Trigger Processor Implementation

Nathan Felt

2015 May 4

ART Data/Trigger Processor Overview

ADDC GBT Data Packet

- Each ADDC will service 2 sets of 32 VMMs and have 2 fiber outputs using the GigaBit Transceiver (GBT) architecture. One fiber per 32 VMMs
- The GBT packet in widebus mode will provide 112 data bits at a rate of 4.8 Gbs and arrives once every bunch crossing
 - HIT_CNT = 4-bit number of hits (range 0 8; 9 15 invalid)
 - ART_DATA = 6-bit triggered VMM strip number
 - ARTDATA_PARITY = 8-bit parity, one per hit
 - HIT_LIST= The triggered state of each of the 32 VMMs will be represented as a single bit in this 32-bit field.

ADDC GBT Data Packet

Implementation

- 320 MHz Internal Clock
- 1/16th sector slice, containing all elements of algorithm implemented
- Modelsim used for simulation
- Xilinx Vivado 14.4 used for synthesis and PAR
- No timing errors in algorithm
- Extrapolated resource estimate
 - 70% targeting a '485
 - 50% targeting a '690.
- Source code on SVN

- Matlab used for all data formatting, communication and analysis
- Communication uses TCP/IP on Mircroblaze with AXI interface to Programmable Logic
- ADDC Emulator
 - Generates GBT packets from track data files
 - Currently lives in Trigger Processor FPGA
- GBT Loopback
 - Option to bypass
 - Implementation uses code from the CERN GBT-FPGA project

- Algorithm hardware results comparable to computer simulation
 - Currently working on increasing the bit resolution of some variables, This will likely increase latency by 6-9 ns
- Initial data communication with BNL ADDC verified

Ancillary functions

- Ancillary functions common to both MM and sTGC can be shared as well-defined packages.
- Ancillary functions Include
 - Timing and Trigger control (TTC)
 - Level-1 pipeline and derandomizer
 - read/write of configuration parameters
 - monitoring
 - playback for debugging
 - Segment output to Sector Logic
 - Segment output to "other" detector's trigger processor
- Three groups will participate in writing the firmware:
 - Harvard
 - Illinois
 - Weizmann

Backup

Hardware / Software Example Comparisons

Trigger Processor with ADDC

Monitoring Functions

Data Path

