WHITE PAPER

Genome-wide Association Test on Intel Reference Architecture – A Scaling Study

Abstract

In this study, we demonstrate how the Intel Reference Architecture scales efficiently in the compute of the chi-square statistic on millions of SNPs. When this study was performed to compare Wellderly with 1000 Genomes Phase1 and 1000 Genomes Phase3 datasets, these were our observations:

- 1. The total processing times are directly proportional to the input data sizes of 1000 Genomes and Wellderly datasets being acted upon.
- 2. The compute-intensive operations took about twice as long as the data-intensive operation. That time increased proportionally as data sizes increased.
- 3. The Intel Reference Architecture displays very linear but consistent performance with increasing big data sizes.
- 4. The average processing time increased by about 19% when increasing the average dataset size for 1000 Genomes by about 115% (Wellderly data size was consistent between the runs).

Introduction

Genome-wide association study (GWAS) is one of the most important analytics methods in genetics research. The goal of the association study is to identify the polymorphisms (naturally occurring variations in the DNA), which are associated with increased probability of the occurrence of a certain trait, most frequently a certain disease. The basic concept of the association study is to compare two groups of individuals differing with respect to a certain feature - e.g., a case group of diseased individuals and a control group of healthy people. For a given genomic position, the frequencies of particular genotypes in healthy and affected groups are compared. Typically, a statistical test such as chi-square test is performed to assess the significance of the observed segregation of the genotypes. If a de-

sired significance level is achieved, the

polymorphism (most frequently a single nucleotide polymorphism or SNP) is considered associated with the disease in question. The same statistical test is usually performed for a vast number of SNPs or 'genome-wide' (theoretically, it could be done for every single genomic position if only the complete genome sequences for cases and controls were available). Until recently, GWAS studies were usually based on the genotype data obtained with genotyping arrays and thus spanned 0.5 to 2 million SNPs. Now, the next generation sequencing technology has enabled reading the genomic sequences across many millions of SNPs, which allows performing GWAS analyses at the unprecedented depth. This new technology, however, has also posed new analytics and computational challenges. Next

Abhi K. Basu

Intel Corporation, Big Data Solutions/ Data Center Group Portland, OR, USA

Weronika Sikora-Wohlfeld

Division of Systems Medicine Department of Pediatrics, Stanford University Stanford, CA, USA

Atul J. Butte

Division of Systems Medicine Department of Pediatrics, Stanford University Stanford, CA, USA

Institute for Computational Health Sciences University of California San Francisco, CA, USA

Monica Martinez-Canales

Intel Corporation, Big Data Solutions/ Data Center Group Santa Clara, CA, USA

Table of Contents

Abstract1
Introduction 1
Chi-square Test for Wellderly and 1000 Genomes Data
Technical Specifications 3
Datasets
Tools/Platforms3
Cluster Details 3
Data Transformation Steps 3
Data Scale 3
Data Scale — Wellderly, 1Kgp1 and 1Kgp34
Data Preparation4
Queries
GWAS Chi-Square Test Performance
Scaling Test — Wellderly vs 1Kgp1 and 1Kgp37
Data Intensive Operations 8
Key Takeaways 8
Compute Intensive Operations 9
Conclusions9
Appendix
References14

generation sequencing experiments generate vast amounts of data, the storage and analysis of which requires novel computational solutions.

Intel has recently developed a specialized infrastructure for analyzing large biological datasets, including genome sequencing data, referred to as the Intel Reference Architecture¹. This complete system of hardware components and software solutions optimized to deal with the 'big data' allows storing the genome sequence data in a tabularized format and manipulating them in 'nearly real-time' using the in-memory SQL-like queries¹. Recently, we have demonstrated that the Intel Reference Architecture can be applied successfully to perform advanced operations typically conducted in genomics research, such as calculating allele and genotype frequencies, and computing the Hardy-Weinberg statistics and the chi-square statistics2. To illustrate the chi-square test, we have assessed the segregation of the genotypes between East Asian and African populations for 12 type 2 diabetes-associated SNPs².

In the current study, we demonstrate how the Intel Reference Architecture can be used to efficiently perform the chi-square test on millions of SNPs.

