61. Study the convergence of these series:

(a)
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{(k+1)(k+2)(k+3)}}$$

(b)
$$\sum_{k=1}^{\infty} \frac{1}{((k+1)(k+2)(k+3))^{\frac{1}{4}}}$$

(c)
$$\sum_{k=1}^{\infty} \frac{k^3 + k}{k^5 + 1}$$

Solution:

(a)
$$(k+1)(k+2)(k+3) > k^3$$
 then $\frac{1}{\sqrt{(k+1)(k+2)(k+3)}} < \frac{1}{k^{\frac{3}{2}}}$.

The serie $\sum_{k=1}^{\infty} \frac{1}{k^{\frac{3}{2}}}$ is convergent then $\sum_{k=1}^{\infty} \frac{1}{\sqrt{(k+1)(k+2)(k+3)}}$ converges.

(b)
$$\frac{1}{((k+1)(k+2)(k+3))^{\frac{1}{4}}} > \frac{1}{(3+k)^{\frac{3}{4}}} > \frac{1}{3+k}$$
 but
$$\sum_{k=1}^{\infty} \frac{1}{3+k} = \sum_{k=4}^{\infty} \frac{1}{k} = \sum_{k=1}^{\infty} \frac{1}{k} - 1 - \frac{1}{2} - \frac{1}{3}, \text{ and } \sum_{k=1}^{\infty} \frac{1}{k} \text{ (harmonic serie) is divergent.}$$
 divergent. Then,
$$\sum_{k=1}^{\infty} \frac{1}{((k+1)(k+2)(k+3))^{\frac{1}{4}}} \text{ is divergent.}$$

(c)
$$\sum_{k=1}^{\infty} \frac{k^3 + k}{k^5 + 1} = \sum_{k=1}^{\infty} \underbrace{\frac{k}{k^5 + 1}}_{< \frac{1}{k^4}} + \sum_{k=1}^{\infty} \underbrace{\frac{k^3}{k^5 + 1}}_{< \frac{1}{k^2}} \text{ thus } \sum_{k=1}^{\infty} \frac{k^3 + k}{k^5 + 1} \text{ is the sum of two con-}$$

vergent series and then it is convergent.

62. Study the convergence of these series:

(a)
$$\sum_{k=1}^{\infty} \left(1 - \frac{1}{k^2}\right)^{k^3}$$

(b)
$$\sum_{k=1}^{\infty} \frac{3^k}{k!}$$

(c)
$$\sum_{k=1}^{\infty} \frac{k+k^k}{k^{2k}}$$

(d)
$$\sum_{k=1}^{\infty} \frac{k!}{k^k}$$

Solution:

(a) We will use the root test. Let's $a_k = \left(1 - \frac{1}{k^2}\right)^{k^3}, k \ge 1$. Then $|a_k|^{\frac{1}{k}} = \left(\left(1 - \frac{1}{k^2}\right)^{k^3}\right)^{\frac{1}{k}} = \left(1 - \frac{1}{k^2}\right)^{k^2}$ and $\lim_{k \to \infty} \left(1 - \frac{1}{k^2}\right)^{k^2} = e^{-1} < 1$, then $\sum_{k=1}^{\infty} \left(1 - \frac{1}{k^2}\right)^{k^3}$ is convergent.

(b) We will use the ratio test. Let's $a_k = \frac{3^k}{k!}$. Then $\frac{a_{k+1}}{a_k} = \frac{3^{k+1}}{(k+1)!} \frac{k!}{3^k} = \frac{3}{k+1} \le \frac{3}{4} < 1$ if $k \ge 3$ then $\sum_{k=1}^{\infty} \frac{3^k}{k!}$ is convergent.

(c) $\sum_{k=1}^{\infty} \frac{k+k^k}{k^{2k}} = \sum_{k=1}^{\infty} \frac{k}{\underbrace{k^{2k}}^{2k}} \sum_{k=1}^{\infty} \underbrace{\frac{k^k}{k^{2k}}}, \text{ then } \sum_{k=1}^{\infty} \frac{k+k^k}{k^{2k}} \text{ is the sum of two convergent series and then converges.}$

(d) We will use the ratio test. Let's $a_k = \frac{k!}{k^k}$.

Then
$$\frac{a_{k+1}}{a_k} = \frac{(k+1)!}{(k+1)^{k+1}} \frac{k^k}{k!} = \frac{k^k(k+1)}{(k+1)^{k+1}} = \frac{k^k}{(k+1)^k} = \left(\frac{k}{k+1}\right)^k = \left(\frac{1}{1+\frac{1}{k}}\right)^k$$

We know that $\lim_{k\to\infty} \left(1+\frac{1}{k}\right)^k = e > 1$, so $\lim_{k\to\infty} \frac{a_{k+1}}{a_k} = e^{-1} < 1$ and $\sum_{k=1}^{\infty} \frac{k!}{k^k}$ is convergent.

63. Study the values of α for which $\sum_{k=2}^{\infty} \frac{1}{k \ln^{\alpha}(k)}$ converges.

Hint: you can try to use the condensation test.

