ImageClassificator10

Modelo con Arquitectura Simple - VERSION 10

1. Procesar imagenes

Partimos de un dataset con 9 categorias diferentes: ['Drought_Disaster', 'Earthquake_Disaster', 'Land-Slide_Disaster', 'Non_Damage_Buildings_Street', 'Non_Damage_Sea', 'Non_Damage_Wildlife_Forest', 'Urban_Fire_Disaster', 'Water_Disaster', 'Wild_Fire_Disaster']

Cada carpeta cuenta con un nuemro diferente de imagenes, entre 200 y 4000 imagenes por clase.

Para obtenes un dataset balanceado, obtendremso un conjunto de imagenes representativas de cada grupo y realizaremos un aumento de imagenes con ellas para conseguir un número parecido de imagenes para cada clase.

```
[2]: data_dir='data' #Guarda la ruto donde se encuentra la bases de datos class_names=os.listdir(data_dir) #Obtiene el nombre de las carpetas print(class_names)
```

```
['Drought_Disaster', 'Earthquake_Disaster', 'LandSlide_Disaster', 'Non_Damage_Buildings_Street', 'Non_Damage_Sea', 'Non_Damage_Wildlife_Forest', 'Urban_Fire_Disaster', 'Water_Disaster', 'Wild_Fire_Disaster']
```

```
[3]: # Limpieza de imagenes corruptas, solo es necesario ejecutar una vez.
     for image_class in os.listdir(data_dir):
                                                                         #lista de carpetas
      →en 'data'
         for image in os.listdir(os.path.join(data_dir, image_class)): #loop por todas las_
      \rightarrow imagenes
             image_path = os.path.join(data_dir, image_class, image)
                 img = cv2.imread(image_path)
                                                  # Comprobamos que se puede leer conu
      →opencv/cv2
                 tip = imghdr.what(image_path)
                                                   # Comprobamos que las extensiones sean
      →['jpeg','jpg', 'bmp', 'png']
                 if tip not in image_exts:
                     print('Image not in ext list {}'.format(image_path))
                     os.remove(image_path)
```

```
except Exception as e:
    print('Issue with image {}'.format(image_path))
    os.remove(image_path)
```

```
[4]: import random
     from pathlib import Path
     import shutil
     from PIL import Image
     from tensorflow.keras.preprocessing.image import ImageDataGenerator
     # Creamos la base de datos balanceada
     # Configuración inicial
     original_data_dir = 'data'
     balanced_data_dir = 'data_balanced'
     target_size = (256, 256)
                                        # Ajusta según necesidad
     batch_size = 32
     max_images_per_class = 600
     # Crear el directorio balanceado limpio con la misma estructura
     if os.path.exists(balanced_data_dir):
         shutil.rmtree(balanced_data_dir)
     os.makedirs(balanced_data_dir)
     # Crear un generador de datos para la aumentación
     datagen = ImageDataGenerator(
         rotation_range=40,
         width_shift_range=0.2,
         height_shift_range=0.2,
         shear_range=0.2,
         zoom_range=0.2,
         horizontal_flip=True,
         fill_mode='nearest'
     )
     # Crear la lista de imagenes y etiquetas vacia.
     class_names = (os.listdir(original_data_dir))
     image_paths = []
     labels = []
     # Recolectar imágenes y aplicar aumentación si es necesario
     #Para cada clase recorre el mismo loop, quarda las imagenes y aumenta datos si es l
     \rightarrownecesario
     for label_index, class_name in enumerate(class_names):
         orig_class_dir = os.path.join(original_data_dir, class_name)
         new_class_dir = os.path.join(balanced_data_dir, class_name)
