

Interpolation & Revisiting Homogeneous Coordinate System

CSE606: Computer Graphics
Jaya Sreevalsan Nair, IIIT Bangalore
March 17 and April 21, 2025

Interpolation

Introduction to Parametrization

Parametrization is a computation usually done to reduce the dimensionality of representation to be the same as the true geometrical dimensionality. e.g. a line and triangle in 3-dimensional space must be represented using 1-dimensional and 2-dimensional mapping, respectively.

True geometrical dimensionality corresponds to the number of independent variables to define the primitive.

Parametrization

We use parametrization for interpolation. e.g. t is a parameter in a line-segment AB, where t(A) = 0, t(B) = 1.

The parametrization can be computed using fractions of lengths, areas, volumes, etc.

What is Interpolation?

Interpolation is a method used for finding value of an attribute at an interior point of a geometric primitive, based on the values of the attribute at the vertices of the primitive.

• The attributes include (x-, y-, z-) coordinates of position, coordinates of normal vector, color channels (e.g. red, green, blue), etc.

Interpolation Methods

Interpolation uses an interpolant, or polynomial of parameters of at least degree d for a d-dimensional space.

- e.g. linear interpolant is of degree 1, quadratic interpolant is of degree 2, bilinear interpolant is of degree 2 (linear in 2 dimensions).
- Linear interpolants are preferred owing to reduced number of arithmetic operations (multiplications and additions) involved in computing the interpolant.

Linear, Bilinear and Trilinear Interpolation

Using parametric representation: $0 \le s$, t, $u \le 1$.

Linear Interpolation:

$$f(C) = (1-u) \cdot f(C_0) + u \cdot f(C_1)$$

Bilinear interpolation:

$$f(C_0) = (1-t) \cdot f(C_{00}) + t \cdot f(C_{01}) \ f(C_1) = (1-t) \cdot f(C_{10}) + t \cdot f(C_{11})$$

Trilinear interpolation:

$$egin{aligned} f(C_{00}) &= (1-s) \cdot f(C_{000}) + s \cdot f(C_{100}) \ f(C_{01}) &= (1-s) \cdot f(C_{001}) + s \cdot f(C_{101}) \ f(C_{11}) &= (1-s) \cdot f(C_{011}) + s \cdot f(C_{111}) \ f(C_{10}) &= (1-s) \cdot f(C_{010}) + s \cdot f(C_{110}) \end{aligned}$$

Image courtesy: http://en.wikipedia.org/wiki/Trilinear_interpolation

Note: we compute the parameter using fractions of lengths, e.g. $u = d(C,C_1)/d(C_0,C_1)$

Linear, Bilinear and Trilinear Interpolation

Using parametric representation: $0 \le s$, t, $u \le 1$.

Linear Interpolation:

$$f(C) = (1-u) \cdot f(C_0) + u \cdot f(C_1)$$

Bilinear interpolation:

$$f(C) = (1-t)(1-u) \cdot f(C_{00}) + t(1-u) \cdot f(C_{10}) + \ tu \cdot f(C_{11}) + (1-t)u \cdot f(C_{01})$$

Trilinear interpolation:

$$f(C) = (1-s)(1-t)(1-u)\cdot f(C_{000}) + s(1-t)(1-u)\cdot f(C_{100}) + \ st(1-u)\cdot f(C_{101}) + (1-s)t(1-u)\cdot f(C_{001}) + \ (1-s)tu\cdot f(C_{011}) + stu\cdot f(C_{111}) + \ st(1-u)\cdot f(C_{110}) + (1-s)t(1-u)\cdot f(C_{010})$$

Image courtesy: http://en.wikipedia.org/wiki/Trilinear_interpolation

Barycentric Coordinate System

The linear, bilinear and trilinear interpolation is used for finding value (of position coordinates, color channels, normal coordinates, etc.) at an interior point in a line-segment, rectangle, and cuboid, respectively.

For other geometric entities in 1D, 2D, and 3D, e.g. curved elements, one would parametrically map them to line-segment, rectangle, and cuboid, respectively, and then perform the interpolation.

The linear interpolation is done on triangles using barycentric coordinate system.

Image courtesy: http://en.wikipedia.org/wiki/Trilinear_interpolation

Barycentric Coordinates and Linear Interpolation

Image courtesy: http://en.wikipedia.org/wiki/Trilinear_interpolation

Since triangles are 2D, we need 2 independent variables, but since there are 3 vertices, we can have an additional dependent variable.

