

Arzneimittel zur topischen Applikation bei Tieren

Die Erfindung betrifft pharmazeutische Zubereitungen, die auf das Fell oder die Haut von Tieren appliziert und von diesen dann anschließend oral aufgenommen werden.

Die orale Applikation von Arzneimitteln bei Tieren ist abhängig von geschmacklichen Eigenheiten des Wirkstoffes und der Formulierung. Insbesondere die Verabreichung bitter schmeckender Wirkstoffe, wie z.B. Fluorchinolone und Praziquantel, ist bei Haustieren mit großen Schwierigkeiten verbunden. Andererseits gibt es einen großen Bedarf an palatablen oralen Arzneiformen, welche freiwillig vom Haustier aus der Hand des Tierbesitzers oder einer Futterschüssel aufgenommen werden. Der Tierhalter appliziert in der Regel orale Arzneimittel auf einem der folgenden Wege: Bei der sogenannten „poke down“-Methode wird das Arzneimittel auf den Zungengrund gelegt und anschließend das Maul geschlossen. Der Kopf wird in die Normalposition bewegt und die Kehle wird sanft massiert, bis die Arzneiform abgeschluckt wird. Zuweilen werden auch kleine Mengen Flüssigkeit verabreicht um ein Abschlucken zu erleichtern. Bei der zweiten Methode wird die Arzneiform in einem Stück Futter versteckt und dann verabreicht. Diese Methode ist ungeeignet, wenn der Wirkstoff nüchtern appliziert werden muss, oder der stark bittere Eigengeschmack den Futtergeschmack überlagert. Seltener wird die Arzneiform zerkleinert und über Futter gestreut oder in Wasser aufgelöst.

Während bei Hunden, die nach oraler Aufnahme meist unmittelbar abschlucken, diese Anwendungsarten häufig zum Erfolg führen, sind Katzen ungleich schwieriger zu therapieren. Da sie die Arzneiform bzw. das damit versehene Futter längere Zeit im Maul behalten, hat ein unangenehm schmeckender Formulierungsbestandteil ausreichend Gelegenheit, mit der Mundschleimhaut in Kontakt zu gelangen. Der unangenehme Geschmack führt dann oft zu sofortigem Ausspucken des Arzneimittels oder zumindest Teilen davon. Zur Erleichterung der Applikation halbfester Zubereitungen (Pasten) bei Katzen wird mitunter empfohlen, diese auf die Pfote zu geben, von wo sie abgeleckt werden können. Diese Art der Anwendung ist jedoch sehr unzuverlässig, da die Pasten häufig nicht gut auf dem Fell haften und abgeschüttelt werden können. Versuche die Palatabilität mit Hilfe eines Aromazusatzes zu verbessern, sind bei Katzen ebenfalls selten erfolgreich, da sich der unangenehme Geschmack nicht vollständig überdecken lässt.

Es wurde nun überraschenderweise gefunden, dass eine wirkstoffhaltige Zubereitung, vorzugsweise von flüssiger Konsistenz, die nach peroraler Verabreichung in die Mundhöhle von Katzen zu heftigen Abwehrreaktionen führt, freiwillig und nahezu vollständig aufgenommen wird, wenn man sie auf das Fell der Tiere gibt. Offensichtlich ist der zentralnervös gesteuerte Putzreflex bei Katzen so ausgeprägt, dass selbst der abstoßende Geschmack des Wirkstoffes eine Aufnahme durch das

Putzen nicht zu verhindern mag. Es kann sogar angenommen werden, dass der Putzreflex gerade durch schlecht schmeckende Bestandteile des Arzneimittels angeregt wird, der erst dann nachlässt, wenn der Wirkstoff vollständig vom Fell entfernt worden ist und somit oral aufgenommen wurde.

Die Erfindung betrifft daher:

- 5 Eine pharmazeutische Zubereitung zur Anwendung am Tier, welche auf das Fell oder die Haut des Tieres appliziert und von diesem anschließend oral aufgenommen wird.

Die Erfindung betrifft weiterhin:

Ein Verfahren zur Applikation von pharmazeutischen Wirkstoffen bei Tieren, bei dem man eine den entsprechenden Wirkstoff enthaltende pharmazeutische Zubereitung dem Tier topisch appliziert und das Tier anschließend die applizierte pharmazeutische Zubereitung oral aufnimmt.

- 10 Prinzipiell kommen als erfindungsgemäß geeignete Zubereitungen alle topisch applizierbaren in Frage, die auch für eine orale Applikation akzeptabel sind. Als solche seien genannt: Flüssige, halbflüssige oder pastöse, sowie feste Zubereitungen. Besonders bevorzugt sind flüssige Zubereitungen.

- 15 Die topische Applikation geschieht z.B. in Form des Tauchens (Dip), Sprühens (Spray), Badens, Waschens, Aufgießens (pour-on and spot-on) und Einreibens.

Geeignete Zubereitungen sind Lösungen, Emulsionen und Suspensionen.

Lösungen zur topischen Applikation werden aufgeträufelt, aufgestrichen, eingerieben, aufgespritzt, aufgesprüht oder durch Tauchen (Dippen, Baden oder Waschen) aufgebracht.

- 20 Die topische Applikation der erfindungsgemäßen Zubereitungen erfolgt bevorzugt auf den Rumpf, insbesondere z. B. auf den Rücken oder auf die Flanken der Tiere.

Lösungen werden hergestellt, indem der Wirkstoff in einem geeigneten Lösungsmittel gelöst wird und eventuell Zusätze wie Lösungsvermittler, Säuren, Basen, Puffersalze, Antioxidantien, Konserverungsmittel zugefügt werden.

