FCC PART 22/24/27 TEST REPORT

FCC Part 22/24/27

Testing Laboratory Name Shenzhen LCS Compliance Testing Laboratory Ltd.

Bao'an District, Shenzhen, Guangdong, China

Applicant's name...... Shenzhen KVD Communication Equipment Limited

Address Lenovo R&D Center 2F-B, South First Road, High-tech Park,

Nanshan District, Shenzhen, Guangdong, China

Test specification:

FCC CFR Title 47 Part 2, Part 22, Part 24, Part 27

Standard ANSI/TIA-603-E-2016

KDB 971168 D01

Test Report Form No...... LCSEMC-1.0

TRF Originator...... Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF...... Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description LTE GSM/WCDMA Smartphone

Listed Models /

Modulation Type QPSK, 16QAM

Rating DC 3.8V by Rechargeable Li-ion Battery(5500mAh)

Recharged by DC 12V/2A TRAVEL CHARGER

Hardware version HCT-S600MB-B1

Software version...... DOOGEE-S70Lite-Android8.1-20180906

Frequency...... FDD band 2, FDD band 4, FDD band 5, FDD band 7, FDD band 17

Result..... PASS

Compiled by: Supervised by: Approved by:

Calvin Weng

Linda He/File administrators

Calvin Weng/Technique principal

Gavin Liang/ Manager

TEST REPORT

Test Report No. : LCS181130008AEG Dec 19, 2018

Date of issue

Equipment under Test : LTE GSM/WCDMA Smartphone

Model /Type : S70 LITE

Listed Models : /

Applicant : Shenzhen KVD Communication Equipment Limited

Address : Lenovo R&D Center 2F-B, South First Road, High-tech

Park, Nanshan District, Shenzhen, Guangdong, China

Manufacturer : Shenzhen KVD Communication Equipment Limited

A,3rd floor, Building A2, Silicon valley Digital Industrial

Address Park,22nd of Dafu industrial area,Aobei

Community, Guanlan town, Longhua District, shenzhen

518000, China

Factory : Shenzhen KVD Communication Equipment Limited

: A,3rd floor, Building A2, Silicon valley Digital Industrial

Address Park,22nd of Dafu industrial area,Aobei

Community, Guanlan town, Longhua District, shenzhen

518000, China

Test Result:	PASS
--------------	------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

	SHENZHEN LCS	S COMPLIANCE TESTING LABORATORY LTD.	FCC ID: 2ADTE-S70LITE	Report No.: LCS181130008AEG
--	--------------	--------------------------------------	-----------------------	-----------------------------

Revision History

Revision	Issue Date	Revisions	Revised By
000	Dec 19, 2018	Initial Issue	Gavin Liang

Contents

<u>1</u>	TEST STANDARDS	<u>5</u>
<u>2</u>	SUMMARY	6
2.1	General Remarks	6
2.2	Product Description	6
2.3	Equipment under Test	7
2.4	Short description of the Equipment under Test (EUT)	7
2.5	Internal Identification of AE used during the test	7
2.6	Normal Accessory setting	7
2.7	EUT configuration	7
2.8	Related Submittal(s) / Grant (s)	8
2.9	Modifications	8
2.10	General Test Conditions/Configurations	8
<u>3</u>	TEST ENVIRONMENT	9
3.1	Address of the test laboratory	9
3.2	Test Facility	9
3.3	Environmental conditions	9
3.4	Test Description	9
3.5	Equipments Used during the Test	12
3.6	Measurement uncertainty	13
<u>4</u>	TEST CONDITIONS AND RESULTS	14
4.1	Output Power	14
4.2	Peak-to-Average Ratio (PAR)	23
4.3	Occupied Bandwidth and Emission Bandwidth	24
4.4	Band Edge compliance	25
4.5	Spurious Emssion on Antenna Port	26
4.6	Radiated Spurious Emssion	28
4.7	Frequency Stability under Temperature & Voltage Variations	51
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	54
<u>6</u>	EXTERNAL PHOTOS OF THE EUT	54
7	INTERNAL PHOTOS OF THE EUT	54

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Part 22 (10-1-17 Edition): PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24(10-1-17 Edition): PUBLIC MOBILE SERVICES

FCC Part 27(10-1-17 Edition): MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES

<u>ANSI/TIA-603-E-2016:</u>Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

<u>971168 D01 Power Meas License Digital Systems v03</u>: Measurement Guidance For Certification of Licensed Digital Transmitters

FCC Part 2: Frequency Allocations And Radio Treaty Matters: General Rules And Regulations.

ANSI C63.26:2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services.

2 SUMMARY

2.1 General Remarks

Date of receipt of test sample	:	Nov 30, 2018
Testing commenced on	:	Nov 30, 2018
Testing concluded on	:	Dec 17, 2018

2.2 Product Description

The **Shenzhen KVD Communication Equipment Limited**'s Model: S70 LITE or the "EUT" as referred to in this report; more general information as follows, for more details, refer to the user's manual of the EUT.

	IS follows, for more details, refer to the user's manual of the EUT.
Name of EUT	LTE GSM/WCDMA Smartphone
Test Model	S70 Lite
Modulation Type	GMSK for GSM/GPRS; QPSK for UMTS, QPSK, 16QAM for LTE
	0 dBi (max.) For GSM 850, PCS 1900;
Antenna Gain	0 dBi (max.) For WCDMA Band II, V;
/ Internia Cam	0 dBi (max.) For LTE Band 2, 4, 5, 7, 17;
	0 dBi (max.) For BT and WLAN
Hardware version	HCT-S600MB-B1
Software version	DOOGEE-S70Lite-Android8.1-20180906
GSM/EDGE/GPRS Operation	GSM850/PCS1900/GPRS850/GPRS1900
Frequency Band	
UMTS Operation Frequency Band	UMTS FDD Band II/V
LTE Operation Frequency Band	LTE Band 2, 4, 5, 7, 17
GSM/EDGE/GPRS	Supported GSM/GPRS
GSM Release Version	R99
GSM/EDGE/GPRS Power Class	GSM850:Power Class 4/ PCS1900:Power Class 1
GPRS/EDGE Multislot Class	GPRS: Multi-slot Class 12
GPRS operation mode	Class B
WCDMA Release Version	R6
HSDPA Release Version	Release 6
HSUPA Release Version	Release 6
DC-HSUPA Release Version	Not Supported
LTE Release Version	Release 9
LTE/UMTS Power Class	Class 3
	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)
MI AN ECC Madulation Type	IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)
WLAN FCC Modulation Type	IEEE 802.11n HT20: OFDM (64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11n HT40: OFDM (64QAM, 16QAM, QPSK,BPSK)
	IEEE 802.11b:2412-2462MHz
MI AN ECC Operation frequency	IEEE 802.11g:2412-2462MHz
WLAN FCC Operation frequency	IEEE 802.11n HT20:2412-2462MHz
	IEEE 802.11n HT40:2422-2452MHz
Antenna Type	PIFA Antenna
BT Modulation Type	GFSK, π/4-DQPSK, 8-DPSK (BT V4.0)
Extreme temp. Tolerance	-20°C to +55°C
GPS function	Support and only RX
FM function	Support and only RX
NFC Function	Not Supported
Extreme vol. Limits	3.40VDC to 4.35VDC (nominal: 3.80VDC)

2.3 Equipment under Test

Power supply system utilised

Power supply voltage	:	0	120V/ 60 Hz	0	115V/60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

DC 3.80V

2.4 Short description of the Equipment under Test (EUT)

2.4.1 GeneralDescription

S70 LITE is subscriber equipment in the LTE/WCDMA/GSM system. The HSPA/UMTS frequency band is Band II/V, LTE frequency band isband 2,band 4,band 5,band 7, band 17. The GSM/GPRS frequency band includes GSM850 and PCS1900. The LTE GSM/WCDMA Smartphone implements such functions as RF signal receiving/transmitting, HSPA/UMTS and GSM/GPRS protocol processing, voice, video MMS service and etc. Externally it provides micro SD card interface and SIM card interface.

NOTE: Unless otherwise noted in the report, the functional boards installed in the units shall be selected from the below list, but not means all the functional boards listed below shall be installed in one unit.

2.5 Internal Identification of AE used during the test

AE ID*	Description
AE1	Battery (5500mAh)
AE2	TRAVEL CHARGER

AE2

Model: HJ-FC016K7-US

INPUT: AC 100-240V, 50Hz 0.6A

OUTPUT: DC 12V/2A

2.6 Normal Accessory setting

Fully charged battery was used during the test.

2.7 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

0	Power Cable	Length (m):	/
		Shield :	/
		Detachable :	/
0	Multimeter	Manufacturer:	/
		Model No. :	/

^{*}AE ID: is used to identify the test sample in the lab internally.

2.8 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID:2ADTE-S70LITE** filing to comply with FCC Part 22, Part 24&FCC Part 27 Rules

2.9 Modifications

No modifications were implemented to meet testing criteria.

2.10 General Test Conditions/Configurations

2.10.1 Test Environment

EnvironmentParameter	SelectedValue	esDuringTests
Relative Humidity	Ami	bient
Temperature	TN	Ambient
	VL	3.40V
Voltage	VN	3.80V
	VH	4.35V

NOTE:VL=lower extreme testvoltageVN=nominalvoltage VH=upperextreme testvoltageTN=normaltemperature

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen LCS Compliance Testing Laboratory Ltd

1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.4 (2014) and CISPR Publication 22.

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC Registration Number. is 254912.

Industry Canada Registration Number. is 9642A-1.

ESMD Registration Number. is ARCB0108.

UL Registration Number. is 100571-492.

TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4 Test Description

3.4.1 PCSBand (1850-1910MHz pairedwith 1930-1990MHz)(band 2)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) §2.1046, Radiated Output Power §24.232		EIRP ≤ 2W	Pass
Peak-Average Ratio		FCC:Limit≤13dB	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges §2.1051, Compliance §24.238		≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block.	Pass
Spurious Emission at Antenna Terminals	§2.1051, §24.238	≤-13dBm/1MHz, from 9kHz to10th harmonics but outside authorized Operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1053, §24.238	≤ -13dBm/1MHz.	Pass
Frequency Stability	§2.1055, §24.235	FCC: within authorized frequency block. not applicable",the"N/T"de notes "not tested".	Pass

3.4.2 AWS Band (1710-1755MHz pairedwith 2110-2155MHz)(band 4)

Test Item	FCC RuleNo.	Requirements	Verdict
Effective(Isotropic)Radiate dPowerOutputData	§2.1046, §27.50(d)	EIRP≤1W;	Pass
Peak-AverageRatio	§2.1046, §27.50(d)	Limit≤13dB	Pass
ModulationCharacteristics	§2.1047	Digitalmodulation	N/A
Bandwidth	§2.1049	OBW: Nolimit. EBW: Nolimit.	Pass
BandEdgesCompliance	§2.1051, §27.53(h)	≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block.	Pass
SpuriousEmissionatAnten naTerminals	§2.1051, §27.53(h)	≤ -13dBm/1MHz, from9kHzto10thharmonicsbutoutsideauthorized operatingfrequency ranges.	Pass
Frequency Stability	§2.1055, §27.54	Withinauthorizedbands of operation/frequency block.	Pass
Radiatedspurious emission	§2.1053, §27.53(h)	≤ -13dBm/1MHz.	Pass
NOTE 1: For the verdict, the	e "N/A" denotes	"not applicable", the "N/T" de notes "not tested"	

3.4.3 CellularBand (824-849MHz pairedwith 869-894MHz)(band 5)

Test Item	FCC Rule	Requirements	Verdict
	No.	•	
Effective(Isotropic)	§2.1046,	FCC: ERP ≤ 7W.	Pass
Radiated Output Power	§22.913		
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	§2.1051, §22.917	≤-≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block.	Pass
Spurious Emissionat AntennaTerminals	§2.1051, §22.917	FCC: ≤ -13dBm/100kHz, from 9kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1053, §22.917	FCC: ≤ -13dBm/100kHz.	Pass
Frequency Stability	§2.1055, §22.355	≤ ±2.5ppm.	Pass
NOTE 1:For the verdict, the	ne"N/A"denotes"r	not applicable",the"N/T"de notes "not tested".	

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG

3.4.4 Band 7 (2500-2570MHz pairedwith 2620-2690MHz)

Test Item	FCC Rule No.	Requirements	Verdict
Effective(Isotropic) Radiated Output Power	§2.1046, §27.50(h)	FCC: ERP ≤ 3W.	Pass
Peak-AverageRatio	§2.1046, §27.50(a)	Limit≤13dB	Pass
Modulation Characteristics	§2.1047	Digital modulation	N/A
Bandwidth	§2.1049	OBW: No limit. EBW: No limit.	Pass
Band Edges Compliance	§2.1051, §27.53(m4)	≤ -13dBm/1%*EBW, In1MHzbandsimmediatelyoutsideandadjacentto Thefrequency block.	Pass
Spurious Emissionat AntennaTerminals	§2.1051, §27.53(m)	FCC: ≤ -13dBm/100kHz, from 9kHz to 10th harmonics but outside authorized operating frequency ranges.	Pass
Field Strength of Spurious Radiation	§2.1053, §27.53(m)	FCC: ≤ -13dBm/100kHz.	Pass
Frequency Stability	§2.1055, §27.53(g)	≤ ±2.5ppm.	Pass
NOTE 1:For the verdict, the	ne"N/A"denotes"r	not applicable",the"N/T"de notes "not tested".	

3.4.5 Band 17(704-716MHz pairedwith 734-746MHz)

Test Item	FCC Rule	Requirements	Verdict		
	No.				
Effective(Isotropic)	§2.1046,	FCC: ERP ≤ 3W.	Pass		
Radiated Output Power	§27.50c(10)	100. EN 25W.	1 433		
Dook Average Datie	§2.1046,	Limit<12dD	Door		
Peak-AverageRatio	§27.50(c)	Limit≤13dB	Pass		
Modulation	§2.1047	Digital modulation	N/A		
Characteristics	92.1047	Digital modulation	IN/A		
Pandwidth	82 1040	OBW: No limit.	Pass		
Bandwidth	§2.1049	EBW: No limit.	Газз		
Dand Edges	\$0.4054	≤ -13dBm/1%*EBW,			
Band Edges	§2.1051,	In1MHzbandsimmediatelyoutsideandadjacentto	Pass		
Compliance	§27.53(g)	Thefrequency block.			
Caurious Emissionet	\$2.4054	FCC: ≤ -13dBm/100kHz,			
Spurious Emissionat	§2.1051,	from 9kHz to 10th harmonics but outside authorized	Pass		
AntennaTerminals	§27.53(g)	operating frequency ranges.			
Field Strength of	\$2.1051				
Spurious	§2.1051,	FCC: ≤ -13dBm/100kHz.	Pass		
Radiation	§27.53(g)				
Fragues av Stability	§2.1055,	< 12 Ennm	Doos		
Frequency Stability	§27.53(g)	≤ ±2.5ppm.	Pass		
NOTE 1:For the verdict, the	ne"N/A"denotes"r	not applicable",the"N/T"de notes "not tested".	•		

3.5 Equipments Used during the Test

Ite m	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	Power Meter	R&S	NRVS	100444	2018-06-16	2019-06-15
2	Power Sensor	R&S	NRV-Z81	100458	2018-06-16	2019-06-15
3	Power Sensor	R&S	NRV-Z32	10057	2018-06-16	2019-06-15
4	LTE Test Software	Tonscend	JS1120-1	N/A	N/A	N/A
5	RF Control Unit	Tonscend	JS0806	158060009	2018-06-16	2019-06-15
6	MXA Signal Analyzer	Agilent	N9020A	MY51250905	2018-11-15	2019-11-14
7	WIDEBAND RADIO COMMUNICATION TESTER	R&S	CMW 500	103818	2018-06-16	2019-06-15
8	DC Power Supply	Agilent	E3642A	N/A	2018-11-15	2019-11-14
9	EMI Test Software	AUDIX	E3	N/A	2018-06-16	2019-06-15
10	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2018-06-16	2019-06-15
11	Positioning Controller	MF	MF-7082	N/A	2018-06-16	2019-06-15
12	Active Loop Antenna	SCHWARZBEC K	FMZB 1519B	00005	2018-07-26	2019-07-25
13	By-log Antenna	SCHWARZBEC K	VULB9163	9163-470	2018-07-26	2019-07-25
14	Horn Antenna	SCHWARZBEC K	BBHA 9120D	9120D-1925	2018-07-02	2019-07-01
15	Broadband Horn Antenna	SCHWARZBEC K	BBHA 9170	791	2018-09-20	2019-09-19
16	Broadband Preamplifier	SCHWARZBEC K	BBV 9719	9719-025	2018-09-20	2019-09-19
17	EMI Test Receiver	R&S	ESR 7	101181	2018-06-16	2019-06-15
18	RS SPECTRUM ANALYZER	R&S	FSP40	100503	2018-11-15	2019-11-14
19	AMPLIFIER	QuieTek	QTK	CHM/0809065	2018-11-15	2019-11-14
20	RF Cable-R03m	Jye Bao	RG142	CB021	2018-06-16	2019-06-15
21	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	2018-06-16	2019-06-15
22	6dB Attenuator	/	100W/6dB	1172040	2018-06-16	2019-06-15
23	3dB Attenuator	/	2N-3dB	/	2018-06-16	2019-06-15
24	Temperature & Humidity Chamber	GUANGZHOU GOGNWEN	GDS-100	70932	2018-10-10	2019-10-09

Note: All equipment is calibrated through GUANGZHOU LISAI CALIBRATION AND TEST CO.,LTD.

3.6 Measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to ETSI TR 100 028"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics" and is documented in the Shenzhen LCS Compliance Testing Laboratory Ltd.quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen LCS Compliance Testing Laboratory Ltd. is reported:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	3.10 dB	(1)
Radiated Emission	1~18GHz	3.80 dB	(1)
Radiated Emission	18-40GHz	3.90 dB	(1)
Conducted Disturbance	0.15~30MHz	1.63 dB	(1)
Conducted Power	9KHz~18GHz	0.61 dB	(1)
Spurious RF Conducted Emission	9KHz~40GHz	1.22 dB	(1)
Band Edge Compliance of RF Emission	9KHz~40GHz	1.22 dB	(1)
Occuiped Bandwidth	9KHz~40GHz	-	(1)

⁽¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4 TEST CONDITIONS AND RESULTS

4.1 Output Power

TEST APPLICABLE

During the process of testing, the EUT was controlled via R&S Digital Radio Communication tester (CMW500) to ensure max power transmission and proper modulation. This result contains output power and EIRP measurements for the EUT. In all cases, output power is within the specified limits.

