试题泛做

安徽师范大学附属中学 凌展

题1

试题编号	Codeforces 35	ces 351D				
试题名称	试题名称 Jeff and Removing Periods					
题目大意		算法讨论				
有n个 整	数 的 序	第一次删除后, 把序列排序, 那么剩下的序列的答案为序列中				
	, 每次依	不同数字的个数,所以最终的整个序列的答案为不同的数字个				
次执行三个操	作:	数或不同的数字个数减一。				
1.选择三个整	逐数 $v,t,k(1 \leq$	由于这道题不强制在线,于是我们可以考虑离线解决这个问题,				
$v,t \leq n;0 \leq$	$k; v + tk \leq$	设 $last_i$ 为 a_i 上次出现的位置。				
n),要求满足 $a_v = a_{v+t} =$		先按询问的右端点升序排序,然后顺序扫过整个序列a,不同的				
$a_{v+2t} = \cdots =$	$= a_{v+t(k-1)} =$	数字个数可以用树状数组处理,每次在第 i 个位置时,把 $last_i+1$				
a_{v+tk}		位置上的数 $+1$,把 $i+1$ 位置上的数 -1 ,这样查询 x 到 i 的不同				
$2.$ 将 a_v, a_{v+t}, \cdots	\cdot, a_{v+tk} 删除	的数的个数就转化为了求询问左端点x 的前缀和问题。而				
3.将剩下的数重	重新排列	剩下的问题就是是否有一个数字可以用第一次的1和2操作删				
定义一个数列	$ \{a_i\}$ 的美好度	完,即判断是否存在一个数字它的全部出现位置是个等差				
为将所有数字	全部删除需要	数列。这个实际上每次只需判断最后三项是否是等差数列,				
的最小步数。	多次询问序列	即 $a_i - a_{last_i} = a_{last_{last_i}} - a_{last_i}$,如果不满足就知道询问左端点				
的连续子序列的美好度。		在 $last_{last_i}$ 到 $last_i - 1$ 之间都不可以一次性删完,于是对右端点				
		相同的询问一次性处理即可。				
时空复杂度	时间 $O(n \log n)$),空间 <i>O</i> (<i>n</i>)。				

题2

试题编号	Codeforces 241B					
试题名称	Friends					
题目大意	算法讨论					
$有n$ 个数 a_i ,求最大的 m 个 a_i		考虑按位统计,把所有的数字加入Trie树,然后由高位到低位枚				
$xor x_j (i \neq j)$	 句和。	举,每次判断是否可以产生 $\geq m$ 对的当前枚举位为 1 的答案,				
		如果没有,就将能保证当前枚举位为1的答案先统计起来,剩下				
的继续处理。						
时空复杂度	时间 $O(n\log^2 n)$	n),空间 $O(n \log n)$ 。				

试题编号	Codeforces 323B
试题名称	Tournament-graph

题目大意

你要构造一个有n个结点的竞赛图,使得对任意两个结点u和 $v(u \neq v)$,从u到v的最短距离不超过2。

竞赛图就是基图为无向完全图的有向图 (每对结点之间有一条有向边相连,且无 自环)。

算法讨论

在题目范围内只有n = 4时无解,其他情况均有解,对于为偶数的n我们可以让每个点i和(i + j) mod $n(j < \frac{n}{2})$ 连一条有向边,对于奇数的情况,先将前n - 1个点当偶数处理,最后一个点n根据i的奇偶性连边。

时空复杂度

时间 $O(n^2)$,空间 $O(n^2)$ 。

题4

试题编号	USACO March Contest 2008						
试题名称	Land Acquisition						
题目大意		算法讨论					
要买n块长方用	δ 的土地,每块土地长为 L_i ,	显然对于土地 i ,若存在 j ,使得 $L_j > L_i, W_j > 1$					
宽为 W_i 。		W_i ,则土地 i 可以和土地 j 一起买,所以若果把土					
如果一次性购	买几块土地,总价钱就是这	地按 L_i 升序排序则需要考虑的土地的 w_i 一定按降					
几块土地的ma	$\operatorname{ax}\{L_i\} * \operatorname{max}\{W_i\}_{\circ}$	序排列。					
Farmer John想通过分次购买,花最少		设 $f(i)$ 表示买前 i 块土地的最小花费,于是 $f(i)$ =					
的钱把所有土地都买下来,问他最少要花		$\min\{f(j) + w_{j+1} * L_i\}$,这个方程可以使用斜率优					
多少钱。		化。					
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$						

题5

试题编号	Codeforces 319D					
试题名称	Have You Ever Heard About the Wor	rd?				
题目大意 算法讨论						
你有一个由拉	丁字符组成的字符串。每一步你要找	这题直接枚举删的串的长度, 然后				
到它的子串中	最短的重复块,如果有多于一个,你	暴力删除,这样会得90分,于是我们				
必须选择最左	边的那个。你要将那个形如XX(X:某	可以优化,在每次暴力之前用分块后				
个字符串)的重	重复块替换成X,换句话说你要删除其	求LCP和LCS的方法,判断一下是否可				
中的一个X。	重复以上步骤直到字符串中不存在重	以删除,不可行直接跳过。				
复块。						
时空复杂度	时间 $O(n^2)$,空间 $O(n)$ 。					

时至复余度 | 时间 $O(n^2)$,至间O(n)

试题编号	Codeforces 277D
试题名称	Google Code Jam

题目大意

GCJ比赛中有一些题,每道题目有两个部分简单和困难,每题简单做出之后才可以做困难。解出每道题目的简单或者困难部分后,会得到一些分数。最后排名以得分从高到底排序,得分相同按罚时从低到高排序。注意: GCJ的罚时指的是最后一次提交正确解的时间。

对于解出简单部分成功概率为1,而解出困难部分的概率< 1,求在时间t之内可以的可以获得的最大期望得分。

算法讨论

设f(i,j)表示前i道题,用iij的时间,所得的最大期望分数,g(i,j)为其罚时,转移如下:

1.f(i,j)转移到f(i+1,j)。(第i道题不做)。

2.f(i,j)转移到 $f(i+1,j+t1_i)$ 。 (第i道 题只做简单部分)。

3.f(i,j)转 移 到 $f(i + 1, j + t1_i + t2_i)$ 。(第i道题做到困难部分)。

时空复杂度 | 时间O(nm), 空间O(m)。

题7

试题编号	Codeforces 314E						
试题名称	Sereja and Squares						
题目大意		算法讨论					
给定n个点, 第	角i个点在(i,0),有些位置是?,	转化成类似括号序列的问题。设 $dp_{i,j}$ 表示前 i					
有些位置已均	真小写字母, 求有多少种方	位小写比大写多j 个的方案数,则若第i位					
法给每个位置	填一个不为"x"或"X"的大写	为?则 $dp_{i,j} = dpi - 1, j - 1 * 25 + dpi - 1, j + 1,$					
或小写字母,	使得它可以完全分成不相	否则 $dp_{i,j} = dp_{i-1,j-1}$ 。注意到可以滚动数组,					
交的点对, 例	交的点对,使得每对点中横坐标小的是 空间无压力,但是时间复杂度大。于是我						
小写字母, 横	黄坐标大的是对应的大写字	以卡常数,容易发现第二种情况有大量的数组					
│母(如"a"和"A	"), 以每对点为对角线作正	平移,于是可用指针维护,而第一种情况也可					

