Machine Learning - Homework 2

資工四 B05902023 李澤諺

October 26, 2019

Part 1. Programming Problem

1. (0.5%) 請比較你實作的 generative model $\$ logistic regression 的準確率,何者較佳?

下表爲我實作中 performance 最好的 generative model 和 logistic regression 分別在 training 和 testing 時所得到的 accuracy:

	Train	Validation	Test	
	IIaiii		Public	Private
Generative Model	0.84842	0.83100	0.85442	0.85112
Logistic Regression	0.85856	0.84000	0.85995	0.85444

其中,我隨機選出 1000 筆 data 作爲 validation data,剩下的則作爲 training data,而我實作中 performance 最好的 generative model 爲:先將 age、fnlwgt、capital_gain、capital_loss、hours_per_week 這 5 個 feature 的值提升至 2 到 3 次方,並將所有 feature 進行 normalization 後,再建立 generative model,而我實作中 performance 最好的 logistic regression 爲:先將 age、fnlwgt、capital_gain、capital_loss、hours_per_week 這 5 個 feature 的值提升至 2 到 10 次方,並將所有 feature 進行 normalization 後,再使用助教提供的 logistic regression 函式 (除了 epoch 改爲 300 以外,其餘 hyper-parameter 皆不變) 而得。

由上表可以看出我實作的 model 中,logistic regression 的 performance 較 generative model 好。

2.~(0.5%) 請實作特徵標準化 (feature normalization) 並討論其對於你的模型 準確率的影響。

下表爲我實作的 generative model(方法如第 1 題所述), 有使用 normalization 和沒有使用 normalization 分別在 training 和 testing 時所得到的 accuracy:

	Train	Validation	Test	
			Public	Private
Normalization	0.84842	0.83100	0.85442	0.85112
Without Normalization	0.84730	0.83000	0.85429	0.85038

下表爲我實作的 logistic regression(方法如第 1 題所述),有使用 normalization 和沒有使用 normalization 分別在 training 和 testing 時所得到的 accuracy:

	Train	Validation	Test	
			Public	Private
Normalization	0.85856	0.84000	0.85995	0.85444
Without Normalization	0.76321	0.75200	0.76928	0.76722

下表爲我實作的 best model(方法如第 3 題所述),有使用 normalization 和沒有使用 normalization 分別在 training 和 testing 時所得到的 accuracy:

		Train	Validation	Test	
				Public	Private
Normal	ization	0.86746	0.86800	0.87137	0.86561
Without No	rmalization	0.86724	0.86400	0.87100	0.86524

由此可以大致看出,有使用 normalization 可以使得 model 的 performance 較好。

3.~(1%) 請說明你實作的 best model,其訓練方式和準確率爲何?

我將 data 進行 normalization 之後,隨機選出 1000 筆作爲 validation data,剩下的則作爲 training data,以此訓練 sklearn 的 GradientBoostingClassifier,其中,model 的 parameter 如下:

loss	'deviance'
learning_rate	0.1
n_estimators	100
validation_fraction	0.1
n_iter_no_change	10
tol	0.0001

最後所得到的 accuracy 如下表所示:

Train	Validation	Test		
11aiii		Public	Private	
0.86746	0.86800	0.87137	0.86561	

Part 2. Math Problem

1.

Consider a generative classification model for K classes defined by prior class probabilities $p(C_k) = \pi_k$ and general class-conditional densities $p(x|C_k)$, where x is the input feature vector. Suppose we are given a training data set $\{x_n, t_n\}$ where $n = 1, \dots, N$, and t_n is a binary target vector of length K that uses

the 1—of—K coding scheme, so that it has components $t_{nk} = 1$ if pattern n is from class C_k , otherwise $t_{nk} = 0$. Assuming that the data points are drawn independently from this model, show that the maximum-likelihood solution for the prior probabilities is given by

$$\pi_k = \frac{N_k}{N}$$

where N_k is the number of data points assigned to class C_k .

solution

令 x_n 所屬的 class 爲 C_{x_n} 。 因爲 likelihood function 爲

$$P(x_1, x_2, \dots, x_N) = \prod_{n=1}^{N} P(x_n) = \prod_{n=1}^{N} P(C_{x_n}) P(x_n | C_{x_n})$$

