US Health Insurance Machine Learning

By Joshua Nguyen

This uses the US Health Insurance dataset which can be downloaded at

https://www.kaggle.com/teertha/ushealthinsurancedataset. This mimics with the project done for the dataset downloaded at https://www.kaggle.com/smogomes/prostate-cancer-prediction-model

Import Libraries

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
import sklearn
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import KFold, cross_val_score
import os
```

Import Dataset

```
bmi children smoker
Out[95]:
                                                                   charges
              age
                      sex
                                                       region
               19 female 27.900
           0
                                               yes southwest 16884.92400
               18
                     male 33.770
                                                    southeast
                                                                1725.55230
           1
                                                no
           2
               28
                     male 33.000
                                                    southeast
                                                                4449.46200
                                                no
                                        0
           3
               33
                     male 22.705
                                                    northwest 21984.47061
                                                no
               32
                     male 28.880
                                                no northwest
                                                               3866.85520
```

```
In [96]: my_data.info() # no null values in our dataset
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):
# Column Non-Null Count Dtype
```

```
0
              1338 non-null
                             int64
    age
 1
    sex
              1338 non-null object
 2
    bmi
              1338 non-null
                             float64
 3
    children 1338 non-null
                             int64
 4
    smoker
              1338 non-null
                             object
 5
    region
              1338 non-null
                             object
6
    charges 1338 non-null
                            float64
dtypes: float64(2), int64(2), object(3)
memory usage: 73.3+ KB
```

In [97]:

my_data.describe() # Five Number Summary

Out[97]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

```
In [98]:
```

```
data_dr = my_data['sex'].value_counts()
label = [data_dr.index.tolist()]
plt.pie(data_dr, labels=label[0], shadow=True, explode=(0.0, 0.2), autopct='%1.1f%%', s
plt.gcf().set_size_inches(12,6)
plt.show()
```


The distribution of males and females in our dataset are relatively similar.

```
In [99]: # Changing sex and smoking to dichtomous numerical variable - dummy variable
    #my_data2 = my_data['sex'].replace({'male':0, 'female':1}, inplace=True)

mapping = {'male': 0, 'female':1}

my_data2 = my_data1.replace({'sex': mapping})

mapping2 = {'no': 0, 'yes': 1 }

my_data3 = my_data2.replace({'smoker': mapping2})

my_data3.head()

# male - 0
# female - 1
# non-smoker - 0
# smoker - 1
```

```
Out[99]:
                          bmi children smoker
                                                     region
                                                                charges
              age sex
           0
               19
                     1 27.900
                                      0
                                                            16884.92400
                                               1 southwest
           1
               18
                     0 33.770
                                      1
                                                  southeast
                                                             1725.55230
           2
               28
                     0 33.000
                                      3
                                                  southeast
                                                             4449.46200
           3
               33
                     0 22.705
                                      0
                                                  northwest
                                                            21984.47061
               32
                     0 28.880
                                      0
                                                  northwest
                                                             3866.85520
```

```
Out[100...
                          age
                                     sex
                                               bmi
                                                      children
                                                                 smoker
                                                                           charges
                     1.000000
                                0.020856
                                          0.109272
                                                     0.042469 -0.025019
                                                                           0.299008
               age
                     0.020856
                                1.000000 -0.046371 -0.017163 -0.076185 -0.057292
               sex
                     0.109272 -0.046371
               bmi
                                          1.000000
                                                     0.012759
                                                                0.003750
                                                                          0.198341
                     0.042469 -0.017163
                                          0.012759
                                                     1.000000
                                                                0.007673
           children
                                                                           0.067998
            smoker -0.025019 -0.076185
                                           0.003750
                                                     0.007673
                                                                1.000000
                                                                           0.787251
           charges
                     0.299008 -0.057292
                                           0.198341
                                                     0.067998
                                                                0.787251
                                                                          1.000000
```

Split and Train Sets

