

รายงาน

CarClassification

จัดทำโดย กลุ่ม Textetion และสมาชิก

นายพลภัทร	สร้อยเสริมทรัพย์	6410450184
นายศรุต	คำยืน	6410450273
นายธนภัทร	บำรุงไทยวรกุล	6410451016

เสนอ

อ.ชาคริต วัชโรภาส

รายงานนี้เป็นส่วนหนึ่งของรายงานวิชา 01418364 มหาวิทยาลัยเกษตรศาสาตร์

ภาคปลาย ปีการศึกษา 2566

คำนำ

รายงานการสร้างโมเดลในหัวข้อแยกแยะประเภทของรถยนต์ตามจำนวนล้อของรถยนต์ เพื่อนำไปใช้กับด่านทางด่วนเพื่อจัดเก็บค่าธรรมเนียมการใช้บริการตามประเภทของรถ การแยกแยะประเภทที่ผิดพลาดอาจนำไปสู่ปัญหาต่างๆ เช่น การสูญเสียรายได้ การจราจรติดขัด และความไม่พึงพอใจของผู้ใช้

โครงงานนี้มุ่งเป้าไปที่การพัฒนาโมเดล Deep Learning สำหรับการแยกแยะประเภทรถยนต์ที่เข้ามาใช้งานทางด่วน โมเดลนี้จะถูกสร้างขึ้นโดยใช้สถาปัตยกรรม Convolutional Neural Network (CNN) และสามารถแยกแยะประเภทรถยนต์ตามจำนวนล้อ ดังนี้

- 4 ล้อ: รถยนต์ส่วนบุคคล รถกระบะ
- 6 ล้อ: รถบรรทุกขนาดเล็ก
- มากกว่า 6 ล้อ: รถบรรทุกขนาดใหญ่ รถพ่วง

คณะผู้จัดทำ

นาย พลภัทร สร้อยเสริมทรัพย์ นาย ศรุต คำยืน นาย ธนภัทร บำรุงไทยวรกุล

สารบัญ

เรื่อง	หน้า
คำนำ	2
สารบัญ	3
บทที่ 1 บทนำ	4
บทที่ 2 งานที่เกี่ยวข้อง	5
บทที่ 3 วิธีการ	7
บทที่ 4 ผลการทดลอง	9
บทที่ 5 สรุป	10
บรรณานุกรม	11

บทที่ 1 บทนำ

1. ความสำคัญของการแยกแยะประเภทรถยนต์บนทางด่วน

ระบบจัดการทางด่วนในปัจจุบันจำเป็นต้องมีการแยกแยะประเภทรถยนต์อย่างแม่นยำ
เพื่อจัดเก็บค่าธรรมเนียมการใช้บริการตามประเภทของรถ
การแยกแยะประเภทที่ผิดพลาดอาจนำไปสู่ปัญหาต่างๆ เช่น
การสูญเสียรายได้ด้วยการจัดเก็บค่าธรรมเนียมที่ไม่ถูกต้อง ส่งผลต่อรายได้ของระบบทางด่วน
จึงเกิดความคิดที่จะต้องการนำ เทคโนโลยี Deep Learning
ซึ่งมีศักยภาพในการแก้ปัญหาเหล่านี้ได้ โดยการใช้โมเดล Deep Learning
ที่สามารถแยกแยะประเภทรถยนต์ตามจำนวนล้อได้อย่างแม่นยำ
เพื่อจะช่วยส่งผลดีต่อระบบจัดการทางด่วน

2. วัตถุประสงค์

โครงงานนี้มุ่งเป้าไปที่การพัฒนาโมเดล Deep Learning
สำหรับการแยกแยะประเภทรถยนต์บนทางด่วน โมเดลนี้จะถูกสร้างขึ้นโดยใช้สถาปัตยกรรม
Convolutional Neural Network (CNN) และสามารถแยกแยะประเภทรถยนต์ตามจำนวนล้อ
โดยคาดหวังผลที่จะพัฒนาโมเดล Deep Learning
ที่สามารถแยกแยะประเภทรถยนต์ตามจำนวนล้อแต่ละประเภท ได้แก่ 4 ล้อ 6 ล้อ และมากกว่า 6 ล้อ และการทดสอบประสิทธิภาพ และวิเคราะห์ผลลัพธ์ ประเมินความเป็นไปได้ของโมเดล Deep Learning ที่พัฒนาขึ้นว่าสามารถนำโมเดลไปใช้จริงได้หรือไม่

