矩阵代数与应用

上海大学计算机工程与科学学院 2024年1月

第七章矩阵微分与梯度分析

- ●矩阵微分
 - ◆Jacobian矩阵与梯度分析
 - ◆一阶实矩阵微分与Jacobian矩阵辨识
- ●梯度分析初步
 - ◆实变函数无约束优化的梯度分析
 - ◆平滑凸优化的一阶算法
 - ◆约束凸优化算法

矩阵微分

量与量之间的对应关系(自变量←→ 应变量):

{标量,向量,矩阵} ←→ {标量,向量,矩阵}

- (1) 实函数矩阵对标量变元的导数 (矩阵, 元素都是标量变元的函数)
- (2) 实矩阵函数对矩阵变元的导数 (标量函数, 自变量是矩阵)
- (3) 实函数**矩阵**对**矩阵**变元的导数
- (4) 梯度矩阵、Jacobian矩阵与Hessian矩阵
- (5) 实值标量函数的矩阵微分及计算

注:此部分对应参考教材的7.1,7.2

自变量 因变量

标量→标量

标量→向量

标量→矩阵

向量→标量

向量→向量

向量→矩阵

矩阵→标量

矩阵→向量

矩阵→矩阵

实值函数的分类

函数类型\变量类型	标量变元 x ∈ \mathbb{R}	向量变元 $x \in \mathbb{R}^m$	矩阵变元 $X \in \mathbb{R}^{m \times n}$
<mark>标量函数</mark> f ∈ ℝ	$f(x)$ $f: \mathbb{R} \to \mathbb{R}$	$f(x)$ $f: \mathbb{R}^m \to \mathbb{R}$	$f: \mathbb{R}^{m \times n} \to \mathbb{R}$
向量函数 f ∈ ℝ	$f(x) \\ f: \mathbb{R} \to \mathbb{R}^p$	$f(x)$ $f: \mathbb{R}^m \to \mathbb{R}^p$	$f(x)$ $f: \mathbb{R}^{m \times n} \to \mathbb{R}^p$
矩阵函数 $F \in \mathbb{R}^{p \times q}$	$F(x)$ $F: \mathbb{R} \to \mathbb{R}^{p \times q}$	$F: \mathbb{R}^m \to \mathbb{R}^{p \times q}$	$F: \mathbb{R}^{m \times n} \to \mathbb{R}^{p \times q}$

复值函数的分类

函数类型\变量类型	标量变元z, z* ∈ ℂ	向量变元 $\mathbf{z}, \mathbf{z}^* \in \mathbb{C}^m$	矩阵变元Z,Z* ∈ ℂ ^{m×n}
标量函数f∈ℂ	$f(z, z^*)$ $f: \mathbb{C} \times \mathbb{C} \to \mathbb{C}$	$f(z, z^*)$ $f: \mathbb{C}^m \times \mathbb{C}^m \to \mathbb{C}$	$f(z,z^*)$ $f: \mathbb{C}^{m \times n} \times \mathbb{C}^{m \times n} \to \mathbb{C}$
向量函数 f ∈ ℂ ^p	$f(z,z^*)$ $f: \mathbb{C} \times \mathbb{C} \to \mathbb{C}^p$	$f(z,z^*)$ $f: \mathbb{C}^m \times \mathbb{C}^m o \mathbb{C}^p$	f(z, z*) f: $\mathbb{C}^{m \times n} \times \mathbb{C}^{m \times n} \to \mathbb{C}^p$
矩阵函数 $F \in \mathbb{C}^{p \times q}$	$F(z, z^*)$ $F: \mathbb{C} \times \mathbb{C} \to \mathbb{C}^{p \times q}$	$F(z, z^*)$ $F: \mathbb{C}^m \times \mathbb{C}^m \to \mathbb{C}^{p \times q}$	$F(\mathbf{z}, \mathbf{z}^*)$ $F: \mathbb{C}^{m \times n} \times \mathbb{C}^{m \times n}$ $\to \mathbb{C}^{p \times q}$

(1)实函数矩阵对标量变元的导数

一对多!

$$A'(t) = \frac{dA(t)}{dt} = \left(\frac{da_{ij}(t)}{dt}\right)_{m \times n}$$

$$\frac{d}{dt} \left(A(t) \pm B(t) \right) = \frac{d}{dt} A(t) \pm \frac{d}{dt} B(t)$$

$$\frac{d}{dt} \left(A(t)B(t) \right) = \frac{d}{dt} A(t) \cdot B(t) + A(t) \frac{d}{dt} B(t)$$

$$\frac{d}{dt} \left(a(t)A(t) \right) = \frac{da(t)}{dt} A(t) + a(t) \frac{d}{dt} A(t)$$

自变量是标量, 应变量是由实函数组成的矩阵

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{tA} = Ae^{tA} = e^{tA}A$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\cos(tA) = -A\sin(tA) = -\sin(tA)A$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\sin(tA) = A\cos(tA) = \cos(tA)A$$

◆高阶导数

$$\frac{\mathrm{d}^k A(t)}{\mathrm{d}t^k} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}^{k-1} A(t)}{\mathrm{d}t^{k-1}} \right) = \left(\frac{\mathrm{d}^k a_{ij}(t)}{\mathrm{d}t^k} \right)_{m \times n}$$

◆ 积分

$$\int_{a}^{b} A(t) dt = \left(\int_{a}^{b} a_{ij}(t) dt \right)_{m \times n}$$

例1. MATLAB函数expm()和exp()

```
>> A=randn(3,3)
A =
 0.5377  0.8622  -0.4336
  1.8339
         0.3188 0.3426
 -2.2588 -1.3077 3.5784
>> exp(A)
ans =
  1.7120 2.3683 0.6482
 6.2582
         1.3754 1.4086
         0.2704 35.8161
 0.1045
>> expm(A)
ans =
 7.0769 4.0651 -4.8645
  1.9420 1.6985
                 1.6878
 -38.6739 -23.3133 41.3345
```

例2. MATLAB函数logm()和log()

```
>> A=randn(3,3)
A =
 1.4090 -1.2075 0.4889
 1.4172 0.7172 1.0347
 >> B=expm(A)
B =
 1.9349 -2.5701 -0.1837
 5.1812 1.6601 3.0920
 5.0943 2.3454 4.3886
>> C=logm(B)
C =
 1.4090 -1.2075 0.4889
 1.4172 0.7172 1.0347
 >> A-C
ans =
 1.0e-14 *
 -0.1554 0.1110 -0.0278
 -0.0444 0.0222 -0.1776
 0.1110 -0.0666 0.0222
```

例3.用MATLAB函数logm()计算log(tA)的导数

```
rng default; 注:
A=rand(3,3); 按元
disp(A); 的区
t=3;
dt=0.001;
dA=logm((t+dt)*A)-logm(t*A);
B=dA/dt;
disp(B);

0.8147 0.9134 0.2785
```

 $\frac{\mathrm{d}}{\mathrm{d}t}\log(tA) = |/\mathrm{t}| (?)$

注: MATLAB中的exp()和log()函数是按元素计算的. 请注意expm()和exp()的区别.

对数函数泰勒级数展开式(公式)

$$\ln(x) = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{(x-1)^n}{n}$$

$$\frac{\mathrm{d}}{\mathrm{d}t}\log(tA) = |/t \quad (?)$$

$$\frac{\mathbf{d}}{\mathbf{d}t}\log(tA) = \frac{\mathbf{d}}{\mathbf{d}t}\sum_{n=1}^{+\infty} (-1)^{n-1} \frac{(tA-I)^n}{n} = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{\mathbf{d}}{\mathbf{d}t} \frac{(tA-I)^n}{n}$$

$$= \sum_{n=1}^{+\infty} (-1)^{n-1} A(tA-I)^{n-1} = (1/t) \sum_{n=1}^{+\infty} (-1)^{n-1} tA(tA-I)^{n-1}$$

只需证明
$$\sum_{n=1}^{+\infty} (-1)^{n-1} tA(tA-I)^{n-1} = I$$
即可

(注:级数必须收敛才行,此推导是形式推导)

应用:矩阵微分方程的解

定理1: 满足初始条件 $\mathbf{x}(t)|_{t=t_0} = \mathbf{x}(t_0)$ 的一阶线性常系数齐次微分方程组

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t)$$

有且仅有唯一解 $\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)}\mathbf{x}(t_0)$

定理2:一阶线性常系数非齐次微分方程组

$$\frac{\mathrm{d}\mathbf{x}(t)}{\mathrm{d}t} = \mathbf{A}\mathbf{x}(t) + \mathbf{b}(t)$$

的通解为

$$\mathbf{x}(t) = e^{tA} \left(\mathbf{c} + \int_{t_0}^t e^{-sA} \, \mathbf{b}(s) ds \right)$$

其中c为任意常数向量.

定理3: n阶常系数齐次线性微分方程

$$\begin{cases} x^{(n)}(t) + a_1 x^{(n-1)}(t) + a_2 x^{(n-2)}(t) + \dots + a_n x(t) = 0 \\ x^{(i)}(t)|_{t=t_0} = x^{(i)}(t_0), \quad i = 0, 1, \dots, n-1 \end{cases}$$

的解为

$$x(t) = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix} e^{(t-t_0)A} \begin{bmatrix} x(t_0) \\ x'(t_0) \\ \vdots \\ x^{(n-1)}(t_0) \end{bmatrix}$$

其中

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & \cdots & 1 \\ -a_n & -a_{n-1} & -a_{n-2} & \cdots & -a_1 \end{bmatrix}$$

注: $\diamondsuit(y_1,y_2,...,y_n) = (x^{(0)},x^{(1)},...,x^{(n-1)})$ 可推导求解过程.

定理4: n阶常系数非齐次线性微分方程

$$x^{(n)}(t) + a_1 x^{(n-1)}(t) + a_2 x^{(n-2)}(t) + \dots + a_n x(t) = f(t)$$

的通解为

$$x(t) = [10\cdots 0] \left(e^{tA}c + \int_{t_0}^t e^{A(t-s)} bf(s) ds \right)$$

其中c为任意常数向量; $b = \begin{bmatrix} 0 & 0 & \cdots & 1 \end{bmatrix}^T$; 而A同定理3.

多对一!