         os.makedirs(new_class_dir, exist_ok=True)
         #Obtiene lista de los paths de las imagenes para cada categoria
         all_images = [
```

```
os.path.join(orig_class_dir, fname)
        for fname in os.listdir(orig_class_dir)
        if fname.lower().endswith(('.png', '.jpg', '.jpeg'))
    1
    # Seleccionar hasta 'max_images_per_class' imágenes
    selected_images = random.sample(all_images, min(len(all_images),__
 →max_images_per_class))
    # Copiar las imágenes seleccionadas al nuevo directorio
    for image_path in selected_images:
        shutil.copy(image_path, os.path.join(balanced_data_dir, class_name))
    print(f"Imagenes de la clase {class_name} copiadas a nuevo directorio")
    # Si la clase tiene menos de max imágenes, aplicamos Data Augmentation
    if len(selected_images) < max_images_per_class:</pre>
        print(f"Aplicando aumentación a la clase {class_name} para alcanzar⊔
 →{max_images_per_class} imágenes...")
        # Usamos data augmentation para generar imágenes adicionales
        images_needed = max_images_per_class - len(selected_images)
        # Usamos data augmentation para generar imágenes adicionales
        for image_path in selected_images:
            if i >= images_needed:
               break
            img = Image.open(image_path).convert('RGB').resize(target_size)
            x = np.array(img)
            x = np.expand_dims(np.array(img), axis=0)
            # Generamos nuevas imágenes y las copiamos a la carpeta nueva
            for batch in datagen.flow(x, batch_size=1, save_to_dir=os.path.
 →join(balanced_data_dir, class_name), save_prefix='aug', save_format='png'):
                i += 1
                break # solo una imagen por iteración
        print(f"Aumentación a la clase {class_name} realiazda")
    # Actualizamos la lista de imágenes seleccionadas después de la aumentación
    selected_images = [
        os.path.join(balanced_data_dir,class_name, fname)
        for fname in os.listdir(os.path.join(balanced_data_dir, class_name))
        if fname.lower().endswith(('.png', '.jpg', '.jpeg'))
    # Actualizamos las rutas y etiquetas
    image_paths.extend(selected_images)
    labels.extend([label_index] * len(selected_images))
print("\nImágenes balanceadas y guardadas en 'data_balanced'")
```

```
Imagenes de la clase Drought_Disaster copiadas a nuevo directorio
Aplicando aumentación a la clase Drought_Disaster para alcanzar 600 imágenes...
Aumentación a la clase Drought_Disaster realiazda
Imagenes de la clase Earthquake_Disaster copiadas a nuevo directorio
Aplicando aumentación a la clase Earthquake_Disaster para alcanzar 600
imágenes...
Aumentación a la clase Earthquake_Disaster realiazda
Imagenes de la clase LandSlide_Disaster copiadas a nuevo directorio
Aplicando aumentación a la clase LandSlide_Disaster para alcanzar 600
imágenes...
Aumentación a la clase LandSlide_Disaster realiazda
Imagenes de la clase Non_Damage_Buildings_Street copiadas a nuevo directorio
Imagenes de la clase Non_Damage_Sea copiadas a nuevo directorio
Imagenes de la clase Non_Damage_Wildlife_Forest copiadas a nuevo directorio
Imagenes de la clase Urban_Fire_Disaster copiadas a nuevo directorio
Aplicando aumentación a la clase Urban_Fire_Disaster para alcanzar 600
imágenes...
Aumentación a la clase Urban_Fire_Disaster realiazda
Imagenes de la clase Water_Disaster copiadas a nuevo directorio
Imagenes de la clase Wild_Fire_Disaster copiadas a nuevo directorio
Aplicando aumentación a la clase Wild_Fire_Disaster para alcanzar 600
Aumentación a la clase Wild_Fire_Disaster realiazda
```

