math-typst

Blezz

Содержание

\mathbb{C}_{1}	травочные материалы	1
Д	емо вариант 2024	3
	Задание 1.1	3
	Задание 1.2	3
	Задание 1.3	4
	Задание 1.4 (Сделать картинки)	4
	Задание 2.1	5
	Задание 2.2	6
	Задание 3.1	
	Задание 3.2 (Сделать картинки)	6
	Задание 3.3 (Сделать картинки)	7
	Задание 4.1	8
	Задание 4.2 (Сделать картинки)	9
	Задание 5.1	9
	Задание 5.2	. 10
	Задание 6.1	. 10
	Задание 6.2	. 10
	Задание 6.3	. 10
	Задание 6.4	. 11
	Задание 7.1	. 11
	Задание 7.2	. 11
	Задание 7.3	. 12
	Задание 8.1 (сделать картинки)	
	Задание 8.2 (сделать и доделать картинки)	. 12
	Задание 9.1	. 13
	Задание 10.1	. 14
	Задание 10.2	. 14
	Задание 10.3	. 15
	Задание 11.1	. 15
	Задание 12.1	. 16
	Задание 12.2	. 16
	Задание 12.3	. 17
	Задание 13	. 17
	Задание 14	. 19
	Задание 15	. 21
	Задание 16	. 22
	Задание 17	. 22
	Задание 18	. 22
	Задание 19	. 22
	Залание 20	22

Справочные материалы

$$\begin{split} \sin^2\alpha + \cos^2\alpha &= 1\\ \sin2\alpha &= 2\sin\alpha \cdot \cos\alpha\\ \cos2\alpha &= \cos^2\alpha - \sin^2\alpha\\ \sin(\alpha + \beta) &= \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta\\ \cos(\alpha + \beta) &= \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \end{split}$$

Демо вариант 2024

Задание 1.1

Задание

Треугольник ABC вписан в окружность с центром О. Угол BAC равен 32° . Найдите угол BOC. Ответ дайте в градусах.

Решение

 $\angle ABC = \frac{1}{2} \cap BC$

 $^{\smallfrown}$ BC = 64°

 \angle BOC = \bigcirc BC

Ответ: 64°

Задание 1.2

Задание

Площадь треугольника ABC равна 24, DE - средняя линия, паралельная стороне AB. Найдите площадь треугольника CDE.

∠ ВАС - Общий

$$DE = \frac{1}{2}AB$$

$$k = \frac{1}{2}$$

$$S_{\mathrm{CDE}} \cdot S_{\mathrm{ABC}} = k^2 = \left(\frac{1}{2}\right)^2$$

$$S_{ ext{CDE}} = rac{S_{ ext{ABC}}}{4} = rac{24}{4} = 6$$

Ответ: 6

Задание 1.3

Задание

Площадь треугольника ABC равна 24, DE - средняя линия, паралельная стороне AB. Найдите площадь треугольника CDE.

Решение

$$\angle$$
 ABC = \angle DBA + \angle DBC = $13^{\circ} + 13^{\circ} = 26^{\circ}$

$$\angle BCD = 180^{\circ} - \angle ABC = 180^{\circ} - 26^{\circ} = 154^{\circ}$$

Ответ: 154°

Задание 1.4 (Сделать картинки)

Задание

Площадь треугольника ABC равна 24, DE - средняя линия, паралельная стороне AB. Найдите площадь треугольника CDE.

$$S = 18 \cdot 24 = 27 \cdot h$$

$$h = \frac{18 \cdot 24}{27} = 16$$

Ответ: 154°

Задание 2.1

Задание

На координатной плоскости изображены векторы \vec{a} и \vec{b} . Найдите скалярное произведение $\vec{a}\cdot\vec{b}$.

$$\begin{aligned} \overline{|a|} &= (5-1;8-2) = (4;6) \\ \overline{|b|} &= (11-5;3-5) = (6;-2) \\ \overline{a} \cdot \overline{b} &= x_1 \cdot x_2 + y_1 \cdot y_2 = 4 \cdot 6 + 6 \cdot (-2) = 24 - 12 = 12 \end{aligned}$$

Задание 2.2

Задание

Даны векторы $\vec{a}(1;2), \vec{b}(-3;6), \vec{c}(4;-2)$. Найдите длину вектора $\vec{a}-\vec{b}+\vec{c}$.

