Network Flow Applications

Admin

- Assignment 6 is due this Wed
- Assignment 7 will be released this week
- Midterm graded:
 - Mean: ~89, Median ~ 90
 - I don't release exam solutions, but happy to discuss feedback in person
- Lots of office and TA hours this week:
 - (Me) 2-3.30 pm today, 2-3 pm tomorrow, 1.30-3 pm Wed
 - TA hours: 9-11 pm today, 8-10 pm tomorrow

Health Days Next Week!

You are here

12Apr	13Apr	14Apr	15Apr	16Apr
Flow Applications		P vs NP and NP-hardness		Problem Reductions
Reading: KT §7.6 E §11		Reading: KT §8.1, 8.3 E §12.1–12.5 Assignment 7 out Assignment 6 due		Reading: KT §8.1, 8.3 E §12.1–12.5
19Apr	20Apr	21Apr	22Apr	23Apr
NP-hard Reductions				Intractability Wrap Up
		Health Day	Health Day	
Reading: Reading: KT §8.2, 8.4				Reading: KT §8.5–8.7;
E §12.6–12.8				E §12.6–12.8

Rest and sunshine is here!

Bipartite Matching & Flow

- Input: a bipartite graph (X, Y, E)
- Create a new directed graph $G' = (X \cup Y \cup \{s, t\}, E', c)$
- Add edge $s \to x$ to E' for all nodes $x \in X$
- Add edge $y \to t$ to E' for all nodes $y \in Y$
- Direct edge $x \to y$ in E' if $(x, y) \in E$
- Set capacity of all edges in E^\prime to 1

Bipartite Matching & Flow

- We showed that bipartite graph has a matching of size k if and only if the flow network has a flow of value k
- Now suppose |X| = |Y| = n
- If maximum flow is of value n, our original graph has a perfect matching!

Bipartite Matching & Flow

- We showed that bipartite graph has a matching of size k if and only if the flow network has a flow of value k
- Now suppose |X| = |Y| = n
- Suppose max flow is less than n, can we find a "certificate" that the original graph cannot have a perfect matching?

Hall's Theorem

- **Notation**. Let S be a subset of nodes in G, and let N(S) be the set of nodes adjacent to nodes in S in G.
- [Halls marriage theorem.] Let $G = (X \cup Y, E)$ be a bipartite graph with |X| = |Y|. Then, graph G has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq X \cup Y$.
- Proof.
- (\Rightarrow). In a perfect matching, each node in S needs to be matched with a different node in N(S)
- (\Leftarrow). Suppose G does not have a perfect matching
- We will find a subset S such that |N(S)| < S

- (\Leftarrow). Suppose G does not have a perfect matching, then capacity of the min-cut (A',B') is less than n
- Claim. $A = X \cap A'$ has this property.

- (\Leftarrow). Suppose G does not have a perfect matching, then capacity of the min-cut (A',B') is less than n
- All edges are of capacity 1: c(A', B') = # edges leaving cut A'

- (\Leftarrow). Suppose G does not have a perfect matching, then capacity of the min-cut (A',B') is less than n
- $c(A', B') = n |A| + |Y \cap A'| < n$

- (\Leftarrow). Suppose G does not have a perfect matching, then capacity of the min-cut (A',B') is less than n
- $|Y \cap A'| < |A|$

- (\Leftarrow). Suppose G does not have a perfect matching, then capacity of the min-cut (A',B') is less than n
- $|Y \cap A'| < |A|$, need to show |N(A)| < |A|

- (\Leftarrow). Suppose G does not have a perfect matching, then capacity of the min-cut (A',B') is less than n
- $|Y \cap A'| < |A|$, enough to show $N(A) \subseteq Y \cap A'$

- (\Leftarrow). Suppose G does not have a perfect matching, then capacity of the min-cut (A',B') is less than n
- $|Y \cap A'| < |A|$, enough to show $N(A) \subseteq A'$

• We will show, if a mincut (A', B') doesn't have the property that $N(A) \subseteq A'$, we can find a new cut that does, that is, wlog we can assume $N(A) \subseteq A'$, where $A = X \cap A'$

 $N(A) \subseteq A'$

 $N(A) \subseteq A'$

• Pick an edge (x, y) s.t. $x \in A$ and $y \notin A'$

 $N(A) \subseteq A'$

• Claim: moving y to A' doesn't increase capacity of the cut

 $N(A) \subseteq A'$

Summary: Flows and Matching

- We have proved Hall's theorem using network flows!
- [Halls marriage theorem.] Let $G = (X \cup Y, E)$ be a bipartite graph with |X| = |Y|. Then, graph G has a perfect matching iff $|N(S)| \ge |S|$ for all subsets $S \subseteq L$.
- If G has a perfect matching, we can find one using flow!
- If G doesn't have a perfect matching, we can find a certificate for this: a subset of nodes that violate Hall's condition!
- Takeaway. Algorithms can be useful in proving purely combinatorial math theorems!

