Inferência Estatística Introdução

E.F.T¹

¹EACH-USP Universidade de São Paulo

ACH2053

Outline

- Estimadores Maxima Verossimilhança
 - Estimadores de Máxima Verossimilhança
 - Casos dignos de nota
 - Propriedades dos Estimadores de Maxima Verossimilhança

Outline

- Estimadores Maxima Verossimilhança
 - Estimadores de Máxima Verossimilhança
 - Casos dignos de nota
 - Propriedades dos Estimadores de Maxima Verossimilhança

Limitações dos Estimadores de Bayes

para aplicar a teoría dos estimadores Bayesianos, é necessário:

- especificar a função de perda,
- determinar uma priori para o parâmetro.

ou também, θ pode ser um vetor, para a qual haveria de se especificar uma distribuição a priori multivariada.

Limitações dos Estimadores de Bayes

para aplicar a teoría dos estimadores Bayesianos, é necessário:

- especificar a função de perda,
- determinar uma priori para o parâmetro.

ou também, θ pode ser um vetor, para a qual haveria de se especificar uma distribuição a priori multivariada.

Limitações dos Estimadores de Bayes

para aplicar a teoría dos estimadores Bayesianos, é necessário:

- especificar a função de perda,
- determinar uma priori para o parâmetro.

ou também, θ pode ser um vetor, para a qual haveria de se especificar uma distribuição a priori multivariada.

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. cuja distribuição é $f(x|\theta)$, onde θ é desconhecido e pertence ao espaço paramêtrico Ω . Para qualquer vetor observado $\mathbf{x} = (x_1, ..., x_n)$ na amostra, o valor da conjunta será denotados por $f_n(\mathbf{x}|\theta)$.

Quando $f_n(\mathbf{x}|\theta)$ é considerado uma função de θ para um vetor \mathbf{x} dado, é chamado de *função de verossimilhança*.

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. cuja distribuição é $f(x|\theta)$, onde θ é desconhecido e pertence ao espaço paramêtrico Ω . Para qualquer vetor observado $\mathbf{x} = (x_1, ..., x_n)$ na amostra, o valor da conjunta será denotados por $f_n(\mathbf{x}|\theta)$.

Quando $f_n(\mathbf{x}|\theta)$ é considerado uma função de θ para um vetor \mathbf{x} dado, é chamado de *função de verossimilhança*.

Suponha que as v.a. $X_1, ..., X_n$ formam uma a.a. cuja distribuição é $f(x|\theta)$, onde θ é desconhecido e pertence ao espaço paramêtrico Ω . Para qualquer vetor observado $\mathbf{x} = (x_1, ..., x_n)$ na amostra, o valor da conjunta será denotados por $f_n(\mathbf{x}|\theta)$.

Quando $f_n(\mathbf{x}|\theta)$ é considerado uma função de θ para um vetor \mathbf{x} dado, é chamado de *função de verossimilhança*.

Supondo que o vetor \mathbf{x} vem de uma distribuição discreta. Se uma estimativa de θ deve ser selecionada, não considerariamos qualquer valor de $\theta \in \Omega$ com o qual seria impossível conseguir o atual valor de \mathbf{x} .

Suponha que a probabilidade $f_n(\mathbf{x}|\theta)$ de obter o atual vetor observado é alta para determinado valor de $\theta = \theta_0$ e pequena para qualquer outro valor de $\theta \in \Omega$. Então, naturalmente estimariamos o valor de θ como θ_0 .

Supondo que o vetor \mathbf{x} vem de uma distribuição discreta. Se uma estimativa de θ deve ser selecionada, não considerariamos qualquer valor de $\theta \in \Omega$ com o qual seria impossível conseguir o atual valor de \mathbf{x} .

Suponha que a probabilidade $f_n(\mathbf{x}|\theta)$ de obter o atual vetor observado é alta para determinado valor de $\theta=\theta_0$ e pequena para qualquer outro valor de $\theta\in\Omega$. Então, naturalmente estimariamos o valor de θ como θ_0 .

Supondo que o vetor \mathbf{x} vem de uma distribuição discreta. Se uma estimativa de θ deve ser selecionada, não considerariamos qualquer valor de $\theta \in \Omega$ com o qual seria impossível conseguir o atual valor de \mathbf{x} .