Решение

1.
$$\vec{a} - \vec{b} + \vec{c}$$

 $\vec{d}(1+3+4;2-6-2)$
 $\vec{d}(9;-6)$
2. $|\vec{d}| = \sqrt{x^2 + y^2} = \sqrt{8^2 + (-6)^2} = \sqrt{100} = 10$

Ответ: 10

Задание 3.1

Задание

В первом цилиндрическом сосуде уровень жидкости достигает 16 см. Эту жидкость перелили во второй цилиндрический сосуд, диаметр основания которого в 2 раза больше диаметра основания первого. На какой высоте будет находиться уровень жидкости во втором сосуде? Ответ дайте в сантиметрах.

Решение

$$V = S_{\text{Och}} \cdot h = \pi R^2 \cdot 16 = \pi (2R)^2 \cdot h$$

$$R^2 \cdot 16 = 4R^2 h$$

$$h = 4$$

Ответ: 4

Задание 3.2 (Сделать картинки)

Задание

Площадь боковой поверхности треугольной призмы равна 24. Через среднюю линию основания призмы проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсечённой треугольной призмы.

$$S_{\rm dok} = S_1 + S_2 + S_3 = 2ah + 2bh + 2ch = 2h(a+b+c) = 24$$

$$h(a+b+c) = 12$$

$$S_{\rm dok\ otc} = ah + bh + ch = h(a+b+c+) = 12$$

Ответ: 12

Задание 3.3 (Сделать картинки)

Задание

Через точку, лежащую на высоте прямого кругового конуса и делящую её в отношении 1 : 2, считая от вершины конуса, проведена плоскость, параллельная его основанию и делящая конус на две части. Каков объём той части конуса, которая примыкает к его основанию, если объём всего конуса равен 54?

$$\begin{split} \frac{SO_1}{OO_1} &= \frac{1}{2} \\ \frac{h_1}{h} &= \frac{1}{3} = k \\ \frac{V_1}{V} &= k^3 = \frac{1}{27} \\ V_1 &= \frac{V}{27} = \frac{54}{27} = 2 \\ V_{\text{\tiny HJJK}} &= V - V_1 = 54 - 2 = 52 \end{split}$$

Ответ: 52

Задание 4.1

Задание

В сборнике билетов по биологии всего 25 билетов. Только в двух билетах встречается вопрос о грибах. На экзамене выпускнику достаётся один случайно выбранный билет из этого сборника. Найдите вероятность того, что в этом билете будет вопрос о грибах.

$$\frac{2}{25} = \frac{8}{100} = 0,08$$

Ответ: 0,08

Задание 4.2 (Сделать картинки)

Задание

Вероятность того, что мотор холодильника прослужит более 1 года, равна 0,8. авероятность того, что он прослужит более 2 лет, равна 0,6. Какова вероятность того, что мотор прослужит более 1 года, но не более 2 лет?

Решение

$$P = 0, 2 + x + 0, 6 = 1$$

$$x = 1 - 0, 8 = 0, 2$$

Ответ: 0, 2

Задание 5.1

Задание

Симметричную игральную кость бросили 3 раза. Известно, что в сумме выпало 6 очков. Какова вероятность события «хотя бы раз выпало 3 очка»?

Решение

$$A \in \{1, 2, 3, 4, 5, 6\}$$

 \overline{abc} — число, где $a,b,c\in A$

Причем a+b+c=6

Исключим числа 5, 6, так как

5+1+1>6

6+1+1>6

Перечислим все комбинации, где $a+b+c \equiv 0 \pmod{6}$:

222

411, 141, 114

Всего чисел 10

Нужных нам 6

$$P = \frac{6}{10} = 0,6$$

Задание 5.2

Задание

В городе 48% взрослого населения – мужчины. Пенсионеры составляют 12,6% взрослого населения, причём доля пенсионеров среди женщин равна 15%. Для социологического опроса выбран случайным образом мужчина, проживающий в этом городе. Найдите вероятность события «выбранный мужчина является пенсионером».

Решение

Пусть в городе 1000 человек.

