LISTA 1. CONJUNTOS E FUNÇÕES

Exercício 1. Seja X um conjunto de referência e sejam $A, B, C \subset X$. Prove as seguintes afirmações.

- $(1) (A \cap B)^c = A^c \cup B^c,$
- (2) $(A^c)^c = A$.

Exercício 2. Sejam A, B, C, D conjuntos. Prove que

$$(A \cup B) \setminus (C \cup D) \subset (A \setminus C) \cup (B \setminus D).$$

Exercício 3. Sejam $f: A \to B \in g: B \to C$ duas funções.

Prove que se $q \circ f$ é sobrejetiva, então q é sobrejetiva também.

Exercício 4. Sejam $f:A\to B$ uma função e $X_1,X_2\subset A$ subconjuntos do seu domínio. Mostre que

$$f(X_1 \cap X_2) \subset f(X_1) \cap f(X_2).$$

Exercício 5. Sejam $f: A \to B$ uma função e $Y_1, Y_2 \subset B$ subconjuntos do seu contradomínio. Mostre que

- (1) $f^{-1}(Y_1 \cap Y_2) = f^{-1}(Y_1) \cap f^{-1}(Y_2),$ (2) $f^{-1}(Y_1^c) = (f^{-1}(Y_1))^c.$

Exercício 6. Dada $f: A \to B$, prove que $f^{-1}(f(C)) \supset C$, para todo $C \subset A$. Dê um exemplo onde os conjuntos não são iguais. Prove que f é injetiva se, e somente se $f^{-1}(f(C)) = C$, para todo $C \subset A$.

Exercício 7. Dada $f: A \to B$, prove que $f(f^{-1}(D)) \subset D$, para todo $D \subset B$. Dê um exemplo onde os conjuntos não são iguais. Prove que f é sobrejetiva se, e somente se $f(f^{-1}(D)) = D$, para todo $D \subset B$.

Exercício 8. Seja \mathbb{N} o conjunto de números naturais. No produto cartesiano $\mathbb{N} \times \mathbb{N}$ definimos a relação:

$$(n,m) \sim (n',m')$$
 se $n+m'=n'+m$.

Mostre que \sim é uma relação de equivalência em $\mathbb{N} \times \mathbb{N}$.