

Department of Information Technology

(NBA Accredited)

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B Subject: DS using Python Lab

Experiment No.1

Aim: To understand the process of data preparation using NumPy and Pandas

CO Mapped:

CO1: To apply the process of data preparation for the given dataset to solve real-world problems

Prerequisites: Python3, basic syntax of NumPy and Pandas

Theory:

Data preparation is the process of preparing raw data so that it is suitable for further processing and analysis. Key steps include collecting, cleaning, and labelling raw data into a form suitable for machine learning (ML) algorithms and then exploring and visualizing the data.

Derive an index field and add it to the data set

Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric python packages. Pandas is one of those packages and makes importing and analysing data much easier.

Pandas set index() is a method to set a List, Series or Data frame as index of a Data Frame. Index column can be set while making a data frame too. But sometimes a data frame is made out of two or more data frames and hence later index can be changed using this method. Syntax:

DataFrame.set index(keys, drop=True, append=False, inplace=False, verify integrity=False)

Parameters:

keys: Column name or list of column name.

drop: Boolean value which drops the column used for index if True.

append: Appends the column to existing index column if True.

inplace: Makes the changes in the dataframe if True.

verify integrity: Checks the new index column for duplicates if True.

Code #1: Changing Index column

In this example, First Name column has been made the index column of Data Frame.

A. P. SHAH INSTITUTE OF TECHNOLOGY

Department of Information Technology

(NBA Accredited)

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B Subject: DS using Python Lab

importing pandas package import pandas as pd

making data frame from csv file data = pd.read csv("employees.csv")

setting first name as index column data.set_index("First Name", inplace = True)

display data.head()

Output:

As shown in the output images, earlier the index column was a series of number but later it has been replaced with First name.

Before operation –

Senior Management	Bonus %	Salary	Last Login Time	Start Date	Gender	First Name	
True	6.945	97308	12:42 PM	8/6/1993	Male	Douglas	0
True	4.170	61933	6:53 AM	3/31/1996	Male	Thomas	1
False	11.858	130590	11:17 AM	4/23/1993	Female	Maria	2
True	9.340	138705	1:00 PM	3/4/2005	Male	Jerry	3
True	1.389	101004	4:47 PM	1/24/1998	Male	Larry	4
True alse True	F	4.170 11.858 F 9.340	61933 4.170 130590 11.858 F 138705 9.340	6:53 AM 61933 4:170 11:17 AM 130590 11:858 F 1:00 PM 138705 9:340	3/31/1996 6:53 AM 61933 4:170 4/23/1993 11:17 AM 130590 11:858 F 3/4/2005 1:00 PM 138705 9:340	Male 3/31/1996 6:53 AM 61933 4.170 Female 4/23/1993 11:17 AM 130590 11.858 F Male 3/4/2005 1:00 PM 138705 9.340	Thomas Male 3/31/1996 6:53 AM 61933 4.170 Maria Female 4/23/1993 11:17 AM 130590 11.858 F Jerry Male 3/4/2005 1:00 PM 138705 9.340

After operation

PARSHVANATH CHARITABLE TRUST'S A. P. SHAH INSTITUTE OF TECHNOLOGY

Department of Information Technology

(NBA Accredited)

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B **Subject: DS using Python Lab**

Team	Senior Management	Bonus %	Salary	Last Login Time	Start Date	Gender	
							irst Name
Marketing	True	6.945	97308	12:42 PM	8/6/1993	Male	Douglas
NaN	True	4.170	61933	6:53 AM	3/31/1996	Male	Thomas
Finance	False	11.858	130590	11:17 AM	4/23/1993	Female	Maria
Finance	True	9.340	138705	1:00 PM	3/4/2005	Male	Јеггу
Client Services	True	1.389	101004	4:47 PM	1/24/1998	Male	Larry

Code #2: Multiple index Column

In this example, two columns will be made as index column. Drop parameter is used to Drop the column and append parameter is used to append passed columns to the already existing index column.

```
# importing pandas package
import pandas as pd
```

making data frame from csv file data = pd.read csv("employees.csv")

setting first name as index column data.set index(["First Name", "Gender"], inplace = True, append = True, drop = False)

display data.head()

Output:

As shown in the output Image, the data is having 3 index columns.

