Matura próbna 2025

test diagnostyczny przed sesją maj 2025

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

	WYPEŁNIA ZDAJĄCY	Miejsce na naklejkę.
KOD	PESEL	Sprawdź, czy kod na naklejce to M-100.
		Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formula 2023

MATEMATYKA Poziom podstawowy

Symbol arkusza **M**MAP-P0-**100**-2503

Daтa: 5 marca 2025 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 180 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

WYPEŁNIA ZESPÓŁ NADZORUJĄCY

Uprawnienia zdającego do:

dostosowania zasad oceniania

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- 1. Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- 2. Jeżeli przekazano Ci **niewłaściwy** arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 27 stron (zadania 1–28). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Symbol zamieszczony w nagłówku zadania oznacza, że rozwiązanie zadania zamkniętego musisz przenieść na kartę odpowiedzi. Ocenie podlegają wyłącznie odpowiedzi zaznaczone na karcie odpowiedzi.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 6. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Nie wpisuj żadnych znaków w tabelkach przeznaczonych dla egzaminatora. Tabelki umieszczone są na marginesie przy odpowiednich zadaniach.
- 9. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- Możesz korzystać z Wybranych wzorów matematycznych, cyrkla i linijki oraz z kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z okładką taką jak widoczna poniżej.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

Zadanie 1. (0-1)

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba
$$\frac{6^{18} \cdot 8^{-5}}{216} \cdot \sqrt[3]{\frac{8}{3^{45}}}$$
 jest równa

- **A.** $\frac{1}{2}$
- **B.** 4
- **C.** $\frac{1}{4}$
- **D.** 2

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Liczba $\log_{2\sqrt{2}} 96 - \log_{\sqrt{8}} 3$ jest równa

A. $\frac{5}{3}$

B. $\sqrt{2}$

C. $\frac{10}{3}$

D. $2\sqrt{2}$

Zadanie 3. (0-2)

Wykaż, że liczba $3^{94} + 9^{46} + 27^{30}$ jest podzielna przez 39.

Dane jest równanie

$$\sqrt{4x^2 + 4x + 1} = 11$$

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Iloczyn wszystkich rzeczywistych rozwiązań tego równania jest równy

- **A.** (-5)
- **B.** 30
- **C.** 5
- **D.** (-30)

Zadanie 5. (0-1)

Dane są liczby a i b dla których spełnione są warunki: a+b=6 oraz $a\cdot b=4$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wartość wyrażenia $a^4 + b^4$ jest równa

- **A.** 1296
- **B.** 1264
- **C.** 864
- **D.** 752

Zadanie 6. (0-1)

Dane jest wyrażenie określone dla każdej liczby rzeczywistej $x \in \mathbb{R} \setminus \{-3, -2, 0, 4\}$:

$$\frac{(x^2 - 5x)(x + 2)}{(2x - 8)(x + 3)^2} \div \frac{x^2 + 2x}{2x^2 - 2x - 24}$$

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wyrażenie to można przekształcić do postaci

- **A.** $\frac{x-5}{x+3}$
- **B.** $\frac{x-5}{x+2}$
- **C.** $\frac{x+2}{x+3}$
- **D.** $\frac{x+2}{x-4}$

Pan Cezary wpłacił do banku $5000\,$ zł na lokatę na procent składany, z kapitalizacją odsetek co pół roku. Po każdym rocznym okresie oszczędzania bank nalicza odsetki w wysokości 4% od kwoty bieżącego kapitału znajdującego się na lokacie.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Po roku oszczędzania na koncie Pana Cezarego, bez uwzględnienia podatków, będzie kwota

- **A.** 5174 zł
- **B.** 5202 zł
- **C.** 5316 zł
- **D.** 5408 zł

Zadanie 8. (0-3)

Rozwiąż równanie

$$\frac{4x+1}{2x+1} = \frac{6x-3}{4x+2}$$

Zapisz obliczenia.

Rozwiąż nierówność

$3(x+1)^2 \ge 4(x^2+3)$

Zapisz obliczenia.

Zadanie 10. (0-4)

Funkcja f jest określona następująco:

$$f(x) = \begin{cases} x+6 & \text{dla} & x \in [-4, -2] \\ 4 & \text{dla} & x \in (-2, -1) \\ -3x & \text{dla} & x \in (-1, 1] \\ -3 & \text{dla} & x \in (1, 3) \\ 3x - 14 & \text{dla} & x \in (4, 5] \end{cases}$$

Wykres funkcji y = f(x) przedstawiono w kartezjańskim układzie współrzędnych (x, y) na rysunku poniżej.

Uzupełnij zdania. Wpisz odpowiednie przedziały w wykropkowanych miejscach, aby zdania były prawdziwe.

