Student's Name:	

Instructions:

- You have to show all work in order to receive full credit
- 1. A owner of a house wants to design a lamp that works with the following specifications:
- A lamp in a room is operated from two switches, one at the *front* and one at the *back* of the room.
- The lamp is to be ON if both of the switches are ON.
- The lamp is to be OFF if one of the switches is OFF.

According to the description, the best logic gate to perform the operation is (6 pts):

- 2. The number of output combinations for a 6-input logic gate is (6 pts):
- 3. If four NOT gates are connected in series and the input to the first gate is a **HIGH** (1), the output of the fourth gate will be (6 pts): _____

4. What is the truth table for an **NAND** gate is (6 pts):

Truth Table 2-input NAND gate		
Inputs		Output
A	В	Y
0	0	
0	1	
1	0	
1	1	

5. Given the input A, find the output Y of the given gate (6 pts):

6. Given the input A and B, find the output Y of the given gate (6 pts each):

$$A = 0100 \ 1011_2$$
 $B = 1110 \ 1101_2$
A B Y B

$$A = 1010 \ 1100_2$$
 $B = 0110 \ 0101_2$
 $B = 0110 \ 0101_2$
 $B = 0110 \ 0101_2$

$$A = 1100 \ 1100_2$$
 $B = 1010 \ 0011_2$
A B B

$$A = 1010 \ 1100_2$$
 $B = 0110 \ 0101_2$
A B B

$$A = 0100 \ 1011_2$$
 $B = 1110 \ 1101_2$ $B = 1110 \ 1101_2$

$$A = 1010 \ 1100_2$$
 $B = 0110 \ 1101_2$
 $B = 0110 \ 1101_2$
 $A = 0.0000$
 $A = 0.00000$
 $A = 0.0000$
 $A = 0.0000$
 $A = 0.0000$
 $A = 0.0000$
 $A = 0.0$

7. Given the input waveform A and B, find the output Y of the given logic gate (11 pts)

1. Given the input waveform A, B, and C, find the output Y of the given logic gate (12 pts)

 \mathbf{A}

B

 \mathbf{C}

Y

2. Given the input waveform A, B, and C, find the output Y of the given logic gate (11 pts)

 \mathbf{A}

B

 \mathbf{Y}

 \mathbf{C}