Solutions to MST 3811/3911 (2011) P.1 (a) The density is  $(1+\theta)*1*e = a(\theta)b(x)e$ with  $d(x)=b_1x$ . Hence  $\int_{i=1}^{n}d(x_i) = \sum_{i=1}^{n}b_ix_i$  is a minimal sufficient and complete statistics for  $\theta$ . el enf(x; 0) = en(1+0) + Ohux Flence  $X_1(\theta) = -E(-L) = \frac{1}{(1+\theta)^2} \ln f(X_1(\theta)) = -\frac{1}{(1+\theta)^2}$ Hence  $X_1(\theta) = -E(-L) = \frac{1}{(1+\theta)^2}$  is the information in one observation. The  $I_X(\theta) = \frac{n}{(1+\theta)^2}$  is the information in the whole sample and , since T' is sufficient,  $I_T(\theta) = I_X(\theta) = \frac{n}{(1+\theta)^2}$ c) log L(X; 0) = nlog(1+0) + & Ilaxi  $V(x,\theta) = \frac{\partial}{\partial \theta} \log L(X_i, \theta) = \frac{n}{1+\theta} + \sum_{i=1}^{n} \ln X_i$ Hence  $V(X;\theta) = 0$   $\Longrightarrow \frac{n}{1+\theta} = -\frac{1}{2} la X_i$  and  $\theta = -1 - \frac{n}{2} la X_i$ By invariance property of MIE:  $\overline{L(\theta)} = \overline{L(\theta)} = \frac{1}{1+\widehat{\theta}} = \left| \frac{-\sum_{i \neq j} l_i \chi_i}{n} \right|$ Now since  $EV(X;\theta) = 0 = nE_{\theta}\left(\frac{1}{1+\theta} + \frac{n}{2}\ln X_i\right) = nE_{\theta}\left(\frac{1}{1+\theta} + \frac{$ and  $n \neq 0$  we see that  $E\overline{t}(\theta) = E\overline{t}(\theta) = \overline{t}(\theta)$  holds that is, I(0) is unbiased for  $T(\theta)$ . Since  $\theta$  is a nonlinear transformation of T(0) then E 0 + EA (however, It is still asymptotically unbiased for of d) CRLB =  $\frac{1}{100} \frac{1}{1+0} = \frac{1}{1+0} \frac{$  $V = -n(\hat{t} - \tau(\theta))$  we once again see that  $\hat{t}$  is unbiased for  $\tau(\theta)$  and is unvuE that attains the bound

e)  $\hat{\gamma} \approx N(T(\theta), \frac{1}{n(H\theta)^2}) \approx N(T(\theta), \frac{1}{n(H\theta)^2}) \approx N(T(\theta), \frac{\hat{\gamma}}{n})$ The we can pretend that we have one observation (2) from  $N(T(\theta), \frac{2}{h})$  and we want to construct CI for the mean of this normal distribution. Hence, 95% CI will be  $\hat{T} \pm 1.96 \frac{\hat{T}}{\sqrt{N}} = .55 \pm 1.96 \frac{0.55}{\sqrt{40}} = (0.3795, 0.72045)$ f)  $\tau(\theta) = 3e^{-3(\theta+1)}$ ,  $\theta > -1$   $h(\theta|X) \propto (1+\theta)^n (\prod_{i=1}^n x_i)^{\frac{1}{\theta}} e^{-3(\theta+1)} \propto (1+\theta)^n e^{(\sum_{i=1}^n x_i - 3)(1+\theta)}$ Selfing  $\theta + 1 = p > 0$ , this is  $\propto p^n e^{(\sum_{i=1}^n x_i + 3)} p^n$ which is a Gamma density with d = n + 1;  $\beta = \frac{1}{3 - \sum_{i=1}^n x_i}$ Now  $E(\theta|X) = E(p-1|X) = E(p|X) - 1$ But  $E(p|X) = \frac{n+1}{3 - \sum_{i=1}^n x_i}$ So  $\hat{\theta}_{\text{Bayes}} = E(\theta|X) = -\frac{n+1}{2(n + 3)}$ When n is large, we see that  $\hat{\theta}_{\text{Bayes}} \approx -1 - \frac{n}{\sum_{i=1}^n x_i} = \hat{\theta}_{\text{MLE}}$ g) Since  $h(\theta_1, \theta_2) = \frac{\theta_1 + 1}{\theta_2 + 1} \Rightarrow \nabla h(\theta_1, \theta_2) = \left(\frac{1}{\theta_2 + 1}, -\frac{(1 + \theta_1)^2}{(1 + \theta_2)^2}\right)$ Because of the independence of the two Samples, and using 6), we have  $I(\theta_1,\theta_2) = \frac{1}{(1+\theta_1)^2}$ . The delta method says that the  $\frac{(X_1)}{(Y_1)}$  asymptotic distribution of  $In(h-h(\theta_1,\theta_2))$  is a zero-mean normal and the variance is 

