Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 22: Osservabilità e ricostruibilità a tempo continuo e dualità

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2021-2022

In questa lezione

Deservabilità e ricostruibilità di sistemi lineari a t.c.

▶ Sistema duale e sue proprietà

Osservabilità e ricostruibilità di sistemi LTI a tempo continuo

$$\dot{x}(t) = Fx(t) + Gu(t)$$
 $x(0) = x_0 \in \mathbb{R}^n$ $y(t) = Hx(t)$
$$y(t) \in \mathbb{R}^m \longrightarrow \sum_{x(t)} y(t) \in \mathbb{R}^p$$
 $y(\tau) = He^{F\tau}x_0 + \int_0^t He^{F(t-s)}Gu(s)ds, \ \tau \in [0, t]$

Quando possiamo determinare univocamente $x_0 \in \mathbb{R}^n$ dalle misure?

Quando possiamo determinare univocamente $x^* = x(t) \in \mathbb{R}^n$ dalle misure?

Criterio di osservabilità del rango

$$X_{NO}(t)=$$
 spazio non osservabile nell'intervallo $[0,t]$ $X_{NO}=$ (minimo) spazio non osservabile

Definizione: Un sistema Σ a t.c. si dice (completamente) osservabile se $X_{NO}=\{0\}.$

$$\mathcal{O} \triangleq \mathcal{O}_n = \begin{bmatrix} H \\ HF \\ \vdots \\ HF^{n-1} \end{bmatrix} = \text{matrice di osservabilità del sistema} \quad \text{(Matlab® obsv(sys))}$$

$$\Sigma$$
 osservabile \iff ker $(\mathcal{O}) = \{0\} \iff$ rank $(\mathcal{O}) = n$

N.B. Se un sistema Σ a t.c. è osservabile allora $X_{NO}(t) = \{0\}$ per ogni t > 0!!

Esempio

$$x_1(t) = i_{L_1}(t), x_2(t) = i_{L_2}(t)$$

 $y(t) = i_{R}(t) = i_{L_1}(t) + i_{L_2}(t)$

$$\mathcal{O} = \begin{bmatrix} 1 & 1 \\ -R(\frac{1}{L_1} + \frac{1}{L_2}) & -R(\frac{1}{L_1} + \frac{1}{L_2}) \end{bmatrix}$$

 $rank(\mathcal{O}) = 1 \implies \Sigma$ non osservabile

Ricostruibilità (a t.c.) = osservabilità (a t.c.)

$$x^* = x(t) = e^{Ft}x_0 + \int_0^t e^{F(t-\tau)}Gu(\tau)d\tau$$

misure $u(\tau),\ y(\tau),\ au \in [0,t]$

- stati iniziali compatibili con le misure: $x_0 + X_{NO}(t)$
- stati finali compatibili con le misure: $e^{Ft}X_{NO}(t) + \int_0^{\tau} e^{F(t-\tau)}Gu(\tau)d\tau$ = $x^* + e^{Ft}X_{NO}(t)$

$$X_{NR}(t)=e^{Ft}X_{NO}(t)={\sf spazio}$$
 non ricostruibile nell'intervallo $[0,t]$

$$e^{Ft}$$
 invertibile \Longrightarrow $X_{NR}(t) = \{0\} \iff X_{NO}(t) = \{0\}$

ricostruibilità = osservabilità !!

Sistema duale

sistema
$$\Sigma = (F, G, H)$$

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$ m ingressi p uscite n stati

sistema duale
$$\Sigma_d = (F^\top, H^\top, G^\top)$$

$$\Sigma_d$$
: $x(t+1) = F^{\top}x(t) + H^{\top}u(t)$ p ingressi m uscite n stati

N.B. Qui consideriamo sistemi a t.d. ma tutto si applica a t.c.!

