1 FEATURES

- Miniature package
- Low noise
- Low bias instability
- Excellent performance in vibration and shock environments
- 6 axes offered in same package
 - Electronically calibrated axis alignment
- Gyros based on Sensonor ButterflyGyro
 - Single-crystal silicon technology
 - No intrinsic wear-out effects
- o High stability accelerometers and inclinometers
- O Separate "AUX" input for 24 bit ADC 单独的 "AUX" 输入用于24位ADC
- Insensitive to magnetic fields
- Full EMI compliance
- Digital interface, RS422
- Fully configurable
- o Continuous self-diagnostics
- RoHS compatible

(38.6mm x 44.8mm x 21.5mm)

2 GENERAL DESCRIPTION

STIM300 is an IMU consisting of 3 high accuracy MEMS-based gyros, 3 high stability accelerometers and 3 high stability inclinometers in a miniature package. Each axis is factory-calibrated for bias, sensitivity and compensated for temperature effects to provide high-accuracy measurements in the temperature range 40°C to +85°C. The unit runs off a single +5V supply.

STIM300 communicates via a standard high-level RS422 interface. The use of a 32-bit RISC ARM microcontroller provides flexibility in the configuration, like choice of output unit, sample rate, low pass filter –3dB frequency and RS422 bit-rate and protocol parameters. All configurable parameters can be defined when ordering or set by customer.

When STIM300 is powered up, it will perform an internal system check and synchronise the sensor channels. As an acknowledgement of the complete power-up sequence, it will provide special datagrams containing part number, serial number and configuration data. STIM300 will then automatically proceed to provide measurement data. Connect power

Figure 2-1: STIM300 FUNCTION BLOCK DIAGRAM

and STIM300 will provide accurate measurements over the RS422 interface.

The measurement data is transmitted as packages of data on a fixed format (datagram) at intervals given by the <u>sample rate</u> together with <u>a synchronization signal (TOV)</u>. The datagram is in binary coded format in order to have an efficient transfer of data. In addition to the measurement data itself, the datagram contains an <u>identifier</u>, <u>status bytes</u> and <u>a 32 bit CRC</u> (Cyclic Redundancy Check) to provide high degree of fault detection in the transmissions. The status bytes will flag any detected errors in the system. STIM300 can also be configured to transmit data only when triggered by a separate digital input signal (ExtTrig).

For more advanced users, the gyro may be put in Service Mode. In this mode all the configuration parameters can be intermediately or permanently changed by overwriting the current settings in the flash memory. In Service Mode the commands and responses are in a human readable format (ASCII); to enable the use of terminal-type software during typical product integration. Service Mode also provides the ability to perform single measurements, perform diagnostics and obtain a higher detail level of detected errors reported in the status bytes.

Sensonor AS

T ButterflyGyro STIM300 Inertia Measurement Unit

TABLE OF CONTENTS

	MENT HISTORY	
	EATURES	
	ENERAL DESCRIPTION	
	ABLE OF CONTENTS	
	EFINITIONS AND ABBREVIATIONS USED IN DOCUMENT	
4.1	Definitions	
4.2	Abbreviations	
	BSOLUTE MAXIMUM RATINGS	
	PECIFICATIONS	4
6.1	TYPICAL PERFORMANCE CHARACTERISTICS	
	1.1 GYRO CHARACTERISTICS	. 11
_		
_	1.3 INCLINOMETER CHARACTERISTICS	
6.2	Configurable parameters	
6.3	Datagram specifications	
	3.1 Part Number datagram	
	3.2 Serial Number datagram	
	3.3 Configuration datagram	26
	3.4 Extended Error Information datagram	
	3.5 Normal Mode datagram	
	3.6 Cyclic Redundancy Check (CRC)	
6.4	Status byte	32
-	ECHANICAL	
7.1	Mechanical dimensions	
7.2	Advice on mounting orientation	
7.3	Pin configuration	
7.4	Definition of axes	
	ASIC OPERATION	
8.1	Reset	
8.2	External Trigger	
8.3	Time of Validity (TOV)	
8.4	Auxiliary input	
8.5	Operating modes	
8.5	5.1 Init Mode	
8.5	5.2 Normal Mode	
	5.3 Service Mode	
8.6	Self-diagnostics	
9 CC	OMMANDS IN NORMAL MODE	. 46
9.1	N (PART NUMBER DATAGRAM) command	. 46
9.2	I (SERIAL NUMBER DATAGRAM) command	. 46
9.3	C (CONFIGURATION DATAGRAM) command	. 47
9.4	E (EXTENDED ERROR INFORMATION DATAGRAM) command	
9.5	R (RESET) command	. 47
9.6	SERVICEMODE command	
10	COMMANDS IN SERVICE MODE	
10.1	i (INFORMATION) command	
10.2		
10.3		
10.4		
10.5	,	
	0.5.1 User-defined bit-rate	
10.6		
10.7		
10.8		
10.9		
10.10		
10.1		
10.12		
10.13		
10.14	\	
10.15		
	MARKING	_
12	CONFIGURATION / ORDERING INFORMATION	Ö

4 DEFINITIONS AND ABBREVIATIONS USED IN DOCUMENT

4.1 Definitions

 $g_0 = 9.80665 \text{m/s}^2$ (standard gravity)

4.2 Abbreviations

Table 4-1: Abbreviations

ABBREVIATION	FULL NAME
BCD	Binary Coded Decimal 二进制编码的十进制
BSL	Best Straight Line
CIC-filter	Cascaded Integrator-Comb filter
CR	Carriage Return 🛚 🚊
FS	Full-Scale 满量程
LF	Line Feed 换行
LP filter	Low-Pass filter
tbd	to be defined 被定义为
LSB	Least Significant Byte 最低有效字节
MSB	Most Significant Byte 最低有效字节
lsb	Least significant bit 最低有效字位
TOV	Time of Validity 有效时间

绝对最大额定参数

5 ABSOLUTE MAXIMUM RATINGS

Stresses beyond those listed in Table 5-1 may cause permanent damage to the device.

Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

Table 5-1: Absolute maximum ratings

Parameter	Rating	Comment
Mechanical shock	1 500g/0.5ms half-sine	Any direction. Ref: MIL STD-883G
ESD human body model	±2kV	Ref: JEDEC/ESDA JS-001
Storage temperature	-55°C to +90°C	Up to 1000 hours
VSUP to GND	-0.5 to +7V	
RxD+ or RxD- to GND	-0.3V to +7V	
RxD+ to RxD-	±6V	with 120Ω Line Termination = ON
TxD+ or TxD- to GND	-8V to +8V	
ExtTrig to GND	-0.3V to +7V	
TOV to GND	-0.3V to +7V	
NRST to GND	-0.3V to +7V	
AUX+ to AUX-	±6.5V	
AUX+ or AUX- to GND	±6.5V	
Chassis to GND	500V	
Helium sensitivity		Not to be exposed to helium concentrations higher
_		than those normally found in the atmosphere

规格/说明书

6 SPECIFICATIONS

Table 6-1: Operating conditions

Parameter	Conditions	Min	Nom	Max	Unit	Note
INPUT RANGE, ANGULAR RATE			±400		°/s	
INPUT RANGE, ACCELERATION			±10		g	1
INPUT RANGE, INCLINATION			±1.7		g	
POWER SUPPLY		4.5	5.0	5.5	V	2,3
OPERATING TEMPERATURE		-40		+85	°C	

Note 1: Other ranges available, ref. note 1 in Table 6-4

Note 2: At supply voltages above 5.85V (nominal value) an internal voltage protection circuit will cut power and the unit will go into reset until the voltage is back within operating conditions. 在5.85V以上的供应电压(公称值)内,一个内部电压保护电路将切断电源 该基置推进人员位,直到电压恢复到运行状态。

Note 3: At supply voltages below 4.05V (nominal value) the unit will go into reset until the voltage is back within operating conditions. Due to power consumption being much lower in reset compared to normal operation, the series resistance between power source and STIM300 could give rise to an oscillating behaviour of the input voltage to the unit. 在供应电压低于4.05V时,该装置将被重置,直到电压恢复到运行状态。

Table 6-2: Functional specifications, general

POWER CONSUMPTION Power consumption 1.5	Parameter	Conditions	Min	Nom	Max	Unit	Note
Timil No Start-Up time after Power-On	POWER CONSUMPTION						
Start-Up time after Power-On Time to transmit after Reset Time to valid data RS422 Bit-Rate RS422 Bit-Rate RS422 Bit-Rate Accuracy RS422 Bit-Rate Accuracy RS422 Bit-Rate RS422 Bit-Rat	Power consumption			1.5	2	W	
Time to transmit after Reset Time to valid data T=+25°C 5 s 3 3 1 1 1 1 1 1 1 1	TIMING						
Time to valid data RS422 Bit-Rate RS422 Bit-Rate RS422 Bit-Rate RS422 Bit-Rate RS422 Bit-Rate RS422 Bit-Rate Accuracy Accura	Start-Up time after Power-On				0.3	s	1
Time to valid data RS422 Bit-Rate RS422 Bit-Rate RS422 Bit-Rate RS422 Bit-Rate RS422 Bit-Rate RS422 Bit-Rate Accuracy Accura	Time to transmit after Reset				0.2	s	2
RS422 PROTOCOL MATERIAL PROTOCOL MATERI	Time to valid data	T=+25°C			5	s	
RS422 PROTOCOL	RS422 Bit-Rate		re	ef. Table 6-1	1		
RS422 PROTOCOL Pi2	RS422 Bit-Rate Accuracy				±1	%	4
Start Bit Data Length Parity Stop Bits None Stop Bits Stop Bits							
Data Length				1		bit	
Parity Stop Bits Stop B	•						
Stop Bits 1 bit 5 RS422 LINE TERMINATION Input resistance Line termination = ON 120 Ω Input resistance Line termination = OFF 48 125 kΩ RESET (NRST PIN) Logic levels "high" 2.3 V Minimum hold time for reset 1 µs Pull-Up Resistor 80 100 kΩ EXTERNAL TRIGGER (ExtTrig PIN) Logic levels "high" 2.3 V Trigger Time between triggers Measurement unit: angular rate incremental angle average rate incremental angle average rate integrated angle 0.5 65 ms 6,8 average rate integrated angle 0.5 8 ms 6,10 Minimum "high" time before trigger, text_lo Delay from external trigger to start of transmission, text_ell Negative transition State of transmission, text_ell Negative transition Negative transition							5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						bit	
Input resistance				<u> </u>			
Input resistance Line termination = OFF 48 125 KΩ		Line termination = ON		120		Ω	
RESET (NRST PIN) Logic levels "high" 2.3 V Minimum hold time for reset Pull-Up Resistor 1 μs EXTERNAL TRIGGER (ExtTrig PIN) "high" 2.3 V Logic levels "high" 2.3 V Trigger Time between triggers Measurement unit: angular rate incremental angle average rate incremental angle average rate integrated angle 0.5 65 ms 6,7 Minimum "high" time before trigger, text_hi Minimum "low" time after trigger, text_bi 250 ns 11 Minimum "low" time after trigger to start of transmission, text_di 86 μs 11	·		48				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		"high"	23			V	
$\begin{array}{ c c c c c c }\hline \text{Minimum hold time for reset} \\ \text{Pull-Up Resistor} \\ \hline \textbf{EXTERNAL TRIGGER (ExtTrig PIN)} \\ \text{Logic levels} \\ \hline Trigger \\ \text{Time between triggers} \\ \hline \\ Measurement unit: \\ angular rate \\ incremental angle \\ average rate \\ integrated angle \\ \hline \\ t_{ext_lo} \\ \hline \\ Delay from external trigger to start of transmission, t_{ext_dl} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	209.0 10 10.0		2.0		0.6	-	
$ \begin{array}{ c c c c c } \hline \text{Pull-Up Resistor} & 80 & 100 & \text{$k\Omega$} \\ \hline \textbf{EXTERNAL TRIGGER (ExtTrig PIN)} \\ \hline \text{Logic levels} & \text{"high"} & 2.3 & \text{V} \\ \hline \text{Trigger} & \text{Negative transition} \\ \hline \text{Time between triggers} & \text{Measurement unit:} \\ & & & & & & & & & & & & & & & & & & $	Minimum hold time for reset	1011	1		0.0	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				100			
PIN) Logic levels "high" "low" Trigger Time between triggers Measurement unit: angular rate incremental angle average rate integrated angle integrated angle Minimum "high" time before trigger, text_hi Minimum "low" time after trigger, Delay from external trigger to start of transmission, text_dl "high" 2.3 Negative transition Negative transition 0.5 65 ms 6,7 0.5 0.5 65 ms 6,9 0.5 0.5 8 ms 6,10 250 ns 11 4 11						1122	
Logic levels Trigger Time between triggers Measurement unit: angular rate incremental angle average rate integrated angle Minimum "high" time before trigger, t _{ext_hi} Minimum "low" time after trigger, t _{ext_lo} Delay from external trigger to start of transmission, t _{ext_dl} "high" "low" Negative transition 10.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5							
Trigger Time between triggers $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		"high"	2.3			V	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					0.6		
Time between triggers Measurement unit: angular rate incremental angle average rate integrated angle 0.5 65 ms 6,8 6,9 6,9 Minimum "high" time before trigger, $t_{\text{ext_hi}}$ Minimum "low" time after trigger, $t_{\text{ext_lo}}$ Delay from external trigger to start of transmission, $t_{\text{ext_dl}}$	Trigger		Nec	native transi			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Measurement unit:		Jan 10 man 10.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Time term anggere		0.5		65	ms	6.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						_	
			0.0		•		,,,,
	Minimum "high" time before trigger.		250			ns	11
	-					1	
t _{ext_lo} Delay from external trigger to start of transmission, t _{ext_dl} 86 µs 11	Minimum "low" time after trigger		250			ns	11
Delay from external trigger to start of transmission, t _{ext_dl} 86 µs 11			200			1.0	
of transmission, t _{ext_dl}	Delay from external trigger to start						
					86	μs	11
	Pull-Up Resistor		40	50		kΩ	
Latency 1000 µs	· ·				1000		

TIME OF VALIDITY (TOV PIN) Output configuration Internal Pull-Up Resistor to Vsup Sink capability TOV active level Minimum time of TOV, t _{tov_min} Delay from internal time-tick to TOV active, t _{tov_dl} Delay from TOV active (to start of transmission, t _{tx_dl}		50	Open drain 10 Active "low" 1.2	50 6 80	kΩ mA μs μs	12 12 12
CHASSIS Isolation resistance chassis to GND (pin 15)	500V	100			ΜΩ	

- Note 1: Time from Power-On to start of datagram transmissions (starting with part-number datagram)
- Note 2: Time from Reset release to start of datagram transmissions (starting with part-number datagram)
- Note 3: Time from Power-On or Reset to the reset of the Start-Up bit (Bit 6 in the STATUS byte ref. Table 6-21). During this period the output data should be regarded as non-valid.
- Note 4: If a user-defined bit-rate larger than 1.5Mbit/s is used, the deviation may exceed the specification due to the resolution of the bit-rate generator, ref. section 10.5.1
- Note 5: Other values can be configured, ref. Table 6-11
- Note 6: If time between triggers is longer than 127ms, the sample counter will over-run
- Note 7: Time between triggers should be carefully evaluated as long time between triggers in combination with high bandwidths could lead to issues related to folding
- Note 8: If time between triggers is longer than 8ms, an overload may occur in the incremental angle. An overload will be flagged in the status byte, ref. Table 6-21
- Note 9: If time between triggers is longer, the accuracy of average rate may also be reduced. Similar for accelerometer and inclinometer outputs
- Note 10: If time between triggers is longer, the integrated angle may have wrapped several times and hence the change in angle from last sample will not be possible to calculate. Similar for accelerometer and inclinometer outputs
- Note 11: For definition, ref. Figure 8-3
- Note 12: For definition, ref. Figure 8-4 and Figure 8-5

Table 6-3: Functional specifications, gyros

Parameter	Conditions	Min	Nom	Max	Unit	Note
GYRO						
Full Scale (FS)			±400		°/s	1
Resolution			24		bits	
			0.22		°/h	
Scale Factor Accuracy			±500		ppm	
Non-Linearity	±200°/s		15		ppm	2
	±400°/s		20		ppm	2
Bandwidth (-3dB)			262		Hz	3
Sample Rate				2000	samples/s	4
Group Delay	LP-filter -3dB = 262Hz		1.5		ms	5
	LP-filter -3dB = 131Hz		3.0		ms	5
	LP-filter -3dB = 66Hz		6.0		ms	5
	LP-filter -3dB = 33Hz		12		ms	5
	LP-filter -3dB = 16Hz		24		ms	5
Bias Range		-250	0	+250	°/h	
Bias Run-Run			4		°/h	
Bias error over temperature	Static temperatures		9		°/h	6
Bias error over temperature gradients	ΔT ≤ ±1°C/min		10		°/h	7
Bias Instability	Allan Variance @25°C		0.3		°/h	
Angular Random Walk	Allan Variance @25°C		0.15		°/√hr	
Linear Acceleration Effect						
Bias	With g-compensation		1		°/h /g	8
	No g-compensation		7		°/h /g	8
Scale Factor	With g-compensation		50		ppm/g	8
	No g-compensation		400		ppm/g	8

Vibration Rectification Coefficient	Ref. Figure 6-1	°/h /g² _{rms}	
Misalignment	1	mrad	9
Orthogonality	0.2	mrad	10

Note 1: Output is monotonous and will saturate at ±480°/s

Note 2: Largest deviation from BSL (Best Straight Line) over the range specified

Note 3: Low-pass filter -3dB frequency can be configured, ref. Table 6-11 and section 6.1.1.4

Note 4: Other values can be configured, ref. Table 6-11. Sample rate will be same for gyros, accelerometers, inclinometers, AUX and temperature

Note 5: Total delay to start of datagram transmission = group delay + 0.5ms + t_{tov dl} + t_{tx_dl}. For output units with delayed output, the group delay will be 5ms longer, ref. section 8.5.2.2.1.

Note 6: rms-value calculated on the residuals at static temperatures over the temperature range

Note 7: rms-value calculated on the residual over two temperature-cycles, ref. Figure 6-7

Note 8: Section 7.2 gives advice on sensitive directions

Note 9: Ref. Figure 6-2 for definition of reference points used in axes alignment

Note 10: Gyros, accelerometers and inclinometers are calibrated in the same test-insertion to ensure minimum misalignment between the three sensor-axis systems

Figure 6-1: Nominal VRC at 5g rms for gyros

Figure 6-2: Reference points for alignment of axes

Table 6-4: Functional specifications, 10g accelerometers

Parameter	Conditions	Min	Nom	Max	Unit	Note
ACCELEROMETER						
Full Scale (FS)			±10		g	1
Resolution			24		bits	
			1.9		μg	
Scale Factor Accuracy			±200		ppm	
Scale Factor 1 year stability			300	1000	ppm	
Non-Linearity	±10g		100		ppm	2
Bandwidth (-3dB)	LP-filter -3dB = 262Hz	90	214		Hz	3
Sample Rate				2000	samples/s	4
Group Delay	LP-filter -3dB = 262Hz		6.5		ms	5
	LP-filter -3dB = 131Hz		8.0		ms	5 5 5
	LP-filter -3dB = 66Hz		11		ms	5
	LP-filter -3dB = 33Hz		17		ms	5
	LP-filter -3dB = 16Hz		29		ms	5
Bias switch on/off repeatability		-0.75	0	+0.75	mg	
Bias 1 year stability			1.5	7.5	mg	
Bias error over temperature	ΔT ≤ ±1°C/min		±2		mg rms	
Bias Instability	Allan Variance @25°C		0.05		mg ,	
Velocity Random Walk	Allan Variance @25°C		0.07		m/s/√hr	
Vibration Rectification Coefficient		I	Ref.Figure 6-	3	mg/g ² _{rms}	
Misalignment			1		mrad	6
Orthogonality			0.2		mrad	7

Note 1: Overload-bit in STATUS-byte (ref. section 6.4) will be set at 11g (+10% of range)

Note 2: Largest deviation from BSL (Best Straight Line) over the range specified

Note 3: Other values can be configured, ref. Table 6-11 and section 6.1.2.3

Note 4: Other values can be configured, ref. Table 6-11. Sample rate will be same for gyros, accelerometers, inclinometers, AUX and temperature

Note 5: Total delay to start of datagram transmission = group delay + 0.5ms + $t_{tov,dl}$ + $t_{tx_{-}dl}$

Note 6: Ref. Figure 6-2 for definition of reference points used in axes alignment

Note 7: Gyros, accelerometers and inclinometers are calibrated in the same test-insertion to ensure minimum misalignment between the three sensor-axis systems

Figure 6-3: Nominal VRC at 10g rms for 10g accelerometers

Table 6-5: Functional specifications, 5g accelerometers

Parameter	Conditions	Min	Nom	Max	Unit	Note
ACCELEROMETER						
Full Scale (FS)			±5		g	1
Resolution			24		bits	
			1.0		μg	
Scale Factor Accuracy			±200		ppm	
Scale Factor 1 year stability			300	1000	ppm	
Non-Linearity	±5g		100		ppm	2
Bandwidth (-3dB)	LP-filter -3dB = 262Hz	90	214		Hz	3
Sample Rate				2000	samples/s	4
Group Delay	LP-filter -3dB = 262Hz		6.5		ms	5
	LP-filter -3dB = 131Hz		8.0		ms	5
	LP-filter -3dB = 66Hz		11		ms	5
	LP-filter -3dB = 33Hz		17		ms	5
	LP-filter -3dB = 16Hz		29		ms	5
Bias switch on/off repeatability		-0.38	0	+0.38	mg	
Bias 1 year stability			0,8	3.8	mg	
Bias error over temperature	ΔT ≤ ±1°C/min		±1		mg rms	
Bias Instability	Allan Variance @25°C		0.03		mg	
Velocity Random Walk	Allan Variance @25°C		0.04		m/s/√hr	
Misalignment			1		mrad	6
Orthogonality			0.2		mrad	7

- Note 1: Overload-bit in STATUS-byte (ref. section 6.4) will be set at 5.5g (+10% of range)
- Note 2: Largest deviation from BSL (Best Straight Line) over the range specified
- Note 3: Other values can be configured, ref. Table 6-11 and section 6.1.2.3
- Note 4: Other values can be configured, ref. Table 6-11. Sample rate will be same for gyros, accelerometers, inclinometers, AUX and temperature
- Note 5: Total delay to start of datagram transmission = group delay + 0.5ms + t_{tov_dl} + t_{tx_dl}
- Note 6: Ref. Figure 6-2 for definition of reference points used in axes alignment
- Note 7: Gyros, accelerometers and inclinometers are calibrated in the same test-insertion to ensure minimum misalignment between the three sensor-axis systems

Table 6-6: Functional specifications, 30g accelerometers

Parameter	Conditions	Min	Nom	Max	Unit	Note
ACCELEROMETER						
Full Scale (FS)			±30		g	1
Resolution			24		bits	
			3.8		μg	
Scale Factor Accuracy			±300		ppm	
Scale Factor 1 year stability			300	1000	ppm	
Non-Linearity	±30g		100		ppm	2
Bandwidth (-3dB)	LP-filter -3dB = 262Hz	90	100		Hz	3
Sample Rate				2000	samples/s	4
Group Delay	LP-filter -3dB = 262Hz		6.5		ms	5
	LP-filter -3dB = 131Hz		8.0		ms	5
	LP-filter -3dB = 66Hz		11		ms	5
	LP-filter -3dB = 33Hz		17		ms	5
	LP-filter -3dB = 16Hz		29		ms	5
Bias switch on/off repeatability		-2.3	0	+2.3	mg	
Bias 1 year stability			4.5	22.5	mg	
Bias error over temperature	ΔT ≤ ±1°C/min		±6		mg rms	
Bias Instability	Allan Variance @25°C		0.15		mg	
Velocity Random Walk	Allan Variance @25°C		0.21		m/s/√hr	
Misalignment			1		mrad	6
Orthogonality			0.6		mrad	7

- Note 1: Overload-bit in STATUS-byte (ref. section 6.4) will be set at 33g (+10% of range)
- Note 2: Largest deviation from BSL (Best Straight Line) over the range specified
- Note 3: Other values can be configured, ref. Table 6-11 and section 6.1.2.3
- Note 4: Other values can be configured, ref. Table 6-11. Sample rate will be same for gyros, accelerometers, inclinometers, AUX and temperature