3. ผลลัพธ์ที่คาดหวัง

คาดว่าโมเดล Deep Learning ที่พัฒนาขึ้นนี้ จะสามารถแยกแยะประเภทรถยนต์ได้
และจะมีประสิทธิภาพมากพอที่จะนำไปใช้บนทางด่วนได้
เพื่อแยกแยะประเภทของรถได้อย่างแม่นยำ และสามารถนำไปประยุกต์ใช้กับระบบต่างๆ
ในการจัดการทางด่วนในอนาคต

บทที่ 2 งานที่เกี่ยวข้อง

โครงงานนี้เกี่ยวข้องมีส่วนเกี่ยวข้องกับงานวิจัยดังนี้

- Convolutional Neural Networks (CNNs)
- CNN Transfer Learning for Image Classification
- ResNet50

Convolutional Neural Networks (CNNs)

CNNs เป็นประเภทของ Deep Neural Networks ที่ถูกออกแบบมาสำหรับงานวิทัศน์คอมพิวเตอร์ โดยเฉพาะงาน image classification CNNs ทำงานโดยใช้ convolutional layers เพื่อเรียนรู้ features จาก images และใช้ fully connected layers เพื่อทำการ classification

คำสำคัญ:

- Convolutional Neural Networks (CNNs) เครือข่ายประสาทเทียมเชิงลึกแบบ convolutional
- convolutional layers ชั้น convolutional
- fully connected layers ชั้นเชื่อมต่อแบบเต็ม
- image classification การจำแนกประเภทภาพ

CNN Transfer Learning for Image Classification

CNN Transfer Learning เป็นเทคนิคที่ใช้โมเดล CNN ที่ถูก trained บน dataset หนึ่ง มาปรับใช้กับงาน image classification อื่น โดยไม่ต้อง train โมเดลใหม่ทั้งหมด

คำสำคัญ:

- CNN Transfer Learning การถ่ายโอนการเรียนรู้แบบ CNN
- Image Classification การจำแนกประเภทภาพ
- fine-tuning การปรับแต่ง

ResNet50

ResNet50 เป็น CNN architecture ที่ถูกพัฒนาโดย He et al. (2016) ResNet50 ประกอบไปด้วย convolutional layers 50 layers และใช้ residual connections เพื่อช่วยให้โมเดลเรียนรู้ได้ลึกขึ้น

คำสำคัญ:

- ResNet50 ResNet ห้าสิบ
- residual connections การเชื่อมต่อแบบเหลือ
- image classification การจำแนกประเภทภาพ

บทที่ 3 วิธีการ ชุดข้อมูลที่ใช้ในการสร้างโมเดล Deep Learning ของโครงงานนี้ได้นำมาจากเว็บไซต์ Kaggle จำนวน 5 ชุดข้อมูลดังนี้

- vehicle-wheel-detection
- trucks-detection
- truck-licenseplate-dataset
- vehicles-image-dataset
- <u>car-an</u>d-truck
- <u>uk-truck-brands-dataset</u>

รวมไปถึงการเก็บรูปภาพบนอินเทอร์เน็ต
และรูปภาพที่ได้รวบรวมมาเองโดยรูปภาพเพิ่มเติมทำให้ได้รูปที่นำมาใช้เทรนโมเดลมีจำนวน
1724 รูปภาพ โดยรูปภาพรถยนต์นั้นจะเป็นตัวแปรอิสระ(features)
และประเภทจำนวนล้อจะเป็นตัวแปรตาม(labels) โดยจะแทนเลข 0, 1, 2
เป็นเลขของรถยนต์ประเภท 4, 6 และ มากกว่า 6 ล้อ ตามลำดับ

รูปภาพที่นำมาใช้นั้นเป็นรูปภาพรถยนต์ที่อยู่แนวเฉียงข้าง ให้เห็นล้อหน้าและหลังทั้งหมด เนื่องจากจำเป็นต้องการระบุจำนวนล้อให้กับโมเดล และคัดกรองรูปภาพที่ใช้งานไม่ได้ออกไป โดยจำนวนรูปภาพทั้งหมดสามารถแบ่งตามจำนวนล้อ ดังนี้

