Übungen zur Algebraischen Zahlentheorie II

Sommersemester 2022

Universität Heidelberg Mathematisches Institut DR. K. HÜBNER DR. C. DAHLHAUSEN

Blatt 8

Abgabe: Freitag, 17.06.2022, 09:15 Uhr

Notation. Sei K ein Körper und $G_K = \operatorname{Gal}(K^{\operatorname{sep}}/K)$ seine absolute Galoisgruppe.

Aufgabe 1 (Artin-Schreier-Theorie).

(4 Punkte)

Sei K von positiver Charakteristik p. Zeigen Sie:

- (a) Die Abbildung \mathscr{O} : $K^{\text{sep}} \to K^{\text{sep}}$, $x \mapsto x^p x$, ist ein surjektiver Homomorphismus von G_K -Moduln mit Kern \mathbb{F}_p .
- (b) Es ist

$$\mathrm{H}^i(G_K,\mathbb{Z}/p)\cong egin{cases} \mathbb{Z}/p & (i=0)\ K/\wp(K) & (i=1)\ 0 & (i\geq 2). \end{cases}$$

Aufgabe 2 (Kummer-Theorie).

(8 Punkte)

Es existiere eine primitive n-te Einheitswurzel $\zeta_n \in K$ für ein zu char(K) teilerfremdes $n \in \mathbb{N}$. Es bezeichne $\mu_n \subset K^{\times}$ die Gruppe der n-ten Einheitswurzeln. Dann existieren Isomorphismen

$$\phi: \operatorname{H}^1(G_K, \mathbb{Z}/n\mathbb{Z}) \xrightarrow{\cong} \operatorname{H}^1(G_K, \mu_n) \xrightarrow{\cong} K^{\times}/(K^{\times})^n.$$

Für $x \in K^{\times}$ und $\alpha = \phi^{-1}([x]) \in H^1(G_K, \mathbb{Z}/n\mathbb{Z}) \cong Der(G_K, \mathbb{Z}/n\mathbb{Z})/IDer(G_K, \mathbb{Z}/n\mathbb{Z})$ sei $f \in Der(G_K, \mathbb{Z}/n\mathbb{Z})$ ein Repräsentant von α . Zeigen Sie:

(a) Es ist ker(f) ein offener Normalteiler von G_K und es existiert ein Isomorphismus

$$G_K/\ker(f) \stackrel{\cong}{\longrightarrow} d\mathbb{Z}/n\mathbb{Z} \quad (\subset \mathbb{Z}/n\mathbb{Z})$$

für einen geeigneten Teiler d von n.

(b) Es ist $(K^{\text{sep}})^{\ker(f)} = K(\sqrt[n]{x})$ und der zu $d + n\mathbb{Z}$ gehörige Erzeuger der zyklischen Gruppe $G_K/\ker(f)$ ist der Körperautomorphismus

$$K(\sqrt[n]{x}) \to K(\sqrt[n]{x}), \quad \sqrt[n]{x} \mapsto \zeta_n^d \cdot \sqrt[n]{x}.$$

- (c) Für eine Zwischengruppe $(K^{\times})^n \subseteq \Delta \subseteq K^{\times}$ ist $K(\sqrt[n]{\Delta})$ eine abelsche Erweiterung von K vom Exponenten n und es ist $\operatorname{Gal}(K(\sqrt[n]{\Delta})/K) \cong \operatorname{Hom}(\Delta/(K^{\times})^n, \mu_n)$.
- (d) Der Körper $K(\sqrt[n]{K^{\times}}) := K(\sqrt[n]{x} | x \in K^{\times})$ ist das Kompositum aller zyklischen Erweiterungen von K, deren Grad n teilt.

Aufgabe 3. (4 Punkte)

Sei $K^{ab} := (K^{sep})^{\overline{[G_K,G_K]}}$ der Fixkörper des Abschlusses der Kommutatorgruppe von G_K . Ferner sei $L := K(\sqrt[n]{K^{\times}})$. Zeigen Sie:

- (a) Die Erweiterung K^{ab}/K is galoissch und K^{ab} ist das Kompositum aller endlichen abelschen Erweiterungen von K in K^{sep} .
- (b) Unter dem Isomorphismus $(G_K)^{ab} \cong \operatorname{Gal}(K^{ab}/K)$ entspricht die Untergruppe $(G_K^{ab})^n \subset G_K^{ab}$ der Untergruppe $\operatorname{Gal}(K^{ab}/L) \subset \operatorname{Gal}(K^{ab}/K)$.