ELEC 405 Error Control Coding and Sequences

Cyclic Codes

Definition

- A code C is cyclic if
 - 1) C is linear
 - 2) a cyclic shift of any codeword

$$\mathbf{c}_i = (c_0, c_1, \dots, c_{n-1})$$

is another codeword

$$\mathbf{c}_{j} = (c_{n-1}, c_0, c_1, \dots, c_{n-2})$$

• Examples:

$$-C = \{000, 101, 011, 110\}$$

$$- C = \{000,111\}$$

Another Example

• C = {0000,1001,0110,1111} is not cyclic

 Interchange positions 3 and 4 (equivalent code)

• C = {0000,1010,0101,1111} is cyclic

ELEC 405

Code polynomials

$$c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}, \quad c_i \in GF(q)$$

- GF(q)[x] is the set of polynomials with coefficients from GF(q)
- GF(q)[x] is a commutative ring with identity (not a field)

ELEC 405

- Consider polynomials modulo f(x) of degree n GF(q)[x]/f(x)
- This is the finite ring of polynomials modulo f(x)
- Example: $GF(2)[x]/x^2+x+1 \rightarrow GF(4)$

+	1	X	<i>x</i> +1	0	•	1	X	<u>x+1</u>
1	0	<i>x</i> +1	$\boldsymbol{\mathcal{X}}$	1	1	1	$\boldsymbol{\mathcal{X}}$	<i>x</i> +1
			1			$\boldsymbol{\mathcal{X}}$		
			0			<i>x</i> +1		
			<i>x</i> +1					

ELEC 405

5

• Choose $f(x)=x^2+1$ in GF(2)

+	1	$\boldsymbol{\mathcal{X}}$	1+x	0	•	1	$\boldsymbol{\mathcal{X}}$	1+x	
1	0	1+x	$\boldsymbol{\mathcal{X}}$	1	1	1	$\boldsymbol{\mathcal{X}}$	1+x	
$\boldsymbol{\mathcal{X}}$	1+x	0	1	X	χ	$\boldsymbol{\mathcal{X}}$	1	1+x	
1+x	x	0 1	0	1+x	1+x	1+x	1+x	0	
0	1	$\boldsymbol{\mathcal{X}}$	1+x	0	'				
						Zero divisor			

 x^2+1 is not irreducible

ELEC 405

6

Over any field

$$x^{n}-1=(x-1)(x^{n-1}+x^{n-2}+\cdots+x+1)$$

- Let R_n denote $GF(q)[x]/x^n-1$
- Any polynomial of degree $\geq n$ can be reduced modulo x^n -1 to a polynomial of degree less than n

$$x^{n} \to 1$$

$$x^{n+1} \to x$$

$$x^{n+2} \to x^{2}$$

Ideals

- Let R be a ring. A nonempty subset $I \subseteq R$ is called an Ideal if it satisfies the following
 - I forms a group under addition
 - $-a \cdot b \in I$ for all $a \in I$ and $b \in R$
 - superclosed under multiplication
- Examples
 - {0} and R are trivial Ideals in R
 - $-\{0, x^4+x^3+x^2+x+1\}$ is an Ideal in $GF(2)[x]/x^5-1$
 - Even numbers in Z

Ideal Example

• $GF(2)[x]/x^3-1$

$$0 \longrightarrow 000 \qquad 1 \longrightarrow 100$$

$$x \longrightarrow 010 \qquad 1+x \longrightarrow 110$$

$$x^{2} \longrightarrow 001 \qquad 1+x^{2} \longrightarrow 101$$

$$x+x^{2} \longrightarrow 011 \qquad 1+x+x^{2} \longrightarrow 111$$

$$I = \{0, 1+x, 1+x^2, x+x^2\}$$
 is an Ideal in R_3

{000, 110, 101, 011} is a cyclic code

ELEC 405

9

Theorem 5-1

A code which is a vector subspace over a field GF(q) is a cyclic code iff it corresponds to an ideal in $GF(q)[x]/x^n-1$ (the ring of polynomials modulo x^n-1)