• 4 ล้อ: 617 รูป

• 6 ล้อ: 564 รูป

• มากกว่า 6 ล้อ: 543 รูป

จากข้อมูลทั้งหมด ได้ถูกแบ่งออกเป็น 2 เซ็ตในการเทรนโมเดลดังนี้:

• Training set: 70% ของข้อมูลทั้งหมด (1206 รูป)

Test set: 30% ของข้อมูลทั้งหมด (518 รูป)

อุปกรณ์และเครื่องมือ

anaconda

เป็นโปรแกรมที่ใช้สร้างโมเดลแยกแยะรถยนต์ในโครงงานครั้งนี้ด้วยภาษาโปรแกรม python พร้อมใช้งานกับ module และ library ดังนี้

- jupyter notebook: เครื่องมือสำหรับเขียนโค้ดและแสดงผลลัพธ์ เหมาะสำหรับการวิเคราะห์ข้อมูลและสร้างโมเดล Machine Learning
- tensorflow: ไลบรารีโอเพนซอร์สสำหรับ Deep Learning มีประสิทธิภาพสูง รองรับงานหลากหลาย
- cv2: ไลบรารีโอเพนซอร์สสำหรับ Computer Vision รองรับงาน Computer Vision ทั่วไป เช่น การอ่านภาพ การแปลงภาพ การตรวจจับวัตถุ
- h5py: ไลบรารีโอเพนซอร์สสำหรับอ่านและเขียนไฟล์ HDF5 รองรับการจัดเก็บข้อมูลขนาดใหญ่
- numpy: ไลบรารีโอเพนซอร์สสำหรับการคำนวณทางวิทยาศาสตร์ รองรับการจัดการและวิเคราะห์ข้อมูล
- keras: ไลบรารีโอเพนซอร์สสำหรับ Deep Learning รองรับงาน Deep Learning ทั่วไป พัฒนาบน TensorFlow
- sklearn: ไลบรารีโอเพนซอร์สสำหรับ Machine Learning รองรับงาน Machine Learning ทั่วไป
- matplotlib: ไลบรารีโอเพนซอร์สสำหรับสร้างกราฟ ใช้งานง่าย
 รองรับการสร้างกราฟประเภทต่างๆ

โมเดล

โมเดล Deep Learning ที่ใช้ในโครงงานนี้คือ Convolutional Neural Network (CNN) เนื่องจากมีประสิทธิภาพสูงในการจำแนกภาพ เรียนรู้ features ทำงานกับข้อมูลขนาดใหญ่ ปรับแต่งได้ และ โมเดลที่ได้นำมาใช้งานในการทำโครงงานครั้งนี้ ได้ใช้การ transfer learning จากโมเดล RestNet50 มาเป็น pre-trained model เพื่อเป็นโมเดลตั้งต้นในการสร้างโมเดลของโครงงาน

บทที่ 4 ผลการทดลอง

การประเมินผล

ประสิทธิภาพของโมเดลถูกประเมินค่า แม่นยำ(accuracy) และ ค่าสูญ(loss) ของผลลัพธ์ของโมเดลที่ได้จากการเทรนและ การนำไปใช้ในการทำนายข้อมูลที่นำเข้ามา โดยค่า accurcy ที่ได้คาดไว้อยู่ในช่วง 0.8 หรือร้อยละ 80

โดยผลลัพธ์ accurancy ที่ได้หลังการเทรนเสร็จสิ้นมีค่าอยู่ที่ 0.7132 หรือคิดอยู่ที่ร้อยละ 71 และเมื่อนำโมเดลไปใช้กับข้อมูลทดลองที่นำเข้าเพื่อทำการทำนาย ด้วยจำนวนรูป 30 รูปโดยแบ่งเป็นประเภทรถยนต์แต่ประเภทละ 10 รูปภาพ โดยผลลัพธ์ที่ได้ออกมาอยู่ที่ 0.7667 หรือคิดอยู่ที่ร้อยละ 76 ซึ่งเป็นผลลัพธ์ที่ยังไม่ถึงตามที่คาดไว้ที่ร้อยละ 80

