Reproducing kernel Hilbert spaces in Machine Learning

Arthur Gretton

Gatsby Computational Neuroscience Unit, University College London

Advanced topics in Machine Learning, 2018

Assessment and locations

The course has the following assessment components:

- Written Examination (2.5 hours, 50%)
- Coursework (50%)

To pass this course, you must pass both the exam and the coursework

For non-Gatsby students: need to answer at least one question from both topics in exam

For Gatsby students: only need to answer kernels questions in exam

Course times, locations

Kernel lectures will be at the Ground Floor Lecture Theatre, Sainsbury Wellcome Centre

- Kernel lectures lectures are Wednesday, 11:30 -13:00
- Theory lectures lectures are Friday 14:00 -15:30

(with a couple of exceptions!)

There will be lectures during reading week, due to clash with NIPS conference.

The tutor for the kernels part is Heishiro Kanagawa.

Lecture notes will be online:

http://www.gatsby.ucl.ac.uk/~gretton/rkhscourse.html

A motivation: comparing two samples

■ Given: Samples from unknown distributions P and Q.

■ Goal: do P and Q differ?

A real-life example: two-sample tests

- Have: Two collections of samples X, Y from unknown distributions P and Q.
- Goal: do P and Q differ?

MNIST samples

Samples from a GAN

Significant difference in GAN and MNIST?

Training generative models

- Have: One collection of samples X from unknown distribution P.
- Goal: generate samples Q that look like P

LSUN bedroom samples P

Generated Q, MMD GAN

Using MMD to train a GAN

Testing goodness of fit

■ Given: A model P and samples from Q.

■ Goal: is P a good fit for Q?

Chicago crime data

Model is Gaussian mixture with two components.

Testing independence

■ Given: Samples from a distribution P_{XY}

■ Goal: Are X and Y independent?

X	Υ
	A large animal who slings slobber, exudes a distinctive houndy odor, and wants nothing more than to follow his nose.
	Their noses guide them through life, and they're never happier than when following an interesting scent.
	A responsive, interactive pet, one that will blow in your ear and follow you everywhere.
Text from dogtime.com and petfinder.com	

Course overview (kernels part)

- 1 Construction of RKHS,
- 2 Simple linear algorithms in RKHS (e.g. PCA, ridge regression)
- 3 Kernel methods for hypothesis testing (two-sample, independence)
- 4 Further applications of kenels (feature selection, clustering, ICA)
- 5 Support vector machines for classification, regression
- 6 Cutting-edge kernel algorithms (not assessed)

Reproducing Kernel Hilbert Spaces

Kernels and feature space (1): XOR example

- No linear classifier separates red from blue
- Map points to higher dimensional feature space:

$$\phi(x) = \left[\begin{array}{ccc} x_1 & x_2 & x_1x_2 \end{array}\right] \in \mathbb{R}^3$$

Kernels and feature space (2): document classification

Kernels let us compare objects on the basis of features

Kernels and feature space (3): smoothing

Kernel methods can control smoothness and avoid overfitting/underfitting.

Outline: reproducing kernel Hilbert space

We will describe in order:

- 1 Hilbert space (very simple)
- 2 Kernel (lots of examples: e.g. you can build kernels from simpler kernels)
- 3 Reproducing property

Hilbert space

Definition (Inner product)

Let \mathcal{H} be a vector space over \mathbb{R} . A function $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is an inner product on \mathcal{H} if

- 1 Linear: $\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$
- 2 Symmetric: $\langle f,g
 angle_{\mathcal{H}} = \langle g,f
 angle_{\mathcal{H}}$
- $\forall f, f \rangle_{\mathcal{H}} \geq 0 \text{ and } \langle f, f \rangle_{\mathcal{H}} = 0 \text{ if and only if } f = 0.$

Norm induced by the inner product: $\|f\|_{\mathcal{H}} := \sqrt{\langle f, f \rangle_{\mathcal{H}}}$

Definition (Hilbert space)

Inner product space containing Cauchy sequence limits

Hilbert space

Definition (Inner product)

Let \mathcal{H} be a vector space over \mathbb{R} . A function $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is an inner product on \mathcal{H} if

- 1 Linear: $\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$
- 2 Symmetric: $\left\langle f,g\right\rangle _{\mathcal{H}}=\left\langle g,f\right\rangle _{\mathcal{H}}$
- $\forall f, f \rangle_{\mathcal{H}} \geq 0 \text{ and } \langle f, f \rangle_{\mathcal{H}} = 0 \text{ if and only if } f = 0.$

Norm induced by the inner product: $||f||_{\mathcal{H}} := \sqrt{\langle f, f \rangle_{\mathcal{H}}}$

Definition (Hilbert space)

Inner product space containing Cauchy sequence limits.

Hilbert space

Definition (Inner product)

Let \mathcal{H} be a vector space over \mathbb{R} . A function $\langle \cdot, \cdot \rangle_{\mathcal{H}} : \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ is an inner product on \mathcal{H} if

- 1 Linear: $\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle_{\mathcal{H}} = \alpha_1 \langle f_1, g \rangle_{\mathcal{H}} + \alpha_2 \langle f_2, g \rangle_{\mathcal{H}}$
- 2 Symmetric: $\left\langle f,g\right\rangle _{\mathcal{H}}=\left\langle g,f\right\rangle _{\mathcal{H}}$
- $\langle f, f \rangle_{\mathcal{H}} \geq 0$ and $\langle f, f \rangle_{\mathcal{H}} = 0$ if and only if f = 0.

Norm induced by the inner product: $||f||_{\mathcal{H}} := \sqrt{\langle f, f \rangle_{\mathcal{H}}}$

Definition (Hilbert space)

Inner product space containing Cauchy sequence limits.

Kernel

Definition

Let \mathcal{X} be a non-empty set. A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel if there exists a Hilbert space \mathcal{H} and a feature map $\phi: \mathcal{X} \to \mathcal{H}$ such that $\forall x, x' \in \mathcal{X}$,

$$k(x,x') := \left<\phi(x),\phi(x')
ight>_{\mathcal{H}}.$$

- Almost no conditions on \mathcal{X} (eg, \mathcal{X} itself doesn't need an inner product, eg. documents).
- A single kernel can correspond to several possible features. A trivial example for $\mathcal{X} := \mathbb{R}$:

$$\phi_1(x)=x \qquad ext{and} \qquad \phi_2(x)=\left[egin{array}{c} x/\sqrt{2} \ x/\sqrt{2} \end{array}
ight]$$

New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)

Given $\alpha > 0$ and k, k_1 and k_2 all kernels on \mathcal{X} , then αk and $k_1 + k_2$ are kernels on \mathcal{X} .

(Proof via positive definiteness: **later!**) A difference of kernels may not be a kernel (why?)

Theorem (Mappings between spaces)

Let \mathcal{X} and \mathcal{X} be sets, and define a map $A: \mathcal{X} \to \mathcal{X}$. Define the kernel k on $\widetilde{\mathcal{X}}$. Then the kernel k(A(x), A(x')) is a kernel on \mathcal{X} .

Example: $k(x, x') = x^2 (x')^2$.

New kernels from old: sums, transformations

Theorem (Sums of kernels are kernels)

Given $\alpha > 0$ and k, k_1 and k_2 all kernels on \mathcal{X} , then αk and $k_1 + k_2$ are kernels on \mathcal{X} .

(Proof via positive definiteness: **later!**) A difference of kernels may not be a kernel (why?)

Theorem (Mappings between spaces)

Let \mathcal{X} and $\widetilde{\mathcal{X}}$ be sets, and define a map $A:\mathcal{X}\to\widetilde{\mathcal{X}}$. Define the kernel k on $\widetilde{\mathcal{X}}$. Then the kernel k(A(x),A(x')) is a kernel on \mathcal{X} .

Example: $k(x, x') = x^2 (x')^2$.

New kernels from old: products

Theorem (Products of kernels are kernels)

Given k_1 on \mathcal{X}_1 and k_2 on \mathcal{X}_2 , then $k_1 \times k_2$ is a kernel on $\mathcal{X}_1 \times \mathcal{X}_2$. If $\mathcal{X}_1 = \mathcal{X}_2 = \mathcal{X}$, then $k := k_1 \times k_2$ is a kernel on \mathcal{X} .

Proof: Main idea only!

