第4章 组合逻辑电路 Combinational Logic Circuit

§4.1 组合电路分析 **Combinational Logic Circuit Analysis** §4.2 组合逻辑电路设计 **Combinational Logic Circuit Design** §4.3 编码器 Encoders §4.4 译码器 Decoders §4.5 多路 (数据) 选择器 MUX **Multiplexers (Data Selectors)** §4.6 比较器 Comparators §4.7 加法器 Adders §4.8 组合逻辑电路的竞争冒险

Race-Hazard of Combinational Logic

第4章组合逻辑电路

Combinational Logic Circuit

逻辑电路 组合逻辑电路 时序逻辑电路

组合逻辑电路特点:

任何时刻输出仅取决于该时刻输入,与过去的输入无关由门电路构成

无反馈线 (No Memory)

§4.1 组合电路分析

Combinational Logic Circuit Analysis

分析:已知电路,求输出(F),分析电路功能

步骤:

- ① 从输入端到输出端, 逐级写出各逻辑门的输出
- ② 化简逻辑函数
- ③ 列出真值表
- ④ 分析电路功能

例:分析下图电路

解: 1. 写出各门输出变量 T_i

$$T_1 = AB$$
 $T_2 = A + B$

$$T_1 = AB$$
 $T_2 = A+B$
 $T_4 = A+B+C$ $T_5 = ABC$

2. 化简T_i

$$T_3 = (A + B)C$$

$$F_{1} = T_{1} + T_{3} = AB + (A + B)C = AB + AC + BC$$

$$T_{6} = \overline{F_{1}}$$

$$T_{7} = T_{6} \cdot T_{4} = (\overline{AB + AC + BC})(A + B + C)$$

$$= \overline{ABC} + \overline{ABC} + A\overline{BC}$$

$$T_5 = ABC$$

$$T_7 = \overline{ABC} + \overline{ABC} + A\overline{BC}$$

$$F_1 = T_1 + T_3 = AB + (A+B)C = AB + AC + BC$$

$$F_2 = T_7 + T_5 = \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$

3. 列出真值表

$$F_1 = AB + BC + AC$$

= $\sum (3,5,6,7)$

$$F_2 = \overline{A} \cdot \overline{B}C + \overline{A}B\overline{C} + A\overline{B} \cdot \overline{C} + ABC$$
$$= \sum (1, 2, 4, 7)$$

4. 分析

$$F_1 = AB + BC + AC$$

$$F_{2} = \overline{A} \cdot \overline{B}C + \overline{A}B\overline{C} + A\overline{B} \cdot \overline{C} + ABC$$
$$= \overline{A}(\overline{B}C + B\overline{C}) + A(\overline{B} \cdot \overline{C} + BC)$$

$$= \overline{A}(B \oplus C) + A\overline{(B \oplus C)}$$

 $= A \oplus B \oplus C$

真值表

A	B	C	F_1	F_2
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
				_

三变量表决电路

异或

例:分析下列电路功能

$$T_{1} = \overline{AB}$$

$$T_{2} = \overline{A \cdot T}_{1} = \overline{A \cdot \overline{AB}}$$

$$T_{3} = \overline{B \cdot T}_{1} = \overline{B \cdot \overline{AB}}$$

$$F = \overline{T_2} \cdot \overline{T_3} = \overline{A} \cdot \overline{A} \overline{B} \cdot \overline{B} \overline{B}$$

$$= A \cdot \overline{A} B + B \cdot \overline{A} B$$

$$= A (\overline{A} + \overline{B}) + B (\overline{A} + \overline{B})$$

$$= \overline{A} B + A \overline{B}$$

$$= A (+) B$$

§4.2 组合逻辑电路设计

Combinational Logic Circuit Design

- 设计的 主要步骤
- 确定输入、输出及它们的关系
 - 列出真值表
 - 得出函数的最简形式
 - 画出电路图

例 1: 设计一个三人表决电路

三人选举组长, 1 和 0 分别表示同意和不同意; 获得2票或以上票数当选 (logic 1), 否则落选 (logic 0)。

三位选民
$$\begin{cases} 1 & 同意 \\ A, B, C & \end{bmatrix}$$
 不同意

结果: $F \begin{cases} 1 & \text{当选} \\ 0 & \text{落选} \end{cases}$

\boldsymbol{A}	B	\boldsymbol{C}	\boldsymbol{F}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

