Database Management System

Subject Code: 3130703

Prof. Amit Vyas
Department of Computer Engineering
V.V.P. Engineering College

Teaching and Examination Scheme

Teaching Schemes

- ✓ Lecture (L) 4, Tutorial (T) o, Practical (P) 2 = Credit 5
- ✓ Total Marks of the Subject: 150

Examination Scheme

Theory Marks:

- ✓ ESE(E) 70 (University Level Exam) (End Semester Examination)
- ✓ PA(M) 30 (College Level Exam) (Progressive Assessment)

Practical Marks:

- ✓ ESE(V) 30 (End Semester Examination (College level))
- ✓ PA(I) 20 (Progressive Assessment (College Level))

Reference Books

- 1. "Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth, S. Sudarshan, McGraw-Hill.
- 2. "Fundamentals of Database Systems", 7th Edition by R. Elmasri and S. Navathe, Pearson
- 3. "An introduction to Database Systems", C J Date, Pearson.

Cont....

- 4. "Modern Database Management", Hoffer, Ramesh, Topi, Pearson.
- 5. "Principles of Database and Knowledge Base Systems", Vol 1 by J. D. Ullman, Computer Science Press.
- 6. "Understanding SQL", Martin Gruber, BPB
- 7. SQL,PL/SQL The Programing language of Oracle

List of Open Source learning website:

- https://www.tutorialspoint.com/dbms/
- 2. https://www.w3schools.com/sql/
- 3. https://www.codecademy.com/learn/learn-sql

List of Experiments

- 1. To study DDL-create and DML-insert commands
- 2. Create table and insert sample data in tables.
- 3. Perform queries involving predicates LIKE, BETWEEN, IN etc.
- 4. To Perform various data manipulation commands, aggregate functions and sorting concept on all created tables.

Cont....

- 5.To study Single-row functions.
- 6.Displaying data from Multiple Tables (join)
- 7. To apply the concept of Aggregating Data using Group functions.
- 8. To solve queries using the concept of sub query.

Cont....

- 9. To apply the concept of security and privileges
- 10. To study Transaction control commands
- 11. Write Cursor
- 12. Write Trigger

Course Outcomes (Learning Outcomes)

CO_1.-Identify the basic concepts and various data model used in database design ER modeling concepts and architecture use and design queries using SQL

CO₂.-Apply relational database theory and be able to describe relational algebra expression, tuple and domain relation expression fro queries.

Cont....

CO_{_3}.-Recognize and identify the use of normalization and functional dependency, indexing and hashing technique used in database design.

CO_4.-Recognize/ identify the purpose of query processing and optimization and also demonstrate the basic of query evaluation.

Cont....

CO_{_5}.-Apply and relate the concept of transaction, concurrency control and recovery in database.

CO_6.-Discuss recovery system and be familiar with introduction to web database, distribute databases, data warehousing and mining.

DBMS Keys

Primary Key:

A primary key is used to ensure data in the specific column is unique. It is a column cannot have NULL values. It is either an existing table column or a column that is specifically generated by the database according to a defined sequence.

• **Example:** STUD_NO, as well as STUD_PHONE both, are candidate keys for relation STUDENT but STUD_NO can be chosen as the primary key (only one out of many candidate keys).

STUDENT

STUD_NO	STUD_NAME	STUD_PHONE	STUD_STATE	STUD_COUNT RY	STUD_AG E
1	RAM	9716271721	Haryana	India	20
2	RAM	9898291281	Punjab	India	19
3	SUJIT	7898291981	Rajsthan	India	18
4	SURESH		Punjab	India	21

Table 1

Foreign Key:

A foreign key is a column or group of columns in a relational database table that provides a link between data in two tables. It is a column (or columns) that references a column (most often the primary key) of another table.

Example:

STUD_NO in STUDENT_COURSE is a foreign key to STUD_NO in STUDENT relation.

Stud no	COURSE_NO	COURSE_NAME
1	C ₁	DBMS
2	C ₂	DS
3	C ₃	PPS
4	C ₄	PPS

Sr.NO.	PRIMARY KEY	FOREIGN KEY
1	A primary key is used to ensure data in the specific column is unique.	A foreign key is a column or group of columns in a relational database table that provides a link between data in two tables.
2	It uniquely identifies a record in the relational database table.	It refers to the field in a table which is the primary key of another table.
3	Only one primary key is allowed in a table.	Whereas more than one foreign key are allowed in a table.
4	It is a combination of UNIQUE and Not Null constraints.	It can contain duplicate values and a table in a relational database.
5	It does not allow NULL values.	It can also contain NULL values.
6	Its value cannot be deleted from the parent table.	Its value can be deleted from the child table.
7	It constraint can be implicitly defined on the temporary tables.	It constraint cannot be defined on the local or global temporary tables.