4.1.1. Conducted Output Power

TEST CONFIGURATION

TEST PROCEDURE

Conducted Power Measurement:

- a) Place the EUT on a bench and set it in transmitting mode.
- b) Connect a low loss RF cable from the antenna port to a CMW500 by an Att.
- c) EUT Communicate with CMW500 then selects a channel for testing.
- d) Add a correction factor to the display CMW500, and then test.

TEST RESULTS

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.1
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.1
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.1
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.1
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.1

4.1.2. Radiated Output Power

<u>LIMIT</u>

This is the test for the maximum radiated power from the EUT.

Per §22.913(2) Extend coverage on a secondary basis into cellular unserved areas, as those areas are defined in §22.949, the ERP of base transmitters and cellular repeaters of such systems must not exceed 1000 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts. Rule Part 24.232(c) specifies, "Mobile/portable stations are limited to 2 watts e.i.r.p. Peak power" and 24.232(e) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage." Rule Part 22.913(a) specifies "The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts."

Per Part 27.50(d) (4) specifies, Fixed, mobile, and portable (hand-held) stations operating in the 1710-1755MHz band are limited to 1W EIRP. Fixed stations operating in this band are limited to a maximum antenna height of 10 meters above ground. Mobile and portable stations operating in this band must employ a means for limiting power to the minimum necessary for successful communications.

According to § 27.50 C(10): Portable stations (hand-held devices) in the 600 MHz uplink band and the 698-746 MHz band, and fixed and mobile stations in the 600 MHz uplink band are limited to 3 watts ERP."

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).

- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: $Power(EIRP) = P_{Mea} P_{Ag} P_{cl} + G_a$
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

TEST RESULTS

Radiated Measurement:

Remark:

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2,LTE FDD Band 4,LTE FDD Band 5,LTE FDD Band 7, LTE FDD Band 17; recorded worst case for each Channel Bandwidth of LTE FDD Band 2,LTE FDD Band 4,LTE FDD Band 5,LTE FDD Band 7, LTE FDD Band 17.
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+P_{Ag}(dB)+G_a(dBi)$
- 3. ERP = EIRP 2.15dBi as EIRP by subtracting the gain of the dipole.
- 4. Margin = Emission Level Limit
- 5. We test the H direction and V direction recorded worst case

LTE FDD Band 2 Channel Bandwidth 1.4MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1850.70	-19.26	4.03	8.38	35.51	20.60	33.01	-12.41	V
1880.00	-19.45	4.08	8.33	35.56	20.36	33.01	-12.65	V
1909.30	-19.74	4.14	8.26	35.63	20.01	33.01	-13.00	V

LTE FDD Band 2_Channel Bandwidth 3MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1851.50	-20.21	4.03	8.38	35.51	19.65	33.01	-13.36	V
1880.00	-19.63	4.08	8.33	35.56	20.18	33.01	-12.83	V
1908.50	-20.39	4.14	8.26	35.63	19.36	33.01	-13.65	V

LTE FDD Band 2_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1852.50	-20.10	4.03	8.38	35.51	19.76	33.01	-13.25	V
1880.00	-20.50	4.08	8.33	35.56	19.31	33.01	-13.70	V
1907.50	-20.67	4.14	8.26	35.63	19.08	33.01	-13.93	V

LTE FDD Band 2_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1855.00	-20.58	4.03	8.38	35.51	19.28	33.01	-13.73	V
1880.00	-20.57	4.08	8.33	35.56	19.24	33.01	-13.77	V
1905.00	-21.21	4.14	8.26	35.63	18.54	33.01	-14.47	V

SHENZHEN L	CS COMPLIA	VCE TESTINO	G LABORATOR	Y LTD. FC	C ID: 2ADTE-	S70LITE R	eport No.: LC	S181130008AEG
LTE FDD B	and 2_Chan	nel Bandwid	dth 15MHz_C)PSK				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1857.50	-21.77	4.03	8.38	35.51	18.09	33.01	-14.92	V
1880.00	-21.74	4.08	8.33	35.56	18.07	33.01	-14.94	V
1902.50	-21.96	4.14	8.26	35.63	17.79	33.01	-15.22	V
LTE FDD B	and 2 Chan	nel Bandwid	dth 20MHz_C)PSK				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1860.00	-21.86	4.03	8.38	35.51	18.00	33.01	-15.01	V
1880.00	-22.03	4.08	8.33	35.56	17.78	33.01	-15.23	V
1900.00	-22.13	4.14	8.26	35.63	17.62	33.01	-15.39	V
LTE FDD B	and 2 Chan	nel Bandwid	dth 1.4MHz	16QAM				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1850.70	-20.16	4.03	8.38	35.51	19.70	33.01	-13.31	V
1880.00	-20.40	4.08	8.33	35.56	19.41	33.01	-13.60	V
1909.30	-19.75	4.14	8.26	35.63	20.00	33.01	-13.01	V
LTE FDD B	and 2 Chan	nel Bandwid	dth 3MHz_16	QAM				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1851.50	-20.98	4.03	8.38	35.51	18.88	33.01	-14.13	V
1880.00	-20.61	4.08	8.33	35.56	19.20	33.01	-13.81	V
1908.50	-20.31	4.14	8.26	35.63	19.44	33.01	-13.57	V
LTE FDD Ba	and 2 Chan	nel Bandwid	dth 5MHz_16	QAM				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1852.50	-21.28	4.03	8.38	35.51	18.58	33.01	-14.43	V
1880.00	-21.26	4.08	8.33	35.56	18.55	33.01	-14.46	V
1907.50	-21.00	4.14	8.26	35.63	18.75	33.01	-14.26	V
LTE FDD Ba	and 2 Chan	nel Bandwid	dth 10MHz_1	6QAM				
	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
Frequency (MHz)			` '	35.51	18.01	33.01	-15.00	V
. ,	-21.85	4.03	8.38	<u> </u>	10.0			
, ,	-21.85 -21.41	4.03 4.08	8.33	35.56	18.40	33.01	-14.61	V

 P_{Ag}

(dB)

35.51

35.56

35.63

Peak

EIRP

(dBm)

18.28

18.24

17.64

Limit

(dBm)

33.01

33.01

33.01

Margin

(dB)

-14.73

-14.77

-15.37

Polarization

٧

٧

٧

 G_a

Antenna

Gain(dB)

8.38

8.33

8.26

Frequency

(MHz)

1857.50

1880.00

1902.50

 $\mathsf{P}_{\mathsf{Mea}}$

(dBm)

-21.58

-21.57

-22.11

 P_{cl}

(dB)

4.03

4.08

4.14

<u>SHENZHEN L</u>	CS COMPLIA	NCE TESTINO	G LABORATOR	Y LTD. FC	C ID: 2ADTE-	S70LITE R	eport No.: LC	S181130008AEG
LTE FDD Ba	and 2_Chan	nel Bandwi	dth 20MHz_1	6QAM				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1860.00	-22.03	4.03	8.38	35.51	17.83	33.01	-15.18	V
1880.00	-22.98	4.08	8.33	35.56	16.83	33.01	-16.18	V
1900.00	-22.61	4.14	8.26	35.63	17.14	33.01	-15.87	V
LTE FDD Ba	and 4_Chan	nel Bandwi	dth 1.4MHz_0	Q <i>PSK</i>				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1710.7	-19.49	3.93	9.05	34.96	20.59	30.00	-9.41	V
1732.5	-19.48	3.93	8.89	35.01	20.49	30.00	-9.51	V
1754.3	-18.79	3.94	8.76	35.08	21.11	30.00	-8.89	V
LTE FDD Ba	and 4_Chan	nel Bandwi	dth 3MHz_QF	PSK				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1711.50	-19.01	3.93	9.05	34.96	21.07	30.00	-8.93	V
1732.50	-19.12	3.93	8.89	35.01	20.85	30.00	-9.15	V
1753.40	-18.92	3.94	8.76	35.08	20.98	30.00	-9.02	V
LTE FDD B	and 4_Chan	nel Bandwi	dth 5MHz_QI	PSK				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1712.50	-19.36	3.93	9.05	34.96	20.72	30.00	-9.28	V
1732.50	-18.98	3.93	8.89	35.01	20.99	30.00	-9.01	V
1752.50	-19.19	3.94	8.76	35.08	20.71	30.00	-9.29	V
LTE FDD Ba	and 4 Chan	nel Bandwi	dth 10MHz G)PSK				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1715.00	-19.06	3.93	9.05	34.96	21.02	30.00	-8.98	V
1732.50	-19.07	3.93	8.89	35.01	20.90	30.00	-9.10	V
1750.00	-19.41	3.94	8.76	35.08	20.49	30.00	-9.51	V
LTE FDD Ba	and 4 Chan	nel Bandwi	dth 15MHz_C)PSK				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1717.50	-19.24	3.93	9.05	34.96	20.84	30.00	-9.16	V
1732.50	-19.23	3.93	8.89	35.01	20.74	30.00	-9.26	V
1747.50	-19.02	3.94	8.76	35.08	20.88	30.00	-9.12	V

LTE FDD Band 4_Channel Bandwidth 20MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1720.00	-19.26	3.93	9.05	34.96	20.82	30.00	-9.18	V
1732.50	-19.40	3.93	8.89	35.01	20.57	30.00	-9.43	V
1745.00	-19.02	3.94	8.76	35.08	20.88	30.00	-9.12	V

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG										
LTE FDD B	LTE FDD Band 4_Channel Bandwidth 1.4MHz_16QAM									
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization				
1710.70	-19.36	3.93	9.05	34.96	20.72	30.00	-9.28	V		

35.01

35.08

20.69

20.96

30.00

30.00

-9.31

-9.04

I TF FDD Band 4	Channel	Bandwidth	3MHz	16QAM

3.93

3.94

8.89

8.76

-19.28

-18.94

1732.50

1754.30

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1711.50	-18.86	3.93	9.05	34.96	21.22	30.00	-8.78	V
1732.50	-18.79	3.93	8.89	35.01	21.18	30.00	-8.82	V
1753.40	-19.41	3.94	8.76	35.08	20.49	30.00	-9.51	V

LTE FDD Band 4_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1712.50	-19.21	3.93	9.05	34.96	20.87	30.00	-9.13	V
1732.50	-19.77	3.93	8.89	35.01	20.20	30.00	-9.80	V
1752.50	-19.49	3.94	8.76	35.08	20.41	30.00	-9.59	V

LTE FDD Band 4_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1715.00	-19.38	3.93	9.05	34.96	20.70	30.00	-9.30	V
1732.50	-19.32	3.93	8.89	35.01	20.65	30.00	-9.35	V
1750.00	-19.11	3.94	8.76	35.08	20.79	30.00	-9.21	V

LTE FDD Band 4_Channel Bandwidth 15MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1717.50	-19.14	3.93	9.05	34.96	20.94	30.00	-9.06	V
1732.50	-19.06	3.93	8.89	35.01	20.91	30.00	-9.09	V
1747.50	-19.35	3.94	8.76	35.08	20.55	30.00	-9.45	V

LTE FDD Band 4_Channel Bandwidth 20MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1720.00	-18.83	3.93	9.05	34.96	21.25	30.00	-8.75	V
1732.50	-19.10	3.93	8.89	35.01	20.87	30.00	-9.13	V
1745.00	-19.13	3.94	8.76	35.08	20.77	30.00	-9.23	V

LTE FDD Band 5 Channel Bandwidth 1.4MHz QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna	Correction (dB)	P _{Ag} (dB)	Peak ERP	Limit (dBm)	Margin (dB)	Polarization
824.70	-15.52	3.45	Gain(dB) 8.45	2.15	33.79	(dBm) 21.12	38.45	-17.33	V
836.50	-15.63	3.49	8.45	2.15	33.85	21.03	38.45	-17.42	V
848.30	-15.63	3.55	8.36	2.15	33.88	20.91	38.45	-17.54	V

SHENZHEN L	CS COMPLI	ANCE TE	STING LABOR	RATORY LTD.	FCC ID: 2	2ADTE-S70L	ITE Rep	ort No.: LCS	181130008AEC
LTE FDD B	and 5_Cha	annel Bai		Hz_QPSK		T _	-	Ī	
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
825.50	-15.66	3.45	8.45	2.15	33.79	20.98	38.45	-17.47	V
836.50	-15.79	3.49	8.45	2.15	33.85	20.87	38.45	-17.58	V
847.50	-16.30	3.55	8.36	2.15	33.88	20.24	38.45	-18.21	V
LTE FDD B	and 5 Cha	annel Bai	ndwidth 5MI	Hz QPSK					
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
826.50	-16.23	3.45	8.45	2.15	33.79	20.41	38.45	-18.04	V
836.50	-15.51	3.49	8.45	2.15	33.85	21.15	38.45	-17.30	V
846.50	-15.99	3.55	8.36	2.15	33.88	20.55	38.45	-17.90	V
LTE FDD Bar Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarizatio
829.00	-16.17	3.45	8.45	2.15	33.79	20.47	38.45	-17.98	V
836.50	-16.10	3.49	8.45	2.15	33.85	20.56	38.45	-17.89	V
844.00	-15.73	3.55	8.36	2.15	33.88	20.81	38.45	-17.64	V
LTE FDD B	and 5 Cha	annel Bai	ndwidth 1.4l	MHz_16QAM					
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
824.70	-17.49	3.45	8.45	2.15	33.79	19.15	38.45	-19.30	V
836.50	-16.83	3.49	8.45	2.15	33.85	19.83	38.45	-18.62	V
848.30	-17.11	3.55	8.36	2.15	33.88	19.43	38.45	-19.02	V
LTE FDD B	and 5_Cha	annel Bai	ndwidth 3MI	Hz_16QAM					
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarizatio
825.50	-17.21	3.45	8.45	2.15	33.79	19.43	38.45	-19.02	V
836.50	-16.68	3.49	8.45	2.15	33.85	19.98	38.45	-18.47	V
847.50	-17.35	3.55	8.36	2.15	33.88	19.19	38.45	-19.26	V

LTE FDD Band 5_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
826.50	-16.93	3.45	8.45	2.15	33.79	19.71	38.45	-18.74	V
836.50	-17.13	3.49	8.45	2.15	33.85	19.53	38.45	-18.92	V
846.50	-17.48	3.55	8.36	2.15	33.88	19.06	38.45	-19.39	V

LTE FDD Band 5_Channel Bandwidth 10MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
829.00	-17.20	3.45	8.45	2.15	33.79	19.44	38.45	-19.01	V
836.50	-16.66	3.49	8.45	2.15	33.85	20.00	38.45	-18.45	V
844.00	-16.97	3.55	8.36	2.15	33.88	19.57	38.45	-18.88	V

LTE FDD Band 7_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2502.5	-18.07	4.32	6.8	36.14	20.55	33.01	-12.46	V
2535.0	-18.41	4.32	6.61	36.17	20.05	33.01	-12.96	V
2567.5	-18.81	4.33	6.57	36.22	19.65	33.01	-13.36	V

LTE FDD Band 7_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2505.0	-18.47	4.32	6.8	36.14	20.15	33.01	-12.86	V
2535.0	-18.59	4.32	6.61	36.17	19.87	33.01	-13.14	V
2565.0	-18.12	4.33	6.57	36.22	20.34	33.01	-12.67	V

LTE FDD Band 7_Channel Bandwidth 15MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2507.5	-18.68	4.32	6.8	36.14	19.94	33.01	-13.07	V
2535.0	-18.43	4.32	6.61	36.17	20.03	33.01	-12.98	V
2562.5	-18.97	4.33	6.57	36.22	19.49	33.01	-13.52	V

LTE FDD Band 7_Channel Bandwidth 20MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2510.0	-18.37	4.32	6.8	36.14	20.25	33.01	-12.76	V
2535.0	-18.66	4.32	6.61	36.17	19.80	33.01	-13.21	V
2560.0	-18.04	4.33	6.57	36.22	20.42	33.01	-12.59	V

LTE FDD Band 7_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2502.5	-19.34	4.32	6.8	36.14	19.28	33.01	-13.73	V
2535.0	-19.55	4.32	6.61	36.17	18.91	33.01	-14.10	V
2567.5	-19.06	4.33	6.57	36.22	19.40	33.01	-13.61	V

LTE FDD Band 7_Channel Bandwidth 10MHz_16QAM

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	2505.0	-19.49	4.32	6.8	36.14	19.13	33.01	-13.88	V
	2535.0	-19.65	4.32	6.61	36.17	18.81	33.01	-14.20	V
Ī	2565.0	-19.27	4.33	6.57	36.22	19.19	33.01	-13.82	V

LTE FDD Band 7_Channel Bandwidth 15MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2507.5	-19.06	4.32	6.8	36.14	19.56	33.01	-13.45	V
2535.0	-19.33	4.32	6.61	36.17	19.13	33.01	-13.88	V
2562.5	-19.11	4.33	6.57	36.22	19.35	33.01	-13.66	V

LTE FDD Band 7_Channel Bandwidth 20MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	P _{Ag} (dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
2510.0	-19.05	4.32	6.8	36.14	19.57	33.01	-13.44	V
2535.0	-19.11	4.32	6.61	36.17	19.35	33.01	-13.66	V
2560.0	-19.31	4.33	6.57	36.22	19.15	33.01	-13.86	V

LTE FDD Band 17_Channel Bandwidth 5MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
706.5	-16.42	3.02	8.29	2.15	33.52	20.22	34.77	-14.55	V
710.0	-15.82	3.06	8.29	2.15	33.52	20.78	34.77	-13.99	V
713.5	-16.02	3.06	8.29	2.15	33.52	20.58	34.77	-14.19	V

LTE FDD Band 17_Channel Bandwidth 10MHz_QPSK

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
709.0	-15.55	3.06	8.29	2.15	33.52	21.05	34.77	-13.72	V
710.0	-16.49	3.06	8.29	2.15	33.52	20.11	34.77	-14.66	V
711.0	-16.04	3.06	8.29	2.15	33.52	20.56	34.77	-14.21	V

LTE FDD Band 17_Channel Bandwidth 5MHz_16QAM

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
706.5	-16.72	3.02	8.29	2.15	33.52	19.92	34.77	-14.85	V
710.0	-16.72	3.06	8.29	2.15	33.52	19.88	34.77	-14.89	V
713.5	-16.42	3.06	8.29	2.15	33.52	20.18	34.77	-14.59	V

LTE FDD Band 17_Channel Bandwidth 10MHz_16QAM

F	requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	G _a Antenna Gain(dB)	Correction (dB)	P _{Ag} (dB)	Peak ERP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	709.0	-16.42	3.06	8.29	2.15	33.52	20.18	34.77	-14.59	V
	710.0	-16.49	3.06	8.29	2.15	33.52	20.11	34.77	-14.66	V
	711.0	-16.85	3.06	8.29	2.15	33.52	19.75	34.77	-15.02	V

4.2 Peak-to-Average Ratio (PAR)

LIMIT

The Peak-to-Average Ratio (PAR) of the transmission may not exceed 13 dB.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Refer to instrument's analyzer instruction manual for details on how to use the power statistics/CCDF function;
- 2. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 3. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 4. Set the measurement interval as follows:
 - 1). for continuous transmissions, set to 1 ms,
 - 2). for burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 5. Record the maximum PAPR level associated with a probability of 0.1%.