Note 5: Total delay to start of datagram transmission = group delay + 0.5ms + $t_{tov_{cdl}}$ + $t_{tx_{cdl}}$

Note 6: Ref. Figure 6-2 for definition of reference points used in axes alignment

Note 7: Gyros, accelerometers and inclinometers are calibrated in the same test-insertion to ensure minimum misalignment between the three sensor-axis systems

Table 6-7: Functional specifications, 80g accelerometers

Parameter	Conditions	Min	Nom	Max	Unit	Note
ACCELEROMETER						
Full Scale (FS)			±80		g	1
Resolution			24		bits	
			15.3		μg	
Scale Factor Accuracy	±30g		±1000		ppm	
-	±80g		±5		%	
Scale Factor 1 year stability			300	1000	ppm	
Non-Linearity	±30g		1000		ppm	2
	±80g		1		%	2
Bandwidth (-3dB)	LP-filter -3dB = 262Hz	90	214		Hz	3
Sample Rate				2000	samples/s	4
Group Delay	LP-filter -3dB = 262Hz		6.5		ms	5
	LP-filter -3dB = 131Hz		8.0		ms	5
	LP-filter -3dB = 66Hz		11		ms	5
	LP-filter -3dB = 33Hz		17		ms	5
	LP-filter -3dB = 16Hz		29		ms	5
Bias switch on/off repeatability		-7.5	0	+7.5	mg	
Bias 1 year stability			15	75	mg	
Bias error over temperature	ΔT ≤ ±1°C/min		±20		mg rms	
Bias Instability	Allan Variance @25°C		0.5		mg	
Velocity Random Walk	Allan Variance @25°C		0.7		m/s/√hr	
Misalignment			1.5		mrad	6
Orthogonality			1		mrad	7

Note 1: Output will saturate at ±96g. Overload-bit in STATUS-byte (ref. section 6.4) will be set at ±96g

Note 2: Largest deviation from BSL (Best Straight Line) over the range specified

Note 3: Other values can be configured, ref. Table 6-11 and section 6.1.2.3

Note 4: Other values can be configured, ref. Table 6-11. Sample rate will be same for gyros, accelerometers, inclinometers, AUX and temperature

Note 5: Total delay to start of datagram transmission = group delay + 0.5ms + $t_{tov,dl}$ + $t_{tx_{-}dl}$

Note 6: Ref. Figure 6-2 for definition of reference points used in axes alignment

Note 7: Gyros, accelerometers and inclinometers are calibrated in the same test-insertion to ensure minimum misalignment between the three sensor-axis systems

Table 6-8: Functional specifications, inclinometers

Parameter	Conditions	Min	Nom	Max	Unit	Note
INCLINOMETER						
Full Scale (FS)			±1.7		g	1
Resolution			24		bits	
			0.2		μg	
Scale Factor Accuracy	±1g		±500		ppm	
Non-Linearity	±1g		250		ppm	2
Bandwidth (-3dB)			17		Hz	3
Sample Rate				2000	samples/s	4
Group Delay	LP-filter -3dB = 262Hz		15		ms	5
	LP-filter -3dB = 131Hz		17		ms	5
	LP-filter -3dB = 66Hz		20		ms	5
	LP-filter -3dB = 33Hz		26		ms	5
	LP-filter -3dB = 16Hz		38		ms	5
Bias switch on/off repeatability		-0.75	0	+0.75	mg	
Bias error over temperature	ΔT ≤ ±1°C/min		±2		mg rms	
Bias Instability	Allan Variance @25°C		0.05		mg	6
Velocity Random Walk	Allan Variance @25°C		0.08		m/s/√hr	6
Misalignment			1		mrad	7
Orthogonality			0.2		mrad	8

- Note 1: Overload-bit in STATUS-byte (ref. section 6.4) will be set at ±1.87g (+10% of range)
- Note 2: Largest deviation from BSL (Best Straight Line) over the range specified
- Note 3: Other values can be configured, ref. Table 6-11 and section 6.1.3.3
- Note 4: Other values can be configured, ref. Table 6-11. Sample rate will be same for gyros, accelerometers, inclinometers, AUX and temperature
- Note 5: Total delay to start of datagram transmission = group delay + $0.5ms + t_{tov_dl} + t_{tx_dl}$
- Note 6: At 0g. Bias Instability and Velocity Random Walk increases by typically 35% at ±1g given by the chosen technology for the inclinometers
- Note 7: Ref. Figure 6-2 for definition of reference points used in axes alignment
- Note 8: Gyros, accelerometers and inclinometers are calibrated in the same test-insertion to ensure minimum misalignment between the three sensor-axis systems

Table 6-9: Functional specifications, AUXiliary input

Parameter	Conditions	Min	Nom	Max	Unit	Note
Full Scale (FS)			±2.5		V	1
Resolution			24		bits	
			0.30		μV	
Gain error	@25°C		±0.1		%	2
Gain drift			±6		ppm/°C	
Non-Linearity			300		ppm	3
Bandwidth (-3dB)			262		Hz	4
Sample Rate				2000	samples/s	5
Group Delay	LP-filter -3dB = 262Hz		6.1		ms	6
	LP-filter -3dB = 131Hz		7.6		ms	6
	LP-filter -3dB = 66Hz		11		ms	6
	LP-filter -3dB = 33Hz		17		ms	6
	LP-filter -3dB = 16Hz		29		ms	6
Offset error	@25°C		±0.75		mV	2
Offset drift			±30		μV/°C	
Noise			60		μV rms	
Input impedance		Re	ef. Figure 6	-4		

Note 1: Full-scale input voltage (FS): VIN = (AUX+) - (AUX-)

Note 2: Gain and offset error can be calibrated by changing the calibration coefficients, ref. 8.4 and 10.10

Note 3: Largest deviation from BSL (Best Straight Line) over the range specified

Note 4: Other values can be configured, ref. Table 6-11 and section 6.1.4.1

Note 5: Other values can be configured, ref. Table 6-11. Sample rate will be same for gyros, accelerometers, inclinometers, AUX and temperature

Note 6: Total delay to start of datagram transmission = group delay + 0.5ms + t_{tov_dl} + t_{tx_dl}

Figure 6-4: AUX input circuitry

Table 6-10: Functional specifications, temperature

Parameter	Conditions	Min	Nom	Max	Unit	Note
Resolution			0.0039		°C	
Bias Accuracy	@25°C		±5		°C	1
Scale factor accuracy			±5		%	
Sample Rate				2000	samples/s	2

Note 1: Temperature measured at gyros. Temperature calibrated at static condition and referred to ambient temperature.

Note 2: Other values can be configured, ref. Table 6-11. Sample rate will be same for gyros, accelerometers, inclinometers, AUX and temperature

6.1 TYPICAL PERFORMANCE CHARACTERISTICS

6.1.1 GYRO CHARACTERISTICS

6.1.1.1 Root Allan Variance of gyro

Figure 6-5: Typical Allan-Variance of gyro (400°/s gyro)

6.1.1.2 Initial bias drift of gyro

Figure 6-6: Typical normalized initial bias drift of gyro (400°/s gyro)

6.1.1.3 Bias drift over temperature

Figure 6-7: Typical Bias drift over temperature (400°/s gyro)

6.1.1.4 Frequency characteristics of gyros

Figure 6-8: Frequency characteristics of gyros with low-pass filter -3dB frequency set to 16Hz

Figure 6-9: Frequency characteristics of gyros with low-pass filter -3dB frequency set to 33Hz

Figure 6-10: Frequency characteristics of gyros with low-pass filter -3dB frequency set to 66Hz

Figure 6-11: Frequency characteristics of gyros with low-pass filter -3dB frequency set to 131Hz

Figure 6-12: Frequency characteristics of gyros with low-pass filter -3dB frequency set to 262Hz

6.1.2 ACCELEROMETER CHARACTERISTICS

6.1.2.1 Root Allan Variance of accelerometer

Figure 6-13: Typical Allan-Variance of accelerometer (10g accelerometer)

6.1.2.2 Initial bias drift of accelerometer

Figure 6-14: Typical normalized initial bias drift of accelerometer (10g accelerometer)

6.1.2.3 Frequency characteristics of accelerometers

Figure 6-15: Frequency characteristics of accelerometers with low-pass filter -3dB frequency set to 16Hz (solid line: nominal, dashed line: minimum bandwidth, limited by accelerometer)

Figure 6-16: Frequency characteristics of accelerometers with low-pass filter -3dB frequency set to 33Hz (solid line: nominal, dashed line: minimum bandwidth, limited by accelerometer)

Figure 6-17: Frequency characteristics of accelerometers with low-pass filter -3dB frequency set to 66Hz (solid line: nominal, dashed line: minimum bandwidth, limited by accelerometer)

Figure 6-18: Frequency characteristics of accelerometers with low-pass filter -3dB frequency set to 131Hz (solid line: nominal, dashed line: minimum bandwidth, limited by accelerometer)

Figure 6-19: Frequency characteristics of accelerometers with low-pass filter -3dB frequency set to 262Hz (solid line: nominal, dashed line: minimum bandwidth, limited by accelerometer)

6.1.3 INCLINOMETER CHARACTERISTICS

6.1.3.1 Root Allan Variance of inclinometer

Figure 6-20: Typical Allan-Variance of inclinometer

6.1.3.2 Initial bias drift of inclinometer

Figure 6-21: Typical normalized initial bias drift of inclinometer

6.1.3.3 Frequency characteristics of inclinometers

Figure 6-22: Frequency characteristics of inclinometers with low-pass filter -3dB frequency set to 16Hz

Figure 6-23: Frequency characteristics of inclinometers with low-pass filter -3dB frequency set to 33Hz

Figure 6-24: Frequency characteristics of inclinometers with low-pass filter -3dB frequency set to 66Hz

Figure 6-25: Frequency characteristics of inclinometers with low-pass filter -3dB frequency set to 131Hz

Figure 6-26: Frequency characteristics of inclinometers with low-pass filter -3dB frequency set to 262Hz

6.1.4 AUX CHARACTERISTICS

6.1.4.1 Frequency characteristics of AUX

Figure 6-27: Frequency characteristics of AUX with low-pass filter -3dB frequency set to 16Hz

Figure 6-28: Frequency characteristics of AUX with low-pass filter -3dB frequency set to 33Hz

Figure 6-29: Frequency characteristics of AUX with low-pass filter -3dB frequency set to 66Hz

Figure 6-30: Frequency characteristics of AUX with low-pass filter -3dB frequency set to 131Hz

Figure 6-31: Frequency characteristics of AUX with low-pass filter -3dB frequency set to 262Hz

6.2 Configurable parameters

Table 6-11: Configurable parameters

Table 6-11: Configurable paran		
Parameter	Configurations	Comments
SAMPLE RATE	125 samples/s	Some limitations apply to the use of higher
	250 samples/s	sample rates (>500 samples/s), dependent on
	500 samples/s	selected bit-rate and datagram content, ref.
	1000 samples/s	Table 6-12
	2000 samples/s	
	External trigger	
LOW-PASS FILTER -3dB	16Hz	Filter settings are independent of sample rate.
FREQUENCY	33Hz	Low-pass filters are CIC type filters with linear
	66Hz	phase response.
	131Hz	Filter settings can be set individually for each
	262Hz	axis.
MEASUREMENT UNIT GYRO	Angular rate [°/s]	
	Incremental angle [°/sample]	
	Average angular rate [°/s]	
	Integrated angle [°]	
MEASUREMENT UNIT	Acceleration [g]	
ACCELEROMETER	Incremental velocity	
	[m/s/sample]	
	Average acceleration [g]	
MEASUREMENT UNIT	Acceleration [g]	
INCLINOMETER	Incremental velocity	
	[m/s/sample]	
	Average acceleration [g]	
DATAGRAM	Rate together with any	
	combination of acceleration,	
	inclination, temperature and	
	AUX	
DATAGRAM TERMINATION	NONE	
	<cr><lf></lf></cr>	
RS422 BIT-RATE	374400 bits/s	Some limitations apply to the use of lower bit-
	460800 bits/s	rates (< 1843200 bits/s) dependent on sample
	921600 bits/s	rate and datagram content, ref. Table 6-12.
	1843200 bits/s	
	User-defined	For user-defined bit-rates, see section 10.5
RS422 PARITY	None	
	Odd	
	Even	
RS422 STOP BITS	1 stop bit	
-	2 stop bits	
RS422 120Ω LINE	OFF	
TERMINATION	ON	
. = // 111011	J	

Refer to section 12 for information on how to configure STIM300 when ordering and to section 10 for information on how to reconfigure the unit in Service Mode.

Some datagrams are longer than the time between each sample at the lower bit-rate. Table 6-12 show the maximum bit-rates.

Table 6-12: Maximum sample rate

Datagram content	Number of transmitted bytes ^{Note 1}	374400 bits/s ^{Note 2}	460800 bits/s ^{Note 2}	921600 bits/s ^{Note 2}	1843200 bits/s ^{Note 2}
Rate	18	1000	2000	2000	2000
Rate and acceleration	28	1000	1000	2000	2000
Rate and inclincation	28	1000	1000	2000	2000
Rate, acceleration and inclination	38	500	1000	2000	2000
Rate and temperature	25	1000	1000	2000	2000
Rate, acceleration and temperature	42	500	500	1000	2000
Rate, inclination and temperature	42	500	500	1000	2000
Rate, acceleration, inclination and temperature	59	500	500	1000	2000
Rate and AUX	22	1000	1000	2000	2000
Rate, acceleration and AUX	32	1000	1000	2000	2000
Rate, inclincation and AUX	32	1000	1000	2000	2000
Rate, acceleration, inclination and AUX	42	500	500	1000	2000
Rate, temperature and AUX	29	1000	1000	2000	2000
Rate, acceleration, temperature and AUX	46	500	500	1000	2000
Rate, inclination, temperature and AUX	46	500	500	1000	2000
Rate, acceleration, inclination, temperature and AUX	63	500	500	1000	2000

Note 1: excluding<CR><LF> termination

Note 2: 10 bits/byte (=1 start bit, 8 data bits, no parity bit, 1 stop bit)

6.3 Datagram specifications

6.3.1 Part Number datagram

Table 6-13: Specification of the Part Number datagram

Byte#				В	t#				Specification				
_	7	6	5	4	3	2	1	0					
									Part Number datagram identifier:				
0	1	0	1	1	0	0	0	1	0xB1 for datagrams without CR+LF termination				
	1	0	1	1	0	0	1	1	0xB3 for datagrams with CR+LF termination				
1	0	0	0	0	P1 ₃	P1 ₂	P1₁	P1 ₀	Low nibble: 1.digit of part number				
2	P2 ₃	P2 ₂	P2 ₁	P2 ₀	P3 ₃	P3 ₂	P3₁	P3 ₀	High nibble: 2.digit of part number				
	F Z 3	F Z2	ΓΖ1	F Z0	F J 3	Г J 2	F 31	F J 0	Low nibble: 3.digit of part number				
3	P4 ₃	P4 ₂	P4 ₁	P4 ₀	P5 ₃	P5 ₂	P5₁	P5 ₀	High nibble: 4.digit of part number				
3	1 43	1 42	1 41	1 40	1 33	1 32	1 31	1 30	Low nibble: 5.digit of part number				
4	0	0	1	0	1	1	0	1	ASCII character "-" (0x2D)				
5	P6 ₃	P6 ₂	P6₁	P6₀	P7 ₃	P72	P7₁	P7₀	High nibble: 6.digit of part number				
3	1 03	1 02	1 01	1 00	1 73	1 72	1 7 1	1 70	Low nibble: 7.digit of part number				
6	P8 ₃	P8 ₂	P8₁	P8 ₀	P9 ₃	P9 ₂	P9₁	P9₀	High nibble: 8.digit of part number				
	1 03	1 02	1 01	1 00	1 03	1 02	1 31	1 30	Low nibble: 9.digit of part number				
7	P10°	P10°	P10.	P10a	P11。	P11	P11.	P11 ₀	High nibble: 10.digit of part number				
			1 101		1 113	1 112	1	0	Low hibble. Traigit of part humber				
8	0	0	1	0	1	1	0	1	ASCII character "-" (0x2D)				
9	P12a	P12	P12	P12 ₀	P13 ₂	P13 ₂	P134	P13	High nibble: 12.digit of part number				
	3			0	03	02		00	Low nibble: 13.digit of part number				
10	P14 ₂	P14 ₂	P14 ₁	P14 ₀	х	х	х	х	High nibble: 14.digit of part number				
	Ŭ	_		Ŭ									
11	Х	Х	Х	Х	Х	Х	Х	Х	For future use				
12	Х	Х	Х	Х	Х	Х	Х	Х	For future use				
13	Х	Х	Χ	Х	Х	Х	Х	Х	For future use				
14	Х	Х	Χ	Х	Х	Х	Х	Х	For future use				
15	r ₇	r ₆	r ₅	r ₄	r ₃	r ₂	r ₁	r _o	Part number revision. Content of byte represents the ASCII-character				
	٠,	'6	'5	14	13	12	'1	'0	of the revision. Numbering sequence: "-", "A", "B",, "Z"				
16	C ₃₁	C ₃₀	C ₂₉	C ₂₈	C ₂₇	C ₂₆	C ₂₅	C ₂₄					
17	C ₂₃	C ₂₂	C ₂₁	C ₂₀	C ₁₉	C ₁₈	C ₁₇	C ₁₆	Cyclic Redundancy Check is performed on all preceding bytes, ref:				
18	C ₁₅	C ₁₄	C ₁₃	C ₁₂	C ₁₁	C ₁₀	C ₉	C ₈	6.3.6				
19	C ₇	C ₆	C 5	C ₄	C ₃	C ₂	C ₁	C ₀					
(20)	0	0	0	0	1	1	0	1	<cr> If datagram termination has been selected</cr>				
(21)	0	0	0	0	1	0	1	0	<lf> If datagram termination has been selected</lf>				

ButterflyGyro[†]

STIM300 Inertia Measurement Unit

6.3.2 Serial Number datagram

Table 6-14: Specification of the Serial Number datagram

T	Byte#		•		Bi	it#				Specification				
1		7	6	5	4	3	2	1	0	'				
1										Serial Number datagram identifier:				
1	0	1	0	1	1	0	1	0	1					
2 S1 ₃ S1 ₂ S1 ₁ S1 ₀ S2 ₂ S2 ₁ S2 ₀ High nibble: 1.digit (BCD) of serial number 3 S3 ₃ S3 ₂ S3 ₁ S3 ₀ S4 ₃ S4 ₂ S4 ₁ S4 ₀ High nibble: 3.digit (BCD) of serial number 4 S5 ₃ S5 ₂ S5 ₁ S5 ₀ S6 ₃ S6 ₂ S6 ₁ High nibble: 3.digit (BCD) of serial number 5 S7 ₃ S7 ₂ S7 ₁ S7 ₀ S8 ₃ S8 ₂ S8 ₁ High nibble: 7.digit (BCD) of serial number 6 S9 ₃ S9 ₂ S9 ₁ S9 ₀ S10 ₃ S10 ₂ S10 ₁ S10 ₀ High nibble: 7.digit (BCD) of serial number 7 S11 ₃ S11 ₂ S11 ₃ S11 ₂ S11 ₃ S11 ₂ S11 ₃ S11 ₂ S11 ₁ S11 ₀		1	0	1	1	0	1	1	1	6				
Single	1	0	1	0	0	1	1	1	0	0				
S S S S S S S S S S	2	Q1	Q1	Q1	Q1	62	63	3	62	High nibble: 1.digit (BCD) of serial number				
S3 S3 S3 S3 S3 S3 S3 S4 S4		313	312	311	310	323	322	321	320					
4 S5 ₃ S5 ₂ S5 ₁ S5 ₀ S6 ₃ S6 ₂ S6 ₁ S6 ₀ S6 ₀ S6 ₂ S6 ₁ S6 ₀ High nibble: 5.digit (BCD) of serial number 5 S7 ₃ S7 ₂ S7 ₁ S7 ₀ S8 ₃ S8 ₂ S8 ₁ S8 ₀ High nibble: 7.digit (BCD) of serial number 6 S9 ₃ S9 ₂ S9 ₁ S9 ₀ S10 ₃ S10 ₂ S10 ₁ S10 ₂ S10 ₁ S10 ₀ S10 ₀ S10 ₁ S10 ₀ S10 ₀ S10 ₁ S10 ₀	3	S3.	S3.	S3.	S3.	S4°	S4°	S4.	S4°					
Solution		003	002	001	000	0-13	0-12	0-11	0-10					
State	4	S5°	S5 ₂	S5 ₁	S50	S6 ₂	S6 ₂	S6 ₄	S60					
5 S73 S72 S71 S70 S83 S82 S81 S80 Low nibble: 8.digit (BCD) of serial number 6 S93 S92 S91 S90 S103 S102 S101 S100 High nibble: 9.digit (BCD) of serial number 7 S113 S112 S111 S113 S112 S111 S113 S112 S111 S110	•	003	002	001	000	003	002	001	000	8 \ 7				
6 S9 ₃ S9 ₂ S9 ₁ S9 ₀ S10 ₃ S10 ₂ S10 ₁ S10 ₀ S10 ₂ S10 ₁ S10 ₀ High nibble: 9.digit (BCD) of serial number 7 S11 ₃ S11 ₂ S11 ₁ S11 ₀ S14 ₃ S14 ₂ S14 ₁ S14 ₀ High nibble: 12.digit (BCD) of serial number 8 S13 ₃ S13 ₂ S13 ₁ S13 ₀ S14 ₃ S14 ₂ S14 ₁ S14 ₀ High nibble: 13.digit (BCD) of serial number 9 x x x x x x x x x x x x x x x x x x	5	S7 ₂	S72	S7₁	S70	S8 ₂	S8 ₂	S8₁	S8 ₀					
6 S93 S92 S91 S90 S103 S102 S101 S100 Low nibble: 10.digit (BCD) of serial number 7 S113 S112 S111 S113 S113 S113 S113 S113 S113 S113 S113 S113 S114		3			0	5			0					
7	6	S9 ₃	S9 ₂	S9₁	S9₀	S10 ₃	S10 ₂	S10₁	S10 ₀					
7 S113 S112 S111 S110 S113 S112 S113 S112 S113 S112 S113 S112 S113 S112 S113 S114 S140 Low nibble: 12.digit (BCD) of serial number 9 X									L .	0 \ /				
8 S133 S132 S131 S133 S143 S142 S141 S140 High nibble: 13.digit (BCD) of serial number Low nibble: 14.digit (BCD) of serial number 9 X	7	S11 ₃	S11 ₂	S11₁	S11 ₀	S11 ₃	S11 ₂	S11₁	S11 ₀					
S S S S S S S S S S			_		-		_		-					
9 x	8	S13 ₃	S13 ₂	S13 ₁	S13 ₀	S14 ₃	S14 ₂	S14 ₁	S14 ₀					
10 x	0	· ·	· ·	· ·		· ·	· ·	· ·	· ·					
11 x	_								_					
12 x														
13 X Y For future use Y														
14 x		-							-					
15 x														
16 C ₃₁ C ₃₀ C ₂₉ C ₂₈ C ₂₇ C ₂₆ C ₂₅ C ₂₄ 17 C ₂₃ C ₂₂ C ₂₁ C ₂₀ C ₁₉ C ₁₈ C ₁₇ C ₁₆ 18 C ₁₅ C ₁₄ C ₁₃ C ₁₂ C ₁₁ C ₁₀ C ₉ C ₈ 19 C ₇ C ₆ C ₅ C ₄ C ₃ C ₂ C ₁ C ₀ (20) 0 0 0 1 1 0 1 <cr> If datagram termination has been selected</cr>		_							1					
17 C ₂₃ C ₂₂ C ₂₁ C ₂₀ C ₁₉ C ₁₈ C ₁₇ C ₁₆ C ₁₆ C ₁₈ C ₁₉ C ₁₈ C ₁₇ C ₁₆ C ₁₈ C ₁₁ C ₁₀ C ₉ C ₈ 19 C ₇ C ₆ C ₅ C ₄ C ₃ C ₂ C ₁ C ₀ (20) 0 0 0 1 1 0 1 <cr> If datagram termination has been selected</cr>		1							1	1 of fatare acc				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
19 c ₇ c ₆ c ₅ c ₄ c ₃ c ₂ c ₁ c ₀ (20) 0 0 0 1 1 0 1 <cr> If datagram termination has been selected</cr>										Cyclic Redundancy Check is performed on all preceding bytes, ref: 6.3.6				
(20) 0 0 0 0 1 1 0 1 <cr> If datagram termination has been selected</cr>														
<u> </u>										<cr> If datagram termination has been selected</cr>				
	(21)	0	0	0	0	1	0		0	<lf> If datagram termination has been selected</lf>				

