DECOMPOSIÇÃO DE PROBLEMAS MULTICLASSE

CAPÍTULO 17

ld.	Nome	ldade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	М	79	Concentradas	38,0	2	SP	Doente
3217	Maria	18	F	67	Inexistentes	39,5	4	MG	Doente
4039	Luiz	49	М	92	Espalhadas	38,0	2	RS	Saudável
1920	José	18	М	43	Inexistentes	38,5	8	MG	Doente
4340	Cláudia	21	F	52	Uniformes	37,6	1	PE	Saudável
2301	Ana	22	F	?	Inexistentes	38,0	3	RJ	Doente
1322	Marta	19	F	87	Espalhadas	39,0	6	AM	Doente
3027	Paulo	34	М	67	Uniformes	38,4	2	GO	Saudável

- CLASSE DESTINO DE UM RÓTULO
- DECOMPOSIÇÃO SEPARAR EM PROBLEMAS MENORES (BINÁRIOS)
- DUAS FASES DECOMPOSIÇÃO E RECONSTRUÇÃO

POR QUE DECOMPOR?

- MUITAS TÉCNICAS SÃO ORIGINALMENTE BINÁRIAS
- ALGORITMOS POUCO ADEQUADOS À MULTICLASSE
- ALGORITMOS COM PROCEDIMENTOS INTERNOS RESTRITOS A PROBLEMAS BINÁRIOS
- REDUZIR COMPLEXIDADE COMPUTACIONAL (SUBDIVISÃO EM TAREFAS)

FASE DE DECOMPOSIÇÃO

- OCORRE ANTES DO APRENDIZADO
- OBTENÇÃO DE SUBPROBLEMAS BINÁRIOS
- mij = {-1, 0, 1}
 - -1 = RÓTULO NEGATIVO
 - 1 = RÓTULO POSITIVO
 - 0 = NÃO PARTICIPA
- UM-CONTRA-TODOS (OAA)
- TODOS-CONTRA-TODOS (OAO)
- DECOMPOSIÇÃO HIERÁRQUICA
- CÓDIGOS DE CORREÇÃO DE ERRO (ECOC)

UM-CONTRA-TODOS

- SEMPRE APRESENTA FORMA KxK
- CADA CLASSIFICADOR COMPARA UMA CLASSE COM TODAS AS OUTRAS
- DIAGONAL +1, DEMAIS VALORES -1

• PROBLEMA: DESEMPENHO PREJUDICADO EM CASO DE DESBALANCEAMENTO DOS DADOS

TODOS-CONTRA-TODOS

- K CLASSES -> K(K-1)/2 CLASSIFICADORES
- CADA CLASSIFICADOR COMPARA DUAS CLASSES
- MUITOS CLASSIFICADORES (ORDEM DE K²), MAS TREINAMENTO DOS CLASSIFICADORES É RÁPIDO

$$\begin{pmatrix}
+1 & +1 & +1 & 0 & 0 & 0 \\
-1 & 0 & 0 & +1 & +1 & 0 \\
0 & -1 & 0 & -1 & 0 & +1 \\
0 & 0 & -1 & 0 & -1 & -1
\end{pmatrix}$$

PROBLEMA: DADO K > 4, MAIORIA DOS
 CLASSIFICADORES NÃO OFERECE INFORMAÇÃO
 NENHUMA PARA UMA CLASSE ALEATÓRIA
 ESCOLHIDA

DECOMPOSIÇÃO HIERÁRQUICA

- REDUZ COMPLEXIDADE DA SOLUÇÃO
- GRAFOS DIRECIONADOS ACÍCLICOS:
 - K-1 CLASSIFICADORES
 - DDAG (OAO EM FORMA DE GRAFO)

• ADAG (DDAG REVERSO)

CÓDIGOS DE CORREÇÃO DE ERROS

• UTILIZAÇÃO DOS CÓDIGOS COMO BASE PARA A DECOMPOSIÇÃO

• MATRIZ HAMMING:
$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

- VALORES ENTRE {-1, +1}
- TÉCNICAS DIFERENTES DE ACORDO COM NUM K DE CLASSES:
 - K <= 7 -> EXAUSTIVO (COMBINAR CLASSIFICADORES)
 - 8 <= K <= 11 -> SELECIONA COLUNAS
 - K > 11 -> HILL-CLIMBING OU BCH

• SUBPROBLEMAS DE DIFÍCIL APRENDIZADO

FASE DE RECONSTRUÇÃO

- OCORRE APÓS PREDIÇÃO
- COMBINAÇÃO DOS CLASSIFICADORES BINÁRIOS EM CLASSES FINAIS
 - 1 L CLASSIFICADORES GERAM VETOR
 - 2 VETOR É COMPARADO COM AS LINHAS DA MATRIZ (CÁLCULO DA DISTÂNCIA VARIA)
 - 3 LINHA DA CLASSE MAIS PRÓXIMA É A CLASSE FINAL
- ESTRATÉGIA HIERÁRQUICA TENDE A SER MAIS RÁPIDA (CONSULTA PARTE DOS PREDITORES)

FERRAMENTAS E BIBLIOTECAS

PANDAS & NUMPY

manipulação da base de dados

SEABORN & MATPLOT

visualização gráfica dos resultados

SKLEARN

algoritmos de machine learning

EXPERIMENTOS

- UM-CONTRA-TODOS
- TODOS-CONTRA-TODOS
- DECOMPOSIÇÃO HIERÁRQUICA
 - ADAG