Unsupervised Learning Introduction to clustering

MAP 573, 2019 - Julien Chiquet

École Polytechnique, Autumn semester, 2019

https://github.com/jchiquet/CourseUnsupervisedLearningX

Machine Learning

Supervised vs Unsupervised Learning

Supervised Learning

- Training data $\mathcal{D}_n = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}, X_i \sim^{\mathsf{i.i.d}} \mathbb{P}$
- Construct a predictor $\hat{f}: \mathcal{X} \to \mathcal{Y}$ using \mathcal{D}_n
- Loss $\ell(y,f(x))$ measures how well f(x) predicts y
- Aim: minimize the generalization error
- Task: Regression, Classification
- \leadsto The goal is clear: predict y based on x (regression, classification)

Unsupervised Learning

- Training data $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- Loss? , Aim?
- Task: Dimension reduction, Clustering
- → The goal is less well defined, and *validation* is questionable

Outline

Clustering: introduction
 Motivating example
 Generalities
 Vocabulary

② Distance-based methods The K-means algorithm Hierarchical Agglomerative Clustering

Model-based approach Mixture models Expectation-Maximization algorithm

Outline

- 1 Clustering: introduction
 Motivating example
 Generalities
 Vocabulary
- 2 Distance-based methods
- Model-based approach

Packages required for reproducing the slides

```
library(tidyverse) # opinionated collection of packages for data manipulation
library(corrplot) # fancy plots of matrices as images
library(GGally) # extension to ggplot vizualization system
library(ggfortify) # extension to ggplot vizualization system
library(mclust) # Gaussian mixture models
library(aricode) # fast computation of clustering measures
library(animation) # kmeans animation slides
# color and plots themes
library(RColorBrewer)
pal <- brewer.pal(10, "Set3")
theme_set(theme_bw())
```

Outline

- Clustering: introduction Motivating example Generalities Vocabulary
- 2 Distance-based methods
- Model-based approach

Companion data set

Morphological Measurements on Leptograpsus Crabs

Description

The crabs data frame has 200 rows and 8 columns, describing 5 morphological measurements on 50 crabs each of two colour forms and both sexes, of the species *Leptograpsus variegatus* collected at Fremantle, W. Australia.

sex	species	
F:100	B:100	
M:100	O:100	

Companion data set II

Pairs plot of attributes

ggpairs(crabs, columns = 3:7, aes(colour = species, shape = sex))

Companion data set III

PCA on the attributes

```
prcomp(select(crabs, -species, -sex), scale. = TRUE) %>%
  autoplot(loadings = TRUE, loadings.label = TRUE,
            data = crabs, colour = 'species', shape = 'sex')
PC2 (3.03%)
  -0.1
                  -0.1
                                                    0.1
                               PC1 (95.78%)
```

Remove size effect I

Carried by the 1st principal component

PCA is solved by SVD

$$X = UDV^{\top}$$
.

We remove the best rank-1 approximation of ${\bf X}$ to remove the size effect, carried by the first axis, that is,

$$\tilde{\mathbf{X}}^{(1)} = \mathbf{U}_{\bullet 1} d_{11} \mathbf{v}_{\bullet 1}^{\top}.$$

```
attributes <- select(crabs, -sex, -species)
SVD <- svd(attributes)
attributes_rank1 <- tcrossprod(SVD$u[, 1] * SVD$d[1], SVD$v[, 1])
crabs_corrected <- crabs
crabs_corrected[, 3:7] <- attributes - attributes_rank1</pre>
```

ightharpoonup Axis 1 explains a latent effect, here the size in the case at hand, common to all attributes.

Remove size effect II

Carried by the 1st principal component

ggpairs(crabs_corrected, columns = 3:7, aes(colour = species, shape = sex))

PCA on corrected data

Questions

- Could we automatically identify some grouping (clustering) between samples?
- Would this clustering correspond to some known labels (sex, species)?
- 3 Does it matter?

Outline

- 1 Clustering: introduction
 Motivating example
 Generalities
 Vocabulary
- 2 Distance-based methods
- Model-based approach

Clustering: general goals

Objective: construct a map f from \mathcal{D} to $\{1, \ldots, K\}$ where K is a fixed number of clusters.

Careful! classification ≠ clustering

- Classification presupposes the existence of classes
- Clustering labels only elements of the dataset
 - → no ground truth (no given labels)
 - → discovers a structure "natural" to the data
 - → not necessarily related to a known classification

Motivations

- · describe large masses of data in a simplified way,
- structure a set of knowledge,
- reveal structures, hidden causes,
- use of the groups in further processing,
- . . .

Clustering: challenges

Clustering quality

No obvious measure to define the quality of the clusters. Ideas:

- Inner homogeneity: samples in the same group should be similar
- Outer inhomogeneity: samples in different groups should be different

Number of clusters

Choice of the number of clusters K often complex

- No ground truth in unsupervised learning!
- Several solutions might be equally good

Two general approaches

- distance-based: require a distance/dissimilarity between $\{\mathbf x_i\}$
- ullet model-based: require assumptions on the distribution ${\mathbb P}$

Outline

- Clustering: introduction
 Motivating example
 Generalities
 Vocabulary
- 2 Distance-based methods
- Model-based approach

Dissimilarity and Distance

Clustering requires a measure of ressemblance between object

Similarity (resp. Dissimilarity) measures the ressemblance (resp. discrepancy) between objects based on several features.

For instance, two objects are similar if

- they share a certain feature
- their features are close according to a measure of proximity

Definition (distance/metric)

Dissimilairty can be measuresd by distances, *i.e.* a function d_{ij} between pairs in $\{\mathbf{x}_i\}$ s.t.

•
$$d_{ij} \ge 0$$
,

•
$$d_{ij} = 0 \Leftrightarrow \mathbf{x}_i = \mathbf{x}_j$$
, • $d_{ik} \leq d_{ij} + d_{jk}$.

