K-mean Algorithm (1)

https://en.wikipedia.org/wiki/K-means_clustering

Given a set of observations (\mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_n), where each observation is a d-dimensional real vector, k-means clustering aims to partition the n observations into k ($\leq n$) sets $\mathbf{S} = \{S_1, S_2, ..., S_k\}$ so as to minimize the within-cluster sum of squares (WCSS) (i.e. variance). Formally, the objective is to find:

$$rg\min_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - oldsymbol{\mu}_i\|^2 = rg\min_{\mathbf{S}} \sum_{i=1}^k |S_i| \operatorname{Var} S_i$$

Form feature vectors

Cluster Seekingg

K-mean Algorithm (2)

https://en.wikipedia.org/wiki/K-means_clustering

Assignment step: Assign each observation to the cluster whose mean has the least squared Euclidean distance, this is intuitively the "nearest" mean.^[7] (Mathematically, this means partitioning the observations according to the Voronoi diagram generated by the means).

$$S_i^{(t)} = ig\{ x_p : ig\| x_p - m_i^{(t)} ig\|^2 \le ig\| x_p - m_j^{(t)} ig\|^2 \ orall j, 1 \le j \le k ig\},$$

Update step: Calculate the new means to be the centroids

$$m_i^{(t+1)} = rac{1}{|S_i^{(t)}|} \sum_{x_j \in S_i^{(t)}} x_j$$

Algorithm:

1) Assum Number of Classes = K.

Pick
$$m_i(t)$$
 | $t=1$, $i=1,2,...,k$.

Arbitrary.

2. $g. m_i(t) = \overline{X}_i$

Regroup $\overline{X}_i(t)$ | $\leq ||\overline{X}_i(t)|| ||\overline{X}_i(t)|| ||\overline{X}_i(t)||$

Regroup $\overline{X}_i(t)$ | $\leq ||\overline{X}_i(t)|| ||\overline{X}_i(t)|| ||\overline{X}_i(t)||$

3) Update $m_i(t+1)$ for $i=1,2,...,k$, Check

Termination $m_i(t+1) = \overline{m}_i(t+1) + \overline{m}_i(t+1) = \overline{m}_i(t+1)$

No coted

K-mean Example

Hand Calculation

MPED 9 March 15/2018 AL 21. Similarly

Example: Given a CATS (classes) find the
$$\|X_1 - M_2\|^2 = (X_1 - M_2)^2 + X_1 - M_2 = (X_1 - M_2)^2 + X_2 - M_2 = (X_1 - M_2)^2 + X_2 - M_2 = (X_1 - M_2)^2 + (X_1 - M_2)^2 = (X_1 - M_2)^2 + (X_2 - M_2)^2 = (X_1 - M_2)^2 + (X_1 - M$$

K-mean

$$(mppqq) | (mppqq) | (mpp$$

Harry Li, Ph.D.

Use kmean.py To Compute Example

Example: w1: B1(x,y), ..., B6(x,y), w2: B'1(x,y), ..., B'10(x,y), V = (v1, v2, v3), where v1 = m11, v2=m10, v3=m01, find m1 and m2 by using kmean.py

Midterm Review

```
Midterm Review, Questi S. Bisic Concepts
    Colour Image Plane, Goodinate System Setup, Convolution
                     Feature Extraction
```