Thus we have: $\alpha(P) + \beta(P) + \gamma(P) = 1$

for an interior point P in $\Delta(A_1A_2A_3)$ where two of the variables α , β , γ are independent and the remaining one becomes dependent.

Barycentric Coordinates and Linear Interpolation

Image courtesy: http://en.wikipedia.org/wiki/Trilinear_interpolation

Using (areal) barycentric coordinates, we get:

$$egin{aligned} lpha(P) &= rac{Area(\Delta(A_2PA_3))}{Area(\Delta(A_1A_2A_3))} \ eta(P) &= rac{Area(\Delta(A_3PA_1))}{Area(\Delta(A_1A_2A_3))} \ \gamma(P) &= rac{Area(\Delta(A_1PA_2))}{Area(\Delta(A_1A_2A_3))} \end{aligned}$$

$$\begin{split} \alpha(P) + \beta(P) + \gamma(P) &= \frac{Area(\Delta(A_2PA_3)) + Area(\Delta(A_3PA_1)) + Area(\Delta(A_1PA_2))}{Area(\Delta(A_1A_2A_3))} \\ &= \frac{Area(\Delta(A_1A_2A_3))}{Area(\Delta(A_1A_2A_3))} = 1 \end{split}$$

Application of Interpolation – Color Mapping

Colormap generation – Identifying color palettes ⇒ a sequence of colors matching an interval of values (continuous spectrum).

Generation techniques:

- Color cube,
- Rainbow spectrum,
- Grayscale spectrum,
- Linear interpolation

Figure 12. Various color maps applied to a face image. The color maps in the bottom row have monotonically increasing lightness, resulting in a natural, recognizable image.

Color Scales

(Left) Viridis (R Package) color scales; (right) ggplot color scales.

https://www.youtube.com/watch?v=u9a4NO3iGqA

[All colormaps (Matplotlib) (2015) by Nathaniel Smith.]

Applications of Interpolation – Color Mapping

- Parametric mapping using linear interpolation
 - For a line segment PQ, any point in the interior of the line segment $R = (1-\alpha)P + \alpha Q$, where the parameter corresponding to R is $\alpha = \text{length}(R,P)/\text{length}(Q,P)$.
 - Apart from position coordinates, all properties with linear behaviour can use this formula: $C(R) = (1-\alpha)C(P) + \alpha C(Q)$.
- Colour spectrum: 2-colour, 3-colour, n-colour (rainbow colour spectrum)

Revisiting Transformations

Euclidean Space

Euclidean n-space (Rn or Cartesian space): Space of all n-tuples of real numbers, which

corresponds to physical space.

contains elements which are n-vectors.

Examples:

Real line: R¹

• Euclidean plane: \mathbb{R}^2

• Points: $[2, 3]^T \in \mathbb{R}^2$; $[2, 3, 4]^T \in \mathbb{R}^3$

Vector Space

A vector space is a set that is closed under finite vector addition and scalar multiplication.

- Vector space is defined over a field F; where the scalars belong to F.
- Field: any set of elements that satisfies field axioms for both addition and multiplication and is a commutative division algebra.
 - Complex numbers, rational numbers, and real numbers form a field; but not integers.
- Field axioms: Commutativity, Associativity, Distributivity, Identity, Inverse.

Vector Space

A set of vectors is defined to be **linearly independent**, if none of the vectors can be expressed as scalar-vector addition of others.

Dimension of a vector space: Maximum number of linearly independent vectors in the space.

Affine Spaces

Let, V: a vector space over a field K; A: a nonempty set.

Define addition $(p + a) \in A$, for any vector $(a, b \in V)$ and element $p \in A$, which are subject to:

- p + 0 = p.
- (p + a) + b = p + (a + b).
- For any q ∈ A, there exists a unique vector a ∈ V, such that q = p + a.

Then A is called an affine space and K is called the coefficient field.

Summary of Vector and Affine Spaces

(Linear) vector space: contains vectors & scalars, and most importantly an "origin".

Affine space: Geometric structure similar to a vector space that does not include the origin; but has "point" objects.

Euclidean space: consists of an affine space (V,K) and a scalar product on V, and additionally includes measure of size (e.g. length of line segment, angle of sector).

