MIDI-Interface/Datenformat

MIDI ist ein Steuerungssystem und kein Audiosystem. Obwohl dies eigentlich klar sein sollte, kommt es immer wieder zu weitreichenden Missverständnissen und Verbalinjurien (s. Diplomarbeit "MIDI-Synthese in der kognitiven Musikologie" von Gerhard Juncker, Wien, sonst lesenswert). Die einzigen Gelegenheiten, bei denen MIDI vermag, Klang zu bewegen, finden sich indirekt bei der Anwendung von SysEx-Dump und Sample-Dump.

Wunsch und Ziel bei der Realisierung von MIDI war ein Steuersystem, das man auf der Bühne und im Studio zur Erzielung beeindruckender Klänge einfach einsetzen konnte. Wie erwähnt, gab es als Vorläufer die spannungsgesteuerte/steuernde Gate/CV-Methode.

Die Gate/CV-Methode,

auch CV/Gate genannt (von Control Voltage = Steuerspannung) beruht auf einem System, bei dem Tonhöhen durch Spannungswerte festgelegt sind, d.h., steigert man die Steuerspannung für den VCO beispielsweise um 1 Volt/Oktave, so ergibt sich bei einer logarithmischen Steuercharakteristik eine Spannungssteigerung von 0.08333 V.

Die aufwendige Verkabelung, die bei Übertragung mehrstimmigen Spiels anfallen würde und das Wegfallen der universellen Steuerung von Steuerbefehlen verlangten nach einer digitalen und seriellen Schnittstelle.

USI (Universal Synthesizer Interface)

aus dem Jahre 1981 bediente sich der RS232C-Schnittstelle (bekannt als Druckeroder Modemanschluss bei PCs), die mit einer Betriebsspannung von 0/5 Volt arbeitet und eine Übertragungsrate von 19200 Baud arbeitet (1Baud = 1Bit/Sekunde). USI entsprach in seiner Funktionsweise bereits MIDI, ist aber Prototyp geblieben.

MIDI (Musical Instruments Digtal Interface)

wies gegenüber USI zwei gavierende Veränderungen auf: Die auf 31250 Baud erhöhte Übertragungsrate und die Verwendung eines Optokopplers (LED und Fotozelle in lichtdichtem Gehäuse) an der Schnittstelle. Dieser gewährleistet eine verbesserte Absicherung von Brummschleifen beim Zusammenschluss mehrerer MIDI-Geräte.

MIDI-Anschluss

(Die Pole 4 und 5 sind beschaltet, Pol 2 liegt an der Kabelabschirmung)

Das (äußerlich sichtbare) MIDI-Interface bedient sich des als "Diodensteckeranschluss" bekannte 5-poligen Steckerformats nach DIN 41 542. Es gab und gibt immer wieder den Versuch, den MIDI-Anschluß (aus mechanischen Stabilisierungsgründen) auf XLR zu konvertieren, was bei der Rückkonvertierung via Adapter eher zum Gegenteil führen dürfte.

Blockschema eines MIDI-Interface UART=Universal-Asynchronous-Receiver/Transmitter

Der MIDI-Datenstrom wird in 8-Bit- bzw. 10-Bit-Worten übertragen. Beginnend mit einem Startbit, folgen LSB für die 1er-Stelle in der Binärzahl (Bit 0) bis zu Bit 7 (128er-Stelle) schließt das Wort mit einem Stoppbit ab. Start- und Stoppbit dienen der Synchronisation von Sender und Empfänger.

Standardbyte für MIDI

Mit dem abgebildeten Byte lässt sich jede Zahl 256 darstellen (LSB=Least Significant Byte; MSB=Most Significant Byte). MIDI-Befehle bestehen aus 1 bis 3 Bytes (Statusbyte, 1. Datenbyte, 2.Datenbyte).

Das MIDI-Protokoll

ist, wie schon erwähnt, keine Norm, sondern eine Spezifikation, auf die sich Hersteller geeinigt haben. Die "offizielle" Version findet man gegen die Entrichtung eines Entgeltes bei www.midi.org., der Website der MMA (MIDI Manufacturer Association). Alle anderen Quellen, so behauptet die MMA (und deren Mitglieder) seien nicht autorisiert. Diese Attitüde beinhaltet übrigens nicht mehr und nicht weniger, dass sogar notfalls Zitate in wissenschaftlichen Arbeiten über MIDI als illegal erklärt werden kann. Außerdem halten sich die Hersteller natürlich so die Daueroption der Schaffung neuer Unternormen und "-nörmchen" offen.

Die MMA kann jederzeit bestimmen, was protokollgerecht ist oder nicht.

