TOÁN 10

TRUY CẬP https://diendangiaovientoan.vn/tai-lieu-tham-khao-d8.html ĐỂ ĐƯỢC NHIỀU 0D6-2 HON

Contents

PHẦN A. CÂU HỎI	1
DẠNG 1. XÉT DẦU CỦA CÁC GIÁ TRỊ LƯỢNG GIÁC	1
DẠNG 2. GIÁ TRỊ LƯỢNG GIÁC CỦA CÁC CUNG CÓ LIÊN QUAN ĐẶC BIỆT	2
DẠNG 3. TÍNH GIÁ TRỊ LƯỢNG GIÁC	3
DẠNG 4. RÚT GỌN BIỀU THỨC LƯỢNG GIÁC	6
PHẦN B. LỜI GIẢI	9
DẠNG 1. XÉT DẦU CỦA CÁC GIÁ TRỊ LƯỢNG GIÁC	9
DẠNG 2. GIÁ TRỊ LƯỢNG GIÁC CỦA CÁC CUNG CÓ LIÊN QUAN ĐẶC BIỆT	10
DANG 3. TÍNH GIÁ TRỊ LƯỢNG GIÁC	11
DẠNG 4. RÚT GỌN BIỀU THỨC LƯỢNG GIÁC	

PHẦN A. CÂU HỎI

DANG 1. XÉT DÂU CỦA CÁC GIÁ TRI LƯƠNG GIÁC

- Cho $\frac{\pi}{2} < a < \pi$. Kết quả đúng là Câu 1.
 - **A.** $\sin a > 0$, $\cos a > 0$. **B.** $\sin a < 0$, $\cos a < 0$. **C.** $\sin a > 0$, $\cos a < 0$. **D.** $\sin a < 0$, $\cos a > 0$.
- Câu 2. Trong các giá trị sau, $\sin \alpha$ có thể nhận giá trị nào?
 - A. -0.7.
- **B.** $\frac{4}{2}$.
- C. $-\sqrt{2}$.
- **D.** $\frac{\sqrt{5}}{2}$.

- Cho $2\pi < a < \frac{5\pi}{2}$. Chọn khẳng định đúng. Câu 3.
 - **A.** $\tan a > 0$, $\cot a < 0$. **B.** $\tan a < 0$, $\cot a < 0$.
 - **C.** $\tan a > 0$, $\cot a > 0$. **D.** $\tan a < 0$, $\cot a > 0$.
- Ở góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau Câu 4.
 - A. $\cot \alpha < 0$.
- **B.** $\sin \alpha > 0$.
- C. $\cos \alpha < 0$.
- **D.** $\tan \alpha < 0$.
- Ở góc phần tư thứ tư của đường tròn lượng giác. hãy chọn kết quả đúng trong các kết quả sau đây. Câu 5. **B.** $\tan \alpha > 0$. A. $\cot \alpha > 0$. C. $\sin \alpha > 0$. **D.** $\cos \alpha > 0$.
- Cho $\frac{7\pi}{4} < \alpha < 2\pi$. Xét câu nào sau đây đúng? Câu 6.
 - **A.** $\tan \alpha > 0$.
- **B.** $\cot \alpha > 0$.
- C. $\cos \alpha > 0$.
- **D.** $\sin \alpha > 0$.

Câu 7. Xét câu nào sau đây đúng?

A.
$$\cos^2 45^\circ = \sin\left(\frac{\pi}{3}\cos 60^\circ\right)$$
.

- B. Hai câu A và
- C. Nếu a âm thì ít nhất một trong hai số $\cos a$, $\sin a$ phải âm.
- **D.** Nếu a dương thì $\sin a = \sqrt{1 \cos^2 a}$
- Cho $\frac{\pi}{2} < \alpha < \pi$. Kết quả đúng là: Câu 8.
 - **A.** $\sin \alpha < 0$; $\cos \alpha < 0$. **B.** $\sin \alpha > 0$; $\cos \alpha < 0$.
 - C. $\sin \alpha < 0$; $\cos \alpha > 0$. D. $\sin \alpha > 0$; $\cos \alpha > 0$.
- Xét các mênh đề sau: Câu 9.

I.
$$\cos\left(\frac{\pi}{2} - \alpha\right) > 0$$
. II. $\sin\left(\frac{\pi}{2} - \alpha\right) > 0$. III. $\tan\left(\frac{\pi}{2} - \alpha\right) > 0$.

Mênh đề nào sai?

- A. Chỉ I.
- B. Chỉ II.
- C. Chỉ II và III.
- D. Cả I, II và III.

Xét các mệnh đề sau đây: **Câu 10.**

I.
$$\cos\left(\alpha + \frac{\pi}{2}\right) < 0$$
. II. $\sin\left(\alpha + \frac{\pi}{2}\right) < 0$. III. $\cot\left(\alpha + \frac{\pi}{2}\right) > 0$.

Mênh đề nào đúng?

- A. Chỉ II và III.
- B. Cå I, II và III.
- C. Chỉ I.
- **D.** Chỉ I và II.
- **Câu 11.** Cho góc lượng giác $\alpha \left(\frac{\pi}{2} < \alpha < \pi \right)$. Xét dấu $\sin \left(\alpha + \frac{\pi}{2} \right)$ và $\tan \left(-\alpha \right)$. Chọn kết quả đúng.

$$\mathbf{A.} \begin{cases} \sin\left(\alpha + \frac{\pi}{2}\right) < 0 \\ \tan\left(-\alpha\right) < 0 \end{cases}$$

B.
$$\begin{cases} \sin\left(\alpha + \frac{\pi}{2}\right) > 0 \\ \tan\left(-\alpha\right) < 0 \end{cases}$$

C.
$$\begin{cases} \sin\left(\alpha + \frac{\pi}{2}\right) < 0 \\ \tan\left(-\alpha\right) > 0 \end{cases}$$

A.
$$\begin{cases} \sin\left(\alpha + \frac{\pi}{2}\right) < 0 \\ \tan\left(-\alpha\right) < 0 \end{cases}$$
B.
$$\begin{cases} \sin\left(\alpha + \frac{\pi}{2}\right) > 0 \\ \tan\left(-\alpha\right) < 0 \end{cases}$$
C.
$$\begin{cases} \sin\left(\alpha + \frac{\pi}{2}\right) < 0 \\ \tan\left(-\alpha\right) > 0 \end{cases}$$
D.
$$\begin{cases} \sin\left(\alpha + \frac{\pi}{2}\right) > 0 \\ \tan\left(-\alpha\right) > 0 \end{cases}$$

DẠNG 2. GIÁ TRỊ LƯỢNG GIÁC CỦA CÁC CUNG CÓ LIÊN QUAN ĐẶC BIỆT

- **Câu 12.** Cho hai góc nhọn α và β phụ nhau. Hệ thức nào sau đây là **sai**?
 - **A.** $\cot \alpha = \tan \beta$.
- **B.** $\cos \alpha = \sin \beta$.
- C. $\cos \beta = \sin \alpha$.
- **D.** $\sin \alpha = -\cos \beta$.

- Câu 13. Trong các đẳng thức sau, đẳng thức nào đúng?
 - **A.** $\sin(180^{\circ} a) = -\cos a$.

B. $\sin(180^{\circ} - a) = -\sin a$.

C. $\sin(180^{\circ} - a) = \sin a$.

- **D.** $\sin(180^{\circ} a) = \cos a$.
- Câu 14. Chọn đẳng thức sai trong các đẳng thức sau
 - A. $\sin\left(\frac{\pi}{2} x\right) = \cos x$.

B. $\sin\left(\frac{\pi}{2} + x\right) = \cos x$.

C. $\tan\left(\frac{\pi}{2} - x\right) = \cot x$.

- **D.** $\tan\left(\frac{\pi}{2} + x\right) = \cot x$.
- Câu 15. Trong các mệnh đề sau, mệnh đề nào đúng?
 - A. $\cos(-x) = -\cos x$.

B. $\sin(x-\pi) = \sin x$.

C.
$$\cos(\pi - x) = -\cos x$$
.

D.
$$\sin\left(\frac{\pi}{2} - x\right) = -\cos x$$
.

Câu 16. Khẳng định nào sau đây là sai?

A.
$$\sin(-\alpha) = -\sin \alpha$$
.

B.
$$\cot(-\alpha) = -\cot \alpha$$

A.
$$\sin(-\alpha) = -\sin \alpha$$
. **B.** $\cot(-\alpha) = -\cot \alpha$. **C.** $\cos(-\alpha) = -\cos \alpha$. **D.** $\tan(-\alpha) = -\tan \alpha$.

D.
$$\tan(-\alpha) = -\tan \alpha$$

Câu 17. Khẳng định nào sau đây đúng?

A.
$$\sin(-x) = -\sin x$$
.

B.
$$\cos(-x) = -\cos x$$
.

C.
$$\cot(-x) = \cot x$$
.

D.
$$tan(-x) = tan x$$
.

Câu 18. Chọn hệ thức sai trong các hệ thức sau.

A.
$$\tan\left(\frac{3\pi}{2} - x\right) = \cot x$$
.

$$\mathbf{B.} \, \sin(3\pi - x) = \sin x \,.$$

C.
$$\cos(3\pi - x) = \cos x$$
.

D.
$$\cos(-x) = \cos x$$
.

Câu 19. $\cos(x+2017\pi)$ bằng kết quả nào sau đây?

$$\mathbf{A} \cdot -\cos x$$
.

$$\mathbf{B} \cdot -\sin x$$
.

$$\mathbf{C}$$
. $\sin x$.

$$\mathbf{D}$$
. $\cos x$.

