

Unit 5

Phonology

It is a field of linguistics which studies the distribution of sounds in a language as well as the interaction between those different sounds.

What is Phonology?

Phonology tackles the following questions:

- What are the predictable sounds in a language?
- What is the phonetic context?

Which sounds affect the meaning of words?

Phonetics Vs Phonology

- Phonetics: studies how speech sounds are produced, their physical properties & how they are interpreted.
- Phonology: studies the organization of speech sounds in a particular language.

□Rules studied by phonologists:

- 1)Phonetics sounds vary with their contexts;
- 2)Phonology hypothesizes rules to characterize this variation.
- 3) The sequencing and distribution of speech sounds
- 4)Phonology is *interfaced* with other components of the grammar

(i.e. morphology and syntax).

Goals of a phonemic analysis

- Produce a minimal set of phonemes for the language. It will be a set smaller than the set of phones.
- With the set of phonemes, every utterance can be analyzed phonetically.

A difficulty of Technology

Phonology and Phonetics

Distinctive and Non-distinctive Sounds

- Distinctive (contrastive) Sounds: make a difference in meaning; e.g. /p/ & /b/ in pin, bin.
- Non-distinctive (non-contrastive) Sounds:

Do NOT make a difference in meaning; e.g. [p] in pin & spin.

Example:

```
/t/ in : top [thop]
stop [stop]
little [lir l]
kitten [ki? n] (n is syllabic here)
hunter [hʌ nr]
```

Phoneme and Allophone

- A phoneme: a class of speech sounds that are identified by a native speaker as the same sound; e.g. /t/; unpredictable (given "in" in pin like the example above we CANNOT <u>predict</u> which sound can come before it like tin, din, kin, gin, fin, thin, sin, shin, chin)
- A phoneme is an abstract representation & cannot be pronounced (it is not a speech sound)
- A phone: the actual phonetic segment produced by a speaker & has been classified as belonging to some phoneme; e.g. [th]; predictable
- An allophone: a variant of a phoneme, e.g. /t/ = [?], [r]

□Rules studied by phonologists:

- 1)Phonetics sounds vary with their contexts;
- 2) Phonology hypothesizes rules to characterize this variation.
- 3) The sequencing and distribution of speech sounds
- 4)Phonology is *interfaced* with other components of the grammar

(i.e. *morphology* and *syntax*).

Distinctiveness and Contrast

- The real purpose of a speech sound is to sound *different* from the other sounds of the language.
- This is what makes a spoken vocabulary possible.
- To begin the analysis of a language's phonology, we locate all of its basic sounds.
- These basic speech sounds are the *phonemes* of the language.
 - Languages vary in their number of phonemes.

Distinctiveness and Contrast

E.g. Low 11 Rotokas (East Papuan, New Guinea)

High 160 !Xóõ (Khoisan, Botswana/Namibia)

37 - 41 English (depending on the dialect)

• If any two words of a language are pronounced differently, they must differ in at least one phoneme.

E.g. *time* [taim] vs. *dime* [daim] (minimal pairs)

A *minimal pair* is the most effective way to show that two sounds are *distinct phonemes*.

Distinctiveness and Contrast

- ☐ Ways to say two sounds are separate phonemes:
- 1) Sounds /t/ and /d/ are in *contrast*, or
- 2) They are *phonemically distinct*, or
- 3) The difference between them is *distinctive*.
- A set like *time* [taɪm] *dime* [daɪm] *lime* [laɪm] is a minimal triplet.
- /t/, /d/, and /1/ are distinct phonemes.

Sounds that Do Not Contrast

• In any language, there are many pairs of sounds that *do not contrast*.

E.g. length of vowels in English: save [serv]

safe [setf]

made [merd]

mate [met]

■ Although [eɪ] and [ĕɪ] are audibly different, they are not separate phonemes.

■ They are in *complementary distribution*.

Sounds that Do Not Contrast

- Two sounds are said to be in *complementary distribution* if one sound never occurs in the environments in which the other occurs.
- [e1] occurs when next sound in the word is *voiced*.
- [ĕɪ] occurs when next sound in the word is *voiceless*.

Phonemes as Categories

- Speakers intuitively accept [eɪ] and [ĕɪ] as being the "same vowel."
- Phonologists hypothesize that sounds [eɪ] and [ĕɪ] form an abstract phonological *category*, i.e. the *phoneme* /eɪ/.
- The concrete, observable sounds [eɪ] and [ĕɪ] are called the *allophones* of /eɪ/.

Phonemes as Categories

Phonemes can be used to distinguish words from each other, but
 allophones cannot.

