Math 320: Chapter 1

rctcwyvrn

September 2020

1 Common sets

- Natural numbers N (Rudin uses J)
 - Set notation $\{1, 2, 3, 4, \ldots\}$
 - Closed under addition and multiplication
 - Not closed under subtraction (might get a negative number)
- Integers \mathbb{Z}
 - Set notation $\ldots -3, -2, -1, 0, 1, 2, 3, 4, \ldots$
 - Closed under subtraction and addition
 - But not under division
- Rationals \mathbb{Q}
 - Set notation: $\left\{\frac{m}{n}: m \in \mathbb{Z}, n \in \mathbb{N}\right\}$
 - * Where $\frac{m_1}{n_1} = \frac{m_2}{n_2}$ iff $m_1 * n_2 = m_2 * n_1$
 - * Our intuitive idea of division
 - Alternative we could define \mathbb{Q} in a more straightforward way
 - * Define \mathbb{Q} as the set of ordered pairs $\{(m,n): m \in \mathbb{Z}, n \in \mathbb{N}\}$
 - * We also need to make sure the equivalent fractions are accounted for
 - * where (m_1,n_1) is equivalent to (m_2,n_2) (ie $(m_1,n_1)\sim (m_2,n_2)$) if $m_1n_2=m_2n_1$
 - Closed under addition, subtraction, multiplication, and division (if divisor is non-zero)
 - Question: Are the rationals sufficient for everything we want to do in real analysis (in calculus)?
 - * Can we do things in calculus?
 - * Can we take limits? (and have them work properly?)
 - Nope! (note: the name of this course is real analysis, not rational analysis

- The problem is that the rationals have holes, they're not "filled in all the way" like the reals are

Example: Holes in the rationals

(Rudin 1.1a) We want to show that there's a number we can't reach in the rationals $(\sqrt{2})$. $\nexists p \in \mathbb{Q} : p^2 = 2$

Proof:

By contradiction: Suppose that $\exists p \in \mathbb{Q}: p^2 = 2$. Then since p is rational, we can write $p = \frac{m}{n}, \ m \in \mathbb{Z}, \ n \in \mathbb{N}$.

- WLOG we may suppose that m and n are not both even (because if not then we could just divide both by 2 and have a new m and n and repeat until this statement is true)
 - Q: How can we be sure that this dividing by 2 will eventually end? (More explicitly, how many times do we need to do it?)
- We have $2 = p^2 = \frac{m^2}{n^2}$

$$2 = \frac{m^2}{n^2} \tag{1}$$

$$m^2 = 2n^2 \tag{2}$$

$$m^2 = 2n^2 \tag{2}$$

- \bullet So m must be even
- Ie m = 2k for some odd integer k

$$2n^2 = m^2 (3)$$

$$2n^2 = (2k)^2 (4)$$

$$n^2 = 2k^2 \tag{5}$$

- \bullet So n must be even, but we said that one of them had to be
- Contradiction!

(Rudin 1.1b)

- Let $A = \{ p \in \mathbb{Q} : p > 0, p^2 < 2 \}$
- Let $B = \{ p \in \mathbb{Q} : p > 0, p^2 > 2 \}$
- Consider the area where the two sets meet. We know that they meet at $\sqrt{2}$, which is not a rational.
- So we know that the set of rationals has little holes in it, like $\sqrt{2}$ which make us unable to use limits, which are important for real analysis

Then:

- $\forall p \in A, \exists q \in A : p < q \text{ (A does not have a largest element)}$
- Similarly B does not have a smallest element $(\forall p \in B, \exists q \in B: q < p$

Proof:

First one

- Consider arbitrary $p \in A$. Try $q = \frac{2p+2}{2+p}$
- Check $q \in \mathbb{Q}$, the denominator is non-zero and rational, so the result is rational.
- Check q > 0, both numerator and denominator are positive
- Check $q^2 < 2$.

$$q^2 = \frac{(2p+2)^2}{(2+p)^2} \tag{6}$$

$$=\frac{2(p^2-2)}{(p+2)^2}+2\tag{7}$$

- The fraction is less than zero, because the numerator is negative $(p^2 < 2 \text{ because } p \in A)$, so $q^2 < 2)$
- Check that p < q. Well $q = p + \frac{2-p^2}{2+p}$, which is positive, so q > p

Second one

• Exercise (Try the exact same choice of q)

3

Q: Where did that q come from? (Think calculus)

Q: Why do we care so much that there is $q^2 = 2$, but don't care that there isn't a $q^2 = -1$?

