Bioquímica Geral

Sumário

DNA e RNA: as moléculas da informação genética.

Estrutura

Nucleótidos

Funções dos nucleótidos no metabolismo celular. Estrutura dos nucleótidos: bases azotadas e açúcares. Estrutura dos polímeros formados pelos nucleótidos.

Estrutura em dupla hélice do DNA

Modelo de Watson e Crick. Emparelhamento específico das bases A-T e G-C. Forças que estabilizam a estrutura em dupla hélice. O DNA absorve a 260nm. Efeito hipocrómico. Desnaturação reversível do DNA por efeito da temperatura. A temperatura de transição depende da % G+C.

- Estrutura do RNA
- Fluxo da informação genética

Dogma central da Biologia molecular: o DNA dirige a sua própria síntese (replicação) e a síntese do RNA (transcrição). O RNA dirige a síntese das proteínas (tradução).

 São polímeros lineares longos constituídos por nucleóticos

Armazenam a informação
 genética permitindo a sua
 expressão e também a
 transmissão às gerações futuras

Nucleótidos

Funções no metabolismo celular:

- Constituintes dos ácidos nucleicos, DNA (ácido desoxirribonucleico) e RNA (ácido ribonucleico)
- "Moeda de troca" energética no metabolismo (ATP)
- Mensageiro secundário: transmissão de estímulos extracelulares para dentro da célula (AMP-cíclico)
- Componentes estruturais de vários cofactores envolvidos no metabolismo (acetilCoA, NAD, FAD)
- Activação de metabolitos na biossíntese (ADP-glucose)

Nucleótidos

Os nucleótidos são constituídos por:

- uma base azotada;
- uma pentose;
- pelo menos um grupo fosfato.

Purine or pyrimidine base

Adenina
Guanina
Citosina
Timina (DNA)
Uracilo (RNA)

Pentose Ribose (RNA) Desoxirribose (DNA)

Nucleósido: é a designação do conjunto pentose + base azotada (sem o fosfato)

Bases azotadas

As bases azotadas dos nucleótidos são derivados de purinas ou pirimidinas (moléculas heterocíclicas planares aromáticas):

A ligação da base ao açúcar faz-se através de uma ligação N-glicosídica com o azoto 9 no caso das purinas e com o azoto 1 no caso das pirimidinas.

Açúcar (pentose)

O fosfato liga-se por uma ligação fosfodiéster ao hidroxilo 3' de um nucleótido e ao hidroxilo 5' do nucleótido seguinte. A base azotada liga-se ao hidroxilo 1' do açúcar por uma ligação N-glicosídica.

Estrutura do polímero

Ácidos nucleicos são polímeros de nucleótidos ligados entre si por **ligações fosfodiéster** (ligação entre o fosfato e os OH 3' e 5' da ribose).

Estrutura do polímero

O esqueleto dos ácidos nucleicos é invariante. A cadeia de açúcar + fosfato tem um papel estrutural.

A informação está codificada na sequência das bases.

A cadeia tem polaridade

A sequência de bases escreve-se sempre de 5'→ 3'

No início da cadeia existe uma extremidade 5' livre e no fim da cadeia existe uma extremidade 3' livre.

Estrutura em dupla hélice do DNA

Modelo estrutural do DNA de Watson e Crick (1953) Conclusões retiradas do estudo do padrão de difracção de raios X

- 1) Duas cadeias poliméricas helicoidais, enroladas em torno de um eixo comum.
- 2) O esqueleto açúcar-fosfato virado para o exterior e as bases no interior da hélice
- 3) As bases ficam quase perpendiculares ao eixo da hélice e estão separadas por 3.4 Å (como a estrutura helicoidal se repete em cada 34 Å, existem 10 bases por volta). Existe uma rotação de 36 graus por cada base.
- 4) O diâmetro da hélice é 20 Å.

Estrutura em dupla hélice do DNA

Como pode uma estrutura tão regular acomodar sequências arbitrárias de bases, tendo em conta os diferentes tamanhos e formas das purinas e pirimidinas ?

- Emparelhamento específico das bases!

H
N
H
N
H
N
H
N
H
N
H
N
H
H
Adenine

Thymine

O par adenina – timina é estabilizado por 2 ligações de hidrogénio.

O par guanina – citosina é estabilizado por 3 ligações de hidrogénio.

Cytosine

Guanine

Os pares formados têm aproximadamente o mesmo tamanho e forma.

