电磁学笔记

Kevin Y.

School of Physical Science,
University of Science and Technology of China
yuhongfei@mail.ustc.edu.cn

Friday $6^{\rm th}$ September, 2024

School of Physical Sciences, University of Science and Technology of China 2023 级 02 系 6 班, Kevin Yu , yuhongfei@mail.ustc.edu.cn

本资料为个人整理笔记,仅供复习参考,不适用于直接学习。任何错误或疏漏,请指正。

First release, June 2024

Contents

第一	一草	电字	1
	1.1	真空中的静电场	1
	1.2	静电场中的导体和电介质	1
	1.3	静电能	1
	1.4	稳恒电流	1
	1.5	交流电路	1
第二	二章	磁学	3
	2.1	真空中的静磁场	3
		2.1.1 Ampere 定律与 Biot-Savart 定律	3
		2.1.2 真空磁场的基本规律	4
		2.1.3 磁矢势	4
		2.1.4 带电粒子在电磁场中的运动	5
	2.2	静磁场中的磁介质	6
		2.2.1 方程与边界条件	6
		2.2.2 B, H, M 之间的关系	6
		2.2.3 磁路	7
		2.2.4 磁介质求解	7
		2.2.5 磁荷法	7
	2.3	磁能	8
		2.3.1 载流线圈的磁能	8
		2.3.2 载流线圈在外磁场中的磁能	8
		2.3.3 磁场的磁能	8
		2.3.4 磁介质存在时的磁能	9
		2.3.5 利用磁能求磁力	9
第三	三章	电磁感应与交流电	11
	3.1	电磁感应定律	11
		3.1.1 感生电动势与动生电动势	11
		3.1.2 涡旋电场	11
		3.1.3 感应电场的基本方程式	12

	3.1.4 电磁感应与相对性原理	12
	3.1.5 互感	13
3.2	互感与自感	13
	3.2.1 自感	13
	3.2.2 自感系数与互感系数的关系	14
	3.2.3 线圈的串联和并联	14
3.3	LRC 电路	15
	3.3.1 LRC 的关系	15
	3.3.2 暂态过程	15
3.4	交流电路	16
	3.4.1 似稳条件	16
	3.4.2 交流电路中的元件	16
	3.4.3 LRC 电路	17
	3.4.4 交流电路的复数表示	17
	3.4.5 交流电路功率	17
&& m1 ≥≥	The state of the s	
		19
4.1	Maxwell 方程组	
	4.1.1 Maxwell 方程组推电荷守恒定律	
4.2	电磁波	
	4.2.1 电磁波的性质	
	4.2.2 导体自由电磁波	
	4.2.3 定态波动方程	23
4.3	电磁场的能量和动量	23
	4.3.1 电磁场的能量	23
	4.3.2 Poynting 矢量	23
	4.3.3 电磁场的动量	24
第五章	相对论电磁学 (H)	27
第六章	附录: 数学知识	29
6.1	场论基础	29
6.2	▽ 算子常用公式	29

第一章 电学

- 1.1 真空中的静电场
- 1.2 静电场中的导体和电介质
 - 1.3 静电能
 - 1.4 稳恒电流
 - 1.5 交流电路

第二章 磁学

2.1 真空中的静磁场

2.1.1 Ampere 定律与 Biot-Savart 定律

电流元 Idl 之间的力满足 Ampere 定律

$$d\mathbf{F}_{12} = k \frac{I_2 d\mathbf{l}_2 \times (I_1 d\mathbf{l}_1 \times \hat{r})}{r_{12}^2}$$

其中 $k = \frac{\mu_0}{4\pi}$ 。

无限长直导线对与它平行的、距离为d的长为l的导线的作用力为(两导线电流均为I):

$$F_l = k \frac{2I^2l}{d}$$

电流密度

$$\boldsymbol{j} = nq\boldsymbol{u}$$

由此可以推出单个点电荷的等效电流元可以写成

$$Id\mathbf{l} = q\mathbf{u}$$

电流元对 r 产生的磁场的大小可以由 Biot-Savart 定律得出:

$$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{Id\mathbf{l} \times \hat{r}}{r^2}$$

由叠加原理,环路电流产生的磁场为:

$$\boldsymbol{B} = \frac{\mu_0}{4\pi} \oint_L \frac{I \mathrm{d} \boldsymbol{l} \times \boldsymbol{r}}{r^3}$$

一些例子

1. 有限长导线产生的磁场

$$B = \frac{\mu_0 I}{4\pi r_0} (\sin \theta_2 - \sin \theta_1)$$

其中 r_0 是场点到导线的距离, θ_1,θ_2 分别是场点与导线电流头、末端连线与 r_0 的夹角, r_0 右侧(逆时针)为正。由此可以推出无限长直导线在距离 r 处产生磁场 $B=\frac{\mu_0 I}{2\pi r}$ 。

2. 半径为r的圆形电流在轴线x处产生磁场

$$B_x = \frac{\mu_0}{2} \frac{a^2 I}{(a^2 + x^2)^{\frac{3}{2}}}$$

若 $a \ll x$,则有 $B_x = \frac{\mu_0}{2\pi} \frac{m}{r^3}$,其中 $\boldsymbol{m} = I\boldsymbol{S} = \pi r^2 I\boldsymbol{n}$,称为电流的磁矩。

3. 载流螺线管内部磁场

$$B = \frac{\mu_0 nI}{2} (\cos \beta_1 + \cos \beta_2)$$

其中 n 为单位长度匝数, β_1,β_2 分别是场点到载流线圈两侧连线与平行于载流线圈方向的夹角(取 $\left[0,\frac{\pi}{2}\right]$)。

