代数曲線暗号とその安全性

松尾 和人 (IISEC)

2007年8月23日 (2007年8月24日修正)

本講演の主旨

- 何故、代数曲線暗号なのか?
- 何故、種数1が利用されているのか?

内容:

- 1. 有限体上の離散対数問題とその解法
- 2. 楕円曲線暗号
- 3. 超楕円曲線暗号
- 4. 超楕円曲線上の離散対数問題の解法

Diffie-Hellman 鍵共有アルゴリズム (1976)

シ	システム設定			
p: 素数, b ∈	p : 素数, $b \in \mathbb{F}_p^*$ (s.t. $\langle b \rangle = \mathbb{F}_p^*$)			
鋖	鍵ベア生成			
	Aさん			
秘密鍵設定	$K_a \in \mathbb{Z}/(p-1)\mathbb{Z}$			
公開鍵計算	$K_a' = b^{K_a}$			
	公開鍵 K_a^\prime を公開			
	Bさん			
秘密鍵設定	$K_b \in \mathbb{Z}/(p-1)\mathbb{Z}$			
公開鍵計算	$K_b' = b^{K_b}$			
	公開鍵 K_b^\prime を公開			
共通鍵計算				
Aさん	$K = K_b^{\prime K_a}$ $K = K_a^{\prime K_b}$			
Bさん	$K = K_a^{\prime K_b}$			
同一の鍵 K を共有できた				

離散対数問題

- $\bullet \ K'_a \mapsto K_a$
- Given: p: prime, $b \in \mathbb{F}_p^*$, $a \in \langle b \rangle$ Find: $x \in \mathbb{Z}/(p-1)\mathbb{Z}$ s.t. $a = b^x$ Ind $_b a := x$
- 容易: $(x,b) \mapsto a = b^x$ $-x = (x_{k-1}x_{k-2} \dots x_1x_0)_2,$ $a = \prod_{0 \le i < k} b^{2^{x_i}},$ $n = O(\log p)$
- 困難: $(a,b) \mapsto x$

離散対数問題の難しさ

- 全数探索
 - -O(p)
- Square-root法 (Pollardのrho法)
 - $-O\left(\sqrt{l}\right)$
 - -l:p-1の最大素因子
- 指数計算法 (Adleman, 1979)
 - $-L_x(\alpha,\beta) := \exp \left(\beta(\log x)^{\alpha}(\log\log x)^{1-\alpha}\right)$
 - $-O(L_p(1/2,2+o(1)))$
 - $-O(L_p(1/3, 1.903 + o(1)))$

Pollard の ρ 法 (原型)の実際

Given: p = 47, a = 40, b = 11

Find: Ind_ba i.e. x s.t. $a \equiv b^x \mod p$

	1	2	თ	4	7	6
α	35	36	17	9	3	17
eta	3	41	15	0	28	14
$oxed{a^{lpha}b^{eta}}$ mod p	27	43	24	29	<u>30</u>	15

7	8	9	10
16	37	38	39
7	17	25	8
40	6	13	<u>30</u>

$$a^3b^{28} \equiv a^{39}b^8 \bmod p$$

$$\Rightarrow$$

$$a \equiv b^{(8-28)/(3-39)} \mod p$$

$$\Rightarrow$$

$$x \equiv \frac{8-28}{3-39} \equiv \frac{20}{36} \equiv 21 \mod p - 1$$

指数計算法の実際

Given: p = 47, a = 40, b = 11

Find: Ind_ba i.e. x s.t. $a \equiv b^x \mod p$

因子基底: $B = \{2, 3, 5, 7, 11, 13\}$

#B個のrelation:

$$\begin{pmatrix} 11^{42} \\ 11^{3} \\ 11^{29} \\ 11^{11} \\ 11^{31} \\ 11^{1} \end{pmatrix} = \begin{pmatrix} 2 \\ 15 \\ 10 \\ 39 \\ 35 \\ 11 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \times 5 \\ 2 \times 5 \\ 3 \times 13 \\ 5 \times 7 \\ 11 \end{pmatrix}$$

