Algorithm Analysis

V. Balasubramanian SSN College of Engineering

 An algorithm is a well-defined set of rules for solving a computational problem.

• For ex:

- given a list of numbers, rearrange them into sorted order;
- given a road network, an origin, and a destination, compute the shortest path from the origin to the destination;

 Given a set of tasks with deadlines, determine whether or not it is possible to complete all the tasks by their deadlines.

- important for all other branches of computer science.
 - routing in communication networks piggybacks on classical shortest-path algorithms;
 - the effectiveness of public-key cryptography rests on that of numbertheoretic algorithms;

- computer graphics needs the computational primitives supplied by geometric algorithms;
- database indices rely on balanced search tree data structures;
- computational biology uses dynamic programming algorithms to measure genome similarity

- plays a key role in modern technological innovation
 - "Everyone knows Moore's Law a prediction made in 1965 by Intel co-founder Gordon Moore that the density of transistors in integrated circuits would continue to double every 1 to 2 years....in many areas, performance gains due to improvements in algorithms have vastly exceeded even the dramatic performance gains due to increased processor speed."

Algorithm Designer's Mantra

 "Perhaps the most important principle for the good algorithm designer is to refuse to be content." -Aho, Hopcroft, and Ullman

Example

Algorithms

 Fast Algorithm: worst case running time grows slowly with input size.

DAA Course

- OBJECTIVES:
- The student should be made to:
 - Learn the algorithm analysis techniques.
 - Become familiar with the different algorithm design techniques.
 - Understand the limitations of Algorithm power

OUTCOMES

- At the end of the course, the student should be able to:
- Design algorithms for various computing problems.
- Analyze the time and space complexity of algorithms.
- Critically analyze the different algorithm design techniques for a given problem.
- Modify existing algorithms to improve efficiency.

Analysis of algorithms

• Issues:

- correctness
- time efficiency
- space efficiency
- optimality

Approaches:

- theoretical analysis
- empirical analysis

Theoretical analysis of time efficiency

Time efficiency is analyzed by determining the number of repetitions of the <u>basic operation</u> as a function of <u>input size</u>

• <u>Basic operation</u>: the operation that contributes most towards the running time of the algorithm

Contd...

Input size and basic operation examples

Problem	Input size measure	Basic operation
Searching for key in a list of n items	Number of list's items, i.e. n	Key comparison
Multiplication of two matrices	Matrix dimensions or total number of elements	Multiplication of two numbers
Checking primality of a given integer n	n'size = number of digits (in binary representation)	Division
Typical graph problem	#vertices and/or edges	Visiting a vertex or traversing an edge

Empirical analysis of time efficiency

- Select a specific (typical) sample of inputs
- Use physical unit of time (e.g., milliseconds) or Count actual number of basic operation's executions
- Analyze the empirical data

General Plan for Nonrecursive Algorithms

- Decide on parameter n indicating input size
- Identify algorithm's basic operation
- Determine <u>worst</u>, <u>average</u>, and <u>best</u> cases for input of size n
- Set up a sum for the number of times the basic operation is executed

Contd...

 Check whether the number of times the basic operation is executed depends only on the size of an input. If it also depends on some additional property, the worst-case, averagecase, and, if necessary, best-case efficiencies have to be investigated separately.

Important Summations

1.
$$\sum_{l=l}^{u} 1 = \underbrace{1 + 1 + \dots + 1}_{u-l+1 \text{ times}} = u - l + 1 \ (l, u \text{ are integer limits}, l \le u); \sum_{l=1}^{n} 1 = n$$

2.
$$\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2} \approx \frac{1}{2}n^2$$

3.
$$\sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} \approx \frac{1}{3}n^3$$

$$\sum_{i=l}^{u} 1 = u - l + 1$$

Important Summations

4.
$$\sum_{k=1}^{n} i^{k} = 1^{k} + 2^{k} + \dots + n^{k} \approx \frac{1}{k+1} n^{k+1}$$

5.
$$\sum_{i=0}^{n} a^{i} = 1 + a + \dots + a^{n} = \frac{a^{n+1} - 1}{a - 1} (a \neq 1); \quad \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

6.
$$\sum_{i=1}^{n} i 2^{i} = 1 \cdot 2 + 2 \cdot 2^{2} + \dots + n 2^{n} = (n-1)2^{n+1} + 2$$

