SMOOTH MANIFOLDS

Definition. We say that a topological space M is an n-dimensional topological manifold if M is a second-countable, Hausdorff, and locally-Euclidean.

Locally-Euclidean means that every point has an open neighbourhood homeomorphic to an open subset of \mathbb{R}^n .

A coordinate chart is a pair (U, φ) where $U \subseteq M$ and $\widehat{U} \subseteq \mathbb{R}^n$ are open, and $\varphi: U \to \widehat{U}$ is a homeomorphism.

We want to be able to differentiate maps between manifolds. *Compatibility* ensures that the smoothness of such maps are independent of the choice of charts.

Definition. Let M be a topological manifold. Let (U, φ) and (V, ψ) be charts. We say (U, φ) and (V, ψ) are *smoothly compatible* if $\psi \circ \varphi^{-1} : \varphi(U \cap V) \to \psi(U \cap V)$ is a diffeomorphism between Euclidean spaces.

A smooth atlas \mathcal{A} is a collection of charts covering M such that any two are smoothly compatible. We say that a chart (U, φ) is compatible with \mathcal{A} if (U, φ) is compatible with every chart in \mathcal{A} .

A a smooth manifold is a topological manifold equipped with a maximal smooth atlas, which we call a smooth structure.

In practice, it is impossible to explicitly define a smooth structure. However, we can first define a non-maximal atlas, then extend to a maximal one, as the following proposition shows.

Proposition. Let M be a topological manifold, and let A be a smooth atlas. Then there exists a unique smooth structure \overline{A} containing A.

Proof. Define $\overline{\mathcal{A}} := \{(U, \varphi) \mid (U, \varphi) \text{ is compatible with } \mathcal{A}\}$. Let us show that $\overline{\mathcal{A}}$ is (i) a smooth atlas, (ii) is maximal, and (iii) is unique.

(i) Let (U, φ) and (V, ψ) be two charts in $\overline{\mathcal{A}}$. Fix $\varphi(p) \in \varphi(U \cap V)$, and let (W, θ) be a chart in \mathcal{A} containing p. Observe that the following diagram commutes:

$$\varphi(U\cap V\cap W) \xrightarrow{\varphi} \theta(U\cap V\cap W) \xrightarrow{\psi} \psi(U\cap V\cap W)$$

Therefore, $\psi \circ \varphi^{-1} = (\varphi \circ \theta^{-1}) \circ (\theta \circ \psi^{-1})$ is smooth on a neighbourhood of $\varphi(p)$. Thus, $\psi \circ \varphi^{-1}$ is smooth because it is smooth on a neighbourhood of every point in its domain. The argument to show smoothness of $\varphi \circ \psi^{-1}$ is identical.

- (ii) Next, suppose \mathcal{B} is a smooth atlas such that $\overline{\mathcal{A}} \subseteq \mathcal{B}$. Since \mathcal{B} contains \mathcal{A} , every chart in \mathcal{B} is compatible with \mathcal{A} , so $\mathcal{B} \subseteq \overline{\mathcal{A}}$.
- (iii) Suppose \mathcal{B} is another smooth structure containing \mathcal{A} . Since every chart in \mathcal{B} is compatible with \mathcal{A} , we have $\mathcal{B} \subseteq \overline{\mathcal{A}}$, so $\mathcal{B} = \overline{\mathcal{A}}$ by maximality of \mathcal{B} .

We can put different smooth structures on the same underlying topological manifold. The following proposition shows how to know if two different smooth atlases generate the same smooth structure.

Proposition. Let M be a topological manifold, and let A and B be smooth atlases. Then $\overline{A} = \overline{B}$ if and only if $A \cup B$ is a smooth atlas.

Proof. Suppose $A \cup B$ is not a smooth atlas. Then there exists a chart in B not compatible with A, so the definition of \overline{A} in the previous proposition shows that B is not a subset of \overline{A} . In particular, \overline{B} is not a subset of \overline{A} .

Conversely, suppose $A \cup B$ is a smooth atlas. Observe that $\overline{A \cup B}$ is a smooth structure containing A and B. Uniqueness implies $\overline{A} = \overline{A \cup B} = \overline{B}$.