Definition 0.1. Given a vector space V a **norm** $\|\cdot\|$ is mapping from V to $[0, +\infty)$ such that

- 1. **positive definiteness:** ||x|| = 0 if and only if x = 0.
- 2. absolute homogeneity: $\|\lambda x\| = |\lambda| \|x\|$ for all $\lambda \in \mathbb{R}$.
- 3. triangle inequality: $||x + y|| \le ||x|| + ||y||$ for all $x, y \in V$.

1 Problem set

- 1. Show that all norms are *convex* functions.
- 2. Let $g: \mathbb{R}^m \to \mathbb{R}$ be a convex function and $A \in \mathbb{R}^{m \times d}$ a linear operator (matrix). Show that $f(\cdot) = g(A \cdot)$ is also convex.
- 3. Let x^* be local minimum of a convex function $f: \mathbb{R}^d \to \mathbb{R}$. Show that x^* is a global minimum.
- 4. If \bar{x} is a stationary point of the **convex** function f, then \bar{x} is a global minimizer of f (give a geometric intuition).