Generator Polynomial

• Let f(x) be any polynomial in R_n and let < f(x) > denote the subset of R_n consisting of all multiples of f(x) modulo x^n-1

$$< f(x) >= \{r(x)f(x) | r(x) \in R_n\}$$

- < f(x) > is the cyclic code generated by f(x)
- Example: $C = <1+x^2 > \text{in } R_3 \text{ (GF(2)}[x]/x^3-1)$
 - Multiplying by all 8 elements in R_3 produces only 4 distinct codewords

$$C = \{0, 1+x, 1+x^2, x+x^2\}$$

Generator Polynomial

- Any cyclic code can be generated by a polynomial from R_n
- Let C be a cyclic code in R_n . Then we have the following facts:
 - 1. There exists a unique monic polynomial g(x) of smallest degree in C
 - 2. $C = \langle g(x) \rangle$
 - 3. $g(x) | x^n 1$

g(x) is called the generator polynomial

- Any polynomial c(x) of degree less than n is in C iff g(x)|c(x)
- If g(x) has degree n-k, $|C|=q^k$, and every codeword is of the form

• To determine the possible g(x), factor x^n-1

Example:

$$x^3-1 = (x+1)(x^2+x+1)$$
 over GF(2)

Generator polynomial	Code in R ₃	Code in 3-tuples
1	R_3	V_3
<i>x</i> +1	$\{0,1+x,1+x^2,x+x^2\}$	{000,110,101,011}
<i>x</i> ² + <i>x</i> +1	$\{0,1+x+x^2\}$	{000,111}
x^3-1	{0}	{000}

Generator Matrix

• Since $c(x) = m(x)g(x) = (m_0 + m_1x + \cdots + m_{k-1}x^{k-1})g(x)$ $= m_0 g(x) + m_1 x g(x) + \dots + m_{k-1} x^{k-1} g(x)$

$$= m_0 g(x) + m_1 x g(x) + \dots + m_{k-1} x^{k-1} g(x)$$

$$= \begin{bmatrix} m_0 & m_1 & \cdots & m_{k-1} \end{bmatrix} \begin{bmatrix} g(x) \\ x g(x) \\ \vdots \\ x^{k-1} g(x) \end{bmatrix} = \mathbf{m} \mathbf{G}$$

$$\mathbf{G} = \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} \\ g_0 & g_1 & \cdots & g_{n-k} \\ \vdots & \ddots & \ddots & \vdots \\ g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix} \text{ is a Generator matrix}$$

$$\mathbf{G} = \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} \\ \vdots & \vdots & \vdots \\ g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} g(x) \\ \vdots \\ g_0 & g_1 & \cdots & g_{n-k} \\ \vdots \\ g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} g(x) \\ \vdots \\ g_0 & g_1 & \cdots & g_{n-k} \\ \vdots \\ g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} \\ \vdots & \vdots \\ g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} \\ \vdots & \vdots & \vdots \\ g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix}$$

$$\mathbf{G} = \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} & \mathbf{0} \\ g_0 & g_1 & \cdots & g_{n-k} \\ \vdots & \vdots & \ddots & \ddots \\ g_0 & g_1 & \cdots & g_{n-k} \\ \mathbf{0} & g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix}$$

15

Generator Matrix Example

- $GF(2)[x]/x^7-1$
- $x^7-1 = (1+x+x^3)(1+x^2+x^3)(1+x)$
- $g(x) = 1 + x + x^3$

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

- C is a (7,4,3) code a binary cyclic code
- All binary cyclic codes with g(x) a primitive polynomial are equivalent to Hamming codes

Example 5-1

• $g(x) = (1+x+x^3)(1+x) = 1+x^2+x^3+x^4$

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

• C is a (7,3,4) binary cyclic code

Parity Check Matrix

- The generator matrix is not in systematic form.
 How to find the parity check matrix?
- g(x) is a factor of x^n-1 , i.e., $g(x)h(x)=x^n-1$
- h(x) is a monic polynomial with degree k, and is the generator polynomial of a cyclic code C', but not necessarily the dual code of C.
- (7,4,3) code example:

$$h(x) = (1+x^2+x^3)(1+x) = 1+x+x^2+x^4$$

- $g(x)h(x)=0 \mod x^n-1$ in R_n is not the same as vectors in V_n being orthogonal.
- Let H be the matrix generated from

$$h^*(x)=x^kh(x^{-1})=h_k+xh_{k-1}+...+x^kh_0$$
 reciprocal poly. of $h(x)$

$$\mathbf{H} = \begin{bmatrix} h_k & \cdots & h_1 & h_0 & & & & \mathbf{0} \\ & h_k & \cdots & h_1 & h_0 & & & \\ & & \ddots & \ddots & \ddots & \ddots & \\ & & & h_k & \cdots & h_1 & h_0 \\ \mathbf{0} & & & & h_k & \cdots & h_1 & h_0 \end{bmatrix}$$

Parity Check Matrix H

- $c(x)h(x) = m(x)g(x)h(x) = m(x)(x^n-1) = m(x) + x^n m(x)$
- m(x) has degree < k, thus the coefficients of x^k to x^{n-1} in c(x)h(x) must be zero

$$c_{0}h_{k} + c_{1}h_{k-1} + \dots + c_{k}h_{0} = 0$$

$$c_{1}h_{k} + c_{2}h_{k-1} + \dots + c_{k+1}h_{0} = 0 \implies \mathbf{cH}^{T} = 0$$

$$\vdots$$

$$c_{n-k-1}h_{k} + c_{n-k}h_{k-1} + \dots + c_{n-1}h_{0} = 0$$

Hamming Code Example (Cont.)

