Cpr E 281 HW05
ELECTRICAL AND COMPUTER
ENGINEERING
IOWA STATE UNIVERSITY

Representation and Arithmetic Assigned: Week 7 Due Date: March. 05, 2023

- **P1 (12 points):** Convert the following numbers to IEEE 754 Single-Precision Floating Point binary format:
 - **A.** -8.125
 - **B.** 239
 - **C.** 19/512
- **P2** (12 points): Convert the following numbers from IEEE 754 Single-Precision Floating Point format to decimal. Note that each number is given in hexadecimal. You may leave the result as a fraction.
 - **A.** BF000000₁₆
 - **B.** 42C80000₁₆
 - **C.** BD600000 $_{16}$
- **P3 (20 points).** Consider a function F with 4 bits of input A_3 , A_2 , A_1 , A_0 such that the output of F is 1 if the unsigned binary number represented by $A_3A_2A_1A_0$ is prime (i.e. 2, 3, 5, 7, 11, or 13). Otherwise, the output of F is 0.
 - a. Write the truth table for F.
 - **b.** Implement F using only a 16-to-1 MUX.
 - **c.** Implement F using an 8-to-1 MUX, and some AND, OR, and NOT gates.
 - **d.** Implement F using an 4-to-1 MUX, and some AND, OR, and NOT gates.
 - e. Using Shannon's expansion, implement F using a 2-to-1 MUX, and some AND, OR, and NOT gates.
- **P4 (20 points):** Given $P(A, B, C, D) = BCD + A\overline{B}C + \overline{(A+C+D)(B+D)}$
 - **A.** Implement this function using one 16-to-1 MUX.
 - **B.** Implement this function using one 8-to-1 MUX and NOT gates.
 - **C.** Implement this function using one 4-to-1 MUX with A and B as the select lines and a minimal number of AND/OR/NOT gates.
 - **D.** Implement this function using one 2-to-1 MUX with C as the select line and some AND/OR/NOT gates. Do not implement P separately with gates and place the MUX in a trivial connection with the rest of the circuit.
 - **E.** Implement this function using one 4-to-1 MUX with B and C as the select lines.
- **P5 (14 points):** Implement the function $G(w, x, y, z) = \sum m(5,7,8,10,13,14,15)$ as follows:
 - a) Use a K-map to show that G can be written as $G = xz + w\bar{x}\bar{z} + wy\bar{z}$
 - b) Implement G using only a minimal number (3) of 2-1 MUXes and no other gates (NOT gates are not allowed, either). Hint: Use Shannon's Expansion Theorem a few times.

Cpr E 281 HW05 ELECTRICAL AND COMPUTER ENGINEERING IOWA STATE UNIVERSITY

Representation and Arithmetic Assigned: Week 7

Due Date: March. 05, 2023

P6 (22 points). Implement the following functions using Shannon's expansion:

- a. Implement $F = w_1w_2 + w_1w_3 + w_2w_3$ using only 2-to-1 MUXs
- b. Implement $F = w_1w_2 + w_1w_3 + w_2w_3$ using only 4-to-1 MUXs

P2) A) BF 6000000/6 B) 42 (80000/6 C) BD 600000/6

6(w, x, y, 2) = Em(5,7,8,10,13,14,15) 6 YZ 00 01 06 6 0 11 0 G=XZ+WYZ+WXZ Factor Zout Z (Wy+WX)+XZ 6= = (w(y+x)) + X= 5:1 ه ۲:۱

PG)

A) $F = W_1 W_2 + W_1 W_3 + W_2 W_3 + W_3 W_3 + W_2 W_3 + W_3 W_2 W_1 + W_3 W_2 W_3 + W_2$

