Statistics

Random Sample

The collection of random variables $X_1, X_2, X_3, \ldots, X_n$ is said to be a random sample of size n if they are independent and identically distributed (i.i.d.), i.e.,

- 1. $X_1, X_2, X_3, \dots, X_n$ are independent random variables, and
- 2. they have the same distribution, i.e,

$$F_{X_1}(x) = F_{X_2}(x) = \ldots = F_{X_n}(x)$$
, for all $x \in \mathbb{R}$.

Properties of Random Samples

- 1. the X_i 's are independent;
- 2. $F_{X_1}(x) = F_{X_2}(x) = \dots = F_{X_n}(x) = F_X(x);$
- 3. $EX_i = EX = \mu < \infty;$
- 4. $0 < \operatorname{Var}(X_i) = \operatorname{Var}(X) = \sigma^2 < \infty$.

Sample Mean

The sample mean is defined as

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

Properties of the sample mean

- 1. $E\bar{X} = \mu$.
- 2. $\operatorname{Var}(\bar{X}) = \frac{\sigma^2}{n}$.
- 3. Weak Law of Large Numbers (WLLN):

$$\lim_{n \to \infty} P(|\bar{X} - \mu| \ge \epsilon) = 0.$$

4. Central Limit Theorem: The random variable

$$Z_n = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} = \frac{X_1 + X_2 + \ldots + X_n - n\mu}{\sqrt{n}\sigma}$$

converges in distribution to the standard normal random variable as n goes to infinity, that is

$$\lim_{n \to \infty} P(Z_n \le x) = \Phi(x), \quad \text{for all } x \in \mathbb{R}$$

where $\Phi(x)$ is the standard normal CDF.

Sample Variance and Standard Deviation

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample with mean $EX_i = \mu < \infty$, and variance $0 < \text{Var}(X_i) = \sigma^2 < \infty$. The sample variance of this random sample is defined as

$$S^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (X_{k} - \bar{X})^{2} = \frac{1}{n-1} \left(\sum_{k=1}^{n} X_{k}^{2} - n\bar{X}^{2} \right).$$

The sample variance is an unbiased estimator of σ^2 . The sample standard deviation is defined as

$$S = \sqrt{S^2}$$
.

and is commonly used as an estimator for σ . Nevertheless, S is a biased estimator of σ .

Confidence Intervals

Let $X_1, X_2, X_3, \ldots, X_n$ be a random sample from a distribution with a parameter θ that is to be estimated. An interval estimator with confidence level $1 - \alpha$ consists of two estimators $\hat{\Theta}_l(X_1, X_2, \cdots, X_n)$ and $\hat{\Theta}_h(X_1, X_2, \cdots, X_n)$ such that

$$P\left(\hat{\Theta}_l \le \theta \le \hat{\Theta}_h\right) \ge 1 - \alpha,$$

for every possible value of θ . Equivalently, we say that $\left[\hat{\Theta}_l, \hat{\Theta}_h\right]$ is a $(1-\alpha)100\%$ confidence interval for θ .

Finding Confidence Intervals

Let's review a simple fact from random variables and their distributions. Let X be a continuous random variable with CDF $F_X(x) = P(X \le x)$. Suppose that we are interested in finding two values x_h and x_l such that

$$P\left(x_{l} \leq X \leq x_{h}\right) = 1 - \alpha.$$

One way to do this, is to chose x_l and x_h such that

$$P(X \le x_l) = \frac{\alpha}{2}$$
, and $P(X \ge x_h) = \frac{\alpha}{2}$.

Equivalently,

$$F_X(x_l) = \frac{\alpha}{2}$$
, and $F_X(x_h) = 1 - \frac{\alpha}{2}$.

We can rewrite these equations by using the inverse function F_X^{-1} as

$$x_l = F_X^{-1}\left(\frac{\alpha}{2}\right), \quad \text{and} \quad x_h = F_X^{-1}\left(1 - \frac{\alpha}{2}\right).$$

We call the interval $[x_l, x_h]$ a $(1 - \alpha)$ interval for X. Figure 1 shows the values of x_l and x_h using the CDF of X, and also using the PDF of X.

Figure 1: $[x_l, x_h]$ is a $(1 - \alpha)$ interval for X, that is, $P(x_l \le X \le x_h) = 1 - \alpha$.

The U-test

The U-test, also known as the Mann-Whitney U test, is a non-parametric test used to determine whether there is a significant difference between the distributions of two independent samples. It is often used as an alternative to the t-test when the assumption of normality is not met.

Key Concepts

- Non-Parametric Test: Unlike parametric tests, the U-test does not assume a specific distribution (e.g., normal distribution) for the data. This makes it suitable for data that do not meet the assumptions of parametric tests.
- Independent Samples: The test compares two independent groups. Independence means the samples are not related or paired.
- Rank-Based: The test works by ranking all the values from both groups together and then comparing the ranks between the groups.

Steps to Perform the U-Test

1. Combine and Rank Data:

- Combine the data from both samples.
- Rank all the observations from the lowest to the highest, assigning ranks. In the case of ties (identical values), assign the average rank to the tied values.

2. Sum of Ranks:

• Calculate the sum of the ranks for each group. Let's denote these sums as R_1 and R_2 for the first and second group, respectively.

3. Calculate U Values:

• The U-test computes two U values, one for each group:

$$U_1 = n_1 n_2 + \frac{n_1(n_1+1)}{2} - R_1$$

$$U_2 = n_1 n_2 + \frac{n_2(n_2 + 1)}{2} - R_2$$

Where n_1 and n_2 are the sample sizes of the two groups.

• The smaller of the two U values is used for the test statistic:

$$U = \min(U_1, U_2)$$

4. Determine Significance:

- Compare the calculated U value to a critical value from the Mann-Whitney U distribution table (which depends on the sample sizes and the chosen significance level).
- Alternatively, for larger samples, a normal approximation can be used:

$$Z = \frac{U - \mu_U}{\sigma_U}$$

Where μ_U and σ_U are given by:

$$\mu_U = \frac{n_1 n_2}{2}$$

$$\sigma_U = \sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$$

• The Z value can then be compared to the standard normal distribution to determine the p-value.

Interpretation

- Null Hypothesis (H_0) : The distributions of both groups are equal.
- Alternative Hypothesis (H_A) : The distributions of the two groups are not equal.

If the test statistic (U or Z) indicates a significant difference (p-value < significance level), you reject the null hypothesis and conclude that there is a significant difference between the two groups.