DANG 3. TÍNH GIÁ TRI LƯƠNG GIÁC

Câu 20. Giá trị của cot 1458° là

B.
$$-1$$
.

D.
$$\sqrt{5+2\sqrt{5}}$$

Câu 21. Giá trị $\cot \frac{89\pi}{6}$ là

A.
$$\sqrt{3}$$
.

B.
$$-\sqrt{3}$$
.

C.
$$\frac{\sqrt{3}}{3}$$
.

D.
$$-\frac{\sqrt{3}}{3}$$
.

Câu 22. Giá trị của tan 180° là

B. 0.

C. -1.

D. Không xác định.

Câu 23. Cho biết $\tan \alpha = \frac{1}{2}$. Tính $\cot \alpha$

A.
$$\cot \alpha = 2$$
.

B.
$$\cot \alpha = \frac{1}{4}$$
.

B.
$$\cot \alpha = \frac{1}{4}$$
. **C.** $\cot \alpha = \frac{1}{2}$.

D.
$$\cot \alpha = \sqrt{2}$$
.

Câu 24. Cho $\sin \alpha = \frac{3}{5}$ và $\frac{\pi}{2} < \alpha < \pi$. Giá trị của $\cos \alpha$ là:

A.
$$\frac{4}{5}$$
.

B.
$$-\frac{4}{5}$$

B.
$$-\frac{4}{5}$$
. **C.** $\pm \frac{4}{5}$.

D.
$$\frac{16}{25}$$
.

Câu 25. Cho $\cos \alpha = \frac{4}{5} \text{ với } 0 < \alpha < \frac{\pi}{2}$. Tính $\sin \alpha$.

A.
$$\sin \alpha = \frac{1}{5}$$

A.
$$\sin \alpha = \frac{1}{5}$$
. **B.** $\sin \alpha = -\frac{1}{5}$. **C.** $\sin \alpha = \frac{3}{5}$. **D.** $\sin \alpha = \pm \frac{3}{5}$.

C.
$$\sin \alpha = \frac{3}{5}$$

D.
$$\sin \alpha = \pm \frac{3}{5}$$
.

3

Tính α biết $\cos \alpha = 1$ **Câu 26.**

A.
$$\alpha = k\pi \ (k \in \mathbb{Z})$$
.

A.
$$\alpha = k\pi \ (k \in \mathbb{Z})$$
. **B.** $\alpha = k2\pi \ (k \in \mathbb{Z})$.

$$\mathbf{C.} \ \alpha = \frac{\pi}{2} + k2\pi \ \left(k \in \mathbb{Z} \right).$$

D.
$$\alpha = -\pi + k2\pi \ (k \in \mathbb{Z})$$
.

 $\tan \alpha = -\frac{4}{5} \frac{3\pi}{\text{v\'oi}} < \alpha < 2\pi$ Câu 27. Cho
. Khi đó:

A.
$$\sin \alpha = -\frac{4}{\sqrt{41}}, \cos \alpha = -\frac{5}{\sqrt{41}}.$$

B.
$$\sin \alpha = \frac{4}{\sqrt{41}}$$
, $\cos \alpha = \frac{5}{\sqrt{41}}$.

C.
$$\sin \alpha = -\frac{4}{\sqrt{41}} \cos \alpha = \frac{5}{\sqrt{41}}$$
.

D.
$$\sin \alpha = \frac{4}{\sqrt{41}}, \cos \alpha = -\frac{5}{\sqrt{41}}.$$

Câu 28. Cho $\cos 15^0 = \frac{\sqrt{2 + \sqrt{3}}}{2}$. Giá trị của $\tan 15^o$ bằng:

A.
$$\sqrt{3} - 2$$

A.
$$\sqrt{3}-2$$
 B. $\frac{\sqrt{2-\sqrt{3}}}{2}$ **C.** $2-\sqrt{3}$

C.
$$2 - \sqrt{3}$$

D.
$$\frac{2+\sqrt{3}}{4}$$

Câu 29. Cho $\cos \alpha = -\frac{2}{5} \left(\frac{\pi}{2} < \alpha < \pi \right)$. Khi đó $\tan \alpha$ bằng

A.
$$\frac{\sqrt{21}}{3}$$
.

A.
$$\frac{\sqrt{21}}{3}$$
. **B.** $-\frac{\sqrt{21}}{5}$. **C.** $\frac{\sqrt{21}}{5}$.

C.
$$\frac{\sqrt{21}}{5}$$
.

D.
$$-\frac{\sqrt{21}}{2}$$
.

Câu 30. Cho tan $\alpha = \sqrt{5}$, với $\pi < \alpha < \frac{3\pi}{2}$. Khi đó cos α bằng:

A.
$$-\frac{\sqrt{6}}{6}$$
. **B.** $\sqrt{6}$.

B.
$$\sqrt{6}$$

C.
$$\frac{\sqrt{6}}{6}$$
.

D.
$$\frac{1}{6}$$
.

Câu 31. Cho $\sin \alpha = \frac{3}{5} (90^\circ < \alpha < 180^\circ)$. Tính $\cot \alpha$.

A.
$$\cot \alpha = \frac{3}{4}$$
. **B.** $\cot \alpha = \frac{4}{3}$.

B.
$$\cot \alpha = \frac{4}{3}$$

C.
$$\cot \alpha = -\frac{4}{3}$$
. **D.** $\cot \alpha = -\frac{3}{4}$.

D.
$$\cot \alpha = -\frac{3}{4}$$
.

Câu 32. Trên nửa đường tròn đơn vị cho góc α sao cho $\sin \alpha = \frac{2}{3}$ và $\cos \alpha < 0$. Tính $\tan \alpha$.

A.
$$\frac{-2\sqrt{5}}{5}$$
.

B.
$$\frac{2\sqrt{5}}{5}$$
.

C.
$$\frac{-2}{5}$$
.

Câu 33. Cho $\sin \alpha = \frac{1}{3}$ và $\frac{\pi}{2} < \alpha < \pi$. Khi đó $\cos \alpha$ có giá trị là.

A.
$$\cos \alpha = -\frac{2}{3}$$

B.
$$\cos \alpha = \frac{2\sqrt{2}}{3}$$

C.
$$\cos \alpha = \frac{8}{9}$$
.

A.
$$\cos \alpha = -\frac{2}{3}$$
. **B.** $\cos \alpha = \frac{2\sqrt{2}}{3}$. **C.** $\cos \alpha = \frac{8}{9}$. **D.** $\cos \alpha = -\frac{2\sqrt{2}}{3}$.

4

Câu 34. Cho $\cot \alpha = -3\sqrt{2}$ với $\frac{\pi}{2} < \alpha < \pi$. Khi đó giá trị $\tan \frac{\alpha}{2} + \cot \frac{\alpha}{2}$ bằng:

A.
$$2\sqrt{19}$$
.

B.
$$-2\sqrt{19}$$
.

C.
$$-\sqrt{19}$$
.

D.
$$\sqrt{19}$$
.

Câu 35. Nếu $\sin \alpha + \cos \alpha = \frac{3}{2}$ thì $\sin 2\alpha$ bằng

A.
$$\frac{5}{4}$$
.

B.
$$\frac{1}{2}$$

C.
$$\frac{13}{4}$$

D.
$$\frac{9}{4}$$

Câu 36. Cho $\sin x + \cos x = \frac{1}{2}$ và $0 < x < \frac{\pi}{2}$. Tính giá trị của $\sin x$.

A.
$$\sin x = \frac{1 + \sqrt{7}}{6}$$

A.
$$\sin x = \frac{1+\sqrt{7}}{6}$$
. **B.** $\sin x = \frac{1-\sqrt{7}}{6}$. **C.** $\sin x = \frac{1+\sqrt{7}}{4}$. **D.** $\sin x = \frac{1-\sqrt{7}}{4}$.

C.
$$\sin x = \frac{1 + \sqrt{7}}{4}$$

D.
$$\sin x = \frac{1 - \sqrt{7}}{4}$$

Câu 37. Cho sinx = $\frac{1}{2}$. Tính giá trị của $\cos^2 x$.

A.
$$\cos^2 x = \frac{3}{4}$$

A.
$$\cos^2 x = \frac{3}{4}$$
 B. $\cos^2 x = \frac{\sqrt{3}}{2}$ **C.** $\cos^2 x = \frac{1}{4}$ **D.** $\cos^2 x = \frac{1}{2}$

C.
$$\cos^2 x = \frac{1}{4}$$

D.
$$\cos^2 x = \frac{1}{2}$$

Câu 38. Cho $P = \frac{3\sin x - \cos x}{\sin x + 2\cos x}$ với $\tan x = 2$. Giá trị của P bằng

A.
$$\frac{8}{9}$$
.

B.
$$-\frac{2\sqrt{2}}{3}$$
. **C.** $\frac{\sqrt{8}}{9}$.

C.
$$\frac{\sqrt{8}}{9}$$
.

D.
$$\frac{5}{4}$$

Câu 39. Cho sinx = $\frac{1}{2}$ và cosx nhận giá trị âm, giá trị của biểu thức $A = \frac{\sin x - \cos x}{\sin x + \cos x}$ bằng

A.
$$-2 - \sqrt{3}$$

B.
$$2 + \sqrt{3}$$

C.
$$-2 + \sqrt{3}$$

D.
$$2 - \sqrt{3}$$

Câu 40. Cho tan x = 2. Giá trị biểu thức $P = \frac{4\sin x + 5\cos x}{2\sin x - 3\cos x}$ là

Câu 41. Cho tam giác \overrightarrow{ABC} đều. Tính giá trị của biểu thức $P = \cos(\overrightarrow{AB}, \overrightarrow{BC}) + \cos(\overrightarrow{BC}, \overrightarrow{CA}) + \cos(\overrightarrow{CA}, \overrightarrow{AB})$

A.
$$P = \frac{3}{2}$$
.

B.
$$P = -\frac{3}{2}$$

A.
$$P = \frac{3}{2}$$
. **B.** $P = -\frac{3}{2}$. **C.** $P = -\frac{3\sqrt{3}}{2}$. **D.** $P = \frac{3\sqrt{3}}{2}$.

D.
$$P = \frac{3\sqrt{3}}{2}$$
.

Câu 42. Cho tan a = 2. Tính giá trị biểu thức $P = \frac{2 \sin a - \cos a}{\sin a + \cos a}$.

