RELATÓRIO TÉCNICO

Este relatório consiste em demonstrar algumas analises a partir de três funções.

Função 1 (referente a equação 2 da lista): $f(x) = sin^2(x) + 2 sin^4(2x)$

Deseja-se obter uma aproximação numérica da integral para descobrirmos a área aproximada sob a curva, logo

$$\int_a^b \sin^2(x) + 2\sin^4(2x) \, dx$$

Para isso, utilizaremos dois métodos: a Regra do Trapézio e Regra de Simpson.

Ambas as regras irão utilizar: a=0 e $b=\pi$

Regra do Trapézio e Regra de Simpson: Utilizando o Python para realizar tais métodos iremos obter:

Função: sin^2(x) + 2*sin^4(2x) , com a = 0 e b = pi Valor exato: 3.92699081698724139500 ==> Regra dos Trapézios				
n	integral	erro		
4	4.71238898038468967400	0.200000000000000001110		
10	3.92699081698724139500	0.0000000000000000000000000000000000000		
50	3.92699081698724006273	0.0000000000000033926		
100	3.92699081698724183909	0.00000000000000011309		
150	3.92699081698723828637	0.00000000000000079160		
200	3.92699081698724006273	0.0000000000000033926		
300	3.92699081698723562184	0.0000000000000147012		
400	3.92699081698724139500	0.0000000000000000000000000000000000000		
500	3.92699081698724672407	0.0000000000000135704		
600	3.92699081698723873046	0.00000000000000067852		
700	3.92699081698724139500	0.0000000000000000000000000000000000000		
800	3.92699081698724139500	0.0000000000000000000000000000000000000		
900	3.92699081698724405953	0.00000000000000067852		
==> R	egra de Simpson			
n	integral	erro		
 4	5.75958653158128708327	0.466666666666666666		
10	3.92699081698724139500	0.0000000000000000000000000000000000000		
50	3.92699081698724183909	0.0000000000000011309		
100	3.92699081698724272727	0.00000000000000033926		
150	3.92699081698724183909	0.00000000000000011309		
200	3.92699081698724183909	0.00000000000000011309		
300	3.92699081698724272727	0.0000000000000033926		
100	3.92699081698724050682	0.00000000000000022617		
500	3.92699081698723961864	0.00000000000000045235		
600	3.92699081698724405953	0.00000000000000067852		
700	3.92699081698724095091	0.0000000000000011309		
800	3.92699081698724183909	0.00000000000000011309		
900	3.92699081698724139500	0.0000000000000000000000000000000000000		

(Tabela 1)

A partir destes dados, é possível tirar algumas conclusões:

- Em n=4, a Regra dos Trapézios tem um erro menor, em relação a Regra de Simpson
- Em n = 10, ambas as regras chegam no valor exato da integral.
- A Regra dos Trapézios chega quatro vezes no valor exato, dado os subintervalos, enquanto pela Regra de Simpson ela chega duas vezes.

Utilizando o Matplotlib é possível gerar o gráfico dessa função:

- Para gerar foi usado:
 - a=0
 - $b=\pi$
 - Step = 0.01

Além disso, também é possível gerar o gráfico com os valores da integral dos dois métodos:

Note que, para gerar o gráfico (figura 1.2) foi usado os valores das integrais calculadas pelo Python e utilizado como subintervalo, os valores da abscissa. Tomando o número de subintervalos n=4 é capaz de notar uma diferença de valores para a integral, tanto para a Regra dos Trapézios quanto para a Regra de Simpson, porém a Regra dos Trapézios é mais próximo do valor nesse subintervalo. Para os demais valores, foi gerado um gráfico de erro (figura 1.3) que será apresentado a seguir:

Repare que para gerar esse gráfico foi usado excluído o subintervalo n=4 para poder visualizar melhor a variação do erro. Com base nisso, é possível tirar mais conclusões:

- Embora a Regra dos Trapézios consiga chegar quatro vezes no valor exato da integral, sua variação é grande.
- A Regra de Simpson tem uma variação menor de erro, se compararmos a Regra dos Trapézios
- Essas variações "estranhas" podem ser explicadas pelo gráfico da função (figura 1.1)

Função 2 (referente a equação 5 da lista): $f(x) = 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5$

Deseja-se obter uma aproximação numérica da integral para descobrirmos a área aproximada sob a curva, logo

$$\int_{a}^{b} 0.2 + 25x - 200x^{2} + 675x^{3} - 900x^{4} + 400x^{5} dx$$

Para isso, utilizaremos dois métodos: a Regra do Trapézio e Regra de Simpson.

