Министерство образования и науки Российской Федерации Федеральное агентство по образованию Федеральное государственное бюджетное образовательное учреждение высшего образования «Вятский государственный университет»

Факультет автоматики и вычислительной техники			
Кафедра электронных вычислительных машин			
Отчет по лабораторной работе №9 дисциплины «Системы обработки знаний»			
Выполнил студент группы ИВТ-41/Крючков И. С./Проверил/Ростовцев В. С./			

1. Задание

Создать систему нечеткого вывода типа Сугено, которая моделирует зависимость $y = 3x_1^2 * \cos{(x_2 + 3)}$.

Диапазон х1: [-6; 5]

Диапазон х2: [-6; 4]

Построить график функции.

Выполнить моделирование со всеми типами функций принадлежности и выбрать ее оптимальный тип по критерию минимума среднеквадратичного отклонения.

Для алгоритма Сугено выполнить моделирование со следующими параметрами:

- метод агрегации (максимум, сумма, вероятностное «ИЛИ»);
- метод дефаззификации (центр тяжести, медиана, наибольший из максимумов);
- метод «И» (минимум, умножение (вероятностное «И»));
- метод «ИЛИ» (максимум, вероятностное «ИЛИ»);
- метод импликации (минимум, умножение);

По результатам проектирования системы нечёткого вывода в Fuzzy Logic Toolbox составить отчет в электронном виде, включив в него результаты промежуточных этапов, а также графики моделируемой и аппроксимированной функции, сформировать выводы.

2. Ход работы

Графики функции, полученные в ходе лабораторной работы №7 представлены на рисунках 1-3.

Рисунок 1 — График функции с 10 точками дискретизации

Рисунок 2 – График функции с 25 точками дискретизации

Рисунок 3 – График функции с 100 точками дискретизации

Нечеткие правила, полученные в ходе лабораторной работы №7:

Если X_2 = «низкий» И X_1 = «низкий», TO y = 26.7298*x1 - 9.4049*x2;

Если X_2 = «низкий» И X_1 = «средний», TO y = 2.97*x1 + 1.32*x2;

Если X_2 = «низкий» И X_1 = «высокий», TO y = -20.7898*x1 - 5.445*x2;

Если X_2 = «средний» И X_1 = «низкий», TO y = 11.236*x1 + 23.7204;

Если X_2 = «средний» И X_1 = «средний», TO y = 1.2484*x1 - 3.3292;

Если X_2 = «средний» И X_1 = «высокий», TO y = -8.7391*x1 - 13.7328;

Если X_2 = «высокий» И X_1 = «низкий», TO y = -26.8160*x1 - 16.6505*x2;

Если X_2 = «высокий» И X_1 = «средний», TO y = -2.9796*x1 + 2.3369*x2;

Если X_2 = «высокий» И X_1 = «высокий», TO y = 20.8569*x1 - 9.6397*x2

Рисунок 4 – Система Сугено

	Rule	Weight	Name
1	If x1 is низкий and x2 is низкий then y is 26.73*x1-9.40*x2	1	rule1
2	If x1 is низкий and x2 is средний then y is 2.97*x1+1.32*x2	1	rule2
3	If x1 is низкий and x2 is высокий then y is -20.79*x1–5.45*x2	1	rule3
4	If x1 is средний and x2 is низкий then y is 11.24*x1+23.72	1	rule4
5	If x1 is средний and x2 is средний then y is 1.25*x1-3.33	1	rule5
6	If x1 is средний and x2 is высокий then y is -8.74*x1-13.73	1	rule6
7	If x1 is высокий and x2 is низкий then y is -26.82*x1–16.65*x2	1	rule7
8	If x1 is высокий and x2 is средний then y is -2.98*x1+2.34*x2	1	rule8
9	If x1 is высокий and x2 is средний then y is 20.86*x1-9.64*x2	1	rule9

