Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Rozpoznawanie Obrazów

Sprawozdanie z ćwiczenia laboratoryjnego nr 3/4

Marcin Skrzypkowski

Spis treści

1.	Klasyfikator Liniowy	2
2.	Parametry Płaszczyzny Decyzyjnej	3
	2.1. Perceptron	
3.	Klasyfikacja 1 vs 1	4
4.	Klasyfikacja w podgrupach	5

1. Klasyfikator Liniowy

Pierwszym zadaniem było przygotowanie klasyfikatora liniowego, gdzie dwie klasy oddzielone są hiperpłaszczyzną. Przydział do klasy odbywa się na podstawie sprawdzenia znaku wartości funkcji decyzyjnej. Zwracany jest wynik dla wektora wejściowego, każda para klas ma utworzyć jeden klasyfikator. Nastpnie odbywa się głosowanie wyników klasyfikatorów, próbka jest przydzielana do klasy, która uzyskała najwięcej głosów.

W przypadku gdy kilka klas otrzyma maksymalną ilośc głosów należy taką odpowiedź uznać za wymijającą i odrzucić wynik klasyfikacji (nie wiadomo, do której klasy próbka należy).

2. Parametry Płaszczyzny Decyzyjnej

2.1. Perceptron

W celu wyznaczenia parametrów płaszczyzny decyzyjnej wykorzystano algorytm uczenia perceptronu. Jako metoda gradientowa, każdy krok wyznacza wartość zmniejszającą funkcję celu. Wartość ta jest iloczynem współczynnika uczenia oraz sumy źle sklasyfikowanych próbek. Współczynnik uczenia jest coraz mniejszy z każdą iteracją, aby funkcja celu nie przeskoczyła minimum.

$$\mathbf{s}(k+1) = \mathbf{s}(k) + \sigma(k) \sum x(k) \tag{2.1}$$

gdzie:

s- wektor parametrów hiperpłaszczyzny decyzyjnej

 $\sigma = \frac{1}{\sqrt{k}}$ - współczynnik uczenia

 $x(k) = set * \mathbf{s}^{T}(k) < 0$ - wektor źle sklasyfikowanych próbek

set - zbiór, na którym wyznaczamy płaszczyznę

k- krok iteracji

Początkowe wartości współczynników hiperpłaszczyzny zostały wybrane losowo. Uczenie trwa 200 iteracji bądź dopóty dopóki wartość $\delta(k) \sum x$ jest większa od pewnego ustalonego minimum, które w tym przypadku zostało ustalone na 0,001.

2.2. Eksperymenty

W celu przetestowania algorytmu opisanego powyżej wybrano dwie klasy liczb 0 oraz 1. Przed rozpoczęciem testu zredukowano wymiarowość wybranych próbek algorytmem PCA. Nastęnie 5 razy obliczono płaszczyznę decyzyjną dla zredukowanych próbek i w każdej iteracji obliczono wskaźnik wyników fałszywie dodatnich i fałszywie ujemnych, na koniec wyciągnięta została średnia błędów:

$$FNMR = \frac{FN}{FN + TP} = 0,001\,831\,1\tag{2.2}$$

$$FMR = \frac{FP}{FP + TN} = 0.005\,201\,2\tag{2.3}$$

Uzyskane wyniki okazały się zadowalające, więc można było przejśc do kolejnych zadań.

3. Klasyfikacja 1 vs 1

Poniżej przedstawiono macierz pomyłek poszczególnych klasyfikatorów każdej pary cyfr. Na głównej diagonali znajdują się poprawnie sklasyfkowane wartości (wiersz - klasa rzeczywista, kolumna - klasa wybrana przez klasyfikator). W ostatniej kolumnie znajdują się liczby próbek, których nie udao się zakwalifikować.