Ambas as regras irão utilizar: a = 0 e b = 0.8

Regra do Trapézio e Regra de Simpson: Utilizando o Python para realizar tais métodos iremos obter:

Função: 0.2 + 25x - 200x^2 + 675x^3 - 900x^4 + 400x^5 , com a=0 e b=0.8 Valor exato: 1.6405300000000004377 ==> Regra dos Trapézios				
n	integral	erro		
4	1.48480000000000678106	0.09492663956160098115		
10	1.61504256000001089610	0.01553610113804023557		
50	1.63950950809600404234	0.00062205013257666815		
100	1.64027734425600213441	0.00015400860941153734		
150	1.64041955771311909196	0.00006732110164456110		
200	1.64046933401599881464	0.00003697950296625428		
300	1.64050488902373747813	0.00001530662423885308		
400	1.64051733337599880969	0.00000772105600094731		
500	1.64052309335080792607	0.00000421001090630327		
600	1.64052622223064914486	0.00000230277370782546		
700	1.64052810884808697445	0.00000115276886924916		
800	1.64052933333600026167	0.00000040637111164203		
900	1.64053017284116919861	0.00000010535690853251		

n	integral	erro
4	1.623466666666667172052	0.01040111021031515579
10	1.64009642666667687649	0.00026428857340199039
50	1.64053263428267048774	0.00000160575098928027
100	1.64053328964266742496	0.00000200523164305510
150	1.64053332470307888791	0.00000202660303611890
200	1.64053333060266415266	0.00000203019918203806
300	1.64053333279394197852	0.00000203153489539036
400	1.64053333316266614084	0.00000203175965456107
500	1.64053333326342776211	0.00000203182107472484
600	1.64053333329962169884	0.00000203184313706855
700	1.64053333331513773174	0.00000203185259500770
800	1.64053333332266570999	0.00000203185718375538
900	1.64053333332667361510	0.00000203185962681044

(Tabela 2)

A partir destes dados, é possível tirar algumas conclusões:

- Nenhum dos métodos nos subintervalos propostos, consegue chegar no valor exato da integral.
- A partir de n=100 até n=900, a Regra de Simpson pouco varia, porém com um erro relativamente alto.

Utilizando o Matplotlib é possível gerar o gráfico dessa função:

- Para gerar foi usado:
 - a=0
 - b = 0.8
 - Step = 0.01

Além disso, também é possível gerar o gráfico com os valores da integral dos dois métodos:

Note que, para gerar o gráfico (figura 2.2) foi usado os valores das integrais calculadas pelo Python e utilizado como subintervalo, os valores da abscissa. Tomando o número de subintervalos n=4 é capaz de notar uma diferença de valores para a integral, tanto para a Regra dos Trapézios quanto para a Regra de Simpson, porém a Regra de Simpson é mais próximo do valor nesse subintervalo. Em n=10 o valor da Regra de Simpson fica bem próxima do valor real, enquanto que pela Regra dos Trapézios ainda há um erro grande. Para os demais valores, foi gerado um gráfico de erro (figura 2.3) que será apresentado a seguir:

Repare que para gerar esse gráfico foi usado excluído os subintervalos $n=4\ e\ n=10$ para poder visualizar melhor a variação do erro. Com base nisso, é possível tirar mais conclusões:

- A Regra dos Trapézios, demonstra ainda em n=200 uma variação de erro "relativamente grande" até chegar no valor aproximado da integral.
- A Regra de Simpson tem uma variação bem menor (não é possível notar nesse gráfico) desde n=50, se compararmos com a Regra dos Trapézios
- Se observarmos a Tabela 2 notamos que, quanto maior o n, mais próximo do valor exato da integral fica o cálculo pela Regra dos Trapézios, enquanto pela Regra de Simpson se considerarmos n=50 é o valor mais aproximado da integral.

