Framework for Multidisciplinary Design Optimization

M Vishnu Sankar (18B030013)

Supervisor: Prof. Abhijit Gogulapati

Contents

Why Optimization?

Traditional Approach

But why automation? Why is a framework necessary?

New Requirements – New Approach

"The Department of Defense (DoD) is seeking a concept of design (CoD) of an advanced aircraft configuration that provides at least 30% more aerodynamic efficiency than the Boeing 777 and Airbus A330 families of commercial and military aircraft, enabling operational advantages such as increased range, loiter time, and offload capabilities. When integrated with projected 2030 engine technology, this advanced aircraft configuration is expected to provide at least 60 percent mission fuel burn reduction compared to current day technology"

Tightly Coupled Integrated Systems

DarkStar – Top Gun 2

Relevance of a Framework

Features of the Framework

Solver Agnostic

- Simple plug and run with any solver
- Treat analysis tools as black boxes

Modularity

- Integrate additional disciplines without modification
- Building on top of each other

Simplicity

User need not work with more than 2 files at most

Scalability & Flexibility

Scaling to thousands of design variables should be feasible

Efficient Gradient Evaluation

• Offer different methods to compute gradients efficiently

Design of the Framework

Three Key Modules of the Framework

Note:

• Arrows do not indicate flow of information or order of processes carried out

Interface

- User inputs to define the setup
- Only 1 or 2 files at max. to tweak
- Structure is similar to Optimization packages in Python/MATLAB
- Check for consistency and errors

OpenMDAO + Discipline Manager

Framework for 2D ASO

Some of the methods used here are directly inspired from Sachit Vekaria's work on "Multi-disciplinary Design Optimization for Aerodynamic Efficiency and RCSR" under the guidance of Professor Avijit Chatterjee, Professor Bharat Adsul and Professor Hemandra Arya.

Common Parameters

Parameters	Methods/Values
Optimization Algorithms	SLSQP
Tolerance	10E-6
Gradients	Finite Differencing
Mesh Strategy	Remesh the entire domain
Geometry Parameterization	Bump Function

Benchmarking with SU2 Test Case

Problem Setup	
Obj Fn	Min. Cd
DV	20 shape amplitudes
Constraints	None

Parameters	Values
Mach no.	0.8
AoA	1.25deg
Flow	Inviscid
Solver	Euler

Benchmarking with SU2 Test Case

Results		
Baseline Cd	209.95	
Optimized Euler	4.39	
Optimized Test Case	4.5	
Optimized RANS	27.47	

Results – 2D | Constrained Optimization

Constrained Problem

M = 0.8 AOA = 1.25 degrees

Problem Setup	
Obj Fn	Min. Cd
DV	20 shape amplitudes
Constraints	CI*>0.4 A*/A > 0.85

Function	OpenMDAO Optimized
Cd	0.0025126 (88%)
Cl	0.4

Benchmarking with ADODG Test Case-1

Problem Setup	
Obj Fn	Min. Cd
DV	20 shape amplitudes
Constraints	Thickness > Baseline's

Parameters	Values
Mach no.	0.85
AoA	0 deg
Flow	Inviscid
Solver	Euler

Parameters	ADODG Results	Current Framework Results
Optimized C_d	143.64	239.87
Optimizer	SNOPT	SLSQP
Mesh	Structured	Unstructured
Parameterization	FFD	Bump Function

Benchmarking with ADODG Test Case-1

RCS + CFD

Obj Fn	Min. Cd
DV	20 shape amplitudes
Constraints	A*/A >1 RCS*/RCS < 0.7
Cd baseline	92
Cd optimized	84
Cd optimized Vinh	71

Parameters	Values
Mach no.	0.8
AoA	1.25deg
Flow	Inviscid
CFD Solver	Euler
CEM Solver	MLFMM*

RCS + CFD

Framework for 3D ASO

Challenges

- Ad-hoc constraint implementation to prevent wiggly designs may not always work
- Finite Differencing is very time consuming
 - 1 CFD run takes about 5 mins
 - For 20 Design Variables time taken is about 100 mins for 1 gradient calculation
 - 100 function evaluations takes about 10,000 mins!
 - Adjoint based derivative take less than 5 mins for 1 gradient evaluation
- Meshing strategy Remesh entire volume
 - 1 million nodes take 2-3 mins
 - 100 function evaluation take 200-300 mins
 - Mesh deformation take 4-5 seconds
- Previous framework was not SCALABLE to 3D ASO problems

MDO Lab Tools

minimize C_d

with respect to $-2.5\% \le x \le 2.5\%$

 $subject\ to \ z_i \geq z_{i,baseline}$

Parameters	Values
Mach no.	0.85
AoA	0 deg
Flow	Inviscid
Solver	Euler

Result | Case-1

	ADODG	Current Setup
Mesh Type	H grid	O grid
Grid level	Coarse	Coarse
Nodes (2D)	12,760	31,605
Off-wall spacing	0.008	0.002
Baseline C_d	461.29	458.96
Solver	Jetstream	ADflow
Flowsolve	Coarse	Medium
Algorithm	SNOPT	SLSQP
FFD points	20	20
Convergence tol.	10^{-6}	10^{-6}
Optimized C_d	143.64	166.22

Result | Case-1

Cp distribution Comparison

minimize	C_D
with respect to	$-2.5\% \le x \le 2.5\%$
$subject\ to$	$C_L = 0.284$
	$C_{M,c/4} \le -0.12$
	$z_i \ge z_{i,baseline}$

Parameters	Values	
Mach no.	0.85	
AoA	2.79 deg	
Flow	Turbulent – 20 Million Re	
Solver	RANS	
Cd reduction	49%	

minimize C_D

with respect to

 $-2.5\% \le x \le 2.5\%$

 $subject\ to \ C_L = 0.271$

 $z_{i,0.15c} \ge z_{i,0.15c,baseline}$

 $z_{i,0.99c} \ge z_{i,0.99c,baseline}$

 $z_{\frac{c}{2}tip} \ge z_{\frac{c}{2}tip,baseline}$

 $V \ge V_{baseline}$

Parameters	Values	
Mach no.	0.839	
AoA	3.06 deg	
Flow	Turbulent – 11 Million Re	
Solver	RANS	
DV	144 shape + 6 twist	

	ONERA-M6 [21]	Current Setup
Cells	10,32,192	3,63,840
Off-wall cells	64	49
Off-wall spacing	1.5×10^{-6}	1×10^{-6}
y+	0.67	0.365
Baseline \mathcal{C}_D	172.5	179.3
C_L	0.2710	0.2682
Solver	SUmb	ADflow
Algorithm	SNOPT	SLSQP
FFD points	150	150
LE & TE clustering	Present	Absent
Thickness Constraints	21	44
Convergence tol.	10^{-6}	10^{-6}
Optimized C_D	140.00	149.43

Framework Testing | Cp Distribution

Framework Testing | Cp Distribution

Conclusion and Future Work

- Created a MDO framework
- Specifically vetted for 2D and 3D ASO problems
- It is generalizable to incorporate other disciplines
- RCS module is still in process

APPENDIX