Index

A	coordinate transformation, 118
ABAQUS, 154–155	in ABAQUS, 151
beam elements in, 151	nodal force vector for, 116–118
input file, 124–127, 152–154, 234–236, 242–244,	equations, FEM for
282–284, 388–390	element matrices, 116-118
resonant frequencies of bridge, 129	shape function construction, 112-115
Acceleration–time history, 245–246	strain matrix, 115-116
Admissible displacement, 45	moments and shear forces, 31-33
Advanced engineering systems, processes leading	simply supported, 30
to fabrication of, 1–2	stress and strain, 30–31
Aircraft for dynamic testing, 3	*BEAM SECTION keyword line, 406-407
Aluminum	BEM. See Boundary element method (BEM)
beam members, 155–156	Bicycle frame
material properties of, 118, 151	deformation plots of, 155–156
Amplitude curve, 243	diamond-shaped, 150–151
Angular distortion, 307–308	finite element mesh of, 151–152
	stresses in, 156
ANSYS, 130–132, 415	Bilinear shape functions, 375–376
analysis type in, 419	Boundary conditions (BC), 91–92, 119–120, 359–361,
beam section properties in, 416	377–384
computation in, 420	applying, 101–102
geometry creation environment in, 417	cards, 235–237, 243
material properties in, 417	constraints and, 281–282
meshing in, 418	equations for three-dimensional solids, 21–22
screenshot of, 131	Boundary element method (BEM),
Anti-symmetric boundary condition, 315, 317	297–298, 397–398
Arbitrary high orders, rectangular element of, 273	coupling of FEM and, 297–298
Area coordinates	Brick elements, 272–277
definition of, 171	Brief cioments, 272 277
linear triangular elements, 170–172	
Artificial damping elements, 297	C
Aspect distortion, 308	CAD. See Computer aided design (CAD)
Aspect ratio distortion, 307	Cantilever beam, 118, 405–411
Asymmetric loading, symmetrical framework with, 319	Cartesian coordinate system, 250–255, 259
Axial displacement, 82	Central difference algorithm, 72–75
Axisymmetric mesh, 7	Chain rule of differentiation, 121
Axisymmetric structures	Clamped-clamped bridge structure, 122–123
2D planar problem using, 189	geometrical dimensions of, 123
elements for, 188–191	ten element mesh of, 128
	Classical plate theory (CPT), 35
В	Commercially available software packages, 398
Bar element, 81–82	Compatible element, 47–48
Base state, 404	Complete order of polynomial basis functions, 166–167
BC, Boundary conditions (BC)	Composite wall, 365–366
Beams	Computational modeling
constitutive equations, 31	÷
dynamic equilibrium equations, 33–34	material/medium properties, 8
elements, 5–6, 111, 135–136	meshing, 6–8
and local coordinate systems, 112	of geometry, 5–6
10011 00010111110, 112	physical problems in engineering, 4

solution procedure	at nodes, 327
discrete system equations, 8-9	frame element in space with, 143
equation solvers, 9–10	of linear triangular element, 164
results visualization, 10–11	Delta function, 272
using FEM, 4–8	property, 167–168
Computer aided design (CAD), 305–306	Diamond-shaped bicycle frame, 150-151
software packages, 5	Dimensional of heat, 350
Connectivity element, 47–48	Direct assembly, 98
Constant matrix, 374	procedure, 361–362
Constant strain elements, 173–174, 255–256	Discrete numerical methods, 297
Constant stress elements, 173–174	Discrete system equations, 8–9
Constitutive equations	Discretized system, equations of, 354
for beams, 31	Displacement boundary condition, 22, 119–120, 419
for plates, 36	Displacement constraints, imposition of, 69
for three-dimensional solids, 18–19	Displacement interpolation, 49–50
for truss members, 27	Displacement–time history, 245
for two-dimensional solids, 24–25	Distorted elements, 307
Constraints modeling by rigid body attachment, 335–336	Distributed external body force, 19–21