- 25 Als Lösungsmittel seien genannt: Wasser, Alkanole, Glycole, Polyethylenglykole, Polypropylenglycole, Glycerin, aromatische Alkohole wie Benzylalkohol, Phenylethanol, Phenoxyethanol, Ester wie Essigester, Butylacetat, Benzylbenzoat, Ether wie Alkylenglykolalkylether wie Dipropylenglycolmonomethylether, Diethylenglykolmono-butylether, Ketone wie Aceton, Methylketon, aromatische und/oder aliphatische Kohlenwasserstoffe, pflanzliche oder synthetische Öle,

wie z.B. mittelkettige Triglyceride oder Propylenglykolester mit mittelkettigen Fettsäuren, DMF, Dimethylacetamid, N-Methylpyrrolidon, 2-Dimethyl-4-oxy-methylen-1,3-dioxolan sowie Gemische der vorgenannten Lösungsmittel. Besonders geeignet sind pflanzliche oder synthetische Öle sowie deren Mischungen mit den genannten Lösungsmitteln.

5 Als Lösungsvermittler seien genannt: Lösungsmittel, die die Lösung des Wirkstoffs im Hauptlösungsmittel fördern oder sein Ausfallen verhindern. Beispiele sind Polyvinylpyrrolidon, polyoxyethyliertes Rhizinusöl, polyoxyethylierte Sorbitanester.

Konservierungsmittel sind beispielsweise Benzylalkohol, n-Butanol, Trichlorbutanol, p-Hydroxybenzoësäureester, Benzoesäure, Propionsäure, Sorbinsäure.

10 Die Lösungen können direkt angewendet werden. Konzentrate werden nach vorheriger Verdünnung auf die Anwendungskonzentration angewendet.

Es kann vorteilhaft sein, bei der Herstellung Verdickungsmittel zuzufügen. Verdickungsmittel sind: Anorganische Verdickungsmittel wie Bentonite, kolloidale Kieselsäure, Aluminiummonostearat, organische Verdickungsmittel wie Cellulosederivate, Xanthan, Carageenan, Alginate,

15 Stärke, Gelatine, Polyvinylalkohole und deren Copolymeren, Acrylate und Methacrylate.

Farbstoffe sind alle zur Anwendung am Tier zugelassenen Farbstoffe, die gelöst oder suspendiert sein können.

Antioxidantien sind Sulfite oder Metabisulfite wie Natriumsulfit, Kaliummetabisulfat, Ascorbinsäure, Butylhydroxytoluol, Butylhydroxyanisol, Tocopherol.

20 Lichtschutzmittel sind z.B. Stoffe aus der Klasse der Benzophenone oder Novantisolsäure.

Haftmittel sind z.B. Cellulosederivate, Xanthan, Carageenan, Alginate, Stärke, Gelatine, Polyvinylalkohole und deren Copolymeren, Acrylate und Metacrylate.

Emulsionen sind entweder vom Typ Wasser in Öl oder vom Typ Öl in Wasser.

Sie werden hergestellt, indem man den Wirkstoff entweder in der hydrophoben oder in der hydrophilien Phase gelöst und diese unter Zuhilfenahme geeigneter Emulgatoren und gegebenenfalls weiterer Hilfsstoffe wie Farbstoffe, Konservierungsstoffe, Antioxidantien, Lichtschutzmittel, viskositätserhöhende Stoffe, mit dem Lösungsmittel der anderen Phase homogenisiert.

Als hydrophobe Phase (Öle) seien genannt: Paraffinöle, Silikonöle, natürliche Pflanzenöle wie Sesamöl, Mandelöl, Rizinusöl, synthetische Triglyceride wie Capryl/Caprinsäure-biglycerid,

Triglyceridgemisch mit Pflanzenfettsäure der Kettenlänge C₈-12 oder anderen speziell ausgewählten natürlichen Fettsäuren, Partialglyceridgemische gesättigter oder ungesättigter eventuell auch hydroxylgruppenhaltiger Fettsäuren, Mono- und Diglyceride der C₈/C₁₀-Fettsäuren.

Fettsäureester wie Ethylstearat, Di-n-butyryl-adipat, Laurinsäurehexylester, Dipropylenglykolpelargonat, Ester einer verzweigten Fettsäure mittlerer Kettenlänge mit gesättigten Fettalkoholen der Kettenlänge C₁₆-C₁₈, Isopropylmyristat, Isopropylpalmitat, Capryl/Caprinsäureester von gesättigten Fettalkoholen der Kettenlänge C₁₂-C₁₈, Isopropylstearat, Ölsäureoleylester, Ölsäuredicylester, Ethyloleat, Milchsäureethylester, wachsartige Fettsäureester wie künstliches Entenbürzeldrüsenfett, Dibutylphthalat, Adipinsäurediisopropylester, letzterem verwandte Estergemische
10 u.a.

Fettalkohole wie Isotridecylalkohol, 2-Octyldodecanol, Cetylstearylalkohol, Oleylalkohol.

Fettsäuren wie z.B. Ölsäure und ihre Gemische.

Als hydrophile Phase seien genannt:

Wasser, Alkohole wie z.B. Propylenglykol, Glycerin, Sorbitol und ihre Gemische.

15 Als Emulgatoren seien genannt: nichtionogene Tenside, z.B. polyoxyethyliertes Rizinusöl, polyoxyethyliertes Sorbitan-monooleat, Sorbitanmonostearat, Glycerinmonostearat, Polyoxyethylstearat, Alkylphenolpolyglykolether;

ampholytische Tenside wie Di-Na-N-lauryl-β-iminodipropionat oder Lecithin;

20 anionaktive Tenside, wie Na-Laurylsulfat, Fettalkoholethersulfate, Mono/Dialkylpolyglykoletherorthophosphorsäureester-monoethanolaminsalz;

kationaktive Tenside wie Cetyltrimethylammoniumchlorid.

Als weitere Hilfsstoffe seien genannt: Viskositätserhöhende und die Emulsion stabilisierende Stoffe wie Carboxymethylcellulose, Methylcellulose und andere Cellulose- und Stärke-Derivate, Polyacrylate, Alginate, Gelatine, Gummi-arabicum, Polyvinylpyrrolidon, Polyvinylalkohol, Copolymeren aus Methylvinylether und Maleinsäureanhydrid, Polyethylenglykole, Wachse, kolloidale Kieselsäure oder Gemische der aufgeführten Stoffe.
25

Suspensionen werden hergestellt, indem man den Wirkstoff in einer Trägerflüssigkeit gegebenenfalls unter Zusatz weiterer Hilfsstoffe wie Netzmittel, Farbstoffe, Konservierungsstoffe, Antioxidantien Lichtschutzmittel suspendiert.

