група: фак. номер:

1. (5 moчки) Довършете дефиницията: R се нарича радиус на сходимост на степенния ред $\sum_{n=0}^{\infty} a_n x^n$,

ако за всяко |x| < R редът $\sum_{n=0}^{\infty} a_n x^n$ е и за всяко |x| > R редът $\sum_{n=0}^{\infty} a_n x^n$ е

- **2.** $(10\ moч\kappa u)$ Нека $a_n \neq 0$ за $n=0,\,1,\,2,\,...$ и съществува границата $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = L \neq 0$. Докажете, че радиусът на сходимост на степенния ред $\sum_{n=0}^\infty a_n x^n$ е равен на $\frac{1}{L}$.
 - 3. (15 точки) Коефициентите на Фурие на функцията f(x) = |x| + x в интервала $[-\pi, \pi]$ са:

$$a_0 =$$
 , $(n \ge 1)$ $a_n =$, $(n \ge 1)$ $b_n =$.

- **4.** (20 точки) Нека $f(x,y)=rac{x^3-x^2-y^2}{x^2+y^2}$ за (x,y)
 eq (0,0) и f(0,0)=-1.
- а) Покажете, че съществуват и пресметнете $\frac{\partial f}{\partial x}(0,0)=$, $\frac{\partial f}{\partial y}(0,0)=$.
- б) Пресметнете $\frac{\partial^2 f}{\partial x \partial y}(1,1) =$
- в) Непрекъсната ли е f(x,y) в точката (0,0) ?
- г) Диференцируема ли е f(x,y) в точката (0,0) ?
- **5.** $(15\ moч\kappa u)$ Формулирайте и докажете теоремата за равенство на смесените производни.

Казваме, че множеството е $A\subset\mathbb{R}^2$ с мярка нула (в смисъл на Пеано-Жордан), ако за всяко $\varepsilon>0$ съществува

Казваме, че множеството $A \subset \mathbb{R}^2$ е измеримо (в смисъл на Пеано-Жордан), ако ...

- 7. (10 точки) Докажете, че ако множеството ∂A от граничните точки на ограниченото множество A има мярка нула, то A е измеримо.
 - **8.** (17 mounu) Heka $P(x,y) = (x^2 xy + 2x y)e^{x+y}$ if $Q(x,y) = (x^2 xy x)e^{x+y}$.
- а) Ако $A\in\mathbb{R}^2$, $B\in\mathbb{R}^2$ и C е частично гладка крива с начало A и край B докажете, че интегралът $\int\limits_C P(x,y)dx+Q(x,y)dy$ не зависи от C.
- б) Ако A=(0,0) , B=(a,b) и C е частично гладка крива с начало A и край B пресметнете интеграла $\int\limits_C P(x,y)dx + Q(x,y)dy \quad .$

$$\int\limits_{C} P(x,y)dx + Q(x,y)dy =$$

в) Намерете функция U(x,y) , за която U(1,-1)=1 и $\frac{\partial U}{\partial x}(x,y)=P(x,y)$, $\frac{\partial U}{\partial y}(x,y)=Q(x,y)$ за всяка точка $(x,y)\in\mathbb{R}^2$.

$$U(x,y) =$$

група: фак. номер:

1. (5 moчки) Довършете дефиницията: R се нарича радиус на сходимост на степенния ред $\sum_{n=0}^{\infty} a_n x^n$,

ако за всяко |x| < R редът $\sum_{n=0}^{\infty} a_n x^n$ е и за всяко |x| > R редът $\sum_{n=0}^{\infty} a_n x^n$ е

- **2.** (10 точки) Нека съществува границата $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L \neq 0$. Докажете, че радиусът на сходимост на степенния ред $\sum_{n=0}^{\infty} a_n x^n$ е равен на $\frac{1}{L}$.
 - **3.** (15 точки) Коефициентите на Фурие на функцията f(x) = |x| x в интервала $[-\pi, \pi]$ са:

$$a_0 =$$
 , $(n \ge 1)$ $a_n =$, $(n \ge 1)$ $b_n =$.