Contact cards, 284	DOFs. See Degrees of freedom (DOFs)
Contact modeling, 281–282	Domain discretization, 4, 47–49
Control cards, 236, 244	Dynamic equilibrium equations
Convection matrix, 358	for beams, 33–34
Convective boundary conditions, 365	for plates, 38
Conventional finite elements, 297–298	for three-dimensional solids, 19–21
Conventional isoparametric 8-nodal element, 292–293	for truss members, 27–28
Coordinate mapping, 262–263	for two-dimensional solids, 25–26
between coordinate systems, 184	Dynamic testing, aircraft for, 3
linear quadrilateral elements, 183–186	Dynamic testing, anciait for, 5
Coordinate transformation process, 67–68, 140	_
Counter-clockwise manner, 261	E
Coupling effects, 233	8-Nodal hexahedron elements, 261–262
CPT. See classical plate theory (CPT)	8-Nodal isoperimetric quadratic element, 291–292
CPU time estimation, 303–304	Eight-node rectangular thick plate element, 227
Crack tip elements, 289–297	*ELASTIC option, 407
Cubic one-dimensional element, 105	Electrostatic micro-motor, 202
Cubic tetrahedron element, 272	Element connectivity, 6, 234, 242
Cubic triangular elements, 194–195	Element displacement vector, 142-144
Curvature distortion, 307–308	Element distortion, 307–310
Curved edges, 2D solid elements with, 200	Element matrices, 116-118, 225-227, 256-261, 266-269
Curved surfaces, elements with, 277	in global coordinate system, 97-98
Cyclic symmetry, 321–322	linear quadrilateral, 187–188
Cylindrical coordinate system, 188	linear rectangular, 179–180
	linear triangular, 174–176
D	obtaining, 119
Damping element, 297	*ELEMENT option, 406
Data lines, 401–402	Element sets (ELSET), 400–401
Deformation plots, 155	Elements with curved surfaces, 277
from PATRAN, 412	ENCASTRE, 408
of bicycle frame, 155–156	*END STEP option, 404
Degrees of freedom (DOFs), 112–113, 137, 142, 219–220,	Enforcing compatibility, 334–335
249–250, 303–304, 306	Equation solvers, 9–10

E-1 D	dia-1
Euler-Bernoulli beam theory, 30–31	displacement constraints, imposition of, 69
for thin beams, 31	displacement interpolation, 49–50
Explicit approaches, 9	domain discretization, 47–49
_	global FE equation, 68–69
F	local coordinate system, finite element equations in, 63–67
FDM. See Finite difference method (FDM)	shape functions properties, 54–63
FE. See Finite element (FE)	rate of convergence of, 95–97
FEM. See Finite element method (FEM)	reproduction feature of, 121
FE matrix equation, 120–122	reproduction property of, 94
solving, 102–103	sufficient requirements for, 83–84
FGM. See Functionally graded material (FGM)	truss element. See truss element
Field problems	two-dimensional solids. See two-dimensional solids
acoustic problems, 353–354	Finite element model (FEM)
heat transfer	ABAQUS input syntax rules, 401
composite wall, 351–352	basic building block, 399–400
in long two-dimensional body, 349–350	cantilever beam problem, 405–411
in one-dimensional fin, 350–351	analysis running, 410–411
in two-dimensional fin, 348–349	results, 411
ideal irrotational fluid flow, 353	data lines, 401–402
torsional deformation, 352–353	general procedures, 411–414
Field variable interpolation, linear triangular elements, 164–166	history data, 404–405
Finite difference method (FDM), 8–9, 44	in ABAQUS, 402–411
Finite element (FE), 81–82, 219–220	labels, 402
approximation for one-dimensional case, 3	model data, 403-404
formulation, 294–295, 386	using GUI, ANSYS, 414-421
for stress analysis, 162	using sets, 400–401
matrices, 111–112	Finite strip elements, 298
mesh of bicycle frame, 151	Finite volume method (FVM), 8–9, 397–398
Finite element (FE) mesh, 204, 236	First order differential operators, 19–21