Chi-square Test for Wellderly and 1000 Genomes Data

To illustrate the chi-square test run on the Intel Reference Architecture, we used two publicly available datasets: Wellderly and 1000 Genomes. Wellderly is a repository of genome sequences of over 500 elderly individuals who were unusually healthy despite their advanced age. The data has been collected and maintained by Scripps Translational Science Institute³. 1000 Genomes is a large set of human genomic sequences from more than 2,500 individuals (~1,000 sequences released in phase 14 and ~2,500 sequences released in phase 35). Since no specific criteria were applied to select the participants, the 1000 Genomes dataset is expected to cover the average, relatively healthy individuals and, as such, is meant to constitute a representative cohort that could be used as control in genetic studies. In this paper, we conducted a GWAS-like analysis using Wellderly and 1000 Genomes data as case and control cohorts, respectively. Using the in-memory Impala queries, we calculated chi-square statistic for every SNP shared between Wellderly and 1000 Genomes data. In addition to measuring the time needed to perform genome-wide association test, the other main objective of the analysis was to investigate how the runtime of the calculation scales with the size of the dataset in question. Therefore, we conducted two separate analyses -Wellderly against 1000 Genomes data phase 1 (~1,000 samples) and Wellderly against 1000 Genomes data phase 3 (~2,500 samples) – and we compared the runtime of these tests.

Technical Specifications

Datasets

Raw Data

The three datasets used in the study are listed below. The numbers inside the parentheses denote the size of the original files once they were uncompressed.

- Wellderly (615 GB) http://www.stsiweb.org//wellderly/detail/wellderly/
- 1000 Genomes phase 1
 (1.2 TB) ftp://ftp-trace.ncbi.nih.
 gov/1000genomes/ftp/phase1/
 analysis_results/integrated_call_
 sets/ (referred to as 1Kgp1)
- 1000 Genomes phase 3
 (2.5 TB) ftp://ftp-trace.ncbi.
 nih.gov/1000genomes/ftp/
 release/20130502/ (referred
 to as 1Kgp3)

Tools/Platforms

The following software components in [1] were used:

- Cloudera Hadoop Distribution 5.16
- Impala 1.4.0⁷
- Hive 0.12⁸
- Python 2.69
 - Impyla library 0.8.1¹⁰
 - Thrift library 0.8.011
- Hadoop Distributed File System (HDFS)¹²

Cluster Details

The following hardware components in [1] were used:

- 6 Node Hadoop Cluster + 1 Edge Node (running Hadoop Client)
 - Intel® Xeon®13 E5-2680
 2 socket CPU
 - 192 GB RAM
 - 24 TB HDD / 300 GB SSD
- 10 Gbps Networking

Data Transformation Steps

Data Scale

In any population study, as larger datasets are added to increase the population sample size, most data scientists examine the dataset sizes and relative growth over their initial datasets to determine if there will be a scalability limitation in their infrastructure capability.

Although the Wellderly dataset remains constant during the study, we observe that the 1000 Genomes dataset has increased significantly (115% on average) from phase 1 to phase 3 (Table 1), over the 23 chromosome files. For frame of reference, we can observe the following:

- 1. The maximum increase (chrX) is about 133% more in phase 3 over phase 1.
- 2. The median increase (chr7) is about 112% more in phase 3 over phase 1.
- 3. The minimum increase (chr6) is about 107% more in phase 3 over phase 1.

TABLE 1: Size of each chromosome-specific input table for 1000 Genomes phase 1 (1kgp1), 1000 Genomes phase 3 (1kgp3) and Wellderly (well). The last column shows the percentage increase in size from 1kgp1 to 1kgp3.

CHROMOSOME	1KGP1 DATAROWS	1KGP3 DATAROWS	WELL DATAROWS	PERCENTAGE INCREASE IN DATAROWS FROM 1KGP1 TO 1KGP3
Chr1	3007196	6468094	5002461	115.09
Chr2	3307592	7081600	5487856	114.10
Chr3	2763454	5832276	4627545	111.05
Chr4	2736765	5732585	4809994	109.47
Chr5	2530217	5265763	4212658	108.12
Chr6	2424425	5024119	4048835	107.23
Chr7	2215231	4716715	3686823	112.92
Chr8	2183839	4597105	3389229	110.51
Chr9	1652389	3560687	2561956	115.49
Chr10	1882663	3992219	2902349	112.05
Chr11	1894908	4045628	2991743	113.50
Chr12	1828006	3868428	3061735	111.62
Chr13	1373000	2857916	2426912	108.15
Chr14	1258254	2655067	2072217	111.01
Chr15	1130554	2424689	1725840	114.47
Chr16	1210619	2697949	1717332	122.86
Chr17	1046733	2329288	1697346	122.53
Chr18	1088820	2267185	1751878	108.22
Chr19	816115	1832506	1351312	124.54
Chr20	855166	1812841	1252697	111.99
Chr21	518965	1105538	838257	113.03
Chr22	494328	1103547	726881	123.24
ChrX	1487477	3468093	2658420	133.15

Figure 1: Data size comparison between 1000 Genomes Phase1, 1000 Genomes Phase 3 and Wellderly. The three highlighted chromosomes are our frames of reference with max (chrX), min (chr6) and median (chr7) dataset increases between 1kgp1 and 1kgp3

Data Preparation

1. Genotype code (GT) was extracted from raw tables (23 chromosome-specific tables for each of the three datasets: Wellderly, 1000 Genomes phase 1 and 1000 Genomes phase 3) and represented as the number of alternate alleles according to the convention: 0|0 = 0, 0|1 or 1|0 = 1 and 1|1 = 2. Sample data shown in Table 2.

