Comparative genomic study of Staphylococcus aureus: Lessons from its gene contents

Soyoun Park¹, Dongyun Jung¹, Bridget O'Brien¹, Janina Ruffini¹, Forest Dussault², Alexis Dubé-Duquette³, Élodie Demontier³, Jean-François Lucier³, François Malouin³, Simon Dufour⁴, Jennifer Ronholm¹ Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Ste Anne de Bellevue, Quebec, CANADA

Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke,

Goal

To understand clonal diversification and genetic contents of bovine intramammary infection (IMI)-associated Staphylococcus aureus from **Canadian dairy farms**

Figure 1. Phylogenetic tree of 187 *S. aureus* from human and bovine. All IMI-associated S. aureus strains cluster into three main clades except for ST8 (CC8) and belong to CC51, CC126, and CC97.

Figure 2. Distribution of lineage-specific exclusive genes in *S. aureus*. This figure illustrates the exclusive genes present mainly in bovine IMI-associated strains. The exclusive genes are shown with their associated lineages and mobile genetic elements (MGEs). A reference genome of RF122 was used to identify the relative location of these genes with the corresponding numbers (1-15).

recherche sur la mammite bovine et la qualité du lait Canadian Bovine Mastitis and

Staphylococcus aureus favors to share exclusive/virulence/AMR genes with closely related strains with comparable restriction-modification (R-M) systems.

Horizontal Gene Transfer Network

Figure 3. Distribution of restriction-modification (R-M) genes and virulence/AMR genes in IMI-associated S. aureus.

The phylogenetic tree of 65 IMI-associated S. aureus and aligned genes show lineagespecific R-M genes, which serve as a genetic barrier of horizontal gene transfer. The virulence/AMR genes are either sequence type (ST)-specific or strain-specific. Circular and square boxes indicate R-M genes and virulence/AMR genes, respectively. Open circular box indicates pseudogenes. Checkmarks indicate other elements (signal molecule AIPs and capsular polysaccharide) associated with *S. aureus* pathogenicity. The highlighted strains were mostly associated with clinical mastitis.

- 1. Bovine *S. aureus* are **phylogenetically distinct** from human strains.
- 2. Lineage-specific and exclusive genes are mainly located in MGEs.
- 3. Virulence/AMR genes in IMI-associated S. aureus are confined within lineage, ST, or strain.
- 4. R-M systems in IMI-associated S. aureus are lineage/ST-specific.
- 5. Distribution of MGEs that encode exclusive/virulence/AMR genes links to R-M systems as they serve as a genetic barrier of horizontal gene transfer.
- 6. BlaZ was found from two strains and ST8 was the only MRSA.

- 1. IMI-associated *S. aureus* has evolved in multiple directions and MGEs are associated with clonal diversification.
- 2. R-M systems in S. aureus contribute to shaping the clonal diversification and pathogenicity by discriminating MGEs.
- 2. Sa1158c (ST8) is the only bovine MRSA strain found in this study that originated from humans, suggesting the need for modifications to current dairy farm management programs.

Moving closer to a "post-antibiotic era"

bacterial symbiosis

Reducing a burden of clinical bovine mastitis