Dissimilarity and Distance

Clustering requires a measure of ressemblance between object

Definition ((dis)similarity)

Similarity (resp. Dissimilarity) measures the ressemblance (resp. discrepancy) between objects based on several features.

For instance, two objects are similar if

- they share a certain feature
- their features are close according to a measure of proximity

Definition (distance/metric)

Dissimilarity can be measuresd by distances, i.e. a function d_{ij} between pairs in $\{\mathbf{x}_i\}$ s.t.

- $d_{ij} \geq 0$,
- $d_{ij} = 0 \Leftrightarrow \mathbf{x}_i = \mathbf{x}_j$,

- $d_{ij} = d_{ji}$,
- $d_{ik} \leq d_{ij} + d_{jk}$.

Classification structures: Partition

Clustering leads to a grouping (or classification) of individuals into homogeneous classes

We consider two structures to describe this classification:

- partitions and
- hierarchies.

Definition (Partition)

A partition \mathcal{P} is a decomposition $\mathcal{P} = \{P_1, \dots, P_K\}$ of a finite ensemble Ω such that

- $P_k \cap P_{k'} = \emptyset$ for any $k \neq k'$
- $\bigcup_k P_k = \Omega$

In a set $\Omega = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ partitioned into K classes, each element of the set belongs to a class and only one.

Classification structures: Hierarchy

Definition (Hierarchy)

A hierarchy ${\mathcal H}$ is a non empty subset of a finite ensemble Ω such that

- $\Omega \in \mathcal{H}$,
- $\forall \mathbf{x} \in \Omega, \{\mathbf{x}\} \in \mathcal{H}$,
- $\forall H, H' \in \mathcal{H}$, then either $H \cap H' = \emptyset$, $H \subset H'$ or $H' \subset H$.

Definition (Index of a Hierarchy)

The index is a function $i: \mathcal{H} \to \mathbb{R}_+$ such that

- if $H \subset H'$ then i(H) < i(H');
- if $\mathbf{x} \in \Omega$ then $i(\mathbf{x}) = 0$.

$\mathsf{Properties}\ (\mathsf{Partition}\ \mathsf{and}\ \mathsf{Hierarchy})$

- Each level of an indexed hierarchy is a partition
- $\{\Omega, P_1, \dots, P_K, \mathbf{x}_1, \dots, \mathbf{x}_n\}$ is a hierarchy

Classification structures: Hierarchy

Definition (Hierarchy)

A hierarchy ${\mathcal H}$ is a non empty subset of a finite ensemble Ω such that

- $\Omega \in \mathcal{H}$,
- $\forall \mathbf{x} \in \Omega, \{\mathbf{x}\} \in \mathcal{H}$,
- $\forall H, H' \in \mathcal{H}$, then either $H \cap H' = \emptyset$, $H \subset H'$ or $H' \subset H$.

Definition (Index of a Hierarchy)

The index is a function $i: \mathcal{H} \to \mathbb{R}_+$ such that

- if $H \subset H'$ then i(H) < i(H');
- if $\mathbf{x} \in \Omega$ then $i(\mathbf{x}) = 0$.

Properties (Partition and Hierarchy)

- Each level of an indexed hierarchy is a partition
- $\{\Omega, P_1, \dots, P_K, \mathbf{x}_1, \dots, \mathbf{x}_n\}$ is a hierarchy

Classification structures: Hierarchy

Definition (Hierarchy)

A hierarchy ${\mathcal H}$ is a non empty subset of a finite ensemble Ω such that

- $\Omega \in \mathcal{H}$,
- $\forall \mathbf{x} \in \Omega, \{\mathbf{x}\} \in \mathcal{H}$,
- $\forall H, H' \in \mathcal{H}$, then either $H \cap H' = \emptyset$, $H \subset H'$ or $H' \subset H$.

Definition (Index of a Hierarchy)

The index is a function $i: \mathcal{H} \to \mathbb{R}_+$ such that

- if $H \subset H'$ then i(H) < i(H');
- if $\mathbf{x} \in \Omega$ then $i(\mathbf{x}) = 0$.

Properties (Partition and Hierarchy)

- Each level of an indexed hierarchy is a partition;
- $\{\Omega, P_1, \dots, P_K, \mathbf{x}_1, \dots, \mathbf{x}_n\}$ is a hierarchy.

Clusterings Comparison: Contingency table

Definition

Consider two clusterings U and V of elements in Ω , into respectively |U| and |V| classes. The $|U| \times |V|$ contingency matrix stores at position (i,j) the number of elements that are simultaneously in cluster i of U and j of V.

$\mathbf{U} \backslash \mathbf{V}$	V_1	V_2		$V_{ V }$	Sums
U_1	n_{11}	n_{12}		$n_{1 V }$	$n_{1.}$
U_2	n_{21}	n_{22}		$n_{2 V }$	$n_{2.}$
:	:	:	٠	:	÷
$U_{ U }$	$n_{ U 1}$	$n_{ U 2}$		$n_{ U V }$	$n_{ U }$.
Sums	$n_{.1}$	$n_{.2}$		$n_{. V }$	$n_{\cdot \cdot} = n$

Clusterings Comparison: Measures (I)

Definition (Rand index)

Given a set Ω of n elements and two partitions U and V to compare, define the following:

- ullet a, the number of pairs in the same subset in U and in in V
- ullet b, the number of pairs in different subsets in U and in V

The Rand index, $RI \in [0,1]$ is

$$RI = \frac{a+b}{\binom{n}{2}}$$

The Rand index can be viewed as a measure of the percentage of correct decisions:

$$RI = \frac{TP + TN}{\binom{n}{2}},$$

where TP,TN are true positive and true negative decisions.

Clusterings Comparison: Measures (II)

The ARI (most popular) is a version of the RI adjusted for chance grouping of element (i.e., the expected similarity of all pair-wise comparisons).