ButterflyGyro ¹

STIM300 Inertia Measurement Unit

6.3.3 Configuration datagram

1		<u>6-15</u>	: Spe	ecific			he C	onfi	gura	tion datagram
	Byte#	_						i .		Specification
0 1 1 0 1 1 1 1 1 1 0 0 0 0x8C for datagrams without CR-LF termination 1 1 f7 f8 f5 f7 f8 f7 f7 f8 f7 f7 f8 f7 f8 f7 f8 f7 f8 f7 f8 f7 f8		7	6	5	4	3	2	1	0	
1								_		
1	0		_							
1		1	0	1	1	1	1	0	1	
1	1	r ₇	r ₆	r ₅	r ₄	r ₃	r_2	r ₁	r_0	
0	_									Firmware revision. Numbering sequence: - , A , B ,, Z
0		17	16	15	14	13	I ₂	I ₁	Ι ₀	
0		0	_	_	, ,	, ,	, ,	v		
0			-	-						
1			_							
1				-						
1										
X			-	-						
X			Х							
X	3				1	х				
X		Х	Х	Х	Х	0	х	Х	Х	Temperature not included in Normal Mode datagram
X		Х	Х	Х	Х	1	Х	Х	Х	Temperature included in Normal Mode datagram
X		Х	Х	Х	Х	Х	0	Х	Х	Inclination not included in Normal Mode datagram
X										
X								_		
X										
									-	
0		Х	Х	Х	Х	Х	Х	Х	1	
0		0	_	_	_		.,	.,	.,	
0					-					
1			_	-						
1			-		-					
A			_							
X	4									
X						1				
X		Х	Х	Х	Х	Х	0	0	Х	Parity = none
X		Х	Х	Х	Х	Х	0	1	Х	Parity = even
X		Х	Х	Х	Х	Х	1	0		, , , , , , , , , , , , , , , , , , ,
X		Х	Х	Х	Х	Х	Х	Х	-	
X		Χ	Х	Х	Х	Х	Х	Х	1	
X			_							
X										1 ,
X										1 ,
X										
X										
5 x x x x 0 0 0 Gyro output unit = ANGULAR RATE x x x x x 0 0 1 Gyro output unit = INCREMENTAL ANGLE x					-					
X	5									1 /
X	Ŭ					-	-	_		1 7
X						-	-			
X										
X		Х	Х	Х	Х	1	0	0	0	
X		Х	Х	Х	Х	1	0	0	1	
System configuration, Byte 4: X		Х	Х	Х	Х	1	0	1	0	Gyro output unit = AVERAGE ANGULAR RATE – DELAYED
x 0 0 0 x		Х	Х	Х	Х	1	0	1	1	Gyro output unit = INTEGRATED ANGLE – DELAYED
x 0 0 1 x										
x 0 1 0 x x x x x Gyro LP filter -3dB frequency for X-axis = 66Hz 6 x 1 0 0 x x x x x Gyro LP filter -3dB frequency for X-axis = 131Hz 8 x 1 0 0 x x x x x Gyro LP filter -3dB frequency for X-axis = 131Hz 9 x x x x x x x 0 0 0 Gyro LP filter -3dB frequency for Y-axis = 16Hz 1 x x x x x x x 0 0 0 1 Gyro LP filter -3dB frequency for Y-axis = 33Hz 1 x x x x x x x 0 0 1 Gyro LP filter -3dB frequency for Y-axis = 66Hz 2 x x x x x x x 0 1 1 Gyro LP filter -3dB frequency for Y-axis = 66Hz 3 x x x x x x x 0 1 1 Gyro LP filter -3dB frequency for Y-axis = 131Hz		Х					Х		Х	
6 x 0 1 1 x x x x x Gyro LP filter -3dB frequency for X-axis = 131Hz 6 x 1 0 0 x x x x Gyro LP filter -3dB frequency for X-axis = 262Hz x x x x x x 0 0 0 Gyro LP filter -3dB frequency for Y-axis = 33Hz x x x x x x 0 1 0 Gyro LP filter -3dB frequency for Y-axis = 66Hz x x x x x 0 1 1 Gyro LP filter -3dB frequency for Y-axis = 131Hz			-	-						
6			_	-	-					
x x x x x 0 0 0 Gyro LP filter -3dB frequency for Y-axis = 16Hz x x x x x 0 0 1 Gyro LP filter -3dB frequency for Y-axis = 33Hz x x x x x 0 1 0 Gyro LP filter -3dB frequency for Y-axis = 66Hz x x x x 0 1 1 Gyro LP filter -3dB frequency for Y-axis = 131Hz			-							
x x x x x 0 0 1 Gyro LP filter -3dB frequency for Y-axis = 33Hz x x x x x 0 1 0 Gyro LP filter -3dB frequency for Y-axis = 66Hz x x x x x 0 1 1 Gyro LP filter -3dB frequency for Y-axis = 131Hz	6			-	-					
x x x x x 0 1 0 Gyro LP filter -3dB frequency for Y-axis = 66Hz x x x x x 0 1 1 Gyro LP filter -3dB frequency for Y-axis = 131Hz									-	
x x x x x 0 1 1 Gyro LP filter -3dB frequency for Y-axis = 131Hz							-	_		
							-	-	-	
		X	x	X	x	x	1	0	Ó	Gyro LP filter -3dB frequency for Y-axis = 262Hz

T ButterflyGyro STIM300 Inertia Measurement Unit

									System configuration, Byte 5:
	Х	0	0	0	Х	Х	Х	Х	Gyro LP filter -3dB frequency for Z-axis = 16Hz
	Х	0	0	1	Х	Х	Х	Х	Gyro LP filter -3dB frequency for Z-axis = 33Hz
	Х	0	1	0	Х	Х	Х	Х	Gyro LP filter -3dB frequency for Z-axis = 66Hz
	Х	0	1	1	х	Х	х	х	Gyro LP filter -3dB frequency for Z-axis = 131Hz
	х	1	0	0	х	Х	х	Х	Gyro LP filter -3dB frequency for Z-axis = 262Hz
	х	Х	Х	х	0	0	0	0	Gyro g-comp: OFF
	х	х	х	х	0	0	0	1	Gyro g-comp: bias = OFF , scale = ACC
	х	х	х	х	0	0	1	0	Gyro g-comp: bias = OFF, scale = ACC+0.01Hz-filter
	х	х	х	х	0	0	1	1	Gyro g-comp: bias = ACC, scale = OFF
7	х	Х	Х	Х	0	1	0	0	Gyro g-comp: bias = ACC+0.01Hz-filter, scale = OFF
	X	Х	Х	Х	Ō	1	0	1	Gyro g-comp: bias = INC , scale = OFF,
	X	Х	Х	Х	Ō	1	1	0	Gyro g-comp: bias = INC+0.01Hz-filter, scale = OFF
	X	X	X	X	Ö	1	1	1	Gyro g-comp: bias = ACC, scale = ACC
	X	X	X	x	1	0	0	0	Gyro g-comp: bias = ACC+0.01Hz-filter, scale = ACC
	X	X	X	x	i	Ö	0	1	Gyro g-comp: bias = INC, scale = ACC
	X	X	X	X	1	0	1	0	Gyro g-comp: bias = INC+DC-filter, scale = ACC
	X	X	X	x	Ιί	0	1	1	Gyro g-comp: bias = ACC+0.01Hz-filter, scale = ACC+0.01Hz-filter
	X	X	X	x		1	0	0	Gyro g-comp: bias = INC+0.01Hz-filter, scale = INC+0.01Hz-filter
					1	1	1	1	
	Х	Х	Х	Х	<u> </u>		-		Gyro g-comp: user-defined
		•							System configuration, Byte 6:
	Х	0	Х	Х	Х	Х	Х	Х	Accelerometer X-axis is inactive
	Х	1	Х	Х	Х	Х	Х	Х	Accelerometer X-axis is active
1	Х	Х	0	Х	Х	Х	Х	Х	Accelerometer Y-axis is inactive
8	х	Х	1	Х	Х	Х	Х	Х	Accelerometer Y-axis is active
	Х	Х	Х	0	Х	Х	Х	Х	Accelerometer Z-axis is inactive
1	Х	Х	Х	1	Х	Х	Х	Х	Accelerometer Z-axis is active
	Х	Х	Х	Х	0	0	0	0	Accelerometer output unit = ACCELERATION
	Х	X	X	х	0	0	0	1	Accelerometer output unit = INCREMENTAL VELOCITY
	Х	X	X	х	0	0	1	0	Accelerometer output unit = AVERAGE ACCELERATION
									System configuration, Byte 7:
	х	0	0	0	х	Х	х	Х	Accelerometer LP filter -3dB frequency for X-axis = 16Hz
	X	Õ	0	1	X	X	X	X	Accelerometer LP filter -3dB frequency for X-axis = 33Hz
	X	0	1	0	X	X	X	X	Accelerometer LP filter -3dB frequency for X-axis = 66Hz
	X	Ö	1	1	x	X	X	X	Accelerometer LP filter -3dB frequency for X-axis = 131Hz
9	X	1	0	Ö	x	X	X	X	Accelerometer LP filter -3dB frequency for X-axis = 262Hz
9	X	X	X	X	x	ô	ô	ô	Accelerometer LP filter -3dB frequency for Y-axis = 26212
	X	X	X	x	x	0	0	1	Accelerometer LP filter -3dB frequency for Y-axis = 33Hz
			X	X	X	0	1	0	Accelerometer LP filter -3dB frequency for Y-axis = 33112 Accelerometer LP filter -3dB frequency for Y-axis = 66Hz
	X	X					1	-	
	X	X	X	X	X	0		1	Accelerometer LP filter -3dB frequency for Y-axis = 131Hz
	Х	Х	Х	Х	Х	1	0	0	Accelerometer LP filter -3dB frequency for Y-axis = 262Hz
		•							System configuration, Byte 8:
	Х	0	0	0	Х	Х	Х	Х	Accelerometer LP filter -3dB frequency for Z-axis = 16Hz
10	Х	0	0	1	Х	Х	Х	Х	Accelerometer LP filter -3dB frequency for Z-axis = 33Hz
	Х	0	1	0	Х	Х	Х	Х	Accelerometer LP filter -3dB frequency for Z-axis = 66Hz
	Х	0	1	1	Х	Х	Х	Х	Accelerometer LP filter -3dB frequency for Z-axis = 131Hz
	Х	1	0	0	Х	Х	Х	Х	Accelerometer LP filter -3dB frequency for Z-axis = 262Hz
									System configuration, Byte 9:
	х	0	Х	Х	Х	Х	Х	Х	Inclinometer X-axis is inactive
	х	1	Х	Х	Х	Х	Х	Х	Inclinometer X-axis is active
1	Х	Х	0	х	х	Х	Х	Х	Inclinometer Y-axis is inactive
44	х	Х	1	х	х	Х	Х	Х	Inclinometer Y-axis is active
11	Х	Х	Х	0	Х	Х	Х	Х	Inclinometer Z-axis is inactive
	X	Х	X	1	X	X	Х	X	Inclinometer Z-axis is active
	X	Х	X	X	Ô	0	0	0	Inclinometer output unit = ACCELERATION
1	X	X	X	x	ő	0	0	1	Inclinometer output unit = NCREMENTAL VELOCITY
1	X	X	X	x	0	0	1	Ö	Inclinometer output unit = AVERAGE ACCELERATION
	^	^	^	<u> </u>		_		_	System configuration, Byte 10:
1	, , l	0	0	_	,,	v		· ·	
1	X	0	0	0	X	X	X	X	Inclinementar LP filter -3dB frequency for X-axis = 16Hz
	X	0	0	1	X	X	X	X	Inclinometer LP filter -3dB frequency for X-axis = 33Hz
1	X	0	1	0	X	Х	Х	Х	Inclinometer LP filter -3dB frequency for X-axis = 66Hz
1	Х	0	1	1	Х	Х	Х	Х	Inclinometer LP filter -3dB frequency for X-axis = 131Hz
12	Х	1	0	0	Х	X	X	X	Inclinometer LP filter -3dB frequency for X-axis = 262Hz
	Х	Х	Х	Х	Х	0	0	0	Inclinometer LP filter -3dB frequency for Y-axis = 16Hz
1	Х	Х	Х	Х	Х	0	0	1	Inclinometer LP filter -3dB frequency for Y-axis = 33Hz
1	Х	Х	Х	Х	Х	0	1	0	Inclinometer LP filter -3dB frequency for Y-axis = 66Hz
	Х	Х	Х	Х	Х	0	1	1	Inclinometer LP filter -3dB frequency for Y-axis = 131Hz
	Х	Х	Х	Х	Х	1	0	0	Inclinometer LP filter -3dB frequency for Y-axis = 262Hz
									System configuration, Byte 11:
1	Х	0	0	0	Х	Х	Х	Х	Inclinometer LP filter -3dB frequency for Z-axis = 16Hz
13	Х	0	0	1	х	Х	Х	Х	Inclinometer LP filter -3dB frequency for Z-axis = 33Hz
1.7	х	0	1	0	Х	Х	Х	Х	Inclinometer LP filter -3dB frequency for Z-axis = 66Hz
.	^		i .	1 4	I		х	Х	Inclinometer LP filter -3dB frequency for Z-axis = 131Hz
	x	0	1	1	Х	Х	^		momentum in the car may are and are in in

T ButterflyGyro STIM300 Inertia Measurement Unit

									System configuration, Byte 12:
	х	0	0	0	Х	х	х	х	AUX LP filter -3dB frequency = 16Hz
4.4	х	0	0	1	х	х	х	х	AUX LP filter -3dB frequency = 33Hz
14	х	0	1	0	х	х	х	х	AUX LP filter -3dB frequency = 66Hz
	х	0	1	1	х	x	х	х	AUX LP filter -3dB frequency = 131Hz
	х	1	0	0	х	х	Х	Х	AUX LP filter -3dB frequency = 262Hz
		•							High nibble: Gyro range, x-axis
	0	0	0	0	х	x	х	х	- 400°/s
15	0	· ·		Ŭ	^	^	^	^	Low nibble: Gyro range, y-axis
	х	х	х	х	0	0	0	0	- 400°/s
	^	^	_^_	^	-		-	-	High nibble: Gyro range, z-axis
16	0	0	_	_	.,		.,	.,	
	0	0	0	0	Х	Х	Х	Х	
	_								High nibble: Accelerometer range, x-axis
	0	0	0	0	Х	х	Х	Х	- 10g
	0	0	1	0	Х	Х	Х	Х	- 2g
	0	0	1	1	Х	Х	Х	Х	- 5g
	0	1	0	0	Х	х	Х	Х	- 30g
17	0	1	1	0	Х	Х	Х	Х	- 80g
17									Low nibble: Accelerometer range, y-axis
	х	х	Х	х	0	0	0	0	- 10g
	х	х	Х	х	0	0	1	0	- 2g
	х	х	х	х	0	0	1	1	- 5g
	х	х	х	х	0	1	0	0	- 30g
	х	Х	х	х	0	1	1	0	- 80a
									High nibble: Accelerometer range, z-axis
	0	0	0	0	Х	х	Х	Х	- 10g
	0	0	1	Ö	X	X	X	X	- 2g
18	0	0	1	1	X	x	X	X	- 5g
	0	1	Ö	Ö	X	x	X	x	- 30g
	0	1	1	0	X	x	X	X	- 80g
	U	'	-	0	^		_^	_^	High nibble: Inclinometer range, x-axis
	0	0	0	0	.,		.,	.,	
19	U	U	U	U	Х	Х	Х	Х	- 1.7g
					_	_	_	_	Low nibble: Inclinometer range, y-axis
	Χ	Х	Х	Х	0	0	0	0	- 1.7g
20	_	_	_	_					High nibble: Inclinometer range, z-axis
	0	0	0	0	Χ	Х	Х	Х	- 1.7g
21									High nibble: AUX range
	0	0	0	0	Χ	Х	Χ	Χ	- ±2.5V
22	C ₃₁	C ₃₀	C ₂₉	C ₂₈	C ₂₇	C ₂₆	C ₂₅	C ₂₄	
23	C ₂₃	C ₂₂	C ₂₁	C ₂₀	C ₁₉	C ₁₈	C ₁₇	C ₁₆	Cyclic Redundancy Check is performed on all preceding bytes, ref:
24	C ₁₅	C ₁₄	C ₁₃	C ₁₂	C ₁₁	C ₁₀	C ₉	C ₈	6.3.6
25	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	
(26)	0	0	0	0	1	1	0	1	<cr> If datagram termination has been selected</cr>
(27)	0	0	0	0	1	0	1	0	<lf> If datagram termination has been selected</lf>
(21)	U	U	٥	U	-	U		U	Li / ii datagram temination nas been selected

ButterflyGyro"

STIM300 Inertia Measurement Unit

6.3.4 Extended Error Information datagram

Table 6-16: Specification of the Extended Error Information datagram

Byte#		. . .		Bi	t#				Specification				
	7	6	5	4	3	2	1	0	•				
									Extended Error Information datagram identifier:				
0	1	0	1	1	1	1	1	0	0xBE for datagrams without CR+LF termination				
	1	0	1	1	1	1	1	1	0xBF for datagrams with CR+LF termination				
1	E ₁₂₇	E ₁₂₆	E ₁₂₅	E ₁₂₄	E ₁₂₃	E ₁₂₂	E ₁₂₁	E ₁₂₀					
2	E ₁₁₉	E ₁₁₈	E ₁₁₇	E ₁₁₆	E ₁₁₅	E ₁₁₄	E ₁₁₃	E ₁₁₂	Ref. Table 6-17				
3	E ₁₁₁	E ₁₁₀	E ₁₀₉	E ₁₀₈	E ₁₀₇	E ₁₀₆	E ₁₀₅	E ₁₀₄	Ref. Table 6-17				
4	E ₁₀₃	E ₁₀₂	E ₁₀₁	E ₁₀₀	E ₉₉	E ₉₈	E ₉₇	E ₉₆	Ref. Table 6-17				
5	E ₉₅	E ₉₄	E ₉₃	E ₉₂	E ₉₁	E ₉₀	E ₈₉	E ₈₈	Ref. Table 6-17				
6	E ₈₇	E ₈₆	E ₈₅	E ₈₄	E ₈₃	E ₈₂	E ₈₁	E ₈₀	Ref. Table 6-17				
7	E ₇₉	E ₇₈	E ₇₇	E ₇₆	E ₇₅	E ₇₄	E ₇₃	E ₇₂	Ref. Table 6-17				
8	E ₇₁	E ₇₀	E ₆₉	E ₆₈	E ₆₇	E ₆₆	E ₆₅	E ₆₄	Ref. Table 6-17				
9	E ₆₃	E ₆₂	E ₆₁	E ₆₀	E ₅₉	E ₅₈	E ₅₇	E ₅₆	Ref. Table 6-17				
10	E ₅₅	E ₅₄	E ₅₃	E ₅₂	E ₅₁	E ₅₀	E ₄₉	E ₄₈	Ref. Table 6-17				
11	E ₄₇	E ₄₆	E ₄₅	E ₄₄	E ₄₃	E ₄₂	E ₄₁	E ₄₀	Ref. Table 6-17				
12	E ₃₉	E ₃₈	E ₃₇	E ₃₆	E ₃₅	E ₃₄	E ₃₃	E ₃₂	Ref. Table 6-17				
13	E ₃₁	E ₃₀	E ₂₉	E ₂₈	E ₂₇	E ₂₆	E ₂₅	E ₂₄	Ref. Table 6-17				
14	E ₂₃	E ₂₂	E ₂₁	E ₂₀	E ₁₉	E ₁₈	E ₁₇	E ₁₆	Ref. Table 6-17				
15	E ₁₅	E ₁₄	E ₁₃	E ₁₂	E ₁₁	E ₁₀	E ₉	E ₈	Ref. Table 6-17				
16	E_7	E_6	E_5	E ₄	E_3	E_2	E ₁	E ₀	Ref. Table 6-17				
17	C ₃₁	C ₃₀	C ₂₉	C ₂₈	C ₂₇	C ₂₆	C ₂₅	C ₂₄					
18	C ₂₃	C ₂₂	C ₂₁	C ₂₀	C ₁₉	C ₁₈	C ₁₇	C ₁₆	Cyclic Redundancy Check is performed on all preceding bytes, ref: 6.3.6				
19	C ₁₅	C ₁₄	C ₁₃	C ₁₂	C ₁₁	C ₁₀	C 9	C ₈	3				
20	C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	c_0					
(21)	0	0	0	0	1	1	0	1	<cr> If datagram termination has been selected</cr>				
(22)	0	0	0	0	1	0	1	0	<lf> If datagram termination has been selected</lf>				

Table 6-17: Specification of the Extended Error Information

Bit#	Specification	Bit#	Specification	Bit#	Specification	Bit#	Specification
E ₁₂₇	For future use (=0)	E ₁₂₆	For future use (=0)	E ₁₂₅	For future use (=0)	E ₁₂₄	For future use (=0)
E ₁₂₃	For future use (=0)	E ₁₂₂	For future use (=0)	E ₁₂₁	For future use (=0)	E ₁₂₀	For future use (=0)
E ₁₁₉	For future use (=0)	E ₁₁₈	For future use (=0)	E ₁₁₇	For future use (=0)	E ₁₁₆	For future use (=0)
E ₁₁₅	For future use (=0)	E ₁₁₄	For future use (=0)	E ₁₁₃	For future use (=0)	E ₁₁₂	For future use (=0)
E ₁₁₁	For future use (=0)	E ₁₁₀	AUX: Overload	E ₁₀₉	INC Z: Overload	E ₁₀₈	INC Y: Overload
E ₁₀₇	INC X: Overload	E ₁₀₆	ACC Z: Overload	E ₁₀₅	ACC Y: Overload	E ₁₀₄	ACC X: Overload
E ₁₀₃	GYRO Z: Overload	E ₁₀₂	GYRO Y: Overload	E ₁₀₁	GYRO X: Overload	E ₁₀₀	GYRO Z: Config,error
E ₉₉	GYRO Y: Config,error	E ₉₈	GYRO X: Config.error	E ₉₇	μC temperature failure	E ₉₆	GYRO Z: ASIC temp.dev.
E ₉₅	GYRO Y: ASIC temp.dev	E ₉₄	GYRO X: ASIC temp.dev	E ₉₃	INC Y: Temp.deviation	E ₉₂	INC X/Z: Temp.deviation
E ₉₁	ACC Z: Temp.deviation	E ₉₀	ACC Y: Temp.deviation	E ₈₉	ACC X: Temp.deviation	E ₈₈	GYRO Z: Temp.deviation
E ₈₇	GYRO Y: Temp.deviation	E ₈₆	GYRO X: Temp.deviation	E ₈₅	Self-test not running	E ₈₄	TEMP INC Y: ADC error
E ₈₃	TEMP INC X/Z: ADC error	E ₈₂	TEMP ACC Z: ADC error	E ₈₁	TEMP ACC Y: ADC error	E ₈₀	TEMP ACC X: ADC error
E ₇₉	TEMP GYRO Z: Clipped	E ₇₈	TEMP GYRO Y: Clipped	E ₇₇	TEMP GYRO X: Clipped	E ₇₆	AUX: ADC error
E ₇₅	INC Z: ADC error	E ₇₄	INC Y: ADC error	E ₇₃	INC X: ADC error	E ₇₂	ACC Z: ADC error
E ₇₁	ACC Y: ADC error	E ₇₀	ACC X: ADC error	E ₆₉	AUX: Clipped	E ₆₈	UART unable to transmit
E ₆₇	GYRO Z: data missing	E ₆₆	GYRO Y: Data missing	E ₆₅	GYRO X: Data missing	E ₆₄	Transmit stack warning
E ₆₃	Flash stack warning	E ₆₂	Sample stack warning	E ₆₁	Command stack warning	E ₆₀	Monitor stack warning
E ₅₉	Supply overvoltage	E ₅₈	Internal DAC error	E ₅₇	Flash check error	E ₅₆	RAM check error
E ₅₅	TEMP INC Y: Error	E ₅₄	TEMP INC X/Z: Error	E ₅₃	INC Z: Clipped	E ₅₂	INC Y: Clipped
E ₅₁	INC X: Clipped	E ₅₀	TEMP ACC Z: Error	E ₄₉	TEMP ACC Y: Error	E ₄₈	TEMP ACC X: Error
E ₄₇	ACC Z: Clipped	E ₄₆	ACC Y: Clipped	E ₄₅	ACC X: Clipped	E ₄₄	GYRO Z: Data lost
E ₄₃	GYRO Z: Exc.ampl.error	E ₄₂	GYRO Z: Int.comm.error	E ₄₁	For future use (=0)	E ₄₀	For future use (=0)
E ₃₉	GYRO Z: ASIC overflow, I	E ₃₈	GYRO Z: ASIC overflow, Q	E ₃₇	GYRO Y: Data lost	E ₃₆	GYRO Y: Exc.ampl.error
E ₃₅	GYRO Y: Int.comm.error	E ₃₄	For future use (=0)	E ₃₃	For future use (=0)	E ₃₂	GYRO Y: ASIC overflow, I
E ₃₁	GYRO Y: ASIC overflow, Q	E ₃₀	GYRO X: Data lost	E ₂₉	GYRO X: Exc.ampl.error	E ₂₈	GYRO X: Int.comm.error
E ₂₇	For future use (=0)	E ₂₆	For future use (=0)	E ₂₅	GYRO X: ASIC overflow, I	E ₂₄	GYRO X: ASIC overflow, Q
E ₂₃	Regulated voltage#3 error	E ₂₂	Regulated voltage#2 error	E ₂₁	Regulated voltage#1 error	E ₂₀	Supply voltage error
E ₁₉	Reference voltage#3 error	E ₁₈	Reference voltage#2 error	E ₁₇	Reference voltage#1 error	E ₁₆	Start-up phase active
E ₁₅	GYRO Z: Int.comm.error	E ₁₄	GYRO Y: Int.comm.error	E ₁₃	GYRO X: Int.comm.error	E ₁₂	GYRO Z: Clipped
E ₁₁	GYRO Y: Clipped	E ₁₀	GYRO X: Clipped	E ₉	TEMP GYRO Z: Error	E ₈	TEMP GYRO Y: Error
E ₇	TEMP GYRO X: Error	E ₆	GYRO Z: ASIC temp.error	E ₅	GYRO Y: ASIC temp.error	E ₄	GYRO X: ASIC temp.error
E ₃	μC temperature error	E ₂	GYRO Z: Exc.freq.error	E₁	GYRO Y: Exc.freq.error	E ₀	GYRO X: Exc.freq.error

