

The Fall of "Galloping Gertie"

What	Problem(s)	Tacoma Narrows Bridge Collapse		
When	Date	November 7, 1940		
	Time	~10:00 am		
	Different or unique	Decked had been moving up and down in light winds		
		Bridge just opened for service July 1940		
		Extremely narrow deck relative to length, windy day		
Where	ere Geographic location Narrow section of Puget Sound, 8 miles wes			
	Process being performed	Bridge was in service (vehicle traffic)		
Impact to	the Goals	k ā		

Safety	None, potential was for serious injuries		
Transportation	Interrupted primary route to Kitsap Peninsula (Naval Shipyard)		
	Loss of revenue from tolls during bridge outage	S	1,600,000
Materials & Labor	Complete loss of bridge	S	6,000,000
	Salvage, removal of damaged bridge	S	350,000
	Construction of new (replacement) bridge	S	11,200,000
	This incident	\$	19,150,000
Frequency	1st major suspension bridge collapse in US	6	

Welcome to an exploration of one of the most instructive engineering failures in history—the Tacoma Narrows Bridge collapse of 1940. This project, serves as a foundational study in the interplay between engineering designs and natural forces. The bridge's collapse has provided invaluable lessons in structural engineering and risk management.

Genesis and Collapse of the Tacoma Narrows Bridge

The third-longest suspension bridge of its era, the Tacoma Narrows Bridge was built as a showcase of contemporary engineering and opened for traffic on July 1, 1940. Leon Moisseiff created this amazing creation, which took 19 months to finish and cost \$6.4 million. Nevertheless, in favor of a streamlined profile, the bridge's inventive design disregarded conventional trusses, rendering it incapable of withstanding aerodynamic pressures. Due to aeroelastic flutter, it collapsed abruptly during a windstorm on November 7, 1940, just four months after it was opened. This accident demonstrated how important it is for engineering designs to take into account natural forces, which had a profound impact on bridge building habits all over the world.

Engineering Challenges & Design Flaws

The Critical Miscalculations of Tacoma Narrows Bridge

- Innovative Yet Flawed Design
 - Eliminated traditional trusses for aesthetic appeal
- Aerodynamic Stability Oversight
 - Neglected crucial wind-resisting features
 - Featured shallow and narrow stiffening elements
- Cost-Saving Over Structural Integrity
 - Prioritized budget constraints
 - Chose a cheaper, less stable design
- Susceptibility to Wind-Induced Vibrations
 - Vulnerable to aeroelastic flutter
 - Common windy conditions in Tacoma Narrows
- Dramatic Oscillations
- Adequate Funding and Resource Allocation
 - Original design was rejected due to cost; a cheaper design compromised integrity (PLS, n.d.).
- Stakeholder Management and Communication
 - Conflicts between engineers and financiers.

Crisis Response and Immediate Mitigation Efforts

Initial Mitigation Efforts

Engineers installed hydraulic jacks to dampen motion

Commissioned Wind Tunnel Studies

- State Toll Bridge Authority enlisted Professor F.
 Bert Farquharson
- Investigations identified temporary solutions

Temporary Stabilization Measures

- Installation of tie-down cables
- Application of curved steel wind deflectors

Insufficient and Reactive Actions

- Measures did not address underlying design flaws
- Actions were too late to prevent collapse

Lesson in Proactive Measures

 Emphasized the need for addressing design and construction issues early

Geographical Or recorded bridge ailures

By Country

By Continent

Aerodynamic Stability is Crucial

Iterative Design and Feedback

Importance of **Rigorous Testing**

Public Safety Protocols

strengthened safety protocols and emergency response strategies for infrastructure projects, prioritizing public safety above aesthetic or financial considerations.

Effective Stakeholder Communication

Financial constraints overrode engineers' concerns, leading to critical design flaws (PLS, n.d.). Ensuring all stakeholder voices are heard & aligning goals with technical requirements is crucial.

Introduction of Damping Systems

Post-collapse, the engineering community pushed for the integration of damping systems that could mitigate similar failures in future designs.

Revamped Educational Curricula

Engineering curricula were updated to include more comprehensive studies on dynamic loads and environmental interactions with large structures.

Increased Interdisciplinary Collaboration

Encouraged closer collaboration between aerodynamicists and structural engineers during the bridge design phase.

Enhanced Design Standards

The failure led to revised standards and codes for suspension bridges, emphasizing the need for robust wind-resistant designs.

Integrative Technologies

- Exploration of smart technologies & IoT integration in bridge design for enhanced performance monitoring & maintenance prediction.

Public Engagement and Education

- Increased efforts to involve the public & educational sectors in understanding bridge engineering, emphasizing the role of community in infrastructure safety.

Sustainability and Resilience

- Focus on sustainable construction practices & materials that not only ensure safety but also minimize environmental impact.

Policy and Regulatory Evolution

- Discussion on the need for continuous evolution of policies & regulations to keep pace with technological advancements in engineering.

Lessons Cemented

- Stress the importance of ongoing innovation in engineering to overcome challenges and improve safety standards.

Commitment to Innovation

- Encourage future engineers and policymakers to remain vigilant, proactive, and innovative to ensure the structural integrity and safety

Call to Action

THANKS

Credits

Brynn - Background

Ray - Risk Analysis

Mel - Project Management Analysis

Ryan - Lessons Learnec

Srishti - Presentation

