Lecture 17

Matroid polytope!

1) finish algo proof (see le(16)

2) Tu proof

3) Facets

Next time: Matroid intersect.

Recall matroid poly

Want to Show PM = P where

· Note that X= {

(rank [13)

(oanks)

· Recall that vertices come from m tight constraints.

b

· clustead of showing A T.U.,

 \Rightarrow

· Un fact, submatrix d'will be even more special:

$$\Rightarrow$$
 $A'=$

()

•

•

Claim Let F be a face of P.

F= {xele:

(tight chain)

(set x_{E/3} -) 0)

Lemma: $\forall x \in P$, the tight Constraints

丁:= 至5!

are closed under Mard V.

î.e.

Proof of Claim from lemma:

· From polyhedra, we know

i.e.

· Enough to show

) }

· To show,

- · We clam · Suppose

->

=> The get
V(s)= {

3

· Among all such S, take one with

· Let

· Lemma >

· Since

else

. Let

· But because (Exercise).

Corollary: Let x vertex of P.

 \Rightarrow

(double youlf).

Proof of lemna Want to show

丁:= {

5

closed under A and V.

 $= \frac{(1)}{(2)}$

(3)

(٤)

- (1) because
- (2) AKA
 holds because
- · (3) because

- · (4) is
- 🔉
 - \Rightarrow

well skip facet proof; see pelf.

Facels of PM.

- which of the 2^{IEI} inequalities

define facets of PM?

· For simplicity,

 \Rightarrow

i.e.

· Rank constants? x(S) < r(S).

Dif S not closed,

• If S seperable, ie.

4

• Fact: S ~> facet =>

Proof omitted

· E.g. Graphic matroid M(G);

Exercise FCE inseparable (V,F) is either

<u>E.g.</u>

N1-12

D Span (F) =

Span F

Thus F closed & inseparable

=> "Forest polytope" is minimally described by

P={xeRE:

<u>.</u>

ر

"Spanne hee polytope.

<u>}</u>