(2)实矩阵函数对矩阵变元的导数

$$\frac{\mathrm{d}f(\mathbf{X})}{\mathrm{d}\mathbf{X}} = \left(\frac{\partial f(\mathbf{X})}{\partial x_{ij}}\right)_{m \times n} = \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{11}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X})}{\partial x_{m1}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{mn}} \end{bmatrix}_{m \times n}$$

◆ 列向量偏导和行向量偏导 $(\mathbf{x} \in \mathbb{R}^{m \times 1})$

$$\frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m} \end{bmatrix}^{\mathrm{T}} \qquad \partial X = \begin{pmatrix} \frac{\partial X_1}{\partial X_m} \end{pmatrix} \qquad \partial_X = \begin{pmatrix} \frac{\partial X_1}{\partial X_m} \end{pmatrix} \\
\frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}^{\mathrm{T}}} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m} \end{bmatrix} \qquad \partial_X = \begin{pmatrix} \frac{\partial X_1}{\partial X_m} \end{pmatrix} \qquad \partial_X = \begin{pmatrix} \frac{\partial X_1}{\partial X_m} \end{pmatrix}$$

自变量是矩阵, 应变量是实函数

标量函数对矩阵/向量变元导数的性质

1) 若
$$\mathbf{X} \in \mathbb{R}^{m \times n}$$
且 $f(\mathbf{X}) = c$ 为常数,则 $\frac{\mathrm{d}c}{\mathrm{d}X} = O_{m \times n}$. (常数)

2) 若 c_1 , c_2 为实常数,则

$$\frac{\mathrm{d}(c_1 f(\mathbf{X}) + c_2 g(\mathbf{X}))}{\mathrm{d}\mathbf{X}} = c_1 \frac{\mathrm{d}f(\mathbf{X})}{\mathrm{d}\mathbf{X}} + c_2 \frac{\mathrm{d}g(\mathbf{X})}{\mathrm{d}\mathbf{X}}.$$
 (线性法则)

3)
$$\frac{\mathrm{d}f(\mathbf{X})g(\mathbf{X})}{\mathrm{d}\mathbf{X}} = \frac{\mathrm{d}f(\mathbf{X})}{\mathrm{d}\mathbf{X}}g(\mathbf{X}) + f(\mathbf{X})\frac{\mathrm{d}g(\mathbf{X})}{\mathrm{d}\mathbf{X}}$$
. (乘法法则)

4) 若 $g(X) \neq 0$, 则

$$\frac{\mathrm{d}f(\mathbf{X})/g(\mathbf{X})}{\mathrm{d}\mathbf{X}} = \frac{1}{a^2(\mathbf{X})} \left[\frac{\mathrm{d}f(\mathbf{X})}{\mathrm{d}\mathbf{X}} g(\mathbf{X}) - f(\mathbf{X}) \frac{\mathrm{d}g(\mathbf{X})}{\mathrm{d}\mathbf{X}} \right]. \quad ($$
 商法则)

(*)
$$\frac{\mathrm{d}g(f(X))}{\mathrm{d}X} = \frac{\mathrm{d}g(f(X))}{\mathrm{d}f(X)} \frac{\mathrm{d}f(X)}{\mathrm{d}X}$$
.(链式法则)

(**) 变元独立性基本假设!!!

5)
$$\frac{\mathrm{d}\mathbf{a}^{\mathrm{T}}\mathbf{X}\mathbf{b}}{\mathrm{d}\mathbf{X}} = \mathbf{a}\mathbf{b}^{\mathrm{T}} \quad (\mathbf{X} \in \mathbb{R}^{m \times n})$$

$$\frac{df(\mathbf{x})}{d\mathbf{x}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m}\right]^{\mathrm{T}}$$

$$\frac{df(\mathbf{x})}{d\mathbf{x}^{\mathrm{T}}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m}\right]$$

例4 函数 $f(X) = \mathbf{a}^{\mathsf{T}} \mathbf{X} \mathbf{b}$ 的导数

```
a=rand(1,5)';
b=rand(1,5)';
X=rand(5,5);
delta=0.01;
Z=zeros(5,5);
for ii=1:5
  for jj=1:5
    XX=X;
XX(ii,jj)=XX(ii,jj)+delta;
    f=a'*XX*b-a'*X*b;
    Z(ii,jj)=f/delta;
  end
end
disp(Z);
disp(a*b');
```

```
0.2942
       0.1653
               0.2111
                       0.5179
                               0.3979
       0.0500
               0.0638
                       0.1566
                               0.1203
0.0890
       0.1601
0.2850
               0.2045
                       0.5016
                               0.3854
                       0.1500
               0.0611
0.0852
       0.0479
                               0.1153
0.3252
       0.1827
               0.2333
                       0.5725
                               0.4398
       0.1653
0.2942
               0.2111
                       0.5179
                               0.3979
                       0.1566
0.0890
       0.0500
               0.0638
                               0.1203
0.2850
       0.1601
               0.2045
                       0.5016
                               0.3854
0.0852
       0.0479
               0.0611
                       0.1500
                               0.1153
0.3252
       0.1827
               0.2333
                       0.5725
                               0.4398
```

6) 若
$$X \in \mathbb{R}^{n \times n}$$
非奇异,则

$$\frac{\mathrm{d}\mathbf{a}^{\mathrm{T}}\mathbf{X}^{-1}\mathbf{b}}{\mathrm{d}\mathbf{X}} = -\mathbf{X}^{-\mathrm{T}}\mathbf{a}\mathbf{b}^{\mathrm{T}}\mathbf{X}^{-\mathrm{T}} \qquad \mathbf{X}^{-\mathrm{T}} = (\mathbf{X}^{-1})^{\mathrm{T}}$$

7)
$$\frac{\mathrm{d}a^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{X}\mathbf{b}}{\mathrm{d}\mathbf{X}} = \mathbf{X}(\mathbf{a}\mathbf{b}^{\mathrm{T}} + \mathbf{b}\mathbf{a}^{\mathrm{T}})$$

8)
$$\frac{\mathrm{d}\mathbf{a}^{\mathrm{T}}\mathbf{X}\mathbf{X}^{\mathrm{T}}\mathbf{b}}{\mathrm{d}\mathbf{X}} = (\mathbf{a}\mathbf{b}^{\mathrm{T}} + \mathbf{b}\mathbf{a}^{\mathrm{T}})\mathbf{X}$$

9)
$$\frac{\operatorname{dexp}(\mathbf{a}^{\mathrm{T}}\mathbf{X}\mathbf{b})}{\operatorname{d}\mathbf{X}} = \mathbf{a}\mathbf{b}^{\mathrm{T}}\operatorname{exp}(\mathbf{a}^{\mathrm{T}}\mathbf{X}\mathbf{b})$$

10)
$$\frac{d\mathbf{a}^{\mathrm{T}}\mathbf{x}}{d\mathbf{y}} = \frac{d\mathbf{x}^{\mathrm{T}}\mathbf{a}}{d\mathbf{y}} = \mathbf{a}$$

11)
$$\frac{\mathrm{d}\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{b}}{\mathrm{d}\mathbf{x}} = \mathbf{A}\mathbf{b}, \quad \frac{\mathrm{d}\mathbf{b}^{\mathrm{T}}\mathbf{A}\mathbf{x}}{\mathrm{d}\mathbf{x}} = \mathbf{A}^{\mathrm{T}}\mathbf{b}$$

12)
$$\frac{\mathrm{d}\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x}}{\mathrm{d}\mathbf{x}} = (\mathbf{A} + \mathbf{A}^{\mathrm{T}})\mathbf{x}$$

$$\frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m}\right]^{\mathrm{T}}
\frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}^{\mathrm{T}}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m}\right]$$

$$\frac{d\mathbf{a}^{\mathsf{T}}\mathbf{X}^{-1}\mathbf{b}}{d\mathbf{X}} = -\mathbf{X}^{-\mathsf{T}}\mathbf{a}\mathbf{b}^{\mathsf{T}}\mathbf{X}^{-\mathsf{T}}$$
的推导

$$(X + dX)^{-1}(X + dX) = I$$

$$\Rightarrow (X + dX)^{-1}X + (X + dX)^{-1}dX = I$$

$$\Rightarrow (X + dX)^{-1} + (X + dX)^{-1}(dX)X^{-1} = X^{-1}$$

$$\Rightarrow (X + dX)^{-1} - X^{-1} = -(X + dX)^{-1}(dX)X^{-1}$$

$$\Rightarrow a^{T}(X + dX)^{-1}b - a^{T}X^{-1}b = -a^{T}(X + dX)^{-1}(dX)X^{-1}b$$

$$\Rightarrow \frac{a^{T}(X + dX)^{-1}b - a^{T}X^{-1}b}{dX} = \frac{-a^{T}(X + dX)^{-1}(dX)X^{-1}b}{dX}$$

$$\therefore \frac{-a^{T}(X+dX)^{-1}(dX)X^{-1}b}{dX} = \frac{-a^{T}X^{-1}(dX)X^{-1}b + o(\|dX\|)^{2}}{dX}$$

(分子二阶微分可以略去)

$$\therefore \frac{a^{T}(X+dX)^{-1}b - a^{T}X^{-1}b}{dX} = \frac{-a^{T}X^{-1}(dX)X^{-1}b}{dX}$$
$$= -(a^{T}X^{-1})^{T}(X^{-1}b)^{T}$$
$$= -(X^{-1})^{T}ab^{T}(X^{-1})^{T}$$

例5 $\frac{d\mathbf{a}^{\mathsf{T}}\mathbf{X}^{-1}\mathbf{b}}{d\mathbf{X}} = -\mathbf{X}^{-\mathsf{T}}\mathbf{a}\mathbf{b}^{\mathsf{T}}\mathbf{X}^{-\mathsf{T}}$ 的MATLAB程序验证

```
a=rand(1,5)';
b=rand(1,5)';
X=rand(5,5);
X1=inv(X);
delta=0.001;
Z=zeros(5,5);
for ii=1:5
  for jj=1:5
    XX=X;
    XX(ii,jj)=XX(ii,jj)+delta;
    X2=inv(XX);
    f=a'*X2*b-a'*X1*b;
    Z(ii,jj)=f/delta;
  end
end
disp(Z);
disp(-X1'*a*b'*X1');
disp(Z+X1'*a*b'*X1');
```

```
3.5398 -6.7683
                 2.9917
                         -1.6593
                                  -0.7051
2.1314
        -4.0853
                 1.8036 -1.0002
                                 -0.4259
-8.3936
        16.2730
                 -7.0900
                          3.9679
                                   1.6876
-1.5598
         2.9905
                -1.3161
                          0.7315
                                  0.3121
9.5195 -18.0554
                  8.0547
                          -4.4498
                                  -1.8892
3.5355
        -6.7791
                 2.9879
                         -1.6603
                                  -0.7064
2.1317
        -4.0874
                1.8015 -1.0011
                                  -0.4259
-8.4308
        16.1656 -7.1250
                          3.9592
                                   1.6845
         2.9894 -1.3176
-1.5591
                          0.7322
                                  0.3115
9.4840 -18.1850
                  8.0150
                          -4.4538
                                  -1.8949
0.0043
        0.0108
                 0.0038
                         0.0011
                                  0.0013
        0.0021
-0.0004
                 0.0021
                         0.0009
                                 -0.0000
0.0372
        0.1074
                 0.0350
                         0.0087
                                  0.0032
-0.0008
        0.0011
                 0.0015
                         -0.0006
                                  0.0006
0.0355
                 0.0397
                         0.0040
        0.1296
                                  0.0057
```