• E.g. English

alveolar [n]

know ['nov]

annoy [əˈnɔɪ]

onion ['ʌjən]

dental [n]

tenth $[ten\theta]$

month $[mnn\theta]$

panther ['pæn\theta]

More Instances of Allophonic Variation

phoneme

allophones

environments for allophones

More Instances of Allophonic Variation

• E.g. English /1/

alveolar [ł]
file ['faɪł]
fool ['fuł]
all [ˈɔɫ]

dental [Î]]

slight ['s llaɪt]
flight ['f llaɪt]
plow ['p llaʊ]

Words with [1]

wealth ['wεξθ] health ['hεξθ] filthy ['fτξθi]

Words with [1]

listen ['lɪsən]
lose ['luz]
allow ['əlaʊ]

Phonemic Transcription

- Phonemic transcription: sequences of phonemes of the words recorded by the linguist.
- Phonetic transcription includes allophonic details.
- Orthographic transcription: words are written down using the customary spelling system (orthography) of the language.

This is an orthographic transcription.

/ðis iz ə fou nimik træn skupsən/

(This is a *phonemic* transcription)

[ˈdðis iz ə fəˈnɛɾiʔk tsʰîɛə̂nˈskɪɪpʃin] (This is a phonetic transcription)

Phonological Rules

 Generalizations about the patterning of allophones can be stated as phonological rules.

e.g. /eɪ/ Shortening

The phoneme /ei/ is realized as extra short when a voiceless consonant follows.

Rules are language-specific.

Rules are *productive*. they extend to novel cases.

Phonological Rules

- Rules give rise to well-formedness intuitions.
- Phonological rules are *untaught*. they are learned intuitively by children from the ambient language data.
- Phonological rules are evidently a form of unconscious knowledge.

Expressing environments

- "/" means "in the environment."
- "___" where the allophone occurs relative to its neighbors.
- E.g. / ___ θ ___ "in the environment 'before theta'" or "before theta." / θ ___ "after theta."
- Used to describe *classes* containing particular *phonetic* properties.

hese are called *features*, i.e. they designate the relevant class of sounds.

• "+" and "-" before feature names to mean that a segment either *has*, or *does not have*, the *phonetic property* that a feature designates.

/ ____]word___ "at the end of a word"

/ [word ____

"At the beginning of a word"

☐ <u>Underlying representations and derivations</u>

- **Underlying representation**: to characterize the phoneme by setting up an abstract level of representation.
- Also called the phonemic representation, underlying form, or base form.

E.g. English phoneme /1/

❖ /l/ Devoicing

/
$$|$$
/ \rightarrow [$|$] +consonant –voice ____

Partially devoice /1/ after a voiceless consonant.

❖ /1/ Dentalization

$$/1/ \rightarrow [1]/ _\theta$$

/1/ is rendered as velarized and dental before $[\theta]$.

❖ /1/ Velarization

$$/1/ \rightarrow [1]/ _]$$
word

/l/ is velarized word-finally.

- ☐A derivation consists of a series of lines:
- The *first* line contains the *underlying representations* of a set of forms.
- The *last* line contains the *actual phonetic* forms; (often called *surface* representations).
- The *intermediate* lines show the *application of the rules* in order.
- "—" is used to designate that a rule is *inapplicable*.

E.g.	file	slight	wealth	listen	
	/'faɪ l / /	'slart/	$/$ 'we 1θ /	/ˈlɪsən/	underlying forms
		s Îlait			/l/ Devoicing
			we <u>t</u> 0		/l/ Dentalization
	farł				/l/ Velarization
	[ˈfaɪɫ]	['s Îlaɪt]	[ˈwɛ <mark>l</mark> θ]	[ˈ <mark>l</mark> ɪsən]	surface forms

• We need not specify in this approach that [1] is the elsewhere allophone.

■ Maximally ordinary phonemic system (Maddieson 1984):

p	t	t∫	k	i	u
b	d	d_3	g	e	O
f	S	\int			a
m	n		ŋ		
		1			
		ſ			
W		j			

This set constitutes all the sounds that occurred in at least **40** percent of the languages in Maddieson's (1984) survey of phonemic systems.

- Normally, an inventory will contain additional, more unusual sounds.
- *Unusual sounds* often occur in multiple languages in the *same* geographic area.
- A *phonemic* distinction in one language might be *allophonic* in another, e.g. *English* and *Spanish*.

- □ **English:** North American English [r] is an *allophone* of the /t/ *phoneme*.
- The environment for [r] is between *two vowels* of which the second is *stressless*.

