Estimating mutual information using sparse regression

Charles Zheng

Stanford University

December 29, 2016

(Joint work with Yuval Benjamini.)

Mutual information

- Introduced in Shannon's 1948 paper, "A mathematical theory of communication"
- Mutual information measures nonlinear dependence

• $I(X; Y) \ge 0$.

- $I(X; Y) \ge 0$.
- $I(X; Y) = 0 \text{ if } X \perp Y$

- $I(X; Y) \geq 0$.
- $I(X; Y) = 0 \text{ if } X \perp Y$
- Symmetry: I(X; Y) = I(Y; X).

- $I(X; Y) \geq 0$.
- $I(X; Y) = 0 \text{ if } X \perp Y$
- Symmetry: I(X; Y) = I(Y; X).
- Data-processing inequality

$$I(X; Y) \ge I(\phi(X); \psi(Y))$$

equality for ϕ , ψ bijections

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 ♀ ()

Applications of I(X; Y)

- Feature selection (Peng et al. 2005, Fleuret 2004, Bennesar et al. 2015)
- Structure learning for graphical models using conditional mutual information I(X; Y|Z) (Vastano and Swinney 1988, Cheng et al. 1997, Bach and Jordan 2002)
- Quantifying information capacity of neurons

Image credits: Quiroga et al. (2009).

Comparing I(X; Y) with Pearson correlation

Mutual-information based quantities proposed for detecting associations between variables (Reshef et al. 2011, Speed 2011)

Comparing I(X; Y) with Pearson correlation

Pearson correlation

- + Easier to interpret
 (0 = independence,
 1 = perfect correlation)
 - Only applies to univariate X, Y
 - Only captures linear associations

Mutual information

- + Captures nonlinear associations
- Extends to arbitrarily many dimensions
- Invariant to nonlinear scaling
- Harder to estimate in data

Can we make I(X; Y) easier to interpret?

• If (X, Y) have a bivariate normal distribution with correlation ρ , then

$$I(X;Y) = \frac{1}{2}\ln(1-\rho^2)$$

Can we make I(X; Y) easier to interpret?

• If (X, Y) have a bivariate normal distribution with correlation ρ , then

$$I(X;Y) = \frac{1}{2}\ln(1-\rho^2)$$

Define the "Shannon correlation"

$$Cor_{Shannon}(X, Y) = \sqrt{1 - e^{2I(X;Y)}}$$

Can we make I(X; Y) easier to interpret?

• If (X, Y) have a bivariate normal distribution with correlation ρ , then

$$I(X; Y) = \frac{1}{2} \ln(1 - \rho^2)$$

Define the "Shannon correlation"

$$\mathsf{Cor}_{Shannon}(X,Y) = \sqrt{1 - \mathsf{e}^{2I(X;Y)}}$$

- Then $Cor_{Shannon}(X, Y) \in [0, 1]$.
- For (X, Y) bivariate normal,

$$Cor_{Pearson}(X, Y) = Cor_{Shannon}(X, Y)$$

Difficulty of estimating I(X; Y)

Example with $Cor_{Pearson}(X, Y) = Cor_{Shannon}(X, Y) = 0.44$.

Difficulty of estimating I(X; Y)

Example with $Cor_{Pearson}(X, Y) = Cor_{Shannon}(X, Y) = 0.2$.

How to estimate I(X; Y)

Suppose we observe pairs $(X_i, Y_i)_{i=1}^n$ iid from density p(x, y)

• Definition of mutual information:

$$I(X;Y) = \int \log \left(\frac{p(x,y)}{p(x)p(y)}\right) p(x,y) dx dy$$

How to estimate I(X; Y)

Suppose we observe pairs $(X_i, Y_i)_{i=1}^n$ iid from density p(x, y)

• Definition of mutual information:

$$I(X;Y) = \int \log \left(\frac{p(x,y)}{p(x)p(y)}\right) p(x,y) dx dy$$

- Kernel density estimate approaches estimate p(x, y) (Beirlant et al. 2001, Ivanov and Rozhkova 1981)
- Nearest neighbor estimators rely on distance-based computations (Mnatsakanov et al. 2008, Goria et al. 2005, Singh et. al. 2003)

- Density estimation is known to have *exponential complexity* with respect to dimensionality.
 - E.g. to get the same precision, you need 10 observations for univariate X, Y but 1000 for trivariate \vec{X}, \vec{Y} .