將上式取 log,可得 log likelihood function 為

$$\begin{split} logP(x_{1}, x_{2}, \cdots, x_{N}) &= \sum_{n=1}^{N} logP(C_{x_{n}}) + \sum_{n=1}^{N} logP(x_{n}|C_{x_{n}}) \\ &= \sum_{k=1}^{K} N_{k} logP(C_{k}) + \sum_{n=1}^{N} logP(x_{n}|C_{x_{n}}) \\ &= \sum_{k=1}^{K} N_{k} log\pi_{k} + \sum_{n=1}^{N} logP(x_{n}|C_{x_{n}}) \end{split}$$

只要 log likelihood function 有最大值,即可使得 likelihood function 亦有最大值,此外,注意有限制條件 $\sum_{k=1}^K \pi_k = 1$ 。

因此,可以試著使用 Lagrange multiplier,在限制條件 $\sum_{k=1}^K \pi_k = 1$ 下,求出 \log likelihood function 的最大值。

令
$$f = log P(x_1, x_2, \cdots, x_N)$$
,以及 $g = \sum_{k=1}^K \pi_k = 1$ 。
因爲

$$\begin{split} \frac{\partial}{\partial \pi_i} f &= \frac{\partial}{\partial \pi_i} (\sum_{k=1}^K N_k log \pi_k + \sum_{n=1}^N log P(x_n | C_{x_n})) \\ &= \frac{\partial}{\partial \pi_i} \sum_{k=1}^K N_k log \pi_k + 0 \\ &= \frac{\partial}{\partial \pi_i} N_i log \pi_i = \frac{N_i}{\pi_i} \end{split}$$

所以

$$\nabla f = \begin{pmatrix} \frac{\partial}{\partial \pi_1} f \\ \frac{\partial}{\partial \pi_2} f \\ \vdots \\ \frac{\partial}{\partial \pi_K} f \end{pmatrix} = \begin{pmatrix} \frac{N_1}{\pi_1} \\ \frac{N_2}{\pi_2} \\ \vdots \\ \frac{N_K}{\pi_K} \end{pmatrix}$$

而

$$\frac{\partial}{\partial \pi_i} g = \frac{\partial}{\partial \pi_i} \sum_{k=1}^K \pi_k = \frac{\partial}{\partial \pi_i} \pi_i = 1$$

所以

$$\nabla g = \begin{pmatrix} \frac{\partial}{\partial \pi_1} g \\ \frac{\partial}{\partial \pi_2} g \\ \vdots \\ \frac{\partial}{\partial \pi_K} g \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

因此,若令 $\nabla f = \lambda \nabla g$,則有

$$\begin{pmatrix} \frac{N_1}{\pi_1} \\ \frac{N_2}{n_2} \\ \vdots \\ \frac{N_K}{\pi_k} \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} \lambda \\ \lambda \\ \vdots \\ \lambda \end{pmatrix}$$

所以 $\pi_i = rac{N_i}{\lambda}$,又

$$\sum_{k=1}^{K} \pi_k = \sum_{k=1}^{K} \frac{N_k}{\lambda} = \frac{N}{\lambda} = 1$$

因此可得 $\lambda = N$,故

$$\pi_i = \frac{N_i}{\lambda} = \frac{N_i}{N} \square$$

2.

Show that

$$\frac{\partial log(det\Sigma)}{\partial \sigma_{ij}} = e_j \Sigma^{-1} e_i^T$$

where $\Sigma \in \mathbb{R}^{m \times m}$ is a (non-singular) covariance matrix and e_j is a row vector(ex: $e_3 = [0, 0, 1, 0, \dots, 0]$).

solution

令 Σ 的 (p,q) cofactor 為 C_{pq} °

$$\frac{\partial}{\partial \sigma_{ij}} log \ det \Sigma = \frac{1}{det \Sigma} \frac{\partial}{\partial \sigma_{ij}} det \Sigma$$

$$= \frac{1}{det \Sigma} \frac{\partial}{\partial \sigma_{ij}} (\sigma_{i1} C_{i1} + \sigma_{i2} C_{i2} + \dots + \sigma_{im} C_{im})$$

$$= \frac{1}{det \Sigma} C_{ij} = \frac{1}{det \Sigma} (adj \Sigma)_{ji} = (\frac{1}{det \Sigma} adj \Sigma)_{ji}$$

$$= (\Sigma^{-1})_{ji} = e_j \Sigma^{-1} e_i^T \square$$

3.

Consider the classification model of problem 1 and result of problem 2 and now suppose that the class-condition densities are given by Gaussian distributions with a shared convariance matrix, so that

$$p(x|C_k) = \mathcal{N}(x|\mu_k, \Sigma)$$

Show that the maximum likelihood solution for the mean of the Gaussian distribution for class C_k is given by

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^{N} t_{nk} x_n$$

which represents the mean of those feature vectors assigned to class C_k .

