

Nonparametric Bayesian Statistics

Tamara Broderick

ITT Career Development Assistant Professor Electrical Engineering & Computer Science MIT

Bayesian statistics that is not parametric

Bayesian statistics that is not parametric (wait!)

- Bayesian statistics that is not parametric
- Bayesian

- Bayesian statistics that is not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian statistics that is not parametric
- Bayesian
 - $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$
- Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters)

- Bayesian statistics that is not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian statistics that is not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters)

"Wikipedia phenomenon"

- Bayesian statistics that is not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian statistics that is not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters)

1

- Bayesian statistics that is not parametric
- Bayesian

0.20

0.15 0.10 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters)

West 1995:

et al 1999]

Ghosal

- Bayesian statistics that is not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian statistics that is not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian statistics that is not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian statistics that is not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian statistics that is not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

- Bayesian statistics that is not parametric
- Bayesian

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Not parametric (i.e. not finite parameter, unbounded/ growing/infinite number of parameters)

[Lloyd et al 2012; Miller et al 2010]

A theoretical motivation: De Finetti's Theorem

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- De Finetti's Theorem (roughly): A sequence $X_1, X_2, ...$ is infinitely exchangeable if and only if, for all N and some distribution P:

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- De Finetti's Theorem (roughly): A sequence X_1, X_2, \ldots is infinitely exchangeable if and only if, for all N and some distribution P:

$$p(X_1, \dots, X_N) = \int_{\theta} \prod_{n=1}^{N} p(X_n | \theta) P(d\theta)$$

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- De Finetti's Theorem (roughly): A sequence $X_1, X_2, ...$ is infinitely exchangeable if and only if, for all N and some distribution P:

$$p(X_1, \dots, X_N) = \int_{\theta} \prod_{n=1}^N p(X_n | \theta) P(d\theta)$$

Motivates:

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- De Finetti's Theorem (roughly): A sequence $X_1, X_2, ...$ is infinitely exchangeable if and only if, for all N and some distribution P:

Stribution
$$P$$
:
$$p(X_1, \dots, X_N) = \int_{\theta} \prod_{n=1}^{N} p(X_n | \theta) P(d\theta)$$

- Motivates:
 - Parameters and likelihoods

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- De Finetti's Theorem (roughly): A sequence $X_1, X_2, ...$ is infinitely exchangeable if and only if, for all N and some distribution P:

Stribution
$$P$$
:
$$p(X_1, \dots, X_N) = \int_{\theta} \prod_{n=1}^{N} p(X_n | \theta) P(d\theta)$$

- Motivates:
 - Parameters and likelihoods
 - Priors

- A theoretical motivation: De Finetti's Theorem
- A data sequence is *infinitely exchangeable* if the distribution of any N data points doesn't change when permuted: $p(X_1, \ldots, X_N) = p(X_{\sigma(1)}, \ldots, X_{\sigma(N)})$
- De Finetti's Theorem (roughly): A sequence $X_1, X_2, ...$ is infinitely exchangeable if and only if, for all N and some distribution P:

Stribution
$$P$$
:
$$p(X_1, \dots, X_N) = \int_{\theta} \prod_{n=1}^{N} p(X_n | \theta) P(d\theta)$$

- Motivates:
 - Parameters and likelihoods
 - Priors
 - "Nonparametric Bayesian" priors

Dirichlet process

- Dirichlet process
 - Background for intuition

- Dirichlet process
 - Background for intuition
 - Generative model

- Dirichlet process
 - Background for intuition
 - Generative model
 - What does a growing/infinite number of parameters really mean (in Nonparametric Bayes)?

- Dirichlet process
 - Background for intuition
 - Generative model
 - What does a growing/infinite number of parameters really mean (in Nonparametric Bayes)?
- Chinese restaurant process

- Dirichlet process
 - Background for intuition
 - Generative model
 - What does a growing/infinite number of parameters really mean (in Nonparametric Bayes)?
- Chinese restaurant process
- Inference

- Dirichlet process
 - Background for intuition
 - Generative model
 - What does a growing/infinite number of parameters really mean (in Nonparametric Bayes)?
- Chinese restaurant process
- Inference
- Venture further into the wild world of Nonparametric Bayesian statistics

Generative model

Generative model

 Finite Gaussian mixture model (K=2 clusters)