Definition (Adjusted Rand-index)

$$ARI(U,V) = \frac{\sum_{i,j} \binom{n_{ij}}{2} - \left[\sum_{i} \binom{n_{i.}}{2} \sum_{j} \binom{n_{.j}}{2}\right] / \binom{n}{2}}{\frac{1}{2} \left[\sum_{i} \binom{n_{i.}}{2} + \sum_{j} \binom{n_{.j}}{2}\right] - \left[\sum_{i} \binom{n_{i.}}{2} \sum_{j} \binom{n_{.j}}{2}\right] / \binom{n}{2}}$$

Other popular measures:

- NVI, the normalized variation information
- NID, the normalized information distance
- NMI, the normalized mutual information

Outline

- Clustering: introduction
- 2 Distance-based methods
 The K-means algorithm
 Hierarchical Agglomerative Clustering
- Model-based approach

References

The Elements of Statistical Learning,

T. Hastie, R. Tibshirani, J. Friedman

Chapter: 14 Unsupervised Learning, Section 3: Cluster Analysis

https://web.stanford.edu/~hastie/ElemStatLearn/

Classification non-supervisées,

É. Lebarbier, T. Mary-Huard

Chapitre 2 - méthode de partitionnement

https://www.agroparistech.fr/IMG/pdf/ClassificationNonSupervisee-AgroParisTech.pdf

Outline

- Clustering: introduction
- ② Distance-based methods The K-means algorithm Hierarchical Agglomerative Clustering
- Model-based approach

K-means heuristic

Idea

- $oldsymbol{0}$ Clustering is defined by a partition in K classes
- Minimize a criteria of clustering quality
- 3 Use Euclidean distances to measure dissimilarity

Criteria: intra-class variance/ Inertia "within"

Intra-class variance measures inner homogeneity

$$I_W = \sum_{k=1}^{K} \sum_{i=1}^{n} c_{ik} \|\mathbf{x}_i - \boldsymbol{\mu}_k\|_2^2,$$

where

- ullet $oldsymbol{\mu}_k$ are the centers (prototypes) of classes
- $c_{ik} = \mathbf{1}_{i \in \mathcal{P}_k}$ is a partition matrix

K-means algorithm

Ideally, one would solve

$$(\hat{\mathbf{c}}, \hat{\boldsymbol{\mu}}) = \operatorname*{arg\ min}_{(\mathbf{c}, \boldsymbol{\mu})} I_w((\mathbf{c}, \boldsymbol{\mu})), \quad \text{s.t.} \quad \mathbf{c} \text{ is a partition matrix.}$$

This problem is hard to solve but can be optimized locally as follows:

K-means algorithm (Loyds)

Initialization start by a (pseudo) random choice for the centers $oldsymbol{\mu}_k$ Alternate until convergence

- step 1 given ${m \mu}$, chose ${f c}$ minimizing $I_w \equiv$ assign ${f x}_i$ to the nearest prototype
- step 2 given c, chose μ minimizing $I_w \equiv$ update μ by the new means of classes

K-means in action I

K-means in action II

K-means in action III

K-means in action IV

K-means in action V

K-means in action VI

K-means in action VII

K-means in action VIII

K-means: properties

Other schemes

- McQueen: modify the mean each time a sample is assigned to a new cluster.
- Hartigan: modify the mean by removing the considered sample, assign it to the nearby center and recompute the new mean after assignment.

Initialization

No guarantee to converge to a global optimum

- Repeat and keep the best result
- k-Mean++: try to take them as separated as possible.

Complexity

O(nKT) where T is the number of step in the algorithm.

K-means in R on uncorrected data set I

```
uncor_kmeans_res <- crabs %>%
    select(-species, -sex) %>%
    kmeans(4, nstart = 10)
uncor_clusters <- as.factor(uncor_kmeans_res$cluster)
uncor_centers <- as_tibble(uncor_kmeans_res$centers)
classes <- paste(crabs_corrected$species, crabs_corrected$sex, sep = "-")

crabs %>%
    ggplot(aes(x = carapace_length, y = carapace_width, color = uncor_clusters)) +
    geom_point(aes(shape = classes)) +
    geom_point(data = uncor_centers, color = 'coral', size = 4 , pch = 21) +
    geom_point(data = uncor_centers, color = 'coral', size = 50, alpha = 0.2)
```

K-means in R on uncorrected data set II

K-means in R on corrected crabs data set I

```
kmeans_res <- crabs_corrected %>%
    select(-species, -sex) %>%
    kmeans(4, nstart = 10)
clusters <- as.factor(kmeans_res$cluster)
centers <- as.tibble(kmeans_res$centers)
classes <- paste(crabs_corrected$species, crabs_corrected$sex, sep = "-")

crabs_corrected %>%
    ggplot(aes(x = carapace_length, y = carapace_width, color = clusters)) +
    geom_point(aes(shape = classes)) +
    geom_point(data = centers, color = 'coral', size = 4 , pch = 21) +
    geom_point(data = centers, color = 'coral', size = 50, alpha = 0.2)
```

K-means in R on corrected crabs data set II

Clustering comparison

caption = "Estimating structure with k-means")

```
aricode::ARI(clusters, classes)
## [1] 0.7223637
aricode::ARI(uncor_clusters, classes)
## [1] 0.01573617
knitr::kable(table(clusters, classes),
```

Table: Estimating structure with k-means

B-F	В-М	O-F	O-M
0	35	0	0
0	0	50	9
0	0	0	41
50	15	0	0

Outline

- Clustering: introduction
- 2 Distance-based methods The K-means algorithm Hierarchical Agglomerative Clustering
- Model-based approach

Agglomerative Clustering: Heuristic

Idea

- Start with small clusters (e.g. one cluster \equiv one individual)
- 2 Merge the most similar clusters sequentially (and greedily)
- 3 Stops when all individuals are in the same groups

Ingredients

- a dissimilarity measure (distance between individuals)
- $oldsymbol{2}$ a merging criterion Δ (dissimilarity between clusters)
- + Generates a hierarchy of clustering instead of a single partition
- Need to select the number of cluster afterwards