Similarly, show that the maximum likelihood solution for the shared covariance matrix is given by

$$\Sigma = \sum_{k=1}^{K} \frac{N_k}{N} S_k$$

where

$$S_k = \frac{1}{N_k} \sum_{n=1}^{N} t_{nk} (x_n - \mu_k) (x_n - \mu_k)^T$$

Thus Σ is given by a weighted average of the covariance of the data associated with each class, in which the weighting coefficients are given by the prior probabilities of the classes.

solution

由第 1 題可知,只要 log likelihood function 有最大值,即可使得 likelihood function 亦有最大值,而 log likelihood function 爲

$$logP(x_{1}, x_{2}, \dots, x_{N}) = \sum_{k=1}^{K} N_{k} log\pi_{k} + \sum_{n=1}^{N} logP(x_{n}|C_{x_{n}})$$

$$= \sum_{k=1}^{K} N_{k} log\pi_{k} + \sum_{k=1}^{K} \sum_{x \in C_{k}} logP(x_{n}|C_{k})$$

$$= \sum_{k=1}^{K} N_{k} log\pi_{k} + \sum_{k=1}^{K} \sum_{n=1}^{N} t_{nk} logP(x_{n}|C_{k})$$

$$= \sum_{k=1}^{K} N_{k} log\pi_{k} + \sum_{k=1}^{K} \sum_{n=1}^{N} t_{nk} log\mathcal{N}(x_{n}|\mu_{k}, \Sigma)$$

其中,僅有 $\sum_{k=1}^K \sum_{n=1}^N t_{nk} log \mathcal{N}(x_n | \mu_k, \Sigma)$ 和 $\mu_1 \times \mu_2 \times \cdots \times \mu_K \times \Sigma$ 有關,因此,只要求出 $\mu_1 \times \mu_2 \times \cdots \times \mu_K \times \Sigma$ 使得 $\sum_{k=1}^K \sum_{n=1}^N t_{nk} log \mathcal{N}(x_n | \mu_k, \Sigma)$ 有最大值,該 $\mu_1 \times \mu_2 \times \cdots \times \mu_K \times \Sigma$ 即可使得 log likelihood function 有最大值。

$$\begin{split} l &= \sum_{k=1}^K \sum_{n=1}^N t_{nk} log \mathcal{N}(x_n | \mu_k, \Sigma) \\ &= \sum_{k=1}^K \sum_{n=1}^N t_{nk} log (\frac{1}{\sqrt{(2\pi)^m det \Sigma}} e^{-\frac{1}{2}(\mu_k - x_n)^T \Sigma^{-1}(\mu_k - x_n)}) \\ &= \sum_{k=1}^K \sum_{n=1}^N t_{nk} (-\frac{1}{2}(\mu_k - x_n)^T \Sigma^{-1}(\mu_k - x_n) - \frac{1}{2} log \ det \Sigma - \frac{m}{2} log 2\pi) \end{split}$$

因爲

$$\frac{\partial l}{\partial \mu_{i}} = \frac{\partial}{\partial \mu_{i}} \sum_{k=1}^{K} \sum_{n=1}^{N} t_{nk} \left(-\frac{1}{2} (\mu_{k} - x_{n})^{T} \Sigma^{-1} (\mu_{k} - x_{n}) - \frac{1}{2} log \ det \Sigma - \frac{m}{2} log 2\pi\right)
= \frac{\partial}{\partial \mu_{i}} \sum_{n=1}^{N} t_{ni} \left(-\frac{1}{2} (\mu_{i} - x_{n})^{T} \Sigma^{-1} (\mu_{i} - x_{n}) - \frac{1}{2} log \ det \Sigma - \frac{m}{2} log 2\pi\right)
= \sum_{n=1}^{N} \left(t_{ni} \cdot \frac{\partial}{\partial \mu_{i}} \left(-\frac{1}{2} (\mu_{i} - x_{n})^{T} \Sigma^{-1} (\mu_{i} - x_{n}) - \frac{1}{2} log \ det \Sigma - \frac{m}{2} log 2\pi\right)\right)
= \sum_{n=1}^{N} t_{ni} \left(-\frac{1}{2} \cdot 2\Sigma^{-1} (\mu_{i} - x_{n})\right) = \sum_{n=1}^{N} \left(\Sigma^{-1} \left((-t_{ni}) (\mu_{i} - x_{n})\right)\right)
= \Sigma^{-1} \cdot \sum_{n=1}^{N} \left(t_{ni} x_{n} - t_{ni} \mu_{i}\right) = \Sigma^{-1} \cdot \left(\sum_{n=1}^{N} t_{ni} x_{n} - \sum_{n=1}^{N} t_{ni} \mu_{i}\right)
= \Sigma^{-1} \cdot \left(\sum_{n=1}^{N} t_{ni} x_{n} - \left(\sum_{n=1}^{N} t_{ni}\right) \mu_{i}\right) = \Sigma^{-1} \cdot \left(\sum_{n=1}^{N} t_{ni} x_{n} - N_{i} \mu_{i}\right)$$

