Математические основы защиты информации и информационной безопасности

Отчет по лабораторной работе № 8

Кейела Патачона НПМмд-02-21

Содержание

1	Цель работы	4
2	Теоретические сведения	5
3	Выполнение работы 3.1 Реализация алгоритмов на языке Python	
4	Выводы	12
Сп	писок литературы	13

List of Figures

3.1	Алгоритм сложения неотрицательны целых чисел	10
3.2	Алгоритм вычитания неотрицательны целых чисел	10
3.3	Алгоритм умножения неотрицательны целых чисел столбиком	11
3.4	Алгоритм быстрого столбика	11
3.5	Алгоритм деления многоразрядных целых чисел	11

1 Цель работы

Изучить и реализовать следующие алгоритмы: сложения неотрицательны целых чисел, вычитание неотрицательны целых чисел, умножение неотрицательны целых чисел столбиком, алгоритм быстрого столбика и деление многоразрядных целых чисел.

2 Теоретические сведения

Описание всех алгоритмов изложено в методическом руководстве к лабораторной работе $N^{\circ}8$, которое можно изучить перейдя по ссылке в списке источников.

3 Выполнение работы

3.1 Реализация алгоритмов на языке Python

Алгоритм сложения неотрицательны целых чисел

```
u = str(input('Введите 1 число: '))
v = str(input('Введите 2 число: '))
v = [int(i) \text{ for } i \text{ in } v]
u = [int(i) \text{ for } i \text{ in } u]
n = len(u)
b = 2
j = n - 1
k = 0
w = ''
while j \ge 0:
    wj = (u[j] + v[j] + k) \% b
    k = (u[j] + v[j] + k) // b
    w = str(wj) + w
    j -= 1
w = str(k) + w
print(w)
```

Алгоритм вычитания неотрицательны целых чисел

```
u = str(input('Введите 1 число: '))
v = str(input('Введите 2 число: '))
v = [int(i) for i in v]
u = [int(i) for i in u]
n = len(u)
b = 10
j = n - 1
k = 0
w = ''
while j \ge 0:
    wj = (u[j] - v[j] + k) % b
    k = (u[j] - v[j] + k) // b
    w = str(wj) + w
    j -= 1
w = str(k) + w
print(w)
 Алгоритм умножения неотрицательны целых чисел столбиком
u = str(input('Введите 1ое число: '))
v = str(input('Введите 2oe число: '))
b = int(input("В какой системе счистления?: "))
v = [int(i) for i in v]
u = [int(i) for i in u]
n, m = len(u), len(v)
j = m
w = [0]*(n+m)
```

```
while j > 0:
    if v[j-1] != 0:
        k = 0
        for i in range(n,0,-1):
            t = u[i-1] * v[j-1] + w[i+j-1] + k
            w[i+j-1] = t \% b
            k = t // b
        w[j-1] = k
    else:
        w[j-1] = 0
    j -= 1
w = int("".join(map(str, w)))
print("Result: ",w)
 Алгоритм быстрого столбика
u = str(input('Введите 1-ое число: '))
v = str(input('Введите 2-ое число: '))
b = int(input("В какой системе счистления?: "))
v = [int(i) for i in v]
u = [int(i) for i in u]
n, m = len(u), len(v)
w = [0] * (n + m)
t = 0
for s in range(m + n):
    for i in range(s + 1):
        t = t + u[n - i - 1] * v[m - s + i - 1]
```

```
w[m + n - s - 1] = t \% b
    t = t // b
print("Result: ", w)
 Алгоритм деления многоразрядных целых чисел
u = input('Введите 1ое число: ')
v = input('Введите 2oe число: ')
u_int, v_int = int(u), int(v)
n = len(u) - 1
t = len(v) - 1
b = int(input("В какой системе счистления?:"))
v = [int(i) for i in v]
u = [int(i) for i in u]
if (t > n) or (t<1) or v[t] == 0:
    print("Введены неправильные данные")
else:
    q = [0]*(n-t+1)
    while u_int >= v_int * b ** (n - t):
        q[n-t] += 1
        u_int -= v_int * b ** (n-t)
    for i in range(n,t,-1):
        if u[i] >= v[t]:
            q[i-t-1] = b-1
        else:
```

```
q[i-t-1] = (u[i]*b + u[i-1]) // v[t]
    while q[i-t-1] * (v[t]*b + v[t-1]) > (u[i]*b**2 + u[i-1]*b + u[i-2]):
        q[i-t-1] -= 1
        u_int -= q[i-t-1] * (b ** (i-t-1)) * v_int

if u_int < 0:
        u_int += v_int * b**(i-t-1)
        q[i-t-1] -= 1

q = int("".join(map(str, q)))
r = u_int

print(f"q = {q} r = {r}")</pre>
```

3.2 Контрольный пример

```
Введите 1 число: 123
Введите 1 число: 245
0368
PS C:\Users\patat\Desktop\Master Rudn\Git_work\2021-2022\Cybersecurity>
```

Figure 3.1: Алгоритм сложения неотрицательны целых чисел

```
Введите 1 число: 456
Введите 1 число: 234
0222
PS C:\Users\patat\Desktop\Master Rudn\Git_work\2021-2022\Cybersecurity> ■
```

Figure 3.2: Алгоритм вычитания неотрицательны целых чисел

```
Введите 10e число: 14
Введите 20e число: 11
В какой системе счистления?: 10
Result: 154
PS C:\Users\patat\Desktop\Master Rudn\Git_work\2021-2022\Cybersecurity>
```

Figure 3.3: Алгоритм умножения неотрицательны целых чисел столбиком

```
Введите 1-ое число: 100
Введите 2-ое число: 101
В какой системе счистления?: 2
Result: [0, 1, 0, 1, 0, 0]
PS C:\Users\patat\Desktop\Master Rudn\Git_work\2021-2022\Cybersecurity>
```

Figure 3.4: Алгоритм быстрого столбика

```
Введите 10e число: 45
Введите 20e число: 31
В какой системе счистления?:10
q = 1 r = 14
PS C:\Users\patat\Desktop\Master Rudn\Git_work\2021-2022\Cybersecurity>
```

Figure 3.5: Алгоритм деления многоразрядных целых чисел

4 Выводы

Мной были изучены и реализованы следующие алгоритмы: сложения неотрицательны целых чисел, вычитание неотрицательны целых чисел, умножение неотрицательны целых чисел столбиком, алгоритм быстрого столбика и деление многоразрядных целых чисел.

Список литературы

1. Инструкция к лабораторной работе №8