Introduction to Audio Content Analysis

Module 9.0: Audio Fingerprinting

alexander lerch

introduction

overview

corresponding textbook section

Chapter 9: Audio Fingerprinting (pp. 163-167)

lecture content

- introduction to audio fingerprinting
- in-depth example for fingerprint extraction and retrieval

learning objectives

- discuss goals and limitations of audio fingerprinting systems as compared to watermarking or cover song detection systems
- describe the processing steps of the Philips fingerprinting system

introduction

overview

corresponding textbook section

Chapter 9: Audio Fingerprinting (pp. 163-167)

lecture content

- introduction to audio fingerprinting
- in-depth example for fingerprint extraction and retrieval

learning objectives

- discuss goals and limitations of audio fingerprinting systems as compared to watermarking or cover song detection systems
- describe the processing steps of the Philips fingerprinting system

audio fingerprinting introduction

objective:

- represent a recording with a compact and unique digest
 (→ fingerprint, perceptual hash)
- allow quick matching between previously stored fingerprints and an extracted fingerprint

applications

- broadcast monitoring:
 automate verification for royalties/infringement claims
- value-added services:
 offer information and meta data

audio fingerprinting introduction

objective:

- represent a recording with a compact and unique digest
 (→ fingerprint, perceptual hash)
- allow quick matching between previously stored fingerprints and an extracted fingerprint

applications

- broadcast monitoring:
 automate verification for royalties/infringement claims
- value-added services:
 offer information and meta data

audio fingerprinting introduction

objective:

- represent a recording with a compact and unique digest
 (→ fingerprint, perceptual hash)
- allow quick matching between previously stored fingerprints and an extracted fingerprint

applications:

- broadcast monitoring:
 automate verification for royalties/infringement claims
- value-added services:
 offer information and meta data

audio fingerprinting fingerprinting vs. watermarking

- fingerprinting:
 - identifies recording
- watermarking:
 - embeds perceptually "unnoticeable" data block in the audio
 - identifies *instance* of recording

Property	Fingerprinting	Watermarking
Allows Legacy Content Indexing		
Allows Embedded (Meta) Data		
Leaves Signal Unchanged		
Identification of	Recording	User or Interaction

audio fingerprinting fingerprinting vs. watermarking

- fingerprinting:
 - identifies recording
- watermarking:
 - embeds perceptually "unnoticeable" data block in the audio
 - identifies *instance* of recording

Property	Fingerprinting	Watermarking
Allows Legacy Content Indexing	+	_
Allows Embedded (Meta) Data	_	+
Leaves Signal Unchanged	+	_
Identification of	Recording	User or Interaction

- accuracy & reliability: minimize false negatives/positives
- robustness & security:
 robust against distortions and attacks
- granularity: quick identification in a real-time context
- versatility: independent of file format, etc.
- scalability: good database performance
- complexity: implementation possible on embedded devices

- accuracy & reliability:
 minimize false negatives/positives
- robustness & security:
 robust against distortions and attacks
- granularity: quick identification in a real-time context
- versatility: independent of file format, etc.
- scalability: good database performance
- complexity: implementation possible on embedded devices

- accuracy & reliability: minimize false negatives/positives
- robustness & security:
 robust against distortions and attacks
- granularity: quick identification in a real-time context
- versatility: independent of file format, etc.
- scalability: good database performance
- complexity: implementation possible on embedded devices

- accuracy & reliability: minimize false negatives/positives
- robustness & security:
 robust against distortions and attacks
- granularity: quick identification in a real-time context
- versatility: independent of file format, etc.
- scalability: good database performance
- complexity: implementation possible on embedded devices

- accuracy & reliability:
 minimize false negatives/positives
- robustness & security:
 robust against distortions and attacks
- granularity: quick identification in a real-time context
- versatility: independent of file format, etc.
- scalability: good database performance
- complexity: implementation possible on embedded devices

- accuracy & reliability: minimize false negatives/positives
- robustness & security:
 robust against distortions and attacks
- granularity: quick identification in a real-time context
- versatility: independent of file format, etc.
- scalability: good database performance
- complexity: implementation possible on embedded devices

audio fingerprinting general fingerprinting system

audio fingerprinting brainstorm

Georgia Center for Music Tech Technology

How does it work? MD5?

audio fingerprinting brainstorm

Georgia Center for Music Tech Technology

How does it work? MD5?

