LCA of BST

<u>M</u>

ROOT to NODE path --> LCA (5, 30)

- 1. 13 and 18 --> 15
- 2. 15 and 18 --> 15
- 3. 5 and 18 --> 12
- 4. 5 and 70 --> 50
- 5. 5 and 30 --> 25
- 6. 5 and 25 --> 25
- 7. 30 and 25 --> 25

ROOT to NODE path --> LCA (12, 62)

- 2. 15 and 18 --> 15
- 3. 5 and 18 --> 12
- 4. 5 and 70 --> 50
- √5. 5 and 30 --> 25
- 6. 5 and 25 --> 25
- 7. 30 and 25 --> 25

Case1: both nodes on left --> go left

Case2: both nodes on right --> go right

Case3: both nodes in between --> ans

T(N) --> O(h)

S(N) --> O(h)

13 218

Closest BST Value

$$|3 - 4| = 1$$

- 1. find min diff
- 2. return min value --> multiple ans

2. min_value with min diff = \(\frac{1}{2} \)

every node

if (min_diff == delta) --> if (min_value > curr.val) --> min_value

- 1. tar < root --> go left
- 2. tar > root --> go right

2. min_value with min diff _____ + ____

Construct BST from Inorder

Construct from PreOrder

 \mathcal{J}

left tree nodes --> smaller or eqaul than root right tree nodes --> greater than root 3, 2, 1, 6, 5, 7 Range for every tree 3, 3 -inf, 2