Agglomerative Clustering: general algorithm

Algorithm

- **1** Start with $(C_k^{(0)}) = (\{\mathbf{x}_i\})$ the collection of all singletons.
- ② At step s, we have n-s clusters $(\mathcal{C}_k^{(s)})$:
 - Find the two most similar clusters according to a criterion Δ :

$$(k, \ell) = \underset{(k', \ell')}{\arg\min} \Delta(\mathcal{C}_{k'}^{(s)}, \mathcal{C}_{ell'}^{(s)})$$

- ullet Merge $\mathcal{C}_k^{(s)}$ and $\mathcal{C}_\ell^{(s)}$ into $\mathcal{C}_k^{(s+1)}$
- ullet Update the distances between $\mathcal{C}_k^{(s+1)}$ and the remaining clusters
- 3 Repeat until there is only one cluster.

Complexity

- In general $O(n^3)$
- Can be reduced to $O(n^2)$ if boundering the number of merges

Agglomerative Clustering: general algorithm

Algorithm

- **1** Start with $(C_k^{(0)}) = (\{\mathbf{x}_i\})$ the collection of all singletons.
- ② At step s, we have n-s clusters $(\mathcal{C}_k^{(s)})$:
 - Find the two most similar clusters according to a criterion Δ :

$$(k, \ell) = \underset{(k', \ell')}{\arg\min} \Delta(\mathcal{C}_{k'}^{(s)}, \mathcal{C}_{ell'}^{(s)})$$

- Merge $\mathcal{C}_k^{(s)}$ and $\mathcal{C}_\ell^{(s)}$ into $\mathcal{C}_k^{(s+1)}$
- ullet Update the distances between $\mathcal{C}_k^{(s+1)}$ and the remaining clusters
- 3 Repeat until there is only one cluster.

Complexity

- In general $O(n^3)$
- Can be reduced to $O(n^2)$ if boundering the number of merges

Merging criterion based on the distance between points

• Single linkage (or minimum linkage):

$$\Delta(\mathcal{C}_k, \mathcal{C}_\ell) = \min_{\mathbf{x}_i \in \mathcal{C}_k, \mathbf{x}_j \in \mathcal{C}_\ell} d(\mathbf{x}_i, \mathbf{x}_j)$$

• Complete linkage (or maximum linkage):

$$\Delta(\mathcal{C}_k, \mathcal{C}_\ell) = \max_{\mathbf{x}_i \in \mathcal{C}_k} \max_{\mathbf{x}_j \in \mathcal{C}_\ell} d(\mathbf{x}_i, \mathbf{x}_j)$$

• Average linkage (or group linkage):

$$\Delta(\mathcal{C}_k, \mathcal{C}_\ell) = \frac{1}{|\mathcal{C}_k||\mathcal{C}_\ell|} \sum_{\mathbf{x}_i \in \mathcal{C}_k} \sum_{\mathbf{x}_i \in \mathcal{C}_\ell} d(\mathbf{x}_i, \mathbf{x}_j)$$

Ward's criteria

Merging criterion based on distance to the mean

Ward's criterion:

$$\begin{split} \Delta(\mathcal{C}_k, \mathcal{C}_\ell) &= \sum_{\mathbf{x}_i \in \mathcal{C}_k} \left(d^2(\mathbf{x}_i, \boldsymbol{\mu}_{\mathcal{C}_k \cup \mathcal{C}_\ell}) - d^2(\mathbf{x}_i, \boldsymbol{\mu}_{\mathcal{C}_k}) \right) \\ &+ \sum_{\mathbf{x}_j \in \mathcal{C}_\ell} \left(d^2(\mathbf{x}_j, \boldsymbol{\mu}_{\mathcal{C}_j \cup \mathcal{C}_\ell}) - d^2(\mathbf{x}_j, \boldsymbol{\mu}_{\mathcal{C}_\ell}) \right) \end{split}$$

Euclidean case

If d is the Euclidean distance, then

$$\Delta(\mathcal{C}_k, \mathcal{C}_\ell) = \frac{2|\mathcal{C}_k||\mathcal{C}_\ell|}{|\mathcal{C}_k| + |\mathcal{C}_\ell|} d^2(\boldsymbol{\mu}_{\mathcal{C}_k}, \boldsymbol{\mu}_{\mathcal{C}_\ell})$$

Ward's criteria: details

Recall that the inertia measures the homogenity of th size-K clustering

$$I_W = \sum_{k=1}^K \sum_{\mathbf{x}_i \in \mathcal{C}_k} \|\mathbf{x}_i - \boldsymbol{\mu}_{\mathcal{C}_k}\|_2^2, \quad I_B = \sum_{k=1}^K n_k \|\boldsymbol{\mu}_k - \boldsymbol{\mu}\|_2^2$$

Consider the following two partitions

- $\mathcal{P} = (\mathcal{C}_1, \dots, \mathcal{C}_K)$ at one level of the hierarchy Ω
- \mathcal{P}' is \mathcal{P} once $\mathcal{C}_k, \mathcal{C}_\ell$ merged

Then

$$I_B(\mathcal{P}) - I_B(\mathcal{P}') = \frac{|\mathcal{C}_k||\mathcal{C}_\ell|}{|\mathcal{C}_k| + |\mathcal{C}_\ell|} d^2(\mu_{\mathcal{C}_k}, \mu_{\mathcal{C}_\ell}) = \frac{1}{2} \Delta(\mathcal{C}_k, \mathcal{C}_\ell).$$

- At each step, Ward limits the loss (increase) of the intra (inter) class variance
- → Defines an indexed hierarchy (height of the dendrogram)
- ightsquigarrow Same criteria as in the K-means algorithm

