פתרון ממ"ן 13

שאלה 1

מיצאו את העוצמות של כל אחת מן הקבוצות הבאות. נמקו את התשובות.

- א. קבוצת כל המספרים הממשיים בקטע (0,1) אשר בפיתוח שלהם כשבר עשרוני אינסופי מופיעות רק הספרות 0 ו- 1 ומימין לכל ספרה שהיא 0 מופיעות רק הספרות 0 ו- 1 ומימין לכל ספרה שהיא 0
 - $\{\langle x, y\sqrt{2}\rangle \in \mathbf{Q} \times \mathbf{R} \mid x+y=1\}$...
 - $\{\langle x, y, z \rangle \in \mathbf{Q} \times \mathbf{R} \times \mathbf{R} \mid x + y + z = 1\}$ λ
 - $\mathcal{P}(\mathbf{Q} \cap (11^{-10}, 10^{-10}))$.7

תשובה

- א. נבחר בקטע (0,1) אשר בפיתוח שלו כשבר עשרוני אינסופי מופיעות רק הספרות 0 ו- 1 ומימין לכל ספרה שהיא 0 מופיע תמיד הספרה 1. אם נחליף כל צמד 01 המופיע בפיתוח בספרה 2 נקבל פיתוח עשרוני אינסופי מופיעות רק הספרות 1 ו- 2 .
- להפך אם בפיתוח עשרוני אינסופי של מספר בקטע (0,1) מופיעות רק הספרות 1 ו- 2, לאחר החלפת כל ספרה שהיא 2 בצמד 01 נקבל מספר בקטע (0,1) אשר בפיתוח שלו כשבר עשרוני אינסופי מופיעות רק הספרות 0 ו- 1 ומימין לכל ספרה שהיא 0 מופיע תמיד הספרה 1.
 - . איא איז 4.15 עוצמתה איא לפי לפי שאלה ל- $\left\{0,2\right\}^{\mathbf{N}}$ ליא שקולה הנתונה איז מכאן שהקבוצה הנתונה איז א
 - כאשר $\langle x, (1-x)\sqrt{2} \rangle$ הוא מהצורה $\{\langle x,y\sqrt{2} \rangle \in \mathbf{Q} \times \mathbf{R} \mid x+y=1\}$ כאשר ב. כל איבר בקבוצה

.
$$\{\langle x,y\sqrt{2}\rangle\in\mathbf{Q}\times\mathbf{R}\mid x+y=1\}=\{\langle x,(1-x)\sqrt{2}\rangle\mid x\in\mathbf{Q}\}$$
 במילים אחרות . $x\in\mathbf{Q}$

הפונקציה $f(x)=(x,(1-x)\sqrt{2})$ המוגדרת על-ידי $f:\mathbf{Q}\to\{\langle x,(1-x)\sqrt{2}\rangle|x\in\mathbf{Q}\}$ היא הפונקציה $|\{\langle x,y\sqrt{2}\rangle\in\mathbf{Q}\times\mathbf{R}\mid x+y=1\}|=|\mathbf{Q}\mid=\aleph_0$ חד-חד-ערכית ועל, לכן

- $\{\langle 0,y,1-y\rangle\mid y\in\mathbf{R}\}$ מכילה למשל אבים לב ער א מכילה ער או אויס אבים נער א מכילה לפער אויס אויס מכילה ער אויס ג.
 - $f: \mathbf{R} \to \{\langle 0, y, 1-y \rangle \mid y \in \mathbf{R}\}$ מפני שהפונקציה \mathbf{R} מפני שקולה ל-

. ערכית על היא $y \in \mathbf{R}$ לכל $f(y) = \langle 0, y, 1-y \rangle$ היא חד-חד ערכית ועל

. אי
$$|\mathbf{R}| \leq |\{\langle x,y,z \rangle \in \mathbf{Q} \times \mathbf{R} \times \mathbf{R} \mid x+y+z=1\}|$$
 מכאן ש

לכן
$$\{\langle x,y,z\rangle\in \mathbf{Q}\times\mathbf{R}\times\mathbf{R}\mid x+y+z=1\}\subseteq\mathbf{R}^3$$
 מצד שני