- Density estimation is known to have exponential complexity with respect to dimensionality.
 - E.g. to get the same precision, you need 10 observations for univariate X, Y but 1000 for trivariate \vec{X}, \vec{Y} .
- Many applications with high-dimensional X, Y.
 - Gene expression time series
 - Functional magnetic resonance imaging

- Density estimation is known to have *exponential complexity* with respect to dimensionality.
 - E.g. to get the same precision, you need 10 observations for univariate X, Y but 1000 for trivariate \vec{X}, \vec{Y} .
- Many applications with high-dimensional X, Y.
 - Gene expression time series
 - Functional magnetic resonance imaging
- One approach is to assume joint multivariate normality of X, Y, but this reduces mutual information to a linear statistic.

- Density estimation is known to have exponential complexity with respect to dimensionality.
 - E.g. to get the same precision, you need 10 observations for univariate X, Y but 1000 for trivariate \vec{X}, \vec{Y} .
- Many applications with high-dimensional X, Y.
 - Gene expression time series
 - Functional magnetic resonance imaging
- One approach is to assume joint multivariate normality of X, Y, but this reduces mutual information to a linear statistic.
- Other approaches: binning (Bialek et al. 1991, Paninski 2003), confusion matrix of a classifier (Treves 1997, Quiroga et al. 2009)

First idea: Use sparsity!

- Suppose that $Y \approx f(X) + \epsilon$, where f depends sparsely on X.
- Can we exploit the sparsity to obtain an estimate of I(X; Y)?

Second idea: link prediction accuracy to mutual information

• If I(X; Y) > 0, then X carries information about Y and vice-versa.

Second idea: link prediction accuracy to mutual information

- If I(X; Y) > 0, then X carries information about Y and vice-versa.
- Therefore, we can predict Y from X (or X from Y)

Second idea: link prediction accuracy to mutual information

- If I(X; Y) > 0, then X carries information about Y and vice-versa.
- Therefore, we can predict Y from X (or X from Y)
- We know that often prediction accuracy implies a lower bound for mutual information (e.g. Fano 1952)

• Suppose you observe $(\vec{X}^{(i)}, Y^{(i)})_{i=1}^n$ where $Y^{(i)} = f(\vec{X}^{(i)}) + \epsilon$, where f is an unknown function and ϵ is noise. (Also, assume $\mathbf{E}[\epsilon] = 0$.)

- Suppose you observe $(\vec{X}^{(i)}, Y^{(i)})_{i=1}^n$ where $Y^{(i)} = f(\vec{X}^{(i)}) + \epsilon$, where f is an unknown function and ϵ is noise. (Also, assume $\mathbf{E}[\epsilon] = 0$.)
- The goal in regression is to recover the unknown function f.

- Suppose you observe $(\vec{X}^{(i)}, Y^{(i)})_{i=1}^n$ where $Y^{(i)} = f(\vec{X}^{(i)}) + \epsilon$, where f is an unknown function and ϵ is noise. (Also, assume $\mathbf{E}[\epsilon] = 0$.)
- The goal in regression is to recover the unknown function f.
- In *linear regression*, we assume *f* is linear.

- Suppose you observe $(\vec{X}^{(i)}, Y^{(i)})_{i=1}^n$ where $Y^{(i)} = f(\vec{X}^{(i)}) + \epsilon$, where f is an unknown function and ϵ is noise. (Also, assume $\mathbf{E}[\epsilon] = 0$.)
- ullet The goal in regression is to recover the unknown function f.
- In *linear regression*, we assume *f* is linear.
- if we do not assume a particular form for f, we can use *nonparametric* regression.

Background: Sparse regression

• When \vec{X} is high dimensional, classical regression techniques perform poorly.