A.
$$P = 2$$
.

B.
$$P = 1$$
.

C.
$$P = \frac{5}{3}$$
.

D.
$$P = -1$$
.

Câu 43. Cho cung lượng giác có số đo x thỏa mãn $\tan x = 2$. Giá trị của biểu thức $M = \frac{\sin x - 3\cos^3 x}{5\sin^3 x - 2\cos x}$ bằng

A.
$$\frac{7}{30}$$
.

B.
$$\frac{7}{32}$$
.

C.
$$\frac{7}{33}$$
.

D.
$$\frac{7}{31}$$
.

Câu 44. Cho $\sin x = \frac{1}{2}$ và $\cos x$ nhận giá trị âm, giá trị của biểu thức $A = \frac{\sin x - \cos x}{\sin x + \cos x}$ bằng

A.
$$-2-\sqrt{3}$$
.

B.
$$2+\sqrt{3}$$
.

C.
$$-2+\sqrt{3}$$
. **D.** $2-\sqrt{3}$.

D.
$$2-\sqrt{3}$$
.

Câu 45. Giá trị của biểu thức $A = \frac{\cos 750^{\circ} + \sin 420^{\circ}}{\sin (-330^{\circ}) - \cos (-390^{\circ})}$ bằng

A.
$$-3 - \sqrt{3}$$

B.
$$2-3\sqrt{3}$$

C.
$$\frac{2\sqrt{3}}{\sqrt{3}-1}$$

A.
$$-3-\sqrt{3}$$
. **B.** $2-3\sqrt{3}$. **C.** $\frac{2\sqrt{3}}{\sqrt{3}-1}$. **D.** $\frac{1-\sqrt{3}}{\sqrt{3}}$.

Câu 46. Cho $\sin \alpha = \frac{3}{5} \text{ và } 90^{\circ} < \alpha < 180^{\circ}$. Giá trị của biểu thức $E = \frac{\cot \alpha - 2 \tan \alpha}{\tan \alpha + 3 \cot \alpha}$ là:

A.
$$\frac{2}{57}$$

B.
$$-\frac{2}{57}$$
.

C.
$$\frac{4}{57}$$
.

D.
$$-\frac{4}{57}$$
.

Câu 47. Cho tan $\alpha = 2$. Giá trị của $A = \frac{3\sin \alpha + \cos \alpha}{\sin \alpha - \cos \alpha}$ là:

B.
$$\frac{5}{3}$$
. **C.** 7.

D.
$$\frac{7}{3}$$
.

Câu 48. Giá trị của $A = \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{5\pi}{8} + \cos^2 \frac{7\pi}{8}$ bằng

Câu 49. Rút gọn biểu thức $A = \frac{\sin(-234^{\circ}) - \cos 216^{\circ}}{\sin 144^{\circ} - \cos 126^{\circ}}$ tan 36°, ta có A bằng

Câu 50. Biểu thức $B = \frac{(\cot 44^0 + \tan 226^0) \cdot \cos 406^0}{\cos 316^0} - \cot 72^0 \cdot \cot 18^0$ có kết quả rút gọn bằng

C.
$$\frac{-1}{2}$$
.

D.
$$\frac{1}{2}$$
.

Câu 51. Biết $\tan \alpha = 2$ và $180^{\circ} < \alpha < 270^{\circ}$. Giá trị $\cos \alpha + \sin \alpha$ bằng

A.
$$-\frac{3\sqrt{5}}{5}$$
.

B.
$$1 - \sqrt{5}$$
.

B.
$$1-\sqrt{5}$$
. **C.** $\frac{3\sqrt{5}}{2}$.

D.
$$\frac{\sqrt{5}-1}{2}$$
.

Câu 52. Cho biết $\cot x = \frac{1}{2}$. Giá trị biểu thức $A = \frac{2}{\sin^2 x - \sin x \cdot \cos x - \cos^2 x}$ bằng

D. 12.

DANG 4. RÚT GON BIỂU THỨC LƯƠNG GIÁC

Câu 53. Trong các công thức sau, công thức nào sai?

$$\mathbf{A.} \, \sin^2 \alpha + \cos^2 \alpha = 1 \, .$$

A.
$$\sin^2 \alpha + \cos^2 \alpha = 1$$
. **B.** $1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha} \left(\alpha \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right)$.

C.
$$1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha} (\alpha \neq k\pi, k \in \mathbb{Z})$$
.

C.
$$1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha} \left(\alpha \neq k\pi, k \in \mathbb{Z} \right)$$
.

D. $\tan \alpha + \cot \alpha = 1 \left(\alpha \neq \frac{k\pi}{2}, k \in \mathbb{Z} \right)$.

Câu 54. Biểu thức rút gọn của $A = \frac{\tan^2 a - \sin^2 a}{\cot^2 a - \cos^2 a}$ bằng:

A. tan^6a .

 \mathbf{C} . $\tan^4 a$.

D. $\sin^6 a$.

Câu 55. Biểu thức $D = \cos^2 x \cdot \cot^2 x + 3\cos^2 x - \cot^2 x + 2\sin^2 x$ không phụ thuộc x và bằng

A. 2.

B. -2.

D. -3.

Câu 56. Biểu thức
$$A = \frac{\sin(-328^{\circ}).\sin 958^{\circ}}{\cot 572^{\circ}} - \frac{\cos(-508^{\circ}).\cos(-1022^{\circ})}{\tan(-212^{\circ})}$$
 rút gọn bằng:

A. −1.

B. 1.

C. 0.

D. 2.

Câu 57. Biểu thức
$$A = \frac{\sin 515^{\circ}.\cos(-475^{\circ}) + \cot 222^{\circ}.\cot 408^{\circ}}{\cot 415^{\circ}.\cot(-505^{\circ}) + \tan 197^{\circ}.\tan 73^{\circ}}$$
 có kết quả rút gọn bằng

A. $\frac{1}{2}\sin^2 25^\circ$. **B.** $\frac{1}{2}\cos^2 55^\circ$. **C.** $\frac{1}{2}\cos^2 25^\circ$. **D.** $\frac{1}{2}\sin^2 65^\circ$.

Câu 58. Đơn giản biểu thức
$$A = \frac{2\cos^2 x - 1}{\sin x + \cos x}$$
 ta có

B. $A = \cos x - \sin x$. **C.** $A = \sin x - \cos x$. **D.** $A = -\sin x - \cos x$.

Câu 59. Biết
$$\sin \alpha + \cos \alpha = \frac{\sqrt{2}}{2}$$
. Trong các kết quả sau, kết quả nào **sai**?

A. $\sin \alpha . \cos \alpha = -\frac{1}{4}$. **B.** $\sin \alpha - \cos \alpha = \pm \frac{\sqrt{6}}{2}$.

C. $\sin^4 \alpha + \cos^4 \alpha = \frac{7}{9}$. D. $\tan^2 \alpha + \cot^2 \alpha = 12$.

Câu 60. Biểu thức:

$$A = \cos(\alpha + 26\pi) - 2\sin(\alpha - 7\pi) - \cos 1, 5\pi - \cos\left(\alpha + \frac{2003\pi}{2}\right) + \cos(\alpha - 1, 5\pi) \cdot \cot(\alpha - 8\pi)$$
 có kết quả thu gọn bằng:

 $\mathbf{A} \cdot -\sin \alpha$.

B. $\sin \alpha$.

 $\mathbf{C} \cdot -\cos \alpha$.

D. $\cos \alpha$.

Câu 61. Đơn giản biểu thức $A = (1 - \sin^2 x) \cdot \cot^2 x + (1 - \cot^2 x)$, ta có

A. $A = \sin^2 x$.

B. $A = \cos^2 x$. **C.** $A = -\sin^2 x$. **D.** $A = -\cos^2 x$.

Câu 62. Đơn giản biểu thức $A = \cos\left(\frac{\pi}{2} - \alpha\right) + \sin\left(\frac{\pi}{2} - \alpha\right) - \cos\left(\frac{\pi}{2} + \alpha\right) - \sin\left(\frac{\pi}{2} + \alpha\right)$, ta có:

A. $A = 2 \sin a$.

B. $A = 2\cos a$. **C.** $A = \sin a - \cos a$. **D.** A = 0.

Câu 63. Biểu thức $P = \sin(\pi + x) - \cos(\frac{\pi}{2} - x) + \cot(2\pi - x) + \tan(\frac{3\pi}{2} - x)$ có biểu thức rút gọn là

A. $P = 2 \sin x$.

B. $P = -2\sin x$.

C. P = 0.

D. $P = -2 \cot x$.

Câu 64. Cho tam giác ABC. Đẳng thức nào sau đây sai?

