# **Heart Failure Prediction Analysis**

Heart failure is a condition in which the heart can't pump enough blood to meet the body's needs. In this EDA Project, I will analyse the Heart Failure Prediction dataset through tables and charts using numpy, pandas, matplotlib and seaborn.

NAME: PENDEM SANJAY

COLLEGE: INSTITUTE OF TECHNOLOGY, GURU GHASIDAS VISHWAVIDYALAYA

#### Importing the libraries:

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
```

# **Loading the Dataset:**

#### In [2]:

```
hf_df= pd.read_csv('heart_failure_clinical_records_dataset.csv')
hf_df
```

#### Out[2]:

|       | age   | anaemia  | creatinine_phosphokinase | diabetes | ejection_fraction | high_blood_pressure | platelets | serum_creatinine | serum_so |
|-------|-------|----------|--------------------------|----------|-------------------|---------------------|-----------|------------------|----------|
| 0     | 75.0  | absent   | 582                      | absent   | 20                | present             | 265000.00 | 1.9              |          |
| 1     | 55.0  | absent   | 7861                     | absent   | 38                | absent              | 263358.03 | 1.1              |          |
| 2     | 65.0  | absent   | 146                      | absent   | 20                | absent              | 162000.00 | 1.3              |          |
| 3     | 50.0  | present  | 111                      | absent   | 20                | absent              | 210000.00 | 1.9              |          |
| 4     | 65.0  | present  | 160                      | present  | 20                | absent              | 327000.00 | 2.7              |          |
|       |       |          |                          |          |                   |                     |           |                  |          |
| 294   | 62.0  | absent   | 61                       | present  | 38                | present             | 155000.00 | 1.1              |          |
| 295   | 55.0  | absent   | 1820                     | absent   | 38                | absent              | 270000.00 | 1.2              |          |
| 296   | 45.0  | absent   | 2060                     | present  | 60                | absent              | 742000.00 | 0.8              |          |
| 297   | 45.0  | absent   | 2413                     | absent   | 38                | absent              | 140000.00 | 1.4              |          |
| 298   | 50.0  | absent   | 196                      | absent   | 45                | absent              | 395000.00 | 1.6              |          |
| 200 r | UM6 X | 13 colum | ne                       |          |                   |                     |           |                  | <b>+</b> |

# In [3]:

12

```
hf_df.info()
```

```
Data columns (total 13 columns):
#
     Column
                               Non-Null Count Dtype
- - -
 0
                               299 non-null
                                                float64
     age
                               299 non-null
                                                object
     anaemia
 1
     creatinine_phosphokinase 299 non-null
                                                int64
                                                object
                               299 non-null
 3
     diabetes
     ejection fraction
                               299 non-null
                                                int64
                               299 non-null
    high_blood_pressure
                                                object
    platelets
                               299 non-null
                                                float64
 7
     serum_creatinine
                               299 non-null
                                                float64
 8
     serum sodium
                               299 non-null
                                                int64
 9
                               299 non-null
                                                object
     sex
 10 smoking
                               299 non-null
                                                bool
                               299 non-null
                                                int64
 11
    time
```

299 non-null

object

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 299 entries, 0 to 298

dtypes: bool(1), float64(3), int64(4), object(5) memory usage:  $28.4+\ KB$ 

DEATH\_EVENT

# **Data Preparation and Cleaning:**

#### In [4]:

```
hf_df.nunique()
Out[4]:
                              47
age
anaemia
                               2
creatinine_phosphokinase
                             208
diabetes
ejection_fraction
                              17
high_blood_pressure
                             176
platelets
serum creatinine
                              27
serum_sodium
sex
                               2
smoking
                               2
time
                             148
DEATH_EVENT
dtype: int64
```

## Checking for Null Values:

```
In [5]:
```

```
hf_df.isnull().values.any()
```

#### Out[5]:

False

## In [6]:

```
hf_df.isnull().sum()
```

#### Out[6]:

| age                      | 0 |
|--------------------------|---|
| anaemia                  | 0 |
| creatinine_phosphokinase | 0 |
| diabetes                 | 0 |
| ejection_fraction        | 0 |
| high_blood_pressure      | 0 |
| platelets                | 0 |
| serum_creatinine         | 0 |
| serum_sodium             | 0 |
| sex                      | 0 |
| smoking                  | 0 |
| time                     | 0 |
| DEATH_EVENT              | 0 |
| dtype: int64             |   |

As we can see, there are no missing values/NANs in the dataset

# **Exploratory Analysis and Visualization:**

## In [7]:

```
hf_df.head()
```

# Out[7]:

|   | age  | anaemia | creatinine_phosphokinase | diabetes | ejection_fraction | high_blood_pressure | platelets | serum_creatinine | serum_sodiu |
|---|------|---------|--------------------------|----------|-------------------|---------------------|-----------|------------------|-------------|
| 0 | 75.0 | absent  | 582                      | absent   | 20                | present             | 265000.00 | 1.9              | 1           |
| 1 | 55.0 | absent  | 7861                     | absent   | 38                | absent              | 263358.03 | 1.1              | 1           |
| 2 | 65.0 | absent  | 146                      | absent   | 20                | absent              | 162000.00 | 1.3              | 1           |
| 3 | 50.0 | present | 111                      | absent   | 20                | absent              | 210000.00 | 1.9              | 1           |
| 4 | 65.0 | present | 160                      | present  | 20                | absent              | 327000.00 | 2.7              | 1           |

#### NO OF PARTICIPANTS:

#### In [139]:

```
plt.figure(figsize=(12,6));
sns.displot(hf_df.age, color='lightgreen');
plt.title("NO OF PATIENTS WHO TOOK THIS SURVEY");
plt.ylabel("no of patients");
```

<Figure size 864x432 with 0 Axes>



#### **PATIENTS WITH DIABETES:**

## In [9]:

```
plt.figure(figsize=(12,6))

plt.title('PATIENTS WITH DIABETES')
sns.countplot(x=hf_df.diabetes, palette="Reds");
```



175 patients have diabetes and 125 of them don't have

## **PATIENTS WITH COMORBIDITIES:**

#### In [12]:

comorbidities=hf\_df[['age','anaemia','diabetes','high\_blood\_pressure']]
comorbidities

#### Out[12]:

|     | age  | anaemia | diabetes | high_blood_pressure |
|-----|------|---------|----------|---------------------|
| 0   | 75.0 | absent  | absent   | present             |
| 1   | 55.0 | absent  | absent   | absent              |
| 2   | 65.0 | absent  | absent   | absent              |
| 3   | 50.0 | present | absent   | absent              |
| 4   | 65.0 | present | present  | absent              |
|     |      |         |          |                     |
| 294 | 62.0 | absent  | present  | present             |
| 295 | 55.0 | absent  | absent   | absent              |
| 296 | 45.0 | absent  | present  | absent              |
| 297 | 45.0 | absent  | absent   | absent              |
| 298 | 50.0 | absent  | absent   | absent              |

299 rows × 4 columns

#### PATIENTS WITH HIGH BLOOD PRESSURE:

#### In [10]:

#### % OF PATIENTS WHO HAVE HIGH BLOOD PRESSURE



64.9% of the patients have High Blood Pressure

PATIENTS WHO SMOKE:

#### In [11]:

```
plt.figure(figsize=(12,6))

plt.title("PATIENTS WHO SMOKE")
sns.countplot(x=hf_df.smoking, palette="Blues");
```



200 patients smoke and the rest 100 don't smoke

## SERUM CREATININE LEVELS IN BLOOD:

#### In [13]:

```
plt.figure(figsize=(12,6))
plt.title("SERUM CREATININE LEVELS IN PATIENTS")
plt.xlabel("age (years)")
plt.ylabel("serum creatinine levels (mg/dL)")
plt.plot(hf_df.age,hf_df.serum_creatinine,"-r");
```



From the above chart, we can conclude that most of the patients have serum creatinine levels below 2 mg/dL

## SERUM SODIUM LEVELS IN BLOOD:

#### In [14]:

```
plt.figure(figsize=(12,6))
plt.title("SERUM SODIUM LEVELS IN PATIENTS")
plt.xlabel("age (years)")
plt.ylabel("serum sodium levels (mg/dL)")
plt.plot(hf_df.age,hf_df.serum_sodium,"-y");
```



Most of the patients have sodium levels between 130-145 dg/mL

#### **EJECTION FRACTION:**

#### In [15]:

```
plt.figure(figsize=(12,6))
sns.scatterplot(x=hf_df.age, y=hf_df.ejection_fraction,hue=hf_df.sex,legend=True)
plt.title("EJECTION FRACTION OF THE HEART IN MEN(1) AND WOMEN(0)");
```



# **QUESTIONS AND ANSWERS:**

# Q1: How many patients have all three comorbidities?

# In [70]:

```
a=hf_df.loc[(hf_df['diabetes'] == 'present') & (hf_df['anaemia'] == 'present') & (hf_df['high_blood_pressure'] ==
'present')]
counter=a.age.count()
print(counter)
```

#### Q2: What are the ages of youngest and oldest people who took part in this survey?

```
In [61]:
```

```
oldest=max(hf_df.age)
youngest=min(hf_df.age)
print("Oldest:", oldest)
print("Youngest:", youngest)
```

Oldest: 95.0 Youngest: 40.0

Q3: What conclusion can be drawn when we compare the smoking data with the platelets count?

#### In [97]:

```
hf_df[['smoking','platelets']]
```

#### Out[97]:

|     | smoking | platelets |  |  |  |
|-----|---------|-----------|--|--|--|
| 0   | False   | 265000.00 |  |  |  |
| 1   | False   | 263358.03 |  |  |  |
| 2   | True    | 162000.00 |  |  |  |
| 3   | False   | 210000.00 |  |  |  |
| 4   | False   | 327000.00 |  |  |  |
|     |         |           |  |  |  |
| 294 | True    | 155000.00 |  |  |  |
| 295 | False   | 270000.00 |  |  |  |
| 296 | False   | 742000.00 |  |  |  |
| 297 | True    | 140000.00 |  |  |  |
| 298 | True    | 395000.00 |  |  |  |

299 rows × 2 columns

Those who smoke have less no of platelets count in their blood

## Q4: What is the average levels of creatinine phosphokinase for those people in age group 40-50?

#### In [126]:

```
agecount=(hf_df.age>=40) &(hf_df.age<50)
average=hf_df[agecount].age.count()
average
sumofcreatinine=hf_df[agecount].creatinine_phosphokinase.sum()

average_levels=sumofcreatinine/average
print("Average:",average_levels )</pre>
```

Average: 802.1489361702128

#### Q5: Does the person with the highest platelet count have any comorbidities?

#### In [147]:

```
maximum= max(hf_df.platelets)
hf_df.loc[hf_df['platelets'] == maximum]
```

# Out[147]:

|   |     | age  | anaemia | creatinine_phosphokinase | diabetes | ejection_fraction | high_blood_pressure | platelets | serum_creatinine | serum_sod |   |
|---|-----|------|---------|--------------------------|----------|-------------------|---------------------|-----------|------------------|-----------|---|
| 4 | 109 | 45.0 | absent  | 292                      | present  | 35                | absent              | 850000.0  | 1.3              | <b>)</b>  | - |