$$= \begin{pmatrix} 11^{\text{Ind}_{11}2} \\ 11^{\text{Ind}_{11}3} \times 11^{\text{Ind}_{11}5} \\ 11^{\text{Ind}_{11}2} \times 11^{\text{Ind}_{11}5} \\ 11^{\text{Ind}_{11}3} \times 11^{\text{Ind}_{11}13} \\ 11^{\text{Ind}_{11}5} \times 11^{\text{Ind}_{11}7} \\ 11^{\text{Ind}_{11}11} \end{pmatrix}$$

$$\begin{pmatrix}
42 \\
3 \\
29 \\
11 \\
31 \\
1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix} \begin{pmatrix}
Ind_{11}2 \\
Ind_{11}3 \\
Ind_{11}5 \\
Ind_{11}7 \\
Ind_{11}11 \\
Ind_{11}13
\end{pmatrix}$$

$$\begin{pmatrix} \text{Ind}_{11}2 \\ \text{Ind}_{11}3 \\ \text{Ind}_{11}5 \\ \text{Ind}_{11}7 \\ \text{Ind}_{11}11 \\ \text{Ind}_{11}13 \end{pmatrix} \equiv \begin{pmatrix} 42 \\ 16 \\ 33 \\ 44 \\ 1 \\ 41 \end{pmatrix} \mod p - 1$$

$$40 \times 11^{33} \equiv 12$$
$$\equiv 2^2 \times 3 \mod p$$

 \Rightarrow

$$Ind_{11}40 \equiv 2Ind_{11}2 + Ind_{11}3 - 33$$

 $\equiv 2 \times 42 + 16 - 33$
 $\equiv 21 \mod p - 1$

離散対数問題に必要な計算量

緑:全数探索

黄:Square-root法

赤:指数計算法的方法

安全な離散対数問題

- 離散対数問題の解読コスト
 - pのサイズに依存
- 2⁸⁰程度の手間はかけられない と考えられている
- $\Rightarrow 2^{80}$ 程度の手間が必要なpのサイズは?
 - Square-root 法: $\log_2 p \approx 160$
 - 指数計算法 : $\log_2 p \approx 1024$ (?)
 - 将来は?(漸近計算量):
 - Square-root法: log₂ p の指数時間
 - 指数計算法 : log₂ p の準指数時間
 - 何とかならないか?
 - 離散対数問題の一般化

離散対数問題の一般化と代数曲線暗号

- 離散対数問題
 - Given:

G: 有限可換群, $b \in G$, $a \in \langle b \rangle$

- Find: $x \in \mathbb{Z}/\#G\mathbb{Z} \text{ s.t. } a = [x]b$
- Square-root 法は一般に適用可:

* \sqrt{l} , l: #Gの最大素因子

- 指数計算法が適用できない*G* はあるか?
- 代数曲線暗号
 - 有限体の乗法群上の離散対数問題 に基づく暗号アルゴリズムを (有限体上の)平面代数曲線上の 群構造を利用して実現したもの

楕円曲線上の加算速度

$$E/\mathbb{F}_p$$
: $Y^2 = X^3 + a_4X + a_6$
 $P_1 = (x_1, y_1), P_2 = (x_2, y_2)$

$$P_3 = (x_3, y_3) = P_1 + P_2$$

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P_1 \neq P_2\\ \frac{3x_1^2 + a_4}{2x_1} & \text{if } P_1 = P_2 \end{cases}$$

$$x_3 = \lambda^2 - x_1 - x_2,$$

 $y_3 = \lambda(x_1 - x_3) - y_1$

\mathbb{F}_p 上の演算コスト:

ab:
$$M = O((\log p)^2)$$

$$a+b$$
, $-a$: $O(\log p) \ll M$ $a^{-1}: I \approx 20M$

加算: $I + 3M \approx 23M$

2倍算: $I+4M\approx 24M$

楕円曲線暗号の速度

楕円曲線暗号の安全性

$$- \# E(\mathbb{F}_p) = O(p)$$

- Square-root 法のみ適用可 Eの適切な選択の下:

$$O\left(\sqrt{\#E(\mathbb{F}_p)}\right) = O\left(\sqrt{p}\right)$$

 \mathbb{F}_p^* に対する指数計算法的方法と $E(\mathbb{F}_p)$ に対する square-root 法の計算量を考え合わせると

\mathbb{F}_p^*	$E(\mathbb{F}_p)$	Ratio
512	120?	4
1024	160?	6
2048	224?	9
3072	256?	12

