Geometric Transformations

Example 1: How to reduce the site of an image?

I:500x500

Better result: each pixel of J is
the averag of 5x5 subwindon
of I.

■ J(i,i) = mean2(I(5*i-4:5*i,5*i-4:5*i));

Example 2: How to increase the

 $J: 128 \times 128$ $J: 128 \times 128$ $J: 128 \times 128$ $J: 128 \times 128$

for i = 1:200for j = 1:200J(i,j) = I(round(i/2), round(j/2))and

and

From 642 pixels we have now 1282!

4096 Tx lb,384

Inferred information

Example 3:

Any scale facts

$$i = \frac{100}{64}i_0$$
 $j = \frac{100}{64}j_0$

 $i_0 = \frac{64}{100}i$ $j_0 = \frac{64}{100}j$ SOLUTION I (nearest-neighbor)

for i = 1:100 $i_0 = round (\frac{64}{100}i);$ for j = 1:100 $j_0 = round (\frac{64}{100}j);$ $J(i,j) = I(i_0,j_0)$ and

SOLUTION I (bilinear interpolation)

What 14 the gray-vilve of I(3.7, 8.2)?

Total Area = AtB+C+D = 1

 $A = 0.2 \times 0.7$ $B = 0.8 \times 0.7$ $C = 0.2 \times 0.3$ $D = 0.8 \times 0.3$

 $I(3.7, 8.2) \simeq 87 \times w_1 + 91 \times w_2 + 93 \times w_3 + 90 \times w_4$ $\frac{2}{2} w_k = 1$ $\simeq 87D + 91C + 93B + 90A$ 91.02

SOLUTION II

end.

for
$$i = 1: 100$$
 $i_0 = \frac{64}{100}i$
 $ni_0 = fix(i_0)$
 $di_0 = i_0 - ni_0$
 $for j = 1: 100$
 $j_0 = \frac{64}{100}j$
 $nj_0 = fix(j_0)$
 $dj_0 = j_0 - nj_0$
 $A = di_0 * dj_0$
 $A = di_0 * dj_0$
 $C = (1 - di_0) * dj_0$