New experimental evidence on expectation formation by H. Afrouzi, S. Kwon, A. Landier, Y. Ma, D. Thesmar

> Martin Schneider Stanford & NBER

> > March 2021

Summary

- Survey experiment: forecasting an AR(1) process
 - respondents see 40 observations, then 40 rounds of forecasting
 - mean, persistence parameter & innovation variance unknown
- Stylized fact: "overreaction"
 - ▶ forecasts depends more on last observation than true AR(1) forecast
 - especially pronounced for low persistence & longer forecast horizons
- Common models of forecast dynamics inconsistent with facts
- New model of forecast dynamics
 - forecast responds rel. less to last obs if process more persistent
 - why? learning about long run mean with costly attention
 - \blacktriangleright persistence known \rightarrow look less at past data when more persistence
- Very interesting & creative paper!
- Discussion
 - parameter learning vs stationary forecast dynamics

What were the respondents thinking?

- Approach in paper
 - stationary true DGP & forecast dynamics
 - common in models of regular patterns; e.g. business cycles
 - typical finding: survey forecasts reflect more persistence than econometricians' time series models (estimated with hindsight)
 - justification often invokes agents' concern with structural change; captures "this time is different", secular stagnation etc.
- Experimental setting here
 - ▶ people are told the process "is stable" or "is an AR(1)"
 - can be understood as learning constant parameters
 - distingushing mean & AR(1) coefficient is difficult!
- Two properties of parameter learning help understand facts
 - (used in paper) guessing a parameter with dispersed signals always looks like overreaction
 - 2. (not used) easier to learn true persistence if it is high → another mechanism for more overreaction to less persistent processes
 - now illustrate both with minimal (Bayesian) examples

Learning about means

- Three dates t = 0, 1, 2
 - true data generating process

$$y_t^i = \mu + u_t^i; t = 1, 2$$

- u_1^i iid normal noise, known variance σ_u^2 ; true mean $\mu = 0$ for all agents
- date 0: common priors $\mu \sim \mathcal{N}(0, \sigma^2)$
- Forecasting y_2^i at date 1
 - ► Bayesian updating with known variance

$$F_{1,2}^{i} = E\left[y_{2}^{i}|y_{1}^{i}\right] = \frac{\sigma^{2}}{\sigma^{2} + \sigma_{H}^{2}}y_{1}^{i}$$

- overreaction relative to rational expectations forecast $\hat{F}_{1,2} = \mu = 0$
- idiosyncratic signals used to learn about parameter!
- Forecast error vs forecast revision
 - common date 0 forecast = prior mean: $F_{0,2}^i = E^i[y_2] = 0$
 - ► forecast error

$$y_2^i - F_{1,2}^i = \mu + u_2^i - F_{1,2}^i = u_2^i - \left(F_{1,2}^i - F_{0,2}^i\right)$$

▶ in cross section of agents, negatively correlated with forecast revision 4

Learning about persistence

- Three dates t = 0, 1, 2
 - true data generating process

$$y_t^i = \rho y_{t-1}^i + u_t^i; \qquad t = 1, 2$$

- $ightharpoonup u_1^i$ iid normal noise, y_0^i drawn from stationary distribution
- date 0: common priors about ρ
- Forecasting y_2 at date 1
 - ▶ Information content of sample y_0^i , y_1^i for ρ

$$\frac{y_1^i}{y_0^i} = \rho + \frac{u_1^i}{y_0^i}$$

- growth is noisy signal of ρ , more noisy if y_0^i smaller
- ullet Responses across experiments with different hos
 - agents who observe higher y_0^i s get better signals
 - higher ρ experiments have larger variance of y_t^i
 - ightharpoonup so more agents with good signals in high ho experiments

Parameter learning in this paper

- Incorporating parameter learning into forecasting models
 - difficult: Bayes' rule with many parameter is messy
 - have to take a stand on stationarity
- Paper strikes interesting compromise
 - simplify by making persistence known
 - make stationary by assuming costly recall of data
 - costly recall also gets us more accurate forecast if persistence high
- Characterization of forecast dynamics
 - costly recall problem imposes mild assumptions
 - no explicit formula for optimal forecast as function of past recalled data
 - but can still characterize "overreaction" regression coefficients
- Going forward (towards more applications)
 - explicit formula that allows time series tests with data on individual agents, perhaps with more specific assumptions on cost?
 - incorporate learning about persistence?

Whither models of beliefs?

- Models of stationary forecast dynamics
 - ▶ all the action is in means; conditional uncertainty varies little
 - blend well with linearized macro models
- Parameter learning models
 - beyond simplest functional forms, get time variation in uncertainty
 - uncertainty can be large: agents worry about long run outlook
 - \blacktriangleright interesting extra effects for financial markets: structural change \to higher uncertainty \to lower prices
- Also relevant for macro!
 - ▶ Bachmann-Carstensen-Lautenbacher-Schneider 2020: firm survey data on one-quarter-ahead sales growth
 - ▶ forecasts of firms that grow or shrink quickly are too conservative
 → again an overreaction to recent experience
 - those firms also report more subjective uncertainty
 - subjective uncertainty not well proxied by conditional volatility: growing firms too confident given the shocks they face
 - ► calls for models that jointly study means and uncertainty