Київський національний університет імені Тараса Шевченка Факультет комп'ютерних наук та кібернетики

Лабораторна робота №2

Чисельні методи в інформатиці "Розв'язок СЛАР прямим та ітерацінйими методами" <u>Варіант №8</u>

> Виконав студент групи IПС-31 Тесленко Назар Олександрович

Постановка задачі:

Варіант №8

Розв'язати СЛАР наступними методами:

- Методом Гаусса розв'язати систему рівнянь, знайти визначник та обернену матрицю.

7	2	3	0		X1		20
0	3	2	6	*	X2	=	36
2	5	1	0		X3		15
0	1	4	2		X4		22

- Методом квадратного кореня розв'язати систему рівнянь, знайти визначник та число обумовленості, норму обрати самостійно

1	2	0		X1		5
2	2	3	X	X2	=	15
0	3	2		X3		12

- Методом Зейделя розв'язати систему рівнянь

4	0	1	0		X1		12
0	3	0	2	X	X2	=	19
1	0	5	1		X3		27
0	2	1	4		X4		30

Теоретичний опис та обгрунтування:

Метод Гаусса

Прямий метод вирішення СЛАР типу Ax = b

Розглядаємо даний алгоритм з вибором головного елементу по стовпцях. Ведучим елементом матрциі A обирається максимальний по модулю елемент стовпця, що розглядається:

$$a_{lk} = \max_{i} \left| a_{ik}^{(k-1)} \right|, i = \overline{k, n}$$

де:

 $a_{ik}^{-(k-1)}$ - елемент матриці після (k-1)-го кроку виключення

k - номер поточного стовпця

і - індекс рядка, який перебирається

l - номер рядка у якому знайдено максимальний за модулем елемент Вводимо матрицю перестановок P_k яка ініціалізується одиничною матрицею, для перестановки рядків k та l:

$$\widehat{A}_{k} = P_{k} A_{k-1}$$

Для занулення елементів під головною діагоналлю використовується матрицю М. М матриця зберігає множники, що використовуються для виключенян елментів під головною діагоналлю під час прямого ходу. Кожен елемент цієї матриці обчислюється за формулою:

$$m_{ik} = \frac{a_{ik}}{a_{kk}}, i = \overline{k+1,n}$$

 $m_{kk} = rac{1}{a_{kk}}$ - для елементів головної діагоналі

За допомгою прямого ходу:

$$M_n P_n \dots M_1 P_1 Ax = M_n P_n \dots M_1 P_1 b$$

зводимо систему до верхньої трукутньої матриці.

Для знаходження розв'язку застосовуємо зворотні хід Гаусса:

$$x_{n} = \frac{a_{n,n+1}^{(n)}}{a_{n,n}}$$

$$x_{i} = (a_{i,n+1}^{(i)} - \sum_{j=i+1}^{n} a_{ij}^{(i)} x_{j}) / a_{i,i}^{(i)}, i = \overline{n-1,1}$$

Пошук визначника:

$$\det A = (-1)^p a_{11}^{(1)} * a_{22}^{(2)} * ... * a_{nn}^{(n)}$$
, де р - кількість перестановок

Знаходження оберненої матриці:

Під час прямого ходу методу Гауса матриця А послідовно перетворюється до верхньотрикутної форми за допомогою матричних множників M_i та перестановочних матриць P_i , які відповідають перестановкам рядків при виборі головного елемента. Ті самі перетворення одночасно виконуються над одиничною матрицею E, у результаті чого вона поступово переходить у матрицю A^{-1} Після прямого ходу отримуємо систему:

$$U * X = E'$$

Під час зворотнього ходу система розв'язується постовпчиково:

$$U * x_i = e'_i$$

Метод квадратного кореня

Прямий метод для розв'яування СЛАР типу Ax=b

Необхідна умова застосування: матриця A симетрична $A = A^T$

Матрицю А представимо у вигляді: $A = S^T DS$

Матриця S - верхня трикутна матриця

Матриця D - діагональна матриця для збереження знаку ведучих елементів Формули заповнення матриці S:

$$s_{ii} = \sqrt{\left|a_{ii} - \sum_{p=1}^{i-1} s_{pi}^{2} d_{pp}\right|}, i = \overline{1, n}$$

$$s_{ij} = \frac{a_{ij} - \sum_{p=1}^{i-1} (s_{pi} d_{pp}^{s} s_{pj})}{d_{ij} s_{ij}}, i = \overline{2, n-1}, j = \overline{i+1, n}$$

