MATH235 HOMEWORK 6 SOLUTION

• 4.5.17. Show that if $f \in L^1(\mathbb{R})$, then its indefinite integral $F(x) = \int_0^x f(t)dt$ is uniformly continuous on \mathbb{R} .

Proof. Given $f \in L^1(\mathbb{R})$, there exists a simple function $\phi = \sum_{k=1}^N c_k \chi_{E_k}$ such that $||f - \phi||_{L^1} < \epsilon/3$. Consider $M = \max\{c_1, \cdots, c_k\}$. Choose δ such that for any $|x - y| < \delta < \epsilon/(3M), \forall \epsilon > 0$, then we have

$$|F(x) - F(y)| = |\int_0^x f(t)dt - \int_0^y f(t)dt|$$

$$\leq |\int_0^x f(t)dt - \int_0^x \phi(t)dt| + |\int_0^x \phi(t)dt - \int_0^y \phi(t)dt| + |\int_0^y f(t)dt - \int_0^y \phi(t)dt|$$

$$\leq \frac{3}{\epsilon} + M\delta + \frac{3}{\epsilon} = \epsilon$$

which gives uniform continuous.

• 4.5.22 Show that the conclusion of the Dominated Convergence Theorem continues to hold if we replace the hypothesis $f_n \to f$ a.e. with $f_n \stackrel{\text{m}}{\to} f$.

Proof. Choose an arbitrary subsequence $\{f_{n_k}\}$ of $\{f_n\}$. We know both $\{f_{n_k}\}$ and $\{f_n\}$ converge to f in measure. Then $\{f_{n_k}\}$ has a subsequence $\{f_{n_k'}\}$ that converges to f a.e. By dominated convergence theorem $||f-f_{n_k'}||_{L^1}\to 0$. By uniqueness of convergence (Exercise 1.1.22) we must have $||f-f_n||_{L^1}\to 0$.

• 4.5.26. Let E be a measurable subset of \mathbb{R}^d such that $|E| < \infty$. Prove that $\lim_{h\to 0} |E \cap (E+h)| = |E|$.

Proof. $|E| < \infty$ implies that $\int_{\mathbb{R}} \chi_E < \infty$, $\chi_E \in L^1$. By Steinhaus Theorem, if $|E| < \infty$, then the function

$$f(h) = |E \cap (E+h)|$$

is continuous on \mathbb{R} . For this question, our goal is to show that f is continuous at h = 0. Choose $\{h_n\}$ to be a sequence such that

$$\lim_{n\to\infty}h_n=0.$$

We aim to show that

$$\lim_{n\to\infty} f(h_n) = f(0).$$

Note that

$$f(h_n) = \int_{\mathbb{R}} \chi_{E \cap (E+h_n)}.$$

Date: December 15, 2022.

Combine Dominated Convergence Theorem, we obtain

$$\lim_{n \to \infty} f(h_n) = \lim_{n \to \infty} \int_{\mathbb{R}} \chi_{E \cap (E+h)}$$

$$= \int_{\mathbb{R}} \lim_{n \to \infty} \chi_{E \cap (E+h)}$$

$$= \int_{\mathbb{R}} \chi_E = f(0).$$

Therefore, function $(h) = |E \cap (E+h)|$ is continuous on at h = 0. Hence, we have proved that $\lim_{h\to 0} |E \cap (E+h)| = |E|$.

- 4.5.27. This problem will establish a Generalized Dominated Convergence Theorem. Let E be a measurable subset of \mathbb{R}^d . Assume that:
 - (a) $f_n, g_n, f, g \in L^1(E)$,
 - (b) $f_n \to f$ pointwise a.e.,
 - (c) $g_n \to g$ pointwise a.e.,
 - (d) $|f_n| \leq g_n$ a.e., and
 - (e) $\int_E g_n \to \int g$.

