Christian B. Mendl, Irene López Gutiérrez, Keefe Huang

Exercise 6.1 (Heisenberg uncertainty principle for a single qubit)

Imagine we prepare multiple copies of an arbitrary single-qubit state $|\psi\rangle$, described by the Bloch vector (r_x, r_y, r_z) . Some of these copies are measured using the observable Z, and the remaining copies using the observable X.

- (a) Compute the expectation values of both measurements. Hint: These two measurements are projective measurements and have a geometric interpretation on the Bloch sphere. You can use without proof the identities $\cos(\alpha/2)^2 \sin(\alpha/2)^2 = \cos(\alpha)$ and $2\cos(\alpha/2)\sin(\alpha/2) = \sin(\alpha)$ for any $\alpha \in \mathbb{R}$.
- (b) What will be their corresponding standard deviations? Recall from the lecture that the standard deviation of an observable M is defined as $\Delta M = \sqrt{\langle M^2 \rangle \langle M \rangle^2}$, with $\langle A \rangle \equiv \langle \psi | A | \psi \rangle$ for any observable A.
- (c) Evaluate the commutator [Z,X] and its expectation value $\langle \psi | [Z,X] | \psi \rangle$.
- (d) Insert your results and explicitly verify that the Heisenberg uncertainty principle is satisfied.

Solution

(a) In the Bloch sphere, measuring Z corresponds to projecting onto the z-axis, and measuring X means projecting onto the x-axis. Therefore,

$$\langle Z \rangle = r_z$$
 and $\langle X \rangle = r_x$.

Alternatively, one can compute these expectation values starting from the Bloch angles θ and φ , which define the quantum state $|\psi\rangle$ via

$$|\psi\rangle = \cos(\theta/2) |0\rangle + e^{i\varphi} \sin(\theta/2) |1\rangle$$
,

and the Bloch vector via

$$\vec{r} = \begin{pmatrix} \cos(\varphi)\sin(\theta) \\ \sin(\varphi)\sin(\theta) \\ \cos(\theta) \end{pmatrix}.$$

(b) Note that $X^2=Z^2=I.$ Thus, together with the normalization of the quantum state $|\psi\rangle$,

$$\Delta Z = \sqrt{1 - r_z^2},$$

$$\Delta X = \sqrt{1 - r_z^2},$$

(c) Inserting the definitions of Z and X directly leads to

$$[Z,X] = ZX - XZ = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix} = 2iY.$$

Analogous to the expectation values of X and Z, one obtains $\langle Y \rangle = r_y$, and thus $\langle \psi | [Z, X] | \psi \rangle = 2ir_y$.

(d) The Heisenberg uncertainty principle states that

$$\Delta Z \Delta X \ge \frac{\left|\left\langle \psi\right| \left[Z, X\right] \left|\psi\right\rangle\right|}{2}.$$

In the present setting,

$$\sqrt{1 - r_z^2} \sqrt{1 - r_z^2} \stackrel{!}{\geq} |r_y|$$

$$(1 - r_z^2)(1 - r_x^2) \stackrel{!}{\geq} r_y^2$$

$$1 - r_z^2 - r_x^2 + r_z^2 r_x^2 \stackrel{!}{\geq} r_y^2$$

The Bloch vector must be normalized, i.e., $r_x^2 + r_y^2 + r_z^2 = 1$. Using this, the above inequality can be simplified to

$$r_x^2 r_x^2 \ge 0$$
,

which is always true. The Heisenberg uncertainty principle is satisfied.