Solution:

Let's $a_k = \frac{1}{k \ln^{\alpha}(k)}$. We use the condensation test, so we study the convergence

of
$$\sum_{n=2}^{\infty} 2^n a_{2^n} = \sum_{n=2}^{\infty} \frac{2^n}{2^n \ln^{\alpha}(2^n)}$$
.

Then,
$$\sum_{n=2}^{\infty} 2^n a_{2^n} = \sum_{n=2}^{\infty} \frac{1}{\ln^{\alpha}(2^n)} = \sum_{k=1}^{\infty} \frac{1}{(n\ln(2))^{\alpha}} = \sum_{k=1}^{\infty} \frac{1}{n^{\alpha}\ln(2)^{\alpha}}.$$

Then,
$$\sum_{n=2}^{\infty} 2^n a_{2^n}$$
 (and thus $\sum_{k=1}^{\infty} a_k$) converges if and only if $\sum_{n=2}^{\infty} \frac{1}{n^{\alpha}}$. We know $\sum_{n=2}^{\infty} \frac{1}{n^{\alpha}}$

converges if and only if $\alpha > 1$, so $\sum_{k=2}^{\infty} a_k = \sum_{k=2}^{\infty} \frac{1}{k \ln^{\alpha}(k)}$ converges if and only if $\alpha > 1$.

64. For each serie, find the values $b \in \mathbb{R}$ such as the following series converge:

(a)
$$\sum_{k=1}^{\infty} \frac{(b^2 + 2b)^k}{k^2}$$

(b)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^b}$$

Solution:

- (a) For the sake of simplicity, the notation $A = b^2 + 2b$ is used, so we study the convergence of the serie $\sum_{k=1}^{\infty} \frac{A^k}{k^2}$. We study the cases $|A| \le 1$ and |A| > 1:
 - If |A| > 1, then the term $a_k = \frac{A^k}{k^2}$ does not converge to 0, so the serie $\sum_{k=1}^{\infty} \frac{A^k}{k^2}$ is divergent.
 - If $|A| \leq 1$, then $|a_k| < \frac{1}{k^2}$, and then $\sum_{k=1}^{\infty} \frac{A^k}{k^2}$ is absolutely convergent.

Finally, to determine for which values of b the serie $\sum_{k=1}^{\infty} \frac{(b^2 + 2b)^k}{k^2}$ is convergent, we have to solve $|b^2 + 2b| = 1$, in other terms, we have to solve:

- $b^2 + 2b = 1$, which has $-1 + \sqrt{2}$ and $-1 \sqrt{2}$ as solutions.
- $b^2 + 2b = -1$, i.e. $(b+1)^2 = 0$ which has obviously -1 as unique solution.

We deduce the parabola $b^2 + 2b$ is lower or equal than 1 if $b \in [-1 - \sqrt{2}, -1 + \sqrt{2}]$ and always greater or equal than -1 (equal to -1 when b = -1).

To conclude, $\sum_{k=1}^{\infty} \frac{(b^2+2b)^k}{k^2}$ converges when $b \in [-1-\sqrt{2},-1+\sqrt{2}].$

We can see what happens with partial sums depending on b, $f(b) = \sum_{k=1}^{\infty} \frac{(b^2 + 2b)^k}{k^2}$:

(b) Let's $a_k = \frac{1}{k^b}$. For b = 0, $(\lim_{k \to \infty}) a_k = 1$. For b < 0, $\lim_{k \to \infty} a_k = +\infty$. Then, for $b \le 0$, $\lim_{k \to \infty} a_k \ne 0$, so $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^b}$ is divergent.

We want to use the Leibniz rule for b > 0. Let's $a_k = \frac{1}{k^b}$, and its associated function $f(x) = \frac{1}{x^b} = x^{-b}, x \in \mathbb{R}^+$. According to the lecture notes page 48, f and then $(a_k)_{k \in \mathbb{N}}$ is decreasing only if b > 0. Moreover, with b > 0, $\lim_{k \to \infty} a_k = 0$. So we can apply the Leibniz rule, and then $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^b}$ is convergent if and only if b > 0.

65. Let $(F_n)_{n\in\mathbb{N}}$ be a Fibonacci sequence. Show that $\sum_{k=1}^{\infty} \frac{1}{F_k}$ is convergent.

Solution:

A Fibonacci sequence can be defined by $F_{k+2} = F_{k+1} + F_k$, $k \ge 0$, $F_1 = 1$, $F_0 = 0$. We want to use the ratio test. Let's $a_k = \frac{1}{F_k}$, for sake of simplicity, we will study the ratio $\frac{a_k}{a_{k+1}}$ instead of $\frac{a_{k+1}}{a_k}$, so we want to prove that $\exists C > 1, \forall k \in \mathbb{N}, \frac{a_k}{a_{k+1}} \ge C$.

