

SENSING ELEMENTS

Adam Schiffer, PhD

	Input measured variable	Temperature	Heat/light flux	Pressure	Force	Torque	Level	Density	Flow rate	Flow velocity	Displacement/strain	Velocity	Acceleration	Gas composition	Ionic concentration	Humidity	Magnetic field
	Physical principle		×							4	t/strain			tion	tration		Ь
Electrical output passive	Resistive	8.1 15.5	15.5	8.6	8.6	8.6				14.3	5.1 8.1		8.6 4.4	8.1 14.4		8.1	
	Capacitive Inductive			8.2			8.2				8.2 8.3					8.2	
	Piezoresistive Photovoltaic		15.5	8.8													
	Photoconductive FET Hall effect		15.5											8.9	8.9		8.10
Electrical output active Mechanical output	Electromagnetic Thermoelectric	8.5 15.5	15.5						12.4			8.4					
	Piezoelectric Electrochemical Pyroelectric	15.5	15.5	16.2	8.7								8.7	8.9	8.9		
	Elastic	15.5	15.5	8.6	4.1												
	Elastic			9.4	8.6	8.6	9.4										
				9.5	9.5			9.5					8.6				
	Differential pressure								12.3	12.2							
	Turbine								12.3								
	Vortex Pneumatic			13.1	13.1		13.1		12.3		13.1						
	Coriolis			15.1	15.1		15.1		12.4		15.1						
Thermal output	Heat transfer		15.5							14.3				14.4			
Optical output	Various		15.6	15.6	15.6		15.6				15.6	15.6		15.6			

Potentiometers for linear and angular displacement measurement

(a) Linear (rectilinear) displacement

(b) Angular (rotary) displacement

$$\frac{E_{Th}}{V_S} = \frac{\text{voltage across AB}}{\text{voltage across CB}} = \frac{\text{resistance across AB}}{\text{resistance across CB}}$$

where:

resistance of CB = total resistance of potentiometer = R_P resistance of AB = fractional resistance $= R_P d/d_T = R_P x$ $x = \text{fractional displacement} = d/d_T$.

$$E_{Th} = V_S x = V_S d/d_T$$
 $E_{Th} = V_S \theta/\theta_T = V_S x$

Resistive metal and semiconductor sensors for temperature measurement

- The resistance of most **metals** increases reasonably linearly with temperature in the range –100 to +800 °C.
- Although relatively expensive, platinum is usually chosen for industrial resistance thermometers; cheaper metals, notably nickel and copper, are used for less demanding applications.
- The general relationship between the resistance RT Ω of a metal element and temperature T °C is a power series of the form:

$$RT = R0(1 + \alpha T + \beta T2 + \gamma T3 + ...),$$

where R0 Ω is the resistance at 0 °C and α , β , γ are temperature coefficients of resistance.

A typical platinum element has R 0 = 100.0 Ω , R100 = 138.50 Ω , R200 = 175.83 Ω, $\alpha = 3.91 \times 10-3$ °C⁻¹ and $\beta = -5.85 \times 10^{-7}$ °C⁻².

Resistive metal and semiconductor sensors for temperature measurement

RTD

Advantages:

- Stabe
- Very accurate
- Linear

Disadvantages

- Expensive
- Current source required
- Small change in resistance
- Self heating

Semiconductors (Thermistors)

The resistance of these elements decreases with temperature – in other words there is a negative temperature coefficient (NTC) – in a highly non-linear way.

Semiconductors (Thermistors)

Thermistor Advantages:

- Very sensitive
- Quick response
- Best accuracy

Disadvantages

- Non-linear
- Small temperature range
- Current source required
- Self heating

Metal and semiconductor resistive strain gauges

We can derive the relationship between changes in resistance and strain by considering the factors which influence the resistance of the element. The resistance of an element of length I, cross-sectional area A and resistivity ρ is given by:

$$R = \frac{\rho l}{A} \qquad \Delta R = \left(\frac{\partial R}{\partial l}\right) \Delta l + \left(\frac{\partial R}{\partial A}\right) \Delta A + \left(\frac{\partial R}{\partial \rho}\right) \Delta \rho$$

Metal and semiconductor resistive strain gauges

First Strain Gauge, Ruge, 1938

We now define the **gauge factor** *G* of a strain gauge, hence

$$\frac{\Delta R}{R_0} = Ge$$

Metal and semiconductor resistive strain gauges

Most alloys have a low temperature coefficient of resistance (2×10^{-5} °C $^{-1}$) and a low temperature coefficient of linear expansion.

