6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1.	(a) Distance after $4 \text{ s} = 16 \text{ x } 4 - \frac{1}{2} \text{ x } 9.8 \text{ x } 4^2$ $= -14.4 \implies h = (+) \ \underline{14.4 \text{ m}}$	M1 A1
	(b) $v = 16 - 9.8 \times 4$	M1 A1 (3)
	$= -23.2 \implies \text{speed} = (+) \ \underline{23.2 \text{ m s}}^{-1}$	A1 (3) 6
2.	(a) CLM: $3 \times 4 + 2 \times 1.5 = 5 \times v$	M1 A1
	$\Rightarrow v = 3 \text{ m s}^{-1}$ (b) (i) CLM: $3 \times 4 - m \times 4 = -3 \times 2 + m \times 1$	A1 (3) M1 A1
	$\Rightarrow m = 3.6$ (ii) $I = 3.6(4+1) \text{ [or } 3(4+2)\text{]}$	A1 (3) M1
	= <u>18 Ns</u>	A1√ (2) 8

6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
3.	(a) $M(C)$: $25g \times 2 = 40g \times x$ $x = \underline{1.25 \text{ m}}$ (b) Weight/mass acts at mid-point; or weight/mass evenly distributed (o.e.) (c) $y = 1.4$ $40g = M(C)$: $40g \times 1.4 = 15g \times y + 25g \times 2$ Solve: $y = \underline{0.4 \text{ m}}$	M1 A1 A1 (3) B1 (1) M1 A1 M1 A1 (4) 8
4.	$\mathbf{R} = 10\sqrt{3}/2 \mathbf{i} - 5 \mathbf{j}$ $\mathrm{Using} \mathbf{P} = 7 \mathbf{j} \text{ and } \mathbf{Q} = \mathbf{R} - \mathbf{P} \text{ to obtain } \mathbf{Q} = 5\sqrt{3} \mathbf{i} - 12 \mathbf{j}$ $\mathrm{Magnitude} = \sqrt{[(5\sqrt{3})^2 + 12^2]} \approx \underline{14.8 \mathrm{N}} (\mathrm{AWRT})$ $\mathrm{angle with \mathbf{i}} = \arctan{(12/5\sqrt{3})} \approx 64.2^\circ$ $\mathrm{bearing} \approx \underline{144^\circ} (\mathrm{AWRT})$ $\mathrm{Alternative method}$ $\mathrm{P} \qquad \qquad \text{Vector triangle correct}$ $\mathrm{Q}^2 = 10^2 + 7^2 + 2 \mathrm{x} 10 \mathrm{x} 7 \cos 60$ $\mathrm{Q} \approx \underline{14.8 \mathrm{N}} (\mathrm{AWRT})$ $\underline{14.8} = \underline{10} \sin \theta$ $\Rightarrow \theta = 35.8, \Rightarrow \mathrm{bearing} 144 (\mathrm{AWRT})$	M1 A1 M1 A1 ↓ M1 A1 M1 A1 A1 (9) B1 M1 A1 A1 A1 M1 A1 M1 A1 M1 A1

Question Number	Scheme	Marks
5.	18 (a) R(perp to plane): $P \sin 30 + 10 \cos 30 = 18$ Solve: $P \approx 18.7 \mathrm{N}$ (b) R(// plane): $P \cos 30 = 10 \sin 30 + F$ $F = 18\mu \text{ used}$ Sub and solve: $\mu = 0.621 \text{ or } 0.62$ (c) Normal reaction now = $10 \cos 30$ Component of weight down plane = $10 \sin 30 \ (= 5 \mathrm{N})$ (seen) $F_{\text{max}} = \mu R_{\text{new}} \approx 5.37 \mathrm{N} (\text{AWRT } 5.4)$ $5.37 > 5 \Rightarrow \text{ does not slide}$	M1 A1 ↓ M1 A1 (4) M1 A1 M1 ↓ ↓ M1 A1 (5) M1 A1 B1 ↓ M1 A1 cso (5) 14

6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
6.	(a) Speed of $A = \sqrt{(1^2 + 6^2)} \approx \underline{6.08 \text{ m s}^{-1}}$	M1 A1 (2)
	(b) $\tan \theta = 1/6 \Rightarrow \theta \approx 9.46^{\circ}$	M1 A1
	6	A1 (3)
	(c) P.v. of A at time $t = (2-t)\mathbf{i} + (-10+6t)\mathbf{j}$	
	p.v. of B at time $t = (-26 + 3t)\mathbf{i} + (4 + 4t)\mathbf{j}$	B1 (either)
	(E.g.) i components equal $\Rightarrow 2-t = -26+3t \Rightarrow t = 7$	M1 A1
	j components at $t = 7$: $A: -10 + 6t = 32$	\downarrow
	$B: \ 4 + 4t = 32$	M1
	Same, so collide at $t = 7$ s at point with p.v. $(-5\mathbf{i} + 32\mathbf{j})$ m	A1 cso (5)
	(d) New velocity of $B = \frac{8}{5}(3\mathbf{i} + 4\mathbf{j}) \text{ m s}^{-1}$	B1
	P.v. of B at 7 s = $-26\mathbf{i} + 4\mathbf{j} + 1.6(3\mathbf{i} + 4\mathbf{j}) \times 7 = 7.6\mathbf{i} + 48.8\mathbf{j}$	M1 A1 ↓
	$\underline{PB} = \mathbf{b} - \mathbf{p} = 12.6\mathbf{i} + 16.8\mathbf{j} $ (in numbers)	M1 ↓
	Distance = $\sqrt{(12.6^2 + 16.8^2)} = 21 \text{ m}$	M1 A1 (6)
		16

Question Number	Scheme	Marks
7.	(a) T $A: 3mg \sin 30 - T = 3m \cdot \frac{1}{10}g$ $\Rightarrow T = \frac{6}{5}mg$	M1 A1 A1 (3)
	(b) T R F : R(perp): $R = mg \cos 30$ $R(//): T - mg \sin 30 - F = m \cdot \frac{1}{10}g$	M1 A1 M1 A2, 1, 0
	Using $F = \mu R$	M1
	$\frac{6}{5}mg - \frac{1}{2}mg - \mu mg \frac{\sqrt{3}}{2} = \frac{1}{10}mg$	↓↓↓ M1
	$\rightarrow \mu = 0.693 \text{ or } 0.69 \text{ or } \frac{2\sqrt{3}}{5}$	A1 (8)
	(c) T Magn of force on pulley = $2T \cos 60 = \frac{6}{5}mg$	M1 A1 √
	Direction is vertically downwards	B1 (cso) (3)
		14