Disjoint Paths Problem

Disjoint Paths Problem

- Definition. Two paths are edge-disjoint if they do not have an edge in common.
- Edge-disjoint paths problem.

Given a directed graph with two nodes s and t, find the max number of edge-disjoint s
ightharpoonup t paths.

Towards Reduction

- Given: arbitrary instance x of disjoint paths problem (X): directed graph G, with source s and sink t
- Goal. create a special instance y of a max-flow problem (Y): flow network G'(V', E', c) with s', t' s.t.
- 1-1 correspondence. Input graph has k edge-disjoint paths iff flow network has a flow of value k

Reduction to Max Flow

- Reduction. G': same as G with unit capacity assigned to every edge
- Claim [Correctness of reduction]. G has k edge disjoint $s \sim t$ paths iff G' has an integral flow of value k.
- Proof. (\Rightarrow)
- Set f(e) = 1 if e in some disjoint $s \sim t$, f(e) = 0 otherwise.
- We have v(f) = k since paths are edge disjoint.
- (\Leftarrow) Need to show: If G' has a flow of value k then there are k edge-disjoint $s \leadsto t$ paths in G

Correction of Reduction

- Claim. (\Leftarrow) If f is a 0-1 flow of value k in G', then the set of edges where f(e)=1 contains a set of k edge-disjoint $s \leadsto t$ paths in G.
- **Proof** [By induction on the # of edges k' with f(e) = 1]
- If k' = 0, no edges carry flow, nothing to prove
- IH: Assume claim holds for all flows that use < k' edges
- Consider an edge $s \to u$ with $f(s \to u) = 1$
- By flow conservation, there exists an edge $u \to v$ with $f(u \to v) = 1$, continue "tracing out the path" until
- Case (a) reach t, Case (b) visit a vertex v for a 2nd time

Correction of Reduction

- Case (a) We reach t, then we found a $s \sim t$ path P
 - f': Decrease the flow on edges of P by 1
 - v(f') = v(f) 1 = k 1
 - Number of edges that carry flow now < k': can apply IH and find k-1 other $s \leadsto t$ disjoint paths
- Case (b) visit a vertex v for a 2nd time: consider cycle C of edges visited btw 1st and 2nd visit to v
 - f': decrease flow values on edges in C to zero
 - v(f') = v(f) but # of edges in f' that carry flow < k', can now apply IH to get k edge disjoint paths

Summary & Running Time

- Proved k edge-disjoint paths iff flow of value k
- Thus, max-flow iff max # of edge-disjoint $s \sim t$ paths
- Running time of algorithm overall:
 - Running time of reduction + running time of solving the max-flow problem (dominates)
- What is running time of Ford–Fulkerson algorithm for a flow network with all unit capacities?
 - O(nm)
- Overall running time of finding max # of edge-disjoint $s \sim t$ paths: O(nm)

- Design survey asking n consumers about m products
- ullet Can survey consumer i about product j only if they own it
- Ask consumer i at least a_i and at most b_i questions
- Ask at least p_j and at most q_j customers about product j
- **Problem.** Given an instance of this problem, determine if it is possible to design a survey that satisfies these requirements
- Challenge. We have lower bounds now in addition to "capacities" which serve as upper bounds
 - How do we handle that using flows?

- Design survey asking n consumers about m products
- ullet Can survey consumer i about product j only if they own it
- Ask consumer i at least a_i and at most b_i questions
- Ask at least p_j and at most q_j customers about product j
- **Problem.** Given an instance of this problem, determine if it is possible to design a survey that satisfies these requirements
- Note. If $a_i=b_i=1$ and $p_i=q_i=1$, what can we say about this problem?
 - Same as finding perfect matching in bipartite graph!

