Chapter 12: Eigenvalues and Singular Values

Liangda Fang

Dept. of Computer Science Jinan University

Outline

- Power Iteration
- Inverse Power Iteration
- Rayleigh Quotient Iteration
- 2 PageRank
 - Introduction
 - Basic Ideas of PageRank
 - Column Stochastic Matrix
 - The Power Method
 - Adjusting the adjacency matrix
- QR Algorithm
 - Simultaneous iteration
 - Shifted QR algorithm
 - Upper Hessenberg form
- 4 Singular Value Decomposition
 - Finding the SVD in general
 - Special case: symmetric matrices
 - Properties of the SVD

Dimension reduction
Liangda Fang

2/ 100

Problem

Given a square matrix, how to compute its eigenvalues and eigenvectors?

Definition

Let A be a square matrix.

- The **dominant eigenvalue** λ_{\max} of A: an eigenvalue λ_i s.t. $|\lambda_i| > |\lambda_i|$ for $i \neq j$.
- If it exists, an eigenvector $v_{\rm max}$ associated to $\lambda_{\rm max}$ is called a dominant eigenvector.

Main idea: multiplication by a matrix tends to move vectors toward the dominant eigenvector direction.

Example

- Let A be a matrix $\begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$;
- Two eigenvalues: -1 and 4;
- An eigenvector associated to -1: $\begin{bmatrix} -3 & 2 \end{bmatrix}^{\top}$;
- An eigenvector associated to 4: $\begin{bmatrix} 1 & 1 \end{bmatrix}^{\mathsf{T}}$;
- ullet 4 is the dominant eigenvalue and $\begin{bmatrix} 1 & 1 \end{bmatrix}^{\top}$ is a dominant eigenvector.

Example

 \bullet Let us multiply the matrix A by a random vector $\begin{bmatrix} -5 & 5 \end{bmatrix}^\top$;

Example

• Let us multiply the matrix A by a random vector $\begin{bmatrix} -5 & 5 \end{bmatrix}^{\top}$;

•
$$x_1 = Ax_0 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -5 \\ 5 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \end{bmatrix};$$

Example

- ullet Let us multiply the matrix A by a random vector $\begin{bmatrix} -5 & 5 \end{bmatrix}^{\top}$;
- $x_1 = Ax_0 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -5 \\ 5 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \end{bmatrix};$
- $x_2 = A^2 x_0 = A x_1 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 10 \\ 0 \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \end{bmatrix};$

Example

- Let us multiply the matrix A by a random vector $\begin{bmatrix} -5 & 5 \end{bmatrix}^{\top}$;
- $x_1 = Ax_0 = \begin{vmatrix} 1 & 3 \\ 2 & 2 \end{vmatrix} \begin{vmatrix} -5 \\ 5 \end{vmatrix} = \begin{vmatrix} 10 \\ 0 \end{vmatrix};$
- $x_2 = A^2 x_0 = A x_1 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 10 \\ 0 \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \end{bmatrix};$
- $x_3 = A^3 x_0 = A x_2 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 10 \\ 20 \end{bmatrix} = \begin{bmatrix} 70 \\ 60 \end{bmatrix};$

Example

- ullet Let us multiply the matrix A by a random vector $\begin{bmatrix} -5 & 5 \end{bmatrix}^{ op}$;
- $x_1 = Ax_0 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -5 \\ 5 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \end{bmatrix};$
- $x_2 = A^2 x_0 = A x_1 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 10 \\ 0 \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \end{bmatrix};$
- $x_3 = A^3 x_0 = A x_2 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 10 \\ 20 \end{bmatrix} = \begin{bmatrix} 70 \\ 60 \end{bmatrix};$
- $x_4 = A^4 x_0 = A x_3 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 70 \\ 60 \end{bmatrix} = \begin{bmatrix} 250 \\ 260 \end{bmatrix} = 260 \begin{bmatrix} \frac{25}{26} \\ 1 \end{bmatrix};$

Power Iteration Methods

Example

- ullet Let us multiply the matrix A by a random vector $\begin{bmatrix} -5 & 5 \end{bmatrix}^{ op}$;
- $x_1 = Ax_0 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -5 \\ 5 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \end{bmatrix};$
- $x_2 = A^2 x_0 = A x_1 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 10 \\ 0 \end{bmatrix} = \begin{bmatrix} 10 \\ 20 \end{bmatrix};$
- $x_3 = A^3 x_0 = A x_2 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 10 \\ 20 \end{bmatrix} = \begin{bmatrix} 70 \\ 60 \end{bmatrix};$
- $x_4 = A^4 x_0 = A x_3 = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 70 \\ 60 \end{bmatrix} = \begin{bmatrix} 250 \\ 260 \end{bmatrix} = 260 \begin{bmatrix} \frac{25}{26} \\ 1 \end{bmatrix};$
- ullet Multiplying a random vector repeatedly results in moving vector close to the dominant eigenvector of A.

Example

$$\bullet \ x_0 = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix};$$

Example

•
$$x_0 = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$
;

•
$$x_1 = Ax_0 = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-1) \cdot 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix};$$

Example

•
$$x_0 = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$
;

•
$$x_1 = Ax_0 = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-1) \cdot 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix};$$

•
$$x_2 = A^2 x_0 = 4^2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-1)^2 \cdot 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$
;

Example

- $x_0 = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix}$;
- $x_1 = Ax_0 = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-1) \cdot 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix};$
- $x_2 = A^2 x_0 = 4^2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-1)^2 \cdot 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix}$;
- $x_3 = A^3 x_0 = 4^3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-1)^3 \cdot 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix};$

Example

- $x_0 = 1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix}$;
- $x_1 = Ax_0 = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-1) \cdot 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix};$
- $x_2 = A^2 x_0 = 4^2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-1)^2 \cdot 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix}$;
- $x_3 = A^3 x_0 = 4^3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-1)^3 \cdot 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix}$;
- $x_4 = A^4 x_0 = 4^4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-1)^4 \cdot 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix} = 256 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix};$

Power Iteration Methods

Example

- $\bullet \ x_0 = 1 \begin{vmatrix} 1 \\ 1 \end{vmatrix} + 2 \begin{vmatrix} -3 \\ 2 \end{vmatrix};$
- $x_1 = Ax_0 = 4\begin{bmatrix} 1\\1 \end{bmatrix} + (-1) \cdot 2\begin{bmatrix} -3\\2 \end{bmatrix}$;
- $x_2 = A^2 x_0 = 4^2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-1)^2 \cdot 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix}$;
- $x_3 = A^3 x_0 = 4^3 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-1)^3 \cdot 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix}$;
- $x_4 = A^4 x_0 = 4^4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + (-1)^4 \cdot 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix} = 256 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} -3 \\ 2 \end{bmatrix};$
- To keep the numbers from getting out of hand, it is necessary to normalize x_i 's.

Given a dominant eigenvector $v_{\rm max}$, how to compute a dominant eigenvalue $\lambda_{\rm max}$?

Conclusions

Given a dominant eigenvector $v_{\rm max}$, how to compute a dominant eigenvalue $\lambda_{\rm max}$?

Definition

Let A be an $n \times n$ matrix and v an n-dimensional vector. Then $\lambda = \frac{v^\top A v}{v^\top 1}$ is called **Rayleigh quotient**.

Conclusions

Given a dominant eigenvector $v_{\rm max}$, how to compute a dominant eigenvalue $\lambda_{\rm max}$?

Definition

Let A be an $n \times n$ matrix and v an n-dimensional vector. Then $\lambda = \frac{v^{\top} A v}{v^{\top} n}$ is called **Rayleigh quotient**.

$$Av = \lambda v$$

Given a dominant eigenvector $v_{\rm max}$, how to compute a dominant eigenvalue $\lambda_{\rm max}$?

Definition

Let A be an $n \times n$ matrix and v an n-dimensional vector. Then $\lambda = \frac{v^\top A v}{v^\top 1}$ is called **Rayleigh quotient**.

$$Av = \lambda v \Rightarrow v^{\top} Av = v^{\top} \lambda v \Rightarrow$$

Given a dominant eigenvector $v_{\rm max}$, how to compute a dominant eigenvalue $\lambda_{\rm max}$?

Definition

Let A be an $n \times n$ matrix and v an n-dimensional vector. Then $\lambda = \frac{v^\top A v}{v^\top A}$ is called **Rayleigh quotient**.

$$Av = \lambda v \Rightarrow v^{\top} Av = v^{\top} \lambda v \Rightarrow v^{\top} Av = \lambda v^{\top} v \Rightarrow$$

Given a dominant eigenvector $v_{\rm max}$, how to compute a dominant eigenvalue $\lambda_{\rm max}$?

Definition

Let A be an $n \times n$ matrix and v an n-dimensional vector. Then $\lambda = \frac{v^\top A v}{v^\top x}$ is called **Rayleigh quotient**.

$$Av = \lambda v \Rightarrow v^{\top} Av = v^{\top} \lambda v \Rightarrow v^{\top} Av = \lambda v^{\top} v \Rightarrow \lambda = \frac{v^{\top} Av}{v^{\top} v}.$$

Algorithm 1: Power Iteration

- $x_0 = \text{initial vector}$
- 2 for i = 1, 2, ... do

3
$$v_{j-1} = \frac{x_{j-1}}{\|x_{j-1}\|_2}$$

4 $x_j = Av_{j-1}$

$$4 \quad | \quad x_j = A v_{j-1}$$

5
$$v_{\max} = \frac{x_j}{\|x_j\|_2}$$

6
$$\lambda_{\max} = v_{\max}^{\top} A v_{\max}$$

Conclusions

Theorem

Let A be an $n \times n$ matrix with real eigenvalues $\lambda_1, \ldots, \lambda_n$ satisfying $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|$. Assume that the eigenvalues of A span R^n . For almost every initial vector, Power Iteration converges to an eigenvector associated to λ_1 .

