

Зарплата для Нео:

Однажды Нео приняли на работу в корпорацию «ООО МАТРИЦА» директором которой являлся, чёрный хакер Морфиус . Он разглядел в Нео потенциал и дал пробное задание: Морфеус положил первую зарплату Нео в сейф, пароль от сейфа Морфеус зашифровал с помощью блочного алгоритма шифрования «SMITHetel» построенного на основе классической сети Фейстеля.

1 Блочный алгоритма шифрования SMITHetel

Пусть:

- V_l это вектор из 0 и 1 длины $l \in \mathbb{N}$;
- $Text = t_1 ||t_2|| \dots ||t_r||$ это текст который необходимо зашифровать, где:
 - $-r \in \mathbb{N}$:
 - $-t_i, t_2, \ldots, t_{r-1} \in V_8;$
 - в случае если $t_r \in V_8$, то с текстом не происходит никаких дополнительных преобразований, если же длина блока t_r меньше 8 бит, то он дополняется нулями таким образом, чтобы длина t_r стала равна 8 битам.

То есть текст который необходимо зашифровать последовательно разбивается на блоки по 8 бит, при этом если последний блок меньше 8 бит, то он дополняется нулевыми битами таким образом, чтобы его длина стала равна 8 бит.

• $Key = k_1 ||k_2|| \dots ||k_{12}, k_i \in V_4, i = \overline{1,12}$ - секретный ключ длины 48 бит.

Далее каждый блок текста t_i , где $i=\overline{1,r}$ шифруется с помощью функции E_K независимо от других, то есть шифрованный текст выглядит следующим образом $s_1||s_2||\dots||s_r$, где $s_i=E_K(t_i)$.

1.1 Правила функционирования функции E_K .

Функция зашифрования $E_K:V_8\to V_8$ при фиксированном ключе - это биективное отображение множества V_8 или другими словами E_K подстановка на байтах. Функция E_K - это последовательное применение 12 преобразований $e_{k_1},e_{k_2},\ldots,e_{k_{12}}.$ То есть

$$E_K(t) = e_{k_{12}} \circ e_{k_{11}} \circ \cdots \circ e_{k_1}(t).$$

Опишем правила зашифрования одного Блока (байта) t с помощью одного раундазашифрования e_k алгоритма SMITHetel на 4-ёх битном ключе k:

- Блок t разбивается на 2 блока по 4 бита t_1 и t_2 ;
- Зашифрованный блока будет иметь вид $s = (s_1||s_2) = \big((t_2 \oplus F(k \oplus t_1))||t_1\big)$

Функция $F:\{0,1\}^4 \to \{0,1\}^4$ - биекция и представляет из себя подстановку следующего вида:

Это означает, что если на ей на вход подать любое 4ex битное число, то она возвращает новое 4ex битное число, согласно схеме выше. **Пример:** F(3) = 2

Схематичное представление алгоритма SMITHetel:

+ - это функция битового xor двух чисел

Дополнительные сведения:

Морфиус оставил Вам один пример: пару пароль (pass) и соответствующий шифрованный пароль $(E_K(pass))$ вашего коллеги, при этом ключ зашифрования и в Вашем случае и в примере ниже совпадают:

пароль: в битовом предствалении:

зашифрованный пароль: в битовом представлении:

Помогите Нео найти его пароль если зашифрованный пароль в битовом представлении имеет вид:

После чего нужно преобразовать этот пароль в флаг следующим образом: $cyzi\{decode\ message\}$, где $decode\ message$ это сообщение из 0 и 1 которое вы получили в процессе расшифровки. Это нужно послать в систему.