

LYCEE BENGURDEN

MAHDHI Mabrouk

Entrainement sur les suites réelles

La durée est 35 Minutes. Il est préférable de ne pas voir la correction qu'à la fin de l'entrainement et non après chaque question.

et non après chaque question.	
	Prénom : N° : N°
Pour cet exercice mettre V si la rép	oonse est vraie et F sinon. Aucune justification n'est demandée.
Soit la suite (U) définie sur IN pa	$U_0 = 3$
Soit is suite (0) definite sui in pa	$U_{n+1} = \frac{2}{1+U_n}$
1. Par démonstration par re	écurrence on obtient :
$\bigcup U_n > 0 \ \forall n \in I$	N.
$\bigcup U_n = 0 \ \forall n \in I$	N.
$\bigcup U_n < 0 \ \forall n \in I$	N.
2. Soit la fonction f définie	par : $f(x) = \frac{2}{1+x}$, où $U_{n+1} = f(U_n)$. Donc :
La limite de U es	t une solution de l'équation : $x^2 + x - 2 = 0$.
La limite de U es	t une solution de l'équation : $x^2 + x + 2 = 0$.
La limite de U es	t une solution de l'équation : $x^2 - x + 2 = 0$.
3. Par suite la limite de U e	st égale à :
\bigcup 0.	
<u> </u>	
	II 4
4. On pose la suite V défini	e par : $V_n = rac{U_n - 1}{U_n + 2}$. Cette suite est une suite :
$\square V_{n+1} = \frac{1 - U_n}{4 + 2U_n}.$	
5. La suite V est-elle géomé	étrique ?
Non.	
	$q=\frac{1}{2}$ et de 1 ^{er} terme $V_0=\frac{2}{5}$.
	$q=-rac{1}{2}$ et de 1 ^{er} terme $V_0=rac{2}{5}$.
6. Pour tout n de IN on a :	2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	•
$\smile V_n \leq 3.$	Je vous souhaite une bonne préparation pour le bac.
{SVP envoyer les rénons	Mahdhi Mahwauk

{SVP, envoyer les réponses vers l'une de deux adresses E-mail écrits audessus si vous avez fait cet exercice..}

LYCEE BENGURDEN

MAHDHI Mabrouk

La correction de cet exercice

Pour cet exercice mettre V si la réponse est vraie et F sinon. Aucune justification n'est demandée.

Soit la suite (U) définie sur IN par : $\begin{cases} U_0 = 3 \\ U_{n+1} = \frac{2}{1+U_n} \end{cases}$

- 1. Par démonstration par récurrence on obtient :
 - $\bigvee U_n > 0 \quad \forall n \in IN.$
- **2.** Soit la fonction f définie par : $f(x) = \frac{2}{1+x}$, où $U_{n+1} = f(U_n)$. Donc :
 - \bigvee La limite de U est une solution de l'équation : $x^2 + x 2 = 0$.
 - **F** La limite de U est une solution de l'équation : $x^2 + x + 2 = 0$.
 - **F** La limite de U est une solution de l'équation : $x^2 x + 2 = 0$.
- 3. Par suite la limite de U est égale à :
 - **F** 0.
 - <u>v</u> 1.
 - \mathbf{F} -2
- **4.** On pose la suite V définie par : $V_n = \frac{U_n 1}{U_n + 2}$. Cette suite est une suite :
 - $\bigvee V_{n+1} = \frac{1 U_n}{4 + 2U_n}.$
 - $V_{n+1} = -\frac{1}{2}V_n.$
 - $V_{n+1} = \frac{1}{2}V_n$.
- 5. La suite V est-elle géométrique ?
 - F Non.
 - Oui, et de raison $q = \frac{1}{2}$ et de 1^{er} terme $V_0 = \frac{2}{5}$.
 - \bigvee Oui, et de raison $q = -\frac{1}{2}$ et de 1^{er} terme $V_0 = \frac{2}{5}$.
- 6. Pour tout n de IN on a :
 - $\bigvee V_n \geq -\frac{1}{2}$.
 - $\bigvee V_n > -2$.

Je vous souhaite une bonne préparation pour le bac. Mahdhi Mabrouk