Proof.

• Let v_1, \dots, v_n be the eigenvectors w.r.t. $\lambda_1, \dots, \lambda_n$ respectively.

Proof.

- Let v_1, \dots, v_n be the eigenvectors w.r.t. $\lambda_1, \dots, \lambda_n$ respectively.
- The initial vector x_0 can be expressed as $c_1v_1 + \cdots + c_nv_n$ where $c_1 \neq 0$.

Conclusions

Proof.

- Let v_1, \dots, v_n be the eigenvectors w.r.t. $\lambda_1, \dots, \lambda_n$ respectively.
- The initial vector x_0 can be expressed as $c_1v_1 + \cdots + c_nv_n$ where $c_1 \neq 0$.
- Applying Power Iteration yields

$$Ax_0 = c_1\lambda_1v_1 + \dots + c_n\lambda_nv_n$$

Conclusions

Proof.

- Let v_1, \dots, v_n be the eigenvectors w.r.t. $\lambda_1, \dots, \lambda_n$ respectively.
- The initial vector x_0 can be expressed as $c_1v_1 + \cdots + c_nv_n$ where $c_1 \neq 0$.
- Applying Power Iteration yields

$$Ax_0 = c_1\lambda_1v_1 + \dots + c_n\lambda_nv_n$$

$$A^2x_0 = c_1\lambda_1^2v_1 + \dots + c_n\lambda_n^2v_n$$

Conclusions

Proof.

- Let v_1, \dots, v_n be the eigenvectors w.r.t. $\lambda_1, \dots, \lambda_n$ respectively.
- The initial vector x_0 can be expressed as $c_1v_1 + \cdots + c_nv_n$ where $c_1 \neq 0$.
- Applying Power Iteration yields

$$Ax_0 = c_1\lambda_1v_1 + \dots + c_n\lambda_nv_n$$

$$A^2x_0 = c_1\lambda_1^2v_1 + \dots + c_n\lambda_n^2v_n$$

$$\vdots$$

$$A^kx_0 = c_1\lambda_1^kv_1 + \dots + c_n\lambda_n^kv_n$$

Proof.

- Let v_1, \dots, v_n be the eigenvectors w.r.t. $\lambda_1, \dots, \lambda_n$ respectively.
- The initial vector x_0 can be expressed as $c_1v_1 + \cdots + c_nv_n$ where $c_1 \neq 0$.
- Applying Power Iteration yields

$$Ax_0 = c_1\lambda_1v_1 + \dots + c_n\lambda_nv_n$$

$$A^2x_0 = c_1\lambda_1^2v_1 + \dots + c_n\lambda_n^2v_n$$

$$\vdots$$

$$A^kx_0 = c_1\lambda_1^kv_1 + \dots + c_n\lambda_n^kv_n$$

 $\lim_{k \to \infty} \frac{A^k x_0}{\lambda_1^k} = \lim_{k \to \infty} \left[c_1 v_1 + \dots + c_n \left(\frac{\lambda_n}{\lambda_1} \right)^k v_n \right] = c_1 v_1.$

Conclusions

Outline

- Power Iteration
- Inverse Power Iteration
- Rayleigh Quotient Iteration
- 2 PageRank
 - Introduction
 - Basic Ideas of PageRank
 - Column Stochastic Matrix
 - The Power Method
 - Adjusting the adjacency matrix
- QR Algorithm
 - Simultaneous iteration
 - Shifted QR algorithm
 - Upper Hessenberg form
- 4 Singular Value Decomposition
 - Finding the SVD in general
 - Special case: symmetric matrices
 - Properties of the SVD

4 D S 4 D S 4 D S 4 D S 5 D S

● Dimension reduction

Liangda Fang

12/100

Sometimes, we want to compute the smallest eigenvalue λ_i , *i.e.*, $|\lambda_i|<|\lambda_j|$ for $i\neq j$.

Conclusions

Sometimes, we want to compute the smallest eigenvalue λ_i , *i.e.*, $|\lambda_i|<|\lambda_j|$ for $i\neq j$.

Lemma

Let the eigenvalues of the $n \times n$ matrix A be denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$, and the eigenvector associated to λ_i is v_i . If A^{-1} exists, then

- **1** The eigenvalues of A^{-1} are $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$;
- ② The eigenvector associated to $\frac{1}{\lambda_i}$ is also v_i .

Conclusions

Sometimes, we want to compute the smallest eigenvalue λ_i , *i.e.*, $|\lambda_i|<|\lambda_j|$ for $i\neq j$.

Lemma

Let the eigenvalues of the $n \times n$ matrix A be denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$, and the eigenvector associated to λ_i is v_i . If A^{-1} exists, then

- **1** The eigenvalues of A^{-1} are $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$;
- ② The eigenvector associated to $\frac{1}{\lambda_i}$ is also v_i .

Proof.

$$Av = \lambda v$$

Sometimes, we want to compute the smallest eigenvalue λ_i , i.e., $|\lambda_i| < |\lambda_j|$ for $i \neq j$.

Lemma

Let the eigenvalues of the $n \times n$ matrix A be denoted by $\lambda_1, \lambda_2, \dots, \lambda_n$, and the eigenvector associated to λ_i is v_i . If A^{-1} exists, then

- **1** The eigenvalues of A^{-1} are $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$;
- 2 The eigenvector associated to $\frac{1}{\lambda_i}$ is also v_i .

Proof.

$$Av = \lambda v \Rightarrow A^{-1}Av = A^{-1}\lambda v$$

Liangda Fang 13/100

Sometimes, we want to compute the smallest eigenvalue λ_i , i.e., $|\lambda_i| < |\lambda_j|$ for $i \neq j$.

Lemma

Let the eigenvalues of the $n \times n$ matrix A be denoted by $\lambda_1, \lambda_2, \dots, \lambda_n$, and the eigenvector associated to λ_i is v_i . If A^{-1} exists, then

- **1** The eigenvalues of A^{-1} are $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$;
- 2 The eigenvector associated to $\frac{1}{\lambda_i}$ is also v_i .

Proof.

$$Av = \lambda v \Rightarrow A^{-1}Av = A^{-1}\lambda v \Rightarrow v = \lambda A^{-1}v$$

Liangda Fang 13/100

Sometimes, we want to compute the smallest eigenvalue λ_i , *i.e.*, $|\lambda_i| < |\lambda_j|$ for $i \neq j$.

Lemma

Let the eigenvalues of the $n \times n$ matrix A be denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$, and the eigenvector associated to λ_i is v_i . If A^{-1} exists, then

- **1** The eigenvalues of A^{-1} are $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$;
- 2 The eigenvector associated to $\frac{1}{\lambda_i}$ is also v_i .

Proof.

$$Av = \lambda v \Rightarrow A^{-1}Av = A^{-1}\lambda v \Rightarrow v = \lambda A^{-1}v \Rightarrow \frac{1}{\lambda}v = A^{-1}v.$$

Liangda Fang

Sometimes, we want to compute the smallest eigenvalue λ_i , *i.e.*, $|\lambda_i|<|\lambda_j|$ for $i\neq j$.

Lemma

Let the eigenvalues of the $n \times n$ matrix A be denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$, and the eigenvector associated to λ_i is v_i . If A^{-1} exists, then

- The eigenvalues of A^{-1} are $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$;
- 2 The eigenvector associated to $\frac{1}{\lambda_i}$ is also v_i .

Proof.

$$Av = \lambda v \Rightarrow A^{-1}Av = A^{-1}\lambda v \Rightarrow v = \lambda A^{-1}v \Rightarrow \frac{1}{\lambda}v = A^{-1}v.$$

The smallest eigenvalue of A = the dominant eigenvalue of A^{-1} .

Liangda Fang

Algorithm 2: Inverse Power Iteration 1

 $x_0 = initial vector$

2 for
$$j = 1, 2, ...$$
 do

3
$$v_{j-1} = \frac{x_{j-1}}{\|x_{j-1}\|_2}$$

3
$$v_{j-1} = \frac{x_{j-1}}{\|x_{j-1}\|_2}$$

4 Solve $Ax_j = v_{j-1}$ $(x_j = A^{-1}v_{j-1})$

5
$$v_{\min} = \frac{x_j}{\|x_i\|_2}$$

6
$$\lambda_{\min} = \frac{1}{v_{j-1}^\top x_j}$$

Conclusions

Liangda Fang 14/100

If we know an eigenvalue λ is close to s, how to compute it?

Conclusions

Liangda Fang

If we know an eigenvalue λ is close to s, how to compute it?

Lemma

Let the eigenvalues of the $n \times n$ matrix A be denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$, the eigenvector associated to λ_i is v_i , and a shift s. Then

- The eigenvalues of A sI are $\lambda_1 s, \lambda_2 s, \dots, \lambda_n s$;
- 2 The eigenvector associated to $\lambda_i s$ is also v_i .

Conclusions

Liangda Fang 15/ 100

If we know an eigenvalue λ is close to s, how to compute it?

Lemma

Let the eigenvalues of the $n \times n$ matrix A be denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$, the eigenvector associated to λ_i is v_i , and a shift s. Then

- The eigenvalues of A sI are $\lambda_1 s, \lambda_2 s, \dots, \lambda_n s$;
- 2 The eigenvector associated to $\lambda_i s$ is also v_i .

Proof.

$$(A - sI)v = Av - sv = \lambda v - sv = (\lambda - s)v.$$

Conclusions

Liangda Fang 15/ 100

If we know an eigenvalue λ is close to s, how to compute it?