- 1. $48\% \text{ м} \to 480 \text{ чел}$ $52\% \text{ ж} \to 520 \text{ чел}$
- 2. 12,6% м + ж \rightarrow 126 чел пенсионеров всего
- 3. $15\% \text{ ж} \to 78$ чел пенсионеров женщин
- 4. 126 78 = 48 чел пенсионеров мужчин
- 5. $\frac{48}{480} = \frac{1}{10} = 0,1$

Ответ: 0, 1

Задание 6.1

Задание

Найдите корень уравнения $3^{x-5} = 81$.

Решение

$$3^{x-5} = 3^4$$

$$x-5=4$$

$$x = 9$$

Ответ: 9

Задание 6.2

Задание

Найдите корень уравнения $\sqrt{3x+49} = 10$.

Решение

$$3x + 49 = 100$$

$$3x = 51$$

$$x = 17$$

Ответ: 17

Задание 6.3

Задание

Найдите корень уравнения $log_8(5x + 47) = 3$.

Решение

$$\log_8(5x + 47) = 3 \cdot \log_8 8 = \log_8 8^2$$
$$5x + 47 = 8^3 = 512$$
$$5x = 465$$
$$x = 93$$

Ответ: 93

Задание 6.4

Задание

Решите уравнение $\sqrt{2x+3}=x$. Если корней окажется несколько, то в ответе запишите наименьший из них.

Решение

OД3: $x \geqslant 0$

$$2x+3=x^2$$

$$x^2-2x-3=0$$

$$x_{1;2}=\begin{bmatrix} -1, -\text{ посторонний}\\ 3; \end{bmatrix}$$

Ответ: 3

Задание 7.1

Задание

Найдите $\sin 2\alpha$, если $\cos \alpha = 0, 6$ и $\pi < \alpha < 2\pi$.

Решение

$$\begin{split} \sin^2\alpha + \cos^2\alpha &= 1\\ \sin^2\alpha &= 0,64\\ \sin\alpha &= 0,8\\ \sin2\alpha &= 2\cdot(-0,8)\cdot0,6 = -0,96 \end{split}$$

Ответ: -0,96

Задание 7.2

Задание

Найдите значение выражения $16 \log_7 \sqrt[4]{7}$.

$$16\log_7 4^{\frac{1}{4}} = 16 \cdot \frac{1}{4}\log_7 7 = 4$$

Задание 7.3

Задание

Найдите значение выражение $4^{\frac{1}{5}} \cdot 16^{\frac{9}{10}}$.

Решение

$$4^{\frac{2}{10}} \cdot 4^{\frac{18}{10}} = 4^{\frac{20}{10}} = 4^2 = 16$$

Ответ: 16

Задание 8.1 (сделать картинки)

Задание

На рисунке изображён график дифференцируемой функции y = f(x).

На оси абсцисс отмечены девять точек $x_1, x_2, ..., x_9$.

Найдите все отмеченные точки, в которых производная функции f(x) отрицательна. В ответе укажите количество этих точек.

Решение

Ответ: 4

Задание 8.2 (сделать и доделать картинки)

Задание

На рисунке изображён график функции y=f(x) и касательаня к нему в точке с абсциссой x_0 . Найдите значение производной функции f(x) в точке x_0 .

Написать решение

- 1. Тангенс угла
- 2. ...

Ответ: -1,75

Задание 9.1

Задание

Локатор батискафа, равномерно погружающегося вертикально вниз, испускает ультразвуковой сигнал частотой 749 МГц. Приёмник регистрирует частоту сигнала, отражённого от дна океана. Скорость погружения батискафа (в м/с) и частоты связаны соотношением

$$\nu = c \cdot \frac{f - f_0}{f + f_0},$$

где c=1500 м/с – скорость звука в воде, f_0 – частота испускаемого сигнала (в МГц), f – частота отражённого сигнала (в МГц). Найдите частоту отражённого сигнала (в МГц), если батискаф погружается со скоростью 2 м/с.

Решение

$$2 = 1500 \cdot \frac{f - 749}{f + 729}$$

$$f + 749 = 750(f - 749)$$

$$f + 749 = 750f - 749 \cdot 750$$

$$749f = 751 \cdot 749f$$

$$f = 751$$

Ответ: 751

Задание 10.1

Задание

Весной катер идёт против течения реки в $1\frac{2}{3}$ раза медленнее, чем по течению. Летом течение становится на 1 км/ч медленнее. Поэтому летом катер идёт против течения в $1\frac{1}{2}$ раза медленнее, чем по течению. Найдите скорость течения весной (в км/ч).