ButterflyGyro[™]

STIM300 Inertia Measurement Unit

6.3.5 Normal Mode datagram

Table 6-18: Specification of the Normal Mode datagram (full data content in datagram)

	- 10.	Spec	IIICai			INOI	IIIai i	vioue	Specification	
Byte#	7	6	5	4	t# 3	2	1	0	Specification	
0	1	0	1	0	1	1	1	1	Normal Mode datagram identifier for Normal Mode datagram with full content. Identifier for reduced content datagrams can be found in Table 6-19	
1	Gx ₂₃	Gx ₂₂	Gx ₂₁	Gx ₂₀	Gx ₁₉	Gx ₁₈	Gx ₁₇	Gx ₁₆	V 1	
3	Gx ₁₅	Gx ₁₄ Gx ₆	Gx ₁₃	Gx ₁₂	G ₁₁ Gx ₃	Gx ₁₀	Gx ₉ Gx₁	Gx ₈	X-axis gyro output, ref. section 8.5.2.2.1 to 8.5.2.2.5 for conversion to units	
4	Gy_{23}	Gy_{22}	Gy ₂₁	Gy ₂₀	Gy ₁₉	Gy ₁₈	Gy ₁₇	Gy ₁₆		
5	Gy ₁₅	Gy ₁₄	Gy ₁₃			Gy ₁₀	Gy ₉	Gy ₈		
6	Gy_7	Gy ₆	Gy_5	Gy₄	Gy₃	Gy ₂	Gy₁	Gy₀		
7 8	Gz ₂₃ Gz ₁₅	Gz ₂₂ Gz ₁₄	Gz ₂₁	Gz ₂₀	Gz ₁₉ Gz ₁₁	Gz ₁₈ Gz ₁₀	Gz ₁₇ Gz ₉	Gz ₁₆ Gz ₈		
9	GZ ₁₅	GZ ₁₄	Gz_{13}	Gz_{12}	Gz_{3}	Gz_{10}	Gz ₁	Gz_0	Z-axis gyro output, ref. section 0.3.2.2.1 to 0.3.2.2.3 for conversion to units	
10	Gs ₇	Gs ₆	Gs ₅	Gs ₄	Gs ₃	Gs ₂	Gs ₁	Gs ₀	STATUS byte for gyro measurements, ref.Table 6-21	
11	Ax ₂₃	Ax ₂₂	Ax ₂₁	Ax ₂₀	Ax ₁₉	Ax ₁₈	Ax ₁₇	Ax ₁₆	V ania accelerante antent ref. continu 0.5.2.2.7 to 0.5.2.2.0 for conversion to units	
12 13	Ax ₁₅	Ax ₁₄	Ax ₁₃	Ax ₁₂	Ax ₁₁	Ax ₁₀	Ax ₉	Ax_8 Ax_0	X-axis accelerometer output, ref. section 8.5.2.2.7 to 8.5.2.2.9 for conversion to units	
14	Ay ₂₃	Ay ₂₂	Ay ₂₁	Ay ₂₀	Ay ₁₉	Ay ₁₈	Ay ₁₇	Ay ₁₆		
15	Ay ₁₅	Ay ₁₄	Ay ₁₃	Ay ₁₂	Ay ₁₁	Ay ₁₀	Ay ₉	Ay ₈	Y-axis accelerometer output, ref. section 8.5.2.2.7 to 8.5.2.2.9 for conversion to units	
16	Ay ₇	Ay ₆	Ay ₅	Ay ₄	Ay ₃	Ay ₂	Ay ₁	Ay ₀		
17 18	Az ₂₃	Az ₂₂	Az ₂₁	Az ₂₀	Az ₁₉	Az ₁₈	Az ₁₇	Az ₁₆	Z-axis accelerometer output, ref. section 8.5.2.2.7 to 8.5.2.2.9 for conversion to units	
19	Az ₁₅	Az_6	Az ₅	Az_{12}	Az_3	Az_2	Az ₁	Az_0	2 axis accordinate output, for section 0.3.2.2.7 to 0.3.2.2.3 for conversion to units	
20	As ₇	As ₆	As ₅	As ₄	As ₃	As ₂	As ₁	As ₀	STATUS byte for accelerometer measurements, ref.Table 6-21	
21	Ix ₂₃	Ix ₂₂	Ix ₂₁	Ix ₂₀	Ix ₁₉	Ix ₁₈	Ix ₁₇	Ix ₁₆		
22	IX ₁₅	IX ₁₄	IX ₁₃	IX ₁₂	IX ₁₁	IX ₁₀	IX ₉	Ix ₈	X-axis Inclinometer output, ref. section 8.5.2.2.10 to 8.5.2.2.12 for conversion to units	
24	lx ₇	lx ₆	lx ₅	Ix ₄	lx ₃	lx ₂	Ix ₁	Ix ₀		
25	ly ₁₅	ly ₁₄	ly ₁₃	ly ₁₂	ly ₁₁	ly ₁₀	ly ₉	ly ₈	Y-axis Inclinometer output, ref. section 8.5.2.2.10 to 8.5.2.2.12 for conversion to units	
26	ly ₇	ly ₆	ly ₅	ly ₄	ly ₃	ly ₂	ly₁	ly₀		
27 28	IZ ₂₃	IZ ₂₂	IZ ₂₁	IZ ₂₀	Iz ₁₉	Iz ₁₈	IZ ₁₇	IZ ₁₆	7 avia Inalinameter output, ref. coetian 9.5.2.2.40 to 9.5.2.2.42 for conversion to units	
29	Iz ₁₅	Iz ₁₄	Iz ₁₃	Iz ₁₂	Iz ₁₁	Iz ₁₀	Iz ₉ Iz₁	Iz ₈	Z-axis Inclinometer output, ref. section 8.5.2.2.10 to 8.5.2.2.12 for conversion to units	
30	ls ₇	ls ₆	ls ₅	ls ₄	ls ₃	Is ₂	Is ₁	ls ₀	STATUS byte for inclinometer measurements, ref.Table 6-21	
	GTx ₁₅						GTx ₉	GTx ₈	X-axis gyro temperature data, ref. section 8.5.2.2.13 for conversion to units	
32						GTx ₂	GTx ₁	GTx ₀	A date gyro temperature data, rei. decitori dici. 2.2.2.10 for deriversion to dime	
33 34	Gty ₁₅	Gty ₁₄ Gty ₆	Gty₁₃ Gty₅	Gty ₁₂ Gty ₄		Gty ₁₀ Gty ₂	Gty ₉ Gty₁	Gty ₈ Gty ₀	Y-axis gyro temperature data, ref. section 8.5.2.2.13 for conversion to units	
	GTz ₁₅					,-	GTz ₉	GTz ₈	Z-axis gyro temperature data, ref. section 8.5.2.2.13 for conversion to units	
36				GTz₄			GTz₁	GTz ₀		
37 38				GTs ₄ Atx ₁₂		GTs ₂ Atx ₁₀	GTs ₁ Atx ₉	GTs ₀ Atx ₈	STATUS byte for gyro temperature measurements, ref.Table 6-21	
39	Atx ₇	Atx ₆	Atx ₅			Atx ₂	Atx ₁	Atx ₀	X-axis accelerometer temperature data, ref. section 8.5.2.2.13 for conversion to units	
40	Aty ₁₅	Aty ₁₄		Aty ₁₂		Aty ₁₀	Aty ₉	Aty ₈	Y-axis accelerometer temperature data, ref. section 8.5.2.2.13 for conversion to units	
41	Aty ₇	Aty ₆	Aty ₅	Aty ₄		Aty ₂	Aty ₁	Aty ₀	1-axis accelerometer temperature data, ref. section 6.5.2.2.15 for conversion to drifts	
42 43	-	-		Atz ₁₂	-			Atz ₈	Z-axis accelerometer temperature data, ref. section 8.5.2.2.13 for conversion to units	
43	Atz ₇	Atz ₆	Atz ₅	Atz ₄	Ats ₃	Atz ₂	Atz ₁	Ats ₀	STATUS byte for accelerometer temperature measurements, ref.Table 6-21	
45	ltx ₁₅	Itx ₁₄	Itx ₁₃	ltx ₁₂	Itx ₁₁	ltx ₁₀	ltx ₉	ltx ₈	X-axis inclinometer temperature data, ref. section 8.5.2.2.13 for conversion to units	
46	ltx ₇	Itx ₆	ltx ₅	Itx ₄	ltx ₃	ltx ₂	Itx ₁	ltx ₀	A axio momentico temperature data, rei. section 0.3.2.2.10 for conversion to units	
47 48	Ity ₁₅	Ity ₁₄ Ity ₆	Ity ₁₃	Ity ₁₂	Ity ₁₁	Ity ₁₀	Ity ₉ Ity₁	Ity ₈	Y-axis inclinometer temperature data, ref. section 8.5.2.2.13 for conversion to units	
49	Itz ₁₅	Itz ₁₄	Itz ₁₃	Itz ₁₂	Itz ₁₁	Itz ₁₀	Itz ₉	Itz ₈	7	
50	ltz ₇	Itz ₆	ltz ₅	Itz ₄	ltz ₃	ltz ₂	Itz ₁	ltz ₀	Z-axis inclinometer temperature data, ref. section 8.5.2.2.13 for conversion to units	
51	Its ₇	Its ₆	Its ₅	Its ₄	Its ₃	Its ₂	Its ₁	Its ₀	STATUS byte for inclinometer temperature measurements, ref.Table 6-21	
52 53	Au ₂₃	Au ₂₂	Au ₂₁	Au ₂₀	Au ₁₉	Au ₁₈	Au ₁₇	Au ₁₆	AUX output	
54	Au ₁₅	Au ₁₄	Au ₁₃	Au ₁₂	Au ₃	Au_{10}	Au ₁	Au ₀	, tox output	
55	Aus ₇	Aus ₆	Aus ₅	Aus ₄	Aus ₃	Aus ₂	Aus ₁	Aus ₀	STATUS byte for AUX measurement, ref.Table 6-21	
56	n ₇	n ₆	n ₅	n ₄	n ₃	n ₂	n ₁	n ₀	Counter, ref.section 8.5.2.2.15	
57 58	t ₁₅	t ₁₄	t ₁₃	t ₁₂	t ₁₁	t ₁₀	t ₉	t ₈	Latency, ref. Section 8.5.2.2.16 for conversion to units.	
59	C ₃₁	C ₃₀	ι ₅ C ₂₉	C ₂₈	ι ₃ C ₂₇	ι ₂ C ₂₆	C ₂₅	ι ₀ C ₂₄		
60	C ₂₃	C ₂₂	C ₂₁	C ₂₀	C ₁₉	C ₁₈	C ₁₇	C ₁₆	Cyclic Redundancy Check is performed on all preceding bytes, ref:section 6.3.6	
61	C ₁₅	C ₁₄	C ₁₃	C ₁₂	C ₁₁	C ₁₀	C ₉	C ₈	System (Cadinatina) Shook is performed on all proceding bytes, ref. section 0.5.0	
62 (63)	C ₇	C ₆	C ₅	C ₄	c ₃	C ₂	C ₁	C ₀	<cr> If datagram termination has been selected</cr>	
(64)	0	0	0	0	1	0	1	0	<lf> If datagram termination has been selected</lf>	
(~ '/				_			<u>'</u>	<u> </u>		

Normal Mode datagrams with reduced content can be chosen at order or configured in Service Mode. Overview of available datagrams can be found in Table 6-19 and in section 12. When choosing a Normal mode datagram with reduced content, the Normal Mode datagram will be shorter. However the order of requested data will be transmitted as shown in Table 6-18. When selecting temperature in the datagram, only temperatures for the selected measurement-clusters will be transmitted, e.g. if gyro and inclinometer data have been chosen together with temperature, only temperatures for the gyros and inclinometers will be transmitted.

Table 6-19: Normal Mode datagram identifiers

Datagram content	Identifier
Rate	0x90
Rate and acceleration	0x91
Rate and inclination	0x92
Rate, acceleration and inclination	0x93
Rate and temperature	0x94
Rate, acceleration and temperature	0xA5
Rate, inclination and temperature	0xA6
Rate, acceleration, inclination and temperature	0xA7
Rate and AUX	0x98
Rate, acceleration and AUX	0x99
Rate, inclination and AUX	0x9A
Rate, acceleration, inclination and AUX	0x9B
Rate, temperature and AUX	0x9C
Rate, acceleration, temperature and AUX	0xAD
Rate, inclination, temperature and AUX	0xAE
Rate, acceleration, inclination, temperature and AUX	0xAF

6.3.6 Cyclic Redundancy Check (CRC)

At the end of all datagrams is a 32-bit Cyclic Redundancy Checksum. The CRC checksum enables the user to detect errors in the transfer of data from STIM300. The CRC is calculated using the following equation:

$$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$$

seed = 0xFFFFFFF

All preceding data, including the datagram identifier, is included in the CRC.

The CRC-algorithm requires full sets of 32-bits (4 bytes). Several of the defined datagrams from STIM300 have a length which is not an integer number of 4 bytes. In order to have an efficient transmission of data and thereby avoid transmitting bytes with no meaningful content, dummy-byte(s) with content = 0x00 are added when the CRC of the last byte(s) is calculated.

Example: Datagram with ID=0xA7 (rate, acceleration, inclination and temperature) has been chosen. This datagram consists of 55 bytes prior to the CRC checksum. Hence this datagram consists of 13 sets of 32 bits + 3 bytes. In order to include the last 3 bytes in the CRC checksum, 1 byte = 0x00 is added, making the last data byte the least significant byte.

Table 6-20 lists the number of dummy-bytes needed to calculate the final CRC-checksum for the different datagrams in Normal Mode.

Table 6-20: Number of dummy-bytes to be added for CRC-calculation

Datagram content	Identifier	# dummy-bytes
Part Number datagram	0xB1, 0xB3	0
Serial Number datagram	0xB5, 0xB7	0
Configuration datagram	0xB9, 0xBB	2
Extended Error Information datagram	0xBE, 0xBF	3
Rate	0x90	2
Rate and acceleration	0x91	0
Rate and inclincation	0x92	0
Rate, acceleration and inclination	0x93	2
Rate and temperature	0x94	3
Rate, acceleration and temperature	0xA5	2
Rate, inclination and temperature	0xA6	2
Rate, acceleration, inclination and temperature	0xA7	1
Rate and AUX	0x98	2
Rate, acceleration and AUX	0x99	0
Rate, inclincation and AUX	0x9A	0
Rate, acceleration, inclination and AUX	0x9B	2
Rate, temperature and AUX	0x9C	3
Rate, acceleration, temperature and AUX	0xAD	2
Rate, inclination, temperature and AUX	0xAE	2
Rate, acceleration, inclination, temperature and AUX	0xAF	1

6.4 Status byte

Table 6-21: Interpretation of bits in STATUS byte

i abic o	Table 6 21: Interpretation of bits in 61A166 byte						
Bit	STATUS bit information	Comment					
7	0=OK, 1=System integrity error						
6	0=OK, 1=Start-Up						
5	0=OK, 1=Outside operating conditions						
4	0=OK, 1=Overload	Bits 0-2 will flag the overload channel(s)					
3	0=OK, 1=Error in measurement-	Bits 0-2 will flag the error channel(s)					
	channel						
2	0=OK, 1=Z-channel						
1	0=OK, 1=Y-channel						
0	0=OK, 1=X-channel (or AUX)						

Refer to section 8.6 for more information related to the self-diagnostics of STIM300.

7 MECHANICAL

Table 7-1: Mechanical specifications

Parameter	Conditions	Min Nom Max	Unit	Note
HOUSING MATERIAL		Aluminium,		
		Alloy 6082-T6, DIN EN 754-2		
SURFACE TREATMENT				
Passivation		Surtec 650		1
WEIGHT		55	grams	
VOLUME		32.6	ccm	
		1.99	cu in	
DUST AND HUMIDITY		ID67		
CLASSIFICATION		IP67		
CONNECTOR				
Туре		Micro-D		
Number of pins		15		
Contact type		female		
PLUG				
Proposed plug to fit connector		Axon MDA 2 15 P		
Proposed cover to fit plug	For best EMI performance	Axon micro-D EMI back shell		
FIXATION BOLTS		M4		
		ISO 4762 / DIN 912		
Recommended torque	Steel base	3.5	Nm	
	Aluminium base	3.0	Nm	

Note 1: Hexavalent chromium free

7.1 Mechanical dimensions

All dimensions are in mm.

Table 7-2: Nominal position of accelerometer mass-centres (ref. Figure 6-2 for reference definition)

Axis	X-offset'	Y-offset"	Z-offset ¹⁾
Х	-33.4mm	-11.7mm	12.8mm
Υ	-24.9mm	-5.2mm	16.0mm
Z	-24.0mm	-11.3mm	6.9mm

Note 1: Valid for rev.F and later. For rev.E, refer TS1524r16

7.2 Advice on mounting orientation

The gyros are sensitive to acceleration-forces in certain directions:

- X- and Y-gyros have their highest sensitivity to acceleration-forces in Z-direction
- Z-gyro has its highest sensitivity to acceleration-forces in Y-direction
- X-gyro has its lowest sensitivity to acceleration-forces in X-direction
- Y-gyro has its lowest sensitivity to acceleration-forces in Y-direction
- Z-gyro has its lowest sensitivity to acceleration-forces in Z-direction

7.3 Pin configuration

Figure 7-3: Pin configuration as seen from front of STIM300

Table 7-3: Pin descriptions

Pin#	Label	Туре	Description
1	TxD-	OUTPUT	RS422 negative output
2	RxD-	INPUT	RS422 negative input
3	TST	OUTPUT	Test pin: Do not connect
4	TOV	OUTPUT	Time of Validity (if not in use, leave floating)
5	NRST	INPUT	Reset (if not in use, connect to VSUP or leave floating)
6	AUX_GND	INPUT	AUX signal ground (internally connected to Power ground)
7	AUX-	INPUT	AUX negative signal input
8	VSUP	SUPPLY	Power supply (+5V)
9	TxD+	OUTPUT	RS422 positive output
10	RxD+	INPUT	RS422 positive input
11	ExtTrig	INPUT	External trigger (if not in use, connect to VSUP or leave floating)
12	GND	INPUT	Test pin: Connect to ground (0V)
13	GND	INPUT	Test pin: Connect to ground (0V)
14	AUX+	INPUT	AUX positive signal input
15	GND	SUPPLY	Power ground (0V)

7.4 Definition of axes

Figure 7-4: Definition of axes

8 BASIC OPERATION

STIM300 is very simple to use. Unless having been configured with external trigger, the unit will start performing measurements and transmit the results over the RS422 interface without any need for additional signalling or set-up after power-on. Figure 8-1 shows the simplest connection set-up for STIM300.

Figure 8-1: Transmit-Only Electrical Connection Diagram

In order to take full advantage of all features of STIM300, the unit needs to be connected as shown in Figure 8-2. In this set-up the system can reset the unit without having to toggle power, the external trigger function can be utilized, configuration parameters can be changed and extended information like diagnostic information can be read from the device. 为了充分利用STIM300的所有特性,需要连接单元,如图8-2所示。在此设置中,系统可以在无需切换电源的情况下重新设置单元,可以使用外部触发函数,可以更改配置参数,并可以从设备读取诊断信息等扩展信息。

Figure 8-2: Full Function Electrical Connection Diagram

8.1 Reset

STIM300 has a separate reset pin (NRST) in order for the application to reset the unit without having to toggle power.

The reset is active low and has an internal pull-up. Hence the input could be left floating if not in use.

The reset signal is routed to the reset of the microcontroller and effectively forces STIM300 into Init Mode (ref. Figure 8-6 and section 8.5.1).

8.2 External Trigger

STIM300 has a separate digital input pin to be used when the unit has been configured to transmit only upon external trigger. The measurements themselves will be continuously running at the highest sample rate (2000 samples/s) in order to ensure shortest possible latency when a transmission is requested. The input is set to trigger on the falling edge of the input signal and will then transmit one datagram containing the result of the latest measurement.

The input has an internal pull-up. Hence the input could be left floating if not in use.

Note that the commands in Normal Mode are active even if the datagram transmission has been configured to transmit only upon external trigger. This means that e.g. if the Normal Mode command "C" is issued over the RS-422 interface,

the STIM300 will transmit a Configuration Datagram independent on the external trigger input. Also when STIM300 is in Init Mode (after Power on or Reset), it will transmit the 3 datagrams as described in section 8.5.1.

The timing diagram is shown in Figure 8-3. Latency is the time between the moment at which the sample has been digitized + low pass-filtered and the receipt of the external trigger.

Figure 8-3: Timing of external trigger

8.3 Time of Validity (TOV)

The TOV-output serves 2 purposes:

- Provide a synchronisation-signal derived from the internal clock of STIM300
- Provide means to signal when a datagram is being transmitted (NB: not when configured to external trigger)

The TOV falling edge occurs synchronous to the sample rate. The raising edge occurs after the last bit of the datagram has been transmitted.

Figure 8-4 and Figure 8-5 show the timing diagram of the TOV-output.

Figure 8-4: Timing of TOV (example: sample rate = 1000samples/s)

Figure 8-5: Timing of TOV with external trigger

8.4 Auxiliary input

STIM300 provides input in order to digitize an external signal. The digitizer is a 24 bit sigma-delta ADC. The AUX data (24 bits + status byte) can be included in the datagrams, ref. sections 12 and 10.4. A simple compensation of the AUX data is performed as shown in Equation 1. The AUX data will be low-pass filtered. The bandwidth can be changed in Service Mode, ref. section 10.8.

