COMPUTERIZED PRODUCTION PROCESS PLANNING VOLUME 3
APPENDICES A B AND C TO BENEFIT ANALYSIS(U) IIT
RESEARCH INST CHICAGO IL H H SHU ET AL. NOV 76
DARN01-76-C-1104 F/G 9/2 AD-A151 997 1/4 UNCLASSIFIED NL



MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1965 A

AD-A151 997

**Manufacturing Methods and Technology** 

## COMPUTERIZED PRODUCTION PROCESS PLANNING

# **VOLUME III APPENDICES A, B, AND C TO BENEFIT ANALYSIS**

**Interim Report** 

November, 1976

Hsien-Hwei H. Shu Janis C. Church Jack P. Kornfeld



U.S. Army Missile Command
Contract No. DAAH01-76-C-1104

Prepared by: IIT Research Institute

Chicago, Illinois 60616

For: United Technologies Research Center
East Hartford, Ct 06108



Approved for public release; distribution unlimited

**85** 03 22 060

### Manufacturing Methods and Technology

## COMPUTERIZED PRODUCTION PROCESS PLANNING

# **VOLUME III APPENDICES A, B, AND C TO BENEFIT ANALYSIS**

Interim Report
November, 1976

Hsien-Hwei H. Shu Janis C. Church Jack P. Kornfeld

U.S. Army Missile Command Contract No. DAAH01-76-C-1104

Prepared by: IIT Research Institute

Chicago, Illinois 60616

For: United Technologies Research Center
East Hartford, Ct 06108



Approved for public release; distribution unlimited

<u> Unclassified</u>

| SECURITY CL | ASSIFICATION | OF THIS! | PAGE (When | Data Entered) |
|-------------|--------------|----------|------------|---------------|

| REPORT DOCUMENTATION PAGE                                                        | READ INSTRUCTIONS BEFORE COMPLETING FORM  |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------------------|--|--|--|
| <b>■</b>                                                                         | 3. RECIPIENT'S CATALOG NUMBER             |  |  |  |
| HD-A151                                                                          | <u> </u>                                  |  |  |  |
| 4. TITLE (and Subtitle)                                                          | 5 TYPE OF REPORT & PERIOD COVERED         |  |  |  |
| Computerized Production Process Planning                                         | Interim Technical Report                  |  |  |  |
| Volume III - Appendices A, B, and C of                                           | 30 Jun 76 - 30 Nov 76                     |  |  |  |
| Benefit Analysis                                                                 | 1                                         |  |  |  |
| 7 AUTHOR(s)                                                                      | 8. CONTRACT OR GRANT NUMBER(s)            |  |  |  |
| Hsien-Hwei Hunter Shu                                                            | DAAH01-76-C-1104                          |  |  |  |
| Janis C. Church Jack P. Kornfield                                                | DAMIO1-70-C-1104                          |  |  |  |
| 3. PERFORMING ORGANIZATION NAME AND ADDRESS                                      | 10 PROGRAM ELEMENT, PROJECT, TASK         |  |  |  |
| IIT Research Institute                                                           | AREA & WORK UNIT NUMBERS                  |  |  |  |
| 10 West 35th Street<br>Chicago, Illinois 60616                                   |                                           |  |  |  |
| 11. CONTROLLING OFFICE NAME AND ADDRESS                                          | 12. REPORT DATE                           |  |  |  |
| U.S. Army Missile Command                                                        | November, 1976                            |  |  |  |
| Redstone Arsenal, Alabama 35809                                                  | 13. NUMBER OF PAGES 366                   |  |  |  |
| 14 MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)        |                                           |  |  |  |
|                                                                                  | Unclassified                              |  |  |  |
|                                                                                  |                                           |  |  |  |
|                                                                                  | 154 DECLASSIFICATION DOWNGRADING SCHEDULE |  |  |  |
| 16 DISTRIBUTION STATEMENT (of this Report)                                       |                                           |  |  |  |
|                                                                                  |                                           |  |  |  |
| Approved for public release; distribution unlimit                                | Lted.                                     |  |  |  |
|                                                                                  |                                           |  |  |  |
|                                                                                  |                                           |  |  |  |
| 17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in  | Irom Report)                              |  |  |  |
| 17 DISTRIBUTION STATEMENT (Of the austract entered in Block 10, it different     | Nepotty                                   |  |  |  |
| ,                                                                                |                                           |  |  |  |
|                                                                                  |                                           |  |  |  |
|                                                                                  |                                           |  |  |  |
| 18 SUPPLEMENTARY NOTES                                                           |                                           |  |  |  |
|                                                                                  |                                           |  |  |  |
|                                                                                  |                                           |  |  |  |
|                                                                                  |                                           |  |  |  |
| 19 KEY WORDS (Continue on reverse side if necessary and identify by block number | er)                                       |  |  |  |
| Computer-aided manufacturing Pro                                                 | ocess planning                            |  |  |  |
| ·*                                                                               | fit analysis                              |  |  |  |
|                                                                                  | st reduction                              |  |  |  |
|                                                                                  | has it ils,                               |  |  |  |
| 20 ABSTRACT (Continue on reverse side if necessary and identify by block number) |                                           |  |  |  |
| Presents data collected, using industry survey, on process planning methods,     |                                           |  |  |  |
| related costs, and benefits of computerized production process planning.         |                                           |  |  |  |
| related costs, and benefits of computerized production process planning.         |                                           |  |  |  |
|                                                                                  |                                           |  |  |  |
|                                                                                  |                                           |  |  |  |
|                                                                                  |                                           |  |  |  |
|                                                                                  |                                           |  |  |  |

#### **DISPOSITION STATEMENT**

Destroy this report when no longer needed.

Do not return it to the originator.

#### DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

#### **TRADE NAMES**

The citation of any commercial products, trade names, or manufacturers in this report does not constitute an official endorsement or approval of such items or companies by the United States Government.



| Access | ion For              |          |  |  |  |
|--------|----------------------|----------|--|--|--|
| NTIS   | CPA&I                |          |  |  |  |
| DTIC : | FAP                  | $\frown$ |  |  |  |
| Unann  | Unannounced []       |          |  |  |  |
| Justi. | diestion             |          |  |  |  |
| Avai   | ibution/<br>lability | Codes    |  |  |  |
| Dist   | Avail ar<br>Specia   | •        |  |  |  |
| DISC   | Opecia               | <b></b>  |  |  |  |
| ١      |                      |          |  |  |  |
| A-1    |                      |          |  |  |  |
|        | LL                   |          |  |  |  |

#### APPENDIX A - DATA REQUEST

This appendix contains the data request which was mailed to 153 individuals in various manufacturing companies and divisions. The criteria for selecting the addresses were that each Army missile prime contractor should receive a data request and individuals known to be knowledgeable in the subject matter should also be solicited for information. Individuals meeting these criteria were identified from a variety of sources: a list of participants in the Army's Missile Manufacturing Technology Conference; attendance lists for CAM-I's meetings on process planning and the Air Force's meetings on AFCAM and I-CAM; lists of respondees for similar surveys; and, individuals suggested by UTRC, IITRI staff and other people contacted during the project.

A breakdown of the mailing by industry type is as follows:

| Missile Prime Contractors    | 10  |
|------------------------------|-----|
| Missile Subcontractors       | 4   |
| Other Aerospace Companies    | 37  |
| Other Types of Manufacturers | 102 |
|                              | 153 |

The data request consists of three major sections. The first section describes the purpose of the project, explains the function of the data request and provides definitions of process planning and other terminology needed to complete the form. The second section requests information which characterizes the company, its process planning methods, and other relevant

parameters -- company size, type of products, product similarity, batch sizes, current usage of computers in process planning, process planning costs, machinery costs, tooling costs, etc. In the third section, three levels of process planning automation are described, and each addressee was asked to estimate their benefits, implementation costs, operation and maintenance costs, and obstacles to implementation for each level of planning automation. Also included with each data request was a reprint of an article from N/C Commline (Vol. 5, No. 3, June/July, 1976) which contained a description of UTRC's approach to computer aided process planning.

Responses to the data request served as the major source of information for the cost/benefit analysis contained in Volume I of this report. Twenty-one responses were received, although all were not completely filled out. This represents a response rate of 13.7%, an unusually high number for a survey of this type and breadth.

The data request is presented on the following pages and the responses are presented in Appendix B.



IIT Research Institute 10 West 35 Street, Chicago, Illinois 60616 312/567-4000

### COMPUTER AIDED PROCESS PLANNING OF MACHINED PARTS

IIT Research Institute is attempting to identify the potential impact of computer aided production process planning for discrete machined parts and to perform cost benefit analyses of various degrees of process planning automation. Hopefully, one of the outcomes of this study will be an indication of the direction and degree to which the development of computer aids should be supported.

This study is sponsored by the U.S. Army Missile Command and is part of a larger project to develop and demonstrate a prototype computer aided process planning system. The development and demonstration of the prototype system is being done by United Technologies Research Center. East Hartford, Connecticut. A brief description of United Technologies' approach to computer aided process planning is contained in the enclosed article reprinted from N/C Commline.

We are asking you to help us in this endeavor by describing in general terms your products and facilities, your current process planning procedures and your estimate of the impact computer aided process planning has or would have on your operation.

In order to complete our study within the allotted time, we request that you complete the attached form and return it by September 3, 1976. The results of the study will be provided to those individuals who submit data.

We will consider all data proprietary and will summarize or consolidate the information so that the source of specific items cannot be identified. We appreciate your assistance and welcome any information which you can give us.

#### INTRODUCTION

This form is broken into two sections. In the first section we are requesting information which will enable us to quantify the costs of process planning for discrete machined parts, to assess the current usage of computer aids in process planning, and to analyze the factors which may impact whether or not a company would implement a computer aided process planning system. In the second section we have described several hypothetical computer aided process planning systems and are requesting that you estimate the impact these systems would have on your company.

However, before proceeding further, it is necessary to provide you with several definitions so that you have an understanding of what we mean when we use terms like "machined parts" and "process planning".

MACHINED PARTS: For the purposes of this study, machined parts are defined as those parts for which the primary manufacturing operations include milling, turning, boring, drilling, grinding, hobbing, etc. Machined parts do not include those parts for which the primary manufacturing operations are stamping, forming, welding, etc., nor does it include assemblies.

CYLINDRICAL MACHINED PARTS: For the purposes of this study, cylindrical machined parts are those for which the major features of the part are symmetrical about an axis of rotation and the primary manufacturing operations are turning, boring, etc. Examples of cylindrical machined parts include shafts, sleeves, pistons, etc.

NON-CYLINDRICAL MACHINED PARTS: For the purposes of this study, non-cylindrical machined parts are those for which the major features of the part are not symmetrical about an axis of rotation. Examples of non-cylindrical machined parts include engine blocks, pump housings, etc.

<u>PROCESS PLANNING</u>: Process planning is basically the conversion of part design information into the "how-to" information needed to manufacture the part. The inputs, outputs, and major functions of process planning are shown in Figure 1.

The process planner starts with information about the part design, the quantity of the part to be produced and the starting material the part will be made from. The process planner then performs the following types of tasks:

- Determination of operations and sequences.
- Selection of machines and equipment needed to perform the operations.
- Selection of appropriate tools, gages, and fixtures.
- Determination of processing parameters (speeds, feeds, cutter paths, etc.) for each operation.



As defined here, process planning does not include NC part programming, production scheduling, planning and scheduling of material handling, tool design or plant layout.

Fig. 1. - Diagram of Process Planning

- Determination of time standards.
- Analysis of tolerances.
- Preparation of routing sheets which summarize the operations to be performed, the times required for each operation and the tooling and equipment needed.
- Preparation of detailed operation sheets which describe each operation. including sketches of the workpiece, identification of tools, fixtures, etc., tool layout and parts clamping, speeds and feeds, and special instructions for inspection, cleaning, etc.
- Preparation of tool orders for jigs, fixtures, gages, etc., which need to be fabricated or purchases.

Process planning, as we have defined it, does <u>not</u> include production scheduling, tool design. NC part programming or plant layout.

We recognize that our definition of process planning may not coincide with yours and that several of the tasks mentioned above may be performed by people who are not called "process planners". However, it was necessary to draw a boundary around process planning so that there will be some uniformity in the responses we receive.

Please read each question carefully before answering it. We realize that some of the information we are requesting will not be readily available. If you are unable to obtain the information we ask that you give us the best estimate that you can.

Occasionally companies have data available which do not fit the categories as we have defined them or which relate to production process planning in other areas (sheet metal fabrication, for example). In these cases, we would appreciate any data you could provide us regardless of form.

If you have any questions or need additional information, please feel free to call (collect) Dr. Hunter Shu (312/567-4615) or Mr. Jack Kornfeld (312/567-4635) at IITRI.

#### SECTION I - GENERAL INFORMATION

| 1. | What types of products are manufactured at your location?                                                                                                                              |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Please estimate the total number of employees at your location.                                                                                                                        |
| 3. | What is the approximate dollar value of products shipped from your plant annually?                                                                                                     |
|    | \$                                                                                                                                                                                     |
| 4. | What percentage of that value would you estimate represents cylindrical and non-cylindrical machined parts (even if they were part of an assembl or finished product)?                 |
|    | Cylindrical Machined Parts%                                                                                                                                                            |
|    | Non-Cylindrical Machined Parts%                                                                                                                                                        |
| 5. | If you purchase machined parts from outside sources, what would you estimate are the annual dollar values of your purchases?                                                           |
|    | Cylindrical Machined Parts \$                                                                                                                                                          |
|    | Non-Cylindrical Machined Parts \$                                                                                                                                                      |
| 6. | Approximately how many different machined parts are manufactured in your plant each year? (By "different", we mean different part numbers rather than serial numbers or total volume). |
|    | Cylindrical Machined Parts #                                                                                                                                                           |
|    | Non-Cylindrical Machined Parts #                                                                                                                                                       |
| 7. | Approximately how many new machined parts (new part numbers) are introduced into your plant each year?                                                                                 |
|    | Cylindrical Machined Parts#                                                                                                                                                            |
|    | Non-Cylindrical Machined Parts #                                                                                                                                                       |
| 8. | What is the approximate total volume of machined parts manufactured in your plant each year?                                                                                           |
|    | Cylindrical Machined Parts #                                                                                                                                                           |
|    | Non-Cylindrical Machined Parts #                                                                                                                                                       |

9. Considering the total number of batches or production runs you make each year for machined parts, what percentage are batches of less than 100 units, batches of 100-1000 units, and batches of over 1000 units?

|            | Cylindrical<br>Machined Parts | Non-Cylindrical<br>Machined Parts |
|------------|-------------------------------|-----------------------------------|
| Batch Size |                               |                                   |
| 1-100      | %                             | %                                 |
| 100-1000   | /o                            | %                                 |
| over 1000  | <u> </u>                      | %                                 |
|            | 100%                          | 100%                              |

10. Considering the number of batches made for each machined part during a year, what percentage of the parts only have 1 batch made per year, 2 to 10 batches, and over 10 batches?

|                     | Cylindrical<br>Machined Parts | Non-Cylindrical<br>Machined Parts |
|---------------------|-------------------------------|-----------------------------------|
| No. of Batches/Year |                               |                                   |
| 1                   | %                             | %                                 |
| 2-10                |                               | %                                 |
| Over 10             | o/<br>/6                      | %                                 |
|                     | 100%                          | 100%                              |

11. Please estimate the percentage of machined parts manufactured in your plant which have less than 10 operation numbers per process plan, 10 to 25 operation numbers, and more than 25 operation numbers.

|                   | Cylindrical<br>Machined Parts | Non-Cylindrical Machined Parts |
|-------------------|-------------------------------|--------------------------------|
| No. of Operations |                               |                                |
| 1-10              | %                             | %                              |
| 10-25             |                               | %                              |
| more than 25      |                               | %                              |
|                   | 100%                          | 100%                           |

|                                                                        |           | drical<br>ned Parts |              | lindrica<br>ed Parts   |
|------------------------------------------------------------------------|-----------|---------------------|--------------|------------------------|
| em Implementation:                                                     | Cost (\$) | Time<br>(Months)    | Cost<br>(\$) | Title<br>(Months       |
| Hardware (if necessary)                                                |           |                     |              |                        |
| Establish initial data files                                           |           |                     | \            | <del></del>            |
| Train personnel                                                        |           |                     |              | <del> </del>           |
| Test system                                                            |           |                     |              | _                      |
| Other (Please specify)                                                 |           |                     |              |                        |
|                                                                        |           | ndrical             |              | Cylindric<br>ined Part |
| stem Maintenance                                                       |           | (\$/Year)           | Cost         | (\$/Year)              |
| <ul> <li>Computer charges and program maintenance</li> </ul>           |           |                     | )            |                        |
| • Updating of data files                                               |           |                     |              |                        |
| • Other (Please specify)                                               | _         |                     |              |                        |
|                                                                        | '         |                     | l            |                        |
| <ol> <li>Please list what you feel would<br/>such a system.</li> </ol> | be major  | obstacles to        | implement    | ing                    |

31. Assuming such a system is operating in your plant, please indicate a percentage increase or decrease in the following cost areas over manual process planning for machined parts. (You may specify a range, but please keep it as narrow as possible.)

|                                   | Cylindrical<br>Machined Parts | Non-Cylindrical Machined Parts |
|-----------------------------------|-------------------------------|--------------------------------|
| Process Planning                  | %                             | *                              |
| Determining Operation Sequences   | (%)                           | (%)                            |
| Machine/Equipment Selection       | (%)                           | (%)                            |
| Too: Selection                    | (%)                           | (                              |
| Determining Processing Parameters | (                             | (%)                            |
| Generating Time Standards         | (%)                           | (                              |
| Performing Tolerance Analyses     | (%)                           | (                              |
| Preparing Documentation           | (%)                           | (                              |
| Material                          | %                             |                                |
| Direct Labor                      | %                             | - 2                            |
| Scrap and Rework                  | %                             | ·                              |
| Tooling                           | %                             |                                |
| Work-in-Process Inventory         |                               |                                |
| Other (Please specify)            |                               | الم                            |

32. Considering a scale of +2 to -2, where +2 = significant improvement, +1 = slight improvement, 0 = no change, -1 = slightly negative impact and -2 = significantly negative impact, please indicate the impact such a system would have over manual process planning methods by putting the appropriate number next to each item listed below.

| Impact                      | Impact                       |
|-----------------------------|------------------------------|
| Production Leadtime         | Critical Labor Skills        |
| Process Planning Leadtime   | Raw Material Standardization |
| Machine Utilization         | Producibility of Parts       |
| Product Quality             | Plant Layout                 |
| Direct Labor Utilization    | Material Handling            |
| Uniformity of process plans | Production Scheduling        |
| Cost Estimating Procedures  | Capacity Planning            |
| Make/Buy Decisions          | Others (Please specify)      |
| Product Standardization     |                              |

specify details of a particular operation or if the data bases are incomplete and the system needs inputs from him to proceed. The final process plan, including routing sheets and detailed operation sheets is then stored in the data for future use.

3. A process planner can also use the system to retrieve and to modify process plans which have been previously generated and stored in the data base.

In summary, at this level of automation, the computer may be used not only for the retrieval and up-dating of existing process plans, but also is capable of generating a feasible, efficient process plan by using internally stored data and logic.

#### System 3

#### Semi-Automatic System with Computer-Aided Operation Determination

This system is considerably different from the previous system in several respects. One of the major differences is that this system has a "generative" process planning capability in that it contains a certain degree of decision logic concerning process planning, thereby enabling the system to produce most or all of the process planning without relying on the existence of a standard process plan or a process plan for a similar part (although this system could also operate in the same mode as the previous system if desired).

The main features of this system are described below.

- 1. The system has the following data bases:
  - a) A machine/equipment data base which contains information concerning a machine's physical characteristics, cutting capabilities, tolerance ratings and operating costs.
  - b) A tooling data base which contains information on tool geometry, material, application and cost.
  - c) A machinability data base which contains information on speeds, feeds, tool life, etc. This data base has two parts, one for "look-up" data on machinability, and one for machinability equations which are used to "optimize" processing parameters.
  - d) A data base containing process decision rules which provide the system with the logic needed to generate process plans. In general, these rules would be developed from past experience in your plant.
  - e) Stored process plans for previously planned parts.
- 2. In operation of the system, a process planner would sit down at a CRT terminal and input data on the machined part design (e.g., geometry, tolerances, surface finish, hardness, concentricity, etc.), the starting material (e.g., type, geometry, etc.) and the lot size. The computer system would then generate a process plan using the process decision rules to select the machine or equipment type, select tooling and fixtures, and determine "optimum" machine/tool path combinations for each metal removal operation. The system also calculates time standards, inserts operations for heat treating, cleaning, inspection, etc., and produces sketches of the workpiece and tooling suitable for inclusion in the operation sheets. The process planner can interact with the system if he wishes to override the decision logic and

what you feel would be realistic costs and times if your company installed and maintained such a system for machined parts. (You may attach additional sheets containing assumptions and calculations if you like.) Cylindrical Non-Cylindrical Machined Parts Machined Parts Cost Time Tire Cost System Implementation: (\$) (Months) (\$) (Months) • Hardware (if necessary) • Establish initial data files • Train personnel • Test system • Other (Please specify) Cylindrical Non-Cylindrical Machined Parts Machined Parts System Maintenance Cost (\$/Year) Cost (\$/Year) • Computer charges and program maintenance • Updating of data files • Other (Please specify) 30. Please list what you feel would be major obstacles to implementing such a system.

29. Assuming that reliable software, good user documentation, and a training source were available for the system, please estimate

27. Assuming such a system is operating in your plant, please indicate a percentage increase or decrease in the following cost areas ever manual process planning for machined parts. (You may specify a range, but please keep it as narrow as possible.)

|                                   | Cylindrical Machined Parts | Non-Cylindrical<br>Machined Parts     |
|-----------------------------------|----------------------------|---------------------------------------|
| Process Planning                  |                            |                                       |
| Determining Operation Sequences   | (%)                        | (                                     |
| Machine/Equipment Selection       | (%)                        | (%)                                   |
| Tool Selection                    | (%)                        | (%)                                   |
| Determining Processing Parameters | (%)                        | (%)                                   |
| Generating Time Standards         | (%)                        | (%)                                   |
| Performing Tolerance Analyses     | (%)                        | (                                     |
| Preparing Documentation           | (%)                        | (%)                                   |
| Material                          | %                          | 2                                     |
| Direct Labor                      | %                          | · · · · · · · ·                       |
| Scrap and Rework                  | %                          | •/                                    |
| Tooling                           | %                          | ;                                     |
| Work-in-Process Inventory         | %                          | , , , , , , , , , , , , , , , , , , , |
| Other (Please specify)            | %                          |                                       |

28. Considering a scale of +2 to -2, where +2 = significant improvement, +1 = slight improvement, 0 = no change, -1 = slightly negative impact and -2 = significantly negative impact, please indicate the impact such a system would have over manual process planning methods by putting the appropriate number next to each item listed below.

| Impact                      | Impact                       |
|-----------------------------|------------------------------|
| Production Leadtime         | Critical Labor Skills        |
| Process Planning Leadtime   | Raw Material Standardization |
| Machine Utilization         | Producibility of Parts       |
| Product Quality             | Plant Layout                 |
| Direct Labor Utilization    | Material Handling            |
| Uniformity of process plans | Production Scheduling        |
| Cost Estimating Procedures  | Capacity Planning            |
| Make/Buy Decisions          | Others (Please specify)      |
| Product Standardization     |                              |

#### System 2

#### Interactive System with Computer-Aided Cutting Parameter Determination

This system is essentially the same as the previously described system except that it has been up-graded in the following areas:

- A computerized database, in conjunction with appropriate database management software will allow the retrieval of:
  - a) A list of parts belonging to the same part family (i.e., a list of all parts having the same Group Technology code).
  - b) A skeletal (or standard) sequence of operations for a particular Group Technology code.
  - c) A process plan for an existing part number.
- 2. An interactive graphics (CRT terminal) capability to enhance a skeletal sequence of operations retrieved by a Group Technology code or modify an existing process plan for a particular part number. The editing consists of:
  - a) Entering or modifying production demand data (e.g., job no., lot size, etc.)
  - b) Deleting and adding operations and associated data on a routine sheet.
  - c) Detailed planning for any operation on an operation sheet.
- 3. The edited results are the inputs to cutting parameter determination subroutines. Typically, the best feeds and speeds of a material removal operation with known machine and tooling will be determined and the associated cutting time computed. Such determination may be through either a table look-up in a machinability database or an analysis of empirical equations for metal removal. These parameter values, as well as other processing parameter values (e.g., heat treating temperature and time, etc.), may be reviewed by the process planner and modified if desired.
- The completed process plan is then stored in the database under its part number for future reference.
- The computer is used in the generation of shop documents as described in the previous system.

At this level of automation, the computer is used to (a) assist in retrieving process plans that are closely related to the part in question; (b) fascilitate interactive editing (modifying and enriching) the retrieved process plan; (c) determine best metal cutting parameters and associated time; and (d) produce needed documents for shop use (excluding sketches, which must still be prepared manually).

25. Assuming that reliable software, good user documentation, and a training source were available for the system, please estimate what you feel would be realistic costs and times if your company installed and maintained such a system for machined parts. (You may attach additional sheets containing assumptions and calculations if you like.) Cylindrical Non-Cylindrical Machined Parts Machined Parts Cost Time Time Cost System Implementation: (\$) (Months) (Months) (\$) • Hardware (if necessary) • Establish initial data files • Train personnel • Test system • Other (Please specify) Cylindrical Non-Cylindrical Machined Parts Machined Parts System Maintenance Cost (\$/Year) Cost (\$/Year) • Computer charges and program maintenance • Updating of data files • Other (Please specify) 26. Please list what you feel would be major obstacles to implementing such a system.

23. Assuming such a system is operating in your plant, please indicate a percentage increase or decrease in the following cost areas over manual process planning for machined parts. (You may specify a range, but please keep it as narrow as possible.)

|                                   | Cylindrical<br>Machined Parts | Non-Cylindrical<br>Machined Parts      |
|-----------------------------------|-------------------------------|----------------------------------------|
| Process Planning                  |                               | %                                      |
| Determining Operation Sequences   | (                             | (%)                                    |
| Machine/Equipment Selection       | (%)                           | (%)                                    |
| Tool Selection                    | (%)                           | (%)                                    |
| Determining Processing Parameters | (%)                           | (%)                                    |
| Generating Time Standards         | (%)                           | (%)                                    |
| Performing Tolerance Analyses     | (%)                           | (%)                                    |
| Preparing Documentation           | (                             | (%)                                    |
| Material                          | %                             | ×                                      |
| Direct Labor                      | %                             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| Scrap and Rework                  | %                             | *                                      |
| Tooling                           | %                             | \                                      |
| Work-in-Process Inventory         | %                             | <u> </u>                               |
| Other (Please specify)            | <u> </u>                      | 2                                      |

24. Considering a scale of +2 to -2, where +2 = significant improvement, +1 = slight improvement, 0 = no change, -1 = slightly negative impact and -2 = significantly negative impact, please indicate the impact such a system would have over manual process planning methods by putting the appropriate number next to each item listed below.

| <u>Impact</u>               | Impact                       |
|-----------------------------|------------------------------|
| Production Leadtime         | Critical Labor Skills        |
| Process Planning Leadtime   | Raw Material Standardization |
| Machine Utilization         | Producibility of Parts       |
| Product Quality             | Plant Layout                 |
| Direct Labor Utilization    | Material Handling            |
| Uniformity of process plans | Production Scheduling        |
| Cost Estimating Procedures  | Capacity Planning            |
| Make/Buy Decisions          | Others (Please specify)      |
| Product Standardization     |                              |

#### SECTION II - IMPACT OF COMPUTER AIDED PROCESS PLANNING

In this section, we briefly describe three types of computer aided process planning systems. Please read the description of each system and then estimate the savings such a system would provide over a manual system and the cost of implementing and maintaining such a system in your plant.

#### System 1

#### Computer-Aided Group Technology Code Management and Document Generation

At this level of automation, the process planner does pretty much what he used to do manually except in two respects:

- 1. Every machined part, distinguishable by its part number, is also assigned a Group Technology Code which characterizes the geometrics and machining requirements of various machined parts into part families. An experienced process planner may assign a G.T. code to a given part by inspection of the blueprint. Computer maintained Group Technology code data files, in the form of listings, are then examined to ascertain whether the process plan of a given part:
  - a) is currently available;
  - b) can be prepared by modifying an existing process plan for a similar part; or
  - c) must be created from scratch because the part belongs to none of the known part families.

The process planner will then take maximum advantage of the process information uncovered in his manual effort to produce a process plan for the part. The Group Technology code data files are up-dated periodically to reflect current availability of similar process plans.

- 2. Once the process plan of a given part is manually prepared, the machining and material processing steps may be coded into the computer (by keypunch operators working from a coding sheet) which, in turn, produces useful hard copy documents for the shops. These documents may be:
  - a) Routing sheets containing a summary of the operations, machines and equipment needed, jigs/fixtures and cutter types, and standard times for each operation.
  - b) Operation sheets containing detailed instructions for each operation such as cutter path, feeds, speeds and/or material processing parameters. If graphical aids are needed for these operations, these aids are manually generated.

At this level of automation, therefore, the process planner is (a) assisted in locating some process plan that is closely related to the part in question if such a plan exists and (b) relieved of much of the tedium of producing documents used in the production of the part.

| tion, computer support, if an                                    | propriate, etc.) (See         | , material, reprodu |
|------------------------------------------------------------------|-------------------------------|---------------------|
| ,                                                                | propr <b>act</b> , 0001, (000 | 400011011           |
|                                                                  | Cylindrical                   | Non-Cylindrica      |
|                                                                  | Machined Parts                | Machined Parts      |
| Prepare plan for a new part                                      | \$                            | \$                  |
| Modify an existing plan                                          | \$                            | \$                  |
| Prepare plan for study purpos                                    | es \$                         | \$                  |
|                                                                  |                               |                     |
|                                                                  | <u> </u>                      |                     |
| For the machined parts you man approximate percentages for the   |                               |                     |
| information is quite important                                   |                               |                     |
| process planning, so please be                                   | e as accurate as possi        | ble.)               |
|                                                                  | Cylindrical                   | Non-Cylindrical     |
|                                                                  | Machined Parts                | Machined Parts      |
| Material                                                         |                               |                     |
|                                                                  |                               |                     |
| Direct Labor<br>(Wages + Fringe Benefits)                        |                               |                     |
| Tooling<br>(Perishable + Amortized<br>Non-perishable)            | %                             | 7,                  |
| Scrap and Rework                                                 | *                             | z                   |
| Process Planning                                                 | %                             | 7,                  |
| Other (Overhead, Profit,                                         | 7.                            | 2                   |
| etc.)                                                            | ~                             | ~                   |
|                                                                  | 100%                          | 100%                |
| Approximately what is the avermachined parts manufactured in     |                               | process inventory f |
| Cylindric                                                        | cal Machined Parts            | \$                  |
| Non-Cylindric                                                    | cal Machined Parts            | \$                  |
| Does your plant use computer a<br>technology for areas other tha |                               | ing and/or group    |
|                                                                  |                               | YES NO              |
|                                                                  |                               | 1                   |

16. Please estimate the cost percentages for process planning of a typical new machined part to be manufactured in your plant.

|                                                                                                                           | Percent of Process Planning Costs |                                   |  |  |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|--|--|
| PLANNING FUNCTION                                                                                                         | Cylindrical<br>Machined Parts     | Non-Cylindrical<br>Machined Parts |  |  |
| • Determine operation sequences                                                                                           | %                                 |                                   |  |  |
| <ul> <li>Select machines and equipment</li> </ul>                                                                         |                                   | %                                 |  |  |
| <ul> <li>Select tooling, gages,<br/>etc.</li> </ul>                                                                       | 7/2                               | %                                 |  |  |
| <ul> <li>Determine processing<br/>parameters (speeds,<br/>feeds, etc.) (Please<br/>exclude NC part programming</li> </ul> | 2)%                               | %                                 |  |  |
| Determine time standards                                                                                                  |                                   | %                                 |  |  |
| Analyze tolerances                                                                                                        | %                                 | %                                 |  |  |
| • Prepare routing sheets                                                                                                  |                                   | %                                 |  |  |
| • Prepare operations sheets                                                                                               | %                                 | %                                 |  |  |
| • Prepare cool orders                                                                                                     | %                                 | <u> </u>                          |  |  |
| • Other (Please specify)                                                                                                  | %                                 | %                                 |  |  |
|                                                                                                                           | 100%                              | 100%                              |  |  |

17. Please estimate the number of man-hours, cost and leadtime in days to prepare a typical process plan for a new machined part having the following number of operations. (Please exclude NC part programming.)

|                   |              | Cylindrical<br>Machined Parts |                         |              | Non-Cylindrical<br>Machined Parts |                         |  |
|-------------------|--------------|-------------------------------|-------------------------|--------------|-----------------------------------|-------------------------|--|
| No. of Operations | Man<br>Hours | Cost<br>(\$)                  | Lead-<br>time<br>(Days) | Man<br>Hours | Cost<br>(\$)                      | Lead-<br>time<br>(Days) |  |
| 10                |              |                               |                         |              | ·                                 |                         |  |
| 25                |              |                               |                         |              |                                   |                         |  |
| 50                |              |                               |                         |              |                                   |                         |  |

14. We would like to know what process planning functions are performed in your plant for machined parts and what computer aids are available. Please place a check in the appropriate box if you are performing the function. If you are planning to implement computer techniques to assist in any of these functions within the next 2 years, please indicate by putting a "P" in the appropriate box.

|                                                                                             | MANUALLY | SOME<br>AUTOMATION                  | FULLY<br>AUTOMATED |
|---------------------------------------------------------------------------------------------|----------|-------------------------------------|--------------------|
| PLANNING FUNCTIONS                                                                          |          | ck if currently<br>Insert "P" is co |                    |
| <ul><li>Determine operation<br/>sequences</li></ul>                                         | !        |                                     | <del> </del>       |
| Select machines and equipment                                                               | <u> </u> | ·                                   |                    |
| Select tooling, gages, etc.                                                                 | 1        |                                     |                    |
| Determine processing parameters (speeds, feeds, etc.) (Please exclude NC part programming.) |          |                                     |                    |
| Determine time standards                                                                    |          |                                     |                    |
| Analyze tolerances                                                                          |          |                                     |                    |
| Prepare routing sheets                                                                      |          |                                     |                    |
| Prepare operations sheets                                                                   |          |                                     |                    |
| Prepare tool orders                                                                         |          |                                     |                    |
| Conduct design/<br>producibility reviews                                                    |          |                                     |                    |
| Other (please specify)                                                                      |          |                                     | !                  |
|                                                                                             |          | <del> </del>                        |                    |

| 15. | If you are currently using some form of computer assisted process planning  |
|-----|-----------------------------------------------------------------------------|
|     | for machined parts, what are the approximate annual maintenance and support |
|     | costs? (Please exclude NC part programming.)                                |

| Ś |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

12. One of the factors influencing whether or not a company would implement a computer assisted process planning system may be the degree of similarity between the parts being manufactured. Part types or families which are basically similar from the standpoint of design characteristics and manufacturing processes required may be more suited to computer assisted process planning than parts which are totally different.

Keeping this in mind, please estimate what percentage of machined parts manufactured in your plant are: (1) <u>basically similar</u> and could be grouped into part families having more than 5 parts per family; (2) <u>somewhat similar</u> and could be grouped into parts families having between 2 and 5 parts per family; and (3) <u>totally different</u>.

13. Approximately how many process plans for machined parts are prepared annually in each of the following categories?

|                                                                                                                             | Cylindrical<br>Machined Parts | Non-Cylindrical Machined Parts |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------|
| Process plans for new parts                                                                                                 | #                             | #                              |
| Process plans for parts manufactured previously but which must be modified because of changes in part design or processing. | #                             | #                              |
| Process plans for analyses (Make/Buy studies, produc-<br>ibility studies, cost<br>estimates, etc.)                          | #                             | #                              |
| Other (please specify)                                                                                                      | #                             |                                |
| TOTAL                                                                                                                       | #                             | #                              |

|       | (If different from the attached label) |
|-------|----------------------------------------|
|       | NAME                                   |
|       | TITLE                                  |
|       | ORGANIZATION                           |
|       | ADDRESS                                |
|       |                                        |
|       |                                        |
| NOME. |                                        |

Thank you for your cooperation. It is sincerely appreciated. Please return this form in the attached, self-addressed envelope to:

Dr. Hunter Shu
Scientific Advisor
Management & Computer Sciences Division
IIT Research Institute
10 West 35th Street
Chicago, Illinois 60616

#### APPENDIX B

#### RESULTS FROM DATA REQUEST

This appendix contains an analysis of the responses to the questions in the data survey.

A total of 21 data requests were filled out and returned to IITRI. By industry type, the responses were as follows:

| Missile Prime and Subcontractors | 4  |
|----------------------------------|----|
| Other Aerospace Companies        | 8  |
| Other Types of Manufacturers     | 9  |
| TOTAL                            | 21 |

All of the data requests returned were not completely filled out. However, for most questions a majority of the responsees provided answers.

The approach used to analyze the data was to first develop a "spread sheet" containing columns for each data element. The data request had approximately 330 possible answers. In addition, the spread sheet was also used as a means of performing numerous intermediate calculations on the data as described in Appendix C. The intermediate calculations added to the number of columns bring the total to around 600.

The spread sheet was laid out on 14 large poster boards (approximately  $3' \times 4'$  each), and then rows were laid out corresponding to each data survey received.

Upon receipt of the data surveys, each was reviewed for consistency and completeness. Where obvious misunderstandings or inconsistencies were apparent, the respondee was contacted for clarification or the particular answer was considered a no response.

After the initial review of the data surveys, the data was manually entered onto the spread sheet and again checked for accuracy. Although this turned out to be a large effort, it paid off in the long-run because it displayed all of the data in a way that variations between responses and the interrelationships between columns could easily be assessed visually.

Once the data had been transferred to the spread sheets and was verified, the intermediate calculations described in Appendix C were then made for each data survey response. These calculations were then rechecked to assure accuracy.

Once these steps had been taken, the data for each column was fed into a computer program for analysis. The outputs from the computer analysis were the number of observations, means, standard deviations, minimum observations, maximum observations, and histograms for the data points. These were done by industry group and for the total number of responses.

The outputs from the computer program are contained in this appendix. Each page has a title which is keyed to a question number in the data request.

It should be pointed out that the scale on the horizontal axes of all histograms are in units of standard deviations from the mean for the total number of observations. Thus the histograms for the industry grouping are to the same scale as those for all responses and are <u>not</u> scaled in terms of standard deviations from the mean for the sub-groupings. By keeping the scaling for the subgroupings the same as for all responses, one is able to visually detect major shifts in subgroups from the total population.

In some cases, histograms were not appropriate as a means of representing the data and in those instances tabular summaries have been provided.

Some more advanced statistical analyses, such as regression and correlation analyses and scatter plots, were attempted but did not prove to be particularly meaningful. Because of resource constraints on the program, these approaches were not pursued further.

No attempt was made to determine confidence levels for the data because of the small sample size, the non-randomness in selecting the sample, the incompleteness of the data, and the wide variations in many of the answers received.

As far as the variations in the data are concerned, this can be attributed to many factors: the size of the company and the type of products; the current business trends the company was experiencing; differences between respondees in their interpretation of the terminology and questions; and, in some cases, a lack of concrete information which could be used as a basis for the response.

#### Q2 - TOTAL NUMBER OF EMPLOYEES

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = 2800

STD. DEV. = 1857

MIN. OBS. = 1000

MAX. OBS. = 4500

#### OTHER AEROSPACE

NO. OBS. = 8

MEAN = 5988

STD. DEV. = 3233

MIN. OBS. = 1800

MAX. OBS. = 10000

#### OTHER INDUSTRY

NO. OBS. = 9

MEAN = 4742

STD. DEV. = 7010

MIN. 085. = 130

MAX. OBS. = 19600

- 44 - 44 4 4 4

#### ALL RESPONSES

**OBSERVATIONS** 

NO. 085. = 21

MIN. 08S. = 130

MAX. OBS. = 19600

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 4847

STD. DEV. = 5019

Q3 - APPROXIMATE DOLLAR VALUE OF PRODUCTS SHIPPED ANNUALLY.

#### MISSILE PRIMES & SUBS

NO. OBS. = 3

**MEAN** = \$50 mil.

STD. DEV. = \$10 mil.

MIN. OBS. = \$40 mil.

MAX. OBS. = \$60 mil.



#### OTHER AEROSPACE

NO. OBS. = 5

MEAN = \$268 mil.

STD. DEV. = \$129 mil.

MIN. OBS. = \$125 mil.

MAX. OBS. = \$400 mil.



#### OTHER INDUSTRY

NO. 08S. # 8

MEAN = \$178 mil.

STD. DEV. = \$292 mil.

MIN. OBS. = \$2 mil.

MAX. OBS. = \$800 mil.



### ALL RESPONSES

NO. 085. \* 16

MIN. OBS. = \$2 mil.

MAX. OBS. = \$800 mil.



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$182 mil.

STD. DEV. ≈ \$224 mil.

Q4 - PERCENTAGE OF VALUE OF PRODUCTS SHIPPED WHICH REPRESENTS CYLINDRICAL MACHINED PARTS (EVEN IF THEY WERE PART OF AN ASSEMBLY OR FINISHED PRODUCT)

#### MISSILE PRIMES & SUBS

**NO. 08**S. = 3

MEAN = 12.1%

STD. DEV. = 11.2%

MIN. OBS. = 5%

MAX. DBS. = 25%

--;---;---;---;---;---;---;---;---; -5 -4 -3 -2 -1 0 1 2 3 4 5

#### OTHER AEROSPACE

MEAN = 11.1%

STD. DEV. \* 10.3%

MIN. OBS. = 0.5%

MAX. OBS. = 24%

#### OTHER INDUSTRY

NO. 08S. = 5

MEAN = 21.8%

STD. DEV. = 17.9%

MIN. 08S. = 1%

MAX. 085. - 42%

OBSERVATIONS

#### ALL RESPONSES

NO. 08S. = 13

MIN. 085. - 0.5%

MAX. 085. - 42%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 15.5%

STD. DEV. = 13.8%

Q4 - PERCENTAGE OF VALUE OF PRODUCTS SHIPPED WHICH REPRESENTS NON-CYLINDRICAL MACHINED PARTS (EVEN IF THEY WERE PART OF AN ASSEMBLY OR FINISHED PRODUCT)

### MISSILE PRIMES & SUBS

NO. 08S. = 3

MEAN = 10.3%

STD. DEV. = 4.6%

MIN. OBS. = 5.9%

MAX. 08S. = 15%



### OTHER AEROSPACE

NO. 0BS. = 5

MEAN = 10.1%

STD. DEV. = 9.8%

MIN. OBS. = 2.0%

MAX. OBS. = 26%

### OTHER INDUSTRY

MO. OBS. = 5

MEAN = 18.6%

STD. DEV. = 14.5%

MIN. OBS. = 1.0%

MAX. OBS. = 40%

**OBSERVATIONS** 

### ALL RESPONSES

NO. 08S. = 13 MIN. 08S. = 17

MAX. 085. = 40%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 13.4%

STD. DEV. = 11.1%

## Q5 - ANNUAL DOLLAR VALUE OF CYLINDRICAL PARTS PURCHASED FROM OUTSIDE SOURCES

### MISSILE PRIMES & SUBS

MO. 08S. = 3

MEAN = \$2.0 MIL

STD. DEV. = \$1.1 MIL

MIN. 085. = \$0.8 MIL

MAX. 085. = \$3.0 MIL



### OTHER AEROSPACE

NO. 08S. = 5

MEAN - \$1.5 MIL

STD. DEV. = \$2.0 MIL

MIN. 085. = \$0.02 MIL

MAX. 085. = \$4.0 MIL



### OTHER INDUSTRY

NO. OBS. = 7

MEAN = \$11.4 MIL

STD. DEV. = \$26.8 MIL

MIN. 085. = \$ 0

MAX. 08S. = \$72 MIL



...

OBSERVATIONS

### ALL RESPONSES

NO. 085. = 15

MIN. 085. = \$0

MAX. 08S. . \$72 MIL



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$6.2 HIL

STD. DEV. = \$18.3 MIL

Q5 - ANNUAL DOLLAR VALUE OF NON-CYLINDRICAL PARTS PURCHASED FROM OUTSIDE SOURCES

### MISSILE PRIMES & SUBS

NO. OBS. = 3

**MEAN** = \$1.5 mil.

**STD. DEV.** = \$0.6 mil.

MIN. OBS. = \$1.0 mil.

MAX. OBS. = \$2.1 mil.



### OTHER AEROSPACE

NO. 0BS. = 5

**MEAN** = \$1.8 mil.

**STD. DEV.** = \$2.5 mil.

MIN. OBS. = \$0.08 mil.

MAX. OBS. = \$6.0 mil.



### OTHER INDUSTRY

NO. 08S. = 7

**MEAN** = \$5.0 m11.

STD. DEV. = \$11.5 mil.

MIN. OBS. = \$0.01 mil.

MAX. QBS. = \$31 mil.



### ALL RESPONSES

NO. 08S. = 15

MIN. OBS. = \$0.01 mil.

MAX. 085. = \$31 mil.

SERVATION 1 2 3 4 5

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$3.3 mil.

STD. DEV. = \$7.8 mil.

Q6 - APPROXIMATE NUMBER OF DIFFERENT TYPES OF CYLINDRICAL PARTS (DIFFERENT PART NUMBERS)
MANUFACTURED IN-HOUSE PER YEAR

### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = 877

STD. DEV. = 571

MIN. OBS. = 380

MAX. 08S. = 7500



### OTHER AEROSPACE

NO. 085. = 8

MEAN = 3400

STD. DEV. = 4826

MIN. 08S. - 140

MAX. OBS. = 15000



### OTHER INDUSTRY

NO. 08S. = 7

MEAN = 17204

STD. DEV. = 28451

MIN. OBS. = 300

MAX. 08S. = 80000





NO. 08S. = 18

MIN. OBS. = 140

MAX. 085. . 80000



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 8348

STD. DEV. = 18681

Q6 - APPROXIMATE NUMBER OF DIFFERENT TYPES OF NON-CYLINDRICAL PARTS (DIFFERENT PART NUMBERS)
MANUFACTURED IN-HOUSE PER YEAR



NO. OBS. \* 4

**MEAN** = 1070

STD. DEV. \* 1291

MIN. OBS. = 350

MAX. OBS. = 3000



### OTHER AEROSPACE

**NO. 08**S. = 8

MEAN = 5034

STD. DEV. = 3292

MIN. OBS. = 440

MAX. OBS. = 9600



### -OTHER INDUSTRY

NO. DBS. = 7

MEAN = 9624

STD. DEV. = 11971

MIN. OBS. = 300

MAX. 08S. . 35000



### ALL RESPONSES

**MO. 08**S. **≠** 19

MIN. OBS. = 300 MAX. OBS. = 35000



### STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN =

5890

STD. DEV. = 7947

U7 - APPROXIMATE NUMBER OF NEW CYLINDRICAL MACHINED PARTS (NEW PART NUMBERS) INTRODUCED INTO THE PLANT EACH YEAR

### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = 195

STD. DEV. = 57

MIN. OBS. = 136

MAX. OBS. = 250



### OTHER AEROSPACE

NO. 085. = 8

MEAN = 659

STD. DEV. = 768

MIN. OBS. = 30

MAX. 08S. # 2000



### OTHER INDUSTRY

NO. 085. = 7

MEAN = 1848

STD. DEV. = 2694

MIN. OBS. = 10

MAX. OBS. = 7250



### ALL RESPONSES

NO. 085. - 18

MIN. 085. = 10

OBSERVATIONS

MAX. 085. = 7250

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 1044

STD. DEV = 1808

Q10 - PERCENTAGE OF CYLINDRICAL PARTS WHICH HAVE GREATER THAN 10 BATCHES MADE PER YEAR

### MISSILE PRIMES & SUBS

NO. OBS. = 3

MEAN = 0%

STD. DEV. = 0%

MIN. OBS. = 0%

MAX. OBS. = 0%

### OTHER AEROSPACE

NO. OBS. = 8

MEAN = 27%

STD. DEV. = 35%

MIN. OBS. = 0%

MAX. OBS. = 100%

### OTHER INDUSTRY

NO. OBS. = 9

MEAN = 18%

STD. DEV. = 30%

MIN. OBS. = 0%

MAX. OBS. = 80%

ALL RESPONSES

NO. OBS. = 20 MIN. OBS. = 0% MAX. OBS. = 100%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 19% STD. DEV. = 30%

Q10 - PERCENTAGE OF NON-CYLINDRICAL PARTS WHICH HAVE BETWEEN 2 and 10 BATCHES MADE PER YEAR

### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = 60% STD. DEV. = 40% MIN. OBS. = 20%

= 100%

### OTHER AEROSPACE

MAX. OBS.

NO. OBS. = 8 MEAN = 66°. STD. DEV. = 34°. MIN. OBS. = 0°. MAX. OBS. = 100°

### OTHER INDUSTRY

NO. OBS. = 9

MEAN = 62°

STD. DEV. = 32°

MIN. OBS. = 15°

MAX. OBS. = 100°

# ALL RESPONSES

**OBSERVATIONS** 

NO. OBS. ≈ 20 MIN. OBS. ≈ 0% MAX. OBS. ≈ 100%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 63%

STD. DEV. = 32%

Q10 - PERCENTAGE OF CYLINDRICAL PARTS WHICH HAVE BETWEEN 2 AND 10 BATCHES MADE PER YEAR

### MISSILE PRIMES & SUBS

NO. OBS. = 3
MEAN = 63%
STD. DEV. = 40%
MIN. OBS. = 20%
MAX. OBS. = 100%



### OTHER AEROSPACE

NO. OBS. # 8

MEAN # 67%

STD. DEV. # 34%

MIN. OBS. # 0%

MAX. OBS. # 100%



### OTHER INDUSTRY

NO. OBS.

MEAN = 61% STD. DEV. = 30% MIN. OBS. = 15% MAX. OBS. = 100%



# ALL RESPONSES

NO. OBS. = 20 MIN. OBS. = 0% MAX. OBS. = 100%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 63%

STD. DEV. = 31%

### 010 - PERCENTAGE OF NON-CYLINDRICAL PARTS WHICH HAVE ONLY 1 BATCH MADE PER YEAR

### MISSILE PRIMES & SUBS

MO. OBS. = 3 MEAN = 40% STD. DEV. = 40%

MIN. OBS. = 0%

MAX. 08S. = 80%



### OTHER AEROSPACE

NO. OBS. = 8

**MEAN** = 6%

**STD. DEV.** = 10%

MIN. 08S. = 0%

MAX. OBS. = 22%



### OTHER INDUSTRY

NO. OBS. = 9

MEAN = 16%

STD. DEV. = 18%

MIN. 085. = 0%

MAX. OBS. = 50%



### ALL RESPONSES

**NO. 085.** - 20

MIN. 085. \* 02

MAX. 085. # 80%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 15%

STD. DEV. = 22%

# Q10 - PERCENTAGE OF CYLINDRICAL PARTS WHICH HAVE ONLY 1 BATCH MADE PER YEAR

### MISSILE PRIMES & SUBS

NO. 085. MEAN 40% STD. DEV. 0%

MIN. OBS. **=** 80%

MAX. OBS.



### OTHER AEROSPACE

NO. OBS. MEAN

STD. DEV. × 0% MIN. OBS.

**= 27%** MAX. OBS.



### OTHER INDUSTRY

NO. OBS.

**= 16%** MEAN **= 15%** 

STD. DEV. MIN. OBS. . 0%

**=** 50% MAX. OBS.



### ALL RESPONSES

= 20 NO. OBS. = 0% MIN. OBS. = 80% MAX. OBS.



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 15%

OBSERVATIONS

STD. DEV. = 20%

Q9 - PERCENTAGE OF NON-CYLINDRICAL PARTS WHICH ARE MANUFACTURED IN BATCHES OF GREATER THAN 1000 PARTS PER BATCH

### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = 0.3% STD. DEV. = 0.6% MIN. OBS. = 0%

= 1%

### OTHER AEROSPACE

MAX. OBS.

NO. OBS. ≈ 8

MEAN = 1.3°

STD. DEV. ≈ 1.8%

MIN. OBS. ≈ 0%

MAX. CBS. ≈ 5%



### OTHER INDUSTRY

NO. OBS. = 9

MEAN = 6.2%

STD. DEV. = 11.1%

MIN. OBS. = 0%

MAX. OBS. = 30%





### ALL RESPONSES

NO. OBS. = 20 MIN. OBS. = 0% MAX. OBS. = 30%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 3.4% STD. DEV. = 7.7%

Q9 - PERCENTAGE OF CYLINDRICAL PARTS WHICH ARE MANUFACTURED IN BATCHES OF GREATER THAN 1000 PARTS PER BATCH

### MISSILE PRIMES & SUBS

NO. OBS. = 3

MEAN = 0.3%

STD. DEV. = 0.6%

MIN. OBS. = 0%

± 1%

### OTHER AEROSPACE

MAX. OBS.

NO. OBS. # 8 MEAN # 1.8% STD. DEV. # 2.1%

MIN. OBS. = 0% MAX. OBS. = 5%

### OTHER INDUSTRY

MAX. OBS.

NO. OBS. = 9
MEAN = 6.1%
STD. DEV. = 11.1%
MIN. OBS. = 0%

**=** 30%

5 -4 -3 -2 -1 0 1 5 3 4 5



### ALL RESPONSES

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 3.5% STD. DEV. = 7.7%

Q9 - PERCENTAGE OF NON-CYLINDRICAL PARTS WHICH ARE MANUFACTURED IN BATCHS of 100 to 1000 UNITS PER BATCH

### MISSILE PRIMES & SUBS

NO. OBS. MEAN 19% STD. DEV.

14% MIN. OBS.

MAX. OBS.

### OTHER AEROSPACE

NO. OBS.

MEAN STD. DEV.

MIN. OBS. 0%

MAX. OBS. = 20%



### OTHER INDUSTRY

NO. OBS.

MEAN 29%

STD. DEV. 38%

MIN. OBS.

MAX. OBS. = 100%



### ALL RESPONSES

NO. 085. = 20 MIN. OBS. = 0%

MAX. OBS. = 100% - 2

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 20%

**OBSERVATIONS** 

STD. DEV. = 28%

09 - PERCENTAGE OF CYLINDRICAL PARTS WHICH ARE MANUFACTURED IN BATCHES OF 100 TO 1000 UNITS PER BATCH

### MISSILE PRIMES & SUBS

NO. OBS. 3 MEAN 30% STD. DEV. 18%

MIN. OBS. 19%

MAX. OBS. 50%



### OTHER AEROSPACE

NO. OBS.

MEAN

STD. DEV. 25%

0% MIN. OBS.

= 75% MAX. OBS.



### OTHER INDUSTRY

NO. OBS.

MEAN

STD. DEV.

MIN. OBS. 0%

MAX. OBS.



### ALL RESPONSES

NO. OBS. = 20

MIN. OBS. = 0%

MAX. OBS. = 75%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 16% STD. DEV. = 20%

Q9 -- PERCENTAGE OF NON-CYLINDRICAL PARTS WHICH ARE MANUFACTURED IN BATCHES OF LESS THAN 100 UNITS PER BATCH

### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = 72% STD. DEV. = 19% MIN. OBS. = 50%

80%

Ī.



### OTHER AEROSPACE

MAX. OBS.

NO. OBS. = 8
MEAN = 92%
STD. DEV. = 7%
MIN. OBS. = 80%
MAX. OBS. = 100%



### OTHER INDUSTRY

NO. OBS. = 9

MEAN = 64%

STD. DEV. = 41%

MIN. OBS. = 0%

MAX. OBS. = 100%



### ALL RESPONSES

NO. OBS. = 20 MIN. OBS. = 0% MAX. OBS. = 100% OBSERVATIONS



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 76%

STD. DEV. = 30%

Q9 -- PERCENTAGE OF CYLINDRICAL PARTS WHICH ARE MANUFACTURED IN BATCHES OF LESS THAN 100 UNITS PER BATCH

### MISSILE PRIMES & SUBS

NO. OBS. = 3
MEAN = 70%
STD. DEV. = 17%
MIN. OBS. = 50%
MAX. OBS. = 80%



### OTHER AEROSPACE

NO. OBS. = 8

MEAN = 84%

STD. DEV. = 26%

MIN. OBS. = 20%

MAX. OBS. = 100%



### OTHER INDUSTRY

NO. OBS. = 9

MEAN = 79%

STD. DEV. = 27%

MIN. OBS. = 20%

MAX. OBS. = 100%



### ALL RESPONSES

NO. OBS. = 20 MIN. OBS. = 20% MAX. OBS. = 100%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 80%

STD. DEV. ≈ 25%

# Q8 - APPROXIMATE TOTAL VOLUME (NUMBER OF UNITS) OF NON-CYLINDRICAL MACHINED PARTS MANUFACTURED IN-HOUSE ASSEMBLY

### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = 206K

STD. DEV. = 341K

MIN. OBS. = 1K

MAX. OBS. = 600K



### OTHER AEROSPACE

NO. OBS. = 6

MEAN = 673K

STD. DEV. = 669K

MIN. OBS. = 7.5K

MAX. 085. = 1420K



### OTHER INDUSTRY

NO. OBS. = 6

MEAN = 8163K

STD. DEV. = 1956K

MIN. OBS. = 1.2K

MAX. OBS. ≈ 4810K





### ALL RESPONSES

NO. OBS. = 15

MIN. OBS. = 1K

MAX. OBS. = 48100K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 3576K STD. DEV. = 12327K

Q8 - APPROXIMATE TOTAL VOLUME (NUMBER OF UNITS)OF CYLINDRICAL MACHINED PARTS MAHUFACTURED IN-HOUSE ASSEMBLY

### MISSILE PRIMES & SUBS

NO. OBS. **≈** 3 MEAN \* 105K STD. DEV. ≈ 169K MIN. OBS. ≈ 3K MAX. OBS.

