Multi-Way Classification of Relations Between Pairs of Entities

Sahitya Patel

Supervisor: Dr. Harish Karnick

June 2018

Cite Us As

```
@MastersThesis{Sahitya:2018,
  author = { {Sahitya Patel} and Harish Karnick},
  title = {Multi-Way Classification of Relations Between Pairs of Entities},
  school = {Indian Institute of Technology Kanpur (IITK)},
  address = {India},
  year = 2018,
  month = 6
}
```

Outline

Introduction

Relation Classification

Related Work

- Features for Relation Classification
- Previous Methods for Relation Classification

Proposed Models

- BGRU based models
- CNN-BGRU based models
- Combined Models

Results

- Dataset: SEMEVAL 2010 task 8
- Performance of Proposed Models
- Hyperparameters, Confusion Matrix
- Comparison with competing methods

Conclusion and Future Work

Introduction

Introduction

Information Extraction (IE)

IE = Identification of entities + Identification of relations between the entities

Relation Classification (RC)

- Relation classification is a task of assigning predefined relation labels to the entity pairs that occur in texts
- [People]_{e1} have been moving back into [downtown]_{e2}
- Entity-Destination(e1,e2)
 - e1 = people
 - e2 = downtown
- H(S, e1, e2) = y
 - S = Sentence
 - e1, e2 = entities
 - y comes from a predefined set of relations

Introduction

Message-Topic(e1,e2) Examples

- 1. The final [programme]_{e1} detailed the [history]_{e2} of Russborough House
- 2. The [letter]_{e1} contains a description of the [demolition]_{e2} of the old synagogue
- 3. On 17 May 2005, the committee held a [hearing]_{e1} concerning specific [allegations]_{e2}
- The [newsletter]_{e1} tells of practical [projects]_{e2} developed to help those affected by the pandemic
- Message-Topic(e1,e2) relation is conveyed in different ways in above examples
- An efficient system for Relation Classification needs to account for syntactic and semantic features of the overall sentence to correctly identify the relation
- SEMEVAL 2010 task 8 dataset
 - 9 directional relations + 1 other
 - Total 2*9+1 = 19 classes

Related Work

- Features for Relation Classification
 - Linguistic features
 - Positional features
- Previous Methods for Relation Classification
 - Att-BLSTM
 - Att-BGRU

Related Work: Features

Linguistic Features

- Word Embeddings
- Part of Speech tags (POS)
- WordNet tags
- Shortest Dependency Path (SDP)
- Grammar Relation tags (GR)

Word Positional Indicators

E1_START People E1_END have been moving back into E2_START downtown E2_END

Word Positional Embedding

People	have	been	moving	back	into	downtown
0	1	2	3	4	5	6
-6	-5	-4	-3	-2	-1	0

Related Work: Methods

Categories of Relation Classification Methods

- Feature Based
- 2. Kernel Based
- 3. Neural Network Based

Common Framework for Neural Network based methods

- Features: Input Sentence, Linguistic Features, Positional Features
- Neural Networks: CNN / RNN / LSTM / GRU
- Pooling over the sentence features
- Classification

