3. Dependencias funcionales.

3.1 Definiciones básicas . Una dependencia funcional es una restricción inherente a la semántica de los atributos que se expresa en la forma : $X \to Y$ (X e Y son descriptores , esto es, conjuntos de atributos) y se lee " X implica Y"

El significado , ya aclarado en la introducción , es que , a cada valor de X , le corresponde uno solo de Y .

Si $\neg \exists X' \subset X : X' \to Y$, se dice que la dependencia es **total**. En caso contrario , se dice que es **parcial** .

Si \exists Z : Z \cap X = Φ , Z \cap Y = Φ , X \to Z , \neg (Z \to X) , Z \to Y ; de la dependencia se dice que es **transitiva** .

Un esquema de relación $\, R \,$ viene definido por el par ($\, T \,$, $\, L \,$) , siendo $\, T \,$ el conjunto de atributos y $\, L \,$ el conjunto de dependencias .

Una **clave** del esquema es un descriptor K (subconjunto de T) , tal que : $K \to T$, siendo ésta una dependencia total .

3.2 Axiomas de Armstrong.

Los Axiomas de Armstrong son más bien reglas de inferencia.

Estas reglas permiten deducir todas las dependencias funcionales que tienen lugar entre un conjunto dado de atributos , como consecuencia de las dependencias " dato" , esto es , de las que se asumen como ciertas a partir del conocimiento del problema .

Las dependencias " dato " equivalen a los axiomas de una teoría (en sentido lógico) y los Axiomas de Armstrong son el conjunto **completo** de reglas deductivas que nos permite deducir cualquier otra dependencia **cierta** (teorema de la teoría) .

Los Axiomas de Armstrong son :

• Reflexividad : $\forall X, X \rightarrow X$

• Proyectividad : $\{X \rightarrow Y, Z \subseteq Y\} \Rightarrow X \rightarrow Z$

• Aumentatividad : $\{X \rightarrow Y, Z \supseteq X\} \Rightarrow Z \rightarrow Y$

• Aditividad :{ $X \rightarrow Y$, $Z \rightarrow V$ } $\Rightarrow X \cup Z \rightarrow Y \cup V$

• Transitividad : $\{X \rightarrow Z, Z \rightarrow Y\} \Rightarrow X \rightarrow Y$

El carácter correcto de estas reglas , es obvio y , en todo caso , fácilmente demostrable . Lo que ya es más complicado es demostrar el carácter completo del conjunto , demostración que pertenece al campo de la Lógica y no es en todo caso objeto de este curso básico de Bases de Datos .

Lo importante para nosotros es que este resultado (la completitud del conjunto) , nos permite abordar y resolver una serie de problemas fundamentales que luego nos conducirán al establecimiento de algoritmos de diseño sencillos y fiables .

Estos problemas fundamentales , son :

- Cierre de un conjunto de dependencias.
- Equivalencia lógica de esquemas .
- Deducción de dependencias .
- Cierre de un descriptor respecto de un conjunto de dependencias.
- Cálculo de las claves de un esquema .

3.3 Cierre de un conjunto de dependencias. Equivalencia de esquemas.

Sea el esquema R (T , L) . El cierre del conjunto L de dependencias funcionales es el conjunto de todas las dependencias ciertas (deducibles a partir de L mediante los Axiomas de Armstrong) . El cierre se representa por L^{+} .

Dos conjuntos de dependencias , L y M , relativas al mismo universo T de atributos , son equivalentes si $L^+=M^+$, en cuyo caso R (T , L) y S (T , M) son esquemas equivalentes (representaciones alternativas y equivalentes del mismo problema) .

3.4 Deducción de dependencias . Cierre de un descriptor respecto de un conjunto de dependencias .

El problema de deducción puede plantearse en estos términos : Dado un esquema R (T, L), y dada la dependencia $X \rightarrow Y$ (no perteneciente a L), establecer el carácter cierto o falso de la misma .

