MATH 311

Chapter 3

SECTION 3.3: DIAGONALIZATION AND EIGENVALUES

Contents

Why Diagonalization?	2
Eigenvalues and Eigenvectors	3
Finding eigenvalues	4
Finding Eigenvectors	7
Diagonalization	10

Created by: Pierre-Olivier Parisé Spring 2024

WHY DIAGONALIZATION?

EXAMPLE 1. Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$
. Compute A^{100} .

SOLUTION.

Fact: If $A = PDP^{-1}$, then $A^k = PD^kP^{-1}$.

GOAL: Find the matrix P such that $P^{-1}AP$ is a diagonal matrix.

EIGENVALUES AND EIGENVECTORS

Exploration: Consider the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}.$$

Set $\mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix}$ a 2 × 1 vector. Then

$$A\mathbf{x} = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a+2b \\ 3a+2b \end{bmatrix}$$

Use Desmos¹ to explore and answer the following questions:

- Can you find an exceptional behavior of $A\mathbf{x}$ and \mathbf{x} for certain choices of \mathbf{x} ?
- Can you find a relation between $A\mathbf{x}$ and \mathbf{x} ?

Record your observations in the following blank space:

¹https://www.desmos.com/calculator/5xlrp9fd7g

DEFINITION 1. Let A be an $n \times n$ matrix.

- a) A number λ is called an **eigenvalue** of A if there is a non-zero $n \times 1$ vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$.
- b) The vector \mathbf{x} is called an **eigenvector** associated to λ .

EXAMPLE 2. Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$
 and let $\mathbf{x} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}$. Then $A\mathbf{x} = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ 2 \end{bmatrix} =$

Finding eigenvalues

Notice that

$$\lambda$$
 is an eigenvalue of $A \iff A\mathbf{x} = \lambda\mathbf{x}$ for some $\mathbf{x} \neq 0$
 $\iff (\lambda I - A)\mathbf{x} = 0$ for some $\mathbf{x} \neq 0$.

So

$$\lambda$$
 is an eigenvalue of $A \iff (\lambda I - A)$ is not invertible $\iff \det(\lambda I - A) = 0$

DEFINITION 2. The **characteristic polynomial** of an $n \times n$ matrix A is defined by

$$c_A(x) = \det(xI - A).$$

Conclusion:

 λ is an eigenvalue of $A \iff \lambda$ is a root of $c_A(x)$.

EXAMPLE 3. Find all eigenvalues of the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}.$$

SOLUTION.

Finding Eigenvectors

For a given eigenvalue λ , the eigenvectors associated to λ are the solutions \mathbf{x} to the system

$$(\lambda I - A)\mathbf{x} = 0.$$

EXAMPLE 4. Find the eigenvectors associated to the each eigenvalue of the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}.$$

EXAMPLE 5. Find all eigenvalues and associated eigenvectors of the matrix

$$A = \begin{bmatrix} 7 & 0 & -4 \\ 0 & 5 & 0 \\ 5 & 0 & -2 \end{bmatrix}.$$

SOLUTION.

DIAGONALIZATION

EXAMPLE 6. Find a matrix P such that

$$P^{-1}AP$$

is a diagonal matrix, where A is from Example 1.

SOLUTION.

THEOREM 1. Let A be an $n \times n$ matrix. Then if all eigenvalues of A are distinct, then A is diagonalizable.

Notice that if A is diagonalizable and if we let $P = [\mathbf{x}_1 \ \mathbf{x}_2 \ \cdots \ \mathbf{x}_n]$:

$$P^{-1}AP = D \iff AP = PD$$

$$\iff A \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{bmatrix} D$$

$$\iff A\mathbf{x}_1 = \lambda_1\mathbf{x}_1, A\mathbf{x}_2 = \lambda_2\mathbf{x}_2, \dots, A\mathbf{x}_n = \lambda_n\mathbf{x}_n.$$

ALGORITHM 1. Let A be an $n \times n$ matrix with distinct eigenvalues.

- ① Find all distinct eigenvalues of A.
- \bigcirc For each eigenvalue of A, find the corresponding set of eigenvectors.
- ③ If $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ are a set of n distinct eigenvectors, then set

$$P = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{bmatrix}.$$

Warning!

Not every matrix is diagonalizable. For instance, the matrix

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

is not diagonalizable.

For a more general algorithm, see *Jordan Canonical Form*, Chapter 11 from the textbook. Complex numbers are required.