	Phonemic	Phonetic		Phonemic	Phonetic	
data	/'deɪtə/	[ˈdeɪ r ə]	tan	/ˈtæn/	[ˈtæn] (fa	ails to follow a syllabic sound)
latter	/ˈlætə/	[ˈlæɾəː]	cat	/'k æt /	[ˈkæt] (fa	ails to precede a syllabic sound)
eating	/ˈitɪŋ/	[ˈirɪŋ]	attend	/əˈtɛnd/	[əˈtɛnd] (fe	following syllabic sound is stressed)

***** Tapping

The phoneme /t/ is realized as [f] when it is preceded by a vowel and followed by a stressless vowel.

Derivations:	data	tan	cat	attend	
_	/'deɪtə/	/ˈtæn/	/'kæ t /	/əˈtɛnd/	underlying forms
	ſ				Tapping
	[ˈdeɪrə]	[ˈtæn]	[ˈkæt]	[əˈtɛnd]	surface forms

Assignment: where should aspiration be in the examples above? Can the two allophonic rules 'aspiration' and 'tapping' occur together?

 \square Spanish: /t/ and /r/ are separate *phonemes*.

```
['pita] 'century plant'
['pira] 'funeral pyre' Minimal pairs
```

- [t] and [r] are in *contrast*, and are separate phonemes.
- In English: [t] vs. [r] difference is *allophonic* (non-distinctive).
- In **Spanish:** [t] vs. [r] difference is *phonemic* (distinctive).
- English and Spanish are *phonetically* similar but *phonologically* different.

■ *Phonemicization* is the body of knowledge and techniques that can be used to work out the phonemic system of a language.

☐Minimal pairs

- The most effective method in phonemicization is to look for *minimal* pairs.
- Minimal pairs are two different words that differ in exactly *one sound* in the same location.

The absence of a minimal pair does not prove much.

• A language will lack minimal pairs for a pair of relatively rare phonemes *by accident*.

E.g.	heed [hid]		who'd [hud]
	hid [hrd]		hood [hod]
	hayed [herd]		hoed [houd
	head [hed]	HUD [had]	
	had [hæd]	hod [had]	hawed [had]
	hide [hard]	how'd [haud]	
	heard [had]		

□Near-minimal pairs

- There are cases in which it is impossible to find minimal pairs for a phoneme.
- This occurs in languages with *long words* and *large phoneme* inventories.
- Near-minimal pairs are pairs which would be minimal except for some evidently irrelevant difference.

E.g. some near-minimal pairs for /o/ vs. /3/:

tether ['teða'] vs. pleasure ['pleza']

neither ['niða'] vs. seizure ['siza']

lather ['læða'] vs. azure ['æʒa']

- The phonetic environment has nothing to do with whether [ð] or [ʒ] occurs.
- To find the rules that determine the appearance of [ð] vs. [ʒ] would have to make use of a completely arbitrary collection of "environments" for these phones.
- If the rules cannot be found, then an analysis that claims that [ð] and [ʒ] are allophones *cannot* be justified.
 - Near-minimal pair method of establishing phonemes requires more work than minimal pairs do

Using local environments to establish complementary distribution

- Minimal and near-minimal pairs are used to establish that two sounds belong to *separate phonemes*.
- For establishing that two sounds are in the *same phoneme*, we need to establish that they are in complementary distribution.
- It is useful to follow the method of *compiling local environments*.
- Compiling local environments: for each sound, we construct a list of all its appearances, each time including the preceding segment, if any, and the following segment, if any.

Using local environments to establish complementary distribution

E.g. Maasai	(Nilotic.	spoken	in Kenva	a and	Tanzania)
1.5. 11144541	(1,110,010)	Sponon	111 12011,	n wiiw	i aiizaiiia)

- 1 [6ar:iyoi] 'reddish brown'
- 2 [diyai] 'elsewhere'
- 3 [engamaniyi] 'name of age-set'
- 4 [engila] 'garment-diminutive'
- 5 [engo:] 'advise him'
- 6 [engoyi] 'sin'
- 7 [ilarak] 'murderers'
- 8 [ilke:k] 'trees'
- 9 [imbok] 'you detain'
- 10 [imbaγiβak] 'you are restless'

11	[ijːoː	.1_7	6
	۱11'A'	KI	WA
11		17.	V V C

- 12 [kaye] 'but'
- 13 [keβer] 'heaven'
- 14 [ki6iroðo] 'stunted'
- 15 [koγo:] 'grandmother'
- 16 [olduya] 'shop'
- 17 [olkiyuei] 'thorn'
- 18 [olpurkel] 'dry steppes'
- 19 [sarkin] 'intermarriage

