Лекция 7. Алгебраические поверхности. Кривые второго порядка.

#вшпи #теория #аналитическая_геометрия

Автор конспекта: Гридчин Михаил

Def. Алгебраическая поверхность - это множество точек пространства, которые удовлетворяют уравнению:

$$A_1x^{lpha_1}y^{eta_1}z^{\gamma_1}+A_2x^{lpha_2}y^{eta_2}z^{\gamma_2}+\ldots+A_mx^{lpha_m}y^{eta_m}z^{\gamma_m}=0$$

Def. Число n назовём степенью уравнения или порядком алгебраической линии где

$$n := \max_{i=1\dots m} (lpha_i + eta_i + \gamma_i)$$

И называть уравнение поверхностью n порядка или алгебраическим уравнением n порядка

Def. $A_1 x^{lpha_1} y^{eta_1} + \ldots + A_m x^{lpha_m} y^{eta_m} = 0$ - уравнение алгебраической линии на плоскости

Def. Число n назовём степенью уравнения алгебраической линии на плоскости и называть эту алгебраическую линию алгебраической линией n порядка, если

$$n:=\max_{i=1\ldots m}(lpha_i+eta_i)$$

Основные вопросы:

- 1. $x^2+y^2-1=0$ цилиндр, x=0 плоскость, $x^2+y^2=0$ ось z (тоже поверхность), $(x^2+y^2-1)x=0$ плоскость \cup цилиндр. \Longrightarrow не до конца понятно, что собой представляет сама поверхность
- x = 0 $x^2 = 0$ $x^3 = 0$ $x^3 = 0$ x = 0
- 3. Главный вопрос: может ли быть так, что в одной системе координат уравнение одной и той же поверхности имеет один порядок, а в другой системе координат другой?

Теорема. Алгебраическое уравнение не меняет свой порядок при переходе между системами координат.

 \Box Пусть даны два базиса: $O, (\vec{e_1}, \vec{e_2}, \vec{e_3})$ и $O', (\vec{e_1'}, \vec{e_2'}, \vec{e_3'})$. Пусть дано алгебраическое уравнение в первой системе координат

$$p:=A_1x^{lpha_1}y^{eta_1}z^{\gamma_1}+\ldots+A_mx^{lpha_m}y^{eta_m}z^{\gamma_m}=0 \quad (*)$$

Пусть координаты x, y выражаются через x' и y' как

$$\left\{egin{aligned} x &= a_1x' + b_1y' + c_1z' + d_1 \ y &= a_2x' + b_2y' + c_2z' + d_2 \ z &= a_3x' + b_2y' + c_3z' + d_3 \end{aligned}
ight. (**)$$

Подставим x,y,z из этой системы в (*) (p':=), получим, что $\forall x^{\tilde{\alpha}},y^{\tilde{\beta}},z^{\tilde{\gamma}}\to \tilde{\alpha}+\tilde{\beta}+\tilde{\gamma}\leq \max(\alpha+\beta+\gamma)\implies$ степень увеличиться не может \implies порядок уменьшится не может \implies порядок $p\to p':p'\leq p$. Докажем в обратную сторону, что порядок $p'\to p:p\leq p'$. Действительно, выразим x',y',z' из системы (**) и подставим их в (*). Аналогичными рассуждениями получим, что степень увеличиться не может. В итоге получили

$$egin{cases} p' \leq p \ p \leq p' \end{cases} \implies p = p'$$

Заметим, что это и требовалось доказать. ■

Теорема. Поверхность n порядка и прямая могут иметь $0, 1, 2, \ldots, n$ или бесконечно много общих точек. Если выполнено последнее, то прямая целиком лежит в поверхности

 \square Пусть дана прямая l, зададим её параметрически:

$$l := egin{cases} x = x_0 + a_1 t \ y = y_0 + a_2 t \ z = z_0 + a_3 t \end{cases}$$

И пусть дана поверхность, заданная алгебраическим уравнением $p:=A_1x^{\alpha_1}y^{\beta_1}z^{\gamma_1}+\ldots+A_mx^{\alpha_m}y^{\beta_m}z^{\gamma_m}=0$. Подставим x,y,z в уравнение поверхности. Получим, что после подстановки каждое слагаемое - многочлен, зависящий от t степени $\leq n \implies$ всё выражение степени $\leq n$. Если в этом многочлене есть ненулевые слагаемые, то корней $\leq n$, иначе получим тождество 0=0, тогда все точки поверхности лежат на этой прямой. \blacksquare

Замечание. Не может быть, что многочлен P(x) = 0 имеет бесконечно много решений, но не всю числовую прямую.

