## Curs bàsic d'Anàlisi de dades amb Stata

#### 1

## Contingut

- Sessió 4
  - Regressió lineal
    - Correlació
    - Regressió Lineal
    - Diagnóstics de regressió
    - Revisió de comandaments d'estimació i post estimació
    - Uso de variables categòriques
  - Regressió logística
    - Introducció a la regressió logística
    - Estimació del model
    - Interpretació dels resultats (OR)
    - Confusió e interacció
    - Diagnòstic del model
    - Estratègies de construcció de models de regressió
  - Anàlisi de Supervivència
    - Preparació de dades de supervivència: stset
    - Anàlisis descriptiu de dades de supervivència
    - Estimador de Kaplan-Meier
    - Estimació de la funció de Risc
    - Gràfics de supervivència
    - Ajust del model de Cox
    - Diagnòstic del model de Cox
  - Exercici pràctic

## Análisis multivariante

| Respuesta             | Exposición          | Modelos de regresión                                                                 |
|-----------------------|---------------------|--------------------------------------------------------------------------------------|
| Continua              | Continua            | Regresión lineal<br>Regresión no paramétrica<br>Regresión polinómica o<br>fraccional |
| Continua              | Categórica          | Anova , Ancova, Regresión<br>lineal                                                  |
| Dicotómica            | Continua            | Logística ordinaria o<br>condicional                                                 |
| Dicotómica            | Categórica          | Regresión logística/<br>Modelos log-lineales                                         |
| Recuento/personas-año | Categórica/Continua | Regresión Poisson                                                                    |
| Tiempo a evento       | Categórica/Continua | Regresión de Cox o<br>modelos paramétricos de<br>supervivencia                       |

#### 3

## Regressión lineal con Stata

twoway scatter depvar indepvar ||lfit depvar indepvar twoway scatter saps tiss|| lfit saps tiss



## Regressión lineal con Stata

regress depvar [indepvars] [if] [in] [weight] [, options]

| regress saps t | iss        |       |          |     |       |               |     |             |
|----------------|------------|-------|----------|-----|-------|---------------|-----|-------------|
| Source         | SS         | df    | MS       |     |       | Number of obs |     |             |
| Madal          | 7220 50002 | 1     | 7220 500 |     |       | F( 1, 826)    |     |             |
| Model          |            |       |          | -   |       | Prob > F      |     |             |
| Residual       | 11654.1688 | 826   | 14.10916 | 32  |       | R-squared     |     |             |
| +              |            |       |          |     |       | Adj R-squared | =   | 0.3821      |
| Total          | 18884.7488 | 827   | 22.83524 | 64  |       | Root MSE      | =   | 3.7562      |
| saps           | Coef.      | Std.  | <br>Err. | t   | P> t  | [95% Conf.    | Int | <br>terval] |
| tiss           | .2755289   | .0121 | 711 22   | .64 | 0.000 | .2516389      | . : | 2994189     |
| _cons          |            |       |          |     |       | 3.359452      |     |             |
|                |            |       |          |     |       |               |     |             |

5

## Regresión con variables categóricas

xi:regress depvar [i.varcat], options

```
xi:regress saps i.educacio
i.educacio __Ieducacio_1-4 (naturally coded; __Ieducacio_1 omitted)
    Source SS df MS
                                               Number of obs =
                                                               803
                                              F(3, 799) =
                                             Prob > F = 0.0011
R-squared = 0.0200
     Model 360.60094 3 120.200313
  Residual | 17662.6618 799 22.1059597
                                              Adj R-squared = 0.0163
     Total | 18023.2628 802 22.4728962
                                              Root MSE = 4.7017
_Ieducacio_2 | -1.359817    .4164515    -3.27    0.001    -2.177285    -.5423485
_Ieducacio_3 | -1.899653 .5061159 -3.75 0.000
                                               -2.893127 -.9061788
_Ieducacio_4 | -1.50506 .7431685 -2.03 0.043
                                               -2.963853 -.0462668
                       .3447452 30.30 0.000
             10.44624
    _cons
                                                 9.769523
```