TABLE 2: Sample genotype data for Wellderly and 1000 Genomes tables. The column headers contain the human genome project sample number.

HG00096	HG00097	HG00099	NA20778
1	0	1	1
1	0	0	0
1	0	0	0
1	0	0	0
1	0	0	1

- 2. For each SNP, all possible genotypes (reference/reference, reference/ alternate and alternate/alternate) across all samples (columns, e.g., hg00096, etc.) were counted using the following convention:
 - ref_ref = number of samples with genotype '0'
 - ref_alt = number of samples with genotype '1'
 - alt_alt = number of samples with genotype '2'

Note: 'ref_ref', 'ref_alt' and 'alt_alt' refer to reference homozygote, heterozygote and alternate homozygote, respectively.

Now, all chromosome-specific Wellderly and 1000 Genomes tables contain only eight columns - chrom, pos, ref, alt, ref_ref, ref_alt, alt_alt and rowid columns. Note that chrom, pos, ref, and alt still follow the standard VCF format.

Queries

We designed and implemented a set of queries that join Wellderly and 1000 Genomes tables to calculate chi-square statistic. All queries were generated using Python code and the Impyla library was used to run the queries against the Impala nodes of the Hadoop cluster in a distributed fashion. These will be referred to as the three steps of data transformation.

Here, chrx corresponds to one of {chr1, chr2, ..., chrX}

1. Join the two sets of tables together on chromosome, position, ref and alt columns.

```
CREATE TABLE well _ 1kgp3 _ chrx

AS SELECT

w.w _ chrom as chrom, w.w _ pos as pos, w.w _ alt as alt, w.w _ ref as ref,
w.w _ ref _ ref as x1, w.w _ ref _ alt as x2, w.w _ alt _ alt as x3,
s.s _ ref _ ref as x4, s.s _ ref _ alt as x5, s.s _ alt _ alt as x6,
w.w _ rowid, s.s _ rowid

FROM well _ chrx _ gen w JOIN sc _ 1kgp3 _ chrx _ gen s
ON (w.w _ chrom = s.s _ chrom AND w.w _ pos = s.s _ pos AND w.w _ ref = s.s _ ref AND
w.w _ alt = s.s _ alt);
```

For instance, suppose that chrx refers to chr1. Then, the sc_1kgp3_chr1_gen table refers to the 1000 Genomes Phase 3 data for chromosome 1. The well_chr1_gen table refers to the Wellderly data for chromosome 1. The joined table is then referred to as well_1kgp3_chr1.

2. Generate expected values of genotype counts.

```
CREATE TABLE well _ lkgp3 _ chrx _ exp
AS SELECT
chrom, pos, alt, ref,
x1, x2, x3, x4, x5, x6,

(x1+x2+x3) * (x1+x4) / (x1+x2+x3+x4+x5+x6) as e1,
(x1+x2+x3) * (x2+x5) / (x1+x2+x3+x4+x5+x6) as e2,
(x1+x2+x3) * (x3+x6) / (x1+x2+x3+x4+x5+x6) as e3,
(x4+x5+x6) * (x1+x4) / (x1+x2+x3+x4+x5+x6) as e4,
(x4+x5+x6) * (x2+x5) / (x1+x2+x3+x4+x5+x6) as e5,
(x4+x5+x6) * (x3+x6) / (x1+x2+x3+x4+x5+x6) as e6
FROM well _ lkgp3 _ chrx;
```

Once we have the well_1kgp3_chr1 table, the expected values on GT counts result in the well_1kgp3_chr1_exp table.

3. Calculate chi-square statistic values.

```
CREATE TABLE well _ 1kgp3 _ chrx _ chisq

AS SELECT
chrom, pos, alt, ref,
    x1, x2, x3, x4, x5, x6,
    e1, e2, e3, e4, e5, e6,
    (pow(cast(x1-e1 as double), 2) / e1) + (pow(cast(x2-e2 as double), 2) / e2) +
    (pow(cast(x3-e3 as double), 2) / e3)
+ (pow(cast(x4-e4 as double), 2) / e4) + (pow(cast(x5-e5 as double), 2) /
    e5) + (pow(cast(x6-e6 as double), 2) / e6) as chi _ sq

FROM well _ 1kgp3 _ chrx _ exp;
```

From the expected values table well_1kgp3_chr1_exp table, we finish computing the chi-square statistic to generate the well_1kgp3_chr1_chisq.