Als Trägerflüssigkeiten seien alle homogenen Lösungsmittel und Lösungsmittelgemische genannt.

Als Netzmittel (Dispergiermittel) seien die weiter oben angegebene Tenside genannt.

Als weitere Hilfsstoffe seien die weiter oben angegebenen genannt.

Die erfundungsgemäßen Zubereitungen müssen sowohl alle Bedingungen einer topischen Arznei-

5 mittelzubereitung erfüllen als auch für die orale Aufnahme geeignet sein.

Für eine gute orale Aufnahme sollte die auf das Fell applizierte Zubereitung dort haften. Hierfür ist eine bestimmte Konsistenz wünschenswert, wie sie z. B. die erfundungsgemäßen Beispiele aufweisen. Die Viskosität der erfundungsgemäßen Zubereitungen liegt daher bevorzugt bei 1 bis 1000 mPa*s, besonders bevorzugt bei 10 bis 500 mPa*s. Ist die Viskosität zu gering, besteht die

10 Gefahr, dass die Formulierung vom Fell abtropft. Hochviskose Formulierungen lassen sich hingegen nur schwierig applizieren. Darüber hinaus haften hochviskose Zubereitungen oft nur unzureichend auf dem Fell und fallen ab oder werden abgeschüttelt, bevor sie vom Tier aufgenommen werden können.

Weiterhin wünschenswert ist eine gute Spreitfähigkeit der Zubereitung, damit diese auch auf 15 einem für das Putzen schlecht zugänglichen Ort des Fells angewendet werden kann. Eine gute Spreitung führt ferner zu einer Verteilung der Zubereitung über einen größeren Bereich des Fells. In diesem Fall benötigt das Tier mehr Zeit, um die applizierte Wirkstoffmenge oral aufzunehmen, wodurch die Anflutung im Körper verlangsamt und die Verweil- und damit Wirkungszeit verlängert wird. Diese therapeutisch erwünschte Verlängerung der Verweilzeit im Körper konnte durch 20 kinetische Untersuchungen gezeigt werden (s. Abbildung 1 und Abbildung 2). Die erfundungsgemäßen Beispiele weisen eine gute Spreitfähigkeit auf.

Erfundungsgemäß besonders bevorzugt sind sogenannte spot-on Formulierungen, bei denen kleine Volumina – üblicherweise weniger als 10 ml, bevorzugt 5 ml oder weniger - Arzneimittel dem Tier topisch appliziert werden. Das Mittel verteilt sich dann auf der Oberfläche des Tieres.

25 Üblicherweise ist bei der Applikation nur geringer Volumina auch nur mit einer relativ geringen oralen Aufnahme zu rechnen, da der Putzreflex eher durch hohe Mengen an Zubereitung, die das Tier als Schmutz auffasst, angeregt werden sollte. Überraschenderweise resultierten hohe Wirkstoffspiegel im Blut auch nach Applikation nur sehr geringer Volumina. So wurden in Beispiel 2 – 3 nur etwa 1 ml Formulierung aufgetragen. Dennoch sind die Plasmaspiegel vergleichbar zu Beispiel 1, welches mit einem Volumen von 4 ml appliziert wurde (s. Abbildung 2). Die erfundungsgemäßen Zubereitungen erlauben somit eine hohe orale Verfügbarkeit auch bei Applikation nur geringer Volumina.

Das Arzneimittel ist nach Anleitung durch den Tierarzt auch zur späteren Verabreichung durch den Tierbesitzer zu Hause gedacht. Eine stark riechende oder auch abfärbende Zubereitung wäre für den Tierbesitzer störend. Bei den erfindungsgemäßen Zubereitungen sollte daher ein abstoßender Geruch oder eine Verfärbung von Fell Haut und/oder Umgebung vermieden werden.

5 Mit Hilfe der erfindungsgemäßen Applikationsart ist somit eine einfache und zuverlässige Zufuhr auch schlecht schmeckender Arzneimittel möglich.

Die erfindungsgemäßen Zubereitungen werden vorzugsweise bei Tieren eingesetzt, die einen Putzreflex bzw. ein Putzverhalten haben, das die Aufnahme begünstigt. Die Zubereitungen werden insbesondere bei Säugetieren, z.B. Katzen, Hunden, Kaninchen, Hasen, Meerschweinchen, 10 Hamstern, Mäusen und Ratten aber auch bei Vögeln verwendet. Besonders bevorzugt ist der Einsatz bei Kaninchen und insbesondere Katzen.

Als Wirkstoffe für die erfindungsgemäßen Zubereitungen kommen grundsätzlich alle Wirkstoffe in Frage, die für die topische Applikation und orale Aufnahme geeignet sind.

Beispielhaft seien genannt:

15 Chinolon- und verwandte Antibiotika, wie sie unter anderem in folgenden Dokumenten offenbart sind: US 4 670 444 (Bayer AG), US 4 472 405 (Riker Labs), US 4 730 000 (Abbott), US 4 861 779 (Pfizer), US 4 382 892 (Daiichi), US 4 704 459 (Toyama), als konkrete Beispiele seien genannt: Benofloxacin, Binfl oxacin, Cinoxacin, Ciprofloxacin, Danofloxacin, Difl oxacin, Enoxacin, Enrofloxacin, Fleroxacin, Gatifloxacin, Ibafl oxacin, Levofloxacin, Lomefloxacin, 20 Marbofloxacin, Moxifloxacin, Norfloxacin, Ofloxacin, Orbifloxacin, Pefloxacin, Pipemidsäure, Pradofloxacin, Temafloxacin, Tosufloxacin, Sarafloxacin, Sparfloxacin.

