ImageProcessing HDR

實作項目

- HDR
- Tone Mapping
 - o Global Tone Mapping
 - ACES
 - Reinhard
 - CE
 - Uncharted2
 - Local Tone Mapping
 - Photographic
- <u>MTB</u>

輸入圖片

快門	16	8	4	2
照片				
快門	1	1/2	1/4	1/8
照片		A William	SH Market	李道11
快門	1/16	1/32	1/64	
照片	÷₩			

成果展示

我們的 HDR 與使用 Photoshop 轉成 JPG

Local ACES

Local Reinhard Enhance

隨機位移原結果

隨機位移 MTB 復原

HDR

• 實作論文 <u>Recovering High Dynamic Range Radiance Maps from Photographs. In SIGGRAPH 97, August 1997. (http://www.pauldebevec.com/Research/HDR/)</u>

概念

• 此為相機獲得 Z 的流程

而我們的目標就是從 Z 還原到 E,再將多張不同曝光時間的圖結合,獲得 HDR 的圖片

• 每一家相機所使用的 Response Function 都不一樣,而我們的目標就是要還原這個 Response Function 的反函數,即可將 Z 還原到 E

HDR 演算法設計

- 首先先定義 Response Function 為 *f*
 - \circ 其中 $Z_{ij} = f(E_i \triangle t_j)$
 - o 經過 f 後,轉換為 $0\sim255$
- ullet 我們的目標就是求出: f^{-1} ,其中 $f^{-1}(Z_{ij})=E_i riangle t_j$

$$\circ \ \ln(f^{-1}(Z_{ij})) = \ln E_i + \ln \triangle t_j$$

- 。 定義 $g(x) = \ln(f^{-1}(Z_{ij}))$
- $\circ \ \ g(Z_{ij}) = \ln E_i + \ln riangle t_j$
- 設定 constraint 避免無限多組解

$$\circ \ g(Z_{mid}) = 0$$

$$ullet \ O = \sum_{i=1}^N \sum_{j=1}^P [g(Z_{ij} - \ln E_i - \ln riangle t_j)]^2 + \lambda \sum_{Z_{\min}+1}^{Z_{\max}-1} g''(z)^2$$

- o 其中 N 表示像素數,P 代表圖片數
- o 加入後項希望讓結果平滑, λ 為可設的參數
- \circ g 只會有 256 個輸入、E 有 N 個,所以可以直接用對照表儲存
- 。 目標:求得 $\min O(g, E_i)$
- 加入 Weighting Funciton · 加強中間的值

$$w(z) = -(z-128) * (z-128) \div 65 + 256$$

• 將
$$O$$
拆解成 $\begin{bmatrix} a_{11} & a_{12} \ \mathrm{constraint} & 0 \ a_{12} & 0 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \ b_2 \end{bmatrix}$ 的形式

- 。 並使用 $x=(A^TA)^{-1}A^TB$ 求出 x
- $\circ x_1$
 - 256 × 1 大小的矩陣
 - 描述 Row 所代表的 Z 值對應的 g(Z)
- o *a*₁₁
 - *NP* × 256 大小的矩陣
 - Row 代表某一張圖片的某一個像素
 - 在每一個 Row 的對應的 Z 值所對應的 Column 填上 w(Z) ,其餘為 0
- \circ a_{12}
 - $NP \times N$ 大小的矩陣
 - Row 代表某一張圖片的某一個像素
 - 在每一個 Row 的對應的第i 個 Column 填上 -w(Z) ,其餘為 0
- \circ a_{21}
 - 254 × 256 大小的矩陣
 - 描述 g''(z) = g(z-1) 2g(z) + g(z+1)
- \circ b_1
 - 為 NP × 1 大小的矩陣
 - 描述 $w(Z_{ij}) \ln \Delta t_i$
- 取樣點
 - 。 需要取 $N(P-1) > (Z_{\max} Z_{\min})$ · 而我們預設取 900 個點
 - o 均匀的分布點,讓圖片不同亮度都可以被取樣到
- ▼出每一張圖的每一個像素的 E 值後,將多張圖合併到一張
 - o 使用權重以保留品質較高的顏色

$$\circ \ \ln E_i = rac{\displaystyle\sum_{j=1}^P w(Z_{ij})(g(Z_{ij}) - \ln riangle t_j)}{\displaystyle\sum_{j=1}^P w(Z_{ij})}$$

• 以上為 R, G, B channel 分開操作

Tone Mapping

Global Tone Mapping

- 計算照片的平均亮度
 - o 將所有的像素的 E 值加總並平均,以下稱作 lumAvg

- 使用多種方式來將 E mapping 至 0~1 之間
 - ACES(default)
 - 將 color 乘上 lumAvg 後,作為 color'

- 其中參數設為 A = 2.51, B = 0.03, C = 2.43, D = 0.59, E = 0.14
- Reinhard
 - 自定義灰值 gray ,我們將它設為 1
 - 將 color 乘上 gray 並除上 lumAvg 後,作為 color'

- o CE
 - $1 \exp(-\text{lumAvg} \times \text{color})$
- Uncharted2
 - 自定義白值 white, 我們將它設為 11.2

■ 定義一個 function 為
$$f(x) = rac{x(Ax+CB)+DE}{x(Ax+B)+DF} - rac{E}{F}$$

• $f(1.6 \times \text{lumAvg} \times \text{color}) \div f(\text{white})$

Local Tone Mapping

- 實作 Photographic Tone Reproduction for Digital Images
- 計算出 OriginLum 為 $\frac{a}{\text{average of } \ln(Z)} imes \ln(Z)$
 - o a 可以由使用者自訂,代表 LDR 的亮度
- 計算出分別計算出 level 為 $1\sim9$ 跟 $2\sim10$ 的 Gaussian Filter Kernel,分別稱 R1,R2

$$\circ \ \ G(x,y)=rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$

- $\circ \ \ \sigma = ext{alpha} imes ext{ratio}^{ ext{level}-1}$
- o alpha 跟 ratio 可以由使用者自訂,分別代表 Gaussian Filter 的初始值與 level 間的比例
- 將 R1, R2 對 OriginLum 做捲積 · 獲得 V1, V2
- 計算 V 為 $V=(V1-V2)\div(c+V1))$ c 為 $2^{\mathrm{phi}} imesrac{\mathrm{a}}{\sigma^2}$ · 避免分母接近 0
 - o phi 可以由使用者自訂,代表圖片的銳利度
- 尋找每個像素的 \min level 符合 V < epsilon 作為 level'
 - o epsilon 可以由使用者自訂,代表 level 間的最大差距
- OriginLum ÷ (1 + level') 值 · 作為他的 Local 亮度 LocalLum
- LocalLum $\div \ln(Z)$ 值,作為他的 Local 平均亮度 lumAvg

● 後續與 Global 相同,使用 ACES、Reinhard、CE、Uncharted2,將值 mapping 回 0 extstyle 255

MTB

- 將圖片縮 $\log_2(\min(\text{width}, \text{height})) 4$ 次
- 計算對應的 gradient

。 即
$$2Z_{ij}-Z_{i-1j}-Z_{ij-1}$$

• 將前後兩張的 gradient 做九宮格的比對,看哪一個平方差最小,即套用此位移