Sequence Alignment

Lecture – 5

Department of CSE, DIU

CONTENTS

- 1. Sequence Alignment
 - Why align sequences
- 2. Sequence Alignment Methods
 - Pairwise Alignment
 - Multiple Sequence Alignment
- 3. Pairwise Sequence Alignment Methods
 - -Global Alignment (Needleman-Wunsch)
 - Local Alignment (Smith-Waterman)

1. Sequence Alignment

Why and how align sequences

Sequence Alignment

A way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences

CTGTCG-CTGCACG

-TGC-CG-TG----

Why align sequences?

- Useful for discovering
 - Functional
 - Structural and
 - Evolutionary relationship
 - For example
 - To find whether two (or more) genes or proteins are evolutionarily related to each other
 - Two proteins with similar sequences will probably be structurally or functionally similar

2. Sequence Alignment Methods

Pairwise and Multiple

Pairwise Sequence Alignment

- ▶ A pair of sequences as input
- Align them in such a way that, for that particular alignment the assumed region of similarity produces higher score than all the other alignments
- ▶ Methods
- Global Alignment (Needleman-Wunsch)
- Local Alignment (Smith-Waterman)

Pairwise Sequence Alignment

• Idea:

Display one sequence above another with spaces inserted in both to reveal similarity

Multiple Sequence Alignment

Human specific specific Ancient variant

Human ATGAACGCATGC

Chimp. ATGCACGCATGC

Gorilla ATGCATGCATGC

Mouse ATGCATGCATGC

Ancestor ATGCATGCACGC

Horse ATGCATGCACGC

- Three or more than three sequences as input
- Align all the sequences altogether in such a manner that the alignment produces highest score

3. Pairwise Sequence Alignment

Global and Local methods

Global Alignment (Needleman-Wunsch)

3 Major Steps

- -Create 2D Matrix
- -Trace back
- -Final Alignment

Trace back

- Start from Cell (Row, Col)
- Go back up to Cell (0,0)

Create 2D Matrix

- Row x Col 2D matrix draw (Row , Col size of seq1 and seq2 respectively)
- Place 2 seqs as Row and Column Header
- Cell (0,0) = 0
- Cell (0,1) to Cell (0,Column) and Cell (1,0) to Cell (Row,0) value = delete gap value from previous cell value
- For other cell values, follow equation in (1)

Final Alignment

- Start from Cell (Row, Col)
- If then, place character in both seq
- If ← or ↑ then character in start seq & gap in end seq

Global Alignment (Needleman-Wunsch) - Example

Input

- seq1 = TTGT
- seq2 = ATTTGCT

Scoring Scheme

$$\delta(x, x) = 1 \text{ (Match)}$$

 $\delta(x,-) = -2 \text{ (Gap)}$
 $\delta(x, y) = -1 \text{ (Mis match)}$

$$V_{i,j} = \max \begin{cases} V_{i-1,j} + \delta(s_i, -) \\ V_{i,j-1} + \delta(-, t_j) \\ V_{i-1,j-1} + \delta(s_i, t_j) \end{cases}$$

Eq. 1: Cell Value

Local Alignment (Smith-Waterman)

3 Major Steps

- -Create 2D Matrix
- -Trace back
- -Final Alignment

Create 2D Matrix

- Row x Col 2D matrix draw (Row , Col size of seq1 and seq2 respectively)
- Place 2 seqs as Row and Column Header
- First Row, First Column all value = 0
- For other cell values, follow equation in (2)

Trace back

- Start from each Cell which has the maximum value in the entire matrix
- Go back up to the Cell where first time 0 occurs

Final Alignment

- Start from each Cell with max value
- If 🔨 then, place character in both seq
- If ← or ↑ then character in start seq & gap in end seq

Local Alignment (Smith-Waterman) - Example

Output:

Input

- seq1 = TCGT
- seq2 = GATTCGT

Scoring Scheme

$$\delta(x, x) = 2 \text{ (Match)}$$

 $\delta(x,-) = -3 \text{ (Gap)}$
 $\delta(x, y) = -2 \text{ (Mis match)}$

$$A[i,j] = \max \begin{cases} A[i,j-1] + \text{gap} \\ A[i-1,j] + \text{gap} \\ A[i-1,j-1] + \text{match}(i,j) \\ 0 \end{cases}$$

Eq. 2: Cell Value

