Lösungsvorschlag Arbeitsheft 1

1 Der Rice Trick

a)

Zuerst baut man eine TM M' aus M und M_2 , welche bei Eingabe $x \in \Sigma^*$ mithilfe der Universellen TM dann M bei Eingabe ε simuliert und darauf, falls dieser Vorgang terminiert, die TM M_2 bei Eingabe x simuliert und dessen Ausgabe übernimmt. Da hier $\langle M \rangle, \langle M_2 \rangle$ beim Bau von M' schon feststehen, kann man diese als Konstanten in $\langle M' \rangle$ speichern. Dann ist M' letztendlich nur die Universelle TM, mit einem Unterprogramm, welches nach der ersten Simulation alle Bänder löscht und die Simulation von M_2 auf x vorbereitet.

Die TM M'' sei nun als 2-Band-TM aufgefasst, wobei man auf Band 1 eben M_1 auf der Eingabe simuliert, und auf Band2 eben M' auf der Eingabe parallel simuliert. Diese Parallelität kann mit einer Art Produktkonstruktion der DFA's von M_1 und M' geschehen, welche dann auf dem Zustandsraum $Q_{M_1} \times Q_{M'}$ arbeitet und eine entsprechend angepasste Übergangsfunktion besitzt.

Schließlich können wir M^+ als Simulation von M'' ansehen, wobei wir zwischen jedem Simulationsschritt die Akzeptanz von M_1 und M' überprüfen.

b)

Durch $\langle M \rangle \in H_{\varepsilon}$ wird M' stets terminieren. Wenn also die Eingabe $x \in \Sigma^*$ nicht in L_1 ist, so wird trotzdem nach endlicher Zeit noch $x \in L_2$ geprüft. Es gilt also

$$\langle M \rangle \in H_{\varepsilon} \implies L(M^+) = L_1 \cup L_2$$

c)

Durch $\langle M \rangle \notin H_{\varepsilon}$ wird M' niemals dazu kommen, $x \in L_2$ für die Eingabe $x \in \Sigma^*$ zu überprüfen. Es folgt

$$\langle M \rangle \notin H_{\varepsilon} \implies L(M^+) = L_1$$

d) Aus den beiden obigen Fällen folgt mit $L_1 = \emptyset$ gut und L_2 schlecht sofort, dass

$$\langle M \rangle \in H_{\varepsilon} \Longrightarrow L(M^+) = L_1 \cup L_2 = L_2 \Longrightarrow \langle M^+ \rangle \notin L_{\varepsilon}$$

sowie dass

$$\langle M \rangle \notin H_{\varepsilon} \Longrightarrow L(M^+) = L_1 = \varnothing \Longrightarrow \langle M^+ \rangle \in L_{\varepsilon}$$

Folglich akzeptiert $T(\mathcal{E})$ die Gödelnummer $\langle M^+ \rangle$ genau dann, wenn $\langle M \rangle \notin H_{\varepsilon}$.

e)

Gäbe es eine solche TM $T(\mathcal{E})$, so könnte man mit dieser als Unterprogramm H_{ε} entscheiden, indem man zu den festen $\langle M_1 \rangle$, $\langle M_2 \rangle$ mit den beschriebenen Eigenschaften und gegebener Eingabe $\langle M \rangle$ die TM $\langle M^+ \rangle$ konstruiert und das Akzeptanzverhalten von $T(\mathcal{E})$ auf $\langle M^+ \rangle$ invertiert.

f)

Was wir von den Sprachen L_1, L_2 benötigen, damit die Argumentation so bestehen kann, ist, dass genau eine der Sprachen L_1 und $L_1 \cup L_2$ gut ist. Wenn also L_1 schlecht ist, so benötigen wir nur eine gute Sprache L_2 . Wenn wir nun M^+ zu diesen so wie zuvor konstruieren haben wir analog zu d), dass

$$\langle M \rangle \in H_{\varepsilon} \iff \langle M^{+} \rangle \in L_{\varepsilon}$$

also dass wir wie in e) beschrieben H_{ε} entscheiden können (nur diesmal ohne das Akzeptanzverhalten von $T(\mathcal{E})$ zu invertieren).