O aspecto mais importante na dupla hélice do DNA é a especificidade do emparelhamento das bases AT e GC, devido à estereoquímica e à formação das ligações de hidrogénio que estabilizam a estrutura.

Estrutura do DNA

As duas cadeias são complementares e antiparalelas

A estrutura proposta por Watson e Crick tem em conta as observações feitas por Chargaff em 1950.

Regras de Chargaff

- As razões A/T e G/C são constantes e iguais a 1 em todos os DNAs testados.
- •As razões A/G e T/C variam consideravelmente de DNA para DNA.

A molécula é muito acídica devido à presença dos grupos fosfato

Estrutura em dupla hélice do DNA

Forças que estabilizam a estrutura:

No interior da hélice as bases ficam empilhadas umas sobre as outras. Este empilhamento contribui para a estabilidade da hélice de duas formas:

- Efeito hidrofóbico as bases hidrofóbicas ficam no interior longe da água. O esqueleto de açúcar e fosfato polar fica exposto à água.
- Interacções de Van der Waals entre as bases.

A dupla hélice pode assumir várias formas

A forma B é a que foi descrita por Watson e Crick e é a mais normal.

A forma A, mais curta e mais larga aparece em DNA menos hidratado. Regiões em cadeia dupla do RNA adoptam uma conformação muito próxima da forma A.

Na forma Z o enrolamento da hélice é para a esquerda. Esta forma aparece em pequenos oligonucleótidos em que há alternância de purinas e pirimidinas.

Forma Z

Os ácidos nucleicos absorvem no UV (260nm) devido à presença das bases aromáticas

COEFICIENTE DE ABSORÇÃO MOLAR	
260 NM, ε_{260} ($ extbf{M}^{-1}$ C $ extbf{CM}^{-1}$)	
AMP	15 400
GMP	11 700
CMP	7 500
UMP	9 900
dTMP	9 200

A dupla hélice do DNA pode ser desnaturada por aumento da temperatura.

A desnaturação é reversível

Por arrefecimento as cadeias complementares voltam a emparelhar.

A desnaturação pode ser seguida através da medição da absorvância no UV a 260 nm

A desnaturação do DNA é um fenómeno cooperativo.

Efeito hipocrómico

O empilhamento das bases resulta numa diminuição da absorvância da luz ultravioleta a 260 nm.

A temperatura de fusão depende de % (G+C)

Quanto maior %G+C, maior a temperatura de fusão.

A temperatura de fusão também depende do pH, força iónica e tamanho do DNA.

Importância da desnaturação reversível

Dentro das células as cadeias são separadas com a ajuda de proteínas específicas: helicases.

As helicases usam a energia da hidrólise do ATP para separar as cadeias da dupla hélice.

A facilidade com que as cadeias se separam e voltam a re-associar em dupla hélice é uma propriedade crucial para a função biológica dos ácidos nucleicos.

Esta propriedade deve-se à natureza das ligações químicas responsáveis pela manutenção da estrutura em dupla hélice: apenas interacções fracas (ligações de hidrogénio, interacções hidrofóbicas e forças de Van der Waals).

No laboratório

A capacidade que as cadeias complementares têm de emparelhar, é uma ferramenta poderosa para investigar semelhanças em sequências de DNA de diferentes proveniências.

As moléculas de DNA são muito longas

porque armazenam uma grande quantidade de informação (codificam um grande número de proteínas), mesmo nos organismos mais simples.

genoma:

polioma virus 5.1 kb *E. coli* 4600 kb Humano 3000000 kb

O DNA pode ser linear ou circular

Nos cromossomas humanos a molécula de DNA é linear e encontra-se associada a proteínas básicas: histonas. Dentro das células o DNA encontra-se sempre numa forma muito compacta.

Estrutura do RNA

O RNA não forma uma hélice dupla regular como o DNA.

No entanto, os ácidos nucleicos em cadeia simples podem adoptar estruturas complexas. Esta complexidade permite que alguns RNA tenham funções catalíticas como as proteínas.

Estruturas stem-loop ou hairpin

Estruturas complexas com algumas regiões emparelhadas e até interacções entre 3 nucleótidos afastados na sequência linear. Observam-se ligações de hidrogénio diferentes das dos pares Watson-Crick

Bioquímica Geral

Sumário

DNA e RNA: as moléculas da informação genética.

Função

Replicação

A replicação é semi-conservativa. As polimerases do DNA sintetizam uma cadeia nova utilizando a cadeia "parental" como molde. Requisitos e características da reacção de síntese do DNA. Vírus que têm RNA como material genético.

