Predicting Biodegradability

and saving our planet

Context

"90% of the trash floating in our oceans is made of plastic"

Why is plastic filling our Oceans?

- low reactivity
- high durability
- not dissolvable in water

=> Bacteria just don't like to digest plastics

Research Question

Can we predict whether or not a compound will be biodegradable?

Yes, we can!

The Data

Research Data-Set: QSAR biodegradation Datase

Contains quantitative chemical analysis data for 1055 chemical Compounds

What is it measuring?

Observation contains summary statistics for a kind of "Social network" of each Atom in the Molecule.

How is it derived?

- mathematical computation of properties
- lab tests
- data base scraping

Engineered Features - Molecule Shape

Engineered Features - Functionality

: heavy Metals

Non Complex
$$nHM = 0$$

Complex nHM = 1

Poisenous nHM>=2

Results

Final Model

- 0.8

- 0.7

0.6

- 0.5

0.4

0.3

- 0.2

0.1

Logistic Regression model with Lasso penalty.

Precision	0.86
Accuracy:	0.88
Specificity:	0.93
Sensitivity:	0.80

Citing the Datasets Authors results: "The model presented specificity and sensitivity close to 0.8"

Application

OECD provides sufficient Data on Chemical Compounds, ready to be scraped for future Analysis.

- → Create new biodegradable compounds based on Feature importance
- → Run Lab tests on waste to determine whether compostable or not
- \rightarrow Save money on drug tests
- → certify biodegradable products based on compound data

Summary

- Biodegradability of compounds can be classified with a Logistic Regression Model at a precision of 86 % given basic QSAR-Data
- Model performs better* than the datasets author's model.
- Using this model multiple profitable and sustainable applications are possible.

For further information contact me: www.linkedin.com/in/tinopietrassyk pietrassyk@googlemail.com

Scources

Dataset:

https://archive.ics.uci.edu/ml/datasets/QSAR+biodegradation#

Paper:

Mansouri, K., Ringsted, T., Ballabio, D., Todeschini, R., Consonni, V. (2013). Quantitative Structure - Activity Relationship models for ready biodegradability of chemicals. Journal of Chemical Information and Modeling, 53, 867-878

Picture:

by Brian Yurasits:

https://images.unsplash.com/photo-1558640476-437a2b9438a2?ixlib=rb-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9&auto=format&fit=crop&w=2098&g=80

GitHub-Repo:

https://github.com/Pietrassyk/P_4_4_Biodegradability