Sequential Search

```
ALGORITHM SequentialSearch(A[0..n-1], K)
    //Searches for a given value in a given array by sequential search
    //Input: An array A[0..n-1] and a search key K
    //Output: The index of the first element of A that matches K
              or -1 if there are no matching elements
    i \leftarrow 0
    while i < n and A[i] \neq K do
        i \leftarrow i + 1
    if i < n return i
    else return -1
```

- Worst case: n comparisons
- Best case: 1
- Average case

$$C_{avg}(n) = \left[1 \cdot \frac{p}{n} + 2 \cdot \frac{p}{n} + \dots + i \cdot \frac{p}{n} + \dots + n \cdot \frac{p}{n}\right] + n \cdot (1 - p)$$

$$= \frac{p}{n} \left[1 + 2 + \dots + i + \dots + n\right] + n(1 - p)$$

$$= \frac{p}{n} \frac{n(n+1)}{2} + n(1-p) = \frac{p(n+1)}{2} + n(1-p).$$

MaxElement

```
ALGORITHM MaxElement(A[0..n-1])

//Determines the value of the largest element in a given array
//Input: An array A[0..n-1] of real numbers
//Output: The value of the largest element in A

maxval \leftarrow A[0]

for i \leftarrow 1 to n-1 do

if A[i] > maxval

maxval \leftarrow A[i]

return maxval
```

- Two Basic Operation:
 - Comparison and assignment
 - Comparison is done always.
- the comparison to be the algorithm's basic operation.
- The number of comparisons will be the same for all arrays of size n;
- Every Case Time complexity.

Unique Elements

```
ALGORITHM UniqueElements (A[0..n-1])

//Determines whether all the elements in a given array are distinct
//Input: An array A[0..n-1]

//Output: Returns "true" if all the elements in A are distinct
// and "false" otherwise

for i \leftarrow 0 to n-2 do

for j \leftarrow i+1 to n-1 do

if A[i] = A[j] return false

return true
```


- Input Size: number of elements in the array n.
- Basic Operation: Since the innermost loop contains a single operation (the comparison of two elements

 worst-case: Inputs for which the algorithm does not exit the loop prematurely / arrays with no equal elements and arrays in which the last two elements are the only pair of equal elements.

$$\begin{split} C_{worst}(n) &= \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i) \\ &= \sum_{i=0}^{n-2} (n-1) - \sum_{i=0}^{n-2} i = (n-1) \sum_{i=0}^{n-2} 1 - \frac{(n-2)(n-1)}{2} \\ &= (n-1)^2 - \frac{(n-2)(n-1)}{2} = \frac{(n-1)n}{2} \approx \frac{1}{2} n^2 \in \Theta(n^2). \end{split}$$

We also could have computed the sum $\sum_{i=0}^{n-2} (n-1-i)$ faster as follows:

$$\sum_{i=0}^{n-2} (n-1-i) = (n-1) + (n-2) + \dots + 1 = \frac{(n-1)n}{2},$$

Matrix Multiplication

```
ALGORITHM MatrixMultiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])

//Multiplies two n-by-n matrices by the definition-based algorithm

//Input: Two n-by-n matrices A and B

//Output: Matrix C = AB

for i \leftarrow 0 to n-1 do

C[i, j] \leftarrow 0.0

for k \leftarrow 0 to n-1 do

C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]

return C
```


- Input Size: Matrix order n.
- Basic Operation: There are two arithmetical operations in the innermost loop here—multiplication and addition.
- No additional property, hence every case time complexity

$$M(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1.$$

$$M(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1 = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} n = \sum_{i=0}^{n-1} n^2 = n^3.$$

Decimal to Binary

```
ALGORITHM Binary(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n's binary representation count \leftarrow 1

while n > 1 do

count \leftarrow count + 1

n \leftarrow \lfloor n/2 \rfloor

return count
```


- Input Size: No of Bits to store the number.
- Basic operation: Division
- Since the value of n is about halved on each repetition of the loop, the answer should be about log₂ n

Exercise Problems

$$\bullet$$
 1 + 3 + 5 + 7 + ...+ ...+ 999

1. a.
$$1+3+5+7+...+999 = \sum_{i=1}^{500} (2i-1) = \sum_{i=1}^{500} 2i - \sum_{i=1}^{500} 1 = 2\frac{500*501}{2} - 500 = 250,000.$$

