

## VE230 Homework 5

2021 Summer

- **P1** Lightning strikes a lossy dielectric sphere  $\epsilon = 1.2\epsilon_0$ ,  $\sigma = 10(S/m)$  of radius 0.1(m) at time t = 0, depositing uniformly in the sphere a total charge 1(mC).
- a) Calculate the time it takes for the charge density in the sphere to diminish to 1% of its initial value.
- b) Calculate the change in the electrostatic energy stored in the sphere as the charge density diminishes from the initial value to 1% of its value. What happens to this energy?
- c) Determine the electrostatic energy stored in the space outside the sphere. Does this energy change with time?
- **P2** The space between two parallel conducting plates each having an area S is filled with an inhomogeneous ohmic medium whose conductivity varies linearly from  $\sigma_1$  at one plate (y = 0) to  $\sigma_2$  at the other plate (y = d). A d-c voltage  $V_0$  is applied across the plates as in Fig. 1. Determine
  - a) the total resistance between the plates,
  - b) the surface charge densities on the plates,
  - c) the volume charge density and the total amount of charge between the plates.



Figure 1: Inhomogeneous ohmic medium with conductivity  $\sigma(y)$  (Problem 2).

- **P3** Determine the resistance between two concentric spherical surfaces of radii  $R_1$  and  $R_2$  ( $R_1 < R_2$ ), assuming that a material of conductivity  $\sigma = \sigma_0(1 + k/R)$  fills the space between them. (Note: Laplace's equation for V does not apply here.)
- **P4** Assume a rectangular conducting sheet of conductivity  $\sigma$ , width a, and height b. A potential difference  $V_0$  is applied to the side edges, as shown in Fig. 2. Find
  - a) the potential distribution,
- b) the current density everywhere within the sheet. (Hint: Solve Laplace's equation in Cartesian coordinates subject to appropriate boundary conditions.)





Figure 2: A conducting sheet (Problem 4). .

**P5** An electron is injected with a velocity  $\mathbf{u}_0 = \mathbf{a}_y u_0$  into a region where both an electric field  $\mathbf{E}$  and a magnetic field  $\mathbf{B}$  exist. Describe the motion of the electron if

- a)  $\mathbf{E} = \mathbf{a}_z E_0$  and  $\mathbf{B} = \mathbf{a}_x \mathbf{B}_0$
- b)  $\mathbf{E} = -\mathbf{a}_z E_0$  and  $\mathbf{B} = -\mathbf{a}_z B_0$

Discuss the effect of the relative magnitudes of  $E_0$  and  $B_0$  on the electron paths in parts (a) and (b).



Figure 3: Helmholtz coils (Problems 6).

**P6** Two identical coaxial coils, each of N turns and radius b, are separated by a distance d, as depicted in Fig. 3. A current I flows in each coil in the same direction.

- a) Find the magnetic flux density  $\mathbf{B} = \mathbf{a}_x B_x$  at a point midway between the coils.
- b) Show that  $dB_x/dx$  vanishes at the midpoint.
- c) Find the relation between b and d such that  $d^2B_x/dx^2$  also vanishes at the midpoint. Such a pair of coils are used to obtain an approximately uniform magnetic field in the midpoint region. They are known as Helmholtz coils.



- P7 Do the following by using  $V_m = -\frac{I}{4\pi}\Omega$ :
  a) Determine the scalar magnetic potential at a point on the axis of a circular loop having a radius b and carrying a current I.
- b) Obtain the magnetic flux density **B** from  $-\mu_0 \nabla V_m$ , and compare the result with  $\mathbf{B} = \mathbf{a}_z \frac{\mu_0 I b^2}{2(z^2 + b^2)^{3/2}}.$