ולכן ממשפט קנטור ברנשטיין | $\{\langle x,y,z\rangle\in \mathbf{Q}\times\mathbf{R}\times\mathbf{R}\mid x+y+z=1\}$ | \leq | \mathbf{R}^3 | = \aleph מקבלים ש- | $\{\langle x,y,z\rangle\in \mathbf{Q}\times\mathbf{R}\times\mathbf{R}\mid x+y+z=1\}$ | = \aleph מקבלים ש-

$$|\mathbf{Q}\cap(11^{-10},10^{-10})|\leq |\mathbf{Q}|=\aleph_0$$
 לכן $|\mathbf{Q}\cap(11^{-10},10^{-10})\subseteq\mathbf{Q}$. $\mathbf{Q}\cap(11^{-10},10^{-10})$

מצד שני, אם נסמן $10^{-10}-11^{-10}-10^{-10}$ אז $\varepsilon>0$ אז $\varepsilon>0$ טבעי, המספרים $\varepsilon>0$ אז $\varepsilon=10^{-10}-11^{-10}-10^{-10}$ טבעי, המספרים $q_n=11^{-10}+\varepsilon/n$ (11^{-10}, 10^{-10}) הם רציונליים, שונים זה מזה ושייכים לקטע הפתוח $q_n=11^{-10}+\varepsilon/n$ (שכן $q_n=11^{-10}+\varepsilon/n<11^{-10}+\varepsilon=10^{-10}$). מכאן ש- $q_n=11^{-10}+\varepsilon/n<11^{-10}+\varepsilon=10^{-10}$. $q_n=11^{-10}+\varepsilon/n<11^{-10}+\varepsilon=10^{-10}$. $q_n=11^{-10}+\varepsilon/n<11^{-10}+\varepsilon=10^{-10}$

, $|\mathbf{Q}\cap(11^{-10},10^{-10})|=\aleph_0$ -שטיין נובע ברנשטיין ממשפט קנטור ברנשטיין פא

.
$$|\mathcal{P}(\mathbf{Q} \cap (11^{-10}, 10^{-10}))| = 2^{\aleph_0} = \aleph : לכן$$

שאלה 2

-פונקציה $a \neq 0$, $a,b,c \in \mathbf{R}$ פונקציה אם ליימים היימים $f: \mathbf{R} \to \mathbf{R}$ כך ש

$$x \in \mathbf{R}$$
 לכל $f(x) = ax^2 + bx + c$

. קבוצת כל הפונקציות הריבועיות. A

$$B = \{ f \in A \mid f(0) \in \mathbf{Q} \}$$

$$C = \{ f \in A \mid f[\mathbf{Q}] \subset \mathbf{Q} \}$$

: מיצאו את היחסים ("=" או ">") בין כל שתיים מהעוצמות הבאות

. נמקו את התשובות. $\mid A\mid ,\mid B\mid ,\mid C\mid ,\mid \mathcal{P}(B)\mid ,\mid \mathcal{P}(C)\mid$

תשובה

 $A \mid A \mid$ מציאת

a,b,c כל פונקציה ריבועית $f(x)=ax^2+bx+c$ נקבעת באופן יחיד על ידי שלושת המקדמים כל פונקציה ריבועית המתאימה לכל שלשה סדורה $\mathbf{R}\times\mathbf{R}\times\mathbf{R}\times\mathbf{R}$ את הפונקציה הריבועית . $f(x)=ax^2+bx+c$ ועל. $f(x)=ax^2+bx+c$ ועל. $f(x)=ax^2+bx+c$ ועל. $f(x)=ax^2+bx+c$ ועל. $f(x)=ax^2+bx+c$ ועל. $f(x)=ax^2+bx+c$ ועל.

