Homotopy (Type) Theory take-home exam

May 31, 2019

For full credit solve *at least 51 points* worth of problems. As you are training to become a researcher, you are free to refer to constructions and proofs in existing literature, namely peer-reviewed papers and monographs. References to blog posts and other non-standard sources are allowed, but in those cases you need to verify the veracity of the claims yourself. It is probably a good idea to verify your sources even when they are of a reputable origin. In the end, you are responsible for your solutions.

Part I: homotopy theory

Problem 1 (7 points). Let $n \ge 1$, $1 \le k \le n-1$, and let $G_k(\mathbb{R}^n)$ denote the set of k-planes in \mathbb{R}^n . Also, let $V_k(\mathbb{R}^n)$ denote the set of (ordered) k-tuples of orthonormal vectors in \mathbb{R}^n . Topologize the latter by viewing it as a subset of $\mathbb{R}^{n \times k}$ in the obvious way.

- (a) Topologize $G_k(\mathbb{R}^n)$ as a quotient space of $V_k(\mathbb{R}^n)$.
- (b) Show that $E_k^n = \{(\Lambda, x) \mid \Lambda \in G_k(\mathbb{R}^n), x \in \Lambda\} \subset G_k(\mathbb{R}^n) \times \mathbb{R}^n$, together with the obvious projection map, is a vector bundle of rank k over $G_k(\mathbb{R}^n)$.
- (c) Let S^2 be the 2-sphere and let $f: S^2 \to G_2(\mathbb{R}^3)$ assign to $\zeta \in S^2$ the plane perpendicular to ζ . Show that f is continuous and identify the pullback bundle $f^*(E_2^3)$. You may want to consult Davis-Kirk [1] for the latter.

Problem 2 (7 points). Suppose given $p_0 \colon E_0 \to B$ and $p_1 \colon E_1 \to B$ in the category of topological spaces over B. A map $f \colon E_0 \to E_1$ over B is called a *fibre homotopy equivalence* if there exist a map $g \colon E_1 \to E_0$ over B and homotopies $gf \simeq \mathrm{id}_{E_0}$ and $fg \simeq \mathrm{id}_{E_1}$ over B. Here, $E_i \times [0,1]$ is a space over B by virtue of $P_i = p_i \circ \mathrm{pr}_{E_i}$. Let $p \colon E \to B$ be a fibration and let $h \colon X \times [0,1] \to B$ be a homotopy from h_0 to h_1 . Using a lifting function for p, construct an explicit fibre homotopy equivalence of pullbacks $h_0^*(E)$ and $h_1^*(E)$ as spaces over X.

Problem 3 (7 points). Look up the definition of a *diagram* in \mathcal{C} with a given *shape* \mathcal{D} and its colimit in Dwyer-Spalinski [2].

(a) Make sense of the colimit functor $\operatorname{colim} \mathcal{C}^{\mathcal{D}} \to \mathcal{C}$ for a finite (small) category \mathcal{C} with finite (small) colimits and a finite (small) shape \mathcal{D} . (Define it and prove that it is a functor.)

(b) Consider the diagrams \mathcal{D} and \mathcal{E} ,

Employing the pushout, define a suitable map $\mathcal{C}^{\mathcal{D}} \to \mathcal{C}^{\mathcal{E}}$ and study its properties.

Problem 4 (7 points). Let \mathcal{C} be a category. A bounded direct sequence in \mathcal{C} is a diagram of objects and morphisms of \mathcal{C} of the form

$$\dots \xrightarrow{\xi_{-2}} X_{-1} \xrightarrow{\xi_{-1}} X_0 \xrightarrow{\xi_0} X_1 \xrightarrow{\xi_1} X_2 \xrightarrow{\xi_2} X_3 \xrightarrow{\xi_3} \dots$$

where for all small enough $i \in \mathbb{Z}$, the ξ_i are identity morphisms. We denote such a direct sequence simply by $\{(X_i, \xi_i)\}$. A morphism $f \colon \{(X_i, \xi_i)\} \to \{(Y_i, \eta_i)\}$ is a collection of morphisms $f_i \colon X_i \to Y_i$ in \mathcal{C} satisfying $f_{i+1}\xi_i = \eta_i f_i$ for all i, such that $f_i = f_{i-1}$ for all small enough i (i.e. for all $i \leqslant b$ where $b \in \mathbb{Z}$ depends on f). This defines a category of bounded direct sequences in \mathcal{C} , which we denote $\operatorname{bdSeq}(\mathcal{C})$.

Suppose that \mathcal{C} is a model category. We call $f: \{(X_i, \xi_i)\} \to \{(Y_i, \eta_i)\}$ a weak equivalence (respectively a fibration) if all f_i are weak equivalences (respectively fibrations) in \mathcal{C} . Next, we call f a cofibration if for all i, the natural morphism $Y_i \sqcup_{X_i} X_{i+1} \xrightarrow{\eta_i + f_{i+1}} Y_{i+1}$ is a cofibration in \mathcal{C} , and, moreover, f_i is a cofibration in \mathcal{C} for all small enough i.

- (a) Prove that bdSeq(C) is a model category.
- (b) Identify the fibrant and cofibrant objects in $\mathrm{bdSeq}(\mathcal{C})$.
- (c) Suppose that \mathcal{C} has small colimits. Define a colimit functor $\operatorname{colim} \operatorname{bdSeq}(\mathcal{C}) \to \mathcal{C}$ and prove that it preserves cofibrations and trivial cofibrations. **Hint.** Use adjoint functors.

Problem 5 (7 points). Let \mathcal{C} be a pointed model category. For a cofibrant X, we defined an association $[\Sigma X,Y] \to \pi_1^l(X,Y) = \pi_1^l(X,Y;0,0)$ which is a natural equivalence of functors $[\Sigma X,_]$ and $\pi_1^l(X,_)$ on the category \mathcal{C}_f (the full subcategory of \mathcal{C} of fibrant objects). See Theorem 2 of Quillen [3] for a proof. State the dual of the former and prove it. **Warning.** Mind the notation.

Part II: homotopy type theory

Problem 6 (5 points). Prove that the coproducts have the expected universal property:

$$(A + B \to C) \simeq (A \to C) \times (B \to C).$$

Problem 7 (5 points). Let A be a type and a:A a point. Prove that $\Sigma(x:A) \cdot a =_A x$ is contractible.

Problem 8 (5 points). Prove that \mathbb{N} is a set.

Problem 9 (5 points). Show that $(2 \simeq 2) \simeq 2$.

Problem 10 (5 points). Show that $S^1 \simeq \mathsf{Susp}(2)$, where S^1 is the circle and $\mathsf{Susp}(2)$ the suspension of 2.

Problem 11 (5 points). Construct the *double cover* of the circle as a dependent type, i.e., a dependent type $D: S^1 \to \mathcal{U}$ such that $D(\mathsf{base}) \simeq 2$ and $(\Sigma(x:S^1) \cdot D(x)) \simeq S^1$.

Problem 12 (5 points). How would you define the *Möbius band* as a type?

References

- [1] J. F. Davis, P. Kirk, *Lecture notes in algebraic topology*. Graduate Studies in Mathematics, 35. American Mathematical Society, Providence, RI, 2001.
- [2] W. G. Dwyer, J. Spalinski, *Homotopy theories and model categories*. Handbook of algebraic topology, 73-126, North-Holland, Amsterdam, 1995.
- [3] D. G. Quillen, *Homotopical algebra*. Lecture Notes in Mathematics, No. 43. Springer-Verlag, Berlin-New York, 1967.