数学Y問題

(120分)

【必答問題】 $Y1\sim Y4$ は全員全問解答せよ。

0

- (1) 赤色が2回,かつ青色が2回記録された確率を求めよ。
- (2) 青色が2回記録された確率を求めよ。また、青色が2回記録されたとき、記録された玉 の色が2種類である条件付き確率を求めよ。 (配点 20)

Y2 関数
$$f(x) = a\sin x + b\cos 2x$$
 (a, bは定数) があり, $f\left(\frac{\pi}{6}\right) = \frac{1}{2}$, $f\left(\frac{\pi}{2}\right) = 3$ である。

- (1) a, bの値を求めよ。
- (2) $0 \le x < 2\pi$ のとき, $f(x) = -\frac{3}{2}$ となるx の値を求めよ。 (配点 20)

- $\mathbf{Y3}$ 座標平面上に,放物線 $C: y = x^2 x + 3$ がある。C上の点 A(1, 3) における Cの接線 e とする。また,e と e 触の交点を e とする。
 - (1) ℓの方程式を求めよ。
 - (2) C上の点を $P(p, p^2-p+3)$ (p は定数) とし、P を通りy 軸に平行な直線が ℓ と交わる点をQ とする。Q が線分 AB (両端の2 点 A, B を除く)上にあるとき、 ΔBPQ をつくり、 ΔBPQ の面積をTとする。T をp を用いて表せ。また、T が最大となるときのp の値を求めよ。
 - (3) p を(2)で求めた値とする。Cと直線ℓ, および線分BPで囲まれた部分の面積を求めよ。 (配点 40)

 $\mathbf{Y4}$ a を正の定数とする。O を原点とする座標平面上に、円 $C_1: x^2+y^2+10x+2y+1=0$ と直線 $\ell: 3x+4y=a$ があり、 C_1 と ℓ は接している。

- (1) a の値を求めよ。
- (2) ℓに関して C₁と対称な円を C₂とする。 C₂の方程式を求めよ。
- (3) (2)のとき、Oから C_2 に引いた接線のうち傾きが正であるものをmとする。また、 C_2 とmの接点をPとし、 C_2 上の点をQとする。Qが Pを除く C_2 上を動くとき、 $\triangle OPQ$ の面積の最大値とそのときのQの座標を求めよ。 (配点 40)

THE RESIDENCE OF THE PERSON OF

【選択問題】次の指示に従って解答しなさい。

【数学Ⅲを学習していない場合(P.10~11)】	Y5~Y7の3題中2題を解答せよ。
【数学Ⅲの「2次曲線」,「複素数平面」,「数列の極限」のいずれかの学習を終えている場合 (P.12~13)】	Y7~Y10の4題中2題を解答せよ。

- $\mathbf{Y7}$ 平行四辺形 OACB があり、OA=3、OB=2、 $\cos \angle AOB = -\frac{1}{6}$ である。対角線 AB を 3:1 に内分する点を D とし、O から対角線 AB に引いた垂線と対角線 AB との交点を H とする。また、 $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$ とする。
 - (1) 内積 $\overline{a} \cdot \overline{b}$ の値を求めよ。また, \overline{OD} を \overline{a} , \overline{b} を用いて表せ。
 - (2) \overrightarrow{OH} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。
 - (3) 直線 OH と直線 DC の交点を E とする。 \overrightarrow{OE} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また,線分 DE の長さを求めよ。 (配点 40)

- $oxed{Y8}$ a, b を正の定数とする。楕円 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ は点 A (0, 1) を通り,その焦点の 1 つは F (1, 0) である。また,直線 AF と C の 2 つの交点のうち,A と異なるものを B とする。
 - (1) a, bの値を求めよ。
 - (2) Bの座標を求めよ。また、線分ABの長さを求めよ。
 - (3) 直線 AB に平行な直線 ℓ が C と第 1 象限において接するとき, C と ℓ の接点を P とする。 △PAB の面積を求めよ。 (配点 40)

- $\mathbf{Y9}$ xの 2 次方程式 $x^2-3x+3=0$ の虚数解のうち、虚部が正であるものを α とし、O を原点とする複素数平面上で、 α を表す点を A とする。また、O を中心として A を反時計回りに $\frac{\pi}{2}$ だけ回転した点を B とし、点 B を表す複素数を β とする。
 - (1) α, βをそれぞれ a+bi (a, b は実数) の形に表せ。
 - (2) β を極形式で表せ。ただし,偏角 θ の範囲は $0 \le \theta < 2\pi$ とする。また, β^6 を計算せよ。
 - (3) $\gamma = 1 + i$ とする。不等式 $|\gamma^m| \le |\beta^6|$ を満たすような自然数 m のうち,最大のものを M とする。また, γ , γ^M を表す点をそれぞれ P,Q とする。3 点 P,Q,R が正三角形の頂点となるとき,点 R を表す複素数を x+yi(x,y は実数)の形に表せ。 (配点 40)

- \mathbf{Y} 10 数列 $\{a_n\}$ は $a_{n+1}=a_n+3$ $(n=1, 2, 3, \dots)$ を満たし、第 5 項から第 10 項までの和は 147 である。また、数列 $\{b_n\}$ の初項から第 n 項までの和 S_n は $S_n=2b_n-n$ $(n=1, 2, 3, \dots)$ を満たしている。
 - (1) anをnを用いて表せ。
 - (2) b_nをnを用いて表せ。
 - (3) a_n を 2 で割ったときの余りを c_n (n=1, 2, 3, \cdots) とする。 $T_{2m} = \sum_{k=1}^{2m} \frac{c_k}{b_k+1}$ (m=1, 2, 3, \cdots) とするとき, T_{2m} を m の式で表せ。また, $\lim_{m\to\infty} T_{2m}$ を求めよ。

(配点 40)