Rachunek prawdopodobieństwa 2R 2023 lista 2: Własności wwo

1. Niech $\mathcal{G} \subseteq \mathcal{F}$ będzie σ -ciałem. Rozważmy \mathcal{G} -mierzalną zmienną losową X oraz niezależną od \mathcal{G} zmienną losową Y. Załóżmy, że $\psi \colon \mathbb{R}^2 \to \mathbb{R}$ jest taką funkcją mierzalną, że $\mathbb{E}[|\psi(X,Y)|] < \infty$. Pokaż, że

$$\mathbb{E}[\psi(X,Y)|\mathcal{G}] = \Psi(X), \quad \text{gdzie} \quad \Psi(X) = \mathbb{E}[\psi(X,Y)].$$

- 2. Niech (X,Y) będzie dwuwymiarowym wektorem losowym o rozkładzie jednostajnym na kwadracie o wierzchołkach (-1,0), (0,-1), (1,0), (0,1). Oblicz $\mathbb{P}[X>1/2|Y]$.
- 3. Niech $\{X_n\}_{n\geq 1}$ będzie ciągiem niezależnych zmiennych losowych o takim samym rozkładzie z wartością oczekiwaną m. Niech N będzie dyskretną zmienną losową o wartościach w $\mathbb N$ niezależną od ciągu $\{X_n\}$ z wartością oczekiwaną M. Zdefiniujmy $S_n = \sum_{k=1}^n X_k$. Znajdź

$$\mathbb{E}[S_N|N]$$
 oraz $\mathbb{E}[S_N]$.

- 4. Zmienne losowe X i Y są niezależne i mają rozkład Exp(1).
 - (a) Oblicz $\mathbb{E}[X + Y|X]$
 - (b) Oblicz $\mathbb{E}[X|X+Y]$
- 5. Pokaż, że jeżeli X i Y są zmiennymi losowymi takimi, że X oraz XY są całkowalne oraz Y jest zmienną losową mierzalną względem \mathcal{G} , to

$$\mathbb{E}[XY|\mathcal{G}] = Y\mathbb{E}[X|\mathcal{G}].$$

6. Niech X będzie całkowalną zmienną losową. Niech $\mathcal{C}\subseteq\mathcal{G}$ będzie π -układem generującym σ -ciało $\sigma(\mathcal{C})=\mathcal{G}\subseteq\mathcal{F}$. Załóżmy, że pewna \mathcal{G} mierzalna zmienna losowa spełnia

$$\mathbb{E}[X\mathbb{1}_C] = \mathbb{E}[Z\mathbb{1}_C]$$

dla dowolnego $C \in \mathcal{C}$. Pokaż, że $Z = \mathbb{E}[X|\mathcal{G}]$.

- 7. Niech \mathcal{G} , $\mathcal{D}\subseteq\mathcal{F}$ będą niezależnymi σ -ciałami. Niech X będzie całkowalną zmienną losową.
 - (a) Załóżmy, że X jest niezależna od σ -ciała \mathcal{D} . Czy prawdą jest, że

$$\mathbb{E}[X|\sigma(\mathcal{G}\cup\mathcal{D})] = \mathbb{E}[X|\mathcal{G}]? \tag{*}$$

(b) Pokaż, że jeżeli \mathcal{D} jest niezależne od $\sigma(\sigma(X) \cup \mathcal{G})$, to (*) zachodzi.