Deep Convolutional Neural Nets Part I

Tim Dunn

Duke MLSS 2018

Diabetic Retinopathy Classification

Normal Retina

Diabetic Retina

Diabetic Retinopathy Classification

$$sensitivity = \frac{number of true positives}{total number of positives in the dataset}$$

$$specificity = \frac{number\ of\ true\ negatives}{total\ number\ of\ negatives\ in\ the\ dataset}$$

Gulshan et al. JAMA (2016)

TSA Screening

Automatic 3D Surface Meshes from Video

Consider the multi-layer perceptron for digit recognition:

Consider the multi-layer perceptron for digit recognition:

Consider the multi-layer perceptron for digit recognition:

Low-level structure: lines, curves

Low-level structure: lines, curves

Mid-level structure: shapes

Mid-level structure: shapes

High-level structure: groups of shapes \rightarrow objects

Consider a Set of "Toy" Images, for Illustration

High-Level Motifs

Hierarchical Representation of Images

Layer 1: Fundamental Building Blocks

Recall the Data/Images

Convolutional Filter

Convolutional Filter

Convolutional Filter

Multiple Filters, One for Each Building Block

Deep Analysis Architecture

Given Images, How Do We Learn Model Parameters?

- The previous discussion was an illustration for motivating the "deep" algorithm concept
- ➤ Demonstrated using "toy" images
- > How do we build such an algorithm in practice, given a large set of training images?

- Assume we have labeled images $\{I_n, y_n\}_{n=1,N}$
- I_n is image $n, y_n \in \{+1, -1\}$ is associated label
- Risk function of model parameters:

$$E(\Phi, \Psi, \Omega, W) = 1/N \sum_{n=1}^{N} loss(y_n, \ell_n)$$

• Find model parameters $\widehat{\Phi}$, $\widehat{\Psi}$, $\widehat{\Omega}$, \widehat{W} that minimize $E(\Phi, \Psi, \Omega, W)$

Cost Function vs. Model Parameters

- High-dimensional function, as a consequence of a large number of model parameters
- Typically many local minima
- May be expensive to compute, for sophisticated models & large quantity of training images

Layer 1

Layer 2

Layer 3

Advantage of Hierarchical Features?

- By learning and sharing statistical similarities within high-level motifs, we better leverage all training data
- If we do not use such a hierarchy, top-level motifs would be learned in isolation of each other

Big Picture

• Risk function of model parameters:

$$E(\Phi, \Psi, \Omega, W) = 1/N \sum_{n=1}^{N} loss(y_n, \ell_n)$$

• Find model parameters $\widehat{\Phi}$, $\widehat{\Psi}$, $\widehat{\Omega}$, \widehat{W} that minimize $E(\Phi, \Psi, \Omega, W)$

