# Social Pressure and Voting

# Overview

- 01. Problem Recap
- 02. Preprocessing/Feature Engineering
- 03. Advanced EDA
- 04. Modelling Overview
- 05. Next Steps

SPRINT 2 PAGE 02

# The Problem

1

Low Voter Turnout

2

Poor Political Representation

SPRINT 02

PAGE 05

How might we use machine learning to understand the role of social pressure in determining voting behaviour

such that we can design interventions to increase voter turnout?

dentis

subgroups

#### Dataset Overview

Target column is 'voted'.

G 2 0 0 0 P 2 0 0 0 D E M

Past Voting Behaviour

S E X Y O B % < 5

Age/Gender

MEDIAN \$ UNEMPLOY

Income & Employment

> H S > B A C H < 9 - 1 2

Education

ZIP HH\_ID

Location & Household Info.

SPRINT 2 PAGE 08

### Feature Engineering

1

#### **One-Hot Encoding**

Turned treatment columns into dummy columns.

9

#### **Dropping Columns**

Removed columns that were redundant, had low variance or were highly correlated with other variables.

#### ADVANCED EDA



#### **CLUSTERING**

Using MiniBatchKMeans

#### **SCORING**

LUsed Inertia and Silhouette Score.

#### **MODELLING**

Yet to be integrated into modelling but promising.

#### MODELLING APPROACHES

## Logistic Regression

- 7 models
- Generally, accuracy ~69%
- Good precision and recall for the majority class (not voted)
- Poor precision and recall for minority class
- Used SMOTE

## Decision Trees

 Hyperparameter tuning using RandomizedSearchCV and GridSearchCV

#### Random Forest

- 2 models
- Better recall for 'first pass' model with no drop in accuracy
- Much better recall for class-balanced model

## **Gradient Boosting**

• Slight improvement in accuracy and precision

## Neural Network

- 3 layers, funnel-shaped
- Used dropout layers for generalisability

## Evaluation Metrics

Accuracy

F1 Score

SPRINT 02

#### NEXT STEPS

Clustering

Integrate into modelling

**Causal Forests** 

Estimate CATE

**Class-Balancing** 

Try with more models

**Shapley Values** 

To interpret models better