Lemma

Let the eigenvalues of the $n \times n$ matrix A be denoted by $\lambda_1, \lambda_2, \ldots, \lambda_n$, the eigenvector associated to λ_i is v_i , and a shift s. Then

- The eigenvalues of A sI are $\lambda_1 s, \lambda_2 s, \dots, \lambda_n s$;
- 2 The eigenvector associated to $\lambda_i s$ is also v_i .

Proof.

$$(A - sI)v = Av - sv = \lambda v - sv = (\lambda - s)v.$$

The eigenvalue of A close to s is the dominant eigenvalue of $(A - sI)^{-1}$.

Liangda Fang 15/ 100

Algorithm 3: Inverse Power Iteration 2

- 1 x_0 = initial vector
- 2 for j = 1, 2, ... do

$$v_{j-1} = \frac{x_{j-1}}{\|x_{j-1}\|_2}$$

4 Solve
$$(A - sI)x_j = v_{j-1} (x_j = (A - sI)^{-1}v_{j-1})$$

5
$$v = \frac{x_j}{\|x_j\|_2}$$

6
$$\lambda = \frac{1}{v_{i-1}^\top x_j} + s$$

Liangda Fang

Outline

- Power Iteration
- Inverse Power Iteration
- Rayleigh Quotient Iteration
- 2 PageRank
 - Introduction
 - Basic Ideas of PageRank
 - Column Stochastic Matrix
 - The Power Method
 - Adjusting the adjacency matrix
- QR Algorithm
 - Simultaneous iteration
 - Shifted QR algorithm
 - Upper Hessenberg form
- 4 Singular Value Decomposition
 - Finding the SVD in general
 - Special case: symmetric matrices
 - Properties of the SVD

1900 M

● Dimension reduction

Liangda Fang

17/ 100

Rayleigh Quotient Iteration

- The Rayleigh quotient can be used in conjunction with Inverse Power Iteration.
- It converges to the eigenvector associated to the eigenvalue with the smallest distance to the shift s.
- At each step, let an approximate eigenvalue to be the shift so as to speed convergence.

Conclusions

Liangda Fang

Rayleigh Quotient Iteration

Algorithm 4: Rayleigh Quotient Iteration

- 1 x_0 = initial vector
- 2 for $j = 1, 2, \dots$ do

$$\mathbf{3} \quad | \quad v_{j-1} = \frac{x_{j-1}}{\|x_{j-1}\|_2}$$

4
$$\lambda_{j-1} = v_{j-1}^{\top} A v_{j-1}$$

5 Solve
$$(A - \lambda_{j-1}I)x_j = v_{j-1}$$

6
$$v_{\max} = \frac{x_j}{\|x_j\|_2}$$

7
$$\lambda_{\max} = v_{\max}^{\top} A v_{\max}$$

Liangda Fang 19/100

Outline

- Power Iteration
- Inverse Power Iteration
- Rayleigh Quotient Iteration

2 PageRank

- Introduction
- Basic Ideas of PageRank
- Column Stochastic Matrix
- The Power Method
- Adjusting the adjacency matrix
- QR Algorithm
 - Simultaneous iteration
 - Shifted QR algorithm
 - Upper Hessenberg form
- 4 Singular Value Decomposition
 - Finding the SVD in general
 - Special case: symmetric matrices
 - Properties of the SVD

4014914515

Dimension reduction

Liangda Fang 20/100

- Nowadays, the Internet is indispensable for us.
- Many person browser many webpages when surfing the Internet.

Liangda Fang 21/100

Webpages

Power Iteration Methods

《中》《圖》《意》《意》

Conclusions

Liangda Fang 22/100

Search Engine

- If we search some materials, we will resort to some search engine.
- When we enter some keywords into the search engine, and the latter will recommend us the addresses of some related webpages.

Conclusions

Liangda Fang 23/ 100

Power Iteration Methods PageRank QR Algorithm Singular Value Decomposition Conclusions

Search Engine

Liangda Fang 24/ 100

A search engine runs as follows:

Use web crawler to collect most web pages in the Internet;

Liangda Fang 25/100

Power Iteration Methods

A search engine runs as follows:

- 1 Use web crawler to collect most web pages in the Internet;
- Store the contents of the web pages into a distributed storage center, namely Bigtable;

Conclusions

Liangda Fang 25/ 100

Power Iteration Methods

A search engine runs as follows:

- Use web crawler to collect most web pages in the Internet;
- Store the contents of the web pages into a distributed storage center, namely Bigtable;
- Measure the relative importance of each web page, namely PageRank;

Conclusions

Liangda Fang 25/ 100

Power Iteration Methods

A search engine runs as follows:

- Use web crawler to collect most web pages in the Internet;
- Store the contents of the web pages into a distributed storage center, namely Bigtable;
- Measure the relative importance of each web page, namely PageRank;
- Select the top n web pages, which contains the keywords, from a distributed storage center, namely MapReduce.

Conclusions

Liangda Fang 25/ 100

The topic of this talk: PageRank

In this talk, we focus on the third step of the search engine, PageRank.

Conclusions

Liangda Fang 26/100

The link structure of webpages

A webpage contains many links of other webpages.

Liangda Fang 27/ 100

The link structure of webpages

A webpage contains many links of other webpages.

Liangda Fang 27/100

The link structure of webpages as a adjacency matrix

Example

Power Iteration Methods

Suppose that we have 6 webpages. The link structure of them is as follows:

$$L = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Conclusions

Liangda Fang 28/ 100

The link structure of webpages as a adjacency matrix

Example

Power Iteration Methods

Suppose that we have 6 webpages. The link structure of them is as follows:

$$L = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- The adjacency matrix of webpages is very spare.
- Sparcity = the number of edges / (the number of nodes) 2 .

Conclusions

Liangda Fang

Conclusions

Liangda Fang 29/ 100

Liangda Fang 30/100

Conclusions

Liangda Fang 31/ 100

Conclusions

Liangda Fang 32/ 100

The score of the webpages

- Each webpage i has a score $r_i > 0$ representing the importance of the webpage;
- If $r_i > r_j$, then we consider webpage i more important than webpage j;
- Normalize all scores of webpages, i.e., $||r||_1 = \sum_{i=1}^k r_i = 1$ for $r = [r_1, r_2, \dots, r_k]^\top$.

Liangda Fang 33/100

The insights behind PageRank

Power Iteration Methods

- A webpage with good score have inlinks from those with good scores;
- A webpage with good score have outlinks to those with good scores;
- Inlinks from good webpages should carry more weight than inlinks from marginal webpages.

Conclusions

Liangda Fang

The insights behind PageRank

Power Iteration Methods

- Webpages vote for the importance of other webpages by linking to them;
 - The more inlinks a page has, the more important it is.

Conclusions

Liangda Fang 35/100

The insights behind PageRank

- Webpages vote for the importance of other webpages by linking to them;
 - The more inlinks a page has, the more important it is.
- One webpage has only one vote;
 - If a webpage has more than one outlinks, its vote must be split.

Liangda Fang 35/100

- Webpages vote for the importance of other webpages by linking to them;
 - The more inlinks a page has, the more important it is.
- One webpage has only one vote;
 - If a webpage has more than one outlinks, its vote must be split.
- **3** A link to webpage *i* from an important page increases webpage *i*'s importance more than a link from an unimportant one.
 - It matters who your supporters are.

Liangda Fang 35/ 100

PageRank

Weighing the votes

ullet $A_{ij}=rac{L_{ij}}{\sum\limits_{i=1}^{n}L_{ij}}$: the value of A_{ij} is dividing L_{ij} by the sum of the row j of L.

Example

$$L = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow A = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & \frac{1}{3} \\ 1 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \end{bmatrix}$$

Liangda Fang 36/100

First attempt at determining the rank of each page

• The rank r_i of page i: the weighted sum of the ranks of all webpages pointing to it.

Liangda Fang 37/100 • The rank r_i of page i: the weighted sum of the ranks of all webpages pointing to it.

Example

Power Iteration Methods

$$A = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & \frac{1}{3} \\ 1 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \end{bmatrix} -$$

$$A = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & \frac{1}{3} \\ 1 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \end{bmatrix} \rightarrow \begin{cases} r_1 = \frac{1}{2} \cdot r_2 + \frac{1}{2} \cdot r_3 + \frac{1}{3} \cdot r_6 \\ r_2 = 1 \cdot r_1 + \frac{1}{2} \cdot r_3 \\ r_3 = \frac{1}{2} \cdot r_2 \\ r_4 = \frac{1}{2} \cdot r_5 + \frac{1}{3} \cdot r_6 \\ r_5 = \frac{1}{3} \cdot r_6 \\ r_6 = \frac{1}{2} \cdot r_5 \end{cases}$$

Liangda Fang 37/100 • The rank r_i of page i: the weighted sum of the ranks of all webpages pointing to it.

Example

Power Iteration Methods

$$A = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & 0 & 0 & \frac{1}{3} \\ 1 & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \end{bmatrix} \rightarrow \begin{cases} r_1 = \frac{1}{2} \cdot r_2 + \frac{1}{2} \cdot r_3 + \frac{1}{3} \cdot r_6 \\ r_2 = 1 \cdot r_1 + \frac{1}{2} \cdot r_3 \\ r_3 = \frac{1}{2} \cdot r_2 \\ r_4 = \frac{1}{2} \cdot r_5 + \frac{1}{3} \cdot r_6 \\ r_5 = \frac{1}{3} \cdot r_6 \\ r_6 = \frac{1}{2} \cdot r_5 \end{cases}$$

- r = Ar, i.e., r is an eigenvector of A if an eigenvalue of A is equal to 1;
- It is possible to reduce ranking webpages to computing the eigenvalue of the adjacency matrix from the link structure.

