Regression and Causal Inference

OLS as Prediction

Model-Based Inference

Regression and Causatio

Regression and Causal Inference

September 6, 2012

Regression and Causatio

Prediction

• We have an input vector $X^T = (X_1, X_2, ..., X_p)$ with dimensions of $n \times p$ and an output vector Y with dimensions $n \times 1$.

Prediction

- We have an input vector $X^T = (X_1, X_2, ..., X_p)$ with dimensions of $n \times p$ and an output vector Y with dimensions $n \times 1$.
- The linear regression model has the form:

$$f(X) = \beta_0 + \sum_{j=1}^p X_j \beta_j$$

Prediction

- We have an input vector $X^T = (X_1, X_2, ..., X_p)$ with dimensions of $n \times p$ and an output vector Y with dimensions $n \times 1$.
- The linear regression model has the form:

$$f(X) = \beta_0 + \sum_{j=1}^p X_j \beta_j$$

• We can pick the coefficients $\beta = (\beta_0, \beta_1, \dots, \beta_p)^T$ in a variety of ways but OLS is by far the most common, which minimizes the **residual sum of squares** (RSS):

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - f(x_i))^2$$
$$= \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{P} x_{ij} \beta_j)^2$$

OLS as Prediction

Model-Base

Regression and Causatio

OLS in a Picture

OLS as Prediction

Model-Based Inference

Regression and Causatio

Deriving the Algorithm

• Denote \mathbf{X} the $N \times (p+1)$ matrix with each row an input vector (with a 1 in the first position) and \mathbf{y} is the output vector.

Deriving the Algorithm

- Denote $\mathbf X$ the $N \times (p+1)$ matrix with each row an input vector (with a 1 in the first position) and $\mathbf y$ is the output vector.
- Write the RSS as:

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{x}\beta)$$

Deriving the Algorithm

- Denote ${\bf X}$ the $N \times (p+1)$ matrix with each row an input vector (with a 1 in the first position) and ${\bf y}$ is the output vector.
- Write the RSS as:

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{x}\beta)$$

• Differentiate with respect to β :

$$\frac{\partial RSS}{\partial \beta} = -2\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\beta) \tag{1}$$

Deriving the Algorithm

- Denote ${\bf X}$ the $N \times (p+1)$ matrix with each row an input vector (with a 1 in the first position) and ${\bf y}$ is the output vector.
- Write the RSS as:

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{x}\beta)$$

• Differentiate with respect to β :

$$\frac{\partial \text{RSS}}{\partial \beta} = -2\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\beta) \tag{1}$$

 Assume that X is full rank (no perfect collinearity among any of the independent variables) and set first derivative to 0:

$$\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\beta) = 0$$

Deriving the Algorithm

- Denote ${\bf X}$ the $N \times (p+1)$ matrix with each row an input vector (with a 1 in the first position) and ${\bf y}$ is the output vector.
- Write the RSS as:

$$RSS(\beta) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{x}\beta)$$

• Differentiate with respect to β :

$$\frac{\partial \text{RSS}}{\partial \beta} = -2\mathbf{X}^{T}(\mathbf{y} - \mathbf{X}\beta) \tag{1}$$

 Assume that X is full rank (no perfect collinearity among any of the independent variables) and set first derivative to 0:

$$\mathbf{X}^T(\mathbf{y} - \mathbf{X}\beta) = 0$$

• Solve for β :

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Making a Prediction

The hat matrix, or projection matrix

$$\boldsymbol{\mathsf{H}} = \boldsymbol{\mathsf{X}}(\boldsymbol{\mathsf{X}}^T\boldsymbol{\mathsf{X}})^{-1}\boldsymbol{\mathsf{X}}^T$$
 with $\boldsymbol{\tilde{\mathsf{H}}} = \boldsymbol{\mathsf{I}} - \boldsymbol{\mathsf{H}}$

Making a Prediction

The hat matrix, or projection matrix

$$\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$$
 with $\mathbf{\tilde{H}} = \mathbf{I} - \mathbf{H}$

We use the hat matrix to find the fitted values:

$$\mathbf{\hat{Y}} = \mathbf{X}\boldsymbol{\hat{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \mathbf{H}\mathbf{Y}$$

Making a Prediction

The hat matrix, or projection matrix

$$\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$$
 with $\mathbf{\tilde{H}} = \mathbf{I} - \mathbf{H}$

• We use the hat matrix to find the fitted values:

$$\mathbf{\hat{Y}} = \mathbf{X}\boldsymbol{\hat{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \mathbf{H}\mathbf{Y}$$

We can now write

$$e = (I - H)Y$$

Making a Prediction

• The hat matrix, or projection matrix

$$\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$$
 with $\mathbf{\tilde{H}} = \mathbf{I} - \mathbf{H}$

We use the hat matrix to find the fitted values:

$$\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \mathbf{H}\mathbf{Y}$$

We can now write

$$e = (I - H)Y$$

 If HY yields part of Y that projects into X, this means that HY is the part of Y that does not project into X, which is the residual part of Y. Therefore, HY makes the residuals.

