FAKE JOB POSTINGS DETECTION

Freddy Chen Keani Schuller Kelly Kao Ko-Jen Wang Xinran Yu

TABLE OF CONTENTS

01 02 03
INTRODUCTION EDA MODEL BUILDING

04 05
RESULTS CONCLUSION

01 INTRODUCTION

TOO GOOD TO BE TRUE?

Salary seems good. Where can I apply?

I can work from home forever?

FAKE JOB POSTING TREND

THIS IS A CONCERNING ISSUE...

PROJECT GOAL

The project aims to identify the fake job postings through text analysis and classify them into real and fake groups.

Datasets

From University of the Aegean

Laboratory of Information & Communication Systems Security

• 18K job postings

job_id	title	location	department	salary_range	company_profile	description	requirements	benefits	telecommuting	has_company_logo	has_questions	employment_type	required_experience	required_education	industry	function	fraudulent
1	Marketing Intern	US, NY, New York	Marketing	NaN	We're Food52, and we've created a groundbreaki		Experience with content management systems a m	NaN	0	1	0	Other	Internship	NaN	NaN	Marketing	0
2	Customer Service - Cloud Video Production	NZ, , Auckland	Success	NaN	90 Seconds, the worlds Cloud Video Production 	Organised - Focused - Vibrant - Awesome!Do you	What we expect from you:Your key responsibilit	What you will get from usThrough being part of	0	1	0	Full-time	Not Applicable	NaN	Marketing and Advertising	Customer Service	0
3	Commissioning Machinery Assistant (CMA)	US, IA, Wever	NaN	NaN	Valor Services provides Workforce Solutions th	Our client, located in Houston, is actively se	Implement pre- commissioning and commissioning	NaN	0	1	0	NaN	NaN	NaN	NaN	NaN	0
								Our									

02 **EXPLORATORY** DATA **ANALYSIS**

HISTOGRAMS

Job Posting Authenticity

- Comparison of the number of real job postings to the number of fake job postings
- There are significantly more real postings versus fake postings at around 90% Real and 10% Fake
- The dataset is therefore imbalanced
- This however reflects reality, since there aren't usually a large amount of fake job postings on recruiting sites

HISTOGRAMS

Telecommuting Frequency

- Comparing the frequency of telecommuting by employment type
- Full-time work is the most likely to include telecommuting by a large margin
- The second most likely is contract

HISTOGRAMS

Questions Frequency

- Comparing the frequency of questions by education level required
- Employment requiring a bachelor's degree has the highest frequency of questions by a very large margin

CORRELATION MATRIX

- Correlation matrix to visualize the correlations between all numerical predictors
- Overall, the correlations are very low from -0.25 to 0.2
- The strongest correlation is between the company having a logo and the target variable fraudulent, which is a binary indicating whether the job posting is real or not
- The second strongest is between the company having a logo and the number of questions

TOP 20 JOB DESCRIPTIONS WORDS

- Histogram demonstrating the top 20 words in all the descriptions of the job postings
- The most frequent word overall was "Team"
- This is followed by "Work",
 "Business" and "Experience"
- It also includes words like "Sales", "Customer", and "Product"

TOP 20 WORDS FOR REAL JOBS

- Histogram demonstrating the top 20 words in Real job descriptions
- The most frequent word overall was "Team"
- Real job postings include words like "Sales", "Customer", "Development", "Management", and "Client"

TOP 20 WORDS FOR FAKE JOBS

- Histogram demonstrating the top
 20 words in Fake job descriptions
- The most frequent word overall was "Work"
- This is followed by "Amp" which seems like a frequent typo
- Fake job postings include words like "Experience", "Time", "Company", "Support", and "Solutions"
- A curious observation is that there are many mentions of engineering in fake job postings

WORD CLOUD

- Word cloud demonstrating the top 20 words in all job descriptions
- This was made to be able to better visualize the top words
- The results are the same as that in the histogram showed before, but was easier to read in this format

03

MODEL BUILDING

EXPERIMENTS

12 Combinations:

- Preprocessing w/wo Lemmatization
- TF-IDF Vectorizer: (1, 1), (1, 3), (2, 2)
- Models: MultinomialNB/SVM

MODELS SELECTED

MultinomialNB

- Suitable for Word Frequency Analysis
- Efficient and Scalable

SVM

- Diverse Kernel Methods
- High-Dimensional Performance

Different parameter tuning is applied for different models.

