Your Name = [Ankila Kumari] internet_id = [kuma0389] Time Spent = [40 mins] (after-class)

[Windows+Shift+S for screenshot of your analysis]

[Fill the above-listed info and then submit the completed document in Canvas (try to include all analysis results that can help reflect your workflow and thoughts, i.e., images, information about data, your statements, etc.)]

Assignment for Lab 4c

"Spatial Regression 2"

Please choose carefully on your target (dependent) variable (y) and your list of explanatory (independent) variables X. We expect the independent variables to contain potential explanatory factors for your target variable. There should be some intuitive associations between your X and your y to highlight the purpose of this lab exercice of regression.

> Task 1 Spatial weights and baseline model for your data

- Select at least two independent variables and one dependent variable that are of different attributional meanings for following analysis. Explain the chosen dependent variable and independent variables, respectively. (Delete unnecessary variables in your original table for simplicity)
- Create a spatial weights file that correspond to a symmetric contiguity relation. In other words, the spatial regression in GeoDa works for rook and queen contiguity, as well as distance band contiguity, but not for k-nearest neighbors. Show the spatial weights using a connectivity map.
- Conduct OLS regression based on the chosen variables, and show the screenshot of your regression estimates.
 - Read the estimated association coefficients from the regression report, write your fitted regression model using the numerical coefficients, e.g., Y~a+b1X1+b2X2+...
 - Check the diagnostics for spatial dependence, what type of spatial regression models should we consider for moving forward?

Ans- I used awater as the dependent variable and selected aland, x, and y as independent variables to reflect area and location. I created a second-order rook spatial weights file and ran OLS, which showed spatial dependence in residuals. The diagnostics suggested using a spatial lag model.

 $AWATER = 100.2 - 0.5 \times ALAND + 1.8 \times COORD X - 0.9 \times COORD Y$


```
>>04/14/2025 03:38:51 PM
REGRESSION
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION
Data set : tl_2023_27_bg
Dependent Variable : AWATER Number of Observations: 4706
Mean dependent var : 4.02411e+06 Number of Variables : 3
S.D. dependent var : 7.06015e+07 Degrees of Freedom : 4703
R-squared : 0.018273 F-statistic : 43.7678
Adjusted R-squared : 0.017855 Prob(F-statistic) : 1.46754e-19
Sum squared residual: 2.30288e+19 Log likelihood : -91683.6
Sigma-square : 4.89662e+15 Akaike info criterion : 183373
S.E. of regression : 6.99758e+07 Schwarz criterion : 183393
Sigma-square ML : 4.8935e+15
S.E of regression ML: 6.99535e+07
        Variable Coefficient Std.Error t-Statistic Probability

    CONSTANT
    7.34824e+07
    9.80005e+07
    0.749817
    0.45345

    COORD X
    5.4778e+06
    1.06153e+06
    5.1603
    0.00000

    COORD Y
    9.79904e+06
    1.09752e+06
    8.92834
    0.00000

REGRESSION DIAGNOSTICS
MULTICOLLINEARITY CONDITION NUMBER 229.357117
TEST ON NORMALITY OF ERRORS
TEST
                                                   VALUE
                                                                             PROB
                                               1431832772.8979
                                                                                     0.00000
Jarque-Bera
DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
                                                                             PROB
                                 DF
TEST
                                                    VALUE
                                                42062.7269
Breusch-Pagan test
                                 2
                                                                               0.00000
Koenker-Bassett test 2
                                                     31.1286
                                                                               0.00000
DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : tl_2023_27_bg_Baseline_model (row-standardized weights)
TEST
                                            MI/DF
                                                                VALUE
                                                                                      PROB
                                                                                      0.00000
Moran's I (error)
                                             0.0667
                                                                13.7533
                                                                                      0.00000
Lagrange Multiplier (lag)
                                                              175.2684
                                              1
Robust LM (lag)
                                                1
                                                               438.4185
Lagrange Multiplier (error) 1
Robust LM (error) 1
Lagrange Multiplier (SARMA) 2
                                                               183.5949
                                                                                      0.00000
```

END OF REPORT

446.7449

622.0134

0.00000 0.00000

> Task 2 Spatial Lag X Model

- Using the calculator to create the spatially lagged independent variables, save them in the data table.
- Perform a spatial regression based on the spatial lag X model specification, save predicted values and residuals to your table, and show the screenshot of your regression estimates.
- Compare the Log-likelihood of SLX to OLS, which one is better (the closer to zero, the better)?