These three queries are applied across all the chromosome tables across the three different datasets. Appendix - Table 5 (1000 Genomes Phase 1 and Wellderly) and Appendix - Table 6 (1000 Genomes Phase 3 and Wellderly) summarize how the data table sizes (rows and columns) change through each transformation step leading to calculating the chi-square statistic.

GWAS Chi-Square Test Performance

Table 3 demonstrates the average run times of all cumulative queries per chromosome (5 runs each averaged), contrasted between the two versions of 1000 Genomes and Wellderly datasets.

TABLE 3: Average cumulative query runtimes per chromosome for Wellderly with 1000 Genomes phase1 vs. 1000 Genomes phase 3.

CHROMOSOME	WELL & 1KGP1 (SECS)	WELL & 1KGP3 (SECS)
Chr1 Total	16.557	19.313
Chr2 Total	17.123	20.218
Chr3 Total	16.679	19.856
Chr4 Total	16.169	19.310
Chr5 Total	16.262	17.951
Chr6 Total	16.427	19.952
Chr7 Total	15.377	17.780
Chr8 Total	14.793	17.656
Chr9 Total	10.833	13.370
Chr10 Total	13.625	15.184
Chr11 Total	13.207	15.999
Chr12 Total	12.721	15.934
Chr13 Total	11.034	12.392
Chr14 Total	9.693	11.855
Chr15 Total	9.421	10.531
Chr16 Total	8.901	11.786
Chr17 Total	8.804	9.784
Chr18 Total	8.770	9.864
Chr19 Total	7.095	9.054
Chr20 Total	7.758	8.755
Chr21 Total	5.538	6.712
Chr22 Total	5.303	6.322
ChrX Total	9.445	13.019

→ Well & 1kgp1 (secs)

Scaling Test — Wellderly vs 1Kgp1 and 1Kgp3

Figure 2 shows how the total processing time increased linearly (between 1Kgp1 and 1Kgp3) even though the datasets increased by over 115% on average, over all 23 chromosome files. The performance was recorded to be very consistent for both runs (with 1Kgp1 and 1Kgp3) and scalability was not a problem for this reference architecture.

Next, we looked at total run time separated into data- and compute-intensive operations, to observe any patterns.

The join (step 1) was the data-intensive operation while expected value calculation (step 2) and chi-square calculation (step 3) were added together and considered the compute-intensive operation.

Figure 3 (data-intensive) and Figure 4 (compute-intensive) also point to the same pattern of small but linear increase in processing time as data-sets for 1000 Genomes grew by almost 115% (average).

── Well & 1kgp3 (secs)

Here is the comparison among our frame of reference data points:

Figure 2. Cumulative average run times per chromosome comparison between Wellderly and 1000 Genomes Phase 1 and 1000 Genomes Phase 3.

TABLE 4: Close look at reference data points – maximum, median and minimum data set increases between 1000 Genomes Phase 1 and Phase 3. All times in seconds.

CHROMOSOME	WELL & 1KGP1 (TOTAL)	WELL & 1KGP3 (TOTAL)	WELL & 1KGP1 (DATA- INTENSIVE)	WELL & 1KGP3 (DATA- INTENSIVE)	WELL & 1KGP1 (COMPUTE- INTENSIVE)	WELL & 1KGP3 (COMPUTE- INTENSIVE)	1KGP1 DATA SIZE (ROWS X 8 COLS)	1KGP3 DATA SIZE (ROWS X 8 COLS)	WELLDERLY DATA SIZE (ROWS X 8 COLS)
Chr6 (min)	16.43	19.95	5.18	6.83	10.86	12.69	2424425	5024119	4212658
Chr7 (median)	15.37	17.78	4.79	6.04	10.18	11.34	2215231	4716715	3686823
ChrX (max)	9.45	13.019	2.65	4.78	6.45	7.86	1487477	3468093	2658420

Key Takeaways

- 1. We observe that the total processing times are directly proportional to the input data sizes of 1000 Genomes and Wellderly datasets being acted upon.
- 2. In our study, the compute-intensive operations took about twice as long as the data-intensive operations. That time increased proportionally as data sizes increased.
- 3. The Intel Reference Architecture displays very linear but consistent performance with increasing big data sizes.
- 4. The average processing time increases by about 19% when increasing the average dataset size for 1000 Genomes by about 115% (Wellderly data size was consistent between the runs).

Data Intensive Operations

Figure 3: Run times of data-intensive operations by chromosome.

Compute Intensive Operations

→ 1kgp1-Compute → 1kgp3-Compute

Conclusions

In this scaling study, we have demonstrated how Intel Reference Architecture can be used to perform analysis on big genome sequencing datasets. The architecture is scalable for increasing data sizes. Overall performance is found to be linear and consistent given the size of datasets, and

there is a small penalty with increase in datasets. We have shown how "near real-time" SQL queries operate on a Hadoop cluster on vast datasets, and the architecture is able to adapt and scale to the increasing demands of even bigger data sets.

