10707 Deep Learning: Spring 2021

Andrej Risteski

Machine Learning Department

Recitation 3:

Brief overview of VC and Rademacher bounds in deep learning

Classical view of generalization

Meta-"theorem" of generalization: with probability $1 - \delta$ over the choice of a training set of size m, we have

$$\sup_{f \in \mathcal{F}} |\widehat{\mathbb{E}} l(f(x), y) - \mathbb{E} l(f(x), y)| \le O\left(\sqrt{\frac{\text{complexity}(\mathcal{F}) + \ln 1/\delta}{m}}\right)$$

Some measures of "complexity":

(Effective) number of elements in ${\mathcal F}$

VC (Vapnik-Chervonenkis)

Rademacher complexity

PAC-Bayes

What do these bounds look like?

VC-dimension of **fully connected net** with **N** edges in total is O(**N** log **N**). *Note*: doesn't depends on magnitude of weights at all.

Rademacher bounds: a lot of recent activity [Neyshabur et al '15, 17; Bartlett-Foster-Telgarsky '18, Golowich-Rakhlin-Shamir '19]. Roughly, best bounds look like:

$$R_m = O\left(\frac{\sqrt{\Pi_{i=1}^d ||W_i||_2 \mathrm{poly}(d)}}{\sqrt{m}}\right)$$
 , where d is the depth

When plugged in for standard values used in practice, the values these quantities give are rarely "non-trivial" (i.e. give a quantity < 1)

(Jiang et al'19): a large-scale investigation of the correlation of extant generalization measures with true generalization.

They show some newer Rademacher bounds have worse correlation.

Recap: VC dimension

Let $\mathcal{F} = \{f : \mathcal{X} \to \{\pm 1\}\}\$ be a class of predictors.

Max # of possible label sequences

The **growth function** $\Pi_{\mathcal{F}} \colon \mathbb{N} \to \mathbb{N}$ of \mathcal{F} is defined as

$$\Pi_{\mathcal{F}}(m) = \max_{(x_1, x_2, \dots x_m)} \Big| \{ \Big(f(x_1), f(x_2), \dots, f(x_m) \Big) \Big| f \in \mathcal{F} \} |$$

The VC (Vapnis-Chervonenkis) dimension of $\mathcal F$ is defined as

$$VCdim(\mathcal{F}) = \max\{m: \Pi_{\mathcal{F}}(m) = 2^m\}$$

Equivalently: the largest m, s.t. \mathcal{F} can **shatter** some set of size m:

that is, for **some** $(x_1, x_2, ... x_m)$ and **any** labeling $(b_1, b_2, ... b_m)$, $b_i \in \{\pm 1\}$,

some $f \in \mathcal{F}$ can produce that labeling, that is

$$(f(\mathbf{x}_1), f(\mathbf{x}_2), \dots f(\mathbf{x}_m)) = (\mathbf{b}_1, \mathbf{b}_2, \dots \mathbf{b}_m)$$

Recap: VC dimension

Let $\mathcal{F} = \{f : \mathcal{X} \to \{\pm 1\}\}\$ be a class of predictors.

Max # of possible label sequences

The **growth function** $\Pi_{\mathcal{F}} \colon \mathbb{N} \to \mathbb{N}$ of \mathcal{F} is defined as

$$\Pi_{\mathcal{F}}(m) = \max_{(x_1, x_2, \dots x_m)} \Big| \{ \Big(f(x_1), f(x_2), \dots, f(x_m) \Big) \Big| f \in \mathcal{F} \} |$$

The VC (Vapnis-Chervonenkis) dimension of $\mathcal F$ is defined as

$$VCdim(\mathcal{F}) = \max\{m: \Pi_{\mathcal{F}}(m) = 2^m\}$$

The two are closely related (Sauer's lemma):

$$\Pi_{\mathcal{F}}(m) = O(m^{\mathrm{VCdim}(\mathcal{F})})$$

We'll prove a very simple bound on the VC dimension of a neural network with *binary* activation function. (Makes the proof the simplest).

$$sgn(\langle w, x \rangle + b)$$

(Each unit calculates a

"hyperplane" $sgn(\langle w, x \rangle + b)$)

For starters, let's bound the VC dimension of a single unit, namely consider $\mathcal{F} = \{ \operatorname{sgn}(\langle w, x \rangle + b) | w \in \mathbb{R}^d, b \in \mathbb{R} \}.$

We'll show that $VCdim(\mathcal{F}) \leq d + 1$.