of quantum dot heterostructure, 281	First order shear deformation theory, 35
Finite element method (FEM), 1, 250–255, 293–294, 390	Flexural vibration modes, 233
computational modeling using, 4–8	Force loading conditions, 419
convergence property, 94–95	Force vectors, 382
definition, 3–4	Fourier series, 244
for beams equations	Fourier superimposition, 320
element matrices, 116–118	Fourier's heat convection law, 379–381
shape function construction, 112–115	4-Nodal tetrahedron element, 250–255
strain matrix, 115–116	Four-node rectangular thick plate elements, 224–225
fundamentals for	4-Node tetrahedron elements, 251
free vibration, analysis of, 69–71	Frames
Hamilton's principle, 45–47	element
minimum total potential energy principle, 47	coordinate transformation for, 145, 152
problem formulation, 44–45	three-dimensional orientation of, 147
procedure, recap of, 47–69, 77–78	equations for planar frames
static analysis, 69	idea of superposition, 137
sufficient requirements for, 76–77	in global coordinate system, 140–142
transient response, 71–76	in local coordinate system, 137–140
mathematical models of, 4	equations for space frames
	in global coordinate system, 144–149
procedure	•
constructing shape functions, 50–54	in local coordinate system, 142–144
coordinate transformation, 67–68	finite element analysis of bicycle frame

1.D.1.03770.1	**
ABAQUS input file, 152–154	Heating cables, 386
modeling, 151–152	Heat insulation boundary, 379
results and discussion, 155–157	Heat sink, 384–385
solution processes, 154–155	Heat source, 384–385
formulation for, 118	Heat transfer
made of three members, 159	FEM
Free vibration analysis, 69–71	1D heat transfer problem, 355–370
symmetric and anti-symmetric conditions for, 320	2D heat transfer problem, 370–386
*FREQUENCY, 402–403	field problems, 348–354
Functionally graded material (FGM), 106	heated road surface, temperature
FVM. See Finite volume method (FVM)	distribution of, 386–390
	weighted residual approach, 354–355
G	through composite wall, 351–352
Galerkin method, 355, 370–371	Helmholtz equation, 348, 353
Galerkin residuals, 365	Hexahedrons
Galerkin weakform, 299	element, 261–269, 271
Gauss elimination method, 9, 155	tetrahedrons to, 269
Gauss integration	Higher order 3D tetrahedron elements, 271
linear rectangular elements, 180–183	Higher order elements, 227, 269–277
points and weight coefficients, 180	High order 3D serendipity elements, 274
scheme, 179-181, 183, 187, 226-227, 266-268,	Hilber–Hughes–Taylor operator (1978), 244–245
284–285	History data, 401
Gauss's divergence theorem, 371–372	Homogenous boundary condition, 21
General beam element, 127, 135–136	Hooke's law, 92
Geometry modeling, 304–306	for beams, 31
Global coordinate system, 67–68, 87, 250–255	for isotropic materials, 24
element matrices in, 97–98	for 1D solids, 27
boundary conditions, 91–92	for plates, 36
planar trusses, 90–91	for 3D anisotropic materials, 18–19
recovering stress and strain, 92	
spatial trusses, 87–90	1
elements in, 232–233	Implicit approaches, 9
equations for	InAs quantum dots. See Indium arsenide quantum dots
planar frames, 140–142	Incompatible mesh, 311
space frames, 144–149	Independent stress components, 16–18
Global FE equation, 69	Indium arsenide (InAs) quantum dots, 279–281
assembly of, 68–69	Infinite domains, methods for, 293–294
Global FE matrices, 98–101	Infinite elements, 293–294, 296
Gradual damping elements, 297	Infinite line, 295
Graphical user interface (GUI), 131, 397–398	Inhomogenous boundary conditions, 21
Grids, 6	Internal nodes, vanish of, 358–359
GUI. See Graphical user interface (GUI)	Isolated beam cell, 32
	Isolated plate cell, 36
Н	shear forces and moments on, 37