Liangda Fang 37/100

Some difficulties on reducing

Power Iteration Methods

- Unfortunately, many adjacency matrices does not have eigenvalue 1.
- 2 Even if the matrix has an eigenvalue 1, it is computationally expensive to get the eigenvector wrt 1.

Liangda Fang 38/100

The first difficulty on reducing

Power Iteration Methods

- Unfortunately, many adjacency matrices does not have eigenvalue 1.
- 2 Even if the matrix has an eigenvalue 1, it is computationally expensive to get the eigenvector wrt 1.

Column stochastic matrix

• Make sure that adjacency matrix has an eigenvalue 1.

Definition

Power Iteration Methods

We say that a matrix A is **column stochastic**, if

- lacktriangle all entries of A are non-negative;
- 2 each column of A sums up to 1.

Proposition

Let A be a column stochastic matrix.

- \bigcirc 1 is always an eigenvalue of A.
- $\|A\|_1 = 1$ where $\|A\|_1$ is the largest column sum.

Conclusions

Liangda Fang 40/ 100

The second difficulty on reducing

- Unfortunately, many adjacency matrices do not have eigenvalue 1.
- 2 Even if the matrix has an eigenvalue 1, it is computationally expensive to get the eigenvector wrt 1.

Power Iteration Methods Power Iteration

- If we restrict the matrix s.t. it is spare and its dominant eigenvalue is 1, then power iteration is an efficient solution to ranking pages.
- How to ensure the dominant eigenvalue of a given matrix to be 1?

Theorem (Perron-Frobenius theorem)

If every entries of the matrix A are positive (in short, we say A is **positive**), then there exists a positive real number λ such that λ is the dominant eigenvalue of A.

Together with column stochastic property

Proposition

Let A be a column stochastic matrix.

- $oldsymbol{0}$ 1 is always an eigenvalue of A.
- $||A||_1 = 1$ where $||A||_1$ is the largest column sum.

Together with column stochastic property

Proposition

Let A be a column stochastic matrix.

- $oldsymbol{0}$ 1 is always an eigenvalue of A.
- $||A||_1 = 1$ where $||A||_1$ is the largest column sum.

Proposition

Let A be a matrix. Then, every eigenvalue of A is less than or equal to $||A||_1$.

Together with column stochastic property

Proposition

Let A be a column stochastic matrix.

- $oldsymbol{0}$ 1 is always an eigenvalue of A.
- $||A||_1 = 1$ where $||A||_1$ is the largest column sum.

Proposition

Let A be a matrix. Then, every eigenvalue of A is less than or equal to $||A||_1$.

• If A is positive and column stochastic, then the dominant eigenvalue of A is 1.

Liangda Fang 43/100

Adjusting the adjacency matrix

Power Iteration Methods

- The original adjacency matrix is not positive or column stochastic.
- We need to adjust it.

Liangda Fang 44/ 100

Making it to be column stochastic

Example

$$A = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \mathbf{0} & 0 & \frac{1}{3} \\ 1 & 0 & \frac{1}{2} & \mathbf{0} & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \mathbf{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & 0 & \mathbf{0} & \frac{1}{2} & 0 \end{bmatrix} \text{ is not column stochastic.}$$

Dealing with the dangling node

Power Iteration Methods

• At a "dangling node", the web surfer can choose to stay put or jump to any other node with equal probability.

•
$$B = A + \frac{1}{n}ed^{\top}$$
 where

B is column stochastic.

Conclusions

Liangda Fang 46/ 100

Dealing with the dangling node

Example

$$A = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \mathbf{0} & 0 & \frac{1}{3} \\ 1 & 0 & \frac{1}{2} & \mathbf{0} & 0 & 0 \\ 0 & \frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & 0 & 0 & \frac{1}{2} & 0 \end{bmatrix} \rightarrow B = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{3} \\ 1 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{6} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{6} & 0 & \frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 \end{bmatrix}.$$

• But *B* is not positive.

Liangda Fang 47/100

Enforcing it positive

- If a surfer at a "dangling node" can jump to any other node, surfers at nodes with outlinks should be able to do the same.
- $G = \alpha B + \frac{1}{n}(1-\alpha)ee^{\top}$ where $\alpha = 0.85$ and ee^{\top} is an $n \times n$ matrix with the all entries equal to 1.
- G is positive and column stochastic.

Liangda Fang 48/100

Enforcing it positive

Example

$$B = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{6} & 0 & \frac{1}{3} \\ 1 & 0 & \frac{1}{2} & \frac{1}{6} & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{6} & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{6} & \frac{1}{2} & 0 \end{bmatrix} \rightarrow G = \begin{bmatrix} \frac{1-\alpha}{6} & \frac{1}{2}\alpha + \frac{1-\alpha}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} \\ 1 \cdot \alpha + \frac{1-\alpha}{6} & \frac{1-\alpha}{6} & \frac{1}{2}\alpha + \frac{1-\alpha}{6} & \frac{1}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} \\ \frac{1-\alpha}{6} & \frac{1}{2}\alpha + \frac{1-\alpha}{6} & \frac{1-\alpha}{6} & \frac{1}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} \\ \frac{1-\alpha}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} & \frac{1}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} \\ \frac{1-\alpha}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} \\ \frac{1-\alpha}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} & \frac{1-\alpha}{6} \end{bmatrix}$$

Liangda Fang 49/100

Enforcing it positive

Power Iteration Methods

- G is positive and column stochastic, but not sparse.
- Computing the dominant eigenvector of G via directly using the power method: inefficient.
- ullet We need to modify the power method for G.

Conclusions

Proposition

If A is column stochastic and $||x||_1 = 1$, then $||Ax||_1 = 1$.

• The normalization step $v_{j-1} = \frac{x_{j-1}}{\|x_{i-1}\|_2}$ can be removed.

Power Iteration Methods

• Simplify the step: $x_i = Gx_{i-1}$.

$$x_i = Gx_{i-1}$$

Conclusions

Power Iteration Methods

$$x_j = Gx_{j-1}$$

= $[\alpha B + (1-\alpha)\frac{1}{n}ee^{\top}]x_{j-1}$

Conclusions

• Simplify the step: $x_i = Gx_{i-1}$.

$$x_{j} = Gx_{j-1}$$

$$= [\alpha B + (1 - \alpha)\frac{1}{n}ee^{\top}]x_{j-1}$$

$$= \alpha[A + \frac{1}{n}ed^{\top}]x_{j-1} + (1 - \alpha)\frac{1}{n}ee^{\top}x_{j-1}$$

• Simplify the step: $x_i = Gx_{i-1}$.

$$x_{j} = Gx_{j-1}$$

$$= [\alpha B + (1 - \alpha) \frac{1}{n} e e^{\top}] x_{j-1}$$

$$= \alpha [A + \frac{1}{n} e d^{\top}] x_{j-1} + (1 - \alpha) \frac{1}{n} e e^{\top} x_{j-1}$$

$$= \alpha A x_{j-1} + \frac{1}{n} [\alpha d^{\top} x_{j-1} + (1 - \alpha) e^{\top} x_{j-1}] e$$

• Simplify the step: $x_i = Gx_{i-1}$.

$$x_{j} = Gx_{j-1}$$

$$= [\alpha B + (1 - \alpha) \frac{1}{n} e e^{\top}] x_{j-1}$$

$$= \alpha [A + \frac{1}{n} e d^{\top}] x_{j-1} + (1 - \alpha) \frac{1}{n} e e^{\top} x_{j-1}$$

$$= \alpha A x_{j-1} + \frac{1}{n} [\alpha d^{\top} x_{j-1} + (1 - \alpha) e^{\top} x_{j-1}] e$$

Let
$$\beta = \alpha d^{\top} x_{i-1} + (1 - \alpha) e^{\top} x_{i-1}$$
.

$$e^{\top} x_j = e^{\top} [\alpha A x_{j-1} + \frac{1}{n} \beta e]$$

Let
$$\beta = \alpha d^{\top} x_{j-1} + (1 - \alpha) e^{\top} x_{j-1}$$
.

$$e^{\top} x_{j} = e^{\top} [\alpha A x_{j-1} + \frac{1}{n} \beta e]$$
$$= \alpha e^{\top} A x_{j-1} + \beta \frac{1}{n} e^{\top} e$$

Let
$$\beta = \alpha d^{\top} x_{j-1} + (1 - \alpha) e^{\top} x_{j-1}$$
.

$$e^{\top} x_{j} = e^{\top} [\alpha A x_{j-1} + \frac{1}{n} \beta e]$$

$$= \alpha e^{\top} A x_{j-1} + \beta \frac{1}{n} e^{\top} e$$

$$= \alpha \|A x_{j-1}\|_{1} + \beta$$

53/100 Liangda Fang

Let
$$\beta = \alpha d^{\top} x_{j-1} + (1 - \alpha) e^{\top} x_{j-1}$$
.

$$e^{\top} x_{j} = e^{\top} [\alpha A x_{j-1} + \frac{1}{n} \beta e]$$

$$= \alpha e^{\top} A x_{j-1} + \beta \frac{1}{n} e^{\top} e$$

$$= \alpha ||A x_{j-1}||_{1} + \beta$$

$$= 1$$

Let
$$\beta = \alpha d^{\top} x_{j-1} + (1 - \alpha) e^{\top} x_{j-1}$$
.

$$e^{\top} x_{j} = e^{\top} [\alpha A x_{j-1} + \frac{1}{n} \beta e]$$

$$= \alpha e^{\top} A x_{j-1} + \beta \frac{1}{n} e^{\top} e$$

$$= \alpha \|A x_{j-1}\|_{1} + \beta$$

$$= 1$$

- So $\beta = 1 \alpha ||Ax_{i-1}||_1$.
- $x_i = Gx_{i-1} \Rightarrow$
 - **1** $y = Ax_{i-1}$;
 - **2** $\beta = 1 \alpha ||y||_1$:
 - $3 x_i = \alpha y + \frac{\beta}{\pi} e.$

Algorithm 5: Power Iteration for G

- 1 x_0 = initial vector with $||x_0||_1 = 1$
- 2 for i = 1, 2, ... do

3 |
$$y = Ax_{i-1}$$

4
$$\beta = 1 - \alpha ||y||_1$$

5 $x_j = \alpha y + \frac{\beta}{n} e$

6
$$v_{max} = x_i$$

Outline

- Power Iteration
- Inverse Power Iteration
- Rayleigh Quotient Iteration
- 2 PageRank
 - Introduction
 - Basic Ideas of PageRank
 - Column Stochastic Matrix
 - The Power Method
 - Adjusting the adjacency matrix
- QR Algorithm
 - Simultaneous iteration
 - Shifted QR algorithm
 - Upper Hessenberg form
- 4 Singular Value Decomposition
 - Finding the SVD in general
 - Special case: symmetric matrices
 - Properties of the SVD

Dimension reduction

Simultaneous iteration

Power Iteration Methods

- Now, we consider how to compute all eigenvalues of a matrix.
- First, we focus on symmetric matrices since their eigenvectors are pairwise orthogonal.