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

• Finite Gaussian mixture model (K=2 clusters) $z_n \overset{iid}{\sim} \mathrm{Categorical}(\rho_1, \rho_2)$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

• Finite Gaussian mixture model (K=2 clusters) $z_n \stackrel{iid}{\sim} \mathrm{Categorical}(\rho_1, \rho_2)$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$

 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Finite Gaussian mixture model (K=2 clusters)

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$

 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

• Don't know μ_1, μ_2

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Finite Gaussian mixture model (K=2 clusters)

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$

 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

• Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$

 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

- Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
- Don't know ρ_1, ρ_2

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$

 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

- Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
- Don't know $ho_1,
 ho_2$ $ho_1 \sim \operatorname{Beta}(a_1, a_2)$ $ho_2 = 1
 ho_1$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Finite Gaussian mixture model (K=2 clusters)

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$
 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

• Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$

• Don't know
$$ho_1,
ho_2$$

$$ho_1 \sim \operatorname{Beta}(a_1, a_2)$$

$$ho_2 = 1 -
ho_1$$

 Inference goal: assignments of data points to clusters, cluster parameters

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$
 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

- Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
- Don't know $ho_1,
 ho_2$ $ho_1 \sim \operatorname{Beta}(a_1, a_2)$ $ho_2 = 1
 ho_1$
- Inference goal: assignments of data points to clusters, cluster parameters

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$
 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

- Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
- Don't know $ho_1,
 ho_2$ $ho_1 \sim \mathrm{Beta}(a_1, a_2)$ $ho_2 = 1
 ho_1$
- Inference goal: assignments of data points to clusters, cluster parameters

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$
 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

- Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
- Don't know $ho_1,
 ho_2$ $ho_1 \sim \operatorname{Beta}(a_1, a_2)$ $ho_2 = 1
 ho_1$
- Inference goal: assignments of data points to clusters, cluster parameters

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 ho_1 ho_2

$$z_n \overset{iid}{\sim} \text{Categorical}(\rho_1, \rho_2)$$
 $x_n \overset{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$

- Don't know μ_1, μ_2 $\mu_k \overset{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$
- Don't know $ho_1,
 ho_2$ $ho_1 \sim \operatorname{Beta}(a_1, a_2)$ $ho_2 = 1
 ho_1$
- Inference goal: assignments of data points to clusters, cluster parameters

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m) = (m-1)!$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m) = (m-1)!$
 - for x > 0: $\Gamma(x) = x\Gamma(x-1)$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m) = (m-1)!$
 - for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m) = (m-1)!$
 - for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
 $\rho_1 \in (0, 1)$ $a_1, a_2 > 0$

- integer m: $\Gamma(m) = (m-1)!$
- for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?
 - $\bullet \quad a = a_1 = a_2 \to 0$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
 $\rho_1 \in (0, 1)$ $a_1, a_2 > 0$

- integer m: $\Gamma(m) = (m-1)!$
- for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?

•
$$a = a_1 = a_2 \to 0$$

•
$$a = a_1 = a_2 \to \infty$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
 $\rho_1 \in (0, 1)$ $a_1, a_2 > 0$

- integer m: $\Gamma(m) = (m-1)!$
- for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?

•
$$a = a_1 = a_2 \to 0$$

•
$$a=a_1=a_2\to\infty$$

•
$$a_1 > a_2$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
 $\rho_1 \in (0, 1)$ $a_1, a_2 > 0$

- Gamma function Γ
 - integer m: $\Gamma(m) = (m-1)!$
 - for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$
 - $a_1 > a_2$

[demo]

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
 $\rho_1 \in (0, 1)$ $a_1, a_2 > 0$

- Gamma function Γ
 - integer m: $\Gamma(m) = (m-1)!$
 - for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?

$$\bullet \quad a = a_1 = a_2 \to 0$$

•
$$a=a_1=a_2\to\infty$$

$$\bullet$$
 $a_1 > a_2$

[demo]

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
 $\rho_1 \in (0, 1)$ $a_1, a_2 > 0$

- Gamma function Γ
 - integer m: $\Gamma(m) = (m-1)!$
 - for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$
 - \bullet $a_1 > a_2$

[demo]

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
 $\rho_1 \in (0, 1)$ $a_1, a_2 > 0$

