INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Time Frequency Analysis Of Accelerogram

Satyajit Maitra

Enrolment No. 19553006

M.Tech IInd Year

Under the Guidance of Prof. M.L Sharma

Department of Earthquake Engineering Indian Institute of Technology, Roorkee

Content

- 1) INTRODUCTION
 - Overview
 - Objective of the work
- 2) ABOUT ACCELEROGRAM AND ACCELEROGRAPH
- 3) APPLICATION OF TIME FREQUENCY ANALYSIS
- 4) DATA GENERATION METHODS
- 5) ANALYSIS OF SIGNAL
- 6) RESPONSE SPECTRUM
- 7) METHODS OF TIME FREQUENCY ANALYSIS USED
- 8) RESULTS FROM DIFFERENT METHODS
- 9) MACHINE LEARNING AND DEEP LEARNING
- 10) CONCLUSION
- 11) REFERENCE

Overview

- 1. In **signal processing of Accelerogram**, time-frequency analysis consists of studying the signal in time and frequency domains simultaneously.
- 2. These high-level representations such as time-frequency maps convey a wealth of useful information, but they involve a large number of parameters that make statistical investigations of many signals difficult at present.
- 3. we will describe a method that performs a drastic reduction in the complexity of time-frequency representations through modeling of the maps by elementary functions, Artificial Intelligence, and Machine learning.
- 4. The methods is validated on artificial signals and subsequently applied to signals recorded at original stations.
- 5. We will try to validate the advanced technological improvement in this field to show the potential and promise of technology in this area.

Objective Of The Work

- A. Understanding Time Frequency Analysis Of Accelerogram.
- B. Visualization Of Time Frequency Diagram Of Different Earthquake Recorded Via Accelerograph
- C. Understanding The Error In Representation Of Signal In Time Or Frequency Domain.
- D. Applying Different Legacy Methods into Time Frequency Analysis Of Accelerogram.
- E. Finding The Different Limitation Caused By These Approach's.
- F. Implementation Of New Stack Of Technology To Solve The Limitations Caused By These Approach's.
- G. Generating Artificial Data To Validate This Methods.
- H. Applying The Findings Into The Ground.

About Accelerogram And Accelerograph

- 1. An **accelerograph** can be referred to as a strong-motion instrument or seismograph, or simply an earthquake accelerometer
- 2. Accelerographs record the acceleration of the ground with respect to time. This recording is often called an accelerograms, strong-motion record or acceleration time-history. From this record strong-motion intensity measures (IMs, also called parameters) can be computed.
- 3. A response spectrum is computed to show how the earthquake would affect structures of different natural frequencies or periods. These observations are useful to assess the seismic hazard of an area.

Accelerograph

Records From Accelerograph(Accelerogram)

Accelerograph And Seismograph

ACCELEROGRAPH

- 1. Used for strong ground motion recording
- 2. Used in Engineering structures, Dams ,Buildings
- 3. Less sensitive
- 4. Typical Range 1-6000 Hz

Typical Accelerograph installed in Groningen field(Netherlands)

SEISMOGRAPH

- 1. Used for ground motion recording
- 2. Used in Earthquake detection of small magnitude
- 3. More Sensitive
- 4. Typical Range 0.001-500 Hz

Typical Seismograph installation in Australia

About Time Frequency Analysis

- Time-frequency analysis consists of studying a signal in time and frequency domains simultaneously. Rather than viewing a 1-dimensional signal time-frequency analysis studies a two-dimensional signal obtained from the signal.
- The practical motivation for time-frequency analysis is that classical Fourier analysis assumes that signals are infinite in time or periodic, but accelerograph instruments do not produce infinite duration signals, but instead begin with an attack, then gradually decay.
- Response Spectrum Which hangs with Earthquake Engineers most of the time and is a great source of Information about ground motion parameters but not the only solution upon which you can depend.