- **4.** (20 точки) Нека $f(x,y)=rac{y^3+2x^2+2y^2}{x^2+y^2}$ за (x,y)
 eq (0,0) и f(0,0)=2 .
- а) Покажете, че съществуват и пресметнете $\frac{\partial f}{\partial x}(0,0)=$, $\frac{\partial f}{\partial y}(0,0)=$
- б) Пресметнете $\frac{\partial^2 f}{\partial x \partial y}(1,1) =$
- в) Непрекъсната ли е f(x,y) в точката (0,0)?
- г) Диференцируема ли е f(x,y) в точката (0,0) ?
- **5.** $(15\ mou\kappa u)$ Формулирайте и докажете правилото за пресмятане на частните производни на съставна функция.

Казваме, че множеството е $A\subset\mathbb{R}^2$ с мярка нула (в смисъл на Пеано-Жордан), ако за всяко $\varepsilon>0$ съществува

Казваме, че множеството $A \subset \mathbb{R}^2$ е измеримо (в смисъл на Пеано-Жордан), ако ...

- 7. (10 точки) Докажете, че ако множеството A е измеримо, то множеството ∂A от граничните му точки има мярка нула.
 - 8. (17 точки) Нека $P(x,y) = (y^2 + xy + y) e^{x-y}$ и $Q(x,y) = (2y + x y^2 xy) e^{x-y}$.
- а) Ако $A\in\mathbb{R}^2$, $B\in\mathbb{R}^2$ и C е частично гладка крива с начало A и край B докажете, че интегралът $\int\limits_C P(x,y)dx+Q(x,y)dy$ не зависи от C.
- б) Ако A=(0,0) , B=(a,b) и C е частично гладка крива с начало A и край B пресметнете интеграла $\int\limits_C P(x,y)dx + Q(x,y)dy \quad .$

$$\int\limits_{C} P(x,y)dx + Q(x,y)dy =$$

в) Намерете функция U(x,y) , за която U(2,2)=2 и $\frac{\partial U}{\partial x}(x,y)=P(x,y)$, $\frac{\partial U}{\partial y}(x,y)=Q(x,y)$ за всяка точка $(x,y)\in\mathbb{R}^2$.

$$U(x,y) =$$

група: фак. номер:

1. (5 точки) Довършете дефиницията: R се нарича радиус на сходимост на степенния ред $\sum_{n=0}^{\infty} a_n x^n$,

ако за всяко |x| < R редът $\sum_{n=0}^{\infty} a_n x^n$ е и за всяко |x| > R редът $\sum_{n=0}^{\infty} a_n x^n$ е

- **2.** $(10\ moч\kappa u)$ Нека $a_n \neq 0$ за $n=0,\,1,\,2,\,...$ и съществува границата $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = L \neq 0$. Докажете, че радиусът на сходимост на степенния ред $\sum_{n=0}^\infty a_n x^n$ е равен на $\frac{1}{L}$.
 - **3.** (15 точки) Коефициентите на Фурие на функцията f(x) = |x| в интервала $[-\pi, \pi]$ са:

$$a_0 =$$
 , $(n \ge 1)$ $a_n =$, $(n \ge 1)$ $b_n =$.

- **4.** (20 точки) Нека $f(x,y)=rac{x^4+3x^2+3y^2}{x^2+y^2}$ за (x,y)
 eq (0,0) и f(0,0)=3 .
- а) Покажете, че съществуват и пресметнете $\frac{\partial f}{\partial x}(0,0)=$, $\frac{\partial f}{\partial y}(0,0)=$.
- б) Пресметнете $\frac{\partial^2 f}{\partial x \partial y}(1,1) =$
- в) Непрекъсната ли е f(x,y) в точката (0,0)?
- г) Диференцируема ли е f(x,y) в точката (0,0) ?
- **5.** $(15\ moч\kappa u)$ Формулирайте и докажете теоремата за равенство на смесените производни.

Казваме, че множеството е $A\subset\mathbb{R}^2$ с мярка нула (в смисъл на Пеано-Жордан), ако за всяко $\varepsilon>0$ съществува

Казваме, че множеството $A \subset \mathbb{R}^2$ е измеримо (в смисъл на Пеано-Жордан), ако ...