Exercise problem

b.
$$2+4+8+16+\cdots+1024$$

c.
$$\sum_{i=3}^{n+1} 1$$

d.
$$\sum_{i=3}^{n+1} i$$

f.
$$\sum_{i=1}^{n} 3^{j+1}$$

g.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} ij$$

c.
$$\sum_{i=3}^{n+1} 1$$
 d. $\sum_{i=3}^{n+1} i$ **e.** $\sum_{i=0}^{n-1} i(i+1)$

f.
$$\sum_{j=1}^{n} 3^{j+1}$$
 g. $\sum_{i=1}^{n} \sum_{j=1}^{n} ij$ **h.** $\sum_{i=1}^{n} 1/i(i+1)$

b.
$$2+4+8+16+...+1,024 = \sum_{i=1}^{10} 2^i = \sum_{i=0}^{10} 2^i - 1 = (2^{11}-1) - 1 = 2,046.$$

(Or by using the formula for the sum of the geometric series with a=2, q=2, and n=9: $a\frac{q^{n+1}-1}{q-1}=2\frac{2^{10}-1}{2-1}=2,046$.)

c.
$$\sum_{i=3}^{n+1} 1 = (n+1) - 3 + 1 = n-1.$$

d.
$$\sum_{i=3}^{n+1} i = \sum_{i=0}^{n+1} i - \sum_{i=0}^{2} i = \frac{(n+1)(n+2)}{2} - 3 = \frac{n^2 + 3n - 4}{2}.$$

e.
$$\sum_{i=0}^{n-1} i(i+1) = \sum_{i=0}^{n-1} (i^2 + i) = \sum_{i=0}^{n-1} i^2 + \sum_{i=0}^{n-1} i = \frac{(n-1)n(2n-1)}{6} + \frac{(n-1)n}{2}$$

$$=\frac{(n^2-1)n}{3}.$$

Contd...

f.
$$\sum_{j=1}^{n} 3^{j+1} = 3 \sum_{j=1}^{n} 3^j = 3 \left[\sum_{j=0}^{n} 3^j - 1 \right] = 3 \left[\frac{3^{n+1}-1}{3-1} - 1 \right] = \frac{3^{n+2}-9}{2}.$$

g.
$$\sum_{i=1}^{n} \sum_{j=1}^{n} ij = \sum_{i=1}^{n} i \sum_{j=1}^{n} j = \sum_{i=1}^{n} i \frac{n(n+1)}{2} = \frac{n(n+1)}{2} \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \frac{n(n+1)}{2}$$

$$= \frac{n^2(n+1)^2}{4}.$$

h.
$$\sum_{i=1}^{n} 1/i(i+1) = \sum_{i=1}^{n} (\frac{1}{i} - \frac{1}{i+1})$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1} = \frac{n}{n+1}.$$

Exercise

ALGORITHM Mystery(n)

//Input: A nonnegative integer n $S \leftarrow 0$ **for** $i \leftarrow 1$ **to** n **do** $S \leftarrow S + i * i$ **return** S

- a. What does this algorithm compute?
- **b.** What is its basic operation?
- c. How many times is the basic operation executed?
- **d.** What is the efficiency class of this algorithm?
- e. Suggest an improvement, or a better algorithm altogether, and indicate its efficiency class. If you cannot do it, try to prove that, in fact, it cannot be done.

- It computes i²
- Basic Operation: Multiplication
- \bullet M(n) = n

Exercise Problem

```
ALGORITHM Secret(A[0..n-1])

//Input: An array A[0..n-1] of n real numbers minval \leftarrow A[0]; maxval \leftarrow A[0]

for i \leftarrow 1 to n-1 do

if A[i] < minval

minval \leftarrow A[i]

if A[i] > maxval

maxval \leftarrow A[i]

return maxval - minval
```


- a. Computes the range, i.e., the difference between the array's largest and smallest elements.
- b. An element comparison.

c.
$$C(n) = \sum_{i=1}^{n-1} 2 = 2(n-1)$$
.

- d. $\Theta(n)$.
- e. An obvious improvement for some inputs (but not for the worst case) is to replace the two if-statements by the following one:

Plan for Analysis of Recursive Algorithms

- Decide on a parameter indicating an input's size.
- Identify the algorithm's basic operation.
- Check whether the number of times the basic op. is executed may vary on different inputs of the same size.
- Set up a recurrence relation with an appropriate initial condition expressing the number of times the basic op. is executed.
- Solve the recurrence (or, at the very least, establish its solution's order of growth) by backward substitutions or another method.