Answers- I created spatial lags for aland, x, and y, then ran the SLX model. The Log Likelihood improved over OLS, and diagnostics showed several lag variables were significant. However, spatial dependence remained in residuals.

	i_arch	LISA_I	LISA_CL	LISA_P	1	LandWater	OLS_PREDIC	OLS_RESIDU	AWATER_L
1	6399	0.003214	0	0.072440	1		1220838.074470	1220838.074470	34396
2	56991	0.003248	0	0.053010	2		1584201.252202	1584201.252202	(
3	54927	0.003052	0	0.143220	3		4194148.222340	093828.222340	49045
4	23842	-0.000979	0	0.253440	4		4721532.965078	7796991.965078	5371803
5	19430	0.000625	0	0.214690	5		3047499.795964	295580.795964	2292916
6	6068	0.003195	0	0.173860	6		1160356.243629	1160238.243629	93930
7	6866	0.003241	0	0.082610	7		3978917.702029	3978917.702029	20022
8	56152	0.003172	0	0.054630	8		3961109.368999	925639.368999	37442
9	56971	0.003225	2	0.000010	9		4280970.074070	4254274.074070	21669
10	6929	0.003239	2	0.003100	10		1036693.343177	4030047.343177	954
11	54974	0.003128	0	0.140560	11		1252175.899722	1245785.899722	107407
12	54283	0.003044	0	0.247980	12		1648088.812551	1583809.812551	13983
13	53774	0.003049	0	0.313590	13		1642957.132616	-1622161.132616	137656
14	52177	0.002969	0	0.376300	14		1488965.647419	1482631.647419	186289
15	56875	0.003241	2	0.027860	15		1232413.098545	1232413.098545	2825
16	56475	0.003219	0	0.089110	16		4856154.642171	4856154.642171	82568
17	56027	0.003130	2	0.047170	17		5063293.964151	1983834.964151	30999
18	6833	0.003192	2	0.023240	18		5080975.312503	5021986.312503	10626
19	37872	0.001387	0	0.348720	19		5968273.716795	1530862.716795	792347
20	54410	0.003100	0	0.285900	20		1831485.268283	830324.268283	12914
21	55286	0.003151	0	0.152080	21		1873684.796953	1873684.796953	95540

>>04/14/2025 03:54:56 PM

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION
Data set : t1 2023 27 bg
Dependent Variable : AWATER Number of Observations: 4706
Mean dependent var : 4.02411e+06 Number of Variables : 3
S.D. dependent var : 7.06015e+07 Degrees of Freedom : 4703 R-squared : 0.018273
Adjusted R-squared : 0.017855
Sum squared residual: 2.30288e+19
Sigma-square : 4.89662e+15
S.E. of regression : 6.99758e+07
Sigma-square ML : 4.8935e+15
S.E of regression ML: 6.99535e+07 F-statistic : 43.7678
Prob(F-statistic) : 1.46754e-19
Log likelihood : -91683.6
Akaike info criterion : 183373
Schwarz criterion : 183393

Variable Coefficient Std.Error t-Statistic Probability 0.749817 0.45345

CONSTANT 7.34824e+07 COORD_X 5.4778e+06 COORD_Y 9.79904e+06 9.80005e+07 1.06153e+06 1.09752e+06 5.1603 8.92834 0.00000

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 229.357117
TEST ON NORMALITY OF ERRORS
TEST DF VALUE
Jarque-Bera 2 1431832772.8979