Figure 4: Run times of compute-intensive operations by chromosome.

Appendix

The three queries (Join, Expected Value and Chi-Squared) are applied across all the chromosome tables across the three different datasets. Table 5 (1000 Genomes Phase 1 and Wellderly) and Table 6 (1000 Genomes Phase 3 and Wellderly) summarize how the data table sizes (rows and columns) change through each transformation step leading to calculating the chi-square statistic.

To read Tables 5 and 6, look at the first 3 rows of Table 5 which cor-

respond to Steps 1-3 of the Query data transformation on chromosome 1:

- Step 1: sc_1kgp1_chr1_gen is input 1 and well_chr1_gen is input2 to the JOIN operation whose output is well_1kgp1_chr1. Input1 has r1 rows and c1 columns. Input2 has r2 rows and c2 columns. Output has r3 rows and c3 columns. Therefore, we see that sc_1kgp1_chr1_gen (3007196 rows x 8 cols) JOINED with well_chr1_gen (5002461 rows x 8 cols) generates well_1kgp1_chr1 (834289 rows x 12 cols).
- **Step 2:** Calculations on input1 well_1kgp1_chr1 (834289 rows x 12 cols) generate output well_1kgp1_chr1_exp (834289 rows x 18 cols). There is no input2 at this step.
- **Step 3:** Calculations on input1 well_1kgp1_chr1_exp (834289 rows x 18 cols) generate output well_1kgp1_chr1_chisq (834289 rows x 19 cols). There is no input2 at this step.

Reading the remainder of the tables follow similarly.

TABLE 5: Breakdown of data transformation for each chromosome through all the 3 steps of processing – JOIN, Expected Value calculation and Chi-Square calculations – of 1000 Genomes Phase 1 and Wellderly datasets.

		PYTHON	1KG-F	P1/WELLDERLY CH	I-SQUARE ST	ATIS	TICS LOG		
CHR	INPUT1	R1	C1	INPUT2	R2	C2	OUTPUT	R3	C3
chr1	sc_1kgp1_chr1_gen	3007196	8	well_chr1_gen	5002461	8	well_1kgp1_chr1	834289	12
	well_1kgp1_chr1	834289	12				well_1kgp1_chr1_exp	834289	18
	well_1kgp1_chr1_exp	834289	18				well_1kgp1_chr1_chisq	834289	19
chr2	sc_1kgp1_chr2_gen	3307592	8	well_chr2_gen	5487856	8	well_1kgp1_chr2	902711	12
	well_1kgp1_chr2	902711	12				well_1kgp1_chr2_exp	902711	18
	well_1kgp1_chr2_exp	902711	18				well_1kgp1_chr2_chisq	902711	19
chr3	sc_1kgp1_chr3_gen	2763454	8	well_chr3_gen	4627545	8	well_1kgp1_chr3	754656	12
	well_1kgp1_chr3	754656	12				well_1kgp1_chr3_exp	754656	18
	well_1kgp1_chr3_exp	754656	18				well_1kgp1_chr3_chisq	754656	19
chr4	sc_1kgp1_chr4_gen	2736765	8	well_chr4_gen	4809994	8	well_1kgp1_chr4	748889	12
	well_1kgp1_chr4	748889	12				well_1kgp1_chr4_exp	748889	18
	well_1kgp1_chr4_exp	748889	18				well_1kgp1_chr4_chisq	748889	19
chr5	sc_1kgp1_chr5_gen	2530217	8	well_chr5_gen	4212658	8	well_1kgp1_chr5	678871	12
	well_1kgp1_chr5	678871	12				well_1kgp1_chr5_exp	678871	18
	well_1kgp1_chr5_exp	678871	18				well_1kgp1_chr5_chisq	678871	19
chr6	sc_1kgp1_chr6_gen	2424425	8	well_chr6_gen	4048835	8	well_1kgp1_chr6	687225	12
	well_1kgp1_chr6	687225	12				well_1kgp1_chr6_exp	687225	18
	well_1kgp1_chr6_exp	687225	18				well_1kgp1_chr6_chisq	687225	19
chr7	sc_1kgp1_chr7_gen	2215231	8	well_chr7_gen	3686823	8	well_1kgp1_chr7	612601	12
	well_1kgp1_chr7	612601	12				well_1kgp1_chr7_exp	612601	18
	well_1kgp1_chr7_exp	612601	18				well_1kgp1_chr7_chisq	612601	19
chr8	sc_1kgp1_chr8_gen	2183839	8	well_chr8_gen	3389229	8	well_1kgp1_chr8	596768	12
	well_1kgp1_chr8	596768	12				well_1kgp1_chr8_exp	596768	18
	well_1kgp1_chr8_exp	596768	18				well_1kgp1_chr8_chisq	596768	19
chr9	sc_1kgp1_chr9_gen	1652389	8	well_chr9_gen	2561956	8	well_1kgp1_chr9	459234	12
	well_1kgp1_chr9	459234	12				well_1kgp1_chr9_exp	459234	18
	well_1kgp1_chr9_exp	459234	18				well_1kgp1_chr9_chisq	459234	19