Формули заповнення матриці D:

$$d_{ii} = sgn \left| a_{ii} - \sum_{p=1}^{i-1} s_{pi}^{2} d_{pp} \right|$$

Подалше рівняння зводиться до розв'язку двох СЛАР з трикутними матрицями. З першої системи знаходять у:

$$S^T Dy = b$$

А з другої - х:

$$Sx = y$$

Пошук визначника:

$$\det A = \prod_{k=1}^{n} d_{kk} s_{kk}^{2}$$

Метод Зейделя

Ітераційни метод для розв'язання СЛАР типу Ах=b. Розв'язок знаходимо із заданою точністю ε. Початкове наближення обираємо довільним чином. Ітераційний процес має вигляд:

$$x_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_j^{k} + \frac{b_i}{a_{ii}}$$

Умова зупинки:

$$\left|x^{k+1} - x^k\right| \le \varepsilon$$

Достатні умови збіжності:

• Якщо $\forall i$: $i = \overline{1, n}$ виконується нерівність

$$\left|a_{ii}\right| \ge \sum_{j=1, j \ne i}^{n} \left|a_{ij}\right|$$

то ітераційний процес методу Зейделя збігається з лінійною швидкістю.

• Якщо $A = A^T > 0$, то ітераційни процес методу Зейделя збігається з лівнійною швидкістю.

Необхідні і досстатні умови збіжності:

• Для $\forall x^0$ ітераційний процес методу Зейделя збігається тоді і тільки тоді, коли $|\lambda| < 1$, де λ - корені нелійнійного рівняння

Хід роботи

Мова реалізації: Python

Метод Гаусса

7	2	3	0		X1		20
0	3	2	6	*	X2	=	36
2	5	1	0		X3		15
0	1	4	2		X4		22

Ініціалізуємо матрицю та вектор:

```
Initial matrix A and vector b
           2.000
  7.000
                    3.000
                             0.000
                                       20.000
                             6.000
           3.000
                    2.000
  0.000
                                       36.000
           5.000
                    1.000
                             0.000
                                       15.000
  2.000
           1.000
                    4.000
                             2.000
                                       22.000
  0.000
```

Прямим ходом за допомогою матриць P_i (перестановки) і M_i (елементарні перетворення) зводимо A до трикутної форми, одночасно перетворюючи одиничну матрицю для знаходження оберненої.

```
Working on column 0
Matrix M1:
  1.000
          0.000
                  0.000
                          0.000
  0.000 1.000
                  0.000
                          0.000
 -0.286
          0.000
                  1.000
                          0.000
  0.000
          0.000
                  0.000
                          1.000
Matrix after elimination step:
M1P1A = M1P1b
  7.000 2.000 3.000
                         0.000
                                   20.000
  0.000 3.000 2.000
                         6.000
                                   36.000
                          0.000
                                   9.286
  0.000
          4.429
                  0.143
                  4.000
  0.000
          1.000
                          2.000
                                   22.000
```

0.000 0.000	2.000 3.000	3.000 2.000 0.143	6.000 0.000	36.000 9.286
P2M1P1A =	 P2M1P1b 			
Matrix P2				
1.000	0.000	0.000	0.000	
0.000	0.000	1.000	0.000	
0.000	1.000	0.000	0.000	
0.000	0.000	0.000	1.000	
7.000	2.000	3.000	0.000	20.000
0.000	4.429	0.143	0.000	9.286
0.000	3.000	2.000	6.000	36.000
0.000	1.000	4.000	2.000	22.000