Alpha

- C (controlling outliers)
- Kernels

MODEL BUILDING

preprocess text(text, lemmatize=False)

 Preprocess the input text data by removing stop words, non-alphabetic tokens, and optionally lemmatizing

run_experiment(dataframe, text_column, label_column, experiment_config, grid_search_configs)

- Configure a machine learning pipeline with TfidfVectorizer and a classifier as specified in the experiment configuration
- Use grid search to find the best hyperparameters for the pipeline based on cross-validation.
- Retrain the model with the best hyperparameters on the training data.
- Evaluate the model on the test data using accuracy, recall, precision, and generate a confusion matrix.
- Store and return the results of the experiment and the confusion matrices for analysis.

```
experiment_configs = [
    {
        'preprocessing':,
        vectorizer_condition:,
        classifier:
    },
]
```

```
grid_search_configs = [
{
    'classifier_name':,
    'classifier':,
    'param_grid':{
    }
},
```


04

RESULTS

MODEL RESULTS

There is about a 20% difference in the recall rates between MultinomialNB and SVC.

	Preprocessing	Vectorizer Condition	Classifier	Accuracy	Recall	Precision
	Yes	(1,1)	MultinomialNB	0.973	0.454	0.855
	Yes	(1,3)	MultinomialNB	0.974	0.473	0.891
	Yes	(2, 2)	MultinomialNB	0.980	0.565	0.975
The impact of	No	(1,1)	MultinomialNB	0.974	0.483	0.862
lemmatization in not significant	NO	(1,3)	MultinomialNB	0.975	0.483	0.885
not significant	No	(2, 2)	MultinomialNB	0.981	0.575	0.967
	Yes	(1,1)	SVC	0.983	0.720	0.876
	Yes	(1,3)	SVC	0.987	0.734	0.956
	Yes	(2, 2)	SVC	0.986	0.691	0.973
	No	(1,1)	SVC	0.985	0.749	0.896
	No	(1,3)	SVC	0.987	0.734	0.956
	No	(2, 2)	SVC	0.986	0.000	0.070

While sacrificing some precision, the model can achieve a recall rate of around 73.4%.

MODEL RESULTS - Confusion Matrix

Preprocessing	Vectorizer Condition	Classifier	TP	FN	FP	TN
Yes	(1,1)	MultinomialNB	94	113	16	4514
Yes	(1,3)	MultinomialNB	98	109	12	4518
Yes	(2, 2)	MultinomialNB	117	90	3	4527
No	(1,1)	MultinomialNB	100	107	16	4514
No	(1,3)	MultinomialNB	100	107	13	4517
No	(2, 2)	MultinomialNB	119	88	4	4526
Yes	(1,1)	SVC	149	58	21	4509
Yes	(1,3)	SVC	152	55	7	4523
Yes	(2, 2)	SVC	143	64	4	4526
No	(1,1)	SVC	155	52	18	4512
No	(1,3)	SVC	152	55	7	4523
No	(2, 2)	SVC	144	63	4	4526

MODEL RESULTS (Accuracy/Recall/Precision)

Preprocessing	Vectorizer Condition	Classifier	Accuracy	Recall	Precision	
Yes (1,1)		MultinomialNB	0.973	0.454	0.855	
Yes	(1,3)	MultinomialNB	0.974	0.473	0.891	
Yes	(2, 2)	MultinomialNB	0.980	0.565	0.975	
No	(1,1)	MultinomialNB	0.974	0.483	0.862	
No	(1,3)	MultinomialNB	0.975	0.483	0.885	
No	(2, 2)	MultinomialNB	0.981	0.575	0.967	
Yes	(1,1)	SVC	0.983	0.720	0.876	
Yes	(1,3)	SVC	0.987	0.734	0.956	
Yes	(2, 2)	SVC	0.986	0.691	0.973	
No	(1,1)	SVC	0.985	0.749	0.896	
No	(1,3)	SVC	0.987	0.734	0.956	
No	(2, 2)	SVC	0.986	0.696	0.973	

