8: correct answer but work might be difficult to read 6: incorrect answer but good attempt 4: mediocre attempt or very difficult to read 2: problem is written down, no attempt to solve 0: problem is not written down uble click anywhere on this box to find out how your instructor typeset it. Press Shift+Enter to go back. e Tasks 1-5 are from Excercises 1.1-1.6 of Barber.	
ask 1: (10 points). Prove	$p(x,y z) = p(x z)p(y x,z)$ $p(x y,z) = rac{p(y x,z)p(x z)}{p(y z)} \ .$
ur answer to task 1 $x,y z)=rac{p(x,y,z)}{p(z)}$ Conditional Probability (1) $=rac{p(y,x,z)}{p(z)}$ Commutativity of Probability (2)	
$=rac{p(y x,z)p(x z)p(z)}{p(z)}$ Chain Rule of Probability (3) $=p(y x,z)p(x z)$ (4) $=p(x z)p(y x,z)$ Commutativity of Multiplication \square $x y,z)=rac{p(x,y,z)}{p(y,z)}$ Conditional Probability (1)	
$= \frac{p(y,z)}{p(y,z)}$ Chain Rule of Probability (2) $= \frac{p(x,y z)p(z)}{p(y z)p(z)}$ Chain Rule of Probability (3) $= \frac{p(x,y z)}{p(y z)}$ (4)	
$= \frac{p(y z)}{p(y z)}$ Proven in first proof of task 1 (5) $= \frac{p(y x,z)p(x z)}{p(y z)}$ Commutativity of Multiplication \square ask 2: (10 points). Prove the [Bonferroni inequality](https://en.wikipedia.org/wiki/Boole%27s_inequality#Bonferroni_i	
ur answer to task 2 e that $p(a,b)=p(a\cap b)$. $a\cup b)=p(a)+p(b)-p(a\cap b)$ Addition Rule of Probabi $1\geq p(a\cup b)$ True by definition, any probability must be less than or equal $1\geq p(a)+p(b)-p(a\cap b)$ Combined (1) and $a\cap b\geq p(a)+p(b)-1$	1 o 1 o 2
$p(a,b) \ge p(a) + p(b) - 1$ ask 3: (10 points). Consider three variable distributions which admit the factorization here all variables are binary. How many parameters are needed to specify distributions of this form? ur answer to task 3	$p(a,b,c)=p(a b)p(b c)p(c)\ ,$
ameter is needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$. So, five parameters in total are needed to represent the distribution of $p(c)$.	tins two red and five white balls. A box is chosen at random $p(b\otimes = 1) = p(b\otimes = 2) = 0.5$ and a ball chosen at random from this box turns out to be red. rs, otherwise a red ball is placed in the box. The coin is tossed again and a red ball is placed in the box if a tail occurs, otherwise a white ball is placed in the box
ur answer to task 4(a) r represent a ball being red and b represent a ball coming from box 1. $r(r) = \frac{p(r b)p(b)}{p(r)} = \frac{\frac{3}{8}*\frac{1}{2}}{(\frac{3}{8}+\frac{2}{7})*\frac{1}{2}} = \frac{\frac{3}{16}}{\frac{37}{112}} = \frac{21}{37} \approx .568$	
ur answer to task 4(b) any capitalized number in text represent that number of red balls drawn in a row (THREE = 3 red balls drawn in a row (THREE) = $\frac{p(\mathrm{THREE} RR)p(RR)}{p(\mathrm{THREE})}$ = $\frac{(1)p(RR)}{p(\mathrm{THREE})}$	row), RR represent two red balls in the box, WW represent two white balls in the box, and RW represent one ball of each color in the box.
$= \frac{p(\text{THREE})}{p(\text{THREE} WW)p(WW) + p(\text{THREE} RW)p(RW) + p(\text{THREE} RR)p(RR)}$ $= \frac{.25}{0*.25 + .5^3*.5 + 1*.25}$ $= \frac{.25}{.0625 + .25}$	
= .8 ask 5: (10 points). A secret government agency has developed a scanner which determines whether a person is a tells the agency that exactly one passenger of 100 aboard an aeroplane in which you are seated is a terrorist. The pour answer to task 5	terrorist. The scanner is fairly reliable; 95% of all scanned terrorists are identified as terrorists, and 95% of all upstanding citizens are identified as such. An inforolice haul off the plane the first person for which the scanner tests positive. What is the probability that this person is a terrorist? The scanner is fairly reliable; 95% of all scanned terrorists are identified as terrorists, and 95% of all upstanding citizens are identified as such. An inforologic haul off the plane the first person for which the scanner tests positive. What is the probability that this person is a terrorist?
T represent whether or not someone is a terrorist, t represent whether or not someone tested positive for terrorism T represent whether or not someone tested positive for terrorism $T=1 H=1)=\Sigma_{i=1}^{100}p(T_i=1,t_i=1,t_{i-1}=0 H=1)$ $=\Sigma_{i=1}^{100}rac{p(H=1 T_i=1,t_i=1,t_{1i-1}=0)p(T_i=1,t_i=1,t_{1i-1}=0)}{p(H=1)}$	
$H=1 T_i=1,t_i=1,t_{1\ldots i-1}=0)=1$, as it is guaranteed that someone is hauled off the plane if the test comes $T=1 H=1)=\Sigma_{i=1}^{100}rac{p(T_i=1,t_i=1,t_{1\ldots i-1}=0)}{p(H=1)}$ $=\Sigma_{i=1}^{100}rac{p(t_i=1,t_{1\ldots i-1}=0 T_i=1)p(T_i=1)}{p(H=1)}$	es back positive.
