PROTOCOLOS DE CONSISTÊNCIA

DCE540 - Computação Paralela e Distribuída

Atualizado em: 15 de outubro de 2021

Departamento de Ciência da Computação

PROTOCOLO DE CONSISTÊNCIA

Define a real implementação do modelo de consistência

- Como replicar
- Onde replicar
- Centrado no quê (ou em quem)?
 - Nos dados
 - Nos clientes

PROTOCOLOS PRIMÁRIOS

É a principal forma de implementação de consistência contínua

O Também são protocolos de simples implementação

Existem dois protocolos básicos nesta classe

- 1. Escrita remota (remote-write protocol)
- 2. Escrita local (*local-write protocol*)

PROTOCOLO DE ESCRITA REMOTA

Neste protocolo o dado atualizado é centralizado

- Existe um servidor de referência que sempre contém a versão mais atual de qualquer dado replicado
- O dado só pode ser alterado neste servidor principal
- Entretanto, existem replicações somente leitura em outros locais

Este protocolo é eficiente quando temos também um protocolo de invalidação

- Ele marca as réplicas como desatualizadas
- Estas são atualizadas sob demanda

Este protocolo também é conhecido como primary-backup protocol

PROTOCOLO DE ESCRITA REMOTA

PROTOCOLO DE ESCRITA LOCAL

Similar ao protocolo de escrita remota

Existe um único servidor que contém o dado atualizado

Entretanto, aqui o dado pode migrar de servidor para servidor

- Onde o dado foi atualizado por último é considerado o novo servidor central
- Ajuda a tratar situações onde diversas atualizações em um conit são realizadas por um mesmo processo

PROTOCOLO DE ESCRITA REMOTA

REPLICAÇÃO ATIVA

Neste protocolo não existe um único dado considerado atualizado

 Pelo contrário, é necessário atualizar todas as réplicas existentes

Quando um dado é atualizado, aquela operação de atualização é enviada a todas suas réplicas

Existe um problema de sincronização

- Quando existem atualizações concorrentes, qual foi realizada primeiro?
 - A solução é um esquema de multicast totalmente ordenado
 - Processo central coordenador (sequenciador)

ATUALIZAÇÃO BASEADA EM VOTOS

Neste protocolo, um cliente deve adquirir a permissão de acesso a múltiplas para que ele possa realizar operações de leitura ou escrita

Os votos são associados as permissões garantidas ao processo

- O Cada permissão concedida representa um voto
- Caso ele consiga permissões suficientes, pode então ler e escrever
- A operação de escrita gera um número de versão para o arquivo

ATUALIZAÇÃO BASEADA EM VOTOS

Algumas regras devem ser seguidas para garantir um bom funcionamento do protocolo de atualização baseado em votos

- N ← Número de réplicas
- \bigcirc $N_B \leftarrow$ Quorum de leitura
- \bigcirc $N_W \leftarrow$ Quorum de escrita

$$N_R + N_W > N$$

 $N_W > 0.5N$

PROTOCOLOS DE COERÊNCIA DE CACHE

Estes protocolos não são muito diferentes dos anteriores

É necessário tratar 3 condições

- Quando as inconsistências são detectadas
- 2. Como as réplicas de cache são mantidas nos servidores
- O que acontece quando um processo modifica um dado da cache

Diversos protocolos podem ser construídos analisando variações destes 3 pontos

PROTOCOLOS DE COERÊNCIA DE CACHE

Estes protocolos não são muito diferentes dos anteriores

É necessário tratar 3 condições

- Quando as inconsistências são detectadas
- 2. Como as réplicas de cache são mantidas nos servidores
- O que acontece quando um processo modifica um dado da cache

Diversos protocolos podem ser construídos analisando variações destes 3 pontos

CONSISTÊNCIA DE DADOS CENTRADOS NO CLIENTE

Para implementar consistência centrada no cliente, é necessário que cada operação de escrita possua um identificador

- Indentificador global W
- Identificador é dado pelo servidor no qual a operação de escrita foi realizada
 - Este servidor é denominado como servidor de origem de W

Cada cliente guarda dois conjuntos de identificadores

- 1. Relativos aos dados que ele realizou leitura
- 2. Relativos aos dados que ele realizou escrita

LEITURA MONOTÔNICA

Durante uma operação de leitura, um cliente requisita o identificador do servidor

- Identificador utilizado para verificar se sua cópia local está atualizada
- Caso não esteja atualizada
 - Ele requisita a atualização do dado e realiza a leitura
- Caso esteja atualizada
 - Ele simplesmente realiza a leitura

ESCRITA MONOTÔNICA

Similar a leitura monotônica

Durante uma operação de escrita, um cliente requisita o identificador do servidor

- Identificador utilizado para verificar se sua cópia local está atualizada
- Caso não esteja atualizada
 - Ele requisita a atualização do dado e realiza a leitura
- Caso esteja atualizada
 - Ele realiza a escrita
 - Atualiza o identificador W

LEIA SUA ESCRITA

O servidor onde a leitura está sendo realizada tem que ter ciência das escritas de todos os clientes

Ou seja, ele tem que ter a versão mais atualizada do dado

Isto gera uma grande sobrecarga na rede

Um servidor deve se comunicar com todos os outros

ESCRITA SEGUE LEITURA

Simplesmente necessita que o servidor verifique o identificador de todos os outros servidores

Caso ele possua o identificador mais atual, não faz nada

Caso ele possua um identificador ultrapassado, ele atualiza o dado

- Assim, a escrita segue normalmente
- Os identificadores de leitura s\u00e3o atualizados