University of Toronto Scarborough Department of Computer & Mathematical Sciences

Midterm Test

MATB41H - Techniques of the Calculus of Several Variables I

Examiner: E. Moore

Date: October 31, 2014

Duration: 110 minutes

1. [8 points]

- (a) Given $f: U \subset \mathbb{R}^n \to \mathbb{R}$, define the following terms
 - i. local minimum
 - ii. critical points
- (b) Carefully state the **Extreme Value** (Min-Max) Theorem for real-valued functions of several variables.

2. **[15 points]**

(a) Calculate the following limits, showing all your steps, or show that the limit does not exist.

i.
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - 5xy + y^2}{x^2 + y^2}.$$

ii.
$$\lim_{(x,y)\to(0,0)} \frac{\cos(xy) - 1}{x^2 y^2}.$$

(b) Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{y^4 + 2y^2 + 2x^2 - x^4}{x^2 + y^2} & , \text{ if } (x,y) \neq (0,0) \\ 2 & , \text{ if } (x,y) = (0,0) \end{cases}.$$

Is f continuous at (0,0)? (Explain your answer.)

3. [12 points] Characterize and sketch several level curves of the function

$$f(x,y) = \frac{y}{x^2 + y^2} \ .$$

Carefully indicate where f is zero, positive, negative and not defined.

MATB41H page 2

4. [10 points] Let $f(x,y) = e^{x \sin y}$ and $g(x,y) = 2x^2 + bxy + \frac{3}{2}y^2$. Let π_1 be the plane tangent to the graph of f at (1,0,1) and let π_2 be the plane tangent to the graph of g at $\left(1,-1,-b+\frac{7}{2}\right)$. Find all values of b such that

- (a) π_1 and π_2 are parallel
- (b) π_1 and π_2 intersect in a line parallel to the vector (1,1,1).

5. [11 points]

- (a) Give the equation of the tangent plane to the surface $x^2z^3 + y^2x^3 + z^2y^3 = 1$ at the point $\mathbf{p} = (1, -1, 1)$.
- (b) Let ℓ be the line through (1,2,0) and (0,1,2). Give a parametric description of ℓ and determine where ℓ meets the tangent plane from part (a), or show that ℓ does not intersect the tangent plane.
- 6. [6 points] Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable at \boldsymbol{a} and assume that $\nabla f(\boldsymbol{a})$ is nonzero. Find the unit vector $\boldsymbol{v} \in \mathbb{R}^2$ such that $D_{\boldsymbol{v}} f(\boldsymbol{a})$ is maximized. (Justify your answer).
- 7. [15 points] Let $f(x, y, z) = x^3 + y^2 z^2 6xy + 6x + 3y + 1$.
 - (a) Find the critical points of f.
 - (b) What is the rate of change in f as you move from (1, 2, 0) towards (3, 0, 1).
 - (c) In what direction from (2,1,0) must you go for the most rapid increase in f? What is the rate of this increase.

8. [16 points]

- (a) Carefully state the Chain Rule for functions of more than one variable.
- (b) Let $f: \mathbb{R}^4 \to \mathbb{R}^3$ be given by $f(x,y,z,w) = (yzw,x^2y,xz)$ and let $g: \mathbb{R}^3 \to \mathbb{R}^2$ be given by g(x,y,z) = (xy,yz).

 USE THE CHAIN RULE to compute $D(g\circ f)(x,y,z,w)$.

 (NOTE: You must use the Chain Rule and show all your steps.)
- 9. **[6 points]** Let f(x,y) be of class C^2 . Putting x = uv and y = 2u 3v makes f into a function of u and v. Compute a formula for $\frac{\partial^2 f}{\partial u \partial v}$ in terms of the partial derivatives of f with respect to x and y.
- 10. **[6 points]** Give the 4th degree Taylor polynomial about the origin of $f(x,y) = e^{x^2} \cos(xy)$.