

Fig. 1 Let Σ = $\{a, b, c, d, e, f, g\}$, $Q = \{q_6, q_7, q_8, q_9, q_{10}\}$. From these figures, we get $\ell_A = 1$, $\ell_B = 1$, $Q^{(\perp,\perp)} = Q^{(\perp,\cdot)} = Q^{(\cdot,\perp)} = \emptyset$, and $Q^{(\cdot,\cdot)} = Q$.

Fig. 2 In the left figure, we aggregate all of the edges appearing in Fig. 1. From Fig. 1 and this right figure, we get $Q_1^{(\cdot,\cdot)}=\{q_6,q_7,q_8,q_9\}$ and $Q_2^{(\cdot,\cdot)}=\{q_{10}\}$. From Proposition ??, even if the string $dg\in A'\cdot B'$ satisfies $p\{x:=gd\} \preceq q_{10}$, it does not imply that $p\{x:=xy\} \preceq q_{10}$.