Factorial

```
ALGORITHM F(n)

//Computes n! recursively

//Input: A nonnegative integer n

//Output: The value of n!

if n = 0 return 1

else return F(n - 1) * n
```


- Input Size: N bit representation
- Basic Operation: Multiplication

$$M(n) = M(n-1) + 1$$
to compute
 $F(n-1)$
to multiply
 $F(n-1)$ by n
for $n > 0$.

 Basis condition: M(0) = 0 No multiplication is required.

Backward Substitution

$$M(n) = M(n-1) + 1$$
 substitute $M(n-1) = M(n-2) + 1$
= $[M(n-2) + 1] + 1 = M(n-2) + 2$ substitute $M(n-2) = M(n-3) + 1$
= $[M(n-3) + 1] + 2 = M(n-3) + 3$.

$$M(n) = M(n-1) + 1 = \cdots = M(n-i) + i = \cdots = M(n-n) + n = n.$$

FIGURE 2.4 Recursive solution to the Tower of Hanoi puzzle

$$M(n) = M(n-1) + 1 + M(n-1)$$
 for $n > 1$.
 $M(n) = 2M(n-1) + 1$ for $n > 1$,
 $M(1) = 1$.

$$M(n) = 2M(n-1) + 1$$
 sub. $M(n-1) = 2M(n-2) + 1$
= $2[2M(n-2) + 1] + 1 = 2^2M(n-2) + 2 + 1$ sub. $M(n-2) = 2M(n-3) + 1$
= $2^2[2M(n-3) + 1] + 2 + 1 = 2^3M(n-3) + 2^2 + 2 + 1$.

$$M(n) = 2^{i}M(n-i) + 2^{i-1} + 2^{i-2} + \dots + 2 + 1 = 2^{i}M(n-i) + 2^{i} - 1.$$

$$M(n) = 2^{n-1}M(n - (n-1)) + 2^{n-1} - 1$$

= $2^{n-1}M(1) + 2^{n-1} - 1 = 2^{n-1} + 2^{n-1} - 1 = 2^n - 1.$

Decimal to Binary digits

```
ALGORITHM BinRec(n)

//Input: A positive decimal integer n

//Output: The number of binary digits in n's binary representation if n = 1 return 1

else return BinRec(\lfloor n/2 \rfloor) + 1
```


- Input Size: No of bits
- Basic operation: additions made in computing BinRec(n/2) plus one more addition

$$A(n) = A(\lfloor n/2 \rfloor) + 1$$
 for $n > 1$.

$$A(1) = 0.$$

Smoothness rule

$$A(2^k) = A(2^{k-1}) + 1$$
 for $k > 0$,
 $A(2^0) = 0$.

Now backward substitutions encounter no problems:

$$A(2^{k}) = A(2^{k-1}) + 1$$
 substitute $A(2^{k-1}) = A(2^{k-2}) + 1$
 $= [A(2^{k-2}) + 1] + 1 = A(2^{k-2}) + 2$ substitute $A(2^{k-2}) = A(2^{k-3}) + 1$
 $= [A(2^{k-3}) + 1] + 2 = A(2^{k-3}) + 3$...
 $= A(2^{k-i}) + i$
...
 $= A(2^{k-k}) + k$.

Thus, we end up with

$$A(2^k) = A(1) + k = k,$$

or, after returning to the original variable $n = 2^k$ and hence $k = \log_2 n$,

$$A(n) = \log_2 n \in \Theta(\log n).$$

Examples

Solve the following recurrence relations.

a.
$$x(n) = x(n-1) + 5$$
 for $n > 1$, $x(1) = 0$

b.
$$x(n) = 3x(n-1)$$
 for $n > 1$, $x(1) = 4$

c.
$$x(n) = x(n-1) + n$$
 for $n > 0$, $x(0) = 0$

d.
$$x(n) = x(n/2) + n$$
 for $n > 1$, $x(1) = 1$ (solve for $n = 2^k$)

e.
$$x(n) = x(n/3) + 1$$
 for $n > 1$, $x(1) = 1$ (solve for $n = 3^k$)