• $h^*(x) = 1 + x^2 + x^3 + x^4$ generates the parity check matrix of g(x) and the dual cyclic code of g(x)

$$H = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

- **H** is the parity check matrix for the (7,4,3) Hamming code
- $h^*(x)=1+x^2+x^3+x^4$ is the generator polynomial for a (7,3,4) cyclic code since $h^*(x)|x^n-1$

Example 5.1 (Cont.)

- To construct the parity check matrix for the (7,3,4) code, use $h(x) = 1+x^2+x^3$
- $h^*(x) = 1 + x + x^3$ is the generator polynomial for a (7,4,3) code since $h^*(x) \mid x^n 1$
- $h^*(x)$ generates the parity check matrix **H** of g(x) and the dual cyclic code of g(x) with parameters (7,4,3)

$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Binary Cyclic Codes of Length 7

• $x^7-1=(1+x+x^3)(1+x^2+x^3)(1+x)$

```
• 1+x (7,6,2)

dual code 1+x+x^2+x^3+x^4+x^5+x^6 (7,1,7)

• 1+x+x^3 (7,4,3)

dual code 1+x^2+x^3+x^4 (7,3,4)

• 1+x^2+x^3 (7,4,3)

dual code 1+x+x^2+x^4 (7,3,4)
```

Systematic Cyclic Codes

- $GF(2)[x]/x^7-1$
- $x^7-1 = (1+x+x^3)(1+x^2+x^3)(1+x)$

•
$$g(x) = 1 + x + x^3$$

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

- C is a (7,4,3) code not in systematic form
- To transform: permute columns 1 and 4, then add rows 2 and 4 to get a new row 4.

Systematic Generator Matrix

 Permute columns 1 and 4, then add rows 2 and 4 to get a new row 4. The resulting generator matrix has a systematic form, but is not cyclic.

$$G' = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- Check: divide the last row of **G**' by g(x)
- $c'(x) = 1 + x + x^2 + x^6$ is not divisible by $g(x) = 1 + x + x^3$

- We require an algebraic means of generating a systematic code while preserving divisibility by g(x).
- Approach: divide x^i by g(x), i = n-k to n-1 $x^i = g(x)q_i(x) + p_i(x) \quad p_i(x) \text{ has degree less than } n-k$ $\text{rearranging } x^i p_i(x) = g(x)q_i(x) \quad \text{divisible by } g(x)$
- $x^i p_i(x)$ has only one non-zero coefficient for degrees n-k to n-1
- Use $x^i p_i(x)$ to form **G**

$$G = [-P I_k] H = [I_{n-k} P^T]$$

Example

•
$$g(x) = 1+x+x^3$$

 x^i $g(x)q_i(x)$ $p_i(x)$ $x^i+p_i(x)$
 x^3 $(1+x+x^3)\cdot 1$ $1+x$ $1+x+x^3$
 x^4 $(1+x+x^3)\cdot x$ $x+x^2$ $x+x^2+x^4$
 x^5 $(1+x+x^3)\cdot (1+x^2)$ $1+x+x^2$ $1+x+x^2+x^5$
 x^6 $(1+x+x^3)\cdot (1+x+x^3)$ $1+x^2$ $1+x^2+x^6$

$$G' = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

ELEC 405

Systematic Encoding

• Encoding is now achieved by multiplying m(x) by x^{n-k} and dividing the product by g(x) to obtain p(x)

$$c(x) = m(x)x^{n-k} + m(x)x^{n-k}/g(x)$$

• Example (7,4,3) code $m(x) = x^2 + x + 1$ $m(x)x^{n-k} = x^5 + x^4 + x^3$ divide by $g(x) = x^3 + x + 1 \rightarrow p(x) = x$ $c(x) = x^5 + x^4 + x^3 + x$

Implementation of Cyclic Codes

- Encoding
 - in non-systematic form c(x) = m(x)g(x)
 - in systematic form $c(x) = m(x)x^{n-k} + p(x)$ $p(x) = m(x)x^{n-k} \mod g(x)$
- Thus we require circuits for multiplying and dividing in R_n
- Solution: use shift registers

