효모-젖산균복합발효에 의한 쌀겨의 비라민 B_1 , B_2 , B_6 함량 높이기

리영철, 정승주, 림복남

위대한 수령 김일성동지께서는 다음과 같이 교시하시였다.

《과학자들은 경공업발전에서 나서는 과학기술적문제들을 푸는데 힘을 넣어 우리 인민들의 생활을 빨리 높일수 있게 하여야 하겠습니다.》(《김일성전집》제50권 85~86폐지)

경공업분야에서 식료품의 질을 개선하고 보관기일을 늘이는것은 날로 높아지는 인민들의 수요를 원만히 충족시키기 위한 중요한 문제이다.

세계적으로 쌀겨를 비롯한 농부산물을 미생물발효시켜 집짐승의 먹이첨가제, 여러가지 비타민첨가제로 농업과 의학, 화장품공업에 리용하고있다.[2]

이로부터 우리는 쌀겨를 효모-젖산균으로 복합발효시키고 비타민 B_1 , B_2 , B_6 함량이 어떻게 변하는가를 분자형광광도법으로 조사하였다.

재료와 방법

배양에 리용한 균주는 《만경대 1》호 복합균인데 그것의 주요미생물상은 젖산균무리 (Streptococcus lactis와 Lactobacillus casei)와 효모균무리(Kluyveromyces lactis와 Brettanomyces clausenii)로 이루어졌다.

종균배양에는 강냉이가루, 시료기질로는 쌀겨를 리용하였다.

기구로는 분자형광광도계(《RF-5 000》), 시약으로는 비타민 B₁, B₂, B₆표준용액들(분석순의 티아민염산염, 리보플라빈염산염, 피리독살질산염을 증류수에 100μg/mL 되게 풀었다.), 1% 적혈염용액, 20% 가성소다용액, 3mol/L 류산용액, 린산완충용액(Na₂HPO₄+KH₂PO₄, pH 8.0)을 리용하였다.

균배양은 물기가 70% 되게 맞춘 쌀겨에 종균을 접종하고 잘 혼합한 후 온도를 30℃로 보장하면서 24h동안 발효시켜 진행하였다.[1]

동결농축은 효모-젖산균을 처리하지 않은 대조구와 처리한 시험구에 대하여 3차 진행하였다.(배양물질량의 5배 되게 물을 넣고 실험실온도에서 4h 우려낸 후 가재천으로 걸러 우림액을 -20℃에서 하루밤 얼구고 녹이면서 농축된 액을 갈라내였다.[3] 동결농축한 대조구와 시험구의 쌀겨우림액을 1h정도 방치한 후 800r/min에서 30min간 원심분리하여 얻은 상층액을 시료용액으로 하였다.)

비타민 B₁, B₂, B₆조성과 함량은 다음과 같이 결정하였다.

일정한 량의 비타민 B_1 , B_2 , B_6 표준용액 또는 시료용액을 취하여 10mL들이 눈금플라스크에 넣고 여기에 일정한 량의 완충용액을 넣었다. 다음 20% NaOH용액 0.5mL, 1% 적혈염용액 1mL를 넣고 진탕한 다음 $20\sim30s$ 동안 놓아두었다. 3mol/L 류산용액으로 pH를 중성으로 맞추고 눈금까지 완충용액을 넣었다. 10min간 방치한 후 $\Delta\lambda=80nm$ 에서 동시려기스펙트르를 측정하였다. 다음 이 파장에서 비타민 B_1 , B_2 , B_6 의 동시려기형광세기를 측정하여 정량하였다.

결과 및 론의

쌀겨우림액에서 비타민 B_1 , B_2 , B_6 의 동시려기형광스펙트르를 측정한 결과는 그림과 같다.

그림. 쌀겨우림액에서 비타민 B_1 , B_2 , B_6 의 동시려기형광스펙트르 1-대조구, 2-시험구; I-Ⅲ은 비타민 B_1 , B_2 , B_6

표에서 보는바와 같이 쌀겨를 효모 - 젖산균으로 처리할 때 비타민 B군의 함량은 상당히 높아졌다. 다시말하여 비타민 B₁는 처리하지 않았을 때에 비하여 7.6배, 비타민 B₂은 7.7배, 비타민 B₆은 5.6배 높아졌다.

그림에서 보는바와 같이 쌀겨속에는 비타민 B_1 , B_2 , B_6 이 존재하며 효모-젖산균인 《만경대 1》호 복합균으로 처리할 때 형광세기는 커졌다. 이것은 쌀겨를 효모-젖산균으로 처리하였을 때 비타민 B_1 , B_2 , B_6 의 함량이 증가하였다는것을 보여준다.

쌀겨우림액에서의 비타민 B_1 , B_2 , B_6 의 함량을 동시려기형광법으로 분석한 결과는 표와 같다.

표. 대조와 시료속의 비라민 B₁, B₂, B₆의 함량

분석회수 -	대조/(μg·mL ⁻¹)			시료 /(μg·mL ⁻¹)		
	\mathbf{B}_1	B_2	B_6	\mathbf{B}_1	B_2	B_6
1	9.20	2.57	2.25	69.60	19.78	12.50
2	9.21	2.56	2.24	69.61	19.78	12.51
3	9.19	2.55	2.26	69.62	19.79	12.60
4	9.18	2.58	2.24	69.70	19.77	12.49
5	9.22	2.56	2.25	69.63	19.75	12.50
평균	9.20	2.56	2.25	69.63	19.77	12.52
변동곁수	0.16	0.46	0.35	0.05	0.07	0.35

맺 는 말

쌀겨를 효모-젖산균으로 발효시킬 때 쌀겨에서 비타민 B_1 , B_2 , B_6 함량이 높아지는데 비타민 B_1 는 대조에 비해 7.6배, 비타민 B_2 은 7.7배, 비타민 B_6 은 5.6배 높아졌다.

참 고 문 헌

- [1] Takashi Kuda et al.; Food Science and Technology, 65, 62, 2016.
- [2] S. Milcent; Separation and Purification Technology, 22, 23, 393, 2001.
- [3] 宮本陽子 等; Nippon Shokuhin Kagaku Kaishi, 47, 3, 214, 2000.

주체107(2018)년 1월 5일 원고접수

Increasing the Contents of Vitamin B₁, B₂, B₆ in Rice Bran by Fermentation using Yeast-Lactobacillus

Ri Yong Chol, Jong Sung Ju and Rim Pok Nam

It was defined that the contents of vitamin B_1 , B_2 and B_6 increased in rice bran fermented by yeast-lactobacillus.

Considering the changes of vitamin B_1 , B_2 and B_6 contents, vitamin B_1 , B_2 and B_6 were respectively enhanced 7.6, 7.7, 5.6 times than the control.

Key words: vitamin B₁, B₂, B₆, yeast-lactobacillus