1) a.

$$P(Z \le 0.57) = 0.7156612$$

b.

$$P(Z \le -0.32) = 0.3744842$$

c.

$$P(Z \ge 2.10) = 0.01786442$$

d.

e.

$$z = -0.4399132$$

f.

$$z = 0.2567134$$

2) $Y \sim N (\mu = 6, s = 0.8)$

a.

$$P(Y \le 7) = 0.8943502$$

b.

$$P(Y > 5.4) = 0.7733726$$

c.

$$P(6 \le Y \le 7.2) = 0.4331928$$

d.

$$y = 6.829147$$

3)

a.

$$df=25$$
, $P(T>1.708) = 0.05$

b.

$$df=9$$
, $P(-t, $t = 2.262$$

c.

4)

a.

As the distribution of Y is skewed, empirical rule for normal distribution can't be applied. In this case, Chebyshev's rule should be applied for determining 75% interval.

From Chebyshev's rule,

$$P(\mu-2\frac{\sigma}{\sqrt{n}} \le y \le \mu + 2\frac{\sigma}{\sqrt{n}}) = 0.75$$

Or, $P(90-2 \le y \le 90+2) = 0.75$

Or,
$$P(88 \le y \le 92) = 0.75$$

Where y is the sample mean of n=100 samples.

b.

SHAIKH SHAWON AREFIN SHIMON

According to the Central Limit Theorem, the distribution of \overline{Y} is close to normal as n is large (n=100). So the shape of the distribution will follow normal distribution (bell shaped curve) $[\overline{Y} \sim (\mu, \frac{\sigma}{\sqrt{n}})]$

Mean =
$$\mu$$
 = 90 Standard deviation s = $\frac{\sigma}{\sqrt{n}}$ = $\frac{10}{\sqrt{100}}$ = 1

5)

a.

Sample mean ∇ = 526.12

Sample sd , s= 113.7279

b.

From the histogram, the sample data looks like a normal distribution. So from the empirical rule, 95% (α = 0.05) confidence interval for μ is = ($\nabla \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$)

Now, $t_{\alpha/2}$ = $t_{0.05/2}$ = $t_{0.025}$, and df = n-1 = 25-526.121 = 24.

From Student's t-distribution, $t_{0.025}$ for df , $t_{\alpha/2,\,n-1}=t_{0.025,\,24}=2.064$. So, confidence interval = $(y\pm t_{\alpha/2}\frac{s}{\sqrt{n}})=(526.12\pm(2.064)\frac{113.7279}{\sqrt{25}}=(526.12\pm46.95)=(479.17\,,\,573.07)$

c.

We can be 95% confident that population mean seed weight is contained in the 95% confidence interval (479.17, 573.07).

SHAIKH SHAWON AREFIN SHIMON

d. For H
$$_0$$
: μ = 500
$$H_A$$
: $\mu \neq 500$ Test Statistic TS, $t = \frac{\bar{y}-500}{s/\sqrt{n}} = \frac{526.12-500}{113.7279/\sqrt{25}} = 1.148$. Now , $|t| \gg t_{\alpha/2, \, n-1}$ as 1.148 < 2.064. So the test statistics does not fall into the rejection region.

This means, we fail to reject the hypothesis H_0 . This means that there is 95% chance that the confidence interval will contain the population mean μ = 500.