```
Requirement already satisfied: ISLP in /usr/local/lib/python3.10/dist-packages (0.3.22)
    Requirement already satisfied: numpy<1.25,>=1.7.1 in /usr/local/lib/python3.10/dist-packages (from ISLP) (1.24.4)
    Requirement already satisfied: scipy>=0.9 in /usr/local/lib/python3.10/dist-packages (from ISLP) (1.11.4)
    Requirement already satisfied: pandas<=1.9,>=0.20 in /usr/local/lib/python3.10/dist-packages (from ISLP) (1.5.3)
    Requirement already satisfied: lxml in /usr/local/lib/python3.10/dist-packages (from ISLP) (4.9.4)
    Requirement already satisfied: scikit-learn>=1.2 in /usr/local/lib/python3.10/dist-packages (from ISLP) (1.2.2)
    Requirement already satisfied: joblib in /usr/local/lib/python3.10/dist-packages (from ISLP) (1.4.0)
    Requirement already satisfied: statsmodels>=0.13 in /usr/local/lib/python3.10/dist-packages (from ISLP) (0.14.1)
    Requirement already satisfied: lifelines in /usr/local/lib/python3.10/dist-packages (from ISLP) (0.28.0)
    Requirement already satisfied: pygam in /usr/local/lib/python3.10/dist-packages (from ISLP) (0.9.0)
    Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (from ISLP) (2.2.1+cu121)
    Requirement already satisfied: pytorch-lightning in /usr/local/lib/python3.10/dist-packages (from ISLP) (2.2.2)
    Requirement already satisfied: torchmetrics in /usr/local/lib/python3.10/dist-packages (from ISLP) (1.3.2)
    Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas<=1.9,>=0.20->ISLP) (2.8
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<=1.9,>=0.20->ISLP) (2023.4)
    Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=1.2->ISLP) (3.4.0)
    Requirement already satisfied: patsy>=0.5.4 in /usr/local/lib/python3.10/dist-packages (from statsmodels>=0.13->ISLP) (0.5.6)
    Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.10/dist-packages (from statsmodels>=0.13->ISLP) (24.0)
    Requirement already satisfied: matplotlib>=3.0 in /usr/local/lib/python3.10/dist-packages (from lifelines->ISLP) (3.7.1)
    Requirement already satisfied: autograd>=1.5 in /usr/local/lib/python3.10/dist-packages (from lifelines->ISLP) (1.6.2)
    Requirement already satisfied: autograd-gamma>=0.3 in /usr/local/lib/python3.10/dist-packages (from lifelines->ISLP) (0.5.0)
    Requirement already satisfied: formulaic>=0.2.2 in /usr/local/lib/python3.10/dist-packages (from lifelines->ISLP) (1.0.1)
    Requirement already satisfied: progressbar2<5.0.0,>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from pygam->ISLP) (4.2.0)
    Requirement already satisfied: tqdm>=4.57.0 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning->ISLP) (4.66.2)
    Requirement already satisfied: PyYAML>=5.4 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning->ISLP) (6.0.1)
    Requirement already satisfied: fsspec[http]>=2022.5.0 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning->ISLP) (202:
    Requirement already satisfied: typing-extensions>=4.4.0 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning->ISLP) (4
    Requirement already satisfied: lightning-utilities>=0.8.0 in /usr/local/lib/python3.10/dist-packages (from pytorch-lightning->ISLP)
    Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (3.13.4)
    Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (1.12)
    Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (3.3)
    Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (3.1.3)
    Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (12.1.1
    Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (12.1
    Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (12.1.1
    Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (8.9.2.26)
    Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (12.1.3.1)
    Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (11.0.2.54)
    Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (10.3.2.1
    Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (11.4.5
    Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (12.1.6
    Requirement already satisfied: nvidia-nccl-cu12==2.19.3 in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (2.19.3)
    Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (12.1.105)
    Requirement already satisfied: triton==2.2.0 in /usr/local/lib/python3.10/dist-packages (from torch->ISLP) (2.2.0)
    Requirement already satisfied: nvidia-nvjitlink-cu12 in /usr/local/lib/python3.10/dist-packages (from nvidia-cusolver-cu12==11.4.5.16
    Requirement already satisfied: future>=0.15.2 in /usr/local/lib/python3.10/dist-packages (from autograd>=1.5->lifelines->ISLP) (0.18
    Requirement already satisfied: interface-meta>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from formulaic>=0.2.2->lifelines->IS
    Requirement already satisfied: wrapt>=1.0 in /usr/local/lib/python3.10/dist-packages (from formulaic>=0.2.2->lifelines->ISLP) (1.14.1
    Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from fsspec[http]>=2022.5.0->pytorch-lightning->l
    Requirement already satisfied: aiohttp!=4.0.0a0,!=4.0.0a1 in /usr/local/lib/python3.10/dist-packages (from fsspec[http]>=2022.5.0->py
    Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from lightning-utilities>=0.8.0->pytorch-lightr
    Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0->lifelines->ISLP) (1
    Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0->lifelines->ISLP) (0.12
    Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0->lifelines->ISLP)
    Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0->lifelines->ISLP)
    Requirement already satisfied: pillow>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0->lifelines->ISLP) (9.4
    Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.0->lifelines->ISLP) (
import numpy as np
```

```
import seaborn as sns
from matplotlib import pyplot as plt
import pandas as pd
from matplotlib.pyplot import subplots
import statsmodels.api as sm
from ISLP import load_data
from ISLP.models import (ModelSpec as MS,
                         summarize,
                         poly)
from ISLP import confusion_table
from sklearn.metrics import accuracy_score
from ISLP.models import sklearn sm
from sklearn.model_selection import \
    (cross_validate,
     KFold,
     ShuffleSplit)
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from sklearn.linear model import Ridge. RidgeCV. Lasso. LassoCV
```