Penicilline, Cephalosporine und verwandte β-Lactame, wie beispielsweise Amoxicillin, Ampicillin, Azidocillin, Aztreonam, Benzylpenicillin, Cefaclor, Cefadroxil, Cefalexin, Cefetametpivoxil, Cefixim, Cefodizim, Cefotiam, Cefpodoximproxetil, Cefsulodin, Ceftibuten, 25 Ceftizoxim, Cefuroxim, Clavulansäure, Dicloxacillin, Flucloxacillin, Imipenem, Loracarbef, Mezlocillin, Oxacillin, Phenoxytmethylpenicillin, Propicillin, Sultamicillin, Tazobactam.

Ebenfalls bevorzugt eingesetzt werden die Analgetika Aceclofenac, Acemetacin, Acetylsalicylsäure, Buprenorphin, Carprofen, Celecoxib, Codein, Deracoxib, Diclofenac, Dihydrocodein, Felbinac, Fentanyl, Flufenaminsäure, Flunixin, Flupirtin, Flurbiprofen, 30 Hydromorphon, Ibuprofen, Indometacin, Ketoprofen, Lonazolac, Meclofenaminsäure, Mefenaminsäure, Meloxicam, Metamizol, Methadon, Mofebutazon, Morphin, Naproxen,

Nefopam, Nifluminsäure, Oxaprozin, Oxycodon, Paracetamol, Parecoxib, Pentazocin, Pethidin, Phenazon, Phenylbutazon, Piroxicam, Piritramid, Proglumetacin, Propyphenazon, Rofecoxib, Tepoxalin, Tiaprofensäure, Tilidin, Tolfenaminsäure, Tramadol, Valdecoxib, Vedaprofen.

Weiterhin können die Wirkstoffe 4-Aminosalicylsäure, Abacavir, Abamectin, Acamprosat,
5 Acebutolol, Acepromazin, Acetylcystein, Aciclovir, Acitretin, Adapalen, Albendazol, Alendronsäure, Alfuzosin, Alprostadil, Aluminiumchlorid, Aluminiumoxid, Amantadin, Ambroxol, Amidotrizoësäure, Amlodipin, Amorolfin, Amphotericin B, Ascorbinsäure, Atenolol, Atorvastatin, Azithromycin, Baclofen, Benazepril, Betamethason, Bezafibrat, Bifonazol, Biotin, Bisoprolol, Brivudin, Bromhexin, Bumetanid, Bupranolol, Calciumacetat, Calciumcarbonat,
10 Candesartan, Captopril, Carbidopa, Carbocistein, Carteolol, Carvedilol, Celiprolol, Cerivastatin, Cetirizin, Chenodesoxycholsäure, Chinin, Chlorambucil, Chloramphenicol, Chlormadinon, Chloroquin, Chlortalidon, Chlortetracyclin, Ciclosporin, Cidofovir, Cilastatin, Cilazapril, Clarithromycin, Clenbuterol, Clindamycin, Clodronsäure, Clomipramin, Dapson, Dexamethason, Didanosin, Diethylcarbamazin, Dikaliumclorazepat, Diltiazem, Dinoprost, Diphenhydramin,
15 Doramectin, Doxazosin, Doxycyclin, Dutasterid, Econazol, Efavirenz, Emodepsid, Enalapril, Ephedrin, Eprinomectin, Eprosartan, Erythromycin, Esmolol, Etacrynsäure, Ethambutol, Etidronsäure, Famciclovir, Fenbendazol, Fendolin, Fenticonazol, Fexofenadin, Finasterid, Florfenicol, Flubendazol, Fluconazol, Flucytosin, Flumethason, Fluvastatin, Folsäure, Fosfestrol, Fosfomycin, Fosinopril, Fumarsäure, Furosemid, Gabapentin, Gallopamil, Ganciclovir,
20 Gemfibrozil, Halofantrin, Heparin, Hyaluronsäure, Hydrochlorothiazid, Hydrocortisonhydrogensuccinat, Ibandronsäure, Iloprost, Imidapril, Indinavir, Irbesartan, Isoconazol, Isoniazid, Itraconazol, Ivermectin, Josamycin, Kaliumcanrenoat, Kanamycin, Ketoconazol, Ketotifen, Lamivudin, Leflunomid, Levocabastin, Levodopa, Levothyroxin, Linezolid, Lincomycin, Liponsäure, Lisinopril, Lodoxamid, Loperamid, Lopinavir, Losartan, Mebendazol,
25 Medroxyprogesteron, Mefloquin, Megestrol, Melarsoprol, Mepindolol, Mesalazin, Mesna, Metamizol, Metergolin, Methionin, Methotrexat, Methylprednisolon, Metoclopramid, Metoprolol, Metronidazol, Miconazol, Minocyclin, Moexipril, Montelukast, Moxidectin, Nadolol, Natriumdibunat, Naftifin, Na-picosulfat, Natamycin, Nateglitinid, Nelfinavir, Neomycin, Nevirapin, Nicardipin, Nicergolin, Niclosamid, Nicotinsäure, Nifedipin, Nifuratel, Nifurpirinol, Nifurtimox,
30 Nimodipin, Nimorazol, Nisoldipin, Nitrofurantoin, Nitroxolin, Nystatin, Olsalazin, Omeprazol, Orotsäure, Oseltamivir, Oxaquin, Oxfendazol, Oxibendazol, Oxiconazol, Oxprenolol, Oxybutynin, Oxytetracyclin, Pamidronsäure, Pangamsäure, Penbutolol, Penicillamin, Pentamidin, Perindopril, Phenobarbital, Phenoxybenzamin, Phenylpropanolamin, Pimobendan, Piretanid, Ponazuril, Pravastatin, Praziquantel, Prednisolon, Primaquin, Probenecid, Progesteron, Proglumid, Proguanil, Proligestron, Propentosyllin, Propiverin, Propranolol, Pyrantelembonat, Pyrazinamid,