时空复杂度 | 时间 $O(n^2)$, 空间O(n)。

Codeforces 317C

方形,则正方形不相交或接触。

试题编号

题8

以分奇偶省去一半的时间。

1 风险狮 丁	Codeloices 317C							
试题名称	Balance							
题目大意		算法讨论						
给定一个由n个	注水容器组成的系统。某几对容器由	枚举任一对点 (i,j) ,若 i,j 连通且一个						
输水管道相连	接。通过管道,你可以将整数升的水	比目标多 (i) ,一个比目标少 (j) ,则可						
在其连接的容	器间进行传输(管道都是双向的)。两	以将水尽可能从i 运输到j即可,容易证						
容器间可能连	着多于一根管道。管道的数量为e。每	明这样最终若是平衡的则方案可行。						
个容器的容积	为v升。显然,在传输过程中任一容器							
中的水量不能	超过 v 升。							
给定每个容器	导初始状态的水量 a_i 和目标状态的水							
量 b_i ,请求出一	一个输水方案实现这一目标。输水的总							
步骤数不能超	过 $2n^2$ 。							
时空复杂度	时间 $O(n^2)$,空间 $O(n^2)$ 。							

	Codeforces 238D					
试题名称	Tape Programming					
题目大意		算法讨论				
有一个由数字	和"<",">"构成的非空串,有一个指	先将整个过程模拟一便,再将每次到达				
针,最开始指	针的指向最左字符,移动方向为向右。	的位置记录下来,再记一下第一次到达				
如果指针指的	位置是一个数字,输出这个数字,然	时的前方位置的编号,这样就可以算出				
后将指针沿着	原来移动方向移动,同时将原来的数	在 $[l,r]$ 区间的时间区间然后直接算。				
字减一。如果	原来的数字为0则删除这个数字。如					
果指针指的位	置是"<"或">",那么指针的移动方向					
对应的改为向	左或向右,接着指针沿着新的移动方					
向移动。如果	新的位置也是"<"或">",则删除原来					
的"<"或">"与	字符。任何时刻如果指针指向了串外就					
结束。求每个	子串执行这个过程之后输出每个数字					
的数量。						

时空复杂度 时间 $O(n \log n)$, 空间O(10*n)。

题10

试题编号	Codeforces 303D	
试题名称	Rotatable Number	r
题目大意		算法讨论
一个数被称为	可旋转数,当且仅	可以证明这种数乘以 $n+1$ 之后是某个 b 的次幂减 1 ,所以有
	过旋转得到的所有它自己乘以从1到	$b^n - 1 \equiv 0 \pmod{n+1} \tag{1}$
数的长度得到的数,旋转一个数		$b^n \equiv 1 \pmod{n+1} \tag{2}$
就是将它的最	后一位数字放到最	$b^x \not\equiv 1 \pmod{n+1} \qquad (0 \le x < n) \qquad (3)$
大的b(1 < b <	许有前导0。求最 (x),满足在b进制 度为n的正"可旋 (前导零)。	容易发现 $\varphi(n+1)$ 要是 n 的约数,因此 $n+1$ 是质数,所以用找原根算法即可,也就是从 x 开始从大到小枚举,每次检查那个数的 n 的约数次方是否为 1 即可。
时空复杂度	时间 $O(kd(n))$ 其中	1k为满足条件的最大 b 与 r 之差, $d(n)$ 为 n 的约数个数、空

时空复杂度 时间O(kd(n))其中k为满足条件的最大b与x之差,d(n)为n的约数个数,空间O(1)。

试题编号	Codefor	rces 2	235E										
试题名称	Numbe	Number Challenge											
题目大意		算沒	去讨论	<u> </u>									
$\vec{\mathcal{R}} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} dt$	$(i\cdot j\cdot k)$ 。	$(\cdot j \cdot k)$ 。可以通过差分法证明问题的答案即为 $\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} \lfloor \frac{a}{i} \rfloor \lfloor \frac{b}{j} \rfloor \lfloor \frac{c}{k} \rfloor e(gcd(i,j))e(gcd(j,k))e(gcd(i,k))$,其中 $e(x)$ 仅当 $x=1$ 时为1,否则为0因而我们枚举 i,j ,使得 $e(gcd(i,j))=1$,那么 k 需要满足 $e(gcd(i,k))=1$:)仅					

题12

试题编号	Codeforces 301C						
试题名称	Yaroslav and Algorithm						
题目大意		算法讨论					
有一个算法。		用"??"在最后添上					
1.这个算法接受	受一个字符串作为输入。我们设这个输入字符串为a。	一 个"?", 用"?"表					
2.这个算法	由一些命令组成。 i 号命令的形式为" $s[i]$ >>	示+1即可。					
w[i]"或" $s[i]$	> w[i]",其中 $s[i]$ 和 $w[i]$ 是长度不超过7的字符串(可						
以为空),由数	文字或字符"?"组成。						
3.这个算法每次	欠寻找一个编号最小的命令i,使得s[i] 是a的子串。如果						
没有找到这样	的命令,那么整个算法终止。						
4.设找到的命	令编号为k。在字符串a中, s[k]第一次出现的位置会						
被w[k]替换。 <i>t</i>	如果这个命令形如" $s[k] >> w[k]$ ",那么这个算法继续执						
行(译注:回	到第3步)。否则,算法终止。						
5.算法的输出就	就是算法终止时字符串a的值。						
Yaroslav有一人	Yaroslav有一个n个正整数的集合,他需要一个这样的算法,且能够使						
每一个数加1。更正式地,如果我们把每个数看成一个十进制表示的							
字符串,那么对于每个字符串独立地运行这个算法,这个算法需要输							
出一个输入串	对应的数+1的字符串。						
时空复杂度	时间 $O(1)$,空间 $O(1)$ 。						

题13

试题编号	Codeforces 293E	
试题名称	Close Vertices	
题目大意		算法讨论
给定一课n个点的树, 求满足长		经典的树的分治的问题,设现在要求过当前点x的路径条
度 $< L$,权值和 $< W$ 的路径条数。		数,可以求所有子节点两两的方案,减去在同一棵子树
		的方案,每次求方案时,先按W排序,再用树状数组维
		护即可。
时空复杂度	空复杂度 时间 $O(n\log^2 n)$,空间 $O(n)$ 。	

试题编号	Codeforces 306C	
试题名称	White, Black and White Again	
题目大意		算法讨论
总共w件好事,	b件坏事,共有n天,	枚举坏事发生的天数,设为i,则这样的方案共有w!*b!*
每天至少发生	一件事,且发生的事	$C_{b-1}^{i-1}*C_{w-1}^{n-i-1}*(n-i-1)$ 种,求和就可以了。
从前到后分别	为好, 坏, 好, 求方	
案数。		
时空复杂度	时间 $O(n)$, 空间 $O(n)$)。

试题编号	Google Code Jam 20	009 Final A
试题名称	Year of More Code .	Jam
题目大意		算法讨论
''' '''	你知道每一系列的	我们知道 $E(\sum_{i=1}^{n} x_i^2) = \sum_{i=1}^{n} E(x_i^2)$,这里 x_i 第i天的比赛场
	个系列比赛开赛后的	数,这里令 x 表示 x_i ,定义 y_j 表示第 j 个系列赛是否在第 i
	年有N天,每场线上 等概率地分布在每一	天有比赛,则 $x = \sum_{j=1}^{m} y_j$,所以 $E(x^2) = E((\sum_{j=1}^{m} y_j)^2) = E((\sum_{j=1}^{m} y_j)^2)$
	有s场比赛,则那天	$\sum_{j=1}^{m} E(y_j^2) + 2 \sum_{1 \le j < k \le m} E(y_j y_k)$ 。 y_j^2 始终和 y_j 相同,所以期
的得分为 s^2 ,:	求期望得分,用分数	望好求,而 $y_j y_k = 1$ 要求 $y_j \pi y_k$ 都为1,由于每场比赛的
表示。		日期都与开始日期直接相关所以只需算出开始日期的方
		案数比上总方案数即为概率。
时空复杂度	时间 $O(n^2)$,空间 $O(n^2)$	n^2).