Regression and Causatio

From Algorithm to Model

① Linear in Parameters: Y is related to the independent variables and the error term as $Y = X\beta + \epsilon$

OLS as Prediction

Model-Based Inference

Regression and Causatio

- **1** Linear in Parameters: Y is related to the independent variables and the error term as $Y = X\beta + \epsilon$
- 2 The X's are fixed and take on \geq 2 values

OLS as Prediction

Model-Based Inference

Regression and Causation

- **1** Linear in Parameters: Y is related to the independent variables and the error term as $Y = X\beta + \epsilon$
- 2 The X's are fixed and take on \geq 2 values
- 3 Full Rank (in multiple regression): There is no perfect collinearity among any of the independent variables

Regression and Causation

- **1** Linear in Parameters: Y is related to the independent variables and the error term as $Y = X\beta + \epsilon$
- 2 The X's are fixed and take on \geq 2 values
- 3 Full Rank (in multiple regression): There is no perfect collinearity among any of the independent variables
- **4** Zero Conditional Mean: $E(\epsilon|X) = 0$

- **1** Linear in Parameters: Y is related to the independent variables and the error term as $Y = X\beta + \epsilon$
- 2 The X's are fixed and take on \geq 2 values
- § Full Rank (in multiple regression): There is no perfect collinearity among any of the independent variables
- **4** Zero Conditional Mean: $E(\epsilon|X) = 0$
- **5** Homoskedasticity: $Var(\epsilon|X) = \sigma^2$

- **1** Linear in Parameters: Y is related to the independent variables and the error term as $Y = X\beta + \epsilon$
- 2 The X's are fixed and take on \geq 2 values
- § Full Rank (in multiple regression): There is no perfect collinearity among any of the independent variables
- **4** Zero Conditional Mean: $E(\epsilon|X) = 0$
- **5** Homoskedasticity: $Var(\epsilon|X) = \sigma^2$
- **6** Random Sampling: Y_i is an *iid* random sample, although this can be relaxed to

$$cov(y_i, y_j) = 0 = cov(\epsilon_i, \epsilon_j)$$
 $i \neq j$

Regression and Causation

- **1** Linear in Parameters: Y is related to the independent variables and the error term as $Y = X\beta + \epsilon$
- 2 The X's are fixed and take on ≥ 2 values
- § Full Rank (in multiple regression): There is no perfect collinearity among any of the independent variables
- **4** Zero Conditional Mean: $E(\epsilon|X) = 0$
- **5** Homoskedasticity: $Var(\epsilon|X) = \sigma^2$
- 6 Random Sampling: Y_i is an *iid* random sample, although this can be relaxed to $cov(y_i, y_i) = 0 = cov(\epsilon_i, \epsilon_i)$ $i \neq j$
- **7** Normal Errors (optional): $Y \sim \mathbb{N}(X\beta, \sigma^2)$

Gauss-Markov

- Under Assumptions 1-7 above, $\hat{\beta}$ is the best linear unbiased estimator (BLUE) of β .
- B est means smallest variance amongst linear unbiased estimates.
- **L** inear means $\hat{\beta}$ is estimable from a linear function of the data.
- **U** nbiased means $E(\hat{\beta}) = \beta$,
- E stimator means X is full rank.

Unbiasedness

OLS as Prediction

Model-Based Inference

and Causation

Recall:

$$\hat{\beta} = (X^T X)^{-1} X^T Y$$

$$= (X^T X)^{-1} X^T (X \beta + \epsilon)$$

$$= (X^T X)^{-1} X^T X \beta + (X^T X)^{-1} X^T \epsilon$$

$$= \beta + (X^T X)^{-1} X^T \epsilon$$

We know that $\hat{\beta}$ is unbiased if $E(\hat{\beta}) = \beta$

$$E(\hat{\beta}) = E(\beta + (X^T X)^{-1} X^T \epsilon | X)$$

$$= E(\beta | X) + E((X^T X)^{-1} X^T \epsilon | X)$$

$$= \beta + (X^T X)^{-1} E(\epsilon | X)$$
where $E(\epsilon | X) = E(\epsilon) = 0$

$$E(\hat{\beta}) = \beta$$

Deriving σ^2

Recall:

$$\hat{\beta} = (X^T X)^{-1} X^T Y
= (X^T X)^{-1} X^T (X \beta + \epsilon)
\Rightarrow \hat{\beta} - \beta = (X^T X)^{-1} X^T \epsilon$$