✓矩阵迹的微分

13)
$$\frac{\operatorname{dtr}(\mathbf{X})}{\operatorname{dX}} = \mathbf{I}$$
14)
$$\frac{\operatorname{dtr}(\mathbf{X}^{-1})}{\operatorname{dX}} = -(\mathbf{X}^{-2})^{\mathsf{T}}$$
15)
$$\frac{\operatorname{dtr}(\mathbf{A}\mathbf{X})}{\operatorname{dX}} = \frac{\operatorname{dtr}(\mathbf{X}\mathbf{A})}{\operatorname{dX}} = \mathbf{A}^{\mathsf{T}}$$
16)
$$\frac{\operatorname{dtr}(\mathbf{A}\mathbf{X}^{\mathsf{T}})}{\operatorname{dX}} = \frac{\operatorname{dtr}(\mathbf{X}^{\mathsf{T}}\mathbf{A})}{\operatorname{dX}} = \mathbf{A},$$

$$\frac{\operatorname{dtr}(\mathbf{a}\mathbf{X}^{\mathsf{T}})}{\operatorname{dX}} = \frac{\operatorname{dtr}(\mathbf{X}\mathbf{A}^{\mathsf{T}})}{\operatorname{dX}} = \mathbf{a}.$$
17)
$$\frac{\operatorname{dtr}(\mathbf{X}\mathbf{X}^{\mathsf{T}})}{\operatorname{dX}} = \frac{\operatorname{dtr}(\mathbf{X}^{\mathsf{T}}\mathbf{X})}{\operatorname{dX}} = 2\mathbf{X}$$
18)
$$\frac{\operatorname{dtr}(\mathbf{A}\mathbf{X}^{-1})}{\operatorname{dX}} = -(\mathbf{X}^{-1}\mathbf{A}\mathbf{X}^{-1})^{\mathsf{T}}$$
19)
$$\frac{\operatorname{dtr}(\mathbf{X}^{\mathsf{T}}\mathbf{A}\mathbf{X})}{\operatorname{dX}} = (\mathbf{A} + \mathbf{A}^{\mathsf{T}})\mathbf{X}$$

$$\frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m}\right]^{\mathrm{T}} \\
\frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}^{\mathrm{T}}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m}\right]$$

$$\frac{\mathrm{d}f(\mathbf{X})}{\mathrm{d}\mathbf{X}} = \left(\frac{\partial f(\mathbf{X})}{\partial x_{ij}}\right)_{\substack{m \times n \\ \partial x_{11}}}$$

$$= \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{11}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X})}{\partial x_{m1}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{mn}} \end{bmatrix}_{\substack{m \times n}}$$

$$\frac{dtr(X^{-1})}{dX} = -X^{-2T}$$
的证明

注意到

$$(X + dX)^{-1} - X^{-1} = -(X + dX)^{-1}(dX)X^{-1}$$

 $\frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m}\right]^{\mathrm{T}} \\
\frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}^{\mathrm{T}}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m}\right]$

所以

$$dtrace(X^{-1}) = trace((X + dX)^{-1}) - trace(X^{-1})$$

$$= trace((X + dX)^{-1} - X^{-1})$$

$$= trace(-(X+dX)^{-1}(dX)X^{-1})$$

$$= trace(-(X)^{-1}(dX)X^{-1})$$

$$\therefore dtrace(X^{-1})/dX = -(X^{-2})^T$$

$$\frac{\mathrm{d}f(\mathbf{X})}{\mathrm{d}\mathbf{X}} = \left(\frac{\partial f(\mathbf{X})}{\partial x_{ij}}\right)_{\substack{m \times n \\ m \times n}}$$

$$= \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{11}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X})}{\partial x_{m1}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{mn}} \end{bmatrix}_{\substack{m \times n}}$$

 $\frac{\mathbf{d}trace(AXB)}{\mathbf{d}X}$ 的公式推导和验证有三种技术路线:

- (1) 基于矩阵代数运算化简该公式,利用已知公式的结果,如 trace(AXB) = trace(BAX) = trace(CX), (C = BA),利用公式 $\frac{\mathbf{d}trace(CX)}{\mathbf{d}X} = C^T,$ 即可.
- (2)基于函数的矩阵元素表达式进行推导
- (这个是近乎万能的方法,参见"张量代数")

$$trace(AXB) = trace((a_{ik})(x_{kl})(b_{lj})) = trace(\sum_{k=1}^{n} \sum_{l=1}^{n} a_{ik}x_{kl}b_{lj})$$

$$= \sum_{w=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} a_{wk} x_{kl} b_{lw}$$

$$\left(\frac{\Delta trace(AXB)}{\Delta x_{ij}}\right) = \left(\frac{\sum_{w=1}^{n} a_{wi} \Delta x_{ij} b_{jw}}{\Delta x_{ij}}\right) = \left(\sum_{w=1}^{n} a_{wi} b_{jw}\right) = \left(\sum_{w=1}^{n} b_{jw} a_{wi}\right) = A^{T} B^{T}$$

(3) 编写程序进行数值验证和辨识

例6 $\frac{dtr(\mathbf{X}^{-1})}{d\mathbf{X}} = -\mathbf{X}^{-2T}$ 的MATLAB验证

```
a=rand(1,5)';
b=rand(1,5)';
X=rand(5,5);
X1=inv(X);
delta=0.001;
Z=zeros(5,5);
for ii=1:5
  for jj=1:5
    XX=X;
    XX(ii,jj)=XX(ii,jj)+delta;
    X2=inv(XX);
    f=trace(X2)-trace(X1);
    Z(ii,jj)=f/delta;
  end
end
disp(Z);
disp(-(X1*X1)');
disp(Z+(X1*X1)');
```

```
-1.0027
        0.2716
                 1.8452
                         0.0499
                                 -1.5638
-0.2608
        -0.5639
                 -2.5756
                          0.5131
                                  3.1805
-0.6624
         3.1740
                 1.0724
                         -1.2269
                                 -2.7109
-0.1048
         2.5211
                 3.7267
                         -3.3684 -3.5344
        -4.5757 -2.4091
 1.8196
                          3.0176
                                  2.2801
-1.0025
         0.2714
                 1.8455
                          0.0499 -1.5655
-0.2606
        -0.5648 -2.5784
                          0.5129
                                  3.1769
-0.6632
         3.1705
                 1.0725
                         -1.2271 -2.7108
-0.1048
         2.5177
                 3.7229
                         -3.3747
                                 -3.5370
 1.8197
        -4.5826 -2.4079
                          3.0146
                                  2.2809
         0.0003
-0.0001
                 -0.0003
                         -0.0000
                                  0.0017
-0.0002
         0.0008
                 0.0027
                          0.0002
                                  0.0037
0.0008
         0.0035
                 -0.0001
                          0.0002
                                 -0.0001
0.0000
         0.0034
                 0.0038
                         0.0063
                                  0.0026
-0.0001
         0.0069
                          0.0030
                 -0.0011
                                  -0.0008
```

✓矩阵行列式的微分

$$20) \frac{\mathrm{d}|\mathbf{X}|}{\mathrm{d}X} = |\mathbf{X}|\mathbf{X}^{-\mathrm{T}}$$

$$\frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m}\right]^{\mathrm{T}}$$

$$\frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}^{\mathrm{T}}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m}\right]$$

21)
$$\frac{d|\mathbf{X}^{-1}|}{d\mathbf{X}} = -|\mathbf{X}|^{-1}\mathbf{X}^{-T}$$

$$22) \frac{d\log|\mathbf{X}|}{d\mathbf{X}} = \frac{1}{|\mathbf{X}|} \frac{d|\mathbf{X}|}{d\mathbf{X}}$$

23)
$$\frac{\frac{d|\mathbf{X}^{T}\mathbf{X}|}{d\mathbf{X}} = 2|\mathbf{X}^{T}\mathbf{X}|\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1} \quad (\operatorname{rank}(\mathbf{X}) = n)}{\frac{d|\mathbf{X}\mathbf{X}^{T}|}{d\mathbf{X}}} = 2|\mathbf{X}\mathbf{X}^{T}|(\mathbf{X}\mathbf{X}^{T})^{-1}\mathbf{X} \quad (\operatorname{rank}(\mathbf{X}) = m)$$

24)
$$\frac{d|\mathbf{X}^{T}\mathbf{A}\mathbf{X}|}{d\mathbf{X}} = |\mathbf{X}^{T}\mathbf{A}\mathbf{X}| \times \left[\mathbf{A}\mathbf{X}(\mathbf{X}^{T}\mathbf{A}\mathbf{X})^{-1} + \mathbf{A}^{T}\mathbf{X}(\mathbf{X}^{T}\mathbf{A}\mathbf{X})^{-T}\right]$$

25)
$$\frac{d|\mathbf{X}\mathbf{A}\mathbf{X}^{\mathrm{T}}|}{d\mathbf{X}} = |\mathbf{X}\mathbf{A}\mathbf{X}^{\mathrm{T}}| \times \left[(\mathbf{X}\mathbf{A}\mathbf{X}^{\mathrm{T}})^{-\mathrm{T}}\mathbf{X}\mathbf{A}^{\mathrm{T}} + (\mathbf{X}\mathbf{A}\mathbf{X}^{\mathrm{T}})^{-1}\mathbf{X}\mathbf{A} \right]$$

公式20)的推导:

 $\Delta \det(A) = \det(A + \Delta A) - \det(A)$

 $\phi I(i,j)$ 为只有第i行第j列元素不为零的、非零元素等于1的矩阵,

$$\Delta A = \Delta a_{ij} I(i,j), \text{II}$$

 $\det(A + \Delta A) - \det(A) = \det(A + \Delta a_{ij}I(i,j)) - \det(A) = \Delta a_{ij}A_{ij}$

其中, A_{ij} 是A的第i行第j列的代数余子式,也就是 $\Delta \det(A)/\Delta a_{ij}=A_{ij}$,

因为 $A^{-1} = (A_{ii})/\det(A)$ (这是方阵逆的定义),所以

$$\frac{\mathbf{d} \det(A)}{\mathbf{d} A} = (\Delta \det(A) / \Delta a_{ij}) = \det(A) (A^{-1})^T$$

(3)实函数矩阵对矩阵变元的导数

多对多!

