Ejercicios

Introducción a la Relatividad General y la Cosmología Curso 2025-2026

Unidad 1 Introducción a la Relatividad

Ejercicio 1.1. Un evento ocurre en las coordenadas (ct = 3m, x = 4m, y = 0, z = 0) en el sistema de referencia S según un observador O. ¿Cuáles son las coordenadas del mismo evento en el sistema de referencia S' según un observador O', que se mueve con velocidad V = 3c/4 en la dirección positiva del eje x, medida en S?

Ejercicio 1.2. Siendo γ el factor de Lorentz, la cantidad $(\gamma - 1)$ da una medida de la diferencia entre los efectos relativistas y la mecánica Newtoniana para distintos regímenes de velocidades. Siendo $\beta = v/c$, calcula su valor para obtener los siguentes valores de $(\gamma - 1)$: (a) 0.01, (b) 0.1, (c) 1 (d) 10 y (e) 100.

Ejercicio 1.3. La transformación de Lorentz se puede escribir en notación matricial como

$$\begin{pmatrix} t' \\ x' \end{pmatrix} = \begin{pmatrix} \gamma(v) & -\gamma(v)v \\ -\gamma(v)v & \gamma(v) \end{pmatrix} \begin{pmatrix} t \\ x \end{pmatrix}$$

y la matriz se puede invertir para determinar las coordenadas (t, x) en términos de (t', x'). Demuestra que al invertir la matriz obtenemos la transformación inversa de Lorentz.

Ejercicio 1.4. Una varilla de longitud 1m está inclinada 45° en el plano xy con respecto al eje x. Un observador con velocidad $\sqrt{2/3}c$ se aproxima a la varilla en la dirección positiva del eje x. ¿Cuál es la longitud de la varilla y el ángulo de inclinación con respecto a su eje x que mide el observador?

Ejercicio 1.5. Cuando los rayos cósmicos primarios impactan en la atmósfera, se crean muones a una altitud entre 10km y 20km. Un muón en el laboratorio vive en promedio un tiempo $\tau_0 = 2.2\mu$ s antes de desintegrarse en un electrón (o un positrón) y dos neutrinos. Aunque un muón sólo puede moverse $\tau_0 c \approx 660$ m durante el tiempo τ_0 , una gran fracción de muones logra alcanzar la superficie de la Tierra. ¿Cómo puede explicarse esto? Realiza el cálculo numérico para un muón que se mueve con velocidad 0,999c.

Ejercicio 1.6. Una varilla de longitud L yace en el plano xz de un sistema de coordenadas. Si el ángulo entre la varilla y el eje x es θ , calcula la longitud de la varilla según la ve un observador que se mueve con velocidad v a lo largo del eje x.

Ejercicio 1.7. Dos eventos ocurren en $(t_1, x_1, y_1, z_1) = (3, 7, 0, 0)$ y $(t_2, x_2, y_2, z_2) = (5, 5, 0, 0)$ ¿Cuál es el intervalo espacio-temporal?

Ejercicio 1.8. En el caso en que $\Delta y = 0$ y $\Delta z = 0$, usa las reglas de transformación del intervalo para demostrar que la separación espacio-temporal dada por la ecuación $\Delta s^2 = -\Delta t^2 + \Delta x^2 + \Delta y^2 + \Delta z^2$ es realmente invariante bajo transformaciones de Lorentz.

Ejercicio 1.9. En un sistema inercial S, un objeto que comienza en reposo en t=0 se mueve con una aceleración constante a a lo largo del eje x de coordenadas, es decir, $x=at^2/2$. Determina el tiempo propio del objeto para alcanzar la velocidad v_0 en S.

Ejercicio 1.10. Dados dos eventos separados de tipo tiempo o *timelike*, demuestra que el tiempo propio entre esos eventos es la menor cantidad de tiempo que cualquier observador inercial medirá entre ellos.

Ejercicio 1.11. Si un evento A causa el evento B, entonces debe cumplirse que el evento A ocurra antes que el evento B en todos los sistemas de referencia inerciales, de lo contrario, en algunos sistemas inerciales, los observadores verían un evento que precede a su causa, lo cual es absurdo. Por simplicidad en nuestro argumento, definamos coordenadas de modo que ambos eventos ocurran en el eje x positivo en un cierto sistema S. Utiliza las ecuaciones apropiadas de transformación de Lorentz para diferencias de coordenadas para mostrar que si $\Delta t > 0$ en el sistema S, pero $\Delta s^2 > 0$ (es decir, el intervalo entre eventos es de tipo espacial), entonces es posible encontrar un sistema S' que se mueve con velocidad $\beta < 1$ relativa a S donde $\Delta t' < 0$ (es decir, el orden temporal es diferente). Muestra también que no es posible si $\Delta s^2 < 0$ (el intervalo es de tipo temporal).

Ejercicio 1.12. Un observador K' se mueve con velocidad constante v a lo largo del eje x^1 positivo de un observador K. Una varilla delgada está paralela al eje x'^1 y se mueve en la dirección del eje x'^2 positivo con velocidad relativa u. Demuestra que, según el observador K la varilla forma un ángulo ϕ con el eje x^1 tal que

$$tan\phi = -\frac{uv/c^2}{\sqrt{1 - v^2/c^2}}$$

Ejercicio 1.13. Tenemos dos sistemas de referencia inerciales S y S', donde S' se mueve con velocidad v en la dirección del eje x positivo respecto a S. Si un objeto se mueve con velocidad constante u respecto a S a lo largo del mismo eje x, demuestra que la velocidad medida desde el sistema de referencia S' a lo largo del eje x', satisface la siguiente ecuación:

$$u' = \frac{u - v}{1 - \frac{uv}{c^2}}$$

Ejercicio 1.14. Verifica a partir de la formula de la transformación de Lorentz entre dos sistemas inerciales con movimiento relativo uniforme en la dirección x, que cualquier objeto que viaja a velocidad c en uno de los sistemas inerciales, también viaja a velocidad c en el otro.

Ejercicio 1.15. Según un observador en una estación espacial, dos naves espaciales se alejan, viajando en la misma dirección a diferentes velocidades. La nave más cercana se mueve a velocidad 1c/2, la más lejana a velocidad 3c/4. ¿Cuál es la velocidad de una de las naves espaciales observada desde la otra?

Ejercicio 1.16. Una varilla se mueve con velocidad v a lo largo del eje x positivo en un sistema inercial S. Un observador en reposo en S' mide que la longitud de la varilla es L. Otro observador se mueve con velocidad -v a lo largo del eje x. ¿Qué longitud, expresada como función de L y v, medirá este observador para la varilla? La medición se realiza de la manera habitual, midiendo los extremos de forma simultánea para cada observador en sus respectivos sistemas de referencia.

Ejercicio 1.17. Considera dos gemelas idénticas, Astra y Terra. La primera abandona la Tierra en una nave espacial que viaja en una dirección fija a una velocidad cercana a la de la luz V. Astra logra dar la vuelta en algún punto y regresar a la Tierra, transfiriéndose a la nave Stella, que se acerca a la Tierra con velocidad -V.

(a) Usando la transformación de velocidades, demuestra que Astra observa que la velocidad de aproximación de la nave Stella es

$$\frac{2V}{1 + V^2/c^2}$$

(b) Si Terra envía señales de tiempo regulares hacia Astra a intervalos de un segundo, escribe las expresiones para la frecuencia con la que Astra recibe dichas señales en los tramos de ida y vuelta de su viaje.