現在では、 同一の安全性の下で、 楕円曲線暗号の方が高速

超楕円曲線暗号

$$C: Y^2 = F(X),$$

 $F(X) = X^{2g+1} + f_{2g}X^{2g} + \dots + f_0,$
 $f_i \in \mathbb{F}_p$

$$\mathcal{J}_C(\mathbb{F}_p) = \{ D = \{ P_1, \dots, P_n \in \}$$
$$\cup_{1 \le k \le g} C(\mathbb{F}_{p^k}) \setminus \{ P_\infty \} \} \mid 0 \le n \le g, D^p = D \}$$

$$\mathcal{J}_C(\mathbb{F}_p) = \{(U, V) \in (\mathbb{F}_p[X])^2 \mid$$

$$\operatorname{lc}(U) = 1,$$

$$\operatorname{deg} V < \operatorname{deg} U \le g,$$

$$U \mid F - V^2 \}$$

$$U = \prod_{1 \le i \le n} (X - x_i), \ y_i = V(x_i)$$
$$\# \mathcal{J}_C(\mathbb{F}_p) \approx p^g$$

因子類の加法公式

Input	Genus 2 HEC $C: Y^2 = F(X) = X^5 + f_3 x^3 + f_2 X^2 + f_1 X + f_0$,	
	Weight two coprime reduced divisors $D_1 = (U_1, V_1), D_2 = (U_2, V_2)$	
Output	A weight two reduced divisor $D_3 = (U_3, V_3) = D_1 + D_2$	
Step	Procedure	Cost
1	Compute the resultant r of U_1 and U_2 .	4M
	$\overline{z_1 \leftarrow u_{21} - u_{11}}; \ z_2 \leftarrow u_{21}z_1; \ z_3 \leftarrow z_2 + u_{10} - u_{20};$	
	$r \leftarrow u_{10}(z_3 - u_{20}) + u_{20}(u_{20} - u_{11}z_1);$	
2	If $r = 0$ then call the sub procedure.	
3	Compute $I_1 \equiv 1/U_1 \mod U_2$.	I + 2M
	$\overline{w_0 \leftarrow r^{-1}}; \ i_{11} \leftarrow w_1 z_1; \ i_{10} \leftarrow w_1 z_3;$	
4	Compute $S \equiv (V_2 - V_1)I_1 \mod U_2$. (Karatsuba)	5M
	$\overline{w_1 \leftarrow v_{20} - v_{10}}$; $w_2 \leftarrow v_{21} - v_{11}$; $w_3 \leftarrow i_{10}w_1$; $w_4 \leftarrow i_{11}w_2$;	
	$s_1 \leftarrow (i_{10} + i_{11})(w_1 + w_2) - w_3 - w_4(1 + u_{21});$	
_	$s_0 \leftarrow w_3 - u_{20}w_4;$	
5	If $s_1 = 0$ then call the sub procedure.	_
6	Compute $U_3 = s_1^{-2}((S^2U_1 + 2SV_1)/U_2 - (F - V_1^2)/(U_1U_2)).$	I + 5M
	$\overline{w_1 \leftarrow s_1^{-1}};$	
	$u_{30} \leftarrow w_1(w_1(s_0^2 + u_{11} + u_{21}) + 2(v_{11} - s_0w_2)) + z_2 + u_{10} - u_{20};$	
	$u_{31} \leftarrow w_1(2s_0 - w_1) - w_2;$	
	$u_{32} \leftarrow 1;$	
7	Compute $V_3 \equiv -(SU_1 + V_1) \mod U_3$.(Karatsuba)	5M
	$\overline{w_1 \leftarrow u_{30} - u_{10}}; \ w_2 \leftarrow u_{31} - u_{11};$	
	$w_3 \leftarrow s_1 w_2$; $w_4 \leftarrow s_0 w_1$; $w_5 \leftarrow (s_1 + s_0)(w_1 + w_2) - w_3 - w_4$	
	$v_{30} \leftarrow w_4 - w_3 u_{30} - v_{10};$	
	$v_{31} \leftarrow w_5 - w_3 u_{31} - v_{11};$	
Total		2I + 21M