 $\mathbf{g})$

Dies ist analog zu d), da wenn $\langle M \rangle \notin H_{\varepsilon}$, die TM M' aus der Konstruktion von M^+ (siehe a)) niemals halten wird, also M^+ genau L_1 entscheidet. Damit $\langle M^+ \rangle \in L_{\varepsilon}$, $T(\varepsilon)$ akzeptiert $\langle M^+ \rangle$.

h)

Ebenfalls analog zu d) und g), da wenn $\langle M \rangle \in H_{\varepsilon}$ dann M^+ genau $L_1 \cup L_2 = L_2$ entscheidet, also $\langle M^+ \rangle \notin L_{\varepsilon}$ und $T(\varepsilon)$ akzeptiert $\langle M^+ \rangle$ nicht.

i)

Aus g) und h) folgt, dass für eine feste TM A mit $\langle A \rangle \in L_{\mathcal{E}}$ nun

$$f: \Sigma^* \to \Sigma^*, w \mapsto \begin{cases} \langle M^+ \rangle &, w = \langle M \rangle \text{ für eine TM } M \\ \langle A \rangle &, w \text{ keine G\"{o}delnummer} \end{cases}$$

eine (berechenbare!) Reduktion $\overline{H_{\varepsilon}} \leq L_{\varepsilon}$ darstellt. Denn wenn $w \in \Sigma^*$ keine Gödelnummer ist, so ist schonmal $w \in \overline{H_{\varepsilon}}$ und $f(w) = \langle A \rangle \in L_{\varepsilon}$. Ist $w = \langle M \rangle$ für eine TM M, so ist nach g) und h) nun

$$f(w) = \langle M^+ \rangle \in L_{\mathcal{E}} \iff w \in \overline{H_{\varepsilon}}$$

Damit haben wir also eine korrekte Reduktion $\overline{H_{\varepsilon}} \leq L_{\mathcal{E}}$. Der Widerspruch ergibt sich, durch die Annahme, dass $L(\mathcal{E})$ rekursiv aufzählbar ist. Denn dann wäre auch $\overline{H_{\varepsilon}}$ rekursiv aufzählbar, und da nach VL schon H_{ε} rekursiv aufzählbar ist, wäre dann H_{ε} entscheidbar.

j) Die 8 nicht-rekursiv-aufzählbaren Mengen, für die das Werkzeug benutzbar ist:

- 1. $\{\langle M \rangle \mid L(M) = \emptyset\}$ mit $\emptyset = L_1 \subseteq L_2 = \Sigma^*$
- 2. $\{\langle M \rangle \mid \varepsilon \notin L(M)\}$ mit $\emptyset = L_1 \subseteq L_2 = \Sigma^*$
- 3. $\{\langle M \rangle \mid L(M) \text{ regulär}\}$ mit $\emptyset = L_1 \subseteq L_2 = \{0^n 1^n \mid n \in \mathbb{N}\}$ kontextfrei also rek. aufzählbar
- 4. $\{\langle M \rangle \mid L(M) \text{ nicht regulär}\}$ mit $\{0^n1^n \mid n \in \mathbb{N}\} = L_1 \subseteq L_2 = \Sigma^*$
- 5. $\{\langle M \rangle \mid L(M) \text{ rekursiv}\}\ \text{mit } \varnothing = L_1 \subseteq L_2 = H_{\varepsilon}$
- 6. $\{\langle M \rangle \mid L(M) \text{ nicht rekursiv}\}\ \text{mit } H_{\varepsilon} = L_1 \subseteq L_2 = \Sigma^*$
- 7. $\{\langle M \rangle \mid |L(M)| = 1\} \text{ mit } \{0\} = L_1 \subseteq L_2 = \{0, 1\}$
- 8. $\{\langle M \rangle \mid |L(M)| \leq 3\}$ mit $\emptyset = L_1 \subseteq L_2 = \{0, 1, 00, 11\}$

k)

Das ist analog zu d), f), g) und h). Mit $\langle M \rangle \in H_{\varepsilon}$ folgt $L(\langle M^+ \rangle) = L_1 \cup L_2 = L_2$, also $\langle M^+ \rangle \in L_{\varepsilon}$ da L_2 nun gut ist. Ebenso ist mit $\langle M \rangle \notin H_{\varepsilon}$ dann $L(\langle M^+ \rangle) = L_1$, also $\langle M^+ \rangle \notin L_{\varepsilon}$, da L_1 hier schlecht. Damit folgt die Behauptung.

