Lecture 3. Review of Euclidean Geometry ECEN 5283 Computer Vision

Dr. Guoliang Fan School of Electrical and Computer Engineering Oklahoma State University

Goals

To review three camera models.

To review Euclidean geometry that forms the foundation for geometric camera modeling.

- Coordinate systems
- Geometric definition of a plane
- Homogeneous coordinate
- Coordinate system changes

Euclid (Greek: Εὐκλείδης — Eukleidēs), fl. 300 BC, also known as Euclid of Alexandria, "The Father of Geometry" was a Greek mathematician.

ORLAHOMA UNIVERSITY

Review of Camera Models

- Perspective projection is a standard camera model
- Affine projection is a simplified linear camera model
- Orthographic projection is an idealized camera model

Elements of Analytical Euclidean Geometry

Figure 2.1 A right-handed coordinate system and the coordinates x, y, and z of a point P.

Coordinate Systems

- Orthonormal coordinate frame (F) is composed of an origin O in the physical 3-D Euclidean space E^3 and three basis vectors, i, j, k, orthogonal to each other.
- The coordinates (x, y, z) of a point P in this frame is the (signed) length of the orthogonal projections of the vector \overrightarrow{OP} .

$$\begin{cases} x = \overrightarrow{OP} \cdot \mathbf{i} \\ y = \overrightarrow{OP} \cdot \mathbf{j} \iff \overrightarrow{OP} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}. \\ z = \overrightarrow{OP} \cdot \mathbf{k} \end{cases}$$

The coordinate vector of the point P is defined in (F).

$$\mathbf{P} = \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{pmatrix} \in \mathbf{R}^3$$

Geometric Definition of the Equation of a Plane

Let's consider the plane Π , an arbitrary point A in Π , and a unit vector \mathbf{n} perpendicular to the plane. The points P lying in Π are characterized by

$$\overrightarrow{AP} \cdot \mathbf{n} = 0$$

In a coordinate system (F), where the coordinates of P are x, y, z, and the coordinates of \mathbf{n} are a, b, c.

Given
$$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA}$$
 $\overrightarrow{OP} \cdot \mathbf{n} = ax + by + cz$

$$\overrightarrow{AP} \cdot \mathbf{n} = 0 \Leftrightarrow \overrightarrow{OP} \cdot \mathbf{n} - \overrightarrow{OA} \cdot \mathbf{n} = 0$$

$$\rightarrow ax + by + cz - d = 0, \text{ where } d = \overrightarrow{OA} \cdot \mathbf{n} \text{ (what is } d?)$$

Example of Geometric Definition of the Equation of a Plane

Figure 2.2 The geometric definition of the equation of a plane. The distance d between the origin and plane is reached at the point H where the normal vector passing through the origin pierces the plane.

It is useful to use to homogeneous coordinate represent points, vectors, and planes.

$$ax + by + cz - d = 0 \rightarrow (a, b, c, -d) \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = 0$$

or
$$\Pi \cdot P = 0$$
 where $\Pi = \begin{pmatrix} a \\ b \\ c \\ -d \end{pmatrix}$ and $P = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$.

Homogeneous coordinate vector

Homogenous Coordinate Example

Let us consider a sphere S radius R centered at the origin. A necessary and sufficient condition for the point P with coordinates, x, y, z to belong to S is that

$$x^2 + y^2 + z^2 = R^2$$

which is equivalent to

$$(x, y, z, 1) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -R^2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = 0$$

Coordinate System Changes

When several different coordinate systems are considered at the same time, we denote the coordinate vector of the point P in the frame F as

$${}^{F}P = {}^{F}\overrightarrow{OP} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Leftrightarrow \overrightarrow{OP} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}.$$

Let us consider two coordinate systems (two frames)

$$(A) = (O_A, \mathbf{i}_A, \mathbf{j}_A, \mathbf{k}_A)$$

$$(B) = (O_B, \mathbf{i}_B, \mathbf{j}_B, \mathbf{k}_B)$$

Question: How to express BP as a function of AP .

