Introduction to Machine Learning and Pattern Recognition

David Brady¹

¹ECE Department Northeastern University

Fall 2018

00

Next:

Higher Dimensional Features Are Good

Lower Dimensional Features Are Good

Principal Component Analysis

Linear PCA

Adaptive PCA

Nonlinear PCA (after neural net lectures)

Kernel PCA

Fisher Linear Discriminant Analysis

Kernel LDA

Multiple Discriminant Analysis

Independent Gaussian Shift in Mean

- ▶ $p(\mathbf{x}|\omega_i) = \mathcal{N}(\mu_i, \mathbf{\Sigma}), P[\omega_i] = 0.5$
- Bayes Classifer: $P[error] = 1/\sqrt{2\pi} \int_{r/2}^{\infty} e^{-u^2/2} du$
- r = $\sqrt{(\mu_1 \mu_2)^t \Sigma^{-1} (\mu_1 \mu_2)}$ Mahalanobis distance
- Independence $\Rightarrow r^2 = \sum_{i=1}^d \frac{\mu_{i1} \mu_{i2}}{\sigma_i}$ squared!

r grows with d, P[error] drops with d

00

- (non-Gaussian distributions in figure)
- ▶ more data is better $(?) \Longrightarrow$ higher d

Reality: Independence Disappears for High Dimensions

- in-class scatter clouds are "flat" for high d
- marginal return on feature dimension
- newer dimensions become predictable (dependent)

- height, weight, width,length, color, lightness...
- what else provides additional discrimination?

EECE 5644 Brady

Principal Component Analysis Fisher L

00

00

00

Next:

Higher Dimensional Features Are Good

Lower Dimensional Features Are Good

Principal Component Analysis

Linear PCA

Adaptive PCA

Nonlinear PCA (after neural net lectures)

Kernel PCA

Fisher Linear Discriminant Analysis

Kernel LDA

Multiple Discriminant Analysis

Independent Component Analysis

Training, Parameter Estimation, Computational Complexity

- determine Gaussian discriminant for class i
- n training feature vectors (fixed n)
- feature dimension d (growing d)

this complexity. For each of the d(d+1)/2 independent components of the signal covariance matrix $\widehat{\Sigma}$ there are n multiplications and additions (Eq. 19), given a complexity of $O(d^2n)$. Once $\widehat{\Sigma}$ has been computed, its determinant is an $O(d^2n)$ calculation, as we can easily verify by counting the number of operations in many "sweep" methods. The inverse can be calculated in $O(d^3)$ calculations, for instating Gaussian elimination.* The complexity of estimating $P(\omega)$ is of course $O(d^2n)$ calculations, for instating $O(d^2n)$ calculations, for instating $O(d^2n)$ calculations, for instating Gaussian elimination.

$$g(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \hat{\hat{\boldsymbol{\mu}}})^t \underbrace{\widehat{\widehat{\boldsymbol{\Sigma}}}^{-1}}_{-1} (\mathbf{x} - \hat{\boldsymbol{\mu}}) - \underbrace{\frac{O(1)}{d} \ln 2\pi}_{-1} - \underbrace{\frac{O(d^3)}{1} \ln |\widehat{\boldsymbol{\Sigma}}|}_{-1} + \underbrace{\ln P(\omega)}_{-1}.$$

- ▶ $d + \frac{d(d-1)}{2} \approx \frac{d^2}{2}$ scalar parameters (large d)
- nd scalar training samples
- ▶ 2n/d samples per parameter $\rightarrow 0$!
- parameter estimator error grows with d
- ▶ $g(\mathbf{x})$ computational complexity is $\mathcal{O}(nd^3) \to \infty$

Model Overfitting

- features are corrupted by noise (ex., additive)
- ightharpoonup small $d o ext{model}$ does not follow signal
- ▶ large $d \rightarrow model$ follows signal and noise
- ► Goldilocks *d* ?

