Тема 3.5. Простейшие алгоритмы теории графов

План: Простейшие алгоритмы теории графов. Путь минимальной суммарной длины во взвешенном графе. Алгоритм Дейкстры. Задача коммивояжера. Венгерский алгоритм построения совершенного паросочетания (задача об оптимальном назначении). Раскраска графа.

Задачи с решением

Пример 1: Найти гамильтонов цикл наименьшей длины (решить задачу коммивояжера):

	1	2	3	4	5
1	0	4	9	6	14
2		0	9	5	7
3			0	11	8
4				0	10
5					0

Решение:

Есть несколько алгоритмов решения данной задачи. Использование жадного алгоритма (двигаться в ближайшую вершину) может дать катастрофически плохой результат. Между тем, единственный алгоритм, дающий оптимальное решение – метод полного прямого перебора.

Рассмотрим алгоритм, дающий решение не хуже, чем в раза чем оптимальное (метод самой близкой вставки).

Пример: решить задачу коммивояжера для графа:

Решение:

Шаг 1. Ребро минимального веса (v_1, v_2) весом 4. Добавляем его. Среди ребер, инцидентных вершинам v_1 и v_2 минимальный вес у ребра (v_2, v_3) . Добавляем его. Теперь нужно замкнуть цикл. Добавляем ребро (v_1, v_3) . Получили начальный цикл.

Шаг 2. Среди ребер, инцидентных вершинам v_1 , v_2 и v_3 , включенным в цикл, минимальный вес имеет ребро (v_2, v_5) . Добавляем его:

У вершины v_2 степень 3, значит одно из ребер (v_2, v_1) или (v_2, v_4) нужно исключить. Определим какое:

$$-(v_2, v_1)$$
: -4+14=10,

$$-(v_2, v_4)$$
: -5+10=5.

Это означает, что если мы убираем ребро (v_2, v_1) , то из нашего цикла мы должны убрать вес этого ребра (-4) и тогда у нас получится незамкнутый цикл (висящие вершины v_1 и v_5), следовательно нужно добавить ребро (v_1, v_5) весом 14. Если же убираем ребро (v_2, v_4) , то убираем его вес (-5) и добавляем ребро (v_4, v_5) весом 10.

Более эффективна вторая схема. Получим:

Не включена вершина v_3 . Повторим шаг 2. Минимальный вес у ребра $\left(v_3,v_5\right)$ - добавляем его.

Степень вершины v_5 стала 3, значит нужно исключить либо (v_2, v_5) , либо (v_4, v_5) . Выполним проверку:

$$-(v_2, v_5)$$
: -7+9=2,

$$-(v_4, v_5)$$
: -10+11=1.

Это означает, что если мы убираем ребро (v_2, v_5) , то из нашего цикла мы должны убрать вес этого ребра (-7) и тогда у нас получится незамкнутый цикл (висящие вершины v_2 и v_3), следовательно нужно добавить ребро (v_2, v_3) весом

9. Если же убираем ребро (v_4, v_5) , то убираем его вес (-10) и добавляем ребро (v_3, v_4) весом 11.

Вторая схема эффективнее. Выберем ее получим:

Все вершины включены в цикл. Это ответ!

Пример 2: Орграф задан матрицей смежности. Необходимо:

- а) нарисовать граф;
- б) заменить все дуги ребрами и в полученном неориентированном графе найти эйлерову цепь (или цикл);
- в) провести раскраску графа и найти его хроматическое число

Решение:

а) Нарисуем граф:

б) Заменим все дуги ребрами. Получим:

В полученном графе степень вершины v_1 - три, поэтому эйлерового цикла нет. Проверим, есть ли эйлерова цепь (может быть максимум две вершины нечетной степени). Это условие не выполняется, т.к. нечетные степени у вершин с номерами 1, 3, 4, 6, следовательно и эйлеровой цепи нет.

Проведем раскраску графа.

Переупорядочим вершины в невозрастающем порядке по локальной степени вершины. Получим:

Берем первую вершину (с самой большой локальной степенью вершины) – это v_1' . Ее покрасим в цвет 1. В этот же цвет покрасим и все вершины, которые не являются смежными с первой вершиной, а также между собой (это только вершина v_4'). Эти вершины уберем из рассмотрения.

Повторяем предыдущий шаг для нового списка вершин. Берем первую вершину из не рассмотренных (с самой большой локальной степенью вершины) – это v_2' . Ее покрасим в цвет 2. В этот же цвет покрасим и все вершины, которые не являются смежными с этой вершиной, а также между собой - это только вершина v_3' (или вместо нее можно взять v_6'). Эти вершины уберем из рассмотрения.

Еще раз повторяем: берем первую вершину из не рассмотренных – это v_5' . Ее покрасим в цвет 3. В этот же цвет покрасим и v_6' (поскольку эти вершины несмежные). Раскраска завершена:

Хроматическое число $\chi(G)=3$, поскольку использовались только три

цвета.

