

Introduction to target trial emulation: Worked example

Susan Hoffman, MPH

Department of Epidemiology Emory University

SPER Methods Workshop June 17, 2024

Follow along!

https://github.com/ssb214/SPER24

Study background

- + Caniglia, et al. (2023) on GitHub
- + Exposure: Antibiotic initiation at or after 24 weeks gestation through 36 weeks gestation
- + Outcome: Preterm delivery

Causal contrast

- + Intention to treat effect
- + The effect of being assigned to treatment, not the effect of the treatment itself
- + No confounders

Causal contrast

- + Observational analogue of the intention to treat effect
- + Now, we need to control for confounders (in this example, maternal age, parity, and HIV status)
- + The risk ratio is the estimate of interest

"Data" structure

- + Define eligibility criteria
- + Specify time zero
- + Determine treatment ascertainment
- + Confounders
- + Follow-up and outcome

participant_id ‡	age ‡	parity ‡	hiv ‡	week ‡	exposure_info	‡	outcome ‡	
1	18-35	1	0	wk_24		0	0	
1	18-35	1	0	wk_25		0	1	
1	18-35	1	0	wk_26		0	NA	
1	18-35	1	0	wk_27		0	NA	
1	18-35	1	0	wk_28		0	NA	
1	18-35	1	0	wk_29		0	NA	
1	18-35	1	0	wk_30		0	NA	
1	18-35	1	0	wk_31		0	NA	
1	18-35	1	0	wk_32		0	NA	
1	18-35	1	0	wk_33		0	NA	
1	18-35	1	0	wk_34		0	NA	
1	18-35	1	0	wk_35		0	NA	
1	18-35	1	0	wk_36		0	NA	
2	18-35	0	0	wk_24		0	0	
2	18-35	0	0	wk_25		0	0	
2	18-35	0	0	wk_26		0	0	
2	18-35	0	0	wk_27		0	0	
2	18-35	0	0	wk 28		٥	0	

https://github.com/ssb214/SPER24

Step 1: estimate a RR for each target trial within week 24-36

General model for weeks 24-36

Quick note: Families and links

Odds Ratio	Risk Ratio	Risk Difference		
Family = Binomial	Family = Binomial	Family = Binomial		
Link = Logistic	Link = Log	Link = Identity		
SE = model-based	SE = model-based	SE = model-based		
	Family = Poisson	Family = Gaussian		
	Link = Log	Link = Identity		
	SE = Bootstrap	SE = Bootstrap		

Sequential target trials within each week

```
Create a list to store results for each week
adj_model_results <- list()</pre>
or (wk in paste0("wk_", 24:36)) {
 data_wk <- final_data %>% filter(week == wk)
 adj_model_results[[wk]] <- glm(outcome ~ exposure_info +</pre>
                                    hiv +
                                    parity +
                                    age,
                                  data = data_wk,
                                  family = binomial(link = "log")) # log link for RR
```

Pulling results

```
## Create a null dataframe
results_adj <- data.frame(</pre>
 Week = character(),
  Coefficient = numeric(),
  Lower_CI = numeric(),
  Upper_CI = numeric(),
  stringsAsFactors = FALSE
for (wk in paste0("wk_", 24:36)) {
  coefficients <- exp(crude_model_results[[wk]]$coefficients)</pre>
  ci <- exp(confint(crude_model_results[[wk]]))</pre>
  results_adj <- rbind(results_adj, data.frame(</pre>
    Week = wk,
    Coefficient = coefficients["exposure_info"],
    Lower_CI = ci["exposure_info", "2.5 %"],
    Upper_CI = ci["exposure_info", "97.5 %"]
```

