Evaluation of Non-Volatile Memory Based Last Level Cache Given Modern Use Case Behavior

Alex Hankin*, Tomer Shapira*, Karthik Sangaiah †, Mike Lui †, Mark Hempstead*

*TCAL, Tufts University

*ISWC 2019, Orlando, Fl., November 4th, 2019

Motivation

- Working set sizes of applications increasing
 - E.g., ML/AI workloads
- Traditional LLC tech (SRAM) is density-limited and leaky

Benefits of NVMs:	Drawbacks:
Smaller cell sizeLower energy	- Write latency - Lifetime

NVM-Based LLC

For a workload which NVM technology is best?

- Challenges:
 - Lack of consistent models/modeling methodology for NVM LLCs in the literature
 - Leads to apples-to-oranges comparisons
 - Effects of NVM read-write asymmetry unknown
 - Not modeled in current architecture performance simulators
- Thought there would be one perfect NVM -- more complicated!
- Depends on workload -- predict best NVM without simulation
- Predict for workloads of the future!

Emerging NVMs

Spin-Torque Transfer RAM (STTRAM)²

Phase Change RAM (PCRAM) 4

Electrical and Computer Engineering

- Physical mechanisms affect energy, latency, and area
- Some technologies are already CMOS compatible
- All can be accessed by CMOS device -- easily interface with **CMOS** SCHOOL OF ENGINEERING

² STTRAM diagram: https://en.wikipedia.org/wiki/Spin-transfer torque#/media/File:Spin valve schematic.svg

RRAM diagram: Meena, Jagan & Sze, Simon & Chand, Umesh & Tseng, Tseung-Yuen. (2014). Overview of Emerging Non-volatile Memory Technologies. Nanoscale Research Letters. 9. 1-33. 10.1186/1556-276X-9-526

⁴ PCRAM diagram: https://en.wikipedia.org/wiki/Phase-change_memory#/media/File:PRAM_cell_structure.svg

Modeling

Two problems:

- Specifying NVM cell for NVM simulator
 - Some necessary parameters missing from VLSI/Circuits papers that introduces an NVM
- Modeling NVM cache in full-system simulator
 - Expects SRAM, i.e., symmetric read/write latency

- Compiled about a dozen popular NVM cells from the VLSI and Architecture literature
 - A few from each class (PCM, STTRAM, ReRAM)
- Developed some **modeling heuristics** for determining unknown parameters:
 - Electrical Properties
 - Interpolation
 - Similarity

Accuracy

		Oh	Chen	Kang	Close	Chung	Jan	Umeki	Xue	Hayakawa	Zhang
	Class	PCRAM	PCRAM	PCRAM	PCRAM	STTRAM	STTRAM	STTRAM	STTRAM	RRAM	RRAM
	Year	2005	2006	2006	2013	2010	2014	2015	2016	2015	2016
	cess	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS
	ocess de[nm]	120	60*	100	90	54	90	65	45	40	22
Ce [F²	II Size	16.6*	10*	16.6	25	14	50	48	63	4*	4*
Се	11	1	1	1	2	1	1	1	2	1	1

- RRAM cell size is small
 - Can build dense LLC => expect good performance
- Baseline SRAM tech is 45 nm
- * and indicate parameters not reported in the literature

SCHOOL OF ENGINEERING

Electrical and Computer Engineering

Levels

		Oh	Chen	Kang	Close	Chung	Jan	Umeki	Xue	Hayakawa	Zhang
	Class	PCRAM	PCRAM	PCRAM	PCRAM	STTRAM	STTRAM	STTRAM	STTRAM	RRAM	RRAM
Res Cu [µA	rrent	600	90	600	400	80	52	255	150		
Set Cu [µA	rrent	200	55	200*	400	100	38	255	150		

- PCRAM current is high => expect high energy
- Grayed out boxes -> NVSim requires different parameters for different classes
- This is a subset of the data -- the rest of the NVM cell data is in the paper!
- All data is publicly available at: http://sites.tufts.edu/tcal/nvm-models!

