Content

- Non linearity induced by H operator : $(Hx = (1 \alpha)x + \alpha x^3)$.
- Number of outer loops vs. inner loops.
- Non linearity induced by changing the resolution at outer loop level.
- Varying the projective B matrix option.
- Varying the interpolation method.

Non linearity induced by H operator :

Full resolution, varying α parameter with the same relinearization scheme : no=4, ni=6, spectral interpolation and projective B matrix, $\sigma^o=0.01$

Figure – $\alpha = 0$

FIGURE –
$$\alpha = 0$$

Full resolution; non linear H; J vs J^{nl}

--- theoretical-planczosif--- standard-planczosif--- alternative-planczosif 10^{7} 10^{6} 10^{5} 15 10 20 lanczos - PlanczosIF iterations

FIGURE – $\alpha = 0.01$

FIGURE – $\alpha = 0.01$

--- theoretical-planczosif--- standard-planczosif--- alternative-planczosif 10^{7} 10^{6} 10^{5} 15 10 20 lanczos - PlanczosIF iterations

FIGURE – $\alpha = 0.02$

FIGURE – $\alpha = 0.02$

--- theoretical-planczosif--- standard-planczosif--- alternative-planczosif 10^{7} Jul 10^{6} 15 10 20 lanczos - PlanczosIF $5 \stackrel{\times 10^{-2}}{\leftarrow}$

FIGURE – $\alpha = 0.05$

FIGURE –
$$\alpha = 0.05$$

10⁶ - 5 10 15 10

FIGURE – $\alpha = 0.1$

Figure – $\alpha = 0.1$

--- theoretical-planczosif--- standard-planczosif--- alternative-planczosif

108

 $\stackrel{}{\mathbb{Z}}$ 10^7

20

--- theoretical-planczosif--- standard-planczosif--- alternative-planczosif 10^{11} 10^{10} 10^{9} 15 10 20 lanczos - PlanczosIF iterations

FIGURE – $\alpha = 0.5$

FIGURE – $\alpha = 0.5$

 10^{9} Jul 10^{8} 15 10 20 lanczos - PlanczosIF $5 \stackrel{\times 10^{-2}}{\leftarrow}$ iterations

--- theoretical-lanczos --- standard-lanczos --- alternative-lanczosi
--- theoretical-planczosif--- standard-planczosif--- alternative-planczosif

FIGURE – $\alpha = 1$

Figure – $\alpha = 1$

Conclusion on the non linearity induced by H

- ullet Very sensitive to lpha even for small values.
- The case with $\alpha=1$ seems better than the case with $\alpha=0.5...$
 - → What could be the reason for it?
- It seems that there are too much inner loops before relinearization but the iteration at which the "jump" occurs seems NOT correlated to the value of α .
- \longrightarrow Need to study the number of inner iterations vs. outer iterations.

Full resolution, varying the number of inner and outer loops with a non linear H and the same total number of iterations ($n_o \times n_i = 24$) (spectral interpolation and projective B matrix, $\sigma^o = 0.01$)

Full resolution; non linear $H(\alpha = 0.05)$: J^{nl}

FIGURE – $n_0 = 2, n_i = 12$

FIGURE – $n_o = 4$, $n_i = 6$

Nicolas Baillot d'Etivaux

Full resolution; non linear $H(\alpha=0.05)$: J^{nl}

FIGURE –
$$n_o = 4$$
, $n_i = 6$

FIGURE –
$$n_o = 6$$
, $n_i = 4$

Full resolution; non linear H ($\alpha = 0.05$): J

FIGURE – $n_0 = 2, n_i = 12$

FIGURE – $n_o = 4$, $n_i = 6$

Full resolution; non linear H ($\alpha = 0.05$): J

FIGURE – $n_o = 4$, $n_i = 6$

FIGURE –
$$n_o = 6$$
, $n_i = 4$

Full resolution; non linear H $(\alpha = 0.1)$: J^{nl}

FIGURE – $n_o = 4$, $n_i = 6$

FIGURE –
$$n_o = 6$$
, $n_i = 4$

Full resolution; non linear H ($\alpha = 0.1$): J

FIGURE – $n_o = 4$, $n_i = 6$

FIGURE –
$$n_o = 6$$
, $n_i = 4$

Full resolution ; non linear H (lpha=1) : J^{nl}

FIGURE – $n_o = 4$, $n_i = 6$

FIGURE – $n_o = 6$, $n_i = 4$

Full resolution; non linear H ($\alpha = 1$): J

FIGURE – $n_o = 4$, $n_i = 6$

FIGURE –
$$n_o = 6$$
, $n_i = 4$

Conclusion on the number of inner and outer loops

- As expected, the assimilation scheme with the more outer loops is equal or better than the others.
- There is often a "jump" in the linear cost functions just after relinearization, BUT it seems not necessarily correlated to the behaviour of the non linear cost function (or it is not trivial).
- Problem: The first inner iterations in the first case with 12 inner iterations seems better than the case with 6 inner iterations whereas the case with 4 inner iterations seems better than the case with 6 inner iterations:
 - \longrightarrow The problem is too much dependant on the initial background and observation states that are randomly generated (?): there is a difference of 10^7-10^8 in the cost function at the beggining in these cases!

Non linearity induced by the change of resolution between the outer loops :

(Linear H operator, spectral interpolation and projective B matrix, $\sigma^o = 0.01$, no = 2, ni = 12)

FIGURE – resolutions : 11 > 101FIGURE – resolutions : 51 > 101(The jump is also present in the J^o and the residue)

FIGURE – resolutions : 51 > 101

FIGURE – resolutions : 91 > 101

FIGURE – resolutions : 11 > 101

FIGURE – resolutions : 51 > 101

FIGURE – resolutions : 51 > 101

FIGURE – resolutions : 91 > 101

Varying the projective B matrix option :

(Linear H operator, spectral interpolation, $\sigma^o = 0.01$, no = 2, ni = 12)

FIGURE – resolutions : 11 > 101

FIGURE – resolutions : 51 > 101

FIGURE – resolutions : 51 > 101

FIGURE – resolutions : 91 > 101

FIGURE – resolutions : 11 > 101

FIGURE – resolutions : 51 > 101

FIGURE – resolutions : 51 > 101

FIGURE – resolutions : 91 > 101

Short conclusions on the projective B matrix (1)

- There might be a jump in the cost function at the first inner iteration of a new outer loop which is also present in the residue and in the J^o and seems due to the change of resolution..
- There is no differences between the methods if the B matrix is projective and if the interpolation is transitive (spectral).
- There are differences if the B matrix is not projective, and it occurs after the first outer loop.
- The higher the change of resolution, the higher the difference between the methods.

Short conclusions on the projective B matrix (2)

- In these cases, the alternative and standard methods give the same results and differ from the theoretical one when the B matrix is not projective.
- The theoretical method seems to give the same results for the J^o with or without a projective B matrix while the J^b is different (and shows a decrease after the first outer loop).

Checking the effects of $\sigma_{\it var}^b$

Figure –
$$\sigma_{var}^b = 0.1$$

Figure – $\sigma_{var}^b = 1$

Nicolas Baillot d'Etivaux