1 Funktionseigenschaften

1.1 Surjektivität

TODO

1.2 Injektivität

TODO

1.3 Bijektivität

Eine Funktion ist bijektiv, wenn sie injektiv und surjektiv ist.

2 Funktion Invertieren

y = f(x) nach x auflösen, dann y und x vertauschen.

3 Folgenmonotonie

Sei a_n eine Folge, dann ist a_n streng monoton fallend, wenn $a_{n+1} > a_n$ bzw. streng monoton steigend, wenn $a_{n+1} < a_n$ (bzw. nur monoton steigend/fallend, wenn \geq oder \leq).

4 Konvergenz

4.1 Absolute Konvergenz

 $\sum\limits_{k=0}^{\infty}a_k$ heißt *absolut konvergent*, wenn $\sum\limits_{k=0}^{\infty}|a_k|$ konvergiert. Ist eine Folge absolut konvergent, dann ist sie auch konvergent.

4.2 Majorantenkriterium

Sei a_k eine Folge und $|a_k| \le b_k$ und $\sum_{k=0}^{\infty} b_k$ konvergent, dann ist auch

 $\sum_{k=0}^{\infty} a_k$ (absolut) konvergent.

4.3 Quotientenkriterium

TODO

$$4.4 \quad \sum_{k=0}^{\infty} (-1)^k a_n$$

Konvergent, wenn a_n streng monoton fallend (Leibnitz-Kriterium).

$$4.5 \quad \sum_{k=0}^{\infty} \frac{g}{a^k}$$

$$\sum_{k=0}^{\infty} \frac{g}{a^k} = g \cdot \frac{a}{a-1} \text{ für } |a| > 1$$

$$4.6 \quad \sum_{k=0}^{\infty} \frac{a^k}{b^k} = \sum_{k=0}^{\infty} \left(\frac{a}{b}\right)^k$$

Für
$$|a| < |b|$$
: $\frac{b}{b-a}$
Für $\left| \frac{a}{b} \right| < 1$: $-\frac{b}{a-b}$

$$4.7 \quad \sum_{n=0}^{\infty} (-1)^n \cdot z^k$$

Für
$$|z| < 1$$
: $\frac{1}{1+z}$

$$4.8 \quad \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$$

4.9
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$$

Für $x \in (-1, 1]$: $\ln(1 + x)$.

4.10
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \sin(x)$$

4.11
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = \cos(x)$$

$$4.12 \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$$

Für $x \in (-1, 1]$: $\ln(1 + x)$

4.13
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
 (Geometrische Reihe)

4.14
$$\sum_{n=0}^{\infty} \frac{1}{n} = \infty$$
 (Harmonische Reihe)

$$4.15 \quad \sum_{n=1}^{\infty} \frac{1}{n^a}$$

Fall
$$a = 2$$
: $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

4.16
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln(2)$$
 (Alt. harm. R.)

4.17
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 (Basler Problem)

4.18
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$
 (Leibnitzreihe)

5 Grenzwerte

5.1 L'Hospital

Die Regel von L'Hospital besagt, dass, wenn man bei einem Grenzwert auf die Form $\lim \frac{g(x)}{h(x)} = \frac{0}{0}$ kommt, man den Grenzwert der beiden Ableitungen $\lim \frac{g'(x)}{h'(x)}$ bilden kann, der gleich dem Grenzwert der Ursprungsfunktion ist, wenn er existiert.

6 Tangenten

Allgemein Tangentengleichung: y = mx + b

$$m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{(a+h) - a}$$

Allgemeine Form der Tangentengleichung an der Stelle a:

$$t(x) = f'(a) \cdot (x - a) + f(a)$$

Die Tangente ist äquivalent zur Taylorreihe ersten Grades der jeweiligen Funktion.

7 Schranken finden

Die kleinste obere Schranke heißt *Surpremum*. Bei monoton fallenden Folgen ist das erste Folgenglied die obere Schranke. (Bei monoton steigenden ist das erste das kleinste und daher das *Infimum*). Wenn Monotonie weder (s)mf noch (s)ms, dann obere Schranke abschätzen und per Induktion beweisen (dann nicht notwendigerweise kleinste obere Schranke!).