TEST RESULTS

- We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.2
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.2
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.2
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.2
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.2

4.3 Occupied Bandwidth and Emission Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at low, middle and high channel in each band. The -26dBc Emission bandwidth was also measured and recorded. Set RBW was set to about 1% of emission BW, VBW≥3 times RBW.

-26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

- We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.3
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.3
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.3
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.3
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.3

4.4 Band Edge compliance

LIMIT

For LTE FDD Band 2:Per FCC §24.238 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 4: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 7: Per FCC §27.53 (m)(4): For mobile digital stations, the attenuation factor shall be not less than:

- ○40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge,
- ○43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge, and
- ○55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB). [§ 27.53(m)(4)]

In addition, the attenuation factor (fixed limit) shall not be less than:

- ○43+10logP dB on all frequencies between 2490.5 MHz and 2496 MHz, and
- ○55+10logP dB at or below 2490.5 MHz. [§ 27.53(m)(4)]

For LTE FDD Band 17: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.Translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowestand highest channels for each band and different modulation.
- 5. Measure Band edge using RMS (Average) detector by spectrum

TEST RESULTS

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.4
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.4
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.4
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.4
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.4

4.5 Spurious Emssion on Antenna Port

LIMIT

For LTE FDD Band 2:Per FCC §24.238 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 4: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 7: Per FCC §27.53 (m)(4): For mobile digital stations, the attenuation factor shall be not less than:

- ○40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge,
- \bigcirc 43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge, and
- ○55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB). [§ 27.53(m)(4)]

In addition, the attenuation factor (fixed limit) shall not be less than:

- ○43+10logP dB on all frequencies between 2490.5 MHz and 2496 MHz, and
- ○55+10logP dB at or below 2490.5 MHz. [§ 27.53(m)(4)]

For LTE FDD Band 17: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Connect a low loss RF cable from the antenna port to a spectrum analyzer and CMW500 by a Directional Couple.
- c. EUT Communicate with CMW500, then select a channel for testing.
- d. Add a correction factor to the display of spectrum, and then test.
- e. The resolution bandwidth of the spectrum analyzer was setsufficient scans were taken to show the out of band Emission if any up to10th harmonic.
- f. Please refer to following tables for test antenna conducted emissions.

SH	ENZHEN LCS COMPLIAN	NCE TESTING LABORATORY	LTD. FCC ID: 2AD	TE-S70LITE Report N	<i>lo.: LCS181130008AEG</i>
	Working Frequency	Sub range (GHz)	RBW	VBW	Sweep time (s)
		0.000009~0.000015	1KHz	3KHz	Auto
	LTE FDD Band 2	0.000015~0.03	10KHz	30KHz	Auto
		0.03~26	1 MHz	3 MHz	Auto
		0.000009~0.000015	1KHz	3KHz	Auto
	LTE FDD Band 4	0.000015~0.03	10KHz	30KHz	Auto
		0.03~26	1 MHz	3 MHz	Auto
		0.000009~0.000015	1KHz	3KHz	Auto
	LTE FDD Band 5	0.000015~0.03	10KHz	30KHz	Auto
		0.03~26	1 MHz	3 MHz	Auto
		0.000009~0.000015	1KHz	3KHz	Auto
	LTE FDD Band 7	0.000015~0.03	10KHz	30KHz	Auto
		0.03~26	1 MHz	3 MHz	Auto
	_	0.000009~0.000015	1KHz	3KHz	Auto
	LTE FDD Band 17	0.000015~0.03	10KHz	30KHz	Auto
		0.03~26	1 MHz	3 MHz	Auto

TEST RESULTS

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. For E-UTRA Band 2, please refer to Appendix A: Section A.5
- 3. For E-UTRA Band 4, please refer to Appendix B: Section B.5
- 4. For E-UTRA Band 5, please refer to Appendix C: Section C.5
- 5. For E-UTRA Band 7, please refer to Appendix D: Section D.5
- 6. For E-UTRA Band 17, please refer to Appendix E: Section E.5

4.6 Radiated Spurious Emssion

LIMIT

For LTE FDD Band 2:Per FCC §24.238 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 4: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

For LTE FDD Band 5:Per FCC §22.917 the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10log(P) dB. For LTE FDD Band 7: Per FCC §27.53 (m)(4): For mobile digital stations, the attenuation factor shall be not less than:

- ○40+10logP dB (-10 dBm, 100 nW) on all frequencies between the channel edge and 5 MHz from the channel edge,
- ○43+10logP dB (-13 dBm, 50 nW) on all frequencies between 5 MHz and X MHz from the channel edge, and
- \bigcirc 55+10logP dB (-25 dBm, 3 nW) on all frequencies more than X MHz from the channel edge, where X is the greater of 6 MHz or the actual emission bandwidth (26 dB). [§ 27.53(m)(4)]
- In addition, the attenuation factor (fixed limit) shall not be less than:
- ○43+10logP dB on all frequencies between 2490.5 MHz and 2496 MHz, and
- ○55+10logP dB at or below 2490.5 MHz. [§ 27.53(m)(4)]

For LTE FDD Band 17: Per §27.53(h): For operations in the 1710–1755 MHz and 2110–2155 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 43 + 10 log10(P) dB.

TEST CONFIGURATION

TEST PROCEDURE

1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated

- <u>SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.</u> <u>FCC ID: 2ADTE-S70LITE</u> <u>Report No.: LCS181130008AEG</u> emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (P_r).
- 4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (P_{Mea}) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (P_r). The power of signal source (P_{Mea}) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.
- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (P_{cl}), the Substitution Antenna Gain (G_a) and the Amplifier Gain (P_{Ag}) should be recorded after test. The measurement results are obtained as described below: $Power(EIRP) = P_{Mea} P_{Ag} P_{cl} + G_a$
- 6. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
- 7. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.15dBi.
- 8. In order to make sure test results more clearly, we set frequency range and sweep time for difference frequency range as follows table:

Working Frequency	Subrange (GHz)	RBW	VBW	Sweep time (s)
11040000	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
LTE FDD Band 2	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	18~20	1 MHz	3 MHz	2
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
	1~2	1 MHz	3 MHz	2
LTE FDD Band 4	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3
	11~14	1 MHz	3 MHz	3
	14~18	1 MHz	3 MHz	3
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
LTE FDD Band 5	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~9	1 MHz	3 MHz	3
	0.00009~0.15	1KHz	3KHz	30
	0.00015~0.03	10KHz	30KHz	10
	0.03~1	100KHz	300KHz	10
LTE FDD Band 7	1~2	1 MHz	3 MHz	2
	2~5	1 MHz	3 MHz	3
	5~8	1 MHz	3 MHz	3
	8~11	1 MHz	3 MHz	3

SH	ENZHEN LCS COMPLIAN	CE TESTING LABORATO	RY LTD. FCC ID: 2A	DTE-S70LITE Report	No.: LCS181130008AEG
		11~14	1 MHz	3 MHz	3
		14~18	1 MHz	3 MHz	3
		18~20	1 MHz	3 MHz	2
		20~26	1 MHz	3 MHz	2
		0.00009~0.15	1KHz	3KHz	30
		0.00015~0.03	10KHz	30KHz	10
	LTE FDD Band 17	0.03~1	100KHz	300KHz	10
	LIE FUU Ballu II	1~2	1 MHz	3 MHz	2
		2~5	1 MHz	3 MHz	3
		5~8	1 MHz	3 MHz	3

TEST LIMITS

According to 27.53(h) specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Frequency	Channel	Frequency Range	Verdict
	Low	9KHz -20GHz	PASS
LTE FDD Band 2	Middle	9KHz -20GHz	PASS
	High	9KHz -20GHz	PASS
	Low	9KHz -18GHz	PASS
LTE FDD Band 4	Middle	9KHz -18GHz	PASS
	High	9KHz -18GHz	PASS
	Low	9KHz -9GHz	PASS
LTE FDD Band 5	Middle	9KHz -9GHz	PASS
	High	9KHz -9GHz	PASS
	Low	9KHz -26GHz	PASS
LTE FDD Band 7	Middle	9KHz -26GHz	PASS
	High	9KHz -26GHz	PASS
	Low	9KHz -8GHz	PASS
LTE FDD Band 17	Middle	9KHz -8GHz	PASS
	High	9KHz -8GHz	PASS

Radiated Measurement:

Remark

- 1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band
- 2, LTE FDD Band 4, LTE FDD Band 5, LTE FDD Band 7, LTE FDD Band 17;
- 2. $EIRP=P_{Mea}(dBm)-P_{cl}(dB)+G_a(dBi)$
- 3. We were not recorded other points as values lower than limits.
- 4. Margin = EIRP Limit

LTE FDD Band 2_Channel Bandwidth 1.4MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3701.4	-39.35	5.26	3.00	9.88	-34.73	-13.00	-21.73	Н
5552.1	-46.82	6.11	3.00	11.36	-41.57	-13.00	-28.57	Н
3701.4	-30.41	5.26	3.00	9.88	-25.79	-13.00	-12.79	V
5552.1	-34.45	6.11	3.00	11.36	-29.20	-13.00	-16.20	V

LTE FDD Band 2_Channel Bandwidth 1.4MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.0	-37.76	5.32	3.00	10.03	-33.05	-13.00	-20.05	Н
5640.0	-44.59	6.19	3.00	11.41	-39.37	-13.00	-26.37	Н
3760.0	-28.45	5.32	3.00	10.03	-23.74	-13.00	-10.74	V
5640.0	-34.15	6.19	3.00	11.41	-28.93	-13.00	-15.93	V

LTE FDD Band 2_Channel Bandwidth 1.4MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3806.6	-37.41	5.36	3.00	9.62	-33.15	-13.00	-20.15	Н
5709.9	-46.26	6.24	3.00	11.46	-41.04	-13.00	-28.04	Н
3806.6	-31.90	5.36	3.00	9.62	-27.64	-13.00	-14.64	V
5709.9	-34.38	6.24	3.00	11.46	-29.16	-13.00	-16.16	V

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 2_Channel Bandwidth 3MHz_QPSK_ Low Channel Peak G_a Limit Frequency P_{cl} Margin $\mathsf{P}_{\mathsf{Mea}}$ Diatance Polarization Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 3703.0 -38.35 5.26 3.00 9.88 -33.73 -13.00 -20.73 Н 5554.5 -45.51 6.11 3.00 11.36 -40.26 -13.00 -27.26 Н

9.88

11.36

-24.10

-30.94

-13.00

-13.00

-11.10 -17.94

V

I TE EDD Rand 2	Channel Bandwidth 3MHz	OPSK	Middle Channel
LIE FUU Daliu Z	CHAITHEI DAHUWIUUI SIVINZ	Y FSN	wildale Charinei

3.00

3.00

5.26

6.11

3703.0

5554.5

-28.72

-36.19

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.00	-40.06	5.32	3.00	10.03	-35.35	-13.00	-22.35	Н
5640.00	-43.48	6.19	3.00	11.41	-38.26	-13.00	-25.26	Н
3760.00	-30.22	5.32	3.00	10.03	-25.51	-13.00	-12.51	V
5640.00	-36.07	6.19	3.00	11.41	-30.85	-13.00	-17.85	V

LTE FDD Band 2_Channel Bandwidth 3MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization					
3817.0	-40.20	5.36	3.00	9.62	-35.94	-13.00	-22.94	Н					
5725.5	-46.78	6.24	3.00	11.46	-41.56	-13.00	-28.56	Н					
3817.0	-28.12	5.36	3.00	9.62	-23.86	-13.00	-10.86	V					
5725.5	-34.05	6.24	3.00	11.46	-28.83	-13.00	-15.83	V					

LTE FDD Band 2_Channel Bandwidth 5MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3705.0	-39.36	5.26	3.00	9.88	-34.74	-13.00	-21.74	Н
5557.5	-45.48	6.11	3.00	11.36	-40.23	-13.00	-27.23	Н
3705.0	-28.95	5.26	3.00	9.88	-24.33	-13.00	-11.33	V
5557.5	-34.28	6.11	3.00	11.36	-29.03	-13.00	-16.03	V

LTE FDD Band 2_Channel Bandwidth 5MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.0	-40.26	5.32	3.00	10.03	-35.55	-13.00	-22.55	Н
5640.0	-46.68	6.19	3.00	11.41	-41.46	-13.00	-28.46	Н
3760.0	-29.59	5.32	3.00	10.03	-24.88	-13.00	-11.88	V
5640.0	-34.20	6.19	3.00	11.41	-28.98	-13.00	-15.98	V

LTE FDD Band 2_Channel Bandwidth 5MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3815.0	-40.09	5.36	3.00	9.62	-35.83	-13.00	-22.83	Н
5722.5	-43.27	6.24	3.00	11.46	-38.05	-13.00	-25.05	Н
3815.0	-28.74	5.36	3.00	9.62	-24.48	-13.00	-11.48	V
5722.5	-33.56	6.24	3.00	11.46	-28.34	-13.00	-15.34	V

LTE FDD Band 2_Channel Bandwidth 10MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3710.0	-38.41	5.26	3.00	9.88	-33.79	-13.00	-20.79	Н
5565.0	-43.49	6.11	3.00	11.36	-38.24	-13.00	-25.24	Н
3710.0	-29.13	5.26	3.00	9.88	-24.51	-13.00	-11.51	V
5565.0	-36.41	6.11	3.00	11.36	-31.16	-13.00	-18.16	V

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 2_Channel Bandwidth 10MHz_QPSK_ Middle Channel Peak G_a Frequency P_{cl} Limit Margin P_{Mea} Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 3760.0 -40.78 5.32 -13.00 -23.07 3.00 10.03 -36.07Н -27.61 5640.0 -45.83 -13.00 6.19 3.00 11.41 -40.61 Н 3760.0 -29.98 5.32 3.00 10.03 -25.27 -13.00 -12.27 ٧ -17.41 ٧ 5640.0 3.00 11.41 -30.41-13.00 -35.63 6.19 LTE FDD Band 2_Channel Bandwidth 10MHz_QPSK_ High Channel G_{a} Peak Frequency Limit Margin P_{Mea} Diatance Antenna **EIRP** Polarization (dB) (MHz) (dBm) (dBm) (dB) Gain(dB) (dBm) 3810.0 -38.86 -13.00 -21.60 5.36 3.00 9.62 -34.60 Η 11.46 5715.0 -44.05 -38.83 -13.00 -25.83 6.24 3.00 Н 3810.0 -29.03 5.36 3.00 9.62 -24.77 -13.00 -11.77 ٧ ٧ 5715.0 -35.15 6.24 3.00 11.46 -29.93 -13.00 -16.93 LTE FDD Band 2 Channel Bandwidth 15MHz QPSK Low Channel

		=						
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3715.0	-40.28	5.26	3.00	9.88	-35.66	-13.00	-22.66	Н
5572.5	-43.43	6.11	3.00	11.36	-38.18	-13.00	-25.18	Н
3715.0	-30.29	5.26	3.00	9.88	-25.67	-13.00	-12.67	V
5572.5	-34.94	6.11	3.00	11.36	-29.69	-13.00	-16.69	V

LTE FDD Band 2 Channel Bandwidth 15MHz QPSK Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.0	-37.36	5.32	3.00	10.03	-32.65	-13.00	-19.65	Н
5640.0	-45.56	6.19	3.00	11.41	-40.34	-13.00	-27.34	Н
3760.0	-31.23	5.32	3.00	10.03	-26.52	-13.00	-13.52	V
5640.0	-33.08	6.19	3.00	11.41	-27.86	-13.00	-14.86	V

LTE FDD Band 2_Channel Bandwidth 15MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3805.0	-38.51	5.36	3.00	9.62	-34.25	-13.00	-21.25	Н
5707.5	-43.02	6.24	3.00	11.46	-37.80	-13.00	-24.80	Н
3805.0	-31.97	5.36	3.00	9.62	-27.71	-13.00	-14.71	V
5707.5	-35.04	6.24	3.00	11.46	-29.82	-13.00	-16.82	V

LTE FDD Band 2 Channel Bandwidth 20MHz QPSK Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3715.0	-37.37	5.26	3.00	9.88	-32.75	-13.00	-19.75	Н
5572.5	-43.36	6.11	3.00	11.36	-38.11	-13.00	-25.11	Н
3715.0	-28.13	5.26	3.00	9.88	-23.51	-13.00	-10.51	V
5572.5	-34.54	6.11	3.00	11.36	-29.29	-13.00	-16.29	V

LTE FDD Band 2 Channel Bandwidth 20MHz QPSK Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3720.0	-39.97	5.32	3.00	10.03	-35.26	-13.00	-22.26	Н
5580.0	-43.42	6.19	3.00	11.41	-38.20	-13.00	-25.20	Н
3720.0	-31.72	5.32	3.00	10.03	-27.01	-13.00	-14.01	V
5580.0	-34.32	6.19	3.00	11.41	-29.10	-13.00	-16.10	V

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 2_Channel Bandwidth 20MHz_QPSK_ High Channel Peak Frequency $P_{\text{Mea}} \\$ P_{cl} Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dB) (dBm) (dBm) (dB) (dBm) Gain(dB) -40.55 3800.0 5.36 3.00 -36.29-13.00 -23.29Н 9.62 5700.0 -45.21 6.24 3.00 11.46 -39.99 -13.00 -26.99 Н 3800.0 -28.36 -13.00 ٧ 5.36 3.00 9.62 -24.10 -11.10 5700.0 -35.30 6.24 3.00 11.46 -30.08 -13.00 -17.08 ٧ LTE FDD Band 2 Channel Bandwidth 1.4MHz 16QAM Low Channel G_{a} Peak Frequency $\mathsf{P}_{\mathsf{Mea}}$ P_{cl} Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 3701.4 -43.03 5.26 3.00 -13.00 -25.41 9.88 -38.41 Η 5552.1 -49.256.11 3.00 11.36 -44.00 -13.00-31.00 Η -14.39 3701.4 -32.01 5.26 3.00 9.88 -27.39 -13.00 ٧ 3.00 11.36 -33.44 -13.00 -20.44 ٧ 5552.1 -38.69 6.11 LTE FDD Band 2_Channel Bandwidth 1.4MHz_16QAM _ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.0	-40.14	5.32	3.00	10.03	-35.43	-13.00	-22.43	Н
5640.0	-48.78	6.19	3.00	11.41	-43.56	-13.00	-30.56	Н
3760.0	-31.76	5.32	3.00	10.03	-27.05	-13.00	-14.05	V
5640.0	-41.21	6.19	3.00	11.41	-35.99	-13.00	-22.99	V

