初二下数学自测练习 2024.5.29

满分: 100 分

时间: 90 分钟

单选题(每题3分,共30分)

1. 如图所示,在 $\triangle ABC$ 中, $\angle ABC$ = 90°, $BD \perp AC$, $DE \perp BC$, 垂足分别为 $D \setminus E$ 两点,则图中与 $\triangle ABC$ 相似的三角形有(

1题

2题

3 题

4题

2. 如图,在平面直角坐标系中, $\triangle ABC$ 和 $\triangle A'B'C'$ 是以原点 O 为位似中心的位似图形,点 A 在线段 OA' 上, AA' = 2OA. 若点 B 的坐标为(2,1),则点 B' 的坐标为 ()

- A. (4,2)
- B. (6,3)
- C. (8,4) D. (1,0.5)

3. 如图,有一批直角三角形形状且大小相同的不锈钢片, $\angle C = 90^{\circ}$,AB = 5米,BC = 3米,用这批不锈 钢片裁出面积最大的正方形不锈钢片,则面积最大的正方形不锈钢片的边长为()

- C. $\frac{12}{7}$
- D. $\frac{15}{9}$

4. 如图 1 是装了液体的长方体容器的主视图 (数据如图),将该容器绕地面一棱进行旋转倾斜后,水面恰 好接触到容器口边缘,如图 2 所示,此时液面宽度 AB=()

- A. 8cm
- B. 9cm
- C. 10cm
- D. 11cm

5. 如图, 在 $\triangle ABC$ 中, $\angle BAC = 60^{\circ}$, AB = 5, 点 D 在 AB 边上, AD = AC = 2, 连接 CD, 在 DC, DB 上截取 DE, DF, 使 DE = DF, 分别以点 E, F 为圆心, 大于 $\frac{1}{2}EF$ 长为半 径画弧,两弧交于点 G,作射线 DG,交 BC 边于点 H,则 DH 的长为 (

A. 2

- C. 1

6. 如图,矩形 ABCD 的顶点 A , B 分别在 x 轴, y 轴上, OB=4 , OA=3 , AD=10 , 将 矩形 ABCD 绕点 O 逆时针旋转,每次旋转 90° ,则第 2024 次旋转结束时,点 D 的坐标为(

- A. (-5,6)
- B. (5,-6)
- C. (-6,-5)
 - D. (6,5)

7. 如图, $\triangle ABC$ 为等边三角形, 且 AB = 5, 现将 $\triangle ABC$ 折叠, 使顶点 A 落在边 BC 上的点 D 处 (点 D 与 B, C不重合),折痕为MN,当 ΔBMD 与 ΔCDN 面积的比是9 25时,BD的长为()

D.
$$\frac{5}{3}$$

7题

8题

9题

8. 如图, $\triangle ABC \hookrightarrow \triangle ADE$, $\angle BAC = \angle DAE = 90^{\circ}$, AB = 6, AC = 8 ,点 D 在线段 BC 上运动,P 为线段 DE 的 中点,在点D的运动过程中,CP的最小值是()

- A. 3
- B. 4
- D. 不存在

9. 如图,在矩形 ABCD中, AB=14, E 是 BC 边上一点,且 BE=6,连接 AE.若 $\angle CAE=45^{\circ}$,则 CE 的 长为()

- A. 20
- B. 29
- C. $14\sqrt{2}$ D. $17\sqrt{3}$

10. 如图,在正方形 ABCD中, E、F 分别是 BC、CD 上的点,且 $∠EAF = 45^{\circ}$, AE、AF 分别交 BD TM、

N, 连接 EN、EF , 有以下结论: ① $\triangle ABM \hookrightarrow \triangle NEM$; ② $\triangle AEN$ 是等腰直角三角形;

③ BE + DF = EF; ④若点 $F \neq DC$ 的中点,则 $CE = \frac{2}{3}CB$,其中正确的个数是 ()

- A. 1
- B. 2
- C. 3
- D. 4

D

二、填空题(每题3分,共24分)

11. 如图所示,已知△ABC∽△ADB,点 $D \neq AC$ 的中点,CD = 1,则 AB 的长为

11 题

12 题

13 题

12. 如图,在Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$, $CD \perp AB$ 于点D,若AD = 1,BD = 4,则AC =

13. 如图,在 $\triangle ABC$ 中,AB=9,AC=6,BC=12,点 M 在 AB 边上,且 AM=3,过点 M 作直线 MN 与 AC边交于点N,使截得的三角形与原三角形相似,则MN=_

14. 如图,将矩形纸片 ABCD 沿 AE 折叠,使点 B 落在对角线 AC 上的点 F 处,再沿 EG 折叠,使点 C 落在矩形内的点 H 处,且 E 、F 、H 在同一直线上,若 AB=6 , BC=8 ,则 CG 的长是

15. 如图, 在△ABC 中, AB=AC=2, ∠A=90°, 点 P 为 BC 的中点, 点 E、F 分别为边 AB、AC 上的点, 若∠EPF=45°, 若∠FEP=60°, 则 CF=_____.