Hamilton's principle, 8–9, 45–47, 121,	Isoparametric element, 188
221–223, 372–373	Isoparametric quadratic element, 292–293
Heat conduction, 348–349	Isotropic materials, 18–19
Heat convection, 348–349, 380	
Heated road surface, temperature distribution of	1
ABAQUS input file, 388–390	J
modeling, 387–388	Jacobian matrix, 186–187, 257–260, 266–268
results and discussion, 390	Joints modeling, 328–332

1/	atrong and atrain 20, 21
K	stress and strain, 30–31
Keyword lines, 401	equations for plates constitutive equations, 36
Kirchhoff plate theory, 35	dynamic equilibrium equations, 38
	moments and shear forces, 36–38
L	
Labels, 402	Reissner-Mindlin plate theory, 38–40 stress and strain, 35–36
Lagrange interpolants, 104, 195, 272	
Lagrange multiplier method, 338	equations for three-dimensional solids
Lagrange type elements, 272–273	boundary conditions, 21–22 constitutive equations, 18–19
rectangular elements, 195–196	dynamic equilibrium equations, 19–21
Lamb waves, 297	* *
dispersive characteristic of, 297	stress and strain, 16–18
Laplace's equations, 353	equations for truss members
Layered composite wall, 393	constitutive equations, 27
Linear elastic fracture mechanics, 290–291	dynamic equilibrium equations, 27–28
Linear element, 85	stress and strain, 27
Linear quadrilateral elements	equations for two-dimensional solids
coordinate mapping, 183–186	constitutive equations, 24–25
element matrices, 187–188	dynamic equilibrium equations, 25–26
remarks, 188	stress and strain, 22–24
strain matrix, 186–187	MEMS. See Micro-electro-mechanical systems (MEMS)
Linear rectangular elements	Mesh compatibility, 310–313
element matrices, 179–180	elements, different order of, 310–312
Gauss integration, 180–183	straddling elements, 312–313
shape function construction, 176–179	Meshfree methods, 299–300
strain matrix, 179	Meshing, 47, 279, 306–310
Linear triangular elements, 165 area coordinates, 170–172	axisymmetric, 7
element matrices, 174–176	definition, 6
	density, 306–307
field variable interpolation, 164–166 shape function construction, 166–170	of hinge joint, 7
strain matrix, 172–174	stress distribution, 7
Load cards, 127, 244, 284	transition, 388
Local coordinate system, 49, 87, 137–140	Micro-electro-mechanical systems (MEMS), 122
elements in, 86–87, 228–232	Micro-motor
equations for	side drive
planar frames, 137–140	ABAQUS input file, 204–207
space frames, 142–144	modeling, 203–204
finite element equations in, 63–67	plan view (2D) of, 203
LU decomposition method, 9	results and discussion, 208–211
r	solution process, 207–208
	transient analysis of, 240–247
M	Micro-resonant transducer
Mapping, infinite elements formulated by, 294–297	resonant frequencies of
Mass matrix for rectangular element, 231-232	ABAQUS input file, 124–127
Material cards, 235–236, 243, 282	comparison with ANSYS, 130–132
Matrix of shape functions, 250–255	modeling, 123–124
Mechanics for solids and structures, 14–16	results and discussion, 128–130
equations for beams	solution process, 127–128
constitutive equations, 31	vs. ANSYS, 130–132
dynamic equilibrium equations, 33–34	review questions, 132–134
moments and shear forces, 31–33	Mid-node position distortion, 310

Mindlin plate, shear deformation in, 39	Nodal force vector, 268–269
Mindlin plate theory, 221	for 3D solid elements, 260–261
Minimum total potential energy principle, 47	Nodal heat vector, 358
Mirror symmetry, 314–322, 333	Nodal temperatures of road surface, 391
Mode I fracture, 290–291	*NODE option, 406
Model data, 400–403	Nodes, 3-4, 6
Modeling offsets, 322–328	sets, 242
methods for, 322–325	Normal stress, 32
Modeling techniques	NS-FEM, 300
axial symmetry, 318–321	Numerical integration scheme, 266–268