Suponha que a probabilidade $f_n(\mathbf{x}|\theta)$ de obter o atual vetor observado é alta para determinado valor de $\theta=\theta_0$ e pequena para qualquer outro valor de $\theta\in\Omega$. Então, naturalmente estimariamos o valor de θ como θ_0 .

Para cada valor possível do vetor \mathbf{x} , seja $\delta(\mathbf{x}) \in \Omega$ o valor de $\theta \in \Omega$ para a qual a função de verossimilhança $f_n((\mathbf{x}|\theta)$ é um máximo, e seja $\hat{\theta} = \delta(\mathbf{X})$ o estimador de θ definido desta forma. O estimador $\hat{\theta}$ é chamado de *estimador de maxima* verossimilhança de θ , ou abreviadamente EMV de θ .

Outline

- Estimadores Maxima Verossimilhança
 - Estimadores de Máxima Verossimilhança
 - Casos dignos de nota
 - Propriedades dos Estimadores de Maxima Verossimilhança

Exemplos de EMV casos de nota

- Em alguns problemas, para valores observados \mathbf{x} , um valor máximo para $f_n(\mathbf{x}|\theta)$ pode não ser obtido para qualquer ponto $\theta \in \Omega$. Neste caso o EMV não existe.
- Para certos **x** observados, o máximo para $f_n(\mathbf{x}|\theta)$ pode ser obtido em vários pontos de Ω , em tais casos, o EMV não é único e um destes pontos pode ser escolhido como a estimativa $\hat{\theta}$.
- Em outros casos, o EMV é existe e é único.

Exemplos de EMV casos de nota

- Em alguns problemas, para valores observados \mathbf{x} , um valor máximo para $f_n(\mathbf{x}|\theta)$ pode não ser obtido para qualquer ponto $\theta \in \Omega$. Neste caso o EMV não existe.
- Para certos \mathbf{x} observados, o máximo para $f_n(\mathbf{x}|\theta)$ pode ser obtido em vários pontos de Ω , em tais casos, o EMV não é único e um destes pontos pode ser escolhido como a estimativa $\hat{\theta}$.
- Em outros casos, o EMV é existe e é único.

Exemplos de EMV casos de nota

- Em alguns problemas, para valores observados \mathbf{x} , um valor máximo para $f_n(\mathbf{x}|\theta)$ pode não ser obtido para qualquer ponto $\theta \in \Omega$. Neste caso o EMV não existe.
- Para certos \mathbf{x} observados, o máximo para $f_n(\mathbf{x}|\theta)$ pode ser obtido em vários pontos de Ω , em tais casos, o EMV não é único e um destes pontos pode ser escolhido como a estimativa $\hat{\theta}$.
- Em outros casos, o EMV é existe e é único.

Exemplos de EMV Amostragem de uma Bernoulli

Suponha que $X_1, X_2, ..., X_n$ formam uma a.a. de uma distribuição de Bernoulli com θ desconhecido ($0 \le \theta \le 1$). Para valores observados $x_1, ..., x_n$, onde cada x_i é 0 ou 1, a função de verossimilhança é:

$$f_n(\mathbf{x}|\theta) = \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i}$$
 (1)

O valor de θ que maximiza $f_n(\mathbf{x}|\theta)$ será o mesmo que maximiza $log f_n(\mathbf{x}|\theta)$. Portanto, será conveniente determinar o EMV encontrando o valor de θ que maximiza:

$$L(\theta) = log f_n(\mathbf{x}|\theta) = \sum_{i=1}^n [x_i log(\theta) = (1 - x_i) log(1 - \theta)]$$
(2)
= $(\sum_{i=1}^n x_i) log(\theta) + (n - \sum_{i=1}^n x_i) log(1 - \theta)$

Exemplos de EMV Amostragem de uma Bernoulli

Se calcularmos a derivada $dL(\theta)/d\theta$, e igualarmos esta derivada a 0, resolvendo a equação para θ encontraremos que $\theta = \bar{x}_n$. Pode ser verificado que este valor maximiza $L(\theta)$, portanto, maximiza a função de verossimilhança. Segue-se que a EMV de θ é $\hat{\theta} = \bar{X}_n$.

