

Recitations 8

[Definitions used today]

- Correspondences: nonempty valued, single valued, closed valued, compact valued, convex valued, closed graph, convex graph, upper hemi-continuity, lower hemi-continuity, continuity.
- Sequential characterization of uhc and lhc, Berge (1963) maximum theorem

This section comes from math appendix chapter 5 - Correspondences Let $\Theta \subseteq \mathbb{R}^n, X \subseteq \mathbb{R}^n$.

Definition 0.1. A correspondence $\Gamma:\Theta\rightrightarrows X$ is a map s.t. $\Gamma(\Theta)\subseteq X$. $(\Gamma:\Theta\to 2^X)$

Definition 0.2. (Graph of correspondence). $Gr(\Gamma) = \{(\theta, x) : \theta \in \Theta, x \in \Gamma(\theta)\}$

Definition 0.3. (Properties of correspondences).

- 1. not empty valued if $\Gamma(\theta) \neq \emptyset \quad \forall \theta$
- 2. single valued if $|\Gamma(\theta)| = 1 \quad \forall \theta$
- 3. **closed valued** if $\Gamma(\theta)$ is closed set $\forall \theta$
- 4. **compact valued** if $\Gamma(\theta)$ is compact set $\forall \theta$
- 5. convex valued if $\Gamma(\theta)$ is convex set $\forall \theta$
- 6. closed (graph) if $Gr(\Gamma)$ is closed subset of $\mathbb{E} \times X$
- 7. convex (graph) if $Gr(\Gamma)$ is convex on $\Theta \times X$

Lemma 0.4. $Gr(\Gamma)$ is closed graph $\iff \forall_{\theta:\theta_n\to\theta}\forall_{x_n\to x}: x_n\in\Gamma(\theta_n) \Rightarrow x\in\Gamma(\theta)$

Lemma 0.5. Gr(Γ) is convex graph $\iff \forall_{\theta}, \theta', x \in \Gamma(\theta), x' \in \Gamma(\theta')$ it holds that $\lambda x + (1 - \lambda)x' \in \Gamma(\theta\lambda + (1 - \lambda)\theta') \forall_{x \in [0,1]}$

Lemma 0.6. $\Gamma:\Theta \rightrightarrows X$ has closed graph \Rightarrow it is closed valued. If X is compact, than Γ is also compact valued.

Definition 0.7. (Upper Hemi-Continuity) Let $\Gamma: \Theta \rightrightarrows X$ be a correspondence.

- Γ is said to be **upper hemi-continuous** (uhc) at a point $\theta \in \Theta$ if and only if for all open sets $V \subseteq X$ such that $\Gamma(\theta) \subseteq V$, there exists an open set $U \subseteq \Theta$ such that $\theta \in U$ and for all $\theta' \in U$ it holds that $\Gamma(\theta') \subseteq V$
- A compact valued correspondence $\Gamma: \Theta \rightrightarrows X$ is u.h.c. at $\theta \in \Theta$ if and only if for every $\{\theta_n\} \subset \Theta$ such that $\theta_n \to \theta$ and every sequence $\{x_n\} \subset X$ such that $x_n \in \Gamma(\theta_n)$ there exits a convergent subsequence $\{x_{n_k}\}$ such that $x_{n_k} \to x \in \Gamma(\theta)$

$$\forall_{\theta_n \to \theta} \forall_{x_n \in \Gamma(\theta_n)} \exists_{\left\{x_{n_k}\right\}} x_{n_k} \to x \in \Gamma(\theta)$$

Definition 0.8. (Lower Hemi-Continuity). Let $\Gamma: \Theta \rightrightarrows X$ be a correspondence.

