

NOV 10, 2022

2

WORKS FOR ME

Establishment of primary intestinal epithelial cells and leukocytes from the threespined stickleback, Gasterosteus aculeatus

DOI

dx.doi.org/10.17504/protocols.io.36wgqj565vk5/v1

abdelmounaim nouri¹, Maria L. Rodgers², Daniel L. Bolnick², Natalie C. Steinel¹

¹Department of Biological Sciences, Olsen Hall 224, University of Massachusetts Lowell, MA, USA.;

²Department of Ecology and Evolutionary Biology, University of Connecticut, CT, USA.

ABSTRACT

This protocol details the Establishment of primary intestinal epithelial cells and leukocytes from the three-spined stickleback, Gasterosteus aculeatus.

ATTACHMENTS

535-1117.docx

DOI

dx.doi.org/10.17504/protocols.io.36wggj565vk5/v1

PROTOCOL CITATION

abdelmounaim_nouri, Maria L. Rodgers, Daniel L. Bolnick, Natalie C. Steinel 2022. Establishment of primary intestinal epithelial cells and leukocytes from the three-spined stickleback, Gasterosteus aculeatus. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.36wgqj565vk5/v1

KEYWORDS

Three-spined stickleback, Primary cell culture, Epithelial cells, Leukocytes, Enzymatic digestion

protocols.io

1

Citation: abdelmounaim_nouri, Maria L. Rodgers, Daniel L. Bolnick, Natalie C. Steinel Establishment of primary intestinal epithelial cells and leukocytes from the three-spined stickleback, Gasterosteus aculeatus https://dx.doi.org/10.17504/protocols.io.36wgqj565vk5/v1

LICENSE

This is an open access protocol distributed under the terms of the <u>Creative Commons</u>

<u>Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Sep 26, 2022

LAST MODIFIED

Nov 10, 2022

OWNERSHIP HISTORY

Sep 26, 2022 maria.s

Nov 08, 2022 abdelmounaim_nouri

PROTOCOL INTEGER ID

70490

MATERIALS TEXT

Stock solutions:

0.1M dithiothreitol:

A	В
DTT powder	155 mg
dH20 DNase free	10 mL
Aliquot in 1ml tubes	
Store at -20 C	

Note

Highly unstable at RT.

Mucus removal solution:

A	В
1X HBSS	18.6 ml
DTT solution	1 ml
FBS	0.4 ml
Divide into two 15 ml tubes	

protocols.io

2

Epithelial cells recovery solution:

A	В
EDTA	29.224 g
FBS	0.4 ml
HBSS	
Adjust pH to 7.3 using hydrochlo	

Enzymatic digestion solution:

A	В
LiberaseTM	1.4 Wünsch units/ml
DNase I	24 U/ml
1X HBSS	7 ml

Reagents:

🔀 Cell Dissociation Buffer enzyme-free Hanks Balanced Salt Solution Thermo Fisher Scientific Catalog #13150016

🔀 Ethylenediaminetetraacetic acid 99% pure **Thermo Fisher Scientific Catalog #AC118432500**

X Thermo Scientific™ Deoxyribonuclease I bovine pancreas Thermo Fisher Scientific Catalog #AAJ62229MB

Supply Solutions Liberase™ DL Research Grade low Dispase concentration 2x5mg Fisher Scientific Catalog #501003356

X Corning™ Penicillin-Streptomycin Solution Fisher Scientific Catalog #MT30002CI

X Corning™ Premium Fetal Bovine Serum Fisher Scientific Catalog #MT35015CV

⊠ Leuko Spin Medium pluriSelect Catalog #SKU 60-00091-10

Equipment:

Equipment	
Fisherbrand™ accumet™ AE150 Benchtop pH Meter	NAME
pH meter	TYPE
Fisherbrand™	BRAND
AE150	SKU
https://www.fishersci.com/shop/products/accumet-ae150-ph-benchtop-meter/13636AE153LINK	