因此,令 $\frac{\partial l}{\partial u_i} = 0$,可得

$$\Sigma^{-1} \cdot (\sum_{n=1}^{N} t_{ni} x_n - N_i \mu_i) = 0$$

$$\sum_{n=1}^{N} t_{ni} x_n - N_i \mu_i = 0$$

$$\mu_i = \frac{1}{N_i} \sum_{n=1}^{N} t_{ni} x_n$$

接著,由於第 2 題的證明中並未使用到任何 covariance matrix 的性質,因此事實上由第 2 題的證明,可得: $\forall \ A \in \mathbb{R}^{m \times m}$,若 A 爲 invertible,則有 $\frac{\partial}{\partial A_{ij}}log \ det A =$ $(A^{-1})_{ji}$,故 $\frac{\partial}{\partial A}log\ det A=(A^{-1})^T$ 。 因此,當 Σ 爲 covariance matrix 且爲 invertible 時,可得

$$\begin{split} \frac{\partial}{\partial \Sigma^{-1}}log \ det \Sigma &= \frac{\partial}{\partial \Sigma^{-1}}log \ \frac{1}{det \Sigma^{-1}} \\ &= -\frac{\partial}{\partial \Sigma^{-1}}log \ det \Sigma^{-1} \\ &= -((\Sigma^{-1})^{-1})^T = -\Sigma^T = -\Sigma \end{split}$$

此外

$$\frac{\partial}{\partial \Sigma^{-1}} (\mu_k - x_n)^T \Sigma^{-1} (\mu_k - x_n) = (\mu_k - x_n) (\mu_k - x_n)^T$$

所以

$$\begin{split} \frac{\partial l}{\partial \Sigma^{-1}} &= \frac{\partial}{\partial \Sigma^{-1}} \sum_{k=1}^K \sum_{n=1}^N t_{nk} (-\frac{1}{2} (\mu_k - x_n)^T \Sigma^{-1} (\mu_k - x_n) - \frac{1}{2} log \ det \Sigma - \frac{m}{2} log 2\pi) \\ &= \sum_{k=1}^K \sum_{n=1}^N (t_{nk} \cdot \frac{\partial}{\partial \Sigma^{-1}} (-\frac{1}{2} (\mu_k - x_n)^T \Sigma^{-1} (\mu_k - x_n) - \frac{1}{2} log \ det \Sigma - \frac{m}{2} log 2\pi)) \\ &= \sum_{k=1}^K \sum_{n=1}^N t_{nk} (-\frac{1}{2} (\mu_k - x_n) (\mu_k - x_n)^T - \frac{1}{2} (-\Sigma)) \\ &= \frac{1}{2} \sum_{k=1}^K \sum_{n=1}^N (t_{nk} \Sigma - t_{nk} (\mu_k - x_n) (\mu_k - x_n)^T) \\ &= \frac{1}{2} \sum_{k=1}^K (\sum_{n=1}^N t_{nk} \Sigma - \sum_{n=1}^N t_{nk} (\mu_k - x_n) (\mu_k - x_n)^T) \\ &= \frac{1}{2} \sum_{k=1}^K ((\sum_{n=1}^N t_{nk}) \Sigma - N_k S_k) = \frac{1}{2} \sum_{k=1}^K (N_k \Sigma - N_k S_k) \\ &= \frac{1}{2} (\sum_{k=1}^K N_k \Sigma - \sum_{k=1}^K N_k S_k) = \frac{1}{2} (N \Sigma - \sum_{k=1}^K N_k S_k) \end{split}$$

因此,令
$$\frac{\partial l}{\partial \Sigma^{-1}} = 0$$
,可得

$$\frac{1}{2}(N\Sigma - \sum_{k=1}^{K} N_k S_k) = 0$$

$$\Sigma = \frac{1}{N} \sum_{k=1}^{K} N_k S_k = \sum_{k=1}^{K} \frac{N_k}{N} S_k \square$$