Learning Dynamics and Heterogeneity of Spatial-Temporal Graph Data for Traffic Forecasting

ASTGNN+Transformer

Paper by Shengnan Guo Youfang Lin Huaiyu Wan Xiucheng Li Gao Cong Presentation by Tobramycin

NCUT

2022.6

Contents

- Introduction
- 2 ASTGNN
- SEXPERIMENTS
- 4 Conclusion

Introduction

Tobramycin (NCUT)

ASTGNN

2022.6

Introduction

ASTGNN

Framework

Temporal trend-aware multihead attention

$$\begin{split} \text{MHSelfAttention}(\mathbf{Q},\mathbf{K},\mathbf{V}) &= \oplus \left(\text{head}_1, \dots, \text{ head }_h\right) W^O \\ \text{head}_j &= \text{Attention}\left(\mathbf{Q}W_j^Q, \mathbf{K}W_j^K, \mathbf{V}W_j^V\right) \\ \text{TrSelfAttention}(\mathbf{Q},\mathbf{K},\mathbf{V}) &= \oplus \left(\text{Trhead}_1, \dots, \text{Trhead}_h\right) W^O \\ \text{Trhead}_j &= \text{Attention}\left(\Phi_j^Q \star \mathbf{Q}, \Phi_j^K \star \mathbf{K}, \mathbf{V}W_j^V\right) \end{split}$$

Traditional self-attention

Trend-aware self-attention

Standard 1-D Convolution

Positional Embedding

Temporal Position Embedding

$$E_{\mathrm{TP}}(t, 2d) = \sin\left(t/10000^{2d/d_{\mathrm{model}}}\right) \tag{1}$$

$$E_{\text{TP}}(t, 2d+1) = \cos\left(t/10000^{2d/d_{\text{model}}}\right)$$
 (2)

Spatial Position Embedding use Laplacian Smoothing

Spatial Dynamic GCN

Normal GCN

$$GCN\left(\mathbf{Z}_{t}^{(l-1)}\right) = \sigma\left(\mathbf{A}\mathbf{Z}_{t}^{(l-1)}\mathbf{W}^{(l)}\right) \tag{4}$$

$$A = \begin{cases} \widetilde{D}^{-\frac{1}{2}} \widetilde{A} \widetilde{D} & \text{undirected graph} \\ \widetilde{D}^{-1} \widetilde{A}, & \text{directed graph} \end{cases}$$
 (5)

Dynamic GCN

Tobramycin (NCUT)

$$\mathbf{X}_{t}^{(l)} = \mathrm{DGCN}\left(\mathbf{Z}_{t}^{(l-1)}\right) = \sigma\left(\left(\mathbf{A} \odot \mathbf{S}_{t}\right) \mathbf{Z}_{t}^{(l-1)} \mathbf{W}^{(l)}\right)$$
(6)

Here, spatial correlation weight matrix

$$S_t = \operatorname{softmax}\left(\frac{Z_t^{(l-1)} Z_t^{(l-1)^T}}{\sqrt{d_{\mathsf{model}}}}\right) \in \mathbb{R}^{N \times N}$$
 (7)

2022.6

ASTGNN 9/18

EXPERIMENTS

Datasets

TABLE 1 Dataset Description.

Data type	Data type Datasets		Time range		
Highway traffic flow	PEMS03	358	09/01/2018 - 11/30/2018		
	PEMS04	307	01/01/2018 - 02/28/2018		
	PEMS07	883	05/01/2017 - 08/31/2017		
	PEMS08	170	07/01/2016 - 08/31/2016		
Metro crowd flow	HZME	80	01/01/2019 - 01/26/2019		

