

Universidad Industrial de Santander

Escuela de Matemáticas

Cálculo II

Septiembre 6 de 2018.

Examen Parcial 1.

Tiempo: 110 minutos.

Profesores:

UIS-Socorro.

No.Lista____ Nombre:_____ Código: _____ Grupo: ___

Instrucciones:

- No está permitido durante el examen el préstamo de implementos como lápices, lapiceros, borradores, etc.
- El profesor no responderá preguntas, porque parte de la evaluación es la comprensión de los enunciados.
- No se permite el uso de teléfonos celulares, calculadoras, o cualquier dispositivo electrónico.
- Durante la presentación del examen está prohibido retirarse del salón, sin importar la justificación.

TEMARIO

Sea ordenad@ y clar@ en sus procesos y símbolos. Cualquier proceso que no esté claramente sustentado será considerado como equivocado.

1. [15 puntos] Evalúe las siguientes integrales.

(a)
$$\int_0^{\frac{\pi}{2}} \frac{\cos(x)}{\sqrt{1 + \sin^2(x)}} dx$$
.

(b)
$$\int \frac{e^{2t} + e^t}{e^{2t} + 1} dx$$
. [Sugerencia: $u = e^t$]

(c)
$$\int_0^4 (|2x-6|-3)dx$$
.

Universidad Industrial de

2. **[10 puntos]** La siguiente figura muestra la región comprendida entre la curva $y=\frac{3(x^3+x)}{(x^4+2x^2+1)^{6/5}}$ y el eje X en el intervalo [-1,1]. Halle el area de la región.

- 3. **[10 puntos]** Evalúe $\int_0^2 (2x-3x^2)dx$ por medio del límite de una suma de Riemann (definición de integral definida).
- 4. **[15 puntos]**
 - (a) Sea f una función continua tal que $\int_0^x f(t)dt = \cos(x) + \int_{x^2}^4 e^t f(t)dt$ para todo $x \in \mathbb{R}$. Halle una formula explícita para f(x).
 - (b) Encuentre una función y = f(x) para la cual f(0) = -1 y $\frac{dy}{dx} = \frac{2}{2x+1}$.