Statistiek 3 BIN

• Les 10

Typen microarray's

Er zijn verschillende typen microarray's:

Notatie

- $y = {}^{2}\log intensiteitwaarde van microarray (MA)$
- We bekijken G verschillende genen (= stippen) op MA: $g=1,2,\cdots$, G
- Factor A (bijv. Gezondheid) heeft a levels (groepen): $i=1,2,\cdots,a$

Dus: $(y_g)_i$ is de log intensiteit van gen g in de i^{de} groep van gezondheid; per gen g voeren we een statistische toets uit om te zien of er verschil zit tussen de levels van factor A (d.w.z., is $p_A < \alpha$?)

- Bij 1-channel MA's is elke MA een *replica* meting binnen groep $i: k = 1, 2, \dots, n_i$
- Bij 2- of 4-channel MA's worden meerdere groepen i tegelijkertijd gemeten, dus een herhaalde meting m.b.v. hetzelfde MA: $j=1,2,\cdots,b$; nr. MA is dus eigenlijk een "ruisfactor" B met b levels

Dus: $(y_g)_{i,k}$ is de log intensiteit van gen g in groep i van k^e 1-channnel MA

Dus: $(y_g)_{i,j}$ is de log intensiteit van gen g in groep i van j^e multi-channel MA

MA data format

				i = 1		i = 2				
						11				
		logR.1	logR.2	logR.3	•••	logG.1	logG.2	logG.3	•••	
g = 1	Gen001	2.58	2.61	2.51	•••	2.01	1.97	2.14	•••	
g = 2	Gen002	3.25	3.21	3.24	•••	3.58	3.59	3.48	•••	
g = 3	Gen003	4.05	4.11	3.98	•••	4.01	3.99	4.07	•••	
g = 4	Gen004	1.59	1.54	1.66	•••	1.64	1.59	1.55	• • •	
g = 5	Gen005	2.11	2.17	2.15	***	0.48	0.57	0.64	•••	
g = 6	Gen006	2.44	2.45	2.61	•••	2.37	2.43	2.47	•••	
g = 7	Gen007	3.14	3.15	3.16	•••	2.71	2.72	2.73	• • •	
	•••	•••	•••	•••	•••	•••	•••	•••	•••	
	Gen <i>g</i>	2.71	2.79	2.75	•••	3.14	3.19	3.08	•••	
	Gen(g+1)	3.11	3.08	3.07	•••	3.08	3.21	3.17	• • •	
	•••	•••	•••	•••	***	•••	***	***	•••	
g = G	Gen G	0.08	0.14	0.17	•••	0.45	0.48	0.34	•••	

1-channel experimenten (1)

4 1-channel MA's (= 4 replica's):1-sample t

Z.1	Z.2	Z.3	Z.4
2.5	2.9	2.8	2.7

In R: t.test(y_g , mu = μ)

1-channel experimenten (2)

1-channel experimenten (3)

2-channel experimenten (1)

Z.1	Z.2	Z.3	Z.4	G.1	G.2	G.3	G.4
2.5	2.9	2.8	2.7	1.5	2.0	1.8	1.7

$$\bar{y}_1 = \bar{y}_2$$
?

4 2-channel MA's (= 4 herhaalde metingen): gepaarde t

2-channel experimenten (2)

17.	17.	ر
<i>V</i> 1	<i>V</i> 2	

4 2-channel MA's(= 4 herhaalde metingen):1-sample t op logfold *M*

M.1	M.2	M.3	M.4
1.0	0.9	1.0	1.0

In R: t.test(M_g , mu = 0)

4-channel experimenten (1)

 $\bar{y}_1 = \bar{y}_2 = \bar{y}_3 = \bar{y}_4$?

4 4-channel MA's(= 4 herhaalde metingen):block ANOVA

S1	.1	S 1	.2	S 1	.3	S 1	.4	S2	.1	S2	.2	S2	.3	S2	.4	l
2.	5	2.	9	2.	8	2.	7	2.	9	3.	4	3.	2	3.	1	•••
	S3	3.1	S3	3.2	S3	3.3	S3	3.4	G	.1	G	.2	G	.3	G	.4
•••	4	.0	4	.1	3	.9	3.	.8	1	.9	1.	.5	1	.7	1	.8

In R: summary(aov($y_g \sim A + B$)) A = [1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4]B = [1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4]

Statistische modellen

• 1-way ANOVA (incl. 2-sample t-toets):

$$y_{ik} = \mu + \alpha_i + \varepsilon_{ik}$$

• block ANOVA (incl. gepaarde t-toets):

$$y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$$

1-way ANOVA: idee

Verhouding tussen spreiding (= variantie) *tussen* levels (groepen) en *binnen* levels:

$$F = \frac{S_{\text{tussen}}^{2}}{S_{\text{binnen}}^{2}} = \frac{MS_{\text{tussen}}}{MS_{\text{binnen}}} = \frac{MS_{\text{A}}}{MS_{\text{error}}} = \frac{\text{var}(\uparrow)}{\text{var}(\uparrow)}$$

$$y_{ik}$$

$$y_{ik}$$

$$y_{ik}$$

$$y_{ik}$$

$$|\text{level } i|$$

$$|\text{factor A}|$$

2-way ANOVA: idee

Verhouding tussen spreiding (= variantie) *tussen* levels (groep) en *binnen* levels (in 3D grafiek):

1-way en block ANOVA

Overzicht

		Aantal levels (= groepen) van factor A om te vergelijken							
		1	2	3	4	> 4			
		1-sample t	Welch t		1-way ANOVA				
	1-channel (R)	$(y_g)_k$	$\left(y_g\right)_{i,k} = \mu + \alpha_i + \varepsilon_{i,k}$						
		$p: \overline{y} = \mu$?	$p: \bar{y}_1 = \bar{y}_2?$	$\bar{y}_1 = \bar{y}_2$? p_A : verschil tussen groe					
	2-channel		gepaarde t						
Type MA									
	(R, G)		$p: \bar{y}_1 = \bar{y}_2?$						
			gepaarde t	gepaarde t block ANOVA					
	4-channel (R , G , B , Y)		$(y_g)_{i,j} = \mu + \alpha_i + \beta_j$						
			p of $p_{ m A}$: verschil tussen groepen?						