

F1G. 11

BURNS, DOANE, SWECKER AND MATHIS LLP APPLN: FILING DATE: SEPTEMBER 21, 2001. TITLE LANTABLE ELECTRODE LEAD AND... ATTOR DOCKET NO: 019952-167

1/15

FIG. 2B

33 27 R4 1000 \Q 31 258.55 N

5/15

F1G. 5

LENGTH OF CONDUCTOR COIL	550 mm
NUMBER OF TURNS OF CONDUCTOR COILS	NUMBER OF TURNS OF CONDUCTOR COILS FOUR (TWO ON TIP ELECTRODE SIDE, TWO ON RING ELECTRODE SIDE)
DIAMETER OF CONDUCTOR COIL (AVERAGE DIAMETER)	0.9 mm
DIAMETER OF CONDUCTOR WIRE	0.1 mm
THICKNESS OF INSULATING COATING	0.05 mm
RESISTANCE OF CONDUCTOR WIRE (SILVER)	4.06 \text{\alpha}
RESISTANCE OF CONDUCTOR WIRE (COBALT ALLOY)	258.55 <u>Q</u>
RESISTANCE OF LIVING BODY	1000 \Q

The section of the se

F1G. 6A

RESISTANCE	TIP ELECTRODE-SIDE LEAD RESISTANCE (LIVING BODY RESISTANCE (\Omega)	RING ELECTRODE-SIDE LEAD RESISTANCE (Ω)
BEFORE DISCONNECTION	4.06	1000	4.06
AFTER DISCONNECTION	258.55 (DISCONNECTION)	1000	4.06

F1G. 6B

RESISTANCE	RESISTANCE DISCONNECTION (Ω) DISCONNECTION (Ω) BEFORE DISCONNECTION (Ω) (AFTER DISCONNECTION (-)	TOTAL RESISTANCE AFTER DISCONNECTION (\Omega)	RATIO OF TOTAL RESISTANCE (AFTER DISCONNECTION / BEFORE DISCONNECTION) (-)
FIRST EMBODIMENT	1008.13	1262.61	1.25

FIG. 7A FIG. 7B

F I G. 8

F1G. 10A

RESISTANCE	CHIP ELECTRODE-SIDE LEAD RESISTANCE (Ω)	LIVING BODY RESISTANCE (Ω)	RING ELECTRODE-SIDE LEAD RESISTANCE (\arrangle)
BEFORE DISCONNECTION	14.85	1000	14.85
AFTER DISCONNECTION	258.55 (DISCONNECTION)	1000	14.85

: G. 10B

RESISTANCE	TOTAL RESISTANCE BEFORE TOTAL RESISTANCE AFTER RATIO OF TOTAL RESISTANCE DISCONNECTION (\alpha) DI	TOTAL RESISTANCE AFTER DISCONNECTION (\alpha)	RATIO OF TOTAL RESISTANCE (AFTER DISCONNECTION/ BEFORE DISCONNECTION) (-)
SECOND EMBODIMENT	1029.70	1273.40	1.24

AB F

F1G. 12

290759/90

FIG. 15A

RESISTANCE	CHIP ELECTRODE-SIDE LEAD RESISTANCE (Ω)	LIVING BODY RESISTANCE	RING ELECTRODE-SIDE LEAD RESISTANCE (\arrangle)
BEFORE DISCONNECTION	7.88	1000	7.88
AFTER DISCONNECTION	15.76 (DISCONNECTION)	1000	7.88

FIG. 15B

TOTAL RESISTANCE BEFORE DISCONNECTION (\Omega)	TOTAL RESISTANCE AFTER DISCONNECTION (Ω)	rotal resistance before total resistance after ratio of total resistance total res
1015.76	1023.63	1.008