Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Ernst W. Mayr Dr. Werner Meixner Sommersemester 2010 Lösungen der Klausur 31. Juli 2010

Diskrete Wahrscheinlichkeitstheo:	theor	\mathbf{tst}	keit	hl	lic	nein'	rrsc	Wal	krete	Dis]
-----------------------------------	-------	----------------	------	----	-----	-------	-----------------------	-----	-------	-----	---

Name			Vor	name	9		Studi	enga	ng	Matr	rikelnummer		
							☐ Diplom ☐ Inform. ☐ Bachelor ☐ BioInf. ☐ Lehramt ☐ WirtInf.						
Hörsaa	l		Reihe				Sitzplatz				Unterschrift		
Code:													
Code.													
			\mathbf{A}	llge	mein	e H	inwe	eise					
• Bitte füll	en Sie o	obige	Felde	r in l	Druckb	ouchs	aben	aus	und ur	nterschre	eiben Sie!		
• Bitte sch	reiben S	Sie nie	cht m	it Bl	eistift	oder	n rot	er/g	rüner F	Tarbe!			
• Die Arbe	itszeit l	oeträg	gt 120) Min	uten.								
seiten) de	er betre nrechni	ffende ingen	en Au mac	fgabe hen.	en einz Der S	chmic	en. A erblat	uf de	em Sch	mierblat	en (bzw. Rüc ttbogen könne falls abgegebe		
Hörsaal verlas	ssen		von		bi	s		/	von		bis		
Vorzeitig abge	egeben		um										
Besondere Be	merkun	gen:											
	A1	A2	A3	A4	A5	Σ	Kor	rekto	or				
Erstkorrektur													
Zweitkorrektu	r												

Aufgabe 1 (8 Punkte)

Wahr oder falsch? Begründen Sie Ihre Antwort!

- 1. Falls $X \sim \mathcal{N}(0,1)$ und $Y \sim \mathcal{N}(0,2)$ normalverteilt sind, dann folgt Var[X+Y] = 3.
- 2. Seien X und Y standardnormalverteilt. Dann gilt $\Pr[X \leq 0] = \Pr[Y \geq 0]$.
- 3. Bei kontinuierlichen Zufallsvariablen existiert stets der Erwartungswert.
- 4. Es gibt irreduzible Markov-Ketten mit Übergangsmatrizen, deren Diagonalelemente alle gleich Null sind.
- 5. Seien $X \sim \text{Po}(1)$ und $Y \sim \text{Bin}(n, \frac{1}{n})$. Dann gilt $|\Pr[X = 2n] \Pr[Y = 2n]| < 2^{-n}$.
- 6. Sei X exponential
verteilt. Dann gilt $\Pr[X>2\mid X>1]+\Pr[X\leq 1]=1$.
- 7. Für erwartungstreue Schätzvariable ist der Bias gleich 1.
- 8. Eine Ereignisfolge $H_1, H_2, ...$ ist rekurrent, wenn es für alle i ein j mit i < j gibt, so dass $H_i = H_j$ gilt.

Lösungsvorschlag

Für die richtige Antwort und für die richtige Begründung gibt es jeweils einen $\frac{1}{2}$ Punkt.

- 1. Falsch! Begründung: Das ist allgemein nur richtig, wenn X und Y unabhängig sind.
- 2. Wahr! Es gilt $\Pr[X \le 0] = \frac{1}{2} = \Pr[Y \le 0] = 1 \Pr[Y \le 0] = \Pr[Y \ge 0]$.
- 3. Falsch! Begründung: Durch Vertauschung von Abschnitten der Dichtefunktion können den kleinen Dichtewerten beliebig hohe Werte der Variablen zugeordnet werden.
- 4. Wahr! Beispiel: Alle $pij \neq 0$, wenn $i \neq j$.
- 5. Wahr! Begründung: $\Pr[Y=2n]=0$ und $\Pr[X=2n]=\frac{e^{-1}}{(2n)!}<2^{-n}$.
- 6. Wahr! Begründung: Da die Exponentialverteilung gedächtnislos ist, gilt $\Pr[X>2\mid X>1]=\Pr[X>1]=1-\Pr[X\leq 1]$.
- 7. Falsch! Für erwartungstreue Schätzvariable ist der Bias gleich 0.
- 8. Falsch!

Aufgabe 2 (8 Punkte)

Sei a > 0 und seien X, Y kontinuierliche Zufallsvariable mit gemeinsamer Dichtefunktion

$$f_{X,Y}(x,y) = \begin{cases} a - a \cdot (x+y) & : & 0 \le x, \ 0 \le y, \ x+y \le 1 \\ 0 & : \text{sonst} \end{cases}$$

- 1. Bestimmen Sie a.
- 2. Berechnen Sie die Randdichte $f_X(x)$.
- 3. Bestimmen Sie den Wert der Verteilungsfunktion $F_{X,Y}(\frac{1}{2},\frac{1}{2})$.
- 4. Zeigen Sie die Abhängigkeit der Variablen X und Y.

