SEL 329 – CONVERSÃO ELETROMECÂNICA DE ENERGIA

Aula 01 Circuitos Magnéticos

Tópicos da Aula de Hoje

- Produção de campo magnético a partir de corrente elétrica
- Lei circuital de Ampère
- Intensidade de campo magnético (H)
- H em torno de um fio longo
- Lei de Biot-Savart
- H produzido por uma espira
- H produzido por um solenóide
- Densidade de fluxo magnético (**B**)
- Fluxo magnético (Φ)

Produção de Campo Magnético

Quando um condutor é percorrido por uma corrente elétrica surge em torno dele um campo magnético.

Obs: As linhas de campo magnético são circunferências concêntricas

Produção de Campo Magnético

O sentido do campo magnético pode ser determinado pela regra da mão direita

Produção de Campo Magnético

• As linhas de campo são perpendiculares ao condutor

Intensidade de Campo Magnético

Lei Circuital de Ampère:

• A integral de linha do vetor intensidade de campo magnético **H** ao longo de um percurso fechado é igual à corrente total (líquida) enlaçada por esta trajetória.

$$\oint \mathbf{H} \bullet d\mathbf{l} = \sum_{k=1}^{n} i_{k}$$

Obs:

Produto escalar

 $\mathbf{H} \bullet d\mathbf{l} = H.dl.\cos\theta$

d θ

Soma algébrica

$$\sum_{k=1}^{n} i_k = i_1 + i_2 - i$$

H Produzido por um Condutor Longo

$$\oint \mathbf{H} \bullet d\mathbf{l} = \sum_{k=1}^{n} i_k = i$$

- Para obter H a uma distância r do condutor, considere um círculo de raio r
- Em cada ponto do círculo \mathbf{H} e \mathbf{dl} estão na mesma direção, consequentemente $\boldsymbol{\theta} = \boldsymbol{0}$.
- Por conta da simetria do percurso circular, H será constante.
- Logo:

$$\therefore \oint \mathbf{H} \bullet d\mathbf{l} = \oint H dl = H \oint dl = H 2\pi r = i$$

$$H = \frac{i}{I}$$

H Produzido por um Condutor Longo

$$H = \frac{i}{2\pi r}$$

- H é dado em A/m
- H é diretamente proporcional à corrente
- H é inversamente proporcional à distância

H produzido por uma espira

- Cada elemento infinitesimal da espira percorrido por uma corrente contribui para a produção de campo
- Cada elemento contribui para o campo magnético na mesma direção na região interna da espira (círculo)
- A corrente elétrica em uma espira circular concentra o campo magnético no centro da espira, i.e., o campo magnético é mais intenso na região interna da espira do que na região externa

H produzido por uma espira

Lei de Biot-Savart (dois físicos franceses): também relaciona a intensidade de campo magnético com a corrente que o cria por meio da seguinte equação:

$$d\mathbf{H} = \frac{I \, d\mathbf{L} \times \hat{\mathbf{l}_r}}{4\pi r^2}$$

Obs:

Produto vetorial

$$d\mathbf{L} \times \hat{\mathbf{l}}_{\mathbf{r}} = dL \cdot l_r \operatorname{sen} \boldsymbol{\theta}$$

H produzido por uma espira

- a distância dL ao centro é constante (R = cte)
- o ângulo θ entre o vetor unitário r e o elemento de comprimento dL é sempre 90 graus

Aplicando-se a lei de Biot-Savart, tem-se

$$d\mathbf{H} = \frac{I \, d\mathbf{L} \times \hat{\mathbf{r}}}{4\pi R^2} = \frac{I dL sen \, \theta}{4\pi R^2}$$

$$\mathbf{H} = \frac{I}{4\pi R^2} \oint dL = \frac{I}{4\pi R^2} 2\pi R = \frac{I}{2R}$$

$$\mathbf{H} = \frac{I}{2R}$$

H produzido por um solenoide (N espiras)

- Em seu interior as linhas de campo são paralelas (campo praticamente uniforme)
- No exterior o campo é fraco e divergente
- Solenoide ideal (distância entre as espiras é zero)
- As linhas externas são espalhadas, enquanto que as internas são concentradas.

