PATENT ABSTRACTS OF JAPAN

(11)Publication number:

61-295355

(43) Date of publication of application: 26.12.1986

(51)Int.CI.

C22C 38/00 C22C 38/10 C22C 38/60 H01F 1/04

(21)Application number: 60-135505

(71)Applicant: SUMITOMO SPECIAL METALS CO LTD

(22)Date of filing:

21.06.1985

(72)Inventor: FUJIMURA SETSUO

YAMAMOTO HITOSHI MATSUURA YUTAKA HIROZAWA SATORU **SAGAWA MASATO**

(54) PERMANENT MAGNET ALLOY

(57)Abstract:

PURPOSE: To obtain a permanent magnet alloy causing no deterioration in magnetic properties even if thinned by working, by providing a composition containing prescribed percentage of R(Nd, Pr, Dy, etc.), B and Fe and having a main phase (FeBR-type tetragonal phase) having a prescribed grain size.

CONSTITUTION: The above permanent magnet alloy contains as principal components, by atom, ≥0.05W3% of one or more kinds of borides, 10W24% R (≥1 element among Nd, Pr, Dy, Ho and Tb or further, besides the above, ≤1 element among La, Ce, Sm, Gd, Er, Eu, Tm, Yb, La and Y), 4W24% B and 65W81% Fe, which has the main phase of ≤ 9µm average crystal grain size composed of the FeBR-type tetragonal phase.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

昭61-295355 ⑫ 公 開 特 許 公 報 (A)

MInt Cl.

證別記号

庁内整理番号

7619-4K

磁公開 昭和61年(1986)12月26日

C 22 C 38/00 38/10

38/60

※審査請求 未請求 発明の数 4 (全7頁)

永久磁石合金 の発明の名称

> 204年 昭60-135505 額

29出 願 昭60(1985)6月21日

大阪府三島郡島本町江川2-15-17 住友特殊金属株式会 60発明者 藤 村 節 夫 社山崎製作所内

大阪府三島郡島本町江川2-15-17 住友特殊金属株式会 73発 明 者 山本 日登志 社山崎製作所内

大阪府三島郡島本町江川2-15-17 住友特殊金属株式会 **69**発 明 者 松 浦 裕 社山崎製作所内

大阪府三島郡島本町江川2-15-17 住友特殊金属株式会 哲 明者 広 沢 79発 社山崎製作所内

大阪市東区北浜5丁目22番地 の出 顔 人 住友特殊金属株式会社

朝道 外1名 70代 理 人 弁理士 加藤

最終頁に続く

翻

1)原子%にて、硼化物のうち少なくとも1種を

1. 発明の名称

永久破石合金

2. 特許請求の範囲

0.05 ~ 8.0% 含有し, 10~24% R (RはNd. Pr. Dy, Ho, Thの少なくとも1種, 或いはこれらの1 程以上と更にLa. Ce. Sm. Gd. Er, Bu. Tm. Yb. La. Yの少なくとも1種とからなる)。 4 ~ 24% B, 85~81% Peを主成分とし、主相がPeBR系正 方晶相からなり、主相の平均結晶粒径が 9.0μ m 以下であることを特徴とする永久破石合金。 2)原子%にて、硼化物のうち少なくとも1種を 0.05 ~ 3.0% 含有し、10~24% R (RはNd, Pr, Dy. Ro. Thの少なくとも1種。或いはこれらの1 種以上と更にLa. Ce. Sm. Gd. Br. Eu. Tm. Yb. La, Yの少なくとも1種とからなる), 4~24% B. 65~81% Feを主成分とし、Feの 50%以下をCo (0%を除く)で置換し、主相がFeCoBR系正方

晶相からなり、主相の平均結晶粒径が 9.0μm以 下であることを特徴とする永久磁石合金。 2)原子%にて、硼化物のうち少なくとも1種を 0.05 ~ 3.0% 含有し、10~24% R (RはNd, Pr. Dy, Ho, Tbの少なくとも1種,或いはこれらの1 種以上と更にLa. Ce, Su, Gd, Er, Eu, Ta. Yb, La. Yの少なくとも1種とからなる). 4~24% B. 85~81% Feを主成分とし、Feの一部に代り下 記の所定%以下のM.元素(X 0 %を除く)を1種

以上含有し,主相がFeBR系正方晶相からなり,

主相の平均結晶粒径が 9.0μm以下であることを

(M元素)

特徴とする永久磁石合金。

3.0% Ti. Al. 5.0% ٧. 6.0% NI. 5.5% 4.5% Cr. 5.0% Nn. Bi. 9.0% Nb. 5.0% Ta. 5.2% No. 7.0% γ. 1.0% Sb. 5.0% So. 3.5% Ge. 1.5%

3.3% Zr. 3.3% Bf.