Lösungsvorschlag

1. a = 6.

Das Integral von $f_{X,Y}$ über den R^2 ist gleich dem Rauminhalt V_P einer Pyramide der Höhe a und Grundfläche 1/2, mithin $V_P = \frac{a}{3} \cdot \frac{1}{2}$.

Wir setzen
$$V_P = 1$$
 und erhalten $a = 6$. (2 P.)

Alternativ integriert man über die Randdichte f_X .

2. $f_X(x) = 3 \cdot (1 - x)^2$. Berechnung:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

$$= 6 \cdot \int_{0}^{1-x} (1-x-y) \, dy \qquad (1 \text{ P.})$$

$$= 6 \cdot \left[-\frac{(1-x-y)^2}{2} \right]_{y=0}^{y=1-x} = 3 \cdot (1-x)^2. \qquad (1 \text{ P.})$$

3. $F_{X,Y}(\frac{1}{2}, \frac{1}{2}) = \frac{3}{4}$. Berechnung:

$$F_{X,Y}(\frac{1}{2}, \frac{1}{2}) = \int_{0}^{\frac{1}{2}} \left(\int_{0}^{\frac{1}{2}} f_{X,Y}(x, y) \, dy \right) dx$$

$$= \int_{0}^{\frac{1}{2}} 6 \cdot \left[-\frac{(1 - x - y)^{2}}{2} \right]_{y=0}^{y=\frac{1}{2}} dx \qquad (1 \text{ P.})$$

$$= \int_{0}^{\frac{1}{2}} \left(\frac{9}{4} - 3x \right) dx$$

$$= \left[\frac{9}{4}x - \frac{3}{2}x^{2} \right]_{0}^{\frac{1}{2}} = \frac{3}{4}. \qquad (1 \text{ P.})$$

4. Für
$$(x,y) = (\frac{1}{2}, \frac{1}{2})$$
: $f_{X,Y}(x,y) = 6 - 6(x+y) \neq 6 \cdot \frac{(1-x)^2}{2} \cdot 6 \cdot \frac{(1-y)^2}{2} = f_X(x) \cdot f_Y(y)$. (2 P.)

Aufgabe 3 (8 Punkte)

Wir testen einen Würfel, der im Verdacht steht, mit erhöhter Wahrscheinlichkeit p die Eins zu liefern. Eine Stichprobe von vier unabhängigen Würfen liefere 3 Mal die Eins.

- 1. Formulieren Sie einen Test zur Überprüfung der Hypothese $H_0: p \leq \frac{1}{4}$, die Sie ablehnen, wenn bei 4 Würfen mindestens 3 Mal eine Eins gewürfelt wird. Berechnen Sie den Wert des Fehlers 1. Art.
- 2. Welcher Wert von p würde die Wahrscheinlichkeit der obigen Stichprobe am größten machen? Begründung!
- 3. Bestimmen Sie zu Ihrem Test den Wert des Fehlers 2. Art unter der Annahme, dass $p>\frac{3}{4}$ ausgeschlossen werden kann.

Lösungsvorschlag

1. Seien X_1, X_2, X_3, X_4 gleichverteilte Indikatorvariable mit Erfolgswahrscheinlichkeit p. Dann gilt $Z = \sum_{i=1}^4 X_i \sim \text{Bin}(4, p)$. Der Ablehnungsbereich sei $\tilde{K} = \{3, 4\}$.

(1 P.)

$$\alpha_1 = \max_{p \le \frac{1}{4}} \Pr[Z \in \tilde{K}]$$

$$= \max_{p \le \frac{1}{4}} \{ \binom{4}{3} \cdot p^3 \cdot (1-p) + \binom{4}{4} \cdot p^4 \}$$

$$= \max_{p \le \frac{1}{4}} \{ 4p^3 - 3p^4 \}$$

$$= \frac{13}{256}.$$

(2 P.)

Die Bestimmung des Maximums geschieht mit Hilfe der Nullstellen 0 und 1 der Ableitung $f'(p) = 12p^2(1-p)$ von $f(p) = 4p^3 - 3p^4$. (1 P.)

- 2. Das Maximum-Likelihood Verfahren liefert $p = \frac{3}{4}$. (1 P.)
- 3. Die echte Alternative zu H_0 ist also $H_1: \frac{1}{4} \le p \le \frac{3}{4}$. (1 P.)

$$\begin{split} \alpha_2 &= \max_{\frac{1}{4} \leq p \leq \frac{3}{4}} \Pr[Z \not\in \tilde{K}] \\ &= \max_{\frac{1}{4} \leq p \leq \frac{3}{4}} (1 - \Pr[Z \in \tilde{K}]) \\ &= \max_{\frac{1}{4} \leq p \leq \frac{3}{4}} \{1 - (4p^3 - 3p^4)\} \\ &= \max_{p = \frac{1}{4}} \{1 - (4p^3 - 3p^4)\} \\ &= \frac{243}{256} \,. \end{split}$$

(2 P.)

