Homework Assignment 2

Due in class, Wednesday Feb 21st

SDS 384-11 Theoretical Statistics

- 1. Show that Markov's inequality is tight.
 - (a) Give an example of a non-negative random variable X and a value k > 1 such that $P(X \ge kE[X]) = 1/k$.
 - (b) Give an example of a random variable X (with E[X] > 0) and a value k > 1 such that $P[X \ge kE[X]] > 1/k$.
- 2. Consider a r.v. X such that for all $\lambda \in \Re$

$$E[e^{\lambda X}] \le e^{\frac{\lambda^2 \sigma^2}{2} + \lambda \mu} \tag{1}$$

Prove that:

- (a) $E[X] = \mu$.
- (b) $var(X) < \sigma^2$.
- (c) If the smallest value of σ satisfying the above equation is chosen. Is it true that $var(X) = \sigma^2$? Prove or disprove.
- 3. Remember Hoeffding's Lemma? We proved it with a weaker constant in class using a symmetrization type argument. Now we will prove the original version. Let X be a bounded r.v. in [a,b] such that $E[X] = \mu$. Let $f(\lambda) = \log E[e^{\lambda(X-\mu)}]$. Show that $f''(\lambda) \leq (b-a)^2/8$. Now use the fundamental theorem of calculus to write $f(\lambda)$ in terms of $f''(\lambda)$ and finish the argument.
- 4. Bernstein's inequality for bounded i.i.d sequences of random variables $\{X_i\}$ with $|X_i| \leq M$ gives: $P(|\sum_i (X_i E[X_i])| \geq t) \leq 2 \exp\left(\frac{-t^2/2}{\sum_i \operatorname{var}(X_i) + Mt/3}\right)$. Consider n i.i.d. $X_i \sim \operatorname{Bernoulli}(p_n)$ r.v's. We will consider two cases to study concentration of \bar{X}_n around $p_2 n$.
 - (a) (Dense case) Let $np_n/\log n \to \infty$. Can you apply Hoeffding's bound and Bernstein's inequality to establish concentration of \bar{X}_n , i.e. $P(\bar{X}_n \in [p_n(1-\epsilon_n), p_n(1+\epsilon_n)]) = O(1/n)$? Do you prefer one bound over another? Why?
 - (b) (Sparse case) Repeat your argument for the case $np_n = c \log n$ where c is some constant not depending on n.