Imágenes balanceadas y guardadas en 'data_balanced'

2. Normalizamos datos

```
[5]: # Escalar imágenes para pixeles de valores entre 0 y 1, en vez de entre 0 y 255
# Convertir a arrays normalizados
image_arrays = []
for path in image_paths:
    img = Image.open(path).convert('RGB').resize(target_size)
    img_array = np.array(img).astype(np.float32) / 255.0 # Normalizar
    image_arrays.append(img_array)

X = np.array(image_arrays)
y = np.array(labels)
print(f"\nConjunto escalado: X.shape = {X.shape}, y.shape = {y.shape}")
```

Conjunto escalado: X.shape = (5191, 256, 256, 3), y.shape = (5191,)

```
[6]: # Comprobamos que el formato es correcto
X[1] # Los pixeles se encuentran entre 0 y 1
```

```
[8]: array([[[0.69803923, 0.78039217, 0.84705883], [0.69411767, 0.78039217, 0.84705883], [0.6901961, 0.78039217, 0.84313726], ..., [0.91764706, 0.92156863, 0.9372549], [0.90588236, 0.9098039, 0.9254902], [0.8980392, 0.9019608, 0.91764706]],
```

```
[0.69411767, 0.7764706, 0.84313726],
             [0.6901961 , 0.77254903, 0.8352941 ],
             [0.94509804, 0.9490196, 0.9607843],
             [0.94509804, 0.9490196, 0.9607843],
             [0.9372549, 0.9411765, 0.9529412]],
            [[0.7058824, 0.79607844, 0.85882354],
             [0.7019608, 0.7882353, 0.8509804],
             [0.7058824, 0.78431374, 0.8509804],
             [0.9529412, 0.95686275, 0.9647059],
             [0.95686275, 0.9607843, 0.96862745],
             [0.9529412 , 0.95686275, 0.9647059 ]],
            . . . ,
            [[0.3254902, 0.32941177, 0.14901961],
            [0.32941177, 0.3529412, 0.1764706],
             [0.3529412, 0.38039216, 0.18431373],
             . . . ,
             [0.59607846, 0.3882353, 0.3019608],
             [0.6666667, 0.44313726, 0.34901962],
             [0.68235296, 0.44313726, 0.3254902]],
            [[0.4745098, 0.49019608, 0.25490198],
             [0.3882353, 0.43137255, 0.20392157],
             [0.3137255, 0.34117648, 0.16470589],
             [0.5882353, 0.38039216, 0.2784314],
             [0.60784316, 0.3882353, 0.26666668],
             [0.6666667, 0.4392157, 0.30980393]],
            [[0.35686275, 0.40392157, 0.17254902],
             [0.30588236, 0.3647059, 0.16470589],
             [0.31764707, 0.3529412, 0.18431373],
             [0.6745098, 0.44313726, 0.32156864],
             [0.7529412, 0.50980395, 0.36862746],
             [0.79607844, 0.54901963, 0.40784314]]], dtype=float32)
[7]: # Comprobamos que el formato es correcto
     y #las etiquetas se representan con números enteros
[9]: array([0, 0, 0, ..., 8, 8, 8])
```

[[0.69803923, 0.78039217, 0.84705883],

3. Dividimos datos

```
[8]: from sklearn.model_selection import train_test_split

# División estratificada (train, val, test)
X_train_val, X_test, y_train_val, y_test = train_test_split(
    X, y, test_size=0.10, stratify=y, random_state=42)

X_train, X_val, y_train, y_val = train_test_split(
    X_train_val, y_train_val, test_size=0.125, stratify=y_train_val, random_state=42)

# 0.125    0.10 / 0.80 → para que val sea el 20% final
```

Para facilitar el trabajo a lo largo del entrenamiento guardamos el conjunto de datos para poder acceder a el de forma rápida y sencilla, cada vez que deseemos entrenar.

Datos guardados en 'split_data/dataset.npz'

4. Cargamos y visualizamos datos

```
[10]: #Cargamos datos desde split_data
import numpy as np

# Cargar el archivo comprimido
data = np.load('split_data/dataset.npz')

# Asignar a variables
X_train = data['X_train']
y_train = data['Y_train']
X_val = data['Y_val']
y_val = data['Y_val']
X_test = data['Y_test']
y_test = data['Y_test']
print("Datos cargados correctamente desde 'split_data/dataset.npz'")
```

