

### UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

# Licenciatura en Ciencias de la Computación Facultad de Ciencias



Programa de la asignatura

## Denominación de la asignatura:

Sistemas Dinámicos Computacionales I

| Oisternas Dinamicos Computacionales i |                        |          |                                  |      |                  |                   |  |  |
|---------------------------------------|------------------------|----------|----------------------------------|------|------------------|-------------------|--|--|
| Clave:                                | Semestre:              | Eje tem  | ije temático:                    |      |                  |                   |  |  |
|                                       | 6-8                    | Bio-Info | rmática                          | 10   |                  |                   |  |  |
| Carácte                               | r: Optativa            | •        | Но                               | oras | Horas por semana | Total de<br>Horas |  |  |
| Tipo: To                              | Tipo: Teórico-Práctica |          |                                  |      |                  |                   |  |  |
| TIPO. TE                              | Onco-Practica          | 1        | 3                                | 4    | 7 112            |                   |  |  |
| Modalidad: Curso                      |                        |          | Duración del programa: Semestral |      |                  |                   |  |  |

**Asignatura con seriación indicativa antecedente:** Matemáticas para las Ciencias de la Tierra III; Modelado y Programación

Asignatura con seriación indicativa subsecuente: Ninguna

#### Objetivo general:

Proporcionar conocimientos generales de la dinámica no lineal y el caos.

Conocer y aplicar los sistemas dinámicos continuos no-lineales.

Implementar las herramientas computacionales de uso común en el estudio de los sistemas dinámicos no-lineales.

Conocer y aplicar los sistemas dinámicos discretos.

Comprender a profundidad el concepto de caos.

| Índice temático |                                                           |          |           |  |  |
|-----------------|-----------------------------------------------------------|----------|-----------|--|--|
| Unidad          | Tomas                                                     | Horas    |           |  |  |
|                 | Temas                                                     | Teóricas | Prácticas |  |  |
| I               | Solución numérica de sistemas de ecuaciones diferenciales | 3        | 4         |  |  |
| II              | Sistemas dinámicos Hamiltonianos                          | 9        | 12        |  |  |
| Ш               | Caos en sistemas dinámicos continuos                      | 12       | 16        |  |  |
| IV              | Sistemas dinámicos discretos en una dimensión             | 12       | 16        |  |  |
| V               | Sistemas dinámicos discretos en dos dimensiones           | 6        | 8         |  |  |
| VI              | Sincronización                                            | 6        | 8         |  |  |
|                 | Total de horas:                                           | 48       | 64        |  |  |
|                 | Suma total de horas:                                      | 112      |           |  |  |

| Contenido temático                       |                                                    |  |  |  |  |  |
|------------------------------------------|----------------------------------------------------|--|--|--|--|--|
| Unidad                                   | Tema                                               |  |  |  |  |  |
| I Solución r                             | numérica de sistemas de ecuaciones diferenciales   |  |  |  |  |  |
| I.1                                      | El método de Runge-Kutta.                          |  |  |  |  |  |
| 1.2                                      | Problemas de precisión.                            |  |  |  |  |  |
| II Sistemas                              | dinámicos hamiltonianos                            |  |  |  |  |  |
| II.1                                     | El oscilador armónico.                             |  |  |  |  |  |
| 11.2                                     | El oscilador armónico amortiguado.                 |  |  |  |  |  |
| II.3                                     | El oscilador de Duffing.                           |  |  |  |  |  |
| 11.4                                     | El oscilador de Duffing forzado.                   |  |  |  |  |  |
| III Caos en sistemas dinámicos continuos |                                                    |  |  |  |  |  |
| III.1                                    | Secciones de Poincaré.                             |  |  |  |  |  |
| III.2                                    | Diagramas de bifurcación.                          |  |  |  |  |  |
| III.3                                    | La ruta al caos de la intermitencia.               |  |  |  |  |  |
| III.4                                    | Atractores extraños.                               |  |  |  |  |  |
| III.5                                    | Sensibilidad a condiciones iniciales.              |  |  |  |  |  |
| III.6                                    | Exponentes de Liapunov.                            |  |  |  |  |  |
| IV Sistemas                              | s dinámicos discretos en una dimensión             |  |  |  |  |  |
| IV.1                                     | El mapeo logístico.                                |  |  |  |  |  |
| IV.2                                     | Atractores, Repulsores, Órbitas, Conjuntos Límite. |  |  |  |  |  |
| IV.3                                     | El mapeo de la tienda.                             |  |  |  |  |  |
| IV.4                                     | Dinámica simbólica.                                |  |  |  |  |  |
| IV.5                                     | La ruta al caos del doblamiento de periodo.        |  |  |  |  |  |
| IV.6                                     | Las constantes de Feigenbaum.                      |  |  |  |  |  |
| V Sistemas                               | dinámicos discretos en dos dimensiones             |  |  |  |  |  |
| V.1                                      | El mapeo de Henón.                                 |  |  |  |  |  |
| V.2                                      | El gato de Arnold.                                 |  |  |  |  |  |
| VI Sincronización                        |                                                    |  |  |  |  |  |
| VI.1                                     | Sincronización en la naturaleza.                   |  |  |  |  |  |
| VI.2                                     | El modelo de Kuramoto.                             |  |  |  |  |  |
| VI.3                                     | Sincronización de osciladores caóticos.            |  |  |  |  |  |

## Bibliografía básica:

- 1. Devaney, R., *An Introduction to Chaotic Dynamical Systems*, 2<sup>a</sup> edición, Westview Press, 2003.
- 2. Holmgren, R., A First Course in Discrete Dynamical Systems, Springer, 2006.
- 3. Ott, E., Chaos in Dynamical Systems, 2ª edición, Cambridge University Press, 2002.

## Bibliografía complementaria:

1. Stewart, I., Does God Play Dice? The New Mathematics of Chaos, Wiley-Blackwell, 2002.

2. Katok, A., *Introduction to the Modern Theory of Dynamical Systems*, Cambridge University Press, 1996.

| Sugerencias didácticas:    |     | Métodos de evaluación:           |     |  |
|----------------------------|-----|----------------------------------|-----|--|
| Exposición oral            | (X) | Exámenes parciales               | (X) |  |
| Exposición audiovisual     | (X) | Examen final escrito             | ( ) |  |
| Ejercicios dentro de clase | (X) | Trabajos y tareas fuera del aula | (X) |  |
| Ejercicios fuera del aula  | (X) | Prácticas de laboratorio         | (X) |  |
| Seminarios                 | ( ) | Exposición de seminarios por los | ( ) |  |
| Lecturas obligatorias      | (X) | Participación en clase           | (X) |  |
| Trabajo de investigación   | ( ) | Asistencia                       | ( ) |  |
| Prácticas de taller o      | (X) | Proyectos de programación        | (X) |  |
| Prácticas de campo         | ( ) | Proyecto final                   | Ò   |  |
|                            | ( ) | Seminario                        |     |  |
| Otras:                     |     |                                  | ( ) |  |
|                            |     | Otras:                           |     |  |
|                            |     |                                  | -   |  |

## Perfil profesiográfico:

Matemático, físico, actuario o Licenciado en Ciencias de la Computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos. Con experiencia docente.