- **1.** Dziedziną funkcji *f* jest przedział
- **2.** Zbiorem wartości funkcji *f* jest przedział
- **3.** Zbiorem wszystkich argumentów, dla których funkcja *f* przyjmuje wartość najmniejszą jest przedział
- **4.** Zbiorem wszystkich rozwiązań nierówności $f(x) \ge 3$ jest przedział

В	rud	nop	ois														

Zadanie 11.

W kartezjańskim układzie współrzędnych (x,y) dana jest funkcja kwadratowa g określona dla każdej liczby rzeczywistej x. Jednym z miejsc zerowych funkcji g jest liczba (-2), a także funkcja g przecina oś y w punkcie (0,6). Osią symetrii tej funkcji jest $x=\frac{1}{2}$.

Fragment wykresu funkcji y = g(x) przedstawiono na rysunku powyżej.

Zadanie 11.1. (0-2)

Uzupełnij zdanie. Wybierz <u>dwie</u> właściwe odpowiedzi spośród podanych oznaczonych literami A-F i wpisz te litery w wykropkowanych miejscach.

Wzór funkcji g można przedstawić w postaci oraz

A.
$$g(x) = -x^2 + x + 6$$

B.
$$g(x) = -x^2 - x + 6$$

C.
$$g(x) = -2x^2 + x + 6$$

D.
$$g(x) = -(x-2)(x+3)$$

E.
$$g(x) = -2(x+2)(x-3)$$

F.
$$g(x) = -(x+2)(x-3)$$

11.1.

0-1-2

Zadanie 11.2. (0–1) **■■■**

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Zbiorem wartości funkcji g jest przedział

- **A.** $\left(-\infty, 6\frac{1}{2}\right]$
- **B.** $[7, +\infty)$
- **C.** $\left(-\infty, 6\frac{1}{4}\right]$ **D.** $(-\infty, 7]$

Zadanie 11.3. (0-1)

Zapisz poniżej w postaci przedziału zbiór wszystkich argumentów, dla których funkcja g przyjmuje wartości większe od 4.

Zadanie 11.4. (0-1)

Funkcja kwadratowa h jest określona za pomocą funkcji g następująco: h(x) = g(x+3) - 2.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Największą wartość funkcja h przyjmuje dla argumentu

A.
$$x = -2\frac{1}{2}$$

B.
$$x = -\frac{1}{4}$$

C.
$$x = -\frac{1}{2}$$

A.
$$x = -2\frac{1}{2}$$
 B. $x = -\frac{1}{4}$ **C.** $x = -\frac{1}{2}$ **D.** $x = -1\frac{1}{4}$

Zadanie 12. (0-1) ■■■ 🖋

Ciąg (a_n) jest określony wzorem $a_n = 3n \cdot (2^n - n)$.

Oceń prawdziwość poniższych stwierdzeń. Wybierz P, jeśli stwierdzenie jest prawdziwe, albo F – jeśli jest fałszywe.

Liczba $\sqrt{a_4}$ jest całkowita.	Р	F
Ciąg (a_n) jest malejący.	Р	F

В	rud	nop	ois														

Zadanie 13. (0-2)

Dany jest ciąg (b_n) określony wzorem $b_n=2^n\cdot 3^{n-1}.$

Wykaż, że (b_n) to ciąg geometryczny.

13. 0–1–2

Zadanie 14. (0-1)

Ciąg (c_n) jest określony następująco:

$$c_n = \begin{cases} c_1 = -3 \\ c_{n+1} = 2c_n + 3n - 5 \end{cases} \quad \text{dla każdej liczby naturalnej } \ n \geq 1$$

14. 0–1 Uzupełnij zdanie. Wpisz odpowiednią liczbę w wykropkowanym miejscu, aby zdanie było prawdziwe.

Suma pięciu początkowych wyrazów ciągu (c_n) jest równa

Zadanie 15. (0–1) ■■■ 🗸

Rozpatrujemy wszystkie liczby naturalne trzycyfrowe, które przy dzieleniu przez 7 dają resztę 2.

Dokończ zdanie. Zaznacz odpowiedź A, B albo C oraz jej uzasadnienie 1., 2. albo 3.

Takich liczb jest

A.	128		1.	70144
В.	129	oraz ich suma wynosi	2.	70692
C.	130		3.	71240

Kąt α jest rozwarty oraz $\sin \alpha = \frac{4\sqrt{3}}{7}$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Cosinus kąta α wynosi

- **A.** $\left(-\frac{1}{7}\right)$ **B.** $\frac{2\sqrt{3}}{7}$
- **C.** $\frac{1}{7}$
- **D.** $\left(-\frac{2\sqrt{3}}{7}\right)$

Więcej arkuszy znajdziesz na stronie: arkusze.pl

Kąt β jest ostry oraz spełniona jest zależność: $\frac{\cos \beta}{\sin \beta} = \frac{1}{2}$.

