Алгоритм нулевого порядка.

- 1. На вход блока сжатия в момент времени t_1 поступает отсчет f_1 . Значения t_1 и f_1 запоминаются в буфере памяти и одновременно заносятся на носитель информации, предназначенный для хранения результатов сжатия. По данным первого отсчет строится аппроксимирующий полином нулевого порядка: $\widetilde{f}(t) = A_0$, где $A_0 = f_1$.
- **2.** На вход блока сжатия в момент времени t_i поступает очередной отсчет f_i . По формуле точного критерия верности:

$$\left(\varepsilon(t) = \widetilde{f}(t) - f(t)\right)$$

или относительного точечного критерия верности:

$$\left(\delta(t) = \frac{\widetilde{f}(t) - f(t)}{f(t)}\right)$$

осуществляется расчет одного из точечных критериев $\varepsilon(t_i)$

или $\delta(t_i)$. В Данной работе используется относительный критерий.

Далее проверяется выполнение требований $\max \lvert arepsilon(t)
vert \leq arepsilon_0$ или $\max \lvert \delta(t)
vert \leq \delta_0$, наложенных на соответствующий критерий равномерного приближения.

Если условие $\max |\varepsilon(t)| \le \varepsilon_0$ или $\max |\delta(t)| \le \delta_0$ удовлетворяется, то повторяется выполнение п.2 для нового отсчета, в противном случае осуществляется переход к п.3.

3. Значения f_i и t_i принимаются за новый существенный отсчет, запоминаются в буфере памяти и одновременно заносятся на носитель информации, предназначенный для хранения результатов сжатия. По данным i-го отсчета строится аппроксимирующий полином нулевого порядка:

$$\widetilde{f}$$
 (t) = A_i , где $A_i = f_i$.

Далее осуществляется переход к п. 2 настоящего алгоритма.

Выполнение алгоритма заканчивается по окончании поступления данных на вход блока сжатия.