 $VCdim(\mathcal{F}) \leq d+1$: We want to that for every $(x_1, ..., x_{d+2})$, there exists a set of labels $(b_1, ..., b_{d+2})$ that cannot be linearly separated.

(*Radon's theorem*): For any $(x_1, ..., x_{d+2})$, there exists a partition of the points into sets S_1, S_2 , s.t. convex hulls of S_1 and S_2 intersect.

How to use Radon's theorem: label pts in S_1 , S_2 with +'s and -'s respectively.

Claim: no linear hyperplane perfectly separates S_1 , S_2 .

Pf: All pts in S_1 lie on one side of hyperplane, hence their convex hull does too. All pts in S_2 lie on one side of hyperplane, hence their convex hull does too. But, intersection is non-empty!

We will recursively use this to bound VC dimension of neural nets with binary activation function.

We will show: VC-dimension of **fully connected net** with N edges in total is $O(N \log N)$

Main idea: growth function behaves nicely wrt to compositions and concatenations.

Claim 1: If $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ (Cartesian product, i.e. concatenation), we have $\Pi_{\mathcal{F}}(m) \leq \Pi_{\mathcal{F}_1}(m)\Pi_{\mathcal{F}_2}(m)$

Pf: Follows since any $(f(x_1), f(x_2), ..., f(x_m))$ can be written as $((f_1(x_1), f_2(x_1)), (f_1(x_2), f_2(x_2)), ..., (f_1(x_m), f_2(x_m)))$.

Claim 2: If $\mathcal{F} = \mathcal{F}_1 \circ \mathcal{F}_2$ (i.e. compositions), we have $\Pi_{\mathcal{F}}(m) \leq \Pi_{\mathcal{F}_1}(m)\Pi_{\mathcal{F}_2}(m)$

Pf: $|\{(f(x_1), f(x_2), ..., f(x_m))| f \in \mathcal{F}\}|$ can be written as

$$|\cup_{(y_1,\dots,y_m)\in\{\left(f_1(x_1),f_1(x_2),\dots,f_1(x_m)\right)|\ f_1\in\mathcal{F}}\{(f_2(y_1),f_2(y_2),\dots,f_2(y_m)\)|f_2\in\mathcal{F}_2\}|$$

$$\leq \sum_{(y_1, \dots, y_m) \in \{(f_1(x_1), f_1(x_2), \dots, f_1(x_m)) | f_1 \in \mathcal{F}} |\{(f_2(y_1), f_2(y_2), \dots, f_2(y_m)) | f_2 \in \mathcal{F}_2\}|$$

$$\leq \Pi_{\mathcal{F}_1}(m)\Pi_{\mathcal{F}_2}(m)$$

Simple bounds on VC dimension of neural networks

We write a neural net as a sequence of concatenations and compositions.

Let \mathcal{F}_{ij} be the set of functions (as we vary the input weights) calculated at the jth node on the ith layer.

If we view the **i**th **layer** as a function, it can be written as the concatenation of the outputs of all the nodes, namely $\mathcal{F}_i = \mathcal{F}_{i1} \times \mathcal{F}_{i2} \times \cdots \times \mathcal{F}_{n_i}$

Furthermore, the **entire network** can be written as $\mathcal{F}_l \circ \mathcal{F}_{l-1} \circ \cdots \circ \mathcal{F}_1$

Using the lemmas on the previous slide, we have $\Pi_{\mathcal{F}}(m) \leq \Pi_{ij} \Pi_{\mathcal{F}_{ij}}(m)$

Note that each \mathcal{F}_{ij} is a **hyperplane**, so by Sauer's lemma and the VC dimension bound we proved, we have $\Pi_{\mathcal{F}_{ij}}(m) \leq m^{d_{i-1}}$

Putting together, we have $\Pi_{\mathcal{F}}(m) \leq m^N$. (N is the # of params in net.)

If a size m set is shattered: we have $2^m \le m^N \Rightarrow m = O(N \log N)$

By definition of VC dimension, the proof follows.

