Eigenvalue and Eigenvector

Len Fu

11.27.2024

Abstract

This is the note made by Len Fu during his learning progress in BIT. The main content is from $Linear\ Algebra$ $Done\ Right\ and\ Linear\ Algebra\ Allenby.$

Contents

1	Similarity of the Matrix	2
	1.1 Basis	2
	1.2 Similar Diagonalization	2
2	Eigenvalue and Eigenvector of the Matrix	2
	2.1 Basis	2

1 Similarity of the Matrix

1.1 Basis

Definition 1.1. Set $A, B \in C^{n \times n}$. If there exists an n-order invertible matrix P such that

$$P^{-1}AP = B$$

, we say that A and B are similar, denoted as $A \sim B$, and P is called the similarity transformation from A to B.

Properties 1.1 (Reflectivity). $A \sim A$.

Properties 1.2 (Symmetry). If $A \sim B$, then $B \sim A$.

Properties 1.3 (Transitivity). If $A \sim B$ and $B \sim C$, then $A \sim C$.

1.2 Similar Diagonalization

Definition 1.2 (Digonalizable). If there exists an invertible matrix P such that

$$P^{-1}AP = D$$

where A is a square and D is a diagonal matrix. Then A is called diagonalizable.

2 Eigenvalue and Eigenvector of the Matrix

2.1 Basis

Definition 2.1. Set A as a $n \times n$ square, if there exists a number λ and n - nonzero vector X, satisfying

$$AX = \lambda X \text{ or } (\lambda I - A)X = 0$$

then we say that λ is an eigenvalue of A, and X is an eigenvector of A with eigenvalue λ .

Note.

- 1. Only squares have eigenvectors and eigenbralues.
- 2. Eigenvector must be nonvector and eigenvalue can be zero.

Since $(\lambda I - A)X = 0$ and X is nonzero vector, then $\det(\lambda I - A)$ should be zero to ensure X is nonzero vector of the solution.

Consider the solution of $(\lambda I - A)X = 0$. The characteristic polynomial of A is

$$b_n\lambda^n + b_{n-1}\lambda^{n-1} + \cdots + b_1\lambda + b_0.$$

To solve the polynomial,

$$\begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$
$$= b_n \lambda^n + b_{n-1} \lambda^{n-1} + \cdots + b_1 \lambda + b_0$$

Consider the expasion of the determinant, except for

$$(\lambda - a_{11})(\lambda - a_{22}) \cdots (\lambda - a_{nn})$$

other terms' highest order of λ is n-2. Then the coefficents

$$\begin{cases} b_n = 1 \\ b_{n-1} = -(a_{11} + a_{22} + \dots + a_{nn}) = tr() \end{cases}$$