

## Digital Photography with Flash No Flash Image Pairs

(CS663 Course Project)

Presentation by: Nitish Gangwar (203050069) Mikhil Gupta (203079016)

### Content

- Denoising and Detail transfer
  - Bilateral filter
  - Joint Bilateral filter
- Flash to Ambient detail transfer
- Detecting Flash Shadows and Specularities
- White balancing
- Red eye correction

## Denoising and detail transfer

#### Bilateral filter

$$A_p^{Base} = \frac{1}{k(p)} \sum_{p' \in \Omega} g_d(p' - p) g_r (A_p - A_{p'}) A_{p'},$$

$$k(p) = \sum_{p' \in \Omega} g_d(p' - p) g_r(A_p - A_{p'}).$$

## Joint Bilateral filter

$$A_p^{NR} = \frac{1}{k(p)} \sum_{p' \in \Omega} g_d(p' - p) g_r(F_p - F_{p'}) A_{p'}$$

## **Block Diagram**



#### Detail transfer







#### Detail transfer







#### Flash to Ambient detail transfer

$$F^{Detail} = \frac{F + \varepsilon}{F^{Base} + \varepsilon},$$

- F denotes the flash image
- FBase denotes the bilateral filter output on image F
- Epsilon is some constant

#### **Detail Transfer**







Flash adjustment between the Afinal and Im\_flash







#### Shadow and spec Mask calc

Mask\_Shadow = 
$$M^{Shad} = \begin{cases} 1 \text{ when } F^{Lin} - A^{Lin} \leq \tau_{Shad} \\ 0 \text{ otherwise.} \end{cases}$$

Mask\_total = M\_Shadow ∪ M\_Specularity

#### Details to be transfered

#### Detected Flash and shadow specularities



#### White Balancing

- Illumination due to flash  $\Delta = F^{Lin} A^{Lin}$
- Computation performed per color channel
- Estimated color Cp =(Ap/Delta\_p)
- Ignoring the Ambient pixel values less than thr1 or the luminescence thr2
- Averaging the estimated color value over non-discarded pixels of each color
- Finally white balanced Ambient image is calculated by scaling the color channel

#### White Balance

Flash<sub>original</sub>



Ambient original Light orange



estimateambient illuminant



White Balanced image



#### Red eye correction

- Relative Redness measure R = Fcr Acr
- We then initially segment the image into regions where:  $R > \tau_{\_}Eye$ . (Here on whole image)
- $R > \max[0.6, \mu R + 3\sigma R]$  and  $Ay < \tau\_Dark$  (Ay Luminance)
- After detection of red region we perform dot wise image multiplication with the mask
- Finally we perform the red eye correction.

#### Red eye removal





# Thank you