- ► Information Criteria: AIC, BIC (later)
- Component Analysis (here)

Brady

00

Next:

Higher Dimensional Features Are Good

Lower Dimensional Features Are Good

Principal Component Analysis

Linear PCA

Adaptive PCA

Nonlinear PCA (after neural net lectures)

Kernel PCA

Fisher Linear Discriminant Analysis

Kernel LDA

Multiple Discriminant Analysis

00

Linear PCA

Linear PCA

 \triangleright sample $x_1, \dots x_n$. Find best representative vector **x**₀.

 $\mathbf{x_0} = \operatorname{arg\,min}_{\mu} \sum_{k=1}^{n} \left\| \mu - \mathbf{x}_k \right\|^2 \rightarrow$ $x_0 = m = \sum x_k/n$

- sample mean best represents data
- but is there something better?
- let $\mathbf{x}_k \approx \mathbf{m} + a_k \mathbf{e}$. Find $\{a_k\}$, e!

• $\{a, e\} =$ $\arg\min_{\|\mathbf{e}\|=1}\sum_{j=1}^{n}\|\mathbf{x}_{k}-a_{k}\mathbf{e}-\mathbf{m}\|^{2}\Longrightarrow$ $a_k = e^t (x_k - m)$

- scatter matrix $S = \sum_{k=1}^{n} (x_k - m)(x_k - m)^t$
- substitution yields: $\mathbf{e} = \operatorname{arg\,min}_{\|\mathbf{v}\|=1} - \mathbf{v}^t \mathbf{S} \mathbf{v} + \sum_{k=1}^n \|\mathbf{x}_k - \mathbf{m}\|^2$
- ightharpoonup e = arg max $\|\mathbf{v}\| = 1$ $\mathbf{v}^t \mathbf{S} \mathbf{v} \to \mathbf{Appendix A.3}$ \rightarrow Se = λ e
- e is the dominant eigenvector of S (principal component)
- \triangleright a_k is the projection of $x_k m$ onto e
- $\lambda = e^t Se$ is the principal value 90Q

Linear PCA

Linear PCA (2)

- 2 dimensions here, 2 principal components (no reduction)
- ightharpoonup also, [E, D] = eig(S)

Recursively find other principal components:

initialize

$$\mathsf{S}_1 = \mathsf{S}, \; \mathbf{e}_1 = \mathbf{e}, \; \lambda_1 = \lambda$$

- $ightharpoonup S_{i+1} = S_i \lambda_i e_i e_i^t$
- Linear $\mathsf{PCA}(\mathsf{S}_{i+1}) \to \lambda_{i+1}, \mathsf{e}_{\mathsf{i}+\mathsf{1}}$
- stop when $\lambda_1/\lambda_{K+1} - \lambda_1/\lambda_K < \varepsilon$
- \blacktriangleright $\{\lambda_i, \mathbf{e_i}\}_{i=1}^K$ are the principal values, components

90 Q

Adaptive PCA

On-line Version of PCA

- ▶ left neurons, activation $\mathbf{x}(n) \in \mathscr{R}^m$
- right neuron connected by weights $\mathbf{w}(n) \in \mathcal{R}^m$
- right neuron activation $y(n) = \mathbf{w}^t(n)\mathbf{x}(n) \in \mathcal{R}$
- ► find sequence $\{\mathbf{w}(n)\} \rightarrow \mathbf{w}_{opt} = \mathbf{e}$

ightharpoonup let $S(n) = x(n)x^t(n)$ be a single-step estimate of S

00

Adaptive PCA

Adaptive PCA (2)

$$J_0(\mathbf{v}) = \frac{\mathbf{v}\mathbf{S}(\mathbf{n})\mathbf{v}}{\|\mathbf{v}\|^2}$$

$$\mathbf{v}^2(n) = \mathbf{v}^t(n)\mathbf{S}(n)\mathbf{v}(n)$$

$$J_0(\mathbf{v}) = \frac{y^2(n)}{\|\mathbf{v}\|^2}$$

- $\mathbf{w}_{opt} = \arg \max_{\mathbf{v}(\mathbf{n})} J_0(\mathbf{v}(n))$
- consider the stochastic ascent:
- \blacktriangleright $\mathbf{w}(n+1) \mathbf{w}(n) = \eta \mathbf{D}(n),$ where
- ▶ D(n) approximates ∇J_0

two steps:

- 1. $\hat{\mathbf{w}}(n+1) =$ $\mathbf{w}(n) + \eta y(n)\mathbf{w}(n)$
- 2. w(n+1) = $\|\hat{\mathbf{w}}(n+1)/\|\hat{\mathbf{w}}(n+1)\|$
- \blacktriangleright for small η , single-step approximation
- 1. w(n+1) w(n) = $\eta (\mathbf{x}(n) - y(n)\mathbf{w}(n)) y(n) +$

•0

Kernel PCA

Kernel PCA

Dimensionality Reduction

Data representation

Inputs are real-valued vectors in a high dimensional space.

Linear structure

Does the data live in a low dimensional subspace?

Nonlinear structure

Does the data live on a low dimensional submanifold?

Higher Dimensional Features Are Good Lower Dimensional Features Are Good Principal Component Analysis Fisher L

00

0

Kernel PCA

KPCA hyperlink

[L08]KPCA

EECE 5644

Brady

00

Next:

Higher Dimensional Features Are Good

Lower Dimensional Features Are Good

Principal Component Analysis

Linear PCA

Adaptive PCA

Nonlinear PCA (after neural net lectures)

Kernel PCA

Fisher Linear Discriminant Analysis

Kernel LDA

Multiple Discriminant Analysis

LDA

- \triangleright 2-classes ω_1 , ω_2
- ightharpoonup observe x_i , $i = 1 \dots n$.
- form $y_i = \mathbf{w}^t \mathbf{x}_i$ to separate classes
- $\blacktriangleright \text{ let } \mathbf{m}_i = \sum_{j \in \mathcal{D}_i} \mathbf{x}_j / n_i$
- class scatter matrix $\mathsf{S}_i = \sum_{\mathsf{x} \in \mathscr{D}_{\mathsf{i}}} (\mathsf{x} - \mathsf{m}_{\mathsf{i}}) (\mathsf{x} - \mathsf{m}_{\mathsf{i}})^t$
- ightharpoonup want $|\mathbf{w}^t(\mathbf{m}_1 \mathbf{m}_2)|$ large $\rightarrow \|\mathbf{w}\| = \infty$

• better: $J(\mathbf{w}) =$ $|\mathbf{w}^{t}(\mathbf{m}_{1} - \mathbf{m}_{2})|^{2} / \mathbf{w}^{t}(\mathbf{S}_{1} + \mathbf{S}_{2}) \mathbf{w}$ large

LDA (2)

- \blacktriangleright $J(\mathbf{w}) = \mathbf{w}^t \mathbf{S}_B \mathbf{w} / \mathbf{w}^t \mathbf{S}_W \mathbf{w}$ (generalized Rayleigh quotient)
- ightharpoonup
 vert
 vert(between-class scatter matrix)
- ightharpoonup
 vert
 vertscatter matrix)
- calculus of variations: $\delta/\delta\varepsilon |J(\mathbf{w}_o + \varepsilon \mathbf{v})|_{\varepsilon=0} = 0 \forall \mathbf{v}$

This axis has a larger distance between means

- generalized eigenvector: $S_R w_0 = \lambda S_W w_0$
- ► $S_W^{-1}S_B w_o = \lambda w_o$, if S_W^{-1} exists
- $\mathbf{w}_o = \mathbf{S}_{W'}^{-1} (\mathbf{m}_1 \mathbf{m}_2)$, since $\mathbf{m}_1 - \mathbf{m}_2 \ \alpha \ \mathbf{S}_R^{-1} \mathbf{w}_o$
- ▶ w_o is canonical variate

LDA Example

LDA ... Two Classes - Example

- Compute the Linear Discriminant projection for the following twodimensional dataset.
 - Samples for class ω_1 : $\mathbf{X}_1 = (x_1, x_2) = \{(4,2), (2,4), (2,3), (3,6), (4,4)\}$
 - Sample for class ω_2 : $\mathbf{X}_2 = (x_1, x_2) = \{(9,10), (6,8), (9,5), (8,7), (10,8)\}$