$egin{align} p(H=1) & p(H=1) \ & = \Sigma_{i=1}^{100} rac{p(t_i=1 T_i=1)p(T_i=1)\prod_{j=1}^{i-1}(t_j=0 T_j=0)}{p(H=1)} \ & = \Sigma_{i=1}^{100} rac{(.95)(.01)\prod_{j=1}^{i-1}(.95)}{p(H=1)} \ & = \Sigma_{i=1}^{100} rac{(.95)(.01)(.95)^{i-1}}{p(H=1)} \ & = \Sigma_{i=1}^{100} rac{(.95)(.95)(.95)(.95)(.95)^{i-1}}{p(H=1)} \ & = \Sigma_{i=1}^{100} rac{(.95)(.95)(.95)(.95)(.95)(.95)(.95)(.95)$	
$egin{aligned} &= rac{\Sigma_{i=1}}{p(H=1)} \ &= rac{(.95)(.01)}{p(H=1)} \Sigma_{i=1}^{100}(.95)^{i-1} \ &= rac{(.95)(.01)}{p(H=1)} \Sigma_{i=0}^{99}(.95)^i \ &= rac{(.95)(.01)}{p(H=1)} \cdot rac{195^{100}}{195} \end{aligned}$	
$egin{aligned} &p(H=1) & 195 \ &=rac{(.95)(.01)(195^{100})}{(.05)p(H=1)} \ &=rac{(.19)(195^{100})}{p(H=1)} \ &=rac{(.19)(195^{100})}{1-p(H=0)} \end{aligned}$	
$1-p(H=0)$ $p(H=0)=.95^{99}(.05), ext{ as it is equal to the probability that all passengers test negative}$ $=rac{(.19)(195^{100})}{1-(.95^{99}(.05))}$ $pprox .189$	
$p(T=1 t=1)= \ =$	$egin{aligned} &=rac{p(t=1 T=1)p(T=1)}{p(t=1)} \ &=rac{.95*.01}{p(t=1 T=1)*p(T=1)+p(t=1 \sim T=1)*p(\sim T=1)} \end{aligned}$
_	$=rac{.95*.01}{.95*.01+.05*.99}$
e goal of the following tasks is to give you a bit of practice manipulating data, using Bayes' rule, and constructing a neataset. The [titanic dataset](http://www.cs.toronto.edu/~delve/data/titanic/desc.html) gives the values of four categories member), age (adult or child), gender, and whether or not the person survived. The titanic dataset is available [h	= \frac{.95 * .01}{.95 * .01 + .05 * .99} = .161 naive Bayes classifier. Naive Bayes is described in \frac{10.1}{10.1} of Barber and understanding examples \frac{10.1}{10.1} and \frac{10.2}{10.2} of the text should help you do this assignment orical attributes for each of the 2201 people on board the Titanic when it struck an iceberg and sank. The attributes are social class (first class, second class, thin [here](https://home.cs.colorado.edu/~mozer/Teaching/syllabi/ProbabilisticModels/homework/titanic.txt).
e goal of the following tasks is to give you a bit of practice manipulating data, using Bayes' rule, and constructing a neataset. The [titanic dataset](http://www.cs.toronto.edu/~delve/data/titanic/desc.html) gives the values of four categories member), age (adult or child), gender, and whether or not the person survived. The titanic dataset is available [h	$\frac{.95*.01}{.95*.01+.05*.99} = .161$ naive Bayes classifier. Naive Bayes is described in 10.1 of Barber and understanding examples 10.1 and 10.2 of the text should help you do this assignment or ical attributes for each of the 2201 people on board the Titanic when it struck an iceberg and sank. The attributes are social class (first class, second class, this [here](https://home.cs.colorado.edu/~mozer/Teaching/syllabi/ProbabilisticModels/homework/titanic.txt).
