STT 861 Compendium - Part Two

Kenyon Cavender

October 12, 2019

Expected Values

<u>Def</u> The **expected value** of a random variable g(X):

$$\mathbb{E}(g(X)) = \begin{cases} \int_{-\infty}^{\infty} g(x) f_X(x) dx & \text{if } X \text{ is continuous} \\ \sum_{X} g(x) f_X(x) & \text{if } X \text{ is discrete} \end{cases}$$

Remark If $-\infty \leq \mathbb{E}(g(x)) \leq \infty$ we say the expectation of g(x) exists. Else it does not exist.

notation: $|\mathbb{E}(g(x))| \leq \infty$

In particular, if g(x) = x, then we get the expected value of X:

$$\mathbb{E}(g(X)) = \begin{cases} \int x f_X(x) dx & \text{if } X \text{ is continuous} \\ \sum x f_X(x) & \text{if } X \text{ is discrete} \end{cases}$$

This is called the **mean** of r.v. X Also denoted by μ or μ_X

Theorem Expectation

a. $\mathbb{E}(ag(x) + b) = a\mathbb{E}(g(x)) + ba, b$ real constants

b. If $g(x) \ge 0$ for all $x \in \mathbb{R}$, then $\mathbb{E}(g(x)) \ge 0$

c. If $g_1(x) \ge g_2(x)$ for all $x \in \mathbb{R}$, then $\mathbb{E}(g_1(x)) \ge \mathbb{E}(g_2(x))$

d. For any real constants a,b if $a \leq X \leq b$ then $a < \mathbb{E}(X) < b$

Remark Expectation

a. If g is a linear fn, $\mathbb{E}[g(x)] = g[\mathbb{E}(x)]$

b. g(x) has finite expectation if $0 \leq \mathbb{E}[|g(x)|] \leq \infty$

Moments

<u>Def</u> Moments For a r.v. X, we define the r^{th} raw moments by

$$\mu'_r = \begin{cases} \int x' f_X(x) dx & \text{if } X \text{ is continuous} \\ \sum x' f_X(x) & \text{if } X \text{ is discrete} \end{cases}$$

$$\mu'_1 = \mathbb{E}(x') = \mathbb{E}(x) = \mu$$

<u>Def</u> The r^{th} central moment is defined as $\mu_r = \mathbb{E}[(x-\mu)^r]$

Theorem 2.3.11

Let $F_X(x)$ and $F_Y(y)$ be two cdfs all of whose moments exist. If X, Y have bounded support

(i.e. Support $(f_X) = \{x : f_X(x) = 0\}$)

Then $F_X(u) = F_Y(u) \, \forall \, u \text{ iff } \mathbb{E}(x') = \mathbb{E}(y') \, \forall \, r \in \mathbb{Z}$

Example: P(Heads) for a coin flip and P(Even) for a die roll have the same distribution, but are different variables.

<u>Def</u> Moment Generating Function: For a r.v. X, the mgf is defined as: $M_X(t) = \mathbb{E}(e^{tx})$ provided the expectation exists for all t in a neighborhood of 0. I.e. $\mathbb{E} < \infty \ \forall \ t \in (-h,h)$ for some h > 0