A. P. SHAH INSTITUTE OF TECHNOLOGY

Department of Information Technology

(NBA Accredited)

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B

Subject: DS using Python Lab

Team	Senior Management	Bonus %	Salary	Last Login Time	Start Date	Gender	First Name			
								Gender	First Name	
Marketing	True	6.945	97308	12:42 PM	8/6/1993	Male	Douglas	Male	Douglas	0
NaN	True	4.170	61933	6:53 AM	3/31/1996	Male	Thomas	Male	Thomas	1
Finance	False	11.858	130590	11:17 AM	4/23/1993	Female	Maria	Female	Maria	2
Finance	True	9.340	138705	1:00 PM	3/4/2005	Male	Jerry	Male	Jerry	3
Client Services	True	1.389	101004	4:47 PM	1/24/1998	Male	Larry	Male	Larry	4

Code #3: Setting a single Float column as Index in Pandas DataFrame

importing pandas library import pandas as pd

creating and initializing a nested list students = [['jack', 34, 'Sydeny', 'Australia', 85.96],

['Riti', 30, 'Delhi', 'India',95.20],

['Vansh', 31, 'Delhi', 'India', 85.25],

['Nanyu', 32, 'Tokyo', 'Japan',74.21],

['Maychan', 16, 'New York', 'US',99.63],

['Mike', 17, 'las vegas', 'US',47.28]]

Create a DataFrame object df = pd.DataFrame(students,

columns=['Name', 'Age', 'City', 'Country','Agg_Marks'], index=['a', 'b', 'c', 'd', 'e', 'f'])

here we set Float column 'Agg_Marks' as index of data frame # using dataframe.set index() function

df = df.set index('Agg Marks')

Displaying the Data frame df

Output:

A. P. SHAH INSTITUTE OF TECHNOLOGY

Department of Information Technology

(NBA Accredited)

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B

Subject: DS using Python Lab

	Name	Age	City	Country
Agg_Marks				
85.96	jack	34	Sydeny	Australia
95.20	Riti	30	Delhi	India
85.25	Vansh	31	Delhi	India
74.21	Nanyu	32	Tokyo	Japan
99.63	Maychan	16	New York	US
47.28	Mike	17	las vegas	US

In the above example, we set the column 'Agg_Marks' as an index of the data frame. Code #4: Setting three columns as MultiIndex in Pandas DataFrame

```
# importing pandas library import pandas as pd
```

```
# Create a DataFrame object

df = pd.DataFrame(students,

columns=['Name', 'Age', 'City', 'Country', 'Agg_Marks', 'ID'],

index=['a', 'b', 'c', 'd', 'e', 'f'])
```

Here we pass list of 3 columns i.e 'Name', 'City' and 'ID'

to dataframe.set index() function

to set them as multiIndex of dataframe

df = df.set index(['Name','City','ID'])

Department of Information Technology

(NBA Accredited)

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B

Subject: DS using Python Lab

Displaying the Data frame

Output:

			Age	Country	Agg_Marks
Name	City	ID			
jack	Sydeny	400	34	Australia	85.96
Riti	Delhi	750	30	India	95.20
Vansh	Delhi	101	31	India	85.25
Nanyu	Tokyo	900	32	Japan	74.21
Maychan	New York	420	16	US	99.63
Mike	las vegas	555	17	US	47.28

In the above example, we set the columns 'Name', 'City', and 'ID' as multiIndex of the data frame.

Find out the missing values

Missing Data can occur when no information is provided for one or more items or for a whole unit. Missing Data is a very big problem in a real-life scenarios. Missing Data can also refer to as NA(Not Available) values in pandas. In DataFrame sometimes many datasets simply arrive with missing data, either because it exists and was not collected or it never existed. For Example, Suppose different users being surveyed may choose not to share their income, some users may choose not to share the address in this way many datasets went missing. In Pandas missing data is represented by two value:

- None: None is a Python singleton object that is often used for missing data in Python code.
- NaN: NaN (an acronym for Not a Number), is a special floating-point value recognized by all systems that use the standard IEEE floating-point representation

A. P. SHAH INSTITUTE OF TECHNOLOGY

Department of Information Technology

(NBA Accredited)

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B

Subject: DS using Python Lab

Pandas treat None and NaN as essentially interchangeable for indicating missing or null values. To facilitate this convention, there are several useful functions for detecting, removing, and replacing null values in Pandas DataFrame:

- isnull()
- notnull()
- dropna()
- fillna()
- replace()
- interpolate()

Checking for missing values using isnull() and notnull()

In order to check missing values in Pandas DataFrame, we use a function is null() and not null(). Both function help in checking whether a value is NaN or not. These function can also be used in Pandas Series in order to find null values in a series.