1)

Mit analoger Argumentation zu i) erhält man eine Reduktion $H_{\varepsilon} \leq L_{\varepsilon}$. Da wir bereits aus der VL wissen, dass H_{ε} rekursiv aufzählbar ist, gibt es hier keinen Widerspruch.

m)

Wir zeigen die rekursive Aufzählbarkeit von $L:=\{\langle M\rangle\mid L(M)\neq\varnothing\}.$

Wie im Beweis dass semi-entscheidbare Sprachen rekursiv aufzählbar sind (VL 6) können wir zu einer Eingabe nach einem Syntaxcheck in "Runden" arbeiten; Da die Eingabe nun in der Form $\langle M \rangle$ ist, können wir in der *i*-ten Runde M auf den ersten i Worten der kanonischen Aufzählung von $\{0,1\}^*$ für jeweils i Schritte simulieren. Dies führen wir für jedes $i \in \mathbb{N}$ durch und akzeptieren sobald eines der Worte von M akzeptiert wird.

Wenn nun $L(M) \neq \emptyset$, so existieren $w \in \{0,1\}^*$ und $j,k \in \mathbb{N}$ sodass $w = w_j$ und w von M in k Schritten akzeptiert wird. Damit wird w von M in der $i = \max(j,k)$ -ten Runde akzeptiert und wir akzeptieren $\langle M \rangle$.

Andererseits wird es kein Wort geben welches von M akzeptiert wird, sodass wir Berechnung für ewig weiterläuft, also $\langle M \rangle$ auch nicht akzeptiert wird.

Damit ist also L rekursiv aufzählbar. Die gesuchten Sprachen sind bspw. $L_1 = \emptyset, L_2 = \{0\}.$

2 Ein weiterer Rice Trick

a)

Ähnlich wie in der a) vom letzten Kapitel baut man eine Art Produktkonstruktion welche auf 2 Bändern parallel arbeitet. Dabei wird auf Band 1 eine Universelle TM, welche M_4 auf der Eingabe x simuliert, ausgeführt und auf Band 2 eine modifizierte Universelle TM, welche M für |x| Schritte auf ε simuliert, ausgeführt. Da wir nicht frühzeitig abbrechen müssen, können wir hier akzeptieren, sobald beide "Unterprogramme" akzeptiert haben (wobei die 2. Berechnung eben akzeptiert, wenn der Endzustand von M nicht erreicht wird).

b)

Im Fall $\langle M \rangle \notin H_{\varepsilon}$ wird die zweite Berechnung nie den Endzustand von M erreichen, sodass wir nur die Akzeptanz der ersten Berechnung, welche $x \in L_4$ überprüft, benötigen, um zu akzeptieren. Es gilt also

$$\langle M \rangle \notin H_{\varepsilon} \implies L(M^{++}) = L_4$$

c)

Im Fall $\langle M \rangle \in H_{\varepsilon}$ wird M auf ε in $k \in \mathbb{N}$ Schritten halten. Folglich haben wir für Eingaben $x \in \Sigma^*$ mit |x| < k das Szenario b) erhalten, und für die restlichen Eingaben x mit $|x| \ge k$ wird M^{++} verwerfen. Es folgt

$$\langle M \rangle \in H_{\varepsilon} \implies L(M^{++}) = L_4 \cap \bigcup_{i=0}^{k-1} \Sigma^i = \{x \in L_4 : |x| < k\}$$

wobei $k = \min\{n \in \mathbb{N} \mid M$ hält auf ε in n Schritten $\}$. Da Σ stets endlich ist kann es nur endlich viele Wörter mit höchstens Länge k geben, sodass $L(M^{++})$ eine endliche Teilmenge von L_4 darstellt und damit nach dem gegebenen Szenario nicht gut ist.