Função 3 (referente a equação 7 da lista): $f(x) = x \sin(x)$

Deseja-se obter uma aproximação numérica da integral para descobrirmos a área aproximada sob a curva, logo $\int_a^b x \sin(x) \ dx$

Para isso, utilizaremos dois métodos: a Regra do Trapézio e Regra de Simpson.

Ambas as regras irão utilizar: a=0 e $b=\pi$

Regra do Trapézio e Regra de Simpson: Utilizando o Python para realizar tais métodos iremos obter:

Função: x*sin(x) , com a = 0 e b = pi Valor exato: 3.14159265358979311600 ==> Regra dos Trapézios				
n	integral	erro		
4	2.97841660004588959509	0.05194055103148006308		
10	3.11571148683107024269	0.00823823124527278509		
50	3.14055904302301636122	0.00032900846186907217		
100	3.14133426370041712872	0.00008224805627831278		
150	3.14147781468844522479	0.00003655435761751882		
200	3.14152805691440084601	0.00002056176039196473		
300	3.14156394402187766346	0.00000913853929555351		
400	3.14157650447075198485	0.00000514042424395094		
500	3.14158231815743294035	0.00000328987029822778		
600	3.14158547620765249420	0.00000228463169227890		
700	3.14158738041171714528	0.00000167850471318910		
800	3.14158861631314545448	0.00000128510507020961		
900	3.14158946364298419240	0.00000101539160568082		
==> Re	egra de Simpson			
n	integral	erro		
4	3.14875509997040614607	0.00227987749221043694		
10	3.14176468298592226347	0.00005475865750213518		
50	3.14159292573518689196	0.00000008662656931827		
100	3.14159267059288493940	0.00000000541225222308		
150	3.14159265694820977188	0.00000000106901722349		
200	3.14159265465239379012	0.00000000033823629964		
300	3.14159265379968655196	0.00000000006681115571		
400	3.14159265365620443688	0.00000000002113937999		
500	3.14159265361699491237	0.00000000000865860071		
600	3.14159265360290884672	0.00000000000417486675		
700	3.14159265359687278618	0.00000000000225352901		
800	3.14159265359394312966	0.0000000000132099038		
900	3.14159265359238482063	0.00000000000082496521		

(Tabela 3)

A partir destes dados, é possível tirar algumas conclusões:

- Quanto maior o n, pela Regra dos Trapézios e pela Regra de Simpson, o valor fica cada vez mais próximo do valor da integral, porém a Regra de Simpson demonstra ser mais viável.
- Nenhum dos métodos nos subintervalos propostos, consegue chegar no valor exato da integral.

Utilizando o Matplotlib é possível gerar o gráfico dessa função:

- Para gerar foi usado:

- a=0
- $b=\pi$
- Step = 0.01

Além disso, também é possível gerar o gráfico com os valores da integral dos dois métodos:

Note que, para gerar o gráfico (figura 3.2) foi usado os valores das integrais calculadas pelo Python e utilizado como subintervalo, os valores da abscissa. Tomando o número de subintervalos n=4 é capaz de notar uma diferença de valores para a integral, tanto para a Regra dos Trapézios quanto para a Regra de Simpson, porém a Regra de Simpson é mais próximo do valor nesse subintervalo. Em n=10 o valor da Regra de Simpson fica bem próxima do valor real, enquanto que pela Regra dos Trapézios ainda há um erro considerável. Para os demais valores, foi gerado um gráfico de erro (figura 2.3) que será apresentado a seguir:

Repare que para gerar esse gráfico foi usado excluído os subintervalos $n=4\ e\ n=10$ para poder visualizar melhor a variação do erro. Com base nisso, é possível tirar mais conclusões:

- A Regra dos Trapézios, demonstra ainda em n=300 uma variação de erro "relativamente pequena, porém visível" até chegar no valor aproximado da integral.
- A Regra de Simpson tem uma variação bem menor (não é possível notar nesse gráfico) desde n=50, se compararmos com a Regra dos Trapézios
- ullet Se observarmos a Tabela 3 notamos que, quanto maior o n, mais próximo do valor exato da integral fica o cálculo pela Regra de Simpson, enquanto pela Regra dos Trapézios se considerarmos o mesmo subintervalo n ainda há um erro considerável.