A. $A + B + C = \pi$. **B.** $\cos(A + B) = \cos C$. **C.** $\sin \frac{A + B}{2} = \cos \frac{C}{2}$. **D.** $\sin(A + B) = \sin C$.

Câu 65. Đơn giản biểu thức $A = \cos\left(\alpha - \frac{\pi}{2}\right) + \sin\left(\alpha - \pi\right)$, ta có

A. $A = \cos a + \sin a$.

B. $A = 2 \sin a$.

C. $A = \sin a - \cos a$.

7

Câu 66. Cho A, B, C là ba góc của một tam giác không vuông. Mệnh đề nào sau đây sai?

A. $\tan\left(\frac{A+B}{2}\right) = \cot\frac{C}{2}$.

B.
$$\cot\left(\frac{A+B}{2}\right) = \tan\frac{C}{2}$$
.

C.
$$\cot(A+B) = -\cot C$$
.

D.
$$\tan(A+B) = \tan C$$
.

Tính giá trị của biểu thức $A = \sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x$.

A.
$$A = -1$$

B.
$$A = 1$$

$$C. A = 4.$$

D.
$$A = -4$$
.

Biểu thức $A = \frac{\left(1 - \tan^2 x\right)^2}{4 \tan^2 x} - \frac{1}{4 \sin^2 x \cos^2 x}$ không phụ thuộc vào x và bằng

C.
$$\frac{1}{4}$$
.

D.
$$-\frac{1}{4}$$
.

Câu 69. Biểu thức $B = \frac{\cos^2 x - \sin^2 y}{\sin^2 x \cdot \sin^2 y} - \cot^2 x \cdot \cot^2 y$ không phụ thuộc vào x, y và bằng

Câu 70. Biểu thức $C = 2(\sin^4 x + \cos^4 x + \sin^2 x \cos^2 x)^2 - (\sin^8 x + \cos^8 x)$ có giá trị không đổi và bằng

Câu 71. Hệ thức nào sai trong bốn hệ thức sau:

A.
$$\frac{\tan x + \tan y}{\cot x + \cot y} = \tan x \cdot \tan y$$
.

B.
$$\left(\sqrt{\frac{1+\sin a}{1-\sin a}} - \sqrt{\frac{1-\sin a}{1+\sin a}}\right)^2 = 4\tan^2 a$$
.

C.
$$\frac{\sin \alpha}{\cos \alpha + \sin \alpha} - \frac{\cos \alpha}{\cos \alpha - \sin \alpha} = \frac{1 + \cot^2 \alpha}{1 - \cot^2 \alpha}$$
. D. $\frac{\sin \alpha + \cos \alpha}{1 - \cos \alpha} = \frac{2\cos \alpha}{\sin \alpha - \cos \alpha + 1}$.

D.
$$\frac{\sin \alpha + \cos \alpha}{1 - \cos \alpha} = \frac{2\cos \alpha}{\sin \alpha - \cos \alpha + 1}$$

Câu 72. Nếu biết $3\sin^4 x + 2\cos^4 x = \frac{98}{81}$ thì giá trị biểu thức $A = 2\sin^4 x + 3\cos^4 x$ bằng

A.
$$\frac{101}{81}$$
 hay $\frac{601}{504}$

B.
$$\frac{103}{81}$$
 hay $\frac{603}{405}$

C.
$$\frac{105}{81}$$
 hay $\frac{605}{504}$

A.
$$\frac{101}{81}$$
 hay $\frac{601}{504}$. **B.** $\frac{103}{81}$ hay $\frac{603}{405}$. **C.** $\frac{105}{81}$ hay $\frac{605}{504}$. **D.** $\frac{107}{81}$ hay $\frac{607}{405}$.

Câu 73. Nếu $\sin x + \cos x = \frac{1}{2}$ thì $3\sin x + 2\cos x$ bằng

A.
$$\frac{5-\sqrt{7}}{4}$$
 hay $\frac{5+\sqrt{7}}{4}$. **B.** $\frac{5-\sqrt{5}}{7}$ hay $\frac{5+\sqrt{5}}{4}$.

C.
$$\frac{2-\sqrt{3}}{5}$$
 hay $\frac{2+\sqrt{3}}{5}$. D. $\frac{3-\sqrt{2}}{5}$ hay $\frac{3+\sqrt{2}}{5}$

Câu 74. Biết $\tan x = \frac{2b}{a-c}$. Giá trị của biểu thức $A = a\cos^2 x + 2b\sin x \cdot \cos x + c\sin^2 x$ bằng

$$\mathbf{A}$$
. $-a$

Câu 75. Nếu biết $\frac{\sin^4 \alpha}{a} + \frac{\cos^4 \alpha}{b} = \frac{1}{a+b}$ thì biểu thức $A = \frac{\sin^8 \alpha}{a^3} + \frac{\cos^8 \alpha}{b^3}$ bằng

A.
$$\frac{1}{(a+b)^2}$$

B.
$$\frac{1}{a^2 + b^2}$$

A.
$$\frac{1}{(a+b)^2}$$
. **B.** $\frac{1}{a^2+b^2}$. **C.** $\frac{1}{(a+b)^3}$. **D.** $\frac{1}{a^3+b^3}$

D.
$$\frac{1}{a^3 + b^3}$$

8

Câu 76. Với mọi α , biểu thức: $A = \cos \alpha + \cos \left(\alpha + \frac{\pi}{5}\right) + ... + \cos \left(\alpha + \frac{9\pi}{5}\right)$ nhận giá trị bằng:

- A. -10.
- **B.** 10.

D. 5.

Câu 77. Giá trị của biểu thức $A = \sin^2 \frac{\pi}{8} + \sin^2 \frac{3\pi}{8} + \sin^2 \frac{5\pi}{8} + \sin^2 \frac{7\pi}{8}$ bằng

A. 2.

D. 0.

Câu 78. Giá trị của biểu thức $A = \frac{1}{\tan 368^{\circ}} + \frac{2\sin 2550^{\circ}.\cos(-188^{\circ})}{2\cos 638^{\circ} + \cos 98^{\circ}}$ bằng:

A. 1.

- **D.** 0.

Câu 79. Cho tam giác ABC và các mệnh đề:

(I)
$$\cos \frac{B+C}{2} = \sin \frac{A}{2}$$
 (II) $\tan \frac{A+B}{2} \cdot \tan \frac{C}{2} = 1$ (III) $\cos (A+B-C) - \cos 2C = 0$

Mệnh đề đúng là:

- **A.** Chỉ (I).
- B. (II) và (III).
- **C.** (I) và (II).
- D. Chi (III).

Câu 80. Rút gọn biểu thức $A = \cos(\pi - \alpha) + \sin(\frac{\pi}{2} + \alpha) + \tan(\frac{3\pi}{2} - \alpha) \cdot \sin(2\pi - \alpha)$ ta được

- A. $A = \cos \alpha$.
- **B.** $A = -\cos \alpha$. **C.** $A = \sin \alpha$.
- **D.** $A = 3\cos\alpha$.

PHẦN B. LỜI GIẢI

DANG 1. XÉT DÂU CỦA CÁC GIÁ TRI LƯƠNG GIÁC

Chon C Câu 1.

Vì
$$\frac{\pi}{2} < a < \pi \Rightarrow \sin a > 0$$
, $\cos a < 0$.

Câu 2. Chon

Vì $-1 \le \sin \alpha \le 1$. Nên ta chon

Câu 3. **Chon C**

 $\text{Dăt } a = b + 2\pi$

$$2\pi < a < \frac{5\pi}{2} \Leftrightarrow 2\pi < b + 2\pi < \frac{5\pi}{2} \Leftrightarrow 0 < b < \frac{\pi}{2}$$

Có $\tan a = \tan(b + 2\pi) = \tan b > 0$

$$\cot a = \frac{1}{\tan a} > 0.$$

Vậy $\tan a > 0$, $\cot a > 0$

Câu 4. Chon B

Nhìn vào đường tròn lượng giác:

-Ta thấy ở góc phần tư thứ nhất thì: $\sin \alpha > 0$; $\cos \alpha > 0$; $\tan \alpha > 0$; $\cot \alpha > 0$ => chỉ có câu **A** thỏa mãn.

Câu 5. Chọn D

- Ở góc phần tư thứ tư thì: $\sin \alpha < 0$; $\cos \alpha > 0$; $\tan \alpha < 0$; $\cot \alpha < 0$.

⇒ chỉ có C thỏa mãn.

Câu 6. Chọn C

 $\frac{7\pi}{4} < \alpha < 2\pi \Leftrightarrow \frac{3\pi}{2} + \frac{\pi}{4} < \alpha < 2\pi \text{ nên } \alpha \text{ thuộc cung phần tư thứ IV vì vậy đáp án đúng là A}$

Câu 7. Chọn A

A sai vì
$$\alpha = \frac{-7\pi}{4}$$
 nhưng $\sin \alpha = \cos \alpha = \frac{\sqrt{2}}{2} > 0$.

B sai vì
$$\alpha = \frac{5\pi}{4}$$
 nhưng $\sin \alpha = -\frac{\sqrt{2}}{2} < 0$.

C đúng vì
$$\cos^2 45^\circ = \frac{1}{2}, \sin(\frac{\pi}{3}\cos 60^\circ) = \sin\frac{\pi}{6} = \frac{1}{2}$$

Câu 8.

