

HOME DOWNLOAD EBOOK SITE MAP CONTACT

Significance Test for Linear Regression

Assume that the error term ϵ in the linear regression model is independent of x, and is normally distributed, with zero mean and constant variance. We can decide whether there is any **significant relationship** between x and y by testing the null hypothesis that $\beta = 0$.

Problem

Decide whether there is a significant relationship between the variables in the linear regression model of the data set faithful at .05 significance level.

Solution

We apply the Imfunction to a formula that describes the variable eruptions by the variable waiting, and save the linear regression model in a new variable eruption.Im.

```
> eruption.lm = lm(eruptions ~ waiting, data=faithful)
```

Then we print out the F-statistics of the significance test with the summary function.

```
> summary(eruption.lm)
call:
lm(formula = eruptions ~ waiting, data = faithful)
Residuals:
   Min
             1Q Median
                             30
                                    Мах
-1.2992 -0.3769 0.0351 0.3491 1.1933
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                        0.16014
                                          <2e-16 ***
(Intercept) -1.87402
                                  -11.7
             0.07563
                        0.00222
                                   34.1
                                          <2e-16 ***
waiting
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.497 on 270 degrees of freedom
Multiple R-squared: 0.811,
                                Adjusted R-squared: 0.811
F-statistic: 1.16e+03 on 1 and 270 DF, p-value: <2e-16
```

Answer

As the p-value is much less than 0.05, we reject the null hypothesis that $\beta = 0$. Hence there is a significant relationship between the variables in the linear regression model of the data set faithful.

Note

Further detail of the summary function for linear regression model can be found in the R documentation.

Search this site:

Search

R Tutorial eBook

R Tutorials R Introduction Elementary Statistics with R Qualitative Data Quantitative Data Numerical Measures Probability Distributions Interval Estimation Hypothesis Testing Type II Error Inference About Two Populations Goodness of Fit Analysis of Variance Non-parametric Methods Simple Linear Regression Estimated Simple Regression Equation Coefficient of Determination Significance Test for

Linear Regression

Confidence Interval for Linear Regression

Prediction Interval for

Linear Regression

Tags: Elementary Statistics with R error term linear regression significance test In

summary faithful

Residual Plot
Standardized Residual
Normal Probability Plot
of Residuals
Multiple Linear Regression
Logistic Regression
GPU Computing with R

Recent Articles

- Installing CUDA Toolkit 6.5 on Ubuntu 14.04 Linux
 September 3, 2014
- Installing CUDA Toolkit 6.5 on Fedora 20 Linux
 - September 3, 2014
- Hierarchical Linear Model

 July 22, 2013
- Bayesian Classification with Gaussian Process
 January 6, 2013

Copyright © 2009 - 2015 Chi Yau All Rights Reserved Theme design by styleshout Fractal graphics by zyzstar Adaptation by Chi Yau