

Свежие комментарии

- SmNikolay к записи STM Урок 89. LAN. ENC28J60. TCP WEB Server. Подключаем карту SD
- Narod Stream к записи AVR Урок 3. Пишем код на СИ. Зажигаем светодиод
- strannik2039 к записи AVR Урок 3. Пишем код на СИ. Зажигаем светодиод
- Dmitriy к записи AVR Урок 1. Знакомство с семейством AVR
- Narod Stream к записи STM Урок 9. НАІ Шина І2С Продолжаем работу с DS3231

Форум. Последние ответы

- 🔊 Narod Stream в Программирование MK STM32
 - 1 неделя, 2 дн. назад
- П Zandy в Программирование МК STM32
 - 1 неделя, 3 дн. назад
- 🌑 Narod Stream в Программирование MK STM32
 - 3 нед. назад
- 🔊 Narod Stream в Программирование MK STM32
 - 3 нед. назад
- Программирование МК STM32
 - 3 нед., 2 дн. назад

Январь 2018

Пн	Вт	Ср	Чт	Пт	Сб	Вс
1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				
« Дек						

Архивы

- Январь 2018
- Декабрь 2017
- Ноябрь 2017
- Октябрь 2017
- Сентябрь 2017
- Август 2017
- Июль 2017

Главная > I2C > AVR Урок 16. Интерфейс TWI (I2C). Часть 3

AVR Ypok 16. Интерфейс TWI (I2C). Часть 3

⊞Posted on Декабрь 17, 2016 by Narod

Stream Опубликовано в I2C, Программирование AVR — Нет комментариев ↓

Радиоуправление TELECANE

Первый импортер в РБ. Низкие цены. В наличии. Проектирование Поставка Сервис Контакты technex.by Адрес и телефон

Изготовление Печатных Плат. Звони!

Изготовление печатных плат на заказ. От прототипов до крупных партий. Звони

Мета

• Войти

• Регистрация

RSS записей

WordPress.org

• RSS комментариев

рсb.electropribor-penza.ru Адрес и телефон

Программирование МК РІФ Тесты устройств и аксессуаров

Уроки по программированию МК

Урок 16 Часть 3

Интерфейс TWI (12C)

В предыдущей части занятия мы продолжили знакомство с шиной I2C и vже создали проект для того, чтобы занятия проработать на практике. Также мы познакомились с интересой микросхемой EEPROM **AT24C32**, работающей на данной шине.

Продолжаем изучение шины.

Шину мы инициализировали в проекте, выставив ей скрость с помощью регистра TWBR, теперь давайте познакомимся с управляющим регистром - TWCR

Как мы видим, в данном регистре присутствует насколько битов.

TWINT — это бит прерываний. Можно его назвать битом не управляющим, а статусным, так как устанавливается он аппаратно в тот момент, когда определённое задание на шине завершится и будет ожидаться реакция

Заходите на канал **Narod Stream**

- Июнь 2017
- Май 2017
- Март 2017
- Февраль 2017
- Январь 2017
- Декабрь 2016
- Ноябрь 2016

программы. А вот сбрасывается данный флаг не аппаратно, а только программно — записью в него логической 1.

ТWEA — бит или флаг, разрешающий подтверждение. Если мы его не установим, то мы не будем просить подтверждение от ведомого устройства, а в случае, если контроллер наоборот является ведомым устройством, то с очередной посылкой мы не отправим бит подтверждения в конце какой-то посылки.

TWSTA — бит установки или генерирования условия "Старт".

TWSTO — бит установки или генерирования условия "Стоп".

TWWC — бит ошибочной записи. Устанавливается при попытки записи в адресный буфер, когда флаг TWINT ещё не установился. Ещё называется он флагом коллизий. Данный бит сбросится, когда TWINT будет равен 1.

TWEN — бит, активирующий шину I2C. Если мы его устанавливаем, то шина I2C начинает пытаться выполнять задание в зависимости от условий.

TWIE — бит, который разрешает прерывания.

Теперь статусный регистр TWSR

Пять старших битов регистра содержат статуса операции, выполнялась перед тем, как мы читаем регистр. Как правило мы с помощью маскирования сбрасываем три младших бита в 0, ну конечно не в самом регистре, а в переменной, в которую мы его считали и затем уже исследуем полученный результат. В даташите на контроллер содержится перечень в виде нескольких таблиц различных кодов статуса. Несколько их потому, что есть несколько условий — ведущее или ведомое устройство и чтение или происходила.

Ну а два младших бита — **TWPS1** и **TWPS0** — это биты для делителя частоты шины, с которыми мы уже знакомились немного в **1** части занятия.

Вот такие вот могут быть варианты комбинаций данных битов и зависимость делителя от этих комбинаций

Table 65. TWI Bit Rate Prescaler					
TWPS1	TWPS0	Prescaler Value			
0	0	1			
0	1	4			
1	0	16			
1	1	64			

Займёмся теперь непосредственно шиной. Как же всё работает:

Рубрики

- 1-WIRE (3)
- ADC (6)
- DAC (4)
- GPIO (26)
- I2C (19)
- SPI (13)
- USART (8)
- Программирование AVR (131)
- Программирование РІС (7)
- Программирование STM32 (213)
- Тесты устройств и аксессуаров (1)

для начала любой посылки необходимо сгенерировать условие СТАРТ, чтобы ведущие устройства "проснулись" и начали приём, а потом уже "думали", не их ли адрес к ним пришёл. Условие СТАРТ генерируется путём перехода из высокого логического состояния шины SDA в низкое (отрицательного фронта), а затем черз некоторое время должно то же самое произойти и с шиной SCL. Вот тогда ведущий и поймёт, что по шине началась какая-то передача. А если контроллер у нас ведомый, то мы наоборот должны отследить данный процесс на наших проводах.

