A Port-Hamiltonian version of the Thiele-Small model of loudspeakers

Author A^1 and Author B^2

¹Academic institution A, address A, Country A

²Academic institution B, address B, Country B

September 18, 2017

1 System dimensions

$$\dim(\mathbf{x}) = n_{\mathbf{x}} = 3;$$

$$\dim(\mathbf{w}) = n_{\mathbf{w}} = 0;$$

$$\dim(\mathbf{y}) = n_{\mathbf{y}} = 1;$$

$$\dim(\mathbf{p}) = n_{\mathbf{p}} = 0;$$

2 System variables

State variable
$$\mathbf{x} = \begin{pmatrix} x_{\mathrm{L}} \\ x_{\mathrm{K}} \\ x_{\mathrm{M}} \end{pmatrix}$$
;
Input $\mathbf{u} = \begin{pmatrix} u_{1} \end{pmatrix}$;
Output $\mathbf{y} = \begin{pmatrix} y_{1} \end{pmatrix}$;

3 Constitutive relations

$$\begin{aligned} & \text{Hamiltonian } \mathbf{H}(\mathbf{x}) = \frac{K}{2} \cdot x_{\mathrm{K}}^2 + \frac{invL}{2} \cdot x_{\mathrm{L}}^2 + \frac{invM}{2} \cdot x_{\mathrm{M}}^2; \\ & \text{Hamiltonian gradient } \nabla \mathbf{H}(\mathbf{x}) = \begin{pmatrix} invL \cdot x_{\mathrm{L}} \\ K \cdot x_{\mathrm{K}} \\ invM \cdot x_{\mathrm{M}} \end{pmatrix}; \end{aligned}$$

4 System parameters

4.1 Constant

parameter	value (SI)
L:	0.011
R:	5.7
K:	40000000.0
M:	0.019
A :	0.406
invL:	90.90909090909092
invM:	52.631578947368425

5 System structure

$$\mathbf{M} = \begin{pmatrix} -R & 0 & -B \cdot e^{-x_{\mathrm{K}}} & -1 \\ 0 & 0 & 1 & 0 \\ B \cdot e^{-x_{\mathrm{K}}^2} & -1 & -A & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix};$$

$$\mathbf{M}_{\mathbf{xx}} = \begin{pmatrix} -R & 0 & -B \cdot e^{-x_{\mathrm{K}}^2} \\ 0 & 0 & 1 \\ B \cdot e^{-x_{\mathrm{K}}^2} & -1 & -A \end{pmatrix};$$

$$\mathbf{M}_{\mathbf{xy}} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix};$$

$$\mathbf{M}_{\mathbf{yx}} = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix};$$

$$\mathbf{M}_{\mathbf{yy}} = \begin{pmatrix} 0 & 0 & -1.0 \cdot B \cdot e^{-x_{\mathrm{K}}^2} & -1.0 \\ 0 & 0 & 1.0 & 0 \\ 1.0 \cdot B \cdot e^{-x_{\mathrm{K}}^2} & -1.0 & 0 & 0 \\ 1.0 & 0 & 0 & 0 \end{pmatrix};$$

$$\mathbf{J}_{\mathbf{xx}} = \begin{pmatrix} 0 & 0 & -1.0 \cdot B \cdot e^{-x_{\mathrm{K}}^2} & -1.0 \\ 0 & 0 & 1.0 \cdot B \cdot e^{-x_{\mathrm{K}}^2} \\ 0 & 0 & 1.0 \\ 1.0 \cdot B \cdot e^{-x_{\mathrm{K}}^2} & -1.0 & 0 \end{pmatrix};$$

$$\mathbf{J_{xy}} = \begin{pmatrix} -1.0 \\ 0 \\ 0 \end{pmatrix};$$
$$\mathbf{J_{yy}} = \begin{pmatrix} 0 \end{pmatrix};$$

$$\mathbf{R} = \begin{pmatrix} 1.0 \cdot R & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1.0 \cdot A & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix};$$

$$\mathbf{R}_{\mathbf{xx}} = \begin{pmatrix} 1.0 \cdot R & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1.0 \cdot A \end{pmatrix};$$

$$\mathbf{R}_{\mathbf{xy}} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix};$$

$$\mathbf{R}_{\mathbf{yy}} = \begin{pmatrix} 0 \\ 0 \end{pmatrix};$$