Importing the dependencies

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import sklearn.datasets
    from sklearn.model_selection import train_test_split
    from xgboost import XGBRegressor
    from sklearn import metrics

In [5]: import os
    os. getcwd()

Out[5]: 'C:\\Users\\aswin'

In [8]: os.chdir("D:\Data Science and RPA\Imarticus\Dataset\LM")

In [9]: os.getcwd()
Out[9]: 'D:\\Data Science and RPA\\Imarticus\\Dataset\LM'
```

Importing the Dataset

```
In [19]: df=pd.read_excel("Boston.xlsx")
```

In [20]: df

Out[20]:

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	9.67	22.4
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.08	20.6
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.64	23.9
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.48	22.0
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273	21.0	396.90	7.88	11.9

506 rows × 14 columns

In [21]: #Print first 5 rows
 df.head()

Out[21]:

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2

```
In [23]: # Checking for number of rows and columns in our data set
         df.shape
Out[23]: (506, 14)
In [24]: # Checking for missing values in Dataset
         df.isnull().sum()
Out[24]: crim
                    0
                    0
         zn
         indus
                    0
         chas
         nox
         rm
         age
         dis
         rad
         tax
         ptratio
         black
         lstat
                    0
         medv
         dtype: int64
```

In [25]: #statistical measures of the dataset
 df.describe()

Out[25]:

•	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.
4												•

Understanding the correaltion between various features in Dataset

- 1. Positive Correlation
- 2. Negative Correlation

```
In [26]: correlation = df.corr()
```

```
In [51]: # Constructing a heatmap to understand the correlation

plt.figure(figsize=(16,10))
    sns.heatmap(df.corr(), annot=True ,fmt = '.1f' ,cbar=True,vmin=-1, vmax=1 ,square=True,cmap='Blues')
    plt.title("Correlation Heatmap",fontsize=20)
```

Out[51]: Text(0.5, 1.0, 'Correlation Heatmap')

Splitting the data and target variables

```
In [54]: x =df.drop(['medv'],axis=1)
y =df['medv']
```

In [55]: x

Out[55]:

	crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33
501	0.06263	0.0	11.93	0	0.573	6.593	69.1	2.4786	1	273	21.0	391.99	9.67
502	0.04527	0.0	11.93	0	0.573	6.120	76.7	2.2875	1	273	21.0	396.90	9.08
503	0.06076	0.0	11.93	0	0.573	6.976	91.0	2.1675	1	273	21.0	396.90	5.64
504	0.10959	0.0	11.93	0	0.573	6.794	89.3	2.3889	1	273	21.0	393.45	6.48
505	0.04741	0.0	11.93	0	0.573	6.030	80.8	2.5050	1	273	21.0	396.90	7.88

506 rows × 13 columns

```
In [56]: y
Out[56]: 0
                 24.0
                 21.6
          2
                 34.7
          3
                 33.4
                 36.2
                 . . .
          501
                 22.4
          502
                 20.6
                 23.9
          503
         504
                 22.0
                 11.9
          505
         Name: medv, Length: 506, dtype: float64
```

Splitting the dataset into Train and Test data

Model Training

XGBoost Regressor

```
In [59]: #Loading the modGBL
model=XGBRegressor()
```

Evaluation of Model

Prediction on Training Data

```
In [61]: # accuracy for prediction on Training data
training_data_prediction = model.predict(X_train)
```

In [62]: print(training_data_prediction)

[23.147501	20.99463	20.090284	34.69053	13.903663	13.510157
21.998634	15.1940975	10.899711	22.709627	13.832816	5.592794
29.810236	49.99096	34.89215	20.607384	23.351097	19.23555
32.695698	19.641418	26.991022	8.401829	46.00729	21.708961
27.062933	19.321356	19.288303	24.809872	22.61626	31.70493
18.542515	8.697379	17.395294	23.700663	13.304856	10.492197
12.688369	25.016556	19.67495	14.902088	24.193798	25.007143
14.900281	16.995798	15.6009035	12.699232	24.51537	14.999952
50.00104	17.525454	21.184624	31.998049	15.613355	22.89754
19.325378	18.717896	23.301125	37.222923	30.09486	33.102703
21.00072	49.999332	13.405827	5.0280113	16.492886	8.405072
28.64328	19.499939	20.586452	45.402164	39.79833	33.407326
19.83506	33.406372	25.271482	50.001534	12.521657	17.457413
18.61758	22.602625	50.002117	23.801117	23.317268	23.087355
41.700035	16.119293	31.620516	36.069206	7.0022025	20.3827
19.996452	11.986318	25.023014	49.970123	37.881588	23.123034
41.292133	17.596548	16.305374	30.034231	22.860699	19.810343
17.098848	18.898268	18.96717	22.606049	23.141363	33.183487
15.010934	11.693824	18.78828	20.80524	17.99983	19.68991
50.00332	17.207317	16.404053	17.520426	14.593481	33.110855
14.508482	43.821655	34.939106	20.381636	14.655634	8.094332
11.7662115	11.846876	18.69599	6.314154	23.983706	13.084503
19.603905	49.989143	22.300608	18.930315	31.197134	20.69645
32.21111	36.15102	14.240763	15.698188	49.99381	20.423601
16.184978	13.409128	50.01321	31.602146	12.271495	19.219482
29.794909	31.536846	22.798779	10.189648	24.08648	23.710463
21.991894	13.802495	28.420696	33.181534	13.105958	18.988266
26.576572	36.967175	30.794083	22.77071	10.201246	22.213818
24.483162	36.178806	23.09194	20.097307	19.470194	10.786644
22.671095	19.502405	20.109184	9.611871	42.799637	48.794792
13.097208	20.28583	24.793974	14.110478	21.701134	22.217012
33.003544	21.11041	25.00658	19.122992	32.398567	13.605098
15.1145315	23.088867	27.474783	19.364998	26.487135	27.499458
28.697094	21.21718	18.703201	26.775208	14.010719	21.692347
18.372562	43.11582	29.081839	20.289959	23.680176	18.308306
17.204844	18.320065	24.393475	26.396057	19.094141	13.3019905
22.15311	22.185797	8.516214	18.894428	21.792608	19.331121
18.197924	7.5006843	22.406403	20.004215	14.412416	22.503702
28.53306	21.591028	13.810223	20.497831	21.898977	23.104464
49.99585	16.242056	30.294561	50.001595	17.771557	19.053703
10.399217	20.378187	16.49973	17.183376	16.70228	19.495337

