Review Final Math 142

Name Section Id

Use exactly one page for each of the numbered questions (use the back of the page if necessary).

Put your name and the question number on each page.

Put a box around the final answer to a question.

You must *show* your work in order to get possible credits.

1. Find the limit of the sequence

a)
$$\lim_{n\to\infty} \frac{\cos n}{\ln n}$$

Hint: Since

$$|a_n| \le \frac{1}{\ln n} \to 0$$

as $n \to \infty$, we find $\lim_{n \to \infty} |a_n| = 0$ which means $\lim_{n \to \infty} a_n = 0$. b) $\lim_{n \to \infty} \frac{n^5 - 4n^3 + 7}{5n^4 + n^2 + 100}$

b)
$$\lim_{n\to\infty} \frac{n^5 - 4n^3 + 7}{5n^4 + n^2 + 100}$$

Hint:

$$a_n = \frac{(n^5 - 4n^3 + 7)/n^4}{(5n^4 + n^2 + 100)/n^4} = \frac{n - \frac{4}{n} + \frac{7}{n^4}}{5 + \frac{1}{n^2} + \frac{100}{n^4}}$$

Since the top goes to ∞ and the bottom goes to 5, we must have

c)
$$\lim_{n\to\infty} (1-\frac{2}{3n})^n$$

Hint:

$$a_n = e^{n \ln(1 - \frac{2}{3n})}$$

Use L'hopital rule to show $n \ln(1 - \frac{2}{3n}) \to -2/3$ hence $a_n \to e^{-2/3}$. d) $\lim_{n \to -\infty} \frac{e^n - 1}{e^n + 1}$

d)
$$\lim_{n\to-\infty} \frac{e^n-1}{e^n+1}$$

2. Determine whether the limit of the following function/sequence exists, if so, find the limit:

a)
$$\lim_{x\to 0+} \frac{\sin^{-1}\sqrt{x}}{\sqrt{x}}$$

Hint: Sub $y = \sqrt{x}$ then

$$\lim \frac{\sin^{-1} \sqrt{x}}{\sqrt{x}} = \lim_{y \to 0} \frac{\sin^{-1} y}{y} = 1$$

by L'hopital rule.

b) $\lim_{x\to+\infty} (x \ln x)^2 e^{-x}$

Hint: Write

$$(x \ln x)^2 e^{-x} = \frac{(x \ln x)^2}{e^x}$$

then apply L'hopital a couple of times

- c) $\lim_{x\to\infty} x \tan(\pi/x)$
- d) $\lim_{n\to\infty} \frac{n!}{n^n}$

Hint: Instead of finding the limit of the sequence $a_n = \frac{n!}{n^n}$ directly, we consider the series $\sum_{n} a_{n}$. If we can show the series converges, then by the basic property of a convengent series we know that a_n must converge to zero.

To show the convergence of $\sum_n a_n$ we use ratio test (or root test if you prefer) to find that $\lim a_{n+1}/a_n = 0 < 1$, which means convergence of $\sum_{e} a_n$. e) $\lim_{n\to\infty} 2^{-n}$

- $\lim_{n\to\infty} (-2)^n$ f)

Fill in the blanks or parenthesis in Problems 3 to 8.

3. Let
$$a > 0$$
 be a constant. (a) $\int \frac{dx}{a^2 + x^2} =$ _____ + C

(b)
$$\int \frac{dx}{a^2 - x^2} = \underline{\qquad} + C$$

$$c) \int \frac{dx}{\sqrt{a^2 + x^2}} = \underline{\qquad} + C$$

$$d) \int \frac{dx}{\sqrt{a^2 - x^2}} = \underline{\qquad} + C$$

4 (a) If a > 0 but $a \neq 1$, then $D_x(a^x) =$ _______ Hint: $a^x = e^{\ln(a^x)} = e^{x \ln(a)}$.

Hint: $x^x = e^{x \ln x}$, then (b) $D_x(x^x) =$ apply chain rule.

