(1) a) $(x+2)^3 = 27$ $L = \{1\}$ Lukopf: "Die Klaumer und 3 ergba"

c) $\sqrt{67 - x} = 8$ $L = {3}$

d) $\frac{2}{14} = \frac{1}{x+4}$ $L = \{3\}$ Der Neurer erreits 7 ergeben '

e) $x^2 - x = 0$ $L = \{0, 1\}$ Here $x = \{0, 1\}$

f) $2x^3 = 4x^2$ $L = \{0; 2\}$ multiple of the content of the con

(2) a) $x^2 - 5x + 6 = 0$ L = $\{2, 3\}$

b) $x^2 - 8x - 20 = 0$ $L = \{-2, 10\}$

c) $x^2 - 11x + 24 = 0$ $L = \{3, 8\}$

d) $x^2 + \frac{1}{2}x + \frac{3}{2} = 0$ $L = \{-3; -\frac{1}{2}\}$

e) $x^2 + \frac{5}{3}x - \frac{2}{3} = 0$ $L = \{-2, \frac{4}{3}\}$

 f_1 $\chi^2 - 3\sqrt{2} \times + 4 = 0$ $L = \{2\sqrt{2}; \sqrt{2}\}$

(3) a) $x^{2}(4x+1)+5 = 5(x-1)+2(x+2x^{3})$ $4x^{3}+x^{2}+5 = 5x-5+2x+4x^{3}\left|-4x^{3}-7x+5\right|$ $x^{2}-7x+10=0$

Viela: L = { 2; 5}

(3) b)
$$5x^{4} + x^{5} + 4x^{3} = -3x(x^{3} + x^{2})$$

 $5x^{4} + x^{5} + 4x^{3} = -3x^{4} - 3x^{3}$ | $+3x^{4} + 3x^{3}$
 $x^{5} + 8x^{4} + 7x^{3} = 0$
 $x^{3}(x^{2} + 8x + 7) = 0$
 $x = 0$ oh $(x^{2} + 8x + 7) = 0$
 $x = 0$ oh $(x^{2} + 8x + 7) = 0$
 $x = 0$ oh $(x^{2} + 8x + 7) = 0$
 $x = 0$ oh $(x^{2} + 8x + 7) = 0$

c)
$$3x^4 - 87x^2 + 800 = 0$$
 |:3
 $x^4 - 29x^2 + 400 = 0$

Substitution:
$$u = x^2$$

 $u^2 - 29 u + 100 = 0$

Ricksubshimhim:
$$\chi^2 = 25$$
 $\Rightarrow \chi_{9/2} = \pm 5$
 $\chi^2 = 4$ $\Rightarrow \chi_{3/4} = \pm 2$