

Not Trusted Python 3 O

We will use the 2016-2017 basketball shot log data to demonstrate how to test the hot hand.

Import useful libraries and the shot log data

Please note that the 3 lecture notebooks for this week must be run in order, as the following notebooks rely on the output of the previous

Out[1]:

	team_previous_shot	player_position	home_game	location_x	opponent_previous_shot	home_team	shot_type	points	away_team	location_y	time	
0	NaN	SF	Yes	97.0	SCORED	ATL	Pullup Jump Shot	2	WAS	405.0	1:09	10
1	MISSED	С	Yes	52.0	SCORED	ATL	Tip Dunk Shot	2	WAS	250.0	1:11	10
2	SCORED	SG	Yes	239.0	MISSED	ATL	Jump Shot	2	WAS	223.0	1:41	10
3	SCORED	PG	Yes	102.0	SCORED	ATL	Pullup Jump Shot	2	WAS	385.0	2:16	10
4	SCORED	PF	Yes	128.0	MISSED	ATL	Turnaround Jump Shot	2	WAS	265.0	2:40	10
4												-

In [2]: N Shotlog.shape
Out[2]: (210072, 16)

Data Preparation

Missing Value

In [3]: M Shotlog.info()

cclass 'pandas.core.frame.DataFrame' >
RangeIndex: 210072 entries, 0 to 210071
Data columns (total 16 columns):
team_previous_shot
player_position 210072 non-null object
home_game 210072 non-null object
location_x 200675 non-null object
home_team 210072 non-null object
shot_type 210072 non-null object
points 210072 non-null object
location_y 200675 non-null int64
away_team 210072 non-null object
location_y 200675 non-null float64
time 210072 non-null object
date 210072 non-null object
time_from_last_shot_
quarter 210072 non-null object
dypes: float64(3), int64(2), object(11)
memory usage: 25.6+ MB

Let's create some useful variables.

 $\bullet\,$ Create dummy variables to indicate hit or miss of current shot and previous shot.

Out[4]:

	team_previous_shot	player_position	home_game	location_x	opponent_previous_shot	home_team	shot_type	points	away_team	location_y	time	
0	NaN	SF	Yes	97.0	SCORED	ATL	Pullup Jump Shot	2	WAS	405.0	1:09	10
1	MISSED	С	Yes	52.0	SCORED	ATL	Tip Dunk Shot	2	WAS	250.0	1:11	10
2	SCORED	SG	Yes	239.0	MISSED	ATL	Jump Shot	2	WAS	223.0	1:41	10
3	SCORED	PG	Yes	102.0	SCORED	ATL	Pullup Jump Shot	2	WAS	385.0	2:16	10
4	SCORED	PF	Yes	128.0	MISSED	ATL	Turnaround Jump Shot	2	WAS	265.0	2:40	10
4												-

Make sure the variable "date" is stored as a date type variable.

min

Convert the variable "time" to be datetime type variable

0 days 00:00:00

- 1. We will first add the hour (00) to the time variable since the time variable will be stored in the format 'HH:MM:SS';
- 2. We will use "to_timedelta" to work with variable with only time information.

25% 0 days 00:03:08 50% 0 days 00:06:06 75% 0 days 00:09:10 max 0 days 00:12:00 Name: time, dtype: object

- Create lagged variable to indicate the result of the previous shot by the same player in the same game
 - 1. We will first sort the shot outcome by the quarter and time in the game;
 - 2. We will group the data by player and game (date) and use the "shift" command to create a lag variable.

Out[7]:

	team_previous_shot	player_position	home_game	location_x	opponent_previous_shot	home_team	shot_type	points	away_team	location_y	time
-) NaN	SF	Yes	97.0	SCORED	ATL	Pullup Jump Shot	2	WAS	405.0	00:01:09
	1 MISSED	С	Yes	52.0	SCORED	ATL	Tip Dunk Shot	2	WAS	250.0	00:01:11
:	SCORED	SG	Yes	239.0	MISSED	ATL	Jump Shot	2	WAS	223.0	00:01:41
	3 SCORED	PG	Yes	102.0	SCORED	ATL	Pullup Jump Shot	2	WAS	385.0	00:02:16
	scored	PF	Yes	128.0	MISSED	ATL	Turnaround Jump Shot	2	WAS	265.0	00:02:40
4)

We can sort the shot log data by player, game(date), quarter, and time of the shot.

In [8]: M Shotlog.sort_values(by=['shoot_player', 'date', 'quarter', 'time'], ascending=[True, True, True, True])

Out[8]: team_previous_shot player_position home_game location_x opponent_previous_shot home_team shot_type points away_team location_y 42660 MISSED No 210.0 SCORED GSW Jump Shot DAL 269.0 0 SCORED С 202.0 0 42661 No 308.0 SCORED GSW Jump Shot DAL 42664 MISSED С No 167.0 SCORED GSW Jump Shot DAI 318.0 0 42667 SCORED No 131.0 MISSED GSW Jump Shot DAL 337.0 C Tip Layup Shot 42668 MISSED С No 72.0 MISSED GSW DAL 248.0 C 43139 SCORED С 882.0 SCORED 264.0 0 CLE Turnaround 43228 MISSED No 84.0 SCORED DAL 112.0 0

Notice that for the first shots of the game by the given players, the lagged outcome variable will have missing value.

