The Singular Value Decomposition

Jeremy Teitelbaum

The singular value decomposition (SVD)

The SVD is a way to study rectangular matrices using tools that come from our work with symmetric matrices.

It doesn't make direct sense to diagonalize a rectangular matrix, but in some sense the SVD is the closest we can come.

It is a widely used result in applied mathematics.

Singular Values

Let A by an $m \times n$ matrix. The singular values σ_i of A are the (positive) square roots of the eigenvalues of the $n \times n$ symmetric matrix A^TA

$$\sigma_i = \sqrt{\lambda_i}$$

Remember that, by the spectral theorem, A^TA has real, nonnegative eigenvalues, so these square roots make sense.

We arrange the singular values in decreasing order so that

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$$

Singular values

If v_1, \dots, v_n are the unit eigenvectors of $A^T A$, then

$$\|Av_i\|^2 = (Av_i) \cdot (Av_i) = v_i^T A^T A v_i = \lambda_i \|v_i\|^2$$

so the singular values σ_i measure the amount that A "stretches" $v_i.$

Nonzero singular values give rank

Some of the singular values σ_i of A and corresponding eigenvalues λ_i of A^TA could be zero.

If λ_k is zero, then

$$Av_k \cdot Av_k = v_k^T A^T A v_k = \lambda_k (v_k \cdot v_k) = 0$$

so $Av_k = 0$.

Suppose that the first r of them are non zero. Then, if v_i are the corresponding eigenvectors of A^TA , the vectors

$$Av_1, \dots, Av_r$$

form an orthogonal basis for the column space $\operatorname{Col}(A)$, and A has rank r.

Nonzero singular values give rank (continued)

To see that they are orthogonal, compute

$$Av_i \cdot Av_j = v_i^T A^T Av_j = \lambda_j v_i^T v_j = 0$$

since the v_i are orthogonal. The Av_i also all belong to the column space of A.

Suppose that y is any vector in the column space of A. Then y=Ax for some x, and

$$x = \sum_{i=1}^{n} (x \cdot v_i) v_i.$$

Apply A to this and since $Av_k=0$ for k>r, we see that Ax is in the span of $Av_1,\dots,Av_r.$

So Av_1,\dots,Av_r are orthogonal (hence linearly independent) and span the column space of A.

The SVD

Suppose that A is an $m \times n$ matrix of rank r. Then there exists an $m \times n$ matrix Σ which is "diagonal" in the sense that it looks like this:

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} \leftarrow m - r \text{ rows}$$

$$\uparrow \qquad n - r \text{ columns}$$

Figure 1: "Diagonal" Matrix for SVD

where D is a truly diagonal $r \times r$ matrix whose entries are the nonzero singular values of A (in descending order), and orthogonal matrices U of size $m \times m$ and V of size $n \times n$ such that

$$A = U\Sigma V^T.$$

Constructing the SVD

- 1. Let $u_i=\frac{Av_i}{\|Av_i\|}=\sigma_i^{-1}Av_i$ for $i=1,\ldots,r$. This gives an orthonormal family. Extend this to an orthonormal basis $u_1\ldots,u_m$ of ${\bf R}^m.$
- 2. Let U be the matrix whose columns are the u_i and V be the matrix whose columns are the v_i .
- 3. Notice that AV has columns $\sigma_i u_i$ for $i=1,\ldots,r$ and the rest zero. That's what you get if you compute $U\Sigma$.
- 4. So $AV = U\Sigma$ or $A = U\Sigma V^{-1} = U\Sigma V^T$.