Probability and Stochastic Processes Course Notes

Chia-Hao CHang, chchangkh@utexs.edu

Fall 2018

1 Probability Measure

A probability space is a triplet (Ω, \mathcal{F}, P) , where

$$\Omega = \text{Sample Space} = \{\text{collection of outcomes}\}\$$

 \mathcal{F} is a σ -algebra, meaning it satisfies the following axioms

Axiom 1.1. $\Omega \in \mathcal{F}$

Axiom 1.2. If $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$.

Axiom 1.3 (Closed under Countable Union). If $A, B \in \mathcal{F}$, then $A \cup B \in \mathcal{F}$. If $A_1, A_2, \dots \in \mathcal{F}$, then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{F}$.

$$\mathcal{F} = \text{Events} = \{ \text{collection of subsets } of \ \Omega \}$$

We might think of \mathcal{F} as the power set of Ω .

 (Ω, \mathcal{F}) is called a *measurable space*. P is a probability measure.

$$P: \mathcal{F} \to [0,1]$$

2 Countable v.s. Uncountable

Examples of countable sets: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$. Examples of uncountable sets: $[0,1], \mathbb{R}$.

Remark (Countable Union [1]). Countable union of countable sets is countable.

Remark (Subset of Countable Sets [1]). Subsets of a countable set are countable.

3 Cantor's Diagonal Proof

Proves a subset of [0,1) is uncountable, which implies [0,1) is uncountable.

4 Non-Measurable Sets (Vitali Sets)

The goal of this section is to show that there exists non-measurable sets (namely, sets with no "lengths").

Axiom 4.1. $\forall A \subseteq [0,1), P\{A\} \ge 0, P\{[0,1]\} = 1, P\{\phi\} = 0.$

Axiom 4.2. If $A \cap B = \phi$, $P\{A \cup B\} = P\{A\} + P\{B\}$

Axiom 4.3. $A \oplus x \triangleq \{a + x : a \in A\}$. $P\{A\} = P\{A \oplus x\}, \forall x$.

Target: Show that: $\exists B \subseteq [0,1)$ s.t. $P\{B\}$ does not exist.

Proof. Firstly, construct $S_{\alpha} \triangleq \{r + \alpha : r \in \mathbb{Q}\}$. It is clear that $S_{\alpha} = S_{\beta}$ if $\alpha - \beta \in \mathbb{Q}$.

Remark. S_{α} is countable. Since there is an one-one and onto projection between \mathbb{Q} and S_{α} .

Remark. For two different α , β , either

$$K_{\alpha} = K_{\beta}, \text{ if } \alpha - \beta \in \mathbb{Q}$$
 (1)

or

$$K_{\alpha} \cap K_{\beta} = \phi \tag{2}$$

Remark. There is a subset of $\{S_{\alpha}\}_{{\alpha}\in[0,1)}$, $\{K_{\alpha}\}\in s.t.$ $\bigcup_{\alpha}K_{\alpha}=[0,1)$.

Remark. $\{K_{\alpha}\}$ is uncountable.

This can be easily verified by the fact that each K_{α} is countable. If $\{K_{\alpha}\}$ is countable, $\bigcup_{\alpha} K_{\alpha} = [0,1)$ would be countable, which constitutes a contradiction. ([0,1) is uncountable.)

Remark. $\{K_{\alpha}\}$ is a partition of [0,1).

By the Axiom of Choice, we construct \mathcal{B} as follows:

From each K_{α} , we select an element from it and put it into \mathcal{B} .

Clearly, \mathcal{B} is not countable. Next, consider $\mathbb{Q} \triangleq \{r_0, r_1, r_2, \cdots\}$, namely, $\{r_0, r_1, \cdots\}$ is the sequence of rational numbers. Consider a collection of sets $\{\mathcal{B}_1, \mathcal{B}_2, \cdots, \mathcal{B}_n \cdots\}$, where

$$\mathcal{B}_i \triangleq \mathcal{B} \oplus r_i$$

Lemma 1. $\{\mathcal{B}_n\}$ is a disjoint set.

This can be seen by:

Say, $x \in \mathcal{B}_n \cap \mathcal{B}_m$. Then, $x = r_n + y_n = r_m + y_m$, where $y_n, y_m \in \mathcal{B}$. This implies that $|y_n - y_m| \in \mathbb{Q}$, which contradicts that elements in \mathcal{B} differ by a irrational number.

Lemma 2.
$$\bigcup_{n=0}^{\infty} \mathcal{B}_n = [0,1).$$

Since $\bigcup_{\alpha} K_{\alpha} = [0, 1)$. Given $s \in [0, 1)$, $s = \gamma + r_{\gamma}$, where $\gamma \in [0, 1)$ and $r_{\gamma} \in \mathbb{Q}$. We can always find a element in \mathcal{B} , say, $b_{\gamma} \in \mathcal{B}$ s.t. $\gamma - b_{\gamma} \in \mathbb{Q}$. Hence, s differ by a rational amount to b_{γ} . Implying $s \in \mathcal{B}_{b_{\gamma}}$. $\{\mathcal{B}_n : n = 1, 2, 3, \dots\}$ forms a partition of [0, 1). Thus,

$$\sum_{m=1}^{\infty} P\{\mathcal{B}_m\}$$

$$= \sum_{m=1}^{\infty} P\{\mathcal{B}\}$$

The summation must either be 0 or ∞ , which contradicts the assumption of probability measure. This completes the proof.

Appendix I: Group view of Vitali Set

In fact, if we view [0,1) as the group with binary operation as \oplus , namely

$$x \oplus y = (x+y) \mod 1$$

Then, \mathbb{Q} is the normal subgroup of [0,1). i.e.

$$\mathbb{Q} \triangleleft [0,1)$$

Thus, $[0,1)/\mathbb{Q} \cap [0,1)$ defines a Quotient Group and $[0,1)/\mathbb{Q}$ is a partition of [0,1).

References

[1] W. Rudin: Principles of Mathematical Analysis, McGraw-Hill, 1976.