LTE FDD Band 2_Channel Bandwidth 1.4MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3806.6	-41.29	5.36	3.00	9.62	-37.03	-13.00	-24.03	Н
5709.9	-49.57	6.24	3.00	11.46	-44.35	-13.00	-31.35	Н
3806.6	-32.16	5.36	3.00	9.62	-27.90	-13.00	-14.90	V
5709.9	-41.09	6.24	3.00	11.46	-35.87	-13.00	-22.87	V

LTE FDD Band 2 Channel Bandwidth 3MHz 16QAM Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3703.0	-43.58	5.26	3.00	9.88	-38.96	-13.00	-25.96	Н
5554.5	-46.76	6.11	3.00	11.36	-41.51	-13.00	-28.51	Н
3703.0	-32.66	5.26	3.00	9.88	-28.04	-13.00	-15.04	V
5554.5	-38.61	6.11	3.00	11.36	-33.36	-13.00	-20.36	V

LTE FDD Band 2 Channel Bandwidth 3MHz 16QAM Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.00	-40.89	5.32	3.00	10.03	-36.18	-13.00	-23.18	Н
5640.00	-46.24	6.19	3.00	11.41	-41.02	-13.00	-28.02	Н
3760.00	-32.75	5.32	3.00	10.03	-28.04	-13.00	-15.04	V
5640.00	-38.88	6.19	3.00	11.41	-33.66	-13.00	-20.66	V

LTE FDD Band 2 Channel Bandwidth 3MHz 16QAM High Channel

LILIDDD	TET DD Band Z_Chainlei Bandwidth SiviriZ_10@Alvi _ High Chainlei										
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
3817.0	-40.10	5.36	3.00	9.62	-35.84	-13.00	-22.84	Н			
5725.5	-47.17	6.24	3.00	11.46	-41.95	-13.00	-28.95	Н			
3817.0	-34.07	5.36	3.00	9.62	-29.81	-13.00	-16.81	V			
5725.5	-40.29	6.24	3.00	11.46	-35.07	-13.00	-22.07	V			

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 2_Channel Bandwidth 5MHz_16QAM _ Low Channel G_a Peak Frequency $P_{\text{Mea}} \\$ P_{cl} Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 3705.0 -40.11 5.26 3.00 -35.49-13.00 -22.49Н 9.88 5557.5 -47.986.11 3.00 11.36 -42.73-13.00 -29.73 Н -34.16 -29.54 -13.00 -16.54 ٧ 3705.0 5.26 3.00 9.88 5557.5 -40.81 6.11 3.00 11.36 -35.56 -13.00 -22.56 ٧ LTE FDD Band 2 Channel Bandwidth 5MHz 16QAM Middle Channel G_{a} Peak Frequency $\mathsf{P}_{\mathsf{Mea}}$ P_{cl} Limit Margin **EIRP** Polarization Diatance Antenna (dB) (MHz) (dBm) (dBm) (dB) Gain(dB) (dBm) 3760.0 -41.44 -13.00 -23.73 5.32 3.00 10.03 -36.73 Η 5640.0 -46.58 11.41 -41.36 -13.00 -28.36 6.19 3.00 Η -28.63 3760.0 -33.34 5.32 3.00 10.03 -13.00 -15.63 ٧ -38.34 ٧ 5640.0 3.00 11.41 -33.12 -13.00 -20.12 6.19 LTE FDD Band 2 Channel Bandwidth 5MHz 16QAM High Channel

	<u> </u>			· <u> </u>				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3815.0	-41.94	5.36	3.00	9.62	-37.68	-13.00	-24.68	Н
5722.5	-47.17	6.24	3.00	11.46	-41.95	-13.00	-28.95	Н
3815.0	-31.74	5.36	3.00	9.62	-27.48	-13.00	-14.48	V
5722.5	-39.04	6.24	3.00	11.46	-33.82	-13.00	-20.82	V

LTE FDD Band 2_Channel Bandwidth 10MHz_16QAM _ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3710.0	-41.88	5.26	3.00	9.88	-37.26	-13.00	-24.26	Н
5565.0	-49.50	6.11	3.00	11.36	-44.25	-13.00	-31.25	Н
3710.0	-32.31	5.26	3.00	9.88	-27.69	-13.00	-14.69	V
5565.0	-39.67	6.11	3.00	11.36	-34.42	-13.00	-21.42	V

LTE FDD Band 2 Channel Bandwidth 10MHz 16QAM Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3760.0	-41.85	5.32	3.00	10.03	-37.14	-13.00	-24.14	Н
5640.0	-48.14	6.19	3.00	11.41	-42.92	-13.00	-29.92	Н
3760.0	-32.71	5.32	3.00	10.03	-28.00	-13.00	-15.00	V
5640.0	-38.06	6.19	3.00	11.41	-32.84	-13.00	-19.84	V

LTE FDD Band 2_Channel Bandwidth 10MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3810.0	-40.12	5.36	3.00	9.62	-35.86	-13.00	-22.86	Н
5715.0	-46.37	6.24	3.00	11.46	-41.15	-13.00	-28.15	Н
3810.0	-32.01	5.36	3.00	9.62	-27.75	-13.00	-14.75	V
5715.0	-38.21	6.24	3.00	11.46	-32.99	-13.00	-19.99	V

LTE FDD Band 2 Channel Bandwidth 15MHz 16QAM Low Channel

	ana z_onan	noi Banawie	1011 10111112_ 1	0471177 _ 201	v Onamio			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3715.0	-41.24	5.26	3.00	9.88	-36.62	-13.00	-23.62	Н
5572.5	-48.12	6.11	3.00	11.36	-42.87	-13.00	-29.87	Н
3715.0	-34.82	5.26	3.00	9.88	-30.20	-13.00	-17.20	V
5572.5	-41.36	6.11	3.00	11.36	-36.11	-13.00	-23.11	V

			GLABORATOR	YLTD. FC	C ID: 2ADTE-		eport No.: LCS	S181130008AE
LIE FUU Da	anu z_Gnan	riei bariuwio	λίτι τοινιπ2 <u>_</u> Ι 	G _a	Peak			1
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	Folarizatio
2700.0	40.50	F 22	2.00	` '		42.00	22.07	- 11
3760.0	-40.58	5.32	3.00	10.03	-35.87	-13.00	-22.87	H
5640.0	-49.26	6.19	3.00	11.41	-44.04	-13.00	-31.04	Н
3760.0	-33.56	5.32	3.00	10.03	-28.85	-13.00	-15.85	V
5640.0	-39.25	6.19	3.00	11.41	-34.03	-13.00	-21.03	V
LTE FDD Ba	and 2_Chan	nel Bandwid	dth 15MHz_1	6QAM_ Hig	h Channel			
Fraguancy	D	P _{cl}		G_{a}	Peak	Limit	Margin	
Frequency	P _{Mea}		Diatance	Antenna	EIRP			Polarizatio
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
3805.0	-43.77	5.36	3.00	9.62	-39.51	-13.00	-26.51	Н
5707.5	-49.09	6.24	3.00	11.46	-43.87	-13.00	-30.87	H
3805.0	-34.54	5.36	3.00	9.62	-30.28	-13.00	-17.28	V
5707.5	-41.74	6.24	3.00	11.46	-36.52	-13.00	-23.52	V
0707.0	71.77	0.24	0.00	11.40	00.02	10.00	20.02	
TE FDD Ba	and 2_Chan	nel Bandwid	dth 20MHz_1	6QAM_Lov			Г	
requency	P_{Mea}	P_{cl}		G_a	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
(1011 12)	(dDIII)	(GD)		Gain(dB)	(dBm)	(dDill)	(GD)	
3715.0	-42.38	5.26	3.00	9.88	-37.76	-13.00	-24.76	Н
5572.5	-47.27	6.11	3.00	11.36	-42.02	-13.00	-29.02	Н
3715.0	-34.12	5.26	3.00	9.88	-29.50	-13.00	-16.50	V
5572.5	-39.85	6.11	3.00	11.36	-34.60	-13.00	-21.60	V
I TF FDD Ra	and 2 Chan	nel Randwid	th 20MHz 1	60AM Mio	ldle Channe	I		
			dth 20MHz_1	6QAM_ Mid				
	and 2_Chan P _{Mea}	<i>nel Bandwid</i> P _{cl}		Ga	Peak	<i>l</i> Limit	Margin	Polarizatio
			dth 20MHz_1 Diatance	G _a Antenna	Peak EIRP		Margin (dB)	Polarization
requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	(dB)	
requency (MHz) 3720.0	P _{Mea} (dBm) -42.68	P _{cl} (dB) 5.32	Diatance 3.00	G _a Antenna Gain(dB) 10.03	Peak EIRP (dBm) -37.97	Limit (dBm) -13.00	(dB) -24.97	Н
requency (MHz) 3720.0 5580.0	P _{Mea} (dBm) -42.68 -48.24	P _{cl} (dB) 5.32 6.19	3.00 3.00	Ga Antenna Gain(dB) 10.03 11.41	Peak EIRP (dBm) -37.97 -43.02	Limit (dBm) -13.00 -13.00	(dB) -24.97 -30.02	H
Frequency (MHz) 3720.0 5580.0 3720.0	P _{Mea} (dBm) -42.68 -48.24 -34.63	P _{cl} (dB) 5.32 6.19 5.32	3.00 3.00 3.00 3.00	G _a Antenna Gain(dB) 10.03 11.41 10.03	Peak EIRP (dBm) -37.97 -43.02 -29.92	Limit (dBm) -13.00 -13.00	(dB) -24.97 -30.02 -16.92	H H V
7requency (MHz) 3720.0 5580.0	P _{Mea} (dBm) -42.68 -48.24	P _{cl} (dB) 5.32 6.19	3.00 3.00	Ga Antenna Gain(dB) 10.03 11.41	Peak EIRP (dBm) -37.97 -43.02	Limit (dBm) -13.00 -13.00	(dB) -24.97 -30.02	H
7720.0 5580.0 3720.0 5580.0	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99	P _{cl} (dB) 5.32 6.19 5.32 6.19	3.00 3.00 3.00 3.00 3.00	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77	Limit (dBm) -13.00 -13.00	(dB) -24.97 -30.02 -16.92	H H V
7720.0 5580.0 3720.0 5580.0 5580.0	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99	P _{cl} (dB) 5.32 6.19 5.32 6.19 mel Bandwid	3.00 3.00 3.00 3.00 3.00	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel	Limit (dBm) -13.00 -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77	H H V
7720.0 5580.0 3720.0 5580.0 3720.0 5580.0	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99	P _{cl} (dB) 5.32 6.19 5.32 6.19	3.00 3.00 3.00 3.00 3.00	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak	Limit (dBm) -13.00 -13.00	(dB) -24.97 -30.02 -16.92	H H V V
7720.0 5580.0 3720.0 5580.0 5580.0	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99	P _{cl} (dB) 5.32 6.19 5.32 6.19	3.00 3.00 3.00 3.00 3.00	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_Hig G _a Antenna	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP	Limit (dBm) -13.00 -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77	H H V V
7requency (MHz) 3720.0 5580.0 3720.0 5580.0 -TE FDD Bater (MHz)	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm)	P _{cl} (dB) 5.32 6.19 5.32 6.19 0.19 0.19 0.10 0.10 0.10 0.10 0.10 0	3.00 3.00 3.00 3.00 3.00 3.00 Diatance	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 GQAM_ Hig G _a Antenna Gain(dB)	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm)	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm)	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB)	H H V V
7720.0 5580.0 3720.0 5580.0 3720.0 5580.0 TE FDD Bateries (MHz) 3800.0	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74	P _{cl} (dB) 5.32 6.19 5.32 6.19 mel Bandwid P _{cl} (dB) 5.36	3.00 3.00 3.00 3.00 3.00 3.00 Diatance 3.00	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48	H H V V V Polarizatio
7requency (MHz) 3720.0 5580.0 3720.0 5580.0 -TE FDD Bates (MHz) 3800.0 5700.0	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91	P _{cl} (dB) 5.32 6.19 5.32 6.19 mel Bandwid (dB) 5.36 6.24	3.00 3.00 3.00 3.00 3.00 3.00 th 20MHz_1 Diatance 3.00 3.00	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69	Limit (dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69	H H V V V Polarization
7720.0 5580.0 3720.0 5580.0 3720.0 5580.0 7720.0	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91	P _{cl} (dB) 5.32 6.19 5.32 6.19 mel Bandwid P _{cl} (dB) 5.36 6.24 5.36	3.00 3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65	H H V V Polarization H H V V
7720.0 5580.0 3720.0 5580.0 3720.0 5580.0 3720.0 5580.0 TE FDD Bases (MHz) 3800.0 5700.0	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91	P _{cl} (dB) 5.32 6.19 5.32 6.19 mel Bandwid (dB) 5.36 6.24	3.00 3.00 3.00 3.00 3.00 3.00 th 20MHz_1 Diatance 3.00 3.00	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69	Limit (dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69	H H V V V Polarization
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 5580.0 TE FDD Barrequency (MHz) 3800.0 5700.0 3800.0 5700.0	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16	P _{cl} (dB) 5.32 6.19 5.32 6.19 nel Bandwid (dB) 5.36 6.24 5.36 6.24	3.00 3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00 3.00 3.00	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94 Channel	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65	H H V V Polarization H H V V
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 TE FDD Barrequency (MHz) 3800.0 5700.0 3800.0 5700.0	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16 and 4_Chan	P _{cl} (dB) 5.32 6.19 5.32 6.19 mel Bandwid P _{cl} (dB) 5.36 6.24 5.36 6.24 mel Bandwid	3.00 3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00 3.00 3.00	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65 -19.94	H H V V Polarization H H V V
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 TE FDD Barrequency (MHz) 3800.0 5700.0 3800.0 5700.0	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16 and 4_Chan P _{Mea}	P _{cl} (dB) 5.32 6.19 5.32 6.19 nel Bandwid (dB) 5.36 6.24 5.36 6.24 nel Bandwid P _{cl}	3.00 3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00 3.00 3.00	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94 Channel	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65 -19.94 Margin	H H V V V Polarization
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 TE FDD Barrequency (MHz) 3800.0 5700.0 TE FDD Barrequency (MHz)	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16 and 4_Chan	P _{cl} (dB) 5.32 6.19 5.32 6.19 mel Bandwid P _{cl} (dB) 5.36 6.24 5.36 6.24 mel Bandwid	Diatance 3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00 3.00 3.00 dth 1.4MHz_	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46 QPSK_ Low G _a	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94 Channel Peak EIRP	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65 -19.94	H H V V V Polarization H H V V V
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 TE FDD Barrequency (MHz) 3800.0 5700.0 3800.0 5700.0	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16 and 4_Chan P _{Mea}	P _{cl} (dB) 5.32 6.19 5.32 6.19 nel Bandwid (dB) 5.36 6.24 5.36 6.24 nel Bandwid P _{cl}	Diatance 3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00 3.00 3.00 dth 1.4MHz_	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46 QPSK_ Low G _a Antenna	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94 Channel Peak EIRP (dBm)	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65 -19.94 Margin (dB)	Polarization H H V
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 TE FDD Bate (MHz) 3800.0 5700.0 3800.0 5700.0 TE FDD Bate (MHz) 3800.0 5700.0 3800.0 5700.0 3800.0 5700.0 3800.0 5700.0	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16 and 4_Chan P _{Mea} (dBm) -40.64	P _{cl} (dB) 5.32 6.19 5.32 6.19 nel Bandwid (dB) 5.36 6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 4.62	Diatance 3.00 3.00 3.00 3.00 3.00 Sth 20MHz_1 Diatance 3.00 3.00 3.00 3.00 Sth 1.4MHz_ Diatance 3.00	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 (6QAM_ Highter Gandard Highter Highter Gandard Highter High	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94 Channel Peak EIRP (dBm) -35.45	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65 -19.94 Margin (dB) -22.45	H H V V V Polarization H H H V V V
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 5580.0 TE FDD Bate (MHz) 3800.0 5700.0 3800.0 5700.0 TE FDD Bate (MHz) 3421.4 5132.1	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16 and 4_Chan P _{Mea} (dBm) -40.64 -46.19	P _{cl} (dB) 5.32 6.19 5.32 6.19 nel Bandwid (dB) 5.36 6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 4.62 5.94	Diatance 3.00 3.0	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46 QPSK_Low G _a Antenna Gain(dB) 9.81 10.86	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94 Channel Peak EIRP (dBm) -35.45 -41.27	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65 -19.94 Margin (dB) -22.45 -28.27	Polarization H H V V V Polarization H H H H H H H H H H H H H H H H H H H
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 TE FDD Bate (MHz) 3800.0 5700.0 TE FDD Bate (MHz) 3800.0 5700.0 TE FDD Bate (MHz) 3801.0 5700.0 TE FDD Bate (MHz) 3421.4 5132.1 3421.4	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16 and 4_Chan P _{Mea} (dBm) -40.64 -46.19 -34.46	P _{cl} (dB) 5.32 6.19 5.32 6.19 nel Bandwid P _{cl} (dB) 5.36 6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 4.62 5.94 4.62	Diatance 3.00 3.0	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 (6QAM_ Highting) G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46 QPSK_ Low G _a Antenna Gain(dB) 9.81 10.86 9.81	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94 Channel Peak EIRP (dBm) -35.45 -41.27 -29.27	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65 -19.94 Margin (dB) -22.45 -28.27 -16.27	H H V V V Polarization H H H V V V
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 5580.0 TE FDD Bate (MHz) 3800.0 5700.0 3800.0 5700.0 TE FDD Bate (MHz) 3421.4 5132.1 3421.4 5132.1	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16 and 4_Chan P _{Mea} (dBm) -40.64 -46.19 -34.46 -40.96	P _{cl} (dB) 5.32 6.19 5.32 6.19 mel Bandwid P _{cl} (dB) 5.36 6.24 5.36 6.24 mel Bandwid P _{cl} (dB) 4.62 5.94 4.62 5.94	Diatance 3.00 3.0	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.46	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94 Channel Peak EIRP (dBm) -35.45 -41.27 -29.27 -36.04	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65 -19.94 Margin (dB) -22.45 -28.27	Polarization H H V V V Polarization H H H V V V
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 5580.0 TE FDD Bate (MHz) 3800.0 5700.0 3800.0 5700.0 TE FDD Bate (MHz) 3421.4 5132.1 3421.4 5132.1	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16 and 4_Chan P _{Mea} (dBm) -40.64 -46.19 -34.46 -40.96	P _{cl} (dB) 5.32 6.19 5.32 6.19 mel Bandwid P _{cl} (dB) 5.36 6.24 5.36 6.24 mel Bandwid P _{cl} (dB) 4.62 5.94 4.62 5.94	Diatance 3.00 3.0	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.86 QPSK_ Low G _a Antenna Gain(dB) 9.81 10.86 9.81 10.86	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94 Channel Peak EIRP (dBm) -35.45 -41.27 -29.27 -36.04	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65 -19.94 Margin (dB) -22.45 -28.27 -16.27	H H V V V Polarization H H H V V V
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 5580.0 TE FDD Bate (MHz) 3800.0 5700.0 3800.0 5700.0 TE FDD Bate (MHz) 3421.4 5132.1 3421.4 5132.1	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16 and 4_Chan P _{Mea} (dBm) -40.64 -46.19 -34.46 -40.96 and 4_Chan	P _{cl} (dB) 5.32 6.19 5.32 6.19 nel Bandwid P _{cl} (dB) 5.36 6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 4.62 5.94 4.62 5.94 nel Bandwid	Diatance 3.00 3.0	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.46	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94 Channel Peak EIRP (dBm) -35.45 -41.27 -29.27 -36.04	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65 -19.94 Margin (dB) -22.45 -28.27 -16.27 -23.04	H H V V V Polarization H H H V V V
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 5580.0 TE FDD Bate (MHz) 3800.0 5700.0 3800.0 5700.0 TE FDD Bate (MHz) 3421.4 5132.1 3421.4 5132.1 TE FDD Bate (MHz)	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16 and 4_Chan P _{Mea} (dBm) -40.64 -46.19 -34.46 -40.96 and 4_Chan P _{Mea}	P _{cl} (dB) 5.32 6.19 5.32 6.19 nel Bandwid P _{cl} (dB) 5.36 6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 4.62 5.94 4.62 5.94 nel Bandwid P _{cl}	Diatance 3.00 3.0	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.86 QPSK_ Low G _a Antenna Gain(dB) 9.81 10.86 9.81 10.86	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94 Channel Peak EIRP (dBm) -35.45 -41.27 -29.27 -36.04	Limit (dBm) -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65 -19.94 Margin (dB) -22.45 -28.27 -16.27 -23.04 Margin	H H V V V Polarization H H H V V V
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 5580.0 TE FDD Bate (MHz) 3800.0 5700.0 3800.0 5700.0 TE FDD Bate (MHz) 3421.4 5132.1 3421.4 5132.1	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16 and 4_Chan P _{Mea} (dBm) -40.64 -46.19 -34.46 -40.96 and 4_Chan	P _{cl} (dB) 5.32 6.19 5.32 6.19 nel Bandwid P _{cl} (dB) 5.36 6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 4.62 5.94 4.62 5.94 nel Bandwid	Diatance 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.46 QPSK_ Low G _a Antenna Gain(dB) 9.81 10.86 9.81 10.86 QPSK_ Mido G _a Antenna	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94 Channel Peak EIRP (dBm) -35.45 -41.27 -29.27 -36.04 lle Channel Peak EIRP	Limit (dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65 -19.94 Margin (dB) -22.45 -28.27 -16.27 -23.04	H H V V V Polarization H H H V V V
Trequency (MHz) 3720.0 5580.0 3720.0 5580.0 5580.0 TE FDD Bate (MHz) 3800.0 5700.0 3800.0 5700.0 TE FDD Bate (MHz) 3421.4 5132.1 3421.4 5132.1 TE FDD Bate (MHz)	P _{Mea} (dBm) -42.68 -48.24 -34.63 -41.99 and 2_Chan P _{Mea} (dBm) -43.74 -49.91 -31.91 -38.16 and 4_Chan P _{Mea} (dBm) -40.64 -46.19 -34.46 -40.96 and 4_Chan P _{Mea}	P _{cl} (dB) 5.32 6.19 5.32 6.19 nel Bandwid P _{cl} (dB) 5.36 6.24 5.36 6.24 nel Bandwid P _{cl} (dB) 4.62 5.94 4.62 5.94 nel Bandwid P _{cl}	Diatance 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.	G _a Antenna Gain(dB) 10.03 11.41 10.03 11.41 6QAM_ Hig G _a Antenna Gain(dB) 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.46 9.62 11.86 QPSK_ Low G _a Antenna Gain(dB) 9.81 10.86 9.81 10.86 QPSK_ Mido G _a	Peak EIRP (dBm) -37.97 -43.02 -29.92 -36.77 h Channel Peak EIRP (dBm) -39.48 -44.69 -27.65 -32.94 Channel Peak EIRP (dBm) -35.45 -41.27 -29.27 -36.04 lle Channel Peak	Limit (dBm) -13.00	(dB) -24.97 -30.02 -16.92 -23.77 Margin (dB) -26.48 -31.69 -14.65 -19.94 Margin (dB) -22.45 -28.27 -16.27 -23.04 Margin	H H V V V Polarization H H H V V V