Aplicando-se a lei de Ampère ao percurso retangular abcd, tem-se:

$$\oint \mathbf{H} \bullet d\mathbf{l} = \int_{a}^{b} \mathbf{H} \bullet d\mathbf{l} + \int_{b}^{c} \mathbf{H} \bullet d\mathbf{l} + \int_{c}^{d} \mathbf{H} \bullet d\mathbf{l} + \int_{d}^{a} \mathbf{H} \bullet d\mathbf{l}$$

$$\int_{a}^{b} \mathbf{H} \cdot d\mathbf{l} = \int_{a}^{b} H dl \cos 0 = \int_{a}^{b} H dl = H \int_{a}^{b} dl = H.h$$

$$\oint \mathbf{H} \cdot d\mathbf{l} = \int_{a}^{b} \mathbf{H} \cdot d\mathbf{l} + \int_{b}^{c} \mathbf{H} \cdot d\mathbf{l} + \int_{c}^{d} \mathbf{H} \cdot d\mathbf{l} + \int_{d}^{d} \mathbf{H} \cdot d\mathbf{l}$$

$$\int_{a}^{b} \mathbf{H} \cdot d\mathbf{l} = \int_{a}^{b} H dl \cos 0 = \int_{a}^{b} H dl = H \int_{a}^{b} dl = H.h$$

$$\int_{d}^{a} \mathbf{H} \cdot d\mathbf{l} = \int_{d}^{a} H dl \cos 90 = 0$$

$$\int_{b}^{c} \mathbf{H} \cdot d\mathbf{l} = \int_{b}^{c} H dl \cos 90 = 0$$

$$\int_{b}^{c} \mathbf{H} \cdot d\mathbf{l} = \int_{b}^{c} H dl \cos 90 = 0$$

$$\int_{b}^{c} \mathbf{H} \cdot d\mathbf{l} = \int_{b}^{c} H dl \cos 90 = 0$$

$$\int_{a}^{c} \mathbf{H} \cdot d\mathbf{l} = \int_{b}^{c} H dl \cos 90 = 0$$

 $\int_{c}^{d} \mathbf{H} \cdot d\mathbf{l} = 0 \qquad \text{H \'e aproximadamente nulo em todos os pontos externos}$

H produzido por um solenóide (N espiras)

Portanto:

$$\oint \mathbf{H} \bullet d\mathbf{l} = Hh$$

A corrente enlaçada (concatenada) pelo percurso de integração é igual a *i* (corrente do solenóide) vezes o número de espiras envolvidas:

comprimento

número de espiras

Logo

$$\oint \mathbf{H} \bullet d\mathbf{I} = Hh = \frac{Nh}{L}i \longrightarrow H = \frac{Ni}{L} = N_e I$$

Em que $N_e = N/L =$ é o número de espiras por unidade de comprimento (ou número efetivo de espiras)

- H é dado em A.esp/m (ou simplesmente Ae/m)
- H é diretamente proporcional à corrente e ao número de espiras

Densidade de Fluxo Magnético

Lei Circuital de Ampère:

 Alternativamente: A integral de linha do vetor densidade de fluxo magnético B ao longo de um percurso fechado é igual à corrente total (líquida) enlaçada por esta trajetória multiplicada pela permeabilidade magnética μ do meio (material)

$$\oint \mathbf{B} \bullet d\mathbf{l} = \mu \sum_{k=1}^{n} i_k = \mu \mathbf{I}$$

Em que: μ é a permeabilidade magnética do meio [Wb/A.m]

$$\oint \frac{\mathbf{B}}{\mu} \bullet d\mathbf{I} = I = \oint \mathbf{H} \bullet d\mathbf{I} \qquad \qquad \oint \frac{\mathbf{B}}{\mu} = \mathbf{H}$$

$$\checkmark \mathbf{B} = \mu \mathbf{H}$$

➤ B [Wb/m²] ou [T]

