CSE4020 - MACHINE LEARNING DIGITAL ASSIGNMENT 1

Question:

You have to download 6 to 8 recent journal papers from reputed journal (IEEE, Elsvier, Springer, MDPI, Hindwai etc.) belonging to same machine learning application like covid19 reproduction rate prediction. Read out the paper completely and go through the methodology used, Results, Performance metrics, pros and cons. Try to find out a core pitfall for future work from these papers.

Topic Chosen: Pneumonia Detection...

Pneumonia is an infection of lungs which makes breathing difficult for the patient inheriting it. It is can be caused due to virus, bacteria or fungi and a patients natural functioning of lungs. The topic of pneumonia detection was chosen keeping COVID19 in mind. Coronavirus infects a person's lungs and causes severe pneumonia like traits. Deaths that occurred due to COVID19 were predominantly due to progressive pneumonia in patients and hence early identification of pneumonia is necessary to avoid life threating consequences in a patient and treat one in the best possible way by the earliest.

Identification of Pneumonia is majorly proposed by chest X-ray images, but recent studies have initiated these by studying how a patient's coughing traits and affected symptoms with highly encouraging accuracies.

Literature Review:

SI. No.	Paper Title and Year	Method (Algorithm)	Results (performance metrics)	Advantage and Limitation
1.	Pneumonia Detection using an Improved Algorithm based on Faster R-CNN (21-Apr-2021) Hindwai Publication	They have employed Regions with Convolutional Neural Network approach to detect pneumonia on chest X-rays. To detect the anchor-box they have used K-mean++ algorithm and it helps them analyse target region.	They have used various evaluation metrics including ROC, Interaction over Union (IoU). They achieved an accuracy of 67.56% on test set	The very first limitation of this implementation is that u need to have a high end computing graphic card, i.e., Nvidia GeForce GTX 1080 configuration. Also, despite having these configurations the accuracy of test set was not as expected coz test accuracy was at a bare minimum of less than 70%.
2.	Automatic Detection of Acute Bacterial Pneumonia from Chest X- ray Reports . (1-Nov-2000)	They have used the accuracy of an NLP system named as SymText for extracting pneumonia features from chest X-ray reports. They have manually used ensemble learning of 7 different physicians with	The algorithm they used gave them an accuracy ranging from 0.86 to 0.96 as different test sets were considered. Also, the Recall, Precision, Specificity and agreement of the model was	The major backdrop of this approach is that it is not fully automated. It requires manual predictions from highly trained physicians who can clearly specify and relate the features of disease to a patient.

	Journal of the	different features	0.94, 0.87,	Although, they
	American	to check majority	0.91 and 0.84	have also
	Medical	voting.	when	implemented
	Informatics		physicians	automated
	Association		assisted there	classification
			reading. When	but its accuracy
			it was fully	is as low as 46%.
			automated,	The next issue
			these values	with their
			reduced to	manual
			0.46, 0.89,	approach is
			0.95 and 0.54	although it gave
				an accuracy of
				96%, they need
				7 (approx.)
				different types
				of physicians.
				This accuracy of
				96% was
				achieved only
				due to the
				difference in
				approach of
				each physician,
				the accuracy will
				decrease
				drastically if
				lesser number
				of them were to
				considered.
				Also, the paper stands out-
				dated as it was
				published in
	Dogumenia	Thou have used	Thou have	2000.
3.	Pneumonia Potastion on	They have used	They have	The lung
	Detection on	NIH ChestX-Ray14	achieved the	segmentation
	Chest X-Ray	dataset to train	best accuracy	approach which
	using Machine	and test their	with	was used in the
		classifier. They	Multilayer	paper is still

<u>Learning</u> <u>Paradigm.</u>

(01-Nov-2019)

Proceedings of 3rd
International
Conference on
Computer
Vision and
Image
Processing.

have used 5 different classifiers. They are Multilayer Perceptron, Random Forest, Sequential Minimal Optimization, Classification via regression and Logistic Regression. They have user CXR images and have used ROI bounded lungs for feature selection.

Perceptron. Accuracy with MLP was 92.33%, with Random Forest was 90.534%, SMO was 89.806%, Classification via Regression was 91.990% and with Logistic Regression it was 91.505%. Also, the F1 score of MLP was 91.753, Sensitivity was 86.408%, Specificity was 98.058% and Precision was 97.802%.

under development. Also, it needs further enhancements for paediatric cases and pleural effusions. The method they proposed clearly ignored the medical background of the patient. This often happens with the CXR **ROI** bounded feature extraction that even cardiac related patients are termed to have pneumonia. This is because the ROI of a Chest X-Ray only studies the shape of lung and the lung size can be affected by lot many diseases including pneumonia and since dataset didn't deal with such cases, the accuracy seemed