Logo, se $X_1, X_2, ..., X_n$ são n ensaios de Bernoulli, então o EMV de probabilidade de sucesso (desconhecida) en qualquer ensaio dado é simplesmente a proporção de sucessos observados nos n ensaios.

Se calcularmos a derivada $dL(\theta)/d\theta$, e igualarmos esta derivada a 0, resolvendo a equação para θ encontraremos que $\theta = \bar{x}_n$. Pode ser verificado que este valor maximiza $L(\theta)$, portanto, maximiza a função de verossimilhança. Segue-se que a EMV de θ é $\hat{\theta} = \bar{X}_n$.

Logo, se $X_1, X_2, ..., X_n$ são n ensaios de Bernoulli, então o EMV de probabilidade de sucesso (desconhecida) en qualquer ensaio dado é simplesmente a proporção de sucessos observados nos n ensaios.

Amostragem de uma Normal (com variância conhecida)

Suponha que $X_1, X_2, ..., X_n$ formam uma a.a. de uma distribuição Normal com média μ desconhecida e variância σ^2 conhecida. Para valores observados $x_1, ..., x_n$, a função de verossimilhança é:

$$f_n(\mathbf{x}|\mu) = \frac{1}{(2\pi\sigma^2)^{n/2}} exp[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2]$$
 (3)

Pode-se ver que $f_n(\mathbf{x}|\mu)$ será maximizado pelo valor de μ que maximiza

$$Q(\mu) = \sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} x_i^2 - 2\mu \sum_{i=1}^{n} x_i + n\mu^2$$

Se calcularmos a derivada $dQ(\mu)/d\mu$, igualamos a 0 e resolvemos esta equação para μ encontraremos que $\mu = \bar{x}_n$. Segue-se então que o EMV de μ é $\hat{\mu} = \bar{X}_n$. Pode ser visto acima que o valor de $\hat{\mu}$ não é afetado pelo valor da variência σ^2

Amostragem de uma Normal(com variância conhecida)

Pode-se ver que $f_n(\mathbf{x}|\mu)$ será maximizado pelo valor de μ que maximiza

$$Q(\mu) = \sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} x_i^2 - 2\mu \sum_{i=1}^{n} x_i + n\mu^2$$

Se calcularmos a derivada $dQ(\mu)/d\mu$, igualamos a 0 e resolvemos esta equação para μ encontraremos que $\mu = \bar{x}_n$. Segue-se então que o EMV de μ é $\hat{\mu} = \bar{X}_n$.

Pode ser visto acima que o valor de $\hat{\mu}$ não é afetado pelo valor da variância σ^2 .

Amostragem de uma Normal(com variância conhecida)

Pode-se ver que $f_n(\mathbf{x}|\mu)$ será maximizado pelo valor de μ que maximiza

$$Q(\mu) = \sum_{i=1}^{n} (x_i - \mu)^2 = \sum_{i=1}^{n} x_i^2 - 2\mu \sum_{i=1}^{n} x_i + n\mu^2$$

Se calcularmos a derivada $dQ(\mu)/d\mu$, igualamos a 0 e resolvemos esta equação para μ encontraremos que $\mu=\bar{x}_n$. Segue-se então que o EMV de μ é $\hat{\mu}=\bar{X}_n$. Pode ser visto acima que o valor de $\hat{\mu}$ não é afetado pelo valor da variância σ^2 .

Amostragem de uma Normal (com variância desconhecida)

Suponha que $X_1, X_2, ..., X_n$ formam uma a.a. de uma distribuição Normal com média μ desconhecida e variância σ^2 desconhecida. Para valores observados $x_1, ..., x_n$, a função de verossimilhança é:

$$f_n(\mathbf{x}|\mu,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} exp[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2]$$
 (4)

Esta função será maximizada para possíveis valores de $-\infty < \mu < \infty$ e $\sigma^2 > 0$. Em lugar de maximizar a $f_n(\mathbf{x}|\mu,\sigma^2)$ é mais fácil maximizar $logf_n(\mathbf{x}|\mu,\sigma^2)$.