- Γ is said to be **lower hemi-continuous** (1hc) at a point $\theta \in \Theta$ if and only if for all open sets $V \subseteq X$ such that $\Gamma(\theta) \cap V \neq \emptyset$, there exists an open set $U \subseteq \Theta$ such that $\theta \in U$ and for all $\theta' \in U$ it holds that $\Gamma(\theta') \cap V \neq \emptyset$
- A correspondence $\Gamma: \Theta \rightrightarrows X$ is l.h.c. at $\theta \in \Theta$ if for all $x \in \Gamma(\theta)$ and all sequences $\{\theta_n\} \subset \theta$ such that $\theta_n \to \theta$ there exits a sequence $\{x_n\} \subset X$ such that $x_n \in \Gamma(\theta_n)$ and $x_n \to x$

$$\forall_{\theta_n \to \theta} \forall_{x \in \Gamma(\theta)} \exists_{x_n \in \Gamma(\theta_n)} x_n \to x$$

Definition 0.9. (Continuity) Γ is said to be continuous at a point $\theta \in \Theta$ if it is both UHC an LHC.

Lemma 0.10. (u.h.c and Closed graph) Let $\Gamma:\Theta \rightrightarrows X$. If Γ is u.h.c, then Γ is closed (has a closed graph).

Lemma 0.11. (Closed graph and u.h.c.) Let $\Gamma:\Theta \rightrightarrows X$. If X is compact and Γ is closed (has a closed graph), then Γ is u.h.c.

- Recitations 8 2

Theorem 0.12. (Berge (1961) of Maximum) Let $\Theta \subseteq \mathbb{R}^m$ and $X \subseteq \mathbb{R}^n$, let $f : \Theta \times X \to \mathbb{R}$ be a continuous function and $\Gamma : \Theta \rightrightarrows X$ a nonempty, compact valued, continuous correspondence. Define:

$$v(\theta) = \max_{x \in \Gamma(\theta)} f(x, \theta) \quad G(\theta) = \{x \in \Gamma(\theta) \mid f(x, \theta) = v(\theta)\}$$

Then

- $v:\Theta \to X$ is continuous
- $G: \Theta \rightrightarrows X$ is nonempty and compact valued, and UHC

Proof. The proof is divided in three parts. First it is proven that G is nonempty and compact valued, then that it is u.h.c. and finally that v is continuous.

- 1. G is nonempty valued and compact valued.
 - Let $\theta \in \Theta$, by hypothesis $\Gamma(\theta)$ is compact and nonempty. since $f(\cdot, \theta)$ is continuous a maximum is attained on $\Gamma(\theta)$ by the extreme value theorem (Weierstrass). This proves that $G(\theta)$ is nonempty for arbitrary θ .
 - Let $\theta \in \Theta$, by hypothesis $\Gamma(\theta)$ is compact and nonempty. since $G(\theta) \subseteq \Gamma(\theta)$ it follows that $G(\theta)$ is bounded, it is left to show closedness to establish compactness. Let $x_n \to x$ and $x_n \in G(\theta)$ for all n. Clearly $x_n \in \Gamma(\theta)$ for all n, since Γ is closed valued it follows that $x \in \Gamma(\theta)$, so its feasible. By definition of G we have $v(\theta) = f(x_n, \theta)$ for all n, since f is continuous we get $v(\theta) = \lim_{n \to \infty} f(x_n, \theta) = f(x, \theta)$, then by definition $x \in G(\theta)$, which proves closedness.
- 2. G is u.h.c. Consider $\theta \in \Theta$, a sequence in Θ such that $\theta_n \to \theta$ and a sequence in X such that $x_n \in G(\theta_n)$ for all n. Note that $x_n \in \Gamma(\theta_n)$. since Γ is u.h.c. there exists a subsequence $x_{n_k} \to x \in \Gamma(\theta)$ Now consider $z \in \Gamma(\theta)$. since Γ is l.h.c. there exists a sequence in X such that $z_n \in \Gamma(\theta_n)$ and $z_n \to z$. In particular the subsequence $\{z_{n_k}\}$ also converges to z since $x_n \in G(\theta_n)$ and $z_n \in \Gamma(\theta_n)$ it follows that $f(x_n, \theta_n) \geq f(z_n, \theta_n)$. since f is continuous in both arguments we get by taking limits: $f(x, \theta) \geq f(z, \theta)$. since the inequality holds for arbitrary $z \in \Gamma(\theta)$ we get the result: $x \in G(\theta)$. This proves u.h.c.
- 3. v is continuous. Let $\theta \in \Theta$ and $\theta_n \to \theta$ an arbitrary sequence converging to θ . Consider an arbitrary sequence in X such that $x_n \in G(\theta_n)$ for all n. Let $\bar{v} = \limsup v(\theta_n)$. By proposition 2.9 there is a subsequence $\{\theta_{n_k}\}$ such that $v(\theta_{n_k}) \to \bar{v}$. since G is u.h.c. there exists a subsequence of $\{x_{n_k}\}$ (call it $\{x_{n_{kl}}\}$) converging to a point $x \in G(\theta)$. Then