\boldsymbol{A}	В	\boldsymbol{C}	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

化简函数

$$F = AB + AC + BC$$

关键: 分析

例 2: 设计一个交通灯错误状态报警电路: 红黄绿三色交通灯,一盏灯亮为正确,其它情况全为错误,需要发出报警信号。

工作状态: 有一盏灯亮, 并只有一盏灯亮

解:

1. 分析

输出 错误状态 F

1 错误

0 没有错误

2. 真值表:

R	Y	G	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

R	Y	\boldsymbol{G}	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

3. 化简函数

$$F = \overline{R} \cdot \overline{Y} \cdot \overline{G} + RY + RG + YG$$

例 3:

一大一小两个水泵(M_L , M_S)向水箱泵水; 当水箱中水位低于 C 点时,小水泵 M_S 单独泵水; 当水位低于 B 点时,大水泵 M_L 单独泵水; 当水位低于 A 点时,两个泵同时泵水; 写出两个水泵工作的逻辑函数。

输入A, B, C =1 低于相应水位=0 不低于

输出
$$=1$$
 工作 M_S, M_L $=0$ 不工作

\boldsymbol{A}	B	C	M	L M	$I_{\rm S}$
0	0	0	0	0	
0	0	1	0	1	
0	1	0	Φ	Φ	← 低于B 而
0	1	1	1	0	不低于C
1	0	0	Φ	Φ	不可能出
1	0	1	Φ	Φ	规
1	1	0	Φ	Φ	
1	1	10		1	

$$M_{\rm L} = B$$

$$M_{\rm S} = A + \bar{B}C$$

例 4:

三位评委裁判举重比赛,一名主裁判,两名副裁判。认为成功举起杠铃时按下按钮 (logic 1),否则为 logic 0;结果由红、绿灯表示:灯亮和灭分别为逻辑1和 0。红灯和绿灯都亮,表示"完全举起";只有红灯亮表示"需要研究录像决定";其他情况为没有举起.

- 1. 三位裁判都按键,红、绿灯都亮;
- 2. 一位主裁判和一位副裁判按键,红、绿灯都亮;
- 3. 一位主裁判或两位副裁判按键,只有红灯亮;
- 4. 其他情况灯都不亮.

用与非门设计一个满足上述要求的控制电路。

输入

A 主裁 B 副裁 (1 按下按钮0 不按

真值表

A 上級 B 副裁		\boldsymbol{A}	B	\boldsymbol{C}	R	G
	し0 不按	\$ <u>0</u>	0	0	0	0
		0	0	1	0	0
to LL	KCO'Y	0	1	0	0	0
制工	1亮	0	1	1	1	0
\mathbf{R},\mathbf{G}	1 70	1	0	0	1	0
11, G	0 暗	1	0	1	1	1
		1	1	0	1	1
	c	1	1	1	1	1
					•	

化简

$$R = A + BC = \overline{\overline{A} \cdot \overline{BC}}$$

G A	B			
	00	01) 11	10
0	0 <	0	1	0
1.	0	0	U	

$$G = AB + AC = \overline{\overline{AB} \cdot \overline{AC}}$$

电路

NAND gates

§ 4.3 编码器 Encoders

编码器:将信号或数据编制、转换为可用于通讯、传输 和储存的形式的设备

功能:将输入信号转换为二进制代码

编码器分类

- 输出代码种类
- **(二进制编码器**
 - 二—十进制编码器
- ・优先权
- 普通编码器优先编码器

一般而言,N个不同的信号,至少需要n位二进制数编码。N和n之间满足下列关系:

 $2^n \ge N$

例 设计一个4线—2线编码器 (用或门)

解:

(1) 确定输入、输出变量: 由题意知输入为 I_0 、 I_1 、 I_2 、 I_3 四个信息,输出为 Y_0 、 Y_1 。

(2) 真值表与化简:

I_0	I_1	I_2	I_3	$\mathbf{Y_1} \mathbf{Y_0}$
1		0	0	0 0
0	1	0	0	0
0	0	1	0	.100
0	0	0	1	1 1

(3) 画编码器电路如图所示

8线 - 3线二进制普通编码器

真值表

LA 1	
物人	•

8线, 10~17, 八种状态

输出:

三位二进制数

F2, F1, F0

输出表达式

$$F_{2} = I_{4} + I_{5} + I_{6} + I_{7} = \overline{I_{4} \cdot I_{5} \cdot I_{6} \cdot I_{7}}$$

$$F_{1} = I_{2} + I_{3} + I_{6} + I_{7} = \overline{\overline{I_{2} \cdot I_{3} \cdot I_{6} \cdot I_{7}}}$$

$$F_0 = I_1 + I_3 + I_5 + I_7 = \overline{\overline{I_1 \cdot I_3 \cdot I_5 \cdot I_7}}$$

I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7	F_2	F_I	F_0
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

§ 4.4 译码器 Decoders

将输入的二进制代码转换成对应的输出信号(检测输入端的二进制代码)或另一种形式的代码,译码器通常是一个多输入多输出的组合逻辑电路。

译码器

二进制译码器 码制变换译码器 显示译码器

§ 4.4.1 二进制译码器 Binary Decoders

将二进制代码"翻译"成——对应的输出高、低 电平信号。

Inputs: n 位二进制代码

Outputs: 2" 个输入的各种组合

用 n 个二进制输入端控制 2n 个输出端

1. 2线 - 4线译码器 2-to-4 Decoder

1) 输出高电平有效译码器 Active-High

Input	Output				
A B	$\mathbf{D}_0 \; \mathbf{D}_1 \; \mathbf{D}_2 \; \mathbf{D}_3$				
0 0	1 0 0 0				
0 1	0 1 0 0				
1 0	0 0 1 0				
1 1	0 0 0 1				

输入数码是二进制数几, 第几号输出就是唯一的高电 平,其余输出皆为低电平。

E: enable

$$\int_{\overline{E}} \overline{E} = 0$$
,译码器工作 $\overline{E} = 1$,译码器被锁住

当与门和与非门输入 0,逻辑门被锁住

当或门和或非门输入1,逻辑门被锁住

2-4高电平有效译码器符号

A, B: 地址线

注意:译码器的输出是标准形式 (最小项,最大项)

2) 2-4 线低电平有效译码器 Active-Low

Input	Output
A B	$\mathbf{D}_0 \; \mathbf{D}_1 \; \mathbf{D}_2 \; \mathbf{D}_3$
0 0	0 1 1 1
0 1	1 0 1 1
1 0	1 1 0 1
1 1	1 1 1 0

输入数码是几,第几号输出就是唯一的低电平0, 其余输出均是高电平1

电路

符号

If
$$\overline{E} = 1$$

$$D_0 D_1 D_2 D_3 = ?$$

2. 3线-8线译码器

高电平有效 3-8 译码器

符号

译码器:输入数码是二进制数几,第几号输出就是<u>唯一的有效电平</u>,其余输出皆为无效电平。

低电平有效 3-8 译码器: IC 74138

- 3 数据输入
- 8 输出
- 3 使能输入

$$\begin{cases}
S_A & \text{Active-high} \\
\overline{S}_B \\
\overline{S}_C
\end{cases}$$
 Active-low

74138: MSI (medium scale integration)

管脚图

查手册 管脚图 功能表