5. Trig substitution: (recall that the <i>integrand</i> is the function you are integrating)
a) if the integrand involves $a^2 - u^2$, then one makes the substitution
$u = \underline{\hspace{1cm}}$ b) if the integrand involves $a^2 + u^2$, then one makes the substitution $u = \underline{\hspace{1cm}}$
6. Partial Fraction Decomposition. If one wants to integrate $\frac{f(x)}{g(x)}$ where f and g are polyonomials and [degree of f] \geq [degree of g], then one must first do
7 (a) A series $\sum a_n$ is said to converge absolutely if $\sum a_n $ Give an example of an absolutely convergent series: (b) A series $\sum a_n$ is said to converge conditionally if $\sum a_n$ is but $\sum a_n $ Give an example of a conditionally convergent series:
8 (a) Consider the interval $I=(a-R,a+R)$ center about $x=a$ and of radius R . Let $y=f(x)$ be a function that can be differentiated N times $x=a$. Then the N^{th} -order Taylor polynomial $y=P_N(x)$ of f about a is (your answer should have a summation sign \sum in it)
$P_N(x) =$
(b) Consider the interval $I = (a - R, a + R)$ center about $x = a$ and of radius R . Let $y = f(x)$ be a function that can be differentiated $N + 1$ times for each $x \in I$.
Consider the the N^{th} -order Taylor Reminder term $R_N(x)$, where $f(x) =$
$P_N(x) + R_N(x)$.
Then an upper bound for $ R_N(x) $ for an $x \in I$ is:
$ R_N(x) \le$
3

9. Use chain rule or logarithm derivative method to find the derivative. a) $D_x (\cos(\ln x)) =$

b)
$$D_x (7^{(x-2)^2}) =$$

10. Evaluate the integrals. a)
$$\int (\tan x) (\sec^7 x) dx =$$

Hint: Sub $u = \sec x$, then $du = \tan x \sec x dx$. $\int (\tan x) (\sec^7 x) dx =$

b)
$$\int x^2 \arctan x \, dx =$$

Hint: Integrating by parts, $u = \arctan x$, $dv = x^2 dx$ then du = $\frac{1}{1+x^2}dx$, $v=x^3/3$

$$\int x^2 \arctan x \, dx = uv - \int v \, du$$

c)
$$\int \frac{x^2}{\sqrt{4-x^2}} dx =$$

d)
$$\int x^{\frac{1}{2}} \ln x \, dx$$

Hint: Integration by parts

e)
$$\int_0^1 \frac{u^3}{(u+1)^2} du$$

Method I. Partial fraction:

$$\frac{u^3}{(u+1)^2} = (u-2) + \frac{3u+2}{(u+1)^2} = u-2 + \frac{3}{u+1} - \frac{1}{(u+1)^2}$$

Method II. Substitute y = u + 1. f) $\int \frac{1-x}{1+x+x^2} dx$

f)
$$\int \frac{1-x}{1+x+x^2} dx$$

Hint: The factor $1 + x + x^2$ is an irreducible quadratic polynomial, that is, it does not have real root. So the integrand is a rational function in a standard form already.

Complete the square $1 + x + x^2 = 3/4 + (x + 1/2)^2$ and write

$$\frac{1-x}{1+x+x^2} = -\frac{x+1/2}{3/4+(x+1/2)^2} + \frac{3/2}{3/4+(x+1/2)^2}$$

g)
$$\int x(\sqrt{x}+1)^{\frac{1}{3}}dx$$

- 11. Let R be the region enclosed by $y=x^2, \quad x=2$ and y=0. Let V be the volume of the solid obtained by revolving the region R about the line x=3.
- (a) Make a rough sketch below of the region R, labeling the important points.
- (b) Using the disk/washer method, express the volume V as an integral (or maybe 2 integrals). You do NOT have to evaluate the integral(s).

$$V =$$

12. Determine whether the improper integral converges.

(a)
$$\int_0^1 \ln(1-x) \, dx$$

Hint: x = 1 is a singularity. Consider $\int_0^b \ln(1-x) dx$ as $b \to 1_-$.