ataset. The [bitanic dataset](http://www.cs.toronto.edu/~delve/data/titanic/desc.html) gives the values of four categories we member), age (adult or child), gender, and whether or not the person survived. The titanic dataset is available [interpretation. Build a joint probability table, like the ones we discussed in class notes, that represents the joint distribulases { 1st, 2nd, 3rd, crew}, and Outcome ∈ { death, survival}. You will use the data in this table for the folk ask 6: Probability table (20 points). Build a probability table indicating \$Pr\$(Death Gender, Age, Class) for each of ake a second table, a classification table, which lists death or survival for each feature combination. Explain the rule int. * Since it is [not possible](https://www.tablesgenerator.com/html_tables) to create merged rows with Markdown, your answer to task 6 apport numpy as np apport pands as pd itanic_df = pd.read_csv('titanic.txt', delim_whitespace=True, header=None, names = ["class", itanic_df.value_counts(['class', 'Age', 'Gender', 'Outcome'])/titanic_df.value_counts(['class', 'Age', 'Gender',	
ataset. The [litanic dataset](http://www.cs.toronto.edu/~delve/data/litanic/desc.html) gives the values of four categories member), age (adult or child), gender, and whether or not the person survived. The litanic dataset is available [https://www.cs.toronto.edu/~delve/data/litanic/desc.html) gives the values of four categories member), age (adult or child), gender, and whether or not the person survived. The litanic dataset is available [https://www.cs.toronto.edu/~delve/data/litanic/desc.html) gives the values of four categories we member), age (adult or child), gender, and whether or not the person survived. The litanic dataset is available [https://www.lablescender.governer	
ataset. The [stanic dataset](http://www.cs.toronto.edu/-delve/data/titanic/desc.html) gives the values of four categorew member), age (adult or child), gender, and whether or not the person survived. The titanic dataset is available [interpretation. Build a joint probability table, like the ones we discussed in class notes, that represents the joint distributions of each table represent the different classes and the columns the different ages and genders. In each cell of ake a second table, a classification table, which lists death or survival for each feature combination. Explain the rule int. *Since it is [not possible](https://www.tablesgenerator.com/html_tables) to create merged rows with Markdown, your answer to task 6 apport numby as np aport numby as np aport numby as np aport numby as np aport numby. (['class', 'Age', 'Gender', 'Outcome'])/titanic_df.value_counts(['class', 'Age', 'Gender',	Second Chief Adult Chief Adult
asset. The [Utanic dataset](http://www.cs.turonio.edu/~deve/data/itanic/des.htm) gives the values of four categore we member), age (adult or child), gender, and whether or not the person survived. The titanic dataset is available (http://www.cs.turonio.edu/~deve/data/itanic/des.htm) gives the values of four categore we member), age (adult or child), gender, and whether or not the person survived. The titanic dataset is available (http://www.ts.turonio.edu/~deve/data/itanic/des.htm) gives the values of four categore we member), age (adult or child), gender, and whether or not the person survived. The titanic dataset is available (http://www.ts.turonio.edu/~deve/data/itanic/des.htm) gives the values of four feels (adult of the fell category). The person of each table properties the different classes and the columns the different ages and genders. In each cell of ake a second table, a classification table, which lests death or survival for each feature combination. Explain the rule of the fell category of the columns of the fell category of the f	Second Chief Adult Chief Adult
asset of the following tasks is to give you a bit of practice manipulating data, using Bayes' rule, and constructing a nataset. The (trans dataset) is reparation. Build a prohability table likes the review of each fable or chiefd, gender, and whether or not the person solved. The thank dataset is available for every probability table. Discome (deaths, survival), You will use the data in that has be for the following prohability table. Discome (deaths, survival). You will use the data in that has be for the following prohability table (20 points). Build a probability table indicating Prr(Death. Gender, Age, Class) for each sake a second table, a classification table, which lists death or survival for each facture combination. Explain the rule int. "Since it is (not possible)/traps // www.lablesignerector.com/from_lables) to create merged (row with Markdoon, your analysis of pureau, several component survival and as a foregree of the pureau, several component survival and as a foregree of the pureau, several component survival and several component survival several component survival several component survival several component survival several several several s	Section 2015 - 193 -
assistication table Toward a Nave Bayes describe (20 points). To taild the classifier, you must first construct six one-dimensional part of the point of the poi	Section 2015 - 193 -
asset for believely and to the provision of processor and the processor assets of each total empower the determinant of the processor assets of each total empower the determinant of the processor assets. The residence is seen to the processor assets of the control processor assets of the control processor assets of the control processor assets of the processor ass	Secretive of a grant product product control of the second product p
asset. The flower context (flower) is not of precise mamputating date, using Seyed rule, and constructing an extraction flower (flower) is not category contracted. The flower context (greaters as whether at not the process context, that represents the port dates), that is processed to the context as executed as flowers as the context as the context as executed as flowers as the context as the conte	Section 1.
asset the bilinary pases at open you all of produce recognising data, strip Bayes' such and constructing a relative the form is assessibly to be a constructed by a possibly table the form of discussions of California and California	
age of the following table to to grey you a third passive enough dring relationation to present control of the	
assist the bisens caused by control of process and of process and control of process and co	Service of the control of the contro
assessment of each base representation to the proposed and of process measured and of the process of the proces	West Control
assistant Tables deliced pulse is open with any second mean range about the properties and recent properties of the control properties of the contro	West Control
proposed that the channel (Proposed to a propose or state or account and all plants and supplies the encountering or all plants and the channel (Proposed to a channel proposed	The content of the co
sessification table as All Colors depleted by the process of the process of depleted by the process of the pro	The content of the co
sessification table assification table assif	The content of the co
page of the book of the Colon o	The content of the co
and the first of place of the proposed of the control of the place of the control	The content of the
part of the first part of the control of the contro	The content of the co
part of the first part of the control of the contro	The content of the
and the field of provided provided by the work of the control of t	The content of the
security in the production of the control of the co	The content of the