				amazing, which
				might not be
				the case with
				heart related
				patients.
4.	Pneumonia	They have used	They have	Similar to
	Detection Using	Densely	used various	previous paper's
	CNN based	Connected	evaluation	limitation, their
	Feature	Convolutional	metrics which	feature
	Extraction.	Neural Network	included C	extraction
		as classifier to	value, gamma	detector detects
		predict if a given	value and AUC	only the
	(17-Oct-2019)	chest x-ray	value. They	boundary of
	,	images is infected	have	lungs and hence
		by pneumonia.	compared	does not
	Institute of	They have divided	their results	consider the
	Electrical and	their architecture	with similar	change in size
	Electronics	into 3 different	works	and shape of
	Engineering.	stages which	proposed	lungs due to
		includes the pre-	using different	some other
		processing stage,	algorithms	infections which
		feature extraction	which	are very much
		stage and the	included SVM,	affected by
		classification	NB, RF etc.	heart related
		stage. For Feature	The AUC value	diseases. They
		extraction they	they achieved	have considered
		have used the	was 60.90%.	these kinds of
		architecture of		images in their
		DenseNet-169.		test set and
				hence we can
				see it is
				reflected in
				their accuracy
				as well. The
				accuracy stands
				less than 60.9%
				which suggests
				the poor
				performance of
				their model

				when past
				medical history
				of patient is not
				considered.
5.	A Deep Feature	They have used	The had True	With their
	Learning Model	pneumonia	Negative	approach of
	for pneumonia	dataset which	Value of 1270,	implementation,
	Detection	consisted of	True Positive	they need 3
	applying a	around 6000	Value of 1274,	different kinds
	Combination of	samples. They	False Positive	of feature
	mRMR Feature	have deployed	value of 10	extraction
	Selection and	Convolutional	and False	methods
	Machine	Neural Networks	negative value	namely AlexNet,
	Learning	with 5-step	of 5. The	VGG-16 and
	Models .	process. This	accuracy of	VGG-19. These
		process involved,	their model	makes the
		Sequential Layer,	stands at 99%	algorithm very
	(06-Nov-2019)	Feature Selection,	which is very	slow and
		Max Pooling,	overwhelming.	training it takes
		Flattening and	Also, they	more than
		Fully Connected	achieved a	feasible time.
	IRBM journal	Dense Layer. For	learning rate	This difficulty is
	of Alliance for	feature extraction	of 0.2% which	added on by the
	Engineering in	they have used	suggested	need of high-
	Biology an	Image Data	with execution	end
	Medicine	Generator, where	of every epoch	computation
	Alliance pour le	they flipped and	they had an	Graphical
	génie	scaled the image	increment in	Processing Unit
	biologique et	horizontally and	their accuracy.	or Online
	médical	also applied shear		Runtime
		tension on the		environment of
		images within the		Google Colab
		image range. By		which had
		deploying these		issues with
		they have made		saving runtime
		sure that they		and hence
		don't get into		required
		issues of lung's		training of
		shape and hence		model again and
		minimized the		again.

		error due to heart		
		related diseases.		
6.	Differentiating	The paper	They used	The feature
	novel	proposed a deep	dataset with	extractor of U-
	Coronavirus	learning model	40% normal	net was
	performance	named COVNet	pneumonia	designed on
	from general	which is based on	cases, 30% of	deep learning
	pneumonia	visual features	COVID	models and had
	based on	from volumetric	acquired	millions of
	<u>Machine</u>	Chest Images to	pneumonia	weighted
	Learning .	distinguish	cases and 30%	neurons with
		COVID19 from	of non-	embedded
		normal	pneumonia	information and
	(19-Aug-2020)	pneumonia. They	cases. They	hence the
		used three-	achieved a	model lacked
		dimensional	sensitivity of	interpretability
		Chest X-Rays for	90%,	and
	BioMedical	feature	specificity of	transparency in
	Engineering	identification.	96% while the	feature
	OnLine	They applied U-	CAP values	detection. Also,
		net to crop the	stood at 87%	U-Net was
		lung region as the	and 92%. The	serialized with
		ROI of both two	accuracy value	ResNet-18 and
		dimensional and	of training set	fed into ResNet-
		three	was a	23 which made
		dimensional	whopping 96%	the model
		features were	and on test set	computationally
		extracted by	it was 95%.	extensive and
		COVNext based		expensive
		on their ROIs.		process and
				hence was not
				very feasible.
7.	<u>Pneumonia</u>	They have used	Their model	Their model's
	<u>Detection using</u>	real-time dataset	achieved an	foundation is on
	Deep Learning	from Ruian	accuracy of	COVID related
	<u>Approaches</u>	People's Hospital	94.16%,	pneumonia and
		and have	specificity of	does not
		categorised them	100% and	identify normal
		into pneumonia	sensitivity of	pneumonia
	(25-Feb-2020)	set and non-	88.62%. The	cases. The

2020
International
Conference on
Emerging
Trends in
Information
Technology and
Engineering (icETITE).

pneumonia set. They have then identified 34 statistical texture of pneumonia sets and ROI region of interest declination including 16 graylevel cooccurrence matrices of GLCM features. They have deployed various classification models including **Support Vector** Machine (SVM), **Decision Tree** (DT), K-Nearest Neighbour (KNN) and Logistic Regression.

area under AUC curve of receiver operating characteristics was 0.99.

model hence is limited only on data acquired due to COVID acquired pneumonia systems. Also, they have used real time data from a single source. This suggests that their model is very much skewed to specific geographic location and their acquired traits. This is hence not universally applicable. The other issue with their model is that the dataset is relatively small. The accuracy they have achieved is pretty high but this could be very much due to overfitting of model and lowtest case count. Hence, we cannot be sure of achieving the same results on

Harshit Mishra (19BCE0799) any other chest x-ray that we get.

Plagiarism Report:

