Motivation

- The motivation is to facilitate advances in:
 - Image registration
 - Camera calibration
 - Object recognition
 - Image retrieval

Problem Definition

- The problem is to efficiently and accurately find point correspondences between two images depicting the same scene, thereby enabling camera calibration and object recognition.
- The problem solution is subdivided into three stages:
 - **Detection**: identify points of interest. The most important aspect of a detector is its repeatability.
 - **Description**: create a vector which holds data about the feature(s). It should be simple (low-dimensional) to facilitate efficient matching but complex enough to adequately describe the feature.
 - Matching: match the feature vectors across images. The
 matching is based on a distance measure between the two
 feature vectors (such as the Mahalanobis or Euclidean distance).

Problem Definition

- The goal is to develop a detector and descriptor which, in comparison to the state-of-the-art detectors and descriptors of the day, are computationally inexpensive but do not sacrifice performance (accuracy of matches).
- The focus is on scale and in-plane rotation invariant detectors and descriptors. The descriptor is robust enough to handle skew, anisotropic scaling (stretching), and perspective effects.
- The handling of photometric deformations is limited to bias (offset, or brightness changes) and contrast changes (by a scale factor).

Previous Work

- Harris
- Lindeberg
- Mikolajczyk and Schmid
- Lowe
- Kadir and Brady
- Jurie and Schmid

Background

- A Hessian-matrix approximation is used for interest point detection. The approximation is made possible by integral images as popularized by Voila and Jones ??.
- The Hessian matrix is used to detect blob-like structures wherever the determinant is maximum.
- The second-order partial derivatives used in the Hessian matrix are approximated using box filters. The box filters are evaluated using integral images.

Techniques Used Method Data Experimental Setup

Techniques Used

Hessian Approximation

- A Hessian Matrix is approximated using box filters. The box filters are approximations of second-order derivatives of Gaussians within a rectangular region. These approximations are efficiently computed using \(\rightarrow\) integral images\(\rightarrow\).
- The determinant of the Hessian matrix is approximated using the box filters:

$$det_{approx}(\mathcal{H}) = D_{xx}D_{yy} - (wD_{xy})^2 \tag{1}$$

• where w is a weight needed to adjust for the difference between the approximated and actual Gaussian.

Hessian Determinant Approximation

• w for an $n \times n$ box filter approximating a Gaussian with σ is equal to:

$$\frac{|L_{xy}(\sigma)|_F|D_{yy}(n)|_F}{|L_{yy}(\sigma)|_F|D_{xy}(n)|_F}$$
(2)

where $|x|_F$ is the Frobenius norm. This factor changes with filter size; however, it is desirable to keep it constant. Therefore the filter responses (D) are normalized with respect to their size to guarantee a constant Frobenius norm.

• The det_{approx} represents a blob response in I at x. det_{approx} for all locations **x** in the image gives a *blob response map*. Local maxima are detected to give the locations of blobs.

Scale Spaces

- Interest points should be found at different scales. To represent the image at different scales, a scale pyramid is used.
- Rather than iteratively reducing the size of the image, the box filters are upscaled and computed, for which there is little additional computational cost. As a side effect of not downsampling the image, there is no aliasing. As a downside of this approach, up-scaled box filters can lose high-frequency components, which can limit scale-invariance.
- A scale space is divided into octaves.

- An octave represents a series of filter response maps obtained by <u>convolving</u> the same input image with a filter of increasing size.
- The octave encompasses a scaling factor of 2. The pixel difference between scales of the image is at least one-third of the filter size (which is the size of the lobes in D_{xx} or D_{yy}). For odd-n filter sizes, a minimum of 2 pixels is required to guarantee a central pixel. In the case of a filter of size 9, this amounts to a difference of 6.

Scale Interpolation

- To localize interest points in the image over scales, non-maximum suppression in a 3x3x3 neighboorhood is applied (Neubeck and Van Gool).
- The maxima of the determinant of the Hessian matrix are then interpolated in scale and image space (Brown et al).

Interest Point Description

- Similar to SIFT, the SURF describes the distribution of the intensity within the interest point neighborhood, but with first-order Haar wavelet responses in the x and y dimensions rather than the gradient.
- Also, integral images are exploited for efficiency, and only 64 dimensions are used.

