

ECE 462 – Data and Computer Communications

Lecture 19: LAN Protocols

Bijan Jabbari, PhD

Dept. of Electrical and Computer Eng. George Mason University bjabbari@gmu.edu

LAN Logical Topologies

the basic LAN function is to reach all other stations without complex routing

2007 ECE 462

LAN Architecture

- Topologies
 - Tree, Ring, Star
 - Bus
 - Special case of tree (one trunk, no branches)
- Transmission medium
- Layout
- Medium access control

Bus and Tree

- Multipoint medium
- Transmission propagates throughout medium
- Heard by all stations
 - Need to identify target station
 - Each station has unique address
- Full duplex connection between station and tap
 - Allows for transmission and reception
- Need to regulate transmission
 - To avoid collisions
 - To avoid hogging
 - Data in small blocks frames
- Terminator absorbs frames at end of medium

Frame Transmission on Bus LAN

2007 A copies frame as it goes by ECE 462

Ring Topology

- Repeaters joined by point to point links in closed loop
 - Receive data on one link and retransmit on another
 - Links unidirectional
 - Stations attach to repeaters
- Data in frames
 - Circulate past all stations
 - Destination recognizes address and copies frame
 - Frame circulates back to source where it is removed
- Media access control determines when station can insert frame

Frame Transmission Ring LAN

Star Topology

- Each station connected directly to central node
 - Usually via two point to point links
- Central node can broadcast
 - Physical star, logical bus
 - Only one station can transmit at a time
- Central node can act as frame switch

Choice of Topology

- Reliability
- Expandability
- Performance
- Needs considering in context of:
 - Medium
 - Wiring layout
 - Access control

Bus LAN Transmission Media

- Twisted pair
 - Early LANs used voice grade cable
 - Didn't scale for fast LANs
 - Not used in bus LANs now
- Baseband coaxial cable
 - Uses digital signalling
 - Original Ethernet
- Broadband coaxial cable
 - As in cable TV systems
 - Analog signals at radio frequencies
 - Expensive, hard to install and maintain
 - No longer used in LANs
- Optical fiber
 - Expensive taps
 - Better alternatives available
 - Not used in bus LANs
- All hard to work with compared with star topology twisted pair
- Coaxial baseband still used but not often in new installations

Ring and Star Usage

Ring

- Very high speed links over long distances
- Single link or repeater failure disables network

Star

- Uses natural layout of wiring in building
- Best for short distances
- High data rates for small number of devices

Choice of Medium

- Constrained by LAN topology
- Capacity
- Reliability
- Types of data supported
- Environmental scope

Media Available

- Voice grade unshielded twisted pair (UTP)
 - Cat 3
 - Cheap
 - Well understood
 - Use existing telephone wiring in office building
 - Low data rates
- Shielded twisted pair and baseband coaxial
 - More expensive than UTP but higher data rates
- Broadband cable
 - Still more expensive and higher data rate
- High performance UTP
 - Cat 5 and above
 - High data rate for small number of devices
 - Switched star topology for large installations
- Optical fiber
 - Electromagnetic isolation
 - High capacity
 - Small size
 - High cost of components
 - High skill needed to install and maintain
 - Prices are coming down as demand and product range increases

Protocol Architecture

- Lower layers of OSI model
- IEEE 802 reference model
- Physical
- Logical link control (LLC)
- Media access control (MAC)

DLC Refinement for Local Area Networks

802 Layers - Physical

- Encoding/decoding
- Preamble generation/removal
- Bit transmission/reception
- Transmission medium and topology

802 Layers - Logical Link Control

- Interface to higher layers
- Flow and error control

Logical Link Control

- Transmission of link level PDUs between two stations
- Must support multiaccess, shared medium
- Relieved of some link access details by MAC layer
- Addressing involves specifying source and destination LLC users
 - Referred to as service access points (SAP)
 - Typically higher level protocol

LLC Services

- Based on HDLC
- Unacknowledged connectionless service
- Connection mode service
- Acknowledged connectionless service

LLC Protocol

- Modeled after HDLC
- Asynchronous balanced mode to support connection mode LLC service (type 2 operation)
- Unnumbered information PDUs to support Acknowledged connectionless service (type 1)
- Multiplexing using LSAPs

Media Access Control

- Assembly of data into frame with address and error detection fields
- Disassembly of frame
 - Address recognition
 - Error detection
- Govern access to transmission medium
 - Not found in traditional layer 2 data link control
- For the same LLC, several MAC options may be available

LAN Protocols in Context

Media Access Control

- Where
 - Central
 - Greater control
 - Simple access logic at station
 - Avoids problems of co-ordination
 - Single point of failure
 - Potential bottleneck
 - Distributed
- How
 - Synchronous
 - Specific capacity dedicated to connection
 - Asynchronous
 - In response to demand

Asynchronous Systems

Round robin

- Good if many stations have data to transmit over extended period
- Reservation
 - Good for stream traffic
- Contention
 - Good for bursty traffic
 - All stations contend for time
 - Distributed
 - Simple to implement
 - Efficient under moderate load
 - Tend to collapse under heavy load

MAC Frame Format

- MAC layer receives data from LLC layer
- MAC control
- Destination MAC address
- Source MAC address
- LLS
- CRC
- MAC layer detects errors and discards frames
- LLC optionally retransmits unsuccessful frames

Generic MAC Frame Format

Ethernet Frame Structure

64 bits	48 bits	48 bits	16 bits	368 to 12,000 bits	32 bits	
Preamble	Destination	Source	Туре	Frame Data	CRC	

- 48-bit address is installed at the factory for each interface
- Destination must be on the same LAN as the Source
- Frame Type describes the payload; thus each frame is selfidentifying (example: TCP/IP packet)
- Minimum frame size = slot time = 512 bits
- Interframe gap = 96 bits
- Jamming signal size = 32 48 bits