

Mismatch: Hardware vs. Software

	Hardware	Software
Model/Component scale	Small/Moderate	Large
Re-configurability	Hard	Easy
Accuracy vs. Power	Tradeoff	Accuracy
Training implementation	Hard	Easy
Precision vs. Limited programmability	Low precision (often a few bits)	Double (high) precision
Connectivity realization	Hard	Easy

Precision & Limited programmability

Decrease precision without re-training

Re-train low precision AlexNet on ImageNet

Precision	Top-5 Accuracy
32-bit floating point	80.3%
16-bit floating point	80.3%
8-bit fixed point	80.1%
4-bit fixed point	14.0%
2-bit fixed point	0.9%

Example: TrueNorth

TrueNorth Chipset Architecture

The TureNorth Dev Board.*

* A. S. Cassidy, etc, SC14

- 4,096 neurosynaptic cores;
- 1 million neurons;
- 256 million synapses;
- A 65mW real-time neurosynaptic processor.

A Network of Neurosynaptic Cores

A 256×256 Synaptic Crossbar

Low-resolution Integer Weight

Spike Communication

Overview of TrueNorth Operation

Learning and Deploying of TrueNorth

Mapping Neural Networks in IBM TrueNorth

Traditional Neural Networks

Neural Networks with **TrueNorth**

Binary/low Integer precision

McCulloch-Pitts neuron model:

$$y' = w' \cdot x' - \lambda$$

$$z' = \begin{cases} 1, & \text{Reset } y' = 0; \\ 1 & \text{If } y' > = 0. \\ 0, & \text{Reset } y' = 0; \\ & \text{If } y' < 0. \end{cases}$$

MNIST with TrueNorth

Learning and Deploying of TrueNorth

Connectivity Probabilities *P*

(a) Tea learning
Traditional Floating
Point Precision

Connectivity Samples

| (b) Tea deploying
Binary/low integer precision
sampled by float-point probability

$p_{i} = \frac{w_{i}}{c^{(i)}}, c^{(i)} \in \{c_{0}, c_{1}\}\$ $\begin{cases} P(w'_{i} = c^{(i)}) = p_{i}, \\ P(w'_{i} = 0) = 1 - p_{i} \end{cases}$ $\begin{cases} P(x'_{i} = 1) = x_{i}, \\ P(x'_{i} = 0) = 1 - x_{i} \end{cases}$

$$y' = \sum_{i=0}^{n-1} w'_i x'_i$$

$$E\{y'\} = E\left\{\sum_{i=0}^{n-1} w'_i x'_i\right\}$$

$$= \sum_{i=0}^{n-1} E\{w'_i\} E\{x'_i\}$$

$$= \sum_{i=0}^{n-1} p_i c^{(i)} x_i\} = \sum_{i=0}^{n-1} x_i w_i$$

$$= y$$

$$E\{z'\} = P(y' \ge 0)$$

$$= \frac{1}{2} \left[1 + erf\left(\frac{-\mu_{y'}}{\sqrt{2}\sigma_{y'}}\right) \right]$$

MNIST Accuracy:

- 95.27% in Caffe
- 90.04% @1 NN copy & 1 *spf* in TrueNorth
- 92.74% @ 1 NN copy & 4 spf in TrueNorth
- 94.63% @16 NN copies & 1 *spf* in TrueNorth (NN neural networks; *spf* spikes per frame)

Learning and Deploying of TrueNorth

Connectivity Probabilities P

J → D 1

Connectivity Samples

(a) Tea learning

(b) Tea deploying

Spiking Randomness:

Determined by External Data

Synaptic Randomness:

$$var\{w_{i}^{'}\} = E\{(w_{i}^{'})^{2}\} - E\{w_{i}^{'}\}^{2} = p_{i}(1-p_{i})$$

$$\Delta y = y' - y = \sum_{i=0}^{n-1} w'_i x'_i - \sum_{i=0}^{n-1} w_i x_i$$

$$E\{\Delta y\} = 0$$
$$var\{\Delta y\} = \sum_{i=0}^{n-1} var\{w_i x_i\}$$

Unbiased approximation w/ variance is affected by both synaptic and spiking randomness.

Minimizing Deployment Variance

Minimization target: $\widehat{E}(w) = E_D(w) + D\lambda t \times LE_p(P)$ Probability Regulation

$$E_{p_1}(P) = |||P - a| - b||$$

= $\sum_{i=1}^{M} |p_i - a| - b$

Variance Evaluation

— Variance

— Penalty

Experiment Results

Sparsity & Computation Cost

Messages

- Neuromorphic engineering, also known as neuromorphic computing, is a concept developed by Carver Mead in the late 1980s, describing the use of very-large-scale integration (VLSI) systems containing electronic analog circuits to mimic neuro-biological architectures present in the nervous system. (wikipedia.org)
 - Hardware (computing) and Software (bio-model and algorithm)
- "Chicken and Egg"
 - Another hardware-software co-design problem?
 - Harder than that as we do not have a solid theory and implementation foundation.
- Coordination and Standardization are needed in research of neuromorphic computing.

Sponsors

Yiran Chen

EI-lab