Estadística Inferencial

Capítulo X - Ejercicio 01

Aaric Llerena Medina

Se seleccionó una muestra aleatoria de tamaño 64 de una población con media μ y varianza 40^2 para realizar la prueba de la hipótesis: $H_0: \mu=150$, contra $H_1: \mu<150$.

- a) Describa la regla de decisión en la estadística Z, si la probabilidad de error tipo I es 0.015.
- b) Si la media de la muestra resulta 141, ¿cuál es la decisión respecto a H_0 ?
- c) Halle el valor de la probabilidad P. Interprete el significado.

Solución:

a) El error tipo I (α) es la probabilidad de rechazar H_0 cuando es verdadera. Dado $\alpha = 0.015$, se busca el valor crítico Z_{α} en la distribución normal estándar tal que:

$$P(Z \le Z_{\alpha}) = 0.015$$

Buscando el valor en la tabla:

La regla de decisión es:

Rechazar
$$H_0$$
 si $Z_c = \frac{\bar{X} - 150}{\frac{40}{\sqrt{64}}} \le -2.17$

Por lo tanto, se rechaza H_0 si el estadístico Z calculado es menor o igual a -2.17.

b) Se debe calcular el estadístico Z cuando la media de la muestra resulta 141.

$$Z_c = \frac{141 - 150}{\frac{40}{\sqrt{64}}} = \frac{-9}{\frac{40}{8}} = \frac{-9}{5} = -1.8$$

Comparando $Z_c = -1.8$ con el valor crítico $Z_\alpha = -2.17$:

$$-1.8 > -2.17 \Rightarrow$$
 No se rechaza H_0

De forma visual, se aprecia como sigue la curva de normalidad:

Por lo tanto, no se rechaza H_0 , ya que $Z_c = -1.8$ no es menor que -2.17.

c) Recordar que la probabilidad P (valor-p) es la probabilidad de obtener un resultado igual o más extremo que el observado ($\bar{X} = 141$) bajo H_0 . Calculando:

$$P = P\left(Z \le -1.8\right)$$

Usando la tabla de la distribución normal estándar:

$$P \approx 0.0359$$

 \therefore Existe una probabilidad del 3.59 % de obtener una media muestral de 141 o menor si $\mu = 150$. Como $P = 0.0359 > \alpha = 0.015$, no hay evidencia suficiente para rechazar H_0 .