8 Taylorreihe

Allgemeine Formel zur Bestimmung von Taylorreihenapproximationen an der Stelle x_0 :

$$f(x) \approx \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} \cdot (x - x_0)^k$$

8.0.1 Approximationsfehler

Der Fehler einer Taylorapproximation an der Stelle a kann abgeschätzt werden mit:

$$R_n(x) = \frac{M}{(n+1)!} (x-a)^{n+1},$$

wobei M eine obere Schranke von $|f^{(n+1)}(z)| \ge M$ sein muss.

9 Ableitungen

9.1 Definition Ableitung

$$f'(x) = \lim_{\epsilon \to 0} \frac{f(x+\epsilon) - f(x)}{\epsilon}$$

9.2 Produktregel

$$f(x) = g(x) \cdot h(x) \longrightarrow f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$$

9.3 Quotientenregel

$$f(x) = \frac{g(x)}{h(x)} \longrightarrow f'(x) = \frac{h(x) \cdot g'(x) - g(x) \cdot h'(x)}{[h(x)]^2}$$

9.4 Kettenregel

$$f(x) = g(h(x)) \longrightarrow f'(x) = g'(h(x)) \cdot h'(x)$$

9.5 Spezielle Ableitungen

9.5.1
$$f(x) = \ln(x) \mapsto f'(x) = \frac{1}{x}$$

9.5.2
$$f(x) = \sqrt{x} \longrightarrow f'(x) = \frac{1}{2\sqrt{x}}$$

$$9.5.3 \frac{\sin x}{\cos x} \longrightarrow \frac{\cos x}{\cos x}$$

9.5.4
$$\cos x \mapsto -\sin x$$

10 Integration

10.1
$$\int x^n \, \mathrm{d}x = \frac{1}{n+1} x^{n+1} + C$$

10.2
$$\int c \cdot f(x) \, \mathrm{d}x = c \cdot \int f(x) \, \mathrm{d}x$$

10.3
$$\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$$

10.4
$$\int f'(x)g(x) dx = f(x) \cdot g(x) - \int f(x) \cdot g'(x) dx$$

10.5
$$\int \frac{f'(x)}{f(x)} dx = \ln(f(x)) + C$$

10.6
$$\int f'(x) \cdot g(x) \, \mathrm{d}x = f(x) \cdot g(x) - \int f(x) \cdot g'(x) \, \mathrm{d}x$$

Oder auch: $\int u \, dv = uv - \int v \, du$. Wähle u so, dass es nach endlich vielen Ableitungen eine Konstante wird.

$$10.7 \int \frac{1}{u^2} \, \mathrm{d}u = \frac{1}{u}$$

10.8 Partialbruchzerlegung

10.9
$$\frac{f(g)}{g(x) \cdot h(x) \cdot i(x) \cdot \cdots} = \frac{a}{g(x)} \cdot \frac{b}{h(x)} \cdot \frac{c}{i(x)} \cdot \cdots$$

 a,b,c,\cdots Herausfinden, indem man schaut, ob man durch geschicktes Einsetzen und Umstellen eine Gleichung der Form c=a+n (mit c,n fest, aber beliebig) herausbekommt. Beispiel: g(x)=x-5, dann würde man x=5 setzen und den g(x)-Teilg(x)-Reilg(x)-Bamit g(x)-Reilg(x)-Bamit g(x)-Bamit g(

11 Differentialgleichungen

11.1 Matrix-Methode

Schritt 1: Differentialgleichungen als Koeffizientenmatrix aufschreiben

Schritt 2: Eigenwerte herausfinden, Eigenvektoren $\vec{v_n}$ bilden

Schritt 3: Lösung ist System aus Gleichungen $\vec{x} = \sum c_n \vec{v_n} e^x$

12 Beispielrechnungen

12.1 $\int \cos(ax) dx$

$$u = ax$$
, $du = a dx$, $\frac{du}{a} = dx$

$$\cos(ax) dx = \int \cos(u) \frac{du}{a} = \frac{1}{a} \int \cos(u) du = \frac{1}{a} \sin(u) = \frac{1}{a} \sin(ax) + c$$