konvergiert gegen \bar{x} für alle Startwerte $x_0 \in [a, b]$
- Es gelten die Fehlerabschätzungen
- $|x_n \bar{x}| \le \frac{\alpha^n}{1-\alpha} \cdot |x_1 x_0|$ a-priori Abschätzung
- $|x_n \bar{x}| \leq \frac{\alpha}{1-\alpha} \cdot |x_n x_{n-1}|$ a-posteriori Abschätzung

Berechne die Nullstellen von $p(x) = x^3 - x + 0.3$ Fixpunktiteration

$$x_{n+1} = F(x_n) = x_n^3 + 0.3$$

 $F(x_n)$ steigt stetig an

 $F: I \to I$ gilt wenn...

$$F(a) > a$$
, $F(b) < b$

Alpha bestimmen / überprüfen

$$\alpha = \max_{x \in I} \left| F'(x) \right| \le 1$$

Anzahl Iterationen n berechnen

$$n \ge \frac{\ln\left(\frac{tol \cdot (1-\alpha)}{|x_1 - x_0|}\right)}{\ln \alpha}$$

Newton-Verfahren

Sukzessive Approximation der Funktionskurve y = f(x) durch Tangenten, deren Schnittpunkt mit der x-Achse problemlos berechnet werden

Lösung ξ der Gleichung f(x) = 0 finden.

- > Startwert x_0 geeignet wählen (nahe bei ξ)
- > Iterationsvorschrift:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Die Folge $(x_n)_{n\in\mathbb{N}}$ konvergiert gegen die Lösung ξ der Gleichung f(x) =

 (x_0, x_1, x_2, \ldots) ist sicher gegeben, wenn im Intervall [a, b], in dem alle Näherungswerte (und die Nullstellen selbst) liegen sollen, die Bedingung

$$\left| \frac{f(x) \cdot f''(x)}{\left\lceil f'(x) \right\rceil^2} \right| < 1$$

Erfüllt ist (hinreichende Konvergenzbedingung)

Vereinfachtes Newton-Verfahren

Statt in jedem Schritt $f'(x_n)$ auszurechnen, kann man immer wieder $f'(x_0)$ verwenden.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_0)}$$

Sekantenverfahren

Der Schnittpunkt von Sekanten durch jeweils zwei Punkte $(x_0, f(x_0))$ und $(x_1, f(x_1))$ mit der x-Achse, wird berechnet.

$$x_{n+1} = x_n - \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} \cdot f(x_n)$$

Konvergenzgeschwindigkeit

Sei (x_n) eine gegen \bar{x} konvergierende Folge. Dann hat das Verfahren die Konvergenzordnung $q \ge 1$ wenn es eine Konstante c > 0 gibt mit

$$|x_{n+1} - \bar{x}| < c \cdot |x_n - \bar{x}|^q$$

Für alle n.

- q = 1 lineare Konvergenz verlangt man noch c < 1.
- q=2 quadratische Konvergenz

Fehlerabschätzung

Nullstellensatz von Bolzano

Sei $f: [a,b] \to \mathbb{R}$ stetig mit f(a) < 0 < f(b) oder f(a) > 0 > f(b). Dann muss f in [a, b] eine Nullstelle besitzen.

Sei x_n also ein iterativ bestimmter Näherungswert einer exakten Nullstelle ξ der stetigen Funktion $F:\mathbb{R}\to\mathbb{R}$ und es gelte für ein vorgegebene Fehlerschranke / Fehlertolerant $\epsilon > 0$

$$f(x_n - \epsilon) \cdot f(x_n + \epsilon) < 0$$

Dann muss gemäss dem Nullstellensatz im offenen Intervall $(x_n - \epsilon, x_n + \epsilon)$ eine Nullstelle ξ liegen und es gilt die Fehlerabschätzung

$$|x_n - \xi| < \epsilon$$

Lineare Gleichungssysteme

Gauss-Algorithmus -

Gauss-Algorithmus für ein Gleichungssystem Ax = b:

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \in \mathbb{R}^{n \times n}, \quad x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, \quad b = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Umformung des Gleichungssystems Ax = b, in ein äquivalentes Gleichungssystem Ax = b, so dass die Matrix A als obere Dreiecksmatrix

- $z_i := z_i \lambda z_i$ $i < j(\lambda \in \mathbb{R}), z_i$ ist die *i*-te Zeile des Gleichungs-
- $z_i \rightarrow z_j$ Vertauschen der *i*-ten und *j*-ten Zeile im System Rekursive Vorschrift für ein Gleichungssystem $\tilde{A}x = b$:

$$x_{n} = \frac{b_{n}}{a_{nn}}, x_{n-1} = \frac{b_{n-1} - a_{(n-1)n} \cdot x_{n}}{a_{n-1n-1}}, \dots, x_{1} = \frac{b_{1} - a_{12} \cdot x_{2} - \dots - a_{1n} \cdot x_{n}}{a_{11}}$$

$$x_{i} = \frac{b_{i} - \sum_{j=i+1}^{n} a_{ij} \cdot x_{j}}{a_{ii}}, \quad i = n, n-1, \dots, 1$$
Das libbur.