Пример 3: При помощи венгерского алгоритма решите задачу на максимум для двудольного графа, заданного матрицей:

$$C = \begin{pmatrix} 19 & 11 & 12 & 14 \\ 4 & 15 & 5 & 11 \\ 6 & 5 & 3 & 8 \\ 15 & 4 & 6 & 0 \end{pmatrix}.$$

Решение:

Поскольку решается задача на максимум, то нам потребуется сделать один дополнительный шаг: найдем максимальный элемент – 9 и отнимем каждый элемент от него. Получим:

$$C = \begin{pmatrix} 0 & 8 & 7 & 5 \\ 15 & 4 & 14 & 8 \\ 13 & 14 & 16 & 11 \\ 4 & 15 & 13 & 19 \end{pmatrix}.$$

Задача свелась к решению задачи на минимум.

Теперь проведем редукцию по строкам (найдем в каждой строке наименьший элемент и вычтем его из всех элементов данной строки):

$$C = \begin{pmatrix} 0 & 8 & 7 & 5 \\ 11 & 0 & 10 & 4 \\ 2 & 3 & 5 & 0 \\ 0 & 11 & 9 & 15 \end{pmatrix}.$$

Теперь проведем редукцию по столбцам:

$$C = \begin{pmatrix} 0 & 8 & 2 & 5 \\ 11 & 0 & 5 & 4 \\ 2 & 3 & 0 & 0 \\ 0 & 11 & 4 & 15 \end{pmatrix}.$$

Цель редукции по строка м столбцам – сделать хотя бы один ноль в каждой строке и каждом столбце.

Теперь нам нужно выбрать в каждой строке или каждом столбце ровно один ноль. Но здесь это сделать не возможно, т.к., например в последней строке

можно выбрать только один ноль (в первом столбце), но он блокирует ноль в первой строке, а больше нулей в ней нет (аналогичная ситуация, например и с нулями в третьей строке).

Поскольку нули выбрать не получается нам нужно вычеркнуть **все** нули **минимальным** (это важно!) количеством горизонтальных и/или горизонтальных линий:

$$C = \begin{pmatrix} \phi & \$ & 2 & 5 \\ 1 & 0 & 5 & 4 \\ \hline 2 & 3 & 0 & 0 \\ \hline \phi & 1 & 1 & 4 & 15 \end{pmatrix}$$

Среди всех невычеркнутых элементов находим минимальный. Отнимаем его от всех невычеркнутых элементов и прибавляем в местах пересечения линий, те элементы, через которые проходит только одна линия не трогаем. Получим:

$$C = \begin{pmatrix} 0 & 8 & 0 & 3 \\ 11 & 0 & 3 & 2 \\ 4 & 5 & 0 & 0 \\ 0 & 11 & 2 & 13 \end{pmatrix}.$$

Теперь смотрим, можно ли здесь выбрать нули (в каждой строке или каждом столбце ровно один ноль). Такое возможно:

$$C = \begin{pmatrix} 0 & 8 & \boxed{0} & 3 \\ 11 & \boxed{0} & 3 & 2 \\ 4 & 5 & 0 & \boxed{0} \\ \boxed{0} & 11 & 2 & 13 \end{pmatrix}$$

Тогда ответ:

$$C = \begin{pmatrix} 19 & 11 & 12 & 14 \\ 4 & 15 & 5 & 11 \\ 6 & 5 & 3 & 8 \\ \hline 15 & 4 & 6 & 0 \end{pmatrix}$$

Задачи для самостоятельного решения

1. Найдите хроматическое число графов, указанных на рисунке.

2. Найти гамильтонов цикл наименьшей длины (решить задачу коммивояжера):

2.1.

	1	2	3	4	5	6
1	0	10	15	11	2	15
2		0	16	18	21	13
3			0	19	12	3
4				0	18	15
5					0	2
6						0

2.2.

	1	2	3	4	5	6
1	0	19	20	11	2	5
2		0	6	8	7	11
3			0	9	8	3
4				0	7	5
5					0	2
6						0

2.2.

	1	2	3	4	5	6
1	0	19	25	19	2	15
2		0	26	18	11	13
3			0	13	12	3
4				0	18	15
5					0	2
6						0

2.2.

	1	2	3	4	5	6
1	0	9	5	11	12	5
2		0	6	8	6	10
3			0	9	7	13
4				0	13	15
5					0	12
6						0

3. При помощи венгерского алгоритма решите задачу на максимум для двудольного графа, заданного матрицей:

$$3.1. C = \begin{pmatrix} 9 & 5 & 6 & 5 \\ 3 & 6 & 8 & 4 \\ 5 & 8 & 5 & 6 \\ 4 & 5 & 8 & 4 \end{pmatrix}$$

$$3.2. C = \begin{pmatrix} 7 & 5 & 6 & 7 \\ 3 & 6 & 6 & 4 \\ 6 & 7 & 5 & 6 \\ 4 & 6 & 8 & 7 \end{pmatrix}$$

$$3.3. C = \begin{pmatrix} 9 & 5 & 6 & 9 \\ 9 & 6 & 8 & 7 \\ 5 & 7 & 5 & 6 \\ 4 & 6 & 8 & 8 \end{pmatrix}$$

$$3.4. C = \begin{pmatrix} 8 & 5 & 6 & 5 \\ 5 & 6 & 8 & 4 \\ 5 & 7 & 5 & 8 \\ 6 & 6 & 8 & 5 \end{pmatrix}$$

$$3.5. C = \begin{pmatrix} 7 & 9 & 6 & 5 \\ 3 & 6 & 8 & 7 \\ 5 & 9 & 7 & 6 \\ 4 & 7 & 8 & 5 \end{pmatrix}$$