More undecidable languages

Last lecture

- $K = \{ \langle M \rangle \mid M \text{ is a TM and M accepts } \langle M \rangle \} \text{ is undecidable (Turing-undecidable, non-recursive).}$
- $A_{TM} = \{ \langle M, y \rangle \mid M \text{ is a TM and M accepts y } \}$

Today

- Halt_{TM} = { $\langle M,y \rangle \mid M \text{ is a TM and M halts on input y }}$
- $E_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) \text{ is empty } \}$
- $\Pi_p = \{ \langle M \rangle \mid p(L(M)) = true \}$ where p is any non-trivial property.
- •
- A general technique to prove undecidability.

Compare the difficulty

Consider two decision problems A and B.

- Mickey: provides an algorithm for A, but is unable to solve B.
- Mickey's conclusion: A is easier than B.
- · Minnie: can't solve either problem, but
 - knows how to solve A if an algorithm for B is given.
- Fact. A cannot be more difficult than B.

Mapping Reducibility

- Consider any two languages A, B $\subseteq \Sigma^*$.
- A is said to be mapping reducible to B, denoted $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that
- for every $x \in \Sigma^*$, $x \in A$ if and only if $f(x) \in B$.

Mapping Reducibility

- Consider any two languages A, B $\subseteq \Sigma^*$.
- A is said to be mapping reducible to B, denoted $A \leq_m B$, if there is a computable function $f: \Sigma^* \to \Sigma^*$ such that
- for every $x \in \Sigma^*$, $x \in A$ if and only if $f(x) \in B$.

• Intuitively, $A \leq_m B$ means that we can transform the problem "Is $x \in A$?" to the problem "Is $f(x) \in B$?".

Knapsack problem: Given positive integers $(a_1, a_2, ..., a_n, b)$, determine whether some a_i 's have a sum equal to b.

- Precisely, does there exist S \subseteq {1, 2, ..., n} such that $\Sigma_{i \in S} \alpha_i$ = b ?
- To simplify our discussion, we assume that $b < (a_1 + a_2 + ... + a_n)/2$.

Partition problem: Given m positive integers (w_1 , w_2 , w_3 ,..., w_m), determine whether these m numbers can be split into two parts with equal sums.

• Precisely, does there exist $Y\subseteq\{1,2,...,m\}$ such that $\Sigma_{i\in Y}w_i=\Sigma_{i\notin Y}w_i$?

Knapsack problem ≤ Partition problem

viven an instance of the knapsack problem, $X=(a_1\,,a_2\,,...\,,a_n\,,b_n)$ we construct the following instance of the partition problem:

```
f(X) = (w_1, w_2, ..., w_m), where m = n+1;

w_1 = a_1; w_2 = a_2; ... w_{m-1} = a_n;

w_m = (a_1 + a_2 + ... + a_n) - 2b.
```

et
$$A = a_1 + a_2 + ... + a_n$$
, let $W = w_1 + w_2 + ... + w_m$.
Then $W = A + A - 2b = 2A - 2b$.

Correctness

```
K has the answer Yes
\Rightarrow there exists S \subseteq \{1, 2, ..., n\} such that \sum_{i \in S} a_i = b
\Rightarrow \sum_{i \in S \cup \{m\}} w_i = b + A - 2b
                             = A-b
                             = W/2
                                                = \Sigma_{i \notin S \cup \{m\}} W_{i}
\Rightarrow f(X) has the answer Yes
```

- f(X) has the answer Yes
- \Rightarrow there exists $Y \subseteq \{1, 2, ..., n+1\}$ such that $\Sigma_{i \in Y} w_i = \Sigma_{i \notin Y} w_i$ = W/2, and Y contains m=n+1

⇒
$$\sum_{i \in Y - \{m\}} a_i$$
 = W/2 - (A - 2b)
= A-b - (A-2b)
= b

 \Rightarrow X has the answer Yes. [S = Y - {m}]

Therefore, the knapsack problem is mapping reducible to the partition problem.

Properties of mapping reducibility

Theorem 1. If $A \leq_m B$ and B is decidable, then A is decidable

Proof: Let M be a TM deciding B. Construct a machine M' to decide A as follows: On input x,

M' decides A

```
For any x \in \Sigma^*,
• x \in A \Rightarrow f(x) \in B
                                            (by def. of f)
        \Rightarrow M accepts f(x)
        \Rightarrow M' accepts x
• x \notin A \Rightarrow f(x) \notin B
                                            (by def. of f)
        \Rightarrow M rejects f(x)
        \Rightarrow M' rejects x
```

NB. To show a language L is decidable, we can show that for some decidable language L', $L \le_m L'$.