注:实际上应该是 $\cos\theta_1-\cos\theta_2$,但 θ_1,θ_2 取法略有差异,此处采用便于记忆的表示方法,二者结果一致。

4. 无限大平面电流密度为 i 时产生的磁场:

$$B = \frac{\mu_0 i}{2}$$

2.1.2 真空磁场的基本规律

积分形式:

$$\begin{cases} \iint_{S} \mathbf{B} \cdot d\mathbf{S} = 0 \\ \oint_{L} \mathbf{B} \cdot d\mathbf{l} = \pm \mu_{0} \sum_{i} I_{i} \end{cases}$$

微分形式:

$$\begin{cases} \nabla \cdot \boldsymbol{B} = 0 \\ \nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{j} \end{cases}$$

2.1.3 磁矢势

磁矢势 A 的来源:

$$oldsymbol{B} =
abla imes oldsymbol{A}$$

磁矢势的表达式:

$$\mathbf{A} = \frac{\mu_0}{4\pi} \oint_I \frac{I \mathrm{d} \mathbf{l}}{R}$$

对于磁矩有:

$$m{A}(m{r}) = rac{\mu_0}{4\pi r^3}(m{m} imes m{r})$$

利用上述磁矩与磁矢势的公式可以得到磁矩 m 在 r 处产生的磁场为

$$\boldsymbol{B} = \frac{\mu_0}{4\pi} \left[\frac{3(\boldsymbol{m} \cdot \boldsymbol{r})\boldsymbol{r}}{r^5} - \frac{\boldsymbol{m}}{r^3} \right]$$

磁矢势的意义:在任意时刻,**A**沿任意一闭合回路的线积分等于该时刻通过回路内的磁通量。对磁矢势我们有

$$\nabla \cdot \mathbf{A} \equiv 0$$

同时我们仿照电场的标势可以得到磁场中磁矢势的 Poisson 方程:

$$abla^2 \boldsymbol{A} = -\mu_0 \boldsymbol{j}$$

和 Laplace 方程

$$\nabla^2 \boldsymbol{A} = 0$$

2.1.4 带电粒子在电磁场中的运动

带电粒子在电磁场中的受力可以写为

$$F = q(E + v \times B)$$

带电粒子会在场中某一方向做匀速直线运动,称为"漂移速度"。常见场中漂移速度:

- 1. 电场漂移: $v_E = \frac{E \times B}{B^2}$
- 2. 不均匀磁场漂移: $\boldsymbol{v}_D = \frac{\frac{1}{2}mv_{\perp}^2}{qB} \frac{\boldsymbol{B} \times \nabla B}{B^2}$
- 3. 任意场的漂移: $\mathbf{v}_F = \frac{\mathbf{F} \times \mathbf{B}}{qB^2}$

在轴对称、缓变的非均匀磁场中

带电粒子运动中磁矩 μ 守恒。 根据

$$\mu = \frac{\frac{1}{2}mv_{\perp}^2}{B}, \ R = \sqrt{\frac{2\mu m}{q^2 B}}$$

可推出随着 B 增大, v_{\perp}^2 增大, R 减小。

一些应用

1. 在磁镜中: $\frac{\frac{1}{2}mv^2\sin^2\theta}{B_0} = \frac{\frac{1}{2}mv^2}{B}$, 设磁镜极大磁场为 B_m , 则发射角大于 θ_m 的粒子将被捕获:

$$\sin \theta_m = \sqrt{\frac{B_0}{B_m}} = \sqrt{\frac{1}{R_{mi}}}$$

其中 R_{mi} 称为磁镜比。

2. Hall Effect:

$$U = Eb = vBb = \frac{nqbdvB}{nqd} = \frac{IB}{nqd} = K\frac{IB}{d}$$

其中 d 为 Hall 元件在磁场方向的高度,已知 I, B, d,可以计算 $K = \frac{1}{nq}$ 。

3. 磁矩在磁场中受梯度力:

$$\pmb{F}_{\not \models} = (\pmb{m} \pmb{u} \cdot \nabla) \pmb{B}$$

受力矩

$$oldsymbol{M} = oldsymbol{\mu} imes oldsymbol{B} + oldsymbol{r} imes oldsymbol{F}_{
eth}$$

2.2 静磁场中的磁介质

2.2.1 方程与边界条件

磁介质中基本方程:

$$\begin{cases} \iint_{S} \boldsymbol{B} \cdot d\boldsymbol{S} = 0 \\ \oint_{L} \boldsymbol{H} \cdot d\boldsymbol{l} = \sum_{i} I_{i} \end{cases}$$

本构方程:

$$egin{cases} oldsymbol{H} = rac{oldsymbol{B}}{\mu_0} - oldsymbol{M} \ oldsymbol{B} = \mu_r \mu_0 oldsymbol{B} \end{cases}$$

磁化电流:

$$egin{cases} oldsymbol{j'} =
abla imes oldsymbol{M} \ oldsymbol{i'} = (oldsymbol{M_1} - oldsymbol{M_2}) imes oldsymbol{n} \end{cases}$$

边界条件:

1. 法向连续: $B_{1n} = B_{2n}$

2. 切向不连续: $H_{1\tau} - H_{2\tau} = j_0$

2.2.2 *B*, *H*, *M* 之间的关系

定义

$$M = \chi_m H$$

其中 χ_m 为磁化率 (磁化系数), 带入本构方程得到

$$\boldsymbol{B} = \mu_0(\boldsymbol{H} + \boldsymbol{M}) = \mu_0(\chi_m + 1)\boldsymbol{H} = \mu_r \mu_0 \boldsymbol{H}$$