Summary of Vector and Affine Spaces

(Linear) vector space: contains vectors & scalars, and most importantly an "origin".

Affine space: Geometric structure similar to a vector space that does not include the origin; but has "point" objects.

Euclidean space: consists of an affine space (V,K) and a scalar product on V, and additionally includes measure of size (e.g. length of line segment, angle of sector).

- In affine spaces: point-point subtraction yields a vector; vector-point addition yields a new point.
- In object-oriented programming, we can use Abstract Data Types (ADT) to define an affine space.

Affine Addition

Point-point addition and scalar-point multiplication are not allowed in affine spaces.

- However, this can be accomplished using affine addition.
- For points P, Q, R, vector v , and scalar α:
 - $P = Q + \alpha V$;
 - \bullet V = R Q

Thus, $P = Q + \alpha(R - Q) = (1 - \alpha)Q + \alpha R$, which is a **linear combination of** *points*.

Affine Addition

Point-point addition and scalar-point multiplication are not allowed in affine spaces.

- However, this can be accomplished using affine addition.
- For points P, Q, R, vector v, and scalar α:
 - $P = Q + \alpha V$;
 - \bullet V = R Q

Thus, $P = Q + \alpha(R - Q) = (1 - \alpha)Q + \alpha R$, which is a **linear combination of** *points*.

Applications in *parametric definitions* of lines, planes, and convexity

Affine Addition Application – Lines

In parametric form, for a ray starting at point P_0 ,

$$P(\alpha) = P_0 + \alpha.d$$

for an arbitrary vector **d**, and scalar α .

For a line segment between points P_0 and P_1 , the parametric form using affine sums is, for $(0 \le \alpha \le 1)$:

$$P(\alpha) = P_0 + \alpha \cdot (P_1 - P_0) = (1 - \alpha) \cdot P_0 + \alpha \cdot P_1$$

Affine Addition Application – Convexity

For a convex set of points P_1, P_2, \ldots, P_n , a point P lies in the convex hull, given,

$$P = \alpha_1.P_1 + \alpha_2.P_2 + ... + \alpha_n.P_n$$
, if and only if,

coefficients form partition of unity, i.e.,

$$\alpha_1 + \alpha_2 + ... + \alpha_n = 1.0 \text{ and } (\alpha_i \ge 0), \ \forall \ (i \in [1,n]).$$

- Partition of unity guarantees an interior point.
- Convex hull: Minimal set of points obtained from shrink-wrapping the convex set of points.

Affine Addition Application – Planes

For vectors, **u**, **v**,

Dot Product: $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| . |\mathbf{v}| . \cos \theta$

Cross Product: $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}|.|\mathbf{v}|.|\sin\theta|$

where \mathbf{u} , \mathbf{v} , and $(\mathbf{u} \times \mathbf{v})$ form a right-handed coordinate system.

Parametric form of a plane containing point P**0** and non-parallel vectors, **u**, **v**, and scalars, α , β : T(α , β) = P₀ + α **u** + β **v**

• Its equivalent vector form, $(\mathbf{u} \times \mathbf{v}) \cdot (P - P_0) = 0$

Coordinate Systems

Basis vectors of a coordinate system: Linearly independent vectors whose linear combinations can be used for representing all points in the coordinate system.

$$W = \alpha_1 V_1 + \alpha_2 V_2 + \alpha_3 V_3$$

where, α_1 , α_2 , α_3 are components of vector w with respect to the basis vectors $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$.

Rewriting it, if a = [
$$\alpha_1$$
, α_2 , α_3] and v=[$\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$], then

$$w = a^{T}.v$$

N-Tuple Representations

Basis vectors are represented as unit vectors in the form of 3-tuples:

$$\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3} = [1,0,0]^{\mathsf{T}}, [0,1,0]^{\mathsf{T}}, [0,0,1]^{\mathsf{T}}$$

Similarly for Euclidean space, \mathbb{R}^n , basis vectors are n-tuples.

n-tuple representation is thus, equivalent to vector representation of the vector space.

Frames

Frame: constituted by origin (reference point) and basis vectors.

A frame is required to uniquely define all points and all vectors in a coordinate system.