Решение

	По течению	Против течения	Течение
Скорость Весной	x + y	x-y	y
Скорость Летом	x+y-1	x-y+1	y-1

$$\begin{cases} x+y=\frac{5}{3}(x-y)\\ x+y-1=\frac{3}{2}(x-y+1) \end{cases}$$

$$3x + 3y = 5x - 5y$$
$$2x = 8y$$

$$x = 4y$$

2.
$$4y + y - 1 = \frac{3}{2}(4y - y + 1)$$

 $5y - 1 = \frac{3}{2}(3y + 1)$
 $10y - 2 = 9y + 3$
 $y = 5$
 $x = 20$

Ответ: 5

Задание 10.2

Задание

Смешав 45%-ный и 97%-ный растворы кислоты и добавив 10 кг чистой воды, получили 62%-ный раствор кислоты. Если бы вместо 10 кг воды добавили 10 кг 50%-ного раствора той же кислоты, то получили бы 72%-ный раствор кислоты. Сколько килограммов 45%-ного раствора использовали для получения смеси?

$$\begin{aligned} k_1 \cdot m_1 + k_2 \cdot m_2 + \ldots &= k_3 \cdot m_3 \\ m_1 + m_2 + \ldots &= m_3 \end{aligned}$$

$$\begin{cases} 0,45 \cdot m_1 + 0,97 * m_2 + 0,10 &= 0,62 \cdot (m_1 + m_2 + 10) & (1) \\ 0,45 \cdot m_1 + 0,97 * m_2 + 0,5 \cdot 10 &= 0,72 \cdot (m_1 + m_2 + 10) & (2) \end{cases}$$

1.
$$5 = 0, 1 \cdot (m_1 + m_2 + 10)$$

 $10 + m_1 + m_2 = 50$
 $m_1 + m_2 = 40$
 $m_2 = 40 - m_1$

 $\begin{aligned} 2. & \ 0,45 \cdot m_1 + 0,97 \cdot (40 - m_1) = 0,62 \cdot 50 \\ & \ 0,45 \cdot m_1 + 38,8 - 0,97 m_1 = 31 \\ & \ 7,8 = 0,52 m_1 \\ & \ 52 m_1 = 780 \\ & \ m_1 = 15 \end{aligned}$

Ответ: 15

Задание 10.3

Задание

Автомобиль, движущийся с постоянной скоростью 70 км/ч по прямому шоссе, обгоняет другой автомобиль, движущийся в ту же сторону с постоянной скоростью 40 км/ч. Каким будет расстояние (в километрах) между этими автомобилями через 15 минут после обгона?

Решение

No	Скорость, км/ч	Время, ч	Расстояние, км
1	70	$\frac{1}{4}$	S_1
2	40	$\frac{1}{4}$	S_2

 ΔS - ?

1. $S_1 = \frac{70}{4} = 17, 5$

2. $S-2=\frac{40}{4}=10$

3. $\Delta S = S_1 - S_2 = 17, 5 - 10 = 7, 5$

Ответ: 7,5

Задание 11.1

Задание

На рисунке изображён график функции вида $f(x)=ax^2+bx+c$, где числа a,b и c — целые. Найдите значение f(12).

$$y = (x+4)^2 - 3$$
$$y(12) = (4-12)^2 - 3 = 64 - 3 = 61$$

Задание 12.1

Задание

Найдите наименьшее значение функции

$$y = 9x - 9\ln(x+11) + 7$$

на отрезке [-10, 5; 0].