Matrix M2:				
1.000	0.000	0.000	0.000	
0.000	1.000	0.000	0.000	
0.000	-0.677	1.000	0.000	
0.000	-0.226	0.000	1.000	
Matrix aft	er elimin	ation ste	p:	
Matrix aft M2P2M1P1A			 	
		 1b	p: 0.000	20.000
 M2P2M1P1A 	= M2P2M1P	 db 3 . 000	 0.000	20.000 9.286
7.000 0.000	= M2P2M1P	3.000 0.143	 0.000 0.000	
7.000 0.000	2.000 4.429	3.000 0.143	 0.000 0.000	9.286

.....

```
Working on column 3
Matrix M4:
   1.000 0.000 0.000
                                  0.000
            1.000 0.000
   0.000
                                  0.000
   0.000 0.000 1.000
                                0.000
   0.000 0.000 0.000 1.000
Matrix after elimination step:
M4P4M3P3M2P2M1P1A = M4P4M3P3M2P2M1P1b

      7.000
      2.000
      3.000
      0.000
      |

      0.000
      4.429
      0.143
      0.000
      |

                                             20.000
                                             9.286
   0.000 0.000 3.968 2.000
                                             19.903
   0.000 0.000 0.000 5.041
                                              20.163
```

Після отриманого результату, починаємо зворотній хід для коренів СЛАР:

```
Back substitution: x[3] = (20.163 - 0.000) / 5.041 = 4.000

Back substitution: x[2] = (19.903 - 8.000) / 3.968 = 3.000

Back substitution: x[1] = (9.286 - 0.429) / 4.429 = 2.000

Back substitution: x[0] = (20.000 - 13.000) / 7.000 = 1.000

Solution vector x:

1.000 2.000 3.000 4.000
```

Знаходження детермінаннту матриці:

```
Calculating det A:
det A: (-1)^2 * 7.0 * 4.428571428571429 * 3.967741935483871 * 5.040650406504065
Det A:620.0
Calculating det A with NumPy: 620.0
```

Перевіримо мануально коректність знайдених коренів:

$$7*1$$
 +2*2 +3*3 +0 20
 0 +3*2 +2*3 +6*4 = 36
 $2*1$ +5*2 +1*3 +0 15
 0 +1*2 +4*3 +2*4

Пошук оберненої матриці:

```
Inverted A:

0.161     0.042     -0.065     -0.126
-0.065     0.003     0.226     -0.010
0.000     -0.100     0.000     0.300
0.032     0.198     -0.113     -0.095

A*A^-1=E. The inveted A matrix is correct
```

У результаті отримали вектор, заданий за умовою - корені знайдені правильно.

Метод квадратного кореня

1	2	0		X1		5
2	2	3	X	X2	=	15
0	3	2		X3		12

Ініціалізуємо дані:

Перевіряємо достатню умову: $A = A^T$

```
#Check sufficient condition
# A=A^T
if(np.all(A!=np.transpose(A))):
    print("Sufficient condition is not satisfied!")
    return
print("\nThe sufficient condition is satisified: A=A^T \n")
```

The sufficient condition is satisified: A=A^T

Обраховуємо матриці S та D:

Обраховуємо дві СЛАР:

$$\bullet \quad S^T D y = b$$

```
# Forward substitution: S^T*D*y = b
y = np.zeros(n)
for i in range(n):
    sum_sdy = 0
    for j in range(i):
        sum_sdy += S[j, i] * D[j] * y[j]
    y[i] = (b[i] - sum_sdy) / (S[i, i] * D[i])
```

 $\bullet \quad Sx = y$

```
# Backward substitution: S*x = y
x = np.zeros(n)
for i in range(n-1, -1, -1):
    sum_sx = 0
    for j in range(i+1, n):
        sum_sx += S[i, j] * x[j]
    x[i] = (y[i] - sum_sx) / S[i, i]
```

Результат:

```
Solution vector x:
1.000 2.000 3.000
```

Перевіримо коректність знайдених коренів:

$$1*1 + 2*2 + 0$$
 5
 $2*1 + 2*2 + 3*3 = 15$
 $0 + 3*2 + 2*3$ 12

Результати відповідають вектору b, отже корені вірні.

