Wersja:	\mathbf{B}	
	_	

Numer indeksu:	
000000	

Grupa ⁺ :		
8–10 s.104	8-10 s. 105	8-10 s. 139
8–10 s.140		
10–12 s.104	10–12 s.139	10–12 s.140

Logika dla informatyków

Kolokwium nr 3, 15 stycznia 2016 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Na zbiorze $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru \mathbb{N} definiujemy relację równoważności \sim w taki sposób, że $X \sim Y$ zachodzi wtedy i tylko wtedy, gdy zbiory X i Y są równoliczne. W prostokąty poniżej wpisz odpowiednio moc klasy abstrakcji $[\{42,17\}]_{\sim}$ oraz moc zbioru klas abstrakcji relacji \sim .

$$|[\{42,17\}]_{\sim}|=$$
 $lpha_0$ $|\mathcal{P}(\mathbb{N})/_{\sim}|=$ $lpha_0$

Zadanie 2 (2 punkty). Jeśli istnieje pięć różnych zbiorów równolicznych z \mathbb{R} to w prostokąt poniżej wpisz dowolny przykład takich pięciu zbiorów. W przeciwnym przypadku wpisz słowa "NIE ISTNIEJE".

Zadanie 3 (2 punkty). Rozważmy funkcję $F: \mathbb{N}^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ daną wzorem

$$F(f): \mathbb{N} \to \mathbb{N}, \quad (F(f))(n) = f(2n).$$

Jeśli F ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną do F. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

$$F$$
nie jest injekcją, np. dla $f_0(n)=0$ oraz $f_1(n)=\begin{cases} 0,&\text{gdy }n\text{ jest parzyste,}\\ 1,&\text{wpp.}\end{cases}$ mamy
$$F(f_0)=F(f_1)$$

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). Rozważmy podział $\{\{0\},\{1\},\{n\in\mathbb{N}\mid n\geq 2\}\}$ zbioru liczb naturalnych. W prostokąt poniżej wpisz relację równoważności, której klasy abstrakcji tworzą ten podział.

$$R(x,y) \iff (x=0 \land y=0) \lor (x=1 \land y=1) \lor (x \ge 2 \land y \ge 2)$$

Zadanie 5 (2 punkty). Rozważmy funkcje

$$\begin{array}{lll} f & : & (A \times B)^C \to (A \times C)^B, & g & : & C \to A \times B, \\ h & : & A \times B \to (A \times C)^B & & & \end{array}$$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(a) nie jest poprawne, bo $a \notin (A \times B)^C$. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne. W pozostałe prostokąty wpisz słowo "NIE".

Numer indeksu:	
000000	

8–10 s.104	8–10 s.105	8–10 s.139
8–10 s.140		
10–12 s.104	10-12 s.139	10–12 s.140

Zadanie 6 (5 punktów). Rozważmy dowolną funkcję $f:A\to B$ i dowolną relacją równoważności $R\subseteq B\times B$. Udowodnij, że relacja

$$\{\langle x, y \rangle \mid \langle f(x), f(y) \rangle \in R\}$$

jest relacją równoważności na zbiorze A.

Zadanie 7 (5 punktów). Na zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} wprowadzamy relację binarną Rwzorem

$$R(f,g) \iff f(15) = g(15) \land f(1) = g(1) \land f(2016) = g(2016).$$

Łatwo zauważyć, że R jest relacją równoważności; w rozwiązaniu tego zadania nie trzeba tego dowodzić. Niech $f_0: \mathbb{N} \to \mathbb{N}$ oraz $f_1: \mathbb{N} \to \mathbb{N}$ bedą funkcjami zadanymi wzorami $f_0(n) = 0$ i $f_1(n) = n$. Konstruując odpowiednią bijekcję udowodnij, że klasy abstrakcji $[f_0]_R$ oraz $[f_1]_R$ są równoliczne.

Zadanie 8 (5 punktów). Mówimy, że funkcja $f: N \to \mathbb{N}$ jest ściśle rosnąca jeśli spełnia warunek $\forall n \in \mathbb{N}$ f(n) < f(n+1). Udowodnij, że zbiór

$$\{f \in \mathbb{N}^{\mathbb{N}} \mid f : \mathbb{N} \to \mathbb{N} \text{ jest ściśle rosnąca} \}$$

ma moc continuum.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersja:	7
---------	---

Numer indeksu:	
000000	

Grupa ⁺ :		
8–10 s.104	8-10 s. 105	8–10 s.139
8–10 s.140		
10–12 s.104	10–12 s.139	10–12 s.140