$$x(n) = x(n-1) + 5$$

$$= [x(n-2) + 5] + 5 = x(n-2) + 5 \cdot 2$$

$$= [x(n-3) + 5] + 5 \cdot 2 = x(n-3) + 5 \cdot 3$$

$$= ...$$

$$= x(n-i) + 5 \cdot i$$

$$= ...$$

$$= x(1) + 5 \cdot (n-1) = 5(n-1).$$

$$x(n) = 3x(n-1)$$

$$= 3[3x(n-2)] = 3^2x(n-2)$$

$$= 3^2[3x(n-3)] = 3^3x(n-3)$$

$$= \dots$$

$$= 3^ix(n-i)$$

$$= \dots$$

$$= 3^{n-1}x(1) = 4 \cdot 3^{n-1}.$$

$$x(n) = x(n-1) + n$$

$$= [x(n-2) + (n-1)] + n = x(n-2) + (n-1) + n$$

$$= [x(n-3) + (n-2)] + (n-1) + n = x(n-3) + (n-2) + (n-1) + n$$

$$= \dots$$

$$= x(n-i) + (n-i+1) + (n-i+2) + \dots + n$$

$$= \dots$$

$$= x(0) + 1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$

$$\begin{array}{lll} x(2^k) & = & x(2^{k-1}) + 2^k \\ & = & \left[x(2^{k-2}) + 2^{k-1} \right] + 2^k = x(2^{k-2}) + 2^{k-1} + 2^k \\ & = & \left[x(2^{k-3}) + 2^{k-2} \right] + 2^{k-1} + 2^k = x(2^{k-3}) + 2^{k-2} + 2^{k-1} + 2^k \\ & = & \dots \\ & = & x(2^{k-i}) + 2^{k-i+1} + 2^{k-i+2} + \dots + 2^k \\ & = & \dots \\ & = & x(2^{k-k}) + 2^1 + 2^2 + \dots + 2^k = 1 + 2^1 + 2^2 + \dots + 2^k \\ & = & 2^{k+1} - 1 = 2 \cdot 2^k - 1 = 2n - 1. \end{array}$$

$$x(3^{k}) = x(3^{k-1}) + 1$$

$$= [x(3^{k-2}) + 1] + 1 = x(3^{k-2}) + 2$$

$$= [x(3^{k-3}) + 1] + 2 = x(3^{k-3}) + 3$$

$$= \dots$$

$$= x(3^{k-i}) + i$$

$$= \dots$$

$$= x(3^{k-i}) + k = x(1) + k = 1 + \log_3 n.$$

Exercise Probelm

ALGORITHM S(n) //Input: A positive integer n //Output: The sum of the first n cubes if n = 1 return 1

- else return S(n-1) + n * n * n
- a. Set up and solve a recurrence relation for the number of times the algorithm's basic operation is executed.
- b. How does this algorithm compare with the straightforward nonrecursive algorithm for computing this sum?

Basic operation: Multiplication

$$M(n) = M(n-1) + 2$$

$$M(1) = 0.$$

$$M(n) = M(n-1) + 2$$

$$= [M(n-2) + 2] + 2 = M(n-2) + 2 + 2$$

$$= [M(n-3) + 2] + 2 + 2 = M(n-3) + 2 + 2 + 2$$

$$= ...$$

$$= M(n-i) + 2i$$

$$= ...$$

$$= M(1) + 2(n-1) = 2(n-1).$$

- Straightforward:
- M(n) = sum of (i=2 to n) 2 = 2(n-1)

Exercise Problem

ALGORITHM Q(n)//Input: A positive integer nif n = 1 return 1else return Q(n - 1) + 2 * n - 1

- a. Set up a recurrence relation for this function's values and solve it to determine what this algorithm computes.
- b. Set up a recurrence relation for the number of multiplications made by this algorithm and solve it.
- c. Set up a recurrence relation for the number of additions/subtractions made by this algorithm and solve it.

$$Q(n) = Q(n-1) + 2n - 1$$
 for $n > 1$, $Q(1) = 1$.

$$Q(n-1) + 2n - 1 = (n-1)^2 + 2n - 1 = n^2.$$

$$M(n) = M(n-1) + 1$$
 for $n > 1$, $M(1) = 0$.

$$C(n) = C(n-1) + 3$$

3 includes n-1, adding 2n, -

Fibonacci Series

```
ALGORITHM F(n)

//Computes the nth Fibonacci number recursively by using its definition //Input: A nonnegative integer n

//Output: The nth Fibonacci number if n \le 1 return n
```

else return F(n-1) + F(n-2)

Iterative algorithm

```
ALGORITHM Fib(n)

//Computes the nth Fibonacci number iteratively by using its definition 
//Input: A nonnegative integer n

//Output: The nth Fibonacci number 
F[0] \leftarrow 0; F[1] \leftarrow 1

for i \leftarrow 2 to n do

F[i] \leftarrow F[i-1] + F[i-2]

return F[n]
```

 Homogeneous linear recurrence relation.