Fehlerfortpflanzung und Pivotisierung

Für i = 1...n:

Erzeuge Nullen unterhalb des Diagonalelements in der i-ten Spalte

• Suche das betragsgrösste Element unterhalb der Diagonalen in der i-ten Spalte: Wähle k so, dass $|a_{ki}| = \max \left\{ |a_{ji}| \mid j = i, \dots n \right\}$

$$\left\{ \begin{array}{ll} \text{falls } a_{ki} = 0: & \text{A ist nicht regulär; stop;} \\ \text{falls } a_{ki} \neq 0: & z_k \leftrightarrow z_i \end{array} \right.$$

• Eliminationsschritt:

Für j = i + 1, ..., n eliminiere das Element a_{ii} durch

$$z_j \vcentcolon= z_j - rac{a_{ji}}{a_{ii}} \cdot z_i$$

Dreieckszerlegung von Matrizen -

Determinante

Gegeben sei eine Matrix A, woraus die obere Dreiecksmatrix \tilde{A} entsteht.

- \tilde{a}_{ii} : Diagonalelemente von \tilde{A}
- l: Anzahl Zeilenvertauschungen

$$\det(A) = (-1)^l \cdot \det(\tilde{A}) = (-1)^l \cdot \prod_{i=1}^n \tilde{a}_{ii}$$

Beispiel

$$\begin{pmatrix} 3 & 5 & 1 \\ 0 & 2 & 2 \\ 6 & 14 & 8 \end{pmatrix} = \begin{pmatrix} 3 & 5 & 1 \\ 0 & 2 & 2 \\ 0 & 4 & 6 \end{pmatrix} = \begin{pmatrix} 3 & 5 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$
$$\det(A) = (3) \cdot (2) \cdot (2) = 12$$

LR-Zerlegung ·

Das ursprüngliche Gleichungssystem Ax = b lautet mit der LR-Zerlegung

$$LRx = b \Leftrightarrow Ly = b \text{ und } Rx = y$$

Für eine $n \times n$ Matrix A, gibt es $n \times n$ Matrizen L und R mit den

- L ist eine normierte untere Dreiecksmatrix mit $l_{ii} = 1 (i = 1, ..., n)$
- ullet $\in R$ Rist eine obere Dreiecksmatrix
- mit $r_{ii} \neq 0 (i = 1, ..., n)$ $A = L \cdot R$ ist die LR-Zerlegung von A.

Zerlegung mit Zeilenvertauschung

 P_K erhält man aus der Einheitsmatrix I_n durch Vertauschen der *i*-ten und j-ten Zeile.

Zeilen-Vertauschungen werden durch $P_1 \dots P_n$ ausgedrückt.

$$P = \prod_{i=1}^{n} P_{n-i+1}$$

Mit dieser Permutationsmatrix erhält man dann als RL- Zerlegung

$$PA = LR$$

Das lineare Gleichungssystem Ax = b lässt sich schreiben als PAx = Pbbzw. LRx = Pb und in den zwei Schritten lösen

$$Ly = Pb \to y = \cdots$$
$$Rx = y \to x = \cdots$$

Vertauschung der 1. Und 3. Zeile bei der Matrix

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \rightarrow A^* = \begin{pmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}$$

$$I^* \cdot A = P_1 \cdot A = A^* = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 7 & 8 & 9 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix}$$

$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -3 & -2 \\ 5 & 1 & 4 \end{pmatrix} = LR$$

$$i = 1, j = 2 \rightarrow z_2 = z_2 - \frac{1}{(-1)} \cdot z_1 \rightarrow A_1 = \begin{pmatrix} -1 \\ 1 - 1 & -3 + 1 & -1 + 1 \\ 5 & 1 & 4 \end{pmatrix}$$

$$i = 1, j = 3 \rightarrow z_3 = z_3 - \underbrace{\frac{5}{(-1)}}_{l_{21}} \cdot z_1 \rightarrow A_2 = \begin{pmatrix} -1 & 1 & 1 \\ 0 & -2 & -1 \\ 5 - 5 & 1 + 5 & 4 + 5 \end{pmatrix}$$

$$i = 2, j = 3 \rightarrow z_3 \equiv z_3 - \underbrace{\frac{6}{(-2)}}_{l_{21}} \cdot z_2 \rightarrow A_3 = \begin{pmatrix} -1 \\ 0 \\ 0 + 0 \\ 0 \end{pmatrix}$$

Einsetzen in L

$$l_{21} = \frac{1}{-1} = -1, \quad l_{31} = \frac{5}{-1} = -5, \quad l_{32} = \frac{6}{-2} = -3$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 5 & -3 & 1 \end{pmatrix}$$

Eine Matrix $Q \in \mathbb{R}^{n \times n}$ heisst orthogonal, wenn $Q^T \cdot Q = I_n$ ist. Dabei ist I_n die $n \times n$ Einheitsmatrix.

