Interactive Online Learning for Obstacle Classification on a Mobile Robot

Viktor Losing^{1,2}, Barbara Hammer² and Heiko Wersing¹

¹University of Bielefeld Bielefeld, Germany

²Honda Research Institute Europe GmbH Offenbach, Germany

Online Learning

Motivation:

- Adaptation to user habits & environment
- Current methods rather simple¹

Benefits:

- Incremental learning
- Incorporation of new classes
- Control of model complexity
- Handling of drift

Challenges:

Stability - Plasticity

¹ R. Yang et al. "Learning from a learning thermostat: Lessons for intelligent systems for the home", UbiComp 2013

Contributions

- I. Realization of a new interactive Learning Scenario on a Mobile Robot
 - Outdoor object recognition in a garden environment
 - Interaction via iPad
 - Recording of a challenging outdoor benchmark image dataset for learning
- 2. Application of prototype based learning to online scenarios
 - Extensive evalualtion of different prototype placement strategies

Interactive Scenario

- Random exploration
- Grass-segmentation for detection
- Labeling via iPad
- Object specific actions
 - Comment
 - Drive around/over
- Confidence estimation
 - Unknown objects

Video

Feature Representation

- Color based: simple & robust
- rg-Chromaticity histogram
- Intensity invariant
- ▶ 21 dimensions
- Hist.-normalization for size invariance

Processing Pipeline

Outdoor Benchmark Image Dataset

- ▶ 40 objects
- 5 sequences in cloudy/sunny conditions
- ▶ 10 images per sequence

Sequences

All objects

Challenges

GLVQ¹

- Supervised, prototype—based
- $W = \{(w_j, l_j) | j = 1 ... p\}, \text{ set of prototypes}$
- $E(X,W) = \sum_{i=1}^{n} \Phi[(d_i^+ d_i^-)/(d_i^+ + d_i^-)]$
- $w \stackrel{\pm}{:=} w \stackrel{\pm}{-} \lambda \frac{\partial E(X)}{\partial w^{\pm}}$
- Stochastic gradient descent
- Incremental version
 - Intuitive & powerful^{2,3}
 - Complexity control

¹ A.Sato et al. "Generalized Learning Vector Quantization", NIPS 1995

² S.Kirstein et al. "Rapid Online Learning of objects in a biologically motivated architecture", 2005

³ T. Kietzmann et al. "Incremental GRLVQ: Learning relevant features for 3D object recognition", Neurocomputing 2008

Short-term Memory

 $\Psi := \langle (x_i, y_i, d_i^+, d_i^-) | i \in 1, ..., t \rangle$, window of recent t samples

Ψ

$$\begin{pmatrix} x_0, y_0 \\ {d_0}^+, {d_0}^- \end{pmatrix}$$

$$x_{n-t+1}, y_{n-t+1} - d_{n-t+1}$$

 $\begin{pmatrix} x_{n-1}, y_{n-1} \\ {d_{n-1}}^+, {d_{n-1}}^- \end{pmatrix}$

 $\begin{pmatrix} x_n, y_n \\ {d_n}^+, {d_n}^- \end{pmatrix}$

sample idx.

0

n-t+1

n-1

n

State of the Art Placement Strategies

- Based on class-local heuristics
- Use misclassifications only

¹ S.Kirstein et al. "Rapid Online Learning of objects in a biologically motivated architecture", 2005

² M.Grbovic et al. "Learning Vector Quantization with adaptive prototype addition and removal", 2009

³ S. Bermejo et al. "A new dynamic lvq-based classifier and its application to handwritten digits", 1998

Our Strategy - SamplingCost

- $\widehat{\Psi} \subseteq \Psi, |\widehat{\Psi}| = \widehat{t}$
- $\forall (x_i, y_i) \in \widehat{\Psi}$:
 - \widehat{W}_i := {W ∪ (x_i, y_i)}, extended set of prototypes
 - $-\dot{\Psi}_{i} = update \Psi$
 - Calculate cost-function value $E(\dot{\Psi}_i, \widehat{W}_i)$
- Choose \widehat{W}_i s.t. $E(\dot{\Psi}_i, \widehat{W}_i)$ is minimized
- Minimizes the cost function on the complete shortterm-memory (Ψ) but evaluates only a subset of the samples $(\widehat{\Psi})$ as prototypes

Artificial Dataset Border

Border-DS	Acc.	W
SamplingCost	93.51	38.2
Closest	90.17	58.2
Cluster	91.93	42.9
Voronoi	91.71	46.4

|W| = Number of prototypes

Artificial Dataset Overlap

Overlap-DS	Acc.	[W]
SamplingCost	78.74	21.3
Closest	65.76	29.8
Cluster	74.85	25.6
Voronoi	74.08	26.4

|W| = Number of prototypes

Outdoor Dataset

Random-order

Sequence-order

Random-order	Test acc.	Train acc.	W	Sequence-order	Test acc.	Train acc.	W
SamplingCost	81.58	85.94	234.8	SamplingCost	61.38	91.04	232.0
Closest	78.03	83.23	253.4	Closest	59.58	88.04	245.8
Cluster	78.55	83.06	247.0	Cluster	59.18	88.96	235.6
Voronoi	81.18	85.62	236.6	Voronoi	58.81	89.22	231.3

mples 1500 sample	s 2800 samples
100.4 59.3 / 376.6	67.1 / 773.5
	116.4 58.6 / 446.2 100.4 59.3 / 376.6 363.3 57.5 / 777.0

|W| = Number of prototypes

¹ C.P. Diehl, G. Cauwenberghs "SVM incremental learning, adaptation and optimization", IJCNN 2003

Easy/Difficult Objects

Easy Difficult Object Mostly confused with

Summary

- New interactive real-time learning scenario
- Outdoor benchmark image dataset for learning
- Proposal of cost-function based placement strategy
- SamplingCost performs superior, especially for Overlaps
- Representation not robust enough, could be extended by shape based features¹

¹ S. Kirstein et al. "A life-long learning vector quantization approach for interactive learning of multiple categories", Neural Networks 2012

Thank you for your attention!