Entity

• An entity is thing in real world with its own independent existence.

• E.g. book, Faculty

Entity Name

BOOK

Attributes

• Attribute is **properties** or details about an entity.

Attribute Name

Relationship

• It should be placed between two entities and a line connecting it to an

entity.

Relationship

Ternary Relationship

Relationship between 3 entities is called ternary relationship.

Exercise

- ➤ Draw an E-R diagram of Library Management System.
- ➤ Draw an E-R diagram of Banking Management System.

Entity

EmpID

Primary Key Attribute

Payment

Weak Entity

Total Participation

Types of Attributes

Simple Attribute	Composite Attribute	
Cannot be divided into subparts	Can be divided into subparts	
E.g. RollNo, CPI	E.g. Name (first name, middle name, last name) Address (street, road, city)	
Symbol Roll No	Symbol Name First name Last name Middle name	

Single-valued Attribute	Multi-valued Attribute	
Has single value	Has multiple (more than one) value	
E.g. RollNo, CPI	E.g. PhoneNo (person may have multiple phone nos) EmailID (person may have multiple emails)	
Symbol Roll No	Symbol Phone No	

Stored Attribute	Derived Attribute
It's value is stored manually in database	It's value is derived or calculated from other attributes
E.g. Birthdate	E.g. Age (can be calculated using current date and birthdate)
Symbol Birthdate	Symbol

Participation Constraints

- ☐ It specifies the participation of an entity set in a relationship set.
- ☐ There are two types participation constraints
 - Total participation
 - Partial participation

Partial participation

- some entities in the entity set may not participate in any relationship in the relationship set.
- indicated by single line

Total participation

- every entity in the entity set participates in at least one relationship in the relationship set.
- indicated by double line

customer

borrow

loan

Weak Entity Set

- An entity set that does not have a primary key is called weak entity set.
- A weak entity is a type of entity which doesn't have its key attribute.
- ATM ID AND TRANS NO IS primary key payment.

Strong Entity Set	Weak Entity Set
Strong entity set always has a primary key.	It does not have enough attributes to build a primary key.
It is represented by a rectangle symbol.	It is represented by a double rectangle symbol.
It contains a Primary key represented by the underline symbol.	It contains a Partial Key which is represented by a dashed underline symbol.
The member of a strong entity set is called as dominant entity set.	The member of a weak entity set called as a subordinate entity set.
Primary Key is one of its attributes which helps to identify its member.	In a weak entity set, it is a combination of primary key and partial key of the strong entity set.
In the ER diagram the relationship between two strong entity set shown by using a diamond symbol.	The relationship between one strong and a weak entity set shown by using the double diamond symbol.
The connecting line of the strong entity set with the relationship is single.	The line connecting the weak entity set for identifying relationship is double.

Superclass v/s Subclass

Super Class	Sub Class
A superclass is an entity from which another entities can be derived.	A subclass is an entity that is derived from another entity .
E.g, an entity account has two subsets saving_account and current_account So an account is superclass.	E.g, saving_account and current_account entities are derived from entity account. So saving_account and current_account are subclass.

Generalization v/s Specialization

DBMS Generalization

- ✓ Generalization is like a **bottom-up approach** in which **two or more entities of lower level combine** to form a higher level entity if they have some attributes in common.
- ✓ Generalization is more like subclass and superclass system, but the only difference is the approach. Generalization uses the bottom-up approach.
- ✓ In generalization, entities are combined to form a more generalized entity, i.e., subclasses are combined to make a superclass

DBMS Generalization

• For example, Faculty and Student entities can be generalized and create a higher level entity Person.

DBMS Specialization

- ✓ Specialization is a **top-down** approach, and it is **opposite to Generalization**. In specialization, one higher level entity can be broken down into **two lower level entities**.
- ✓ Specialization is used to identify the subset of an entity set that shares some distinguishing characteristics.
- ✓ Normally, the superclass is defined first, the subclass and its related attributes are defined next, and relationship set are then added

DBMS Specialization

For example: In an Employee management system, EMPLOYEE entity can be specialized as TESTER or DEVELOPER based on what role they play in the company.