constraints modeling, by rigid body attachment,	•
335–336	0
CPU time estimation, 303–304	-
cyclic symmetry, 321–322	1D axisymmetric elements, cylindrical shell
element distortion, 307–310	structure modeled using, 320
geometry modeling, 304–306	1D heat transfer problem
joints, modeling of, 328–332	composite wall, 365–366
Lagrange multiplier method, 338	direct assembly procedure, 361–362
mesh compatibility, 310–313	one-dimensional fin, 355–361
elements, different order of, 310–312	worked example, 362–364, 366–370
enforcement of, 334–335	One-dimensional fin, 355–361
straddling elements, 312–313	of rectangular cross-section, 363
meshing, 306–310	Orthogonal matrix, 87–88
mirror/plane symmetry, 314–322	Output control cards, 235, 244, 284
modeling offsets, 322–328	Over-stiff behavior, 201
modeling offsets methods, 322–325	
MPC equations	P
applications of, 332–336	Pascal triangle of monomials, 51
creation of, 325–328	Penalty method, 338–339
implementation of, 336–339	Perturbation parameter, 409
penalty method, 338–339	Physical coordinate system, 184, 277, 307–309
repetitive symmetry, 322	Physical trial-and-error design procedure, 150-151
supports, modeling of, 328–330	Planar frames, FEM, 136
symmetry, use of, 313–322	element and DOFs, 137
Moment matrix, 54	idea of superposition, 137
Moments and shear forces	in global coordinate system, 140-142
equations for beams, 31–33	in local coordinate system, 137-140
equations for plates, 36–38	Planar truss, 90–91
MPC. See Multipoint constraints (MPC)	structure, 157
MPC equations, 324–326	Plane strain solid, 23
Multipoint constraints (MPC), 312	Plane stress conditions, 162–163
1 //	Plane stress solid, 23
	Plane symmetry, 314–322
N	Plate
Natural boundary condition, 379	constitutive equations, 36
Natural coordinate system, 112, 176-177, 184, 258-259,	dynamic equilibrium equations, 38
262–263, 307–309	elements, 5-6, 220-227
and local coordinate system, 112-113	moments and shear forces, 36-38
Natural frequencies of micro-motor, 233-240	Reissner-Mindlin plate theory, 38-40
Newmark's method, 75–76	stress and strain, 35-36
*NGEN, 406	structure, 34
Nodal cards, 234, 242	Poisson effect, 27
Nodal displacements, 165-166	Poisson's equation, 353
vector, 250–255, 263–265	Poisson's ratio, 18–19

Polynomial function, 294–295	SEM, 298–299
Polynomial shape functions, 298–299	Semi-automatic mesh generator, 6
Polysilicon, elastic properties of, 123, 202	Serendipity type elements, 273–277
Pre-processing, 6–7	construction of 8-node, 198
Property cards, 234, 243, 282	high order, 197
	rectangular elements, 196–200
Q	S-FEM. See Smoothed finite element methods (S-FEM)
Quadratic convergence, 95	Shape functions, 224–226, 262–263, 292–293
Quadratic elements, 163	construction, 82–85, 112–115
Quadratic one-dimensional element, 104	delta function property, 167
Quadratic triangular elements, 193–194	linear rectangular elements, 176–179
Quadrilateral elements, 183–184, 237–240	linear triangular elements, 166–170
meshes, 6–7	trusses, FEM for, 82–85
2D domain meshed, 184	matrix of, 224-225, 250-255
unacceptable shapes of, 307–309	properties of, 54–63
Quadrilateral shell elements, 236	Shear deformation in plate, 222
Quantum dot heterostructure, stress and strain	Shear equivalence, 16–18
analysis of, 277–286	Shear locking, 226–227
Quarter model, 233	Shell elements, 2, 227–233
of micro model, 241	Shell structures, 228–229
	Simply supported anti-symmetric beam structure, 316
R	Simply supported symmetric beam structure, 316
Rectangular domain, meshed with triangular	Single point constraint (SPC), 63, 314–315
elements, 165, 176	Singularity elements, 289–290
Rectangular elements, 221, 375–377, 382–384	Sinusoidal function, 241, 244
