

CURVAS ALGEBRAICAS Ficha Docente

ASIGNATURA

Nombre de asignatura (Código GeA): CURVAS ALGEBRAICAS (800600)

Créditos: 6

Créditos presenciales: 6,00 Créditos no presenciales:

Semestre: 1

PLAN/ES DONDE SE IMPARTE

Titulación: GRADO EN MATEMÁTICAS Plan: GRADO EN MATEMÁTICAS Curso: 4 Ciclo: 1

Carácter: Optativa

Duración/es: Primer cuatrimestre (actas en Feb. y Jul.)

Idioma/s en que se imparte: Español

Módulo/Materia: MATEMÁTICA PURA Y APLICADA/GEOMETRÍA ALGEBRAICA

PROFESOR COORDINADOR

Nombre	Departamento	Centro	Correo electrónico	Teléfono
ARRONDO ESTEBAN, ENRIQUE	Álgebra, Geometría y Topología	Facultad de Ciencias Matemáticas	arrondo@ucm.es	

PROFESORADO

Nombre	Departamento	Centro	Correo electrónico	Teléfono
ARRONDO ESTEBAN, ENRIQUE	Álgebra, Geometría y	Facultad de Ciencias	arrondo@ucm.es	
	Topología	Matemáticas		
FERNANDO GALVAN, JOSE	Álgebra, Geometría y	Facultad de Ciencias	josefer@ucm.es	
FRANCISCO	Topología	Matemáticas	,	

SINOPSIS

BREVE DESCRIPTOR:

Teoría de las curvas algebraicas planas, afines y proyectivas. Introducción a conceptos en dimensión superior.

REQUISITOS:

Las asignaturas de Geometría Lineal, Estructuras Algebraicas y Ecuaciones Algebraicas.

OBJETIVOS:

Introducir al alumno en la teoría básica de las curvas algebraicas planas, tanto afines como proyectivas. Presentar las nociones básicas de cómo generalizar estos conceptos en dimensión superior.

COMPETENCIAS:

Generales

- Manejar con soltura los criterios de irreducibilidad de polinomios.
- Calcular los puntos singulares, tangentes, puntos de inflexión y asíntotas de una curva algebraica.
- Calcular el índice de intersección de dos curvas en un punto.
- Manejar con destreza los sistemas lineales de curvas.

Transversales:

Específicas:

Otras:

CONTENIDOS TEMÁTICOS:

- 1) Ecuaciones implícitas de curvas planas (afines y proyectivas). Intersección de curvas usando resultantes. Lema de Study.
- 2) Sistemas lineales de curvas. Haces de cónicas y cúbicas.
- 3) Curvas parametrizadas. Paso a implícitas.
- 4) Estudio local de puntos: intersección con una recta en un punto; cono tangente; puntos regulares y singulares; puntos de inflexión
- 5) Ramas. Series formales y de Puiseux. Teorema de Bézout. Curvas polares. Fórmulas de Plücker.
- 6) Curvas racionales. Estructura de grupo de la cúbica. Género de una curva.
- 7) Introducción a la geometría en dimensión superior. Ejemplos (aplicaciones de Segre y Veronese,...). Introducción a las

CURVAS ALGEBRAICAS Ficha Docente

nociones de dimensión, lisitud y grado.

ACTIVIDADES DOCENTES:

Clases teóricas:

Consistirán en clases magistrales del profesor, exponiendo en la pizarra los conceptos, resultados, demostraciones y ejemplos de la materia. De dos a tres horas por semana.

Seminarios:

No

Clases prácticas:

Consistirán en la resolución, por parte de los alumnos, de los ejercicios propuestos por el profesor bien de forma individual o en grupo.

De una a dos horas por semana.

Trabajos de campo:

Prácticas clínicas:

Laboratorios:

Exposiciones:

Presentaciones:
Otras actividades:

TOTAL:

Cuatro horas de clase semanales

EVALUACIÓN:

En la fecha en que se redacta esta ficha docente no es posible predecir si se podrán realizar docencia presencial y/o exámenes presenciales de la asignatura. Esto hace difícil plasmar un modo unificado de evaluación para todos los profesores, que deberán adecuar su docencia y la evaluación a las circunstancias que se vayan encontrando. Para obtener información suficiente acerca del aprovechamiento de cada alumno los profesores de esta asignatura realizarán exámenes que podrán ser en la facultad o a distancia, y propondrán otras actividades académicas (resolución de ejercicios, trabajos, ponderación de las participaciones acertadas en clase,...). En cualquier caso, salvo que las circunstancias sanitarias lo impidan, habrá un examen final que puede contar el 100% de la calificación para los alumnos que no tengan evaluación continua.

BIBLIOGRAFÍA BÁSICA:

- -G. Fischer, Plane Algebraic Curves, Students Math. Lib. AMS, 2001.
- -G.G. Gibson, Elementary Geometry of Algebraic Curves: An Undergraduate Introduction, Cambridge Univ. Press, 1998.
- -W. Fulton, Curvas Algebraicas, Ed. Reverté, 1971.
- -M.J. de la Puente, Curvas Algebraicas Planas, Serv. Publ. Univ. Cádiz, 2007.
- -R.J. Walker, Algebraic Curves, Springer-Verlag, 1978 (reimpreso de la edición de Princeton, 1950).

OTRA INFORMACIÓN RELEVANTE

Información sobre la asignatura (como apuntes y hojas de problemas) se irá actualizando en páginas web creadas por los profesores:

https://www.mat.ucm.es/~josefer/docencia/calg2122/calg2122.html para el grupo de mañana y http://www.mat.ucm. es/~arrondo/curvas.html para el grupo de tarde.

