日本列島周辺域のプレート境界面モデル

東京大学地震研究所 岩﨑貴哉

iwasaki@eri.u-tokyo.ac.jp

A. サイト: http://evrrss.eri.u-tokyo.ac.jp/database/PLATEmodel

ここに、簡単な説明がある. データは、以下に格納されている.

http://evrrss.eri.u-tokyo.ac.jp/database/PLATEmodel/PLMDL 2016

このサイトは、下記の directory に分かれている.

/Trench

/PAC Plate

/Base model

xyz file (ascii)

grid file

/contour

contour line files (ascii)

/Regional model

xyz file (ascii)

grid file

/contour

contour line data (ascii)

/PHS Plate

/Base model

xyz file (ascii)

grid file

/contour

contour line data (ascii)

/Regional model

xyz file (ascii)

grid file

/contour

contour line data (ascii)

- B. モデル領域: 12°-54° N and 118°-164° E (Fig.1).
- C. 海溝軸データ:

説明

海溝軸の経度・緯度(単位は度)・水深(単位は m) 海溝軸の位置は、spline 補間して smoothing した (Fig.1).

Directory: /Trench

Files

japan_trench_pos: Kuril-Japan-Izu-Bonin-Mariana trench

nankai_trough_pos: Sagami-Suruga-Nankai trough-Ryukyu trench

manila: Manila trench

philippine: Philippine trench

ryukyu taiwan: 琉球海溝南端と台湾を結ぶ構造境界.

manila philippine: マニラ海溝南端とフィリピン海溝北端を結ぶ構造境界

D. プレート境界データ

説明

- (1)Pacific (PAC) plate と Philippine Sea (PHS) plate を対象 (Fig.2 及び 3).
- (2)広域モデル(Base model)

地震震源分布(Wadati-Benioff zones)から、プレート境界面を推定.

(3)日本列島域モデル(Regional model)

日本列島及び周辺域においては、制御震源探査、tomography、自然地震観測を用い、広域モデルを修正.

- (4)0.025 度間隔の grid データ. 経度・緯度 (単位は度)・境界面の深さ (海面下をマイナスと定義, 単には km)
- (5)深さの信頼性が乏しい部分の grid は削除 (例えば関東-中国地方域下の PHS plate の深い部分.
- (6)Ascii 形式書式付き format の grid data (拡張子 xyz)及び GMT によって作成した binary 形式 grid data(拡張子 grd)の両方を用意.
- (7)各モデルに対して. 等深度線の位置のデータを用意 (directory: contour). これと,

海溝軸データを合わせれば、各ユーザーは自分の手法で"沈み込み部分"の面構造を 定義できる.

```
Directory: /PAC_Plate (Pacific plate model)
```

Base model

directory /base_model

files

pac_2017_3a.xyz pac_2017_3a.grd

contour line data

directory /contour

files: pac1_cntr_10.bs ~ pac1_cntr_650.bs

Regional model

directory /regional_model

files

pac_2017_4a.xyz pac_2017_4a.grd

contour line data

directory /contour

files: $pac1_cntr_10.rg \sim pac1_cntr_650.rg$

Directory: /PHS_Plate (Philippine Sea plate model)

Base model

directory /base_model

files

phs_2015_4a_r_2017xyz phs_2015_4a_r_2017.grd

contour line data

directory /contour

files: phs1_cntt_10.bs ~ phs1_cntt_300.bs

Regional model

directory /regional_model

files

phs_2015_5a_r_2017.xyz phs_2015_5a_r_2017.grd

contour line data

directory /contour

files: phs1_cntt_10.rg ~ phs1_cntt_300.rg

E. 本モデル作成に使用したデータ

本モデルの作成には、以下の機関から公開されているデータを使用している.

- (1) 国土地理院発行 数値地図 250 メッシュ(標高) (承認番号 平 29 情使, 第 17 号).
- (2) 日本海洋データセンター 500m メッシュ海底地形データ (J-EGG500, http://www.jodc.go.jp/data_set/jodc/jegg_intro_j.html)
- (3) Geographic Information Network of Alaska, University of Alaska Global Topo/Bathymetry Grid (Lindquist et al., 2004, "F"を参照).

F データを使用した場合の引用について

(1)本データを使用した場合、その成果物には必ず下記を引用して下さい.

Iwasaki, T., Sato, H., Shinohara, M., Ishiyama, T. & Hashima, A., 2015. Fundamental structure model of island arcs and subducted plates in and around Japan, 2015 Fall Meeting, American Geophysical Union, San Francisco, Dec. 14-18, T31B-2878.

Lindquist, K. G., K. Engle, D. Stahlke, and E. Price (2004), Global Topography and Bathymetry Grid Improves Research Efforts, Eos Trans. AGU, 85(19), 186. http://onlinelibrary.wiley.com/doi/10.1029/2004EO190003/abstract

(2)更に、Acknowledgement に、以下を記述して、データの出処を明示して下さい.

本研究で用いたプレート境界モデル(Iwasaki et al., 2015)は、国土地理院の"数値地図 250m メッシュ(標高)",日本海洋データセンターによる 500m メッシュ海底地形データ(J-EGG500, http://www.jodc.go.jp/data_set/jodc/jegg_intro_j.html)及び Geographic Information Network of Alaska (アラスカ大学) の地形・水深データ((Lindquist et al., 2004)から作成したものである.

英文の場合

The plate models by Iwasaki et al. (2015) were constructed from topography and bathymetry data by Geospatial Information Authority of Japan (250-m digital map), Japan Oceanographic Data Center (500m mesh bathemetry data, J-EGG500,

http://www.jodc.go.jp/jodcweb/JDOSS/infoJEGG_j.html) and Geographic Information Network of Alaska, University of Alaska (Lindquist et al., 2004).

Fig.1. Topography and trench-axis models.

Fig.2 Base model and regional model for the PAC plate.

Fig.3 Base model and regional model for the PHS plate.