In.	Genus 3 HEC $C: Y^2 = F(X) = X^7 + f_5 X^5 + f_4 X^4 + f_3 x^3 + f_2 X^2 + f_1 X + f_0$,	
	Reduced divisors $\mathcal{D}_1 = (U_1, V_1), \ \mathcal{D}_2 = (U_2, V_2),$	
	where $U_1 = X^3 + u_{12}X^2 + u_{11}X + u_{10}$, $V_1 = v_{12}X^2 + v_{11}X + v_{10}$,	
	$U_2 = X^3 + u_{22}X^2 + u_{21}X + u_{20}$, and $V_2 = v_{22}X^2 + v_{21}X + v_{20}$	
Out.	$U_2 = X^3 + u_{22}x^2 + u_{21}X + u_{20}$, and $V_2 = v_{22}X^2 + v_{21}X + v_{20}$ Reduced divisor $\mathcal{D}_O = (U_O, V_O) = \mathcal{D}_1 + \mathcal{D}_2$,	
	where $U_O = X^3 + u_{O2}X^2 + u_{O1}X + u_{O0}$, and $V_O = v_{O2}X^2 + v_{O1}X + v_{O0}$	
Step	Procedure	Cost
1	[Compute the resultant r of U_1 and U_2]	15M
	$t_0 = u_{10} - u_{20}$; $t_1 = u_{11} - u_{21}$; $t_2 = u_{12} - u_{22}$; $t_3 = t_1 - u_{22}t_2$; $t_4 = t_0 - u_{21}t_2$; $t_5 = t_4 - u_{22}t_3$;	
	$t_6 = u_{20}t_2 + u_{21}t_3$; $t_7 = t_4t_5 + t_3t_6$; $t_8 = -(t_2t_6 + t_1t_5)$; $t_9 = t_1t_3 - t_2t_4$; $t_7 = u_{20}(t_3t_9 + t_2t_8) - t_0t_7$;	
2	[If $r = 0$ then call the Cantor algorithm]	_
3	[Compute the pseudo-inverse $I=i_2x^2+i_1x+i_0\equiv r/U_1 \bmod U_2$]	_
	$i_2 = t_9$; $i_1 = t_8$; $i_0 = t_7$;	
4	[Compute $S' = s_2'x^2 + s_1'x + s_0' = rS \equiv (V_2 - V_1)I \mod U_2$ (Karatsuba, Toom)]	10M
	$t_1 = v_{10} - v_{20}$; $t_2 = v_{11} - v_{21}$; $t_3 = v_{12} - v_{22}$; $t_4 = t_2 i_1$; $t_5 = t_1 i_0$; $t_6 = t_3 i_2$; $t_8 = u_{22} t_6$;	
	$t_8 = t_4 + t_6 + t_7 - (t_2 + t_3)(i_1 + i_2); t_9 = u_{20} + u_{22}; t_{10} = (t_9 + u_{21})(t_8 - t_6);$	
	$t_9 = (t_9 - u_{21})(t_8 + t_6); s'_0 = -(u_{20}t_8 + t_5); s'_2 = t_6 - (s'_0 + t_4 + (t_1 + t_3)(t_0 + t_2) + (t_{10} + t_9)/2);$	
	$s'_1 = t_4 + t_5 + (t_9 - t_{10})/2 - (t_7 + (t_1 + t_2)(i_0 + i_1));$ [If $s'_2 = 0$ then call the Cantor algorithm]	
5	[If $s_2' = 0$ then call the Cantor algorithm]	-
