Electrifying GRMHD Simulations

Modeling Sgr A* Using Self-Consistent Electron Thermodynamics

Sean Ressler¹; Eliot Quataert¹; Sasha Tchekhovskoy¹; Mani Chandra²; Charles Gammie²

¹University of California Berkeley, ²University of Illinois Urbana-Champaign

What Do We Need To Compare Sims to Observations?

* GRMHD fluid evolution \checkmark $\Rightarrow T_q \equiv T_e + T_p, \rho, b^{\mu}, \text{etc.}$

(Gammie+ 2003, De Villiers+ 2003, Komissarov 2009, White+ 2016, etc.)

Image Credit: Josh Dolence

Ray tracing + radiation transport ✓

All set, right?

No!!!

$$\tau_{ie} \gg \tau_{acc} \Rightarrow T_e \neq T_p$$

(Noble+ 2007; Dolence+ 2009, Chan+ 2013; etc.)

* Electron Thermodynamics \checkmark $\Rightarrow T_e$

(Ressler et al. 2015)

Electron Model

* Add electron entropy equation to GRMHD evolution:

$$ho T_e u^\mu \partial_\mu s_e = f_e Q -
abla_\mu q_e^\mu - a_\mu q_e^\mu - a_\mu q_e^\mu - rac{ds_e}{dt}$$
 e-heating that depends on conduction plasma conditions (See Manichandra's talk Friday + Chandra et al. 2015!) $Q = Q_{
m sim} =
ho T_g u^\mu \partial_\mu s_g^\mu \frac{d^\mu}{q_e^\mu} \propto b^\mu + 2 \left\{ 1 \qquad \beta \lesssim 1 |q_e^\mu| \sim f_e \sim \begin{cases} 1 & \beta \lesssim 1 |q_e^\mu| \sim f_e \end{cases} \right\}$

3D Electron Temperature

Predictive Spectra and Images

Davidson+ 1996; Telesco+ 1996; Falcke+ 1998; Cotera+ 1999; Genzel+ 1999; Genzel+ 2003; An+ 2005; Schödel+ 2007; Doeleman+ 2008; Schödel+ 2011; Neilsen+ 2013; Bower+ 2015

Conclusions and Future Work

Take Away Message:

Physically motivated e⁻ heating can naturally reproduce Sgr A* low frequency radio slope via emission from strongly magnetized disk corona/jet and is vital for more robust predictions

...And we have only scratched the surface:

- * X-ray, IR time variability
- * X-ray flares?
- More detailed parameter surveys

- EHT image size constraints
- * MAD disks
- Field ordering EHT constraints

Plus applications to higher M systems: M87, X-ray binaries, etc. using e⁻ energy equation + Monte Carlo RT for cooling (Ryan, Ressler+ in prep)