נקבל $|{f R}^3|=\aleph$ וגם $|\{1\}\times{f R}^2|=|{f R}^2|=\aleph$ ובנוסף $|\{1\}\times{f R}^2\subseteq({f R}\setminus\{0\})\times{f R}\times{f R}\subseteq{f R}^3$ נקבל שמצד אחד $|{f R}\setminus\{0\}\times{f R}\times{f R}|\le\aleph$ ומצד שני $|{f R}\setminus\{0\}\times{f R}\times{f R}|$ לכן ממשפט קנטור $|{f R}\setminus\{0\}\times{f R}\times{f R}|$. $|A|=|({f R}\setminus\{0\})\times{f R}\times{f R}|=\aleph$ ברנשטיין מקבלים ש

 $A \mid B \mid$ מציאת

 $f(x)=ax^2+bx+c$ אז מכאן שפונקציה ריבועית מלא). f(0)=c אז אז $f(x)=ax^2+bx+c$ אם אם B אם ורק אם $C\in \mathbf{Q}$ מכאן שלכל פונקציה ריבועית השייכת לקבוצה אם ורק אם ורק אם $C\in \mathbf{Q}$ שבה $C\in \mathbf{Q}$ ולכל פונקציה ריבועית יש התאמה חד-חד-שלשה סדורה אחת ויחידה $C\in \mathbf{Q}$ שבה $C\in \mathbf{Q}$ ולכן $C\in \mathbf{Q}$ ולכן $C\in \mathbf{Q}$ ולכן ולכן ועל בין $C\in \mathbf{Q}$ לבין $C\in \mathbf{Q}$ ולכן ולכן ולכן ולכן וערכית ועל בין $C\in \mathbf{Q}$

-ש נקבל $\{1\} \times \mathbf{R} \times \{0\} \subseteq (\mathbf{R} \setminus \{0\}) \times \mathbf{R} \times \mathbf{Q}$ מכיוון ש

 $|\aleph| = |\{1\} \times \mathbf{R} \times \{0\}| \le |(\mathbf{R} \setminus \{0\}) \times \mathbf{R} \times \mathbf{Q}| = |B|$

. $|B| = |(\mathbf{R} \setminus \{0\}) \times \mathbf{R} \times \mathbf{Q}| \le |\mathbf{R}^3| = \aleph$ לכן $\mathbf{R} \times \mathbf{R} \times \mathbf{Q} \subseteq \mathbf{R}^3$ מצד שני,

. | B | = | $\mathbf{R} \times \mathbf{R} \times \mathbf{Q}$ | = \aleph -ש משפט קנטור ברנשטיין מקבלים

(201 ראו עמי) . $|\mathcal{P}(B)| = |2^B| = 2^{|B|} = 2^{\aleph} = \aleph'$ מכאן ש-

. | C | מציאת

לכל $f(x)\in \mathbf{Q}$ -ש התכונה ש- $f(x)=ax^2+bx+c$ היא קבוצת כל הפונקציות הריבועיות המקדמים המקדמים את נבדוק מה תכונה או אומרת על שלושת המקדמים a,b,c שבעצם קובעים את הפונקציה. $x\in \mathbf{Q}$ -פבור שצריך להתקיים למשל ש- ברור ברור שצריך להתקיים למשל ש- ברור שצריך להתקיים למשל ש-

a-b+c=q וה a+b+c=r כלומר $f(-1)=a-b+c\in \mathbf{Q}$ וגם וה $f(1)=a+b+c\in \mathbf{Q}$ הם מספרים רציונליים.

 $a\in\mathbf{Q}$ - ומכאן שי $a=rac{r+q}{2}-c$ כלומר בa+2c=r+q ומכאן שי

 $a.b \in \mathbf{Q}$ -ש ומכאן שי $b = rac{r-q}{2}$ כלומר בל כלומר ונקבל שי ומכאן שי