d)

Dies folgt sofort aus b):

$$\langle M \rangle \notin H_{\varepsilon} \Longrightarrow L(M^{++}) = L_4 \Longrightarrow \langle M^{++} \rangle \in L_{\varepsilon}$$

Also akzeptiert $T(\mathcal{E})$ auch $\langle M^{++} \rangle$.

e)

Analog zu d) folgt dies aus c):

$$\langle M \rangle \in H_{\varepsilon} \Longrightarrow L(M^{++})$$
 endliche Teilmenge von $L_4 \Longrightarrow \langle M^{++} \rangle \notin L_{\varepsilon}$

Also wird $\langle M^{++} \rangle$ nicht von $T(\mathcal{E})$ akzeptiert.

f)

Wie in Aufgabe i) des letzten Kapitels bekommt man nun eine Reduktion $\overline{H_{\varepsilon}} \leq L_{\varepsilon}$, woraus mit der Annahme, dass L_{ε} rekursiv aufzählbar ist, die Entscheidbarkeit von H_{ε} folgt. Widerspruch.

 $\mathbf{g})$

Die nicht-rekursiv-aufzählbaren Mengen, für die das Werkzeug benutzbar ist:

- $\{\langle M \rangle \mid L(M) = \{0,1\}^*\}$
- $\{\langle M \rangle \mid L(M) \text{ enthält alle Worte in } \{0,1\}^* \text{ mit gerader Länge} \}$
- $\{\langle M \rangle \mid L(M) \text{ ist nicht regulär} \}$ da endliche Mengen stets regulär.
- $\{\langle M \rangle \mid L(M) \text{ ist nicht rekursiv} \}$ da endliche Mengen stets rekursiv.
- $\{\langle M \rangle \mid |L(M)| = \infty\}$

h)

Übrig auf der Liste sind

- 1. $\{\langle M \rangle \mid L(M) \neq \emptyset \}$
- 2. $\{\langle M \rangle \mid \varepsilon \in L(M)\}$
- 3. $\{\langle M \rangle \mid 11101 \in L(M)\}$
- 4. $\{\langle M \rangle \mid |L(M)| \ge 3\}$

Die erste Menge wurde im letzten Kapitel, Aufgabe m) als rekursiv aufzählbar bewiesen.

Mengen 2 und 3 Lassen sich trivialerweise semi-entscheiden, indem wir einfach nach einem Syntaxcheck die gegebene TM auf ε bzw. 11101 simulieren und die Ausgabe übernehmen.

Menge 4 lässt sich analog zu 1 entscheiden, nur dass wir erst akzeptieren, sobald mindestens 3 Wörter akzeptiert wurden.

Damit sind alle übrig-gebliebenen Mengen rekursiv-aufzählbar.

3 Unentscheidbarkeit für context-freie Grammatiken

Wir nehmen im folgenden an, dass die Definitionen der Grammatiken G_i fehlerhaft sind, und eigentlich die folgenden Produktionsregeln gemeint sind:

$$S_1 \to d_1[S_1]x_1 \mid d_2[S_1]x_2 \mid d_3[S_1]x_3 \mid \cdots \mid d_k[S_1]x_k$$

$$S_2 \to d_1[S_2]y_1 \mid d_2[S_2]y_2 \mid d_3[S_2]y_3 \mid \cdots \mid d_k[S_2]y_k$$

wobei hier die standard EBNF-Schreibweise verwendet wird, dass $X \to \alpha[\beta]\gamma$ als optionales β , also $X \to \alpha\beta\gamma \mid \alpha\gamma$ zu verstehen ist.

a)

Halt nen DPDA schreiben, ich kehre nicht.

b)

Deterministisch-kontextfreie Sprachen sind unter Komplementbildung abgeschlossen. Folglich sind $\overline{L(G_1)}$ und $\overline{L(G_2)}$ deterministisch-kontextfreie Sprachen und es gibt einen Algorithmus der Grammatiken G_1' und G_2' berechnet, sodass $L(G_i') = \overline{L(G_i)}$ für i = 1, 2.