Ward's criteria: details

Recall that the inertia measures the homogenity of th size-K clustering

$$I_W = \sum_{k=1}^K \sum_{\mathbf{x}_i \in \mathcal{C}_k} \|\mathbf{x}_i - \boldsymbol{\mu}_{\mathcal{C}_k}\|_2^2, \quad I_B = \sum_{k=1}^K n_k \|\boldsymbol{\mu}_k - \boldsymbol{\mu}\|_2^2$$

Consider the following two partitions

- $\mathcal{P} = (\mathcal{C}_1, \dots, \mathcal{C}_K)$ at one level of the hierarchy Ω
- \mathcal{P}' is \mathcal{P} once $\mathcal{C}_k, \mathcal{C}_\ell$ merged

Then

$$I_B(\mathcal{P}) - I_B(\mathcal{P}') = \frac{|\mathcal{C}_k||\mathcal{C}_\ell|}{|\mathcal{C}_k| + |\mathcal{C}_\ell|} d^2(\boldsymbol{\mu}_{\mathcal{C}_k}, \boldsymbol{\mu}_{\mathcal{C}_\ell}) = \frac{1}{2} \Delta(\mathcal{C}_k, \mathcal{C}_\ell).$$

- At each step, Ward limits the loss (increase) of the intra (inter) class variance
- ightsquigarrow Defines an indexed hierarchy (height of the dendrogram)
- ightsquigarrow Same criteria as in the K-means algorithm

Ward's criteria: details

Recall that the inertia measures the homogenity of th size-K clustering

$$I_W = \sum_{k=1}^K \sum_{\mathbf{x}_i \in \mathcal{C}_k} \|\mathbf{x}_i - \boldsymbol{\mu}_{\mathcal{C}_k}\|_2^2, \quad I_B = \sum_{k=1}^K n_k \|\boldsymbol{\mu}_k - \boldsymbol{\mu}\|_2^2$$

Consider the following two partitions

- $\mathcal{P} = (\mathcal{C}_1, \dots, \mathcal{C}_K)$ at one level of the hierarchy Ω
- \mathcal{P}' is \mathcal{P} once $\mathcal{C}_k, \mathcal{C}_\ell$ merged

Then

$$I_B(\mathcal{P}) - I_B(\mathcal{P}') = \frac{|\mathcal{C}_k||\mathcal{C}_\ell|}{|\mathcal{C}_k| + |\mathcal{C}_\ell|} d^2(\boldsymbol{\mu}_{\mathcal{C}_k}, \boldsymbol{\mu}_{\mathcal{C}_\ell}) = \frac{1}{2} \Delta(\mathcal{C}_k, \mathcal{C}_\ell).$$

- At each step, Ward limits the loss (increase) of the intra (inter) class variance
- Defines an indexed hierarchy (height of the dendrogram)
- → Same criteria as in the K-means algorithm

Ward agglomerative clustering in R

```
Ward <- crabs_corrected %>%
  select(-sex, -species) %>%
  dist(method = "euclidean") %>%
  hclust(method = "ward.D2")
plot(Ward)
```


50 / 79

Ward agglomerative clustering in R: comparison I

Compare with out reference classification and k-means

```
aricode::ARI(cutree(Ward, 4), classes)
## [1] 0.6829729
aricode::ARI(cutree(Ward, 4), clusters)
## [1] 0.7999974
```

```
knitr::kable(table(clusters, cutree(Ward,4)),
caption = "k-means vs Ward")
```

Table: k-means vs Ward

1	2	3	4
5	30	0	0
2	0	49	8
1	0	0	40
65	0	0	0

Ward agglomerative clustering in R: comparison II

Optimize over a range of values

```
Ward %>% cutree(k = 1:10) %>% as.data.frame() %>% as.list() %>%
    sapply(aricode::ARI, classes) %>% plot(type = "l")
```

Ward agglomerative clustering in R: comparison III

Look at Ward intra-class variance

Ward agglomerative clustering in R: comparison IV

```
plot(rev(Ward$height)[1:20], xlab = "number of clusters", ylab = "height")
```


Ward agglomerative clustering in R: projection I

```
clusters_ward <- as.factor(cutree(Ward, 4))
centers_ward <- select(crabs_corrected, -sex, -species) %>%
   aggregate(list(cutree(Ward, 4)), mean) %>% as_tibble() %>% select(-Group.1)

crabs_corrected %>%
   ggplot(aes(x = carapace_length, y = carapace_width, color = clusters_ward)) +
   geom_point(aes(shape = classes)) +
   geom_point(data = centers_ward, color = 'coral', size = 4 , pch = 21) +
   geom_point(data = centers_ward, color = 'coral', size = 50, alpha = 0.2)
```

Ward agglomerative clustering in R: projection II

Reordered correlation matrix between individuals

```
C <- cor(t(select(crabs_corrected, -sex, -species)))
C <- C[order(clusters_ward), order(clusters_ward)]
corrplot(C, method = "color", tl.pos = "n")</pre>
```


Outline

- Clustering: introduction
- 2 Distance-based methods
- Model-based approach

Mixture models
Expectation-Maximization algorithm

References

Pattern recognition and machine learning, Christopher Bishop

Chapter 9: Mixture Models and EM

http://users.isr.ist.utl.pt/~wurmd/Livros/school/

Models with Hidden Structure with Applications in Biology and Genomics,

Stéphane Robin Master MathSV Course

https:

//www6.inra.fr/mia-paris/content/download/4587/42934/version/1/file/ModelsHiddenStruct-Biology.pdf

Classification non-supervisées,

É. Lebarbier, T. Mary-Huard

Chapitre 3 - méthode probabiliste: le modèle de mélange

Outline

- 1 Clustering: introduction
- 2 Distance-based methods
- Model-based approach Mixture models

Expectation-Maximization algorithm

Latent variables models

Definition

A latent variable model is a statistical model that relates, for $i=1,\ldots,n$ individuals,

- a set of manifest (observed) variables $\mathbf{X} = (X_i, i = 1, \dots, n)$ to
- a set of latent (unobserved) variables $\mathbf{Z} = (Z_i, i = 1, \dots, n)$.