ผลลัพธ์ของการทำนายมีลักษณะดังนี้ [ค่าที่ถูก:ค่าที่ผิด]

[<mark>00**2**00**111**0**1**</mark>1**2**111111112**0**222**0**222**2**] 4 ล้อ[5:5] 6 ล้อ[9:1] 6+ล้อ[8:2]

บทที่ 5 สรุป

ข้อจำกัดและอุปสรรค:

ข้อมูล(Dataset)

ความหลากหลายของข้อมูล: รูปภาพของรถต่างๆที่มีหลายรูปแบบ มุมมอง แสง สภาพอากาศ และความละเอียดที่หลากหลาย

ความซับซ้อนของรูปและฉาก:

ในรูปภาพอาจมีวัตถุอื่นๆรวมอยู่ด้วยทำให้รบกวนการแยกรถตามจำนวนล้อ
ไม่ว่าจะเป็นเงาที่ส่งผลต่อการมองเห็นจำนวนล้อในรูป หรือจะเป็นวัตถุต่างๆ
ขนาดของชุดข้อมูล: เนื่องจากเป็นโมเดล classification
ทำให้การมีชุดข้อมูลขนาดใหญ่เพื่อเทรนโมเดล Deep Learning ให้มีประสิทธิภาพได้มาก
แต่การหารูปเพื่อนำมาทำชุดข้อมูลนั้นหาได้ยากเพราะจำเป็นต้องหารูปให้ตรงกับความต้องการข

โมเดล

ความซับซ้อนของโมเดล: โมเดล Deep Learning

ที่มีความซับซ้อนสูงอาจต้องการทรัพยากรการคำนวณมาก

การปรับแต่งโมเดล: โมเดล Deep Learning อาจต้องปรับแต่งให้เหมาะกับชุดข้อมูลเฉพาะ

การอธิบายผลลัพธ์: โมเดล Deep Learning อาจไม่สามารถอธิบายผลลัพธ์ได้ชัดเจน

การใช้งาน

ความเร็วในการประมวลผล: โมเดล Deep Learning

อาจทำงานช้าบนอุปกรณ์ที่มีทรัพยากรจำกัด

ความถูกต้อง: โมเดล Deep Learning อาจไม่แม่นยำ 100%

บรรณานุกรม

1. Kaggle Datasets:

- Vehicle Wheel Detection: Dataclusterlabs. (2023, December 1). Vehicle Wheel
 Detection. Kaggle. https://www.kaggle.com/datasets/dataclusterlabs/vehicle-wheel-detection
- Trucks Detection: Beethoo. (2023, November 11). Trucks Detection. Kaggle.
 https://www.kaggle.com/datasets/beethoo/trucks-detection
- Truck License Plate Dataset: Amritesh Tiwari. (2023, October 14). Truck License Plate Dataset. Kaggle.
 - $\underline{https://www.kaggle.com/datasets/amriteshtiwari20/truck-licenseplate-dataset}$
- Vehicles Image Dataset: Md Moheminul Islam. (2023, September 24). Vehicles
 Image Dataset. Kaggle.
 - https://www.kaggle.com/datasets/mmohaiminulislam/vehicles-image-dataset
- Car and Truck: Enes UMCU. (2023, August 23). Car and Truck. Kaggle.
 https://www.kaggle.com/datasets/enesumcu/car-and-truck

UK Truck Brands Dataset: Big Nose the Third. (2023, July 12). UK Truck Brands
 Dataset. Kaggle. https://www.kaggle.com/datasets/bignosethethird/uk-truck-brands-dataset

2. arXiv:

- A Gentle Introduction to Convolutional Neural Networks: Zhang, Y., & Yeung, D.
 Y. (2016). A Gentle Introduction to Convolutional Neural Networks. arXiv
 preprint arXiv:1609.07100. https://arxiv.org/abs/1609.07100
- Transfer Learning for Image Classification: Pan, S. J., & Yang, Q. (2018). Transfer Learning for Image Classification. arXiv preprint arXiv:1807.06376.
 https://arxiv.org/abs/1807.06376
- ResNet50: He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv preprint arXiv:1512.03385.
 https://arxiv.org/abs/1512.03385