5.0% S1(但しM元素の合量は当該抵加元素のうち最大値を育するものの上記所定%以下)

4) 原子%にて、確化物のうち少なくとも1種を
0.05 ~ 8.0% 含有し、10~24% R (RはNd、Pr.
Dy. Ho, Tbの少なくとも1種, 或いはこれらの1種以上と更にLa, Ce, Se, Gd, Er, Eu, Ta, Yb,
La. Yの少なくとも1種とからなる), 4~24%
B. 65~81% Peを主成分とし、Peの50% 以下をCoで置換(Co 0%を除く)すると共にPeの一部に代
り下記の所定%以下のM元素 (N 0%を除く)を
1種以上含有し、主相がPeBR系正方品相からなり、主相の平均結晶粒径が 9.0μm以下であることを特徴とする永久磁石合金。

(M元素)

5.0% A1. 3.0% T1. 5.5% V. 6.0% N1. 4.5% Cr. 5.0% Nn. 5.0% B1. 9.0% Nb.

一方、希土類コバルト磁石はコバルトを 50~ 60 vt % 6 含むうえ、希土類鉱石中にあまり含まれていない Smを使用するため大変高低であるが、他の磁石に比べて、磁気特性が格段に高いため、主として小型で付加価値の高い磁気回路に多用されるようになった。

本発明者は先に、高価なSaやCoを含有しない新しい高性能永久磁石としてFe-B-R系永久磁石を提案した(特開昭59-46008)。この永久磁石は、RとしてNdやPrを中心とする資源的に豊富な軽着土類を用い、Peを主成分として25NGOe以上の極めて高いエネルギー複を示す、すぐれた永久磁石である。さらに、FeBR基本系の展開として、CoでPeの一部を置換してキュリー温度を上昇させたもの(特開昭59-64738)、添加元素M(A1.Ti.V等)の含有により保持力増大を計ったもの(特開昭59-89401)、Co.N両方を含むもの(特開昭59-132104)等の一連の永久磁石(合全)が本出顧人により開発されている。

最近、磁気回路の高性能化、小型化に伴って。

7.0% Ta. 5.2% No.

5.0% V. 1.0% Sb.

3.5% Ge. 1.5% Sn.

3.8% Zr. \$.8% Hf.

5.0% S1(但しM元素の合長は当該添加元素のうち最大値を有するものの上記所定%以下)

3. 発明の詳細な説明

[産業上の利用分野]

この発明は旋結磁石の少なくとも1主面を研削 加工等により加工した場合にも磁石特性の低下しない 薄物用永久磁石合金。特に厚みが約3 mm 以下 の薄物用永久磁石合金に関する。

[従来の技術]

現在の代表的な永久磁石材料は、アルニコ、ハードフェライトおよび希土類コパルト磁石である。近年のコパルトの原料事情の不安定化に伴ない、コパルトを20~80vt% 含むアルニコ磁石の需要は減り、鉄の酸化物を主成分とする安価なハードフェライトが磁石材料の主流を占めるようになった。

Pe-B-R系永久磁石は益々注目を浴び、厚みが 3 mg以下の薄小物用磁石が要望されてきた。

【発明が解決しようとする問題点】

そのため、成形焼結した薄小の焼結磁石体表面の凹凸面および歪み面を除去して平坦化し、且つ表面の酸化層除去のため、研削加工する必要があるが、前記Fe-B-R系焼結磁石を例へば素材厚みにの配より製品厚み1mm、2mm、4mm、6mm、8mmに研削加工すると製品厚みが小さくなる程、第1図に示す如く、磁石特性は劣化することが判った。