Orientation Assignment

- For the interest points to be rotation-invariant, the orientation must be reproducible. Haar wavelet responses are calculated in the x and y directions within a circular neighboorhood of radius 6s, where s is the scale factor.
- Integral images are used for fast filtering. Only six operations are required to compute the Haar wavelet response in x or y for any s.
- The Haar wavelet responses are weighted with a Gaussian $(\sigma = 2s)$ centered at the interest point. They are represented as points (x_{Haar}, y_{Haar}) where x_{Haar} represents the magnitude of the horizontal response and y_{Haar} represents magnitude of the vertical response.
- The circle is divided into slides of $\frac{pi}{3}$ and the Haar responses are summed for each slice to give a local orientation vector.

Techniques Used Method Data Experimental Setup

Data

Experimental Setup

Results

Discussion

Results
Discussion
Conclusion
References

Conclusion

References

Determinant

The **determinant** of a matrix A is defined as:

$$det(A) = \sum_{\sigma \subset S_n} sgn(\sigma) \prod_{i=1}^n A_i, \sigma_i$$
 (3)

If a parallelogram is represented by a matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with points (0,0), (a,b), and (c,d), (a+b,c+d), then the determinant ad-bc gives the area of the parallelogram. Likewise the determinant of a matrix representing a parallelepiped yields the volume.

Convolution

The convolution is an integral transform on a function f using a function g and is defined as:

$$(f * g)(t) = \int_{\infty}^{-\infty} f(\tau)g(t - \tau)d\tau. \tag{4}$$

The convolution gives the area of overlap between f and g for all values of the offset t.

Laplacian

The Laplacian operator, or ∇^2 , is defined as the *n*-dimensional vector:

$$\langle \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots \frac{\partial}{\partial x_n} \rangle.$$
 (5)

The Laplacian of f, or $\nabla^2 f$, is thus defined as:

$$\sum_{i=1}^{n} \frac{\partial f}{\partial x_i};\tag{6}$$

that is, the sum of the second-order partial derivatives of f.

Weierstrass Transform, or Gaussian Blur

The 2-dimensional Gaussian function is defined as follows:

$$G(x) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}},$$
 (7)

the graph of which takes the shape of a bell. When a Gaussian is used to convolute an image I, the new pixel at I(x, y) becomes the weighted average of all pixels in its neighborhood, producing a smoothing or blurring effect.

Euclidean and Mahalanobis Distances

Euclidean distance: for two given points p_i and q_i , the Euclidean distance is:

$$d(x,y) = \sum_{i=0}^{N} \sqrt{(p_i - q_i)^2}.$$
 (8)

Mahalanobis distance: for a given multivariate vector $x = (x_1, x_2 \dots x_n)$ the Mahalanobis distance from a group of values with mean $\mu = (\mu_1, \mu_2 \dots \mu_n)$ is defined as:

$$D_{M}(x) = \sqrt{(x-\mu)^{T} S^{-1}(x-\mu)}.$$
 (9)

Integral Images

The integral image $I_{\Sigma}(x)$ at a location $\mathbf{x} = (x, y)^T$ is the sum of pixels in the input image I within a rectangular region formed by the origin and x:

$$\sum_{i=0}^{i \le x} \sum_{j=0}^{j \le y} I(i,j). \tag{10}$$

Frobenius Norm

The Frobenius norm $|A|_F$ of a matrix A is simply defined as:

$$\sqrt{\sum_{i=0}^{n} \sum_{j=0}^{m} A_{ij}^{2}} \tag{11}$$

Hessian Matrix

Given a point $\mathbf{x} = (x, y)$ in an image I, the Hessian matrix

$$\mathcal{H}(\mathbf{x},\sigma) = \begin{bmatrix} L_{xx}(x,\sigma) & L_{xy}(x,\sigma) \\ L_{xy}(x,\sigma) & L_{yy}(x,\sigma) \end{bmatrix}$$
(12)

where $L_{xx}(x,y)$ is the convolution of the Gaussian second-order derivative $\frac{\partial^2}{\partial x}g(\sigma)$ with the image I in point \mathbf{x} ; similarly for $L_{vv}(x,\sigma)$ and $L_{vv}(x,\sigma)$.