- Gamma function Γ
 - integer m: $\Gamma(m) = (m-1)!$
 - for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$
 - $a_1 > a_2$

[demo]

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

$$p(\rho_1,z) \propto$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
 $\rho_1 \in (0, 1)$ $a_1, a_2 > 0$

$$p(\rho_1, z) \propto \rho_1^{\mathbf{1}\{z=1\}} (1 - \rho_1)^{\mathbf{1}\{z=2\}}$$

- Gamma function Γ
 - integer m: $\Gamma(m) = (m-1)!$
 - for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?
 - $\bullet \quad a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$
 - \bullet $a_1 > a_2$

[demo]

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m) = (m-1)!$
 - for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a=a_1=a_2\to\infty$
 - \bullet $a_1 > a_2$

[demo]

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

$$p(\rho_1, z) \propto \rho_1^{\mathbf{1}\{z=1\}} (1 - \rho_1)^{\mathbf{1}\{z=2\}} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- Gamma function Γ
 - integer m: $\Gamma(m) = (m-1)!$
 - for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a = a_1 = a_2 \rightarrow \infty$
 - \bullet $a_1 > a_2$

[demo]

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

$$p(\rho_1, z) \propto \rho_1^{\mathbf{1}\{z=1\}} (1 - \rho_1)^{\mathbf{1}\{z=2\}} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

 $p(\rho_1|z) \propto$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- ullet Gamma function Γ
 - integer m: $\Gamma(m) = (m-1)!$
 - for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a = a_1 = a_2 \rightarrow \infty$
 - \bullet $a_1 > a_2$

[demo]

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

$$p(\rho_1, z) \propto \rho_1^{\mathbf{1}\{z=1\}} (1 - \rho_1)^{\mathbf{1}\{z=2\}} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$
$$p(\rho_1|z) \propto \rho_1^{a_1 + \mathbf{1}\{z=1\} - 1} (1 - \rho_1)^{a_2 + \mathbf{1}\{z=2\} - 1}$$

Beta
$$(\rho_1|a_1, a_2) = \frac{\Gamma(a_1 + a_2)}{\Gamma(a_1)\Gamma(a_2)} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$\rho_1 \in (0, 1)$$

$$a_1, a_2 > 0$$

- ullet Gamma function Γ
 - integer m: $\Gamma(m) = (m-1)!$
 - for x > 0: $\Gamma(x) = x\Gamma(x-1)$
- What happens?
 - $a = a_1 = a_2 \to 0$
 - $a = a_1 = a_2 \to \infty$
 - \bullet $a_1 > a_2$

[demo]

$$\rho_1 \sim \text{Beta}(a_1, a_2), z \sim \text{Cat}(\rho_1, \rho_2)$$

$$p(\rho_1, z) \propto \rho_1^{\mathbf{1}\{z=1\}} (1 - \rho_1)^{\mathbf{1}\{z=2\}} \rho_1^{a_1 - 1} (1 - \rho_1)^{a_2 - 1}$$

$$p(\rho_1|z) \propto \rho_1^{a_1 + \mathbf{1}\{z=1\} - 1} (1 - \rho_1)^{a_2 + \mathbf{1}\{z=2\} - 1} \propto \text{Beta}(\rho_1|a_1 + z, a_2 + (1 - z))$$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho_{1:K})$$

Generative model

 $\mathbb{P}(\text{parameters}|\text{data}) \propto \mathbb{P}(\text{data}|\text{parameters})\mathbb{P}(\text{parameters})$

 Finite Gaussian mixture model (K clusters)

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$$

$$\mu_k \stackrel{iid}{\sim} \mathcal{N}(\mu_0, \Sigma_0)$$

$$z_n \stackrel{iid}{\sim} \text{Categorical}(\rho_{1:K})$$

$$x_n \stackrel{indep}{\sim} \mathcal{N}(\mu_{z_n}, \Sigma)$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$

 $a_k > 0$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$

$$a_k > 0$$

$$\rho_k \in (0, 1)$$

$$\sum_k \rho_k = 1$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$

 $a_k > 0$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$
 $a_k > 0$

What happens?

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$
 $a_k > 0$

What happens?