其中 $\mu_r = \chi_m + 1$ 为相对磁导率, $\mu = \mu_r \mu_0$ 为绝对磁导率。

2.2.3 磁路

在理想磁路中,磁通量 Φ 可看作电流,磁动势 $\mathcal{E}_m=NI$,磁位差 $U_m=\int_L \boldsymbol{H}\cdot\mathrm{d}\boldsymbol{l}$,磁阻 $R_m=\int_L \frac{\mathrm{d}l}{\mu_0\mu_iS_i}\,.$ 磁通量满足 Kirchhoff 第一定律

$$\sum_{i} \Phi_i = 0$$

磁阻合磁位差满足 Kirchhoff 第二定律

$$\sum_{i} U_{mi} = \sum_{i} \mathscr{E}_{mj}$$

全磁路满足 Ohm 定律:

$$U_m = \Phi R_m$$

2.2.4 磁介质求解

磁介质界面与 B 平行时

先假设全空间无磁介质,由电流 I_0 求出 B_0 ,由 $H = \frac{B_0}{\mu_0}$ 得到充满介质后

$$\boldsymbol{B_i} = \mu_{ri} \boldsymbol{B_0}$$

磁介质界面与 B 垂直时

界面无磁化电流, $H_i = \frac{B}{\mu_{ri}\mu_0}$,通过环路定理

$$\oint_{I_i} \frac{\mathbf{B}}{\mu_{ri}\mu_0} \cdot \mathrm{d}\mathbf{l} = \sum_{i} I_i$$

解出 B, 带入本构方程求解 H。

2.2.5 磁荷法

磁荷法中解题思想与电荷一致,且有替代关系:

- 1. 磁荷 q_m 替代电荷 q;
- 2. **H** 替代 **E**, **B** 替代 **D**;
- 3. 磁偶极子 $p_m = \mu_0 m$ 替代电偶极子 p;
- 4. 定义辅助矢量 $J = \mu_0 M$ 替代极化强度 P;

5. 常量替代 $\sigma_m(\sigma)$, $\mu_0(\varepsilon_0)$, $\mu_r(\varepsilon_r)$, $\chi_m(\chi_e)$ 。

同理参考电像法也可采用磁像法。

2.3 磁能

2.3.1 载流线圈的磁能

单个载流线圈 L 在通过电流为 I 时储存的能量为

$$W = \frac{1}{2}LI^2$$

两个互感为 M 的线圈,分别通入 I_1 、 I_2 的电流,则其磁能为

$$W = \pm M I_1 I_2$$

故互感线圈总能量为

$$\begin{cases} W = \frac{1}{2}L_1I_1^2 + L_2I_2^2 + MI_1I_2 \\ W = \frac{1}{2}L_1I_1^2 + L_2I_2^2 - MI_1I_2 \end{cases}$$

顺接互感取正, 逆接互感取负。

n 个载流线圈组成的系统的总磁能为(令 $M_{ii} = L_i$)

$$W = \sum_{i,j=1}^{n} \frac{1}{2} M_{ij} I_i I_j$$

2.3.2 载流线圈在外磁场中的磁能

载流线圈的能量满足

$$W = \boldsymbol{m} \cdot \boldsymbol{B}$$

其中磁矩 $\boldsymbol{m} = \sum_{i=1}^{n} I_i \cdot \boldsymbol{S}_i$

对于如原子核外电子运动形成的磁矩等"三无"小环流 m(无源、无热效应、无感应电动势),其在磁场 B 中的磁势能为

$$\Delta W = -\boldsymbol{m} \cdot \boldsymbol{B}$$

2.3.3 磁场的磁能

类比于电场, 磁场的磁能密度

$$w = \frac{1}{2} \boldsymbol{B} \cdot \boldsymbol{H}$$

磁场的总能量为

$$W = \frac{1}{2} \iiint_{V} \mathbf{B} \cdot \mathbf{H} dV$$

且有如下两个类比:

$$W_e = \frac{1}{2} \sum_{i=1}^n Q_i U_i \longleftrightarrow W_m = \frac{1}{2} \sum_{i=1}^n I_i \Phi_i$$

$$W_e = \frac{1}{2} \iiint_V (\rho_e U) dV \longleftrightarrow W_m = \frac{1}{2} \iiint_V (\boldsymbol{j} \cdot \boldsymbol{A}) dV$$

2.3.4 磁介质存在时的磁能

介质存在对磁场的影响反映在自感和互感系数中。如无限长螺线管中充满磁介质,则

$$L = \mu_0 \mu_r n^2 V$$

对于磁介质本构方程 $\mathbf{B} = \mu_0(\mathbf{H} + \mathbf{M})$,带入磁能密度方程中得到

$$w = \frac{1}{2}\mu_2 H^2 + \frac{1}{2}\mu_0 \boldsymbol{H} \cdot \boldsymbol{M}$$

式中前一项为宏观磁化能密度,后一项为磁化功。

2.3.5 利用磁能求磁力

可以类比于电场能求电场里的方式,用虚功原理等方式求解。

1. 磁通不变:

$$\mathbf{F} = -\nabla W$$

2. 电流不变:

$$\mathbf{F} = \nabla W$$

3. 线圈在外磁场中:

$$m{F} = (m{m} \cdot
abla) m{B}, \quad m{L}_{ heta} = m{m} imes m{B}$$

第三章 电磁感应与交流电

3.1 电磁感应定律

感应电动势

$$\mathscr{E} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

定律 3.1 (Lenz's law) 当导体在磁场中运动时,导体中由于出现感应电流而受到的磁场力必然阻碍此导体运动。

楞次定律的实质是能量守恒律。

3.1.1 感生电动势与动生电动势

对 $\mathbf{B}(x,y,z,t)$ 求对 t 的全导数有

$$\frac{\mathrm{d}\boldsymbol{B}}{\mathrm{d}t} = \frac{\partial \boldsymbol{B}}{\partial t} + \nabla \times (\boldsymbol{B} \times \boldsymbol{v})$$

上式中前一项产生感生电动势,后一项产生动生电动势。

对一段闭合回路我们有

$$\mathscr{E} = \oint_{\mathcal{E}} (\boldsymbol{v} \times \boldsymbol{B}) \cdot d\boldsymbol{l}$$