Amostragem de uma Normal (com variância desconhecida)

Temos:

$$L(\mu, \sigma^{2}) = log f_{n}(\mathbf{x}|\mu, \sigma^{2})$$

$$= -\frac{n}{2}log(2\pi) - \frac{n}{2}log\sigma^{2} - \frac{1}{2\sigma^{2}}\sum_{i=1}^{n}(x_{i} - \mu)^{2}$$
 (5)

Devemos encontrar os valores de μ e de σ^2 para os quais $L(\mu, \sigma^2)$ é máximo encontrando os valores de μ e de σ^2 que satisfazem as equações:

$$\frac{\partial L(\mu, \sigma^2)}{\partial \mu} = 0$$

$$\frac{\partial L(\mu, \sigma^2)}{\partial \sigma^2} = 0$$
(6)

$$\frac{\partial L(\mu, \sigma^2)}{\partial \sigma^2} = 0 \tag{7}$$

Amostragem de uma Normal (com variância desconhecida)

Da primeira equação obtemos:

$$\frac{\partial L(\mu, \sigma^2)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = \frac{1}{\sigma^2} (\sum_{i=1}^n x_i - n\mu)$$

encontramos aqui que $\mu = \bar{x}_i$. Também:

$$\frac{\partial L(\mu, \sigma^2)}{\partial \sigma^2} = -\frac{n}{\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2$$

substituindo μ por \bar{x}_n encontramos que

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x}_n)^2 \tag{8}$$

Amostragem de uma Normal (com variância desconhecida)

Observamos portanto que os EMV de μ e de σ^2 (que maximizam a função $L(\mu,\sigma^2)$) são

$$\hat{\mu} = \bar{X}_n$$

е

$$\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$$

Exemplos de EMV Amostragem de uma Uniforme

Suponha que $X_1, X_2, ..., X_n$ formam uma a.a. de uma distribuição Uniforme no intervalo $(0, \theta)$ com θ desconhecido $(\theta > 0)$. A fdp de cada observação tem a forma:

$$f(x|\theta) = \begin{cases} \frac{1}{\theta} & \text{para} \quad 0 \le x \le \theta \\ 0 & \text{c.c.} \end{cases}$$
 (9)

Exemplos de EMV Amostragem de uma Uniforme

portanto, a distribuição conjunta $f_n(\mathbf{x}|\theta)$ de $X_1, X_2, ..., X_n$ tem a forma:

$$f_n(\mathbf{x}|\theta) = \begin{cases} \frac{1}{\theta^n} & \text{para} \quad 0 \le x_i \le \theta \quad (i = 1, ..., n) \\ 0 & \text{c.c.} \end{cases}$$
 (10)

Pode se mostrar que o EMV de θ deve ser um valor de θ para a qual $\theta \ge x_i$ para i = 1, ..., n e maximiza $1/\theta^n$ entre tais valores. Como $1/\theta^n$ é uma função decrescente em θ , a estimativa será o menor valor de θ tal que $\theta \ge x_i$ para (i = 1, ..., n). Como este valor é $\theta = max(x_1, ..., x_n)$ o EMV de θ é $\hat{\theta} = max(x_1, ..., x_n)$.

Exemplos de EMV Não Existência de um EMV

Suponha que $X_1, X_2, ..., X_n$ formam uma a.a. de uma distribuição Uniforme no intervalo $(0, \theta)$ com θ desconhecido $(\theta > 0)$. Suponha que em lugar de escrever a fdp como na equação 9 escrevemos da seguinte forma :

$$f(x|\theta) = \begin{cases} \frac{1}{\theta} & \text{para} \quad 0 < x < \theta \\ 0 & \text{c.c.} \end{cases}$$
 (11)

A única diferença das equações 9 e 11 é que na segunda a desigualdade é estrita. Ambas podem ser usadas como fdp da distribuição uniforme.

