B.E., III Semester, Electronics & Communication Engineering /Telecommunication Engineering

ENGINEERING MATHEMATICS-III B.E., III Semester, Common to all Branches [As per Choice Based Credit System (CBCS) Scheme]

Course Code	17MAT31	CIE Marks	40
Number of Lecture	04	SEE Marks	60
Hours/Week			
Total Number of	50 (10 Hours per Module)	Exam Hours	03
Lecture Hours	, -		

Credits - 04

Course Objectives: This course will enable students to:

- Introduce most commonly used analytical and numerical methods in the different engineering fields.
- Learn Fourier series, Fourier transforms and Z-transforms, statistical methods, numerical methods.
- Solve algebraic and transcendental equations, vector integration and calculus of variations.

Module-1

Fourier Series: Periodic functions, Dirichlet's condition, Fourier Series of periodic functions with period 2π and with arbitrary period 2c. Fourier series of even and odd functions. Half range Fourier Series, practical harmonic analysis-Illustrative examples from engineering field.

Module-2

Fourier Transforms: Infinite Fourier transforms, Fourier sine and cosine transforms. Inverse Fourier transform.

Z-transform: Difference equations, basic definition, z-transform-definition, Standard z-transforms, Damping rule, Shifting rule, Initial value and final value theorems (without proof) and problems, Inverse z-transform. Applications of z-transforms to solve difference equations. **L2, L3, L4**

Module-3

Statistical Methods: Review of measures of central tendency and dispersion. Correlation-Karl Pearson's coefficient of correlation-problems. Regression analysis-lines of regression (without proof) –Problems

Curve Fitting: Curve fitting by the method of least squares- fitting of the curves of the form, y = ax + b, $y = ax^2 + bx + c$ and $y = ae^{bx}$.

Numerical Methods: Numerical solution of algebraic and transcendental equations by Regula- Falsi Method and Newton-Raphson method.

Module-4

Finite differences: Forward and backward differences, Newton's forward and backward interpolation formulae. Divided differences- Newton's divided difference formula. Lagrange's interpolation formula and inverse interpolation formula (all formulae without proof)-Problems

Numerical integration: Simpson's $(1/3)^{th}$ and $(3/8)^{th}$ rules, Weddle's rule (without proof) – Problems.

Module-5

Vector integration: Line integrals-definition and problems, surface and volume integrals-definition, Green's theorem in a plane, Stokes and Gauss-divergence theorem(without proof) and problems. **L3, L4**

Calculus of Variations: Variation of function and Functional, variational problems. Euler's equation, Geodesics, hanging chain, Problems. **L2, L4**

Course outcomes: On completion of this course, students are able to:

- Know the use of periodic signals and Fourier series to analyze circuits and system communications.
- Explain the general linear system theory for continuous-time signals and digital signal processing using the Fourier Transform and z-transform.
- Employ appropriate numerical methods to solve algebraic and transcendental equations.
- Apply Green's Theorem, Divergence Theorem and Stokes' theorem in various applications in the field of electro-magnetic and gravitational fields and fluid flow problems.
- Determine the extremals of functionals and solve the simple problems of the calculus of variations.

Text Books:

- 1. B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, 43rd Ed., 2015.
- 2. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed., 2015.

Reference Books:

- 1. N.P.Bali and Manish Goyal: A Text Book of Engineering Mathematics, Laxmi Publishers, 7th Ed., 2010.
- 2. B.V.Ramana: "Higher Engineering Mathematics" Tata McGraw-Hill, 2006.
- 3. H. K. Dass and Er. Rajnish Verma: "Higher Engineering Mathematics", S. Chand publishing, 1st edition, 2011.

Web Link and Video Lectures:

- 1. http://nptel.ac.in/courses.php?disciplineID=111
- 2. http://www.khanacademy.org/
- 3. http://www.class-central.com/subject/math

ADDITIONAL MATHEMATICS - I

B.E., III Semester, Common to all Branches (A Bridge course for Lateral Entry students of III Sem. B. E.) [As per Choice Based Credit System (CBCS) Scheme]

Course Code	17MATDIP31	CIE Marks	
Number of Lecture	03	SEE Marks	60
Hours/Week			
Total Number of	40 (08 Hours per Module)	Exam Hours	03
Lecture Hours			

Credits - 00

Course Objectives: This course will enable students to:

- Acquire basic concepts of complex trigonometry, vector algebra, differential & integral calculus and vector differentiation.
- Solve first order differential equations.

Module-1

Complex Trigonometry: Complex Numbers: Definitions & properties. Modulus and amplitude of a complex number, Argand's diagram, De-Moivre's theorem (without proof).

Vector Algebra: Scalar and vectors. Vectors addition and subtraction. Multiplication of vectors (Dot and Cross products). Scalar and vector triple products-simple problems. **L1**

Module-2

Differential Calculus: Review of successive differentiation. Formulae for nth derivatives of standard functions- Liebnitz's theorem (without proof). Polar curves-angle between the radius vector and the tangent pedal equation- Problems. Maclaurin's series expansions- Illustrative examples. Partial Differentiation: Euler's theorem for homogeneous functions of two variables. Total derivatives-differentiation of composite and implicit function. Application to Jacobians.

Module-3

Integral Calculus: Statement of reduction formulae for $sin^n x$, $cos^n x$, and $sin^m x cos^n x$ and evaluation of these with standard limits-Examples. Double and triple integrals-Simple examples. **L1, L2**

Module-4

Vector Differentiation: Differentiation of vector functions. Velocity and acceleration of a particle moving on a space curve. Scalar and vector point functions. Gradient, Divergence, Curl and Laplacian (Definitions only). Solenoidal and irrotational vector fields-Problems. **L1, L2**

Module-5

Ordinary differential equations (ODE's): Introduction-solutions of first order and first degree differential equations: homogeneous, exact, linear differential equations of order one and equations reducible to above types.

L1, L2

Course outcomes: On completion of the course, students are able to:

• Understand the fundamental concepts of complex numbers and vector algebra to analyze the problems arising in related area.

- Use derivatives and partial derivatives to calculate rates of change of multivariate functions.
- Learn techniques of integration including double and triple integrals to find area, volume, mass and moment of inertia of plane and solid region.
- Analyze position, velocity and acceleration in two or three dimensions using the calculus of vector valued functions.
- Recognize and solve first-order ordinary differential equations occurring in different branches of engineering.

Text Book:

B.S. Grewal: Higher Engineering Mathematics, Khanna Publishers, New Delhi, 43rd Ed., 2015.

Reference Books:

- 1. E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed., 2015.
- 2. N.P.Bali and Manish Goyal: Engineering Mathematics, Laxmi Publishers, 7th Ed., 2007.