 \mathcal{H}_1 space of kernels between shapes,

$$\phi_1(x) = \left[egin{array}{c} \mathbb{I}_{\square} \ \mathbb{I}_{\triangle} \end{array}
ight] \qquad \phi_1(\square) = \left[egin{array}{c} 1 \ 0 \end{array}
ight], \qquad k_1(\square, \triangle) = 0.$$

 \mathcal{H}_2 space of kernels between colors,

$$\phi_2(x) = \left[egin{array}{c} \mathbb{I}_ullet \ \mathbb{I}_ullet \end{array}
ight] \qquad \phi_2(ullet) = \left[egin{array}{c} 0 \ 1 \end{array}
ight] \qquad k_2(ullet,ullet) = 1.$$

New kernels from old: products

"Natural" feature space for colored shapes:

$$\Phi(x) = \left[egin{array}{cc} \mathbb{I}_{\square} & \mathbb{I}_{\triangle} \ \mathbb{I}_{\square} & \mathbb{I}_{\triangle} \end{array}
ight] = \left[egin{array}{cc} \mathbb{I}_{ullet} \ \mathbb{I}_{ullet} \end{array}
ight] \left[egin{array}{cc} \mathbb{I}_{\square} & \mathbb{I}_{\triangle} \end{array}
ight] = \phi_2(x)\phi_1^ op(x)$$

Kernel is:

$$egin{aligned} k(x,x') &= \sum_{i \in \{ullet,ullet\}} \sum_{j \in \{\Box,igtriangle\}} \Phi_{ij}(x) \Phi_{ij}(x') = \mathrm{tr}\left(\phi_1(x) \underbrace{\phi_2^ op(x)\phi_2(x')}_{k_2(x,x')} \phi_1^ op(x')
ight) \ &= \mathrm{tr}\left(\underbrace{\phi_1^ op(x')\phi_1(x)}_{k_1(x,x')}
ight) k_2(x,x') = k_1(x,x') k_2(x,x') \end{aligned}$$

New kernels from old: products

"Natural" feature space for colored shapes:

$$\Phi(x) = \left[egin{array}{cc} \mathbb{I}_{\square} & \mathbb{I}_{\triangle} \ \mathbb{I}_{\square} & \mathbb{I}_{\triangle} \end{array}
ight] = \left[egin{array}{cc} \mathbb{I}_{ullet} \ \mathbb{I}_{ullet} \end{array}
ight] \left[egin{array}{cc} \mathbb{I}_{\square} & \mathbb{I}_{\triangle} \end{array}
ight] = \phi_2(x)\phi_1^ op(x)$$

Kernel is:

$$egin{aligned} k(x,x') &= \sum_{i \in \{ullet,ullet\}} \sum_{j \in \{\Box,igtriangle\}} \Phi_{ij}(x) \Phi_{ij}(x') = \mathrm{tr}\left(\phi_1(x) \underbrace{\phi_2^ op(x)\phi_2(x')}_{k_2(x,x')} \phi_1^ op(x')
ight) \ &= \mathrm{tr}\left(\underbrace{\phi_1^ op(x')\phi_1(x)}_{k_1(x,x')}
ight) k_2(x,x') = k_1(x,x')k_2(x,x') \end{aligned}$$

Sums and products \implies polynomials

Theorem (Polynomial kernels)

Let $x, x' \in \mathbb{R}^d$ for $d \ge 1$, and let $m \ge 1$ be an integer and $c \ge 0$ be a positive real. Then

$$k(x,x'):=\left(\langle x,x'
angle+c
ight)^m$$

is a valid kernel.

To prove: expand into a sum (with non-negative scalars) of kernels $\langle x, x' \rangle$ raised to integer powers. These individual terms are valid kernels by the product rule.

Infinite sequences

The kernels we've seen so far are dot products between **finitely** many features. E.g.

$$k(x,y) = \left[egin{array}{ccc} \sin(x) & x^3 & \log x \end{array}
ight]^ op \left[egin{array}{ccc} \sin(y) & y^3 & \log y \end{array}
ight]$$

where
$$\phi(x) = \begin{bmatrix} \sin(x) & x^3 & \log x \end{bmatrix}$$

Can a kernel be a dot product between infinitely many features?

Infinite sequences

Definition

The space ℓ_2 (square summable sequences) comprises all sequences $a:=(a_i)_{i\geq 1}$ for which

$$||a||_{\ell_2}^2 = \sum_{\ell=1}^{\infty} a_{\ell}^2 < \infty.$$

Definition

Given sequence of functions $(\phi_{\ell}(x))_{\ell\geq 1}$ in ℓ_2 where $\phi_{\ell}:\mathcal{X}\to\mathbb{R}$ is the ith coordinate of $\phi(x)$. Then

$$k(x, x') := \sum_{\ell=1}^{\infty} \phi_{\ell}(x)\phi_{\ell}(x') \tag{1}$$

Infinite sequences

Definition

The space ℓ_2 (square summable sequences) comprises all sequences $a:=(a_i)_{i\geq 1}$ for which

$$\|a\|_{\ell_2}^2 = \sum_{\ell=1}^{\infty} a_{\ell}^2 < \infty.$$

Definition

Given sequence of functions $(\phi_\ell(x))_{\ell\geq 1}$ in ℓ_2 where $\phi_\ell:\mathcal{X}\to\mathbb{R}$ is the ith coordinate of $\phi(x)$. Then

$$k(x,x') := \sum_{\ell=1}^{\infty} \phi_{\ell}(x)\phi_{\ell}(x')$$
 (1)

Infinite sequences (proof)

Why square summable? By Cauchy-Schwarz,

$$\left|\sum_{\ell=1}^{\infty}\phi_{\ell}(x)\phi_{\ell}(x')
ight|\leq\left\|\phi(x)
ight\|_{\ell_{2}}\left\|\phi(x')
ight\|_{\ell_{2}},$$

so the sequence defining the inner product converges for all $x,x'\in\mathcal{X}$

Taylor series kernels

Definition (Taylor series kernel)

For $r \in (0, \infty]$, with $a_n \geq 0$ for all $n \geq 0$

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \qquad |z| < r, \; z \in \mathbb{R},$$

Define \mathcal{X} to be the \sqrt{r} -ball in \mathbb{R}^d , so $||x|| < \sqrt{r}$,

$$k(x,x') = f\left(\left\langle x,x'
ight
angle
ight) = \sum_{n=0}^{\infty} a_n \left\langle x,x'
ight
angle^n$$
 .

Exponential kernel:

$$k(x,x') := \exp\left(\langle x,x'
angle
ight).$$

Taylor series kernel (proof)

Proof: Non-negative weighted sums of kernels are kernels, and products of kernels are kernels, so the following is a kernel if it converges:

$$k(x,x') = \sum_{n=0}^{\infty} a_n \left(\langle x,x'
angle
ight)^n$$

By Cauchy-Schwarz,

$$|\langle x, x'
angle| \leq \|x\| \|x'\| < r,$$

so the sum converges.

Exponentiated quadratic kernel

Exponentiated quadratic kernel: This kernel on \mathbb{R}^d is defined as

$$k(x,x') := \exp\left(-\gamma^{-2}\left\|x-x'
ight\|^2
ight).$$

Proof: an exercise! Use product rule, mapping rule, exponential kernel.

Positive definite functions

If we are given a function of two arguments, k(x, x'), how can we determine if it is a valid kernel?

- 1 Find a feature map?
 - 1 Sometimes this is not obvious (eg if the feature vector is infinite dimensional, e.g. the exponentiated quadratic kernel in the last slide)
 - 2 The feature map is not unique.
- 2 A direct property of the function: positive definiteness.

Positive definite functions

Definition (Positive definite functions)

A symmetric function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is **positive definite** if $\forall n \geq 1, \ \forall (a_1, \dots a_n) \in \mathbb{R}^n, \ \forall (x_1, \dots, x_n) \in \mathcal{X}^n,$

$$\sum_{i=1}^n\sum_{j=1}^n a_i\,a_j\,k(x_i,x_j)\geq 0.$$

The function $k(\cdot, \cdot)$ is strictly positive definite if for mutually distinct x_i , the equality holds only when all the a_i are zero.

Kernels are positive definite

Theorem

Let $\mathcal H$ be a Hilbert space, $\mathcal X$ a non-empty set and $\phi: \mathcal X \to \mathcal H$. Then $\langle \phi(x), \phi(y) \rangle_{\mathcal H} =: k(x,y)$ is positive definite.

Proof.

$$egin{array}{lll} \sum_{i=1}^n \sum_{j=1}^n a_i a_j k(x_i,x_j) &=& \sum_{i=1}^n \sum_{j=1}^n \left\langle a_i \phi(x_i), a_j \phi(x_j)
ight
angle_{\mathcal{H}} \ &=& \left\| \sum_{i=1}^n a_i \phi(x_i)
ight\|_{\mathcal{H}}^2 \geq 0. \end{array}$$

Reverse also holds: positive definite k(x, x') is inner product in a unique \mathcal{H} (Moore-Aronsajn: coming later!).

Sum of kernels is a kernel

Proof by positive definiteness:

Consider two kernels $k_1(x, x')$ and $k_2(x, x')$. Then

$$egin{aligned} &\sum_{i=1}^n \sum_{j=1}^n a_i \, a_j \, [k_1(x_i, \, x_j) + k_2(x_i, \, x_j)] \ &= \sum_{i=1}^n \sum_{j=1}^n a_i \, a_j \, k_1(x_i, \, x_j) + \sum_{i=1}^n \sum_{j=1}^n a_i \, a_j \, k_2(x_i, \, x_j) \ &\geq 0 \end{aligned}$$

The reproducing kernel Hilbert space

First example: finite space, polynomial features

Reminder: XOR example:

Example: finite space, polynomial features

Reminder: Feature space from XOR motivating example:

$$egin{array}{cccc} \phi : \mathbb{R}^2 &
ightarrow \mathbb{R}^3 \ x = \left[egin{array}{c} x_1 \ x_2 \end{array}
ight] &
ightarrow & \phi(x) = \left[egin{array}{c} x_1 \ x_2 \ x_1 x_2 \end{array}
ight], \end{array}$$

with kernel

$$k(x,y) = \left[egin{array}{c} x_1 \ x_2 \ x_1x_2 \end{array}
ight]^ op \left[egin{array}{c} y_1 \ y_2 \ y_1y_2 \end{array}
ight]$$

(the standard inner product in \mathbb{R}^3 between features). Denote this feature space by \mathcal{H} .