Transcrição

Todo o RNA da célula é sintetizado por polimerases do RNA. Reacção de síntese do RNA, suas características e requisitos. Sinais de "start" e "stop" que marcam o início e o fim da transcrição. Tipos de RNA envolvidos na expressão genética: RNA mensageiro, RNA de transferência e RNA ribossomal. Outros pequenos RNA. mRNA monocistrónico e policistrónico. Processamento do mRNA em eucariotas.

Tradução

A síntese proteica ocorre nos ribossomas, utiliza a informação codificada no mRNA e tRNA como adaptadores moleculares. Estrutura do tRNA. Estrutura do ribossoma. Código genético e suas características. Codões de "stop" e "start". "Reading-frames".

FLUXO DA INFORMAÇÃO GENÉTICA

Dogma central da Biologia Molecular (Crick, 1958)

O DNA dirige a sua própria síntese, bem como a sua transcrição, para originar RNA complementar. O RNA é por sua vez traduzido na sequência de aminoácidos correspondente. O código genético permite traduzir sequências de 3 bases em aminoácidos.

Função: Transmissão da informação

Replicação

O DNA faz cópias iguais a si próprio!

New

A Replicação é semi-conservativa

A dupla hélice permite a transmissão rigorosa da informação genética.

Na replicação, as 2 cadeias do DNA separam-se e cada cadeia simples de DNA "parental" serve de molde para a síntese de uma nova cadeia complementar.

Em cada dupla cadeia "filha" vai existir uma cadeia do DNA parental e uma cadeia que foi sintetizada de novo. A replicação é semi-conservativa.

Devido à especificidade do emparelhamento A-T e G-C, a sequência de bases no DNA original é mantida no DNA replicado.

A replicação é feita por polimerases do DNA

As polimerases do DNA catalisam a adição de desoxirribonucleótidos a uma cadeia de DNA utilizando o DNA em cadeia simples como molde.

- A reacção necessita da presença dos 4 precursores activados (dATP, dGTP, dCTP e TTP) e de Mg²⁺.
- A polimerase do DNA necessita de um "primer" para iniciar a síntese.
- A nova cadeia de DNA é "montada" directamente sobre a cadeia de DNA molde.
- A síntese progride na direcção 5' → 3'
- Muitas polimerases do DNA são capazes de corrigir erros de emparelhamento, retirando o nucleótido errado → grande fidelidade na replicação.

Replicação

A polimerase do DNA catalisa a formação da ligação fosfodiéster.

Ataque nucleófilo do OH 3' do *primer* ao átomo de fósforo do nucleótido que está a ser adicionado.

A hidrólise do pirofosfato (PPi) ajuda a deslocar o equilíbrio no sentido da síntese.

Replicação

Na replicação do DNA cada cadeia serve de molde para a síntese da cadeia complementar.

Uma das cadeias é formada continuamente ("*leading strand*") e a outra é sintetizada por fragmentos ("*lagging strand*"). A síntese dá-se sempre na direcção 5'→3'.

Alguns vírus têm genes de RNA

Nos retrovirus o fluxo da informação genética está invertido: há síntese DNA em cadeia dupla a partir do RNA viral pela enzima transcritase reversa.

O DNA viral em cadeia dupla é incorporado no cromossoma do hospedeiro e replicado em conjunto com ele. Mais tarde expressa-se originando cópias do RNA viral e também as proteínas da cápside. O vírus da SIDA é um retrovirus.

Função: Expressão da informação

Transcrição
O DNA dirige a síntese do RNA!

Expressão genética

O DNA funciona como o arquivo de toda a informação, mas ela só se torna útil quando é expressa na produção de RNA e proteínas, que são as moléculas funcionais.

Primeiro é feita uma cópia do DNA em RNA mensageiro (transcrição). Esta cópia contém todas as instruções para a síntese da(s) proteína(s) codificadas pelo DNA que está a ser expresso.

A informação contida no RNA mensageiro é depois traduzida nos ribossomas dando origem a uma proteína funcional.

O RNA é sintetizado por polimerases do RNA

As polimerases do RNA catalisam a adição de ribonucleótidos a uma cadeia de RNA utilizando o DNA como molde. As polimerases do RNA catalisam a iniciação e o elongamento da cadeia de RNA.

