CS447: Natural Language Processing

http://courses.engr.illinois.edu/cs447

Lecture 8: The Forward-Backward algorithm

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center

Wednesday's key concepts

HMM taggers

Learning HMMs from labeled text

Viterbi for HMMs

Dynamic programming
Independence assumptions in HMMs
The trellis

Recap: Learning an HMM from labeled data

```
Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS old_JJ ,_, will_MD join_VB the_DT board_NN as_IN a_DT nonexecutive_JJ director_NN Nov._NNP 29_CD ._.
```

We count how often we see $t_i t_j$ and $w_{j_-} t_i$ etc. in the data (use relative frequency estimates):

Transition probabilities: $P(t_j|t_i) = \frac{C(t_it_j)}{C(t_i)}$

Emission probabilities: $P(w_j|t_i) = \frac{C(w_j t_i)}{C(t_i)}$

Initial state probabilities: $\pi(t_i) = \frac{C(\text{Tag of first word } = t_i)}{\text{Number of sentences}}$

Recap: The Viterbi algorithm

```
What: Viterbi finds the most likely tag sequence \mathbf{t}^* = \mathbf{t}^{(1)}...\mathbf{t}^{(N)} for an input sentence (word sequence) \mathbf{w} = \mathbf{w}^{(1)}...\mathbf{w}^{(N)} \mathbf{t}^* = \operatorname{argmax_t} P(\mathbf{t} \mid \mathbf{w}) = \operatorname{argmax_t} P(\mathbf{t})P(\mathbf{w} \mid \mathbf{t})
```

The most likely tag sequence is also called the Viterbi sequence

How: Viterbi is a **dynamic programming** algorithm that uses a N×T trellis (table) in which each cell trellis[n][i] stores:

- -the **probability** of the most likely (Viterbi) tag sequence for the prefix $w^{(1)}...w^{(n)}$ that ends in tag t_i
- -and a **backpointer** to the cell trellis[n-1][j], where $t^{(n-1)} = t_j$ is the tag of word $w^{(n-1)}$ in this Viterbi sequence The cell trellis[N][i] with the largest probability in the last column tells us which tag $t^{(N)} = t_i$ the Viterbi sequence t^* of w ends in. We extract t^* by following the backpointers.

Viterbi

trellis[n][i] stores the probability of the most likely (Viterbi) tag sequence $\mathbf{t}^{(1)...(n)}$ that ends in tag t_i for the prefix $w^{(1)}...w^{(n)}$

```
trellis[n][i] = \max_{\mathbf{t}(1)..(n-1)}[P(\mathbf{w}^{(1)...(n)}, \mathbf{t}^{(1)...(n-1)}, t^{(n)} = \mathbf{t}_i)]

= \max_{\mathbf{j}}[\text{trellis}[n-1][\mathbf{j}] \times P(\mathbf{t}_i | \mathbf{t}_j)] \times P(\mathbf{w}^{(n)} | \mathbf{t}_i)

= \max_{\mathbf{j}}[\max_{\mathbf{t}^{(1)..(n-2)}}[P(\mathbf{w}^{(1)..(n-1)}, \mathbf{t}^{(1)..(n-2)}, \mathbf{t}^{(n-1)} = \mathbf{t}_i)] \times P(\mathbf{t}_i | \mathbf{t}_j)] \times P(\mathbf{w}^{(n)} | \mathbf{t}_i)
```


Today's key concepts

The Forward algorithm: computing $P(\mathbf{w})$ The Forward-Backward algorithm: learning HMMs from raw text

The Forward algorithm: Computing P(w)

The Forward algorithm

The HMM defines a language model: $P(\mathbf{w}) = \sum_{t} P(\mathbf{t}, \mathbf{w})$

-To compute P(w), sum ('marginalize') over all tag sequences t

How can we compute P(w) efficiently?

-Use dynamic programming!

In the Viterbi algorithm, we want the probability of the *best* sequence for $\mathbf{w}^{(1)...(n)}$ that ends in t_i :

```
trellis[n][i] = \max_{\mathbf{t}(1)..(n-1)} [P(\mathbf{w}^{(1)...(n)}, \mathbf{t}^{(1)...(n-1)}, \mathbf{t}^{(n)} = \mathbf{t}_i)]
```

In the Forward algorithm, we want the total probability mass of *all* sequences for $\mathbf{w}^{(1)...(n)}$ that end in t_i :

trellis[n][i] =
$$\sum_{\mathbf{t}(1)..(n-1)} [P(\mathbf{w}^{(1)...(n)}, \mathbf{t}^{(1)...(n-1)}, \mathbf{t}^{(n)} = \mathbf{t}_i)]$$

The Forward algorithm

trellis[n][i] stores the probability mass of all tag sequences $\mathbf{t}^{(1)...(n)}$ that end in tag t_i for the prefix $w^{(1)}...w^{(n)}$

Last step: computing $P(\mathbf{w})$: $P(\mathbf{w}^{(1)...(N)}) = \sum_{j} \text{trellis[N][j]}$

Learning an HMM from raw text

Learning an HMM from unlabeled text

Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29 .