Pyrimethamin, Pyrviniumembonat, Quinapril, Ramipril, Repaglinid, Reviparin, Ribavirin, Rifabutin, Rifampicin, Risedronsäure, Roxithromycin, Saquinavir, Selamectin, Selegilin, Sevelamer, Sotalol, Spectinomycin, Spiramycin, Spirapril, Stavudin, Streptomycin, Sulfachlorpyridazin, Sulfadiazin, Sulfadimethoxin, Sulfadimidin, Sulfadoxin, Sulfalen, 5 Sulfamethoxazol, Sulfanilamid, Sulfasalazin, Talinolol, Tamsulosin, Teicoplanin, Telithromycin, Telmisartan, Tenofovirdisoproxil, Terazosin, Terbinafin, Tetracyclin, Tetroxoprim, Theophyllin, Tiabendazol, Tiagabin, Tiludronsäure, Tinidazol, Tioconazol, Tolterodin, Toltrazuril, Trandolapril, Tranexamsäure, Tretinoïn, Triamcinolonacetonid, Triclabendazol, Trimethoprim, 10 Tripelenamin, Tromantadin, Trospiumchlorid, Tryptophan, Ursodesoxycholsäure, Valaciclovir, Valproinsäure, Vancomycin, Verapamil, Vidorabin, Vigabatrin, Zalcitabin, Zidovudin und Zoledronsäure eingesetzt werden.

Die genannten Wirkstoffe können auch in Form ihrer Ester oder Salze eingesetzt werden, Hydrate der Verbindungen sind erfindungsgemäß ebenfalls umfaßt.

15 Als pharmazeutisch verwendbare Salze sind beispielsweise die Salze der Salzsäure, Schwefelsäure, Essigsäure, Glykolsäure, Milchsäure, Bernsteinsäure, Zitronensäure, Weinsäure, Maleinsäure, Methansulfonsäure, 4-Toluolsulfonsäure, Galacturonsäure, Gluconsäure, Embonsäure, Glutaminsäure oder Asparaginsäure zu verstehen. Ferner können Verbindungen an saure oder basische Ionenaustauscher gebunden sein. Als pharmazeutisch verwendbare basische 20 Salze seien die Alkalosalze, beispielsweise die Natrium- oder Kaliumsalze, die Erdalkalisalze, beispielsweise die Magnesium-, oder Calciumsalze; die Zinksalze, die Silbersalze und die Guanidiniumsalze genannt.

Unter Hydraten werden sowohl die Hydrate der freien Verbindungen selbst als auch die Hydrate 25 von deren Salzen verstanden.

Die Wirkstoffe können in den Zubereitungen auch in Mischung mit Synergisten oder in Kombination mit weiteren Wirkstoffen vorliegen.

BeispieleBeispiel 1

1,5 g Flupirtin Base werden in einer Mischung aus 40 g Propylenglykoldicaprylat/-dicaprat (Miglyol 840) und 40 g Isopropanol gelöst. Mit 3,5 g der gleichen Mischung wird auf 100 ml aufgefüllt. Es resultiert eine klare Lösung mit einer Flupirtin-Konzentration von 1,5 % m/V.

Je 4 ml wurden auf mehrere Stellen des Rückens von 4 gesunden Katzen aufgetragen (15 – 20 mg Flupirtin Base / kg Körpergewicht (KG)). Nach 0, 0,5, 1, 2, 4, 6, 10, 24, 30 und 48 Stunden wurden Blutproben entnommen und per HPLC untersucht. Die folgenden Plasmakonzentrationen wurden erhalten:

10 Tabelle 1: *Plasmaspiegel Flupirtin nach Applikation von 4 ml der Formulierung entsprechend Beispiel 1 auf den Rücken von Katzen, n = 4, Dosis 15 – 20 mg/kg KG Flupirtin Base*

Zeit nach Applikation [h]	Plasmakonzentration Flupirtin Base [µg/L]				
	Katze 8	Katze 81	Katze 20	Katze 16	Mittelwert
0	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
0,5	84	33	163	976	314
1	402	171	249	1982	701
2	2536	3430	2535	3563	3016
4	4191	4530	7170	3471	4840
6	3164	2688	5615	2244	3428
10	2858	1734	4039	1977	2652
24	1969	583	3223	910	1671
30	1531	384	2157	574	1161
48	582	76	818	188	416

< LoQ = unter Bestimmungsgrenze (10 µg/L)

Beispiel 2

15 0,2 g Natriumsulfit werden in 8 g Wasser gelöst, 90 g Propylenglykol werden hinzugegeben und 3 g Flupirtinmaleat darin suspendiert. Nach Einstellung mit 2,35 g 2-N Natrolauge auf pH 6 löst sich der Wirkstoff vollständig auf. Mit 1,15 g Wasser wird auf das Endvolumen von 100 ml aufgefüllt. Es resultiert eine klare Lösung mit einer Flupirtinmaleat-Konzentration von 3,0 % m/V.

Je ein Volumen entsprechend einer Flupirtinmaleat-Dosis von 10 mg/kg Körpergewicht wurde auf eine Stelle des Rückens von 4 gesunden Katzen aufgetragen. Nach 0, 0,5, 1, 2, 3, 4, 6, 10, 24, 30 und 48 Stunden wurden Blutproben entnommen und per HPLC untersucht. Die folgenden Plasmakonzentrationen wurden erhalten:

5 *Tabelle 2: Plasmaspiegel Flupirtin nach Applikation einer Formulierung entsprechend Beispiel 2 auf den Rücken von Katzen, n = 4, Dosis 10 mg/kg KG Flupirtinmaleat*

Zeit nach Applikation [h]	Plasmakonzentration Flupirtin Base [µg/L]				
	2911C	2903C	2930C	2923C	Mittelwert
0	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
0,5	46	24	22	119	53
1	2963	48	125	561	924
2	2429	69	155	1501	1039
3	3002	1100	421	1829	1588
4	2515	801	356	1642	1329
6	1199	330	154	946	657
10	814	556	117	661	537
24	386	323	28	284	255
30	191	130	11	162	124
48	128	22	< LoQ	87	61
< LoQ = unter Bestimmungsgrenze (10 µg/L)					

Beispiel 3

10 3,0 g Flupirtinmaleat werden in 92,2 g mittelkettigen Triglyceriden (Miglyol 812) suspendiert und mit einem Rotor-Stator-Homogenisator (Ultra-Turrax) dispergiert. Es resultieren 100 ml einer Suspension mit einer Flupirtinmaleat-Konzentration von 3,0 % m/V.