本発明は、上途の問題点を解消することを目的とする。

[発明による解決手段]

本発明の第1の競様に係る永久磁石合金は、原子%にて、硼化物のうち少なくとも1種を 0.05 ~ 8.0% 含有し、10~24% R (RはNd, Pr, Dy, Ho, Tbの少なくとも1種、或いはこれらの1種以上と更にLa, Ce, Sm. Gd, Br, Bu, Tm, Yb, La, Yの少なくとも1種とからなる)、4~24% B,

65~81% Peを主成分とし、主相がPeBR系正方品相からなり、主相の平均結晶粒径が 9.0μm以下であることを特徴とする。

本発明の第2の整様として、第1の態様(PeBR基本系)をベースとし、Peの 50% 以下を置換してCo(Co 0%を除く)を含有すること、第3の整様としてPeの一部に代えて後述のM元素を所定%以下含有(N 0%を除く)すること、さらに第4の態様としてPeの 50% 以下をCo(Co 0%を除く)で置換すること、及びPeの一部に代えて上記M元素を所定%含有すること、が夫々特徴とされる。

M元素はFeの一部に代り下記の所定%以下のM元素(N 0 %を除く)を1種以上含有するものである:

5.8%	A1.	3.0%	Ti.
5.5%	γ.	6.0%	NI.
4.5%	Cr.	5.0%	Mn.
5.0%	B1.	9.0%	ΝЪ.
7.0%	Ta.	5 . 2 X	No.
5 18	v .	1 0%	Sb.

するためには原料粉末粒度を 2 μ m 以下に抑える 必要があるが、Pe-B-R系統結磁石用原料粉末 には希土類元素を多量に含有するため、粉末粒度 2 μ m 以下の数粉末では化学的に活性で、取扱い が困難であり、安定した量産化には適しない。

発明者は種々研究した結果、Pe-B-R系統結 磁石内に特定量の硼化物を含有せしめることによ り、焼結時における粒成長を抑制して18c の増大 (1~2 k0e 上昇)を図るとともに、加工により 厚み約3 mx以下に薄物化した場合にも焼結磁石の 磁石特性が低下することのないすぐれた特性を有 する永久磁石材料を提供するものである。

本発明は、硼化物の少くとも1種を添加することに特徴がある。硼化物としては、Ti. Zr. Hf. V. Nb. Ta. Cr. No. W. 格土類(R)等の金属の硼化物、BN等がある。これらの硼化物のうち、ZrB₂、ZrB₁₂、HfB₂、VB₂、NbB、NbB₂、TaB、TaB₂、TiB₂、CrB₂、NoB、HoB₂、NoB、HoB₂、Ro₂ B、WB、W₂ B、BN、NdB₈、PrB₅等が実用的である。

1.5% Ge. 1.5% Sn.

3.3% Zr. 3.3% Hf.及び5.0% Gi (但しM元素の合数は当該添加元素のうち最大値 を有するものの上記所定%以下)。

[好適な実施の超様及び作用効果]

本発明者はFe-B-R系染結磁石の磁石特性の低下原因について種々研究した結果。加工されたFe-B-R系染結磁石の表面第一層の結晶群の保磁力低下の理由は高保磁力を出現するための必要且つ最適な粒界相が存在しないためであることを知見した。

然しながら、加工された表面の結晶群に必要且つ最適の位界相を付与することは容易でなく、保 磁力の低い表面層の結晶群の体散比を小さくする ためには焼結体の結晶粒径を極力小さくすること が有効なることを知り得た。

一般に焼結体の結晶粒径を小さくするためには、 成形前の散粉砕粉末の粒度を小にすることで可能 となる。厚み 3 ms以下の薄小物用焼結破石の磁石 特性の劣化を極力少なくし、且つ安定して最変化

この発明の永久砥石材料は平均結晶粒径が 9.0 μm以下の範囲にある正方晶系の結晶構造を有する PeB R 系ないし PeCoB R 系化合物を少なくとも 50 Vol %以上と体 後比で 1 %~ 50 %の非磁性 化 (酸化物相を除く)を含むことを特徴とする。この発明磁石において、平均結晶粒径が 9 μm を越える場合は保磁力の低い表面の結晶群の体 後 と せんさせるので好ましくない。平均結晶粒径は 好ましくは 7 μm 以下、さらに 3~ 5 μm である。

