08. veljače 2016.

docx je kralj!

Ime i Prezime:

Matični broje

44444

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa

1. zadatak (15 bodova)

Kaskadna struktura upravljanja brzinom vrtnje istosmjernog motora prikazana je na slici 1, pri čemu pojedini parametri iznose: $K_a=5$ A/V, $T_a=0.025$ s, K=1.33 Vs/rad, $K_t=44$, $T_{mi}=1.66$ ms, $K_t=0.1$ V/A, $T_{fi}=2$ ms, $K_b=0.0318$, $T_{fb}=15$ ms, J=2.4kg m².

Slika 1: Blokovska shema kaskadnog upravljanja brzinom vrtuje DC motora s nezavisnom uzbudom

- a) (3 boda) Projektirati PI regulator struje armature $G_{R1}(s)$ prema tehničkom optimumu kao i prefiltar referentne vrijednosti struje armature $G_{pf1}(s)$.
- b) (4 boda) Projektirati regulator brzine vrtnje motora $G_{R2}(s)$ prema simetričnom optimumu tako da se postigne fazno osiguranje $\gamma = 45^{\circ}$. Također je potrebno projektirati prefiltar u referentnoj grani brzine vrtnje $G_{vf1}(s)$.
- c) (3 boda) Odrediti najveće pojačanje PI regulatora struje armature kojim se postiže odziv zatvorenog kruga struje armature bez nadvišenja.
- d) (5 bodova) Projektirati digitalni PI regulator brzine vrtnje motora po simetričnom optimumu , korištenjem bilinearne transformacije (pseudofrekvencijska domena), uz pretpostavku uzorkovanja primjenom ekstrapolatora nultog reda (ZOH), uz vrijeme uzorkovanja $T_s=2$ ms, tako da brzina odziva bude približno jednaka brzini odziva iz b) zadatka.

Napomena: Doprinos ekstrapolatora nultog reda (ZOH), može se aproksimirati kao $G_{ZOH}(s) = e^{-s(T_s/2)}$. U zadatku se pretpostavlja da je presječna frekvencija pokazatelj brzine odziva zatvorenog kruga.

Podsjetnik:

$$atan(x) - atan(y) = atan \frac{x - y}{1 - xy}.$$
 (1)

2. zadatak (10 bodova)

Struktura upravljanja položajem osovine istosmjernog motora s nenevisnom i konstantnom uzbordom prikazana je blokovskom shemom na slici 2. Krug regulacije struje armature nadomješten je PTI članom. Zadano je $K_t = 1\Lambda/\Lambda$, $T_{ct} = 3.66$ ms, K = 1.33 Vs rad i J = 2 kg m². Potrečno je:

Slika 2: Blokovska shema upravljanja pozicijom DC motora s nezavisnom uzhudom

- a) (3 boda) Odrediti prijenosnu funkciju $G_{\Theta}(s) = \frac{\Theta(s)}{\Theta_{r}(s)}$.
- b) (5 bodova) Odrediti parametre regulatora $K_{R\Theta}$, K_R i T_I , koristeči možulni optimum, pri tome odabrati skup parametara koji osigurava brži odziv.
- c) (2 boda) Osigurava li regulator iz b) dijela zadatka eliminaciju regulacijskog odsvupanja u ustaljenom stanju u slučaju referentne veličine oblika skokovite pobude, obrazložni odgover. Ukoliko ne osigurava koliko iznosi regulacijsko odstupanje u ustaljenom stanju?

3. zadatak (10 bodova)

Za dvomaseni elastični sustav zadani su sljedeći normirani parametri: $T_{N/1}=1.0$ s - motor: $T_{N/2}=2.0$ s - teret; $c=100\,\mathrm{Nm/rad}$ - konstanta krutosti; $d=0.5\,\mathrm{Nms/rad}$ - konstanta prigušenja: $T_S=1$ s - normirana vremenska konstanta.

Slika 3: Skica radnog stroja s remenskim prijenosom

- a) (2 boda) Potrebno je nacrtati strukturnu blokovsku shemu nadomjesnog kominuiranog regulacijskog kruga brzine vrtnje s PI regulatorom brzine vrtnje.
- b) (3 boda) Potrebno je odrediti parametre PI regulatora uz koristenje opimuma dvestrukog odnosa uz $D_i = 0.5$, uz nadomjesnu vremensku konstantu podređenog regulacijskog kruga struje $T_m = 0.01$ s i vrijeme uzorkovanja T = 0.001 s.
- c) (2 boda) Koliko iznosi karakteristični odnos D₄?
- d) (3 boda) Koliko bi iznosili parametri podoptimalnog (u smislu optimuma duestrukog odnosa) $\mathbb{P}1$ regulatora kojim se postiže nadomjesna vremenska konstanta zatvorenog kruga brzine vrtuje $\mathbb{T}_z = 0.4 \, s$, uz dominantni karakteristični odnos $D_2 = 0.5$. Koliko u tom slučaju iznosi karakteristični odnos D_3 ?

Napomena: Nadomjesnu vremensku konstantu zatvorenog kruga u a) dijelu zadatka odredite koristedi približnu relaciju.