Datos cargados correctamente desde 'split_data/dataset.npz'

```
[11]: print(f"Train: {len(X_train)}, Val: {len(X_val)}, Test: {len(X_test)}") class_names=os.listdir('data') #0btiene el nombre de las carpetas
```

```
# Mostrar el número de imágenes por clase en el conjunto final
      print("\nDistribución de imágenes por clase:")
      for i, class_name in enumerate(class_names):
          train_count = sum([1 for label in y_train if label == i])
          val_count = sum([1 for label in y_val if label == i])
          test_count = sum([1 for label in y_test if label == i])
          print(f"{class_name}: Entrenamiento={train_count}, Validación={val_count},_u
       →Test={test_count}")
     Train: 4087, Val: 584, Test: 519
     Distribución de imágenes por clase:
     Drought_Disaster: Entrenamiento=310, Validación=44, Test=39
     Earthquake_Disaster: Entrenamiento=473, Validación=67, Test=60
     LandSlide_Disaster: Entrenamiento=472, Validación=67, Test=60
     Non_Damage_Buildings_Street: Entrenamiento=473, Validación=67, Test=60
     Non_Damage_Sea: Entrenamiento=472, Validación=68, Test=60
     Non_Damage_Wildlife_Forest: Entrenamiento=472, Validación=68, Test=60
     Urban_Fire_Disaster: Entrenamiento=471, Validación=67, Test=60
     Water_Disaster: Entrenamiento=472, Validación=68, Test=60
     Wild_Fire_Disaster: Entrenamiento=472, Validación=68, Test=60
[12]: import matplotlib.pyplot as plt
      import numpy as np
      from PIL import Image
      img_size = (256, 256)
      data_dir='data'
      class_names=os.listdir(data_dir) #Obtiene el nombre de las carpetas
      # Crear la figura 3x3
      fig, ax = plt.subplots(nrows=2, ncols=5, figsize=(20, 7))
      # Obtener una imagen de cada clase y mostrarla
      for idx, class_name in enumerate(class_names):
          # Obtener la ruta de las imágenes de la clase
          class_dir = os.path.join(data_dir, class_name)
          image_path = os.path.join(class_dir, os.listdir(class_dir)[1]) # Tomamos una_1
          img = Image.open(image_path).convert('RGB').resize(img_size)
          img_array = np.array(img) / 255.0
                                                                           # Normalizamos a_
       \hookrightarrow 0-1
          # Determinar la posición de la subgráfica
          row = idx // 5 # Calculamos la fila
          col = idx % 5 # Calculamos la columna
          # Mostrar la imagen
          ax[row, col] imshow(img_array)
          ax[row, col].title.set_text(class_name) # Establecer el título con el nombre de_
```

Ajusta el tamaño de la fuente aquí

ax[row, col].title.set_fontsize(16)

```
ax[row, col].axis('off') # Desactivar los ejes para una mejor⊔

→ presentación

plt.tight_layout() # Ajusta el espaciado entre las subgráficas

plt.show()

plt.close()
```


