Math 11: Discussion 3

TA: Thu Nguyen Tue. 04/14/2020

Recap of discussion 3:

- 1. Building a regression linear regression model.
- 2. Evaluating a regression model based on \mathbb{R}^2 and the residual plot.
- 3. Basic probability definitions and rules.

Contents

3.1	Upcoming assignments	1
3.2	Linear regression model	2
	3.2.1 Model building	2
	3.2.2 Model evaluation	4
3.3	Probability	7
	3.3.1 Definitions	7
	3.3.2 3 probability rules	7

3.1 Upcoming assignments

Assignments	Chapters	Deadlines			
Homework	Ch. 8	Wed. 04/15			
Quiz	Ch. 8	Thu. 04/16			
Homework	Ch. 12	Fri. 04/17			
Quiz	Ch. 12 (2 modules)	Sat. 04/18, Sun. 04/19			
Homework	Ch. 13	Wed. $04/22$			
Quiz	Ch. 13	Thu. $04/23$			
Lab 3		Fri. 04/17			

Note: Assignments are spread out across the week.

Chapters:

- 8. Linear Regression
- 12. Sample Survey
- 13. Experiments and Observational Studies

Key concepts (not exhaustive):

- 1. Linear regression model: model building and model evaluation (R^2 and residual plot)
- 2. Probability definitions: events, complements, disjoint, independence, conditional probability
- 3. Probability rules

3.2 Linear regression model

Motivation:

• Suppose we want to study the relationship between 2 variables, and suspect that one variable causes the other in a linear way, we can now model the relationship as a linear regression model

$$y = \beta_0 + \beta_1 x + \varepsilon \tag{1}$$

TA: Thu Nguyen

Tue. 04/14/2020

where x is the predictor, y the predicted variables, and ε is the inherent noise when collecting data. For example, if we have collected n data points, then for each data point, we model as

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Question: What are the assumptions in the model?

To put the assumptions in the most concise way:

$$\varepsilon_i \sim^{iid} \mathcal{N}(0,\sigma)$$

- 1. Each observation is independent from each other.
- 2. In each observation: the noise is
 - (a) normally distributed (to be studied later on);
 - (b) has mean of 0:
 - (c) has the same standard deviation.

3.2.1 Model building

From (1), we want to solve for the coefficients β_0 and β_1 . In principle, there are multiple ways of "solving" this. The most popular (and introduced in our class) is via the *least squares* approach, where we want to

$$\min_{\beta_0,\beta_1} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x) \right)^2$$

which gives us the solutions of

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x};$$

$$\hat{\beta}_1 = r \cdot \frac{s_y}{s_x} = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

Note that in order to calculate $\hat{\beta}_0$, we need to calculate $\hat{\beta}_1$ first.

Example 1. We revisit the example from last week, where we study the relationship between the number of hours spent on study and the grades obtained. Suppose the table below is our data:

Hours	 8.5	8.6	8.9	9.1	9.2	
Grades	 60	60	68	76	80	

For your convenience, let H be the number of hours spent, and G the grade, we have:

$$\bar{H} = 10.93; \quad s_H = 2.22; \qquad \bar{G} = 80.8; \quad s_G = 12.74; \qquad r = .89$$

Questions:

- 1. Build the linear regression model of G based on H.
- 2. Interpret the estimated coefficients $\hat{\beta}_0, \hat{\beta}_1$.
- 3. A student spends on average 12 hours a week study, what grade can be expected?

Solution:

1. Recall the formula for $\hat{\beta}_0$ and $\hat{\beta}_1$:

$$\hat{\beta}_1 = r \cdot \frac{s_G}{s_H} = (.89) \left(\frac{12.74}{2.22}\right) = 5.11$$

$$\hat{\beta}_0 = \bar{G} - \hat{\beta}_1 \bar{H} = 80.8 - (5.11)(10.93) = 24.95$$

Corrected for rounding error, the model is:

$$G = 25.21 + 5.09(H) + \varepsilon \tag{2}$$

- 2. One way to interpret, based on the context, is:
 - $\hat{\beta}_0 = 25.21$: "free points", the expected points one can get without spending any time studying;
 - $\hat{\beta}_1 = 5.09$: we can expect each 1 extra hour spent on studying will increase the grade by 5.09 points.
- 3. Given the model in (2) and 12 hours of study, the expected grade is

$$25.21 + 5.09(12) = 86.29$$

TA: Thu Nguyen

Tue. 04/14/2020

Math 11: Discussion 3

3.2.2 Model evaluation

Say we have built a model, it is now of interest to evaluate how accurate that model might be. We can evaluate a model either numerically or visually:

1. Numerically: via the R^2 , which often confirms if a model is good

$$R^2 = \frac{\text{Explained Variation}}{\text{Total Variation}}$$

2. Visually: via the residual plot, which usually confirms if a model is not so good

To plot a residual plot, after we have built our linear regression model, the residual for the i^{th} data point is

$$e_i = \hat{y}_i - y_i$$

where $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$. Note that we can also write $e_i = y_i - \hat{y}_i$. Either way is fine, but be consistent. We should now have a collection of new data points

$$\{(x_i, e_i)\}_{i=1}^n$$

We now plot e_i against x_i for all i.

Example 2. We continue one from the example above. Let's consider these 5 data points.