La solución (teórica) es , obviamente , calcular L^+ , y ver si $X \to Y$ pertenece o no al cierre calculado .

El problema radica en la extraordinaria complejidad computacional del cálculo de un cierre (el libro de Ullmann citado en la bibliografía básica comenta casi siempre algo acerca de la complejidad computacional de los algoritmos que propone), así que no calcularemos L^{\dagger} en ningún caso .

El cierre de un descriptor X respecto de un conjunto de dependencias L, se representa por X^{+}_{L} (se omite el subíndice si no hay ambigüedad) . El cierre se define así:

$$X \rightarrow X^{+} \land \neg \exists Z \supset X^{+} : X \rightarrow Z$$

Es decir : X implica a su cierre y no existe ningún superconjunto del mismo que sea implicado por X (el cierre , en ese sentido , es un conjunto máximo).

A diferencia del cálculo del cierre de un conjunto de dependencias , el cálculo del cierre de un descriptor es computacionalmente simple y permite resolver el problema antes planteado mediante una simple estrategia . Para saber si $X \to Y$ es cierta en relación a R(T, L), calculamos X^+ . Si $Y \subseteq X$ la dependencia es cierta y no lo es en caso contrario.

Si se trata de analizar la equivalencia de dos representaciones del mismo problema , esto es , si R(T , L) \approx S(T , M) , hay que establecer la equivalencia de los conjuntos M y L de dependencias funcionales .

M y L serán equivalentes si sus cierres coinciden . \forall (X \rightarrow Y) \in {M-L} se calcula el cierre X $^+$ L . Si Y es un subconjunto de dicho cierre en todos los casos , pasamos a calcular V $^+$ M, \forall (V \rightarrow Z) \in {L-M} . Si Z es un subconjunto del cierre en todos los casos , L y M son conjuntos equivalentes .

3.5 Cálculo del cierre de un descriptor respecto de un conjunto de dependencias funcionales .

Es un proceso iterativo . Sea X el descriptor y L = { f_1 , ... , f_n } el conjunto de dependencias . Se calcula la secuencia X^0 , ... , X^i , ... , $X^n=X^+$ en la forma siguiente :

 $X^{0=}X$

 $X^{i+1}=X^i \cup \{ \text{ atributos de la derecha de las dependencias en L implicadas por subconjuntos de } X^i \}$.

Si Xⁱ=Xⁱ⁺¹, Xⁱ es el cierre.

Si Xⁱ=T, Xⁱ es el cierre.

Ejemplo:

X=BD , f_1 = AB \rightarrow C , f_2 =C \rightarrow A , f_3 =BC \rightarrow D , f_4 = ACD \rightarrow B , f_5 =D \rightarrow EG , f_6 =CG \rightarrow BD , f_7 =BE \rightarrow C , f_8 = CE \rightarrow AG X^0 =BD

X1=BDEG (usando f₅)

 X^2 =BDEGC (usando f_7)

 X^3 =BDEGCA (usando f_2)

Como no hay más atributos, éste es el cierre.

3.6 Recubrimiento no redundante.

Si dos conjuntos de dependencias funcionales , L y M , son equivalentes , o sea , tienen sus cierres iguales ; se dice que L es un recubrimiento de M (y recíprocamente) .

Dado el conjunto L de dependencias funcionales , M es un recubrimiento no redundante si :

- L≈ M
- Toda dependencia en M es de la forma $X \rightarrow A$ (segundos miembros simples)
- Ningún implicante contiene atributos superfluos (un atributo es superfluo si su supresión no altera el cierre del conjunto).

 No hay dependencias redundantes (una dependencia es redundante si su supresión no altera el cierre del conjunto).

