MUSA 74 Homework 2 Tarang Srivastava

a. Homework 1.35

I will not take this offer. After the 60 minutes has passed the Devil will have all the bills, and I will be left with none. This is simply because the set of his bills are \mathbf{N} and therefor where all bills are labeled by $n \in \mathbf{N}$, I will be left with no more bills.

b. Homework 1.36

Proof. If an $x \in A \cap B$, then it follows that $f(x) \in A \cap B$ since $A \cap B \subseteq X$. Therefore $f(x) \in A$ and $f(x) \in B$ for all x. So by definition the claim follows.

Similarly, for a $x \in A \cup B$, $f(x) \in B$ since $A \cup B \subseteq X$. So it follows that for all f(x) is in A or B, and the claim follows. We can show a counterexample for disproving $f(A \cap B) = f(A) \cap f(B)$. We have already shown that $f(A \cap B) \subseteq f(A) \cap f(B)$, so we must show that it is not the case that $f(A) \cap f(B) \subseteq f(A \cap B)$. Consider the transformation $f: Z \to Z^+$. Where Z is the integers and Z^+ are all the positive integers. The transformation is as follows $f(x) = x^2$. If A is all the positives and B is all the negatives. $f(A) \cap f(B)$ is all the squares $1, 4, 9, 16, \ldots$ But f(AcapB) is the empty set since the intersection of the positives and negatives is the empty set. It is therefore false that the squares is a subset of the empty set.

c. Homework 1.37

 $\mathcal{P}(X)$ has the cardinality of 2^n if the cardinality of X is n. This is because each element of X has two options, to be either in or not in of any arbitrary subset of X. Since there are 2 options over n elements it leads to 2^n . For a similar reason the cardinality of B(X) is also 2^x , because the "choice" of an element being inside or outside of an arbitrary set can be represented by a 0, 1.

d. Homework 5.7

Firstly, $\forall n \in N$, $n < \forall a \in \omega$. And by definition of naturals $n_{k+1} = n_k + 1$, all naturals are successors. So, if there does exist a limit it must not be in N. By definition of $2\omega \omega_{k+1} = \omega_k + 1$, all of them are successors and there exists no limit.