Vector
$$\mathbf{w} = \alpha_1 \mathbf{v_1} + \alpha_2 \mathbf{v_2} + \alpha_3 \mathbf{v_3}$$
 \Rightarrow $\mathbf{w} = \mathbf{a}^\mathsf{T}.\mathbf{v}$
Point $P = P_0 + \beta_1 \mathbf{v_1} + \beta_2 \mathbf{v_2} + \beta_3 \mathbf{v_3}$ \Rightarrow $P = P_0 + \mathbf{b}^\mathsf{T}.\mathbf{v}$

Frame is represented as $[\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, P_0]$.

Note: Points and vectors are always distinct geometric types.

Frame Transformations in OpenGL Pipeline

Change in coordinate system ⇒ change in vector representation based on change in basis vectors.

Transformation

Definition: A function that maps a point (or vector) to another point (or vector).

In functional form, Q = T(P), v = R(u)

Transformations are too general to be useful, hence a (restricted) class of transformations is used in computer graphics, namely, **the linear transformations**.

Linear transformation: $f(\alpha p + \beta q) = \alpha f(p) + \beta f(q)$

Linear Transformations

Transformations of linear combination of entities is a linear combination of transformation of the entities.

It has the advantage of saving several recalculations.

However, linearity is a restriction, as computer graphics also has non-linear behavior, e.g. perspective projection.

Affine Transformations

An **affine transformation** is equivalent to a linear transformation combined with vector addition.

$$f(u) = v = T(u) + w$$

for f : $X \rightarrow Y$ for affine spaces, X and Y, such that $\mathbf{u} \in X$ and $\mathbf{w} \in Y$.

Properties of Affine Transformations:

- Parallel lines remain parallel.
- The midpoint of a line segment remains a midpoint.
- All points on a straight line remain on a straight line...

Affine Transformations in Computer Graphics

Most of the transformations in Computer Graphics are affine.

- Basic types of affine transformations include translation, rotation, scaling, shear.
- All affine transformations can be constructed as sequence of basic types.

Rigid-body transformations: Transformations with no alteration to shape or volume of object. e.g., Translation, Rotation.

Non-rigid-body transformations: Transformations that alter shape or volume of an object. e.g., Uniform & Non-uniform scaling, Shear.

Homogeneous Coordinate System (in detail)

Transformation Matrices

Matrix representation is used in graphics processing for:

- 1. Change in coordinate system (i.e. frame transformations)
- 2. Affine transformations of vectors

Application 1 – Change of Coordinate System

In a transformation, basis of new coordinate system can be expressed in terms of the old coordinate system in the following way:

$$u_1 = \gamma_{11}v_1 + \gamma_{12}v_2 + \gamma_{13}v_3 \ u_2 = \gamma_{21}v_1 + \gamma_{22}v_2 + \gamma_{23}v_3 \ u_3 = \gamma_{31}v_1 + \gamma_{32}v_2 + \gamma_{33}v_3 \ egin{bmatrix} u_1 \ u_2 \ u_3 \end{bmatrix} = egin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} \ \gamma_{21} & \gamma_{22} & \gamma_{23} \ \gamma_{31} & \gamma_{32} & \gamma_{33} \end{bmatrix} egin{bmatrix} v_1 \ v_2 \ v_3 \end{bmatrix}$$

Thus, u = M.v

Vector Transformation due to Frame Transformation

Starting from: u = M.v

Now, a vector **w** is represented in the old and new coordinate systems:

$$egin{aligned} w &= eta_1 u_1 + eta_2 u_2 + eta_3 u_3 \ &= lpha_1 v_1 + lpha_2 v_2 + lpha_3 v_3 \ \Rightarrow w &= b^T u = a^T v \end{aligned}$$

Vector Transformation due to Frame Transformation

We just got: u = M.v

Thus, a vector **w** is represented in the old and new coordinate systems:

$$egin{aligned} w &= eta_1 u_1 + eta_2 u_2 + eta_3 u_3 \ &= lpha_1 v_1 + lpha_2 v_2 + lpha_3 v_3 \ \Rightarrow w &= b^T u = a^T v \end{aligned}$$

Also,
$$b^T u = b^T M v, \Rightarrow a = M^T b$$

Thus using the matrix inverse, we get: $b=(M^T)^{-1}a$

- These rotations leave the origin unchanged.
- How can linear transformations accommodate change of origin?