若 $\mathbf{F}(\mathbf{X}) \in \mathbb{R}^{p \times q}$ 是以矩阵 $\mathbf{X} \in \mathbb{R}^{m \times n}$ 为变元的实值函数矩阵,则

$$\frac{\mathrm{d}\mathbf{F}(\mathbf{X})}{\mathrm{d}\mathbf{X}} = \left(\frac{\partial\mathbf{F}(\mathbf{X})}{\partial x_{ij}}\right)_{m \times n} = \begin{bmatrix} \frac{\partial\mathbf{F}(\mathbf{X})}{\partial x_{11}} & \dots & \frac{\partial\mathbf{F}(\mathbf{X})}{\partial x_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial\mathbf{F}(\mathbf{X})}{\partial x_{m1}} & \dots & \frac{\partial\mathbf{F}(\mathbf{X})}{\partial x_{mn}} \end{bmatrix}_{\mathbf{mp} \times nq}$$

其中

$$\frac{\partial \mathbf{F}(\mathbf{X})}{\partial x_{ij}} = \begin{bmatrix} \frac{\partial f_{11}(\mathbf{X})}{\partial x_{ij}} & \dots & \frac{\partial f_{1q}(\mathbf{X})}{\partial x_{ij}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{p1}(\mathbf{X})}{\partial x_{ij}} & \dots & \frac{\partial f_{pq}(\mathbf{X})}{\partial x_{ij}} \end{bmatrix}_{n \times q}$$

$$i = 1, 2, \dots, m$$

$$j = 1, 2, \dots, n$$

自变量是矩阵, 应变量是由实函数组成的矩阵

例

例

已知
$$X = (x_1 \quad x_2 \quad x_3 \quad x_4)$$
,求 $\frac{dX}{dX}$, $\frac{dX}{dX^T}$, $\frac{d(XX^T)}{dX}$

$$\frac{\mathrm{d}X}{\mathrm{d}X^{T}} = \left(\frac{\partial X}{\partial x_{i}}\right)_{4\times1(\cancel{\pm})} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}_{4\times4(\overrightarrow{\pi}, \cancel{\Xi})}$$

$$\frac{d(XX^T)}{dX} = \frac{(dX)X^T + XdX^T}{dX} = \frac{d(X)X^T}{dX} + \frac{XdX^T}{dX}$$

$$= \left(\frac{\partial(X)X^T}{\partial x_i}\right)_{1\times 4(\mathfrak{P})} + \left(\frac{X\partial X^T}{\partial x_i}\right)_{1\times 4(\mathfrak{P})}$$
(千万不要约分!)

$$= (x_1, x_2, x_3, x_4)_{1\times 4(\pi x_1)} + (x_1, x_2, x_3, x_4)_{1\times 4(\pi x_1)} = 2(x_1, x_2, x_3, x_4)$$

(4)梯度矩阵、Jacobian矩阵与Hessian矩阵

定义:梯度向量和梯度矩阵

$$\nabla_{\mathbf{X}} f(\mathbf{X}) \stackrel{\text{def}}{=} \frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}} = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m} \end{bmatrix}^{\mathrm{T}}$$

$$\nabla_{\mathbf{X}} f(\mathbf{X}) \stackrel{\text{def}}{=} \frac{\mathrm{d}f(\mathbf{X})}{\mathrm{d}\mathbf{X}} = \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{11}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{1n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X})}{\partial x_{m1}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{mn}} \end{bmatrix}_{\mathbf{m} \times n}$$

$$\operatorname{vec}(\nabla_{\mathbf{X}} f(\mathbf{X})) = \frac{\mathrm{d}f(\mathbf{X})}{\mathrm{d}\operatorname{vec}(\mathbf{X})}$$

$$= \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{11}}, \dots, \frac{\partial f(\mathbf{X})}{\partial x_{m1}}, \dots, \frac{\partial f(\mathbf{X})}{\partial x_{m1}}, \dots, \frac{\partial f(\mathbf{X})}{\partial x_{m1}} \end{bmatrix}^{\mathrm{T}}$$

函数梯度方向取反所得向量(矩阵)- $\nabla x f(x)$ 称为函数在点X处的梯度流.

函数梯度方向取反所得向量(矩阵)- $\nabla x f(x)$ 称为函数在点X处的梯度流.

矩阵的向量化

vec(A):按列堆栈

rvec(A):按行堆栈

unvec_{m,n}(X):按列矩阵化

unrvec_{m,n}(X):按行矩阵化

$$rvec(A) = (vec(A^T))^T$$

 $K_{mn}vec(A) = vec(AT)$

交换矩阵:

$$K_{mn} = \sum_{j=1}^{n} (e_{j}^{T} \otimes I_{m} \otimes e_{j})$$

Hadamard积(对应元素乘积):*

Kronecker积: ⊗

内积: <X,Y>

在机器学习领域,α也称为学习率.

```
f=@(x) x+sin(x);
df=@(x) 1+cos(x);
x=1;
alpha=1.95;
for ii=1:100
  dx=-alpha*df(x);
  x=x+dx;
end
disp(x);
disp(f(x));
disp(df(x));
```

```
alpha=1.95;
-3.1378
-3.1416
7.0159e-06

alpha=0.05;
-2.7065
-3.1280
0.0932
```

定义: 协梯度向量和Jacobian矩阵(协梯度矩阵):

$$D_{\mathbf{X}}f(\mathbf{x}) \stackrel{\text{def}}{=} \frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}^{\mathrm{T}}} = \left[\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_{m}}\right]$$

$$D_{X}f(\mathbf{X}) \stackrel{\text{def}}{=} \frac{\mathrm{d}f(\mathbf{X})}{\mathrm{d}\mathbf{X}^{\mathrm{T}}} = \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{11}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{m1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X})}{\partial x_{1n}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{mn}} \end{bmatrix}_{n \times m}$$

Covariant form of the gradient vector Cogradient vector

命题1: 给定是指标量函数
$$f(\mathbf{X})$$
,其中 $\mathbf{X} \in \mathbb{R}^{m \times n}$,则

$$rvec(D_X f(\mathbf{X})) = D_{vec(X)} f(\mathbf{X})$$
 行為工作 $D_{\mathbf{X}} f(\mathbf{X}) = unrvec(D_{vec(\mathbf{X})} f(\mathbf{X}))$

命题2: $\nabla_{\mathbf{X}} f(\mathbf{X}) = \mathbf{D}_{\mathbf{X}}^{\mathrm{T}} \mathbf{f}(\mathbf{X})$

命题3: 给定f(X),其中 $X \in \mathbb{R}^{m \times n}$.若已求出 $D_{\text{vec}(x)}f(X)$,则

$$\nabla_X f(\mathbf{X}) = \text{unvec}\left(D_{\text{vec}(\mathbf{X})}^{\text{T}} f(\mathbf{X})\right)$$
 (1)

换言之,若

$$D_{\text{vec}(\mathbf{X})}f(\mathbf{X}) = [d_1, d_2, \dots, d_{mn}]$$

则

$$[\nabla_{\mathbf{X}} f(\mathbf{X})]_{i,j} = d_{i+(j-1)n} \quad \begin{cases} i = 1, \dots, m \\ j = 1, \dots n \end{cases}$$
 (2)

定义: 多元向量值函数的Jacobian矩阵或协梯度矩阵:

$$D_{\mathbf{x}}f(\mathbf{x}) = \frac{\mathrm{d}\mathbf{f}(\mathbf{x})}{\mathrm{d}\mathbf{x}^{\mathrm{T}}} = \begin{bmatrix} \frac{\mathrm{d}f_{1}(\mathbf{x})}{\mathrm{d}\mathbf{x}^{\mathrm{T}}} \\ \vdots \\ \frac{\mathrm{d}f_{p}(\mathbf{x})}{\mathrm{d}\mathbf{x}^{\mathrm{T}}} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_{1}(\mathbf{x})}{\partial x_{1}} & \dots & \frac{\partial f_{1}(\mathbf{x})}{\partial x_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{p}(\mathbf{x})}{\partial x_{1}} & \dots & \frac{\partial f_{p}(\mathbf{x})}{\partial x_{m}} \end{bmatrix}_{p \times m}$$

◆ 实值矩阵函数情形(应变量是矩阵)

$$\mathbf{F}(\mathbf{X}) = [f_{kl}]_{k=1,l=1}^{p,q} \in \mathbb{R}^{p \times q} \quad (其中\mathbf{X} \in \mathbb{R}^{m \times n})$$
$$\mathbf{f}(\mathbf{X}) \stackrel{\text{def}}{=} \text{vec}(\mathbf{F}(\mathbf{X})) \in \mathbb{R}^{pq \times 1}$$

$$= \left[f_{11}(\mathbf{X}), \dots, f_{p1}(\mathbf{X}), \dots, f_{1q}(\mathbf{X}), \dots, f_{pq}(\mathbf{X})\right]^{\mathrm{T}}$$

列优先!

