

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH University of Science and Technology

Przestrzenie Euklidesowe

12.01.2022

Wykład XII. Przestrzenie liniowe. Przypomnienie

Definicja przestreni liniowej

Niepusty zbiór V nazywamy rzeczywistą (zespoloną) przestrzenią liniową jeżeli:

- dla dowolnych elementów $f, g \in V$ jest oikreślona ich suma $f + g \in V$;
- f + g = g + f przemienność dodawania;
- (f+g)+z=f+(g+z) lączność dodawania;
- istnieje element neutralny $0 \in V$ taki że f + 0 = f, $\forall f \in V$;
- $\forall \alpha \in \mathbb{R} \ (\alpha \in \mathbb{C})$, $\forall f \in V$ określony jest iloczyn $\alpha \cdot f \in V$;
- dla każdego $f \in V$, \exists element przeciwny $-f \in V$ taki że f + (-f) = 0;
- $1 \cdot f = f$, $\alpha(\beta \cdot f) = (\alpha\beta) \cdot f$;
- $(\alpha + \beta) \cdot f = \alpha \cdot f + \beta \cdot f$, $\alpha \cdot (f + g) = \alpha \cdot f + \alpha \cdot g$.

Przestrzenie Euklidesowe 12.01.2022 2 / 27

XII. Przestrzenie liniowe. Przypomnienie

Przykłady

- $W_n[x]$ zbiór wszystkich wielomianów stopnia $\leqslant n$;
- W[a, b] zbiór wszystkich wielomianów na [a, b];
- $W_n[a,b]$ zbiór wszystkich wielomianów stopnia $\not \ge n$ na [a,b];
- ullet C[a,b]- zbiór wszystkich funkcji ciągłych na [a,b];
- $M_{n \times m}$ zbiór macierzy wymiaru $n \times m$;
- $\mathbb{R}^n = \{\overrightarrow{x} = (x_1, x_2, \dots, x_n) : x_i \in \mathbb{R}\};$
- $\mathbb{C}^n = \{\overrightarrow{z} = (z_1, z_2, \dots, z_n) : z_i \in \mathbb{C}\}.$

XII. Przestrzenie liniowe.

Czego jeszcze brakuje?

XII. Iloczyn skalarny.

Definicja

Niepusty V - przestrzeń liniowa rzeczywistą (zespoloną). Iloczynem skalarnym w przestrzeni V nazywamy funkcje (f,g), $f,g \in V$ która spełnia warunki:

- $\bullet (f,g) = (g,f), \quad (f,g) = \overline{(g,f)};$
- $(f + \gamma, g) = (f, g) + (f, \gamma);$
- $(\alpha f, g) = \alpha(f, g)$, $\alpha \in \mathbb{R}$, $\alpha \in \mathbb{C}$;
- $(f, f) \ge 0$;
- $\bullet (f,f)=0 \iff f=0;$

Przestrzenie Euklidesowe

5 / 27

XII. Przykłady iloczynow skalarnych.

Definicja przestrzeni Euklidesowej

Przestrzeń liniowa rzeczywista V z iloczynem skalarnym (\cdot,\cdot) nazywamy przestrzenią Euklidesową.

Definicja przestrzeni unitarnej

Przestrzeń liniowa zespolona V z iloczynem skalarnym (\cdot,\cdot) nazywamy przestrzenią unitarną.

Norma.

Niech V - przestrzeń liniowa. Funkcję $\|\cdot\|:V\to\mathbb{R}$ spełniającą warunki:

- $||f|| \ge 0$, $||f|| = 0 \iff f = 0$;
- $\|\alpha f\| = |\alpha| \|f\|;$
- $||f + g|| \le ||f|| + ||g||$.

nazywamy normą.

Uwaga.

Parę $(V, \|\cdot\|)$ nazywamy przestrzenią unormowaną.

Norma vs iloczyn skalarny

lloczyn skalarny → norma

$$||f|| = \sqrt{(f,f)}.$$

Właściwość charakterystyczna

$$||f + g||^2 + ||f - g||^2 = 2[||f||^2 + ||g||^2].$$

Nierówność Schwarza

$$|(f,g)| \leqslant ||f|| \cdot ||g||.$$

Przestrzenie Euklidesowe

9 / 27

Nie każda norma jest określona przez iloczyn skalarny!

$$V = C[0,1], \qquad ||f|| = \max_{x \in [0,1]} |f(x)|.$$

Ortogonalność wektorów.

Wektory $f,g \in V$ są ortogonalne jeśli

$$(f,g)=0.$$

Twierdzenie Pitagorasa.

Dla ortogonalnych wektorow $f,g \in V$ mamy

$$||f + g||^2 = ||f||^2 + ||g||^2.$$

Wykład XII. Dlaczego norma. Jaki sens ma norma?

Odległość między punktami (wektorami)

Wykład XII. Dlaczego norma. Jaki sens ma norma?

kąt między wektorami?

Z nierówności Schwarza dla niezerowych wektorów f,g przestrzeni rzeczywistej V:

$$-1 \leqslant \frac{(f,g)}{\|f\|\|g\|} \leqslant 1 \quad \Longrightarrow \quad \cos \alpha(f,g) := \frac{(f,g)}{\|f\|\|g\|}$$

 $\alpha(f,g)$ - kąt między wektorami f i g.

$$\alpha(f,g) \in [0,\pi].$$

Wykład XII. Baza ortonormalna.