= 300K



### OTHER AEROSPACE

NO. OBS. = 1199K MEAN STD. DEV. = 2342K MIN. OBS. = 0.3KMAX. OBS. ≠ 5950K



### OTHER INDUSTRY

NO. OBS. MEAN = 13713K STD. DEV. = 33405K MIN. OBS. = 4.5KMAX. OBS. = 81900K





### ALL RESPONSES

NO. OBS. **=** 15 MIN. OBS. **■** 0.3K MAX. OBS. = 81900K

> STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = 5986K STD. DEV. = 21055K

Q7 - APPROXIMATE NUMBER OF NEW NON-CYLINDRICAL MACHINED PARTS (NEW PART NUMBERS) INTRODUCED INTO THE PLANT EACH YEAR

### MISSILE PRIMES & SUBS

**=** 3 NO. OBS.

MEAN = 252

STD. DEV. = 150

MIN. OBS. = 100

MAX. OBS. = 400



### OTHER AEROSPACE

NO. OBS.

MEAN = 1089

STD. DEV. = 1289

MIN. OBS. **=** 50

MAX. OBS. **3250** 



### OTHER INDUSTRY

NO. OBS.

MEAN = 1014

STD. DEV. \* 1161

MIN. OBS. **=** 30

MAX. OBS. = 3250



ALL RESPONSES

NO. OBS.

MIN. OBS. = 80

MAX. OBS. = 3250



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 920 STD. DEV. = 1122

Q10 - PERCENTAGE OF NON-CYLINDRICAL PARTS WHICH HAVE GREATER THAN 10 BATCHES MADE PER YEAR

### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = 0% STD. DEV. = 0%

MIN. OBS. = 0%

MAX. 08S. = 0%



### OTHER AEROSPACE

NO. OBS. = 8

MEAN = 29%

STD. DEV. = 35%

MIN. OBS. = 0%

MAX. OBS. ≈ 100%



### OTHER INDUSTRY

NO. OBS. = 9

MEAN = 18%

STD. DEV. = 30%

MIN. OBS. = 0%

MAX. OBS. = 80%



### ALL RESPONSES

NO. OBS. = 20

MIN. OBS. = 0%

MAX. UBS. = 100%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 20%

STD. DEV. = 31%

### MISSILE PRIMES & SUBS

NO. OBS. = 3

MEAN = 25%

STD. DEV. = 5%

MIN. OBS. = 20%

MAX. OBS. = 30%

### OTHER AEROSPACE

NO. OBS. = 8 MEAN = 15% STD. DEV. = 25% MIN. OBS. = 2% MAX. OBS. = 75%

### OTHER INDUSTRY

NO. OBS. = 8

MEAN = 53%

STD. DEV. = 34%

MIN. OBS. = 10%

MAX. OBS. = 100%



### ALL RESPONSES

NO. OBS. = 19 MIN. OBS. = 2% MAX. OBS. = 100% **OBSERVATIONS** 



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 33% STD. DEV. = 32%

### Q11 - PERCENTAGE OF NON-CYLINDRICAL PARTS WITH 1 TO 10 OPERATIONS PER PROCESS PLAN

### MISSILE PRIMES & SUBS

NO. OBS. = 3
MEAN = 23%
STD. DEV. = 8%
MIN. OBS. = 15%
MAX. OBS. = 30%



### OTHER AEROSPACE

NO. OBS. = 8 MEAN = 17% STD. DEV. = 25% MIN. OBS. = 0% MAX. OBS. = 75%



### OTHER INDUSTRY

NO. OBS. = 8

MEAN = 59%

STD. DEV. = 36%

MIN. OBS. = 5%

MAX. OBS. = 100%



### ALL RESPONSES

NO. OBS. = 19 MIN. OBS. = 0% MAX. OBS. = 100%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 35%

OBSERVATIONS

STD. DEV. = 34%

### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = 65%

STD. DEV. 5%

MIN. OBS. **=** 60%

MAX. OBS. = 70%



### OTHER AEROSPACE

NO. OBS.

MEAN

23% STD. DEV.

20% MIN. OBS.

MAX. OBS.



### OTHER INDUSTRY

NO. OBS.

MEAN

27% STD. DEV.

**= 0%** MIN. OBS.

MAX. OBS. **=** 80%



# OBSERVATIONS

### ALL RESPONSES

NO. OBS.

MIN. OBS.

MAX. OBS. = 88%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 51% STD. DEV. = 25%

### MISSILE PRIMES & SUBS

NO. OBS. **=** 3 MEAN = 67% STD. DEV. = 6% MIN. OBS. = 60%

MAX. OBS. = 70%



### OTHER AEROSPACE

NO. OBS. MEAN

STD. DEV. = 24°

MIN. OBS. = 20%

MAX. OBS. = 84%



### OTHER INDUSTRY

NO. OBS.

MEAN **=** 30%

STD. DEV. = 23%

MIN. OBS. = 0%

MAX. OBS. **≖** 55%



OBSERVATIONS

### ALL RESPONSES

NO. 085. = 19

MIN. OBS. = 0%

MAX. OBS. = 84%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 44% STD. DEV. = 25%

### Q11 - PERCENT OF CYLINDRICAL PARTS WITH > 25 OPERATIONS

### MISSILE PRIMES & SUBS

NO. OBS. # 3
MEAN # 10%
STD. DEV. # 5%
MIN. OBS. # 5%
MAX. OBS. # 15%

### OTHER AEROSPACE

NO. OBS. = 8

MEAN = 28%

STO. DEV. = 22%

MIN. OBS. = 5%

MAX. OBS. = 70%

### OTHER INDUSTRY

NO. OBS. = 8
MEAN = 8%
STD. DEV. = 12%
MIN. OBS. = 0%
MAX. OBS. = 30%

OBSERVATIONS -

### ALL RESPONSES

MO. OBS. = 19 MIN. OBS. = 0% MAX. OBS. = 70%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 17%

STD. DEV. = 18%

### MISSILE PRIMES & SUBS

| NO.  | OBS . |   | 3   |
|------|-------|---|-----|
| MEAN |       | = | 10% |
| STD. | DEV.  | = | 5%  |
| MIN. | 085.  | = | 5%  |
| MAY  | 200   | _ | 15. |



### OTHER AEROSPACE

| NO.  | OBS. | * | 8   |
|------|------|---|-----|
| MEAN |      | = | 34  |
| STD. | DEV. | = | 283 |
| MIN. | OBS. | = | 5;  |
|      | 000  | _ | 000 |



### OTHER INDUSTRY

| NO. 085.  | * | 8   |
|-----------|---|-----|
| MEAN      | = | 11% |
| STD. DEV. | = | 18% |
| MIN. OBS. | = | 0%  |
| MAY ORS   | - | 50% |



### ALL RESPONSES

MO. OBS. = 19 MIN. OBS. = 0% MAX. OBS. = 80%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 21% STD. DEV. = 24%

### 012 - PERCENT OF CYLINDRICAL PARTS WITH > 5 PARTS PER FAMILY

### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = 31% STD. DEV. = 34% MIN. OBS. = 5% MAX. OBS. = 75%

### OTHER AEROSPACE

NO. OBS. = 8 MEAN = 38% STD. DEV. = 24% MIN. OBS. = 0% MAX. OBS. = 90%

### OTHER INDUSTRY

# OBSERVATIONS

### ALL RESPONSES

NO. OBS. = 20 MIN. OBS. = 0% MAX. OBS. = 100%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 45%

STD. DEV. = 34%

### Q12 - PERCENT OF NON-CYLINDRICAL PARTS WITH > 5 PARTS PER FAMILY

### MISSILE PRIMES & SUBS

NO. OBS. = 3
MEAN = 31%
STD. DEV. = 25%
MIN. OBS. = 15%
MAX. OBS. = 60%



### OTHER AEROSPACE

NO. OBS. = 8

MEAN = 15%

STD. DEV. = 13%

MIN. OBS. = 0%

MAX. OBS. = 40%



### OTHER INDUSTRY

NO. OBS. = 9

MEAN = 48%

STD. DEV. = 32%

MIN. OBS. = 0%

MAX. OBS. = 100%



**OBSERVATIONS** 

### ALL RESPONSES

NO. OBS. = 20 MIN. OBS. = 0% MAX. OBS. = 100%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 32%

STD. DEV. = 32%

### Q12 - PERCENT OF CYLINDRICAL PARTS WITH 2-5 PARTS PER FAMILY

### MISSILE PRIMES & SUBS

NO. OBS. **\*** 3 MEAN ■ 39% STD. DEV. **= 20%** 

MIN. OBS. = 20%

MAX. OBS. ≈ 60°<sub>€</sub>

### OTHER AEROSPACE

NO. OBS.

MEAN

STD. DEV. = 26°

MIN. OBS. = 0%

MAX. OBS. = 75%

### OTHER INDUSTRY

NO. OBS.

MEAN ± 15°

STD. DEV. = 13%

MIN. OBS. 0%

MAX. 085. = 40%



**OBSERVATIONS** 

### ALL RESPONSES

NO. 085. **2**0 MIN. OBS.

**=** 0%

MAX. OBS. = 75%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 29%

STD. DEV. = 23%

### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = 37% STD. DEV. = 13% MIN. OBS. = 25% MAX. OBS. = 50%

### OTHER AEROSPACE

NO. OBS. = 8

MEAN = 44%

STD. DEV. = 24%

MIN. OBS. = 10%

MAX. OBS. = 80%

### OTHER INDUSTRY

NO. OBS. = 9

MEAN = 27%

STD. DEV. = 31%

MIN. OBS. = 0%

MAX. OBS. = 100%

**OBSERVATIONS** 

### ALL RESPONSES

NO. OBS. = 20 MIN. OBS. = 0% MAX. OBS. = 100%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 35% STD. DEV. \* 26%

### Q12 - PERCENT OF CYLINDRICAL PARTS, TOTALLY DIFFERENT

### MISSILE PRIMES & SUBS

NO. OBS. 3 MEAN 30% STD. DEV. 18% MIN. OBS. = 10%

MAX. OBS. **= 46**%



### OTHER AEROSPACE

NO. OBS. MEAN

STD. DEV.

MIN. OBS. 5%

MAX. OBS. **=** 55%



### OTHER INDUSTRY

NO. OBS.

MEAN

STD. DEV.

MIN. OBS. 0%

MAX. OBS. **≖** 85°.



**OBSERVATIONS** 

### ALL RESPONSES

NO. OBS. = 20 MIN. OBS.

MAX. OBS. **=** 85%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 25%

STD. DEV. = 25%

### Q12 - PERCENT OF NON-CYLINDRICAL PARTS, TOTALLY DIFFERENT

### MISSILE PRIMES & SUBS

| NO. OBS.  | = | 3   |
|-----------|---|-----|
| MEAN      | = | 32  |
| STD. DEV. | = | 161 |
| MIN. OBS. | = | 151 |
| MAX. OBS. | = | 461 |

| OTHER |      |
|-------|------|
|       | <br> |

| NO. OBS.  | = | 8   |
|-----------|---|-----|
| MEAN'     | = | 419 |
| STD. DEV. | * | 29  |
| MIN. OBS. | = | 10  |
| MAY ORS   | = | 90  |

### OTHER INDUSTRY

| NO. OBS.  | = | 9   |
|-----------|---|-----|
| MEAN      | = | 25  |
| STD. DEV. | = | 34% |
| MIN. OBS. | = | 0   |
| ZRO YAM   | ± | 85  |

**OBSERVATIONS** 

### ALL RESPONSES

| NO. OBS.  | z | 20  |
|-----------|---|-----|
| MIN. OBS. | = | 0%  |
| MAX. OBS. | = | 90% |

\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

\*\*\* \*

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 33% STD. DEV. = 30

# Q13 - ANNUAL NUMBER OF PROCESS PLANS FOR NEW CYLINDRICAL PARTS

### MISSILE PRIMES & SUBS

MG. OBS. = 3 MEAN = 145 STD. DEV. = 51 MIN. OBS. = 100 MAX. OBS. = 136



### OTHER AEROSPACE

NO. OBS. = 8 MEAN = 673 STD. DEV. = 801 MIN. OBS. = 30 MAX. OBS. = 2000



### OTHER INDUSTRY

NO. OBS. = 7
MEAN = 2276
STD. DEV. = 2589
MIN. OBS. = 50
MAX. OBS. = 7250



### ALL RESPONSES

NO. OBS. = 18 MIN. OBS. = 30 MAX. OBS. = 7250



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 1208 STD. DEV. = 1853

16 - PERCENTAGE OF PROCESS PLANNING COSTS TO SELECT MACHINES AND EQUIPMENT FOR A NEW NON-CYLINDRICAL PART

### ISSILE PRIMES & SUBS 10. OBS. 3 IEAN 11% TD. DEV. 8.6 IIN. OBS. 3-MAX. OBS. 20 THER AEROSPACE 40. OBS. 8 MEAN 8.5 STD. DEV. 6.5 MIN. OBS. 2. MAX. OBS. 20 THER INDUSTRY NO. 085. 9 MEAN 6.1% STD. DEV. 3.11 MIN. OBS. 2% MAX. OBS. 100



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 7.85 STD. DEV. = 5.5°

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO SELECT MACHINES AND EQUIPMENT FOR A NEW CYLINDRICAL PART

| MISSILE PRI | MES   | & SUBS   |                                       |
|-------------|-------|----------|---------------------------------------|
| NO. OBS.    | =     | 3        |                                       |
| MEAN        | =     | 114      |                                       |
| STD. DEV.   | =     | 8.5%     |                                       |
| MIN. OBS.   | =     | 3%       | · · · · · · · · · · · · · · · · · · · |
| MAX. OBS.   | =     | 20%      |                                       |
| OTHER AERO  | SPACE | <u>[</u> |                                       |
| NO. OBS.    | =     | 8        |                                       |
| MEAN        | =     | 6.5%     |                                       |
| STD. DEV.   | =     | 4.6%     | • •                                   |
| MIN. OBS.   | =     | 2%       |                                       |
| MAX. OBS.   | =     | 15%      |                                       |
| OTHER INDI  | ISTRY |          | •                                     |
| NO. 085.    | =     | 9        |                                       |
| MEAN        | =     | 6%       | •                                     |
| STC. DEV.   | =     | 3.2%     | • • •                                 |
| MIN. OBS.   | #     | 2%       | • • • •                               |
| MAX. OBS.   | =     | 10%      | 5 4 3 4 5                             |
|             |       |          |                                       |



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = 7% STD. DEV. = 4.8%

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO DETERMINE OPERATION SEQUENCES FOR A NEW NON-CYLINDRICAL PART

| MISSILE PR  | IMES       | & SUBS      |                |               |                    |      |   |        |         |     |               |       |       |            |
|-------------|------------|-------------|----------------|---------------|--------------------|------|---|--------|---------|-----|---------------|-------|-------|------------|
| NO. OBS.    | =          | 3           |                |               |                    |      |   |        |         |     |               |       |       |            |
| MEAN        | =          | 20.7        |                |               |                    |      |   |        |         |     |               |       |       |            |
| STD. DEV.   | =          | 25.7%       |                |               |                    |      |   |        |         |     |               |       |       |            |
| MIN. OBS.   | =          | 2 -         |                |               |                    |      |   | • •    |         |     | •             |       |       |            |
| MAX. OBS.   | =          | 50、         |                | :             | 1                  | :    | : | 1      | ;<br>iv | 1   | :             | 3     | 1     | :          |
| OTHER AEROS | SPAC.      | <u>E</u>    |                |               |                    |      |   |        |         |     |               |       |       |            |
| NO. OBS.    | =          | 8           |                |               |                    |      |   |        |         |     |               |       |       |            |
| MEAN        | =          | 14.9        |                |               |                    |      |   | •      |         |     |               |       |       |            |
| STD. DEV.   | =          | 15.9%       |                |               |                    |      |   | •      |         |     |               |       |       |            |
| MIN. OBS.   | =          | 41.         |                |               |                    |      |   | ••     | • •     |     | •             |       |       |            |
| MAX. OBS.   | =          | 50          |                | :<br>5        | 1                  | :    |   | 1      | 1       | 1   | :             | * * * | 4     | <b>:</b> · |
| OTHER INDUS | STRY       |             |                |               |                    |      |   |        |         |     |               |       |       |            |
| NO. OBS.    | =          | 9           |                |               |                    |      |   |        |         |     |               |       |       |            |
| MEAN        | 2          | 25.3%       |                |               |                    |      |   |        |         |     |               |       |       |            |
| STD. DEV.   | =          | 19.4%       |                |               |                    |      |   |        |         |     |               |       |       |            |
| MIN. OBS.   | =          | 3%          |                |               |                    |      |   | • •    | •••     | • • | •             | •     |       |            |
| MAX. OBS.   | =          | <b>65</b> % |                | <b>:</b><br>5 | :                  | •    |   | 1      | 11      | 1   | :<br>2        | :     | 4     | · · •      |
|             |            |             | SNOI           |               |                    |      |   |        |         |     |               |       |       |            |
|             |            |             | ÓBSERVAT I ONS |               |                    |      |   |        |         |     |               |       |       |            |
| ALL RESPON  | <u>SES</u> |             | 986            |               |                    |      |   | ••     |         |     |               |       |       |            |
| NO. OBS.    | =          | 20          |                |               |                    |      |   | •••    | •••     |     | •             | 1     |       |            |
| MIN. OBS.   | 2          | 2-          |                | :             | :                  | :    | : | :      | :       | :   | · · · •       |       | · · : | . :        |
| MAX. OBS.   | =          | 65≈         |                |               | 1                  |      |   | 1      | FI      | 1   |               | 7:    | 4     | 2          |
|             |            |             |                |               | STANDARI<br>MEAN = | 20 S |   | FROM ! |         |     | SPONSE<br>= 1 |       |       |            |

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO DETERMINE OPERATION SEQUENCES FOR A NEW CYLINDRICAL PART

| MISSILE | PRIMES | 8 | SUBS |
|---------|--------|---|------|
|---------|--------|---|------|

NO. OBS. = 3 MEAN = 20.7. STD. DEV. = 25.75 MIN. OBS. = 2 MAX. OBS. = 50°

#### OTHER AEROSPACE

NC. OBS. = 8 MEAN = 20.9 STD. DEV. = 22.35 MIN. OBS. = 35 MAX. OBS. = 65

#### OTHER-INDUSTRY

NO. OBS. = 9
MEAN = 23
STD. DEV. = 16.1
MIN. OBS. = 25
MAX. OBS. = 50.

**OBSERVATIONS** 

OCCOMATION

ALL RESPONSES

NO. OBS. = 20 MIN. OBS. = 2° MAX. OBS. = 50%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 21.8

STD. DEV. = 19.1

Q15 - APPROXIMATE ANNUAL MAINTENANCE AND SUPPORT COSTS FOR CURRENTLY USED COMPUTER ASSISTED PROCESS PLANNING

#### MISSILE PRIMES & SUBS

NO. OBS. = 1
MEAN = \$5K
STD. DEV. = \$0

MIN. OBS. - \$5K

MAX. OBS. = SSK

#### OTHER AEROSPACE

NO. OBS. = 1

**MEAN** = \$20K

STD. DEV. = \$0

MIN. 085. = \$20K

MAX. OBS. = \$20K

#### OTHER INDUSTRY

NO. OBS. = 3

MEAN = \$71K

STD. DEV. = \$41K

MIN. OBS. = \$24K

MAX. OBS. = \$100K

- + ++

**OBSERVATIONS** 

#### ALL RESPONSES

NO. 085. = 5

MIN. 085. = \$5k

MAX. 085. = \$100K



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$48K

STD. DEV. = \$44K

Q14 - AUTOMATION PLANNED FOR PROCESS PLANNING FUNCTIONS WITHIN THE NEXT 2 YEARS

|                                                             | MISS   | HISSILE PRIME<br>AND SUBS. | E .            | AEI    | OTHER<br>AEROSPACE | ш              | =      | OTHER<br>Industry | >:             |        | TOTAL |                |
|-------------------------------------------------------------|--------|----------------------------|----------------|--------|--------------------|----------------|--------|-------------------|----------------|--------|-------|----------------|
|                                                             | ٦      | NOITA                      | Q∃TA           | 7      | NOITA              | ATED           | ٦      | NOITA             | 03TA           | ٦      | NOITA | 03TA           |
| PLANNING FUNCTION                                           | IAUNAM | SOME                       | YJJUT<br>MOTUA | IAUNAM | SOME<br>MOTUA      | FULLY<br>AUTUA | IAUNAM | 3MO c<br>MOTUA    | FULLY<br>AUTOM | IAUNAM | SOME  | FULLY<br>AUTUA |
| DETERMINE OPERATION<br>SEQUENCES                            |        | 1                          | 1              |        | 3                  | Ô              |        | 2                 | 2              |        | 9     | 3              |
| SELECT MACHINES AND EQUIPMENT                               |        |                            |                |        | 3                  | 0              | _      | 4                 | _              |        | 8     | 2              |
| SELECT TOOLING, GAGES,<br>ETC.                              |        | -                          | _              |        | 2                  | 0              |        | 2                 | 2              |        | 2     | 3              |
| DETERMINE PROCESSING<br>PARAMETERS (SPEEDS,<br>FEEDS, ETC). |        | 1                          | 0              |        | 3                  | 0              |        | 3                 | 3              |        | 7     | 3              |
| DETERMINE TIME<br>STANDARDS                                 |        | 2                          | 0              |        | Ą                  | ~              |        | 3                 | 3              |        | 9     | Ù              |
| ANALYZE TOLERANCES                                          |        | 1                          | 0              |        | -                  | 0              |        | -                 | _              |        | 3     | ٦              |
| PREPARE ROUTING SHEETS                                      |        | J                          | 0              |        | 3                  | _              |        | 3                 | 3              |        | 7     | ÿ              |
| PREPARE OPERATIONS<br>SHEETS                                |        | 1                          | 0              |        | 3                  | 0              |        | 2                 | 3              |        | 9     | 3              |
| PREPARE TOOL ORDERS                                         |        | 1                          | 0              |        | 3                  | -              |        | 0                 | 2              |        | Ü     | 3              |
| CONDUCT DESIGN/<br>PRODUCIBILITY REVIEWS                    |        | 0                          | 0              |        | 2                  | 0              |        | -                 | 0              |        | 3     | 0              |

Q14 - CURRENT PROCESS PLANNING FUNCTIONS AND LEVELS OF AUTOMATION

|                                                             |        |                            |                | I      |                    |                |          |                   | I              |        | I             | ı                      |
|-------------------------------------------------------------|--------|----------------------------|----------------|--------|--------------------|----------------|----------|-------------------|----------------|--------|---------------|------------------------|
|                                                             | MISSIL | MISSILE PRIME<br>And Subs. | IME            | AEI    | OTHER<br>Aerospace | ш              | <b>=</b> | OTHER<br>Industry | 14             |        | TOTAL         |                        |
| •                                                           | ٦      | NOITA                      | Q3TA           | 7      | NOITA              | Q3TA           | -        | NOITA             | Q3TA           | •      | NOITA         | α∃∓A                   |
| PLANNING FUNCTION                                           | AUNAM  | SOME                       | YJJU7<br>MOTUA | IAUNAM | SOME<br>MOTUA      | FULLY<br>AUTOM | IAUNAM   | SOME<br>MOTUA     | YJJUA<br>MOTUA | IAUNAM | SOME<br>MOTUA | <b>YJJU</b> 3<br>MOTUA |
| DETERMINE OPERATION<br>SEQUENCES                            | 4      | 0                          | 0              | 9      | 2                  | 0              | 7        | 0                 | 1              | 17     | 2             | -                      |
| SELECT MACHINES AND<br>EQUIPMENT                            | 4      | 0                          | 0              | 9      | 2                  | 0              | 8        | 0                 | 1              | 18     | 2             | 1                      |
| SELECT TOOLING, GAGES,<br>ETC.                              | 4      | 0                          | 0              | 8      | 0                  | 0              | 8        | 0                 | 0              | 20     | 0             | 0                      |
| DETERMINE PROCESSING<br>PARAMETERS (SPEEDS,<br>FEEDS, ETC). | 4      | 0                          | 0              | 7      | 0                  | 0              | 7        | 1                 | 1              | 18     | ١             | -                      |
| DETERMINE TIME<br>STANDARDS                                 | 4      | 0                          | 0              | 9      | ı                  | 0              | 9        | 2                 | -              | 91     | 3             | -                      |
| ANALYZE TOLERANCES                                          | 4      | 0                          | 0              | 7      | 1                  | 0              | 9        | 0                 | 0              | 11     | 1             | 0                      |
| PREPARE ROUTING SHEETS                                      | 3      | Į                          | 0              | 3      | 4                  | ~              | 9        | 2                 | -              | 12     | -             | 2                      |
| PREPARE OPERATIONS SHEETS                                   | 3      | L                          | 0              | 4      | 2                  | -              | 5        | 2                 | l              | 12     | 5             | 2                      |
| PREPARE TOOL ORDERS                                         | 4      | 0                          | 0              | 9      | 1                  | 0              | 7        | 0                 | 0              | 11     | 1             | 0                      |
| CONDUCT DESIGN/<br>PRODUCIBILITY REVIEWS                    | 4      | 0                          | 0              | 7      | -                  | 0              | 9        | 0                 | 0              | 17     | 1             | 0                      |

Q13 - TOTAL NUMBER OF PROCESS PLANS OF ALL TYPES PREPARED ANNUALLY FOR NOW-CYLINGFICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. MEAN STD. DEV. = 299 = 350 MIN. OBS.

= 906

MAX. OBS.



#### OTHER AEROSPACE

NO. OBS. MEAN = 4064 STD. DEV. = 585 MIN. OBS.

MAX. OBS. ± 12100



#### OTHER INDUSTRY

NO. 085. = 1867 MEAN = 2228 STC. DEV. = 100 MIN. OBS. = 6300 MAX. OBS.



# ALL RESPONSES

**OBSERVATIONS** 

NO. 085. = 18 MIN. OBS. = 100 MAX. OBS. = 12100



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) STD. DEV. = 3225 2637 MEAN ≃

#### Q13 - TOTAL NUMBER OF PROCESS PLANS OF ALL TYPES PREPARED ANNUALLY FOR CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. = 3

MEAN = 422

STD. DEV. = 59

MIN. OBS. = 370

MAX. OBS. = 486

#### OTHER AEROSPACE

NO. OBS. = 8

MEAN = 2363

STD. DEV. - 2380

MIN. OBS. = 180

MAX. OBS. = 7600

#### OTHER INDUSTRY

NO. OBS. = 7

MEAN = 4184

STD. DEV. . 5096

MIN. OBS. = 160

MAX. OBS. = 14350



OBSERVATIONS

#### ALL RESPONSES

NO. 08S. = 18

MIN. 085. = 160

MAX. 08S. = 14350



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 2748

#### Q13 - TOTAL NUMBER OF STUDY PLANS PREPARED ANNUALLY FOR NON-CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. MEAN = 383 STD. DEV. = 176 MIN. OBS. **=** 200 MAX. OBS. = 550



#### OTHER AEROSPACE

NO. OBS. = 786 MEAN STD. DEV. = 949 MIN. OBS. = 10 MAX. OBS. = 3000



#### OTHER INDUSTRY

NO. OBS. MEAN STD. DEV. = 219 MIN. OBS. = 0 MAX. OBS. = 560



## ALL RESPONSES

**OBSERVATIONS** 

NO. OBS. = 17 MIN. OBS. **=** 0 MAX. OBS. = 3000



MEAN = 487

#### Q13 - TOTAL NUMBER OF STUDY PLANS PREPARED ANNUALLY FOR CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. MEAN = 233

STD. DEV.

MIN. OBS. = 200

MAX. OBS. = 300

#### OTHER AEROSPACE

NO. OBS.

MEAN = 373

STD. DEV.

MIN. OBS.

MAX. OBS.

### OTHER INDUSTRY

NO. OBS.

MEAN

STD. DEV.

MIN. OBS.

MAX. OBS. = 840



ALL RESPONSES

NO. OBS. 17

MIN. OBS.

MAX. OBS. = 1000



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 274

### Q13 - TOTAL NUMBER OF PROCESS PLANS WHICH ARE MODIFIED ANNUALLY FOR NON-CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. = 3

**MEAN** = 65

STD. DEV. = 41

MIN. 0BS. = 20

MAX. OBS. = 100



#### OTHER AEROSPACE

NO. OBS. = 8

MEAN = 2133

STD. DEV. = 2653

MIN. 08S. = 260

MAX. OBS. = 8100



#### OTHER INDUSTRY

NO. OBS. = 7

MEAN = 736

STD. DEV. = 1071

MIN. 08S. = 90

MAX. OBS. = 3000



#### ALL RESPONSES

NO. OBS. = 18

OBSERVATIONS

MIN. OBS. = 20

MAX. OBS. # 8100

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 1245

#### Q13 - TOTAL NUMBER OF PROCESS PLANS WHICH ARE MODIFIED ANNUALLY FOR CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. = 3

MEAN = 43

STD. DEV. = 31

MIN. OBS. = 10

MAX. OBS. = 70



#### OTHER AEROSPACE

NO. OBS. = 8

MEAN = 1318

STD. DEV. = 1773

MIN. OBS. = 100

MAX. OBS. = 5400



#### OTHER INDUSTRY

NO. OBS. = 7

MEAN = 1770

STD. DEV. = 2677

MIN. 08S. = 50

MAX. OBS. = 7000



#### ALL RESPONSES

NO. OBS. = 18

MIN. OBS. = 10

MAX. OBS. = 7000



#### STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 1281

#### Q13 - ANNUAL NUMBER OF PROCESS PLANS FOR NEW NON-CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. = 3
MEAN = 244
STD. DEV. = 163
M1N. OBS. = 75
MAX. OBS. = 400



#### OTHER AEROSPACE

NO. OBS. = 8
MEAN = 1121
STD. DEV. = 1379
MIN. OBS. = 50
MAX. OBS. = 3445



#### OTHER INDUSTRY

NO. 08S. = 7
MEAN = 1012
STD. DEV. = 1164
M.N. 0BS. = 10
MAX. 0BS. = 3250



OBSERVATIONS

#### ALL RESPONSES

NO. OBS. = 18 MIN. OBS. = 10 MAX. OBS. = 3445



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 932

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO SELECT TOOLING FOR A NEW CYLINCHICAL PAPT

#### MISSILE PRIMES & SUBS

| NO. 08S.  | = | 3    |
|-----------|---|------|
| MEAN      | = | 14.7 |
| STD. DEV. | = | 5%   |
| MIN. OBS. | = | 10°  |
| MAX. OBS. | = | 20   |

#### OTHER AEROSPACE

| NO. 08S.  | = | 8    |
|-----------|---|------|
| MEAN      | = | 11.9 |
| STD. DEV. | = | 8^   |
| MIN. OBS. | = | 0.   |
| MAY ORS   | ± | 25°  |

#### OTHER INDUSTRY

| NO. OBS.  | = | 8    |
|-----------|---|------|
| MEAN      | = | 8.5  |
| STD. DEV. | = | 3.1% |
| MIN. OBS. | = | 5%   |
| MAX. OBS. | = | 13%  |

OBSERVATIONS

| ALL RESPONSES |
|---------------|
|---------------|

| NO. OBS.  | E | 19  |
|-----------|---|-----|
| MIN. OBS. | Ξ | 0%  |
| MAY ORS.  | = | 25% |

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 10.9 STC. DEV. = 6.1

B-56

Q16 - PERCENTAGE OF PROCESS PLANNING COST: TO SELECT TOOLING FOR A NEW NON-CYLINDRICAL PAPT

| MISSILE PE       |       |          |                |   |     |   |   |        |     |     |   |                |        |          |
|------------------|-------|----------|----------------|---|-----|---|---|--------|-----|-----|---|----------------|--------|----------|
| NO. OBS.<br>MEAN | =     | 3<br>13* |                |   |     |   |   |        |     |     |   |                |        |          |
| STD. DEV.        | -     | 2.6      |                |   |     |   |   |        |     |     |   |                |        |          |
| MIN. OBS.        | =     | 10       |                |   |     |   |   |        |     | • • |   |                |        |          |
| MAX. OBS.        | =     | 15       |                | : | :   | : | : | 1      | •   | :   | : | :              | ;<br>; | :        |
| OTHER AERO       | SPAC  | <u>E</u> |                |   |     |   |   |        |     |     |   |                |        |          |
| NO. OBS.         | =     | 8        |                |   |     |   |   |        |     |     |   |                |        |          |
| MEAN             | =     | 12.5     |                |   |     |   |   |        |     |     |   |                |        |          |
| STD. DEV.        | =     | 8.8      |                |   |     |   |   |        |     | •   |   |                |        |          |
| MIN. OBS.        | =     | 0        |                |   |     |   | • | •      | •   | •   |   | •              |        |          |
| MAX. OBS.        | =     | 30       |                | : | 1   | : | ; | :<br>1 | :   | 1   | : | :              | :      | <b>;</b> |
| OTHER INDU       | JSTRY |          |                |   |     |   |   |        |     |     |   |                |        |          |
| NO. OBS.         | =     | 8        |                |   |     |   |   |        |     |     |   |                |        |          |
| MEAN             | =     | 9.1      |                |   |     |   |   |        |     |     |   |                |        |          |
| STD. DEV.        | =     | 3.8      |                |   |     |   |   | •      | •   |     |   |                |        |          |
| MIN. OBS.        | =     | 5        |                |   |     |   |   | •      |     | •   |   |                |        |          |
| MAX. OBS.        | =     | 15       |                | : | . 1 | : |   | 1      | . : | :   | : | : * <b>:</b> * | 1      | :<br>-   |
|                  |       |          |                |   |     |   |   |        |     |     |   |                |        |          |
|                  |       |          |                |   |     |   |   |        |     |     |   |                |        |          |
|                  |       |          | OBSERVAT I ONS |   |     |   |   |        | •   | •   |   |                |        |          |
| ALL RESPON       | NSES  |          | 3880           |   |     |   |   | •      | •   | •   |   |                |        |          |
| NO. OBS.         |       | 19       | -              |   |     |   |   | •      | •   | •   |   | _              |        |          |
| MU. UDS.         |       |          |                |   |     |   | • | •      | • • |     |   | •              |        |          |
| MIN. OBS.        | =     | 0.       |                | : | :   | : | : | :      | :   | :   | : | :              | :      | :        |

MEAN = 11.2

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 6.3°

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO DETERMINE PROCESSING PARAMETERS FOR A NEW CYLINDRICAL PART

| NO. OBS.   | ż     | 3          |          |   |     |   |       |     |     |     |   |   |
|------------|-------|------------|----------|---|-----|---|-------|-----|-----|-----|---|---|
| MEAN       | =     | 4.7        |          |   |     |   |       |     |     |     |   |   |
| STD. DEV.  | =     | 5 · 0°-    |          |   |     |   |       |     |     |     |   |   |
| MIN. OBS.  | =     | 0^         | :        | : | :   | ; | • •   | •   | :   |     | : | : |
| MAX. OBS.  | =     | 10°        | •        | ; | ·   |   | ;     | ı   | •   | •   |   | 1 |
| OTHER AERO | SPAC  | <u>E</u>   |          |   |     |   |       |     |     |     |   |   |
| NO. OBS.   | =     | 8          |          |   |     |   |       |     |     |     |   |   |
| MEAN       | =     | 10.3°      |          |   |     | • |       |     |     |     |   |   |
| STD. DEV.  | =     | 18.1%      |          |   |     |   | •     |     |     |     |   |   |
| MIN. OBS.  | =     | 0          |          |   |     |   | • • • | • • | :   | :   |   | : |
| MAX. OBS.  | =     | 53         | :<br>- 5 | : | - : | : | :     | :   | ;   | -   | · | : |
| OTHER INDI | JSTRY | <u>'</u> _ |          |   |     |   |       |     |     |     |   |   |
| NO. OBS.   | ±     | 8          |          |   |     |   |       |     |     |     |   |   |
| MEAN       | =     | 10^        |          |   |     |   |       |     |     |     |   |   |
| STD. DEV.  | =     | 9.3%       |          |   |     |   | ,     | •   |     |     |   |   |
| MIN. OBS.  | =     | 0%         |          |   |     |   | • •   |     |     | •   | : | : |
| MAX. OBS.  | =     | 30%        | :        |   | :   | : | 1     | :   | . : | • ' | • |   |

| ALL RESPON | SES |     | OBSERVATIONS |         |   |   |   | • | •     |   |   |   |
|------------|-----|-----|--------------|---------|---|---|---|---|-------|---|---|---|
| 10. OBS.   |     | 19  |              |         |   |   |   | • | • • • |   | • | • |
| IN. OBS.   | =   | O.í |              | :<br>-, | : | : | : | : | :     | : | : | : |
| MAY ORS    | =   | 53% |              | '       | • |   |   | • |       |   |   | • |

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 9.3% STD. DEV. = 12.9

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO DETERMINE PROCESSING PARAMETERS FOR A NEW NOW-CYLINDRICAL PART

| MISSILE PRI | IMES | & SUBS   | • |              |    |                |         |        |          |     |   |            |         |   |        |
|-------------|------|----------|---|--------------|----|----------------|---------|--------|----------|-----|---|------------|---------|---|--------|
| NO. OBS.    | =    | 3        |   |              |    |                |         |        |          |     |   |            |         |   |        |
| MEAN        | ±    | 6.3      |   |              |    |                |         |        |          |     |   |            |         |   |        |
| STD. DEV.   | =    | 7.8      |   |              |    |                |         |        |          |     |   |            |         |   |        |
| MIN. OBS.   | =    | C        |   |              | :  | :              | :       | :      | • •<br>: | . • | : | :          | :       | : | :      |
| MA). OBS.   | =    | 15       |   |              | •  | 4              |         |        | ì        |     | 1 | ·          |         | 4 |        |
| OTHER AERO  | SPAC | <u>E</u> |   |              |    |                |         |        |          |     |   |            |         |   |        |
| NO. 0BS.    | =    | 8        |   |              |    |                |         |        |          |     |   |            |         |   |        |
| MEAN.       | +    | 10.9     |   |              |    |                |         |        |          |     |   |            |         |   |        |
| STO. DEV.   | =    | 18.3     |   |              |    |                |         |        | •        | ı   |   |            |         |   |        |
| MIN. OBS.   | =    | 0        |   |              |    |                |         | :      | • • •    | •   | • | <b>:</b> . | •       | : | :      |
| MAλ. OBS.   | =    | 53       |   |              | :  | :              | :       | -      | 1        | r.  | 1 |            |         | 1 | -      |
| STHER INDU  | STRY | -        |   |              |    |                |         |        |          |     |   |            |         |   |        |
| NG. OBS.    | =    | 8        |   |              |    |                |         |        |          |     |   |            |         |   |        |
| MFAN        | =    | 10.61    |   |              |    |                |         |        |          |     |   |            |         |   |        |
| STD. DEV.   | =    | 10.2     |   |              |    |                |         |        | •        | •   |   |            |         |   |        |
| MIN. OBS.   | =    | 0        |   |              |    |                |         |        | •        | • • | • | •          | :       | : | . : .  |
| MAX. OBS.   | =    | 20°-     |   |              | •  | · · · <b>:</b> | · · · • |        | 1        | 11  | 1 | 2          |         | 1 | ≖,     |
|             |      |          |   |              |    |                |         |        |          |     |   |            |         |   |        |
|             |      |          |   |              |    |                |         |        |          |     |   |            |         |   |        |
|             |      |          |   |              |    |                |         |        |          |     |   |            |         |   |        |
|             |      |          |   | OBSERVATIONS |    |                |         |        | •        |     |   |            |         |   |        |
|             |      |          |   | ER.          |    |                |         |        | •        |     |   |            |         |   |        |
| ALL RESPO   | NSES |          |   | 087          |    |                |         |        | •        | • • |   |            |         |   |        |
| NO. OBS.    | =    | 19       |   |              |    |                |         |        | •        | • • | • | •          | •       |   |        |
| MIN. OBS.   | =    | _        |   |              | :  | :              | :       | :      | :        | :   | : | • • •      | • • • • | : | :<br>- |
| MAX. OBS.   |      |          |   |              | e, | 4              |         | _      | - 1      | "   | • |            | •       |   | -      |
|             |      |          |   |              |    | STAND          | ARD DE  | VIATIO | NS FROM  |     |   | RESPON     |         |   |        |

MEAN = 10.1

STD. DEV. = 13.4°

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO DETERMINE TIME STANDARDS FOR A NEW CYLINGRICAL COST

#### MISSILE PRIMES & SUBS 3 NO. OBS. MEAN 7.7% STD. DEV. 2.5 MIN. OBS. 5 ; MAX. OBS. 10 OTHER AEROSPACE 8 NG. OBS. MEAN 3.5 STD. DEV. 2.2 MIN. OBS. 0 MAY. OBS. OTHER INDUSTRY NO. 085. MEAN 13.8 STD. DEV. 9.6 MIN. OBS. MAX. OBS. 30° OBSERVATIONS ALL RESPONSES NO. OBS. 20 MIN. OBS. 0

B-60

MEAN ≈ 8.8

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. =

MAX. OBS.

30.

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO DETERMINE TIME STANDARDS FOR A NEW NON-CYLINDRICAL PART

### MISSILE PRIMES & SUBS NO. OBS. MEAN 6 STD. DEV. 1.70 MIN. OBS. MAX. OBS. OTHER AEROSPACE NO. OBS. MEAN 4 STD. DEV. 2.4 MIN. OBS. MAX OBS. OTHER INDUSTRY NO. OBS. 12.9° MEAN 9.6 STD. DEV. 1 % MIN. OBS. 25 MAX. OBS. **OBSERVATIONS** ALL RESPONSES 20 NO. OBS. 0% MIN. OBS. 25% MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) 8.3" STD. DEV. = 7.7° MEAN =

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO ANALYZE TOLERANCES FOR A NEW CYLINDRICAL PART

#### MISSILE PRIMES & SUBS

| NO. OBS.  | = | 3    |
|-----------|---|------|
| MEAN      | = | 6.3% |
| STD. DEV. | = | 7.1% |
| MIN. OBS. | = | 0%   |
| MAY ORS   | = |      |

#### OTHER AEROSPACE

| NO. 085.  | = | 0          |  |  |  |
|-----------|---|------------|--|--|--|
| MEAN .    | = | 4.53       |  |  |  |
| STC. DEV. | = | 5.4        |  |  |  |
| MIN. OBS. | = | <b>0</b> % |  |  |  |
| MAX. OBS. | = | 15         |  |  |  |

#### OTHER INDUSTRY

| NO. OBS.  | = | 8    |
|-----------|---|------|
| MEAN      | = | 4.5% |
| STD. DEV. | = | 4.8% |
| MIN. OBS. | = | 0%   |
| MAY ORS   | = | 15%  |

OBSERVATIONS

### ALL RESPONSES

| NO. OF | S.  | = | 19  |
|--------|-----|---|-----|
| MIN. C | BS. | = | 0%  |
| MAY (  | 297 | = | 15% |



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 4.8% STD. DEV. = 5.1

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO ANALYZE TOLERANCES FOR A NEW NON-CYLINDRICAL PART

|                                                                        |                                           |                                 |              |                | STANDAR<br>MEAN =                       | D DEV                                   |              | S FROM          |                                         | (ALL RE<br>D. DEV.                      |                                         |                                         |               |              |
|------------------------------------------------------------------------|-------------------------------------------|---------------------------------|--------------|----------------|-----------------------------------------|-----------------------------------------|--------------|-----------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------|--------------|
| ALL RESPON<br>NO. OBS.<br>MIN. OBS.<br>MAX. OBS.                       | 4SES<br>=<br>=<br>=                       | 19<br>0%<br>15°                 | OBSERVATIONS | •              | : 4                                     | : · · · · · · · · · · · · · · · · · · · | :            | •               | •                                       | •                                       | ••                                      | · · • · · · · · · · · · · · · · · · · · | · :           | ‡ :-<br>=;   |
| STD. DEV.<br>MIN. OBS.<br>MAX. OBS.                                    | =                                         | 4 . 8°<br>0%<br>15%             |              | : ‡ / :<br>    | 4 · · · · · · · · · · · · · · · · · · · | - <b>:</b><br>- 3                       | <b>;</b><br> | • • • • • • • 1 | 0                                       | 1                                       | •<br>•<br>2                             | <b>;</b> .                              | <b>:</b><br>4 | • • • •<br>5 |
| OTHER INDU                                                             | <u>STRY</u><br>=<br>=                     | 8<br>4.5 <sup>-4</sup>          |              |                |                                         | ·                                       |              |                 | •                                       |                                         |                                         |                                         |               |              |
| OTHER AEROS NO. OBS. MEAN STD. DEV. MIN. OBS. MAX. OBS.                | =<br>=<br>=<br>=<br>=<br>=                | 8<br>4.4<br>4.1<br>0<br>0<br>10 |              | <b>:</b><br>e, |                                         | . : .                                   | . :          | •               | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | : · · · · · · · · · · · · · · · · · · · | • <b>:</b> • •                          | ;<br>         |              |
| MISSILE PRI<br>NO. OBS.<br>MEAN<br>STD. DEV.<br>MIN. OBS.<br>MAX. OBS. | #ES = = = = = = = = = = = = = = = = = = = | 3 6.3°<br>7.11. 0%<br>141.      |              | :              | : · · ·                                 | •                                       | :            | • :             | • ;                                     | : 1                                     | • :                                     | + <b>:</b> +                            | :             | :<br>:       |

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO PREPARE ROUTING SHEETS FOR A NEW CYLINDRICAL PAPT

#### MISSILE PRIMES & SUBS

| NO. OBS.  | = | 4     |
|-----------|---|-------|
| MEAN      | = | 15.8° |
| STD. DEV. | = | 12.25 |
| MIN. OBS. | = | 52    |
| MAX. OBS. | = | 33°s  |

#### OTHER AEROSPACE

| NO. OBS.  | = | 8     |
|-----------|---|-------|
| MEAN      | × | 6.1%  |
| STD. DEV. | = | 11 8% |
| MIN. OBS. | = | 0%    |
| MAX. OBS. | = | 35%   |



#### OTHER INDUSTRY

| NO. OBS.  | = | 9    |
|-----------|---|------|
| MEAN      | ± | 9.6  |
| STD. DEV. | = | 5.6% |
| MIN. OBS. | = | 2%   |
| MAY ORS   | = | 20%  |



**OBSERVATIONS** 

#### ALL RESPONSES

| NO. 0 | BS.  | = | 21  |
|-------|------|---|-----|
| MIN.  | OBS. | = | 0%  |
| MAY   | AP C | - | 35% |



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 9.4% STD. DEV. = 9.8

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO PREPARE ROUTING SHEETS FOR A NEW HON-CYLINDRICAL PART

#### MISSILE PRIMES & SUBS NO. OBS. MEAN 14.5% 13.2 STD. DEV. MIN. OBS. 5-MAX. OBS. 33<sup>^</sup>-OTHER AEROSPACE 8 NO. OBS. 6.3 MEAN 11.7% STD. DEV. MIN. OBS. 0% 351 MAY. OBS. OTHER INDUSTRY NO. OBS. 9 MEAN 9.7% STD. DEV. MIN. OBS. 3% MAX. OBS. 20° **OBSERVATIONS** ALL RESPONSES NO. OBS. 21 MIN. OBS. 0% MAX. OBS. 35 -STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 9.7%

MEAN =

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO PREPARE OPERATION SHEETS FOR A NEW CYLINDRICAL PART

#### MISSILE PRIMES & SUBS 4 NO. OBS. MEAN 19% 14.9% STD. DEV. 5% MIN. OBS. 40% MAX. OBS. OTHER AEROSPACE NO. OBS. 16.3% MEAN STD. DEV. 0% MIN. OBS. 37% MAX. OBS. OTHER INDUSTRY NO. OBS. 8 11.3% MEAN 10.39 STD. DEV. 0% MIN. OBS. 30% MAX. OBS. OBSERVATIONS ALL RESPONSES 20 NO. OBS. MIN. OBS. 0%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 14.8°. STD. DEV. = 12.4°

B-66

40°

MAX. OBS.

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO PREPARE OPERATION SHEETS FOR A NEW MON-CYLINDRICAL PART

#### MISSILE PRIMES & SUBS

NO. OBS. = 4 MEAN = 21.5° STD. DEV. = 16.9° MIN. OBS. = 5 MAX. OBS. = 45°

#### OTHER AEROSPACE

NO. OBS. = 8 MEAN = 18.3 STD. DEV. = 15.4° MIN. OBS. = 0° MAX. OBS. = 40°



#### OTHER INDUSTRY

NO. OBS. = 8
MEAN = 11.3%
STD. DEV. = 10.3°
MIN. OBS. = 0.
MAX. OBS. = 20



# OBSERVATIONS

#### ALL RESPONSES

NO. OBS. = 20 MIN. OBS. = 0° MAX. OBS. = 45°



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 16.1

STD. DEV. = 13.7°

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO PREPARE TOOL OPPERS FOR A NEW CYLINDPICAL PART

#### MISSILE PRIMES & SUBS NO. OBS. MEAN 4% STD. DEV. 2% MIN. OBS. MAX. OBS. OTHER AEROSPACE 8 NO. OBS. 6 MEAN 4.4 STD. DEV. 1 MIN. OBS. 15 MAX. OBS. OTHER INDUSTRY 8 NO. 085. 7.8 MEAN STD. DEV. 6.3 MIN. OBS. ٥. MAX. OBS. 20%



STANDAPD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 6.3° STD. DEV. = 5.0

B-68

Q16 - PERCENTAGE OF PROCESS PLANNING COSTS TO PREPARE TOOL ORDERS FOR A NEW NON-CYLINDRICAL PART

| MISSILE PRI | MES          | & SUBS |              |        |        |       |        |        |         |                                         |           |                                         |                  |                                         |
|-------------|--------------|--------|--------------|--------|--------|-------|--------|--------|---------|-----------------------------------------|-----------|-----------------------------------------|------------------|-----------------------------------------|
| NO. OBS.    | =            | 4      |              |        |        |       |        |        |         |                                         |           |                                         |                  |                                         |
| MEAN        | =            | 4%     |              |        |        |       |        |        |         |                                         |           |                                         |                  |                                         |
| STD. DEV.   | =            | 2°.    |              |        |        |       |        |        | •       |                                         |           |                                         |                  |                                         |
| MIN. OBS.   | =            | 1.     |              |        |        |       |        | •      | •       |                                         |           |                                         |                  |                                         |
| MAX. OBS.   | =            | 5 '    |              | :      | :      | :     | :      | :      | : ·     | : · · · · · · · · · · · · · · · · · · · | :         | - : · ·                                 | 4                | 5                                       |
|             |              |        |              |        | •      |       | •      | 1      | ,,      | ,                                       | •         | .,                                      | •                | ٠.                                      |
| OTHER AEROS | PACE         |        |              |        |        |       |        |        |         |                                         |           |                                         |                  |                                         |
| NO. OBS.    | =            | 8      |              |        |        |       |        |        |         |                                         |           |                                         |                  |                                         |
| MEAN        | =            | 6.9    |              |        |        |       |        |        |         |                                         |           |                                         |                  |                                         |
| STD. DEV.   | =            | 4.5    |              |        |        |       |        |        | _       |                                         |           |                                         |                  |                                         |
| MIN. OBS.   | =            | 10     |              |        |        |       |        | •      | •••     | •                                       | •         |                                         |                  |                                         |
| MAX. OBS.   | =            | 151    |              | :<br>- | : -    | :     | :<br>- | 1      |         | 1                                       | . :       | : :                                     | - <b>:</b> · · · | · : -<br>5                              |
|             |              |        |              | •      | •      |       | _      | •      | ·       | •                                       | •         | -                                       | •                | -                                       |
| OTHER INDUS | TRY          |        |              |        |        |       |        |        |         |                                         |           |                                         |                  |                                         |
| NO. 0BS.    | =            | 8      |              |        |        |       |        |        |         |                                         |           |                                         |                  |                                         |
| MEAN        | =            | 53     |              |        |        |       |        |        | •       |                                         |           |                                         |                  |                                         |
| STD. DEV.   | =            | 3.8    |              |        |        |       |        | •      | •       | •                                       |           |                                         |                  |                                         |
| MIN. OBS.   | =            | 0.     |              |        |        |       |        | •      | •       | •                                       |           |                                         |                  |                                         |
| MAX. OBS.   | =            | 10°    |              | :<br>5 | :      | :     | •      | 1      | n : : : | 1                                       | · • • • • | - <b>:</b>                              | 4                | - :                                     |
|             |              |        |              | ·      | ·      |       | •      | •      |         | ·                                       | •         | ·                                       |                  | •                                       |
|             |              |        |              |        |        |       |        |        |         |                                         |           |                                         |                  |                                         |
|             |              |        |              |        |        |       |        |        |         |                                         |           |                                         |                  |                                         |
|             |              |        | 10           |        |        |       |        |        |         |                                         |           |                                         |                  |                                         |
|             |              |        | 0.<br>NO     |        |        |       |        |        | •       |                                         |           |                                         |                  |                                         |
|             |              |        | VAT          |        |        |       |        |        | •       |                                         |           |                                         |                  |                                         |
|             |              |        | OBSERVATIONS | F,     |        |       |        |        | •       | •                                       |           |                                         |                  |                                         |
| ALL RESPON  | S <b>E</b> S |        | 80           |        |        |       |        |        | •       | .•                                      |           |                                         |                  |                                         |
| NO. OBS.    | =            | 20     |              |        |        |       |        | ••     | ••      | •                                       | •         |                                         |                  |                                         |
| 41N. 08S.   | =            | 04     |              | :      | :      | :     | :      | :      | :       | . •                                     | :         | 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | : -              | · · : · · · · · · · · · · · · · · · · · |
| MAX. OBS.   | =            | 10~    |              | -      | 4      |       |        | 1      | ù       | 1                                       | æ         | <u>:</u>                                | 4                | 7.                                      |
|             |              |        |              | S      | TANDAR | D DEV | IATION | S FROM | MEAN (A | ALL RES                                 | PONSES    | 5)                                      |                  |                                         |

MEAN = 5.6

STD. DEV. = 3.8°

COMPUTERIZED PRODUCTION PROCESS PLANNING VOLUME 3
APPENDICES A B AND C TO BENEFIT ANALYSIS(U) IIT
RESEARCH INST CHICAGO IL H H SHU ET AL. NOV 76
DARN01-76-C-1104 F/G 9/2 AD-A151 997 2/4 UNCLASSIFIED



MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Q17 - MANHOURS TO PREPARE A PROCESS PLAN FOR A NEW CYLINDRICAL PART HAVING 10 OPERATIONS

#### MISSILE PRIMES & SUBS

NO. 08S.

MEAN

STD. DEV.

MIN. OBS.

MAX. OBS. = 20 M-H

#### OTHER AEROSPACE

NO. OBS.

= 20 M-H MEAN

STD. DEV. = 16 M-H

MIN. OBS. = 3 M+H

MAX. OBS. = 40 M-H

#### OTHER INDUSTRY

NO. OBS.

MEAN

STO. DEV. = 3 M-H

MIN. OBS. = 0.5 M-H

MAX. OBS.