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$
 $a_k > 0$

• What happens? $a = a_k = 1$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$
 $a_k > 0$

• What happens? $a = a_k = 1$ $a = a_k \to 0$

$$a = a_k = 1$$

$$a = a_k \to 0$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$
 $a_k > 0$

• What happens? $a = a_k = 1$ $a = a_k \to 0$ $a = a_k \to \infty$

$$a = a_k = 1$$

$$a = a_k \rightarrow 0$$

$$a = a_k \to \infty$$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$
 $a_k > 0$

• What happens? $a = a_k = 1$ $a = a_k \to 0$ $a = a_k \to \infty$

$$a = a_k = 1$$

$$a = a_k \rightarrow 0$$

$$a = a_k \to \infty$$
 [demo]

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$
 $a_k > 0$

- What happens? $a = a_k = 1$ $a = a_k \to 0$ $a = a_k \to \infty$

Dirichlet is conjugate to Categorical

[demo]

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$
 $a_k > 0$

[demo]

- What happens? $a = a_k = 1$ $a = a_k \to 0$ $a = a_k \to \infty$
 - Dirichlet is conjugate to Categorical $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z \sim \text{Cat}(\rho_{1:K})$

Dirichlet
$$(\rho_{1:K}|a_{1:K}) = \frac{\Gamma(\sum_{k=1}^{K} a_k)}{\prod_{k=1}^{K} \Gamma(a_k)} \prod_{k=1}^{K} \rho_k^{a_k - 1}$$
 $a_k > 0$

- What happens? $a = a_k = 1$ $a = a_k \to 0$
- $a=a_k\to\infty$

[demo]

Dirichlet is conjugate to Categorical

$$\rho_{1:K} \sim \text{Dirichlet}(a_{1:K}), z \sim \text{Cat}(\rho_{1:K})$$

$$\rho_{1:K}|z \stackrel{d}{=} \text{Dirichlet}(a'_{1:K}), a'_k = a_k + \mathbf{1}\{z = k\}$$

 e.g. species sampling, topic modeling, groups on a social network, etc.

Components: number of latent groups

- Components: number of latent groups
- Clusters: number of components represented in the data

- Components: number of latent groups
- Clusters: number of components represented in the data
- [demo 1, demo 2]

- Components: number of latent groups
- Clusters: number of components represented in the data
- [demo 1, demo 2]
- Number of clusters for N data points is < K and random

- Components: number of latent groups
- Clusters: number of components represented in the data
- [demo 1, demo 2]
- Number of clusters for N data points is < K and random
- Number of clusters grows with N

• Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data

• Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Rightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1)$$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Rightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1)$$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Rightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Rightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Rightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Rightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \!\!\! \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Rightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \!\!\! \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

$$V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)$$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Rightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \!\!\! \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

$$V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)$$
 $\rho_1 = V_1$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Rightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \!\!\! \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

$$V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)$$
 $\rho_1 = V_1$
 $V_2 \sim \text{Beta}(a_2, a_3 + a_4)$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Rightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \!\!\! \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

$$V_1 \sim \mathrm{Beta}(a_1, a_2 + a_3 + a_4)$$
 $\rho_1 = V_1$ $V_2 \sim \mathrm{Beta}(a_2, a_3 + a_4)$ $\rho_2 = (1 - V_1)V_2$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Rightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \!\!\! \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

"Stick breaking"

$$V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)$$
 $\rho_1 = V_1$
 $V_2 \sim \text{Beta}(a_2, a_3 + a_4)$ $\rho_2 = (1 - V_1)V_2$
 $V_3 \sim \text{Beta}(a_3, a_4)$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Rightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \!\!\! \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

"Stick breaking"

$$V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)$$
 $\rho_1 = V_1$
 $V_2 \sim \text{Beta}(a_2, a_3 + a_4)$ $\rho_2 = (1 - V_1)V_2$
 $V_3 \sim \text{Beta}(a_3, a_4)$ $\rho_3 = (1 - V_1)(1 - V_2)V_3$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Observation: $\rho_{1:K} \sim \text{Dirichlet}(a_{1:K})$

$$\Rightarrow \rho_1 \stackrel{d}{=} \text{Beta}(a_1, \sum_{k=1}^K a_k - a_1) \perp \frac{(\rho_2, \dots, \rho_K)}{1 - \rho_1} \stackrel{d}{=} \text{Dirichlet}(a_2, \dots, a_K)$$

