Name:

Mat 115 Worksheet 7 Tuesday, Oct 24 2017

Important info: Welcome to the MAT 115 workshops! My name is **Diego Avalos** (avalosgalvez@cpp.edu), and I will be your workshop facilitator. We meet on Tuesdays and Thursdays from 4 to 5:50 pm. My office hour is on Mondays from 11:30 am to 12:30 pm in room 94-219. All worksheets and solutions may be found at the website www.diegoavalos.net/teaching/mat115workshop2017.

Use the slicing method for problems 1 to 4.

1. Find the volume of the solid that results when the region enclosed by the given curves is revolved about the *x*-axis

(a)
$$y = \sqrt{25 - x^2}$$
, $y = 3$

(b)
$$x = \sqrt{y}, x = y/4$$

2. Find the volume of the solid that results when the region enclosed by the given curves is revolved about the *y*-axis

(a)
$$x = \csc y$$
, $y = \pi/4$, $y = 3\pi/4$, $x = 0$

(b)
$$x = y^2, x = y + 2$$

- 3. Find the volume of the solid whose base is the region bounded between the curve $y = x^3$ and the *y*-axis from y = 0 to y = 1 and whose cross sections taken perpendicular to the *y*-axis are squares.
- 4. A nose cone for a space reentry vehicle is designed so that a cross section, taken x ft from the tip and perpendicular to the axis of symmetry, is a circle of radius $\frac{1}{4}x^2$ ft. Find the volume of the nose cone given that its length is 20 ft.
- 5. Use cylindrical shells to find the volume of the solid generated when the region enclosed by the given curves is revolved about the *y*-axis.

(a)
$$y = x^3$$
, $x = 1$, $y = 0$

(b)
$$y = 1/x$$
, $y = 0$, $x = 1$, $x = 3$

(c)
$$y = 2x - 1$$
, $y = -2x + 3$, $x = 2$

- 6. Use cylindrical shells to find the volume of the solid that is generated when the region that is enclosed by $y = 1/x^3$, x = 1, x = 2, y = 0 is revolved about the line x = -1.
- 7. Use cylindrical shells to find the volume of the torus obtained by revolving the circle $x^2 + y^2 = a^2$ about the line x = b, where b > a > 0.