M32: Arquitectura Lógica

 $\rm M32$ es una CPU diseñada sólo con fines docentes y por lo tanto no posee todas las capacidades exigidas a una CPU real. La arquitectura de registros de $\rm M32$ es la siguiente:

Nótese que una misma dirección en memoria puede ser vista como un byte, como parte de una media palabra o como parte de una palabra completa.

Las instrucciones assembler de M32 son de la forma:

Operador	Operandos	Descripción
op	$reg_s,\ val,\ reg_d$	operaciones del tipo $reg_d = reg_s$ op val
op	addr, reg	lectura en memoria
op	$reg,\ addr$	escritura en memoria
salto	disp	saltos condicionales

En donde cada uno de los operandos corresponde a:

reg	Cualquier registro entre $\%R_0, \%R_1 \dots \%R_{31}$
imm	Un valor binario $\in [-2^{12}, 2^{12} - 1]$ (representable en 13 bits)
addr	Una dirección de la forma $[reg' + reg'']$ o $[reg + imm]$
val	Un valor de la forma reg o imm
disp	Un desplazamiento $\in [-2^{23}, 2^{23} - 1]$ (representable en 24 bits)

Definiciones		
$Rep_s^n(x)$	Representación en n bits con signo del entero x	
$Rep_u^n(x)$	Representación en n bits sin signo del entero positivo x	
$Ext_{0}(\mathbf{x})$	Conversión de x a 32 bits extendiendo con ceros	
$Ext_{s}(\mathbf{x})$	Conversión de x a 32 bits extendiendo con el signo	
$Trunc_b(\mathbf{x})$	Trunca la palabra x a 8 bits	
$Trunc_{h}(\mathbf{x})$	Trunca la palabra x a 16 bits	

La función $\left\langle x\right\rangle _{t}$ que aparece en la segunda columna se define como :

```
\begin{split} \langle x \rangle_t &= el \; valor \; del \; registro/memoria \; x \; en \; t \\ \langle [reg' + reg''] \rangle_t &= \langle reg' \rangle_t \oplus \langle reg'' \rangle_t \\ \langle imm \rangle_t &= Ext_s(Rep_s^{13}(imm)) \\ \langle [reg + imm] \rangle_t &= \langle reg \rangle_t \oplus Ext_s(Rep_s^{13}(imm)) \end{split}
```

A continuación se describirá cada una de las posibles instrucciones assembler de M32.

Instrucciones de lectura en memoria			
Instrucción assembler		Operación	Tipo leido
ldw	addr, reg	$ \begin{array}{l} \langle addr \rangle_t \& 3 \neq 0 \!\Rightarrow\! \text{TRAP} \\ reg \not\equiv \% R_0 \!\Rightarrow\! \langle reg \rangle_{t+1} = M^w_{\langle addr \rangle_t} \end{array} $	una palabra
lduh	addr, reg	$ \begin{array}{l} \langle addr \rangle_t \& 1 \neq 0 \!\!\Rightarrow \!\! \text{TRAP} \\ reg \not\equiv \% R_0 \!\!\Rightarrow \!\! \langle reg \rangle_{t+1} = Ext_0 (\langle M^h_{\langle addr \rangle_t} \rangle_t) \end{array} $	media palabra sin signo
ldub	$addr, \ reg$	$reg \not\equiv \% \mathtt{R}_0 \!\Rightarrow\! \langle reg \rangle_{t+1} = Ext_0 (\langle \mathtt{M}^b_{\langle addr \rangle_t} \rangle_t)$	$byte ext{ sin signo}$
ldsh	$addr, \ reg$		media palabra con signo
ldsb	addr, reg	$reg \not\equiv \% \mathtt{R}_0 \!\Rightarrow\! \langle reg \rangle_{t+1} = Ext_s(\langle \mathtt{M}^b_{\langle addr \rangle_t} \rangle_t)$	byte con signo
		Instrucciones de escritura en memoria	
Instrucción assembler		Operación	Tipo escrito
stw	$reg,\ addr$		una palabra
sth	$reg,\ addr$	$ \begin{array}{l} \langle addr \rangle_t \& 1 \neq 0 \!\!\Rightarrow \!\! \text{TRAP} \\ \langle M_{}^h \langle addr \rangle_t \rangle_{t+1} = \mathit{Trunc}_h (\langle \mathit{reg} \rangle_t) \end{array} $	media palabra
stb	$reg,\ addr$	$\langle M^b_{\langle addr \rangle_t} \rangle_{t+1} = Trunc_b(\langle reg \rangle_t)$	byte