题16

试题编号	Codeforcces 321D	
试题名称	Ciel and Flipboard	
题目大意		算法讨论
一个n行n列(n	是一个奇数)的板子,	设每一个格子乘的系数为 $f_{i,j}$,若 $f_{i,j}=0$,则最终 (i,j) 上
每个格子上有一个数字,设 $x =$		的数字乘的系数为1,若 $f_{i,j}=1$,则最终 (i,j) 上的数字
$\frac{n+1}{2}$,可以选择一个x行x列的子矩		乘的系数为 -1 ,容易发现对于每一行 i ,有 $f_{i,j}$ xor $f_{i,x}$
阵,并将其中的所有元素乘-1,可		$\operatorname{xor} f_{i,j+x} = 0$,对于列也有类似的结论,于是我们枚
以使用这个操作任意多次,求最大		举 $f_{i,x}(1 \le i \le x+1)$,然后可以算出 $f_{i,x}(x+1 \le i \le n)$,
化板子上的数字和。		最后对每一列进行贪心讨论即可。
时空复杂度 时间 $O(x^{\frac{n}{2}} * x^2)$, 空门		闰 $O(n^2)$ 。

题17

试题编号	USACO Dec10 Gold	l
试题名称	Threatening Letter	
题目大意		算法讨论
给定两个字符	串a、b,b若用a的子	建立a的SAM,然后b在上面跑即可,每次找不到下一个
串来拼接产生	,求最少用多少段子	点时说明答案应该加1。
串。		
时空复杂度	时间 $O(n)$, 空间 $O(n)$	u) _o

试题编号	Google Code Jam 2009 Final C	
试题名称	Doubly-sorted Grid	

	题目大意	算法讨论
	一个n*n的方格,摆上字母,每	容易发现相同的字母一定是一个连通块,而且从左上
	个格子右边的和下面的字母不比它	到右下来看是分层的,于是我们可以枚举边界的轮廓进
	小,且棋盘中有些字母已经摆放,	行dp,按字母从小到大转移,每次暴力枚举修改边界,
	求方案数。	注意要使用二进制优化。
时空复杂度 时间 $O(26*n^2m)$,空间 $O($		芝间 <i>O(nm)</i> ,这里m 为状态总数(180000 多)。

试题编号	USACO 2007 Open	
试题名称	Connect	
题目大意		算法讨论
一个n*2的网格	各,每次修改其中某	线段树维护两端的点相互之间的连通性,合并两个区间
些边的联通性	,询问连通性,要求	的解时暴力Floyd即可。
在线处理。		
时空复杂度	度 时间 $O(n \log n)$,空间 $O(n)$ 。	

题20

试题编号	Codeforces 261E	
试题名称	Maxim and Calculator	
题目大意		算法讨论
两个计数器	\$t1, t2, 每次能将t2加1, 或	容易发现t1总共只有<3*106种情况,所以
令 $t1=t1*t2$,求最终 $t1$ 在 $[l,r]$ 之间且执行操		暴力求出,最后dp判断是否能在p次操作内完
作次数 $\leq p$ 的 $t1$ 的方案数。		成。
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$ 。	

题21

试题编号	Codeforces 264D	
试题名称	Colorful Stones	
题目大意		算法讨论
有两个字符串	(里面只包含3种字母),又有	我们可以模拟一个字符串a的指针位置(不妨设
两个指针分别:	指向两个字符串, 初始时都在	为i),并且维护另一个指针可以到达的区间,我
字符首,每次这	选定一个颜色,指针指向位置	们容易发现在这个区间中只有形如xy,而在枚
若是该颜色,则指针向后移一位,求最终可		举指针的字符串中形如 yx 的那些是不可行的,
以到达的状态 (i,j) 的二元组个数。		所以应当统计剪掉。
时空复杂度 时间 $O(n)$, 空间 $O(n)$ 。		

试题编号	Codeforces 342D
试题名称	Xenia and Dominoes

题目大意		算法讨论
要在一个3*n的棋盘上放1*2的小方块,		这是一个经典的状态压缩问题,可以和没有要求
有些地方不能放,现在有一个地方要求空		可以移动的问题一样设状态,再开一维记录是否
的并且要求最后有小方块可以按竖直方向		可以移动即可。
移动。		
时空复杂度	时间 $O(k*n)$,空间 $O(k)$,	这里k为插头状态总数16。

试题编号	Codeforces 267C		
试题名称	Berland Traffic	Berland Traffic	
题目大意		算法讨论	
一个有n个点和m条边的图,其中节点1为		注意所有点相对于1点的流量为定值,于是可以	
源点,节点n为汇点,每条边有一个容量限		通过流量守恒解出,还能算出每条边相对整体	
制c,且任意两个点之间无论通过哪条路径		最大流量的比例,根据每条边的容量限制即可	
流量和都不变,求最大流量,和此时每条边		算出最大流量。	
的流量。			
时空复杂度	时间 $O(n^3)$,空间 $O(n^2)$ 。		

题24

试题编号	Codeforces 235D
试题名称	Graph Game
题目大意	算法讨论
在一个单环	先考虑树的情况。这里的期望复杂度可以转化为求二元数组 (i,j) 的概率,这
图中做分治,	里 (i,j) 表示分治时选的点 i ,访问 j 。这里设 i 与 j 之间的距离为 x ,显然若图是
每次随机删	一条链则直接为 $\frac{1}{x}$,表示要选 i 的概率,若不是一条链则可以归纳法证明概率也
去点, 求期	为 $\frac{1}{x}$ 。 分两种情况(共有 n 个点):
望时间复杂	1.选的点在 i 到 j 的路径上,这显然为 $\frac{1}{n}$ 。
度。	2.选的点不在 i 到 j 的路径上,这显然为 $\frac{n-x}{n}*\frac{1}{x}$ 。
	两者相加也为 $\frac{1}{x}$ 现在考虑有环的情况实际上类似,只是 (i,j) 有两条路径的时候
	要分开处理,但图中若同时存在两条路径有重复,所以减去即可。
时空复杂度	时间 $O(n^2)$,空间 $O(n)$ 。

题25

试题编号	GCJ 2009 Final B		
试题名称	Min Perimeter		
题目大意		算法讨论	
给你一个整数坐标的点集,询问点集中最小		分治解决,和最近点对类似,找到最小周长	
的三角形周长是多少。退化的三角形也是允		后,每次递归回来再暴力求解,超过当前答案	
许的(面积为0)。		就跳出。	
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$ 。		

试题编号	Codeforces 261D	
试题名称	Maxim and Increasing Subseq	uence
题目大意		算法讨论
给定一个长度为n的整数列,将它重复写t遍,		首先 $t \geq \min n, \max b$ 是没有意义的,所以 $t \leq$
这里设{bi}的最大值为maxb,求整个序列的		$\sqrt{2*10^7}$ 。然后考虑DP,设 $f(i,j)$ 表示在第 i 次
最长上升子序列。注: $1 \le n$, $maxb \le 10^5$,		重复中结尾为 b_i 的最长上升子序列长度,然后
$n*maxb \le 2*10^7$.		每次向后一次重复的序列转移即可。
时空复杂度 时间 $O(n^3)$,空间 $O(n)$,实际上领		上受 $n*maxb \le 2*10^7$ 控制,常数很小。