9.84

10.86

-28.68

-33.52

-13.00

-13.00

-15.68

-20.52

٧

٧

3465.0

5197.5

-33.89

-38.44

4.63

5.94

3.00

3.00

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 4_Channel Bandwidth 1.4MHz_QPSK_ High Channel Peak G_a Frequency $\mathsf{P}_{\mathsf{Mea}}$ P_{cl} Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dB) (dBm) (dBm) (dB) (dBm) Gain(dB) -40.55 3508.6 4.65 3.00 9.9 -35.30 -13.00 -22.30 Н 5262.9 -46.21 5.95 3.00 10.91 -41.25 -13.00 -28.25 Н -34.48 -29.23 -13.00 -16.23 ٧ 3508.6 4.65 3.00 9.9 ٧ 5262.9 -39.23 5.95 3.00 10.91 -34.27 -13.00 -21.27 LTE FDD Band 4 Channel Bandwidth 3MHz QPSK Low Channel G_{a} Peak Frequency $\mathsf{P}_{\mathsf{Mea}}$ P_{cl} Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 3423.0 -41.66 4.62 3.00 -13.00 -23.47 9.81 -36.47 Η 5134.5 -47.425.94 3.00 10.86 -42.50-13.00-29.50Η -35.39 3423.0 4.62 3.00 9.81 -30.20 -13.00 -17.20 ٧ -40.88 3.00 10.86 -13.00 -22.96 ٧ 5134.5 5.94 -35.96

LTE FDD Band 4	Channel	Bandwidth	3MHz	QPSK	Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.00	-42.35	4.63	3.00	9.84	-37.14	-13.00	-24.14	Н
5197.50	-46.79	5.94	3.00	10.86	-41.87	-13.00	-28.87	Н
3465.00	-36.25	4.63	3.00	9.84	-31.04	-13.00	-18.04	V
5197.50	-41.70	5.94	3.00	10.86	-36.78	-13.00	-23.78	V

LTE FDD Band 4 Channel Bandwidth 3MHz QPSK High Channel

	ana i_onan	noi Banamie	an own iz_ q	r or <u>ringir</u> c	marino			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3507.0	-40.14	4.65	3.00	9.9	-34.89	-13.00	-21.89	Н
5260.5	-47.99	5.95	3.00	10.91	-43.03	-13.00	-30.03	Н
3507.0	-34.37	4.65	3.00	9.9	-29.12	-13.00	-16.12	V
5260.5	-39.27	5.95	3.00	10.91	-34.31	-13.00	-21.31	V

LTE FDD Band 4_Channel Bandwidth 5MHz_QPSK_ Low Channel

	Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	3425.0	-40.98	4.62	3.00	9.81	-35.79	-13.00	-22.79	Н
	5137.5	-47.22	5.94	3.00	10.86	-42.30	-13.00	-29.30	Н
Ī	3425.0	-36.60	4.62	3.00	9.81	-31.41	-13.00	-18.41	V
	5137.5	-38.89	5.94	3.00	10.86	-33.97	-13.00	-20.97	V

LTE FDD Band 4 Channel Bandwidth 5MHz QPSK Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.0	-42.06	4.63	3.00	9.84	-36.85	-13.00	-23.85	Н
5197.5	-45.57	5.94	3.00	10.86	-40.65	-13.00	-27.65	Н
3465.0	-35.93	4.63	3.00	9.84	-30.72	-13.00	-17.72	V
5197.5	-41.71	5.94	3.00	10.86	-36.79	-13.00	-23.79	V

LTE FDD Band 4 Channel Bandwidth 5MHz QPSK High Channel

	ana i_onan	nor Banamic	in own iz_ q	or <u>t</u> riigire	marino			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3505.0	-40.01	4.65	3.00	9.9	-34.76	-13.00	-21.76	Н
5257.5	-46.46	5.95	3.00	10.91	-41.50	-13.00	-28.50	Н
3505.0	-36.46	4.65	3.00	9.9	-31.21	-13.00	-18.21	V
5257.5	-39.34	5.95	3.00	10.91	-34.38	-13.00	-21.38	V

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 4_Channel Bandwidth 10MHz_QPSK_ Low Channel Peak G_a Frequency $P_{\text{Mea}} \\$ P_{cl} Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) (dBm) Gain(dB) 3430.0 -42.65 4.62 3.00 -37.46-13.00 -24.46 Н 9.81 5145.0 -46.00 5.94 3.00 10.86 -41.08 -13.00 -28.08 Н 3430.0 -13.00 -16.42 ٧ -34.61 4.62 3.00 9.81 -29.425145.0 -41.67 5.94 3.00 10.86 -36.75 -13.00 -23.75 ٧ LTE FDD Band 4 Channel Bandwidth 10MHz QPSK Middle Channel G_a Peak Frequency $\mathsf{P}_{\mathsf{Mea}}$ P_{cl} Limit Margin **EIRP** Polarization Diatance Antenna (dB) (MHz) (dBm) (dBm) (dB) Gain(dB) (dBm) 3465.0 -42.39-13.00 -24.18 4.63 3.00 9.84 -37.18 Η 5197.5 -45.74 5.94 10.86 -40.82 -13.00 -27.82 3.00 Η 3465.0 -34.68 4.63 3.00 9.84 -29.47 -13.00 -16.47 ٧ 10.86 ٧ 5197.5 -38.58 5.94 3.00 -33.66 -13.00 -20.66 LTE FDD Band 4 Channel Bandwidth 10MHz QPSK High Channel

	<u> </u>	=		<u> </u>				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3500.0	-43.41	4.65	3.00	9.9	-38.16	-13.00	-25.16	Н
5250.0	-47.32	5.95	3.00	10.91	-42.36	-13.00	-29.36	Н
3500.0	-35.70	4.65	3.00	9.9	-30.45	-13.00	-17.45	V
5250.0	-39.24	5.95	3.00	10.91	-34.28	-13.00	-21.28	V

LTE FDD Band 4_Channel Bandwidth 15MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3435.0	-41.62	4.62	3.00	9.81	-36.43	-13.00	-23.43	Н
5152.5	-48.45	5.94	3.00	10.86	-43.53	-13.00	-30.53	Н
3435.0	-36.73	4.62	3.00	9.81	-31.54	-13.00	-18.54	V
5152.5	-40.57	5.94	3.00	10.86	-35.65	-13.00	-22.65	V

LTE FDD Band 4 Channel Bandwidth 15MHz QPSK Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.0	-43.63	4.63	3.00	9.84	-38.42	-13.00	-25.42	Н
5197.5	-45.86	5.94	3.00	10.86	-40.94	-13.00	-27.94	Н
3465.0	-34.66	4.63	3.00	9.84	-29.45	-13.00	-16.45	V
5197.5	-40.66	5.94	3.00	10.86	-35.74	-13.00	-22.74	V

LTE FDD Band 4_Channel Bandwidth 15MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3495.0	-43.39	4.65	3.00	9.9	-38.14	-13.00	-25.14	Н
5242.5	-45.53	5.95	3.00	10.91	-40.57	-13.00	-27.57	Н
3495.0	-36.06	4.65	3.00	9.9	-30.81	-13.00	-17.81	V
5242.5	-39.84	5.95	3.00	10.91	-34.88	-13.00	-21.88	V

LTE FDD Band 4 Channel Bandwidth 20MHz QPSK Low Channel

	aria i_Oriari	noi Banawie	ian zown iz_ c	<u> </u>	onannoi			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3440.0	-40.81	4.62	3.00	9.81	-35.62	-13.00	-22.62	Н
5160.0	-47.36	5.94	3.00	10.86	-42.44	-13.00	-29.44	Н
3440.0	-35.40	4.62	3.00	9.81	-30.21	-13.00	-17.21	V
5160.0	-41.26	5.94	3.00	10.86	-36.34	-13.00	-23.34	V

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 4_Channel Bandwidth 20MHz_QPSK_ Middle Channel Peak G_a Frequency P_{cl} Limit Margin P_{Mea} Diatance **EIRP** Polarization Antenna (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 3465.0 -43.12 4.63 -13.00 -24.91 3.00 9.84 -37.91 Н 5197.5 -45.03 10.86 -40.11 -13.00 -27.11 5.94 3.00 Η 3465.0 -36.95 4.63 3.00 9.84 -31.74 -13.00 -18.74 ٧ -23.89 ٧ 5197.5 -41.81 5.94 3.00 10.86 -36.89 -13.00 LTE FDD Band 4_Channel Bandwidth 20MHz_QPSK_ High Channel G_{a} Peak Frequency Limit Margin P_{Mea} Polarization Diatance Antenna **EIRP** (dB) (MHz) (dBm) (dBm) (dB) Gain(dB) (dBm) 3490.0 -41.40 4.65 -13.00 -23.15 3.00 9.9 -36.15 Η 5235.0 -47.525.95 3.00 10.91 -42.56-13.00 -29.56 Η -36.57 3490.0 4.65 3.00 9.9 -31.32 -13.00 -18.32٧ 5235.0 -40.25 10.91 -35.29 -22.29 ٧ 5.95 3.00 -13.00

I TE EDD Band A	Channal Bandwidth	1 111117	160 / 1/	Low Channel
LIE FUU Band 4	Channel Bandwidth	1.4WHZ	TOWAIN	Low Channel

			_			1	1	
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3421.4	-43.92	4.62	3.00	9.81	-38.73	-13.00	-25.73	Н
5132.1	-48.38	5.94	3.00	10.86	-43.46	-13.00	-30.46	Н
3421.4	-38.15	4.62	3.00	9.81	-32.96	-13.00	-19.96	V
5132.1	-43.83	5.94	3.00	10.86	-38.91	-13.00	-25.91	V

LTE FDD Band 4 Channel Bandwidth 1.4MHz 16QAM Middle Channel

	ETET BB Band T_onamid Bandwall TriminE_To Qrim_middle onamid											
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization				
3465.0	-46.20	4.63	3.00	9.84	-40.99	-13.00	-27.99	Н				
5197.5	-51.62	5.94	3.00	10.86	-46.70	-13.00	-33.70	Н				
3465.0	-38.81	4.63	3.00	9.84	-33.60	-13.00	-20.60	V				
5197.5	-43.82	5.94	3.00	10.86	-38.90	-13.00	-25.90	V				

LTE FDD Band 4_Channel Bandwidth 1.4MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3508.6	-45.10	4.65	3.00	9.9	-39.85	-13.00	-26.85	Н
5262.9	-49.67	5.95	3.00	10.91	-44.71	-13.00	-31.71	Н
3508.6	-36.39	4.65	3.00	9.9	-31.14	-13.00	-18.14	V
5262.9	-41.77	5.95	3.00	10.91	-36.81	-13.00	-23.81	V

LTE FDD Band 4_Channel Bandwidth 3MHz_16QAM _ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3423.0	-46.99	4.62	3.00	9.81	-41.80	-13.00	-28.80	Н
5134.5	-51.84	5.94	3.00	10.86	-46.92	-13.00	-33.92	Н
3423.0	-36.92	4.62	3.00	9.81	-31.73	-13.00	-18.73	V
5134.5	-43.62	5.94	3.00	10.86	-38.70	-13.00	-25.70	V

LTE FDD Band 4 Channel Bandwidth 3MHz 16QAM Middle Channel

LILIDDD	ETET DD Bana 4_Onanner Banawatti Sivii 12_10&Aivi _ Iviidale Onanner											
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization				
3465.00	-43.08	4.63	3.00	9.84	-37.87	-13.00	-24.87	Н				
5197.50	-50.67	5.94	3.00	10.86	-45.75	-13.00	-32.75	Н				
3465.00	-37.47	4.63	3.00	9.84	-32.26	-13.00	-19.26	V				
5197.50	-41.65	5.94	3.00	10.86	-36.73	-13.00	-23.73	V				

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 4_Channel Bandwidth 3MHz_16QAM _ High Channel G_a Peak Frequency $P_{\text{Mea}} \\$ P_{cl} Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) (dBm) Gain(dB) -43.35 3507.0 4.65 3.00 9.9 -38.10 -13.00 -25.10 Н 5260.5 -48.67 5.95 3.00 10.91 -43.71 -13.00 -30.71 Н 3507.0 -38.41 -13.00 -20.16 ٧ 4.65 3.00 9.9 -33.16 5260.5 -42.97 5.95 3.00 10.91 -38.01 -13.00 -25.01 ٧ LTE FDD Band 4 Channel Bandwidth 5MHz 16QAM Low Channel $\overline{\mathsf{G}}_{\mathsf{a}}$ Peak Frequency $\mathsf{P}_{\mathsf{Mea}}$ P_{cl} Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 3425.0 -44.31 4.62 3.00 -13.00 -26.129.81 -39.12 Η 5137.5 -51.02 5.94 3.00 10.86 -46.10 -13.00-33.10 Η 3425.0 -38.79 4.62 3.00 9.81 -33.60 -13.00 -20.60 ٧ 5137.5 -41.28 3.00 10.86 -36.36 -13.00 -23.36 ٧ 5.94 LTE FDD Band 4_Channel Bandwidth 5MHz_16QAM _ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.0	-43.83	4.63	3.00	9.84	-38.62	-13.00	-25.62	Н
5197.5	-48.39	5.94	3.00	10.86	-43.47	-13.00	-30.47	Н
3465.0	-37.21	4.63	3.00	9.84	-32.00	-13.00	-19.00	V
5197.5	-43.83	5.94	3.00	10.86	-38.91	-13.00	-25.91	V

LTE FDD Band 4_Channel Bandwidth 5MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3505.0	-45.87	4.65	3.00	9.9	-40.62	-13.00	-27.62	Н
5257.5	-49.94	5.95	3.00	10.91	-44.98	-13.00	-31.98	Н
3505.0	-39.78	4.65	3.00	9.9	-34.53	-13.00	-21.53	V
5257.5	-42.97	5.95	3.00	10.91	-38.01	-13.00	-25.01	V