"Rademacher" bounds

(Result by Neyshabur-Bhojanapalli-Srebro '18, following Arora, Ge, Neyshabur, Zhang '18)

Theorem: For a ReLU network with layers $W^1, W^2, ..., W^d$, at most h nodes per layer, output margin γ on a training set S, the generalization error can be bounded by

$$\tilde{O}\left(\frac{\sqrt{\left\|\mathbf{h}d^{2}\max_{\mathbf{x}\in S}\left\|\mathbf{x}\right\|\left\|\Pi_{i=1}^{d}\left\|W^{i}\right\|^{2}_{2}\sum_{i}^{d}\frac{\left\|W^{i}\right\|_{F}^{2}}{\left\|W^{i}\right\|_{2}^{2}}}{\left\|W^{i}\right\|_{2}^{2}}\right)$$

"Lipschitz "Stable rank" constant"

(at most rank)

"Rademacher" bounds

Result by *Bartlett-Foster-Telgarsky '18* was based on covering number and Rademacher arguments.

Follow up by *Neyshabur-Bhojanapalli-Srebro '18* was based on PAC-Bayes arguments.

We present an alternate proof by *Arora, Ge, Neyshabur, Zhang '18* based on compression arguments.

Golowich-Rakhlin-Shamir '19 sharpen the bounds using further Rademacher arguments.

Preliminaries

Some preliminaries:

A multiclass classifier f incurs can be associated with a margin loss

$$L_{\gamma}(f) = \mathbb{P}_{(x,y)}[f(x)[y] \le \gamma + \max_{i \ne y} f(x)[i]]$$

Idea: "compress" neural network and count compressed networks.

Compressibility: Let $G_A = \{g_A : A \in A\}$ be a discrete set of classifiers. A classifier f is (γ, S) -compressible with respect to G_A if on a training set $S = \{(x_i, y_i)\}$, we have:

$$\exists A \in \mathcal{A}, \quad s.t. \ \forall x_i \in S, \quad ||f(x_i) - g_A(x_i)||_{\infty} \leq \gamma$$

Generalization from compressibility

Idea: "compress" neural network and count compressed networks.

Compressibility: Let $G_A = \{g_A : A \in A\}$ be a discrete set of classifiers. A classifier f is (γ, S) -compressible with respect to G_A if on a training set $S = \{(x_i, y_i)\}$, we have:

$$\exists A \in \mathcal{A}, \quad s.t. \ \forall x_i \in S, \quad ||f(x_i) - g_A(x_i)||_{\infty} \le \gamma$$

Theorem: Suppose A is a set of q parameters each of which can have at most r discrete values and let |S| = m.

If the trained classifier f is (γ, S) - compressible with respect to G_A , there exists an $A \in \mathcal{A}$, s.t. with high probability over S,

$$|L_0(g_A) - \hat{L}_{\gamma}(f)| \le O\left(\sqrt{\frac{q \log r}{m}}\right)$$

Pf: Essentially Chernoff + union bound.

How do you compress?

How do you compress a neural network?

Lemma: For any matrix A, let \hat{A} be the truncated version of A where the singular values of A smaller than $\delta ||A||_2$ are removed. Then, $||\hat{A} - A||_2 \le \delta ||A||_2$ and \hat{A} has rank at most $\frac{||A||_F^2}{\delta^2 ||A||_2^2}$.

Implied compression: write a rank r matrix $\hat{A}^{m \times n}$ as $\hat{U}^{m \times r} \hat{U}^{r \times n}$ which has (m+n)r parameters. (As opposed to mn.)

Proof: Denote by r the rank of \hat{A} . Max singular value of $\hat{A}-A$ is at most $\delta \big| |A| \big|_2$. Since the remaining singular values are at least $\delta \big| |A| \big|_2$, we have $\big| |A| \big|_F \geq \big| |\hat{A}| \big|_F \geq \sqrt{r} \, \delta \big| |A| \big|_2$.

