CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

September 22, 2022

Agenda

- Proof by division into cases
- Disproof

- Proof. We consider two cases.
 - Case 1: n is even. n^2 + 3n + 2 is even + even + even, therefore even.
 - Case 2: n is odd. n^2 + 3n + 2 is odd + odd + even, therefore even.
- QED.

Example: Prove the following statement

Proposition If $n \in \mathbb{N}$, then $1 + (-1)^n (2n - 1)$ is a multiple of 4.

Proposition If $n \in \mathbb{N}$, then $1 + (-1)^n (2n - 1)$ is a multiple of 4.

Proof. Suppose $n \in \mathbb{N}$.

Then n is either even or odd. Let's consider these two cases separately.

Case 1. Suppose *n* is even. Then n = 2k for some $k \in \mathbb{Z}$, and $(-1)^n = 1$.

Thus $1 + (-1)^n (2n - 1) = 1 + (1)(2 \cdot 2k - 1) = 4k$, which is a multiple of 4.

Case 2. Suppose *n* is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$, and $(-1)^n = -1$. Thus $1 + (-1)^n (2n - 1) = 1 - (2(2k + 1) - 1) = -4k$, which is a multiple of 4.

These cases show that $1 + (-1)^n (2n - 1)$ is always a multiple of 4.

Disproof

Disproof

- We have been working on this:
 - Given a statement, prove it is true.
- How to do this:
 - Given a statement, prove it is false.
- The process of carrying out this procedure is called disproof.

Principle of disproof

Suppose you want to disprove a statement P. In other words you want to prove that P is false. The way to do this is to prove that ~ P is true, for if ~ P is true, it follows immediately that P has to be false.

How to disprove P: Prove $\sim P$.

Disproving Universal Statements: Counterexamples

- How to disprove a universally quantified statement such as
 - ∀x∈S,P(x)?
- To disprove this statement, we must prove its negation. Its negation is
 - \sim ($\forall x \in S, P(x)$) = $\exists x \in S, \sim P(x)$.

How to disprove $\forall x \in S, P(x)$.

Produce an example of an $x \in S$ that makes P(x) false.

Disproving Conditional Statements

- How to disprove a conditional statement $P(x) \Rightarrow Q(x)$?
- This statement asserts that for every x that makes P(x) true, Q(x) will also be true.
- The statement can only be false if there is an x that makes P(x) true and Q(x) false.
- Formallya, to disprove this statement, we must prove its negation. Its negation is
 - $\sim (\forall x \in S, P(x) \Rightarrow Q(x)) = \exists x \in S, P(x) \land \sim Q(x).$

How to disprove $P(x) \Rightarrow Q(x)$.

Produce an example of an x that makes P(x) true and Q(x) false.

There is a special name for an example that disproves a statement: It is called a **counterexample**.

Example: Prove or disprove the following conjecture

Conjecture: For every $n \in \mathbb{Z}$, the integer $f(n) = n^2 - n + 11$ is prime.

 In resolving the truth or falsity of a conjecture, it's a good idea to gather as much information about the conjecture as possible. In this case let's start by making a table that tallies the values of f(n) for some integers n.

• f (11) = 112 –11+11 = 112 is not prime. The conjecture is false because n = 11 is a counterexample. We summarize our disproof as follows:

Disproof. The statement "For every $n \in \mathbb{Z}$, the integer $f(n) = n^2 - n + 11$ is prime," is **false**. For a counterexample, note that for n = 11, the integer $f(11) = 121 = 11 \cdot 11$ is not prime.

Disproving by contradiction

- suppose we wish to disprove a statement P.
- We know that to disprove P, we must prove ~ P.
- To prove ~ P with contradiction, we assume ~~ P is true and deduce a contradiction

How to disprove P with contradiction:

Assume P is true, and deduce a contradiction.

Disproving existential Statements

- How to disprove a existential statement ∃x∈S,P(x) ?
- To disprove it, we have to prove its negation ~ (∃x ∈ S,P(x)) = ∀x∈S,~P(x).
- Note: this negation is universally quantified. Proving it involves showing that $\sim P(x)$ is true for all $x \in S$, and for this an example does not suffice.

Example: Prove or disprove the following conjecture

Conjecture: There is a real number x for which $x^4 < x < x^2$.

Example: Prove or disprove the following conjecture

Conjecture: There is a real number x for which $x^4 < x < x^2$.

