Gram-Schmidt process on GPU

Generated by Doxygen 1.9.2

1 Class Index 1.1 Class List	1
2 Class Documentation	3
2.1 GPUGramSchmidt Class Reference	3
2.1.1 Detailed Description	4
2.1.2 Constructor & Destructor Documentation	4
2.1.2.1 GPUGramSchmidt()	4
2.1.2.2 ∼GPUGramSchmidt()	4
2.1.3 Member Function Documentation	5
2.1.3.1 run()	5
2.1.4 Member Data Documentation	5
2.1.4.1 shader_folder	
Index	7

Chapter 1

Class Index

1.1 Class List

GPLIGramSchmidt			

Tools to execute Gram-Schmidt process on GPU

Here are the classes, structs, unions and interfaces with brief descriptions:

Generated by Doxygen

2 Class Index

Chapter 2

Class Documentation

2.1 GPUGramSchmidt Class Reference

Tools to execute Gram-Schmidt process on GPU.

#include <vulkan-gram-schmidt.hpp>

Public Types

using Matrix = std::vector< std::vector< double > >

Public Member Functions

Constructors & destructors

• GPUGramSchmidt (bool const enable_debug=false)

Creates a new solver.

∼GPUGramSchmidt (void)

Destroys the solver.

Computations

• void run (GPUGramSchmidt::Matrix &matrix, bool const vectors_as_columns=false) Run Gram-Schmidt process on GPU.

Static Public Attributes

Static parameters

• static std::string shader_folder = "."

4 Class Documentation

2.1.1 Detailed Description

Tools to execute Gram-Schmidt process on GPU.

This class provides interface for calculation of orthonormal basis on GPU given the initial set of n linearly independent vectors from \mathbb{R}^n .

The following requirements are needed to be explicitly satisfied by the end user:

- GPU is requitred to be able to perform compute operations.
- · GPU is required to have a host coherent part of memory.
- Vulkan 1.2 (or newer) is required to be supported by the GPU driver.
- Matrices passed to the GPUGramSchmidt::run function are required to be non-singular; otherwise, no guarantees are given about the behaviour of the program.

Instances of this class are generally expected to be thread-secure, however, this was not heavily tested.

2.1.2 Constructor & Destructor Documentation

2.1.2.1 GPUGramSchmidt()

Creates a new solver.

Sets up a Vulkan communication environment with the GPU.

Parameters

- 1		
	enable debug	Send Vulkan debug information to the output.
	onabio_dobag	condition access anormation to the output.

Warning

```
enable_debug = true will require the presence of the VK_LAYER_KHRONOS_validation Vulkan
layer and the VK_EXT_debug_utils Vulkan extension.
```

2.1.2.2 ~GPUGramSchmidt()

```
\begin{tabular}{ll} $\tt GPUGramSchmidt::\sim$\tt GPUGramSchmidt ( \\ &\tt void ) \end{tabular}
```

Destroys the solver.

Destructs the communication environment with the GPU.

2.1.3 Member Function Documentation

2.1.3.1 run()

Run Gram-Schmidt process on GPU.

Perform orthonormalisation of vectors with the help of GPU.

Parameters

	matrix	Square matrix with the coordinates of the original vectors.
vectors_as_columns Indicates whether vectors are packed into matrix as columns or as row		

Warning

Keep in mind, that the non-singularity of matrix must be guaranteed by you.

Returns

Nothing; the answer is written directly into matrix. If vectors_as_columns == true, the answer will also be written in columns.

2.1.4 Member Data Documentation

2.1.4.1 shader_folder

```
std::string GPUGramSchmidt::shader_folder = "." [static]
```

Path to a folder containing "vulkan-gram-schmidt.spv"

6 Class Documentation

Index