Scuola di Scienze Dipartimento di Fisica e Astronomia Corso di Laurea in Fisica

GEOMETRIC DEEP LEARNING

Relatore: Presentata da: Prof.ssa. Rita Fioresi Tommaso Lamma

Anno Accademico 2020/2021

Abstract in italiano...

Abstract in english...

Contents

1	Introduction													1
	1.1 Abstract simplicial complexes					 								1

1 Introduction

1.1 Abstract simplicial complexes

Definition 1.1.1. Abstract simplicial complex (finite)

Let \mathcal{F} be a family of sets we then define an abstract simplicial complex \mathcal{A} to be

$$\mathcal{A} := \{ \sigma = \{ A_i \}_{i \in I_{\sigma}} \subset \mathcal{F} : \tau \subset \sigma \Rightarrow \tau \in \mathcal{A} \}$$

where I_{σ} is a finite set of indexes, we shall call σ abstract simplexes of A.

Definition 1.1.2. Dimension of an abstract simplicial complex

Let A be an abstract simplicial complex we define its dimension to be

$$dim\mathcal{A} := max_{\sigma \in \mathcal{A}} dim(\sigma),$$

where $dim(\sigma) := |\sigma| - 1$.

Definition 1.1.3. Abstract graph

An abstract graph \mathcal{G} is a 1-dimensional abstract simplicial complex whose vertexes and edges are respectively

$$\mathcal{V} := \{ \sigma \in \mathcal{G} : dim(\sigma) = 0 \}$$
 and

$$\mathcal{E} := \{ \sigma \in \mathcal{G} : dim(\sigma) = 1 \} .$$

In Definition 1.1.1. we tacitly assumed the definition of the abstract simplex σ invariant with respect to permutations of the indexes I_{σ} , this assumption establishes the difference between directed and undirected graphs.

Definition 1.1.4. Convex envelop of points in \mathbb{R}^n

Let I be a finite set of indexes, we define the convex envelope of $\{x_i\}_{i\in I}\subset \mathbb{R}^n$ to be

$$\langle x_i \rangle_{i \in I} := \{ a = \sum_{i \in I} \lambda_i x_i : \lambda_i \in \mathbb{R}, \ \lambda_i > 0, \ \sum_{i \in I} \lambda_i = 1 \},$$

which is the smallest convex set containing $\{x_i\}_{i\in I}$.

Definition 1.1.5. Affine independency of points in \mathbb{R}^n

Let $\{x_i\}_{i\in I}\subset \mathbb{R}^n$ we define $\{x_i\}_{i\in I}$ to be affinely independent if and only if

$$\sum_{i \in I} \lambda_i x_i = \sum_{i \in I} \mu_i x_i \quad \Rightarrow \quad \lambda_i = \mu_i \ \forall i \in I,$$

where $\sum_{i \in I} \lambda_i = \sum_{i \in I} \mu_i = 1$.

Definition 1.1.6. Geometric k-simplexes

We define a geometric k-simplex to be a convex envelop $\langle x_i \rangle_{i \in I}$ where $\{x_i\}_{i \in I} \subset \mathbb{R}^n$ are affinely independent and |I| = k + 1.

Definition 1.1.7. Faces and cofaces of geometric k-simplexes

Definition 1.1.8. Geometric Simplicial Complex

We define a geometric simplicial complex K to be a collection of geometric simplexes such that

(i)
$$\tau \leq \sigma \in \mathcal{K} \Rightarrow \tau \in \mathcal{K}$$

(ii)
$$\sigma, \tau \in \mathcal{K} \Rightarrow \sigma \cup \tau \in \mathcal{K}$$

Theorem 1.1.1. Geometric realization of an abstract simplicial complex