Sei $A \in \mathbb{R}^{n \times n}$. Eine QR-Zerlegung von A ist eine Darstellung von A als Produkt einer orthogonalen $n \times n$ Matrix Q und einer rechtsoberen $n \times n$ Dreiecksmatrix R

$$A = QR$$

Lösung des Gleichungssystems

$$Ax = b \Leftrightarrow QRx = b \Leftrightarrow Rx = Q^Tb$$

Algorithmus zur QR-Zerlegung

$$R := A, \quad Q := I_n$$

Für i = 1, ..., n - 1:

erzeuge Nullen in R in der i-ten Spalte unterhalb der Diagonalen

- 1. H_i mit $(n-i+1)\times(n-i+1)$ berechnen
- 2. H_i mit I_{i-1} Block links oben erweitern $\rightarrow Q_i$
- 3. $R := Q_i \cdot R$
- 4. $Q := Q \cdot Q^T$

Ablauf

$$H_{1} \cdot A_{1} = H_{1} \cdot \underbrace{\begin{pmatrix} * & * & * \\ * & * & * \\ * & * & * \end{pmatrix}}_{A_{1}} = \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \rightarrow \underbrace{\begin{pmatrix} * & * \\ * & * \end{pmatrix}}_{A_{2}}$$

$$a_{1} = \begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix}, \quad e_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

- 1. $v_1 := a_1 + \operatorname{sign}(a_{11}) \cdot |a_1| \cdot e_1$
- 2. $u_1 := \frac{1}{|v_1|} \cdot v_1$
- 3. $H_1 := I_n 2u_1u_1^T = Q_1$

$$H_2 \cdot A_2 = H_2 \cdot \underbrace{\begin{pmatrix} * & * \\ * & * \end{pmatrix}}_{A_2} = \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$$

$$Q_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & H_2 & H_2 \\ 0 & H_2 & H_2 \end{pmatrix}$$

$$Q := Q_1^T \cdot Q_2^T, \quad R := \underbrace{Q_2 \cdot Q_1}_{Q^{-1}} \cdot A$$

Fehlerrechnung und Aufwandabschätzung

Eine Abbildung $\| \| : \mathbb{R}^n \to \mathbb{R}$ heisst Vektornorm, wenn die folgenden Bedingungen für alle $x, y \in \mathbb{R}^n, \lambda \in \mathbb{R}$ erfüllt sind:

- ||x|| > 0 und $||x|| = 0 \Leftrightarrow x = 0$
- $\|\lambda x\| = |\lambda| \cdot \|x\|$
- $||x+y|| \le ||x|| + ||y||$ "Dreiecksgleichung"

Für Vektoren $x=(x_1,x_2,\ldots,x_n)^T\in\mathbb{R}^n$ gibt es die folgenden Vektornormen

• 1-Norm Summennorm

$$||x||_1 = \sum_{i=1}^n |x_i|$$

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

$$||x||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

- 2-Norm Euklidische Norm
- ∞-Norm Maximumnorm

Für eine $n \times n$ Matrix $A \in \mathbb{R}^{n \times n}$ gibt es die folgenden Matrixnormen

- 1-Norm Spaltensummennorm $||A||_1 = \max_{j=1,...,n} \sum_{i=1}^n |x_i|$
- 2-Norm Spektralnorm $||A||_2 = \sqrt{\rho(A^T A)}$
- ∞ -Norm Zeilensummennorm $||A||_{\infty} = \max_{i=1,...,n} \sum_{j=1}^{n} |a_{ij}|$

Fehlerabschätzung ·

Abschätzung für Fehlerhafte Matrizen

Sei $\|.\|$ eineNorm, A, $\tilde{A} \in \mathbb{R}^{n \times n}$ eine reguläre $n \times n$ Matrix und $x, \tilde{x}, b, \tilde{b} \in \mathbb{R}^n$ mit Ax = b und $\tilde{A}\tilde{x} = \tilde{b}$. Falls

$$\operatorname{cond}(A) \cdot \frac{\|A - \tilde{A}\|}{\|A\|} < 1$$

Dann gilt

$$\frac{\|x - \tilde{x}\|}{\|x\|} \le \frac{\operatorname{cond}(A)}{1 - \operatorname{cond}(A) \cdot \frac{\|A - \tilde{A}\|}{\|A\|}} \cdot \left(\frac{\|A - \tilde{A}\|}{\|A\|} + \frac{\|b - \tilde{b}\|}{\|b\|}\right)$$

