Submitted by-Aditya Gautam

Roll No-12

MSc 3rd semester

Date of Experiment-01/10/2020

Date of Submission-05/10/2020

Experiment No-01

Topic- DRAWING OF A RANDOM SAMPLE AND ESTIMATION OF PARAMETERS OF A BIVARIATE NORMAL DISTRIBUTION

<u>Problem</u>- Draw a random sample of size 10 from a bivariate normal population having the mean vector and covariance matrix as

$$\mu = \begin{pmatrix} 12 \\ 15 \end{pmatrix} \qquad \sum = \begin{pmatrix} 64 & 40 \\ 40 & 25 \end{pmatrix}$$

Hence, estimate the parameters based on the random sample thus obtained (assuming that the parameters are unknown).

Theory-

The procedure of drawing a random sample from the bivariate normal distribution say

$$(X,Y) \sim N(\mu_x, \mu_y, \sigma_x, \sigma_y, \rho)$$
 is as follows:

Step 1- We write down the marginal distribution of X, which is $X \sim N(\mu_x, \sigma_x)$

Step 2- We draw a random number from uniform(0,1) distribution and we denote it by R

Step 3- We consider the CDF of X given by

$$F(X) = P(X \le x)$$
 and we set

$$F(x) = R$$

$$x = F^{-1}(R)$$

$$x = \phi(R)$$

Where, $\phi(.)$ is the quantile function of X. The value of x thus obtained is a random value of X.

Step 4- We write down the conditional distribution of Y/X=x which is given by

$$Y/X = x \sim N(\mu_{Y/X}, \sigma_{Y/X})$$

Where,
$$\mu_{Y/X} = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (x - \mu_X)$$
$$\sigma_{Y/X} = \sqrt{\sigma_Y^2 (1 - \rho^2)}$$

And x is the value of X obtained in step 3.

<u>Step 5</u>- Since the conditional distribution of Y/X is a given univariate normal, we repeat the step 2 and 3 in order to obtain a random value of Y/X=x.

$$F_1(Y/X) = R_1 \Rightarrow Y = F_1^{-1}(R_1) = \phi_1(R_1)$$

<u>Step 6-</u> Step 1-5 are repeated n times in case a random sample of size n from (X,Y) is desired. The 'n' pairs of values $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ thus obtained constitute random sample of size n from the bivariate normal population X,Y. The maximum likelihood estimates of the parameters μ_X , μ_Y , σ_X , σ_Y , ρ are calculated from the sample as shown below-

$$\hat{\mu}_{X} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\hat{\mu}_{Y} = \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

$$\hat{\sigma}_{X}^{\hat{}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(x_{i} - \bar{x} \right)^{2}}$$

$$\hat{\sigma}_{Y} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left(y_{i} - \bar{y} \right)^{2}}$$

$$\hat{\rho} = r = \frac{1}{n} \sum_{i=1}^{n} \left(x_{i} - \bar{x} \right) \left(y_{i} - \bar{y} \right)$$

$$\hat{\sigma}_{X} \hat{\sigma}_{Y}$$

Calculation-

The R-program for obtaining the random sample and estimating the parameters from the given BND is as follows-

```
mx=12; my=15; sdx=8; sdy=5
rho=40/(sdx*sdy)
rho
r<-runif(10,0,1)
x<-mat.or.vec(10,1)
for(i in 1:10){
x[i]<-qnorm(r[i],mx,sdx)}
x
my_x<-my+((rho*sdy/sdx)*(x-mx))
sdyx<-sqrt(sdy^2*(1-(rho^2)))
r1<-runif(10,0,1)
y<-mat.or.vec(10,1)
for(i in 1:10){
```

```
y[i]<-qnorm(r1[i],my_x[i],sdyx)}
y
mxhat<-mean(x)
mxhat
myhat<-mean(y)
myhat
sx_hat<-sqrt(var(x))
sx_hat
sy_hat<-sqrt(var(y))
sy_hat
rho_hat<-cov(x,y)/(sx_hat*sy_hat)
rho_hat</pre>
```

Conclusion-

The random sample of size 10 from the BND with given parameters μ and \sum is given by (1.673798, 8.546124), (7.312850, 12.070531), (14.457159, 16.53572), (21.502800, 20.939250), (14.241883, 16.401177), (2.439168, 9.024480), (14.134589, 16.334118), (32.028724, 27.517953), (24.277234, 22.673272), (10.261240, 13.913275)

The value of the estimated parameters are-

$$\hat{\mu}_{x} = 14.23294$$

$$\hat{\mu}_{y} = 16.39559$$

$$\hat{\sigma}_{x} = 9.608884$$

$$\hat{\sigma}_{y} = 6.005552$$

$$\hat{\rho} = 1$$