- Design survey asking n consumers about m products
- Can survey consumer i about product j only if they own it
- Ask consumer i at least a_i and at most b_i questions
- Ask at least p_j and at most q_j customers about product j
- First step in reduction to network flow
 - What would the directed graph look like?
 - n nodes for consumers
 - *m* nodes for products
 - When is there an edge between a consumer & product?
 - Add $(i \rightarrow j)$ if consumer i owns product j

- Design survey asking n consumers about m products
- Can survey consumer i about product j only if they own it
- Ask consumer i at least a_i and at most b_i questions
- Ask at least p_j and at most q_j customers about product j
- Second step:
 - Find the mapping between problem and integral flow
- Either consumer i is asked about product j or not
- How can we map this to a flow on edge $i \rightarrow j$?
 - Either $f(i \rightarrow j) = 1$ or $f(i \rightarrow j) = 0$ respectively
- Next step: think about what the upper/lower bounds mean for flow coming in and out of these nodes

 $f_{out}(i)$ = number of questions i is asked

 $f_{in}(j) =$ number of consumers asked about product j

products

Consumer i should be asked at least a_i questions and at most b_i questions

products

$$a_i \leq f_{out}(i) \leq b_i$$
 products

$$a_i \leq f_{out}(i) \leq b_i$$
 products

Ask at least p_j and at most q_j people about product j

$$a_i \leq f_{out}(i) \leq b_i$$

products

 i

consumers

$$p_j \le f_{in}(j) \le q_j$$

$$a_i \leq f_{out}(i) \leq b_i$$

products

$$i$$

consumers

$$a_i \leq f_{out}(i) \leq b_i$$

$$p_j \le f_{in}(j) \le q_j$$

$$a_i \leq f_{out}(i) \leq b_i$$

$$p_j \le f_{in}(j) \le q_j$$

Assume
$$\sum_i a_i = \sum_j p_j$$

Assume
$$\sum_{i} a_{i} = \sum_{j} p_{j}$$

number of extra questions

Assume
$$\sum_i a_i = \sum_j p_j$$

- Nodes in flow network: s, t, x, y and a node i for each consumer, node j for each product
- Edges and capacities:
 - Edge $i \rightarrow j$ with capacity 1 for each consumer i and product j if consumer i owns product j
 - Edge $s \rightarrow i$ for each consumer i with capacity a_i
 - Edge $j \rightarrow t$ for each product j with capacity p_i
 - Edge $x \to i$ for each consumer i with capacity $a_i b_i$
 - Edge $j \rightarrow y$ for each product j with capacity $q_i p_i$
 - Edge $y \to x$ with capacity $\sum_i (b_i a_i)$

- Claim. It is possible to design a survey satisfying the constraints of the problem iff the corresponding flow network has an integral max flow of value $\sum_i a_i$
- (⇒) Suppose it is possible to design such a survey
- Let $f(s \to i) = a_i$, $f(j \to t) = p_i$ for each i, j
- Let $f(i \rightarrow j) = 1$ iff consumer i is asked a question about product j
- Let $f(x \to i) = \text{total \# questions } i \text{ is asked } -a_i$
- Let $f(j \rightarrow y) = \text{total \# questions about product } j p_j$
- Let $f(y \to x) = \text{total # of questions overall } \sum_{i} a_{i}$

- Claim. It is possible to design a survey satisfying the constraints of the problem iff the corresponding flow network has an integral max flow of value $\sum_i a_i$
- (⇒) Suppose it is possible to design such a survey
- Value of such a flow is $\sum_i a_i = \sum_j p_j$
- Check flow conservation at each node and capacity constraints using the constants on questions asked in the survey problem
 - Convince yourself at home

- Claim. It is possible to design a survey satisfying the constraints of the problem iff the corresponding flow network has an integral max flow of value $\sum_{i} a_{i}$
- (\Leftarrow) Suppose the max flow has value $\sum_i a_i$
- Ask consumer i a question about product j iff $f(i \rightarrow j) = 1$
- Check: each consumer is asked between a_i and b_i questions
- Check: between p_j and q_j consumers are asked about product j

Acknowledgments

- Some of the material in these slides are taken from
 - Kleinberg Tardos Slides by Kevin Wayne (https://www.cs.princeton.edu/~wayne/kleinberg-tardos/pdf/04GreedyAlgorithmsl.pdf)
 - Jeff Erickson's Algorithms Book (http://jeffe.cs.illinois.edu/ teaching/algorithms/book/Algorithms-JeffE.pdf)