$$\bar{v} = \lim v(\theta_{k_l}) = \lim f(x_{k_l}, \theta_{k_l}) = f(x, \theta) = v(\theta)$$

where the second equality follows from $x_{k_l} \in G(\theta_{k_l})$, the third one from f being continuous and the final one from $x \in G(\theta)$. Let $\underline{v} = \liminf v(\theta_n)$ and by a similar argument we get $v(\theta) = \underline{v}$ since $v(\theta) = \liminf v(\theta_n) = \limsup v(\theta_n)$ we get $v(\theta) = \lim v(\theta_n)$ for arbitrary $\{\theta_n\}$ converging to θ . This proves continuity.

Theorem 0.13. (ToM under convexity) Let $\Theta \subseteq \mathbb{R}^m$ and $X \subseteq \mathbb{R}^n$, let $f : \Theta \times X \to \mathbb{R}$ be a continuous function and $\Gamma : \Theta \Rightarrow X$ a nonempty, compact valued, continuous correspondence. Define:

$$v(\theta) = \max_{x \in \Gamma(\theta)} f(x, \theta) \quad G(\theta) = \{x \in \Gamma(\theta) \mid f(x, \theta) = v(\theta)\}$$

- a If $f(\cdot,\theta)$ is concave in x for all θ and Γ is convex valued then G is convex valued.
- b If $f(\cdot, \theta)$ is strictly concave in x for all θ and Γ is convex valued then G is single valued, hence a continuous function.
- c If f is concave on $\Theta \times X$ and Γ has a convex graph then v is concave and G is convex valued.
- d If f is strictly concave on $\Theta \times X$ and Γ has a convex graph then v is strictly concave and G is single valued, hence a continuous function.

Theorem 0.14. (ToM under quasi-convexity). Let $\Theta \subseteq \mathbb{R}^m$ and $X \subseteq \mathbb{R}^n$, let $f : \Theta \times X \to \mathbb{R}$ be a continuous function and $\Gamma : \Theta \rightrightarrows X$ a nonempty, compact valued, continuous correspondence. Define:

$$v(\theta) = \max_{x \in \Gamma(\theta)} f(x, \theta) \quad G(\theta) = \{x \in \Gamma(\theta) \mid f(x, \theta) = v(\theta)\}$$

- a If $f(\cdot,\theta)$ is quasi-concave in x for all θ and Γ is convex valued then G is convex valued.
- b If $f(\cdot, \theta)$ is strictly quasi-concave in x for all θ and Γ is convex valued then G is single valued, hence a continuous function.

- Recitations 8

- c If f is quasi-concave on $\Theta \times X$ and Γ has a convex graph then v is quasi-concave and G is quasi-convex valued.
- d If f is strictly quasi-concave on $\Theta \times X$ and Γ has a convex graph then v is strictly quasi-concave and G is single valued, hence a continuous function.

Where are we heading?

Theorem 0.15. Brouwer's Fixed Point Theorem - continuous function

Let $S \subset \mathbb{R}$ be nonempty, compact, and convex, and $f: S \to S$ be a continuous function. Then f has (at least) a fixed point in S, i.e. $\exists x^* \in S: x^* = f(x^*)$

Theorem 0.16. Tarsky's Fixed Point Theorem - weakly increasing functions

Let $f:[0,1]^n \to [0,1]^n$, where $[0,1]^n = [0,1] \times ... \times [0,1]$, an n-dimensional cube. If f is nondecreasing, then f has a fixed point in $[0,1]^n$.