 $a,b,c\in \mathbf{Q}$ כאשר $f(x)=ax^2+bx+c$ היא מהצורה C - היא מהצורה השייכת לכן קיבלנו שכל פונקציה השייכת ל- היא מהצורה $f(x)=ax^2+bx+c$ מצד אם $f(x)=ax^2+bx+c$ כאשר $f(x)=ax^2+bx+c$ מפרים הביונליים הם גם רציונליים נקבל שלכל $f(x)=ax^2+bx+c\in \mathbf{Q}$ גם $f(x)=ax^2+bx+c\in \mathbf{Q}$ כלומר $f(x)=ax^2+bx+c\in \mathbf{Q}$ מכאן ש- $f(x)=ax^2+bx+c$ היא קבוצת כל הפונקציות הריבועיות $f(x)=ax^2+bx+c\in \mathbf{Q}$ כך ש- $f(x)=ax^2+bx+c\in \mathbf{Q}$ משפט ש- היא קבוצת כל לבין $f(x)=ax^2+bx+c\in \mathbf{Q}$ מאחר ש- $f(x)=ax^2+bx+c\in \mathbf{Q}$ (משפט $f(x)=ax^2+bx+c\in \mathbf{Q}$ מאחר ש- $f(x)=ax^2+bx+c\in \mathbf{Q}$ (משפט ש- התאמה חחייע ועל בין $f(x)=ax^2+bx+c\in \mathbf{Q}$ מאחר ש- $f(x)=ax^2+bx+c\in \mathbf{Q}$ (משפט 4.11) ומכפלה קרטזית של מספר סופי של קבוצות בנות מניה היא בת מניה (ראו משפט 1.11) נקבל $f(x)=ax^2+bx+c\in \mathbf{Q}$

. | $\mathcal{P}(C)$ | = | 2^C | = $2^{|C|}$ = 2^{\aleph_0} = \aleph -ש מכאן ש

 $|\mathcal{P}(B)|=\aleph'$, $|A|=|B|=\aleph'$, $|\mathcal{P}(C)|=\aleph'$, $|C|=\aleph_0:$ באות התוצאות את ובכן, קיבלנו את התוצאות הבאות הבאות: $|C|<|A|=|B|=|\mathcal{P}(C)|<|\mathcal{P}(B)|$ -שמאחר ש- $|\mathcal{R}(C)|<|\mathcal{R}(C)|<|\mathcal{P}(B)|$ -שמאחר ש- $|\mathcal{R}(C)|<|\mathcal{R}(C)|<|\mathcal{R}(C)|$

שאלה 3

 $A\cap B=arnothing$ ו- $C=A\cup B$ פריש. א. נניח ש- A,B,C קבוצות כך ש- $C=A\cup B$ פריש. א. נניח ש- A,B,C קבוצות כך ש- $f(X)=\langle X\cap A,X\cap B\rangle$ המוגדרת על ידי $f:\mathcal{P}(C)\to\mathcal{P}(A)\times\mathcal{P}(B)$ הוכיחו שהפונקציה $A,X\cap B$ לכל $2^{|A\cup B|}=2^{|A|}\cdot 2^{|B|}$ ש- $A,X\cap B$ היא הפיכה. הסיקו ש- $A,X\cap B$

- ב. בחרו קבוצות A,B מתאימות והשתמשו בתוצאה מסעיף אי כדי להוכיח את הטענות הבאות:
 - (4.15 ו- 4.14 בטענות 4.14 (מותר להיעזר בטענות $kappa \cdot k' = k'$
 - (ראו ההגדרה של 'א בפסקה המופיעה לפני סעיף 4.7 בספר) $\aleph' \cdot \aleph' = \aleph'$.2

תשובה

א. נראה ש-f היא חד-חד-ערכית.

נניח ש-
$$(X\cap A,X\cap B)=\langle Y\cap A,Y\cap B
angle$$
 אז $f(X)=f(Y)$ -ו $X,Y\in \mathcal{P}(C)$ נניח ש-

$$X \cap B = Y \cap B \rightarrow X \cap A = Y \cap A$$

.
$$(X \cap A) \cup (X \cap B) = (Y \cap A) \cup (Y \cap B)$$
 מכאן ש-

$$X \cap (A \cup B) = Y \cap (A \cup B)$$
 -ש נקבל ש- (1.20 מחוקי הפילוג (משפט

כלומר X=Y לכן $X,Y\subseteq C$ ומפני ש- $X,Y\subseteq C$ ומפני ש- $X\cap C=Y\cap C$ כלומר כלומר $X\cap C=Y\cap C$ ומפני ש- X הוכיח כעת ש- X היא על. נבחר זוג כלשהו כלשהו X

$$Z\subseteq B$$
 ו- $T\subseteq A=\emptyset$ ו- $T\subseteq A=\emptyset$ ו- $T\subseteq A=\emptyset$ מאחר ש- $T\subseteq A=\emptyset$