したがって、この発明の永久磁石は、Rとして
RdやPrを中心とする資源的に豊富な軽等土類を主
に用い、硼化物を含有しPe、B、Rを主成分とす
ることにより、20MGOe以上の極めて高いエネルギ
一種並びに、高残留磁束密度、高保磁力を有し、
かつ加工による特性低下を防止した。すぐれた永
久磁石を安備に得ることができる。

この発明の永久破石に用いる希土類元素 R は、 Nd. Pr. Dy, Ho, Tbのうち少なくとも 1 種を含み、 あるいはこれらの 1 種以上にさらに、La, Ce, Se, Gd, Er, Eu, Pa, Ta, Yb, Yのうち少なくとも 1 程を含むものが好ましい。又、通例R(特にNd.Pr.Dy.Ho,Tb等)のうち1種をもって足り、特にNd.Prが好ましいが、実用上は2種以上の混合物(ミッシュメタル、ジジム等)を入手上の便宜等の理由により用いることができる。但し主相を構成する合金のR中のSm.Laはできるだけ少ない方がよい(例えばSm1原子%以下、さらに 0.5%以下)。R混合系としては特にNd.Pr.又はこれらと少量(全合金中 0.05~5原子%、特に 0.2~3原子%)のDy.Ho,Tb等の組合せが温度特性上好ましい。RとしてはNd,Prの合計50原子%以上とすることが特性、コスト、資源的観点から好ましい。

なお、このRは乾筍土類元素でなくてもよく、 工業上入手可能な範囲で製造上不可避な不純物を 含有するものでも差支えない。

Rは、新規な上記系永久磁石における、必須元素であって、10原子名未満では、結晶構造がαー鉄と同一構造の立方晶組織が多く生成するため、高磁気特性、特に高保磁力が得られず、24原子%

又 8.0原子%を越えると残留磁束密度並びに最大 エネルギー積が低下するため、好ましくない。現 化物は好ましくは 0.3~1原子%とする。

また、この発明による永久概石用合金において、 Peの一部をCoで置換することは、得られる磁石の 磁気特性を扱うことなく、温度特性を改善するこ とができるがCo置換量がPeの 50%を越えると、逆 に磁気特性が低下するため、好ましくない。

なお合金中のCo 5 原子%以上でBrの温度係数が0.1%/で以下となり、25原子%以下では他の特性を本質上劣化させることなくキュリー温度Tcの増大に寄与する。またCo は少量(0.1~1原子%)でも含量に応じて有効であり、含有量にほど対応してキュリー温度TcをFaBR基本系のTc 300~370でに対し増大させる。Co 20%的後では1Hcも増大させる。また角形性の改善効果もある。

また、下記添加元素のうち少なくとも1種は、 Fe-B-R系永久磁石に対してその保磁力等を改善あるいは製造性の改善、低価格化に効果があるため最加する。しかし、保磁力改善のための添加 を越えると、Rリッチな非磁性相が多くなり、残留磁束密度(Br)が低下して、すぐれた特性の永久磁石が得られない。よって、希土類元素Rは、10原子%~24原子%の範囲とする。

Bは、新規な上記系永久磁石における、必須元素であって、4原子光未満では、菱面体組織が多く生成し、高い保磁力(iRc) は得られず、24原子光を越えると、Bリッチな非磁性相が多くなり、残留磁束密度(Br)が低下するため、すぐれた永久磁石が得られない。よって、Bは、4原子%~24原子%の範囲とする。

Feは、FeBR基本系永久磁石において、必須元素であり、85原子%未満では銭留磁束密度 (Br)が低下し、81原子%を越えると、高い保磁力が得られないので、PeはFeBR基本系において85原子%~81原子%の含有とする。

この発明において、特徴の概化物は焼結砥石の結晶粒微細化に重要であるが、0.05 原子%未満では結晶粒微細化の効果が少なく、焼結体の主面加工時に砥石特性の低下を防止する効果が少なく、

に伴ない残留磁束密度 (Br)の低下を招来するので、 (BH) max 20MCOe以上とするためBrは少くとも 9 kG 以上が必要であり、この範囲での添加が望ましい。

