Introduction to Sequence Labeling

Mohamed Elbadrashiny

What is the sequence labeling?

- Many NLP problems can be viewed as sequence labeling
- Each token in a sequence is assigned a label
- Labels of tokens are dependent on the labels of other tokens in the sequence, particularly their neighbors

Hidden Markov Model (HMM)

- A finite state machine with probabilistic state transitions.
- Markov assumptions:
 - The probability of a state depends only on the state that precedes it $P(w_i | w_1, w_2, \dots w_{i-1}) \approx P(w_i | w_{i-1}) \rightarrow \text{Transition probability (likelihood)}$
 - The probability of an output observation depends only on the state that produced the observation

```
P(q_i | q_1^{i-1}, w_1^i) \approx P(q_i | w_i) \rightarrow \text{Prior probability}
```

Hidden Markov Model (HMM)

Transitions $P(yaEud \sim | lam) \triangleq \text{transition probability}$

Hidden Markov Model (HMM)

- Given a sentence (Sequence of observations):
 - q_1^n : Im yEd Almstvmr rbi r>s mAlh
- What is the best sequence of diacritized words (the "hidden" outcomes) which corresponds to this sequence of observations?
 - \hat{w}_1^n : lam yaEud~ Almustavmiru ribHa ra>si mAlihi
- Probabilistic Bayesian approach:
 - Consider all possible sequences of tags (diacritizations)
 - Out of all sequences of n tags $w_1 ... w_n$, we want the single tag sequence such that $P(w_1 ... w_n | q_1 ... q_n)$ is highest:

$$\hat{w_1^n} = \underset{w_1^n}{\operatorname{argmax}} P(w_1^n \mid q_1^n) \longrightarrow \operatorname{eq}(1)$$

How to compute this?

Bay's Rule:

$$P(X | Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

•

Bay's Rule:

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

Rewrite eq(1):

$$\hat{w}_{1}^{n} = \underset{w_{1}^{n}}{\operatorname{argmax}} \frac{P(q_{1}^{n} | w_{1}^{n}) \times P(w_{1}^{n})}{P(q_{1}^{n})}$$

•

Bay's Rule:

$$P(X|Y) = \frac{P(Y|X)P(X)}{P(Y)}$$

• Rewrite eq(1):

$$\hat{w}_{1}^{n} = \underset{w_{1}^{n}}{\operatorname{argmax}} \frac{P(q_{1}^{n} | w_{1}^{n}) \times P(w_{1}^{n})}{P(q_{1}^{n})}$$

• We can drop the denominator since $P(q_1^n)$ is the same for all $P(w_1^n)$:

$$\hat{w_1}^n = \underset{w_1^n}{\operatorname{argmax}} P(q_1^n | w_1^n) \times P(w_1^n) \longrightarrow \operatorname{eq}(2)$$

•

- Apply Markov assumptions:
 - 1. Assumption 1: $P(w_i)$ depends only on $P(w_{i-1})$

$$\therefore P(w_1^n) \approx \prod_{i=1}^n P(w_i | w_{i-1})$$

2. Assumption 2: P(q) depends only on its own alternative diacritizations

$$\therefore P(q_1^n | w_1^n) \approx \prod_{i=1}^n P(q_i | w_i)$$

- Apply Markov assumptions:
 - 1. Assumption 1: $P(w_i)$ depends only on $P(w_{i-1})$

$$\therefore P(w_1^n) \approx \prod_{i=1}^n P(w_i | w_{i-1})$$

2. Assumption 2: P(q) depends only on its own alternative diacritizations

$$\therefore P(q_1^n | w_1^n) \approx \prod_{i=1}^n P(q_i | w_i)$$

• Substitute in eq(2):

$$\hat{w}_{1}^{n} = \underset{w_{1}^{n}}{\operatorname{argmax}} P(w_{1}^{n} | q_{1}^{n}) \approx \underset{w_{1}^{n}}{\operatorname{argmax}} \prod_{i=1}^{n} P(q_{i} | w_{i}) \times P(w_{i} | w_{i-1}) \longrightarrow eq(3)$$

- Now we have two probabilities to calculate:
 - 1. Probability of a word occurring given its diacritization
 - 2. Probability of a diacritized word occurs given the previous diacritized word
- We can calculate each of these from a bigrams LM built using a diacritized corpus

- Assume we have a sequence of undiacritized T words. And assume each undiacritized word has N different diacritizations. All what we need to do now is:
 - 1. Generate all possible sequences of diacritized words
 - 2. Use equation 3 to calculate the sequence probability
 - 3. Sort all the sequences and select that one with the highest probability
- What is the order of complexity of this solution?

- Assume we have a sequence of undiacritized T words. And assume each undiacritized word has N different diacritizations. All what we need to do now is:
 - 1. Generate all possible sequences of diacritized words
 - 2. Use equation 3 to calculate the sequence probability
 - 3. Sort all the sequences and select that one with the highest probability
- What is the order of complexity of this solution?