➤ H Ae/m

 $\triangleright \mu$ [Wb/A.m]

Densidade de Fluxo Magnético

$$B = \mu H$$
 e $H = \frac{NI}{l}$ B depende do meio H não depende do meio

No espaço livre (vácuo), tem-se

$$\mathbf{B} = \mu_0 \mathbf{H}$$

Em que: μ_0 é a permeabilidade magnética do espaço livre = $4\pi \times 10^{-7}$ [Wb/A.m]

É comum empregar a permeabilidade relativa do meio, dada por:

$$\mu_r = \frac{\mu}{\mu_0}$$
 [adimensional]

Nos materiais utilizados em máquinas elétricas, μ_{r} usualmente varia de 2000 a 6000.

Fluxo Magnético

ullet O fluxo elementar do vetor de indução magnética ${\bf B}$ através do elemento de área d ${\bf A}$ é dado por:

$$d\Phi = \mathbf{B} \bullet d\mathbf{A}$$

• O fluxo total através de toda a superfície S é dado por:

$$\Phi = \int_{S} \mathbf{B} \bullet d\mathbf{A}$$

 \bullet Se todas as direções de B e dA coincidem e sendo B uniforme (constante em módulo e direção), tem-se:

$$\Phi = BA$$
 [Wb] (1 Wb = 10⁸ linhas de campo magnético)

Ímã Permanente

As linhas de campo magnético de um ímã permanente formam caminhos fechados. Por convenção, a direção é admitida como saindo do polo norte e entrando no polo sul.

Ímãs permanentes podem ser fabricados utilizando materiais ferromagnéticos

Solenóide

As linhas de campo produzidas por uma corrente elétrica em um solenóide são similares às de um ímã permanente

No entanto, no caso do solenoide, a intensidade do campo magnético pode ser controlada por meio da variação da corrente elétrica

Solenóide com núcleo de material ferromagnético

Um núcleo de material ferromagnético tem o efeito de multiplicar por centenas ou milhares de vezes o campo magnético de um solenoide comparado com o caso com núcleo de ar.

Eletroímãs

O efeito resultante é aumentar consideravelmente a densidade de campo magnético resultante.

A densidade de campo do eletroímã é dada por:

$$B = \mu H = \mu NI$$

Em que:

 $\mu = \mu_r \cdot \mu_0$

μ = é a permeabilidade magnética do material;

 μ_0 = é a permeabilidade magnética do vácuo (ar);

μ_r = é a permeabilidade relativa do material em relação ao vácuo

A permeabilidade relativa do material é responsável pelo efeito multiplicador produzido pelo núcleo de material ferromagnético na densidade de campo resultante.

Qual a sua aplicação no contexto de conversão eletromecânica de energia?

Eletroímãs x Ímãs Permanentes

Eletroímã:

- Facilidade para controlar o campo produzido (vantagem)
- Possibilidade de ocorrência de curtos-circuitos (desvantagem)
- Energização de parte móveis desgastes dos contatos, faiscamento (desvantagem)
- Praticamente todas as máquinas de grande porte utilizam eletroímãs (baixo custo de produção)
- Magnetismo está presente enquanto há passagem de corrente elétrica. Durante esse processo o eletroímã aquece, porém o magnetismo não é alterado pelo calor

Ímã permanente:

- Não é possível controlar o campo produzido (desvantagem)
- É mais robusto do ponto de vista que não há possibilidade de ocorrência de curtos-circuitos e necessidade de energização de partes móveis (vantagem)
- Baixa robustez mecânica
- Alto custo de produção (desvantagem)
- Campo magnético é retido no material após ser magnetizado por corrente. O ímã permanente não produz calor, porém caso você o aqueça ele poderá perder com o tempo suas características magnéticas.
- Maior aplicação em máquinas de menor porte

Próxima Aula

- Curva de magnetização
- Curva de permeabilidade
- Laço de histerese
- Susceptibilidade e permeabilidade magnética
- Força magnetomotriz
- Relutância
- Analogia entre circuitos elétricos e magnéticos
- Circuitos magnéticos com entreferro
- Espraiamento