Deep Network for Speech Emotion Recognition —A Study of Deep Learning—

Zhuowei Han

Institut für Signalverarbeitung und Systemtheorie

Universität Stuttgart

16/04/2015

Motivation

Speech Emotion Recognition

- Most current work focuses on speech processing based on linguistic information, e.g.: Skype Translator
- More natural human-machine interaction requires paralinguistic information such as age, gender, emotion.
- Speech Recognition / Speeker Identification / Emotion Recognition

Motivation

Deep Learning

- Deep architecture for extracting complex structure and building internal representations from input
- New research area of machine learning (from shallow to deep structure)
- Widely applied in vision/audition processing, e.g. handwriting recognition (Graves, Alex, et al. 2009), traffic sign classification (Schmidhuber, et al. 2011), text translation (Google, 2014)

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine

Restricted Boltzmann Machine

Multilayer Neural Network

Function and Training
Problems and Solutions

Long Short Term Memory Recurrent Neural Network

Conclusion and Outlook

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Multilayer Neural Network
Function and Training

Long Short Term Memory Recurrent Neural Network

Conclusion and Outlook

Mel Frequency Cepstral Features

- short-term power spectrum
- mel-scale approximate human perception
- widely-used in speech recognition tasks
- Transformation between Mel and Hertz scale

$$f_{mel} = 1125 \ln (1 + f_{Hz}/700)$$

 $f_{Hz} = 700 \left(\exp(f_{mel}/1125) - 1 \right)$

Emotion Recognition Approaches

Traditional Approaches

- pre-selected features
- supervised training
- low-level features not appropriate for classification
- shallow structure of classifiers

Deep Learning Approaches

- learning representations from high-dim data
- extracting appropriate features without hand-crafting
- low-level features are used to build high-level features as network gets deeper
- frame-based classification

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Multilayer Neural Network

Function and Training
Problems and Solution

Long Short Term Memory Recurrent Neural Network

Conclusion and Outlook

Concepts

- lacktriangle Generative graphical model, capture data distribution $P(\mathbf{x}|m{ heta})$
- Trained in unsupervised way, only use unlabeled input sequencex for learning.
 - □ automatically extract useful features from data
 - □ Find hidden structure (distribution).
 - □ Learned features used for prediction or classification
- Successfully applied in motion capture (Graham W. Taylor, Geoffrey E. Hinton, 2006)
- Potential to be extend to capture temporal information

Restricted Boltzmann Machine

Structure

Restricted Boltzmann Machine

Structure

Energy Function:
$$E_{\theta} = -\mathbf{x}^{T}\mathbf{W}\mathbf{h} - \mathbf{b}^{T}\mathbf{x} - \mathbf{c}^{T}\mathbf{h}$$

Joint Distribution:
$$P^{RBM}(\mathbf{x}, \mathbf{h}) = \frac{1}{Z}e^{-E_{\theta}(\mathbf{x}, \mathbf{h})}$$

Partition Function:
$$Z = \sum e^{-E_{\theta}(\mathbf{x}, \mathbf{h})}$$

Free Energy:
$$\mathcal{F}(\mathbf{x}) = -\log \sum_{\mathbf{h}} e^{-E(\mathbf{x},\mathbf{h})}$$

Inference

Inference

$$P(\mathbf{x}) = \sum_{\mathbf{h}} P(\mathbf{x}, \mathbf{h})$$

$$P(\mathbf{h}) = \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{h})$$

Inference

Inference

$$P(\mathbf{x}) = \sum_{\mathbf{h}} P(\mathbf{x}, \mathbf{h})$$

$$P(\mathbf{h}) = \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{h})$$

$$P(\mathbf{h}|\mathbf{x}) = \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{x})}$$

$$P(\mathbf{x}|\mathbf{h}) = \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{h})}$$

Inference

Inference

$$\begin{split} P(\mathbf{x}) &= \sum_{\mathbf{h}} P(\mathbf{x}, \mathbf{h}) \\ P(\mathbf{h}) &= \sum_{\mathbf{x}} P(\mathbf{x}, \mathbf{h}) \\ P(\mathbf{h} | \mathbf{x}) &= \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{x})} \\ P(\mathbf{x} | \mathbf{h}) &= \frac{P(\mathbf{x}, \mathbf{h})}{P(\mathbf{h})} \\ P(h_j &= 1 \mid \mathbf{x}) = sigmoid(\sum_i x_i W_{ij} + c_j) \\ P(x_i &= 1 \mid \mathbf{h}) = sigmoid(\sum_i W_{ij} h_j + b_i) \end{split}$$

