Ш

Matrix Algebra- I

Classwork Examples

3.1	Definition of Matrix, types of matrices and their properties
3.2	Determinant and their properties

Determinant:

1	Find the determinant of $\begin{pmatrix} 1 & -2 \\ 3 & 0 \end{pmatrix}$. C.W.
	Answer: 6.
2	Find the determinant of $\begin{pmatrix} 1 & -2 & 3 \\ 1 & -1 & 2 \\ 2 & 1 & 3 \end{pmatrix}$. C.W.
	Answer: 2.
3	Find the determinant of $\begin{pmatrix} 2 & 0 & 0 & 3 \\ 4 & -3 & 1 & 2 \\ 3 & 1 & 2 & 1 \\ 0 & -4 & 0 & 7 \end{pmatrix}$. C.W.
	Answer: -134.
4	Prove that the $det \begin{pmatrix} a^2 & a & bc \\ b^2 & b & ca \\ c^2 & c & ab \end{pmatrix} = -det \begin{pmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{pmatrix}$. C.W.
5	Find the determinant of $\begin{pmatrix} 2 & 0 & -1 & 3 \\ 0 & -3 & 0 & 2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$. H.W.
	Answer: 0.
6	Find the determinant of $\begin{pmatrix} 9 & 9 & 12 \\ 1 & 3 & -4 \\ 1 & 9 & 12 \end{pmatrix}$. H.W.
	Answer: 576.

3.3	Rank and nullity of a matrix
3.4	Determination of rank

Rank using minors:

1	Find the rank of $\begin{pmatrix} 2 & 3 & 4 \\ 3 & 5 & 7 \end{pmatrix}$ using minors. C.W.
	Answer: 2.
2	Find the rank of $\begin{pmatrix} 1 & 3 & -4 \\ -1 & -3 & 4 \\ 2 & 6 & -8 \end{pmatrix}$ using minors. C.W.
	Answer: 1.
3	Find the rank of $\begin{pmatrix} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{pmatrix}$ using minors. C.W.
	Answer:
	If $a \neq -2$ and $a \neq 1$ then rank is 3.
	If $a = 1$ then rank is 1.
	If $a = -2$ then rank is 2.
4	Find the rank of $\begin{pmatrix} 2 & 1 & 5 & -1 \\ -1 & 2 & 5 & 3 \\ 3 & 2 & 9 & -1 \end{pmatrix}$ using minors. C.W.
	Answer: 2.
5	Find the rank of $\begin{pmatrix} 2 & 0 & 0 & 3 \\ 0 & -3 & 0 & 2 \\ 0 & 2 & 7 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ using minors. H.W.
	Answer: 3.
6	Find the rank of $\begin{pmatrix} 1 & -1 & 2 \\ 2 & 2 & -4 \\ -5 & 5 & -10 \\ 3 & -3 & 6 \end{pmatrix}$ using minors. H.W.
	Answer: 1.

Row-echelon/ Reduced row-echelon form:

1					3 -2 \	
	Reduce the matrix	0	1	-1	-6 6	to row-echelon/reduced row-echelon form
		/0	-2	2	4 - 4 /	

and hence determine the rank. C.W.

Answer:
$$\begin{pmatrix} 1 & -1 & 2 & 3 & -2 \\ 0 & 1 & -1 & -6 & 6 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix}$, rank is 3.

Reduce the matrix
$$\begin{pmatrix} 1 & 3 & 5 \\ 2 & -1 & 4 \\ -2 & 8 & 2 \end{pmatrix}$$
 to row-echelon/reduced row-echelon form and hence

determine the rank. H.W.

Answer:
$$\begin{pmatrix} 1 & 3 & 5 \\ 0 & 1 & 6/7 \\ 0 & 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 & 17/7 \\ 0 & 1 & 6/7 \\ 0 & 0 & 0 \end{pmatrix}$, rank is 2.