Definicja

Zbiór wektorów f_1, f_2, \ldots, f_n nazywamy bazą ortonormalną przestrzeni liniowej V jeżeli:

- wektory f_1, f_2, \ldots, f_n tworzą bazę przestrzeni V;
- ٥

$$(f_n, f_m) = 0, \quad n \neq m, \qquad (f_n, f_n) = 1.$$

Dla bazy wiemy że $f = c_1 f_1 + \ldots + c_n f_n$

ale jak znaleźć współrzędne c_i ?

Wykład XII. Baza ortonormalna.

Współrzędne wektora f dla bazy ortonormalnej?

$$f = c_1 f_1 + \ldots + c_n f_n$$
, \Longrightarrow $(f, f_1) = c_1 (f_1, f_1) + \ldots + c_n (f_n, f_1) = c_1$

Współrzędne Fouriera, $c_i = (f, f_i)$, i = 1, ..., n.

Przestrzenie Euklidesowe

15 / 27

Ortogonalizacja Grama-Schmidta

Baza g_1, \ldots, g_n przestrzeni VOrtogonalizacja Grama-Schmidta Baza ortonormalna f_1, \ldots, f_n Jak robimy? $g_1 \rightarrow f_1 = \frac{g_1}{\|g_1\|}$ $g_2 \rightarrow h_2 = g_2 - (g_2, f_1)f_1 \rightarrow f_2 = \frac{h_2}{\|h_2\|}$ $g_3 \rightarrow h_3 = g_3 - (g_3, f_1)f_1 - (g_3, f_2)f_2 \rightarrow f_3 = \frac{h_3}{\|h_3\|}$

Wykład XII. Macierz Grama.

Definicja

Niech $f_1, f_2, \dots f_m$ układ wektorow z V. Macierzą Grama nazywamy macierz kwadratową stopnia m

$$MG[f_1, \dots, f_m] = \begin{bmatrix} (f_1, f_1) & (f_1, f_2) & \dots & (f_1, f_m) \\ (f_2, f_1) & (f_2, f_2) & \dots & (f_2, f_m) \\ \vdots & \vdots & \vdots & \vdots \\ (f_m, f_1) & (f_m, f_2) & \dots & (f_m, f_m) \end{bmatrix}$$

Wyznacznik Grama:

$$G[f_1,\ldots,f_m]=\det MG[f_1,\ldots,f_m].$$

17 / 27

Przestrzenie Euklidesowe 12.01.2022

Twierdzenie 1.

Wektory $f_1, f_2, \dots f_m$ liniowo niezależne \iff

$$G[f_1,\ldots,f_m]\neq 0.$$

Definicja podprestrzeni liniowej. Przypomnienie.

Niech V - przestrzeń liniowa. Niepusty zbiór $W\subset V$ nazywamy podprzestrzenią liniową przestrzeni V jeśli spełnione są warunki

- $f,g \in W \implies f+g \in W$;
- $\forall \alpha, \ \forall f \in W \implies \alpha \cdot f \in W$.

Odległość wektora $h \in V$ od podprestrzeni W.

$$\delta(h, W) := \min_{g \in W} ||h - g||$$

Twierdzenie 2.

Niech $f_1, f_2, \dots f_m$ jest bazą podprzestrzeni $W \subset V$. Wówczas:

$$\delta(h,W) = \min_{g \in W} ||h - g|| = \frac{G[h, f_1, \dots f_m]}{G[f_1, \dots f_m]}.$$

Przyklad.

 $V=\mathbb{R}^3$, $f_1=(-2,0,1)$, $f_2=(0,1,0)$ - baza podprzestrzeni $W\subset\mathbb{R}^3$, wektor h=(-3,-2,1). Znaleźć $\delta(h,W)$?

Wykład XII. Przykład. CD.

Wykład XIII. Rzut prostopadły na podprestrzeń liniową V.

Definicja

Wektor $\gamma \in W$ nazywamy rzutem ortogonalnym wektora h na podprzestrzeń W, jeżeli $h-\gamma \perp W$.

Twierdzenie 3.

Niech $h \in V$, a wektor $\gamma \in W$ jest rzutem ortogonalnym wektora h na podprzestrzeń W. Wówczas,

$$||h - \gamma|| = \delta(h, W) = \min_{g \in W} ||h - g||$$

Wykład XIII. Rzut prostopadły na podprestrzeń liniową V.

Niech W jest podprzestrzenią przestrzeni V, oraz, niech f_1, f_2, \ldots, f_m - baza ortonormalna W.

Niech $extit{h} \in extit{V}$. Znależć rzut ortogonalny γ wektora $extit{h}$ na podprzestrzeń $extit{W}$

$$\gamma = (h, f_1)f_1 + (h, f_2)f_2 + \ldots + (h, f_m)f_m$$

Wystarczy dla f_i :

$$(h-\gamma,f_1)=(h,f_1)-(\gamma,f_1)=(h,f_1)-(h,f_1)(f_1,f_1)=(h,f_1)-(h,f_1)=0.$$

$$(h-\delta, f_2)=0$$

Przestrzenie Euklidesowe 12.01.2022 23 / 27

Wykład XIII. Podprzestrzenie ortogonalne.

Definicja

Podprzestrzeni W_1 , W_2 przestrzeni V. Podprzestrzeni W_1 i W_2 są ortogonalne jeśli

$$(f,g)=0$$
, dla każdego $f\in W_1$ dla każdego $g\in W_2$.

$$V = W \oplus W^{\perp}, \quad W^{\perp} = \{g \in V, \ g \perp W\}.$$

Wykład XIII. Podprzestrzenie ortogonalne.

Dziękuję za Uwagę!