Logique des Prédicats

Corrigé Série N°7

Etude Sémantique

USTHB Faculté Informatique L. KADDOURI

Logique des Prédicats

Corrigé Série N°7 Exo 2

Etant donné un langage du 1er ordre avec égalité contenant le prédicat binaire P.

- On définit l'interprétation I:
- domaine D=N
- Et telle que I(P)= ' < ' $\subset N^2$
- $= \{(x,y) / x < y\}$

Etudier pour l'interprétation I la satisfaisabilité des formules suivantes :

 $\alpha_1 : \forall x \exists y P(x, y)$

Formule fermée

 $I(\alpha_1) : I(\forall x \exists y P(x, y))$

: Qqsoit e1 \in N, il existe e2 \in N : e1 < e2

C'est VRAI

Pour chaque entier e1 fixé, il suffit de prendre l'entier e2=e1+1 (le suivant)

Donc, puisque α_1 est fermée alors :

 α_1 est valide pour I

 $\alpha_2 : \exists x \forall y P(x, y)$

Formule fermée

 $I(\alpha_2) : I(\exists x \forall y P(x, y))$

: il existe e1 \in N, Qqsoit e2 \in N : e1 < e2

C'est FAUX

Contre exemple : Pour l'entier e2=0, il n'existe pas d'entier e1

Donc, puisque α_2 est fermée alors :

 α_2 est NON valide pour I

$$\alpha_3: \forall x \forall y \ (\neg(x=y) \rightarrow P(x,y) \lor P(y,x))$$
Formule fermée

$$I(\alpha_3): I(\forall x \ \forall y \ (\neg(x=y) \rightarrow P(x,y) \lor P(y,x)))$$

: Qqsoit (e1,e2) $\in \mathbb{N}^2$:
Si e1 \neq e2 Alors e1

C'est VRAI

Pour tout couple d'entiers (e1, e2), S'ils sont différents, Alors soit e1<e2, soit e2<e1 Donc, puisque α_3 est fermée alors : α_3 est valide pour l

 $\alpha : X = y$

Soit I l'interp Domaine D=N entiers Definir une VALUATION V $I(\alpha)[V] : V(x)=V(y)$

V2

$$I(\alpha)[V] : V2(x)=V2(y)=1$$

 $1 = 1 VRAI$

Série N°7 : Exercice N°2
$$\alpha_4 : \neg(x=y) \rightarrow P(x, y)$$
 Formule NON fermée

$$I(\alpha_4)$$
 [V] : $I(\neg(x=y) \rightarrow P(x, y))$ [V]
: Si V(x) \neq V(y) Alors V(x)

Soit la valuation V1/V1(x)=3 et V1(y)=5

Donc: α₄ est Satisfaite par V1 pour I

Soit la valuation V2/V2(x)=5 et V2(y)=3

Donc: α_4 est NON Satisfaite par V2 pour I

Conclusion: α_4 est Satisfiable mais non valide pour I

Logique des Prédicats

Corrigé Série N°7 Exo 3

Etant donné un langage du 1^{er} ordre contenant :

- un symbole de constante a,
- un prédicat binaire P et
- une fonction binaire g.

l'interprétation J de domaine D=N telle que J(a)=1, $J(P)=' \ge '$ et J(g)='*'.

Etudier pour l'interprétation J la satisfaisabilité des formules suivantes :

 β_1 : P(g(x, y), a) Formule Non fermée

Donc : β_1 est Satisfaite par V1 pour J

Soit la valuation V2/V2(x)=2 et V2(y)=0

2 * 0 ≥ 1 c.-à-d. 0 ≥ 1C'est FAUX

Donc : β₁ est Non Satisfaite par V2 pour J

Conclusion : β_1 est Satisfiable mais non valide pour J

 $\beta_2: P(x, y) \rightarrow P(y, x)$ Formule Non fermée

$$J(\beta_2) [V] : J(P(x, y) \rightarrow P(y, x)) [V]$$

: Si V(x) \ge V(y) Alors V(y) \ge V(x)

Soit la valuation V1/V1(x)=2 et V1(y)=2

Si 2 ≥ 2 Alors 2 ≥ 2C'est VRAI

Donc : β_2 est Satisfaite par V1 pour J

Soit la valuation V2/V2(x)=3 et V2(y)=2

Si 3 ≥ 2 Alors 2 ≥ 3C'est FAUX

Donc : β_2 est Non Satisfaite par V2 pour J

Conclusion : β_2 est Satisfiable mais non valide pour J

$$\beta_3$$
: $\forall x \forall y \forall z (P(x, y) \land P(y, z) \rightarrow P(x, z))$
Formule fermée

J(β₃) : J(
$$\forall$$
x \forall y \forall z (P(x, y) \land P(y, z) \rightarrow P(x, z)))
: Qqsoit (e1,e2,e3) ∈ N³ :

Si e1 \geq e2 ET e2 \geq e3 Alors e1 \geq e3

C'est VRAI

Par transitivité de la relation \geq Donc, puisque β_3 est fermée alors : β_3 est valide pour J