Baselines

- VAR: Vector Auto-Regression is an advanced time series model, which captures the pairwise relationships among multiple time series.
- SVR : Support Vector Regression utilizes a linear support vector machine to perform regression.
- LSTM [60]: Long Short-Term Memory network, a special RNN model.
- DCRNN [6]: Diffusion Convolutional Recurrent Neural Network employs diffusion graph convolutional networks and GRU based on seq2seq to predict traffic graph series data.
- STGCN [45]: Spatial-Temporal Graph Convolutional Network uses ChebNet in the spatial dimension and 2D convolutional networks in the temporal dimension to model the correlations in spatial-temporal graph data.
- ASTGCN [11]: Attention Based Spatial-Temporal Graph Convolutional Networks designs spatial attention and temporal attention mechanisms to model spatial and temporal dynamics.
- Graph WaveNet [10]: Graph WaveNet combines graph convolutions with temporal convolutions to capture spatial-temporal dependencies.
- STSGCN [12]: Spatial-Temporal Synchronous Graph Convolutional Network proposes a new kind of convolution operation to capture

Result

TABLE 3

Performance comparison on the four highway traffic flow datasets.
(the best results are in bold and * denotes the second-best results. † denotes our models.)

Baseline	e methods Metrics	VAR	SVR	LSTM	DCRNN	STGCN	ASTGCN(r)	Graph WaveNet	STSGCN	ASTGNN†	ASTGNN(p) [†]
PEMS03	MAE RMSE MAPE (%)	21.08 34.75 22.35	22.01 ± 0.07 35.28 ± 0.08 22.93 ± 1.09	20.62 ± 0.19 33.54 ± 0.34 28.94 ± 2.76	$\begin{array}{c} 18.39 \pm 0.17 \\ 30.56 \pm 0.17 \\ 20.22 \pm 2.83 \end{array}$	$\begin{array}{c} 18.28 \pm 0.39 \\ 30.73 \pm 0.78 \\ 17.52 \pm 0.32 \end{array}$	17.85 ± 0.45 29.88 ± 0.65 17.65 ± 0.79	14.79 ± 0.08 25.51 ± 0.17 $14.32^* \pm 0.24$	17.51 ± 0.13 29.05 ± 0.40 16.92 ± 0.22	$14.78^{\circ} \pm 0.05$ $25.00^{\circ} \pm 0.18$ 14.79 ± 0.22	$\begin{array}{c} 14.55 \pm 0.07 \\ 24.96 \pm 0.31 \\ 13.66 \pm 0.14 \end{array}$
PEMS04	MAE RMSE MAPE (%)	23.75 36.66 18.09	28.66 ± 0.01 44.59 ± 0.02 19.15 ± 0.04	26.81 ± 0.31 40.74 ± 0.17 22.33 ± 1.60	23.65 ± 0.04 37.12 ± 0.07 16.05 ± 0.10	$\begin{array}{c} 22.27 \pm 0.18 \\ 35.02 \pm 0.19 \\ 14.36 \pm 0.12 \end{array}$	$\begin{array}{c} 22.42 \pm 0.19 \\ 34.75 \pm 0.19 \\ 15.87 \pm 0.36 \end{array}$	19.36 ± 0.02 31.72 ± 0.13 13.31 ± 0.19	21.08 ± 0.14 33.83 ± 0.27 13.88 ± 0.07	$\begin{array}{c} 18.60^* \pm 0.06 \\ 30.91 \pm 0.22 \\ 12.36 \pm 0.11 \end{array}$	18.44 ± 0.08 $31.02^* \pm 0.18$ $12.37^* \pm 0.08$
PEMS07	MAE RMSE MAPE (%)	101.20 155.14 39.69	32.97 ± 0.98 50.15 ± 0.15 15.43 ± 1.22	29.71 ± 0.09 45.32 ± 0.27 14.14 ± 1.00	23.60 ± 0.05 36.51 ± 0.05 10.28 ± 0.02	$\begin{array}{c} 27.41 \pm 0.45 \\ 41.02 \pm 0.58 \\ 12.23 \pm 0.38 \end{array}$	25.98 ± 0.78 39.65 ± 0.89 11.84 ± 0.69	21.22 ± 0.24 34.12 ± 0.18 9.07 ± 0.20	23.99 ± 0.14 39.32 ± 0.31 10.10 ± 0.08	$20.62^* \pm 0.12$ $34.00^* \pm 0.21$ $8.86^* \pm 0.10$	$\begin{array}{c} 19.26 \pm 0.17 \\ 32.75 \pm 0.25 \\ 8.54 \pm 0.19 \end{array}$
PEMS08	MAE RMSE MAPE (%)	22.32 33.83 14.47	23.25 ± 0.01 36.15 ± 0.02 14.71 ± 0.16	22.19 ± 0.13 33.59 ± 0.05 18.74 ± 2.79	$\begin{array}{c} 18.22 \pm 0.06 \\ 28.29 \pm 0.09 \\ 11.56 \pm 0.04 \end{array}$	$\begin{array}{c} 18.04 \pm 0.19 \\ 27.94 \pm 0.18 \\ 11.16 \pm 0.10 \end{array}$	18.86 ± 0.41 28.55 ± 0.49 12.50 ± 0.66	15.07 ± 0.17 23.85* ± 0.18 9.51 ± 0.22	17.10 ± 0.04 26.83 ± 0.06 10.90 ± 0.05	15.00* ± 0.35 24.70 ± 0.53 9.50* ± 0.11	$\begin{array}{c} 12.72 \pm 0.09 \\ 22.60 \pm 0.13 \\ 8.78 \pm 0.20 \end{array}$