DBMS Aggregation

✓ In aggregation, the relation between two entities is treated as a single entity. In aggregation, relationship with its corresponding entities is aggregated into a higher level entity.

• For example: Center entity offers the Course entity act as a single entity in the relationship which is in a relationship with another entity visitor. In the real world, if a visitor visits a coaching center then he will never enquiry about the Course only or just about the Center instead he will ask the enquiry about both.

Generalization	Specialization
The process of creation of group from various entities is called generalization.	The process of creation of sub- groups within an entity is called specialization.
It is Bottom-up approach.	It is Top-down approach.
The process of taking the union of two or more lower level entity sets to produce a higher level entity set.	_

Generalization & Specialization example

Mapping Cardinality Constraints

- One to one
- One to many
- Many to one
- Many to many

Mapping Cardinalities

One to one

One to many

Mapping Cardinalities

Many to Many

Reduction of ER diagram to Table

- ✓ There are some points for converting the ER diagram to the table:
 - Entity type becomes a table.
 - All single-valued attribute becomes a column for the table.
 - ✓ A key attribute of the entity type represented by the primary key.
 - ✓ The multivalued attribute is represented by a separate table.
 - Composite attribute represented by components.
 - Derived attributes are not considered in the table.

Reduction of ER diagram to Table

Entity type becomes a table.

• In the given ER diagram, LECTURE, STUDENT, SUBJECT and COURSE forms individual tables.

All single-valued attribute becomes a column for the table.

• In the STUDENT entity, STUDENT_NAME and STUDENT_ID form the column of STUDENT table. Similarly, COURSE_NAME and COURSE_ID form the column of COURSE table and so on.

Reduction of ER diagram to Table

▶ Reduction of ER diagram to Table

A key attribute of the entity type represented by the primary key.

• In the given ER diagram, COURSE_ID, STUDENT_ID, SUBJECT_ID, and LECTURE_ID are the key attribute of the entity.

The multivalued attribute is represented by a separate table.

• In the student table, a hobby is a multivalued attribute. So it is not possible to represent multiple values in a single column of STUDENT table. Hence we create a table STUD_HOBBY with column name STUDENT_ID and HOBBY. Using both the column, we create a composite key.

Composite attribute represented by components.

• In the given ER diagram, student address is a composite attribute. It contains CITY, PIN, DOOR#, STREET, and STATE. In the STUDENT table, these attributes can merge as an individual column.

Derived attributes are not considered in the table.

• In the STUDENT table, Age is the derived attribute. It can be calculated at any point of time by calculating the difference between current date and Date of Birth.

1:1 Mapping Cardinality:

The primary key of any one table in to the another table as a foreign key.

1:N Mapping Cardinality:

primary key of table having 1 mapping in to the another table having many cardinality as a Foreign key.

House (HouseID, Hname, PersonID)

N:N Mapping Cardinality:

Disjoint Constraint

It specifies that the entity of a super class can belong to only one lower-level entity set (sub class).

Non-disjoint (Overlapping) Constraint

It specifies that an entity of a super class can belong to more than one lower-level entity set (sub class).

Participation Constraints

- ☐ It specifies the participation of an entity set in a relationship set.
- ☐ There are two types participation constraints
 - Total participation
 - Partial (optional)participation

Partial participation

- some entities in the entity set may not participate in any relationship in the relationship set.
- indicated by single line

Total participation

- every entity in the entity set participates in at least one relationship in the relationship set.
- indicated by double line

customer

borrow

loan

Type of Database Models

- Hierarchical Model
- Network Model
- 3. Entity-relationship Model
- 4. Relational Model
- 5. Object-oriented database Model

Hierarchical Model

Network Model

□ This is an **extension of the hierarchical model**, allowing **many-to-many relationships** in a tree-like structure that **allows multiple parents**.

Entity-relationship Model

Relational Model

Data is organized in two-dimensional tables and the relationship is maintained by **storing a common attribute**. Also define some key relation in table (**EX. Customer and Bill**)

Object-oriented database Model

Object oriented data model is based upon real world situations. These situations are represented as objects, with different attributes. All these object have multiple relationships between them.

Integrity Constraints

> Check

Limits the data values of variables to a specific set, range, or list of values.

The constraint can be applied for a single column or a group of columns.

E.g. value of SPI should be between o to 10.

- Not null
- Unique
- Primary key
- Foreign key

Thank You