Related Work: Methods

Relation Classification methods and their scores on SEMEVAL 2010 Task 8 Dataset

Classifier	Additional Information	F1		
SVM	POS, WordNet, Pre xes and other morphological features,			
	Dependency parse, Levin classed, PropBank, FanmeNet,	82.2		
[Rink and Harabagiu, 2010]	NomLexPlus, Google n-gram, Paraphrases, TextRunner			
MVRNN	Mard ambaddings DOC NED WordNot	82.4		
[Socher et al., 2012]	Word embeddings, POS, NER, WordNet			
CNN [Zeng et al., 2014]	Word embeddings, Position embeddings, WordNet	82.7		
FCM [Yu et al., 2014]	Word embeddings, Dependency parsing, NER	83.0		
DepNN [Liu et al., 2015]	Word embeddings, SDP, NER	83.6		
SDP-LSTM	Ward amhaddings SDR ROS CR WardNot	83.7		
[Xu et al., 2015b]	Word embeddings, SDP, POS, GR, WordNet	83.7		
Att-BLSTM	Word embeddings, Positional indicator	84.0		
[Zhou et al., 2016]	Word embeddings, Positional indicator	84.0		
Encemble Methods [Nauven	Word embeddings, SDP, POS, NER, WordNet,			
and Grishman, 2015]	CNNs+RNNs+Voting			
and Grisiinian, 2013]	CIVINSTRIVINSTRUCING			
CR-CNN	Word embeddings, Position embeddings, Special ranking			
[dos Santos et al., 2015]	objective	84.1		
att-BGRU	Word embeddings, Range restricted	84.1		
[Kim and Lee, 2017]	Word embeddings, Kange restricted	04.1		
SPTree [Miwa and Bansal,	Word amhaddings SDR ROS	84.4		
2016]	Word embeddings, SDP, POS			
EAtt-BiGRU	Word embeddings Decitional embeddings			
[Qin et al., 2017]	Word embeddings, Positional embeddings			
ER-CNN+R-RNN	Word embeddings, Extended middle context, Ensemble, Voting,			
[Vu et al., 2016]	Special ranking objective	84.9		
depLCNN	Word embeddings, SDP, WordNet, Word around nominals,	85.6		
[Xu et al., 2015a]	Negative sampling from NYT dataset			
DRNN [Xu et al., 2016]	Word embeddings, SDP, POS, GR, WordNet, Data augmentation,	86.1		
Diviviv [Au et al., 2010]	(w/o data augmentation - 84.2)			
BRCNN [Cai et al., 2016] Word embeddings, SDP, POS, NER, WordNet, Data augment		86.3		
Att-Input-Pooling-CNN	oling-CNN Word embeddings, Position embeddings, Special ranking			
[Wang et al., 2016]	objective	88.0		
[vvalig et al., 2010]	Jonjective			

Related Work: Att-BLSTM

Att-BLSTM - Bidirectional LSTM model with Attention [ZHOU et al., 2016]

Related Work: Att-BGRU

Att-BGRU - Multiple Range-Restricted Bidirectional GRUs with Attention [KEEM and LEE, 2017]

Related Work: Methods

Observations on existing methods

- Many of the methods use linguistic features
 - Costly
 - Error-Prone
- Mostly one-Layered architectures
 - One layer of CNN or RNN
- Most of them use a single pooling max pooling or attention pooling

Proposed Models

- BGRU based models
 - BGRU-M
 - BGRU-ME
- CNN-BGRU based models
 - CBGRU-ME
 - CBGRU-A
 - CBGRU-MEA

Proposed Model: BGRU-M

- Input
 - Positional Indicators
 - Tokenization
 - Padding
- Embedding
 - Google word2vec vectors
 - OOV
- Bidirectional GRU
 - Concatenation of forward and backward pass features
- Max pooling
 - Maximum over the length of the sentence
- Dense and Softmax
 - Cross-Entropy
 - Classification

Proposed Model: BGRU-M

Max Pooling Visualization

- Features from verbs and several important words are pooled
 - fabricates, were, teaches, moved, about, with, into
- Features from irrelevant words are pooled
 - The, Ten, quake, and
- Features from entities are not pooled
 - chairs, audits, master, houses

Proposed Model: BGRU-ME

- Entities Pooling
 - Entities are the most significant clues for Relation Classification
 - Maximum over the features of entities
- Concatenation of max and entities pooling features
- Better results than model BGRU-M

Proposed Model: CBGRU-ME

- CNN and BGRU two layered architecture for RC
- CNN
 - N-gram features
 - Filter length: 3
 - Returns a sequence of local features
- BGRU
 - Returns a sequence of sentential features
 - Local as well as global features
- Better results than model BGRU-ME

Attention Pooling

$$\alpha$$
 $W_a(1*d)$ $S_g(d*N)$

$$\alpha$$
 = softmax ($W_a * S_g + B_a$)
 $S_{p_attn} = S_g * \alpha^T$

Sg Features from BGRU

 α Attention Vector

S_{p_attn} Sentence level featue vector

Proposed Model: CBGRU-A

- The attention mechanism produces a normalized vector α (whose size is the length of the sentence) using which we take a linear combination of BGRU features
- Importance of words in a sentence is learned

Proposed Model: CBGRU-A: Attention

- Features from verbs and other important words are pooled
 - fabricates, teaches, moved, from, about, with, in, part of
- Features from irrelevant words are not pooled
 - The, most, Ten, quake, and
- Features from some entities are not pooled
 - chairs, audits, master, houses