CURVAS ALGEBRAICAS Ficha Docente

ASIGNATURA

Nombre de asignatura (Código GeA): CURVAS ALGEBRAICAS (900484)

Créditos: 6

Créditos presenciales: 6,00 Créditos no presenciales:

Semestre: 1

PLAN/ES DONDE SE IMPARTE

Titulación: DOBLE GRADO EN MATEMÁTICAS Y FÍSICA Plan: DOBLE GRADO EN MATEMÁTICAS Y FÍSICA (2019)

Curso: 4 Ciclo: 1

Carácter: Optativa

Duración/es: Primer cuatrimestre (actas en Feb. y Jul.)

Idioma/s en que se imparte: Español

Módulo/Materia: /

PROFESOR COORDINADOR

Nombre	Departamento	Centro	Correo electrónico	Teléfono
FERNANDO GALVAN, JOSE FRANCISCO	Álgebra, Geometría y Topología	Facultad de Ciencias Matemáticas	josefer@ucm.es	

PROFESORADO

Nombre	Departamento	Centro	Correo electrónico	Teléfono
ARRONDO ESTEBAN, ENRIQUE	Álgebra, Geometría y	Facultad de Ciencias	arrondo@ucm.es	
	Topología	Matemáticas		
FERNANDO GALVAN, JOSE	Álgebra, Geometría y	Facultad de Ciencias	josefer@ucm.es	
FRANCISCO	Topología	Matemáticas	,	

SINOPSIS

BREVE DESCRIPTOR:

Teoría de las curvas algebraicas planas, afines y proyectivas. Introducción a conceptos en dimensión superior

REQUISITOS:

Las asignaturas de Geometría Lineal, Estructuras Algebraicas y Ecuaciones Algebraicas.

OBJETIVOS:

Introducir al alumno en la teoría básica de las curvas algebraicas planas, tanto afines como proyectivas. Presentar las nociones básicas de cómo generalizar estos conceptos en dimensión superior

COMPETENCIAS:

Generales

- Manejar con soltura los criterios de irreducibilidad de polinomios.
- Calcular los puntos singulares, tangentes, puntos de inflexión y asíntotas de una curva algebraica.
- Calcular el índice de intersección de dos curvas en un punto.
- Manejar con destreza los sistemas lineales de curvas.

Transversales:

Específicas:

Otras:

CONTENIDOS TEMÁTICOS:

- 1) Ecuaciones implícitas de curvas planas (afines y proyectivas). Intersección de curvas usando resultantes. Lema de Study.
- 2) Sistemas lineales de curvas. Haces de cónicas y cúbicas.
- 3) Curvas parametrizadas. Paso a implícitas.
- 4) Estudio local de puntos: intersección con una recta en un punto; cono tangente; puntos regulares y singulares; puntos de inflexión
- 5) Ramas. Series formales y de Puiseux. Teorema de Bézout. Curvas polares. Fórmulas de Plücker.
- 6) Curvas racionales. Estructura de grupo de la cúbica. Género de una curva.
- 7) Introducción a la geometría en dimensión superior. Ejemplos (aplicaciones de Segre y Veronese,...). Introducción a las

CURVAS ALGEBRAICAS Ficha Docente

nociones de dimensión, lisitud y grado.

ACTIVIDADES DOCENTES:

Clases teóricas:

Consistirán en clases magistrales del profesor, exponiendo en la pizarra los conceptos, resultados, demostraciones y ejemplos de la materia. De dos a tres horas por semana.

Seminarios:

No

Clases prácticas:

Consistirán en la resolución, por parte de los alumnos, de los ejercicios propuestos por el profesor bien de forma individual o en grupo.

De una a dos horas por semana.

Traba	ios	de	cam	po:

Prácticas clínicas:

Laboratorios:

Exposiciones:

Presentaciones:

Otras actividades:

TOTAL:

EVALUACIÓN:

En la fecha en que se redacta esta ficha docente no es posible predecir si se podrán realizar docencia presencial y/o exámenes presenciales de la asignatura. Esto hace difícil plasmar un modo unificado de evaluación para todos los profesores, que deberán adecuar su docencia y la evaluación a las circunstancias que se vayan encontrando. Para obtener información suficiente acerca del aprovechamiento de cada alumno los profesores de esta asignatura realizarán exámenes que podrán ser en la facultad o a distancia, y propondrán otras actividades académicas (resolución de ejercicios, trabajos, ponderación de las participaciones acertadas en clase,...). En cualquier caso, salvo que las circunstancias sanitarias lo impidan, habrá un examen final que puede contar el 100% de la calificación para los alumnos que no tengan evaluación continua.

BIBLIOGRAFÍA BÁSICA:

- -G. Fischer, Plane Algebraic Curves, Students Math. Lib. AMS, 2001.
- -G.G. Gibson, Elementary Geometry of Algebraic Curves: An Undergraduate Introduction, Cambridge Univ. Press, 1998.
- -W. Fulton, Curvas Algebraicas, Ed. Reverté, 1971.
- -M.J. de la Puente, Curvas Algebraicas Planas, Serv. Publ. Univ. Cádiz, 2007.
- -R.J. Walker, Algebraic Curves, Springer-Verlag, 1978 (reimpreso de la edición de Princeton, 1950).

OTRA INFORMACIÓN RELEVANTE

Información sobre la asignatura (como apuntes y hojas de problemas) se irá actualizando en páginas web creadas por los profesores:

https://www.mat.ucm.es/~josefer/docencia/calg2122/calg2122.html para el grupo de mañana y http://www.mat.ucm.es/~arrondo/curvas.html para el grupo de tarde.