		PYTHON	1KG-I	P1/WELLDERLY CHI	-SQUARE ST	ATIST	TICS LOG		
CHR	INPUT1	R1	C1	INPUT2	R2	C2	OUTPUT	R3	C3
chr10	sc_1kgp1_chr10_gen	1882663	8	well_chr10_gen	2902349	8	well_1kgp1_chr10	535362	12
	well_1kgp1_chr10	535362	12				well_1kgp1_chr10_exp	535362	18
	well_1kgp1_chr10_exp	535362	18				well_1kgp1_chr10_chisq	535362	19
chr11	sc_1kgp1_chr11_gen	1894908	8	well_chr11_gen	2991743	8	well_1kgp1_chr11	520756	12
	well_1kgp1_chr11	520756	12				well_1kgp1_chr11_exp	520756	18
	well_1kgp1_chr11_exp	520756	18				well_1kgp1_chr11_chisq	520756	19
chr12	sc_1kgp1_chr12_gen	1828006	8	well_chr12_gen	3061735	8	well_1kgp1_chr12	495166	12
	well_1kgp1_chr12	495166	12				well_1kgp1_chr12_exp	495166	18
	well_1kgp1_chr12_exp	495166	18				well_1kgp1_chr12_chisq	495166	19
chr13	sc_1kgp1_chr13_gen	1373000	8	well_chr13_gen	2426912	8	well_1kgp1_chr13	380847	12
	well_1kgp1_chr13	380847	12				well_1kgp1_chr13_exp	380847	18
	well_1kgp1_chr13_exp	380847	18				well_1kgp1_chr13_chisq	380847	19
chr14	sc_1kgp1_chr14_gen	1258254	8	well_chr14_gen	2072217	8	well_1kgp1_chr14	358823	12
	well_1kgp1_chr14	358823	12				well_1kgp1_chr14_exp	358823	18
	well_1kgp1_chr14_exp	358823	18				well_1kgp1_chr14_chisq	358823	19
chr15	sc_1kgp1_chr15_gen	1130554	8	well_chr15_gen	1725840	8	well_1kgp1_chr15	312156	12
	well_1kgp1_chr15	312156	12				well_1kgp1_chr15_exp	312156	18
	well_1kgp1_chr15_exp	312156	18				well_1kgp1_chr15_chisq	312156	19
chr16	sc_1kgp1_chr16_gen	1210619	8	well_chr16_gen	1717332	8	well_1kgp1_chr16	343719	12
	well_1kgp1_chr16	343719	12				well_1kgp1_chr16_exp	343719	18
	well_1kgp1_chr16_exp	343719	18				well_1kgp1_chr16_chisq	343719	19
chr17	sc_1kgp1_chr17_gen	1046733	8	well_chr17_gen	1697346	8	well_1kgp1_chr17	295240	12
	well_1kgp1_chr17	295240	12				well_1kgp1_chr17_exp	295240	18
	well_1kgp1_chr17_exp	295240	18				well_1kgp1_chr17_chisq	295240	19
chr18	sc_1kgp1_chr18_gen	1088820	8	well_chr18_gen	1751878	8	well_1kgp1_chr18	308591	12
	well_1kgp1_chr18	308591	12				well_1kgp1_chr18_exp	308591	18
	well_1kgp1_chr18_exp	308591	18				well_1kgp1_chr18_chisq	308591	19
chr19	sc_1kgp1_chr19_gen	816115	8	well_chr19_gen	1351312	8	well_1kgp1_chr19	238370	12
	well_1kgp1_chr19	238370	12				well_1kgp1_chr19_exp	238370	18
	well_1kgp1_chr19_exp	238370	18				well_1kgp1_chr19_chisq	238370	19
chr20	sc_1kgp1_chr20_gen	855166	8	well_chr20_gen	1252697	8	well_1kgp1_chr20	247693	12
	well_1kgp1_chr20	247693	12				well_1kgp1_chr20_exp	247693	18
	well_1kgp1_chr20_exp	247693	18				well_1kgp1_chr20_chisq	247693	19
chr21	sc_1kgp1_chr21_gen	518965	8	well_chr21_gen	838257	8	well_1kgp1_chr21	140810	12
	well_1kgp1_chr21	140810	12				well_1kgp1_chr21_exp	140810	18
	well_1kgp1_chr21_exp	140810	18				well_1kgp1_chr21_chisq	140810	19
chr22	sc_1kgp1_chr22_gen	494328	8	well_chr22_gen	726881	8	well_1kgp1_chr22	152568	12
	well_1kgp1_chr22	152568	12				well_1kgp1_chr22_exp	152568	18
	well_1kgp1_chr22_exp	152568	18				well_1kgp1_chr22_chisq	152568	19
chrX	sc_1kgp1_chrX_gen	1487477	8	well_chrX_gen	2658420	8	well_1kgp1_chrX	358869	12
	well_1kgp1_chrX	358869	12				well_1kgp1_chrX_exp	358869	18
	well_1kgp1_chrX_exp	358869	18				well_1kgp1_chrX_chisq	358869	19