Решение

1.
$$y' = 9 - 9(x+11)' \frac{1}{x+11}$$

 $y' = 9 - \frac{9}{x+11} = 0$
2. $9 = \frac{9}{x+11}$

2.
$$9 = \frac{9}{x+11}$$

 $x + 11 = 1$
 $x = -10 \in [-10, 5; 0]$

3.
$$f(-10,5)=9\cdot(-10,5)-9\cdot\ln(11-10,5)+7=-94,5-9\ln\frac{1}{2}+7$$
 - не вычисляется $f(-10)=9\cdot(-10)-9\ln(11-10)+7=-90-9\ln1+7=-83$ $f(0)=0-9\ln(0+11)+7$ - не вычисляется

Ответ: −83

Задание 12.2

Задание

Найдите точку максимума функции $y = \left(x + 8\right)^2 \cdot e^{3-x}.$

1.
$$y' = ((x^2 + 16x + 64) \cdot e^{3-x})'$$

 $y' = (2x + 16) \cdot e^{3-x} + e^{3-x} \cdot (-1) \cdot (x^2 + 16x + 64)$
 $y' = e^{3-x} \cdot (2x + 16 - (x^2 + 16x + 64))$
 $y' = e^{3-x} \cdot (-x^2 - 14x - 48) = 0$

2.
$$e^{3-x} = 0$$

 $x \in \emptyset$

$$-x^{2} - 14x - 48 = 0$$

$$x^{2} + 14x + 48 = 0$$

$$(x+6)(x+8) = 0$$

$$x_{1;2} = -6; -8$$

Ответ: -6

Задание 12.3

Задание

Найдите точку минимума функции $y = -\frac{x}{x^2 + 256}$.

Решение

1.
$$y' = \left(\frac{-x}{x^2 + 256}\right)' = \frac{-1 \cdot (x^2 + 256) - 2x \cdot x}{(x^2 + 256)^2} = \frac{2x^2 - x^2 - 256}{x^2 + 256} = \frac{x^2 - 256}{x^2 + 256} = 0$$

$$2. \ x^2 - 256 = 0$$

$$x^2 = 256$$

$$x = \pm 16$$

Ответ: 16

Задание 13

Задание

а) Решите уравнение

$$2\sin\left(x+\frac{3}{\pi}\right) + \cos(2x) = \sqrt{3}\cos(x) + 1,$$

б) Укажите корни этого уравнения, принадлежащие отрезку $\left[-3\pi; -\frac{3\pi}{2}\right],$

$$2\sin x \cos \frac{\pi}{3} + 2\cos x \sin \frac{\pi}{3} + \cos 2x = \sin x + \sqrt{3}\cos x$$

$$\sin x + \sqrt{3}\cos x + \cos 2x = \sqrt{3}\cos x + 1$$

$$\sin x + \cos 2x = 1$$

$$\sin x + \mathcal{X} - \sin^2 x - \sin^2 x = \mathcal{X}$$

$$2\sin^2 x - \sin x = 0$$

$$\sin x (2\sin x - 1) = 0$$

$$\sin x = 0$$

$$x = \pi n, n \in \mathbf{Z}$$

$$\sin x = \frac{1}{2}$$

$$x \in \begin{bmatrix} \frac{\pi}{6} + 2\pi n; \\ \frac{5\pi}{6} + 2\pi n. \end{bmatrix} n \in Z$$

$$\frac{-2\pi}{1} + \frac{\pi}{6} = \frac{-11\pi}{6}$$

a)
$$\pi n, \frac{\pi}{6} + 2\pi n, \frac{5\pi}{6} + 2\pi n, n \in \mathbb{Z}$$
 6) $-3\pi; -2\pi; -\frac{11\pi}{6}$

б)
$$-3\pi; -2\pi; -\frac{11\pi}{6}$$

Задание 14

Задание

 ${
m B}$ пирамиде ${
m \it ABCD}$ рёбра ${
m \it DA}$, ${
m \it DB}$ и ${
m \it DC}$ попарно перпендикулярны, AB = BC = AC = 52.

- а) Докажите, что BD = CD.
- б) На рёбрах DA и DC отмечены точки M и N соответственно, причём DM: MA = DN: NC = 2: 3. Найдите площадь сечения MNB.

- а) Доказать: BD = CD
 - 1. Рассмотрим $\triangle ADC$, $\triangle ADB$

$$AD\perp CD, AD\perp BD\Rightarrow \triangle\ ADC, \triangle\ ADB$$
 — Прямоугольные

$$\left. egin{align*} AB = AC & \text{по условию} \\ AD - & \text{общий катет} \end{array} \right| \Rightarrow \triangle \ ADC = \triangle \ ADB \Rightarrow BD = CD$$

ч.т.д.