① Assume we have n pairwise orthogonal initial vectors q_1^0, \ldots, q_n^0 ;

Conclusions

- **1** Assume we have n pairwise orthogonal initial vectors q_1^0, \ldots, q_n^0 ;
- 2 Multiplications by A leads to Aq_1^0, \ldots, Aq_n^0 ;

Power Iteration Methods

- **①** Assume we have n pairwise orthogonal initial vectors q_1^0, \ldots, q_n^0 ;
- ② Multiplications by A leads to Aq_1^0, \ldots, Aq_n^0 ;
- In general, they are not pairwise orthogonal, so we re-orthogonalize them, i.e., $[Aq_1^0|\dots|Aq_n^0]=\overline{Q}_1R_1=[q_1^1|\dots|q_n^1]R_1;$

Conclusions

Power Iteration Methods

- ② Multiplications by A leads to Aq_1^0, \ldots, Aq_n^0 ;
- **3** In general, they are not pairwise orthogonal, so we re-orthogonalize them, i.e., $[Aq_1^0|\dots|Aq_n^0]=\overline{Q}_1R_1=[q_1^1|\dots|q_n^1]R_1;$
- $\ensuremath{ \bullet}$ We use the column vectors of \overline{Q}_1 as new pairwise orthogonal vectors.

Conclusions

Normalized Simultaneous iteration

Power Iteration Methods

- **1** Assume we have n pairwise orthogonal initial vectors q_1^0, \ldots, q_n^0 ;
- 2 Multiplications by A leads to Aq_1^0, \ldots, Aq_n^0 ;
- **3** In general, they are not pairwise orthogonal, so we re-orthogonalize them, i.e., $[Aq_1^0|\dots|Aq_n^0]=\overline{Q}_1R_1=[q_1^1|\dots|q_n^1]R_1;$
- $\ensuremath{ \bullet}$ We use the column vectors of \overline{Q}_1 as new pairwise orthogonal vectors.
- **6** Multiplications by A leads to Aq_1^1, \ldots, Aq_n^1 ;

Conclusions

Normalized Simultaneous iteration

- **1** Assume we have n pairwise orthogonal initial vectors q_1^0, \ldots, q_n^0 ;
- 2 Multiplications by A leads to Aq_1^0, \ldots, Aq_n^0 ;
- In general, they are not pairwise orthogonal, so we re-orthogonalize them, i.e., $[Aq_1^0] \dots [Aq_n^0] = \overline{Q}_1 R_1 = [q_1^1] \dots [q_n^1] R_1$;
- **4** We use the column vectors of \overline{Q}_1 as new pairwise orthogonal vectors.
- **1** Multiplications by A leads to Aq_1^1, \ldots, Aq_n^1
- **6** Re-orthogonalization: $[Aq_1^1|\dots|Aq_n^1] = \overline{Q}_2R_2 = [q_1^2|\dots|q_n^2]R_2$.

Normalized Simultaneous iteration

- **①** Assume we have n pairwise orthogonal initial vectors q_1^0, \ldots, q_n^0 ;
- ② Multiplications by A leads to Aq_1^0, \ldots, Aq_n^0 ;
- **3** In general, they are not pairwise orthogonal, so we re-orthogonalize them, i.e., $[Aq_1^0|\dots|Aq_n^0]=\overline{Q}_1R_1=[q_1^1|\dots|q_n^1]R_1;$
- $\begin{tabular}{ll} \blacksquare & \end{tabular} \begin{tabular}{ll} \blacksquare & \end{$
- **6** Multiplications by A leads to Aq_1^1, \ldots, Aq_n^1 ;
- **6** Re-orthogonalization: $[Aq_1^1|\ldots|Aq_n^1]=\overline{Q}_2R_2=[q_1^2|\ldots|q_n^2]R_2$.
- **1** Repeat Step 4 6 until \overline{Q}_i is close to all eigenvectors of A.

Conclusions

Normalized Simultaneous Iteration

Algorithm 6: Normalized Simultaneous Iteration

- $\overline{Q}_0 = I$
- 2 for i = 0, 1, ... do
- 3 $X_i = A \overline{Q}_i$ 4 $\overline{Q}_{i+1} R_{i+1} = X_i$
- 5 $\lambda = \operatorname{diag}(\overline{Q}_{i+1} A \overline{Q}_{i+1}^{\top})$
 - The columns of \overline{Q}_i are approximations to the eigenvectors of A.
 - The diagonal elements of R_i $(r_{11}^i, \ldots, r_{nn}^i)$ are approximations to the eigenvalues.

Liangda Fang 58/100

Normalized simultaneous iteration (NSI):

Power Iteration Methods

- $A\overline{Q}_2 = \overline{Q}_3 R_3$

59/100

Conclusions

Normalized simultaneous iteration (NSI):

Power Iteration Methods

- $A\overline{Q}_1 = \overline{Q}_2R_2$

Consider a similar iteration: $Q_0 = I$

- \bullet $A_0 = A \overline{Q}_0 = Q_1 R'_1$
- $A_1 = R'_1 Q_1 = Q_2 R'_2$
- $A_2 = R_2' Q_2 = Q_3 R_3'$

The latter is called unshifed QR algorithm.

Liangda Fang 59/100

Algorithm 7: Unshifted QR algorithm

1
$$Q_0 = I$$

$$A_0 = AQ_0$$

3 for
$$i = 0, 1, ...$$
 do

$$Q_{i+1}R'_{i+1} = A_i$$

4
$$Q_{i+1}R'_{i+1} = A_i$$

5 $A_{i+1} = R'_{i+1}Q_{i+1}$

6
$$\lambda = \operatorname{diag}(A_{i+1})$$

• Let
$$Q_1 = \overline{Q}_1$$
 and $R_1 = R'_1$;

Power Iteration Methods

Conclusions

• Let
$$Q_1 = \overline{Q}_1$$
 and $R_1 = R'_1$;

Power Iteration Methods

•
$$\overline{Q}_2 R_2 = A \overline{Q}_1 = Q_1 R'_1 Q_1 = Q_1 Q_2 R'_2;$$

Conclusions

• Let
$$Q_1 = \overline{Q}_1$$
 and $R_1 = R'_1$;

•
$$\overline{Q}_2 R_2 = A \overline{Q}_1 = Q_1 R'_1 Q_1 = Q_1 Q_2 R'_2;$$

• We chose
$$\overline{Q}_2=Q_1Q_2$$
 and $R_2=R_2'$;

- Let $Q_1 = \overline{Q}_1$ and $R_1 = R'_1$;
- $\overline{Q}_2 R_2 = A \overline{Q}_1 = Q_1 R'_1 Q_1 = Q_1 Q_2 R'_2;$
- We chose $\overline{Q}_2 = Q_1 Q_2$ and $R_2 = R_2'$;
- Suppose that we define $\overline{Q}_k=Q_1\,Q_2\cdots Q_k$ and $R_k=R_k'$ for all k< i;
- We have $R_{k-1}Q_{k-1} = Q_k R_k$.

Power Iteration Methods

$$\overline{Q}_{i}R_{i} = A\overline{Q}_{i-1}
= AQ_{1}Q_{2}Q_{3}Q_{4} \cdots Q_{i-1}
= \overline{Q}_{2}R_{2}Q_{2}Q_{3}Q_{4} \cdots Q_{i-1}
= Q_{1}Q_{2}Q_{3}R_{3}Q_{3}Q_{4} \cdots Q_{i-1}
= Q_{1}Q_{2}Q_{3}Q_{4}R_{4}Q_{4} \cdots Q_{i-1}
= \vdots
= Q_{1} \cdots Q_{i}R_{i}$$

Conclusions

The intuitive meaning of unshifted QR algorithm

Theorem

Let A and B be two similar matrices. Then they have the same set of eigenvalues.

Theorem

Let A and B be two similar matrices. Then they have the same set of eigenvalues.

- $A_{i-1} = O_i R_i = O_i R_i O_i O_i^{\top} = O_i A_i O_i^{\top}$:
- All A_i 's are similar and have the same set of eigenvalues;
- As $i \to \infty$, A_i converges to a diagonal matrix;
- The eigenvalues of A are on the main diagonal of A_i ;
- The column vectors of $Q_1 \cdots Q_i$ are the eigenvectors.

