TD 2 : Logique propositionnelle — syntaxe et sémantique

Exercice 1 – Formules de la logique propositionnelle

▶ Question 1 Parmi les expressions suivantes, quelles sont les formules de la logique propositionnelle? Représenter les formules sous forme d'arbre.

- 1. $r \lor (p \land \neg((\land q) \rightarrow \neg r))$
- 2. $p \land (r \land ((\neg q) \rightarrow \neg p))$
- 3. $((q \lor \neg p) \to (\neg \neg q \lor \neg p)) \land r$
- 4. $((q \lor p) \neg q \land p) \rightarrow r$
- 5. $\forall x p(x) \land q(x)$
- 6. $(\neg p \lor p \lor q) \to (\neg r \land \neg q)$

Exercice 2 – Encore des inductions

- ▶ Question 1 Définir par induction le nombre d'occurences d'une variable propositionnelle dans une formule.
- ▶ Question 2 Définir par induction l'ensemble des propositions apparaissant dans une formule.
- ▶ Question 3 Définir par induction le nombre de connecteurs logiques d'une formule.

Exercice 3 – Arbre syntaxique et formules

Parmi les arbres suivants, repérer les arbres syntaxiques de la logique propositionnelle et les traduire en formules.

Exercice 4 – Ensemble des modèles d'une formule

- ▶ Question 1 Calculez l'ensemble des modèles de la formule $((p \to q) \lor (\neg p \to \neg q)) \land ((q \land r) \to \neg p)$.
- ▶ Question 2 Proposer une définition par induction de l'ensemble des modèles d'une formule φ . On notera $Mod(\varphi)$ la fonction que l'on définit par induction.
- ▶ Question 3 Montrer que cette définition inductive de l'ensemble des modèles est la même que la définition d'un modèle du cours, c'est-à-dire pour toute valuation ν :

$$\nu \models \varphi \operatorname{ssi} \nu \in Mod(\varphi)$$

${\bf Exercice}~{\bf 5}-{\bf Compl\'etude}~{\bf fonctionnelle}$

On va compléter la Remarque 27 pour démontrer la propriété suivante :

Propriété 1

Supposons que $\mathcal P$ est fini. Soit $\mathcal V$ l'ensemble des valuations sur $\mathcal P$. Alors, à toute fonction $f:\mathcal V\to\mathbb B$ correspond la sémantique d'une formule propositionnelle sur $\mathcal P$, c'est-à-dire : il existe φ telle que pour toute valuation $\nu\in\mathcal V$, on a $\nu\models\varphi$ si et seulement si $f(\nu)=$ vrai.

- ▶ Question 1 Pour $\mathcal{P} = \{p_1\}$, quelles sont toutes les fonctions possibles de \mathcal{V} vers \mathbb{B} ? Écrire des formules représentant ces fonctions.
- ▶ Question 2 Montrer la Propriété 1. Indication : on peut le montrer par récurrence sur le nombre de variables propositionnelles dans \mathcal{P} .
- ▶ Question 3 Est-ce que cela reste vrai si \mathcal{P} est infini?

Exercice 6 - Le théorème de lecture unique démontré

Le but de cet exercice est de montrer le théorème de lecture unique écrit en cours. Cette fois-ci, on considère que les mots utilisent l'alphabet $\Sigma = \mathcal{P} \cup \{\neg, \land, \lor, \rightarrow, (,)\}$. On reprend les définitions de préfixe, de $|\cdot|_{(}$ et $|\cdot|_{(}$). On ajoute la définition suivante : un *préfixe propre* d'un mot u est est un préfixe de u non vide et non égale à u.

- ▶ Question 1 Montrer que pour toute formule φ vue comme un mot de Σ^* , on a $|\varphi|_{\ell} = |\varphi|_{\ell}$.
- ▶ Question 2 Soit φ une formule et u un préfixe de φ vu comme un mot de Σ^* . Montrer que $|u|_{\zeta} \ge |u|_{\gamma}$.
- ▶ Question 3 Soit φ une formule, et supposons que son premier symbole est "(". Soit u un préfixe propre de φ . Montrer que $|u|_{\ell} > |u|_{\lambda}$.
- ▶ Question 4 Montrer qu'un préfixe propre d'une formule est une formule.
- ▶ Question 5 Montrer le théorème de lecture unique.