Example: finite space, polynomial features

Define a linear function of the inputs x_1, x_2 , and their product x_1x_2 ,

$$f(x) = f_1 x_1 + f_2 x_2 + f_3 x_1 x_2.$$

f in a space of functions mapping from $\mathcal{X} = \mathbb{R}^2$ to \mathbb{R} . Equivalent representation for f,

$$f(\cdot) = \left[egin{array}{ccc} f_1 & f_2 & f_3 \end{array}
ight]^ op.$$

 $f(\cdot)$ refers to the function as an object (here as a vector in \mathbb{R}^3) $f(x) \in \mathbb{R}$ is function evaluated at a point (a real number).

$$f(x) = f(\cdot)^{\top} \phi(x) = \langle f(\cdot), \phi(x) \rangle_{\mathcal{H}}$$

Evaluation of f at x is an inner product in feature space (here standard inner product in \mathbb{R}^3)

 \mathcal{H} is a space of functions mapping \mathbb{R}^2 to \mathbb{R} .

Example: finite space, polynomial features

Define a linear function of the inputs x_1, x_2 , and their product x_1x_2 ,

$$f(x) = f_1 x_1 + f_2 x_2 + f_3 x_1 x_2.$$

f in a space of functions mapping from $\mathcal{X} = \mathbb{R}^2$ to \mathbb{R} . Equivalent representation for f,

$$f(\cdot) = \left[egin{array}{ccc} f_1 & f_2 & f_3 \end{array}
ight]^{ op}.$$

 $f(\cdot)$ refers to the function as an object (here as a vector in \mathbb{R}^3) $f(x) \in \mathbb{R}$ is function evaluated at a point (a real number).

$$f(x) = f(\cdot)^ op \phi(x) = \left\langle f(\cdot), \phi(x)
ight
angle_{\mathcal{H}}$$

Evaluation of f at x is an inner product in feature space (here standard inner product in \mathbb{R}^3)

 \mathcal{H} is a space of functions mapping \mathbb{R}^2 to \mathbb{R} .

Functions of infinitely many features

Functions are linear combinations of features:

$$f(x) = \langle f, \phi(x) \rangle_{\mathcal{H}} = \sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(x) = \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{bmatrix}^{\top} \begin{bmatrix} \phi_1(x) & & \\ \phi_2(x) & & \\ \phi_3(x) & & \\ \vdots & & \end{bmatrix}$$

$$egin{aligned} k(x,y) &= \sum_{\ell=1}^\infty \phi_\ell(x) \phi_\ell(x') \ f(x) &= \sum_{\ell=1}^\infty f_\ell \phi_\ell(x) \qquad \sum_{\ell=1}^\infty f_\ell^2 < \infty. \end{aligned}$$

Function with exponentiated quadratic kernel:

$$egin{aligned} f(x) &= \sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(x) \ &= \sum_{\ell=1}^{\infty} \left(\sum_{i=1}^{m} lpha_{i} \phi_{\ell}(x_{i}) \right) \phi_{\ell}(x) \ &= \left\langle \sum_{i=1}^{m} lpha_{i} \phi(x_{i}), \phi(x)
ight
angle_{\mathcal{H}} \ &= \sum_{i=1}^{m} lpha_{i} k(x_{i}, x) \end{aligned}$$

Function with exponentiated quadratic kernel:

$$egin{aligned} f(x) &= \sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(x) \ &= \sum_{\ell=1}^{\infty} \left(\sum_{i=1}^{m} lpha_{i} \phi_{\ell}(x_{i})
ight) \phi_{\ell}(x) \ &= \left\langle \sum_{i=1}^{m} lpha_{i} \phi(x_{i}), \phi(x)
ight
angle_{\mathcal{H}} \ &= \sum_{i=1}^{m} lpha_{i} k(x_{i}, x) \end{aligned}$$

Function with exponentiated quadratic kernel:

$$egin{aligned} f(x) &= \sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(x) \ &= \sum_{\ell=1}^{\infty} \left(\sum_{i=1}^{m} lpha_{i} \phi_{\ell}(x_{i})
ight) \phi_{\ell}(x) \ &= \left\langle \sum_{i=1}^{m} lpha_{i} \phi(x_{i}), \phi(x)
ight
angle_{\mathcal{H}} \ &= \sum_{i=1}^{m} lpha_{i} k(x_{i}, x) \end{aligned}$$

Function with exponentiated quadratic kernel:

$$f(x) = \sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(x)$$
 $= \sum_{\ell=1}^{\infty} \left(\sum_{i=1}^{m} \alpha_{i} \phi_{\ell}(x_{i})\right) \phi_{\ell}(x)$
 $= \left\langle \sum_{i=1}^{m} \alpha_{i} \phi(x_{i}), \phi(x) \right\rangle_{\mathcal{H}}$
 $f_{\ell} := \sum_{i=1}^{m} \alpha_{i} \phi_{\ell}(x_{i})$
 $f_{\ell} := \sum_{i=1}^{m} \alpha_{i} \phi_{\ell}(x_{i})$

Function of infinitely many features expressed using m coefficients.

On previous page,

$$f(x) := \sum_{i=1}^m lpha_i oldsymbol{k}(x_i, x) = \langle f(\cdot), \phi(x)
angle_{\mathcal{H}} \qquad ext{where} \quad f_\ell = \sum_{i=1}^m lpha_i \phi_\ell(x_i).$$

What if m = 1 and $\alpha_1 = 1$?

Then

$$f(oldsymbol{x}) = k(oldsymbol{x}_1, oldsymbol{x}) = \left\langle \underbrace{k(oldsymbol{x}_1, \cdot)}_{f(\cdot)}, \phi(oldsymbol{x})
ight
angle_{\mathcal{H}}$$

On previous page,

$$f(x) := \sum_{i=1}^m lpha_i k(x_i,x) = \langle f(\cdot), \phi(x)
angle_{\mathcal{H}} \qquad ext{where} \quad f_\ell = \sum_{i=1}^m lpha_i \phi_\ell(x_i).$$

What if m = 1 and $\alpha_1 = 1$?

Then

$$f(x) = k(x_1, x) = \left\langle \underbrace{k(x_1, \cdot)}_{f(\cdot)}, \phi(x) \right
angle$$

On previous page,

$$f(x) := \sum_{i=1}^m lpha_i rac{k(x_i,x)}{k(x_i,x)} = \left\langle f(\cdot),\phi(x)
ight
angle_{\mathcal{H}} \qquad ext{where} \quad f_\ell = \sum_{i=1}^m lpha_i \phi_\ell(x_i).$$

What if m = 1 and $\alpha_1 = 1$?

Then

$$egin{align} f(oldsymbol{x}) &= k(oldsymbol{x_1}, oldsymbol{x}) = \left\langle \underbrace{k(oldsymbol{x_1}, \cdot)}_{f(\cdot)}, \phi(oldsymbol{x})
ight
angle_{\mathcal{H}} \ &= \left\langle k(oldsymbol{x}, \cdot), \phi(oldsymbol{x_1})
ight
angle_{\mathcal{H}} \ \end{split}$$

....so the feature map is a (very simple) function!

We can write without ambiguity

$$k(x, y) = \langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}}$$

On previous page,

$$f(x) := \sum_{i=1}^m lpha_i rac{k(x_i,x)}{k(x_i,x)} = \left\langle f(\cdot),\phi(x)
ight
angle_{\mathcal{H}} \qquad ext{where} \quad f_\ell = \sum_{i=1}^m lpha_i \phi_\ell(x_i).$$

What if m = 1 and $\alpha_1 = 1$?

Then

$$egin{aligned} f(oldsymbol{x}) &= k(oldsymbol{x}_1, oldsymbol{x}) = \left\langle \underbrace{k(oldsymbol{x}_1, \cdot)}_{f(\cdot)}, \phi(oldsymbol{x})
ight
angle_{\mathcal{H}} \ &= \left\langle k(oldsymbol{x}, \cdot), \phi(oldsymbol{x}_1)
ight
angle_{\mathcal{H}} \end{aligned}$$

....so the feature map is a (very simple) function!

We can write without ambiguity

$$k(x,y) = \langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}}.$$

Features vs functions

A subtle point: \mathcal{H} can be larger than all $\phi(x)$.

E.g. $f = [1 \ 1 \ -1] \in \mathcal{H}$ cannot be obtained by $\phi(x) = [x_1 \ x_2 \ (x_1 x_2)]$.

Features vs functions

A subtle point: \mathcal{H} can be larger than all $\phi(x)$.

