Do complex affect dynamics improve predictions of psychological and behavioral outcomes?

Yinuo Shu^{1,*}, Priscila Thalenberg Levi¹, Jeggan Tiego¹, Toby Constable¹,

James C. Pang¹, Bree Hartshorn¹, Jessica Kwee¹, Kate Fortune¹, Mark

Bellgrove¹, Alex Fornito¹

¹ School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Victoria, Australia.

*Correspondence concerning this article should be addressed to Yinuo Shu, School of Psychological Sciences, Turner Institute for Brain and Mental Health, and Monash Biomedical Imaging, Monash University, Victoria, Australia. Phone: (+61) 0493731434. Email: yinuo.shu@monash.edu

Abstract

Background There is growing interest in the use of ecological momentary assessment (EMA) as a means for quantifying how individuals' affective experiences fluctuate over time, and how such dynamics relate to mental health outcomes. A plethora of methods exist for precisely quantifying these affect dynamics, but recent work pooling data from multiple studies has suggested that most of the variance in outcome measures of depression, borderline symptoms, and life satisfaction is captured by simple measures, such as the mean (M) and standard deviation (SD) of affect ratings over time. Ever-more sophisticated approaches for measuring affect dynamics may offer little value for understanding mental health. Here, we examined a broad array of mental health outcomes and affect dynamic measures within a single cohort to comprehensively evaluate whether EMA-derived measures of affect dynamics are associated with specific psychopathological experiences.

314 adults (97 males; 18-45 years of age) completed 28 days of Methods EMA, which included once-daily ratings on the Positive and Negative Affect Schedule (PANAS)-10 and daily measures of stress, sleep, and alcohol use. We calculated 16 established affect dynamics measures (M, SD, relative SD, mean-squared successive differences, autoregression, intraclass correlation, and Gini coefficient for positive affect (PA) and negative affect (NA), as well as emotion network density and PA-NA correlation) in addition to six additional measures derived using dynamic network analyses of participant responses (promiscuity and flexibility for the entire network, PA, and NA). Predictive power was assessed using cross-validated linear regression models predicting 117 outcomes spanning five crosssectional psychometric questionnaires and EMA-based longitudinal behavioral measures. We compared models that included each complex measure against baseline models using only M or M + SD scores quantifying PA and NA.

Results Across all 117 outcomes, no complex affect dynamics measures improved cross-validated R^2 by more than 5.3 % beyond the M and SD of PA and NA.

Conclusion Elaborate measures of affect dynamics, as indexed by the PANAS-10, offer minimal incremental explanatory power in predicting

psychopathology beyond basic summary statistics of daily affect. These findings question the added value of increasingly complex measures of affect dynamics for predicting standard psychological and behavioral outcomes.

Keywords: ecological momentary assessment, affect, well-being, psychopathology, affective dynamics

Background

Affect is inherently dynamic, changing over time in response to both internal and external influences (Kuppens, 2015). Accordingly, numerous studies have demonstrated that temporal affect dynamics, or how affect evolves over time, play a significant role in explaining individual differences in mental health and psychopathology (Koval et al., 2016; Kuppens et al., 2012; Sperry et al., 2020). Given that mental disorders are characterized by substantial heterogeneity (Segal et al., 2025), an understanding of affect dynamics may facilitate sub-typing as well as prevention and early intervention strategies.

Affect dynamics are commonly quantified using ecological momentary assessment (EMA), which involves repeated sampling of individuals' experiences in real-time and naturalistic settings (Shiffman et al., 2008). EMA-based probes can vary in terms of their duration, questionnaires used for assessment, frequency of assessment, and sampling schedules (e.g., random, fixed-interval, event-contingent) (Smyth & Smyth, 2003). EMA methodologies are increasingly used as a way of probing people's mental health experiences and struggles in their daily lives (Myin-Germeys et al., 2018). Affective experience is one domain that is frequently quantified using EMA and is commonly quantified using measures of positive affect (PA) and negative affect (NA). PA and NA respectively represent positivelyand negatively-valanced affective dimensions that capture affective experiences, such as enthusiasm, pride, and excitement, versus, guilt, nervousness, and shame. They capture the two dominant dimensions of affective experience and are typically measured because they are strongly predictive of well-being and psychopathology (De Wild-Hartmann et al., 2013; Duif et al., 2020; Juarascio et al., 2016; Koval et al., 2013; Schoevers et al., 2021; Scott et al., 2020). PA and NA are commonly assessed using standardized tools such as the Positive and Negative Affect Schedule (PANAS-10), which is widely adopted due to its brevity and extensive psychometric validation (E. R. Thompson, 2007; Watson et al., 1988).