Equation 1: AUX compensation algorithm:

 \overline{AUX} $\underline{Output} = A * AUX \underline{Input} + B$

where A and B are coefficients that can be programmed by the user in SERVICEMODE (k (AUX COMP)-command)

8.5 Operating modes

The operating modes of STIM300 are shown in Figure 8-6:

Figure 8-6: Operating modes

ButterflyGyro[™]

STIM300 Inertia Measurement Unit

8.5.1 Init Mode

Init Mode is entered after the following conditions:

- power on
- · after an external reset
- when receiving a reset-command in Normal Mode
- when exiting to Init Mode from Service Mode.

In Init Mode the system waits for internal references to settle, resets and synchronizes the sensor channels and transmits three special datagrams containing part number, serial number and configuration data. Note that length and format of the special datagrams are different to the datagrams in Normal Mode.

The content and format of the Part Number datagram is specified in Table 6-13.

The content and format of the Serial Number datagram is specified in Table 6-14.

The content and format of the Configuration datagram is specified in Table 6-15.

After having transmitted the special Part Number, Serial Number and Configuration datagrams, STIM300 enters Normal Mode.

All these special datagrams can also be requested by commands in Normal Mode, ref. Section: 9.

8.5.2 Normal Mode

In Normal Mode STIM300 will constantly transmit sensor-data at the configured sample rate. The internal sample rate will always be at the maximum regardless of the transmitted sample rate.

STIM300 will continue to transmit data regardless of any errors reported in the STATUS-bytes (ref. Table 6-21). Hence the content of the STATUS-byte should continuously be examined.

The content of the Normal Mode datagram is specified in Table 6-18.

8.5.2.1 Start-Up

When STIM300 enters Normal Mode from Init Mode, there will be a start-up period where STIM300 is stabilizing the gyros. During this period bit 6 is set in the STATUS-byte (ref. Table 6-21) to communicate its condition. Once stabilized, bit 6 will be cleared. During this period the output data should be regarded as non-valid.

There will not be any start-up period when STIM300 is exiting from Service Mode directly to Normal Mode.

8.5.2.2 Data output options and interpretation

The gyros in STIM300 measure angular rate [°/s], the accelerometers measure acceleration [g] and the inclinometers measure acceleration [g]. However, in order to make the STIM300 more versatile, a few simple functions are offered, ref. Table 8-1 and Table 8-2:

Table 8-1: Implemented functions for gyro output units

Function	Description of function	Equation	Output unit
Incremental	Adds all internal samples between two transmissions multiplied by the time between internal samples	$Incremental = \sum_{i=1}^{n} AngularRate_i \cdot \frac{1}{2000}s$	[°]
Average	Calculates the average of the internal samples between two transmissions	$n = 2000 / \text{sample rate}$ $Average = \frac{1}{n} \cdot \sum_{i=1}^{n} AngularRate_{i}$	[°/s]
Integrated	Adds all internal samples multiplied by the time between internal samples since start-up / last reset. Note that the result takes values in the interval [-4°, 4°> and will naturally wrap-around with no errormessage indication in the Statusbyte	$n = 2000 / \text{ sample rate}$ $Integrated = \sum_{i=1}^{n} AngularRate_i \cdot \frac{1}{2000} s$ $n = \text{internal samples (at a rate of 2000 samples/s)}$ $\text{since start-up or last reset)}$	[°]

Table 8-2: Implemented functions for accelerometer/inclinometer output units

Function	Description of function	Equation	Output unit
Incremental	Adds all internal samples between two transmissions multiplied by the time between internal samples and converted to [m/s]	$Incremental = k_0 \cdot \sum_{i=1}^{n} Acceleration_i \cdot \frac{1}{2000}s$ $k_0 = 9.80665 \text{ m/s}^2/\text{g}$ $n = 2000 / \text{ sample rate}$	[m/s]
Average	Calculates the average of the internal samples between two transmissions	$Average = \frac{1}{n} \cdot \sum_{i=1}^{n} Acceleration_{i}$ $n = 2000 / \text{sample rate}$	[9]

8.5.2.2.1 Delayed gyro output

The inherent group delay of the gyro-, accelerometer- , inclinometer- and AUX-signals are different, ref. Table 6-3, Table 6-4,

Table 6-8 and Table 6-9 respectively.

An option is available to delay the gyro signals by 5ms in order for the group delay of gyros, accelerometers and AUX to be similar. To enable this feature, select the gyro output-unit ≥ 8, ref. section 10.7 and 12.

8.5.2.2.2 Gyro output unit = Angular Rate

In the case of STIM300 being configured to output angular rate, Equation 2 and Figure 8-7 show how to convert to [°/s]. Note that the output data is represented as two's complement.

Equation 2: Converting output to [°/s]:

Output
$$[^{\circ}/s] = \frac{(AR_1) \cdot 2^{16} + (AR_2) \cdot 2^8 + (AR_3)}{2^{14}}$$

where AR₁ is the most significant byte of the 24bit output

AR₂ is the middle byte of the 24bit output

AR₃ is the least significant byte of the 24bit output

Figure 8-7: Converting output bytes to [°/s]

8.5.2.2.3 Gyro output unit = Incremental Angle

In the case of STIM300 being configured to output incremental angle per sample, the equations for conversion to [°/sample] can be found in Equation 3 and Figure 8-8. Note that the output data is represented as two's complement.

Equation 3: Converting output to [°/sample]

Output
$$[\circ / sample] = \frac{(IA_1) \cdot 2^{16} + (IA_2) \cdot 2^8 + (IA_3)}{2^{21}}$$

where IA₁ is the most significant byte of the 24bit output

IA₂ is the middle byte of the 24bit output

IA₃ is the least significant byte of the 24bit output

Figure 8-8: Converting output bytes to [°/sample]

8.5.2.2.4 Gyro output unit = Average Angular Rate

In the case of STIM300 being configured to output average angular rate, the transmitted data will be the average of the samples since last transmission. E.g. in the case of continuous transmission of datagrams and a sample rate of 500Hz, each transmission will contain the average of the four previous internal samples.

Note that the configured low-pass filtering is performed prior to calculating the average.

Conversion to [°/s] is the same as for angular rate and is described in Equation 2.

8.5.2.2.5 Gyro output unit = Integrated Angle

In the case of STIM300 being configured to output integrated angle, the transmitted data will be the continuously integrated angle since power-on or reset. The integrated angle takes values in the interval [-4°, 4°> and will naturally wrap-around with no error-message indication in the Status-byte.

Conversion to [°] is the same as for incremental angle and is described in Equation 3.

8.5.2.2.6 Gyro g-compensation

As the STIM300 also contains accelerometers and inclinometers, functionality has been implemented to provide means to compensate for the g-sensitivity for gyro scale-factor and/or bias.

In addition, a simple 1-pole low-pass filter can be switched in to apply additional filtering of the accelerometer-/inclinometer-signal prior to use in the compensation, ref: Figure 8-10. A simplified compensation-scheme can be found in Figure 8-9.

Figure 8-9: Simplified compensation-scheme for gyro g-compensation

Figure 8-10: Frequency characteristics of g-compensation low-pass filter for 0.001Hz, 0.01Hz and 5Hz settings

TS1524 rev.21 41/84 August 2017

8.5.2.2.7 Accelerometer output unit = Acceleration

In the case of STIM300 being configured to output acceleration, Equation 4 and Figure 8-11 show how to do this. Note that the output data is represented as two's complement.

Equation 4: Converting output to [g]:

Range	Conversion:
2g	Output[g]= $\frac{(ACC_1) \cdot 2^{16} + (ACC_2) \cdot 2^8 + (ACC_3)}{2^{21}}$
5g	Output[g] = $\frac{(ACC_1) \cdot 2^{16} + (ACC_2) \cdot 2^8 + (ACC_3)}{2^{20}}$
10g	Output[g]= $\frac{(ACC_1) \cdot 2^{16} + (ACC_2) \cdot 2^8 + (ACC_3)}{2^{19}}$
30g	Output[g]= $\frac{(ACC_1) \cdot 2^{16} + (ACC_2) \cdot 2^8 + (ACC_3)}{2^{18}}$
80g	Output[g]= $\frac{(ACC_1) \cdot 2^{16} + (ACC_2) \cdot 2^8 + (ACC_3)}{2^{16}}$

where ACC₁ is the most significant byte of the 24bit output ACC₂ is the middle byte of the 24bit output ACC₃ is the least significant byte of the 24bit output

Figure 8-11: Converting output bytes to [g] (example is valid for 10g range)

8.5.2.2.8 Accelerometer output unit = Incremental Velocity

In the case of STIM300 being configured to output incremental velocity per sample, the equations for conversion to [m/s/sample] can be found in Equation 5 and Figure 8-12. Note that the output data is represented as two's complement.

Equation 5: Converting output to [m/s/sample]

Range	Conversion:
2g	Output $[m/s/sample] = \frac{(IV_1) \cdot 2^{16} + (IV_2) \cdot 2^8 + (IV_3)}{2^{24}}$
5g	Output $[m/s/sample] = \frac{(IV_1) \cdot 2^{16} + (IV_2) \cdot 2^8 + (IV_3)}{2^{23}}$
10g	Output $[m/s/sample] = \frac{(IV_1) \cdot 2^{16} + (IV_2) \cdot 2^8 + (IV_3)}{2^{22}}$
30g	Output $[m/s/sample] = \frac{(IV_1) \cdot 2^{16} + (IV_2) \cdot 2^8 + (IV_3)}{2^{21}}$
80g	Output $[m/s/sample] = \frac{(IV_1) \cdot 2^{16} + (IV_2) \cdot 2^8 + (IV_3)}{2^{19}}$

where $\ensuremath{\mathsf{IV}}_1$ is the most significant byte of the 24bit output

IV₂ is the middle byte of the 24bit output

IV₃ is the least significant byte of the 24bit output

Figure 8-12: Converting output bytes to [m/s/sample] (example is valid for 10g range)

8.5.2.2.9 Accelerometer output unit = Average Acceleration

In the case of STIM300 being configured to output average acceleration, the transmitted data will be the average of the samples since last transmission. E.g. in the case of continuous transmission of datagrams and a sample rate of 500Hz, each transmission will contain the average of the four internal samples.

Conversion to [g] is the same as for angular rate and is described in Equation 4.

8.5.2.2.10 Inclinometer output unit = Acceleration

In the case of STIM300 being configured to output acceleration, Equation 6 and Figure 8-13 show how to do this. Note that the output data is represented as two's complement.

Equation 6: Converting output to [g]:

Output[g] =
$$\frac{(ACC_1) \cdot 2^{16} + (ACC_2) \cdot 2^8 + (ACC_3)}{2^{22}}$$

where ACC₁ is the most significant byte of the 24bit output

ACC₂ is the middle byte of the 24bit output

ACC₃ is the least significant byte of the 24bit output

Figure 8-13: Converting output bytes to [g]

8.5.2.2.11 Inclinometer output unit = Incremental Velocity

In the case of STIM300 being configured to output incremental velocity per sample, the equations for conversion to [m/s/sample] can be found in Equation 7 and Figure 8-14. Note that the output data is represented as two's complement.

Equation 7: Converting output to [m/s/sample]

Output
$$[m/s/sample] = \frac{(IV_1) \cdot 2^{16} + (IV_2) \cdot 2^8 + (IV_3)}{2^{25}}$$

where IV₁ is the most significant byte of the 24bit output

IV₂ is the middle byte of the 24bit output

IV₃ is the least significant byte of the 24bit output

Figure 8-14: Converting output bytes to [m/s/sample]

8.5.2.2.12 Inclinometer output unit = Average Acceleration

In the case of STIM300 being configured to output average acceleration, the transmitted data will be the average of the samples since last transmission. E.g. in the case of continuous transmission of datagrams and a sample rate of 500Hz, each transmission will contain the average of the four internal samples.

Conversion to [g] is the same as for angular rate and is described in Equation 6.

8.5.2.2.13 Temperature

Temperature data for each axis is available in certain datagrams (ref. section 12).

Equation 8 and Figure 8-15 show how to convert to [°C]. Note that the output data is represented as two's complement.

Equation 8: Converting temperature data to [°C]

Output
$$[{}^{\circ}C] = \frac{(T_1) \cdot 2^8 + (T_2)}{2^8}$$

where T_1 is the most significant byte of the 16bit output

T₂ is the least significant byte of the 16bit output

Figure 8-15: Converting temperature data to [°C]

8.5.2.2.14 AUX

In the case of STIM300 being configured to AUX-data, Equation 9 and Figure 8-11 show how to do this. Note that the output data is represented as two's complement.

Equation 9: Converting output to [V]:

Output[V] =
$$\frac{(AUX_1) \cdot 2^{16} + (AUX_2) \cdot 2^8 + (AUX_3)}{2^{24}} \cdot 5V$$

where AUX₁ is the most significant byte of the 24bit output

AUX₂ is the middle byte of the 24bit output

AUX₃ is the least significant byte of the 24bit output

Figure 8-16: Converting output bytes to [V]

8.5.2.2.15 Counter

Counter is continuously counting the internal samples (2000 samples/s). Counter is an un-signed single byte taking values in the interval [0, 255]. The counter will naturally wrap-around with no error-message indication in the Statusbyte.

8.5.2.2.16 Latency

To calculate the latency in [µs], refer to Equation 10 and Figure 8-17. Note that latency is an unsigned word.

Equation 10: Converting output to [µs]:

 $Output[\mu s] = (LT_1) \cdot 2^8 + (LT_2)$

where LT_1 is the most significant byte of the 16bit output

LT₂ is the least significant byte of the 16bit output

Figure 8-17: Converting output bytes to [µs]

ButterflyGyro "

STIM300 Inertia Measurement Unit

8.5.3 Service Mode

In Service Mode the communication interface is human readable and hence the communication format (ASCII) supports the use of terminal-based software during the development phase, when the configuration of a device needs to be changed or during investigations into an observed problem.

When Service Mode is entered, STIM300 will respond with its configuration information (same as the response to the <u>i</u> (INFORMATION) command, ref: Figure 10-1).

A set of commands are available, ref. Section 10, enabling the user to change intermediately or permanently the configuration parameters, display latest measurement results, display higher details on error information and perform a full diagnostic of the unit.

In Service Mode the gyro measurements will still be running in the background, enabling to switch directly back to Normal Mode without the need for any stabilisation time of filters, etc. However the measurement data itself, when STIM300 is in Service Mode are not transmitted and therefore lost. By using the <u>a</u> (SINGLE-SHOT MEASUREMENT) command (ref. Section 10.2) it is possible to display single measurement results.

Exiting Service Mode can be done in several ways:

- 1. Using the external reset. This will force STIM300 into Init Mode. Be advised that during Init Mode, all the configuration parameters are loaded from flash. If any of the configuration parameters have been changed during the Service Mode session but not saved to flash, these changes will be overwritten by the content already stored in flash.
- 2. Using the <u>x</u> (EXIT) command. When using this command a parameter is required to decide whether the device should go to Init Mode or to Normal Mode. When exiting to Normal Mode, any of the changes made to the configuration parameters will still be valid. However, if not saved, the configuration parameters will be overwritten by the content already stored in flash at the next power-up or reset.

8.6 Self-diagnostics

STIM300 is continuously checking its internal status. The checks include:

- o Check of internal references
- Check of sensors (error and overload)
- Check of internal temperatures
- o Check of RAM and flash
- Check of supply voltage

A full diagnostic can be run to see the result of the individual checks by using the \underline{c} (DIAGNOSTIC) command, ref. Section 10.3 in SERVICEMODE.

When an error situation is detected, the corresponding bit in the STATUS byte (ref. Table 6-21) will be set. If the sample-rate is set lower than 2000 samples/s, the STATUS byte will reflect the accumulated status of all the subsamples between two data transmissions. The bits in the STATUS bytes are valid for the data in a single transmission and hence not latched.

Access to extended error registers containing accumulated error-information can be achieved either by using the Normal Mode-command "E" (EXTENDED ERROR INFORMATION DATAGRAM, ref. section 9.4 and Table 6-17) or the SERVICEMODE-command <u>i.e.</u> (INFORMATION on ACCUMULATED LAST ERRORS, ref. section 10.1).

The extended error registers are cleared at the following events:

- After the start-up phase, triggered by power-on or reset
- After transmission of Extended Error Information Datagram (ref. section 9.4)
- After use of SERVICEMODE-command "i e" (INFORMATION on ACCUMULATED LAST ERRORS, ref. section 10.1)

TS1524 rev.21 45/84 August 2017

ButterflyGyro[™]

STIM300 Inertia Measurement Unit

9 COMMANDS IN NORMAL MODE

Several commands are available in Normal Mode, as listed in Table 9-1. Note that all commands in Normal Mode must be transmitted in upper case letters.

Table 9-1 Available commands in Normal Mode

Command	Short description	
N	Transmits one Part Number datagram	
I	Transmits one Serial Number datagram	
С	Transmits one Configuration datagram	
E	Transmits one Extended Error Information datagram	
R	Resets the unit	
SERVICEMODE	Enters Service Mode	

Table 9-2 List of special ASCII characters used in Normal Mode

Char	Hex	Dec	Short description
<cr></cr>	0x0D	13	"Carriage Return": used as execution character for commands

No echo of received command characters or error messages will appear for these commands. Only at the receipt of the complete correct command, will STIM300 execute accordingly.

NB: if OUTPUT-UNIT is set to INCREMENTAL (ref. Section 10.7), the transmitted incremented value in the datagram following any of the requested special datagrams will NOT contain the incremental value since the last transmitted measurement. Hence the incremented value(s) occurring during the transmission of a special requested datagram will be lost.

9.1 N (PART NUMBER DATAGRAM) command

General description: Requests transmission of a Part Number datagram (ref. Table 6-13).

Table 9-3: Available I (PART NUMBER DATAGRAM) command

Syntax	Response
N <cr></cr>	Transmits one Part Number datagram

The Part Number datagram will replace the next transmitted Normal Mode datagram. If the Part Number datagram is longer than the chosen Normal Mode datagram, the Part Number datagram may replace more than one Normal Mode datagram transmission (dependent on sampling-rate and bit-rate).

If sample rate is set to external trigger, the Part Number datagram will be transmitted without waiting for the next trigger signal.

9.2 I (SERIAL NUMBER DATAGRAM) command

General description: Requests transmission of a Serial number datagram (ref. Table 6-14).

Table 9-4: Available I (SERIAL NUMBER DATAGRAM) command

Syntax	Response
I <cr></cr>	Transmits one Serial Number datagram

The Serial Number datagram will replace the next transmitted Normal Mode datagram. If the Serial Number datagram is longer than the chosen Normal Mode datagram, the Serial Number datagram may replace more than one Normal Mode datagram transmission (dependent on sampling-rate and bit-rate).

If sample rate is set to external trigger, the Serial Number datagram will be transmitted without waiting for the next trigger signal.

STIM300 Inertia Measurement Unit

9.3 C (CONFIGURATION DATAGRAM) command

General description: Requests transmission of a Configuration datagram (ref. Table 6-15).

Table 9-5: Available C (CONFIGURATION DATAGRAM) command

Table 6 of Attailable 6 (60th 100th third 10th 2) th to the time and	
Syntax	Response
C <cr></cr>	Transmits one Configuration datagram

The Configuration datagram will replace the next transmitted Normal Mode datagram. If the Configuration datagram is longer than the chosen Normal Mode datagram, the Configuration datagram may replace more than one Normal Mode datagram transmission (dependent on sampling-rate and bit-rate).

If sample rate is set to external trigger, the Configuration datagram will be transmitted without waiting for the next trigger signal.

9.4 E (EXTENDED ERROR INFORMATION DATAGRAM) command

General description: Requests transmission of an Extended Error Information datagram (ref. Table 6-16). This datagram contains the accumulated detected errors (ref. section 8.6).

Once the Extended Error Information datagram has been transmitted, the error-registers are cleared.

Table 9-6: Available E (EXTENDED ERROR INFORMATION) command

Syntax	Response
E <cr></cr>	Transmits one Extended Error Information datagram

The Extended Error Information datagram will replace the next transmitted Normal Mode datagram. If the Extended Error Information datagram is longer than the chosen Normal Mode datagram, the Extended Error Information datagram may replace more than one Normal Mode datagram transmission (dependent on sampling-rate and bit-rate).

If sample rate is set to external trigger, the Extended Error Information datagram will be transmitted without waiting for the next trigger signal.

9.5 R (RESET) command

General description: Force a Reset

Table 9-7: Available R (RESET) command

- 40-10 0 11 / 11 41 41 41 41 41 41 41 41 41 41 41 41	., .
Syntax	Response
R <cr></cr>	Resets the unit

9.6 SERVICEMODE command

General description: Enters Service Mode (ref. section 8.5.3).

Table 9-8: Available SERVICEMODE command

Syntax	Response
SERVICEMODE <cr></cr>	Enters Service Mode

If the command is received during the transmission of a datagram, it will complete the transmission before entering Service Mode.

When entering Service Mode, the configuration and identification data of the device will be listed, as shown in Figure 9-1:

```
SERIAL NUMBER = N25580846002002
PRODUCT = STIM300
PART NUMBER = 84167-44000-321 REV F
FW CONFIG = SWD12046 REV 7
GYRO OUTPUT UNIT = [°/s] - ANGULAR RATE DELAYED
ACCELEROMETER OUTPUT UNIT = [g] - ACCELERATION
INCLINOMETER OUTPUT UNIT = [g] - ACCELERATION
SAMPLE RATE [samples/s] = 2000
GYRO CONFIG = XYZ
ACCELEROMETER CONFIG = XYZ
INCLINOMETER CONFIG = XYZ
GYRO RANGE:
X-AXIS: ± 400°/s
Y-AXIS: ± 400°/s
Z-AXIS: \pm 400°/s
ACCELEROMETER RANGE:
X-AXIS: ± 10g
Y-AXIS: ± 10g
Z-AXIS: ± 10g
INCLINOMETER RANGE:
X-AXIS: ± 1.7g
 Y-AXIS: ± 1.7g
Z-AXIS: ± 1.7g
AUX RANGE: ± 2.5V
GYRO LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262
GYRO LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262
GYRO LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262
ACCELEROMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262
ACCELEROMETER LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262
ACCELEROMETER LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262
INCLINOMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262
INCLINOMETER LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262
INCLINOMETER LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262
AUX LP FILTER -3dB FREQUENCY [Hz] = 262
AUX COMP COEFF: A = 1.0000000e+00, B = 0.0000000e+00
GYRO G-COMPENSATION:
 BIAS SOURCE, X-AXIS = OFF
 BIAS G-COMP LP-FILTER, X-AXIS = NA
 SCALE SOURCE, X-AXIS = ACC
 SCALE G-COMP LP-FILTER, X-AXIS = OFF
 BIAS SOURCE, Y-AXIS = OFF
 BIAS G-COMP LP-FILTER, Y-AXIS = NA
 SCALE SOURCE, Y-AXIS = ACC
 SCALE G-COMP LP-FILTER, Y-AXIS = OFF
 BIAS SOURCE, Z-AXIS = OFF
 BIAS G-COMP LP-FILTER, Z-AXIS = NA
 SCALE SOURCE, Z-AXIS = ACC
 SCALE G-COMP LP-FILTER, Z-AXIS = OFF
 G-COMP LP-FILTER CUTOFF = 0.010 HZ
DATAGRAM = RATE, ACCELERATION, INCLINATION
DATAGRAM TERMINATION = NONE
BIT-RATE [bits/s] = 1843200
DATA LENGTH = 8
STOP BITS = 1
PARITY = NONE
LINE TERMINATION = ON
```

Figure 9-1: Example of response from SERVICEMODE command

ButterflyGyro[™]

STIM300 Inertia Measurement Unit

10 COMMANDS IN SERVICE MODE

Several commands are available in Service Mode, as listed in Table 10-1. Note that all commands in Service Mode are case-sensitive (commands are lower case letters, whilst some parameters may be capital case letters).

