Part-1:

Datasets:

Dataset used: https://www.dropbox.com/s/pan6mutc5xj5kj0/trainPart1.zip

It consists of images that belong to 62 classes with each class having 40 images totalling to 2480 images.

Data Preprocessing:

The dataset consists of 10 digits (0-9) , 26 small letters (a-z) and 26 capital letters (A-Z)

Original Images (Size 900 X 1200) were first rotated by 30 degrees randomly both clockwise and anti-clockwise to introduce some variation and Resize was applied such that aspect ratio is maintained (3:4). Center Crop was done to focus more on the Image area that contained digits and letters (210 X 280 is the final images size).

Model Architecture:

ResNet based model with identity connections was used.

The idea was to have a deep layer so that a dataset with many images can be trained without any problems.

Paper Link: https://arxiv.org/abs/1512.03385

A modified version of ResNet50 was used.

The four intermediate blocks in the original version consist of 3,4,4,4 layers respectively. Whereas here intermediate blocks consist of 1,2,2,2 layers.

The dataset used here is not as complex as the images used in ImageNet challenge so I reduced no. of layers.

Training:

The preprocessed dataset was split into train and validation sets of size 2200,280 respectively.

Cross Entropy Loss Function was used because this problem involves multi-class classification.

Adam optimizer was used with a learning rate set at 3e-5 and training was done for 60 epochs.

Step Learning rate scheduler was used such that for every two epochs the learning rate gets multiplied by a factor of 0.9

Based on accuracy on the Validation set, model weights were saved in checkpoints.

Learning rates of 3e-3,3e-4,3e-6 were also tried but best results were obtained for the above mentioned values

Results:

The best validation accuracy was 87.86 %. At that point training accuracy was 91.7%.

Plots of Training Accuracy, Validation Accuracy, Training Loss, Validation Loss over epochs

0 5 10 15 20 25 30 35 40 45 50 55 60

Precision, Recall and f1-scores on Validation data

	precision	recall	f1-score	support				
0	1.000	0.500	0.667	- 22	1 000	1 000	1 000	-
ĭ	0.500	0.667	0.571	32	1.000	1.000	1.000	5
2	1.000	1.000	1.000	33	1.000	1.000	1.000	4
3	1.000	1.000	1.000	34	1.000	1.000	1.000	7
4	1.000	1.000	1.000	35	1.000	1.000	1.000	6
5	1.000	0.833	0.909	36	1.000	1.000	1.000	1
5 6	1.000	1.000	1.000	37	1.000	1.000	1.000	5
7	1.000	1.000	1.000	38	1.000	0.875	0.933	1 5 8 3 6 5 2 3 4
8	0.833	1.000	0.909	39	1.000	1.000	1.000	3
9	1.000	1.000	1.000	40	1.000	1.000	1.000	3
10	1.000	1.000	1.000	41	1.000	1.000	1.000	6
11	1.000	1.000	1.000	42	1.000	0.800	0.889	5
12	0.667	1.000	0.800	43	1.000	1.000	1.000	2
13	1.000	1.000	1.000	44	1.000	1.000	1.000	3
14	1.000	1.000	1.000	45	1.000	1.000	1.000	4
15	1.000	1.000	1.000	46	1.000	1.000	1.000	4
16	1.000	1.000	1.000	47	1.000	0.667	0.800	3
17	1.000	1.000	1.000	48	0.750	1.000	0.857	4 3 3 4 2 6 3 3 7
18	0.500	0.667	0.571	49	1.000	1.000	1.000	4
19	1.000	1.000	1.000	50	0.500	1.000	0.667	2
20	1.000	1.000	1.000	51	1.000	1.000	1.000	6
21	1.000	1.000	1.000	52	1.000	1.000	1.000	3
22	1.000	0.500	0.667	53	1.000	0.667	0.800	3
23	1.000	1.000	1.000	54	0.800	0.571	0.667	7
24	1.000	0.750	0.857	55	1.000	1.000	1.000	8
25	1.000	1.000	1.000	56	1.000	1.000	1.000	8 3 5 4
26	1.000	1.000	1.000	57	1.000	0.800	0.889	5
27	1.000	1.000	1.000	58	1.000	1.000	1.000	4
28	0.714	1.000	0.833	59	1.000	1.000	1.000	6
29	1.000	1.000	1.000	60	1.000	1.000	1.000	2
30	1.000	1.000	1.000	61	0.500	1.000	0.667	1
31	0.750	1.000	0.857					_
				accuracy			0.950	280
				macro avg	0.944	0.940	0.932	280
				weighted avg	0.963	0.950	0.951	280