Problem 1.8. Let P be a probability measure on a field \mathcal{F}_0 and for every subset A of Ω , let $P^*(A)$ be the outer measure defined in class. Let \tilde{P} be the extension of P to $\sigma(\mathcal{F}_0)$. Show that

$$P^*(A) = \inf{\{\tilde{P}(B) : A \subseteq B, B \in \mathcal{F}\}}.$$

Problem 1.9. Show that a λ -system can be equivalently defined by these three conditions:

- 1. $\Omega \in \mathcal{L}$;
- 2. If $A \in \mathcal{L}$, $B \in \mathcal{L}$, and $A \subseteq B$, then $BA^c \in \mathcal{L}$;
- 3. If A_1, A_2, \ldots are a disjoint sequence of members of \mathcal{L} , then $\bigcup_{n=1}^{\infty} A_n \in \mathcal{L}$.

2 HW2: due 9/23/2016

Problem 2.1. Let Ω be the unit square $(0,1] \times (0,1]$, and let

$$\mathcal{F} = \{ A \times (0,1] : A \in \mathcal{B} \},$$

where \mathcal{B} is the Borel σ -field on (0,1]. For any member $A \times (0,1]$ of \mathcal{F} , define

$$P(A \times (0,1]) = \lambda(A),$$

where λ is the Lebesgue measure on \mathcal{B} . Show that \mathcal{F} is a σ -field and P is a probability on \mathcal{F} .

Problem 2.2. Prove the following statements.

 $\sqrt{1}$. A λ -system satisfies the following conditions

- (λ_4) $A, B \in \mathcal{L}$ and $A \cap B = \emptyset$ imply $A \cup B \in \mathcal{L}$;
- (λ_5) $A_1, A_2, \ldots \in \mathcal{L}$ and $A_n \uparrow A$ imply $A \in \mathcal{L}$;
- (λ_6) $A_1, A_2, \ldots \in \mathcal{L}$ and $A_n \downarrow A$ imply $A \in \mathcal{L}$.

 $\sqrt{2}$. \mathcal{L} is a λ -system if and only if it satisfies (λ_1) , (λ_2') and (λ_5) . Recall that (λ_2') means

$$A, B \in \mathcal{L}$$
 and $A \subseteq B$ imply $BA^c \in \mathcal{L}$.

V Problem 2.3. Let $\{A_n : n = 1, 2, \ldots\}$ be a sequence of sets. Prove that

$$I_{\limsup_{n} A_n} = \limsup_{n} (I_{A_n}), \quad I_{\liminf_{n} A_n} = \liminf_{n} (I_{A_n}).$$

(Recall that, for a sequence of numbers a_n , $\limsup_n a_n$ is defined to be $\lim_n \sup_{k \ge n} a_k$; $\liminf_n a_n$ is defined to be $\lim_n \inf_{k \ge n} a_k$).

Problem 2.4. Let $\{A_n : n = 1, 2, ...\}$ be a sequence of subsets of Ω . Let

$$B_n = \bigcap_{k=n}^{\infty} A_k, \quad C_n = \bigcup_{k=n}^{\infty} A_k.$$

Show that

$$B_n \uparrow \liminf_n A_n$$
, $C_n \downarrow \limsup_n A_n$.

Problem 2.5. (a) Prove that

$$(\limsup_{n} A_{n}) \cap (\limsup_{n} B_{n}) \supseteq \limsup_{n} (A_{n} \cap B_{n}),$$

$$(\limsup_{n} A_{n}) \cup (\limsup_{n} B_{n}) = \limsup_{n} (A_{n} \cup B_{n}),$$

$$(\limsup_{n} A_{n}) \cap (\liminf_{n} B_{n}) = \liminf_{n} (A_{n} \cap B_{n}),$$

$$(\liminf_{n} A_{n}) \cup (\liminf_{n} B_{n}) \subseteq \liminf_{n} (A_{n} \cup A_{n}).$$

 \checkmark (b) Show that

$$\limsup_n A_n^c = (\liminf_n A_n)^c,$$

$$\lim_n \inf A_n^c = (\limsup_n A_n)^c,$$

$$\limsup_n A_n \setminus \liminf_n A_n = \limsup_n (A_n \cap A_{n+1}^c) = \limsup_n (A_n^c \cap A_{n+1}).$$

$$\checkmark \text{(c) Show that } A_n \to A \text{ and } B_n \text{ together imply that } A_n \cup B_n \to A_B \text{ and } A_n \cap B_n \to A \cap B.$$

Problem 2.6. For events A_1, \ldots, A_n , consider the 2^n equations

$$P(B_1 \cdots B_n) = P(B_1) \cdots P(B_n),$$

where $B_i = A_i$ or $B_i = A_i^c$ for each i. Show that A_1, \ldots, A_n are independent if all these equations

Problem 2.7. Suppose A_1, \ldots, A_n are π -systems and $A_1 \perp \cdots \perp A_n$. Let $B_i = A_i \cup \{\Omega\}$. Show that B_1, \ldots, B_n are π -systems and $B_1 \perp \cdots \perp B_n$.

Problem 2.8. Show that $1 - x \leq e^{-x}$ for all $x \in \mathbb{R}$.

Problem 2.9. Suppose (Ω, \mathcal{F}, P) is a probability space.

1. Show that, for any sequence of independent \mathcal{F} -sets, say $\{B_n: n=1,2,\ldots\}$, we have

$$P(\cap_{n=1}^{\infty} B_n) = \prod_{n=1}^{\infty} P(B_n).$$

2. Use the above relation and the inequality in Problem 2.8 to prove the second Borel-Cantelli Lemma.