Projekt předmětu IEL

Martin Chládek (xchlad16)

9. prosince 2017

Obsah

_	Řešení	2
	1.1 Příklad 1	2
	1.2 Příklad 2	6
	1.3 Příklad 3	9
	1.4 Příklad 4	12
	1.5 Příklad 5	15
2	Závěr	18
	2.1 Výsledky řešení	18

1 Řešení

1.1 Příklad 1

Stanovte napětí U_{R1} a proud I_{R1} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 $[V]$	U_2 $[V]$	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
Н	135	80	680	600	260	310	575	870	355	265

Zapojení postupně zjednodušíme:

$$R_{78} = \frac{R_7 * R_8}{R_7 + R_8} = \frac{355 * 265}{355 + 265} = 151.7339\Omega$$

$$R_{12} = \frac{R_1 * R_2}{R_1 + R_2} = \frac{680 * 600}{680 + 600} = 318.75\Omega$$

Vzniklou hvězdu $[R_{12},\,R_3,\,R_4]$ můžeme převést na trojuhelník:

$$R_A = \frac{R_{12} * R_3}{R_{12} + R_3 + R_4} = \frac{318.75 * 480}{318.75 + 260 + 310} = 93.2489\Omega$$

$$R_B = \frac{R_{12} * R_4}{R_{12} + R_3 + R_4} = \frac{318.75 * 310}{318.75 + 260 + 310} = 111.1814\Omega$$

$$R_C = \frac{R_3 * R_4}{R_{12} + R_3 + R_4} = \frac{260 * 310}{318.75 + 260 + 310} = 90.6892\Omega$$

Dopočítáváme odpory:

$$R_{B5} = R_B + R_5 = 111.1814 + 575 = 686.1814\Omega$$

 $R_{C6} = R_C + R_6 = 90.6892 + 870 = 960.6892\Omega$

Zjednodušíme:

$$R_{B5C6} = \frac{R_{B5} * R_{C6}}{R_{B5} + R_{C6}} = \frac{686.1814 * 960.6892}{686.1814 + 960.6892} = 400.2786\Omega$$

Dostaneme ekvivalentní obvod:

$$R_{ekv} = R_A + R_{B5C6} + R_{78} = 93.2489 + 400.2796 + 151.7339 = 645.2614\Omega$$

 $U_{ekv} = U_1 + U_2 = 135 + 80 = 215V$

Vypočteme proud zdroje:

$$I = \frac{U}{R_{ekv}} = \frac{215}{645.2614} = 0.3332A$$

Ze získaných hodnot vypočítáme potřebná U a I:

$$\begin{array}{rcl} U_{RA} & = & I*R_A = 0.3332*93.2489 = 31.0705V \\ U_{RB5C6} & = & I*R_{B5C6} = 0.3332*400.2786 = 133.3728V \\ U_{R78} & = & I*R_{78} = 0.3332*151.7339 = 50.5577V \end{array}$$

$$U_{RBC6} = U_{RB5} = U_{RC6}$$

$$I_{RB5} = \frac{U_{RB5}}{R_{B5}} = \frac{133.3728}{686.1814} = 0.1944A$$

$$I_{RC6} = \frac{U_{RC6}}{R_{C6}} = \frac{133.3728}{960.6892} = 0.1388A$$

$$I_{RB5} = I_{RB} = I_{R5}$$

 $I_{RC6} = I_{RC} = I_{R6}$

$$U_{RB} = I_{RB} * R_B = 0.1944 * 111.1814 = 21.6137V$$
 $U_{R5} = I_{R5} * R_5 = 0.1944 * 575 = 111.78V$
 $U_{RC} = I_{RC} * R_C = 0.1338 * 90.6892 = 90.6892V$
 $U_{R6} = I_{R6} * R_6 = 0.1338 * 870 = 120.756V$

$$0 = U_{R12} + U_{R5} + U_{R78} - U$$
$$U_{R12} = U - U_{R5} - U_{78} = 52.6623V$$

Vypočítáme hledané I:

$$U_{R12} = U_{R1} = U_{R2}$$

$$I_{R1} = \frac{U_{R1}}{R_1} = \frac{52.6623}{135} = 0.0774A$$

Hledané hodnoty I_{R1} a U_{R1} jsou:

$$I_{R1} = 0.0774A$$

 $U_{R1} = 52.6623V$

1.2 Příklad 2

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu Théveninovy věty.