Hours	 8.5	8.6	8.9	9.1	9.2	
Grades	 60	60	68	76	80	

For your convenience, we have obtained the model:

$$\hat{G}_i = \hat{\beta}_0 + \hat{\beta}_1 H_i = 25.21 + 5.09(H_i) \tag{3}$$

Questions:

- 1. Find the residuals of those first 5 data points.
- 2. Plot the residual plot of those 5 data points.
- 3. Comment on the residual plot of all the data points.

Solution:

1. Given the model in (3), the residuals are

x_i	8.5	8.6	8.9	9.1	9.2
$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$	68.475	68.984	70.511	71.529	72.038
$e_i = \hat{y}_i - y_i$	8.475	8.984	2.511	-4.471	-7.962

Remarks:

• You can use either $e_i = \hat{y}_i - y_i$ or $e_i = y_i - \hat{y}_i$. Once you choose one, stick with it. In particular, do not use both for the same data set.

TA: Thu Nguyen

Tue. 04/14/2020

2. Residual plot of those 5 data points:

3. Full residual plot of all the data points:

Some observations:

- The magnitudes of the residuals are quite small (relative to the grades).
- \bullet The signs of the residuals are quite random: above and below the 0-line.

Additionally, the $R^2 = .79$, which is pretty high.

Example 3. Let's now evaluate these residual plots and determine if the plots indicate that the underlying models are good or not If not, what might be the problems?

TA: Thu Nguyen

Tue. 04/14/2020

TA: Thu Nguyen Tue. 04/14/2020

3.3 Probability

3.3.1 Definitions

We first recall some basic definitions:

- 1. Probability space: which takes in 3 inputs: $(\Omega, \mathcal{F}, \mathbb{P})$:
 - Ω : the sample space, consisting of all the possible outcomes
 - ullet \mathcal{F} : a collection of events, each of which is a set of some outcomes
 - P: a probability measure, which gives each event a probability
- 2. Complement: given an event A, the complement of A, denoted A^C , is the set of all events not A.
- 3. Disjoint: two events A and B are disjoint if they cannot both happen.
- 4. Independent: an event A is independent of an event B if knowing B gives no information on determining A.
- 5. Conditional probability: an event A is said to be conditioned on B, denoted A|B, when we want to determine A given that B has already happened.

Notes: when in doubt, always think of the naive definition of probability:

Probability =
$$\frac{\text{number of desired events}}{\text{total number of possible events}}$$

(You will be amazed by how often this approach can simplify the questions a lot.)

3.3.2 3 probability rules

There are 3 important rules when working with probability, which are true for all probability spaces:

- $1. \ 0 \le \mathbb{P}(A) \le 1$
- 2. $\mathbb{P}(A^C) = 1 \mathbb{P}(A)$
- 3. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

where $A \cup B$ is the event that either A or B or possibly both happen, and $A \cap B$ is the event that both A and B happen. In particular, if A and B are disjoint, we have:

$$\mathbb{P}(A \cap B) = 0 \implies \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$$

Math 11: Discussion 3

TA: Thu Nguyen Tue. 04/14/2020

Example 4. Consider drawing 2 cards from a standard deck of cards. Calculate the probability of these events:

1. (A): a Red King and then a Black Queen

2. (B): a Red King and a Black Queen

3. (C): No Kings

Solution:

We will solve these questions using the naive approach: looking at the number of desired events.

1. We will look at these as a sequence of 1^{st} and 2^{nd} draws:

$$\mathbb{P}(A) = \underbrace{\left(\mathbb{P}(\operatorname{Red} K)\right)}_{1^{st} \operatorname{draw}} \cdot \underbrace{\left(\mathbb{P}(\operatorname{Black} Q \mid \operatorname{Red} K)\right)}_{2^{nd} \operatorname{draw} \operatorname{given} 1^{st} \operatorname{draw}}$$

$$= \frac{2}{52} \cdot \frac{2}{51}$$

$$= \frac{4}{52 \cdot 51}$$

2. Similarly, we will look at these as a sequence of 1^{st} and 2^{nd} draws:

$$\mathbb{P}(B) = \underbrace{\left(\mathbb{P}(\text{any of Red } K \text{ or Black } Q)\right)}_{1^{st} \text{ draw}} \cdot \underbrace{\left[\mathbb{P}\left((\text{Black } Q \mid \text{Red } K) \text{ or } (\text{Red } K \mid \text{Black } Q)\right)\right]}_{2^{nd} \text{ draw given } 1^{st} \text{ draw}}$$

$$= \frac{4}{52} \cdot \frac{8}{52 \cdot 51}$$

Note that $\mathbb{P}(B) = 2\mathbb{P}(A)$: one way to think is that now we have the freedom to switch the order the a Red K and a Black Q.

3. We can use the complement of event C: at least one K in the two draws:

$$\mathbb{P}(C) = 1 - \mathbb{P}(C^C) = 1 - \mathbb{P}(\text{at least one } K) \\
= 1 - \left[\mathbb{P}(\text{one } K) + \mathbb{P}(\text{two } Ks) \right] \\
= 1 - \left[\left(2 \cdot \frac{4}{52} \cdot \frac{48}{51} \right) + \left(\frac{4}{52} \cdot \frac{3}{51} \right) \right] \\
= 1 - \frac{396}{52 \cdot 51} \qquad = \frac{188}{221} \approx .85$$

Remarks:

• When working with a collection of events, pay attention to if the order in which the events occur matters (events (A) versus (B) in Example 4).