Installation de GLPI

Téléchargement et paramétrer notre agent GLPI

Pour cela on va créer une passerelle. C'est-à-dire associer un port de l'IP de la machine hôte au port de l'IP locale de la machine virtuelle :

http://192.168.1.175:1234/glpi/

nous en sommmes

Server= http://ip:9080/glpi/front/inventory.php

Avec ip = l'adresse IP de votre machine.

Exécutez glpi-agent.bat

Retournez dans GLPI et dressez une liste de tous les types d'information qui ont été relevés par l'agent.

Quelques manipulations

Les informations relevées par GLPI ne sont pas forcément toutes utiles à l'organisation.

Regardez la liste des composants d'un PC, combien y en a-t-il ?

On peut donc décider de limiter ce que l'agent va remonter au serveur.

Avant cela on va devoir supprimer tout ce qui a déjà été remonté (PC et logiciels).

Ensuite, on se rend dans « Administration » sur le panneau de gauche puis « Inventaire »

Modifiez les paramètres afin que l'agent ne remonte plus que les composants de type processeur et mémoire.

Relancez l'agent et regardez de nouveau la liste des composants du PC. Combien y en a t-il

.

enlever le # devant

https://github.com/glpi-project/glpi-agent/releases/tag/1.4

server=http://192.168.1.175:1234/qlpi/front/inventory.php

On a pu répertorier le premier pc

lancement processus de lancement pour répertorier le pc

http://192.168.1.175:1234/glpi/front/dashboard_assets.php

repertorier machine virtuel windows 10

Machine Windows bien répertorier

Machine Windows répertorier sous Réseau NAT

Nous avons configuré cet machine pour avoir le réseaux interne possible

```
utilisateur@pcUtilisateur:~$ sudo ip addr add 192.168.100.10/24 dev enp0s8
utilisateur@pcUtilisateur:~$ ip a
 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group defaul
 t qlen 1000
    link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
       valid_lft forever preferred_lft forever
    inet6 ::1/128 scope host
       valid_lft forever preferred_lft forever
 2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP gr
 oup default glen 1000
     link/ether 08:00:27:79:bb:40 brd ff:ff:ff:ff:ff
    inet 10.0.2.15/24 brd 10.0.2.255 scope global dynamic noprefixroute enp0s3
       valid_lft 85734sec preferred_lft 85734sec
     inet6 fe80::f416:70e:f283:caad/64 scope link noprefixroute
       valid_lft forever preferred_lft forever
 3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP gr
 oup default glen 1000
     inet 192.168.100.10/24 scope global enp0s8
       valid lft forever preferred lft forever
 utilisateur@pcUtilisateur:~$ S
enp0s3 = NAT
                            Ethernet (enp0s3) connecté
                                                                >
enp0s8 = Réseau interne
                            Ethernet (enp0s8) connecté
                                                                >
ici les deux sont bien connecté

Équilibré

                                Paramètres
                               Verrouiller

 Éteindre / Fermer la session
```

Grâce à tout cela nous avons pu connecter votre Machine Windows à un réseau interne en la liant avec la Machine Virtuelle Linux on le remarque grâce à leur IP pour celle Linux : 192.168.100.10 tandis que pour celle Windows c'est 192.168.100.20

netsh interface ipv4 set address name="Ethernet" static 192.168.100.20 255.255.255.0 192.168.100.1

on a changer l'ip hote car on a changer de route sur ordinateur physique.