Ejemplo:

Calcular un recubrimiento no redundante de :

L={ AB
$$\rightarrow$$
 C , C \rightarrow A , BC \rightarrow D , ACD \rightarrow B , D \rightarrow EG , BE \rightarrow C , CG \rightarrow BD , CE \rightarrow AG }

Aplicando el axioma de proyectividad :

$$\begin{array}{l} L_1\text{=}\{\;AB\to \;C\;,\;C\to \;A\;,\;BC\to \;D\;,\;ACD\to \;B\;,\;D\to \;E\;,\;D\to \;G\;,\;BE\to \;C\;,\;CG\to \\ B\;,\;CG\to \;D\;,\;CE\to \;A\;,\;CE\to \;G\;\} \end{array}$$

Cuando hay redundancies obvias , pueden (y deben) ser eliminadas cuanto antes , pues esto contribuirá a simplificar el problema en su conjunto .

Un rápido examen, permite observar que , ya que $C \to A$, $CE \to A$ es redundante y puede eliminarse . Asimismo , $ACD \to B$ puede sustituirse por $CD \to B$.

Nos queda el conjunto L_2 en el que , por comodidad de notación , vamos a identificar cada elemento mediante un número de orden :

$$L_2$$
= { AB \rightarrow C (1), C \rightarrow A (2), BC \rightarrow D (3), CD \rightarrow B (4), D \rightarrow E (5), D \rightarrow G (6), BE \rightarrow C (7), CG \rightarrow B (8), CG \rightarrow D (9), CE \rightarrow G (10)}

Eliminación de atributos superfluos:

Si una dependencia viene implicada por un atributo simple , es obvio que éste no es superfluo .

Analicemos los implicantes compuestos : AB \to C . Si A fuese superfluo , B no podrá serlo , y recíprocamente .

Supongamos que se elimina A . Nos queda $B \to C$. Si es cierta , A es superfluo Calculamos B^+_{L2} y se obtiene B <u>A no es superfluo</u>.

Si eliminamos B ,nos queda $A \rightarrow C$. El cierre A^+_{L2} es A . <u>B no es superfluo.</u> Repitiendo este proceso para todos los implicantes compuestos , puede verse que no hay atributos superfluos <u>(y es un ejercicio muy recomendable para fijar los conceptos)</u>.

Eliminación de dependencias redundantes :

Podemos seguir el orden que queramos , llegando eventualmente a recubrimientos no redundantes distintos , pero equivalentes .

Para ver si (1) es redundante, la elimino y calculo AB⁺_{L2-{1}}:

AB⁺_{L2-{1}}=AB . Como C no pertenece al cierre , (1) no es redundante .

Repetimos el proceso:

 $C^{+}_{L2-\{2\}} = C$, así que (2) no es redundante.

 $BC_{L2-\{3\}}^+=ABC$, así que (3) no es redundante.

 $CD^{+}_{L2-\{4\}}$ =CDAEGB, así que (4) es redundante y se suprime, siendo $L_3=L_2-\{4\}$

D⁺_{L3-{5}}=DG, así que (5) no es redundante.

 $D^{+}_{L3-\{6\}}$ =DE, así que (6) no es redundante.

 $\mathsf{BE}^+_{\mathsf{L3-\{7\}}}\text{=}\mathsf{BE}$, así que (7) no es redundante .

 $CG^{\dagger}_{L3-\{8\}}$ =CGAD , así que (8) no es redundante .

 $CG^{+}_{L3-\{9\}}$ =CGABD , así que (9) es redundante y se suprime , siendo L_4 = L_3 -{9} $CE^{+}_{L4-\{10\}}$ =CEA , así que (10) no es redundante .

Un recubrimiento no redundante de L es , por tanto :

$$AB \rightarrow C$$
; $C \rightarrow A$; $BC \rightarrow D$; $D \rightarrow E$; $D \rightarrow G$; $BE \rightarrow C$; $CG \rightarrow B$; $CE \rightarrow G$

En problemas de diseño y cálculo de claves , trabajaremos siempre con recubrimientos no redundantes .