Common assumption: conditional independence

$$\mathbb{P}((X_1,\ldots,X_n)|(Z_1,\ldots,Z_n)) = \prod_{i=1}^n \mathbb{P}(X_i|Z_i).$$

Famous examples

- $(Z_i, i \ge 1)$ is Markov chain: Markov models
- Z_i categorical and independent: mixture models

Latent variables models

Definition

A latent variable model is a statistical model that relates, for $i=1,\ldots,n$ individuals,

- a set of manifest (observed) variables $\mathbf{X} = (X_i, i = 1, \dots, n)$ to
- a set of latent (unobserved) variables $\mathbf{Z} = (Z_i, i = 1, \dots, n)$.

Common assumption: conditional independence

$$\mathbb{P}((X_1,\ldots,X_n)|(Z_1,\ldots,Z_n)) = \prod_{i=1}^n \mathbb{P}(X_i|Z_i).$$

Famous examples

- $(Z_i, i \ge 1)$ is Markov chain: Markov models
- Z_i categorical and independent: mixture models

Mixture models: the latent variables

When (Z_1, \ldots, Z_n) are independent categorical variables, they give a natural (latent) classification of the observations (X_1, \ldots, X_n) – or labels.

Notations

Let (Z_1, \ldots, Z_n) be *iid* categorical variables with distribution

$$\mathbb{P}(i \in q) = \mathbb{P}(Z_i = q) = \alpha_q, \quad \text{s.t.} \sum_{q=1}^{Q} \alpha_q = 1.$$

Alternative (equivalent) notation

Let $Z_i = (Z_{i1}, \dots, Z_{iq})$ be an indicator vector of label for i:

$$\mathbb{P}(i \in q) = \mathbb{P}(Z_{iq} = 1) = \alpha_q, \quad \text{s.t.} \sum_{q=1}^{Q} \alpha_q = 1$$

By definition, $Z_i \sim \mathcal{M}(1, \boldsymbol{\alpha})$, with $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_Q)$

Mixture models: the latent variables

When (Z_1,\ldots,Z_n) are independent categorical variables, they give a natural (latent) classification of the observations (X_1,\ldots,X_n) – or labels.

Notations

Let (Z_1,\ldots,Z_n) be *iid* categorical variables with distribution

$$\mathbb{P}(i \in q) = \mathbb{P}(Z_i = q) = \alpha_q, \quad \text{s.t.} \sum_{q=1}^{Q} \alpha_q = 1.$$

Alternative (equivalent) notation

Let $Z_i = (Z_{i1}, \dots, Z_{iq})$ be an indicator vector of label for i:

$$\mathbb{P}(i \in q) = \mathbb{P}(Z_{iq} = 1) = \alpha_q, \quad \text{s.t.} \sum_{q=1}^{Q} \alpha_q = 1$$

By definition, $Z_i \sim \mathcal{M}(1, \boldsymbol{\alpha})$, with $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_Q)$

Mixture models: the latent variables

When (Z_1, \ldots, Z_n) are independent categorical variables, they give a natural (latent) classification of the observations (X_1, \ldots, X_n) – or labels.

Notations

Let (Z_1, \ldots, Z_n) be *iid* categorical variables with distribution

$$\mathbb{P}(i \in q) = \mathbb{P}(Z_i = q) = \alpha_q, \quad \text{s.t.} \sum_{q=1}^Q \alpha_q = 1.$$

Alternative (equivalent) notation

Let $Z_i = (Z_{i1}, \dots, Z_{iq})$ be an indicator vector of label for i:

$$\mathbb{P}(i \in q) = \mathbb{P}(Z_{iq} = 1) = \alpha_q, \quad \text{s.t.} \sum_{q=1}^{Q} \alpha_q = 1.$$

By definition, $Z_i \sim \mathcal{M}(1, \boldsymbol{\alpha})$, with $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_Q)$.

Mixture models: the manifest variables

A mixture model represents the presence of subpopulations within an overall population as follows:

$$\mathbb{P}(X_i) = \sum_{z_i \in \mathcal{Z}_i} \mathbb{P}(X_i, Z_i) = \sum_{Z_i \in \mathcal{Z}_i} \mathbb{P}(X_i | Z_i) \mathbb{P}(Z_i).$$

Conditional distribution of the manifest variables

We assume a parametric distribution of X in each subpopulation

$$X_i | \{Z_i = q\} \sim \mathbb{P}_{\theta_q} \qquad \left(\Leftrightarrow X_i | \{Z_{iq}\} = 1 \sim \mathbb{P}_{\theta_q} \right)$$

The specificity of each class is handled by $\{m{ heta}_q\}_{q=1}^Q$.

Mixture models: likelihoods

The complete-data likelihood

It is the join distribution of (X_i, Z_i) :

$$\mathbb{P}(X_i, Z_i) = \alpha_{Z_i} \mathbb{P}_{\boldsymbol{\theta}_{Z_i}}(X_i)$$

The incomplete-data likelihood

It is the marginal distribution of X_i once Z_i integrated:

$$\mathbb{P}(X_i) = \sum_{q=1}^{Q} \mathbb{P}(X_i, Z_i = q) = \sum_{q=1}^{Q} \alpha_q \mathbb{P}_{\theta_q}(X_i)$$

ightharpoonup A mixture model is a sum of distributions weighhed by the proportion of each subpopulation.

Mixture models: likelihoods

The complete-data likelihood

It is the join distribution of (X_i, Z_i) :

$$\mathbb{P}(X_i, Z_i) = \alpha_{Z_i} \mathbb{P}_{\boldsymbol{\theta}_{Z_i}}(X_i)$$

The incomplete-data likelihood

It is the marginal distribution of X_i once Z_i integrated:

$$\mathbb{P}(X_i) = \sum_{q=1}^{Q} \mathbb{P}(X_i, Z_i = q) = \sum_{q=1}^{Q} \alpha_q \mathbb{P}_{\theta_q}(X_i)$$

 \sim A mixture model is a sum of distributions weighhed by the proportion of each subpopulation.

