Determining Telco Churning.

By RMM - July 2018

Mid-term Capstone.

This project corresponds to the final part of Unit 3 at the mid time of the Thinkful Data Science Bootcamp. You can visit this notebook at my GitHub repository.

Outline

- → Introduction
- → Dataset information & modelling aspects
- → Feature & variable analysis
- → Analysing Dataset
- → Predicting Churn
- → Most important features and variables in customer churn
- → Probability of customers leaving
- → How can this information help us?
- → How could we optimize our conclusions?

Intro

Customer churn (cc) occurs when customers or subscribers stop doing business with a company or service.

- → Which features influence cc?

 Valuable for building a retention campaign
- Which features are most important?

 Knowing this will allow us to reduce computational costs and focus our resources when building our retention campaign
- → Which clients are most likely to leave?

Applying our best model we'll determine which clients are more likely to leave.

Telco customer Churn - IBM Watson Analytics community

Analysing Dataset.

Month-to-month contracts = 10 month median tenure

Two year contracts = 70 month median tenure

Tip

Tenure is the measurement of the amount of time a person is your customer, or in other words it's the age of a customer in your system.

Customers with online backup have a median age in the company of 32 months more in contrast to those without this service

Monthly
charges and
tenure share a
close
relationship

Month-to-month contracts have a higher churn probability

Electronic check payers churn most often

Most influential features

Tenure

Monthly charges

Internet service

Online security

Online backup

Tech support

Contract

Payment method

Predicting Churn.

Telco customer Churn - IBM Watson Analytics community

Creating dummy variables and balancing the dataset.

Unbalanced training data

No-Churn: 4146

Churn: 1479

Balanced training data

No-Churn: 4146

Churn: 4146

Creating dummy variables

Original features: 21

Current features: 52

Synthetic Minority
Over-sampling Technique
(SMOTE)

Logistic regression (Classification L2) classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.840(*/- 0.18)

Cross Validation Accuracy Scores - Test Set: 0.785(*/- 0.05)

grid.best_score_: 0.84008683068

grid.best_params_:{'C': 1}

Random Forest Classification classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.792(*/~ 0.15)

Cross Validation Accuracy Scores - Test Set: 0.741(*/- 0.07)

grid.best_score_: 0.801616015437 grid.best_params_: {'bootstrap': False, 'max_depth': None, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 10, 'n_estimators': 1}

Decision Tree Classifier classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.809(+/- 0.15)

Cross Validation Accuracy Scores - Test Set: 0.738(*/- 0.09)

grid.best_score_: 0.812952243126

grid.best_params_: {'criterion': 'gini', 'max_depth': 13, 'min_samples_split': 10}

K-Nearest Neighbours Classifier classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.826(+/- 0.17)

Cross Validation Accuracy Scores - Test Set: 0.773(*/- 0.06)

grid.best_score_: 0.826338639653 grid.best_params_: {'n_neighbors': 9}

Hyperparameter tuning: GridSearchCV

Ridge Classifier classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes		0.66	
avg / total		0.75	

Cross Validation Accuracy Scores: 0.749(*/- 0.36)

Cross Validation Accuracy Scores - Test Set: 0.790(+/- 0.05)

grid.best_score_: 0.749155812832 grid.best_params_: {'alpha': 0.8}

Lasso Classifier classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.841(+/- 0.18)

Cross Validation Accuracy Scores - Test Set: 0.788(+/- 0.05)

grid.best_score_: 0.840448625181

grid.best_params_: {'C': 1}

SVC Classifier classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.837(*/- 0.21)

Cross Validation Accuracy Scores - Test Set: 0.788(+/- 0.05)

grid.best_score_: 0.836468885673

grid.best_params_: {'C': 10}

Gradient Boost Classifier classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.844(*/- 0.19)

Cross Validation Accuracy Scores - Test Set: 0:770(+/- 0:05)

grid.best_score_: 0.8451519536903039 grid.best_params_:{'max_features': 1.0, 'learning_rate': 0.05, 'max_depth': 4, 'min_samples_leaf': 20}

Predicting chun using PCA.

52 to 38

Fitting PCA to the training matrix, and retaining 90 % of it's variance we reduced the number of features used from 52 to 38 and optimizing prediction score and computational time.

