◇ 上下文无关文法 ⇔ 下推自动机

上下文无关文法⇔下推自动机

- ♦ 从上下文无关文法构造等价的下推自动机
- ♦ 从下推自动机构造等价的上下文无关文法

从上下文无关文法构造等价的下推自动机

- ◆ 例: 利用下推栈实现自上而下语法分析的过程
 - 语法分析基本问题:

对任意上下文无关文法 G = (V, T, P, S) 和任意 $W \in T^*$,是否有 $W \in L(G)$? 若成立,则给出分析树; 否则,进行报错处理。

从上下文无关文法构造等价的下推自动机

◆ 利用下推栈进行自顶向下的分析过程举例

$$E \rightarrow EOE \mid (E) \mid v \mid d$$

$$O \rightarrow + \mid *$$

$$V * (v + d)$$

$$E \rightarrow O \rightarrow O \rightarrow V \rightarrow O \rightarrow E$$

$$E \rightarrow O \rightarrow E \rightarrow E$$

$$E \rightarrow E \rightarrow O \rightarrow E \rightarrow E$$

$$E \rightarrow E \rightarrow E \rightarrow E \rightarrow E$$

$$E \rightarrow E \rightarrow E \rightarrow E \rightarrow E \rightarrow E$$

从上下文无关文法构造等价的下推自动机

◇一种构造方法

设 CFG G = (V, T, P, S),构造一个空栈接受方式的 $PDA E = (\{q\}, T, V \cup T, \delta, q, S)$,

转移函数 δ 定义如下:

- (1) 对每一 $A \in V$, $\delta(q, \varepsilon, A) = \{(q,\beta) \mid "A \rightarrow \beta" \in P\}$;
- (2) 对每一 $a \in T$, $\delta(q, a, a) = \{ (q, \varepsilon) \}$.

从上下文无关文法构造等价的下推自动机

◆ 举例 对右边产生式所代表 的 $E \to EOE|(E)|v|d$ CFG,依上述方法构造 PDA 为 $(\{q\}, \{v,d,+,*\}, \{E,O,v,d,+,*\}, \delta, q, E)$, 其中 δ 定义为

$$\delta(q, \varepsilon, E) = \{(q, EOE), (q, (E)), (q, v), (q, d)\},\$$
 $\delta(q, \varepsilon, O) = \{(q, +), (q, *)\},\$
 $\delta(q, v, v) = \{(q, \varepsilon)\},\$
 $\delta(q, d, d) = \delta(q, +, +) = \delta(q, *, *) = \{(q, \varepsilon)\}$

从上下文无关文法构造等价的下推自动机

- ◆ 结论 依上述构造方法,从 CFG G = (V, T, P, S) 构造 一个空栈接受方式的 PDA $E = (\{q\}, T, V \cup T, \delta, q, S)$, 则有 N(E) = L(G).
- - ⇒先证明如下结论, if $A \stackrel{*}{\Longrightarrow} W$, then $(q, w, A) \vdash *(q, ε, ε)$. 归纳于 $A \stackrel{*}{\Longrightarrow} W$ 的步数 n.

基础 n=1, $A \rightarrow w$ 必为产生式, $(q,w,A) \vdash (q,w,w) \vdash^* (q, \varepsilon, \varepsilon)$.

归纳 设第一步使用产生式 $A \rightarrow X_1 X_2 ... X_m$,必有 $w = w_1 w_2 ... w_m$, $(q, w, A) \vdash (q, w, X_1 X_2 ... X_m) \vdash^* (q, w_2 ... w_m, X_2 ... X_m)$ $\vdash^* (q, w_3 ... w_m, X_3 ... X_m) \vdash^* ... \vdash^* (q, \varepsilon, \varepsilon)$.

所以有如下结论, if $S \stackrel{*}{\Longrightarrow} w$, then $(q, w, S) \mid *(q, \varepsilon, \varepsilon)$. 即, $w \in L(G) \Rightarrow w \in N(E)$.

