Chapter 1

Calculation of rotation coefficient

We are interested in the rotation. Let p,q be points on the manifold and ℓ a path connecting them. Let $R: \mathcal{M} \to SO(3)$ be a rotation field, i.e. R(p), R(q) are orthogonal frames. Under the initial condition that $R(p) = \operatorname{Id}$, the equation

$$R(q) = \exp(R_{pq}(\omega))R(p)$$

is a differential equation that corresponds to the parallel transport under the connection ω of the frame along ℓ . To recover this rotation R_{pq} , we integrate ω along ℓ .

Discretization We parametrize the path by $\ell(0) = a, \ell(1) = b$. We resort to numerical integration for R_{ab} and cut the path into n small segments, i.e.

$$R_{ab} = R_n R_{n-1} \cdots R_1$$

where $R_i = \exp(-\omega(\dot{\ell}(i\gamma))\gamma) = \exp((\int W^\top dp)_\times)$, and γ is the length of a segment and $\dot{\ell}(s) = \frac{\partial \ell}{\partial s}(s)$. Calculating the exponential map of an antisymmetric matrix (which $\omega \in \mathfrak{so}(3)$ is) can be done with Rodrigues' formula:

$$\exp(u_{\times}) = \operatorname{Id} + \sin(\theta)\hat{u}_{\times} + (1 - \cos(\theta))\hat{u}_{\times}^{2}$$

where $\theta = ||u||_2$ is the rotation angle and $\hat{u} = u/\theta$ is the rotation axis. We use the trapezoidal rule to evaluate the a short interval of the integral of W, which is given by

$$R_{ab} = \exp\left(\left(\frac{1}{2}(W_a + W_b)^{\top}(b - a)\right)\right)$$

where W_a , W_b is solved for by the 9x9 linear system given by A_x and $\nabla \times A$.

Piecewise linear discretization We discretize our metric field with a tetrahedral mesh \mathcal{T} . At each vertex, we attach a metric and linearly interpolate with barycentric coordinates within a tet.

Let $A_i \in \mathbb{R}^{3x3}$, $i \in \{1, 2, 3, 4\}$ be the square root metrics at the vertices $v_i \in \mathbb{R}^3$ of a tet, such that $A_i^2 = g(v_i)$. We represent a tet given by its four vertices by a 3x4 matrix, i.e.

$$\begin{pmatrix} | & | & | & | \\ v_1 & v_2 & v_3 & v_4 \\ | & | & | & | \end{pmatrix} \in \mathbb{R}^{3 \times 4}.$$

Any point p within the tet can then be represented as

$$p = \alpha v_1 + \beta v_2 + \gamma v_3 + \delta v_4$$

with $\alpha, \beta, \gamma, \delta \ge 0$ and $\alpha + \beta + \gamma + \delta = 1$. This is a linear transformation between two coordinate systems, which we can write in matrix form as

$$\underbrace{\begin{pmatrix} \begin{vmatrix} & & & & & & \\ v_1 & v_2 & v_3 & v_4 \\ & & & & & \\ 1 & 1 & 1 & 1 \end{pmatrix}}_{T^{-1}} \underbrace{\begin{pmatrix} \alpha \\ \beta \\ \gamma \\ \delta \end{pmatrix}}_{\lambda} = \underbrace{\begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}}_{p} \iff T^{-1}\lambda = p \iff \lambda = Tp$$

T always exists because v_1, \ldots, v_4 are linearly independent, else it would not be a tetrahedron. By denoting $T = \{t_{ij}\}_{i,j \in \{1,\ldots,4\}}$, we can write our barycentric functions as

$$\alpha(x, y, z) = t_{11}x + t_{12}y + t_{13}z + t_{14}$$

$$\beta(x, y, z) = t_{21}x + t_{22}y + t_{23}z + t_{24}$$

$$\gamma(x, y, z) = t_{31}x + t_{32}y + t_{33}z + t_{34}$$

$$\delta(x, y, z) = t_{41}x + t_{42}y + t_{43}z + t_{44}$$

The convex combination

$$A(x, y, z) = \alpha A_1 + \beta A_2 + \gamma A_3 + \delta A_4$$

is the metric prescribed in the tet. To find $\nabla \times A$, let $A = (A^1, A^2, A^3)$. We will need the derivatives for the curl, so let

$$(A_j^i)_x \triangleq \frac{\partial A_j^i}{\partial x}$$

be the derivative with respect to x of entry i, j. E.g. $(A_i^i)_x$ is given by

$$(A_j^i)_x = \alpha_x (A_1)_j^i + \beta_x (A_2)_j^i + \gamma_x (A_3)_j^i + \delta_x (A_4)_j^i = t_{11} (A_1)_j^i + t_{21} (A_2)_j^i + t_{31} (A_3)_j^i + t_{41} (A_4)_j^i$$

If we write $T = (T^1, T^2, T^3, T^4)$ and collect $(A_k)_j^i$ into a vector

$$\bar{A}_{j}^{i} = \begin{pmatrix} (A_{1})_{j}^{i} \\ (A_{2})_{j}^{i} \\ (A_{3})_{j}^{i} \\ (A_{4})_{i}^{i} \end{pmatrix}$$

this can be shortened to $\bar{A_j^i}^{\top}T^1=(A_j^i)_x.$ Analogously, we get

$$(A_{j}^{i})_{y}=ar{A_{j}^{i}}^{ op}T^{2}$$
 and $(A_{j}^{i})_{z}=ar{A_{j}^{i}}^{ op}T^{3}$

The curl is then given by

$$\nabla \times A^{i} = \begin{pmatrix} (A_{3}^{i})_{y} - (A_{2}^{i})_{z} \\ (A_{1}^{i})_{z} - (A_{3}^{i})_{x} \\ (A_{2}^{i})_{x} - (A_{1}^{i})_{y} \end{pmatrix} = \begin{pmatrix} \bar{A}_{3}^{i} & T^{2} - \bar{A}_{2}^{i} & T^{3} \\ \bar{A}_{1}^{i} & T^{3} - \bar{A}_{3}^{i} & T^{1} \\ \bar{A}_{2}^{i} & T^{1} - \bar{A}_{1}^{i} & T^{2} \end{pmatrix}$$

and $\nabla \times A = \nabla \times (A^1, A^2, A^3)$. Notice that the curl is constant within a tetrahedron.

- Calculation of R
- · Piecewise linear discretization