また、下記器加元素Mのうち少なくとも1種は、Pe-B-R系永久既石に対してその保磁力等を改善あるいは製造性の改善、低価格化に効果があるため添加する。しかし、保磁力改善のための添加に伴ない一般に残留磁束密度(Br)の低下を招来するので、Br SkG以上を得るため下記範囲での添加が変ましい。

5.0原子%以下のAI, 3.0原子%以下のTi. 5.5原子%以下のV. 6.0原子%以下のNI. 4.5原子%以下のCr, 5.0原子%以下の Na. 5.0原子%以下のBi, 9.0原子%以下の Nb. 7.0原子%以下のTa. 5.2原子%以下の No. 5.0原子%以下のW, 1.0原子%以下のSb. 3.5原子%以下のCe. 1.5原子%以下のSn. 3.3原子%以下の2r. 8.3原子%以下のHf,

のうち少なくとも1種を添加含有(但し、2種以

5.0原子%以下のSi

上含有する場合は、その最大含有量は当該添加元素のうち最大値を有するものの原子%以下の含有)させることにより、永久磁石の高保磁力化が可能になる。なおNi、Nnの限度はIBcから定められる。但し上記添加元素Mの含有益は一般にBrの所望地に応じて適宜上記範囲内で選択でき、一般に 0.1~3原子%以下(特に1%以下)が有効である。このMはまた、粒界相成分中に合金化して添加することもできる。添加元素Mとしては V、Nb、Ta、No、W、Cr、Alが好ましい。

この発明における合金粉末の結晶相は主相が少なくとも50 vol % 以上(好ましくは 80 vol % 以上)の正方晶であり、少なくとも非磁性相により主相の粒界が囲まれていることが、すぐれた磁気特性を有する焼結永久磁石を作製するのに不可欠である。非磁性相は主としてRリッチ相(R 90原子%以上の金属)或いはさらにBリッチ相(R 2 Fe7 B 6 ないしR 1 Fe4 B 4等)から構成されほんのわずかでも有効であり、例えば 1 vol % 以上は十分な量である。正方晶格子のパラメータは a

的方法により製造可能であり、磁場中加圧成形することにより磁気的異方性磁石が得られ、また、 無磁界中で加圧成形することにより、磁気的等方 性磁石を得ることができる。焼結は常圧又は加圧 条件下に行うことができる。

また、この発明による合金は、R、B、Pe(或いはCo、M元素)の他、工業的生産上不可避的不純物の存在を許容できる。例えば、2原子%以下のP、2原子%以下のS、2原子%以下のCu、合計量で2原子%以下を含有することもでき、磁合金の製造性改善、低価格化が可能である。但しこれらの元素は一般にBrを低下させるので少ないほうがよく、上記範囲はBr9kG以上とするためであり、さらに所要Brに従いその許容限度は少くなる(合計1%又は 0.5%以下)。

[実施例]

実施例1

出発原料として、電解鉄、フェロボロン合金。 及びNd金属を使用し、最終の組成が14Nd8B78Feとなるよう。Nd、Pe、Bをまず高周波溶解し、その 約 8.8人、c 約 12.2人でありその中心組成はR 2 Fe 14 B であると考えられる。 Coを含む Pe Co B R 系の場合にも Fe B R 基本系に準じ Pe は部分的に Co により置換されて同様の結晶構造をとる。 M 元素の添加 (所定範囲内)では、基本的結晶構造は変らないと考えられる。

本発明のFeBR基本系において、高い接留磁束 密度と高保磁力を得るためには、R12.0~20原子 %、B5~15原子%、FeB5~83原子%の場合。最 大エネルギー稜(BH)max 25MGOe以上が得られるの が好ましい範囲である。さらにR12.0~19原子%、 B5.5~12原子%では(BH)max 20MCOe以上が得ら

R 12.0~18原子%, B 5.5~10原子%では\$5NG Oe以上, さらにR12~14.5原子%, B 5.8~8原 子%では48NGOe以上(最高44NGOe)が達成される。

合金中のCoは(原子%にて) 35%以下で25MCOe 以上、25%以下で30MGOe以上、23%以下で85MCOe 以上、15%以下で40MGOe以上が可能である。

