DESIGN OF A DECLARATIVE LANGUAGE FOR PERVASIVE SYSTEMS

22 luglio 2008

Tesi di Laurea Specialistica:

Marco Fortunato Marco Marelli

Relatore:

Prof. Fabio A. Schreiber

Co-relatore:

Ing. Romolo Camplani

Introduction

DESIGN

of a

DECLARATIVE DATA LANGUAGE

+

DEVELOPMENT

of a

MIDDLEWARE

■ WSN

(Wireless Sensor Network)

□ RFID

(Radio Frequency Identification)

- PDA
- 0 ...

for

PERVASIVE SYSTEMS

Goals of the projects

Network abstraction

- Provide a database view of the network
- Hide low level characteristics of physical devices

Functional features

- Set sampling parameters (e.g. sample rate)
- Manipulate sampled data to produce query results

Non functional features

- Many non functional constraints can be identified:
 - to decide if a node should participate to a query
 - □ to set the rate used for sending data out of the node
 - to retrieve information about network nodes

		Deploy-time heterogeneity	
		Little	Full
Run-time heterogeneity	Little	Homogeneous systems	Partially Homogeneous systems
	Full	-	Heterogeneous systems

Architecture for pervasive systems

- ☐ *Application Layer*: Front end for data access
- Logical Object Layer: Abstraction for physical devices
- Device Access Layer: Sw infrastructure for device access

Logical objects (1)

- Logical object functionalities
 - Retrieve attributes
 - STATIC attributes
 - ID, device_type, maximum_sampling_rate, location (fixed devices)
 - PROBING DYNAMIC attributes
 - temperature, pressure, location (mobile devices), power_level
 - NON PROBING DYNAMIC attributes
 - last sensed RFID reader
 - Fire notification events
 - Get the list of supported attributes and events

Logical objects (2)

- Abstraction of the sampling operation:
 - PERIODIC SAMPLING
 - □ Reading of a logical object attribute periodically
 - EVENT BASED SAMPLING
 - Reading of a logical object attribute after an event is raised

Language design

CREATE STREAM TanksPositions (gpsID **ID**, linkedBaseStationID **ID**, distanceFromP **FLOAT**) **AS LOW:**

EVERY ONE

SELECT ID, linkedBaseStationID, dist_from_P(locationX, locationY)

SAMPLING EVERY 1 h

EXECUTE IF deviceType = "GPS"

CREATE SNAPSHOT NearestTank (qpsID **ID**, linkedBaseStationID **ID**)

WITH DURATION 1 h AS

HIGH:

SELECT TanksPositions.gpsID, TanksPositions.linkedBaseStationID

FROM TanksPositions (1 h)

WHERE TanksPositions.distanceFromP = MIN(TanksPositions.distanceFromP)

CREATE OUTPUT STREAM Temperatures (sensorID ID, temp FLOAT) AS

LOW:

EVERY ONE

SELECT ID, temp

SAMPLING EVERY 1 m

PILOT JOIN NearestTank **ON** NearestTank.linkedBaseStationID = baseStationID

- □ User submitted query
 - Data structures
 - Streams
 - Snapshots
 - Queries
 - ☐ Low level queries
 - ☐ High level queries

Pilot join (1)

- The PILOT JOIN operation activates the execution of a low level query on logical objects conditioned by values sampled on OTHER NODES
- □ Example:
 - Monitor the temperature of all the pallets in trucks whose current position is in a given parking area
 - □ Temperature sensors on pallets
 - Position sensors on trucks

PILOT JOIN BaseStationList ON

currentBaseStation = baseStationList.baseStationID

Pilot join (2)

- ☐ Two types of pilot join are supported:
 - **EVENT BASED** pilot join
 - When an event happens, a given set of nodes are fired to sample (e.g.: sense pallet temperature for 15 minutes every time a truck enters parking area B)
 - CONDITION BASED pilot join
 - □ Continuous sampling is performed on nodes connected to a given base station (e.g.: start sampling every 15 minutes the temperature of pallets whose last sensed position was in parking area B)

Query execution

Middleware (1 / 3)

- How logical objects (and registry) should be implemented?
- ☐ Goals of the middleware:
 - Supporting query execution
 - Making the addition of new technologies easy
- Two possible approaches:
 - Completely distributed implementation (more research oriented)
 - Partially distributed implementation (rapid prototype development)

Middleware (2 / 3)

LO can be hosted on the acquisition unit, if it is powerful enough.

Middleware (3 / 3)

PERLA – PERvasive LAnguage

☐ Fabio A. Schreiber, Romolo Camplani, Marco Fortunato, Marco Marelli, Filippo Pacifici:

"PERLA: a Data Language for Pervasive Systems"

in Proceedings of Sixth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom 2008). Honk Kong, pp. 282-287,2008.

PERLA real deployment: Rockfall monitoring

SOON IN SAN MARTINO FACE

THANKS FOR YOUR ATTENTION