Step 2: estimate RR for pooled results across weeks 24-36

Pooled model

Pooled results

+ Now we have the Beta estimates for the model, but because people can be present in more than one trial, we need to use the bootstrap for SE

```
Coefficients:
                                            z value Pr(>///)
                       Estimate Std. Error
(Intercept)
                                   0.017202 114.515
                                                         Ze-16 ***
                       -1.969904
                                   0.027931
                                               9.848
                                                         0.396
exposure_info
                       0.023687
hiv1
                       -0.009860
                                   0.007708
                                                         0.201
parity1
                       0.008752
                                   0.006526
                                                         0.180
                       0.001125
                                   0.017756
                                               0.063
age>35
                                                         0.949
                                   0.016367
age18-35
                       0.001545
                                               0.094
                                                         1.925
                                   0.015% 7
                                             -28.415
ns(week_num, df = 2)1 - 0.449437
                                                        <Ze 16 ***
                                   0.01/062
ns(week_num, df = 2)2 - 0.696855
                                             -40.842
                                                        <2e-1
```



```
replicates <- 25 # this needs to be increased for a real analysis
bootstrap_estimates <- NULL

for (i in 1:replicates) {
    # set seed to i so we get a uniquw sample each time
    set.seed(i)

# sample the data
    index <- sample(1:nrow(final_data), nrow(final_data), replace = T)
    final_data_sample <- final_data[index,]</pre>
```

```
index[1:10]
[1] 452737 124413 856018 25173 1343338 1441262 640775 538191 1318949 549593
```

```
replicates <- 25 # this needs to be increased for a real analysis
bootstrap_estimates <- NULL
for (i in 1:replicates) {
 # set seed to i so we get a uniquw sample each time
 set.seed(i)
  # sample the data
 index <- sample(1:nrow(final_data), nrow(final_data), replace = T)</pre>
 final_data_sample <- final_data[index,]</pre>
  # estimate the association in the resample
 model_boot <- glm(outcome ~ exposure_info +</pre>
                      hiv +
                      parity +
                      age +
                      ns(week_num, df = 2), # adding flexibility to the model for wee
                    data = final_data_sample,
                     family = binomial(link = "log")) # log link for RR
 bootstrap_estimates <- rbind(</pre>
   bootstrap_estimates,
    coef(model_boot)[2]
  # Print iteration number when i is divisible by 10
  if (i %% 10 == 0) {
    print(paste("Iteration:", i))
                                                                                19
```

Pooled results

```
se_estimate <- sd(bootstrap_estimates)</pre>
lcl_pooled <- exp(coef(model_pooled)[2] - 1.96 * se_estimate)</pre>
ucl_pooled <- exp(coef(model_pooled)[2] + 1.96 * se_estimate)</pre>
pooled_dat <- data.frame(</pre>
  Week = "pooled",
  Coefficient = co_pooled[2],
  Lower_CI = lcl_pooled,
  Upper_CI = ucl_pooled
results_adj <- rbind(results_adj, pooled_dat)</pre>
```

Antibiotic Initiation at:	Initiation	# of individuals	Events, #	RR (95% CI)
24 weeks	No	110082	15659	0.99
24 weeks	Yes	1321	186	(0.86, 1.12)
25 weeks	No	108628	13186	1.06
	Yes	1454	186	(0.92, 1.21)
26 weeks	No	107316	10975	0.99
	Yes	1312	133	(0.84, 1.16)
27 weeks	No	105876	8963	0.99
21 weeks	Yes	1440	124	(0.84, 1.17)
28 weeks	No	104555	7679	0.98
	Yes	1321	95	(0.80, 1.17)
29 weeks	No	103095	6289	0.96
29 weeks	Yes	1460	85	(0.79, 1.17)
201	No	101656	5265	1.28
30 weeks	Yes	1439	100	(1.06, 1.52)
211	No	100249	4446	1.24
31 weeks	Yes	1407	74	(0.99, 1.51)
00 1	No	98962	3636	1.06
32 weeks	Yes	1287	50	(0.80, 1.35)
00 1	No	97722	2972	0.91
33 weeks	Yes	1240	34	(0.65, 1.24)
0.4	No	1317	2327	0.74
34 weeks	Yes	96405	24	(0.49, 1.06)
0" 1	No	1303	1691	1.07
35 weeks	Yes	95102	26	(0.72, 1.52)
0.0	No	93841	1037	0.62
36 weeks	Yes	1261	8	(0.29, 1.15)
D 1 1 (04 90 1)	No	1323489	84125	1.02
Pooled (24-36 weeks)	Yes	17562	1125	(0.98, 1.07)

