1. Что называют:

Случайное испытание — эксперимент, исход которого нельзя определить однозначно условиями проведения опыта.

Элементарное событие (элементарный исход) — любой простейший (т. е. неделимый в условиях данного опыта) исход опыта. Элементарные события являются взаимоисключающими.

Пространство элементарных событий (исходов) – множество всех элементарных исходов.

Случайным событием называют любой набор элементарных исходов, т. е. произвольное подмножество пространства элементарных исходов.

2. Дайте определение вероятности по Лапласу (комбинаторное определение).

Вероятностью события A называют отношение числа N_A благоприятствующих событию A элементарных исходов к общему числу N равновозможных элементарных исходов, т. е. $P(A) = N_A/N$. Данное определение вероятности события принято называть классическим определением вероятности.

Свойства: 1) $P(A) \ge 0$; 2) для достоверного события $P(\Omega) = 1$; 3) если события A и B несовместны (AB = \emptyset), то P(A+B) = P(A) + P(B).

3. Дайте геометрическое определение вероятности. Что общего между геометрическим определением вероятности и определением вероятности по Лапласу?

Вероятностью события A называют число P(A), равное отношению меры множества A к мере множества Ω : $P(A) = \mu(A)/\mu(\Omega)$. Геометрическая вероятность сохраняет свойства вероятности P(A) в условиях классической схемы. Обобщает классическое на случай бесконечного множества элементарных исходов Ω тогда, когда представляет собой подмножество пространства R, R^2, R^n .

4. Дайте аксиоматическое (по Колмогорову) определение вероятности.

Пусть каждому событию A (т. е. подмножеству A пространства элементарных исходов Ω) поставлено в соответствие число P(A). Числовую функцию P называют вероятностью (или вероятностной мерой), если она удовлетворяет следующим аксиомам:

- 1) аксиома неотрицательности: $P(A) \ge 0$
- 2) аксиома нормированности: $P(\Omega) = 1$
- 3) расширенная аксиома сложения: для любых попарно несовместных событий $A_1,...,A_n,...$ справедливо равенство: $P(A_1+...+A_n+...)=P(A_1)+...+P(A_n)+...$

Значение Р(А) называют вероятностью события А.

5. Используя аксиоматическое (по Колмогорову) определение вероятности, докажите утверждения.

Вероятность удовлетворяет следующим свойствам:

- 1. Вероятность противоположного события: $P(\overline{A}) = 1 P(A)$
- 2. Вероятность невозможного события: $P(\emptyset) = 0$
- 3. Если $A \subset B$, то $P(A) \leq P(B)$
- 4. Вероятность заключена между 0 и 1: $0 \le P(A) \le 1$
- 5. Вероятность объединения двух событий: $P(A \cup B) = P(A) + P(B) P(AB)$
- 6. Вероятность объединения любого конечного числа событий:

$$P(A_1 \cup ... \cup A_n) = P(A_1) + ... + P(A_n) -$$

$$-P(A_1A_2)-P(A_1A_3)-...-P(A_{n-1}A_n)+P(A_1A_2A_3)+...+(-1)^nP(A_1A_2...A_n)$$

Доказательство.

Поскольку $\Omega = A + \overline{A}$, то, согласно расширенной аксиоме сложения, $P(\Omega) = P(A) + P(\overline{A})$, откуда с учетом аксиомы нормированности получаем утв. 1. Утв. 2 вытекает из равенства $A = A + \emptyset$ и расширенной аксиомы сложения. Пусть $A \subset B$. Тогда $B = A + (B \backslash A)$. В соответствии с расширенной аксиомой сложения $P(B) = P(A) + P(B \backslash A)$. Отсюда и из аксиомы неотриц. приходим к утв. 3. В частности, так как всегда $A \subset \Omega$, то с учетом аксиомы неотриц. получаем утв. 4. Поскольку $A \cup B = A + (B \backslash A)$, $B = (B \backslash A)$, то, используя расширенную аксиому сложения, находим $P(A \cup B) = P(A) + P(B \backslash A)$ и $P(B) = P(B \backslash A) + P(AB)$. Подставляя в первое из последних двух равенств вероятность $P(B \backslash A)$, выраженную из второго равенства, приходим к утв. 5. Утв. 6 можно доказать с помощью метода матем. индукции. Так, для трех событий A, B и C:

$$P(A \cup B \cup C) = P(A) + P(B \cup C) - P(A(B \cup C)) = P(A) + P(B) + P(C) - P(BC) - P(AB \cup AC) = P(A) + P(B) + P(C) - P(BC) - P(AB) - P(AC) + P(ABC)$$

6. Дайте определение условной вероятности. Как связаны условная и безусловная вероятности? Что понимают под теоремой умножения вероятностей?

Условной вероятностью события A при условии (наступлении) события B называют отношение вероятности пересечения событий A и B к вероятности события B: P(A|B) = P(AB)/P(B). При этом предполагают, что $P(B) \neq 0$. Условная вероятность P(A|B) обладает всеми свойствами безусловной вероятности P(A)(Доказать аксиомы для условной вероятности). Смысл заключ. в том что условная вероятность есть безусловная вероятность, заданная в новом пространстве элементарных исходов, совпадающем с событием B.

Теорема умножения вероятностей. Пусть событие $A=A_1A_2...A_n$ (т. е. A – пересечение событий $A_1, A_2,..., A_n$) и P(A)>0. Тогда справедливо равенство: $P(A)=P(A_1)\ P(A_2|A_1)\ P(A_3|A_1A_2)\ ...\ P(A_n|A_1A_2,..,A_{n-1})$, называемое формулой умножения вероятностей. $P(A_n|A_1A_2...A_{n-1})=P(A_1A_2...A_n)/P(A_1A_2...A_{n-1})$

7. Дайте определение:

События A и B, имеющие ненулевую вероятность, называют *независимыми*, если условная вероятность A при условии B совпадает с безусловной вероятностью A или если условная вероятность B при условии A совпадает с безусловной вероятностью B, т. е. P(A|B) = P(A) или P(B|A) = P(B). В противном случае события A и B называют зависимыми. События зависимы тогда и только тогда, когда P(AB) = P(A)P(B) (по формуле умножения).

Предположим, что в результате опыта может произойти одно из n событий $H_1,\ H_2,\ ...,\ H_n$, которые удовлетворяют следующим условиям:

- 1) они являются попарно несовместными, т. е. $H_iH_j = \emptyset$ при $i \neq j$
- 2) их объединение есть достоверное событие: $H_1 \cup ... \cup H_n = \Omega$.

События H_1 , ..., H_n называются гипотезами. Если события удовлетворяют второму из этих условий, то их совокупность называют *полной группой событий*. Гипотезы — это попарно несовместные события, образующие полную группу событий.

8. Выведите формулу полной вероятности.