Table 10-1 Available commands in Service Mode

Command	Short description	
i	Lists specific information (e.g. serial number, configuration, error information)	
а	Performs a single-shot measurement	
С	Performs a diagnostic of the unit	
d	Changes datagram format	
t	Changes transmission parameters (e.g. bit-rate, data-length, stop-bits)	
r	Turns line termination ON or OFF	
u	Changes measurement output unit	
f	Changes LP filter -3dB frequency	
<u></u>	Changes sample rate	
k	Changes coefficients of the AUX compensation algorithm	
g	Changes the gyro g-compensation configuration for bias and scale factor	
S	Saves configuration data	
Х	Exits Service Mode and returns to Normal Mode or Init Mode	
Z	Restore to factory settings	
?	Help function on the available commands in Service Mode	

Table 10-2 List of special ASCII characters used in Service Mode

Char	Hex	Dec	Short description
<bs></bs>	0x08	8	"Back Space": deletes last received character (received since last <cr>)</cr>
<cr></cr>	0x0D	13	"Carriage Return": typically used as execution character for commands
<sp></sp>	0x20	32	"Space": used to separate command and first parameter
, ,	0x2C	44	"Comma": used to separate parameters in a command
'>'	0x3E	62	Used together with <cr> as: "Ready to receive new command"-prompt</cr>

When STIM300 is in Service Mode and ready to receive a new command, it will issue the special ASCII character <CR> followed by '>'. As some commands (e.g. SINGLE-SHOT MEASUREMENT-command) may respond with a varying number of lines, automated set-ups should look for the special prompt-sequence (<CR>+'>') before issuing a new command.

Received characters will be echoed. A command is decoded and executed when receiving the special ASCII character <CR>. <BS> ("back-space") is also recognised and will delete the last received character in the input buffer. The size of the input buffer is 80 characters. <BS> is valid for the characters received since last <CR>.

The command-character and first parameter (when applicable) are separated by a space (character 0x20). When there are more than one parameter to a command (e.g. TRANSMISSION PARAMETER-command), these must be separated by a comma (character 0x2C).

In the event of an unknown command, inconsistent syntax or incorrect value of parameter(s), STIM300 will respond with an error message. Error messages are on the format:

E<nnn><SP><Error description><CR>

where nnn is an error number

STIM300 Inertia Measurement Unit

10.1 i (INFORMATION) command

General description: Lists various requested information about the device

Table 10-3: Available i (INFORMATION) commands

Syntax	Response
i <cr></cr>	Lists the product configuration and identification data
i <sp><cmd><cr></cr></cmd></sp>	Gives information about the specific parameter

Table 10-4: Allowed values for <cmd> parameter for i (INFORMATION) commands

<cmd></cmd>	Result	
s	Returns the serial number of the device	
n	Returns the product name of the device	
Х	Returns the part number of the device	
а	Returns the axis configuration of the device	
р	Returns the FW configuration and revision of the device	
m	Returns the sample rate of the device	
f	Returns the LP filter -3dB frequency for each axis	
d	Returns the datagram format	
t	Returns the transmission parameters of the device	
r	Returns the line termination (ON or OFF)	
u	Returns the output units of the device	
g	Returns the configuration of the gyro g-compensation	
k	Returns the compensation coefficients for AUX input	
е	Prints the extended error information from the accumulated detected error(s) since last error read-	
	out in Service Mode or by the E-command in Normal Mode (ref. section 9.4)	

Table 10-5: Error messages for i (INFORMATION) commands

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command or parameter is not recognised
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

```
SERIAL NUMBER = N25580846002002
PRODUCT = STIM300
PART NUMBER = 84167-44000-321 REV F
FW CONFIG = SWD12046 REV 7
GYRO OUTPUT UNIT = [°/s] - ANGULAR RATE DELAYED
ACCELEROMETER OUTPUT UNIT = [g] - ACCELERATION
INCLINOMETER OUTPUT UNIT = [g] - ACCELERATION
SAMPLE RATE [samples/s] = 2000
GYRO CONFIG = XYZ
ACCELEROMETER CONFIG = XYZ
INCLINOMETER CONFIG = XYZ
GYRO RANGE:
X-AXIS: ± 400°/s
 Y-AXIS: ± 400°/s
Z-AXIS: ± 400°/s
ACCELEROMETER RANGE:
X-AXIS: ± 10g
 Y-AXIS: ± 10g
Z-AXIS: ± 10g
INCLINOMETER RANGE:
X-AXIS: ± 1.7g
 Y-AXIS: ± 1.7g
Z-AXIS: ± 1.7g
AUX RANGE: ± 2.5V
GYRO LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262
GYRO LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262
GYRO LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262
ACCELEROMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262
ACCELEROMETER LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262
ACCELEROMETER LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262
INCLINOMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262
INCLINOMETER LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262
INCLINOMETER LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262
AUX LP FILTER -3dB FREQUENCY [Hz] = 262
AUX COMP COEFF: A = 1.0000000e+00, B = 0.0000000e+00
GYRO G-COMPENSATION:
BIAS SOURCE, X-AXIS = OFF
 BIAS G-COMP LP-FILTER, X-AXIS = NA
 SCALE SOURCE, X-AXIS = ACC
 SCALE G-COMP LP-FILTER, X-AXIS = OFF
 BIAS SOURCE, Y-AXIS = OFF
 BIAS G-COMP LP-FILTER, Y-AXIS = NA
 SCALE SOURCE, Y-AXIS = ACC
 SCALE G-COMP LP-FILTER, Y-AXIS = OFF
 BIAS SOURCE, Z-AXIS = OFF
 BIAS G-COMP LP-FILTER, Z-AXIS = NA
 SCALE SOURCE, Z-AXIS = ACC
 SCALE G-COMP LP-FILTER, Z-AXIS = OFF
 G-COMP LP-FILTER CUTOFF = 0.010 HZ
DATAGRAM = RATE, ACCELERATION, INCLINATION
DATAGRAM TERMINATION = NONE
BIT-RATE [bits/s] = 1843200
DATA LENGTH = 8
STOP BITS = 1
PARITY = NONE
LINE TERMINATION = ON
```

Figure 10-1: Example of response from i (INFORMATION) command

STIM300 Inertia Measurement Unit

```
>i s
SERIAL NUMBER = N25580846002002
>
```

Figure 10-2: Example of response from i s (INFORMATION on SERIAL NUMBER) command

```
>i n
PRODUCT = STIM300
>
```

Figure 10-3: Example of response from in (INFORMATION on PRODUCT NAME) command

```
>i x
PART NUMBER = 84167-44000-321 REV F
>
```

Figure 10-4: Example of response from i x (INFORMATION on PART NUMBER) command

```
>i a
GYRO CONFIG = XYZ
ACCELEROMETER CONFIG = XYZ
INCLINOMETER CONFIG = XYZ
GYRO RANGE:
X-AXIS: ± 400°/s
 Y-AXIS: ± 400°/s
Z-AXIS: ± 400°/s
ACCELEROMETER RANGE:
X-AXIS: ± 10g
Y-AXIS: ± 10g
Z-AXIS: ± 10g
INCLINOMETER RANGE:
X-AXIS: ± 1.7g
Y-AXIS: ± 1.7g
Z-AXIS: ± 1.7g
AUX RANGE: ± 2.5V
```

Figure 10-5: Example of response from i a (INFORMATION on AXIS CONFIGURATION) command

```
>i p
FW CONFIG = SWD12046 REV 7
>
```

Figure 10-6: Example of response from i p (INFORMATION on FW CONFIGURATION) command

```
>i m
SAMPLE RATE [samples/s] = 2000
>
```

Figure 10-7: Example of response from i m (INFORMATION on SAMPLE RATE) command

STIM300 Inertia Measurement Unit

```
SIF
GYRO LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262
GYRO LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262
GYRO LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262
ACCELEROMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262
ACCELEROMETER LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262
ACCELEROMETER LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262
INCLINOMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 262
INCLINOMETER LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 262
INCLINOMETER LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 262
AUX LP FILTER -3dB FREQUENCY [Hz] = 262
```

Figure 10-8: Example of response from i f (INFORMATION on LP FILTER -3dB FREQUENCY) command

```
>i d
DATAGRAM = RATE, ACCELERATION, INCLINATION
DATAGRAM TERMINATION = NONE
>
```

Figure 10-9: Example of response from i d (INFORMATION on DATAGRAM TRANSMISSION MODE AND TERMINATION) command

```
>i t
BIT-RATE [bits/s] = 1843200

DATA LENGTH = 8

STOP BITS = 1

PARITY = NONE

>
```

Figure 10-10: Example of response from it (INFORMATION on TRANSMISSION PARAMETERS) command

```
>i r
LINE TERMINATION = ON
>
```

Figure 10-11: Example of response from i r (INFORMATION on LINE TERMINATION) command

```
>i u

GYRO OUTPUT UNIT = [°/s] – ANGULAR RATE DELAYED

ACCELEROMETER OUTPUT UNIT = [g] – ACCELERATION

INCLINOMETER OUTPUT UNIT = [g] – ACCELERATION

>
```

Figure 10-12: Example of response from i u (INFORMATION on OUTPUT UNIT) command


```
SIGNATION:

BIAS SOURCE, X-AXIS = OFF

BIAS G-COMP LP-FILTER, X-AXIS = NA

SCALE SOURCE, X-AXIS = ACC

SCALE G-COMP LP-FILTER, X-AXIS = OFF

BIAS SOURCE, Y-AXIS = OFF

BIAS G-COMP LP-FILTER, Y-AXIS = NA

SCALE SOURCE, Y-AXIS = ACC

SCALE G-COMP LP-FILTER, Y-AXIS = OFF

BIAS SOURCE, Z-AXIS = OFF

BIAS SOURCE, Z-AXIS = OFF

BIAS G-COMP LP-FILTER, Z-AXIS = NA

SCALE SOURCE, Z-AXIS = ACC

SCALE G-COMP LP-FILTER, Z-AXIS = OFF

G-COMP LP-FILTER CUTOFF = 0.010 HZ
```

Figure 10-13: Example of response from i g (INFORMATION on GYRO G-COMP) command

```
>i k
AUX COMP COEFF: A = 1.0200000e+00, B = 3.4000000e-02
>
```

Figure 10-14: Example of response from i k (INFORMATION on AUX COMP) command

```
>i e
GYRO Z-AXIS NO CLIPPING DETECTED = FAIL

LAST ERROR HISTORY IS NOW CLEARED

>
```

Figure 10-15: Example of response from i e (INFORMATION on ACCUMULATED LAST ERRORS) command

```
>i e
NO ERRORS DETECTED
>
```

Figure 10-16: Example of response from i e (INFORMATION on ACCUMULATED LAST ERRORS) command

STIM300 Inertia Measurement Unit

10.2 a (SINGLE-SHOT MEASUREMENT) command

General description: Displays the result of latest measurement (measurement process running constantly in the background).

NB: SINGLE-SHOT MEASUREMENT-command is not available if SAMPLE RATE is set to External Trigger.

Table 10-6: Available a (SINGLE-SHOT MEASUREMENT) command

Syntax	Response
a <cr></cr>	Displays the result of the latest measurement sample

Table 10-7: Error messages for a (SINGLE-SHOT MEASUREMENT) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF PARAMETERS	Any characters between command and <cr></cr>

```
GYRO X-AXIS = 1.43253 °/s
GYRO Y-AXIS = 2.34525 °/s
GYRO Z-AXIS = 243.33628 °/s
GYRO STATUS = 00000000 = OK
ACCELEROMETER X-AXIS = 0.042113 g
ACCELEROMETER Y-AXIS = 0.000342 g
ACCELEROMETER Z-AXIS = 0.929376 g
ACCELEROMETER STATUS = 00000000 = OK
INCLINOMETER X-AXIS = 0.0426473 g
INCLINOMETER Y-AXIS = 0.0003832 g
INCLINOMETER Z-AXIS = 0.9246325 g
INCLINOMETER STATUS = 00000000 = OK
TEMPERATURE GYRO X-AXIS = 32.326 °C
TEMPERATURE GYRO Y-AXIS = 32.467 °C
TEMPERATURE GYRO Z-AXIS = 32.265 °C
TEMPERATURE STATUS = 00000000 = OK
TEMPERATURE ACC X-AXIS = 32.846 °C
TEMPERATURE ACC Y-AXIS = 32.477 °C
TEMPERATURE ACC Z-AXIS = 32.965 °C
TEMPERATURE STATUS = 00000000 = OK
TEMPERATURE INC X-AXIS = 32.326 °C
TEMPERATURE INC Y-AXIS = 32.123 °C
TEMPERATURE INC Z-AXIS = 32.326 °C
TEMPERATURE STATUS = 00000000 = OK
AUX = -0.8356746 V
AUX STATUS = 00000000 = OK
COUNTER = 10
LATENCY = 516 us
```

Figure 10-17: Example of response from a (SINGLE-SHOT MEASUREMENT) command

```
GYRO X-AXIS = 0.00071 °/s
GYRO Y-AXIS = 0.12324 °/s
GYRO Z-AXIS = 480.00000 °/s
GYRO STATUS = 00010100 = NOT OK
BIT 4: OVERLOAD
 BIT 2: ERROR IN Z-CHANNEL
ACCELEROMETER X-AXIS = 0.042113 g
ACCELEROMETER Y-AXIS = 0.000342 g
ACCELEROMETER Z-AXIS = 0.929376 g
ACCELEROMETER STATUS = 00000000 = OK
INCLINOMETER X-AXIS = 0.0426473 g
INCLINOMETER Y-AXIS = 0.0003832 g
INCLINOMETER Z-AXIS = 0.9246325 g
INCLINOMETER STATUS = 00000000 = OK
TEMPERATURE GYRO X-AXIS = 32.326 °C
TEMPERATURE GYRO Y-AXIS = 32.467 °C
TEMPERATURE GYRO Z-AXIS = 32.265 °C
TEMPERATURE STATUS = 00000000 = OK
TEMPERATURE ACC X-AXIS = 32.846 °C
TEMPERATURE ACC Y-AXIS = 32.477 °C
TEMPERATURE ACC Z-AXIS = 32.965 °C
TEMPERATURE STATUS = 00000000 = OK
TEMPERATURE INC X-AXIS = 32.326 °C
TEMPERATURE INC Y-AXIS = 32.123 °C
TEMPERATURE INC Z-AXIS = 32.326 °C
TEMPERATURE STATUS = 00000000 = OK
AUX = -0.8356746 V
AUX STATUS = 00000000 = OK
COUNTER = 10
LATENCY = 516 us
```

Figure 10-18: Example of response from a (SINGLE-SHOT MEASUREMENT) command with error flagging

10.3 c (DIAGNOSTIC) command

General description: Performs a diagnostic of the unit.

Table 10-8: Available c (DIAGNOSTIC) command

Syntax	Response
c <cr></cr>	Performs a diagnostic check

Table 10-9: Error messages for c (DIAGNOSTIC) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Any characters between command and <cr></cr>
	PARAMETERS	

SERIAL NUMBER = N25581142431021 PRODUCT = STIM300 PART NUMBER = 84167-44000-321 REV F HW CONFIG = M5728 REV 6 FW CONFIG = SWD12046 REV 7 SYSTEM STATUS: RAM CHECK = OK FLASH CHECK = OK STACK STATUS MONITOR = OK STACK COMMAND HANDLER = OK STACK SAMPLE = OK STACK FLASH = OK STACK TRANSMIT = OK MICRO CONTROLLER TEMPERATURE = OK START-UP PHASE = NOT ACTIVE SELF-TEST RUNNING = OK UART = OKVOLTAGES AND REFERENCES: REFERENCE VOLTAGE_1 = FAIL REFERENCE VOLTAGE_2 = OK REFERENCE VOLTAGE_3 = OK REGULATED VOLTAGE_1 = OK REGULATED VOLTAGE_2 = OK REGULATED VOLTAGE_3 = OK SUPPLY VOLTAGE 5.0V = OK INTERNAL DAC = OK GYRO X-AXIS: GYRO X-AXIS DATA RECEIVED = OK GYRO X-AXIS EXCITATION FREQUENCY = OK GYRO X-AXIS ASIC TEMPERATURE = OK GYRO X-AXIS TEMPERATURE = OK GYRO X-AXIS NO CLIPPING DETECTED = OK GYRO X-AXIS NO OVERLOAD DETECTED = OK GYRO X-AXIS INTERNAL COMMUNICATION = OK GYRO X-AXIS NO ASIC OVERFLOW DETECTED = OK GYRO X-AXIS EXCITATION AMPLITUDE = OK GYRO X-AXIS CONFIGURATION = OK **GYRO Y-AXIS:** GYRO Y-AXIS DATA RECEIVED = OK GYRO Y-AXIS EXCITATION FREQUENCY = OK GYRO Y-AXIS ASIC TEMPERATURE = OK GYRO Y-AXIS TEMPERATURE = OK GYRO Y-AXIS NO CLIPPING DETECTED = OK GYRO Y-AXIS NO OVERLOAD DETECTED = OK GYRO Y-AXIS INTERNAL COMMUNICATION = OK GYRO Y-AXIS NO ASIC OVERFLOW DETECTED = OK

```
GYRO Y-AXIS EXCITATION AMPLITUDE = OK
 GYRO Y-AXIS CONFIGURATION = OK
GYRO Z-AXIS:
 GYRO Z-AXIS DATA RECEIVED = OK
 GYRO Z-AXIS EXCITATION FREQUENCY = OK
 GYRO Z-AXIS ASIC TEMPERATURE = OK
 GYRO Z-AXIS TEMPERATURE = OK
 GYRO Z-AXIS NO CLIPPING DETECTED = OK
 GYRO Z-AXIS NO OVERLOAD DETECTED = OK
 GYRO Z-AXIS INTERNAL COMMUNICATION = OK
 GYRO Z-AXIS NO ASIC OVERFLOW DETECTED = OK
 GYRO Z-AXIS EXCITATION AMPLITUDE = OK
 GYRO Z-AXIS CONFIGURATION = OK
ACCELEROMETER X-AXIS:
 ACCELEROMETER X-AXIS NO CLIPPING DETECTED = OK
 ACCELEROMETER X-AXIS NO OVERLOAD DETECTED = OK
 ACCELEROMETER X-AXIS TEMPERATURE = OK
 ACCELEROMETER X-AXIS ADC = OK
ACCELEROMETER Y-AXIS:
 ACCELEROMETER Y-AXIS NO CLIPPING DETECTED = OK
 ACCELEROMETER Y-AXIS NO OVERLOAD DETECTED = OK
 ACCELEROMETER Y-AXIS TEMPERATURE = OK
 ACCELEROMETER Y-AXIS ADC = OK
ACCELEROMETER Z-AXIS:
 ACCELEROMETER Z-AXIS NO CLIPPING DETECTED = OK
 ACCELEROMETER Z-AXIS NO OVERLOAD DETECTED = OK
 ACCELEROMETER Z-AXIS TEMPERATURE = OK
 ACCELEROMETER Z-AXIS ADC = OK
INCLINOMETER X-AXIS:
INCLINOMETER X-AXIS NO CLIPPING DETECTED = OK
INCLINOMETER X-AXIS NO OVERLOAD DETECTED = OK
INCLINOMETER X-AXIS TEMPERATURE = OK
 INCLINOMETER X-AXIS ADC = OK
INCLINOMETER Y-AXIS:
 INCLINOMETER Y-AXIS NO CLIPPING DETECTED = OK
INCLINOMETER Y-AXIS NO OVERLOAD DETECTED = OK
INCLINOMETER Y-AXIS TEMPERATURE = OK
INCLINOMETER Y-AXIS ADC = OK
INCLINOMETER Z-AXIS:
 INCLINOMETER Z-AXIS NO CLIPPING DETECTED = OK
INCLINOMETER Z-AXIS NO OVERLOAD DETECTED = OK
INCLINOMETER Z-AXIS TEMPERATURE = OK
INCLINOMETER Z-AXIS ADC = OK
AUX NO CLIPPING DETECTED = OK
 AUX NO OVERLOAD DETECTED = OK
 AUX ADC = OK
```

Figure 10-19: Example of response from c (DIAGNOSTIC) command

STIM300 Inertia Measurement Unit

10.4 d (DATAGRAM FORMAT) command

General description: Sets the datagram transmission mode and termination (ref. Table 6-11 and section 12).

Note that the datagram format could be considered invalid, even if it has been entered correctly. This is because a valid datagram format also depends on the chosen sample rate and bit rate (ref. Table 6-12 and error message E007 in Table 10-13).

Note that this change will only be effective until STIM300 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.11). In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

Table 10-10: Available d (DATAGRAM FORMAT) command

Syntax	Response
d <sp><type>','<term><cr></cr></term></type></sp>	Changes the datagram transmission mode and termination in Normal
	Mode

Table 10-11 : Allowed values for <trans> parameter of d (DATAGRAM TRANSMISSION MODE AND TERMINATION) command

I ERMINATION) command	и
<type></type>	Datagram content
0	ID, rate, counter, latency, CRC
1	ID, rate, acceleration, counter, latency, CRC
2	ID, rate, inclincation, counter, latency, CRC
3	ID, rate, acceleration, inclination, counter, latency, CRC
4	ID, rate, temperature, counter, latency, CRC
5	ID, rate, acceleration, temperature, counter, latency, CRC
6	ID, rate, inclination, temperature, counter, latency, CRC
7	ID, rate, acceleration, inclination, temperature, counter, latency, CRC
8	ID, rate, AUX, counter, latency, CRC
9	ID, rate, acceleration, AUX, counter, latency, CRC
а	ID, rate, inclincation, AUX, counter, latency, CRC
b	ID, rate, acceleration, inclination, AUX, counter, latency, CRC
С	ID, rate, temperature, AUX, counter, latency, CRC
d	ID, rate, acceleration, temperature, AUX, counter, latency, CRC
е	ID, rate, inclination, temperature, AUX, counter, latency, CRC
f	ID, rate, acceleration, inclination, temperature, AUX, counter, latency, CRC

Table 10-12 : Allowed values for <term> parameter of d (DATAGRAM TRANSMISSION MODE AND TERMINATION) command

<trans></trans>	Result
0	Changes the datagram termination to no termination
1	Changes the datagram termination to <cr><lf></lf></cr>

Table 10-13: Error messages for d (DATAGRAM TRANSMISSION MODE AND TERMINATION) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range
E007	DATAGRAM WILL BE TOO LONG	Combination of bit-rate, sample rate and datagram content results
	TO TRANSMIT	in a datagram that cannot be transmitted

>d 8,0
DATAGRAM = RATE, AUX
DATAGRAM TERMINATION = NONE
>

Figure 10-20: Example of response from d (DATAGRAM MODE AND TERMINATION) command

ButterflyGyro ¹

>d 3,1
DATAGRAM = RATE, ACCELERATION, INCLINATION
DATAGRAM TERMINATION = <cr><lf></lf></cr>
>

Figure 10-21: Example of response from d (DATATGRAM MODE AND TERMINATION) command

10.5 t (TRANSMISSION PARAMETERS) command

General description: Changes the transmission parameters for the RS422 interface.

Note that the bit-rate could be considered invalid, even if it has been entered correctly. This is because a valid bit-rate also depends on the sample rate and chosen datagram content (ref. Table 6-12 and error message E007 in Table 10-18).

Note that this change will only be effective until STIM300 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.11). In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

Table 10-14: Available t (TRANSMISSION PARAMETERS) commands

Syntax	Response
t <sp><bit-rate code=""><cr></cr></bit-rate></sp>	Changes the transmission bit-rate and leaves number of
	stop-bits and parity unchanged
t <sp><bit-rate code="">','<stop-bits>','<parity><cr></cr></parity></stop-bits></bit-rate></sp>	Changes the transmission bit-rate, number of stop-bits
	and parity
t <sp>'f,'<bit-rate><cr></cr></bit-rate></sp>	Changes the transmission bit-rate to a user-defined bit-
	rate and leaves number of stop-bits and parity
	unchanged, ref.section 10.5.1
t <sp>'f,'<bit-rate>','<stop-bits>','<parity><cr></cr></parity></stop-bits></bit-rate></sp>	Changes the transmission bit-rate to a user-defined bit-
	rate, number of stop-bits and parity, ref.section 10.5.1

Table 10-15: Allowed values for

bit-rate code> parameter for t (TRANSMISSION PARAMETERS) commands

 	Result
0	Will set the bit-rate to 377400 bits/s
1	Will set the bit-rate to 460800 bits/s
2	Will set the bit-rate to 921600 bits/s
3	Will set the bit-rate to 1843200 bits/s

Table 10-16: Allowed values for <stop-bits> parameter for t (TRANSMISSION PARAMETERS) commands

<stop-bits></stop-bits>	Result	
1	Will set number of stop bits to 1	
2	Will set number of stop bits to 2	

Table 10-17: Allowed values for commands

<parity></parity>	Result
0	Will set no parity
1	Will set odd parity
2	Will set even parity

10.5.1 User-defined bit-rate

The STIM300 hardware is capable of setting bit-rates in the range between 1500 and 5184000 bits/s. However, the sample rate and the datagram length decide the minimum bit-rate possible, ref. Equation 11:

Equation 11: Minimum bit-rate

$$Bit - rate_{MIN} = 1.1 \cdot bits \cdot bytes \cdot sample_rate$$

= start-bit (1) + data-bits (8) + stop-bits (1 or 2) + parity-bit (0 or 1) where bits

= number of bytes in the chosen datagram, ref. Table 6-18 and Table 6-12 (NB: number of bytes in bytes Table 6-12 includes <CR><LF>)

sample_rate is the chosen sample rate [samples/s]

If a bit-rate, lower than the allowed bit-rate defined by Equation 11, is entered, the command will respond with error message E007, ref. Table 10-18.