Prove that $\int_E f_n \to \int_E f$ and $||f - f_n||_1 \to 0$

Proof. Notice that $-g_n \le f_n \le g_n$ gives $f_n + g_n \ge 0$ a.e. We have

$$\int f + g \le \lim_{n \to \infty} \int f_n + g_n \le \lim_{n \to \infty} \int f_n + \int g$$

which gives

$$\int f \le \lim_{n \to \infty} \int f_n$$

Where we applied Fatou's lemma on $f_n + g_n$ and dominated convergence theorem on g_n . Similarly, consider $g_n - f_n \ge 0$ a.e., we have

$$\int g - f \le \lim_{n \to \infty} \int f_n - g_n \le \int g - \lim_{n \to \infty} \int f_n$$

which gives

$$\int f \ge \lim_{n \to \infty} \int f_n$$

Hence we conclude $\int f_n \to \int f$ and $||f - f_n||_1 \to 0$

• 4.6.12. Let $Q = [0,1]^2$, and let Q_1,Q_2,\ldots be an infinite sequence of nonoverlapping squares centered on the main diagonal of Q, as shown in Figure 4.6. Subdivide each square Q_n into four equal subsquares, and let $f = 1/|Q_n|$ on the lower left and upper right subsquares of Q_n , and $f = -1/|Q_n|$ on the lower right and upper left subsquares. Set f = 0 everywhere else. Prove that

$$\int_0^1 \left(\int_0^1 f(x, y) dx \right) dy = \int_0^1 \left(\int_0^1 f(x, y) dy \right) dx = 0,$$

but $\iint_Q |f(x,y)|(dxdy) = \infty$. Use this to show that $\iint_Q f(x,y)(dxdy)$, the Lebesgue integral of f on Q, is undefined.

Proof. a.
$$\int_0^1 \left(\int_0^1 f(x, y) dx \right) dy = \int_0^1 \left(\int_0^1 f(x, y) dy \right) dx = 0.$$

Focus on $\int_0^1 \left(\int_0^1 f(x,y) dx \right) dy$ firstly. Fix y, we do not need to concern about $Q_1, Q_2, \ldots, Q_{n-1}$ since the integral with respect to x over there is 0 by definition of f. As for Q_n , the negative part is equal to the positive part because each square is subdivided into four equal subsquares which means the symmetry. So the integral with respect to x over the part related to Q_n is also 0. Thus, we have

$$\int_0^1 \left(\int_0^1 f(x, y) dx \right) dy = \int_0^1 0 dy = 0.$$

Similarly, we can obtain that

$$\int_0^1 \left(\int_0^1 f(x, y) dx \right) dy = 0.$$

Therefore, we have proved that $\int_0^1 \left(\int_0^1 f(x,y) dx \right) dy = \int_0^1 \left(\int_0^1 f(x,y) dy \right) dx = 0$. b. $\iint_Q |f(x,y)| (dxdy) = \infty$. Since Q_1,Q_2,\ldots is an infinite sequence of nonoverlapping squares, we attain that

$$\iint_{Q} |f(x,y)|(dxdy) = 0 + \sum_{n=1}^{\infty} \iint_{Q_n} \frac{1}{|Q_n|}(dxdy)$$
$$= \sum_{n=1}^{\infty} \frac{|Q_n|}{|Q_n|} = \sum_{n=1}^{\infty} 1 = \infty.$$

c. $\iint_{\mathcal{O}} f(x,y)(dxdy)$ undefined. According to b, we have for the positive part

$$\iint_{Q} f^{+}(x,y)(dxdy) = 0 + \sum_{n=1}^{\infty} \iint_{Q_{n}} \frac{1}{|Q_{n}|}(dxdy)$$
$$= \sum_{n=1}^{\infty} \frac{|Q_{n}|}{2|Q_{n}|} = \sum_{n=1}^{\infty} \frac{1}{2} = \infty,$$

and for the negative part

$$\iint_{Q} f^{-}(x,y)(dxdy) = 0 + \sum_{n=1}^{\infty} \iint_{Q_{n}} -\frac{1}{|Q_{n}|}(dxdy)$$
$$= \sum_{n=1}^{\infty} -\frac{|Q_{n}|}{2|Q_{n}|} = \sum_{n=1}^{\infty} -\frac{1}{2} = -\infty,$$

Based on all the claims above, we conclude that

$$\iint_{Q} f(x,y)(dxdy) = \iint_{Q} f^{+}(x,y)(dxdy) + \iint_{Q} f^{-}(x,y)(dxdy)$$
$$= \infty - \infty,$$

which is undefined.