 $\mathbf{c})$

Kontextfreie Sprachen sind unter Vereinigung abgeschlossen, und deterministisch-kontextfreie Sprachen sind eine echte Unterklasse der kontextfreien Sprachen. Folglich sind

$$L_3 := L(G_1) \cup L(G_2)$$
 und $L_4 := L(G_1) \cup L(G_2)$

beides kontextfreie Sprachen. Damit existieren kontextfreie Grammatiken G_i mit $L(G_i) = L_i$ für i = 3, 4, welche durch einen Algorithmus berechnet werden können. (Bspw neues Startsymbol und Auswahl zwischen Startsymbolen der beiden Grammatiken; $S_{new} \to S_{G_1} \mid S_{G'_2}$)

d)

Angenommen die gegebene PCP-Instanz hat einen Lösung $i_1, \dots, i_n \in [1, k]_{\mathbb{N}}$. Dann haben wir $x_{i_1} \dots x_{i_n} = y_{i_1} \dots y_{i_n}$. Folglich kann man aus S_1 und S_2 das selbe Wort

$$S_{j} \vdash d_{i_{1}}S_{j}x_{i_{1}} \vdash d_{i_{1}}d_{i_{2}}S_{j}x_{i_{2}}x_{i_{1}} \quad \vdash^{*} \quad d_{i_{1}}\cdots d_{i_{k}}S_{j}x_{i_{k}}\cdots x_{i_{1}} \quad = \quad d_{i_{1}}\cdots d_{i_{k}}S_{j}y_{i_{k}}\cdots y_{i_{1}}$$

ableiten, wobei j = 1, 2. Damit ist $L(G_1) \cap L(G_2) \neq \emptyset$.

Sei nun $L(G_1) \cap L(G_2) \neq \emptyset$. Dann existiert ein Wort $w \in L(G_1) \cap L(G_2)$. Per Definition von G_1, G_2 ist dann $w = d_{i_1} \cdots d_{i_n} x_{i_n} \cdots x_{i_1} = d_{i_1} \cdots d_{i_n} y_{i_n} \cdots y_{i_1}$ für $i_1, \cdots, i_n \in [1, k]_{\mathbb{N}}$. Damit ist dann i_1, \cdots, i_n eine Lösung der PCP-Instanz.

Folglich ist es unentscheidbar, ob zwei gegebene kontextfreie Sprachen leeren Schnitt haben, da man sonst das PCP entscheiden könnte (Konstruktionen der Grammatiken sind berechenbar). **e**)

Angenommen es gilt $L(G_1) \cap L(G_2) \neq \emptyset$. Das ist nach d) äquivalent dazu, dass zu $w \in L(G_1) \cap L(G_2)$ eine Lösung $i = i_1 \cdots, i_n$ der gegebenen PCP-Instanz existiert. Insbesondere ist aber dann auch

$$i^j := \underbrace{i, i, \cdots, i}_{j \text{ mal}} := \underbrace{i_1, \cdots, i_n, \cdots, i_1, \cdots, i_n}_{j \text{ mal } i_1, \cdots, i_n}$$

eine Lösung für jedes $j \in \mathbb{N}$. Folglich haben PCP-Instanzen unendlich viele Lösungen sobald sie eine Lösung haben. Ferner gibt es zu jeder dieser Lösungen genau 1 Wort in $L(G_1) \cap L(G_2)$:

$$i^j$$
 korrespondiert zu $D_i^j X_i^j \in L(G_1) \cap L(G_2)$

wobei
$$D_i^j:=(d_{i_1}d_{i_2}\cdots d_{i_n})^j:=\underbrace{d_{i_1},\cdots,d_{i_n}, \cdots, d_{i_1},\cdots,d_{i_n}}_{j \text{ mal } d_{i_1},\cdots,d_{i_n}}$$
 und analoges für

$$X_i^j := (x_{i_n}, x_{i_{n-1}}, \cdots, x_{i_1})^j = (y_{i_n}, y_{i_{n-1}}, \cdots, y_{i_1})^j$$
 gilt. Also ist

$$L(G_1) \cap L(G_2) \neq \emptyset \iff |L(G_1) \cap L(G_2)| = \infty$$

Damit ist es unentscheidbar, ob zwei gegebene kontextfreie Grammatiken unendlich viele gemeinsame Worte erzeugen, da wir sonst das Schnittproblem aus d) entscheiden könnten.