Checking for missing values using isnull()

In order to check null values in Pandas DataFrame, we use isnull() function this function return dataframe of Boolean values which are True for NaN values. **Code #1:**

importing numpy as np import numpy as np # dictionary of lists

importing pandas as pd

dict = {'First Score':[100, 90, np.nan, 95],

'Second Score': [30, 45, 56, np.nan],

'Third Score':[np.nan, 40, 80, 98]}

PARSHVANATH CHARITABLE TRUST'S A. P. SHAH INSTITUTE OF TECHNOLOGY

Department of Information Technology

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B

Subject: DS using Python Lab

creating a dataframe from list

df = pd.DataFrame(dict)

using isnull() function

df.isnull()

	First Score	Second Score	Third Score
0	False	False	True
1	False	False	False
2	True	False	False
3	False	True	False

Output:

Code #2:

• Python

importing pandas package import pandas as pd

making data frame from csv file

data = pd.read_csv("employees.csv")

creating bool series True for NaN values

bool_series = pd.isnull(data["Gender"])

filtering data

A. P. SHAH INSTITUTE OF TECHNOLOGY

Department of Information Technology

(NBA Accredited)

Academic Year: 2022-23 Semester: VI

Subject: DS using Python Lab Class / Branch: TE IT A/B

displaying data only with Gender = NaN data[bool series]

Output: As shown in the output image, only the rows having Gender = NULL are displayed.

Team	Senior Management	Bonus %	Salary	Last Login Time	Start Date	Gender	First Name	
Lega	True	4.934	64714	7:18 PM	4/22/1995	NaN	Lois	20
Client Services	True	18.816	90816	1:58 AM	3/8/2012	NaN	Joshua	22
Lega	False	5.218	122367	6:58 PM	7/11/1991	NaN	Scott	27
Produc	False	12.752	88657	2:40 PM	2/20/2005	NaN	Joyce	31
Business Developmen	True	11.308	66582	1:08 AM	6/28/2015	NaN	Christine	41
Sales	False	3.055	113590	12:13 PM	1/24/1980	NaN	Chris	49
Sales	NaN	14.009	41126	8:29 AM	12/17/2011	NaN	NaN	51
Finance	True	17.578	40341	1:28 PM	3/3/2014	NaN	Alan	53
Distribution	False	4.271	48866	2:01 PM	11/23/2005	NaN	Paula	60
Business Development	False	18.771	77834	6:46 PM	4/11/1990	NaN	Kathleen	64
Finance	True	4.382	100863	4:31 PM	7/14/2015	NaN	Irene	69
Client Services	False	6.617	84692	2:26 PM	6/10/2003	NaN	Todd	70
i		i	i	:	į	•	į	:
Client Services	False	2.147	70635	6:53 PM	7/28/1995	NaN	Ralph	939
Distribution	True	17.426	93712	12:44 PM	4/15/1989	NaN	Gerald	945
Lega	False	3.050	103050	9:37 PM	6/18/1989	NaN	Antonio	961
Sales	True	11.159	76381	2:49 PM	7/28/2006	NaN	Victor	72
Lega	False	1.909	85668	8:10 PM	7/10/1983	NaN	Stephen	985
Lega	False	3.794	38344	4:58 PM	2/10/1991	NaN	Justin	989
Distribution	False	16.655	132483	6:09 AM	11/23/2014	NaN	Henry	995

145 rows x 8 columns

Checking for missing values using notnull()

Department of Information Technology

(NBA Accredited)

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B

Subject: DS using Python Lab

In order to check null values in Pandas Dataframe, we use notnull() function this function return dataframe of Boolean values which are False for NaN values.

Code #3:

importing pandas as pd

import pandas as pd

importing numpy as np

import numpy as np

dictionary of lists

dict = {'First Score': [100, 90, np.nan, 95],

'Second Score': [30, 45, 56, np.nan],

'Third Score':[np.nan, 40, 80, 98]}

creating a dataframe using dictionary

df = pd.DataFrame(dict)

using notnull() function

df.notnull()

	First Score	Second Score	Third Score
0	True	True	False
1	True	True	True
2	False	True	True
3	True	False	True

Output:

Code #4:

Department of Information Technology

(NBA Accredited)

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B **Subject: DS using Python Lab**

Python

importing pandas package

import pandas as pd

making data frame from csv file

data = pd.read csv("employees.csv")

creating bool series True for NaN values

bool series = pd.notnull(data["Gender"])

filtering data

displaying data only with Gender = Not NaN

data[bool series]

Output: As shown in the output image, only the rows having Gender = NOT NULL are displayed.

