Теоретическая информатика - 1

Машины Тьюринга Вычислимость

Вычислимость

В математической формализации данные представляются символьными строками.

 $A \pi \phi$ авит Σ — конечное множество символов.

Cтрока над алфавитом Σ : конечная последовательность символов a_1,a_2,\ldots,a_n , где $n\geq 0$, $a_i\in \Sigma$.

Множество всех строк $\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$.

arepsilon — пустая строка

Вычислимость

В математической формализации данные представляются символьными строками.

 $A \pi \phi$ авит Σ — конечное множество символов.

Cтрока над алфавитом Σ : конечная последовательность символов a_1,a_2,\ldots,a_n , где $n\geq 0$, $a_i\in \Sigma$.

Множество всех строк $\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$.

arepsilon — пустая строка

Предмет вычисления:

- ightharpoonup или вычислить функцию $f: \Sigma^* \mapsto \Sigma^*$, то есть по данной на входе строке w вычислить строку f(w),
- ightharpoonup или распознать принадлежность данной на входе строки множеству $L\subseteq \Sigma^*$ и дать ответ «да» или «нет».

Модели вычисления

Математические модели вычисления (1930-е):

- рекурсивные функции,
- ightharpoonup λ -исчисление,
- машины Тьюринга
- **...**

Все равносильны друг другу; мы рассмотрим <mark>машины</mark> Тьюринга.

Машина Тьюринга (МТ)

В состав МТ входит:

- неограниченная в обе стороны лента, разделенная на ячейки,
 - ightharpoonup в ячейки записываются символы алфавита Σ (входные данные)
 - ▶ выделяется особый символ пробел, заполняющий все остальные клетки ленты

Машина Тьюринга (МТ)

В состав МТ входит:

- неограниченная в обе стороны лента, разделенная на ячейки,
 - в ячейки записываются символы алфавита Σ (входные данные)
 - выделяется особый символ пробел, заполняющий все остальные клетки ленты
- головка записи-чтения, способная находиться в одном из конечного множества состояний
 - перемещается влево и вправо по ленте
 - читает и записывает в ячейки символы некоторого конечного алфавита
 - работает согласно правилам перехода (алгоритм)
 - правило перехода: в зависимости от текущего состояния и наблюдаемого в текущей клетке символа записать в эту клетку новый символ, перейти в новое состояние и переместиться на одну клетку влево или вправо.
 - терминальное состояние: переход в него означает конец работы (остановку алгоритма).

Машина Тьюринга (МТ)

Два типа МТ:

- lacktriangle MT, распознающие множество $A\subseteq \Sigma^*$ (дают ответ «да» или «нет»)
 - Два типа терминальных состояний: принимающее («да») и отвергающее («нет»).
- ightharpoonup МТ, вычисляющие функцию $f: \Sigma^* \mapsto \Sigma^*$
 - Значение функции содержимое ленты после остановки.

Машина Тьюринга — это семерка $\mathcal{M} = (\Sigma, \Gamma, Q, q_0, \delta, q_{acc}, q_{rej})$:

► Конечное множество $\Sigma -$ *входной алфавит*.

- Конечное множество Σ входной алфавит.
- ▶ Другое конечное множество Г рабочий алфавит
 - содержит все символы, допустимые на ленте,
 - Σ ⊂ Γ;
 - Г содержит особый символ пробел:

- Конечное множество Σ входной алфавит.
- ▶ Другое конечное множество Г рабочий алфавит
 - содержит все символы, допустимые на ленте,
 - Σ ⊂ Γ;
 - Г содержит особый символ пробел:
- Конечное множество Q множество состояний.

- Конечное множество Σ входной алфавит.
- ▶ Другое конечное множество Г рабочий алфавит
 - содержит все символы, допустимые на ленте,
 - Σ ⊂ Γ;
 - Г содержит особый символ пробел:
- Конечное множество Q множество состояний.
- ightharpoonup Начальное состояние $q_0 \in Q$.

