

Année scolaire : 2019 - 2020

L2 TDSI

M. Dione

Exercices

Exercice: 1

On donne l'application f définie par :

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

$$(x, y, z) \longmapsto (-2x + y + z, x - 2y + z)$$

- $1^{\circ})$ Montrer que l'application f est linéaire.
- $2^{\circ})$ Déterminer une base de $\ker f,$ en déduire la dimension de $Im\left(f\right)$.
- 3°) Donner une base de Im f.

Exercice: 2

On donne l'application linéaire f définie par :

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

$$(x,y,z) \longmapsto (x-z,2x+y-3z,-y+2z)$$

Soit $\mathcal{B} = \{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 . On pose $f_1 = e_1 - e_2 + e_3$, $f_2 = 2e_1 - e_2 + e_3$

et
$$f_3 = 2e_1 - 2e_2 + e_3$$
.

- 1°) Montrer que $\mathcal{B}' = \{f_1, f_2, f_3\}$ est une base de \mathbb{R}^3 .
- 2°) Déterminer la matrice A de f dans la base \mathcal{B} .
- 3°) Donner la matrice de passage P de la base \mathcal{B} à la base \mathcal{B}' .
- 4°) Déterminer la matrice A' de f dans la base \mathcal{B}' .
- 5°) Déterminer la matrice de f relativement aux bases \mathcal{B} et \mathcal{B}' .
- 6°) Déterminer la matrice de f relativement aux bases \mathcal{B}' et \mathcal{B} .

$\underline{Exercice:3}$

Soit $\mathcal{B} = \{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 .

Soit f une application linéaire de \mathbb{R}^3 vers \mathbb{R}^3 définie par :

$$f(e_1) = -3e_1 + 2e_2 - 4e_3$$

$$f(e_2) = e_1 - e_2 + 2e_3$$

$$f(e_3) = 4e_1 - 2e_2 + 5e_3$$

- 1°) Déterminer la matrice A de f dans la base canonique.
- 2°) Déterminer clairement l'application f.
- 3°) Montrer que $E = \{x \in \mathbb{R}^3 / f(x) = x\}$ est un sous-espace vectoriel de \mathbb{R}^3 . Montrer que la dimension de E est égale à 1 et donner un vecteur non nul a de E.

- 4°) Montrer que $F = \{(x_1, x_2, x_3) \in \mathbb{R}^3, -2x_1 + 2x_2 + 3x_3 = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 . Donner une base (b, c) de F.
- 5°) Montrer que $\mathcal{B}' = \{a, b, f(b)\}$ est une base de \mathbb{R}^3 .
- 6°) Montrer que $E \oplus F = \mathbb{R}^3$.
- 7°) Déterminer la matrice B de f dans la base \mathcal{B}' .

$\underline{Exercice:3}$

On donne les ensembles E et F définis comme suit :

$$E = Vect(u_1, u_2)$$
 avec $u_1 = (-1, 0, 1, 1); u_2 = (1, 1, -1, 0);$

$$F = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z = z = 0\}$$

- 1°) Donner une base et la dimension de E.
- 2°) Donner une base et la dimension de F.
- 3°) A-t-on $\mathbb{R}^3 = E \oplus F$?