#### ALL RESPONSES

NO. OBS. = 16

MIN. OBS. = 0.5 M-H

MAX. OBS. = 40 M-H

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 11 M-H

STD. DEV. = 12 M-H

#### . Q17 - MANHOURS TO PREPARE A PROCESS PLAN FOR A NEW CYLINDRICAL PART HAVING 25 OPERATIONS

### MISSILE PRIMES & SUBS **=** 3 NO. OBS. = 33 M-H MEAN STD. DEV. = 15 M-H = 24 M-H MIN. OBS. = 50 M-H MAX. OBS. OTHER AEROSPACE NO. OBS. 45 M-H MEAN 40 M-H STD. DEV. MIN. OBS. = 6 M-H = 100 M-H MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN STD. DEV. MIN. OBS. = 1 M-H= 16 M-H MAX. OBS. ALL RESPONSES = 16 NO. 085. = 1 M-H MIN. OBS. = 100 M-H MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 29 M-H

MEAN = 26 M-H

Q17 - MAN HOURS TO PREPARE A PROCESS PLAN FOR A NEW CYLINDRICAL MACHINED PART HAVING 50 **OPERATIONS** 

#### MISSILE PRIMES & SUBS

NO. OBS.

MEAN 55 M-H

STD. DEV. = 7 M-H

MIN. OBS. = 50 M-H

MAX. OBS.

#### OTHER AEROSPACE

NO. OBS.

MEAN 97 M-H

STD. DEV.

MIN. OBS. = 12 M-H

200 M-H MAX. OBS.

#### OTHER INDUSTRY

NO. OBS.

MEAN 21 M-H

STD. DEV.

MIN. OBS.

MAX. OBS.

**OBSERVATIONS** 

#### ALL RESPONSES

NO. OBS. = 12

= 6 M-H MIN. OBS.

MAX. OBS. = 200 M-H

> STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = STD. DEV. = 61 M-H 58 M-H

#### MISSILE PRIMES & SUBS

**NO. 08S.** = 3 **MEAN** = 19 M-H

STD. DEV. = 19 M-H

MIN. 08S. = 6 M-H

MAX. 08S. = 40 M-H

#### OTHER AEROSPACE

NO. OBS. = 6

MEAN = 30 M-H

STD. DEV. = 29 M-H

MIN. OBS. = 4 M-H

MAX. OBS. = 73 M-H

#### OTHER INDUSTRY

NO. OBS. = 7

MEAN = 4 M-H

STD. DEV. = 3 M-H

MIN. OBS. = 0.5 M-H

MAX. OBS. = 10 M-H

**OBSERVATIONS** 

#### ALL RESPONSES

NO. OBS. = 16

MIN. OBS. = 0.5 M-H

MAX. 08S. = 73 M-H



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 17 M-H

STD. DEV. = 22 M-H

Q17 - MANHOURS TO PREPARE A PROCESS PLAN FOR A NEW NON-CYLINDRICAL PART HAVING 25 OPERATIONS

### MISSILE PRIMES & SUBS = 3 NO. OBS. = 55 M-H MEAN = 40 M-H STD. DEV. = 25 M-H MIN. OBS. = 100 M-H MAX. OBS. OTHER AEROSPACE NO. OBS. 67 M-H MEAN = 63 M-H STD. DEV. = 6 M-H MIN. OBS. = 140 M-H MAX. OBS. OTHER INDUSTRY NO. OBS. = 8 M-HMEAN = 7 M-H STD. DEV. = 1 M-HMIN. OBS. ≈ 20 M-H MAX. OBS. **OBSERVATIONS** ALL RESPONSES = 16 NO. OBS.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 39 M-H STD. DEV. =49 M-H

B-74

MIN. OBS.

MAX. OBS.

= 140 M-H

Q17 - MAN HOURS TO PREPARE A PROCESS PLAN FOR A NEW NON-CYLINDRICAL MACHINED PART HAVING 50 OPERATIONS

| MISSILE PR NO. OBS. MEAN STD. DEV. MIN. OBS. MAX. OBS. | # 2<br># 75 M-H<br># 35 M-H<br># 50 M-H<br># 100 M-H   |              | :    | - <b>:</b> | :            | • • •                                   | . : 1     | • •<br>• 0                            | 1           | <u></u>                                 | · · · • · · · · · · · · · · · · · · · · | :               | 5                                       |
|--------------------------------------------------------|--------------------------------------------------------|--------------|------|------------|--------------|-----------------------------------------|-----------|---------------------------------------|-------------|-----------------------------------------|-----------------------------------------|-----------------|-----------------------------------------|
| OTHER AEROS                                            | SPACE                                                  |              |      |            |              |                                         |           |                                       |             |                                         |                                         |                 |                                         |
| NO. OBS. MEAN STD. DEV. MIN. OBS. MAX. OBS.            | = 5<br>= 157 M-H<br>= 128 M-H<br>= 12 M-H<br>= 300 M-H |              | * 45 | :          | • • •        | · · • • · · · · · · · · · · · · · · · · | ••<br>• ; | :<br>1:                               | •<br>:<br>1 | • •                                     | <b>:</b>                                | · · • • · · · 4 | · · • • ·                               |
| OTHER INDUS                                            | STRY                                                   |              |      |            |              |                                         |           |                                       |             |                                         |                                         |                 |                                         |
| NO. OBS. MEAN STD. DEV. MIN. OBS. MAX. OBS.            | = 5<br>= 23 M-H<br>= 17 M-H<br>= 6 M-H<br>= 40 M-H     |              | : ·  | · :        | - <b>:</b> : | · · · • · · · · · · · · · · · · · · · · | • • •     | • • • • • • • • • • • • • • • • • • • | · · :       | · · • · · · · · · · · · · · · · · · · · | <b>:</b>                                | · · · : · · · 4 | · · •                                   |
| ALL RESPON: NO. OBS. MIN. OBS. MAX. OBS.               | SES<br>= 12<br>= 6 M-H<br>= 300 M-H                    | OBSERVATIONS | :    | :<br>1     | :            | :<br>·                                  | FROM M    | :<br>:                                | •<br>1      | • •                                     | ;                                       | :               | · · • • • • • • • • • • • • • • • • • • |

87 M-H

STD. DEV. = 102 M-H

MEAN =

## Q17 - COST TO PREPARE A PROCESS PLAN FOR A NEW CYLINDRICAL PART HAVING 10 OPERATIONS

| MISSILE PRIMES & SUBS |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|-----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO. OBS.              | = 2             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN                  | <b>=</b> \$ 123 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.             | = \$ 4          |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MIN. OBS.             | <b>=</b> \$ 120 |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MAX. OBS.             | = \$ 125        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER AERO            | SPACE           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO. OBS.              | <b>=</b> 5      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN                  | <b>= \$ 231</b> |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.             | <b>=</b> \$ 210 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.             | = \$ 60         |              | - • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MAX. OBS.             | <b>=</b> \$ 567 |              | 111111111.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| OTHER INDU            | STRY            |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NO. OBS.              | <b>≈</b> 6      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN                  | = \$ 78         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.             | <b>= \$</b> 53  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.             | <b>=</b> \$ 18  |              | •• ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MAX. OBS.             | ≈ \$ 150        |              | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                 | OBSERVATIONS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                 | ERV          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALL RESPO             | <u>NSES</u>     | 088          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NO. 085.              | <b>= 13</b>     |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MIN. OBS.             | <b>= \$</b> 18  |              | •••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MAX. OBS.             | = \$ 567        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       |                 |              | the state of the s |

MEAN = \$ 144

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

# Q17 - COST TO PREPARE A PROCESS PLAN FOR A NEW CYLINDRICAL PART HAVING 25 OPERATIONS

#### MISSILE PRIMES & SUBS **=** 2 NO. OBS. = \$525 MEAN STD. DEV. = \$318 MIN. OBS. = \$30 MAX. OBS. = \$750 OTHER AEROSPACE NO. OBS. MEAN = \$658 **= \$565** STD. DEV. MIN. OBS. = \$120 = \$1418 MAX. OBS. OTHER INDUSTRY NO. OBS. = \$159 MEAN STD. DEV. = \$137 MIN. OBS. = \$18 MAX. OBS. = \$375 OBSERVATIONS ALL RESPONSES = 13 NO. OBS. = \$18 MIN. OBS. = \$1418 MAX. OBS.

MEAN = \$407

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

Q17 - COST TO PREPARE A PROCESS PLAN FOR A NEW CYLINDRICAL PART HAVING 50 OPERATIONS

## MISSILE PRIMES & SUBS

NO. OBS. = 2 MEAN = \$1225 STD. DEV. = \$ 884 MIN. OBS. = \$ 680 MAX. OBS. = \$1850

## OTHER AEROSPACE

NO. OBS. = 4 MEAN = \$1320 STD. DEV. = \$1192 MIN. OBS. = \$264 MAX. OBS. = \$2836

#### OTHER INDUSTRY

NO. OBS. = 5 MEAN = \$ 409 STD. DEV. = \$ 377 MIN. OBS. = \$ 75 MAX. OBS. = \$1000

OBSERVATIONS

## ALL RESPONSES

NC. OBS. = 11 MIN. OBS. = \$ 75 MAX. OBS. = \$2836



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$ 887 STD. DEV. = \$879

Q17 - COST TO PREPARE A PROCESS PLAN FOR A NEW NON-CYLINDRICAL PART HAVING 10 OPERATIONS

## MISSILE PRIMES & SUBS 2 NO. OBS. = \$ 160 MEAN **≈** \$ 57 STD. DEV. **=** \$ 120 MIN. OBS. **=** 5 200 MAX. OBS. OTHER AEROSPACE NO. OBS. = \$ 455 MEAN = \$ 482 STD. DEV. = \$ 80 MIN. OBS. MAX. OBS. **=** \$1240 OTHER INDUSTRY NO. OBS. MEAN = \$ 83 STD. DEV. = \$ 59 MIN. OBS. = \$ 18 MAX. OBS. = 3 150 OBSERVATIONS ALL RESPONSES = 13 NO. OBS. MIN. OBS. **=** \$ 18 MAX. OBS. = \$1240

MEAN = \$ 238

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$ 334

Q17 - COST TO PREPARE A PROCESS PLAN FOR A NEW NON-CYLINDRICAL PART HAVING 25 OPERATIONS

## MISSILE PRIMES & SUBS NO. OBS. = \$775 MEAN = \$672 STD. DEV. = \$300 MIN. OBS. = \$1250 MAX. OBS. OTHER AEROSPACE NO. OBS. **- \$938** MEAN = \$959 STD. DEV. = \$132 MIN. 035. = \$2380 MAX. OBS. OTHER INDUSTRY NO. OBS. \$173 MEAN STD. DEV. = \$143 = \$18 MIN. OBS. MAX. OBS. = \$375 **OBSERVATIONS** ALL RESPONSES = 13 NO. OBS. MIN. OBS. = \$18 **\$2380** MAX. OBS.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$560 STD. DEV. = \$704

#### Q17 - COST TO PREPARE A PROCESS PLAN FOR A NEW NON-CYLINDRICAL PART HAVING 50 OPERATIONS

## MISSILE PRIMES & SUBS NO. OBS. MEAN = \$1850 STD. DEV. = \$1768 MIN. OBS. = \$600 MAX. OBS. = \$2100 OTHER AEROSPACE NO. OBS. MEAN **= \$2221** STD. DEV. = \$2223 MIN. OBS. = \$308 MAX. OBS. = \$5100 OTHER INDUSTRY NO. OBS. MEAN = \$439 STD. DEV. = \$380 MIN. OBS. = \$75 MAX. OBS. = \$1000 **OBSERVATIONS**

ALL RESPONSES

NO OBS. = 11 MIN. OBS. = \$75 MAX. OBS. = \$5100

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$1344STD. DEV. = \$1619

## Q19 - PERCENTAGE OF COSTS ATTRIBUTABLE TO MATERIAL FOR NON-CYLINDRICAL PARTS MANUFACTURES IN-HOUSE

#### MISSILE PRIMES & SUBS

NO. OBS. = 4 MEAN = 11.8% STD. DEV. = 5.6% MIN. OBS. = 5.0% MAX. OBS. = 18.0%

#### OTHER AEROSPACE

NO. OBS. = 4 MEAN = 9.0% STD. DEV. = 7.6% MIN. OBS. = 1.8% MAX. OBS. = 19.2%

#### OTHER INDUSTRY

NO. OBS. = 9 MEAN = 36.8% STD. DEV. = 17.3% MIN. OBS. = 12.0% MAX. OBS. = 60.0%

OBSERVATIONS

### ALL RESPONSES

NO. OBS. = 17 MIN. OBS. = 1 87 MAX. OBS. = 60.0%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 24.4

STD. DEV. = 18.8

Q19 - PERCENTAGE OF COSTS ATTRIBUTABLE TO MATERIAL FOR CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

## MISSILE PRIMES & SUBS 4 NO. OBS. MEAN 11.8% STD. DEV. 5.6% MIN. OBS. 5℃ MAX. OBS. 18% OTHER AEROSPACE NO. OBS. 5 MEAN 10.29 STD. DEV. 6.24 MIN. OBS. 1.8% MAX. OBS. = 19.2 OTHER INDUSTRY NO. OBS. 35.2% MEAN STD. DEV. = 16.6% MIN. OBS. **\*** 12.0% MAX. OBS. = 60.0% **OBSERVATIONS** ALL RESPONSES NO. OBS. 18 MIN. OBS. 1.8% MAX. 085. = 60.0%

B-94

23.0%

MEAN =

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 17.3%

Q18 - AVERAGE COST TO PREPARE A PROCESS PLAN FOR STUDY PURPOSES -- NON-CYLINDRICAL PAPTS

## MISSILE PRIMES & SUBS 2 NO. OBS. MEAN = \$118 STD. DEV. = \$116 MIN. OBS. = \$ 36 MAX. OBS. = \$200 OTHER AEROSPACE NO. OBS. MEAN = \$157 = \$ 81 STD. DEV. MIN. OBS. = \$ 50 MAX. OBS. = \$250 OTHER INDUSTRY NO. OBS. MEAN STD. DEV. = \$ 99 MIN. OBS. MAX. OBS. **OBSERVATIONS** ALL RESPONSES NO. OBS. MIN. OBS. = \$ 16 MAX OBS. = \$300 STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$ 93.1

MEAN = \$ 116.6

Q18 - AVERAGE COST TO PREPARE A PROCESS PLAN FOR STUDY PURPOSES -- CYLINDRICAL PARTS

MISSILE PRIMES & SUBS

| MEAN<br>STD. DEV.<br>MIN. OBS.<br>MAX. OBS.             | = = = = | 2<br>\$ 80.5<br>\$ 63<br>\$ 36<br>\$125 |              | :                            | :          | •                 | :                                       | •<br>• : -<br>1                         | •<br>:-<br>:-  | :      | · · · · <b>:</b> ·                         | ••••••                                  | • • • • • • • • • • • • • • • • • • • | خ.<br>• • • •                         |
|---------------------------------------------------------|---------|-----------------------------------------|--------------|------------------------------|------------|-------------------|-----------------------------------------|-----------------------------------------|----------------|--------|--------------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|
| OTHER AEROS                                             | PAC     | Ε                                       |              |                              |            |                   |                                         |                                         |                |        |                                            |                                         |                                       |                                       |
| NO. OBS. MEAN STD. DEV. MIN. OBS.                       | = =     | 5<br>\$194<br>\$ 87<br>\$ 80            |              |                              |            |                   |                                         |                                         |                |        | •                                          |                                         |                                       |                                       |
| MAX. OBS.                                               | =       |                                         |              | :                            | ;<br>1     | :                 | • •                                     | 1                                       | 1;             | 1      | - · - <b>:</b> ·                           | · · · : · · · · · · · · · · · · · · · · | · · : ·                               | • • • • • • • • • • • • • • • • • • • |
| OTHER INDUS NO. OBS. MEAN STD. DEV. MIN. OBS. MAX. OBS. | = =     | 7<br>\$ 89<br>\$ 99<br>\$ 16<br>\$300   |              | . <b>;</b> .<br>. <b>c</b> . | <br>:<br>4 | - <b>1</b>        | * • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | ••<br>•••<br>û | 1      | •<br>• • • • • • • • • • • • • • • • • • • | 3                                       | ,<br>; .<br>                          | • • • • • • • • • • • • • • • • • • • |
| ALL RESPON<br>NO. OBS.<br>MIN. OBS.<br>MAX. OBS.        | =       | 14<br>\$ 16<br>\$300                    | OBSERVATIONS | 1 -<br>2                     |            | :<br>DEV<br>5 124 |                                         | • • • • • • • • • • • • • • • • • • •   |                | (ALL F |                                            |                                         | • · · · ‡ · · · ‡                     | · · · :                               |

Q18 - AVERAGE COST TO MODIFY AN EXISTING PROCESS PLAN -- NON-CYLINDRICAL MACHINED PAPTS

## MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = \$170 STD. DEV. = \$132 MIN. OBS. = \$36

MAX. OBS. = \$300

#### OTHER AEROSPACE

NO. OBS. = 5 MEAN = \$217 STD. DEV. = \$147 MIN. OBS. = \$85 MAX. OBS. = \$400

#### OTHER INDUSTRY

NO. OBS. = 9

MEAN = \$149

STD. DEV. = \$203.2

MIN. OBS. = \$10

MAX. OBS. = \$500



OBSERVATIONS

## ALL RESPONSES

NO. OBS. = 17 MIN. OBS. = \$10 MAX. OBS. = \$500



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$173 STD. DEV. = \$171

## 018 - AVERAGE COST TO MODIFY AN EXISTING PROCESS PLAN -- CYLINDRICAL MACHINED PARTS

## MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = \$112 STD. DEV. = \$83 MIN. OBS. = \$36 MAX. OBS. = \$200

#### OTHER AEROSPACE

NO. OBS. = 5 MEAN = \$228 STD. DEV. = \$143 MIN. OBS. = \$70 MAX. OBS. = \$400

#### OTHER INDUSTRY

NO. OBS. = 9 MEAN = \$149 STD. DEV. = \$204 MIN. OBS. = \$10 MAX. OBS. = \$500



## ALL RESPONSES

**OBSERVATIONS** 

NO. OBS. = 17 MIN. OBS. = \$10 MAX. OBS. = \$500



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$166

STD. DEV. = \$169

Q18 - AVERAGE COST TO PREPARE A PROCESS PLAN FOR A NEW PART -- NON-CYLINDRICAL MACHINED PARTS

## MISSILE PRIMES & SUBS

| NO. OBS.  | = | 3      |
|-----------|---|--------|
| MEAN      | = | \$547  |
| STD. DEV. | = | \$401  |
| MIN. OBS. | = | \$240  |
| MAX. OBS. | = | \$1000 |



## OTHER AEROSPACE

| NO. OBS.  | = 5             |  |
|-----------|-----------------|--|
| MEAN      | = \$1366        |  |
| STD. DEV. | <b>= \$1537</b> |  |
| MIN. OBS. | = \$210         |  |
| MAX. OBS. | = \$4000        |  |



## OTHER INDUSTRY

| NO. OBS.  | = | 9      |
|-----------|---|--------|
| MEAN      | = | \$399  |
| STD. DEV. | = | \$675  |
| MIN. OBS. | Ŧ | \$ 18  |
| MAX. OBS. | = | \$2000 |



# ALL RESPONSES

**OBSERVATIONS** 

NO. OBS. = 17 MIN. OBS. = \$ 18 MAX. OBS. = \$4000



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN \* \$709 STD. DEV. = \$1016

#### Q18 - AVERAGE COST TO PREPARE A PROCESS PLAN FOR A NEW PART -- CYLINDRICAL MACHINED PARTS

## MISSILE PRIMES & SUBS NO. OBS. 3 MEAN \$330 STD. DEV. \$147 MIN. OBS. \$240 MAX. OBS. \$500 OTHER AEROSPACE 5 NO. OBS. MEAN \$760 STD. DEV. \$529 MIN. OBS. \$180 MAX. OBS. = \$1413 OTHER INDUSTRY NO. OBS. 9 MEAN \$398 STD. DEV. \$675 MIN. QBS. \$ 25 MAX. QBS. = \$2000 **OBSERVATIONS** ALL RESPONSES 17 NO. OBS. MIN. OBS. \$ 25 MAX. OBS. **\$2000** STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$492 STD. DEV. - \$577

## Q17 - LEADTIME TO PREPARE A PROCESS PLAN FOR A NEW NON-CYLINDRICAL PART HAVING 50 OPERATIONS

| MISSILE PRI | MES  | & SUBS  |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
|-------------|------|---------|--------------|------------|----------------------|-------|-----------|------|--------|-----|----------|----------|------------------|-----|-----|--------------------|--------|
| NO. OBS.    |      | 3       |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
| MEAN        | =    | 27 DAYS |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
| STD. DEV.   | =    | 6 DAYS  |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
| MIN. OBS.   | =    | 20 DAYS |              |            |                      |       |           |      |        | •   | •        |          |                  |     |     |                    |        |
| MAX. OBS.   | =    | 30 DAYS |              | :          | :                    | :     | • • •     |      | :      |     | :        | 1        | :                |     | :   | : ·<br>1           | :<br>÷ |
|             |      |         | •            |            | •                    | •     | •         |      | ٠      |     |          | •        |                  |     |     | •                  | •      |
| OTHER AEROS | PACE |         |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
| NO. OBS.    | =    | 5       |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
| MEAN        | z    | 44 DAYS |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
| STD. DEV.   | =    | 38 DAYS |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
| MIN. OBS.   | =    | 2 DAYS  |              |            |                      |       |           |      | ••     |     |          | •        |                  | •   |     |                    |        |
| MAX. OBS.   | ż    | 90 DAYS |              | :          |                      | • •   | :         |      | :      |     | :        | :        | • • •            |     | : : | :                  | • •    |
|             |      |         |              | 7          | <b>\$</b>            | * \$  | ٠         |      | 1      |     | •        | ,        | •                |     | •   | •                  | •      |
| OTHER INDUS | TRY  |         |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
| NO. 0BS.    | =    | 5       |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
| MEAN        | =    | 18 DAYS |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
| STD. DEV.   | =    | 10 DAYS |              |            |                      |       |           |      |        | •   |          |          |                  |     |     |                    |        |
| MIN. OBS.   | =    | 2 DAYS  |              |            |                      |       |           |      | •      | •   | •        |          |                  |     |     |                    |        |
| MAX. OBS.   | =    | 28 DAYS |              | :          | · · · <b>:</b> · · · | . : - | · · · · · |      | :<br>1 |     | :        | 1        | · · :            |     | :   | <br>: · · · .<br>1 | :      |
|             |      |         |              | •          | •                    |       | -         |      | •      |     | ·        | •        | _                |     | ٠   |                    | -      |
|             |      |         |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
|             |      |         |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
|             |      |         |              |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
|             |      |         | SS           |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
|             |      |         | 1110         |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
|             |      |         | ERV          |            |                      |       |           |      |        |     |          |          |                  |     |     |                    |        |
| ALL RESPONS | ES   |         | OBSERVATIONS |            |                      |       |           |      |        | •   |          |          |                  |     |     |                    |        |
| NO. OBS.    | -    | 13      | _            |            |                      |       |           |      |        | •   | •        | _        |                  |     |     |                    |        |
| MIN. OBS.   | •    | 2 DAYS  |              |            |                      |       |           |      | ••     | •   | •        | •        |                  | •   |     |                    |        |
| MAX. OBS.   |      | 90 DAYS |              | <b>1</b> · |                      | •     | - • • •   |      | 1      | . • | :<br>(*) | : -<br>1 | ٠٠ <b>:</b><br>ت |     | :   | <br>:<br>4         | •      |
|             |      | ,       |              | •          | CTANDADO             | DEM   |           | NC - |        | M   |          |          |                  |     |     |                    |        |
|             |      |         |              |            | STANDARD             | UEVI  | MITU      | M2 F | KUM    | ME  | AN (     | ALL RE   | 240N             | 262 | )   |                    |        |

B-87

STD. DEV. = 26 DAYS

MEAN = 30 DAYS

Q17 - LEADTIME TO PREPARE A PROCESS PLAN FOR A NEW NON-CYLINDRICAL PART HAVING 25 OFF RATIONS

#### MISSILE PRIMES & SUBS

NO. 085. =

MEAN = 35 DAYS

STD. DEV. = 37 DAYS

MIN. OBS. = 10 DAYS

MAX. OBS. = 90 DAYS

## OTHER AEROSPACE

NO. OBS. =

MEAN = 29 DAYS

STD. DEV. = 23 MAYS

MIN. OBS. = 1 DAY

MAX. OBS. = 60 DAYS

## OTHER INDUSTRY

NO. 08S. = 7

MEAN = 10 D/YS

STD. DEV. = 8 DAYS

MIN. OBS. = 2 DAYS

MAX. OBS. = 21 DAYS

RCFDVATIO

#### ALL RESPONSES

NO. OBS. = 17

MIN. OBS. = 1 DAY

MAX. OBS. = 90 DAYS

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 23 DAYS 5TD. DEV. = 24 DAYS

B-86

Q17 - LEADTIME TO PREPARE A PROCESS PLAN FOR A NEW NON-CYLINDRICAL PART HAVING 10 OPERATIONS

## MISSILE PRIMES & SUBS NO. OBS. MEAN = 22 days STD. DEV. = 26 days MIN. OBS. = 1 day MAX. OBS. = 60 days OTHER AEROSPACE NO. OBS. = 17 days MEAN STD. DEV. = 14 days = 0.5 days MIN. OBS. MAX. OBS. = 35 days OTHER INDUSTRY NO. OBS. 7 days MEAN STD. DEV. 5 days MIN. OBS. 2 days MAX. OBS. = 14 days **OBSERVATIONS** ALL RESPONSES NO. OBS. 17 MIN. OBS. 0.5 days MAX. OBS. 60 days

B-85

MEAN = 14 days

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 15 days

Q17 - LEADTIME TO PREPARE A PROCESS PLAN FOR A NEW CYLINDRICAL PART HAVING 50 OPERATIONS

## MISSILE PRIMES & SUBS

NO. OBS. = 3

MEAN = 23 DAYS

STD. DEV. = 12 DAYS

MIN. OBS. = 10 DAYS

MAX. OBS. = 30 DAYS

#### OTHER AEROSPACE

NO. OBS. = 5

MEAN = 30 DAYS

STD. DEV. = 25 DAYS

MIN. OBS. = 2 DAYS

MAX. OBS. = 60 DAYS

#### OTHER INDUSTRY

NO. OBS. = 5

MEAN = 18 DAYS

STD. DEV. = 10 DAYS

MIN. OBS. = 2 DAYS

MAX. OBS. = 28 DAYS

OBSERVATIONS

#### ALL RESPONSES

NO. OBS. = 1

MIN. OBS. = 2 DAYS

MAX. OBS. = 60 DAYS

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 24 DAYS

STD. DEV. = 17 DAYS

017 - LEADTIME TO PREPARE A PROCESS PLAN FOR A NEW CYLINDRICAL PART HAVING 25 OPERATIONS

## MISSILE PRIMES & SUBS

NO. OBS. = 4 MEAN = 23 days STD. DEV. = 17 days

MIN. OBS. = 5 days

MAX. OBS. = 45 days

## OTHER AEROSPACE

NO. OBS. = 6

MEAN = 20 days

STD. DEV. = 14 days

MIN. OBS. = 1 day

MAX. OBS. = 35 days

## OTHER INDUSTRY

NO. OBS. = 7

MEAN = 10 days

STD. DEV. = 8 days

MIN. OBS. = 2 days

MAX. OBS. = 21 days

**OBSERVATIONS** 

### ALL RESPONSES

NO. OBS. = 17

MIN. OBS. = 1 day

MAX. OBS. = 45 days

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 17 days STD. DEV. = 13 days

B-83

Q17 - LEADTIME TO PREPARE A PROCESS PLAN FOR A NEW CYLINDRICAL PART HAVING 10 OPERATIONS

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = 14 DAYS

STD. DEV. = 12 DAYS

MIN. OBS. = 1 DAY

MAX. OBS. = 30 DAYS

#### OTHER AEROSPACE

NO. OBS. = 6

MEAN = 14 DAYS

STD. DEV. = 13 DAYS

MIN. OBS. = 0.5 DAYS

MAX. OBS. = 35 DAYS

#### OTHER INDUSTRY

NO. OBS. = 7

MEAN = 7 DAYS

STD. DEV. = 5 DAYS

MIN. OBS. = 2 DAYS

MAX. OBS. = 14 DAYS

**OBSERVATIONS** 

## ALL RESPONSES

NO. OBS. = 17

MIN. OBS. = 0.5 DAYS

MAX. OBS. = 30 DAYS

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 11 DAYS

STD. DEV. = 10 DAYS

Q19 - PERCENTAGE OF COSTS ATTRIBUTABLE TO DIRECT LABOR FOR CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

## MISSILE PRIMES & SUBS NO. OBS. MEAN 36.5% STD. DEV. 22.4% MIN. OBS. 15.0% MAX. OBS. 60.8% OTHER AEROSPACE NO. OBS. MEAN 33.9% STD. DEV: 17.1% MIN. OBS. 22.0% MAX. OBS. 64.0% OTHER INDUSTRY NO. OBS. MEAN 22.2% STD. DEV. 20.1% MIN. OBS. 7.0% MAX. OBS. = 62.0% **OBSERVATIONS**

ALL RESPONSES

NO. OBS. 18 MIN. OBS. 7% MAX. OBS. 64%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 28.6% STD. DEV. = 19.8℃ Q19 - PERCENTAGE OF COSTS ATTRIBUTABLE TO DIRECT LABOR FOR NON-CYLINDRICAL PARTS MANUFACTUPED IN-HOUSE

## MISSILE PRIMES & SUBS

MO. OBS. = 4 MEAN = 38.4% STD. DEV. = 20.3% MIN. OBS. = 18.0% MAX. OBS. = 60.8%

## OTHER AEROSPACE

NO. OBS. = 4

MEAN = 35.6%

STD. DEV. = 21.1%

MIN. OBS. = 22.0%

MAX. OBS. = 67.0%

#### OTHER INDUSTRY

NO. OBS. = 9

MEAN = 20.6%

STD. DEV. = 18.0%

MIN. OBS. = 7.0%

MAX. OBS. = 62.0%

DCCDVAT

## ALL RESPONSES

NO. OBS. = 17 MIN. OBS. = 7.0% MAX. OBS. \* 67.0%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 28.3% STD. DEV. = 19.9%

Q19 - PERCENTAGE OF COSTS ATTRIBUTABLE TO TOOLING FOR CYLINDRICAL PARTS MANUFACTUPED IN-HOUSE

## MISSILE PRIMES & SUBS NO. OBS. 10.1 MEAN 7.0 STD. DEV. 5.0 MIN. OBS. MAX. OBS. OTHER AEROSPACE NO. OBS. MEAN STD. DEV. MIN. OBS. 0.4 **a** 25.0 MAX, OBS. OTHER INDUSTRY NO. OBS. MEAN STD. DEV. MIN. OBS. 10.0 MAX. OBS.



STO. DEV. = 6.5%

Q19 - PERCENTAGE OF COSTS ATTRIBUTABLE TO TOOLING FOR NON-CYLINDPICAL PARTS MANUFACTURED IN-HOUSE

## MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = 8.1%

STD. DEV. = 4.7%

MIN. OBS. = 5.0%

MAX. OBS. = 15.0%

## OTHER AEROSPACE

NO. OBS. = 4

MEAN = 9.4

STD. DEV. = 11.2

MIN. OBS. = 0.4

MAX. OBS. = 25.0

## OTHER INDUSTRY

NO. OBS. # 9

MEAN # 5.1%

STD. DEV. # 3.3%

MIN. OBS. # 0.5%

MAX. OBS. # 10.0%

OBSERVATIONS

#### ALL RESPONSES

NO. OBS. = 17 MIN. OBS. = 0.45 MAX. OBS. = 25%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 6.8%

STD DEV. = 6.19

Q19 - PERCENTAGE OF COSTS ATTRIBUTABLE TO SCRAP AND REWORK FOR CYLINDRICAL PARTS MANUFACTUPED IN-HOUSE

| MISSILE PR  | IMES       | & SUBS   |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
|-------------|------------|----------|--------------|----|---|-----|--------|-------|---|---------|---|--------------|-------|---|-----|-------|-----------|-------|-------|-----|-------|-----------|
| NO. OBS.    | =          | 4        |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
| MEAN        | =          | 6.6%     |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
| STD. DEV.   | =          | 5.3%     |              |    |   |     |        |       |   |         |   |              |       | • |     |       |           |       |       |     |       |           |
| MIN. OBS.   | =          | 2.0%     |              |    |   |     |        |       |   |         |   | . •          |       | • |     |       |           |       |       | •   |       |           |
| MAX. OBS.   | =          | 14.3%    |              |    | • |     | 1      | •     | • | • • •   |   | 1            |       |   | 1   | -     | •         |       | 3     |     | 1     | · · · : · |
|             |            |          |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
| OTHER AERO  | SPAC       | <u>E</u> |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
| NO. OBS.    | =          | 5        |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
| MEAN        | Ξ          | 3.5%     |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
| STD. DEV.   | =          | 2.0°     |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
| MIN. OBS.   | =          | 0.9%     |              |    | _ |     | _      |       |   | _       |   | •            | ••    | • | ٠.  |       | _         |       | _     |     |       | _         |
| MAX. OBS.   | =          | 6.0%     |              |    | • | • • | 1      | -     | • |         | • | 1            | r r i |   | 1   | • • • | -         | • • • | •     |     | 1     | =         |
|             |            |          |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
| OTHER INDUS | STRY       |          |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
| NO. OBS.    | =          | 9        |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
| MEAN        | 2          | 2.5%     |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
| STD. DEV.   | =          | 1.6%     |              |    |   |     |        |       |   |         |   | •            |       | _ |     |       |           |       |       |     |       |           |
| MIN. OBS.   | =          | 1.0%     |              |    |   |     |        |       |   |         |   | ••           | •     | • |     |       |           |       |       |     |       |           |
| MAX. OBS.   | =          | 5.0%     |              |    | : |     | ;<br>1 | · · : |   | · : · · | • | : · · ·<br>1 | · - : |   | ·:· | • • • | : ·<br>:: |       | : • • | • • | : · · | :         |
|             |            |          |              |    | ٠ |     | Ť      |       |   | -       |   | •            |       |   | •   |       | _         |       | •     |     |       | -         |
|             |            |          |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
|             |            |          |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
|             |            |          |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
|             |            |          |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
|             |            |          |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
|             |            |          | SNC          |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
|             |            |          | AT I(        |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |
|             |            |          | OBSERVATIONS | c. |   |     |        |       |   |         |   |              |       | • |     |       |           |       |       |     |       |           |
| ALL RESPONS | <u>ses</u> |          | <b>08</b> S  |    |   |     |        |       |   |         |   | •            | •     | • |     |       |           |       |       |     |       |           |
| NO. 085.    | =          | 18       |              |    |   |     |        |       |   |         |   | ••           | •     | • |     |       |           |       |       |     |       |           |
| MIN. OBS.   | \$         | 0.9%     |              |    | : |     | :      | :     |   | . :     |   |              | ••    |   | •   |       | : .       |       | : .   | •   | :     |           |
| MAX. OBS.   | #          | 14.3%    |              |    | • |     | 1      |       |   |         |   | t            | ť:    |   | 1   |       | 2         |       | 3     |     | 4     | Ę         |
|             |            |          |              |    |   |     |        |       |   |         |   |              |       |   |     |       |           |       |       |     |       |           |

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 3.7%

STD. DEV. = 3.2%

Q19 - PERCENTAGE OF COSTS ATTRIBUTABLE TO SCRAP AND REWORK FOR NON-CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

| MISSILE PR | IMES        | & SUBS   |              |            |        |           |         |                                         |              |       |                  |       |                  |   |   |
|------------|-------------|----------|--------------|------------|--------|-----------|---------|-----------------------------------------|--------------|-------|------------------|-------|------------------|---|---|
| NO. 08S.   | =           | 4        |              |            |        |           |         |                                         |              |       |                  |       |                  |   |   |
| MEAN       | =           | 6.6%     |              |            |        |           |         |                                         |              |       |                  |       |                  |   |   |
| STD. DEV.  |             | 5.3%     |              |            |        |           |         |                                         | •            |       |                  |       |                  |   |   |
| MIN. OBS.  | =           | 2.0%     |              |            |        |           |         | •                                       | •            |       | _                |       | •                |   |   |
| MAX. OBS.  | =           | 14.3%    |              | :          | 1      |           | _       | 1                                       |              | 1     | •                | •     |                  | 1 | : |
| OTHER AERO | <u>SPAC</u> | <u>E</u> |              |            |        |           |         |                                         |              |       |                  |       |                  |   |   |
| NO. OBS.   | =           | 4        |              |            |        |           |         |                                         |              |       |                  |       |                  |   |   |
| MEAN       | =           | 2.9%     |              |            |        |           |         |                                         |              |       |                  |       |                  |   |   |
| STD. DEV.  | =           | 1.7%     |              |            |        |           |         |                                         |              |       |                  |       |                  |   |   |
| MIN. OBS.  | =           | 0.9%     |              |            |        |           |         | •                                       |              |       |                  |       |                  |   |   |
| MAX. QBS.  | =           | 5.0%     |              | :<br>•     |        | · · · · · |         | :                                       | <b>:</b>     | 1     | · · :            |       | <b>:</b> · · · · | : | : |
| OTHER INDU | <u>STRY</u> |          |              |            |        |           |         |                                         |              |       |                  |       |                  |   |   |
| NO. OBS.   | z           | 9        |              |            |        |           |         |                                         |              |       |                  |       |                  |   |   |
| MEAN       | =           | 2.5%     |              |            |        |           |         |                                         |              |       |                  |       |                  |   |   |
| STD. DEV.  | =           | 1.6%     |              |            |        |           |         | •                                       |              |       |                  |       |                  |   |   |
| MIN. OBS.  | =           | 1.0%     |              |            |        |           |         | 44                                      |              |       |                  |       |                  |   |   |
| MAX. OBS.  | 2           | 5.0%     |              | :<br>=     | . 1    | • ;       |         | · · : · · · · · · · · · · · · · · · · · | i - : -<br>G | 1     | · · · · <b>:</b> |       | 3                | 1 | : |
|            |             |          |              |            |        |           |         |                                         |              |       |                  |       |                  |   |   |
|            |             |          | OBSERVATIONS | <b>e</b> , |        |           |         |                                         | •            |       |                  |       |                  |   |   |
| ALL RESPON | SES         |          | 088          |            |        |           |         | •                                       | •            |       |                  |       |                  |   |   |
| NO. 085.   | =           | 17       |              |            |        |           |         | • •                                     | • •          |       |                  |       |                  |   |   |
| MIN. 085.  | =           | 0.9%     |              | :          | : .    |           | . :     |                                         |              | · : . |                  |       | :                | : | : |
| MAX. OBS.  | =           | 14.3%    |              | 5          | 1      | -         | -       | . 1                                     | I.           | 1     | •                |       | 3                | 1 |   |
|            |             |          |              |            | STANDA | RD DEV    | IATIONS | FROM !                                  | MEAN (       | ALL R | ESPON            | NSES) | )                |   |   |

STD. DEV. = 3.2%

MEAN = 3.5%

Q19 - PERCENTAGE OF COSTS ATTRIBUTABLE TO PROCESS PLANNING FOR CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

#### MISSILE PRIMES & SUBS NO. OBS. 11.3% MEAN STD. DEV. 12.5% MIN. OBS. 5° MAX. OBS. 30% OTHER AEROSPACE 5 NO. OBS. 7.2% MEAN 8.2% STD. DEV. MIN. OBS. 0.4% MAX. OBS. 20% OTHER INDUSTRY 9 NO. 085. MEAN 6.4% STD. DEV. 3.4% MIN. OBS. 3.0%



## ALL RESPONSES

MAX. OBS.

10%

NO. OBS. = 18 MIN. OBS. = 7.7% MAX. OBS. = 9.0%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 7.7% STD. DEV. = 7.2%

Q19 - PERCENTAGE OF COSTS ATTRIBUTABLE TO PROCESS PLANNING FOP NON-CYLINDRICAL PAPTS MANUFACTURED IN-HOUSE

#### MISSILE PRIMES & SUBS NO. OBS. MEAN 11.3. 12.5% STD. DEV. 5.0 MIN. OBS. 30.0% MAX. OBS. OTHER AEROSPACE 4 NO. OBS. 8.0% MEAN 9.1% STD. DEV. 0.49 MIN. OBS. 20.0% MAX. OBS. OTHER INDUSTRY

9 NO. OBS. MEAN 6.4% STD. DEV. 3.4% MIN. OBS. 2.0% 10.0% MAX. OBS.



ALL RESPONSES

NO. OBS. 17 MIN. OBS. 0.4% MAX. OBS. 30%

**OBSERVATIONS** 

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = 8.0° STD. DEV. = 7.4% Q19 - PERCENTAGE OF COSTS ATTRIBUTABLE TO OVERHEAD, PPOFIT, ETC., FOR CYLINOPICAL FARTS MANUFACTURED IN-HOUSE

## MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = 23.8

STD. DEV. = 20.6

MIN. OBS. = 0

MAX. OBS. = 50

## OTHER AEROSPACE

NO. OBS. = 5 MEAN = 36.8 STD. DEV. = 27.0 MIN. OBS. = 5 MAX. OBS. = 64.9

## OTHER INDUSTRY

NO. OBS. = 9
MEAN = 28.6°
STD. DEV. = 21.1
MIN. OBS. = 0°
MAX. OBS. = 59°

**OBSERVATIONS** 

ALL RESPONSES

NO. OBS. = 18 MIN. OBS. = 0% MAX. OBS. = 64.9°

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 29.8

STD. DEV. = 21.9°

Q19 - PERCENTAGE OF COSTS ATTRIBUTABLE TO OVERHEAD, PROFIT, ETC., FOR MON-CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

| NO. OBS.<br>MEAN | =     | 4<br>23.8°        |              |     |     |   |       |     |                   |     |            |       |          |   |
|------------------|-------|-------------------|--------------|-----|-----|---|-------|-----|-------------------|-----|------------|-------|----------|---|
| STD. DEV.        | =     | 20.6°             |              |     |     |   |       |     |                   |     |            |       |          |   |
| MIN. OBS.        | =     | 0%                |              |     |     |   |       | •   | • •               | •   |            |       | •        |   |
| MAX. OBS.        | =     | 50%               |              | :   | 1   | : |       | 1   | •                 | 1   |            | :     | 1        |   |
| OTHER AERO       | SPAC  | <u>E</u>          |              |     |     |   |       |     |                   |     |            |       |          |   |
| NO OBS.          | =     | 4                 |              |     |     |   |       |     |                   |     |            |       |          |   |
| MEAN             | =     | 34.5°             |              |     |     |   |       |     |                   |     |            |       |          |   |
| STD. DEV.        | =     | 30.3°             |              |     |     |   |       |     |                   |     |            |       |          |   |
| MIN. OBS.        | =     | 5°                |              |     | •   | • | , , • |     | :                 | •   | • :        |       | <b>:</b> | : |
| MAX. OBS.        | I     | <b>63</b> °       |              | :   | 1   |   | •     | 1   | ť                 | i   |            | •     | 1        |   |
| OTHER INDI       | ISTRY | ,<br><del>-</del> |              |     |     |   |       |     |                   |     |            |       |          |   |
| NO. OBS.         | *     | 9                 |              |     |     |   |       |     |                   |     |            |       |          |   |
| MEAN             | *     | 28.6%             |              |     |     |   |       |     |                   |     |            |       |          |   |
| STD. DEV.        | =     | 21.1%             |              |     |     |   |       | •   | •                 | •   |            |       |          |   |
| MIN. OBS.        | 3     | 0%                |              |     |     |   |       | • • | ••                | • • |            | • • • | • .      |   |
| MAX. OBS.        | *     | <b>59</b> f.      |              | :   | . 1 | • | •     | 1   | Ü                 | 1   | 2          |       | 4        | : |
|                  |       |                   |              |     |     |   |       |     |                   |     |            |       |          |   |
|                  |       |                   | OBSERVATIONS |     |     |   |       |     |                   |     |            |       |          |   |
| ALL RESPO        | NSES  |                   | 08SE         |     |     |   |       | •   |                   |     |            |       |          |   |
| ALL RESPO        | NSES  |                   | 0856         |     |     |   |       | •   | •                 | •   | •          |       |          |   |
| ALL RESPO        |       | 17<br>0           | 085          | : = | :   | : | :     | :   | •<br>• • • •<br>: | •   | . <b>.</b> | · · : | :        | : |

B-105

MEAN = 28.9%

STD. DEV. = 22.1%

Q20 - APPROXIMATE ANNUAL VALUE OF WORK IN PROCESS INVENTORY FOR CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

## MISSILE PRIMES & SUBS NO. OBS. MEAN = \$ 5.9 MIL. STD. DEV. ≈ \$ 9.4 MIL. MIN. OBS. = \$ 0.7 MIL. MAX. OBS. = \$ 20 MIL. OTHER AEROSPACE NO. OBS. MEAN = \$10.1 MIL. STD. DEV. = \$ 7.7 MIL. MIN. OBS. = \$1.3 MIL.MAX. OBS. = \$15.0 MIL. OTHER INDUSTRY NO. OBS. 8 MEAN = \$35.5 MIL. STD. DEV. = \$78.9 MIL. MIN. OBS. = \$ 0.1 MIL. MAX. OBS. = \$226 MIL. **OBSERVATIONS** ALL RESPONSES NO. OBS. 15 MIN. OBS. = \$0.1 MIL.

B-106

MEAN = \$22.5 MIL.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$57.8 MIL.

MAX. OBS.

= \$226 MIL

Q20 - APPROXIMATE ANNUAL VALUE OF WORK IN PROCESS INVENTORY FOR NON-CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

## MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = \$13.9 MIL. STD. DEV. = \$ 24.1 MIL. MIN. OBS. = \$ 0.6 MIL.

MIN. OBS. = \$ 0.6 MIL.

MAX. OBS. = \$ 50.0 MIL.

## OTHER AEROSPACE

NO. OBS. = 3

MEAN = \$6.0 MIL.

STD. DEV. = \$3.6 MIL.

MIN. OBS. = \$3.0 MIL.

MAX. OBS. = \$10.0 MIL.

## OTHER INDUSTRY

NO. OBS. = 8

MEAN = \$19.5 MIL.

STD. DEV. = \$46.4 MIL.

MIN. OBS. = \$ 0.1 MIL.

MAX. OBS. = \$133 MIL.



OBSERVATIONS

1 f.

## ALL RESPONSES

NO. OBS. = 15

MIN. OBS. = \$ 0.1 MIL.

MAX. OBS. = \$ 133 MIL.

E TOUR OF WATER FROM MEAN (ALL DESPONSES)

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$15.3 MIL. STD. DEV. =\$ 35.1 MIL

RESPONSES TO QUESTIONS 21 AND 22

|                                                                                                                               | MISSILE<br>AND S | MISSILE PRIME<br>AND SUBS. | OTHER<br>AEROSPACE | OTHER<br>ROSPACE | OTHER<br>INDUSTRY | ER<br>17KY | TOTAL | AL  |
|-------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|--------------------|------------------|-------------------|------------|-------|-----|
|                                                                                                                               | YES              | NO                         | YES                | NO               | YES               | NO         | YES   | ON. |
| Q21 - DOES YOUR PLANT USE COMPUTER ASSISTED PROCESS PLANNING AND/OR GROUP TECHNOLOGY FOR AREAS OTHER THAN MACHINED PARTS?     |                  | Э                          | 9                  | 1                | 3                 | ę          | 10    | 10  |
| Q22 - HAS YOUR COMPANY PERFORMED STUDIES RELATING TO PROCESS PLANNING ECONOMICS OR THE COSTS OF MANUFACTURING MACHINED PARTS? | 2                | 2                          | 7                  | 0                | 4                 | S.         | 13    | 7   |

## MISSILE PRIMES & SUBS

NO. OBS. = -13.6° MEAN = 20.6° STD. DEV. = - 40°. MIN. OBS. 100 MAX. OBS.

#### OTHER AEROSPACE

NO. OBS. = -22.6 MEAN = 14.5 STD. DEV. MIN. OBS. MAX. OBS.

#### OTHER INDUSTRY

8 NO. 085. = -39.7% MEAN = 26.1% STD. DEV = - 80% MIN. OBS. MAX. OBS.

## ALL RESPONSES

20 NO. OBS. 03 MIN. OBS. MAX. OBS.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -27.7%

STD. DEV. = 22.5%

#### 23 - PERCENT CHANGE IN PREPARING DOCUMENTATION FOR CYLINDRICAL PARTS -- SYSTEM 1

## HISSILE PRIMES & SUBS 10. OBS. **1EAN** = -8.8 STD. DEV. = 13.1% 4IN. OBS. = - 20° 1AX. OBS. = 10% **DTHER AEROSPACE** NO. OBS. MEAN = -9.0 STD. DEV. = 14.7% MIN. OBS. MAX. OBS. 0. OTHER INDUSTRY NO. OBS. MEAN = -27.15 STD. DEV. = 25 1% MIN. OBS. = - 75% MAX. OBS. OBSERVATIONS ALL RESPONSES NO. OBS. 18 MIN. OBS. 75-MAX. OBS. 10% STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 20.3%

MEAN = -16

## MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = -23.85.

STD. DEV. = 34.55

MIN. OBS. = - 755.

MAX. OBS. = 0

#### OTHER AEROSPACE

NO. OBS. = 6

MEAN = -8.3\( \) '

STD. DEV. = 0.2\( \)

MIN. OBS. = -0.5\( \)

MAX. OBS. = 0\( \)

#### OTHER INDUSTRY

NO. OBS. = 7

MEAN = -6.6%

STD. DEV. = 6.8%

MIN. OBS. = -20%

MAX. OBS. = 0%

OBSERVATIONS

# ्र -

## ALL RESPONSES

NO. OBS. = 17 MIN. OBS. = - 75% MAX. OBS. = 0%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = - 8.3% STD. DEV. = 18.1%

#### 023 - PERCENT CHANGE IN PERFORMING TOLERANCE ANALYSES FOR CYLINDRICAL PARTS -- SYSTEM 1

#### MISSILE PRIMES & SUBS

NO. OBS. MEAN = -23.8% STD. DEV. 34.5% MIN. OBS. = - 75% MAX. OBS.

#### OTHER AEROSPACE

NO. OBS. **= -0.1**% MEAN STD. DEV. ≈ 0.2% MIN. OBS. = -0.5% MAX. OBS.

#### OTHER INDUSTRY

NO. 085. MEAN = -7.3% STD. DEV. MIN. OBS. = - 20% MAX. OBS.

10

## ALL RESPONSES

NO. OBS. 18 MIN. OBS. - 75% MAX. OBS. 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = -8.1% STD. DEV. = 17.6%

## MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = -21.3%

STD. DEV. = 21.7%

MIN. OBS. = -50 %

MAX. OBS. = 0 %

#### OTHER AEROSPACE

NO. OBS. = 6

MEAN = -7.5%

STD. DEV. = 11.6%

MIN. OBS. = - 30%

MAX. OBS. = 0%

### OTHER INDUSTRY

NO. OBS. = 7

MEAN = -17.9%

STD. DEV. = 19.3%

MIN. OBS. = -50 %

MAX. OBS. = 0 %

## ALL RESPONSES

**OBSERVATIONS** 

NO. OBS. = 17 MIN. OBS. = - 50% MAX. OBS. = 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = - 15.0% STD. DEV. = 19.3%

#### Q23 - PERCENT CHANGE IN GENERATING TIME STANDARDS FOR CYLINDRICAL PARTS -- SYSTEM 1

#### MISSILE PRIMES & SUBS

NO. OBS. = 4 MEAN = -21.3% STD. DEV. = 21.7% MIN. OBS. = -50 %

#### OTHER AEROSPACE

NO. OBS. = 7

MEAN = -6.4.

STD. DEV. = 11.0%

MIN. OBS. = -30°

MAX. OBS. = 0%

#### OTHER INDUSTRY

NO. OBS. = 7

MEAN = -20.0%

STD. DEV. = 19.8%

MIN. OBS. = -50%

MAX. OBS. = 0%

ALL RESPONSES

NO. OBS. = 18 MIN. OBS. = - 50% MAX. OBS. = 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = - 15.0% STD. DEV. =17.7%

#### MISSILE PRIMES & SUBS NO. OBS. = -16.3% MEAN STD. DEV. = 13.8% MIN. OBS. MAX. OBS. OTHER AEROSPACE NO. OBS. 6 MEAN = - 11.7% STD. DEV. 14.3% MIN. OBS. = - 40% MAX. OBS. = - 1% OTHER INDUSTRY NO. OBS. MEAN = -13.9% STD. DEV. = 17.2% MIN. OBS. **= -** 50% MAX. OBS.

**OBSERVATIONS** 

#### ALL RESPONSES

NO. OBS. 17 MIN. OBS. 50% MAX. OBS.



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN ≈ -13.6%

STD. DEV. = 14.61

# MISSILE PRIMES & SUBS NO. OBS. MEAN = -16.3° STD. DEV. **#** 13.8<sub>0</sub> MIN. OBS. = -30 % MAX. OBS. 0' OTHER AEROSPACE 7 NO. OBS. = -12.4. MEAN STD. DEV. = 12.85 = - 40° MIN. CBS. MAY. OBS. = - 3% OTHER INDUSTRY NO. 085. 7 MEAN = -14.6°. STD. DEV. = 18.3% MIN. OBS. ≈ - 50% MAX. OBS. 0% **OBSERVATIONS**

ALL RESPONSES

NO. 085. 18 MIN. OBS. 50% MAX. OBS. 07

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = -14.1% STD. DEV. = 14.8%

# Q23 - PERCENT CHANGE IN SELECTING TOOLS FOR NON-CYLINDRICAL PARTS -- SYSTEM 1

# MISSILE PRIMES & SUBS NO. OBS. -23.8% MEAN STD. DEV. 34.5% = - 75% MIN. OBS. MAX. OBS. OTHER AEROSPACE 6 NO. OBS. MEAN = -3.7% STD. DEV. 3.5% MIN. OBS. = - 10% MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN STD. DEV. 19.2% MIN. OBS. = - . 50% MAX. OBS. **OBSERVATIONS** ALL RESPONSES NO. 085. 17 MIN. OBS. 75% MAX. OBS. 0%

B-116

-13.2%

MEAN =

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 20.7%

# MISSILE PRIMES & SUBS NO. 085. = -23.8°. MEAN **=** 34.5% STD. DEV. MIN. OBS. **=** - 75° MAX DBS. OTHER AEROSPACE NO. OBS. - -4.3 MEAN STD. DEV. = 4.2° = - 10 MIN. OBS. MAX. OBS. OTHER INDUSTRY NO. OBS. = -18.3° MEAN = 21.9% STD. DEV. = - 50% MIN. OBS. MAX. OBS.



NO. OBS. = 18 MIN. OBS. = - 75‰ MAX. OBS. ≠ 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -13.9% STD. DEV. = 21.4%

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = -21.3%

STD. DEV. = 21.7%

MIN. OBS. = - 50%

MAX. DBS. = 0%

#### OTHER AEROSPACE

NO. OBS. = 6 MEAN = -3.5% STD. DEV. = 3.6% MIN. OBS. = -10% MAX. OBS. = 0%

#### OTHER INDUSTRY

NO. OBS. = 7

MEAN = -21.4%

STD. DEV. = 21.7%

MIN. OBS. = - 60%

MAX. OBS. = 0%

#### ALL RESPONSES

NO. OBS. = 17 MIN. OBS. = 60% MAX. OBS. = 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = -15.1% STD. DEV. = 18.6%

# MISSILE PRIMES & SUBS NO. OBS. -26.3% MEAN = 21.7% STD. DEV. MIN. OBS. 50% MAX. OBS. OTHER AEROSPACE NO. OBS. MEAN STD. DEV. **= 3.8**% MIN. OBS. = - 100 MAX. OBS. OTHER INDUSTRY 7 NO. OBS. MEAN = -22.9% STD. DEV. = 23.4° MIN. OBS. 60% MAX. OBS. **OBSERVATIONS** ALL RESPONSES NO. 085. 18 MIN. OBS. - 60%

B-113

MEAN = -15.4%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. # 19.0%

MAX. OBS.