Proposed Model: CBGRU-MEA

- Taking advantage of all kinds of pooling, namely max, entities, attention pooling
- Features vectors of all kinds of pooing are concatenated
- Extra fully-connected layer with ReLU activation
- Better results than all previously proposed models

Combined Models

- Softmax Probabilities Sum
- Voting Scheme

Combined Models: Softmax Probabilities Sum

Combined Models: Voting Scheme

Results

- Dataset
- Results
 - Performance of proposed models
 - Hyperparameters
 - Confusion Matrix
- Comparison with Competing Methods
- Experiments

Dataset: SEMEVAL 2010 task 8

The <e1>company</e1> fabricates plastic <e2>chairs</e2>. Product-Producer(e2,e1)

	Total
Training sentences	7208
Validation sentences	792
Test sentences	2717

Relation	Total	(e1,e2)	(e2,e1)
Cause-Effect	1331	478	853
Component-Whole	1253	632	621
Content-Container	732	527	205
Entity-Destination	1137	1135	2
Entity-Origin	974	779	195
Instrument-Agency	660	119	541
Member-Collection	923	110	813
Message-Topic	895	700	195
Product-Producer	948	431	517
Other	1864		

Relations	Description
	An event or object leads to an effect. Example: Smoking
Cause-Effect	causes cancer.
Instrument-Agency	An agent uses an instrument. Example: laser printer
Due door Due door	A producer causes a product to exist. Example: The farmer
Product-Producer	grows apples.
Content-Container	An object is physically stored in a delineated area of space,
Content-Container	the container. Example: Earth is located in the Milky Way.
	An entity is coming or is derived from an origin (e.g., position
Entity-Origin	or material). Example: letters from foreign countries
Entitu Destination	An entity is moving towards a destination. Example: The boy
Entity-Destination	went to bed.
Component Whole	An object is a component of a larger whole. Example: My
Component-Whole	apartment has a large kitchen.
Member-Collection	A member forms a nonfunctional part of a collection.
iviember-conection	Example: There are many trees in the forest.
Mossago Tonic	An act of communication, whether written or spoken, is
Message-Topic	about a topic. Example: The lecture was about semantics.

[Hendrickx et al.,2009]

Dataset: SEMEVAL 2010 task 8

Evaluation Measure: Macro-Averaged F1-Score

- Nine proper classes are considered for calculating macro-averaged F1-score
- "Other" is excluded
- Official scorer script is provided with the dataset

 $C_p = \{ \text{ Cause-Effect, Instrument-Agency, Product-Producer, Content-Container, Entity-Origin, Entity-Destination, Component-Whole, Member-Collection, Message-Topic }$

 $|\mathcal{C}_p|$ = Number of classes in \mathcal{C}_p

$$Precision(\mathcal{P}_c) = \frac{TP_c}{TP_c + FP_c} \qquad Recall(\mathcal{R}_c) = \frac{TP_c}{TP_c + FN_c} \qquad F1_score(\mathcal{F}_c) = \frac{2*\mathcal{P}_c*\mathcal{R}_c}{\mathcal{P}_c + \mathcal{R}_c}$$

$$macro_averaged_F1_score(\mathcal{F}) = \frac{\sum_{c \in \mathcal{C}_p} \mathcal{F}_c}{|\mathcal{C}_p|}$$

Results: Proposed Models

Performance of our Proposed Models for Relation Classification on SEMEVAL 2010 task 8 dataset

Model	F1-Score				
BGRU-E	83.08				
BGRU-A	83.30				
BGRU-M	83.53				
BGRU-ME	83.63				
CBGRU-M	84.19				
CBGRU-ME	84.35				
CBGRU-A	84.69				
CBGRU-MEA	84.87				

	Bidirectional GRU		
CBGRU CNN-BGRU			
M	Max Pooling		
E Entities Pooling			
Α	Attention Pooling		

Results: Combined Models

Performance of our Combined Models for Relation Classification on SEMEVAL 2010 task 8 dataset

	Bidirectional GRU		
CBGRU	CNN-BGRU		
M	Max Pooling		
E	Entities Pooling		
Α	Attention Pooling		