and coordinate systems, 177	Skeletal-type truss structural systems, 81–82
domain, 176–177	SK growth mode. See Stranski-Krastanow
Lagrange type elements, 195–196	(SK) growth mode
9-node, 196	Smoothed finite element methods (S-FEM), 299–300
of arbitrary high orders, 196, 273	Smoothed particle hydrodynamics (SPH), 299
serendipity type elements, 196–200	Smoothed Point Interpolation Methods (S-PIM), 299
Rectangular hexahedron element, 266–268	Smoothing domains, 300
Rectangular shell element, 229	Solid finite elements, 249–250
Refinement, 289–290	Solids and structures, mechanics for. See mechanics for solids
Reissner–Mindlin plate theory, 35, 221–223	and structures
equations for plates, 38–40	Solution process, 236–237
Repetitive symmetry, 322	Solvers, equation, 9–10
Residual equation, 356–357	SOR method. See Successive over-relaxation (SOR) method
Residual method, 8–9	Space frames, 136
Resonant frequencies of micro-resonant transducer	structure, 136
ABAQUS input file, 124–127	Spatial frame structure, three-dimensional, 135–136
comparison with ANSYS, 130-132	Spatial trusses, 87–90
modeling, 123–124	SPC. See Single point constraint (SPC)
results and discussion, 128-130	SPD. See Symmetric Positive Definite (SPD)
solution process, 127–128	Special purpose elements and methods, 289
Resonant micro-beam strain transducer, 122	Specified heat flux, 381
Rigid element, 324	SPH. See Smoothed particle hydrodynamics (SPH)
Rigid slab on elastic foundation, 336	S-PIM. See Smoothed Point Interpolation Methods (S-PIM)
Rule of thumb, 250	Sprocket-chain system, finite element mesh for, 307
	Stabilizing matrix, 232–233
\$	Standard finite element mesh, 295–296
Sandwiched composite wall, 393	State of stresses, equilibrium equations, 20
Second order differential operators., 19–21	Static analysis, 69

*STEADY STATE DYNAMICS, 402–403	3D element types, 284–285
Steady state equation, 355	3D mesh
*STEP line, 402–403	of island, 280
*STEP option, 404	of matrix, 280
Stiffened plates with offset, 327	3D solid elements, 249–250
Stiffness matrix, 116-118, 229-230, 365-366	Three-dimensional solid element mesh, 333
Straddling elements, 312–313	nodal force vector for, 260-261
Strain-displacement relationships, 16-18, 24	with curved surfaces, 278
Strain matrix, 85–86, 115–116, 250–256, 261–266, 357–358	3D visualization, 10
linear quadrilateral elements, 186–187	Three-dimensional (3D) solids
linear rectangular elements, 179	boundary conditions, 21-22
linear triangular elements, 172–174	constitutive equations, 18-19
trusses, FEM for, 85–86	dynamic equilibrium equations, 19-21
Stranski-Krastanow (SK) growth mode, 277–278	element, 21–22
Stress	stress and strain, 16-18
distribution, 278, 285–286	Three-dimensional spatial frame structure, 135-136
in bicycle frame, 156	'Tied' contact condition, 281–282
tensors, 16–18	Time stepping, implicit and explicit approaches, 9
Stress and strain equations	T-meshes, 299
for beams, 30–31	Torsional bar element, 142–144
for plates, 35–36	Torsional deformation, 142-144, 352
for three-dimensional solids, 16–18	Torsional state, 352–353
for truss members, 27	Transient analysis of micro-motor, 240-247
for two-dimensional solids, 22–24	Transient response, 71–76
Stress components, 255–256	central difference algorithm, 72–75
independent, 16–18	Newmark's method, 75–76
Strip element method, coupling of FEM and, 298	Translational displacements, 229-230
Structural components, types of, 15	Transverse displacement components, 241
Subparametric elements, 188	Trapezoidal cross-sections (TRAPEZOID), 406–407
Sub-space iteration scheme, 237	Triangular elements, 164, 373–375
Successive over-relaxation (SOR) method, 9	cubic, 194–195