E.g. $f = [1 \ 1 \ -1] \in \mathcal{H}$ cannot be obtained by $\phi(x) = [x_1 \ x_2 \ (x_1 x_2)]$.

The reproducing property

This example illustrates the two defining features of an RKHS:

- The reproducing property: (kernel trick)
 - $\forall x \in \mathcal{X}, \ \forall f(\cdot) \in \mathcal{H}, \ \ \left\langle f(\cdot), k(\cdot, x) \right\rangle_{\mathcal{H}} = f(x)$...or use shorter notation $\left\langle f, \phi(x) \right\rangle_{\mathcal{H}}$.
- The feature map of every point is a function: $k(\cdot, x) = \phi(x) \in \mathcal{H}$ for any $x \in \mathcal{X}$, and

$$k(x,x') = \left\langle \phi(x), \phi(x')
ight
angle_{\mathcal{H}} = \left\langle k(\cdot,x), k(\cdot,x')
ight
angle_{\mathcal{H}}.$$

Understanding smoothness in the RKHS

Infinite feature space via fourier series

Function on the interval $[-\pi, \pi]$ with periodic boundary.

Fourier series:

$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp(\imath \ell x) = \sum_{l=-\infty}^{\infty} \hat{f}_{\ell} \left(\cos(\ell x) + \imath \sin(\ell x)
ight)$$

using the orthonormal basis on $[-\pi, \pi]$,

$$rac{1}{2\pi}\int_{-\pi}^{\pi}\exp(\imath \ell x)\overline{\exp(\imath mx)}dx = egin{cases} 1 & \ell=m, \ 0 & \ell
eq m. \end{cases}$$

Example: "top hat" function,

$$egin{aligned} f(x) &= egin{cases} 1 & |x| < T, \ 0 & T \leq |x| < \pi. \ \ \hat{f}_\ell &:= rac{\sin(\ell\,T)}{\ell\pi} & f(x) = \sum_{\ell=0}^\infty 2\hat{f}_\ell\cos(\ell x). \end{cases}$$

Infinite feature space via fourier series

Function on the interval $[-\pi, \pi]$ with periodic boundary. Fourier series:

$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp(\imath \ell x) = \sum_{l=-\infty}^{\infty} \hat{f}_{\ell} \left(\cos(\ell x) + \imath \sin(\ell x)
ight).$$

using the orthonormal basis on $[-\pi, \pi]$,

$$rac{1}{2\pi}\int_{-\pi}^{\pi}\exp(\imath \ell x)\overline{\exp(\imath mx)}dx = egin{cases} 1 & \ell=m, \ 0 & \ell
eq m. \end{cases}$$

Example: "top hat" function,

$$egin{align} f(x) &= egin{cases} 1 & |x| < T, \ 0 & T \leq |x| < \pi. \end{cases} \ \hat{f}_\ell &:= rac{\sin(\ell\,T)}{\ell\,\pi} \qquad f(x) = \sum_{\ell=0}^\infty 2\hat{f}_\ell \cos(\ell x) \end{split}$$

Infinite feature space via fourier series

Function on the interval $[-\pi,\pi]$ with periodic boundary.

Fourier series:

$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp(\imath \ell x) = \sum_{l=-\infty}^{\infty} \hat{f}_{\ell} \left(\cos(\ell x) + \imath \sin(\ell x)\right).$$

using the orthonormal basis on $[-\pi, \pi]$,

$$rac{1}{2\pi}\int_{-\pi}^{\pi}\exp(\imath oldsymbol{\ell}x)\overline{\exp(\imath mx)}dx = egin{cases} 1 & oldsymbol{\ell} = m, \ 0 & oldsymbol{\ell}
eq m. \end{cases}$$

Example: "top hat" function,

$$egin{aligned} f(x) &= egin{cases} 1 & |x| < T, \ 0 & T \leq |x| < \pi. \ \ \hat{f}_\ell &:= rac{\sin(\ell\,T)}{\ell\pi} & f(x) = \sum_{\ell=0}^\infty 2\hat{f}_\ell\cos(\ell x). \end{cases}$$

Fourier series for kernel function

Assume kernel translation invariant,

$$k(x,y)=k(x-y),$$

Fourier series representation of k

$$egin{aligned} k(x-y) &= \sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp\left(\imath\ell(x-y)
ight) \ &= \sum_{\ell=-\infty}^{\infty} \left[\sqrt{\hat{k}_{\ell}} \underbrace{\exp\left(\imath\ell(x)
ight)}_{e_{\ell}(x)}
ight] \left[\sqrt{\hat{k}_{\ell}} \underbrace{\exp\left(-\imath\ell y
ight)}_{e_{\ell}(y)}
ight]. \end{aligned}$$

Example: Jacobi theta kernel

$$k(x-y) = rac{1}{2\pi} artheta \left(rac{(x-y)}{2\pi}, rac{\imath \sigma^2}{2\pi}
ight), \qquad \hat{k}_\ell = rac{1}{2\pi} \exp\left(rac{-\sigma^2 \ell^2}{2}
ight).$$

 ϑ is Jacobi theta function, close to Gaussian when σ^2 much narrower than $[-\pi, \pi]$.

Fourier series for kernel function

Assume kernel translation invariant,

$$k(x,y)=k(x-y),$$

Fourier series representation of k

$$egin{aligned} k(x-y) &= \sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp\left(\imath\ell(x-y)
ight) \ &= \sum_{\ell=-\infty}^{\infty} \left[\sqrt{\hat{k}_{\ell}} \underbrace{\exp\left(\imath\ell(x)
ight)}_{e_{\ell}(x)}
ight] \left[\sqrt{\hat{k}_{\ell}} \underbrace{\exp\left(-\imath\ell y
ight)}_{e_{\ell}(y)}
ight]. \end{aligned}$$

Example: Jacobi theta kernel:

$$k(x-y) = rac{1}{2\pi}artheta\left(rac{(x-y)}{2\pi},rac{\imath\sigma^2}{2\pi}
ight), \qquad \hat{k}_\ell = rac{1}{2\pi}\exp\left(rac{-\sigma^2\ell^2}{2}
ight).$$

 ϑ is Jacobi theta function, close to Gaussian when σ^2 much narrower than $[-\pi,\pi]$.

RKHS via fourier series

Recall standard dot product in L_2 :

$$egin{aligned} raket{f,g}_{L_2} &= \left\langle \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp(\imath \ell x), \sum_{m=-\infty}^{\infty} \overline{\hat{g}_m \exp(\imath m x)}
ight
angle_{L_2} \ &= \sum_{\ell=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \hat{f}_{\ell} \overline{\hat{g}}_{\ell} \left\langle \exp(\imath \ell x), \exp(-\imath m x)
ight
angle_{L_2} \ &= \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \overline{\hat{g}}_{\ell}. \end{aligned}$$

Define the dot product in \mathcal{H} to have a roughness penalty,

$$\langle f, g \rangle_{\mathcal{H}} = \sum_{\ell=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{g}}_{\ell}}{\hat{k}_{\ell}}.$$

RKHS via fourier series

Recall standard dot product in L_2 :

$$egin{aligned} raket{f,g}_{L_2} &= \left\langle \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp(\imath \ell x), \sum_{m=-\infty}^{\infty} \overline{\hat{g}}_m \exp(\imath m x)
ight
angle_{L_2} \ &= \sum_{\ell=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \hat{f}_{\ell} \overline{\hat{g}}_{\ell} \left\langle \exp(\imath \ell x), \exp(-\imath m x)
ight
angle_{L_2} \ &= \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \overline{\hat{g}}_{\ell}. \end{aligned}$$

Define the dot product in \mathcal{H} to have a roughness penalty,

$$\langle f,g
angle_{\mathcal{H}}=\sum_{oldsymbol{\ell}=-\infty}^{\infty}rac{\hat{f}_{oldsymbol{\ell}}ar{\hat{g}}_{oldsymbol{\ell}}}{\hat{k}_{oldsymbol{\ell}}}.$$

Roughness penalty explained

The squared norm of a function f in \mathcal{H} enforces smoothness:

$$||f||_{\mathcal{H}}^2 = \langle f, f \rangle_{\mathcal{H}} = \sum_{l=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{f}_{\ell}}}{\hat{k}_{\ell}} = \sum_{l=-\infty}^{\infty} \frac{\left|\hat{f}_{\ell}\right|^2}{\hat{k}_{\ell}}.$$

If \hat{k}_{ℓ} decays fast, then so must \hat{f}_{ℓ} if we want $||f||_{\mathcal{H}}^2 < \infty$.

Recall
$$f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \left(\cos(\ell x) + \imath \sin(\ell x) \right)$$
 .

Question: is the top hat function in the "Gaussian spectrum" RKHS?

Warning: need stronger conditions on kernel than L_2 convergence: Mercer's theorem.