		Combined N	Model F1-Score
Model	Model F1-Score	Prob. Sum	Voting
CBGRU-ME	84.35 84.33 84.27	84.56	84.65
CBGRU-A	84.69 84.65 84.63	85.10	84.69
CBGRU-MEA	84.87 84.83 84.81	85.79	85.80
CBGRU-ME CBGRU-A CBGRU-MEA	84.35 84.69 84.87	85.50	85.62
CBGRU-ME CBGRU-A	84.35 84.69	85.13	
CBGRU-A CBGRU-MEA	84.69 84.87	85.34	
CBGRU-ME CBGRU-MEA	84.35 84.87	85.43	

Results: Hyperparameters

	BGRU-{*}	CBGRU-{*}
Batch Size	100	128
Learning Rate	1	1 1
Optimizer	Adadelta	Adadelta
L2 Regularization Weight	0.00001	0.00001
Max Sentence Length	101	101
Word Embedding Vector Size	300	300
CNN Output Features (No of Filters)	-	256
CNN Filters Size (Window Length)	-	3
GRU Output Features	300	64
Dropout: Embedding	0.72	0.64
Dropout: BGRU	0.5	-
Dropout: CNN	-	0.32
Dropout: Pooling Layer	0.5	0.32
Early stopping epochs	20	20

Results: Confusion Matrix

Confusion Matrix for a combined model.
Three CBGRU-MEA models, with F1-scores – 84.87, 84.83, 84.81 – respectively, are combined by voting scheme.
Combined model F1 - 85.80

				C	lassif	ied A	S						
	CE	CW	CC	ED	EO	IA	МС	MT	PP	0	SUM	DIR_X	SUM
CE	301	0	0	0	7	0	0	1	2	15	326	2	328
CW	1	250	5	2	1	9	8	6	1	22	305	7	312
CC	0	0	175	5	2	0	1	0	0	6	189	3	192
ED	0	2	7	270	0	0	0	1	0	11	291	1	292
EO	3	0	2	3	239	2	0	1	2	6	258	0	258
IA	0	3	0	2	3	122	0	0	5	20	155	1	156
MC	0	4	0	2	2	0	214	1	0	10	233	0	233
MT	0	0	0	1	3	0	1	248	0	7	260	1	261
PP	4	3	1	3	5	6	1	3	192	12	230	1	231
0	10	25	28	25	32	15	40	39	24	216	454	0	454
SUM	319	287	218	313	294	154	265	300	226	325	2701	16	2717

- All relations are the most confused with "Other" and vice-versa
- A larger number of wrong directions for CW relation
- Confused Group: CW-MC

CE	Cause-Effect	IA	Instrument-Agency				
CW	Component-Whole	MC	Member-Collection				
CC	Content-Container	MT	Message-Topic				
ED	Entity-Destination	PP	Product-Producer				
EO	Entity-Origin O Other						
DIR X	Classified with wrong direction						

Comparison with Competing Methods - |

Comparison with Relation Classification methods which do not use extra linguistic features and special ranking objective Dataset - SEMEVAL 2010 task 8

Classifier	Additional Information					
Att-BLSTM	N/and anahaddings Desitional indicator					
[Zhou et al., 2016]	Word embeddings, Positional indicator					
att-BGRU	Ward ambaddings Danga restricted					
[Kim and Lee, 2017]	Word embeddings, Range restricted	84.1				
EAtt-BiGRU	Word ambaddings Desitional ambaddings	84.7				
[Qin et al., 2017]	Word embeddings, Positional embeddings	04.7				
Our Model:	Word ambaddings Positional indicator					
CBGRU-MEA	Word embeddings, Positional indicator	84.8				
Our Model:	Word ambaddings Dositional indicator					
Combined CBGRU-MEA	Word embeddings, Positional indicator					

Comparison with Competing Methods - | |

Comparison with Relation Classification methods which do not use extra linguistic features and use special ranking objective Dataset - SEMEVAL 2010 task 8

Classifier	Additional Information				
CR-CNN	Word embeddings, Position embeddings,				
[dos Santos et al., 2015]	Special ranking objective	84.1			
Our Model:	More control in diseases	84.8			
CBGRU-MEA	Word embeddings, Positional indicator				
ER-CNN+R-RNN	Word embeddings, Extended middle context,	84.9			
[Vu et al., 2016]	Ensemble, Voting, Special ranking objective				
Our Model:	Mond ambaddings Desitional indicator				
Combined CBGRU-MEA	Word embeddings, Positional indicator				
Att-Input-Pooling-CNN	Word embeddings, Position embeddings,	88.0			
[Wang et al., 2016]	Special ranking objective				

