Scopo dell'esperienza:

Dimostrare che la densità resta invariante al variare del volume e stimare la densità dei solidi dati.

Strumenti e materiali utilizzati:

Calibro ventesimale (risoluzione 0,05mm). Calibro Palmer (risoluzione 0,01mm). Bilancia di precisione (risoluzione 1mg). Solidi in alluminio, acciaio e ottone.

Stima delle densità:

Sapendo che la densità di un corpo è data dalla formula $\rho = m/V$ abbiamo usato la bilancia di precisione per misurare la massa e, a seconda della grandezza, il calibro ventesimale o Palmer per le dimensioni. Dopo aver ottenuto i dati (vedi tabella allegata) li abbiamo inseriti all'interno di un grafico con il volume sulle ascisse e la massa sulle ordinate. Eseguendo un fit grafico utilizzando il metodo dei minimi quadrati, come previsto, abbiamo ottenuto tre rette passanti per l'origine, il cui coefficiente angolare corrisponde alla densità del solido secondo la legge $m = \rho V$.

$$\begin{split} &\rho_{alluminio} \!=\! (2.760\!\pm\!0.030)10^3 \, kg \, m^{-3} \\ &\rho_{ottone} \!=\! (8.430\!\pm\!0.004)10^3 \, kg \, m^{-3} \\ &\rho_{acciaio} \!=\! (7.750\!\pm\!0.110)10^3 \, kg \, m^{-3} \end{split}$$

Legge di scala per le sfere:

Sapendo che
$$m = \frac{4}{3}\pi r^3 \rho = kr^3$$

Abbiamo preso in esame le sole sfere, costruendo un grafico in carta bilogaritmica. Ponendo il raggio sulle ascisse e la massa sulle ordinate, abbiamo tracciato la line of best fit e abbiamo appurato che la funzione risulta linearizzata con coefficiente angolare: 2.978 ± 0.047 calcolato con il metodo dei minimi quadrati. Nell'intervallo di incertezza il valore è in accordo con la legge di potenza per le sfere.

Conclusione:

Considerando gli errori le densità stimate rientrano nei valori tabulati per i tre materiali. L'errore sull'acciaio risulta più alto in quanto il punto associato alle grandezze della sfera di massa 8.357±0.001g si discosta maggiormente dal fit grafico.

Risultano inoltre dimostrate sia la dipendenza lineare tra massa e volume di oggetti di uguale materiale, sia la legge di potenza che lega raggio e massa di una sfera.

Lorenzo Cavuoti Paolo Cavarra Alice Longhena

Risoluzione strumenti di misura						
v = calibro ventesimale (±0,05mm)						
$p = calibro centesimale (\pm 0,01mm)$						
	b1(mm)		b2(mm)	h(mm)		Masse(±0,001g)
parallelepipedo base quadrata argentato	10,04	p	10,05 p	18,42	p	4,848
parallelepipedo base rettangolare argentato	20,1	V	17,6 v	8,14	р	7,658
parallelepipedo base quadrata opaco	4,98	p	4,99 p	22,8	٧	4,75
	h		2*apotema			
parallelepipedo base esagonale opaco	17,55	V	14,95 v	,		28,622
	dia matus		L			
-::	diametro		h			15.070
cilindro grande argentato	19,75	_	19,05 v			15,878
cilindro piccolo argentato	11,95		19,1 v			5,779
cilindro grande opaco	9,96		37,4 v			24,55
cilindro piccolo opaco	5,95	p	10 p)		2,338
	diametro		raggio			
Sfera 1	9,51	D	4,755			3,523
Sfera 2	12,49		6,245			8,357
Sfera 3	14,27	p	7,135			11,892
Sfera 4	15,86	р	7,93			16,321
Sfera 5	18,25	p	9,125			24,84