 $[\mathbf{g}]$

/ n ____ i (4)

/ n ____ o (5)

- / [word ___ a (12) / ŋ ___ a (3)
- / [word ____ e (13)

 $[\mathbf{k}]$

- / [word ____ i (14)
- / [word ____ o (15)
- /1___e(8)
- /1___i(17)
- / r ____ e (18)
- / r ____ i (19)
- / a ____]word (7, 10)
- / e: ____]word (8)
- / o ____]word (9)
- / o: ____]word (11)

/ a ____ e (12)

- / a ____ i (10)
- / i ___ a (2)
- / i ____ i (3)
- / i ____ o (1)
- / i ____ u (17)
- / o ____ i (6)
- / o ____ o: (15)
- / u ___ a (16)

Using local environments to establish complementary distribution

- [k], [g] and $[\gamma]$ are in *complementary distribution*.
- The environments are:

```
    [g] / ŋ ___
    [γ] / V ___ V (V stands for any vowel)
    [k] / elsewhere
```

□ phonological rules:

❖ /k/ Spirantization

$\mathbf{k} \rightarrow \mathbf{v} / [+vowel]$ [+vowel]

/k/ is realized as [y] between vowels.

Postnasal Voicing

```
k \rightarrow g / \eta
```

/k/ is realized as [g] after [n].

□ phonological derivations:

'grandmother'	'garment-dim.'	'trees'	
/koko:/	/eŋkila/	/ilke:k/	underlying forms
γ			/k/ Spirantization
	g		Postnasal Voicing
[ko y o:]	[eŋ g ila]	[il <mark>k</mark> eːk]	surface forms

It is a field of linguistics which studies the distribution of sounds in a language as well as the interaction between those different sounds.

Phonology and Phonetics

What is Phonology?

Phonology tackles the following questions:

- What are the predictable sounds in a language?
- What is the phonetic context?

Which sounds affect the meaning of words?

Phonology and Phonetics

Phonetics Vs Phonology

- Phonetics: studies how speech sounds are produced, their physical properties & how they are interpreted.
- Phonology: studies the organization of speech sounds in a particular language.

Phonology and Phonetics

□Rules studied by phonologists:

- 1)Phonetics sounds vary with their contexts;
- 2) Phonology hypothesizes rules to characterize this variation.
- 3) The sequencing and distribution of speech sounds
- 4)Phonology is *interfaced* with other components of the grammar

(i.e. morphology and syntax).

Goals of a phonemic analysis

- Produce a minimal set of phonemes for the language. It will be a set smaller than the set of phones.
- With the set of phonemes, every utterance can be analyzed phonetically.

A difficulty of Technology

Phonology and Phonetics

Distinctive and Non-distinctive Sounds

- Distinctive (contrastive) Sounds: make a difference in meaning; e.g. /p/ & /b/ in pin, bin.
- Non-distinctive (non-contrastive) Sounds:

Do NOT make a difference in meaning; e.g. [p] in pin & spin.

Example:

```
/t/ in : top [thop]
stop [stop]
little [lir l]
kitten [ki? n] (n is syllabic here)
hunter [hʌ nr]
```

Phoneme and Allophone

- A phoneme: a class of speech sounds that are identified by a native speaker as the same sound; e.g. /t/; unpredictable (given "in" in pin like the example above we CANNOT <u>predict</u> which sound can come before it like tin, din, kin, gin, fin, thin, sin, shin, chin)
- A phoneme is an abstract representation & cannot be pronounced (it is not a speech sound)
- A phone: the actual phonetic segment produced by a speaker & has been classified as belonging to some phoneme; e.g. [th]; predictable
- An allophone: a variant of a phoneme, e.g. /t/ = [?], [r]

Goals of a phonemic analysis

- Produce a minimal set of phonemes for the language. It will be a set smaller than the total number of sounds in that language
- With the set of phonemes, every utterance can be analyzed phonetically.

Allophonic rules

- The allophonic rules must be derived and they should show the realization of each phoneme in the phonetic context.
- We should be able to determine the phonemes behind the phones/ sounds of a language

Allophonic rules

- For every pair of phones/sounds, we should be able to determine if they are the allophones of the same phoneme
- or if they are allophones of different phonemes.

Allophonic rules

• Whether two sounds occur in *free variation*

• only one of the sounds occur - complementary distribution:

Complementary distribution

Two sounds are in complementary distribution

- if the contexts in which they occur do not overlap.
- the allophones of a phoneme must be in free variation, or in complementary distribution, or both.