Comparison with Competing Methods - | | |

Comparison with Relation Classification methods which <u>use</u> extra linguistic features Dataset - SEMEVAL 2010 task 8

Classifier	Additional Information	F1					
SVM	POS, WordNet, Pre xes and other morphological features, Dependency						
	parse, Levin classed, PropBank, FanmeNet, NomLex-Plus, Google n-						
[Rink and Harabagiu, 2010]	gram, Paraphrases, TextRunner						
MVRNN	Word ambaddings DOS NED WordNet	82.4					
[Socher et al., 2012]	Word embeddings, POS, NER, WordNet	82.4					
CNN [Zeng et al., 2014]	Word embeddings, Position embeddings, WordNet						
FCM [Yu et al., 2014]	Word embeddings, Dependency parsing, NER	83.0					
DepNN [Liu et al., 2015]	Word embeddings, SDP, NER	83.6					
SDP-LSTM	Word ambaddings SDD DOS CD WordNot						
[Xu et al., 2015b]	Word embeddings, SDP, POS, GR, WordNet						
Ensemble Methods [Nguyen	Word ambaddings SDD DOS NED WordNot CNNs DNNs Wating						
and Grishman, 2015]	Word embeddings, SDP, POS, NER, WordNet, CNNs+RNNs+Voting						
SPTree [Miwa and Bansal,	Word embeddings CDD DOC	84.4					
2016]	Word embeddings, SDP, POS						
Our Model:	Mand and adding Darking diagter						
CBGRU-MEA	Word embeddings, Positional indicator						
depLCNN	Word embeddings, SDP, WordNet, Word around nominals, Negative	85.6					
[Xu et al., 2015a]	sampling from NYT dataset						
Our Model:							
Combined CBGRU-MEA	Word embeddings, Positional indicator						
DDNN [Vi. ot al. 2016]	Word embeddings, SDP, POS, GR, WordNet, Data augmentation, (w/o						
DRNN [Xu et al., 2016]	data augmentation - 84.2)						
BRCNN [Cai et al., 2016]	Word embeddings, SDP, POS, NER, WordNet, Data augmentation	86.3					

Experiments

Performance of model CBGRU-MEA with POS and WordNet tags

Model	Model	F1-Score				
Model	F1-Score	Probabilities Sum	Voting			
CBGRU-MEA + WordNet	84.54					
CBGRU-MEA + POS	84.64	85.35	85.23			
CBGRU-MEA + POS + WordNet	84.78					

 In the model CBGRU-MEA, POS embeddings and WordNet embeddings are appended to word embeddings

• Length of embeddings: 10

Number of POS tags: 47

• Number of WordNet tags: 51

Sentence	The	E1_	START	company	E1_	END	fabricates	plastic	E2 _	START	chairs	E2_START	
POS	DT	E1_	START	NN	E1_	END	VBZ	JJ	E2_	_START	NNS	E2_START	•
WordNet	OTHER	E1_	START	noun.group	E1_	END	verb.creation	noun.substance	E2	_START	noun.artifact	E2_START	OTHER

Conclusion and Future Work

Conclusion

Proposed Models for Relation Classification

- BGRU based models : BGRU-M, BGRU-ME
- CNN-BGRU based models: CBGRU-ME, CBGRU-A, CBGRU-MEA
- Two-layered CNN-BGRU based models outperform the one-layered BGRU based models
- The model CBGRU-MEA reports the highest F1-score of 84.87 on SEMEVAL 2010 task 8 dataset,
 without using external NLP tools

Feature Pooling

- Novel entities pooling over BGRU features to pool entity specific features, which improves the results of relation classification
- Used three different kinds of pooling together, namely max, entities, and attention pooling
- Using all kinds of pooling together improves the results

Combined Models

We experimented on combining architecturally same and different models by applying two
methods, namely a voting scheme and summing softmax probabilities, which further improve the
F1-score to 85.80 on SEMEVAL 2010 task 8 dataset

Future Work

• Deep architectures with data augmentation techniques

Modelling relation classification task as a multi-task learning

• Incorporating AMR information for relation classification

• Alternate architectures to use linguistic features effectively

Thank You

Questions?