Experiment-5

Kinetics Study in a Batch Reactor

18CH10071, Anshuman Agrawal

Objectives

- 1. To determine order of reaction between NaOH and CH₃COOC₂H₅
- 2. To find the rate constant at three temperatures
- 3. To determine the activation energy and the frequency factor

Theory

Stoichiometric equation:

 $NaOH + CH_3COOC_2H_5 \rightarrow CH_3COONa + C_2H_5OH$

(A)

(B)

(C)

(D)

Rate equation:

$$r_A = -\frac{dC_A}{dt} = k_2 C_2 A_0 (1 - X_A) (M - X_A)$$
 (assuming 2nd order reaction)

Where $M = \frac{c_{B_0}}{c_{A_0}}$; $t = time in min; X_A = conversion of A; <math>k_2 = rate constant in 1 \text{ gmol}^{-1} \text{ min}^{-1}$

Integrated form: $\ln \frac{M-X_A}{M(1-X_A)} = C_{A_0}(M-1)k_2t$, where $M \neq 1$

Apparatus

- 1. Stainless steel batch reactor fitted with stirrer
- 2. Constant temperature bath
- 3. Stop Watch
- 4. Titration Flask

Chemicals Used

- 1. N/20 NaOH solution
- 2. N/50 Succinic acid solution
- 3. Pure ethyl acetate
- 4. Phenolphthalein

Procedure

- 1. 1 litre of given NaOH solution and 9 ml of ethyl acetate are added at the same time to a batch reactor and stop watch is started.
- 2. 5 ml solution is pipettes out of the reactor at each one-minute interval and titrated against given succinic acid solution with phenolphthalein as indicator. At least 5 samples are taken at definite time intervals.
- 3. Repeat the experiment for 3 temperatures: room temperature, 45 °C, and 10 °C. For low temperature, samples are taken at 2-minute intervals.
- 4. Titrate 5 ml of the given NaOH with succinic acid using phenolphthalein indicator to get C'_{A_0} gmol/l.
- 5. Find rate constant k_2 from the plot of $\ln \frac{M-X_A}{M(1-X_A)}$ vs t.
- 6. Determine at k_2 at 3 different temperatures and plot $\ln k_2$ vs 1/T.

Observations and Calculations

$$C_{A0} = 0.048 \text{ M}$$

$$C_{B0} = 0.091 \text{ M}$$

Volume of sample = 5 ml

$$M = \frac{c_{B_0}}{c_{A_0}} = 1.89583333$$

$$X_A = \frac{c_{A_0} - c_A}{c_{A_0}}$$

Temp.(K)	Time (min)	Volume of succinic acid	Conc. (C _A)	Conversion (X _A)	ln ((M- X _A)/(M(1-X _A)))	Rate Constant (k ₂)	
303.15	3	2	0.008	0.83333333	1.212725595	1.34186047	
	6	1.8	0.0072	0.85	1.302275505		
	9	1.5	0.006	0.875	1.460402333		
	12	1.1	0.0044	0.90833333	1.737359192		
285.15	3	5.2	0.0208	0.56666667	0.481141708	0.98837209	
	6	4.4	0.0176	0.63333333	0.596737495		
	9	3.6	0.0144	0.7	0.743157601		
	12	3.1	0.0124	0.74166667	0.857224626		
313.15	3	1.3	0.0052	0.89166667	1.5870419		
	6	1	0.004	0.91666667	1.824194745	1.91627907	
	9	0.7	0.0028	0.94166667	2.155006178		
	12	0.6	0.0024	0.95	2.300384872		

Temp. T (K)	1/T (K ⁻¹)	Rate Constant (k ₂)	ln (k ₂)
303.15	0.0032987	1.34186	0.29405706
285.15	0.0035069	0.988372	-0.01169604
313.15	0.0031934	1.916279	0.65038532

```
Sample calculation:
. T= 303.15 K , t= 3 min
 Allune of succini acid = 2 ml.
 strength of succine acid = 0-02 N.
mea balance:-
N_1 N_1 = N_2 N_2 = 2 \times 0.02 = N_2 \times 5
                => N2 = 0.008 N
CA = No 20-008 M ( :: NOOH is monorcide have)
XA = CAD-CA : 0.048-0.008 : 0.83333
     CAO 0-000.048
... In (M-XA) = In (M-0.8333)
 M = CB = 0.091 = 1.89583333
· CAP 0.048
In (1.89583333 = 0.8333) = 1.212725595
     1-89583333 (1-0.8333)
similarly, calculating for other t and plotting
ky obtained from slope = Nope GAO (M-1)
```

Plots

Results

Temp. T (K)	Rate Constant k ₂ (l gmol ⁻¹ min ⁻¹)	Activation Energy (kJ/ mol)	Frequency Factor (l gmol ⁻¹ min ⁻¹)
303.15	1.34186		
285.15	0.988372	16.8	1150.32
313.15	1.916279		

Discussion

- 1. On comparing the values of rate constant obtained with that of plug flow reactor and continuously stirred tank reactor, it is to be noted that the plug flow reactor gave more accurate results when compared with the value given in literature.
- 2. Care needs to be taken that phenolphthalein is not to be added in excess to the solution being titrated.
- 3. The titration should be performed carefully so as to obtain the titre value with the last drop, otherwise significant error can be observed in the calculations.
- 4. The lower meniscus of succinic acid in burette is to be noted correctly to avoid parallax error.
- 5. The rate constant at lower temperature rightly decreased as compared to other temperatures and it is evident from the Arrhenius equation.

- 6. Some error can also come up while handling the stopwatch, because it's not necessary that it can be stopped at the right instant to take samples in equal intervals.
- 7. It's justified to take samples at larger intervals for cold temperature because the activity is reduced and thus, a noticeable change in concentration might not be visible.