DuckieTown: GlitchieDuck

Bachelor Practical Course (INHN0021, INHN4052) – Duckietown

Esmir Kićo, Supratik Patel, Sahil Virani

Agenda

Overview of key project milestones and collaborative tasks

Assembly of the Duckiebot

- The physical construction of the Duckiebot
- Preparing required components

Implement DT-Core functionalities

- Integrating the core Duckietown software modules that
- Control navigation and sensor management for the robot.

Installing the DTS Shell software

- Configuring Ubuntu Virtual Machine
- Setting up Duckietown Shell environment
- Enabling control of the Duckiebot

Creation of the VLM algorithm

- Creating sufficient Visual Language Model
- Enhance autonomous decision-making in complex environments.

Calibration

- Precise calibration of the Duckiebot's camera and wheels
- Ensuring accurate perception and movement during operation

Integration of the VLM algorithm

- Integrating VLM with the current Duckietown software modules

Assembly of Duckiebot

Step-by-step hardware setup and challenges in building the Duckiebot

Duckietown manual guide

Used the official Duckietown manual for detailed hardware setup instructions to ensure accuracy.

Connections and power

Checked all electrical connections and power supply before installing software to prevent issues.

SD Card Flashing

Preparing the installation of
Ubuntu 18.04 image to be
used as Duckiebot's
operating system

Installation of DTS Shell

Step-by-step setup to enable Duckietown software interaction on Duckiebot

Virtual Machine Setup

Installation and configuration of the Ubuntu 22.04 Virtual Machine

DTS Shell Installation

DTS Shell enabling seamless communication with the Duckietown software components

Preparing environment

Installing necessary dependencies, and configuring the system

Running basic functionalities

Utilising keyboard control, GUI tools and duckiebot web interface

Calibration of Camera and Wheels

Ensuring accurate sensor data and precise robot navigation through calibration

DT-Core Implementation Overview

Adapting and integrating DT-Core modules for lane following

Provides key modules for vision, localization, control, and communication in Duckiebots

Customizing DT-Core modules

Integrated ROS nodes

Implemented ROS nodes to handle sensor data processing and execute control commands effectively

DT-Core Control Module

Key components and dynamic control processes for autonomous driving

Anti-instagram

Receives real-time video feed and performs color correction to isolate colours

01

Stop-line Filter

Recognizes red line on the lane and stops for 3 seconds before proceeding

Lane Following

02

Processes perception data to generate precise movement commands for the vehicle.

Apriltags

Recognizes street signs using special codes and behaves accordinagly

QuickDuck: Issues

Issues with default dt-core implementation

QuickDuck: Lane Following

Autonomous driving implementation using dt-core packages

Introduction to VLM Algorithm

Visual Language Model used as a brain to decide how the Duckiebot operates

QuickDuck: Visual Language Model

Using QWEN 2.5 7B to control the Duckiebot

Integration Challenges and Solutions

Overcoming compatibility issues with testing and best practices

Installation of DTS Shell

Issues with installing DTS Shell on Ubunut VM running on MacOS with ARM

Calibration

Software Freezing

Cross-platform Compatibility

Windows, MacOS and different version of Ubuntu

Dt-core

Setting up preconfigured ROS nodes

Integration of VLM into dt-core

Issues with sending commands to DuckieBot, limited resources

Thank you for your attention