Nonsystematic Binary Cyclic Code Encoder

- Encoding can be done by multiplying two polynomials
 - a message polynomial m(x) and the generator polynomial g(x)
- The generator polynomial is

$$g(x) = g_0 + g_1 x + ... + g_r x^r$$
 of degree $r = n - k$

• If a message vector m is represented by a polynomial m(x) of degree k-1, m(x) is encoded as c(x) = m(x)g(x) using the following shift register circuit

Nonsystematic Shift Register Encoder

Encoder for the (7,3) Cyclic Code with $g(x) = 1+x^2+x^3+x^4$

SR cells	r_0	r_1	<i>r</i> ₂	<i>r</i> ₃	<i>r</i> ₄	<i>r</i> ₅	<i>r</i> ₆
Initial state	0	0	0	0	0	0	0
Input $m_2 = 1$	1	0	1	1	1	0	0
Input $m_1 = 0$	0	1	0	1	1	1	0
Input $m_0 = 1$	1	0	0	1	0	1	1
Final state = c_4	1	0	0	1	0	1	1

Figure 5-7. Shift-Register Cell Contents During Encoding of $m(x) = x^2 + 1$

Figure 5-8. Shift-Register Multiplication of m(x) by x^{n-k}

Figure 5-9. Shift-Register Division of a(x) by g(x)

Figure 5-10. Shift-Register Division of $x^6 + x^4$ by $x^4 + x^3 + x^2 + 1$

SR cells	<i>r</i> ₀	r_1	r_2	<i>r</i> ₃	<u> </u>
Initial state	0	0	0	0	Fange -
Input $a_6 = 1$	1	0	0	0	
Input $a_5 = 0$	0	1	0	0	
Input $a_4 = 1$	1	0	1	0	
Input $a_3 = 0$	0	1	0	1	
Input $a_2 = 0$	1	0	0	1	
Input $a_1 = 0$	1	1	1	1	har ni yaha di l
Input $a_0 = 0$	1	1	0	0	
Final state = 1	r 1	1	0	0	$\Leftrightarrow d(x) = x + 1$

Figure 5-11. Shift-Register Cell Contents During Division of $x^6 + x^4$ by $x^4 + x^3 + x^2 + 1$

Encoder for an (n,k) Cyclic Code

Encoder for a Binary (n,k) Cyclic Code

Encoder for the (7,4) Cyclic Code Generated by $g(x) = 1+x+x^3$

Encoding $1+x^2+x^3$

input	p ₀	p ₁	p ₂	output
1	1	1	0	1
1	1	0	1	1
0	1	0	0	0
1	1	0	0	1
-		1	0	0
-			1	0
-				1

Encoding $1+x^2$ with $g(x) = 1+x^2+x^3+x^4$

input	p_0	p ₁	p ₂	p ₃	output
1	1	0	1	1	1
0	1	1	1	0	0
1	1	1	0	0	1
-		1	1	0	0
-			1	1	0
_				1	1
-					1

Syndrome Computation Circuit

Syndrome Calculator for the (7,4) Cyclic Code Generated by $g(x) = 1+x+x^3$

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Syndrome for $x^2+x^4+x^5$

input	s ₀	S ₁	s ₂
0	0	0	0
1	1	0	0
1	1	1	0
0	0	1	1
1	0	1	1
0	1	1	1
0	1	0	1

Theorem 5-3

Let s(x) be the syndrome polynomial for a received word r(x). Then $s^{(1)}(x)$ resulting from dividing xs(x) by g(x) is the syndrome polynomial for $r^{(1)}(x)$, the cyclic shift of r(x).

Hamming Code Example (Cont.)

- Example 5.8 Shift register error correction for the (7,4,3) Hamming code with $g(x) = 1+x+x^3$
- Systematic form

$$G = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Syndromes for $g(x) = 1+x+x^3$

error pattern	error polynomial	syndrome	syndrome polynomial
0000000	0	000	0
1000000	1	100	1
0100000	X	010	X
0010000	x^2	001	x^2
0001000	x^3	110	1+x
0000100	x^4	011	x+x ²
0000010	x ⁵	111	1+x+x ²
000001	x ⁶	101	1+x ²

Figure 5-14. Shift-Register Decoder for (7,4) Cyclic Code

Decoding r = 1101011

received word	syndrome	decoder output
1101011	010	1
-110101	001	11
11010	110	011
1101	011	1011
110	111	01011
10	101	0 01011
0	100	1001011

