Superstore Business Insights: Analytical Workflow

Here is a mind map illustrating the "Superstore Business Insights: Analytical Workflow and Recommendations," drawing upon the provided sources and our conversation history:

Superstore Business Insights: Analytical Workflow Mind Map

- Central Theme: Superstore Business Insights Project
 - Objective: Identify key profitability drivers & provide evidence-based recommendations
- Phase 1: Data Loading & Preprocessing
 - Load Data: SampleSuperstoreClean.csv
 - Date Transformation:
 - Convert 'Order Date' to datetime
 - Extract 'Order Month' & 'Order Quarter'
 - Metric Calculation:
 - Calculate 'Profit Margin' (Profit / Sales)
 - Categorization:
 - Create 'Discount Group' (e.g., '0-20%', '20-30%')
 - Compute RFM metrics & assign 'customer_segment' (e.g., 'High-Value', 'Loyal', 'At-Risk')
 - Create 'Group' ('Furniture' vs. 'Others')
 - Identification: Identify Top 10% Customers and Top 10% Products by Profit
 - Filtering: Ensure sufficient sample size (min. 20 observations per group)

Data Preparation and Analysis Timeline

Data Refinement Process

- Phase 2: Key Finding Statistical Tests (Repeated for each Key Area, e.g., Regional, Category, Discount, Customer, Furniture, Seasonal, Monthly)
 - Objective & Hypotheses:
 - Objective: Analyze specific business aspects
 - **H**₀: Distributions are equal across groups
 - **H**₁: Distributions differ across groups
 - Assumption Check (Parametric Tests):
 - Normality Tests:
 - **Shapiro-Wilk** (for n < 50)
 - D'Agostino K² (for $n \ge 50$)
 - Homogeneity of Variances Test: Levene's test
 - Decision: Are BOTH Normality AND Homogeneity assumptions met?
 - IF YES (Assumptions Met):
 - Action: Perform Parametric Test:
 - ANOVA (for 3+ groups)
 - **T-test** (for 2 groups, e.g., Furniture vs. Others)
 - **Decision:** Is p-value < **alpha (0.05)**?
 - IF YES (Significant): Perform Tukey HSD post-hoc test
 - IF NO (Not Significant): Fail to reject H₀
 - IF NO (Assumptions NOT Met):
 - Action: Perform Non-Parametric Test:

- Kruskai-wailis H-test (for 5+ groups)
- Mann-Whitney U test (for 2 groups)
- **Decision:** Is p-value < alpha (0.05)?
 - IF YES (Significant): Perform Dunn's post-hoc test
 - IF NO (Not Significant): Fail to reject H₀
- Statistical Conclusion & Insights:
 - State test statistic & p-value
 - Conclusion: Reject H₀ or Fail to Reject H₀
 - Summarize **significant pairs** from post-hoc tests
 - Rank groups by **median metric**
 - Generate **visualizations** (Box Plots, Median Bar Charts, Post-hoc Heatmaps)
 - **Derive Business Insights** (e.g., "West and East are high-performing regions")

Statistical Tests Comparison

Characteristic	Parametric Test	Non- Parametric Test
Number of Groups	ANOVA (3+)	Kruskal-Wallis H- test (3+)
Number of Groups	T-test (2)	Mann-Whitney U test (2)
★ Post-Hoc Test (Significant)	Tukey HSD	Dunn's Test
C: Conclusion (Significant)	Reject HO	Reject HO
X Conclusion (Not 222 Significant)	Fail to Reject HO	Fail to Reject HO

- Phase 3: Quantile Regression Modeling & Assumption Checks (Repeated for areas desiring quantified median impact)
 - Purpose: Quantify median impact of predictors on target variable
 - Data Preparation:
 - Encode categorical variables as **dummy variables**
 - Define a **baseline group** for each
 - Quantile Regression Assumption Checks:
 - Data Availability & No Missing Values: Check. If NOT MET, Action:
 - **Sufficient Sample Size:** Check. If NOT MET, **Recommendation:** Collect more data/simplify model
 - No Extreme Outliers: Check. If NOT MET, Recommendation: Verify data/sensitivity analysis