Outline

- Clustering: introduction
- 2 Distance-based methods
- **3** Model-based approach Mixture models

Expectation-Maximization algorithm

Intractability of the Likelihood

Maximum Likelihood Estimator

The MLE aims to maximize the (marginal) likehood of the observations:

$$L(\boldsymbol{\theta}; \mathbf{X}) = \mathbb{P}_{\boldsymbol{\theta}}((X_1, \dots, X_n)) = \int_{\mathbf{Z} \in \mathcal{Z}} \mathbb{P}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{Z}) d\mathbf{Z}$$

Integrations are summation over $\{1,\ldots,Q\}$: we have Q^n terms !

Intractable summation

With mixture models, for $\boldsymbol{\theta} = (\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_Q)$ we have

$$\log L(\boldsymbol{\theta}; \mathbf{X}) = \sum_{i=1}^{n} \log \left\{ \sum_{q=1}^{Q} \alpha_{q} \mathbb{P}_{\boldsymbol{\theta}_{q}}(X_{i}) \right\}.$$

→ Direct maximization of the likelihood is impossible in practice

Intractability of the Likelihood

Maximum Likelihood Estimator

The MLE aims to maximize the (marginal) likehood of the observations:

$$L(\boldsymbol{\theta}; \mathbf{X}) = \mathbb{P}_{\boldsymbol{\theta}}((X_1, \dots, X_n)) = \int_{\mathbf{Z} \in \mathcal{Z}} \mathbb{P}_{\boldsymbol{\theta}}(\mathbf{X}, \mathbf{Z}) d\mathbf{Z}$$

Integrations are summation over $\{1,\ldots,Q\}$: we have Q^n terms !

Intractable summation

With mixture models, for $oldsymbol{ heta} = (oldsymbol{ heta}_1, \dots, oldsymbol{ heta}_Q)$ we have

$$\log L(\boldsymbol{\theta}; \mathbf{X}) = \sum_{i=1}^n \log \left\{ \sum_{q=1}^Q \alpha_q \mathbb{P}_{\boldsymbol{\theta}_q}(X_i) \right\}.$$

→ Direct maximization of the likelihood is impossible in practice

Bayes decision rule / Maximum a posteriori

Principle

Affect an individual i to the subpopulation which is the most likely according to the data:

$$\tau_{iq} = \mathbb{P}(Z_{iq} = 1 | X_i = x_i)$$

This is the posterior probability for $i \in q$.

Application of the Bayes Theorem

It is straightforward to show that

$$\tau_{iq} = \frac{\alpha_q \mathbb{P}_{\theta_q}(x_i)}{\sum_{q=1}^{Q} \alpha_q \mathbb{P}_{\theta_q}(x_i)}$$

Principle of the EM algorithm

If θ were known

... estimating the posterior probability $\mathbb{P}(Z_i|\mathbf{X})$ of \mathbf{Z} should be easy By means of the Bayes decision rule

If **Z** were known...

... estimating the best set of parameter θ should be easy This is close to usual maximum likelihood estimation

EM principle

Maximize the marginal likelihood iteratively:

- Initialize 6
- $oldsymbol{arrho}$ Compute the probability of ${f Z}$ given ${oldsymbol{ heta}}$
- $oldsymbol{\mathfrak{G}}$ Get a better $oldsymbol{ heta}$ with the new $oldsymbol{\mathbf{Z}}$
- 4 Iterate until convergence

Principle of the EM algorithm

If θ were known

... estimating the posterior probability $\mathbb{P}(Z_i|\mathbf{X})$ of \mathbf{Z} should be easy By means of the Bayes decision rule

If **Z** were known...

... estimating the best set of parameter θ should be easy This is close to usual maximum likelihood estimation

EM principle

Maximize the marginal likelihood iteratively:

- $oldsymbol{0}$ Initialize $oldsymbol{ heta}$
- **2** Compute the probability of ${f Z}$ given ${m heta}$
- **3** Get a better θ with the new \mathbf{Z}
- 4 Iterate until convergence

Formal algorithm

Initialization: start from a good guess either of ${\bf Z}$ or ${\boldsymbol \theta}$, then iterate 1-2

1. Expectation step

Calculate the expected value of the loglikelihood under the current heta

$$Q\left(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}\right) = \mathbb{E}_{\mathbf{Z}|\mathbf{X};\boldsymbol{\theta}^{(t)}}\big[\log L(\boldsymbol{\theta};\mathbf{X},\mathbf{Z})\big] \qquad (\textit{needs } \mathbb{P}_{\boldsymbol{\theta}^{(t)}}(\mathbf{Z}|\mathbf{X}))$$

2. Maximization step

Find the parameters that maximize this quantity

$$\boldsymbol{\theta}^{(t+1)} = \arg \max_{\boldsymbol{\theta}} Q\left(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}\right)$$

Stop when
$$\| {m heta}^{(t+1)} - {m heta}^{(t)} \| < arepsilon$$
 or $\| Q^{(t+1)} - Q^{(t)} \| < arepsilon$

(Basic) Convergence analysis

Theorem

At each step of the EM algorithm, the loglikelihood increases. EM thus reaches a local optimum.

Proof.

On board.

Choosing the number of component

Reminder: Bayesian Information Criterion

The BIC is a model selection criterion which penalizes the adjustement to the data by the number of parameter in model $\mathcal M$ as follows:

$$\mathrm{BIC}(\mathcal{M}) = \log L(\hat{\boldsymbol{\theta}}; \mathbf{X}) - \frac{1}{2} \log(n) \mathrm{df}(\mathcal{M}).$$

Integrated Classification Criterion

It is an adaptation working with the complete-data likelihood

$$ICL(\mathcal{M}) = \log L(\hat{\theta}; \mathbf{X}, \hat{\mathbf{Z}}) + \frac{1}{2} \log(n) df(\mathcal{M})$$
$$= BIC - \mathcal{H}(\mathbb{P}(\hat{\mathbf{Z}}|\mathbf{X}),$$

where the entropy ${\cal H}$ measures the separability of the subpopulations.