NVM Cache Models

- Two different sets of NVM-based LLC models:
 - Iso-capacity: same capacity as SRAM-based LLC
 - Iso-area: same area as a 2 MB SRAM-based LLC

2MB SRAM (6.5mm^2)

2MB NVM (0.3mm^2)

2MB SRAM (6.5mm^2)

128MB NVM (6.5mm^2)

Figure 1: Iso-capacity SRAM and NVM LLC

Figure 2: Iso-area SRAM and NVM LLC

SRAM-based cache model baseline

Iso-capacity and Iso-area Models

	Ohp	Chen _P	Kang _P	Close _P	Chungs	Jans	Umekis	Xues	Hayakawa _R	Zhang _R	SRAM
Area [mm ²]	6.847	4.104	4.591	2.855	1.452	9.171	4.348	1.585			6.548
Tag Access Latency [ns]	0.74	0.604			1.240	1.423	1.208	1.156		1.722	0.439
Data Read Latency, t_{read} [ns]	1.907		1.497		1.763		2.715			2.16	1.234
Data Write Latency, twrite [ns]	181.206	80.491			11.751		11.916	4.038			
		/60.491									
Cache Hit Dynamic Energy, $E_{dyn,hit}$ [nJ]		0.421		0.437		0.188	0.173	0.251			
Cache Miss Dynamic Energy, $E_{dyn,miss}[nJ]$	0.042				0.082			0.121			0.011
	225.413	34.108		51.116	1.332	2.305	1.644	0.597	0.952	0.523	0.537
All of the de	LdII	5 0.d/ 11	Pa ₂	Je ₆	(and	10.048	:1 e a	5E(3 THO	128	3 3438
Tag Access Latency [ns]	0.740		0.656	0.581	1.283	1.288	1.208	1.229	1.690	2.392	0.439
Data Read Latency, t_{read} [ns]	1.909	1.428	1.497	0.789	3.262	2.074	2.715	3.378	2.536	9.537	1.234
Data Write Latency, t_{write} [ns] (set/reset)	181.206 11.206	81.17/ 61.17		20.46/	13.088	6.17	11.916	3.928	20.735	304.936	
Cache Hit Dynamic Energy, $E_{dyn,hit}$ [nJ]	0.840	0.496		1.003	0.457	0.187	0.173	0.683	0.715	0.605	
Cache Miss Dynamic Energy, $E_{dyn,miss}$ [nJ]	0.042		0.033	0.029	0.083	0.080	0.058	0.123	0.088	0.089	0.011
Cache Write Dynamic Energy, $E_{dyn,write}$ [nJ]	225.413	33.599		50.912	1.656	1.780	1.644	0.912	1.458	0.921	0.537
Cache Total Leakage Power [W]	0.062	0.100	0.061	0.137	0.661	0.025	0.295	0.828	3.896	9.000	3.438

TABLE I: Gainestown LLC models generated by NVSim for fixed-capacity LL Electrical and Computer Engineering, 1 at a write latency format is: set/reset. Heatmap on per-row basis.

Comparison of NVM-based LLCs with SRAM Baseline

- Measured speedup and LLC energy for both iso-area and iso-capacity configs
- Workloads:
 - SPEC 2006, SPEC 2017 AI, PARSEC 3, Nasa Parallel Benchmarks
 - Includes single-threaded and multi-threaded workloads
 - Only the LLC intensive workloads

Simulation Results - Iso-capacity

- Multi-threaded workloads
- Performance can be a lot worse (up to 10%)
- Energy is generally a lot better (up to ~10X)
 - Except for PCRAM
- A couple NVMs are top-performing: Jan (STTRAM) and Xue (STTRAM)

Simulation Results - Iso-area

- Multi-threaded workloads
- **Big performance** enhancement (up to ~80%)!
- Energy about the same as iso-capacity
- Top performers: Hayakawa (ReRAM), Jan (STTRAM), Xue (STTRAM)

Simulation Results Takeaways

- Generally, for all workloads there are a **few** top performers:
 - Jan (STTRAM), Xue (STTRAM), Hayakawa (ReRAM)
 - Better energy efficiency
 - Positive speedup (for iso-area)
- No perfect correlation between cache parameters (access latency/energy) and LLC energy/speedup...

