The Equity cost of Capita. W: April 29th, 2019. Recall: In the CAPM: for any investment I independent of the $\mathbb{E}[R_{I}] = r_{I} = r_{f} + \beta_{I} \left(\mathbb{E}[R_{Mk+I}] - r_{f}\right)$ the intercept T the slope "independent argument" Expected Return slope = E[RMEt] - Cf E[R] The Security Market Line (SML) PE beta Beta Estimation. Linear Regression. Explanatory random variable: X Response random variable: Y (LR) Model: $Y = \alpha + \beta \cdot X + \epsilon_{NN(0, variance)}$ assume to intercept slope be the same for every value of X Observed values: (xi, yi), i=1...n

least squares oc (explanatory) "Attacking" the LR w/ the expectation, we get E[x] = x + B. E[x] + 0 estimated from the least squares! In our applications, RI-it = XI + BI (RMK+-it) + EI the response variable the explanatory variable the intercept 'the slope of term of the linear regression the linear regression The expectation of the above: E[RI]-rf = XI + BI (E[KMA]-rf) + E[EI] $\mathbb{E}[R_{I}] = f + \beta_{I}(\mathbb{E}[R_{Mk+1}] - r_{f}) + d_{I}$ the distance from the security the SML, i.e., market line (SML) the stock's alpha

13) The following table shows the beta and expected return for each of five stocks.

Stock (i)	$oldsymbol{eta}_i$	$E(\mathbf{R})$
1	1.2	0.124
2	1.0	0.110
3	0.7	0.103
4	0.4	0.068
5	0.1	0.047

All of these stocks except one lie on the Security Market Line.

Calculate the alpha of the stock that does NOT lie on the Security Market Line.

=> E[RML+]-1+=5.0.04+=0.07

=> rf=0.11-0.07=0.04

The above slope & intercept are my candidates for the parameters of the SML. Now, we verify of Stocks \$\mathbb{H}3, \mathbb{H}4, \mathbb{H}5 \Lie on it.

* Checking for Stock #3:

 $0.403 \stackrel{?}{=} 0.04 + 0.7 \cdot 0.07 = 0.04 + 0.049 = 0.089 \times$ * Checking for Stock #4:

0.068 = 0.04+0.4.0.07 = 0.04+0.028 = 0.068 W => Stock#4 is on the SML.

=> Stock #3 is (not) on the SML

=> $d_3 = 0.403 - 0.089 = 0.014 => (D)$