Regression and Causatio

• Recall:

$$\hat{\beta} = (X^T X)^{-1} X^T Y
= (X^T X)^{-1} X^T (X \beta + \epsilon)
\Rightarrow \hat{\beta} - \beta = (X^T X)^{-1} X^T \epsilon$$

• Plugging this into the covariance equation:

$$\begin{aligned} cov(\hat{\beta}|X) &= E[(\hat{\beta}-\beta)(\hat{\beta}-\beta)'|X] \\ &= E\big[\big((X^TX)^{-1}X^T\epsilon\big)\big((X^TX)^{-1}X^T\epsilon)'|X\big] \\ &= E\big[(X^TX)^{-1}X^T\epsilon\epsilon^TX(X^TX)^{-1}|X\big] \\ &= (X^TX)^{-1}X^TE(\epsilon\epsilon^T|X)X(X^TX)^{-1} \\ &\quad \text{where } E(\epsilon\epsilon^T|X) = \sigma^2I_{p\times p} \\ &= (X^TX)^{-1}X^T\sigma^2I_{p\times p}X(X^TX)^{-1} \\ &= \sigma^2(X^TX)^{-1}X^TX(X^TX)^{-1} \\ &= \sigma^2(X^TX)^{-1} \end{aligned}$$

Deriving σ^2

We estimate σ^2 dividing the residuals squared by the degrees of freedom because the e_i are generally smaller than the ϵ_i due to the fact that $\hat{\beta}$ was chosen to make the sum of square residuals as small as possible.

$$\hat{\sigma}^2 = \frac{1}{n-p} \sum_{i=1}^n e_i^2$$

What Makes OLS the Best?

• We want an estimator $\tilde{\beta}=m+MY$, with $E(\tilde{\beta}|X)=\beta$

$$E(\tilde{\beta}|X) = E(m + MY|X)$$

$$= E(m + M(X\beta + \epsilon)|X)$$

$$= m + MX\beta$$

$$\Rightarrow m = 0 \text{ and } MX = I_{p \times p}$$
(2)

What Makes OLS the Best?

• We want an estimator $\tilde{eta}=m+MY$, with $E(\tilde{eta}|X)=eta$

$$E(\tilde{\beta}|X) = E(m + MY|X)$$

$$= E(m + M(X\beta + \epsilon)|X)$$

$$= m + MX\beta$$

$$\Rightarrow m = 0 \text{ and } MX = I_{p \times p}$$
(2)

• Therefore, this implies we want $\tilde{\beta} = MY$, so WLOG we can say $M = (X^TX)^{-1}X^T + c$

and Causatio

What Makes OLS the Best?

• We want an estimator $\tilde{eta}=m+MY$, with $E(\tilde{eta}|X)=eta$

$$E(\tilde{\beta}|X) = E(m + MY|X)$$

= $E(m + M(X\beta + \epsilon)|X)$
= $m + MX\beta$

$$\Rightarrow m = 0 \text{ and } MX = I_{p \times p} \tag{2}$$

- Therefore, this implies we want $\tilde{\beta} = MY$, so WLOG we can say $M = (X^TX)^{-1}X^T + c$
- Thus,

$$MX = ((X^T X)^{-1} X^T + c)X$$

$$= (X^T X)^{-1} X^T X + cX$$

$$= I_{p \times p} + CX = I_{p \times p} \text{ by (2)}$$

$$\Rightarrow CX = 0$$
(3)

What Makes OLS the Best?

Also note that

$$\tilde{\beta} = MY = M(X\beta + \epsilon) = \beta + M\epsilon \text{ by } MX = I_{p \times p}$$

$$\Rightarrow \tilde{\beta} - \beta = M\epsilon \tag{4}$$

 Now, recall "best" means having the smallest variance, therefore we want to minimize $cov(\tilde{\beta}|X)$

$$cov(\tilde{\beta}|X) = E((\tilde{\beta} - \beta)(\tilde{\beta} - \beta)^{T}|X)$$

$$= E((M\epsilon)(M\epsilon)^{T}|X)$$

$$= E(M\epsilon\epsilon^{T}M^{T}|X)$$

$$= ME(\epsilon\epsilon^{T}|X)M^{T}$$

$$= \sigma^{2}MM^{T}$$

What Makes OLS the Best?

