MARKSCHEME

May 2000

CHEMISTRY

Higher Level

Paper 2

SECTION A

(i) 1. (a) Endothermic/heat absorbed/energy absorbed / increase in enthalpy / needs (a lot of) energy [1] $K_{\rm c}$ is decreased / OWTTE. [1] Since heat is removed / since equilibrium moves to left / reverse reaction favoured. [1] $N_2 + O_2 \rightleftharpoons 2NO$ (1.6-x) (1.6-x) 2x(iii) [1] $K_{\rm c} = \frac{[\rm NO]^2}{[\rm N_2][\rm O_2]}$ [1] $[NO] = 0.065 \text{ mol dm}^{-3}$ [1] (If candidate uses 1.6 instead of (1.6-x), which gives an answer of 0.066, award [2] unless it is specifically stated that an approximation has been made or $1.6 \gg x$.) O₃: 1st order plus reasonable attempt to justify (e.g. double [O₃] doubles (b) (i) rate). [1] NO: 1st order plus reasonable attempt to justify (e.g. triple [O₃] and triple [NO], rate is \times 9.) [1] (Two correct orders but no reasoning, award [1].) Rate = $k[O_3][NO]$ (accept rate expression consistent with stated orders – [1] ECF principle) $0.66 \times 10^{-4} = k \times 3 \times 10^{-6} \times 10^{-6}$ (ii) $k = 2.2 \times 10^7$ /11 dm³ mol⁻¹ s⁻¹ /11 [2] (Apply error carried forward (ECF) from rate expression in (i). U-1 may be applied.) (iii) Rate (experiment 4) = $2.2 \times 10^7 \times 4.5 \times 10^{-6} \times 7.2 \times 10^{-6} = 7.13 \times 10^{-4}$ [1] **OR** Rate (experiment 4) = Rate (experiment 3) $\times \frac{3}{2} \times \frac{8}{10} = 7.13 \times 10^{-4}$ (Apply ECF from rate expression in (i), must be experiment 4, units not required.) 2. (a) C_3H_8 has higher boiling point; [1] since it has greater M_r / greater number of electrons / greater number of carbons; [1] so greater intermolecular forces / more energy needed. [1] (b) CH₃CH₂OH has higher boiling point; [1] hydrogen bonding between molecules; [1] so more energy needed to separate molecules / so greater intermolecular forces. [1]

[1]

- Acidic because H⁺ donor and basic because H⁺ acceptor. 3. (a) [1] Suitable equation OWTTE involving water [1] O^{2-} /oxide ion (allow O^{-2}) [1] (c) Electrical conductivity **OR** pH meter (or indicator paper) [1] Strong: good conductor **OR** Strong: low pH [1] **OR** Weak: high pH Weak: poor conductor [1] (Allow full range indicator, do not allow litmus, use judgement on other methods.)
 - (d) Ratio of moles = $60 \times 0.2:40 \times 0.15$ [1] (acid:alkali) = 2:1

Acid is in excess and reacts to form salt.

Moles acid:moles salt = 1:1

 $K_{a} = \frac{[H^{+}][A^{-}]}{[HA]} / [H^{+}] = K_{a} \frac{[HA]}{[A^{-}]}$ [1]

$$pH = 4.86$$

(Weak acid calculation based on excess acid giving a pH of 3.04 [3 max]; Weak acid calculation based on total acid giving a pH of 2.89 [2 max]; Solution based on ½ neutralisation worth [4]; Working must be shown.)

- 4. (a) Reducing agent donates/loses electrons / OWTTE. [1]
 - (b) Current flow: Al \rightarrow Ni Al \ominus , Ni \oplus (both) [1]
 - (c) $2A1 + 3Ni^{2+} \rightarrow 3Ni + 2A1^{3+}$ [2]

(Award [1] for correct species on correct sides of equation and [1] for correct coefficients, even if equation reversed.)

$$E^{\ominus} = +1.43 \,\mathrm{V}$$

(Award [1] each for sign and value. Allow -1.43 V if equation reversed - ECF principle. If signs not appropriate but value correct, award [1]. If E^{\ominus} values added, award [0].)

(d) Seconds =
$$2 \times 3600$$
 OR 7200 [1]

Coulombs =
$$8 \times 2 \times 3600$$
 OR 57600 [1]

Answer
$$= 0.09950 = 0.10(00)$$
 [1]

(Correct answer with no working, [4 max].)

SECTION B

5. (a) (If lines are shown without H atom attached, penalise once only.)

- (I) partially [1] oxidised [1] to CH₃CH₂CHO [1], propanal [1] (if state CH₃CH₂COOH propanoic acid instead of propanal, award [1]) (II) oxidised (if not in (I), award [1]) to CH₃COCH₃ [1], propanone [1] (I) or (II): orange to green [2]
- alkanols show bands above 3000 cm⁻¹ [1] (c) III is the choice [1] since it has C-O(-O) but no -O-H [1]
- A is I [1] 3 Hs in CH₃, 2 Hs in adjacent CH₂, 2 Hs in next CH₂, 1 H in OH (d) [1] B is II [1] 6 Hs in the two CH₃s, 1 H in CH, 1 H in OH [1]
- I and II (e) [1] [1] both give $CH_3CH = CH_2 / CH_3CHCH_2$ $CH_3CH = CH_2 + H_2$ CH,CH,CH,
- $CH_{3}CH = Cn_{2} + In_{2}$ $OR \quad CH_{3}CH = CH_{2} + HBr \qquad \rightarrow \qquad CH_{3}CHBrCH_{3} \text{ (or } CH_{3}CH_{2}CH_{2}Br \text{)}$ $OR \quad CH_{3}CH = CH_{2} + H_{2}O \qquad \rightarrow \qquad CH_{3}CHOHCH_{3} \text{ (or } CH_{3}CH_{2}CH_{2}OH \text{)}$ $OP \quad CH \quad CH = CH_{2} + Br_{2} \qquad \rightarrow \qquad CH_{3}CHBrCH_{2}Br$

