Mini Project

Team Members: Nikita Shelar (557), Dnyaneshwari Modhave (561), Ayush Tilekar (565)

```
import pandas as pd
data = pd.read_csv('C:\\Users\\admin\\Downloads\\salary_data.csv')
print(data.head())
YearsExperience Salary
0 1.1 39343
1 1.3 46205
2 1.5 37731
                2.0 43525
3
                 2.2 39891
mean_salary = data['Salary'].mean()
print("Mean Salary:", mean_salary)
Mean Salary: 76003.0
max_experience = data['YearsExperience'].max()
print("Max Experience:", max_experience)
Max Experience: 10.5
threshold = 60000
filtered_data = data[data['Salary'] > threshold]
print(filtered_data)
  YearsExperience Salary
6
                 3.0 60150
8
                 3.2
                         64445
10
                 3.9
                        63218
14
                 4.5
                        61111
15
                 4.9 67938
16
                 5.1 66029
```

5.3 83088

5.9 81363

17

18

19	6.0	93940
20	6.8	91738
21	7.1	98273
22	7.9	101302
23	8.2	113812
24	8.7	109431
25	9.0	105582
26	9.5	116969
27	9.6	112635
28	10.3	122391
29	10.5	121872

data['SalarySquared'] = data['Salary'] ** 2

print(data.head())

YearsExperience)	Sala	ry	Salary	Squared	
0	1.	1	3934	43	15478716	49
1	1.	. 3	4620	05	21349020	25
2	1.	. 5	3773	31	14236283	61
3	2.	. 0	4352	25	18944256	25
4	2.	2	3989	91	15912918	81

grouped_data = data.groupby('YearsExperience')['Salary'].mean()

print(grouped_data)

```
YearsExperience
1.1 39343.0
1.3
        46205.0
1.5
        37731.0
2.0
        43525.0
2.2
        39891.0
2.9
        56642.0
3.0
       60150.0
3.2
        59445.0
3.7
        57189.0
3.9
       63218.0
4.0
        56375.5
4.1
        57081.0
4.5
        61111.0
4.9
        67938.0
5.1
        66029.0
5.3
        83088.0
5.9
        81363.0
6.0
        93940.0
6.8
        91738.0
7.1
        98273.0
7.9
       101302.0
```

```
8.2 113812.0

8.7 109431.0

9.0 105582.0

9.5 116969.0

9.6 112635.0

10.3 122391.0

10.5 121872.0

Name: Salary, dtype: float64
```

import matplotlib.pyplot as plt

plt.scatter(data['YearsExperience'], data['Salary'])

plt.xlabel('Years of Experience')

plt.ylabel('Salary')

plt.title('Salary vs. Years of Experience')

plt.show()


```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# Split the data into training and testing sets
X = data[['YearsExperience']]
y = data['Salary']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Train the linear regression model
model = LinearRegression()
model.fit(X_train, y_train)
# Make predictions on the test set
y_pred = model.predict(X_test)
# Evaluate the model using mean squared error
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
```

Mean Squared Error: 49830096.85590839