CS-200 Computer Architecture

Part Ic: Instruction Set Architecture Memory and Addressing Modes

Paolo lenne <paolo.ienne@epfl.ch>

The Contract between HW and SW

Memory

- An incredibly important component of a computing system
 - We store our programs in it
 - We store our data in it
 - It is often through memory that we will receive and send out data

- Memory is a recurrent topic in this course
 - Memory can be very slow → Caches
 - Memory is "finite" (= relatively small) → Virtual Memory
 - Memory can make an ISA too complex → Pipelining

Address and Data

Many Types of Memories

- Different technologies
 - SRAM, DRAM, EPROM, Flash, etc.
- Large variations in capabilities
 - Capacity, density
 - Speed
 - Writable, permanent, reprogrammable
- Available as discrete devices (all) and as embedded ASIC components (many, increasingly)

Functional Taxonomy of Memories

Taxonomy of Random Access Memories

Basic Structure

Write

Read

Practical SRAMs

Small, very fast memories (e.g., maybe Register Files)

All practical SRAM use a 6T cell

DRAM

- Dynamic RAMs are the densest (and thus cheapest) form of random-access semiconductor memory
- DRAMs store information as charge in small capacitors part of the memory cell
- First patented in 1968 by Robert Dennard, scaled amazingly over decades and was somehow an important ingredient of the progress of computing systems
- Charge leaks off the capacitor due to parasitic resistances → every DRAM cell needs a periodic refresh (e.g., every ~60 ms) lest it forgets information!

Ideal Random Access Memory Array

Physical Organisation Can Be Different

More Realistic ROM Array E.g., 4K x 16 (= 64 Kbit = 256² bit)

Static RAM Typical Interface

Typical Asynchronous SRAM Read Cycle

- Enable the memory, assert the address, and wait for the data
 - Data Out available after a combinational delay Tacc = Access Time
- Maximum frequency limited by minimum Tcyc

Propagation Delay in the Physical Components

Typical Synchronous SRAM Read Cycle

- Everything relative to the clock signal
- Latency is the number of cycles between the address asserted and data available
 - Often one as in this diagram but in some cases (large memories) more

Typical Synchronous SRAM Write Cycle

Writes on the edge of the clock signal, as a DFF

Where is Memory in the Processor?

Arithmetic and Logic Instructions

Load Instructions

Store Instructions

Loads and Store: The RISC-V Way

Loads and Store: The RISC-V Way

A Load/Store Architecture

- Instructions reading and writing in memory do just that and nothing else
- It is a typical feature of Reduced Instruction Set Computer (RISC) processors, whose advantages will become clear later in CS-200

Load									
lw	rd,imm(rs1)	$\mathtt{rd} \leftarrow \mathrm{mem}[\mathtt{rs1} + \mathrm{sext}(\mathtt{imm})]$	I	0x2	0x03				
Store									
SW	rs2,imm(rs1)	$\mathrm{mem}[\mathtt{rs1} + \mathrm{sext}(\mathtt{imm})] \leftarrow \mathtt{rs2}$	S	0x2	0x23				

More Addressing Modes? Not in RISC-V!

Register

add
$$x0$$
, $x1$, $x2$

Immediate

Direct or Absolute

Register Indirect

add
$$x0$$
, $x1$, $(x2)$

Displacement or Relative

add
$$x0$$
, $x1$, $123(x2)$

$$\rightarrow x0 = x1 + x2;$$

$$\rightarrow x0 = x1 + 123;$$

$$\rightarrow x0 = x1 + mem[1234];$$

$$\rightarrow$$
 x0 = x1 + mem[x2];

$$\rightarrow$$
 x0 = x1 + mem[x2 + 123];

More Addressing Modes? Not in RISC-V!