Background: Sparse regression

- When \vec{X} is high dimensional, classical regression techniques perform poorly.
- If the true function f only depends on a small number of components in \vec{X} , we can still do well if we use *sparse* regression methods.

Background: Sparse regression

- When \vec{X} is high dimensional, classical regression techniques perform poorly.
- If the true function f only depends on a small number of components in \vec{X} , we can still do well if we use *sparse* regression methods.

	Classical	Sparse
Linear	Ordinary Least-Squares	Elastic net
	(Gauss 1975?)	(Zou 2008)
Nonpar.	LOWESS	Random forests
	(Cleveland 1979)	(Breiman 2001)

Our proposal

Suppose we observe pairs $(X_i, Y_i)_{i=1}^n$ iid from density p(x, y).

- Estimate a (sparse) regression model for $\mathbf{E}[y|x]$.
- Assess the prediction accuracy of the model using identification risk
- ① Use the identification risk to obtain a lower bound for the mutual information I(X; Y)

Multiple-response regression

- Pairs $(x_i, y_i)_{i=1}^n$, where X is p-dimensional and Y is q-dimensional.
- Data matrices $\boldsymbol{X}_{n \times p}$, $\boldsymbol{Y}_{n \times q}$.
- For each column of Y, fit sparse model $Y^{(i)} \approx X^T \beta^{(i)} + \epsilon$, e.g. by using elastic net (Zou 2008),

$$\hat{\beta}^{(i)} = \mathsf{argmin}_{\beta} || \boldsymbol{X}^T \beta^{(i)} - Y^{(i)} ||^2 + \lambda_2 || \beta^{(i)} ||_2^2 + \lambda_1 || \beta^{(i)} ||_1$$

• Or, fit a random forest model for each column of Y (Breiman 2001)

Regression vs Identification loss

- Independent test set $(x_i^*, y_i^*)_{i=1}^k$.
- Use model to predict $\hat{y}_i^* = (x_i^*)^T \hat{B}$ for i = 1, ..., k.

Two ways to evaluate the predictive accuracy of the regression model:

• Regression (mean squared-error) loss:

MSE =
$$\frac{1}{k} \sum_{i=1}^{k} ||y_i^* - \hat{y}_i^*||^2$$
.

Identification loss (Kay 2008):

$$IdLoss_k = \frac{1}{k} \sum_{i=1}^k (1 - I\{\hat{y}_i^* \text{ is nearest neighbor of } y_i^*\}).$$

[note: point out that while idloss was introduced by Kay, that we are the first to consider theory, and add slide about 1d example/robustness]

Identification loss and mutual information

Define the identification risk as the expected identification loss

$$IdRisk_k = \mathbf{E}[IdLoss_k]$$

 Define the Bayes risk as the identification risk given the true model parameters. Hence,

$$BayesRisk_k \leq IdRisk_k$$
.

• **Theorem.** (Z., Benjamini 2016) There exists a function g_k such that

$$I(X; Y) \ge g_k(\mathsf{BayesRisk}_k).$$

Resulting estimator:

$$\hat{I}_{IdLoss}(X;Y) = g_k(IdLoss_k).$$

Cross-validated loss

Leave-k-out cross-validation (LkoCV) can be used for both squared-error loss and identification loss.

- Start with a dataset $(x_i, y_i)_{i=1}^N$.
- Let n = N k. Consider all $\binom{N}{k}$ partitions of the dataset into a test set (X, Y) and training set (X^*, Y^*) .
- For each partition, compute the loss.
- Define the LkoCV loss as the average loss over $\binom{N}{k}$ partitions.

Computational note. One can subsample to avoid computing all $\binom{N}{k}$ partitions. In particular, if m = N/k, then one can use m-fold cross-validation which uses m partitions that have disjoint test sets.

Functions

Illustration of $C_k = g_k^{-1}$

As information increases, the maximal identification risk goes to 0. [note: pictures need to be rotated]

Simulation

- Generate data: $(Y_1, Y_2) = f(X_1, X_2, \epsilon)$ where f is nonlinear.
- Add extra noise dimensions X_3, X_4, \ldots
- n = 1000.
- Compare Nearest-Neighbor estimator (Mnatsakov et al, 2008, implemented in FNN) with our method using Random Forest.

