打印机硬件基础

1 POS 上用到的打印机

- 针式微型打印机
 - 优点: 打印的单据可以长时间保存; 控制方法简单, 比较便宜
 - 缺点: 噪音大; 打印速度慢; 打印头损耗快; 需要经常更换色带; 分辨率低
- 热敏微型打印机
 - 优点: 打印速度快; 噪音小; 打印头很少出现机械损耗;不需要色带; 分辨率较高
- 缺点: 热敏纸不能无限期保存(在避光条件下可以保存一到五年,也有长效热敏纸可以保存十年)

2 热敏原理

热敏纸上涂有一层遇热就会产生化学反应而变色的涂层,利用热敏涂层的这种特性,出现了热敏打印技术。

将打印机接收的数据转换成点阵的信号控制热敏单元的加热,从而使热敏纸上热敏涂层加热显影。

热敏打印技术的关键在于加热元件,热敏打印机芯上有一排微小的半导体元件,这些元件排得很密,从200dpi到600dpi不等,这些元件在通过一定电流时会很快产生高温,当热敏纸的涂层遇到这些元件时,在极短的时间内温度就会升高,热敏纸上得涂层就会发生化学反应,现出颜色。

图象是通过有选择地在热敏纸的确定位置上加热,在热敏打印纸膜中产生化学反应而生成的,控制加热元素的同一逻辑电路,同时也控制着进纸,因而能在整个标签或纸张上印出图形。

3 机芯结构

4 打印机规格

项目	说明	
有效打印宽度(毫米)	48	
点密度(点/毫米)	8	
打印点数	384 点/行	
纸张宽度 (毫米)	58	
可打印宽度 (毫米)	54	
点间距 (毫米)	0. 125	
点大小	0.125mm X 0.12mm	
走纸精度	0.065mm(一个步进距离, 2-2 相驱动)	
	0.0325mm(一个步进距离,1-2相驱动)	

5 激励方式

5.1 1-2 相

5.2 2-2 相

6 PPS 和占空比

6.1 精芯手册节选

工作电压	电机驱动频率	占空比
7. ODCV	1200PPS	55
7. 5DCV	1250PPS	45

6.2 名词概念

● PPS 是 pulse per second 的简写,即每秒的脉冲数

在这里 PPS 不等同于 Hz, 而是驱动电机步进发生的频率。

● 占空比是指有效电平在一个周期之内所占的时间比率。

6.3 示例解读

以 2-2 相为例:

● 基础信息

N (周期步进数): 4 PPS (步进频率): 1200 Hz = PPS/N = 1200/4 = 300

T (周期) = 1/Hz = 1/300 ● 如何计算速度

s (步进距离): 0.065

t (步进时间) = 1/PPS = 1/1200

v = s/t = 0.065 * 1200 = 78 mm/s