Hướng dẫn giải

Chon A

Vì
$$\frac{\pi}{2} < \alpha < \pi$$
 nên $\tan \alpha < 0$; $\cot \alpha < 0$

Câu 9. Chọn C

 $\frac{\pi}{2}<\alpha<\pi \Rightarrow -\frac{\pi}{2}<\alpha<0 \ \text{ nên } \alpha \text{ thuộc cung phần tư thứ IV nên chỉ II, II sai.}$

Câu 10. Chọn B

$$\frac{\pi}{2} < \alpha < \pi \Rightarrow \pi < \left(\alpha + \frac{\pi}{2}\right) < \frac{3\pi}{2}$$
 nên đáp án là D

Câu 11. Chọn C

Ta có
$$\frac{\pi}{2} < \alpha < \pi \Rightarrow \begin{cases} \pi < \alpha + \frac{\pi}{2} < \frac{3\pi}{2} \\ -\pi < -\alpha < -\frac{\pi}{2} \end{cases} \Rightarrow \begin{cases} \cos\left(\alpha + \frac{\pi}{2}\right) < 0 \\ \tan\left(-\alpha\right) > 0 \end{cases}$$

DANG 2. GIÁ TRI LƯƠNG GIÁC CỦA CÁC CUNG CÓ LIÊN QUAN ĐẶC BIỆT

Câu 12. Chọn D

Thường nhớ: các góc phụ nhau có các giá trị lượng giác bằng chéo nhau Nghĩa là $\cos \alpha = \sin \beta$; $\cot \alpha = \tan \beta$ và ngược lại.

- **Câu 13. Chọn C.** Theo công thức.
- Câu 14. Chọn D.
- Câu 15. Chọn C Ta có $\cos(\pi - x) = -\cos x$.
- **Câu 16.** Chọn C Dễ thấy C sai vì $\cos(-\alpha) = \cos \alpha$.
- Câu 17. Chọn A Ta có: $\sin(-x) = -\sin x$.
- Câu 18. Chọn C $\cos(3\pi x) = \cos(\pi x) = -\cos x$.
- **Câu 19.** Chọn A Ta có $\cos(x+2017\pi) = -\cos x$.

DẠNG 3. TÍNH GIÁ TRỊ LƯỢNG GIÁC

- Câu 20. Chọn D $\cot 1458^{\circ} = \cot (4.360^{\circ} + 18^{\circ}) = \cot 18^{\circ} = \sqrt{5 + 2\sqrt{5}}.$
- Câu 21. Chọn B Biến đổi $\cot \frac{89\pi}{6} = \cot \left(-\frac{\pi}{6} + 15\pi\right) = \cot \left(-\frac{\pi}{6}\right) = -\cot \frac{\pi}{6} = -\sqrt{3}$.
- Câu 22. Chọn B $Biến đổi \ tan 180^\circ = tan \left(0^\circ + 180^\circ\right) = tan \, 0^\circ = 0 \, .$
- Câu 23. Chọn A

 Ta có: $\tan \alpha . \cot \alpha = 1 \Rightarrow \cot \alpha = \frac{1}{\tan \alpha} = \frac{1}{\frac{1}{2}} = 2$.
- Câu 24. Chọn B.

 Ta có: $\sin^2 \alpha + \cos^2 \alpha = 1 \Rightarrow \cos^2 \alpha = 1 \sin^2 \alpha = 1 \frac{9}{25} = \frac{16}{25} \Leftrightarrow \begin{bmatrix} \cos \alpha = \frac{4}{5} \\ \cos \alpha = -\frac{4}{5} \end{bmatrix}$

$$Vi \frac{\pi}{2} < \alpha < \pi \implies \cos \alpha = -\frac{4}{5}.$$

- Câu 25. Chọn C Ta có: $\sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \left(\frac{4}{5}\right)^2 = \frac{9}{25} \Rightarrow \sin \alpha = \pm \frac{3}{5}$. Do $0 < \alpha < \frac{\pi}{2}$ nên $\sin \alpha > 0$. Suy ra, $\sin \alpha = \frac{3}{5}$.
- Câu 26. Chọn C Ta có: $\cos \alpha = 1 \Leftrightarrow \alpha = \frac{\pi}{2} + k2\pi \ (k \in \mathbb{Z})$.

Câu 27

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha} \Rightarrow 1 + \frac{16}{25} = \frac{1}{\cos^2 \alpha} \Rightarrow \frac{1}{\cos^2 \alpha} = \frac{41}{25} \Rightarrow \cos^2 \alpha = \frac{25}{41} \Rightarrow \cos \alpha = \pm \frac{5}{\sqrt{41}}$$
$$\sin^2 \alpha = 1 - \cos^2 \alpha = 1 - \frac{25}{41} = \frac{16}{41} \Rightarrow \sin \alpha = \pm \frac{4}{\sqrt{41}}$$

$$\frac{3\pi}{2} < \alpha < 2\pi \Rightarrow \begin{bmatrix} \cos \alpha > 0 \to \cos \alpha = \frac{5}{\sqrt{41}} \\ \sin \alpha < 0 \to \sin \alpha = -\frac{4}{\sqrt{41}} \end{bmatrix}$$

Câu 28.

Chon C

$$\tan^2 15^0 = \frac{1}{\cos^2 15^0} - 1 = \frac{4}{2 + \sqrt{3}} - 1 = \left(2 - \sqrt{3}\right)^2 \Rightarrow \tan 15^0 = 2 - \sqrt{3}$$
.

Câu 29. Chon D

Với
$$\frac{\pi}{2} < \alpha < \pi \implies \tan \alpha < 0$$

Ta có
$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha} \Leftrightarrow \tan^2 \alpha = \frac{1}{\cos^2 \alpha} - 1 = \frac{25}{4} - 1 = \frac{21}{4} \Rightarrow \tan \alpha = -\frac{\sqrt{21}}{2}$$
.

Câu 30. Chọn A

Ta có
$$\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha = 1 + (\sqrt{5})^2 = 6$$
.

Mặt khác
$$\pi < \alpha < \frac{3\pi}{2}$$
 nên $\cos \alpha = -\frac{\sqrt{6}}{6}$.

Câu 31. Chọn C

Ta có:
$$1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha} \Rightarrow \cot^2 \alpha = \frac{16}{9} \Rightarrow \cot \alpha = \pm \frac{4}{3}$$
.

Vì
$$90^{\circ} < \alpha < 180^{\circ}$$
 nên $\cot \alpha = -\frac{4}{3}$.

Câu 32. Chọn A

Có
$$\cos^2 \alpha = 1 - \sin^2 \alpha$$
, mà $\sin \alpha = \frac{2}{3}$

Suy ra
$$\cos^2 \alpha = \frac{5}{9}$$
, có $\cos \alpha < 0 \Leftrightarrow \cos \alpha = -\frac{\sqrt{5}}{3}$.

Có
$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = -\frac{2\sqrt{5}}{5}$$
.

Câu 33. Chọn D

Vì
$$\frac{\pi}{2} < \alpha < \pi$$
 nên $\cos \alpha < 0$.

Ta có
$$\sin^2 \alpha + \cos^2 \alpha = 1 \Rightarrow \cos^2 s \alpha = 1 - \sin^2 \alpha = \frac{8}{9}$$

$$\Rightarrow \begin{cases} \cos \alpha = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}(l) \\ \cos \alpha = -\sqrt{\frac{8}{9}} = -\frac{2\sqrt{2}}{3}(tm) \end{cases}$$

Câu 34.

Chon A

$$\frac{1}{\sin^2 \alpha} = 1 + \cot^2 \alpha = 1 + 18 = 19 \rightarrow \sin^2 \alpha = \frac{1}{19} \rightarrow \sin \alpha = \pm \frac{1}{\sqrt{19}}$$

Vì

$$\frac{\pi}{2} < \alpha < \pi \Rightarrow \sin \alpha > 0 \Rightarrow \sin \alpha = \frac{1}{\sqrt{19}}$$

Suy ra
$$\tan \frac{\alpha}{2} + \cot \frac{\alpha}{2} = \frac{\sin^2 \frac{\alpha}{2} + \cos^2 \frac{\alpha}{2}}{\sin \frac{\alpha}{2} \cos \frac{\alpha}{2}} = \frac{2}{\sin \alpha} = 2\sqrt{19}$$
.

Câu 35. Chọn A

Ta có:
$$\sin \alpha + \cos \alpha = \frac{3}{2} \Rightarrow (\sin \alpha + \cos \alpha)^2 = \frac{9}{4} \Leftrightarrow 1 + \sin 2\alpha = \frac{9}{4} \Leftrightarrow \sin 2\alpha = \frac{5}{4}$$
.

Câu 36. Chon C

Từ
$$\sin x + \cos x = \frac{1}{2} \Leftrightarrow \cos x = \frac{1}{2} - \sin x$$
 (1).

Mặt khác: $\sin^2 x + \cos^2 x = 1$ (2). Thế (1) vào (2) ta được:

$$\sin^2 x + \left(\frac{1}{2} - \sin x\right)^2 = 1 \Leftrightarrow 2\sin^2 x - \sin x - \frac{3}{4} = 0 \Leftrightarrow \begin{bmatrix} \sin x = \frac{1 + \sqrt{7}}{4} \\ \sin x = \frac{1 - \sqrt{7}}{4} \end{bmatrix}$$

Vì
$$0 < x < \frac{\pi}{2} \Rightarrow \sin x > 0 \Rightarrow \sin x = \frac{1 + \sqrt{7}}{4}$$
.