Tagset:

NNP: proper noun CD: numeral, JJ: adjective,...

We can't count anymore. We have to *guess* how often we'd *expect* to see t_it_j etc. in our data set.

Call this *expected count* $\langle C(...) \rangle$

-Our estimate for the transition probabilities:

$$\hat{P}(t_j|t_i) = \frac{\langle C(t_it_j)\rangle}{\langle C(t_i)\rangle}$$

-Our estimate for the emission probabilities:

$$\hat{P}(w_j|t_i) = \frac{\langle C(w_j t_i) \rangle}{\langle C(t_i) \rangle}$$

-Our estimate for the initial state probabilities:

$$\pi(t_i) = \frac{\langle C(\text{Tag of first word } = t_i) \rangle}{\text{Number of sentences}}$$

Learning HMMs from raw text

Chicken-and-Egg problem:

We need a probability model to compute expected counts $\langle C(...) \rangle$

Solution: iterative hill-climbing

- Start with an initial model $\lambda^{(0)}$ to compute expectations.
- Use these expectations to recompute a new model.
- Iterate: Use this model to compute new expectations,...
 (N.B.: this yields a Maximum-Likelihood estimate)

Hill-climbing:

Each iteration yields a model $\lambda^{(t+1)}$ that assigns at least as much probability (likelihood) to the training data as $\lambda^{(t)}$. This is an instance of the **Expectation-Maximization (EM)** algorithm

Learning an HMM: the EM algorithm

Initialization:

- Take a data set S
- Guess initial parameters $A^{(0)}$, $B^{(0)}$, $\pi^{(0)}$ These define the HMM $\lambda^{(i)}=\lambda^{(0)}=(A^{(0)}$, $B^{(0)}$, $\pi^{(0)}$

The Expectation (E) step:

– Use $\lambda^{(i)}$ to compute expected counts $\langle C(t) | \lambda^{(i)}, S \rangle$ and $\langle C(w, t) | \lambda^{(i)}, S \rangle$ for all words w and tags t

The Maximization (M) step

- Estimate a new HMM $\lambda^{(i+1)}$ from $\langle C(t) | \lambda^{(i)}, S \rangle$, $\langle C(w, t) | \lambda^{(i)}, S \rangle$

Repeat the E and M steps until *λ converges*

Computing $\langle C(w,t)| \lambda^{(i)}, S \rangle, \langle C(t)| \lambda^{(i)}, S \rangle$

$$\langle \mathbf{C}(\mathbf{t}) \mid \lambda^{(i)}, \mathbf{S} \rangle = \sum_{\mathbf{w}} \langle \mathbf{C}(\mathbf{w}, \mathbf{t}) \mid \lambda^{(i)}, \mathbf{S} \rangle$$

How often do we expect to see tag t in the corpus S?

→ Sum over all words w

$$\langle C(w, t) | \lambda^{(i)}, S \rangle = \sum_{j} \langle C(w, t) | \lambda^{(i)}, S_{j} \rangle$$

How often do we expect to see tag t with a specific word w in corpus S?

 \rightarrow Sum over all sentences S_i in S

$$\langle C(w, t) \mid \lambda^{(i)}, S_j \rangle = \sum_{k: w(k) = w} \langle C(w, t) \mid \lambda^{(i)}, S_j \rangle$$

How often do we expect to see tag t with a specific word w in sentence S_i ?

 \rightarrow Sum over all positions k in S_j that are occupied by w ($w^{(k)}$ is equal to w).

Computing $\langle C(w^{(k)} = w, t^{(k)} = t) | \lambda^{(i)}, S_j \rangle$

$$\langle C(w^{(k)} = w, t^{(k)} = t) | \lambda^{(i)}, S_j \rangle$$
:

How often do we expect to see tag t in position k in sentence S_j ?

Supervised learning:

 $\mathbf{w}^{(k)}$ has tag $\mathbf{t}^{(k)}$, hence $\mathbf{C}(\mathbf{w}^{(k)}, \mathbf{t}^{(k)}) = 1$

Unsupervised learning:

 $w^{(k)}$ can have any tag t, hence $\Sigma_i \langle C(w^{(k)}, t_i) \rangle = 1$ $\langle C(w^{(k)}, t) \rangle$ is the conditional probability of tag t in position k (in sentence S_i).