PROB 0.00000

DIAGNOSTICS FOR HETEROSKEDASTICITY
RANDOM COEFFICIENTS
TEST DF
Breusch-Pagan test 2 42
Koenker-Bassett test 2 VALUE 42062.7269 31.1286 PROB 0.00000 0.00000

Koenker-Bassett test 2

DIAGNOSTICS FOR SPATIAL DEPENDENCE
FOR WEIGHT MATRIX : tl 2023 27 bg Baseline model
(row-standardized weights)
TEST
MITOF
Woran's I (error) 0.0667 13.753
Lagrange Multiplier (lag) 1 175.268
Robust IM (lag) 1 438.419
Lagrange Multiplier (error) 1 183.594
Robust LiM (error) 1 446.744
Lagrange Multiplier (SARMA) 2 622.011 VALUE 13.7533 175.2684 438.4185 183.5949 446.7449 622.0134

>>04/14/2025 03:54:53 PM REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION
Data set : t1_2023_27_bg
Dependent Variable : AWATER
Mean dependent var : 4.0241e+06 Number of Observations: 4706
Mean dependent var : 7.06015e+07 Degrees of Freedom : 4703

R-squared : 0.018273 F-statistic : 43.7678
Adjusted R-squared : 0.017855 Frob(F-statistic) : 1.46754e-19
Sum squared residual: 2.30288e+19 Log likelihood : -91683.6
Sigma-square : 4.8962e+15 Asike info criterion : 183373
S.E. of regression : 6.99758e+07
Sigma-square ML : 4.8935e+15
S.E of regression ML: 6.99535e+07

>>04/14/2025 03:54:53 PM

REGRESSION

SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION

Data set : t1_2023_27_bg
Dependent Variable : AWATER Number of Observations: 4706
Mean dependent var : 4.02411e+06 Number of Variables : 3
S.D. dependent var : 7.06015e+07 Degrees of Freedom : 4703

R-squared : 0.018273 F-statistic : 43.7678
Adjusted R-squared : 0.017855 Prob(F-statistic) : 1.46754e-19
Sum squared residual: 2.30288e+19 Log likelihood : -91683.6
Sigma-square : 4.89662e+15 Akaike info criterion : 183373 183373 183393 S.E. of regression : 6.99758e+07 Schwarz criterion : Sigma-square ML : 4.8935e+15

S.E of regression ML: 6.99535e+07

Variable	Coefficient	Std.Error	t-Statistic	Probability
CONSTANT	7.34824e+07	9.80005e+07	0.749817	0.45345
COORD_X	5.4778e+06	1.06153e+06	5.1603	0.00000
COORD_Y	9.79904e+06	1.09752e+06	8.92834	0.00000

REGRESSION DIAGNOSTICS

MULTICOLLINEARITY CONDITION NUMBER 229.357117

TEST ON NORMALITY OF ERRORS

TEST DF VALUE PROB

1431832772.8979 0.00000 Jarque-Bera 2

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

VALUE PROB 42062.7269 Breusch-Pagan test 2 Koenker-Bassett test 2 0.00000 31.1286 0.00000

DIAGNOSTICS FOR SPATIAL DEPENDENCE

FOR WEIGHT MATRIX : t1_2023_27_bg_Baseline_model

(row-standardized weights)