```
30.507633 28.98067
                    19.528809
                               23.148346 24.391027
                                                    9.521643
23.886024 49.995125
                    21.167099 22.597813 19.965279 13.4072275
19.948694 17.087479
                   12.738807 23.00453
                                         15.222122 20.604322
26.207253 18.09243
                    24.090246 14.105
                                         21.689667
                                                   20.08065
25.010437 27.874954 22.92366
                               18.509727 22.190847 24.004797
14.788686 19.89675
                    24.39812
                               17.796036 24.556297 31.970308
17.774675 23.356768 16.134794 13.009915 10.98219
                                                   24,28906
          35.209793 19.605724 42.301712
15.56895
                                          8.797891 24.400295
14.086652 15.408639
                   17.301126 22.127419 23.09363
                                                   44.79579
                    22.835577 16.888603 23.925127 12.097476
17.776684 31.50014
38.685944 21.388391 15.98878
                               23.912495 11.909485 24.960499
7.2018585 24.696215 18.201897 22.489008 23.03332
                                                   24.260433
17.101519 17.805563 13.493165 27.105328 13.311978 21.913465
20.00738
          15.405392 16.595737 22.301016 24.708412 21.422579
22.878702 29.606575 21.877811 19.900253 29.605219 23.407152
13.781474 24.454706 11.897682
                               7.2203646 20.521074
                                                   9.725295
48.30087
          25.19501
                    11.688618 17.404732 14.480284 28.618876
19.397131 22.468653
                    7.0117908 20.602013 22.970919 19.719397
23.693787 25.048244 27.977154 13.393578 14.513882 20.309145
                    14.894031 26.382381 33.298378 23.61644
19.306028 24.095829
24.591206 18.514652 20.900269 10.406055 23.303423 13.092017
24.675085 22.582184 20.502762 16.820635 10.220605 33.81239
18.608067 49.999187 23.775583 23.909609 21.192276 18.805798
8.502987 21.50807
                    23.204473 21.012218 16.611097 28.100965
21.193024 28.419638 14.294126 49.99958
                                         30.988504 24.991066
21.433628 18.975573 28.991457 15.206939 22.817244 21.765755
19.915497 23.7961
```

```
In [63]: # R-Squared Error
score_1 = metrics.r2_score(Y_train,training_data_prediction)

# Mean Absolute Error
score_2 = metrics.mean_absolute_error(Y_train,training_data_prediction)

print("R-squared error is :",score_1)
print("Mean Absolute error is :",score_2)
```

R-squared error is : 0.9999948236320982 Mean Absolute error is : 0.0145848437110976

Visualizing the actual prices and predicted prices

```
In [66]: plt.scatter(Y_train,training_data_prediction)
   plt.xlabel("Actual Prices")
   plt.ylabel("Predicted Prices")
   plt.show()
```


Prediction on Test data

```
In [65]: # accuracy for prediction on Test data
    test_data_prediction = model.predict(X_test)

# R-Squared Error
score_1 = metrics.r2_score(Y_test,test_data_prediction)

# Mean Absolute Error
score_2 = metrics.mean_absolute_error(Y_test,test_data_prediction)
print("R-squared error is :",score_1)
print("Mean Absolute error is :",score_2)
```

R-squared error is: 0.8711660369151691 Mean Absolute error is: 2.2834744154238233

Visualizing the Actual prices and Predicted prices for Test data

```
In [67]: plt.scatter(Y_test,test_data_prediction)
    plt.xlabel("Actual Prices")
    plt.ylabel("Predicted Prices")
    plt.show()
```


In []