Рассмотрим уравнение линии 2 порядка на плоскости:

$$\left\{ egin{aligned} Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F &= 0 \ A^2 + B^2 + C^2 &> 0 \end{aligned}
ight. (imes)$$

Рассмотрим это уравнение в прямоугольной декартовой системе координат с ортонормированным базисом. Далее будем пользоваться преобразованиями плоскости, меняя систему координат, для того, чтобы получить каноническое уравнение и каноническую систему координат.

Теорема. ∀ уравнения линии 2 порядка всегда можно так выбрать прямоугольную декартову систему координат, что эта линия будет иметь одно из следующих 9 уравнений. Введём обозначение

$$\Delta := egin{bmatrix} A & B \ B & C \end{bmatrix}$$

Замечание: коэффициенты 2 нужны для того, чтобы упростить выкладки. Тогда

$\Delta>0$	$\Delta < 0$	$\Delta = 0$
Линии эллиптического типа	Линии гиперболического типа	Линии параболического типа
Эллипс: $rac{x^2}{a^2}+rac{y^2}{b^2}=1, a\geq b>0$	Гипербола: $rac{x^2}{a^2}-rac{y^2}{b^2}=1, a,b>0$	Парабола: $y^2=2px, p>0$
Мнимый эллипс: $rac{x^2}{a^2} + rac{y^2}{b^2} = -1, a,b eq 0$	Пара пересекающихся прямых: $rac{x^2}{a^2} - rac{y^2}{b^2} = 0, a,b>0$	Пара параллельных прямых: $y^2=a^2, a>0$
Вырожденный эллипс: $rac{x^2}{a^2} + rac{y^2}{b^2} = 0, a,b eq 0$		Пара мнимых параллельных прямых: $y^2=-a^2, a>0$
		Пара совпадающих прямых: $y^2=0$

Все эти уравнения называются каноническими уравнениями кривых второго порядка.

 \square Будем работать с (\times).

ШАГ 1. Сделаем так, чтобы $B \geq 0$, $A \geq C$. Для этого заметим, что если B < 0, то домножим (\times) на (-1). Что произойдёт с Δ ? Поскольку $\Delta := AC - B^2$, то Δ знака не поменяет. По ходу доказательства будем постоянно следить за тем, чтобы при совершении операций знак Δ не менялся, и чтобы Δ не стало равно 0 или наоборот перестало быть 0. Теперь, когда $B \geq 0$, сделаем $A \geq C$. Если это ещё не так, то поменяем переменные x и y местами так, чтобы стало $A \geq C$. Знак Δ также не изменится.

Замечание. Оба применённых действия - осевая симметрия.

$$\left\{ egin{aligned} x = x'\cos\phi - y'\sin\phi \ y = x'\sin\phi + y'\cos\phi \end{aligned}
ight.$$

При подстановке x', y' в (\times) получим новые коэффициенты A', B', C':

$$A' = A\cos^2\phi + 2B\sin\phi\cos\phi + C\sin^2\phi$$
 $2B' = -2A\sin\phi\cos\phi + 2B(\cos^2\phi - \sin^2\phi) + 2C\sin\phi\cos\phi$ (*) $C' = A\sin^2\phi - 2B\sin\phi\cos\phi + C\cos^2\phi$

Заметим два факта. Первый: $\Delta = \Delta'$. Второй: A' + C' = A + C Докажем первый:

$$\Delta = egin{bmatrix} A & B \ B & C \end{bmatrix} = egin{bmatrix} A' & B' \ B' & C' \end{bmatrix}$$

Обозначим

• $c := \cos \phi$

• $s := \sin \phi$

Рассмотрим $A'C' - B'^2$. Имеем:

$$A' = Ac^2 + 2Bsc + Cs^2 \ C' = As^2 - 2Bsc + Cc^2 \ B' = -Asc + B(c^2 - s^2) + Csc$$