$$(b) \quad \int_0^{\pi/2} \frac{\cos x}{\sqrt{x}} \, dx$$

Hint: x = 0 is a singularity. The inequality

$$\left|\frac{\cos x}{\sqrt{x}}\right| \le \frac{1}{\sqrt{x}}$$

and the fact that $\int_0^{\pi/2} \frac{dx}{\sqrt{x}} < \infty$ suggests that the original integral converges by direct comparison test for improper integrals.

$$(c) \int_0^\infty \frac{dx}{5000 + x}$$

Hint:

$$\lim_{x \to \infty} \frac{\frac{1}{5000+x}}{\frac{1}{x}} = 1 \neq 0$$

By limit comparison test we know the original integral diverges because $\int 1/x dx = \infty$.

13. Does the following series converge or diverge? Explain your answer by stating which kind of test you are using and how it works.

$$a. \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$$

Hint:

$$\lim_{n \to \infty} \frac{\frac{1}{\sqrt{n} + \sqrt{n+1}}}{\frac{1}{\sqrt{n}}} = 1/2 \neq 0$$

By limit comparsion test the original series diverges because the *p*-series $\sum 1/\sqrt{n} = \infty$.

$$b^*(optional) \quad \sum_{n=0}^{\infty} (-1)^n \frac{1}{(n+1)^{0.6}}$$

$$c) \quad \sum_{n=2}^{\infty} n e^{-\sqrt{n}}$$

Hint: Method I. Integral test. Consider $\int_2^\infty x e^{-\sqrt{x}} dx$. Method II. Limit comparison test. Since

$$\lim_{n} \frac{ne^{-\sqrt{n}}}{1/n^2} = 0 < \infty$$

by L.C.T. the original series converges because the *p*-seires $\sum 1/n^2 < \infty$

Remark. ratio test D.N. work because $\lim_n a_{n+1}/a_n = 1$, which does not yield a conclusion.

14. Determine the radius and interval of convergence of the power series

$$a) \quad \sum_{n=1}^{\infty} \frac{x^n}{n}$$

Ans: radius R = 1; interval [-1, 1)

$$b) \quad \sum_{n=2}^{\infty} (\ln n) x^{2n+1}$$

Ans: radius R = 1; interval (-1, 1)

15. Let $a_n = \frac{e^n \cdot n!}{(2n)!}$ Find $\frac{a_{n+1}}{a_n}$. Simplify your answer so that no factorial sign (i.e., !) appears.

answer: $\frac{a_{n+1}}{a_n} =$

absolutely convergent $\sum_{n=1}^{\infty} (-1)^n \frac{e^n (n!)}{(2n)!}$ conditionally convergent divergent

16. Consider the formal power series

$$\sum_{n=1}^{\infty} \frac{(2-x)^{n-1}}{5^n} \ .$$

In the box below draw a diagram indicating for which x's this series is: absolutely convergent, conditionally convergent, and divergent. Of course, indicate your reasoning.

17. Let

$$f(x) = (1+x)^{3/2}$$

Find the 3rd-order Taylor polynomial of y = f(x) about x = 0.

$$P_3(x) = 1 + \frac{3}{2}x + \frac{3}{8}x^2 - \frac{3}{48}x^3$$

18. Find the Taylor or Maclaurin series of y = f(x)

(a)

$$f(x) = e^{2x+1}$$

about x = 1

Hint:

$$e^{2x+1} = e^{2(x-1)+3} = e^3 \sum_{n=0}^{\infty} \frac{2^n}{n!} (x-1)^n = \sum_{n=0}^{\infty} \frac{2^n e^3}{n!} (x-1)^n, \quad -\infty < x < \infty$$
(b)

$$f(x) = \frac{1}{1+x^2}$$

about x = 0.

Hint:

$$\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, \quad -1 < x < 1$$

19. The equation of the ellips is given by

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Express the length of the ellips as an definite integral. Do not evaluate the integral.