Department of Information Technology

(NBA Accredited)

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B

Subject: DS using Python Lab

Team	Senior Management	Bonus %	Salary	Last Login Time	Start Date	Gender	First Name	
Marketing	True	6.945	97308	12:42 PM	8/6/1993	Male	Douglas	0
NaN	True	4.170	61933	6:53 AM	3/31/1996	Male	Thomas	1
Finance	False	11.858	130590	11:17 AM	4/23/1993	Female	Maria	2
Finance	True	9.340	138705	1:00 PM	3/4/2005	Male	Jerry	3
Client Services	True	1.389	101004	4:47 PM	1/24/1998	Male	Larry	4
Legal	False	10.125	115163	1:35 AM	4/18/1987	Male	Dennis	5
Product	True	10.012	65476	4:20 PM	8/17/1987	Female	Ruby	6
Finance	NaN	11.598	45906	10:43 AM	7/20/2015	Female	NaN	7
Engineering	True	18.523	95570	6:29 AM	11/22/2005	Female	Angela	8
Business Development	True	7.524	139852	6:51 AM	8/8/2002	Female	Frances	9
		÷	i	i	÷	:	i	:
Marketing	True	4.479	98874	5:47 PM	6/21/2013	Male	George	994
Finance	False	19.675	42392	6:30 AM	1/31/1984	Male	Phillip	996
Produc	False	1.421	96914	12:39 PM	5/20/2013	Male	Russel	997
Business Developmen	False	11.985	60500	4:45 PM	4/20/2013	Male	Larry	998
Sales	True	10.169	129949	6:24 PM	5/15/2012	Male	Albert	999

855 rows x 8 columns

Finding outliers using statistical methods

Since the data doesn't follow a normal distribution, we will calculate the outlier data points using the statistical method called interquartile range (IQR) instead of using Z-score. Using the IQR, the outlier data points are the ones falling below Q1–1.5 IQR or above Q3 + 1.5 IQR. The Q1 is the 25th percentile and Q3 is the 75th percentile of the dataset, and IQR represents the interquartile range calculated by Q3 minus Q1 (Q3–Q1).

Using the convenient pandas .quantile() function, we can create a simple Python function that takes in our column from the dataframe and outputs the outliers:

Department of Information Technology

(NBA Accredited)

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B Subject: DS using Python Lab

#create a function to find outliers using IQR

def find outliers IQR(df):

q1=df.quantile(0.25)

q3=df.quantile(0.75)

IQR=q3-q1

outliers = df[((df < (q1-1.5*IQR)) | (df > (q3+1.5*IQR)))]

return outliers

Notice using .quantile() we can define Q1 and Q3. Next we calculate IQR, then we use the values to find the outliers in the dataframe. Since it takes a dataframe, we can input one or multiple columns at a time.

First run fare amount through the function to return a series of the outliers.

outliers = find outliers IQR(df["fare amount"])

print("number of outliers: "+ str(len(outliers)))

print("max outlier value: "+ str(outliers.max()))

print("min outlier value: "+ str(outliers.min()))

outliers validating the find outliers IQR function

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B **Subject: DS using Python Lab**

10	ge Roge	(923)13C
number o	f outliers	: 17167
max outl:	ier value:	499.0
min outl:	ier value:	-52.0
6	24.50	
30	25.70	
34	39.50	
39	29.00	
48	56.80	
199976	49.70	
199977	43.50	
199982	57.33	
199985	24.00	
199997	30.90	
POSTOCH CANCELL		

Using the IQR method, we find 17,167 fare amount outliers in the dataset. I printed the min and max values to verify they match the statistics we saw when using the pandas describe() function, which helps confirm we calculated the outliers correctly.

We can also pass both fare amount and passenger count through the function to get back a dataframe of all rows instead of just the outliers. If the value is not an outlier, it will display as NaN (not a number):

outliers = find outliers IQR(df[["passenger count","fare amount"]])

Department of Information Technology

(NBA Accredited)

Academic Year: 2022-23 Semester: VI

Class / Branch: TE IT A/B

Subject: DS using Python Lab

outliers	find	outliers	IQR	dataframe
	passenger_count	fare_amount		
0	NaN	NaN		
1	NaN	NaN		
2	NaN	NaN		
3	NaN	NaN		
4	5.0	NaN		
	6-5	(22)		
199995	NaN	NaN		
199996	NaN	NaN		
199997	NaN	30.9		
199998	NaN	NaN		
199999	NaN	NaN		

Conclusion: -

In this experiment, we studied how using pandas and NumPy library we can pre-process the data.