Project Ingenieurswetenschappen: Elektronisch ontwerp van de e-VUBOX speaker Labonota's

Vrije Universiteit Brussel

Versie 08.2015

Inhoudsopgave

1	Basis Elektronica	2
2	Bouwstenen van de e-VUBOX	3
	2.1 De volumeknop: de spanningsdeler	3
	2.2 Het statusledje: de diode	4
	2.3 De versterker: de transistor	5
	2.3.1 De bipolaire npn transistor	5
	2.3.2 Het versterkingsnetwerk	6
3	Conclusie	9

1 Basis Elektronica

Doe-het-zelf 1 Wat is de waarde R van een weerstand waarover een spanning van V=25~V is en waardoor een stroom van I=0.1~A loopt?

$$R = \dots$$
 (1)

Doe-het-zelf 2 Pas de stroomwet van Kirchhoff toe in figuur 1a, en vind de missende stromen. Doe hetzelfde voor de spanningen in figuur 1b.

$$I_1 = \dots$$
$$V_1 = \dots$$

Figuur 1: De wetten van Kirchhoff

2 Bouwstenen van de e-VUBOX

2.1 De volumeknop: de spanningsdeler

Figuur 2: Volumeregeling: de spanningsdeler

Wetten van Kirchhoff:

$$I_S = I_1 = I_2 \tag{2}$$

$$V_S - V_1 - V_2 = 0 (3)$$

Wet van Ohm:

$$V_1 = R_1 \cdot I_1 \tag{4}$$

$$V_2 = R_2 \cdot I_2 \tag{5}$$

Doe-het-zelf 3 Vind nu, dankzij de vier vorige vergelijkingen, de uitdrukking voor de spanning V_2 in functie van V_s , R_1 en R_2 . Omdat we alleen de spanningsverhouding willen weten, mogen er geen stromen voorkomen in de formule.

$$V_2 = \dots$$

Doe-het-zelf 4 Je heb een voltage van 9 V als ingangsspanning V_S , en je wilt een voltage van 1.5 V als uitgangsspanning V_2 . R_1 is al gekozen en heeft een weerstand van 1 $k\Omega$ (1000 Ω). Welke waarde moet je kiezen voor R_2 ?

$$R_2 = \dots$$

Doe-het-zelf 5 Welke weerstand R_{pot} moet de potentiometer hebben, wetend dat de ingangsspanning V maximaal 200 mV (= $200 \cdot 10^{-3}$ V)is en we het vermogen P willen beperken tot 4 μ W (= $4 \cdot 10^{-6}$ W)? Tip: De formule voor elektrisch vermogen kan je vinden op pagina ??, je hebt de wet van Ohm ook nodig.

$$R_{pot} = \dots$$

2.2 Het statusledje: de diode

Figuur 3: Grafiek van de stroom in functie van de spanning van een diode.

Figuur 4: Diode netwerk.

$$+V_s - U_D - V_R = 0 (6)$$

$$I_s = I_D = I_R \tag{7}$$

Doe-het-zelf 6 Kan je de waarde vinden van de weerstand die nodig is? **Tip:** bepaal I_R en V_R uit de wetten van Kirchhoff.

$$R_{led} = \dots$$

2.3 De versterker: de transistor

2.3.1 De bipolaire npn transistor

(a) Schematische voorstelling van de bipolaire transistor met stromen en spanningen. Alle stromen worden conventioneel **naar** de transistor toe getekend.

(b) De BC547 bipolaire transistor met Basis, Collector en Emitter aangeduid.

Figuur 5: De bipolaire npn transistor.

De regels waaraan een bipolaire transistor zich moet houden zijn:

1.

$$V_{CB} > 0 V. (8)$$

2.

$$V_{BE} \approx 0.7 \ V$$
 (9)

- 3. I_C, I_B en V_{CE} moeten binnen bepaalde maximale waarden liggen.
- 4. Als aan de drie vorige regels is voldaan, dan is de collectorsstroom een versterkte versie van de basisstroom:

$$I_C = \beta I_B \tag{10}$$

 β (ook als h_{FE} genoteerd) wordt de stroomversterkingsfactor genoemd.