6	[Compute S , w and $w_i = 1/w$ s.t. $wS = S'/r$ and S is monic]	I + 7M
	$t_1 = (rs'_2)^{-1}$; $t_2 = rt_1$; $w = t_1s'_2$; $w_i = rt_2$; $s_0 = t_2s'_0$; $s_1 = t_2s'_1$;	
7	[Compute $Z = X^5 + z_4X^4 + z_3X^3 + z_2X^2 + z_1X + z_0 = SU_1$]	4M
	$t_6 = s_0 + s_1$; $t_1 = u_{10} + u_{12}$; $t_2 = t_6(t_1 + u_{11})$; $t_3 = (t_1 - u_{11})(s_0 - s_1)$; $t_4 = u_{12}s_1$;	
	$z_0 = u_{10}s_0$; $z_1 = (t_2 - t_3)/2 - t_4$; $z_2 = (t_2 + t_3)/2 - z_0 + u_{10}$; $z_3 = u_{11} + s_0 + t_4$; $z_4 = u_{12} + s_1$;	
8	[Compute $U_t = X^4 + u_{t3}X^3 + u_{t2}X^2 + u_{t1}X + u_{t0} = (S(Z + 2w_iV_1) - w_i^2((F - V_1^2)/U_1))]$	13M
	$t_1 = s_0 z_3$; $u_{t3} = z_4 + s_1 - u_{22}$; $t_5 = s_1 z_4 - u_{22} u_{t3}$; $u_{t2} = z_3 + s_0 + t_5 - u_{21}$;	
	$t_3 = u_{21}u_{t2}$; $t_4 = t_1 - t_3$; $t_2 = (u_{22} + u_{21})(u_{t3} + u_{t2})$;	
	$u_{t2} = z_3 + s_0 + t_5 - u_{21}; \ u_{t1} = z_2 + t_6(z_4 + z_3) + w_i(2v_{12} - w_i) - (t_5 + t_2 + t_4 + u_{20});$	
	$u_{t0} = z_1 + t_4 + s_1 z_2 + w_i (2(v_{11} + s_1 v_{12}) + w_i u_{12}) - (u_{22} u_{t1} + u_{20} u_{t3});$	
9	[Compute $V_t = v_{t2}X^2 + v_{t1}X + v_{t0} \equiv wZ + V_1 \mod U_t$]	8M
	$t_1 = u_{t3} - z_4$; $v_{t0} = w(t_1u_{t0} + z_0) + v_{10}$; $v_{t1} = w(t_1u_{t1} + z_1 - u_{t0}) + v_{11}$;	
	$v_{t2} = w(t_1 u_{t2} + z_2 - u_{t1}) + v_{12}; \ v_{t3} = w(t_1 u_{t3} + z_3 - u_{t2})$	
10	[Compute $U_O = X^3 + u_{O2}X^2 + u_{O1}X + u_{O0} = (F - V_t^2)/U_t$]	7 <i>M</i>
	$t_1 = 2v_{t3}$; $u_{O2} = -(u_{t3} + v_{t3}^2)$; $u_{O1} = f_5 - (u_{t2} + u_{O2}u_{t3} + t_1v_{t2})$;	
	$u_{O0} = f_4 - (u_{t1} + v_{t2}^2 + u_{O2}u_{t2} + u_{O1}u_{t3} + t_1v_{t1});$	
11	[Compute $V_O = v_{O2}x^2 + v_{O1}x + v_{O0} \equiv -V_t \mod U_O$]	3M
	$v_{O2} = v_{t2} - u_{O2}v_{t3}; v_{O1} = v_{t1} - u_{O1}v_{t3}; v_{O0} = v_{t0} - u_{O0}v_{t3};$	
Total		I + 67M

