

Privacy Threat Modeling in Practice

Cat Easdon, Privacy Engineering Team Lead, Dynatrace

Why threat model?

Impact assessments

- GDPR: data protection impact assessment (DPIA) required if a new processing activity is likely to result in high risk
 - Also known as a privacy impact assessment (PIA)
- Common in risk-based digital regulation, e.g. the Al Act's fundamental rights impact assessment (FRIA)

High-level process overview

- 1. Determine that an impact assessment is needed
- 2. Document the data flows and processing activities
 - 1. Purpose for processing, legal basis, necessity, proportionality, etc.
- 3. Identify and evaluate risks to natural persons (Today's focus)
- 4. Identify existing mitigations
- 5. Identify and prioritize additional necessary mitigations
- 6. Sign-off (with action plan)

Risk assessment

Risk assessment is hard!

Dariusz Kloza, Thibaut D'hulst and Malik Aouadi. What could possibly go wrong? On risks to the rights and freedoms of natural persons in EU data protection law, their typologies and their identification, Technology and Regulation, 2024

66 ...given the complexity of contemporary processing operations, the elusive nature of risk often makes it difficult for data subjects and for controllers and processors alike to have a clear and comprehensive understanding of what could possibly go wrong.

Risk assessment is hard!

A dataflow diagram that even an AI can't comprehend

Our motivating example today

- Your company is acquiring a company that provides encrypted email services
- Integrating their product with your SSO will mean that timestamped EU customer IP addresses are transferred to Boggleland on each login
- You are conducting a DPIA and are unsure how to determine:
 - What could go wrong for data subjects?
 - How bad would it be (for us and them!)?
 - Should we do anything about it?

Enter threat modeling...

Those questions sound like the threat modeling manifesto:

- 1. What are we working on?
- 2. What can go wrong?
- 3. What are we going to do about it?
- 4. Did we do a good enough job?

Core threat modeling concepts

- Anyone can threat model!
- No one system diagram or single person's understanding will be perfect – create multiple diagrams and collaborate with multiple stakeholders
- Conduct early and frequent analysis; iterate and improve over time

Risk assessment revisited

Risk assessment with threat modeling

- **Risk identification** (*who*, *why*, *what*, and *how*): collaborative threat modeling
- Risk evaluation: risk = severity/impact * likelihood
 - Simple, right? Just calculate and prioritize accordingly 😜
 - Unfortunately very context-specific more on this later