Coordinate System Changes: Pure Translation

• Case I: $O_A \neq O_B$, $\mathbf{i}_A = \mathbf{i}_B$, $\mathbf{j}_A = \mathbf{j}_B$, $\mathbf{k}_A = \mathbf{k}_B$.

Figure 2.3 Change of coordinates between two frames: pure translation.

$$\overrightarrow{O_BP} = \overrightarrow{O_BO_A} + \overrightarrow{O_AP} \rightarrow {}^BP = {}^BO_A + {}^AP$$

Coordinate System Changes: Pure Rotation

• Case II: $O_A = O_B = O, \mathbf{i}_A \neq \mathbf{i}_B, \mathbf{j}_A \neq \mathbf{j}_B, \mathbf{k}_A \neq \mathbf{k}_B.$

Figure 2.4 Change of coordinates between two frames: pure rotation.

$$^{B}P=^{B}_{A}R^{A}P$$

$${}_{A}^{B}R = {}_{B}^{A}R^{T} = \left({}_{B}^{A}R\right)^{-1}$$

Unitary matrix

$$\mathbf{U}^T = \mathbf{U}^{-1} \quad \det(\mathbf{U}) = 1$$

Coordinate System Changes: Pure Rotation (Cont'd)

Figure 2.5 Two coordinate frames separated by a rotation of angle θ about their common k basis vector. As shown in the right of the figure, $i_A = ci_B - sj_B$ and $j_A = si_B + cj_B$, where $c = \cos\theta$ and $s = \sin\theta$.

$$^{B}P=^{B}_{A}R^{A}P$$

Coordinate System Changes: Rigid Transform

- Case IV: $O_A \neq O_B$, $\mathbf{i}_A \neq \mathbf{i}_B$, $\mathbf{j}_A \neq \mathbf{j}_B$, $\mathbf{k}_A \neq \mathbf{k}_B$.
 - When the origins and basis vectors of the two coordinate systems are different, we say the frames are separated by a general rigid transform

$${}^{B}P = {}^{C}_{A}R^{A}P + {}^{B}O_{C} = {}^{B}_{A}R^{A}P + {}^{B}O_{A}$$

Rotation first then shift

$$O_C = O_A, \mathbf{i}_C = \mathbf{i}_B, \mathbf{j}_C = \mathbf{j}_B, \mathbf{k}_C = \mathbf{k}_B$$

(intermediate frame for the first transform)

$${}^{B}P = {}^{B}_{D}R({}^{A}P + {}^{D}O_{A}) = {}^{B}_{A}R^{A}P + {}^{B}_{D}R^{D}O_{A}$$

Shift first then ration

$$O_D = O_B, \mathbf{i}_D = \mathbf{i}_A, \mathbf{j}_D = \mathbf{j}_A, \mathbf{k}_D = \mathbf{k}_A$$

(intermediate frame for the first transform)

Figure 2.6 Change of coordinates between two frames: general rigid transformation.

Coordinate System Changes: Rigid Transform

Rigid transformation using homogeneous coordinates

$$^{B}P=^{B}_{A}R^{A}P+^{B}O_{A}$$

$$\begin{pmatrix} {}^{B}P \\ 1 \end{pmatrix} = \begin{pmatrix} {}^{B}R & {}^{B}O_{A} \\ \mathbf{0}^{T} & 1 \end{pmatrix} \begin{pmatrix} {}^{A}P \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} {}^{B}P \\ 1 \end{pmatrix} = {}^{B}AT \begin{pmatrix} {}^{A}P \\ 1 \end{pmatrix}, \text{ where } {}^{B}AT = \begin{pmatrix} {}^{B}AR & {}^{B}O_{A} \\ \mathbf{0}^{T} & 1 \end{pmatrix}$$