Die MIDI-Modes

Stehen für die verschiedenen Betriebsarten von MIDI-Musikinstrumenten. Sie gehen von folgenden möglichen Instrumenteneigenschaften aus:

- Einstimmige (monophone) Ausgabe von Klängen, im Ggs. zu
- Mehrstimmiger (polyphoner) Ausgabe, bei polyphonen Geräten wählbar
- Empfang eines oder mehrerer von 16 MIDI- Sende- und Empfangskanälen
- Möglichkeit, mehrere Klänge gleichzeitg zu spielen (Multitimbrales Gerät); ist bei aktuellen Geräten des Jahres 2001 zumeist Standard

Modus 1 (Omni on, poly on), genannt "Omni-Mode": Gerät empfängt auf allen Kanälen Noten und Befehle und gibt diese mehrstimmig mit einem Klang aus.

Modus 2 (Omni on, mono), kein Kurzname: wie Modus 1, jedoch einstimmig. Ist nur noch bei Verwendung älterer MIDIfizierter monophoner Geräte sinnvoll.

Modus 3 (Omni off, poly on), genannt "Poly-Mode": die Noten eines Empfangskanals wird mehrstimmig gespielt.

Modus 4 (Omni off, mono), genannt "Mono-Mode": Jedem Empfangskanal wird eine monophone Stimme zugeordnet. Multitimbraler Betrieb.

"Multi-Mode" ist seit 1990 Standardbetrieb. Das Gerät kann auf jedem der 16 Kanäle wahlweise mono-oder polyphon und mit eigenem Klangprogramm arbeiten. Solche Eigenschaften werden im General-MIDI-Betrieb vorausgesetzt.

Der synthesizerbezogene Begriff der Polyphonie ist anders zu begreifen als der musikalische. Während der traditionell-musikalische Terminus eine Form der Mehrstimmigkeit bezeichnet, bei der jede Stimme einem eigenständigen rhythmischmelodischen Verlauf folgt, die den Gegensatz zur Homophonie (Prinzip: "Hauptstimme mit Nebenstimme") bildet, bezeichnet in der Synthesizertechnik Polyphonie generell die Möglichkeit, mehr als eine Stimme spielen zu können.

Die Struktur der MIDI-Daten

ist zunächst in Kanaldaten und Systemdaten unterteilt (letztere sind besonders wichtig für den Sequenzerbetrieb). Man kann sagen, die einzelnen Kanäle und deren Datenverwaltung befassen sich mit musikalischen Details, die Systemdaten betreffen den Ablauf bzw. die Struktur eines musikalischen Vorgangs. Die Struktur der MIDI-Daten sieht blockschematisch folgendermaßen aus:

Die **Channel Messages** enthalten i.e.: Note on/off, ChannelPress ("After Touch"), PolyPress, ControlChange ("Controler"), BankSelect, ProgramChange, PitchWheel, die MIDIModes, AllSoundOff, AllNotesOff, LocalContol. Diese Aufzählung ist in sofern unsystematisch, als dass einige der genannten Datentypen sich unter dem Oberbegriff ControlChange finden. Unter diesem sind die Channel Modes zu sehen. Dies hängt mit der dynamischen, d.h. unkontrollierten Entwicklung und Verfeinerung der MIDI-Technologie in der Industrie zusammen.

Die **System Messages** enthalten kanalübergreifende Befehle, die im Falle der System-Real-Time-Daten (für zu synchronisierende Nicht-MIDI-Geräte) und der System-Common-Daten (für angeschlossene zu synchronisierende MIDI-Sequenzer) die Navigation betreffen. Wegen der zunehmenden Tendenz, die Entwicklung der digitalen Audiobearbeitung in Richtung "All-In-One"-Systeme zu treiben, werden sogenannte Stand-Alone-Synchronizer, die MIDI-Taktungen in andere Formate (z.B. SMPTE) zu übersetzen, allmählich seltener eingesetzt. Solange jedoch beliebte traditionelle Formate wie Zelluloid-Film sich am Markt halten, wird das Synchronisieren externer Geräte notwendig sein.

Die System-Exclusive-Messages dienen zum Dump aller am Instrument vorgenommenen Einstellungen. Wer SysEx benutzt, sollte dies unabhängig von musikalischen Vorgängen tun, da die meisten Geräte diese Daten nicht Echtzeit verarbeiten können, und nicht alle Hersteller sich an die durch das SyEx-ID-System bewirkte Sperre halten. Zu Beginn des Dumps wird nach der SysEx-Kennung des Datenblocks eine Hersteller-ID gesendet, die ausschließt, das Geräte anderer Marken diese Daten empfangen und "missverstehen". Das Schlussbyte "End-Of-SysEx" wird dann an alle anderen Geräte gesendet, die dann ihre Arbeit wieder aufnehmen.