Superposition	general formulation of shape functions, 191–193
idea of, 228	quadratic, 193–194
of element matrices, 137	rectangular domain meshed with, 165, 176
Superparametric elements, 188	Triangular truss structure, 95–96
Supports modeling, 328–330	Trilinear functions, 263
Surface of solid, 16	Truss element, 81–82
Symmetric Positive Definite (SPD), 91	connected by ridged bar, 110
Symmetric quarter model, 281	convergence property of, 94–95
Symmetrical quarter model, 233	coordinate system, 83
	dimensions and properties of, 97
T	element matrices in global coordinate system
Temperature distribution of cross-section of road, 391	boundary conditions, 91–92
10-nodal tetrahedron element, 269–272	planar trusses, 90–91
Tensile stress in matrix, 285–286	recovering stress and strain, 92
Tetrahedron elements, 250–261, 269–272	spatial trusses, 87–90
Tetrahedrons to hexahedrons, 269	element matrices in local coordinate system, 86–87
Thermal conductive properties, 351	high order one-dimensional elements, 103–105
Thick beams, 30–31	linear shape functions for, 85
Thin beams, 30–31	local coordinates and degrees, 96
Euler-Bernoulli assumption for, 31	nodal force vector for, 86–87
32-node tri-cubic element, 276–277	rate of convergence of, 95–97

reproduction property of, 94	strain matrix, 186–187
shape function construction, 82–85	linear rectangular elements
strain matrix, 85–86	element matrices, 179–180
structure, 107–108	Gauss integration, 180–183
transformation matrix, 87–88	shape function construction, 176–179
with 3 nodes, 109	strain matrix, 179
Truss members	linear triangular elements
beam and, 158–159	area coordinates, 170–172
constitutive equations, 27	element matrices, 174–176
cross-sectional dimension of solid, 27	field variable interpolation, 164–166
dynamic equilibrium equations, 27–28	shape function construction, 166–170
stress and strain, 27	strain matrix, 172–174
typical structure of, 26	rectangular elements
Truss structure, three member, 96	Lagrange type elements, 195–196
Turbine-blade, 332	serendipity type elements, 196–200
and turbine-disc system, 331	stress and strain, 22-24
20-Nodal tri-quadratic element, 273-276	triangular element family
20-Node serendipity element, 274, 276	cubic triangular elements, 194-195
20-Node tetrahedron element, 272	general formulation of shape functions, 191-193
2D axisymmetric elements	quadratic triangular elements, 193-194
formulation of, 319–320	
3D structure modeled using, 321	V
2D domain of plate, 222	Velocity–time history, 245–246
2D element mapping, 295	Very stiff element, 324
2D finite element mesh	Virtually designed building, air flow field in, 10–11
with boundary condition, 387	Virtual reality, 10
2D frame elements, coordinate transformation for, 140	Volume coordinates, 250–255
2D heat transfer problem	Volumetric distortion, 307–309
boundary conditions and vector b(e), 359, 377-384	Von Mises stress distribution, 208, 211
element equations, 370–373	using 24 bilinear quadrilateral elements, 208
point heat source or sink, 384–386	using 96 bilinear quadrilateral elements, 209
rectangular elements, 375–377	using 144 bilinear quadrilateral elements, 209
triangular elements, 373–375	using 24 eight-nodal, quadratic elements, 210
2D solids	using 192 three-nodal, triangular elements, 210
constitutive equations, 24–25	
dynamic equilibrium equations, 25–26	VA/
elements	W
for axisymmetric structures, 188–191	Weak form formulation, 22
with curved edges, 200–201	Weight coefficients, 180–181
Gauss integration, 201	Weighted residuals, 354
linear quadrilateral elements	
coordinate mapping, 183–186	Υ
element matrices, 187–188	Young's modulus, 18–19
remarks, 188	Toung 5 modulus, 10–17