

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Licenciatura en Ciencias de la Computación Facultad de Ciencias

Programa de la asignatura

Denominación de la asignatura:

Lógica Computacional

Clave:	Semestre:	Eje temático:				No. Créditos:
	4	Estructi	Estructuras Discretas			
Carácter: Obligatoria			Horas		Horas por semana	Total de Horas
Tipo: Teórico-Práctica			Teoría:	Práctica:		
			4	2	6	96
Modalidad: Curso			Duración del programa: Semestral			

Asignatura con seriación obligatoria antecedente: Álgebra Superior I;Estructuras Discretas

Asignatura con seriación obligatoria subsecuente: Complejidad Computacional

Asignatura con seriación indicativa antecedente: Álgebra Superior II

Asignatura con seriación indicativa subsecuente: Lenguajes de Programación; Inteligencia Artificial

Objetivo general:

Concer y aplicar la lógica como una herramienta formal de apoyo en diversas áreas de las ciencias de la computación.

Unidad	T	Horas		
	Temas	Teóricas	Prácticas	
I	Introducción	2	2	
II	Lógica proposicional	7	10	
III	Lógica de predicados de primer orden	8	10	
IV	Análisis de argumentos	6	8	
V	Sistemas deductivos	9	12	
VI	El paradigma de programación lógica	10	14	
VII	Extensiones y aplicaciones (opcional)	6	8	
	Total de horas:	48	64	
	Suma total de horas:	1	12	

Contenid	o temático			
Unidad	Tema			
I Introduce	ión			
I.1	Importancia de la lógica para las ciencias computacionales.			
1.2	Panorama de aplicaciones en distintas áreas de las ciencias de la computación.			
II Lógica p	roposicional			
II.1	Sintaxis: lenguaje formal, recursión e inducción estructural.			
II.2	Sustitución textual.			
II.3	Semántica: funciones de interpretación.			
II.4	Decidibilidad de la lógica proposicional.			
II.5	Análisis de argumentos lógicos: interpretaciones y/o tableaux semánticos (reglas α y β).			
II.6	Resolución binaria: formas normales negativa y conjuntiva, resolución binaria proposicional, algoritmos de saturación, el problema SAT.			
	de predicados de primer orden			
III.1	Sintaxis y ejemplos de especificación formal.			
III.2	Conceptos sintácticos: recursión e inducción estructural en términos y fórmulas, ligado de variables.			
III.3	Sustitución: el problema de la sustitución textual y la captura de variables libres, definición y α-equivalencia, definición formal de sustitución.			
III.4	Semántica: introducción; interpretación de términos y fórmulas; definición de satisfacción de Tarski.			
III.5	Conceptos semánticos: verdad, modelos, validez y equivalencia lógica.			
IV Análisis	de argumentos			
IV.1	La noción de consecuencia lógica.			
IV.2	Argumentos incorrectos: construcción de modelos contraejemplo.			
IV.3	El teorema de indecidibilidad de Church.			
V Sistema	s deductivos			
V.1	Generalidades: reglas de inferencia; correctud, completud y completud refutacional.			
V.2	Tableaux semánticos: reglas γ y δ .			
V.3	Deducción natural: uso de contextos; lógica minimal, intuicionista y clásica; el teorema de completud de Gödel.			
V.4	Formas normales: prenex, de Skolem, forma clausular.			
V.5	Resolución binaria: cláusulas cerradas; unificación: unificadores más generales, algoritmo de Martelli-Montanari; algoritmos de saturación; estrategias de derivación (resolución lineal, resolución unitaria, conjunto de soporte).			
VI El para	digma de programación lógica			
VI.1	Resolución SLD: cláusulas de Horn y programas lógicos.			
VI.2	Semántica operacional y declarativa; modelos de Herbrand.			
VI.3	El lenguaje de programación PROLOG : aritmética, listas, árboles, el operador de corte.			
	iones y aplicaciones (opcional a elegir alguno de los siguientes temas u otro lo a criterio del profesor)			
VII.1	Introducción a los sistemas de tipos; la correspondencia de Curry-Howard.			

VII.2	Lógicas no clásicas: modal, temporal, de Hoare, dinámica, etcétera.
VII.3	Lógicas de orden superior: lógica de segundo orden, lógicas relacionales

Bibliografía básica:

- 1. Huth M., Ryan M. Logic in Computer Science, modelling and reasoning about systems. 2nd Edition, Cambridge University Press 2004.
- 2. Nerode A., Shore R.A. *Logic for Applications. 2nd. Edition*. Graduate Texts in Computer Science. Springer 1997.

Bibliografía complementaria:

- 1. Ben-Ari M. *Mathematical Logic for Computer Science. 2nd Edition, 3rd corrected printing.* Springer 2008.
- 2. Fitting M., *First-Order Logic and Automated Theorem Proving*. Graduate Texts in Computer Science. 2nd. Edition. Springer 1996.
- 3. Sperschneider V., Antoniou G. *Logic, A Foundation for Computer Science*. Addison-Wesley 1991.
- 4. Socher-Ambrosius R., Johann P. *Deduction Systems*. Graduate Texts in Computer Science. Springer 1997.

Sugerencias didácticas:		Métodos de evaluación:	
Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios	(X) () (X) (X)	Exámenes parciales Examen final escrito Trabajos y tareas fuera del aula Exposición de seminarios por los alumnos	(X) (X) (X) ()
Lecturas obligatorias Trabajo de investigación Prácticas de taller o laboratorio	(X) (X) (X)	Participación en clase Asistencia Seminario	(X) () ()
Prácticas de campo Otras:	() —	Otras: Prácticas de laboratorio. Proyectos de programación.	

Perfil profesiográfico:

Egresado preferentemente de la Licenciatura en Ciencias de la Computación o Matemático con especialidad en Computación. Es conveniente que posea un posgrado en la disciplina. Con experiencia docente.