Roughness penalty explained

The squared norm of a function f in \mathcal{H} enforces smoothness:

$$\|f\|_{\mathcal{H}}^2 = \langle f, f \rangle_{\mathcal{H}} = \sum_{l=-\infty}^{\infty} \frac{\hat{f}_{\ell} \overline{\hat{f}_{\ell}}}{\hat{k}_{\ell}} = \sum_{l=-\infty}^{\infty} \frac{\left|\hat{f}_{\ell}\right|^2}{\hat{k}_{\ell}}.$$

If \hat{k}_{ℓ} decays fast, then so must \hat{f}_{ℓ} if we want $||f||_{\mathcal{H}}^2 < \infty$. Recall $f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} (\cos(\ell x) + i\sin(\ell x))$.

Question: is the top hat function in the "Gaussian spectrum" RKHS?

Warning: need stronger conditions on kernel than L_2 convergence: Mercer's theorem.

Roughness penalty explained

The squared norm of a function f in \mathcal{H} enforces smoothness:

$$\|f\|_{\mathcal{H}}^2 = \langle f, f
angle_{\mathcal{H}} = \sum_{l=-\infty}^{\infty} rac{\hat{f}_{\ell}\overline{\hat{f}_{\ell}}}{\hat{k}_{\ell}} = \sum_{l=-\infty}^{\infty} rac{\left|\hat{f}_{\ell}
ight|^2}{\hat{k}_{\ell}}.$$

If \hat{k}_{ℓ} decays fast, then so must \hat{f}_{ℓ} if we want $||f||_{\mathcal{H}}^2 < \infty$.

Recall $f(x) = \sum_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \left(\cos(\ell x) + i \sin(\ell x) \right)$.

Question: is the top hat function in the "Gaussian spectrum" RKHS?

Warning: need stronger conditions on kernel than L_2 convergence: Mercer's theorem.

Reproducing property: define a function

$$g(x) := k(x-z) = \sum_{\ell=-\infty}^{\infty} \exp{(\imath \ell x)} \underbrace{\hat{k}_{\ell} \exp{(-\imath \ell z)}}_{\hat{g}_{\ell}}$$

Then for a function $f(\cdot) \in \mathcal{H}$,

$$\langle f(\cdot), k(\cdot, z) \rangle_{\mathcal{H}} = \langle f(\cdot), g(\cdot) \rangle_{\mathcal{H}}$$

$$\sum_{\ell = -\infty}^{\infty} \frac{\hat{f}_{\ell}}{\hat{k}_{\ell} \exp(i\ell z)} \frac{\hat{g}_{\ell}}{\hat{k}_{\ell}}$$

$$\sum_{\ell = -\infty}^{\infty} \hat{f}_{\ell} \exp(i\ell z) = f(z).$$

Reproducing property: define a function

$$g(x) := k(x-z) = \sum_{\ell=-\infty}^{\infty} \exp{(\imath \ell x)} \underbrace{\hat{k}_{\ell} \exp{(-\imath \ell z)}}_{\hat{g}_{\ell}}$$

Then for a function $f(\cdot) \in \mathcal{H}$,

$$egin{aligned} \left\langle f(\cdot),k(\cdot,z) \right
angle_{\mathcal{H}} &= \left\langle f(\cdot),g(\cdot)
ight
angle_{\mathcal{H}} & & & \\ \sum\limits_{\ell=-\infty}^{\infty} \frac{\hat{f}_{\ell}}{\hat{k}_{\ell}} & & & \hat{k}_{\ell} \exp(\imath \ell z) \\ & \sum\limits_{\ell=-\infty}^{\infty} \hat{f}_{\ell} \exp(\imath \ell z) &= f(z). \end{aligned}$$

Reproducing property: define a function

$$g(x) := k(x-z) = \sum_{\ell=-\infty}^{\infty} \exp{(\imath \ell x)} \underbrace{\hat{k}_{\ell} \exp{(-\imath \ell z)}}_{\hat{g}_{\ell}}$$

Then for a function $f(\cdot) \in \mathcal{H}$,

$$egin{aligned} \langle f(\cdot), k(\cdot,z)
angle_{\mathcal{H}} &= \langle f(\cdot), g(\cdot)
angle_{\mathcal{H}} \ & rac{\widehat{g_{\ell}}}{\widehat{k_{\ell}}} \ & rac{\widehat{g_{\ell}}}{\widehat{k_{\ell}}} \ & \sum_{\ell=-\infty}^{\infty} \widehat{f_{\ell}} \exp(\imath \ell z) = f(z). \end{aligned}$$

Reproducing property for the kernel:

Recall kernel definition:

$$k(x-y) = \sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp\left(\imath \ell(x-y)\right) = \sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp\left(\imath \ell x\right) \exp\left(-\imath \ell y\right)$$

Define two functions

$$egin{aligned} f(x) &:= k(x-y) = \sum_{\ell = -\infty}^{\infty} \hat{k}_{\ell} \exp\left(\imath\ell(x-y)
ight) \ &= \sum_{\ell = -\infty}^{\infty} \exp\left(\imath\ell x
ight) \underbrace{\hat{k}_{\ell} \exp\left(-\imath\ell y
ight)}_{\hat{f}_{\ell}} \ g(x) &:= k(x-z) = \sum_{\ell = -\infty}^{\infty} \exp\left(\imath\ell x
ight) \underbrace{\hat{k}_{\ell} \exp\left(-\imath\ell z
ight)}_{\hat{g}_{\ell}} \end{aligned}$$

Reproducing property for the kernel:

Recall kernel definition:

$$k(x-y) = \sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp\left(\imath \ell(x-y)\right) = \sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp\left(\imath \ell x\right) \exp\left(-\imath \ell y\right)$$

Define two functions

$$egin{aligned} f(x) &:= k(x-y) = \sum_{\ell = -\infty}^{\infty} \hat{k}_{\ell} \exp{(\imath \ell(x-y))} \ &= \sum_{\ell = -\infty}^{\infty} \exp{(\imath \ell x)} \underbrace{\hat{k}_{\ell} \exp{(-\imath \ell y)}}_{\hat{f}_{\ell}} \ g(x) &:= k(x-z) = \sum_{\ell = -\infty}^{\infty} \exp{(\imath \ell x)} \underbrace{\hat{k}_{\ell} \exp{(-\imath \ell z)}}_{\hat{r}_{\ell}} \end{aligned}$$

$$egin{aligned} \langle k(\cdot,y),k(\cdot,z)
angle_{\mathcal{H}} &= \langle f(\cdot),g(\cdot)
angle_{\mathcal{H}} \ &= \sum_{\ell=-\infty}^{\infty} rac{\hat{f}_{\ell} ar{g}_{\ell}}{\hat{k}_{\ell}} \ &= \sum_{\ell=-\infty}^{\infty} rac{\left(\hat{k}_{\ell} \exp(-\imath \ell y)\right) \left(\hat{k}_{\ell} \exp(-\imath \ell z)\right)}{\hat{k}_{\ell}} \ &= \sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell} \exp(\imath \ell (z-y)) = k(z-y). \end{aligned}$$

$$egin{aligned} \langle k(\cdot,y),k(\cdot,z)
angle_{\mathcal{H}} &= \langle f(\cdot),g(\cdot)
angle_{\mathcal{H}} \ &= \sum_{\ell=-\infty}^{\infty} rac{\hat{f}_{\ell}ar{\hat{g}}_{\ell}}{\hat{k}_{\ell}} \ &= \sum_{\ell=-\infty}^{\infty} rac{\left(\hat{k}_{\ell}\exp(-\imath\ell y)\right)\left(ar{k}_{\ell}\exp(-\imath\ell z)\right)}{\hat{k}_{\ell}} \ &= \sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell}\exp(\imath\ell(z-y)) = k(z-y). \end{aligned}$$

$$egin{aligned} \langle k(\cdot,y),k(\cdot,z)
angle_{\mathcal{H}} &= \langle f(\cdot),g(\cdot)
angle_{\mathcal{H}} \ &= \sum_{\ell=-\infty}^{\infty} rac{\hat{f}_{\ell}ar{g}_{\ell}}{\hat{k}_{\ell}} \ &= \sum_{\ell=-\infty}^{\infty} rac{\left(\hat{k}_{\ell}\exp(-\imath\ell y)\right)\left(ar{k}_{\ell}\exp(-\imath\ell z)\right)}{\hat{k}_{\ell}} \ &= \sum_{\ell=-\infty}^{\infty} \hat{k}_{\ell}\exp(\imath\ell(z-y)) = k(z-y). \end{aligned}$$

Link back to original RKHS function definition

Original form of a function in the RKHS was

(detail: sum now from $-\infty$ to ∞ , complex conjugate)

$$f(z) = \sum_{\ell = -\infty}^{\infty} f_{\ell} \overline{\phi_{\ell}(z)} = \langle f(\cdot), \phi(z)
angle_{\mathcal{H}} \, .$$

We've defined the RKHS dot product as

$$\left\langle f,g
ight
angle_{\mathcal{H}}=\sum_{l=-\infty}^{\infty}rac{\hat{f}_{\ell}}{\hat{k}_{\ell}}$$
 $\left\langle f(\cdot),k(\cdot,z)
ight
angle_{\mathcal{H}}=\sum_{\ell=-\infty}^{\infty}rac{\hat{f}_{\ell}}{\hat{k}_{\ell}}\left(\hat{k}_{\ell}\exp(-\imath\ell z)
ight)$

Link back to original RKHS function definition

Original form of a function in the RKHS was

(detail: sum now from $-\infty$ to ∞ , complex conjugate)

$$f(z) = \sum_{\ell = -\infty}^{\infty} f_{\ell} \overline{\phi_{\ell}(z)} = \langle f(\cdot), \phi(z)
angle_{\mathcal{H}}$$
 .