	$\mathbf{W}^{(1)}$	•••	W (i-1)	W (i)	$\mathbf{W}^{(i+1)}$	•••	W (N)
t_1							
•••							
t							
•••							
t_{T}							

- With a slight abuse of notation, I'm using $\langle C(t,w^{(i)}) \mid \mathbf{w} \rangle$ to refer to the expected count of tag t occurring with the i-th word in $\mathbf{w} = w^{(1)}...w^{(i)}...w^{(N)}$
- We need to look at the k-th cell in the row corresponding to tag t

 $\langle C(t,w^{(i)}) | \mathbf{w} \rangle$ is equal to the conditional probability that the i-th tag for \mathbf{w} ($w^{(i)}$'s tag) is t:

$$\langle C(t, w^{(i)}) \mid w \rangle = P(t^{(i)} = t \mid w)$$

= $P(t^{(i)} = t, w)/P(w)$

 $P(t^{(i)} = t, w)$ is the total probability mass of w with any of the tag sequences for w where the i-th tag is t

The forward algorithm tells us how to compute $P(\mathbf{w})$

 $P(t^{(i)}=t, \mathbf{w})$ is the total probability mass of all tag sequences for \mathbf{w} where the i-th tag is t

This decomposes into two terms

$$P(t^{(i)} = t, \mathbf{w}) = P(t^{(i)} = t, \mathbf{w}^{(1)...(i)}) P(\mathbf{w}^{(i+1)...(N)} \mid t^{(i)} = t)$$

The first term $P(\mathbf{t}^{(i)} = \mathbf{t}, \mathbf{w}^{(1)\dots(i)})$ is the probability mass of the prefix $\mathbf{w}^{(1)\dots(i)}$ with all tag sequences $\mathbf{t}^{(1)\dots(i)}$ that end in \mathbf{t}

We can get this from the cell corresponding to $w^{(i)}$ and t in the forward trellis: $P(t^{(i)} = t, \mathbf{w}^{(1)...(i)}) = \mathbf{forward}[i][t]$

The second term $P(\mathbf{w}^{(i+1)\dots(N)} \mid \mathbf{t}^{(i)} = \mathbf{t})$ is the probability mass of the suffix $\mathbf{w}^{(i+1)\dots(N)}$ with all tag sequences $\mathbf{t}^{(i+1)\dots(N)}$ given that $\mathbf{t}^{(i)} = \mathbf{t}$

$$P(t^{(i)} = t, \mathbf{w}) = P(t^{(i)} = t, \mathbf{w}^{(1)...(i)}) P(\mathbf{w}^{(i+1)...(N)} \mid t^{(i)} = t)$$

 $P(t^{(i)} = t, \mathbf{w}^{(1)...(i)}) = \text{forward}[i][\underline{t}]$ is the forward probability of t and $\mathbf{w}^{(i)}$ computed by the forward algorithm

Correspondingly,

 $P(\mathbf{w}^{(i+1)\dots(N)} \mid t^{(i)} = t) = backward[i][t]$ is the backward probability of t and $\mathbf{w}^{(i)}$ computed by the backward algorithm

The forward algorithm

The forward trellis is filled from left to right.

forward[i][t] provides $P(t^{(i)} = t, \mathbf{w}^{(1)...(i)})$

Initialization (first column):

forward[1][
$$t$$
] = $\pi(t)P(w^{(1)} | t)$

Recursion (any other column):

forward[i][
$$t$$
] = $P(w^{(i)} | t) \times \sum_{t'} P(t | t') \times \text{forward}[i-1][t']$

	$\mathbf{W}^{(1)}$	•••	W (i-1)	W (i)	W (i+1)	•••	\mathbf{w}
\mathbf{q}_1							
•••			***				
q _i							
•••			••				
q T			./				

The backward algorithm

The backward trellis is filled from right to left.

backward[i][t] provides $P(w^{(i+1)...(N)} | t_i = t)$

NB: \sum_{t} backward[1][t] = $P(\mathbf{w}^{(i+1)...(N)}) = \sum_{t}$ forward[N][t]

Initialization (last column):

backward[N][t] = 1

Recursion (any other column):

 $backward[i][t] = \sum_{t'} P(t'|t) \times P(w^{(i+1)}|t') \times backward[i+1][t']$