Câu 37. Chọn A

Ta có:
$$\cos^2 x = 1 - \sin^2 x = 1 - \frac{1}{4} = \frac{3}{4}$$

Câu 38. Chọn D

Ta có
$$P = \frac{3\sin x - \cos x}{\sin x + 2\cos x} = \frac{3\tan x - 1}{\tan x + 2} = \frac{3.2 - 1}{2 + 2} = \frac{5}{4}$$

Câu 39. Chọn A

Vì cosx nhận giá trị âm.

Ta có:
$$\cos x = -\sqrt{1-\sin^2 x} = -\sqrt{1-\frac{1}{4}} = -\frac{\sqrt{3}}{2}$$

Suy ra:
$$A = \frac{\frac{1}{2} + \frac{\sqrt{3}}{2}}{\frac{1}{2} - \frac{\sqrt{3}}{2}} = \frac{1 + \sqrt{3}}{1 - \sqrt{3}} = -2 - \sqrt{3}$$

Câu 40. Chọn C

Ta có: $\tan x = 2 \Rightarrow \cos x \neq 0$. Chia tử và mẫu cho $\cos x$

CÁC DẠNG TOÁN THƯỜNG GẶP

Suy ra:
$$P = \frac{4 \sin x + 5 \cos x}{2 \sin x - 3 \cos x} = \frac{4 \tan x + 5}{2 \tan x - 3} = \frac{4.2 + 5}{2.2 - 3} = 13$$
.

Câu 41. Chon B

Ta có:
$$P = \cos(\overrightarrow{AB}, \overrightarrow{BC}) + \cos(\overrightarrow{BC}, \overrightarrow{CA}) + \cos(\overrightarrow{CA}, \overrightarrow{AB}) = 3\cos 120^{\circ} = -\frac{3}{2}$$

Câu 42.

Ta có:
$$P = \frac{2\sin a - \cos a}{\sin a + \cos a} = \frac{2\tan a - 1}{\tan a + 1} = \frac{2 \cdot 2 - 1}{2 + 1} = 1$$
.

Câu 43. Chon A

Do $\tan x = 2 \Rightarrow \cos x \neq 0$.

Ta có
$$M = \frac{\sin x - 3\cos^3 x}{5\sin^3 x - 2\cos x} = \frac{\tan x \cdot \frac{1}{\cos^2 x} - 3}{5\tan^3 x - \frac{2}{\cos^2 x}} = \frac{\tan x \left(1 + \tan^2 x\right) - 3}{5\tan^3 x - 2\left(1 + \tan^2 x\right)} = \frac{7}{30}$$
.

Câu 44. Chon A

Vì $\cos x$ nhận giá trị âm nên ta có $\cos x = -\sqrt{1 - \sin^2 x} = -\sqrt{1 - \frac{1}{4}} = -\frac{\sqrt{3}}{2}$

Suy ra:
$$A = \frac{\frac{1}{2} + \frac{\sqrt{3}}{2}}{\frac{1}{2} - \frac{\sqrt{3}}{2}} = \frac{1 + \sqrt{3}}{1 - \sqrt{3}} = -2 - \sqrt{3}$$
.

Câu 45.

$$A = \frac{\cos 30^{\circ} + \sin 60^{\circ}}{\sin 30^{\circ} - \cos 30^{\circ}} = \frac{2\sqrt{3}}{1 - \sqrt{3}} = -3 - \sqrt{3}.$$

$$\sin^2 \alpha + \cos^2 \alpha = 1 \Rightarrow \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \frac{9}{25} = \frac{16}{25} \iff \begin{bmatrix} \cos \alpha = \frac{4}{5} \\ \cos \alpha = -\frac{4}{5} \end{bmatrix}$$

Vì $90^{\circ} < \alpha < 180^{\circ} \Rightarrow \cos \alpha = -\frac{4}{5}$. Vậy $\tan \alpha = -\frac{3}{4}$ và $\cot \alpha = -\frac{4}{3}$.

$$E = \frac{\cot \alpha - 2 \tan \alpha}{\tan \alpha + 3 \cot \alpha} = \frac{-\frac{4}{3} - 2 \cdot \left(-\frac{3}{4}\right)}{-\frac{3}{4} + 3 \cdot \left(-\frac{4}{3}\right)} = -\frac{2}{57}.$$

Câu 47.

Chọn C.

$$A = \frac{3 \sin \alpha + \cos \alpha}{\sin \alpha - \cos \alpha} = \frac{3 \tan \alpha + 1}{\tan \alpha - 1} = 7.$$

$$A = \cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{3\pi}{8} + \cos^2 \frac{\pi}{8} \Leftrightarrow A = 2\left(\cos^2 \frac{\pi}{8} + \cos^2 \frac{3\pi}{8}\right)$$
$$\Leftrightarrow A = 2\left(\cos^2 \frac{\pi}{8} + \sin^2 \frac{\pi}{8}\right) = 2.$$

Câu 49. Chon

$$\frac{\text{C\'AC D\'ANG TO\'AN THU'ONG G\'AP}}{A = \frac{-\sin 234^{\circ} + \sin 126^{\circ}}{\cos 54^{\circ} - \cos 126^{\circ}} \cdot \tan 36^{\circ} \Leftrightarrow A = \frac{-2\cos 180^{\circ} \cdot \sin 54^{\circ}}{-2\sin 90^{\circ} \sin \left(-36^{\circ}\right)} \cdot \tan 36^{\circ}}$$

$$\Leftrightarrow A = \frac{-1 \cdot \sin 54^{\circ}}{1\sin \left(-36^{\circ}\right)} \cdot \frac{\sin 36^{\circ}}{\cos 36^{\circ}} \Leftrightarrow A = 1.$$

Câu 50.

$$B = \frac{\left(\cot 44^{0} + \tan 46^{0}\right) \cdot \cos 46^{0}}{\cos 44^{0}} - \cot 72^{0} \cdot \tan 72^{0} \iff B = \frac{2\cot 44^{0} \cdot \cos 46^{0}}{\cos 44^{0}} - 1 \iff B = 2 - 1 = 1.$$

Câu 51. Chon A

Do $180^{\circ} < \alpha < 270^{\circ}$ nên $\sin \alpha < 0$ và $\cos \alpha < 0$. Từ đó

Ta có
$$\frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha = 5 \Rightarrow \cos^2 \alpha = \frac{1}{5} \Rightarrow \cos \alpha = -\frac{1}{\sqrt{5}}$$
.

$$\sin \alpha = \tan \alpha . \cos \alpha = 2 . \left(-\frac{1}{\sqrt{5}} \right) = -\frac{2}{\sqrt{5}}$$

Như vậy,
$$\cos \alpha + \sin \alpha = -\frac{2}{\sqrt{5}} - \frac{1}{\sqrt{5}} = -\frac{3\sqrt{5}}{5}$$
.

Câu 52. Chọn C

$$A = \frac{2}{\sin^2 x - \sin x \cdot \cos x - \cos^2 x} = \frac{\frac{2}{\sin^2 x}}{1 - \cot x - \cot^2 x} = \frac{2\left(1 + \cot^2 x\right)}{1 - \cot x - \cot^2 x} = \frac{2\left(1 + \frac{1}{4}\right)}{1 - \frac{1}{2} - \frac{1}{4}} = 10.$$

DANG 4. RÚT GON BIỂU THỰC LƯƠNG GIÁC

Chon D Câu 53.

D sai vì:
$$\tan \alpha . \cot \alpha = 1 \left(\alpha \neq \frac{k\pi}{2}, k \in \mathbb{Z} \right).$$

Câu 54. Chon A

$$A = \frac{\tan^{2} a - \sin^{2} a}{\cot^{2} a - \cos^{2} a} \iff A = \frac{\sin^{2} a \left(\frac{1}{\cos^{2} a} - 1\right)}{\cos^{2} \left(\frac{1}{\sin^{2} a} - 1\right)} = \frac{\tan^{2} a \cdot \tan^{2} a}{\cot^{2} a} = \tan^{6} a.$$

Câu 55. Chon A

$$D = \cos^2 x \cdot \cot^2 x + 3\cos^2 x - \cot^2 x + 2\sin^2 x = \cos^2 x + 2 + \cot^2 x \left(\cos^2 x - 1\right)$$

$$= \cos^2 x + 2 - \cot^2 x \cdot \sin^2 x = \cos^2 x + 2 - \cos^2 x = 2.$$

Câu 56. Chon A

$$A = \frac{\sin(-328^{\circ}).\sin 958^{\circ}}{\cot 572^{\circ}} - \frac{\cos(-508^{\circ}).\cos(-1022^{\circ})}{\tan(-212^{\circ})} \Leftrightarrow A = -\frac{\sin 32^{\circ}.\sin 58^{\circ}}{\cot 32^{\circ}} - \frac{\cos 32^{\circ}.\cos 58^{\circ}}{\tan 32^{\circ}}$$

$$A = -\frac{\sin 32^{0} \cdot \cos 32^{0}}{\cot 32^{0}} - \frac{\cos 32^{0} \cdot \sin 32^{0}}{\tan 32^{0}} = -\sin^{2} 32^{0} - \cos^{2} 32^{0} = -1.$$

Câu 57. Chon

$$A = \frac{\sin 155^{\circ} \cdot \cos 115^{\circ} + \cot 42^{\circ} \cdot \cot 48^{\circ}}{\cot 55^{\circ} \cdot \cot \left(-145^{\circ}\right) + \tan 17^{\circ} \cdot \cot 17^{\circ}} \Leftrightarrow A = \frac{\sin 25^{\circ} \cdot \left(-\sin 25^{\circ}\right) + \cot 42^{\circ} \cdot \tan 42^{\circ}}{\cot 55^{\circ} \cdot \tan 55^{\circ} + 1}$$

CÁC DẠNG TOÁN THƯỜNG GẶP
$$\Leftrightarrow A = \frac{-\sin^2 25^0 + 1}{2} \Leftrightarrow A = \frac{\cos^2 25^0}{2}.$$

Câu 58.