 ${\bf Tab.~3.1.~Macierz~pomylek}$

	0	1	2	3	4	5	6	7	8	9	odrzucone
0	5690	0	19	10	11	47	29	7	19	5	86
1	0	6496	39	25	8	11	2	23	62	4	72
2	20	21	5456	52	48	19	43	30	64	11	194
3	6	29	76	5543	0	152	10	25	69	27	194
4	4	11	38	3	5474	2	21	22	19	149	99
5	18	10	16	143	25	4828	55	12	92	13	209
6	22	9	40	2	28	81	5630	0	22	0	84
7	6	13	38	28	32	8	2	5885	10	115	128
8	11	66	34	85	12	114	31	11	5228	36	223
9	10	9	26	37	137	17	2	174	36	5356	145

Tab. 3.2. zbiór uczący

	OK.	\mathbf{B} łąd	Odrzucenie
jakość klasyfikacji	0,926433	0,049667	0,023 900

Macierz pomyłek pozwala nam spróbować usprawnić klasyfiację, dzieląc początkowo próbki na grupy, gdzie kryterium jest maksymalna liczba pomyłek w każdym wierszu. W ten sposób wybrano poniższe grupy:

- -0,3,5,8
- -1, 2, 6
- -4,7,9

Celem jest przetestowanie, czy stworzenie klasyfikatorów dla każdej z grup, w której znajdują się cyfry podobne według poprzedniej klasyfikacji da poprawę wyników.

4. Klasyfikacja w podgrupach

W celu klasyfikacji wyznaczonym grupom przydzielone zostały nowe etykiety zgodnie z kolejnością wypisania w poprzednim punkcie. Następnie mauczono klasyfikatory 1 vs 1 wyznaczające do której grupy należą próbki.

Tab. 4.1. Macierz pomyłek przy klasyfikacji grup

	1	2	3	odrzucone
1	22049	824	371	82
2	1131	17202	223	62
3	455	242	17308	51

Tab. 4.2. Jakość klasyfikacji grupowej

	OK.	${f Blad}$	Odrzucenie
jakość klasyfikacji	0,9426500	$0,\!0541000$	0,0032500

W następnym kroku wykorzystano stworzone poprzednio klasyfikatory dla pojedynczych liczb do wyznaczenia poszczególnych cyfr z każdej z grup.

Tab. 4.3. Macierz pomyłek przy podziale na grupy

	0	1	2	3	4	5	6	7	8	9	odrzucone
0	5649	0	51	16	16	51	60	21	29	2	25
1	2	6336	43	30	6	36	4	23	225	10	21
2	117	28	5233	143	62	22	43	33	163	22	64
3	15	55	150	5406	3	163	16	66	86	78	58
4	24	12	44	5	5418	6	49	27	44	163	27
5	40	22	43	150	24	4816	75	10	132	35	56
6	71	10	57	10	42	179	5437	2	54	0	23
7	44	34	58	44	39	6	1	5798	29	167	27
8	22	166	68	119	23	135	61	24	5080	50	70
9	41	4	13	86	153	38	0	197	66	5304	36

Tab. 4.4. wyniki klasyfikacji w pojedynczych grupach i razem

	OK.	${f Blad}$	Odrzucenie
grupa 1	0,885690	$0,\!103276$	0,011 034
grupa 2	0,9320910	0,0639627	0,0039463
grupa 3	0,9229566	$0,\!0725180$	$0,\!0045254$
razem	0,9107952	0,0822644	0,006 940 4

Powyższe wyniki dowodzą, że podział na grupy cyfr podobnych nie daje poprawionych rezultatów. Powodem zwiększenia błędów może być zły podział cech lub etap klasyfikacji na grupy. Poniżej zostało przedstawione bezpośrednie porównanie rozwiązania referencyjnego z 45 klasyfikatorami oraz próba poprawy przez początkowe grupowanie próbek.

Tab. 4.5. porównanie wyników klasyfikacji

	OK.	\mathbf{B} łąd	Odrzucenie
metoda referencyjna	0,926433	0,049667	0,023 900
grupowanie	0,910 795 2	$0,\!0822644$	$0,\!0069404$