Let's create a dataframe for average success rate of players over the season.

Since the "current_shot_hit" variable is a dummy variable (=1 if hit, =0 if miss), the average of this variable would indicate the success rate of the player over the season.

Out[9]:

- Let's rename the "current_shot_hit" variable in the newly created date frame as "average_hit".

We will use the player statistics to analyze the hot hand. So we will merge average player statistics dataframe back to the shot log dataframe.

In [11]: M Shotlog=pd.merge(Shotlog, Player_Stats, on=['shoot_player'])
Shotlog.head()

Out[11]:

	team_previous_shot	player_position	home_game	location_x	opponent_previous_shot	home_team	shot_type	points	away_team	location_y	time
0	NaN	SF	Yes	97.0	SCORED	ATL	Pullup Jump Shot	2	WAS	405.0	00:01:09
1	MISSED	SF	Yes	279.0	SCORED	ATL	Jump Shot	3	WAS	130.0	00:03:11
2	MISSED	SF	Yes	58.0	SCORED	ATL	Cutting Layup Shot	2	WAS	275.0	00:09:53
3	SCORED	SF	Yes	868.0	SCORED	ATL	Jump Shot	3	WAS	475.0	00:01:02
4	SCORED	SF	Yes	691.0	MISSED	ATL	Pullup Jump Shot	3	WAS	100.0	00:04:50
4											>

- $\bullet \ \ \text{Create a variable to indicate the total number of shots recorded in the dataset for each player.}$
- In [12]: M Player_Shots=Shotlog.groupby(['shoot_player']).size().reset_index(name='shot_count')

Out[13]:

shoot_player shot_count

```
        402
        Russell Westbrook
        1940

        25
        Andrew Wiggins
        1568

        106
        DeMar DeRozan
        1545

        193
        James Harden
        1532

        28
        Anthony Davis
        1525
```

We should also note that players have different number of shots in each individual game. We will need to treat the data differently for a player who had only two shots in a game compared to those who had attempted 30 in a game.

• Create a variable to indicate the number of shots in each game for by each player.

Out[14]:

	shoot_player	date	shot_per_game
0	A.J. Hammons	2016-11-09	5
1	A.J. Hammons	2016-11-23	1
2	A.J. Hammons	2016-11-25	1
3	A.J. Hammons	2016-12-03	2
4	A.J. Hammons	2016-12-07	2

We will merge the shot count data frames back to the shot log dataframe.

	team_previous_shot	player_position	home_game	location_x	opponent_previous_shot	home_team	shot_type	points	away_team	location_y
0	NaN	SF	Yes	97.0	SCORED	ATL	Pullup Jump Shot	2	WAS	405.0
1	MISSED	SF	Yes	279.0	SCORED	ATL	Jump Shot	3	WAS	130.0
2	MISSED	SF	Yes	58.0	SCORED	ATL	Cutting Layup Shot	2	WAS	275.0
3	SCORED	SF	Yes	868.0	SCORED	ATL	Jump Shot	3	WAS	475.0
4	SCORED	SF	Yes	691.0	MISSED	ATL	Pullup Jump Shot	3	WAS	100.0
5	MISSED	SF	Yes	691.0	MISSED	ATL	Pullup Jump Shot	2	WAS	181.0
6	MISSED	SF	Yes	679.0	MISSED	ATL	Step Back Jump Shot	3	WAS	109.0

We will sort the data again after merging.

```
In [16]: M Shotlog.sort_values(by=['shoot_player', 'date', 'quarter', 'time'], ascending=[True, True, True, True])
```

[16]:	team_previous_shot	player_position	home_game	location_x	opponent_previous_shot	home_team	shot_type	points	away_team	location_y
50484	MISSED	С	No	210.0	SCORED	GSW	Jump Shot	2	DAL	269.0
50485	SCORED	С	No	308.0	SCORED	GSW	Jump Shot	3	DAL	202.0
50486	MISSED	С	No	167.0	SCORED	GSW	Jump Shot	2	DAL	318.0
50487	SCORED	С	No	131.0	MISSED	GSW	Jump Shot	2	DAL	337.0
50488	MISSED	С	No	72.0	MISSED	GSW	Tip Layup Shot	2	DAL	248.0
50489	SCORED	С	Yes	882.0	SCORED	DAL	Running Reverse Layup	2	LAC	264.0
50490	MISSED	С	No	84.0	SCORED	CLE	Turnaround	2	DAL	112.0

We will treat the "points" and "quarter" variables as objects. $\label{eq:condition}$

Missing values

Drop observations with missing value in lagged variable.

```
In [18]: M Shotlog=Shotlog[pd.notnull(Shotlog["lag_shot_hit"])]
```

 $\ \, \text{Let's take a quick look at the number of variables and the number of observations in our clean data frame.} \\$

```
In [19]: N Shotlog.shape
Out[19]: (185052, 21)
```

Save our updated data

```
In [ ]: 📕
```