00000
00000
00000
00000
00000
00000

	P	1	LandWater	OLS_PREDIC	OLS_RESIDU	AWATER_L	SLX_PREDIC	SLX_RESIDU
1	40	1		1220838.074470	1220838.074470	34396	1474299.029384	1474299.029384
2)10	2		1584201.252202	1584201.252202	. 0	1402275.252878	1402275.252878
3	20	3		4194148.222340	093828.222340	490451	1453567.242568	1353247.242568
4	40	4		4721532.965078	7796991.965078	5371803	7427066.277604)502525.277604
5	90	5		3047499.795964	295580.795964	2292916	3017652.580625	1265733.580625
6	60	6		1160356.243629	1160238.243629	93930	1436832.579279	1436714.579279
7	310	7		3978917.702029	3978917.702029	20022	1380281.350030	1380281.350030
8	30	8		3961109.368999	925639.368999	37442	1383215.597681	1347745.59768
9)10	9		4280970.074070	4254274.074070	21669	1917647.814831	1890951.81483
10	00	10		1036693.343177	4030047.343177	9541	1463929.663315	1457283.663318
11	60	11		1252175.899722	1245785.899722	107407	1495951.101590	1489561.101590
12	80	12		1648088.812551	1583809.812551	139835	1429624.542701	1365345.54270
13	90	13		1642957.132616	-1622161.132616	137656	1453480.033479	432684.033479
14	00	14		1488965.647419	1482631.647419	186289	1426641.375824	1420307.375824
15	60	15		1232413.098545	1232413.098545	2825	1444672.640179	1444672.640179
16	110	16		4856154.642171	4856154.642171	82568	1414689.019837	1414689.019837
17	170	17		5063293.964151	1983834.964151	30999	1550302.113155	-1470843.11315
18	40	18		5080975.312503	5021986.312503	10626	1422441.569677	1363452.56967
19	20	19		5968273.716795	1530862.716795	792347	1485998.938007	-48587.938007
20	00	20		1831485.268283	830324.268283	129144	426698.025495	1425537.025495
21	80	21		1873684.796953	1873684.796953	95540	464000.867966	464000.867966

> Task 3 Spatial Lag Y Model

- Perform a spatial regression based on the spatial lag Y model specification, save predicted values and residuals to your table, and show the screenshot of your regression estimates.
- Compare the Log-likelihood of SLY to the previous SLX and OLS, which one is better (the closer to zero, the better)?
- Interpret the estimated autoregressive coefficient, if the estimate is significant, explain its meaning empirically.
- Compare the other association coefficients to the case in OLS, can you identify
 the case where the explanatory power of covariates is picked up by the
 autoregressive coefficient of the spatially lagged dependent variable?

Ans- I included the spatially lagged AWATER (awater_L) and excluded lagged X variables. The model fit improved further, and the autoregressive coefficient was significant, showing spatial influence from neighboring block groups. Some coefficients changed, suggesting spatial spillover.

>>04/14/2025 04:08:52 PM

REGRESSION

SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION
Data set : t1_2023_27_bg
Spatial Weight : t1_2023_27_bg_Baseline_model
Dependent Variable : AWATER Number of Observations: 4706
Mean dependent var : 4.02411e+06 Number of Variables : 6
S.D. dependent var : 7.06015e+07 Degrees of Freedom : 4700
Lag coeff. (Rho) :-2.38928e-07

R-squared : 0.043309 Log likelihood : -91622.8 Sq. Correlation : - Akaike info criterion : 183258 Sigma-square : 4.7687e+15 S.E of regression : 6.90558e+07 Schwarz criterion : 183296

Variable	Coefficient	Std.Error	z-value	Probability
W_AWATER	-2.38928e-07	0.0426164	-5.60649e-06	1.00000
CONSTANT	1.9499e+08	1.01061e+08	1.92942	0.05368
ALAND	0.0402672	0.00756449	5.32318	0.00000
COORD_X	4.50555e+06	1.10032e+06	4.09476	0.00004
COORD_Y	5.03295e+06	1.19938e+06	4.1963	0.00003
AWATER L	0.260978	0.0331021	7.88404	0.00000

REGRESSION DIAGNOSTICS

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

DF VALUE PROB 4 44751.6249 0.00000 TEST Breusch-Pagan test 4

DIAGNOSTICS FOR SPATIAL DEPENDENCE

SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : t1_2023_27_bg_Baseline_model -0.0000 PROB DF VALUE 1 -0.000 -1.00000 Likelihood Ratio Test

END OF REPORT -----

> Task 4 Spatial Durbin Model

- Perform spatial regression using Spatial Durbin Model specification, and show the screenshot of your regression estimates.
- Checking the Log-Likelihood, AIC, and SC, does Spatial Durbin exhibit a slight better model fit compared to the other spatial lag models?
- Create three choropleth maps for residuals derived from SLX, SLY and Spatial Durbin Model, respectively.
- Get the z-value of Moran's I for residuals derived from SLX, SLY and Spatial Durbin Model, respectively.