The affect dynamics measured using the PANAS-10 and similar instruments have garnered increased attention as a promising avenue for explaining variability in psychopathology, leading to the development of progressively more complex affect dynamic measures designed to improve the predictive validity of affect metrics for mental health outcomes, capture more fine-grained temporal features of affective fluctuations, and provide stronger explanatory power for the mechanisms linking affect dynamics to psychopathology (Bringmann et al., 2013; Curtiss et al., 2019a; Hamaker et al., 2018; Kalisch et al., 2019; Kuranova et al., 2021; Naragon-Gainey, 2019; Schat et al., 2023; Scott et al., 2020; Snippe et al., 2023; Wright & Woods, 2020). These measures include quantities capturing affect variability relative to mean affect levels (relative standard deviation; (Mestdagh et al., 2018)), affect instability and temporal dependency (mean squared successive differences [MSSD]; (Jahng et al., 2008)), affective persistence or carryover effects (autoregression; (Kuppens et al., 2010)), interconnectedness of affective states (affect network density; (Pe et al., 2015)), consistency of affect across measurement occasions (intraclass correlation; (R. J. Thompson et al., 2021)), affective bipolarity (PA-NA correlation; (Dejonckheere et al., 2018)), and inequality in affect intensity distributions (Gini coefficient; (Brown & Coyne, 2017)).

Despite the promise and rapid proliferation of new and diverse affect dynamic measures, a pivotal study by Dejonckheere et al. (2019) questioned their utility for predicting commonly used measures of psychological well-being. Focusing on EMA-based measures of PA and NA derived from 15 different studies comprising 1,777 people, the authors examined 16 commonly studied measures for quantifying affect dynamics and tested whether they can significantly improve the prediction of three psychological well-being outcomes—depressive symptoms, borderline personality symptoms, and life satisfaction—relative to models that relied on simple affect measures: the mean (M) and standard deviation (SD) of affect ratings. Their findings revealed that many of the more complex measures were highly intercorrelated and that they added little (i.e., <1.4% of explained variance) to the prediction of psychological well-being beyond the simpler benchmark models relying on the M and SD.

Dejonckheere et al.'s (2019) work raises fundamental questions about the utility of complex affect dynamics in predicting psychological outcomes commonly studied in the literature, but these analysis synthesized data

from 15 different datasets, each with varying inclusion criteria, frequency, and duration of EMA collection, and psychological well-being measures, meaning that it is unclear whether a unified approach to data collection and analysis would yield improved statistical power. Dejonckheere et al. (2019) also assumed that personalized affect networks are static over time, implying that within-person interactions between different affective states remain constant throughout the study period. However, this assumption is unrealistic. Empirical studies have shown that within-person affect dynamics can fluctuate over time due to both internal (e.g., negative cognitions) and external (e.g., stressful life events) factors (Bringmann et al., 2018). For example, stressful situations, such as public speaking, reduce affective inertia, which is the carryover effect (autoregression) of an affective state from one time point to the next (Koval et al., 2016; Kuppens et al., 2010). Furthermore, experiencing more intense negative affect can increase inertia over time (De Haan-Rietdijk et al., 2016). Beyond these, the structure of within-person affect networks—the connections between different affective states—may also vary over time. Although many studies have called for considering such non-stationarity of affect dynamics (Curtiss et al., 2019a; Spiller et al., 2021), this aspect has not yet been fully explored.