MODEL RESULTS (Confusion Matrix)

Preprocessing	Vectorizer Condition	Classifier	TP	FN	FP	TN
Yes	(1,1)	MultinomialNB	4514	16	113	94
Yes	(1,3)	MultinomialNB	4518	12	109	98
Yes	(2, 2)	MultinomialNB	4527	3	90	117
No	(1,1)	MultinomialNB	4514	16	107	100
No	(1,3)	MultinomialNB	4517	13	107	100
No	(2, 2)	MultinomialNB	4526	4	88	119
Yes	(1,1)	SVC	4509	21	58	149
Yes	(1,3)	SVC	4523	7	55	152
Yes	(2, 2)	SVC	4526	4	64	143
No	(1,1)	SVC	4512	18	52	155
No	(1,3)	SVC	4523	7	55	152
No	(2, 2)	SVC	4526	4	63	144

MODEL RESULTS (Best Parameters)

Preprocessing	Vectorizer Condition	Classifier	Best Parameters
Yes	(1,1)	MultinomialNB	{'MultinomialNBalpha': 0.1, 'tfidfmax_df': 1.0, 'tfidfmax_features': 10000, 'tfidfmin_df': 2, 'tfidfngram_range': (1, 1)}
Yes	(1,3)	MultinomialNB	{'MultinomialNBalpha': 0.1, 'tfidfmax_df': 0.5, 'tfidfmax_features': None, 'tfidfmin_df': 2, 'tfidfngram_range': (1, 3)}
Yes	(2, 2)	MultinomialNB	{'MultinomialNBalpha': 0.1, 'tfidfmax_df': 0.5, 'tfidfmax_features': None, 'tfidfmin_df': 1, 'tfidfngram_range': (2, 2)}
No	(1,1)	MultinomialNB	{'MultinomialNBalpha': 0.1, 'tfidfmax_df': 0.5, 'tfidfmax_features': 10000, 'tfidfmin_df': 1, 'tfidfngram_range': (1, 1)}
No	(1,3)	MultinomialNB	{'MultinomialNBalpha': 0.1, 'tfidfmax_df': 0.5, 'tfidfmax_features': None, 'tfidfmin_df': 2, 'tfidfngram_range': (1, 3)}
No	(2, 2)	MultinomialNB	{'MultinomialNBalpha': 0.1, 'tfidfmax_df': 0.5, 'tfidfmax_features': None, 'tfidfmin_df': 1, 'tfidfngram_range': (2, 2)}
Yes	(1,1)	SVC	{'SVCC': 10, 'SVCkernel': 'linear', 'tfidfngram_range': (1, 1)}
Yes	(1,3)	SVC	{'SVCC': 10, 'SVCkernel': 'linear', 'tfidfngram_range': (1, 3)}
Yes	(2, 2)	SVC	{'SVCC': 10, 'SVCkernel': 'linear', 'tfidfngram_range': (2, 2)}
No	(1,1)	SVC	{'SVCC': 10, 'SVCkernel': 'linear', 'tfidfngram_range': (2, 2)}
No	(1,3)	SVC	{'SVCC': 10, 'SVCkernel': 'linear', 'tfidfngram_range': (1, 3)}
No	(2, 2)	SVC	{'SVCC': 10, 'SVCkernel': 'linear', 'tfidfngram_range': (2, 2)}

05

CONCLUSION

BUSINESS IMPACT

- Fake job postings are important due to their impact on individuals' livelihoods and their trust in the digital job market
- Enhances the credibility of job platforms and the companies that rely on them for recruitment
- Protects job seekers from fraud, contributing to a safer and more trustworthy job search environment
- The integrity of the job market is a foundational element for stability and growth in industries
- Essential for maintaining a healthy employment ecosystem and protecting the interests of all stakeholders involved

Thank You!

Q&A