:נסמן כעת $X\in \mathcal{P}(C)$ אז $X=Z\cup T$ ומתקיים

$$f(X) = \langle X \cap A, X \cap B \rangle = \langle (T \cup Z) \cap A, (T \cup Z) \cap B \rangle$$

$$(T \cup Z) \cap A = (T \cap A) \cup (Z \cap A) = T \cup \emptyset = T$$
 מחוקי הפילוג נקבל

$$Z \cap A = \emptyset$$
 (שכן $Z \cap A = \emptyset$).

$$(T \cup Z) \cap B = (T \cap B) \cup (Z \cap B) = \varnothing \cup Z = Z$$
 -באופן דומה נקבל ש

 $Z \subseteq B$ -1 $T \cap B = \emptyset$ (c'

על. $f(X) = \langle X \cap A, X \cap B \rangle = \langle (T \cup Z) \cap A, (T \cup Z) \cap B \rangle = \langle T, Z \rangle$ לכן

. $|\mathcal{P}(C)| = |\mathcal{P}(A) \times \mathcal{P}(B)|$ מכאן ש- f היא הפיכה ולכן

-לכן לפי הגדרה 4.14 מתקיים $|\mathcal{P}(B)| = |\mathcal{P}(A)| \cdot |\mathcal{P}(B)|$ ולפי טענה 4.14 והגדרה 4.36 נקבל ש

$$2^{|A \cup B|} = 2^{|A|} \cdot 2^{|B|}$$
 כלומר $2^{|C|} = 2^{|A|} \cdot 2^{|B|}$

לכן $A\cap B=arnothing$ ו- $A\cup B=\mathbf{N}$ אז $B=\{2n+1|n\in\mathbf{N}\}$, $A=\{2n|n\in\mathbf{N}\}$ לכן .

-ש נקבל א |
$$A\cup B$$
 | = | A | = | B | = \aleph_0 -ש ומאחר ש $2^{|A\cup B|}=2^{|A|}\cdot 2^{|B|}$, לפי סעיף אי

 $\aleph\cdot\aleph=\aleph$ - מהטענות 4.14 ו- 4.15 ידוע ש- א גאיי לפיכך הוכחנו ש- $2^{\aleph_0}=2^{\aleph_0}\cdot 2^{\aleph_0}$

עניף אי, $A\cap B=\emptyset$ -ו $A\cup B=\mathbf{R}$ אז $B=(-\infty,0)$, $A=[0,\infty)$ לכן לפי סעיף אי,

$$2^{\aleph}=2^{\aleph}\cdot 2^{\aleph}$$
 - נקבל ש $|A\cup B|=|A|=|B|= rac{8}{4}$ ומאחר ש $|A\cup B|=2^{|A|}\cdot 2^{|B|}$

. $\aleph' \cdot \aleph' = \aleph'$ שי הסימון המוגדר בעמוד 201, אי בי $2^{\aleph} = \aleph'$ ביים הסימון המוגדר בעמוד - לפי

שאלה 4

- א. יהי a מספר ממשי כך ש- $a+\frac{1}{a}$ הוא מספר שלם. הוכיחו באינדוקציה שלכל a טבעי $a^n+\frac{1}{a^n}$ המספר $a^n+\frac{1}{a^n}$
 - $f(x)=rac{x}{1+x}$ ב. נתונה הפונקציה $f:[0,\infty) o [0,\infty)$ המוגדרת על ידי בתונה הפונקציה $f:[0,\infty) o [0,\infty)$ לכל $f(x)=rac{x}{1+x}$ וההרכבה של f(x)=f(x) פעמים).

. n אינדוקציה על והוכיחו אותה אותה ל- $f^{(n)}$ - מיצאו נוסחה ל

תשובה

 $a \neq 0$ -ש נובע שלם שלם קיים $a + \frac{1}{a}$ -ש ההנחה שלם נובע שלם.

נוכיח את הטענה בעזרת עקרון האינדוקציה המורחבת (ראו עמוד 9 בתורת הקבוצות) כפי שנראה במהלך ההוכחה, החישובים יהיו נוחים לנו כאשר במהלך ההוכחה, החישובים יהיו נוחים לנו כאשר במהלך ההוכחה את נכונות

. אכן, $a^1 + \frac{1}{a^1}$ שלם וגם $a^0 + \frac{1}{a^0} = 2$, אכן, n < 2 שלם על-פי הנתון.