Exemplos de EMV Não Existência de um EMV

portanto, se a equação 11 é usada, o EMV de θ será o valor de θ para a qual $\theta > x_i$ para (i = 1, ..., n) e que maximiza $1/\theta^n$ entre todos os valores. Note que os possíveis valores de θ não incluem o valor de $\theta = max(x_1, ..., x_n)$ desde que θ deve ser estritamente maior que cada valor observado x_i (i = 1, ..., n). Como θ pode ser escolhido como um valor arbitrário próximo de $max(x_1, ..., x_n)$ mas não igual a este valor, então segue-se que o EMV de θ não existe.

Este exemplo mostra uma dificuldade dos EMV, pois deveria ser irrelevante o uso das equações 9 ou da 11.

Exemplos de EMV Não unicidade dos EMV

Suponha que $X_1, X_2, ..., X_n$ formam uma a.a. de uma distribuição Uniforme no intervalo $(\theta, \theta + 1)$ com θ desconhecido $(-\infty < \theta < \infty)$. A fdp conjunta tem a forma:

$$f_n(\mathbf{x}|\theta) = \begin{cases} 1 & \text{para} \quad \theta \le x_i \le \theta + 1 (i = 1, ..., n) \\ 0 & \text{c.c.} \end{cases}$$
 (12)

A condição $\theta \le x_i$ para (i=1,...,n) é equivalente à $\theta \le min(x_1,...,x_n)$. Similarmente, $x_i \le \theta+1$ para (i=1,...,n) é equivalente a $\theta \ge max(x_1,...,x_n)-1$.

Escrevemos então $f_n(\mathbf{x}|\theta)$ da seguinte forma:

$$f_n(\mathbf{x}|\theta) = \begin{cases} 1 & \text{para} & max(x_1, ..., x_n) - 1 \le x_i \le min(x_1, ..., x_n) \\ 0 & \text{c.c.} \end{cases}$$
(13)

Desta forma, é possível selecionar como EMV de θ qualquer valor de θ no intervalo $max(x_1,...,x_n)-1 \le \theta \le min(x_1,...,x_n)$.

Outline

- Estimadores Maxima Verossimilhança
 - Estimadores de Máxima Verossimilhança
 - Casos dignos de nota
 - Propriedades dos Estimadores de Maxima Verossimilhança

Suponha que $X_1, X_2, ..., X_n$ formam uma a.a. de uma distribuição $f(x|\theta)$ com θ desconhecido, e seja $\hat{\theta}$ o EMV de θ . Para valores observados $x_1, ..., x_n$ a função de verossimilhança $f_n(\mathbf{x}|\theta)$ é maximizado quando $\hat{\theta} = \theta$.

Suponha que mudamos o parâmetro tal que expressaremos a função de probabilidade (densidade) em termos de um parâmetro $\tau = g(\theta)$, onde g é uma injeção de θ . Denotemos por $\theta = h(\tau)$ a função inversa. Então a função de distribuição de cada valor observado será $f[x|h(\tau)]$ e a função de verossimilhança será $f_n[\mathbf{x}|h(\tau)]$.

Suponha que $X_1, X_2, ..., X_n$ formam uma a.a. de uma distribuição $f(x|\theta)$ com θ desconhecido, e seja $\hat{\theta}$ o EMV de θ . Para valores observados $x_1, ..., x_n$ a função de verossimilhança $f_n(\mathbf{x}|\theta)$ é maximizado quando $\hat{\theta} = \theta$.

Suponha que mudamos o parâmetro tal que expressaremos a função de probabilidade (densidade) em termos de um parâmetro $\tau = g(\theta)$, onde g é uma injeção de θ . Denotemos por $\theta = h(\tau)$ a função inversa. Então a função de distribuição de cada valor observado será $f[x|h(\tau)]$ e a função de verossimilhança será $f_n[\mathbf{x}|h(\tau)]$.

Suponha que $X_1, X_2, ..., X_n$ formam uma a.a. de uma distribuição $f(x|\theta)$ com θ desconhecido, e seja $\hat{\theta}$ o EMV de θ . Para valores observados $x_1, ..., x_n$ a função de verossimilhança $f_n(\mathbf{x}|\theta)$ é maximizado quando $\hat{\theta} = \theta$.

