STAT 796: Homework 1

Joshua Keller

Due Sunday, January 27 at 11:59pm on Canvas.

The file ICU_raw.txt on Canvas contains the data discussed in lecture on patients in the intensive care unit, but in a different format. This assignment asks you to perform various coding tasks related to modifying ("wrangling") the dataset and creating various summaries of the data.

Note: Include your R code for the entire assignment as an appendix at the end of your responses.

- 1. Read the file ICU_raw.txt into R using the read_table2() function from the readr package. (Nothing needs to be turned in for this question)
- 2. Documentation of the original coding for this dataset is provided in the file ICU_Data_Code_Sheet on Canvas. Rename and recode the variables in the dataset according to the following table.

Original Name	New Name	Re-coding Comments
STA	status	
AGE	age	
GENDER	female	
RACE	race	Factor with 1=White, 2=Black, 3=Other
SER	service	Factor with 0=medical, 1=surgical
CAN	cancer	
CRN	renal	
INF	infect	
CPR	cpr	
SYS	sbp	
HRA	hr	
PRE	prv_admit	
TYP	type	Factor with 0=elective, 1=emergency
FRA	fracture	
PO2	$po2_g60$	Define new variable as 1-PO2
PCO	$pco2_g45$	
BIC	$bicarb_g18$	Define new variable as 1 - BIC
CRE	$creat_g2$	
LOC	conscious	Factor with 0=no_coma_or_stupor, 1=stupor, 2=coma

Example code starter code is below. Note that since we are renaming and replacing *all* variables, we use transmute() instead of mutate().

- 3. Compute the following summary statistics for the entire cohort:
 - a. Average, Minimum, Maximum, and Standard Deviation of age (in years)
 - b. Count of subjects with each service type (Medical/Surgical)

- c. Count of subjects with each procedure types (Elective/Emergency)
- d. Count of subjects of each race and of each sex
- e. Counts of subjects by consciousness at admission (Coma, Stupor, No Coma or Stupor)
- 4. Compute the following summary statistics for the cohort, grouped by vital status:
 - a. Average, Minimum, Maximum, and Standard Deviation of age (in years)
 - b. Count of service types (Medical/Surgical)
 - c. Count of procedure types (Elective/Emergency)
 - d. Race and sex counts
 - e. Counts of consciousness at admission (Coma, Stupor, No Coma or Stupor)
- 5. Create the following graphical summaries of the data. Figures should include appropriate titles and labels.
 - a. Scatterplot of systolic blood pressure (sbp) against age (age), using color and shape to identify observations by vital status at discharge.
 - b. Boxplots of heart rate, grouped by consciousness at admission. [Use geom_boxplot(aes(x=GROUPVAR, Y=PRIMARYVAR)).]
 - c. Histograms of age [Use geom_histogram(aes(x=XVAR)).]
 - d. Density estimates of heart rate, grouped by consciousness at admission.