矩阵函数F(X)的行向量偏导

$$D_{\text{vec}(\mathbf{X})}\mathbf{F}(\mathbf{X}) \stackrel{\text{def}}{=} \frac{\text{df}(\mathbf{X})}{\text{dvec}^{\mathsf{T}}(\mathbf{X})} = \frac{\text{dvec}(\mathbf{F}(\mathbf{X}))}{\text{dvec}^{\mathsf{T}}(\mathbf{X})} \in \mathbb{R}^{pq \times mn}$$

$$= \left[\frac{\text{d}f_{11}}{\text{dvec}^{\mathsf{T}}(\mathbf{x})}, \cdots, \frac{\text{d}f_{p1}}{\text{dvec}^{\mathsf{T}}(\mathbf{x})}, \cdots, \frac{\text{d}f_{1q}}{\text{dvec}^{\mathsf{T}}(\mathbf{x})}, \cdots, \frac{\text{d}f_{pq}}{\text{dvec}^{\mathsf{T}}(\mathbf{x})} \right]^{\mathsf{T}}$$

$$\begin{bmatrix} \frac{\partial f_{11}}{\partial x_{11}} & \cdots & \frac{\partial f_{11}}{\partial x_{m1}} & \cdots & \frac{\partial f_{11}}{\partial x_{1n}} & \cdots & \frac{\partial f_{11}}{\partial x_{mn}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{p1}}{\partial x_{11}} & \cdots & \frac{\partial f_{p1}}{\partial x_{m1}} & \cdots & \frac{\partial f_{p1}}{\partial x_{1n}} & \cdots & \frac{\partial f_{1q}}{\partial x_{mn}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{1q}}{\partial x_{11}} & \cdots & \frac{\partial f_{pq}}{\partial x_{m1}} & \cdots & \frac{\partial f_{pq}}{\partial x_{1n}} & \cdots & \frac{\partial f_{pq}}{\partial x_{mn}} \end{bmatrix}_{pq \times mn}$$

定义:标量函数的Hessian矩阵(<u>自变量是向量</u>)

$$\frac{\mathrm{d}^{2} f(\mathbf{x})}{\mathrm{d}\mathbf{x} \mathrm{d}\mathbf{x}^{\mathrm{T}}} = \frac{\mathrm{d}}{\mathrm{d}\mathbf{x}^{\mathrm{T}}} \begin{bmatrix} \frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{1}} & \dots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{1} \partial x_{m}} \\ \vdots & & \vdots \\ \frac{\partial^{2} f(\mathbf{x})}{\partial x_{m} \partial x_{1}} & \dots & \frac{\partial^{2} f(\mathbf{x})}{\partial x_{m} \partial x_{m}} \end{bmatrix}_{m \times m}$$

- ◆ 实值标量函数f(X)的Hessian矩阵(自变量:向量,应变量:标量)

$$\frac{\mathrm{d}^2 f(\mathbf{X})}{\mathrm{d}\mathbf{X}\mathrm{d}\mathbf{X}^{\mathrm{T}}} = \frac{\mathrm{d}}{\mathrm{d}\mathbf{X}^{\mathrm{T}}} \left[\frac{\mathrm{d}f(\mathbf{X})}{\mathrm{d}\mathbf{X}} \right]$$
 对称矩阵!
或记作 $\nabla_X^2 f(\mathbf{X}) = D_{\mathbf{X}}(\nabla_{\mathbf{X}} f(\mathbf{X})) = \nabla_{\mathbf{X}^T}(\nabla_{\mathbf{X}} f(\mathbf{X}))$

注意字母的小写和大写!

(5)实值标量函数的矩阵微分及计算

A.实值函数的矩阵微分

$$f(X+dX)=f(X)+\mathrm{d}f(X)$$

◆全微分

$$df(\mathbf{x}) = \frac{\partial f(\mathbf{x})}{\partial x_1} dx_1 + \dots + \frac{\partial f(\mathbf{x})}{\partial x_m} dx_m$$

$$= \left[\frac{\partial f(\mathbf{x})}{\partial x_1}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_m}\right] \begin{bmatrix} \mathrm{d}x_1 \\ \vdots \\ \mathrm{d}x_m \end{bmatrix}$$

$$= \frac{\mathrm{d}f(\mathbf{x})}{\mathrm{d}\mathbf{x}^{\mathrm{T}}} \, \mathrm{d}\mathbf{x}$$

函数的微分矩阵: df(X)

$$df(\mathbf{X}) = \frac{\partial f(\mathbf{X})}{\partial x_1} d\mathbf{x}_1 + \dots + \frac{\partial f(\mathbf{X})}{\partial x_n} d\mathbf{x}_n$$

$$= \left[\frac{\partial f(\mathbf{X})}{\partial x_{11}}, \dots, \frac{\partial f(\mathbf{X})}{\partial x_{m1}} \right] \begin{bmatrix} dx_{11} \\ \vdots \\ dx_{m1} \end{bmatrix} + \dots + \left[\frac{\partial f(\mathbf{X})}{\partial x_{1n}}, \dots, \frac{\partial f(\mathbf{X})}{\partial x_{mn}} \right] \begin{bmatrix} dx_{1n} \\ \vdots \\ dx_{mn} \end{bmatrix}$$

$$= \left[\frac{\partial f(\mathbf{X})}{\partial x_{11}}, \dots, \frac{\partial f(\mathbf{X})}{\partial x_{m1}}, \dots, \frac{\partial f(\mathbf{X})}{\partial x_{1n}}, \dots, \frac{\partial f(\mathbf{X})}{\partial x_{mn}}\right] \begin{pmatrix} \mathbf{d}x_{11} \\ \vdots \\ \mathbf{d}x_{m1} \\ \vdots \\ \mathbf{d}x_{1n} \\ \vdots \\ \mathbf{d}x_{mn} \end{pmatrix}$$

 $= rvec(\mathbf{A})vec(d\mathbf{X})$

其中

$$\mathbf{A} = \mathbf{D}_{\mathbf{x}} f(\mathbf{X}) = \frac{\mathrm{d}f(\mathbf{X})}{\mathrm{d}\mathbf{X}^{\mathrm{T}}} = \begin{bmatrix} \frac{\partial f(\mathbf{X})}{\partial x_{11}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{m1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{X})}{\partial x_{1n}} & \dots & \frac{\partial f(\mathbf{X})}{\partial x_{mn}} \end{bmatrix}$$

且

$$\mathbf{dX} = \begin{bmatrix} \mathbf{d}x_{11} & \cdots & \mathbf{d}x_{1n} \\ \vdots & \ddots & \vdots \\ \mathbf{d}x_{m1} & \cdots & \mathbf{d}x_{mn} \end{bmatrix}$$

进一步有

$$df(\mathbf{X}) = \left(\text{vec}(\mathbf{A}^{T})\right)^{T} \text{vec}(d\mathbf{X})$$

即

$$\mathrm{d}f(X)=tr(AdX)$$

df(X) = tr(AdX) 用此可以推导 出很多公式!

$$f(X + dX) = f(X) + df(X) = f(X) + tr(AdX)$$

命题4:一阶偏导矩阵A是唯一确定的.即,若存在 A_1 和 A_2 满足

$$df(\mathbf{X}) = tr(\mathbf{A}_i d\mathbf{X}), \quad i = 1,2$$

则 $\mathbf{A}_1 = \mathbf{A}_2$.

命题5: 若实值标量函数f(X)在X处可微分,则 辨识定理

$$df(\mathbf{X}) = tr(\mathbf{A}d\mathbf{X}) \iff \nabla_{\mathbf{X}}f(\mathbf{X}) = \frac{df(\mathbf{X})}{d\mathbf{X}} = \mathbf{A}^{\mathrm{T}}$$

辨识:满足某些条件,必定是它!

B.实矩阵微分计算

<1>一般规则

$$1) d(\mathbf{X}^{\mathrm{T}}) = (d\mathbf{X})^{\mathrm{T}}$$

2)
$$d(\alpha \mathbf{X} + \beta \mathbf{Y}) = \alpha d\mathbf{X} + \beta d\mathbf{Y}$$

例1.考虑标量函数tr(U)的微分,得

$$d(tr\mathbf{U}) = d\left(\sum_{i=1}^{n} u_{ii}\right) = \sum_{i=1}^{n} du_{ii} = tr(d\mathbf{U})$$

即有 $d(tr\mathbf{U}) = tr(d\mathbf{U})$.

<2>实矩阵微分的常用计算公式

- 1) dA = 0
- 2) $d(\alpha X) = \alpha dX$
- 3) $d(X^{T}) = (dX)^{T}$
- $4) d(\mathbf{U} \pm \mathbf{V}) = d\mathbf{U} \pm d\mathbf{V}$
- 5) d(AXB) = A(dX)B

6)

$$d(\mathbf{UV}) = (d\mathbf{U})\mathbf{V} + \mathbf{U}(d\mathbf{V})$$

$$d(\mathbf{UVW}) = (d\mathbf{U})\mathbf{VW} + \mathbf{U}(d\mathbf{V})\mathbf{W} + \mathbf{UV}(d\mathbf{W})$$
 特别地,若A为常数矩阵,则
$$d(\mathbf{XAX}^T) = (d\mathbf{X})\mathbf{AX}^T + \mathbf{XA}(d\mathbf{X})^T$$

和

$$d(\mathbf{X}^{\mathrm{T}}\mathbf{A}\mathbf{X}) = (d\mathbf{X})^{\mathrm{T}}\mathbf{A}\mathbf{X} + \mathbf{X}^{\mathrm{T}}\mathbf{A}d\mathbf{X}$$

7)
$$d(U \otimes V) = (dU) \otimes V + U \otimes dV$$

8)
$$d(\mathbf{U} \odot \mathbf{V}) = (d\mathbf{U}) \odot \mathbf{V} + \mathbf{U} \odot d\mathbf{V}$$

9)
$$d(vec(X)) = vec(dX)$$

10)
$$d\log X = X^{-1}dX$$
, $d\log(F(X)) = (F(X))^{-1}d(F(X))$

11)
$$d|\mathbf{X}| = |\mathbf{X}|\operatorname{tr}(\mathbf{X}^{-1}d\mathbf{X}), \quad d|\mathbf{F}(\mathbf{X})| = |\mathbf{U}|\operatorname{tr}(\mathbf{U}^{-1}d\mathbf{X})$$

12)
$$d(tr(X)) = tr(dX)$$
, $d(tr(F(X))) = tr(d(F(X)))$

13)
$$d(\mathbf{X}^{-1}) = -\mathbf{X}^{-1}(d\mathbf{X})\mathbf{X}^{-1}$$

14)
$$d(\mathbf{X}^{\dagger}) = -\mathbf{X}^{\dagger}(d\mathbf{X})\mathbf{X}^{\dagger} + \mathbf{X}^{\dagger}(\mathbf{X}^{\dagger})^{T}(d\mathbf{X}^{T})(\mathbf{I} - \mathbf{X}\mathbf{X}^{\dagger})$$

$$+ (\mathbf{I} - \mathbf{X}^{\dagger}\mathbf{X})(d\mathbf{X}^{T})(\mathbf{X}^{\dagger})^{T}\mathbf{X}^{\dagger}$$

$$d(\mathbf{X}^{\dagger}\mathbf{X}) = \mathbf{X}^{\dagger}(d\mathbf{X})(\mathbf{I} - \mathbf{X}^{\dagger}\mathbf{X}) + (\mathbf{X}^{\dagger}(d\mathbf{X})(\mathbf{I} - \mathbf{X}^{\dagger}\mathbf{X}))^{T}$$

$$d(\mathbf{X}\mathbf{X}^{\dagger}) = (\mathbf{I} - \mathbf{X}\mathbf{X}^{\dagger})(d\mathbf{X})\mathbf{X}^{\dagger} + ((\mathbf{I} - \mathbf{X}\mathbf{X}^{\dagger})(d\mathbf{X})\mathbf{X}^{\dagger})^{T}$$