Applying PCA

Logistic regression (Classification L2) classificatior report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.780(+/- 0.40)

Cross Validation Accuracy Scores - Test Set: 0.788(+/- 0.06)

Applying PCA

Random Forest Classification classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.797(+/- 0.22)

Cross Validation Accuracy Scores - Test Set: 0.701(+/- 0.08)

Applying PCA

Decision Tree Classification classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.804(*/- 0.23)

Cross Validation Accuracy Scores - Test Set: 0.728(*/- 0.04)

Applying PCA

K-Nearest Neighbours Classification classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.815(*/~0.20)

Cross Validation Accuracy Scores - Test Set: 0.737(+/- 0.06)

Applying PCA

Ridge Classification classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0:726(*/- 0.32

Cross Validation Accuracy Scores - Test Set: 0.788(+/- 0.07)

Applying PCA

Lasso Classification classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.809(+/- 0.27)

Cross Validation Accuracy Scores - Test Set: 0.789(+/- 0.05)

Applying PCA

Support Vector Classification (SVC) classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.773(+/- 0.34)

Cross Validation Accuracy Scores - Test Set: 0.738(*/- 0.04)

Applying PCA

Gradient Boost Classification classification report

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.823(+/- 0.22)

Cross Validation Accuracy Scores - Test Set: 0.751(+/- 0.06)

Predicting churn using SelectKBest.

SelectKBest removes all but the k highest scoring features

Applying SelectKBest

Logistic Regression (Classification L2) classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.607(*/- 0.02)

Cross Validation Accuracy Scores - Test Set: 0.783(*/- 0.04)

Best score 0.7971538832609745 Best k-value {'kbest_k': 47}

Applying SelectKBest

Random Forest Classification classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.73g(+/- 0.10)

Cross Validation Accuracy Scores - Test Set: 0.764(*/- 0.04)

Best score 0.7842498794018331 Best k-value {'kbest_k': 39}

Applying SelectKBest

Decision Tree Classification classification report:

	precision	recall	f1-score
Churn_No			0.87
Churn_Yes			0.87
avg / total			0.87

Cross Validation Accuracy Scores: 0.740(+/- 0.10)

Cross Validation Accuracy Scores - Test Set: 0.763(*/- 0.04)

Best score 0.7957067052580801 Best k-value {'kbest_k': 45}

Applying SelectKBest

K-Nearest Neighbours Classification classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.708(+/- 0.16)

Cross Validation Accuracy Scores - Test Set: 0.758(+/- 0.05)

Best score 0.787867824409069 Best k-value {'kbest_k': 30}

Applying SelectKBest

Ridge Classification classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.606(*/- 0.02)

Cross Validation Accuracy Scores - Test Set: 0.783(*/- 0.05)

Best score 0.7589242643511819 Best k-value {'kbest_k': 46}

Applying SelectKBest

Lasso Classification classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.607(+/- 0.02)

Cross Validation Accuracy Scores - Test Set: 0.782(+/- 0.04)

Best score 0.791365171249397 Best k-value {'kbest_k': 48}

Applying SelectKBest

Support Vector Classification (SVC) classification report:

	precision	recall	f1-score
Churn_No			0.86
Churn_Yes			0.84
avg / total			

Cross Validation Accuracy Scores: 0.726(+/-0.08)

Cross Validation Accuracy Scores - Test Set: 0.791(+/- 0.05)

Best score: 0.7969126869271587

Best k-value: {'kbest_k': 34}

Applying SelectKBest

Gradient Boost Classification classification report:

	precision	recall	f1-score
Churn_No			
Churn_Yes			
avg / total			

Cross Validation Accuracy Scores: 0.607(+/- 0.02)

Cross Validation Accuracy Scores - Test Set: 0.782(+/- 0.04)

Best score: 0.800168837433671

Best k-value: {'kbest_k': 50}

Overall Performance

Overall Performance

	GridSearchCV	PCA	SelectKBest
Logistic Regression			78.3
Random Forest			76.4
Decision Tree			76.3
KNN			75.8
Ridge C.			78.3
Lasso C.			78.2
SVC			79.1
Gradient Boost C.			76.4

Best model
performance for
predicting
customer churn.

Logistic Regression	78.53 %
Random Forest C.	
Decision Tree	
Ridge C.	
Support Vector C.	
Gradient Boost C	

Most important features and variables in customer churn.

Coefficient

Phone Service - Yes

2.172895

Monthly Charges

0.6554275

Multiple Lines - No phone service

0.062850

Probability of customers leaving.

Probability	Customer count	Predicted probability (mean)	True probability (mean)
0 - 10 %	508	0.038181	0.047074
10 - 20 %	187	0.145438	0.130854
20 - 30 %	156	0.250726	0.243905
30 - 40 %	118	0.349304	0.312120
40 - 50 %	119	0.448223	0.411362
50 - 60 %	109	0.547972	0.521068
60 - 70 %	81	0.649067	0.638258
70 - 80 %	80	0.749983	0.725620
80 - 90 %	48	0.832671	0.825686
90 - 100 %	1	0.908898	1.00000

How can this information help us?

Decide into which clients we should focus our resources

363 clients have over 70% probability of leaving

Address the most important issues that influence churn

Phone service, monthly charges, multiple lines

Reduce significantly campaign costs

Budgets are tight and we need to maximize our resources

Aspects we could improve to increase our predictability.

Dataset size

Hyper parameter tuning

>>

Multiple algo testing

Ensemble models

Surveying for more features

