Found in Translation:

MultiComp Lab Learning Robust Joint Representations by Cyclic Translations Between Modalities Language

Hai Pham*, Paul Pu Liang*, Thomas Manzini, Louis-Philippe Morency, Barnabás Póczos (*equal contributions)

School of Computer Science, Carnegie Mellon University

OVERVIEW

Technologies

Institute

Traditional approaches

Both modalities required at test time! Sensitive to missing/noisy visual modality.

Our approach: Found in Translation

Only language modality required at test time!

MULTIMODAL CYCLIC TRANSLATION NETWORK (MCTN)

 \succ Forward translation loss $|\mathcal{L}_t = \mathbb{E}[\ell_{\mathbf{X}^T}(\hat{\mathbf{X}}^T, \mathbf{X}^T)]|$

> Cycle consistent loss $\mathcal{L}_c = \mathbb{E}[\ell_{\mathbf{X}^S}(\hat{\mathbf{X}}^S,\mathbf{X}^S)]$

 $\mathcal{L}_p = \mathbb{E}[\ell_{\mathbf{y}}(\hat{\mathbf{y}}, \mathbf{y})]$ > Prediction loss

$$\mathcal{L} = \lambda_t \mathcal{L}_t + \lambda_c \mathcal{L}_c + \mathcal{L}_p$$

EMBEDDED REPRESENTATION WITH t-SNE

STATE-OF-THE-ART PREDICTION RESULTS

ABLATION STUDY

2. Use cyclic translations

1. Use language as source modality

- 3. Share parameters in seq2seq models

Code and Models: http://github.com/hainow/MCTN