Contexts

- the analysis consists of organizing the contexts by seeing which sounds occur in which contexts.
- But the set of possible contexts are large.
- Start with the most general set of contexts and then refine it on the basis of the data.
- The immediate context (what immediately precedes and follows) is most likely to be relevant;
- The major sound categories and the boundaries: C, V, #, ||

Natural Classes

- A natural class of sounds is any complete set of sounds in a given language that share the same value for a
 feature or set of features.
- E.g. /m/, /n /, and /ŋ/ in *Maasai* and in *English* form a natural class because they constitute the complete set of sounds that share the feature [+nasal].

/t /, and /k/ form a natural class in *Maasai* and in *English* because they constitute the [+stop, -voiced] sounds of the language.

- ☐ Using features to write general rules:
- **Spirantization**

A voiceless stop is realized as the corresponding voiced fricative when surrounded by vowels.

❖ Post nasal voicing

 $[+stop] \longrightarrow [+voice] / [+nasal]$

A voiceless stop is realized as the corresponding voiced stop when it follows a nasal consonant.

- ☐ Phonological rules are based on phonetic features:
- 1) The *set of sounds a rule applies to* is a set of sounds that share a particular *phonetic feature* or set of *features*.
- 2) Rules often change only *one or two features* of a sound, rather than making massive alterations. e.g. the rules of *Maasai* alter only *voicing* and the *stop/fricative* distinction.
- 3) The sounds appearing in the environment of a rule are almost always a set of sounds that share a particular phonetic feature or features.

e.g. the rule of *English* that shortens vowels applies before the complete set of consonants in English [-voice].

More on Phonemes

Bruce Hayes 2009

A. Audibility of fine distinctions

- Contrastiveness plays a major role in the perceptions of language users.
- When phonetically two sounds are heard by two different listeners A and B,
- For listener A, the two sounds are *contrastive* (distinguish words in her language).
- The two sounds also occur in listener **B**'s language, are *not* contrastive (*allophones*).
- A can hear the difference between the two sounds with perfect ease, but **B** has great difficulty.

E.g. A is a speaker of a dialect of *Bengali* (dental stops *contrast* with alveolar stops)

[tan] '(vocal) tune'[tan] 'pull!'[sat] 'seven'[sat] 'sixty'[dan] 'donation'[dan] 'right (hand)'[din] 'day'[dim] 'egg'

B is a speaker of a variety of *American English*(dentals occur as allophones of the alveolars, i.e. alveolars are replaced by dentals before dental fricatives)

/ $ert\theta$ / $[ert\theta]$ eighth / $ert \delta\vartheta$ / $[ert \delta\vartheta]$ ate the /wod θ ryk/ $[wod \theta$ ryk] would think / $sed \delta$ rs/ $[sed \delta$ rs] said this / $ten\theta$ / $[ten\theta]$ tenth / $in \delta\vartheta$ / $[in \delta\vartheta]$ in the

- Speaker A was *unable* to learn to hear the *Bengali* dental/alveolar distinction.
- Speakre's A inability to hear the dental/alveolar distinction is *not* due to a lack of experience with dentals.
- This is because Speaker's A native language *does not* have a *phonemic contrast* between alveolars and dentals.

☐ To summarize:

- Contrastiveness of two phonetically similar sounds leads speakers of the language that has the contrast to focus their perceptual attention on the *contrasting sounds*, and *fail* to hear other *distinctions*.
- Native speakers hear the differences between *phonemes*, but *not* between *allophones*.

B. The notion of "same sound"

- In **phonemic theory**: Groups of mutually *non-distinctive* sounds are grouped together into categories, i.e. the *phonemes*.
- Speakers usually believe that two *allophones* of the same phoneme are the "same sound."

E.g. vowels in ten and Ted

In *ten*, the phoneme $\frac{1}{\epsilon}$ occurs before a *nasal sound*.

***** Vowel Nasalization

```
[+vowel] \rightarrow [+nasal] / [+nasal]
```

A vowel is realized as nasalized when it precedes a nasal consonant.

ten Ted
/tɛn/ /tɛd/ underlying forms
\$\tilde{\epsilon}\$ — Vowel Nasalization
[ten] [ted] surface forms

• For *English* speakers, *ten* and *Ted* have "the *same vowel*."

- ☐ Comparison with *French* speakers:
- In French, *nasal vowels* are *phonemically* distinct from *oral vowels*.

