Intervalles de Confiance et de Prevision en R(3b)

October 17, 2018

Greta Laage, Luc Adjengue

Contents

1	Esti	mation par intervalle de confiance à partir d'un seul échantillon	2
	1.1	Loi normale de variance connue	2
		1.1.1 Moyenne	2
		1.1.2 Taille de l'échantillon	2
	1.2	Moyenne d'une loi normale de variance inconnue	3
	1.3	Variance d'une loi normale	3
	1.4	La proportion dans une population	4
		1.4.1 Taille de l'échantillon si on a une idée de la valeur de p	4
		1.4.2 Taille de l'échantillon si on a aucune idée de la valeur de p	4
2	Esti	mation par intervalle de confiance à partir de deux échantillons	4
	2.1	Différence entre les moyennes de deux lois normales de variances connues	4
	2.2	Différence entre les moyennes de deux lois normales de variances inconnues mais	
		égales	5
	2.3	Rapport des variances de deux lois normales	5
	2.4	La différence entre deux proportions	6
3	Inte	ervalles de prévision	6

1 Estimation par intervalle de confiance à partir d'un seul échantillon

On utilise les données du fichier Notes.csv pour illustrer les calculs des sections suivantes.

1.1 Loi normale de variance connue

1.1.1 Moyenne

Résultat théorique avec :

- *σ* l'écart-type
- *n* le nombre d'observations dans l'échantillon
- α le seuil de confiance
- \bar{X} la moyenne échantillonale.

L'intervalle de confiance à $100(1-\alpha)$ % pour la moyenne théorique μ est donné par:

$$\bar{X} \pm z_{\alpha/2} \sigma / \sqrt{n}$$

```
In [18]: qnorm(1-0.025) # calcul de z_alpha/2
        L = mean(d1) - qnorm(1-0.025) * sigma / sqrt(n)
        U = mean(d1) + qnorm(1-0.025) * sigma / sqrt(n)
        L
        U

1.95996398454005
11.8078364756541
12.8596635243459
```

1.1.2 Taille de l'échantillon

Si on veut avoir confiance à $100(1-\alpha)\%$ que l'erreur commise en estimant la moyenne soit inférieure à ϵ , alors :

$$n \ge (\frac{z_{\alpha/2}\sigma}{\epsilon})^2$$

1.2 Moyenne d'une loi normale de variance inconnue

Résultat théorique avec :

- *σ* l'écart-type
- *n* le nombre d'observations dans l'échantillon
- α le seuil de confiance
- \bar{X} la moyenne échantillonale.

L'intervalle de confiance à $100(1-\alpha)\%$ pour la moyenne théorique μ est donné par:

$$\bar{X} \pm t_{\alpha/2:n-1} S / \sqrt{n}$$

1.3 Variance d'une loi normale

Résultat théorique: L'intervalle de confiance à $100(1-\alpha)\%$ pour σ^2 lorsque les données proviennent d'une loi normale est:

$$\frac{(n-1)S^2}{\chi^2_{\alpha/2;n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\alpha/2;n-1}}$$

5.02972450142753 9.42122556657164

1.4 La proportion dans une population

Proportion Résultat théorique: Un intervalle de confiance à $100(1-\alpha)\%$ pour p lorsque n est grand est :

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

1.4.1 Taille de l'échantillon si on a une idée de la valeur de p

$$n \ge (\frac{z_{\alpha/2}}{\epsilon})^2 p(1-p)$$

206.516826200516

1.4.2 Taille de l'échantillon si on a aucune idée de la valeur de p

$$n \ge (\frac{z_{\alpha/2}}{\epsilon})^2 0.25$$

In [35]: (qnorm(1-0.025)/epsilon)^2 * 0.25
384.145882069412

2 Estimation par intervalle de confiance à partir de deux échantillons

2.1 Différence entre les moyennes de deux lois normales de variances connues

Résultat théorique:

$$(\bar{X}_1 - \bar{X}_2) \pm z_{\alpha/2} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

```
xbar2 = 74.5
n2 = 12
sigma2 = 1.5
L = xbar1 - xbar2 - qnorm(1-0.05) * sqrt(sigma1^2/n1 + sigma2^2/n2)
U = xbar1 - xbar2 + qnorm(1-0.05) * sqrt(sigma1^2/n1 + sigma2^2/n2)
L
U

12.2180454983093
13.9819545016907
```

2.2 Différence entre les moyennes de deux lois normales de variances inconnues mais égales

Résultat théorique :

$$(\bar{X}_1 - \bar{X}_2) \pm t_{\alpha/2;n_1+n_2-2} S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Avec

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

```
In [43]: # Exemple 9.17 du livre p266
    xbar1 = 24.6
    xbar2 = 22.1
    s1 = 0.85
    s2 = 0.98
    n1 = 12
    n2 = 15

    Sp2 = ( (n1-1)*s1^2 + (n2-1)*s2^2 )/(n1+n2-2)
    Sp2

    L = xbar1 - xbar2 - qt(1-0.025,n1+n2-2) * sqrt(Sp2) * sqrt(1/n1 + 1/n2)
    U = xbar1 - xbar2 + qt(1-0.025,n1+n2-2) * sqrt(Sp2) * sqrt(1/n1 + 1/n2)
    L
    U

    0.855724
    1.76212565316654
    3.23787434683346
```

2.3 Rapport des variances de deux lois normales

Résultat théorique: Un intervalle de confiance à $100(1-\alpha)\%$ pour σ_1^2/σ_2^2 sur deux échantillons indépendants de lois normales :

$$\frac{S_1^2}{S_2^2 F_{\alpha/2, n_1 - 1, n_2 - 1}} \le \frac{\sigma_1^2}{\sigma_2^2} \le \frac{S_1^2}{S_2^2 F_{1 - \alpha/2, n_1 - 1, n_2 - 1}}$$

2.4 La différence entre deux proportions

Résultat théorique: Un intervalle de confiance à $100(1-\alpha)\%$ pour p_1-p_2 lorsque n_1 et n_2 sont grands :

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

3 Intervalles de prévision

Résultat théorique:

Un intervalle de prévision à $100(1-\alpha)\%$ pour X_{n+1} basé sur un échantillon de taille n provenant d'une loi normale est donné par :

$$\bar{X} \pm t_{\alpha/2;n-1} \sqrt{S^2 \left(1 + \frac{1}{n}\right)}$$

In [6]: # Exemple 9.21 du livre

```
xbar = 1.666
s = 0.273
n = 10
alpha = 0.05

L = xbar - qt(1-0.025,9)*sqrt(s^2*(1+1/n))
U = xbar + qt(1-0.025,9)*sqrt(s^2*(1+1/n))
L
U
```

1.01828826761567 2.31371173238433