Rule of Inference	Tautology	Name
$ \frac{p}{p \to q} $ $ \therefore \frac{q}{q} $	$(p \land (p \to q)) \to q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \overline{\neg p} \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$ \begin{array}{c} p \lor q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \lor q) \land \neg p) \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \to (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \to p$	Simplification
$ \frac{p}{q} $ $ \therefore \overline{p \wedge q} $	$((p) \land (q)) \to (p \land q)$	Conjunction
$p \lor q$ $\neg p \lor r$ $\therefore \overline{q \lor r}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

Set Identities

Set Identities		
Name	Identity	
Commutative Laws	A∩B=B∩A A∪B=B∪A	
Associative Laws	$(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$	
Distributive Laws	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
Identity Law (intersection and Unition with Universal Set)	A O U = A A O U = U	
Double Complement Laws	(A')'= A	
ldempotent Laws	A ∩ A = A A ∪ A = A	
De Morgan's Laws	$(A \cap B)' = A' \cup B'$ $(A \cup B)' = A' \cap B'$	
Absorption Laws	$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	
Set Difference Law	$A - B = A \cap B'$	

Idempotent laws:	p v p ≡ p	$p \wedge p \equiv p$
Associative laws:	(pvq)vr≡pv(qvr)	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
Commutative laws:	$p \vee q \equiv q \vee p$	$p \land q \equiv q \land p$
Distributive laws:	$pv(q\Lambda r) \equiv (pvq)\Lambda(pvr)$	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
Identity laws:	p v F ≡ p	$p \wedge T \equiv p$
Domination laws:	p∧F≡F	p∨T≣T
Double negation law:	¬¬p ≡ p	
Complement laws:	p∧¬p≡F ¬T≡F	p ∨ ¬p ≡ T ¬F ≡ T
De Morgan's laws:	¬(p∨q)≡¬p∧¬q	¬(p ∧ q) = ¬p ∨ ¬q
Absorption laws:	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
Conditional identities:	$p \rightarrow q \equiv \neg p \lor q$	$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

P	Q	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
\overline{F}	F	T

P	Q	$P \leftrightarrow Q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Operation	Notation	Description
Intersection	A∩B	$\{x: x \in A \text{ and } x \in B\}$
Union	AUB	$\{x: x \in A \text{ or } x \in B \text{ or both }\}$
Difference	A - B	{ x : x ∈ A and x ∉ B }
Symmetric difference	A⊕B	$\{x: x \in A - B \text{ or } x \in B - A\}$
Complement	Ā	{ x : x ∉ A }

$\sqrt{2} \text{ is irrational Folice?}$ $\sqrt{2} = \frac{a}{b}$ b must be odd $2 = \frac{a^2}{b^2} \text{ a must be even}$ $2b^2 = a^2$ $2b^2 = (2c)^2$ b is even $2b^2 = 4c^2$ $b^2 = 2c^2$ Contradictions: • b squared is even, so b is even, but we just got through showing it was odd. • if a is even and b is even, the fraction is not in simplest form, but we started by saying it was irreducible. Tutors.com

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$\begin{split} p &\rightarrow q \equiv \neg p \lor q \\ p &\rightarrow q \equiv \neg q \rightarrow \neg p \\ p &\lor q \equiv \neg p \rightarrow q \\ p &\land q \equiv \neg (p \rightarrow \neg q) \\ \neg (p \rightarrow q) \equiv p \land \neg q \\ (p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r) \\ (p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r \\ (p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r) \\ (p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r \end{split}$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

$$\neg (p \leftrightarrow q) \equiv p \leftrightarrow \neg q$$

Rules of Inference with Quantifiers

Universal Instantiation	Universal Generalization	Existential Instantiation	Existential Generalization
c is an element	c is an arbitrary element		c is an element
$\forall x P(x)$	P(c)	$\exists x P(x)$	P(c)
P(c)	$\forall x P(x)$	c is a particular element $\wedge P(c)$	$\exists x P(x)$

give me a 100 please and thank you <3

Quantifiers

Domain restrictions go before the colon.

$$\forall x P(x) : Q(x) = \forall x : P(x) \to Q(x) \quad \exists x P(x) : Q(x) = \exists x : P(x) \land Q(x)$$
$$\neg \forall x : P(x) = \exists x : \neg P(x) \qquad \neg \exists x : P(x) = \forall x : \neg P(x)$$

Reflexive: $\forall x \in A : (x, x) \in R$ — Symmetric: $\forall x, y \in A : (x, y) \in R \leftrightarrow (y, x) \in R$

Transitive: $\forall x, y, z \in A : ((x, y) \in R \land (y, z) \in R) \rightarrow (x, z) \in R$

- Induction questions: basis, inductive hypothesis, inductive step (k)
 - Strong induction: multiples bases, hypothesis, step (k+1)
- Tree method
 - Negate conclusion, rewrite hypotheses, start at top of hypothesis and make branches if not all branches are killed, counter-example exists
- Equivalence relation = reflexive, transitive, symmetric connecting classes (a ~ b); equivalence class = pairwise disjoint groups that make relations
- relations are subsets of cartesian products
- The composition of injective functions is injective and the composition of surjective functions is surjective, thus the composition of bijective functions is bijective.
 - injective = 1 to 1; surjective = b is mapped by at least one a; bijective = both inj and surj
 - A function f has an inverse if and only if f is a bijection. (inverse is x and y switched)
- Symmetric difference = set of elements that are a member of exactly one of A and B, but not both
- S o R = output of R paired with matching output in S
- Proofs
 - Contrapositive: $p \rightarrow c$ becomes not $c \rightarrow not p$
 - Contradiction (indirect proof): Assume p ∧ ¬q. Follow a series of logical steps to conclude r ∧ ¬r for some proposition r.
 - Proof by cases: universal statement such as $\forall x P(x)$ breaks the domain for the variable x into different classes and gives a different proof for each class

At most one person loves Layla.

```
\exists x: Loves(x, Layla) \rightarrow \forall y: (y \neq x \rightarrow \neg Loves(y, Layla))
```

Exactly one person loves Layla.

 $\exists x: Loves(x, Layla) \land \forall y: (y \neq x \rightarrow \neg Loves(y, Layla))$

Exactly two people love Layla.

```
\exists x, y: (x \neq y) \land Loves(x, Layla) \land Loves(y, Layla)\land \forall z: ((z \neq x \land z \neq y) \rightarrow \neg Loves(z, Layla))
```