from sklearn.metrics import mean_squared_error

from sklearn.model_selection import train_test_split

#mount to google drive from google.colab import drive drive.mount('/content/drive')

→ Mounted at /content/drive

Source of Data: SREEKAR G V - Kaggle

https://www.kaggle.com/datasets/sreekargv/bike-rentals?resource=download

bike_df = pd.read_csv('/content/archive (2).zip')

Data Dictionary (Taken from Kaggle): datetime: year/month/day/time(military)

season: 1: spring, 2: summer, 3: fall, 4: winter

holiday: whether day is a holiday or not (extracted from http://dchr.dc.gov/page/holiday-schedule)

workingday: if day is neither weekend nor holiday is 1, otherwise is 0.

weather: 1: Clear, Few clouds, partly cloudy, partly cloudy 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist 3: Light Snow, Light

Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog

temp: temperature in Celsius

atemp: feeling temperature in Celsius

humidity: humidity

windspeed: wind speed

casual: count of casual users

registered: count of registered users

count: count of total rental bikes including both casual and registered

bike_df.head()

→		datetim	season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
	0	2011-01-01 00:00:0) 1	0	0	1	9.84	14.395	81	0.0	3	13	16
	1	2011-01-01 01:00:0) 1	0	0	1	9.02	13.635	80	0.0	8	32	40
	2	2011-01-01 02:00:0) 1	0	0	1	9.02	13.635	80	0.0	5	27	32
	3	2011-01-01 03:00:0) 1	0	0	1	9.84	14.395	75	0.0	3	10	13
	4	2011-01-01 04:00:0) 1	0	0	1	9.84	14.395	75	0.0	0	1	1

Data Cleaning:

No extra cleaning is necessary for the dataset. I looked through the dataset, there are no N/A, repetitions, etc.

Data Encoding/Scaling:

No extra scaling or encoding was needed for this dataset. Each qualitative variable is already encoded with dummy variables. Based on the models I am building, I do not need to scale my data.