A typical gauge has:

- Gauge factor 2.0 to 2.2
- Unstrained resistance 120 \pm 1 Ω
- Linearity within ±0.3%
- Maximum tensile strain $+2 \times 10-2$
- Maximum compressive strain $-1 \times 10-2$
- Maximum operating temperature 150 °C.

The simplest capacitor or condenser consists of two parallel metal plates separated by a dielectric or insulating material

The capacitance of this parallel plate capacitor is given by:

$$C = \frac{\varepsilon_0 \varepsilon A}{d}$$

where $\varepsilon 0$ is the permittivity of free space (vacuum) of magnitude 8.85 pF m⁻¹, ε is the relative permittivity or dielectric constant of the insulating material, A m² is the area of overlap of the plates, and d m is their separation

EXAMPLE:

capacitive displacement sensors using each of these methods. If the displacement x causes the plate separation to increase to d + x the capacitance of the sensor is:

$$C = \frac{\varepsilon_0 \varepsilon A}{d + x}$$

Inductive sensing elements

In order to discuss the principles of these elements we must first introduce the concept of a magnetic circuit. In an electrical circuit an electromotive force (e.m.f.) drives a current through an electrical resistance and the magnitude of the current is given by

e.m.f. = current × resistance

Since the relative permeability of air is close to unity and that of the core material many thousands, the presence of the air gap causes a large increase in circuit reluctance and a corresponding decrease in flux and inductance. Thus a small variation in air gap causes a measurable change in inductance so that we have the basis of an **inductive** displacement sensor.

Inductive sensing elements

- (a)(b) Basic principle of reluctance sensing elements
- (c) Reluctance calculation for typical element

Linear Variable Differential Transformer (LVDT) displacement sensor

This sensor is a transformer with a single primary winding and two identical secondary windings wound on a tubular ferromagnetic former

Linear Variable Differential Transformer (LVDT) displacement sensor

Electromagnetic sensing elements

These elements are used for the measurement of linear and angular velocity and are based on Faraday's law of electromagnetic induction. This states that if the flux N linked by a conductor is changing with time, then a back e.m.f. is induced in the conductor with magnitude equal to the rate of change of flux, i.e.

Variable reluctance tachogenerator, angular variations in reluctance and flux.

Thermoelectric sensing elements

Thermoelectric or thermocouple (TC) sensing elements are commonly used for measuring

temperature. If two different metals A and B are joined together, there is a difference in electrical potential across the junction called the **junction potential**

Thermoelectric sensing elements

the junction potential

TC

Advantages:

- Self powered
- rugged
- Inexpensive
- simple

Disadvantages

- Extremly low voltage output
- Not very stable
- Needs a reference point

Temperature sensing elements

Temperature	Thermocouple	RTD	Thermistor
(degrees Celsius)	(mille-Volts)	(ohms)	(kilo-ohms)

19	-0.10	108.00	105.60
20	-0.10	108.40	99.80
21	0.00	108.70	94.20
22	0.00	109.00	88.20
23	0.00	109.50	83.80
24	0.10	110.00	79.70
25	0.10	110.40	75.90
26	0.10	110.90	73.30
27	0.20	111.30	70.00
28	0.20	111.50	68.40
29	0.30	112.00	63.40
30	0.40	112.90	60.50
32	0.50	113.20	54.80
34	0.70	114.10	49.20
36	0.70	114.80	45.50

Temperature sensing elements

Thermistor

Piezoelectric sensing elements

If a force is applied to any crystal, then the crystal atoms are displaced slightly from their normal positions in the lattice. This displacement x is proportional to the applied force *F*: i.e., in the steady state,

Piezoelectric accelerometers:

- (a) Compression mode
- (b) Shear mode

Piezoelectric sensing elements

