

Aprendizaje de Máquina

ITAM

Menu

- En esta sesión vamos a ver como utilizar lo que sabemos hacer con el regresor lineal para hacer clasificación
 - El modelo que vamos a ver es el del perceptrón

Cómo convertir el regresor a un clasificador

 Supongamos que tenemos los siguientes datos

Cómo convertir el regresor a un clasificador

- No tiene mucho sentido permitir que nuestro modelo tome valores mayores a 1 y menores a -1 (no hay datos posibles con esos valores objetivo)
- Solución: Limitemos los valores a este rango mediante la inclusión de una función de transferencia: una función que toma el resultado del regresor y lo convierte en otra cosa

Modelo de Neurona: Perceptrón

- La función g que representa el nivel de activación del perceptrón es
 - $g(x_1,x_2,...,x_n) = \begin{cases} 1 \text{ si } w_o + \sum_{i=1,n} w_i x_i > 0 \\ -1 \text{ de otra forma} \end{cases}$
 - Existe una variable extra w_o que no depende de ninguna entrada. Podemos pensar en su función como la de crear un umbral para que exista una respuesta
 - Note que g será 1 sólo si la suma ponderada de las entradas es mayor a -w_o.
 - Para simplificar la notación, imaginamos que siempre existe una entrada x₀=1 que multiplica a w₀ y escribimos la sumatoria como ∑_{i=0,n}w_ix_i

Perceptrón Función de Transferencia:Fn Escalón

Poder de Representación Perceptrón

- Para ilustrar el poder de representación de este perceptrón graficamos la ecuación ∑_{i=0,n}w_ix_i = 0
- Ya que cuando ∑_{i=0,n}w_ix_i es mayor a cero el perceptrón clasifica el ejemplo como 1 y cuando es igual o menor a cero como -1
 - De esta manera $\sum_{i=0,n} W_i X_i = 0$ representa una barrera o línea de decisión

Del ejemplo anterior

Algoritmo de Aprendizaje Perceptrón

- Para cada ejemplo de entrenamiento (X,y)
 - Calcule g con las w's actuales
 - Para cada w_i ,
 - $W_i < ---W_i + \eta(y-g(X)) X_i$
- Donde η es una constante pequeña menor a 1
- La regla se aplica iterativamente un número fijo de veces ó hasta que se logran los errores deseados ó si no se detecta progreso
- Note que a diferencia con lo visto con el regresor lineal, aquí g es la función escalón

$$g(x_1,x_2,...,x_n) = \begin{cases} 1 \text{ si } \sum_{i=0,n} w_i x_i > 0 \\ -1 \text{ de otra forma} \end{cases}$$

Ejemplo

	X0	X1	X2	X3	X4	X5	X6
x's	1	1	1	0	2	0	1
w´s	-1	-0.5	1	0.5	0	1	1
X _i W _i	-1	-0.5	1	0	0	0	1

Antes sin g: y=-1, $V^{(X)}=0.5$, Error=-1-0.5=-1.5, $\eta = 0.1$

Ahora: y=-1, $V^{\Lambda}(X)=g(X)=1$, **Error=-1-1=-2.0**, η =0.1

$$w0 = -1 + 0.1(-2.0)1 = -1.2$$
 $w4 = 0 + 0.1(-2.0)2 = -0.4$ $w1 = -0.5 + 0.1(-2.0)1 = -0.7$ $w6 = 1 + 0.1(-2.0)1 = 0.8$

$$w2 = 1 + 0.1(-2.0)1 = 0.8$$

Ejercicio

- Modifique su algoritmo de regresión lineal iterativa cambiando la función de salida a la fn escalón
 - Generalice a que el vector X pueda tener más de un atributo
- Entrene un Perceptrón para modelar los datos de andSVM.csv como un problema de clasificación
 - Visualice los datos
 - Grafique la barrera de decisión
 - Calcule el error de clasificación

Poder de Representación Perceptrón

•Los círculos blancos y negros pertenecen a distintas categorías.