- Linear input units with independent Gaussian noise
- Real-valued data, e.g. spectral features

- Linear input units with independent Gaussian noise
- Real-valued data, e.g. spectral features

Energy Function:
$$E_{\boldsymbol{\theta}}^{CRBM}(\mathbf{x}, \mathbf{h}) = \left\| \frac{\mathbf{x} - \tilde{\mathbf{b}}}{2} \right\|^2 - \tilde{\mathbf{c}}^T \mathbf{h} - \mathbf{x}^T \mathbf{W} \mathbf{h}$$

Free Energy: $\mathcal{F}(\mathbf{x}) = \left\| \mathbf{x} - \tilde{\mathbf{b}} \right\|^2 - \log(1 + e^{\tilde{\mathbf{c}} + \mathbf{x} \cdot \mathbf{W}})$

$$\tilde{\mathbf{b}} = \mathbf{b} + \mathbf{A} \cdot \mathbf{x}_{< t}$$

$$\tilde{\mathbf{c}} = \mathbf{c} + \mathbf{B} \cdot \mathbf{x}_{< t}$$

$$\boldsymbol{\theta} = \{ \mathbf{W}, \mathbf{A}, \mathbf{B}, \mathbf{b}, \mathbf{c} \}$$

Energy Function:
$$E_{\boldsymbol{\theta}}^{CRBM}(\mathbf{x}, \mathbf{h}) = \left\| \frac{\mathbf{x} - \tilde{\mathbf{b}}}{2} \right\|^2 - \tilde{\mathbf{c}}^T \mathbf{h} - \mathbf{x}^T \mathbf{W} \mathbf{h}$$

Free Energy: $\mathcal{F}(\mathbf{x}) = \left\| \mathbf{x} - \tilde{\mathbf{b}} \right\|^2 - \log(1 + e^{\tilde{\mathbf{c}} + \mathbf{x} \cdot \mathbf{W}})$

$$\tilde{\mathbf{b}} = \mathbf{b} + \mathbf{A} \cdot \mathbf{x}_{< t}$$

$$\tilde{\mathbf{c}} = \mathbf{c} + \mathbf{B} \cdot \mathbf{x}_{< t}$$

$$\boldsymbol{\theta} = \{ \mathbf{W}, \mathbf{A}, \mathbf{B}, \mathbf{b}, \mathbf{c} \}$$

Optimization Method: Maximum Likelihood

$$P(\mathbf{x}) = \frac{e^{-\mathcal{F}(\mathbf{x})}}{Z}$$

Free Energy

Optimization Method: Maximum Likelihood

$$\begin{split} P(\mathbf{x}) &= \frac{e^{-\mathcal{F}(\mathbf{x})}}{Z} \\ &- \frac{\partial \log P(\mathbf{x})}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} - \sum_{\tilde{\mathbf{x}}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}} \end{split}$$

Optimization Method: Maximum Likelihood

$$P(\mathbf{x}) = \frac{e^{-\mathcal{F}(\mathbf{x})}}{Z}$$

$$-\frac{\partial \log P(\mathbf{x})}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} - \sum_{\tilde{\mathbf{x}}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}}$$

 $\leftarrow\! \mathsf{intractable!}$

Optimization Method: Maximum Likelihood

$$P(\mathbf{x}) = \frac{e^{-\mathcal{F}(\mathbf{x})}}{Z}$$

$$-\frac{\partial \log P(\mathbf{x})}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} - \sum_{\tilde{\mathbf{x}}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}} \qquad \leftarrow \text{intractable!}$$

$$\leftarrow\! \mathsf{intractable!}$$

$$-\frac{\partial \log P(\mathbf{x})}{\partial \boldsymbol{\theta}} = \frac{\partial \mathcal{F}(\mathbf{x})}{\partial \boldsymbol{\theta}} - \frac{1}{|\mathcal{N}|} \sum_{\tilde{\mathbf{x}} \in \mathcal{N}} P(\tilde{\mathbf{x}}) \frac{\partial \mathcal{F}(\tilde{\mathbf{x}})}{\partial \boldsymbol{\theta}}$$

