Stat 134: Section 21

Adam Lucas

April 16th, 2018

Problem 1

Let $N \sim \text{Pois } (\mu)$. Suppose given N = n, random variables X_1, X_2, \dots, X_n are i.i.d. Unif (0,1). I.e., the number of X_i 's depends on N.

- a. Given N = n, what is the chance that all the X_i 's are less than t?
- b. What is the unconditional probability that all the X_i 's are less than t?
- c. Let $S_N = X_1 + ... + X_N$ denote the sum of the (random) number of X_i 's. Find $\mathbb{E}(S_N)$.

Ex 6.2.6 in Pitman's Probability

Problem 2

Suppose you have a coin which lands heads with probability p. Let X denote the number of tosses required to observe both heads and tails.

Hint: condition on the result of the first toss. No summations necessary!

- a. Find $\mathbb{E}(X)$.
- b. Find Var(X).

Problem 3: The Beta-Binomial

Let $S_n = \sum_{i=1}^n X_i$ be the number of successes in a sequence of Bernoulli (Π) trials, where $\Pi \sim \text{Beta } (r, s)$. That is, given $\Pi = p$, $S_n \sim \text{Binomial } (n, p)$. This arises as a natural model in Bayesian inference when we are uncertain about the true value of p.

- a. Given $S_n = k$, show that the posterior distribution of Π is Beta (r+k,s+n-k).
- b. Use the fact that the total integral of the beta (r + k, s + n k)density is 1 to find a formula for the unconditional probability $P(S_n = k)$.
- c. Find $\mathbb{E}(\Pi \mid S_n = k)$ and $Var(\Pi \mid S_n = k)$. (Note that these facts can be used to show as $n \to \infty$, $\Pi \to \frac{S_n}{n}$, the observed sample proportion of successes, regardless of the values of r, s.)

Ex 6.3.15 in Pitman's Probability