 $O(TN^T)$ Too expensive. Can we do better?

- Assume we have a sequence of undiacritized T words. And assume each undiacritized word has N different diacritizations. All what we need to do now is:
 - 1. Generate all possible sequences of diacritized words
 - 2. Use equation 3 to calculate the sequence probability
 - 3. Sort all the sequences and select that one with the highest probability
- What is the order of complexity of this solution?

 $O(TN^T)$ Too expensive. Can we do better?

Yes, use optimized lattice search algorithms like Viterbi or A* via beam search

Exercise

- Given a corpus, write a python class to calculate $P(q_i \mid w_i)$
 - The constructor takes the path of the training corpus and the path of the output map file in the following format

• The class has a function "get_w_given_q(w,q)" to return the $P(q_i \mid w_i)$. EX: get_q_given_w('لَمْ','نُم') returns 0.6

Viterbi

- Due to the Markov assumption, the probability of being in any state at any given time t only relies on the probability of being in each of the possible states at time t-1
- Forward step: Uses dynamic programming to exploit this fact to efficiently compute observation likelihood in $O(TN^2)$ time.
- Back-tracing: At state s_j at time t, store a back pointer to the state at t-1 that maximizes the transition probability to the current state s_j at time t

	lm	yEd	Almstvmr	rbH	r>s	mAlh	
SOP	lam/P/ Not	yaEud~/V/ Count	Almustavmiru/N/ Investor	rabiHa/V/ Won	ra>su/N/ Head	mAlihi/ N+Pron/ His money	EOP
	lam~a/V/ Collected	yuEad~/V-Pass/ Considered yaEdu/V/ Run	Almustavmaru/N/ Invested	ribHa/N/ Gain	ra>asa/V/ Preside	mAlahu/ N+Pron/His money	
		yuEdi/V/ Infect		rubiHa/V-Pass/ Gained		mAluhu/ N+Pron/His money	
	lima/P/Why	yuEid~/V/ Prepare					
		yuEid/V/ Return					

	lm	yEd	Almstvmr	rbH	r>s	mAlh	
SOP	$\frac{\text{lam/P}}{\alpha(s_1)_{t-1}}$	yaEud~/V/ $\alpha(s_1)_t$	Almustavmiru/N/	rabiHa/V/	ra>su/N/	mAlihi/N+Pron/ $\alpha(s_1)_T$	
	$\lim_{\sim} a/V/$ $\alpha(s_2)_{t-1}$	yuEad~/V-Pass/ $\alpha(s_2)_t$	Almustavmaru/N/	ribHa/N/	ra>asi/N/	mAlahu/N+Pron/ $\alpha(s_2)_T$	
		yaEdu/V/		•	•	• •	EOP $\alpha(EOP)$
	•	yuEdi/V/ $\alpha(s_j)_t$					
	$\lim_{\alpha (s_N)_{t-1}} a = 1$	yuEid~/V/		rubiHa/V-Pass/	ra>asa/V/	mAluhu/N+Pron/ $\alpha(s_N)_T$	
		$yuEid/V/$ $\alpha(s_N)_t$					

Viterbi Algorithm

```
function viterbi(observations, states_graph) best path
   num_states ← num_states(states_graph)
   T ← len(observations)
   Create transition matrix A[num_states, T]
   Create back-pointers matrix B[num_states, T]
   Create best path array O[T]
   A \leftarrow 0
  for each time step t=0; t<T; t++:
      for each state s at time step t:
         for each state e at time step (t+1):
            new_score \blacktriangleleft A[s, t] + log(P(e|s)) + log(P(q_{t+1}|e))
            if A[e, t+1] < new_score:
               B[e, t+1] \leftarrow index(s)
   k \leftarrow argmax(A[:, T-1])
   O[T-1] \leftarrow S_k at state T-1
  for each time step t=T-2; t>=0; t--:
      k ← B[k, t+1]
      O[t] \leftarrow S_k at state t
   return O
```

Build LM:

bin/lmplz -o 2 </path/to/training/data.txt >/path/to/output/lm.arpa

from LanguageModel import LanguageModel

lm = LanguageModel('/path/to/output/lm.arpa', 'TEXT')

Build Map:

from LMDisambigMapBuilder import LMDisambigMapBuilder from LMDisambigMap import LMDisambigMap

LMDisambigMapBuilder.build('/path/to/training/corpus.txt', 'path/to/output/map.txt') mapping = LMDisambigMap('path/to/output/map.txt', 'TEXT', lm)

Diacritization

from LMDisambig import LMDisambig

```
disambiguaty = LMDisambig(lm, mapping)
sequence = 'undiacritized_line'.split()
dicaritized_line = disambiguaty.disambig(sequence, decoder =
'VITERBI').get_output_sequence()
```