Reduce the matrix
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 5 \\ 1 & 5 & 5 & 7 \\ 8 & 1 & 14 & 17 \end{pmatrix}$$
 to row-echelon/reduced row-echelon form and hence determine the rank. **C.W.**

hence determine the rank. C.W.

Answer:
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2/3 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 & 5/3 & 2 \\ 0 & 1 & 2/3 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, rank is 2.

Reduce the matrix
$$\begin{pmatrix} 3 & 1 & 7 \\ 1 & 2 & 4 \\ 4 & -1 & 7 \\ 4 & -1 & 5 \end{pmatrix}$$
 to row-echelon/reduced row-echelon form and hence determine the rank. **C.W.**

determine the rank. C.W.

Answer:
$$\begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, rank is 3.

Reduce the matrix
$$\begin{pmatrix} 3 & 0 & 2 & 2 \\ -6 & 42 & 24 & 54 \\ 21 & -21 & 0 & -15 \end{pmatrix}$$
 to row-echelon/reduced row-echelon form and hence determine the rank. **H.W.**

	/1	0	2/3 2/3 \	
Answer:	0	1	2/3 29/14	, rank is 2.
	/0	0	00/	

Reduce the matrix $\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \\ 2 & 2 & 3 \end{pmatrix}$ to row-echelon/reduced row-echelon form and hence

determine the rank. H.W.

Answer:
$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, rank is 3.

3.5 Solution of a system of linear equations by Gauss elimination and Gauss Jordan Methods.

System of linear equations:

1 Solve the system:

$$2x + y - z = 4,$$

$$x - y + 2z = -2,$$

$$-x + 2y - z = 2$$

by Gauss elimination/Gauss-Jordan method, if it is consistent. H.W.

Answer: (1, 1, −1).

2 Solve the system:

$$2x + z = 3$$
,

$$x - y + z = 1,$$

$$4x - 2y + 3z = 3$$

by Gauss elimination/Gauss-Jordan method, if it is consistent. C.W.

Answer: The system is inconsistent.

3 Solve the system:

$$4x - 3y - 9z + 6w = 0,$$

$$2x + 3y + 3z + 6w = 6,$$

$$4x - 21y - 39z - 6w = -24$$

by Gauss elimination/Gauss-Jordan method, if it is consistent. C.W.