- б) Отметим точки M и N по условию DM: MA = DN: NC = 2:3. Построим сечение, соединив точки M, N и $B. \triangle MNB$ сечение $ABCD. S_{\triangle BNM}$ —?.
 - 1. Рассмотрим равнобедренный прямоугольный \triangle BDC.

По теореме Пифагора

$$a^{2} + a^{2} = \left(5\sqrt{2}\right)^{2}$$
$$2a^{2} = 50$$
$$a = 5$$

$$BD = DC = 5 \Rightarrow DN = 2; NC = 3$$

Аналогично для \triangle $ADB \Rightarrow DM = 2; AM = 3$

2. Рассмотрим прямоугольный $\triangle BDN$

По теореме Пифагора

$$BN^2 = 5^2 + 2^2$$

$$BN = \sqrt{29}$$

Аналогично для $\triangle BDM \Rightarrow BM = \sqrt{29}$

3. Рассмотрим равнобедренный прямоугольный $\triangle MDN$.

$$MN = 2\sqrt{2}$$

 $\triangle BMN$ — равнобедренный

ВН — высота, медиана

По теореме Пифагора

$$BH^2 = 29 - 2$$

$$BH = \sqrt{27} = 3\sqrt{3}$$

$$S_{BMN}=\frac{1}{2}BH\cdot MN=\frac{1}{2}3\sqrt{3}\cdot 2\sqrt{2}=3\sqrt{6}$$

Ответ: $3\sqrt{6}$

Задание 15

Задание

Решите неравенство $\log_{11}(8x^2+7) - \log_{11}(x^2+x+1) \geqslant \log_{11}(\frac{x}{x+5}+7)$

Решение

1.
$$8x^2 + 7 > 0, x \in R$$

$$x^{2} + x + 1 = (x + 0, 5)^{2} + 0,75 > 0, x \in R$$

$$\log_{11}\!\left(\tfrac{8x^2+7}{x^2+x+1}\right)\geqslant \log_{11}\!\left(\tfrac{x}{x+5}+7\right)$$

2.

$$\begin{cases} \frac{8x^2+7}{x^2+x+1} \geqslant \frac{x}{x+5} + 7 \\ \frac{x}{x+5} + 7 > 0 \end{cases}$$

3.

$$\log_{11} \frac{8x^2 + 7}{x^2 + x + 1} \ge \log_{11} \left(\frac{x}{x + 5} + 7 \right)$$
$$\frac{8x^2 + 7}{x^2 + x + 1} \ge \frac{8x + 35}{x + 5}$$

$$\frac{8x^2+7}{x^2+x+1}-\frac{8x+35}{(x+5)}\geqslant 0$$

$$\frac{(8x^2+7)(x+5)-(8x+35)(x^2+x+1)}{(x^2+x+1)(x+5)} \geqslant 0$$

$$\frac{8x^3 + 40x^2 + 7x + 35 - 8x^3 - 8x^2 - 8x - 35x^2 - 35x - 35}{(x^2 + x + 1)(x + 5)} \geqslant 0$$

$$\frac{8x^3 + 40x^2 + 7x + 35 - 8x^3 - 43x^2 - 43x - 35}{(x^2 + x + 1)(x + 5)} \geqslant 0$$

$$\frac{8x^3 + 40x^2 + 7x + 35 - 8x^3 - 43x^2 - 43x - 35}{(x^2 + x + 1)(x + 5)} \geqslant 0$$

$$\frac{-3x^2 - 36x}{(x^2 + x + 1)(x + 5)} \geqslant 0$$

$$\frac{x(x+12)}{(x^2+x+1)(x+5)} \le 0$$

$$x_1\in(-\inf;-12]\cup(-5;0)$$

4

$$\frac{x}{x+5}+7>0$$

$$\frac{8x+35}{x+5} > 0$$

 $x_2 \in (-\inf; -5) \cup \left[-\tfrac{35}{8}; +\inf\right)$

 $x_1\cap x_2$

Otbet: $(-\inf; -12] \cup \left[-\frac{35}{8}; 0\right]$

Задание 16

Задание

Решение

Ответ:

Задание 17

Задание

Решение

Ответ:

Задание 18

Задание

Решение

Ответ:

Задание 19

Задание

Решение

Ответ:

Задание 20

Задание

-					
1)	ΔT	TT/	OT.	ти	^
г	CI	110	71 E	1И	┖