Abschätzung für Fehlerhafte Vektoren

Sei $\|.\|$ eine Norm, $A \in \mathbb{R}^{n \times n}$ eine reguläre $n \times n$ Matrix und $x, \tilde{x}, b, \tilde{b} \in \mathbb{R}^n$ mit Ax = b und $A\tilde{x} = \tilde{b}$. Dann gilt für den absoluten und den relativen Fehler in x:

- $||x \tilde{x}|| \le ||A^{-1}|| \cdot ||b \tilde{b}||$
- $\frac{\|x-\tilde{x}\|}{\|x\|} \le \|A\| \cdot \|A^{-1}\| \cdot \frac{\|b-\tilde{b}\|}{\|b\|}$, falls $\|b\| \ne 0$ Die Zahl cond $(A) = \|A\| \cdot \|A^{-1}\|$ nennt man Konditionszahl der Matrix A
- $\operatorname{cond}(A)$ gross \to schlechte Konditionierung Untersuchen Sie die Fehlerfortpflanzung im linearen Gleichungssystem Ax = b mit

$$A = \begin{pmatrix} 2 & 4 \\ 4 & 8.1 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 1.5 \end{pmatrix}$$

Für den Fall, dass die rechte Seite von \tilde{b} in jeder Komponente um maximal 0.1 von b abweicht.

$$\begin{split} \|\tilde{b} - b\|_{\infty} &\leq 0.1, \quad \|A\|_{\infty} = \max\{2 + 4, 4 + 8.1\} = 12.1 \\ \left\|A^{-1}\right\|_{\infty} &= \left\|\begin{pmatrix} 40.5 & -20 \\ -20 & 10 \end{pmatrix}\right\|_{\infty} = 60.5 \\ \operatorname{cond}(A)_{\infty} &= \|A\|_{\infty} \cdot \left\|A^{-1}\right\|_{\infty} = 12.1 \cdot 60.5 = 732.05 \\ \left\|x - \tilde{x}\right\|_{\infty} &\leq \left\|A^{-1}\right\|_{\infty} \cdot \left\|b - \tilde{b}\right\|_{\infty} \leq 60.5 \cdot 0.1 = \underbrace{6.05}_{\text{absoluter Fehler}} \\ \frac{\|x - \tilde{x}\|_{\infty}}{\|x\|_{\infty}} &\leq \operatorname{cond}(A)_{\infty} \cdot \frac{\|b - \tilde{b}\|_{\infty}}{\|b\|_{\infty}} \leq 732 \cdot \frac{0.1}{1.5} = \underbrace{48.8}_{\text{relativer Fehler}} \end{split}$$

Aufwandabschätzung ·

Die Anzahl Gleitkomma
operationen werden in Abhängigkeit von n bestimmt.

$$\sum_{i=1}^n i = \frac{(n+1) \cdot n}{2} \text{ und } \sum_{i=1}^n i^2 = \frac{1}{3} n^3 + \frac{1}{2} n^2 + \frac{1}{6} n, \quad n = \text{ Dimension}$$

Ein Algorithmus hat die Ordnung $O\left(n^q\right)$, wenn q>0 die minimale Zahl ist, für die es eine Konstante C>0 gibt, so dass der Algorithmus für alle $n\in N$ weniger als

Beispiel

Wie viele Gleitkommaoperationen benötigt das Rückwärtseinsetzen gemäss Gauss?

$$x_i = \frac{b_i - \sum_{j=i+1}^n a_{ij} \cdot x_j}{a_{ii}}, \quad i = n, n-1, \dots, 1$$

Multiplikation und Division

$$1+2+3+\cdots+n=\sum_{i=1}^{n}i=\frac{(n+1)\cdot n}{2}$$

Addition und Subtraktion

$$0+1+2+\cdots+n-1=\sum_{i=1}^{n-1}i=\frac{(n-1+1)\cdot(n-1)}{2}=\frac{(n-1)\cdot n}{2}$$

Summe beider Operationstypen

$$\frac{n^2}{2} + \frac{n}{2} + \frac{n^2}{2} - \frac{n}{2} = n^2$$

Iterative Verfahren

Iterative Verfahren sind effizienter, jedoch kann man keine genauen Lösungen erwarten. Ausgehend von einem Startvektor $x^{(0)}$ berechnet man mittels einer Rechenvorschrift $F:\mathbb{R}^n\to\mathbb{R}^n$ iterativ eine Folge von Vektoren

$$x^{(k+1)} = F(x^{(k)})$$
 mit $k = 0, 1, 2, \dots$

Zu lösen sei Ax=b. Die Matrix $A=\left(a_{ij}\right)$ sei zerlegt in der Form A=L+D+R=