15 Je ein Volumen entsprechend einer Flupirtinmaleat-Dosis von 10 mg/kg Körpergewicht wurde auf eine Stelle des Rückens von 4 gesunden Katzen aufgetragen. Nach 0, 0,5, 1, 2, 3, 4, 6, 10, 24, 30 und 48 Stunden wurden Blutproben entnommen und per HPLC untersucht. Die folgenden Plasmakonzentrationen wurden erhalten:

Tabelle 3: Plasmaspiegel Flupirtin nach Applikation einer Formulierung entsprechend Beispiel 3 auf den Rücken von Katzen, n = 4, Dosis 10 mg/kg KG Flupirtinmaleat

Zeit nach Applikation [h]	Plasmakonzentration Flupirtin Base [µg/L]				
	2911C	2903C	2930C	2923C	Mittelwert
0	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
0,5	274	383	74	140	218
1	640	614	780	307	585
2	1464	1232	869	739	1076
3	2012	1707	529	1239	1372
4	2536	1952	931	1911	1833
6	3400	2375	949	2404	2282
10	4658	1701	1037	1615	2253
24	2112	573	663	1148	1124
30	2184	371	289	429	818
48	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ

< LoQ = unter Bestimmungsgrenze (10 µg/L)

Die gleiche Formulierung wurde den selben Tieren mit der gleichen Dosis einen Tag nach einer 5 Kastrationsoperation appliziert. Nach 0, 0,5, 1, 2, 4, 6, 10, 24, 30 und 48 Stunden wurden Blutproben entnommen und per HPLC untersucht. Die folgenden Plasmakonzentrationen wurden erhalten:

Tabelle 4: Plasmaspiegel Flupirtin nach Applikation einer Formulierung entsprechend Beispiel 3 auf den Rücken von Katzen nach einer Sterilisationsoperation, n = 4, Dosis 10 mg/kg KG Flupirtinmaleat

Zeit nach Applikation [h]	Plasmakonzentration Flupirtin Base [µg/L]				
	2911C	2903C	2930C	2923C	Mittelwert
0	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
0,5	< LoQ	12	< LoQ	< LoQ	< LoQ
1	< LoQ	22	< LoQ	< LoQ	< LoQ
2	< LoQ	16	< LoQ	< LoQ	< LoQ
4	60	30	23	45	39
6	273	32	51	246	151

Zeit nach Applikation [h]	Plasmakonzentration Flupirtin Base [µg/L]				
	2911C	2903C	2930C	2923C	Mittelwert
10	331	258	143	265	249
24	1106	1067	338	780	835
30	673	680	261	417	508
48	356	333	299	200	297

< LoQ = unter Bestimmungsgrenze (10 µg/L)

Abbildung 1 fasst die Plasmaspiegel nach Applikation der erfindungsgemäßen Beispiele zusammen und vergleicht sie mit dem Plasmaspiegel nach peroraler Gabe einer Tablette (Dosis 4 mg/kg KG Flupirtinmaleat). Durch Normierung der unterschiedlichen Dosierungen auf eine Standarddosis von 1 mg/kg KG Flupirtin Base werden die pharmakokinetischen Daten besser vergleichbar (Abbildung 2). Bei allen erfindungsgemäßen Beispielen konnten Wirkstoffkonzentrationen im Plasma gefunden werden, die denjenigen nach peroraler Applikation einer Tablette entsprechen. Durch das nach einer Operation verzögert einsetzende Putzverhalten ist t_{max} in diesem Fall deutlich von 3-6 Stunden auf 24 Stunden verschoben. Auch sind die Maximalkonzentrationen aufgrund einer verzögerten Aufnahme geringer. Um eine postoperative Analgesie zu gewährleisten, sollte die Applikation eine ausreichende Zeit vor der Operation erfolgen, so dass das Tier noch therapeutisch relevante Mengen aufnehmen kann.

Die Daten zeigen, dass nach Applikation einer wirkstoffhaltigen Formulierung auf das Fell von Katzen über das Putzverhalten eine nahezu vollständige orale Aufnahme erfolgt. Auf diese Weise können auch schlecht schmeckende Wirkstoffe, wie beispielsweise Flupirtin, Fluorchinolone oder Praziquantel peroral zuverlässig appliziert werden.

Abbildungen:

Abbildung 1: Plasmakonzentration Flupirtin nach Applikation wirkstoffhaltiger Zubereitungen auf das Fell von Katzen ($n = 4 - 8$)

Abbildung 2: Plasmakonzentration Flupirtin nach Applikation wirkstoffhaltiger Zubereitungen auf das Fell von Katzen ($n = 4 - 8$), Daten normiert auf eine Dosis von 1 mg/kg KG Flupirtin Base

Beispiel 4

3,75 g Ponazuril werden in 44,25 g Glycerin suspendiert und mit einem Rotor-Stator-Homogenisator dispergiert. Es resultieren 50 ml einer Suspension mit einer Konzentration an Ponazuril von 7,5 % M/M.

5 **Beispiel 5**

0,75 g Pradofloxacin werden in 49,25 g Polyethylenglykol 400 suspendiert und mit einem Rotor-Stator-Homogenisator dispergiert. Es resultieren 50 ml einer Suspension mit einer Konzentration an Pradofloxacin von 1,5 % M/M.