Пусть для некоторого события A и гипотез $H_1, ..., H_n$ известны $P(H_1), ..., P(H_n)$, которые положительны, и $P(A|H_1),..., P(A|H_n)$. Тогда безусловную вероятность P(A) определяют по формуле: $P(A) = P(H_1)P(A|H_1)+...+P(H_n)P(A|H_n)$, которую называют формулой полной вероятности.

Доказательство. Представим событие A в виде: $A=A\Omega=A(H_1+\ldots+H_n)=AH_1+\ldots+AH_n$. С учетом того, что события AH_i несовместны для $i=1\ldots n$, имеем: $P(A)=P(AH_1)+\ldots+P(AH_n)$. В соответствии с формулой умножения вероятностей получаем: $P(AH_1)=P(H_1)P(A|H_1)$, ..., $P(AH_n)=P(H_n)P(A|H_n)$. Поэтому $P(A)=P(H_1)P(A|H_1)+\ldots+P(H_n)P(A|H_n)$.

9. Получите формулу Байеса.

Пусть для некоторого события A, P(A)>0, и гипотез H₁, ..., H_n известны P(H₁), ..., P(H_n) (P(H_i)>0, i=1...n) и P(A|H₁), ..., P(A|H_n). Тогда условная вероятность P(Hi|A), i=1...n, гипотезы Hi при условии события A определяется формулой Байеса: $P(H_i \mid A) = \frac{P(H_i)P(A \mid H_i)}{P(H_1)P(A \mid H_1) + ... + P(H_n)P(A \mid H_n)}$.

Доказательство. Согласно определению условной вероятности (см. вопрос 6), $P(H_i \mid A) = P(AH_i)/P(A)$. Выражая теперь по формуле умножения вероятностей $P(AH_i)$ через $P(A|H_i)$ и $P(H_i)$, получаем $P(AH_i) = P(H_i)P(A|H_i)$. Поэтому $P(H_i \mid A) = \frac{P(H_i)P(A \mid H_i)}{P(A)}$. Подставляя вместо вероятности P(A) ее значение, вычисленное в соответствии с формулой полной вероятности (см. вопрос 8), приходим к утверждению теоремы.

10. Дайте определение независимых испытаний. Что понимают под схемой Бернулли?

Hезависимые испытания — вероятность успеха в k-м испытании не зависит от исходов всех испытаний до k-го.

Схемой Бернулли (или последовательностью независимых одинаковых испытаний, или биномиальной схемой испытаний) называют последовательность испытаний, удовлетворяющую следующим условиям:

- 1) при каждом испытании различают лишь два исхода: «успех» (появление события A) и «неудача» (появление события \overline{A})
- 2) испытания являются независимыми
- 3) вероятность успеха во всех испытаниях постоянна и равна P(A) = p. Вероятность неудачи обозначим q=1-p.
- 11. Докажите, что при п испытаниях по схеме Бернулли вероятность P_{nm} того, что ровно m из них будут успешными, определяется равенством: $P_{nm} = C_n^m \cdot p^m (1-p)^{n-m}$.

Доказательство. Пространство элементарных исходов Ω состоит из 2^n исходов, каждый из которых отождествляется с определенной последовательностью УНН...У. Каждому элементарному исходу ω =УННУ...УН можно поставить в соответствие вероятность $P(\omega) = P(\text{УНН...У})$. В силу независимости испытаний события У, Н, Н,..., У являются независимыми, поэтому по теореме умножения вероятностей имеем: $P(\omega) = p^i \ q^{n-i}$, если успех имел место і раз. Событие A_m происходит всякий раз, когда реализуется элементарный исход ω , в котором і=m. Вероятность любого такого элементарного исхода равна $p^m \ q^{n-m}$. Число таких исходов совпадает с числом способов, которыми можно расставить ω 0 букв «У» на ω 0 местах, не учитывая порядок, в котором их расставляют. Число таких способов равно ω 0. Так как ω 1 месть объединение (сумма) всех указанных элементарных исходов, то окончательно получаем для вероятности ω 2 ω 3 месть объединение формулу.

12. Проводятся п испытаний по схеме Бернулли и $P_{nm} = C_n^m \cdot p^m (1-p)^{n-m}$. Докажите, что:

1.
$$\sum_{m=0}^{n} P_{nm} = 1$$

2. $\sum_{m=m_1+1}^{m_2} P_{nm}$ - вероятность того, что число успешных испытаний (A_к) не превосходит $m_2 \le n$, но больше m_1 ,

где $0 \le m_1 < m_2 \le n$.

1.
$$\sum_{m=0}^{n} P_{nm} = \sum_{m=0}^{n} C_{n}^{m} p^{m} (1-p)^{n-m} = (p+(1-p))^{n} = 1^{n} = 1; \quad 2. \quad p\{m_{1} < \xi \le m_{2}\} = \sum_{m=m+1}^{m_{2}} p\{\xi = m\} = P_{nm}$$

Второе следует из того что события A_{κ} несовместны при разных к. В частном случае $P(1 \le m) = 1 - q^n$ - хотя бы один успех.

13. Дайте определение скалярной случайной величины, сформулируйте и докажите основные свойства ее функции распределения.

Случайной величиной называется числовая величина, значение которой зависит от того, какой именно элементарный исход произошел в результате эксперимента.

Скалярную функцию $X(\omega)$, заданную на пространстве элементарных исходов, называют *случайной величиной*, если для любого $x \in R$ $\{\omega: X(\omega) < x\}$ – множество элементарных исходов, для которых $X(\omega) < x$ является событием.

Функцией распределения (вероятностей) случайной величины X называют функцию F(x), значение которой в точке x равно вероятности события $\{X < x\}$, т. е. события, состоящего из тех и только тех элементарных исходов ω , для которых $X(\omega) < x$: $F(x) = P\{X < x\}$. Обычно говорят, что значение функции распределения в точке x равно вероятности того, что случайная величина X примет значение, меньшее x.

