Announcement

- Please submit TA FCQ: open 2/10-2/19
- Quiz 2 closes today 11:59pm
- Kaggle submission by Wed 11:59 pm
- Kaggle report due Thursday 11:59 pm

Support Vector Machine

Geena Kim

Review: Types of machine learning problems

Review: Types of machine learning problems

Models Hyperparameters Parameters Loss or Criteria

Linear Regression

Logistic Regression

kNN

Decision Trees

SVM

Neural Networks

Review: Binary Classification

Yes or No problem

- Creditcard Default
- Fradulant Insurance Claim
- Spam Filtering
- Medical Diagnosis
- Survival Prediction
- Customer Retention
- Image Recognition

Review: Logistic Function

$$P^{(i)} = \sigma(z^{(i)})$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

$$z^{(i)} = \boldsymbol{W} \cdot \boldsymbol{X} + b$$

Called "logit" and is related to the decision boundary

Review: Logistic Regression Decision Boundary

Hyperplane as a Decision Boundary

We can separate the two classes using a hyper plane!

This hyperplane is called "separating hyperplane"

Hyperplane as a Decision Boundary

But which hyperplane should we choose?

Maximum margin classifier

Which hyperplane should we choose?

The one with the least likely to misclassify the test data

= The one with the biggest margin

Maximum margin classifier

Support

Margin

Quiz

What happens to the separating hyperplane when adding new train data points?

How to find the maximal margin hyperplane?

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} > 0 \text{ if } y_i = 1$$

$$\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} < 0 \text{ if } y_i = -1$$

$$y_i (\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) > 0$$
for all $i = 1, \dots, n$

How to find the maximal margin hyperplane?

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) > 0$$

for all $i = 1, \dots, n$
 $y_1, \dots, y_n \in \{-1, 1\}$

maximize
$$M$$
subject to $\sum_{j=1}^{p} \beta_j^2 = 1$,
$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) \ge M \quad \forall i = 1, \ldots, n$$

Drawback of the hard margin

What happens to the separating hyperplane?

The impossible case...

Can you separate this with a hyperplane?

How to deal with an inseparable case

We'll have to accept some errors by softening the margin

"soft margin classifier"

or called "support vector classifier"

Formulating support vector classifier

$$\max_{\beta_0,\beta_1,\dots,\beta_p,\epsilon_1,\dots,\epsilon_n,M} M$$
subject to
$$\sum_{j=1}^p \beta_j^2 = 1$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i)$$

$$\epsilon_i \ge 0$$

$$\sum_{i=1}^n \epsilon_i \le C$$

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) \ge M(1 - \epsilon_i) \qquad \epsilon_i \ge 0$$

Q. What should we minimize?

- (a) Number of support vectors
- (b) Number of supports on the wrong side of the hyperplane
- (c) The sum of distance of support vectors to the hyperplane
- (d) The sum of distance of the support vectors to the correct-side margin M
- (e) The sum of distance of the support vectors to the wrong-side margin –M

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i)$$

$$\epsilon_i \ge 0$$

$$\sum_{i=1}^{n} \epsilon_i \le C$$

C bounds both number and severity of violations

C is an error budget

C is a hyperparameter

Q1. What's the maximum number of supports on the wrong side the hyperplane given C?

Q2. What happens to the margin M when C decreases?

Q3. What happens to the bias and variance when C is small?

Q1. What's the maximum number of supports on the wrong side the hyperplane given C?

ANS: C

$$y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}) \ge M(1 - \epsilon_i)$$

$$\epsilon_i > 0$$

$$\sum_{i=1}^{n} \epsilon_i \le C$$

Q2. What happens to the margin when C decreases?

$$\sum_{i=1}^{n} \epsilon_i \le C$$

ANS: the magin becomes narrower

Q3. What happens to the bias and variance when C is small?

ANS: small C gives lower bias and higher variance

Recap

Support

Margin

$$\underset{\beta_0,\beta_1,\ldots,\beta_p,M}{\operatorname{maximize}} M \\
\text{subject to } \sum_{j=1}^{p} \beta_j^2 = 1, \\
y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) \ge M \quad \forall i = 1,\ldots, n \\
y_i(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip}) \ge M(1 - \epsilon_i) \\
\epsilon_i \ge 0$$

$$\sum_{j=1}^{n} \epsilon_i \le C$$

Next time: Beyond linearly separable data

How can we separate this kind of data with SVC?

