SAT Coaching Study example

- Example from Gelman et.al, section 5.5
- Separate randomized experiments in 8 high schools
- Treatment is local SAT coaching program
- Outcome is SAT-Verbal score (200 to 800)
- Treatment effect estimated using analysis of covariance
- Need to estimate the average effects of coaching program for each school.

Data:

	Estimated	Standard error	Average
	treatment	of effect	treatment
School	effect, y_j	estimate, σ_j	effect, $ heta_j$
А	28	15	?
В	8	10	?
C	– 3	16	?
D	7	11	?
Ε	-1	9	?
F	1	11	?
G	18	10	?
Н	12	18	?

Preliminary data analysis:

Two approaches:

- 1. Separate estimates Consider the 8 programs separately
 - two programs appear to work (18-28 points)
 - four programs appear to have a small effect
 - two programs appear to have negative effects
- 2. Pooled estimate Combine all schools into single analysis. We'll then obtain a pooled estimate of about 8 with standard error 4.2

Neither separate nor pooled estimates seem right.

Hierarchical model provides a compromise between the two estimates

Hierarchical Model -

- Data in each school is modeled as depending on "true school effect"
- Eight "true school effects" are thought of as coming from a population of possible school effects (described by a Gaussian distribution)
- Bayesian computation finds posterior distribution of true school effects and summarizes the population distribution of school effects
- Hierarchical models are applicable where data spans multiple clusters and each has cluster-specific parameters. Theses parameters are thought to be deviations from the overall mean mu.
- Data model / likelihood:

$$y_j | \theta_j \stackrel{\text{ind}}{\sim} \mathrm{N}(\theta_j, \sigma_j^2)$$
, for $j=1,\ldots,8$ with σ_j^2 's assumed known

- normality and known variance justified by large sample size in each school
- Prior distribution: $\theta_j | \mu, \tau^2 \stackrel{\text{iid}}{\sim} N(\mu, \tau^2)$ for $j = 1, \dots, 8$
 - exchangeable prior distn for θ_j 's
 - traditional random effects model
 - * note $\tau \to 0$ reduces to complete pooling
 - * note $\tau \to \infty$ reduces to separate estimates

The joint posterior distribution we are trying to estimate is given below

Joint posterior distribution:

$$p(\theta, \mu, \tau | y)$$

$$\propto p(y|\theta)p(\theta|\mu, \tau)p(\mu, \tau)$$

$$\propto \prod_{j=1}^{8} N(y_j|\theta_j, \sigma_j^2) \prod_{j=1}^{8} N(\theta_j|\mu, \tau^2)$$

$$\propto \tau^{-8} \exp\left[-\frac{1}{2} \sum_j \frac{1}{\tau^2} (\theta_j - \mu)^2\right] \exp\left[-\frac{1}{2} \sum_j \frac{1}{\sigma_j^2} (y_j - \theta_j)^2\right]$$

Computation of this posterior distribution using Gibbs sampling -

- To simulate from joint posterior distribution $p(\theta, \mu, \tau | y)$:
 - 1. draw τ from $p(\tau|y)$ (grid approximation)
 - 2. draw μ from $p(\mu|\tau,y)$ (normal distribution)
 - 3. draw $\theta = (\theta_1, \dots, \theta_J)$ from $p(\theta | \tau, y)$ (independent normal distribution for each θ_j)

Results -

	Posterior quantiles					Estimates	
School	2.5%	25%	50%	75%	97.5%	pooled	separate
А	- 2	6	10	16	32	8	28
В	- 5	4	8	12	20	8	8
C	-12	3	7	11	22	8	- 3
D	- 6	4	8	12	21	8	7
E	-10	2	6	10	17	8	- 1
F	- 9	2	6	10	19	8	1
G	- 1	6	10	15	27	8	18
Н	- 7	4	8	13	23	8	12
μ	- 2	5	8	11	18		
au	0.3	2.3	5.1	8.8	21.0		

As we can infer from the results, Hierarchical model provides better estimates than pooled and separate analysis.