Функция распределения удовлетворяет следующим свойствам:

- 1. $0 \le F(x) \le 1$
- 2. $F(x_1) \le F(x_2)$ при $x_1 < x_2$ (F(x) неубывающая функция)
- 3. $F(-\infty) = \lim_{x \to -\infty} F(x) = 0; F(+\infty) = \lim_{x \to +\infty} F(x) = 1$
- 4. $P\{x_1 \le X < x_2\} = F(x_2) F(x_1)$
- 5. F(x) = F(x-0), где $F(x-0) = \lim_{y \to x-0} F(y)$ (F(x) непрерывная слева функция)

Доказательство. Поскольку значение функции распределения в любой точке х является вероятностью, то из свойства 4 вероятности (см. вопрос 5) вытекает утв. 1. Если $x_1 < x_2$, то событие $\{X < x_1\}$ включено в событие $\{X < x_2\}$ и, согласно свойству 3, $P\{X < x_1\} \le P\{X < x_2\}$, т. е. в соответствии с определением функции распределения выполнено утв. 2. Пусть x_1, \ldots, x_n, \ldots - любая возрастающая посл-ть чисел, стремящаяся к +∞. Событие $\{X < + \infty\}$, с одной стороны, является достоверным, а с другой стороны представляет собой объединение событий $\{X < x_n\}$. Отсюда в силу аксиомы непрерывности следует второе равенство в утв. 3. Аналогично доказывается и первое равенство. Событие $\{X < x_2\}$ при $x_1 < x_2$ представляет собой объединение двух непересекающихся событий: $\{X < x_1\}$ — случайная величина X приняла значение, меньшее x_1 , и $\{x_1 \le X < x_2\}$ случайная величина X приняла значение, лежащее в промежутке $[x_1, x_2)$. Поэтому в соответствии с аксиомой сложения получаем утв. 4. Наконец, пусть x_1, \ldots, x_n, \ldots - любая возрастающая посл-ть чисел, стремящаяся к x. Событие $\{X < x_n\}$ является объединением событий $\{X < x_n\}$. Снова воспользовавшись аксиомой непрерывности, приходим к утв. 5.

14. Что называют дискретной случайной величиной? Сформулируйте и докажите утверждение о виде функции распределения дискретной случайной величины.

Случайную величину X называют дискретной, если множество ее возможных значений конечно или счетно.

Рядом распределения (вероятностей) дискретной случайной величины X называют таблицу, состоящую из двух строк: в верхней строке перечислены все возможные значения случайной величины, а в нижней вероятности $p_i = P\{X = x_i\}$ того, что случайная величина примет эти значения.

Функция распределения дискретной случайной величины является кусочно-постоянной функцией, принимающей на промежутке (- ∞ , x_1] значение 0, на промежутках (x_i , x_{i+1}], $1 \le i < n$, - значения $p_1 + \ldots + p_i$ и на промежутке $(x_n, +\infty)$ – значение 1.

Доказательство. Пусть X – дискретная случайная величина, заданная своим рядом распределения, причем значения x₁,..., x_n расположены в порядке возрастания. Тогда для всех х≤х₁ событие {X<х} является невозможным и поэтому в соответствии с определением функции распределения F(x)=0. Если $x_1 < x \le x_2$, то событие $\{X < x\}$ состоит из тех и только тех элементарных исходов ω , для которых $X(\omega) = x_1$, и, следовательно, $F(x)=p_1$. Аналогично при $x_2 < x \le x_3$ событие $\{X < x\}$ состоит из элементарных исходов ω , для которых либо $X(\omega)=x_1$, либо $X(\omega)=x_2$, т.е. $\{X< x\}=\{X=x_1\}+\{X=x_2\}$, а следовательно, $F(x)=p_1+p_2$ и т. д. Наконец, при $x>x_n$ событие $\{X < x\}$ достоверно и F(x)=1.

15. Дайте определение непрерывной скалярной случайной величины и сформулируйте основные свойства ее плотности распределения вероятностей.

Непрерывной называют случайную величину X, функцию распределения которой F(x) можно представить в виде: $F(x) = \int p(y)dy$. Функцию p(x) называют плотностью распределения (вероятностей) случайной величины Х.

p(x) = F'(x). Функцию распределения F(x) называют интегральным законом распределения случайной величины, а плотность распределения $p(x) - \partial u \phi \phi$ еренциальным законом распределения той же случайной

Плотность распределения обладает следующими свойствами:

2.
$$P\{x_1 \le X < x_2\} = \int_{x_1}^{x_2} p(x) dx$$

$$3. \quad \int_{0}^{+\infty} p(x) dx = 1$$

4.
$$P\{x \le X < x + \Delta x\} \approx p(x)\Delta x$$

5.
$$P{X = x} = 0$$

Доказательство:

1) Функция F(x) является неубывающей, поэтому p(x)=F'(x)>=0.

2)
$$P(x_1 \le X < x_2) = F(x_2) - F(x_1) = \int_{-\infty}^{x_2} p(x)dx - \int_{-\infty}^{x_1} p(x)dx = \int_{x_1}^{x_2} p(x)dx$$

- 3) В частности, если $x_1 = -\infty, x_2 = +\infty$, то событие $\{-\infty < x < \infty\}$ является достоверным.
- 4) $P\{x \le X < x + \Delta x\} = F(x + \Delta x) F(x) = \Delta F(x) \approx dF(x) = F'(x)\Delta x = p(x)\Delta x$
- 5) Функция распределения непрерывна, поэтому $P\{X = x\} = 0 = F(x) F(x)$

16. Что называют функцией Лапласа и какими свойствами она обладает?

 $\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-y^2/2} dy$ - интеграл (функция) Лапласа – функция стандартного нормального (гауссова) распределения (m=0, σ =1).

$$\varphi_{m,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-m)^2}{2\sigma^2}}, \ (-\infty < m < +\infty, \ \sigma > 0) - \ \text{плотность нормального распределения}.$$

$$\Phi_{m,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{(x-m)^2}{2\sigma^2}} dx \ - \ \text{функция нормального распределения}.$$

$$\Phi_{m,\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(x-m)^2}{2\sigma^2}} dx$$
 - функция нормального распределения.

$$\begin{split} P\left\{a < x < b\right\} &= \int\limits_{a}^{b} \varphi_{m,\sigma}(y) dy = \frac{1}{\sigma \sqrt{2\pi}} \int\limits_{a}^{b} e^{\frac{-(y-m)^{2}}{2\sigma^{2}}} dy = \left|x = \frac{y-m}{\sigma}\right| = \\ &= \frac{1}{\sqrt{2\pi}} \int\limits_{(a-m)/\sigma}^{(b-m)/\sigma} e^{-\frac{x^{2}}{2}} dx = \int\limits_{(a-m)/\sigma}^{(b-m)/\sigma} \varphi(x) dx = \Phi_{0}\left(\frac{b-m}{\sigma}\right) - \Phi_{0}\left(\frac{a-m}{\sigma}\right) \\ \Phi(-x) &= \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{x} e^{\frac{t^{2}}{2}} dt = \left|t = -s\right| dt = -ds = -\frac{1}{\sqrt{2\pi}} \int\limits_{+\infty}^{x} e^{\frac{s^{2}}{2}} ds = \frac{1}{\sqrt{2\pi}} \int\limits_{x}^{\infty} e^{\frac{s^{2}}{2}} ds = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{\infty} e^{\frac{s^{2}}{2}} ds - \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{x} e^{\frac{s^{2}}{2}} ds = 1 - \Phi(x) \end{split}$$

 X_p – квантилью стандартного нормального распределения уровня р.