1.1 Ordered Sets

Definition: Set order

An **order** (<) on a set S is a relation st

- Every pair of distinct elements $x, y \in S$, exactly one of x < y, x > y, x = y is true
- Transitivity: For $x, y, z \in S$, $x < y \ y < z$ implies x < z

Definition: Ordered set

A pair (S, <) of an order and a set (duh)

ullet Notation: Just S if the order is obvious from the context

Example: Ordered sets

With ordering x < y if y - x is positive

- $S = \mathbb{N}$
- $S = \mathbb{Z}$
- \mathbb{Q} , \mathbb{R} etc

Example: English set

S as the set of English words, < is the dictionary order (by letters)

• "a" < "aa" < "ab" < "b"

Notation:

- x < y and y > x are the same
- $x \le y$ means x < y or x = y

Definition: Bounded above

Let S be an ordered set and E be a subset of S ($E \subset S$)

We say E is **bounded above** if there exists an element $\theta \in S: \forall x \in E: x \leq \theta$

 θ is an **upper bound(ub)** of E

• Note: This requires a "universal bounding set" or else the idea of being bounded above doesn't make sense

Example:

Let $S=\mathbb{Q}$ with the standard ordering. Let E=A (from the last section, $0< a,\, a^2<2)$

• Then E is bounded above by p=2 (or really any element $p>\sqrt{2}$)

For $p \in E$, check 2 - p

$$2 - p = \frac{4 - p^2}{(2 + p)} \tag{8}$$

$$> \frac{4-2}{2+p} \tag{9}$$

$$> 0$$
 (10)

Example:

Let S=A and E=A (not a proper subset), in this case E is not bounded above

• We know that for any element $\theta \in E$ there exists another element in E that is larger (from last lecture)

Definition: Bounded below

Let S be an ordered set, $E\subset S.$ E is bounded below if $\exists \beta\in S: \forall x\in E: \beta\leq x$

• β is called a **lower bound** (lb)

1.2 Least upper bounds and greatest lower bounds

Definition: Least upper bound (LUB)

Let S be an ordered set, subset E bounded above. If $\exists \alpha \in S$ such that

- α is a UB for E
- If $\gamma < \alpha$, then γ is NOT a UB for E

Then α is called the least upper bound (LUB) or supremum

• Notation: $\alpha = \sup(E)$

Remark: Why can we say that α is THE supremum? How do we know that it's unique?

Definition: Greatest lower bound (GLB)

Similarly the **greatest lower bound** or **infenum** is the element α (if it exists) st

- α is a LB for E
- $\gamma > \alpha$ then gamma is not a LB for E
- Notation: $\alpha = inf(E)$

Let $S=\mathbb{Q}$ with the normal ordering. $E=\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$

- What is the supremum? sup(E) = 1
- What is the infenum? inf(E) = 0

Things to check:

- Are they rational (in the universal set S)? Well yes
- Are they a UB/LB? Yes
- The hard part: Prove that they are the greatest/least lower/upper bound (todo)

Note:

 \bullet E contains its supremum, but not its infenum

Definition: Least upper bound property (LUB property)

An ordered set S has the LUB property if $\forall E \subset S$ where E is not the empty set, and E is bounded above, then E has a least upper bound (in S)

 \bullet All subsets of S that are bounded above, have a LUB

There is also a parallel definition for the **greatest upper bound property**.

Does \mathbb{Z} have the LUB property?

What about \mathbb{Q} ?

- How would you go about proving it?
 - Not having the statement is more straightforward because you can just find a counter-example
 - Considering arbitrary subsets is more difficult
- 1. I think the answers are yes and no.

Theorem:

(Rudin 1.11) Let S be an ordered set.

Proof:

Forward:

Let S be an ordered set with the LUB property. (WTS S has the GLB property).

Let $E \subset S$ with E nonempty and bounded below (assumptions for the GLB property) (wts E has an infenum)

Let $L = \{x \in S : x \text{ is a LB for } E\}$. L is non-empty because E is bounded below

If $y \in E$, then y is an UB for L. (Because all elements of L are less than all elements of E). Since E is non-empty, L is bounded above.