Beispiel 6

10 1,25 g Enrofloxacin werden in 48,75 g mittelkettigen Triglyceriden (Miglyol 812) suspendiert und mit einem Rotor-Stator-Homogenisator dispergiert. Es resultieren 50 ml einer Suspension mit einer Konzentration an Enrofloxacin von 2,5 % M/M.

15 Ein Volumen entsprechend einer Enrofloxacin Dosis von ca. 5 mg/kg Körpergewicht wurde auf eine Stelle im Bereich der Rückenlinie zwischen den Schulterblättern von je 4 gesunden Katzen aufgetragen. An den gelisteten Zeitpunkten wurden Blutproben entnommen und Serumaliquots per HPLC untersucht. Bis 4 Stunden nach Applikation trugen die Tiere einen Halskragen, der ein Ablecken/Putzen der Applikationsstelle verhindern sollte. Die folgenden Serumkonzentrationen von Enrofloxacin und dem aktiven Metaboliten Ciprofloxacin wurden erhalten:

20 Tabelle 5: Serumkonzentrationen Enrofloxacin nach Applikation von 0,7-0,9 ml der Formulierung entsprechend Beispiel 6 auf den Rücken von Katzen, n = 4, Dosis ca. 5 mg/kg KG Enrofloxacin, Abnahme der Halskragen 4 Stunden nach Applikation

Zeitpunkt	Serumkonzentration Enrofloxacin [µg/L] in Tier Nr.:				Mean [µg/L]
	0463	0464	0510	0504	
Vor Appl.	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
1 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
2 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
4 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
5 h	135	97	504	706	361
6 h	94	85	664	733	394
8 h	86	66	483	516	288
10 h	80	68	433	419	250
14 h	126	-	303	327	252
28 h	36	30	63	90	55

Zeitpunkt	Serumkonzentration Enrofloxacin [µg/L] in Tier Nr.:				Mean [µg/L]
	0463	0464	0510	0504	
34 h	< LoQ	< LoQ	28	40	< LoQ
52 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ

Tabelle 5: Serumkonzentrationen Ciprofloxacin nach Applikation von 0.7-0.9 ml der Formulierung entsprechend Beispiel 6 auf den Rücken von Katzen, n = 4, Dosis ca. 5 mg/kg KG Enrofloxacin, Abnahme der Halskragen 4 Stunden nach Applikation

Zeitpunkt	Serumkonzentration Ciprofloxacin [µg/L] in Tier Nr.:				Mean [µg/L]
	0463	0464	0510	0504	
vor Appl.	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
1 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
2 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
4 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
5 h	< LoQ	< LoQ	57	64	37
6 h	< LoQ	< LoQ	79	81	46
8 h	< LoQ	< LoQ	71	70	42
10 h	< LoQ	< LoQ	83	70	45
14 h	< LoQ	-	82	73	56
28 h	< LoQ	< LoQ	28	34	< LoQ
34 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
52 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ

5

Die Daten zeigen, dass nach Applikation einer wirkstoffhaltigen Formulierung auf das Fell von Katzen über das Putzverhalten eine orale Aufnahme der Substanz erfolgt, eine perkutane Aufnahme wurde nicht gesehen.

Beispiel 7

10 7,5 g Toltrazuril werden in 92,5 g Paraffin subliquidum suspendiert und mit einem Rotor-Stator-Homogenisator dispergiert. Es resultieren 100 ml einer Suspension mit einer Konzentration an Toltrazuril von 7,5 % M/M.

Beispiel 8

15 4,0 g Toltrazuril werden in 96 g Sesamöl suspendiert und mit einem Rotor-Stator-Homogenisator dispergiert. Es resultieren 100 ml einer Suspension mit einer Konzentration an Toltrazuril von 4 % M/M.

Ein Volumen entsprechend einer Toltrazuril Dosis von ca. 15 mg/kg Körpergewicht wurde auf eine Stelle im Bereich der Rückenlinie zwischen den Schulterblättern von je 4 gesunden Katzen aufgetragen. An den gelisteten Zeitpunkten wurden Blutproben entnommen und Serumaliquots per HPLC untersucht. Bis 4 Stunden nach Applikation trugen die Tiere einen Halskragen, der ein Ablecken der Applikationsstelle verhindern sollte. Die folgenden Serumkonzentrationen von Toltrazuril und dem aktiven Metaboliten Toltrazuril-Sulfon wurden erhalten:

5

Tabelle 6: Serumkonzentrationen Toltrazuril nach Applikation von 0.6-0.7 ml der Formulierung entsprechend Beispiel 8 auf den Rücken von Katzen, n = 4, Dosis ca. 15 mg/kg KG Toltrazuil, Abnahme der Halskragen 4 Stunden nach Applikation

Zeitpunkt	Serumkonzentration Toltrazuril [$\mu\text{g}/\text{L}$] in Tier Nr.:				Mean [$\mu\text{g}/\text{L}$]
	0472 D	0470 D	0493 D	0494 D	
vor Appl.	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
1 h	42	< LoQ	< LoQ	< LoQ	< LoQ
2 h	142	< LoQ	< LoQ	< LoQ	45
4 h	214	188	< LoQ	< LoQ	107
5 h	417	397	319	358	373
6 h	*	617	1006	1063	895
8 h	383	539	1134	1579	909
10 h	539	617	1171	1590	979
14 h	684	918	1074	1623	1075
28 h	2035	1204	1763	5335	2584
34 h	1442	898	1369	3980	1922
52 h	1717	893	1906	2853	1842

10

Tabelle 7: Serumkonzentrationen Toltrazuril-Sulfon nach Applikation von 0.6-0.7 ml der Formulierung entsprechend Beispiel 8 auf den Rücken von Katzen, n = 4, Dosis ca. 15 mg/kg KG Toltrazuil, Abnahme der Halskragen 4 Stunden nach Applikation

Zeitpunkt	Serumkonzentration Toltrazuril-Sulfon [$\mu\text{g}/\text{L}$] in Tier Nr.:				Mean [$\mu\text{g}/\text{L}$]
	0472 D	0470 D	0493 D	0494 D	
Vor Appl.	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
1 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
2 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
4 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
5 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
6 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
8 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
10 h	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ

Zeitpunkt	Serumkonzentration Toltrazuril-Sulfon [µg/L] in Tier Nr.:				Mean [µg/L]
	0472 D	0470 D	0493 D	0494 D	
14 h	< LoQ	< LoQ	60	43	32
28 h	130	122	308	397	239
34 h	164	143	418	597	331
52 h	470	389	809	1521	797

Die Daten zeigen, dass nach Applikation einer wirkstoffhaltigen Formulierung auf das Fell von Katzen über das Putzverhalten eine orale Aufnahme der Substanz erfolgt, eine percutane Aufnahme wurde nicht gesehen. Serumspiegel, die vor der Annahme des Kragens gemessen wurden, resultieren höchst wahrscheinlich aus einer geringfügigen oralen Aufnahme, durch Belecken der inneren Seite des Halskragens, die mit der Applikationsstelle in Berührung gekommen ist.

Je ein Volumen entsprechend einer Toltrazuril Dosis von 8 mg/kg Körpergewicht wurde auf eine Stelle im Bereich der Flanke des von 4 gesunden Kaninchen aufgetragen. An den gelisteten Zeitpunkten wurden Blutproben entnommen und Serumaliquots per HPLC untersucht. Bis 4 Stunden nach Applikation waren die Tiere in einer Zwangsvorrichtung fixiert, die ein Ablecken der Applikationsstelle verhinderte. Die folgenden Serumkonzentrationen von Toltrazuril und dem aktiven Metaboliten Toltrazuril-Sulfon wurden erhalten:

15 *Tabelle 8: Serumkonzentrationen Toltrazuril nach Applikation von 1 ml der Formulierung entsprechend Beispiel 8 auf die Flanke von Kaninchen, n = 4, Dosis i0.7–11.2 mg/kg KG Toltrazuri, Fixation der Tiere bis 4 Stunden nach Applikation*

Zeitpunkt	Serumkonzentration Toltrazuril [µg/L] in Tier Nr.:				Mean [µg/L]
	2564	2589	2548	2562	
Vor Appl.	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
1 h	< LoQ	< LoQ	103	< LoQ	35
2 h	< LoQ	< LoQ	104	< LoQ	35
4 h	< LoQ	< LoQ	100	< LoQ	34
5 h	< LoQ	< LoQ	452	25	126
6 h	56	47	856	91	263
8 h	232	245	2143	949	892
10 h	484	897	3018	1486	1471
14 h	1329	1409	3735	1717	2048
28 h	2992	2548	4692	3035	3317
34 h	4112	2955	4420	2767	3564
52 h	3843	3014	4245	4308	3853

Tabelle 9: Serumkonzentrationen Toltrazuril-Sulfon nach Applikation von 1 ml der Formulierung entsprechend Beispiel 8 auf die Flanke von Kaninchen, n = 4, Dosis 10.7–11.2 mg/kg KG Toltrazuril, Fixation der Tiere bis 4 Stunden nach Applikation

Zeitpunkt	Serumkonzentration Toltrazuril-Sulfon [$\mu\text{g}/\text{L}$] in Tier Nr.:				Mean [$\mu\text{g}/\text{L}$]
	2564	2589	2548	2562	
vor Appl.	< LoQ	< LoQ	< LoQ	< LoQ	< LoQ
1 h	< LoQ	< LoQ	30	< LoQ	35
2 h	< LoQ	< LoQ	31	< LoQ	35
4 h	< LoQ	< LoQ	31	< LoQ	34
5 h	< LoQ	< LoQ	32	< LoQ	126
6 h	< LoQ	< LoQ	31	< LoQ	263
8 h	< LoQ	< LoQ	41	< LoQ	892
10 h	< LoQ	< LoQ	64	< LoQ	1471
14 h	30	26	155	25	2048
28 h	251	223	554	198	3317
34 h	491	391	747	245	3564
52 h	1240	780	1349	709	3853

5 Die Daten zeigen, dass nach Applikation einer wirkstoffhaltigen Formulierung auf das Fell von Kaninchen über das Putzverhalten eine orale Aufnahme der Substanz erfolgt, eine percutane Aufnahme wurde nicht gesehen.

Patentansprüche

1. Pharmazeutische Zubereitung zur Anwendung am Tier, welche auf das Fell oder die Haut des Tieres appliziert und von diesem anschließend oral aufgenommen wird.
2. Pharmazeutische Zubereitung gemäß Anspruch 1, welche zur Anwendung bei Katzen bestimmt ist.
3. Pharmazeutische Zubereitung gemäß Anspruch 1 oder 2, welche eine flüssige Konsistenz aufweist.
4. Pharmazeutische Zubereitung gemäß einem der vorstehenden Ansprüche, welche Flupirtin oder seine Salze enthält.
- 10 5. Pharmazeutische Zubereitung gemäß einem der Ansprüche 1 bis 3, welche Enrofloxacin oder seine Salze enthält.
6. Pharmazeutische Zubereitung gemäß einem der Ansprüche 1 bis 3, welche Pradofloxacin oder seine Salze enthält.
- 15 7. Pharmazeutische Zubereitung gemäß einem der Ansprüche 1 bis 3, welche Toltrazuril oder seine Salze enthält.
8. Pharmazeutische Zubereitung gemäß einem der Ansprüche 1 bis 3, welche Ponazuril oder seine Salze enthält.
9. Verwendung von oral wirksamen pharmazeutischen Wirkstoffen zur Herstellung von pharmazeutischen Zubereitungen gemäß Anspruch 1.
- 20 10. Verfahren zur Applikation von pharmazeutischen Wirkstoffen bei Tieren, bei dem man eine den entsprechenden Wirkstoff enthaltende pharmazeutische Zubereitung dem Tier topisch appliziert und das Tier anschließend das so applizierte Arzneimittel oral aufnimmt.

Abbildung 1

Abbildung 2