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = -21.3%

STD. DEV. = 21.7%

MIN. OBS. = -50%

MAX. OBS. = 0%



#### OTHER AEROSPACE

NO. OBS. = 6 MEAN = -6.7% STD. DEV. = 5.9% MIN. OBS. = - 15% MAX. OBS. = 0%



#### OTHER INDUSTRY

NO. OBS. = 7

MEAN = -43.1%

STD. DEV. = 34.5%

MIN. OBS. = - 95%

MAX. OBS. = - 2%



# ALL RESPONSES

NO. OBS. = 17 MIN. OBS. = - 95% MAX. OBS. = 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -25.1%

STD. DEV. = 28.6%

# MISSILE PRIMES & TUBS NO. OBS. = -21.3 MEAN STD. DEV. = 21.7% MIN. OBS. = - 501 MAX. OBS. OTHER AEROSPACE NO. OBS. MEAN = -8.6<sup>3</sup> STD. DEV. = 6.1° MIN. OBS. = - 20% MAX. OBS. OTHER INDUSTRY NO. OBS. 7 MEAN STD. DEV. = 34.3% MIN. OBS. = - 95% MAX. OBS. ALL RESPONSES NO. OBS. 18 MIN. OBS. 3 MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 28.2%

MEAN = -25.7%

#### Q23 - PERCENT CHANGE IN PROCESS PLANNING COSTS FOR NON-CYLINDRICAL PARTS -- SYSTEM 1

# MISSILE PRIMES & SUBS NO. OBS. MEAN = -13.6% STD. DEV. **=** 20.6% MIN. OBS. = - 40% MAX. OBS. 10% OTHER AEROSPACE NO. OBS. 7 MEAN = -19.7% STD. DEV. = 15.3% MIN. OBS. = - 30° MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN = -37.8% STD. DEV. = 25.4% MIN. OBS. 80% MAX. OBS. 3% P. P. B. B. W. W. **OBSERVATIONS** . ALL RESPONSES NO. OBS. 19 MIN. OBS. 80%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \_37.8% STD. DEV. = 25.4%

B-110

MAX. OBS.

10%

Q23 - PERCENT CHANGE IN PREPARING DOCUMENTATION FOR NON-CYLINDRICAL PAPTS -- SYSTEM 1

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = -8.8%

STD. DEV. = 13.1°

MIN. OBS. = -20°

MAX. OBS. = 10%

#### OTHER AEROSPACE

NO. OBS. = 6 MEAN = 7.4% STD. DEV. = 16.0° MIN. OBS. = -40% MAX. OBS. = 0%

#### OTHER INDUSTRY

NO. OBS. = 7 MEAN = - 25% STD. DEV. = 20.6% MIN. OBS. = - 60% MAX. OBS. = 0%

SFRVATION

#### ALL RESPONSES

NO. OBS. = 17 MIN. OBS. = - 60% MAX. OBS. = 10%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN ≈ - 15.0%

STD. DEV. = 18.6%

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = -2.5

STD. DEV. = 2.1%

MIN. OBS. = -5.

MAX. OBS. = 0%

#### OTHER AEROSPACE

NO. OBS. = 8 MEAN = -0.3 STD. DEV. = 0.75 MIN. OBS. = -25 MAX. OBS. = 05



#### OTHER INDUSTRY

NO. OBS, = 8

MEAN = - 55

STD. DEV. = 7.14

MIN. OBS. = - 20%

MAX. OBS. = 0%



10

#### ALL RESPONSES

NO. OBS. = 20 MIN. OBS. = - 20λ MAX. OBS. = 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = - 2.6% STD. DEV. = 4.9°

# MISSILE PRIMES & SUBS NO. OBS. = -2.8° MEAN = 2.0% STD. DEV. MIN. OBS. ± -5.0% MAX. OBS. OTHER AEROSPACE NO. OBS. MEAN STD. DEV. MIN. OBS. MAX. OBS. OTHER INDUSTRY . NO. OBS. MEAN STD. DEV. = - 20° MIN. OBS. MAX. OBS.



#### ALL RESPONSES

MIN. OBS. = 19 MAX. OBS. = - 20% MAX. OBS. = 0%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = - 2.8% STD. DEV. = 5.0%

B-126

#### Q23 - PERCENT CHANGE IN DIRECT LABOR FOR CYLINDRICAL PARTS -- SYSTEM 1

# MISSILE PRIMES & SUBS NO. OBS. MEAN = -5.2% STD. DEV. = 6.7% MIN. OBS. = - 15% MAX. OBS. 0% OTHER AEROSPACE 8 NO. OBS. MEAN = -3.3% **≈** 5.4% STD. DEV. = - 15% MIN. OBS. 0% MAX. OBS. OTHER INDUSTRY 8 NO. OBS. -6.4% MEAN STD. DEV. 7.8% MIN. OBS. = - 20% MAX. OBS. 0% **OBSERVATIONS**

ALL RESPONSES

NO. OBS. 20 MIN. OBS. - 20% MAX. QBS.

> STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = ~ 49% STD. DEV. = 6.5%

# MISSILE PRIMES & SUBS NO. OBS. MEAN -5.3% STD. DEV. MIN. OBS. = - 15% MAX. OBS. OTHER AEROSPACE NO. OBS. 7 MEAN -3.7% STD. DEV. 5.6% MIN. OBS. = - 15% MAX. OBS. 0% OTHER INDUSTRY NO. OBS. 8 MEAN -6.4% STD. DEV. 7.8% MIN. OBS. = - 20% MAX. OBS. 0 % ALL RESPONSES NO. OBS. 19 MIN. OBS. 20%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -5.2%

MAX. OBS.

0%

STD. DEV. = 6.6%

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = -7.5%

STD. DEV. = 6.5%

MIN. OBS. = -15%

MAX. OBS. = 0%

#### OTHER AEROSPACE

NO. OBS. = 8

MEAN = -1.4%

STD. DEV. = 1.8%

MIN. OBS. = - 5%

MAX. OBS. = 0%



#### OTHER INDUSTRY

NO. OBS. = 8

MEAN = - 4%

STD. DEV. = 4.2%

MIN. OBS. = - 10%

MAX. OBS. = 0%



#### ALL RESPONSES

NO. OBS. = 20 MIN. OBS. = - 15% MAX. OBS. = 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = -3.7% STD. DEV. = 4.4%

# MISSILE PRIMES & SUBS NO. 085. MEAN **-7.5**% **6.5**% STD. DEV. MIN. OBS. **=** -15 ≈ MAX. OBS. **≖** 0°. OTHER AEROSPACE NO. OBS. = -1.1% MEAN **=** 1.9% STD. DEV. MIN. OBS. = -5.0% MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN STD. DEV. MIN. OBS. = - 10% MAX. OBS. **OBSERVATIONS** ALL RESPONSES NO. OBS. 19 MIN. OBS. 15% MAX. OBS.

MEAN = -3.7%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 4.6%

20

= -25

NO. OBS.

MIN. OBS.

# MISSILE PRIMES & SUBS NO. OBS. -0.7 MEAN 9.1 STD. DEV. = -20 MIN. OBS. MAX. OBS. OTHER AEROSPACE NO. OBS. -2.5 MEAN 3.9° STD. DEV. -10. MIN. OBS. MAX. OBS. OTHER INDUSTRY NO. OBS. -5.9° MEAN STO. DEV. 8.5 -25 -MIN. OBS. MAX. OBS. 0: OBSERVATIONS ALL RESPONSES

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -4.7 STD. DEV. =  $7.0^{\circ}$ 

#### Q23 - PERCENT CHANGE IN TOOLING FOR NON-CYLINDRICAL PARTS -- SYSTEM 1

# MISSILE PRIMES & SUBS NO. OBS. MEAN STD. DEV. 8.9% MIN. OBS. = -20% MAX. OBS. OTHER AEROSPACE NO. OBS. -3.3° MEAN 7.4° STD. DEV. = -20° MIN. OBS. MAX. OBS. 0% OTHER INDUSTRY NO. OBS. 8 MEAN -5.9° 8.5% STD. DEV. MIN. OBS. MAX. OBS. **OBSERVATIONS** ALL RESPONSES NO. OBS. 19 MIN. OBS. = -25% MAX. OBS.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -5.2% STD. DEV. = 7.9%

# 023 - PERCENT CHANGE IN WORK IN PROCESS INVENTORY FOR CYLINDRICAL PARTS -- SYSTEM 1

#### MISSILE PRIMES & SUBS

| NO. 08S.  | = | 4     |
|-----------|---|-------|
| MEAN      | £ | -0.8% |
| STD. DEV. | * | 1.5%  |
| MIN. OBS. | = | -0.3% |
| MAY ORC   | _ | 0.0   |



#### OTHER AEROSPACE

| NO. OBS.  | = | 8     |
|-----------|---|-------|
| MEAN      | = | -0.4  |
| STD. DEV. | = | 0.7%  |
| MIN OBS.  | = | -0.2% |
| MAX OBS.  | = | 0%    |



#### OTHER INDUSTRY

| NO. OBS.  | * 8     |   |
|-----------|---------|---|
| MEAN      | = -5.39 | į |
| STD. DEV. | = 6.94  |   |
| MIN. OBS. | = -20%  |   |
| MAY ODC   | - 24    |   |





#### ALL RESPONSES

NO. OBS. = 20 MIN. OBS. = -26% MAX. OBS. = 0%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -2.4% STD. DEV. = 4.9%

#### Q23 - PERCENT CHANGE IN WORK IN PROCESS INVENTORY FOR NON-CYLINDRICAL PARTS -- SYSTEM 1

#### MISSILE PRIMES & SUBS

 NO. OBS.
 =
 4

 MEAN
 =
 0.8%

 STD. DEV.
 =
 1.5%

 MIN. OBS.
 =
 -3.0%

MAX. OBS. = 0

#### OTHER AEROSPACE

NO. OBS. = 7

MEAN = -0.4

STD. DEV. = 0.8

MIN. OBS. = -2.0%

MAX. OBS. = 0%

#### OTHER INDUSTRY

NO. OBS. = 8

MEAN = -5.3%

STD. DEV. = 6.9%

MIN. OBS. = -20.%

MAX. OBS. = 0%

#### ALL RESPONSES

NO. OBS. = 19 MIN. OBS. = -20? MAX. OBS. = 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN ≈ -2.6%

STD. DEV. = 5.0%

Q24 - IMPACT OF SYSTEM 1 ON OTHER AREAS (RANKED ON A SCALE OF -2 TO +2, WHERE -2 = SIGNIFICANTLY NEGATIVE IMPACT, 0 = NO CHANGE, +2 = SIGNIFICANT IMPROVEMENT)

| APPEAR LEADERTER            |   | HI SS | MISSILE PRIME<br>AND SUBS. | S. S. |    |    | AE B | OTHER<br>AEROSPACE | <u>"</u> |   |           | PE | OTHER<br>INDUSTRY |            | <b>—</b> | 1  | ۲          | TOTAL | l  |         |
|-----------------------------|---|-------|----------------------------|-------|----|----|------|--------------------|----------|---|-----------|----|-------------------|------------|----------|----|------------|-------|----|---------|
|                             | ? | 7     | 0                          | =     | \$ | -2 | -    | 0                  | =        | 7 | -2        | -  | 0                 | =          | 7        | -2 | -          | =     | 7  | \<br>_~ |
| PRODUCTION LEADTIME         |   |       | -                          | 3     |    |    |      | 5                  | 3        |   |           |    | -                 | 9          | 3        |    |            | 6 12  |    |         |
| PROCESS PLANNING LEADTIME   |   | _     |                            |       | 2  |    |      |                    | 9        | 2 |           |    |                   | ¥          | 3        |    |            | _=    | 3  | 7       |
| MACHINE UTILIZATION         |   |       | 3                          |       | -  |    |      | 9                  | 2        |   |           | 7  | v                 | 2          | 3        |    | -          | 13    | 4  | 4       |
| PRODUCT QUALITY             |   |       | 2                          | 2     |    |    |      | 9                  | 2        |   |           |    | - 2               | <b>-</b> - |          |    | ~          | 23    | 8  |         |
| DIRECT LABOR UTILIZATION    |   |       | e                          | -     |    |    |      | ,                  | 3        | _ |           |    | 2                 | ,          |          |    |            | 12    | 8  |         |
| UNIFORMITY OF PROCESS PLANS |   |       |                            | ~     | 3  |    |      |                    | 9        | 2 |           |    |                   | ,          |          |    |            | -=    | 10 | )       |
| COST ESTIMATING PROCEDURES  |   |       | -                          | 2     | -  |    |      | _                  | 9        | _ |           |    |                   | u.         | 3        |    |            | 2 10  |    | 5       |
| MAKE/BUY DECISIONS          |   |       | -                          | ~     |    |    |      | 5                  | 3        |   |           |    |                   | ٠,٠        | . 2      |    |            | 7 12  |    | 2       |
| PRODUCT STANDARDIZATION     |   |       | -                          | 2     | -  |    |      | e.                 | 5        | 2 |           |    | <b>V</b>          | 3          | 2        |    |            | 0     |    | 5       |
| CRITICAL LABOR SKILLS       |   |       | 2                          | 2     |    |    |      | 9                  | 2        |   |           | ~  | 8                 |            | _        | -  | 16         | -     | 0  |         |
| MATERIAL STANDARDIZATION    |   |       | -                          | 2     | -  |    |      | 5                  | 2        | _ |           |    | - 5               | ·          |          |    | =          |       | 8  | 2       |
| PRODUCIBILITY OF PARTS      |   |       | 2                          | 2     |    |    |      | 3                  | 4        |   |           |    |                   |            |          |    |            | -11   |    |         |
| PLANT LAYOUT                |   |       | ن                          |       |    |    |      | ψ                  | -        | _ |           | `` | ~                 | ا ع        |          |    | -=         | 2     |    |         |
| MATERIAL HANDLING           |   |       | 2                          | 2     |    |    |      | ۍ                  | 2        | _ |           | -  | -                 | ~          | ~        |    | =          | _     |    | 3       |
| PRODUCTION SCHEDULING       |   |       | 3                          |       | ~  |    |      | 9                  | ~        |   |           |    |                   | ٠,         | ,        |    |            | 6     | ی  | 5       |
| CAPACITY PLANNING           |   |       | 3                          | 2     |    |    |      | ع                  | -        |   | $\exists$ |    |                   | -2         | -        |    | $\ddot{-}$ | 8     | 8  | · v     |

### MISSILE PRIMES & SUBS 3 NO. OBS. MEAN \$ 76K STD. DEV. \$ 108K MIN. OBS. 8K MAX. OBS. \$ 200K OTHER AEROSPACE NO. OBS. 1 MEAN \$ 10K STD. DEV. Ok MIN. OBS. \$ 10K MAX. OBS. \$ 10K OTHER INDUSTRY NO. OBS. 2 MEAN 0K STD. DEV. MIN. OBS. 0K MAX. OBS. OBSERVATIONS ALL RESPONSES NO. OBS. MIN. OBS. 0K - 2 MAX. OBS. \$ 200K STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$40K STD. DEV. = \$79K

# 25 - COST TO ACQUIRE HARDWARE -- SYSTEM 1 FOR NON-CYLINDRICAL PARTS

| MES & | SU       | BS                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |       |
|-------|----------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| =     | \$<br>\$ | 108K<br>8K                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>44</b>                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                              | . •. • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . • - · ·                                                                                                                                                                                                                                                                                                              |       |
| =     | \$       | 200K                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · •                                                                                                                                                                                      | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 2                                                                                                                                                                                    | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ٠.                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ē                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                                                                                                                                                                                                                                                                      | e     |
| SPACE |          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |       |
| 2     |          | 1                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |       |
| *     | \$       | OK                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |       |
| =     | \$       | 0K                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |       |
| =     | \$       |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • .                                                                                                                                                                                    | <b>.</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •<br>•                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . •                                                                                                                                                                                                                                                                                                                    | . • . |
| =     | \$       | ЭК                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e.                                                                                                                                                                                       | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 3                                                                                                                                                                                    | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ō                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | č                                                                                                                                                                                                                              | Ţ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                      | 5     |
| JSTRY |          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |       |
| =     |          | 2                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |       |
| •     | •        | OK.                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |       |
| =     | \$       | OK.                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |       |
|       | 5        | OK                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • .                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                      | • .   |
| •     | ,        | S OK                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                                                                                                                                                                                        | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 2                                                                                                                                                                                    | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ņ                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                      | 5     |
| ONSES |          |                                                    | JBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        |       |
|       | SPACE    | = \$ = \$ = \$ \$ = \$ \$ # \$ # \$ # \$ # \$ # \$ | = \$ 76K<br>= \$ 108K<br>= \$ 8K<br>= \$ 200K<br>SPACE<br>= \$ 0K<br>= 0K | = 3<br>= \$ 76K<br>= \$ 108K<br>= \$ 8K<br>= \$ 200K<br>= \$ 0K<br>= \$ 0K | = 3<br>= \$ 76K<br>= \$ 108K<br>= \$ 8K<br>= \$ 200K<br>SPACE<br>= 1<br>= \$ 0K<br>= 0K | = 3<br>= \$ 76K<br>= \$ 108K<br>= \$ 8K<br>= \$ 200K<br>= \$ 0K<br>= | = \$ 76K<br>= \$ 108K<br>= \$ 8K<br>= \$ 200K<br>SPACE<br>= 1<br>= \$ 0K<br>= \$ 0K | = 3<br>= \$ 76K<br>= \$ 108K<br>= \$ 8K<br>= \$ 200K<br>SPACE<br>= 1<br>= \$ 0K<br>= | = \$ 76K<br>= \$ 108K<br>= \$ 8K<br>= \$ 200K<br>= \$ 0K<br>= \$ 0K | = 3<br>= \$ 76K<br>= \$ 108K<br>= \$ 200K<br>SPACE<br>= 1<br>= \$ 0K<br>= 0K | = 3<br>= \$ 76K<br>= \$ 108K<br>= \$ 8K<br>= \$ 200K<br>SPACE<br>= 1<br>= \$ 0K<br>= \$ 0K | = \$ 76K<br>= \$ 108K<br>= \$ 8K<br>= \$ 200K<br>= \$ 0K<br>= \$ 0K | # 3<br>= \$ 76K<br>= \$ 108K<br>= \$ 8K<br>= \$ 200K<br>SPACE<br>= 1<br># \$ 0K<br>= \$ 0K | # 3   |

NO. OBS. = 6 MIN. OBS. = \$ OK MAX. OBS. = \$ 200K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$38K STD. DEV. = \$80K

# MONTHS TO TEST SYSTEM -- SYSTEM 1 FOR NON-CYLINDRICAL PARTS

# E PRIMES & SUBS s. 4 2.8 mo. EV. 2.2 mo. )BS. 1 mo. )BS. 6 mo. AEROSPACE **3**S. 5 6 mo. DEV. 3.7 mc. 085. 3 mo. OBS. 12 ma. INDUSTRY BS. 1.4 mo. DEV. .75 mo. OBS. 0.5 ma. 085. RESPONSES OBS. 13 OBS. 0.5 mo. -\$ -1 -1 -1 -1 -1 -1 085. 12 mo.

B-151

MEAN ≈ 3.6 mo.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 3.2 mo.

#### Q25 - MONTHS TO TEST SYSTEM -- SYSTEM 1 FOR CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = 2.6 mo.

STD. DEV. = 2.3 mo.

MIN. OBS. = 1 mo.

MAX. OBS. = 6 mo.

#### OTHER AEROSPACE

NO. OBS. = 5 MEAN = 5.5 mo. STD. DEV. = 4.3 mo. MIN. OBS. = 9.5 mc.

MAX. OBS. = 12 mo.

#### OTHER INDUSTRY

NO. OBS. = 4

MEAN = 1.4 mo.

STD. DEV. = 0.8 mo.

MIN. OBS. = 0.5 mo.

MAX. OBS. = 2 mo.

**OBSERVATIONS** 

#### ALL RESPONSES

NO. OBS. = 13 MIN. OBS. = 0.5 mo. MAX. OBS. = 2 mo.



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 3.3 mo.

STD. DEV. = 3.3 mo.

125 - MONTHS TO TRAIN PERSONNEL -- SYSTEM 1 FOR NON-CYLINDRICAL PARTS

# ISSILE PRIMES & SUBS

Q. OBS. 2.8 mo. EAN 3.3 mo. TD. DEV. 1 mo. IIN. OBS. 12 mo. IAX. OBS.

#### THER AEROSPACE

5 NO. OBS. 2.75 mo. MEAN 2.9 mo. STD. DEV. MIN. OBS. .25 mo. MAX. OBS. 6 mo.

#### OTHER INDUSTRY

NO. 085. MEAN 1.7 mo. STD. DEV. 1.5 mo. MIN. OBS. 0.1 mo. MAX. OBS. 4 mo.

**OBSERVATIONS** 

# ALL RESPONSES

14 NO. OBS. MIN. OBS. 0.1 mo. MAX. OBS. 12 mo.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) STD. DEV. = 3.3 mo. MEAN = 2.8 mo.

B-149

Q25 - MONTHS TO TRAIN PERSONNEL -- SYSTEM 1 FOR CYLINDRICAL PARTS

# MISSILE PRIMES & SUBS NO. OBS. MEAN 4.1 mo. STD. DEV. 5.26 mo. MIN. OBS. l mo. MAX. OBS. 12 mo. OTHER AEROSPACE NO. 085. 1.9 mo. MEAN STD. DEV. 2.4 mg. MIN. OBS. 0.25 mo. MAX. OBS. 6 mo. OTHER INDUSTRY NO. 085. 5 MEAN 2.9 mo. STD. DEV. 4.1 mo. MIN. OBS. 0.1 mo. MAX. OBS. 10 mg. **ALL RESPONSES** NO. OBS. 14 MIN. OBS. 0.1 mo. MAX. OBS. 12 mg. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

B-148

STD. DEV. = 3.8 mo.

MEAN = 2.9 mo.

# )25 - MONTHS TO ESTABLISH INITIAL DATA FILES -- SYSTEM 1 FOR NON-CYLINDRICAL PARTS

MISSILE PRIMES & SUBS

| HESSEE IN   | AFILU      | 8 3003   |              |                                               |
|-------------|------------|----------|--------------|-----------------------------------------------|
| NO. 08\$.   | =          | 4        |              |                                               |
| MEAN        | =          | 5.75 mo. |              |                                               |
| STD. DEV.   | =          | 2.1 mo.  |              |                                               |
| MIN. OBS.   | =          | 3 mg.    |              | • • •                                         |
| MAX. 08S.   | =          | 8 mo.    |              |                                               |
|             |            |          |              |                                               |
| OTHER AERO  | SPACI      | _        |              |                                               |
| NO. OBS.    | =          | 5        |              |                                               |
| MEAN        | =          | 8.6 mo.  |              |                                               |
| STD. DEV.   | =          | 4.7 mo.  |              | •                                             |
| MIN. OBS.   | =          | 3 mo.    |              | ••                                            |
| MAX. OBS.   | =          | 12 mo.   |              | +                                             |
|             |            |          |              |                                               |
| OTHER INDU  | STRY       |          |              |                                               |
| NO. OBS.    | *          | 4        |              |                                               |
| MEAN        | =          | 4 mo.    |              |                                               |
| STD. DEV.   | 3          | 5.4 mo.  |              |                                               |
| MIN. OBS.   | =          | 0 mo.    |              | • •                                           |
| MAX. OBS.   | =          | 12 mo.   |              |                                               |
|             |            |          |              |                                               |
|             |            |          |              |                                               |
|             |            |          |              |                                               |
|             |            |          |              |                                               |
|             |            |          |              |                                               |
|             |            |          |              |                                               |
|             |            |          |              |                                               |
|             |            |          | Š            |                                               |
|             |            |          | MT.          |                                               |
|             |            |          | OBSERVATIONS | •                                             |
| ALL RESPONS | <u>SES</u> |          | 88           | •                                             |
| NOU OBS.    | =          | 13       |              | •• •                                          |
| MIN. OBS.   |            | 0 mo.    |              | - • • • • • • • • • • • • • • • • • • •       |
| MAX. OBS.   | •          | 12 mo.   |              |                                               |
|             |            |          |              |                                               |
|             |            |          |              | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) |
|             |            |          |              | MEAN ≠ 6.3 mo. STD. DEV. ≈ 4.4 mo.            |

#### Q25 - MONTHS TO ESTABLISH INITIAL DATA FILES -- SYSTEM 1 FOR CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

| NO. OBS.  | # | 4        |
|-----------|---|----------|
| MEAN      | = | 4.75 mo. |
| STD. DEV. | = | 1.5 mo.  |
| MIN. OBS. | = | 3 mo.    |
| MAX. OBS. | = | 6 mo.    |



#### OTHER AEROSPACE

| NO. 085.  | = | 5       |
|-----------|---|---------|
| MEAN      | = | 5.6 mo. |
| STD. DEV. | = | 4.2 mo. |
| MIN. OBS. | = | 1 mo.   |
| MAY ORS   | - | 12 ma   |



#### OTHER INDUSTRY

| NO. OBS.  | = | 4       |
|-----------|---|---------|
| MEAN      | * | 4 mo.   |
| STD. DEV. | = | 5.4 mo. |
| MIN. OBS. | * | 0 mo    |
| MAX. OBS. | * | 12 mo.  |



#### ALL RESPONSES

| NO. OBS.  | 2 | 13     |
|-----------|---|--------|
| MIN. OBS. | 2 | О то.  |
| MAX. OBS. | * | 12 mo. |



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = 4.3 mo. STD. DEV. = 3.76 mo.

# Q25 - MONTHS TO ACQUIRE HARDWARE -- SYSTEM 1 FOR NON-CYLINDRICAL PARTS

| MISSILE PR             | IMES  | & SUB | <u>s</u> |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|-------|-------|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO. OBS.               | *     | 3     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN                   | -     | 7.3   | mo.      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.              | *     | 1.2   | mo.      |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MIN. OBS.              | =     | 1     | mo.      |              | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MAX. OBS.              | =     | 3     | mo.      |              | *!!!!!!!!!!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| OTHER AERO             | SPACE |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO. OBS.               | *     | 1     | mo.      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN                   | =     | 6.0   | mo.      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STO. DEV.              |       |       | mo.      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.              |       | 6     | mo.      |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MAX. OBS.              | =     | 6     | mo.      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |       |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER INDU             | STRY  |       |          |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NO. OBS.               | =     | 1     | mo.      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1EAN                   |       | 0     | mo.      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.              |       |       | mo.      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.              | =     | 0     | mo.      |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MAX. OBS.              | =     | 0     | mo.      |              | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |       |       |          |              | n militaria mendende de la composición del composición de la composición de la composición de la composición del composición de la composición de la composición de la composición del composición de la composición de la composición del composici |
|                        |       |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |       |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |       |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |       |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |       |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |       |       |          | <u>∽</u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |       |       |          | 8            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |       |       |          | Y.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALL DECDOM             |       |       |          | OBSERVATIONS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALL RESPON             | 257   |       |          | 8            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NO. 08S.               | •     | 5     |          |              | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MIN. OBS.<br>MAX. OBS. | •     |       | mo.      |              | — The state of     |
|                        |       |       | mo.      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

STD. DEV. = 2-3 mo.

MEAN = 2.6 mo.

| NO. OBS.                                               | =                        | 3   |                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------|--------------------------|-----|-------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MEAN                                                   | =                        | 2.3 | mo.               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| STD. DEV.                                              | =                        | 1.2 | mo.               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MIN. OBS.                                              | =                        | 1   | mo.               |              | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MAX. OBS.                                              | =                        |     | mo.               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| OTHER AERO                                             | SPACE                    |     |                   |              | • .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| NO. OBS.                                               | =                        | 1   |                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MEAN                                                   | 2                        |     | mo.               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| STD. DEV.                                              | 2                        |     | mo.               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MIN. OBS.                                              | =                        |     | mo.               |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MAX. OBS.                                              | =                        |     | mo.               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| OTHER INDU NO. OBS. MEAN STD. DEV. MIN. OBS. MAX. OBS. | STRY<br>=<br>=<br>=<br>= | 0   | mo.<br>mo.<br>mo. |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ALL RESPON                                             | <u>SES</u>               |     |                   | OBSERVATIONS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NO. OBS.                                               | *                        | 5   |                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MIN. OBS.                                              | =                        |     | mo.               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MAX. OBS.                                              | =                        |     | mo.               |              | under the second of the secon |

STD. DEV. = 2.3 mo.

MEAN = 2.6 mo.

#### Q25 - COST TO TEST SYSTEM -- SYSTEM 1 FOR NON-CYLINDRICAL PARTS

# MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = \$9.8K STD. DEV. = \$4.8K MIN. OBS. = \$5.0K MAX. OBS. = \$14.5K



#### OTHER AEROSPACE

NO. OBS. = 2 MEAN = \$13.2K STD. DEV. = \$9.6K MIN. OBS. = \$6.4K MAX. OBS. = \$20K



#### OTHER INDUSTRY

NO. OBS. = 2 MEAN = \$3.0k STD. DEV. = \$2.9k MIN. OBS. = \$1.0k MAX. OBS. = \$5.0k



# ALL RESPONSES

NO. OBS. = 7 MIN. OBS. = \$ 1k MAX. OBS. = \$ 20k



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$8.8K STD. DEV. = \$6.5K

#### Q25 - COST TO TEST SYSTEM -- SYSTEM 1 FOR CYLINDRICAL PARTS

| MISSILE PR          | IMES       | L SHRS           |              |            |             |     |            |         |        |   |        |   |   |        |
|---------------------|------------|------------------|--------------|------------|-------------|-----|------------|---------|--------|---|--------|---|---|--------|
| NO. OBS.            |            | 3                |              |            |             |     |            |         |        |   |        |   |   |        |
| MEAN                | -          |                  |              |            |             |     |            |         |        |   |        |   |   |        |
| STD. DEV.           | =          | \$8.6K<br>\$3.1K |              |            |             |     |            |         |        |   |        |   |   |        |
|                     | _          |                  |              | -          |             |     |            |         |        | 4 |        |   |   |        |
| MIN. OBS.           | =          | \$10.8K          |              |            |             |     |            | • -     | ·      | · |        |   |   |        |
| MAX. OBS.           | =          | \$5K             |              | <b>-</b> ? | - 1         | - 3 | - ±        | - 1     | 9      | 1 | 2      | 3 | 1 | 5      |
| OTHER AERO          | SPAC       | <u>E</u>         |              |            |             |     |            |         |        |   |        |   |   |        |
| NO. OBS.            | -          | 2                |              |            |             |     |            |         |        |   |        |   |   |        |
| MEAN                | =          | \$5.5K           |              |            |             |     |            |         |        |   |        |   |   |        |
| STD. DEV.           | =          | \$6.4K           |              |            |             |     |            |         |        |   |        |   |   |        |
| MIN. OBS.           | =          | \$ 1K            |              | -          |             |     |            | •       |        | • |        |   |   |        |
| MAX. OBS.           | =          | \$ 10K           |              | -5         | - 1         | - 3 | - <u>2</u> | -1      | 9      | 1 | 2<br>2 | 3 | 1 | 5<br>5 |
| OTHER INDU          | STRY       |                  |              |            |             |     |            |         |        |   |        |   |   |        |
| NO. OBS.            | =          | 2                |              |            |             |     |            |         |        |   |        |   |   |        |
| MEAN                | =          | \$2.5K           |              |            |             |     |            |         |        |   |        |   |   |        |
| STD. DEV.           | =          | \$3.5K           |              |            |             |     |            |         |        |   |        |   |   |        |
| MIN. OBS.           | =          | \$0.05K          |              | -          |             |     |            | •       | •      |   |        |   |   |        |
| MAX. OBS.           | =          | \$ 5K            |              | - • -      |             |     |            |         |        | • | •      | • | • | ·-     |
|                     |            |                  |              | <b>-</b> 5 | - 4         | - 3 | ÷ <u>₹</u> | - 1     | 9      | 1 | 2      | 3 | 4 | 5      |
|                     |            |                  |              |            |             |     |            |         |        |   |        |   |   |        |
|                     |            |                  |              |            |             |     |            |         |        |   |        |   |   |        |
|                     |            |                  | ONS          |            |             |     |            |         |        |   |        |   |   |        |
|                     |            |                  | OBSERVATIONS |            |             |     |            |         |        |   |        |   |   |        |
| ALL RESPON          | <u>SES</u> |                  | 08SE         | _          |             |     |            |         |        | • |        |   |   |        |
| NO. OBS.            |            | 7                | _            | -          |             |     |            |         | •      | • |        |   |   |        |
| MIN. OBS.           | =          | \$.05K           |              | •          | . <b> •</b> |     | •          | ••<br>• | •<br>• |   | •      | • | · |        |
| MAX. OBS.           | -          | \$10.8K          |              | - 5        | - 1         | - 3 | - <u>2</u> | - 1     | 9      | 1 | 2      | 3 | 1 | 3      |
| THE PERSON NAMED IN | -          | J. J. J. J.      |              |            |             |     |            |         |        |   |        |   |   |        |

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$ 5.9K STD. DEV. = \$ 4.4K

| MISSILE PRI | MES ( | SUBS    |              |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
|-------------|-------|---------|--------------|---------------|--------------|---------|------------|-----|------|-------------|---------------------|----------------|----------------|-------|------------|--|--|
| NO. OBS.    | *     | 3       |              |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
| MEAN        | =     | \$8.5K  |              |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
| STD. DEV.   | *     | \$ 10K  |              |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
| MIN. OBS.   | =     | \$ 2K   |              | -             |              |         |            |     | • •  |             | •                   |                |                |       |            |  |  |
| MAX. OBS.   | =     | \$2.0K  |              | _ • _ ·       | · - ·<br>- 1 | ·       |            | -1  |      | . •<br>. 10 | 1                   | <b></b> .<br>E | . <b></b><br>3 | 1     | - • -<br>- |  |  |
|             |       |         |              |               |              | •       | _          |     |      |             |                     |                |                |       |            |  |  |
| OTHER AEROS | PACE  |         |              |               |              |         |            |     |      |             |                     |                | •              |       |            |  |  |
| NO. OBS.    | =     | 2       |              |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
| MEAN        | 2     | \$16.5K |              |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
| STD. DEV.   |       | \$19.1K | •            |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
| MIN. OBS.   | =     | \$ 3K   |              | _             |              |         |            |     | •    |             |                     | •              |                |       |            |  |  |
| MAX. OBS.   | =     | \$ 30K  |              | -•-           | •-           | •<br>-3 |            |     |      | •           | 1                   | . <b></b><br>3 | . <b></b><br>3 | · - • | - · -      |  |  |
|             |       |         |              | • :           | -,           | - 3     | -3         | - 1 |      | •           | •                   | -              | •              |       | •          |  |  |
| OTHER INDUS | TRY   |         |              |               |              |         |            |     |      |             |                     | •              |                |       |            |  |  |
| NO. 385.    | =     | 2       |              |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
| MEAN        | =     | \$ 1.5K |              |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
| STD. DEV.   | =     | \$ .7K  |              | _             |              |         |            |     |      |             |                     |                |                |       |            |  |  |
| MIN. OBS.   | =     | \$ 1.0K |              | -             |              |         |            |     | •    |             |                     |                |                |       |            |  |  |
| MAX. OBS.   | =     | \$ 2K   |              | - 5           | ·            |         | •          |     |      | 9           | 1                   | . <b></b> .    | ·••            | 1     | -·-        |  |  |
|             |       |         |              | •             | ·            | -       | _          | -   |      | •           | •                   | •              |                |       | •          |  |  |
|             |       |         |              |               |              |         |            |     |      |             |                     |                | ,              |       |            |  |  |
|             |       |         |              |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
|             |       |         |              |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
|             |       |         |              |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
|             |       |         |              |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
|             |       |         | SXS          |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
|             |       |         | OBSERVATIONS |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
|             |       |         | <b>S</b>     |               |              |         |            |     |      |             |                     |                |                |       |            |  |  |
| ALL RESPONS | SES   |         | ) <b>8</b> S | -             |              |         |            |     | 4    |             |                     |                |                |       |            |  |  |
| NO. OBS.    |       | 7       | ~            | -             |              |         |            |     | •    |             |                     |                |                |       |            |  |  |
| MIN. OBS.   | •     | \$ 1K   |              |               | ·            | •       |            | • . |      | ·           | _*                  | - •            | ·              | · - • | •-         |  |  |
| MAX. OBS.   | •     | \$ 20K  |              | - 5           | - 1          | - 3     | - <u>2</u> | - 1 |      | 0           | 1                   | 2              | 3              | 1     | Ŧ.         |  |  |
| 003.        | •     | + 2Vn   |              |               |              |         | 4-1-01:-   | P=4 |      | an /a:      |                     |                |                |       |            |  |  |
|             |       |         |              |               |              | RD DEVI | ATIONS     | FRO | M ME |             |                     |                |                |       |            |  |  |
|             |       |         |              | MEAN = \$8.8K |              |         |            |     |      |             | STD. DEV. = \$11.4K |                |                |       |            |  |  |

# MISSILE PRIMES & SUBS NO. OBS. \$ 8.2K MEAN \$10.3K STD. DEV. MIN. OBS. MAX. OBS. \$ 20K OTHER AEROSPACE 2 NO. OBS. \$ 3.5K MEAN \$ 3.5K STD. DEV. MIN. OBS. MAX. 085. OTHER INDUSTRY NO. OBS. MEAN \$ 1.0K \$ 1.3K STD. DEV. MIN. OBS. MAX. OBS. ALL RESPONSES NO. OBS. MIN. OBS. \$ 0.1K \$ 20K MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

B-140

STD. DEV. = \$ 7.0K

MEAN = \$ 4.8K

Q25 - COST TO ESTABLISH INITIAL DATA FILES -- SYSTEM 1 FOR NON-CYLINDRICAL PARTS

### MISSILE PRIMES & SUBS

NO. OBS. \$38.7K MEAN \$ 10K STD. DEV. MIN. OBS. \$31.2K MAX. OBS. \$ 50K

### OTHER AEROSPACE

NO. OBS. 8K MEAN 0K STD. DEV. 8K MIN. OBS.

8K MAX. OBS.

#### OTHER INDUSTRY

NO. OBS. MEAN \$1425K STD. DEV. \$2016K MIN. OBS. MAX. OBS. \$2850K

### ALL RESPONSES

NO. OBS. MIN. OBS. \$ 0K MAX. OBS. \$2850K - + 3 - - + 2 - - + 1 -

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$ 495.7K

STD. DEV. = \$ 1153 5K

# Q25 - COST TO ESTABLISH INITIAL DATA FILES -- SYSTEM 1 FOR CYLINDRICAL PARTS

| MISSILE PR             | IMES     | & SUBS           |              |                  |        |                |              |            |         |        |        |        |   |          |
|------------------------|----------|------------------|--------------|------------------|--------|----------------|--------------|------------|---------|--------|--------|--------|---|----------|
| NO. OBS.               | =        | 3                |              |                  |        |                |              |            |         |        |        |        |   |          |
| MEAN                   | r        | \$ 33K           |              |                  |        |                |              |            |         |        |        |        |   |          |
| STD. DEV.              | =        | \$14.7k          |              |                  |        |                |              |            |         |        |        |        |   |          |
| MIN. OBS.              | =        | \$ 24K           |              |                  |        |                |              |            | • •     |        |        |        |   |          |
| MAX. OBS.              | =        | \$ 50K           |              | . • .<br>ت       | •      | <b></b><br>- 3 | •<br>        | · •<br>• 1 | • • • • | 1      | •<br>: | •<br>3 | • | • .<br>• |
| OTHER AERO             | SPACI    | <b>.</b>         |              | ٠                | •      |                |              |            |         | •      | -      | -      | · | -        |
|                        |          |                  |              |                  |        |                |              |            |         |        |        |        |   |          |
| NO. OBS.               | =        | 2                |              |                  |        |                |              |            |         |        |        |        |   |          |
| MEAN                   | =        | \$13.5K          |              |                  |        |                |              |            |         |        |        |        |   |          |
| STD. DEV.              | =        | \$16.3K          |              |                  |        |                |              |            |         |        |        |        |   |          |
| MIN. OBS.              | =        | \$ 2K            |              | •                | •      | •              | •            | 4          |         | •      | •      | •      |   | • .      |
| MAX. OBS.              | =        | \$ 25K           |              | ٠.               | - 1    | - 3            | ٠ <u>٢</u>   | - 1        | 9       | 1      | 2      | 3      | 1 | <b>E</b> |
| OTHER INDU             | STRY     |                  |              |                  |        |                |              |            |         |        |        |        |   |          |
| NO. OBS.               | =        | 2                |              |                  |        |                |              |            |         |        |        |        |   |          |
| MEAN                   | =        | \$ 75K           |              |                  |        |                |              |            |         |        |        |        |   |          |
| STD. DEV.              | =        | \$106.1K         |              |                  |        |                | •            |            |         |        |        |        |   |          |
| MIN. OBS.              | <b>±</b> | \$ OK            |              |                  |        |                |              | •          |         |        | •      |        |   |          |
| MAX. OBS.              | =        | ₃ 150K           |              |                  |        |                | •<br>ج       |            | •<br>g  | 1      | •<br>2 |        | 4 | •.<br>5  |
|                        |          |                  |              |                  |        |                | - <u>c</u>   | <b>.</b>   | ,       | •      | -      | 2      | • | J        |
|                        |          |                  | OBSERVATIONS |                  |        |                |              |            |         |        |        |        |   |          |
| ALL RESPON             | 252      |                  | ŏ            |                  |        |                |              | •          | •       |        |        |        |   |          |
| NO. OBS.               | z        | 7                |              |                  | _      |                | _            | •          | • •     |        | •      | _      |   |          |
| MIN. OBS.<br>MAX. OBS. | =        | \$ 0K<br>\$ 150K |              | . <del>.</del> . | - 1    | - 3            | <del>.</del> | • 1        | 9       | 1      | 2      | 3      | 4 | 5        |
|                        |          |                  |              |                  | STANDA | RD DEV         | IATION:      | S FROM     | MEAN (  | ALL RE | SPONSE | S)     |   |          |

STD. DEV. = \$51.6K

MEAN = \$39.9K

# MISSILE PRIMES & SUBS NO. OBS. MEAN \$22.2K \$20.6K STD. DEV. MIN. OBS. MAX. OBS. \$51.6K OTHER AEROSPACE 5 NO. OBS. \$34.2K MEAN STD. DEV. \$42.7K MIN. GBS. \$ 100K MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN \$17.0K STD. DEV. \$28.6K MIN. OBS. \$ 0.5K MAX. OBS. \$ 50K ALL RESPONSES NO. OBS. 12 MIN. OBS. \$ 0.5K MAX. OBS. = \$ 100K STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$31.4K

MEAN = \$25.9K

Q25 - ANNUAL COMPUTER CHARGES AND PROGRAM MAINTENANCE -- SYSTEM 1 FOR NON-CYLINDRICAL PARTS

# MISSILE PRIMES & SUBS NO. OBS. MEAN \$26.2K STD. DEV. \$20.9K \$ 10K MIN. QBS. \$56.8K MAX. OBS. OTHER AEROSPACE NO. OBS. \$92.9K MEAN STD. DEV. \$ 172K MIN. OBS. \$ 4.5K MAX. OBS. \$ 400K OTHER INDUSTRY NO. 085. 3 \$19.7K MEAN \$26.6K STD. DEV. MIN. OBS. \$ 0.5K MAX. OBS. \$ 50K **OBSERVATIONS** ALL RESPONSES 12 NO. 085. MIN. OBS. \$0.5K MAX. OBS. \$400K STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN \* \$52.4K

STD. DEV. \$110.8K

### Q25 - ANNUAL COST TO UPDATE DATA FILES -- SYSTEM 1 FOR CYLINDRICAL PARTS

# MISSILE PRIMES & SUBS NO. OBS. MEAN \$ 7.0K STD. DEV. \$ 5.0K MIN. OBS. \$ 0.8K MAX. OBS. \$ 10K OTHER AEROSPACE NO. OBS. 5 \$23.7K MEAN \$42.8K STD. DEV. MIN. OBS. 2K MAX. OBS. \$ 100K OTHER INDUSTRY NO. OBS. 3 MEAN \$ 5.0K STD. DEV. \$ 5.0K \$0.05K MIN. OBS. MAX. OBS. \$ 10K ALL RESPONSES 12 NO. OBS. MIN. OBS. \$0.05K MAX. OBS. \$ 100K STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$13.4K STD. DEV. = \$27.6K

Q25 - ANNUAL COST TO UPDATE DATA FILES -- SYSTEM 1 FOR NON-CYLINDRICAL PARTS

| MISSILE PRI | MES       | & SUBS   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|-----------|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO. OBS.    | =         | 4        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN        | =         | \$ 9K    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.   | =         | \$ 6.7K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.   | =         | \$ 1.6K  |              | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MAX. OBS.   | =         | \$ 15K   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |           |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER AEROS | PACI      | <u>.</u> |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO. OBS.    | =         | 5        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN        | =         | \$85.3K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STO. DEV.   | =         | \$ 176K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.   | =         | \$ 6K    |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MAX. OBS.   | =         | \$ 400K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |           |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER INDUS | TRY       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO. OBS.    | =         | 3        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN        | =         | \$ 5.3K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.   | =         | \$ 4.5K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.   | =         | \$0.95K  |              | •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MAX. OBS.   | =         | \$ 10K   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |           |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |           |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |           |          |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |           |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |           |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |           |          | ONS          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |           |          | OBSERVATIONS | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |           |          | ER           | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ALL RESPONS | <u>ES</u> |          | 088          | -<br>-<br>••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NO. OBS.    |           | 12       |              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |           | \$0.95K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAX. OBS.   |           | \$ 400K  |              | and the second s |
|             |           |          |              | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |           |          |              | MEAN = \$39.9K STD. DEV. = \$113.5K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |           |          |              | 110. DEA 2112. 2K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# Q27 - PERCENT CHANGE IN PROCESS PLANNING FOR CYLINDRICAL PARTS -- SYSTEM 2

| MISSILE PR<br>NO. OBS.<br>MEAN<br>STD. DEV.<br>MIN. OBS.<br>MAX. OBS. | =       | 3<br>-26.7%<br>20.8%<br>-50%<br>-10% |              | •<br>5                                |              | <b>1</b> 7 | •<br>3 | - 1                                     | •   | • ·<br>1     | · · • · · · · · · · · · · · · · · · · · | •<br>D     |        |             |
|-----------------------------------------------------------------------|---------|--------------------------------------|--------------|---------------------------------------|--------------|------------|--------|-----------------------------------------|-----|--------------|-----------------------------------------|------------|--------|-------------|
| OTHER AEROS                                                           | PAC     | <u>:E</u>                            |              |                                       |              |            |        |                                         |     |              |                                         |            |        |             |
| NO. OBS.                                                              | =       | 7                                    |              |                                       |              |            |        |                                         |     |              |                                         |            |        |             |
| MEAN                                                                  | =       | -30.7°                               |              |                                       |              |            |        |                                         |     |              |                                         |            |        |             |
| STD. DEV.                                                             | =       | 19.1%                                |              |                                       |              |            |        |                                         |     | •            |                                         |            |        |             |
| MIN. OBS.<br>MAX. OBS.                                                | =       | <b>-60</b> %                         |              | , •                                   | •            | •          | • .    | • • • • • • • • • • • • • • • • • • •   | • • | ••<br>••••   | <b>4</b><br>•                           | •          | •      | . <b></b> . |
| PMX. QB5.                                                             | -       | -2°.                                 |              | Ę                                     | - 1          | • ?        | - 2    | · 1                                     | 9   | 1            | 2                                       | 3          | 1      | 5           |
| OTHER INDUS                                                           | TRY     | •                                    |              |                                       |              |            |        |                                         |     |              |                                         |            |        |             |
| NO. OBS.                                                              | =       | 7                                    |              |                                       |              |            |        |                                         |     |              | •                                       |            |        |             |
| MEAN                                                                  | =       | -52.1°                               |              |                                       |              |            |        |                                         |     |              |                                         |            |        |             |
| STD. DEV.                                                             | =       | 23.9%                                |              |                                       |              |            |        |                                         |     |              |                                         |            |        |             |
| MIN. OBS.                                                             | =       | -93≈<br>-15%                         |              | • • • • •                             | . <b>. •</b> | · · .      | •      | 4444                                    | •   | •<br>•       | •                                       | <b>. •</b> | •      | • .         |
| MAX. OBS.                                                             | =       | -13%                                 |              | <b>c</b>                              | - 1          | - 3        | • 3    | - 1                                     | 9   | 1            | 2                                       | 3          | 1      | e.          |
| ALL RESPONS NO. OBS. MIN. OBS.                                        | ES<br>= | 17<br>-93%                           | OBSERVATIONS | · · · · · · · · · · · · · · · · · · · |              |            | •      | • • • • • • • • • • • • • • • • • • • • | . • | 14<br>1444 4 | . •                                     | *. * *     | ·<br>· | . •.        |
| MAX. OBS.                                                             | =       | -2%                                  |              | •                                     | •            | ٠          |        | . 1                                     | •   | 4            | -                                       | •          | •      | -           |
|                                                                       |         |                                      |              |                                       | (ANDARI      |            |        | FROM M                                  |     | LL RES       |                                         |            |        |             |

# MISSILE PRIMES & SUBS NO. OBS. 3 - 30° MEAN STD. DEV. 17.35 MIN. OBS. -50% MAX. 085. -20% OTHER AEROSPACE NO. OBS. -31.1% MEAN 21.7% STD. DEV. MIN. OBS. -60% MAX. OBS. -3% OTHER INDUSTRY NO. 085. 7 MEAN **-**50% STD. DEV. 23.8% MIN. OBS. -93% MAX. OBS. -15% **OBSERVATIONS** ALL RESPONSES NO. OBS. 16 MIN. OBS. -93% MAX. OBS. - 3% STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = -39.2% STD. DEV. = 22.8°

### Q27 - PERCENT CHANGE IN DETERMINING OPERATION SEQUENCES FOR CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS NO. OBS. 3 MEAN -40 STD. DEV. 35% MIN. OBS. -75% MAX. OBS. -5% OTHER AEROSPACE NO. OBS. MEAN STD. DEV. = 10.7% MIN. OBS. = -25% MAX. OBS. = -3 9 1 OTHER INDUSTRY NO. OBS. 7 MEAN -55% STD. DEV. = 33.4% MIN. OBS. = -95% MAX. OBS. -10% +2 +1 0 1

ALL RESPONSES

NO. OBS. = 16 MIN. OBS. = -95% MAX. OBS. = -5%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -35.8% STD. DEV. = 32.7%

### Q27 - PERCENT CHANGE IN DETERMINING OPERATION SEQUENCES FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS NO. OBS. 3 MEAN -41% STD. DEV. 33.5% MIN. OBS. -75% MAX. OBS. -8% OTHER AEROSPACE 5 NO. OBS. MEAN -8.4% STD. DEV. 9.3% MIN. OBS. -25% MAX. QBS. - 3% OTHER INDUSTRY NO. OBS. 7 MEAN -52.9% STD. DEV. 33.7% MIN. OBS. -95% MAX. OBS. -10% ALL RESPONSES NO. OBS. 15 MIN. OBS. -95% MAX. OBS. -8% STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = -35.7% STD. DEV. = 33.1%

MISSILE PRIMES & SUBS

# NO. OBS. MEAN -58.0% STD. DEV. 24.7% MIN. OBS. -75% MAX. OBS. 40° OTHER AEROSPACE NO. OBS. MEAN -10.3% STD. DEV. 12.0% MIN. OBS. -25% MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN -33.0% STD. DEV. 29.0% MIN. OBS. -80% MAX. OBS. -10% ALL RESPONSES NO. OBS. 15 MIN. OBS. -80% MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = -27.1% STD. DEV. = 27.0%

# Q27 - PERCENT CHANGE IN MACHINE SELECTION FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

### MISSILE PRIMES & SUBS

**NO. OBS.** = 2 **MEAN** = -57.5%

STD. DEV. = 24.7% MIN. OBS. = -75%

MAX. OBS. = -40%

### OTHER AEROSPACE

NO. OBS. = 5

MEAN = - 7.4%

STD. DEV. = 10.1%

MIN. OBS. = -25%

MAX. OBS. = 0%

### OTHER INDUSTRY

NO. OBS. # 7

MEAN = -31.4%

STD. DEV. = 27.5%

MIN. OBS. = -80%

MAX. OBS. = -10%

**OBSERVATIONS** 

#### ALL RESPONSES

NO. OBS. = 14 MIN. OBS. = -80%

MIN. OBS. = -80%MAX. OBS. = 0%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = - 26.6%

STD. DEV. = 27%

| MISSILE PRIMI  NO. OBS. =  MEAN =  STD. DEV. =  MIN. OBS. =  MAX. OBS. = | 3<br>31.3%<br>- 38.5%<br>75%                |              | ·<br>· • ·<br>· * | · · · · · · · · · · · · · · · · · · ·   | · • • • • • • • • • • • • • • • • • • • | •                                       | • 1                                     | •                                     | 1   | •<br>  | ·-••••<br>3 | 1        | •••         |
|--------------------------------------------------------------------------|---------------------------------------------|--------------|-------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------------------------|-----|--------|-------------|----------|-------------|
| MEAN STD. DEV. STD. OBS. STD.                                            | 6<br>11.8%<br>- 11.4%                       |              | ų                 | · · · • · · · · · · · · · · · · · · · · | · • • • • • • • • • • • • • • • • • • • | •<br>• 2                                | - 1                                     | •<br>• •<br>• •                       | 1   | •<br>2 | •<br>3      | •        | · · · · ·   |
| MEAN STD. DEV.                                                           | 8Y<br>6<br>36.7%<br>- 29.9%<br>75%<br>- 10% |              |                   | · • • • • • • • • • • • • • • • • • • • | - 3                                     | •<br>• 2                                | •••                                     | •                                     | 1   |        | ···••       | <u>*</u> | • .<br>5    |
| MIN. OBS.                                                                | S<br>= 15<br>= -75%<br>= 0%                 | OBSERVATIONS |                   |                                         | · · · · • · · · · · · · · · · · · · · · | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • | ••• | . •    | ,<br>3      | •        | <del></del> |

#### 27 - PERCENT CHANGE IN SELECTING TOOLING FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS NO. OBS. -31.7% MEAN 38.2% STD. DEV. -75% MIN. OBS. MAX. OBS. OTHER AEROSPACE NO. OBS. - 9.2% MEAN 10.5% STD. DEV. -25% MIN. OBS. MAX. OBS. OTHER INDUSTRY 6 NO. OBS. -34.2% MEAN 28.7% STD. DEV. -75% MIN. OBS. -10% MAX. OBS. OBSERVATIONS ALL RESPONSES 14 NO. OBS. -75% MIN. OBS. - 1 9 0% MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

B-163

STD. DEV. = 26.8%

MEAN = - 24.7%

# 27 - PERCENT CHANGE IN DETERMINING PROCESSING PARAMETERS FOR CYLINDRICAL PARTS -- SYSTEM 2

| ISSILE PRIMO O. OBS. EAN TD. DEV. HIN. OBS. AX. OBS.    | #ES<br>=<br>=<br>=<br>=<br>=<br>= | 3 -31% 24.8% -50.0% - 3.0%           |              | - • • • • • • • • • • • • • • • • | ····•································· | • •<br>• •<br>• 1 •                   | · · · · · · · · · · · · · · · · · · ·      | . • •.<br>2 = 9 | ····•                                  |
|---------------------------------------------------------|-----------------------------------|--------------------------------------|--------------|-----------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------|-----------------|----------------------------------------|
| THER AEROSE                                             | PACE                              | <u>.</u>                             |              |                                   |                                        |                                       |                                            |                 |                                        |
| IO. OBS.  MEAN  STD. DEV.  MIN. OBS.  MAX. OBS.         | = = = = =                         | 6<br>-19.5:<br>18.2%<br>-48%<br>0%   |              | - 1 1                             | · · · · · · · · · · · · · · · · · · ·  | • • • • • • • • • • • • • • • • • • • | •••<br>• • • • • • • • • • • • • • • • • • | . • •           | ······································ |
| OTHER INDUST                                            | RY                                |                                      |              |                                   |                                        |                                       |                                            | •               |                                        |
| NO. OBS.<br>MEAN<br>STD. DEV.<br>MIN. OBS.<br>MAX. OBS. | = = = =                           | 6<br>-33.3%<br>16.0%<br>-50%<br>-10% |              |                                   | ••<br>•3 •2                            | * *<br>* *<br>- 1 * *                 | • •<br>1                                   | ·               | 1 5                                    |
| ALL RESPONSE<br>NO. OBS.<br>MIN. OBS.<br>MAX. OBS.      | =<br>=<br>=                       | 15<br>-50%<br>0%                     | OBSERVATIONS |                                   | ••<br>3 2                              |                                       | 1                                          | ••.<br>2 3      | 1 5                                    |
|                                                         |                                   |                                      |              |                                   | RD DEVIATIONS<br>-27.3%                |                                       | (ALL RESP<br>D. DEV. =                     |                 |                                        |

PERCENT CHANGE IN DETERMINING PROCESSING PARAMETERS FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

# E PRIMES & SUBS **=** 3 = -31.7% EV. = 23.6% BS. = -50% = - 5% BS. **AEROSPACE** ß. = -17.6% **≠** 19.4% DEV. = -48% OBS. = 0% OBS. INDUSTRY = 6 BS. = -31.7% = 16.3% DEV. 085. **= -50%** = -10% OBS. **OBSERVATIONS** RESPONSES )BS. -50% 085. 0 1 - 1 085. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = -31.7% STD. DEV. = 16.3%

8-165

| AD-A151  | 997 CO<br>AP<br>RE | MPUTER!<br>PENDICE<br>SEARCH | ZED PI<br>S A B<br>INST | RODUCT<br>AND C<br>CHICAG | ION PE<br>TO BE<br>O IL | ROCESS<br>NEFIT<br>H H SI | PLANN<br>ANALY<br>IU ÉT | ING VO | DLUME<br>IIT<br>DV_76 | 3   |    | 4 |
|----------|--------------------|------------------------------|-------------------------|---------------------------|-------------------------|---------------------------|-------------------------|--------|-----------------------|-----|----|---|
| UNCLASSI | FIED DA            | AH01-76                      | -C-11                   | 94 .                      |                         |                           |                         |        | F/G                   | 9/2 | NL |   |
| :        |                    |                              |                         |                           |                         |                           |                         |        |                       |     | į  |   |
|          |                    |                              |                         |                           |                         |                           |                         |        |                       |     |    |   |
|          |                    |                              |                         |                           |                         |                           |                         |        |                       |     |    |   |
|          |                    |                              |                         |                           |                         |                           |                         |        |                       |     |    |   |
|          |                    |                              |                         |                           |                         |                           |                         |        |                       |     |    |   |
|          |                    |                              |                         |                           |                         |                           |                         |        |                       |     |    |   |
|          |                    |                              |                         |                           |                         |                           |                         |        |                       |     |    |   |



MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS (2004)

### Q27 - PERCENT CHANGE IN GENERATING TIME STANDARDS FOR CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS 3 NO. OBS. MEAN **= -31.7**% = 23.6% STD. DEV. -50% MIN. OBS. MAX. OBS. OTHER AEROSPACE NO. OBS. -6ª MEAN STD. DEV. MIN. OBS. MAX. OBS. OTHER INDUSTRY NO. OBS. = -31.4% MEAN STD. DEV. = 16.5% MIN. OBS. -60% MAX. OBS. **OBSERVATIONS** NO. OBS. 16 MIN. OBS. 0% MAX. OBS.