Die Maximumbestimmung ist analog wie in Teilaufgabe 1.

Aufgabe 4 (10 Punkte)

Gegeben sei die Übergangsmatrix P einer Markov-Kette M mit Zuständen $S = \{0, 1, 2, 3\}$ wie folgt:

$$P = \left(\begin{array}{cccc} 0.4 & 0.6 & 0 & 0\\ 0 & 0 & 0.8 & 0.2\\ 0 & 0.2 & 0.8 & 0\\ 0 & 0 & 0 & 1 \end{array}\right).$$

- 1. Zeichnen Sie ein Übergangsdiagramm für M.
- 2. Bestimmen Sie die Menge der transienten Zustände. Begründung!
- 3. Berechnen Sie die Ankunftswahrscheinlichkeit $f_{0,2}$. Dabei muss jeweils der Rechenweg aus dem Protokoll hervorgehen.
- 4. Zeigen Sie, dass M eine eindeutige stationäre Verteilung q^T besitzt.

Lösungsvorschlag

2. Menge trans. Zustände = $\{0, 1, 2\}$.

Begründung: Es gibt jeweils einen in 0 bzw. 1 bzw. 2 beginnenden Pfad zum Zustand 3, der keine Verlängerung zurück nach 0 bzw. 1 bzw. 2 besitzt.

(2 P.)

3. Es gilt

$$f_{0,2} = p_{0,2} + p_{0,0} \cdot f_{0,2} + p_{0,1} \cdot f_{1,2} + p_{0,3} \cdot f_{3,2}$$

$$= 0 + 0,4 \cdot f_{0,2} + 0,6 \cdot f_{1,2} + 0$$

$$\implies f_{0,2} = f_{1,2}. \qquad (2 P.)$$

$$f_{1,2} = p_{1,2} + p_{1,0} \cdot f_{0,2} + p_{1,1} \cdot f_{1,2} + p_{1,3} \cdot f_{3,2}$$

$$= 0,8 + 0 + 0 + 0,2 \cdot \underbrace{f_{3,2}}_{=0}$$

$$= 0,8$$

$$\implies f_{0,2} = 0,8. \qquad (2 P.)$$

4. $q^T = (0, 0, 0, 1)$.

Entweder durch Lösung der Gleichung $q^T = q^T P$.

Oder mit der Überlegung, dass wegen Wahrscheinlichkeiten $f_{0,3} = 1$, $f_{1,3} = 1$, $f_{2,3} = 1$ mit dem absorbierenden Zustand 3 keine andere Verteilung stationär sein kann.

(3 P.)

Aufgabe 5 (6 Punkte)

Seien X_1, X_2, \dots, X_{100} unabhängige Bernoulli-verteilte Zufallsvariable mit gleicher Erfolgswahrscheinlichkeit $\frac{1}{50}$. Sei $S_{100} = \sum_{i=1}^{100} X_i$.

- 1. Berechnen Sie Zahlen $a, b \in \mathbb{R}$ mit a > 0, so dass $\mathbb{E}[Y] = 0$ und Var[Y] = 1 für $Y = a \cdot S_{100} + b$ gelten.
- 2. Wenden Sie den zentralen Grenzwertsatz an zur approximativen Berechnung eines Intervalls $[d_1, d_2]$, so dass

$$\Pr[d_1 \le S_{100} \le d_2] \approx 1 - \alpha = 1 - 0.05.$$

Benutzen Sie dabei das Quantil $c=x_{1-\frac{\alpha}{2}}\approx 1.96$ der Standardnormalverteilung.

Lösungsvorschlag

1.
$$\mathbb{E}[S_{100}] = 100 \cdot \frac{1}{50} = 2.$$

 $\operatorname{Var}[S_{100}] = 2 \cdot (1 - \frac{1}{50}) = \frac{49}{25}.$ (1 P.)

Aus
$$\mathbb{E}[Y] = a \cdot \mathbb{E}[S_{100}] + b$$
 folgt $0 = 2a + b$. (1 P.)
Aus $\text{Var}[Y] = a^2 \text{Var}[S_{100}]$ folgt $1 = a^2 \cdot \frac{49}{25}$. (1 P.)

Aus
$$Var[Y] = a^2 Var[S_{100}]$$
 folgt $1 = a^2 \cdot \frac{49}{25}$. (1 P.)

Mithin $a = \frac{5}{7}$ und $b = -\frac{10}{7}$.

2. Ansatz:
$$\Pr[d_1 \le S_{100} \le d_2] = \Pr[-c \le Y \le c] = 1 - \alpha.$$
 (1 P.)

Mit
$$Y = a \cdot S_{100} + b$$
 ergibt sich $d_1 = \frac{-c - b}{a} = \dots$ und $d_2 = \frac{c - b}{a} = \dots$ (2 P.)