

Matrices

MATEMÁTICA PARA CIENCIA DE DATOS
PROF. ESTEBAN BALLESTERO

Matriz

Arreglo rectangular de $m \times n$ números distribuidos en un orden de m **filas** y n **columnas**. Se denota con letras mayúsculas

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = (a_{mn})$$

Además, asumiremos siempre para efectos de este curso que los elementos de las matrices son números reales, a menos que se indique lo contrario

Elemento de una matriz (entrada)

es el valor de una posición específica en una matriz. Se denota como a_{mn} (elemento de la <u>eme-ésima fila</u> y la <u>ene-ésima columna</u>).

Considere la siguiente matriz A:

$$A = \begin{pmatrix} -1 & 2/3 & -92 \\ 0 & 3 & 25 \end{pmatrix}$$

Note que es una matriz de tamaño: 2 x 3 (Dos filas, 3 columnas).

La entrada $a_{12} = \frac{2}{3}$ (Entrada en la posición fila 1 y columna 2)

La entrada $a_{23}=25$ (Entrada en la posición fila 2 y columna 3)

Matriz cuadrada

Matrices iguales

Dos matrices $A = (a_{mn})$ y $B = b_{mn}$ son iguales si:

- 1. Tienen el mismo tamaño $m \times n$.
- 2. Sus componentes correspondientes son iguales, es decir

$$a_{ij} = b_{ij}, \forall i, j, i = 1, 2, ..., myj = 1, 2, ..., n$$

Cumplen igualdad de tamaño y entradas

Matriz nula

Es aquella matriz de tamaño $m \times n$ donde cada uno de sus elementos a_{mn} vale cero.

$$0 = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix} = (0_{mn})$$

Diagonal principal

Está compuesta por todos los a_{ij} , tales que i = j

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mm} \end{bmatrix} = (a_{mm})$$

Matriz diagonal

Es una matriz cuadrada tal que $\forall i \neq j, a_{ij} = 0$

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a_{mm} \end{bmatrix} = (a_{mm})$$

Nota: la matriz diagonal debe cumplir el requisito de que todas sus entradas que NO estén en la diagonal principal donde i=j, tenga como valor cero, pero NO dice nada sobre la diagonal, por lo que esta puede admitir el valor cero o cualquier otro número real. Por ejemplo, la matriz nula también es diagonal

Matriz identidad de orden n

Es una matriz diagonal tal que $\forall i = j, a_{ij} = 1$, es decir, cada entrada de la diagonal tiene el valor de 1, cualquier otra entrada tiene valor de 0.

$$I_n = egin{bmatrix} 1 & 0 & \dots & 0 \ 0 & 1 & \dots & 0 \ dots & dots & dots & dots \ 0 & 0 & \dots & 1 \end{bmatrix} = egin{bmatrix} a_{ij} \end{pmatrix}$$
 (n = TAMAÑO)

Matriz triangular

	Superior	Inferior	
	·	es aquella matriz cuadrada en donde todos los elementos que se	
ϵ	encuentran BAJO la diagonal	encuentran SOBRE la diagonal	
r i	orincipal, SON NULOS . $(a_{ij} = 0, \forall i > i)$	principal, SON NULOS. $(a_{ij} = 0, \forall i < i)$	
J	$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ 0 & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a_{mm} \end{bmatrix} = (a_{mm})$	$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mm} \end{bmatrix} = (a_{mm})$	

Matriz fila y columna

Fila: Es aquella matriz A que tiene una fila y n columnas, es decir su tamaño es $1 \times n$.

$$A = [a_{11} \quad a_{12} \quad a_{13} \quad a_{14} \quad \dots \quad a_{1n}]$$

Columna: Es aquella matriz A que tiene m filas y una columna, es decir su tamaño es $m \times 1$.

$$A = \begin{bmatrix} a_{11} \\ a_{21} \\ a_{31} \\ \dots \\ a_{m1} \end{bmatrix}$$

Matriz transpuesta

Sea A una matriz $m \times n$. Se llama matriz transpuesta de A y se denota por A^t $A^t = (a_{ii})$ (intercambio de filas por columnas)

$$A = \begin{pmatrix} 1 & 8 & 10 \\ 2 & 100 & -1 \end{pmatrix}$$
 FILA 1
-1 1 1 FILA 2

$$Si A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \Leftrightarrow A^{T} = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nm} \end{bmatrix} = (a_{nm})$$

$$A^{T} = \begin{pmatrix} 1 & 2 & -1 \\ 8 & 100 & 1 \\ 10 & -1 & 1 \end{pmatrix}$$

