Chap 10: Arithmétique sur $\mathbb Z$

I. Divisibilité

p divise n ($p \mid n$) s'il existe $k \in \mathbb{Z}$ tel que n = kp

La relation de divisibilité est une relation d'ordre sur $\mathbb Z$

b | a ssi le reste de la div. euclid. de a par b est nul

 $b \mid a, b \mid c \Rightarrow b \mid (ja + kc)$

 $(a,b) \in \mathbb{Z}^2$, $(q,r) \in \mathbb{N}^2$ tq a = bq + r et $r \in [0,b-1]$

 $\{div communs \ a \ a \ et \ b\} = \{div communs \ a \ b \ et \ r\}$

Preuves : combinaison linéaire

 $\forall (a,b) \in (\mathbb{N}^*)^2, \exists ! d \in \mathbb{N}^* \text{ tel que } a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$ $d = \operatorname{pgcd}(a,b) = a \wedge b$

Théorème de Bezout : $\forall (a,b) \in (\mathbb{N}^*)^2$, $\exists (u,v) \in \mathbb{Z}^2$ tels que $\operatorname{pgcd}(a,b) = au + bv$

 $D \mid a, D \mid b, \exists (u, v) \in \mathbb{Z}^2, D = au + bv \Leftrightarrow D = \operatorname{pgcd}(a, b)$

a,b sont premiers entre eux si $a \wedge b = 1$

(On a dans ce cas la réciproque du thm de Bezout)

Lemme de Gauss : $\begin{cases} a \land b = 1 \\ a \mid bc \end{cases} \Rightarrow a \mid c$

Preuve : $a\mathbb{Z} + b\mathbb{Z}$ idéal de $\mathbb{Z} \Rightarrow d\mathbb{Z}$

 $a \in d\mathbb{Z} \ b \in d\mathbb{Z} \ d = au + bv$

 $D \mid a, D \mid b \Rightarrow D \mid d$

(idem ppcm)

 $a \mid c$ $b \mid c$ $\Rightarrow ab \mid c$

(Idem pour les produits plus grands)

 $a \wedge b = 1$

 $\forall (a,b) \in (\mathbb{N}^*)^2, \exists ! m \in \mathbb{N}^*, a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z} = \{ \text{multiples communs à } a \text{ et } b \} \quad m = ppcm(a,b) = a \lor b \}$ $a \times b = (a \wedge b)(a \vee b)$

Preuve: $a = da_0, b = db_0$ $m_0 = da_0b_0$ $a_0 \wedge b_0 = 1$

 $m = a \lor b$ $m = ka, b \mid m \Leftrightarrow db_0 \mid kda_0 \Leftrightarrow b_0 \mid k \Rightarrow k = b_0 j$

 $m = (ab_0)j = m_0j$ Comme m_0 multiple de $(a_0d) = a$ et de $(b_0d) = b, m_0 \mid m \Rightarrow m_0 = ppcm(a,b)$

 $(a \wedge b) \wedge c = a \wedge (b \wedge c) = a \wedge b \wedge c$ est l'unique $d \in \mathbb{N}^*$ tel que $a\mathbb{Z} + b\mathbb{Z} + c\mathbb{Z} = d\mathbb{Z}$

 $/! \setminus (a,b,c)$ premiers entre eux dans leur ensemble ($\Leftrightarrow a \land b \land c = 1$)

 \neq (a,b,c) premiers entre eux deux à deux $(\Leftrightarrow a \land b = a \land c = b \land c = 1)$

II. Nombres premiers

 $p \in \mathbb{Z} * \setminus \{-1, +1\}$ est premier si les seuls diviseurs de p sont :

Les inversibles $\{+1;-1\}$

Les nombres associés à p {+p,-p}

$$p \in \mathbb{N}$$
 * premier $\Leftrightarrow \forall j \in \mathbb{N}^*, j \land p = 1$ ou $p \mid j$

Tout nombre $n \ge 2$ admet un diviseur premier

Preuve : {diviseurs >1 de n} partie non vide de N → minorée. Le minorant est premier

Il existe une infinité de nombres premiers

$$\textbf{Preuve}: \text{par l'absurde}: \ m = \prod_{j=1}^{N} p_j + 1 \quad p_k \mid m \quad p_k \mid \prod_{j=1}^{N} p_j \Rightarrow p_k \mid m - \prod_{j=1}^{N} p_j \Leftrightarrow p_k \mid 1$$

Tout entier s'écrit de manière unique sous la forme d'un produit de nombres premiers (à l'ordre près des facteurs)

Preuve : récurrence forte sur n>1. Si n pas premier, admet 1 diviseur premier → puissance +1

$$n = \prod_{j=1}^{R} p_{j}^{\alpha_{j}} \qquad m = \prod_{k=1}^{R} p_{j}^{\beta_{j}} \qquad \Rightarrow a \wedge b = \prod_{k=1}^{R} p_{k}^{\min(\alpha_{j}, \beta_{j})} \qquad \qquad a \wedge b = \prod_{k=1}^{R} p_{k}^{\max(\alpha_{j}, \beta_{j})}$$

III. Congruences et $\mathbb{Z}/n\mathbb{Z}$

 $n \in \mathbb{N}, n > 1$

j est congru à k modulo n ($j \equiv k[n]$) si $\exists p \in \mathbb{Z} / k = l + pn$

La congruence est une relation d'équivalence, compatible avec + et ×

 \overline{k} est la classe d'équivalence de k. $\mathbb{Z}/n\mathbb{Z} = \{\overline{k}, k \in [0, n-1]\}$

$$\operatorname{card} \mathbb{Z}/n\mathbb{Z} = n$$

On définit des lci+et $imes: \mathbb{Z}/_{n\mathbb{Z}}$ est un anneau commutatif

$$x \in \mathbb{Z}/n\mathbb{Z}$$
 $x \in \left(\mathbb{Z}/n\mathbb{Z}\right)^* ssi \ k \wedge n = 1$

n premier $\Leftrightarrow \mathbb{Z}/_{n\mathbb{Z}}$ est un corps

Preuve: Bezout

Tout anneau intègre de cardinal fini est un corps

Lemme chinois : Si $n \wedge p = 1$, alors $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$ est isomorphe à $\mathbb{Z}/np\mathbb{Z}$