 X_{1-p} = - X_p Док-во: 1-p= $\Phi(x_{1-p})$ =1- $\Phi(-x_{1-p})$ => $\Phi(-x_{1-p})$ =p => - X_{1-p} = X_p

- 17. Дайте определение обобщенной плотности распределения вероятностей дискретной скалярной случайной величины и приведите аргументы для обоснования его корректности.??????
- 18. Выведите понятие п-мерного случайного вектора и сформулируйте основные свойства его функции распределения.

Совокупность случайных величин $X_1=X_1(\omega)$, ..., $X_n=X_n(\omega)$, заданных на одном и том же вероятностном пространстве (Ω, B, P) , называют *многомерной* (*п-мерной*) случайной величиной, или *п-мерным случайным* вектором. При этом сами случайные величины $X_1, X_2, ..., X_n$ называют координатами случайного вектора.

Функцией распределения (вероятностей) $F(x_1, ..., x_n) = F_{X1, ..., X_n}(x_1, ..., x_n)$ п-мерного случайного вектора $(X_1, ..., X_n)$ называют функцию, значение которой в точке $(x_1, ..., x_n) \in \mathbb{R}^n$ равно вероятности совместного осуществления (пересечения) событий $\{X_1 < x_1\}, ..., \{X_n < x_n\},$ т.е. $F(x_1, ..., x_n) = F_{X1, ..., X_n}(x_1, ..., x_n) = P(X_1 < x_1, ..., X_n < x_n\}.$

В частности, при n=2 имеем двумерную функцию распределения.

Свойства двумерной функции распределения:

- 1. $0 \le F(x_1, x_2) \le 1$
- 2. $F(x_1, x_2)$ неубывающая функция по каждому из аргументов x_1, x_2
- 3. $F(-\infty, x_2) = F(x_1, -\infty) = 0$
- 4. $F(+\infty, +\infty) = 1$
- 5. $P\{a_1 \le X_1 \le b_1, a_2 \le X_2 \le b_2\} = F(b_1, b_2) F(b_1, a_2) F(a_1, b_2) + F(a_1, a_2)$
- 6. $F(x_1, x_2)$ непрерывная слева в любой точке $(x_1, x_2) \in \mathbb{R}^2$ по каждому из аргументов x_1, x_2 функция
- 7. $F_{X_1, X_2}(x, +\infty) = F_{X_1}(x), F_{X_1, X_2}(+\infty, x) = F_{X_2}(x)$

Доказательство:

- 1) $F(x_1, x_2) = P\{X_1 < x_1, X_2 < x_2\} \Rightarrow 0 \le F(x_1, x_2) \le 1$
- 2) $\forall x_1 < y_1 \rightarrow \{X_1 < x_1, X_2 < x_2\} \subset \{X_1 < y_1, X_2 < x_2\} \Rightarrow P\{X_1 < x_1, X_2 < x_2\} \leq P\{X_1 < y_1, X_2 < x_2\} \Rightarrow F(x_1, x_2) \leq F(y_1, x_2)$
- 3) События $\{X_1 < -\infty\}$ и $\{X_2 < -\infty\}$ являются невозможными, а пересечение невозможного события с любым событием также невозможное событие, вероятность которого равна нулю
- 4) События $\{X_1 < +\infty\}$ и $\{X_2 < +\infty\}$ так же,как и их пересечение, являются достоверными, вероятность которых равна единице
- 5) Сами
- 6) (пусть $x_1,...,x_n,...$ любая возрастающая посл-ть чисел, стремящаяся к х. Событие $\{X < x_n\}$ является объединением событий $\{X < x_n\}$. Снова воспользовавшись аксиомой непрерывности, приходим к утв)
- 7) Событие $\{X_1 < +\infty\}$ является достоверным, поэтому $\{X_1 < +\infty\} \cap \{X_2 < x_2\}$

19. Что называют дискретным случайным вектором? Сформулируйте и докажите утверждение о виде функции распределения дискретного случайного вектора.

Двумерную случайную величину (X, Y) называют дискретной, если каждая из случайных величин X и Y является дискретной, т.е. если множество их возможных значений конечно или счетно.

 $p_{ij} = P\{X = x_i, \ Y = y_j\}$ — вероятность совместного осуществления событий $\{X = x_i\}$ и $\{Y = y_j\}$. Совместная функция распределения получается суммированием ріј по всем значениям і и ј, для которых $x_i < x$, $y_j < y$, т. е.

 $F(x,y) = \sum_{\substack{i:x_i < x \\ i:y_i < y}} p_{ij}$. Доказательство следует из доказательства для одномерной случайной величины.

20. Дайте определение непрерывного случайного вектора. Сформулируйте и докажите основные свойства его плотности распределения вероятностей.

Непрерывной двумерной случайной величиной (X, Y) называют такую двумерную случайную величину (X, Y), совместную функцию распределения которой $F(x_1, x_2) = P\{X < x_1, Y < x_2\}$ можно представить в виде

сходящегося несобственного интеграла: $F(x_1,x_2) = \int\limits_{-\infty}^{x_1} \int\limits_{-\infty}^{x_2} p(y_1,y_2) dy_1 dy_2$. Функцию $p(x_1, x_2) = p_{X,Y}(x_1, x_2)$ называют совместной (двумерной) плотностью распределения случайных величин X и Y, или плотностью распределения случайного вектора (X, Y). $p(x_1,x_2) = \frac{\partial F^2(x_1,x_2)}{\partial x_1 \partial x_2} = \frac{\partial F^2(x_1,x_2)}{\partial x_2 \partial x_1}$.

Двумерная плотность распределения обладает следующими свойствами:

1. $p(x1, x2) \ge 0$

2.
$$P\{a_1 < X < b_1, a_2 < Y < b_2\} = \int_{a_1}^{b_1} dx_1 \int_{a_2}^{b_2} p(x_1, x_2) dx_2$$

3.
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x_1, x_2) dx_1 dx_2 = 1$$

4.
$$P\{x_1 < X < x_1 + \Delta x_1, x_2 < Y < x_2 + \Delta x_2\} \approx p(x_1, x_2) \Delta x_1 \Delta x_2$$

5.
$$P{X = x_1, Y = x_2} = 0$$

6.
$$P\{(X;Y) \in D\} = \iint_D p(x_1, x_2) dx_1 dx_2$$

7.
$$p_X(x) = \int_{-\infty}^{+\infty} p_{X,Y}(x, y) dy$$
 8. $p_Y(y) = \int_{-\infty}^{+\infty} p_{X,Y}(x, y) dx$

Доказательство. Свойства 1 – 5 аналогичны свойствам одномерной плотности распределения. Свойство 6 является обобщением свойства 2. Докажем утверждения 7 и 8. Из свойства 7 двумерной функции распределения (см. вопрос 18) и определения двумерной плотности распределения вытекает:

$$F_{X}(x) = F_{X,Y}(x, +\infty) = \int_{-\infty}^{x} \int_{-\infty}^{+\infty} p_{X,Y}(y_{1}, y_{2}) dy_{2}, \qquad F_{Y}(y) = F_{X,Y}(+\infty, y) = \int_{-\infty}^{y} \int_{-\infty}^{+\infty} p_{X,Y}(y_{1}, y_{2}) dy_{1},$$

откуда, дифференцируя интегралы по переменному верхнему пределу и учитывая, что p(x) = F'(x), получаем утверждение 7 для одномерных плотностей распределения $p_X(x)$ и $p_Y(y)$ случайных величин X и Y.