MCMC-Gibbs Sampling

$$\mathbf{x_1} \sim \hat{P}(\mathbf{x})$$

$$\mathbf{h_1} \sim \hat{P}(\mathbf{h}|\mathbf{x}_1)$$

$$\mathbf{x_2} \sim \hat{P}(\mathbf{x}|\mathbf{h}_1)$$

 $\mathbf{h_2} \sim \hat{P}(\mathbf{h}|\mathbf{x}_2)$

.

$$\mathbf{x_{t+1}} \sim \hat{P}(\mathbf{x}|\mathbf{h}_t)$$

4 B > 4 D > 4 A >

MCMC-Gibbs Sampling

$$\mathbf{x_1} \sim P(\mathbf{x})$$

 $\mathbf{h_1} \sim \hat{P}(\mathbf{h}|\mathbf{x}_1)$

$$\mathbf{x_2} \sim \hat{P}(\mathbf{x}|\mathbf{h}_1)$$

 $\mathbf{h_2} \sim \hat{P}(\mathbf{h}|\mathbf{x}_2)$

 $\mathbf{x_{t+1}} \sim \hat{P}(\mathbf{x}|\mathbf{h}_t)$

4 B > 4 D > 4 A >

MCMC-Gibbs Sampling

$$\mathbf{x_1} \sim P(\mathbf{x})$$

 $\mathbf{h_1} \sim \hat{P}(\mathbf{h}|\mathbf{x}_1)$

$$\mathbf{x_2} \sim \hat{P}(\mathbf{x}|\mathbf{h}_1)$$

 $\mathbf{h_2} \sim \hat{P}(\mathbf{h}|\mathbf{x}_2)$

:

$$\mathbf{x}_{t+1} \sim \hat{P}(\mathbf{x}|\mathbf{h}_t)$$

4 B > 4 D > 4 A >

Contrastive Divergence

t=1, Gibbs step \rightarrow Constrastive Divergence

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine Restricted Boltzmann Machine

Multilayer Neural Network

Function and Training
Problems and Solutions

Long Short Term Memory
Recurrent Neural Network

Conclusion and Outlook

Structure and Function

N-hidden layers neural network

Hidden layer pre-activation:

$$\mathbf{a}(\mathbf{x}) = \mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}$$
$$a_j(\mathbf{x}) = \sum_i w_{ji}^{(1)} x_i + b_j^{(1)}$$

Hidden layer activation:

$$\mathbf{h} = f(\mathbf{a})$$

Output layer activation:

$$\hat{y}(\mathbf{x}) = o(\mathbf{W}^{(N+1)}\mathbf{h}^{(N)} + \mathbf{b}^{(N+1)})$$

Training

Empirical Risk Minimization

learning algorithms

$$\arg \min_{\boldsymbol{\theta}} \frac{1}{M} \sum_{m} l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)}) + \lambda \Omega(\boldsymbol{\theta})$$

- loss function $l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)})$ for sigmoid activation $l(\boldsymbol{\theta}) = \sum_{m} \frac{1}{2} \left\| y^{(m)} \hat{y}^{(m)} \right\|^2$
- regularizer $\lambda\Omega(\boldsymbol{\theta})$

Optimization

- Gradient calculation with Backpropagation
- Stochastic/Mini-batch gradient descent

Pre-training

Vanishing Gradient

- Training time increases as network gets deeper
- Gradient shrink exponentially and training end up local minima
- Caused by random initialization of network parameters

Pre-training

Vanishing Gradient

- Training time increases as network gets deeper
- Gradient shrink exponentially and training end up local minima
- Caused by random initialization of network parameters

Unsupervised layerwise pre-training

- Pretrain the deep network layer by layer to build a stacked auto-encoder
- Each layer is trained as a single hidden layer auto-encoder by minimizing average reconstruction error:

$$\min l_{AE} = \sum_{m} \frac{1}{2} \left\| \mathbf{x}^{(m)} - \hat{\mathbf{x}}^{(m)} \right\|^2$$

• Fine-tuning the entire deep network with supervised training

Pre-training

3

Overfitting

- Huge amount of parameters in deep network
- Not enough data for training
- Poor generalization