Suponha que mudamos o parâmetro tal que expressaremos a função de probabilidade (densidade) em termos de um parâmetro $\tau = g(\theta)$, onde g é uma injeção de θ . Denotemos por $\theta = h(\tau)$ a função inversa. Então a função de distribuição de cada valor observado será $f[x|h(\tau)]$ e a função de verossimilhança será $f_n[\mathbf{x}|h(\tau)]$.

Como $f_n(\mathbf{x}|\theta)$ é maximizado quando $\theta = \hat{\theta}$, segue-se que $f_n[\mathbf{x}|h(\tau)]$ será maximizado quando $h(\tau) = \hat{\theta}$. Portanto, o EMV $\hat{\tau}$ deve satisfazer a relação $h(\hat{\tau}) = \hat{\theta}$ ou, $\hat{\tau} = g(\hat{\theta})$ Propriedade da invariância:

4 D > 4 D > 4 E > 4 E > E = 990

Como $f_n(\mathbf{x}|\theta)$ é maximizado quando $\theta = \hat{\theta}$, segue-se que $f_n[\mathbf{x}|h(\tau)]$ será maximizado quando $h(\tau) = \hat{\theta}$. Portanto, o EMV $\hat{\tau}$ deve satisfazer a relação $h(\hat{\tau}) = \hat{\theta}$ ou, $\hat{\tau} = g(\hat{\theta})$ Propriedade da invariância: Se $\hat{\theta}$ é o EMV de θ , então $g(\hat{\theta})$ é o EMV de $g(\theta)$.

Consistência

Em muitos problemas, a sequência de EMV converge em probabilidade ao valor desconhecido de θ quando $n \to \infty$. Foi visto que a sequência de estimadores de Bayes para θ é uma sequência consistente de estimadores, portanto, para uma priori dada e uma amostra suficientemente grande, o estimador de Bayes e o EMV de θ serão valores muito proximos um do outro e proximos também do valor desconhecido de θ .

No exemplo da a.a. extraida de uma Bernoulli, foi mostrado que se a priori de θ é uma Beta, então a diferença entre o estimador de Bayes de θ e a média amostral \bar{X}_n converge a 0 quando $n \to \infty$.

Desta forma, as sequências de estimadores de Bayes e a de EMV, são sequências consistentes.

Consistência

Em muitos problemas, a sequência de EMV converge em probabilidade ao valor desconhecido de θ quando $n \to \infty$. Foi visto que a seguência de estimadores de Bayes para θ é uma sequência consistente de estimadores, portanto, para uma priori dada e uma amostra suficientemente grande, o estimador de Bayes e o EMV de θ serão valores muito proximos um do outro e proximos também do valor desconhecido de θ . No exemplo da a.a. extraida de uma Bernoulli, foi mostrado que se a priori de θ é uma Beta, então a diferença entre o estimador de Bayes de θ e a média amostral \bar{X}_n converge a 0 quando $n \to \infty$.

Desta forma, as sequências de estimadores de Bayes e a de EMV, são sequências consistentes.

Consistência

Em muitos problemas, a sequência de EMV converge em probabilidade ao valor desconhecido de θ quando $n \to \infty$. Foi visto que a seguência de estimadores de Bayes para θ é uma sequência consistente de estimadores, portanto, para uma priori dada e uma amostra suficientemente grande, o estimador de Bayes e o EMV de θ serão valores muito proximos um do outro e proximos também do valor desconhecido de θ . No exemplo da a.a. extraida de uma Bernoulli, foi mostrado que se a priori de θ é uma Beta, então a diferença entre o estimador de Bayes de θ e a média amostral \bar{X}_n converge a 0 quando $n \to \infty$.

Desta forma, as sequências de estimadores de Bayes e a de EMV, são sequências consistentes.

Dependência com os planos amostrais

Se o experimentador decide fixar o valor de n antes de tomar as observações ou preferir usar algum plano amostral, pode ser mostrado que a função de verossimilhança $L(\theta)$ baseado nos valores observados será:

$$L(\theta) = f(x_1|\theta)...f(x_n|\theta)$$

Segue então que o EMV de θ será o mesmo, independentemente do plano amostral usado. Em outras palavras, o valor de θ depende apenas dos valores observados $x_1,...,x_n$ e não do plano que o experimentador decidiu usar.