Convergence of unshifted QR algorithm

Theorem

Power Iteration Methods

Assume that A is a symmetric $n \times n$ matrix with eigenvalues λ_i s.t. $|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|$. The unshifted QR algorithm converges linearly to the eigenvectors and eigenvalues of A. As $j \to \infty$,

- **1** A_j converges to a diagonal matrix containing the eigenvalues on the main diagonal.
- ② $\overline{Q_j} = Q_1 \cdots Q_j$ converges to an orthogonal matrix whose columns are the eigenvectors.

Conclusions

Outline

- Power Iteration
- Inverse Power Iteration
- Rayleigh Quotient Iteration
- 2 PageRank
 - Introduction
 - Basic Ideas of PageRank
 - Column Stochastic Matrix
 - The Power Method
 - Adjusting the adjacency matrix
- QR Algorithm
 - Simultaneous iteration
 - Shifted QR algorithm
 - Upper Hessenberg form
- 4 Singular Value Decomposition
 - Finding the SVD in general
 - Special case: symmetric matrices
 - Properties of the SVD

• Dimension reduction

Power Iteration Methods

- Unshifted QR algorithm:
 - \bullet $A_0 = Q_1 R_1;$
 - **2** $A_1 = R_1 Q_1$;

Conclusions

- Unshifted QR algorithm:
 - \bullet $A_0 = Q_1 R_1;$
 - **2** $A_1 = R_1 Q_1$;
- Shifted QR algorithm:

 - $A_1 = R_1 Q_1 + sI$;

Power Iteration Methods

- \bullet $A_0 = Q_1 R_1;$
- $A_1 = R_1 Q_1$;
- Shifted QR algorithm:
 - $A_0 sI = Q_1 R_1;$
 - $A_1 = R_1 Q_1 + sI;$
 - **3** $A_1 sI$

Conclusions

- Unshifted QR algorithm:
 - \bullet $A_0 = Q_1 R_1;$
 - **2** $A_1 = R_1 Q_1$;
- Shifted QR algorithm:
 - $A_0 sI = Q_1 R_1;$
 - $A_1 = R_1 Q_1 + sI$;
 - $A_1 sI = R_1 Q_1$

- Unshifted QR algorithm:
 - \bullet $A_0 = Q_1 R_1;$
 - **2** $A_1 = R_1 Q_1$;
- Shifted QR algorithm:
 - $A_0 sI = Q_1 R_1;$
 - $A_1 = R_1 Q_1 + sI$;
 - **3** $A_1 sI = R_1 Q_1 = Q_1^{\top} (A_0 sI) Q_1$

- Unshifted QR algorithm:
 - \bullet $A_0 = Q_1 R_1;$
 - **2** $A_1 = R_1 Q_1$;
- Shifted QR algorithm:
 - $A_0 sI = Q_1 R_1;$
 - $A_1 = R_1 Q_1 + sI$:
- Repeating this step generates a sequence of A_k 's which are similar to A_0 .

Conclusions

Power Iteration Methods

• Question: How to select a good shift s_k for each step?

Conclusions

Power Iteration Methods

• Question: How to select a good shift s_k for each step?

• Answer: The bottom right entry of the matrix A_k .

Conclusions

Power Iteration Methods

- Question: How to select a good shift s_k for each step?
- Answer: The bottom right entry of the matrix A_k .
- The reason:
 - The iteration with this choice move the bottom row to a row of zeros, except for the bottom right entry.
 - ② Obviously, the bottom right entry is one of the eigenvalue of A.

Conclusions

- Question: How to select a good shift s_k for each step?
- Answer: The bottom right entry of the matrix A_k .
- The reason:
 - The iteration with this choice move the bottom row to a row of zeros, except for the bottom right entry.
 - ② Obviously, the bottom right entry is one of the eigenvalue of A.
- The procedure:
 - After acquiring the eigenvalue, we deflate the matrix by eliminating the last row and column.
 - 2 We proceed to find another eigenvalue.

Conclusions

Algorithm 8: Shifted QR algorithm

```
\begin{array}{lll} \mathbf{1} & Q^n = I \\ \mathbf{2} & A^n = AQ^n - sI \\ \mathbf{3} & \textbf{for } j = n, \dots, 2 \ \textbf{do} \\ \mathbf{4} & & \textbf{while } \Sigma_{k=1}^{j-1} |A_{jk}^j| \ \textit{is not sufficiently small } \textbf{do} \\ \mathbf{5} & & & s = A_{jj}^j \\ \mathbf{6} & & Q^jR^j = A^j - sI \\ \mathbf{7} & & & A^j = R^jQ^j + sI \\ \mathbf{8} & & \lambda_j = A_{ji}^j \end{array}
```

9 let A^{j-1} be the matrix which results by eliminating the last column and row from A^j

10
$$\lambda_1 = A_{11}^1$$

Power Iteration Methods PageRank QR Algorithm Singular Value Decomposition Conclusions

Outline

- Power Iteration
- Inverse Power Iteration
- Rayleigh Quotient Iteration
- 2 PageRank
 - Introduction
 - Basic Ideas of PageRank
 - Column Stochastic Matrix
 - The Power Method
 - Adjusting the adjacency matrix
- QR Algorithm
 - Simultaneous iteration
 - Shifted QR algorithm
 - Upper Hessenberg form
 - Singular Value Decomposition
 - Finding the SVD in general
 - Special case: symmetric matrices
 - Properties of the SVD
 - Dimension reduction

Definition

The $m \times n$ matrix A is **upper Hessenberg** if $a_{ij} = 0$ for i > j + 1.

Example

$$\bullet \begin{bmatrix}
1 & 3 & 4 & 2 \\
2 & 2 & 5 & 2 \\
0 & 3 & 2 & 4 \\
0 & 0 & 4 & 5
\end{bmatrix}$$
 is upper Hessenberg.

• But
$$\begin{bmatrix} 1 & 3 & 4 & 2 \\ 2 & 2 & 5 & 2 \\ 3 & 3 & 2 & 4 \\ 0 & 0 & 4 & 5 \end{bmatrix}$$
 is not.

70/100 Liangda Fang

- Before we apply the shifted QR algorithm, it is better to transform A to a similar matrix which is in upper Hessenberg form.
- The preprocess will increase the efficiency of the QR algorithm.

- Before we apply the shifted QR algorithm, it is better to transform A to a similar matrix which is in upper Hessenberg form.
- The preprocess will increase the efficiency of the QR algorithm.

Theorem

Let A be a square matrix. There exist an orthogonal matrix Q and an upper Hessenberg matrix B s.t. $A = QBQ^{\top}$.

- Before we apply the shifted QR algorithm, it is better to transform A to a similar matrix which is in upper Hessenberg form.
- The preprocess will increase the efficiency of the QR algorithm.

Theorem

Let A be a square matrix. There exist an orthogonal matrix Q and an upper Hessenberg matrix B s.t. $A = QBQ^{T}$.

Via Householder reflection.

Proof.

$$\text{Given an } n \times n \text{ matrix } A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix},$$

$$\bullet \quad \mathsf{Let} \ x_1 = \begin{bmatrix} a_{21} & a_{31} & \cdots & a_{n1} \end{bmatrix}^\top;$$

Proof.

$$\text{Given an } n \times n \text{ matrix } A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix},$$

- **1** Let $x_1 = \begin{bmatrix} a_{21} & a_{31} & \cdots & a_{n1} \end{bmatrix}^\top$;
- **2** Let $w_1 = \begin{bmatrix} \operatorname{sgn}(x_{11}) \|x_1\|_2 & 0 & \cdots & 0 \end{bmatrix}^\top$;

Proof.

$$\text{Given an } n \times n \text{ matrix } A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix},$$

- **1** Let $x_1 = \begin{bmatrix} a_{21} & a_{31} & \cdots & a_{n1} \end{bmatrix}^{\top}$;
- **2** Let $w_1 = \lceil \operatorname{sgn}(x_{11}) ||x_1||_2 \quad 0 \quad \cdots \quad 0 \rceil^\top$;
- **3** So $u_1 = w_1 x_1$, $v_1 = \frac{u_1}{\||u_1\||_2}$ and $\hat{H}_1 = I 2v_1v_1^{\top}$;

Proof.

$$\text{Given an } n \times n \text{ matrix } A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix},$$

- **1** Let $x_1 = \begin{bmatrix} a_{21} & a_{31} & \cdots & a_{n1} \end{bmatrix}^{\top}$;
- **2** Let $w_1 = \lceil \operatorname{sgn}(x_{11}) ||x_1||_2 \quad 0 \quad \cdots \quad 0 \rceil^\top$;
- **3** So $u_1 = w_1 x_1$, $v_1 = \frac{u_1}{\|u_1\|_2}$ and $\hat{H}_1 = I 2v_1v_1^{\top}$;

$$\mathbf{4} \ \, H_1 = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \hat{H}_1 & \\ 0 & & & \end{bmatrix}$$

Proof.

$$C = H_1 A = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ 0 & c_{32} & \cdots & c_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & c_{n2} & \cdots & c_{nn} \end{bmatrix}$$

$$D = CH_1 = C \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \hat{H}_1 & \\ 0 & & & \end{bmatrix} = \begin{bmatrix} d_{11} & d_{12} & \cdots & d_{1n} \\ d_{21} & d_{22} & \cdots & d_{2n} \\ 0 & d_{32} & \cdots & d_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & d_{n2} & \cdots & d_{nn} \end{bmatrix}.$$

Liangda Fang 73/100

Upper Hessenberg form

Proof.