## Graficos de residuos

predict nomvarres, residuals[rstudent][rstandard]

| i.educacioIeducacio_1-4 (naturally coded; _Ieducacio_1 omitted) |            |       |            |       |               |      |        |  |
|-----------------------------------------------------------------|------------|-------|------------|-------|---------------|------|--------|--|
| _,,                                                             |            |       | (          |       |               |      | ,      |  |
| Source                                                          | SS         | df    | MS         |       | Number of obs | =    | 803    |  |
| +                                                               |            |       |            |       | F( 3, 799)    | =    | 5.44   |  |
| Model                                                           | 360.60094  | 3     | 120.200313 |       | Prob > F      | = (  | 0.0011 |  |
| Residual                                                        | 17662.6618 | 799   | 22.1059597 |       | R-squared     | = (  | 0.0200 |  |
| +                                                               |            |       |            |       | Adj R-squared | = (  | 0.0163 |  |
| Total                                                           | 18023.2628 | 802   | 22.4728962 |       | Root MSE      | = 4  | 4.7017 |  |
|                                                                 |            |       |            |       |               |      |        |  |
| saps                                                            | Coef.      | Std.  | Err. t     | P> t  | [95% Conf.    | Inte | erval] |  |
| +                                                               |            |       |            |       |               |      |        |  |
| _Ieducacio_2                                                    | -1.359817  | .4164 | 515 -3.27  | 0.001 | -2.177285     | 54   | 423485 |  |
| _Ieducacio_3                                                    | -1.899653  | .5061 | 159 -3.75  | 0.000 | -2.893127     | 90   | 061788 |  |
| _Ieducacio_4                                                    | -1.50506   | .7431 | 685 -2.03  | 0.043 | -2.963853     | 04   | 462668 |  |
| _cons                                                           | 10.44624   | .3447 | 452 30.30  | 0.000 | 9.769523      | 11   | .12295 |  |

### Construcción de modelos

estimates store nommodelo [guarda modelo]
estimates replay nommodelo [activa modelo]
estimates stats nommodelo [activa modelo]
lrtest nommodelo [test ajuste modelo]

7

## Regressión logística con STATA

#### COMANDO variables if condición, Opciones del comando

```
[By varlist:]logit var dep [vars indep] if condición ,
opciones
level(#)
                 Límite de los intervalos de confianza
                No se muestra tabla de coeficientes
nocoef
noconstant
                 Suprime la constante(intercept)
robust
                 Proporciona estimaciones robustas del
                 intervalo de confianza
cluster(variable) Variable que identifica a los sujetos y por
                 tanto observaciones repetidas
or
                 Muestra los OR en lugar de los coeficientes
offset(variable) Variable que entra con coeficiente 1
 [By varlist:]logistic var dep [vars indep] if condición ,
opciones
level(#)
                   Límite de los intervalos de confianza
robust
                   Proporciona estimaciones robustas del
                   intervalo de confianza
cluster(variable) Variable que identifica a los sujetos y
                   por tanto observaciones repetidas
offset(variable)
                   Variable que entra con coeficiente 1
group(#)
                   Número de cuantiles para agrupar los
                   datos.
                   Proporciona todos los estadísticos
all
```

## Ajuste modelo con STATA

. xi:logit mort tiss\_20 edad\_60 dias\_5 i.sitlabor if validos==1 i.sitlabor \_Isitlabor\_1-7 (naturally coded; \_Isitlabor\_1 omitted) note: \_Isitlabor\_7 dropped due to collinearity Iteration 0: log likelihood = -265.96082 Iteration 1: log likelihood = -198.96442 Iteration 2: log likelihood = -179.67671 log likelihood = -178.57059 Iteration 3: Iteration 4:  $log\ likelihood = -178.54761$ Iteration 5: log likelihood = -178.54759 Number of obs = Logit estimates 174.83 LR chi2(6) =Prob > chi2 Log likelihood = -178.54759Pseudo R2 0.3287 Coef. Std. Err.  $z \qquad P > |z|$ [95% Conf. Interval] 2.418592 .5793143 1.24 0.213 -.4664221 2.088084 \_Isitlabor\_4 | \_cons | -2.53193 .3557546 -7.12 0.000 -3.229197 -1.834664

