1 Newton

(a) We know that

$$\frac{dm(r)}{dr} = 4\pi r^2 \rho(r) \tag{1}$$

$$\frac{dm(r)}{dr} = 4\pi r^2 \rho(r) \tag{1}$$

$$\frac{dp(r)}{dr} = -\frac{Gm(r)\rho(r)}{r^2} \tag{2}$$

$$p(r) = K\rho(r)^{1+\frac{1}{n}} \tag{3}$$

(2) can be rewritten as:

$$\frac{1}{\rho}\frac{dp}{dr} = -\frac{Gm}{r^2} \tag{4}$$

Taking its derivative with respect to r yields

$$\frac{d}{dr}\left(\frac{1}{\rho}\frac{dp}{dr}\right) = \frac{2Gm}{r^3} - \frac{G}{r^2}\frac{dm}{dr}$$

$$= -\frac{2}{r}\left(\frac{1}{\rho}\frac{dp}{dr}\right) - 4\pi G\rho$$
(5)

By multiplying Eq.(5) with r^2 , and collecting the r derivatives of p on one side, we get:

$$\frac{d}{dr}\left(\frac{r^2}{\rho}\frac{dp}{dr}\right) = -4\pi G r^2 \rho \tag{6}$$

By introducing a new function θ , which satisfies the relation $\rho = \rho_c \theta^n (\rho_c)$ is a constant, we can rewrite Eq.(3) as:

$$p = K\rho_c^{1+\frac{1}{n}}\theta^{n+1} \tag{7}$$

Inserting Eq.(7) into (6), we get:

$$\frac{d}{dr}\left(\frac{r^2}{\rho_c\theta^n}K\rho_c^{\frac{1}{n}+1}(n+1)\theta^n\frac{d\theta}{dr}\right) = -4G\pi r^2\rho_c\theta^n \tag{8}$$

Simplified,

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 K \rho_c^{\frac{1-n}{n}} (n+1) \frac{d\theta}{dr} \right) = -4G\pi \rho_c \theta^n \tag{9}$$

By defining $\alpha := \sqrt{K\rho_c^{\frac{1-n}{n}}(n+1)/4\pi G}$ and introducing a new variable ξ which satisfies the relation $r = \alpha \xi$, we can rewrite Eq.(9) as:

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) + \theta^n = 0 \tag{10}$$

which is the Lane-Emden equation.

Analytical solutions of Lane-Emden equation only exist for n = 0, 1, 5. The regular solutions near the center, i.e. $\xi \approx 0$ can be approximated as a power series:

$$\theta(\xi) = 1 - \frac{1}{6}\xi^2 + \frac{n}{120}\xi^4 + \dots \tag{11}$$

This series has an error of order $O(\xi^6)$.

The Mathematica code used to calculate this series expression can be found in the Supplementary Material.

Eq.(1) can be rewritten as

$$dm(r) = 4\pi r^2 \rho(r) dr \tag{12}$$

which, after scaling the appropriate variables ($\rho = \rho_c$, $r = \alpha \xi$), becomes

$$dm = 4\pi \rho_c \alpha^3 \xi^2 \theta^n d\xi \tag{13}$$

Integrating both sides from 0 to ξ_n gives

$$m = 4\pi \rho_c \alpha^3 \int_0^{\xi_n} \xi^2 \theta^n d\xi$$

$$= 4\pi \rho_c \alpha^3 \int_0^{\xi_n} -\frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) d\xi$$

$$= 4\pi \rho_c \alpha^3 \xi_n^2 (-\theta'(\xi_n)) \tag{14}$$

Since $r = \alpha \xi$ and ξ_n is the maximum value of ξ where $\theta(\xi) \ge 0$, we can conclude that $R = \alpha \xi_n$ is the radius of the star. Multiplying and dividing Eq.(14) with ξ_n to write it in terms of R, we get:

$$M = 4\pi \rho_c R^3 \left(-\frac{\theta'(\xi_n)}{\xi_n} \right) \tag{15}$$

In order to find the total mass of a star in terms of its radius, we need to combine Eq.(14) and $R = \alpha \xi_n$.