提示:可尝试用SVD分解来证明

C.利用矩阵微分计算梯度矩阵

$$df(\mathbf{X}) = tr(\mathbf{A}d\mathbf{X}) \quad \Leftrightarrow \quad \nabla_{\mathbf{X}}f(\mathbf{X}) = \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} = \mathbf{A}^{\mathrm{T}}$$

□ 一般标量函数的梯度矩阵

$$\frac{\mathrm{d}a^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{X}\mathbf{b}}{\mathrm{d}\mathbf{X}} = \mathbf{X}(\mathbf{a}\mathbf{b}^{\mathrm{T}} + \mathbf{b}\mathbf{a}^{\mathrm{T}})$$

 $\mathbf{d}a^{\mathsf{T}}X^{\mathsf{T}}Xb = \mathbf{d}tr(a^{\mathsf{T}}X^{\mathsf{T}}Xb) = tr(\mathbf{d}a^{\mathsf{T}}X^{\mathsf{T}}Xb) = tr(a^{\mathsf{T}}\mathbf{d}(X^{\mathsf{T}}X)b)$

- = $tr(ba^Td(X^TX))=tr(ba^Td(X^T)X))+tr(ba^TX^TdX)$
- $= tr(Xba^{\mathsf{T}}\mathbf{d}(X^{\mathsf{T}})) + tr(ba^{\mathsf{T}}X^{\mathsf{T}}\mathbf{d}X) = tr(\mathbf{d}Xab^{\mathsf{T}}X^{\mathsf{T}}) + tr(ba^{\mathsf{T}}X^{\mathsf{T}}\mathbf{d}X)$
- =tr((ab $^{\mathsf{T}}X^{\mathsf{T}}$ +ba $^{\mathsf{T}}X^{\mathsf{T}}$)**d**X)
- □ 迹函数的梯度矩阵

$$\frac{\mathrm{dtr}(\mathbf{X})}{\mathrm{d}\mathbf{X}} = \mathbf{I}$$

□ 行列式的梯度矩阵

$$\frac{d|\mathbf{X}|}{dX} = |\mathbf{X}|\mathbf{X}^{-T}, \quad d|\mathbf{X}| = tr(|\mathbf{X}|\mathbf{X}^{-1}d\mathbf{X})$$

D.二阶实微分矩阵与实Hessian矩阵

实向量函数和 $p \times q$ 实矩阵函数.

表3 一阶辨识表

实函数	二阶实微分矩阵	实Hessian矩阵H	H的维数
f(x)	$d^2[f(x)] = \beta (dx)^2$	$\mathbf{H}[f(x)] = \beta$	1×1
$f(\mathbf{x})$	$d^2[f(x)] = (\mathrm{d}x)^{\mathrm{T}} B \mathrm{d}x$	$\mathbf{H}[f(\mathbf{x})] = \frac{1}{2} (\mathbf{B} + \mathbf{B}^{\mathrm{T}})$	$m \times m$
$f(\mathbf{X})$	$d^{2}[f(X)] = (\operatorname{dvec}(X))^{T} B \operatorname{d}(\operatorname{vec}(X))$	$\mathbf{H}[f(\mathbf{X})] = \frac{1}{2} (\mathbf{B} + \mathbf{B}^{\mathrm{T}})$	$mn \times mn$
f(x)	$d^2[f(x)] = b(dx)^2$	$\mathbf{H}[\mathbf{f}(x)] = \mathbf{b}$	$p \times 1$
$f(\mathbf{x})$	$d^{2}[f(x)] = (I_{m} \otimes dx)^{T}Bdx$	$\mathbf{H}[\mathbf{f}(\mathbf{x})] = \frac{1}{2} \left[\mathbf{B} + \left(\mathbf{B}' \right)_{v} \right]$	$pm \times m$
$f(\mathbf{X})$	$d^{2}[f(X)] = (I_{m} \otimes \operatorname{dvec}(X))^{\mathrm{T}}Bd(\operatorname{vec}(X))$	$\mathbf{H}[\mathbf{f}(\mathbf{X})] = \frac{1}{2} \left[\mathbf{B} + \left(\mathbf{B}' \right)_{v} \right]$	$pmn \times mn$
$\mathbf{F}(x)$	$d^2[\mathbf{F}(x)] = \mathbf{B}(\mathrm{d}x)^2$	$\mathbf{H}[\mathbf{F}(x)] = \text{vec}(\mathbf{B})$	$pq \times 1$
F(x)	$d^{2}[\text{vec}(\mathbf{F})] = (\mathbf{I}_{mp} \otimes d\mathbf{x})^{T} \mathbf{B} d\mathbf{x}$ $d^{2}[\text{vec}(\mathbf{F})]$	$\mathbf{H}[\mathbf{F}(\mathbf{x})] = \frac{1}{2} \left[\mathbf{B} + \left(\mathbf{B}' \right)_{v} \right]$	$pmq \times m$
F(X)	$= (\mathbf{I}_{mp} \otimes \operatorname{dvec}(\mathbf{X}))^{\mathrm{T}} \mathbf{B} \operatorname{d}(\operatorname{vec}(\mathbf{X}))$	$\mathbf{H}[\mathbf{F}'(\mathbf{x})] = \frac{1}{2} [\mathbf{B} + (\mathbf{B}')_{v}]$	$pmqn \times mn$

表中,对于实向量函数f,

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_1 \\ \mathbf{B}_2 \\ \vdots \\ \mathbf{B}_p \end{bmatrix}, \quad (\mathbf{B}')_v = \begin{bmatrix} \mathbf{B}_1^T \\ \mathbf{B}_2^T \\ \vdots \\ \mathbf{B}_p^T \end{bmatrix}$$

而对于实矩阵函数F,

$$\mathbf{B} = \begin{bmatrix} \mathbf{B}_{11} \\ \vdots \\ \mathbf{B}_{p1} \\ \vdots \\ \mathbf{B}_{1q} \\ \vdots \\ \mathbf{B}_{pq} \end{bmatrix} \quad (\mathbf{B}')_v = \begin{bmatrix} \mathbf{B}_{11}^T \\ \vdots \\ \mathbf{B}_{p1}^T \\ \vdots \\ \mathbf{B}_{1q}^T \\ \vdots \\ \mathbf{B}_{pq}^T \end{bmatrix}$$

定理: 令f(X)是矩阵 $X \in \mathbb{R}^{m \times n}$ 的实值标量函数,并可二次微分,则

$$d^{2}f(\mathbf{X}) = \operatorname{tr}(\mathbf{B}(d\mathbf{X})^{\mathrm{T}}\mathbf{C}d\mathbf{X}) \Leftrightarrow \mathbf{H}(f(\mathbf{X})) = \frac{1}{2}(\mathbf{B}^{\mathrm{T}} \otimes \mathbf{C} + \mathbf{B} \otimes \mathbf{C}^{\mathrm{T}})$$

$$d^{2}f(\mathbf{X}) = \operatorname{tr}(\mathbf{B}(d\mathbf{X})\mathbf{C}d\mathbf{X}) \Leftrightarrow \mathbf{H}(f(\mathbf{X})) = \frac{1}{2}\mathbf{K}_{nm}(\mathbf{B}^{T} \otimes \mathbf{C} + \mathbf{C}^{T} \otimes \mathbf{B})$$

式中 \mathbf{K}_{nm} 为交换矩阵.

$$K_{mn} = \sum_{j=1}^{n} (e_{j}^{T} \otimes I_{m} \otimes e_{j})$$

 d^2X , d(dX)两者有区别!

$$\frac{\mathrm{d}\mathbf{a}^{\mathrm{T}}\mathbf{X}\mathbf{b}}{\mathrm{d}\mathbf{X}} = \mathbf{a}\mathbf{b}^{\mathrm{T}} \quad (\mathbf{X} \in \mathbb{R}^{m \times n})$$

$$f(X) = a^{T}Xb$$

$$\mathbf{d}f(X) = \mathbf{d}(a^{T}X = b) = \mathbf{d}tr(a^{T}Xb) = tr(\mathbf{d}(a^{T}Xb)) = tr(a^{T}\mathbf{d}Xb) = tr(ba^{T}\mathbf{d}X)$$

$$D_{X}f(X) = ba^{T}, \nabla_{X}f(X) = ab^{T}$$

$$\mathbf{d}^{2}f(X) = \mathbf{d}(tr(ba^{T}\mathbf{d}X)) = tr(\mathbf{d}(ba^{T}\mathbf{d}X)) = tr(\mathbf{d}(ba^{T})\mathbf{d}X) + tr(ba^{T}\mathbf{d}(\mathbf{d}X)) = 0$$

$$H(f(X)) = 0$$

$$\mathbf{f}(X) = a^{T} X^{2} b$$

$$\mathbf{d}f(X) = tr(a^{T} \mathbf{d}(X^{2})b) = tr(ba^{T} \mathbf{d}X^{2}) = tr(ba^{T}((\mathbf{d}X)X + X\mathbf{d}X))$$

$$= tr(Xba^{T} \mathbf{d}X) + tr(ba^{T} X\mathbf{d}X)) = tr((Xba^{T} + ba^{T} X)\mathbf{d}X)$$

$$D_{X} f(X) = Xba^{T} + ba^{T} X, \nabla_{X} f(X) = ab^{T} X^{T} + X^{T} ab^{T}$$

$$\mathbf{d}^{2} f(X) = \mathbf{d}((Xba^{T} + ba^{T} X)\mathbf{d}X) = tr(\mathbf{d}(Xba^{T} + ba^{T} X)\mathbf{d}X))$$

$$= tr((\mathbf{d}Xba^{T} + ba^{T} \mathbf{d}X)\mathbf{d}X)) = tr(\mathbf{d}Xba^{T} \mathbf{d}X) + tr(ba^{T} \mathbf{d}X\mathbf{d}X)$$

$$H(f(X)) = \frac{1}{2} K_{nn}(I_{n} \otimes ba^{T} + ab^{T} \otimes I_{n} + ab^{T} \otimes I_{n} + I_{n} \otimes ba^{T}) = K_{nn}(I_{n} \otimes ba^{T} + ab^{T} \otimes I_{n})$$

7.3 梯度与无约束最优化

无约束极小化:
$$\min_{x \in \mathbb{R}} f(x) = \max_{x \in \mathbb{R}} [-f(x)]$$

f(x)称为目标函数(objective function):当仅用于极小化问题时,又称为代价函数(cost function).