מרט מחסין שקטן היטענה מתקיימת עבור כל מספר טבעי שקטן ה' טבעי ונניח כעת ה' טבעי ונניח סטענה מתקיימת עבור כל ח $n\geq 2$

. שלם.
$$a^n + \frac{1}{a^n}$$
 הוא מספר טבעי עבור כל $m < n$ עלינו להוכיח שאז $a^m + \frac{1}{a^m}$

. בורם, הטענה נכונה עבורם n-2 ו- n-1 המספרים , $n \geq 2$ המספרים מאחר ש-

. שלם ו- $a+\frac{1}{a}$ שלם ו- $a+\frac{1}{a}$ שלם ו- $a+\frac{1}{a}$ שלם מספר שלם.

.
$$K = \left(a^{n-1} + \frac{1}{a^{n-1}}\right)\left(a + \frac{1}{a}\right) = a^n + \frac{1}{a^n} + a^{n-2} + \frac{1}{a^{n-2}}$$
: מסמן אותה ב- . $K = \left(a^{n-1} + \frac{1}{a^{n-1}}\right)\left(a + \frac{1}{a}\right) = a^n + \frac{1}{a^n} + a^{n-2} + \frac{1}{a^{n-2}}$

. לפו מספר $a^{n-2} + \frac{1}{a^{n-2}}$ לכן n-2 עבור גם עבור הטענה נכונה לפי ההנחה הטענה לפי

. מכאן נקבל ש-
$$a^n + \frac{1}{a^n} = K - \left(a^{n-2} + \frac{1}{a^{n-2}}\right)$$
 -שלמים מכאן נקבל ש- מכאן נקבל ש-

. טבעיn טבעה נכונה לכל הטענה ולכן הטענה מתקיימים המורחבת האינדוקציה המורחבת מתקיימים ולכן הטענה נכונה לכל

 $[0,\infty)$ -ם אכן פונקציה מיf לכן $0 \le f(x) < 1$ כלומר $0 \le \frac{x}{1+x} < 1$, $x \ge 0$ היא אכן פונקציה מיf ל- $[0,\infty)$ וכך יהיו גם ההרכבות של f על עצמה.

$$(f \circ f)(x) = f(f(x)) = \frac{f(x)}{1+f(x)} = \frac{\frac{x}{1+x}}{1+\frac{x}{1+x}} = \frac{x}{1+2x} :$$
 מתקיים $x \ge 0$

. $x \ge 0$ לכל $f^{(n)}(x) = \frac{x}{1+nx}$ טבעי מתקיים $n \ge 1$ לכל לכל הוכיח הוכיח

. עבור $f^{(1)}(x) = f(x) = \frac{x}{1+1\cdot x}$ (לפי הנתון) עבור n=1

 $.\,x\!\geq\!0$ לכל $f^{(n)}\!=\!\frac{x}{1+nx}$ כלומר כעת הטבעי לכל מספר עבור מספר לכל לכל שהטענה כעת הטענה נכונה א

. $x \ge 0$ לכל $f^{(n+1)} = \frac{x}{1 + (n+1)x}$ כלומר כלומר n+1 לכל לכל לכל להוכיח שהטענה עבור אוני

.
$$f^{(n+1)}(x) = \underbrace{(f \circ f \circ \cdots \circ f)}_{n+1}(x) = \underbrace{(f \circ f \circ \cdots \circ f)}_{n}(f(x)) = f^{(n)}(f(x)) :$$

 $x \ge 0$ לכן לפי הנחת האינדוקציה נקבל שלכל

$$f^{(n+1)}(x) = f^{(n)}(f(x)) = \frac{f(x)}{1+n \cdot f(x)} = \frac{\frac{x}{1+x}}{1+n \cdot \frac{x}{1+x}} = \frac{\frac{x}{1+x}}{\frac{1+x+nx}{1+x}} = \frac{x}{1+(n+1)x}$$

. טבעי $n \ge 1$ לכן לפי עקרון האינדוקציה הטענה נכונה לכל