A final consideration is that Dejonckheere et al. (2019) only considered three psychological outcomes, leaving open the possibility that complex affect dynamic measures are informative for other dimensions of psychological and cognitive well-being, such as anxiety (Hall et al., 2021; Schoevers et al., 2021), externalizing symptoms (Hawes & Klein, 2023; Heller et al., 2021; South & Miller, 2014), personality traits (Miller et al., 2009; Wilson et al., 2017), and general intelligence (Dallman et al., 2022). In this context, it may also be important to move beyond exclusively focusing on cross-sectional outcome measures to instead consider how affect dynamics relate to daily fluctuations in mental health-related experiences and behaviors, such as stress levels (Goldschmidt et al., 2014; Määttänen et al., 2021), sleep quality and duration (Galambos et al., 2009; Triantafillou et al., 2019), and alcohol use (Duif et al., 2020; Yang et al., 2022)

In the present work, we set out to address these limitations by comprehensively evaluating the utility of 22 different affect dynamic measures, which include 6 novel measures capturing topological dynamics of non-stationary within-person affect networks, in predicting 117 different psychological outcomes and daily behaviors within a single sample of 314 community adults. Our analysis reveals that, across 12 different predictive models evaluated, no single measure of affect dynamics led to an incremental gain of predictive power that exceeded 5.3% of explained

variance beyond a simple benchmark model comprising only the mean and SD of PA and NA scores.

Methods

Procedures

Participants. The Monash Brain & Behavior Project (MBBP) study included 314 participants (n = 97 males, 31%) aged 18–45 years (M = 28.2, SD = 7.7) drawn from the general population in Melbourne, Australia (see Table 1 for demographic statistics and affective characteristics). Inclusion criteria required participants to be right-handed, native English speakers, of European ancestry (all four grandparents of European descent), without intellectual disabilities, and with no personal history of neurological illness, steroid abuse, or clinically diagnosed substance abuse. Participants were not excluded even if they reported a personal or family history of mental illness, ensuring that our sample has a diverse range of mental health histories.

Behavioral measurements. All participants completed a 2-hour online questionnaire comprising a comprehensive battery of psychometrically-validated instruments. These questionnaires assessed personality traits, various dimensions of mental health symptoms, life satisfaction, and other psychological factors. Additionally, participants completed a 2-hour cognitive assessment battery under the supervision of trained research officers at Monash Biomedical Imaging. The cognitive battery was designed to measure several processes believed to be critical for the self-regulation of attention, thinking, emotion, and behavior—domains often impacted by mental health conditions. The target variables for this study were derived from these behavioral measurements. The measures considered in the present analysis are a subset of these collected measures, as explained below.

EMA. Individuals who completed the psychopathological assessments were invited to participate in a Daily Experience Sampling Survey (DESS), which involved a 1–2 minute daily "diary" questionnaire online, accessible via mobile phones, tablets, or computers. Participants received an electronic link to a brief online survey at 7:00 pm each day for 28 days, which included the short version of the Positive and Negative Affect Schedule (PANAS-10) to measure daily positive and negative affect. The short-form of the PANAS-10 comprises 10 items measuring PA (5 items) and NA (5 items). It has been validated through extensive psychometric evaluations, demonstrating strong internal consistency, test-retest reliability, and construct validity across diverse populations and contexts (E. R. Thompson, 2007; Watson et al., 1988). Internal consistency reliability of the subscales was high in the present sample (PA α = 0.85; NA α = 0.81).

Participants also completed questions regarding stressful events they

encountered during the day and their self-rating of associated stress levels, in addition to providing ratings on the quality and duration of their previous night's sleep, any substance use (e.g., drugs or alcohol) in the past 24 hours, and their perceived level of intoxication (see Additional file 1 for DESS questions). A reminder email was sent at 8:00 pm if participants failed to complete the survey, with the link remaining active until 11:59 pm. Responses after this time were not considered. Affect dynamics in this study were calculated using data from the DESS.

