







regulating at least one supply further comprises adjusting a programmable divider circuit of an on-chip power converter based on the power supply control signal

132-F

regulating the at least one supply further comprises regulating multiple supplies from the system clock and multiple power supply control signals, wherein each of the multiple power supply control signals corresponds to a unique one of the multiple supplies

accessing a register based on the system clock control signal to retrieve a selected divider setting of a dividing in a phase lock loop that produces the system clock based on the selected divider setting

FIG. 7