線形従属

ベクトルの組を考え、どれか 1 つのベクトルがほかのベクトルの線形結合 で表せるとき、それらのベクトルの組は線形従属であるという。

縁形従属 k 個のベクトル $\{a_1,\ldots,a_k\}$ が線形従属であるとは、少なくとも 1 つは 0 でない k 個の係数 $\{c_1,\ldots,c_k\}$ を用意すれば、それらを使った線形結合を零ベクトル o にできることをいう。

$$c_1\boldsymbol{a}_1+c_2\boldsymbol{a}_2+\cdots+c_k\boldsymbol{a}_k=\boldsymbol{o}$$

たとえば、 c_1 が 0 でないとき、線形結合を零ベクトルにできるということは、次のような式変形ができることになる。

$$\boldsymbol{a}_1 = -\frac{c_2}{c_1}\boldsymbol{a}_2 - \frac{c_3}{c_1}\boldsymbol{a}_3 - \cdots - \frac{c_k}{c_1}\boldsymbol{a}_k$$

つまり、ベクトル \mathbf{a}_1 をほかのベクトルの線形結合で表せている。

「従属」という言葉を味わう

自分自身をほかのベクトルを使って表現できるということは、ほかのベクトルに依存している(従っている)ということになる。

たとえば、 \boldsymbol{a}_1 と \boldsymbol{a}_2 の線形結合で表せるベクトル \boldsymbol{a}_3 は、 この 2 つのベクトル \boldsymbol{a}_1 , \boldsymbol{a}_2 に従っているといえる。

$$a_3 = 2a_1 + a_2$$

しかし、「 $m{a}_3$ が $m{a}_1$, $m{a}_2$ に従っている」という一方的な主従関係になっているわけではない。その逆もまた然りである。

なぜなら、次のような式変形もできるからだ。

$$a_2 = a_3 - 2a_1$$

この式で見れば、今度は $oldsymbol{a}_2$ が $oldsymbol{a}_1$, $oldsymbol{a}_3$ に従っていることになる。

このように、線形従属とは、「どちらがどちらに従う」という主従関係では なく、ベクトルの組の中での相互の依存関係を表すものである。