Perturbation after compression

Why spectral norm? Roughly captures "Lipschitzness" of network. Namely:

Lemma: Let f_w be a d-layer network with ReLU activations, and let $u = \{U_i\}_{i=1}^d$ be perturbations, s.t. $||U_i||_2 \le \frac{1}{d} ||W_i||_2$. Then:

$$|f_{w+u}(x) - f_w(x)| \le e ||x|| (\Pi_i ||W_i||_2) \sum_i \frac{||U_i||_2}{||W_i||_2}$$

Proof sketch: Induction on the error at layer i.

$$\begin{aligned} |f_{w+u}^{i}(x) - f_{w}^{i}(x)| &= |(W_{i} + U_{i})\sigma(f_{w+u}^{i-1}(x)) - W_{i}\sigma(f_{w}^{i-1}(x))| \\ &= |(W_{i} + U_{i})(\sigma(f_{w+u}^{i-1}(x)) - \sigma(f_{w}^{i-1}(x))) + U_{i}\sigma(f_{w}^{i-1}(x))| \\ &\leq ||W_{i} + U_{i}||_{2} ||f_{w+u}^{i-1}(x)| - ||f_{w}^{i-1}(x)|| + ||U_{i}||_{2} ||f_{w}^{i-1}(x)|| \end{aligned}$$

Perturbation after compression

Why spectral norm? Roughly captures "Lipschitzness" of network. Namely:

Lemma: Let f_w be a d-layer network with ReLU activations, and let $u = \{U_i\}_{i=1}^d$ be perturbations, s.t. $||U_i||_2 \le \frac{1}{d} ||W_i||_2$. Then:

$$|f_{w+u}(x) - f_w(x)| \le e ||x|| (\Pi_i ||W_i||_2) \sum_i \frac{||U_i||_2}{||W_i||_2}$$

Proof sketch: Induction on the error at layer i.

$$\begin{split} |f_{w+u}^{i}(x) - f_{w}^{i}(x)| &\leq \left| |W_{i} + U_{i}| \right|_{2} |f_{w+u}^{i-1}(x)) - f_{w}^{i-1}(x)))| + ||U_{i}||_{2} |f_{w}^{i-1}(x))| \\ &\leq \left| |W_{i} + U_{i}| \right|_{2} |f_{w+u}^{i-1}(x)) - f_{w}^{i-1}(x)))| + ||U_{i}||_{2} ||x|| |\Pi_{i}||W_{i}||_{2} \end{split}$$
 Using $||U_{i}||_{2} \leq \frac{1}{d} ||W_{i}||_{2}$, the lemma follows.

Putting things together

Lemma: Let f_w be a d-layer network with ReLU activations, and let $u = \{U_i\}_{i=1}^d$ be perturbations, s.t. $||U_i||_2 \le \frac{1}{d} ||W_i||_2$. Then:

$$|f_{w+u}(x) - f_w(x)| \le e ||x|| (\Pi_i ||W_i||_2) \sum_i \frac{||U_i||_2}{||W_i||_2}$$

Putting things together:

Applying compression lemma for
$$\delta = \frac{\gamma}{3d||x||\Pi_i||w^i||_2}$$
 gives $|f_{w+u}(x) - f_w(x)| \le \gamma$
Hence $|L_0(f_{w+u}) - L_\gamma(f_w)| \le \gamma$

Putting things together

Lemma: For any matrix A, let \hat{A} be the truncated version of A where the singular values of A smaller than $\delta ||A||_2$ are removed. Then, $||\hat{A} - A||_2 \le \delta ||A||_2$ and \hat{A} has rank at $\frac{||A||_F^2}{\delta^2 ||A||^2}$.

Putting things together:

Applying compression lemma for
$$\delta = \frac{\gamma}{3d||x||\Pi_i||w^i||_2}$$
 gives $|f_{w+u}(x) - f_w(x)| \le \gamma$

Hence
$$|L_0(f_{w+u}) - L_{\gamma}(f_w)| \le \gamma$$

By truncation lemma, rank in layer i is at most
$$\frac{9d^2||x||^2\Pi_i||w^i||_2^2}{\gamma^2}\frac{||w^i||_F^2}{||w^i||_2^2}$$

Number of nodes is at most h per layer, so compressed encoding has num of params

$$\frac{1}{\gamma^2} \operatorname{hd}^2 \max_{\mathbf{x} \in S} ||\mathbf{x}|| \|\Pi_{i=1}^d||W^i||^2 \sum_{i=1}^d \frac{||W^i||_F^2}{||W^i||_2^2}.$$
 Applying compression lemma, proof follows.