- **1** Let $x_2 = \begin{bmatrix} d_{32} & d_{33} & \cdots & d_{n3} \end{bmatrix}^{\top}$;
- **2** Let $w_2 = [\operatorname{sgn}(x_{21}) || x_2 ||_2 \quad 0 \quad \cdots \quad 0]^\top$;
- **3** So $u_2 = w_2 x_2$, $v_2 = \frac{u_2}{\|u_2\|_2}$ and $\hat{H}_2 = I 2v_2v_2^{\top}$.

$$\mathbf{4} \quad H_2 = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & & & \\ \vdots & \vdots & & \hat{H}_2 & \\ 0 & 0 & & & \end{bmatrix}.$$

Liangda Fang 74/ 100

Upper Hessenberg form

Proof.

$$\mathbf{1} \quad E = H_2 D = \begin{vmatrix} e_{21} & e_{22} & \cdots & e_{2n} \\ 0 & e_{32} & \cdots & e_{3n} \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e_{nn} \end{vmatrix}$$

$$\mathbf{2} \quad F = EH_2 = E \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & & & \\ \vdots & \vdots & & \hat{H}_2 \\ 0 & 0 & & & \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} & \cdots & f_{1n} \\ f_{21} & f_{22} & \cdots & f_{2n} \\ 0 & f_{32} & \cdots & f_{3n} \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & f_{nn} \end{bmatrix}.$$

$$\begin{bmatrix} f_{11} & f_{12} & \cdots & f_{1n} \\ f_{21} & f_{22} & \cdots & f_{2n} \\ 0 & f_{32} & \cdots & f_{3n} \end{bmatrix} = \begin{bmatrix} 0 & 0 & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ddots & \vdots \end{bmatrix}$$

Liangda Fang 75/100

Upper Hessenberg form

Power Iteration Methods

• Following the above process, we can construct n-1 Householder reflector H_1, \ldots, H_{n-1} for A.

• Let
$$B = H_{n-1} \cdots H_1 A H_1 \cdots H_{n-1}$$
.

- \bullet Obviously, B is upper Hessenberg.
- Since Householder reflector is orthogonal and symmetric, so $B = H_{n-1} \cdots H_1 A (H_{n-1} \cdots H_1)^{\top}$.
- Hence, $A = QBQ^{\top}$ where $Q = H_{n-1} \cdots H_1$.

Conclusions

Liangda Fang 76/ 100

Outline

- Power Iteration
- Inverse Power Iteration
- Rayleigh Quotient Iteration
- 2 PageRank
 - Introduction
 - Basic Ideas of PageRank
 - Column Stochastic Matrix
 - The Power Method
 - Adjusting the adjacency matrix
- QR Algorithm
 - Simultaneous iteration
 - Shifted QR algorithm
 - Upper Hessenberg form
 - Singular Value Decomposition
 - Finding the SVD in general
 - Special case: symmetric matrices
 - Properties of the SVD
 - Dimension reduction

Liangda Fang 77/ 100

Singular values and vectors

Definition

Power Iteration Methods

Let A be an $m \times n$ matrix, $U: \{u_1, \cdots, u_m\}$ and $V: \{v_1, \cdots, v_n\}$ two orthonormal sets, and $s_1 \cdots, s_n$ s.t. $Av_i = s_i u_i$ for $1 \le i \le n$. Then,

- v_i is called the **right singular vector** of A;
- v_i is called the **left singular vector** of A;
- s_i is called the **singular value** of A.

 USV^{\top} is the **singular value decomposition** (SVD) of A where S is the diagonal $m \times n$ matrix whose diagonal entries are s_i 's.

Conclusions

Liangda Fang 78/ 100

Example

Power Iteration Methods

- $\bullet A = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix};$
- $U = \begin{vmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{vmatrix}$ where $u_1 = \begin{vmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{vmatrix}$ and $u_2 = \begin{vmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{vmatrix}$;
- $S = \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix}$ where $s_1 = \sqrt{2}$ and $s_2 = 0$;
- $V = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ where $v_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$;
- $\bullet A = USV^{\top}$.

Liangda Fang 79/100

Suppose that $m \leq n$. Given that

- $\lambda_1, \lambda_2, \cdots, \lambda_n$: the set of eigenvalues of $A^{\top}A$ where $\lambda_1 > \lambda_2 > \cdots > \lambda_n$:
- v_1, v_2, \cdots, v_n : the set of unit vectors where v_i is the eigenvector of $A^{\top}A$ w.r.t. λ_i .

Liangda Fang 80/100 Power Iteration Methods

Suppose that $m \leq n$. Given that

- $\lambda_1, \lambda_2, \cdots, \lambda_n$: the set of eigenvalues of $A^{\top}A$ where $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$;
- v_1, v_2, \dots, v_n : the set of unit vectors where v_i is the eigenvector of $A^{\top}A$ w.r.t. λ_i .

 s_i 's and u_i 's (for $1 \le i \le m$) are computed as follows:

•
$$s_i = \sqrt{\lambda_i}$$
:

$$\bullet \ \ u_i = \begin{cases} \frac{Av_i}{s_i} & \text{if } \lambda_i \neq 0; \\ \text{an unit vector orthogonal to } u_1, u_2, \cdots, u_{i-1} & \text{otherwise}. \end{cases}$$

Conclusions

Liangda Fang 80/100

Power Iteration Methods

Lemma

Let A be an $m \times n$ matrix. The eigenvalues of $A^{\top}A$ and AA^{\top} are nonnegative.

Liangda Fang 81/100

Power Iteration Methods

Lemma

Let A be an $m \times n$ matrix. The eigenvalues of $A^{\top}A$ and AA^{\top} are nonnegative.

Proof.

Let v be a unit eigenvector of $A^{\top}A$ and $A^{\top}Av = \lambda v$.

Liangda Fang 81/100

Proposition

 AA^{\top} and $A^{\top}A$ are symmetric.

Liangda Fang 82/100

Proposition

 AA^{\top} and $A^{\top}A$ are symmetric.

Proof.

$$\begin{split} \left(AA^\top\right)^\top &= \left(A^\top\right)^\top A^\top = AA^\top. \\ \text{Similarly, } \left(A^\top A\right)^\top &= A^\top A. \end{split}$$

Liangda Fang 82/100

Proposition

 u_1, u_2, \cdots, u_m forms an orthonormal set of eigenvectors of AA^{\top} .

Liangda Fang 83/100

Proposition

 u_1, u_2, \cdots, u_m forms an orthonormal set of eigenvectors of AA^{\top} .

Proof.

$$\textbf{Unitary:} \quad u_i^\top u_i = \frac{A{v_i}}{s_i}^\top \frac{A{v_i}}{s_i} = \frac{v_i^\top A^\top A{v_i}}{s_i^2} = \frac{\lambda_i v_i^\top v_i}{\lambda_i} = 1.$$

Liangda Fang 83/100

Proposition

 u_1, u_2, \cdots, u_m forms an orthonormal set of eigenvectors of AA^{\top} .

Proof.

$$\text{Unitary:} \quad u_i^\top u_i = \frac{A{v_i}}{s_i}^\top \frac{A{v_i}}{s_i} = \frac{v_i^\top A^\top A{v_i}}{s_i^2} = \frac{\lambda_i v_i^\top v_i}{\lambda_i} = 1.$$

Orthogonality:
$$u_i^{\top}u_j = \frac{Av_i}{s_i}^{\top}\frac{Av_j}{s_j} = \frac{v_i^{\top}A^{\top}Av_j}{s_is_j} = \frac{\lambda v_i^{\top}v_j}{s_is_j} = 0$$
 for

 $i \neq j$.

Liangda Fang 83/100

Proposition

 u_1, u_2, \cdots, u_m forms an orthonormal set of eigenvectors of AA^{\top} .

Proof.

 $\text{Unitary:} \quad u_i^\top u_i = \frac{A{v_i}}{s_i}^\top \frac{A{v_i}}{s_i} = \frac{v_i^\top A^\top A{v_i}}{s_i^2} = \frac{\lambda_i v_i^\top v_i}{\lambda_i} = 1.$

Orthogonality: $u_i^\top u_j = \frac{A v_i}{s_i}^\top \frac{A v_j}{s_j} = \frac{v_i^\top A^\top A v_j}{s_i s_j} = \frac{\lambda v_i^\top v_j}{s_i s_j} = 0$ for

 $i \neq j$.

Eigenvector: $AA^{\top}u_i = \frac{AA^{\top}Av_i}{s_i} = s_i^2 \frac{Av_i}{s_i} = \lambda_i u_i$.

Liangda Fang 83/100

Theorem

Let A be an $m \times n$ matrix. There are two orthonormal bases $\{v_1, \cdots, v_n\}$ of \mathbb{R}^n and $\{u_1, \cdots, u_m\}$ of \mathbb{R}^m , and real numbers $s_1 \ge s_2 \ge \cdots \ge 0$ s.t. $Av_i = s_i u_i$ for $1 \le i \le \min\{m, n\}$.

Liangda Fang 84/100

Finding the SVD: an alternative way

- $B = \begin{bmatrix} 0 & A^{\top} \\ A & 0 \end{bmatrix}$: an $(m+n) \times (m+n)$ matrix;
- λ : an eigenvalue of B;
- $\begin{vmatrix} v \\ w \end{vmatrix}$: an eigenvector of B w.r.t. λ ;
- $\bullet \begin{bmatrix} A^\top w \\ A v \end{bmatrix} = \begin{bmatrix} 0 & A^\top \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \lambda \begin{bmatrix} v \\ w \end{bmatrix}$
- $Av = \lambda w \Rightarrow A^{\top} Av = \lambda A^{\top} w = \lambda^2 v.$
- v is an eigenvector of $A^{\top}A$ w.r.t. λ^2 .
- SVD of A is a matter of finding eigenvalues and eigenvectos of $\begin{bmatrix} 0 & A^{\top} \\ A & 0 \end{bmatrix}$.

