Fixed-Point Number (Addition/Multiplication)

Integers

□ Generally we use 8-bits, 16-bits, 32-bits or 64-bits to store integers.

□ 20 = 16+4 =
$$(0001\ 0100)_2$$
 8-bits
□ 20 = 16+4 = $(0000\ 0000\ 0001\ 0100)_2$ 16-bits
 $\leftarrow_{pad\ zeros\rightarrow}$

■ We use 2's complement format for the notation of negative signed numbers:

$$20 = (0...01\ 0100)_2$$

 $-20 = (1110\ 1100)_2$ 8-bits
 $-20 = (1111\ 1111\ 1110\ 1100)_2$ 16-bits
Sign bit

Integers

- □ How to store integers in registers?
- □ Consider that we have 8-bit registers.
- \square 20 = (10100)₂
- □ As 8-bit integer: (r1)
 - $r1 = 20 = (0001\ 0100)_2$
- □ As 16-bit integer: (r1 r2)
 - r1 = 0 = (0000 0000)₂
 - $r2 = 20 = (0001 \ 0100)_2$
 - $(r1 r2) = 20 = (0000 0000 0001 0100)_2$
- □ As 32-bit integer: (r1 r2 r3 r4)
 - -1 r1 = r2 = r3 = 0 = $(0000\ 0000)_2$
 - $r4 = 20 = (0001\ 0100)_2$
 - $(r1 \ r2 \ r3 \ r4) = 20 = (0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0001 \ 0100)_2$

Integers

- □ Represent 123456789 in 32-bit integer:
 - 123456789 = (111 0101 1011 1100 1101 0001 0101)₂
 - Convert to 32-bits:

- **•** 0000 0111 0101 1011 1100 1101 0001 0101
- $r1 = (0000 \ 0111)_2^{12} = 0x07 = 7^{13}$
- $r2 = (0101 \ 1011)_2 = 0x5b = 91$
- $r3 = (1100 \ 1101)_2 = 0xcd = 205$
- $r4 = (0001 \ 0101)_2 = 0x15 = 21$
- (r1 r2 r3 r4) = 0x075bcd15
 = (0000 0111 0101 1011 1100 1101 0001 0101)₂
 = 123456789

Integers (2's complement)

- ☐ Given following values of registers, find the value of (r4 r3 r2 r1)?
- □ r1 = 72, r2 = 100, r3 = 250, r4 = 255

```
r1 = 72 = (0100\ 1000)_2

r2 = 100 = (0110\ 0100)_2

r3 = 250 = (1111\ 1010)_2

r4 = 255 = (1111\ 1111)_2

(r4 r3 r2 r1) = (1111\ 1111)_2 1111 1010 0110 0100 0100 1000)<sub>2</sub>

The number is negative! Take 2's complement:

(0000\ 0000\ 0000\ 0101\ 1001\ 1011\ 1011\ 1000)_2 = 367544
```

g-bits

□ Assume that you have an operator that adds only two digits:

Each digit is a number in a base b.

Note that the sum of two single-digit yields one digit and extra one bit at most!

□ Assume that we have an operator that adds only two digit. How can we add two numbers with multiple digits?

Solution: Add digits individually

Also add carry!

Now consider that we are working in base 256.

Put each digit in a register so that we'll have 4 register for each 32-bit number.

- What about signed numbers?
- □ Use 2's complement for negative numbers and just add! Ignore the last produced carry.
- □ How does it work? Explained later...
- What about subtraction?
- □ Subtraction can easily be implemented by taking 2's complement of the second operand first and then applying addition:
 - A-B = A+(-B)

Assume that you have an operator that multiplies only two digits:

Each digit is a number in a base b.

b=10 => numbers: 0-9

b=2 => numbers: 0-1

b=28=256 => numbers: 0-255

Note that the product of two single-digit yields two digits at most!

□ You have more than one digit to multiply:

By using the operator, we can calculate: 7x8 = 56

7x5 = 35

3x8 = 24

3x5 = 15

□ How can we use these values to calculate the result?

```
58
x 37
-----56
35
24
+ 15
```

□ We can use integer addition to find the result.

- This operation is equivalent to 16-bit multiplication using 8-bit multiplication and 8-bit addition.
- Note that the number of digits in the result is equal to the sum of the number of input digits.

- □ Now assume that the digits are in base $2^8 = 256$. (8-bit are necessary for each digit)
- □ Then, 16-bit multiplication is done by using 8-bit multiplication and 8-bit addition. Each 8-bit register can hold only one digit!

In fact, we do not need 16 registers to accomplish 16-bit multiplication.

If we compute the partial sums, we can re-use the registers which hold the values that are unnecessary.

Fixed-Point Numbers

- □ Fixed-point numbers are generally stored in "In.Qm" format (sometimes referred as Qn.m format)
- n = number of bits in integer part.
- m = number of bits in fractional part.
- □ Example: I8.Q16

27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	2 ⁰		2 ⁻¹	2 -2	2 ⁻³	2-4	2 ⁻⁵	2-6	2-7	2-8	2 ⁻⁹				2 ⁻¹³	2 ⁻¹⁴	2 ⁻¹⁵	2 ⁻¹⁶
0	0	1	0	1	1	1	0	•	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0

$$= 32 + 8 + 4 + 2 + 1/2 + 1/4 + 1/16$$

Signed Fixed-Point Numbers

- Positive fixed-point numbers are the same as unsigned fixedpoint numbers.
- Negative fixed-point numbers are obtained by simply calculating
 2's complement as they are integers.

Fixed-Point Addition

- □ Fixed-point addition is the same as integer addition!
- □ Align two fixed point number and apply integer addition:

Unsigned Fixed-Point Multiplication

- Unsigned fixed-point multiplication is similar to integer multiplication.
- □ Consider the following multiplications:

Just multiply like integer multiplication. Align the numbers according to the point (.)

Signed Fixed-Point Multiplication

□ Use 2's complement format for fixed-point numbers.

$$(Ia.Qb) * (Ic.Qd) = I(a+c-1) . Q(b+d-1)$$

Take 2's complement of the last partial product if multiplier is negative!

Signed Fixed-Point Multiplication