Base or Indexed

add
$$x0$$
, $x1$, $i5(x2)$

 \rightarrow x0 = x1 + mem[x2 + i5];

Auto-increment or -decrement

```
add x0, x1, (x2+)
```

$$\rightarrow$$
 x0 = x1 + mem[x2];

PC-Relative

$$\rightarrow x0 = x1 + mem[pc + 123];$$

An Example from x86/x64

This roughly means: **read memory** at address EBX + ESI*4 + 16, **add** EAX to it, and **write the result back** into memory (at the same address)

Word Addressed Memory

Byte Addressed Memory

Loading Words (1w) and Instructions

Loading Bytes (1b)

A Few More Load/Store Instructions

Access bytes (and half-words) as if memory were made of bytes

	Load					
	lb	rd,imm(rs1)	$\mathtt{rd} \leftarrow \operatorname{sext}(\operatorname{mem}[\mathtt{rs1} + \operatorname{sext}(\mathtt{imm})][7:0])$	I	0x0	0x03
7	lbu	rd,imm(rs1)	$\mathtt{rd} \leftarrow \mathrm{zext}(\mathrm{mem}[\mathtt{rs1} + \mathrm{sext}(\mathtt{imm})][7:0])$	I	0x4	0x03
	lh	rd,imm(rs1)	$\mathtt{rd} \leftarrow \operatorname{sext}(\operatorname{mem}[\mathtt{rs1} + \operatorname{sext}(\mathtt{imm})][15:0])$	I	0x1	0x03
	lhu	rd.imm(rs1)	$rd \leftarrow zext(mem[rs1 + sext(imm)][15:0])$	I	0x5	0x03
	Store					
	sb	rs2,imm(rs1)	$mem[\texttt{rs1} + sext(\texttt{imm})] \leftarrow \texttt{rs2}[7:0]$	S	0x0	0x23
_	sh	rs2,imm(rs1)	$\operatorname{mem}[\operatorname{rs1} + \operatorname{sext}(\operatorname{imm})] \leftarrow \operatorname{rs2}[15:0]$	S	0x1	0x23

When putting something smaller (e.g., a byte) into a larger register (32-bit), extension matters:

zero extend unsigned numbers and sign extend signed numbers

Access Memory as It Is More Suitable!

Example: Count Characters in a String

Example: Count Characters in a String

```
strlen:
         t0, a0
                           # Copy the pointer (a0) into t0 to traverse the string
   mv
    1i
         t1, 0
                           # t1 will hold the length (initialized to 0)
loop:
         t2, 0(t0)
    1bu
                           # Load byte at address t0 into t2
         t2, zero, end
                           # If t2 is 0 (null byte), we are done
    bea
    addi t1, t1, 1
                           # Increment the length counter (t1)
   addi
         t0, t0, 1
                           # Point to the next character in the string
         loop
                           # Repeat the loop
end:
                           # Move the length (t1) into a0 as the return value
         a0, t1
   mv
                           # Return to caller
    ret
                                                    Could this be 1b? Which one is correct?
```

And Using 1w instead of 1b?

How is this Loading Bytes (1b) connected, exactly? bits 31...2 Address 32-bit Memory **32 32** Reg. Data Out File bits 1...0 Inside the processor

Which Byte Where?!

Little Endian or Big Endian?

It only matters if the same data are accessed both as words and bytes or
if two different systems access the data (e.g., a TCP/IP packet, a WAV file)

Example: strlen() with only lw

Example: strlen() with only lw

```
strlen:
   li
         t1, 0
                          # t1 will hold the length (initialized to 0)
next_word:
                                                                                  As an exercise, can
   1i
                         # t2 will count the bytes in a loaded word (four)
         t2, 4
                                                                                  you write this for a
         t3, 0(t0)
                          # Load four bytes at address t0 into t3
   lw
                                                                                big-endian processor?
next byte:
   andi t4, t3, 0xff
                        # Move the "little-end" in t4
   beq t4, zero, end
                         # If t4 is 0 (null byte), we are done
   addi t1, t1, 1
                         # Increment the length counter (t1)
   srli t3, t3, 8
                          # Prepare the next byte of the word in the "little-end" (t3)
   addi t2, t2, -1
                          # One byte left in the loaded word
   bnez t2, next byte
                          # If more bytes in t3, check the next
   addi a0, a0, 4
                          # Else point to the next word of characters in the string
         next word
                          # Repeat the loop
end:
                          # Move the length (t1) into a0 as the return value
         a0, t1
   mv
                          # Return to caller
   ret
```

References

- Patterson & Hennessy, COD RISC-V Edition
 - Chapter 2 and, in particular, Sections 2.3 and 2.9
 - Sections 5.1 and 5.2