21. Что понимают под функцией случайных величин? Сформулируйте и решите задачу о нахождении закона распределения функции случайных величин (общий случай).

Случайную величину Y, которая каждому элементарному исходу ω ставит с соответствие число $Y(\omega) = Y(X(\omega))$, называют *функцией Y(X)* (скалярной) от скалярной случайной величины X. Функция Y = Y(X) от дискретной случайной величины также является дискретной случайной величиной, поскольку она не может принимать больше значений, чем случайная величина X. Функция Y = Y(X) от непрерывной случайной величины X может быть как непрерывной, так и дискретной.

Сформулируем правило определения функции распределения $F_Y(y)$ по заданной плотности распределения $p_X(x)$. $F_Y(y)$ - вероятность события $\{Y < y\}$, состоящая из тех элементарных исходов ω , для которых $Y(X(\omega)) < y$. Для этих же элементарных исходов ω случайная величина $X(\omega)$ будет принимать свои возможные значения на некоторой совокупности $\{\Delta_k\}$, $k=1,2,\ldots$, непересекающихся промежутков числовой прямой R, T, C событие $\{Y(X(\omega)) < y\}$ эквивалентно событию $\bigcup_k \{X(\omega) \in \Delta_k\}$, U, следовательно, по расширенной аксиоме сложения вероятностей $F_Y(y) = P\{Y(X(\omega)) < y\} = \sum_k P\{X(\omega_k) \in \Delta_k\}$. Зная плотность распределения $P_X(x)$ случайной величины $P_X(x)$ совокупность промежутков $P_X(x)$ определена как множество тех значений случайной величины $P_X(x)$ совокупность промежутков $P_X(x)$ определена как множество тех значений случайной величины $P_X(x)$ случайной величина $P_X(x)$ случайной величина P

23. Дайте определение независимых случайных величин. Каким основным свойством обладает совместный закон распределения независимых случайных величин?

Независимые случайные величины – по значению одной случайной величины нельзя судить о значении другой.

Случайные величины **X** и **Y** называются независимыми, если совместная функция распределения $F_{YX}(x,y)$ является произведением одномерных функций распределения $F_{X}(x)$ и $F_{Y}(y)$: $F_{YX}(x,y) = F_{X}(x)F_{Y}(y)$.

Случайную величину $Y=Y(X_1, X_2)=Y(X_1(\omega), X_2(\omega))$ называют функцией (скалярной) от двумерной случайной величины. $p_{ij}=P\{X_1=x_{1i}, X_2=x_{2j}\}$. Функция распределения: $F_Y(y)=\int\limits_{Y(x_1,x_2)< y}p_{X_1,X_2}(x_1,x_2)dx_1dx_2$.

Если X_1 и X_2 независимые случайные величины, т. е. $p_{X_1,X_2}(x_1,\,x_2)=p_{X_1}(x_1)$ $p_{X_2}(x_2)$, а случайная величина $Y=X_1+X_2$. Тогда $Y(x_1,\,x_2)=x_1+x_2$, по формуле функции распределения находим:

$$F_{Y}(y) = \int_{-\infty}^{+\infty} F_{X_{2}}(y-x_{1}) p_{X_{1}}(x_{1}) dx_{1}$$
. Плотность распределения суммы X_{1} и X_{2} : $p_{Y}(y) = \int_{-\infty}^{+\infty} p_{X_{2}}(y-x) p_{X_{1}}(x) dx$. В этом

случае говорят, что плотность распределения случайной величины Y является *сверткой* (композицией) плотностей распределения слагаемых X_1 и X_2 . Соотношение условно записывается в виде: $p_Y = p_{X2} * p_{X1}$.

24. Что называют математическим ожиданием скалярной функции случайных величин? Сформулируйте и докажите основные свойства математического ожидания.

Математическим ожиданием (средним значением) МХ дискретной случайной величины X называют сумму произведений значений x_i случайной величины и вероятностей $p_i = P\{X=x_i\}$, с которыми случайная величина принимает эти значения: $\sum_i x_i p_i$. При этом, если множество возможных значений случайной

величины счетно, предполагается, что $\sum_{i=1}^{\infty} |x_i| p_i < +\infty$. В противном случае говорят, что МХ не существует.

Математическим ожиданием (средним значением) МХ непрерывной случайной величины называют интеграл $MX = \int\limits_{-\infty}^{+\infty} xp(x)dx$. При этом предполагается, что $\int\limits_{-\infty}^{+\infty} |x|p(x)dx < +\infty$.

Пусть Y(X) – функция от случайной величины \Rightarrow

$$\Rightarrow MY = MY(X) = \sum_{i=1}^{\infty} Y(x_i) p_i \; ; \; MY = MY(X) = \int_{-\infty}^{+\infty} Y(x) p(x) dx \; ;$$

$$MY = MY(X_1, X_2) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} Y(x, y) p_{X_1, X_2}(x, y) dxdy$$

Для функций случайных величин математическое ожидание вычисляется аналогично.

Математическое ожидание удовлетворяет следующим свойствам:

- 1. Если случайная величина X принимает всего одно значение с вероятностью 1, то МС=С.
- 2. M(aX+b) = aMX+b, где a, b постоянные
- 3. $M(X_1+X_2) = MX_1+MX_2$
- 4. $M(X_1X_2) = MX_1MX_2$ для независимых случайных величин.

Доказательство состоит в раскрытии сумм и интегралов.

25. Что называют дисперсией скалярной случайной величины? Сформулируйте и докажите основные свойства дисперсии.

Дисперсией DX(второй центральный момент) случайной величины X называют математическое ожидание квадрата отклонения случайной величины X от ее среднего значения, т. е. $DX = M(X-MX)^2$.

$$DX = \sum_{i} (x_i - MX)^2 p_i$$
 , $DX = \int_{-\infty}^{+\infty} (x - MX)^2 p(x) dx$.

Дисперсия удовлетворяет следующим свойствам:

- 1. Если случайная величина X принимает всего одно значение C, то DC=0
- 2. $D(aX+b) = a^2DX$
- 3. $DX = MX^2 (MX)^2$
- 4. D(X+Y) = DX + DY для независимых случайных величин.