Simulation Results

True
$$I(X; Y) = 4.615$$
.

Extra dim	NN	RF $k = 10$	RF $k = 20$
0	4.445	3.989	3.924
1	3.040	3.645	3.610
2	1.773	3.249	3.182

Section 2

Theory

Functional formulation

Bayes identification risk BayesRisk_k[p(x, y)] and mutual information I[p(x, y)] are both functionals of p(x, y).

$$\mathsf{BayesAcc}_k[p(x,y)] = \frac{1}{k} \int p_X(x_1) \dots p_X(x_k) \max_{i=1}^k p(y|x_i) dx_1 \dots dx_k dy.$$

$$I[p(x,y)] = \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)} dxdy.$$

where $\mathsf{BayesAcc}_k = 1 - \mathsf{BayesRisk}_k$.

Problem formulation

Take $\iota > 0$, and fix $k \in \{2, 3, ...\}$. Let p(x, y) be a joint density (where (X, Y) could be random vectors of any dimensionality.) Supposing

$$I[p(x,y)] \leq \iota,$$

then can we find an upper bound, $g_k^{-1}(\iota)$, on BayesAcc_k[p(x,y)]?

Proof outline

- Reduce problem to optimization over univariate densities.
- Define the Lagrangian functional

$$\mathcal{L}[q(x)] = -\mathsf{BayesAcc}_k[q(x)] + \lambda \int_0^1 q(x) dx + \nu \mathsf{I}[q(x)]$$

which maps the univariate density q(x) to a real number.

Compute the functional derivative of the Lagrangian

$$\nabla \mathcal{L}[q](x) = -t^{k-1} + \lambda + \nu(1 + \log q(x))$$

• Set $\nabla \mathcal{L}[q](x) = 0$, yielding

$$q^*(t) = \alpha e^{\beta t^{k-1}}.$$

Oheck that local minimizer is global minimizer.

Result

Theorem. For any $\iota > 0$, there exists $\beta_{\iota} \geq 0$ such that defining

$$q_{eta}(t) = rac{\exp[eta t^{k-1}]}{\int_0^1 \exp[eta t^{k-1}]},$$

we have

$$\int_0^1 q_{eta_\iota}(t) \log q_{eta_\iota}(t) dt = \iota.$$

Then,

$$\sup_{I(X;Y)=\iota} \mathsf{BayesAcc}_k = \int_0^1 q_{eta_\iota}(t) t^{k-1} dt = g_k^{-1}(\iota).$$

Section 3

Conclusion

Application to gene expression time series

to be contd

Related work and future directions

to be contd

Section 4

The End

Reduced Problem

Rather than show the whole proof, we consider a simplified problem to illustrate the methods.

Actually, the simplified problem is equivalent to the full problem and we get the same answer (but this is non-trivial).

Reduced Problem

- p(x, y) on unit square with uniform marginals.
- The conditional distributions p(x|y) are just "shifted" copies of a common density, q(x), on [0,1]

$$p(x|y) = q(x - y + I\{x < y\})$$

• Furthermore, q(x) is increasing in x.

Simplified formulae

The information and average Bayes error can be written in terms of q(x).

$$\mathsf{I}[p(x,y)] = \int_0^1 q(x) \log q(x) dx$$

$$\mathsf{BayesAcc}_k[p(x,y)] = \int_{[0,1]^k} \max_{i=1}^k q(x_i) dx_1 \cdots dx_k$$

Simplified formulae

Overload the notation and "redefine" information and average Bayes error as functionals of q(x).

$$I[q(x)] \stackrel{def}{=} \int_0^1 q(x) \log q(x) dx$$

$$\mathsf{BayesAcc}_k[q(x)] \stackrel{def}{=} \frac{1}{k} \int_{[0,1]^k} \max_{i=1}^k q(x_i) dx_1 \cdots dx_k$$

Optimization problem

We now pose the question: how do we find q(x) which maximizes BayesAcc $_k[q(x)]$ subject to $I[q(x)] \le \iota$?