Threat modeling in the software development lifecycle

Threat modeling in security

STRIDE

MITRE ATT&CK®

Reconnaissance 10 techniques	Resource Development 8 techniques	Initial Access 11 techniques	Execution 16 techniques	Persistence 23 techniques	Privilege Escalation 14 techniques	Defense Evasion 45 techniques	Credential Access 17 techniques	Discovery 33 techniques	Lateral Movement 9 techniques	Collection 17 techniques	Command and Control 18 techniques	Exfiltration 9 techniques	Impact 15 techniques
Active Scanning (0/3)	Acquire Access	Content Injection Drive-by	Cloud Administration Command	Account Manipulation (0/7)	Abuse Elevation Control Mechanism	Abuse Elevation Control Mechanism (0/6)	Adversary-in-the- Middle (0/4)	Account Discovery (0/4)	II Exploitation of Remote Services	Adversary-in-the- Middle (0/4)	Application Layer Protocol (0/5)	Automated Exfiltration (0/1)	Account Access Removal
Sather Victim Host Information (0/4)	Acquire Infrastructure (0/8)	Compromise	Command and Scripting Interpreter	BITS Jobs	(0/6) — Access Token	Access Token Manipulation	Brute Force (0/4)	Application Window Discovery	Internal Spearphishing	Archive Collected	Communication Through Removable	Data Transfer Size Limits	Data Destruction (0/1)
Sather Victim Identity	Compromise Accounts (0/3)	Exploit Public- Facing Application	(0/12)	Boot or Logon Autostart Execution	Manipulation (0/5)	BITS Jobs	Credentials from Password Stores	Browser Information Discovery	Lateral Tool Transfer	Audio Capture	Media	Exfiltration Over	Data Encrypted for Impact
ather Victim Network	Compromise	External Remote Services	Container Administration Command	(0/14) Boot or Logon	Account Manipulation (0/7)	Build Image on Host	Exploitation for Credential Access	Cloud Infrastructure Discovery	Remote Service Session Hilacking	Automated Collection	Content Injection Data Encoding	Alternative Protocol (0/3)	Data Manipulation (0):
ather Victim Org	Develop Capabilities	. Hardware Additions	Deploy Container	Initialization Scripts	II Boot or Logon Autostart Execution	Debugger Evasion	Forced	Cloud Service Dashboard	(0/2)	Browser Session	Data Elicoding (0)2)	Exfiltration Over	Defacement (0/2)
nformation (0/4)	(0/4)	Phishing (0/4)	ESXi Administration	Cloud Application	(0/14)	Deobfuscate/Decode Files or Information	_	Cloud Service Discovery	Remote Services	Hijacking	Dynamic Resolution	Exfiltration Over	Disk Wipe (0/2)
hishing for Information	Establish Accounts (0/3)	Replication Through	Command Exploitation for Client	Integration Compromise Host	Boot or Logon Initialization Scripts	Deploy Container	Forge Web Credentials (0/2)	Cloud Storage Object	Replication Through Removable Media	Clipboard Data Data from Cloud	(0/3) Encrypted Channel	" Other Network Medium (0/1)	Email Bombing Endpoint Denial of
earch Closed Sources	Obtain Capabilities	Removable Media	Execution	Software Binary	(0/5) Create or Modify	Direct Volume Access	Input Capture (0/4)	Container and Resource	Software Deployment	Storage	(0/2)	Exfiltration Over Physical Medium	Service (0/4)
earch Open Technical	Stage Capabilities	Supply Chain Compromise (0/3)	Input Injection Inter-Process	Create Account (0/3)	II System Process	Domain or Tenant Policy Modification (0/2)	Modify Authentication Process	Discovery Debugger Evasion	Tools Taint Shared Content	Data from Configuration	Fallback Channels	(0/1) Exfiltration Over	Financial Theft Firmware Corruption
earch Open	(0/6)	Trusted Relationship	Communication (0/3)	System Process (0/5)	Domain or Tenant Policy Modification	Email Spoofing	Multi-Factor	Debugger Evasion Device Driver Discovery	Use Alternate	Repository (0/2)	Ingress Tool Transfer	Web Service (0/4)	Inhibit System Recover
/ebsites/Domains (0/3)	1	Valid Accounts (0/4)	Native API	Event Triggered Execution (0/17)	(0/2)	Execution Guardrails (0/2)	Authentication Interception	Domain Trust Discovery	Authentication Material (0/4)	Information Repositories (0,15)	Multi-Stage Channels	Scheduled Transfer	Network Denial of
earch Victim-Owned lebsites		Wi-Fi Networks	Scheduled Task/Job (0/6)	Exclusive Control	Escape to Host Event Triggered	Exploitation for Defense Evasion	Multi-Factor Authentication	File and Directory Discovery		Data from Local System	Non-Application Layer Protocol	Transfer Data to Cloud Account	Service (0/2) Resource Hijacking
			Serverless Execution	External Remote Services	Execution (0/17)	File and Directory Permissions Modification	Request Generation	Group Policy Discovery	Data from Network	Non-Standard Port		Service Stop	
			Shared Modules Software Deployment	Hijack Execution	Exploitation for Privilege Escalation	(0/2) Hide Artifacts (0/14)	Network Sniffing II OS Credential	Log Enumeration Network Service Discovery		Shared Drive Data from	Protocol Tunneling		System Shutdown/Reboot
			Tools	Implant Internal	Hijack Execution	Hijack Execution Flow	Dumping (0/8)	Network Share Discovery		Removable Media	Proxy (0/4)		Sharaownykeboor
			System Services (0/3)	II Image	Process Injection	Impair Defenses (0/11)	Steal Application II Access Token	Network Sniffing		Data Staged (0/2)	II Remote Access Tools		
			User Execution (0)4) Windows Management	Modify Authentication Process	Scheduled	Impersonation	Steal or Forge Authentication	Password Policy Discovery		Email Collection (0/3)	Traffic Signaling (0/2)		
			Instrumentation	Modify Registry	Task/Job (0/5)	Indicator Removal (0/10)	II Certificates	Peripheral Device Discovery		Input Capture (0/4)	Web Service (0/3)		

Privacy threat modeling: LINDDUN

LINDDUN

Image <u>designed by Freepik</u>

LINKABLE USER REQUESTS

P|**>**

— Hotspo

INBOUND PERSONAL

Threat Source ORGANIZATIONAL,
EXTERNAL

User requests can be linked because they contain attributes that can be combined into quasi-identifiers.