Liangda Fang 85 / 100 Power Iteration Methods

- The eigenvectors of a symmetric matrix is a orthonormal set;
- Finding the SVD of a symmetric matrix is a matter of finding the eigenvalue and vectors.

Conclusions

Special case: symmetric matrices

- The eigenvectors of a symmetric matrix is a orthonormal set;
- Finding the SVD of a symmetric matrix is a matter of finding the eigenvalue and vectors.
- λ_i : the eigenvalues satisfying $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_m|$;
- v_i : the corresponding eigenvector w.r.t. λ_i ;

Liangda Fang 86/100

Special case: symmetric matrices

- The eigenvectors of a symmetric matrix is a orthonormal set;
- Finding the SVD of a symmetric matrix is a matter of finding the eigenvalue and vectors.
- λ_i : the eigenvalues satisfying $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_m|$;
- v_i : the corresponding eigenvector w.r.t. λ_i ;
- $s_i = |\lambda_i|$;
- $u_i = \begin{cases} v_i, & \text{if } \lambda_i \ge 0; \\ -v_i, & \text{otherwise.} \end{cases}$

Liangda Fang 86/100

Definition

The **rank** of an $m \times n$ matrix A is the number of linearly independent rows (columns).

Proposition

The rank of the matrix $A = USV^{\top}$ is the number of nonzero entries in S.

Definition

The **rank** of an $m \times n$ matrix A is the number of linearly independent rows (columns).

Proposition

The rank of the matrix $A = USV^{T}$ is the number of nonzero entries in S.

Proof.

U and V are orthogonal, and hence invertible. ${\tt rank}(A) = {\tt rank}(S), \mbox{ which is the number of nonzero entries in } S.$

Liangda Fang 87/100

Proposition

Power Iteration Methods

If A is an $n \times n$ matrix, $|\det(A)| = s_1 \cdots s_n$.

Liangda Fang 88 / 100

Proposition

Power Iteration Methods

If A is an $n \times n$ matrix, $|\det(A)| = s_1 \cdots s_n$.

Proof.

Since $U^{\top}U = I$, $\det(U) = 1$ or $\det(U) = -1$.

Conclusions

Proposition

If A is an $n \times n$ matrix, $|\det(A)| = s_1 \cdots s_n$.

Proof.

Since
$$U^{\top}U = I$$
, $\det(U) = 1$ or $\det(U) = -1$.
Similarly, $\det(V^{\top}) = \det(V) = 1$ or $\det(V^{\top}) = \det(V) = -1$.

Liangda Fang 88/100

Proposition

Power Iteration Methods

If A is an $n \times n$ matrix, $|\det(A)| = s_1 \cdots s_n$.

Proof.

Since $U^{\top}U = I$, $\det(U) = 1$ or $\det(U) = -1$. Similarly, $\det(V^{\top}) = \det(V) = 1$ or $\det(V^{\top}) = \det(V) = -1$. $|\det(A)| = |\det(USV^{\top})| = |\det(U)| \cdot |\det(S)| \cdot |\det(V^{\top})| = s_1 \cdots s_n$.

Liangda Fang 88/ 100

Proposition

Power Iteration Methods

If A is an invertible $n \times n$ matrix, then $A^{-1} = VS^{-1}U^{\top}$.

Liangda Fang 89/100

Proposition

If A is an invertible $n \times n$ matrix, then $A^{-1} = VS^{-1}U^{\top}$.

Proof.

We can get that S is also invertible.

Liangda Fang 89/100

Proposition

If A is an invertible $n \times n$ matrix, then $A^{-1} = VS^{-1}U^{\top}$.

Proof.

We can get that S is also invertible.

By definition of the SVD, U and V^{\top} is also invertible.

Proposition

If A is an invertible $n \times n$ matrix, then $A^{-1} = VS^{-1}U^{\top}$.

Proof.

We can get that S is also invertible.

By definition of the SVD, U and V^{\top} is also invertible.

Further,
$$U^{-1} = U^{\top}$$
 and $(V^{\top})^{-1} = V$.

Liangda Fang 89/100

Proposition

If A is an invertible $n \times n$ matrix, then $A^{-1} = VS^{-1}U^{\top}$.

Proof.

We can get that S is also invertible.

By definition of the SVD, U and V^{T} is also invertible.

Further,
$$U^{-1} = U^{\top}$$
 and $(V^{\top})^{-1} = V$

Further,
$$U^{-1}=U^{\intercal}$$
 and $\left(V^{\intercal}\right)^{-1}=V.$ Finally, $A^{-1}=\left(USV^{\intercal}\right)^{-1}=\left(V^{\intercal}\right)^{-1}S^{-1}U^{-1}=VS^{-1}U^{\intercal}.$

Liangda Fang 89/100

Proposition

Power Iteration Methods

The $m \times n$ matrix A can be written as the sum of rank-1 matrices, i.e.,

$$A = \sum_{i=1}^{r} s_i u_i v_i^{\top},$$

where r is the rank of A, and u_i and v_i are the i-th columns of U and V, respectively.

Conclusions

Liangda Fang 90/100

Proof.

Power Iteration Methods

$$A = USV^{\top} = U \begin{bmatrix} s_1 & & & \\ & \ddots & & \\ & & s_r \end{bmatrix} V^{\top}$$

$$= U \begin{bmatrix} s_1 & & \\ & & \end{bmatrix} + \begin{bmatrix} & s_2 & \\ & & \end{bmatrix} + \dots + \begin{bmatrix} & & \\ & & s_r \end{bmatrix}) V^{\top}$$

$$= s_1 u_1 v_1^{\top} + s_r u_r v_r^{\top} + \dots + s_r u_r v_r^{\top}$$

Liangda Fang 91/100

Dimension reduction

- $A = \sum_{i=1}^{r} s_i u_i v_i^{\top}$ by Property 4.
- The matrix A can be represented by three components: s_i 's, u_i 's and v_i 's.

Liangda Fang 92/100

Dimension reduction

- $A = \sum_{i=1}^{r} s_i u_i v_i^{\top}$ by Property 4.
- The matrix A can be represented by three components: s_i 's, u_i 's and v_i 's.
- The rank-p approximation: $A = \sum_{i=1}^{p} s_i u_i v_i^{\top}$ where p < r.

Liangda Fang 92/100

Dimension reduction

Example

$$A = \begin{bmatrix} 3 & 2 & -2 & -3 \\ 2 & 4 & -1 & -5 \end{bmatrix}$$

$$\bullet \ \ U = \begin{bmatrix} 0.5886 & -0.8084 \\ 0.8084 & 0.5886 \end{bmatrix}$$

$$\bullet \ S = \begin{bmatrix} 8.2809 & 0 & 0 & 0 \\ 0 & 1.8512 & 0 & 0 \end{bmatrix}$$

$$\bullet \ V^\top = \begin{bmatrix} 0.4085 & 0.5327 & -0.2398 & -0.7014 \\ -0.6741 & 0.3985 & 0.5554 & -0.2798 \\ 0.5743 & -0.1892 & 0.7924 & -0.0801 \\ 0.2212 & 0.7223 & 0.0780 & 0.6507 \end{bmatrix}$$

Liangda Fang 93/100

Singular Value Decomposition

Example

Figure: Dimension reduction by SVD

- $u_1 = \begin{bmatrix} 0.5886 \\ 0.8084 \end{bmatrix}$
- \bullet $s_1 = 8.2809$:
- $\bullet \ A \approx u_1 s_1 v_1^{\top} = \begin{bmatrix} 1.9912 & 2.5964 & -1.1689 & -3.4188 \\ 2.7346 & 3.5657 & -1.6052 & -4.6951 \end{bmatrix}.$

Liangda Fang 94/100

Compression

- An $n \times n$ matrix needs $n \times n$ numbers.
- By property 4, the rank-p approximation needs p *n*-dimensional u_i 's, n-dimensional v_i 's and s_i 's (total 2pn + pnumbers).
- When p < n, some storage space can be saved.

Liangda Fang 95/100

Compression

- An $n \times n$ matrix needs $n \times n$ numbers.
- By property 4, the rank-p approximation needs p n-dimensional u_i 's, n-dimensional v_i 's and s_i 's (total 2pn+p numbers).
- When p < n, some storage space can be saved.

Example

Let n = 256.

Approximation	Numbers of values	Compression rate
Original	65,536	1
Rank-8	4, 104	$pprox rac{1}{16}$
Rank-16	8, 208	$pprox rac{1}{8}$
Rank-32	16,416	$pprox rac{1}{4}$

Conclusions

Liangda Fang 95/ 100

Power Iteration Methods PageRank QR Algorithm Singular Value Decomposition Conclusions

Compression

Figure: The original photo

Figure: Rank-8 approximation

Liangda Fang 96/ 100

Power Iteration Methods PageRank QR Algorithm Singular Value Decomposition Conclusions

Compression

Figure: Rank-16 approximation

Figure: Rank-32 approximation

Liangda Fang 97/100

Conclusions

Power Iteration Methods

- Finding the dominant eigenvalue and eigenvector:
 - Power Iteration
 - 2 Rayleigh Quotient Iteration
 - 3 Applying Power Iteration to PageRank
- ullet Finding some eigenvalue and eigenvector given a shift s
 - Inverse Power Iteration

Conclusions

Liangda Fang 98/ 100

Conclusions

- Finding all eigenvalues and eigenvectors
 - Normalized Simultaneous Iteration
 - Unshifted QR Algorithm
- Two improvements to Unshifted QR Algorithm
 - Shifted QR Algorithm
 - 2 First put the matrix into upper Hessenberg form
- Singular Value Decomposition
 - Finding the SVD
 - 2 Dimension Reduction and Compression via SVD

Liangda Fang 99/100

Power Iteration Methods

Thank you!

Conclusions

Liangda Fang 100/ 100