



### **Main Product Characteristics**

| $V_{BDSS}$          | -30V        |  |  |  |
|---------------------|-------------|--|--|--|
| R <sub>DS(ON)</sub> | 15.5mΩ@-10V |  |  |  |
| I <sub>D</sub>      | -10A        |  |  |  |





**Schematic Diagram** 

### **Features and Benefits**

- Advanced MOSFET process technology
- Ideal for battery operated systems, load switching, power converters and other general purpose applications
- Low on-resistance with low gate charge
- Fast switching and reverse body recovery



## **Description**

The SSFQ3905 utilizes the latest techniques to achieve high cell density and low on-resistance. These features make this device extremely efficient and reliable for use in high efficiency switch mode power supply and a wide variety of other applications.

## **Absolute Maximum Ratings** (T<sub>C</sub>=25°C unless otherwise specified)

| Parameter                             | Symbol           | Value       | Unit |
|---------------------------------------|------------------|-------------|------|
| Drain-Source Voltage                  | VDS              | -30         | V    |
| Gate-Source Voltage                   | Vgs              | ±20         | V    |
| Drain Current – Continuous (Tc=25°C)  | lp.              | -10         | А    |
| Drain Current – Continuous (Tc=100°C) |                  | -6.3        | А    |
| Drain Current – Pulsed <sup>1</sup>   | Ірм              | -40         | А    |
| Power Dissipation (Tc=25°C)           | - P <sub>D</sub> | 2.5         | W    |
| Power Dissipation – Derate above 25°C | - 10             | 0.02        | W/°C |
| Storage Temperature Range             | Тѕтс             | -55 to +150 | °C   |
| Operating Junction Temperature Range  | TJ               | -55 to +150 | °C   |

#### **Thermal Characteristics**

| Parameter                              | Symbol | Тур. | Max. | Unit |
|----------------------------------------|--------|------|------|------|
| Thermal Resistance Junction to Ambient | RеJA   |      | 50   | °C/W |



## Electrical Characteristics (T<sub>J</sub>=25°C unless otherwise specified)

| Parameter                                      | Symbol                               | Conditions                                                             | Min. | Тур.         | Max. | Unit  |
|------------------------------------------------|--------------------------------------|------------------------------------------------------------------------|------|--------------|------|-------|
| Off Characteristics                            |                                      |                                                                        |      |              |      |       |
| Drain-Source Breakdown<br>Voltage              | BV <sub>DSS</sub>                    | V <sub>GS</sub> =0V, I <sub>D</sub> =-250uA                            | -30  |              |      | V     |
| BV <sub>DSS</sub> Temperature<br>Coefficient   | $\triangle BV_{DSS}/\triangle T_{J}$ | Reference to 25°C, I <sub>D</sub> =-1mA                                |      | -0.03        |      | V/°C  |
| Drain-Source Leakage<br>Current                |                                      | $V_{DS}$ =-30V, $V_{GS}$ =0V , $T_J$ =25°C                             |      |              | -1   | uA    |
|                                                | I <sub>DSS</sub>                     | $V_{DS}$ =-24V, $V_{GS}$ =0V , $T_J$ =125°C                            |      |              | -10  | uA    |
| Gate-Source Leakage<br>Current                 | I <sub>GSS</sub>                     | V <sub>GS</sub> =±20V, V <sub>DS</sub> =0V                             |      |              | ±100 | nA    |
| On Characteristics                             |                                      |                                                                        |      |              |      |       |
| Static Drain-Source                            |                                      | V <sub>GS</sub> =-10V, I <sub>D</sub> =-8A                             |      | 12.4         | 15.5 | mΩ    |
| On-Resistance                                  | R <sub>DS(ON)</sub>                  | V <sub>GS</sub> =-4.5V, I <sub>D</sub> =-6A                            |      | 19.2         | 25   | mΩ    |
| Gate Threshold Voltage                         | $V_{GS(th)}$                         |                                                                        | -1.0 | <b>-</b> 1.6 | -2.5 | V     |
| V <sub>GS(th)</sub> Temperature<br>Coefficient | $\triangle V_{GS(th)}$               | $V_{GS}=V_{DS}$ , $I_D=-250uA$                                         |      | 4            |      | mV/°C |
| Forward Transconductance                       | gfs                                  | V <sub>DS</sub> =-10V, I <sub>D</sub> =-8A                             |      | 10.5         |      | S     |
| Dynamic and Switching C                        | haracteristics                       | <b>i</b>                                                               |      |              |      |       |
| Total Gate Charge <sup>2, 3</sup>              | Qg                                   |                                                                        |      | 14.6         | 21   |       |
| Gate-Source Charge <sup>2, 3</sup>             | $Q_{gs}$                             | V <sub>DS</sub> =-15V, V <sub>GS</sub> =- 4.5V,<br>I <sub>D</sub> =-8A |      | 4.1          | 6    | nC    |
| Gate-Drain Charge <sup>2, 3</sup>              | $Q_gd$                               |                                                                        |      | 6.3          | 9    |       |
| Turn-On Delay Time <sup>2, 3</sup>             | $T_{d(on)}$                          |                                                                        |      | 9            | 17   | _     |
| Rise Time <sup>2, 3</sup>                      | Tr                                   | V <sub>DD</sub> =-15V, V <sub>GS</sub> =-10V,                          |      | 21.8         | 41   |       |
| Turn-Off Delay Time <sup>2, 3</sup>            | $T_{d(off)}$                         | R <sub>G</sub> =6Ω, I <sub>D</sub> =-1A                                |      | 59.8         | 114  | nS    |
| Fall Time <sup>2, 3</sup>                      | T <sub>f</sub>                       | ]                                                                      |      | 14.4         | 27   |       |
| Input Capacitance                              | C <sub>iss</sub>                     |                                                                        |      | 1730         | 2510 |       |
| Output Capacitance                             | C <sub>oss</sub>                     | V <sub>DS</sub> =-15V, V <sub>GS</sub> =0V,                            |      | 180          | 260  | pF    |
| Reverse Transfer<br>Capacitance                | C <sub>rss</sub>                     | F=1MHz                                                                 |      | 125          | 180  |       |
| Drain-Source Diode Chara                       | cteristics and                       | Maximum Ratings                                                        |      |              |      | •     |
| Continuous Source Current                      | Is                                   | V <sub>G</sub> =V <sub>D</sub> =0V,                                    |      |              | -10  | Α     |
| Pulsed Source Current                          | I <sub>SM</sub>                      | Force Current                                                          |      |              | -40  | А     |
| Diode Forward Voltage                          | V <sub>SD</sub>                      | $V_{GS}$ =0V, $I_{S}$ =-1A, $T_{J}$ =25°C                              |      |              | -1   | V     |

