MM54HC4060/MM74HC4060 14 Stage Binary Counter

General Description

The MM54HC4060/MM74HC4060 is a high speed binary ripple carry counter. These counters are implemented utilizing advanced silicon-gate CMOS technology to achieve speed performance similar to LS-TTL logic while retaining the low power and high noise immunity of CMOS.

The 'HC4060 is a 14-stage counter, which device increments on the falling edge (negative transition) of the input clock, and all their outputs are reset to a low level by applying a logical high on their reset input. The 'HC4060 also has two additional inputs to enable easy connection of either an RC or crystal oscillator.

This device is pin equivalent to the CD4060. All inputs are protected from damage due to static discharge by protection diodes to $V_{\rm CC}$ and ground.

Features

- Typical propagation delay: 16 ns
- Wide operating voltage range: 2-6V
- Low input current: 1 μ A maximum
- Low quiescent current: 80 µA maximum (74 Series)
- Output drive capability: 10 LS-TTL loads

Connection and Logic Diagrams

Dual-In-Line Package

Order Number MM54HC4060 or MM74HC4060

Absolute Maximum Rat If Military/Aerospace specified de please contact the National Sei	vices are required,
Office/Distributors for availability a	
Supply Voltage (V _{CC})	-0.5 to +7.0 V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5V$
Clamp Diode Current (I _{CD})	$\pm20~\text{mA}$
DC Output Current, per pin (IOUT)	\pm 25 mA
DC Vcc or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (PD)	
(Note 3)	600 mW
S.O. Package only	500 mW

Operating Conditi	ons		
	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temp. Range (T _A)			
MM74HCT	-40	+85	°C
MM54HCT	-55	+125	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

DC Electrical Characteristics (Note 4)

Lead Temperature (T_L)

(Soldering 10 seconds)

Symbol	Parameter		Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
					Тур	yp Guaranteed Limits			
V _{IH}	Minimum High Level Voltage (Not Applicable to Pins 9 & 10) Maximum Low Level Input Voltage ** (Not Applicable to Pins 9 & 10)			2.0V 4.5V 6.0V		1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V V V
V _{IL}				2.0V 4.5V 6.0V		0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V V V
0	Minimum High Level Output Voltage		$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	4.5	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V V
		Except Pins 9 & 10	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V		3.98 5.48	3.84 5.34	3.7 5.2	V
		Pins 9 & 10	$V_{IN} = V_{IH}$ or V_{IL} $ I_{OUT} = 0.4$ mA $ I_{OUT} = 0.52$ mA			3.98 5.48	3.84 5.34	3.7 5.2	V V
V _{OL} Maximum Low Voltage	Maximum Low Level Outpu Voltage	ut	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 20 \mu A$	2.0V 4.5V 6.0V	0 0 0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V V V
		Except Pins 9 & 10	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} \le 4.0 \text{ mA}$ $ I_{OUT} \le 5.2 \text{ mA}$	4.5V 6.0V	l	0.26 0.26	0.33 0.33	0.4 0.4	V V
		Pins 9 & 10	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $ I_{OUT} = 0.4 \text{ mA}$ $ I_{OUT} = 0.52 \text{ mA}$			0.26 0.26	0.33 0.33	0.4 0.4	V V
I _{IN}	Maximum Input Current		V _{IN} = V _{CC} or GND	6.0V		±0.1	± 1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current		$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		8.0	80	160	μА

260°C

Note 1: Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating: plastic "N" package: -12 mW/°C from 65°C to 85°C ceramic "J" package: -12 mW/°C from 100°C to 125°C Note 4: For a power supply of 5V ±10% the worst case output voltages (V_{QH}, and V_{QL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_H and V_H occur at V_{CC} = 5.5V and 4.5V respectively. (The V_H value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

** V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25$ °C, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Clock Frequency			30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay to Q_4	(Note 5)	40	20	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay to any Q		16	40	ns
t _{REM}	Minimum Reset Removal Time		10	20	ns
t _W	Minimum Pulse Width		10	16	ns

$\textbf{AC Electrical Characteristics} \ \ V_{CC} = 2.0 \ \ \text{to 6.0V}, \ C_L = 50 \ \ \text{pF}, \ t_f = t_f = 6 \ \text{ns (unless otherwise specified)}$

Symbol	ool Parameter Conditions V _{CC}		25°C	T _A 74HC T _A = -40 to 85°C	T _A 54HC T _A = -55 to 125°C	Units		
				Тур		Guaranteed	Limits	
f _{MAX}	Maximum Operating Frequency		2.0V 4.5V0 6.0V		6 30 35	5 24 28	4 20 24	MHz MHz MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay Clock to Q ₄		2.0V 4.5V 6.0V	120 42 35	380 76 65	475 95 81	171 114 97	ns ns ns
t _{PHL}	Maximum Propagation Delay Reset to any Q		2.0V 4.5V 6.0V	72 24 20	240 48 41	302 60 51	358 72 61	ns ns ns
t _{PHL} , t _{PLH}	$\begin{array}{c} \text{Maximum Propagation} \\ \text{Delay Between Stages} \\ \text{Q}_n \text{ to } \text{Q}_{n+1} \end{array}$		2.0V 4.5V 6.0V		125 25 21	156 31 26	188 38 31	ns ns ns
t _{REM}	Mimimum Reset Removal Time		2.0V 4.5V 6.0V		100 20 17	125 25 21	150 30 25	ns ns ns
t _W	Mimimum Pulse Width		2.0V 4.5V 6.0V		80 16 14	100 20 17	120 24 20	ns ns ns
t _r , t _f	Maximum Input Rise and Fall Time		2.0V 4.5V 6.0V		1000 500 400	1000 500 400	1000 500 400	ns ns ns
t _{THL} , t _{TLH}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 10 9	75 15 13	95 19 16	110 22 19	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 6)	(per package)		55				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Note 5: Typical Propagation delay time to any output can be calculated using: $t_P = 17 + 12(N-1)$ ns; where N is the number of the output, C_W , at $V_{CC} = 5V$. Note 6: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} f + I_{CC}$.

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408