Jacobi-Verfahren

$$Ax = b, \quad A = \begin{pmatrix} 8 & 5 & 2 \\ 5 & 9 & 1 \\ 4 & 2 & 7 \end{pmatrix}, \quad b = \begin{pmatrix} 19 \\ 5 \\ 34 \end{pmatrix}, \quad x^{(0)} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$

$$x_1^{(1)} = \frac{1}{8} \left(19 - \sum_{j=1, j \neq 1}^3 a_{1j} \cdot x_j^{(0)} \right) = \frac{1}{8} (19 - (5 \cdot -1 + 2 \cdot 3)) = \frac{18}{8}$$

$$x_2^{(1)} = \frac{1}{9} \left(5 - \sum_{j=1, j \neq 2}^3 a_{2j} \cdot x_j^{(0)} \right) = \frac{1}{9} (5 - (5 \cdot 1 + 1 \cdot 3)) = -\frac{1}{3}$$

$$x_3^{(1)} = \frac{1}{7} \left(34 - \sum_{j=1, j \neq 3}^3 a_{3j} \cdot x_j^{(0)} \right) = \frac{1}{7} (34 - (4 \cdot 1 + 2 \cdot -1)) = \frac{32}{7}$$

Fixpunktiteration gemäss Jacobi (Gesamtschritt-Verfahren):

$$Dx^{(k+1)} = -(L+R)x^{(k)} + b$$
$$x^{(k+1)} = -D^{-1}(L+R)x^{(k)} + D^{-1}b$$

Implementation / Allgemeine Form gemäss Jacobi

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} \cdot x_j^{(k)} \right), \quad i = 1, \dots, n$$

Gauss-Seidel-Verfahren

Fixpunktiteration gemäss Gauss-Seidel (Einzelschritt-Verfahren):

$$(D+L)x^{(k+1)} = -Rx^{(k)} + b$$

$$x^{(k+1)} = -(D+L)^{-1} \cdot Rx^{(k)} + (D+L)^{-1} \cdot b$$

Implementation / Allgemeine Form gemäss Gauss-Seidel

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^{i-1} a_{ij} \cdot x_j^{(k+1)} - \sum_{j=i+1}^{n} a_{ij} \cdot x_j^{(k)} \right), \quad i = 1, \dots, n$$

Konvergenz der Fixpunktiteration -

Gegeben sei eine Fixpunktiteration

$$x^{(n+1)} = Bx^{(n)} + c =: F(x^{(n)})$$

Für das Gesamtschrittverfahren (Jacobi) gilt

$$B = -D^{-1}(L+R)$$

Für das Einzelschrittverfahren (Gauss-Seidel) gilt $B=-(D+L)^{-1}R$ Wobei B eine $n\times n$ Matrix ist und $c\in\mathbb{R}^n$. Weiter sei $\|.\|$ eine der eingeführten Normen und $\bar{x}\in\mathbb{R}^n$ erfülle $\bar{x}=B\bar{x}+c=F(\bar{x})$. Dann heisst

- \bar{x} anziehender Fixpunkt, falls $\|B\|<1$
- \bar{x} abstossender Fixpunkt, falls ||B|| > 1
- $||x^{(n)} \bar{x}|| \le \frac{||B||^n}{1 ||B||} \cdot ||x^{(1)} x^{(0)}||$ a-priori Abschätzung
- $||x^{(n)} \bar{x}|| \le \frac{||\bar{B}||}{1 ||B||} \cdot ||x^{(n)} x^{(n-1)}||$ a-posteriori Abschätzung A ist eine diagonaldominante Matrix, falls eines der beiden folgenden Kriterien gilt
- f ür alle $i = 1, ..., n : |a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{i,j}|$ (Zeilensummenkriterium)
- für alle $j = 1, ..., n : \left| a_{jj} \right| > \sum_{i=1, i \neq j}^{n} \left| a_{i,j} \right|$ (Spaltensummenkriterium)

Beispiel

$$A = \begin{pmatrix} 4 & -1 & 1 \\ -2 & 5 & 1 \\ 1 & -2 & 5 \end{pmatrix} \rightarrow \sum_{j=1, j \neq i}^{n} |a_{ij}| \rightarrow \begin{cases} i = 1 \to 4 > 2 \\ i = 2 \to 5 > 3 \\ i = 3 \to 5 > 3 \end{cases}$$

Fall A diagonal dominant ist, konvergiert das Gesamtschrittverfahren (Jacobi) und auch das Einzelschrittverfahren (Gauss-Seidel) für Ax=b. Ein notwendiges und hinreichendes Kriterium für Konvergenz ist Spektralradius $\rho(B)<1$

Eigenwerte und Eigenvektoren

Komplexe Zahlen

Die Menge der komplexen Zahlen $\mathbb C$ erweitert die Menge der reellen Zahlen $\mathbb R$, so dass nun also auch Gleichungen der folgenden Art lösbar werden

$$x^2 + 1 = 0$$

Dafür wird die imaginäre Einheit imit der folgenden Eigenschaft eingeführt.