Logika dla informatyków

Kolokwium nr 3, 15 stycznia 2016 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Rozważmy podział $\{\{n \in \mathbb{N} \mid n < 2016\}, \{n \in \mathbb{N} \mid n \geq 2016\}\}$ zbioru liczb naturalnych. W prostokąt poniżej wpisz relację równoważności, której klasy abstrakcji tworzą ten podział.

$$R(x,y) \iff (x < 2016 \land y < 2016) \lor (x \ge 2016 \land y \ge 2016)$$

Zadanie 2 (2 punkty). Jeśli istnieje pięć różnych zbiorów równolicznych z \mathbb{N} to w prostokąt poniżej wpisz dowolny przykład takich pięciu zbiorów. W przeciwnym przypadku wpisz słowa "NIE ISTNIEJE".

Zadanie 3 (2 punkty). Rozważmy funkcje

$$\begin{array}{lll} f & : & A^{B \times C} \rightarrow (A \times B)^C, & & g & : & B \times C \rightarrow A, \\ h & : & A \times B \rightarrow (A \times B)^C & & & \end{array}$$

oraz elementy $a \in A$, $b \in B$ i $c \in C$. W tym zadaniu uznamy wyrażenie za poprawne jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie f(a) nie jest poprawne, bo $a \notin A^{B \times C}$. Wpisz słowo "TAK" w prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne. W pozostałe prostokąty wpisz słowo "NIE".

$$(f(g))(c)$$
 TAK $h(g(b,c),b)$ TAK
$$h(f(g))$$
 NIE $\Big(h(g(b,c),b)\Big)(c)$ TAK

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). Na zbiorze $\mathbb{N}^{\mathbb{N}}$ wszyskich funkcji z \mathbb{N} w \mathbb{N} definiujemy relację równoważności \approx w taki sposób, że dwie funkcje uznajemy za równoważne gdy przeciwobraz zbioru $\{2016\}$ przez obie funkcje jest taki sam, czyli wzorem

$$f \approx g \iff f^{-1}[\{2016\}] = g^{-1}[\{2016\}].$$

W prostokąty poniżej wpisz odpowiednio moc klasy abstrakcji $[\chi_{\mathbb{P}}]_{\approx}$ oraz moc zbioru klas abstrakcji relacji \approx , gdzie $\chi_{\mathbb{P}}$ jest funkcją charakterystyczną zbioru liczb parzystych zdefiniowaną wzorem $\chi_{\mathbb{P}}(n) = \begin{cases} 1, & \text{gdy } n \text{ jest parzyste,} \\ 0, & \text{wpp.} \end{cases}$

$$|[\chi_{\mathbb{P}}]_pprox|=$$
 c $|\mathbb{N}^{\mathbb{N}}/_pprox|=$ c

Zadanie 5 (2 punkty). Rozważmy funkcję $f: \mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ daną wzorem $f(X) = \{2n \mid n \in X\}$. Jeśli f ma funkcję odwrotną, to w prostokąt poniżej wpisz funkcję odwrotną do f. W przeciwnym przypadku wpisz uzasadnienie, dlaczego funkcja odwrotna nie istnieje.

fnie jest surjekcją, np $\{1\}$ nie jest wartością funkcji f

Numer indeksu	• •
000	000

Grupa ⁺ :		
8–10 s.104	8-10 s. 105	8–10 s.139
8–10 s.140		
10–12 s.104	10–12 s.139	10–12 s.140

Zadanie 6 (5 punktów). Udowodnij, że zbiór

$$\{f \in \mathbb{N}^{\mathbb{N}} \mid f : \mathbb{N} \to \mathbb{N} \text{ jest bijekcją}\}$$

ma moc continuum.

Zadanie 7 (5 punktów). Niech $f:A\to B$ będzie bijekcją i niech $R\subseteq A\times A$ będzie relacją równoważności. Udowodnij, że relacja

$$\{\langle f(x), f(y) \rangle \mid \langle x, y \rangle \in R\}$$

jest relacją równoważności na zbiorze B.

Zadanie 8 (5 punktów). Na zbiorze $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru liczb naturalnych wprowadzamy relację binarną R wzorem

$$R(X,Y) \iff (15 \in X \Leftrightarrow 15 \in Y) \land (1 \in X \Leftrightarrow 1 \in Y) \land (2016 \in X \Leftrightarrow 2016 \in Y).$$

Łatwo zauważyć, że R jest relacją równoważności; w rozwiązaniu tego zadania nie trzeba tego dowodzić. Konstruując odpowiednią bijekcję udowodnij, że klasy abstrakcji $[\emptyset]_R$ oraz $[\mathbb{N}]_R$ są równoliczne.

¹Proszę zakreślić właściwą grupę ćwiczeniową.