3.7 Determinación de las claves de un esquema.

Ahora ya podemos formular la base del procedimiento . Sea el esquema R (T , L) con T un conjunto de n atributos .

Para calcular las claves , vamos generando los posibles descriptores a partir de los elementos de T, y vamos calculando los cierres respecto de L . Si X^{+}_{L} =T, X es clave (y ya ignoramos sus superconjuntos) .

Lo malo es que el número de descriptores a explorar (en el caso peor) es 2ⁿ, y es que el problema de calcular <u>todas</u> las claves de un esquema es del tipo NP-completo , por lo que todos los algoritmos existentes para su computación requieren de mucho tiempo para su ejecución .

Afortunadamente , los problemas de diseño sólo requieren del conocimiento de <u>al menos una</u> clave , y , determinar una clave , no suele ser complicado .

En este curso , y por limitación del tiempo disponible para impartir este tema , nos limitaremos a calcular una clave de R (T , L) para luego "rediseñar" el esquema en forma de proyecciones normalizadas .

3.8 Cálculo de una clave del esquema R (T, L).

Lo primero que debe hacerse , es calcular un recubrimiento no redundante de L .Esto "despeja" un poco los datos de partida y facilita el cálculo de la(s) clave(s) , sea cual sea el procedimiento empleado .

Ya hemos dicho que el cálculo de todas las claves no es una necesidad en la práctica del diseño . Sólo tendría un sentido si lo que se pretende es establecer el nivel de normalización de un esquema (enfoque analítico) , para validar un diseño.

Pero , ya que partimos de algoritmos que aseguran la normalización del resultado , no tiene más interés en este curso .

Ahora bien , para diseñar correctamente , necesitamos conocer <u>al menos una clave</u> . Afortunadamente , esto no es muy complicado .

Sea L un conjunto no redundante de dependencias funcionales . Distinguiremos cuatro conjuntos de atributos :

I={ atributos que aparecen sólo como implicantes }

D={ atributos que aparecen sólo como implicados }

ID={ atributos que aparecen como implicantes e implicados }

N={ atributos que no aparecen en ninguna dependencia }

Es fácil razonar lo siguiente :

- Los atributos de I forman parte de todas las claves .
- Los atributos de N forman parte de todas las claves .
- Los atributos de **D** no forman parte de ninguna clave .
- Los atributos de **ID** pueden formar parte o no de alguna clave .

Un procedimiento sencillo para determinar una clave, es por tanto el siguiente :

- Calcular Z=I∪N . Z es el núcleo del proceso (intersección de todas las claves , pudiendo ser en algún caso el conjunto vacío)
- 2. Calcular Z^+ . Si este cierre es T , Z es la clave (única) del esquema. Si no es así , sigue la búsqueda de una clave .
- 3. $\,Z^0 {=} Z$, $Z^i {=} Z^{i {-} 1} \, \cup \, \{\, A_j \, \}$, $\, A_j \, \in \, ID \,$
- 4. Calcular (Zⁱ)⁺ . Si este cierre es T , Zⁱ es , en general una superclave del esquema (es clave o contiene alguna clave)
- La(s) clave(s) contenida(s) en Zⁱ se extrae(n) por eliminación de posibles atributos superfluos (distintos de los del núcleo y del último añadido).

En el ejemplo del apartado anterior para cálculo de un recubrimiento no redundante, es fácil ver :

ID ={ A B C D E G }
$$I=\phi , N=\phi , D=\phi$$

$$Z^{0}=\phi .$$

$$Z^{1}=A , A^{+}=A$$

$$Z^{2}=AB , AB^{+}=T$$
AB es una clave .

(Nota:

Con relación al punto 3,en el que el núcleo se va incrementando con atributos del conjunto \mathbf{ID} , si se diese el caso de que el cierre de Z^i incluyese elementos de \mathbf{ID} , es obvio que será innecesario añadirlos.

Esto es una heurística que puede agilizar el proceso).