Линейная алгебра СЛУ для анализа векторов

Глеб Карпов

МНаД ФКН ВШЭ

СЛУ для анализа векторов

Линейная оболочка и единственность решения

• Наш взгляд на mat-vec как на линейную комбинацию столбцов матрицы приводит нас к более глубокому понимания СЛУ. Если обозначим столбцы матрицы за a_1, \dots, a_m то тогда:

$$A\mathbf{x} = r \leftrightarrow x_1 a_1 + \dots + x_m a_m = r,$$

Решить СЛУ теперь означает подобрать коэффициенты для линейной комбинации столбцов матрицы, чтобы получился right-hand side вектор r. Но важным фактором является то, чтобы с помощью векторов a_1, \ldots, a_m вообще можно было бы "дотянуться" до вектора r. Иными словами, получаем:

СЛУ для анализа векторов

Линейная оболочка и единственность решения

• Наш взгляд на mat-vec как на линейную комбинацию столбцов матрицы приводит нас к более глубокому понимания СЛУ. Если обозначим столбцы матрицы за a_1, \dots, a_m то тогда:

$$A\mathbf{x} = r \leftrightarrow x_1 a_1 + \dots + x_m a_m = r,$$

Решить СЛУ теперь означает подобрать коэффициенты для линейной комбинации столбцов матрицы, чтобы получился right-hand side вектор r. Но важным фактором является то, чтобы с помощью векторов a_1, \ldots, a_m вообще можно было бы "дотянуться" до вектора r. Иными словами, получаем:

і Существование решения

Для того, чтобы у СЛУ $A{f x}=r$ существовало хотя бы одно решение, необходимо, чтобы выполнялось:

$$r \in \operatorname{span}(a_1, \dots, a_m)$$

Иначе, СЛУ называется несовместной (inconsistent). В ступенчатом виде матрицы несовместность системы выражается в виде наличия строчки:

$$[0\;0\;\dots\;0\;|\;b]\,,\;b\neq0$$

Пример: несовместность vs неуникальное решение

$$\bullet \left(\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
2 & 4 & 10 & 0 \\
1 & -2 & -3 & 7
\end{array} \right)$$

Пример: несовместность vs неуникальное решение

$$\bullet \left(\begin{array}{ccc|c} 1 & 0 & 1 & 0 \\ 2 & 4 & 10 & 0 \\ 1 & -2 & -3 & 7 \end{array}\right)$$

$$\bullet \left(\begin{array}{ccc|c}
1 & 2 & 3 & 2 \\
0 & 1 & 4 & 2 \\
5 & 12 & 23 & 14
\end{array}\right)$$

Reminder: в чем сила?

 $\mathbf{v}_1, \dots, \mathbf{v}_n$, то любой вектор \mathbf{v} однозначно определяется своими координатами α_{l} в этом базисе. Если мы упакуем α_k в вектор из \mathbb{R}^n , то можем оперировать им вместо оперирования над

ullet Если ${f v}=\sum_{k=1}^n lpha_k {f v}_k$ и ${f w}=\sum_{k=1}^n eta_k {f v}_k$, то $\mathbf{v} + \mathbf{w} = \sum_{k=1}^{n} \alpha_k \mathbf{v}_k + \sum_{k=1}^{n} \beta_k \mathbf{v}_k = \sum_{k=1}^{n} (\alpha_k + \beta_k) \mathbf{v}_k$

т.е. вместо сложения двух оригинальных векторов, можно сложить векторы координат.

Аналогично, чтобы получить $\alpha \mathbf{v}$, можно умножить столбец координат ${\bf v}$ на α и сразу получить

СЛУ как способ исследовать наборы векторов

ullet Для отдельного рассмотрения можно вынести системы однородных линейных уравнений вида $A{f x}={f 0}$

Утверждение

Пусть у нас есть набор векторов $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in \mathbb{R}^n$, и пусть $A = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m]$ — это матрица размера $n \times m$ со столбцами $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$. Тогда

- 1. Система ${\bf v}_1, {\bf v}_2, \dots, {\bf v}_m$ линейно независима тогда и только тогда, когда ступенчатая форма матрицы A имеет ведущий элемент в каждом столбце;
- 2. Линейная оболочка системы $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ совпадает с \mathbb{R}^n тогда и только тогда, когда ступенчатая форма матрицы A имеет ведущий элемент в каждой строке;
- 3. Система $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ является базисом в \mathbb{R}^n тогда и только тогда, когда ступенчатая форма матрицы A имеет ведущий элемент в каждом столбце и в каждой строке.

СЛУ как способ исследовать наборы векторов

- ullet Для отдельного рассмотрения можно вынести системы однородных линейных уравнений вида $A{f x}={f 0}$
- В интерпретации линейной комбинации столбцов такие уравнения внезапно напоминают нам про возможность получения нулевого вектора:

$$A\mathbf{x} = \mathbf{0} \leftrightarrow x_1 a_1 + \dots + x_m a_m = \mathbf{0},$$

Если единственное решение - тривиальный вектор $\mathbf{x} = \mathbf{0}$, то набор перед нами линейно независимая группа векторов в столбцах матрицы. Иначе - линейно зависимая.

Утверждение

Пусть у нас есть набор векторов $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in \mathbb{R}^n$, и пусть $A = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m]$ — это матрица размера $n \times m$ со столбцами $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$. Тогда

- 1. Система $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ линейно независима тогда и только тогда, когда ступенчатая форма матрицы A имеет ведущий элемент в каждом столбце;
- 2. Линейная оболочка системы $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ совпадает с \mathbb{R}^n тогда и только тогда, когда ступенчатая форма матрицы A имеет ведущий элемент в каждой строке;
- 3. Система ${\bf v}_1, {\bf v}_2, \dots, {\bf v}_m$ является базисом в \mathbb{R}^n тогда и только тогда, когда ступенчатая форма матрицы A имеет ведущий элемент в каждом столбце и в каждой строке.

Примеры

Примеры

• Используя переход в координатную форму, сделать выводы про следующие наборы векторов: про их линейную оболочку и характер линейной зависимости. 1. $1-3t+5t^2, -3+5t-7t^2, -4+5t-6t^2, 1-t^2$

1.
$$1-3t+5t^2$$
. $-3+5t-7t^2$. $-4+5t-6t^2$. $1-t^2$

Примеры

• Используя переход в координатную форму, сделать выводы про следующие наборы векторов: про их линейную оболочку и характер линейной зависимости. 1. $1-3t+5t^2, -3+5t-7t^2, -4+5t-6t^2, 1-t^2$ 2. $5t+t^2, 1-8t-2t^2, -3+4t+2t^2, 2-3t$

1.
$$1-3t+5t^2, -3+5t-7t^2, -4+5t-6t^2, 1-t^2$$

2.
$$5t + t^2, 1 - 8t - 2t^2, -3 + 4t + 2t^2, 2 - 3t$$

Слайд дя записей