interrogation de cours nº 0

lundi 1er septembre 2025

Pour cette interrogation de pré-rentrée, il s'agit de vérifier certains de vos acquis de 1ère année en algèbre linéaire.

- 1. Décrire les trois types d'opérations élémentaires sur les lignes ou colonnes d'une matrice et leur notation.
 - MPI*: interpréter chacune de ces opérations par la multiplication d'une certaine matrice, que l'on précisera.
- 2. Qu'est-ce qu'une matrice symétrique? Antisymétrique? Montrer que tout $M \in \mathcal{M}_n(\mathbb{K})$ s'écrit de façon unique comme somme d'une matrice symétrique et d'une matrice antisymétrique.
- **3.** Qu'appelle-t-on la trace d'une matrice carrée $A = (a_{i,j})_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{K})$? En admettant que $\operatorname{tr}(AB) = \operatorname{tr}(BA)$, montrer que deux matrices semblables ont même trace.
- **4.** Soit E un \mathbb{K} -espace vectoriel et $(e_i)_{1 \leq i \leq q}$ une famille finie de E. Quand dit-on que (e_i) est Libre? Génératrice? Que dire de (e_i) si elle est à la fois libre et génératrice?
- **5.** Quand dit-on que deux sous-espaces vectoriels F et G d'un \mathbb{K} -espace vectoriel E sont supplémentaires ?
 - MPI^* : Montrer alors que E et $F \times G$ sont isomorphes
- **6.** Soient deux K-espaces vectoriels E et F et $f: E \to F$ une application linéaire. Donner la définition de $\mathrm{Ker}(f)$ et $\mathrm{Im}(f)$, et montrer que ce sont des sous-espaces vectoriels de E et F respectivement.
- 7. On reprend les notations de la question précédente et on suppose E de dimension finie. Énoncer le théorème du rang pour f.
 - MPI^* : Énoncer la forme plus générale de ce théorème lorsque E est de dimension quelconque.
- **8.** Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 1$ et Soient $\mathcal{B} = (e_1, \ldots, e_n)$ et $\mathcal{B}' = (e'_1, \ldots, e'_n)$ deux bases de E.
 - a) Expliquer ce qu'est la matrice de passage P de la base \mathcal{B} vers la base \mathcal{B}' .
 - b) Pour $x \in E$, on note $X = \operatorname{Mat}(x)$ et $X' = \operatorname{Mat}(x)$. Donner les dimensions de X et X' et une relation matricielle entre X, X' et P.
 - c) Pour $u \in \mathcal{L}(E)$, on note $M = \underset{\mathcal{B}}{\operatorname{Mat}}(u)$ et $M' = \underset{\mathcal{B}'}{\operatorname{Mat}}(u)$. Donner les dimensions de M et M' et une relation matricielle entre M, M' et P.