对一段导体我们也类似的有

$$\mathscr{E} = \int_a^b (\boldsymbol{v} \times \boldsymbol{B}) \cdot \mathrm{d} \boldsymbol{l}$$

3.1.2 涡旋电场

变化的磁场周围激发一种新的电场, 称为涡旋电场, 涡旋电场不满足环路定理:

$$\oint_L \boldsymbol{E}_{ik} \neq 0$$

从涡旋电场与感应电动势的关系比较我们可以有:

$$\begin{cases} \mathscr{E} = -\frac{\mathrm{d}}{\mathrm{d}t} \iint_{S} \boldsymbol{B} \cdot \mathrm{d}\boldsymbol{S} = -\frac{\mathrm{d}}{\mathrm{d}t} \iint_{S} (\nabla \times \boldsymbol{A}) \cdot \mathrm{d}\boldsymbol{S} = -\oint_{L} \frac{\partial \boldsymbol{A}}{\partial t} \cdot \mathrm{d}\boldsymbol{l} \\ \\ \mathscr{E} = \oint_{L} \boldsymbol{E}_{\widecheck{K}} \cdot \mathrm{d}\boldsymbol{l} \end{cases} \Rightarrow \boldsymbol{E}_{\widecheck{K}} = -\frac{\partial \boldsymbol{A}}{\partial t}$$

一般情况下空间中的电场为静电场与涡旋电场的叠加,所以空间电场 E 与标势 U 和矢势 A 的关系为

$$\boldsymbol{E} = -\nabla U - \frac{\partial \boldsymbol{A}}{\partial t}$$

Maxwell 假定总电场仍满足 Gauss 定律 $\iint_S \mathbf{E} \cdot d\mathbf{S} = \frac{1}{\varepsilon_0} \sum_{\text{inner}} q_i$,故对涡旋电场有

$$\oint_{S} \boldsymbol{E}_{\widehat{\boldsymbol{\mathcal{M}}}} \cdot \mathrm{d}\boldsymbol{S} = 0$$

由 Faraday 电磁感应定律 $\oint_L {m E} \cdot {m l} = - \iint_S \frac{\partial {m B}}{\partial t} \cdot {m S}$ 中对同一边界 L,取 S 的任意性,我们可以推出

$$\nabla \cdot \boldsymbol{B} = const.$$

若空间某处原来只有静磁场,即 $\nabla \cdot \boldsymbol{B}\Big|_{t=0} = 0$,则即使后来有了变化的磁场仍然有

$$\nabla \cdot \boldsymbol{B} \equiv 0$$

3.1.3 感应电场的基本方程式

$$\oint_{L} \mathbf{E}_{\hat{k}\hat{k}} \cdot d\mathbf{l} = -\iint_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{S}$$

$$\oiint_{G} \mathbf{E}_{\hat{k}\hat{k}} \cdot d\mathbf{S} = 0$$

3.1.4 电磁感应与相对性原理

S 系中观察到电场 E 和磁场 B, S' 系中观察到电场 E' 和磁场 B', S' 系相对 S 系以速度 v 运动,则(平行与垂直相对于速度方向)

$$\begin{cases} E'_{\parallel} = E_{\parallel} \\ E'_{\perp} = \gamma (\boldsymbol{E} + \boldsymbol{v} \times \boldsymbol{B})_{\perp} \\ B'_{\parallel} = B_{\parallel} \\ B'_{\perp} = \gamma (\boldsymbol{B} - \frac{\boldsymbol{v}}{c^2} \times \boldsymbol{E})_{\perp} \end{cases}$$

3.1.5 互感

定义 3.1 (互感) 当一个线圈中的电流变化时,在另一个线圈中产生感应电动势称为互感电动势。

线圈 1 通有电流 I_1 ,激发磁场在线圈 2 中的磁通匝链数 $\Phi_{21} = M_{21}I_1$,同理线圈 2 激发磁场在线圈 1 中的磁通匝链数 $\Phi_{12} = M_{12}I_2$,此为互感系数 M_{ij} 的第一种定义。我们可求得

$$\Phi_{ij} = \frac{\mu_0}{4\pi} \oint_{L_1} \oint_{L_2} \frac{\mathrm{d}l \boldsymbol{l}_1 \cdot \mathrm{d} \boldsymbol{l}_2}{r}$$

下标对称性 $M_{ij} = M_{ji}$ 。

线圈 i 在线圈 j 中的互感电动势

$$\mathscr{E}_j = -\frac{\mathrm{d}\Phi_{ji}}{\mathrm{d}t} = -M\frac{\mathrm{d}I_i}{\mathrm{d}t}$$

3.2 互感与自感

3.2.1 自感

定义 3.2 (自感) 线圈中的电流变化会在线圈自身中产生感应电动势称为自感电动势。

线圈激发磁场在线圈滋生中的磁通匝链数 $\Phi = LI$, L 为自感, 单位: 亨利 (H)

$$L = M_{11} = \frac{\mu_0}{4\pi} \oint_{L_1} \oint_{L_1} \frac{\mathrm{d}l \mathbf{l}_1 \cdot \mathrm{d} \mathbf{l}_1}{r}$$

I 变化激发线圈中的感应电动势为

$$\mathscr{E}_j = -\frac{\mathrm{d}\Phi_{ji}}{\mathrm{d}t} = -L\frac{\mathrm{d}I_i}{\mathrm{d}t}$$

