

American University in Central Asia Software Engineering Department Computer Architecture (3 credits) ID: 3268 COM 410.1 Spring Semester - 2020.

Syllabus

Lectures: Tuesday, 14:10; Lab. Works: Tuesday, 15:35

Lecturer: Melis S. Osmonov, Candidate of Technical Sciences

E-mail: osmonov_m@ auca.kg; phone:

Office Hours: by appointment

Prerequisites:

COURSE DESCRIPTION

This course is a course on computer architecture with an emphasis on a quantitative approach to cost/performance design tradeoffs. The course covers the fundamentals of classical and modern processor design: performance and cost issues, instruction sets, pipelining, caches, physical memory, virtual memory, I/O superscalar and out-of-order instruction execution, speculative execution, long (SIMD) and short (multimedia) vector execution, multithreading, and an introduction to shared memory multiprocessors.

COURSE OBJECTIVES

- to learn fundamentals of classical and modern processor design;
- to study architecture of different processor through programming on assembler languages.

COURSE CONTENTS

- Introduction. History of computer architecture.
- Instruction set architecture.
- Performance.
- Technology.
- Pipelining.
- Caches.
- Virtual Memory.
- Superscalar.
- Scheduling.
- Multicore. Vectors

Lectures (30 academic hours)

Nº	Theme names and its contents	
		hours
1.	Theme 1. Introduction. History of computer architecture.	2
2.	Theme 2. Instruction set architecture. ISA Design Goals. MIPS, x86, ARM ISA. RISC and CISC. VLIW and EPIC.	4
3.	Theme 3. Performance. Metrics. Latency and throughput. Speedup. CPU Performance. Performance Pitfalls. Benchmarking.	2
4.	Theme 4. Technology. Technology basis. Manufacturing and cost. Transistor Switching Speed. Technology Scaling Trends. Power & Energy.	2
5.	Theme 5. Pipelining. Principles of pipelining. Data hazards. Control hazards. Structural Hazard. Bypassing.	2
6.	Theme 6. Caches . Basic memory hierarchy concepts. Types of Memory. Hardware Cache Organization. Finding Data via Indexing. Handling a Cache Miss	2
7.	Theme 7. Virtual Memory. Virtualizing Main Memory. Address Translation. Page Table Size. Multi-Level Page Table. Translation Lookaside Buffer.	4
8.	Theme 8. Superscalar. Superscalar scaling issues. Multiple fetch and branch prediction. Dependence-checks & stall logic. Wide bypassing. Register file & cache bandwidth. Multiple-issue designs. Superscalar. VLIW and EPIC (Itanium).	4
9.	Theme 9. Scheduling. Code scheduling to reduce pipeline stalls, to increase ILP (instruction level parallelism). Static scheduling. Compiler Scheduling. Static Scheduling Limitations. Dynamic scheduling. Register Renaming.	2
10.	Theme 10. Multicore. Thread-level parallelism (TLP). Shared memory model. Multiplexed uniprocessor. Hardware multithreading. Multiprocessing. Shared Memory Issues. Parallel Programming. Synchronization. Lock implementation. Cache coherence. Bus-based protocols. Directory protocols. Memory consistency models.	2
11.	Theme 11. Vectors.	2
12.	Theme 12. Multiprocessor architecture.	4

LAB WORKS

The goal of lab works is acquiring of practical skills in programming on Assembler languages.

 Lab work 1. Basic ARM Instructions. 	10 points
Lab work 2. ARM Branch instructions.	10 points
Lab work 3. ARM addressing modes.	10 points
 Lab work 4. ARM subroutine calls. 	20 points

EVALUATION AND GRADING:

The course grade will be calculated as follows:

•	Programming assignments, lab exercises:	-	50 points
•	Midterm Exam:		20 points
•	Final Exam:	-	30 points

GRADES

Final course grades will be assigned as follows:

$95 < A \le 100$	$90 < A^{-} \le 95$	$85 < B^+ \le 90$	$80 < B \le 85$
$75 < B^- \le 80$	$70 < C^+ \le 75$	$65 < C \le 70$	$60 < C^- \le 65$
$55 < D^+ \le 60$	$50 < D \le 55$	$F \le 50$	

TEXTBOOK

- 1. Hennessy John L., Patterson David A. *Computer Architecture: A Quantitative Approach*. Morgan Kaufmann, 2007.
- 2. Hennessy John L., Patterson David A. *Computer Organization and Design MIPS Edition*: The Hardware/Software Interface. Fifth Edition: Morgan Kaufmann, 2017.
- 3. Hennessy John L., Patterson David A. Computer Organization and Design ARM Edition: The Hardware Software Interface. Morgan Kaufmann, 2017.
- 4. Clements Alan. *Computer Organization and Architecture: Themes and Variations*. Cengage Learning, 2014.

ADDITIONAL TEXTBOOKS

- 1. Jean-Loup Baer. *Microprocessor Architecture From simple Pipelines to Chip Multiprocessors.* Cambridge University Press, 2010.
- 2. P.A. Carter. PC Assembly Language. 2006
- 3. Hohl William, Hinds Christopher. *ARM Assembly Language: Fundamentals and Techniques.* CRC Press, 2015.
- 4. Э.Таненбаум. Архитектура компьютера. 4-е издание. Питер, 2003.

COURSE POLICY

Requirements to student's behavior do not go beyond the scope of AUCA Code of Honor.