LTE FDD Band 4 Channel Bandwidth 10MHz 16QAM Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3430.0	-46.35	4.62	3.00	9.81	-41.16	-13.00	-28.16	Н
5145.0	-48.02	5.94	3.00	10.86	-43.10	-13.00	-30.10	Н
3430.0	-37.19	4.62	3.00	9.81	-32.00	-13.00	-19.00	V
5145.0	-44.98	5.94	3.00	10.86	-40.06	-13.00	-27.06	V

LTE FDD Band 4 Channel Bandwidth 10MHz 16QAM Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.0	-43.76	4.63	3.00	9.84	-38.55	-13.00	-25.55	Н
5197.5	-49.98	5.94	3.00	10.86	-45.06	-13.00	-32.06	Н
3465.0	-38.39	4.63	3.00	9.84	-33.18	-13.00	-20.18	V
5197.5	-41.36	5.94	3.00	10.86	-36.44	-13.00	-23.44	V

LTE FDD Band 4 Channel Bandwidth 10MHz 16QAM High Channel

LILIDDD	ETET DD Band 4_Onamici Bandwath Towniz_ToQAW_Tingh Onamici										
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
3500.0	-44.56	4.65	3.00	9.9	-39.31	-13.00	-26.31	Н			
5250.0	-51.93	5.95	3.00	10.91	-46.97	-13.00	-33.97	Н			
3500.0	-36.35	4.65	3.00	9.9	-31.10	-13.00	-18.10	V			
5250.0	-42.86	5.95	3.00	10.91	-37.90	-13.00	-24.90	V			

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 4_Channel Bandwidth 15MHz_16QAM _ Low Channel Peak G_a Frequency $P_{\text{Mea}} \\$ P_{cl} Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 3435.0 -44.81 4.62 3.00 -13.00 -26.62 Н 9.81 -39.62 5152.5 -50.98 5.94 3.00 10.86 -46.06 -13.00 -33.06 Н -38.97 -33.78 -13.00 -20.78 ٧ 3435.0 4.62 3.00 9.81 5152.5 -44.04 5.94 3.00 10.86 -39.12 -13.00 -26.12 ٧ LTE FDD Band 4 Channel Bandwidth 15MHz 16QAM Middle Channel G_a Peak Frequency $\mathsf{P}_{\mathsf{Mea}}$ P_{cl} Limit Margin **EIRP** Polarization Diatance Antenna (dB) (MHz) (dBm) (dBm) (dB) Gain(dB) (dBm) 3465.0 -46.24 -13.00 -28.03 4.63 3.00 9.84 -41.03 Η 5197.5 -50.40 5.94 10.86 -45.48 -13.00 -32.483.00 Η 3465.0 -38.22 4.63 3.00 9.84 -33.01 -13.00 -20.01 ٧ 10.86 -25.93 ٧ 5197.5 -43.85 5.94 3.00 -38.93 -13.00 LTE FDD Band 4 Channel Bandwidth 15MHz 16QAM High Channel

	2.2.2.2.2.2.4.1.1.1.1.1.1.1.1.1.1.1.1.1.											
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization				
3495.0	-44.03	4.65	3.00	9.9	-38.78	-13.00	-25.78	Н				
5242.5	-48.81	5.95	3.00	10.91	-43.85	-13.00	-30.85	Н				
3495.0	-38.23	4.65	3.00	9.9	-32.98	-13.00	-19.98	V				
5242.5	-44.98	5.95	3.00	10.91	-40.02	-13.00	-27.02	V				

LTE FDD Band 4_Channel Bandwidth 20MHz_16QAM _ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3440.0	-44.26	4.62	3.00	9.81	-39.07	-13.00	-26.07	Н
5160.0	-51.50	5.94	3.00	10.86	-46.58	-13.00	-33.58	Н
3440.0	-39.74	4.62	3.00	9.81	-34.55	-13.00	-21.55	V
5160.0	-42.48	5.94	3.00	10.86	-37.56	-13.00	-24.56	V

LTE FDD Band 4 Channel Bandwidth 20MHz 16QAM Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3465.0	-46.42	4.63	3.00	9.84	-41.21	-13.00	-28.21	Н
5197.5	-50.55	5.94	3.00	10.86	-45.63	-13.00	-32.63	Н
3465.0	-39.12	4.63	3.00	9.84	-33.91	-13.00	-20.91	V
5197.5	-42.63	5.94	3.00	10.86	-37.71	-13.00	-24.71	V

LTE FDD Band 4_Channel Bandwidth 20MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
3490.0	-43.45	4.65	3.00	9.9	-38.20	-13.00	-25.20	Н
5235.0	-51.33	5.95	3.00	10.91	-46.37	-13.00	-33.37	Н
3490.0	-37.82	4.65	3.00	9.9	-32.57	-13.00	-19.57	V
5235.0	-43.26	5.95	3.00	10.91	-38.30	-13.00	-25.30	V

LTE FDD Band 5 Channel Bandwidth 1.4MHz QPSK Low Channel

LILIDDD	and o_onan	nci banawia	IGI 1. TIVII 12_	QI OIL LOW	Onamici			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1649.40	-39.61	3.86	3.00	8.56	-34.91	-13.00	-21.91	Н
2474.10	-44.73	4.29	3.00	6.98	-42.04	-13.00	-29.04	Н
1649.40	-34.50	3.86	3.00	8.56	-29.80	-13.00	-16.80	V
2474.10	-39.01	4.29	3.00	6.98	-36.32	-13.00	-23.32	V

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 5_Channel Bandwidth 1.4MHz_QPSK_ Middle Channel G_a Peak Frequency $P_{\text{Mea}} \\$ P_{cl} Limit Margin **EIRP** Polarization Diatance Antenna (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 1673.00 -39.15 -13.00 -21.47 3.9 3.00 8.58 -34.47Н 2509.50 -44.87 4.32 -42.39 -13.00 -29.39 3.00 6.8 Η 1673.00 -36.76 3.9 3.00 8.58 -32.08 -13.00 -19.08 ٧ 4.32 -22.29 ٧ 2509.50 -37.77 3.00 -35.29 -13.00 6.8 LTE FDD Band 5_Channel Bandwidth 1.4MHz_QPSK_ High Channel G_a Peak Frequency Limit Margin P_{Mea} Diatance Antenna **EIRP** Polarization (dB) (MHz) (dBm) (dBm) (dB) Gain(dB) (dBm) 1696.60 -38.24 -13.00 -20.09 3.91 3.00 9.06 -33.09 Η 2544.90 -44.25 4.32 -41.92 -13.00 -28.92 3.00 6.65 Η 1696.60 -33.82 3.91 3.00 9.06 -28.67 -13.00 -15.67 ٧ 2544.90 -22.70 ٧ -38.03 4.32 3.00 6.65 -35.70 -13.00 LTE FDD Band 5 Channel Bandwidth 3MHz QPSK Low Channel

	<u> </u>	=		<u> </u>				
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1651.00	-38.48	3.86	3.00	8.56	-33.78	-13.00	-20.78	Н
2476.50	-45.68	4.29	3.00	6.98	-42.99	-13.00	-29.99	Н
1651.00	-33.35	3.86	3.00	8.56	-28.65	-13.00	-15.65	V
2476.50	-36.90	4.29	3.00	6.98	-34.21	-13.00	-21.21	V

LTE FDD Band 5 Channel Bandwidth 3MHz QPSK Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.00	-39.56	3.9	3.00	8.58	-34.88	-13.00	-21.88	Н
2509.50	-45.39	4.32	3.00	6.8	-42.91	-13.00	-29.91	Н
1673.00	-35.05	3.9	3.00	8.58	-30.37	-13.00	-17.37	V
2509.50	-39.39	4.32	3.00	6.8	-36.91	-13.00	-23.91	V

LTE FDD Band 5_Channel Bandwidth 3MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1695.00	-40.07	3.91	3.00	9.06	-34.92	-13.00	-21.92	Н
2542.50	-47.56	4.32	3.00	6.65	-45.23	-13.00	-32.23	Н
1695.00	-34.67	3.91	3.00	9.06	-29.52	-13.00	-16.52	V
2542.50	-38.93	4.32	3.00	6.65	-36.60	-13.00	-23.60	V

LTE FDD Band 5_Channel Bandwidth 5MHz_QPSK_ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1653.00	-40.37	3.86	3.00	8.56	-35.67	-13.00	-22.67	Н
2479.50	-46.16	4.29	3.00	6.98	-43.47	-13.00	-30.47	Н
1653.00	-36.83	3.86	3.00	8.56	-32.13	-13.00	-19.13	V
2479.50	-38.90	4.29	3.00	6.98	-36.21	-13.00	-23.21	V

LTE FDD Band 5 Channel Bandwidth 5MHz QPSK Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.00	-41.54	3.9	3.00	8.58	-36.86	-13.00	-23.86	Н
2509.50	-44.15	4.32	3.00	6.8	-41.67	-13.00	-28.67	Н
1673.00	-34.21	3.9	3.00	8.58	-29.53	-13.00	-16.53	V
2509.50	-39.06	4.32	3.00	6.8	-36.58	-13.00	-23.58	V

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 5_Channel Bandwidth 5MHz_QPSK_ High Channel Peak G_a Frequency P_{cl} Limit Margin P_{Mea} Polarization Diatance Antenna **EIRP** (MHz) (dB) (dBm) (dBm) (dB) Gain(dB) (dBm) -41.52 1693.00 3.91 3.00 -36.37-13.00 -23.37Н 9.06 2539.50 -45.10 4.32 3.00 6.65 -42.77-13.00 -29.77 Н 1693.00 -33.51 -28.36 -13.00 -15.36 ٧ 3.91 3.00 9.06 ٧ 2539.50 -37.11 4.32 3.00 6.65 -34.78 -13.00 -21.78 LTE FDD Band 5 Channel Bandwidth 10MHz QPSK Low Channel G_{a} Peak Frequency $\mathsf{P}_{\mathsf{Mea}}$ Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 1658.00 -41.12 3.86 3.00 -13.00 -23.42 8.56 -36.42 Η 2487.00 -44.62 4.29 3.00 6.98 -41.93 -13.00-28.93 Η -13.00 1658.00 -36.88 3.86 3.00 8.56 -32.18 -19.18 ٧ 2487.00 -38.97 4.29 3.00 6.98 -36.28 -13.00 -23.28 ٧

I TE EDD Rand 5	Channel Bandwidth	10MHz	OPSK	Middle Channel

	ETE T BB Band O_Ondrinor Bandwath Tollin IE_4T OT_ Interior Ondrinor										
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
1673.00	-40.64	3.9	3.00	8.58	-35.96	-13.00	-22.96	Н			
2509.50	-45.31	4.32	3.00	6.8	-42.83	-13.00	-29.83	Н			
1673.00	-34.89	3.9	3.00	8.58	-30.21	-13.00	-17.21	V			
2509.50	-39.26	4.32	3.00	6.8	-36.78	-13.00	-23.78	V			

LTE FDD Band 5_Channel Bandwidth 10MHz_QPSK_ High Channel

	<u> </u>	=	· · · · · · · · · · · · · · · · · · ·	<u> </u>	0			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1688.00	-39.69	3.91	3.00	9.06	-34.54	-13.00	-21.54	Н
2532.00	-45.81	4.32	3.00	6.65	-43.48	-13.00	-30.48	Н
1688.00	-33.70	3.91	3.00	9.06	-28.55	-13.00	-15.55	V
2532.00	-38.66	4.32	3.00	6.65	-36.33	-13.00	-23.33	V

LTE FDD Band 5 Channel Bandwidth 1.4MHz 16QAM Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1649.40	-41.49	3.86	3.00	8.56	-36.79	-13.00	-23.79	Н
2474.10	-47.94	4.29	3.00	6.98	-45.25	-13.00	-32.25	Н
1649.40	-37.15	3.86	3.00	8.56	-32.45	-13.00	-19.45	V
2474.10	-42.96	4.29	3.00	6.98	-40.27	-13.00	-27.27	V

LTE FDD Band 5 Channel Bandwidth 1.4MHz 16QAM Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.00	-43.10	3.9	3.00	8.58	-38.42	-13.00	-25.42	Н
2509.50	-49.50	4.32	3.00	6.8	-47.02	-13.00	-34.02	Н
1673.00	-37.83	3.9	3.00	8.58	-33.15	-13.00	-20.15	V
2509.50	-41.82	4.32	3.00	6.8	-39.34	-13.00	-26.34	V

LTE FDD Band 5 Channel Bandwidth 1.4MHz 16QAM High Channel

LILIDDD	ETET DD Bana o_onaimer Banawatti 1:4witiz_10@Alvi _ High onaimer										
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
1696.60	-42.28	3.91	3.00	9.06	-37.13	-13.00	-24.13	Н			
2544.90	-49.66	4.32	3.00	6.65	-47.33	-13.00	-34.33	Н			
1696.60	-37.28	3.91	3.00	9.06	-32.13	-13.00	-19.13	V			
2544.90	-40.61	4.32	3.00	6.65	-38.28	-13.00	-25.28	V			

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 5_Channel Bandwidth 3MHz_16QAM _ Low Channel G_a Peak Frequency $P_{\text{Mea}} \\$ P_{cl} Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) (dBm) Gain(dB) 1651.00 -41.60 3.86 3.00 -36.90 -13.00 -23.90 Н 8.56 2476.50 -48.18 4.29 3.00 6.98 -45.49 -13.00 -32.49Н 1651.00 -38.42 -33.72 -13.00 -20.72 ٧ 3.86 3.00 8.56 2476.50 -41.90 4.29 3.00 6.98 -39.21 -13.00 -26.21 ٧ LTE FDD Band 5 Channel Bandwidth 3MHz 16QAM Middle Channel G_{a} Peak Frequency P_{cl} Limit Margin $\mathsf{P}_{\mathsf{Mea}}$ **EIRP** Polarization Diatance Antenna (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 1673.00 -44.15 -13.00 -26.47 3.9 3.00 8.58 -39.47 Η 2509.50 -47.534.32 -45.05 -13.00 -32.053.00 6.8 Η 1673.00 -38.01 3.9 3.00 8.58 -33.33 -13.00 -20.33 ٧ -40.31 ٧ 2509.50 4.32 3.00 -37.83 -13.00 -24.83 6.8 LTE FDD Band 5 Channel Bandwidth 3MHz 16QAM High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization				
1695.00	-44.06	3.91	3.00	9.06	-38.91	-13.00	-25.91	Н				
2542.50	-49.23	4.32	3.00	6.65	-46.90	-13.00	-33.90	Н				
1695.00	-36.34	3.91	3.00	9.06	-31.19	-13.00	-18.19	V				
2542.50	-40.36	4.32	3.00	6.65	-38.03	-13.00	-25.03	V				

LTE FDD Band 5_Channel Bandwidth 5MHz_16QAM _ Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1653.00	-43.71	3.86	3.00	8.56	-39.01	-13.00	-26.01	Н
2479.50	-47.94	4.29	3.00	6.98	-45.25	-13.00	-32.25	Н
1653.00	-38.98	3.86	3.00	8.56	-34.28	-13.00	-21.28	V
2479.50	-39.10	4.29	3.00	6.98	-36.41	-13.00	-23.41	V

LTE FDD Band 5 Channel Bandwidth 5MHz 16QAM Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1673.00	-42.93	3.9	3.00	8.58	-38.25	-13.00	-25.25	Н
2509.50	-49.71	4.32	3.00	6.8	-47.23	-13.00	-34.23	Н
1673.00	-37.24	3.9	3.00	8.58	-32.56	-13.00	-19.56	V
2509.50	-39.04	4.32	3.00	6.8	-36.56	-13.00	-23.56	V

LTE FDD Band 5_Channel Bandwidth 5MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1693.00	-42.77	3.91	3.00	9.06	-37.62	-13.00	-24.62	Н
2539.50	-46.46	4.32	3.00	6.65	-44.13	-13.00	-31.13	Н
1693.00	-40.00	3.91	3.00	9.06	-34.85	-13.00	-21.85	V
2539.50	-40.36	4.32	3.00	6.65	-38.03	-13.00	-25.03	V

LTE FDD Band 5 Channel Bandwidth 10MHz 16QAM Low Channel

ETET BB Band 0_Chainner Bandwidth Telwinz_Tody iwi_ Eaw Chainner											
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
1658.00	-41.22	3.86	3.00	8.56	-36.52	-13.00	-23.52	Н			
2487.00	-46.78	4.29	3.00	6.98	-44.09	-13.00	-31.09	Н			
1658.00	-37.10	3.86	3.00	8.56	-32.40	-13.00	-19.40	V			
2487.00	-39.82	4.29	3.00	6.98	-37.13	-13.00	-24.13	V			

