Ling 105 Sounds of Language

Thursday, September 26, 2024

Kevin Ryan

Spectrum & tonal compositionality

- Distribution of frequencies in a time-slice
- x = frequency (Hz); y = amplitude (dB)
- $\qquad \qquad Praat: \ \ 5*\sin(2*pi*100*x) + 1*\sin(2*pi*200*x) + 2*\sin(2*pi*300*x) \\$
- Real example: f0_demo

Spectrogram

- 3Ds in 2D: x = time; y = Hz; shading = amplitude
- Shows which frequency bands are loudest across time

Band pass filters

- High- & low-pass filters in Praat (thisisatest.wav)
 - Filter (pass Hann band) on side panel
 - Select cutoffs ("smoothing" must be > 0), e.g.
 - < 1000, 2000 > ("reporting from inside a space helmet")
 - < 2000, 20000 > ("suddenly rather British")
- Yanny-Laurel

That tone revisited

- Inspect rising tone
- Get f0: wavelength or "Show pitch"
- Be sure pitch range is calibrated in "Pitch settings": 80 to 140 Hz is good here (f0 in adults ranges from \sim 80 to \sim 260)
- Watch out for Praat's mixed axes! Pitch is on the right, in blue or purple

Formants: F1, F2, etc.

Formants: F1, F2, etc.

- Plotting
 - Label of axes
 - Ranges of axes
 - Plot some monophthongs
 - How does [υ] move at its end? How might one transcribe it more narrowly?

Formants

- F1 & F2 reflect the shape of the vocal tract (filter/resonators), not anything about the larynx (source)
- Observe F1 & F2 in "f0 demo"
- Non-f0 formants can shift up or down in tandem as a function of the overall size of the vocal tract (e.g. Praat "Convert gender"; try 2x and 0.5x)
- Why does helium make us squeak?

Tube models

- Easy to simulate vowels with tubes
- The larynx as a duck call (San Francisco Exploratorium)

Tube models

• Attach filters, e.g.

• Compare to vocal tract configurations

• F1 \sim pharynx; F2 \sim oral cavity (as always, bigger = lower)

Formants in whispering

- Whispered sounds have no f0
- But quality is still sometimes identifiable
- Does perceived pitch correspond more to F1 or F2?
- An early recognition of formants:

"The filling of a very deepe flaggon with a constant streame of beere [...] sounds ye vowells in this order: w, u, o, o, a, e, i, y"

— Isaac Newton, 12 years old (1665)

Acoustic vowel space

F1 vs. F2 raw

F1 vs. (F2–F1)

F2 vs. F2–F1 for "backness"

- Subtle difference, but L&J's rationale for using F2–F1:
 - Lip rounding decreases F2
 - This makes rounded vowels appear too far back, assuming we want the chart to represent vowel place (lingual position), not lip position
 - Subtracting F1 corrects for rounding, tilting the space counterclockwise (i.e. pushing lower vowels to the right)

Logarithmic transform of axes