We'll get rid of α , and write its true value instead, with the aim to connect the two equations by isolating ρ_c in each one. Eq.(14), with this prescription, can be written as:

$$M = 4\pi \left(\frac{K(n+1)}{4\pi G}\right)^{\frac{3}{2}} \left(-\xi_n^2 \theta'(\xi_n)\right) \rho_c^{\frac{3-n}{2n}}$$
 (16)

Similarly,

$$R = \alpha \xi_n = \left(\frac{K(n+1)}{4\pi G}\right)^{\frac{1}{2}} \xi_n \rho_c^{\frac{1-n}{2n}}$$
(17)

Isolating ρ_c form both equations, we get:

$$\rho_{c} = \left(\frac{M}{4\pi \left(\frac{K(n+1)}{4\pi G}\right)^{\frac{3}{2}} \left(-\xi_{n}^{2} \theta'(\xi_{n})\right)}\right)^{\frac{2n}{3-n}}$$

$$= \left(\frac{R}{\left(\frac{K(n+1)}{4\pi G}\right)^{\frac{1}{2}} \xi_{n}}\right)^{\frac{2n}{1-n}} \tag{18}$$

which results in the relation:

$$M = (4\pi)^{\frac{1}{1-n}} \left(\frac{K(n+1)}{G} \right)^{\frac{n}{n-1}} \xi_n^{\frac{n+1}{n-1}} (-\theta'(\xi_n)) R^{\frac{3-n}{1-n}}$$
(19)

(b) The Python code for extracting the .csv file can be found in the Supplementary Material. The M vs R plot of the white dwarfs is included in Figure 1.

Figure 1: Mass v Radius plot of low-temperature White Dwarves.

(c) The series expansion (obtained by Mathematica) for the polytropic approximation of pressure is:

$$P = \frac{Cx^5}{5} + \mathcal{O}(x^6)$$

$$\simeq \frac{8C}{5D^{5/q}} \rho^{1 + \frac{1}{q/(5-q)}}$$
(20)

which yields the constants K_* and n_* .

After making the appropriate fit, q seems to be fluctuating around 3, as seen in Figure 2. Since we know from theory that q is an integer, we can deduce that q is exactly equal to 3.

Figure 2: a) M-R plot, low-mass fit. b) log-log plots.

After obtaining the specific value of q, and subsequently n_* , another fitting reveals the value of K_* , which turns out to be $\approx 2.83 \times 10^{12}$ cm⁴ g^{- $\frac{2}{3}$} s⁻².

Figure 3: M-R plot and K_* fit

Central density ρ_c has the formula:

$$\rho_c = \frac{M}{4\pi R^3} \frac{\xi_n^3}{(-\xi^2 \theta'(\xi))_{\xi = \xi_n}}$$
 (21)

 ξ_n and $(-\xi^2\theta'(\xi))_{\xi=\xi_n}$ can be obtained by solving the Lane-Emden Equation. After substituting the appropriate values, we find ρ_c to be proportional to M^2 , which can be seen in Figure 4.

Figure 4: Density vs Mass, M^2 fit (red)

(d) A range of $(10^5, 10^9)$ was used for ρ_c and possible D values between $(10^6, 10^7)$. The D value with lowest RMS error approximated the theoretical value $D = 2.00 \times 10^6$, which was thus used.

Figure 5: Mass v Radius plot, $D = 2.00 \times 10^6$ fit

(e) After plotting a number of ρ_c values between 10^{10} and 10^{15} ,the White Dwarf mass for which a solution existed was around $1.39M_{\odot}$, which is in accordance with the currently accepted Chandrasekhar limit, $1.4M_{\odot}$. The M-R relationship can be seen in Figure 6.

Figure 6: Mass v Radius plot for various ρ_c values.

2 Einstein

(a) The mass-radius curve for NSs is presented in Figure 7.

Figure 7: M-R plot for neutron stars with $K_{NS}=50$.

(b) The fractional binding energy (Δ)-radius curve for NSs is presented in Figure 8.

Figure 8: Δ -R plot for neutron stars with $K_{NS}=50$.

(c) The mass-central density(ρ_c) curve for NSs is presented in Figure 9. The maximum stable mass for which the solution exists is $1.41 M_{\odot}$, coinciding with $K_{NS} = 50$.

Figure 9: M- ρ_c plot for neutron stars with $K_{NS}=50$.

(d) The lowest K_{NS} value to have maximum mass greater than $2.14M_{\odot}$, so any K_{NS} is $K_{NS}=116$, the M and $\Delta-R$ and M- ρ_c curves for which are presented in Figures 10, 11, 12. To show another possible value, the graphs for $K_{NS}=125$ were drawn and presented in Figures 13, 14, 15.

Figure 10: M-R plot for neutron stars with $K_{NS}=116$.

Figure 11: Δ -R plot for neutron stars with $K_{NS}=116.$

Figure 12: M- ρ_c plot for neutron stars with $K_{NS}=116.$

Figure 13: M-R plot for neutron stars with $K_{NS}=125.$

Figure 14: Δ -R plot for neutron stars with $K_{NS}=125.$

Figure 15: M- ρ_c plot for neutron stars with $K_{NS}=125.$

(e) When (r > R), $\bar{\nu}(r) = \ln\left(1 - \frac{2M}{r}\right)$. Since $\bar{\nu}(R) = \ln\left(1 - \frac{2M}{R}\right)$, adding $\pm\left(\bar{\nu}(R) - \ln\left(1 - \frac{2M}{R}\right)\right)$ would not change the value.