Application 2 – Affine Transformations of a Vector

Rotation by an angle θ about +z axis, scaling, translation.

$$egin{aligned} & ext{Rotation}: egin{bmatrix} x \ y \end{bmatrix}
ightarrow egin{bmatrix} x \cos heta - y \sin heta \ x \sin heta + y \cos heta \end{bmatrix}; \Rightarrow M_{R_z} = egin{bmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{bmatrix} \ & ext{Scaling}: egin{bmatrix} x \ y \end{bmatrix}
ightarrow & egin{bmatrix} k_x x \ k_y y \end{bmatrix}; & \Rightarrow M_S = egin{bmatrix} k_x & 0 \ 0 & k_y \end{bmatrix} \ & ext{Translation}: egin{bmatrix} x \ y \end{bmatrix}
ightarrow & egin{bmatrix} x + t_x \ y + t_y \end{bmatrix}; & \Rightarrow M_T = ? \end{aligned}$$

Rotation and scaling can be represented as (matrix representations of) linear transformations, but translation cannot be represented such.

Need for a New Representation System

- 1. To differentiate between representation of a point and direction vector.
- 2. To represent translation as a matrix transformation, in order to have uniform representation for all object transformations.
 - To enable representing affine transformations in the form of linear transformations, as the latter is more efficient/ convenient to manage.
- 3. To represent frame transformations in the form of linear transformations, even after adding translation of the origin.

[#1 is for representation, #2 and #3 are for transformation matrices.]

Solution – Homogeneous Coordinates

Solution is the use of homogeneous coordinate system, which is the (n+1)-dimensional representation of n-dimensional space, thus giving (2n+1) extra elements in the corresponding matrix to represent n-dimensional space.

Homogeneous Coordinates: Point/Vector Representation

In a frame specified by $(\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, P_0)$, a point P and vector **w** are given by:

$$P = \left[egin{array}{ccccc} lpha_1 & lpha_2 & lpha_3 & 1 \end{array}
ight] \left[egin{array}{c} v_1 \ v_2 \ v_3 \ P_0 \end{array}
ight]; \ w = \left[egin{array}{ccccc} \delta_1 & \delta_2 & \delta_3 & 0 \end{array}
ight] \left[egin{array}{c} v_1 \ v_2 \ v_3 \ P_0 \end{array}
ight]$$

Thus, in a given frame we can represent P and w as column matrices.

$$P = \left[egin{array}{cccc} lpha_1 & lpha_2 & lpha_3 & 1 \end{array}
ight]^T \ w = \left[egin{array}{cccc} \delta_1 & \delta_2 & \delta_3 & 0 \end{array}
ight]^T.$$

Homogeneous Coordinates: Frame Transformation Matrix

Consider change of frames: $(v_1,v_2,v_3,P_0)
ightarrow (u_1,u_2,u_3,Q_0)$

For:
$$u = \begin{bmatrix} u_1 & u_2 & u_3 & Q_0 \end{bmatrix}^T \ v = \begin{bmatrix} v_1 & v_2 & v_3 & P_0 \end{bmatrix}^T \ u = Mv$$

The transformation matrix is given by:

$$M = egin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \ \gamma_{41} & \gamma_{42} & \gamma_{43} & 1 \end{bmatrix}$$

When transforming vectors, the coefficient vectors transform as:

$$a = M^T b$$

Homogeneous Coordinates: Frame Transformation Matrix

Consider change of frames: $(v_1,v_2,v_3,P_0)
ightarrow (u_1,u_2,u_3,Q_0)$

For:
$$u = \begin{bmatrix} u_1 & u_2 & u_3 & Q_0 \end{bmatrix}^T \ v = \begin{bmatrix} v_1 & v_2 & v_3 & P_0 \end{bmatrix}^T \ u = Mv$$

The transformation matrix is given by:

$$M = egin{bmatrix} \gamma_{11} & \gamma_{12} & \gamma_{13} & 0 \ \gamma_{21} & \gamma_{22} & \gamma_{23} & 0 \ \gamma_{31} & \gamma_{32} & \gamma_{33} & 0 \ \gamma_{41} & \gamma_{42} & \gamma_{43} & 1 \end{bmatrix}$$

The values are: $(P_0-Q_0)=\left[egin{array}{ccc} \gamma_{41} & \gamma_{42} & \gamma_{43} & 1 \end{array}
ight]^T$

If the origin is not translated, then: $\gamma_{41}=\gamma_{42}=\gamma_{43}=0$

Homogeneous Coordinates: Linear Transformations

In functional form, linear transformations are represented for points and vectors separately, as:

$$Q = T(P), \mathbf{v} = R(\mathbf{u})$$

If using homogeneous coordinates – the same transformation function can be used for both points and vectors.

$$\mathbf{q} = f(\mathbf{p}); \mathbf{v} = f(\mathbf{u})$$

Homogeneous Coordinates: Affine Transformations

Rotation by an angle θ about +z axis, scaling, translation.