Si ce n'est pas déjà fait, on peut corriger les Exercices II à IV. Ensuite, on peut faire l'Exercices V et VI. Ensuite :

Exercice 7 - Fonction parité

On souhaite étudier la taille d'une formule φ_n sur les variables propositionnelles $\mathcal{P}_n = \{p_1, \dots, p_n\}$ qui représente la fonction parité :

$$\begin{array}{ccc} f: & \mathcal{V} & \rightarrow & \{0,1\} \\ & \nu & \mapsto & \sum_{i=1}^n \delta_{\nu(p_i)}^{\mathsf{vrai}} & \mathsf{mod} \ 2. \end{array}$$

avec $\delta_{b_1}^{b_2}=1$ si $b_1=b_2$, et $\delta_{b_1}^{b_2}=0$ sinon. Pour cet exercice, on va avoir besoin de la notation \mathcal{O} : pour $g:\mathbb{N}\to\mathbb{N}$, $\mathcal{O}(g)$ est l'ensemble des fonctions majorées par une constante fois g sur \mathbb{N} . Quand on l'utilise à l'intérieur d'une expression mathématique, $\mathcal{O}(g)$ désigne un de ses éléments : par exemple, on pourra écrire $g_1(n)=g_2(n)+\mathcal{O}(g(n))$ (même si cette notation est complètement impropre).

▶ Question 1 Donner une formule φ_n de taille quadratique (c.-à-d. dans $\mathcal{O}\left(n^2\right)$) dont la sémantique corespond à la fonction parité (en assimilant vrai à 1 et faux à 0). *Indication : pour une fonction g* : $\mathbb{N} \to \mathbb{N}$ *telle que pour tout* $n \in \mathbb{N}$, $g(n) \leq 4g(\left\lceil \frac{n}{2} \right\rceil) + h(n)$ et $h \in \mathcal{O}(1)$, on a g quadratique.

- ▶ Question 2 Montrer que toute formule en forme normale disjonctive qui représente la fonction parité est de taille supérieure ou égale à $n2^{n-1}$.
- ▶ Question 3 Montrer qu'il en est de même pour une forme normale conjonctive.

Les étudiants intéressés pourront lire la démonstration dans le livre de Arora et Barak, *Computational Complexity* — *A Modern Approach*, p. 287.

Exercice 8 - Transformation de Tseitin

On cherche à montrer que, pour toute formule φ du calcul propositionnel, il existe une formule $tr(\varphi)$ sous forme normale conjonctive (CNF) de taille $\mathcal{O}\left(|\varphi|\right)$ et telle que φ et $tr(\varphi)$ sont équisatisfaisables (c'est-à-dire φ est satisfaisable ssi $tr(\varphi)$ est satisfaisable), avec $tr(\varphi)$ calculable en temps polynomial en la taille de φ .

▶ Question 1 Expliquer pourquoi on peut supposer sans perte de généralité que φ ne possède que les connecteurs \land , \lor , \neg .

On note $SF(\varphi)$ l'ensemble des sous-formules de φ (y compris φ). On note $\mathcal P$ l'ensemble des variables de φ .

Pour toute sous-formule $\psi \in SF(\varphi)$, on introduit une nouvelle variable propositionnelle p_{ψ} . La lecture intuitive de p_{ψ} est ψ est vraie.

▶ Question 2 Trouver des formules équivalentes à $p_{\psi_1\bowtie\psi_2}\leftrightarrow p_{\psi_1}\bowtie p_{\psi_2}$ sous CNF pour $\bowtie\in\{\land,\lor\}$ et une formule équivalente à $p_{\neg\psi}\leftrightarrow\neg p_{\psi}$ sous CNF. On appelle respectivement ces formules $tr'(\psi_1\bowtie\psi_2)$ et $tr'(\neg\psi)$. On pose :

$$tr(\varphi) = p_{\varphi} \wedge \bigwedge_{\psi \in SF(\varphi) \setminus \mathcal{P}} tr'(\psi)$$

- ▶ **Question 3** Montrer que $tr(\varphi)$ est de taille $O(|\varphi|)$.
- ▶ Question 4 Montrer que φ et $tr(\varphi)$ sont équisatisfaisables.