Notenbefehle (Note On/Off-Messages)

enthalten neben der Tonhöhe (In einem List Editor: Note 60=C3=Eingestrichenes C) auch die Anschlagstärke (Velocity, 0-127), die sich auch als Controller verwenden läßt. Beispiel: Ein Forte-Klavierton enthält neben der veränderten Lautstärke auch ein anderes klangliches Spektrum gegenüber einer schwächer gespielten Note. Velocity wird dann auch zur Steuerung von Filtern benutzt, die das Obertonverhalten beeinflussen.

Contoller (eigentlich Control Changes)

stellen einen der neben den Notendaten am häufigsten genutzten Channel Messages dar. Mit ihnen werden die durch die Notenbefehle aufgerufenen Klänge beeinflusst.

0 = Bank MSB	43 = (#11 LSB)	86 = Ctrl 86
1 = Modulation	44 = (#12 LSB)	87 = Ctrl 87
2 = Breath	45 = (#13 LSB)	88 = Ctrl 88
3 = Ctrl 3	46 = (#14 LSB)	89 = Ctrl 89
4 = Foot Control	47 = (#15 LSB)	90 = Ctrl 90
5 = Portamento	48 = (#16 LSB)	91 = Reverb
6 = Data MSB	49 = (#17 LSB)	92 = Tremolo
7 = Volume	50 = (#18 LSB)	93 = Chorus Depth
8 = Balance	51 = (#19 LSB)	94 = Detune∕Var.
9 = Ctrl 9	52 = (#20 LSB)	95 = Phaser
10 = Pan	53 = (#21 LSB)	96 = Data increm.
11 = Expression	54 = (#22 LSB)	97 = Data decrem.
12 = Ctrl 12	55 = (#23 LSB)	98 = Non-Reg. LSB
13 = Ctrl 13	56 = (#24 LSB)	99 = Non-Reg. MSB
14 = Ctrl 14	57 = (#25 LSB)	100 = Reg.Par. LSB
15 = Ctrl 15	58 = (#26 LSB)	101 = Reg.Par. MSB
16 = General #1	59 = (#27 LSB)	102 = Ctrl 102
17 = General #2	60 = (#28 LSB)	103 = Ctrl 103
18 = General #3	61 = (#29 LSB)	104 = Ctrl 104
19 = General #4	62 = (#30 LSB)	105 = Ctrl 105
20 = Ctrl 20	63 = (#31 LSB)	106 = Ctrl 106
21 = Ctrl 21	64 = Sustain	107 = Ctrl 107
22 = Ctrl 22	65 = Portamento	108 = Ctrl 108
23 = Ctrl 23	66 = Sostenuto	109 = Ctrl 109
24 = Ctrl 24	67 = Soft Pedal	110 = Ctrl 110
25 = Ctrl 25	68 = Ctrl 68	111 = Ctrl 111
26 = Ctrl 26	69 = Hold2	112 = Ctrl 112
27 = Ctrl 27	70 = Ctrl 70	113 = Ctrl 113
28 = Ctrl 28	71 = Resonance	114 = Ctrl 114
29 = Ctrl 29	72 = Release Time	115 = Ctrl 115
30 = Ctrl 30	73 = Attack Time	116 = Ctrl 116
31 = Ctrl 31	74 = LPF Cutoff	117 = Ctrl 117
32 = Bank LSB	75 = Ctrl 75	118 = Ctrl 118
33 = (#01 LSB)	76 = Ctrl 76	119 = Ctrl 119
34 = (#02 LSB)	77 = Ctrl 77	120 = Ctrl 120
35 = (#03 LSB)	78 = Ctrl 78	121 = Reset Ctrls.
36 = (#04 LSB)	79 = Ctrl 79	122 = Local Control
37 = (#05 LSB)	80 = Decay	123 = All Notes Off
38 = (#06 LSB)	81 = HPF Cutoff	124 = Omni Mode Off
39 = (#07 LSB)	82 = General #7	125 = Omni Mode On
40 = (#08 LSB)	83 = General #8	126 = Mono Mode On
41 = (#09 LSB)	84 = Ctrl 84	127 = Poly Mode On
42 = (#10 LSB)	85 = Ctrl 85	

Controller der Event List in LOGIC (Vs.4.x)

Die gebräuchlisten ControlChanges sind im MIDI-Protokoll festen Nummern zugeordnet. In obiger Liste erkennt man diese an den neben der Nummer stehenden Namen Jedoch lassen sich bei den meisten Geräten diese Nummern anderen Funktionen zuordnen.