试题编号	Codeforces 253E		
试题名称	Printer		
题目大意		算法讨论	
有n个任务,每个任务有开始时间,需要的时间长度和优先级,每个时刻 可以二分它的优			
我们都只执行优先级最高的任务。而这里有个任务的优先级未知,而知道 先级,然后用堆			
它的结束时间,求它可能的一种优先级。			
时空复杂度	时间 $O(n\log^2 n)$,空间 $O(n)$ 。		

题28

试题编号	Codeforces 241D		
试题名称	Numbers		
题目大意		算法讨论	
有n个数的排列,求选出其中若干个数使得它们的		可以证明25个数时有解的可能性已经接	
异或和为 0 ,且按顺序写成的数字 $mod p$ 也为 0 .		近1,所以直接暴力搜索即可。	
时空复杂度	时间 $O(2^25)$,空间 $O(1)$ 。		

试题编号	Codeforces 319E	
试题名称	Ping-Pong	
题目大意		算法讨论
在这个问题中	,每个时刻您都	我们用线段树维护区间,每个结点用数组维护(严格)包含该
有一个区间的	的集合。您每次	结点的区间,每次询问所有线段树中包含 x 或 y 的结点中的所
可以从集合中	中的区间(a, b)移	有区间,并全部与该区间合并,之后 将他们全部清空 ,加入
动到另一个满	j足 $c < a < d$ 或	很简单,直接将 合并后的区间 加入对应区间的数组中去即可,
ac < b < d 的区间 (c,d) 。		这样每个结点清空次数最多与加入次数相同,时间复杂度保
您需要判断是否有一种从区		证在了 $O(n \log n)$ 。
间x到区间y的移动方案。区		对于两个区间 (a,b) 和 (c,d) ,如果它们被合并到了一个区
间(a, b)向(c, d)连一条有向边		间(在同一个区间集合)显然可以互相到达。
当且仅当 $c < a < d$ 或 $c <$		否则如果还要互相到达,当且仅当 (a,b) 被 (c,d) 最后所在区
b < d。支持两种操作(操作		间包含且不等。
数量≤ 10⁵):		
时空复杂度	时间 $O(n \log n)$,	空间 $O(n \log n)$ 。

试题编号	Codeforces 306D	
试题名称	Polygon	
题目大意	题目大意 算法讨论	
求一个每个角都相等,而		我们可以从一个点出发,每次走距离L,然后旋转角度,再将步
每条边都不相等的多边		长 L 增加一个小量,可以知道最终多边形满足条件,而 $n \leq 4$ 时无
形。		解。
时空复杂度	时间 $O(n)$,	空间O(1)。

题31

试题编号	Codeforces 306D		
试题名称	Polygon		
题目大意	题目大意 算法讨论		
有 n 个塔,每个塔有个 s_i ,表示升级的所得(有可能为负),还 显然是一个最大权闭合图问			
有 r_i ,表示在 r_i 范围内全部都得升级,求最终的最大收益。 题,可以直接网络流解决。			
时空复杂度	时间 $O(n)$, 空间 $O(1)$ 。		

题32

试题编号	Codeforces 286E	
试题名称	Ladies' Shop	
题目大意		算法讨论
给定一些包,大小为 a_i ,现在求一些		把 a_i 的母函数列出来,然后平方,若 x^i 对应项系数> 0,
物品 p_i ,使得物品组合出的 $< m$ 的物		且没有大小为i的背包,这时无解,否则有解,可以根
体可以用背包正好装下。		据系数是否>0构造,平方时要用FFT。
时空复杂度	度 时间 $O(n \log n)$,空间 $O(n)$ 。	

题33

试题编号	Codeforces 341E		
试题名称	Candies Game		
题目大意		算法讨论	
有n个箱子,每次可以选两个箱子a,b(a < b),此		显然如果有3个箱子,按大小排序则我们	
时可以让b箱子减少a,而a箱子增加一倍,求将所		一定可以将第2大的箱子减小,于是可以	
有箱子转化为两个箱子的方案。		用类似辗转相除法。	
时空复杂度	时间 $O(n \log n)$, 空间 $O(n \log n)$ 。		

试题编号	USACO DEC08	
试题名称	Fence	
题目大意		算法讨论
给定n个点, 门	问最多选取其	考虑按极角排序后处理问题,枚举 y 最小的出发点。设 $f(i,j)$:
中多少个点可以构成一个凸		现在点为 i ,而待加入点为 j 的最大点数,转移时枚举当前点是
多边形。		否加入凸包。

时空复杂度	时间 $O(n^3)$,空间 $O(n^2)$ 。	
-------	----------------------------	--

试题编号	Codeforces 241E	
试题名称	Flights	
题目大意		算法讨论
有n个点的图,有m条边,每条边权值都为1,现		考虑给能从1到达,且能到n的点标号,
在要将某些边的权值变为 2 ,使得最终从 1 到 n 所		设为d _i ,对于每一条在考虑的图中的
有的路径距离相同。		边 (u,v) 有 $d_v - d_u \le 2$,且 $d_v - d_u \ge 1$ 。
时空复杂度	时间 $O(nm)$, 空间 $O(m)$ 。	

题36

试题编号	USACO March Contest 2009	
试题名称	Cleaning Up	
题目大意		算法讨论
有一个数列,把它分成若干份,使得每		显然连续一段相同的数字只留一个,并且最后答
份不同的数字个数的平方和最小。		
		可以维护一个数组 b_i ,表示到当前点 x 时,向前到
		在 b_i 和 x 之间有 i 个不同的数字。然后暴力转移DP。
时空复杂度	时间 $O(n\sqrt{n})$, 空间 $O(n)$	0

题37

试题编号	GCJ 2011 Final A	
试题名称	Runs	
题目大意		算法讨论
有一个由小写字母a-z组成的字符串。每一		DP,设 $f(i,j)$ 表示用了前 i 字母产生了 j 段不同
个极大连续相同的子序列被称为一个run。求		的字母的方案数,然后枚举在现有的每一段
对于给定的字符串将其重新排列, 有多少种		中间加 k 个,在段与段之间加 p 个,然后用组
不同的排列使得它和原字符串有相同的run。		合数计算。
时空复杂度 时间 $O(26*n^3)$,空间 $O(26*n)$, n 表示段数。		

题38

试题编号	USACO Open 13	
试题名称	Figure Eight	
题目大意		算法讨论
在一个有障碍的网格中求图形没有		枚举,设 $down(i,j,k)$ 表示在第i行向下的方框横边界为
障碍的"8"字形上下框面积的积的		第 i 行,纵向边界为第 j 列到第 k 列的最大矩形面积,然后
最大值。		在从上向下枚举上面矩形的上边界线,再更新答案。
时空复杂度	时间 $O(n^3)$,空间 $O(n^3)$	n^3).

试题编号	Codeforces 273D	
试题名称	Dima and Figure	
题目大意 算法讨论		算法讨论
在一个n*m的棋		DP,显然整个图形左右两边每边可分为2段,先向外凸后缩回,
盘上, 求涂黑一		设 $f(t,a,b,i,j)$ 表示到第i行时左右边界为 $[a,b]$ 时且左边状况为 $i(0:$ 表示a不
个凸图形的方案		减, $1:$ 表示a不增),右边状况为 $j(0:$ 表示b不增, $1:$ 表示b不减),然后转
数。		移注意使用前缀和优化。
时空复杂度	时间	闰 $O(n^3)$,空间 $O(n^2)$ 。

试题编号	Codeforces 273D		
试题名称	Dima and Figure		
题目大意		算法讨论	
给一个街道以及起始和终止位置,求出在k时		这题由于地图特殊,可以直接模拟,直接走即	
间内到达的位置。		可。	
时空复杂度	时间 $O(k)$,空间 $O(n^2)$ 。		

题41

试题编号	Codeforces 311E	
试题名称	Dima and Figure	
题目大意		算法讨论
有一些狗,现在要给他们变性,有一些		最小割问题,若狗的性别为雄则与源点连通否则与
人要求某些狗为某个性别,若可以成功		汇点连通, 然后对于每个人的要求跟据要求的性别
就给钱,否则有的不仅不给钱,而且要		判断是给狗出流量还是进流量,最后跑最大流就可
赔钱。求最大收益。		以了。
时空复杂度 时间 $O(n*m)$, 空间 $O(m)$		n).