TABLE 6: BREAKDOWN OF DATA TRANSFORMATION FOR EACH CHROMOSOME THROUGH ALL THE 3 STEPS OF PROCESSING – JOIN, EXPECTED VALUE CALCULATION AND CHI-SQUARE CALCULATIONS – OF 1000 GENOMES PHASE 3 AND WELLDERLY DATASETS.

PYTHON 1KG-P3/WELLDERLY CHI-SQUARE STATISTICS LOG CHR INPUT1 INPUT2 OUTPUT C3 chr1 sc_1kgp3_chr1_gen well chr1 gen well_1kgp3_chr1 well_1kgp3_chr1 well_1kgp3_chr1_exp well_1kgp3_chr1_exp well_1kgp3_chr1_chisq chr2 sc_1kgp3_chr2_gen well_chr2_gen well_1kgp3_chr2 well_1kgp3_chr2 well_1kgp3_chr2_exp well_1kgp3_chr2_exp well_1kgp3_chr2_chisq chr3 sc_1kgp3_chr3_gen well_chr3_gen well_1kgp3_chr3 well_1kgp3_chr3 well_1kgp3_chr3_exp well_1kgp3_chr3_exp well_1kgp3_chr3_chisq chr4 sc_1kgp3_chr4_gen well_chr4_gen well_1kgp3_chr4 well_1kgp3_chr4 well_1kgp3_chr4_exp well_1kgp3_chr4_exp well_1kgp3_chr4_chisq chr5 sc_1kgp3_chr5_gen well_chr5_gen well_1kgp3_chr5 well_1kgp3_chr5_exp well_1kgp3_chr5 well_1kgp3_chr5_exp well_1kgp3_chr5_chisq chr6 sc_1kgp3_chr6_gen well_1kgp3_chr6 well_chr6_gen well_1kgp3_chr6 well_1kgp3_chr6_exp well_1kgp3_chr6_exp well_1kgp3_chr6_chisq chr7 sc_1kgp3_chr7_gen well_chr7_gen well_1kgp3_chr7 well_1kgp3_chr7 well_1kgp3_chr7_exp well_1kgp3_chr7_exp well_1kgp3_chr7_chisq chr8 sc_1kgp3_chr8_gen well_chr8_gen well_1kgp3_chr8 well_1kgp3_chr8 well_1kgp3_chr8_exp well_1kgp3_chr8_exp well_1kgp3_chr8_chisq chr9 sc_1kgp3_chr9_gen well_chr9_gen well_1kgp3_chr9 well_1kgp3_chr9 well_1kgp3_chr9_exp well_1kgp3_chr9_exp well_1kgp3_chr9_chisq chr10 sc_1kgp3_chr10_gen well_chr10_gen well_1kgp3_chr10 well_1kgp3_chr10 well_1kgp3_chr10_exp well_1kgp3_chr10_exp well_1kgp3_chr10_chisq chr11 sc_1kgp3_chr11_gen well_chr11_gen well_1kgp3_chr11 well_1kgp3_chr11 well_1kgp3_chr11_exp well_1kgp3_chr11_exp well_1kgp3_chr11_chisq chr12 sc_1kgp3_chr12_gen well_chr12_gen well_1kgp3_chr12 well_1kgp3_chr12 well_1kgp3_chr12_exp well_1kgp3_chr12_exp well_1kgp3_chr12_chisq chr13 sc_1kgp3_chr13_gen well_chr13_gen well_1kgp3_chr13 well_1kgp3_chr13 well_1kgp3_chr13_exp well_1kgp3_chr13_exp well_1kgp3_chr13_chisq