Man unterscheidet zwischen Continuos und Switch Controllern, die bei allen Werten über 0 nur den Wert 1 bieten.

PitchBend (stufenlose Tonhöhenveränderung)

bot ursprünglich eine Auflösung von 7 Bit (128 Stufen). Dies kann bei einer Einstellung des Regelbereichs des Pitch Benders zu grob werden, da man einzelne Stufen des Portamentos hören könnte. Durch Nutzung des ersten Datenbytes als Feinunterteilung kann man diesen Wert nochmals mit 128 multiplizieren und erhält so eine Regelung in 16384 Stufen (14Bit). Dies wird allerdings selten genutzt und ist auch meistens nicht sinnvoll; denn die meisten PitchBend-Empfänger sind auf einen Regelbereich von +/-2 Halbtönen eingestellt. Außerdem entsteht bei der Feinauflösung eine für MIDI schlecht zu bewältigende Datenflut. Eine sinnvolle Anwendung des sogenannten PitchWheel 2 kann m.E. nur Step-byStep erfolgen.

After-Touch (Channel-Press)

-daten entstehen gesteigerten Anpressdruck nach dem Anschlagen der Taste. Die so entstandenen Daten werden oft für Vibrato oder Tonhöhenbeugung, aber auch für Filtersteuerung verwendet. Bei einem angeschlagenen Mehrklang bewirkt das Anwenden bei einer Taste auf den gesamten Klang.

PolyPress

bietet dies für jeden einzelnen Ton des Mehrklangs.

Standard-MIDI-Files (SMF)

werden genutzt, um ein Minimum an musikalischer Information in Form von Sequenzerdaten (Computer-) systemübergreifend nutzbar zu machen. Solche Dateien erhalten im Dateinamen die Kürzel ".mid" und enthalten, unabhängig vom Sequenzer-und Computertyp:

- MIDI-Events und ihre zeitlich richtige Position zueinander
- Spurnamen
- Marker
- Tempowechsel
- SysEx-Daten

Man unterscheidet drei SMF-Typen

- Typ 0: Alle Daten in einer Spur
- Typ 1: Eine Spur pro Kanal
- Typ 2: Eine Spur pro Sequenz

Die für einzelne Sequenzerfabrikate typischen Oberflächeneigenschaften müssen dann von Hand eingestellt werden.

General MIDI

Dieser Substandard des MIDI-Protokolls soll eine einheitliche Nutzung von MIDI-Instrumenten auf einfacher Ebene ermöglichen und verlangt so deren Übereinstimmung in folgenden Merkmalen:

- 24-stimmige Instrumente, 16fach multitimbral
- Instrumenten-Mapping f
 ür 128 Klänge (=ProgramChanges)
- Tastenbelegung für Schlaginstrumente auf MIDI-Kanal 10
- Festes Mapping f
 ür wesentliche Controller

Zu den "Solopfaden" einzelner Hersteller gehört es, diesen Standard von Zeit zu Zeit zu erweitern, und zwar um den

General Standard (GS) von Roland, der ein erweitertes Sound Mapping in 128 Banks und die Steuerung von Effekten bot

und den

XG (Extended General) -Standard von Yamaha, bei dem die Festlegung von Klängen nochmals um den Faktor 128 erweitert wurde.

Der General MIDI Standard hat sich bei den multitimbralen ROM-orientierten MIDI-Instrumenten weitgehend durchgesetzt. Er dient besonders Tanzmusikorganisten eine komfortable Grundlage zur Archivierung eines Repertoires, das bei der Nachrüstung durch ein neues Instrument seine Gültigkeit behält. Die Instrumentenauswahl ist auch deutlich auf diese Art der MIDI-Anwendung abgestimmt. Die Berücksichtigung der GS- und XG- Richtlinien beginnt sich durchzusetzen, zumal sie abwärtskompatibel sind, d.h., General-MIDI-orientierte Programmierungen bleiben (weitgehend) auf neuen Instrumenten nutzbar.

Auch die Eigenschaften derjenigen MIDI-Instrumente, die allen drei Standards nicht ausdrücklich genügen (was durch den Aufdruck von Logos auf dem Instrumentengehäuse sichtbar wäre), orientieren sich durch aus an den Mappings von General MIDI. Dies gilt insbesondere für die Drumkit-Tastenbelegung.