Получаем:

$$A'C' = (Ac^2 + 2Bsc + Cs^2)(As^2 - 2Bsc + Cc^2) \ A'C' = A^2c^2s^2 - 2ABc^3s + ACc^4 + 2ABs^3c - 4B^2s^2c^2 + 2BCsc^3 + ACs^4 - 2BCs^3c + C^2s^2c^2 \ B'^2 = \left[B(c^2 - s^2) + sc(C - A)\right]^2 = B^2(c^2 - s^2)^2 + 2B(c^2 - s^2)sc(C - A) + s^2c^2(C - A)^2 \ B'^2 = B^2(c^4 - 2c^2s^2 + s^4) + 2Bsc(C - A)(c^2 - s^2) + s^2c^2(C^2 - 2AC + A^2) \ A'C' - B'^2 = AC(c^4 + s^4 + 2c^2s^2) - B^2(c^4 + s^4 - 2c^2s^2 + 4c^2s^2) \ c^4 + s^4 + 2c^2s^2 = (c^2 + s^2)^2 = 1 \ A'C' - B'^2 = AC - B^2$$

Покажем, что A' + C' = A + C. Действительно,

$$A' + C' = Ac^2 + 2Bsc + Cs^2 + As^2 - 2Bsc + Cc^2 \ A' + C' = A(c^2 + s^2) + C(s^2 + c^2) = A + C \ A' + C' = A + C$$

Мы хотим обнулить B', т.е. (см (*))

$$2B'=0$$
 $2B\cos2\phi+(C-A)\sin2\phi=0$

Либо A=C, тогда $2B\cos2\phi=0\implies\cos2\phi=0$ и мы нашли нужный ϕ .

Либо $A \neq C$, тогда поскольку $\cos 2\phi$ и $\sin 2\phi$ не могут быть равны 0 одновременно, поделим обе части на неравное нулю. Без ограничения общности пусть это будет $\cos 2\phi$:

$$2B+(C-A)tg2\phi=0$$
 $tg2\phi=rac{2B}{A-C}\implies$ необходимое ϕ найдётся

Заметим, что можно взять ϕ , а можно $\phi+\frac{\pi}{2}$. От этого значение не изменится \Longrightarrow можно сделать поворот на углы, отличающиеся на $\frac{\pi}{2}$.

Замечание. Мы применили поворот относительно центра координат и доказали, что при этом Δ не меняет знак.

ШАГ 3. Пусть мы достигли уравнения

$$Ax^{2} + Cy^{2} + 2Dx + 2Ey + F = 0$$
 $(B = 0)$

Рассмотрим Δ и A+C. Возможны два случая (B=0):

$$egin{array}{lll} \Delta > 0 &\Longrightarrow A
eq 0, C
eq 0 & (AC > 0) \ \Delta < 0 &\Longrightarrow A
eq 0, C
eq 0 & (AC < 0) \ \end{array}$$

ШАГ 3.1. Пусть $\Delta \neq 0$. Выделим полный квадрат относительно х

$$Ax^2 + Cy^2 + 2Dx + 2Ey + F = A(x^2 + 2\frac{D}{A}x + (\frac{D}{A})^2 - (\frac{D}{A})^2) + Cy^2 + 2Ey + F =$$
 $= A(x + \frac{D}{A})^2 + Cy^2 + 2Ey + F - \frac{D^2}{A^2}$

Сделаем параллельный перенос $x'=x+\frac{D}{A}$, получим

$$Ax'^2 + Cy^2 + 2Ey + F - rac{D^2}{A^2} = Ax'^2 + Cy^2 + 2Ey + F' \quad (F' := F - rac{D^2}{A^2})$$

Аналогично выделяем полный квадрат для y и получаем новое уравнение

$$A'x'^2 + B'y'^2 = m$$
 (*)

В зависимости от $\Delta>0$ или $\Delta<0$ - эллиптический или гиперболический тип, подставим, используя:

$$A'x'^2 = rac{x'^2}{signA(rac{1}{\sqrt{rac{1}{|A'|}}})^2} \ B'x'^2 = rac{x'^2}{signB(rac{1}{\sqrt{rac{1}{|B'|}}})^2}$$

В (*) и получим необходимое.

ШАГ 3.2. Пусть

$$\Delta=0 \implies AC=0 \implies Ax^2=0 \implies egin{bmatrix} Ax^2=0 \ Cy^2=0 \end{bmatrix}$$

Рассмотрим случай $Ax^2=0$, случай $Cy^2=0$ доказывается аналогично. Применим выделение полного квадрата, как в шаге 3.1 и сделаем параллельный перенос. Получим:

$$C'y'^2 + D'x + F' = 0$$

Подставим

$$egin{aligned} a:=-rac{C'}{D'}, & b:=-rac{F'}{D'} \ x=ay^2+b \ y^2=rac{1}{a}(x-b) \end{aligned}$$

Получим требуемое ■