Measures of affect dynamics

We considered the same set of 16 measures of affect dynamics originally evaluated by Dejonckheere et al. (2019), including Mean PA and NA (M), Variance or standard deviation in PA and NA (SD*), Relative variance or standard deviation in PA and NA (SD*), Mean Square of Successive Differences in PA and NA (MSSD), Auto-regression in PA and NA (AR), Emotion-network density (D), ICC for PA and NA (ICC), PA-NA correlation (ρ), and the Gini coefficient (G) for PA and NA. Brief descriptions and calculation formulas for each measure are summarized in Table 2 (see also Table 1 in Dejonckheere et al. (2019)).

We also examined six additional measures of affect dynamics derived from the network science literature (Mucha et al., 2010; Sizemore & Bassett, 2018), which treat affect networks of DESS item responses as time-varying systems, allowing us to capture how the structure of affect networks evolves over time. To calculate these measures, we first applied a sliding window method, with each window spanning 7 days, starting from the first day of valid data. The window was then moved one day at a time, generating a new overlapping window. The process was repeated and continued until the last time window reached the final day of valid data. For each participant with N valid days of data (25–28 days; see below), this procedure generated time windows. Changing the window size to 5, 10, or 14 days did not affect the main results of the study (see Supplementary Fig. 1 in Additional file 2).

Within each time window, we constructed an affect network based on the cross-product matrix of PANAS-10 responses over the 7-day period. In this matrix, each row/column, corresponding to a network node, was a PANAS-10 item, and each matrix element, corresponding to a network edge, was the cross-product of the item ratings obtained for every pair of items. One such network was defined for each time window.

We then applied a multilayer extension of the Louvain method for community detection (Mucha et al., 2010) to characterize dynamic community structure within these networks with parameters for interlayer coupling and for resolution to achieve a proper multilayer community assignment, as

implemented available **MATLAB** in a freely code (https://github.com/GenLouvain/GenLouvain) (Mucha et al., The algorithm returns a community assignment for each time window (also called a network layer), where a community corresponds to a cluster of items sharing similar variance. The resulting time-varying community assignments were then used to calculate measures of node promiscuity and node flexibility. Node promiscuity was defined as the number of different communities in which a node participated, normalized by the total number of communities. Node flexibility was defined as the number of times a node changed communities, normalized by the total number of opportunities it had to change communities (Sizemore & Bassett, 2018). We computed promiscuity and flexibility measures averaged across the entire network, as well as just over PA and NA items. We therefore obtained a total of 6 different measures of non-stationary affect dynamics.

Target variables

We used the 22 different affect dynamics measures described above to predict 117 different indicators of psychological well-being. These indicators comprised 108 cross-sectional psychological well-being measures and 9 dynamic measures of daily fluctuations in sleep quality and alcohol use from the EMA (DESS). Detailed descriptions of all 117 psychological well-being indicators can be found in the Supplementary Table 1 in the Additional file 2.

Cross-sectional psychological well-being measures. People's life satisfaction and depressive and borderline symptoms tested in (Dejonckheere et al, 2019)'s work were assessed using the Satisfaction With Life (SWL) (Diener et al., 1985), the General Depression subscale of the Inventory of Depression and Anxiety Symptoms - Expanded Version (IDAS-II) (Watson et al., 2012), and the Computerized Adaptive Test of Personality Disorder (CAT-PD) (Simms et al., 2011), respectively. These measures were complemented by assessments of 105 additional measures of psychological well-being and behavioral outcomes derived using subscales of five commonly-used psychometric questionnaires: the IDAS-II and CAT-PD, the Eating Pathology Symptoms Inventory (EPSI) (Forbush et al., 2013), the Externalizing Spectrum Inventory - Brief Form (ESI-BF) (Patrick et al., 2013), the Big Five Inventory - Second Edition (BFI-II) (Soto & John, 2017), and the Wechsler Abbreviated Scale of Intelligence - Second Edition (WASI-II) (Wechsler, 2011).

Dynamics of sleep and alcohol use. We measured daily fluctuations in people's sleep quality and alcohol using the M and SD of their perceived sleep quality scores, sleep duration, daily stress levels, and alcohol consumption, as well as the frequency of alcohol use, during the DESS study.