$$i^2 = -1$$

Eine komplexe Zahlzist ein geordnetes Paar (x,y)zweier Zahlen x und y.

$$z = x + iy$$

Die imaginäre Einheit i ist definiert durch

$$i^2 = -1$$

Die Menge der komplexen Zahlen wird mit $\mathbb C$ bezeichnet

$$\mathbb{C} = \{ z \mid z = x + \text{ iy mit } x, y \in \mathbb{R} \}$$

Die reellen Bestandteile x und y von z werden als Real- und Imaginärteil bezeichnet

- Realteil von z Re(z) = x
- Imaginärteil von z Im(z) = y

Die zu z konjugierte komplexe Zahl ist definiert als $z^* = x - iy$. Dies entspricht der an der x - Achse gespiegelten Zahl.

Der Betrag einer komplexen Zahl ist definiert als $|z|=\sqrt{x^2+y^2}=\sqrt{z\cdot z^*}$. Dies entspricht der Länge des Zeigers.

Darstellungsformen

- Normalform z = x + iy
- Trigonometrische Form $z = r(\cos \varphi + i \cdot \sin \varphi)$
- Exponential form $z = re^{i\varphi}$

$$x = r \cdot \cos \varphi, \quad y = r \cdot \sin \varphi, \quad r = \sqrt{x^2 + y^2}$$

$$\varphi = \arcsin\left(\frac{y}{r}\right) = \arccos\left(\frac{x}{r}\right)$$

$$e^{i\varphi} = \cos \varphi + i \cdot \sin \varphi$$

Beispiel

$$z = 3 - 11i$$

$$3 = r \cdot \cos \varphi$$
, $11 = r \cdot \sin \varphi$, $r = \sqrt{3^2 + 11^2} = \sqrt{130}$ $\arcsin \left(\frac{11}{\sqrt{130}}\right) = \varphi = 1.3$

$$z = \cos(1.3) + i \cdot \sin(1.3), \quad z = \sqrt{130} \cdot e^{i \cdot 1.3}$$

Grundrechenarten -----

Es sei $z_1 = x_1 + iy_1$ und $z_2 = x_2 + iy_2$

- Summation $z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2)$
- Subtraktion $z_1 z_2 = (x_1 x_2) + i(y_1 y_2)$

Multiplikation

$$z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + i (x_1 y_2 + x_2 y_1)$$

$$z_1 \cdot z_2 = r_1 e^{i\varphi_1} \cdot r_2 e^{i\varphi_2} = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$$

Division

$$\begin{split} \frac{z_1}{z_2} &= \frac{z_1 \cdot z_2^*}{z_2 \cdot z_2^*} = \frac{\left(x_1 + iy_1\right)\left(x_2 - iy_2\right)}{\left(x_2 + iy_2\right)\left(x_2 - iy_2\right)} \\ &= \frac{\left(x_1x_2 + y_1y_2\right) + i\left(y_1x_2 - x_1y_2\right)}{x_2^2 + y_2^2} = \frac{\left(x_1x_2 + y_1y_2\right)}{x_2^2 + y_2^2} + i\frac{\left(y_1x_2 - x_1y_2\right)}{x_2^2 + y_2^2} \\ &= \frac{z_1}{z_2} = \frac{r_1e^{i\varphi_1}}{r_2e^{i\varphi_2}} = \frac{r_1}{r_2}e^{i(\varphi_1 + \varphi_2)} \end{split}$$

Potenzieren und Radizieren

Die n-te Potenz einer komplexen Zahl lässt sich einfach berechnen, wenn diese in der trigonometrischen oder der Exponentialform vorliegt (Sei $n \in \mathbb{N}$):

$$z = r \cdot e^{i\varphi} \to z^n = (re^{i\varphi})^n = r^n e^{in\varphi} = r^n (\cos(n\varphi) + i \cdot \sin(n\varphi))$$

Fundamentalgesetz der Algebra

Eine algebraische Gleichung n-ten Grades mit komplexen Koeffizienten und Variablen $a_i,z\in\mathbb{C}$

$$a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0 = 0$$

Besitzt in der Menge $\mathbb C$ der komplexen Zahlen genau n Lösungen

Wurzel einer komplexen Zahl -

Eine komplexe Zahl z wird als n-te Wurzel von $a \in \mathbb{C}$ bezeichnet, wenn

$$z^n = a \rightarrow z = \sqrt[n]{a}$$

Lösungen der algebraischen Gleichung $z^n = a$

$$z^n = a = r_0 e^{i\varphi} (r_0 > 0; n = 2, 3, 4, ...)$$

Besitzt in der Menge \mathbb{C} genau n verschiedene Lösungen (Wurzeln)

$$z_k = r(\cos\varphi_k + i \cdot \sin\varphi_k) = re^{i\varphi_k}$$

$$r = \sqrt[n]{r_0}, \quad \varphi_k = \frac{\varphi + k \cdot 2\pi}{n}, \quad (f\ddot{u}rk = 0, 1, 2, \dots, n-1)$$

Die zugehörigen Bildpunkte liegen in der komplexen Zahlenebene auf einem Kreis um den Nullpunkt mit dem Radius $r=\sqrt[n]{r_0}$ und bilden die Ecken eines regelmässigen n-Ecks.