Theorem 0.17. Kakutani's Fixed Point Theorem - u.h.c. correspondence

Let $S \subset \mathbb{R}$ be nonempty, compact, and convex, and $\Gamma: S \rightrightarrows S$ be a nonempty, convex-valued, and u.h.c. correspondence. Then Γ has a fixed point in S, i.e. $\exists x^* \in S: x^* \in \Gamma(x^*)$

Since S is compact, u.h.c. is equivalent to Γ having a closed graph.

Theorem 0.18. Fixed Point Theorem - l.h.c. correspondence

Let $S \subset \mathbb{R}$ be nonempty, compact, and convex, and $\Gamma: S \rightrightarrows S$ be a nonempty, convex-valued, closed-valued, and l.h.c. correspondence. Then Γ has a fixed point in S.

Definition 0.19. Aggregate excess demand $Z: \bar{\Delta} \to \mathbb{R}^{\ell}$ is defined as

$$Z(p) = \sum_{i \in I} x_i(p, e_i) - \sum_{i \in I} e_i.$$

Theorem 0.20. Easy Existence Theorem

Let $Z: \Delta \to \mathbb{R}^l$ be a continuous function that is bouded from below, satisfying Walras' Law and the boundary condition: $p_n \to p \in \partial \Delta \Rightarrow ||Z(p_n)|| \to \infty$. Then $\exists p^* \in \Delta$ such that $Z(p^*) = 0$.

Outline:

- Z is defined on Δ not $\bar{\Delta}$
- Define $\mu: \bar{\Delta} \Rightarrow \bar{\Delta}$ that is nonempty, convex-valued, u.h.c. Use Kakutani's to find a fixed point in $\bar{\Delta}$
- Argue that the fixed point is in Δ and it is CE.

Define $\mu: \bar{\Delta} \rightrightarrows \bar{\Delta}$ by

$$\mu(p) = \begin{cases} \{\bar{q} \in \bar{\Delta} | \bar{q} \in argmax_{q \in \bar{\Delta}} q \cdot Z(p) \}, & \text{if } p \in \Delta \\ \{\bar{q} \in \bar{\Delta} | \bar{q} \cdot p = 0 \}, & \text{if } p \in \partial \Delta \end{cases}$$

Question 1

Let $\Gamma: \Theta \rightrightarrows X$ be a correspondence.

- 1. Show that if a correspondence Γ has a closed graph then it is closed valued.
- 2. If Γ is compact valued and u.h.c then Γ has a closed graph.
- 3. If X is compact and Γ has a closed graph then Γ is u.h.c.

Solution 1 i) Suppose Γ has closed graph let $\theta_n \subset \Theta$ be such that $\theta_n = \theta$. Let x_n be s.t. $x_n \in \Gamma(\theta_n)$ and $x_n \to x$. WTS: $x \in \Gamma(\theta)$.

 $(\theta_n, x_n) \to (\theta, x)$ θ_n by construction $x_n by assumption$. Moreover $(\theta_n, x_n) \in Gr(\Gamma)$. Therefore since graph is close then $(\theta, x) \in Gr(\Gamma)$. It means that $x\Gamma(\theta)$ so $\Gamma(\theta)$ is a closet set. ii) Let $x \in X$. Consider any $\{x_n\} \in X$ s.t. $x_n \to x$ and $\{y_n\} \in Y$ s.t. $y_n \in \Gamma(x)$ and $y_n \to y$. Since Γ is u.h.c., there exists a convergent subsequence $\{y_{n_k}\}$ such that $\lim_{n_k \to \infty} y_{n_k} \in \Gamma(x)$. Then $y = \lim_{n \to \infty} y_n = \lim_{n \to \infty} y_{n_k} \in \Gamma(x)$. Thus, Γ is closed.

Let Y be compact and Γ be closed. Since closed graph implies closed-valued, Γ is compact-valued. Let $x \in X, x_n \to x$ and $\{y_n\} \subset Y$ such that $\forall n, y_n \in \Gamma(x_n)$. Since Y is compact, there exists convergent subsequence $y_{n_k} \to y$. Since Γ is closed, $y \in \Gamma(x)$. Thus Γ is u.h.c.