Matriz simétrica

Una matriz A de tamaño $n \times n$ es simétrica si la matriz y su transpuesta son iguales, es decir $A = A^t$ ($\forall i, j, i =$ A = $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 6 \end{pmatrix}$ At = $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 6 \end{pmatrix}$ $1,2,\ldots,myj = 1,2,\ldots,n, a_{ij} = a_{ji}$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 6 \end{pmatrix} \qquad A^{t} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 6 \end{pmatrix}$$

Como se puede ver en el ejemplo, en las matrices simétricas si consideramos los datos de la matriz original A que está sobre la diagonal principal, veremos que son idénticos a los que están por debajo de esta.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 4 \\ 3 & 4 & 6 \end{bmatrix}$$

Matriz antisimétrica

Una matriz A de tamaño $n \times n$ es antisimétrica si la matriz es igual a su transpuesta negativa, es decir $A = -A^t$. $(\forall i, j \in Z, a_{ij} = -a_{ij})$

$$A = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{pmatrix} \qquad A^{t} = \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0 \end{pmatrix} \qquad -A^{t} = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{pmatrix} \Rightarrow A = -A^{t}$$

En el caso de la matriz antisimétrica, se puede observar que las entradas en la parte superior de la diagonal principal son opuestas a las entradas en la parte inferior de esta

Matriz idempotente, nilpotente e involutiva

- ▶ Matriz Idempotente: Una matriz A de tamaño $n \times n$ es idempotente si se cumple que: $A^2 = A$.
- ▶ Matriz Nilpotente: Una matriz A de tamaño $n \times n$ es Nilpotente de orden p si se cumple que: $A^p = 0$.
- ▶ Matriz Involutiva: Una matriz A de tamaño $n \times n$ es involutiva si se cumple que: $A^2 = I$.

Matriz de probabilidades

Es aquella matriz cuadrada que tiene:

- ► TODOS Y CADA UNO de sus componentes POSITIVOS
- ► LA SUMA de los elementos de cada fila es 1

$$A = \begin{bmatrix} 1/2 & 0 & 1/4 & 1/4 \\ 1/2 & 2/5 & 1/5 & 1/5 \\ 0 & 1 & 0 & 0 \\ 0.5 & 0.5 & 0 & 0 \end{bmatrix}$$

Operaciones: suma y resta

Para sumar o restar dos matrices, el único requisito es que estas tengan el mismo tamaño; el proceso se lleva a cabo realizando la operación (suma o resta) entre cada una de las entradas, de las matrices correspondientes.

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, \qquad B = \begin{bmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & b_{mn} \end{bmatrix}$$

$$A \pm B = \begin{bmatrix} (a_{11} \pm b_{11}) & \cdots & (a_{1n} \pm b_{1n}) \\ \vdots & \ddots & \vdots \\ (a_{m1} \pm b_{m1}) & \cdots & (a_{mn} \pm b_{mn}) \end{bmatrix}$$

Operaciones: multiplicación escalar

Sea Auna matriz $m \times n$ y $\lambda \in R$, el producto λA se obtiene como:

$$\lambda A = \begin{bmatrix} \lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1m} \\ \lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \dots & \lambda a_{mm} \end{bmatrix}$$

Operaciones: multiplicación

Para realizar un producto de matrices es indispensable que el número de columnas de la primera matriz sea igual al número de filas de la segunda matriz. Sea A, B matrices de tamaño respectivamente $m \times n \ y \ n \times p$. Además:

$$A = (a_{ij}), con_{j=1,2,...,n}^{i=1,2,...,m}$$
 y $B = (b_{jk}), con_{k=1,2,...,p}^{j=1,2,...,n}$

entonces $AB=C=(c_{ik})$, donde $c_{ik}=\sum_{j=1}^n \left(a_{ij}b_{jk}\right)=a_{i1}b_{1k}+a_{i2}b_{2k}+\ldots+a_{in}b_{nk}$