Finally,

$$MM^{T} = ((X^{T}X)^{-1}X^{T} + c)((X^{T}X)^{-1}X^{T} + c)^{T}$$

= $(X^{T}X)^{-1} + CC^{T}$

since from (3),
$$CX = 0$$
 and $C^T X^T = 0$ (5)

What Makes OLS the Best?

Finally,

$$MM^{T} = ((X^{T}X)^{-1}X^{T} + c)((X^{T}X)^{-1}X^{T} + c)^{T}$$

= $(X^{T}X)^{-1} + CC^{T}$

since from (3),
$$CX = 0$$
 and $C^T X^T = 0$ (5)

Then.

$$cov(\tilde{\beta}|X) = \sigma^2(X^TX)^{-1} + \sigma^2CC^T$$

What Makes OLS the Best?

Finally,

$$MM^{T} = ((X^{T}X)^{-1}X^{T} + c)((X^{T}X)^{-1}X^{T} + c)^{T}$$

= $(X^{T}X)^{-1} + CC^{T}$

since from (3),
$$CX = 0$$
 and $C^T X^T = 0$ (5)

Then.

$$cov(\tilde{\beta}|X) = \sigma^2(X^TX)^{-1} + \sigma^2CC^T$$

When is this minimized?

Regression Anatomy

• In the simple bivariate case:

$$\beta_1 = \frac{\operatorname{Cov}(Y_i, X_i)}{\operatorname{Var}(X_i)}$$

Regression Anatomy

• In the simple bivariate case:

$$\beta_1 = \frac{\operatorname{Cov}(Y_i, X_i)}{\operatorname{Var}(X_i)}$$

• In the multivariate case, β_i is:

$$\beta_j = \frac{\operatorname{Cov}(Y_i, \tilde{X}_{ij})}{\operatorname{Var}(\tilde{X}_{ij})}$$

where \tilde{X}_{ii} is the residual from the regression of X_{ij} on all other covariates.

Regression Anatomy

• In the simple bivariate case:

$$\beta_1 = \frac{\operatorname{Cov}(Y_i, X_i)}{\operatorname{Var}(X_i)}$$

• In the multivariate case, β_j is:

$$\beta_j = \frac{\operatorname{Cov}(Y_i, \tilde{X}_{ij})}{\operatorname{Var}(\tilde{X}_{ij})}$$

where \tilde{X}_{ij} is the residual from the regression of X_{ij} on all other covariates.

• The multiple regression coefficient $\hat{\beta}_j$ represents the additional contribution of x_j on y, after x_j has been adjusted for $x_o, x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_p$

Regression Anatomy

• In the simple bivariate case:

$$\beta_1 = \frac{\operatorname{Cov}(Y_i, X_i)}{\operatorname{Var}(X_i)}$$

• In the multivariate case, β_j is:

$$\beta_j = \frac{\operatorname{Cov}(Y_i, \tilde{X}_{ij})}{\operatorname{Var}(\tilde{X}_{ij})}$$

where \tilde{X}_{ij} is the residual from the regression of X_{ij} on all other covariates.

- The multiple regression coefficient $\hat{\beta}_j$ represents the additional contribution of x_j on y, after x_j has been adjusted for $x_o, x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_p$
- What happens when x_j is highly correlated with some of the other x_k's?

Regression in Causal Analysis

• Imagine we are analyzing a *randomized* experiment with a regression using the following model:

$$Y_i = \alpha + \beta_1 \cdot T_i + \mathbf{X}_i^T \cdot \beta_2 + \epsilon_i$$

where T_i is an indicator variable for treatment status and \mathbf{X}_i is a vector of *pre-treatment characteristics*

• Under this model, what is random?

Regression in Causal Analysis

• Imagine we are analyzing a *randomized* experiment with a regression using the following model:

$$Y_i = \alpha + \beta_1 \cdot T_i + \mathbf{X}_i^T \cdot \beta_2 + \epsilon_i$$

where T_i is an indicator variable for treatment status and X_i is a vector of *pre-treatment characteristics*

- Under this model, what is random?
- How do we interpret the coefficients on X_i?

Regression in Causal Analysis

• Imagine we are analyzing a *randomized* experiment with a regression using the following model:

$$Y_i = \alpha + \beta_1 \cdot T_i + \mathbf{X}_i^T \cdot \beta_2 + \epsilon_i$$

where T_i is an indicator variable for treatment status and X_i is a vector of *pre-treatment characteristics*

- Under this model, what is random?
- How do we interpret the coefficients on X_i?
- How do we interpret the coefficient β_1 ?

OLS as Prediction

Model-Base

Regression and Causation

Regression in an Observational Study