De wetten van Kirchhoff gelden ook voor de transistor:

$$I_C + I_B = -I_E \tag{11}$$

$$V_{BE} + V_{CB} - V_{CE} = 0 (12)$$

Doe-het-zelf 7 Elimineer I_B van de stroomwet van Kirchhoff met behulp van vergelijking (10). Vind dan een uitdrukking voor I_C . Stel dan dat $\beta=250$, en rond af. Welke relatie vind je tussen I_C en I_E ?

$$I_C \approx \dots$$

2.3.2 Het versterkingsnetwerk

Figuur 6: Versterkerschakeling met de transistor.

 R_s is de serieweerstand van de spanningsbron, en C is een ontkoppelcapaciteit. Om de versterker te ontwerpen moeten we de weerstanden R_1, R_2, R_E en R_C kiezen.

Doe-het-zelf 8 Vind een uitdrukking voor de spanning aan de collector V_C in functie van de basisspanning V_B , en vind dat je de spanning V_B versterkt. We hebben volgende vergelijkingen die we kunnen gebruiken:

• de spanningswet van Kirchoff

$$V_{Re} + V_{CE} + V_{Rc} - V_{CC} = 0 (13)$$

• de transistorvergelijkingen¹

$$V_{BE} = V_B - V_E = 0.7 V (14)$$

$$I_C \approx -I_E \tag{15}$$

$$V_{CE} = V_C - V_E > 0 (16)$$

• de weerstandsvergelijkingen

$$V_{Rc} = R_C \cdot I_C \tag{17}$$

$$V_{Re} = -R_E \cdot I_E \tag{18}$$

De wet van Ohm geldt als de spanning- en stroomrichting tegengesteld zijn. Indien ze in dezelfde richting zijn, komt er een minteken in de wet.

Tip: één manier om het te vinden: druk de stroom uit door R_C met de wet van Ohm. Die is nodig om de spanning V_E te vinden die je dan gebruikt om V_B te vinden. Vorm de vergelijking dan om om V_C te isoleren.

$$V_C = \dots (19)$$

De methode gaat als volgt:

1. Kies de gemiddelde stroom I_C .

$$I_C = \dots (20)$$

2. Kies een gemiddelde voltage V_C , waar de muziekgolf rond gaat variëren.

$$V_C = \dots (21)$$

 $[\]overline{\ \ \ }^1\ V_{BE}$ is de spanning tussen B en E, V_B is de spanning tussen B en de grond (hetzelfde voor V_C en V_E). We kunnen dan schrijven dat $V_{BE}=V_B-V_E$

3. Laatste keuze: kies een versterkingsfactor $-\frac{R_C}{R_E}.$

$$-\frac{R_C}{R_E} = \dots {22}$$

Doe-het-zelf 9 Je kent nu alles wat nodig is om de weerstanden R_E en R_C te bepalen. Tip: Uit I_C en V_C kan je de waarde R_C vinden.

$$R_C = \dots (23)$$

$$R_E = \dots (24)$$

Doe-het-zelf 10 Bereken het biasvoltage V_B . Kies dan de weerstand R_2 zodat V_B de gewenste waarde heeft. Het staat al vast dat $R_1 = 1k\Omega$. **Tip:** Herinner U dat $V_{CC} = 9V$ en de formule van de weerstandsdeler.

$$R_1 = 1k\Omega \tag{25}$$

$$R_2 = \dots (26)$$

Samenvatting van de gekozen weerstanden: $R_1 = \dots$ $R_2 = \dots$ $R_E = \dots$ $R_C = \dots$

3 Conclusie

Figuur 7: Volledig Schema

 C_1 en C_2 zijn ontkoppel
capaciteiten dienen om DC signalen te blokkeren, C_5 werkt als een hulp
batterij.

$$R_1=1~k\Omega$$

$$R_2=4.7~k\Omega$$

$$R_E=100~\Omega$$

$$R_P=10~k\Omega$$

$$R_5=10~\Omega$$

$$R_{LED}=680~\Omega$$

De waardes van de capaciteiten zijn:

$$C_1 = 1 \ \mu F$$
 $C_2 = 42 \ \mu F$ $C_3 = 100 \ nF$ $C_4 = 220 \ \mu F$ $C_5 = 330 \ \mu F$