

Next:

Wall following PID control

Perception – Wall following

Figure 1: Lidar scan angles

Pick two LIDAR rays facing right – One at 0° and one at θ°

$$\alpha = \tan^{-1} \left(\frac{a \cos(\theta) - b}{a \sin(\theta)} \right)$$

$$AB = b \cos(\alpha)$$

Pick two LIDAR rays facing right – One at 0° and one at θ°

$$\alpha = \tan^{-1} \left(\frac{a \cos(\theta) - b}{a \sin(\theta)} \right)$$

$$AB = b \cos(\alpha)$$

Error = desired trajectory – AB?

Pick two LIDAR rays facing right – One at 0° and one at θ°

$$\alpha = \tan^{-1} \left(\frac{a \cos(\theta) - b}{a \sin(\theta)} \right)$$

$$AB = b \cos(\alpha)$$

Error = desired trajectory – AB?

Not quite

Account for the forward motion of the car

Error = desired trajectory – CD

PID Steering Control

$$V_{\theta} = K_p \times e(t) + K_d \frac{de(t)}{dt}$$

$$V_{\theta} = K_p \times error + K_d \times previous \ error - current \ error$$

steering angle = steering angle $-V_{\theta}$

Field of View

← Assumption

Reality →

Control

Proportional, Integral, Derivative control

PID control: objectives

Control objective:

- 1) keep the car driving along the centerline,
- 2) parallel to the walls.

PID control: objectives

Control objective:

- 1) keep the car driving along the centerline,
- 2) parallel to the walls.

PID control: objectives

Control objective:

- keep the car driving (roughly) along the centerline,
- 2) parallel to the walls.

PID control: control objectives

Control objective:

1) keep the car driving along the centerline,

$$y = 0$$

2) parallel to the walls.

$$\Theta = 0$$

PID control: control objectives

Control objective:

1) keep the car driving along the centerline,

$$y = 0$$

2) After driving L meters, it is still on the centerline:

Horizontal distance after driving L meters

$$Lsin(\Theta) = 0$$

PID control: control inputs

Control input: Steering angle Θ

We will hold the velocity constant.

How do we control the steering angle to keep

$$y = 0$$
, Lsin(Θ) = 0 as much as possible?

PID control: error term

Want both y and Lsin(Θ) to be zero

 \rightarrow Error term e(t) = -(y + Lsin(Θ))

We'll see why we added a minus sign

PID control: computing input

When y > 0, car is to the left of centerline

 \rightarrow Want to steer right: $\Theta < 0$

When Lsin(Θ) > 0, we will be to the left of centerline in L meters \rightarrow so want to steer right: Θ < 0

Set *desired* angle to be $\Theta_d = K_p (-y - Lsin(\Theta))$

PID control: computing input

When y < 0, car is to the right of centerline

- → Want to steer left
- \rightarrow Want $\Theta > 0$

When $Lsin(\Theta) < 0$, we will be to the right of centerline in L meters, so want to steer left

 \rightarrow Want $\Theta > 0$

Consistent with previous requirement:

$$\Theta_d = Kp (-y - Lsin(\Theta))$$

PID control: Proportional control

$$\Theta_d = C K_p (-y - Lsin(\Theta)) = C K_p e(t)$$

This is **P**roportional control.

The extra C constant is for scaling distances to angles.

PID control: Derivative control

If error term is increasing quickly, we might want the controller to react quickly

→ Apply a derivative gain:

$$\Theta = K_p e(t) + K_d de(t)/dt$$

PID control: Integral control

Integral control is proportional to the *cumulative* error

$$\Theta = K_p e(t) + K_l E(t) + K_d de(t)/dt$$

Where E(t) is the integral of the error up to time t (from a chosen reference time)

PID control: tuning the gains

 Default set of gains, determined empirically to work well for this car.

$$-K_{p} = 14$$

$$-K_i = 0$$

$$-K_{d} = 0.09$$

PID control: tuning the gains

- Reduce $K_p \rightarrow$ less responsive to error magnitude
 - $-K_p = 5$
 - $-K_i = 0$
 - $-K_{d} = 0.09$

PID control: tuning the gains

 Include K_i → overly sensitive to accumulating error → overcorrection

$$-K_{p} = 14$$

$$-K_{i} = 2$$

$$-K_{d} = 0.09$$