			SLABORATOR	<u>Y LTD. </u>	C ID: 2ADTE-		eport No.: LC	S181130008AE
	and 5_Crian	riei bariuwio		G _a	Peak	<i>I</i>		1
Frequency	P_{Mea}	P_{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarizatio
(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	Folarizatio
4070.00	44.05	2.0	2.00	` '		42.00	00.57	- 11
1673.00	-44.25	3.9	3.00	8.58	-39.57	-13.00	-26.57	Н
2509.50	-46.74	4.32	3.00	6.8	-44.26	-13.00	-31.26	Н
1673.00	-36.77	3.9	3.00	8.58	-32.09	-13.00	-19.09	V
2509.50	-39.45	4.32	3.00	6.8	-36.97	-13.00	-23.97	V
LTE FDD Ba	and 5_Chan	nel Bandwid	dth 10MHz_1	6QAM_ Hig	h Channel			
requency	P_{Mea}	P _{cl}		G_a	Peak	Limit	Margin	
(MHz)			Diatance	Antenna	EIRP			Polarization
(IVITZ)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
1688.00	-42.28	3.91	3.00	9.06	-37.13	-13.00	-24.13	Н
2532.00	-46.43	4.32	3.00	6.65	-44.10	-13.00	-31.10	Н
1688.00	-37.91	3.91	3.00	9.06	-32.76	-13.00	-19.76	V
2532.00	-40.35	4.32	3.00	6.65	-38.02	-13.00	-25.02	V
	0		= 1.11.1 0	5014 1 0		1	•	1
			atn 5MHz_Q 	PSK_ Low C G _a	<i>hannel</i> Peak			
requency	P_{Mea}	P _{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatance			(dBm)	(dB)	Folalization
E00E 0	20.04	5.00	2.00	Gain(dB)	(dBm)	42.00	04.40	- 11
5005.0	-39.01	5.88	3.00	10.77	-34.12	-13.00	-21.12	H
7507.5	-44.36	7.12	3.00	12.26	-39.22	-13.00	-26.22	Н
5005.0	-35.85	5.88	3.00	10.77	-30.96	-13.00	-17.96	V
7507.5	-36.97	7.12	3.00	12.26	-31.83	-13.00	-18.83	V
LTE FDD Ba	and 7 Chan	nel Bandwid	dth 5MHz Q	PSK_ Middle	Channel			
				Ga	Peak			
Frequency	D					1 ' '4		
/ B # I I \	P _{Mea}	P _{cl}	Diatance			Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	Limit (dBm)	Margin (dB)	Polarization
` ′	(dBm)	(dB)		Antenna Gain(dB)	EIRP (dBm)	(dBm)	(dB)	
5070.0	(dBm) -41.52	(dB) 5.9	3.00	Antenna Gain(dB) 10.81	EIRP (dBm) -36.61	(dBm) -13.00	(dB) -23.61	Н
5070.0 7605.0	(dBm) -41.52 -46.02	(dB) 5.9 7.19	3.00 3.00	Antenna Gain(dB) 10.81 12.32	EIRP (dBm) -36.61 -40.89	(dBm) -13.00 -13.00	(dB) -23.61 -27.89	H
5070.0 7605.0 5070.0	(dBm) -41.52 -46.02 -35.64	(dB) 5.9 7.19 5.9	3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81	EIRP (dBm) -36.61 -40.89 -30.73	(dBm) -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73	H H V
5070.0 7605.0	(dBm) -41.52 -46.02	(dB) 5.9 7.19	3.00 3.00	Antenna Gain(dB) 10.81 12.32	EIRP (dBm) -36.61 -40.89	(dBm) -13.00 -13.00	(dB) -23.61 -27.89	H
5070.0 7605.0 5070.0 7605.0	-41.52 -46.02 -35.64 -37.62	5.9 7.19 5.9 7.19	3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C	EIRP (dBm) -36.61 -40.89 -30.73 -32.49	(dBm) -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73	H H V
5070.0 7605.0 5070.0 7605.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan	(dB) 5.9 7.19 5.9 7.19	3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak	(dBm) -13.00 -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49	H H V
5070.0 7605.0 5070.0 7605.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan	(dB) 5.9 7.19 5.9 7.19 7.19 nel Bandwid Pcl	3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C	EIRP (dBm) -36.61 -40.89 -30.73 -32.49	(dBm) -13.00 -13.00 -13.00 -13.00 -Limit	(dB) -23.61 -27.89 -17.73 -19.49 Margin	H H V V
5070.0 7605.0 5070.0 7605.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan	(dB) 5.9 7.19 5.9 7.19	3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak	(dBm) -13.00 -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49	H H V V
5070.0 7605.0 5070.0 7605.0 7605.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan	(dB) 5.9 7.19 5.9 7.19 7.19 nel Bandwid Pcl	3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB)	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm)	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm)	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB)	H H V V
5070.0 7605.0 5070.0 7605.0 -TE FDD Barrequency (MHz) 5135.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92	(dB) 5.9 7.19 5.9 7.19 nel Bandwid Pcl (dB) 5.94	3.00 3.00 3.00 3.00 3.00 dth 5MHz_Q Diatance	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00	H H V V V Polarizatio
5070.0 7605.0 5070.0 7605.0 -TE FDD Barrequency (MHz) 5135.0 7702.5	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29	(dB) 5.9 7.19 5.9 7.19 nel Bandwid Pcl (dB) 5.94 7.25	3.00 3.00 3.00 3.00 3.00 bith 5MHz_Q Diatance 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56	H H V V V Polarization
5070.0 7605.0 5070.0 7605.0 -TE FDD Barrequency (MHz) 5135.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92	(dB) 5.9 7.19 5.9 7.19 nel Bandwid Pcl (dB) 5.94	3.00 3.00 3.00 3.00 3.00 dth 5MHz_Q Diatance	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00	H H V V V Polarizatio
5070.0 7605.0 5070.0 7605.0 7605.0 2TE FDD Ba Frequency (MHz) 5135.0 7702.5 5135.0 7702.5	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01	(dB) 5.9 7.19 5.9 7.19 nel Bandwid (dB) 5.94 7.25 5.94 7.25	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93	H H V V Polarization H H V V
5070.0 7605.0 5070.0 7605.0 LTE FDD Barrequency (MHz) 5135.0 7702.5 5135.0 7702.5	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01 and 7_Chan	(dB) 5.9 7.19 5.9 7.19 nel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 nel Bandwid	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93 -20.28	Polarization H
5070.0 7605.0 5070.0 7605.0 2TE FDD Barrequency (MHz) 5135.0 7702.5 5135.0 7702.5	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01	(dB) 5.9 7.19 5.9 7.19 nel Bandwid (dB) 5.94 7.25 5.94 7.25	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low C Ga	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93	H H V V V Polarization
5070.0 7605.0 5070.0 7605.0 TE FDD Barrequency (MHz) 5135.0 7702.5 5135.0 7702.5	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01 and 7_Chan	(dB) 5.9 7.19 5.9 7.19 nel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 nel Bandwid	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low C Ga Antenna	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak EIRP	(dBm) -13.00 -13.00 -13.00 -13.00 Limit (dBm) -13.00 -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93 -20.28	H H V V V Polarization
5070.0 7605.0 5070.0 7605.0 TE FDD Barrequency (MHz) 5135.0 7702.5 5135.0 7702.5	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01 P _{Mea} (dBm)	(dB) 5.9 7.19 5.9 7.19 nel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mel Bandwid Pcl (dB)	3.00 3.00 3.00 3.00 3.00 Diatance 3.00 3.00 3.00 3.00 3.00 Diatance	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low C Ga Antenna Gain(dB)	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak EIRP (dBm)	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93 -20.28 Margin (dB)	H H V V V Polarization
5070.0 7605.0 5070.0 7605.0 TE FDD Barrequency (MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Barrequency (MHz) 5010.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01 P _{Mea} (dBm) -40.48	(dB) 5.9 7.19 5.9 7.19 nel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 nel Bandwid Pcl (dB) 5.88	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low C Ga Antenna Gain(dB) 10.77	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak EIRP (dBm) -35.59	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93 -20.28 Margin (dB)	H H V V V Polarization H H H V V V
5070.0 7605.0 5070.0 7605.0 7605.0 TE FDD Bateries (MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Bateries (MHz) 5010.0 7515.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01 P _{Mea} (dBm) -40.48 -47.06	(dB) 5.9 7.19 5.9 7.19 nel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 nel Bandwid Pcl (dB) 5.88 7.12	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low C Ga Antenna Gain(dB) 10.77 12.26	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak EIRP (dBm) -35.59 -41.92	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93 -20.28 Margin (dB) -22.59 -28.92	H H V V V Polarization H H H H H H H H H H H H H H H H H H H
5070.0 7605.0 5070.0 7605.0 7605.0 TE FDD Barrequency (MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Barrequency (MHz) 5010.0 7515.0 5010.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01 P _{Mea} (dBm) -40.48 -47.06 -34.15	(dB) 5.9 7.19 5.9 7.19 nel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 nel Bandwid Pcl (dB) 5.88 7.12 5.88	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low C Ga Antenna Gain(dB) 10.77 12.26 10.77	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak EIRP (dBm) -35.59 -41.92 -29.26	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93 -20.28 Margin (dB) -22.59 -28.92 -16.26	Polarization H H V V V Polarization H H H V V V
5070.0 7605.0 5070.0 7605.0 7605.0 TE FDD Barrequency (MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Barrequency (MHz) 5010.0 7515.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01 P _{Mea} (dBm) -40.48 -47.06	(dB) 5.9 7.19 5.9 7.19 nel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 nel Bandwid Pcl (dB) 5.88 7.12	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low C Ga Antenna Gain(dB) 10.77 12.26	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak EIRP (dBm) -35.59 -41.92	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93 -20.28 Margin (dB) -22.59 -28.92	H H V V V Polarization H H H H H H H H H H H H H H H H H H H
5070.0 7605.0 5070.0 7605.0 7605.0 2005.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01 P _{Mea} (dBm) -40.48 -47.06 -34.15 -37.44	(dB) 5.9 7.19 5.9 7.19 Pcl (dB) 5.94 7.25 5.94 7.25 Pcl (dB) 7.25 5.94 7.25 5.88 7.12 5.88 7.12	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 10.86 12.98 10.77 12.26 QPSK_ Middi	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak EIRP (dBm) -35.59 -41.92 -29.26 -32.30	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93 -20.28 Margin (dB) -22.59 -28.92 -16.26	H H V V V Polarization H H H V V V
5070.0 7605.0 5070.0 7605.0 7605.0 TE FDD Barrequency (MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Barrequency (MHz) 5010.0 7515.0 5010.0 7515.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01 and 7_Chan P _{Mea} (dBm) -40.48 -47.06 -34.15 -37.44 and 7_Chan	(dB) 5.9 7.19 5.9 7.19 nel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 Pcl (dB) 5.88 7.12 5.88 7.12 nel Bandwid	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 10.86 12.98 QPSK_ Low C Ga Antenna Gain(dB) 10.77 12.26 10.77 12.26 QPSK_ Middi Ga	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak EIRP (dBm) -35.59 -41.92 -29.26 -32.30 The Channel Peak EIRP (dBm) -35.59 -41.92 -29.26 -32.30	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93 -20.28 Margin (dB) -22.59 -28.92 -16.26 -19.30	H H V V V Polarization H H H V V V
5070.0 7605.0 5070.0 7605.0 7605.0 7605.0 TE FDD Barrequency (MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Barrequency (MHz) 5010.0 7515.0 5010.0 7515.0 TE FDD Barrequency	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01 and 7_Chan P _{Mea} (dBm) -40.48 -47.06 -34.15 -37.44 P _{Mea}	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mel Bandwid Pcl (dB) 5.88 7.12 5.88 7.12 mel Bandwid Pcl	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 10.86 12.98 10.77 12.26 QPSK_ Middi	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak EIRP (dBm) -35.59 -41.92 -29.26 -32.30	(dBm) -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93 -20.28 Margin (dB) -22.59 -28.92 -16.26 -19.30 Margin	H H V V V Polarization H H H V V V
5070.0 7605.0 5070.0 7605.0 7605.0 TE FDD Barrequency (MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Barrequency (MHz) 5010.0 7515.0 5010.0 7515.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01 and 7_Chan P _{Mea} (dBm) -40.48 -47.06 -34.15 -37.44 and 7_Chan	(dB) 5.9 7.19 5.9 7.19 nel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 Pcl (dB) 5.88 7.12 5.88 7.12 nel Bandwid	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 10.86 12.98 QPSK_ Low C Ga Antenna Gain(dB) 10.77 12.26 10.77 12.26 QPSK_ Middi Ga	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak EIRP (dBm) -35.59 -41.92 -29.26 -32.30 The Channel Peak EIRP (dBm) -35.59 -41.92 -29.26 -32.30	(dBm) -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00 -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93 -20.28 Margin (dB) -22.59 -28.92 -16.26 -19.30	H H V V V Polarization H H H V V V
5070.0 7605.0 5070.0 7605.0 7605.0 7605.0 TE FDD Barrequency (MHz) 5135.0 7702.5 5135.0 7702.5 TE FDD Barrequency (MHz) 5010.0 7515.0 5010.0 7515.0	(dBm) -41.52 -46.02 -35.64 -37.62 and 7_Chan P _{Mea} (dBm) -38.92 -45.29 -33.85 -39.01 and 7_Chan P _{Mea} (dBm) -40.48 -47.06 -34.15 -37.44 P _{Mea}	(dB) 5.9 7.19 5.9 7.19 mel Bandwid Pcl (dB) 5.94 7.25 5.94 7.25 mel Bandwid Pcl (dB) 5.88 7.12 5.88 7.12 mel Bandwid Pcl	3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	Antenna Gain(dB) 10.81 12.32 10.81 12.32 PSK_ High C Ga Antenna Gain(dB) 10.86 12.98 10.86 12.98 QPSK_ Low C Ga Antenna Gain(dB) 10.77 12.26 10.77 12.26 QPSK_ Middi Ga Antenna	EIRP (dBm) -36.61 -40.89 -30.73 -32.49 Channel Peak EIRP (dBm) -34.00 -39.56 -28.93 -33.28 Channel Peak EIRP (dBm) -35.59 -41.92 -29.26 -32.30 The Channel Peak EIRP	(dBm) -13.00	(dB) -23.61 -27.89 -17.73 -19.49 Margin (dB) -21.00 -26.56 -15.93 -20.28 Margin (dB) -22.59 -28.92 -16.26 -19.30 Margin	H H V V V Polarization H H H V V V

10.81

12.32

5070.0

7605.0

-33.37

-37.73

5.9

7.19

3.00

3.00

-13.00

-13.00

-15.46

-19.60

٧

-28.46

-32.60

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 7_Channel Bandwidth 10MHz_QPSK_ High Channel Peak Frequency P_{cl} Limit Margin P_{Mea} Polarization Diatance Antenna **EIRP** (MHz) (dB) (dBm) (dBm) (dB) (dBm) Gain(dB) -41.53 5130.0 5.94 3.00 10.86 -13.00 -23.61 Н -36.61 7695.0 -47.97 7.25 3.00 12.98 -42.24-13.00 -29.24 Н -35.47 -13.00 -17.55 ٧ 5130.0 5.94 3.00 10.86 -30.55 7695.0 -37.72 7.25 3.00 12.98 -31.99 -13.00 -18.99 ٧ LTE FDD Band 7 Channel Bandwidth 15MHz QPSK Low Channel G_{a} Peak Frequency $\mathsf{P}_{\mathsf{Mea}}$ P_{cl} Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 5015.0 -39.78 5.88 3.00 -13.00 -21.89 10.77 -34.89 Η 7522.5 -44.237.12 3.00 12.26 -39.09 -13.00-26.09 Η -35.79 -17.90 5015.0 5.88 3.00 10.77 -30.90 -13.00 ٧ 7522.5 -38.73 7.12 3.00 12.26 -13.00 -20.59 ٧ -33.59 LTE FDD Band 7_Channel Bandwidth 15MHz_QPSK_ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5070.0	-38.93	5.9	3.00	10.81	-34.02	-13.00	-21.02	Н
7605.0	-47.44	7.19	3.00	12.32	-42.31	-13.00	-29.31	Н
5070.0	-33.58	5.9	3.00	10.81	-28.67	-13.00	-15.67	V
7605.0	-36.12	7.19	3.00	12.32	-30.99	-13.00	-17.99	V

LTE FDD Band 7_Channel Bandwidth 15MHz_QPSK_ High Channel

	2.2.2.2 2anaonamo: 2anamaan .onm.2_x. o ng onamo:											
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization				
5125.0	-40.15	5.94	3.00	10.86	-35.23	-13.00	-22.23	Н				
7687.5	-44.54	7.25	3.00	12.98	-38.81	-13.00	-25.81	Н				
5125.0	-35.61	5.94	3.00	10.86	-30.69	-13.00	-17.69	V				
7687.5	-36.61	7.25	3.00	12.98	-30.88	-13.00	-17.88	V				

LTE FDD Band 7 Channel Bandwidth 20MHz QPSK Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5020.0	-39.86	5.88	3.00	10.77	-34.97	-13.00	-21.97	Н
7530.0	-45.97	7.12	3.00	12.26	-40.83	-13.00	-27.83	Н
5020.0	-33.03	5.88	3.00	10.77	-28.14	-13.00	-15.14	V
7530.0	-37.38	7.12	3.00	12.26	-32.24	-13.00	-19.24	V

LTE FDD Band 7 Channel Bandwidth 20MHz QPSK Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5070.0	-38.81	5.9	3.00	10.81	-33.90	-13.00	-20.90	Н
7605.0	-45.88	7.19	3.00	12.32	-40.75	-13.00	-27.75	Н
5070.0	-36.77	5.9	3.00	10.81	-31.86	-13.00	-18.86	V
7605.0	-39.21	7.19	3.00	12.32	-34.08	-13.00	-21.08	V

LTE FDD 7 Channel Bandwidth 20MHz QPSK High Channel

ETET DD T_Ghanner Bandwath Zolvin IZ_QT GT_Tright Ghanner										
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization		
5120.0	-38.11	5.94	3.00	10.86	-33.19	-13.00	-20.19	Н		
7680.0	-47.42	7.25	3.00	12.98	-41.69	-13.00	-28.69	Н		
5120.0	-36.58	5.94	3.00	10.86	-31.66	-13.00	-18.66	V		
7680.0	-39.05	7.25	3.00	12.98	-33.32	-13.00	-20.32	V		

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 7_Channel Bandwidth 5MHz_16QAM _ Low Channel G_a Peak Frequency $P_{\text{Mea}} \\$ P_{cl} Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dB) (dBm) (dBm) (dB) (dBm) Gain(dB) -42.25 5005.0 5.88 3.00 10.77 -37.36 -13.00 -24.36 Н 7507.5 -46.51 7.12 3.00 12.26 -41.37 -13.00 -28.37 Н 5005.0 -37.80 5.88 10.77 -13.00 -19.91 ٧ 3.00 -32.917507.5 -41.37 7.12 3.00 12.26 -36.23 -13.00 -23.23 ٧ LTE FDD Band 7 Channel Bandwidth 5MHz 16QAM Middle Channel G_{a} Peak Frequency $\mathsf{P}_{\mathsf{Mea}}$ P_{cl} Limit Margin **EIRP** Polarization Diatance Antenna (dB) (dBm) (MHz) (dBm) (dB) Gain(dB) (dBm) 5070.0 -43.68 5.9 -13.00 -25.77 3.00 10.81 -38.77 Η 7605.0 -47.507.19 3.00 12.32 -42.37-13.00 -29.37 Η 5070.0 -39.96 5.9 3.00 10.81 -35.05 -13.00 -22.05 V -40.37 7.19 12.32 -22.24 ٧ 7605.0 3.00 -35.24 -13.00 LTE FDD Band 7 Channel Bandwidth 5MHz 16QAM High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
5135.0	-44.53	5.94	3.00	10.86	-39.61	-13.00	-26.61	Н			
7702.5	-48.28	7.25	3.00	12.98	-42.55	-13.00	-29.55	Н			
5135.0	-38.20	5.94	3.00	10.86	-33.28	-13.00	-20.28	V			
7702.5	-41.48	7.25	3.00	12.98	-35.75	-13.00	-22.75	V			

LTE FDD Band 7 Channel Bandwidth 10MHz 16QAM Low Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5010.0	-44.66	5.88	3.00	10.77	-39.77	-13.00	-26.77	Н
7515.0	-46.42	7.12	3.00	12.26	-41.28	-13.00	-28.28	Н
5010.0	-38.38	5.88	3.00	10.77	-33.49	-13.00	-20.49	V
7515.0	-42.07	7.12	3.00	12.26	-36.93	-13.00	-23.93	V