- Recitations 8 4

Question 2

Let consumer budget set at a price $p \in \Delta^{\ell}(p >> 0)$ and endowment e_i be

$$B(p, e_i) = \{x \in X_i : p \cdot x \leqslant p \cdot e_i\}$$

- i) Show that $B(p, e_i)$ is homogenous of degree zero in prices, non-empty valued and compact valued.
- ii) Show that $B(p, e_i)$ is continuous.

Solution 2

One, useful, application of the material covered above is to determine properties of the budget correspondence, that indicates the feasible consumption bundles for a consumer given a price vector p and an endowment vector e. Suppose there are l goods, and that the agent has a fixed endowment of each good given by the vector $e \in \mathbb{R}^l_{++}$, the price of the goods is a vector $p \in \Delta$, where Δ is the n-dimensional open simplex. Define the budget set correspondence $B(\cdot, e) : \Delta \rightrightarrows \mathbb{R}^l_{\perp}$ by

$$B(p,e) = \left\{ x \in \mathbb{R}^l_+ \mid p \cdot x \le p \cdot e \right\}$$

Theorem 0.21. $B(\cdot, e)$ is continuous on prices.

Proof. The claim is proved establishing u.h.c. and l.h.c. of B.

- 2. $B(\cdot,e)$ is lower hemi-continuous on prices. Let $p \in \Delta, \{p_n\} \subset \Delta$ with $p_n \to p$ and $x \in B(p,e)$. Define $\eta_n^i = \max\left\{0, \frac{p_n \cdot x p_n \cdot e}{lp_n^i}\right\}$ and let $x_n = x \eta_n$ Clearly $x_n \in B(p_n,e)$ since either $x \in B(p_n,e)$ or

$$p_n \cdot x_n = p_n \cdot x - \sum_i \max\{p_n^i \left(\frac{p_n \cdot x - p_n \cdot e}{lp_n^i}\right)\} \leq p_n \cdot x - \sum_i p_n^i \left(\frac{p_n \cdot x - p_n \cdot e}{lp_n^i}\right) = p_n \cdot x - (p_n \cdot x - p_n \cdot e) = p_n \cdot e$$

then $p_n \cdot x_n \leq p_n \cdot e$ Moreover $x_n \to x$, since $x \in B(p,e)$ and $p_n \to p$ it follows that $p_n \cdot x - p_n \cdot e \to p \cdot x - p \cdot e \leq 0$, then $\eta_n = \max\{0, p_n \cdot x - p_n \cdot e\} \to 0$ which is $x_n \to x$. Then B is l.h.c.

3. Note that it wasn't checked if $x_n \ge 0$ for all n. This is not guaranteed by the construction above. With extra notation it can be guaranteed that $x_n^i \ge 0$.

Question 3

Let consumer i demand correspondence at a price p and endowment e_i be

$$x_i(p, e_i) = \left\{ x \in B(p, e_i) : x_i \succeq_i y \quad \forall_{y \in B(p, e_i)} \right\}$$

- i) Show that if $B(p, e_i)$ is compact and \succeq_i is complete and transitive preorder with upper contour sets $U_i(x) = \{y \in X_i : y \succeq_i x\}$ that are closed for all $x \in Xt_i$ then the demand is non-empty.
- ii) Give an example illustrating that compactness is indeed a necessary condition.

Solution 3

Proof. Since $B(p,e_i)$ is compact and $U_i(x)$ are closed for all $x \in X_i$, $U_i(x) \cup B(p,e_i)$ is also compact for all $x \in X_i$. By completeness and transitivity of \succeq_i , given any subset $\{x_1,\ldots,x_n\} \subset B(p,e_i)$, we can rearrange the elements so that $x_1 \preceq_i x_2 \preceq_i,\ldots,\preceq_i x_n$. Then the upper contour sets of these allocations satisfy $U_i(x_1) \supseteq U_i(x_2) \supseteq,\ldots,\supseteq U_i(x_n)$. Thus

$$U_i(x_1) \cup B(p, e_i) \supseteq U_i(x_2) \cup B(p, e_i) \supseteq \ldots \supseteq U_i(x_n) \cup B(p, e_i).$$