主要思想是: 松弛和逼近

松弛: 找一个序列 $\{X_k\}_{k=0}^{\infty}$,使得 $\{f(X_k)\}_{k=0}^{\infty}$ 是松弛序列,即 $f(X_k) \ge f(X_{k+1})$.

逼近: 找一个简单函数代替目标函数,该简单函数与目标函数有相同的极值性质.

7.3.1 单变量函数的平稳点和极值点

f(x)的自变量x的邻域: $B(x; r)=\{Y:|Y-x|< r\}$

f(x)的极值点 x^* : $f(x^*) \le f(x)$, x^* , $x \in B(x^*, r)$

f(x)的平稳点 x^* : $\partial f(x^*) = 0$

平稳点只是极值点的候选点.

假设函数在x处二阶可微,则有Taylor展式成立:

$$f(x + \Delta x) = f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)(\Delta x)^{2} + o(\Delta x^{3})$$

平稳点(stationary point),极小值点,严格极小值点,极大值点,严格极大值点,鞍点(saddle point)

7.3.2 向量的函数的平稳点和极值点

f(X)的自变量X的邻域: $B(X; r) = \{Y: ||Y-X|| < r\}$

f(X)的极值点X*: $f(X^*) \leq f(X)$, X*, X $\in B(X^*, r)$

f(X)的平稳点 X^* : $\partial f(X^*) = 0$

平稳点只是极值点的候选点.

假设函数在X处二阶可微,则有Taylor展示成立:

$$f(X + \Delta X) = f(X) + \frac{\partial f(X)}{\partial X^{T}} \Delta X + \frac{1}{2} (\Delta X)^{T} \frac{\partial^{2} f(X)}{\partial X \partial X^{T}} \Delta X + o(\|\Delta X\|^{3})$$

平稳点(stationary point),极小值点,严格极小值点,极大值点,严格极大值点,鞍点(saddle point)

7.3.3 矩阵的函数的平稳点和极值点

f(X)的自变量X的邻域: $B(X; r) = \{Y: ||Y-X|| < r\}$

f(X)的极值点X*: $f(X^*) \leq f(X)$, X*, X∈ $B(X^*,r)$

f(X)的平稳点 X^* : $\partial f(X^*) = 0$

平稳点只是极值点的候选点.

假设函数在矩阵X处二阶可微,则有Taylor展示成立:

$$f(X + \Delta X) = f(X) + \frac{\partial f(X)}{\partial vec(X)^{T}} vec(\Delta X)$$

$$+\frac{1}{2}(vec(\Delta X))^{T}\frac{\partial^{2} f(X)}{\partial vec(X)\partial vec(X)^{T}}vec(\Delta X)+o(\|\Delta X\|^{3})$$

平稳点(stationary point),极小值点,严格极小值点,极大值点,严格极大值点,鞍点(saddle point)

表 7.3.1 实变函数的平稳点和极值点的条件

实变函数	$f(x): \mathbb{R} o \mathbb{R}$	$f(x):\mathbb{R}^n o\mathbb{R}$	$f(oldsymbol{X}): \mathbb{R}^{m imes n} ightarrow \mathbb{R}$	
平稳点	$\left. \frac{\partial f(x)}{\partial x} \right _{x=c} = 0$	$\left. rac{\partial f(x)}{\partial x} \right _{m{x}=m{c}} = m{0}$	$\left. \frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \right _{\boldsymbol{X} = \boldsymbol{C}} = \boldsymbol{O}_{m \times n}$	
局部极小点	$\frac{\partial^2 f(x)}{\partial x \partial x} \bigg _{x=c} \geqslant 0$	$\left. \frac{\partial^2 f(x)}{\partial x \partial x^{\mathrm{T}}} \right _{x=c} \succeq 0$	$\left. \frac{\partial^2 f(\boldsymbol{X})}{\partial \text{vec}(\boldsymbol{X})\partial (\text{vec}\boldsymbol{X})^{\text{T}}} \right _{\boldsymbol{X} = \boldsymbol{C}} \succeq 0$	
严格局部极小点	$\left. \frac{\partial^2 f(x)}{\partial x \partial x} \right _{x=c} > 0$	$\left. \frac{\partial^2 f(\boldsymbol{x})}{\partial \boldsymbol{x} \partial \boldsymbol{x}^{\mathrm{T}}} \right _{\boldsymbol{x} = \boldsymbol{c}} \succ 0$	$\frac{\partial^2 f(\mathbf{X})}{\partial \text{vec}(\mathbf{X})\partial (\text{vec }\mathbf{X})^{\text{T}}}\bigg _{\mathbf{X}=\mathbf{C}} \succ 0$	
局部极大点	$\left. \frac{\partial^2 f(x)}{\partial x \partial x} \right _{x=c} \leqslant 0$	$\left. \frac{\partial^2 f(\boldsymbol{x})}{\partial \boldsymbol{x} \partial \boldsymbol{x}^{\mathrm{T}}} \right _{\boldsymbol{x} = \boldsymbol{c}} \preceq 0$	$\left. \frac{\partial^2 f(\boldsymbol{X})}{\partial \text{vec}(\boldsymbol{X})\partial (\text{vec } \boldsymbol{X})^{\text{T}}} \right _{\boldsymbol{X} = \boldsymbol{C}} \preceq 0$	
严格局部极大点	$\left. \frac{\partial^2 f(x)}{\partial x \partial x} \right _{x=c} < 0$	$\left. \frac{\partial^2 f(x)}{\partial x \partial x^{\mathrm{T}}} \right _{x=c} \prec 0$	$\left. \frac{\partial^2 f(\boldsymbol{X})}{\partial \text{vec}(\boldsymbol{X})\partial(\text{vec}\boldsymbol{X})^{\text{T}}} \right _{\boldsymbol{X}=\boldsymbol{C}} \prec 0$	
鞍 点	$\left. \frac{\partial^2 f(x)}{\partial x \partial x} \right _{x=c}$ 不定	$\left. \frac{\partial^2 f(x)}{\partial x \partial x^{\mathrm{T}}} \right _{x=c}$ 不定	$\left. \frac{\partial^2 f(X)}{\partial \text{vec}(X)\partial (\text{vec} X)^{\text{T}}} \right _{X=C}$ 不定	

定义:给定一个Hermitian矩阵H,称向量p为(相对于矩阵的H)

- (1) 正曲率方向,若二次型 $p^H H p > 0$;
- (2) 零曲率方向,若二次型 $p^HHp=0$;
- (3) 负曲率方向,若二次型 $p^H H p < 0$

定义: 当矩阵H是非线性函数f(X)的Hessian矩阵时,称

- (1) $p^H H p$ 为函数 f 沿着方向 p 的曲率(curvature);
- (2) 满足 $p^H H p > 0$ 的向量p为f的正曲率方向;
- (3) 满足 $p^H H p < 0$ 的向量p为f的负曲率方向.
- ◆ <u>曲率方向也就是函数的最大变化率方向</u>

定理: $\Diamond f(w)$ 是复变量w的实值函数. 通过将w和w*视为独立变元,实目标函数f(w)的曲率方向由共轭梯度向量 $\nabla_{w^*}f(w)$ 给出.

7.3.4 实变函数的梯度分析

向量变元情形下目标函数f(X)的局部极小点条件:

$$\left. \frac{\partial f(X)}{\partial X^T} \right|_{X=X_0} = \mathbf{0}, \quad \left. \frac{\partial^2 f(X)}{\partial X \partial X^T} \right|_{X=X_0} \ge 0$$

(2) 充分条件: 若函数f(X)在 X_0 的共轭梯度为零向量,并且Hessian 矩阵正定,即

$$\left. \frac{\partial f(X)}{\partial X^T} \right|_{X=X_0} = \mathbf{0}, \quad \left. \frac{\partial^2 f(X)}{\partial X \partial X^T} \right|_{X=X_0} > 0$$

则 X_0 是函数f(X)的严格局部极小点.

具有等式约束的优化问题

$$\min_{\mathbf{s}.\ t.\ A\mathbf{x}=\mathbf{b}} f(\mathbf{x}) \qquad \sharp \, \mathbf{h} \in \mathbb{R}^{m \times n} (m \le n)$$

Lagrange乘子法

$$J(\mathbf{x}) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\mathrm{T}}(\mathbf{b} - \mathbf{A}\mathbf{x})$$

梯度分析:

- (1) 计算目标函数的梯度向量(矩阵).
- (2) 计算目标函数的Hessian矩阵,并分析其正定性.

梯度分析与最优化:

- (1) 设计合适的目标函数.
- (2) 令梯度矩阵等于零矩阵,得到优化问题的平稳点.
- (3) 利用负梯度,得到梯度算法.
- (4) 利用Hessian矩阵的正定性,分析梯度算法的收敛性能(平稳点是否为局部或全局极小点).

7.4 平滑凸优化的一阶算法

凸集和凸函数

$$f(\alpha X + (1-\alpha)Y) \le \alpha f(X) + (1-\alpha)f(Y)$$

严格凸函数

$$f(\alpha X + (1-\alpha)Y) < \alpha f(X) + (1-\alpha)f(Y)$$

凸函数辨识的充分必要条件

$$f(Y) \ge f(X) + \langle \nabla_X f(X), Y - X \rangle$$
 一阶充要条件

$$H_X f(X) = \frac{\partial^2 f(X)}{\partial X \partial X^T} >> 0$$
 二阶充要条件

符号≻≻表示非负定

梯度下降法

$$f(X + \Delta X) = f(X) + \frac{\partial f(X)}{\partial X^{T}} \Delta X + \frac{1}{2} (\Delta X)^{T} \frac{\partial^{2} f(X)}{\partial X \partial X^{T}} \Delta X + o(\|\Delta X\|^{3})$$

令 $H_X f(X) = \frac{\partial^2 f(X)}{\partial X \partial X^T} \approx \frac{1}{t} I$,略去高阶无穷小,则该函数的一个逼近为

$$f(X + \Delta X) = f(X) + \frac{\partial f(X)}{\partial X^{T}} \Delta X + \frac{1}{2t} (\Delta X)^{T} \Delta X$$

对其求梯度,得解

$$\Delta X = -t \frac{\partial f(X)}{\partial X}$$

$$d(f(X + \Delta X)) = d \operatorname{tr}(f(X) + \frac{\partial f(X)}{\partial X^T} \Delta X + \frac{1}{2t} (\Delta X)^T \Delta X)$$

$$= \operatorname{tr}\left(d\left(f(X) + \frac{\partial f(X)}{\partial X^T} \Delta X + \frac{1}{2t} (\Delta X)^T \Delta X\right)\right)$$

$$= \operatorname{tr}\left(\frac{\partial f(X)}{\partial X^T} d(\Delta X) + \frac{1}{2t} d((\Delta X)^T \Delta X)\right) = \operatorname{tr}\left(\frac{\partial f(X)}{\partial X^T} + \frac{1}{t} (\Delta X)^T\right) d(\Delta X)$$
所以 $\frac{\partial f(X)}{\partial X^T} + \frac{1}{t} (\Delta X)^T$ 是该函数关于 ΔX 的协梯度矩阵.根据极值点的必要性,有