Доказательство опирается на свойства математического ожидания.

26. Дайте определение ковариации двух скалярных случайных величин. Сформулируйте и докажите основные свойства ковариации.

Ковариацией (корреляционным моментом) ${\rm cov}(X_1,\ X_2)$ случайных величин $X_1,\ X_2$ называют математическое ожидание произведения случайных величин $\overset{\circ}{X_1}=X_1-MX_1,\overset{\circ}{X_2}=X_2-MX_2$:

$$cov(X1, X2) = M(X_1^0 X_2^0) = M((X_1 - MX_1)(X_2 - MX_2)).$$

Для дискретных случайных величин X_1, X_2 : $\operatorname{cov}(X_1, X_2) = \sum_{i,j} (x_i - MX_1)(y_j - MX_2) p_{ij}$.

Для непрерывных случайных величин X_1 , X_2 : $cov(X_1, X_2) = \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} (x_1 - MX_1)(x_2 - MX_2) p_{X_1, X_2}(x_1, x_2) dx_1 dx_2$.

D(X+Y) = DX+DY+2cov(X, Y).

Ковариация имеет следующие свойства:

- 1. cov(X, X) = DX
- 2. $cov(X_1, X_2) = 0$ для независимых случайных величин X_1 и X_2
- 3. Если $Y_i = a_i X_i + b_i$, i=1,2, то $cov(Y_1, Y_2) = a_1 a_2 cov(X_1, X_2)$
- 4. $-\sqrt{DX_1DX_2} \le \text{cov}(X_1, X_2) \le \sqrt{DX_1DX_2}$
- 5. $|\text{cov}(X_1, X_2)| = \sqrt{DX_1DX_2}$ для линейно зависимых X_1 и X_2 : $X_2 = aX_1 + b$
- 6. $cov(X_1, X_2) = M(X_1X_2) MX_1 MX_2$.

Доказательство. Утверждение 1 вытекает из очевидного соотношения: $cov(X, X) = M(X-MX)^2$. Если случайные величины X_1 и X_2 являются независимыми и имеют математические ожидания, то $cov(X_1, X_2) =$ $M((X_1-MX_1)(X_2-MX_2) = (M(X_1-MX_2))(M(X_2-MX_2)),$ откуда приходим к утверждению 2. Пусть $Y_1 = a_1X_1+b_1, Y_2 = a_1X_1+b_2$ $a_2X_2+b_2$. Тогда $cov(Y_1, Y_2) = M((Y_1-MY_1)(Y_2-MY_2)) = M((a_1X_1+b_1-a_1MX_1-b_1)(a_2X_2+b_2-a_2MX_2-b_2)) = M(a_1a_2(X_1-a_2X_2+b_2-a_2X_2-b_2))$ MX_1)(X_2 - MX_2)). Поэтому справедливо утверждение 3. Рассмотрим дисперсию случайной величины $Y_x = xX_1$ - X_2 , где x – произвольное число. В силу свойств дисперсии и свойства 3 ковариации $DY_x = D(xX_1) + 2cov(xX_1, -1)$ X_2)+D(- X_2) = x^2 D X_1 -2xcov(X_1 , X_2)+D X_2 . Дисперсия D Y_x , как функции от x, представляет собой квадратный трехчлен. Но дисперсия любой случайной величины не может быть меньше нуля, а это означает, что дискриминант $D = (2cov(X_1, X_2))^2 - 4DX_1DX_2$ квадратного трехчлена DY_x является неположительным, т. е. имеет место утверждение 4. Далее, пусть выполнено равенство 5. Значит дискриминант равен нулю, и уравнение DY_х = 0 имеет решение, которое обозначим а. Тогда случайная величина $Y_a = aX_1 - X_2$ принимает всего одно значение (допустим, b), и, следовательно, $X_2 = aX_1 + b$. Наоборот, пусть выполнено $X_2 = aX_1 + b$. Тогда в соответствии со свойством 1 дисперсии DY_x = 0, а значит дискриминант является неотрицательным. Поскольку при доказательстве свойства 4 было показано, что этот дискриминант неположителен, то он равен нулю, откуда следует $|\text{cov}(X_1, X_2)| = \sqrt{DX_1 DX_2}$. Утверждение 6 получается раскрытием скобок в формуле ковариации и использованием свойств математического ожидания.

27. Что понимают под коэффициентом корреляции двух скалярных случайных величин? Сформулируйте и докажите основные свойства коэффициента корреляции.

Коэффициентом корреляции случайных величин X и Y называют число $\rho = \rho(X, Y)$, определяемое равенством (предполагается, что DX>0 и DY>0): $\rho = \text{cov}(X,Y)/\sqrt{DX\cdot DY}$.

Коэффициент корреляции имеет следующие свойства:

- 1. $\rho(X, X) = 1$
- 2. Если случайные величины X и Y являются независимыми (и существуют DX>0 и DY>0), то $\rho(X, Y) = 0$.
- 3. $\rho(a_1X_1+b_1, a_2X_2+b_2) = \pm \rho(X_1, X_2)$. При этом знак плюс нужно брать в том случае, когда a_1 и a_2 имеют одинаковые знаки, минус разные.
- 4. $-1 \le \rho(X, Y) \le 1$
- 5. $|\rho(X, Y)| = 1$ тогда и только тогда, когда случайные величины X и Y линейно зависимы.

Доказательство следует из свойств ковариации.

28. Дайте определение ковариационной матрицы случайного вектора. Сформулируйте и докажите основные свойства ковариационной матрицы.

Матрицей ковариаций (ковариационной матрицей) случайного вектора X называют матрицу $\sum_{i=1}^{n} = (\text{cov}(X_i, X_i))$, состоящую из ковариаций случайных величин X_i и X_j .

Свойства матрицы ковариаций.

- 1. Матрица ковариаций является симметрической.
- 2. Пусть m-мерный случайный вектор $Y = (Y_1, ..., Y_m)$ получен из n-мерного случайного вектора $X = (X_1, ..., X_n)$ с помощью линейного преобразования B, т. е. Y = XB + C. Тогда матрица ковариаций $\sum_{Y} C$ случайного вектора $X = (X_1, ..., X_n)$ соотношением $\sum_{Y} C = B^T \sum_{X} C$ В.
- 3. Матрица ковариаций \sum является неотрицательно определенной, т. е. $b \sum b^T \ge 0$ для всех векторов b

Доказательство. Утверждение 1 следует из определения матрицы ковариаций. Пусть матрица В линейного преобразования Y = XB + C имеет вид $B = (b_{ij})$. Вычислим ковариацию случайных величин Y_i и Y_j :

 $\operatorname{cov}(Y_i,Y_j) = M(Y_i^\circ Y_j^\circ) = M(\sum_{k=1}^n X_k^\circ b_{ki} \sum_{l=1}^n X_l^\circ b_{lj}) = \sum_{k,l=1}^n M(X_k^\circ b_{ki} X_l^\circ b_{lj}) = \sum_{k,l=1}^n b_{ki} \operatorname{cov}(X_k,X_l) b_{lj}$. Записывая последнее равенство в матричной форме, получаем утверждение 2. Для доказательства утверждения 3 рассмотрим скалярную случайную величину $Y = Xb^T$. В случае скалярной случайной величины $Y = Xb^T$ и поэтому в соответствии с утверждением 2 имеем: $DY = \sum_Y = b \sum_Y b^T$, откуда в силу неотрицательности дисперсии получаем утверждение 3.