5. Arquitectura del modelo

```
[13]: from tensorflow.keras.models import Sequential
      from tensorflow.keras.layers import Conv2D, MaxPooling2D, GlobalAveragePooling2D, Dense
      from tensorflow.keras.layers import Dropout, BatchNormalization
      from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, TensorBoard
[14]: #Creamos nuestro modelo:
      model = Sequential()
[15]: # Añadimos capas
          #Capa convolucional: 32 filtros de 3x3 pixels, stride = 1, activation = relu +11
      →entradas: 1 image
      model.add(Conv2D(32, (3,3), 1, activation='relu', input_shape=(256,256,3)))
      model.add(MaxPooling2D())
          #Capa convolucional: 64 filtros de 3x3 pixels, stride = 1, activation = relu
      model.add(Conv2D(64, (3,3), 1, activation='relu'))
      model.add(MaxPooling2D())
          #Capa convolucional: 128 filtros de 3x3 pixels, stride = 1, activation = relu
      model.add(Conv2D(128, (3,3), 1, activation='relu'))
      model.add(MaxPooling2D())
          #Capa de normalización de los resultados
      model.add(BatchNormalization())
          #Conectar capas convolucionales con capas densas
      model.add(GlobalAveragePooling2D())
```

```
#Añadimos capa densa de 256 neuron con ReLU
      model.add(Dense(256, activation='relu'))
          #Usamos Dropout para evitar over-fitting
      model.add(Dropout(0.5))
          #Capa de salida con tantas neuronas como clases con 'softmax'
      model.add(Dense(9, activation='softmax')) #Capa de salida
[16]: # Añadimos optimizador
      model.compile(optimizer='adam',
                    loss=tf.losses.SparseCategoricalCrossentropy(),
                    metrics=['accuracy']
                   )
[17]: # Callbacks
      # Early Stoping Call-Backc para parar el proceso de entrenamiento despueés de L
      → 'patience' épocas si no mejora
      early_stop = EarlyStopping(patience=5, restore_best_weights=True, monitor='val_loss')
      # ReduceLROnPlateau Call-Back para reducir la tasa de aprendizaje seqún el parámetro⊔
      → 'monitor'
      reduce_lr = ReduceLROnPlateau(patience=3, factor=0.2, monitor='val_loss', min_lr=1e-5)
      # Usamos Tensorboard, para quardar los datos de entrenamiento
      tensorboard_callback = TensorBoard('logs')
[18]: # Visualizamos las entradas y salida de cada capa
      for layer in model.layers:
          print(f"Layer name: {layer.name}")
          print(f" Input shape: {layer.input_shape}")
          print(f" Output shape: {layer.output_shape}")
          print("-" * 10)
     Layer name: conv2d
       Input shape: (None, 256, 256, 3)
       Output shape: (None, 254, 254, 32)
     Layer name: max_pooling2d
       Input shape: (None, 254, 254, 32)
       Output shape: (None, 127, 127, 32)
     Layer name: conv2d_1
       Input shape: (None, 127, 127, 32)
       Output shape: (None, 125, 125, 64)
     Layer name: max_pooling2d_1
       Input shape: (None, 125, 125, 64)
       Output shape: (None, 62, 62, 64)
     Layer name: conv2d_2
       Input shape: (None, 62, 62, 64)
       Output shape: (None, 60, 60, 128)
```

Layer name: max_pooling2d_2

Input shape: (None, 60, 60, 128)
Output shape: (None, 30, 30, 128)

Layer name: batch_normalization
Input shape: (None, 30, 30, 128)
Output shape: (None, 30, 30, 128)

Layer name: global_average_pooling2d Input shape: (None, 30, 30, 128)

Output shape: (None, 128)

Layer name: dense

Input shape: (None, 128)
Output shape: (None, 256)

Layer name: dropout

Input shape: (None, 256)
Output shape: (None, 256)

Layer name: dense_1

Input shape: (None, 256)
Output shape: (None, 9)

[19]: model.summary()

Model: "sequential_1"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)		
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 127, 127, 32)	0
conv2d_1 (Conv2D)	(None, 125, 125, 64)	18496
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 62, 62, 64)	0
conv2d_2 (Conv2D)	(None, 60, 60, 128)	73856
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 30, 30, 128)	0
<pre>batch_normalization (BatchN ormalization)</pre>	(None, 30, 30, 128)	512
<pre>global_average_pooling2d (G lobalAveragePooling2D)</pre>	(None, 128)	0
dense (Dense)	(None, 256)	33024

```
dropout (Dropout) (None, 256) 0
dense_1 (Dense) (None, 9) 2313
```

