ПОРТФОЛИО

ФИО: Петухова Мария Юрьевна

Представлены программы, разработанные во время выполнения учебных проектов на физическом факультете МГУ.

1. Отклик водного слоя на бегущие возмущения

В работе исследовался процесс генерации гравитационных волн бегущими по дну возмущениями.

Дополнительные материалы и код программы можно посмотреть здесь.

Математическая модель

Для решения задачи использовалось линейное приближение теории мелкой воды, причем ограничивалось рассмотрением одномерной модели. В этом случае процесс описывается волновым уравнением:

$$\frac{\partial^2 \xi(x,t)}{\partial t^2} - \frac{\partial}{\partial x} \left(gH(x) \frac{\partial \xi}{\partial x} \right) = \frac{\partial^2 \eta(x,t)}{\partial t^2},\tag{1}$$

, где $\xi(x,t)$ —- неизвестная функция возмущения свободной поверхности, H(x) – заданный профиль дна. Здесь $\eta(x,t)$ — бегущее возмущение дна, описываемое формулой

$$\eta(x,t) = Af(x - vt),\tag{2}$$

где A- амплитуда волны, v-скорость ее распространения.

Волновое уравнение дополнялось условиями свободного прохода на границах выбранной области [0,L] и начальными условиями отсутствия возмущения свободной поверхности.

Численное решение

Численное решение поставленной выше задачи было получено методом конечных разностей. Схема выбиралась из следующих условий:

- 1. безусловная устойчивость;
- 2. минимальное количество итераций при точности аппроксимации решения не ниже второго порядка.

Этим условиям удовлетворяет наилучшая консервативная схема, шаблон которой приведен на рисунке:

Рис. 1: Шаблон наилучшей консервативной схемы

Сетка при этом выбирается равномерной по координате и по времени. Схема является неявной и значения неизвестной функции находятся на каждом временном слое методом прогонки.

Программная реализация

Исходный алгоритм был реализован на языке программирования С++. В среде разработки Qt Creator создано приложение, позволяющее пользователю задавать различные параметры расчетной области, бегущее возмущение и профиль дна. Приложение графически отображает результаты расчетов для текущего момента времени, одновременно показывая профиль дна и бегущее возмущение, наглядно демонстрируя процесс генерации и распространения гравитационных волн. Бегущее возмущение может быть задано пользователем либо вводом файла с различными значениями функции в точках и самих точек, либо двумя встроенными модельными функциями, приведенными на слайде. Профиль дна также может быть задан поточечно из файла, либо встроенными

модельными функциями, в числе которых плоское дно, уступ, ступенька, наклонное дно и другие. Окно приложения представлено на рисунке:

Рис. 2:

Практическое применение программы и итоги работы

Написанное приложение применялось в исследовании процессов генерации и распространения гравитационных волн, в частности волн цунам, при произвольном профиле дна. Самые интересные случаи приведены в моей дипломной работе [1]. Например, получены параметры дна и характерестеки оползня при котором он может генерировать волны большой амплитуды.

2. Вывод спутника на геостационарную орбиту

Рассматривается задача перехода искусственного спутника Земли на геостационарную орбиту (ГСО). Выход на ГСО осуществляется путем плоских переходов между эллиптическими компланарными орбитами в центральном ньютоновском поле. Для выхода используется многоступенчатая ракета с двигателями с заданной силой тяги. Двигатели

включаются в районе апогея и перигея орбит на заданное время. Дополнительные материалы и код программы можно посмотреть здесь.

Математическая модель и численная реализация

Модель плоского движения космического аппарата (KA) в гравитационном поле Земли описыывается системой уравнений движения в полярных координатах [2]. Данная система дифференциальных уравнений (1-5) численно решается с помощью метода Рунге-Кутты.

Описание работы программы

На языке программрования C++ в среде разработки QtCreator была написано приложение, реализующее описанные выше алгоритмы, окно которого приведено ниже:

Рис. 3:

Данная приложение позволяет рассчитывать, как меняется положение спутника и его скорость со временем. По центру расположена картинка с изображением положения спутника. Слева текстовый бокс куда выводится все рассчитанные время, расстояние и скорость. Справа - текстовый

бокс в котором отображается текущие время,скорость, расстояние, масса и некоторые другие полезные сведения в момент паузы или завершения вычислений. Пользователь может менять массу полезного груза, выводимого на орбиту в пределах от 400 до 3000кг (2000kg по умолчанию). Также можно изменить шаг по сетке ${
m dt}=5{
m c},\ 10{
m c},\ 30{
m c}$ (по умолчанию 30с). Расчеты могут быть выполнены в двух режимах- быстром и управляемом. В управляемом режиме при нажатии на кнопку старт запускаются вычисления, окно с графическим отображением спутника перерисовывается в режиме онлайн. Кнопка паузы предназначена для приостановления и последующего возобновления вычислений. Кнопка стоп прекращает вычисления и возвращает спутнику начальные параметры. В быстром режиме вычисления производятся непрерывно до момента достижения спутником ГСО. В этот момент интерфейс программы недоступен. По завершении вычислений вся информация выводится в текстовый файл (D:/table.txt) и виджет справа, графический виджет отображает всю траекторию движения спутника.

Итоги работы

В конечном итоге программа может рассчитывать оптимальную траекторию и моменты включения двигателей для заданной массы полезного груза, однако малое число задаваемых параметров и простая математическая модель позволяют использовать лишь в качестве учебной - можно увидеть динамику процесса выхода спутника на ГСО.

Литература

- 1. Петухова М. Ю. Отклик воднаго слоя на бегущие возмущения: дипломная работа. МГУ имени М. В. Ломоносова, Москва, 2020.
- 2. Петухова М. Ю. Вывод спутника на геостационарную орбиту: курсовая работа. МГУ имени М. В. Ломоносова, Москва, 2020.