题42

试题编号	Codeforces 251D	
试题名称	Two Sets	
题目大意		算法讨论
把一个集合分为两个部分,每个部		设所有元素的异或和为all,则all第i位为0,则有可能出
分的异或和分别为 x_1, x_2 , 求 $x_1 +$		现两个1,否则只会有一个1。所以我们先枚举all为0的
x_2 的最大值。		位然后按位做高斯消元,注意使用bitset。
时空复杂度	时间 $O(60*n)$,空间	O(60*n).

试题编号	USACO open 10
试题名称	Triangle Counting

题目大意	算法讨论
给定一个点集, 求包	考虑算不包含原点的个数,先按原点极角排序,然后扫一遍,对于
含原点的三角形个	每个点算原点到它的向量逆时针扫180°的区域中和当前点构成的
数。	三角形一定不可取,去掉即可。

时空复杂度 时间 $O(n \log n)$, 空间O(n)。

题44

试题编号	Codeforces 332D		
试题名称	Theft of Blueprints		
题目大意		算法讨论	
n个点的图,每条边都有一个权值,现在要选出k个		直接用double求出方案总数以及所有	
点,使得确保任意k个据点都恰好有一个据点,使得		的权值和,预处理出组合数就可以很	
其与k个据点都有通道相连,且使整个行动方案的危		容易的做了,实际上就是分两种情况	
险值最小。		枚举。	
时空复杂度 时间 $O(n^2)$,空间 $O(n)$ 。			

题45

试题编号	试题编号 Codeforces 305D		
试题名称			
题目大意		算法讨论	
<i>n</i> 个点的图, <i>约</i>	后给出若干条边,然后加边,要求加边之后满足:	易知只存在 $i \rightarrow i +$	
1.从点i出发,	可以到达点 $i+1, i+2,, n_{\circ}$	1 和 $i \rightarrow i + k + 1$ 这两	
2.任意从u到vi	的有向边满足不等式: $u < v$ 。	$\rightarrow i+1$ 这	
3.两点之间最多有一条边。		种边必须有,而且对于	
4. 对于一对点 $i, j(i < j)$,若 $j - i \le k$,那么从 i 到 j 的最短距离等		$fi \rightarrow i+k+1$ 这条边	
于 $j-i$ 条边。		时,只可以在 i 到 $i + k$ 之	
5.对于一对点 $i, j(i < j)$,若 $j - i > k$,那么从 i 到 j 的最短距离等		间加这种边, 所以可以	
于 $j-i$ 或 $j-i-k$ 条边。		用2 ^{cnt} 进行计算,最后	
求方案数。		求和。	
时空复杂度 时间 $O(n)$, 空间 $O(n)$ 。			

题46

试题编号	USACO 2005 Dec	USACO 2005 December Gold		
试题名称	Cow Patterns	Cow Patterns		
题目大意		算法讨论		
两个串模式匹	配,把相等的定义	可以和KMP类似处理,只不过先处理出在第i个字符之前		
换成了在匹配	段相同关系和大小	每个字母的个数,然后利用这个对每新加的字母判断在之		
关系一一对应。		前的对应关系。		
时空复杂度	时间 $O(n)$, 空间 O	(n*26).		

试题编号	codeforces 348E	
试题名称	Pilgrims	
题目大意		算法讨论
一棵树有一些点被选中,每个被选中的点中		首先被选中点到被选中点中距离最长的那
的人要访问离其最远的几个选中的点, 求删		段为所有访问的路径的必经路径,然后在上
除一个点最多能破坏几个被选中点的行程,		面DP,求出每个点能计入答案时在树内的范
以及方案数。		围,最后求子树权值和即可。
时空复杂度	时间 $O(n)$, 空间 $O(n)$ 。	

试题编号	codeforces 293B		
试题名称	Distinct Paths		
题目大意	算法讨论		
$- \uparrow_n * m$ 的棋	其盘,涂上k种颜色,要求从左上角到右下	直接爆搜,注意对于同样是第一次	
角所有路径都不经过的相同的颜色两次,求方案数。 使用的颜色只搜一次。			
时空复杂度	时间不清楚,空间 $O(n*m)$ 。		

题49

试题编号	USACO Mar 13		
试题名称	Hill Walk		
题目大意		算法讨论	
一堆直线,每次走到一条直线的尽头,落下,		用扫描线模拟,每次只加入比当前高度低的	
然后继续,求最多走多少段直线。		直线然后,每次求最大值即为掉落的直线。	
时空复杂度 时间 $O(n \log n)$,空间 $O(n)$ 。			

题50

试题编号	codeforces 263E			
试题名称	Rhombus			
题目大意		算法讨论		
一个 $n * m$ 的棋盘上,给定k,求 $f(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i,j} *$		将平面旋转45°后会发现是个简单		
max(0,k- i-x - j-y)的最大值。				
时空复杂度 时间 $O(n*m)$, 空间 $O(n*m)$ 。				

试题编号	codeforces 301E
试题名称	Yaroslav and Arrangements

题目大意	算法讨论
我们称满足以下两条的为好数列:	设 $f(i,j,k,l)$ 表示用了 i 对数字,最
$ 1. a_1a_2 = 1, a_2a_3 = 1,, a_{r-1}a_r = 1, a_ra_1 = 1$	大数字在 b_i 中的相对大小为 j ,前
$2.a_1 = \min_{i=1}^r a_i$	一个数字有 k 个,现在已经有 l 种方
称数列 b_1^{i-1} , $b2$,, br 为优秀的,当它满足:	案时的答案,每次枚举下一个数字
1. 数列中的元素不下降	的个数用组合数统计答案。
2. 满足 $1 \le r \le n, 1 \le b_i \le m$	
3. 通过重排数列中的元素可以得到至少一个至多k个不	
同的良好数列。	
现在有三个整数 n, m, k 。我们需要知道有多少个不同	
的优秀数列。	
时空复杂度 时间 $O(n^5)$,空间 $O(n^4)$ 。	

试题编号	codeforces 309D		
试题名称	Tennis Rackets		
题目大意		算法讨论	
有个三角形每条边有n个点,其中靠近节点的m个点		枚举两条边,再利用三角形的三边关系	
不可用, 求最终能组成钝角三角形的数目。		算出第三条边的数量,注意压常数。	
时空复杂度 时间 $O(n^2)$,空间 $O(1)$ 。			

题53

试题编号	codeforces 249D		
试题名称	Donkey and Stars		
题目大意		算法讨论	
在一个斜坐标系里每个点只能走向视野内的点,求		把坐标轴拉伸后再按x轴排序,最后就	
整个图的最长的序列。		是LIS问题。	
时空复杂度 时间 $O(n \log n)$, 空间 $O(n)$ 。			

试题编号	codeforces 238E
试题名称	Meeting Her

题目大意

在一个有向图中,有一些公交车能随机地通过一条从 s_i 到 t_i 的最短路完成从 s_i 到 t_i 的旅行,现在Urpal在vs,他想知道他在最坏情况下到达vt 所换乘公交的次数。