LDA hyperlink

[L09]Elhabian_LDA09

00

Next:

Higher Dimensional Features Are Good

Lower Dimensional Features Are Good

Principal Component Analysis

Linear PCA

Adaptive PCA

Nonlinear PCA (after neural net lectures)

Kernel PCA

Fisher Linear Discriminant Analysis

Kernel LDA

Multiple Discriminant Analysis

00

Next:

Higher Dimensional Features Are Good

Lower Dimensional Features Are Good

Principal Component Analysis

Linear PCA

Adaptive PCA

Nonlinear PCA (after neural net lectures)

Kernel PCA

Fisher Linear Discriminant Analysis

Kernel LDA

Multiple Discriminant Analysis

MDA

- c classes & c-1 discriminants
- $ightharpoonup n_i$ features in class ω_i
- ▶ total mean $\mathbf{m} = \sum_{i=1}^{c} \mathbf{m}_{i} n_{i} / n$
- ► total scatter matrix $\mathbf{S}_T = \sum_{\mathbf{x}} (\mathbf{x} - \mathbf{m}) (\mathbf{x} - \mathbf{m})^t$

$$S_T = S_B + S_W,$$

$$S_B = \sum_{i=1}^c n_i (\mathbf{m}_i - \mathbf{m}) (\mathbf{m}_i - \mathbf{m})^t$$

- $\begin{array}{ll} \blacktriangleright & \text{we seek } \mathbf{W} \in \mathscr{R}^{d \times (c-1)} \text{ to yield} \\ \mathbf{y} = \mathbf{W^t} \mathbf{x} \end{array}$
- ▶ good W ⇒ large between-class scatter, small within-class scatter
- ► solution-> ith column of W: $\mathbf{S}_{B}\mathbf{w}_{i} = \lambda_{i}\mathbf{S}_{W}\mathbf{w}_{i}$
- implementation: roots of char poly $|\mathbf{S}_B \lambda_i \mathbf{S}_W| = 0$
- ▶ then solve: $(\mathbf{S}_B \lambda_i \mathbf{S}_W) \mathbf{w}_i = \mathbf{0}$
- ► S_B has rank $c 1 \Longrightarrow$ at most c 1 positive eigenvalues C 1

MDA

LDA ... C-Classes

- Now, we have *C*-classes instead of just two.
- We are now seeking (C-1) projections $[y_1, y_2, ..., y_{C-1}]$ by means of (C-1) projection vectors \mathbf{w}_i .
- $\mathbf{w_i}$ can be arranged by *columns* into a projection matrix $\mathbf{W} = [\mathbf{w_1} | \mathbf{w_2} | \dots | \mathbf{w_{C-1}}]$ such that:

$$\begin{aligned} w_1 \mid \mathbf{w}_2 \mid \dots \mid \mathbf{w}_{C-1} \quad & \text{such that:} \\ y_i &= w_i^T x \quad \Rightarrow \quad y = W^T x \\ where \quad x_{m \times 1} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}, \quad y_{C-1 \times 1} = \begin{bmatrix} y_1 \\ \vdots \\ y_{C-1} \end{bmatrix} \\ and \quad W_{m \times C-1} = \begin{bmatrix} w_1 \mid w_2 \mid \dots \mid w_{C-1} \end{bmatrix} \quad & \text{where} \quad & \text{where}$$

Higher Dimensional Features Are Good Lower Dimensional Features Are Good Principal Component Analysis Fisher L

MDA hyperlink

 ${\sf Elhabian_LDA09.pdf}$

00

Next:

Higher Dimensional Features Are Good

Lower Dimensional Features Are Good

Principal Component Analysis

Linear PCA

Adaptive PCA

Nonlinear PCA (after neural net lectures)

Kernel PCA

Fisher Linear Discriminant Analysis

Kernel LDA

Multiple Discriminant Analysis

Higher Dimensional Features Are Good Lower Dimensional Features Are Good Principal Component Analysis Fisher L

2-Column Template

EECE 5644

Brady