LTE FDD Band 7 Channel Bandwidth 10MHz 16QAM Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5070.0	-42.39	5.9	3.00	10.81	-37.48	-13.00	-24.48	Н
7605.0	-49.30	7.19	3.00	12.32	-44.17	-13.00	-31.17	Н
5070.0	-37.73	5.9	3.00	10.81	-32.82	-13.00	-19.82	V
7605.0	-40.12	7.19	3.00	12.32	-34.99	-13.00	-21.99	V

LTE FDD Band 7_Channel Bandwidth 10MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
5130.0	-42.62	5.94	3.00	10.86	-37.70	-13.00	-24.70	Н
7695.0	-46.29	7.25	3.00	12.98	-40.56	-13.00	-27.56	Н
5130.0	-36.79	5.94	3.00	10.86	-31.87	-13.00	-18.87	V
7695.0	-39.10	7.25	3.00	12.98	-33.37	-13.00	-20.37	V

LTE FDD Band 7 Channel Bandwidth 15MHz 16QAM Low Channel

LILIDDD	ETET DD Band T_Gnammer Bandwidth Tolkinz_Tolkin_ Eow Gnammer										
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization			
5015.0	-44.89	5.88	3.00	10.77	-40.00	-13.00	-27.00	Н			
7522.5	-46.25	7.12	3.00	12.26	-41.11	-13.00	-28.11	Н			
5015.0	-37.86	5.88	3.00	10.77	-32.97	-13.00	-19.97	V			
7522.5	-40.99	7.12	3.00	12.26	-35.85	-13.00	-22.85	V			

SHENZHEN L				YLTD. FC 16QAM_ Mic	C ID: 2ADTE-		Report No.: LC	S181130008AEG
LIE FUU Da	and /_Chan	nei bariuwio	1011 131VIMZ_ 1		Peak		1	
Frequency	P_{Mea}	P_{cl}	Diatance	G _a Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatance			(dBm)	(dB)	Polarization
5070.0	44.00	<u> </u>	2.00	Gain(dB)	(dBm)	40.00	00.44	11
5070.0	-44.32	5.9	3.00	10.81	-39.41	-13.00	-26.41	Н
7605.0	-48.92	7.19	3.00	12.32	-43.79	-13.00	-30.79	Н
5070.0	-39.22	5.9	3.00	10.81	-34.31	-13.00	-21.31	V
7605.0	-39.77	7.19	3.00	12.32	-34.64	-13.00	-21.64	V
LTE FDD B	and 7_Chan	nel Bandwic	th 15MHz_1	16QAM_ Hig				
Frequency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
` '	, ,	` '	0.00	Gain(dB)	(dBm)		` ′	
5125.0	-44.06	5.94	3.00	10.86	-39.14	-13.00	-26.14	H
7687.5	-46.95	7.25	3.00	12.98	-41.22	-13.00	-28.22	Н
5125.0	-38.36	5.94	3.00	10.86	-33.44	-13.00	-20.44	V
7687.5	-42.02	7.25	3.00	12.98	-36.29	-13.00	-23.29	V
LTE FDD Ba	and 7_Chan	nel Bandwid	th 20MHz_1	16QAM_Lov	v Channel			
			_	Ga	Peak	1 ! ! 4	N 4 a marina	
Frequency	P _{Mea}	P ^{cl}	Diatance	Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)		Gain(dB)	(dBm)	(dBm)	(dB)	
5020.0	-43.48	5.88	3.00	10.77	-38.59	-13.00	-25.59	Н
7530.0	-47.60	7.12	3.00	12.26	-42.46	-13.00	-29.46	Н
5020.0	-39.35	5.88	3.00	10.77	-34.46	-13.00	-21.46	V
7530.0	-39.84	7.12	3.00	12.26	-34.70	-13.00	-21.70	V
. TE EDD D				100 444 44		,		
LIE FUU Ba	ana /_Cnan	nei Banawio	ith 20MHZ_1	16QAM_ Mid		1		T
Frequency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
,	` ,	` ′	0.00	Gain(dB)	(dBm)		` ′	
5070.0	-44.14	5.9	3.00	10.81	-39.23	-13.00	-26.23	Н
7605.0	-46.81	7.19	3.00	12.32	-41.68	-13.00	-28.68	Н
5070.0	-37.47	5.9	3.00	10.81	-32.56	-13.00	-19.56	V
7605.0	-41.75	7.19	3.00	12.32	-36.62	-13.00	-23.62	V
LTE FDD Ba	and 7_Chan	nel Bandwic	dth 20MHz_1	16QAM_ Hig	h Channel			
Frequency	P_{Mea}	P_{cl}		Ga	Peak	Limit	Margin	
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
(1711-12)	(ubiii)	(ub)		Gain(dB)	(dBm)	(ubiii)	(ub)	
5120.0	-42.86	5.94	3.00	10.86	-37.94	-13.00	-24.94	Н
7680.0	-46.08	7.25	3.00	12.98	-40.35	-13.00	-27.35	Н
5120.0	-37.36	5.94	3.00	10.86	-32.44	-13.00	-19.44	V
7680.0	-42.66	7.25	3.00	12.98	-36.93	-13.00	-23.93	V
I TE ENN P	and 17 Cha	nnal Pandu	idth 5MUz (QPSK_ Low (Channal			
LILIDD D	and 17_Chai	illei balluw	 		Peak			
Frequency	P_{Mea}	P_{cl}	Diatance	G _a Antenna	EIRP	Limit	Margin	Polarization
(MHz)	(dBm)	(dB)	Diatarice	Gain(dB)	(dBm)	(dBm)	(dB)	Folarization
1412.0	20.47	3.72	3.00	9.04		12.00	20.05	ш
1413.0	-39.17				-33.85	-13.00	-20.85	H
2118.9	-45.45	4.23	3.00	8.6	-41.08	-13.00	-28.08	Н
1413.0	-33.06	3.72	3.00	9.04	-27.74	-13.00	-14.74	V
2118.9	-38.99	4.23	3.00	8.6	-34.62	-13.00	-21.62	V
LTE FDD B	and 17_Cha	nnel Bandw	idth 5MHz_0	QPSK_ Middl			1	T
Frequency	P_{Mea}	P_{cl}	D:	G_a	Peak	Limit	Margin	D.1
(MHz)	(dBm)	(dB)	Diatance	Antenna	EIRP	(dBm)	(dB)	Polarization
` ,	` ,	. ,		Gain(dB)	(dBm)	. ,	` ′	
1420.0	-40.72	4.78	3.00	8.91	-36.59	-13.00	-23.59	Н
0400 0	-45.70	4.25	3.00	8.26	-41.69	-13.00	-28.69	Н
2130.0	10.70	7.20	0.00	0.20	11.00	10.00	20.00	
1420.0 2130.0	-36.72	4.78 4.25	3.00	8.91 8.26	-32.59	-13.00	-19.59	V

8.26

-34.69

-13.00

-21.69

٧

3.00

2130.0

-38.70

4.25

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG LTE FDD Band 17_Channel Bandwidth 5MHz_QPSK_ High Channel Peak Frequency P_{cl} Limit Margin $\mathsf{P}_{\mathsf{Mea}}$ Polarization Diatance Antenna **EIRP** (MHz) (dB) (dBm) (dBm) (dB) Gain(dB) (dBm) 1427.0 -40.33 4.78 3.00 -36.20 -13.00 -23.20 Н 8.91 2140.5 -46.71 4.25 3.00 8.26 -42.70-13.00 -29.70 Н 1427.0 -35.24 4.78 -13.00 -18.11 ٧ 3.00 8.91 -31.11 ٧ 2140.5 -36.70 4.25 3.00 8.26 -32.69 -13.00 -19.69 LTE FDD Band 17_Channel Bandwidth 10MHz_QPSK_ Low Channel G_a Peak Frequency $\mathsf{P}_{\mathsf{Mea}}$ Limit Margin Polarization Diatance Antenna **EIRP** (MHz) (dBm) (dB) (dBm) (dB) Gain(dB) (dBm) 1418.0 -41.55 3.72 3.00 -13.00 -23.23 9.04 -36.23 Η 2127.0 -46.784.23 3.00 8.6 -42.41-13.00-29.41 Η 1418.0 -33.45 -13.00 3.72 3.00 9.04 -28.13 -15.13 2127.0 -37.15 4.23 3.00 8.6 -13.00 -19.78 ٧ -32.78

LTE FDD Band 17 Channel Bandwidth 1	10MHz Q	PSK Mi	iddle Channel
-------------------------------------	---------	--------	---------------

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1420.0	-40.98	4.78	3.00	8.91	-36.85	-13.00	-23.85	Н
2130.0	-46.66	4.25	3.00	8.26	-42.65	-13.00	-29.65	Н
1420.0	-33.54	4.78	3.00	8.91	-29.41	-13.00	-16.41	V
2130.0	-36.74	4.25	3.00	8.26	-32.73	-13.00	-19.73	V

LTE FDD Band 17_Channel Bandwidth 10MHz_QPSK_ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1422.0	-38.39	4.78	3.00	8.91	-34.26	-13.00	-21.26	Н
2133.0	-47.05	4.25	3.00	8.26	-43.04	-13.00	-30.04	Н
1422.0	-33.07	4.78	3.00	8.91	-28.94	-13.00	-15.94	V
2133.0	-37.66	4.25	3.00	8.26	-33.65	-13.00	-20.65	V

LTE FDD Band 17 Channel Bandwidth 5MHz 16QAM Low Channel

F	requency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
	1413.0	-41.08	3.72	3.00	9.04	-35.76	-13.00	-22.76	Н
	2118.9	-47.97	4.23	3.00	8.6	-43.60	-13.00	-30.60	Н
	1413.0	-33.88	3.72	3.00	9.04	-28.56	-13.00	-15.56	V
	2118.9	-38.95	4.23	3.00	8.6	-34.58	-13.00	-21.58	V

LTE FDD Band 17 Channel Bandwidth 5MHz 16QAM Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1420.0	-38.27	4.78	3.00	8.91	-34.14	-13.00	-21.14	Н
2130.0	-45.51	4.25	3.00	8.26	-41.50	-13.00	-28.50	Н
1420.0	-36.53	4.78	3.00	8.91	-32.40	-13.00	-19.40	V
2130.0	-36.88	4.25	3.00	8.26	-32.87	-13.00	-19.87	V

LTE FDD Band 17 Channel Bandwidth 5MHz 16QAM High Channel

LILIDDD	and m_ona	Title Dariaw	Iddi Olvii 12_ i	DQAINI _ I IIG	ii Onamici			
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1427.0	-40.85	4.78	3.00	8.91	-36.72	-13.00	-23.72	Н
2140.5	-47.58	4.25	3.00	8.26	-43.57	-13.00	-30.57	Н
1427.0	-36.24	4.78	3.00	8.91	-32.11	-13.00	-19.11	V
2140.5	-36.11	4.25	3.00	8.26	-32.10	-13.00	-19.10	V

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG

LTE FDD Band 17_Channel Bandwidth 10MHz_16QAM _ Low Channel

			· · · · · · · · · · · · · · · · · · ·					
Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1418.0	-38.96	3.72	3.00	9.04	-33.64	-13.00	-20.64	Н
2127.0	-45.35	4.23	3.00	8.6	-40.98	-13.00	-27.98	Н
1418.0	-35.40	3.72	3.00	9.04	-30.08	-13.00	-17.08	V
2127.0	-36.27	4.23	3.00	8.6	-31.90	-13.00	-18.90	V

LTE FDD Band 17_Channel Bandwidth 10MHz_16QAM _ Middle Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1420.0	-41.63	4.78	3.00	8.91	-37.50	-13.00	-24.50	Н
2130.0	-46.63	4.25	3.00	8.26	-42.62	-13.00	-29.62	Н
1420.0	-35.71	4.78	3.00	8.91	-31.58	-13.00	-18.58	V
2130.0	-37.88	4.25	3.00	8.26	-33.87	-13.00	-20.87	V

LTE FDD Band 17_Channel Bandwidth 10MHz_16QAM _ High Channel

Frequency (MHz)	P _{Mea} (dBm)	P _{cl} (dB)	Diatance	G _a Antenna Gain(dB)	Peak EIRP (dBm)	Limit (dBm)	Margin (dB)	Polarization
1427.0	-41.11	4.78	3.00	8.91	-36.98	-13.00	-23.98	Н
2140.5	-46.93	4.25	3.00	8.26	-42.92	-13.00	-29.92	Н
1427.0	-34.83	4.78	3.00	8.91	-30.70	-13.00	-17.70	V
2140.5	-37.46	4.25	3.00	8.26	-33.45	-13.00	-20.45	V

4.7 Frequency Stability under Temperature & Voltage Variations

LIMIT

According to §27.54, §2.1055 requirement, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation and should not exceed 2.5ppm.

TEST CONFIGURATION

TEST PROCEDURE

The EUT was setup according to EIA/TIA 603D

Frequency Stability Under Temperature Variations:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the EUT in a "call mode". This is accomplished with the use of R&S CMW500 DIGITAL RADIO COMMUNICATION TESTER.

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the EUT to overnight soak at -30°C.
- 3. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on middle channel for LTE band 4, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 4. Repeat the above measurements at 10° C increments from -30° C to $+50^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal voltage. Vary supply voltage from minimum voltage to maximum voltage, in 0.1Volt increments re-measuring carrier frequency at each voltage. Pause at nominal voltage for 1.5 hours unpowered, to allow any self-heating to stabilize, before continuing.
- 6. Subject the EUT to overnight soak at $+50^{\circ}$ C.
- 7. With the EUT, powered via nominal voltage, connected to the CMW500 and in a simulated call on the centre channel, measure the carrier frequency. These measurements should be made within 2 minutes of Powering up the EUT, to prevent significant self-warming.
- 8. Repeat the above measurements at 10 $^{\circ}$ C increments from +50 $^{\circ}$ C to -30 $^{\circ}$ C. Allow at least 1.5 hours at each temperature, unpowered, before making measurements
- 9. At all temperature levels hold the temperature to +/- 0.5 °C during the measurement procedure.

Frequency Stability Under Voltage Variations:

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, record the maximum frequency change.

TEST RESULTS

Remark:

1. We were tested all RB Configuration refer 3GPP TS136 521 for each Channel Bandwidth of LTE FDD Band

2, LTE FDD Band 4, LTE FDD Band 5,LTE FDD Band 7, LTE FDD Band 17;

LTE Band 2, 1.4MHz bandwidth(worst case of all bandwidths and modulation type)

	LTE FDD Band 2						
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict		
3.40	20	4	0.002	2.50	PASS		
3.80	20	8	0.004	2.50	PASS		
4.35	20	-10	-0.005	2.50	PASS		
3.80	-30	6	0.003	2.50	PASS		
3.80	-20	5	0.003	2.50	PASS		
3.80	-10	-13	-0.007	2.50	PASS		
3.80	0	9	0.005	2.50	PASS		
3.80	10	-10	-0.005	2.50	PASS		
3.80	20	-3	-0.002	2.50	PASS		
3.80	30	-18	-0.010	2.50	PASS		
3.80	40	13	0.007	2.50	PASS		
3.80	50	-8	-0.004	2.50	PASS		

LTE Band 4, 1.4MHz bandwidth(worst case of all bandwidths and modulation type)

	LTE FDD Band 4						
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict		
3.40	20	-10	-0.006	2.50	PASS		
3.80	20	-16	-0.009	2.50	PASS		
4.35	20	6	0.003	2.50	PASS		
3.80	-30	-9	-0.005	2.50	PASS		
3.80	-20	-1	-0.001	2.50	PASS		
3.80	-10	4	0.002	2.50	PASS		
3.80	0	-5	-0.003	2.50	PASS		
3.80	10	3	0.002	2.50	PASS		
3.80	20	2	0.001	2.50	PASS		
3.80	30	-10	-0.006	2.50	PASS		
3.80	40	-7	-0.004	2.50	PASS		
3.80	50	-5	-0.003	2.50	PASS		

LTE Band 5. 1.4MHz bandwidth(worst case of all bandwidths and modulation type)

		LTE FD	D Band 5		
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict
3.40	20	-9	-0.011	2.50	PASS
3.80	20	-15	-0.018	2.50	PASS
4.35	20	-2	-0.002	2.50	PASS
3.80	-30	-6	-0.007	2.50	PASS
3.80	-20	-16	-0.019	2.50	PASS
3.80	-10	-11	-0.013	2.50	PASS
3.80	0	-6	-0.007	2.50	PASS
3.80	10	7	0.008	2.50	PASS
3.80	20	-3	-0.004	2.50	PASS
3.80	30	6	0.007	2.50	PASS
3.80	40	-4	-0.005	2.50	PASS
3.80	50	5	0.006	2.50	PASS

LTE Band 7, 5MHz bandwidth(worst case of all bandwidths and modulation type)

	LTE FDD Band 7						
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict		
3.40	20	-13	-0.005	2.50	PASS		
3.80	20	-10	-0.004	2.50	PASS		
4.35	20	-8	-0.003	2.50	PASS		
3.80	-30	9	0.004	2.50	PASS		
3.80	-20	4	0.002	2.50	PASS		
3.80	-10	-8	-0.003	2.50	PASS		
3.80	0	2	0.001	2.50	PASS		
3.80	10	-3	-0.001	2.50	PASS		
3.80	20	-8	-0.003	2.50	PASS		
3.80	30	6	0.002	2.50	PASS		
3.80	40	-10	-0.004	2.50	PASS		
3.80	50	-7	-0.003	2.50	PASS		

LTE Band 17, 5MHz bandwidth (worst case of all bandwidths and modulation type)

	LTE FDD Band 17						
DC Power	Temperature (°C)	Frequency error(Hz)	Frequency error(ppm)	Limit (ppm)	Verdict		
3.40	20	-9	-0.013	2.50	PASS		
3.80	20	-10	-0.014	2.50	PASS		
4.35	20	-11	-0.015	2.50	PASS		
3.80	-30	-4	-0.006	2.50	PASS		
3.80	-20	-2	-0.003	2.50	PASS		
3.80	-10	8	0.011	2.50	PASS		
3.80	0	12	0.017	2.50	PASS		
3.80	10	-6	-0.008	2.50	PASS		
3.80	20	-7	-0.010	2.50	PASS		
3.80	30	6	0.008	2.50	PASS		
3.80	40	-10	-0.014	2.50	PASS		
3.80	50	-8	-0.011	2.50	PASS		

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD. FCC ID: 2ADTE-S70LITE Report No.: LCS181130008AEG
5 Test Setup Photos of the EUT
Please refer to separated files for Test Setup Photos of the EUT.
6 External Photos of the EUT
Please refer to separated files for External Photos of the EUT.
7 Internal Photos of the EUT

.....End of Report.....

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd.

Please refer to separated files for Internal Photos of the EUT.