Reagents [1] Product [1]

OR $CH_3CH = CH_2 + high pressure, high temperature/catalyst$ idea of polymerisation [1] content of bracket [1]

6.	(a)	(i)	MgO ionic SiO ₂ covalent both giant structures ionic bonds strong covalent bonds strong P ₄ O ₆ simple molecular SO ₂ covalent weak intermolecular force	es/bo	onds	! ! ! !	(1) (1) (1) (1) (1) (1) (1) [8]
		(ii)	Oxide Magnesium Silicon Phosphorus Sulphur MgO + $H_2O \rightarrow Mg(OH)$ $P_4O_6 + 6H_2O \rightarrow 4H_3PO_3$ $SO_2 + H_2O \rightarrow H_2SO_3$	_	Solubility Soluble Insoluble Soluble Soluble 4 correct = [3] 3 correct = [2] 2 correct = [1]	Acidic/Alkaline/Neutral Alkaline Neutral Acidic Acidic Acidic 4 correct = [3] 3 correct = [2] 2 correct = [1]	max [6] [1] [1] [2] [1]
	(b)	Varia state colou comp	2 2 2 3	$[2SO_3]$	removal/sharing of several electrons [1] splitting of d orbitals, electron transitions [1] accepting of electron pairs [1] complex formation/change of valency/can easily be oxidised or reduced [1]		(1) (1) (1) (1) an (1)
						any thr plus appropriate reas	

7.	(a)	(i)	(i) ΔH^{\ominus} is positive Reaction is endothermic (because products are at higher energy) Bonds in reactants must be stronger than those in products (because renergy must be added than is released).	
		(ii)	ΔG^{\ominus} is negative because reaction is spontaneous ΔS^{\ominus} is positive Since ΔH^{\ominus} is positive, ΔS^{\ominus} must be positive in order to make ΔG^{\ominus} negative. $(\Delta G^{\ominus} = \Delta H^{\ominus} - T\Delta S^{\ominus})$ Products must be more disordered than reactants.	[1] [1] [1] [1]
		(iii)	Known volumes of reactant solutions at the same temperature are mixed and temperature is monitored . Mol of limiting reactant calculated from volume and known concentration . $q = \Delta T \times \text{mass of solution} \times C_p$ $\Delta H = q \text{ mol}^{-1}$ of limiting reactant Use of insulated reaction vessel Stir the mixture	
			Note: [6] max which must include: (a) known concentration of one volume; (b) excess or equal reacting mols of second solution; (c) temperature change; (d) $q = \text{mass} \times \text{specific heat capacity} \times \Delta T$	
		(iv)	If reactants do not react completely. If container is not insulated adequately, heat will be gained from surroundings. Insulate container sufficiently.	[1] [1] [1]
		(v)	Reaction becomes more spontaneous as T is increased less spontaneous as T is decreased. $T\Delta S^{\ominus}$ term will become larger as T is raised so ΔG^{\ominus} will become more negative. $T\Delta S^{\ominus}$ term will become smaller as T is lowered so ΔG^{\ominus} will become less negative (or even positive as $+\Delta H^{\ominus}$ exceeds $T\Delta S^{\ominus}$). (Accept arguments based on Le Chatelier's principle.)	[1] [1] [1]
	(b)	(i)	$\Delta H_{\text{reaction}} = 2(A - A)$ bond energy + B - B bond energy - 4(A - B) bond energy [I] for correct signs [I] for correct coefficients (Number of bonds should be clear.)	[2]
		(ii)	Tabulated bond energies are average values and may differ from those in specific compounds. The best agreement is achieved when few bonds are broken / specific bond energies are used / for gaseous reactions.	[1] [1]

- 8. (a) (i) :N::N: H:N:H H:N:N:H H:N::N:H H:N::N:H
 - (Penalise missing lone pair once only)

[1] each [4]

[1]

[2]

- (ii) Bond angles in HNNH will be slightly larger than those in H₂NNH₂.

 3 sets of electrons around the N atoms in HNNH (double bond, bond to H, lone pair) will be farthest apart at about 120° but the 4 sets in H₂NNH₂ will adopt a tetrahedral geometry with bond angles that are slightly less than 109° / OWTTE
- (iii) N_2 sp hybridisation, NH_3 sp³ hybridisation, HNNH sp² hybridisation [1] each [3]
- (iv) HNNH has two isomers

| [1] each | [2] | nonpolar | polar | [1] each | [2] |

- (p) (i) H—C—Ö—I
 - 4 sigma bonds 1 pi bond [2] sigma bonds lie directly between the bonded nuclei / sigma bond strong [1] pi bonds lie above and below the line between the nuclei / pi bond weaker [1]
 - (ii) one longer than the other [1] $C = O \text{ shorter/extra } e^- \text{ pair makes bond shorter.}$ [1]
 - (iii) C—O bonds of same length because of delocalisation / idea of resonance. [1]

(Negative charge omitted – no penalty, electrons on O omitted – [0].) Intermediate bonding or other sensible alternative statement. [1] (Accept $1\frac{1}{2}$ bonds / π electrons spread across C—O bonds.)