 Solve the system: 3x + y + 2z = 0, x - 2y + 3z = 0, x + 5y - 4z = 0 by Gauss elimination/Gauss-Jordan method. C.W. Answer: {(-k, k, k) k ∈ ℝ}. Consider the system of linear equations: x + y + z = 6, x + 2y + 3z = 10 x + 2y + λz = μ. Find the values of λ and μ so that the system (a) has unique solution (b) has infinite number of solutions (c) is inconsistent. C.W. Answer: (a) If λ ≠ 3 and μ ∈ ℝ, then it has unique solution. (b) If λ = 3 and μ ≠ 10, then it has infinitely many solutions. (c) If λ = 3 and μ ≠ 10, then it is inconsistent. Investigate for what values of λ and μ the equations 		Answer: $\left\{\left(1-2k_1+k_2,\frac{1}{3}(4-2k_1-5k_2),k_1\right) k_1,k_2 \in \mathbb{R}\right\}$.
$3x + y + 2z = 0,$ $x - 2y + 3z = 0,$ $x + 5y - 4z = 0$ by Gauss elimination/Gauss-Jordan method. C.W. Answer: $\{(-k, k, k) k \in \mathbb{R}\}.$ 5 Consider the system of linear equations: $x + y + z = 6,$ $x + 2y + 3z = 10$ $x + 2y + \lambda z = \mu.$ Find the values of λ and μ so that the system (a) has unique solution (b) has infinite number of solutions (c) is inconsistent. C.W. Answer: (a) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (b) If $\lambda = 3$ and $\mu = 10$, then it has infinitely many solutions. (c) If $\lambda = 3$ and $\mu \neq 10$, then it is inconsistent. 6 Investigate for what values of λ and μ the equations $x + 2y + z = 8; 2x + 2y + 2z = 13; 3x + 4y + \lambda z = \mu \text{ have } (i) \text{ a unique solution} (ii) \text{ infinite solutions, and } (iii) \text{ no solution. H.W.}$ Answer: (i) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (ii) If $\lambda = 3$ and $\mu \neq 21$, then it has no solution. 7 Find the value of k so that the equations $x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0$ have a non-trivial solution. C.W. Answer: $k = 8$ 8 Solve the system:		Answer: $\{(1-2k_1+k_2,\frac{1}{3}(4-2k_1-3k_2),k_1) k_1,k_2 \in \mathbb{R}\}$.
$x-2y+3z=0$, $x+5y-4z=0$ by Gauss elimination/Gauss-Jordan method. C.W. Answer: $\{(-k,k,k) \ k\in\mathbb{R}\}$. 5 Consider the system of linear equations: $x+y+z=6$, $x+2y+3z=10$ $x+2y+\lambda z=\mu$. Find the values of λ and μ so that the system (a) has unique solution (b) has infinite number of solutions (c) is inconsistent. C.W. Answer: (a) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (b) If $\lambda = 3$ and $\mu = 10$, then it has infinitely many solutions. (c) If $\lambda = 3$ and $\mu \neq 10$, then it is inconsistent. 6 Investigate for what values of λ and μ the equations $x+2y+z=8; 2x+2y+2z=13; 3x+4y+\lambda z=\mu$ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (ii) If $\lambda = 3$ and $\mu \neq 21$, then it has no solution. 7 Find the value of k so that the equations $x+y+3z=0; 4x+3y+kz=0; 2x+y+2z=0$ have a non-trivial solution. C.W. Answer: $k=8$	4	Solve the system:
$x + 5y - 4z = 0$ by Gauss elimination/Gauss-Jordan method. C.W. Answer: $\{(-k, k, k) k \in \mathbb{R}\}$. 5 Consider the system of linear equations: $x + y + z = 6,$ $x + 2y + 3z = 10$ $x + 2y + \lambda z = \mu.$ Find the values of λ and μ so that the system (a) has unique solution (b) has infinite number of solutions (c) is inconsistent. C.W. Answer: (a) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (b) If $\lambda = 3$ and $\mu = 10$, then it has infinitely many solutions. (c) If $\lambda = 3$ and $\mu \neq 10$, then it is inconsistent. 6 Investigate for what values of λ and μ the equations $x + 2y + z = 8$; $2x + 2y + 2z = 13$; $3x + 4y + \lambda z = \mu$ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (ii) If $\lambda = 3$ and $\mu \neq 21$, then it has infinite solutions. (iii) If $\lambda = 3$ and $\mu \neq 21$, then it has no solution. 7 Find the value of k so that the equations $x + y + 3z = 0$; $4x + 3y + kz = 0$; $2x + y + 2z = 0$ have a non-trivial solution. C.W. Answer: $k = 8$		3x + y + 2z = 0,