There are a finite number of bit-rates possible to set. This is defined in Equation 12:

STIM300 Inertia Measurement Unit

Equation 12: Set bit-rate

$$Bit - rate_{SET} = \frac{82944000}{n} bits / s$$

where n is an integer

The actually set bit-rate will hence be the closest to requested bit-rate. The response of the t (TRANSMISSION PARAMETERS)-command will be the set bit-rate. Be aware that for certain bit-rates above 1.5Mbit/s, the deviation between the requested bit-rate and set bit-rate could be larger than 1% and may be in conflict with the RS422 specification. No warnings are issued related to this issue. As a safety precaution, the new bit-rate can only be permanently set by using the s (SAVE)-command (using the new bit-rate).

Table 10-18: Error messages for t (TRANSMISSION PARAMETERS) commands

Error	Message	Possible reason	
E001	UNKOWN COMMAND	Command is incorrectly entered	
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command	
	PARAMETERS	and first parameter	
E003	INVALID PARAMETER	Value of parameter outside valid range	
E007	DATAGRAM WILL BE TOO LONG	Combination of bit-rate, sample rate and datagram content results	
	TO TRANSMIT	in a datagram that cannot be transmitted	

```
>t 2,1,2
BIT-RATE [bits/s] = 921600
DATA LENGTH = 8
STOP BITS = 1
PARITY = EVEN
```

Figure 10-22: Example of response from t (TRANSMISSION PARAMETERS) command to set standard bit-rate

```
>t f,500000
BIT-RATE [bits/s] = 500023
DATA LENGTH = 8
STOP BITS = 1
PARITY = EVEN
```

Figure 10-23: Example of response from t (TRANSMISSION PARAMETERS) command to set user-defined bitrate

STIM300 Inertia Measurement Unit

10.6 r (LINE TERMINATION) command

General description: Turns the line termination ON or OFF. Line termination should be ON when communicating point-point (single master – single slave).

Note that this change will only be effective until STIM300 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.11). In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

Table 10-19: Available r (LINE TERMINATION) command

Syntax	Response
r <sp><lineterm><cr></cr></lineterm></sp>	Changes the line termination

Table 10-20: Allowed values for r (LINE TERMINATION) command

	Result
0	Turns line termination OFF
1	Turns line termination ON

Table 10-21: Error messages for r (LINE TERMINATION) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF PARAMETERS	Too many or too few parameters, use of comma between command and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

Figure 10-24: Example of response from r 0 (LINE TERMINATION) command

```
>r 1
LINE TERMINATION = ON
```

Figure 10-25: Example of response from r 1 (LINE TERMINATION) command

STIM300 Inertia Measurement Unit

10.7 u (OUTPUT UNIT) command

General description: Sets the output unit of the transmission in Normal Mode.

Note that this change will only be effective until STIM300 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.11). In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

Table 10-22: Available u (OUTPUT UNIT) command

 	- 1 · · · · · · · · · · · · · · · · · ·
Syntax	Response
u <sp>'<sens>','<unit><cr></cr></unit></sens></sp>	Changes the unit of the transmission in Normal Mode

Table 10-23: Allowed values for <sens> and <unit> for u (OUTPUT UNIT) command

<sens></sens>	<unit></unit>	Result	
g	0	Changes the gyro output unit to angular rate [°/s]	
g	1	Changes the gyro output unit to incremental angle [°/sample]	
g	2	Changes the gyro output unit to average angular rate [°/s]	
g	3	Changes the gyro output unit to integrated angle [°]	
g	8	Changes the gyro output unit to angular rate – delayed [°/s]	
g	9	Changes the gyro output unit to incremental angle – delayed [°/sample]	
g	а	Changes the gyro output unit to average angular rate – delayed [°/s]	
g	b	Changes the gyro output unit to integrated angle – delayed [°]	
а	0	Changes the accelerometer output unit to acceleration [g]	
а	1	Changes the accelerometer output unit to incremental velocity [m/s/sample]	
а	2	Changes the accelerometer output unit to average acceleration [g]	
i	0	Changes the inclinometer output unit to acceleration [g]	
i	1	Changes the inclinometer output unit to incremental velocity [m/s/sample]	
i	2	Changes the inclinometer output unit to average acceleration [g]	

Table 10-24: Error messages for u (OUTPUT UNIT) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF PARAMETERS	Too many or too few parameters, use of comma between command and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

```
>u g,0
GYRO OUTPUT UNIT = [°/s] – ANGULAR RATE
>
```

Figure 10-26: Example of response from u (OUTPUT UNIT) command

```
>u a,2
ACCELEROMETER OUTPUT UNIT = [g] – AVERAGE ACCELERATION
>
```

Figure 10-27: Example of response from u (OUTPUT UNIT) command

STIM300 Inertia Measurement Unit

10.8 f (LP FILTER -3dB FREQUENCY) command

General description: Changes the low-pass filter -3dB frequency for one or all axes.

Note that low pass filter settings should be considered together with sample rate in order to avoid issues with folding due to undersampling. No warnings will be issued by STIM300 if e.g. a high filter bandwidth and a low sample rate have been chosen.

Note that change in filter setting will change the group delay, ref. Table 6-11.

Note that this change will only be effective until STIM300 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.11). In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

Table 10-25: Available f (LP FILTER -3dB FREQUENCY) commands

Syntax	Response
f <sp><-3dBfreq><cr></cr></sp>	Changes the LP filter -3dB frequency for all sensors and axes
f <sp><-3dBfreq>','<sens><cr></cr></sens></sp>	Changes the LP filter -3dB frequency for all axes of a specific sensor
f <sp><-3dBfreq>',' <sens>','<axis><cr></cr></axis></sens></sp>	Changes the LP filter -3dB frequency for a specified sensor and axis

Table 10-26: Allowed values for <-3dBfreq> parameter for f (LP FILTER -3dB FREQUENCY) commands

<-3dBfreq>	Result	
0	Will change LP filter -3dB frequency to 16Hz	
1	Will change LP filter -3dB frequency to 33Hz	
2	Will change LP filter -3dB frequency to 66Hz	
3	Will change LP filter -3dB frequency to 131Hz	
4	Will change LP filter -3dB frequency to 262Hz	

Table 10-27: Allowed values for <sens> parameter for f (LP FILTER -3dB FREQUENCY) commands

<sens></sens>	Result
g	Will change LP filter -3dB frequency for the gyro(s)
а	Will change LP filter -3dB frequency for the accelerometer(s)
i	Will change LP filter -3dB frequency for the inclinometer(s)
u	Will change LP filter -3dB frequency for AUX

Table 10-28: Allowed values for <axis> parameter for f (LP FILTER -3dB FREQUENCY) commands

<axis></axis>	Result
x	Will change LP filter -3dB frequency for X-axis only
у	Will change LP filter -3dB frequency for Y-axis only
z	Will change LP filter -3dB frequency for Z-axis only

Table 10-29: Error messages for f (LP FILTER -3dB FREQUENCY) commands

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>f 2,a,x ACCELEROMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 66 >

Figure 10-28: Example of response from f (LP FILTER -3dB FREQUENCY) command


```
SF3
GYRO LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 131
GYRO LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 131
GYRO LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 131
ACCELEROMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 131
ACCELEROMETER LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 131
ACCELEROMETER LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 131
INCLINOMETER LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 131
INCLINOMETER LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 131
INCLINOMETER LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 131
AUX LP FILTER -3dB FREQUENCY [Hz] = 131
```

Figure 10-29: Example of response from f (LP FILTER -3dB FREQUENCY) command

```
>f 1,g
GYRO LP FILTER -3dB FREQUENCY, X-AXIS [Hz] = 33
GYRO LP FILTER -3dB FREQUENCY, Y-AXIS [Hz] = 33
GYRO LP FILTER -3dB FREQUENCY, Z-AXIS [Hz] = 33
>
```

Figure 10-30: Example of response from f (LP FILTER -3dB FREQUENCY) command

```
>f 0,u
AUX LP FILTER -3dB FREQUENCY [Hz] = 16
>
```

Figure 10-31: Example of response from f (LP FILTER -3dB FREQUENCY) command

ButterflyGyro[™]

STIM300 Inertia Measurement Unit

10.9 m (SAMPLE RATE) command

General description: Changes the sample rate in Normal Mode. The sample rate is the same for all channels.

Note that the sample rate could be considered invalid, even if it has been entered correctly. This is because a valid sample rate also depends on the bit rate and chosen datagram content (ref. Table 6-12 and error message E007 in Table 10-32).

Note that sample rate should be considered together with filter settings in order to avoid issues with folding due to undersampling. No warnings will be issued by STIM300 if e.g. a high filter bandwidth and a low sample rate have been chosen.

Note that this change will only be effective until STIM300 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.11). In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

Table 10-30: Available m (SAMPLE RATE) command

(0.000000000000000000000000000000000000		
Syntax	Response	
m <sp><sampl.rate><cr></cr></sampl.rate></sp>	Changes the sample rate in Normal Mode	

Table 10-31: Allowed values for <sampl.rate> parameter for m (SAMPLE RATE) command

<sampl.rate></sampl.rate>	Result	
0	Will set sample rate to 125 samples /second	
1	Will set sample rate to 250 samples /second	
2	Will set sample rate to 500 samples /second	
3	Will set sample rate to 1000 samples /second	
4	Will set sample rate to 2000 samples /second	
5	Will set sample to External Trigger	

Table 10-32: Error messages for m (SAMPLE RATE) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range
E007	DATAGRAM WILL BE TOO LONG	Combination of bit-rate, sample rate and datagram content results
	TO TRANSMIT	in a datagram that cannot be transmitted

```
>m 2
SAMPLE RATE [samples/s] = 500
>
```

Figure 10-32: Example of response from m (SAMPLE RATE) command

```
>m 5
SAMPLE RATE = EXTERNAL TRIGGER
>
```

Figure 10-33: Example of response from m (SAMPLE RATE) command

ButterflyGyro[™]

STIM300 Inertia Measurement Unit

10.10 k (AUX COMP) command

General description: Changes the compensation coefficients of the AUX input.

Note that this change will only be effective until STIM300 is initialized, reset or powered off, unless the new setting has been stored in flash using the SAVE-command (ref. section 10.12). In order to use or test a new setting in Normal Mode without permanently storing it, this can be achieved by using the EXIT n-command (ref. section 10.13).

Table 10-33: Available k (AUX COMP) command

Syntax	Response
k <sp><a>','<cr></cr></sp>	Changes the compensation coefficients, A and B, of the AUX input

<A> and are numbers. Decimal point = '.'. Format can be integer, scientific or decimal.

Table 10-34: Error messages for k (AUX COMP) command

			, , , , , , , , , , , , , , , , , , , ,
	Error	Message	Possible reason
	E001	UNKOWN COMMAND	Command is incorrectly entered
	E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
		PARAMETERS	and first parameter

>k 1.02,3.4e-2	
AUX COMP COEFF: A = 1.0200000e+00, B = 3.4000000e-02	
>	

Figure 10-34: Example of response from e (AUX COMP) command

10.11 g (GYRO G-COMP) command

General description: Changes the compensation parameters for the gyro g-compensation of bias and/or scale-factor. Refer to section 8.5.2.2.6 for a description of this functionality.

Table 10-35: Available g (GYRO G-COMP) commands

Syntax	Response
g <sp><stdcomp><cr></cr></stdcomp></sp>	Changes the gyro g-compensation to one of the defined standard configurations. The cut-off frequency of the g-compensation LP-filter will be set to 0.01Hz. Gyro g-compensation will be applied to all axes.
g <sp><stdcomp>','<filtercutoff><cr></cr></filtercutoff></stdcomp></sp>	Changes the gyro g-compensation to one of the defined standard configurations, but sets the g-compensation LP-filter to a non-standard cut-off frequency. Gyro g-compensation will be applied to all axes.
g <sp><biassource>','<biasfilter>',' <scalesource>','<scalefilter><cr></cr></scalefilter></scalesource></biasfilter></biassource></sp>	Changes the gyro g-compensation to a user-defined gyro g-compensation configuration, but leaves the g-compensation LP-filter unchanged. Gyro g-compensation will be applied to all axes.
g <sp><biassource>','<biasfilter>',' <scalesource>','<scalefilter>',' <filtercutoff><cr></cr></filtercutoff></scalefilter></scalesource></biasfilter></biassource></sp>	Changes the gyro g-compensation to a user-defined gyro g-compensation configuration, including the g-compensation LP-filter. Gyro g-compensation will be applied to all axes.
g <sp><xonoff>','<yonoff>','<zonoff>',' <biassource>','<biasfilter>',' <scalesource>','<scalefilter><cr></cr></scalefilter></scalesource></biasfilter></biassource></zonoff></yonoff></xonoff></sp>	Changes the gyro g-compensation to a user-defined gyro g-compensation configuration, but leaves the g-compensation LP-filter unchanged. Gyro g-compensation will be applied to specific axes.
g <sp><xonoff>','<yonoff>','<zonoff>',' <biassource>','<biasfilter>',' <scalesource>','<scalefilter>',' <filtercutoff><cr></cr></filtercutoff></scalefilter></scalesource></biasfilter></biassource></zonoff></yonoff></xonoff></sp>	Changes the gyro g-compensation to a user-defined gyro g-compensation configuration, including the g-compensation LP-filter. Gyro g-compensation will be applied to specific axes.

Table 10-36: Allowed values for <StdComp> for g (GYRO G-COMP) command

Bias			as	Scale-1	factor
<stdcomp></stdcomp>	BiasSource	BiasFilter	ScaleSource	ScaleFilter	
0	OFF	-	OFF	-	
1 ¹⁾	OFF	-	ACC	OFF	
2	OFF	-	ACC	ON	
3 ¹⁾	ACC	OFF	OFF	-	
4	ACC	ON	OFF	-	
5 ¹⁾	INC	OFF	OFF	-	
6	INC	ON	OFF	-	
7 ¹⁾	ACC	OFF	ACC	OFF	
8 ¹⁾	ACC	ON	ACC	OFF	
9 ¹⁾	INC	OFF	ACC	OFF	
a ¹⁾	INC	ON	ACC	OFF	
b	ACC	ON	ACC	ON	
С	INC	ON	INC	ON	

¹⁾ A warning will be issued if gyro output unit has not been chosen as delayed (ref. section 8.5.2.2.1 and 10.7)

Table 10-37: Allowed range for <FilterCutoff> for g (GYRO G-COMP) command

rable to or transmoditalige to: 4 monocutous for g (o into o comm			,	
	Unit	Minimum	Standard	Maximum
<filtercutoff></filtercutoff>	Hz	0.001	0.01	5.00

Decimal point = '.'. Format can be integer, scientific or decimal.

ButterflyGyro[™]

STIM300 Inertia Measurement Unit

Table 10-38: Allowed values for <ScaleSource> and <BiasSource> for g (GYRO G-COMP) command

<biassource> <scalesource></scalesource></biassource>	Result	
0	Gyro g-compensation turned OFF	
1	Gyro g-compensation uses data from accelerometers	
2	Gyro g-compensation uses data from inclinometers	

Table 10-39: Allowed values for <ScaleFilter> and <BiasFilter> for g (GYRO G-COMP) command

<biasfilter> <scalefilter></scalefilter></biasfilter>	Result
0	Gyro g-compensation LP-filter not applied (OFF)
1	Gyro g-compensation LP-filter applied (ON)

Table 10-40: Allowed values for <Xonoff>, <Yonoff> and <Zonoff> for g (GYRO G-COMP) command

<xonoff> <yonoff> <zonoff></zonoff></yonoff></xonoff>	Result
0	Gyro g-compensation is not applied to specific axis (OFF)
1	Gyro g-compensation is applied to specific axis (ACC or INC)

Table 10-41: Error messages for g (GYRO G-COMP) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

```
>g 1
GYRO G-COMPENSATION:
BIAS SOURCE, X-AXIS = OFF
BIAS G-COMP LP-FILTER, X-AXIS = NA
SCALE SOURCE, X-AXIS = ACC
SCALE G-COMP LP-FILTER, X-AXIS = OFF
BIAS SOURCE, Y-AXIS = OFF
BIAS G-COMP LP-FILTER, Y-AXIS = NA
SCALE SOURCE, Y-AXIS = ACC
SCALE G-COMP LP-FILTER, Y-AXIS = OFF
BIAS SOURCE, Z-AXIS = OFF
BIAS G-COMP LP-FILTER, Z-AXIS = NA
SCALE SOURCE, Z-AXIS = OFF
G-COMP LP-FILTER, Z-AXIS = OFF
G-COMP LP-FILTER, Z-AXIS = OFF
```

Figure 10-35: Example of response from g (GYRO G-COMP) command

```
>g 8,0.3

GYRO G-COMPENSATION: WARNING: DELAYED GYRO OUTPUT UNIT IS RECOMMENDED

BIAS SOURCE, X-AXIS = ACC

BIAS G-COMP LP-FILTER, X-AXIS = ON

SCALE SOURCE, X-AXIS = ACC

SCALE G-COMP LP-FILTER, X-AXIS = OFF

BIAS SOURCE, Y-AXIS = ACC

BIAS G-COMP LP-FILTER, Y-AXIS = ON

SCALE SOURCE, Y-AXIS = ACC

SCALE G-COMP LP-FILTER, Y-AXIS = OFF

BIAS SOURCE, Z-AXIS = ACC

BIAS G-COMP LP-FILTER, Z-AXIS = ON

SCALE SOURCE, Z-AXIS = ACC

SCALE G-COMP LP-FILTER, Z-AXIS = ON

SCALE SOURCE, Z-AXIS = ACC

SCALE G-COMP LP-FILTER, Z-AXIS = OFF

G-COMP LP-FILTER CUTOFF = 0.300 HZ
```

Figure 10-36: Example of response from g (GYRO G-COMP) command with warning

```
>g 2,1,1,0,0.5
GYRO G-COMPENSATION:
BIAS SOURCE, X-AXIS = INC
BIAS G-COMP LP-FILTER, X-AXIS = ON
SCALE SOURCE, X-AXIS = ACC
SCALE G-COMP LP-FILTER, X-AXIS = OFF
BIAS SOURCE, Y-AXIS = INC
BIAS G-COMP LP-FILTER, Y-AXIS = ON
SCALE SOURCE, Y-AXIS = ACC
SCALE G-COMP LP-FILTER, Y-AXIS = OFF
BIAS SOURCE, Z-AXIS = INC
BIAS G-COMP LP-FILTER, Z-AXIS = ON
SCALE SOURCE, Z-AXIS = ACC
SCALE G-COMP LP-FILTER, Z-AXIS = OFF
G-COMP LP-FILTER, Z-AXIS = OFF
```

Figure 10-37: Example of response from g (GYRO G-COMP) command

```
>g 0,0,1,2,1,1,0
GYRO G-COMPENSATION:
BIAS SOURCE, X-AXIS = OFF
BIAS G-COMP LP-FILTER, X-AXIS = NA
SCALE SOURCE, X-AXIS = OFF
SCALE G-COMP LP-FILTER, X-AXIS = NA
BIAS SOURCE, Y-AXIS = OFF
BIAS G-COMP LP-FILTER, Y-AXIS = NA
SCALE SOURCE, Y-AXIS = OFF
SCALE G-COMP LP-FILTER, Y-AXIS = NA
SCALE G-COMP LP-FILTER, Y-AXIS = NA
BIAS SOURCE, Z-AXIS = INC
BIAS G-COMP LP-FILTER, Z-AXIS = ON
SCALE SOURCE, Z-AXIS = ACC
SCALE G-COMP LP-FILTER, Z-AXIS = OFF
G-COMP LP-FILTER CUTOFF = 0.500 HZ
```

Figure 10-38: Example of response from g (GYRO G-COMP) command

STIM300 Inertia Measurement Unit

10.12 s (SAVE) command

General description: Saves configuration parameters to flash. This will permanently change the configuration parameters and hence be valid after an initialisation or power-off.

The flash used in STIM300 is specified to be capable of minimum 1000 saves. A save-counter has been implemented and when the number of saves exceeds 1000, there will be issued a warning. STIM300 will always attempt to save the configuration when receiving the s (SAVE) command regardless of the content of the save-counter.

Table 10-42: Available s (SAVE) command

Syntax	Response
s <cr></cr>	Saves system parameters to flash. This command will require an additional confirmation prior to execution. Confirmation ("Y") to be responded in upper case letter.

Table 10-43: Error messages for s (SAVE) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Any characters between command and <cr></cr>
	PARAMETERS	
E003	INVALID PARAMETER	Value of parameter outside valid range
E004	EXCEEDED MAXIMUM NUMBER OF	Warning appears when maximum number of saves has been
	SAVES	exceeded (1000 saves). STIM300 will always attempt to save
		the configuration when receiving the <u>s</u> (SAVE)-command.
E005	ERROR DURING SAVE	System parameters not successfully transferred to flash

>S
SYSTEM PARAMETERS WILL BE PERMANENTLY CHANGED. CONFIRM SAVE(Y/N): Y
SYSTEM PARAMETERS SUCCESSFULLY STORED IN FLASH.
NUMBER OF SAVES = 26
>

Figure 10-39: Example of response from s (SAVE) command when confirming save

>S
SYSTEM PARAMETERS WILL BE PERMANENTLY CHANGED. CONFIRM SAVE(Y/N): N
SAVE COMMAND ABORTED.

Figure 10-40: Example of response from s (SAVE) command when not confirming save

>S
SYSTEM PARAMETERS WILL BE PERMANENTLY CHANGED. CONFIRM SAVE(Y/N): y
SAVE COMMAND ABORTED.

E003 INVALID PARAMETER

Figure 10-41: Example of response from s (SAVE) command when not correctly responding to confirmation

STIM300 Inertia Measurement Unit

10.13 x (EXIT) command

General description: Terminates Service Mode and returns to Normal Mode directly or via Init Mode (ref. Figure 8-6).

Table 10-44: Available x (EXIT) command

Syntax	Response
x <sp><exit_to><cr></cr></exit_to></sp>	Terminates Service Mode

Table 10-45: Allowed values for <exit to> for x (EXIT) command

<exit_to></exit_to>	Result
n	Terminates Service Mode and return to Normal Mode. If system parameters have been changed compared to flash content, a confirmation is requested before exiting to Normal Mode ("Y" in upper case letter). There will be a 3 seconds hold-time between the transmitted command response and execution of the EXIT-command.
i	Terminates Service Mode and return to Init Mode. If system parameters have been changed compared to flash content, a confirmation is requested before exiting to Normal Mode ("Y" in upper case letter). There will be a 3 seconds hold-time between the transmitted command response and execution of the EXIT-command. NB: Changes made to system parameters, but not saved, will be overwritten by the data already stored in flash when entering Init Mode.
N	Terminates Service Mode and return immediately to Normal Mode (without confirmation if system parameters have been changed compared to flash and without any hold-time)
I	Terminates Service Mode and return immediately to Init Mode (without confirmation if system parameters have been changed compared to flash and without any hold-time). NB: Changes made to system parameters, but not saved, will be overwritten by the data already stored in flash when entering Init Mode.

Table 10-46: Error messages for x (EXIT) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Too many or too few parameters, use of comma between command
	PARAMETERS	and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>X N SYSTEM RETURNING TO NORMAL MODE.

