GRADIENTS OF NEURAL NETWORKS

 $h^1 = f^1(h^0, W^1)$ $h^2 = f^2(h^1, W^2)$ $h^3 = f^3(h^2, W^3)$

Scott Jordan

THE STRUCTURE OF NEURAL NETWORKS

ABSTRACT PROCESS

We can write the neural network outputs as a sequential process.

$$h^{0} = x$$

$$h^{1} = f^{1}(h^{0}, W^{1})$$

$$h^{2} = f^{2}(h^{1}, W^{2})$$

$$\vdots$$

$$h^{i} = f^{i}(h^{i-1}, W^{i})$$

$$\vdots$$

$$\vdots$$

$$h^{k} = f^{k}(h^{k-1}, W^{k})$$

To be concise, we can write the network output as $h^k = f(x, \theta)$, $\theta = \{W^i\}_{i=1}^k$

LOSS FUNCTION

EXAMPLE

$$l(\theta) = \frac{1}{2} \mathbf{E} \left[\left(f(X, \theta) - Y \right)^2 \right] \Rightarrow \begin{cases} \text{will apply it backward} \\ \text{for each hwith rispect} \\ \text{to } \text{we for each layer} \end{cases}$$

We have a batch of data D = (x, y) of m samples

 $x \in \mathbb{R}^{m \times n_0}$ and $y \in \mathbb{R}^{m \times 1}$, x_i and y_i are the features and target for the i^{th} data point.

$$l_D(\theta) = \frac{1}{m} \frac{1}{2} \sum_{i=1}^{m} (f(x_i, \theta) - y_i)^2$$

LOSS FUNCTION

EXAMPLE

$$l(\theta) = \frac{1}{2} \mathbf{E} \left[\left(f(X, \theta) - Y \right)^2 \right]$$

We have a batch of data D = (x, y) of m samples

 $x \in \mathbb{R}^{m \times n_0}$ and $y \in \mathbb{R}^{m \times 1}$, x_i and y_i are the features and target for the i^{th} data point.

SET UP

$$\nabla l(\theta) = ?$$

GRADIENT DESCENT

$$\frac{\partial \mathcal{L}(\Theta)}{\partial h_{4,1}} = \frac{(h_{1,1} - y_{1})}{\partial h_{4,1}} = \frac{\partial \mathcal{L}(h_{2}, \omega^{3})}{\partial h_{4,1}} = \frac{h^{2} \omega_{\text{max way fin}}^{3}}{|y_{1}y_{2}y_{2}y_{3}y_{4}y_{5}}$$
SET UP

$$\nabla l(\theta) = ?$$

$$\frac{\partial \mathcal{L}(\Theta)}{\partial h_{4,1}} = \frac{(h_{1,1} - y_{1})}{(h_{2,1} - y_{1})} = \frac{\partial \mathcal{L}(h_{2,1} - y_{1})}{(h_{2,1} - y_{2,1} - y_{2,1})} = \frac{\partial \mathcal{L}(h_{2,1} - y_{2,1})}{(h_{2,1} - y_{2,1})} = \frac{\partial \mathcal{L}(h_{2,1} - y_{2,$$

We need to know compute the loss function's gradient with respect to all the parameters in the neural network before running gradient descent.

BACKPROP

FORWARD PASS

Compute the outputs of each layer and the loss $l_D(\theta)$

$$h^{0} = x$$

$$h^{1} = f^{1}(h^{0}, W^{1})$$

$$h^{2} = f^{2}(h^{1}, W^{2})$$

$$\vdots$$

$$h^{i} = f^{i}(h^{i-1}, W^{i})$$

$$\vdots$$

$$h^{k} = f^{k}(h^{k-1}, W^{k})$$

BACKPROP

BACKWARD PASS

Using the results of the forward pass, apply the chain rule to compute the derivatives for each layer

Compute
$$\frac{\partial l_D(\theta)}{\partial f(X,\theta)}$$

Then compute
$$\frac{\partial l_D(\theta)}{\partial W^k}$$
 and $\frac{\partial l_D(\theta)}{\partial h^{k-1}}$

Then compute
$$\frac{\partial l_D(\theta)}{\partial W^{k-1}}$$
 and $\frac{\partial l_D(\theta)}{\partial h^{k-2}}$

Repeat till W^1

$$h^{0} = x$$

$$h^{1} = f^{1}(h^{0}, W^{1})$$

$$h^{2} = f^{2}(h^{1}, W^{2})$$

$$\vdots \qquad \uparrow \qquad \uparrow$$

$$h^{i} = f^{i}(h^{i-1}, W^{i})$$

$$\vdots \qquad \uparrow \qquad \uparrow$$

$$h^{k} = f^{k}(h^{k-1}, W^{k})$$

$$\frac{\partial l_{D}(\theta)}{\partial f(X, \theta)}$$

BACKPROP

BACKWARD PASS

What are the partial derivatives for $\frac{\partial l_D(\theta)}{\partial W^i}$ and $\frac{\partial l_D(\theta)}{\partial h^i}$?

NEXT CLASS

Next Class — Training Neural Networks