Started on	Sunday, 26 November 2023, 1:15 PM
	Finished
	Sunday, 26 November 2023, 1:56 PM
	41 mins 43 secs
Grade	8.00 out of 10.00 (80 %)
Question 1	
Correct	
Mark 1.00 out of 1.00	
The expression for t	the MMSE estimate h is
Select one:	
$E\{\bar{\mathbf{h}}\}$	
_ ()	
- (13)	
$\bigcirc E\{\bar{\mathbf{y}} \bar{\mathbf{h}}\}$	
$\bigcirc E\{\bar{\mathbf{h}} \bar{\mathbf{x}}\}$	
V	
Your answer is corre	
The correct answer	IS: $E\{\mathbf{h} ar{\mathbf{y}}\}$
Question 2	
Correct	
Mark 1.00 out of 1.00	
▼ Flag question	
For $\bar{\mathbf{h}}, \bar{\mathbf{v}}$, jointly G	aussian, zero-mean, MMSE estimate can be simplified as
Select one:	
$\mathbf{R}_{yy}^{-1}\mathbf{R}_{hy}\mathbf{\bar{y}}$	
$\mathbf{R}_{hy}\mathbf{R}_{yy}ar{\mathbf{y}}$	
○ R ⁻¹ R v	
$ \begin{array}{ccc} & \mathbf{R}_{hy}^{-1}\mathbf{R}_{yy}\bar{\mathbf{y}} \\ & \mathbf{R}_{hy}\mathbf{R}_{yy}^{-1}\bar{\mathbf{y}} & \checkmark \end{array} $	
$\mathbf{R}_{hy}\mathbf{R}_{yy}^{-1}\bar{\mathbf{y}}$	
Your answer is corre	ect.
The correct answer	
The correct answer	13. Ithy Tyyy
Question 3	
Incorrect	
Mark 0.00 out of 1.00	
The matrix \mathbf{R}_{hy} is	
Callant	
Select one:	
covariance matr	ix 🗙
covariance mati	

variance

standard deviation

cross-covariance matrix

Your answer is incorrect.

The correct answer is: cross-covariance matrix

Question 4

Correct

Mark 1.00 out of 1.00

Remove flag

Consider a multi-antenna channel estimation scenario with N = 4 pilot vectors, with the pilot matrix \mathbf{X} and receive vector $\mathbf{\bar{y}}$ given below

$$\mathbf{X} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \\ 1 & 1 \\ -1 & -1 \end{bmatrix}, \bar{\mathbf{y}} = \begin{bmatrix} 2 & 1 \\ 1 \\ -3 \\ -2 \end{bmatrix}$$

 $\mathbf{X} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \\ 1 & 1 \\ -1 & -1 \end{bmatrix}, \mathbf{\bar{y}} = \begin{bmatrix} 2 \\ 1 \\ -3 \\ -2 \end{bmatrix}$ Let the channel coefficients be i.i.d. Gaussian with variance $\sigma_h^2 = 1$ and noise variance $\sigma^2 = 4$. The MMSE estimate of the channel vector $\bar{\mathbf{h}}$ is

Select one:

Your answer is correct.

The correct answer is: $\frac{1}{4}\begin{bmatrix} -1\\ 0 \end{bmatrix}$

Question **5**

Correct

Mark 1.00 out of 1.00

Remove flag

Consider a multi-antenna channel estimation scenario with N=4 pilot vectors, with the pilot matrix X given below

$$\mathbf{X} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \\ 1 & 1 \\ -1 & -1 \end{bmatrix}$$

Let the channel coefficients be i.i.d. Gaussian with variance $\sigma_h^2=1$ and noise variance $\sigma^2=4$. The error covariance of the LMMSE estimate of $ar{\mathbf{h}}$ is,

Select one:

$$\begin{bmatrix}
\frac{1}{3} & 0 \\
0 & \frac{1}{3}
\end{bmatrix}$$

Your answer is correct.

The correct answer is: $\begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix}$

Question **6**

Correct

Mark 1.00 out of 1.00

Remove flag

Consider the fading channel estimation problem where the output symbol y(k) is y(k) = hx(k) + v(k), with h, x(k), v(k) denoting the *real* channel coefficient, pilot symbol and noise sample respectively. Let $\bar{\mathbf{x}} = [-1 \quad 1 \quad -1]^T$ denote the vector of transmitted pilot symbols by time instant N = 3 and $\bar{\mathbf{y}} = [-3 \quad -2 \quad 1]^T$ denote the corresponding received symbol vector. Let the transmitted and received symbols respectively at time N + 1 = 4 be x(4) = 1, y(4) = -2 respectively. What is the prediction error e(4)?