Total params: 129,097 Trainable params: 128,841 Non-trainable params: 256

6. Entrenamiento

```
[20]: hist = model.fit(
    X_train, y_train,
    batch_size=32,
    epochs=40,
    validation_data=(X_val, y_val),
    callbacks=[reduce_lr,early_stop, tensorboard_callback])
```

```
Epoch 1/40
128/128 [============] - 81s 618ms/step - loss: 1.6092 -
accuracy: 0.4010 - val_loss: 2.0223 - val_accuracy: 0.1524 - lr: 0.0010
128/128 [=========== ] - 77s 601ms/step - loss: 1.2496 -
accuracy: 0.5332 - val_loss: 1.6400 - val_accuracy: 0.4298 - lr: 0.0010
Epoch 3/40
accuracy: 0.5853 - val_loss: 1.4051 - val_accuracy: 0.4760 - lr: 0.0010
Epoch 4/40
128/128 [============] - 77s 602ms/step - loss: 1.0207 -
accuracy: 0.6188 - val_loss: 1.3875 - val_accuracy: 0.5017 - lr: 0.0010
128/128 [=========== ] - 76s 591ms/step - loss: 0.9211 -
accuracy: 0.6491 - val_loss: 1.3745 - val_accuracy: 0.4812 - lr: 0.0010
Epoch 6/40
128/128 [=========== ] - 76s 595ms/step - loss: 0.8769 -
accuracy: 0.6753 - val_loss: 1.4238 - val_accuracy: 0.5205 - lr: 0.0010
Epoch 7/40
128/128 [============ ] - 75s 589ms/step - loss: 0.8478 -
accuracy: 0.6849 - val_loss: 3.4124 - val_accuracy: 0.3733 - lr: 0.0010
Epoch 8/40
128/128 [=========== ] - 77s 603ms/step - loss: 0.7953 -
accuracy: 0.7081 - val_loss: 0.8636 - val_accuracy: 0.6644 - lr: 0.0010
Epoch 9/40
128/128 [=========== ] - 76s 596ms/step - loss: 0.7725 -
accuracy: 0.7137 - val_loss: 1.6571 - val_accuracy: 0.5051 - lr: 0.0010
Epoch 10/40
accuracy: 0.7252 - val_loss: 0.9340 - val_accuracy: 0.6747 - lr: 0.0010
Epoch 11/40
accuracy: 0.7382 - val_loss: 0.8078 - val_accuracy: 0.7158 - lr: 0.0010
Epoch 12/40
```

```
128/128 [=============== ] - 76s 593ms/step - loss: 0.7145 -
accuracy: 0.7362 - val_loss: 2.0728 - val_accuracy: 0.4401 - lr: 0.0010
Epoch 13/40
128/128 [============ ] - 76s 593ms/step - loss: 0.6819 -
accuracy: 0.7448 - val_loss: 0.6700 - val_accuracy: 0.7500 - lr: 0.0010
Epoch 14/40
accuracy: 0.7524 - val_loss: 2.0910 - val_accuracy: 0.4589 - lr: 0.0010
Epoch 15/40
128/128 [============] - 76s 591ms/step - loss: 0.6597 -
accuracy: 0.7595 - val_loss: 1.3543 - val_accuracy: 0.5531 - lr: 0.0010
Epoch 16/40
128/128 [============== ] - 77s 602ms/step - loss: 0.6120 -
accuracy: 0.7734 - val_loss: 0.6729 - val_accuracy: 0.7483 - lr: 0.0010
128/128 [=========== ] - 76s 593ms/step - loss: 0.5583 -
accuracy: 0.7996 - val_loss: 0.5505 - val_accuracy: 0.7997 - lr: 2.0000e-04
Epoch 18/40
128/128 [============ ] - 76s 595ms/step - loss: 0.5354 -
accuracy: 0.8106 - val_loss: 0.5416 - val_accuracy: 0.7997 - lr: 2.0000e-04
Epoch 19/40
128/128 [=========== ] - 76s 591ms/step - loss: 0.5186 -
accuracy: 0.8136 - val_loss: 0.5974 - val_accuracy: 0.7860 - lr: 2.0000e-04
128/128 [=========== ] - 76s 594ms/step - loss: 0.5072 -