[Recap] 3D Transformation Matrices: Translation

[Recap] 3D Transformation Matrices: Scaling

Origin is the scaling-invariant (fixed) point.

$$egin{bmatrix} x \ y \ z \ 1 \end{bmatrix}
ightarrow egin{bmatrix} eta_x x \ eta_y y \ eta_z z \ 1 \end{bmatrix} \
ightarrow S(eta_x,eta_y,eta_z) = egin{bmatrix} eta_x & 0 & 0 & 0 \ 0 & eta_y & 0 & 0 \ 0 & 0 & eta_z & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \
ightarrow S^{-1}(eta_x,eta_y,eta_z) = S(rac{1}{eta_x},rac{1}{eta_y},rac{1}{eta_z}) \
ightarrow S(rac{1}{eta_x},rac{1}{eta_y},rac{1}{eta_z}) \
ightarrow S^{-1}(eta_x,eta_y,eta_z) = S(rac{1}{eta_x},rac{1}{eta_y},rac{1}{eta_z}) \
ightarrow S(rac{1}{eta_x},rac{1}{eta_y},rac{1}{eta_y}) \
ightarrow S(rac{1}{eta_y},rac{1}{eta_y},rac{1}{eta_z}) \
ightarrow S(rac{1}{eta_y},rac{1}{eta_y},rac{1}{eta_y},rac{1}{eta_y}) \
ightarrow S(rac{1}{eta_y},rac{1}{eta_y},rac{1}{eta_y},rac{1}{eta_y}) \
ightarrow S(rac{1}{eta_y},rac{1}{eta_y},rac{1}{eta_y},rac{1}{eta_y}) \
ightarrow S(rac{1}{eta_y},rac{1}{eta_y}, rac{1}{eta_y},$$

[Recap] 3D Transformation Matrices: Rotation

Transformation matrices for rotation about x-, y-, z-axes by an angle of θ_x , θ_y , θ_z ,

respectively: $R_x(\theta_x)$, $R_y(\theta_y)$, $R_z(\theta_z)$.

$$R_x(heta_x) = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & \cos heta_x & -\sin heta_x & 0 \ 0 & \sin heta_x & \cos heta_x & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \ R_y(heta_y) = egin{bmatrix} \cos heta_y & 0 & \sin heta_y & 0 \ 0 & 1 & 0 & 0 \ -\sin heta_y & 0 & \cos heta_y & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \ R_z(heta_z) = egin{bmatrix} \cos heta_z & -\sin heta_z & 0 & 0 \ \sin heta_z & \cos heta_z & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \ \end{pmatrix}$$

[Recap] 3D Transformation Matrices: Rotation

Inverse of any rotation matrix: $R^{-1}(\theta) = R(-\theta)$

Since
$$\cos(-\theta) = \cos\theta$$
 and $\sin(-\theta) = -\sin\theta$ we get: Inverse = Transpose.

Thus, a rotation transformation matrix is an **orthogonal** matrix.

Computation of inverse of rotation matrices thus becomes easier.

[Recap] 3D Transformation Matrices: Concatenation of Rotations

To construct desired rotation (about any arbitrary axis): Define origin as the fixed point, and implement sequence of rotations, such that:

$$R = R_i \cdot R_j \cdot R_k \dots$$

Even in the concatenation of rotations, the concatenated matrix is orthogonal.

$$R^{-1} = R^T$$

Summary

- Parametrization
 - Interpolation Methods
 - Application: Color Mapping
- Coordinate Systems
 - Spaces
 - Affine Addition
- Homogeneous Coordinate
 Systems
 - Transformation Matrices
 - Need for a NewRepresentation System
 - Solution
 - Applications