

MATHEMATICAL REASONING

Chapter 19

2nd

SECONDARY

SERIES II

HELICO | MOTIVATION

PRINCIPALES SERIES NOTABLES

☐ SERIEDELOS PRIMEROS NÚMEROS NATURALES

$$S = 1 + 2 + 3 + \dots + (n - 1) + n$$
 \longrightarrow $S = \frac{n(n+1)}{2}$

☐ SERIE DE LOS PRIMEROS NÚMEROS PARES

$$S = 2 + 4 + 6 + 8 + \dots + 2n$$
 \longrightarrow $S = n(n+1)$

☐ SERIE DE LOS PRIMEROS NÚMEROS IMPARES

$$S = 1 + 3 + 5 + 7 + \dots + (2n - 1)$$

$$S = n^2$$

PRINCIPALES SERIES NOTABLES

SERIEDELOS PRIMEROS NÚMEROS CUADRADOS

$$S = 1^2 + 2^2 + 3^2 + 4^2 + \dots + n^2$$
 \longrightarrow $S = \frac{n(n+1)(2n+1)}{6}$

$$S = \frac{n(n+1)(2n+1)}{6}$$

☐ SERIEDELOS PRIMEROS NÚMEROS CÚBICOS

$$S = 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3$$
 \longrightarrow $S = \left(\frac{n(n+1)}{2}\right)^2$

$$S = \left(\frac{n(n+1)}{2}\right)^2$$

SERIE GEOMÉTRICA

Es la adición de los términos de una sucesión geométrica. Ahora, la serie geométrica puede ser finita o infinita según sea la naturaleza de la sucesión asociada a ella.

$$S_n = a_1 \left[\frac{q^n - 1}{q - 1} \right]$$

Donde:

 a_1 : primer término

n: número de términos

q: razón

HELICO | THEORY

Serie geométrica infinita

$$S_{\mathbf{L}} = \frac{a_1}{1 - q}$$

Donde:

 a_1 : primer término

q: razón

Ejemplo:

$$S = 81 + 27 + 9 + 3 + \dots \infty$$

$$x \frac{1}{3} \quad x \frac{1}{3} \quad x \frac{1}{3}$$

$$S = \frac{81}{\frac{2}{3}}$$

$$S = \frac{243}{2}$$

HELICO | THEORY

OTRAS SERIES

DELOS PRIMEROS PRODUCTOS CONSECUTIVOS TOMADOS DE 2 EN 2

$$S_n = 1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + n \times (n+1) \longrightarrow$$

$$S_n = \frac{n(n+1)(n+2)}{3}$$

DELOS PRIMEROS PRODUCTOS CONSECUTIVOS TOMADOS DE 3 EN 3

$$S_n = 1 \times 2 \times 3 + 2 \times 3 \times 4 + \dots + n \times (n+1) \times (n+2)$$

$$S_n = \frac{n(n+1)(n+2)(n+3)}{4}$$

☐ SUMA DE LAS INVERSAS DE LOS PRODUCTOS CONSECUTIVOS TOMADOS DE 2 EN 2

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n \times (n+1)}$$

$$S_n = \frac{n}{n+1}$$

Halle el valor de la serie:

$$S = 2 + 4 + 6 + 8 + ... + 80$$

Resolución:

RECORDEMOS:

De los primeros números pares

$$S = 2 + 4 + 6 + 8 + \dots + 2n$$
 $S = n(n + 1)$

$$S = n(n+1)$$

$$S = n(n+1)$$

$$S = 40(40+1)$$

$$S = 1640$$

El alumno Ricardito decide ahorrar todas sus propinas empezando así con S/8 la primera semana, a partir de la siguiente semana él depositará la misma cantidad que depositó la semana anterior. Como se observa en el siguiente cuadro:

Semana de ahorro	1	2	3	4	
Dinero ahorrado (en soles)	8	16	32	64	

¿Cuánto dinero ahorró Ricardito en 20 semanas?

Resolución:

RECORDEMOS:

$$S = \frac{a_1(q^n - 1)}{q - 1}$$

20 términos

$$8 + 16 + 32 + 64 + \cdots$$
 $x^2 \quad x^2 \quad x^2$

$$\frac{8(2^{20}-1)}{2-1}$$

Halle el valor de la serie:

$$S = 1 + 3 + 5 + 7 + 9 + ... + 81$$

Resolución:

RECORDEMOS:

De los primeros números impares

$$S = 1 + 3 + 5 + 7 + \dots + (2n - 1)$$
 $S = n^2$

$$S = n^2$$

$$S = (41)^2$$

$$S = 1681$$

Calcule el valor de la serie

$$A = 3 + 9 + 27 + 81 + \dots$$
20 términos

Resolución:

RECORDEMOS

$$S = \frac{a_1(q^n - 1)}{q - 1}$$

20 términos

$$3+9+27+81+\cdots$$
 $x3 \ x3 \ x3$

$$\frac{3(3^{20}-1)}{3-1} = \frac{3(3^{20}-1)}{2}$$

$$\frac{3(3^{20}-1)}{2}$$

Halle el valor de E.

$$E = 1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots \infty =$$

Resolución:

RECORDEMOS

$$S_L = \frac{a_1}{1 - q}$$

$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots \infty$$

$$S = \frac{1}{1 - \frac{1}{3}} = \frac{1}{\frac{2}{3}} = \frac{3}{2}$$

Calcule la suma de los elementos de F₂₀

RECORDEMOS:

De los primeros números naturales

$$S = 1 + 2 + 3 + \dots + (n-1) + n$$
 $S = \frac{n(n+1)}{n}$

$$S = \frac{n(n+1)}{2}$$

Resolución:

Un instructor del ejercito formó a su batallón de la siguiente manera: el sargento al frente; atrás un cuadrado de 2 filas por 2 columnas; más atrás otro cuadrado de 3 filas por 3 columnas, y así sucesivamente continúo formando cuadrados hasta completar 20 grupos, incluyendo al sargento. ¿ Cuántos soldados conformaban el batallón?

RECORDEMOS:

$$S = \frac{n(n+1)(2n+1)}{6}$$

Resolución:

$$1^2 + 2^2 + 3^2 + 4^2 + \dots + 20^2$$

$$S = \frac{{20(21)(41)}}{{20(21)(41)}} = 70(41) = 2870$$

