A generalized autoregressive conditional heteroskedasticity (GARCH) model has $Y_n = \sigma_n Z_n$ where $Z_n \sim \text{i.i.d.} N(0,1)$ and $\sigma_n^2 = \alpha_0 + \sum_{i=1}^p \alpha_i Y_{n-i}^2 + \sum_{j=1}^q \beta_j \sigma_{n-j}^2$. There are many extensions to GARCH implemented by various R packages. When comparing models by likelihood or AIC, care is required since packages do not always use standard definitions. What is the most reasonable interpretation of this table?

```
for (j in 1:q) {
   fit_garch <- tseries::garch(log_returns, order = c(i, j))
   garch_table[i, j] <- tseries:::logLik.garch(fit_garch)
}
}</pre>
```

for (i in 1:p) {

	q1	q2	q3	q4
p1	2646.277	2642.919	2620.280	2616.151
p2	2644.417	2625.417	2622.460	2616.427
p3	2641.804	2637.538	2625.953	2625.740
p4	2639.728	2629.869	2629.969	2628.345

A. The positive values of the log-likelihood are implausible. Perhaps the software actually reports the negative log-likelihood since many optimizers are designed to minimize rather than maximize.

B. The models are nested and so a larger model should mathematically have a larger likelihood. In this table, the larger model usually has lower likelihood, so optimization is problematic.

C. This table would make more sense if logLik in fact returns an AIC value. The preferred model is (p,q) = (1,4).

D. The preferred model is (p,q) = (1,1) since it is both the simplest model and the one with the highest log-likelihood.

E. tseries::garch produces something that is not the likelihood of $y_{1:N}$ or the AIC, and so we cannot readily compare it between models.