超楕円暗号の速度

- 超楕円暗号の安全性
 - Square-root 法のみ適用可(?) C の適切な選択の下: $O\left(\sqrt{\#\mathcal{J}_C(\mathbb{F}_p)}\right) = O(\sqrt{p^g})$
- ullet 解読に 2^{80} 程度の手間がかかる $p \approx 2^{160/g}$

$$-g=1: p \approx 2^{160}$$

$$-g=2:p\approx 2^{80}$$

$$- g = 3 : p \approx 2^{54}$$

● 群演算一回あたりのコスト

$$-g = 1: I_{160} + 3M_{160} = 23M_{160}$$

$$-g = 2: I_{80} + 25M_{80} = 45M_{80}$$

$$-g = 3: I_{54} + 67M_{54} = 87M_{54}$$

$$\Rightarrow 23M_{160} > 45M_{80} > 87M_{54}$$
 (?)

超楕円曲線上の離散対数問題に対する 指数計算法

- Adleman-DeMarrais-Huang (1991)
 - 因子基底:素数 $< s \rightarrow \deg U < s$
 - 計算量: $O(L_{p^{2g+1}}(1/2,c<2.181))$, $\log p < (2g+1)^{0.98}$, $g \to \infty$
 - 改良の計算量: $O(L_{p^g}(1/2,*),$ $p^g \to \infty$ Enge, Gaudry-Enge
 - ⇒ 種数の大きな曲線は暗号利用不可
- Gaudry (1997)
 - 因子基底: deg U=1 i.e. $C(\mathbb{F}_p)$
 - 計算量: $O(p^2)$
 - 改良の計算量: $O(p^{2-2/g})$ Gaudry-Harley, Thériault, Nagao, Gaudry-Thomé-Thériault-Diem

Gaudry の指数計算法(簡易版)

$$p = 7$$

$$C/\mathbb{F}_p: Y^2 = X^{13} + 5X^{12} + 4X^{11} + 6X^9 + 2X^8 + 6X^7 + 5X^4 + 5X^3 + X^2 + 2X + 6$$

$\mathcal{J}_C(\mathbb{F}_p) = 208697$: 18 bit 素数

$$D_a = (X^6 + 2X^5 + 4X^4 + X^3 + 5X^2 + 3,$$

$$4X^5 + 5X^3 + 2X^2 + 5X + 4)$$

$$D_b = (X^5 + 6X^3 + 3X^2 + 1,$$
$$3X^4 + X^3 + 4X^2 + X + 3)$$

Find $\operatorname{Ind}_{D_b}D_a$ s.t. $D_a = [\operatorname{Ind}_{D_b}D_a]D_b$.

$$C(\mathbb{F}_p) = \{P_{\infty}, (1,1), (1,6), (2,1), (2,6), (4,1), (4,6)(5,3), (5,4), (6,3), (6,4)\}$$

 $\#C(\mathbb{F}_p) = 11$

因子基底:

$$B = \{(1,1), (2,1), (4,1), (5,3), (6,3)\}$$

$$[9343]D_b = ($$

$$X^5 + 6X^4 + 6X^3 + 5X^2 + 6X + 4$$
,
 $X^4 + X^3 + X^2 + 4X + 6$)

$$X^{5} + 6X^{4} + 6X^{3} + 5X^{2} + 6X + 4 =$$
$$(X - 1)^{2}(X - 4)^{2}(X - 5)$$

$$X^4 + X^3 + X^2 + 4X + 6 \mid_{X=1} = 6$$

$$X^4 + X^3 + X^2 + 4X + 6 \mid_{X=4} = 1$$

$$X^4 + X^3 + X^2 + 4X + 6 \mid_{X=5} = 3$$

 \Rightarrow

$$[9343]D_b = -[2](1,1) + [2](4,1) + (5,3)$$

$$\begin{pmatrix} [9343]D_b \\ [120243]D_b \\ [121571]D_b \\ [120688]D_b \\ [151649]D_b \end{pmatrix} =$$

$$\begin{pmatrix}
-2 & 0 & 2 & 1 & 0 \\
0 & -2 & 1 & 1 & -2 \\
-1 & 0 & 2 & -1 & -1 \\
2 & 1 & 0 & 2 & 0 \\
1 & 0 & 1 & -2 & 1
\end{pmatrix}
\begin{pmatrix}
(1,1) \\
(2,1) \\
(4,1) \\
(5,3) \\
(6,3)
\end{pmatrix}$$

$$\begin{pmatrix} \operatorname{Ind}_{D_b}(1,1) \\ \operatorname{Ind}_{D_b}(2,1) \\ \operatorname{Ind}_{D_b}(4,1) \\ \operatorname{Ind}_{D_b}(5,3) \\ \operatorname{Ind}_{D_b}(6,3) \end{pmatrix} \equiv \begin{pmatrix} 85159 \\ 114347 \\ 182999 \\ 22360 \\ 136908 \end{pmatrix}$$
 mod $\#\mathcal{J}_C(\mathbb{F}_p)$

$$D_a + [105454]D_b =$$
 $(1,1) + [2](2,1) + (4,1) - (6,3)$

計算量評価

$$\begin{pmatrix}
[9343]D_b \\
[120243]D_b \\
[121571]D_b \\
[120688]D_b \\
[151649]D_b
\end{pmatrix} = \begin{pmatrix}
\dots \\
\dots \\
\vdots \\
\dots \\
(6,3)
\end{pmatrix}$$