Data Visualizations:

```
#Visualization One
sns.countplot(data= bike_df, x= 'holiday')
```


#Visualization Two
sns.countplot(data= bike_df, x= 'season')

Prediction 1

Question: I am testing to see which of the columns are good predictors for weather = 1 (clear) using a Logistic Regression Model.

#Distribution of Weather (target)
sns.countplot(data=bike_df, x= 'weather')

bike_df['weather'].count()

→ 10886

→ ▼		coef	std err	z	P> z
	intercept	4.4193	0.145	30.564	0.000
	season	0.0956	0.021	4.497	0.000
	holiday	-0.1894	0.134	-1.409	0.159
	workingday	-0.2533	0.056	-4.484	0.000
	temp	0.0015	0.017	0.087	0.930
	atemp	0.0154	0.016	0.976	0.329
	humidity	-0.0565	0.002	-36.950	0.000
	windspeed	-0.0340	0.003	-11.165	0.000
	casual	-0.0021	0.000	-4.216	0.000
	registered	0.0010	0.000	3.145	0.002
	count	0 0011	0 000	E 276	0 000

Interpretation of Summary:

holiday, temp, and atemp are not significant because their p-values are greater than 0.05. Meaning, holiday has 0.159 probability that there is no relationship with weather=1 and temp is 0.930 and atemp is 0.329. Every other variable does have a relationship with weather=1 because the p-values are less than 0.05.

```
clear_array = np.zeros(len(bike_df.weather))
idx_clear = np.where(bike_df.weather == 1)[0]
clear_array[idx_clear] = 1
```

clear_array

```
\rightarrow array([1., 1., 1., ..., 1., 1., 1.])
```

```
#7192 of the datapoints are 1 out of the 10886 total
sum(clear_array)
₹ 7192.0
#total length of the clear_array
len(clear_array)
→ 10886
probs = results.predict()
probs[:10]
labels = np.array([0]*10886)
labels[probs>0.5] = 1
confusion_table(labels, clear_array)
<del>_</del>
          Truth 0.0 1.0
      Predicted
         0.0
                1646 825
         1.0
                2048 6367
#Accuracy score
accuracy_score(labels, clear_array)
```

Interpretation of Confusion Matrix:

The biggest mistake my model is making is when it is predicting 1 when it is really 0. I think it is making this mistake because the threshold might be too strong or not strong enough. It makes this mistake 2048 times. My model performs well when it guesses 1 and it actually is 1 it does this correct 6367 times.

Prediction 2

0.736083042439831

Question: I am testing to see which columns are the best predictors for the target variable count using a Linear Regression Model.

#Distribution of Counts (target)
plt.hist(bike_df['count'])


```
design_interaction = MS(['season', 'holiday', 'workingday', 'temp', 'atemp', 'humidity', 'windspeed'])
design_interaction = design_interaction.fit(bike_df)
X = design_interaction.transform(bike_df)

#predicting count
y = bike_df['count']
```

#predicting count
y = bike_df['count']
#initializing model named "model"
count_model = sm.OLS(y, X)
#fit the model
count_results = count_model.fit()
#print coeff and statistics
summarize(count_results)

		coef	std err	t	P> t
	intercept	138.2457	8.644	15.993	0.000
	season	22.5740	1.425	15.846	0.000
	holiday	-9.1419	9.272	-0.986	0.324
	workingday	-0.8567	3.313	-0.259	0.796
	temp	1.9117	1.142	1.674	0.094
	atemp	5.5670	1.050	5.300	0.000
	humidity	-2.9660	0.084	-35.508	0.000
	windspeed	0.8425	0.198	4.256	0.000

Interpretation of Summary:

The predictors that are not significant are temp, workingday, and holiday because their p-values are greater than 0.05. Season, atemp, humidity, and windspeed are all significant since their p-values are less than 0.05.