Intro EW und EV ----

Es sei $A \in \mathbb{R}^{n \times n}$. $\lambda \in \mathbb{C}$ heisst Eigenwert von A, wenn es einen Vektor $x \in \mathbb{C}^n \setminus \{0\}$ gibt mit

$$Ax = \lambda x$$

x heisst dann Eigenvektor von A.

Eigenschaften von Eigenwerten -

$$Ax - \lambda x = 0 \Leftrightarrow (A - \lambda I_n) \cdot x = 0$$

Die Eigenwerte einer Diagonal- oder eine Dreiecksmatrix sind deren Diagonalelemente.

Polynom und Spur ---

Es sei $A \in \mathbb{R}^{n \times n}$, $\lambda \in \mathbb{C}$. Dann gilt

$$\lambda$$
 ist ein Eigenwert von $A \Leftrightarrow \det (A - \lambda I_n) = 0$

Die Abbildung p ist definiert durch

$$p(\lambda) \to \det (A - \lambda I_n)$$

Ist ein Polynom vom Grad n und wird charakteristisches Polynom von A genannt. Die Eigenwerte von A sind also die Nullstellen des charakteristischen Polynoms. Damit hat A also genau n Eigenwerte, von denen manche mehrfach vorliegen können.

Die Determinante der Matrix A ist gerade das Produkt ihrer Eigenwerte $\lambda_1,\ldots,\lambda_n$. Die Summe der Eigenwerte ist gleich der Summe der Diagonalelemente von A, d.h. gleich der Spur (tr) von A:

- $\det(A) = \lambda_1 \cdot \lambda_2 \cdot \ldots \cdot \lambda_n$
- $tr(A) = a_{11} + a_{22} + \dots + a_{nn} = \lambda_1 + \lambda_2 + \dots + \lambda_n$

Ist λ_i ein Eigenwert der regulären Matrix A, so ist der Kehrwert $\frac{1}{\lambda_i}$ ein Eigenwert der inversen Matrix A^{-1} .

Vielfachheit und Spektrum -

Es sei $A \in \mathbb{R}^{n \times n}$. Die Vielfachheit, mit der λ als Nullstelle des charakteristischen Polynoms von A auftritt, heisst algebraische Vielfachheit von λ .

Das Spektrum $\sigma(A)$ ist die Menge aller Eigenwerte von A.

Beispiel

Berechne Spektrum, Determinante und Spur von

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 0 & 1 & 2 \end{array}\right)$$

Eigenwerte

$$\lambda_1 = 1$$
, $\lambda_2 = 3$, $\lambda_3 = 2$

Determinante

$$det(A) = \lambda_1 \cdot \lambda_2 \cdot \lambda_3 = 6$$

Spur

$$tr(A) = \lambda_1 + \lambda_2 + \lambda_3 = 6$$

Spektrum

$$\sigma(A) = 3$$

Eigenschaften von Eigenvektoren

Seien zwei Eigenvektoren x,y zum selben Eigenwert $\lambda \in \mathbb{C}$ einer Matrix $A \in \mathbb{R}^n \times \mathbb{R}^n$, so ist x+y und auch jedes Vielfach von x ebenfalls ein Eigenvektor zum Eigenwert λ :

$$A(x + y) = Ax + Ay = \lambda x + \lambda = \lambda(x + y)$$
$$A(\mu x) = \mu Ax = \mu \lambda x = \lambda \mu x$$

Eigenraum ----

Sei $\lambda \in \mathbb{C}$ ein Eigenwert von $A \in \mathbb{R}^{n \times n}$. Dann bilden die Eigenvektoren zum Eigenwert λ zusammen mit dem Nullvektor 0 einen Unterraum von \mathbb{C}^n , den sogenannten Eigenraum

Der Eigenraum des Eigenwertes λ ist die Lösungsmenge des homogenen LCS

$$(A - \lambda I_n) x = 0$$

Welches nur dann eine nicht-triviale Lösung aufweist, wenn $rq\left(A-\lambda I_{n}\right)< n.$

Die Dimension des Eigenraumes von λ wird die geometrische Vielfachheit von λ genannt. Sie berechnet sich als

$$n - rg\left(A - \lambda I_n\right)$$

Und gibt die Anzahl der lin. Unabhängigen Eigenvektoren zum Eigenwert λ

Geometrische und algebraische Vielfachheit eines Eigenwerts müssen nicht gleich sein. Die geom. Vielfachheit ist aber stets kleiner oder gleich der algebraischen Vielfachheit.

