Ponašanje spektralnih linija (zavisnost od pritiska)

Indikatori pritiska u spektru → odredjivanje pritiska

Efekti pritiska se u spektru uočavaju na tri načina:

- kod slabih linija iz odnosa koeficijenta apsorpcije u liniji i kontinuumu
- kod jakih linija iz osetljivosti na pritisak konstante prigušenja
- kod linija vodonika iz zavisnosti Štarkovog širenja od pritiska

I. Slabe linije u spektrima hladnijih zvezda (F,G,K)

Ako se promenom pritiska ne menja stanje jonizacije:

- (1) Slabe linije atoma/jona elementa koji je uglavnom u višem stanju jonizacije neosetljive su na pritisak (primer: linije Fe I na Suncu, I=7,902 eV)
- (2) Slabe linije atoma/jona elementa koji je uglavnom u istom stanju jonizacije osetljive su na pritisak. Sa smanjenjem pritiska pojačava se linija. Linije Fe II su dobri indikatori pritiska, kao i linije O I, koji je uglavnom neutralan (I = 13,618 eV).
- (3) Slabe linije atoma/jona elementa koji je uglavnom u sledećem nižem stanju jonizacije vrlo su osetljive na pritisak. Sa smanjenjem pritiska linija je jača.

Promena profila i ekvivalentne širine linije Fe II 450,8 nm sa log g

II. Jake linije

Širenje pritiskom u krilima jakih linija Mg I b

Van der Valsovo širenje

$$\gamma_6 = \Phi_6(T) \, p_g$$

Kvadratični Štarkov efekat

$$\gamma_4 = \Phi_4(T) p_e$$

III. Linije vodonika

Linija Hy u spektrima tri B3 zvezde različitih klasa luminoznosti

Zavisnost linearnog Štarkovog efekta od pritiska

Balmerove linije vodonika su veoma osetljive na pritisak kod zvezda T>7500 K.

Jačina linije se povećava sa povećanjem pritiska.

Na nižim temperaturama linije vodonika nisu osetljive na pritisak.

Linije vodonika

Najbolji indikatori pritiska

Balmerov skok –
jedina karakteristika u
kontinuumu osetljiva
na g (kod A i F
zvezda kao mera
elektronskog pritiska)

Efekti log g na raspodelu neprekidnog spektra

Nagib Pašenovog kontinuuma malo zavisi od površinske gravitacije g, tj. pritiska.

$$S_0 = T_{ef}/T_{ef\odot}$$

Fluks zračenja zvezda različite T_{ef} i površinske gravitacije (Balmerov skok kao indikator temperature i pritiska)

Kod zvezda čija je efektivna temperatura manja od 7500K, fluks u neprekidnom spektru raste sa porastom površinske gravitacije g. Balmerov skok je manji kod zvezda veće g. Sa povećanjem g, povećava se koncentracija elektrona i negativnog jona vodonika H⁻ što smanjuje Balmerov skok.

Balmerov skok $D = log F_+/F_-$

$$\frac{\chi_{\nu}^{+}}{\chi_{\nu}^{-}} = \frac{k_{\nu}(H^{-})n(H^{-})}{k_{\nu}(H^{-})n(H^{-}) + k_{\nu}^{-}(H)n_{H}(n=2)}$$

$$\frac{k_{\nu}(H^{-})n_{H}(n=1)n_{e}\Phi(T)}{k_{\nu}(H^{-})n_{H}(n=1)n_{e}\Phi(T) + k_{\nu}^{-}(H)n_{H}(n=2)}$$

Kod toplijih F zvezda:

$$\frac{\chi_{\nu}^{+}}{\chi_{\nu}^{-}} = \frac{k_{\nu}(H^{-})n_{H}(n=1)n_{e}\Phi(T)}{k_{\nu}^{-}(H)n_{H}(n=2)} \propto \frac{n_{H}(n=1)}{n_{H}(n=2)}n_{e} = \underline{f(T, n_{e})}$$

Za zvezde $T_{ef} = 9000K$:

$$\frac{\chi_{\nu}^{+}}{\chi_{\nu}^{-}} \approx \frac{k_{\nu}^{+}(H)n_{H}(n=3)}{k_{\nu}^{-}(H)n_{H}(n=2)} = \underline{f(T)}$$

Zavisnost Balmerovog skoka od $T_{\rm ef}$ $S_0 = T_{ef}/T_{ef\odot}$

Koeficijent apsorpcije u kontinuumu kod zvezda poznih klasa (T<8000K)

Linije vodonika

Promena ekvivalentne širine linije H γ od T_{ef}

Profil linije Hy za T=9820K i razne log g

Linije vodonika

- Za T_{ef} manje od 7500K jačina vodonikovih linija se znatno menja sa temperaturom dok je neosetljiva na promene pritiska (površinske gravitacije)
- Za T_{ef} veće od 7500K linije vodonika su osetljive i na pritisak, pa je potrebno na nezavisan način izmeriti pritisak da bi se jednoznačno odredila temperatura iz vodonikovih linija

Grafik log g - T

Dve linije Fe II različitog potencijala ekscitacije ponašaju se različito sa promenom T i p.

Variraju se vrednosti T i p dok se ne dobije posmatrana vrednost ekvivalentne širine za svaku od linija. Presečna tačka je traženo rešenje.

Empirijski indikatori g

1. Wilson - Bappu efekat

Širina hromosferske emisije u linijama H i K Ca II raste sa smanjenjem površinske gravitacije, tj. povećanjem luminoznosti zvezde

$$M_V = alogW_o + b$$

2. Makroturbulencija

Makroturbulencija je funkcija luminoznosti, tj. g – raste sa smanjenjem površinske gravitacije g.