by Gauss elimination/Gauss-Jordan method. C.W. Answer: $\{(-k, k, k) k \in \mathbb{R}\}$. 5 Consider the system of linear equations: $x + y + z = 6$, $x + 2y + 3z = 10$ $x + 2y + \lambda z = \mu$. Find the values of λ and μ so that the system (a) has unique solution (b) has infinite number of solutions (c) is inconsistent. C.W. Answer: (a) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (b) If $\lambda = 3$ and $\mu = 10$, then it has infinitely many solutions. (c) If $\lambda = 3$ and $\mu \neq 10$, then it is inconsistent. 6 Investigate for what values of λ and μ the equations $x + 2y + z = 8$; $2x + 2y + 2z = 13$; $3x + 4y + \lambda z = \mu$ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (ii) If $\lambda = 3$ and $\mu \neq 21$, then it has no solution. 7 Find the value of k so that the equations $x + y + 3z = 0$; $4x + 3y + kz = 0$; $2x + y + 2z = 0$ have a non-trivial solution. C.W. Answer: $k = 8$		x - 2y + 3z = 0,
Answer: $\{(-k, k, k) k \in \mathbb{R}\}$. 5 Consider the system of linear equations: $x + y + z = 6$, $x + 2y + 3z = 10$ $x + 2y + \lambda z = \mu$. Find the values of λ and μ so that the system (a) has unique solution (b) has infinite number of solutions (c) is inconsistent. C.W. Answer: (a) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (b) If $\lambda = 3$ and $\mu = 10$, then it has infinitely many solutions. (c) If $\lambda = 3$ and $\mu \neq 10$, then it is inconsistent. 6 Investigate for what values of λ and μ the equations $x + 2y + z = 8$; $2x + 2y + 2z = 13$; $3x + 4y + \lambda z = \mu$ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (ii) If $\lambda = 3$ and $\mu \neq 21$, then it has infinite solutions. (iii) If $\lambda = 3$ and $\mu \neq 21$, then it has no solution. 7 Find the value of k so that the equations $x + y + 3z = 0$; $4x + 3y + kz = 0$; $2x + y + 2z = 0$ have a non-trivial solution. C.W. Answer: $k = 8$		x + 5y - 4z = 0
 Consider the system of linear equations: x + y + z = 6, x + 2y + 3z = 10 x + 2y + λz = μ. Find the values of λ and μ so that the system (a) has unique solution (b) has infinite number of solutions (c) is inconsistent. C.W. Answer: (a) If λ ≠ 3 and μ ∈ ℝ, then it has unique solution. (b) If λ = 3 and μ = 10, then it has infinitely many solutions. (c) If λ = 3 and μ ≠ 10, then it is inconsistent. Investigate for what values of λ and μ the equations x + 2y + z = 8; 2x + 2y + 2z = 13; 3x + 4y + λz = μ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If λ ≠ 3 and μ ∈ ℝ, then it has unique solution. (ii) If λ = 3 and μ = 21, then it has no solution. Find the value of k so that the equations x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0 have a non-trivial solution. C.W. Answer: k = 8 Solve the system: 		by Gauss elimination/Gauss-Jordan method. C.W.
$x + y + z = 6$, $x + 2y + 3z = 10$ $x + 2y + \lambda z = \mu$. Find the values of λ and μ so that the system (a) has unique solution (b) has infinite number of solutions (c) is inconsistent. C.W. Answer: (a) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (b) If $\lambda = 3$ and $\mu = 10$, then it has infinitely many solutions. (c) If $\lambda = 3$ and $\mu \neq 10$, then it is inconsistent. 6 Investigate for what values of λ and μ the equations $x + 2y + z = 8$; $2x + 2y + 2z = 13$; $3x + 4y + \lambda z = \mu$ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (ii) If $\lambda = 3$ and $\mu = 21$, then it has infinite solutions. (iii) If $\lambda = 3$ and $\mu \neq 21$, then it has no solution. 7 Find the value of k so that the equations $x + y + 3z = 0$; $4x + 3y + kz = 0$; $2x + y + 2z = 0$ have a non-trivial solution. C.W. Answer: $k = 8$		Answer: $\{(-k, k, k) k \in \mathbb{R}\}$.
$x + 2y + 3z = 10$ $x + 2y + \lambda z = \mu$. Find the values of λ and μ so that the system (a) has unique solution (b) has infinite number of solutions (c) is inconsistent. C.W. Answer: (a) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (b) If $\lambda = 3$ and $\mu = 10$, then it has infinitely many solutions. (c) If $\lambda = 3$ and $\mu \neq 10$, then it is inconsistent. 6 Investigate for what values of λ and μ the equations $x + 2y + z = 8$; $2x + 2y + 2z = 13$; $3x + 4y + \lambda z = \mu$ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (ii) If $\lambda = 3$ and $\mu \neq 21$, then it has no solution. 7 Find the value of k so that the equations $x + y + 3z = 0$; $4x + 3y + kz = 0$; $2x + y + 2z = 0$ have a non-trivial solution. C.W. Answer: $k = 8$	5	Consider the system of linear equations:
Find the values of λ and μ so that the system (a) has unique solution (b) has infinite number of solutions (c) is inconsistent. C.W. Answer: (a) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (b) If $\lambda = 3$ and $\mu = 10$, then it has infinitely many solutions. (c) If $\lambda = 3$ and $\mu \neq 10$, then it is inconsistent. 6 Investigate for what values of λ and μ the equations $x + 2y + z = 8$; $2x + 2y + 2z = 13$; $3x + 4y + \lambda z = \mu$ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (ii) If $\lambda = 3$ and $\mu = 21$, then it has infinite solutions. (iii) If $\lambda = 3$ and $\mu \neq 21$, then it has no solution. 7 Find the value of k so that the equations $x + y + 3z = 0$; $4x + 3y + kz = 0$; $2x + y + 2z = 0$ have a non-trivial solution. C.W. Answer: $k = 8$		x + y + z = 6,
Find the values of λ and μ so that the system (a) has unique solution (b) has infinite number of solutions (c) is inconsistent. C.W. Answer: (a) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (b) If $\lambda = 3$ and $\mu = 10$, then it has infinitely many solutions. (c) If $\lambda = 3$ and $\mu \neq 10$, then it is inconsistent. 6 Investigate for what values of λ and μ the equations $x + 2y + z = 8$; $2x + 2y + 2z = 13$; $3x + 4y + \lambda z = \mu$ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (ii) If $\lambda = 3$ and $\mu = 21$, then it has infinite solutions. (iii) If $\lambda = 3$ and $\mu \neq 21$, then it has no solution. 7 Find the value of k so that the equations $x + y + 3z = 0$; $4x + 3y + kz = 0$; $2x + y + 2z = 0$ have a non-trivial solution. C.W. Answer: $k = 8$		x + 2y + 3z = 10
 (a) has unique solution (b) has infinite number of solutions (c) is inconsistent. C.W. Answer: (a) If λ ≠ 3 and μ ∈ ℝ, then it has unique solution. (b) If λ = 3 and μ = 10, then it has infinitely many solutions. (c) If λ = 3 and μ ≠ 10, then it is inconsistent. 6 Investigate for what values of λ and μ the equations x + 2y + z = 8; 2x + 2y + 2z = 13; 3x + 4y + λz = μ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If λ ≠ 3 and μ ∈ ℝ, then it has unique solution. (ii) If λ = 3 and μ ≠ 21, then it has infinite solutions. (iii) If λ = 3 and μ ≠ 21, then it has no solution. 7 Find the value of k so that the equations x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0 have a non-trivial solution. C.W. Answer: k = 8 8 Solve the system: 		$x + 2y + \lambda z = \mu.$
Answer: (a) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (b) If $\lambda = 3$ and $\mu = 10$, then it has infinitely many solutions. (c) If $\lambda = 3$ and $\mu \neq 10$, then it is inconsistent. 6 Investigate for what values of λ and μ the equations $x + 2y + z = 8$; $2x + 2y + 2z = 13$; $3x + 4y + \lambda z = \mu$ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (ii) If $\lambda = 3$ and $\mu = 21$, then it has infinite solutions. (iii) If $\lambda = 3$ and $\mu \neq 21$, then it has no solution. 7 Find the value of k so that the equations $x + y + 3z = 0$; $4x + 3y + kz = 0$; $2x + y + 2z = 0$ have a non-trivial solution. C.W. Answer: $k = 8$		Find the values of λ and μ so that the system
 (a) If λ ≠ 3 and μ ∈ ℝ, then it has unique solution. (b) If λ = 3 and μ = 10, then it has infinitely many solutions. (c) If λ = 3 and μ ≠ 10, then it is inconsistent. 6 Investigate for what values of λ and μ the equations x + 2y + z = 8; 2x + 2y + 2z = 13; 3x + 4y + λz = μ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If λ ≠ 3 and μ ∈ ℝ, then it has unique solution. (ii) If λ = 3 and μ = 21, then it has infinite solutions. (iii) If λ = 3 and μ ≠ 21, then it has no solution. 7 Find the value of k so that the equations x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0 have a non-trivial solution. C.W. Answer: k = 8 		(a) has unique solution (b) has infinite number of solutions (c) is inconsistent. C.W.
 (b) If λ = 3 and μ = 10, then it has infinitely many solutions. (c) If λ = 3 and μ ≠ 10, then it is inconsistent. 6 Investigate for what values of λ and μ the equations x + 2y + z = 8; 2x + 2y + 2z = 13; 3x + 4y + λz = μ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If λ ≠ 3 and μ ∈ ℝ, then it has unique solution. (ii) If λ = 3 and μ = 21, then it has infinite solutions. (iii) If λ = 3 and μ ≠ 21, then it has no solution. 7 Find the value of k so that the equations x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0 have a non-trivial solution. C.W. Answer: k = 8 8 Solve the system:		Answer:
 (c) If λ = 3 and μ ≠ 10, then it is inconsistent. 6 Investigate for what values of λ and μ the equations x + 2y + z = 8; 2x + 2y + 2z = 13; 3x + 4y + λz = μ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If λ ≠ 3 and μ ∈ ℝ, then it has unique solution. (ii) If λ = 3 and μ = 21, then it has infinite solutions. (iii) If λ = 3 and μ ≠ 21, then it has no solution. 7 Find the value of k so that the equations x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0 have a non-trivial solution. C.W. Answer: k = 8 8 Solve the system:		(a) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution.
 Investigate for what values of λ and μ the equations x + 2y + z = 8; 2x + 2y + 2z = 13; 3x + 4y + λz = μ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If λ ≠ 3 and μ ∈ ℝ, then it has unique solution. (ii) If λ = 3 and μ = 21, then it has infinite solutions. (iii) If λ = 3 and μ ≠ 21, then it has no solution. Find the value of k so that the equations x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0 have a non-trivial solution. C.W. Answer: k = 8 Solve the system: 		(b) If $\lambda = 3$ and $\mu = 10$, then it has infinitely many solutions.
$x + 2y + z = 8$; $2x + 2y + 2z = 13$; $3x + 4y + \lambda z = \mu$ have (i) a unique solution (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (ii) If $\lambda = 3$ and $\mu = 21$, then it has infinite solutions. (iii) If $\lambda = 3$ and $\mu \neq 21$, then it has no solution. 7 Find the value of k so that the equations $x + y + 3z = 0$; $4x + 3y + kz = 0$; $2x + y + 2z = 0$ have a non-trivial solution. C.W. Answer: $k = 8$		(c) If $\lambda = 3$ and $\mu \neq 10$, then it is inconsistent.
 (ii) infinite solutions, and (iii) no solution. H.W. Answer: (i) If λ ≠ 3 and μ ∈ ℝ, then it has unique solution. (ii) If λ = 3 and μ = 21, then it has infinite solutions. (iii) If λ = 3 and μ ≠ 21, then it has no solution. 7 Find the value of k so that the equations x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0 have a non-trivial solution. C.W. Answer: k = 8 	6	Investigate for what values of λ and μ the equations
Answer: (i) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution. (ii) If $\lambda = 3$ and $\mu = 21$, then it has infinite solutions. (iii) If $\lambda = 3$ and $\mu \neq 21$, then it has no solution. 7 Find the value of k so that the equations $x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0$ have a non-trivial solution. C.W. Answer: $k = 8$		$x + 2y + z = 8$; $2x + 2y + 2z = 13$; $3x + 4y + \lambda z = \mu$ have (i) a unique solution.
 (i) If λ ≠ 3 and μ ∈ ℝ, then it has unique solution. (ii) If λ = 3 and μ = 21, then it has infinite solutions. (iii) If λ = 3 and μ ≠ 21, then it has no solution. 7 Find the value of k so that the equations x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0 have a non-trivial solution. C.W. Answer: k = 8 8 Solve the system: 		(ii) infinite solutions, and (iii) no solution. H.W.
 (ii) If λ = 3 and μ = 21, then it has infinite solutions. (iii) If λ = 3 and μ ≠ 21, then it has no solution. 7 Find the value of k so that the equations x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0 have a non-trivial solution. C.W. Answer: k = 8 8 Solve the system: 		Answer:
 (iii)If λ = 3 and μ ≠ 21, then it has no solution. 7 Find the value of k so that the equations x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0 have a non-trivial solution. C.W. Answer: k = 8 8 Solve the system: 		(i) If $\lambda \neq 3$ and $\mu \in \mathbb{R}$, then it has unique solution.
Find the value of k so that the equations $x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0$ have a non-trivial solution. C.W. Answer: $k = 8$		(ii) If $\lambda=3$ and $\mu=21$, then it has infinite solutions.
x + y + 3z = 0; 4x + 3y + kz = 0; 2x + y + 2z = 0 have a non-trivial solution. C.W. Answer: $k = 8$ 8 Solve the system:		(iii) If $\lambda=3$ and $\mu\neq21$, then it has no solution.
have a non-trivial solution. C.W. Answer: $k = 8$ 8 Solve the system:	7	Find the value of k so that the equations
Answer: $k = 8$ 8 Solve the system:		x + y + 3z = 0; $4x + 3y + kz = 0$; $2x + y + 2z = 0$
8 Solve the system:		have a non-trivial solution. C.W.
		Answer: $k = 8$
x + 2y - 2z = 1	8	Solve the system:
		x + 2y - 2z = 1

