# 기초사회과학통계

고려대 대학원 행정학과 2022 여름

최정호 University of Pennsylvania chjho@upenn.edu

- 통계학의 필요성
- 어떤 자료인가
- 데이터와 변수

• 통계학의 필요성

- 통계학의 필요성
- 어떤 자료인가

- cross-sectional data
- time-series data
- panel/longitudinal data

- 통계학의 필요성
- 어떤 자료인가
- 데이터와 변수

범주형 변수 categorical, qualitative

명목척도 nominal 서열척도 ordinal

연속형 continuous, quantitative

등간척도 interval 비율척도 ratio

## 행정안전부 고객만족도조사 설문지

고객님께서는 앞에서 평가해 주신 〇〇〇과의 업무처리 내용, 서비스 전달과 정, 결과(이미지) 측면들을 모두 고려할 때, 〇〇과의 업무처리에 대해 **전반적으로** 얼마나 만족하셨습니까?

(1) 매우 불만족 (2) 불만족 (3) 보통 (4) 만족 (5) 매우 불만족

- 데이터의 분포
- 데이터의 요약치

• 데이터의 분포

- 도수분포표
  - 1) 구간의 수 결정
  - 2) 구간의 크기 결정
  - 3) 경계값 설정
  - 4) 관측 데이터의 빈도수 계산

• 히스토그램 histogram

- 데이터의 분포
- 데이터의 요약치

- 중심경향도 central tendency
- 산포도 dispersion
- 비대칭도 skewness

- 데이터의 분포
- 데이터의 요약치

- 중심경향도 central tendency
  - 평균 mean

$$\frac{X_1 + X_2 + \dots + X_n}{N} = \frac{\sum_{i=1}^{N} X_i}{N}$$

- 중앙치 median
- 최빈치 mode

- 데이터의 분포
- 데이터의 요약치

- 산포도 dispersion
  - 분산 variance

보산(
$$\sigma^2$$
) =  $\frac{\displaystyle\sum_{i=1}^N (X_i - \mu)^2}{N}$  표본보산( $S^2$ ) =  $\frac{\displaystyle\sum_{i=1}^n (X_i - \overline{X})^2}{(n-1)}$ 

• 표준편차 standard deviation

- 데이터의 분포
- 데이터의 요약치

• 비대칭도 skewness



- 확률의 주요개념
- 확률변수의 의미
- 기대값과 분산
- 공분산과 상관계수

• 확률의 주요개념

- 확률 probability
  - 조건 1)
  - 조건 2)
- 실험 experiment
- 사건 event
- 표본공간 sample space

- 확률의 주요개념
- 확률변수의 의미

- 상수와 변수
- 확률변수 random variable
  - 역할: 확률 분포의 수치화
  - 이산확률변수와 연속확률변수

- 확률의 주요개념
- 확률변수의 의미
- 기대값과 분산

## • 기대값 expected value

$$E(aX+b) = aE(X) + b$$
$$E(X+Y) = E(X) + E(Y)$$

#### • 분산 variance

$$Var(aX+b) = a^2Var(X)$$

$$Var(X+Y) = Var(X) + Var(Y) + 2cov(X, Y)$$

$$Var(X+Y) = Var(X) + Var(Y) \quad \text{if } X \text{ and } Y \text{ are independent.}$$

$$Var(X-Y) = Var(X) + Var(Y) - 2cov(X, Y)$$

$$Var(X-Y) = Var(X) + Var(Y) \quad \text{if } X \text{ and } Y \text{ are independent.}$$

- 확률의 주요개념
- 확률변수의 의미
- 기대값과 분산
- 공분산과 상관계수

#### • 공분산 covariance

$$Cov\left(X,Y
ight) = \sigma_{XY} = E(x-\mu_X)(y-\mu_Y)$$
 여기서,  $>0$  : 양의 선형관계 
$$<0 : 음의 선형관계 = 0 : 선형관계가 없음  $x_i$   $y_i$   $\mu_x$   $\mu_y$$$

• 상관계수 correlation coefficient

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

$$-1 \le \rho_{XY} \le +1$$

- 확률분포의 결정
- 균등분포
- 정규분포
- 표준정규분포
- 이항분포

• 확률분포의 결정

• 경험의 양 + 경험의 내용 (모수 parameter)

- 확률분포의 결정
- 균등분포



- 확률분포의 결정
- 균등분포
- 정규분포

- Bell shape(경험적 법칙).
- 그래프 아래의 전체 면적의 합은 1
- 곡선의 최고 높이(즉 가장 높은 확률)는 평균
- 평균을 중심으로 좌우 대칭인 분포



- 확률분포의 결정
- 균등분포
- 정규분포

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

$$X \sim N(\mu, \sigma^2)$$

- 확률분포의 결정
- 균등분포
- 정규분포
- 표준정규분포

• 일반정규분포에서 표준정규분포로

$$Z \sim N(0, 1^2)$$
 where  $Z = \frac{X - \mu}{\sigma}$ 

- 확률분포의 결정
- 균등분포
- 정규분포
- 표준정규분포
- 이항분포

#### • 베르누이 시행

조건 1: 두 개의 상호 배타적 원소로 구성된 실험의 시행

조건 2: 성공확률 p (실패 확률 1-p)는 시행횟수에 관계없이 일정

#### • 베르누이 분포



- 확률분포의 결정
- 균등분포
- 정규분포
- 표준정규분포
- 이항분포

• 이항분포

$$f_X(x) = {}_{n} \epsilon p^x (1-p)^{n-x}, \quad x = 0, 1, 2, \dots, n$$

- 이항분포를 위한 실험은 n번의 베르누이 시행으로 구성
- 성공확률 p: 시행회수에 관계없이 항상 일정 (복원 추출)
- 각 시행이 통계적으로 독립적

- 확률분포의 결정
- 균등분포
- 정규분포
- 표준정규분포
- 이항분포