#### Notes:

- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2. The data tested by pulsed, pulse width  $\leq$  300uS, duty cycle  $\leq$  2%.
- 3. Essentially independent of operating temperature.



## **Typical Electrical and Thermal Characteristics**



Fig.1 Continuous Drain Current vs. T<sub>C</sub>



Fig.3 Normalized  $V_{th}$  vs.  $T_J$ 



Fig.5 Normalized Transient Impedance



Fig.2 Normalized R<sub>DS(ON)</sub> vs. T<sub>J</sub>



Fig.4 Gate Charge Waveform



Fig.6 Maximum Safe Operation Area



# **Typical Electrical and Thermal Characteristics**





Fig.7 Switching Time Waveform

Fig.8 Gate Charge Waveform







# **Package Outline Dimensions**

## SOP-8



| Symbol | Dimensions | n Millimeters | Dimensions In Inches |       |  |
|--------|------------|---------------|----------------------|-------|--|
| Symbol | Min        | Max           | Min                  | Max   |  |
| Α      | 1.350      | 1.750         | 0.053                | 0.068 |  |
| A1     | 0.100      | 0.250         | 0.004                | 0.009 |  |
| A2     | 1.300      | 1.500         | 0.052                | 0.059 |  |
| A3     | 0.600      | 0.700         | 0.024                | 0.027 |  |
| b      | 0.390      | 0.480         | 0.016                | 0.018 |  |
| С      | 0.210      | 0.260         | 0.009                | 0.010 |  |
| D      | 4.700      | 5.100         | 0.186                | 0.200 |  |
| E      | 5.800      | 6.200         | 0.229                | 0.244 |  |
| E1     | 3.700      | 4.100         | 0.146                | 0.161 |  |
| е      | 1.270(BSC) |               | 0.050(BSC)           |       |  |
| h      | 0.250      | 0.500         | 0.010                | 0.019 |  |
| L      | 0.500      | 0.800         | 0.019                | 0.031 |  |
| L1     | 1.050(BSC) |               | 0.041(BSC)           |       |  |
| θ      | 0°         | 8°            | 0°                   | 8°    |  |