$$2x - 3y + z = 0$$

$$5x + y - 5z = 1$$

$$3x + 14y - 12z = 5$$

by Gauss elimination/Gauss-Jordan method, if it is consistent. H.W.

Answer: (1, 1, 1)

9 By applying Kirchhoff's law to a circuit we obtain the following equations:

$$7i_1 + 9i_2 = 3$$

$$5i_1 + 7i_2 = 1$$

where i_1 and i_2 represents currents. Find the values of i_1 and i_2 by Gauss elimination/Gauss-Jordan method, if it is consistent. **H.W.**

Answer: (3, -2)

10 A pulley system gives the following equations

$$\ddot{x}_1 + \ddot{x}_2 = 0$$

$$2\ddot{x}_1 = 20 - T$$

$$5\ddot{x}_2 = 50 - T$$

where \ddot{x}_1 , \ddot{x}_2 represent acceleration and T represents tension in the rope. Determine \ddot{x}_1 , \ddot{x}_2 and T by Gauss elimination/Gauss-Jordan method, if it is consistent. **C.W.**

Answer: $\left(-\frac{30}{7}, \frac{30}{7}, \frac{200}{7}\right)$

The prices of three commodities A, B and C are $\mathcal{T}(x,y)$ and Z per units respectively. A person P purchases 4 units of B and sells 2 units of A and 5 units of B. Person B purchases 2 units of B and sells 3 unit of B and 1 unit of B. Person B purchases 1 unit of B and sells 3 unit of B and one unit of B. In the process, B, B and B and B are B and B and B and B are B and B and B and B are B and B and B are B and B and B are B and B are B and B are B and B are B and B and B are B are B and B are B are B and B are B and B are B and B are B and B are B are B and B are B and B are B and B are B are B and B are B are B and B are B are B are B and B are B and B are B a

Answer: (2000, 1000, 3000)

12 The upward speed v(t) of a rocket at time t is approximated by

$$v(t) = at^2 + bt + c$$
, $0 \le t \le 100$ where a, b, and c are constants.

It has been found that the speed at times t=3, t=6, and t=9 seconds are 64,133, and 208 miles per second respectively. Find the speed at time t=15 seconds. (Use Gauss elimination/Gauss-Jordan method) **H.W.**

	Academic Year: 2022-2023
Answer: $v(15) = 376$.	
	7