sk.	$U_1[V]$	$U_2[V]$	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$
G	180	250	315	615	180	460

Vypočítáme hodnotu rezistoru R_{23} :

$$R_{23} = \frac{R_2 * R_3}{R_2 + R_3} = \frac{615 * 180}{615 + 180} = 139.2453\Omega$$

Zapojení zjednodušíme na ekvivalentní obvod:

Překreslíme obvod bez R_{23} :

Nahradíme napěťové zdroje U_1 a U_2 zkratem a spočítáme odpor R_i mezi uzly A a B:

$$R_i = \frac{R_1 * R_4}{R_1 + R_4} = \frac{315 * 460}{315 + 460} = 186.9677\Omega$$

Vypočítáme napětí U_i z obvodu bez odporu R_{23} :

①
$$R_i * I_i + R_4 * I_i + U_1 - U_2 = 0$$

$$I_i * (R_1 + R_4) = U_2 - U_1$$

$$I_i = \frac{U_2 - U_1}{R_1 + R_4} = \frac{250 - 180}{315 + 460} = 0.0903A$$

②
$$U_i - U_1 - R_1 - I_i = 0$$

$$U_i = U_1 + R_1 * I_i$$

$$U_i = 180 + (315 * 0.0903) = 208.4445V$$

Dopočítáme proud I_{R23} a napětí U_{R23} :

$$I_{R23} = \frac{U_i}{R_i + R_{23}} = \frac{208.4445}{186.9677 + 139.2453} = 0.6390A$$

$$U_{R23} = R_{23} * I_{R23} = 139.2453 * 0.6390 = 88.9777V$$

Vypočteme proud I_{R3} :

$$U_{R2} = U_{R3} = U_{R23}$$

$$I_{R3} = \frac{U_{R3}}{R_3} = \frac{88.9777}{180} = 0.4943A$$

Hledané hodnoty I_{R3} a U_{R3} jsou:

$$I_{R3} = 0.4943A$$

 $U_{R3} = 88.9777V$

1.3 Příklad 3

Stanovte napětí U_{R5} a proud I_{R5} . Použijte metodu uzlových napětí (U_A, U_B, U_C) .

sk.	U[V]	$I_1[A]$	$I_2[A]$	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
С	110	0.85	0.75	44	31	56	20	30

Pole I. Kirchhoffova zákona sestavíme rovnice pro uzly A,B,C:

$$A : 0 = I_1 + I_{R2} - I_{R3} - I_{R1}$$

$$B : 0 = I_{R3} + I_{R5} - I_{R2}$$

$$C : 0 = I_2 - I_{R4} - I_{R5}$$

Vyjádříme jednotlivé proudy pomocí uzlových napětí:

$$I_{R1} = \frac{U_A}{R_1}$$

$$I_{R2} = \frac{U - U_A + U_B}{R_2}$$

$$I_{R3} = \frac{U_A - U_B}{R_3}$$

$$I_{R4} = \frac{U_C}{R_4}$$

$$I_{R5} = \frac{U_C - U_B}{R_5}$$

Dosadíme vyjádřené proudy do rovnic pro jednotlivé uzly:

$$A : 0 = I_1 + \frac{U - U_A + U_B}{R_2} - \frac{U_A - U_B}{R_3} - \frac{U_A}{R_1}$$

$$B : 0 = \frac{U_A - U_B}{R_3} + \frac{U_C - U_B}{R_5} - \frac{U - U_A + U_B}{R_2}$$

$$C : 0 = I_2 - \frac{U_C}{R_4} - \frac{U_C - U_B}{R_5}$$

Zavedeme substituci $G_n = \frac{1}{R_n}$:

$$I_{R1} = G_1 * U_A$$

$$I_{R2} = G_2 * (U - U_A + U_B)$$

$$I_{R3} = G_3 * (U_A - U_B)$$

$$I_{R4} = G_4 * U_C$$

$$I_{R5} = G_5 * (U_C - U_B)$$

Převedeme rovnice na tvary se substitucí:

$$0 = I_1 + G_2(U - U_A + U_B) - G_3(U_A - U_B) - G_1(U_A)$$

$$0 = G_3(U_A - U_B) + G_5(U_C - U_B) - G_2(U - U_A + U_B)$$

$$0 = I_2 - G_4(U_C) - G_5(U_C - U_B)$$

Upravíme rovnice:

$$-U_A(G_1 + G_2 + G_3) + U_B(G_2 + G_3) + 0U_C = -I_1 - G_2U$$

$$U_A(G_2 + G_3) - U_B(G_2 + G_3 + G_5) + U_C(G_5) = G_2U$$

$$0U_A + U_B(G_5) - U_C(G_4 + G_5) = -I_2$$

Dosadíme číselné hodnoty:

$$-U_A(\frac{1}{44} + \frac{1}{31} + \frac{1}{56}) + U_B(\frac{1}{31} + \frac{1}{56}) + 0U_C = -0.85 - \frac{110}{31}$$

$$U_A(\frac{1}{31} + \frac{1}{56}) - U_B(\frac{1}{31} + \frac{1}{56} + \frac{1}{30}) + \frac{1}{30}U_C = \frac{110}{31}$$

$$0U_A + \frac{1}{30}U_B - U_C(\frac{1}{20} + \frac{1}{30}) = -0.75$$

Nyní zapíšeme rovnice v podobě rozšířené matice:

$$A = \begin{pmatrix} -0.0728 & 0.0501 & 0 & | & -4.3984 \\ 0.0501 & -0.0834 & 0.0333 & | & 3.5484 \\ 0 & 0.0333 & -0.0833 & | & -0.75 \end{pmatrix}$$

Cramerovým pravidlem vypočteme uzlová napětí U_A a U_B a U_C :

$$detA = \begin{vmatrix} -0.0728 & 0.0501 & 0 \\ 0.0501 & -0.0834 & 0.0333 \\ 0 & 0.0333 & -0.0833 \end{vmatrix} = -2.1595 * 10^{-4}$$

$$U_A = \begin{vmatrix} -4.3984 & 0.0501 & 0 \\ 3.5484 & -0.0834 & 0.0333 \\ -0.75 & 0.0333 & -0.0833 \end{vmatrix} = \frac{-0.0121}{-2.1595 * 10^{-4}} = 56.0314V$$

$$U_B = \begin{vmatrix} -0.0728 & -4.3984 & 0 \\ 0.0501 & 3.5484 & 0.0333 \\ 0 & -0.75 & -0.0833 \end{vmatrix} = \frac{1.3442 * 10^{-3}}{-2.1595 * 10^{-4}} = -6.2246V$$

$$U_C = \begin{vmatrix} -0.0728 & 0.0501 & -4.3984 \\ 0.0501 & -0.0834 & 3.5484 \\ 0.0501 & -0.$$

Vypočteme hledané hodnoty napětí U_{R5} a proudu I_{R5} :

$$U_{R5} = U_C - U_B = 6.5149 - (-6.2246) = 12.7395V$$

$$I_{R5} = \frac{U_{R5}}{R_5} = \frac{12.7395}{30} = 0.4247A$$

Výsledné hodnoty U_{R5} a I_{R5} jsou:

$$U_{R5} = 12.7395V$$

 $I_{R5} = 0.4247A$

1.4 Příklad 4

Pro napájecí napětí platí: $u_1 = U_1.\sin(2 \pi \text{ ft}), u_2 = U_2.\sin(2 \pi \text{ ft})$. Ve vztahu pro napětí $u_{C_1} = U_{C_1} \sin(2\pi ft + \varphi_{C_1})$ určete $|U_{C_1}|$ a φ_{C_1} . Použijte metodu smyčkových proudů.

Pozn.: Pomocné "směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega})$ "

sk.	U_1 $[V]$	$U_2[V]$	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$L_1 [mH]$	$L_2 [mH]$	$C_1 [\mu F]$	$C_2 [\mu F]$	f[Hz]
Н	65	60	10	10	12	160	75	155	70	95

Podle II. Kirchoffova zákona sestavíme rovnice pro napětí ve smyčkách a zavedeme smyčkové proudy I_A, I_B, I_C :

$$Z_{L1}I_A + R_1I_A + Z_{C1}(I_A - I_C) + R_2(I_A - I_B) - U_1 = 0$$

$$R_2(I_B - I_A) + Z_{L2}(I_B - I_C) + Z_{C2}I_B + U_1 = 0$$

$$R_3I_C + Z_{L2}(I_C - I_B) + Z_{C1}(I_C - I_A) + U_2 = 0$$

Rovnice upravíme a vytkneme smyčkové proudy I_A , I_B , I_C :

$$I_A(Z_{L1} + Z_{C1} + R_1 + R_2) - I_B(R_2) - I_C(Z_{C1}) = U_1$$

- $I_A(R_2) + I_B(R_2 + Z_{L2} + Z_{C2}) - I_C(Z_{L2}) = -U_1$
- $I_A(Z_{C1}) - I_B(Z_{L2}) + I_C(R_3 + Z_{L2} + Z_{C1}) = -U_2$