Workload Characterization

- Profiled workloads by capturing virtual memory addresses accessed in the execution of a workload ⁷
- Conducted ISA-independent characterization of workload memory behavior ⁸
- Proxy for cache sensitivity
- Delineated metrics based on memory access type (read or write)

Memory Behavior Metrics

- Global Address Entropy (H_{wg}, H_{rg})
 - Randomness of accessed memory addresses
- Local Address Entropy (H_{wl}, H_{rl})
 - Spatial locality of regions of the memory address space
 - Skip M lowest order bits of address in entropy calculation (M=10)
- 90% Address Footprint (90%ft_w, 90%ft_r)
 - Estimate of the working set
- Unique Address Footprint (w_{uniq}, r_{uniq})
- Total Address Footprint (w_{total}, r_{total})

Shannon Entropy Equation:

$$H = -\sum_{i}^{N} p(x_i) \cdot \log_2 p(x_i)$$

where N is total number of addresses and x_i is the ith address

Memory Behavior Data

		H _{rg}	H _{rl}	H _{wg}	H _{wl}	r uniq (E6)	W uniq (E6)	90%ft _r (E3)	90%ft _w (E3)	r total (E9)	W _{total} (E9)
SPEC 2006	bzip2	18.0	10.2	11.7	5.9	6.0	5.9	2,505.4	750.9	4.3	1.5
(s.t.)	GemsFDTD	19.9	13.6	22.3	15.0	116.9	143.6	76,576.6	113,183.5	1.3	0.7
SPEC /	leela	10.1	4.1	9.0	3.0	2.3	5.1	1.6	1.3	6.0	2.4
2017 AI ←	exchange2	8.8	3.5	8.6	3.5	0.03	0.02	0.6	0.6	62.3	42.9
(s.t.)	deepsjeng	11.3	5.7	11.9	5.9	58.9	68.3	4.8	4.3	9.4	4.4
PARSEC 3.0	vips	15.2	10.3	17.8	11.6	12.0	6.3	1,107.2	1,325.3	1.9	0.7
(m.t.)	x264	16.1	7.4	11.8	4.0	11.4	9.3	1,585.5	3.6	18.1	2.8
NPB	cg	19.0	11.7	18.9	12.0	2.3	2.4	1,015.4	819.2	0.7	0.04
3.3.1 (m.t.)	ер	8.0	4.8	8.1	4.7	0.6	1.5	0.8	113.2	1.3	0.5
'	_					_			_		

The rest of the memory behavior data is in the paper!

Correlation

- Observed correlation between architecture-agnostic memory behavior and energy/speedup
- For a "general purpose" system and "specialized" system

Correlation Results

- Performance and energy almost perfectly correlated with total reads and writes for all multi-threaded workloads
- However, SPEC 2017 AI benchmarks are different...
 - Performance and energy correlated with other architecture-agnostic features:
 - Unique accesses, entropy, and 90% footprint
 - Total reads and writes has almost no correlation
 - SPEC 2017 AI may not be an indicator of AI in general

Summary

- Publicly available NVM models:
 http://sites.tufts.edu/tcal/nvm-models
- Workload characterization of LLC intensive SPEC 2006, SPEC 2017 AI, PARSEC, and NPB workload memory behavior per access type (read, write)
- Correlation between memory behavior and best NVM technology for LLC

Evaluation of Non-Volatile Memory Based Last Level Cache Given Modern Use Case Behavior

Alex Hankin*, Tomer Shapira*, Karthik Sangaiah †, Mike Lui †, Mark Hempstead*

*TCAL, Tufts University

IISWC 2019, Orlando, Fl., November 4th, 2019

- Publicly available NVM models: http://sites.tufts.edu/tcal/nvm-models
- Workload characterization of LLC intensive SPEC 2006, SPEC 2017 AI, PARSEC, and NPB workload memory behavior per access type (read, write)
- Correlation between memory behavior and best NVM technology for LLC