Рисунок 5 – Правила

Исходный код вычисления среднеквадратичной ошибки представлен на рисунке 6.

```
f = @(x1, x2)3*x1.^2.*cos(x2+3);
types = ["gaussmf", "gauss2mf", "trimf", "trapmf", "gbellmf"];
types_errors = {};
for i = 1:length(types)
    for j = 1:length(sugeno.inputs)
        for k = 1:length(sugeno.inputs(j).mf)
            sugeno.inputs(j).mf(k).type = types(i);
        end
    end
    % fuzzyLogicDesigner(sugeno);
    [x1, x2, z] = gensurf(sugeno);
    y = f(x1, x2);
    E = immse(z, y);
    disp(types(i) + " " + E);
    types_errors{end+1} = [types(i), E];
end
best_type = types_errors{1};
for i = 2:length(types_errors)
    if types_errors{i}(2) < best_type(2)</pre>
        best_type = types_errors{i};
    end
end
disp("Best type: " + best_type(1) + " " + best_type(2));
for j = 1:length(sugeno.inputs)
    for k = 1:length(sugeno.inputs(j).mf)
        sugeno.inputs(j).mf(k).type = best_type(1);
    end
end
fuzzyLogicDesigner(sugeno);
```

Рисунок 6 – Код для вычисления среднеквадратичной ошибки

Таблица 1 – результаты ошибок при изменении типа входов и выхода

gaussmf	gauss2mf	trimf	trapmf	gbellmf
1780.72	1819.76	1828.61	1817.4197	1810.72

Наибольшей точностью обладает функция gaussmf. График функции с применением gaussmf для входов и выходов представлен на рисунке 7.

Рисунок 7 - График функции с применением gaussmf для входов и выходов

Исходный код скрипта, выполняющего полный перебор всех возможных значений параметров с получением наилучшего результата ошибки приведен на рисунке 8.

```
f = @(x1, x2)3*x1.^2.*cos(x2+3);
best_type = "trimf";
for i = 1:length(sugeno.inputs)
    for j = 1:length(sugeno.inputs(i).mf)
        sugeno.inputs(i).mf(j).type = best_type;
    end
end
% fuzzyLogicDesigner(sugeno);
% pause;
and_methods = ["min", "prod"];
or_methods = ["max", "probor", "sum"];
implication_methods = ["prod"];
aggregation_methods = "sum";
defuzz_methods = ["wtaver", "wtsum"];
best_methods = [];
best_error = intmax;
for and method = and methods
    for or_method = or_methods
        for implication_method = implication_methods
             for aggregation_method = aggregation_methods
                 for defuzz_method = defuzz_methods
                     sugeno.AndMethod = and method;
                     sugeno.OrMethod = or method;
                     sugeno.ImplicationMethod = implication_method;
```

```
sugeno.AggregationMethod = aggregation_method;
                    sugeno.DefuzzMethod = defuzz_method;
                    [x1, x2, z] = gensurf(sugeno);
                    y = f(x1, x2);
                    error = immse(z, y);
                    if error < best_error</pre>
                        best_error = error;
                        best_methods = [and_method, or_method, implication_method,
aggregation_method, defuzz_method];
                    end
                end
            end
        end
    end
end
sugeno.AndMethod = best_methods(1);
sugeno.OrMethod = best_methods(2);
sugeno.ImplicationMethod = best_methods(3);
sugeno.AggregationMethod = best_methods(4);
sugeno.DefuzzMethod = best_methods(5);
fuzzyLogicDesigner(sugeno);
pause;
[x1, x2, z] = gensurf(sugeno);
y = f(x1, x2);
E = immse(z, y);
disp("Final error: " + E);
```

Рисунок 8 — Исходный код полного перебора, полученные методов полного перебора

Type:	Sugeno Type-1
Name	sugeno
And method	prod ▼
Or method	max ▼
Implication method	prod ▼
Aggregation method	sum ▼
Defuzzification method	wtsum 🔻

Рисунок 9 – Лучшие параметры

Рисунок 10 — График функции, полученный в результате полного перебора

Итоговая среднеквадратичная ошибка составила: 1619.89.

Выводы

В ходе лабораторной работы была составлена система Сугено.

Было замечено уменьшение значения ошибки, по сравнению с методом Мамдани (1619.89 против 2761.15).

Результат экспериментов показал, что наибольшую эффективность среди используемых функций принадлежности имеет функция gaussmf (1780.72).

Среднеквадратичная ошибка имеет большое значение предположительно из-за малого количества правил.

С помощью полного перебора параметров скриптов удалось добавится наилучшего значения ошибки.

После подбора оптимальных параметров среднеквадратичная ошибка составила 1619.89.