Beispiel: Berechne Eigenwerte, Eigenvektoren, Eigenräume

$$A = \begin{pmatrix} 2 & 5 \\ -1 & -2 \end{pmatrix}, \quad A - \lambda I_n = \begin{pmatrix} 2 - \lambda & 5 \\ -1 & -2 - \lambda \end{pmatrix}$$
$$p(\lambda) = \det(A - \lambda I_n) = (2 - \lambda)(-2 - \lambda) - 5 \cdot -1$$
$$p(\lambda) = -4 + \lambda^2 + 5 = \lambda^2 + 1 = 0$$
$$\lambda^2 - 1 - i^2$$

Eigenwerte

$$\lambda_1 = i, \quad \lambda_2 = -i$$

Eigenvektor für $\lambda_1 = i$

$$\begin{pmatrix} 2-i & 5 \\ -1 & -2-i \end{pmatrix} \rightarrow \begin{pmatrix} 2-i & 5 \\ 0 & -2-i+\frac{5}{2-i} \end{pmatrix}$$
$$-2-i+\frac{5}{2-i} = (2-i)(-2-i)+5=1+i^2=0$$
$$0 = (2-i) \cdot x_1 + 5 \cdot x_2$$
$$x_1 = -\frac{5x_2}{2-i} \cdot \frac{2+i}{2+i} = -\frac{5 \cdot (2+i)}{4-i^2} = -\frac{10+5i}{5} = -2-i$$
$$x_1 = \begin{pmatrix} -2-i \\ 1 \end{pmatrix}$$

Eigenraum

$$E_{\lambda_1} = \left\{ x \mid x = \mu = {\binom{-2-i}{1}}, \mu \in \mathbb{R} \right\}$$

$$E_{\lambda_2} = \left\{ x \mid x = \mu = {\binom{-2+i}{1}}, \mu \in \mathbb{R} \right\}$$

Numerische Berechnung EW und EV ---

Ähnliche Matrizen / Diagonalisierbarkeit -

Es seien $A,B\in\mathbb{R}^{n\times n}$ und T eine reguläre Matrix mit ... so heissen B und A zueinander ähnliche Matrizen.

$$B = T^{-1}AT$$

Im Spezialfall, dass B=Dein Diagonalmatrix ist, also ... nennt man A diagonalisierbar.

$$D = T^{-1}AT$$

Eigenwerte und Eigenvektoren ähnlicher / diagonalisierbarer Matrizen -

Es seien $A, B \in \mathbb{R}^{n \times n}$ zueinander ähnliche Matrizen. Dann gilt

- 1. A und B haben dieselben Eigenwerte, inkl. deren algebraische Vielfachheit
- 2. Ist x ein Eigenwektor zum Eigenwert λ von B, dann ist Tx ein Eigenvektor zum Eigenwert λ von A.
- 3. Falls A diagonalisierbar ist
- Diagonalelemente von D sind die Eigenwerte von A
- Die linear unabhängigen Eigenvektoren von A stehen in den Spalten von T

Der Spektralradius p(A) einer Matrix $A \in \mathbb{R}^{n \times n}$ ist definiert als

$$p(A) = \max \{ |\lambda| \mid \lambda \text{ ist ein Eigenwert von } A \in \mathbb{R}^{n \times n} \}$$

Sei $A \in \mathbb{R}^{n \times n}$ eine diagonalisierbare Matrix mit den Eigenwerten $\lambda_1,\ldots,\lambda_n$ und dem betragsmässig grössten Eigenwert λ_1 mit

$$|\lambda_1| > |\lambda_2| > \dots > |\lambda_n|$$

Vektoriteration / von-Mises-Iteration -

So konvergieren für (fast) jeden Startvektor $v^{(0)} \in \mathbb{C}^n$ mit Länge 1 die Folgen

$$v^{(k+1)} = \frac{Av^{(k)}}{\left\|Av^{(k)}\right\|_{2}}, \quad \lambda^{(k+1)} = \frac{\left(v^{(k)}\right)^{T}Av^{(k)}}{\left(v^{(k)}\right)^{T}v^{(k)}}$$

Für $k\to\infty$ gegen einen Eigenvektor vzum Eigenwert λ_1 von A (also $v^{(k)}\to v$ und $\lambda^{(k)}\to \lambda_1$)

QR-Verfahren -

Sei $A \in \mathbb{R}^{n \times n}$

$$A_0 := A, \quad P_0 := I_n$$

Für i = 0, 1, 2, ...

- $A_i := Q_i \cdot R_i$
 - QR-Zerlegung von A_i
- $A_{i+1} := R_i \cdot Q_i$
- $P_{i+1} := P_i \cdot Q_i$