So now we have set $L \subset S$ that is non-empty and bounded above, because S has the LUB property, L has supremum α . Claim that this α is the infenum of E.

 $\alpha \leq x: \forall x \in E,$ hence α is a lower bound for E, so α is an element of L (why?)

- $\forall \gamma \in S, \ \gamma < \alpha \text{ implies } \gamma \text{ is not an upper bound of } L.$
- Since all values in E are upper bounds of $L, \gamma \notin E$.
- So since being less than α implies it is not in E, it follows that $\forall x \in E: \alpha \leq x$

Since α is the supremum of L, $\alpha \geq \gamma : \forall \gamma \in L$. Since L is the set of all upper bounds of E, we get that α is the greatest lower bound of E

Backward: (exercise, should be very similar)

Remark: General proof notes:

- Use the structure and values that we have access to to generate the desired values. Ie use facts about bounded above/below, use the LUB property to get a solid value in S, the supremum of L.
- ullet The fact that we know so little about S and E makes things easier, because there only are so many things you can try to create values from

1.3 Fields and ordered fields

Definition: Fields

A **field** is a set F along with two operations $(+,\cdot)$ such that the following properties (the field axioms)

Addition

- 1. $x, y \in F$ implies $x + y \in F$ (Closed under addition)
- 2. Commutative: x + y = y + x
- 3. Associative: (x + y) + z = x + (y + z)
- 4. Additive identity: $\exists 0 \in F \text{ st } \forall x \in F : 0 + x = x$
- 5. Additive inverse: $\forall x \in F : \exists y \in F : x + y = 0$. Notation: y = -x

Multiplication

- 1. $x, y \in F$ implies $x \cdot y \in F$ (Closed under multiplication)
- 2. Commutative: $x \cdot y = y \cdot x$
- 3. Associative: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
- 4. Multiplicative identity: $\exists 1 \in F \text{ st } 1 \neq 0 \text{ and } \forall x \in F : 1 \cdot x = x$
- 5. Multiplicative inverse: $\forall x \in F: x \neq 0 \implies \exists y \in F: x \cdot y = 0.$ Notation: $y = x^{-1}$ or $y = \frac{1}{x}$
- 6. Distributive: $x \cdot (y+z) = x \cdot y + x \cdot z$

Little exercises

- Show that 0 is unique
- Show that 1 is unique

Example: Fields

 \mathbb{Q} is a field. \mathbb{Z} is not a field (no multiplicative inverses)

 $F = \{0, 1\}$ is a field.

- Let 1 + 1 = 0, define everything else as expected
- (So this is really just $\mathbb{Z}/2\mathbb{Z}$)
- Notation: This set is called F_2 (isn't this GF(2)?)
- Note: Consider these as bits, then + is XOR and \cdot is AND

Note that 2 is a prime, and this generalizes for any prime p

Let $F_p = \{0, 1, \dots p-1\}$ where addition and multiplication are mod p. This is a field when p is prime

• For more properties of fields: Rudin prop 1.14, 1.15, 1.16

Now we have fields and we have ordered sets, so the logical next step is ordered fields.

Definition: Ordered fields

An **ordered field** is a field F that is also an ordered set with the properties

- 1. $x, y, z \in F$ y < z, then x + y < x + z
- 2. $x, y \in F$, x > 0 and y > 0 then $x \cdot y > 0$ (Note that we're combining the additive identity 0, and the multiplication operator)

- Q is an ordered field.
- What about F_2 ? Can you define an ordering such that it makes an ordered set? No! (prove by exhaustion since there are only two orderings)

Proof:

- 1. Let 0 < 1. But 0 < 1 but 1 + 0 < 1 + 1 = 0 does not hold (property 1)
- 2. Let 1 < 0, but 0 = 1 + 1 < 0 + 1 = 1 does not hold (again property 1)

Theorem:

(Rudin 1.19) \exists an ordered field that has the LUB property and that contains $\mathbb Q$ as a subfield, call this field $\mathbb R$

- What does that \exists mean in this context? It means that we can create \mathbb{R} from the pieces we already know $\mathbb{Q}, \mathbb{Z}, \mathbb{N}$ etc
- We say that there exists a field \mathbb{R} but is it unique? No, but the idea is that they all have the same properties (and I assume are isomorphic?) so we only consider there to be one \mathbb{R}
- ullet (I assume a subfield is just a subset of F with addition and multiplication are closed and the field axioms hold)

1.4 Consequences of the LUB property

We specified that \mathbb{R} in the last theorem would have the LUB property, what properties of \mathbb{R} do we get from that?