- No Multicollinearity: Check VIF < 5. IT NOT MET, Recommendation: Remove/combine predictors
- Correct Model Specification: Check all p-values ≤ 0.05 & Pseudo R² \geq 0.1. If NOT MET, Recommendation: Add predictors/check non-linearity
- Independence of Observations: Check Durbin-Watson (1.5-2.5). If NOT MET, Recommendation: Check clustering/time-series
- Linearity at Quantile: Check p-values ≤ 0.05 at q=0.25 & q=0.75. If NOT MET, Recommendation: Add non-linear terms/additional predictors
- Monotonicity of Conditional Quantiles: Check $q=0.25 \le q=0.5 \le q=0.75$. If NOT MET, Recommendation: Simplify model/explore
- Action: Refit models with robust standard errors for reliable inference
- Model Building & Interpretation:
 - Fit Quantile Regression model (median, q=0.5)
 - Print model summary
 - Provide **business-friendly interpretations** of coefficients (quantified impact)

Quantile Regression Modeling Checks

Assumption	Check	If Not Met	Action/Reco mmendation
Data Availability & Missing Values	Check	NOT MET	Impute missing values
Sufficient Sample Size	Check	NOT MET	Collect more data/simplify model
χ^{-h} No Extreme Outliers	Check	NOT MET	Verify data/sensitivity analysis
::: No Multicollinearity	Check VIF < 5	NOT MET	Remove/combine predictors
Correct Model Specification	Check all p-values ≤ 0.05 & Pseudo R2 ≥ 0.1	NOT MET	Add predictors/check non-linearity
*Independence of Observations	Check Durbin- Watson (1.5-2.5)	NOT MET	Check clustering/time- series
Linearity at Quantile	Check p-values ≤ 0.05 at q=0.25 & q=0.75	NOT MET	Add non-linear terms/additional predictors
Monotonicity of Conditional Quantiles	Check q=0.25 ≤ q=0.5 ≤ q=0.75	NOT MET	Simplify model/explore constrained QR

• Phase 4: Conclusion & Recommendations

- Conclusion: Synthesize insights from statistical tests and quantile regression, emphasizing statistically robust findings (p < 0.0001)
- Evidence-Based Recommendations:
 - Regional Focus: Increase marketing/inventory in West & East
 - Category Prioritization: Allocate resources to Technology & Office Supplies; reduce emphasis on Furniture
 - **Discount Strategy:** Implement **20% discount cap** (especially for Furniture); test thresholds
 - Customer Engagement: Launch targeted campaigns for At-Risk & Lost segments
 - Furniture Optimization: Reduce costs or adjust pricing strategies (e.g., bundling)
 - Seasonal Strategies: Maintain uniform marketing across quarters (minimal trends)
 - **Performance Monitoring:** Shift to **quarterly/annual analysis** for top customers/products; focus promotions on high-profit months (May/Sept)
- Model Limitations:
 - Low Explanatory Power (Pseudo R² often < 0.01) (based on conversation history, not explicitly in current source)
 - **Linearity Issues** at specific quantiles for some models (based on conversation history)
 - Interpretations focus on **trends** rather than precise predictions
 - Non-parametric tests (Kruskal-Wallis, Dunn's) used to validate group differences
 - No multicollinearity and acceptable outlier levels confirmed
- Proposed Improvements (Future Work):
 - Add more predictors (e.g., store size, marketing spend)
 - Explore **non-linear relationships** (e.g., polynomial terms)

• Apply **scaling or transformations** (e.g., log-transform, standardize) (based on conversation history, not explicitly in current source)

Recommendations based on statistical analysis

Superstore Business Insights: Analytical Workflow and Recommendations

Made with ≱ Napkin