E.g.
$$[m\varepsilon]$$
 'but' vs. $[m\widetilde{\varepsilon}]$ 'hand' $[t\kappa\varepsilon]$ 'very' vs. $[t\kappa\varepsilon]$ 'train'

- For *French* speakers, it is plain that $[\varepsilon]$ and $[\tilde{\varepsilon}]$ are *different* sounds.
- The difference between a *French* speaker and an *English* speaker is the *phonemic structure* of the two languages.
- Corresponding *nasal* and *oral* vowels in *French* count as *different* sounds because they are *different phonemes*.
- They count as the *same* sound in *English* because they are *allophones* of the same phoneme.

C. Foreign accents and transfer

- Speakers internalize rules that derive the various allophones in their appropriate environments.
- E.g. The behavior of speakers attempting to pronounce the sounds of a language *new* to them.
- A *foreign accent* persists even after years of practice with a second language (L2).
- The phenomenon of *mispronunciations* in a (*L2*) in ways attributable to the phonology of (*L1*) is called *transfer*.
- Transfer is to consider a phonology as specifying the set of *things that are pronounceable* in a given language.
- This set consists of the *legal sequences* of *phonemes*, realized as the appropriate *allophones* for their context.

- Anything outside this *set* will involve one of three properties:
- 1) It can be phonologically illegal because it *contains* an *illegal* phoneme.
- E.g. any utterance containing the voiced uvular fricative [k] is *illegal* in English.
- 2) It can be phonologically illegal because it corresponds to an *illegal sequence* of phonemes.
- E.g. English phonology does not permit the *phonemes order* in [bnɪk].
- 3) It can be phonologically illegal because it corresponds to an *impossible distribution of allophones*.
- E.g. [fil], with a *non-velarized* [1], is *illegal* in English.
- If a word of a foreign language is *phonologically illegal* in English, for any of the three reasons, it will not be pronounced correctly by English speakers.

- E.g. French *tante* 'aunt' [tat] has a nasalized vowel alien to the English phoneme inventory.
- In an English accent, this comes out [tant], where [n] is a particularly short [n].
- The **derivation**:

```
/tant/ underlying form: choice of native phonemes

\tilde{\alpha} Nasalization: [+vowel] → [+nasal] / ___ [+nasal]

\tilde{n} Nasal Consonant [+consonant] → [+short] / ___ [+consonant] -voice [tant] surface form
```


The Criterion of Phonetic Similarity

• In some cases, collecting and arranging the *non-contrasting* phonetic segments is insufficient.

E.g. [h] and [ŋ] in English.

> [h] occurs at the *beginnings* of words and before *stressed vowels*.

hill ['hɪl] ahead [ə'hɛd]

how ['hav] behold [bi'hold]

The sound [ŋ] occurs at the ends of words, before consonants, and between vowels of which the second is stressless:

sing ['sɪŋ] sink ['sɪŋk] Singapore ['sɪŋəˌpɔɪ]
pang ['pæŋ] anger ['æŋgə-] dinghy ['diŋi]

■ There are no cases of [h] occurring at *ends* of words, or *before consonants*, or *between vowels* of which the second is *stressless*.

Likewise, there are no cases of [n] occurring at the beginning of a word, or before a stressed vowel.

Therefore, [h] and [ŋ] do not contrast.

The Criterion of Phonetic Similarity

- Since [h] and [ŋ] do not contrast, should we regard them as *allophones* of a single phoneme?
- Phonologists' traditional answer is *no*, simply because:
- When two sounds are *allophones* of the same phoneme, they will be felt by native speakers as the *same* sound.
- This is clearly not the case for [h] and [n].
- Thus, the idea that phonemes can be established purely on *distributional grounds* is *rejected*.

A.Contour segments and the segment/sequence problem

- Sounds like diphthongs ([ai]), affricates ([t]]), and prenasalized stops ([mb]) are often called *contour* segments.
- They have two phonetic qualities in sequence, but are often treated phonologically as a *single* sound.
- Recognition of the contour segments is an analytic difficulty faced in phonemicization.

E.g. we need to decide whether [ai] should be treated as a *diphthong* or as a sequence of $\frac{a}{+} + \frac{i}{-}$.

```
[tf] as an affricate [tf], or /t / + /f/
```

 $[\mathbf{mb}, \mathbf{nd}, \mathbf{\eta g}]$ as prenasalized stops or nasal + stop sequences

- This analytical issue might be called the *segment/sequence problem*.
- This problem is easy to solve if there is an actual *contrast* between *segment* and *sequence*.

□ Polish

• [t]] as an *affricate* is uncontroversial because it contrasts with the *stop* + *fricative* sequence [tf].

```
[tʃi] trzy 'three'[tʃi] czy 'if, whether'
```

- [t] and [t] are phonetically different ([t]] is longer than [t]]).
- The contrast between *monosegmental* /tʃ/ and *bisegmental* /tʃ/ could not be expressed.
- Thus the affricate [ff] must be analyzed as a *single segmental unit* in *Polish*.