- Конечное множество Σ входной алфавит.
- ▶ Другое конечное множество Г рабочий алфавит
 - содержит все символы, допустимые на ленте,
 - Σ ⊂ Γ;
 - Г содержит особый символ пробел:
- ▶ Конечное множество Q множество состояний.
- ightharpoonup Начальное состояние $q_0 \in Q$.
- Функция переходов (правила переходов) $\delta: (Q \backslash q_{acc}, q_{rej}) \times \Gamma \to Q \times \Gamma \times \{-1, +1\}$ определяет поведение машины на каждом шаге. Если машина находится в состоянии $q \in Q$ и обозревает символ $a \in \Gamma$, то $\delta(q, a)$ это тройка (q', a', d), где $q' \in Q$ новое состояние, a' символ, записываемый в ячейке вместо a, и $d \in \{-1, +1\}$ направление перемещения головки.
- **Е**сли машина переходит в *принимающее состояние* $q_{acc} \in Q$ или в *отвергающее состояние* $q_{rej} \in Q$, то она останавливается.

Конфигурация МТ

Конфигурация МТ — это строка вида $\alpha \mathbf{q} a \beta$, где $\alpha, \beta \in \Gamma^*$, а $q \in Q$, означающаяся, что:

- машина находится в состоянии q,
- головка обозревает указанный символ а,
- на ленте записаны символы $\alpha a \beta$, окруженные бесконечным числом пробелов в обоих направлениях.

Начальная конфигурация q_0w : состояние q_0 , головка смотрит на первый символ входной строки w, окруженной пробелами в обоих направлениях $(\dots \sqcup \sqcup w \sqcup \sqcup \dots)$.

На каждом шаге конфигурация машины $lpha {f q}$ однозначно определяет конфигурацию на следующем шаге по функции переходов.

Обозначим:

если
$$\alpha \neq \varepsilon$$
: $\alpha = \alpha_0 x$, $x \in \Gamma$;
если $\beta \neq \varepsilon$: $\beta = y\beta_0$, $y \in \Gamma$;

На каждом шаге конфигурация машины $lpha {f q} \, aeta$ однозначно определяет конфигурацию на следующем шаге по функции переходов.

Обозначим:

```
если \alpha \neq \varepsilon: \alpha = \alpha_0 x, x \in \Gamma;
если \beta \neq \varepsilon: \beta = y\beta_0, y \in \Gamma;
```

- lacktriangle Если $\delta(q,a)=(q',a',-1)$ (головка едет налево):
 - $ightharpoonup \alpha_0 x \mathbf{q} a \beta \vdash \alpha_0 \mathbf{q}' x a' \beta$
 - Если слева от головки на ленте только пробелы, то в следующей конфигурации дописывается новый пробел: $\mathbf{q}aeta \vdash \mathbf{q'} \Box a'eta$

На каждом шаге конфигурация машины $lpha {f q} \, aeta$ однозначно определяет конфигурацию на следующем шаге по функции переходов.

Обозначим:

```
если \alpha \neq \varepsilon: \alpha = \alpha_0 x, x \in \Gamma;
если \beta \neq \varepsilon: \beta = y\beta_0, y \in \Gamma;
```

- lacktriangle Если $\delta(q,a)=(q',a',-1)$ (головка едет налево):
 - $ightharpoonup \alpha_0 x \mathbf{q} a \beta \vdash \alpha_0 \mathbf{q}' x a' \beta$
 - Если слева от головки на ленте только пробелы, то в следующей конфигурации дописывается новый пробел: $\mathbf{q}a\beta \vdash \mathbf{q'}_{\square}a'\beta$
- lacktriangle Если $\delta(q,a)=(q',a',+1)$ (головка едет направо):
 - $ightharpoonup \alpha \mathbf{q} a y \beta_0 \vdash \alpha a' \mathbf{q}' \beta_0$
 - Если справа от головки на ленте только пробелы, то в следующей конфигурации дописывается новый пробел: $\alpha \mathbf{q} \mathbf{a} \vdash \alpha \mathbf{a'} \mathbf{q'}_{\square}$

Вычисление МТ

Таким образом, однозначно определяется конечная или бесконечная последовательность конфигураций, называемая вычислением машины на строке w.

Вычисление может или остановиться на некотором шаге, или продолжаться бесконечно. В этом случае говорят, что машина зацикливается.

Распознаваемые множества

Для распознающих МТ:

Строка *принимается* машиной Тьюринга \mathcal{M} , если машина останавливается на ней в принимающем состоянии.