Ta có
$$A = \frac{2\cos^2 x - 1}{\sin x + \cos x} = \frac{2\cos^2 x - (\sin^2 x + \cos^2 x)}{\sin x + \cos x} = \frac{\cos^2 x - \sin^2 x}{\sin x + \cos x}$$
$$= \frac{(\cos x - \sin x)(\cos x + \sin x)}{\sin x + \cos x} = \cos x - \sin x$$

Như vậy, $A = \cos x - \sin x$.

Chon D **Câu 59.**

Ta có
$$\sin \alpha + \cos \alpha = \frac{\sqrt{2}}{2} \Rightarrow (\sin \alpha + \cos \alpha)^2 = \frac{1}{2} \Rightarrow 1 + 2\sin \alpha \cos \alpha = \frac{1}{2} \Rightarrow \sin \alpha \cos \alpha = -\frac{1}{4}$$

$$\Rightarrow (\sin \alpha - \cos \alpha)^2 = 1 - 2\sin \alpha \cos \alpha = 1 - 2\left(-\frac{1}{4}\right) = \frac{6}{4} \Rightarrow \sin \alpha - \cos \alpha = \pm \frac{\sqrt{6}}{2}$$

$$\Rightarrow \sin^4 \alpha + \cos^4 \alpha = \left(\sin^2 \alpha + \cos^2 \alpha\right)^2 - 2\sin^2 \alpha \cos^2 \alpha = 1 - 2\left(-\frac{1}{4}\right)^2 = \frac{7}{8}$$

$$\Rightarrow \tan^2 \alpha + \cot^2 \alpha = \frac{\sin^4 \alpha + \cos^4 \alpha}{\sin^2 \alpha \cos^2 \alpha} = \frac{\frac{7}{8}}{\left(-\frac{1}{4}\right)^2} = 14$$

Như vậy, $\tan^2 \alpha + \cot^2 \alpha = 12$ là kết quả sai.

Câu 60. Chon B

$$A = \cos(\alpha + 26\pi) - 2\sin(\alpha - 7\pi) - \cos(1, 5\pi) - \cos\left(\alpha + 2003\frac{\pi}{2}\right) + \cos(\alpha - 1, 5\pi) \cdot \cot(\alpha - 8\pi)$$

$$A = \cos\alpha - 2\sin(\alpha - \pi) - \cos\left(\frac{\pi}{2}\right) - \cos\left(\alpha - \frac{\pi}{2}\right) + \cos\left(\alpha + \frac{\pi}{2}\right) \cdot \cot\alpha$$

 $A = \cos \alpha + 2\sin \alpha - 0 - \sin \alpha - \sin \alpha \cdot \cot \alpha = \cos \alpha + \sin \alpha - \cos \alpha = \sin \alpha$.

Chon A **Câu 61.**

$$A = (1 - \sin^2 x) \cdot \cot^2 x + (1 - \cot^2 x) = \cot^2 x - \cos^2 x + 1 - \cot^2 x = \sin^2 x.$$

$$A = \sin \alpha + \cos \alpha + \sin \alpha - \cos \alpha \iff A = 2\sin \alpha.$$

Câu 63. Chon B

$$P = \sin\left(\pi + x\right) - \cos\left(\frac{\pi}{2} - x\right) + \cot\left(2\pi - x\right) + \tan\left(\frac{3\pi}{2} - x\right) = -\sin x - \sin x - \cot x + \cot x = -2\sin x.$$

Câu 64. Chon B

Xét tam giác ABC ta có:

$$\widehat{A} + \widehat{B} + \widehat{C} = \pi \Leftrightarrow \widehat{A} + \widehat{B} = \pi - \widehat{C}$$
.
 $\Rightarrow \cos(A + B) = \cos(\pi - C) = -\cos C$.

$$A = \cos\left(\frac{\pi}{2} - \alpha\right) - \sin\left(\pi - \alpha\right) A = \sin\alpha - \sin\alpha = 0.$$

Chon D **Câu 66.**

Do A,B,C là ba góc của một tam giác nên
$$A + B + C = \pi \Leftrightarrow A + B = \pi - C$$

$$\tan\left(\frac{A+B}{2}\right) = \tan\left(\frac{\pi}{2} - \frac{C}{2}\right) = \cot\frac{C}{2}.$$

$$\cot\left(\frac{A+B}{2}\right) = \cot\left(\frac{\pi}{2} - \frac{C}{2}\right) = \tan\frac{C}{2}.$$

$$\cot\left(A+B\right) = \cot\left(\pi - C\right) = -\cot C.$$

 $\tan (A+B) = \tan (\pi - C) = -\tan C \neq \tan C$. Chọn D Trong tam giác ABC ta có $A+B+C=\pi \Leftrightarrow A+B=\pi - C$ Do đó $\tan (A+B) = \tan (\pi - C) = -\tan C$.

Câu 67. Chọn B

Ta có $A = \sin^6 x + \cos^6 x + 3\sin^2 x \cos^2 x = (\sin^2 x)^3 + (\cos^2 x)^3 + 3\sin^2 x \cos^2 x$ = $(\sin^2 x + \cos^2 x)^3 - 3\sin^2 x \cdot \cos^2 x (\sin^2 x + \cos^2 x) + 3\sin^2 x \cos^2 x = 1$.

Câu 68. Chọn B

Ta có
$$A = \frac{\left(1 - \tan^2 x\right)^2}{4 \tan^2 x} - \frac{1}{4 \sin^2 x \cos^2 x} = \frac{\left(1 - \tan^2 x\right)^2}{4 \tan^2 x} - \frac{1}{4 \tan^2 x} \cdot \left(\frac{1}{\cos^2 x}\right)^2$$

$$= \frac{\left(1 - \tan^2 x\right)^2}{4 \tan^2 x} - \frac{\left(1 + \tan^2 x\right)^2}{4 \tan^2 x} = \frac{\left(1 - \tan^2 x\right)^2 - \left(1 + \tan^2 x\right)^2}{4 \tan^2 x} = \frac{-4 \tan^2 x}{4 \tan^2 x} = -1.$$

Câu 69. Chọn D

Ta có
$$B = \frac{\cos^2 x - \sin^2 y}{\sin^2 x \cdot \sin^2 y} - \cot^2 x \cdot \cot^2 y = \frac{\cos^2 x - \sin^2 y}{\sin^2 x \cdot \sin^2 y} - \frac{\cos^2 x \cdot \cos^2 y}{\sin^2 x \cdot \sin^2 y}$$

= $\frac{\cos^2 x (1 - \cos^2 y) - \sin^2 y}{\sin^2 x \cdot \sin^2 y} = \frac{\cos^2 x \cdot \sin^2 y - \sin^2 y}{\sin^2 x \cdot \sin^2 y} = \frac{\sin^2 y (\cos^2 x - 1)}{(1 - \cos^2 x) \sin^2 y} = -1$.

Câu 70. Chon C

Ta có
$$C = 2(\sin^4 x + \cos^4 x + \sin^2 x \cos^2 x)^2 - (\sin^8 x + \cos^8 x)$$

$$= 2[(\sin^2 x + \cos^2 x)^2 - \sin^2 x \cos^2 x]^2 - [(\sin^4 x + \cos^4 x)^2 - 2\sin^4 x \cos^4 x]$$

$$= 2[1 - \sin^2 x \cos^2 x]^2 - [(\sin^2 x + \cos^2 x)^2 - 2\sin^2 x \cos^2 x]^2 + 2\sin^4 x \cos^4 x$$

$$= 2[1 - \sin^2 x \cos^2 x]^2 - [1 - 2\sin^2 x \cos^2 x]^2 + 2\sin^4 x \cos^4 x$$

$$= 2(1 - 2\sin^2 x \cos^2 x + \sin^4 x \cos^4 x) - (1 - 4\sin^2 x \cos^2 x + 4\sin^4 x \cos^4 x) + 2\sin^4 x \cos^4 x$$

$$= 1$$

Câu 71. Chọn D

A đúng vì
$$VT = \frac{\tan x + \tan y}{\frac{1}{\tan x} + \frac{1}{\tan y}} = \tan x \cdot \tan y = VP$$

B đúng vì

$$VT = \frac{1 + \sin a}{1 - \sin a} + \frac{1 - \sin a}{1 + \sin a} - 2 = \frac{\left(1 + \sin a\right)^2 + \left(1 - \sin a\right)^2}{1 - \sin^2 a} - 2 = \frac{2 + 2\sin^2 a}{\cos^2 a} - 2 = 4\tan^2 a = VP$$

$$\mathbf{C} \text{ d'úng v'} VT = \frac{-\sin^2 \alpha - \cos^2 \alpha}{\cos^2 \alpha - \sin^2 \alpha} = \frac{\sin^2 \alpha + \cos^2 \alpha}{\sin^2 \alpha - \cos^2 \alpha} = \frac{1 + \cot^2 \alpha}{1 - \cot^2 \alpha} = VP.$$