```
# Can drop region column as it does not provide any information to our analysis
my_data3 = my_data3.drop(['region'], axis=1)
```

```
In [102...
          # Split the Data in Train and Test Function
          X = my_data3.drop(['smoker'], axis=1) # features
          y = my_data3['smoker'] # labels
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state
         Machine Learning Models
In [103...
          # Logistic Regressional Model
          logreg = LogisticRegression()
          logreg.fit(X_train,y_train)
          pred log = logreg.predict(X test)
In [104...
          # Random Forest Classifier
          forest = RandomForestClassifier(n_estimators=50)
          forest.fit(X_train, y_train)
          pred forest = forest.predict(X test)
In [105...
          # K-Neighborhoods Classifier
          kn = KNeighborsClassifier(n neighbors=2)
          kn.fit(X_train,y_train)
          pred kn = kn.predict(X test)
In [106...
          # Decision Tree Classifier
          tree = DecisionTreeClassifier()
          tree.fit(X_train,y_train)
          pred_tree = tree.predict(X_test)
In [107...
          # Report
          class_rep_log = classification_report(y_test, pred_log)
          class_rep_forest = classification_report(y_test, pred_forest)
          class_rep_kn = classification_report(y_test, pred_kn)
          class_rep_tree = classification_report(y_test, pred_tree)
          # Print Report
          print("Logistic Regression: \n", class_rep_log)
          print("Forest Classifier: \n", class_rep_forest)
          print("KNeighbors Classifier: \n", class_rep_kn)
          print("Decision Tree: \n", class_rep_tree)
         Logistic Regression:
                        precision
                                     recall f1-score
                                                         support
```

0.95

0.95

0

0.95

211

				0.00	260		
	accuracy	0.00	0.00	0.92	268		
	macro avg	0.88	0.88	0.88	268		
	weighted avg	0.92	0.92	0.92	268		
	Forest Classifier:						
		precision	recall	f1-score	support		
	0	1.00	0.96	0.98	211		
	1	0.86	0.98	0.92	57		
	1	0.80	0.90	0.32	57		
	accuracy			0.96	268		
	macro avg	0.93	0.97	0.95	268		
	weighted avg	0.97	0.96	0.96	268		
	KNeighbors Classifier:						
		precision	recall	f1-score	support		
		p. 0000					
	0	0.91	0.94	0.93	211		
	1	0.76	0.65	0.70	57		
	accuracy			0.88	268		
	macro avg	0.83	0.80	0.81	268		
	weighted avg	0.88	0.88	0.88	268		
	Decision Tree:						
	-	precision	recall	f1-score	support		
	_				0.1.1		
	0	0.98	0.99	0.98	211		
	1	0.95	0.91	0.93	57		
	accuracy			0.97	268		
	macro avg	0.96	0.95	0.95	268		
	weighted avg	0.97	0.97	0.97	268		
	_						
In [108							
[kf = KFold(10	9)					
	logit_score =	cnoss val s	cono/logn	en V v	-v-kf)		
	<pre>forest_score = cross_val_score(forest, X, y, cv=kf) KNeighbors_score = cross_val_score(kn, X, y, cv=kf)</pre>						
	tree_score =	_	_				
			(= = 2)	, ,, -	•		
	# Print the m						
	<pre>print("Logistic Regression:", np.mean(logit_score), '\n'</pre>						

1 0.82 0.81 0.81

57

Logistic Regression: 0.9312703400291775 Forest Classification: 0.9649029289642016 KNeighbors Classification: 0.8923745931994164

Decision Tree: 0.9603748176411177

The highest score is obtained via the Forest

"Forest Classification:", np.mean(forest_score), '\n'

"Decision Tree:", np.mean(tree_score), '\n'

"KNeighbors Classification:", np.mean(KNeighbors_score), '\n'

Classification followed by the Decision Tree, then Logistic Regression and finially KNeighbors Classification