QUI070 - Métodos	Pontuação ↓		
Data: 30/04/2025	Questões: 3	Pontos totais: 5	
Matrícula:	Nome:		

Questão	Pontos	Nota
1	2	
2	2	
3	1	
Total:	5	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas e materiais de consulta com essa folha anexa.
- 1. (2 pontos) Quando o anisol (metoxibenzeno) é reagido com ácido nítrico e sulfúrico concentrado, pode-se obter uma mistura de regioisômeros **A**, **B** e **C** do nitroanisol, conforme mostrado abaixo.

O espectro na região do infravermelho obtido para a reação é mostrado na **Figura 1** e os valores principais das bandas $(\tilde{\nu}/\text{cm}^{-1})$ e suas respectivas transmitâncias (T/%) são mostradas na **Tabela 1**. Qual o produto majoritário esperado para a reação? Os dados experimentais obtidos corroboram essa previsão?

Figura 1: Espectro no IV do produto da reação do anisol com HNO_3 e H_2SO_4 .

Tabela 1: Principais bandas $(\tilde{\nu}/\text{cm}^{-1})$ e suas respectivas transmitâncias (T/%) do espectro no infravermelho do produto da reação do anisol com HNO₃ e H₂SO₄.

$\tilde{\nu}/\mathrm{cm}^{-1}$	T/%								
3118	52	2598	70	1423	55	1181	29	809	56
3082	55	2442	68	1377	46	1174	21	789	62
3060	55	1608	20	1332	4	1111	14	752	24
2948	13	1592	8	1299	30	1022	11	693	50
2926	7	1500	4	1264	6	967	57	634	29
2854	17	1460	18	1251	12	853	29	617	27
2671	68	1440	27	1194	50	848	19	534	68

2. (2 pontos) Considere a reação de formação do ácido acetilsalicílico (AAS, \mathbf{B}) a partir do ácido salicílico (\mathbf{A}), mostrada abaixo

$$\begin{array}{c|c}
O \\
OH \\
OH \\
OH
\end{array}$$

$$\begin{array}{c|c}
Ac_2O \\
OAc
\end{array}$$

$$\begin{array}{c|c}
O \\
OAc
\end{array}$$

$$\begin{array}{c|c}
O \\
OAc
\end{array}$$

- (a) Quais as principais mudanças entre os espectros no IV de **A** e **B** seriam esperadas para confirmar que a reação de acetilação ocorreu?
- (b) Durante a síntese do AAS, há uma etapa de recristalização do produto obtido. Nessa, utiliza-se uma mistura de etanol e água sob aquecimento. Ao realizar essa acetilação, há a possibilidade de se obter produtos de hidrólise (A) e esterificação (C e D), conforme mostrado abaixo, caso as condições não sejam adequadamente controladas.

Considerando o o composto \mathbf{C} como subproduto majoritário da recristalização de \mathbf{B} , as espectroscopias no IV ou UV-Vis seriam adequadas para diferenciar esses dois compostos? Se sim, mostre as principais diferenças espectroscópicas entre eles.

3. (1 ponto) Considere o conjunto de reações abaixo.

OH PCC,
$$CH_2CI_2$$
 O $\frac{1. \text{ MeMgBr, Et}_2O}{2. \text{ NH}_4CI}$ OH

A

B

C

(a) A reação entre o cicloexilmetanol (**A**) e clorocromato de piridínio (PCC) em diclorometano (CH₂Cl₂) gerou um produto cujo espectro é mostrado na **Figura 2**. Os valores principais das bandas ($\tilde{\nu}/\text{cm}^{-1}$) e suas respectivas transmitâncias (T/%) são mostradas na **Tabela 2**.

Figura 2: Espectro no IV do produto da reação de A com PCC em CH₂Cl₂.

Tabela 2: Principais bandas $(\tilde{\nu}/\text{cm}^{-1})$ e suas respectivas transmitâncias (T/%) do espectro no infravermelho do produto da reação de **A** com PCC em CH₂Cl₂.

$\tilde{\nu}/\mathrm{cm}^{-1}$	T/%								
2932	4	1396	84	1233	70	1099	66	943	57
2908	13	1362	68	1224	74	1084	58	916	55
2856	8	1351	72	1189	84	1060	68	893	52
2809	37	1329	72	1170	70	1038	72	842	74
2705	35	1300	68	1156	64	1033	72	829	74
1727	5	1285	62	1144	80	1025	70	761	72
1461	17	1287	72	1133	68	967	42	681	66

Com base nos dados fornecidos, as condições reacionais foram apropriadas para gerar o produto \mathbf{B} ? Se sim, mostre os dados espectroscópicos que comprovam o êxito da reação.

(b) Quais as principais diferenças esperadas entre o espectro no IV do produto ${\bf B}$ e de ${\bf C}$ para comprovar que a reação de Grignard foi feita com sucesso?