- ? Is there a set of attributes that can serve as an identifier?
- ? Is there other data sent together with that quasi-identifier?
- ? Is there existing data to link it to?
- Q A small set of locations can be used to uniquely link activity to a single user.
- A subset of attributes may be sufficient to uniquely link data to a particular individual.
- A browser fingerprint combines properties (OS, browser, display size,
 ...) that together are unique to a website visitor.
- The use of quasi-identifiers enables the linking of new data items to a user profile to gather increasing amounts of personal data, even without unique identifiers.
- Many requests contain a lot of different properties that, when combined, are unique to

L2 LINDDUN

DETECTABLE USERS Threat Source • OUTBOUND FLOWS Inferring the existence of a user from the system's response. ? Does the system show status messages (informational, warnings, errors) ? Are the status messages distinct when an item (a file, user, ...) does not • A 'wrong password' error message reveals the existence of the account. A firewall responding with 'port closed' reveals the existence of a device at the IP address. Being able to detect the existence Prevent information leakage by not revealing the existence of items in ▲ Simply knowing the existence of data may be sufficient to infer sensitive

LINDDUN

D1

Privacy threat modeling: PLOT4AI

PLOT4AI

Privacy threat modeling: MITRE PANOPTIC™

MITRE PANOPTICTM

- Privacy attack: (in)action(s) that cause(s) a perceived privacy harm, that do(es) not solely involve cybersecurity violations
- 2x taxonomies based on 300 non-breach cases in the US
- Goal: standardized classification and 'threat language' for privacy attacks like MITRE ATT&CK® for security

Excerpt from MITRE's open training materials

Who? Why?

Open Internet Tools Project

Technology expertise level

used to locate her

Technology use

Bundle

Sarah

- · Early 30s, American
- . Stay-at-home mother of two Moved across country from her family
- and friends · Abusive husband works in a gun shop
- and is friends with police . Fled to a shelter for safety

Access locations

- · Cannot use cell phone at shelter; revealing location information puts everyone there at risk
- . Can use laptop there, with Tor or VPN to hide location

· Facebook to stay in touch with family

- Threats from technology use · Husband's police friends can track her
- · Tells friends not to tag her location Shelter staff helps her use Tor Browser phone and Internet use, seeing where and when she logs into Facebook
- · Has a borrowed network and a landline phone, no cell

· Newly sensitive to ways technology can be

· Not aware of connections between

Facebook and browser tracking

"Help me reach my support network while hiding my location"

Physical threats

- Abuse Death
- · Harm to children

- . To protect her location at all times
- · To stay in touch with her friends and family
- . To access resources which will help her maintain independence
- . To move closer to her support networks
- · For her support networks to maintain the kind of attention to her safety as she does

Technology expertise level

- Social media savvy
- · Less smart about operational security

Technology use

- . Mobile all the way Blogs but doesn't run own server
- Participant in online groups
- Cavalier about posting and privacy settings
- · Uses desktop software less often

Shura

- Mid-20s gay manUrban Russia
- Blogger/publisher
- · Lives with a bunch of roommates
- · Excited by the work he does; sometimes a little too bold for his safety

"Help me remain unknown, yet still be a visible leader."

Access locations

· Anywhere there's connectivity

Threats from technology use

. Lose day job due to being "outed" by thugs researching his activity on social

Physical threats Beating or death

Jail for activism around LGBT issues

- . To remain anonymous BUT wants his pseudonym to be well-known
- Wants to communicate to a lot more people
- · Find places to meet in public

Joseph

- 15 years old
- · Poor/middle income family · Very strict, conservative background
- Suburban Idaho
- · Goes to a Christian school
- . Isolated by parents: limited exposure to other kinds of people
- . Shy, introverted; feels powerless
- Questioning whether gay or trans: I don't feel like a boy. What am I?

Access locations

- · Socially savvy on the Internet but not at all
- · Not as savvy with desktop software

privacy savvy Technology use

Technology expertise level

- Uses mobile apps, primarily Facebook, Instagram, Snapchat
- Uses Facebook, Yahoo, AOL on desktop
- · Talks to one or two close friends
- · Afraid to show any hint of what he's thinking · Researching identity: Doesn't know the
- Looking for community, like minds

term "transgender

28.10.25

- · At home, parents monitor all their activity with net nanny, shared computer
- · Home and school internet are filtered, monitored
- · Key sites might be blocked

Threats from technology use

· Found out via search results, email, etc

"Help me find support from people I can trust."