Знайдемо визначник:

$$\det A = \prod_{k=1}^{n} d_{kk} s_{kk}^{2}$$

```
Calculating det A:
det A: 1.000*1.000^2 * -1.000*1.414^2 * 1.000*2.550^2

Det A:-13.0

Calculating det A with NumPy: -13.0
```

Знайдемо число обумовленості:

Число обумовленості cond(A) матриці характеризує чутливість розв'язку системи Ax=b до похибок у даних A та b.

Обчислюємо за формулою:

$$cond(A) = ||A|| * ||A^{-1}||$$

Обираємо inf-норму - найбільша сума по рядках матриці

$$||A||_{inf} = \max_{i} \sum_{j} |a_{ij}|$$

```
norm_A = np.linalg.norm(A, ord=np.inf)
norm_A_inv = np.linalg.norm(np.linalg.inv(A), ord=np.inf)
cond_A = norm_A * norm_A_inv
print(f"Condition number: {cond_A:.3f}")
return x,detA
```

Condition number: 8.077

Метод Зейделя

4	0	1	0		X1		12
0	3	0	2	X	X2	=	19
1	0	5	1		X3		27
0	2	1	4		X4		30

Ініціалізуємо вхідні дані:

SEIDELS ME	ETHOD			
Initial ma 4.000 0.000 1.000 0.000	0.000 3.000 0.000 2.000	1.000 0.000 5.000 1.000	0.000 2.000 1.000 4.000	
Vector b: 12.000	19.000	27.000	30.000	

Перевіримо достатні умови для збіжності даного методу:

• Якщо $\forall i$: $i = \overline{1, n}$ виконується нерівність

$$\left| a_{ii} \right| \ge \sum_{j=1, j \ne i}^{n} \left| a_{ij} \right|$$

то ітераційний процес методу Зейделя збігається з лінійною швидкістю.

• Якщо $A = A^T > 0$, то ітераційни процес методу Зейделя збігається з лівнійною швидкістю.

```
Check the first condition:

Row 0: 4.0>=1.0

Row 1: 3.0>=2.0

Row 2: 5.0>=2.0

Row 3: 4.0>=3.0

First condition is satisfied!

Second condition is satisfied!
```

Достатні умови виконуються отже починаємо ітераційний процес:

```
Iter 1: [3. 6.33333 4.8 3.13333]
Iter 2: [1.8 4.24444 4.41333 4.27444]
Iter 3: [1.89667 3.4837 4.16578 4.7167 ]
Iter 4: [1.95856 3.18886 4.06495 4.88933]
Iter 5: [1.98376 3.07378 4.02538 4.95676]
Iter 6: [1.99365 3.02882 4.00992 4.98311]
Iter 7: [1.99752 3.01126 4.00387 4.9934 ]
Iter 8: [1.99903 3.0044 4.00151 4.99742]
Iter 9: [1.99962 3.00172 4.00059 4.99899]
Iter 10: [1.99985 3.00067 4.00023 4.99961]
Iter 11: [1.99994 3.00026 4.00009 4.99985]
Iter 12: [1.99998 3.0001 4.00004 4.99994]
```

Задана точність $\varepsilon = 1e - 4$

Результуючий вектор:

```
Final solution vector x:
2.000 3.000 4.000 5.000
Number of iterations: 13
```

Перевіримо коректність знеайдених коренів:

$$4*2$$
 +0 +1*3 +0 12
0 +3*3 +0 +2*5 = 19
 $1*2$ +0 +5*4 +1*5 27
0 +2*3 +1*4 +4*5 30

Знайдені корені задовільняють систему, отже алгоритм виконується вірно.

Github code