	Oh	Chen	Kang	Close	Chung	Jan	Umeki	Xue	Hayakawa	Zhang
class	PCRAM	PCRAM	PCRAM	PCRAM	STTRAM	STTRAM	STTRAM	STTRAM	RRAM	RRAM
year	2005	2006	2006	2013	2010	2014	2015	2016	2015	2016
access device	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS	CMOS
cell size $[F^2]$	16.6*	10*	16.6	25	14	50	48^{\dagger}	63	4*	4*
cell levels	1	1	1	2	1	1	1	2	1	1
read current $[\mu A]$	40*	40*	60*	60*						
read voltage $[V]$					0.65	0.08	0.38	1.2	0.4*	0.2
read power $[\mu W]$	2				24.1†	30*	1.70	65	0.16*	0.02
read energy $[pJ]$	2*	2*	2*	2*						
reset current $[\mu A]$	600	90	600	400	80	52	255^{\dagger}	150		
reset voltage [V]									2*	1
reset pulse $[ns]$	10	60	50	20	10	4	10	2	10*	150
reset energy $[pJ]$					0.52^{\dagger}	1*	1.12	0.36	0.6*	0.4
set current $[\mu A]$	200	55	200*	400	100^{\dagger}	38	255 [†]	150	*****	
set voltage [V]									2*	1
set pulse [ns]	180	80	300	20	10	4.5	10	2	10*	150
set energy $[pJ]$				3	0.75^{\dagger}	1*	1.12	0.36	0.6*	0.4

TABLE I: NVM Parameters (* indicates parameters not found in cited paper; † indicates parameters derived from other known

Iso-capacity and Iso-area Models

	-	Ohp	Chen _P	Kang _P	Close _P	Chungs	Jans	Umekis	Xues	Hayakawa _R	Zhang _R	SRAM
ſ	Area [mm ²]	6.847	4.104	4.591	2.855	1.452	9.171	4.348	1.585	0.915	0.307	6.548
1	Tag Access Latency [ns]	0.74	0.604	0.656	0.582	1.240	1.423	1.208	1.156	1.396	1.722	0.439
	Data Read Latency, t_{read} [ns]	1.907	0.607	1.497	0.82	1.763	3.072	2.715	2.878	1.722	2.16	1.234
	Data Write Latency, t_{write} [ns]	181.206	80.491	301.018	20.681	11.751	7.878	11.916	4.038	20.716	300.834	0.515
J	(set/ reset)	/11.206	/60.491	/51.018	/20.681							
7	Cache Hit Dynamic Energy, $E_{dyn,hit}$ [nJ]	0.840	0.421	0.678	0.437	0.209	0.188	0.173	0.251	0.263	0.217	0.565
	Cache Miss Dynamic Energy, $E_{dyn,miss}$ [nJ]	0.042	0.025	0.033	0.023	0.082	0.077	0.058	0.121	0.078	0.086	0.011
	Cache Write Dynamic Energy $E_{dyn,write}$ [nJ]	225.413	34.108	375.073	51.116	1.332	2.305	1.644	0.597	0.952	0.523	0.537
3	Cache Total Leakage Power [W]	0.062	0.071	0.061	0.039	0.166	0.048	0.295	0.115	0.194	0.151	3.438
	Capacity [MB]	2	4	2	4	8	1	2	8	32	128	2
Î	Tag Access Latency [ns]	0.740	0.607	0.656	0.581	1.283	1.288	1.208	1.229	1.690	2.392	0.439
ij	Data Read Latency, t_{read} [ns]	1.909	1.428	1.497	0.789	3.262	2.074	2.715	3.378	2.536	9.537	1.234
_ []	Data Write Latency, t_{write} [ns]	181.206	81.17/	301.018/	20.46/	13.088	6.17	11.916	3.928	20.735	304.936	0.515
	(set/ reset)	11.206	61.17	51.018	20.46							
) [Cache Hit Dynamic Energy,	0.840	0.496	0.678	1.003	0.457	0.187	0.173	0.683	0.715	0.605	0.565
	$E_{dyn,hit}$ $[nJ]$											
	Cache Miss Dynamic Energy,	0.042	0.030	0.033	0.029	0.083	0.080	0.058	0.123	0.088	0.089	0.011
	$E_{dyn,miss}$ [nJ]			50-000-000-000-000			.000.000.000.00	4.100mm/s		-2-1000020.00		100000000000000000000000000000000000000
	Cache Write Dynamic Energy, $E_{dyn,write}$ [nJ]	225.413	33.599	375.073	50.912	1.656	1.780	1.644	0.912	1.458	0.921	0.537
	Cache Total Leakage Power [W]	0.062	0.100	0.061	0.137	0.661	0.025	0.295	0.828	3.896	9.000	3.438