B-166

MEAN = -21.9%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 19.4%

### Q27 - PERCENT CHANGE IN GENERATING TIME STANDARDS FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS NO. OBS. MEAN = 31.7% STD. DEV. **=** 23.6% MIN. OBS. -50% MAX. OBS. -5% OTHER AEROSPACE NO. OBS. MEAN STD. DEV. = 9.9% MIN. OBS. MAX. OBS. OTHER INDUSTRY NO. OBS. 7 MEAN = -29.3% STD. DEV. = 16.9% MIN. OBS. = -60% MAX. OBS. = -10%



#### ALL RESPONSES

NO. OBS. MIN. OBS. MAX. OBS. **OBSERVATIONS** 



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = -22.5% STD. DEV. = 18.7%

# MISSILE PRIMES & SUBS NO. 085. 2 -46% MEAN STD. DEV. **≠** 41.0% MIN. OBS. **=** -7.5% MAX. OBS. = -17 OTHER AEROSPACE NO. OBS. MEAN = -7.1° STD. DEV. = 11.0° MIN. OBS. -25% MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN -15% STD. DEV. MIN. OBS. MAX. OBS. **OBSERVATIONS** ALL RESPONSES NO. OBS. MIN. OBS. -75% MAX. OBS.

B-168

-16.0%

MEAN =

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 20.4%

027 - PERCENT CHANGE IN PERFORMING TOLERANCE ANALYSES FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS 2 NO. OBS. MEAN -46°. STD. DEV. = -41.0% MIN. OBS. **≖ ~75** MAX. OBS. = -17% OTHER AEROSPACE NC. OBS. 5 MEAN = -6.1% STD. DEV. **= 10.8%** MIN. OBS. **= -25**% MAX. OBS. 0% . OTHER INDUSTRY NO. OBS. MEAN STD. DEV. **=** 13.9% MIN. OBS. -40% MAX. OBS. -5° 1 ALL RESPONSES 13 NO. QBS. MIN. OBS. -75%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = ~16.0% STD. DEV. = 21.3%

B-169

MAX. OBS.

0%

# MISSILE PRIMES & SUBS NO. OBS. 3 MEAN STD. DEV. = 27.8% MIN. OBS. -50% MAX. OBS. 5% OTHER AEROSPACE NO. OBS. 5 MEAN = -14.5% STD. DEV. = 15.8% MIN. OBS. = -40° MAX. OBS. = -0.5% OTHER INDUSTRY NO. OBS. 7 MEAN =-35,7% STD. DEV. = 23.7% MIN. OBS. = -80% MAX. OBS. = -10% **OBSERVATIONS** ALL RESPONSES NO. OBS. 15 MIN. OBS. -80% MAX. OBS. 5° STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = -35.7 STD. DEV. = 23.7%

# MISSILE PRIMES & SUBS NO. OBS. 3 = -28.3% MEAN = 29.3% STD. DEV. MIN. OBS. -50% MAX. OBS. 5% OTHER AEROSPACE NO. OBS. MEAN = -14.4% STD. DEV. = 18.3% MIN. OBS. **= ~40**% MAX. OBS. = -0.5% OTHER INDUSTRY NO. OBS. 7 MEAN = -34.3% STD. DEV. = 20.7% MIN. OBS. = -70% MAX. OBS. = -10% OBSERVATIONS ALL RESPONSES NO. OBS. 14 MIN. OBS. -70% MAX. OBS. 5% STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

B-171

STD. DEV. = 22.0%

MEAN = -27.3%

# MISSILE PRIMES & SUBS NO. OBS. MEAN -4.3 1.2% STD. DEV. MIN. OBS. -5% - 3° MAX. OBS. OTHER AEROSPACE 7 NO. OBS. -0.5% MEAN STD. DEV. 1.1% - 3% MIN. OBS. MAX. OBS. -0.5 OTHER INDUSTRY NO. OBS. 6 MEAN -4.2% STD. DEV. 4.9% MIN. OBS. -10% MAX. OBS. 0% OBSERVATIONS ALL RESPONSES 16 NO. OBS.

B-172

MEAN =

-2.6%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 3.5%

-10%

0%

MIN. OBS.

MAX. OBS.

# MISSILE PRIMES & SUBS

MO. OBS. = 3 MEAN = -4.3% STD. DEV. = 1.2% MIN. OBS. = -15%

-5%

# OTHER AEROSPACE

MAX. OBS.

NO. OBS. = 6

MEAN = -.6°

STD. DEV. = 1.2%

MIN. OBS. = -3°

MAX. OBS. = 0%

# OTHER INDUSTRY

NO. OBS. = 6 MEAN = -4.2% STD. DEV. = 4.9% MIN. OBS. = -10% MAX. OBS. = 0%

# ALL RESPONSES

NO. OBS. = 15 MIN. OBS. = -15% MAX. OBS. = 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -2.8% STD. DEV. = 3.6%

### Q27 - PERCENT CHANGE IN DIRECT LABOR FOR CYLINDRICAL PARTS -- SYSTEM 2

### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = -7%

STD. DEV. = 5.6%

MIN. OBS. = -15%

MAX. DBS. = -2%



### OTHER AEROSPACE

NO. OBS. = 7
MEAN = -7.6°
STD. DEV. = 7.9%
MIN. OBS. = -20%
MAX. OBS. = 0%



### OTHER INDUSTRY

NO. OBS. = 7
MEAN = -7.0%
STD. DEV. = 9.6%
MIN. OBS. = -25%
MAX. OBS. = 0%



### ALL RESPONSES

NO. OBS. = 18 MIN. OBS. = -25% MAX. OBS. = 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = -7.2% STD. DEV. = 7.7%

### Q27 - PERCENT CHANGE IN DIRECT LABOR FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS NO. OBS. MEAN -7% STD. DEV. 5.6% MIN. OBS. -15% MAX. OBS. -2% OTHER AEROSPACE NO. OBS. 6 MEAN -5.5% STD. DEV. 6.3% MIN. OBS. -17% MAX. OBS. 0% OTHER INDUSTRY NO. OBS. 7 MEAN = -6.1% STD. DEV. 8.1% MIN. OBS. -25% MAX. OBS. 0% OBSERVATIONS ALL RESPONSES NO. OBS. 17 -25% MIN. OBS. MAX. OBS. 0% STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

B-175

STD. DEV = 6.5%

MEAN = -6.1%

### MISSILE PRIMES & SUBS

| NO. OBS.  | =   | 4     |
|-----------|-----|-------|
| MEAN      | = . | 11.5% |
| STD. DEV. | =   | 9.9%  |
| MIN. OBS. | =   | -25°  |



### OTHER AEROSPACE

MAX. OBS.

| NO. OBS.  | <b>=</b> 7 |  |
|-----------|------------|--|
| MEAN      | = -4.1%    |  |
| STO. DEV. | = 4.4      |  |
| MIN. OBS. | ≈ -10%     |  |
| MAX. OBS. | = 0°       |  |

OBSERVATIONS



### OTHER INDUSTRY

| MO. ORS.  | <b>2</b> 7 |
|-----------|------------|
| MEAN      | = -4.6%    |
| STD. DEV. | = 4.2°     |
| MIN. OBS. | = -10%     |
| MAX. OBS. | * -5k      |



# ALL RESPONSES

| NO. OBS.  | • | 18   |
|-----------|---|------|
| MIN. OBS. | = | -25% |
| MAX. OBS. | = | Ω:.  |



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = -5.9% STD. DEV. = 6.3%

# 27 - PERCENT CHANGE IN SCRAP AND REWORK FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

### HISSILE PRIMES & SUBS

| 10.  | OBS. | =            | 4   |
|------|------|--------------|-----|
| 1EAN |      | <b>=</b> - } | 1.5 |
| STD. | DEV. | =            | 9.9 |
| 4IN. | OBS. | =            | -25 |
| 4A X | OBS. | =            | -15 |



### OTHER AEROSPACE

| NO. OBS.  | = | 6     |
|-----------|---|-------|
| MEAN      | = | -3.2% |
| STD. DEV. | = | 3.8°  |
| MIN. OBS. | = | -10   |
| MAX. OBS. | = | 0%    |



# OTHER INDUSTRY

| NO. OBS.  | = | 7     |
|-----------|---|-------|
| MEAN      | = | -4.6% |
| STD. DEV. | = | 4.25  |
| MIN. OBS. | = | -10°  |
| MAX. OBS  | = | 0°    |



# ALL RESPONSES

17 NO. 085. MIN. OBS. -25% MAX. OBS.



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) -5.7°

MEAN =

STD. DEV. = 6.4%

### Q29 - MONTHS TO ACQUIRE HARDWARE -- SYSTEM 2 FOR CYLINDRICAL PARTS

| STD. DEV. = 0<br>MIN. OBS. =<br>MAX. OBS. = | SUBS<br>4<br>.0 mo.<br>.8 mo.<br>2 mo.<br>4 mc. | · · · · · |               |               | · · · · · · · · · · · · · · · · · · · | . • • • • • • • • • • • • • •                                                                                                                                                       |
|---------------------------------------------|-------------------------------------------------|-----------|---------------|---------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OTHER AEROSPACE NO. OBS. =                  | 2                                               |           |               |               |                                       |                                                                                                                                                                                     |
|                                             | .3 mo.                                          | •         |               |               |                                       |                                                                                                                                                                                     |
|                                             | .8 mc.                                          |           |               |               |                                       |                                                                                                                                                                                     |
| MIN. OBS. =                                 | 6 mo.                                           |           |               | 4             | •                                     |                                                                                                                                                                                     |
| MAX. OBS. = 8.                              | .5 mo.                                          |           |               | 1 0           | i ž                                   | 5 1 5                                                                                                                                                                               |
| OTHER INDUSTRY                              |                                                 |           |               |               |                                       |                                                                                                                                                                                     |
| NO. OBS. =                                  | 5                                               |           |               |               |                                       |                                                                                                                                                                                     |
|                                             | .4 mo.                                          |           |               |               |                                       |                                                                                                                                                                                     |
|                                             | .6 mo.                                          |           |               | ^<br>•        |                                       |                                                                                                                                                                                     |
| MIN. OBS. =                                 | 2 mo.                                           |           |               | • •           |                                       |                                                                                                                                                                                     |
| MAX, OBS. = 1                               | 12 mc.                                          | e 1       |               | 1             | :                                     | D 1 F                                                                                                                                                                               |
| ALL RESPONSES                               | OBSERVATIONS                                    |           |               | •             |                                       |                                                                                                                                                                                     |
|                                             | 11                                              |           |               | 14 4 ^        | • •                                   |                                                                                                                                                                                     |
| MIN. OBS. =                                 | 2 mo                                            | • 1       | * . •         |               | . •                                   | . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • |
| MAX. OBS. = 1                               | 12 mo.                                          |           |               |               | - <del>-</del>                        |                                                                                                                                                                                     |
|                                             |                                                 | STANDA    | RD DEVIATIONS | FROM MEAN (AI | LL RESPONSES                          | )                                                                                                                                                                                   |

B-191

MEAN = 5.3 mo STD. DEV. = 3.0 mo.

MISSILE PRIMES & SUBS

## NO. OBS. MEAN \$14.6K STD. DEV. \$14.4K = \$ 4K MIN. OBS. MAX. OBS. = \$ 35K OTHER AEROSPACE 5 NO. OBS. MEAN \$20.5K \$17.5K STD. DEV. MIN. OBS. = \$ 6K MAX. 08S. = \$ 50K OTHER INDUSTRY NO. OBS. 7 MEAN \$19.1K STD. DEV. \$18.8K MIN. OBS. 2K MAX. OBS. = \$ 50K OBSERVATIONS ALL RESPONSES NO. OBS. 16 MIN. OBS. \$ 2K MAX. OBS. \$ 50K STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$18.4K STD. DEV. = \$16.4K

| MISSILE PRIMES             | & SUBS   |              |                 |              |              |           |                                         |       |
|----------------------------|----------|--------------|-----------------|--------------|--------------|-----------|-----------------------------------------|-------|
| NO. 08S. =                 | 4        |              |                 |              |              |           |                                         |       |
| MEAN =                     | \$10.7K  |              |                 |              |              |           |                                         |       |
| STD. DEV. =                | \$10.2K  |              |                 |              | •            |           |                                         |       |
| MIN. OBS. =                | \$ 2K    |              |                 |              | • •          | •         |                                         |       |
| MAX. OBS. =                | \$ 25K   | •            | 1               |              | 1            | 1         | _                                       | 1 -   |
|                            |          |              |                 |              |              |           |                                         |       |
| OTHER AEROSPAC             | <u>E</u> |              |                 |              |              |           |                                         |       |
| NO. 08S. =                 | 6        |              |                 |              |              |           |                                         |       |
| MEAN =                     | \$13.3K  |              |                 |              |              |           |                                         |       |
| STD. DEV. =                | \$ 6.4K  |              |                 |              | ••           |           |                                         |       |
| MIN 085. =                 | \$ 4K    |              |                 |              | 1444         |           |                                         |       |
| MAX. 085. =                | \$ 20K   | c            | •<br>- <b>1</b> |              | - <b>1</b> 9 | •         | ••<br>2                                 | 1 -   |
|                            |          |              |                 | _            |              |           |                                         |       |
| OTHER INDUSTRY             | •        |              |                 |              |              |           |                                         |       |
| NO OBS. =                  | 7        |              |                 |              |              |           |                                         |       |
| MEAN =                     | \$25.4K  |              |                 |              |              |           |                                         |       |
| STD DEV. =                 | \$35.6K  |              |                 |              | •            |           |                                         |       |
| MIN. OBS. =                | \$ 0.3k  |              |                 |              | . * * * *    | •         |                                         | . • • |
| MAX. 085. =                | \$ 100K  | · -          | - 1             |              | + <b>1</b> 0 | 1         | 2 3                                     | 1 5   |
|                            |          |              |                 |              |              |           |                                         |       |
|                            |          |              |                 |              |              |           |                                         |       |
|                            |          |              |                 |              |              |           |                                         |       |
|                            |          |              |                 |              |              |           |                                         |       |
|                            |          |              |                 |              |              |           |                                         |       |
|                            |          | S            |                 |              |              |           |                                         |       |
|                            |          | 110          |                 |              |              |           |                                         |       |
|                            |          | RVA          |                 |              |              |           |                                         |       |
| ALL RESPONSES              |          | OBSERVATIONS |                 |              | •            |           |                                         |       |
|                            |          | J .          |                 |              | 4444         |           |                                         |       |
| NO. 085. =                 | 17       | . • .        | •               | • •          |              | • •       | • • • • • • • • • • • • • • • • • • • • |       |
| MIN. OBS. ≈<br>MAX. OBS. ≈ | \$0.3K   | · 5          | . 1             | + 3 - + 2    | - 1 G        | 1         | 2 3                                     | 1 5   |
| PMA. UDS. *                | \$100K   |              |                 |              |              |           |                                         |       |
|                            |          |              |                 | D DEVIATIONS |              |           |                                         |       |
|                            |          |              | MEAN =          | \$17./K      | ST           | D. DEV. = | \$23.5K                                 |       |

| MISSILE PR                          | IMES | & SUBS      |              |                                               |
|-------------------------------------|------|-------------|--------------|-----------------------------------------------|
| NO. OBS.                            | =    | 4           |              |                                               |
| MEAN                                | =    | \$10.0K     |              |                                               |
| STD. DEV.                           | =    | \$ 7.9K     |              |                                               |
| MIN. OBS.                           | =    | \$ 2.5K     |              | • • • • • • • • • • • • • • • • • • •         |
| MAX. OBS.                           | =    | \$ 20K      |              | 5 - 1 - 1 - 2 - 2 - 1 - 1 - 1 - 2 - 1 - 1     |
| OTHER AERO                          | SPAC | <u>E</u>    |              |                                               |
| NO. OBS.                            | =    | 5           |              |                                               |
| MEAN                                | =    | \$10.7K     |              |                                               |
| STD. DEV.                           | =    | \$ 6.0K     |              |                                               |
| MIN. OBS.                           | =    | \$ 4K       |              |                                               |
| MAX. OBS.                           | =    | \$17.5k     |              |                                               |
| OTHER INDU                          | STRY |             |              |                                               |
| NO. OBS.                            | =    | 7           |              |                                               |
| MEAN                                | =    | \$10.4K     |              |                                               |
| STD. DEV.                           | =    | \$ 8.0K     |              |                                               |
| MIN. OBS.                           | =    | \$ 2K       |              | • • • •                                       |
| MAX. OBS.                           | =    | \$ 20K      |              |                                               |
|                                     |      |             |              |                                               |
| ALL RESPON<br>NO. OBS.<br>MIN. OBS. | =    | 16<br>\$ 2K | OBSERVATIONS |                                               |
| MAX. OBS.                           | Ŧ    | \$ 20K      |              |                                               |
|                                     |      |             |              | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) |
|                                     |      |             |              | MEAN = \$10.4K STD. DEV. = \$6.9K             |

## MISSILE PRIMES & SUBS NO. OBS. \$ 8.5K MEAN \$ 7.9K STD. DEV. \$ 2.5K MIN. OBS. = \$ 20K MAX. OBS. OTHER AEROSPACE NO. 085. \$ 9.6K MEAN = \$ 6.5K STD. DEV. = \$ 2.0K MIN. OBS. = \$17.5K MAX. OBS. OTHER INDUSTRY 7 NO. OBS. \$14.3K MEAN \$17.3K STD. DEV. MIN. OBS. \$ 0.2K \$ 50K MAX. OBS.

ALL RESPONSES

NO. OBS. = 17 MIN. OBS. = \$ 0.2K OBSERVATIONS

MAX. 085. = \$ 50K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$11.25K STD. DEV = \$12.0K

| ALL RESPON<br>NO. OBS.<br>MIN. OBS.<br>MAX. OBS.                      | <u>SES</u><br>=<br>= | 16<br>\$5K<br>\$600K                                   | OBSERVATIONS | 5    |                                       |        | . •<br>. 3       | •.<br>• 2    | 1   |          | • • • • • • • • • • • • • • • • • • • • |        | SPONSE | • .<br>3                              | •       | • .<br>• |
|-----------------------------------------------------------------------|----------------------|--------------------------------------------------------|--------------|------|---------------------------------------|--------|------------------|--------------|-----|----------|-----------------------------------------|--------|--------|---------------------------------------|---------|----------|
| STD. DEV.<br>MIN. OBS.<br>MAX. OBS.                                   | 3<br>2               | \$216.0K<br>\$ 5K<br>\$ 600K                           |              | . •. | • • • • • • • • • • • • • • • • • • • |        | . •<br>• 2:      | •<br>• 2     | 1   | ••       | 0                                       | 1      |        |                                       | •<br>•. | e        |
| OTHER INDU                                                            | =                    | 7<br>\$118.5k                                          |              |      |                                       |        |                  |              |     |          |                                         |        | •      |                                       | •       |          |
| OTHER AERO NO. OBS. MEAN STD. DEV. MIN. OBS. MAX. OBS.                | SPAC                 | 5<br>\$87.8K<br>\$69.7K<br>\$ 27K<br>\$ 200K           |              | •    | •                                     | ·<br>1 | . • · · ·<br>. I |              | • 1 | •        | • • • • • • • • • • • • • • • • • • • • | •<br>1 | <br>2  | · · · · · · · · · · · · · · · · · · · | •.      | · ·      |
| MISSILE PR<br>NO. OBS.<br>MEAN<br>STD. DEV.<br>MIN. OBS.<br>MAX. OBS. | IMES                 | \$ SUBS<br>4<br>\$35.8K<br>\$15.9K<br>\$ 13K<br>\$ 50K |              |      | · · · · · · · ·                       | ·<br>1 | . •<br>. 2       | •<br>- ~ \$^ |     | <b>4</b> | •                                       | • 1    | •<br>  |                                       |         | · · • ·  |

B-186

STD. DEV. = \$145.5K

MEAN = \$88.2K

# Q29 - COST TO ESTABLISH INITIAL DATA FILES -- SYSTEM 2 FOR CYLINDRICAL PARTS

| ina. Opp.              |      | \$1400K            | - 15 - 11 - 13 - 12 - 12 - 12 - 12 - 12 - 12 | - 1 0      | 1 2   | 3 | 1           | 5 |
|------------------------|------|--------------------|----------------------------------------------|------------|-------|---|-------------|---|
| MIN. OBS.<br>MAX. OBS. | =    | \$ 0.5K<br>\$1400K | er er en | ***        | • •   |   | •           | • |
| STD. DEV.              | =    | \$516.9K           |                                              | ••         |       |   |             |   |
| MEAN                   |      | \$231.5K           |                                              |            |       |   |             |   |
| NO. OBS.               |      | 7                  |                                              |            |       |   |             |   |
| OTHER INDU             | STRY | ,                  |                                              |            |       |   |             |   |
| MAX. 08S.              | •    | \$ 100K            | - 15 - H1 - 13 - 12                          | +1 9       | 1 2   | 3 | 1           | • |
| IIN. 08S.              |      | \$12.0K            |                                              | <b>***</b> | •     |   | •           |   |
| STD. DEV.              | =    | \$36.9K            | •                                            | 44         |       |   |             |   |
| MEAN                   | =    | \$43.7K            |                                              | _          |       |   |             |   |
| NO. OBS.               | =    | 6                  |                                              |            |       |   |             |   |
| OTHER AERO             | SPAC | <u>:E</u>          |                                              |            |       |   |             |   |
| MX. 003.               |      | \$ 50K             | - 15 - 11 - 13 - 12<br>-                     | ~1 U       | 1 E   | 3 | 1           | • |
| IIN. OBS.              | •    | \$ 6.5K            |                                              |            | • • . |   | · · • · · · | • |
| TD. DEV.               | -    | \$18.7K            |                                              | •          |       |   |             |   |
| IEAN                   | =    | \$33.1K            |                                              | •          |       |   |             |   |
| 10. OBS.               | -    | 4                  |                                              |            |       |   |             |   |

B-185

MEAN = \$118.5K

STD. DEV. = \$332.0K

# Q29 - COST TO ACQUIRE HARDWARE -- SYSTEM 2 FOR NON-CYLINDRICAL PARTS

| MISSILE PRI              | MES & SUBS       |              |                                                                                |
|--------------------------|------------------|--------------|--------------------------------------------------------------------------------|
| NO. OBS.                 | = 4              |              | •                                                                              |
| MEAN                     | = \$101.8K       |              |                                                                                |
| STD. DEV.                | = \$165.7K       |              | •                                                                              |
| MIN. OBS.                | = \$12.0K        |              |                                                                                |
| MAX. OBS.                | = \$350.0K       |              |                                                                                |
| OTHER AEROSE             | PACE             |              |                                                                                |
| NO. OBS.                 | <b>=</b> 3       |              |                                                                                |
| MEAN                     | =                |              |                                                                                |
| STD. DEV.                |                  |              |                                                                                |
| MIN. OBS.                | = \$ 27K         |              | • • •                                                                          |
| MAX. OBS.                | = \$ 200K        |              |                                                                                |
| OTHER INDUST             | rry              |              |                                                                                |
|                          |                  |              |                                                                                |
| NO. OBS.                 | <b>=</b> 5       |              |                                                                                |
| MEAN                     | = \$76.8K        |              |                                                                                |
|                          | = \$125.9K       |              | -<br>-                                                                         |
| MIN. OBS.                | - \$ 9.0K        |              | - •• •                                                                         |
| MAX. OBS.                | = \$ 300K        |              |                                                                                |
|                          |                  |              |                                                                                |
| ALL RESPONSE<br>NO. OBS. | = 12             | OBSERVATIONS | - • • • • • • • • • • • • • • • • • • •                                        |
| MIN. OBS.<br>MAX. OBS.   | = \$ 9.0K        |              |                                                                                |
| mma, UDS.                | <b>= \$</b> 300K |              |                                                                                |
|                          |                  |              | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)  MEAN = \$91K STD. DEV. = \$122K |

# MISSILE PRIMES & SUBS NO. 085. MEAN \$99.9K STD. DEV. = \$167.0K MIN. OBS. = \$ 7.5K MAX. OBS. = \$ 350K OTHER AEROSPACE NO. OBS. MEAN \$56.2K STD. DEV. = \$97.9K MIN. OBS. = \$12.9K MAX. OBS. = \$ 200K OTHER INDUSTRY NO. OBS. MEAN \* \$193.8K STD. DEV. = \$338.0K MIN. OBS. = \$ 10K MAX. 085. = \$ 700K OBSERVATIONS

ALL RESPONSES

NO. OBS. 12 MIN. OBS. \$ 7.5K MAX. OBS. = \$ 700K

> STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$116.6K STD. DEV. = \$212.1K

428 - IMPACT OF SYSTEM 2 OH OTHER AREAS (RANKED ON A SCALL OF -2 to +2, WHERE -2 = SIGNIFICANTLY HEGATIVE HIPACH, O - NO CHARGE, +2 = SIGNIFICANT HIPROVEMENT)

| AREAS IMPACTED              |    | HI SS | HISSILE PRIME<br>AND SUBS. | A F |          |          | AE RC | OTHER<br>AEROSPACE |   |              |          | TO | OTHER<br>INDUSTRY |   | <b> </b> |          | ٦        | TOTAL |          |    |
|-----------------------------|----|-------|----------------------------|-----|----------|----------|-------|--------------------|---|--------------|----------|----|-------------------|---|----------|----------|----------|-------|----------|----|
|                             | -2 | -     | 0                          | Ŧ   | +5       | -5       | -1    | 0                  | = | +2           | -2       | -1 | 0                 | - | +2       | -2       | -1       | 0     | 1 +2     | 2  |
| PRODUCTION LEADTIME         |    |       |                            | -   | 3        |          |       | -                  | 9 |              |          |    |                   | 5 | 4        | -        |          |       | 12       | ,  |
| PROCESS PLANNING LEADTIME   |    |       |                            | -   | ۳        |          |       |                    | 2 | 2            |          | -  |                   | 3 | 9        |          |          |       | 9 1      |    |
| MACHINE UTILIZATION         |    |       | 2                          | -   | _        |          |       | ۳                  | 4 | i            |          |    |                   | 2 | 4        |          | $\dashv$ | 8     |          | 5  |
| PRODUCT QUALITY             |    |       | 2                          | 2   |          |          |       | 4                  | ~ | <u>-</u> -   | _        |    | ر.                | 4 |          |          |          | =     | 6        |    |
| DIRECT LABOR UTILIZATION    |    |       | 2                          | 2   |          |          |       | 4                  | m | <u>i</u>     |          |    | ري<br>د           | 4 |          |          | _        | =     | 6        |    |
| UNIFORMITY OF PROCESS PLANS |    |       |                            |     | . 4      |          |       |                    | ~ | 4            |          |    |                   | ~ | 9        | $\dashv$ |          |       | - 9      | 14 |
| COST ESTIMATING PROCEDURES  |    |       |                            | 2   |          |          |       |                    | و | -            |          |    | _                 | ~ | - 5      |          |          | _     | <u>:</u> | 7  |
| MAKE /BUY DECISIONS         |    |       |                            | ~   |          |          |       | -                  | 9 | <del>i</del> |          |    |                   | т | - 5      |          |          | _     | - 9      | 11 |
| FRODUCT STANDARDIZATION     |    |       |                            | ~   | _        |          |       |                    | 5 | ~            |          |    |                   | ~ | 9        |          |          | 3     | 0        | 9  |
| CRITICAL LABOR SKILLS       |    |       | -                          | ~   |          |          |       | 4                  | ~ | _            | -        | -  |                   |   | _        |          | _        | 15    | ٠,       | 2  |
| MATERIAL STANIVARDIZATION   |    |       |                            | 2   | _        |          |       | 4                  | 2 | -            |          |    | -2                |   | _        |          |          | 9.    | 7        | ~  |
| PRODUCTRICITY OF PARTS      |    |       | -                          | ~   |          |          |       | 3                  | ~ |              |          | -  | 4                 | 5 |          |          |          | - 8   | =        | _  |
| PLANT LAYOUT                |    |       | ~                          | -   |          |          |       | ٠ 4                | 2 | -            |          |    | 2                 | 9 | _        | $\vdash$ |          | 6     | 6        | 2  |
| MATERIAL HANDLING           |    |       | -                          | 2   |          |          |       | 2                  | _ | -            |          |    | _                 | 9 | 2        |          |          | 7     | 6        | 3  |
| PRODUCTION SCHEDULING       |    |       | 2                          |     | -        |          |       | 5                  | 2 |              |          | _  | -                 | 4 | 2        |          |          | 7     | 9        | 9  |
| CAPACITY PLANNING           |    |       | -                          | 3   | $\dashv$ | $\dashv$ |       | 4                  | ~ |              | $\dashv$ |    |                   | 4 | 5        | $\vdash$ | $\vdash$ | 5 1   | 01       | 5  |

Q27 - PERCENT CHANGE IN WORK IN PROCESS INVENTORY FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

### MISSILE PRIMES & SUBS

NO. OBS. = 2
MEAN = 2.5%
STD. DEV. = 3.5%
MIN. OBS. = 0%
MAX. OBS. = 5%

### OTHER AEROSPACE

NO. OBS. = 5 MEAN = -.8% STD. DEV. = 1.1% MIN. OBS. = -2% MAX. OBS. = 0%

# OTHER INDUSTRY

NO. OBS. = 8
MEAN = -6.9°.
STD. DEV. = 7%
MIN. OBS. = -20%
MAX. OBS. = 0%



OBSERVATIONS

### ALL RESPONSES

NO. OBS. = 15 MIN. OBS. = -20% MAX. OBS. = 5%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -3.6%

STD. DEV. = 6.3%

# Q27 - PERCENT CHANGE IN WORK IN PROCESS INVENTORY FOR CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS 2 NO. OBS. MEAN 2.5% STD. DEV. 3.5% MIN. OBS. 0% MAX. OBS. OTHER AEROSPACE NO. OBS. MEAN STD. DEV. 1.0% -25 MIN. OBS. MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN -6.9% STD. DEV. 7' MIN. OBS. -20% MAX. OBS.



NO. OBS. = 16 MIN. OBS. = -20% MAX. OBS. = 5% **OBSERVATIONS** 



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -3.5% STD. DEV. = 6.2%

# Q27 - PERCENT CHANGE IN TOOLING FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS NO. OBS. MEAN -10% STD. DEV. 8.9% MIN. OBS. -20% MAX. OBS. -2₺ OTHER AEROSPACE NO. OBS. MEAN = -2.7% STD. DEV. = MIN. OBS. -10% MAX. OBS. 0% OTHER INDUSTRY NO. OBS. 6 MEAN = -8.3% STD. DEV. 8.8% MIN. OBS. -25% MAX. OBS.

ALL\_RESPONSES

NO. OBS. = 16 MIN. OBS. = -25% MAX. OBS. = 0%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -6.6% STD. Dev. = 7.5%

### Q27 - PERCENT CHANGE IN TOOLING FOR CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS NO. OBS. MEAN STD. DEV. 8.9% MIN. OBS. -20% MAX. OBS. -2% OTHER AEROSPACE NO. OBS. MEAN STD. DEV. MIN. OBS. MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN STD. DEV. 9.84 MIN. OBS. -25% MAX. OBS. **OBSERVATIONS** ALL RESPONSES NO. OBS. 17 -25% MIN. OBS. MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

B-178

STD. DEV. = 7.3%

MEAN = -6.8%

Q29 - MONTHS TO ACQUIRE HARDWARE -- SYSTEM 2 FOR NON-CYLINDRICAL PARTS

# MISSILE PRIMES & SUBS NO. OBS. MEAN = 3.0 mo. = 0.8 mo. STD. DEV. MIN. OBS. 2 mo. MAX. OBS. 4 mo. OTHER AEROSPACE 2 NO. OBS. = 15.0 mo.MEAN STD. DEV. = 12.7 mo. MIN. OBS. 6 mo. MAX. OBS. 24 mo. OTHER INDUSTRY NO. 085. MEAN = 6.5 mo. STD. DEV. = 4.1 mo. MIN. OBS. = 2 mo. MAX. OBS. = 12 mo. OBSERVATIONS ALL RESPONSES NO. 085. 10 MIN. OBS. 2 mo. MAX. OBS. 24 mo. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) STD. DEV. = 6.8 ma. MEAN = 6.8 mo.

# MISSILE PRIMES & SUBS

NO. OBS. 5.6 mo. MEAN = 2.1 mo. STD. DEV. MIN. OBS. 3 mo. 8 mo.

### OTHER AEROSPACE

MAX. OBS.

NO. OBS. MEAN 7.6 mo. STD. DEV. = 3.6 mo.MIN. OBS. = 3.5 mo. MAX. OBS. 12 mo.

### OTHER INDUSTRY

5 NO. OBS. MEAN 9.4 mo. STD. DEV. = 11.7 mo.MIN. OBS. 2 mo. MAX. OBS. 30 mo.

ALL RESPONSES

15 NO. OBS. MIN. OBS. 2 mo. MAX. OBS. 30 mo.



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) STD. DEV. = 6.8 mo. MEAN = 7.7 mo.

Q29 - MONTHS TO ESTABLISH DATA FILES FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS NO. OBS. MEAN = 6.8 mo. STD. DEV. 3.0 mo. MIN. OBS. 3 mo. MAX. OBS. 10 mo. OTHER AEROSPACE NO. OBS. 5 MEAN = 11.6 mo. STD. DEV. = 7.8 mo. MIN. OBS. 4 mo. MAX. OBS. 24 mo. OTHER INDUSTRY NO. OBS. 5 = 9.4 mo. MEAN STD. DEV. = 11.7 mo. MIN. OBS. 2 mo. MAX. OBS. 30 mo. OBSERVATIONS ALL RESPONSES NO. OBS. MIN. OBS. 2 mo. MAX. OBS. 30 mo. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

B-194

9.4 mo.

STD. DEV. = 8.2 mo.

MEAN =

Q29 - MONTHS TO TRAIN PERSONNEL IN USE OF SYSTEM 2 FOR CYLINDRICAL PARTS

# MISSILE PRIMES & SUBS NO. OBS. MEAN = 5.3 mo. STD. DEV. 1 mo. MIN. OBS. 12 mo. MAX. OBS. OTHER AEROSPACE NO. OBS. 2.8 mo. MEAN STD. DEV. = 2.6 mo.MIN. OBS. 0.5 mo. 5 mo. MAX. OBS. OTHER INDUSTRY NO. 085. 3.7 mo. MEAN = 4.8 mo. STD. DEV. = 0.25 mo. MIN. OBS. MAX. OBS. 12 mo.

ALL RESPONSES

NO. OBS. = 15 MIN. OBS. = 0.25 mo. MAX. OBS. = 12 mo. OBSERVATIONS

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 3.5 mo. STD. DEV. = 3.9 mo.

# Q29 - MONTHS TO TRAIN PERSONNEL IN USE OF SYSTEM 2 FOR NON-CYLINDRICAL PARTS

| ALL RESPON             |          |     |     | OBSERVATIONS | ·   |              |            |     |                                  |    | •                      |          |     |                             |   |          |   |        |
|------------------------|----------|-----|-----|--------------|-----|--------------|------------|-----|----------------------------------|----|------------------------|----------|-----|-----------------------------|---|----------|---|--------|
|                        |          |     |     |              | •   | ,            | . •        |     |                                  |    | 1                      | ¥        | 1   | Ĵ                           |   | -        | • | ·      |
| MAX. OBS.              | <b>1</b> |     | mo. |              | . • |              | . •<br>. • | • . | ٠,٠٠٠                            |    | • • • • •<br>• • • • • | . •<br>• | • . | . • . • .<br>. <del>.</del> | • | • • • •  |   | •      |
| STD. DEV.<br>MIN. OBS. | =        |     | mo. |              |     |              |            |     |                                  |    |                        | À        |     |                             | _ |          |   |        |
| MEAN                   | =        |     | mo. |              |     |              |            |     |                                  |    | •                      |          |     |                             |   |          |   |        |
| OTHER INDU             | STRY     | . 5 |     |              |     |              |            |     |                                  |    |                        |          |     |                             |   |          |   |        |
| MAX. OBS.              | ±        | 6   | mo. |              | . 5 |              | - <b>1</b> |     | ٠٠٠ <del>٠</del> ٠<br>٠ <u>٠</u> |    | 1                      | . •      | 1   | . •.                        |   | . •<br>  | 1 | · · ·  |
| MIN. OBS.              | =        |     | mo. |              |     |              |            |     |                                  |    | ••                     | •        | •   |                             |   |          |   |        |
| STD. DEV.              | =        |     | mo. |              |     |              |            |     |                                  |    |                        |          |     |                             |   |          |   |        |
| NO. OBS.<br>MEAN       | =        | 2 3 | mo. |              |     |              |            |     |                                  |    |                        |          |     |                             |   |          |   |        |
| OTHER AERO             | SPAC     | E   |     |              |     |              |            |     |                                  |    |                        |          |     |                             |   |          |   |        |
| MAX. OBS.              | =        | 12  | mo. |              |     | <i></i><br>3 | - <b>3</b> |     | ٠٠٠٠ .                           | •• | 1                      | · · ·    | 1   | •                           |   | . •<br>3 | 1 | •<br>• |
| MIN. OBS.              | =        |     | mo. |              |     |              |            |     |                                  |    | •                      | )<br>)   |     |                             | • |          |   |        |
| STD. DEV.              | =        |     | mo. |              |     |              |            |     |                                  |    |                        |          |     |                             |   |          |   |        |
| MEAN                   | =        | 4   | mo. |              |     |              |            |     |                                  |    |                        |          |     |                             |   |          |   |        |

B-196

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = 3.3 mo. STD. DEV. = 4.0 mo.

# MISSILE PRIMES & SUBS NO. OBS. MEAN 2.9 mo. STD. DEV. 2.3 mo. MIN. OBS. 1 mo. MAX. OBS. 6 mo. OTHER AEROSPACE NO. OBS. MEAN 6.5 mo. STD. DEV. 4.5 mo. MIN. OBS. 2 mo. MAX. OBS. 12 mo. OTHER INDUSTRY NO. OBS. 5 MEAN = 8.4 mo. STD. DEV. = 12.2 mo. MIN. OBS. 2 mo. MAX. QBS. 30 mo. **OBSERVATIONS** ALL RESPONSES NO. OBS. 15 1 mo. MIN. OBS. 30 mo. MAX. OBS.

B-197

6.2 mo.

MEAN =

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 7.5 mo.

# MISSILE PRIMES & SUBS NQ. OBS. 2.9 mo. MEAN 2.3 mo. STD. DEV. 1 mo. MIN. OBS. MAX. OBS. OTHER AEROSPACE NO. OBS. 5.6 mo. MEAN 3.8 mo. STD. DEV. MIN. OBS. 3 mo. 12 mo. MAX. OBS. OTHER INDUSTRY NO. OBS. 8.4 mc. MEAN **■ 12.2 mo.** STD. DEV. 2 mo. MIN. OBS. 30 mo. MAX. OBS. **OBSERVATIONS** ALL RESPONSES NO. OBS. MIN. OBS. 1 mo. MAX. OBS. 30 mo. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

B-198

MEAN = 5.8 mo.

STD. DEV. # 7.6 mo.

Q29 - ANNUAL COMPUTER CHARGES AND MAINTENANCE COST FOR CYL'NDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS NO. OBS. = \$ 38.2K MEAN = \$ 17.6K STD. DEV. MIN. OBS. = \$ 24.0K = \$ 65.6K MAX. OBS. OTHER AEROSPACE NO. OBS. = \$ 23.8K MEAN = \$ 14.2K STD. DEV. = \$ 12.0K MIN. OBS. = \$ 50.0K MAX. OBS. OTHER INDUSTRY NO. OBS. \$ 28.8K MEAN \$ 54.7K STD. DEV. \_ \$ 0.7K MIN. OBS. \_ \$140.0K MAX. OBS. OBSERVATIONS ALL RESPONSES 16 NO. OBS. \_ \$ 0.7K MIN. OBS. \_ \$140:0K MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) STD. DEV. = \$ 34.1K MEAN = \$ 28.9K

# Q29 - ANNUAL COMPUTER CHARGES AND MAINTENANCE COST FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

| MISSILE PR<br>NO. OBS.<br>MEAN<br>STD. DEV.<br>MIN. OBS.<br>MAX. OBS. | ### ################################## |              | • • • • • • • • • • • • • • • • • • •                                              |
|-----------------------------------------------------------------------|----------------------------------------|--------------|------------------------------------------------------------------------------------|
| OTHER AERO                                                            |                                        |              |                                                                                    |
| NO. OBS.                                                              | <b>=</b> 5                             |              |                                                                                    |
| MEAN<br>STD. DEV.                                                     | = \$43.8K<br>= \$33.6K                 |              |                                                                                    |
| MIN. OBS.                                                             | = \$33.0K<br>= \$20.0K                 |              | · · · · · · · · · · · · · · · · · · ·                                              |
| MAX. OBS.                                                             | ≖ <b>\$</b> 00.0K                      |              | -5 -1 -2 -1 9 1 2 3 1 5                                                            |
| OTHER INDUS                                                           | STRY                                   |              |                                                                                    |
| 'NO. OBS.                                                             | <b>=</b> 6                             |              |                                                                                    |
| MEAN                                                                  | ≈ \$19.3K                              |              |                                                                                    |
| STD. DEV.<br>MIN. OBS.                                                | = \$21.4K<br>= \$ 0.7K                 |              | •                                                                                  |
| MAX. OBS.                                                             | = \$60.0K                              |              | **************************************                                             |
|                                                                       |                                        | OBSERVATIONS |                                                                                    |
| ALL RESPONS                                                           |                                        | 08SE         | • • • • •                                                                          |
| NO. OBS.<br>MIN. OBS.<br>MAX. OBS.                                    | = 15<br>= \$ 0.7K<br>= \$100.0K        |              | *****                                                                              |
| <b></b>                                                               |                                        |              | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$ 35.6K STD. DEV. = \$ 27.8K |

## MISSILE PRIMES & SUBS NO. OBS. = \$11.3K MEAN STD. DEV. **\$** 7.6K = \$ 1.0K MIN. OBS. = \$18.0K MAX. OBS. OTHER AEROSPACE **=** 6 NO. OBS. = \$18.3K MEAN ■ \$18.0K STD. DEV. = \$ 4.0K MIN. OBS. = \$50.0K MAX. OBS. OTHER INDUSTRY NO. 085. **=** 6 MEAN = \$45.6K = \$58.7K STD. DEV. = \$ 0.1K MIN. OBS. = \$40.0K MAX. OBS. **OBSERVATIONS** ALL RESPONSES NO. 085. 16 MIN. OBS. = \$ 0.1K 1 = \$140.0K MAX. OBS.

MEAN = \$ 26.8K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. =\$ 38.9K

# MISSILE PRIMES & SUBS NO. OBS. MEAN = \$13.8K **■** \$ 9.8K STD. DEV. = \$ 2.0K MIN. OBS. MAX. OBS. # \$24.0K OTHER AEROSPACE NO. OBS. ≈ \$21.1K MEAN = \$19.2K STD. DEV. ≈ \$ 6.0K MIN. OBS. MAX. OBS. ≈ \$50.0K OTHER INDUSTRY NO. 085. = \$16.1K MEAN STD. DEV. = \$2.2K= \$ 1.9K MIN. OBS. = \$60.0K MAX. OBS. **OBSERVATIONS** ALL RESPONSES NO. OBS. 15 = \$ 1.9K MIN. OBS. MAX. OBS. = \$60.0K STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$ 17.1K STD. DEV. = \$ 17.7K

### 31 - PERCENT CHANGE IN PROCESS PLANNING FOR CYLINDRICAL PARTS -- SYSTEM 3

# MISSILE PRIMES & SUBS NO. OBS. **≖** -45% MEAN STD. DEV. = 23° MIN. OBS. **= -70%** MAX. OBS. **= -25** OTHER AEROSPACE NO. OBS. MEAN **≈ -65**? **≥** 17% STD. DEV. MIN. OBS. = -84% MAX. OBS. = -35½ OTHER INDUSTRY NO. OBS. MEAN **= -58%** STD. DEV. = 24% MIN. OBS. = -95% MAX. OBS. = -20% **OBSERVATIONS** ALL RESPONSES NO. OBS. **≖** -95% MIN. OBS. MAX. OBS. **= -20%**

B-203

MEAN = - 58°.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 21%

# Q31 - PERCENT CHANGE IN PROCESS PLANNING FOR NON-CYLINDRICAL PARTS -- SYSTEM 3

| MISSILE PR | IMES &      | SUBS |              |     |         |      |       |     |        |     |            |          |      |     |        |      |       |           |   |
|------------|-------------|------|--------------|-----|---------|------|-------|-----|--------|-----|------------|----------|------|-----|--------|------|-------|-----------|---|
| NO. 085.   | I           | 3    |              |     |         |      |       |     |        |     |            |          |      |     |        |      |       |           |   |
| MEAN       | = -4        | 45%  |              |     |         |      |       |     |        |     |            |          |      |     |        |      |       |           |   |
| STD. DEV.  |             | 33%  |              |     |         |      |       |     |        |     |            |          |      |     |        |      |       |           |   |
| MIN. OBS.  | = -;        |      |              | · . | •       |      | . • . |     |        | • . | •          | . •      | •    |     | •      |      | . • . | <br>• . , |   |
| MAX. OBS.  | = -2        | 25%  |              | ٠ ﴿ | •       | 1    |       |     | _      | 1   |            |          |      | :   | -      |      | •     | ١         | • |
| OTHER AERO | SPACE       |      |              |     |         |      |       |     |        |     |            |          |      |     |        |      |       |           |   |
| NO. OBS.   | =           | 6    |              |     |         |      |       |     |        |     |            |          |      |     |        |      |       |           |   |
| MEAN       | = -(        | 50%  |              |     |         |      |       |     |        |     |            |          |      |     |        |      |       |           |   |
| STD. DEV.  | = 2         | 21%  |              |     |         |      |       |     |        |     |            |          |      |     |        |      |       |           |   |
| MIN. OBS.  | = -8        | 34%  |              |     |         |      |       |     | _      | **  | <b>4</b> , |          | •    | •   |        |      |       |           |   |
| MAX. OBS.  | = -:        | 354  |              | . • |         | 1    | • •   |     | :      | - 1 |            | i i      | •    | :   | _      |      | -     | <br>1     | c |
| OTHER INDU | ISTRY       |      |              |     |         |      |       |     |        |     |            |          |      |     |        |      |       |           |   |
| NO. OBS.   | =           | 8    |              |     |         |      |       |     |        |     |            |          |      |     |        |      |       |           |   |
| MEAN       | <b>=</b> -5 | 57%  |              |     |         |      |       |     |        |     |            |          |      |     |        |      | •     |           |   |
| STD. DEV.  | = 2         | 24%  |              |     |         |      |       |     |        |     |            |          |      |     |        |      |       |           |   |
| MIN. OBS.  | = -9        | 95%  |              |     |         |      |       |     | •      | •   | • •        | • •      | •    | •   | •      |      |       |           |   |
| MAX. OBS.  | = -2        | 20%  |              | •   | • • • • | 1    |       |     | •<br>Ž | :   | •          | . •<br>O |      | :   | •      |      | 3     | <br>1     | E |
|            |             |      |              |     |         |      |       |     |        |     |            |          |      |     |        |      |       |           |   |
|            |             |      | OBSERVATIONS |     |         |      |       |     |        |     |            |          |      |     |        |      |       |           |   |
| ALL RESPON | ISES        |      | 8            |     |         |      |       |     |        |     | •          |          |      |     |        |      |       |           |   |
| NO. 08S.   | <b>=</b> 1  | 17   |              |     |         |      |       |     | •      | 44  | •          |          | 4    | ^ 4 | 4      |      |       |           |   |
| MIN. OBS.  | = -9        | 95%  |              |     |         | •    | ٠     |     | • .    | •   |            | . •      |      | •   | •<br>• |      | • •   | <br>• .   |   |
| MAX. OBS.  | = -2        | 20%  |              | •   | •       | •    |       | •   | Ž      | :   |            | e;       |      | 1   | 2      |      | )     | •         | • |
|            |             |      |              |     | STAN    | DARD | DEV   | IAT | IONS   | FRO | M MI       | EAN H    | (ALL | RE  | SPON   | ISES | )     |           |   |
|            |             |      |              |     | MEAN    |      | - 56  |     |        |     |            |          | D. D |     |        |      | •     |           |   |
|            |             |      |              |     |         |      |       |     |        |     |            | - '      | -    |     |        |      |       |           |   |

### 31 - PERCENT CHANGE IN DETERMINING OPERATION SEQUENCES FOR CYLINDRICAL PARTS -- SYSTEM 3

### ISSILE PRIMES & SUBS

0 OBS. EAN = -49%

TD. DEV. = 33<sup>°</sup>x IN. OBS. = -90%

AX. OBS. = -10%

# THER AEROSPACE

0. OBS. EAN = -36%

= 35% TD. DEV.

IN. OBS. = -80°

AX OBS.

### THER INDUSTRY

3. OBS.

EAN

TD. DEV.

IN OBS. = -95%

AX. OBS. = -10%



# L RESPONSES

). OBS. IN. OBS. = -95%

IX. OBS. - - 4% **OBSERVATIONS** FB (1944) 18 (1945) 19 (1945) 18 (1945) 18 (1945) 18 (1945) 18 (1945) 18 (1945) 18 (1945) 18 (1945) 18 (1945)

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = - 51

STD. DEV. = 34%

### Q31 - PERCENT REDUCTION IN MATERIAL COST FOR CYCLINDRICAL PARTS -- SYSTEM 3

# MISSILE PRIMES & SUBS

NO. OBS. = - 4.0% MEAN 1.4% STD. DEV. MIN. OBS.

MAX. OBS. = - 2%



### OTHER AEROSPACE

NO. OBS. = - 1.8% MEAN 2.1% STD. DEV. MIN. OBS.

MAX. OBS.



### OTHER INDUSTRY

NO. OBS. = - 6.7% MEAN 1 5% STD. DEV. MIN. OBS MAX OBS.

### ALL RESPONSES

NO. 085. = 16 MIN. OBS. MAX. OBS.



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = - 4.2% STD. DEV. = 5.0%

### Q31 - PERCENT REDUCTION IN DOCUMENTATION COSTS FOR NON-CYLINDRICAL PARTS -- SYSTEM 3

# MISSILE PRIMES & SUBS NO. OBS. -45% MEAN 35% STD. DEV. -90% MIN. OBS. MAX. OBS. OTHER AEROSPACE NO. OBS. MEAN STD. DEV. 34% -90% MIN. OBS. MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN STD. DEV. MIN. OBS. MAX. OBS. = -20% - 1 **OBSERVATIONS** ALL RESPONSES NO. OBS. 16 MIN. OBS. -90% MAX. OBS. = - 2% ع -2 3 STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = - 50%

STD. DEV. = 31%

### Q31 - PERCENT REDUCTION IN DOCUMENTATION COSTS FOR CYLINDRICAL PARTS -- SYSTEM 3

### MISSILE PRIMES & SUBS

| NO. OBS.  | = | 4    |
|-----------|---|------|
| MEAN      | = | -45% |
| STD. DEV. | = | 35*  |
| MIN. OBS. | = | -90% |
| MAX. ORS  | = | - 5% |

### OTHER AEROSPACE

| NO.  | OBS. | æ | 6    |
|------|------|---|------|
| MEAN |      | = | -48% |
| STD. | DEV. | = | 35⊊  |
| MIN. | OBS. | = | -90% |
| MAX. | OBS. | = | - 2% |



### OTHER INDUSTRY

| NO.  | 003. | 3 | ,    |
|------|------|---|------|
| MEAN |      | z | -59% |
| STD. | DEV. | = | 29%  |
| MIN. | OBS. | = | -95% |
| MAY  | ORS  | = | -20% |



FRVATION

### ALL RESPONSES

NO. OBS. = 17 MIN. OBS. = -95% MAX. OBS. = -2%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = - 52% STD. DEV. = 31°

### MISSILE PRIMES & SUBS

| NO. OBS.  | = | 4    |
|-----------|---|------|
| MEAN      |   | -36% |
| STD. DEV. | * | 30%  |
| MIN. OBS. | = | -75% |
| MAX. OBS. | = | - 3% |



### OTHER AEROSPACE

| NO. OBS.  | = | 5    |
|-----------|---|------|
| MEAN      | = | -13% |
| STD. DEV. | = | 21%  |
| MIN. OBS. | = | -50% |
| MAY ODS   | - | - 2% |



### OTHER INDUSTRY

| NO. OBS.  | 2 | 7    |
|-----------|---|------|
| MEAN      | = | -14% |
| STD. DEV. | = | 17%  |
| MIN. OBS. | = | -50% |
| MAY ORS   |   | 0%   |



# ALL RESPONSES

NO. OBS. = 16 MIN. OBS. = -75% MAX. OBS. = 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = - 19%

STD. DEV. = 22%

# Q31 - PERCENT REDUCTION IN PERFORMING TOLERANCE ANALYSES FOR CYLINDRICAL PARTS -- SYSTEM 3

### MISSILE PRIMES & SUBS

| NO. 08S.  | = | 4    |  |  |  |
|-----------|---|------|--|--|--|
| MEAN      | = | -36% |  |  |  |
| STD. DEV. | = | 30%  |  |  |  |
| MIN. OBS. | = | -75% |  |  |  |
| MAY ORS   | = | - 3% |  |  |  |



### OTHER AEROSPACE

| NO. OBS. | =   | 6    |
|----------|-----|------|
| MEAN     | =   | -25% |
| STD. DEV | . = | 35%  |
| MIN. OBS | . = | -95% |
| MAY ORS  | -   | - 20 |



# OTHER INDUSTRY

| NO. OBS.  | = | 7    |
|-----------|---|------|
| MEAN      | = | -22% |
| STD. DEV. | = | 23%  |
| MIN. OBS. | * | -50% |
| MAY OPC   | _ | 04   |



OBSERVATIONS

### ALL RESPONSES

NO. OBS. = 17 MIN. OBS. = -95% MAX. OBS. = 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = - 26% STD. DEV. = 287

# MISSILE PRIMES & SUBS NO. OBS. MEAN -38% 23% STD. DEV. MIN. OBS. -55% MAX. OBS. OTHER AEROSPACE NO. OBS. -34% MEAN 36% STD. DEV. -90% MIN. OBS. MAX. OBS. OTHER INDUSTRY NO. OBS. -49% MEAN 28% STD. DEV. -85% MIN. OBS. -10% MAX. OBS. **OBSERVATIONS** ALL RESPONSES NO. OBS. 16 -90% MIN. OBS. - 5%

B-214

MEAN = - 41%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 28%

MAX. OBS.

