Intelligent Data Analysis

Week 9

Query Expansion

Martin Russell

Objectives

- Use semantic relationships between words to improve the performance of a text IR system
- Understand Query Expansion
- Knowledge-driven approaches
 - Synonyms
 - WordNet
- Data-driven approaches
 - Word vectors

Query Processing

- Remember how we previously processed a query:
- Example:
 - "I need information about local physicians"
- Stop word removal
 - information, local, physician
- Stemming
 - info, local, physic
- But what about:
 - "This directory lists all of the doctors in the city ..."

Query Expansion (1)

- Add terms to the query to increase the overlap between it and potentially relevant documents...
- ...but not irrelevant documents
- Two approaches:
 - Apply user feedback
 - Exploit semantic relationships between words

Feedback-based Query Expansion

- User provides feedback on the results of retrieval
 - Which of the returned documents are particularly relevant and which are irrelevant

Query reformulation

- Revise the query in response to user feedback
- Query expansion: Add terms in relevant documents that are not in query (or just those with large TF-IDF weights)
- Term reweighting: Increase the weight of query terms in relevant documents and decrease the weight of query terms in irrelevant documents. For example

$$w_{td} = \lambda \times f_{td} \times IDF(t)$$

• Various methods for determining λ proposed

Knowledge-Based Methods

- Remember:
 - q = "I need information about local physicians"
 - d = "This directory lists all of the doctors in the city ..."
- We know there is a sematic relationship between
 - physician, and doctor
- Different words with same meaning are synonyms
- If w_1 is in q and w_1 , w_2 are synonyms add w_2 to q

Thesaurus

- A thesaurus is a 'dictionary' of synonyms and semantically related words and phrases
- E.G: Roget's Thesaurus
- Example:

```
physician
syn: || croaker, doc, doctor, MD,
medical, mediciner, medico ||
rel: medic, general practitioner,
surgeon
```

Peter Mark Roget 1779 –1869

- Born London 1779
- Founder of the Royal Society of Medicine
- Invented the log-log slide rule
- Professor of Physiology at the Royal Institution, 1834
- Retired 1840
- Roget's Thesaurus of English Words and Phrases Classified and Arranged so as to Facilitate the Expression of Ideas and Assist in Literary Composition appeared in 1852.
- Died 1869. Buried St James' Church, West Malvern, Worcestershire.

Slide 10

UNIVERSITY^{OF} BIRMINGHAM

Other semantic relationships

- Hyponyms (subordinate words)
 - Query q = "Tell me about England"
 - Document d = "A visit to London should be on everyone's itinerary"
 - 'London' is a hyponym of 'England'
- Hypernyms (generalisations)
 - Query q = "Tell me about England"
 - Document d = "Places to visit in the British Isles"
 - 'British Isles' is a hypernym of 'England'

WordNet

- WordNet is an online lexical database for English
- http://www.cogsci.princeton.edu/~wn

Category	Forms	Meanings (syn sets)
Nouns	57,000	48,800
Adjectives	19,500	10,000
Verbs	21,000	8,400

See Belew, chapter 6

WordNet

- Organised as a set of hierarchical trees
- For example, 25 trees for nouns
- 'Children' of a node are hyponyms
- Words become more specific as you move deeper into the tree

Summary

- Use knowledge (WordNet) to identify new words that are semantically related to query words
- Add these new words to the query

Query Expansion: Data Driven

- Let w be the n^{th} word in the vocabulary
- Can represent w as a "one hot" vector, vec(w):

$$vec(w) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

• $vec(w)_m = 1$ if m=n, θ otherwise

LSA revisited

- Recall from LSA, $W = USV^T$, where the columns of V can be interpreted as topics
- Let $V_{(n)}$ be the $V \times n$ matrix comprising first n columns of V
- $top(w) = V^{T}vec(w)$ is a **topic-based** representation of w
- $top(w) = V_{(n)}^T vec(w)$ is a reduced-dimensional **topic-based** representation of w
- top(w) represents a word w in terms of the topics
 for which it is significant

Vector representation of words

- Suppose u and w are words
- If u and w are synonyms they will be important for the same topics
- In this case top(u) and top(w) will point in similar directions