A more useful property

Corollary 2. If $A \leq_m B$ and A is undecidable, then B is undecidable.

Proof: Suppose on the contrary that B is decidable. Then by Theorem 1, A is decidable. A contradiction occurs.

Example:

 $C \leq_{\mathsf{m}} A_{\mathsf{TM}}$, where $A_{\mathsf{TM}} = \{\langle \mathsf{M}, \mathsf{y} \rangle \mid \mathsf{M} \text{ is a TM and M accepts y }\}$, and $\mathsf{K} = \{\langle \mathsf{M} \rangle \mid \mathsf{M} \text{ is a TM and M accepts } \langle \mathsf{M} \rangle \}$.

By Corollary 2, as K is undecidable, A_{TM} is undecidable.

```
Lemma. K \leq_m A_{TM}, where A_{TM} = \{ \langle M, y \rangle \mid M \text{ is a TM and M accepts y } \}, and K = \{ \langle M \rangle \mid M \text{ is a TM and M accepts } \langle M \rangle \}.
```

Proof:

```
What is f?

Is f computable?

x \in K \Leftrightarrow f(x) \in A_{TM}?
```

 $K \leq_m A_{TM}$

 $A_{TM} = \{ \langle M, y \rangle \mid M \text{ is a TM and M accepts y } \}$ $K = \{ \langle M \rangle \mid M \text{ is a TM and M accepts } \langle M \rangle \}.$

For any input x that encodes a Turing machine M (i.e., $x = \langle M \rangle$), define

- $f(x) = \langle M, x \rangle$.
- NB. If x is some garbage (not a valid encoding), we assume x encodes a Turing machine M that rejects all inputs.
- The function f is computable: checking the encoding + duplicating the input.

$$X \in K$$

- \Leftrightarrow x= $\langle M \rangle$ and M accepts x
- $\Leftrightarrow \langle M, x \rangle = f(x) \in A_{TM}$

 $Halt_{TM} = \{ \langle M,y \rangle \mid M \text{ is a TM and M halts on input y } \text{ is undecident.}$

Claim: A_{TM} ≤_m Halt_{TM}.

For any input $x = \langle M, y \rangle$ that encodes a Turing machine M and an input y, define T as the following TM & $f(x) = \langle T, y \rangle$.

B. If x is not in proper format, we assume M denotes a TM rejecting all inputs, and y empty string.

 $Halt_{TM} = \{ \langle M,y \rangle \mid M \text{ is a TM and M halts on input y } \text{ is undecidented}$

Claim: A_{TM} ≤_m Halt_{TM}.

For any input $x = \langle M, y \rangle$ that encodes a Turing machine M and an input y, define T as the following TM & $f(x) = \langle T, y \rangle$.

- Precisely,
- If M accepts y, T accepts.
- If M rejects y, T loops forever.
- $f(x) = = \langle T, y \rangle$ is computable.

B. If x is not in proper format, we assume M denotes a TM rejecting all inputs, and y empty string.

Correctness

```
x \in A_{TM}

\Rightarrow x = \langle M, y \rangle and M is a TM and M accepts y

\Rightarrow T accepts y

\Rightarrow T with y as input halts
```

 $\Rightarrow \langle T,y \rangle = f(x) \in Halt_{TM}$

- $x \notin A_{\mathsf{TM}}$
- $\Rightarrow x=\langle M,y\rangle$ and M is a TM and M doesn't accept y
- ⇒ M rejects y or M loops forever
- ⇒ T with y as input loops forever
- $\Rightarrow \langle T,y \rangle = f(x) \notin Halt_{TM}$

Let $E_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) \text{ is empty } \}$.

Lemma. E_{TM} is undecidable.

Claim: ~K ≤_m E_{TM}.

As $\sim K$ is undecidable, E_{TM} is undecidable.

Claim: $\sim K \leq_m E_{TM}$.

Requirement for the reduction function f:

• For any x in $\sim K$, we want f(x) to represent a Turing machine T accepting nothing.

• For any x not in $\sim K$ (i.e., x in K), we want f(x) to represent a TM accepting some input.

What is f (x)

For any input x that encodes a Turing machine M (i.e., $x = \langle M \rangle$), define

• f(x) is the binary encoding of the following TM T, which ignores its input w, and simulates M on x. I.e., $f(x) = \langle T \rangle$.