- 7. (10 точки) Докажете, че ако множеството ∂A от граничните точки на ограниченото множество A има мярка нула, то A е измеримо.
 - 8. (17 точки) Нека $P(x,y) = (y^2 xy y) e^{x+y}$ и $Q(x,y) = (y^2 xy x + 2y) e^{x+y}$.
- а) Ако $A\in\mathbb{R}^2$, $B\in\mathbb{R}^2$ и C е частично гладка крива с начало A и край B докажете, че интегралът $\int\limits_C P(x,y)dx+Q(x,y)dy$ не зависи от C.
- б) Ако A=(0,0) , B=(a,b) и C е частично гладка крива с начало A и край B пресметнете интеграла $\int\limits_C P(x,y)dx + Q(x,y)dy \quad .$

$$\int\limits_{C} P(x,y)dx + Q(x,y)dy =$$

в) Намерете функция U(x,y) , за която U(-1,1)=3 и $\frac{\partial U}{\partial x}(x,y)=P(x,y)$, $\frac{\partial U}{\partial y}(x,y)=Q(x,y)$ за всяка точка $(x,y)\in\mathbb{R}^2$.

$$U(x,y) =$$

група: фак. номер:

1. $(5\ mov \kappa u)$ Довършете дефиницията: R се нарича радиус на сходимост на степенния ред $\sum_{n=0}^{\infty} a_n x^n$,

ако за всяко |x| < R редът $\sum_{n=0}^{\infty} a_n x^n$ е и за всяко |x| > R редът $\sum_{n=0}^{\infty} a_n x^n$ е

- **2.** (10 точки) Нека съществува границата $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L \neq 0$. Докажете, че радиусът на сходимост на степенния ред $\sum_{n=0}^{\infty} a_n x^n$ е равен на $\frac{1}{L}$.
 - **3.** (15 точки) Коефициентите на Фурие на функцията f(x) = x |x| в интервала $[-\pi, \pi]$ са:

$$a_0 =$$
 , $(n \ge 1)$ $a_n =$, $(n \ge 1)$ $b_n =$.

- **4.** (20 точки) Нека $f(x,y)=rac{y^4-4x^2-4y^2}{x^2+y^2}$ за (x,y)
 eq (0,0) и f(0,0)=-4 .
- а) Покажете, че съществуват и пресметнете $\frac{\partial f}{\partial x}(0,0)=$, $\frac{\partial f}{\partial y}(0,0)=$
- б) Пресметнете $\frac{\partial^2 f}{\partial x \partial y}(1,1) =$
- в) Непрекъсната ли е f(x,y) в точката (0,0)?
- г) Диференцируема ли е f(x,y) в точката (0,0) ?
- **5.** $(15\ mou\kappa u)$ Формулирайте и докажете правилото за пресмятане на частните производни на съставна функция.

Казваме, че множеството е $A\subset\mathbb{R}^2$ с мярка нула (в смисъл на Пеано-Жордан), ако за всяко $\varepsilon>0$ съществува

Казваме, че множеството $A \subset \mathbb{R}^2$ е измеримо (в смисъл на Пеано-Жордан), ако ...

- 7. (10 точки) Докажете, че ако множеството A е измеримо, то множеството ∂A от граничните му точки има мярка нула.
 - 8. (17 точки) Нека $P(x,y) = (x^2 + xy + 2x + y)e^{x-y}$ и $Q(x,y) = (x y^2 xy)e^{x-y}$.
- а) Ако $A\in\mathbb{R}^2$, $B\in\mathbb{R}^2$ и C е частично гладка крива с начало A и край B докажете, че интегралът $\int\limits_C P(x,y)dx+Q(x,y)dy$ не зависи от C.
- б) Ако A=(0,0) , B=(a,b) и C е частично гладка крива с начало A и край B пресметнете интеграла $\int\limits_C P(x,y)dx + Q(x,y)dy \quad .$

$$\int\limits_{C} P(x,y)dx + Q(x,y)dy =$$

в) Намерете функция U(x,y) , за която U(-1,-1)=4 и $\frac{\partial U}{\partial x}(x,y)=P(x,y)$, $\frac{\partial U}{\partial y}(x,y)=Q(x,y)$ за всяка точка $(x,y)\in\mathbb{R}^2$.

$$U(x,y) =$$