□ Mandarin

- Mandarin has the following sounds: [a], [i], [u], [ei], and [ou].
- [e] and [o] never occur alone, but only as part of the diphthongs [ei] and [ou].
- One possible phonemicization is:

```
/e/
                                                                                            underlying forms
                  /i6/
                                    /au/
                                                      /i/
                                                                         /u/
                                                                                            Vowel Assimilation I: \mathbf{a} \rightarrow \mathbf{e} / \underline{\phantom{a}} \mathbf{i}
                  ei
                                                                                            Vowel Assimilation II: \mathbf{a} \rightarrow \mathbf{o} / \underline{\phantom{a}} \mathbf{u}
                                    ou
[6]
                                                       [i]
                                                                                            surface forms
                  [ei]
                                                                         [\mathbf{u}]
                                     ou
```

- In this analysis we can get by with just *three* phonemes (/3/, /i/, /u/) to derive *five* sounds.
- Since assimilation is a very common process in phonology, the rules make sense as *assimilation* rules.
- The vowel $\sqrt{3}$ is assimilated to [i] or [u] and become phonetically more similar to its neighbor.

B. Borrowed sounds

- When a *borrowed* sound is used for the very first time by a single speaker, it cannot count as a phoneme of the language.
- With time, borrowed words come to be used by larger numbers of speakers.
- Eventually, they are felt by native speakers to be an *integral* part of the language.
- The difficulty for phonological analysis is that the process is *gradual*.

E.g. **Japanese**: the sound $[\phi]$ (voiceless bilabial fricative) was plainly an *allophone* of /h/.

- It occurred only in the environment / ___ u, and was in complementary distribution with [h].
- [h] occurred in most other environments and thus was the *elsewhere* allophone.
- Under the influence of English and other foreign languages, [♠] has extended its usage to be the usual way to approximate a foreign [f] sound.

• Phonemicization for $[\phi]$ vs. [h]:

```
before /a/: [\phiaito] 'fight' vs. [haiku] 'type of poetry'
```

before /e/: [\pheruto] 'felt' vs. [hema] 'blunder'

```
before /o/: [sidon] 'chiffon' vs. [hon] 'book'
```

- Considering the words in the left column to be authentic words in the vocabularies of innovating speakers,
- we must say that the dialect spoken by these speakers has acquired a *new phoneme*.
- This simply after promoting $[\phi]$ from *allophone* to *phoneme* status.

- In phonology, free variation takes two forms:
- 1) the phenomenon of *phonological doublets*: one word has two different phonemic forms.

E.g. in many people's speech, the word *envelope* can be pronounced as either ['envə_loop] or ['anvə_loop].

• Phonological doublets have just *one* listing for their *syntactic* properties and *meaning*, but *more* than one *phonemic representation* (figure 1.).

Syntax: common noun

Meaning: ""

Phonemic forms: /'envə,loup/, /'anve,loup/

Syntax: common noun

Meaning: "W"

Phonemic form: /kæt/

Fig. 1. Lexical entries for "cat" and "envelope"

2) when a *single* phonemic representation gives rise to *more* than one phonetic form; this is called *free* variation.

E.g. American English: the vowel phoneme /æ/ has a diphthongal allophone I will transcribe as [].

	[æ]			$\begin{bmatrix} \tilde{\epsilon}\tilde{\tilde{\epsilon}} \end{bmatrix}$		
Lap	/læp/	[læp]	man	/mæn/	[m <mark>ẽə̃</mark> n],	[mæn]
pal	/pæl/	[pæl]	Spanish	/spæniʃ/	[sp <mark>̃ẽə</mark> nɪʃ],	[spænɪʃ]
pack	/pæk/	[pæk]	dance	/dæns/	[d <mark>ɛ̃ə</mark> ns],	[dæns]

- If an /n/ follows /æ/, then there are two outputs:
- One with $\begin{bmatrix} \tilde{\epsilon} \tilde{\bullet} \end{bmatrix}$ and one with $\begin{bmatrix} \tilde{\epsilon} \end{bmatrix}$. Otherwise, the observed allophone is $\begin{bmatrix} \tilde{\epsilon} \end{bmatrix}$.
- Nasalization seen on both $\begin{bmatrix} \tilde{\epsilon} \tilde{\bullet} \end{bmatrix}$ and $\begin{bmatrix} \tilde{\alpha} \end{bmatrix}$ is the consequence of *Vowel Nasalization*.
- The free variation between the *monophthongal* and *diphthongal* allophones can be expressed with a rule:

The phoneme $|\mathbf{x}|$ is realized as $[\mathbf{\varepsilon}_{\bullet}]$ when it precedes $|\mathbf{n}|$.

