Technische Universität Berlin Fakultät II – Institut für Mathematik Bärwolff, Förster, Scherfner, Tröltzsch

SS 2003 13. Oktober 2003

Oktober – Klausur (Rechenteil) Analysis II für Ingenieure

Name:	Vorname: .						
MatrNr.:	Studiengan	g:					
Ich habe erfolgreich Hausaufgabenpunkte gebei TutorIn		SS /	WS				
Neben einem handbeschriebenen A4 Blatt n	nit Notizen si	nd k	eine Hi	lfsmitte	l zugela	assen.	
Die Lösungen sind in Reinschrift auf A4 Klausuren können nicht gewertet werden.	Blättern abz	ugeb	en. Mi	t Bleist	ift geso	chrieben	e
Dieser Teil der Klausur umfasst die Rechen Rechenweg an.	aufgaben. Ge	ben	Sie imn	ner den	vollst	ändige	n
Die Bearbeitungszeit beträgt eine Stunde.							
Die Gesamtklausur ist mit 32 von 80 Punkte Klausur mindestens 10 von 40 Punkten erre		weni	n in jed	em der	beiden	Teile de	r
Korrektur							
		1	2	3	4	Σ	

1. Aufgabe 10 Punkte

Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

ist auf ganz \mathbb{R}^2 stetig.

- a) Berechnen Sie die partiellen Ableitungen $f_x(x, y)$ und $f_y(x, y)$ an <u>allen</u> Punkten aus \mathbb{R}^2 (bei (0,0) nach der Definition, sonst mittels Ableitungsregeln).
- b) Berechnen Sie die gemischten zweiten partiellen Ableitungen $(f_x)_y(0,0)$ und $(f_y)_x(0,0)$ (nach der Definition).

2. Aufgabe 10 Punkte

Bestimmen Sie von der Funktion $f(x,y) = x^3 + 8y^3 - 6xy + 1$ alle lokalen Extremstellen und Sattelpunkte und charakterisieren Sie die Extremwerte.

3. Aufgabe 7 Punkte

Gegeben sei die Fläche $F=\left\{(x,y,z)\in\mathbbm{R}^3\;\middle|\;x^2+y^2=2z,z\leq 2\right\}$. Bestimmen Sie das Volumen V des innerhalb von F eingeschlossenen Körpers. Fertigen Sie eine Skizze von F an.

4. Aufgabe 13 Punkte

Die Funktion $z=1-y^2,\,y\in[0,1]$ rotiere um die z-Achse. Gegeben sei ferner das Vektorfeld $\vec{v}:\mathbb{R}^3\to\mathbb{R}^3$ mit

$$\vec{v}(x, y, z) = \begin{pmatrix} y \\ -x \\ x + y + z \end{pmatrix}.$$

- a) Berechnen Sie den Fluss von rot \vec{v} durch die Mantelfläche des entstandenen Rotationskörpers auf direktem Weg.
- b) Berechnen Sie den Fluss von rot \vec{v} durch die Mantelfläche wie bei a) noch einmal, indem Sie einen geeigneten Integralsatz anwenden. Geben Sie den Satz dazu an.

Beachten Sie <u>alle</u> Voraussetzungen des Satzes.