A possibility would be to use the explicit formula of F_k , $F_k = \frac{1}{\sqrt{5}} \left(\phi^k + (1 - \phi)^k \right)$, ϕ is the golden ratio: $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$. Then, we can prove that $\lim_{k \to +\infty} \frac{a_k}{a_{k+1}} = \frac{1}{2} \left(\frac{a_k}{\sqrt{5}} + \frac{1}{2} + \frac{1}{2} \right)$

 $\frac{1}{2}\lim_{k\to +\infty}\frac{F_{k+1}}{F_k}=\phi>1.$ However, the explicit formula has not to be known in this class.

Let's try with the implicit form. For $k \geq 1$, $\frac{a_k}{a_{k+1}} = \frac{F_{k+1}}{F_k} = \frac{F_k + F_{k-1}}{F_k} = 1 + \frac{F_{k-1}}{F_k}$.

Now, we have to prove that $\exists C' > 0, \forall k \geq 1, \frac{F_{k-1}}{F_k} \geq C'$. It is easy to see (for example by induction) that $(F_k)_{k \in \mathbb{N}}$ is a non-decreasing sequence with positive terms. Then, $F_k = F_{k-1} + \underbrace{F_{k-2}}_{\leq F_{k-1}} \leq 2F_{k-1}$, so $\frac{F_{k-1}}{F_k} \geq \frac{1}{2}$ and then $\frac{a_k}{a_{k+1}} \geq \frac{3}{2} > 1$.

Thanks to the ratio test we conclude that $\sum_{k=1}^{\infty} \frac{1}{F_k}$ is convergent.

Remark: If we assume that $\frac{F_{k+1}}{F_k}$ has a limit $l \in \mathbb{R}$, then $\lim_{k \to +\infty} \frac{F_{k+1}}{F_k} = \lim_{k \to +\infty} 1 + \frac{F_{k-1}}{F_k}$ and $l = 1 + \frac{1}{l}$, which is actually the polynomial $l^2 - l - 1 = 0$. The solutions are $l = \phi$ and $l = 1 - \phi$, and only $\phi > 1$ is relevant because l > 0. However, to use this argument, you have to show before that a such limit l exists...

- 66. Let $(u_n)_{n\in\mathbb{N}}$ be a positive sequence such as the serie $\sum_{n=1}^{\infty} u_n$ is convergent. We want to study the convergence of $\sum_{n=1}^{\infty} \frac{\sqrt{u_n}}{n}$.
 - (a) Prove that $\sum_{n=1}^{m} \frac{\sqrt{u_n}}{n} \leq \left(\sum_{n=1}^{m} u_n\right)^{\frac{1}{2}} \cdot \left(\sum_{n=1}^{m} \frac{1}{n^2}\right)^{\frac{1}{2}}.$

Hint: Use a famous inequality you learnt at the beginning of the semester.

(b) Conclude about the convergence of $\sum_{n=1}^{\infty} \frac{\sqrt{u_n}}{n}$.

Solution:

(a) We remind that for two vectors of same length, $\mathbf{a} = (a_1, ..., a_N)$ and $\mathbf{b} = (b_1, ..., b_N)$, the Cauchy-Schwarz inequality can be applied:

$$egin{aligned} \langle oldsymbol{a}, oldsymbol{b}
angle & \leq \|oldsymbol{a}\|_2 \cdot \|oldsymbol{b}\|_2 \ & \sum_{n=1}^N a_n b_n \leq \left(\sum_{n=1}^N a_n^2
ight)^{rac{1}{2}} \left(\sum_{n=1}^N a_n^2
ight)^{rac{1}{2}} \end{aligned}$$

If we choose $a_n = \sqrt{u_n}$, $b_n = \frac{1}{n}$, then we get:

$$\sum_{n=1}^{N} a_n b_n \le \left(\sum_{n=1}^{N} u_n\right)^{\frac{1}{2}} \left(\sum_{n=1}^{N} \frac{1}{n^2}\right)^{\frac{1}{2}}$$

(b) We know that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent, let's denote its limite as $l = \left(\frac{\pi^2}{6}\right)$, and the statement asserts that $\sum_{n=1}^{\infty} u_n$ is convergent, let's denote its limit as l'. Then:

$$\forall N \in \mathbb{N} : \left(\sum_{n=1}^{N} \frac{\sqrt{u_n}}{n}\right)^2 \le \left(\sum_{n=1}^{N} u_n\right) \left(\sum_{n=1}^{N} \frac{1}{n^2}\right)$$

it follows that

$$\lim_{N \to +\infty} \left(\sum_{n=1}^{N} \frac{\sqrt{u_n}}{n} \right)^2 \le \underbrace{\left(\lim_{N \to +\infty} \sum_{n=1}^{N} u_n \right)}_{l'} \underbrace{\left(\lim_{N \to +\infty} \sum_{n=1}^{N} \frac{1}{n^2} \right)}_{l}$$

therefore we get

$$\sum_{n=1}^{\infty} \frac{\sqrt{u_n}}{n} \le \sqrt{ll'} \in \mathbb{R}^+$$

Then $\sum_{n=1}^{\infty} \frac{\sqrt{u_n}}{n}$ is convergent.