A Flexible Mathematical Framework for Model Comparison: U-TIM (version 1.2)

João Lucas Meira Costa

Thursday, February 6, 2025 at 3:32 PM -03 (UTC)

The author acknowledges contributions from ChatGPT, DeepSeek, and Gemini for assistance with equations, code, and documentation.

Abstract

The Universal Theory Incoherence Measure (U-TIM) is a mathematical framework for comparing and evaluating models across diverse domains by quantifying the inconsistencies between their predictions. This document introduces the U-TIM framework, details its mathematical formulation and Python implementation, and discusses its potential applications, particularly in physics for evaluating Theories of Everything (TOEs). The flexible design of U-TIM allows for adaptation to various domains, including physics, biology, and economics, with the goal of providing a universal tool for model assessment and comparison. Detailed domain-specific applications will be provided in companion documents.

1 Introduction

The Universal Theory Incoherence Measure (U-TIM) is a flexible **mathematical** framework designed to identify and quantify inconsistencies between different models in various domains. It provides a general mathematical structure that can be adapted to a wide range of models, focusing on the **incoherence** between their predictions. This document explains U-TIM's foundation, implementation, and potential applications in physics (particularly for evaluating Theory of Everything candidates). Domain-specific guides will be published separately.

2 Mathematical Formulation

U-TIM compares model outputs across a shared input space using these components:

• $\mathcal{M} = \{M_1, M_2, \dots, M_n\}$: Set of n models

- M_r : Reference model (domain-specific baseline)
- X: Input space (common parameters across models)
- Y: Output space (comparable predictions/measurements)
- $f_i: X \to Y$: Model M_i 's output function
- $d_Y(y_1, y_2)$: Distance metric on output space Y
- $w: X \to \mathbb{R}^+$: Weight function over input space

2.1 U-TIM Score

The U-TIM score for model M_i relative to M_r :

$$U-TIM(M_i) = \int_X w(x) \cdot d_Y(f_i(x), f_r(x)) dx$$
 (1)

Lower scores indicate greater similarity to the reference model, though this does not inherently imply superiority if the reference has known limitations.

2.2 Pairwise Coherence

The pairwise coherence between models M_i and M_i :

$$C(M_i, M_j) = \int_X w(x) \cdot d_Y(f_i(x), f_j(x)) dx$$
(2)

3 Implementation (Python)

The Python implementation uses discrete sampling for numerical integration:

```
- weight_fn: callable(x: array(n_dims,)) -> scalar weight
    self.models = models
    self.ref_fn = reference_fn
    self.X = X_samples
    self.dist_metric = distance_metric
    self.weight_fn = np.vectorize(weight_fn, signature='(n)->()')
def _compute_distances(self, fn1, fn2):
    """Compute distances between model outputs"""
    Y1 = np.array([fn1(x) for x in self.X])
    Y2 = np.array([fn2(x) for x in self.X])
    return distance.cdist(Y1, Y2, self.dist_metric).diagonal()
def calculate_utim(self):
    """Calculate U-TIM scores for all models"""
    scores = {}
    w = self.weight_fn(self.X)
    for name, model in self.models.items():
        dists = self._compute_distances(model, self.ref_fn)
        scores[name] = np.sum(w * dists)
    return scores
def pairwise_coherence_matrix(self):
    """Compute full model coherence matrix"""
    model_names = list(self.models.keys())
    n_models = len(model_names)
    matrix = np.zeros((n_models, n_models))
    w = self.weight_fn(self.X)
    # Consider vectorization for large model sets
    for i in range(n_models):
        for j in range(i, n_models):
            dists = self._compute_distances(self.models[model_names[i]],
                                             self.models[model_names[j]])
            matrix[i,j] = matrix[j,i] = np.sum(w * dists)
    return matrix, model_names
```

4 Applying U-TIM to Physics (TOE Evaluation)

Application to physics requires careful implementation:

1. TOE Candidates: Select theories with common mathematical ground-

ing 2. Reference Model: Typically Standard Model + General Relativity 3. Input Space (X): Common fundamental parameters (may require normalization) 4. Output Space (Y): Observable predictions (e.g., scattering amplitudes) 5. Distance Metric: Physically meaningful comparison (e.g., weighted L2) 6. Weight Function: Emphasize experimentally accessible regions 7. Sampling: For high-dimensional spaces, use Monte Carlo integration 8. Calculation: Compute U-TIM scores using domain-appropriate implementation 9. Interpretation: Consider reference model limitations and measurement uncertainties

5 Conclusion

U-TIM provides a consistent mathematical framework for model comparison across domains. While particularly promising for TOE evaluation, successful application requires careful domain-specific implementation. Future work will address computational challenges in high-dimensional spaces and develop standardized metrics for different fields.

License and Attribution

Copyright (c) 2025 João Lucas Meira Costa

This work is licensed under the Creative Commons Attribution 4.0 International License. Full text available at https://creativecommons.org/licenses/by/4.0/.