理想螺线管的自感系数为

$$L = \mu_0 n^2 l S = \mu_0 \frac{N^2}{l^2} V$$

磁通匝链数指与磁感线交链的电流所围区域的磁通,对N匝螺线管,若通过各匝线圈的磁通量不想等,第i匝线圈磁通量为 Φ_1 ,则

$$\Psi = \sum \Phi_i, \ L = \frac{\Psi}{I} = \frac{1}{I} \sum \Phi_i$$

而对粗导线内部磁通只与一部分电流 I' 交链, 故

$$d\Psi = \frac{I'}{I} d\Phi$$

整个电流回路磁通匝链数

$$\Psi = \int \frac{I'}{I} \mathrm{d}\Phi$$

L 又称为电磁惯量。

3.2.2 自感系数与互感系数的关系

一般地

$$M = k\sqrt{L_1 L_2}$$

其中 k 为无量纲系数, k=0 时无耦合, k=1 时理想耦合, 变压器主副线圈之间 $k\approx 0.98$ 。

3.2.3 线圈的串联和并联

对于任意 n 线圈系统, 我们有

$$\begin{pmatrix} \Phi_1 \\ \Phi_2 \\ \vdots \\ \Phi_n \end{pmatrix} = \begin{pmatrix} L_{11} & M_{12} & \dots & M_{1n} \\ M_{21} & L_{22} & \dots & M_{2n} \\ \vdots & & & \vdots \\ M_{n1} & M_{n2} & \dots & L_{nn} \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \\ \vdots \\ I_n \end{pmatrix}$$

由右手螺旋定则定义螺线管的 N 极与 S 极。

1. 两线圈串联时, 若为异名端相接则为磁场加强, 自感为

$$L = L_1 + L_2 + 2M$$

若为异名端相接,则为磁场减弱,可认为 M < 0。自感为

$$L = L_1 + L_2 - 2M$$

2. 两线圈并联, 若同名端同侧, 则

$$L = \frac{L_1 L_2 - M^2}{L_1 + L_2 - 2M}$$

无耦合情况下

$$M = 0 \Rightarrow L = \frac{L_1 L_2}{L_1 + L_2} \quad or \quad \frac{1}{L} = \frac{1}{L_1} + \frac{1}{L_2}$$

若为异名段同侧,则用-M代替上式中的M即可,即

$$L = \frac{L_1 L_2 - M^2}{L_1 + L_2 + 2M}$$

讨论

两个相同的线圈并联,若同名端同侧且理想耦合,则 $L = L_0$;若异名端同侧且理想耦合,则 L = 0。

3.3 LRC 电路

3.3.1 LRC 的关系

任意介电常数 ε 、磁导率 μ 、电导率 σ 、长度 l 的元件, 有

$$LC = \mu \varepsilon l^{2}$$

$$\frac{L}{R} = \mu \sigma l^{2}$$

$$RC = \frac{\varepsilon}{\sigma}$$

3.3.2 暂态过程

变化的电场的作用下电流是非稳恒电流, 欧姆定律微分形式对非稳恒电流仍然成立

$$\boldsymbol{j} = \sigma(\boldsymbol{E}_{\begin{subarray}{c} \boldsymbol{f} \end{subarray}} + \boldsymbol{E}_{\begin{subarray}{c} \boldsymbol{f} \end{subarray}} + \boldsymbol{K})$$

但 Kirchhoff 第一和第二定律不再适用。

场源从 P_1 传播到 P_2 的时间差为 t, T 为电场随时间变化的周期,称 $t \ll T$ 为**似稳条件**,似稳场在任意时刻可看作为稳恒场。

现在讨论三种暂态过程。

1. RL 暂态过程

对于 RL 回路欧姆定律充电时有 $IR = \mathcal{E}_L + \mathcal{E}$, $\mathcal{E}_L = -L \frac{\mathrm{d}I}{\mathrm{d}t}$,解得

$$I = I_0(1 - e^{-\frac{t}{\tau}})$$

其中 $I_0 = \frac{\mathcal{E}}{R}$, $\tau = \frac{L}{R}$ 称为回路的时间常数或弛豫时间。 放电时欧姆定律变为 $-IR + \mathcal{E} = 0$,解得

$$I = I_0 e^{-\frac{t}{\tau}}$$

2. RC 暂态过程

对于 RC 回路欧姆定律充电时有 $\frac{q}{C} + IR = \mathcal{E}$, $I = \frac{dq}{dt}$, 解得

$$q = q_0(1 - e^{-\frac{t}{\tau}})$$

其中 $q_0 = C\mathcal{E}$, $\tau = RC$ 。

放电时欧姆定律变为 $IR + \frac{q}{C} = 0$,解得

$$q = q_0 e^{-\frac{t}{\tau}}$$

3. LRC 暂态过程全回路欧姆定律

$$L\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + R\frac{\mathrm{d}q}{\mathrm{d}t} + \frac{q}{C} = \mathscr{E}$$

$$\frac{\mathrm{d}^2 q}{\mathrm{d}t^2} + 2\beta \frac{\mathrm{d}q}{\mathrm{d}t} + \omega_0^2 q = \omega_0^2 q_0$$

3.4 交流电路

3.4.1 似稳条件

若交流电路中场点与源点距离 l 远小于电磁波波长 λ ,则可将电路中电流、电荷和磁场分布堪称缓慢变化的稳恒电路。此时

$$l \ll cT$$
 or $f \ll \frac{c}{l}$

称为似稳条件。

3.4.2 交流电路中的元件

交流电路中的元件的特性必须用两个参数描述:阻抗 Z 与相位 φ 。

1. 电阻元件

阻抗 $Z_R = R$,相位 $\varphi_R = 0$ 。阻抗即电阻,与频率无关;相位差为 0,电压与电流始终同步;电流和电压关系仍满足欧姆定律。

2. 电感元件

感抗 $Z_L = \omega L$,相位 $\varphi_L = \frac{\pi}{2}$ 。感抗与频率成正比,频率越高感抗越大;电压的相位超前于电流 $\frac{\pi}{2}$ 。

3. 电容元件 容抗 $Z_C=\frac{1}{\omega C}$,相位 $\varphi=-\frac{\pi}{2}$ 。容抗与频率成反比,频率越高容抗越小;电压的相位滞后于电流 $\frac{\pi}{2}$ 。