Overfitting

- Huge amount of parameters in deep network
- Not enough data for training
- Poor generalization

Regularization

■ Add weight penalization $\lambda \|\mathbf{w}\|_p$ to loss function

$$\arg \min_{\boldsymbol{\theta}} \frac{1}{M} \sum_{m} l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)}) + \lambda \|\mathbf{w}\|_{p}$$

In convex optimization:

$$\arg\min_{\boldsymbol{\theta}} \frac{1}{M} \sum_{m} l(\hat{y}(\mathbf{x}^{(m)}; \boldsymbol{\theta}), y^{(m)}), s.t. \|\mathbf{w}\|_{p} \leq C$$

P-Norm

$$\|\mathbf{w}\|_p := \left(\sum_{n=1}^n |w_i|^p\right)^{1/p} = \sqrt[p]{|w_1|^p + \dots + |w_n|^p}$$

Widely used: L1- and L2-regularization (p=1 and p=2)

P-Norm

$$\|\mathbf{w}\|_p := \left(\sum_{n=1}^n |w_i|^p\right)^{1/p} = \sqrt[p]{|w_1|^p + \dots + |w_n|^p}$$

Widely used: L1- and L2-regularization (p=1 and p=2)

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine

Multilayer Neural Network

Function and Training
Problems and Solutions

Long Short Term Memory Recurrent Neural Network

Conclusion and Outlook

- modelling sequential data, emotion in speech .
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with **b**ack**p**ropagation **t**hrough **t**ime (BPTT)

- modelling sequential data, emotion in speech.
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping

$$h_t = \mathcal{H}(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$
$$y_t = W_{hy}h_t + b_y$$

- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with backpropagation through time (BPTT)

- modelling sequential data, emotion in speech .
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with **b**ack**p**ropagation **t**hrough **t**ime (BPTT)

- modelling sequential data, emotion in speech .
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with backpropagation through time (BPTT)

- modelling sequential data, emotion in speech.
- Same Structure as MLP but differs from feed-forward network, enabling nonlinear mapping
- Feedback connection between previous hidden units and current hidden units, enabling memory past hidden state.
- Potentially to model arbitary dynamic system.
- Trained with **b**ack**p**ropagation **t**hrough **t**ime (BPTT)

From RNN to LSTM

Problems with RNN

- lacktriangledown gradient vanishing during backpropagation as time steps increases (>100)
- difficult to capture long-time dependency (which is required in emotion recognition)

Solutions

Long short term memory

S. Hochreiter and J. Schmidhuber, Lovol. 9, pp. 1735-1780, 1997.

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_{f})$$

$$c_{t} = f_{t}c_{t-1} + i_{t}\tanh(W_{xc}x_{t} + W_{hc}h_{t-1} + b_{f})$$

$$d_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t}\tanh(c_{t})$$

Long short term memory

LSTM unit

$$i_{t} = \sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_{f})$$

$$c_{t} = f_{t}c_{t-1} + i_{t}\tanh(W_{xc}x_{t} + W_{hc}h_{t-1} + b_{c})$$

$$o_{t} = \sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t} + b_{o})$$

$$h_{t} = o_{t}\tanh(c_{t})$$

Long short term memory

Features in LSTM

- gates are trained to learn when it should be open/closed.
- Constant Error Carousel
- preserve long-time dependency by maintaining gradient over time.

Table of Contents

Foundations

Mel Frequency Cepstral Features Emotion Recognition Approaches

Conditional Restricted Boltzmann Machine

Restricted Boltzmann Machine

Multilayer Neural Network

Function and Training Problems and Solutions

Long Short Term Memory

Recurrent Neural Network

Conclusion and Outlook

Conclusion

- Model with long-term dependencies shall be used for speech emotion
- CRBM is appropriate for short-term modelling, but not for long-term variation
- LSTM is good at modelling long time dependency
- Frame-based classification can also reach good result
 - \square CRBM-LSTM 71.98%
 - □ LSTM 81.59%
 - \Box LSTM with rectifier layers 83.43%

Outlook

- Stacking CRBM to form deeper structure
- Traing CRBM with more/larger data base
- Second order optimization to speed up learning process
- Bi-directional LSTM, capturing future dependencies

End

Thank You!