accuracy: 0.8162 - val_loss: 0.5688 - val_accuracy: 0.7860 - lr: 2.0000e-04
Epoch 21/40
128/128 [============ ] - 76s 590ms/step - loss: 0.5066 -
accuracy: 0.8118 - val_loss: 0.5308 - val_accuracy: 0.8048 - lr: 2.0000e-04
Epoch 22/40
128/128 [===========] - 75s 586ms/step - loss: 0.5036 -
accuracy: 0.8211 - val_loss: 0.5063 - val_accuracy: 0.8322 - lr: 2.0000e-04
Epoch 23/40
128/128 [============ ] - 77s 599ms/step - loss: 0.4950 -
accuracy: 0.8216 - val_loss: 0.6000 - val_accuracy: 0.7928 - lr: 2.0000e-04
Epoch 24/40
128/128 [============== ] - 75s 589ms/step - loss: 0.4878 -
accuracy: 0.8229 - val_loss: 0.5203 - val_accuracy: 0.8134 - lr: 2.0000e-04
Epoch 25/40
128/128 [===============] - 76s 592ms/step - loss: 0.4838 -
accuracy: 0.8231 - val_loss: 0.4843 - val_accuracy: 0.8253 - lr: 2.0000e-04
Epoch 26/40
128/128 [============= ] - 75s 587ms/step - loss: 0.4700 -
accuracy: 0.8326 - val_loss: 0.4854 - val_accuracy: 0.8134 - lr: 2.0000e-04
Epoch 27/40
128/128 [=========== ] - 76s 595ms/step - loss: 0.4685 -
accuracy: 0.8270 - val_loss: 0.5263 - val_accuracy: 0.8082 - lr: 2.0000e-04
Epoch 28/40
128/128 [=========== ] - 75s 588ms/step - loss: 0.4642 -
accuracy: 0.8312 - val_loss: 0.4865 - val_accuracy: 0.8305 - lr: 2.0000e-04
Epoch 29/40
accuracy: 0.8412 - val_loss: 0.4579 - val_accuracy: 0.8408 - lr: 4.0000e-05
Epoch 30/40
```

```
accuracy: 0.8439 - val_loss: 0.4742 - val_accuracy: 0.8390 - lr: 4.0000e-05
128/128 [=========== ] - 76s 593ms/step - loss: 0.4315 -
accuracy: 0.8417 - val_loss: 0.4684 - val_accuracy: 0.8373 - lr: 4.0000e-05
Epoch 32/40
accuracy: 0.8532 - val_loss: 0.4751 - val_accuracy: 0.8339 - lr: 4.0000e-05
Epoch 33/40
128/128 [============] - 76s 595ms/step - loss: 0.4262 -
accuracy: 0.8490 - val_loss: 0.4602 - val_accuracy: 0.8373 - lr: 1.0000e-05
Epoch 34/40
128/128 [============] - 75s 587ms/step - loss: 0.4388 -
accuracy: 0.8419 - val_loss: 0.4553 - val_accuracy: 0.8476 - lr: 1.0000e-05
128/128 [=========== ] - 76s 596ms/step - loss: 0.4235 -
accuracy: 0.8456 - val_loss: 0.4566 - val_accuracy: 0.8442 - lr: 1.0000e-05
Epoch 36/40
128/128 [=========== ] - 77s 600ms/step - loss: 0.4223 -
accuracy: 0.8414 - val_loss: 0.4580 - val_accuracy: 0.8425 - lr: 1.0000e-05
Epoch 37/40
128/128 [=========== ] - 75s 588ms/step - loss: 0.4191 -
accuracy: 0.8485 - val_loss: 0.4536 - val_accuracy: 0.8476 - lr: 1.0000e-05
128/128 [============ ] - 75s 585ms/step - loss: 0.4236 -
accuracy: 0.8476 - val_loss: 0.4521 - val_accuracy: 0.8442 - lr: 1.0000e-05
Epoch 39/40
128/128 [=========== ] - 76s 597ms/step - loss: 0.4243 -
accuracy: 0.8459 - val_loss: 0.4611 - val_accuracy: 0.8442 - lr: 1.0000e-05
Epoch 40/40
128/128 [===========] - 76s 593ms/step - loss: 0.4239 -
accuracy: 0.8473 - val_loss: 0.4541 - val_accuracy: 0.8476 - lr: 1.0000e-05
```