We've defined the RKHS dot product as

$$\left\langle f,g
ight
angle_{\mathcal{H}}=\sum_{l=-\infty}^{\infty}rac{\hat{f}_{\ell}}{\hat{k}_{\ell}}$$
 $\left\langle f(\cdot),k(\cdot,z)
ight
angle_{\mathcal{H}}=\sum_{\ell=-\infty}^{\infty}rac{\hat{f}_{\ell}}{\left(\hat{k}_{\ell}\exp(-\imath\ell z)
ight)}$

Link back to original RKHS function definition

Original form of a function in the RKHS was

(detail: sum now from $-\infty$ to ∞ , complex conjugate)

$$f(z) = \sum_{\ell=-\infty}^{\infty} f_{\ell} \overline{\phi_{\ell}(z)} = \langle f(\cdot), \phi(z)
angle_{\mathcal{H}}$$
 .

We've defined the RKHS dot product as

$$\left\langle f,g
ight
angle_{\mathcal{H}}=\sum_{l=-\infty}^{\infty}rac{\hat{f_{\ell}}\overline{\hat{g}_{\ell}}}{\hat{k}_{\ell}} \hspace{1cm} \left\langle f(\cdot),k(\cdot,z)
ight
angle_{\mathcal{H}}=\sum_{\ell=-\infty}^{\infty}rac{\hat{f_{\ell}}\left(\overline{\hat{k}_{\ell}}\exp(-\imath\ell z)
ight)}{\left(\sqrt{\hat{k}_{\ell}}
ight)^{2}}$$

By inspection

$$f_{m{\ell}} = \hat{f}_{m{\ell}}/\sqrt{\hat{k}_{m{\ell}}} \qquad \qquad \phi_{m{\ell}}(z) = \sqrt{\hat{k}_{m{\ell}}} \exp(-\imath \ell z).$$

Define a probability measure on $\mathcal{X}:=\mathbb{R}.$ We'll use the Gaussian density,

$$p(x) = rac{1}{\sqrt{2\pi}} \exp\left(-x^2
ight)$$

Define the eigenexpansion of k(x, x') wrt this measure:

$$\lambda_{\ell} e_{\ell}(x) = \int k(x,x') e_{\ell}(x') p(x') dx' \qquad \int_{L_2(p)} e_i(x) e_j(x) p(x) dx = egin{cases} 1 & i=j \ 0 & i
eq j \end{cases}$$

We can write

$$k(oldsymbol{x},oldsymbol{x}') = \sum_{oldsymbol{\ell}=1}^{\infty} \lambda_{oldsymbol{\ell}} oldsymbol{e_{oldsymbol{\ell}}}(oldsymbol{x}) oldsymbol{e_{oldsymbol{\ell}}}(oldsymbol{x}'),$$

which converges in $L_2(p)$.

Warning: again, need stronger conditions on kernel than L_2 convergence

Define a probability measure on $\mathcal{X}:=\mathbb{R}.$ We'll use the Gaussian density,

$$p(x) = rac{1}{\sqrt{2\pi}} \exp\left(-x^2
ight)$$

Define the eigenexpansion of k(x, x') wrt this measure:

$$\lambda_{\ell} \, e_{\ell}(x) = \int k(x,x') \, e_{\ell}(x') p(x') \, dx' \qquad \int_{L_2(p)} e_i(x) \, e_j(x) p(x) \, dx = egin{cases} 1 & i=j \ 0 & i
eq j. \end{cases}$$

We can write

$$k(oldsymbol{x},oldsymbol{x}') = \sum_{oldsymbol{\ell}=1}^{\infty} \lambda_{oldsymbol{\ell}} oldsymbol{e}_{oldsymbol{\ell}}(oldsymbol{x})_{oldsymbol{e}}$$

which converges in $L_2(p)$.

Warning: again, need stronger conditions on kernel than L_2 convergence

Define a probability measure on $\mathcal{X}:=\mathbb{R}.$ We'll use the Gaussian density,

$$p(x) = rac{1}{\sqrt{2\pi}} \exp\left(-x^2
ight)$$

Define the eigenexpansion of k(x, x') wrt this measure:

$$\lambda_{\ell} e_{\ell}(x) = \int k(x,x') e_{\ell}(x') p(x') dx' \qquad \int_{L_2(p)} e_i(x) e_j(x) p(x) dx = egin{cases} 1 & i=j \ 0 & i
eq j. \end{cases}$$

We can write

$$k(x,x') = \sum_{\ell=1}^\infty \lambda_\ell \, e_\ell(x) e_\ell(x'),$$

which converges in $L_2(p)$.

Warning: again, need stronger conditions on kernel than L_2 convergence.

Exponentiated quadratic kernel,

$$egin{aligned} k(x,x') &= \exp\left(-rac{\|x-x'\|^2}{2\sigma^2}
ight) = \sum_{\ell=1}^\infty \underbrace{\left(\sqrt{\lambda_\ell} \, e_\ell(x)
ight) \left(\sqrt{\lambda_\ell} \, e_\ell(x')
ight)}_{\phi_\ell(x)} \ \lambda_\ell \, e_\ell(x) &= \int k(x,x') e_\ell(x') p(x') dx', \ p(x) &= \mathcal{N}(0,\sigma^2). \end{aligned}$$

Exponentiated quadratic kernel,

$$egin{aligned} k(x,x') &= \exp\left(-rac{\|x-x'\|^2}{2\sigma^2}
ight) = \sum_{\ell=1}^\infty \underbrace{\left(\sqrt{\lambda_\ell} e_\ell(x)
ight)\left(\sqrt{\lambda_\ell} e_\ell(x')
ight)}_{\phi_\ell(x)} \ & \lambda_\ell e_\ell(x) = \int k(x,x') e_\ell(x') p(x') dx', \end{aligned}$$

$$p(x) = \mathcal{N}(0, \sigma^2).$$

$$\lambda_{\ell} \propto b^{\ell}$$
 $b < 1$
 $e_{\ell}(x) \propto \exp(-(c-a)x^2)H_{\ell}(x\sqrt{2c}),$
 a, b, c are functions of σ , and H_{ℓ} is ℓ th order Hermite polynomial.

Reminder: for two functions f, g in $L_2(p)$,

$$f(x) = \sum_{\ell=1}^\infty \hat{f}_\ell \, e_\ell(x) \qquad g(x) = \sum_{m=1}^\infty \hat{g}_m \, e_m(x),$$

dot product is

$$egin{align} raket{f,g}_{L_2(p)} &= \left\langle \sum_{\ell=1}^\infty \hat{f}_\ell e_\ell(x), \sum_{m=1}^\infty \hat{g}_m e_m(x)
ight
angle_{L_2(p)} \ &= \int_{-\infty}^\infty \left(\sum_{\ell=1}^\infty \hat{f}_\ell e_\ell(x)
ight) \left(\sum_{m=1}^\infty \hat{g}_m e_m(x)
ight) p(x) dx \ &= \sum_{\ell=1}^\infty \hat{f}_\ell \hat{g}_\ell \end{aligned}$$

Define the dot product in \mathcal{H} to have a roughness penalty

$$\langle f, g \rangle_{\mathcal{H}} = \sum_{\ell=1}^{\infty} \frac{\hat{f}_{\ell} \hat{g}_{\ell}}{\lambda_{\ell}} \qquad \|f\|_{\mathcal{H}}^2 = \sum_{\ell=1}^{\infty} \frac{\hat{f}_{\ell}^2}{\lambda_{\ell}}$$

Reminder: for two functions f, g in $L_2(p)$,

$$f(x) = \sum_{\ell=1}^\infty \hat{f}_\ell \, e_\ell(x) \qquad g(x) = \sum_{m=1}^\infty \hat{g}_m \, e_m(x),$$

dot product is

$$egin{aligned} raket{f,g}_{L_2(p)} &= \left\langle \sum_{\ell=1}^\infty \hat{f}_\ell \, e_\ell(x), \sum_{m=1}^\infty \hat{g}_m \, e_m(x)
ight
angle_{L_2(p)} \ &= \int_{-\infty}^\infty \left(\sum_{\ell=1}^\infty \hat{f}_\ell \, e_\ell(x)
ight) \left(\sum_{m=1}^\infty \hat{g}_m \, e_m(x)
ight) p(x) dx \ &= \sum_{\ell=1}^\infty \hat{f}_\ell \, \hat{g}_\ell \end{aligned}$$

Define the dot product in \mathcal{H} to have a roughness penalty

$$\langle f, g \rangle_{\mathcal{H}} = \sum_{\ell=1}^{\infty} \frac{\hat{f}_{\ell} \hat{g}_{\ell}}{\lambda_{\ell}} \qquad \|f\|_{\mathcal{H}}^2 = \sum_{\ell=1}^{\infty} \frac{\hat{f}_{\ell}^2}{\lambda_{\ell}}$$