(

## Ajuste modelo con STATA. OR

|--|

| mort                                                                   | Odds Ratio                                                           | Std. Err.                                                | Z                                       | P>   z                                             | [95% Conf.                                               | Interval]                                                            |
|------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|
| tiss_20   edad_60   dias_5   _Isitlabor_2   _Isitlabor_3   Isitlabor 4 | 1.161436<br>1.072526<br>.9383911<br>3.832078<br>.7251542<br>2.249777 | .0171112<br>.0175332<br>.0209409<br>2.102177<br>.3332386 | 10.16<br>4.28<br>-2.85<br>2.45<br>-0.70 | 0.000<br>0.000<br>0.004<br>0.014<br>0.484<br>0.213 | 1.128378<br>1.038706<br>.8982323<br>1.307638<br>.2946237 | 1.195462<br>1.107447<br>.9803454<br>11.23003<br>1.784814<br>8.069439 |

-----

11

## Ajuste regresión logística condicional con STATA

[By varlist:] **clogit** var dep [vars indep] **if** condición , opciones

group(variable) Variable que indica los casos apareados
level(#) Límite de los intervalos de confianza

<u>or</u> Muestra los OR en lugar de los coeficientes

offset(variable) Variable que entra con coeficiente 1

13





## Tiempo de Seguimiento análisis ideal







## Tiempo de Seguimiento análisis "habitual"



## Análisis con datos truncados (late entry)



17

## Funcion de Supervivencia S(t)

 $S(t)=Prob(Sobrevivir\ a\ t)=P\{T>t\}=1-P(fallecer\ antes\ de\ t)$ 

## Tasa de peligro $\lambda(t)=h(t)$

Probabilidad de fallecer en un intervalo de tiempo muy pequeño sabiendo que se está vivo al inicio

$$O$$
  $t$   $t+\Delta t$ 

 $\lambda(t) = \lim_{\Delta t \to 0} Prob(fallecer\ en\ (t, t + \Delta t)/vivo\ en\ t)/\Delta t$  = f(t)/S(t)

## Percentil t<sub>p</sub>

Tiempo en el que el p% de los sujetos desarrollan el evento

19

## Análisis de Supervivencia con STATA

- Todas las instrucciones que tienen que ver con datos de supervivencia van precedidas por el término st
- <u>Primer paso</u>: declarar los datos como datos de supervivencia

```
stset timevar, failure(event)
time0 (variable) enter(variable)
origin(variable) scale(365,25)
```

Notas:

• Failure() actua como indicador:

```
0 \text{ y missing} \rightarrow \text{"censura"}
resto de valores \rightarrow "muerte"
```

| sujeto | tseg | mort |
|--------|------|------|
| 1      | 100  | 1    |
| 2      | 150  | 0    |
| 3      | 97   |      |
| 4      | 110  | 1    |

21

## Análisis de Supervivencia con STATA

• Si no especificamos failure () : todos los registros acaban en muerte

| sujeto | tseg | mort |
|--------|------|------|
| 1      | 100  | 1    |
| 2      | 150  | 1    |
| 3      | 97   | 1    |
| 4      | 110  | 1    |

stset tseg

• En failure() podemos añadir más de un código

| sujeto | tseg | enf |
|--------|------|-----|
| 1      | 100  | 1   |
| 2      | 150  | 0   |
| 3      | 97   | 0   |
| 4      | 110  | 3   |

stset tseg,failure(enf==1,3)

# Utilizando fechas y diferentes escalas temporales

Escala de tiempo = Tiempo desde el diagnóstico en años:

stset dateexit, failure(dead==1) origin(datediag) scale(365.25)

| dat                                       | ebth                 | datediag                                                      | dateexit                                                      | dead                                 | _t0              | _t                                                            | _d               |
|-------------------------------------------|----------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|------------------|---------------------------------------------------------------|------------------|
| 13feb<br>07mar<br>11mar<br>21apr<br>23apr | 1906<br>1906<br>1906 | 02jan1986<br>21jan1986<br>07jan1986<br>22jan1986<br>18feb1986 | 05feb1986<br>17feb1986<br>17jan1986<br>31jan1986<br>25jun1986 | dead<br>dead<br>dead<br>dead<br>dead | 0<br>0<br>0<br>0 | .09308693<br>.07392197<br>.02737851<br>.02464066<br>.34770705 | 1<br>1<br>1<br>1 |