"Stick breaking"

$$V_1 \sim \text{Beta}(a_1, a_2 + a_3 + a_4)$$
 $\rho_1 = V_1$
 $V_2 \sim \text{Beta}(a_2, a_3 + a_4)$ $\rho_2 = (1 - V_1)V_2$
 $V_3 \sim \text{Beta}(a_3, a_4)$ $\rho_3 = (1 - V_1)(1 - V_2)V_3$
 $\rho_4 = 1 - \sum_{k=1}^{3} \rho_k$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

$$V_1 \sim \text{Beta}(a_1, b_1)$$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

$$V_1 \sim \text{Beta}(a_1, b_1)$$
 $\rho_1 = V_1$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

$$V_1 \sim \text{Beta}(a_1, b_1)$$
 $\rho_1 = V_1$
 $V_2 \sim \text{Beta}(a_2, b_2)$

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

9

- Here, difficult to choose finite *K* in advance (contrast with small *K*): don't know *K*, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

 $V_k \sim \text{Beta}(a_k, b_k)$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Dirichlet process stick-breaking: $a_k = 1, b_k = \alpha > 0$

- Here, difficult to choose finite K in advance (contrast with small K): don't know K, difficult to infer, streaming data
- How to generate $K = \infty$ strictly positive frequencies that sum to one?
 - Dirichlet process stick-breaking: $a_k = 1, b_k = \alpha > 0$
 - Griffiths-Engen-McCloskey (GEM) distribution:

$$\rho = (\rho_1, \rho_2, \ldots) \sim \text{GEM}(\alpha)$$

[McCloskey 1965; Engen 1975; Patil and Taillie 1977; Ewens 1987; Sethuraman 1994; Ishwaran, James 2001]

Exercises

- Code your own GEM simulator to draw ρ
- Simulate drawing cluster indicators (z) from the distribution you generated in the first exercise
- Compare the growth in the number of clusters as N changes in the GEM case with the growth in the K=1000 case

• How does the expected number of clusters in the GEM case change with N and with the GEM parameter α ?

References for Part 1, page 1

DJ Aldous. Exchangeability and related topics. Springer, 1983.

E Arjas and D Gasbarra. Nonparametric Bayesian inference from right censored survival data, using the Gibbs sampler. Statistica Sinica, 1994.

E Bowlby. NOAA/Olympic Coast NMS; NOAA/OAR/Office of Ocean Exploration - NOAA Photo Library. Retrieved from: https://en.wikipedia.org/wiki/Opisthoteuthis_californiana#/media/File:Opisthoteuthis_californiana.jpg

S Engen. A note on the geometric series as a species frequency model. *Biometrika*, 1975.

W Ewens. The sampling theory of selectively neutral alleles. *Theoretical Population Biology*, 1972.

W Ewens. Population genetics theory -- the past and the future. *Mathematical and Statistical Developments of Evolutionary Theory*, 1987.

EB Fox, personal website. Retrieved from: http://www.stat.washington.edu/~ebfox/research.html --- Associated paper: EB Fox, MC Hughes, EB Sudderth, and MI Jordan. *The Annals of Applied Statistics*, 2014.

S Ghosal, JK Ghosh, and RV Ramamoorthi. Posterior consistency of Dirichlet mixtures in density estimation. *The Annals of Statistics*, 1999.

DL Hartl and AG Clark. Principles of Population Genetics, Fourth Edition. 2003.

E Hewitt and LJ Savage. Symmetric measures on Cartesian products. Transactions of the American Mathematical Society, 1955.

H Ishwaran and LF James. Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 2001.

JR Lloyd, P Orbanz, Z Ghahramani, and DM Roy. Random function priors for exchangeable arrays with applications to graphs and relational data. NIPS, 2012.

References for Part 1, page 2

JW McCloskey. A model for the distribution of individuals by species in an environment. Ph.D. thesis, Michigan State University, 1965.

K Miller, MI Jordan, and TL Griffiths. Nonparametric latent feature models for link prediction. NIPS, 2009.

GP Patil and C Taillie. Diversity as a concept and its implications for random communities. Bulletin of the International Statistical Institute, 1977.

S Saria, D Koller, and A Penn. Learning individual and population traits from clinical temporal data. NIPS, 2010.

J Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 1994.

EB Sudderth and MI Jordan. Shared segmentation of natural scenes using dependent Pitman-Yor processes. NIPS, 2009.