分子空间结构与物质性质·一·「价层电子对互斥模型」

- 价层电子对互斥模型(Valence Shell Electron Pair Repulsion)可以用来预测分子的立体模型
- 理论认为,分子的空间构型是中心原子周围的「价层电子对」相互排斥的结果。价层电子对是指分子中的中心原子与结合原子间的 σ 键电子对 和 中心原子上的孤电子对,由于相互排斥作用,尽可能趋向彼此远离,排斥力最小
- 多重键只计其中的 σ 键电子对, **不计** π **键电子对**

判断分子中中心原子上的价层电子对数

情况一 题目给定分子式

价层电子对数 = 孤电子对数 + 成键电子对数 $\mathrm{孤电子对数} = \frac{1}{2}(a-xb)$

a 是中心原子的价电子数(阳离子要减去电荷数、阴离子要加上电荷数);x 是与中心原子结合的原子数;b 是与中心原子结合的原子最多能接受的电子数(氢为 1 ;其他原子为" 8 减去该原子的价电子数",如氧和氧族元素中的 8 、8 等均为 8 , 卤族元素均为 8 ; 等等)

分子或离子	中心原子	a	x	b	孤电子对数	价层电子对数	说明	VSEPR 模型
SO_2	S	6	2	2	$rac{1}{2}(6-2 imes2)=1$	2+1=3	$2\sigma+1$ 孤电子对	平面三角形
NH_4^+	N	5-1=4	4	1	$rac{1}{2}(4-4 imes1)=0$	4+0=4	$4\sigma+0$ 孤电子对	正四面体形
CO_3^{2-}	C	4+2=6	3	0	$rac{1}{2}(6-3 imes2)=1$	3 + 0 = 3	$3\sigma+0$ 孤电子对	平面三角形

情况二 题目给定结构式

看最外层电子数可以形成几个共价键(包含 σ 键和 π 键),剩余的电子数/2,即为孤电子对数。如果是阳离子(或阴离子),则最外层电子数减去(或加上)其电荷的绝对值

1. [2020 全国卷 III] $\mathrm{B_3H_6^{3-}}$ 的结构为:

,B 原子最外层有 3 个电子,有 3 个电子形成共价键,无孤电

子对,因此 ${f B}$ 原子的杂化轨道类型为: sp^2

2. $\sqrt{}^{N-H}$ 中的 N 最外层有 5 个电子,由 3 个电子形成共价键,因此,还剩下 2 个电子未形成共价键,因此, N 原子含一

个孤电子对,杂化轨道类型为: sp^3

VSEPR 模型与分子空间结构

分子	价层电子对数	σ 键电子对数	孤电子对数	VSEPR 模型	分子立体构型
CO_2	2	2	0	直线形	直线形
BF_3	3	3	0	平面三角形	平面三角形
SO_2	3	2	1	平面三角形	V 形
CH_4	4	4	0	正四面体形	正四面体形
NH_3	4	3	1	四面体	三角锥
H_2O	4	2	2	四面体	V 形

电子间排斥力大小: 孤电阻对 - 孤电阻对 - 孤电阻对 - 成键电子对 - 成键电子对 - 成键电子对