Oblicz wartość wyrażenia $\frac{\sin^3\beta}{\cos\beta} + \sin\beta \cdot \cos\beta$. Zapisz obliczenia.

Zadanie 18. (0-2)

Wyznacz równanie symetralnej odcinka |AB| o punktach A=(3,2) oraz B=(7,8), przechodzącej przez punkt C=(11,1). Zapisz obliczenia.

Zadanie 19. (0-1)

Dane są proste k oraz l o równaniach:

$$k: y = |m-2| \cdot x - 6m + 4 + (m-3) \cdot x$$

l:
$$y = (7 + m) \cdot x - 2m - 7$$

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Proste k i l są równoległe dla

A.
$$m \in \{-3,2\}$$

B.
$$m \in \{-4.6\}$$

C.
$$m \in \{-7.2\}$$

A.
$$m \in \{-3,2\}$$
 B. $m \in \{-4,6\}$ **C.** $m \in \{-7,2\}$ **D.** $m \in \{-8,12\}$

Zadanie 20. (0-1)

Dwa boki pewnego trójkąta mają długości 7 i 8 oraz cosinus kąta naprzeciwko trzeciego boku jest równy $\frac{11}{16}$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Obwód tego trójkąta wynosi

A. 16

B. 21

C. 35

D. 37

Zadanie 21. (0–1) **□■■**

Do okręgu o środku O poprowadzono styczną przecinającą się z tym okręgiem w punkcie K. Na rysunku zaznaczono kąt 60° przy punkcie K. Długość wycinka koła \widehat{AB} jest równa 3π .

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Długość odcinka |BK| wynosi

- **A.** 10
- **B.** 12
- **C.** 14
- **D.** 18

Zadanie 22. (0-1)

Dany jest romb o polu 32, którego kąt ostry ma miarę 30°.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wysokość tego rombu jest równa

- **A.** 4
- **B.** 8
- **C.** 12
- **D.** 16

Zadanie 23. (0-1)

Pole powierzchni całkowitej pewnego czworościanu foremnego jest równe $\sqrt{3}$.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Długość krawędzi bocznej tego czworościanu jest równa

- **A.** $\frac{1}{3}$
- **B.** $\frac{1}{\sqrt{3}}$
- **C.** 1
- **D.** $\sqrt{3}$

Zadanie 24. (0-4)

Kąt rozwarcia stożka ma miarę 60° a także jego objętość wynosi $9\sqrt{3}\pi$.

Oblicz pole powierzchni całkowitej tego stożka. Zapisz obliczenia.

Zadanie 25. (0-1) **□ □ □ □**

Rozważamy wszystkie liczby naturalne czterocyfrowe składające się jedynie z cyfr nieparzystych, które są mniejsze od 7000 oraz są podzielne przez 5.

Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych.

Wszystkich takich liczb jest dokładnie

A. 75

B. 96

C. 115

D. 134

Zadanie 26. (0-2)

Ze zbioru $K = \{1, 2, 3, 4, 5, 6, 7\}$ losujemy dwukrotnie ze zwracaniem po jednej liczbie.

Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, że wartość bezwzględna sumy bądź różnicy wylosowanych liczb jest liczbą pierwszą. Zapisz obliczenia.

Zadanie 27. (0-2)

Na wykresie poniżej przedstawiono wyniki ankiety przeprowadzonej wśród maturzystów dotyczącej liczby zdawanych przez nich egzaminów dodatkowych na egzaminie maturalnym.

Uzupełnij tabelę. Wpisz w każdą pustą komórkę tabeli właściwą odpowiedź, wybraną spośród oznaczonych literami A–E.

27.1.	Średnia arytmetyczna liczby zdawanych egzaminów dodatkowych wynosi	
27.2.	Mediana liczby zdawanych egzaminów dodatkowych wynosi	

A. 2

B. 2,5

C. 2,6

D. 3

E. 3,25

27.1.

0-1

27.2. 0–1

Zadanie 28. (0-4)

Deweloper projektuje tablicę do pisania do sali lekcyjnej. Jej kształt można opisać za pomocą dwóch figur: prostokąta oraz dwóch trójkątów równobocznych o boku równym długości krótszego boku prostokąta, przylegających do tych boków (patrz rysunek). Na obwód całej figury (tj. ramki tablicy i drzwiczek) deweloper przeznacza 120 dm metalowej obwódki.

28. 0–1– 2–3–4 Oblicz największe możliwe pole tej tablicy. Wynik przedstaw w postaci ułamka zwykłego nieskracalnego. Usuń niewymierność z mianownika. Zapisz obliczenia.

BRUDNOPIS (nie podlega ocenie)

MATEMATYKA Poziom podstawowy

Formula 2023

MATEMATYKA Poziom podstawowy

Formula 2023

MATEMATYKA Poziom podstawowy

Formula 2023

