Assignment Discussion #3 and Project Discussion

Deepak Singh Baghel 203050005 Ankush Agarwal 203050007 Nilesh Kshirsagar 203059004

12th October, 2021

Assignment Discussion #3

WSD continuation, NEI

Problem Definition: NEI

- Given a sentence/document, mark each token as 1/0 as per whether the token is a Named Entity or not
- If the named entity consists of multiple words just continue with 1s until a non-NE appears
- E.g. The_0 State_1 Bank_1 of_1
 India_1 is_0 the_0 largest_0 bank_0
 in_0 the_0 country_0._0

Feature Engineering

- Features:
 - 1. POS tag of current word
 - 2. POS tags of 4 context words
 - 3. 6 Context Words
 - 4. Is word capitalized
 - 5. Length of the word
 - 6. Is it first word of the sentence
 - 7. Is previous word a named entity

Justification of Feature Set

- Named entities mostly appear with some specific pos tags such as noun and adjective
- Context words and their POS Tags are useful to identify multi word named entities
- First character of NE is capitalized
- Since start word of the sentence is also capitalized, to avoid confusion with NE, another feature is added indicating if current token is first word of sentence
- Many named entities are multi word, such as name of person or organization, hence previous word tag is a useful feature

DATA

CoNLL 2003

- Used load_dataset('conllpp') method from huggingface to load the dataset
- Used tokens from dataset directly

Performance

Precision: 0.953

Recall : 0.951

• F1-score : 0.952

• Accuracy: 95.1%

Confusion Matrix

Predicted □ Actual (rows)	0	1
0	36725	1452
1	818	7440

Result Interpretation

- POS tag is not completely accurate and since model uses POS tag as one of the features, more accurate POS tag would improve model accuracy
- Undersampling and oversampling did not improve accuracy

Project

What is the "Problem"

- Problem Statement
 To identify the emotion of speakers in a conversation based on audio and text modalities
 - Input : Audio file and corresponding transcript
 - Output : Emotion(Sad, happy, neutral etc.)

Why is the problem important

- Emotion analysis is useful in identifying how users feel about a product based on reviews
- It is used in healthcare domain to identify and monitor certain conditions such as stress, anxiety and depression
- It is also useful in development of virtual assistants

What is hard about the problem

 Incorporating more number of emotions and achieving better accuracy

What has been done on this problem so far

Basic

 Yoon S, Byun S, Jung K. Multimodal speech emotion recognition using audio and text. In 2018 IEEE Spoken Language Technology Workshop (SLT) 2018 Dec 18 (pp. 112-118). IEEE.

State-of-the-Art

 Siriwardhana S, Reis A, Weerasekera R, Nanayakkara S. Jointly Fine-Tuning" BERT-like" Self Supervised Models to Improve Multimodal Speech Emotion Recognition. arXiv preprint arXiv:2008.06682. 2020 Aug 15.

Your tackling of the problem

- Preprocessing (data imbalance, lemmatization, removal of special symbols).
- Feature Extraction for audio features such as speech, harmonics, speech energy, pause and central movements and text features such as TF-IDF
- Create vectors of these features and fuse them for modalities
- Classification using Ensemble model(RF, SGD, MLP, MNB, LR) into angry, happy, sad, fear, neutral, surprise
- Sahu G. Multimodal speech emotion recognition and ambiguity resolution. arXiv preprint arXiv:1904.06022. 2019 Apr 12.
- Dataset : IEMOCAP
- Tools: Librosa, scikit-learn, xgboost, pytorch, Colab GPU
- Performance Metrics : Accuracy, F1-score

Thank You