

(19) Japan Patent Office (JP)
(12) Patent Publication (B2)
(11) Japanese Patent No. 2824411
(24) Date of Grant: September 4, 1998
5 (45) Date of Issue: November 11, 1998

(51) Int. Cl.⁶ Identification Mark FI
H05B 33/26 H05B 33/26 Z

10 The Number of Claims: 7 (total 8 pages)

(21) Japanese Patent Application No: H7-217130
(22) Date of Filing: August 25, 1995
(65) Japanese Published Patent Application No. H9-63771

15 (43) Date of Publication: March 7, 1997

Date of Request for Examination: February 10, 1998

(71) Patentee: 000003609

Toyota Central R&D Labs., Inc.

20 41-1, Aza Yokomichi, Oaza Nagakute, Nagakute-cho, Aichi-gun, Aichi-ken

(72) Inventor: Tokitou Shizuo

c/o Toyota Central R&D Labs., Inc.

41-1, Aza Yokomichi, Oaza Nagakute, Nagakute-cho, Aichi-gun, Aichi-ken

(72) Inventor: Noda Koji

25 c/o Toyota Central R&D Labs., Inc.

41-1, Aza Yokomichi, Oaza Nagakute, Nagakute-cho, Aichi-gun, Aichi-ken

(72) Inventor: Taga Yasunori

c/o Toyota Central R&D Labs., Inc.

41-1, Aza Yokomichi, Oaza Nagakute, Nagakute-cho, Aichi-gun, Aichi-ken

30 (74) Agent: Patent Attorney Yoshida Kenji (and two others)

Examiner: Yamagishi Toshiharu

Continued on the last page.

(54) [Title of the Invention]

5 Organic Thin Film Light Emitting Element

(57) [Scope of Claims]

[Claim 1]

An organic thin film light emitting element comprising:

an anode;

10 a cathode; and

one or a plurality of organic compound layers which are sandwiched therebetween,

characterized in that the anode is formed of a metal oxide thin film with a higher work function than that of indium tin oxide (ITO).

15 [Claim 2]

The organic thin film light emitting element as described in claim 1, characterized in that the anode has a two-layer structure of an ITO thin film having a film thickness ranging from 500 angstrom to 2000 angstrom and a metal oxide thin film ranging from 50 angstrom to 300 angstrom.

20 [Claim 3]

The organic thin film light emitting element as described in claim 1, characterized in that the organic compound layer is a light emitting layer.

[Claim 4]

The organic thin film light emitting element as described in claim 1, 25 characterized in that the organic compound layer comprises a hole transporting layer and a light emitting layer.

[Claim 5]

The organic thin film light emitting element as described in claim 1, characterized in that the organic compound layer comprises a light emitting layer and an 30 electron transporting layer.

[Claim 6]

The organic thin film light emitting element as described in claim 1, characterized in that the organic compound layer comprises a hole transporting layer, a light emitting layer, and an electron transporting layer.

5 [Claim 7]

The organic thin film light emitting element as described in claim 1, characterized in that the metal oxide is oxide such as vanadium oxide, ruthenium oxide, or molybdenum oxide, in which a work function is higher than 4.6 eV.

[Detailed Description of the Invention]

10 [0001]

[Technical Field to which the Invention belongs to]

The present invention relates to a light emitting element which is used for a flat panel light emitting display, and particularly, relates to an improvement of an organic thin film light emitting element using a fluorescent organic compound as a light emitting material.

15 [0002]

[Related Art]

Recently, with progress to an information society, needs for low power consumption and thin displays instead of the conventional CRT are growing. A liquid crystal display and a plasma display are noted as such a display, and they are already in practical use. However, needs of the age are still growing, and rather less power consumption and clearer full color displays are expected to be achieved.

[0003]

Nowadays, expectations for an organic thin film light emitting element using an organic compound are raised with these needs in the background. As an element structure which has been reported so far, there is a structure in which one or a plurality of organic compound layers are sandwiched between an anode and a cathode, and regarding the organic compound layer, there is a two-layer structure or a three-layer structure.

30 [0004]

As an example of the two-layer structure, there is a structure in which a hole transporting layer and a light emitting layer are formed between an anode and a cathode (Japanese Published Patent Application No. S59-194393 and Appl. Phys. Lett. 51, 913(1987)), or a structure in which a light emitting layer and an electron transporting 5 layer are formed between an anode and a cathode (USP No. 5,085947, Japanese Published Patent Application No. H2-250952, and Appl. Phys. Lett. 55, P1489 (1989)). In addition, as an example of the three-layer structure, a structure in which a hole transporting layer, a light emitting layer, and an electron transporting layer are formed between an anode and a cathode (Appl. Phys. Lett. 57, 531(1990)) is noted. Further, a 10 single layer structure in which a single layer has all functions (Nature, 345, 539(1990) and Appl. Phys. Lett. 61, 761(1992)) is also reported in a high molecule and a mixed system. These element structures are shown in FIGS. 6, 7, 8 and 9.

[0005]

FIG. 6 shows an example of the single layer structure in which a light emitting 15 layer 16 which is a single organic compound layer is formed between an anode 12 and a cathode 14 provided over a substrate 10. In this case, the light emitting layer 16 also serves as a hole transporting layer and an electron transporting layer.

[0006]

FIG. 7 shows an example of the two-layer structure in which a light emitting 20 layer 16 and a hole transporting layer 18 which are organic compound layers are formed between an anode 12 and a cathode 14 provided over a substrate 10. In this case, the light emitting layer 16 also serves as an electron transporting layer.

[0007]

FIG. 8 shows an example of the two-layer structure in which a light emitting 25 layer 16 and an electron transporting layer 20 which are organic compound layers are formed between an anode 12 and a cathode 14 provided over a substrate 10. The light emitting layer 16 also serves as a hole transporting layer in this case.

[0008]

FIG. 9 shows an example of the three-layer structure in which a light emitting 30 layer 16, a hole transporting layer 18, and an electron transporting layer 20 which are

organic compound layers are formed between an anode 12 and a cathode 14 provided over a substrate 10.

[0009]

A light emission mechanism in these organic thin film light emitting elements
5 is as follows: A hole injected from the anode and an electron injected from the cathode reach the light emitting layer 16 through the hole transporting layer 18 or the electron transporting layer 20, and they are recombined there to achieve an excited state of an organic compound which composes the light emitting layer 16. When the excited state returns to a ground state, light of the same wavelength as that of the fluorescence of the
10 organic compound is emitted.

[0010]

An organic compound used as a material for the light emitting layer is a material which exhibits strong fluorescence. So far, various organic compounds have been reported as materials that can be used for the hole transporting layer 18, the light
15 emitting layer 16, and the electron transporting layer 20. For example, aromatic tertiary amine is reported as a material for the hole transporting layer 18.

[0011]

In addition, as a material for the light emitting layer 16, aluminum trisoxine which is expressed by the chemical formula below (Japanese Published Patent
20 Application No. S59-194393 and Japanese Published Patent Application No. S63-295695)

[Chemical formula 1],

a styryl amine derivative, and a styryl benzene derivative (Japanese Published Patent Application No. H2-209988) are reported.