Equipment	
Cole-Parmer® INC-250 Series Mini CO2 Digital Incubator	NAME
Digital Incubator	TYPE
Cole Parmer	BRAND
71717	SKU
https://www.coleparmer.in/p/cole-parmer-inc-250-series-mini-co2-digital-incubator/71717 LINK	

Equipment	
Microscope: Leica DMi1	NAME
Microscope	TYPE
Leica	BRAND
DMi1	SKU
https://www.leica-microsystems.com/products/light-microscopes/p/leica-dmi1/LINK	

Stereoscope: Leica S7E

Stereoscope Stereoscope Stereoscope Leica S7E https://www.leica-microsystems.com/products/?nlc=20211222-SFDC013861&utm_source=google&utm_medium=cpc&utm_campaign=Microscope_General_Brand&utm_content=text_ad&utm_term=leica%20microscopes&gclid=CjwKCAjwm8WZBhBUEiwA178UnAglbfhHkpdQN-rVZaBuiRQJC1g5-0g9p6K

Biosafety cabinet: Sterilgard III Advance

BEFORE STARTING

Fish dissection:

- Prepare Two Petri dishes containing
 I 10 mL
 of PBS 1X, 0.1% povidone-iodine and, two Petri dishes with
 IX PBS and place inside the biosafety cabinet to sterilize the intestine.

5

Citation: abdelmounaim_nouri, Maria L. Rodgers, Daniel L. Bolnick, Natalie C. Steinel Establishment of primary intestinal epithelial cells and leukocytes from the three-spined stickleback, Gasterosteus aculeatus https://dx.doi.org/10.17504/protocols.io.36wgqj565vk5/v1

<u>535-</u> 1117.docx

Fish dissection 1 After following approved euthanasia procedures, place the fish's body On ice 2 Make a ventral incision from the cloaca to the jaw using sharp surgical scissors. 3 Make two lateral incisions just behind the opercular flaps down to the lateral line of the fish. 4 Using two pins, secure the fish on its dorsal side on a dissecting pad. 5 To detach the intestine, make a cut at pyloric caeca on one side and the cloaca on the other side. 6 Place intestine into a Petri dish containing 🛕 10 mL of cold 1X PBS. 7 Using forceps and mini dissecting scissors, open the intestine by making a longitudinal incision. 8 Bring the Petri dish containing the intestine into the biological safety cabinet and wash the intestine by submerging in two successive 0.1% povidone-iodine washes for 00:05:00 each.

protocols.io

6

Citation: abdelmounaim_nouri, Maria L. Rodgers, Daniel L. Bolnick, Natalie C. Steinel Establishment of primary intestinal epithelial cells and leukocytes from the three-spined stickleback, Gasterosteus aculeatus https://dx.doi.org/10.17504/protocols.io.36wgqj565vk5/v1

https://dx.doi.org/10.17504/protocols.io.36wgqj565vk5/v1

Use double-density leukocyte isolation medium to recover all leukocytes from the cell suspension. 24 In a 15 mL conical tube, add \perp 10 mL of the density medium. 25 Carefully layer 4 5 mL of the cell suspension onto the density medium and mix the two phases. 20m 26 Centrifuge for 🕙 00:20:00 at 😯 750 x g at 👃 17 °C 27 After the density centrifugation, one white layer of cells appears between the L15 medium and Ficoll. Aspirate the top layer of the L15 medium. 28 Next, transfer the mononuclear and polymorphonuclear cell layer to a new conical tube, while making sure to not aspirate the Ficoll gradient with the cells. Wash the cells by centrifuging them at 4 17 °C , 300 x g once with $\boxed{\bot 10 \text{ mL}}$ of L15 2% FBS and 1% PenStrep.

Cell seeding:

Seed the cells into 96 wells plate at a density of 1x10⁶ cells/ml in L15 media with 10% FBS and 1% PenStrep.

29