Escala de tiempo = Edat en años (datos truncados)

stset dateexit, failure(dead==1) origin(datebth) enter(datediag) scale(365.25)

| datebth                                                       | datediag                                                      | dateexit                                                      | dead                                 | _t0                                                          | _t                                                            | _d               |
|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|------------------|
| 13feb1906<br>07mar1906<br>11mar1906<br>21apr1906<br>23apr1906 | 02jan1986<br>21jan1986<br>07jan1986<br>22jan1986<br>18feb1986 | 05feb1986<br>17feb1986<br>17jan1986<br>31jan1986<br>25jun1986 | dead<br>dead<br>dead<br>dead<br>dead | 79.88501<br>79.876797<br>79.827515<br>79.756331<br>79.824778 | 79.978097<br>79.950719<br>79.854894<br>79.780972<br>80.172485 | 1<br>1<br>1<br>1 |

23

## Comandos más importantes

- stdes [if...] → describe los datos indicados en la instrucción stset
- stsum [if...], by(variables)
  - → presenta estadísticos descriptivos y tasas de incidencia de los datos de supervivencia totales o por los grupos generados por una variable

25

## Análisis de Supervivencia con STATA

- sts list [if..], by (variables) failure compare at(instantes de tpo) na
- muestra estimadores de la supervivencia, su complementario(failure) y la tasa acumulada (na). Se pueden mostrar en unos instantes de tiempo(at) y comparar (compare) en los grupos generados por varias variables (by)

- sts graph[if..],by (variables) failure gwood na cna censored (single/number) lost hazard → dibuja las curvas de supervivencia de Kaplan-Meier,su complementaria(failure),la tasa acumulada (na).Se pueden dibujar los int. de confianza para la supervivencia (gwood) y para para la tasa acumulada(cna). Podemos marcar y enumerar las censuras(censored)
- sts test variable [if...],
   [logrank/wilcoxon/tware/peto]→
   calcula distintos test para comparar la
   supervivencia entre dos o más grupos

## Ejemplo cohorte seroconvertores

27

```
gen exit date= datalive
(59 missing values generated)
replace exit_date=dieddate if died==1
(64 real changes made)
stset exit_date,f(mort==1) origin(serodate) scale(365.25)
    failure event: mort == 1
obs. time interval: (origin, exit_date)
exit on or before: failure
   t for analysis: (time-origin)/365.25
           origin: time serodate
     447 total obs.
     383 obs. end on or before enter()
      64 obs. remaining, representing
      64 failures in single record/single failure data
316.5585 total analysis time at risk, at risk from t =
                           earliest observed entry t =
                                last observed exit t = 10.80903
```

28

## Descripitivo

#### stdes

failure \_d: mort == 1

analysis time \_t: (exit\_date-origin)/365.25

origin: time serodate

| Category                                                | total               | <br>mean      | per sul<br>min | bject<br>median | <br>max       |
|---------------------------------------------------------|---------------------|---------------|----------------|-----------------|---------------|
| no. of subjects                                         | 64<br>64            | 1             | 1              | 1               | 1             |
| (first) entry time (final) exit time                    |                     | 0<br>4.946227 | 0<br>.2655715  | 0<br>4.724162   | 0<br>10.80903 |
| subjects with gap<br>time on gap if gap<br>time at risk | 0<br>0<br>316.55852 | 4.946227      | .2655715       | 4.724162        | 10.80903      |
| failures                                                | 64                  | 1             | 1              | 1               | 1             |

29

## Descripitivo

#### stsum, by(expcateg)

failure \_d: mort == 1

analysis time \_t: (exit\_date-origin)/365.25

origin: time serodate

| ļ |                            | incidence | no. of       | •                    | Survival ti | •        |
|---|----------------------------|-----------|--------------|----------------------|-------------|----------|
|   | time at risk               | rate      | subjects<br> | 25%                  | 50%<br>     | 75%      |
|   | 47.15400411<br>264.4982888 |           |              | 3.926078<br>3.058179 |             |          |
| · | 311.652293                 |           | 63           | 3.258042             | 4.709103    | 6.329911 |