25 [0012]

In addition, as a material for the electron transporting layer 20, an oxadiazole derivative and the like (Appl. Phys. Lett. 63, 2032 (1993)) are reported.

[0013]

There are many reported examples not only as for these low-molecular weight
30 compounds but also as for a high-molecular weight compound. In particular, as for a

poly (P-phenylenevinylene) based derivative (Nature, 347, 539(1990)), favorable properties are obtained even in the single layer structure element.

[0014]

The capability of an organic thin film light emitting element using these 5 materials is sufficiently on the practical level as a light emitting element from the aspect of a luminescent color and brightness thereof.

[0015]

[Problem to be solved by the Invention]

However, these organic thin film light emitting elements have been not yet in 10 practical use. The major reason is that the durability of the element is low.

[0016]

So far, high luminance of several thousands cd/m² has been achieved in the initial stages by a direct current voltage of approximately 10 V by applying various element structures and organic compounds. However, property deterioration such as a 15 luminance decrease and a drive voltage increase occurs due to continuous driving or a long storage, which prevents a practical use of the organic thin film light emitting element. Although several factors that control this element lifetime are reported, it was considered heretofore that the heat resistance of the thin film was a major factor. Therefore, in order to stabilize a film structure of the organic compound layer, it is 20 attempted to synthesize an organic compound that is superior in heat stability, that is, in which the softening temperature (Tg) or the melting point is high (Appl. Phys. Lett 61, 2503 (1992)).

[0017]

However, according to systematic experiments in which a triphenyldiamine 25 derivative of the aromatic tertiary amine expressed by the chemical formula below

[Chemical Formula 2]

is focused, it is reported recently that the element lifetime is more related to an ionization potential of a hole transporting layer than to the softening temperature or the melting point (Appl. Phys. Lett., 66, 2679 (1995)). This means that the element 30 lifetime is longer as the energy barrier between indium tin oxide (ITO) that is an anode

and a hole transporting layer, that is, an energy difference between Fermi level of the ITO electrode and a highest occupied level of the hole transporting layer, is smaller.

[0018]

In general, it is known that Fermi level of the ITO electrode is 4.6 eV (Nature, Vol.370, 354 (1994)), and this value corresponds to the work function. In addition, it is known that the highest occupied level of triphenyldiamine (TPD) that is a typical diamine derivative used for the hole transporting layer is 5.5 eV (Appl. Phys. Lett., 61, 2503 (1992)), and this value corresponds to the ionization potential.

[0019]

In the case where the TPD is used for the hole transporting layer, there is a barrier of approximately 0.9 eV between the ITO electrode and the hole transporting layer for a hole carrier. When this energy difference is small, exothermic heat of the element can be suppressed because too much voltage is not required to be applied to the barrier portion. It is attempted to synthesize a material with a larger ionization potential using many diamine derivatives; however, there is a limit in lowering the barrier only by an approach using an organic material. Therefore, it is expected to develop a transparent electrode with the higher work function than that of the conventional ITO by improving an electrode material.

[0020]

Note that the energy barrier between an anode and a light emitting layer is a problem in an element in which a light emitting layer also serves as a hole transporting layer. For example, there is a barrier of 0.4 eV in the case of poly (P-phenylenevinylene) with an ionization potential of 5.0 eV (Nature, 370, 354 (1990)).

[0021]

The present invention is made in view of the conventional problems described above, and the object is to provide an organic thin film light emitting element in which drive voltage can be lowered, light emission capability can be kept for a long time, and the durability is high by lowering the energy barrier to a hole transporting layer or a light emitting layer using a metal oxide thin film with the higher work function than that of ITO which is the conventional anode material.

[0022]

[Means to solve the Problems]

In the invention as described in claim 1, an organic thin film light emitting element comprising an anode, a cathode, and one or a plurality of organic compound layers which are sandwiched therebetween is characterized in that the anode is formed of a metal oxide thin film with a higher work function than that of indium tin oxide (ITO) in order to achieve the object described above.

[0023]

In the invention as described in claim 2, the organic thin film light emitting element as described in claim 1 is characterized in that the anode has a two-layer structure of an ITO thin film having a film thickness ranging from 500 angstrom to 2000 angstrom and a metal oxide thin film ranging from 50 angstrom to 300 angstrom.

[0024]

In the invention as described in claim 3, the organic thin film light emitting element as described in claim 1 is characterized in that the organic compound layer is a light emitting layer.

[0025]

In the invention as described in claim 4, the organic thin film light emitting element as described in claim 1 is characterized in that the organic compound layer comprises a hole transporting layer and a light emitting layer.

[0026]

In the invention as described in claim 5, the organic thin film light emitting element as described in claim 1 is characterized in that the organic compound layer comprises a light emitting layer and an electron transporting layer.

25 [0027]

In the invention as described in claim 6, the organic thin film light emitting element as described in claim 1 is characterized in that the organic compound layer comprises a hole transporting layer, a light emitting layer, and an electron transporting layer.

30 [0028]

In the invention as described in claim 7, the organic thin film light emitting element as described in claim 1 is characterized in that the metal oxide is oxide such as vanadium oxide, ruthenium oxide, or molybdenum oxide, in which the work function is higher than 4.6 eV.

5 [0029]

[Embodiment Mode of the Invention]

Hereinafter, a preferable embodiment mode of the present invention is described based on the drawings.

[0030]

10 FIG. 1 shows a cross-sectional view of an organic thin film light emitting element according to the present invention. In FIG. 1, an anode 12 is formed on a substrate 10 formed of glass or the like, a hole transporting layer 18 of TPD is formed on the anode 12, a light emitting layer 16 of an aluminum-quinolinol complex (Alq) is formed on the hole transporting layer 18, and a cathode 14 of an MgAg alloy is formed
15 on the light emitting layer 16.

[0031]

As the anode 12, a material in which the work function is higher than that of ITO that is the conventional anode material and the conductivity is high is used. For instance, ruthenium oxide (RuO_x), molybdenum oxide (MoO_x), vanadium oxide (VO_x),
20 or the like is preferable.

[0032]

In Table 1, examples of the work function of each metal oxide thin film are shown. These values are measured by the atmospheric ultraviolet photoelectron spectroscopy. The work function of the metal oxide thin film shown in Table 1 is a
25 higher value than that of ITO, and thus, it can be used as the anode material for the organic thin film light emitting element according to the present invention.

[0033]

[Table 1]

Metal Oxide Thin Film	Work function (eV)
RuO _x	4.9
MoO _x	5.4
VO _x	5.4
ITO	4.6

A metal oxide thin film with limited optical transparency among these metal oxide thin films is made to be a two-layer structure electrode with ITO. An example thereof is shown in FIG. 2. In FIG. 2, an ITO layer 22 is formed on a substrate 10, a 5 metal oxide thin film 24 is formed on the ITO layer 22, and thus, a two-layer structure anode 12 is composed. Note that a predetermined organic compound layer and a cathode are formed over the metal oxide thin film 24; however, the illustration thereof is omitted here.

[0034]

10 When the anode has the two-layer structure, the film thickness of the metal oxide thin film 24 is preferably less than or equal to 300 angstrom and more than or equal to 50 angstrom. The film thickness of the ITO is set to be in a range from 500 angstrom to 2000 angstrom. The metal oxide thin film may be manufactured by electron beam deposition, a direct current sputtering method, an RF-magnetron 15 sputtering method, an ICB deposition method, or the like, that is, a manufacturing method thereof is not limited as long as it is used to manufacture the oxide thin film.

[0035]

An organic compound which can be used in the present invention is not limited to the one shown in FIG. 1, and all the known materials are applied. For example, as a 20 material for the hole transporting layer, aromatic tertiary amine (USP No. 4, 175, 960, USP No. 4, 539, 507 and Phil. Mag. B, 53, 193 (1986)), a phthalocyanine derivative, and a pyrazoline derivative are noted, and particularly, the aromatic tertiary amine is the most effective compound. As a material for the light emitting layer, a metal chelated oxinoid compound (Japanese Published Patent Application No. S59-194393), an 25 oxadiazole derivative, a butadiene derivative, a perylene derivative, a styrylbenzene

derivative (Japanese Published Patent Application No. H2-247277), a perynone derivative, and the like are noted. As a material for the electron transporting layer, an oxadiazole compound (Appl. Phys. Lett. 55, 1489 (1989)), a butadiene derivative, a perylene derivative, and the like are noted, and additionally, a metal chelated oxinoid 5 compound (Japanese Published Patent Application No. S59-194393) can also be used.

[0036]

As a cathode material, silver, tin, magnesium, aluminum, calcium in each of which the work function is low, or an alloy thereof is used. In addition, zinc oxide doped with aluminum or germanium can also be used as a transparent cathode. At 10 least one of the anode and the cathode is preferably sufficiently transparent in a light emission wavelength region of the element.

[0037]

As shown in FIG. 1, the organic thin film light emitting element according to the present invention is composed as an element by laminating each layer described 15 above in sequence over a glass substrate or a semiconductor substrate of silicon or the like. They may be sealed in a glass cell with silicon oil or the like for element stability, particularly for protection against moisture in the air.

[0038]

Note that the organic thin film light emitting element according to the present 20 invention is not limited to the structure shown in FIG. 1, and it may also have a structure shown in FIG. 6, 7, 8, or 9 if necessary.

[0039]

Hereinafter, a specific example of the organic thin film light emitting element according to the present invention is described more in detail by embodiments.

25 [0040]

[Embodiments]

Embodiment 1. A manufacturing method of a metal oxide thin film and a property thereof are described in the present embodiment.

[0041]

30 A metal oxide thin film was formed by a radio-frequency magnetron sputtering

method on a glass substrate by using each material shown in Table 1. A forming condition and a property of this metal oxide thin film are shown in Table 2.

[0042]

[Table 2]

Metal oxide thin film	Forming condition		Typical composition	Film Thickness (Å)	Resistivity (Ω cm)	Light Transmittance (%)
	Target	Sputtering Gas				
RuOx	Ru	Ar(70%) + O ₂ (30%)	RuO _{1.92}	3680	2.7×10^{-4}	10
MoOx	MoO ₃	Ar	MoO ₃	2150	1.2×10^{-2}	10
VOx	V ₂ O ₅	Ar	VO _{2.22}	1320	10^5	20
ITO	ITO(5wt%SnO ₂)	Ar(99%) + O ₂ (1%)		1720	3.3×10^{-4}	90

5 The substrate temperature was set to be 150 °C, and sputtering gas pressure was set to be 2×10^{-3} Torr (0.27 Pa). A molybdenum oxide thin film and a ruthenium oxide thin film indicated high conductivity, and a vanadium oxide thin film was semiconducting. These metal oxide thin films are colored and optical transparency thereof in a visible range is low as shown in Table 2; thus, it is preferable that they have
10 the two-layer structure with ITO as described above. In Table 2, a typical composition of each metal oxide thin film is also indicated as a reference. This composition is slightly changed depending on a condition of film formation by sputtering (gas pressure, or a gas type).

[0043]

15 Table 3 shows conductivity and light transmittance of a two-layer structure electrode as shown in FIG. 2 in which ITO and the metal oxide thin film are laminated. The film thickness of the metal oxide thin film was set to be less than or equal to 300

angstrom in order to increase transparency. In addition, the film thickness of ITO was set to be 1200 angstrom.

[0044]

In the present embodiment, the surface resistance could be set to be approximately 25 Ω/\square by the electrode having the two-layer structure. Further, the light transmittance could be higher than the value of each metal oxide thin film shown in Table. 2.

[0045]

[Table 3]

Transparent Electrode	Surface Resistance (Ω/\square)	Transmittance (%)
RuOx/ITO	22.5	60
MoOx/ITO	29.1	40
VOx/ITO	33	60
ITO	20	90

10 Embodiment 2. In the present embodiment, an organic thin film light emitting element having the structure shown in FIG. 1 was manufactured and its properties were evaluated.

[0046]

An anode of a vanadium oxide thin film of approximately 1500 angstrom was formed on a glass substrate by the method of the embodiment 1. TPD of approximately 500 angstrom was formed as a hole transporting layer on the anode by a vacuum deposition method under a condition where vacuum degree was approximately 2×10^{-7} Torr (2.7×10^{-5} Pa) and deposition rate was approximately 30 angstrom/minute. As a light emitting layer, an aluminum quinolinol complex was used. As a cathode, an alloy of Mg and Ag (Mg:Ag = 10:1) of approximately 1800 angstrom was formed under a condition where vacuum degree was 1×10^{-6} Torr (1.3×10^{-4} Pa) and deposition rate was approximately 150 angstrom/minute. The size of one element was 3 mm × 3 mm, and 15 elements were manufactured on a substrate of 25 mm × 35 mm.

[0047]

A positive direct-current voltage was applied to an anode side of the organic thin film light emitting element which was manufactured as described above, and a negative direct-current voltage was applied to a cathode side. When light emission from a glass substrate side was observed, green light emission of 1 cd/m^2 was started by 5 applied voltage of 3V, and the green light emission was observed for a long time. Therefore, when the applied voltage by which luminance of 1 cd/m^2 was obtained was defined as a light emission starting voltage, the light emission starting voltage of the element of the present embodiment was 3 V. Further, luminance of 20 cd/m^2 was observed when 5 V was applied. The highest luminance was 300 cd/m^2 by the applied 10 voltage of 12 V.

[0048]

Comparative Example 1.

ITO of 1500 angstrom was formed as an anode on a glass substrate by a radio frequency magnetron sputtering method, and thereover, a hole transporting layer, a light emitting layer, and an MgAg electrode were vacuum-deposited by the same method as in the embodiment 2 in order to manufacture an element for comparison. In this element for comparison, the applied voltage by which luminance of 1 cd/m^2 is obtained, that is, the light emission starting voltage was 5 V. The capability was obtained that the highest luminance was 5000 cd/m^2 by the applied voltage of 15 V. Luminous 15 efficiency was approximately 0.85 lm/W by drive current of 10 mA/cm^2 . When the efficiency was approximately 0.85 lm/W by drive current of 10 mA/cm^2 . When the emission lifetime of this element was measured under a drive condition of 10 mA/cm^2 , a halved lifetime (a time in which the initial luminance is halved) was 80 hours as shown 20 in FIG. 4.

[0049]

25 Comparative Example 2.

In_2O_3 of 1500 angstrom was formed on a glass substrate by a radio frequency magnetron sputtering method, and thereover, a hole transporting layer, a light emitting layer, and an MgAg electrode were vacuum-deposited by the same method as in the embodiment 2 in order to manufacture an element for comparison. In this element for 30 comparison, the light emission starting voltage by which luminance of 1 cd/m^2 is

obtained was 7 V, and the highest luminance was 4000 cd/m² by the applied voltage of 15 V.

[0050]

Comparative example 3.

5 SnO₂ of 1500 angstrom was formed on a glass substrate by a radio frequency magnetron sputtering method, and thereover, a hole transporting layer, a light emitting layer, and an MgAg electrode were vacuum-deposited by the same method as in the embodiment 2. In this element, the light emission starting voltage by which luminance of 1 cd/m² is obtained was 7 V, and the highest luminance was 4000 cd/m² by the
10 applied voltage of 15 V.

[0051]

When the embodiment 2 and the comparative examples 1, 2, and 3 were compared, it was understood that the light emission starting voltage was lowered in the element according to the present invention. However, since the optical transparency of 15 the vanadium oxide electrode was low, sufficient luminance could not be achieved. Therefore, an embodiment of a two-layer electrode in which the optical transparency is improved by laminating with an ITO thin film is shown below.

[0052]

Embodiment 3.

20 ITO of 1200 angstrom and a vanadium oxide thin film of 300 angstrom were formed continuously over a glass substrate by a radio frequency magnetron sputtering method in order to form a two-layer structure electrode (transparent electrode). Over this electrode, as in the embodiment 2, a hole transporting layer of approximately 500 angstrom, a light emitting layer of approximately 500 angstrom, and an MgAg electrode 25 of approximately 1800 angstrom were formed to manufacture an organic thin film light emitting element. A result of measuring the light emission starting voltage and the luminous efficiency of this organic thin film light emitting element is shown in Table 4.

[0053]

[Table 4]

	Transparent Electrode	Light Emission Starting Voltage (V)	Luminous Efficiency (lm/W)
Embodiment 3	VOx/ITO	3	0.92
Embodiment 4	RuOx/ITO	3.5	0.85
Embodiment 5	MoOx/ITO	3.5	0.80
Conventional Example	ITO	5	0.85

As shown in Table 4, the light emission starting voltage of this element was 3 V. In addition, as shown in FIG. 5, luminance as high as 100 cd/m² was observed when only 5 V was applied. The highest luminance was 5000 cd/m² by 12 V, and the 5 luminous efficiency was 0.92 lm/W (drive current 10 mA/cm²). When the halved lifetime of this element was measured under a drive condition of 10 mA/cm², it was over 100 hours as shown in FIG. 4. It was understood that strong light can be emitted by lower applied voltage and the luminous efficiency is improved, besides, the emission lifetime is longer, compared to an element using only ITO.

10 [0054]

Further, in the case of a two-layer structure electrode in which the vanadium oxide thin film was set to be 100 angstrom, the light emission starting voltage was 3 V and it was not different from the above described example; however, the highest luminance was increased and the luminous efficiency was 1.0 lm/W.

15 [0055]

Embodiment 4.

Over a two-layer structure electrode in which ITO of 1400 angstrom and a ruthenium oxide thin film of 300 angstrom were formed over a glass substrate, a hole transporting layer of approximately 500 angstrom, a light emitting layer of 20 approximately 500 angstrom, and an MgAg electrode of approximately 1800 angstrom were formed as in the embodiment 2 in order to manufacture an organic thin film light emitting element, and the light emission starting voltage and the luminous efficiency were measured as in the embodiment 3.

[0056]

The light emission starting voltage of this element was 3.5 V as shown in Table 4. In addition, luminance of 30 cd/m^2 was observed when 5 V was applied (FIG. 4). The luminous efficiency was 0.85 lm/W.

5 [0057]

In the present embodiment, if the film thickness of the ruthenium oxide is made further thinner, the light transmittance of the electrode is improved, and thus, the efficiency is further improved.

[0058]

10 Embodiment 5.

Over a two-layer structure electrode in which ITO of 1200 angstrom and molybdenum oxide of 300 angstrom were formed continuously over a glass substrate, a hole transporting layer, a light emitting layer, and an electrode were vacuum-deposited as in the embodiment 2 in order to manufacture an organic thin film light emitting 15 element, and the light emission starting voltage and the luminous efficiency were measured as in the embodiment 3.

[0059]

As shown in Table 4, the light emission starting voltage of this element was 3.5 V, and the luminance was 30 cd/m^2 by the applied voltage of 5 V (FIG. 5).

20 [0060]

Embodiment 6.

Next, an embodiment of an element in which light is taken from an upper electrode (cathode) is shown.

[0061]

25 FIG. 3 shows a cross-sectional view of an organic thin film light emitting element according to the present embodiment. In FIG. 3, ruthenium oxide of 1500 angstrom was formed as an anode 12 on a glass substrate 10, and thereover, a hole transporting layer 18 and a light emitting layer 16 were vacuum-deposited as in the embodiment 2. Finally, as a cathode 14, aluminum-doped zinc oxide of approximately 30 1200 angstrom whose work function was low was formed by a radio frequency

sputtering method.

[0062]

When a positive voltage was applied to the ruthenium oxide electrode (the anode 12) in this element and light was observed through the zinc oxide electrode (the cathode 14), clear light emission was observed from the transparent cathode 14 side. In this case, light emission with a higher contrast ratio than in the case of the MgAg metal electrode was obtained since the ruthenium oxide electrode was black in color.

[0063]

[Effect of the Invention]

As described above, according to the present invention, the energy barrier between a metal oxide thin film electrode and a hole transporting layer or a light emitting layer can be small so that a hole is easily injected into the hole transporting layer or the light emitting layer and the element can be driven by lower applied voltage. As a result, luminous efficiency is improved and a longer lifetime of the element can be achieved. Therefore, the light emitting element of the present invention can be applied to various display fields.

[Brief Description of the Drawings]

[FIG. 1] A cross-sectional view of an organic thin film light emitting element according to the present invention.

[FIG. 2] A cross-sectional view of a two-layer structure electrode according to the present invention.

[FIG. 3] A cross-sectional view of an organic thin film light emitting element in which light is taken from a cathode according to the present invention.

[FIG. 4] A diagram showing luminance change corresponding to a drive time of various elements.

[FIG. 5] A diagram showing the relationship between applied voltage and luminance of various elements.

[FIG. 6] A cross-sectional view of an organic thin film light emitting element having a single layer structure.

[FIG. 7] A cross-sectional view of a two-layer structure organic thin film light emitting

element having a hole transporting layer.

[FIG. 8] A cross-sectional view of a two-layer structure organic thin film light emitting element having an electron transporting layer.

[FIG. 9] A cross-sectional view of a three-layer structure organic thin film light emitting

5 element.

[Explanation of Reference Numerals]

- 10 Substrate
- 12 Anode
- 14 Cathode
- 10 16 Light emitting layer
- 18 Hole transporting layer
- 20 Electron transporting layer
- 22 ITO layer
- 24 Metal oxide thin film

15

Continuation of the front page.

(56) Reference

Japanese Published Patent Application No. H6-151063 (JP, A)

Japanese Published Patent Application No. H6-5369 (JP, A)

20 Japanese Published Patent Application No. H4-772 (JP, A)

Japanese Published Patent Application No. H4-121953 (JP, A)

Japanese Published Patent Application No. H2-144851 (JP, A)

Japanese Published Patent Application No. H2-209988 (JP, A)

(58) Field of Search (Int. Cl.⁶, Name of DB)

25 H05B 33/26

(19) 日本国特許庁 (JP)

(12) 特許公報 (B2)

(11) 特許番号

第2824411号

(45) 発行日 平成10年(1998)11月11日

(24) 登録日 平成10年(1998)9月4日

(51) Int.Cl.⁶
H 05 B 33/26

識別記号

F I
H 05 B 33/26

Z

請求項の数 7 (全 8 頁)

(21) 出願番号 特願平7-217130
(22) 出願日 平成7年(1995)8月25日
(65) 公開番号 特開平9-63771
(43) 公開日 平成9年(1997)3月7日
(54) 審査請求日 平成10年(1998)2月10日

(73) 特許権者 000003609
株式会社豊田中央研究所
愛知県愛知郡長久手町大字長湫字横道41
番地の1
(72) 発明者 時任 静士
愛知県愛知郡長久手町大字長湫字横道41
番地の1 株式会社豊田中央研究所内
(72) 発明者 野田 浩司
愛知県愛知郡長久手町大字長湫字横道41
番地の1 株式会社豊田中央研究所内
(72) 発明者 多賀 康訓
愛知県愛知郡長久手町大字長湫字横道41
番地の1 株式会社豊田中央研究所内
(74) 代理人 弁理士 吉田 研二 (外2名)
審査官 山岸 利治

最終頁に続く

(54) 【発明の名称】 有機薄膜発光素子

(57) 【特許請求の範囲】

【請求項1】 陽極および陰極と、これらに挟まれた1層または複数層の有機化合物層より構成される有機薄膜発光素子において、前記陽極が、仕事関数が酸化錫インジウム (ITO) よりも大きな金属酸化物薄膜からなることを特徴とする有機薄膜発光素子。

【請求項2】 請求項1記載の有機薄膜発光素子において、前記陽極を、膜厚500オングストロームから2000オングストロームの範囲のITO薄膜と50オングストロームから300オングストロームの範囲の金属酸化物薄膜とにより2層構造としたことを特徴とする有機薄膜発光素子。

【請求項3】 請求項1記載の有機薄膜発光素子において、前記有機化合物層が発光層であることを特徴とする有機薄膜発光素子。

【請求項4】 請求項1記載の有機薄膜発光素子において、前記有機化合物層が正孔輸送層と発光層とからなることを特徴とする有機薄膜発光素子。

【請求項5】 請求項1記載の有機薄膜発光素子において、前記有機化合物層が発光層と電子輸送層とからなることを特徴とする有機薄膜発光素子。

【請求項6】 請求項1記載の有機薄膜発光素子において、前記有機化合物層が正孔輸送層と発光層と電子輸送層とからなることを特徴とする有機薄膜発光素子。

【請求項7】 請求項1記載の有機薄膜発光素子において、前記金属酸化物は、酸化バナジウム、酸化ルテニウム、酸化モリブデンなどの仕事関数が4.6 eVよりも大きな酸化物であることを特徴とする有機薄膜発光素子。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は平面発光ディスプレイに用いる発光素子に関するものであり、特に発光物質として蛍光性有機化合物を利用した有機薄膜発光素子の改良に関するものである。

【0002】

【従来の技術】近年、情報化社会の進歩に伴い、従来のCRTよりも低消費電力でかつ薄型のディスプレイへのニーズが高まっている。この様なディスプレイとしては液晶ディスプレイやプラズマディスプレイがあり、すでに実用化されている。しかし、時代のニーズはさらに高度化し、さらに低消費電力化、鮮明なフルカラー化が望まれている。

【0003】最近、それらのニーズを背景に、有機化合物を利用した有機薄膜発光素子への期待が高まっている。これまでに報告されている素子の構造としては、陽極および陰極の間に1層または複数層の有機化合物層が挟まれた構造となっており、有機化合物層としては2層構造あるいは3層構造がある。

【0004】2層構造の例としては、陽極と陰極との間に正孔輸送層と発光層が形成された構造（特開昭59-194393、App1.Phys.Lett.51,913(1987)）又は陽極と陰極との間に発光層と電子輸送層が形成された構造（U.S.P.No.5,085947、特開平2-250952、App1.Phys.Lett.55,P1489(1989)）がある。また、3層構造の例としては、陽極と陰極との間に正孔輸送層と発光層と電子輸送層が形成された構造（App1.Phys.Lett.57,531(1990)）がある。また、単一層に全ての役割を持たせた单層構造（Nature,347,539(1990)、App1.Phys.Lett.61,761(1992)）も高分子や混合系で報告されている。これらの素子構造が図6,7,8,9に示される。

【0005】図6には、基板10上に設けられた陽極12と陰極14との間に单一の有機化合物層である発光層16が形成された单層構造の例が示される。この場合の発光層16は、正孔輸送層及び電子輸送層の機能も果たしている。

【0006】図7には、基板10上に設けられた陽極12と陰極14との間に有機化合物層である発光層16と正孔輸送層18とが形成された2層構造の例が示される。この場合の発光層16は、電子輸送層の機能も果たしている。

【0007】図8には、基板10上に設けられた陽極12と陰極14との間に有機化合物層である発光層16と電子輸送層20とが形成された2層構造の例が示される。この場合の発光層16は、正孔輸送層の機能も果たしている。

【0008】図9には、基板10上に設けられた陽極1

2と陰極14との間に有機化合物層である発光層16と正孔輸送層18と電子輸送層20とが形成された3層構造の例が示される。

【0009】これら有機薄膜発光素子における発光メカニズムは、陽極から注入された正孔と陰極から注入された電子とが、正孔輸送層18あるいは電子輸送層20を介して発光層16に到達し、そこで再結合することによって発光層16を構成する有機化合物の励起状態を作り出し、その励起状態が基底状態に戻るときに有機化合物の蛍光と同じ波長の光を放出するというものである。

【0010】発光層用材料として用いられる有機化合物は強い蛍光性を示す材料である。上記正孔輸送層18、発光層16、電子輸送層20に使用可能な材料としては、これまで様々な有機化合物が報告されている。たとえば、正孔輸送層18の材料としては、芳香族3級アミンが報告されている。

【0011】また、発光層16の材料としては、以下の化学式で表されるアルミニウムトリスオキシン（特開昭59-194393、特開昭63-295695）

【化1】

や、スチリルアミン誘導体、スチリルベンゼン誘導体（特開平2-209988）が報告されている。

【0012】また、電子輸送層20の材料としては、オキサジアゾール誘導体等（App1.Phys.Lett.63,2032(1993)）が報告されている。

【0013】これら低分子量の化合物ばかりではなく、高分子量の化合物でも多くの報告例があり、特にポリ（P-フェニレンビニレン）系誘導体（Nature,347,539(1990)）は、单層構造の素子でも良好な特性が得られている。

【0014】これらの材料を使用した有機薄膜発光素子は、その発光色や明るさから見て、発光素子としての性能は十分に実用レベルにある。

【0015】

【発明が解決しようとする課題】しかし、これら有機薄膜発光素子は未だ実用に至っていない。その最大の原因是素子の耐久性が乏しいことにある。

【0016】これまで、様々な素子構造および有機化合物を採用することにより、初期的には数1000cd/m²の高輝度が直流電圧10V程度で達成されているが、連続駆動あるいは長期保存によって輝度の低下と駆動電圧の上昇といった特性の劣化が起り、これが有機薄膜発光素子の実用化を妨げている。この素子寿命を支配

している要因は幾つか報告されているが、従来は薄膜の耐熱性がその主要因であると考えられていた。そのため、有機化合物層の膜構造を安定化させるために、熱安定性に優れた、つまり軟化温度 (T_g) や融点の高い有機化合物の合成が試みられている (App 1. Phys. Lett., 61, 2503 (1992)).

【0017】しかし最近、以下の化学式で表される芳香族3級アミンのトリフェニルジアミン誘導体

【化2】

を中心とした系統的な実験から、素子の寿命はこれら軟化温度や融点よりも正孔輸送層のイオン化ポテンシャルに関係していることが報告されている (App 1. Phys. Lett., 66, 2679 (1995)). これは、陽極である酸化錫インジウム (ITO) と正孔輸送層のエネルギー障壁すなわち ITO電極のフェルミ準位と正孔輸送層の最高占有準位のエネルギー差が小さいほど素子の寿命が長くなることを意味している。

【0018】一般に、ITO電極のフェルミ準位は4.6 eV (Nature, Vol. 370, 354 (1994)) であることが知られており、この値は仕事関数に対応している。また、正孔輸送層に使用される代表的なジアミン誘導体であるトリフェニルジアミン (TPD) の最高占有準位は5.5 eV (App 1. Phys. Lett., 61, 2503 (1992)) であることが知られており、この値はイオン化ポテンシャルに対応している。

【0019】上述のTPDを正孔輸送層に使用する場合、正孔キャリアにとってはITO電極と正孔輸送層との間に約0.9 eVの障壁が存在することになる。このエネルギー差が小さければ障壁部に無理な電圧がかかる必要がなく、素子の発熱が抑えられる。多くのジアミン誘導体でイオン化ポテンシャルの大きな材料の合成が試みられているが、有機材料からのアプローチだけでは障壁低減に限界がある。従って、電極材料を改良して、従来のITOよりも仕事関数の大きな透明電極を開発することが望まれている。

【0020】尚、発光層が正孔輸送層の機能も果たしている型の素子の場合は、陽極と発光層との間のエネルギー障壁が問題となる。例えば、イオン化ポテンシャルが5.0 eVのポリ(P-フェニレンビニレン)の場合、0.4 eVの障壁が存在することになる (Nature, 370, 354 (1990)).

【0021】本発明は上記従来の課題に鑑みなされたものであり、その目的は、仕事関数が従来の陽極材料であ

るITOよりも大きい金属酸化物薄膜を用いて正孔輸送層あるいは発光層とのエネルギー障壁を低減させ、駆動電圧が低下でき発光性能が長時間に亘って保持できる耐久性に優れた有機薄膜発光素子を提供することにある。

【0022】

【課題を解決するための手段】上記目的を達成するためには、請求項1記載の発明は、陽極および陰極と、これらに挟まれた1層または複数層の有機化合物層より構成される有機薄膜発光素子において、前記陽極が、仕事関数が酸化錫インジウム (ITO) よりも大きな金属酸化物薄膜からなることを特徴とする。

【0023】請求項2記載の発明は、請求項1記載の有機薄膜発光素子において、前記陽極を、膜厚500オングストロームから2000オングストロームの範囲のITO薄膜と50オングストロームから300オングストロームの範囲の金属酸化物薄膜とにより2層構造としたことを特徴とする。

【0024】請求項3記載の発明は、請求項1記載の有機薄膜発光素子において、前記有機化合物層が発光層であることを特徴とする。

【0025】請求項4記載の発明は、請求項1記載の有機薄膜発光素子において、前記有機化合物層が正孔輸送層と発光層とからなることを特徴とする。

【0026】請求項5記載の発明は、請求項1記載の有機薄膜発光素子において、前記有機化合物層が発光層と電子輸送層とからなることを特徴とする。

【0027】請求項6記載の発明は、請求項1記載の有機薄膜発光素子において、前記有機化合物層が正孔輸送層と発光層と電子輸送層とからなることを特徴とする。

【0028】請求項7記載の発明は、請求項1記載の有機薄膜発光素子において、前記金属酸化物は、酸化バナジウム、酸化ルテニウム、酸化モリブデンなどの仕事関数が4.6 eVよりも大きな酸化物であることを特徴とする。

【0029】

【発明の実施の形態】以下、本発明の好適な実施の形態を図面に基づいて説明する。

【0030】図1には、本発明に係る有機薄膜発光素子の断面図が示される。図1において、ガラス等の基板10の上に陽極12が形成され、陽極12の上にTPDからなる正孔輸送層18が形成され、正孔輸送層18の上にアルミニキノリノール錯体 (Alq) からなる発光層16が形成され、発光層16の上にMgAg合金からなる陰極14が形成されている。

【0031】陽極12としては、従来の陽極材料であるITOよりも仕事関数が大きく導電性が高い材料が使用される。たとえば、ルテニウム酸化物 (RuO_x)、モリブデン酸化物 (MoO_x)、バナジウム酸化物 (VO_x) などが好ましい。

【0032】表1には、各金属酸化物薄膜の仕事関数の

例が示される。これらの値は、大気中紫外光電子分光法で実測したものである。表1に示された金属酸化物薄膜の仕事関数は、ITOよりも大きな値となっており、本発明に係る有機薄膜発光素子の陽極材料として使用が可能である。

【0033】

【表1】

金属酸化物 薄膜	仕事関数 (eV)
RuO _x	4.9
MoO _x	5.4
VO _x	5.4
ITO	4.6

これらの金属酸化物薄膜の中で光の透過性の乏しいものはITOとの2層構造の電極とする。この例が図2に示される。図2においては、基板10の上にITO層22が形成され、ITO層22の上に金属酸化物薄膜24が形成されて2層構造の陽極12が構成されている。尚、金属酸化物薄膜24の上には所定の有機化合物層及び陰極が形成されているが図示は省略した。

【0034】陽極を2層構造とした場合の金属酸化物薄膜24の膜厚は300オングストローム以下で50オングストローム以上が好ましい。ITOの膜厚は500オングストロームから2000オングストロームの範囲とする。金属酸化物薄膜の作製は、電子ビーム蒸着、直流スパッタ法、RFマグネットロンスパッタ法、ICB蒸着法など、酸化物薄膜を作製するのに用いられる方法であれば、その作製方法は限定されない。

【0035】本発明に用いることができる有機化合物は、図1に示されたものだけではなく、従来公知の材料すべてが適用される。たとえば、正孔輸送層材料としては、芳香族3級アミン(USP No. 4, 175, 960, USP No. 4, 539, 507, Phil. Mag. B, 53, 193 (1986))、フタロシアニン誘導体やピラゾリン誘導体が挙げられ、特に芳香族

3級アミンは最も有用な化合物である。発光層用材料としては、金属キレート化オキシノイド化合物(特開昭59-194393)、オキサジアゾール誘導体、ブタジエン誘導体、ペリレン誘導体、スチリルベンゼン誘導体(特開平2-247277)、ペリノン誘導体等が挙げられる。電子輸送層材料としては、オキサジアゾール化合物(App1. Phys. Lett. 55, 1489 (1989))、ブタジエン誘導体、ペリレン誘導体などが挙げられ、また、金属キレート化オキシノイド化合物(特開昭59-194393)も使用できる。

【0036】陰極材料は、仕事関数の小さい銀、錫、マグネシウム、アルミニウム、カルシウム、あるいはこれらの合金が用いられる。また、アルミニウムやゲルマニウムをドープした酸化亜鉛も透明な陰極として利用できる。陽極と陰極の少なくとも一方は素子の発光波長域で十分に透明であることが望ましい。

【0037】本発明に係る有機薄膜発光素子は、図1に示されるように、以上の各層をガラス基板やシリコンなどの半導体基板上に順次積層することで素子として構成される。これらは、素子の安定性、特に大気中の水分に対する保護のために、シリコンオイル等と一緒にガラスセルに封入するようにしてもよい。

【0038】尚、本発明に係る有機薄膜発光素子は、図1に示される構造に限られるものではなく、必要により図6, 7, 8, 9に示されるような構造とすることもできる。

【0039】以下、本発明に係る有機薄膜発光素子の具体例を実施例によりさらに詳細に説明する。

【0040】

【実施例】

実施例1. 本実施例では、金属酸化物薄膜の作製方法とその特性について示す。

【0041】表1に示された各材料を使用してガラス基板上に高周波マグネットロンスパッタ法により金属酸化物薄膜を形成した。この金属酸化物薄膜の形成条件及び特性が表2に示される。

【0042】

【表2】

金属酸化物 薄膜	成膜条件		典型的組成	膜厚 (Å)	抵抗率 (Ωcm)	光透過率 (%)
	ターゲット	スパッタガス				
RuO _x	Ru	Ar(70%) + O ₂ (30%)	RuO _{1.92}	3680	2.7 × 10 ⁻⁴	10
MoO _x	MoO ₃	Ar	MoO ₃	2150	1.2 × 10 ⁻²	10
VO _x	V ₂ O ₅	Ar	VO _{2.22}	1320	10 ⁵	20
ITO	ITO(5wt%SnO ₂)	Ar(99%) + O ₂ (1%)		1720	3.3 × 10 ⁻⁴	90

基板温度は150°Cで、スパッタガス圧は 2×10^{-3} Torr (0.27 Pa)とした。酸化モリブデン薄膜と酸化ルテニウム薄膜が高い導電性を示し、酸化バナジウム薄膜は半導体的であった。これらの金属酸化物薄膜は着色しており、表2に示されるように可視域での光の透過性が低いので、上述の通りITOとともに2層構造とするのが好ましい。表2には、各金属酸化物薄膜の典型的な組成も参考として示される。この組成は、スパッタ成膜の条件（ガスの圧力、ガスの種類）によって若干変動する。

【0043】表3には、ITOと前述の金属酸化物薄膜とを積層した、図2に示されるような2層構造電極の導電性と光透過率が示される。金属酸化物薄膜の膜厚は透明性を高めるために、300オングストローム以下にした。また、ITOの膜厚は1200オングストロームとした。

【0044】本実施例の場合、電極を2層構造とすることで、その表面抵抗は約25Ω/□に設定することができた。また、光透過率は、表2に示された各金属酸化物薄膜の値よりも向上させることができた。

【0045】

【表3】

透明電極	表面抵抗 (Ω/□)	透過率 (%)
RuO _x /ITO	22.5	60
MoO _x /ITO	29.1	40
VO _x /ITO	33	60
ITO	20	90

実施例2. 本実施例では、図1に示される構造の有機薄膜発光素子を製作し、その特性を評価した。

【0046】ガラス基板上に実施例1の方法により約1500オングストロームの酸化バナジウム薄膜からなる陽極を形成した。その陽極上に、真空蒸着法により、真空度約 2×10^{-7} Torr (2.7×10^{-6} Pa)、蒸着速度約30オングストローム/分の条件でTPDを約500オングストローム形成し、正孔輸送層とした。発光層としてはアルミニノリノール錯体を用いた。陰極としては、真空度 1×10^{-6} Torr (1.3×10^{-5} Pa)、蒸着速度約150オングストローム/分でMgとAgの合金 (Mg : Ag = 10 : 1) を約1800オングストローム形成した。素子1個のサイズは3mm×3mmであり、25mm×35mmの基板上に15個作製した。

【0047】以上のように作製した有機薄膜発光素子の陽極側に正、陰極側に負の直流電圧を印加し、ガラス基板側からの発光を観察したところ、印加電圧3Vで $1\text{cd}/\text{m}^2$ で緑色の発光を開始し、緑色発光が長時間に亘って観察された。従って、 $1\text{cd}/\text{m}^2$ の輝度が得られる印加電圧を発光開始電圧とすれば、本実施例の素子の発光開始電圧は3Vであった。更に、5V印加では $20\text{cd}/\text{m}^2$ の輝度を示した。最高輝度は印加電圧12Vで $300\text{cd}/\text{m}^2$ であった。

【0048】比較例1. ガラス基板上に高周波マグネットロンスパッタ法でITOを1500オングストローム成膜して陽極とし、その上に、実施例2と同様の方法で、正孔輸送層、発光層、MgAg電極を真空蒸着し、比較用の素子を作製した。この比較用の素子では、 $1\text{cd}/\text{m}^2$ の輝度が得られる印加電圧すなわち発光開始電圧は5Vであった。最高輝度は印加電圧15Vで $5000\text{cd}/\text{m}^2$ の性能が得られた。駆動電流 $10\text{mA}/\text{cm}^2$ での発光効率は約 0.85l m/W であった。この素子の発光寿命を $10\text{mA}/\text{cm}^2$ の駆動条件で測定したところ、図4に示されるように、半減寿命（初期輝度の半分に低下するまでの時間）が80時間であった。

【0049】比較例2. ガラス基板上に高周波マグネット

ロンスパッタ法で In_2O_3 を 1500 オングストローム成膜し、その上に、実施例 2 と同様の方法で、正孔輸送層、発光層、 $MgAg$ 電極を真空蒸着し、比較用の素子を作製した。この比較用の素子では、 $1\text{cd}/\text{m}^2$ の輝度が得られる発光開始電圧は 7V で、最高輝度は印加電圧 15V で $4000\text{cd}/\text{m}^2$ であった。

【0050】比較例 3. ガラス基板上に高周波マグネットロンスパッタ法で SnO_2 を 1500 オングストローム成膜し、その上に、実施例 2 と同様の方法で、正孔輸送層、発光層、 $MgAg$ 電極を真空蒸着した。この素子では、 $1\text{cd}/\text{m}^2$ の輝度が得られる発光開始電圧は 7V で、最高輝度は印加電圧 15V で $4000\text{cd}/\text{m}^2$ であった。

【0051】このように、実施例 2 と比較例 1、2、3 とを比較すると、本発明による素子では発光開始電圧が低減していることが分った。しかし、酸化バナジウム電

極の光透過性が低いため、十分な輝度が達成できなかった。そこで、ITO 薄膜との積層によって光透過性を改善した 2 層電極での実施例を次に示す。

【0052】実施例 3. 高周波マグネットロンスパッタ法で、ガラス基板上に 1200 オングストロームの ITO と 300 オングストロームの酸化バナジウム薄膜を連続して成膜して 2 層構造電極（透明電極）を形成した。この電極上に実施例 2 と同様に、正孔輸送層を約 500 オングストローム、発光層を約 500 オングストローム、 $MgAg$ 電極を約 1800 オングストローム成膜して有機薄膜発光素子を作製した。この有機薄膜発光素子の発光開始電圧と発光効率を測定した結果が表 4 に示される。

【0053】

【表 4】

	透明電極	発光開始電圧 (V)	発光効率 (lm/W)
実施例 3	VOx/ITO	3	0.92
実施例 4	RuOx/ITO	3.5	0.85
実施例 5	MoOx/ITO	3.5	0.80
従来例	ITO	5	0.85

表 4 に示されるように、この素子の発光開始電圧は 3V であった。また、図 5 に示されるように、わずか 5V の印加で $100\text{cd}/\text{m}^2$ もの輝度が観察された。最高輝度は 12V で $5000\text{cd}/\text{m}^2$ であり、発光効率は 0.921 lm/W (駆動電流 $10\text{mA}/\text{cm}^2$) であった。この素子の半減寿命を $10\text{mA}/\text{cm}^2$ の駆動条件で測定したところ、図 4 に示されるように、100 時間以上であった。ITO のみを用いた素子にくらべ、より低い印加電圧で強い発光が可能であり発光効率も改善され、かつ、発光寿命も長くなることが分った。

【0054】更に、酸化バナジウム薄膜を 100 オングストロームとした 2 層構造電極の場合、発光開始電圧は 3V で上述の例と変わらなかったが、最高輝度が高くなり、発光効率は 1.01 lm/W となった。

【0055】実施例 4. ガラス基板上に 1400 オングストロームの ITO と 300 オングストロームの酸化ルテニウム薄膜を成膜した 2 層構造電極の上に、実施例 2 と同様に、正孔輸送層を約 500 オングストローム、発光層を約 500 オングストローム、 $MgAg$ 電極を約 1800 オングストローム成膜して有機薄膜発光素子を作製し、実施例 3 と同様に発光開始電圧と発光効率を測定した。

【0056】表 4 に示されるように、この素子の発光開始電圧は 3.5V であった。また、5V 印加で $30\text{cd}/\text{m}^2$ の輝度が観察された（図 4）。発光効率は 0.851 lm/W であった。

【0057】本実施例においては、酸化ルテニウムの膜厚をさらに薄くすれば電極の光透過率が改善され、効率がさらに向上する。

【0058】実施例 5. ガラス基板上に、1200 オングストロームの ITO と 300 オングストロームの酸化モリブデンを連続成膜した 2 層構造電極を形成し、その上に実施例 2 と同様に、正孔輸送層、発光層、電極を真空蒸着して有機薄膜発光素子を作製し、実施例 3 と同様に発光開始電圧と発光効率を測定した。

【0059】表 4 に示されるように、この素子の発光開始電圧は 3.5V で、印加電圧 5V では $30\text{cd}/\text{m}^2$ の輝度を示した（図 5）。

【0060】実施例 6. 次に、上部電極（陰極）から、光を取り出す場合の素子についての実施例を示す。

【0061】図 3 には、本実施例に係る有機薄膜発光素子の断面図が示される。図 3 において、ガラス基板 10 上に、酸化ルテニウムを 1500 オングストローム成膜して陽極 12 とし、その上に、実施例 2 と同様に、正孔

輸送層 1.8 と発光層 1.6 を真空蒸着した。最後に、陰極 1.4 として、仕事関数の小さなアルミ添加酸化亜鉛を高周波スパッタ法で約 1200 オングストローム成膜した。

【0062】この素子で、酸化ルテニウム電極（陽極 1.2）に正の電圧を印加し、酸化亜鉛電極（陰極 1.4）を通して光を観測したところ、透明な陰極 1.4 側から明瞭な発光が観察された。この場合、酸化ルテニウム電極が黒色であるため MgAg 金属電極の場合よりもコントラスト比の高い発光が得られた。

【0063】

【発明の効果】以上説明したように、本発明によれば、金属酸化物薄膜電極と正孔輸送層あるいは発光層とのエネルギー障壁を小さくでき、正孔輸送層や発光層への正孔注入が容易となり、低い印加電圧で素子駆動が可能となる。その結果、発光効率が改善され、素子の長寿命化が達成できる。よって、本発明の発光素子は各種ディスプレイ分野への応用が可能となる。

【図面の簡単な説明】

【図 1】 本発明に係る有機薄膜発光素子の断面図である

【図 1】

【図 3】

る。

【図 2】 本発明に係る 2 層構造電極の断面図である。

【図 3】 本発明に係る陰極から光を取り出す有機薄膜発光素子の断面図である。

【図 4】 各種素子の駆動時間に対する発光輝度の変化を示す図である。

【図 5】 各種素子の印加電圧と発光輝度との関係を示す図である。

【図 6】 単層構造の有機薄膜発光素子の断面図である。

【図 7】 正孔輸送層を有する 2 層構造有機薄膜発光素子の断面図である。

【図 8】 電子輸送層を有する 2 層構造有機薄膜発光素子の断面図である。

【図 9】 3 層構造の有機薄膜発光素子の断面図である。

【符号の説明】

1.0 基板、1.2 陽極、1.4 陰極、1.6 発光層、
1.8 正孔輸送層、2.0 電子輸送層、2.2 ITO
層、2.4 金属酸化物薄膜。

【図 2】

【図 4】

【図5】

【図6】

【図9】

【図7】

【図8】

フロントページの続き

(56) 参考文献 特開 平6-151063 (J P, A)
 特開 平6-5369 (J P, A)
 特開 平4-772 (J P, A)
 特開 平4-121953 (J P, A)
 特開 平2-144851 (J P, A)
 特開 平2-209988 (J P, A)

(58) 調査した分野(Int.Cl. ⁶, DB名)
 H05B 33/26