f)

Dies ist simple Mengenlehre; für Mengen A, B gilt stets:

$$\varnothing = A \cap B = A \cap \overline{\overline{B}} = A \setminus \overline{B} \quad \iff \quad A \subseteq \overline{B}$$

Damit folgt aus d), dass das Inklusionsproblem für kontextfreie Sprachen unentscheidbar ist.

 \mathbf{g}

Wieder simple Mengenlehre; Auch aus f) folgt für Mengen A, B, dass

$$A \cup \overline{B} = \overline{B} \iff A \subseteq \overline{B} \iff A \cap B = \emptyset$$

Damit folgt aus d), dass das Äquivalenzproblem für kontextfreie Sprachen unentscheidbar ist.

h)

Wieder simple Mengenlehre; für Mengen $A, B \subseteq \Omega$ gilt stets:

$$\Omega = \overline{A} \cup \overline{B} \qquad \iff \qquad \overline{\Omega} = \overline{\overline{A} \cup \overline{B}} = A \cap B$$

Da in unserem Beispiel $\Omega = \Sigma^*$ und daher $\overline{\Omega} = \emptyset$ folgt die Behauptung wieder aus d).

i)

Eine Solche Grammatik könnte wie folgt berechnet konstruiert werden:

$$S_5 \to S' \mid S''$$
 $S' \to S_{\Sigma^*} \$ S_{L_0}$ $S'' \to S_{L_4} \$ S_{\Sigma^*}$

wobei $S_{\Sigma^*}, S_{L_0}, S_{L_4}$ die Startsymbole der kontextfreien Grammatiken für Σ^*, L_0 und L_4 sind. Da sich G_4 mit $L(G_4) = L_4$ nach a),b),c) aus der gegebenen PCP-Instanz berechnen lässt, ist also auch G_5 eine berechenbare kontextfreie Grammatik.

j)

Da $L_0 \subseteq \Sigma^*$ folgt sofort

$$L_4 = L(G_4) = \Sigma^* \implies L(G_5) = \Sigma^* \$ L_0 \cup L_4 \$ \Sigma^* = \Sigma^* \$ L_0 \cup \Sigma^* \$ \Sigma^* = \Sigma^* \$ \Sigma^*$$

wobei letzteres trivialerweise regulär ist, da es schon als regulärer Ausdruck gegeben ist.

Sei nun $\Sigma^* \setminus L_4 \neq \emptyset$. Dann existiert ein $p \in \Sigma^* \setminus L_4$. Angenommen L_5 ist regulär. Dann gibt es einen DFA D, welcher L_5 entscheidet. Hat man nun ein Wort $w \in \Sigma^*$ gegeben, so können wir das Wort p \$ w dem DFA D übergeben und damit entscheiden, ob $w \in L_0$. Folglich gäbe es einen DFA welcher L_0 entscheidet, was die Regularität von L_0 zeigen würde, Widerspruch.

k)

Aus h) und j) folgt nun die Unentscheidbarkeit des Regularitätsproblems für kontextfreie Grammatiken; Könnten wir die Regularität von L_5 entscheiden, so könnte man (durch invertieren des Ergebnisses) entscheiden, ob $L_4 = \Sigma^*$, was nach h) unentscheidbar ist.

