UNIVERSITY ADMIT ELIGIBILITY PREDICTOR

ASSIGNMENT - 4

Date	4th October 2022
Team ID	PNT2022TMID27839
Student Name	Akash S (311519104007)
Domain Name	Education
Project Name	University Admit Eligibility Predictor
Maximum Marks	2 Marks

1.) IMPORT THE REQUIRED LIBRARIES

2.)DOWNLOAD AND UPLOAD THE DATASET

3.)HANDLE MISSING VALUES AND DEAL WITH THEM

```
- 3.)CHECK FOR MISSING VALUES AND DEAL WITH THEM

Gender 0
Age 0
Annual Income (k$) 0
Spending Score (1-100) 0
dtype: int64
```

4.) PERFORM THE DESCRIPTIVE STATISTICS ON THE DATASET

5.) PERFORM VARIOUS VISUALISATIONS

a.) UNIVARIANTE ANALYSIS

b.) MULTI - VARIANTE ANALYSIS

6.) FIND AND REPLACE THE OUTLIERS

7.) CHECK FOR CATEGORICAL COLUMNS AND ENCODE THEM

8.) SCALING THE DATA

9.) PERFORMING ANY OF THE CLUSTERING ALGORITHMS


```
V [18] km = 10 keans (n_clusters-8)

Category - km.fit_predict(df)

Category

aresy([0, 0, 4, 4, 4, 4, 2, 4, 3, 4, 3, 4, 2, 4, 0, 0, 4, 0, 3, 4, 0, 0, 2, 2, 0, 2, 0, 2, 0, 2, 0, 2, 4, 3, 4, 3, 4, 3, 0, 0, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 0, 3, 4, 2, 4, 2, 2, 4, 2, 4, 4, 4, 4, 2, 0, 0, 3, 2, 3, 2, 3, 4, 3, 4, 4, 4, 2, 0, 0, 3, 2, 3, 2, 3, 4, 3, 3, 0, 2, 2, 2, 3, 0, 2, 2, 2, 0, 4, 3, 2, 2, 2, 3, 0, 2, 0, 4, 2, 3, 0, 3, 2, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 2, 4, 3, 3, 3, 0, 2, 2, 2, 3, 0, 3, 2, 4, 2, 2, 3, 0, 3, 2, 2, 4, 3, 4, 2, 4, 3, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4,
```

10.) ADD THE CLUSTER DATA WITH THE PRIMARY DATASET

11.)SPLITTING THE DATA INTO DEPENDENT AND INDEPENDENT VARIABLES

12.) SPLIT THE DATA INTO TRAINING AND TESTING DATA

13.) BUILD THE MODEL

14.) TRAIN THE MODEL

15.) TEST THE MODEL

16.) MEASURE THE PERFORMANCE USING METRICS