453523

well_1kgp3_chrX_exp

18

453523

well_1kgp3_chrX_chisq

19

c	ntını	ied from	previous	naae

PYTHON 1KG-P3/WELLDERLY CHI-SQUARE STATISTICS LOG CHR INPUT1 C1 INPUT2 R2 **OUTPUT R3 C3** chr14 sc_1kgp3_chr14_gen 2655067 8 well_chr14_gen 2072217 8 well_1kgp3_chr14 428638 12 well_1kgp3_chr14 428638 12 well_1kgp3_chr14_exp 428638 18 well 1kgp3 chr14 exp 428638 18 well 1kgp3 chr14 chisq 428638 19 8 1725840 375584 12 chr15 sc_1kgp3_chr15_gen 2424689 well_chr15_gen 8 well_1kgp3_chr15 well 1kgp3 chr15 375584 12 well 1kgp3 chr15 exp 375584 18 well_1kgp3_chr15_exp 375584 well_1kgp3_chr15_chisq 375584 19 18 chr16 sc_1kgp3_chr16_gen 2697949 8 well chr16 gen 1717332 well_1kgp3_chr16 419272 12 well 1kgp3 chr16 419272 12 well 1kgp3 chr16 exp 419272 18 well_1kgp3_chr16_exp 419272 18 well_1kgp3_chr16_chisq 419272 19 well_1kgp3_chr17 chr17 8 well_chr17_gen 1697346 8 362718 12 sc_1kgp3_chr17_gen 2329288 well_1kgp3_chr17 362718 12 well_1kgp3_chr17_exp 362718 18 well 1kgp3 chr17 exp 362718 18 well 1kgp3 chr17 chisq 362718 19 8 1751878 well_1kgp3_chr18 12 chr18 sc_1kgp3_chr18_gen 2267185 well_chr18_gen 366047 well 1kgp3 chr18 366047 12 well 1kgp3 chr18 exp 366047 18 well 1kgp3 chr18 exp 366047 18 well 1kgp3 chr18 chisq 366047 19 chr19 sc_1kgp3_chr19_gen 1832506 8 well_chr19_gen 1351312 well_1kgp3_chr19 295926 12 well 1kgp3 chr19 295926 12 well_1kgp3_chr19_exp 295926 18 well_1kgp3_chr19_exp 18 well_1kgp3_chr19_chisq 19 295926 295926 chr20 sc_1kgp3_chr20_gen 1812841 8 well chr20 gen 1252697 well_1kgp3_chr20 295170 12 well_1kgp3_chr20 295170 12 well_1kgp3_chr20_exp 295170 18 well_1kgp3_chr20_exp 295170 18 well_1kgp3_chr20_chisq 295170 19 chr21 sc 1kgp3 chr21 gen 1105538 8 well chr21 gen 838257 well 1kgp3 chr21 170012 12 well_1kgp3_chr21 170012 12 well_1kgp3_chr21_exp 170012 18 well 1kgp3 chr21 exp 170012 18 well 1kgp3 chr21 chisq 170012 19 chr22 sc_1kgp3_chr22_gen 1103547 8 well_chr22_gen 726881 well_1kgp3_chr22 184233 12 well 1kgp3 chr22 184233 12 well_1kgp3_chr22_exp 184233 18 well_1kgp3_chr22_exp 184233 well_1kgp3_chr22_chisq 184233 18 19 chrX sc_1kgp3_chrX_gen 3468093 8 well_chrX_gen 2658420 well_1kgp3_chrX 453523 12 well 1kgp3 chrX 453523 12 well 1kgp3 chrX exp 453523 18

References

- 1 Sikora-Wohlfeld W, Basu AK, Butte AJ, Martinez-Canales M: Accelerating Secondary Genome Analysis Using Intel Reference Architecture. http://www.intel.com/content/www/us/en/high-performance-computing/high-performance-xeon-e5-genome-analysis-study.html
- ² Sikora-Wohlfeld W, Basu AK, Butte AJ, Martinez-Canales M: Statistical Analysis of Genome Sequencing Data with Intel Reference Architecture. http://www.intel.com/content/www/us/en/healthcare-it/statistical-analysis-genome-sequencing-paper.html; 2015.
- ³ Scripps Translational Science Institute. http://www.stsiweb.org/wellderly/.
- 4 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;4917422:56-65.
- ⁵ 1000 Genomes. http://www.1000genomes.org.
- ⁶ Cloudera Hadoop Distribution. Available at http://www.cloudera.com/content/cloudera/en/products-and-services/cdh.html. Accessed on June 14, 2015.
- 7 Cloudera Impala. Available at http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html. Accessed on lune 14, 2015
- ⁸ Apache Hive. Available at https://hive.apache.org/. Accessed on June 14, 2015.
- ⁹ Python. Available at https://www.python.org/. Accessed on June 14, 2015.
- ¹⁰ Impyla Library. Available at https://github.com/cloudera/impyla. Accessed on June 14, 2015.
- ¹¹ Apache Thrift. Available at https://thrift.apache.org/. Accessed on June 14, 2015.
- ¹² HDFS. Available at https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html. Accessed on June 14, 2015
- ¹³ Intel® Xeon®. Available at http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e7-family.html. Accessed on March 16, 2015.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at **intel.com**.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright @ 2015 Intel Corporation and Standard University. All rights reserved. Intel, the Intel logo, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.