EuXFEL Processing Update

Dean Keeble

16th May 2023

Processing Meeting 12th April 2023

Agenda:

- uf-TS/PDF processing requirements
- EuXFEL processing capabilities
- Discussion of best processing route
- Downstream analysis

Summary of Discussion

Aim for automation as much as possible

- Use PDFGetX3 for processing
- One EuXEFL processing framework called EXtra-metro seems very suitable
- Some questions remain on best way to handle sample metadata

EXtra-metro

- Operates on streams of data
- Allows for the description of processing graphs using a context, so a graph such as


```
import numpy as np
import xarray as xr
from my_analysis_library import correct_background
@View.Compute
def preprocess_A(data: 'input_A'):
    return correct_background(data)
@View.Vector
def process_A(data: 'preprocess_A'):
    # Add calibration axis specific for A.
    return xr.DataArray(data, dims=['position'],
                        coords={'position': np.linspace(0, 1, len(data)))
@View.Vector
def process B(data: 'preprocess B'):
    # Add calibration axis specific for B.
    return xr.DataArray(data, dims=['position'],
                        coords={'position': np.linspace(0, 1, len(data)))
@View.Vector
def combine_AB(data_A: 'process_A', data_B: 'process_B'):
    # Calculate interpolated quotient.
    common_axis = np.linspace(0, 1, min(len(data_A), len(data_B)))
    return data A.interp(position=common axis) / data B.interp(position=common axis)
@View.Vector MovingAverage(N=20)
def average AB(AB: 'combine AB'):
    return AB
```


- These context files present an ideal language in which to discuss our processing needs in pure python
- Work is currently underway to describe our processing specifications (in some cases just using pseudo-code) in this format
- Aim to reuse code blocks for processing of accumulated data and reprocessing

PDFGetX3 and detector gaps

The exact detector geometry is yet to be finalised, but processing should be prepared for incomplete data

- Some simple linear fitting gives the best match to the original data
- For certain applications filling a high-Q gap may not be necessary

Summary

- Discussions have been ongoing
- We're making good progress towards releasing a full specification of our requirements in a metro context
- PDFGetX3 looks robust enough to cope with data with gaps