Reminder: for two functions f, g in $L_2(p)$,

$$f(x) = \sum_{\ell=1}^\infty \hat{f}_\ell \, e_\ell(x) \qquad g(x) = \sum_{m=1}^\infty \hat{g}_m \, e_m(x),$$

dot product is

$$egin{aligned} raket{f,g}_{L_2(p)} &= \left\langle \sum_{\ell=1}^\infty \hat{f}_\ell \, e_\ell(x), \sum_{m=1}^\infty \hat{g}_m \, e_m(x)
ight
angle_{L_2(p)} \ &= \int_{-\infty}^\infty \left(\sum_{\ell=1}^\infty \hat{f}_\ell \, e_\ell(x)
ight) \left(\sum_{m=1}^\infty \hat{g}_m \, e_m(x)
ight) p(x) dx \ &= \sum_{\ell=1}^\infty \hat{f}_\ell \, \hat{g}_\ell \end{aligned}$$

Define the dot product in \mathcal{H} to have a roughness penalty

$$\langle f, g \rangle_{\mathcal{H}} = \sum_{\ell=1}^{\infty} \frac{\hat{f}_{\ell} \hat{g}_{\ell}}{\lambda_{\ell}} \qquad \|f\|_{\mathcal{H}}^2 = \sum_{\ell=1}^{\infty} \frac{\hat{f}_{\ell}^2}{\lambda_{\ell}}$$

Reminder: for two functions f, g in $L_2(p)$,

$$f(x) = \sum_{\ell=1}^\infty \hat{f}_\ell \, e_\ell(x) \qquad g(x) = \sum_{m=1}^\infty \hat{g}_m \, e_m(x),$$

dot product is

$$egin{aligned} raket{f,g}_{L_2(p)} &= \left\langle \sum_{\ell=1}^\infty \hat{f}_\ell \, e_\ell(x), \sum_{m=1}^\infty \hat{g}_m \, e_m(x)
ight
angle_{L_2(p)} \ &= \int_{-\infty}^\infty \left(\sum_{\ell=1}^\infty \hat{f}_\ell \, e_\ell(x)
ight) \left(\sum_{m=1}^\infty \hat{g}_m \, e_m(x)
ight) p(x) dx \ &= \sum_{\ell=1}^\infty \hat{f}_\ell \, \hat{g}_\ell \end{aligned}$$

Define the dot product in \mathcal{H} to have a roughness penalty,

$$\langle f,g
angle_{\mathcal{H}}=\sum_{\ell=1}^{\infty}rac{\hat{f}_{\ell}\hat{g}_{\ell}}{\lambda_{\ell}} \qquad \|f\|_{\mathcal{H}}^2=\sum_{\ell=1}^{\infty}rac{\hat{f}_{\ell}^2}{\lambda_{\ell}}.$$

$$\langle f,g
angle_{\mathcal{H}}=\sum_{l=1}^{\infty}rac{\hat{f}_{\ell}\hat{m{g}}_{\ell}}{\lambda_{\ell}}$$

$$\langle f,g
angle_{\mathcal{H}} = \sum_{l=1}^{\infty} rac{\hat{f}_{\ell} \, \hat{m{g}}_{\ell}}{\lambda_{\ell}} \qquad \qquad m{g}(\cdot) = k(\cdot,z) = \sum_{\ell=1}^{\infty} \underbrace{\lambda_{\ell} \, e_{\ell}(z)}_{\hat{m{g}}_{\ell}} e_{\ell}(\cdot)$$

Check the reproducing property:

$$\left\langle f,g
ight
angle_{\mathcal{H}}=\sum_{l=1}^{\infty}rac{\hat{f}_{\ell}\hat{g}_{\ell}}{\lambda_{\ell}} \hspace{1cm} oldsymbol{g}(\cdot)=k(\cdot,z)=\sum_{\ell=1}^{\infty}rac{\hat{f}_{\ell}\,\hat{g}_{\ell}}{\hat{g}_{\ell}}$$

Then:

$$\left\langle f(\cdot), k(\cdot, z)
ight
angle_{\mathcal{H}} = \sum_{\ell=1}^{\infty} rac{\hat{f}_{\ell}(\lambda_{\ell} e_{\ell}(z))}{\lambda_{\ell}}$$

Check the reproducing property:

$$\langle f,g
angle_{\mathcal{H}} = \sum_{l=1}^{\infty} rac{\hat{f}_{\ell} \, \hat{g}_{\ell}}{\lambda_{\ell}} \qquad \qquad oldsymbol{g}(\cdot) = k(\cdot,z) = \sum_{\ell=1}^{\infty} rac{\lambda_{\ell} \, e_{\ell}(z)}{\hat{g}_{\ell}} e_{\ell}(\cdot)$$

Then:

$$\left\langle f(\cdot), k(\cdot, z)
ight
angle_{\mathcal{H}} = \sum_{\ell=1}^{\infty} rac{\hat{f}_{\ell} \cancel{\lambda_{\ell}} e_{\ell}(z)}{\cancel{\lambda_{\ell}}}$$

Check the reproducing property:

$$\langle f,g
angle_{\mathcal{H}} = \sum_{l=1}^{\infty} rac{\hat{f}_{\ell} \, \hat{g}_{\ell}}{\lambda_{\ell}} \qquad \qquad oldsymbol{g}(\cdot) = k(\cdot,z) = \sum_{\ell=1}^{\infty} rac{\lambda_{\ell} \, e_{\ell}(z)}{\hat{g}_{\ell}} e_{\ell}(\cdot)$$

Then:

$$egin{align} \langle f(\cdot), k(\cdot, z)
angle_{\mathcal{H}} &= \sum_{\ell=1}^{\infty} rac{\widehat{f_{\ell}} oldsymbol{\chi_{\ell}} e_{\ell}(z)}{oldsymbol{\chi_{\ell}}} \ &= \sum_{\ell=1}^{\infty} \widehat{f_{\ell}} e_{\ell}(z) = f(z) \end{split}$$

Original form of a function in the RKHS was

$$f(z) = \sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(z) = \left\langle f(\cdot), \phi(z)
ight
angle_{\mathcal{H}}$$

Original form of a function in the RKHS was

$$f(z) = \sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(z) = \left\langle f(\cdot), \phi(z)
ight
angle_{\mathcal{H}}$$

Same expression with "roughness penalised" dot product:

$$\langle f,g
angle_{\mathcal{H}} = \sum_{l=1}^{\infty} rac{\hat{f}_{\ell} \hat{oldsymbol{g}_{\ell}}}{\lambda_{\ell}} \qquad \qquad oldsymbol{g}(\cdot) = k(\cdot,z) = \sum_{\ell=1}^{\infty} rac{\lambda_{\ell} \, e_{\ell}(z)}{\hat{g}_{\ell}} e_{\ell}(\cdot)$$

Original form of a function in the RKHS was

$$f(z) = \sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(z) = \left\langle f(\cdot), \phi(z)
ight
angle_{\mathcal{H}}$$

Same expression with "roughness penalised" dot product:

$$\langle f,g
angle_{\mathcal{H}}=\sum_{l=1}^{\infty}rac{\hat{f}_{\ell}\hat{m{g}}_{\ell}}{\lambda_{\ell}} \hspace{1cm} \langle f(\cdot),k(\cdot,z)
angle_{\mathcal{H}}=\sum_{\ell=1}^{\infty}rac{\hat{f}_{\ell}(\overline{\lambda_{\ell}\,e_{\ell}(z))}}{\lambda_{\ell}}$$

Original form of a function in the RKHS was

$$f(z) = \sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(z) = \left\langle f(\cdot), \phi(z)
ight
angle_{\mathcal{H}}$$

Same expression with "roughness penalised" dot product:

$$\left\langle f,g
ight
angle_{\mathcal{H}}=\sum_{l=1}^{\infty}rac{\hat{f}_{\ell}\hat{oldsymbol{g}_{\ell}}}{\lambda_{\ell}} \qquad \qquad \left\langle f(\cdot),k(\cdot,z)
ight
angle_{\mathcal{H}}=\sum_{\ell=-\infty}^{\infty}rac{\hat{f}_{\ell}\left(\lambda_{\ell}e_{\ell}(z)
ight)}{\left(\sqrt{\lambda_{\ell}}
ight)^{2}}$$

Original form of a function in the RKHS was

$$f(z) = \sum_{\ell=1}^{\infty} f_{\ell} \phi_{\ell}(z) = \langle f(\cdot), \phi(z)
angle_{\mathcal{H}}$$

Same expression with "roughness penalised" dot product:

$$\left\langle f,g
ight
angle_{\mathcal{H}}=\sum_{l=1}^{\infty}rac{\hat{f}_{\ell}\hat{oldsymbol{g}_{\ell}}}{\lambda_{\ell}} \qquad \qquad \left\langle f(\cdot),k(\cdot,z)
ight
angle_{\mathcal{H}}=\sum_{\ell=-\infty}^{\infty}rac{\hat{f}_{\ell}\left(\lambda_{\ell}e_{\ell}(z)
ight)}{\left(\sqrt{\lambda_{\ell}}
ight)^{2}}$$

By inspection

$$f_{m{\ell}} = \hat{f}_{m{\ell}}/\sqrt{\lambda_{m{\ell}}} \qquad \qquad \phi_{m{\ell}}(z) = \sqrt{\lambda_{m{\ell}}} e_{m{\ell}}(z).$$

RKHS function, exponentiated quadratic kernel:

$$f(x) := \sum_{i=1}^m lpha_i orall (x_i, x) = \sum_{i=1}^m lpha_i \left[\sum_{j=1}^\infty \lambda_j \, e_j(x_i) e_j(x)
ight] = \sum_{\ell=1}^\infty f_\ell igl[\sqrt{\lambda_\ell} e_\ell(x) igr]$$

where $f_{\ell} = \sum_{i=1}^{m} \alpha_{i} \sqrt{\lambda_{\ell}} e_{\ell}(x_{i})$. 0.8 0.6 0.4 € 0.2 0 -0.2 -0.4 2 -6

NOTE that this enforces smoothing:

 λ_ℓ decay as e_ℓ become rougher, f_ℓ decay since $\sum_\ell f_\ell^2 < \infty$.