Vypočítáme úhlovou rychlost ω , induktanci a kapacitanci:

$$\omega = 2\pi f = 2\pi * 95 = 596.9026 rad * s^{-1}$$

$$Z_{L1} = j\omega L_1 = 596.9026 * 160 * 10^{-3} j = 95.5044 j\Omega$$

$$Z_{L2} = j\omega L_2 = 596.9026 * 75 * 10^{-3} j = 44.7677 j\Omega$$

$$Z_{C1} = -\frac{1}{\omega C_1} j = -\frac{1}{596.9026 * 155 * 10^{-6}} j = -10.8085 j\Omega$$

$$Z_{C2} = -\frac{1}{\omega C_2} j = -\frac{1}{596.9026 * 70 * 10^{-6}} j = -23.9331 j\Omega$$

Získané hodnoty dosadíme do rovnic:

$$I_A(95.5044j - 10.8085j + 10 + 10) - I_B(10) - I_C(-10.8085j) = 65$$
$$-I_A(10) + I_B(10 + 44.7677j - 23.9331j) - I_C(44.7677j) = -65$$
$$-I_A(-10.8085j) - I_B(44.7677j) + I_C(12 + 44.7677j + -10.8085j) = -60$$

Soustavu 3 rovnic přepíšeme v podobě rozšířené matice:

$$A = \begin{pmatrix} 20 + 84.6959j & -10 & 10.8085j & 65\\ -10 & 10 + 20.8346j & -44.7677j & -65\\ 10.8085j & -44.7677j & 12 + 33.9592j & -60 \end{pmatrix}$$

Cramerovým pravidlem vypočteme smyčkové proudy $I_A a I_C$:

$$det A = \begin{vmatrix} 20 + 84.6959j & -10 & 10.8085j \\ -10 & 10 + 20.8346j & -44.7677j \\ 10.8085j & -44.7677j & 12 + 33.9592j \end{vmatrix} = -31314.0971 + 130812.1564j$$

$$I_{A} = \frac{\begin{vmatrix} 65 & -10 & 10.8085j \\ -65 & 10 + 20.8346j & -44.7677j \\ -60 & -44.7677j & 12 + 33.9592j \end{vmatrix}}{\det A} = \frac{39317.2340 - 4124.5320j}{-31314.0971 + 130812.1564j} =$$

$$= -0.0979 - 0.2771jA$$

$$I_C = \frac{\begin{vmatrix} 20 + 84.6959j & -10 & 65 \\ -10 & 10 + 20.8346j & -65 \\ 10.8085j & -44.7677j & -60 \end{vmatrix}}{\det A} = \frac{360970.3540 - 104918.0650j}{-31314.0971 + 130812.1564j} =$$

$$= -1.3833 - 2.4283jA$$

Ze získaných hodnot vypočteme hledané hodnoty $|U_{C1}|$ a φ_{C1} :

$$U_{C1} = Z_{C1}(I_A - I_C) = (-10.8085j) * ((-0.0979 - 0.2771j) - (-1.3833 - 2.4283j))$$

 $U_{C1} = 23.2512 - 13.8932j$

$$|U_{C1}| = \sqrt{(23.2512)^2 + (-13.8932j)^2} = 27.0858V$$

(IV.kvadrant > I.kvadrant)

$$\varphi_{C1} = -arctg(\frac{ImgU_{C1}}{ReU_{C1}})\frac{\pi}{180}$$

$$\varphi_{C1} = -arctg(\frac{-13.8932}{23.2512})\frac{\pi}{180} = 0.5386rad$$

Výsledné hodnoty $|U_{C1}|$ a φ_{C1} jsou:

$$|U_{C1}| = 27.0858V$$

 $\varphi_{C1} = 0.5386rad$

1.5 Příklad 5

Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C = f(t)$. Proveď te kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

sk.	U[V]	C[F]	$R [\Omega]$	$u_C(0) [V]$
G	75	50	25	3

Využijeme II. Kirchhoffova zákona k sestavení rovnic pro napětí ve smyčce a vyjádříme vztah popisující proud:

$$0 = u_R + u_C - u$$
$$0 = RI + u_C - u$$
$$I = \frac{u - u_C}{R}$$

Dosadíme hodnoty do axiomu, který platí pro tento obvod, a upravíme:

$$u'_{C} = \frac{1}{C}I$$

$$u'_{C} = \frac{u - u_{C}}{RC}$$

$$u'_{C} = \frac{75 - u_{C}}{25 * 50}$$

$$u'_{C} + \frac{1}{1250}u_{C} = \frac{75}{1250}$$

Obecný tvar řešení:

$$u_C(t) = k(t)e^{\lambda t}$$

Vypočítáme λ :

$$\lambda + \frac{1}{1250} = 0$$

$$\lambda = -\frac{1}{1250}$$

Známé hodnoty dosadíme do obecného tvaru řešení a zderivujeme:

$$u_C(t) = k(t)e^{-\frac{1}{1250}t}$$

$$u'_C(t) = k'(t)e^{-\frac{1}{1250}t} - \frac{1}{1250}k(t)e^{-\frac{1}{1250}t}$$

Získané hodnoty dosadíme do rovnice popisující obvod:

$$u'_{C} + u_{C} \frac{1}{1250} = \frac{75}{1250}$$

$$k'(t)e^{-\frac{1}{1250}t} - \frac{1}{1250}k(t)e^{-\frac{1}{1250}t} + \frac{1}{1250}k(t)e^{-\frac{1}{1250}t} = \frac{75}{1250}$$

$$k'(t)e^{-\frac{1}{1250}t} = \frac{75}{1250}$$

Vyjádříme k(t) užitím integrace:

$$k'(t)e^{-\frac{1}{1250}t} = \frac{75}{1250}$$

$$k'(t) = \frac{75(e^{\frac{1}{1250}t})}{1250} = \frac{3e^{\frac{1}{1250}t}}{50}$$

$$\int k'(t)dt = \frac{3e^{\frac{1}{1250}t}}{50}$$

$$k(t) = 75e^{\frac{1}{1250}t} + A$$

Známé hodnoty dosadíme do rovnice obecného tvaru řešení:

$$u_C(t) = k(t)e^{\lambda t}$$

$$u_C(t) = (75e^{\frac{1}{1250}t} + A)e^{-\frac{1}{1250}t}$$

$$u_C(t) = 75 + Ae^{-\frac{1}{1250}t}$$

Vliv počáteční podmínky:

$$u_C(0) = 75 + Ae^{-\frac{1}{1250}0}$$

 $3 = 75 + A$
 $A = -72$

Hledané řešení je:

$$u_C(t) = 75 - 72e^{-\frac{1}{1250}t}$$

Kontrola výpočtu:

Máme rovnici:

$$u_C' + \frac{1}{1250}u_C = \frac{75}{1250}$$

Vyjádříme $u_C'(t)$:

$$u_C(t) = 75 - 72e^{-\frac{1}{1250}t}$$

$$u'_C(t) = \frac{75}{1250} - \frac{1}{1250}u_C$$

$$u'_C(t) = \frac{75}{1250} - \frac{1}{1250}(75 - 72e^{-\frac{1}{1250}t})$$

$$u'_C(t) = \frac{75}{1250} - \frac{75}{1250} + \frac{72}{1250}e^{-\frac{1}{1250}t}$$

$$u'_C(t) = \frac{72}{1250}e^{-\frac{1}{1250}t}$$

Dosadíme do rovnice popisující obvod:

$$\frac{72}{1250}e^{-\frac{1}{1250}t} + \frac{1}{1250}(75 - 72e^{-\frac{1}{1250}t}) = \frac{75}{1250}$$

$$\frac{72}{1250}e^{-\frac{1}{1250}t} - \frac{72}{1250}e^{-\frac{1}{1250}t} + \frac{75}{1250} = \frac{75}{1250}$$

$$\frac{75}{1250} = \frac{75}{1250}$$

$$0 = 0$$

2 Závěr

2.1 Výsledky řešení

Příklad	Zadání	Výsledek
1	Н	$U_{R1} = 52.6623V, I_{R1} = 0.0774A$
2	G	$U_{R3} = 88.9777V, I_{R3} = 0.4943A$
3	С	$U_{R5} = 12.7395V, I_{R5} = 0.4247A$
4	Н	$ U_{C1} = 27.0858V, \varphi_{C1} = 0.5386rad$
5	G	$u_C(t) = 75 - 72e^{-\frac{1}{1250}t}$