Theorem:

(Rudin 1.20) Three properties

- 1. $x, y \in \mathbb{R} : x > 0$, then $\exists n \in \mathbb{N} : nx > y$ (Archimidean property)
- 2. $x, y \in \mathbb{R} : x < y$ then $\exists p \in \mathbb{Q} : x (Rationals are 'dense' in <math>\mathbb{R}$)
- 3. $x,y \in \mathbb{R}: x < y$, then $\exists r \in \mathbb{R} \setminus \mathbb{Q}: x < r < y$ (\mathbb{R} without \mathbb{Q} is 'dense' in \mathbb{R}

Proof: A from Rudin 1.20

Proof (A) Let $A = \{nx : n \in \mathbb{N}\}\$

If the conclusion is false then $\forall a \in A : a \leq y, y$ would be an upper bound for A.

 \mathbb{R} has the LUB property, so $\alpha = \sup A$ would exist. WTS that this is a contradiction (A has no supremum) by finding $k \in \mathbb{N} : kx > \alpha$.

We know that x > 0 which implies $\alpha - x < \alpha$, so $\alpha - x$ is not an upper bound of A (because α is the supremum).

- $\implies \exists m \in \mathbb{N} : mx > \alpha x$
- $\Longrightarrow (m+1)x > \alpha$ which is a contradiction, since an element of A is greater than the supremum

Next, prove a stronger version of (A) to help with the later proofs

(A*) If $x, y \in \mathbb{R} : x > 0$ then $\exists n \in \mathbb{Z} : (n-1)x \le y < nx$

Proof: A*

Case 1: $y \ge 0$. Let $A = \{m \in \mathbb{N} : y < mx\}$ (set of natural numbers). From A we know that A is nonempty.

Every nonempty subset of \mathbb{N} has a smallest element (exercise). Let n=min(A). Check that n fits the inequality that we want.

- y < nx because it is an element of A
- $(n-1)x \le y$ because it is the minimum element of A, so any smaller naturals m must not be in A, and thus be $mx \le y$

Case 2: y < 0 exercise

Proof: The \mathbb{Q} is dense in \mathbb{R} (statement B)

Since y-x>0, by (A) $\exists n\in\mathbb{N}: n(y-x)>1$ (choose x=y-x, y=1 for the theorem).

By (A*) $\exists m \in \mathbb{Z} : m-1 \leq nx < m$ (choose x=1, y=nx for the theorem)

 $\implies nx < m \le nx + 1$

Now from n(y - x) > 1 we have $\implies nx < m \le nx + 1 < ny$

Divide both sides by n, we get

 $\implies x < \frac{m}{n} < y$

Proof: Statement C

Borrow a fact from next lecture: $\exists s \in \mathbb{R} \setminus \mathbb{Q} : s > 0, s^2 = 2$, call $s = \sqrt{2}$. Proof will be next lecture, and it won't depend on statement C.

- $\sqrt{2}$ < 2. This isn't obvious, since all we know is that the square of $\sqrt{2}^2 = 2$. The cases $\sqrt{2} = 2$ and $\sqrt{2} > 2$ both don't make sense, so $\sqrt{2} < 2$
 - Rudin 1.18: $a < b \implies a^2 < b^2$

Thus $0 < \sqrt{2}/2 < 1$, use this as a starting point to build the irrational number between x, y

By (B) $\exists p \in \mathbb{Q} : x . Repeat with <math>p$ and y, $\exists q \in \mathbb{Q} : x$

Let
$$\alpha = p + \frac{\sqrt{2}}{2}(q-p)$$

- Is between p and q because it's a number less than 1 $(\frac{\sqrt{2}}{2})$ times the delta between p and q
 - $-p < \alpha < p + 1(q p) = q$. So we have x
- Is not rational because $\sqrt{2}$
 - If α was rational, then we could write $\sqrt{2} = 2(\frac{\alpha p}{(q p)})$, which implies $\sqrt{2} \in \mathbb{Q}$, which is a contradiction