16. 如图,在矩形 ABCD中, AB=10, BC=6,点 E 为射线 BC 上一动点,将 $\triangle ABE$ 沿 AE 折叠,得到 $\triangle AB'E$. 若 B' 恰好落在射线 CD 上,则 BE 的长为_______.

17. 如图,在长方形 ABCD中, AD=8, AB=6,点 E 在 AB 上以每秒 4 个单位的速度由 A 向 B 移动,同时点 F 在 BC 上以每秒 3 个单位的速度由 B 向 C 移动,连接 AF, DE 交于点 O,点 P 为 EF 的中点.若 OP=4,则 AE 的长为

17 题

18 题

18. 如图,正方形纸片 ABCD,P为 AD 边上的一点(不与点 A,D 重合).将纸片折叠,使点 B 落在点 P 处,点 C 在点 G 处,PG 交 DC 于点 H,折痕为 EF,连接 BP,BH,BH 交 EF 于点 M,连接 PM.下列结论正确的有_____.(填写序号)

① BP = EF; ② $AP \cdot DP = AE \cdot DH$; ③ PH = AP + HC; ④ $BH + \% \angle PHC$; ⑤ BP = BH.

答题区:

题号	1	2	3	4	5	6	7	8	9	10
答案										

11		10	19	1./	
11.	:	14.	; 15.	; 14.	

- 三、解答题(19,20 题各8分,21,22 题各9分,23 题12分,共46分)
- 19. $\triangle ABC$ 三个顶点的坐标分别为A(1,-1), B(0,-2), C(2,-1).
- (1)画出已知 $\triangle ABC$ 关于 y 轴对称的 $\triangle A_1B_1C_1$;
- (2)以点 O 为位似中心,将 $\triangle ABC$ 放大为原来的 2 倍,得到 $\triangle A_2B_2C_2$,请在网格中画出 $\triangle A_2B_2C_2$,并写出点 B_2 的坐标.

- 20. 如图,等边三角形 $\triangle ACB$ 的边长为 3,点 P 为 BC 上的一点,点 D 为 AC 上的一点,连接 AP、PD, $\angle APD$ = 60° .
- (1)求证: $\frac{AB}{PC} = \frac{BP}{CD}$; (2)若 PC = 2, 求 CD 的长.

- 21. 如图,在正方形 ABCD中,点 E 为对角线 AC, BD 交点, AF 平分 $\angle DAC$ 交于点 G, 交 DG 于点 F.
- (1)求证: $\triangle AEG \hookrightarrow \triangle ADF$;
- (2)判断 △DGF 的形状并说明理由;
- (3)若 AG = 1,求 GF 的长.

22. 如图,在Rt $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$,AC = 8,BC = 6, $CD \perp AB$ 于点 D. 点 P 从点 D 出发,沿线段 DC 向点 C 运动,点 Q 从点 C 出发,沿线段 CA 向点 A 运动,两点同时出发,速度都为每秒 1 个单位长度,当点 P 运动到 C 时,两点都停止,设运动时间为 t 秒.

- (1)求线段 CD 的长; (2)当 t 为何值时, $\triangle CPQ$ 与 $\triangle ABC$ 相似?
- (3)是否存在某一时刻 t,使得 $\triangle CPQ$ 为等腰三角形?若存在,请直接写出满足条件的 t 的值;若不存在,请说明理由.

23. 【问题初探】

(1) 在数学活动课上,张老师给出如下问题: 如图1,在 $\triangle ABC$ 中,AB = BC, $\angle ABC = 90^{\circ}$,点 D 是边 BC 上一点,连接 AD,在 AB 右侧作 V ADE,使 DE = AD, $\angle ADE = 90^{\circ}$,连接 CE,求证: $\angle DCE = 135^{\circ}$;

- ① 小创同学从 $\triangle ABC$ 与 V ADE 均为等腰直角三角形这个条件出发给出如下解题思路: 通过证明 $\triangle ABD \sim \triangle ACE$,将 $\angle DCE$ 转化为 $\angle ABD + \angle ACB$;
- ② 小新同学从结论的角度出发给出另一种解题思路:如图 2,在线段 AB 上截取 BP = BD,连接 DP,通过证明 $\triangle APD \cong \triangle DCE$,将 $\angle DCE$ 转化为 $\angle APD$;请你选择一名同学的解题思路,写出证明过程.

【类比分析】

(2)张老师发现之前两名同学都运用了转化思想,为了帮助学生更好地感悟转化思想,张老师将图1进行变换并提出了下面问题,请你解答.

如图3,在 $\triangle ABC$ 中,AB=BC,点D是边BC上一点,连接AD,在AB右侧作VADE,使DE=AD, $\angle ADE=\angle ABC=\alpha(\alpha>90°)$,连接CE,过点C作CF // AB 交AE 于点F,探究 $\angle ECF$ 与 α 的数量关系;

(3) 如图4, 在 (2) 的条件下,当 $\alpha=120^\circ$ 时,若 $AB=BC=3\sqrt{3}$, $CF=2\sqrt{3}$,求CD的长.

