Homework 1 (due 10/16)

Consider a band-pass signal $m(t) = \sum_{n=0}^{3} a_n \cos(2\pi f_n t) - b_n \sin(2\pi f_n t)$ where

$$n = 0, f_0 = 16, a_0 = 1, b_0 = 1$$

$$n = 1, f_1 = 18, a_1 = -1, b_1 = 1$$

$$n = 2, f_2 = 22, a_2 = 1, b_2 = -1$$

$$n = 3$$
, $f_3 = 24$, $a_3 = -1$, $b_3 = 1$

- 1. Plot the band pass signal m(t) by using Matlab or any other software.
- 2. Is m(t) a periodic signal? If yes, find its period.
- 3. What is the minimum sampling rate for m(t)?
- 4. Plot the spectrum (in frequency domain) M'(f) of m'(t), where m'(t) is the baseband equivalent signal (complex envelope) of m(t). You can draw the spectrum by hand.
- 5. Derive the formula for the base-band equivalent signal m'(t).
- 6. Derive the formula for $m_I(t) = \text{Re}[m'(t)]$ and $m_Q(t) = \text{Im}[m'(t)]$. $m_I(t)$ and $m_Q(t)$ are in-phase component and quadrature component of m(t), respectively.
- 7. Plot $m_I(t)$, $m_Q(t)$, and envelope $r(t) = \sqrt{m_I(t)^2 + m_Q(t)^2} = |x(t)|$ in the same figure by using Matlab or any other software.
- 8. Plot the band-pass signal m(t) and envelope r(t) in the same figure by using Matlab or any other software. What is the relationship between the two signals?
- 9. Let $a(t) = m_I(t) \cdot cos(2\pi f_c t)$, $b(t) = m_Q(t) \cdot sin(2\pi f_c t)$, where f_c =20 Hz is the central frequency. Plot

$$c(t) = a(t) - b(t)$$

by using Matlab or any other software. Compare c(t) with m(t). What is your conclusion?

基本頻 f

→
$$T = \frac{1}{f} = \frac{1}{2} = 0.5$$

(對照 matlab 所畫 $Hm(t)$, 符合 $T = 0.5$)

3、根據Nyquist Sampling Theorem,取樣類率為最高頻的2倍

= fs = 1×24 = ff (sample/second)**

4、m(t) is complex envelope 基頻等效信號 $m(t) = \underset{n=0}{\overset{2}{\leq}} \chi_n(t)$ $\chi_n = I_n \cos(2\pi f_n t) - Q_n \sin(2\pi f_n t)$

n = 0, $f_0 = |b|$, $I_0 = |l|$, $Q_0 = |l|$ n = |l|, $f_1 = |8|$, $I_1 = -|l|$, $Q_1 = |l|$ h = 2, $f_2 = 22$, $I_2 = |l|$, $Q_2 = -|l|$ h = 3, $f_3 = 24$, $I_3 = -|l|$, $Q_3 = |l|$

M(f) (負頻省略不畫)

5、 m(t) 7s complex envelope 基頻等效值號

$$m'(t) = (1+j)e^{\int_{2}^{2}\lambda(-4)t} + (-1+j)e^{\int_{2}^{2}\lambda(-2)t} + (1-j)e^{\int_{2}^{2}\lambda(2)t} + (-1+j)e^{\int_{2}^{2}\lambda(4)t}$$

$$= \sum_{n=0}^{2} (a_{n}+jb_{n})e^{\int_{2}^{2}\lambda(n+j)t}$$

$$= \sum_{n=0}^{2} (a_{n}+jb_{n})e^{\int_{2}^{2}\lambda(n+j)t}$$

6.
$$m'(t) = m_{I}(t) + m_{Q}(t)$$

$$m'(t) = \sum_{n=0}^{3} (a_{n} + jb_{n}) e^{j2\pi f_{n}t}$$

$$m'(t) = \sum_{n=0}^{3} (a_{n} + jb_{n}) (\cos(2\pi f_{n}t) + j\sin(2\pi f_{n}t))$$

$$= \sum_{n=0}^{3} [a_{n} \cos(2\pi f_{n}t) - b_{n} \sin(2\pi f_{n}t)] + j[a_{n} \sin(2\pi f_{n}t) + b_{n} \cos(2\pi f_{n}t)]$$
#

$$m_{I}(t) = Re \left\{ m'(t) \right\} = \sum_{n=0}^{3} \alpha_{n} \cos(2\pi f_{n} t) - b_{n} \sin(2\pi f_{n} t)$$

$$m_{Q}(t) = Im \left\{ m'(t) \right\} = \sum_{n=0}^{3} \alpha_{n} \sin(2\pi f_{n} t) + b_{n} \cos(2\pi f_{n} t)$$

8 Bandpass signal and envelope 4 Amplitude -4 -6 ^{_}0

Time (s) $m(t) = \sum_{n=0}^{3} a_n \cos(2\pi f_n t) - b_n \sin(2\pi f_n t)$

0.4

0.6

0.8

$$\Gamma(t) = \sqrt{m_{\mathcal{I}}(t)^2 + m_{\mathcal{Q}}(t)^2} = |\chi(t)|$$

0.2

 $m(t) = Re \left\{ m'(t) e^{\int 2\pi f_n t} \right\} = \sum_{n=0}^{3} r(t) e^{\int 2\pi f_n t}$

m(t) 為實數信号虎,是信号虎原焰形狀

Y(t)是 m(t)的解時振幅,是m(t)的包絡線

C(t) 與 m(t) 都是由M2(t)、ma(t) 所組成的

$$m(t) = Re[m'(t)e^{\int 2\pi f_c t}] = m_1 \cos(2\pi f_c t) - m_Q \sin(2\pi f_c t)$$

$$C(t) = m_I(t) \cdot cos(2\pi fct) - m_R(t) \cdot sin(2\pi fct)$$
 $f_c = 20 Hz$