Tobramycin (NCUT) ASTGNN

Result

Fig. 6. Performance changes of different methods on the four datasets as the prediction interval increases.

Result

TABLE 5 Performance comparison on the metro crowd flow dataset. (the best results are in bold and * denotes the second-best results. † denotes our models.)

Baseline methods	MAE		RN	4SE	MAPE (%)		
Metrics	inflow	outflow	inflow	outflow	inflow	outflow	
VAR	17.65	22.35	28.10	37.96	58.07	96.68	
SVR	$ $ 21.94 \pm 0.0173	25.59 ± 0.1187	40.73 ± 0.0205	50.07 ± 0.1732	49.40 ± 0.0679	91.71 ± 3.1788	
LSTM	22.53 ± 0.5089	26.18 ± 0.3193	39.33 ± 0.3506	48.91 ± 0.4458	60.12 ± 2.4417	103.06 ± 8.5229	
DCRNN	$ 12.25 \pm 0.1316$	18.02 ± 0.1579	20.91 ± 0.3290	31.45 ± 0.3879	25.53 ± 0.3811	$66.98 \!\pm 1.6475$	
STGCN	$ 12.88 \pm 0.2810$	19.12 ± 0.2312	22.86 ± 0.3884	33.12 ± 0.3596	29.66 ± 1.4970	73.66 ± 1.4909	
ASTGCN	$ 13.10 \pm 0.4733$	19.35 ± 0.5071	23.23 ± 0.8127	33.20 ± 1.0714	33.29 ± 3.6336	88.75 ± 3.9984	
Graph WaveNet	$ 11.20^* \pm 0.1116$	$17.50^* \pm 0.1234$	$19.73^* \pm 0.4610$	30.65 ± 0.4059	23.75* ± 0.7082	73.65 ± 2.7181	
STSGCN	$ $ 12.85 \pm 0.1006	18.74 ± 0.1289	23.20 ± 0.3773	33.12 ± 0.4260	28.02 ± 0.1947	76.85 ± 1.0094	
ASTGNN [†]	$ 11.46 \pm 0.0841$	17.94 ± 0.1093	20.84 ± 0.2498	31.91 ± 0.3163	24.42 ± 0.3029	72.46 ± 2.4177	
ASTGNN(p) [†]	$ $ 10.94 \pm 0.0393	17.47 ± 0.0310	18.89 ± 0.1081	30.78* ± 0.0774	23.33 ± 0.1400	70.52*± 0.2739	

15 / 18

Conclusion

Thank you!

Tobramycin (NCUT) ASTGNN 2022.6 18/18