Newton法

$$f(X + \Delta X) = f(X) + \frac{\partial f(X)}{\partial X^{T}} \Delta X + \frac{1}{2} (\Delta X)^{T} \frac{\partial^{2} f(X)}{\partial X \partial X^{T}} \Delta X + o(\|\Delta X\|^{3})$$

略去高阶无穷小,则该函数的一个逼近为

$$f(X + \Delta X) = f(X) + \frac{\partial f(X)}{\partial X^{T}} \Delta X + \frac{1}{2} (\Delta X)^{T} \frac{\partial^{2} f(X)}{\partial X \partial X^{T}} \Delta X$$
 此表达式的自变量是 \(\Delta X \)

对于自变量的增量,它也是极值,对增量求梯度,得

$$\Delta X = -\left(\frac{\partial^2 f(X)}{\partial X \partial X^T}\right)^{-1} \frac{\partial f(X)}{\partial X}$$

$$d(f(X + \Delta X)) = d \operatorname{tr}(f(X) + \frac{\partial f(X)}{\partial X^T} \Delta X + \frac{1}{2} (\Delta X)^T \frac{\partial^2 f(X)}{\partial X \partial X^T} \Delta X)$$

$$= \operatorname{tr}\left(d\left(f(X) + \frac{\partial f(X)}{\partial X^T} \Delta X + \frac{1}{2} (\Delta X)^T \frac{\partial^2 f(X)}{\partial X \partial X^T} \Delta X\right)\right)$$

$$= \operatorname{tr}\left(\frac{\partial f(X)}{\partial X^T} d(\Delta X) + d((\Delta X)^T \frac{\partial^2 f(X)}{\partial X \partial X^T} \Delta X)\right) = \operatorname{tr}\left(\left(\frac{\partial f(X)}{\partial X^T} + (\Delta X)^T \frac{\partial^2 f(X)}{\partial X \partial X^T}\right) d(\Delta X)\right)$$

$$\text{MU} \frac{\partial f(X)}{\partial X^T} + (\Delta X)^T \frac{\partial^2 f(X)}{\partial X \partial X^T} \text{ E is a \emptyset \times $\text{$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$$$

算法

(1) 令

$$\Delta X_{k} = -H^{-1}(f(X_{k})\nabla_{X}f(X_{k})) = -\left(\frac{\partial^{2}f(X_{k})}{\partial X\partial X^{T}}\right)^{-1}\frac{\partial f(X_{k})}{\partial X} \tag{牛顿法}$$

或

$$\Delta X_k = -\nabla_X f(X_k) = -\frac{\partial f(X_k)}{\partial X}$$
 (最速下降法)

(2) 选择步长

$$\mu_k > 0$$

(3) 更新

$$X_{k+1} = X_k + \mu_k \Delta X_k$$

$$X_{Tik} = \arg\min_{X} (||AX - b||_{2}^{2} + \lambda ||X||_{2}^{2}).$$
 $X_{Tik} = (A^{H}A + \lambda I)^{-1}A^{H}b.$

$$d(||AX - b||_{2}^{2} + \lambda ||X||_{2}^{2}) = d(tr(||AX - b||_{2}^{2} + \lambda ||X||_{2}^{2}))$$

$$= tr(d(AX - b)^{T}(AX - b) + \lambda d(X^{T}X)))$$

$$= tr(dX^{T}A^{T}(AX - b) + (AX - b)^{T}AdX + \lambda d(X^{T}X)))$$

$$= tr((AX - b)^{T}AdX) + tr((AX - b)^{T}AdX) + 2\lambda tr(X^{T}dX)$$

$$\boxtimes \overrightarrow{\square}$$

$$\nabla_{X} f = (2(AX - b)^{T}A + 2\lambda X^{T})^{T}$$

函数梯度矩阵辨识定理:

$$df(\mathbf{X}) = tr(\mathbf{A}d\mathbf{X}) \Leftrightarrow \nabla_{\mathbf{X}}f(\mathbf{X}) = \frac{\partial f(\mathbf{X})}{\partial \mathbf{X}} = \mathbf{A}^{\mathrm{T}}$$

$$d(\|AX - b\|_{2}^{2} + \lambda \|X\|_{2}^{2}) = d(tr(\|AX - b\|_{2}^{2} + \lambda \|X\|_{2}^{2}))$$

$$= tr(d(AX - b)^{T}(AX - b) + \lambda d(X^{T}X)))$$

$$= tr(dX^{T}A^{T}(AX - b) + (AX - b)^{T}AdX + \lambda d(X^{T}X)))$$

$$= tr((AX - b)^{T}AdX) + tr((AX - b)^{T}AdX) + 2\lambda tr(X^{T}dX)$$

$$\boxtimes \overline{\square}$$

$$\nabla_{X} f = (2(AX - b)^{T}A + 2\lambda X^{T})^{T}$$

$$\iiint \bigcup \bigcup (\|AX - b\|_{2}^{2} + \lambda \|X\|_{2}^{2}) = dtr((2(AX - b)^{T}A + 2\lambda X^{T})dX)$$

$$= tr(d(2(AX - b)^{T}A + 2\lambda X^{T})dX) = tr(d(2(X^{T}A^{T} - b^{T})A + 2\lambda X^{T})dX)$$

$$= tr(2dX^{T}A^{T}AdX + 2\lambda dX^{T}dX) = tr(dX^{T}(2A^{T}A + 2\lambda I)dX)$$

$$\Rightarrow H(\|AX - b\|_{2}^{2} + \lambda \|X\|_{2}^{2}) = 2A^{T}A + 2\lambda I$$

 $B=(1)_{1\times 1}$

Hessian矩阵辨识定理之一:

$$d^{2}f(\mathbf{X}) = \operatorname{tr}(\mathbf{B}(d\mathbf{X})^{\mathrm{T}}\mathbf{C}d\mathbf{X}) \Leftrightarrow \mathbf{H}(f(\mathbf{X})) = \frac{1}{2}(\mathbf{B}^{\mathrm{T}} \otimes \mathbf{C} + \mathbf{B} \otimes \mathbf{C}^{\mathrm{T}})$$

最速下降法

```
A=rand(4,4);
b=rand(4,1);
X=zeros(4,1);
lamda=.2;
Xt=(A'*A+lamda*eye(4,4))\A'*b;
disp([0,Xt']);
Df=zeros(4,4);
jj=10;kk=1;
for ii=1:200
  df=2*(A*X-b)'*A+2*lamda*X';
  Df=-df';
  X=X+lamda*Df;
  if jj==ii
    disp([ii,X']);
    kk=kk+1;
    jj=kk*40;
  end
end
disp([ii,X']);
```

```
lamda=0.2(迭代一百次, 与理论值就相同了)0-0.33820.38220.25420.582510.0000-0.29710.37360.16390.481080.0000-0.33820.38220.25420.5826120.0000-0.33820.38220.25420.5825160.0000-0.33820.38220.25420.5825200.0000-0.33820.38220.25420.5825200.0000-0.33820.38220.25420.5825
```

lamda的值不能太大,太大就发散.

```
lamda1=0.1 (迭代两百次,与理论值就相同了)
0 -0.1373 -0.4025 -0.5467 1.2368
10.0000 0.1009 -0.0211 -0.1409 0.5440
80.0000 -0.1230 -0.3595 -0.5334 1.1917
120.0000 -0.1346 -0.3910 -0.5447 1.2268
160.0000 -0.1367 -0.3995 -0.5463 1.2345
200.0000 -0.1372 -0.4017 -0.5466 1.2363
200.0000 -0.1372 -0.4017 -0.5466 1.2363
```

lamda参数混淆了!!!

```
A=rand(4,4);
b=rand(4,1);
X=zeros(4,1);
lamda=.2:
Xt=(A'*A+lamda*eye(4,4))\A'*b;
disp([0,Xt']);
lamda1=0.15;
Df=zeros(4,4);
jj=10;kk=1;
for ii=1:200
  df=2*(A*X-b)'*A+2*lamda*X';
  Df=-df';
  X=X+lamda1*Df;
  if jj==jj
    disp([ii,X']);
    kk=kk+1;
    jj=kk*40;
  end
end
disp([ii,X']);
```

```
lamda1=0.15 (迭代一百次, 与理论值就相同了)00.28780.39760.34280.171110.00000.32600.34070.29340.199280.00000.28820.39760.34210.1712120.00000.28790.39760.34270.1711160.00000.28780.39760.34280.1711200.00000.28780.39760.34280.1711200.00000.28780.39760.34280.1711
```

lamda1的值不能太大,太大就发散.

```
lamda1=0.1 (迭代两百次,与理论值就相同了)
        0.1264 -0.0274 0.0519
                              0.0388
 10.0000 0.0909 0.0032 0.0519
                              0.0436
 80.0000
         0.1262 -0.0273 0.0523
                             0.0385
120.0000 0.1264 -0.0274 0.0520 0.0387
160.0000 0.1264 -0.0274 0.0519
                               0.0387
200.0000 0.1264 -0.0274 0.0519
                               0.0388
200.0000
         0.1264 -0.0274 0.0519
                               0.0388
```

牛顿法 (收敛速度快)

```
A=rand(4,4);
b=rand(4,1);
X=zeros(4,1);
lamda=.2;
%Tikhonov解
Xt=(A'*A+lamda*eye(4,4))\A'*b;
disp([0,Xt']);
lamda1=1.2;%学习率
Df=zeros(4,4);
jj=5;kk=1;
for ii=1:200
  df=2*(A*X-b)'*A+2*lamda*X';%协梯度
  Df=2*(A'*A+lamda*eye(4,4));%H矩阵
  X=X-lamda1*Df\df';
  if jj==ii
    disp([ii,X']);
    kk=kk+1;
    jj=kk*5;
  end
end
disp([ii,X']);
```

牛顿法比最速下降法收敛速度快.

作业

7.9,7.12

实验(选做)

9.编程验证7.11的结果(参见PPT第31页)

矩阵代数纲要

谢谢!

gtding@shu.edu.cn

66135773, 计算机大楼921

上海大学计算机工程与科学学院

2024年1月