4 Das zehnte Hilbert'sche Problem

a)

Siehe HA 7.1. Man benutzt zu einer Instanz $p \in \mathbb{Z}[x_1, \dots, x_k]$ dann

$$f(p(x_1,\dots,x_k)) := p'(x_1,x_1',\dots,x_k,x_k') := p(x_1-x_1',\dots,x_k-x_k')$$

Da $\forall z \in \mathbb{Z} : \exists n, m \in \mathbb{N} : z = n - m$ ist f eine funktionierende Reduktion.

b)

Zu einem gegebenen Polynom $p \in \mathbb{Z}[x_1, \cdots, x_n]$ konstruieren wir das Polynom

$$q = \prod_{w \in \{0,1\}^n} p_w$$
 mit $p_w(x_1, \dots, x_n) := p(x_1 + w_1, x_2 + w_2, \dots, x_n + w_n)$

Ist nun $a \in \mathbb{N}^n$ mit p(a) = 0, so gilt $p_w(b) = 0$ wobei $w_i := \begin{cases} 0 & , a_i \text{ gerade} \\ 1 & , a_i \text{ ungerade} \end{cases}$ und $b_i := a_i - w_i$. Offensichtlich sind alle $b_i \in \mathbb{N}$ gerade, und b eine Nullstelle von q.

Ist hingegen $b \in \mathbb{N}^n$ mit q(b) = 0 und b_i gerade, so existiert ein $w \in \{0,1\}^n$ mit $p_w(b) = 0$. Definiere dann $a_i := b_i + w_i \in \mathbb{N}$, dann gilt p(a) = 0. Folglich gilt

$$\langle p \rangle \in \text{Dioph}(\mathbb{N}) \iff \langle q \rangle \in \text{Dioph}(\mathbb{N}_q)$$

sodass wir (mit noch einem Syntaxcheck) eine Reduktion Dioph(\mathbb{N}) \leq Dioph(\mathbb{N}_g) haben. Da Dioph(\mathbb{N}) unentscheidbar, folgt dies nun auch für Dioph(\mathbb{N}_g).

c)

Zu einem gegebenen Polynom $p \in \mathbb{Z}[x_1, \cdots, x_n]$ konstruieren wir das Polynom

$$q(x_1, \dots, x_n) := p(x_1 - 1, \dots, x_n - 1)$$

Ist nun $a \in \mathbb{N}^n$ mit a_i gerade und p(a) = 0, so ist q(b) = 0 für $b_i := a_i + 1 \in \mathbb{N}$ ungerade.

Analog ist zu $b \in \mathbb{N}^n$ mit b_i ungerade und q(b) = 0 dann p(a) = 0 für $a_i := b_i - 1 \in \mathbb{N}$ gerade. Folglich gilt

$$\langle p \rangle \in \text{Dioph}(\mathbb{N}_q) \iff \langle q \rangle \in \text{Dioph}(\mathbb{N}_q)$$

sodass wir (mit noch einem Syntaxcheck) eine Reduktion $\operatorname{Dioph}(\mathbb{N}_g) \leq \operatorname{Dioph}(\mathbb{N}_u)$ haben. Da $\operatorname{Dioph}(\mathbb{N}_g)$ unentscheidbar, folgt dies nun auch für $\operatorname{Dioph}(\mathbb{N}_u)$.

d)

Sei also $f: \Sigma^* \to \Sigma^*$ eine Abbildung, welche Müll auf Müll abbildet. Zu einem korrekt-kodiertem Polynom $p \in \mathbb{Z}[x_1, \cdots, x_k]$ definieren wir

$$f(p(x_1,\dots,x_k)) := p'(x_{1,1},x_{1,2},x_{1,3},x_{1,4},\dots,x_{k,1},x_{k,2},x_{k,3},x_{k,4})$$

wobei

$$p'(x_{1,1}, x_{1,2}, x_{1,3}, x_{1,4}, \cdots, x_{k,1}, x_{k,2}, x_{k,3}, x_{k,4}) := p(\sum_{i=1}^{4} x_{1,i}^{2}, \cdots, \sum_{i=1}^{4} x_{k,i}^{2})$$

Offensichtlich ist p' ebenfalls ein Polynom und f ist berechenbar. Falls $(a_1, \dots, a_k) \in \mathbb{N}^k$ eine Nullstelle von p ist, so gilt nach Lagrange, dass $\forall a_i : \exists b_{1,1}, b_{1,2}, b_{1,3}, b_{1,4} \in \mathbb{N} : \sum_{i=1}^4 b_{1,i}^i = a_i$. Damit ist dann $(b_{1,1}, b_{1,2}, b_{1,3}, b_{1,4}, \dots, b_{k,1}, b_{k,2}, b_{k,3}, b_{k,4}) \in \mathbb{Z}^{4k}$ eine Nullstelle von p'.

Für die Rückrichtung sei nun $(b_{1,1},b_{1,2},b_{1,3},b_{1,4},\cdots,b_{k,1},b_{k,2},b_{k,3},b_{k,4})\in\mathbb{Z}^{4k}$ eine Nullstelle von p'. Dann ist zu $a_i:=\sum_{j=1}^4 b_{i,j}^2\in\mathbb{N}$ für $i\in[1,k]_{\mathbb{N}}$ nun $(a_1,\cdots,a_k)\in\mathbb{N}^k$ eine Nullstelle von p.

e)

Zu $q_1, \dots, q_k \in \mathbb{Z}[x_1, \dots, x_n]$ gilt

$$\forall i \in [1, k]_{\mathbb{N}} : q_i(x) = 0 \qquad \iff \qquad \underbrace{\sum_{i=1}^k q_i(x)^2}_{\in \mathbb{Z}[x_1, \dots, x_n]} = 0$$

f)

Wir gehen systematisch vor und starten mit dem gegebenen Gleichungssystem p(x) = 0.

1. Solange es Gleichungen g(x) = a mit g(x) = q(x) + r(x) mit $\deg(q) > 2, 0 \le \deg(r) \le 2$ gibt, ersetze die Gleichung g(x) = a durch

$$q(x) = b$$
 $r(x) = c$ $b + c = a$

2. Solange es Gleichungen g(x) = a mit $g(x) = q(x) \cdot r(x)$ mit $\deg(q) \ge 2, \deg(r) = 1$ gibt, ersetze die Gleichung g(x) = a durch

$$q(x) = b$$
 $r(x) = c$ $bc = a$

3. Ersetze alle Gleichungen der Form g(x) = a durch g(x) - a = 0.

Beispiel: $p \in \mathbb{Z}[x,y,z]$ mit $p(x,y,z) = 4x^2y - yz^2 + 1$. Man erhält nach ausführen der Schritte:

 \mathbf{g}

Sei $p \in \mathbb{Z}[x_1, \dots, x_k]$ also ein gegebenes Polynom.

Fall 1: $p(x)^2$ hat nur positive Koeffizienten. Es gilt

$$\exists a \in \mathbb{Z}^k : p(a) = 0 \iff p(a)^2 = 0 \iff p(a) + 1 \not\geqslant 1$$

da ja stets $p(x)^2 \ge 0$. In diesem Fall hätten wir also 2 Polynome mit nur positiven koeffizienten, $p_2(x) := p(x)^2 + 1, p_1(x) := 1$ gefunden.

Fall 2: $p(x)^2$ lässt sich schreiben als $p(x)^2 = p_2(x) - p_1(x)$ für p_2, p_1 polynome mit positiven ganzzahligen Koeffizienten. Da stets $p_2(x) \ge p_1(x)$ gilt nun

$$\exists a \in \mathbb{Z}^k : p(a) = 0 \iff p(a)^2 = 0 \iff p_2(a) \not> p_1(a)$$

Offensichtlich sind p_1, p_2 aus p berechenbar. Damit könnten wir also entscheiden ob p eine ganzzahlige Nullstelle hat; falls $\forall x \in \mathbb{Z}^k : p_2(x) > p_1(x)$ so ist $\langle p \rangle \notin$ Dioph, andernfalls ist $\langle p \rangle \in$ Dioph. Folglich kann das gegebene Problem nicht entscheidbar sein.

Beispiel für univariate: $p, p_1, p_2 \in \mathbb{Z}[x]$ mit $p(x) = -x^2 + 2x + 3$ also $p(x)^2 = x^4 - 4x^3 - 2x^2 + 12x + 9$. Dann sind $p_2(x) = x^4 + 12x + 9$ und $p_1(x) = 4x^3 + 2x^2$. Und wir haben

$$\{x \in \mathbb{Z} \mid p_2(x) \not> p_1(x)\} = \{-1, 3\} = \{x \in \mathbb{Z} \mid p(x) = 0\}$$