Database Management System – 18 (Relational Algebra – Unary Relational operations)

Ajay James Asst. Prof in CSE Government Engineering College Thrissur

Outline

- Relational Algebra
- Why Relational Algebra
- SELECT
- PROJECT
- RENAME

Relational Algebra

- Basic set of operations for the relational model is known as the *relational algebra*
- Operations enable a user to specify basic retrieval requests
- Result of a retrieval is a new relation
- Algebra operations produce new relations
- Sequence of relational algebra operations forms a **relational algebra expression**
- Unary Relational Operations
- Operations from set theory

Why relational algebra?

- Provides a *formal foundation* for relational model operations
- Used as a basis for implementing and optimizing queries
- Some of its concepts are incorporated into the *SQL* standard query language for RDBMSs
 - Core operations and functions in the internal modules of most relational systems are based on relational algebra operations

Unary operation - SELECT

- SELECT operation is used to select a *subset* of the tuples from a relation that satisfy a **selection condition**
- A filter that keeps only those tuples that satisfy a qualifying condition
- Select operation is denoted by
 - $\sigma < selection condition > (R)$
 - $-\sigma$ (sigma) is used to denote the select operator
 - selection condition is a Boolean expression specified on the attributes of relation R
- To select the EMPLOYEE tuples whose department number is four

ODNO = 4 (EMPLOYEE)

• To select those whose salary is greater than \$30,000

OSALARY > 30,000 (EMPLOYEE)

Example

EMPLOYEE

			2 - 2						
Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

O(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000) (EMPLOYEE)

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5

SELECT Operation Properties

- SELECT operation σ_{<selection condition>}(R) produces a relation S that has the same schema as R
- SELECT operation σ is commutative
 σ <condition1> (σ < condition2> (R)) = σ <condition2> (σ < condition1> (R))
- Cascaded SELECT operation may be applied in any order
 - $\sigma_{\text{<condition}1>}(\sigma_{\text{<condition}2>}(\sigma_{\text{<condition}3>}(R)) = \sigma_{\text{<condition}2>}(\sigma_{\text{<}}(\sigma_{\text{<condition}3>}(R)))$
- Cascaded SELECT operation may be replaced by a single selection with a conjunction of all the conditions
 - $\sigma_{\text{condition1}}(\sigma_{\text{condition2}}(\sigma_{\text{condition3}}(R)) = \sigma_{\text{condition1}} \text{ AND } \text{ condition2} \text{ AND } \text{ condition3} \text{ (R))}$

Unary operation - PROJECT

- Selects certain *columns* from the table and discards the other columns
- Creates a vertical partitioning
- To list each employee's first and last name and salary, the following is used:

$\pi_{\text{lname, fname, salary}}(\text{EMPLOYEE})$

• General form of the project operation is

 π <attribute list>(R)

 π (pi) is the symbol used to represent the project operation <attribute list> is the desired list of attributes from the attributes of relation R

• Project operation removes any duplicate tuples

Example									
Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	M	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	M	55000	NULL	1

 $\pi_{Lname, Fname, Salary}$ (EMPLOYEE).

Lname	Fname	Salary	
Smith	John	30000	
Wong	Franklin	40000	
Zelaya	Alicia	25000	
Wallace	Jennifer	43000	
Narayan	Ramesh	38000	
English	Joyce	25000	
Jabbar	Ahmad	25000	
Borg	James	55000	

 $\pi_{\text{Sex, Salary}}(\text{EMPLOYEE}).$

Sex	Salary			
M	30000			
M	40000			
F	25000			
F	43000			
M	38000			
M	25000			
M	55000			

PROJECT Operation Properties

- Number of tuples in the result of projection $\pi_{\text{<list>}}(R)$ is always less or equal to the number of tuples in R
- If the list of attributes includes a key of R, then the number of tuples is equal to the number of tuples in R
- . $\pi_{\text{<list1>}}(\pi_{\text{<list2>}}(R)) = \pi_{\text{<list1>}}(R)$ as long as <|ist2> contains the attributes in <|ist2>

Unary operation - RENAME

- Apply several relational algebra operations one after the other
 - Write the operations as a single relational algebra expression by nesting the operations
 - Apply one operation at a time and create intermediate result relations
- To retrieve the first name, last name, and salary of all employees who work in department number 5
- . $\pi_{\text{FNAME, LNAME, SALARY}}(\sigma_{\text{DNO=5}}(EMPLOYEE))$
- . OR
- DEP5_EMPS $\leftarrow \sigma_{DNO=5}(EMPLOYEE)$
- RESULT $\leftarrow \pi_{\text{FNAME, LNAME, SALARY}}$ (DEP5_EMPS)

Example

π_{Fname, Lname, Salary}(σ_{Dno=5}(EMPLOYEE))

Fname	Lname	Salary
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

Example

$$\begin{split} \text{TEMP} \leftarrow \sigma_{\text{Dno}=5}(\text{EMPLOYEE}) \\ \textit{R}(\text{First_name, Last_name, Salary}) \leftarrow \pi_{\text{Fname, Lname, Salary}}(\text{TEMP}) \end{split}$$

TEMP

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston,TX	M	30000	333445555	5
Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston,TX	M	40000	888665555	5
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble,TX	M	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

R

First_name	Last_name	Salary
John	Smith	30000
Franklin	Wong	40000
Ramesh	Narayan	38000
Joyce	English	25000

Rename Operator

- Rename operator is ρ
- Can be expressed by any of the following forms:
- $\rho_{S(B_1, B_2, ..., B_n)}(R)$ is a renamed relation S based on R with column names B_1, B_1, B_n.
- $\rho_S(R)$ is a renamed relation S based on R (which does not specify column names)
- $\rho_{(B_1, B_2, ..., B_n)}$ (R) is a renamed relation with column names B_1 , B_1,B_n which does not specify a new relation name.

Reference

 Elmasri R. and S. Navathe, Database Systems: Models, Languages, Design and Application Programming, Pearson Education 6th edition and 7th edition

Thank you