ECE 102 Homework 2

Lawrence Liu

January 26, 2022

Problem 1

(a)

$$h(t) = \int_{-\infty}^{t-1} e^t \cos(2\tau + 2 - 2t) \delta(\tau) e^{2-\tau} d\tau$$
$$= \int_{-\infty}^{t-1} e^t \cos(2 - 2t) \delta(\tau) e^2 d\tau$$
$$= e^{t+2} \cos(2 - 2t) u(t - 1)$$

Since $h(t,\tau)=h(t-\tau)=0$ for $t<\tau$, this system is causal. Furthermore, since e^t is not bounded (it goes to ∞ as $t\to\infty$), this system is not BIBO.

(b)

$$h(t) = e^{-t} \int_{-\infty}^{t} e^{\tau} [\cos(t) \cos(\tau) - \sin(t) \sin(\tau)] \delta(\tau) d\tau$$
$$= e^{-t} \int_{-\infty}^{t} e^{\tau} \cos(t + \tau) \delta(\tau) d\tau$$
$$= e^{-t} \int_{-\infty}^{t} \cos(t) \delta(\tau) d\tau$$
$$= e^{-t} \cos(t) u(t)$$

Since $h(t,\tau)=h(t-\tau)=0$ for $t<\tau$, this system is causal. To find if the system is BIBO, let us input a bounded signal $|x(t)|< M<+\infty$ and determine if the output is bounded as well

$$|y(t)| = \left| e^{-t} \int_{-\infty}^{t} e^{\tau} [\cos(t)\cos(\tau) - \sin(t)\sin(\tau)] x(\tau) d\tau \right|$$

Since e^t and e^-t are positive for any t we get

$$|y(t)| = e^{-t} \int_{-\infty}^{t} e^{\tau} |\cos(t+\tau)x(\tau)| d\tau$$

$$= e^{-t} \int_{-\infty}^{t} e^{\tau} |\cos(t+\tau)| |x(\tau)| d\tau$$

$$\leq e^{-t} \int_{-\infty}^{t} e^{\tau} |\cos(t+\tau)| M d\tau$$

$$\leq M e^{-t} \int_{-\infty}^{t} e^{\tau} d\tau$$

$$= M e^{-t} e^{t}$$

$$= M < +\infty$$

Thus this system is BIBO.

(c)

$$h(t) = \int_{-\infty}^{t-1} e^{-(t-\tau)} \delta(\tau - 2) d\tau$$
$$= \int_{-\infty}^{t-1} e^{-(t-2)} \delta(\tau - 2) d\tau$$
$$= e^{2-t} u(t-3)$$

Since $h(t,\tau) = h(t-\tau) = 0$ for $t < \tau$, this system is causal.