在任何时刻Urpal只知道他自己的位置和约会地点。当他上了公交车时他只知道这辆公交车属于第几个公司。当然Urpal 知道城市地图和每个公交车的 (s_i,t_i) 。

算法讨论

明确最坏情况的含义后,我们可以先处理出每条公交线路必定经过的点,定义每个节点到vt的最少换乘次数为 ans_i ,临时的最优值为 v_i ,dist(x,y)表示两个点的最短距离,然后从vt开始迭代处理每个点的 ans_i ,每次枚举每一条线路,然后从线路的末端 t_i 向初始端 s_i 更新 v_i ,一开始 v_i = ans_{t_i} ,然后依次算到 t_i 最短距离为1 到 $dist(s_i,t_i)$ — 1的 v_i , v_i = $min\{ans_i, max\{v_{next_i}\}\}$,其中 $next_i$ 表示和相邻且在最短路上的点的集合中的每个点。如果某个 v_i <当前迭代的次数,且i被这条线路必定经过,则将i点的 ans_i 赋为当前迭代的次数。直到没有 ans_i 更新迭代结束。

时空复杂度 时间 $O(n^4)$, 空间 $O(n^3)$ 。

题55

试题编号	USACC	Open 14
试题名称	Code B	reaking
题目大意		算法讨论
给一棵有向树	, 每个	显然每个点编码是否合法只和它以上4层父亲有关,于是我们可
点和它父亲;	之间的	以 DP ,设 $f(i,j)$ 表示以 i 为根且向上4层的状态为 j 时子树的方案。于
边指向父亲,	告诉你	是可以自底向上来做,每次枚举向上第5层的编码即可,但这样的状
一些禁忌,描	述为一	态数有 $10000 * 20000 = 2 * 10^8$ 种,显然不可行。
些点和从其	开始向	容易发现 $f(i,j)$ 的 j 有意义的不多,有很多显然不能构成不合法的序
上的5个字符	,让你	列,于是我们可以考虑像字母树一样压缩,对于每个禁忌它只对
给每个节点。	标一个	上面的4层的状态有影响,所以只需记录这些即可,于是状态数变
从0到9的正整数,问		为 $O(N)$ (这里认为M 和N是同数量级的),由于对于每个点它的每个子
整棵树有多少中不合		树的状态是独立的所以用乘法,又因为模不是质数所以只能用线段树
法的编码。		维护,总时间复杂度为 $O(N\log N)$ 。
时空复杂度	时间0($n\log n$),空间 $O(n)$ 。

试题编号	Codeforces 280E
试题名称	Sequence Transformation

题目大意	算法讨论
有一个非减的序	令 $f(i,x)$ 为处理到 y_i 且 $y_i = x$ 时的最小代价。
列 $x_1, x_2,, x_n$ 。	$f(1,x) = (x - x_1)^2 [1 \le x \le Q]$
你还有两个整	$f(i,x) = \min\{f(i-1,x') x-B \le x' \le x-A\}[1+(i-1)*A \le x \le x' \le x' \le x' \le x' \le x' \le x' \le x'$
数a和b。 你 要 把 序	Q, i > 1
	我们可以暴力记录 i 和 x ,但 x 为实数所以不可行。
成 $y_1, y_2,, y_n$ (1 \leq	首先我们容易用归纳法证明 $f(i,x)$ 是个凸函数,其导函数具有单调
$y_i \le q, a \le y_{i+1} - y_i \le$	性。
b), 变换的代价	我们将 $f(i,x)$ 和 $f(i-1,x)$ 的图像画出来比较会发现 $f(i,x)$ 相对 $f(i-1,x)$
为 $\sum_{i=1}^{n}(x_i-y_i)^2$ 。你的	1,x)只是在最低点处多了一段水平直线和相对平移。
i=1 任务是选择选择一个	于是我们可以暴力维护新加的直线和平移的距离。
序列y使得变换代价	由于这里的导函数具有单调性,我们不妨用平衡树维护它的导函数,
最小。	每次找到导函数为0的那个点就是最优值。

时空复杂度 时间 $O(n \log n)$, 空间O(n)。

题57

试题编号	codeforces 264E		
试题名称	Roadside Trees		
题目大意	算法讨论		
在一个序列中有加入和删除元素的		转化为倒过来求最长下降子序列,然后用两棵线段树维	
操作,动态维护最长上升子序列。		护位置不在前10以高度为关键字的信息以及高度大于10	
		以下标为关键字的信息,然后用线段树维护。	
时空复杂度	时间 $O(n \log n)$, 空间	$\exists O(n)$ 。	

题58

试题编号	codeforces 325D		
试题名称	Reclamation	Reclamation	
题目大意	题目大意		
一个圆柱体,	一个圆柱体,在其表面删去一些方块,若 显然如果土地围成了八联通环就不行,把		
删完后上下底面连通则删除合法,求合法		网格图复制成两块,然后判断是否存在一	
的操作数。		条(r,c)到(r,c+m)的只经过土地的路径即可	
时空复杂度 时间 $O(n \log n)$,空间 $O(n)$ 。			

题59

试题编号	Codeforces 274C		
试题名称	The Last Hole!		
题目大意		算法讨论	
一些点, 开始以相同速度向外扩散, 求最终整		最后出现的洞一定是锐角三角形的外心或者	
个图形没有洞时的时间。		矩形的中心,然后暴力枚举。	
时空复杂度 时间 $O(n^5)$,空间 $O(n^2)$ 。			

试题编号	USACO 2008 Open Gold	
试题名称	Cow Neig	hborhoods
题目大意		算法讨论
两个点的Mar	nhattan距	如果原来坐标是 (x,y) ,令新的坐标为 (X,Y) ,其中 $X=x+y,Y=$
$B \leq c$ 为同一集合,求最		$x-y$ 那么: 曼哈顿距离= $ x1-x2 + y1-y2 =\max(X1-y)$
终的集合总数和集合的		X2 , Y1-Y2) 于是我们先进行坐标变换,按 X 排序,然后暴力扫
最大值。		一遍,用set维护一下即可。
时空复杂度	度 时间 $O(n \log n)$,空间 $O(n)$ 。	

试题编号	Codeforces 260E		
试题名称	Dividing Kingdom		
题目大意		算法讨论	
给一些点,求这些点被2条横线和竖线分割成		暴力枚举每块对应的点数,然后用主席树料	
给定的9块是否有可能。		断即可。	
时空复杂度 时间 $O(n \log n)$, 空间 $O(n)$ 。			

题62

试题编号	Codeforces 249C		
试题名称	试题名称 Piglet's Birthday		
题目大意		算法讨论	
有n个架子, 每	再个架子上都有一些(或没有)蜜罐。初始时所有蜜	设 $f(i,j)$ 为 第 i 个 架 子	
罐都是装满蜜	的。Winnie一共去了q次架子;第i次Winnie 会先	有j个罐子没空的概率,	
去第ui个架子,拿走ki个蜜罐,把这些蜜罐中的蜜吃掉,然后把这		然后每次动态修改暴	
些蜜罐都放到第vi个架子上。当Winnie拿走蜜罐时,他会在第ui个		力跟新f, 求的答案	
架子上所有ki个蜜罐的集合中等概率选择一个集合,然后把集合中		$b \sum_{i=0}^{n} f_{i,0}$ 。	
的 ki 个蜜罐拿走。 $Winnie$ 想知道,每次操作后,架子上所有蜜罐都		i=1	
被吃完的架子的期望个数是多少。			
时空复杂度 时间 $O(n)$, 空间 $O(n)$ 。			