	Instrucciones aritméticas			
Instrucción assembler		Operación		
add	$\mathit{reg}_{s},\mathit{val},\mathit{reg}_{d}$	$ \begin{aligned} reg_d &\not\equiv \% \mathtt{R}_0 \Rightarrow \langle reg_d \rangle_{t+1} = \langle reg_s \rangle_t \oplus \langle val \rangle_t \\ &\langle v \rangle_{t+1} = Ovf \left(\langle reg_s \rangle_t, \langle val \rangle_t, 0 \right) \\ &\langle c \rangle_{t+1} = Carry \left(\langle reg_s \rangle_t, \langle val \rangle_t, 0 \right) \end{aligned} $		
addx	$\mathit{reg}_{s},\mathit{val},\mathit{reg}_{d}$	$\begin{split} reg_d \not\equiv \% \mathbf{R}_0 &\Rightarrow \langle reg_d \rangle_{t+1} = \langle reg_s \rangle_t \oplus \langle val \rangle_t \oplus \langle c \rangle_t \\ \langle v \rangle_{t+1} &= Ovf \left(\langle reg_s \rangle_t, \langle val \rangle_t, \langle c \rangle_t \right) \\ \langle c \rangle_{t+1} &= Carry \left(\langle reg_s \rangle_t, \langle val \rangle_t, \langle c \rangle_t \right) \end{split}$		
sub	$reg_{s},\ val,\ reg_{d}$	$ \begin{split} reg_d \not &\equiv \% \mathtt{R}_0 \Rightarrow \langle reg_d \rangle_{t+1} = \langle reg_s \rangle_t \oplus \sim \langle val \rangle_t \oplus 1 \\ \langle v \rangle_{t+1} &= Ovf \left(\langle reg_s \rangle_t, \sim \langle val \rangle_t, 1 \right) \\ \langle c \rangle_{t+1} &= Carry \left(\langle reg_s \rangle_t, \sim \langle val \rangle_t, 1 \right) \end{split} $		
subx	$\mathit{reg}_{s},\mathit{val},\mathit{reg}_{d}$	$ \begin{array}{l} \operatorname{reg}_{d} \not\equiv \% \mathtt{R}_{0} \!\Rightarrow\! \langle \operatorname{reg}_{d} \rangle_{t+1} = \langle \operatorname{reg}_{s} \rangle_{t} \oplus \sim \langle \operatorname{val} \rangle_{t} \oplus \langle \operatorname{c} \rangle_{t} \\ \langle \operatorname{v} \rangle_{t+1} = \operatorname{Ovf} \left(\langle \operatorname{reg}_{s} \rangle_{t}, \sim \langle \operatorname{val} \rangle_{t}, \langle \operatorname{c} \rangle_{t} \right) \\ \langle \operatorname{c} \rangle_{t+1} = \operatorname{Carry} \left(\langle \operatorname{reg}_{s} \rangle_{t}, \sim \langle \operatorname{val} \rangle_{t}, \langle \operatorname{c} \rangle_{t} \right) \end{array} $		
Instrucciones lógicas				
and	$reg_s,\ val,\ reg_d$	$reg_d \not\equiv \% R_0 \Rightarrow \langle \% R_d \rangle_{t+1} = \langle reg_s \rangle_t \& \langle val \rangle_t$		
or	reg_s, val, reg_d	$reg_d \not\equiv \% \mathbf{R}_0 \Rightarrow \langle \% \mathbf{R}_d \rangle_{t+1} = \langle reg_s \rangle_t \langle val \rangle_t$		
xor	$xor \operatorname{reg}_s, \operatorname{val}, \operatorname{reg}_d \mid \operatorname{reg}_d \not\equiv \% \mathtt{R}_0 \Rightarrow \left< \% \mathtt{R}_d \right>_{t+1} = \left< \operatorname{reg}_s \right>_t \mathtt{xor} \left< \operatorname{val} \right>_t$			
Instrucciones de desplazamiento				
sll	reg_s, val, reg_d			
srl	$reg_s, val, reg_d \mid reg_d \not\equiv \% R_0 \Rightarrow \langle reg_d \rangle_{t+1} = \langle reg_s \rangle_t > > \langle val \rangle_t$			
$\text{sra} \qquad reg_s, \ val, \ reg_d \ \ \ reg_d \not\equiv \% \mathtt{R}_0 \Rightarrow \langle reg_d \rangle_{t+1} = \langle reg_s \rangle_t >>_s \langle val \rangle_t$				

Para todas las instrucciones aritméticas se cumple:

$$\begin{split} \langle z \rangle_{t+1} &= \left\{ \begin{array}{ll} 1 & \mathrm{Si} \langle reg_d \rangle_{t+1} = 0 \\ 0 & \mathrm{sino} \end{array} \right. \\ \langle v \rangle_{t+1} &= 0 & \text{(a menos que se indique otra cosa)} \\ \langle s \rangle_{t+1} &= Sign(\langle reg_d \rangle_{t+1}) \\ \langle c \rangle_{t+1} &= \langle c \rangle_t & \text{(a menos que se indique otra cosa)} \end{split}$$

Instrucciones de Salto			
Instrucción assembler	Operación		
bcond disp	$\begin{array}{l} \textit{cond} \text{ se verifica} \Rightarrow & \langle PC \rangle_{t+1} = \langle PC \rangle_t \oplus \textit{Ext}_s(\textit{Rep}_s^{22}(\textit{disp})) \oplus 4 \\ \textit{cond} \text{ no se verifica} \Rightarrow & \langle PC \rangle_{t+1} = & \langle PC \rangle_t \oplus 4 \\ \end{array}$		
jmpl addr,reg	$\begin{split} \langle PC \rangle_{t+1} &= \langle addr \rangle_t \\ reg &\not\equiv \% \mathbf{R}_0 \!\Rightarrow\! \langle reg \rangle_{t+1} = \langle PC \rangle_t \!\oplus\! 4 \end{split}$		

Condiciones de Saltos				
Código	Tipo de	Condición		
Instrucción	salto	$ m de\ salto$		
ba	incondicional	1		
be	igualdad	z		
bne	$\operatorname{desigualdad}$	\overline{z}		
Comparaciones con signo				
bg	mayor	$\overline{z}(sv + \overline{s} \ \overline{v})$		
bge	mayor o igual	$sv + \overline{s} \ \overline{v}$		
bl	menor	$s\overline{v} + \overline{s}v$		
ble	menor o igual	$s\overline{v} + \overline{s}v + z$		
Comparaciones sin signo				
bgu	mayor	$c\overline{z}$		
bgeu	mayor o igual	c		
blu	menor	\overline{c}		
bleu	menor o igual	$\overline{c} + z$		