V46

Der Faraday-Effekt

Fritz Agildere fritz.agildere@udo.edu Amelie Strathmann amelie.strathmann@udo.edu

Durchführung: 15. April 2024 Abgabe:

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Zielsetzung	2
2	Theorie 2.1 Bandstruktur 2.2 Dotierung 2.3 Faraday-Effekt 2.3 Faraday-Effekt	2
3	Aufbau	4
4	Durchführung	5
5	Auswertung 5.1 Magnetfeld 5.2 Faraday-Rotation 5.2.1 Dotierte Proben 5.2.2 Reine Probe 5.3 Effektive Masse	5 5 5
6	Diskussion	5
Literatur		5
Anhang		6

1 Zielsetzung

Im diesem Versuch soll die Faraday-Rotation ausgenutzt werden, um die effektive Masse der Leitungselektronen in negativ dotiertem Galliumarsenid (n-GaAs) zu bestimmen.

2 Theorie [1]

2.1 Bandstruktur

Abbildung 1: Bandstrukturen verschiedener Materialklassen im Vergleich. [3]

2.2 Dotierung

2.3 Faraday-Effekt

 ${\bf Abbildung}$ 2: Berechnete Bandstruktur von Ga
As um die Bandlücke. [2]

Abbildung 3: Drehung der Polarisationsebene einer Lichtwelle beim Durchgang durch einen Kristall. [1]

3 Aufbau

Abbildung 4: Schematische Darstellung der Messapparatur. [1]

4 Durchführung

5 Auswertung

- 5.1 Magnetfeld
- 5.2 Faraday-Rotation
- 5.2.1 Dotierte Proben
- 5.2.2 Reine Probe
- 5.3 Effektive Masse

6 Diskussion

Literatur

- [1] Anleitung zu Versuch 46, Der Faraday-Effekt. TU Dortmund, Fakultät Physik. 2024.
- [2] "Band Structure of Gallium Arsenide". In: Marvin L. Cohen und James R. Chelikowsky. *Electronic Structure and Optical Properties of Semiconductors*. Springer Berlin, Heidelberg, 1988, S. 103. ISBN: 978-3-642-97080-1. DOI: https://doi.org/10.1007/978-3-642-97080-1.
- [3] Valence and Conduction Bands. 2013. URL: https://en.wikipedia.org/wiki/file:band_filling_diagram.svg.

Anhang