EE337: MICROCONTROLLERS AND MICROPROCESSORS

RAJBABU VELMURUGAN AND SHANKAR BALACHANDRAN

Serial Peripheral Interface

Serial Peripheral Interface

- What is it?
- □ Basic SPI
- Capabilities
- Protocol
- Pros and Cons
- Uses

Serial Peripheral Interface

http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/ SPI single slave.svg/350px-SPI single slave.svg.png

What is SPI?

- Serial bus protocol
- □ Fast, easy to use, and simple
- Very widely used
- □ Not "standardized"

SPI Basics

- □ A 4-wire communications bus
- Typically communicate across short distances
- Supports
 - Single master
 - Multiple slaves
- Synchronized
 - Communications are "clocked"

SPI Capabilities

- Always full-duplex
 - Communicates in both directions simultaneously
 - Transmitted (or received) data may not be meaningful
- Multiple Mbps transmission speeds
 - 0-50 MHz clock speeds not uncommon
- □ Transfer data in 4 to 16 bit characters
- Supports multiple slaves

SPI bus wiring

- Bus wires
 - Master-Out, Slave-In (MOSI)
 - Master-In, Slave-Out (MISO)
 - System Clock (SCLK)
 - □ Slave Select/Chip Select (SS1#, ..., SS#n or CS1, ..., CSn)
- Master asserts slave/chip select line
- Master generates clock signal
- Shift registers shift data in and out

SPI signal functions

- MOSI carries data out of master to slave
- MISO carries data out of slave to master
 - Both MOSI and MISO are active during every transmission
- □ SS# (or CS) unique line to select each slave chip
- SCLK produced by master to synchronize transfers

SPI uses a "shift register" model of communications

Master shifts out data to Slave, and shifts in data from Slave http://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/SPI 8-bit circular transfer.svg/400px-SPI 8-bit circular transfer.svg.png

Two bus configuration models

Some wires have been renamed

Master and multiple daisychained slaves

http://www.maxim-ic.com/appnotes.cfm/an_pk/3947

Master and multiple independent slaves

http://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/SPI_three_slaves.svg/350px-SPI_three_slaves.svg.png

SPI clocking: there is no "standard way"

- Four clocking "modes"
 - Two phases
 - Two polarities
- Master and selected slave must be in the same mode
- During transfers with slaves A and B, Master must
 - Configure clock to Slave A's clock mode
 - Select Slave A
 - Do transfer
 - Deselect Slave A
 - Configure clock to Slave B's clock mode
 - Select Slave B
 - Do transfer
 - Deselect Slave B
- Master reconfigures clock mode on-the-fly!

SPI timing diagram

Timing Diagram – Showing Clock polarities and phases

http://www.maxim-ic.com.cn/images/appnotes/3078/3078Fig02.gif

SPI tradeoffs: the pros and cons

- □ Pros
 - Fast for point-to-point connections
 - Easily allows streaming/constant data inflow
 - □ No addressing in protocol, so it's simple to implement
 - Broadly supported

Cons

- Slave select/chip select makes multiple slaves more complex
- No acknowledgement (can't tell if clocking in garbage)
- No inherent arbitration
- No flow control (must know slave speed)

SPI is used everywhere!

- Peripherals
 - LCDs
 - Sensors
 - Radios
 - Lots of other chips

- Microcontrollers
 - Almost all MCUs have SPI masters
 - Some have SPI slaves