- Domain of the optimization: Recall that q(x) satisfies $q(x) \ge 0$, $\int_0^1 q(x) dx = 1$, and is increasing in x. Let $\mathcal Q$ denote the space of functions on $[0,1] \to [0,\infty)$ which are increasing in x.
- Constraints: We have two remaining constraints, $I[q(x)] \le \iota$ and $\int_0^1 q(x) dx = 1$.

Hence the problem is

 $\mathsf{maximize}_{q(x) \in \mathcal{Q}} \; \mathsf{BayesAcc}_k[q(x)] \; \mathsf{subject} \; \mathsf{to} \; \int_0^1 q(x) dx = 1 \; \mathsf{and} \; \mathsf{I}[q(x)] \leq \iota.$

Optimization problem

$$\mathsf{maximize}_{q(x) \in \mathcal{Q}} \; \mathsf{BayesAcc}_k[q(x)] \; \mathsf{subject} \; \mathsf{to} \; \int_0^1 q(x) dx = 1 \; \mathsf{and} \; \mathsf{I}[q(x)] \leq \iota.$$

- Does a solution exist? Yes, because the space of measures with density q(x) satisfying $I[q(x)] \le \iota$ is tight, and both the constraints and objective are continuous wrt to the topology of weak convergence.
- Given a solution $q^*(x)$ exists, there exist Lagrange multipliers $\lambda \in \mathbb{R}$ and $\nu > 0$ such that q^* minimizes

$$egin{aligned} \mathcal{L}[q(x)] &= -\mathsf{BayesAcc}_k[q(x)] + \lambda \int_0^1 q(x) dx +
u \mathsf{I}[q(x)] \ &= \int_0^1 (-t^{k-1} + \lambda +
u \log q(x)) q(x) dx. \end{aligned}$$

Functional derivatives

- Taylor explansions are a useful trick for computing functional derivatives
- ullet We can compute the functional derivative of $\mathcal{L}[q(x)]$ by writing

$$\begin{split} \mathcal{L}[q(x) + \epsilon \xi(x)] \\ &= \int_0^1 (-t^{k-1} + \lambda + \nu \log(q(x) + \epsilon \xi(x)))(q(x) + \epsilon \xi(x)) dx. \\ &\approx \int (q(x) + \epsilon \xi(x))(-t^{k-1} + \lambda + \nu \{\log q(x) + \frac{\epsilon \xi(x)}{q(x)}\}) dx \\ &\approx \mathcal{L}[q(x)] + \int_0^1 (-t^{k-1} + \lambda + \nu (1 + \log q(x)) \epsilon \xi(x) dx. \end{split}$$

Hence

$$\nabla \mathcal{L}[q](x) = -t^{k-1} + \lambda + \nu(1 + \log q(x))$$

Variational magic!

Suppose we set the functional derivative to 0,

$$0 = \nabla \mathcal{L}[q](t) = -t^{k-1} + \lambda + \nu + \nu \log q(t).$$

Then we conclude that the optimal $q^*(t)$ takes the form

$$q^*(t) = \alpha e^{\beta t^{k-1}}$$

for some $\alpha > 0$, $\beta > 0$.

From the constraint $\int q(t)dt = 1$, we get

$$q_{eta}(t) = rac{e^{eta t^{k-1}}}{\int e^{eta t^{k-1}} dt}.$$

Result

Theorem. For any $\iota > 0$, there exists $\beta_{\iota} \geq 0$ such that defining

$$q_{eta}(t) = rac{\exp[eta t^{k-1}]}{\int_0^1 \exp[eta t^{k-1}]},$$

we have

$$\int_0^1 q_{eta_\iota}(t) \log q_{eta_\iota}(t) dt = \iota.$$

Then,

$$\sup_{I(X;Y)=\iota} \mathsf{BayesAcc}_k = \int_0^1 q_{eta_\iota}(t) t^{k-1} dt = g_k^{-1}(\iota).$$