

Этикетка

КСНЛ.431271.013 ЭТ

Микросхема 1564ЛАЗТЭП

Микросхема интегральная 1564ЛАЗТЭП Функциональное назначение: четыре логических элемента «2И - НЕ»

Схема расположения выводов Номера выводов показаны условно Масса не более 1 г.

Условное графическое обозначение

Таблица назначения выводов

№	Обозначение	Назначение	№	Обозначение	Назначение
вывода	вывода	вывода	вывода	вывода	вывода
1	A1	Вход первого элемента	8	Y3	Выход третьего элемента
2	B1	Вход первого элемента	9	A3	Вход третьего элемента
3	Y1	Выход первого элемента	10	В3	Вход третьего элемента
4	A2	Вход второго элемента	11	Y4	Выход четвёрто- го элемента
5	B2	Вход второго элемента	12	A4	Вход четвёрто-го элемента
6	Y2	Выход второго элемента	13	B4	Вход четвёрто- го элемента
7	0V	Общий	14	V _{CC}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

Наименование параметра, единица измерения, режим измерения	Буквенное	Норма	
	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IH}=1.5 \text{ B}, I_0=20 \text{ MKA}$	$U_{ m OL\; max}$	-	0,10
U_{CC} =4,5 B, U_{IH} =3,15 B, I_0 = 20 мкА		-	0,10
U_{CC} =6,0 B, U_{IH} = 4,2 B, I_0 = 20 mkA		=	0,10
при:			
$U_{CC} = 4.5 \text{ B}, U_{IH} = 3.15 \text{ B}, I_0 = 4.0 \text{ mA}$		-	0,26
$U_{CC} = 6.0 \text{ B}, \ U_{IH} = 4.2 \text{ B}, \ I_0 = 5.2 \text{ MA}$		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
U_{CC} =2,0 B, U_{IL} =0,3 B, U_{IH} =1,5 B, I_0 = 20 мкА	U_{OHmin}	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_0 = 20 мкА		4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} = 4,2 B, I_0 = 20 мкА		5,9	-
при:			
$U_{CC} = 4.5 \text{ B}, U_{IL} = 0.9 \text{ B}, U_{IH} = 3.15 \text{ B}, I_0 = 4.0 \text{ mA}$		3,98	-
U_{CC} =6,0 B, U_{IL} = 1,2 B, U_{IH} = 4,2 B, I_0 = 5,2 MA		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, \ U_{IL} = 0 \text{ B}, \ U_{IH} = U_{CC}$	${ m I}_{ m IL}$	-	/-0,1/

4. Входной ток высокого уровня, мкА, при: $U_{CC} = 6,0$ В, $U_{IL} = 0$ В, $U_{IH} = U_{CC}$	I_{IH}	-	0,1
5.Ток потребления, мкА, при: $U_{CC}\!\!=\!6,\!0$ B, $U_{IL}\!\!=\!0$ B, $U_{IH}\!\!=\!U_{CC}$	I_{CC}	-	2,0
6. Динамический ток потребления, мА, при: $U_{CC}\!=\!6,\!0\;B,f\!=\!10\;M\Gamma_{I\!I}$	I _{occ}	-	12
7. Время задержки распространения при включении (выключении), нс, при: $U_{CC}=2,0 \text{ B, } C_L=50 \text{ п}\Phi$ $U_{CC}=4,5 \text{ B, } C_L=50 \text{ n}\Phi$ $U_{CC}=6,0 \text{ B, } C_L=50 \text{ n}\Phi$	t _{PHL} , t _{PLH}	-	90 18 15
8. Входная емкость, пФ	C_{I}	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

 золото
 г.

 серебро
 г.

 в том числе:
 ...

золото г/мм на 14 выводах длиной мм.

Цветных металлов не содержится

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{\rm C_7}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям AEЯP.431200.424-01ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ЛАЗТЭП соответствуют техническим условиям АЕЯР.431200.424-01ТУ и признаны годными для эксплуатации.

Приняты по от	
(извещение, акт и др.) (дата)	
Место для штампа ОТК	Место для штампа ПЗ
Место для штампа « Перепроверка произведена	»
Приняты по от от (дата)	
Место для штампа ОТК	Место для штампа ПЗ
Пена договорная	

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала не более 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.

Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.