29. Что понимают под условным законом распределения? Докажите равенство $f(x_1 \mid x_2) = f_{\xi}(x_1, x_2) / f_{\xi_2}(x_2)$, где $\xi = \left| \xi_1, \xi_2 \right|^T$ - непрерывный случайный вектор.

Для двумерной дискретной случайной величины (X, Y) условной вероятностью π_{ij} , i=1...n, j=1...m, того, что случайная величина X примет значение x_i при условии $Y=y_j$, называют условную вероятность события $\{X=x_i\}$ при условии события $\{Y=y_j\}$, т. е. $\pi_{ij}=P\{X=x_i\mid Y=y_j\}=\frac{P\{X=x_i,Y=y_j\}}{P\{Y=y_j\}}=\frac{p_{ij}}{p_{yj}}$. Набор вероятностей π_{ij} характеризует условное распределение дискретной случайной величины X при условии $Y=y_j$.

Условная функция распределения непрерывной случайной величины: $F_X(x|Y=x) = \frac{1}{p_Y(y)} \int\limits_{-\infty}^x p(u,y) du$. Условная плотность распределения непрерывной случайной величины: $p_X(x|Y=y) = \frac{p(x,y)}{p_Y(y)}$. Эти понятия называют условными законами распределения.

$$F_{\xi}(x \mid \eta = y) = \lim_{\Delta y \to 0} \frac{P\{\xi < x, y \le \eta < y + \Delta y\}}{P\{y \le \eta < y + \Delta y\}} = \frac{\int\limits_{-\infty}^{x} \int\limits_{y}^{y + \Delta y} f(s, t) ds dt}{\int\limits_{y}^{y + \Delta y} f(x, t) dt} = \frac{\frac{1}{\Delta y} \int\limits_{y}^{y + \Delta y} \int\limits_{-\infty}^{x} f(s, t) ds dt}{\frac{1}{\Delta y} \int\limits_{y}^{y + \Delta y} f(x, t) dt} \xrightarrow{\Delta y \to 0} \frac{\int\limits_{-\infty}^{x} f(s, y) ds}{f(x, y)};$$

$$F_{\xi}(x \mid \eta = y) = \frac{\int_{-\infty}^{x} f(s, y) ds}{f_{\eta}(y)} = \int_{-\infty}^{x} \frac{f(s, y)}{f_{\eta}(y)} ds \Rightarrow f_{\xi}(s \mid \eta = y) = \frac{f(s, y)}{f_{\eta}(y)} \ge 0$$

30. Дайте определение условного математического ожидания и докажите его основное свойство.

Yсловным математическим ожиданием M(X|Y) дискретной случайной величины X относительно дискретной случайной величины Y называют функцию M(X|Y) = g(Y) от случайной величины Y, где область определения функции g(y) совпадает с множеством значений $y_1, ..., y_m$ случайной величины Y, а каждому значению y_j аргумента у поставлено в соответствие число $g(y_j) = M(X|y_j)$. Для непрерывной величины

$$M(\xi \mid \eta = y) = \int_{-\infty}^{+\infty} x f_{\xi}(x \mid \eta = y) dx$$

Для дискретной -
$$M\left(X\mid Y=y_{j}\right)=\sum_{i=1}^{n}x_{i}\frac{p_{ij}}{p_{\gamma_{j}}}$$

Свойства условного математического ожидания:

- 1. $M(c|Y) \equiv c$
- 2. M(aX+b|Y) = aM(X|Y)+b
- 3. $M(X_1+X_2|Y) = M(X_1|Y)+M(X_2|Y)$
- 4. Пусть случайные величины X_1 и X_2 являются независимыми при условии, что случайная величина Y приняла любое конкретное значение. Тогда $M(X_1X_2|Y) = M(X_1|Y) M(X_2|Y)$.
- 5. MX = M(M(X|Y))
- 6. Пусть u(X) и v(Y) функции от случайных величин X и Y. Тогда M(u(X)v(Y)|Y) = v(Y) M(u(X)|Y)
- 7. Если X и Y независимые случайные величины, то $M(X|Y) \equiv MX$.

Доказательство:

- 1),2),3)-опираются на свойства интеграла и суммы (как для безусловного).
- 4)--????

5)
$$M(M(X|Y)) = \sum_{j=1}^{m} M(X|y_j) p_{Y_j} = \sum_{j=1}^{m} p_{Y_j} \sum_{i=1}^{n} x_i \frac{p_{ij}}{p_{Y_j}} = \sum_{i=1}^{n} \sum_{j=1}^{m} x_i p_{ij} = MX$$

6)
$$M(u(X)v(Y)|y_j) = \sum_{i=1}^n u(x_i)v(y_j) \frac{p_{ij}}{p_{v_i}} = v(y_j) \sum_{i=1}^n u(x_i) \frac{p_{ij}}{p_{v_i}} = v(y_j) M(u(X)|y_j)$$

7)
$$M(X \mid y_j) = \sum_{i=1}^n x_i \frac{p_{ij}}{p_{y_i}} = \sum_{i=1}^n x_i \frac{p_{X_i} p_{Y_j}}{p_{Y_i}} = \sum_{i=1}^n x_i p_{X_i} = M(X)$$

31. Что понимают под законом больших чисел и что является его основным содержанием? Докажите неравенства Чебышева.

Первое неравенство Чебышева. Для каждой неотрицательной случайной величины X, имеющей математическое ожидание MX, при любом $\varepsilon>0$ справедливо соотношение: $P\{X \geq \varepsilon\} \leq MX / \varepsilon$.

Доказательство проведем для непрерывной случайной величины X с плотностью распределения p(x). Поскольку случайная величина X является неотрицательной, то $MX = \int\limits_0^{+\infty} x p(x) dx$. Так как подынтегральное выражение неотрицательно, то при уменьшении области интегрирования интеграл может только уменьшиться.