system example: philips extraction 1/3

- pre-processing: downmixing & downsampling (5 kHz)
- ② STFT: $\mathcal{K}=2048$, overlap $\frac{31}{32}$
- log frequency bands: 33 bands from 300–2000Hz
- freq derivative: 33 bands
- time derivative: 32 bands
- quantization

$$v_{\mathrm{FP}}(\textbf{k},\textbf{n}) = \begin{cases} 1 & \text{if } \left(\Delta E(\textbf{k},\textbf{n}) - \Delta E(\textbf{k},\textbf{n}-1)\right) > 0 \\ 0 & \text{otherwise} \end{cases}$$

system example: philips extraction 1/3

- pre-processing: downmixing & downsampling (5 kHz)
- ② STFT: $\mathcal{K}=2048$, overlap $\frac{31}{32}$
- log frequency bands:33 bands from 300–2000Hz
- freq derivative: 33 bands
- time derivative: 32 bands
- quantization

$$v_{\mathrm{FP}}(k,n) = \begin{cases} 1 & \text{if } \left(\Delta E(k,n) - \Delta E(k,n-1)\right) > 0 \\ 0 & \text{otherwise} \end{cases}$$

Georgia Center for Music Tech College of Design

system example: philips extraction 1/3

- opre-processing: downmixing & downsampling (5 kHz)
- ② STFT: $\mathcal{K}=2048$, overlap $\frac{31}{32}$
- o log frequency bands: 33 bands from 300–2000Hz
- freq derivative: 33 bands
- time derivative: 32 bands
- quantization

$$v_{\mathrm{FP}}(k, n) = \begin{cases} 1 & \text{if } (\Delta E(k, n) - \Delta E(k, n - 1)) > 0 \\ 0 & \text{otherwise} \end{cases}$$

Georgia Center for Music Tech College of Design

system example: philips extraction 1/3

- pre-processing: downmixing & downsampling (5 kHz)
- ② STFT: $\mathcal{K}=2048$, overlap $\frac{31}{32}$
- Open series of the series o
- freq derivative: 33 bands
- **1 time derivative**: 32 bands
- quantization

$$v_{\mathrm{FP}}(k, n) = \begin{cases} 1 & \text{if } (\Delta E(k, n) - \Delta E(k, n - 1)) > 0 \\ 0 & \text{otherwise} \end{cases}$$

Georgia Center for Music Tech Calles of Design

system example: philips extraction 1/3

- opre-processing: downmixing & downsampling (5 kHz)
- ② STFT: $\mathcal{K}=2048$, overlap $\frac{31}{32}$
- o log frequency bands: 33 bands from 300–2000Hz
- freq derivative: 33 bands
- o time derivative: 32 bands
- quantization:

$$v_{\mathrm{FP}}(k,n) = egin{cases} 1 & \mathrm{if} \left(\Delta E(k,n) - \Delta E(k,n-1)
ight) > 0 \ 0 & \mathrm{otherwise} \end{cases}$$

Georgia Center for Music Technology

system example: philips extraction 1/3

- pre-processing: downmixing & downsampling (5 kHz)
- ② STFT: $\mathcal{K}=2048$, overlap $\frac{31}{32}$
- o log frequency bands: 33 bands from 300–2000Hz
- freq derivative: 33 bands
- **1 time derivative**: 32 bands
- quantization:

$$v_{\mathrm{FP}}(k,n) = egin{cases} 1 & \mathrm{if} \left(\Delta E(k,n) - \Delta E(k,n-1)
ight) > 0 \ 0 & \mathrm{otherwise} \end{cases}$$

Georgia Center for Music Tech College of Pesign

system example: philips extraction 2/3

fingerprint

- 256 subsequent subfingerprints
- \Rightarrow
 - length: 3
 - size: 256 · 4 Byte = 1 kByte

example

• 5 min son

$$1 \,\mathrm{kByte} \cdot \frac{5 \cdot 60 \mathrm{s}}{3 \,\mathrm{s}} = 100 \,\mathrm{kByte}$$

database with 1 million songs (avg. length 5 min)

$$10^6 \cdot 256 \cdot \frac{5 \cdot 60s}{3e} = 25.6 \cdot 10^9$$
 subfingerprints

⇒ 100 GBvte storage

system example: philips extraction 2/3

fingerprint

- 256 subsequent subfingerprints
- \Rightarrow
 - length: 3s
 - size: 256 · 4 Byte = 1 kByte

example

• 5 min song

$$1 \text{ kByte} \cdot \frac{5 \cdot 60 \text{s}}{3 \text{ s}} = 100 \text{ kByte}$$

database with 1 million songs (avg. length 5 min)

$$10^6 \cdot 256 \cdot \frac{5 \cdot 60s}{3s} = 25.6 \cdot 10^9$$
 subfingerprints

⇒ 100 GBvte storage

Georgia Center for Music Technology

system example: philips extraction 2/3

fingerprint

- 256 subsequent subfingerprints
- \Rightarrow
 - length: 3s
 - size: 256 · 4 Byte = 1 kByte

example:

5 min song

$$1 \,\mathrm{kByte} \cdot \frac{5 \cdot 60 \mathrm{s}}{3 \,\mathrm{s}} = 100 \,\mathrm{kByte}$$

database with 1 million songs (avg. length 5 min

$$10^6 \cdot 256 \cdot \frac{5 \cdot 60s}{3s} = 25.6 \cdot 10^9$$
 subfingerprints