7. Evaluar resultados

```
[21]: # Resultados finales del enrenamiento
    train_loss, train_acc = model.evaluate(X_train, y_train, verbose=0)
    print(f"Train Loss: {train_loss:.4f}, Train Accuracy: {train_acc:.4f}")
```

Train Loss: 0.3986, Train Accuracy: 0.8503

```
[22]: # Visualizar el proceso de entrenamiento
    import matplotlib.pyplot as plt

fig = plt.figure(figsize = (15,5))
    fig.suptitle('Results', fontsize=20)

plt.subplot(121)
    plt.plot(hist.history['loss'], color='teal', label='loss')
    plt.plot(hist.history['val_loss'], color='orange', label='val_loss')
    plt.title('Loss function', fontsize=15)
    plt.ylabel('loss', fontsize=15)
    plt.xlabel('epochs', fontsize=15)
    plt.legend(loc="upper left")
```

```
plt.subplot(122)
plt.plot(hist.history['accuracy'], color='teal', label='accuracy')
plt.plot(hist.history['val_accuracy'], color='orange', label='val_accuracy')
plt.title('Accurancy', fontsize=15)
plt.ylabel('accurancy', fontsize=15)
plt.xlabel('epochs', fontsize=15)
plt.legend(loc="upper left")

plt.show()
plt.close()
```



```
[23]: # Calcular las predicciones sobre el conjunto de validación
     y_true = []
     y_pred = []
     for i in range(len(X_val)):
        image_batch = np.expand_dims(X_val[i], axis=0) # Asegura que la imagen esté en elu
      → formato (1, altura, ancho, canales)
        label_batch = np.expand_dims(y_val[i], axis=0) # Asegura que la etiqueta esté en_
      \rightarrowel formato correcto
        preds = model.predict(image_batch)
                                               # Realiza la predicción
        y_true.append(label_batch[0])
                                               # Agregar la etiqueta verdadera
        y_pred.append(np.argmax(preds, axis=1)[0])
                                               # Agregar la clase predicha
    1/1 [=======] - Os 105ms/step
    1/1 [=======] - Os 22ms/step
    1/1 [=======] - 0s 22ms/step
    1/1 [======] - 0s 20ms/step
    1/1 [=======] - Os 19ms/step
    1/1 [======] - 0s 19ms/step
```

```
[24]: from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
    import matplotlib.pyplot as plt

# Elaborar las matrices de confusión
    cm = confusion_matrix(y_true, y_pred)
    class_names=os.listdir('data_balanced')

# Mostrar con etiquetas de clase
    disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=class_names)
    disp.plot(xticks_rotation='vertical', cmap='Blues')
    plt.title('Matriz de Confusión')
    plt.show()
    plt.close()
```



```
[25]: from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay import numpy as np
```


8. Test

Se procede a analizar con profundidad el rendmiento en el grupo de pruba (imagenes que el modelo no ha visto)

```
[26]: import numpy as np
    from sklearn.metrics import classification_report

# Se obtiene las predicciones y las etiquetas correctas

# Obtener todas las predicciones de una vez
    y_pred_probs = model.predict(X_test)
    y_pred = np.argmax(y_pred_probs, axis=1)

# Asegurar que etiquetas son arrays planos
    y_true_flat = y_test.ravel()
    y_pred_flat = y_pred.ravel()

class_names=os.listdir('data_balanced')

print("\nClassification Report:")
    print(classification_report(y_true_flat, y_pred_flat, target_names=class_names))
```

17/17 [======] - 2s 129ms/step

Classification Report:

	precision	recall	f1-score	support
Drought_Disaster	0.92	0.85	0.88	39
Earthquake_Disaster	0.81	0.87	0.84	60
LandSlide_Disaster	0.73	0.73	0.73	60
Non_Damage_Buildings_Street	1.00	0.90	0.95	60
Non_Damage_Sea	0.95	1.00	0.98	60
Non_Damage_Wildlife_Forest	0.95	1.00	0.98	60
<pre>Urban_Fire_Disaster</pre>	0.76	0.65	0.70	60
Water_Disaster	0.84	0.82	0.83	60
Wild_Fire_Disaster	0.71	0.83	0.77	60
accuracy			0.85	519
macro avg	0.85	0.85	0.85	519
weighted avg	0.85	0.85	0.85	519

9. Guardar el modelo

Se guarda el modelo final con la función load.model en el directorio.

```
[27]: model.save(os.path.join('models','imageclassifier10.h5'))
```

10. Cargar el modelo

```
[28]: from tensorflow.keras.models import load_model
[29]: model = load_model(os.path.join('models', 'imageclassifier10.h5'))
[]:
```