题63

试题编号	Codeforces 243C		
试题名称	Colorado Potato Beetle		
题目大意			
给出一个非常大的农田,农夫从中心出发,走过的地方,都会撒农		离散化后BFS。	
药。害虫可以按4邻接扩散,问有多少块农田没有被破坏。			
时空复杂度 时间 $O(n^2)$,空间 $O(n^2)$ 。			

试题编号	Codeforces 266D
试题名称	BerDonalds

题目大意		算法讨论
求图的直径。		Floyd之后,暴力枚举每条边,然后跟新直径。
时空复杂度	时间 $O(n^3)$,空间 $O(n^2)$ 。	

试题编号	Usaco Nov08 Gold
试题名称	Toys
题目大意	算法讨论
洗餐巾加强	这里很显然不能费用流,显然贪心,我们先三分用的餐巾数,然后再按价格贪
版。	心,用队列维护即可。
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$ 。

题66

试题编号	Codeforces 266E	
试题名称	More Queries to Array	
题目大意	算法讨论	
有 一 个 长 度 为 n 的 序 列 A_i , 有 两 种 操 作 1 . 显然用线段树维护,每次把询问用		显然用线段树维护,每次把询问用二
$ 将 A_l,, A_r 赋值为x; 2. 询问 \sum_{i=1}^r A_i (i-l+1)^k$ 的值。		项式定理拆分,最后合并。
i=l		
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$ 。	

题67

试题编号	Codeforces 280D	
试题名称	k-Maximum Subsequence Sum	
题目大意	算法讨论	
一个长为 n 的序列,每次修改一个值,或询 显然用线段树维护,每次贪心选最大的子段,		显然用线段树维护,每次贪心选最大的子段,然
问某个区间的:	问某个区间的最大k段子段和。 后将选中段取为相反数,搞出答案后恢复原状	
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$ 。	

题68

试题编号	Codeforces 338D	
试题名称	GCD Table	
题目大意	算法讨论	
有一个 N 行 M 列的表格 G ,满足 $G_{i,j} = gcd(i,j)$,		显然只可能在第 $lcm(A_1, A_2,, A_k)$ 行第一
给定一个正整数序列 $A_1, A_2,, A_k$,问这个序列		次出现,所以直接用中国剩余定理在这一
是否在G的某一行连续地出现。		行判断即可。
时空复杂度	时间 $O(K \log n)$, 空间 $O(K)$ 。	

试题编号	Google Code Jam 2014 Final D
试题名称	Paradox Sort

题目大意	算法讨论
有n个元素,有优先顺序,给	显然每次枚举每一位判定之后是否可行即可,设当a优于b时,
一个序列 a_i ,扫描,每次去最	有一条 a 指向 b 的边,判定的条件为通过剩下的点可以访问到
优的,求使第i个元素为最后结	目标节点,保证所有点都能被访问到,于是可以用Floyd跑一
果的字典序最小的方案。	下,可以用bitset优化。
时空复杂度 时间 $O(n^4T)$,空	的 $O(n^2)$ 。

题70

试题编号	CODEFORCES 331C	
试题名称	The Great Julya Calendar	
题目大意	算法讨论	
对一个非负整数 N ,每次减去一个在 N 的数		设 $f(i,j)$ 表示前面的最大值为 i ,现在的剩下
位中出现过的	0-9的数字。问最少要多次	的数字为j的最小答案和最终剩下的尾数,然
就能减到0。 后DFS以下即可。		后 DFS 以下即可。
时空复杂度	空复杂度 时间 $O(10^3 \log n)$,空间 $O(10^2 \log n)$ 。	

题71

试题编号	CODEFORCES 268D	
试题名称	Wall Bars	
题目大意		算法讨论
$E1 - N$ 的每 $^{\prime}$	个高度修建一横杆,横杆可以向四个方向建	设 $f(i,j,k,l,x)$ 表示前面i个杆,
造。从地面可以到高度为1,2,h的横杆。如果两根方向相 其 他 三 个 方 向 高 /		其他三个方向高度分别
同,并且高度差不超过h,就可以从低的横杆爬到高上。求		为 (j,k,l) ,与地面的连通情况
可以爬到高度为 $N-h+1,N-h+2,,N$ 的某一根横杆上 为 x 的方案数,然后转移即下		为x的方案数,然后转移即可,
的方案数。		注意常数优化。
时空复杂度	时间 $O(nh^3)$,空间 $O(nh^3)$ 。	

题72

试题编号	CODEFORCES 286D	
试题名称	Tourists	
题目大意	算法讨论	
有一些墙,两	,两个游客路线平行,求从某个时刻开 把所有线段剖分成不想交的若干段,然后	
始旅行后,两	该行后,两个人有多让时间无法互相看到。 用堆维护即可。	
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$ 。	

试题编号	CODEFORCES 360D
试题名称	Levko and Sets

题目大意	算法讨论
两个集合 A , B , 对于每个 A_i 生成一个集合集合内一开始只有1,设集合内有 c ,每次加入 $c*A_i^{B_j} \mod p$,直到不能加入集合为止求所有 A_i 生成集合的交的大小。	p , 所以设 $r = gcd(B_1,, B_n, p-1)$, 那么集
时空复杂度 时间 $O(n^2)$,空间 $O(n)$ 。	

试题编号	CODEFORCES 316G	
试题名称	Good Substrings	
题目大意	算法讨论	
一个字符串的	〉字符串的子串且要求在另外几个串中出现次数 SAM裸题,注意用map压缩空间。	
在一个区间内	一个区间内的个数。	
时空复杂度	时间 $O(n)$, 空间 $O(n)$ 。	

题75

试题编号	CODEFORCES 325C	
试题名称	Monsters and Diamonds	
题目大意	算法讨论	
给一些元素的	给一些元素的分裂方式(一些其他的元素和钻石), 先用堆倒推出下限,再记忆化搜索求上	
求最后每个元	求最后每个元素最少和最多变成的钻石数。 上限。	
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$ 。	

题76

试题编号	USACO 2012 Dec gold 2	
试题名称	First!	
题目大意	题目大意 算法讨论	
一堆字符串,求哪些字符串可以通过改变字符的大 直接Trie树上暴力,用拓扑排序判环。		
小关系能变为字典序第一。		
时空复杂度	时间 $O(26^2n)$,空间 $O(26n)$ 。	

题77

试题编号	codeforces 323C		
试题名称	Two permutations		
题目大意	题目大意 算法讨论		
有两个各包含 n 个元素的排列 p 和 q ,和 m 个由 $l1, r1, l2, r2$ 组成的询问。每 直接上主席树。			
次询问在 p 中位置在 $[l1,r1]$,在 q 中位置在 $[l2,r2]$ 中的数的数量。			
时空复杂度	时间 $O(n \log n)$, 空间 $O(n \log n)$ 。		

试题编号	codeforces 254D	
试题名称	Rats	
题目大意	题目大意 算法讨论	
有两个炸药,	可以炸毁距离它k步以内的所有 指定点> 300是不可行的, 然后暴力第一个	
点,求两个炸药放的位置使得能够炸毁所有指		店可以被炸的点和第二个点直接判断即可。
定点。		
时空复杂度	时间 $O(n^3)$,空间 $O(n^2)$ 。	

试题编号	codeforces 243D	
试题名称	Cubes	
题目大意	题目大意 算法讨论	
一堆积木, 在 $(kx, ky, 0), k \to \infty$ 这个点朝原点		把方块覆盖的范围按所给向量正交表示后,
看,求能看到多少个方块。 排序+线段树即		排序+线段树即可。
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$ 。	

