Mole Concept DPP-4

Ashish Bibyan B.Tech (IIT Delhi)

Referral Code: ABSIRLIVE

1. Potassium permanganate (KMnO₄) reacts with oxalic acid (H₂C₂O₄) in aqueous sulfuric acid according to the following equation:

$$2 \text{ KMnO}_4 + 5 \text{ H}_2\text{C}_2\text{O}_4 + 3 \text{ H}_2\text{SO}_4 \longrightarrow 2 \text{ MnSO}_4 + 10 \text{ CO}_2 + 8 \text{ H}_2\text{O} + \text{K}_2\text{SO}_4$$

How many milliliters of a $0.250~M~KMnO_4$ solution are needed to react completely with 3.225~g of oxalic acid?

- 2. When 150.0 mL of 2.000 M NaOH was added to 100.0 mL of a sulfuric acid solution, it required 43.0 mL of 0.5000 M HCl to neutralize the excess base. What was the original concentration of H₂SO₄?
- 3. How many mL of 3.00 M HCl should be added to react completely with 16.8 g of NaHCO₃? HCl + NaHCO₃ \rightarrow NaCl + CO₂ + H₂O.
- **4.** How many mL of water must be added to 200 mL of 0.65 M HC*l* to dilute the solution to 0.20 M?
- **5.** What concentration of NaCl finally results from the mixing of 2.00 L of 4.00 M NaCl with 3.00 L of 1.50 M NaCl plus sufficient water to dilute the solution to 10.0 L?
- **6.** What is the volume of the solution that would result by diluting 70.00 mL of 0.0913 M NaOH to a concentration of 0.0150 M?
- **7.** How would one prepare exactly 3.00 L of 1.00 M NaOH by mixing portions of stock solutions of 2.50 M NaOH and 0.400 M NaOH?
- **8.** Determine the molar concentration of each ionic species in solution after each of the following operations:
 - (a) 200 mL of 2.0 M NaCl is diluted to 500 mL.
 - (b) 200 mL of 2.0 M BaC l_2 is diluted to 500 mL
 - (c) 200 mL of 3.00 M NaCl is added to 300 mL of 4.0 M NaCl
 - (d) 200 mL of 2.0 M BaC l_2 is added to 400 mL of 3.0 M BaC l_2 and 400 mL of water
 - (e) 300 mL of 3.0 M NaCl is added to 200 mL of 4.0 M BaCl₂.
- **9.** What volume of 95.0% alcohol by weight (density 0.809 g/cm³) must be used to prepare 150 cm³ of 30.0% alcohol by weight (density 0.957 g/cm³)?
- 10. The odor of skunks is caused by chemical compounds called thiols. These compounds, of which butanethiol ($C_4H_{10}S$) is a representative example, can be deodorized by reaction with household bleach (NaOCl) according to the following equation:

$$2C_4H_{10}S + NaOCl(aq) \rightarrow C_8H_{18}S_2 + NaCl(aq) + H_2O(aq)$$

How many grams of $C_4H_{10}S$ can be deoxidised reaction with 5ml of 0.0985 M NaOCl solution.

11. Calcium carbonate reacts with aqueous HCl to give $CaCl_2$ and CO_2 according to the reaction $CaCO_3$ (s) + 2 HCl (aq) \rightarrow $CaCl_2$ (aq) + CO_2 (g) + H_2O (ℓ)

What mass of $CaCO_3$ is required to react completely with 25 mL of 0.75 M HCl ?

(NCERT Problem)

12. Methyl benzoate is prepared by the reaction between benzoic acid and methanol, according to the equation

 $C_6H_5COOH + CH_3OH \rightarrow C_6H_5COOCH_3 + H_2O$

Benzoic acid Methanol Methyl benzoate

In an experiment 24.4 gm of benzoic acid were reacted with 70.0 L of CH_3OH . The density of CH_3OH is 0.79 g/L. The methyl benzoate produced had a mass of 21.6 g. What is the percentage yield of product?

(a) 91.7%

(b) 79.4%

(c) 71.5%

(d) 21.7%

13. A sample of H_2SO_4 (density 1.8 g/ml) is 90% by weight. What is the volume of the acid that has to be used to make 1 litre of 0.2 M H_2SO_4 ?

(a) 16 mL

(b) 10 mL

(c) 12 mL

(d) 18 mL

14. 100 ml 5 M AgNO₃ when reacts with 200 ml 5M of NaCl, the concentration of Na⁺ in the resulting solution is (Given, density of resulting solution=1g/cc)

(a) 10/3 (M)

(b) 12/3 (M)

(c) $76.666 \text{ mg/mg of sol}^n$.

(d) 7.6666 ppm

ANSWERS

1.57.28mL

2. 1.3925 M

3. 66.67 mL

4. 450 mL

5. 1.25 M

6. 426 ml

7. 2.14L of 0.4M solution

- 8. (a) 0.8M Na⁺, 0.8M Cl⁻, (b) 0.8M Ba²⁺, 1.6M Cl⁻, (c) 3.6M Na⁺, 3.6M Cl⁻
 - (d) 1.6M Ba²⁺, 3.2M Cl⁻, (e) 1.8M Na⁺, 1.6M Ba²⁺, 5M Cl⁻.

9. 56.03mL

10. 0.08865g

11. 0.9375 g

12. (b)

13. (c)

14. (a)