3.4.3 LRC 电路

串联电路

串联电路 I 相同,由矢量图及 $Z = \frac{U}{I}$,全电路阻抗

$$Z = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}$$

电压与电流相位差

$$\varphi = \arctan \frac{\omega L - \frac{1}{\omega C}}{R}$$

并联电路

并联电路 U 相同,全电路阻抗

$$\frac{1}{Z} = \sqrt{\left(\frac{1}{R}\right)^2 + \left(\omega C - \frac{1}{\omega L}\right)^2}$$

电流与电压相位差

$$\varphi = \arctan \frac{\frac{1}{\omega L} - \omega C}{\frac{1}{R}}$$

3.4.4 交流电路的复数表示

复数 j。各种元件的复阻抗:

1. 电阻

$$\tilde{Z}_R = R$$

2. 电感

$$\tilde{Z}_L = \mathrm{j}\omega L$$

3. 电容

$$\tilde{Z}_C = \frac{1}{\mathrm{j}\omega C}$$

交流电路在复数域满足串并联规律及 Kirchhoff 定律。

3.4.5 交流电路功率

对于交流电路

$$i(t) = I_m \cos(\omega t + \varphi_i), \ u(t) = U_m \cos(\omega t + \varphi_u)$$

我们有其瞬时功率

$$P(t) = \frac{1}{2}U_m I_m [\cos(2\omega t + \varphi_i + \varphi_u) + \cos\varphi]$$

其中 $\varphi = \varphi_i - \varphi_u$,为电压和电流的相位差。并可以由 $\overline{P} = \frac{1}{T} \int_0^T P(t) dt$ 求得平均功率

$$\overline{P} = \frac{1}{2} U_m I_m \cos \varphi = U_e I_e \cos \varphi$$

其中 $U_e = \frac{U_m}{\sqrt{2}}, I_e = \frac{I_m}{\sqrt{2}}$,称为电压和电流的有效值。 $\cos \varphi$ 称为**功率因数**。

功率因数

在复平面内将 I_e 分为 I_{\parallel} 和 I_{\perp} (相对 U_e 的方向),前者称为有功电流,后者称为无功电流。功率因数

$$\cos \varphi = \frac{\overline{P}}{IU} = \frac{P_{\text{fid}}}{P}$$

有功电流供电器使用和消耗,无功电流在输电线路中来回循环。

品质因数

定义品质因数

$$Q = \frac{P_{\overline{\text{T}},\overline{\text{U}}}}{P_{\overline{\text{A}},\overline{\text{U}}}}$$

品质因数 Q 的几种含义

1. LRC 谐振电路中

$$Q = \frac{1}{R} \sqrt{\frac{L}{C}} = 2\pi \frac{W_s}{W_R}$$

与电路储能和耗能的比值有关。

2. 谐振电路中通频带宽度

$$\Delta f = \frac{f_0}{Q}$$

即通频带宽度与 Q 成反比, Q 越大损耗越小, 谐振电路的选择性越强。

3. LRC 电路中串联时

$$\frac{U_C}{U} = \frac{U_L}{U} = Q$$

并联时

$$\frac{I_C}{I} = \frac{I_L}{I} = Q$$

4. 电流一个周期后衰减比满足

$$\ln\left[\frac{i(t)}{i(t+T)}\right] = \frac{\pi}{Q}$$

第四章 Maxwell 电磁理论

4.1 Maxwell 方程组

$$egin{cases}
abla \cdot oldsymbol{D} &=
ho_0 \
abla imes oldsymbol{E} &= -rac{\partial oldsymbol{B}}{\partial t} \
abla \cdot oldsymbol{B} &= 0 \
abla imes oldsymbol{H} &= oldsymbol{j}_0 + rac{\partial oldsymbol{D}}{\partial t} \end{cases}$$

其中我们定义了电位移通量 $\Phi_D = \iint_S \boldsymbol{D} \cdot \mathrm{d}\boldsymbol{S}$,并通过电位移通量定义了位移电流

$$I_D = \frac{\mathrm{d}\Phi_D}{\mathrm{d}t}$$

微分形式为

$$\boldsymbol{j}_D = rac{\mathrm{d} \boldsymbol{D}}{\mathrm{d} t}$$

总电流密度 $\boldsymbol{j} = \boldsymbol{j}_0 + \boldsymbol{j}_D$

4.1.1 Maxwell 方程组推电荷守恒定律

对
$$\nabla \times \boldsymbol{H} = \boldsymbol{j}_0 + \frac{\partial \boldsymbol{D}}{\partial t}$$
 两边取散度,由 $\nabla \cdot (\nabla \times \boldsymbol{H}) = 0$ 得到

$$abla \cdot \boldsymbol{j}_0 +
abla \cdot rac{\partial \boldsymbol{D}}{\partial t} =
abla \cdot \boldsymbol{j}_0 + rac{\partial (
abla \cdot \boldsymbol{D})}{\partial t} = \boldsymbol{j}_0 + rac{\mathrm{d}
ho_0}{\mathrm{d}t} = 0$$

上式即为电荷守恒定律。

4.2 电磁波

在自由空间中 Maxwell 方程组与本构方程为

$$\begin{cases} \nabla \cdot \boldsymbol{D} = 0 \\ \nabla \times \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t} \\ \nabla \cdot \boldsymbol{B} = 0 \\ \nabla \times \boldsymbol{H} = \frac{\partial \boldsymbol{D}}{\partial t} \end{cases}, \begin{cases} \boldsymbol{D} = \varepsilon_0 \boldsymbol{E} \\ \boldsymbol{B} = \mu_0 \boldsymbol{H} \end{cases}$$

