Gradient Descent Methods

차례

- Stochastic Gradient Descent Method
- Momentum
- Adaptive Learning Rates
 - Adagrad
 - **▶** RMSprop
 - Adam

Gradient Descent Method

Error Back Propagation (Batch mode)

Batch Gradient Descent

Algorithm

- For one update, gradients are calculated for the whole dataset
- Batch gradient descent is guaranteed to converge to a local minimum
- Redundant computations for large redundant dataset

Repeat
$$\alpha=0$$
 for n =1 to N (for all training data)
$$\alpha+=\frac{\partial E_n}{\partial w}$$
 end
$$w=w-\eta\alpha$$
 Until end condition satisfied

Gradient Descent Method

Error Back Propagation (Batch mode)

Exact Gradients!! However, too much cost for them !!

Do we need EXACT gradients?

How about ESTIMATING the gradient with cheap cost?

Gradient Descent Method

Error Back Propagation (Batch mode)

$$\frac{\partial E}{\partial w_1} = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial E_i}{\partial w_1} \qquad \frac{\partial E}{\partial w_1} \approx \frac{\partial E_1}{\partial w_1} \approx \frac{\partial E_2}{\partial w_1} \approx \cdots \approx \frac{\partial E_n}{\partial w_1}$$

Why not?

Why not?

Why not?

Stochastic Gradient Descent

- For one update, gradients are calculated for one sample
- Usually faster and can be used to learn online
- Fluctuations: Maybe good or maybe bad
- With a small learn rate, show similar performance

Repeat

for n = 1 to N (for all training data)

$$w = w - \eta \frac{\partial E_n}{\partial w}$$

end

Until end condition satisfied

Mini-batch Gradient Descent Method

Mini-batch Gradient Descent Method

- Mini-batch Gradient Descent
 - For an update, gradients are calculated for a batch

```
Repeat
   for b = 1 to B (for all batches)
        \alpha = 0
       for n=1 to N_b (for all training data in batch b)
           \alpha + = \frac{\partial E_n}{\partial w}
       end
   w = w - \eta \alpha
Until end condition satisfied
```

Usual Batch Size

 Dependent on datasets from several thousands to several tens

Advantage

- Good estimation of real gradient
- High throughput: may use the large number of cores at once in a GPU.
- Faster convergence: Good estimation + High throughput

Disadvantage

Inaccurate: dataset with large variances

- Simple gradient method depends on the current position
 - Hard to avoid local minimum
 - Gradient can vary much

Avoiding Minima

Smoother Iteration

How to cross the hill

Momentum

$$\boldsymbol{m}^t = \boldsymbol{m}^{t-1} + \boldsymbol{g}^t$$

Momentum

Update parameters considering both the momentum and the gradient of the current position

Momentum

Momentum is the exponential average of the past gradients

$$\boldsymbol{m}^{t} = \eta \boldsymbol{g}^{t} + \gamma \eta \boldsymbol{g}^{t-1} + \gamma^{2} \eta \boldsymbol{g}^{t-2} + \cdots$$

$$\mathbf{m}^{t} = \gamma \ \mathbf{m}^{t-1} + \eta \mathbf{g}^{t}$$
$$\mathbf{w}^{t} = \mathbf{w}^{t-1} - \mathbf{m}^{t}$$

Oscillation

- Why do we use the SAME learning rate for all the weights?
 - Can we use different learning rate?
 - Hmm.. Interesting, but why do we need different learning rate?
- Some weight are updated much and some are not
 - What if some inputs may be 0 but some may have nonezero values in most of training data
 - OK.. Let's make a large update for the less updated parameters

Some weight are updated much and some are not

Adagrad

- Update much less-updated parameters
- Update less much-updated parameter

 g_i^t : parameter i의 시간 t에서의 기울기

 G_i^t : parameter i가 지금까지 update된 총량

$$w_i^t = w_i^{t-1} - \eta g_i^t$$

표준 방법

$$G_i^t = G_i^{t-1} + \left(g_i^t\right)^2$$

$$w_i^t = w_i^{t-1} - \frac{\eta}{\sqrt{G_i^t + \epsilon}} g_i^t$$
 Adagrad Very small value