• 4.6.20. Given $f \in L^1[0,1]$, define

$$g(x) = \int_{x}^{1} \frac{f(t)}{t} dt, \quad 0 < x \le 1.$$

Show that g is defined a.e. on $[0,1], g \in L^1[0,1]$, and $\int_0^1 g(x) dx = \int_0^1 f(x) dx$.

Proof. Consider

$$g(x) = \int_0^1 \chi_{(x,1)} \frac{f(t)}{t} dt = \int_0^1 F(x,t) dt$$

where F(x,t) is measurable on $[0,1] \times [0,1]$. Then we have,

$$\int_0^1 \int_0^1 F(x,t) dx dt = \int_0^1 (\int_0^1 \chi_{(x,1)} \frac{|f(t)|}{t} dx) dt = \int_0^1 \frac{|f(t)|}{t} (\int_0^1 \chi_{(x,1)} dx) dt = \int_0^1 \frac{|f(t)|}{t} \cdot t dt < \infty$$

Hence we know $g \in L^1[0,1]$. Also, by Tonelli's theorem,

$$\int_{0}^{1} g(x)dx \int_{0}^{1} \int_{x}^{1} \frac{f(t)}{t} dt dx = \int_{0}^{1} \int_{0}^{t} \frac{f(t)}{t} dx dt = \int_{0}^{1} f(t) dt$$

Hence we conclude

$$\int_0^1 g(x)dx = \int_0^1 f(x)dx$$

• 4.4.22. Suppose that $f \in L^1[a,b]$ satisfies $\int_a^x f(t)dt = 0$ for all $x \in [a,b]$. Prove that f = 0 a.e.

Proof. For any closed interval $[c, d] \subseteq [a, b]$, we have

$$\int_{[c,d]} f = \int_{[a,d]} f - \int_{[a,c]} f = 0.$$

Since any open set $U\subseteq [a,b]$ can be written as a union of disjoint open intervals, say $U=\cup [c_n,d_n]$, then

$$\int_{U} f = \int_{\cup [c_n, d_n]} f = \sum_{i=1}^{n} \int_{[c_i, d_i]} f = 0.$$

It is then easy to see that for any closed $K \subseteq [a, b]$, we have

$$\int_{K} f = \int_{[a,b]}^{\infty} f - \int_{[a,b]\setminus K} f dm = 0.$$

as the complement of a closed set is an open set. Now consider any F_{σ} set $F = \bigcup_{k=1}^{n} K_k$ for some closed sets K_k . Then $\{F_n\}$ is a nesting increasing sequence of closed sets with limit F. Since $f \in L^1[a,b]$, by Lebesgue dominated convergence theorem,

$$\int_{F} f = \lim_{n \to \infty} \int_{F_n} f = 0.$$

Recall that any Lebeasgue measurable set $E \subseteq [a,b]$ can be written as $E = F \cup Z$, for a F_{σ} set F and Z a set of measure 0. Hence

$$\int_E f = \int_F f = 0.$$

Thus we conclude that f = 0 a.e. on [a, b].

• 4.5.32

Proof. Since $\frac{\partial f}{\partial x}f(x,y)$ exists and bounded, we use $M=\sup_{x,y}|\frac{\partial f}{\partial x}f(x,y)|$. For fixed x, consider $f_n(x,y)=\frac{f(x+1/n,y)-f(x,y)}{1/n}$. Since f(x,y) is measurable as a function of y for fixed x, it follows that f_n is also measurable as a function of y. Since $\frac{\partial f}{\partial x}f(x,y)$ exists, $\lim_{n\to\infty}f_n(x,y)=\frac{\partial f}{\partial x}f(x,y)$ is also measurable.

For the second part of the claim, since $\frac{\partial f}{\partial x}f(x,y)$ bounded, we know $\int_0^1 \frac{\partial f}{\partial x}f(x,y)dy$ is well defined. Now consider $F(x)=\int_0^1 f(x,y)dy$ and the limit expression $\lim_{h\to 0}\frac{F(x+h)-F(x)}{h}$. Notice that this limit is exactly $\frac{d}{dx}\int_0^1 f(x,y)dy$. By bounded convergence theorem, we can swap limit and integral, which gives the desired result.