Todo o RNA celular é sintetizado pelas polimerases do RNA

Reacção catalisada pela polimerase do RNA

 $(RNA)_n$ + ribonucleósido trifosfato $\rightarrow (RNA)_{n+1}$ + PP_i

Requisitos

- Molde. Preferencialmente DNA em cadeia dupla. A cadeia de RNA é "montada" directamente sobre a cadeia de DNA molde.
- A reacção necessita da presença dos 4 precursores activados (ATP, GTP, CTP e UTP) e de um ião divalente (Mg²⁺ ou Mn²⁺).
- A síntese progride na direcção 5' → 3'

Diferenças entre a polimerase do DNA e a polimerase do RNA

- A polimerase do RNA não necessita de um "primer" para iniciar a síntese.
- A polimerase do RNA não tem a capacidade de corrigir erros.

O RNA sintetizado é complementar ao DNA molde

```
5'—GCGGCGACGCGCAGUUAAUCCCACAGCCGCCAGUUCCGCUGGCGGCAU—3' mRNA
3'—CGCCGCTGCGCGTCAATTAGGGTGTCGGCGGTCAAGGCGACCGCCGTA—5' Template strand of DNA
5'—GCGGCGACGCGCAGTTAATCCCACAGCCGCCAGTTCCGCTGGCGGCAT—3' Coding strand of DNA
```

O mRNA tem a orientação contrária e é complementar à cadeia que lhe serve de molde.

A cadeia codificante do DNA ("coding strand") tem a mesma orientação e a mesma sequência de bases que o mRNA (apenas substituindo T no DNA por U no RNA).

O início e terminação da transcrição são dados por sinais de "start" e "stop" que existem no DNA.

A transcrição começa junto ao promotor

A região do promotor liga especificamente a polimerase do RNA e determina o ponto em que se inicia a tanscrição.

A transcrição acaba num sinal de terminação

A tanscrição do DNA prossegue até que é sintetizada uma sequência de terminação.

Em *E. coli* a sequência de terminação corresponde a uma região rica em G e C que forma uma estrutura em "hairpin" no RNA acabado de sintetizar.

O RNA dissocia-se espontaneamente da polimerase do RNA quando a seguir ao "hairpin" se encontra uma sequência de uracilos (U).

Sabe-se menos acerca da terminação em eucariotas.

Há vários tipos de RNA envolvidos na expressão genética:

- RNA mensageiro (mRNA)
- RNA de transferência (tRNA)
- RNA ribossomal (rRNA)

Nos eucariotas existem outros tipos de pequenos RNA envolvidos na regulação da expressão genética:

- pequeno RNA nuclear (snRNA): participa na excisão dos intrões
- micro RNA (miRNA): liga-se ao mRNA inibindo a sua tradução
- RNA de interferência (siRNA): liga-se ao mRNA e promove a sua degradação.

Há ainda pequenos RNA que são componentes de proteínas envolvidas no tráfico das proteínas para diferentes compartimentos celulares ou para o exterior, e RNA associado à telomerase.

Abundância relativa e características dos principais tipos de RNA

TABLE 4.2 RNA molecules in E. coli

Туре	Relative amount (%)	Sedimentation coefficient (S)	Mass (kd)	Number of nucleotides
Ribosomal RNA (rRNA)	80	23	1.2×10^3	3700
		16	0.55×10^{3}	1700
		5	3.6×10^{1}	120
Transfer RNA (tRNA)	15	4	2.5×10^{1}	75
Messenger RNA (mRNA)	5		Heterogeneous	

O DNA dirige a síntese de todos os tipos de RNA, por isso todas as moléculas de RNA têm sequências que lhes são complementares no genoma do organismo.

RNA mensageiro

O mRNA contém a informação da sequência da(s) proteína(s) que vai ser sintetizada. Classe muito heterogénea porque o tamanho depende do tamanho da proteína codificada.

Em bactérias um mRNA pode conter um gene ou vários genes incluídos no mesmo operão. Tamanho médio do mRNA: 1.2 kb.

O mRNA é policistrónico quando codifica mais do que uma proteína e é monocistrónico quando codifica apenas 1 proteína.

Nos eucariotas cada mRNA contém apenas 1 gene. Nos eucariotas o mRNA contém aspectos estruturais relacionados com a regulação da tradução e também com o tempo de vida do mRNA.

Estrutura de um mRNA

O mRNA tem regiões em cadeia simples e regiões em cadeia dupla onde o emparelhamento entre as bases (A-U e G-C) é frequentemente imperfeito.

A estrutura global é complexa sendo composta por varios tipos de motivos:

Nos procariotas o mRNA é imediatamente traduzido Nos eucariotas o mRNA é processado antes de ser traduzido

Processamento do mRNA em eucariotas

Função: Expressão da informação

Tradução

O RNA dirige a síntese das proteínas!