Physical threats

- · Kicked out of school or home
- Feels suicidal
- · Possibility of physical abuse/drug abuse Depression/anxiety

Needs

- To know he's OK!
- . To research privately without leaving a trace
- · Access to community to know there are others like him
- · Need physical help immediately
- . To communicate privately and anonymously
- A mentor

Example: IP address transfer to Boggleland

Recap

- Your company is acquiring a company that provides encrypted email services
- Integrating their product with your SSO will mean that timestamped EU customer IP addresses are transferred to Boggleland on each login
- You are conducting a DPIA and are unsure how to determine:
 - What could go wrong for data subjects?
 - How bad would it be (for us and them!)?
 - Should we do anything about it, and if so what?

Data transferred

```
2025-10-28T06:32:45.123Z [INFO] User login: uuid=123e4567-e89b-12d3-a456-426614174000, ip_address= 83.164.100.0, event=login_success
```


Who? Why?

What might go wrong – any ideas?

Who? Why?

xCompass potential attacker: nation state with legal power to access our SSO logs in Boggleland and ISP logs

Vulnerable (legitimate) users:

- Journalists and their sources; lawyers and their clients
- Government officials; activists
- Other high-risk categories depending on political context (potentially reprisals based on religion, political affiliation, sexual orientation, physical or mental health, ...)

What? How? - MITRE PANOPTIC™

- Environment: digital (POC01.01)
- **Distribution:** one to one (PC02.02)
- Interaction: ongoing interaction (PC03.01.03)
- Engagement: populations with sensitive characteristics (PC04.01.02-08 + 10-11): race & ethnicity, political opinion, religious and philosophical beliefs, gender, sexual orientation & gender identity, sex life, genetics, illness or injury, other context-specific populations
- **Data type:** persistent direct identifier (PC05.15.01), persistent pseudo-identifier (PC05.15.02), location (PC05.01)

What? How? - MITRE PANOPTIC™

Potential privacy threat actions by us:

- Notice and consent: absent, no opt-out
- Collection: application or device use, tracking & affording tracking
- Identification: identifier assignment, implicit identification
- Manageability: no individual control of information disclosure
- Sharing: affording revelations
- Deviations: deviating from stated policy, deviating from regulatory requirements

What? How? - MITRE PANOPTIC™

Potential privacy threat actions by the nation state:

- Processing: deriving new information, behavioral analysis
- Use: implication, targeting, intrusion, reprisal

What? How? – PLOT4AI

From the Privacy & Data Protection category:

- Are we using metadata that could reveal personal data or behavior patterns? Yes
- Are we processing special categories of personal data or sensitive data? No, but the fact someone uses the service is revealing
- Are we transferring personal data to countries that lack adequate privacy protections? Yes
- Are we able to comply with all the applicable GDPR data subject rights? Maybe

What? How? - LINDDUN

- Linking IP address locations for a specific user over time to potentially identify them or detect that a target does indeed use the service
- Leading to non-repudiation of the fact the user used the service
- Unawareness & unintervenability: without sufficient notice,
 vulnerable users will be unable to protect themselves
- Non-compliance: cross-border data transfer (basis?), notice, consent

Case study

Time to split into groups! Check your handouts for the case study

Impact and likelihood

Risk evaluation is hard!

Likelihood	Definition 1 (data protection !!)	Definition 2 (security)	Definition 3 (government)
Rare	Has never occurred	Once in 10 years	Once in 100 years
Unlikely	Annually	Once in 5 years	Once in 25 years
Possible	Monthly	Once in 2 years	Once in 10 years
Likely	Weekly	Once a year	Once in 3 years
Certain	Almost daily	Multiple times a year	Once a year

Agree on definitions for likelihood and impact that makes sense in your organization's context!

Risk evaluation in context: Catalan DPA's FRIA model (2025)

Risk matrix: effort to overcome the prejudice and to reverse adverse effects

Level	Definition			
Low	Suffered prejudice can be overcome without any problem (e.g. time spent amending information, annoyances, irritations, etc.)			
Medium	A few difficulties (e.g. extra costs, fear, lack of understanding, stress, minor physical ailments, etc.)			
High	Serious difficulties (e.g. economic loss, property damage, worsening of health, etc.)			
Very high	May not be overcome (e.g. long-term psychological or physical ailments, death, etc.)			

FRIA model

- Impact = (gravity * effort to overcome the prejudice and reverse its effects)
- Likelihood = (probability * exposure)
- Overall risk = (gravity * effort to overcome the prejudice and reverse its effects) * (probability * exposure)

FRIA model

- Prejudice X is unlikely to occur (low probability)
- But the majority of the identified population would be affected (high exposure)
- Minor prejudice encountered by affected individuals/groups (low gravity)
- Suffered prejudice could be overcome with a few difficulties such as stress and extra cost (medium effort)
- Overall risk = high likelihood * medium severity = high risk

Q&A