Friuli earthquake (north south) 1976 - time domain

Time Frequency Analysis(Example)

APPLICATION OF TIME FREQUENCY ANALYSIS

- Discovering Pattern of frequency changes.
- Classifying Signals according to spectral Amplitude.
- Elimination of Noise from corrupt signal.
- Localization of Signal to further analysis.
- Detection of Soil Liquefaction.
- Detection Of Oil and Gas.
- Prediction Of EARTHQUAKE

DATA GENERATION METHODS

Data Generation

Statistical Method (Kanai-Tajimi Method) Data Based
Method(Code Based[IS code] Approach)

GENERATED EARTHQUAKE

KANAI-TAJIMI MODEL

CODE BASED MODEL(IS CODE)

ANALYSIS OF SIGNAL

RESPONSE SPECTRUM

METHODS OF TIME FREQUENCY ANALYSIS USED

- FOURIER TRANSFORM
- STFT
- WAVELET
- WIGNER VILLE
- REASSIGNMENT AND SYNCHROSQUEEZING
- CONSTANT-Q GABOR TRANSFORM
- EMPIRICAL MODE DECOMPOSITION AND HILBERT-HUANG TRANSFORM

RESULT OF FOURIER TRANSFORM

RESULT OF STFT TRANSFORM

RESULT OF WAVELET TRANSFORM

RESULT OF WAVELET TRANSFORM

Wavelet Coherence(10 and 25 Hz)

VISUALIZATION OF EQ SIGNAL

RESULT OF MRA

RESULT OF MRA

RESULT OF WVD TRANSFORM

RESULT OF SYNCHROSQUEEZING TRANSFORM

RESULT OF CONSTANT-Q GABOR TRANSFORM

RESULT OF EMPIRICAL MODE DECOMPOSITION AND HILBERT-HUANG TRANSFORM

RESULT OF EMPIRICAL MODE DECOMPOSITION AND HILBERT-HUANG TRANSFORM[1-5]

MACHINE LEARNING AND DEEP LEARNING

MACHINE LEARNING AND DEEP LEARNING

WITH RAW SIGNAL

Confusion Chart for LSTM

WITH TIME FREQUENCY SIGNAL

Confusion Chart for LSTM

79.3%	89.4%	
20.7%	10.6%	
А	N Predicted Cla	ISS

MACHINE LEARNING AND DEEP LEARNING

Tme (s)

Denoised Speech (Convolutional Layers)

1.5 2 2.5 Frequency (kHz)

APPLICATION OF DEEP LEARNING

CRACK DETECTION

OIL AND GAS LEAK DETECTION

	Sample	Holder Expone
1	Sample 5	-2.155
2	9	-2.13.
3	11	-0.398
4	15	-0.693
5	21	-0.302
6	23	-1.165
_ 7	26	-2.234
8	28	-2.111
9	31	-1.882
_10	33	-1.78
11	39	-0.762
12	41	-0.595
13	45	-2.265
14	48	-1.327
15	54	-2.104
16	56	-3.382
17	59	-2.367
18	61	-0.270
19	64	-2.207
20	69	-1.525
21	71	-1.280
22	76	-2.822
23	78	-1.699
24	84	-1.134
25	87	-0.178
26	92	-2.173
27	94	-1.624
28	98	-3.13:
29	100	-1.484
30	102	-2 678 ▼
	4 8	\$88E

CONCLUSION

WAVELET

CONSTANT-Q

FOURIER TRANSFORM

WIGNER VILLE

HILBERT SPACE

STFT TRANSFORM

SYNCHROSQUEEZING

MACHINE LEARNING

REFERENCES

- 1. Time Frequency Analysis Application Areas (Advanced Signal Processing Toolkit)
- 2. https://www.geo.arizona.edu/rseis/resources/Lec-1-569-06.pdf
- 3. Application of Local Wave Decomposition in Seismic Signal Processing By Ya-juan Xue, Jun-xing Cao, Gu-lan Zhang, Hao-kun Du, Zhan Wen, Xiao-hui Zeng and Feng Zou DOI: 10.5772/65297
- 4. Seismic Signal Processing by Enders A. Robinson https://doi.org/10.1002/047134608X.W7216
- 5. Advanced Digital Signal Processing of Seismic Data by Wail A. Mousa, King Fahd University of Petroleum and Minerals, Saudi Arabia
- 6. Theoretical Seismology https://www.ucl.ac.uk/EarthSci/people/sammonds/9%20Signal%20Processing.pdf
- 7. Seismic Signals and Noise by Peter Bormann
- 8. http://eqseis.geosc.psu.edu/cammon/HTML/Classes/IntroQuakes/Notes/seismometers.html
- 9. https://en.wikipedia.org/wiki/Accelerograph
- 10. https://www.omega.co.uk/prodinfo/accelerometers.html