Tradução

A informação codificada no mRNA é utilizada para sintetizar uma proteína.

A síntese proteica ocorre nos ribossomas e utiliza RNAs de transferência (tRNA) como adaptadores moleculares.

Os tRNA são adaptadores moleculares

Os tRNA têm uma sequência de 3 bases (anticodão) que reconhece uma sequência de 3 bases no mRNA (codão).

Existe pelo menos um tRNA para cada aminoácido.

A ligação do aminoácido ao tRNA respectivo é catalisada por enzimas específicas: *aminoacil-tRNA sintases*. A reacção envolve a hidrólise de ATP:

Aminoácido + tRNA + ATP → Aminoacil-tRNA + AMP + PP_i

Estrutura do RNA de transferência

O tRNA transporta aminoácidos activados para o ribossoma onde se dá a síntese proteica.

Tamanho médio 75 b.

RNA ribossomal

O rRNA é o componente mais importante dos ribossomas.

Nos procariotas existem 3 tipos de rRNA (23S, 16S e 5S). Em cada ribossoma está presente uma molécula de cada tipo de rRNA.

O rRNA tem mais do que um papel estrutural pois funciona como o verdadeiro catalisador na síntese proteica.

Figura:

- Estrutura secundária do rRNA 16S
- Estrutura terciária do rRNA 16S determinada por cristalografia de raios X

Estrutura do Ribossoma

Cada aminoácido é codificado por um conjunto de 3 bases (codão)

O código genético é redundante...

(A maior parte dos aminoácidos é codificada por mais do que um codão.)

		2° letra do codao									
		U		C		A		G			
	U	UUU UUC	Phe Phe	UCU UCC	Ser Ser	UAU UAC	Tyr Tyr	UG U UG C	Cys Cys		
1 ^a letra do codão G	U	UUA UUG	Leu Leu	UCA UCG	Ser Ser	UAA UAG	Stop Stop	UGA UGG	Stop Trp		
	C	CU U	Leu Leu	CCU CCC	Pro Pro	CAU CAC	His His	CGU CGC	Arg Arg		
	C	CUA CUG	Leu Leu	CCA CCG	Pro Pro	CAA CAG	Gln Gln	CGA CGG	Arg Arg		
	Α	AUU AUC	Ile Ile	ACU ACC	Thr Thr	AAU AAC	Asn Asn	AGU AGC	Ser Ser		
	AUA AUG	Ile Met	ACA ACG	Thr Thr	AAA AAG	Lys Lys	AGA AGG	Arg Arg			
	G	GU U GU C	Val Val	GCU GCC	Ala Ala	GAU GAC	Asp Asp	GGU GGC	Gly Gly		
	G	GUA GUG	Val Val	GCA GCG	Ala Ala	GAA GAG	Glu Glu	GGA GGG	Gly Gly		

2ª lotra do codão

Há sinais de "STOP":
UAA
UAG
UGA
e de "START":

AUG

... mas não é ambíguo: a cada codão corresponde um único aminoácido!

Características do código genético (1961)

O código genético estabelece a relação entre a sequência de bases no DNA e a sequência de aminoácidos nas proteínas.

- 1. Cada aminoácido é codificado por 3 nucleótidos (codão).
- 2. O código não está sobreposto. Na sequência ABCDEF o primeiro codão é ABC, o segundo DEF...
- 3. O código não tem pontuação. Os codões seguem-se uns aos outros sem nucleótidos de separação. A sequência de bases é lida sequencialmente a partir de um ponto fixo inicial (codão "start").
- 4. O código genético é redundante. Existem 64 codões e apenas 20 aminoácidos. Há 3 codões de terminação da tradução (codões STOP). À excepção do triptofano e da metionina, todos os aminoácidos são codificados por dois ou mais codões. Codões que especificam o mesmo aminoácido são sinónimos e normalmente diferem apenas na última base. A redundância do código minimiza o efeito negativo de mutações.
- 5. O código genético é quase universal.

No mRNA existem 3 leituras ("reading-frames") possíveis:

A sequência de aminoácidos depende do ponto onde se inicia a leitura dos codões. O ponto fixo inicial não pode ser arbitrário.

Início e fim da síntese proteica

Os codões STOP são não são lidos por tRNA. São reconhecidos por proteínas ("*release factors*") que provocam a libertação da cadeia polipeptídica do ribossoma terminando a tradução do mRNA.