5	angular bore intersecting the straight bore and terminating at an inlet end such that fluid
6	communication exists between the inlet end of the angular bore and the straight bore;
7	a tube concentric with the straight bore and terminating substantially flush with
8	the outlet end of the body member and in fluid communication with an inlet end of the straight
9	bore wherein the tube and body member in combination define an annular channel around the
10	tube and a plurality of radially spaced outlet ports distributed around a central outlet port.
1	4. (Amended) The nozzle of claim 1 wherein the body member defines a single
2	hole in the outlet end, [and] the nozzle further comprising:
3	a flange member coupled to the tube and concentric with the tube the flange member
4	engaging a portion of the body defining the single hole, the flange member for causing annular
5	disbursement of fuel around the central outlet port.
	Please add the following new claims:
	10 The result of Claim 1 wherein the angular hara intercects the straight hare at a

- 1 -- -- 12. The nozzle of Claim 1 wherein the angular bore intersects the straight bore at a
- 2 predetermined angle greater than five degrees from the horizontal defined by the longitudinal
- 3 axis of the straight bore. -- --

1 -- -- 13. The nozzle of Claim 1 wherein the body member comprises a threaded region

2 for engaging a manifold port of the internal combustion engine. -- --

CTJW/mc