また、この発明の永久进石は一般的に粉末治金

後、水冷銅鉄型に鉄造し、1㎏の鋳塊を得た。

その後、鉾塊をスタンプミルにより、粗粉砕し、 次にボールミルにより微粉砕時に粒度 50μ m以下 の純度98.5%以上のBN、純度98%以上の TIB_2 を 夫々最終組成が14Nd8B77.5Pe0.5BN (又は TIB_2) になるよう添加配合して微粉砕して、粒度 3.0 μ mの微粉砕粉を得た。

前記Nd-B-Fe合金粉末。BN含有Nd-B-Fe合金粉末及び TIB₂ 含有のNd-B-Fe合金粉末を失々型に装入し、10k0e の磁界中で配向し、磁界と直交方向に 2 T/cdの圧力で成型した。

得られた成型体を1100℃、1時間、Ar中の条件で焼結し、その後、放冷し、更にAr中で 600℃、2時間の時効処理を施して、10mm×5 mm×厚み10mm寸法の試験片を得た。

磁石の組成、結晶粒径を第 1 表に、前記試験片の厚みを 6 mm、 4 mm、 2 mm、 1 mm に研削加工(両面)した時の磁気特性の結果を第 2 図に表す。尚この発明磁石において、BN、T1B₂ 等硼化物は実施例の如く原料粉末の散粉砕時に配合添加してもよ

いが、配合原料の溶解時に溶漏中に TiB₂ 等の硼化物を生成せしめ、跨塊内に硼化物を含有せしめてもよい。

第 1 表

		ИЪ	В	BN	Ti B 2	Fe	結晶粒径
比較例	1	14	8			78	10.2 " m
本発明.	2	14	8	0.5		77.5	7.0
	3	14	8 ·		0.5	77.5	6.3

実施例 2

実施例とまったく同じ方法で得られた第2表に記載のNd₁₅B₈ Fe_{76.7}(添加剤) 0.3の焼結磁石から10m×10m×豚み10m寸法の試験片を得た。さらにこの磁石の厚みを 1.5mmに研磨(両面)したときの磁気特性並びに平均結晶粒径(D)を第2表に挙げる。

4. 図面の簡単な説明

第 1 図は14Nd-7 B-Pe磁石の厚さ t と磁気特性の関係を示すグラフ。

第 2 図は本発明の実施例たる14Nd 8 B 77.5Fe 0.5(T1 B₂) 及び14Nd 8 B 77.5Fe 0.5(BN)の磁 石の厚さ t と磁気特性の関係を示すグラフである。

> 出願人 住友特殊金属株式会社 代理人 弁理士 加 蘇 朝 道 (他1名)

				重	原各 1000			松	1.5	
	卧	む	ä	भा	(EH) max	Ħ	齒	똤	(BH) max	Ħ
施甘剂	結晶粒径	数	(35)	(kOe)	(k0e)	(ROB)	9	(k0e)	(k0e)	(gg
ナツ	11.8 m	шn	12.4	14.8	88.4	14.2	12.2	12.2 18.2	31.8	5.5
Zr B 2	8.8		12.4 15.0	16.0	88.5	14.2	12.8	12.8 14.7	85.8 85.8	=
Cr.B	8.0		12.8 14.8	14.8	85.8	18.8	12.8	14.8	38.2	10.0
Ho ₂ B	4.8		12.4	16.2	86.5	14.8	12.4 14.9	14.9	84.7	14.0
TaB2	5.5		12.4	14.9	88.8	14.1	12.3	14.7	88.1	18.7
MB2	7		12.4 15.0	15.0	86.8	14.5	12.4 14.6	14.6	85.5	18.8

焦 1 段

第 2 図

砂石厚さ(t)と高石特性

- 14Nd8B775FeQ5 (TIB2)
- × 14 Nd8B7Z5FeQ5 (BN)

10 mm x5mm xt mm

第1頁の続き

@Int_Cl_4

識別記号

庁内整理番号 7354-5E

H 01 F

1/04

大阪府三島郡島本町江川2-15-17 住友特殊金属株式会 仍発 明 者 佐川 眞 人 社山崎製作所内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.