- Recitations 8 5

By construction, $x_k \in U_i(x_k) \cap B(p, e_i)$ for all $k \in \{1, ..., n\}$. So $U_i(x_k) \cap B(p, e_i)$ is nonempty and compact for all $k \in \{1, ..., n\}$. Since the intersections are nested, this implies that $\bigcap_{k=1}^n [U_i(x_k) \cap B(p, e_i)] \neq \emptyset$ for every finite subset $\{x_1, ..., x_n\} \subseteq B(p, e_i)$. By the finite intersection property of compact sets,

$$x_i(p, e_i) = \bigcap_{x \in B(p, e_i)} [U_i(x) \cap B(p, e_i)] \neq \emptyset.$$

If the budget set is not compact, demand is often not well-defined. Let $\ell = 2$, let $e_i = (1,1)$ and let consumer i's preferences be represented by the strictly increasing utility function

$$u_i(x, y) = \log x + \log y.$$

Let p = (0,1). Then $B(p,e_i) = \{(x,y) \in \mathbb{R}_+^{\ell} : x \in [0,\infty), y \leq 1\}$. This set is obviously not bounded so $B(p,e_i)$ is not compact.

Suppose that $x_i(p,e_i) \neq \emptyset$, i.e., $\exists (x,y) \in x_i(p,e_i)$. Then $u_i(x,y) \geq u_i(x',y')$ for all $(x',y') \in B(p,e_i)$. But $(x+1,y) \in B(p,e_i)$ and $u_i(x+1,y) > u_i(x,y)$. This is a contradiction, so $(x,y) \notin x_i(p,e_i)$. Therefore $x_i(p,e_i) = \emptyset$.

Question 4

The consumer problem is often laid out without explicit endowments of the goods, instead the parameters are prices $p \in \mathbb{R}^l_{++}$ and a nominal income level $e \in \mathbb{R}_+$. The set of parameters is $\Theta = \mathbb{R}^l_{++} \times \mathbb{R}$. The **indirect utility function** and the **Marshalian demand correspondence** are:

$$v(p,e) = \max_{x \in B(p,e)} u(x) \quad x(p,e) = \{x \in B(p,e) \mid u(x) = v(p,e)\}$$

I take as given that B is a nonempty, convex valued and continuous correspondence, and that u is a continuous function. Show for v and x the following properties on Θ .

- a v is a continuous function on Θ and x is a nonempty, compact valued, u.h.c. correspondence.
- b v is nondecreasing in r for fixed p and non-increasing in p for fixed xe.
- c v is jointly quasi-convex on (p, e).
- d If u is (quasi) concave then v is (quasi) concave in e for fixed p.
- e If u is (quasi) concave then x is a convex valued correspondence.
- f If u is strictly (quasi) concave then x is a continuous function.

Solution 4

- a Thm of Max
- b For $v(\cdot, e)$ non-increasing for fixed e:

$$\forall p > p' \quad B(p, e)(p', e)$$

Hence $v(p', e) \ge v(p, e)$

Similar for $v(p,\cdot)$ non-decreasing for fix p

c If u concave, take any $p, p' \in \mathbb{R}^{l}_{++}, \lambda \in [0, 1]$

$$v(\lambda p + (1\lambda)p', e) = \max\{u(x)\text{s.t.} \quad [\lambda p + (1\lambda)p'] \cdot xe$$

The budget constraint can be rewritten as

$$\lambda(e - px) + (1\lambda)p'(e - p'x) \ge 0$$

Hence either $p \cdot x \leq e$ or $p' \cdot x \leq e$ is true (or both). This means every affordable package when facing $\lambda p + (1\lambda)p'$ is affordable either when facing p or p', i.e.

$$B(\lambda p + (1\lambda)p', e) \subset B(p, e) \cap B(p', e)$$

$$v(\lambda p + (1\lambda)p') \le \max\{v(p, e), v(p', e)\}$$

which means v is quasi-convex in p holding e fixed. Similar for I when fixed p. $x(\cdot)$ part comes from Thm of Max under Convexity.

d Thm of Max under Convexity