Sistema duale: raggiungibilità e controllabilità

$$\Sigma_{d}: \begin{array}{c} x(t+1) = F^{\top}x(t) + H^{\top}u(t) & p \text{ ingressi} \\ y(t) = G^{\top}x(t) & m \text{ uscite} \\ n \text{ stati} \end{array}$$

$$\mathcal{R}_{d} = \begin{bmatrix} H^{\top} & F^{\top}H^{\top} & \cdots & (F^{\top})^{n-1}H^{\top} \end{bmatrix} = \begin{bmatrix} H \\ FH \\ \vdots \\ HF^{n-1} \end{bmatrix}^{\top} \begin{array}{c} \Sigma_{d} \text{ raggiungibile} \\ \Sigma \text{ osservabile} \end{array}$$

$$\operatorname{im}((F^{\top})^n) \subseteq \operatorname{im} \mathcal{R}_d \iff \ker(F^n) \supseteq \ker \mathcal{O}$$

 Σ_d controllabile \updownarrow Σ ricostruibile

Sistema duale: osservabilità e ricostruibilità

$$\Sigma_{d}: \begin{array}{c} x(t+1) = F^{\top}x(t) + H^{\top}u(t) & p \text{ ingressi} \\ y(t) = G^{\top}x(t) & n \text{ stati} \end{array}$$

$$\mathcal{O}_{d} = \begin{bmatrix} G^{\top} \\ G^{\top}F^{\top} \\ \vdots \\ G^{\top}(F^{\top})^{n-1} \end{bmatrix} = \begin{bmatrix} G & FG & \cdots & F^{n-1}G \end{bmatrix}^{\top} = \mathcal{R}^{\top} & \updownarrow \\ \Sigma \text{ raggiungibile} \end{array}$$

$$\ker((F^{\top})^n) \supseteq \ker \mathcal{O}_d \iff \operatorname{im}(F^n) \subseteq \operatorname{im} \mathcal{R}$$

 Σ_d ricostruibile \updownarrow Σ controllabile

Dualità: forma di Kalman di raggiungibilità/osservabilità

 Σ_d non raggiungibile

Forma di Kalman di raggiungibilità

 Σ non osservabile

Forma di Kalman di osservabilità $(F_{22}, 0)$ sottosistema non osservabile

Dualità: test PBH di raggiungibilità/osservabilità

Test PBH di osservabilità

Dualità: allocazione degli autovalori

$$\Sigma_{d} = (F^{\top}, H^{\top}, G^{\top}) \longrightarrow \begin{array}{c} \Sigma_{d} \text{ raggiungibile} \iff \\ \exists K \in \mathbb{R}^{p \times n} \colon F^{\top} + H^{\top}K \text{ ha autovalori desiderati} \\ & \downarrow \\ \Delta = (F, G, H) \longrightarrow \\ \exists L = K^{\top} \in \mathbb{R}^{n \times p} \colon F + LH \text{ ha autovalori desiderati} \end{array}$$

Proprietà equivalenti all'osservabilità

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$ m ingressi p uscite $y(t) = Hx(t)$ n stati

Teorema: Il sistema Σ è osservabile se e solo se:

- 1. $rank(\mathcal{O}) = n$.
- 2. Il sistema duale Σ_d è raggiungibile.
- 3. $\operatorname{rank}\begin{bmatrix} zI F \\ H \end{bmatrix} = n, \ \forall z \in \mathbb{C}.$
- 4. Gli autovalori di F+LH sono allocabili arbitrariamente tramite la matrice $L\in\mathbb{R}^{n\times p}$.

Proprietà equivalenti alla ricostruibilità

$$\Sigma$$
: $x(t+1) = Fx(t) + Gu(t)$ m ingressi p uscite $y(t) = Hx(t)$ n stati

Teorema: Il sistema Σ è ricostruibile se e solo se:

- 1. $\ker F^n \supseteq \ker \mathcal{O} = X_{NO}$.
- 2. Il sistema duale Σ_d è controllabile.

3. rank
$$\begin{bmatrix} zI - F \\ H \end{bmatrix} = n, \forall z \in \mathbb{C}, z \neq 0.$$

4. Esiste una matrice $L \in \mathbb{R}^{n \times p}$ tale che F + LH ha tutti gli autovalori nulli.

N.B. Parlare di ricostruibilità ha senso solo a t.d.!