⇒ 100 GByte storage

Georgia Center for Music Tech Technology

system example: philips extraction 2/3

fingerprint

- 256 subsequent subfingerprints
- \Rightarrow
 - length: 3s
 - size: 256 · 4 Byte = 1 kByte

example:

• 5 min song

$$1 \,\mathrm{kByte} \cdot \frac{5 \cdot 60 \mathrm{s}}{3 \,\mathrm{s}} = 100 \,\mathrm{kByte}$$

• database with 1 million songs (avg. length 5 min)

$$10^6 \cdot 256 \cdot \frac{5 \cdot 60s}{3s} = 25.6 \cdot 10^9$$
 subfingerprints

⇒ 100 GByte storage

audio fingerprinting system example: philips extraction 3/3

plot from¹

¹ J. Haitsma and T. Kalker, "A Highly Robust Audio Fingerprinting System," in *Proceedings of the International Conference on Music Information Retrieval (ISMIR)*, Paris, 2002.

Georgia Center for Music Tech Technology

system example: philips identification 1/3

database

- contains all subfingerprints for all songs
- previous example database: 25 billion subfingerprints

problen

• how to identify fingerprint efficiently?

Georgia Center for Music Tech College of Design

system example: philips identification 1/3

database

- contains all subfingerprints for all songs
- previous example database: 25 billion subfingerprints

problen

• how to identify fingerprint efficiently?

audio fingerprinting system example: philips identification 1/3

database

- contains all subfingerprints for all songs
- previous example database: 25 billion subfingerprints

problem

how to identify fingerprint efficiently?

Georgia Center for Music Tech Technology

system example: philips identification 2/3

simple system:

- \bigcirc create lookup table with all possible subfingerprints (2³²) pointing to occurrences
- 2 assume at least one of the extracted 256 subfingerprints is error-free
- ⇒ only entries listed at 256 positions of the table have to be checked
- Ocompute Hamming distance between extracted fingerprint and candidates

Georgia Center for Music Tech College of Design

system example: philips identification 2/3

simple system:

- \bigcirc create lookup table with all possible subfingerprints (2^{32}) pointing to occurrences
- 2 assume at least one of the extracted 256 subfingerprints is error-free
- ⇒ only entries listed at 256 positions of the table have to be checked
- o compute Hamming distance between extracted fingerprint and candidates

Georgia Center for Music Tech Technology

system example: philips identification 2/3

simple system:

- \bigcirc create lookup table with all possible subfingerprints (2^{32}) pointing to occurrences
- 2 assume at least one of the extracted 256 subfingerprints is error-free
- ⇒ only entries listed at 256 positions of the table have to be checked
- ompute Hamming distance between extracted fingerprint and candidates

Georgia Center for Music Tech College of Pesign

system example: philips identification 3/3

variant 1:

- allow one bit error
- ⇒ workload increase by factor 33

variant 2

- introduce concept of bit error probability into fingerprint extraction
 - small energy difference → high error probability
 - ullet large energy difference o low error probability
- rank bits per subfingerprint by error probability and check only for bit errors at likely positions

Georgia Center for Music Tech College of Pesign

system example: philips identification 3/3

variant 1:

- allow one bit error
- ⇒ workload increase by factor 33

variant 2

- introduce concept of bit error probability into fingerprint extraction
 - small energy difference → high error probability
 - large energy difference → low error probability
- rank bits per subfingerprint by error probability and check only for bit errors at likely positions

Georgia Center for Music Tech College of Design

system example: philips identification 3/3

variant 1:

- allow one bit error
- ⇒ workload increase by factor 33

variant 2:

- introduce concept of bit error probability into fingerprint extraction
 - \bullet small energy difference \rightarrow high error probability
 - large energy difference → low error probability
- rank bits per subfingerprint by error probability and check only for bit errors at likely positions

Georgia Center for Music Tech College of Design

system example: philips identification 3/3

variant 1:

- allow one bit error
- ⇒ workload increase by factor 33

variant 2:

- introduce concept of bit error probability into fingerprint extraction
 - \bullet small energy difference \rightarrow high error probability
 - large energy difference → low error probability
- rank bits per subfingerprint by error probability and check only for bit errors at likely positions

audio fingerprinting other systems: shazam

plot from²

²A. Wang, "An Industrial Strength Audio Search Algorithm," in *Proceedings of the 4th International Conference on Music Information Retrieval (ISMIR)*, Washington, 2003.

summary lecture content

- audio fingerprinting
 - represent recording with compact, robust, and unique fingerprint
 - allow efficient matching of this fingerprint with database
- often confused with other tasks
 - audio watermarking
 - 2 cover song detection