#R^2 Score count_results.rsquared

→ 0.2605631584232564

Interpretation of R^2:

The model does not perform well, it only accurately predicts count 26% of the time.

Cross Validation and Tuning:

```
Cross Validation
```

I used a 5-fold cross validation because my dataset is large so LOOCV would be too expensive with both time and computer storage.


```
Tuning
```

```
alphas = 10**np.linspace(10,-2,100)*0.5
```

alphas

```
→ array([5.00000000e+09, 3.78231664e+09, 2.86118383e+09, 2.16438064e+09,
           1.63727458e+09, 1.23853818e+09, 9.36908711e+08, 7.08737081e+08,
           5.36133611e+08, 4.05565415e+08, 3.06795364e+08, 2.32079442e+08,
           1.75559587e+08, 1.32804389e+08, 1.00461650e+08, 7.59955541e+07,
           5.74878498e+07, 4.34874501e+07, 3.28966612e+07, 2.48851178e+07,
           1.88246790e + 07, \ 1.42401793e + 07, \ 1.07721735e + 07, \ 8.14875417e + 06,
           6.16423370e+06, 4.66301673e+06, 3.52740116e+06, 2.66834962e+06,
           2.01850863e+06, 1.52692775e+06, 1.15506485e+06, 8.73764200e+05,
           6.60970574e+05, 5.00000000e+05, 3.78231664e+05, 2.86118383e+05,
           2.16438064e+05, 1.63727458e+05, 1.23853818e+05, 9.36908711e+04,
           7.08737081e+04, 5.36133611e+04, 4.05565415e+04, 3.06795364e+04,
           2.32079442e+04, 1.75559587e+04, 1.32804389e+04, 1.00461650e+04,
           7.59955541e+03, 5.74878498e+03, 4.34874501e+03, 3.28966612e+03,
           2.48851178e+03, 1.88246790e+03, 1.42401793e+03, 1.07721735e+03,
           8.14875417e+02, 6.16423370e+02, 4.66301673e+02, 3.52740116e+02,
           2.66834962e+02, 2.01850863e+02, 1.52692775e+02, 1.15506485e+02,
           8.73764200e + 01, \; 6.60970574e + 01, \; 5.000000000e + 01, \; 3.78231664e + 01, \\
           2.86118383e+01, 2.16438064e+01, 1.63727458e+01, 1.23853818e+01,
           9.36908711e+00, 7.08737081e+00, 5.36133611e+00, 4.05565415e+00,
           3.06795364e + 00, \ 2.32079442e + 00, \ 1.75559587e + 00, \ 1.32804389e + 00,
           1.00461650e+00, 7.59955541e-01, 5.74878498e-01, 4.34874501e-01,
           3.28966612e-01, 2.48851178e-01, 1.88246790e-01, 1.42401793e-01,
           1.07721735e-01, 8.14875417e-02, 6.16423370e-02, 4.66301673e-02,
           3.52740116e-02, 2.66834962e-02, 2.01850863e-02, 1.52692775e-02,
           1.15506485e-02, 8.73764200e-03, 6.60970574e-03, 5.00000000e-03])
```

Feature Selection Method: Lasso

```
lasso = Lasso(max_iter = 10000)
coefs = []
MSEs = []
for a in alphas:
 lasso.set_params(alpha=a)
 lasso.fit(X, y)
 coefs.append(lasso.coef_)
 pred = lasso.predict(X)
 MSEs.append(mean_squared_error(clear_array, pred))
ax = plt.gca()
ax.plot(alphas*2, coefs, label = X.columns)
ax.set_xscale('log')
plt.axis('tight')
plt.xlabel('alpha')
plt.ylabel('weights')
plt.legend()
```

<matplotlib.legend.Legend at 0x7a449f0e0b50>

Tuning Parameter Method: Lasso MSE

#plotting the coef as a function of tuning param
plt.plot(alphas, MSEs)

plt.xscale('log')