Поэтому $MX = \int_{0}^{\varepsilon} xp(x)dx + \int_{\varepsilon}^{+\infty} xp(x)dx \ge \int_{\varepsilon}^{+\infty} xp(x)dx$. Заменяя в подынтегральном выражении сомножитель x на ε ,

имеем: $\int_{\varepsilon}^{+\infty} xp(x)dx \ge \varepsilon \int_{\varepsilon}^{+\infty} p(x)dx$. Последний интеграл представляет собой вероятность события $X \ge \varepsilon$, и, значит, $MX \ge \varepsilon P\{X \ge \varepsilon\}$, откуда и вытекает первое неравенство Чебышева. Для дискретной случайной величины

имх ≥ єР{х≥є}, откуда и вытекает первое неравенство чеоышева. для дискретной случайной величины интеграл заменяется суммой.

Второе неравенство Чебышева. Для каждой случайной величины X, имеющей дисперсию $DX=\sigma^2$, при любом $\varepsilon>0$ справедливо: $p\{|X-MX|\geq \varepsilon\}\leq \sigma^2$ / ε^2 .

Доказательство. Воспользуемся первым неравенством Чебышева. Применяя к случайной величине $Y=(X-MX)^2$ это неравенство, в котором ε заменено на ε^2 , получаем: $P\{|X-MX|\geq \varepsilon\}=P\{(X-MX)^2\geq \varepsilon^2\}=P\{Y\geq \varepsilon^2\}\leq \frac{MY}{\varepsilon^2}=\frac{DX}{\varepsilon^2}=\frac{\sigma^2}{\varepsilon^2}$, что и доказывает второе неравенство Чебышева.

Пусть $X_1, X_2, ..., X_n, ...$ - последовательность случайных величин, имеющих математические ожидания m_i = MX_i . Последовательность $X_1, X_2, ..., X_n, ...$ случайных величин удовлетворяет *закону больших чисел* (*слабому*), если для любого ε >0: $P\left\{\left|\frac{1}{n}\sum_{i=1}^n X_i - \frac{1}{n}\sum_{i=1}^n m_i\right| \ge \varepsilon\right\}_{n\to\infty} 0$. Иными словами, выполнение закона больших

чисел отражает предельную устойчивость средних арифметических случайных величин: при большом числе испытаний они практически перестают быть случайными и совпадают со своими средними значениями.

32. Сформулируйте и докажите теорему Чебышева и теорему Бернулли.

Теорема Чебышева (закон больших чисел в форме Чебышева). Если последовательность $X_1, X_2, ..., X_n$, ... независимых случайных величин такова, что существуют MX_i = m_i и DX_i = σ_i^2 , причем дисперсии σ_i^2 ограничены в совокупности (т. е. $\sigma_i^2 \le C < +\infty$), то для последовательности $X_1, X_2, ..., X_n$, ... выполнен закон больших чисел.

Доказательство. Теорема является элементарным следствием второго неравенства Чебышева. Действительно, в силу свойств математического ожидания и дисперсии:

$$M\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n}\sum_{i=1}^{n}m_{i}$$
; $D\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma_{i}^{2} \leq \frac{Cn}{n^{2}} = \frac{C}{n}$. Применяя теперь второе неравенство Чебышева к

случайным величинам $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$, получаем для любого $\varepsilon > 0$: $P\left\{\left|\frac{1}{n} \sum_{i=1}^n X_i - \frac{1}{n} \sum_{i=1}^n m_i\right| \ge \varepsilon\right\} \le \frac{C}{n\varepsilon^2} \underset{n \to \infty}{\longrightarrow} 0$. T.е. выполняется закон больших чисел.

Теорема Бернулли (закон больших чисел в форме Бернулли). Пусть проводится п испытаний по схеме Бернулли и Y_n — общее число успехов в п испытаниях. Тогда наблюденная частота успехов $r_n = Y_n/n$ сходится по вероятности к вероятности р успеха в одном испытании, т. е. для любого $\varepsilon > 0$ $P\{|r_n - p| \ge \varepsilon\} \to 0$.

Доказательство. Обозначим X_i число успехов в i-м испытании Бернулли. Тогда частоту успехов в n испытаниях можно определить в виде $r_n = \frac{1}{n} \sum_{i=1}^n X_i$, причем MX_i =p и DX_i =pq. Отсюда и вытекает утверждение

теоремы (ссылка на следствие из теоремы Чебышева: $\frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{p \to \infty} m$).

33. Сформулируйте центральную предельную теорему. Сформулируйте и докажите теорему Муавра-Лапласа.

Центральная предельная теорема. Пусть $X_1, X_2, ..., X_n, ...$ - последовательность независимых одинаково распределенных случайных величин, MX_n =m, DX_n = σ^2 . Тогда $P\left\{\frac{S_n-nm}{\sqrt{n\sigma^2}} < x\right\} \xrightarrow[n \to \infty]{} \Phi(x)$, где $\Phi(x)$ -

функция стандартного нормального распределения. $S_n = \sum_{i=1}^n X_i$

Интегральная теорема Муавра-Лапласа. Обозначим S_n суммарное число успехов в n испытаниях по схеме Бернулли с вероятностью успеха p и вероятностью неудачи q=1-p. Тогда с ростом n последовательность функций распределения случайных величин $(S_n-np)/\sqrt{npq}$ сходится к функции стандартного нормального

распределения, т. е.
$$P\left\{\frac{S_n - np}{\sqrt{npq}} < x\right\} \underset{n \to \infty}{\longrightarrow} \Phi(x)$$
. $S_n = \sum_{i=1}^n X_i$

Доказательство. Пусть X_i – число успехов в i-м испытании. Тогда MX_i =p, DX_i =pq. Представляя S_n в виде S_n = X_1 + X_2 +...+ X_n и используя центральную предельную теорему, приходим к утверждению теоремы.

34. Пусть $k(\omega)$ – число успехов в серии из n испытаний по схеме Бернулли и n – велико.

Докажите, что в этом случае
$$P\left(\left|\frac{k(\omega)}{n}-p\right|, где p — вероятность «успеха» в каждом$$

отдельном испытании

$$P\{\left|\frac{k(\omega)}{n}-p\right|<\varepsilon\} = P\{-\varepsilon<\frac{k(\omega)}{n}-p<\varepsilon\} = P\{-\varepsilon<\frac{k(\omega)-np}{n}<\varepsilon\} = P\{-\varepsilon<\frac{k(\omega)-np}{n}<\varepsilon\} = P\{\frac{-\varepsilon\sqrt{n}}{\sqrt{pq}}<\frac{k(\omega)-np}{\sqrt{npq}}<\frac{\varepsilon\sqrt{n}}{\sqrt{pq}}\} = \Phi(\frac{\varepsilon\sqrt{n}}{\sqrt{pq}})-\Phi(-\frac{\varepsilon\sqrt{n}}{\sqrt{pq}}) = 2\Phi(\frac{\varepsilon\sqrt{n}}{\sqrt{pq}})-1 = 2\Phi_0(\frac{\varepsilon\sqrt{n}}{\sqrt{pq}})$$