Theorem 0.1. The following are equivalent:

- $\pi_1(\mathbb{R}): y(\mathbb{R}) \to \mathbb{P}^1_{[t_0,t_1]}(\mathbb{R})$ is surjective
- For all $[t_0, t_1] \in \mathbb{P}^1_{[t_0, t_1]}(\mathbb{R})$, the correspondent quadratic form:

$$z^{2} = Q_{1}(u, v, w)t_{0}^{2} + 2Q_{2}(u, v, w)t_{0}t_{1} + Q_{3}(u, v, w)t_{1}^{2}$$

has a real solution

• Let M_1, M_2, M_3 be the symmetric matrix associated to Q_1, Q_2, Q_3 the matrix

$$M_{[t_0,t_1]} = \begin{pmatrix} M_1 t_0^2 + 2M_2 t_0 t_1 + M_3 t_1^2 & \mathbf{0} \\ \mathbf{0} & -1 \end{pmatrix}$$

is indefinite

• $M_{[t_0,t_1]}$ is not negative-definite (since the matrix cannot be positive definite with the -1 term)

Lemma 0.2. If $\Delta(\mathbb{R}) = \emptyset$, then $\tilde{\Delta}(\mathbb{R}) = \emptyset$

Proof. Suppose for contradiction that $\tilde{\Delta}(\mathbb{R}) \neq .$ Then there exist some non-zero (u, v, w, r, s) such that

$$Q_1(u, v, w) = r^2, Q_2(u, v, w) = r * s, Q_3(u, v, w) = s^2$$

but this means that

$$Q_2(u, v, w)^2 - Q_1(u, v, w)Q_3(u, v, w) = 0$$

has solution (u, v, w).

Clearly $(u, v, w) \neq (0, 0, 0)$ as if they do, then this would imply that $0 = r^2, 0 = s^2$, which means that r, s = 0. Thus, $\Delta(\mathbb{R})$ then does have some non-zero real solution, so $\Delta(\mathbb{R}) \neq \emptyset$, which is a contradiction.

Proposition 0.3. There exist $Y_{\tilde{\Delta}/\Delta}$ such that $\pi_1(\mathbb{R})$ is surjective and $\tilde{\Delta}(\mathbb{R}) = \emptyset$.

Proof. Let $M_1 = [8/7, 3, 2], M_2 = [7/5, 3/5, 10/7], M_3 = [2, 1, 8/5],$ then the matrix becomes

$$M_{[t_0,t_1]} = \begin{bmatrix} \frac{8}{7}t_0^2 + \frac{14}{5}t_0t_1 + 2t_1^2 & 0 & 0 & 0\\ 0 & 3t_0^2 + \frac{6}{5}t_0t_1 + t_1^2 & 0 & 0\\ 0 & 0 & 2t_0^2 + \frac{20}{7}t_0t_1 + \frac{8}{5}t_1^2 & 0\\ 0 & 0 & 0 & -1 \end{bmatrix}$$

The code in PVS showed that the $\Delta(\mathbb{R})$ for this setup is empty, so Lemma 0.2 gives us that $\tilde{\Delta}(\mathbb{R}) = \emptyset$. It remains for us to show that, for all $[t_0, t_1]$, $M_{[t_0, t_1]}$ is not negative definite. Indeed, Sylvester's Criterion tells us that it suffices for us to show that $\frac{8}{7}t_0^2 + \frac{14}{5}t_0t_1 + 2t_1^2 > 0$ for all non-zero (t_0, t_1) , but

$$\frac{8}{7}t_0^2 + \frac{14}{5}t_0t_1 + 2t_1^2 = \frac{8}{7}(t_0^2 + \frac{14 \cdot 7}{40}t_0t_1 + \frac{7}{4}t_1^2)$$

$$= \frac{8}{7}(t_0^2 + \frac{49}{20}t_0t_1 + \frac{7}{4}t_1^2)$$

$$= \frac{8}{7}[(t_0 + \frac{49}{40}t_1)^2 + (\frac{7}{4} - (\frac{49}{40})^2)t_0^2]$$
Completing the Square
$$\geqslant \frac{8}{7}[\frac{7}{4} - (\frac{49}{40})^2](t_0^2)$$

Note that $\frac{8}{7}(\frac{7}{4}-(\frac{49}{40})^2>0$, so the expression is strictly greater than 0 when $t_0\neq 0$, so Theorem 0.1 tells us that $\pi_1(\mathbb{R})$ is surjective.