Disproof. Suppose for the sake of contradiction that this conjecture is true. Let x be a real number for which $x^4 < x < x^2$. Then x is positive, since it is greater than the non-negative number x^4 . Dividing all parts of $x^4 < x < x^2$ by the positive number x produces $x^3 < 1 < x$. Now subtract 1 from all parts of $x^3 < 1 < x$ to obtain $x^3 - 1 < 0 < x - 1$ and reason as follows:

$$x^{3}-1 < 0 < x-1$$

$$(x-1)(x^{2}+x+1) < 0 < (x-1)$$

$$x^{2}+x+1 < 0 < 1$$

Now we have $x^2 + x + 1 < 0$, which is a contradiction because x is positive. Thus the conjecture must be false.

Break if time allows

Exercises

Prove or disprove

- If $x,y \in \mathbb{R}$, then |x+y| = |x| + |y|.
- For every natural number n,the integer 2n^2 4n + 31 is prime.
- If $a,b \in N$, then a + b < ab
- Every odd integer is the sum of three odd integers.
- Rational + Irrational = Irrational

Rational * Irrational = Irrational

Solution

- If x, y \in R, then |x+y| = |x| + |y|.
 - False. Counterexample: x = 2, y = -2
- For every natural number n, the integer 2n^2 4n + 31 is prime.
 - False. Counterexample: n = 31
- If $a,b \in N$, then a + b < ab
 - False counterexample: a=1, b=1.
- Every odd integer is the sum of three odd integers.
 - True. Any odd number n can be written as (n-2=+1+1
- Rational + Irrational = Irrational
 - True Proof by contradiction. ...
- Rational * Irrational = Irrational
 - False. Counterexample: 0 * sqrt(2) = 0

Prove the following statement

. Suppose $x, y \in \mathbb{R}$. If $x^2 + 5y = y^2 + 5x$, then x = y or x + y = 5.

. Suppose x, y ∈ ℝ. If $x^2 + 5y = y^2 + 5x$, then x = y or x + y = 5.

Proof. Suppose $x^2 + 5y = y^2 + 5x$.

Then $x^2 - y^2 = 5x - 5y$, and factoring gives (x - y)(x + y) = 5(x - y).

Now consider two cases.

Case 1. If $x-y \neq 0$ we can divide both sides of (x-y)(x+y) = 5(x-y) by the non-zero quantity x-y to get x+y=5.

Case 2. If x - y = 0, then x = y. (By adding y to both sides.)

Thus x = y or x + y = 5.

Prove the following statement

If $n \in \mathbb{Z}$, then $n^2 + 3n + 4$ is even.

If $n \in \mathbb{Z}$, then $n^2 + 3n + 4$ is even.

Proof. Suppose $n \in \mathbb{Z}$. We consider two cases.

Case 1. Suppose *n* is even. Then n = 2a for some $a \in \mathbb{Z}$.

Therefore $n^2 + 3n + 4 = (2a)^2 + 3(2a) + 4 = 4a^2 + 6a + 4 = 2(2a^2 + 3a + 2)$.

So $n^2 + 3n + 4 = 2b$ where $b = 2a^2 + 3a + 2 \in \mathbb{Z}$, so $n^2 + 3n + 4$ is even.

Case 2. Suppose *n* is odd. Then n = 2a + 1 for some $a \in \mathbb{Z}$.

Therefore $n^2 + 3n + 4 = (2a + 1)^2 + 3(2a + 1) + 4 = 4a^2 + 4a + 1 + 6a + 3 + 4 = 4a^2 + 10a + 8$ = $2(2a^2 + 5a + 4)$. So $n^2 + 3n + 4 = 2b$ where $b = 2a^2 + 5a + 4 \in \mathbb{Z}$, so $n^2 + 3n + 4$ is even.

In either case $n^2 + 3n + 4$ is even.

Problem 4. [5 points]

Prove that $n^2+9n+27$ is odd for all natural numbers n. You can use any proof technique.

Solution

- Proof.
 - We want to prove
 - for any natural number n, n^2+9n+27 is odd
 - $n^2+9n+27 = n(n+9) + 27$
 - We consider two cases
 - If n is even, n(n+9) + 27 is even+odd, thus odd
 - if n is odd, n(n+9) + 27 is also even+odd, thus odd
 - Thus n^2+9n+27 is odd for whatever n.
- QED.

That is all for today

- Proof by division into cases
- Disproof