Но у нас шина аппаратная и париться на этот счёт нам не нужно, ибо всё контроллер сделает сам.

Соответственно, как мы видим из графика наверху, условие СТОП генерируется наоборот. Сначала положительный фронт на шине SCL, а затем на SDA.

	7
ЭЈ ДЕНЬ	124 507 13 098
оп дней	30 048 4 366
24 4ACA	5 253 1 0 7 1
сегодня	2 568 580
	52

Очень горячая аниме игра

Эта аниме игра поглощает с первых минут, начнешь играть и забудешь про сон [8+] Все об игре Выбери свой класс Следи за новостями Тебя ждет подарок promo.101xp.com

Разработка мобильных приложений.

Разрабатываем все типы мобильных приложений для любых нужд бизнеса. Звоните! Стартапы Коммерческие приложения Справочные приложения пагіѕиетьсь ву Адрес и телефон

В случае, если контроллер у нас ведомый, то мы, для того, чтобы сгенерировать условие СТАРТ, должны сделать следующее.

Вот таким вот образом у меня подключен модуль с микросхемой

Вернёмся в проект и напишем для генерации условия CTAPT отдельную функцию в файле twi.c

```
void I2C_StartCondition(void)
{
  TWCR = (1<<TWINT)|(1<<TWSTA)|
(1<<TWEN);
  while(!(TWCR&(1<<TWINT)));//
подождем пока установится TWIN
}</pre>
```

Вот такая вот интересная функция. Что же здесь происходит?

А происходит следующее.

Мы сначала устанавливаем определённые биты в регистре управленя, говоря при этом шине о том, что мы посылаем условие СТАРТ (TWSTA), а также запускаем шину (TWEN). Ну а бит TWINT мы соответственно устанавливаем в единицу. А в ноль он, соответственно установится тогда, когда данное задание закончится. Вот для этого и существует вторая строка, где мы висим в цикле, пока

он, собственно, и не установится. Именно в ноль! А не в единицу. Об этом говорит восклицательный знак в условии.

Давайте сразу и воспользуемся данной функцией, соответственно сначала создав на неё прототип, а затем вызвав в функции main(). Сначала мы, конечно, будем во внешнюю память EEPROM писать, так как читать из неё ещё нечего. Поэтому начнём в main() писать следующий код

I2C_Init();

//Чтение

I2C_StartCondition(); //Отправим
условие START

Ну и, раз уж у нас есть чем, то давайте считаем статус операции и посмотрим успешно ли всё у нас прошло.

Для этого мы просто отправим значение статусного регистра в шину USART. Младшие три бита мы маскировать не будем, они у нас и так все в нулях.

I2C_StartCondition(); //Отправим условие START
USART_Transmit(TWSR);//читаем статусный регистр

Запустим терминальную программу, нажмем там **Connect**, соберём код и прошьём контроллер.

И вот мы что там видим

Посмотрим в таблице данный статус

Status Code (TWSR) Prescaler Bits are 0	Status of the Two-wire Serial Bus and Two-wire Serial Inter- face Hardware		
0x08	A START condition has been transmitted		

То есть условие СТАРТ у нас сгенерировано и отправлено.
Остальные эксперементы с шиной I2C мы будем проделывать в следующей части.

Техническая документация на микросхему AT24C32

Программатор и модуль RTC DS1307 с микросхемой памяти можно приобрести здесь:

Программатор (продавец надёжный) USBASP USBISP 2.0

Модуль RTC DS1307 с микросхемой памяти

Смотреть ВИДЕОУРОК (нажмите на картинку)

Post Views: 575

AVR Урок 16.Интерфейс TWI

КОММЕНТАРИЙ (I2C). Часть 4 Ваш е-mail не будет опубликован. Обязательные поля помечены * Комментарий
Дооавить комментарий
КОММЕНТАРИЙ (I2C). Часть 4 Ваш е-mail не будет опубликован. Обязательные поля помечены * Комментарий
* (I2C). Часть 4 Ваш е-mail не будет опубликован. Обязательные поля помечены * Комментарий
Ваш e-mail не будет опубликован. Обязательные поля помечены * Комментарий
Обязательные поля помечены * Комментарий
/ жм
Имя *
имя *
* жмN
Имя *
Имя *
Имя *
Имя *
E-mail *
E-maii ^
Сайт
шесть -
Отправить комментарий

Главная Новости Уроки по программированию МК Программирование микроконтроллеров STM32 Программирование микроконтроллеров PIC Тесты устройств и аксессуаров Устройства и интерфейсы Ссылки Форум Помощь				
1 2 444 ◆ 695 ⊕ 542 ∯				

© 2018 Narod Stream

Наверх