# Q31 - PERCENT REDUCTION IN PREPARING TIME STANDARDS FOR CYLINDRICAL PARTS -- SYSTEM 3

# MISSILE PRIMES & SUBS NO. 08S. MEAN - 38% STD. DEV. 23% **-55**% MIN. OBS. MAX. OBS. **=** - 5% OTHER AEROSPACE 6 NO. 08S. -33% MEAN STD. DEV. 27% MIN. OBS. **=** -70% MAX. OBS. = - 5% OTHER INDUSTRY NO. OBS. 7 MEAN -49% STD. DEV. 28% MIN. OBS. = -85% = -10% MAX. OBS. **OBSERVATIONS** ALL RESPONSES 17 NO. OBS. MIN. OBS. -85% **- - 5%** MAX. OBS.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -41% STD. Dev. = 26%

# MISSILE PRIMES & SUBS NO. OBS. -48% MEAN 30% STD. DEV. MIN. OBS. -75% - 5% MAX. OBS. OTHER AEROSPACE NO. OBS. MEAN -24% STD. DEV. 24% MIN. OBS. -50% MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN -40% STD. DEV. 28% MIN. OBS. -80% MAX. OBS. 0% **OBSERVATIONS** ALL RESPONSES NO. OBS. 16 MIN. OBS. -80% MAX. OBS.

MEAN = - 36%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 27%

### Q31 - PERCENT REDUCTION IN DETERMINING PROCESS PARAMETERS FOR CYLINDRICAL PARTS -- SYSTEM 3

| MISSILE PR | IMES | & SUBS   | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|------|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO. OBS.   | =    | 4        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN       | =    | -44%     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.  | =    | 20%      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.  | ±    | -75%     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAX. OBS.  | =    | - 5%     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER AERO | SPAC | <u>E</u> |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO. OBS.   | =    | 6        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN       | =    | -33%     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.  | =    | 32%      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.  | =    | -80%     |              | 4 4 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MAX. OBS.  | =    | 0%       |              | -5 -1 -2 -2 -1 6 1 2 2 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| OTHER INDU | STRY |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO. 08S.   | =    | 7        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN       | =    | -41%     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. JEV.  | =    | 28%      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.  | =    | -80%     |              | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MAX. OBS.  | ±    | 0%       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |      |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |      |          | OBSERVATIONS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |      |          | ERV/         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALL RESPON | SES  |          | 0 <b>8</b> 8 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NO. OBS.   |      | 17       |              | - 4 4 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MIN. OBS.  | =    | -80%     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAX. OBS.  |      | 0%       |              | The state of the s |
|            |      |          |              | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |      |          |              | MEAN = - 39% STD. DEV. = 28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# MISSILE PRIMES & SUBS NO. 08S. 4 MEAN -36% STD. DEV. 30% MIN. OBS. -75% MAX. OBS. - 5% OTHER AEROSPACE NO. OBS. 5 MEAN -29% STD. DEV. 22% MIN. OBS. -50% MAX. OBS. OTHER INDUSTRY NO. OBS. 7 MEAN -41% STD. DEV. 33% MIN. OBS. -80% MAX. OBS. 0% **OBSERVATIONS** ALL RESPONSES NO. OBS. MIN. OBS. MAX. OBS.

B-210

-36%

MEAN =

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 28%

### Q31 - PERCENT REDUCTION IN SELECTING TOOLS FOR CYLINDRICAL PARTS -- SYSTEM 3

### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = -36%

STD. DEV. = 80%

MIN. OBS. = -75%

MAX. OBS. = -5%



### OTHER AEROSPACE

NO. OBS. = 6 MEAN = -35% STD. DEV. = 26% MIN. OBS. = -70% MAX. OBS. = -4%



### OTHER INDUSTRY

NO. OBS. = 7

MEAN = -41%

STD. DEV. = 34%

MIN. OBS. = -80%

MAX. OBS. = 0%



# **OBSERVATIONS**

## ALL RESPONSES

NO. OBS. = 17 MIN. OBS. = -80% MAX. OBS. = 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = - 38% STD. DEV. = 34%

# Q31 - PERCENT CHANGE IN SELECTING MACHINES FOR NON-CYLINDRICAL PARTS -- SYSTEM 3

| MISSILE PR | IMES     | & SUBS   |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
|------------|----------|----------|--------------|-------------------------------------------------|---------|-----------------|--------------------|---------|----------|--------|--------------|--------|--------|-------|
| NO. OBS.   |          | 4        |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
| MEAN       | =        | -43%     |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
| STD. DEV.  | =        | 31%      |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
| MIN. OBS.  |          | -75%     |              | -                                               |         |                 |                    |         |          | •      |              |        |        |       |
| MAX. OBS.  | =        | - 2%     |              | -•-                                             |         |                 |                    |         | •        | •      | •            | •      | •      |       |
|            |          |          |              | -5                                              | - 1     | - 3             | - 3                | - 1     | ņ.       | 1      | 3            | 3      | 1      | •     |
| OTHER AERO | SPAC     | <u>E</u> |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
| NO. QBS.   | =        | 5        |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
| MEAN       | =        | -16%     |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
| STD. DEV.  | =        | 19%      |              | -                                               |         |                 |                    |         |          | •      |              |        |        |       |
| MIN. OBS.  | =        | -50%     |              | -                                               |         |                 |                    |         | •        | -      |              |        |        |       |
| MAX. OBS.  | *        | - 3%     |              | - • -                                           |         | . <b> •</b> - • | •-                 | :       | · •      | :      | <u>:</u>     | :      | •<br>1 | <br>5 |
|            |          |          |              | - 5                                             | - 1     | <del>-</del> 3: | - <u>-</u>         | - 1     | 9        | 1      | 2            | 3      | •      | Ţ,    |
| OTHER INDU | STRY     |          |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
| NO. 08S.   | *        | 7        |              |                                                 |         |                 | •                  |         |          |        |              |        |        |       |
| MEAN       | 2        | -44%     |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
| STD. DEV.  | *        | 35%      |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
| MIN. OBS.  | =        | -90%     |              | -                                               |         |                 | 4                  | 44      | 44       | • •    |              |        |        |       |
| MAX. OBS.  | =        | 0%       |              | <del></del> <del></del> <del></del> <del></del> | ·<br>-1 | - 3             | . ـ • ـ ـ •<br>خ - | <br>-1  | 9        | •      | •<br>2       | •      | •      |       |
|            |          |          |              |                                                 | -,      | - 3             |                    | - 1     | 9        | 1      | ٤            | 3      | 1      | 5     |
|            |          | -        |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
|            |          |          |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
|            |          |          |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
|            |          |          |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
|            |          |          |              |                                                 |         |                 |                    |         |          |        |              |        |        |       |
|            |          |          | S            |                                                 |         |                 |                    |         |          |        |              |        |        |       |
|            |          |          | OBSERVATIONS |                                                 |         |                 |                    |         |          |        |              |        |        |       |
|            |          |          | WA.          |                                                 |         |                 |                    |         |          |        |              |        |        |       |
| ALL RESPON |          |          | BSEI         | -                                               |         |                 |                    |         |          | •      |              |        |        |       |
|            | <u> </u> |          | 5            | -                                               |         |                 |                    | •       |          | 4.4    |              |        |        |       |
| NO. OBS.   | =        | 16       |              | -                                               | _       | _               | •                  | ••      | 4444     | 444    |              |        |        |       |
| MIN. OBS.  | =        | -90%     |              |                                                 | '<br>-1 |                 | ·•-                | '<br>-1 | <b>:</b> | :<br>! | •            | •<br>3 | •<br>1 | ·-    |
| MAX. OBS.  | =        | 0%       |              | -                                               |         | -               | _                  | -       |          | *      | -            | -      |        | -     |
|            |          |          |              | !                                               | STANDAR |                 |                    | S FROM  | MEAN (   | ALL RE | SPONSES      | S)     |        |       |
|            |          |          |              | 1                                               | MEAN =  | - 35            | 5%                 |         | STD      | . DEV. | <b>= 31%</b> |        |        |       |

# Q31 - PERCENT CHANGE IN SELECTING MACHINES FOR CYLINDRICAL PARTS -- SYSTEM 3

| MISSILE DOIMES . | cupe         |                                       |                                                                                                                                                                                                             |              |                                        |
|------------------|--------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------|
| MISSILE PRIMES & | 3083         |                                       |                                                                                                                                                                                                             |              |                                        |
| NO. OBS. ⇒       | 4            |                                       |                                                                                                                                                                                                             |              |                                        |
| MEAN = -         |              |                                       |                                                                                                                                                                                                             |              |                                        |
|                  | 31%          |                                       |                                                                                                                                                                                                             |              |                                        |
| MIN. OBS. = -    |              |                                       | 4 4 4                                                                                                                                                                                                       | •            |                                        |
| MAX. OBS. = -    | 2%           | 5 - 1 - 2                             | - E - 1 - 0                                                                                                                                                                                                 | 1 2 3 1      | 5                                      |
| OTHER AEROSPACE  |              |                                       |                                                                                                                                                                                                             |              |                                        |
| NO. OBS. =       | 6            |                                       |                                                                                                                                                                                                             |              |                                        |
| MEAN = -         | 29%          |                                       |                                                                                                                                                                                                             |              |                                        |
| STD. DEV. =      | 35%          |                                       |                                                                                                                                                                                                             |              |                                        |
| MIN. OBS. = -    | 90%          |                                       |                                                                                                                                                                                                             | 44           |                                        |
| MAX. OBS. = -    | 3%           |                                       | . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • | 1 2 3 1      |                                        |
|                  | ÷            | •                                     |                                                                                                                                                                                                             |              | · -                                    |
| OTHER INDUSTRY   |              |                                       |                                                                                                                                                                                                             |              |                                        |
| NO. OBS. =       | 7            |                                       |                                                                                                                                                                                                             |              |                                        |
| MEAN = _4        | 45%          | •                                     |                                                                                                                                                                                                             |              |                                        |
| STD. DEV. = 3    | 35%          |                                       |                                                                                                                                                                                                             |              |                                        |
| MIN. OBS. = -9   | 90% -        |                                       | • •                                                                                                                                                                                                         | • •          |                                        |
| MAX. OBS. =      | 0%           |                                       | - 2 - 1 0                                                                                                                                                                                                   | 1 2 3 1      | •••••••••••••••••••••••••••••••••••••• |
|                  | •            | •                                     |                                                                                                                                                                                                             |              | ••                                     |
|                  |              |                                       |                                                                                                                                                                                                             |              |                                        |
|                  |              |                                       |                                                                                                                                                                                                             |              |                                        |
|                  |              |                                       |                                                                                                                                                                                                             |              |                                        |
|                  |              |                                       |                                                                                                                                                                                                             |              |                                        |
|                  |              |                                       |                                                                                                                                                                                                             |              |                                        |
|                  | S.           |                                       |                                                                                                                                                                                                             |              |                                        |
|                  | OBSERVATIONS |                                       |                                                                                                                                                                                                             |              |                                        |
|                  | RVA          |                                       |                                                                                                                                                                                                             |              |                                        |
| ALL RESPONSES    | BSE          |                                       |                                                                                                                                                                                                             |              |                                        |
|                  | _            |                                       | • • • •                                                                                                                                                                                                     | 4            |                                        |
| NO. 08S. ≥ j     |              |                                       |                                                                                                                                                                                                             | 444          |                                        |
| MIN. OBS. = _9   | , <b>c</b> , | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                             | . 2 3 1      | • • • • • •                            |
| MAX. OBS. =      | U%           |                                       |                                                                                                                                                                                                             |              | -                                      |
|                  |              |                                       | TIONS FROM MEAN (                                                                                                                                                                                           |              |                                        |
|                  |              | MEAN = - 39%                          | STD                                                                                                                                                                                                         | . DEV. = 33% |                                        |

Q31 - PERCENT CHANGE IN DETERMINING OPERATION SEQUENCES FOR NON-CYLINDRICAL PARTS -- SYSTEM 3

### MISSILE PRIMES & SUBS

NO. OBS. = 4 MEAN = -49% STD. DEV. = 33% MIN. OBS. = -90% MAX. OBS. = -10%

### OTHER AEROSPACE

NO. OBS. = 5 MEAN = -29% STD. DEV. = 32% MIN. OBS. = -75% MAX. OBS. = -4%

### OTHER INDUSTRY

NO. OBS. = 7
MEAN = -63%
STD. DEV. = 32%
MIN. OBS. = -95%
MAX. OBS. = -10%

CEDVATI

# ALL RESPONSES

NO. OBS. = 16 MIN. OBS. = -95% MAX. OBS. = -4%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = - 49%

STD. DEV. = 34%

#### Q31 - PERCENT REDUCTION IN MATERIAL COST FOR NON-CYLINDRICAL PARTS -- SYSTEM 3

# MISSILE PRIMES & SUBS NO. OBS. = - 4.0% MEAN STD. DEV. = 1.4% **= - 5%** MIN. OBS. MAX. QBS. = - 2% OTHER AEROSPACE NO. OBS. = - 2.0% MEAN = 2.3% STD. DEV. = - 5% MIN. OBS. MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN = - 6.7% = 7.5% STD. DEV. MIN. OBS. = -15% MAX. OBS. 0% **OBSERVATIONS ALL RESPONSES** NO. OBS. = 15 MIN. OBS. = -15% -3 -1 -1 -3 MAX. OBS.

MEAN = - 4.4%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 5.2%

| NO. OBS.<br>MEAN | = 4<br>= - 9.8% |              |     |            |      |         |     |   |       |       |       |            |   |         |
|------------------|-----------------|--------------|-----|------------|------|---------|-----|---|-------|-------|-------|------------|---|---------|
| STD. DEV.        | = - 4.1%        |              |     |            |      |         |     |   |       |       |       |            |   |         |
| MIN. OBS.        | = -15%          |              | -   |            |      |         |     | • |       | •     |       |            |   |         |
| MAX. OBS.        | <b>= - 5%</b>   |              | . e | - 1        | <br> | · · - · | - : |   | . •   | :     | •<br> | : · · · ·  | 1 | - · · - |
| OTHER AERO       | SPACE           |              |     |            |      |         |     |   |       |       |       |            |   |         |
| NO. OBS.         | = 7             |              |     |            |      |         |     |   |       |       |       |            |   |         |
| MEAN             | = -10.0%        |              |     |            |      |         |     |   |       |       |       |            |   |         |
| STD. DEV.        | = 6.0%          |              |     |            |      |         |     |   |       |       |       |            |   |         |
| MIN. OBS.        | = -20%          |              | -   | <b>.</b> . | • -  |         | •   | • | . • • |       | •     |            |   |         |
| MAX. OBS.        | <b>=</b> - 2%   |              | 5   | - 1        | - 3  | - :     | - ! |   | •     | !     | £     | 7          | 1 | Ē       |
| OTHER INDU       | STRY            |              |     |            |      |         |     |   |       |       |       |            |   |         |
| NO. OBS.         | <b>=</b> 6      |              |     |            |      |         |     |   |       |       |       |            |   |         |
| MEAN             | = -10.2%        |              |     |            |      |         |     |   |       |       |       |            |   |         |
| STD. DEV.        | = 11.2%         |              |     |            |      |         |     |   |       |       |       |            |   |         |
| MIN. OBS.        | = -30%          |              |     |            |      |         |     | • | •     | • ••  | _     |            |   |         |
| MAX. OBS.        | <b>=</b> 0%     |              |     | - 1        | - 3  | - 2     | - ! |   | 9     | 1     | 9     | 3          | 1 |         |
|                  |                 |              |     |            |      |         |     |   |       |       |       |            |   |         |
|                  |                 | OBSERVATIONS |     |            |      |         |     |   |       |       |       |            |   |         |
| ALL RESPON       | ISES            | BSERV        |     |            |      |         |     |   | •     |       |       |            |   |         |
| NO. OBS.         | = 17            | 0            | -   |            |      |         |     | • | 4.4   | •     |       |            |   |         |
| MIN. OBS.        | = -30%          |              | •   |            | •    | •       | 4   | • | 44    | 4 444 |       | . <b>.</b> |   | • .     |
| MAX. OBS.        | = 0%            |              | - = | - 3        | - 3  |         | - ! |   | 9     | :     | ÷     | 3          | 1 | · ·     |

MEAN = -10.0%

STD. DEV. = 7.5%

# MISSILE PRIMES & SUBS NO. OBS. MEAN = - 9.8% STD. DEV. MIN. OBS. = -10% MAX. OBS. OTHER AEROSPACE NO. OBS. MEAN **- 9.2%** STD. DEV. 6.1% MIN. OBS. = -20% MAX. QBS. **= - 2%** OTHER INDUSTRY NO. OBS. 6 MEAN = -10.2% STD. DEV. = 11.2% MIN. OBS. = -30% MAX. OBS. 3 **OBSERVATIONS** ALL RESPONSES NO. OBS. = 16 MIN. OBS. = -30% MAX. OBS.

B-222

MEAN = - 9.7%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 7.6%

#### Q31 - PERCENT REDUCTION IN SCRAP AND REWORK COST FOR CYLINDRICAL PARTS -- SYSTEM 3

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = -15.3 %

STD. DEV. = 12.5 %

MIN. OBS. = -30 %

MAX. OBS. = -1%



#### OTHER AEROSPACE

NO. OBS. = 7

MEAN ≠ - 6.6%

STD. DEV. = 5.4%

MIN. OBS. = -15%

MAX. OBS. ≠ 0%



#### OTHER INDUSTRY

NO. OBS. ≠ 6

MEAN = -10.8%

STD. DEV. = 7.4%

MIN. OBS. = -20%

MAX. OBS. = - 5%



SERVAT I ONS

#### **ALL RESPONSES**

NO. OBS. = 17

MIN. OBS. = -30%

MAX. OBS. = 0%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -10.1%

STD. DEV. = 8.3%

# Q31 - PERCENT REDUCTION IN SCRAP AND REWORK COST FOR NON-CYLINDRICAL PARTS -- SYSTEM 3

# MISSILE PRIMES & SUBS NO. OBS. -15.3% MEAN STD. DEV. 12.5% -30% MIN. OBS. MAX. OBS. - 1% OTHER AEROSPACE NO. OBS. MEAN - 6% 5.7% STD. DEV. MIN. OBS. -15% 0% MAX. OBS. OTHER INDUSTRY NO. OBS. -10.8% MEAN 7.4% STD. DEV. MIN. OBS. -20% - 5% MAX. OBS. **OBSERVATIONS** ALL RESPONSES NO. OBS. MIN. OBS. -30% - : 0% MAX. OBS.

B-224

- 10.1%

MEAN ≈

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 8.6%

#### MISSILE PRIMES & SUBS NO. OBS. MEAN -12.5% STD. DEV. 8.7% MIN. OBS. -20% MAX. OBS. -5% OTHER AEROSPACE NO. OBS. 7 MEAN -8.7% STD. DEV. 7.8% MIN. OBS. \_20% MAX. OBS. -1% OTHER INDUSTRY NO. OBS. MEAN -17.5% STD. DEV. 13.2% MIN. OBS. -35% MAX. OBS. -5% **OBSERVATIONS** ALL RESPONSES NO. OBS. 15 MIN. OBS. -35% $\epsilon_{\rm i}$ - ! MAX. OBS. -1% STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = -12.1% STD. DEV. = 9.7%

#### MISSILE PRIMES & SUBS NO. 085. MEAN -12.5% STD. DEV. 8.7% MIN. OBS. -20% MAX. 085. -5% OTHER AEROSPACE NO. OBS. 6 MEAN -6.8% STD. DEV. 6.6% MIN. OBS. -20% MAX. OBS. -1% OTHER INDUSTRY NO. OBS. MEAN ~17.5% STD. DEV. 13.2% MIN. OBS. -35% MAX. OBS. -5%



#### Q31 - PERCENT REDUCTION IN WORK IN PROCESS INVENTORY FOR CYLINDRICAL PARTS -- SYSTEM 3

#### MISSILE PRIMES & SUBS NO. OBS. 3 MEAN -9% STD. DEV. 10.1% MIN. OBS. -20% MAX. OBS. 0% OTHER AEROSPACE NO. OBS. 6 MEAN -1.3% STD. DEV. 1.5% MIN. 085. -3% MAX. 08S. 0% 3 OTHER INDUSTRY NO. OBS. 6 MEAN -10% STD. DEV. 8.4% MIN. OBS. -25% MAX. OBS. 0% 2 } 9 : OBSERVATIONS ALL RESPONSES NO. 08S. 15 -25% MIN. OBS. -1 0 1 2 3 نے ۔ MAX. OBS. 0% STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 7.7%

MEAN ≈ -6.3%

### MISSILE PRIMES & SUBS 3 NO. OBS. MEAN -9% STD. DEV. 10.1% MIN. OBS. -20% MAX. OBS. 0% OTHER AEROSPACE NO. OBS. 5 MEAN -1% STD. DEV. 1.4% MIN. OBS. -3% MAX. OBS. 0% OTHER INDUSTRY NO. OBS. 6 MEAN -10% STD. DEV. 9.4% MIN. OBS. -25% MAX. OBS. 0% OBSERVATIONS ALL RESPONSES NO. OBS. 14 MIN. OBS. -25% MAX. OBS. 0%

B-228

-6.6%

MEAN =

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 7.9%

Q32 - IMPACT OF SYSTEM 3 ON OTHER AREAS (RANKED ON A SCALE OF -2 TO +2, WHERE -2 = SIGHIFICANTLY NEGATIVE IMPACT, 0 = NO CHANGE, +2 = SIGNIFICANT IMPROVEMENT)

|                             | L  | HISSILE PRIME | 1 2       | 1 2 |    |    | ľ   | OTHER     |    | T |          | 5      | OTHER    |     | -        |          | ۶        | 1014     |    |
|-----------------------------|----|---------------|-----------|-----|----|----|-----|-----------|----|---|----------|--------|----------|-----|----------|----------|----------|----------|----|
| AREAS IMPACTED              |    | ¥             | AND SUBS. | Š.  |    |    | AER | AEROSPACE | щ. |   |          | ž      | INDUSTRY | ł   | $\dashv$ | ł        | }        | <u> </u> | ļ  |
|                             | -2 | -             | 0         | Ŧ   | +2 | -2 | -1  | 0         | +  | ? | -2       | -      | ·        | =   | 7        | -7       | -        | 듸        | ?  |
| PRODUCTION LEADTIME         |    |               |           | 2   | 2  |    |     | _         | 2  | 4 |          |        |          | 4   | 4        |          |          | 8        | 2  |
| PROCESS PLANNING LEADTIME   |    |               |           |     | 4  |    |     |           |    | 7 |          |        |          | 2   | 9        |          |          | 2        | 1, |
| MACHINE UTILIZATION         |    |               |           | 2   | 2  |    |     | _         | 2  | 4 |          |        | -        | 2   | 5        |          | 2        | 9        | 6  |
| PRODUCT QUALITY             |    |               | -         | ~   |    |    |     | _         | 5  | - |          |        | 3        | 5   |          |          |          | 5 13     | _  |
| DIRECT LABOR UTILIZATION    |    |               | -         | 2   | -  |    |     | -         | 3  | 2 |          |        | 2        | 5   | -        | -        | *        | 2        | 4  |
| UNIFORMITY OF PROCESS PLANS |    |               |           |     | 4  |    |     |           | -  | 9 |          |        |          |     | ~        |          |          | - 2      | =  |
| COST ESTIMATING PROCEDURES  |    |               |           | -   |    |    |     |           | -  | 9 |          | _      | -        | 2   | 9        | +        | $\dashv$ | 4        | =  |
| MAKE/BUY DECISIONS          |    |               |           | 2   | -  |    |     | _         | 2  | - |          | -      | -        | _   | 9        |          | -``      | 2 8      | ~  |
| PRODUCT STANDARDIZATION     |    |               |           | -   | 2  |    |     |           | 4  | 3 |          |        | 3        | _   | ₹        |          |          | 3 6      | 6  |
| CRITICAL LABOR SKILLS       |    |               |           | 2   | -  |    |     | 2         | 3  | 2 |          |        | 9        | _   | -        | -        | -        | 8        | 4  |
| MATERIAL STANDARDIZATION    |    |               |           | 3   | _  |    |     | 2         | 3  | 2 | 7        |        | 4        | - m | -        | +        | +        | 9        | 4  |
| PRODUCIBILITY OF PARTS.     |    |               | -         | 2   |    |    |     | -         | 3  | 3 |          | _      | 2        | 4   | 2        | -        |          | 6        | ات |
| PLANT LAYOUT                |    |               | 2         | 2   |    |    |     | ~         | -  | ~ |          |        | ~        | 2   | -        | -+       | -        | 7 8      | 4  |
| MATERIAL HANDLING           |    |               | -         | 2   |    |    |     | -         | ٠  | 2 |          |        | -        | -5  | 2        | +        |          | =        | 4  |
| PRODUCTION SCHEDULING       |    |               |           | ٠ 5 | ~  |    |     | 2         | ۲٦ | 2 |          |        | -        |     | 5        |          |          | 2 8      | 6  |
| CAPACITY PLANNING           |    |               |           | 3   |    |    |     | 2         | ~  | 3 | $\dashv$ | $\neg$ | $\dashv$ | ~   | 3        | $\dashv$ | $\dashv$ | 2 8      | ٥  |

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = \$178.CK

STD. DEV. = \$251.OK

MIN. OBS. = \$12.OK

MAX. OBS. = \$550.OK



#### OTHER AEROSPACE

NO. OBS. = 3 MEAN = \$82.0K STD. DEV. = \$103.0K MIN. OBS. = \$15.0K MAX. OBS. = \$200.0K



#### OTHER INDUSTRY

NO. OBS. = 4
MEAN = \$377.0K
STD. DEV. = \$683.0K
MIN. OBS. = \$20.0K
MAX. OBS. = \$1,400K



#### ALL RESPONSES

NO. OBS. = 11 MIN. OBS. = \$12.0K MAX. OBS. = \$1,400K **OBSERVATIONS** 



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$224.0K STD. DEV. = \$421.0K

#### Q33 - HARDWARE COSTS -- SYSTEM 3 FOR NON-CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = \$203.0K

STD. DEV. = \$245K

MIN. OBS. = \$12K

MAX. OBS. = \$550K

#### OTHER AEROSPACE

NO. OBS. = 4

MEAN = \$190.0K

STD. DEV. = \$190.0K

MIN. OBS. = \$15.0K

MAX. OBS. = \$400K

#### OTHER INDUSTRY

NO. OBS. = 5 MEAN = \$137.0K STD. DEV. = \$259.0K MIN. OBS. = \$12.0K MAX. OBS. = \$600.0K

- 4 - 4 - 4 - 4 4

ALL RESPONSES

NO. OBS. = 13 MIN. OBS. = 12K MAX. OBS. = \$600.0K



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$174.0K

STD. DEV. = \$217.0K

MISSILE PRIMES & SUBS

### NO. OBS. MEAN = \$109.0K STD. DEV. = \$127.5K MIN. OBS. \$36.0K MAX. OBS. = \$300.0K OTHER AEROSPACE NO. OBS. MEAN \$52.8K STD. DEV. \$45.3K MIN. OBS. = \$ 1.2K MAX. OBS. = \$100.0K OTHER INDUSTRY NO. OBS. MEAN \$625.8K **= \$1,409**K STD. DEV. MIN. OBS. = \$ 1.0K MAX. OBS. = \$3,500K ALL RESPONSES NO. OBS. 14 MIN. OBS. \$ 1.0K -1 -3 -2 -1 1 Ē 3 MAX. OBS. = \$3,500K STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$314.4K STD. DEV. = \$919.9K

# Q33 - COSTS TO ESTABLISH INITIAL DATA FILES -- SYSTEM 3 FOR NON-CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = \$188.8K

STD. DEV. = \$274.4K

MIN. OBS. = \$40.0K

MAX. OBS. = \$600K



#### OTHER AEROSPACE

NO. OBS. = 6
MEAN = \$128.5K
STD. DEV. = \$72.3K
MIN. OBS. = \$45.0K
MAX. OBS. = \$200.0K



#### OTHER INDUSTRY

NO. OBS. = 6 MEAN = \$289.7K STD. DEV. = \$594.0K MIN. OBS. = \$19.0K MAX. OBS. = \$1,500K



#### ALL RESPONSES

NO. OBS. = 16 MIN. OBS. = \$19 OK MAX. OBS. = \$1,500K



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$204.0K STD. DEV = \$373.8K

13 - COST PER YEAR FOR COMPUTER CHARGES AND PROGRAM MAINTENANCE -- SYSTEM 3 FOR NON-CYLINDRICAL PARTS

SSILE PRIMES & SUBS

# ). OBS. :AN = \$66.7K 'D. DEV. = \$24.1K IN. OBS. = \$48.0K IX. OBS. = \$100.0k THER AEROSPACE ). OBS. = \$115.0K AN D. DEV. = \$141.0K (N. 08S. = \$15.0K)AX. OBS. = \$400.0K THER INDUSTRY ). OBS. = \$56.8K EAN FD. DEV. = \$82.9K [N. 085. = \$ 1.0k xx. OBS. = \$200.0K CBSERVATIONS L RESPONSES ). OBS. 15 IN. OBS. = \$ 1.0K **1X. OBS.** = \$400.0K STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) STD DEV = \$100.2K MEAN = \$82 7K

# MISSILE PRIMES & SUBS NO. 08S. MEAN \$49.9K STD. DEV. \$11.3K MIN. OBS. \$36.0K MAX. OBS. = \$63.6K OTHER AEROSPACE NO. OBS. MEAN \$42.6K STD. DEV. = \$34.7K MIN. OBS. = \$15.0K MAX. OBS. = \$100.0K OTHER INDUSTRY NO. OBS. = \$77.6K MEAN STD. DEV. = \$152.5K MIN. OBS. = \$ 1.0K MAX. OBS. = \$350.0K OBSERVATIONS ALL RESPONSES 14 NO. OBS. \$ 1.0K MIN. OBS. MAX. OBS. = \$350.0K STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$884K

MEAN = \$57.2K

#### Q33 - MONTHS TO TEST SYSTEM -- SYSTEM 3 FOR NON-CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. # 4

MEAN # 3.6 mo.

STD. DEV. # 1.9 mo.

MIN. OBS. # 1.5 mo.

MAX. OBS. # 6.0 mo.

#### OTHER AEROSPACE

NO. OBS. = 6 MEAN = 7.2 mo. STD. DEV. = 3.0 mo. MIN. OBS. = 3.0 mo.

= 3.0 mo. = 12.0 mo. = 12.0 mo.

#### OTHER INDUSTRY

MAX. OBS.

NO. OBS. = 4

MEAN = 7.5 mo.

STD. DEV. = 8.5 mo.

MIN. OBS. = 2.0 mo.

MAX. OBS. = 20.0 mo.

**ERVATIO** 

#### ALL RESPONSES

NO. OBS. = 14 MIN. OBS. = 1.5 mo. MAX. OBS. = 20.0 mo.



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 6.3 mo.

STD. DEV. = 4.9 mo.

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = 3.4 mo.

STD. DEV. = 1.9 mo.

MIN. OBS. = 1.5 mo.

MAX. OBS. = 6.0 mo.



#### OTHER AEROSPACE

NO. OBS. = 5 MEAN = 6.2 mo. STD. DEV. = 3.9 mo. MIN. OBS. = 1.0 mo. MAX. OBS. = 12.0 mo.



#### OTHER INDUSTRY

NO. OBS. = 4

MEAN = 12.8 mo.

STD. DEV. = 18.4 mo.

MIN. OBS. = 2.0 mo.

MAX. OBS. = 40.0 mo.



OBSERVATIONS

#### ALL RESPONSES

NO. OBS. = 13 MIN. OBS. = 1.0 mo. MAX. OBS. = 40.0 mo.



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 7.3 mo.

STD. DEV. = 10.2 mo.

## NO. 085. MEAN 5.4 mo. STD. DEV. 4.9 mo. MIN. OBS. = 1.5 mo. MAX. OBS. = 12.0 mo. OTHER AEROSPACE NO. OBS. 6 MEAN 4.5 mo. STD. DEV. 3.4 mo. MIN. OBS. = 1.0 mo. MAX. OBS. = 10.0 mo. OTHER INDUSTRY



OBSERVATIONS

#### ALL RESPONSES

NO. OBS.

4

NO. OBS. = 14 MIN. OBS. = 1.0 mo. MAX. OBS. = 12.0 mo.

MISSILE PRIMES & SUBS\_



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 4.7 mo. STD. DEV. = 3.6 mo.

# 033 - MONTHS TO TRAIN PERSONNEL -- SYSTEM 3 FOR CYLINDRICAL PARTS

| MISSILE PI  | IME: | S & SUBS |              |                  |                 |                                         |          |     |                  |               |          |     |         |
|-------------|------|----------|--------------|------------------|-----------------|-----------------------------------------|----------|-----|------------------|---------------|----------|-----|---------|
| NO. OBS.    | =    | 4        |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| MEAN        | =    | 5.4 mo.  |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| STD. DEV.   | =    | 4.9 mo.  |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| MIN. OBS.   | =    | 1.5 mo.  |              |                  |                 |                                         | •        | •   |                  | •             |          |     |         |
| MAX. OBS.   | =    | 12.0 mo. |              | - 1              |                 | • - <u>-</u><br>:                       | -1       |     | !                | •<br><u>:</u> | •<br>3   | 1   | *       |
| OTHER AERO  | SPAC | <u>E</u> |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| NO. OBS.    | =    | 5        |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| MEAN        | ±    | 2.9 mo.  |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| STD. DEV.   | =    | 2.2 mo.  |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| MIN. OBS.   | =    | 0.5 mo.  |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| MAX. OBS.   | =    | 6.0 mo.  |              | • 1              |                 | • • -                                   | - :      | •   | :<br>:           | · ·<br>·      | 3        | ,   | ·-<br>5 |
| OTHER INDU  | STRY |          |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| NO. 085.    | =    | 4        |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| MEAN        | =    | 6.3 mo.  |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| STD. DEV.   | =    | 6.8 mo.  |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| MIN. OBS.   | =    | 1.0 mo.  |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| MAX. OBS.   | =    | 16.0 mo. |              | 1                | •               | <b></b>                                 | -:<br>-: | - ; | · ·<br>1         | •.l-<br>8     | - •<br>2 | - • | ·-·-    |
|             |      |          |              |                  |                 |                                         |          |     |                  |               |          |     |         |
| ALL RESPONS | ES   |          | OBSERVATIONS |                  |                 |                                         |          |     |                  |               |          |     |         |
| NO. OBS.    | =    | 13       |              | •                |                 |                                         | •        | ٠   |                  |               |          |     |         |
| MIN. OBS.   | =    | 0.5 mo   |              |                  |                 |                                         | 4444     | • • | •                | •             |          |     |         |
| MAX. OBS.   | =    | 16.0 mo. |              | 1                | •               | - · • · · · · · · · · · · · · · · · · · | -1       | . • | •                | -•<br>        | -•<br>२  | 1   | ··-     |
|             |      |          |              | STANDA<br>MEAN = | RD DEVIA<br>4.7 | ATIONS 1                                |          |     | L RESI<br>DEV. : | PONSES        |          | •   |         |

B-242

### Q33 - MONTHS TO ESTABLISH DATA FILES -- SYSTEM 3 FOR NON-CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

MEAN = 12.0 mo. STD. DEV. = 8.2 mo. MIN. OBS. = 6.0 me. MAX. OBS. = 24.0 me.

#### OTHER AEROSPACE

NO. OBS. = 5 MEAN = 13.0 mo. STD. DEV. = 5.1 mo. MIN. OBS. = 6.0 mo. MAX. OBS. = 20.0 mo.

#### OTHER INDUSTRY

NO. OBS. = 4 MEAN = 13.4 mo. STO. DEV. = 10.3 mo. MIN. OBS. = 3.0 mo. MAX. OBS. = 24.0 mo.

**OBSERVATIONS** 

#### ALL RESPONSES

NO. OBS. = 13 MIN. OBS. = 3.0 mo. MAX. OBS. = 24.0 mo.



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 12.8 mo.

STD. DEV. ≈ 7.2 mo.

| MISSILE PRI | MES        | & SUBS   |              |                                       |                                       |             |                                       |                        |     |
|-------------|------------|----------|--------------|---------------------------------------|---------------------------------------|-------------|---------------------------------------|------------------------|-----|
| NO. 08S.    | =          | 4        |              |                                       |                                       |             |                                       |                        |     |
| MEAN        | =          | 11.0 mo. |              |                                       |                                       |             |                                       |                        |     |
| STD. DEV.   | =          | 8.7 mo.  |              |                                       |                                       |             |                                       |                        |     |
| MIN. OBS.   | =          | 6.0 mo.  |              |                                       |                                       | 4.4         | •                                     |                        |     |
| MAX. OBS.   | =          | 24.0 mo. |              | - 3                                   | · · · · · · · · · · · · · · · · · · · |             | :                                     | • - <i>-</i>           | 1 = |
| OTHER AEROS | PAC        | <u>E</u> |              |                                       |                                       |             |                                       |                        |     |
| NO. OBS.    | =          | 3        |              |                                       |                                       |             |                                       |                        |     |
| MEAN        | =          | 13.7 mo. |              |                                       |                                       |             |                                       |                        |     |
| STD. DEV.   | =          | 1.5 mo.  |              |                                       |                                       |             |                                       |                        |     |
| MIN. OBS.   | =          | 12.0 mo  |              |                                       |                                       | ••          |                                       |                        |     |
| MAX. OBS.   | =          | 14.0 mo. |              | · · · · · · · · · · · · · · · · · · · | :                                     | - 1         | 1                                     | 3 1                    | 1 ÷ |
| OTHER INDUS | TRY        |          |              |                                       |                                       |             |                                       |                        |     |
| NO. 085.    | z          | 4        |              |                                       |                                       |             |                                       |                        |     |
| MEAN        | =          | 18.3 mo. |              |                                       |                                       |             |                                       |                        |     |
| STD. DEV.   | =          | 17.2 mo. |              |                                       |                                       |             |                                       |                        |     |
| MIN. OBS.   | =          | 3.0 mo.  |              |                                       |                                       | 44          | •                                     | •                      |     |
| MAX. OBS.   | =          | 40.0 mo. |              | 1                                     | <del></del>                           | -!          | · · · · · · · · · · · · · · · · · · · | 2 3                    | 1 6 |
|             |            |          |              |                                       |                                       |             |                                       |                        |     |
| ALL RESPONS | <u>ses</u> |          | OBSERVATIONS |                                       |                                       |             |                                       |                        |     |
| NO. OBS.    | =          | 11       | -            |                                       |                                       | • •         | •                                     |                        |     |
| MIN. OBS.   | =          | 3.0 mo.  |              |                                       |                                       | *** **      | •<br><u>.</u> •                       | •<br>• • • • • • • • • |     |
| MAX. OBS.   | =          | 40.0 mo. |              | · - 1                                 |                                       | -1          | :                                     | 3                      | 1 5 |
|             |            |          |              | STANDARD                              | DEVIATION                             | S FROM MEAN | (ALL RES                              | PONSES)                |     |
|             |            |          |              | MEAN =                                | 14.4 mo.                              |             | TD. DEV.                              |                        | 0.  |

#### Q33 - MONTHS TO ACQUIRE HARDWARE -- SYSTEM 3 FOR NON-CYLINDRICAL PARTS

# MISSILE PRIMES & SUBS NO. OBS. MEAN 6.5 mo. STD. DEV. 4.0 mo. MIN. OBS. = 2.0 mo. MAX. OBS. = 12.0 mo. OTHER AEROSPACE NO. OBS. 2 MEAN 7.5 mo. STD. DEV. 2.0 mo. MIN. OBS. 6.0 mo. MAX. OBS. 9.0 mo. OTHER INDUSTR' 5 NO. OBS. MEAN 5.2 mo. STD. DEV. MIN. OBS. MAX. QBS. = 12.0 mo. OBSERVATIONS ALL RESPONSES

B-239

MEAN \* . 6.1 mo.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 3.8 mo.

NO. OBS.

MIN. OBS.

MAX. OBS.

11

0 mo. 12 mo.

## MISSILE PRIMES & SUBS NO. OBS. MEAN 6.5 mo. STD. DEV. 4.1 mo. MIN. OBS. 2 mo. MAX. OBS. 12 mo. OTHER AERGSPACE NO. OBS. MEAN 6 mo. STD. DEV. 0 mo. MIN. OBS. 6 mo. MAX. OBS. 6 mc. CTHER INDUSTRY NO. OBS. MEAN 6 mo. STD. DEV. 4.5 mo. MIN. OBS. О то. MAX. OBS. 12 mo. **OBSERVATIONS** ALL RESPONSES NO. OBS. 10 MIN. OBS. 0 то. MAX. OBS. 12 mo. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = 6.2 mo.STD. DEV. = 3.8 mo.

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = \$43.6K

STD. DEV. = \$41.6K

MIN. OBS. = \$10.0K

MAX. OBS. = \$14.5K



#### OTHER AEROSPACE

NO. OBS. = 6
MEAN = \$41.5K
STD. DEV. = \$32.8K
MIN. OBS. = \$10.0K
MAX. OBS. = \$100.0K



#### OTHER INDUSTRY

NO. OBS. = 6 MEAN = \$ 318K STD. DEV. = \$35.5K MIN. OBS. = \$ 6.0K MAX. OBS. = \$100.0K



## ALL RESPONSES

NO. OBS. = 16 MIN. OBS. = \$6.0K MAX. OBS. = \$100.0K



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$38.4K

STD. DEV. = \$34.6K

| MISSILE PR | IMES  | & SUBS  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|-------|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO. OBS.   | =     | 4       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN       | =     | \$27.7K |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.  | =     | \$20.4K |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.  | =     | \$10.0K |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAY. OBS.  | =     | \$20.0K |              | on service services of the contract of the con |
|            |       |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER AERO | SPACE |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO. OBS.   | =     | 5       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN       | =     | \$15.4K |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.  | =     | \$ 9.3K |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MIN. OBS.  | =     | \$ 2.0K |              | A 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MAX. OBS.  | 2     | \$25.0K |              | on the control of the |
|            |       |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER INDU | STRY  |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NG. OBS.   | =     | 6       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN       | =     | \$53.6K |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.  | =     | \$77.2K |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.  | =     | \$ 0.5K |              | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MAX. OBS.  | =     | \$20.0K |              | - 15 - 18 - 10 - 12 - 11 - 10 - 1 - 2 - 3 - 1 - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |       |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |         |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |       |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |         | SNO          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |         | ATI          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |         | ER           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALL RESPON | SES   |         | OBSERVAT10NS | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NO. OBS.   | =     | 15      |              | 444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MIN. OBS.  | -     | \$ 0.5K |              | 444 44 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MAX. OBS.  | =     | \$30.0K |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |         |              | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |       |         |              | MEAN = \$34.0K STD. DEV. = \$50.4K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |       |         |              | MENN - 204.0V 21D. DEA: = 500.4V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

# Q33 - COSTS TO TRAIN PERSONNEL -- SYSTEM 3 FOR NON-CYLINDRICAL PARTS

| MISSILE PR  | IMES       | & SUBS   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|------------|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO. OBS.    | =          | 4        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN        | =          | \$31.9K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.   | =          | \$34.0K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.   | =          | \$ 2.5K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAX. OBS.   | =          | \$80.0K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER AEROS | SPACI      | <u>E</u> |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO. 085.    | =          | 6        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN        | =          | \$19.5K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.   | =          | \$14.8K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.   | £          | \$ 6.0K  |              | ** ** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MAX OBS.    | =          | \$45.0K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER INDU  | STRY       |          |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NO. OBS.    | =          | 6        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN        | =          | \$18.0K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.   | =          | \$16.9K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.   | =          | \$ 2.9K  |              | 44 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MAX. OBS.   | =          | \$50.0K  |              | -5 -1 -3 -2 -1 0 1 2 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |            |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |          | ONS          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |          | ATI          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |            |          | OBSERVATIONS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALL RESPON  | <u>SES</u> |          | 980          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NO. OBS.    | ¥          | 16       |              | - 4444 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MIN. OBS.   | *          | \$ 2.5K  |              | e e e e e e e e e e e e e e e e e e e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MAX. OBS.   | ¥          | \$80.0K  |              | -5 -1 -1 -2 -2 -2 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |            |          |              | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |            |          |              | Constitution of the contract o |

STD. DEV. = \$20.8K

MEAN = \$22.0K

#### QUB - COSTS TO TRAIN PERSONNEL -- SYSTEM 3 FOR CYLINDRICAL PARTS

| MISSILE PR | IMES  | & SUBS   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|-------|----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO. OBS.   | =     | 4        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ME AN      | =     | \$21.9K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SID. DEV.  | =     | \$16.5K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.  | =     | \$ 2.5K  |              | - A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MAX. OBS.  | =     | \$40.0K  |              | en en franchische de franke französische Deutsche Bereiche Bereich |
|            |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER AERO | SPACE | <u> </u> | ·            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO. OBS    | =     | 5        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN       | =     | \$ 9.8 K |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.  | =     | \$ 5.7K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.  | =     | \$ 2.0K  |              | *** *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MAX. OBS.  | =     | \$18.0K  |              | on the section of the entries of the section of the |
|            |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER INDU | STRY  |          |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NO. OBS.   | =     | 6        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN       | =     | \$24.7K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.  | =     | \$27.0K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.  | `-    | \$ 0.2K  |              | 4 4 44 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MAX. OBS.  | =     | \$75.0K  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |          | •            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |          | SNC          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | _     |          | M11(         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |          | ERV.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ALL RESPON | SES   |          | OBSERVAT10NS |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NG. OBS.   |       | 15       | _            | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MIN. 085.  |       | \$ 0.2k  |              | 44444 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MAX. OBS.  | =     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       | #7 J. UK |              | CTANDADD DEVILITIONS FROM MEAN (ALL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |       |          |              | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|            |       |          |              | MEAN = \$19.0K STD. DEV. = \$19.1K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Q33 - COST PER YEAR FOR UPDATING DATA FILES -- SYSTEM 3 FOR CYLINDRICAL PARTS

# MISSILE PRIMES & SUBS NO. OBS. MEAN \$17.5K STD. DEV. = \$ 6.0K MIN. OBS. = \$10.0K MAX. OBS. = \$24.0K OTHER AEROSPACE NO. OBS. MEAN = \$34.2K STD. DEV. = \$38.4K MIN. OBS. = \$ 4.0K MAX. OBS. = \$100.0K OTHER INDUSTRY NO. OBS. MEAN = \$80.7K STD. DEV. = \$151.0K MIN. OBS. = \$ 0.5k MAX. OBS. = \$350.0K ALL RESPONSES NO. 085. 14 MIN. OBS. = \$ 0.5K MAX. 08S. = \$350.0K STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$46.0K STD. DEV. = \$90.8K

B-248

4

### Q33 - COST PER YEAR FOR UPDATING DATA FILES -- SYSTEM 3 FOR NON-CYLINDRICAL PARTS

# MISSILE PRIMES & SUBS NO. OBS. MEAN \$23.8K \$ 8.1K STD. DEV. MIN. OBS. \$19.2K \$36.0K MAX. OBS. OTHER AEROSPACE 6 NO. OBS. MEAN \$39.8K \$32.3K STD. DEV. MIN. OBS. \$15.0K = \$100.0K MAX. OBS. OTHER INDUSTRY NO. GBS. MEAN \$49.3K STD. DEV. \$84.3K MIN. OBS. \$ 9.5K MAX. OBS. = \$200.0K ALL RESPONSES NO. OBS. 15 MIN. OBS. \$ 9.5K MAX. OBS. = \$200.0K

MEAN = \$38.7K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$50.2K

#### APPENDIX C

#### INTERMEDIATE DATA CALCULATIONS

This appendix contains some of the intermediate calculations which were made using the basic data contained in Appendix B.

The questionnaire was structured in such a manner as to facilitate the calculation of numerous values which would be useful in checking the validity of the data submitted and providing additional information for the benefit analysis. All of the intermediate calculations which were made are not contained in this appendix. Some turned out to be only marginally useful for the purposes of this report, and for the sake of brevity they are not included in this report.

As was the case in Appendix B, each of the intermediate calculations underwent computer analysis and the number of observations, means, standard deviations, etc., were calculated by industry grouping and for all responses. Histograms are also provided, and it should again be emphasized that scale zero point for horizontal axes for all plots on the same page is standard deviations from the mean for <u>all</u> responses and not individual subgroupings.

Each intermediate calculation has been given an appropriate title to indicate the meaning of the information. Space limitations and

terminology make it almost impossible to provide a detailed explanation of the basis for each calculation; however, a brief description of how some of the numbers were derived is discussed below.

One series of calculations dealt with determining such annual costs as the value of machined parts manufactured in-house, the amount expended for process planning, direct labor, material, tooling, etc. This was done using a top-down approach whereby the data at a very gross level could be linked together to come up with values for these parameters. Briefly, the caluclations were made in the following manner. The value of products shipped were multiplied by the percentage of that value which represented machines parts to determine the dollar value of machined parts. The value of machined parts purchased from outside sources was then substracted from that value to yield the approximate value of machined parts manufactured in-house. This number was then multiplied by the appropriate cost breakdown percentages provided by the respondees to end up with gross approximations of the annual dollars expended for process planning, etc.

Using a bottoms-up approach we were able to determine some of the same information from other data provided by the respondee and compare the two values.

In the case of process planning costs, these comparisons varied widely (see pages C-55 and C-56).

Other calculations included such information as:

- The percentage of process planning costs
   by type of plan.
- The ratio of new and modified process plans prepared to the number of different parts manufactured on an annual basis.
- The average dollar value of machined parts by industry type.

It should be noted that many of these calculations can only yield gross approximations to the values in question and that many of the responses varied widely. However, the calculations were beneficial in shedding light on the situation and were useful during the benefit analysis.

#### APPROXIMATE ANNUAL COLLAR VALUE OF CYLINDRICAL MACHINE PARTS IN PRODUCTS SHIPPED FROM PLANT

#### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = \$6.0 MIL STD. DEV. = \$5.6 MIL

MIN. 08S. = \$2.6 MIL

MAX. OBS. = \$12,5 MIL



#### OTHER AEROSPACE

NO. OBS. = 5

MEAN = \$20.0 MIL

STD. DEV. = \$13.7 MIL

MIN. 08S. = \$ 2.0 MIL

MAX. OBS. = \$39.6 MIL



#### OTHER INDUSTRY

NO. OBS. = 5

MEAN = \$102 MIL

STD. DEV. = \$143 MIL

MIN. CES. = \$0.5 MIL

MAX. OBS. = \$312 MIL



#### ALL RESPONSES

NO. OBS.  $= 13^{\circ}$ 

MIN. 08S. = \$0.5 MIL

**OBSERVATIONS** 

MAX. OBS. = \$312 MIL

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$ 48 MIL

STD. DEV. = \$ 94 MIL

APPROXIMATE ANNUAL DOLLAR VALUE OF NON-CYLINDRICAL "ACHINED PARTS IN PRODUCTS SHIPPED FROM PLANT

#### MISSILE PRIMES & SUBS

NO. 08S. = 3

MEAN = \$5.3 mil.

STD. DEV. = \$2.6 mil.

MIN. OBS. = \$2.4 mil.

MAX. OBS. = \$7.5 mil.



# OTHER AEROSPACE

NO. 08S. = 5

**MEAN** = \$22.6 mil.

STD. DEV. \* \$24.2 mil.

MIN. OBS. = \$8.0 mil.

MAX. 08S. = \$65 mil.



#### OTHER INDUSTRY

NO. OBS. = 5

**MEAN** = \$54.7 mil.

STD. DEV. = \$79.8 mil.

MIN. OBS. = \$0.5 mil.

MAX. OBS. = \$184 mil.



### ALL RESPONSES

NO. OBS. = 13

MIN. OBS. = \$0.5 mil.

MAX. OBS. \* \$184 mil.

•



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$31.0 mil.

STD. DEV. = \$52.4 mil.

# APPROXIMATE ANNUAL DOLLAR VOLUME OF CYLINDRICAL MACHINED PARTS MANUFACTURED IN-HOUSE

# MISSILE PRIMES & SUBS

NO. OBS.

= \$4.0 mil. MEAN

STD. DEV. = \$4.8 mil.

= \$0.4 mil. MIN. OBS.

= \$9.5 mil. MAX. OBS.



NO. OBS.

= \$18.6 mil. MEAN

= \$13.0 mil. STD. DEV.

= \$1.9 mil. MIN. OBS.

= \$36.4 mil. MAX. OBS.

#### OTHER INDUSTRY

NO. OBS.

MEAN = \$30.3 mil.

= \$57.8 mil. STD. DEV.

MIN. OBS. = \$0.4 mil.

= \$117 mil. MAX. OBS.

#### ALL RESPONSES

NO. OBS. = 12

MIN. OBS. = \$0.4 mil.

MAX. OBS. = \$117 mil.



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$18.9 mil.

STD. DEV. = \$32.9 mil.

### APPROXIMATE ANNUAL DOLLAR VOLUME OF NON-CYLINDRICAL MACHINED PARTS MANUFACTURED IN-HOUSE

MISSILE PRIMES & SUBS

### NO. OBS. = 3 MEAN = \$3.8 mil. STD. DEV. = \$3.2 mil. MIN. OBS. = \$0.3 mil. MAX. OBS. = \$6.5 mil. OTHER AEROSPACE NO. OBS. MEAN = \$20.7 mil. STD. DEV. = \$25.0 mil. MIN. OBS. = \$2.0 mil. MAX. OBS. = 364.4 mil. OTHER INDUSTRY NO. OBS. MEAN = \$14.1 mil. STD. DEV. = \$23.9 mil. MIN. OBS. = \$0.4 mil. MAX. OBS. = \$50.0 mil. -3 -3 -1 ALL RESPONSES NO. OBS. = 12 MIN. OBS. = \$0.3 mil. - 1 MAX. 08S. = \$64.4 mil.STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$14.3 mil. STD. DEV. = \$20.9 mil.