■ Together with *Vowel Nasalization*, $\frac{\langle \mathbf{z} \rangle}{\langle \mathbf{z} \rangle}$ *Diphthongization* suffices to derive the $\begin{bmatrix} \tilde{\epsilon} \tilde{\bullet} \end{bmatrix}$ variants:

ban: /bæn/ underlying form
bεən /æ/ Diphthongization
bε̄ən Vowel Nasalization
[bε̄ən] surface form

- The speaker may apply the rule or not; i.e. /æ/ Diphthongization applies optionally.
- **❖** /æ/ Diphthongization (revised)

$$\mathbf{e} \rightarrow \mathbf{e} \rightarrow \mathbf{n}$$
 (optional)

The phoneme $\frac{\mathbf{x}}{\mathbf{may be}}$ realized as [83] when it precedes $\frac{\mathbf{n}}{\mathbf{n}}$.

■ The effects of optional rules can be shown with *branching derivations* which include arrows to indicate what happens when an optional rule does or does not apply.

lap	ban		
/l æ p/	/bæn/		underlying form
	bean		/æ/ Diphthongization (optional)
	been	bæ̃n	Vowel Nasalization
[læp]	[b <mark>ɛ̃ə</mark> n]	$[b\tilde{\mathbf{e}}n]$	surface form

• *Phonemic contrast* is often not an *across-the-board* matter, but is confined to particular contexts.

E.g. in **Toba Batak** (Austronesian, Sumatra)

• There is a general contrast between *voiced* and *voiceless stops* and *affricates*.

[pinoppar] 'descendant' [bian] 'dog'

[tuak] 'palm wine' [dukkar] 'let out'

[korea] 'Korea' [garut] (name of town in Indonesia)

• Many words of Toba Batak also end in *voiceless stops*:

[hotop] 'fast'

[surat] 'letter'

[halak] 'man'

No word in the language ever ends in a **voiced stop**.

We have a phonological contrast of voicing, but it is a *contextually limited contrast*.

☐ Analyzing phonotactics and contextually limited contrast

- Two formal approaches to contextually restricted contrast:
- 1) We write rules that would have the effect of *eliminating* the contrast.
- **❖** Final Devoicing (Toba Batak)

$$[+stop] \rightarrow [-voice] /]word$$

Stops are devoiced at the end of a word.

- 2) phonological theory involves not just rules but also *constraints*.
- A **constraint** is a formal characterization of a structure that is *illegal* in a particular language.
- **❖ Constraint against Final Voiced Stops** (Toba Batak)

It is illegal to have a voiced stop in word-final position.

Such constraints are sometimes called *phonotactic constraints*.

Phonotactics are a general term for the principles of phonological well-formedness in a particular language.

□ Contrast with zero

■ The notion of phonological contrast can be broadened to include *contrast with zero*.

E.g. **English** allows contrasts like tax [tæks] vs. tack [tæk].

The [s] of tax is said to be in contrast with *zero*.

- Ø is the symbol representing the null string.
- Contrast with zero can also be *contextually limited*.
- **Toba Batak** never permits *two consonants* to occur at the *end of a word* like English.
- In **Toba Batak** consonants may contrast with *zero* only when they are *adjacent to a vowel*.
- To ban the CC vs. C contrast in final position, we formulate either a *rule* or a *constraint*:

- To ban the CC vs. C contrast in final position, we formulate either a *rule* or a *constraint*:
- ***** Rule: Cluster Simplification

$$\mathbb{C} \to \emptyset / \mathbb{C}$$
 word

Delete a word-final consonant if a consonant precedes.

***** Constraint: Ban on final clusters

- Comparing the two approaches, we see one possible *objection* to the *rule-based theory*:
- It often forces us to make arbitrary analytic decisions.
- There seems to be no reason to delete the second consonant rather than the first.
- Both rules would suffice to enforce the *one-consonant* limit.
 - Often, there is further evidence from the language that tells us which rule is correct.

- In analyzing a language, we seek first to *isolate* its inventory of phonemes.
- The allophonic variation of phonemes, both *contextual* and *free*, must be characterized with appropriate *phonological rules*.
- The limitations on *contrast*, both between *phonemes* and between *phonemes and zero*, must be characterized with *rules* or *constraints*.