从上下文无关文法构造等价的下推自动机

◆ 证明思路 欲证,对任何 $w \in T^*$, $w \in L(G) \Leftrightarrow w \in N(E)$. ← 先证明如下结论: if $(q, w, A) \vdash^* (q, \varepsilon, \varepsilon)$, then $A \stackrel{*}{\Rightarrow} w$. 归纳于 $(q, w, A) \vdash^* (q, \varepsilon, \varepsilon)$ 的步数 n.

基础 n=1, 必有 w=ε,且 $A\rightarrow ε$ 为 G 的产生式,所以 $A \underset{m}{\Longrightarrow} w$.

归纳 n>1,设第一步使用产生式 $A\rightarrow X_1X_2...X_m$,可以将 w 分为 $w=w_1w_2...w_m$,满足 (q, w_i, X_i) $\vdash^*(q, \varepsilon, \varepsilon)$,

无论 X_i 为终结符,还是非

终结符,都有 $X_i \stackrel{*}{\longrightarrow} W_i$.

因此, $A \Rightarrow X_1 X_2 ... X_m$ $\stackrel{*}{\Longrightarrow} W_1 W_2 ... W_m = W$

所以有如下结论,对任何 $w \in T^*$, if $(q, w, S) \vdash^* (q, ε, ε)$, then $S \stackrel{*}{\longrightarrow} w$.

 \mathbb{P} , $w \in N(E) \Rightarrow w \in L(G)$.

 \Diamond 一种构造方法 设 PDA $E = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$, 构造 CFG $G = (V, \Sigma, P, S)$,其中 $V = \{S\} \cup \{ [pXq] | p, q \in Q \land X \in \Gamma \}$

产生式集合 P定义如下:

- (1) 对每一 $p \in Q$, G 包含产生式 $S \rightarrow [q_0 Z_0 p]$;
- (2) 若 $(q,X_1X_2...X_k) \in \delta(p, a, X)$, 则 G 包含产生式 $[pXp_k] \rightarrow a[qX_1p_1][p_1X_2p_2]...[p_{k-1}X_kp_k]$. 其中, $a \in \Sigma$ 或 $a = \varepsilon$, (参见右图,其中 $p_0 = q$)

◆ 举例 对于右下图的 PDA,构造CFG G = (V,{0,1},P,S), 其中 $V = \{S\} \cup \{ [pYq] | p,q \in \{q_0,q_1,q_2\} \land Y \in \{Z_0,X\} \}$

产生式集合 P定义如下:

(1)
$$S \rightarrow [q_0 Z_0 q_0];$$

 $S \rightarrow [q_0 Z_0 q_1];$
 $S \rightarrow [q_0 Z_0 q_2];$

- (2) $[q_0Z_0q_i] \rightarrow 0[q_0Xq_i][q_iZ_0q_i]$, $i, j = 0, 1, 2; ((q_0, XZ_0) \in \delta(q_0, 0, Z_0))$
- (3) $[q_0Xq_i] \rightarrow 0[q_0Xq_i] [q_iXq_i]$, i, j = 0,1,2; $((q_0,XX) \in \delta(q_0,0,X))$
- (4) $[q_0Xq_1] \rightarrow 1; ((q_1,\varepsilon) \in \delta(q_0, 1, X))$ 注意: 对于(4),(5),(6),
- (5) $[q_1Xq_1] \rightarrow 1$; $((q_1,\varepsilon) \in \delta(q_1, 1, X))$ 前一页的 $[qXp_k]$ 中,k=0,
- (6) $[q_1Z_0q_2] \rightarrow \varepsilon; \quad ((q_2,\varepsilon) \in \delta(q_1, \varepsilon, Z_0))$

p₀分别为q₁,q₁,q₂.

- \diamondsuit 结论 依上述构造方法,从 PDA $E = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$ 构造一个 CFG $G = (V, \Sigma, P, S)$,则有 N(E) = L(G).
- ◇ 证明思路 欲证,对任何 $w \in \Sigma^*$, $w \in N(E) \Leftrightarrow w \in L(G)$. 即证明: 存在 $p \in Q$. $(q_0, w, Z_0) \models^* (p, ε, ε)$ iff $S \Rightarrow^* w$.