#### APPROXIMATE DOLLAR VALUE OF A CYLINDRICAL MACHINED PART MANUFACTURED IN-HOUSE

#### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = \$1068

STD. DEV. = \$1817

MIN. OBS. = \$7.5 MAX. OBS. = \$3166

#### OTHER AEROSPACE

NO. OBS. = 4

MEAN = \$14725

STD. DEV. = \$29029

MIN. OBS. = \$4.8

MAX. OBS. = \$58266



#### OTHER INDUSTRY

NO. OBS. = 4

MEAN = \$159

STD. DEV. = \$197

MIN. OBS. = \$14.4

MAX. 08S. = \$450



# ALL RESPONSES

**OBSERVATIONS** 

NO. OBS. = 11

MIN. 085. = \$4.8

MAX. OBS. = \$58266

•

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN =

\$5704

STD. DEV. = \$17458

#### APPROXIMATE DOLLAR VALUE OF A NON-CYLINDRICAL MACHINED PART MANUFACTURED IN-HOUSE

#### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = \$2174 STD. DEV. = \$3747 MIN. OBS. = \$7.5 MAX. OBS. = \$6500



#### OTHER AEROSPACE

NO. OBS. = 4

MEAN = \$2318

STD. DEV. = \$4190

MIN. OBS. = \$8.7

MAX. OBS. = \$8586



#### OTHER INDUSTRY

NO. OBS. = 4 MEAN = \$72 STD. DEV. = \$56 MIN. OBS. = \$9.4 MAX. OBS. = \$128



#### ALL RESPONSES

NO. OBS. = 17 MIN. OBS. = \$7.5 MAX. OBS. = \$8586



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$1462 STD. DEV. = \$3048

VALIDITY CHECK BETWEEN NUMBER OF NEW PART NUMBERS INDICATED IN Q7 AND NUMBER OF PROCESS PLANS PREPARED FOR NEW PARTS AS INDICATED IN Q13 -- CYLINDRICAL PARTS (Q7-Q13)



NO. OBS. = 3

MEAN = 50

STD. DEV. = 87

MIN. OBS. = 0

MAX. OBS. = 150



NO. 085. = 8

MEAN = -14.4

STD. DEV. = 194

MIN. OBS. = -400

MAX. OBS. = 290



#### OTHER INDUSTRY

NO. OBS. = 7

MEAN = -143

STD. DEV. = 378

MIN. OBS. = -1000

MAX. 08S. = 0



**OBSERVATIONS** 

#### ALL RESPONSES

NO. 08S. = 18

MIN. OBS. = -1000

MAX. 08S. = 290



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = -53.6

STD. DEV. = 270

DITY CHECK BETWEEN NUMBER OF NEW PART NUMBERS INDICATED IN Q7 AND NUMBER OF PROCESS PLANS ARED FOR NEW PARTS AS INDICATED IN Q13 -- NON-CYLINDRICAL PARTS (Q7-Q13)



PROXIMATE ANNUAL COST FOR PREPARING TOTALLY NEW PROCESS PLANS FOR CYLINDRICAL MACHINED PARTS

### ISSILE PRIMES & SUBS 0. 085. 3 EAN = \$ 32.3K TD. DEV. = \$ 13.6K IN. OBS. = \$ 24K AX. OBS. 48K THER AEROSPACE 0. OBS. EAN = \$ 135K TD. DEV. = \$ 106K IN. OBS. = \$ 12K AX. OBS. = \$ 300K THER INDUSTRY 0. OBS. 7 EAN = \$ 158K TD. DEV. = \$ 187K IN. 085. = \$ 1.8K AX. 08S. = \$ 544K OBSERVATIONS LL RESPONSES 0. OBS. 15 = \$ 1.8K IIN, QBS. MX. OBS. = \$ 544K STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$125K

C-12

STD. DEV. = \$144K

AD-R151 997
COMPUTERIZED PRODUCTION PROCESS PLANNING VOLUME 3
APPENDICES A B AND C TO BENEFIT ANALYSIS(U) IIT
RESEARCH INST CHICAGO IL H H SHU ET AL. NOV 76
DRAH01-76-C-1104
F/G 9/2
NL
END
TAME
TO BENEFIT ANALYSIS(U) IIT
RESEARCH INST CHICAGO IL H H SHU ET AL. NOV 76
F/G 9/2
NL
END
TAME
TO BENEFIT ANALYSIS(U) IIT
RESEARCH INST CHICAGO IL H H SHU ET AL. NOV 76
F/G 9/2
NL
END
TAME
TO BENEFIT ANALYSIS(U) IIT
RESEARCH INST CHICAGO IL H H SHU ET AL. NOV 76
F/G 9/2
NL
END
TAME
TO BENEFIT ANALYSIS(U) IIT
RESEARCH INST CHICAGO IL H H SHU ET AL. NOV 76
F/G 9/2
NL



MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

APPROXIMATE ANNUAL COST FOR PREPARING TOTALLY NEW PROCESS PLANS FOR NON-CYLINDRICAL MACHINED PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. 3 MEAN = \$ 65.7K STD. DEV. = \$ 33.3K MIN. OBS. 30K

MAX. OBS. 96K

#### OTHER AEROSPACE

NO. OBS. MEAN = \$ 185K STD. DEV. = \$ 121K MIN. OBS. = \$ 30K MAX. OBS. = \$ 300K

OTHER INDUSTRY

NO. 085. MEAN \$ 85.5K STD. DEV. = \$ 116K MIN. OBS. = \$ 0.3K

MAX. OBS. = \$ 325K

#### ALL RESPONSES

NO. OBS. 15 MIN. OBS. = \$ 0.3K MAX. UBS. = \$ 325K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$ 115K STD. DEV. = \$113K

C-13

## APPROXIMATE ANNUAL COST FOR MODIFYING PROCESS PLANS FOR CYLINDRICAL MACHINED PARTS

### MISSILE PRIMES & SUBS NO. 08S. MEAN = \$ 8.9K STD. DEV. = \$ 9.6K MIN. OBS. = \$ 0.4K MAX. OBS. = \$19.2K OTHER AEROSPACE NO. OBS. MEAN = \$ 181K STD. DEV. = \$ 253K MIN. OBS. = \$12.0K MAX. OBS. = \$ 630K OTHER INDUSTRY NO. OBS. = \$ 57.9K MEAN STD. DEV. = \$ 69.7K MIN. OBS. = \$ 0.8 K MAX. OBS. = \$ 175 K **OBSERVATIONS** ALL RESPONSES NO. OBS.

NO. OBS. = 15 MIN. OBS. = \$ 0.4K

MAX. 08S. = \$ 630K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$89.3K STD. DEV. = \$159K

C-14

#### APPROXIMATE ANNUAL COST FOR MODIFYING PROCESS PLANS FOR NON-CYLINDRICAL MACHINED PARTS

### MISSILE PRIMES & SUBS NO. OBS. \$ 40K MEAN ≖ \$ 58K STD. DEV. **\$** 0.7K MIN. OBS. = \$ 106K MAX. OBS. OTHER AEROSPACE 5 NO. OBS. MEAN 3 194K = \$ 104K STD. DEV. = \$ 50K MIN. OBS. = \$ 297K MAX. OBS. OTHER INDUSTRY 7 NO. OBS. = \$ 28K MEAN STD. DEV. = \$ 37K MIN. OBS. **= \$ 0.6**K MAX. OBS. = \$105K **OBSERVATIONS** ALL RESPONSES NO. OBS. 15 MIN. OBS. = \$ 0.6K

MEAN = \$ 86K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$102K

MAX. OBS.

= \$297K

#### APPROXIMATE ANNUAL COSTS FOR PREPARING STUDY PLANS FOR CYLINDRICAL MACHINED PARTS

#### APPROXIMATE ANNUAL COSTS FOR PREPARING STUDY PLANS FOR NON-CYLINDRICAL MACHINED PARTS

### MISSILE PRIMES & SUBS NO. OBS. 2 MEAN = \$ 27K STD. DEV. 18K MIN. OBS. = \$ 14K MAX. OBS. = \$ 40K OTHER AEROSPACE NO. OBS. 5 MEAN = \$ 148K STD. DEV. = \$ 230K MIN. OBS. = \$ 0.5K MAX. OBS. = \$ 555K OTHER INDUSTRY NO. OBS. 5 MEAN = \$ 13K STD. DEV. = \$ 24K MIN. OBS. = \$ 0 MAX. OBS. \* \$ 56K ALL RESPONSES NO. OBS. 12 MIN. OBS. **~ \$** 0

C-17

MEAN = \$ 71K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$ 155K

MAX. OBS.

\* \$ 555K

#### APPROXIMATE ANNUAL PROCESS PLANNING COSTS FOR CYLINDRICAL MACHINED PARTS

### MISSILE PRIMES & SUBS NO. OBS. MEAN = \$ 52K STD. DEV. = \$ 8K MIN. OBS. = \$ 43K MAX. OBS. = \$ 57K OTHER AEROSPACE NO. OBS. 5 MEAN = \$ 397K STD. DEV. = \$ 307K MIN. OBS. = \$ 28K MAX. OBS. = \$ 880K OTHER INDUSTRY NO. 08S. 7 MEAN = \$ 229K STD. DEV. = \$ 261K MIN. OBS. = \$ 3K MAX. OBS. = \$ 724K OBSERVATIONS ALL RESPONSES NO. OBS. 15 MIN. OBS. = \$ 3K MAX. OBS. = \$ 880K - : STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$ 296K

MEAN = \$ 250K

### APPROXIMATE ANNUAL PROCESS PLANNING COSTS FOR NON-CYLINDRICAL MACHINED PARTS

| MISSILE PR            | MES        | & SUBS   |              |                                               |
|-----------------------|------------|----------|--------------|-----------------------------------------------|
| NO. OBS.              | =          | 3        |              |                                               |
| MEAN                  | = !        | \$ 124K  |              |                                               |
| STD. DEV.             | = !        | \$ 48K   |              | •                                             |
| MIN. OBS.             | = ;        | \$ 83K   |              | - • •                                         |
| MAX. OBS.             | = !        | \$ 178K  |              |                                               |
| OTHER AEROS           | PACE       | <u>.</u> |              |                                               |
| NO. OBS.              | =          | 5        |              |                                               |
| MEAN                  | = 9        | 5 527K   |              |                                               |
| STD. DEV.             | = (        | 350K     |              |                                               |
| MIN. OBS.             | = (        | \$ 305K  |              | -                                             |
| MAX. OBS.             | <b>=</b> ! | \$1146K  |              | - * * ** * * * * * * * * * * * * * * *        |
| OTHER INDUS           | TRY        |          |              |                                               |
| NO. OBS.              | =          | 7        |              |                                               |
| MEAN                  | <b>=</b> ! | \$ 123K  |              |                                               |
| STD. DEV.             |            | \$ 158K  |              | •                                             |
| MIN. OBS.             | = 9        | \$ 3K    |              | • • • • • •                                   |
| MAX. OBS.             | = 5        | 432K     |              |                                               |
|                       |            |          |              |                                               |
| ALL RESPONSIONO. OBS. | * (        |          | OBSERVATIONS | •                                             |
| MAX. OBS.             | = !        | \$ 1146K |              |                                               |
|                       |            |          |              | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) |
|                       |            |          |              | MEAN = \$ 258K STD. DEV. = \$ 291K            |

## APPROXIMATE AVERAGE COST PER PROCESS PLAN PREPARED FOR CYLINDRICAL MACHINED PARTS

| MISSILE PRI | MES  | & SUBS         |              |            |     |           |            |      |        |        |             |   |     |             |
|-------------|------|----------------|--------------|------------|-----|-----------|------------|------|--------|--------|-------------|---|-----|-------------|
| NO. OBS.    | =    | 3              |              |            |     |           |            |      |        |        |             |   |     |             |
| MEAN        | =    | \$182          |              |            |     |           |            |      |        |        |             |   |     |             |
| STD. DEV.   | =    | \$ 65          |              |            |     |           |            |      | •      |        |             |   |     |             |
| MIN. OBS.   | =    | \$136          |              |            |     |           |            |      | • •    |        | • <i></i> . | • | _ • | _ • .       |
| MAX. OBS.   | =    | \$257          |              | • , •      | ; - |           | - 2        | -1   | e;     | 1      | ê           | : | 1   |             |
| OTHER AEROS | PACI | Ĺ              |              |            |     |           |            |      |        |        |             |   |     |             |
| NO. OBS.    | =    | 5              |              |            |     |           |            |      |        |        |             |   |     |             |
| MEAN        | =    | \$326          |              |            |     |           |            |      |        |        |             |   |     |             |
| STD. DEV.   | =    | \$197          |              |            |     |           |            |      |        |        |             |   |     |             |
| MIN. OBS.   | =    | \$116          |              |            |     | _         | •          |      | ••     | •      | • •         | • |     | . <b></b> - |
| MAX. OBS.   | =    | \$580          |              | ·          |     | 3         | * <u>:</u> | - 1  | 9      | 1      | 5           | 3 | 1   | c           |
| OTHER INDUS | STRY |                |              |            |     |           |            |      |        |        |             |   |     |             |
| NO. OBS.    | =    | 7              |              |            |     |           |            |      |        |        |             |   |     |             |
| MEAN        | =    | \$ 64          |              |            |     |           |            |      |        |        |             | _ |     |             |
| STD. DEV.   | =    | \$ 50          |              |            |     |           |            | •    |        |        |             | • |     |             |
| MIN. OBS.   | =    | \$ 17          |              |            |     |           |            | 44   | • •    |        |             |   |     |             |
| MAX. OBS.   | =    | \$156          |              |            | 1 - | · • · • · | - 3        |      | 1:     | :      | •<br>i      | ? | 1   | • • •<br>:  |
|             |      |                |              |            |     |           |            |      |        |        |             |   |     |             |
| ALL RESPON  | =    | 15             | OBSERVATIONS |            |     |           |            | •    |        | •      | • •         |   |     |             |
| MIN. OBS.   | =    | \$ 17<br>\$580 |              |            | 1   |           | -          | -:   | 6      | :      | ÷           | 4 | 1   | =           |
| MAX. OBS.   | ar . | <b>,</b> 300   |              | STA<br>MEA |     | DEVI/     |            | FROM | MEAN ( | ALL RE |             |   |     |             |

#### APPROXIMATE AVERAGE COST PER PROCESS PLAN PREPARED FOR NON-CYLINDRICAL MACHINED PARTS

### MISSILE PRIMES & SUBS NO. OBS. MEAN \$252 \$125 STD. DEV. MIN. OBS. \$136 \$384 MAX. 085. OTHER AEROSPACE 5 NO. OBS. \$352 MEAN \$202 STD. DEV. \$145 MIN. OBS. \$599 MAX. OBS. OTHER INDUSTRY 7 NO. OBS. \$ 87 MEAN \$ 60 STD. DEV. MIN. OBS. \$ 23 MAX. OBS. \$175 **OBSERVATIONS** ALL RESPONSES 15 NO. OBS. \$ 23 MIN. OBS. MAX. OBS. \$599 STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

C-21

\$208

STD. DEV. = \$175

MEAN =

APPROPRIATE PERCENTAGE OF PROCESS PLANNING COSTS ATTRIBUTABLE TO PREPARING PLANS FOR NEW CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

| NO. OBS.  | 2 | 3     |
|-----------|---|-------|
| MEAN      | 2 | 62.0% |
| STD. DEV. | = | 21.0% |
| MIN. OBS. | = | 43.9% |

86.4%



#### OTHER AEROSPACE

MAX. OBS.

| NO. 08S.  | = | 5     |
|-----------|---|-------|
| MEAN      | = | 41.9% |
| STD. DEV. | 2 | 24.5% |
| MIN. OBS. | = | 10.2% |
| MAX. OBS. | = | 78.3% |



#### OTHER INDUSTRY

| NO. OBS   | = | 7     |
|-----------|---|-------|
| MEAN      | 2 | 69.2% |
| STD. DEV. | = | 16.5% |
| MIN. OBS. | 3 | 53.8% |
| MAX. OBS. | = | 94.3% |



#### ALL RESPONSES

NO. OBS. = 15 MIN. OBS. = 10.2% MAX. OBS. = 94.3%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 58.6%

STD. DEV. = 22.7%

C-22

APPROPRIATE PERCENTAGE OF PROCESS PLANNING COSTS ATTRIBUTABLE TO PREPARING PLANS FOR NEW NON-CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. MEAN 54.2% STD. DEV. 28.0% MIN. OBS. 31.1%

86.4%

#### OTHER AEROSPACE

MAX. OBS.

NO. OBS. 38.5% MEAN 29.9% STD. DEV.

MIN. OBS. 9.89 MAX. OBS. 85 6%

#### OTHER INDUSTRY

NO. OBS. MEAN 62.5% STD DEV. 27.1%

MIN. OBS. MAX. OBS.

11.8% 94.3%

**OBSERVATIONS** 

#### ALL RESPONSES

NO. OBS. 15 MIN. OBS. 9.8% MAX. 08S. 94.3%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

APPROXIMATE PERCENTAGE OF PROCESS PLANNING COSTS ATTRIBUTABLE TO MODIFYING EXISTING PLANS FOR CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

**=** 3 NO. 0BS.

= 19.1% MEAN

STD. DEV. = 22.7% **≈** 0.6%

MIN. OBS.

= 44.4°, MAX. OBS.



#### OTHER AEROSPACE

= 5 NO. OBS.

= 37.7% MEAN

**=** 20.7% STD. DEV.

**=** 20.9% MIN. OBS.

MAX. OBS. = 71.6



#### OTHER INDUSTRY

NO. OBS. = 7

MEAN = 25.7%

STO. DEV. = 14.3%

MIN. OBS. = 5.7%

MAX. OBS. = 43.3%



ALL RESPONSES

= 15 40. OBS.

MIN. OBS. = 0.6 <

MAX. OBS. = 71.6%



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 28.4%

STD. DEV. = 18.3%

APPROXIMATE RATIO OF NEW PLUS MODIFIED PLANS PREPARED ANNUALLY FOR CYLINDRICAL PARTS TO NUMBER OF CYLINDRICAL PARTS PRODUCED ANNUALLY (BY PART NUMBER, NOT TOTAL VOLUME)

| MISSILE PRI | MES  | & SUBS    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|------|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO. 08S.    | =    | 3         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN        | *    | 0.411     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.   | =    | 0.242     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.   | =    | 0.140     |              | • ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MAX. OBS.   | =    | 0.605     |              | and the company of th |
|             |      |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER AEROS | SPAC | <u>:Ε</u> |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO. OBS.    | *    | 4         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN        | *    | 1.440     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.   | =    | 0.407     |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MIN. OBS.   | =    | 0.929     |              | . • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MAX. OBS.   | *    | 1.805     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |      |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER INDUS | STRY | <u>'</u>  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO. 08S.    |      | 6         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN        |      | 0.224     |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| STD. DEV.   | =    | 0.150     |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MIN. OBS.   | 3    | 0.110     |              | •• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MAX. OBS.   | 2    | 0.500     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |      |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |      |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |      |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |      |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |      |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |      |           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |      |           | SNS          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |      |           | ATI          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |      |           | ERV          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ALL RESPON  | SES  |           | OBSERVATIONS | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NO. 085.    | =    | 13        |              | • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MIN. 085.   |      | 0.110     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAX. OBS.   |      | 1.805     |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             |      |           |              | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |      |           |              | MEAN = 0.641 STD. DEV. = 0.616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

APPROXIMATE RATIO OF MODIFIED PROCESS PLANS PREPARED ANNUALLY FOR NON-CYLINDRICAL PARTS TO NUMBER OF NON-CYLINDRICAL PARTS PRODUCED ANNUALLY (BY PART NUMBER, NOT TOTAL VOLUME)

### MISSILE PRIMES & SUBS

NO. 085.

MEAN \* 0.395

STD. DEV. **0.533** 

MIN. OBS. 0.007 MAX. OBS. 1.003

### OTHER AEROSPACE

NO. 085.

MEAN 0.909

STD. DEV. **=** 0.535

MIN. OBS. **=** 0.286

MAX. OBS. **=** 1.591

#### OTHER INDUSTRY

NO. 085. 6

MEAN = 0.008

STD. DEV. = 0.007

MIN. OBS. 0.023

MAX. OBS. 0.211

#### ALL RESPONSES

NO. 085. **=** 13

MIN. OBS. **=** 0.007

MAX. OBS. = 1.591

> STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = 0.406 STD. DEV. = 0.516

> > C-37

APPROXIMATE RATIO OF MODIFIED PROCESS PLANS PREPARED ANNUALLY FOR CYLINDRICAL PARTS TO NUMBER OF CYLINDRICAL PARTS PRODUCED ANNUALLY (BY PART NUMBER, NOT TOTAL VOLUME)

| MISSILE PRI | IMES & SUBS    |              |                                               |
|-------------|----------------|--------------|-----------------------------------------------|
| NO. OBS.    | <b>=</b> 3     |              |                                               |
| MEAN        | = 0.181        |              |                                               |
| STD. DEV.   | = 0.202        |              |                                               |
| MIN. OBS.   | = 0.007        |              | • •                                           |
| MAX. OBS.   | = 0.403        |              |                                               |
|             |                |              |                                               |
| OTHER AEROS | SPACE          |              |                                               |
| NO. 08S.    | <b>=</b> 4     |              |                                               |
| MEAN        | = 1.156        |              |                                               |
| STD. DEV.   | = 0.381        |              |                                               |
| MIN. OBS.   | = 0.714        |              | • • •                                         |
| MAX. OBS.   | = 1.593        |              |                                               |
|             |                |              |                                               |
| OTHER INDUS |                |              |                                               |
| NO. OBS.    | <b>=</b> 6     |              |                                               |
| MEAN        | = 0.076        |              | _                                             |
| STD. DEV.   | = 0.054        |              | •••                                           |
| MIN. OBS.   | = 0.024        |              | •••                                           |
| MAX. OBS.   | = 0.167        |              |                                               |
|             |                |              |                                               |
|             |                |              |                                               |
|             |                |              |                                               |
|             |                |              |                                               |
|             |                |              |                                               |
|             |                |              |                                               |
|             |                | Ş            |                                               |
|             |                | 5            |                                               |
|             |                | RVA.         |                                               |
| ALL RESPON  | cec            | OBSERVAT1ONS | •                                             |
|             | <del></del> -  | ō            | ••                                            |
| NO. OBS.    | <b>=</b> 13    |              |                                               |
| MIN. OBS.   | = 0.007        |              |                                               |
| MAX. OBS.   | <b>=</b> 1.593 |              |                                               |
|             |                |              | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) |
|             |                |              |                                               |

STD. DEV. = 0.549

MEAN = 0.432

APPROXIMATE RATIO OF PROCESS PLANS FOR NEW NON-CYLINDRICAL PARTS TO NUMBER OF NON-CYLINDRICAL PARTS PRODUCED ANNUALLY (BY PART NUMBERS, NOT TOTAL VOLUME)

#### MISSILE PRIMES & SUBS

NO. 085. = 3 MEAN **-** 0.260 STD. DEV. = 0.164 MIN. OBS. **=** 0.133 MAX. OBS. = 0.445

### OTHER AEROSPACE

NO. OBS. MEAN = 0.152 STD. DEV. **2** 0.108 MIN. OBS. = 0.081 MAX. OBS. = 0.313

#### OTHER INDUSTRY

NO. 08S. MEAN **0.271** STD. DEV. = 0.346 MIN. OBS. = 0.027 MAX. OBS. = 0.929

#### ALL RESPONSES

NO. 08S. = 13 MIN. QBS. = 0.027 MAX. OBS. \* 0.929 OBSERVATIONS

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = 0.232 STD. DEV. # 0.246 APPROXIMATE RATIO OF PROCESS PLANS FOR NEW CYLINDRICAL PARTS TO NUMBER OF CYLINDRICAL PARTS PRODUCED ANNUALLY (BY PART NUMBERS, NOT TOTAL VOLUME)

| MISSILE PRIMES & SUBS  NO. OBS. = 3  MEAN = 0.231  STD. DEV. = 0.115  MIN. OBS. = 0.133  MAX. OBS. = 0.358 |              | - • • •<br>-:::::::::::::                                                                   |
|------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------|
| OTHER AEROSPACE                                                                                            |              |                                                                                             |
| NO. OBS. = 4  MEAN = 0.284  STD. DEV. = 0.152  MIN. OBS. = 0.133  MAX. OBS. = 0.488                        |              | - • • • • • • • • • • • • • • • • • • •                                                     |
| OTHER INDUSTRY                                                                                             |              |                                                                                             |
| NO. OBS. = 6 MEAN = 0.148 STD. DEV. = 0.115 MIN. OBS. = 0.050 MAX. OBS. = 0.333                            |              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| ALL RESPONSES  NO. OBS. = 13  MIN. OBS. = 0.050  MAX. OBS. = 0.488                                         | OBSERVATIONS | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = 0.209 STD. DEV. = 0.141                |

APPROXIMATE RATIO OF PROCESS PLANS FOR STUDY PURPOSES FOR NON-CYLINDRICAL PARTS TO TOTAL NUMBER OF PROCESS PLANS OF ALL TYPES PREPARED ANNUALLY FOR NON-CYLINDRICAL PARTS

| MISSILE PRI | MES & SUBS         |                |          |
|-------------|--------------------|----------------|----------|
| NO. 08S.    | <b>=</b> 4         |                |          |
| MEAN        | = 0.436            |                |          |
| STD. DEV.   | <b>=</b> 0.244     |                |          |
| MIN. OBS.   | = 0.078            |                | • • ••   |
| MAX. OBS.   | = 0.607            |                |          |
|             |                    |                |          |
| ATHER ACROS | DACE               |                |          |
| OTHER AEROS |                    |                |          |
| NO. 08S.    | = 8                |                |          |
| MEAN        | = 0.206            |                |          |
| STD. DEV.   | = 0.151            |                | •        |
| MIN. OBS.   | = . 0.017          |                | •••• • • |
| MAX. OBS.   | = 0.471            |                |          |
|             |                    |                |          |
| OTHER INDUS | STRY               |                |          |
| NO. OBS.    | <del></del><br>= 7 |                |          |
| MEAN        | = /<br>= 0.071     |                |          |
| STD. DEV.   | = 0.133            |                | •        |
| MIN. OBS.   | = 0.000            |                | • •      |
| MAX. OBS.   | = 0.367            |                |          |
| MAX. 003.   | 0.307              |                |          |
|             |                    |                |          |
|             |                    |                |          |
|             |                    |                | •        |
|             |                    |                |          |
|             |                    |                |          |
|             |                    | S              |          |
|             |                    | S S            |          |
|             |                    | VAT            |          |
| =======     |                    | OBSERVAT I ONS | • •      |
| ALL RESPONS | ES                 | 8              | • •      |
| NO. 08S.    | = 19               |                | •••••    |
| MIN. 085.   | = 0.000            |                |          |
| MAX. OBS.   | = 0.607            |                |          |

C-33

MEAN = 0.205

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 0.209

APPROXIMATE RATIO OF PROCESS PLANS FOR STUDY PURPOSES FOR CYLINDRICAL PARTS TO TOTAL NUMBER OF PROCESS PLANS OF ALL TYPES PREPARED ANNUALLY FOR CYLINDRICAL PARTS

### MISSILE PRIMES & SUBS NO. OBS. 0.447 MEAN 0.210 STD. DEV. **=** 0.143 MIN. OBS. MAX. OBS. = 0.617 OTHER AEROSPACE NO. OBS. MEAN = 0.218 STD. DEV. **0.187** MIN. OBS. \* 0.015 MAX. OBS. = 0.572 OTHER INDUSTRY NO. 08S. MEAN 0.073 STD. DEV. = 0.120 MIN. OBS. = 0.000 MAX. OBS. = 0.326**OBSERVATIONS** ALL RESPONSES NO. OBS. MIN. OBS. = 0.000 MAX. OBS. = 0.617

MEAN = 0.213

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 0.215

APPROXIMATE RATIO OF PROCESS PLANS MODIFIED FOR NON-CYLINDRICAL PARTS TO TOTAL NUMBER OF PROCESS PLANS OF ALL TYPES PREPARED ANNUALLY FOR NON-CYLINDRICAL PARTS.

| MISSILE PRI            | MES       | & SUBS         |              |      |                    |           |               |          |         |     |
|------------------------|-----------|----------------|--------------|------|--------------------|-----------|---------------|----------|---------|-----|
| NO. OBS.               | =         | 4              |              |      |                    |           |               |          |         |     |
| MEAN                   | *         | 0.279          |              |      |                    |           |               |          |         |     |
| STD. DEV.              | 2         | 0.335          |              |      |                    |           |               |          |         |     |
| MIN. OBS.              | =         | 0.024          | _            |      | • .                | •••       | _ • • • • • • | •        |         |     |
| MAX. OBS.              | =         | 0.768          | _            | ,    |                    |           |               | ,        |         | •   |
| OTHER AEROS            | PAC       | <u>E</u>       |              |      |                    |           |               |          |         |     |
| NO. OBS.               | =         | 8              |              |      |                    |           |               |          |         |     |
| MEAN                   | =         | 0.564          |              |      |                    |           |               |          |         |     |
| STD. DEV.              | *         | 0.263          |              |      |                    |           |               |          |         |     |
| MIN. OBS.              | =         | 0.058          |              |      |                    |           |               | ••       |         |     |
| MAX. 08S.              | =         | 0.855          | - : -<br>-   |      | * * * :            | -         | -:·           | :        | :       |     |
| OTHER INDUS            | TRY       |                |              |      |                    |           |               |          |         |     |
| NO. OBS.               | =         | 7              |              |      |                    |           |               |          |         |     |
| MEAN                   |           | 0.416          |              |      |                    |           |               |          |         |     |
| STD. DEV.              | =         | 0.274          | -            |      |                    | •         |               |          |         |     |
| MIN. OBS.              | =         | 0.130          |              |      |                    | • •       | •• •          | •        |         |     |
| MAX. OBS.              | =         | 0.900          |              | :    |                    | :         | -:            | ::       | :       | ;;- |
|                        |           |                |              |      |                    |           |               |          |         |     |
| ALL RESPONS            | <u>ES</u> |                | OBSERVATIONS |      |                    | •         |               |          |         |     |
| NO. 085.               |           | 19             |              |      |                    | •••••     |               | •        |         |     |
| MIN. 08S.<br>MAX. 08S. |           | 0.024<br>0.900 |              | ., . | · : - · <b>: -</b> | :         | -:            | ::       | :;<br>: |     |
|                        |           |                |              |      | DEVIATION<br>0.449 | IS FROM M |               | L RESPON |         |     |

APPROXIMATE RATIO OF PROCESS PLANS MODIFIED FOR CYLINDRICAL PARTS TO TOTAL NUMBER OF PROCESS PLANS OF ALL TYPES PREPARED ANNUALLY FOR CYLINDRICAL PARTS

### MISSILE PRIMES & SUBS MO. OBS. **0.222** MEAN = 0.243 STD. DEV. MIN. OBS. = 0.024 MAX. OBS. \* 0.571 OTHER AEROSPACE NO. OBS. 0.507 MEAN = 0.230STD. DEV. MIN. OBS. **2** 0.058 = 0.714MAX. OBS. OTHER INDUSTRY NO. 08S. MEAN **= 0.362** STD. DEV. = 0.195 MIN. OBS. **-** 0.130 MAX. OBS. **=** 0.625 ALL RESPONSES NO. OBS. MIN. OBS. = 0.024 MAX. OBS. = 0.714STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = 0.394 STD. DEV. = 0.236

APPROXIMATE RATIO OF PROCESS PLANS FOR NEW NON-CYLINDRICAL PARTS TO TOTAL NUMBER OF PROCESS PLANS OF ALL TYPES PREPARED ANNUALLY FOR NON-CYLINDRICAL PARTS

| MISSILE PRI       | MES        | & SUBS  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO. OBS.          |            | 4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN              |            | 0.285   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.         | =          | 0.145   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.         | =          | 0.154   | •• •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MAX. OBS.         | =          | 0.488   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER AEROS       | PAC        | E.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |            | =<br>8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO. OBS.          |            | 0.230   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN<br>STD. DEV. |            | 0.230   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.         |            | 0.055   | • ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MAX. OBS.         |            | 0.768   | in the second contract of the second contract |
| THAT. UDJ.        | Ī          | 5.700   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OTHER INDUS       | TRY        | <u></u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NO. OBS.          | =          | 7       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MEAN              | =          | 0.513   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STD. DEV.         | =          | 0.264   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MIN. OBS.         |            | 0.100   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAX. OBS.         | =          | 0.870   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |            | •       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |            |         | SN S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                   |            |         | 1 <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |            |         | OBSERVATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ALL RESPONS       | <u>ses</u> |         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NO. OBS.          | =          | 19      | * **** *<br>****** ** * ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MIN. OBS.         | -          | 0.055   | A control of the cont |
| MAX. OBS.         | =          | 0.870   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |            |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

MEAN = 0.346

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 0.254

APPROXIMATE RATIO OF PROCESS PLANS FOR NEW CYLINDRICAL PARTS TO TOTAL NUMBER OF PROCESS PLANS OF ALL TYPES PREPARED ANNUALLY FOR CYLINDRICAL PARTS

### MISSILE PRIMES & SUBS

NO. OBS. # 4

MEAN = 0.331

STD. DEV. = 0.105

MIN. OBS. = 0.270

MAX. OBS. = 0.488

#### OTHER AEROSPACE

NO. OBS. = 8 MEAN = 0.276 STD. DEV. = 0.220 MIN. OBS. = 0.055 MAX. OBS. = 0.768

#### OTHER INDUSTRY

NO. OBS. = 7
MEAN = 0.564
STD. DEV. = 0.203
MIN. OBS. = 0.313
MAX. OBS. = 0.870

RSFRVATION

#### ALL RESPONSES

NO. OBS. = 19 MIN. QBS. = 0.055 MAX. OBS. = 0.870

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 0.394

STD. DEV. = 0.230

APPROXIMATE PERCENTAGE OF PROCESS PLANNING COSTS ATTRIBUTABLE TO PREPARING STUDY PLANS FOR NON-CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. ± 20.4% MEAN **±** 24.9% STD. DEV.

= 13% MIN. OBS.

= 48.1% MAX. OBS.



#### OTHER AEROSPACE

NO. OBS.

MEAN = 19.1%

STD. DEV. = 18.4%

MIN. OBS.

MAX. OBS. = 48.4%



#### OTHER INDUSTRY

NO. OBS.

MEAN = 4.8%

= 8.7% STD. DEV.

= 0% MIN. OBS.

NO. OBS.

MIN. OBS.

MAX. OBS.

MAX. OBS. **= 23.9**%





STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = 12.7%

STD. DEV. = 16.6%

APPROXIMATE PERCENTAGE OF PROCESS PLANNING COSTS ATTRIBUTABLE TO PREPARING STUDY PLANS FOR CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. = 3

MEAN = 19%

= 22.6% STD. DEV. MIN. OBS. = 13%

MAX. OBS. = 44%



#### OTHER AEROSPACE

NO. OBS.

= 20.4% MEAN

= 14.5% STD. DEV.

MIN. OBS. = 0.8%

MAX. OBS. = 37.7%



#### OTHER INDUSTRY

NO. OBS.

MEAN = 5.1%

STD. DEV. ± 8%

MIN. OBS. = 0%

MAX. OBS.



#### ALL RESPONSES

**= 15** NO. OBS.

MIN. OBS. = 0%

MAX. OBS. = 30%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 13%

STD. DEV. = 14.8%

APPROXIMATE PERCENTAGE OF PROCESS PLANNING COSTS ATTRIBUTABLE TO MODIFYING EXISTING PLANS FOR NON-CYLINDRICAL PARTS

#### MISSILE PRIMES & SUBS

NO. OBS. = 3 MEAN = 25.5%

STD. DEV. = 30.9%

MIN. OBS. = 0.6%

MAX. OBS. = 60.0%



#### OTHER AEROSPACE

NO. OBS. = 5

MEAN = 42.4%

STD. DEV. = 28.2%

MIN. OBS. = 14.35

MAX. OBS. = 80.3%



#### OTHER INDUSTRY

NO. OBS. = 7

MEAN = 32.8%

STD. DEV. = 27.5%

MIN. OBS. = 5.7%

MAX. OBS. = 88.25



OBSERVATIONS

#### ALL RESPONSES

NO. OBS. = 15

MIN. OBS. = 0.6%

MAX. OBS. = 88.2%

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 34.5%

STD. DEV. = 27.0°

APPROXIMATE RATIO OF NEW PLUS MODIFIED PLANS PREPARED ANNUALLY FOR NON-CYLINDRICAL PARTS TO NUMBER OF NON-CYLINDRICAL PARTS PRODUCED ANNUALLY (BY PART NUMBER, NOT TOTAL VOLUME)

#### MISSILE PRIMES & SUBS

NO. 08S.

MEAN = 0.654

**STD. DEV.** = 0.532

MIN. OBS. = 0.140

MAX. OBS. = 1.203

#### OTHER AEROSPACE

NO. OBS.

MEAN = 1.061

STD. DEV. = 0.543

MIN. OBS. = 0.386

MAX. OBS. = 1.705

#### OTHER INDUSTRY

NO. OBS.

MEAN = 0.359

STD. DEV. = 0.365

MIN. OBS. = 0.073

MAX. OBS. = 1.014

#### ALL RESPONSES

NO. OBS. **=** 13

MIN. OBS. = 0.073

MAX. OBS. = 1.705

**OBSERVATIONS** 

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 0.643

STC. DEV. = 0.527

APPROXIMATE ANNUAL DOLLAR VALUE OF MATERIAL COSTS FOR CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

### MISSILE PRIMES & SUBS

NO. OBS. = 4 MEAN = \$ 0.6 MIL.

STD. DEV. = \$ 0.8 MIL. MIN. OBS. = \$ 0.05 MIL.

MAX. OBS. = \$ 1.7 MIL.

#### OTHER AEROSPACE

NO. OBS. = 3

MEAN = \$ 1.5 MIL.

STD. DEV. = \$ 1.1 MIL.

MIN. OBS. = \$ 0.4 MIL.

MAX. OBS. = \$ 2.5 MIL.

#### OTHER INDUSTRY

NO. OBS. = 6

MEAN = \$14.9 MIL.

STD. DEV. = \$23.3 MIL.

MIN. OBS. = \$ 0.05 MIL.

MAX. OBS. = \$52.7 MIL.

**OBSERVATIONS** 

#### ALL RESPONSES

NG. OBS. = 13

MIN. OBS. = \$ 0.05 MIL.

MAX. OBS. # \$52.7 MIL.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$ 7.4 MIL.

STD. DEV. = \$16.7 MIL.

C-40

APPROXIMATE ANNUAL DOLLAR VALUE OF MATERIAL COSTS FOR NON-CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

# MISSILE PRIMES & SUBS

NO. OBS.

MEAN = \$ 0.6 MIL.

STD. DEV. = \$ 0.5 MIL.

= \$ 0.04 MIL. MIN. OBS.

MAX. OBS. = \$ 1.2 MIL.

### OTHER AEROSPACE

NO. OBS. 3

MEAN = \$ 2.9 MIL.

STD. DEV. = \$ 3.1 MIL.

MIN. OBS. = \$ 0.5 MIL.

MAX. OBS. = \$ 6.4 MIL.

# OTHER INDUSTRY

NO. OBS.

MEAN = \$ 4.7 MIL.

STD. DEV. = \$ 8.8 MIL.

MIN. OBS. = \$ 0.2 MIL.

MAX. OBS. = \$22.5 MIL.

**OBSERVATIONS** 

### ALL RESPONSES

NO. OBS. 13

MIN. OBS. # \$ 0.04 MTT.

MAX. OBS. = \$22.5 M.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN =\$ 3.0 MIL.

STD. DEV. = \$ 6.1 MIL.

APPROXIMATE ANNUAL DOLLAR VALUE OF DIRECT LABOR COSTS FOR CYLINDRICAL MACHINED PARTS MANUFACTURED IN-HOUSE

# MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = \$ 1.2 MIL.

STD. DEV. = \$ 0.7 MIL.

MIN. OBS. = \$ 0.2 MIL.

MAX. OBS. = \$ 1.9 MIL.

### OTHER AEROSPACE

NO. OBS. = 3

MEAN = \$ 7.1 MIL.

STD. DEV. = \$ 8.0 MIL.

MIN. 08S. = \$ 0.4 MIL.

MAX. OBS. = \$16.0 MIL.

#### OTHER INDUSTRY

NO. OBS. = 6

MEAN = \$ 4.0 MIL.

STD. DEV. = \$ 6.0 MIL.

MIN. OBS. = \$ 0.03 MIL.

MAX. OBS. = \$14.0 MIL.

**OBSERVATIONS** 

# ALL RESPONSES

NO. OBS. = 13

MIN. 08S. = \$ 0.03 MIL

MAX. OBS. = \$16.0 MIL.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$ 3.8 MIL. STD. DEV. = \$5.6 MIL.

APPROXIMATE ANNUAL DOLLAR VALUE OF DIRECT LABOR COSTS FOR NON-CYLINDRICAL MACHINED PARTS MANUFACTURED IN-HOUSE

| MISSILE PR | IMES & SUBS        |              |   |   |   |   |               |       |   |                       |   |             |
|------------|--------------------|--------------|---|---|---|---|---------------|-------|---|-----------------------|---|-------------|
| NO. 08S.   | <b>=</b> 4         |              |   |   |   |   |               |       |   |                       |   |             |
| MEAN       | = \$ 2.0 MIL.      |              |   |   |   |   |               |       |   |                       |   |             |
| STD. DEV.  | = \$ 1.7 MIL.      |              |   |   |   |   |               |       |   |                       |   |             |
| MIN. OBS.  | = \$ 0.2 MIL.      |              |   |   |   |   | • •           | • •   |   |                       |   |             |
| MAX. OBS.  | = \$ 4.2 MIL.      |              | : | : | : | : | 1             | :     | 1 | :···                  | : | 1 5         |
| OTHER AERO | SPACE              |              |   |   |   |   |               |       |   |                       |   |             |
| NO. OBS.   | <b>=</b> 3         |              |   |   |   |   |               |       |   |                       |   |             |
| MEAN       | = \$ 8.3 MIL.      |              |   |   |   |   |               |       |   |                       |   |             |
| STD. DEV.  | = \$ 9.0 MIL.      |              |   |   |   |   |               |       |   |                       |   |             |
| MIN. OBS.  | = \$ 0.4 MIL.      |              |   |   |   |   | •             |       |   |                       | • |             |
| MAX. OBS.  | = \$18.0 MIL.      |              | : | : | : | : | <b>:</b><br>1 | :     | : | :                     | : | 1           |
| OTHER INDU | <u>STRY</u><br>= 6 |              |   |   |   |   |               |       |   |                       |   |             |
| MEAN       | = \$ 1.7 MIL.      |              |   |   |   |   | •             |       |   |                       |   |             |
| STD. DEV.  | = \$ 2.2 MIL.      |              |   |   |   |   |               |       |   |                       |   |             |
| MIN. OBS.  | = \$ 0.03 MIL.     |              |   |   |   |   | •             | •     | ı |                       |   |             |
| MAX. OBS.  | = \$ 6.0 MIL.      |              | : | : | : | : | 1             | • • • | 1 | ٠ <b>:</b> ٠ ٠ ٠<br>ت | : | 1 5         |
|            |                    |              |   |   |   |   |               |       |   |                       |   |             |
|            |                    | OBSERVATIONS |   |   |   |   |               |       |   |                       |   |             |
| ALL RESPON | SES                | 08S          |   |   |   |   | •             |       |   |                       |   |             |
| NO. OBS.   | ± 13               |              |   |   |   |   | •             | •     |   |                       |   |             |
| MIN. OBS.  | = \$0.03 MIL.      |              | _ |   | _ | _ | •             | ••••  | , |                       | • | • • • • • • |

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$ 3.3 MIL.

MAX. OBS. = \$18.0 MIL.

STD. DEV. = \$ 4.9 MIL.

# MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = \$ 0.7 MIL. STD. DEV. = \$ 0.9 MIL. MIN. OBS. = \$ 0.02 MIL.

MAX. OBS. = \$ 1.9 MIL.

#### OTHER AEROSPACE

NO. OBS. = 3

MEAN = \$ 2.3 MIL. STD. DEV. = \$ 2.2 MIL. MIN. OBS. = \$ 0.008 MIL.

MAX. OBS. = \$ 4.4 MIL.

#### OTHER INDUSTRY

NO. OBS. = 6

MEAN ≈ \$ 2.0 MIL. STD. DEV. ≈ \$ 3.0 MIL.

MIN. OBS. = \$ 0.004 MIL.

MAX. OBS. ≈ \$ 6.0 MIL.

**DBSERVATIONS** 

### ALL RESPONSES

NO. 08S. ≈ 13

MIN. OBS. = \$ 0.004 MIL.

MAX. OBS. = \$ 6.0 MIL.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$ 1.7 MIL.

STD. DEV. = \$ 2.3 MIL.

APPROXIMATE ANNUAL DOLLAR VALUE OF TOOLING COSTS FOR MON-CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

### MISSILE PRIMES & SJBS

NO. OBS. = 4

**MEAN** = \$ 0.8 MIL.

STD. DEV. = \$ 1.2 MIL.

MIN. OBS. = \$ 0.01 MIL.

MAX. 08S. = \$ 2.5 MIL.

# OTHER AEROSPACE

NO. OBS. = 3

**MEAN** = \$ 5.7 MIL.

STD. DEV. = \$ 9.0 MIL.

MIN. OBS. = \$ 0.004 MIL.

MAX. OBS. = \$ 16.1 MIL.

# OTHER INDUSTRY

NO. OBS. = 6

**MEAN** = \$ 0.6 MIL.

STD. DEV. = \$ 0.9 MIL.

MIN. OBS. = \$0.004 MIL.

MAX. OBS. = \$ 2.5 MIL.

OBSERVATIONS

### ALL RESPONSES

NO. 085. =

MIN. OBS. = \$ 0.004 MIL.

MAX, OBS. = \$ 16.1 MIL.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$ 1.9 MIL.

STD. DEV. = \$ 4.4 MIL.

APPROXIMATE ANNUAL DOLLAR VALUE OF SCRAP AND REWORK COSTS FOR CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

**MEAN** = \$ 0.2 MIL.

STD. DEV. = \$ 0.2 MIL.

MIN. OBS. = \$ 0.05 MIL.

MAX. 08S. = \$ 0.5 MIL.

#### OTHER AEROSPACE

NO. OBS. = 3

**MEAN** = \$ 0.5 MIL.

STD. DEV. = \$ 0.5 MIL.

MIN. OBS. = \$ 0.02 MIL

MAX. 08S. = \$0.9 MIL.

### OTHER INDUSTRY

NO. OBS. = 6

**MEAN** = \$ 0.7 MIL.

STD. DEV. = \$ 1.2 MIL.

MIN. OBS. = \$ 0.004 MIL.

MAX. OBS. = \$ 3.0 MIL.

**OBSERVATIONS** 

# ALL RESPONSES

NO. 08S. = 13

MIN. OBS. = \$ 0.004 MIL.

MAX. OBS. = \$ 3.0 MIL.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$ 0.5 MIL. STD. DEV. \* \$ 0.8 MIL.

APPROXIMATE ANNUAL DOLLAR VALUE OF SCRAP AND REWORK COSTS FOR NON-CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

### MISSILE PRIMES & SUBS

| NO. OBS. | = | 4 |
|----------|---|---|
|----------|---|---|

**MEAN** = \$ 0.3 MIL.

STD. DEV. = \$ 0.4 MIL.

MIN. OBS. = \$ 0.04 MIL.

MAX. OBS. = \$ 0.8 MIL.

# OTHER AEROSPACE

NO. OBS. = 3

MEAN = \$ 1.2 MIL.

STD. DEV. = \$ 1.8 MIL.

MIN. OBS. = \$ 0.09 MIL.

MAX. OBS. = \$ 3.2 MIL.

# OTHER INDUSTRY

NO. 08S. = 6

MEAN = \$ 0.2 MIL.

STD. DEV. = \$ 0.2 MIL.

MIN. OBS. = \$0.004 MIL.

MAX. OBS. = \$ 0.5 MIL.

•

# ALL RESPONSES

NO. OBS. = 13

MIN. OBS. = \$ 0.004 MIL.

**OBSERVATIONS** 

MAX. OBS. = \$ 3.2 MIL.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$ 0.5 MIL. STD. DEV. =\$ 0.9 MIL.

APPROXIMATE ANNUAL DOLLAR VALUE OF PROCESS PLANNING COSTS FOR CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

#### MISSILE PRIMES & SUBS

NO. OBS. = 4

**MEAN** = \$ 0.9 MIL.

**STD. DEV. \*** \$ 1.3 MIL. MIN. OBS. **=** \$0.02 MIL.

MAX. 08S. = \$ 2.8 MIL.

### OTHER AEROSPACE

NO. OBS. = 3

**MEAN** = \$ 2.0 MIL.

STD. DEV. = \$ 1.8 MIL.

MIN. OBS. = \$ 0.01 MIL.

MAX. OBS. = \$ 3.5 MIL.

#### OTHER INDUSTRY

NO. 08S. = 16

MEAN = \$ 0.9 MIL.

STD. DEV. = \$ 1.4 MIL.

MIN. OBS. = \$ 0.04 MIL.

MAX. OBS. = \$ 3.0 MIL.

OBSERVATIONS

### ALL RESPONSES

NO. 085. = 13

MIN. 08S. = \$ 0.01 MIL.

MAX. 085. = \$ 3.5 MIL.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$ 1.2 MIL. STD. DEV. = \$ 1.4 MIL.

APPROXIMATE ANNUAL DOLLAR VALUE OF PROCESS PLANNING COSTS FOR NON-CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

### MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = \$ 1.4 MIL.

STD. DEV. = \$ 2.5 MIL.

MIN. OBS. = \$0.01 MIL.

MAX. OBS. = \$ 5.1 MIL.

OTHER AEROSPACE

NO. OBS. = 3

MEAN = \$ 4.6 MIL.

STD. DEV. = \$ 7.2 MIL.

MIN. OBS. = \$0.04 MIL.

MAX. OBS. = \$12.9 MIL.

#### OTHER INDUSTRY

NO. OBS. = 6

MEAN = \$ 0.3 MIL.

STD. DEV. = \$ 0.4 MIL

MIN. OBS. = \$ 0.04 MIL.

MAX. OBS. = \$ 0.38 MIL.

**OBSERVATIONS** 

### ALL RESPONSES

NO. OBS. = 13

MIN. OBS. = \$ 0.01 MIL.

MAX. OBS. = \$12.9 MIL.

•

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$ 1.7 MIL

STD. DEV. = \$ 3.6 MIL.

APPROXIMATE ANNUAL DOLLAR VALUE OF OVERHEAD, PROFIT, ETC., COSTS FOR CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

| STD. DEV.     | * \$ 1.8 MIL.<br>* \$ 2.1 MIL.<br>* \$ 0<br>* \$ 4.8 MIL. |   | :      |   | : • •        |       | <b>:</b>  | :   | <br>: 1 | •  | • • | · :          |     | :       | <br>•   | , , | : · · | : . |
|---------------|-----------------------------------------------------------|---|--------|---|--------------|-------|-----------|-----|---------|----|-----|--------------|-----|---------|---------|-----|-------|-----|
| OTHER AEROSPA | ACE                                                       |   |        |   |              |       |           |     |         |    |     |              |     |         |         |     |       |     |
| NO. OBS. =    | : 3                                                       |   |        |   |              |       |           |     |         |    |     |              |     |         |         |     |       |     |
| MEAN :        | \$ 1.5 MIL.                                               |   |        |   |              |       |           |     |         |    |     |              |     |         |         |     |       |     |
| STD. DEV.     |                                                           |   |        |   |              |       |           |     |         |    |     |              |     |         |         |     |       |     |
| MIN. OBS.     | • \$ 1.1 MIL.                                             |   |        |   |              |       |           |     |         | •  | •   |              |     |         |         |     |       |     |
| MAX. OBS.     | * \$ 2.1 MIL.                                             | • | :<br>= | • | 1            |       | ; · · · · | -   | •       |    | •   | <br>1        | - • | 2       | <br>:   |     | 1     | :   |
| OTHER INDUSTE | <u> </u>                                                  |   |        |   |              |       |           |     |         |    |     |              |     |         |         |     |       |     |
| NO. 0BS. =    | . 6                                                       |   |        |   |              |       |           |     |         |    |     |              |     |         |         |     |       |     |
| MEAN =        | \$ 7.7 MIL.                                               |   |        |   |              |       |           |     |         |    |     |              |     |         |         |     |       |     |
|               | \$16.3 MIL.                                               |   |        |   |              |       |           |     |         | •  | _   |              |     |         |         |     |       |     |
| MIN. OBS. =   | \$0.02 MIL.                                               |   |        |   |              |       |           |     |         | •  | •   |              |     |         |         | •   |       | •   |
| MAX. OBS. =   | \$ 41 MIL.                                                | * | : · ·  | : | <b>:</b> · · | • • ; |           | • : | <br>:   | ٠. | i.  | <br>: ·<br>1 | •   | ; · · · | <br>: . |     | :     | . : |

**OBSERVATIONS** 

ALL RESPONSES

NO. OBS. = 13 MIN. OBS. = \$ 0 MAX. OBS. = \$ 41 MIL.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$ 4.4 MIL. STD. DEV. = \$11.0 MIL.

APPROXIMATE ANNUAL DOLLAR VALUE OF OVERHEAD, PROFIT, ETC., COSTS FOR NON-CYLINDRICAL PARTS MANUFACTURED IN-HOUSE

| MISSILE PRIMES | 8 S | UBS |
|----------------|-----|-----|
|----------------|-----|-----|

| NU. | 062 | = |   | 4 | • |  |
|-----|-----|---|---|---|---|--|
|     |     |   | _ | _ | _ |  |

= \$ 1.9 MIL. MEAN

= \$ 1.7 MIL. STD. DEV.

MIN. OBS. = \$ 0

= \$ 3.4 MIL, MAX. OBS.

# OTHER AEROSPACE

NO. OBS. 3

= \$ 4.6 MIL. MEAN

= \$ 3.7 MIL. STD. DEV.

MIN. OBS. = \$ 0.5 MIL.

MAX. OBS. = \$ 7.7 MIL.

### OTHER INDUSTRY

NO. OBS. 6

MEAN = \$ 3.6 MIL

STD. DEV. = \$ 6.9 MIL.

MIN. OBS.

= \$ 0.1 MIL.

MAX. OBS. = \$17.5 MIL.

OBSERVATIONS

### ALL RESPONSES

NO. OBS. 13 • \$ O MIN. OBS.

MAX. OBS. = \$ 17.5 MIL

# STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = 33.3 MIL.

STD. DEV =\$ 4 9 MIL

APPROXIMATE DIFFERENCE BETWEEN PROCESS PLANNING COSTS DERIVED FROM Q13 AND Q18 AND PROCESS PLANNING COSTS DERIVED FROM Q19 (FOR CYLINDRICAL PARTS MANUFACTURED IN-HOUSE)

### MISSILE PRIMES & SUBS

3 NO. OBS. \$-1.1 mil. MEAN STD. DEV. \$ 1.5 mil.

MIN. OBS. \$-2.8 mil.

MAX. DBS. = \$-0.1 mil.

#### OTHER AEROSPACE

3 NQ. OBS.

\$-1.6 mil. MEAN

STD. DEV. \$ 1.9 mil.

\$-3.5 mil. MIN. OBS.

\$ 0.3 mil. MAX. OBS.

# OTHER INDUSTRY

5 NO. OBS.

MEAN \$-0.9 mil.

\$ 0.3 mil. STD. DEV.

MIN. OBS. \$-2.9 mil.

\$0.03 mil. MAX. OBS.

**OBSERVATIONS** 

#### ALL RESPONSES

NO. OBS. 11

\$-3.5 mil. MIN. OBS.

MAX, OBS. = \$ 0.3 mil.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = S-1.3 mil.

STD. DEV. = \$1.4 mil.

# MISSILE PRIMES & SUBS NO. OBS. MEAN \$-4.9K STD. DEV. \$ 9.8K MIN. OBS. \$-19.5K MAX. OBS. OTHER AEROSPACE 3 NO. OBS. MEAN \$-8.3K STD. DEV. \$14.4K MIN. OBS. \$-2.5K MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN ≈ \$-525.6K STD. DEV. \$965.6K MIN. OBS. \$-2500K MAX. OBS. \$ 0K 10 **OBSERVATIONS** ALL RESPONSES NO. 085. 14 MIN. OBS. \$-2500K MAX. OBS. \$ 0K STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

C-66

MEAN = \$-266K

STD. DEV. = \$709.2K

# APPROXIMATE CHANGE IN ANNUAL SCRAP AND REWORK FOR NON-CYLINDRICAL PARTS -- SYSTEM 1

| MISSILE | PRIMES & | SUBS |
|---------|----------|------|
|         |          |      |

| NO.  | OBS. | = |      | 4     |
|------|------|---|------|-------|
| MEAN |      | = | \$ - | -25.4 |
| STD. | DEV. | # | \$   | 39.9K |
| MIN. | OBS. | = | Ş -  | 84.9K |
| MAX. | OBS. | = | \$   | ٥ĸ    |

### OTHER AEROSPACE

| NO. OBS.  | = | \$ | 3     |
|-----------|---|----|-------|
| MEAN      | = | \$ | 21.8K |
| STD. DEV. | = | \$ | 36.9K |
| MIN. OBS. | = | ۶- | 64.4K |
| MAX ORS   | = |    | OK    |

### OTHER INDUSTRY

| NO. 085.  | = | \$         | 6     |
|-----------|---|------------|-------|
| MEAN      | = | \$ - 6     | . 9 K |
| STD. DEV. | = | \$ 9       | 1.8 K |
| MIN. OBS. | ± | <b>\$-</b> | 25K   |
| MAY ORS   | = | <          | Ωĸ    |

**OBSERVATIONS** 

ALL RESPONSES

NO. OBS. = 13 MIN. OBS. \* \$-84.9K MAX. OBS. = \$ OK

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN  $\approx$  \$ -16.0 k STD. DEV. = \$ 27 3 k

# APPROXIMATE CHANGE IN ANNUAL SCRAP AND REWORK FOR CYLINDRICAL PARTS -- SYSTEM 1

### MISSILE PRIMES & SUBS

NO. OBS. = 4 MEAN = \$-15.2 K STD. DEV. = \$21.7 K MIN. OBS. = \$-47.4 K MAX. OBS. = \$ 0 K



### OTHER AEROSPACE

NO. OBS. = 3 MEAN = \$-5.9K STD. DEV. = \$10.0K MIN. OBS. = \$-17.5K MAX. OBS. = \$ OK



### OTHER INDUSTRY

NO. OBS.. = 6 MEAN = \$-11.5K STD. DEV. = \$ 23.2K MIN. OBS. = \$-58.5K MAX. OBS. = \$ 0 K



OBSERVATIONS

# ALL RESPONSES

NO. OBS. = 13 MIN. OBS. = \$-58.5K MAX. OBS. = \$ OK



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$ - 11.3K STD. DEV. = \$19.3K

# APPROXIMATE CHANGE IN ANNUAL TOOLING COSTS FOR NON-CYLINDRICAL PARTS -- SYSTEM 1

| ALL RESPONS NO. OBS. MIN. OBS. MAX. OBS.                              | = 13<br>=\$-625.0°<br>=\$ 0K                                | OBSERVATIONS | •   | . •    |             | •                                       | •                                       | •   | •                                       | ·                                     |        | 1                                     | · · · = |
|-----------------------------------------------------------------------|-------------------------------------------------------------|--------------|-----|--------|-------------|-----------------------------------------|-----------------------------------------|-----|-----------------------------------------|---------------------------------------|--------|---------------------------------------|---------|
| NO. OBS.<br>MEAN<br>STD. DEV.<br>MIN. O6S.<br>MAX. OBS.               | = 6<br>= \$-110.6K<br>= \$ 252.1K<br>= \$-625.0K<br>* \$ 0K |              | . • |        |             | • • • • • • • • • • • • • • • • • • • • | •                                       | •   | • • • • • • • • • • • • • • • • • • • • | • •<br>1                              | •<br>3 | · · · · · · · · · · · · · · · · · · · | •<br>•  |
| OTHER AERO NO. CBS. MEAN STD. DEV. MIN. OBS. MAX. OBS.                | = 3<br>= \$-107.5K<br>= \$ 185.8K<br>= \$-322.0K<br>= \$ 0K |              |     | •<br>3 | · · · · · · | •.                                      | • • • • • • • • • • • • • • • • • • • • | · • | •                                       | · · · · · · · · · · · · · · · · · · · | •.     | •                                     |         |
| MISSILE PR<br>NO. OBS.<br>MEAN<br>STD. DEV.<br>MIN. OBS.<br>MAX. OBS. | # 4<br>= \$ 13.0K<br>= \$ 252.5K<br>= \$-508.8K             |              | •   | •      | •           | •                                       | . 1                                     |     | •                                       | ••<br>1                               | :      |                                       |         |

c**-**63

MEAN = \$-115.8K STD. DEV. = \$219.7K

#### APPROXIMATE CHANGE IN ANNUAL TOOLING COSTS FOR CYLINDRICAL PARTS -- SYSTEM 1

# MISSILE PRIMES & SUBS NO. OBS. MEAN =\$ -96.3K STD. DEV. = \$ 188.6K = \$-379.2K MIN. OBS. MAX. OBS. OTHER AEROSPACE NO. OBS. MEAN = \$- 29.2K = \$ 50.4K STD. DEV. MIN. OBS. = \$- 87.4K MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN STD. DEV. MIN. OBS. MAX. OBS. ALL RESPONSES NO. OBS. MIN. OBS. = \$-1462K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$-150.2K STD. DEV. = \$407.8K

C-62

MAX. OBS.