Select one:

- _ -4
- -2

 ✓
- 0
- 0 2

Your answer is correct.

The correct answer is: -2

Question ${\bf 7}$

Correct

Mark 1.00 out of 1.00

ℙ Flag question

Consider the multi-antenna channel estimation problem. The expression for the gain $\bar{\mathbf{k}}(N+1)$ at time N+1 is

Select one:

$$\bigcirc \quad \frac{\frac{1}{\sigma^2} \mathbf{P}(N) \overline{\mathbf{x}}(N+1)}{1+\overline{\mathbf{x}}^T (N+1) \frac{1}{\sigma^2} \mathbf{P}(N) \overline{\mathbf{x}}(N+1)} \quad \checkmark$$

$$\frac{\sigma^2 \mathbf{P}(N) \overline{\mathbf{x}}(N+1)}{1+\overline{\mathbf{x}}^T (N+1) \sigma^2 \mathbf{P}(N) \overline{\mathbf{x}}(N+1)}$$

$$\bigcirc \quad \frac{\frac{1}{\sigma^2}\mathbf{P}(N)\bar{\mathbf{x}}(N+1)}{1\!+\!\mathbf{x}(N\!+\!1)\frac{1}{\sigma^2}\,\mathbf{P}(N)\bar{\mathbf{x}}^T(N\!+\!1)}$$

Your answer is correct.

The correct answer is:
$$\frac{\frac{1}{\sigma^2}P(N)\bar{x}(N+1)}{1+\bar{x}^T(N+1)\frac{1}{\sigma^2}P(N)\bar{x}(N+1)}$$

Question ${\bf 8}$

Correct

Mark 1.00 out of 1.00

Consider the multi-antenna channel estimation problem. The expression for the error covariance P(N+1) at time N+1 is

Select one:

$$\bigcirc \quad \left(\mathbf{I} - \bar{\mathbf{x}}^T (N+1) \mathbf{P}(N) \bar{\mathbf{k}} (N+1)\right)$$

$$\bigcirc \quad \left(\mathbf{I} - \bar{\mathbf{x}}^T(N+1)\bar{\mathbf{k}}(N+1)\right)\mathbf{P}(N)$$

Your answer is correct.

The correct answer is: $\left(\mathbf{I} - \mathbf{\bar{k}}(N+1)\mathbf{\bar{x}}^T(N+1)\right)\mathbf{P}(N)$

Question **9**

Correct

Mark 1.00 out of 1.00

Remove flag

Consider the observation model $\bar{\mathbf{y}} = \mathbf{X}\bar{\mathbf{h}} + \bar{\mathbf{v}}$, with $\bar{\mathbf{v}}$ comprising of i.i.d. Gaussian noise samples of variance $\sigma^2 = -3$ dB and \mathbf{X} , $\bar{\mathbf{y}}$ given as below

$$\mathbf{X} = \begin{bmatrix} -1 & 1 \\ 1 & -1 \\ 1 & 1 \\ -1 & -1 \end{bmatrix}, \bar{\mathbf{y}} = \begin{bmatrix} 2 \\ 1 \\ -3 \\ -2 \end{bmatrix}$$

The observation at time N = 5 is given as y(5) = -1, corresponding to the pilot vector $\bar{\mathbf{x}}(5) = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$. Determine the Gain at time N + 1 = 5

Select one:

Your answer is correct.

The correct answer is: $\frac{1}{6}\begin{bmatrix} 1\\-1 \end{bmatrix}$

Consider the general estimation problem of a zero-mean parameter vector $\bar{\mathbf{h}}$ given a zero mean observation vector $\bar{\mathbf{y}}$, and the two properties P1, P2 below

P1: $\bar{\mathbf{h}}$, $\bar{\mathbf{y}}$ are jointly Gaussian

P2: The input-output model for $\bar{\mathbf{h}}$, $\bar{\mathbf{y}}$ is linear

The LMMSE estimate equals $\mathbf{R}_{hy}\mathbf{R}_{yy}^{-1}\bar{\mathbf{y}}$

Select one:

Only when P1 and P2 are both true

when P1 is true but P2 is not necessarily true

when P2 is true but P1 is not necessarily true 🗶

when neither P1 nor P2 are necessarily true

Your answer is incorrect.

The correct answer is:

when neither P1 nor P2 are necessarily true

Finish review