## Gráficos

#### sts graph, by(expcateg)

#### sts graph, by(expcateg) f





31

## Gráficos

#### sts graph, by(expcateg) ci

## 

95% CI expcateg = UDI

95% CI

expcateg = HSH

#### sts graph, by(expcateg) h



## Listado

#### . sts test expcateg

Log-rank test for equality of survivor functions

|          | Events    | Events   |
|----------|-----------|----------|
| expcateg | observed  | expected |
| +        |           |          |
| нѕн      | 10        | 7.26     |
| UDI      | 53        | 55.74    |
| +        |           |          |
| Total    | 63        | 63.00    |
|          | chi2(1) = | 1.25     |

chi2(1) = 1.25 Pr>chi2 = 0.2642

33

## Test Log-rank

#### sts list, by(expcateg) at(0 1 2 4 6 8 10)

failure \_d: mort == 1

analysis time \_t: (exit\_date-origin)/365.25

origin: time serodate

| Time | Beg.<br>Total | Fail | Survivor<br>Function | Std.<br>Error | [95% Co | onf. Int.] |
|------|---------------|------|----------------------|---------------|---------|------------|
| HSH  |               |      |                      |               |         |            |
| 0    | 0             | 0    | 1.0000               |               |         |            |
| 1    | 0             | 0    | 1.0000               |               |         |            |
| 2    | 0             | 0    | 1.0000               |               |         |            |
| 4    | 8             | 3    | 0.7000               | 0.1449        | 0.3287  | 0.8919     |
| 6    | 2             | 6    | 0.1000               | 0.0949        | 0.0057  | 0.3581     |
| 8    | 1             | 1    |                      |               |         |            |
| 10   | 1             | 0    |                      |               |         |            |
| UDI  |               |      |                      |               |         |            |
| 0    | 0             | 0    | 1.0000               |               |         |            |
| 1    | 52            | 2    | 0.9623               | 0.0262        | 0.8574  | 0.9904     |
| 2    | 47            | 5    | 0.8679               | 0.0465        | 0.7428  | 0.9347     |
| 4    | 35            | 12   | 0.6415               | 0.0659        | 0.4973  | 0.7542     |
| 6    | 20            | 16   | 0.3396               | 0.0651        | 0.2168  | 0.4664     |
| 8    | 7             | 12   | 0.1132               | 0.0435        | 0.0460  | 0.2141     |
| 10   | 3             | 4    | 0.0377               | 0.0262        | 0.0070  | 0.1148     |

Note: survivor function is calculated over full data and evaluated at indicated times; it is not calculated from aggregates shown at left.

## **Gráficos**

stset exit\_date,
f(mort==1)
origin(serodate)

enter(firstpos)
scale(365.25)





35

## Modelo de Cox

 $log [h(t;x)/h_0(t)] = \beta X$ 

Se dispone de datos de la forma  $(t_i, \delta_i, x)$ El objetivo es

- 1) Estimar  $\beta$  y contrastar la hipótesis  $H_0:\beta=0$
- 2) Estimar  $h_0$

Para 1) se utiliza máximoverosimilitud condicional

Para 2) se utilizan métodos no paramétricos

## **Datos Brown**



## **Datos Brown**



#### **Datos Brown**



## Regresión de Cox

## Instrucción para la Regresión de Cox

```
xi:stcox [varcontinuas i.varcategóricas][if
exp][in range][,nohr strata(varnames)robust
cluster(varname)noadjust
tvc(varlist)texp(exp)shared(varname)frailty(g
amma)
effects(newvar)mgale(newvar)esr(newvar(s))bas
ehc(newvar)basechazard(newvar)basesurv(newvar
){breslow| efron|exactm|exactp}estimate
noshow
offset(varname)level(#)maximize_options]
```

## Regresión de Cox

- nohr—muestra los coeficientes en lugar de los hazard ratio
- robust →nos da una estimación robusta de la varianza
- basechazard(newvar) →añade una nueva variable a los datos que contiene la estimación de la función de peligro (hazard function H₀(t)) acumulada
- basesurv(newvar)  $\rightarrow$ añade una nueva variable a los datos que contiene la estimación de la función de supervivencia(survival function  $S_0(t)$ )

41

## Regresión de Cox

#### xi:stcox i.expcateg

```
_Iexpcateq_1-2
                                         (naturally coded; Iexpcateg 1 omitted)
i.expcateq
        failure _d: mort == 1
  Iteration 0: log likelihood = -201.05811
Iteration 1: log likelihood = -200.49958
Iteration 2: log likelihood = -200.48797
Iteration 3: log likelihood = -200.48797
Refining estimates:
Iteration 0: log likelihood = -200.48797
Cox regression -- Breslow method for ties
No. of subjects = 63
No. of failures = 63
Time at risk = 311.652293
                                               Number of obs =
                                               LR chi2(1) = Prob > chi2 =
Log likelihood = -200.48797
                                                                 0.2856
          _t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]
_Iexpcateg_2 | .6706417 .2416259 -1.11 0.267 .3309868 1.358847
```

