

# Extending 1D Transport Using Neural Nets to GPUs

M. M. Pozulp, P. S. Brantley

September 24, 2019

Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 Tokyo Metropolitan Area (Chiba), Japan May 18, 2020 through May 22, 2020

# **Extending 1D Transport Using Neural Nets to GPUs**

# Michael M. Pozulp

University of California, Davis, and Lawrence Livermore National Laboratory 7000 East Ave, L-170 Livermore, CA 94550 pozulp1@llnl.gov

## **Patrick S. Brantley**

Lawrence Livermore National Laboratory 7000 East Ave, L-170 Livermore, CA 94550 brantley1@llnl.gov

### **ABSTRACT**

Production transport codes at Lawrence Livermore National Laboratory (LLNL) typically use either Monte Carlo (MC) or discrete ordinates  $(S_N)$  to solve the transport equation on supercomputers. Efforts are underway to port both capabilities to graphics processing units (GPUs) for Sierra, a hybrid CPU-GPU computer, where the majority of the FLOPS and memory bandwidth come from the GPUs [1]. LLNL has achieved an order of magnitude speedup for  $S_N$  [2] [3]. History-based implicit Monte Carlo thermal photon transport has exhibited modest GPU speedups [4], while work to overcome a slowdown exhibited by history-based MC neutronics is ongoing [5].

Part of the problem contributing to the MC neutronics slowdown is that GPUs were not designed to solve the transport equation. GPUs are designed for fast, power-efficient execution of linear algebra operations found in graphics rendering and neural network training. The neutron transport equation can be solved using a neural network (NN), but existing work demonstrating the NN solution is limited to simple 1D problems with analytic solutions and did not employ GPUs [6] [7] [8].

In this work, a GPU is used to solve the transport equation using a NN, and the solution is compared to  $S_N$  and MC. The goal is not to replace  $S_N$  and MC - both will remain production capabilities for the foreseeable future at LLNL. Instead, the goal is to provide a foundation on which hybrid methods employing NNs in combination with  $S_N$  or MC may be considered in the future.

KEYWORDS: neural network, 1D transport, GPU

### REFERENCES

[1] S. S. Vazhkudai, B. R. de Supinski, A. S. Bland, A. Geist, J. Sexton, J. Kahle, C. J. Zimmer, S. Atchley, S. Oral, D. E. Maxwell, V. G. V. Larrea, A. Bertsch, R. Goldstone, W. Joubert, C. Chambreau, D. Appelhans, R. Blackmore, B. Casses, G. Chochia, G. Davison, M. A. Ezell,

- T. Gooding, E. Gonsiorowski, L. Grinberg, B. Hanson, B. Hartner, I. Karlin, M. L. Leininger, D. Leverman, C. Marroquin, A. Moody, M. Ohmacht, R. Pankajakshan, F. Pizzano, J. H. Rogers, B. Rosenburg, D. Schmidt, M. Shankar, F. Wang, P. Watson, B. Walkup, L. D. Weems, and J. Yin. "The Design, Deployment, and Evaluation of the CORAL Pre-exascale Systems." *Proceedings of the International Conference for High Performance Computing, Networking, Storage, and Analysis*, pp. 52:1–52:12 (2018).
- [2] A. Kunen, J. Loffeld, A. Black, R. Chen, P. Nowak, T. Haut, T. Bailey, P. Brown, S. Rennich, P. Maginot, and B. Tagani. "Porting 3D Discrete Ordinates Sweep Algorithm in Ardra to CUDA." *International Conference on Mathematics and Computational Methods applied to Nuclear Science and Engineering (M&C)*, pp. 2585–2598 (2019).
- [3] P. Nowak, A. Black, S. Rennich, D. Appelhans, R. Chen, T. Haut, P. Maginot, T. Bailey, P. Brown, A. Kunen, J. Loffeld, and B. Tagani. "Porting Teton, a Discrete-Ordinates Thermal Radiative Transfer Code, to Sierra." *International Conference on Mathematics and Computational Methods applied to Nuclear Science and Engineering (M&C)*, pp. 2128–2137 (2019).
- [4] P. S. Brantley, N. A. Gentile, M. A. Lambert, M. S. McKinley, M. J. O'Brien, and J. A. Walsh. "A New Implicit Monte Carlo Thermal Photon Transport Capability Developed Using Shared Monte Carlo Infrastructure." *International Conference on Mathematics and Computational Methods applied to Nuclear Science and Engineering (M&C)*, pp. 564–577 (2019).
- [5] M. S. McKinley, R. Bleile, P. S. Brantley, S. Dawson, M. O'Brien, M. Pozulp, and D. Richards. "Status of LLNL Monte Carlo Transport Codes on Sierra GPUs." *International Conference on Mathematics and Computational Methods applied to Nuclear Science and Engineering* (*M&C*), pp. 2160–2165 (2019).
- [6] P. S. Brantley. "Artificial Neural Network Solutions of Slab-Geometry Neutron Diffusion Problems." *Transactions of the American Nuclear Society*, (83), p. 251 (2000).
- [7] P. S. Brantley. "Spatial Treatment of the Slab-geometry Discrete Ordinates Equations Using Artificial Neural Networks." Technical Report UCRL-JC-143205, Lawrence Livermore National Laboratory, Livermore, California (2001).
- [8] M. M. Pozulp. "1D Transport Using Neural Nets, SN, and MC." *International Conference on Mathematics and Computational Methods applied to Nuclear Science and Engineering (M&C)*, pp. 876–885 (2019). http://mike.pozulp.com/2019nnPaper.pdf.