- Disadvantage of Adagrad
 - \triangleright Eventually, G_i^t becomes large as time goes on
 - Parameters are rarely updated at some time

 g_i^t : parameter i의 시간 t에서의 기울기

 G_i^t : parameter i가 지금까지 update된 총량

$$w_i^t = w_i^{t-1} - \eta g_i^t$$

표준 방법

$$G_i^t = G_i^{t-1} + \left(g_i^t\right)^2$$

$$w_i^t = w_i^{t-1} - \frac{\eta}{\sqrt{G_i^t + \epsilon}} g_i^t$$
 Adagrad Very small value

RMSProp

Instead of considering the total amount of updates, let's consider the amount of recent updates

 g_i^t : parameter i의 시간 t에서의 기울기

 G_i^t : parameter i가 update된 양

$$G_i^t = G_i^{t-1} + (g_i^t)^2$$

$$w_i^t = w_i^{t-1} - \frac{\eta}{\sqrt{G_i^t + \epsilon}} g_i^t$$

Adagrad

$$G_i^t = \gamma G_i^{t-1} + (1-\gamma) \left(g_i^t\right)^2$$

$$w_i^t = w_i^{t-1} - \frac{\eta}{\sqrt{G_i^t + \epsilon}} g_i^t$$
 RMSProp Very small value

Adam

RMSProp + Momentum

 g_i^t : parameter i의 시간 t에서의 기울기

 G_i^t : parameter i가 update된 양

Momentum

$$m_i^t = \gamma m_i^{t-1} + \eta g_i^t \qquad \longrightarrow \qquad m_i^t = \beta_1 m_i^{t-1} + (1 - \beta_1) g_i^t$$

$$w_i^t = w_i^{t-1} - m_i^t$$

RMSProp

$$G_{i}^{t} = \gamma G_{i}^{t-1} + (1 - \gamma) (g_{i}^{t})^{2} \longrightarrow G_{i}^{t} = \beta_{2} G_{i}^{t-1} + (1 - \beta_{2}) (g_{i}^{t})^{2}$$

$$w_{i}^{t} = w_{i}^{t-1} - \frac{\eta}{\sqrt{G_{i}^{t} + \epsilon}} g_{i}^{t}$$

Adam

RMSProp + Momentum

$$m_i^t = \beta_1 m_i^{t-1} + (1 - \beta_1) g_i^t$$
$$G_i^t = \beta_2 G_i^{t-1} + (1 - \beta_2) (g_i^t)^2$$

Unbiased expectation
$$\widehat{m}_i^t = \frac{m_i^t}{1 - (\beta_1)^t} \qquad \widehat{G}_i^t = \frac{G_i^t}{1 - (\beta_2)^t}$$

$$w_i^t = w_i^{t-1} - \frac{\eta}{\sqrt{\widehat{G}_i^t + \epsilon}} \widehat{m}_i^t$$

Adam

RMSProp + Momentum

$$m_i^t = \gamma m_i^{t-1} + \eta g_i^t$$
$$w_i^t = w_i^{t-1} - m_i^t$$

Momentum

$$G_i^t = \gamma G_i^{t-1} + (1 - \gamma) (g_i^t)^2$$

$$w_i^t = w_i^{t-1} - \frac{\eta}{\sqrt{G_i^t + \epsilon}} g_i^t$$

RMSProp

$$\begin{split} m_i^t &= \beta_1 m_i^{t-1} + (1 - \beta_1) g_i^t \\ G_i^t &= \beta_2 G_i^{t-1} + (1 - \beta_2) (g_i^t)^2 \\ \widehat{m}_i^t &= \frac{m_i^t}{1 - (\beta_1)^t} \qquad \widehat{G}_i^t = \frac{G_i^t}{1 - (\beta_2)^t} \\ w_i^t &= w_i^{t-1} - \frac{\eta}{\sqrt{\widehat{G}_i^t + \epsilon}} \widehat{m}_i^t \end{split}$$

Adam

Comparison: Long valley

Comparison: Beale's Function

Question and Answer