 M ножество, распознаваемое машиной \mathcal{M} — это множество всех строк, которые она принимает:

$$\mathit{L}(\mathit{M}) = \{ w \mid \mathbf{q_0} w \vdash \ldots \vdash lpha \mathbf{q_{acc}} a eta$$
 для некоторых $lpha, eta, a \}$

Функцию переходов $\delta: (Q \setminus q_{acc}, q_{rej}) \times \Gamma \to Q \times \Gamma \times \{-1, +1\}$ можно записать в виде таблицы:

- строки соответствуют состояниям
- столбцы символам рабочего алфавита
- в каждой клетке написана тройка вида (новое состояние, записываемый символ, направление перемещения головки).

Тезис Чёрча-Тьюринга

Тезис Чёрча-Тьюринга, 1937

Для любой алгоритмически вычислимой функции существует вычисляющая ее значения машина Тьюринга.

Неразрешимые задачи

Полезность машины Тьюринга

Простая модель вычисления, легко доказывать.

Пример использования:

Существует множество строк, не распознаваемое никакой машиной Тьюринга (а, следовательно, согласно тезису Черча, никаким алгоритмом).

Описание МТ

 $\mathcal{M} = (\Sigma, \Gamma, Q, q_0, \delta, q_{acc}, q_{rej})$ — МТ. Ее можно записать в виде символьной строки (как и любую информацию).

Oписание MT \mathcal{M} — это строка $\sigma(M) \in \{0,1\}^*$, определяемая следующим образом.

Пусть

- $Q = \{q_1, \ldots, q_n\}$
- $\Sigma = \{a_1, \ldots, a_l\}$
- ightharpoonup $\Gamma = \{a_1, \ldots, a_l, a_{l+1}, \ldots, a_m\}$, где $a_m = \Box$
- lacktriangle начальное состояние q_1 , принимающее состояние $q_{acc}=q_n$, отвергающее состояние $q_{rej}=q_{n-1}$.

Тогда

$$\sigma(\mathcal{M}) = 1^{l} 0 1^{m} 0 1^{n} 0 \left(\prod_{\delta(q_{i}, a_{j}) = (q_{k}, a_{r}, d)} 1^{i} 0 1^{j} 0 1^{k} 0 1^{r} 0 1^{d+1} 0 \right)$$

Неразрешимая задача: проблема остановки

Всякой МТ со входным алфавитом $\{0,1\}$ можно дать на входе ее собственное описание $\sigma(M)$. Определим

 $L_1=\{\sigma(M)|\sigma(M)\in L(M)\}$ — МТ, принимающие свое описание $L_0=\{\sigma(M)|\sigma(M)\notin L(M)\}$ — МТ, не принимающие свое описание.

Теорема

Mножество L_0 не распознается никакой машиной Тьюринга.

Доказательство. Диагональный метод Кантора.

Предположим, что существует МТ M_0 , распознающая множество L_0 : $L(M_0) = L_0$.

Доказательство. Диагональный метод Кантора.

Предположим, что существует МТ M_0 , распознающая множество L_0 : $L(M_0) = L_0$.

Рассмотрим строку $\sigma(M_0)$. Имеем эквивалентные условия:

$$\sigma(M_0)\in L(M_0)$$

Доказательство. Диагональный метод Кантора.

Предположим, что существует МТ M_0 , распознающая множество L_0 : $L(M_0) = L_0$.

Рассмотрим строку $\sigma(M_0)$. Имеем эквивалентные условия:

$$\sigma(M_0)\in L(M_0)$$

$$\Leftrightarrow$$

(по определению M_0)

Доказательство. Диагональный метод Кантора.

Предположим, что существует МТ M_0 , распознающая множество L_0 : $L(M_0) = L_0$.

Рассмотрим строку $\sigma(M_0)$. Имеем эквивалентные условия:

$$\sigma(M_0)\in L(M_0)$$

$$\Leftrightarrow$$

(по определению M_0)

$$\sigma(M_0) \in L_0$$

Доказательство. Диагональный метод Кантора.

Предположим, что существует МТ M_0 , распознающая множество L_0 : $L(M_0) = L_0$.