Correctness

- $x \in \mathsf{\sim}\mathsf{K} \Rightarrow \mathsf{X} \notin \mathsf{K}$
- \Rightarrow x= $\langle M \rangle$ and M is a TM and M doesn't accept x
- \Rightarrow M rejects x or M loops forever
- → T does not accept w for all inputs w
- \Rightarrow L(T) is empty
- $\Rightarrow f(x) = \langle T \rangle \in E_{TM}$
 - $x \notin {}^{\sim}K \implies X \in K$
 - \Rightarrow x= $\langle M \rangle$ and M is a TM and M accepts x
 - ⇒ T accepts w for all inputs w
 - \Rightarrow L(T) is not empty
 - \Rightarrow f(x) = $\langle T \rangle \notin E_{TM}$

Non-trivial property

- The following properties of Turing machines are all undecidable:
- Given a Turing machine M,
- is L(M) = empty?
- is $L(M) = \Sigma^*$?
- does L(M) satisfy a non-trivial property P?
- NB. A property is non-trivial if it holds for some, but not all, Turing machines.

Rice Theorem

Theorem. Let p be any non-trivial property. Then $\Pi_p = \{ \langle M \rangle \mid p(L(M)) = true \}$ is undecidable.

Proof

Claim: $K \leq_m \Pi_p$.

Then, by Corollary 2, as K is undecidable, $\Pi_{\rm p}$ is undecidable.

Consider a TM M_o rejecting all inputs. I.e., $L(M_o) = \emptyset$.

- Without loss of generality, we assume that $p(L(M_o)) = p(\emptyset) = false$.
- Since p is non-trivial, there exists another TM T_o such that p (L(T_o)) = true.

Proof

Claim: $K \leq_m \Pi_p$.

Then, by Corollary 2, as K is undecidable, $\Pi_{\rm p}$ is undecidable.

Consider a TM M_o rejecting all inputs. I.e., $L(M_o) = \emptyset$.

Without loss of generality, we assume that $\mathbf{p}(L(M_o)) = \mathbf{p}(\emptyset)$ = false.

Since p is non-trivial, there exists another TM T_o such that $p(L(T_o)) = true$.

Reduction: What is f? Is f computable? $x \in K \Leftrightarrow f(x) \in \Pi_p$?

Intuitively, if $x \in K$, f(x) encodes a TM whose language satisfies p; otherwise, f(x) encodes a TM whose language is exactly \emptyset and does not satisfy p.

26

Definition of f(x)

For any input x that encodes a TM M (i.e., $x = \langle M \rangle$), let $f(x) = \langle T \rangle$, where T is a Turing machine defined as follow

Correctness

 \equiv K $x=\langle M \rangle$ and M is a TM and M <u>accepts</u> x T accepts an input w if and only if T_o accepts W $L(T)=L(T_O)$ $p(L(T))=p(L(T_O))=$ true $f(x)=\langle T \rangle \in \Pi_p$

Correctness

$$\equiv K$$

$$x=\langle M \rangle$$
 and M is a TM and M accepts x

T accepts an input w if and only if To accepts W

$$L(T) = L(T_0)$$

$$p(L(T)) = p(L(T_0)) = \text{true}$$

$$f(x) = \langle T \rangle \in \Pi_p$$

$$x \notin K$$

$$\Rightarrow$$
 x= $\langle M \rangle$ and M is a TM and M does accept x

- \Rightarrow M rejects x or M loops forever
- ⇒ T does not accept any input w

$$\Rightarrow$$
 L(T) = \emptyset

$$\Rightarrow p(L(T)) = p(\emptyset) = false$$

B. Can you give a proof the case that $\mathbf{p}(\emptyset) = true$?

Other properties of \leq_m

- If $A \leq_m B$ and B is recognizable, then A is recognizable.
- NB. The proof is the same as that of Theorem 1.

• If $A \leq_m B$ and A is not recognizable, then B is not recognizable.

- If $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$.
- A ≤_m A

• Question: $A \leq_m \sim A$? No.

Post Correspondence Problem

- · Input: a collection of dominos, each containing two strings
- Make a list of dominos (repetition permitted) so that the string composed of the upper strings matches that of the lower strings.

- Consider the list 21324;
- upper string = abcaaabc; lower string = abcaaabc
- · Decision problem: Does such a list exist?

Supplementary reading

- Sipser Chaper 5
- Hopcroft et al.: 9.3

List of undecidable problems:

http://en.wikipedia.org/wiki/List_of_undecidable_problems

Examples:

- 1. Given a set of 7 or more 3×3 matrices with integer entries (or in general, a finite set of $n \times n$ matrices),
 - determine whether they can be multiplied in some order, possibly with repetition, to yield the zero matrix.
- 2. Given 2 context free grammars,
 - determine if they generate the same set of strings. [Or one is the subset of the other.]