## 21-R-KIN-MS-51



Determine the moment of inertia of the wrench at point O about each axis described below. The tool has a thickness of 1cm and a density of  $7500kg/m^3$ .

Axis perpendicular to the page at O.

Axis parallel to y direction at O.

w = 2cm

L = 20cm

r = 3cm

d=2cm

## Solution:

Find the moment of inertia of individual components about O and sum them up.



Thickness T = 1cm, density  $\rho = 0.0075kg/cm^3$ 

| Shape $i$                           | A                                                | В                                       | С                                     |
|-------------------------------------|--------------------------------------------------|-----------------------------------------|---------------------------------------|
| Mass $m_i$                          | $w(L-2r)T\rho$                                   | $\pi r^2 T \rho$                        | $d^2T\rho$                            |
| Centre of gravity $x_{gi}$          | $\frac{L-2r}{2}$                                 | L-r                                     | L-r                                   |
| Moment of inertia, z-axis, $I_{zi}$ | $\frac{1}{12}m_A(w^2 + (L-2r)^2) + m_A x_{gA}^2$ | $\frac{1}{2}m_Br^2 + m_Bx_{gB}^2$       | $\frac{1}{2}m_C(2d^2) + m_C x_{gC}^2$ |
| Moment of inertia, y-axis, $I_{yi}$ | $\frac{1}{12}m_A(T^2 + (L-2r)^2) + m_A x_{gA}^2$ | $\frac{1}{12}m_B(3r^2+T^2)+m_Bx_{gB}^2$ | $\frac{1}{2}m_C(d^2+T^2)+m_Cx_{gC}^2$ |

$$I_{zO} = I_{zA} + I_{zB} - I_{zC} = (24.8000 + 62.2389 - 8.7900)kg \cdot cm^2 * (1m/100cm)^2 = 0.00782kg \cdot m^2$$
  
$$I_{yO} = I_{yA} + I_{yB} - I_{yC} = (24.7250 + 61.7794 - 8.7450)kg \cdot cm^2 * (1m/100cm)^2 = 0.00778kg \cdot m^2$$