Рассмотрим строку $\sigma(M_0)$. Имеем эквивалентные условия:

$$\sigma(M_0) \in L(M_0)$$
 \iff (по определению M_0) $\sigma(M_0) \in L_0$ \iff (по определению L_0)

Доказательство. Диагональный метод Кантора.

Предположим, что существует МТ M_0 , распознающая множество L_0 : $L(M_0) = L_0$.

Рассмотрим строку $\sigma(M_0)$. Имеем эквивалентные условия:

$$\sigma(M_0) \in L(M_0)$$
 \iff (по определению M_0) $\sigma(M_0) \in L_0$ \iff (по определению L_0) $\sigma(M_0) \notin L(M_0)$.

Про множество L_1

Для множества L_1 можно показать, что:

- оно распознается машиной Тьюринга,
- однако эта машина Тьюринга непременно будет зацикливаться на некоторых строках.

Иными словами, в классе машин Тьюринга, останавливающихся на любой входной строке, множество L_1 также неразрешимо.

Варианты машин Тьюринга

Существуют разные эквивалентные определения машины Тьюринга, например:

- lacktriangle MT с командами, в которые головка может оставаться на месте, т.е. $d \in \{-1,0,+1\}$
- ▶ МТ с лентой, бесконечной в одну сторону
- многоленчатые и многоголовчатые МТ

Варианты машин Тьюринга

Существуют разные эквивалентные определения машины Тьюринга, например:

- lacktriangle MT с командами, в которые головка может оставаться на месте, т.е. $d \in \{-1,0,+1\}$
- ▶ МТ с лентой, бесконечной в одну сторону
- многоленчатые и многоголовчатые МТ

Эквивалентность машин Тьюринга

Рассмотрим вариант MT с лентой, бесконечной вправо и ограниченной слева:

- ▶ где # метка начала ленты,
- ightharpoonup начальная конфигурация $\sharp q_0 w$,
- ightharpoonup переход по метке начала всегда должен переводить головку направо (+1).

Эквивалентные MT: распознающие то же самое множество входных строк.

Теорема

Для любой МТ общего вида (с лентой, бесконечной в обе стороны) существует эквивалентная ей МТ с лентой, бесконечной в одну сторону.

Доказательство конструктивное, то есть мы построим по любой МТ эквивалентную ей с объявленным свойством.

Во-первых, произвольно занумеруем ячейки рабочей ленты МТ и определим новое расположение информации на ленте.

Затем перенумеруем ячейки, причем будем считать, что символ « \sharp » не содержится в алфавите МТ:

Изменим МТ:

- каждому состоянию старой МТ соответствует несколько состояний новой (для «серых» клеток и для «белых», двойной сдвиг и т.п.);
- изменим сдвиг головки так, чтобы в одной группе состояний машина работала как в «серой» зоне, а в другой — как в «белой»
- ▶ необходимые изменения при смене зоны (достижении символа ♯)

Изменение команд

```
Команда \delta(s,x) = (p,y,-1) заменяется на:
\delta(s,x) = (s_1, y, -1) (новое состояние s_1 для двойного сдвига)
\delta(s_1, a) = (p, a, -1) (для любого a \in \Sigma)
(в «белой» зоне)
\delta(s',x) = (s'_1,y,+1) (левый сдвиг меняется на правый)
\delta(s'_1, a) = (p', a, +1)
(в «серой» зоне)
\delta(s,\sharp) = (s',\sharp,+1)
(переход в «серую» зону)
```

Изменение команд

```
Команда \delta(s,x) = (p,y,+1) заменяется на:
\delta(s,x) = (s_1,y,+1) (новое состояние s_1 для двойного сдвига)
\delta(s_1, a) = (p, a, +1) (для любого a \in \Sigma)
(в «белой» зоне)
\delta(s',x) = (s'_1, y, -1) (правый сдвиг меняется на левый)
\delta(s_1', a) = (p', a, -1)
(в «серой» зоне)
\delta(s_1',\sharp) = (s_2',\sharp,+1)
\delta(s_2', a) = (p, a, +1)
(переход в «белую» зону)
```

Начальное состояние: q_0 Принимающее состояние: q_{acc} и q'_{acc} (можем их отождествить)