Please show and explain your work. Justification is necessary for credit. Also sign your name here acknowledging you will not use problem solving software (Wolfram Alpha, etc.):_____

1. (5 points)

a. (2 pts) Circle all of the following expression which are **homogeneous linear differential** equations.

(i)
$$y''' - 2y''' + 3y = 5$$

(iii)
$$\sqrt{y'} = x \cos(x)y - 3$$

(ii)
$$(x^2 - \sin(x)) y^{(5)} - xe^x y' + \sin(x^2) y = 0$$
 (iv) $y'' = y + 2y'$

b. (2 pts) We have that $y_h = c_1 e^x + c_2 e^{-x}$ is a general solution for the DE y'' - y = 0 and that $y_p = x^3$ is a particular solution to $y'' - y = 6x - x^3$ (you do not need to verify these statements). Provide a general solution to the DE $y'' - y = 6x - x^3$.

- **c.** (1 pt) Compute the Wronskian of $y_1 = x$ and $y_2 = x^2$.
- **2.** (10 points) Given that $y_1 = x \sin(x)$ is a solution to the DE $x^2y'' 2xy' + (x^2 + 2)y = 0$, find a general solution to this differential equation.
- 3. (20 points) Solve the following differential equations. If a technique is asked for, use it.

a. (5 pts)
$$y'' - 6y' + 9y = 0$$

b.
$$(5 pts)$$
 $y'' + 4y' + 7y = 0$

c. (10 pts)
$$y'' - 4y' + 3y = \cos(x) + \sin(x)$$
 [using the method of undetermined coefficients]

- **4.** (5 points) Suppose $y_1 = x$ and $y_2 = x 1$ are solutions to a 2nd-order homogeneous linear DE on $I = (-\infty, \infty)$. Do y_1 and y_2 form a fundamental set of solutions for this DE on I? Explain your answer using any math needed.
- **5.** (10 points) Use the method of variation of parameters to find a general solution to the differential equation $x^2y'' 4xy' + 4y = 3x^3$.