Câu 72. Chon D

Ta có
$$\sin^4 x - \cos^4 x = \frac{98}{81} - A \Leftrightarrow \cos 2x = A - \frac{98}{81}$$

$$5\left(\sin^4 x + \cos^4 x\right) = \frac{98}{81} + A \Leftrightarrow 1 - \frac{1}{2}\sin^2 2x = \frac{1}{5}\left(\frac{98}{81} + A\right) \Leftrightarrow \frac{1}{2} + \frac{1}{2}\cos^2 2x = \frac{1}{5}\left(\frac{98}{81} + A\right)$$

$$\Leftrightarrow 1 + \left(A - \frac{98}{81}\right)^2 = \frac{2}{5}\left(A + \frac{98}{81}\right) = \frac{2}{5}\left(A - \frac{98}{81}\right) + \frac{392}{405}$$

$$\text{Dặt } A - \frac{98}{81} = t \Rightarrow t^2 - \frac{2}{5}t + \frac{13}{405} = 0 \Leftrightarrow \begin{bmatrix} t = \frac{13}{45} \\ t = \frac{1}{9} \end{bmatrix}$$

$$+) \ t = \frac{13}{45} \Rightarrow A = \frac{607}{405}$$

$$+) \ t = \frac{1}{9} \Rightarrow A = \frac{107}{81}.$$

Câu 73. Chọn A

$$\sin x + \cos x = \frac{1}{2} \Rightarrow \left(\sin x + \cos x\right)^2 = \frac{1}{4} \Leftrightarrow 2\sin x \cdot \cos x = -\frac{3}{4} \Rightarrow \sin x \cdot \cos x = -\frac{3}{8}$$

Khi đó
$$\sin x, \cos x$$
 là nghiệm của phương trình $X^2 - \frac{1}{2}X - \frac{3}{8} = 0 \Rightarrow \begin{cases} \sin x = \frac{1 + \sqrt{7}}{4} \\ \sin x = \frac{1 - \sqrt{7}}{4} \end{cases}$

Ta có
$$\sin x + \cos x = \frac{1}{2} \Rightarrow 2(\sin x + \cos x) = 1$$

+) Với
$$\sin x = \frac{1 + \sqrt{7}}{4} \Rightarrow 3\sin x + 2\cos x = \frac{5 + \sqrt{7}}{4}$$

+) Với
$$\sin x = \frac{1 - \sqrt{7}}{4} \Rightarrow 3\sin x + 2\cos x = \frac{5 - \sqrt{7}}{4}$$
.

Câu 74. Chọn B

$$A = a\cos^{2} x + 2b\sin x \cdot \cos x + c\sin^{2} x \Leftrightarrow \frac{A}{\cos^{2} x} = a + 2b\tan x + c\tan^{2} x$$

$$\Leftrightarrow A\left(1 + \tan^{2} x\right) = a + 2b\tan x + c\tan^{2} x \Leftrightarrow A\left(1 + \left(\frac{2b}{a - c}\right)^{2}\right) = a + 2b\frac{2b}{a - c} + c\left(\frac{2b}{a - c}\right)^{2}$$

$$\Leftrightarrow A\frac{(a - c)^{2} + (2b)^{2}}{(a - c)^{2}} = \frac{a(a - c)^{2} + 4b^{2}(a - c) + c4b^{2}}{(a - c)^{2}}$$

$$\Leftrightarrow A\frac{(a - c)^{2} + (2b)^{2}}{(a - c)^{2}} = \frac{a(a - c)^{2} + 4b^{2}a}{(a - c)^{2}} = \frac{a.((a - c)^{2} + 4b^{2})}{(a - c)^{2}} \Leftrightarrow A = a.$$

Câu 75. Chọn C

Đặt
$$\cos^2 \alpha = t \Rightarrow \frac{(1-t)^2}{a} + \frac{t^2}{b} = \frac{1}{a+b}$$

$$\Leftrightarrow b(1-t)^{2} + at^{2} = \frac{ab}{a+b} \Leftrightarrow at^{2} + bt^{2} - 2bt + b = \frac{ab}{a+b} \Leftrightarrow (a+b)t^{2} - 2bt + b = \frac{ab}{a+b}$$

$$\Leftrightarrow (a+b)^{2} t^{2} - 2b(a+b)t + b^{2} = 0 \Leftrightarrow t = \frac{b}{a+b}$$
Suy ra $\cos^{2} \alpha = \frac{b}{a+b}$; $\sin^{2} \alpha = \frac{a}{a+b}$

$$V_{a}^{2}y: \frac{\sin^{8} \alpha}{a^{3}} + \frac{\cos^{8} \alpha}{b^{3}} = \frac{a}{(a+b)^{4}} + \frac{b}{(a+b)^{4}} = \frac{1}{(a+b)^{3}}.$$

Câu 76. Chọn C

$$A = \cos \alpha + \cos \left(\alpha + \frac{\pi}{5}\right) + \dots + \cos \left(\alpha + \frac{9\pi}{5}\right)$$

$$A = \left[\cos \alpha + \cos \left(\alpha + \frac{9\pi}{5}\right)\right] + \dots + \left[\cos \left(\alpha + \frac{4\pi}{5}\right) + \cos \left(\alpha + \frac{5\pi}{5}\right)\right]$$

$$A = 2\cos \left(\alpha + \frac{9\pi}{10}\right)\cos \frac{9\pi}{10} + 2\cos \left(\alpha + \frac{9\pi}{10}\right)\cos \frac{7\pi}{10} + \dots + 2\cos \left(\alpha + \frac{9\pi}{10}\right)\cos \frac{\pi}{10}$$

$$A = 2\cos \left(\alpha + \frac{9\pi}{10}\right)\left(\cos \frac{9\pi}{10} + \cos \frac{7\pi}{10} + \cos \frac{5\pi}{10} + \cos \frac{\pi}{10}\right)$$

$$A = 2\cos \left(\alpha + \frac{9\pi}{10}\right)\left(2\cos \frac{\pi}{2}\cos \frac{2\pi}{5} + 2\cos \frac{\pi}{2}\cos \frac{\pi}{5} + \cos \frac{\pi}{2}\right) \Leftrightarrow A = 2\cos \left(\alpha + \frac{9\pi}{10}\right).0 = 0.$$

Câu 77. Chọn A

$$A = \frac{1 - \cos\frac{\pi}{4}}{2} + \frac{1 - \cos\frac{3\pi}{4}}{2} + \frac{1 - \cos\frac{5\pi}{4}}{2} + \frac{1 - \cos\frac{5\pi}{4}}{2} + \frac{1 - \cos\frac{7\pi}{4}}{2} = 2 - \frac{1}{2} \left(\cos\frac{\pi}{4} + \cos\frac{3\pi}{4} + \cos\frac{5\pi}{4} + \cos\frac{7\pi}{4}\right)$$
$$= 2 - \frac{1}{2} \left(\cos\frac{\pi}{4} + \cos\frac{3\pi}{4} - \cos\frac{3\pi}{4} - \cos\frac{\pi}{4}\right) = 2.$$

Câu 78. Chon D

$$A = \frac{1}{\tan 368^{0}} + \frac{2\sin 2550^{0} \cdot \cos(-188^{0})}{2\cos 638^{0} + \cos 98^{0}}$$

$$\Leftrightarrow A = \frac{1}{\tan (8^{0} + 360^{0})} + \frac{2\sin (30^{0} + 7.360^{0}) \cdot \cos(8^{0} + 180^{0})}{2\cos (-82^{0} + 2.360^{0}) + \cos (90^{0} + 8^{0})} \Leftrightarrow A = \frac{1}{\tan 8^{0}} + \frac{-2\sin 30^{0} \cdot \cos 8^{0}}{2\cos 82^{0} - \sin 8^{0}}$$

$$\Leftrightarrow A = \frac{1}{\tan 8^{0}} - \frac{2\sin 30^{0} \cdot \cos 8^{0}}{2\cos (90^{0} - 8^{0}) - \sin 8^{0}} \Leftrightarrow A = \frac{1}{\tan 8^{0}} - \frac{2\sin 30^{0} \cdot \cos 8^{0}}{2\sin 8^{0} - \sin 8^{0}}$$

$$\Leftrightarrow A = \cot 8^{0} - \frac{1 \cdot \cos 8^{0}}{\sin 8^{0}} = \cot 8^{0} - \cot 8^{0} = 0.$$

Câu 79. Chọn C

+) Ta có:
$$A + B + C = \pi \Leftrightarrow B + C = \pi - A \Leftrightarrow \frac{B + C}{2} = \frac{\pi}{2} - \frac{A}{2}$$

(I)
$$\cos\left(\frac{B+C}{2}\right) = \cos\left(\frac{\pi}{2} - \frac{A}{2}\right) = \sin\frac{A}{2} \, \text{nên}(I) \, \text{dúng}$$

+) Turong tự ta có:
$$\frac{A+B}{2} = \frac{\pi}{2} - \frac{C}{2}$$

$$\tan \frac{A+B}{2} = \tan \left(\frac{\pi}{2} - \frac{C}{2}\right) = \cot \frac{C}{2} \Leftrightarrow \tan \frac{A+B}{2} \cdot \tan \frac{C}{2} = \cot \frac{C}{2} \cdot \tan \frac{C}{2} = 1$$

$$\text{nên (II) dúng.}$$
+) Ta có
$$A+B-C = \pi - 2C \to \cos (A+B-C) = \cos (\pi - 2C) = -\cos (2C)$$

$$\Leftrightarrow \cos (A+B-C) + \cos (2C) = 0$$

$$\text{nên (III) sai.}$$

Câu 80. Chọn B