## Post estimación modelo de Regresión de Cox

43

## Ajuste, tests, indicadores

```
estimates store nommodelo
                                    [quarda modelo]
estimates replay nommodelo
                                    [activa modelo]
estimates stats nommodelo
                                    [activa modelo]
lrtest nommodelo
                                    [test ajuste modelo]
estat concordance [calcula Harrel's Cl
failure _d: mort == 1
  analysis time _t: (exit_date-origin)/365.25
           origin: time serodate
 Harrell's C concordance statistic
 Number of subjects (N)
                                      63
 Number of comparison pairs (P)
                                     1952
 Number of orderings as expected (E) =
                                     274
 Number of tied predictions (T)
                                     1422
        Harrell's C = (E + T/2) / P =
                                          .5046
                       Somers' D = .009221
```

#### Proporcionalidad a lo largo del tiempo

- El modelo de Cox asume proporcionalidad a lo largo del tiempo
- Por ello al introducir t o log(t) en el modelo el  $\beta$  correspondiente debería ser 0.
- En caso contrario implica que la tasa de peligro depende del tiempo

45

#### Proporcionalidad a lo largo del tiempo

xi:stcox i.expcateg, tvc(expcateg) texp(ln(\_t))

```
_t | Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

main |
_Texpcateg_2 | 56.32939 128.0702 1.77 0.076 .6538049 4853.13

tvc |
_Texpcateg_2 | .0407242 .0605625 -2.15 0.031 .002208 .7511161

Note: variables in tvc equation interacted with ln(_t)
```

### Residuos Cox-Snell

- Hay que recodar la relación existente entre la tasa acumulada y la supervivencia  $H(t)=-\log(S(t))$
- Supongamos que se sustituyen los tiempos de supervivencia  $t_i$  por la tasa acumulada en ese punto y calculemos cual es la supervivencia para la variable aleatoria  $H(t_i)$

```
P(H_i(T)>t)= (aplicando la función inversa)

P(T>H_i^{-1}(t))=S(H_i^{-1}(t)) (aplicando relación entre S(t) y H(t))

=exp(-H_i(H_i^{-1}(t)))=exp(-t)
```

- Así  $(H_i(t_i), \delta_i)$  son una muestra de datos censurados que siguen una distribución exponencial de media 1.
- Si el modelo de riesgos proporcionales es adecuado  $(\exp(\beta x_i)H_0(t_i), \delta_i)$  deben de seguir una distribución exponencial de media 1 ( $\beta$ =0)
- Si  $S^*(t)$  es el estimador K-M de estas observaciones entonces su  $H^*(t)$  debe de seguir una línea de  $45^\circ$ .
- $H^*(t) = -log(exp(-t)) = t$

47

#### Residuos de Cox-Snell

```
stcox grupo,mgale(mg)
predict cs,csnell
stset cs,f(mort)
sts generate km=s
gen H=-ln(km)
graph7 H cs cs ,c(ll) s(...) xlab ylab
```



## Residuos de Martingala

xi:stcox i.expcateg,mgale(mg)
ksm mg \_t, ylabel(0)



49

## Residuos de Lejanía (Deviance)

xi:stcox i.expcateg,mgale(mg)
predict dev,deviance
ksm dev \_t, ylabel(0)



## Gráfico log-log

xi:stcox i.expcateg
stphplot,by(expcateg)



51

## Compara KM con predicción

xi:stcox i.expcateg
stcoxkm,by(expcateg)



## Test de contraste (Grambsch y Therneau)

```
xi:stcox i.expcateg,scale(sca*) schoenfeld(scho*)
stphtest , detail
stphtest , detail
```

Test of proportional-hazards assumption

| Time: Time   |          |      |    |           |
|--------------|----------|------|----|-----------|
|              | rho      | chi2 | df | Prob>chi2 |
| _Iexpcateg_2 | -0.18136 | 2.07 | 1  | 0.1504    |
|              |          |      | 1  |           |

53

## **Dibujar predicciones**

stcurve, survival at1(\_Iexpcateg\_2=0) at2(\_Iexpcateg\_2=1)