 \leadsto We choose $\mathcal{M}(Q)$ that maximizes either BIC or ICL

Choosing the number of component

Reminder: Bayesian Information Criterion

The BIC is a model selection criterion which penalizes the adjustement to the data by the number of parameter in model $\mathcal M$ as follows:

$$\mathrm{BIC}(\mathcal{M}) = \log L(\hat{\boldsymbol{\theta}}; \mathbf{X}) - \frac{1}{2} \log(n) \mathrm{df}(\mathcal{M}).$$

Integrated Classification Criterion

It is an adaptation working with the complete-data likelihood:

$$ICL(\mathcal{M}) = \log L(\hat{\boldsymbol{\theta}}; \mathbf{X}, \hat{\mathbf{Z}}) + \frac{1}{2} \log(n) df(\mathcal{M})$$
$$= BIC - \mathcal{H}(\mathbb{P}(\hat{\mathbf{Z}}|\mathbf{X}),$$

where the entropy ${\cal H}$ measures the separability of the subpopulations.

ightsquigarrow We choose $\mathcal{M}(Q)$ that maximizes either BIC or ICL

Choosing the number of component

Reminder: Bayesian Information Criterion

The BIC is a model selection criterion which penalizes the adjustement to the data by the number of parameter in model $\mathcal M$ as follows:

$$\mathrm{BIC}(\mathcal{M}) = \log L(\hat{\boldsymbol{\theta}}; \mathbf{X}) - \frac{1}{2} \log(n) \mathrm{df}(\mathcal{M}).$$

Integrated Classification Criterion

It is an adaptation working with the complete-data likelihood:

$$ICL(\mathcal{M}) = \log L(\hat{\boldsymbol{\theta}}; \mathbf{X}, \hat{\mathbf{Z}}) + \frac{1}{2} \log(n) df(\mathcal{M})$$
$$= BIC - \mathcal{H}(\mathbb{P}(\hat{\mathbf{Z}}|\mathbf{X}),$$

where the entropy ${\cal H}$ measures the separability of the subpopulations.

 \leadsto We choose $\mathcal{M}(Q)$ that maximizes either BIC or ICL

Popular model: Gaussian Multivariate mixture models

The distribution of X_i conditional on the label of i is assumed to be a multivariate Gaussian distribution with unknown parameters:

$$X_i|i\in q\sim \mathcal{N}(\boldsymbol{\mu}_q,\boldsymbol{\Sigma}_q)$$

Complete Likelihood (X, Z)

The model complete loglikelihood is

$$\log L(\boldsymbol{\mu}, \boldsymbol{\Sigma}; \mathbf{X}, \mathbf{Z}) = \sum_{i=1}^{n} \sum_{q=1}^{Q} Z_{iq} \left(\log \alpha_q - \frac{1}{2} \log \det(\boldsymbol{\Sigma}_q) - \frac{1}{2} \|\mathbf{x}_i - \boldsymbol{\mu}_q\|_{\boldsymbol{\Sigma}_q^{-1}}^2 \right) + c$$

→ Implementation of the univariate case during the labs.

Gaussian mixture model in R I

The package Mclust is a great reference See https://cran.r-project.org/web/packages/mclust/ vignettes/mclust.html

```
GMM <- crabs_corrected %>%
    select(-sex, -species) %>%
    Mclust(modelNames = c("EII", "EEI"))
plot(GMM, 'BIC')
```

Gaussian mixture model in R II

Gaussian mixture model in R III

```
aricode::ARI(GMM$classification, classes)
## [1] 0.6451662
aricode::ARI(GMM$classification, clusters)
## [1] 0.8746812
aricode:: ARI(GMM$classification, clusters_ward)
## [1] 0.8209783
plot(GMM, 'classification')
```

Gaussian mixture model in R IV

Example: data generation

We first generate data with 4 components:

```
mu1 <- 5 ; sigma1 <- 1; n1 <- 100
mu2 <- 10 ; sigma2 <- 1; n2 <- 200
mu3 <- 15 ; sigma3 <- 2; n3 <- 50
mu4 <- 20 ; sigma4 <- 3; n4 <- 100
cl \leftarrow rep(1:4,c(n1,n2,n3,n4))
x <- c(rnorm(n1,mu1,sigma1),rnorm(n2,mu2,sigma2),
       rnorm(n3,mu3,sigma3),rnorm(n4,mu4,sigma4))
n <- length(x)
## we randomize the class ordering
rnd <- sample(1:n)</pre>
cl <- cl[rnd]
x \leftarrow x[rnd]
alpha \leftarrow c(n1,n2,n3,n4)/n
```

Example: data generation - plot I

Let us plot the data and the theoretical mixture.

```
curve(alpha[1]*dnorm(x,mu1,sigma1) +
    alpha[2]*dnorm(x,mu2,sigma2) +
    alpha[3]*dnorm(x,mu3,sigma3) +
    alpha[4]*dnorm(x,mu4,sigma4),
    col="blue", lty=1, from=0,to=30, n=1000,
    main="Theoretical Gaussian mixture and its components",
    xlab="x", ylab="density")
curve(alpha[1]*dnorm(x,mu1,sigma1), col="red", add=TRUE, lty=2)
curve(alpha[2]*dnorm(x,mu2,sigma2), col="red", add=TRUE, lty=2)
curve(alpha[3]*dnorm(x,mu3,sigma3), col="red", add=TRUE, lty=2)
curve(alpha[4]*dnorm(x,mu4,sigma4), col="red", add=TRUE, lty=2)
rug(x)
```

Example: data generation - plot II