	•				. ' /		. JL
	$\mathbf{W}^{(1)}$	•••	W (i-1)	W (i)	W (i+1)	•••	W (N)
t_1							
•••					, r. r. r. r.		
t							
•••					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
t_{T}							

How do we compute $\langle C(t_i) | w_j \rangle$

	W (1)	•••	W (i-1)	W (i)	W (i+1)	•••	W (N)
t_1							
•••			***		 .		
					••		
				· S			
•••					••		
t_{T}					V		

$$\langle C(t, w^{(i)}) | w \rangle = P(t^{(i)} = t, w)/P(w)$$

with
 $P(t^{(i)} = t, w) = \text{forward}[i][t] \text{ backward}[i][t]$
 $P(w) = \sum_{t \text{ forward}[N][t]}$

How do we compute P(t' | t)?

How often do we expect tag t to transition to tag t? Summing over all sentences w, and all pairs of adjacent positions i, (i+1), compute how often we expect the tag bigram "t t" starting at position i:

Compute
$$\langle C(t^{(i)} = t, t^{(i+1)} = t') \mid w \rangle$$

This is the same as the (conditional) probability mass of all tag sequences for w that have t and t in the tth and t1)th position:

$$\langle C(t^{(i)} = t, t^{(i+1)} = t') | w \rangle = P(t^{(i)} = t, t^{(i+1)} = t' | w)$$

= $P(t_i = t, t_{i+1} = t', w) / P(w)$

Computing $P(t^{(i)} = t, t^{(i+1)} = t', w)$

The probability of all tag sequences for w that have t and t in the ith and (i+1)th position factors into

- the forward probability forward[i][t] (i.e. the probability of the prefix $w^{(1)...(i)}$ and all tag sequences $t^{(1)...(i)}$ that end in $t^{(i)} = t$)
- the transition probability $P(t \mid t')$
- the emission probability $P(|w^{(i+1)}||t')$
- the backward probability backward[i + 1][t']

(i.e. the probability of the suffix $w^{(i+1)...(N)}$ and all tag sequences $t^{(i+1)...(N)}$ given that $t^{(i)} = t$)

```
P(t^{(i)} = t, t^{(i+1)} = t', w)
= P(t^{(i)} = t, w^{(1)...(i)}) \times P(t' | t) \times P(w^{(i+1)} | t') \times P(w^{(i+2)...(N)} | t^{(i+1)} = t')
= forward[i][t] \times P(t' | t) \times P(w^{(i+1)} | t') \times backward[i+1][t']
```

Computing $\pi(t)$

We need to compute $\langle C(t^{(1)} = t) | w \rangle = P(t^{(1)} = t | w)$

Again, we get the conditional probability $P(... \mid w)$ by dividing the joint probability $P(t^{(1)} = t, w)$ by P(w): $P(t^{(1)} = t \mid w) = P(t^{(1)} = t, w)/P(w)$

Therefore, we only need to figure out how to compute the joint probability $P(t^{(1)} = t, w)$:

$$P(t^{(1)} = t, \mathbf{w}) = \pi(t) \times P(w^{(1)} | t) \times P(w^{(2)...(N)} | t^{(1)} = t)$$

= $\pi(t) \times P(w^{(1)} | t) \times \text{backward}[t][1]$

Numerical issues (EM and Viterbi)

Multiplying many small probabilities together leads to numerical problems, since the floating numbers are likely to underflow.

We therefore typically operate in log space: instead of multiplying probabilities p(...), sum the corresponding log probabilities log p(...)

We still have to compute log(X + Y) (see next slide)

Computing log(X+Y) from log(X),log(Y)

from https://facwiki.cs.byu.edu/nlp/index.php/Log Domain Computations

```
public static double logAdd(double logY, double logY) {
     // 1. make X the max
     if (logY > logX) {
         double temp = logX;
         logX = logY;
         logY = temp;
     // 2. now X is bigger
     if (logX == Double.NEGATIVE INFINITY) {
         return logX;
     // 3. how far "down" (think decibels) is logY from logX?
           if it's really small (20 orders of magnitude smaller), then ignore
     double negDiff = logY - logX;
     if (negDiff < -20) {
         return logX;
     // 4. otherwise use some nice algebra to stay in the log domain
           (except for negDiff)
     return logX + java.lang.Math.log(1.0 + java.lang.Math.exp(negDiff));
 }
```

Today's lecture

The Forward algorithm:

Computing P(w)

The Forward-Backward algorithm:

Learning HMMs from raw text
Uses the Forward algorithm and the Backward algorithm

Required reading: Ch. 6.1-5

Optional reading: Manning & Schütze, Chapter 9