Figure 10-42: Example of response from x n (EXIT) command when system parameters match contents of flash

>x i SYSTEM RETURNING TO INIT MODE.

Figure 10-43: Example of response from x i (EXIT) command when system parameters match contents of flash

>X N CURRENT SYSTEM PARAMETERS DO NOT MATCH FLASH CONTENT. CONFIRM EXIT(Y/N): Y SYSTEM RETURNING TO NORMAL MODE.

Figure 10-44: Example of response from x n (EXIT) command after system parameters have been changed but not saved with confirmed EXIT

>X i
CURRENT SYSTEM PARAMETERS DO NOT MATCH FLASH CONTENT. CONFIRM EXIT(Y/N): N
>

Figure 10-45: Example of response from x i (EXIT) command after system parameters have been changed but not saved with confirmed not to EXIT

ButterflyGyro[™]

STIM300 Inertia Measurement Unit

>X N
CURRENT SYSTEM PARAMETERS DOES NOT MATCH FLASH CONTENT. CONFIRM EXIT(Y/N): N
E003 INVALID PARAMETER
>

Figure 10-46: Example of response from x n (EXIT) command after system parameters have been changed but not saved with incorrect response to confirmation.

STIM300 Inertia Measurement Unit

10.14 z (RESTORE TO FACTORY SETTINGS) command

General description: Restores the configuration of the unit to its factory settings.

Table 10-47: Available z (RESTORE TO FACTORY SETTINGS) commands

Syntax	Response			
z <cr></cr>	Restores the configuration of the unit to its factory settings.			
	NB: The restored configuration will not be permanent unless it is SAVEd to			
	flash before EXITing Service Mode, resetting the unit or turning off power.			
z <sp>,'s',<cr></cr></sp>	Restores the configuration of the unit to its factory settings and saves the			
	configuration to flash.			

Table 10-48: Error messages for z (RESTORE TO FACTORY SETTINGS) command

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF	Any characters between command and <cr></cr>
	PARAMETERS	
E003	INVALID PARAMETER	Value of parameter outside valid range
E004	EXCEEDED MAXIMUM NUMBER OF	Warning appears when maximum number of saves has been
	SAVES	exceeded (1000 saves). STIM300 will always attempt to save
		the configuration when receiving the s (SAVE)-command.
E005	ERROR DURING SAVE	System parameters not successfully transferred to flash

PZ
RESTORE TO FACTORY SETTINGS.
CONFIRM CHANGE TO FACTORY SETTINGS (Y/N): Y

APPLYING FACTORY SETTINGS
FACTORY SETTINGS APPLIED. TO PERMANENTLY STORE THE SETTINGS, USE THE SAVE OR 'z s' COMMAND.

Figure 10-47: Example of response from z (RESTORE TO FACTORY SETTINGS) command with no change in transmission parameters.

RESTORE TO FACTORY SETTINGS.
CONFIRM CHANGE TO FACTORY SETTINGS(Y/N): Y

THE TRANSMISSION CONFIGURATION WILL BE CHANGED TO:
BIT-RATE [bits/s] = 921600
DATA LENGTH = 8
STOP BITS = 1
PARITY = EVEN
PLEASE CONFIRM (Y/N): Y

APPLYING FACTORY SETTINGS
FACTORY SETTINGS APPLIED. TO PERMANENTLY STORE THE SETTINGS, USE THE SAVE OR 'z s' COMMAND.

Figure 10-48: Example of response from z (RESTORE TO FACTORY SETTINGS) command with change in transmission parameters.

ButterflyGyro[™]

STIM300 Inertia Measurement Unit

RESTORE TO FACTORY SETTINGS.
CONFIRM CHANGE TO FACTORY SETTINGS AND SAVING(Y/N): Y

THE TRANSMISSION CONFIGURATION WILL BE CHANGED TO:
BIT-RATE [bits/s] = 921600

DATA LENGTH = 8

STOP BITS = 1

PARITY = EVEN

PLEASE CONFIRM (Y/N): Y

APPLYING FACTORY SETTINGS

FACTORY SETTINGS APPLIED AND SAVED.

NUMBER OF SAVES = 26

>

Figure 10-49: Example of response from z s (RESTORE TO FACTORY SETTINGS with save of configuration) command with change in transmission parameters.

ButterflyGyro[™]

STIM300 Inertia Measurement Unit

10.15 ? (HELP) command

General description: Help function on the available commands in Service Mode.

Table 10-49: Available ? (HELP) commands

Syntax	Response
? <cr></cr>	Lists the available parameters for this command
? <sp><hlp><cr></cr></hlp></sp>	Responds with information on the specified command

Table 10-50: Allowed values for <hlp> for ? (HELP) command

<hlp></hlp>	Result
i	Responds with information on the INFORMATION-command
а	Responds with information on the SINGLE-SHOT MEASUREMENT-command
С	Responds with information on the DIAGNOSTIC-command
d	Responds with information on the DATAGRAM FORMAT-command
t	Responds with information on the TRANSMISSION PARAMETERS-command
r	Responds with information on the LINE TERMINATION-command
u	Responds with information on the OUTPUT UNIT-command
f	Responds with information on the LP FILTER -3dB FREQUENCY-command
m	Responds with information on the SAMPLE RATE-command
g	Responds with information on the GYRO G-COMP-command
k	Responds with information on the AUX COMP-command
s	Responds with information on the SAVE-command
X	Responds with information on the EXIT-command
Z	Responds with information on the RESTORE TO FACTORY SETTINGS-command

Table 10-51: Error messages for ? (HELP) commands

Error	Message	Possible reason
E001	UNKOWN COMMAND	Command is incorrectly entered
E002	INCORRECT NUMBER OF PARAMETERS	Too many or too few parameters, use of comma between command and first parameter
E003	INVALID PARAMETER	Value of parameter outside valid range

>?

AVAILABLE PARAMETERS:

- i: LISTS SPECIFIC INFORMATION
- a: PERFORMS A SINGLE-SHOT MEASUREMENT
- c: PERFORMS A DIAGNOSTIC OF THE UNIT
- d: CHANGES DATAGRAM FORMAT
- t: CHANGES TRANSMISSION PARAMETERS
- r: CHANGES THE LINE TERMINATION
- u : CHANGES OUTPUT UNIT
- f: CHANGES LP FILTER -3DB FREQUENCY
- m: CHANGES SAMPLE RATE
- g: CHANGES CONFIGURATION OF GYRO G-COMPENSATION
- k: CHANGES COMPENSATION COEFFICIENTS FOR AUX INPUT
- s: SAVES CONFIGURATION DATA
- x: EXITS SERVICE MODE
- z: RESTORES FACTORY SETTINGS

>

Figure 10-50: Example of response from ? (HELP) command

STIM300 Inertia Measurement Unit

```
i: LISTS THE PRODUCT CONFIGURATION DATA
is: RETURNS THE SERIAL NUMBER
in: RETURNS THE PRODUCT NAME
ix: RETURNS THE PART NUMBER
ia: RETURNS THE PART NUMBER
ia: RETURNS THE AXIS CONFIGURATION
ip: RETURNS THE WE CONFIGURATION AND REVISION
im: RETURNS THE SAMPLE RATE
if: RETURNS THE LP FILTER -3DB FREQUENCY
id: RETURNS THE DATAGRAM FORMAT
it: RETURNS THE TRANSMISSION PARAMETERS
ir: RETURNS THE LINE TERMINATION SETTING
iu: RETURNS THE OUTPUT UNIT
ig: RETURNS THE CONFIGURATION OF GYRO G-COMPENSATION
ik: RETURNS THE COMPENSATION COEFFICIENTS OF AUX INPUT
ie: PRINTS THE EXTENDED ERROR INFORMATION FROM THE LAST DETECTED ERROR IN NORMAL MODE
```

Figure 10-51: Example of response from ? i (HELP on INFORMATION) command

```
>? a
a: PERFORMS A SINGLE-SHOT MEASUREMENT
>
```

Figure 10-52: Example of response from ? a (HELP ON SINGLE-SHOT MEASUREMENT) command

```
>? c
c: PERFORMS A DIAGNOSTIC OF THE UNIT
>
```

Figure 10-53: Example of response from ? c (HELP on DIAGNOSTIC) command

```
d <type>','<term>: CHANGES THE DATAGRAM FORMAT
  ALLOWED VALUES FOR <type>:
   0 = ID, RATE, COUNTER, LATENCY, CRC
    1 = ID, RATE, ACCELERATION, COUNTER, LATENCY, CRC
    2 = ID, RATE, INCLINATION, COUNTER, LATENCY, CRC
    3 = ID, RATE, ACCELERATION, INCLINATION, COUNTER, LATENCY, CRC
    4 = ID, RATE, TEMPERATURE, COUNTER, LATENCY, CRC
    5 = ID, RATE, ACCELERATION, TEMPERATURE, COUNTER, LATENCY, CRC
    6 = ID, RATE, INCLINATION, TEMPERATURE, COUNTER, LATENCY, CRC
    7 = ID, RATE, ACCELERATION, INCLINATIONS, TEMPERATURE, COUNTER, LATENCY, CRC
    8 = ID, RATE, AUX, COUNTER, LATENCY, CRC
    9 = ID, RATE, ACCELERATION, AUX, COUNTER, LATENCY, CRC
    A = ID, RATE, INCLINATION, AUX, COUNTER, LATENCY, CRC
    B = ID, RATE, ACCELERATION, INCLINATION, AUX, COUNTER, LATENCY, CRC
    C = ID, RATE, TEMPERATURE, COUNTER, AUX, LATENCY, CRC
    D = ID, RATE, ACCELERATION, AUX, TEMPERATURE, COUNTER, LATENCY, CRC
    E = ID, RATE, INCLINATION, AUX, TEMPERATURE, COUNTER, LATENCY, CRC
    F = ID, RATE, ACCELERATION, INCLINATIONS, TEMPERATURE, AUX, COUNTER, LATENCY, CRC
  ALLOWED VALUES FOR <term>:
    0 = NONE
    1 = <CR><LF>
```

Figure 10-54: Example of response from ? d (DATAGRAM TRANSMISSION MODE AND TERMINATION) command

STIM300 Inertia Measurement Unit

```
t <bit-rate code>[','<bit-rate>]: CHANGES THE BIT-RATE [bits/s]
t <bit-rate code>[','<bit-rate>]','<stop bits>','<parity>: CHANGES THE BIT-RATE [bits/s], NUMBER OF STOP-BITS AND PARITY
  ALLOWED VALUES FOR <bit-rate code>:
    0 = 377400
    1 = 460800
    2 = 921600
    3 = 1843200
     f = USER-DEFINED
  <br/><bit-rate> MUST ONLY BE INCLUDED WHEN <bit-rate code> = f
  ALLOWED RANGE FOR <br/>bit-rate>:
    1500 - 5023000 (INTEGER VALUE). SEE STIM300 DATASHEET FOR LIMITATIONS
  ALLOWED VALUES FOR <stop bits>:
    1 = 1
    2 = 2
  ALLOWED VALUES FOR <parity>:
    0 = NONE
    1 = ODD
    2 = EVEN
```

Figure 10-55: Example of response from ? t (HELP on TRANSMISSION PARAMETERS) command

```
>? r
r <on/off>: TURNS LINE TERMINATION ON OR OFF
ALLOWED VALUES FOR <on/off>:
0 = OFF
1 = ON
```

Figure 10-56: Example of response from ? r (HELP on LINE TERMINATION) command

```
u <sens>','<unit>: CHANGES OUTPUT UNIT
 ALLOWED VALUES FOR <sens>:
   g = GYRO
   a = ACCELEROMETER
   i = INCLINOMETER
 ALLOWED VALUES FOR u,g,<unit>:
   0 = ANGULAR RATE
   1 = INCREMENTAL ANGLE
   2 = AVERAGE ANGULAR RATE
   3 = INTEGRATED ANGLE
   8 = ANGULAR RATE - DELAYED
   9 = INCREMENTAL ANGLE - DELAYED
   a = AVERAGE ANGULAR RATE - DELAYED
   b = INTEGRATED ANGLE - DELAYED
 ALLOWED VALUES FOR u,a,<unit>:
   0 = ACCELERATION
   1 = INCREMENTAL VELOCITY
   2 = AVERAGE ACCELERATION
 ALLOWED VALUES FOR u,i,<unit>:
   0 = ACCELERATION
   1 = INCREMENTAL VELOCITY
   2 = AVERAGE ACCELERATION
```

Figure 10-57: Example of response from ? u (HELP on OUTPUT UNIT) command

STIM300 Inertia Measurement Unit

```
f <-3dBfreq>: CHANGES THE LP FILTER -3DB FREQUENCY [Hz] FOR ALL SENSORS AND AXES
f <-3dBfreq>','<sens>: CHANGES THE LP FILTER -3DB FREQUENCY [Hz] FOR ALL AXES OF SPECIFIED SENSOR
f <-3dBfreq>','<sens>','<axis>: CHANGES THE LP FILTER -3DB FREQUENCY [Hz] FOR A SPECIFIC SENSOR AND AXIS
  ALLOWED VALUES FOR <-3dBfreq>:
    0 = 16
    1 = 33
    2 = 66
    3 = 131
    4 = 262
  ALLOWED VALUES FOR <sens>:
    g = GYRO(S)
    a = ACCELEROMETER(S)
    i = INCLINOMETER(S)
    u = AUX
  ALLOWED VALUES FOR <axis>:
    x = X-AXIS
    y = Y-AXIS
    z = Z-AXIS
```

Figure 10-58: Example of response from ? f (HELP on LP FILTER -3dB FREQUENCY) command

```
>? m
m <sampl.rate>: CHANGES THE SAMPLE RATE [samples/s]
ALLOWED VALUES FOR <sampl.rate>
0 = 125
1 = 250
2 = 500
3 = 1000
4 = 2000
5 = EXTERNAL TRIGGER
```

Figure 10-59: Example of response from ? m (HELP on SAMPLE RATE) command

STIM300 Inertia Measurement Unit

```
g <StdComp>: CHANGES GYRO G-COMP TO A PRE-DEFINED CONFIGURATION
g <StdComp>,<FilterCutoff>: CHANGES GYRO G-COMP TO A PRE-DEFINED CONFIG., BUT SPECIAL LP-FILTER CUTOFF
g <BiasSource>, <BiasFilter>, <ScaleSource>, <ScaleFilter>[,<FilterCutoff>]: CHANGES CONFIGURATION OF GYRO-G-COMP
g <Xonoff><Yonoff><Zonoff><BiasSource>, <BiasFilter>,<ScaleSource>,<ScaleFilter>[,<FilterCutoff>]: CHANGES
CONFIGURATION OF GYRO-G-COMP ON SPECIFIED AXES
  ALLOWED VALUES FOR <StdComp>:
    0 = <BiasSource> = 0, <BiasFilter> = 0, <ScaleSource> = 0, <ScaleFilter> = 0 (NO GYRO G-COMP)
    1 = <BiasSource> = 0, <BiasFilter> = 0, <ScaleSource> = 1, <ScaleFilter> = 0
    2 = <BiasSource> = 0, <BiasFilter> = 0, <ScaleSource> = 1, <ScaleFilter> = 1, <FilterCutoff> = 0.01
    3 = <BiasSource> = 1, <BiasFilter> = 0, <ScaleSource> = 0, <ScaleFilter> = 0
    4 = <BiasSource> = 1, <BiasFilter> = 1, <ScaleSource> = 0, <ScaleFilter> = 0, <FilterCutoff> = 0.01
    5 = <BiasSource> = 2, <BiasFilter> = 0, <ScaleSource> = 0, <ScaleFilter> = 0
    6 = <BiasSource> = 2, <BiasFilter> = 1, <ScaleSource> = 0, <ScaleFilter> = 0, <FilterCutoff> = 0.01
    7 = <BiasSource> = 1, <BiasFilter> = 0, <ScaleSource> = 1, <ScaleFilter> = 0
    8 = <BiasSource> = 1, <BiasFilter> = 1, <ScaleSource> = 1, <ScaleFilter> = 0, <FilterCutoff> = 0.01
    9 = <BiasSource> = 2, <BiasFilter> = 0, <ScaleSource> = 1, <ScaleFilter> = 0
    a = <BiasSource> = 2, <BiasFilter> = 1, <ScaleSource> = 1, <ScaleFilter> = 0, <FilterCutoff> = 0.01
    b = <BiasSource> = 1, <BiasFilter> = 1, <ScaleSource> = 1, <ScaleFilter> = 1, <FilterCutoff> = 0.01
    c = <BiasSource> = 2, <BiasFilter> = 1, <ScaleSource> = 2, <ScaleFilter> = 1, <FilterCutoff> = 0.01
  ALLOWED RANGE FOR <FilterCutoff>
    0.010 - 5.000 (ENTERED VALUE IS IN [Hz])
  ALLOWED VALUES FOR <BiasSource> and <ScaleSource>:
    0 = OFF (NO G-COMP)
    1 = ACCELEROMETER
    2 = INCLINOMETER
  ALLOWED VALUES FOR <BiasFilter> and <ScaleFilter>:
    0 = GYRO G-COMP LP-FILTER NOT IN USE (OFF)
    1 = GYRO G-COMP LP-FILTER IN USE (ON)
  ALLOWED VALUES FOR <Xonoff>, <Yonoff> and <Zonoff>:
    0 = NO GYRO G-COMP FOR SPECIFIC AXIS (OFF)
    1 = GYRO G-COMP FOR SPECIFIC AXIS (ON)
```

Figure 10-60: Example of response from ? m (HELP on GYRO G-COMP) command

```
? k
k <coeff1>','<coeff2>: CHANGES THE AUX COMPENSATE COEFFICIENTS
>
```

Figure 10-61: Example of response from ? k (HELP on AUX COMP) command

```
>? s
s: SAVES SYSTEM PARAMETERS TO FLASH
>
```

Figure 10-62: Example of response from ? s (HELP on SAVE) command

```
>? X
x n: EXITS SERVICE MODE AND RETURNS TO NORMAL MODE
x i: EXITS SERVICE MODE AND RETURNS TO INIT MODE
x N: EXITS SERVICE MODE AND RETURNS IMMEDIATELY TO NORMAL MODE
x I: EXITS SERVICE MODE AND RETURNS IMMEDIATELY TO INIT MODE
NB: NON-SAVED SYSTEM PARAMETERS WILL BE OVERWRITTEN BY STORED CONTENT IN FLASH
WHEN EXITING TO INIT MODE
>
```

Figure 10-63: Example of response from ? x (HELP on EXIT) command

STIM300 Inertia Measurement Unit

```
? z
z: RESTORES FACTORY SETTINGS
```

Figure 10-64: Example of response from ? z (HELP on RESTORE TO FACTORY SETTINGS) command

11 MARKING

Figure 11-1: Example of marking of STIM300

STIM300 Inertia Measurement Unit

Datagram

Included data

Acceleration

NO

YES

YES YES YES NO

YES NO

YES YES Inclination

NO

NO

YES

Temperature

NO

AUX

NO

NO

NO

NO NO NO NO

YES YES YES YES YES

12 CONFIGURATION / ORDERING INFORMATION

The STIM300 will be delivered according to the configuration code as shown below. All configuration parameters can be changed later in Service Mode, ref. section 8.5.3. A full list of configurable parameters can be found in Table 6-11.

Configuration parameters in **bold** letters show the standard option.

Range		Measurement				0	utput/RS	422			
Prod_ID	-	Sample rate	Filter band- width	Gyro output unit	Acc. output unit	Incl. output unit	Gyro g-comp	-	Datagram	Bit-rate	Termination

Range		
Prod_ID	Gyro	Acc
84458	400°/s	5g
84167	400°/s	10g
84461	400°/s	30g
84615	400°/s	80g

Sample rate:
0 = 125 samples/s
1 = 250 samples/s
2 = 500 samples/s
3 = 1000 samples/s
4 = 2000 samples/s
5 = External Trigger

Filter bandwidth:	
0 = 16Hz	
1 = 33Hz	
2 = 66Hz	
3 = 131Hz	
4 = 262Hz	

Gyro output unit:
0 = Angular Rate [°/s]
1 = Incremental Angle [°/sample]
2 = Average Angular Rate [°/s]
3 = Integrated Angle [°]
8 = Angular Rate [°/s] – delayed
9 = Incremental Angle [°/sample] - delayed
a = Average Angular Rate [°/s] – delayed
b = Integrated Angle [°] - delayed

Acc. output unit:
0 = Acceleration [g]
1 = Incremental Velocity [m/s/sample]
2 = Average Acceleration [g]

Gyro g-comp					
	Bias		Scale-factor		
	Source	0.01Hz- filter	Source	0.01Hz- filter	
0	OFF	-	OFF	-	
1 ¹⁾	OFF	-	ACC	OFF	
2	OFF	-	ACC	ON	
3 ¹⁾	ACC	OFF	OFF	-	
4	ACC	ON	OFF	-	
5 ¹⁾	INC	OFF	OFF	-	
6	INC	ON	OFF	-	
7 ¹⁾	ACC	OFF	ACC	OFF	
8 ¹⁾	ACC	ON	ACC	OFF	
9 ¹⁾	INC	OFF	ACC	OFF	
a ¹⁾	INC	ON	ACC	OFF	
b	ACC	ON	ACC	ON	
С	INC	ON	INC	ON	

emental velocity [m/3/3ample])				_	
rage Acceleration [g]				4	YES	9	NO	YES	Ĺ	
			1	5	YES	YES	NO	YES	Ĺ	
tput unit:				6	YES	NO	YES	YES	Ī	
eleration [g]				7	YES	YES	YES	YES	Ī	
emental Velocity [m/s/sample]				8	YES	NO	NO	NO	Γ	
rage Acceleration [g]				9	YES	YES	NO	NO	Γ	
-comp				а	YES	NO	YES	NO	Γ	
В	ias Scale-factor			b	YES	YES	YES	NO	Ī	
Source	0.01Hz-	Source	0.01Hz-		С	YES	NO	NO	YES	Ĺ
Jource	filter	Source	filter		d	YES	YES	NO	YES	l
OFF	-	OFF	-		е	YES	NO	YES	YES	Ī
OFF	-	ACC	OFF		f	YES	YES	YES	YES	Ī
OFF	-	ACC	ON							
ACC	OFF	OFF	-		Bit-rate:					
ACC	ON	OFF	-		-	37440				
INC	OFF	OFF	-		1 =	46080	00 bits	/s		
INC	ON	OFF	-			92160				
ACC	OFF	ACC	OFF			18432				
ACC	ON	ACC	OFF		f = l	Jser-d	lefined	d ²⁾		

_					
f =	f = User-defined 2)				
Te	Termination				
	Line	Datagram			
0	OFF	None			
1	ON	None			
2	OFF	<cr><lf></lf></cr>			
3	ON	<cr><lf></lf></cr>			

RS422 data configuration			
#Start bit	1		
#Data bits	8		
#Stop bits	1 ³⁾		
Parity	None ³⁾		

- Delayed gyro output unit should be selected with this option
- Bit-rate must be specified. See section 10.5 for limitations
- Configuration can be changed in SERVICEMODE. See section 10.5

Example: 84167-413020-330 has the following configuration:

- O Gyro range = 400°/s, accelerometer range = 10g
- Sample rate = 2000 samples/s
- Low-pass filter bandwidth = 33Hz
- Gyro output unit = Integrated Angle [°]
- Accelerometer output unit = Acceleration [g]
- Inclinometer output unit = Average Acceleration [g]
- No g-/acc-compensation of bias and scale-factor
- Datagram containing Rate, Acceleration and Inclination
- Bit-rate = 1843200 bits/s
- Datagram Termination = None
- Line termination OFF

ButterflyGyro[™]

STIM300 Inertia Measurement Unit

NOTES

Information furnished by Sensonor is believed to be accurate and reliable. However, no responsibility is assumed by Sensonor for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Sensonor reserves the right to make changes without further notice to any products herein. Sensonor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Sensonor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. No license is granted by implication or otherwise under any patent or patent rights of Sensonor. Trademarks and registered trademarks are the property of their respective owners. Sensonor products are not intended for any application in which the failure of the Sensonor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Sensonor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Sensonor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable legal fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Sensonor was negligent regarding the design or manufacture of the part.

Sensonor AS

Phone: +47 3303 5000 - Fax: +47 3303 5005 sales@sensonor.com www.sensonor.com