TABLE I: Gainestown LLC models generated by NVSim for *fixed-capacity* (top) LLC, *fixed-area* (bottom) LLC. For PCRAM data write latency format is: set/ reset. Heatmap on per-row basis.

Memory Behavior Data

	H_{r_g}	H_{r_l}	H_{w_g}	H_{w_l}	$r_{uniq} (10^6)$	$w_{uniq} = (10^6)$	$90\% ft_r \ (10^3)$	$90\% ft_w \ (10^3)$	$r_{total} (10^9)$	w_{total} (10^9)
bzip2	18.03	10.23	11.72	5.90	5.99	5.88	2505.38	750.86	4.30	1.47
GemsFDTD	19.92	13.62	22.27	14.99	116.88	143.63	76576.59	113183.50	1.30	0.70
tonto	10.97	5.15	10.25	3.72	0.30	0.29	5.59	1.74	1.10	0.47
leela	10.13	4.07	8.95	3.01	2.26	5.06	1.59	1.29	6.01	2.35
exchange2	8.79	3.52	8.61	3.47	0.03	0.02	0.64	0.58	62.28	42.89
deepsjeng	11.31	5.69	11.86	5.93	58.89	68.28	4.79	4.33	9.36	4.43
vips	15.17	10.26	17.79	11.61	12.02	6.32	1107.19	1325.34	1.91	0.68
x264	16.14	7.43	11.84	4.04	11.40	9.28	1585.49	3.56	18.07	2.84
cg	19.01	11.71	18.88	11.96	2.30	2.36	1015.43	819.15	0.73	0.04
ep	8.00	4.81	8.05	4.74	0.563	1.47	0.84	113.18	1.25	0.54
ft	16.47	9.93	17.07	10.28	2.73	2.72	342.64	611.66	0.28	0.27
is	15.23	8.96	15.65	8.69	2.20	2.19	1228.86	794.26	0.12	0.06
lu	9.57	6.01	16.02	9.63	0.844	0.84	289.46	259.75	17.84	3.99
mg	17.97	11.80	16.93	10.18	7.20	7.29	4249.78	4767.97	0.76	0.16
sp	18.69	12.02	18.21	11.35	1.14	1.28	556.75	256.73	9.23	4.12
ua	13.95	8.17	11.23	5.69	1.32	1.57	362.45	106.25	9.97	5.85

TABLE IV: Workload Features. Heatmap on per-column basis. H_{r_g} =global read entropy, H_{v_l} =local read entropy, H_{w_g} =global write entropy, H_{w_l} =local write entropy, r_{unique} =number of unique reads, w_{unique} =number of unique writes, $90\% ft_r$ =90% read footprint, $90\% ft_w$ =90% write footprint, r_{total} =total number of reads, w_{total} =total number of writes

Correlation Results - Al Workloads

Fig. 4: Feature correlation with energy and speedup for AI benchmarks with *fixed-capacity* (a)-(c) and *fixed-area* (d)-(f) LLC

