

VE230 Homework 3

2020 Summer

- **P.3-22** The polarization in a dielectric cube of side L centered at the origin is given by $P = P_0(a_x x + a_y y + a_z z)$.
- a) Determine the surface and volume bound-charge densities
- **b)** Show that the total bound charge is zero.
- P.3-23 Determine the electric field intensity at the center of a small spherical cavity cut out of a large block of dielectric in which a polarization P exists.
- **P.3-25** Assume that the z=0 plane separates two lossless dielectric regions with $\epsilon_{r1} = 2$ and $\epsilon_{r2} = 3$. If we know that E_1 in region 1 is $a_x 2y a_y 3x + a_z (5+z)$, what do we also know about E_2 and D_2 in region 2? Can we determine E_2 and D_2 at any point in region 2? Explain.
- **P.3-28** Dielectric lenses can be used to collimate electromagnetic fields. In Fig.1 the left surface of the lens is that of a circular cylinder, and the right surface is a plane. If E_1 at point $P(r_0, 45^{\circ}, z)$ in region 1 is $a_r 5 a_{\phi} 3$, what must be the dielectric constant of the lens in order that E_3 in region 3 is parallel to the x-axis?

Figure 1: A dielectric lens

P.3-32 The radius of the core and the inner radius of the outer conductor of a very long coaxial transmission line are r_i and r_o , respectively. The space between the conductors is filled with two coaxial layers of dielectrics. The dielectric constants of the dielectrics are ϵ_{r_1} for $r_i < r < b$ and ϵ_{r_2} for $b < r < r_o$. Determine its capacitance per unit length.