$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}, \qquad B = \begin{bmatrix} b_{11} & \cdots & b_{1k} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nk} \end{bmatrix}$$

$$AB = \begin{bmatrix} (a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1n}b_{n1}) & \dots & (a_{11}b_{1q} + a_{12}b_{2q} + \dots + a_{1n}b_{nk}) \\ \vdots & \ddots & \vdots \\ (a_{m1}b_{11} + a_{m2}b_{21} + \dots + a_{mn}b_{n1}) & \dots & (a_{m1}b_{1q} + a_{m2}b_{2q} + \dots + a_{mn}b_{nk}) \end{bmatrix}$$

Operaciones: multiplicación

Ejemplo: Sean A y B las matrices: $A = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$ y $B = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ Encuentre AB yBA

Solución: Como $A=(a_{22})$ y $B=(b_{2,1})$ entonces AB es una matriz de tamaño 2×1 , mientras que BA no es posible realizarlo. $AB=\begin{bmatrix}1*4+0*5\\-1*4+1*5\end{bmatrix}=\begin{bmatrix}4\\1\end{bmatrix}$

Propiedades de las matrices

Sean A,B,C matrices de tamaño $m\times n$, y λ un escalar. Entonces:

1.	$\underline{A}_{mn} + \underline{B}_{mn} = \underline{C}_{mn}$	Cerrada	8.	$(\lambda + \delta) A = \lambda A + \delta A$	Distributividad
2.	$(A + \underline{B}) + C = A + (B + C)$	Asociatividad.	9.	$(\lambda \delta) A = \lambda (\delta A)$	Asociatividad de <u>mult</u> . de escalares.
3.	A + 0 = 0 + A = A	Neutro aditivo.	10.	$I_n A = A I_n = A$	Identidad o neutro multiplicativo.
4.	A + (-A) = -A + A = 0	Inverso aditivo.	11.	$AB \neq \mathbf{B}A$	No conmutativo.
5.	A + B = B + A	Conmutatividad.	12.	(A B) C = A (B C)	Asociatividad.
6.	0A = 0	El cero de la izquierda es escalar.	13.	A (B + C) = AB + AC	Distributividad respecto a la suma.
7.	$\lambda(A + \underline{B}) = \lambda A + \lambda B$	Distributividad.		(A + B) C = AC + BC	

Resultados importantes

1.
$$(A^t)^t = A$$

2.
$$(A B)^t = B^t A^t$$

3.
$$(A + B)^t = A^t + B^t$$
 A y B de orden m x n.

4.
$$(A^{-1})^{-1} = A$$
 A invertible.

5.
$$(A B)^{-1} = B^{-1} A^{-1}$$
 A y B invertibles.

Matrices inversas

SeaA una matriz cuadrada de orden n. Se dice que A es invertible o "no singular" si existe una matriz denotada por A^{-1} tal que:

$$AA^{-1} = A^{-1}A = I_n$$

Matriz invertible:

- ▶ Si una matriz A es invertible, entonces su inversa es única.
- \blacktriangleright Si A y B son matrices invertibles, entonces AB es invertible y :

$$(AB)^{-1} = B^{-1}A^{-1}$$

Matriz ortogonal

Una matriz A es ortogonal sí y solo sí su inversa es igual a su transpuesta, es decir: $A_{ort} \Leftrightarrow A^{-1} = A^t$

Determinante de una matriz

Número real que permite conocer en primera instancia si la matriz de orden n es o no invertible. Se denota por det A.

Si la matriz es de 2 x 2, entonces:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

Resultado: Sea A una matriz cuadrada de orden n. Entonces:

- 1. A es invertible o "no singular" si $|A| \neq 0$
- 2. A es singular si |A| = 0

Sistemas de *m* ecuaciones lineales con *n* incógnitas

Matriz asociada al sistema: Es aquella matriz cuyos elementos son los coeficientes de un sistema de ecuaciones.

Si se tiene un sistema de ecuaciones como:

La matriz asociada al sistema es:

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ b_1 & b_2 & b_3 & \cdots & b_n \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ w_1 & w_2 & w_3 & \cdots & w_n \end{bmatrix}$$

Sistemas de *m* ecuaciones lineales con *n* incógnitas

Matriz Aumentada del Sistema: Es aquella matriz aumentada con los resultados del sistema de ecuaciones:

$$(A|D) = \begin{bmatrix} a_1 & a_2 & a_3 & \cdots & a_n & d_1 \\ b_1 & b_2 & b_3 & \cdots & b_n & d_2 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ w_1 & w_2 & w_3 & \cdots & w_n & d_n \end{bmatrix}$$