Dri	ım-	Bel	ea	un	a
-	4111		~	u	м

Drum-Belegung		
35 B0 Acoustic Bassdrum	52 E2 China Crash Becken	69 A3 Cabasa
36 C1 Bass Drum	53 F2 Ride 2 (Glocke)	70 A#3 Maracas
37 C#1 Rim Shot	54 F#2 Tamburin	71 B3 Trillerpfeife (kurz)
38 D1 Snare Drum 1	55 G2 Splash Becken	72 C4 Trillerpfeife (lang)
39 D#1 Hand Clap	56 G#2 Kuhglocke	73 C#4 Guiro (kurz)
40 E1 Snare Drum 2	57 A2 Crash Becken 2	74 D4 Guiro (lang)
41 F1 Low Floor Tom	58 A#2 Vibraslap	75 D#4 Clave
42 F#1 Closed HiHat	59 B2 Ride Becken 2	76 E4 hoher Holzblock
43 G1 High Floor Tom	60 C3 Hi Bongo	77 F4 tiefer Holzblock
44 G#1 Pedal HiHat	61 C#3 Low Bongo	78 F#4 gedämpfte Cuica
45 A1 Low Tom	62 D3 gedämpfte Hi Conga	79 G4 offene Cuica
46 A#1 Open HiHat	63 D# offene Hi Conga	80 G#4 gedämpfte Triangel
47 B1 Low Mid Tom	64 E3 tiefe Conga	81 A4 offene Triangel
48 C2 Hi Mid Tom	65 F3 hohe Timbale	82 A#4 Shaker
49 C# Crash Becken 1	66 F#3 tiefe Timbale	83 B4 Jingle Bells
50 D2 High Tom	67 G3 hohe Agogo	84 C5 Belltree
51 D#2 Ride Becken 1	68 G#3 tiefe Agogo	

Program-Change-Belegung		
000 Grand Piano	043 Kontrabass	086 Fifth Lead
001 Bright Piano	044 Tremolo Strings	087 Bass & Lead
002 Electric Grand	045 Pizzicato Strings	088 New Age Pad
003 Honky Tonk Piano	046 Harp	089 Warm Pad
004 E-Piano 1	047 Timpani	090 Polysynth. Pad
005 E-Piano 2	048 Strings 1	091 Choir Pad
006 Harpsichord	049 Strings 2	092 Bowed Pad
007 Clavinet	050 Synth. Strings 1	093 Metallic Pad
008 Celesta	051 Synth. Strings 2	094 Halo Pad
009 Glockenspiel	052 Aah Choir	095 Sweep Pad
010 Musicbox	053 Ooh Choir	096 Rain
011 Vibraphon	054 Synth. Voice	097 Soundtrack
012 Marimba	055 Orchestra Hit	098 Crystal
013 Xylophon	056 Trumpet	099 Atmosphere
014 Tubular Bells	057 Trombone	100 Brightness
015 Dulcimer	058 Tuba	101 Goblins
016 Drawbar Organ	059 Muted Trumpet	102 Echoes
017 Perc. Organ	060 French Horn	103 Sci-Fiction
018 Rock Organ	061 Brass Section	104 Sitar
019 Church Organ	062 Synth. Brass 1	105 Banjo
020 Reed Organ	063 Synth. Brass 2	106 Shamisen
021 Accordion	064 Soprano Sax	107 Koto
022 Harmonica	065 Alto Sax	108 Kalimba
023 Tango Accordion	066 Tenor Sax	109 Bagpipe
024 Nylon Guitar	067 Baritone Sax	110 Fiddle
025 Steel Guitar	068 Oboe	111 Shanai
026 Jazz Guitar	069 English Horn	112 Tinkle Bell
027 Clean Guitar	070 Bassoon	113 Agogo
028 Muted Guitar	071 Clarinet	114 Steel Drums
029 Overdrive Guitar	072 Piccolo	115 Woodblock
030 Distortion Guitar	073 Flute	116 Taiko Drum
031 Guitar Harmonics	074 Recorder	117 Melodic Tom
032 Acoustic Bass	075 Pan Flute	118 Synth. Drum
033 Fingered Bass	076 Blown Bottle	119 Reverse Cymbal
034 Picked Bass	077 Shakuhachi	120 Guit, Fret Noise
035 Fretless Bass	078 Whistle	121 Breath Noise
036 Slap Bass 1	079 Ocarina	122 Seashore
037 Slap Bass 2	080 Square Lead	123 Bird Tweet
038 Synth. Bass 1	081 Saw Lead	124 Telephon
039 Synth. Bass 2	082 Calliope Lead	125 Helicopter
040 Violin	083 Chiff Lead	126 Applause
041 Viola	084 Charang Lead	127 Gunshot
042 Cello	085 Voice Lead	
	ı	ı

R