- $\bullet \#B = O(p)$
- 一行を得るために必要な試行回数
 - -g次モニック多項式の数: $O(p^g)$
 - -1次式の積に分解するg次モニック多項式の数: $O(p^g/g!)$
 - $\Rightarrow O(g!)$
- Jacobian 上の加算: $O(g^2(\log p)^2)$
- 多項式の因数分解: $O(g^3(\log p)^3)$
- $\Rightarrow O(g!g^3p(\log p)^3)$

Gaudryの指数計算の計算量

疎行列の線形代数:

$$O(gp^2(\log \# \mathcal{J}_C(\mathbb{F}_p))^2) = O(g^3p^2(\log p)^2)$$

トータル:

$$O(g!g^3p(\log p)^3) + O(g^3p^2(\log p)^2)$$

小種数曲線に対しては $\tilde{O}(p^2)$ と考えられる

一方、種数gの曲線に対するrho法の計算量:

$$\tilde{O}(\sqrt{\#\mathcal{J}_C(\mathbb{F}_p)}) = \tilde{O}(p^{g/2})$$

: 種数が4を越える曲線に対して、rhoより速くなる可能性有

アルゴリズムの最適化

発想 (Gaudry-Harley):

行列作成と線形代数の計算量のバランスをとる

 \Rightarrow

因子基底をより小さく取る

#
$$B = O(p^r)$$
, $0 < r < 1$ とする

$$\tilde{O}(p) + \tilde{O}(p^2) \rightarrow$$

$$\tilde{O}\left(\frac{p^g}{p^{rg}}p^r\right) + \tilde{O}\left(p^{2r}\right) = \tilde{O}\left(p^{g+(1-g)r} + p^{2r}\right)$$

$$r = \frac{g}{g+1} \Rightarrow$$

$$\tilde{O}\left(p^{g+(1-g)r} + p^{2r}\right) = \tilde{O}\left(p^{2g/(g+1)}\right)$$

種数が3を越える曲線に対して、 rhoより速くなる可能性有

Large primesの利用

計算量最適化の結果利用しなくなった リレーションの再利用:

$$B = \{(1,1), (2,1), (4,1)\}$$

$$B_L = \{(5,3), (6,3)\}$$

$$\begin{pmatrix}
[9343]D_b \\
[120243]D_b \\
[121571]D_b \\
[120688]D_b \\
[151649]D_b
\end{pmatrix} = \begin{pmatrix}
-2 & 0 & 2 & 1 & 0 \\
0 & -2 & 1 & 1 & -2 \\
-1 & 0 & 2 & -1 & -1 \\
2 & 1 & 0 & 2 & 0 \\
1 & 0 & 1 & -2 & 1
\end{pmatrix} \begin{pmatrix}
(1,1) \\
(2,1) \\
(4,1) \\
(5,3) \\
(6,3)
\end{pmatrix}$$

計算量を最適化するとこれらは利用できなく なる。しかし、実際には

$$[2 \times 9343 - 120688]D_a =$$

 $[-6](1,1) + [-1](2,1) + [4](4,1)$

が得られる (Thériault, single large prime) さらに、

$$[121571 + 151649]D_a =$$
 $[3](4,1) + [-3](5,3)$

等が得られる

(Nagao and GTTD, double large prime)

超楕円暗号の安全性

- 準指数時間計算量ではなく指数時間計算量
- gにより効果が異なる

その他の結果

- Non-hyper (degree d plane curves)
 - Diemのアルゴリズム

*
$$\tilde{O}\left(p^{2-2/(d-2)}\right)$$

- 準指数時間アルゴリズム

*
$$O\left(L_{p^g}(1/3,*)\right)$$
 (Enge-Gaudry, Diem)

- \bullet C/\mathbb{F}_{p^n}
 - Weil descent attack
 - * 種数のより大きな曲線 $/\mathbb{F}_p$ 上で指数計算法を適用
 - Generalized Weil descent attack

*
$$\tilde{O}\left(p^{2-1/(ng)}\right)$$
 ? (Semaev, Gaudry, Nagao)

研究課題

- 高速化
- 安全な曲線の構成
- 攻撃
- 暗号プロトコル (Pairingベース暗号)