对 $\nabla \times \mathbf{E}$ 取旋度有

$$\nabla \times (\nabla \times \boldsymbol{E}) = -\nabla \times \frac{\partial \boldsymbol{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \boldsymbol{B}) = -\mu_0 \varepsilon_0 \frac{\partial^2 \boldsymbol{E}}{\partial t^2}$$

同理还有

$$\frac{\partial^2 \mathbf{B}}{\partial t^2} - \frac{1}{\mu_0 \varepsilon_0} \nabla^2 \mathbf{B} = 0$$

$$\mathbf{u}(x,t) = A\exp(\mathrm{i}k(x-ct)) + B\exp(\mathrm{i}k(x-ct))$$

4.2.1 电磁波的性质

令 $\mathbf{u} = \mathbf{E}$ 或 \mathbf{H} , 由 $\mathbf{u} = \mathbf{u}_0 \exp(-\mathrm{i}(\omega t - \mathbf{k} \cdot \mathbf{r}))$, 得到算子满足

$$\nabla = \mathrm{i} \boldsymbol{k}, \ \frac{\partial}{\partial t} = \mathrm{i} \omega$$

因此我们有

$$\begin{cases} \mathbf{k} \cdot \mathbf{u} = 0 \\ \mathbf{k} \times \mathbf{E} = \mu_0 \mu_r \omega \mathbf{H} \\ \mathbf{k} \times \mathbf{H} = -\varepsilon_0 \varepsilon_r \omega \mathbf{E} \end{cases}$$

联立可得

$$(\varepsilon_0 \varepsilon_r \omega - \frac{k^2}{\mu_0 \mu_r \omega}) \mathbf{E} = 0$$

上式由非零解的条件为系数等于零,即

$$\frac{\omega}{k} = \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}} = \frac{c}{\sqrt{\mu_r \varepsilon_r}}$$

由上式还可以推出电波和磁波振幅满足

$$\sqrt{\varepsilon_0 \varepsilon_r} E_0 = \sqrt{\mu_0 \mu_r} H_0$$

令 $n = \sqrt{\varepsilon_r \mu_r}$, 为折射率,则电磁波有如下性质:

- 1. 电磁波是横波,因为 $k \perp E, k \perp H, E, H, k$ 构成右手系;
- 2. 传播速度

$$v = \frac{\omega}{k} = \frac{c}{n}$$

3. 振幅比

$$\frac{E_0}{H_0} = \frac{1}{\sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_r}} = \frac{c}{n} = v$$

4.2.2 导体自由电磁波

在导体中 Maxwell 方程组与本构方程为

$$\begin{cases} \nabla \cdot \mathbf{D} = 0 \\ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} \end{cases}, \begin{cases} \rho = 0 \\ \mathbf{j} = \sigma \mathbf{E} \end{cases}$$

对 $\nabla \times \mathbf{E}$ 取旋度有

$$\nabla \times (\nabla \times \boldsymbol{E}) = -\nabla \times \frac{\partial \boldsymbol{B}}{\partial t} = -\frac{\partial}{\partial t} (\nabla \times \boldsymbol{B}) = -\frac{\partial}{\partial t} (\nabla \times \mu \boldsymbol{H}) = -\sigma \mu \frac{\partial \boldsymbol{E}}{\partial t} - \mu \varepsilon \frac{\partial^2 \boldsymbol{E}}{\partial t^2}$$

带入 $\nabla \times (\nabla \times \mathbf{E}) = -\nabla^2 \mathbf{E}$, 得到:

$$\nabla^2 \mathbf{E} - \sigma \mu \frac{\partial \mathbf{E}}{\partial t} - \mu \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

同理还有

$$\nabla^2 \boldsymbol{B} - \sigma \mu \frac{\partial \boldsymbol{B}}{\partial t} - \mu \varepsilon \frac{\partial^2 \boldsymbol{B}}{\partial t^2} = 0$$

上式中 $-\sigma\mu \frac{\partial u}{\partial t}$ 为阻尼项。

对任意满足
$$\nabla^2 \mathbf{u} - \sigma \mu \frac{\partial \mathbf{u}}{\partial t} - \mu \varepsilon \frac{\partial^2 \mathbf{u}}{\partial t^2} = 0$$
,其解为平面波

$$\boldsymbol{u}(z,t) = \boldsymbol{u_0} \exp(-\beta z) \exp(\mathrm{i}(\alpha z - \omega t)) = \boldsymbol{u_0} \exp((\mathrm{i}\alpha - \beta)z - \mathrm{i}\omega t)$$

待定系数法令 $\alpha, \beta > 0$ 得到 (其中 $a = \omega \sqrt{\frac{\mu \varepsilon}{2}}, b = \frac{\sigma}{\omega \varepsilon}$):

$$\begin{cases} \alpha = a[\sqrt{1+b^2}+1]^{\frac{1}{2}} \\ \beta = a[\sqrt{1+b^2}-1]^{\frac{1}{2}} \end{cases}$$

$$\diamondsuit$$
 $\tilde{k} = \alpha + \mathrm{i}\beta$, $k = |\tilde{k}| = \sqrt{\alpha^2 + \beta^2} = \omega \sqrt{\mu \varepsilon} (1 + b^2)^{\frac{1}{4}}$. آلا

$$\frac{B_0}{E_0} = \frac{k}{\omega} = \sqrt{\mu \varepsilon} (1 + b^2)^{\frac{1}{4}}$$

相移

$$\tan \varphi = \frac{\beta}{\alpha} = \sqrt{\frac{\sqrt{1+b^2}-1}{\sqrt{1+b^2}+1}}$$