先证明对 $q,p \in Q, X \in \Gamma, (q,w,X) \vdash^*(p, ε, ε) iff [qXp] \Rightarrow w.$

这样, if (q_0, w, Z_0) $\vdash^*(p, \varepsilon, \varepsilon)$, then $[q_0 Z_0 p] \stackrel{*}{\Rightarrow} w$.

因为G中包含产生式 $S \rightarrow [q_0 Z_0 p]$, 所以 $S \stackrel{*}{\Rightarrow} w$.

反之, 若 $S \Rightarrow w$, 由 G 的构造过程, 存在 p, 满足 $[q_0Z_0p] \Rightarrow w$, 从而有 $(q_0, w, Z_0) \vdash^* (p, \varepsilon, \varepsilon)$

◇证明思路 (续前)

现证明对 $q,p \in Q$, $(q,w,X) \vdash^* (p, \varepsilon, \varepsilon)$ iff $[qXp] \stackrel{*}{\Rightarrow} w$.

⇒ 归纳于 (q, w, X) -* $(p, \varepsilon, \varepsilon)$ 的步数 n.

基础 n=1, 必有 w 或为 ε 或为单个符号, 且 $(p,\varepsilon) \in \delta(q,w,X)$. 由 G 的构造, $[qXp] \rightarrow w$ 为一个产生式, 所以 $[qXp] \stackrel{*}{\Rightarrow} w$.

归纳 n>1,设第一步推导为 (q,w,X) \vdash $(p_0,x,X_1X_2...X_k)$,其中 w=ax, a 或为单个符号,且 $(p_0,X_1X_2...X_k)$ \in $\delta(q,a,X)$.

可以将x分为 $x=x_1x_2...x_k$,存在 $p_1, p_2,...,p_{k-1}$,满足 (p_{i-1},x_i,X_i) $| *(p_i, \epsilon, \epsilon), 1 \le i < k; (p_{k-1},x_k,X_k) | *(p, \epsilon, \epsilon),$

由归纳假设, $[p_{i-1}X_ip_i] \stackrel{*}{\Rightarrow} x_i$, $1 \le i < k$; $[p_{k-1}X_kp] \stackrel{*}{\Rightarrow} x_k$.

由G的构造, $[qXp] \rightarrow a[p_0X_1p_1][p_1X_2p_2]...[p_{k-1}X_kp]$ 为产生式.

所以, $[qXp] \stackrel{*}{\Rightarrow} ax_1x_2...x_k = w$.

圖消華大学

◇证明思路 (续前)

继续证明对 $q,p \in Q$, $(q,w,X) \vdash *(p, \varepsilon, \varepsilon)$ iff $[qXp] \stackrel{*}{\Rightarrow} w$.

 \leftarrow 归纳于 [qXp] \Rightarrow w的步数 n.

基础 n=1, $[qXp] \rightarrow w$ 必为一个产生式,由G 的构造,w 或为 ε 或为单个符号,且 $(p,\varepsilon) \in \delta(q,w,X)$. 所以 $(q,w,X) \mid *(p,\varepsilon,\varepsilon)$.

归纳 n>1,设第一步推导为 $[qXp] \vdash a[p_0X_1p_1][p_1X_2p_2]...[p_{k-1}X_kp]$.

可以将W分为 $W = ax_1 x_2 ... x_k$,使得

 $[p_{i-1}X_ip_i] \stackrel{*}{\Rightarrow} x_i, 1 \le i < k; [p_{k-1}X_kp] \stackrel{*}{\Rightarrow} x_k.$

由归纳假设,

 $(p_{i-1},x_i,X_i) \mid *(p_i, \varepsilon, \varepsilon), 1 \le i < k; (p_{k-1},x_k,X_k) \mid *(p, \varepsilon, \varepsilon),$

由G的构造, $(p_0, X_1X_2...X_k) \in \delta(q, a, X)$.

所以, (q,w,X) \vdash $(p_0, x_1x_2...x_k, X_1X_2...X_k)$ \vdash * $(p, \varepsilon, \varepsilon)$.

上下文无关文法与下推自动机的等价性

♦小结

◇ 必做题:

- Ex.6.3.2
- Ex.6.3.4
- !Ex.6.3.5 (c)

That's all for today.

Thank You