• Hence
$$Csim(u, w) = \frac{top(u) \cdot top(w)}{\|top(u)\| \|top(w)\|} = cos(\theta)$$

is a **measure of the similarity** between u and w (θ is the angle between top(u) and top(w)

• If Csim(u, w) sufficiently large treat u, w as synonyms for query expansion

Other approaches

- There are more modern approaches to vector representation of words and documents
- All based on the idea that if u, w occur in the context of the same set of words then they are related
- Google's word2vec uses a Neural Network to predict the neighbouring words (or the next word) in a document from the current (and previous) words

"word2vec"

"one-hot" target vector – "1" corresponds to target word – randomly chosen from a neighbourhood of w

0 0 1 0 0 0

Output layer(SoftMax)

"1-hot" input vector – "1" correspond to current word w

What will the network learn?

- The network tries to map a word w onto each of the words that occur in a neighbourhood of w in documents
- The number of times that word v appears as a target output depends on the number of times v co-occurs with w
- For each w, the NN will learn the distribution of words that co-occur with w
- The values in the hidden layer are a low dimensional encoding of this relationship
- Values in the hidden layer when w is input is a lowdimensional encoding of the probability distribution of words that co-occur with w

"word2vec" (continued)

- Output of hidden layer is "word2vec" a low dimensional representation of the word.
- (Assuming Num. Hidden Units << Num. Input Units)

"1-hot" input vector – "1" corresponds to current word

Summary so far

- Two approaches to identifying semantic relationships between words:
- Knowledge-driven: uses online thesaurus (e.g. WordNet)
- Data-drive: infer semantic relationships between words by converting words to vectors and measuring similarity between vectors (LSA, word2vec)
- Query expansion: augment query with new words related to query words

Query-document scoring

- Expand query q to include synonyms
- Recall that for a document d

$$w_{td} = f_{td} \cdot IDF(t)$$

$$Sim(q,d) = \frac{\sum_{t \in q \cap d} w_{td} \cdot w_{tq}}{\|d\| \cdot \|q\|}$$

Query expansion

- Suppose:
 - t is the original term in the query,
 - -t is a synonym of t which occurs in d
- Then we could define:

$$W_{t'd} = \lambda_{tt'} \times f_{t'd} \times IDF(t) \qquad 0 \le \lambda_{tt'}$$

• Where λ_{tt} is a weighting depending on how 'far' t and t' are apart (according to WordNet or wordvector similarity)

Example

- Query q is:
 - Is the Dark Knight on at the town cinema?
 - *− q* becomes: *dark knight town cinema*
- Document d is:
 - The latest Batman movie places the caped crusader in a dark urban environment
 - $-\ d$ becomes: late batman move cape crusade dark urban environment

Example (continued)

- In the similarity calculation, $q \cap d = \{dark\}$
- But:
 - move and cinema are synonyms (compare "go to the cinema" with "go to the movies")
 - crusader is a hyponym of knight
 - urban is a hypernym of town
- Therefore, after query expansion,

```
q \cap d = \{dark, move (syn(cinema)), crusade(hypo(knight)), urban(hyper(town))\}
```

Example (continued)

- As well as increasing the overlap between q and a relevant document d, may also increase the overlap with an irrelevant document
- Consider:
 - The crusades were a dark period in our history when knights moved from across Europe to join crusades to the holy land
- This becomes:
 crusade dark period history knight move europe crusade holy land

Example (continued)

In this case

```
q \cap d = \{dark, knight, move (syn(cinema)),

2 \times crusade(hypo(knight)),

urban(hyper(town)), land(hyper(town))\}
```

- Document may score higher similarity than previous one
- Challenge is:
 - Expand queries enough to promote overlap with relevant documents...
 - ...but not so much that they overlap with irrelevant documents

Summary

- Query expansion
 - Feedback-based
 - Knowledge-based: Synonyms, etc WordNet
 - Data/(ML) based approaches to synonym detection
- Goals:
 - Increase overlap with query and relevant documents,
 - And maintain separation from irrelevant documents
- Generalization