题80

试题编号	codeforces 283E	
试题名称	Cubes	
题目大意	题目大意 算法讨论	
有一个队列前面的能打赢后面的,有一些操作,		我们可以求每个点被多少个点打败,然后减
反转一些区间的比赛,求最终有多少对a胜b,		掉不合法的,然后把区间排序,用线段树维
b胜c, c胜a。		护反转和查询即可,
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$ 。	

题81

试题编号	codeforces 339E	
试题名称	Cubes	
题目大意		算法讨论
一个1到n的排列排成一排,告诉你它是由		直接暴力枚举每个操作,但每个操作要使至少一
升序排列操作<3次产生的,求方案。		对数字相邻而位置不相邻的数变回相邻即可。
时空复杂度	时间 $O(kn^2)$, 空间 $O(n)$ 。	

题82

试题编号	codeforces 329D	
试题名称	The Evil Temple and the Moving Rocks	
题目大意	意 算法讨论	
放石头使碰撞次数达标。 直接构造。		
时空复杂度	时间 $O(n^2)$,空间 $O(n^2)$ 。	

试题编号	codeforces 317E	
试题名称	Princess and Her Shadow	
题目大意	题目大意 算法讨论	
有两个同步移动的物体,遇到障碍物不移动,求把两个物体		直接构造,利用四角的点。
搞到一起的方案。		
时空复杂度	时间 $O(n^2)$,空间 $O(n^2)$ 。	

试题编号	usaco 2009 open gold	
试题名称	Tower of Hay	
题目大意	题目大意 算法讨论	
堆干草,底下的要比上面的大,求最多能堆		贪心,每次用队列维护这次要取的区间,保持
多高。		当前区间和上一个的差值最小。
时空复杂度	时间 $O(n)$, 空间 $O(n)$ 。	

题85

试题编号	Codeforces 269D	
试题名称	Maximum Waterfall	
题目大意	题目大意 算法讨论	
给一些挡版,每下降一次水量变为两块挡板的公共		按高度排序后用set维护,再dp。
长度, 求最大水量。		
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$ 。	

题86

试题编号	Codeforces 294D	
试题名称	Shaass and Painter Robot	
题目大意	题目大意	
一个棋盘,规定一个点和方向,朝这个方向弹		最后如果能停下,那最后一个格子一定在拐
球, 求经过多少个格子, 棋盘会被涂成黑白相		角,所以跑 $2*(m+n-2)$ 次,用 map 维护已
间。		经访问过的地方。
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$ 。	

题87

试题编号	Codeforces 240F	
试题名称	Torcoder	
题目大意		算法讨论
每次选一段把它变成字典序最小的回文串,		用线段树维护区间覆盖,把每个点变成26个
求最终的字符串。		点, 然后暴力即可。
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$ 。	

试题编号	Codeforces 332E	
试题名称	Binary Key	
题目大意		算法讨论
根据所给代码生成目标串。		枚举每一个循环节有多少个1即可。
时空复杂度	杂度 时间 $O(n*m)$,空间 $O(n*m)$ 。	

试题编号	Codeforces 293D		
试题名称	Ksusha and Square		
题目大意	题目大意 算法讨论		
在一个多边形内选两个点作为正方形的对角线生成正方形,		枚举所有横坐标, 然后直接计算	
求所有生成的正方形的面积的期望值。		即可。	
时空复杂度	时间 $O(n + 2000000)$, 空间 $O(n + 2000000)$ 。		

题90

试题编号	USACO 2013 Open		
试题名称	Photo		
题目大意		算法讨论	
给你一个n长度的数轴和m个区间,每个区间里有且		直接求出每个点的可转移的范围后用单	
仅有一个点,问最多能有多少个点。		调队列维护即可。	
时空复杂度 时间 $O(n \log n)$, 空间 $O(n)$ 。			

题91

试题编号	Codeforces 235C		
试题名称	Cyclical Quest		
题目大意		算法讨论	
给定一个字符串,和若干个询问,求每个询问		直接用SAM,把询问串增长一倍,然后在	
串在原字符串中循环出现的次数。		已经访问过的地方打标记即可。	
时空复杂度 时间 $O(n)$, 空间 $O(n)$ 。			

题91

试题编号	Codeforces 249E	
试题名称	Endless Matrix	
题目大意		算法讨论
给一张数表求子矩形的和。		直接找规律推公式。
时空复杂度	时间 $O(n)$, 空间 $O(n)$ 。	

试题编号	usaco Dec 2007 gold		
试题名称	Best Cow Line		
每次删去字符串两端的字符并把它们依次写下来,求字典序最小 用后缀数组判断删哪头			
的字符串。 可。			

试题编号	Codeforces 295D	
试题名称	Greg and Caves	
一个n*m的棋盘, 求上面		设 $f(i,j)$ 为第 i 层,有宽度为 j 的洞的上半部分, $f(i,j) = 1 +$
洞的个数。		$\sum_{k=2}^{j} (j-k+1)f(i-1,k)$, 然后用前缀和优化即可, 最终答
时空复杂度	时间 $O(n*m)$,空间 $O(n*m)$ 。	

题94

试题编号	USACO Mar 12		
试题名称	Cows in a Skyscrape		
一些包和物品,求最少用多少包可以装完所有物品。 由于物品很少,暴力即可。		由于物品很少,暴力即可。	
时空复杂度	时间 $O(?)$,空间 $O(n)$ 。		

题95

试题编号	Codeforces 285E	
试题名称	Positions in Permutations	
求排列的个数	求排列的个数,满足条 DP ,设状态为 $f(i,j,k,l)$ 表示排列的前 i 个数有 j 个地方满足条件。	
件a: $ P_i - i = 1$ 的个数		i和 $i+1$ 的使用状况为 i,j ,然后暴力转移即可。
为m。		
时空复杂度	时空复杂度 时间 $O(n^2)$,空间 $O(n^2)$ 。	

题96

试题编号	Codeforces 257E		
试题名称	Greedy Elevator		
模拟电梯的运行,求每个人到达目的地的时		直接把人按时间排序后用树状数组维护即可。	
间。			
时空复杂度 时间 $O(n \log n)$, 空间 $O(n)$ 。			

题97

试题编号	Codeforces 258D		
试题名称	Greedy Elevator		
对一个序列a有一些操作,每个操		设 $f(i,j)$ 为 a_i 和 a_j 形成逆序对的概率,每次操作实际上可	
作有一半的概率被执行, 求逆序对		以在 $O(n)$ 时间内改变对应的 f 的值。	
的期望个数。			
时空复杂度 时间 $O(nm+n^2)$,空间 $O(n^2)$ 。			

试题编号	Codeforces 288E	
试题名称	Polo the Penguin and Lucky Numbers	
求[L,R]中只有4,7组成的数排成一列后相邻两个数的乘		复杂的数位DP,每位递推时找找
积的和。		规律即可。
时空复杂度	时间 $O(n)$, 空间 $O(n)$ 。	

试题编号	Codeforces 333C		
试题名称	Lucky Tickets		
在一个八位数中间加入加减乘,使运算结果算出指定的 直接把八位数分两边爆搜,然后拼			
数,求一些方案。		接。	
时空复杂度	时间 $O(10^4*?)$,空间 $O(10^4)$ 。		

试题编号	Codeforces 309B	
试题名称	Context Advertising	
取字符串的一段,每个单词写在一行且相邻的两个单词 直接上倍增即		直接上倍增即可,处理询问就枚举
用空格隔开,每行最多长为定值c,求单词最多的方案		开始点,再 $O(\log n)$ 跑一遍。
数。		
时空复杂度	时间 $O(n \log n)$, 空间 $O(n)$ 。	