#### APPROXIMATE CHANGE IN ANNUAL DIRECT LABOR COSTS FOR NON-CYLINDRICAL PARTS -- SYSTEM 1

# MISSILE PRIMES & SUBS NO. OBS. = \$-177.0K MEAN = \$ 307.5K STD. DEV. MIN. OBS. = \$-636.0K = \$ 0 MAX. OBS. OTHER AEROSPACE NO. OBS. = \$-780.3K MEAN = \$1296.7K STD. DEV. = \$-2704.5KMIN. OBS. MAX. OBS. = \$ 0 OTHER INDUSTRY NO. 08S. MEAN = \$- 16.4K STD. DEV. 24.2K = \$ MIN. OBS. = \$ - 48.0K MAX. OBS. = \$ 19 **OBSERVATIONS** ALL RESPONSES

NO. OBS. \_ \$-2704K MIN. OBS MAX. OBS.

> STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$-280.5K STD. DEV. = \$722.5K

# APPROXIMATE CHANGE IN ANNUAL DIRECT LABOR COSTS FOR CYLINDRICAL PARTS -- SYSTEM 1

# MISSILE PRIMES & SUBS NO. OBS. MEAN = \$ -81.2K STD. DEV. = \$ 136.0K MIN. OBS. = \$-284.0K MAX. DBS. OTHER AEROSPACE NO. OBS. MEAN = \$-427.9K STD. DEV. = \$ 490.6K MIN. OBS. = \$-957K MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN = \$ -11.5K STD. DEV. = \$ 19.2K MIN. OBS. = \$ -48.0K MAX. OBS. = \$ 10 OBSERVATIONS ALL RESPONSES NO. OBS. MIN. OBS. MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$150.3K STD. DEV. = \$306.6K

# APPROXIMATE CHANGE IN ANNUAL MATERIAL FOR NON-CYLINDRICAL PARTS -- SYSTEM 1

| MISSILE PR | IMES & SUBS   |              |        |       |                    |        |        |           |        |                    |         |        |   |
|------------|---------------|--------------|--------|-------|--------------------|--------|--------|-----------|--------|--------------------|---------|--------|---|
| NO. OBS.   | <b>=</b> 4    |              |        |       |                    |        |        |           |        |                    |         |        |   |
| MEAN       | = \$ -14.3K   |              |        |       |                    |        |        |           |        |                    |         |        |   |
| STD. DEV.  | =\$ 19.7K     |              |        |       |                    |        |        |           | •      |                    |         |        |   |
| MIN. OBS.  | = \$ -42.4K   |              |        |       |                    |        |        | • . •     | •      |                    |         |        |   |
| MAX. OBS.  | = \$ 0        |              | :      | 1     |                    | -      | :      |           | :      |                    |         | ;      | c |
| OTHER AERO | SPACE         |              |        |       |                    |        |        |           |        |                    |         |        |   |
| NO. OBS.   | <b>=</b> 3    |              |        |       |                    |        |        |           |        |                    |         |        |   |
| MEAN       | = \$ -42.9K   |              |        |       |                    |        |        |           |        |                    |         |        |   |
| STD. DEV.  | = \$ 74.4K    |              |        |       |                    |        |        |           | •      |                    |         |        | • |
| MIN. OBS.  | = \$-128.8K   |              |        |       | •                  |        |        |           | •      |                    |         |        |   |
| MAX. OBS.  | = \$ 0        |              | -      | 1     |                    | . •    | :      | · · · · · | :      | • • •              | •       | 1      |   |
| OTHER INDU | ISTRY         |              |        |       |                    |        |        |           |        |                    |         |        | • |
| NO. OBS.   | <b>=</b> 6    |              |        |       |                    |        |        |           |        |                    |         |        |   |
| MEAN       | = \$ -24.4K   |              |        |       |                    |        |        |           |        |                    |         |        |   |
| STD. DEV.  | = \$ 22.7K    |              |        |       |                    |        |        |           | _      |                    |         |        |   |
| MIN. OBS.  | = \$ -56.1K   |              |        |       |                    |        | ••     | -         | •      |                    |         |        |   |
| MAX. OBS.  | = \$ 0        |              | ·<br>c | 3     | . • .              | • .    | 1      | . • .     | 1      | • .                | • • • • | •<br>} |   |
|            |               |              |        |       |                    |        |        |           |        |                    |         |        |   |
|            |               | OBSERVATIONS | •      |       |                    |        |        |           | •      |                    |         |        |   |
| ALL RESPON | <u>IZEZ</u>   | 8            |        |       |                    |        |        | •         | •      |                    |         |        |   |
| NO. OBS.   | = 13          |              |        |       | •                  |        | • •    | • • •     | ١.٩    |                    |         |        |   |
| MIN. OBS.  | = \$-128.8K   |              | •      | 1     | •                  | ·<br>- | :      | •         | :      | -                  | •       | 1      |   |
| MAX. OBS.  | <b>= \$</b> 0 |              | _      |       |                    |        |        |           |        |                    |         |        |   |
|            |               |              |        |       | RD DEVI.<br>. 8-25 |        | FROM I |           |        | ESPONSE<br>. = \$3 |         |        |   |
|            |               |              |        | LAN - | 3-23.              | UK     |        | 316       | ). UEV | 23                 | U . D K |        |   |

# APPROXIMATE CHANGE IN ANNUAL MATERIAL FOR CYLINDRICAL PARTS -- SYSTEM 1

| MISSILE PRIMES  NO. OBS. =  MEAN =:  STD. DEV. =:  MIN. OBS. =:  MAX. OBS. =: | 4<br>\$ -7.9K<br>\$ 11.0K<br>\$ -23.7K |                   |      | •           | • | • • • • | •••         | •                |       | •                                      | •                  | •   | • 1  |     |
|-------------------------------------------------------------------------------|----------------------------------------|-------------------|------|-------------|---|---------|-------------|------------------|-------|----------------------------------------|--------------------|-----|------|-----|
| OTHER AEROSPAC                                                                | <u>E</u>                               |                   |      |             |   |         |             |                  |       |                                        |                    |     |      |     |
| STD. DEV. =                                                                   | \$ -35K                                |                   | •    |             |   | •       | •           | ·<br>:           | •     | ••···································· | <br>2              | •   | . 1  | ٠   |
| OTHER INDUSTRY                                                                | -                                      |                   |      |             |   |         |             |                  |       |                                        |                    |     | •    |     |
| STD. DEV. =                                                                   | \$ -42K                                |                   | • 9: | • .         |   | •       | •<br>•<br>• | ••<br>•••<br>••• | •<br> | ***                                    | • .<br>2           | . • | . •. | . ; |
|                                                                               | 13<br><b>\$-4</b> 2K<br><b>\$</b> 0    | OBSERVATIONS<br>' |      | I<br>ITANDA |   |         |             | FROM             |       |                                        | ESPONSE:<br>= \$15 |     |      |     |

c-58

# MISSILE PRIMES & SUBS NO. OBS. MEAN = \$-516.8K STD. DEV. = \$1019K MIN. OBS. = \$-2035K MAX. OBS. = \$ 32.5K OTHER AEROSPACE NO. OBS. = \$ -2172K MEAN STD. DEV. = \$3586K MIN. OBS. = \$ - 6311K = \$ -5.7K MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN = \$-107.1K = \$ 153.5K STD. DEV. MIN. OBS. = \$ - 400 K MAX. OBS. = \$-1.3KOBSERVATIONS ALL RESPONSES NO. OBS. 13 MIN. OBS. = \$-6311K MAX. OBS. =\$ 32.5K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$-706.5K STD. DEV. = \$1773K

# MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = \$-276.1K

STD. DEV. = \$ 575.2K

MIN. OBS. = \$-1138K

MAX. OBS. = \$ 47.5K

# OTHER AEROSPACE

NO. OBS. = 3 MEAN = \$-738.4 K STD. DEV. = \$881.3 K MIN. OBS. = \$-1715 K MAX. OBS. = \$ -2.3 K

# OTHER INDUSTRY

NO. OBS. = 6 MEAN = \$-470.6K STD. DEV. = \$ 716.0K MIN. OBS. = \$-1495K MAX. OBS. = \$ -7.3K

**OBSERVATIONS** 

#### ALL RESPONSES

NO. OBS. = 13 MIN. OBS. = \$-1715K MAX. OBS. = \$ 47.5K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$-472.6K STD. DEV. = \$675.5K

APPROXIMATE RATIO OF PROCESS PLANNING COSTS DERIVED FROM Q19 TO PROCESS PLANNING COSTS DERIVED FROM Q13 AND Q18 (FOR NON-CYLINDRICAL PARTS MANUFACTURED IN-HOUSE)

| MISSILE PRI | MES       | & SUBS   |              |   |          |            |               |            |        |        |           |   |          |
|-------------|-----------|----------|--------------|---|----------|------------|---------------|------------|--------|--------|-----------|---|----------|
| NO. OBS.    | =         | 3        |              |   |          |            |               |            |        |        |           |   |          |
| MEAN        | =         | 11.5     |              |   |          |            |               |            |        |        |           |   |          |
| STD. DEV.   | =         | 14.9     |              |   |          |            |               |            |        |        |           |   |          |
| MIN. OBS.   | =         | 2.0      |              |   |          |            | • •           |            | •      |        |           |   |          |
| MAX. OBS.   | =         | 28.7     |              | : | 1        |            | :             | ;<br>1.    | :<br>1 | :      |           | , | ;<br>=   |
|             |           |          |              |   |          |            |               |            |        |        |           |   |          |
| OTHER AEROS | PAC       | <u>E</u> |              |   |          |            |               |            |        |        |           |   |          |
| NO. OBS.    | =         | 3        |              |   |          |            |               |            |        |        |           |   |          |
| MEAN        | =         | 11.8     |              |   |          |            |               |            |        |        |           |   |          |
| STD. DEV.   | =         | 17.7     |              |   |          |            |               |            |        |        |           |   |          |
| MIN. OBS.   | =         | 0.03     |              |   |          |            | •             |            |        | •      |           |   |          |
| MAX. 085.   | =         | 32.2     |              | : | :        |            | <b>:</b><br>: | : .        | :      | • • •  | :         | 1 | <b>-</b> |
|             |           |          |              |   |          |            |               |            |        |        |           |   |          |
| OTHER INDUS | TRY       |          |              |   |          |            |               |            |        |        |           |   |          |
| NO. OBS.    | =         | 5        |              |   |          |            |               |            |        |        |           |   |          |
| MEAN        | =         | 8.6      |              |   |          |            |               |            |        |        |           |   |          |
| STD. DEV.   | =         | 11.8     |              |   |          |            |               |            |        |        |           |   |          |
| MIN. OBS.   | =         | 0.7      |              |   |          |            | • • •         | •          | •      |        |           |   |          |
| MAX. OBS.   | =         | 29.3     |              | : | :        |            | :             | 10         | : ·    | •      | · • • · · | 1 | •        |
|             |           |          |              |   | ·        |            | •             |            | •      | ,      | •         | · | _        |
|             |           |          |              |   |          |            |               |            |        |        |           |   |          |
|             |           |          |              |   |          |            |               |            |        |        |           |   |          |
|             |           |          |              |   |          |            |               |            |        |        |           |   |          |
|             |           |          |              |   |          |            |               |            |        |        |           |   |          |
|             |           |          | 10           |   |          |            |               |            |        |        |           |   |          |
|             |           |          | Š            |   |          |            |               |            |        |        |           |   |          |
|             |           |          | VAT          |   |          |            |               |            |        |        |           |   |          |
|             |           |          | OBSERVATIONS |   |          |            |               |            |        |        |           |   |          |
| ALL RESPONS | <u>ES</u> |          | 86           |   |          |            | •             |            | _      |        |           |   |          |
| NO. OBS.    | =         | 11       |              |   |          |            | •••           | •          | •      | •      |           |   |          |
| MIN. OBS.   | =         | 0.03     |              | : |          | :          | 1             | . <b>:</b> | 1      | <br>2  |           | 1 | : :      |
| MAX. 085.   | =         | 32.2     |              | • | ,        |            |               |            | •      | _      | •'        | , | •'       |
|             |           |          |              |   | STANDARI | O DEVIATIO | NS FROM ME    | AN (AL     | L RES  | PONSES | 5)        |   |          |

STD. DEV. = 12.8

MEAN = 10.3

APPROXIMATE RATIO OF PROCESS PLANNING COSTS DERIVED FROM Q19 TO PROCESS PLANNING COSTS DERIVED FROM Q13 AND Q18 (FOR CYLINDRICAL PARTS MANUFACTURED IN-HOUSE)

| MISSILE PR        | <b>=</b> 3       |              |           |                |                    |            |       |     |                                       |          |     |   |          |   |     |
|-------------------|------------------|--------------|-----------|----------------|--------------------|------------|-------|-----|---------------------------------------|----------|-----|---|----------|---|-----|
| MEAN<br>STD. DEV. | = 25.4<br>= 35.2 |              |           |                |                    |            |       |     |                                       |          |     |   |          |   |     |
| MIN. OBS.         | = 2.0            |              |           |                |                    |            |       | ••  |                                       | •        |     |   |          |   |     |
| MAX. OBS.         | = 65.8           |              | • :       | 1              | - <b>:</b><br>- ', | : ·<br>-   | - 1   |     | 1.                                    | : ·<br>! | :   |   | :        | : | :   |
| OTHER AERO        | SPACE            |              |           |                |                    |            |       |     |                                       |          |     |   |          |   |     |
| NO. OBS.          | <b>=</b> 3       |              |           |                |                    |            |       |     |                                       |          |     |   |          |   |     |
| MEAN              | <b>= 42.7</b>    |              |           |                |                    |            |       |     |                                       |          |     |   |          |   |     |
| STD. DEV.         | <b>=</b> 71.4    |              |           |                |                    |            |       |     |                                       |          |     |   |          |   |     |
| MIN. OBS.         | <b>=</b> 0.02    |              | •         | • • • •        | . :                | <b>:</b>   | :     | • • | :                                     | . :      | :   | • |          | : | :   |
| MAX. OBS.         | <b>=</b> 125.0   |              | ż         | 1              | - 3                | - 2        | • 1   |     | Ů.                                    | 1        | Ž   |   | <u>.</u> | 1 | •   |
| OTHER INDU        | STRY             |              |           |                |                    |            |       |     |                                       |          |     |   |          |   |     |
| NO. OBS.          | ≈ 5              |              |           |                |                    |            |       |     |                                       |          |     |   |          |   |     |
| MEAN              | <b>≈</b> 8.2     |              |           |                | -                  |            |       |     |                                       |          |     |   |          |   |     |
| STD. DEV.         | = 13.0           |              |           |                |                    |            |       | • • |                                       |          |     |   |          |   |     |
| MIN. OBS.         | = 0.7            |              |           | •              | . •                | •          | •     | ••  | •                                     | . •      | • . |   |          |   | •   |
| MAX. OBS.         | = 31.3           |              | -         | 1              | - 5                |            | - 1   |     | B                                     | i        |     |   | •        | 1 | · · |
| ALL RESPON        | <u>SES</u> = 11  | OBSERVATIONS | -<br>-    |                |                    |            |       | ••  | •                                     | •        |     | • |          |   |     |
| MIN. OBS.         | <b>=</b> 0.02    |              | • • • • • | <b>:</b> · · · |                    | - <b>:</b> | • • : |     | • • • • • • • • • • • • • • • • • • • |          | • : |   | :        | : | · : |
| MAX. OBS.         | = 125.0          |              | •         | •              | •                  | -          | - 1   |     | 0                                     | 1        | 2   |   | :        | , | _   |

C-54

MEAN = 22.3

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = 39.5

APPROXIMATE DIFFERENCE BETWEEN PROCESS PLANNING COSTS DERIVED FROM Q13 AND Q18 AND PROCESS PLANNING COSTS DERIVED FROM Q19 (FOR NON-CYLINDRICAL PARTS MANUFACTURED IN-HOUSE)

# MISSILE PRIMES & SUBS

NO. OBS. = 4

MEAN = \$-1.8 mil.

STD. DEV. = \$ 2.7 mil.

MIN. OBS. = \$-4.9 mil.

MAX. OBS. = \$-0.1 mil.

### OTHER AEROSPACE

NO. OBS. = 3 MEAN = \$-4.0 mil. STD. DEV. = \$ 7.4 mil. MIN. OBS. = \$-12.5 mil.

# OTHER INDUSTRY

NO. OBS. = 5 MEAN = \$-0.2 mil. STD. DEV. = \$ 0.2 mil. MIN. OBS. = \$-0.6 mil.

**OBSERVATIONS** 

#### **ALL RESPONSES**

NO. OBS. = 11 MIN. OBS. = \$-12.5 mil. MAX. OBS. = \$ 1.1 mil.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$-1.7 mil. STD. DEV. = \$3.8 mil.

# APPROXIMATE CHANGE IN WORK IN PROCESS INVENTORY FOR NON-CYLINDRICAL PARTS -- SYSTEM 1

| MISSILE PRI | MES  | & SUBS    |              |        |        |        |        |      |                                         |       |        |                                       |     |   |
|-------------|------|-----------|--------------|--------|--------|--------|--------|------|-----------------------------------------|-------|--------|---------------------------------------|-----|---|
| NO. OBS.    | =    | 4         |              |        |        |        |        |      |                                         |       |        |                                       |     |   |
| MEAN        | =    | \$-4.5K   |              |        |        |        |        |      | •                                       |       |        |                                       |     |   |
| STD. DEV.   | =    | \$ 9K     |              |        |        |        |        |      | •                                       |       |        |                                       |     |   |
| MIN. OBS.   | Ŧ    | \$ -18K   |              |        |        |        |        |      | •                                       | •     |        |                                       |     |   |
| MAX. OBS.   | =    | \$ 0K     |              | · .    | 1      | •      | •      | :    | •                                       | :     | -      | •<br>:                                | 1   | • |
| OTHER AEROS | SPAC | <u>E</u>  |              |        |        |        |        |      |                                         |       |        |                                       |     |   |
| NO. OBS.    | =    | 3         |              |        |        |        |        |      |                                         |       |        |                                       |     |   |
| MEAN        | =    | \$ -20K   |              |        |        |        |        |      |                                         |       |        |                                       |     |   |
| STD. DEV.   | z    | \$34.6K   |              |        |        |        |        |      |                                         |       |        |                                       |     |   |
| MIN. OBS.   | =    | \$ -60K   |              |        |        |        |        |      | ••                                      |       |        |                                       |     |   |
| MAX. OBS.   | =    | \$ OK     |              | ·<br>- | 1      | •      | . •    | :    | •                                       | !     | •<br>2 | 3                                     | 1   | ų |
| OTHER INDUS | STRY |           |              |        |        |        |        |      |                                         |       |        | •                                     |     |   |
| NO. OBS.    | =    | 7         |              |        |        |        |        |      |                                         |       |        |                                       |     |   |
| MEAN        | =    | \$-251.6K |              |        |        |        |        |      | •                                       |       |        |                                       |     |   |
| STD. DEV.   | z    | \$ 409K   |              |        |        |        |        |      | •                                       |       |        |                                       |     |   |
| MIN. OBS.   | =    | \$-1000K  |              |        |        | •      | •      |      | • • •                                   |       |        |                                       |     |   |
| MAX. OBS.   | =    | \$ OK     |              | ٠      | 1      | •      |        | 1    | . •                                     | :     | •<br>  | · · · · · · · · · · · · · · · · · · · | 1   | = |
|             |      |           |              |        |        |        |        |      |                                         |       |        |                                       |     |   |
|             |      |           | OBSERVATIONS | e      |        |        |        |      | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |       |        |                                       |     |   |
| ALL RESPON  | SES  |           | 088          |        |        |        |        |      | •                                       |       |        |                                       |     |   |
| NO. OBS.    | =    | 14        |              |        |        | _      | •      |      | 4 4                                     |       |        |                                       |     |   |
| MIN. 085.   | E    | \$-1000K  |              | •      | •      |        | . •    |      | . •                                     | •     |        | . , • · ·                             | . • | • |
| MAX. OBS.   | 2    | \$ 0K     |              | ŗ.     | ١      | * 3    | •      | :    | `.                                      | 1     | Ē      | •'                                    | 1   | - |
|             |      |           |              | S      | TANDAR | D DEVI | ATIONS | FROM | MEAN (A                                 | LL RE | SPONSE | 5)                                    |     |   |

c**-**67

MEAN = \$-131.4K STD. DEV. = \$305K

# APPROXIMATE CHANGE IN PROCESS PLANNING COSTS FOR CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS

NO. OBS. = 1 MEAN = \$-2544K STD. DEV. = \$0 MIN. OBS. = \$-2544K MAX. OBS. = \$-2544K

# OTHER AEROSPACE

NO. OBS. = 3 MEAN = \$-908.4K STD. DEV. = \$1077.5K MIN. OBS. = \$ -2.7K MAX. OBS. = \$-2100.0K

# OTHER INDUSTRY

NO. OBS. = 5 MEAN = \$-319.1K STD. DEV = \$657.5K MIN. OBS. = \$-6.0K MAX. OBS. =\$-1495.0K

**OBSERVATIONS** 

### ALL RESPONSES

NO. OBS. = 9 MIN. OBS. = \$-2544K MAX. OBS. = \$-2.7K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$-762.8K STD. DEV. = \$1016.9K

APPROXIMATE CHANGE IN PROCESS PLANNING COSTS FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

#### MISSILE PRIMES & SUBS

NO. OBS. = 1 MEAN = \$-23.7K STD. DEV. = \$0 MIN. OBS. = \$-23.7K MAX. OBS. = \$-23.7K

# OTHER AEROSPACE

NO. OBS. = 3 MEAN = \$-2661.0K STD. DEV. = \$4389.8K MIN. OBS. = \$-7728.0K MAX. OBS. = \$.1.6K

#### OTHER INDUSTRY

NO. OBS. = 5 MEAN = \$-147.8K STD. DEV. = \$175.7K MIN. OBS. = \$-450.0K MAX. OBS. = \$-38.5K

**DBSERVATIONS** 

# ALL RESPONSES

NO. OBS. = 9 MIN. OBS. = \$-7728K MAX. OBS. = \$-7.6K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$-971.8K STD. DEV. = \$2537.7K

c-69

### APPROXIMATE CHANGE IN MATERIAL COSTS FOR CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS NO. 08S. MEAN \$-24.5K STD. DEV. \$32.4K MIN. OBS. = \$-47.4K = \$-1.53KMAX. OBS. OTHER AEROSPACE NO. OBS. MEAN = \$-10.9K STD. DEV. \$23.3K MIN. OBS. = \$-52.5K \$0 MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN STD. DEV. \$20.9K MIN. OBS. \$-48.0K MAX. OBS. \$0 ALL RESPONSES NO. OBS. 12 MIN. OBS. \$-52.5K

C-70

MEAN = \$-14.6K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$21.8K

MAX. OBS.

\$0

# MISSILE PRIMES & SUBS NO. OBS. 2 MEAN \$-0.6K STD. DEV. \$ 0.8K MIN. OBS. \$-1.1K MAX. OBS. \$0 OTHER AEROSPACE NO. OBS. MEAN = \$-50.6K STD. DEV. = \$95.2K MIN. OBS. = \$-193.2KMAX. OBS. \$0 OTHER INDUSTRY : J. OBS. MEAN = \$-25.3K STD. DEV. = \$26.2K MIN. OBS. ≠ \$-56.1K MAX. OBS. 50 **OBSERVATIONS** ALL RESPONSES NO. OBS. 11 MIN. OBS. = \$-193.2K MAX. OBS. \$0

C-71

MEAN = \$-30.0K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$57.9K

# MISSILE PRIMES & SUBS NO. OBS. MEAN = \$-96K STD. DEV. = \$127K MIN. OBS. = \$-284K MAX. OBS. = \$-13.4KOTHER AEROSPACE NO. OBS. MEAN = \$-316K STD. DEV. = \$448K MIN. OBS. = \$-831K MAX. OBS. = \$-21.5K OTHER INDUSTRY NO. OBS. MEAN = \$-17K STD. DEV. = \$25K MIN. OBS. = \$-60K MAX. OBS. = \$0-2 -1 **OBSERVATIONS** ALL RESPONSES NO. OBS. = 12 MIN. OBS. = \$-831K 1 -+ 2" - 1 " " MAX. OBS. = \$0

C-72

MEAN = \$-118K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$238K

# APPROXIMATE CHANGE IN DIRECT LABOR COSTS FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

| NO. OBS.                                                              |       | 12<br>\$-3065K                                              | 0            |          |     |     | •         |   | •        | •.  | •            | **                                      |     | _     |   | _           |          |           |
|-----------------------------------------------------------------------|-------|-------------------------------------------------------------|--------------|----------|-----|-----|-----------|---|----------|-----|--------------|-----------------------------------------|-----|-------|---|-------------|----------|-----------|
| ALL RESPO                                                             | NSES  |                                                             | OBSERVATIONS | <i>=</i> |     |     |           |   |          |     |              | * * * * * * * * * * * * * * * * * * * * |     |       |   |             |          |           |
| MEAN<br>STD. DEV.<br>MIN. OBS.<br>MAX. OBS.                           | = =   | \$-28.3K<br>\$25.9K<br>\$ -48K<br>\$0                       |              |          |     | . • | <br>•     |   | •        | 1   | . <b>.</b> . | • • • • • • • • • • • • • • • • • • • • | 1   |       | ! | •           | . •      | • .<br>E. |
| OTHER INDU                                                            | ISTRY | 5                                                           |              | e        |     |     |           |   |          |     |              | •                                       |     |       |   |             |          |           |
| OTHER AERO<br>NO. OBS.<br>MEAN<br>STD. DEV.<br>MIN. OBS.<br>MAX. OBS. | = = = | 3<br>\$-1079K<br>\$ 1720K<br>\$-66.5K                       |              |          | •   | •   | •         |   | •        |     |              | •••                                     | . • |       |   | · · · · · · | . •<br>1 | •.<br>e   |
| MO. OBS.<br>MEAN<br>STD. DEV.<br>MIN. OBS.<br>MAX OBS.                | I I   | \$ -195.3K<br>\$-195.3K<br>\$297.3K<br>\$-636.0K<br>\$-9.5K |              |          | • . | •   | <br>. • . | - | • .<br>- | . 1 | •            | •                                       | • . | • • • | • |             | . •      | • .<br>•  |

# APPROXIMATE CHANGE IN TOOLING COSTS FOR CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS NO. OBS. MEAN = \$-103.8K STD. DEV. = \$183.8K MIN. OBS. = \$-379.2KMAX. OBS. \$-0.6K OTHER AEROSPACE NO. OBS. MEAN \$-96.5K STD. DEV. = \$119.1K MIN. OBS. = \$-230.0K MAX. OBS. = \$-0.8K OTHER INDUSTRY NO. 0BS. MEAN = \$-296.0K STD. DEV. = \$652.1K. MIN. OBS. =\$-1462.5K MAX. OBS. \$0 **OBSERVATIONS** ALL RESPONSES NO. OBS. 12 MIN. OBS. =\$-1462.5K

MAX. OBS. \$0

> STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$-187.4K STD. DEV. = \$418.9K

#### APPROXIMATE CHANGE IN TOOLING COSTS FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

# MISSILE PRIMES & SUBS NO. OBS. = \$-137.9KMEAN STD. DEV. = \$247.7K MIN. OBS. = \$-508.8KMAX. OBS. = \$ 0.4K OTHER AEROSPACE 3 NO. OBS. = - \$167.8K MEAN ≈ \$273.4K STD. DEV. MIN. OBS. = \$-483.3K = \$ 0.4K MAX. OBS. OTHER INDUSTRY NO. OBS. = \$-132.7KMEAN STD. DEV. = \$275.3K MIN. OBS. = \$-625.0K MAX. OBS. = \$0 2 3 4 1 OBSERVATIONS ALL RESPONSES NO. OBS. 12 = \$-625.0K MIN. OBS. MAX. OBS.

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$-143.2K STD. DEV. = \$241.0K

#### APPROXIMATE CHANGE IN SCRAP AND REWORK COSTS FOR CYLINDRICAL PARTS -- SYSTEM 2

MISSILE PRIMES & SUBS

# NO. OBS. = \$-18.3K MEAN = \$20.0K STD. DEV. = \$-47.4K MIN. OBS. = \$-2.0K MAX. OBS. OTHER AEROSPACE 3 NO. OBS. \$-8.8K MEAN \$15.0K STD. DEV. = \$-26.2K MIN. OBS. \$0 MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN = \$-13.8K STD. DEV. = \$25.1K MIN. OBS. = \$-58.5K MAX. OBS. \$0 **OBSERVATIONS** ALL RESPONSES NO. OBS. 12 MIN. OBS. = \$-58.5K MAX. OBS. \$0 STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$14.1K STD. DEV. = \$19.8K

#### APPROXIMATE CHANGE IN SCRAP AND REWORK COSTS FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

| MISSILE PRIMES & SUBS  NO. OBS. # 4  MEAN # \$-29.5K  STD. DEV. # \$37.9K  MIN. OBS. # \$-84.8K  MAX. OBS. # \$-1.3K |              |     |         | •     | •      | 1    | •    | <b>44</b> | • · · · · · · · · · · · · · · · · · · · | •<br>  | . •<br>3                              | • 1 |   |
|----------------------------------------------------------------------------------------------------------------------|--------------|-----|---------|-------|--------|------|------|-----------|-----------------------------------------|--------|---------------------------------------|-----|---|
| OTHER AEROSPACE                                                                                                      |              |     |         |       |        |      |      |           |                                         |        |                                       |     |   |
| NO. OBS. = 3                                                                                                         |              |     |         |       |        |      |      |           |                                         |        | •                                     |     |   |
| MEAN = \$-32.5K<br>STD. DEV. = \$55.3K                                                                               |              |     |         |       |        |      |      |           |                                         |        |                                       |     |   |
| MIN. OBS. = \$-96.6K                                                                                                 |              |     |         |       |        |      |      | •         |                                         |        |                                       |     |   |
| MAX. OBS. = \$-1.7K                                                                                                  |              |     | . •     | · · · | • .    | :    | •    |           | •<br>!                                  | •<br>  | · · · · · · · · · · · · · · · · · · · | 1   |   |
| OTHER INDUSTRY                                                                                                       |              |     |         |       |        |      |      |           |                                         |        |                                       |     |   |
| NO. OBS. = 5                                                                                                         |              |     |         |       |        |      |      |           |                                         |        |                                       |     |   |
| MEAN = \$-8.3K                                                                                                       |              |     | •       |       |        |      |      |           |                                         |        |                                       |     |   |
| STD. DEV. = \$10.2K                                                                                                  |              |     |         |       |        |      |      | ••        |                                         |        |                                       |     |   |
| MIN. OBS. = \$-25.0K<br>MAX. OBS. = \$0                                                                              |              |     | . •     |       | ٠      |      | • .  | • •       |                                         |        |                                       | •   |   |
| MAX. OBS. = \$0                                                                                                      |              | ·   | 1       |       |        | ;    |      |           | :                                       | ž      | :                                     | 1   | ٤ |
| <u>ALL RESPONSES</u> NO. OBS. = 12  MIN. OBS. = \$-96.6K                                                             | OBSERVATIONS | ٠   |         |       | • •    | . •  | 44   |           |                                         |        |                                       |     |   |
| MAX. OBS. = \$0                                                                                                      |              | c   | 1       |       | ÷      | 1    | ě    |           | 1                                       | 2      | 3                                     | 1   |   |
|                                                                                                                      |              | \$7 | TANDARD | DEVI  | ATIONS | FROM | MEAN | (AL       | L RES                                   | PONSES | 5)                                    |     |   |

C-77

MEAN = \$-21.5K STD. DEV = \$33.5K

#### APPROXIMATE CHANGE IN WORK IN PROCESS INVENTORY FOR CYLINDRICAL PARTS -- SYSTEM 2

#### MISSILE PRIMES & SUBS NO. OBS. 2 MEAN = \$-16.3KSTD. DEV. = \$ 23.0K MIN. OBS. = \$ -32K MAX. OBS. OTHER AEROSPACE NO. OBS. 1 MEAN \$0 STD. DEV. \$0 MIN. OBS. \$0 MAX. OBS. \$0 OTHER INDUSTRY NO. OBS. MEAN = \$530.7K STD. DEV. = \$962.5K MIN. OBS. = \$-2500 MAX. OBS. \$0 **OBSERVATIONS** ALL RESPONSES NO. OBS. 10 **= \$-2500** MIN. OBS. MAX. OBS. \$0 STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$925.0K

MEAN = \$-374.8K

APPROXIMATE CHANGE IN WORK IN PROCESS INVENTORY FOR NON-CYLINDRICAL PARTS -- SYSTEM 2

| MISSILE PR                                              | IME  | S & SUBS                                     |              |   |      |     |     |    |            |       |     |     |       |     |      |     |               |        |               |       |            |
|---------------------------------------------------------|------|----------------------------------------------|--------------|---|------|-----|-----|----|------------|-------|-----|-----|-------|-----|------|-----|---------------|--------|---------------|-------|------------|
| NO. OBS.<br>MEAN<br>STD. DEV.<br>MIN. OBS.<br>MAX. OBS. | =    | 2<br>\$ -15K<br>\$-21.2K<br>\$-30.0K<br>\$ 0 |              |   |      | • , |     |    |            | •     |     |     |       | ••  |      |     | •             |        |               | . • . | <br>. •    |
|                                                         |      | •                                            |              | • |      | 1   |     | ٠. |            |       | - : | :   | ٢.    |     | 1    |     | Ž.            |        | •             | 1     | ۍ          |
| OTHER AERO                                              | SPA  | <u>e</u>                                     |              |   |      |     |     |    |            |       |     |     |       |     |      |     |               |        |               |       |            |
| NO. OBS.                                                | =    | 1                                            |              |   |      |     |     |    |            |       |     |     |       |     |      |     |               |        |               |       |            |
| MEAN                                                    | =    | \$0                                          |              |   |      |     |     |    |            |       |     |     |       |     |      |     |               |        |               |       |            |
| STD. DEV.                                               | =    | \$0                                          |              |   |      |     |     |    |            |       |     |     |       |     |      |     |               |        |               |       |            |
| MIN. OBS.                                               | =    | \$0                                          |              |   |      |     |     |    |            |       |     |     |       | •   |      |     |               |        |               |       |            |
| MAX. OBS.                                               | =    | \$0                                          |              | 4 |      | 1   |     | •  |            |       | 1   |     | •     |     | 1    |     | •<br>2        | •      | :             | 1     | <br>•      |
| OTHER INDU                                              | STRY | <u>'</u>                                     |              |   |      |     |     |    |            |       |     |     |       |     |      |     |               |        |               |       |            |
| NO. OBS.                                                | =    | 7                                            |              |   |      |     |     |    |            |       |     |     |       |     |      |     |               |        |               |       |            |
| MEAN                                                    | =    | \$-260.1K                                    |              |   |      |     |     |    |            |       |     |     |       |     |      |     |               |        |               |       |            |
| STD. DEV.                                               | =    | \$ 403.5K                                    |              |   |      |     |     |    |            |       |     |     |       | •   |      |     |               |        |               |       |            |
| MIN. OBS.                                               | =    | \$ -1000K                                    |              |   |      |     |     |    | •          |       | •   |     |       | ••  |      |     |               |        |               |       |            |
| MAX. OBS.                                               | =    | \$0                                          |              | 5 | * *  | 1   | •   | •  |            | · · · | • 1 |     | . • . |     | 1    |     | •<br><u>-</u> | •<br>- | <i>-</i><br>; | 1     | <br>=      |
|                                                         |      |                                              |              |   |      |     |     |    |            |       |     |     |       |     |      |     |               |        |               |       |            |
| ALL RESPONS                                             | SES  |                                              | OBSERVATIONS |   |      |     |     |    |            |       |     |     |       | ••  |      |     |               |        |               |       |            |
| NO. OBS.                                                | =    | 10                                           |              |   |      |     |     |    |            |       |     |     |       | • • |      |     |               |        |               |       |            |
| MIN. 085.                                               |      | \$-1000K                                     |              | • |      | • . | . • |    | <b>.</b> . | •     | •   |     | ٠.    | ••• | •    |     | •             | . •    |               |       |            |
| MAX. OBS.                                               | =    | \$0                                          |              | ~ |      | 1   |     | :  |            |       | :   |     | 174   |     | 1    | •   | 2             | 0      |               | 1     | <u>5</u> . |
|                                                         |      |                                              |              |   | STAN |     |     |    |            | NS    | FRO | M M |       |     | L RE | SPO | NSES          | 5)     |               |       |            |

C-79

MEAN = \$-185.1K STD. DEV. = \$351.0K

#### APPROXIMATE CHANGE IN PROCESS PLANNING COST FOR CYLINDRICAL PARTS -- SYSTEM 3

| MISSILE PRIMES & SUBS  NO. OBS. = 3  MEAN = \$-718K  STD. DEV. = \$1,103K  MIN. OBS. = \$-1,991K  MAX. OBS. = \$-45K | -            |                    | -1    | -1 9                                       | ••<br>1 - 3         |              |
|----------------------------------------------------------------------------------------------------------------------|--------------|--------------------|-------|--------------------------------------------|---------------------|--------------|
| OTHER AEROSPACT                                                                                                      |              |                    |       |                                            |                     |              |
| NO. OBS. = 3<br>MEAN = \$1,109K<br>STD. DEV. = \$1,240K<br>MIN. OBS. = \$-2,450K<br>MAX. OBS. = \$-5K                | -            |                    | *<br> | •<br>• • • • • • • • • • • • • • • • • • • | •<br>•<br>• • • • • | 2 1 5        |
| OTHER INDUSTRY                                                                                                       |              |                    |       |                                            |                     |              |
| NO. OBS. = 6                                                                                                         |              |                    |       |                                            |                     |              |
| MEAN = \$-607K                                                                                                       |              |                    |       |                                            | •                   |              |
| STD. DEV. = \$ 904K                                                                                                  | -            |                    |       | •                                          | •                   |              |
| MIN. OBS. = \$-1,794K                                                                                                | -            |                    |       | •                                          | •                   |              |
| MAX. OBS. = \$-8K                                                                                                    |              | _c _ }             | -a -a | -)                                         | 1 3                 | <b>ং 1</b> হ |
| ALL RESPONSES  NO. OBS. = 12  MIN. OBS. = \$-2,450k  MAX. OBS. = \$-5k                                               | OBSERVATIONS |                    | •     | *                                          | •                   | 7 1 6        |
| , , , , , , , , , , , , , , , , , , ,                                                                                |              | STANDARD<br>MEAN = |       | FROM MEAN (                                | (ALL RESPONS        |              |

c-80

#### APPROXIMATE CHANGE IN PROCESS PLANNING COST FOR NON-CYLINDRICAL PARTS -- SYSTEM 3



#### APPROXIMATE CHANGE IN MATERIAL COST FOR CYLINDRICAL PARTS -- SYSTEM 3

#### MISSILE PRIMES & SUBS NO. OBS. = \$ -18KMEAN STD. DEV. = \$ 14K MIN. OBS. = \$ -34KMAX. OBS. = \$ - 2K OTHER AEROSPACE NO. OBS. = \$ -25KMEAN = \$ 34K STD. DEV. = \$ -70K MIN. OBS. = \$ 0 MAX. OBS. OTHER INDUSTRY NO. OBS. = \$ -36KMEAN = \$ 34K STD. DEV. MIN. OBS. = \$ -72K MAX. OBS. = \$ - 5K

ALL RESPONSES

NO. OBS. = 11

MIN. OBS. = \$ -72K

**OBSERVATIONS** 

MAX. OBS. = \$ 0

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)
MEAN = \$ - 25K STD. DEV. = \$ 27K

c-82

#### APPROXIMATE CHANGE IN MATERIAL COST FOR NON-CYLINDRICAL PARTS -- SYSTEM 3

| MISSILE PRI | MES   | & SUBS      |              |                                         |                                |                                         |         |
|-------------|-------|-------------|--------------|-----------------------------------------|--------------------------------|-----------------------------------------|---------|
| NO. 08S.    |       | 4           |              |                                         |                                |                                         |         |
| MEAN        | 2     | \$ -22K     |              |                                         |                                |                                         |         |
| STD. DEV.   | =     | \$ 17K      |              |                                         |                                | •                                       |         |
| MIN. OBS.   | =     | \$ -42K     |              |                                         |                                |                                         |         |
| MAX. OBS.   | =     | \$ -1K      |              | +7 -1                                   |                                | 0 1                                     | p       |
| OTHER AEROS | PACE  |             |              |                                         |                                |                                         |         |
| NO. OBS.    | =     | 3           |              |                                         |                                |                                         |         |
| MEAN        | =     | \$ -84K     |              |                                         |                                |                                         |         |
| STD. DEV.   | =     | \$ 145K     |              |                                         |                                | •                                       |         |
| MIN. OBS.   | =     | \$-252K     |              |                                         |                                | •                                       |         |
| MAX. OBS.   | =     | \$ 0        |              | -5 1 -                                  | -3 -= -3                       | 6 1                                     | 2 3 1 5 |
| OTHER INDUS | TRY   |             |              |                                         |                                |                                         |         |
| NO. OBS.    | =     | 4           |              |                                         |                                |                                         |         |
| MEAN        | =     | \$ ~50K     |              |                                         |                                |                                         |         |
| STD. DEV.   | =     | \$ 37K      |              | -                                       |                                | •                                       |         |
| MIN. OBS.   | =     | \$ -84K     |              | -                                       |                                | • • •                                   |         |
| MAX. OBS.   | =     | \$ 0K       |              | - = - 1 -                               | -3 -2 -1                       | 0 1                                     | 2 3 1 5 |
| ALL RESPONS | SES = | 11          | OBSERVATIONS | -<br>-                                  | •                              | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |         |
| MIN. OBS.   | =     | \$-252K     |              | • • • • • • • • • • • • • • • • • • • • | . •<br>. • . • • • • • • • • • |                                         |         |
| MAX. OBS.   | =     | <b>\$</b> 0 |              | -5 -1                                   | -3 -2 -1                       | 9 1                                     | 3 1 5   |
|             |       |             |              |                                         | DEVIATIONS FROM<br>\$-47K      | MEAN (ALL RES                           |         |
|             |       |             |              |                                         | c-83                           |                                         |         |

#### MISSILE PRIMES & SUBS NO. OBS. MEAN \$-122K STD. DEV. = \$ 115K MIN. OBS. = \$-284K MAX. 08S. = \$- 20K OTHER AEROSPACE NO. 08S. 3 MEAN \$-869K STD. DEV. = \$ 786K MIN. OBS. = \$-1595KMAX. 08S. = · \$ -33K OTHER INDUSTRY NO. OBS. MEAN \$ -30K STD. DEV. = \$ 32K MIN. OBS. \$ -72K MAX. OBS. ALL RESPONSES NO. OBS. 11 MIN. OBS. = \$-1,595K MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

C-84

STD. DEV. = \$516K

MEAN = \$-292K

#### APPROXIMATE CHANGE IN DIRECT LABOR COST FOR NON-CYLINDRICAL PARTS -- SYSTEM 3

#### MISSILE PRIMES & SUBS NO. OBS. 4 MEAN \$-233K STD. DEV. = \$ 283K MIN. OBS. = \$-636K MAX. OBS. = 5-14K OTHER AEROSPACE NO. OBS. 3 MEAN \$-243K STD. DEV. = \$ 365K MIN. OBS. = \$-665K MAX. OBS. = \$ -28K OTHER INDUSTRY NO. OBS. MEAN \$ -71K \$ 50K STD. DEV. MIN. OBS. = \$-117K MAX. OBS. = **OBSERVATIONS** ALL RESPONSES 11 NO. OBS. \$-665K MIN. OBS. · 1 \$ 0 MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$-156K STD. DEV. = \$258K

#### MISSILE PRIMES & SUBS

NO. OBS. MEAN \$-112K STD. DEV. \$ 179K

MIN. OBS. = \$-379K

MAX. OBS. = \$ -1K



#### OTHER AEROSPACE

NO. OBS. 3 MEAN \$-114K STD. DEV. = \$ 108K MIN. OBS. = \$-216K

MAX. OBS.

#### OTHER INDUSTRY

NO. 08S. \$ 520K MEAN = \$1,018K STD. DEV. MIN. OBS. = \$-2,047K

MAX. OBS. = \$ -2K

ALL RESPONSES

NO. OBS. MIN. OBS. = \$-2,047K

MAX. OBS.



STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

MEAN = \$-261K STD. DEV. = \$604K

#### APPROXIMATE CHANGE IN TOOLING COST FOR NON-CYLINDRICAL PARTS -- SYSTEM 3

#### MISSILE PRIMES & SUBS NO. 08S. \$-144K MEAN STD. DEV. \$ 244K MIN. OBS. \$-509K MAX. OBS. S -1K OTHER AEROSPACE NO. OBS. \$-285K MEAN \$ 451K STD. DEV. \$-805K MIN. OBS. \$ 0 MAX. OBS. OTHER INDUSTRY NO. 085. MEAN \$-234K \$ 428K STD. DEV. \$-875K MIN. OBS. \$ -17K MAX. OBS. **1** 2 3 OBSERVATIONS ALL RESPONSES 11 NO. OBS. \$-875K MIN. OBS. MAX. OBS.

MEAN = \$-215K

STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$342K

#### MISSILE PRIMES & SUBS NO. OBS. MEAN STD. DEV. \$ 19K MIN. OBS. \$ -47K MAX. OBS. \$ -2K OTHER AEROSPACE 3 NO. OBS. \$ -15K MEAN STD. DEV. \$ 25K MIN. OBS. MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN \$ -19K STD. DEV. \$ 27K MIN. OBS. \$ -59K MAX. OBS. OBSERVATIONS ALL RESPONSES NO. OBS. 11 MIN. QBS. \$ -59K MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$-19K STD. DEV. = \$22K

#### APPROXIMATE CHANGE IN SCRAP AND REWORK COSTS FOR NON-CYLINDRICAL PARTS -- SYSTEM 3

#### MISSILE PRIMES & SUBS NO. OBS. MEAN \$ -36K STD. DEV. \$ 38K MIN. OBS. \$ -85K MAX. OBS. = \$-1.3K OTHER AEROSPACE NO. OBS. 3 \$ -54K MEAN STD. DEV. \$ 93K MIN. OBS. \$-161K MAX. OBS. \$ 0 OTHER INDUSTRY NO. OBS. MEAN \$ -13K STD. DEV. \$ 10K MIN. OBS. \$ -25K MAX. OBS. \$ -2K ALL RESPONSES NO. OBS. 11 MIN. OBS. \$-161K MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) STD. DEV. = \$50K MEAN = \$-32K

#### APPROXIMATE CHANGE IN WORK IN PROCESS INVENTORY FOR CYLINDRICAL PARTS -- SYSTEM 3

#### MISSILE PRIMES & SUBS NO. OBS. MEAN \$-149K STD. DEV. \$ 219K MIN. OBS. \$-400K MAX. OBS. \$ 0 OTHER AEROSPACE NO. OBS. MEAN \$-12.4K STD. DEV. \$ 17.7K MIN. OBS. \$ -25K MAX. OBS. OTHER INDUSTRY NO. OBS. MEAN \$-648K STD. DEV. = \$1,235K MIN. OBS. = \$-2,500KMAX. OBS. = \$ -20K **OBSERVATIONS** ALL RESPONSES NO. OBS. MIN. OBS. = \$-2,500K MAX. OBS. STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES)

STD. DEV. = \$820K

MEAN = \$-340K

### APPROXIMATE CHANGE IN WORK IN PROCESS INVENTORY FOR NON-CYLINDRICAL PARTS -- SYSTEM 3

| MISSILE PR                          | MES & SUBS                             |                |                                                                                 |
|-------------------------------------|----------------------------------------|----------------|---------------------------------------------------------------------------------|
| NO. 085,                            | <b>=</b> 3                             |                |                                                                                 |
| MEAN                                | = \$ -28K                              |                |                                                                                 |
| STD. DEV.                           | = \$ 450K                              |                |                                                                                 |
| MIN. OBS.                           | = \$-800K                              |                | 4                                                                               |
| MAX. OBS.                           | = \$ 0                                 |                | 4                                                                               |
|                                     |                                        |                |                                                                                 |
| OTHER AERO                          | <u>SPACE</u>                           |                |                                                                                 |
| NO. OBS.                            | <b>=</b> 2                             |                |                                                                                 |
| MEAN                                | = \$ -30K                              |                |                                                                                 |
| STD. DEV.                           | = \$ 42K                               |                |                                                                                 |
| MIN. OBS.                           | = \$ -60K                              |                | <b>**</b>                                                                       |
| MAX. OBS.                           | = \$ 0                                 |                | 1                                                                               |
| OTHER INDU                          | STRY                                   |                | •                                                                               |
| NO. OBS.                            | <b>≠</b> 5                             |                |                                                                                 |
| MEAN                                | = \$-235K                              |                |                                                                                 |
| STD. DEV.                           | = \$ 429K                              |                | •                                                                               |
| MIN. OBS.                           | = \$-1,000K                            |                | • ••                                                                            |
| MAX. OBS.                           | <b>= \$</b> 0                          |                | 15 -1 -3 2 -1 0 1 2 3 1 5                                                       |
|                                     |                                        |                |                                                                                 |
| ALL RESPON<br>NO. OBS.<br>MIN. OBS. | ************************************** | . OBSERVATIONS | *                                                                               |
| MAX. OBS.                           | = \$ 0                                 |                | 5 1 2 2 2 -1 0 1 2 3 1 5                                                        |
|                                     |                                        |                | STANDARD DEVIATIONS FROM MEAN (ALL RESPONSES) MEAN = \$-207K STD. DEV. = \$369K |

#### APPROXIMATE CHANGE IN WORK IN PROCESS INVENTORY FOR NON-CYLINDRICAL PARTS -- SYSTEM 3

| MISSILE PRI | MES   | & SUB | <u>s</u> |              |       |         |             |                   |                |           |            |                       |              |        |            |
|-------------|-------|-------|----------|--------------|-------|---------|-------------|-------------------|----------------|-----------|------------|-----------------------|--------------|--------|------------|
| NO. OBS.    | =     |       | 3        |              |       |         |             |                   |                |           |            |                       |              |        |            |
| MEAN        | =     | \$ -2 | 8K       |              |       |         |             |                   |                |           |            |                       |              |        |            |
| STD. DEV.   | =     | \$ 45 | OK       |              |       |         |             |                   |                |           |            |                       |              |        |            |
| MIN. OBS.   | =     | \$-80 | OK.      |              |       |         |             | •                 |                |           | • •        |                       |              |        |            |
| MAX. OBS.   | =     | \$    | 0        |              |       | 1       | •           | · • • •           | - 1            |           | <b>:</b>   | ۔۔•۔۔<br>چ            | *******<br>} | ·<br>} | • -        |
|             |       |       |          |              |       |         |             |                   |                |           |            | -                     | •            |        | •          |
| OTHER AEROS | SPACE |       |          |              |       |         |             |                   |                |           |            |                       |              |        |            |
| NO. 08S.    | =     |       | 2        |              |       |         |             |                   |                |           |            |                       |              |        |            |
| MEAN        | =     | \$ -3 | BOK      |              |       |         |             |                   |                |           |            |                       |              |        |            |
| STD. DEV.   | =     | \$ 4  | 2K       |              |       |         |             |                   |                |           |            |                       |              |        |            |
| MIN. OBS.   | =     | \$ -6 | OK       |              |       |         |             |                   |                |           | • •        |                       |              |        |            |
| MAX. OBS.   | =     | \$    | 0        |              | • • • | . •     | <b>-•</b> - | . •<br>. <u>.</u> | •<br>-!        | • •       | •   •<br>! | •<br>E                | •<br>3       | ·<br>1 | - • -<br>- |
|             |       |       |          |              |       | - ,     |             | 7.5               | •              |           | •          | -                     | ÷'           | ·      | Ψ'         |
| OTHER INDUS | TRY   |       |          |              |       |         |             |                   |                |           |            |                       |              |        |            |
| NO. OBS.    | =     |       | 5        |              |       |         |             |                   |                |           |            |                       |              |        |            |
| MEAN        | =     | \$-23 | 35K      |              |       |         |             |                   |                |           |            |                       |              |        |            |
| STD. DEV.   | =     | \$ 42 | ?9K      |              |       |         |             |                   |                |           | •          |                       | •            |        |            |
| MIN. OBS.   | = 9   | -1,00 | )OK      |              |       |         |             | •                 |                |           | • •        |                       |              |        |            |
| MAX. OBS.   | . =   | \$    | 0        |              |       | - 1     |             | ٠.٠.              | -!             | •         |            | <b></b><br>           | <b>- •</b> - | 1      | - · -      |
|             |       |       |          |              |       |         | •           | -                 | -              |           |            |                       |              |        |            |
|             |       |       |          |              |       |         |             |                   |                |           |            |                       |              |        |            |
|             |       |       |          |              |       |         |             |                   |                |           |            |                       |              |        |            |
|             |       |       |          | NS           |       |         |             |                   |                |           |            |                       |              |        |            |
|             |       |       |          | OBSERVATIONS |       |         |             |                   |                |           |            |                       |              |        |            |
|             |       |       |          | RVA          |       |         |             |                   |                |           |            |                       |              |        |            |
| ALL RESPONS | ; F C |       |          | BSE          |       |         |             |                   |                |           | •          |                       |              |        |            |
|             |       |       | _        | 0            |       |         |             |                   |                |           | 4.4        |                       |              |        |            |
| NO. 085.    | =     |       | 10       |              |       |         |             | •                 | •              |           | ••         |                       |              |        |            |
| MIN. OBS.   |       | -1,00 |          |              | •     | 1       | • •         | . <b></b>         | · _ · •<br>- ! | • -<br>•: | •-         | - <b>- • -</b> -<br>غ | - <b></b>    | •<br>1 | • -<br>5   |
| MAX. OBS.   | =     | \$    | 0        |              |       |         |             |                   |                |           |            |                       |              | •      |            |
|             |       |       |          |              | 9     | TANDARD |             |                   | FROM           | MEAN      | (ALL R     | ESPONSE               | S)           |        |            |
|             |       |       |          |              | 1     | IEAN =  | \$-20       | 7K                |                | ST        | D. DEV     | . = \$                | 369K         |        |            |

#### DISTRIBUTION LIST

#### Interim Report, Contract DAAHO1-76-C-1104

Commanding General

U.S. Army Missile Command

Redstone Arsenal, Alabama 35809

ATTN: DRSMI-RLS/R. Kotler (16 copies)

Commanding General

U.S. Army Missile Command

Restone Arsenal, Alabama 35809

ATTN: DRSMI-IPBE/J. Scott (1 copy)

Naval Plant Representative Office

Pratt and Whitney Aircraft

East Hartford, Connecticut 06108 (1 copy)

# END

## FILMED

4-85

DTIC