Shortened Cyclic Codes

- Systematic cyclic codes can be shortened by setting the u most significant bits of the codeword (message bits) to zero
- Length is only limited by the length of the original cyclic code n
- (n,k) code shortened to an (n-u, k-u) code
- Since we are using a subset of the original codewords, the error correction and detection capability is at least as good as the original cyclic code

- Shortened cyclic codes are usually not cyclic, but we can still use the same shift registers for encoding and decoding as the original cyclic codes.
- Shortened cyclic codes are often called polynomial codes
- Widely used shortened cyclic codes:
 - Cyclic Redundancy Check (CRC) codes
- CRC codes are normally used for error detection

Cyclic Redundancy Check Codes

Typical choice of generator polynomial is

$$g(x) = (x+1)p(x)$$
 (to detect all odd error patterns)

where p(x) is a primitive polynomial

Example: CRC-12

$$g(x) = (x^{11}+x^2+1)(x+1)$$

This is a cyclic code of length $n = 2^{11}-1 = 2047$ and dimension k = 2047-12 = 2035

Only 12 bits of redundancy

CRC CODE

GENERATION POLYNOMIAL

$$\begin{array}{lll} \text{CRC-4} & g_4(x) = x^4 + x^3 + x^2 + x + 1 \\ \text{CRC-7} & g_7(x) = x^7 + x^6 + x^4 + 1 = (x^4 + x^3 + 1)(x^2 + x + 1)(x + 1) \\ \text{CRC-8} & g_8(x) = (x^5 + x^4 + x^3 + x^2 + 1)(x^2 + x + 1)(x + 1) \\ \text{CRC-12} & g_{12}(x) = x^{12} + x^{11} + x^3 + x^2 + x + 1 = (x^{11} + x^2 + 1)(x + 1) \\ \text{CRC-ANSI} & g_{ANSI}(x) = x^{16} + x^{15} + x^2 + 1 = (x^{15} + x + 1)(x + 1) \\ \text{CRC-CCITT} & g_{CCITT}(x) = x^{16} + x^{12} + x^5 + 1 \\ & = (x^{15} + x^{14} + x^{13} + x^{12} + x^4 + x^3 + x^2 + x + 1)(x + 1) \\ \text{CRC-SDLC} & g_{SDLC}(x) = x^{16} + x^{15} + x^{13} + x^7 + x^4 + x^2 + x + 1 \\ & = (x^{14} + x^{13} + x^{12} + x^{10} + x^8 + x^6 + x^5 + x^4 + x^3 + x + 1) \\ & \cdot (x + 1)^2 \\ \text{CRC24} & g_{24}(x) = x^{24} + x^{23} + x^{14} + x^{12} + x^8 + 1 \\ & = (x^{10} + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x + 1) \\ & \cdot (x^{10} + x^9 + x^6 + x^4 + 1)(x^3 + x^2 + 1)(x + 1) \\ \text{CRC32}_A[\text{Mer}] & x^{32} + x^{30} + x^{22} + x^{15} + x^{12} + x^{11} + x^7 + x^6 + x^5 + x \\ & (x^{10} + x^9 + x^8 + x^6 + x^2 + x + 1)(x^{10} + x^7 + x^6 + x^3 + 1) \\ & \cdot (x^{10} + x^8 + x^5 + x^4 + 1)(x + 1)(x) \\ \text{CRC-32}_B[\text{Ga12}] & x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 \\ & + x^4 + x^2 + x + 1 \\ \end{array}$$

 Coverage is the fraction of words that will be detected in error should the input be completely corrupted (worst case: a random bit stream)

$$\lambda = \frac{q^n - q^k}{q^n} = 1 - q^{-(n-k)} = 1 - q^{-r}$$

• For example, CRC-12

$$\lambda = 1 - 2^{-12} = 0.999756$$

• The larger *n-k*, the greater the coverage

Burst Errors

- Hardware faults and multipath fading environments cause burst errors
 - Error patterns of the form

```
e = ...00001XXX...XXX10000...
```

A burst error of length 6 is

```
e = ...0001XXXX100...
```

 One would like the CRC code to detect as many of these as possible

- It can be shown that a q-ary CRC code constructed from a cyclic code can detect
 - All burst error patterns of length n-k=r or less where r is the degree of g(x)
 - A fraction $1-q^{1-r}/(q-1)$ of all burst error patterns of length r+1
 - A fraction 1- q^{-r} of all burst error patterns of length b > r+1
- Example: CRC-12
 - detects 99.95% of all length 13 burst errors
 - detects 99.976% of all length > 13 burst errors

Encoder for a Binary (n,k) Cyclic Code