良导体

对于良导体而言, $b = \frac{\sigma}{\omega \varepsilon} \gg 1$, 此时有

$$\alpha \approx \beta = \frac{\omega \mu \sigma}{2}$$

相移

$$\tan \varphi = \frac{\beta}{\alpha} = 1 \Rightarrow \varphi = \frac{\pi}{4}$$

当波幅降为 $\frac{1}{e}$ 时的深度称为穿透深度 δ :

$$\delta = \frac{1}{\beta} = \sqrt{\frac{2}{\omega\mu\sigma}}$$

与真空中对比,真空中 $c=\frac{E_0}{B_0}=\frac{1}{\sqrt{\varepsilon_0\mu_0}}$;而良导体中 $\frac{E_0}{B_0}\approx\frac{\omega}{\sigma\mu_0}$,与光 c 速无关。

在良导体内

$$abla \cdot oldsymbol{D} =
ho = arepsilon
abla \cdot oldsymbol{E} = rac{arepsilon}{\sigma}
abla \cdot oldsymbol{j} = -rac{arepsilon}{\sigma} rac{\partial
ho}{\partial t}$$

解得 $\rho = \rho_0 \exp\left(-\frac{\sigma}{\varepsilon}t\right)$, 当 $b = \frac{\sigma}{\varepsilon\omega} \gg 1$ 时我们认为导体在远小于一个周期的时间内电荷完全流失,故

$$\rho(t) = 0$$

4.2.3 定态波动方程

对于不考虑介质色散的单色波,令 $k = \omega \sqrt{\mu \varepsilon}$,我们可以将 Maxwell 方程组改写成

$$\begin{cases} \nabla^{2} \mathbf{E} + k^{2} \mathbf{E} = 0 \\ \nabla \cdot \mathbf{E} = 0 \\ \mathbf{B} = -\frac{i}{\omega} \nabla \times \mathbf{E} \end{cases} \text{ or } \begin{cases} \nabla^{2} \mathbf{B} + k^{2} \mathbf{B} = 0 \\ \nabla \cdot \mathbf{B} = 0 \\ \mathbf{E} = \frac{i}{\omega \mu \varepsilon} \nabla \times \mathbf{B} \end{cases}$$

4.3 电磁场的能量和动量

4.3.1 电磁场的能量

电磁场能量密度

$$w = \frac{1}{2} \left(\varepsilon E^2 + \frac{1}{\mu} H^2 \right)$$

定义 Poynting 矢量

$$m{S} \equiv m{E} imes m{H}$$

则有

$$-rac{\partial w}{\partial t} =
abla \cdot m{S} + m{j} \cdot m{E}$$

对上式取体积分利用 Gauss 定理有

$$-\frac{\partial W}{\partial t} = \iiint_{V} \boldsymbol{j} \cdot \boldsymbol{E} dV + \oiint_{\sigma} \boldsymbol{S} \cdot d\boldsymbol{s}$$

上式左边为电磁场能量的减小,右边第一项为V内导体内消耗的能量,第二香味通过闭合曲面 σ 流出V的能量。

4.3.2 Poynting 矢量

$$\boldsymbol{S} = \boldsymbol{E} \times \boldsymbol{H} = \frac{1}{2} (\boldsymbol{D} \cdot \boldsymbol{E} + \boldsymbol{B} \cdot \boldsymbol{H}) \boldsymbol{v} = (w_E + w_M) \boldsymbol{v} = w \boldsymbol{v}$$

其中
$$\mathbf{v} = \frac{\omega}{k}\hat{k}, \ \frac{1}{v^2} = \varepsilon\mu$$
。

定义 4.1 波的强度 I 定义为 S 的时间平均值。对于真空中平面电磁波有

$$I = \langle S \rangle = \frac{E_0 B_0}{2\mu_0} = \frac{E_0^2}{2c\mu_0} = \frac{cB_0^2}{2\mu_0}$$

Poynting 矢量是一个人为定义的矢量,对静场没有异议,真正有意义的时通过一个封闭 曲面的数值(或者 $\nabla \cdot S$)。

4.3.3 电磁场的动量

相对论动量和能量之间的关系为

$$E^2 = P^2 c^2 + m_0^2 c^4$$

因为光子静质量 $m_0 = 0$, 因此

$$P = \frac{E}{c}$$

真空中的电磁波能量密度

$$g = \frac{S}{c} = D \times B$$

由电磁场的动量的定义我们可以计算光压:

$$p = \frac{1}{c}(1+r)S = \frac{1+r}{c}EH$$

其中r为反射率,定义为 $r:=\frac{S_{\overline{\mathbb{D}}}}{S_{\overline{\mathbb{W}}}}$ 。

电磁场的观念

场是电磁学的核心,静电场的自作用能为 0,电子产生的场不能对自己产生作用(Feynman, 1945)。

事物的"价值"只有通过其他物体的"相互作用"才能体现。

Maxwell 方程组

$$\begin{cases} \nabla \cdot \mathbf{D} = 0 \\ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \cdot \mathbf{B} = 0 \\ \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} \end{cases}$$

本构方程

$$egin{cases} oldsymbol{D} = arepsilon_0 oldsymbol{E} \ oldsymbol{B} = \mu_0 oldsymbol{H} \ oldsymbol{j} = \sigma oldsymbol{E} \end{cases}$$

电场中的能量与动量

能量密度

$$w = \frac{1}{2} \boldsymbol{D} \cdot \boldsymbol{E} + \frac{1}{2} \boldsymbol{B} \cdot \boldsymbol{H}$$

能流密度

$$oldsymbol{S} = oldsymbol{E} imes oldsymbol{H}$$

动量密度

$$oldsymbol{g} = oldsymbol{D} imes oldsymbol{B}$$

动量流密度

$$\mathbb{T} = \omega \mathbb{I} - \boldsymbol{B}\boldsymbol{H} - \boldsymbol{D}\boldsymbol{E}$$

角动量密度

$$oldsymbol{l} = oldsymbol{r} imes oldsymbol{g}$$

角动量流密度

$$\mathbb{M} = -\mathbb{T} \times r$$

第五章 相对论电磁学 (H)

第六章 附录: 数学知识

- 6.1 场论基础
- 6.2 ▽ 算子常用公式