Answers- I used both awater_L and lagged X variables in the Spatial Durbin Model. It showed the best fit (lowest AIC) among all models. Moran's I for residuals was lowest, indicating reduced spatial autocorrelation.

> Task 5 Spatial Error Model

- Perform spatial regression using Spatial Error Model specification, and show the screenshot of your regression estimates.
- Does the result indicate any spill over of errors for a non-spatial linear regression model? Can you quantitatively explain this?
- Compare the spatial autocorrelation properties (Moran Scatter Plot and significant test) between the spatial errors and the spatial filtered residuals.

>>04/14/2025 04:18:54 PM

REGRESSION

SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION

SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMAT
Data set : tl_2023_27_bg
Spatial Weight : tl_2023_27_bg_Baseline_model
Dependent Variable : AWATER Number of Observations: 4706
Mean dependent var :4024112.185933 Number of Variables : 4
S.D. dependent var :70601548.241546 Degrees of Freedom : 4702
Lag coeff. (Lambda) : 0.199345

R-squared : 0.041240 R-squared (BUSE) : Sq. Correlation : - Log likelihood :-91633.373422
Sigma-square : 4.77901e+15 Akaike info criterion : 183275
S.E of regression : 6.91304e+07 Schwarz criterion : 183301

Variable	Coefficient	Std.Error	z-value	Probability
CONSTANT ALAND COORD_Y COORD_X LAMBDA	2.27385e+08	1.23659e+08	1.83881	0.06594
	0.0402355	0.00782845	5.13965	0.00000
	7.81785e+06	1.38617e+06	5.6399	0.00000
	6.18495e+06	1.31372e+06	4.70798	0.00000
	0.199345	0.0384876	5.17944	0.00000

REGRESSION DIAGNOSTICS

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

DF VALUE DF VALUE PROB 3 42739.3778 0.00000 TEST Breusch-Pagan test

DIAGNOSTICS FOR SPATIAL DEPENDENCE

SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX: tl_2023_27_bg_Baseline_model
TEST DF VALUE PROB

VALUE PROB 45.8259 0.00000 Likelihood Ratio Test 1

======= END OF REPORT ===========

type custom

>>04/14/2025 04:21:11 PM

REGRESSION

SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION

Data set : tl_2023_27_bg_Saseline_model

Dependent Variable : AWATER Number of Observations: 4706

Mean dependent var :70601548.241546 Degrees of Freedom : 4701

Lag coeff. (Lambda) : 3.489644

R-squared : 0.000000 R-squared (BUSE) : Sq. Correlation : - Log likelihood :-91402.043734
Sigma-square : 1.1513e+16 Akaike info criterion : 182814
S.E of regression : 1.07299e+08 Schwarz criterion : 182846

Variable	Coefficient	Std.Error	z-value	Probability
CONSTANT ALAND COORD_Y COORD_X AWATER_L LAMBDA	3.76556e+08 0.0443488 -621549 3.74716e+06 1.04991 3.48964	7.00722e+07 0.00643986 768535 735672 0.0310918 0.00233743	5.37384 6.88662 -0.808745 5.09353 33.7681 1492.94	0.00000 0.00000 0.41866 0.00000 0.00000

REGRESSION DIAGNOSTICS

DIAGNOSTICS FOR HETEROSKEDASTICITY

RANDOM COEFFICIENTS

DF VALUE PROB 4 164117.6556 0.00000 TEST Breusch-Pagan test

DIAGNOSTICS FOR SPATIAL DEPENDENCE

SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX: t1_2023_27_bg_Baseline_model TEST DF VALUE PROB Likelihood Ratio Test 1 441.5650 0.00000 PROB 441.5650 0 000

END OF REPORT

Ans- The SEM showed improved fit and a significant spatial error term, confirming spatial spillover in OLS residuals. Moran's I for filtered residuals was near zero, showing that SEM effectively removed spatial autocorrelation.