Codility_

CodeCheck Report: training7HC4C5-NQG

Test Name:

Check out Codility training tasks

Summary Timeline

Tasks Details

1. StoneWall

Cover
"Manhattan
skyline"
using the
minimum
number of
rectangles.

Task Score Correctness 100%

Performance 100%

Task description

You are going to build a stone wall. The wall should be straight and N meters long, and its thickness should be constant; however, it should have different heights in different places. The height of the wall is specified by an array H of N positive integers. H[I] is the height of the wall from I to I+1 meters to the right of its left end. In particular, H[0] is the height of the wall's left end and H[N-1] is the height of the wall's right end.

The wall should be built of cuboid stone blocks (that is, all sides of such blocks are rectangular). Your task is to

Solution

Programming language used: Python

Total time used: 1 minutes 2

Effective time used: 1 minutes 2

Notes: not defined yet

100%

1 von 3 18.07.23, 11:25

compute the minimum number of blocks needed to build the wall.

Write a function:

```
def solution(H)
```

that, given an array H of N positive integers specifying the height of the wall, returns the minimum number of blocks needed to build it.

For example, given array H containing N = 9 integers:

```
H[0] = 8 H[1] = 8 H[2] = 5

H[3] = 7 H[4] = 9 H[5] = 8

H[6] = 7 H[7] = 4 H[8] = 8
```

the function should return 7. The figure shows one possible arrangement of seven blocks.

Write an **efficient** algorithm for the following assumptions:

- N is an integer within the range [1..100,000];
- each element of array H is an integer within the range [1..1,000,000,000].

Copyright 2009–2023 by Codility Limited. All Rights Reserved. Unauthorized copying, publication or disclosure prohibited.

Analysis summary

The solution obtained perfect score.

Analysis

Detected time complexity: O(N)

expand all	Example tests
example	✓ OK
expand all	Correctness tests
▶ simple1	∠ OK
▶ simple2	✓ OK
▶ simple3	∠ OK
▶ simple4	✓ OK
▶ boundary_o	eases VOK
expand all	Performance tests
▶ medium1	✓ OK
► medium2	✓ OK
► medium3	∠ OK
▶ medium4	✓ OK

2 von 3

•	large_piramid	✓ OK
>	large_increasing_decreasing	✓ OK
•	large_up_to_20	✓ OK
•	large_up_to_100	✓ OK
>	large_max	✓ OK

3 von 3