Explicit feature space as element of ℓ_2

Is $f(x) < \infty$ despite the infinite feature space?

Finiteness of $f(x) = \langle f, \phi(x) \rangle_{\mathcal{H}}$ obtained by Cauchy-Schwarz,

$$egin{aligned} |\langle f, \phi(x)
angle_{\mathcal{H}}| &= \left| \sum_{i=1}^\infty f_i \sqrt{\lambda_i} e_i(x)
ight| \leq \left(\sum_{i=1}^\infty f_i^2
ight)^{1/2} \left(\sum_{i=1}^\infty \lambda_i e_i^2(x)
ight)^{1/2} \ &= \|f\|_{\ell_2} \sqrt{k(x,x)}. \end{aligned}$$

By triangle inequality,*

$$egin{aligned} \|f\|_{\ell_2} &= \left\|\sum_{i=1}^m lpha_i \phi(x_i)
ight\| \ &\leq \sum_{i=1}^m |lpha_i| \left\|\phi(x_i)
ight\| < \infty. \end{aligned}$$

Explicit feature space as element of ℓ_2

Is $f(x) < \infty$ despite the infinite feature space?

Finiteness of $f(x) = \langle f, \phi(x) \rangle_{\mathcal{H}}$ obtained by Cauchy-Schwarz,

$$egin{aligned} |\langle f, \pmb{\phi}(x)
angle_{\mathcal{H}}| &= \left| \sum_{i=1}^\infty f_i \sqrt{\lambda_i} e_i(x)
ight| \leq \left(\sum_{i=1}^\infty f_i^2
ight)^{1/2} \left(\sum_{i=1}^\infty \lambda_i e_i^2(x)
ight)^{1/2} \ &= \|f\|_{\ell_2} \sqrt{k(x,x)}. \end{aligned}$$

By triangle inequality,*

$$\|f\|_{\ell_2} = \left\|\sum_{i=1}^m lpha_i \phi(x_i)
ight\|$$

$$\leq \sum_{i=1}^m |lpha_i| \|\phi(x_i)\| < \infty.$$

Explicit feature space as element of ℓ_2

Is $f(x) < \infty$ despite the infinite feature space?

Finiteness of $f(x) = \langle f, \phi(x) \rangle_{\mathcal{H}}$ obtained by Cauchy-Schwarz,

$$egin{aligned} |\langle f, \pmb{\phi}(x)
angle_{\mathcal{H}}| &= \left| \sum_{i=1}^\infty f_i \sqrt{\lambda_i} e_i(x)
ight| \leq \left(\sum_{i=1}^\infty f_i^2
ight)^{1/2} \left(\sum_{i=1}^\infty \lambda_i e_i^2(x)
ight)^{1/2} \ &= \|f\|_{\ell_2} \sqrt{k(x,x)}. \end{aligned}$$

By triangle inequality,*

$$egin{aligned} \|f\|_{\ell_2} &= \left\|\sum_{i=1}^m lpha_i \phi(x_i)
ight\| \ &\leq \sum_{i=1}^m |lpha_i| \, \|\phi(x_i)\| < \infty. \end{aligned}$$

*Triangle inequality: ||a + b|| < ||a|| + ||b||.

Main message

Small RKHS norm results in smooth functions.

E.g. kernel ridge regression with exponentiated quadratic kernel:

$$f^* = rg \min_{f \in \mathcal{H}} \left(\sum_{i=1}^n \left(y_i - \langle f, \phi(x_i)
angle_{\mathcal{H}}
ight)^2 + \lambda \|f\|_{\mathcal{H}}^2
ight).$$

Some reproducing kernel Hilbert space

theory

Reproducing kernel Hilbert space (1)

Definition

 \mathcal{H} a Hilbert space of \mathbb{R} -valued functions on non-empty set \mathcal{X} . A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a **reproducing kernel** of \mathcal{H} , and \mathcal{H} is a **reproducing kernel Hilbert space**, if

- lacksquare $\forall x \in \mathcal{X}, \ k(\cdot, x) \in \mathcal{H},$
- $\quad \blacksquare \ \forall x \in \mathcal{X}, \ \forall f \in \mathcal{H}, \ \ \langle f(\cdot), k(\cdot, x) \rangle_{\mathcal{H}} = f(x) \ \text{(the reproducing property)}.$

In particular, for any $x, y \in \mathcal{X}$,

$$k(x,y) = \langle k(\cdot,x), k(\cdot,y) \rangle_{\mathcal{H}}. \tag{2}$$

Original definition: kernel an inner product between feature maps. Then $\phi(x) = k(\cdot, x)$ a valid feature map.

Reproducing kernel Hilbert space (2)

Another RKHS definition:

Define δ_x to be the operator of evaluation at x, i.e.

$$\delta_x f = f(x) \quad orall f \in \mathcal{H}, \; x \in \mathcal{X}.$$

Definition (Reproducing kernel Hilbert space)

 \mathcal{H} is an RKHS if the evaluation operator δ_x is bounded: $\forall x \in \mathcal{X}$ there exists $\lambda_x \geq 0$ such that for all $f \in \mathcal{H}$,

$$|f(x)| = |\delta_x f| \le \lambda_x \|f\|_{\mathcal{H}}$$

⇒ two functions identical in RHKS norm agree at every point:

$$|f(x)-g(x)|=|\delta_x\left(f-g
ight)|\leq \lambda_x\|f-g\|_{\mathcal{H}}\quad orall f,g\in \mathcal{H}.$$

RKHS definitions equivalent

Theorem (Reproducing kernel equivalent to bounded δ_x)

 \mathcal{H} is a reproducing kernel Hilbert space (i.e., its evaluation operators δ_x are bounded linear operators), if and only if \mathcal{H} has a reproducing kernel.

Proof: If \mathcal{H} has a reproducing kernel $\implies \delta_x$ bounded

$$egin{array}{lll} |\delta_x[f]| &=& |f(x)| \ &=& |\langle f,k(\cdot,x)
angle_{\mathcal{H}}| \ &\leq& \|k(\cdot,x)\|_{\mathcal{H}}\|f\|_{\mathcal{H}} \ &=& \langle k(\cdot,x),k(\cdot,x)
angle_{\mathcal{H}}^{1/2}\|f\|_{\mathcal{H}} \ &=& k(x,x)^{1/2}\|f\|_{\mathcal{H}} \end{array}$$

Cauchy-Schwarz in 3rd line . Consequently, $\delta_x:\mathcal{F}\to\mathbb{R}$ bounded with $\lambda_x=k(x,x)^{1/2}.$

RKHS definitions equivalent

Proof: δ_x bounded $\Longrightarrow \mathcal{H}$ has a reproducing kernel We use...

Theorem

(Riesz representation) In a Hilbert space \mathcal{H} , all bounded linear functionals are of the form $\langle \cdot, g \rangle_{\mathcal{H}}$, for some $g \in \mathcal{H}$.

If $\delta_x:\mathcal{F}\to\mathbb{R}$ is a bounded linear functional, by Riesz $\exists f_{\delta_x}\in\mathcal{H}$ such that

$$\delta_x f = \langle f, f_{\delta_x} \rangle_{\mathcal{H}}, \ \forall f \in \mathcal{H}.$$

Define $k(\cdot,x)=f_{\delta_x}(\cdot)$, $\forall x,x'\in\mathcal{X}$. By its definition, both $k(\cdot,x)=f_{\delta_x}(\cdot)\in\mathcal{H}$ and $\langle f(\cdot),k(\cdot,x)\rangle_{\mathcal{H}}=\delta_x f=f(x)$. Thus, k is the reproducing kernel.

Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn)

Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be positive definite. There is a unique RKHS $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ with reproducing kernel k.

Recall feature map is *not* unique (as we saw earlier): only kernel is unique.

Main message

