Trainable Undersampling for Class-imbalanced Learning

Minlong Peng

Computer Science and Technology, Fudan University

Problem of Class-imbalance Learning

- In class-imbalance tasks, the evaluation metrics are often not the "accuracy".
- Training object of traditional supervised learning algorithms, or formally their loss functions, are only consistent with the accuracy metric.

Typical Solutions

Model Based:

Design a loss function that is consistent with the evaluation metric of a given task.

Pros.:

- 1. Apply to different tasks with the same evaluation metric.
- 2. Usually outperform other methods.

Cons.:

- 1. Evaluation metric specific.
- 2. Hard to design the loss function.
- 3. Does not apply to non-parametric models, such as KNN.

Typical Solutions

Data Based:

Change the input distribution, making the training object of the classifier consistent with the evaluation metric on the original input distribution.

Pros.:

- 1. Easy to implement (e.g., undersampling, oversampling).
- 2. Apply to non-parametric models.

Cons.:

1. Hard to obtain the optimum solution, since data sampling is often heuristic-based.

Motivation of this Work

Connect data sampling with the used classifier and evaluation metric.

Proposed Solution

 Find a subset of the training set that maximize the evaluation metric of the task using a given classifier.

$$\boldsymbol{w}^*(\{\mathbf{X},\mathbf{Y}\}) := \argmax_{\Im(\{\mathbf{X},\mathbf{Y}\}) \subseteq \{\mathbf{X},\mathbf{Y}\}} \boldsymbol{r}\left(\{\mathbf{Y},\boldsymbol{f}(\mathbf{X};\Im(\{\mathbf{X},\mathbf{Y}\})\}\right)\right)$$

Proposed Solution

- 1. Choose a subset of the training dataset using policy network
- 2. Train the model with the chosen subset
- 3. Evaluate model performance on the original training dataset and obtain a reward (performance on the given measurement)
- 4. update the policy network with the obtained reward.
- 5. return to step 1.

Dataset	#Attribute	#Example	Feature Format	Minority Ratio	Evaluation Metric	Used Classifier	
Vehicle	18	846	Numeric	25.65%	GM	SVM (rbf)	
Page blocks	10	5,472	Numeric	10.21%	MCC	MLP	
Credit Fraud	28	284,807	Numeric	0.17%	AUCPRC	DT	
SMS Spam	8,749	5,574	Text	13.41%	$F_{0.5}$	LR	
DR	262,144	17,563	Image	26.52%	AUCROC	CNN	

Task	ORG	RUS	NearMiss	Cluster	TomekLink	ALLKNN	SMOTE	ADASYN	TU
Vehicle	0.935	0.949	0.877	0.937	0.938	0.858	0.935	0.964	0.964
Page-blocks	0.897	0.903	0.878	0.877	0.895	0.867	0.897	0.902	0.915
Credit Fraud	0.849	0.860	0.817	0.584	0.840	0.809	0.849	0.848	0.880
SMS Spam	0.936	0.938	0.931	0.932	0.935	0.933	0.936	0.936	0.967
DR	0.930	0.942	0.921	0.933	0.934	0.927	0.930	0.944	0.958

Task	ORG	SMOTE	ADASYN	TU	SMOTE+TU	ADASYN+TU
Vehicle	0.935	0.964	0.964	0.964	0.964	0.965
Page-blocks	0.897	0.902	0.898	0.915	0.917	0.915
Credit Fraud	0.849	0.848	0.849	0.880	0.881	0.880
SMS Spam	0.936	0.936	0.936	0.967	0.965	0.967
DR	0.930	0.944	0.943	0.958	0.957	0.956

Figure 2: Time complexity of the proposed method on three tested datasets. The red dot line denotes the performance of the random undersampling method.

Thanks!