Statistical analysis

Data pre-processing. Participants were excluded if they provided fewer than 25 days of DESS data, and/or if they failed to maintain a valid response rate of > 89% (); failed to provide complete answers to the DESS questionnaire items for at least one day, to ensure item-level completeness across the entire dataset (); exhibited no variability in PA or NA composite scores (); and/or rated the intensity of any same-valence emotion above 10% on the response scale, which affects estimation of the Gini coefficient (). After these steps, a final sample of 314 participants was retained for further analysis.

Predictive modelling. We first examined empirical correlations between different affect dynamic measures using pairwise Pearson correlations and hierarchical clustering. Next, following Dejonckheere et al. (2019), we evaluated the unique explanatory power of affect dynamics in predicting the 117 psychological well-being indicators through 10-fold cross-validated linear regression models. In each case, the predictive model specified the affect dynamic metric, in addition to the M and SD of PA and NA ratings. The variance explained by this model was then compared with two benchmark models incorporating only the M, or only the M and SD of the ratings.

Results

Correlations between measures of affect dynamics

The reordered correlation matrix of the 22 affect dynamic measures reveals a modular structure comprising four distinct clusters, which represent groups of affect dynamic measures with highly similar correlation profiles (Fig. 1a).

One cluster comprised traditional variability measures for PA, including *SD*, *SD**, and *MSSD*. A separate cluster comprised the same set of variability measures for NA, while also including ICC, forming a parallel grouping with similarly strong internal coherence. A third comprised six novel dynamic network-based measures: flexibility (F) and promiscuity (P), each computed for PA, NA, and across the entire affective network. These nonstationary-network-based measures grouped tightly, suggesting that they reflect a shared dynamic property distinct from traditional variability.

In contrast, a more loosely organized cluster brought together the M, G, and AR for both valences, ICC for PA, ρ , and D. These measures were less strongly interconnected (r range = -0.73 to 0.26) and showed relatively weak associations with the rest of the matrix.

Notably, the PA variability cluster (r range = 0.81 to 0.94), the NA variability cluster (r range = 0.52 to 0.81), and the nonstationary-network-based measures cluster (r range = 0.063 to 0.90) were characterized by strong positive correlations among measures within the same cluster, while

correlations between clusters were generally weak or negative, indicating distinct dissociations between different dimensions of affect dynamics.

Regarding the variance explained by the M and SD of PA and NA (Fig. 1b), P (PA) has the lowest proportion accounted for by the M and SD of PA and NA ($R^2 = 0.023$), followed by P (network) ($R^2 = 0.024$). In contrast, SD^* and MSSD are most strongly explained by the M and SD of PA and NA (SD*: R^2 PA = 0.91, $R^2NA = 0.84$; MSSD: $R^2PA = 0.76$, $R^2NA = 0.68$). Overall, SD^* , MSSD, G, and ICC for both valences are strongly explained by the M and SD of PA and NA (R^2 range = 0.44 to 0.91), while AR, D, ρ , and 6 novel nonstationary-network-based measures have low proportion of variance explained by the M and SD of PA and NA (R^2 range = 0.023 to 0.11). High variance explained by the M and SD implies shared information between a complex affect dynamic measure and the most parsimonious affect dynamic measures M and SD, which suggests redundancy and limited incremental value. Conversely, low variance explained indicates that a measure may capture unique aspects of affect dynamics not accounted for by M and SD, thereby offering potentially novel insights into affective processes and their links to psychopathology.

Predictive modelling

As a first benchmark, we considered the predictive performance of models including only the M or SD of NA or PA ratings as predictors of the outcome variables. The M of NA generally outperformed the M of PA, exhibiting a slightly positive mean predicted R^2 (0.02). Among all the 117 psychological well-being and behavioral variables, the M of NA showed the strongest predictive performance for mean daily stress levels (predicted $R^2 = 0.52$,), followed by general depression (predicted $R^2 = 0.30$,) and dysphoria (predicted $R^2 = 0.27$,).

Both the SD of NA and SD of PA ratings yielded negative mean predicted R^2 values across the 117 target variables, with SD of NA (mean predicted $R^2 = -0.035$) slightly outperforming the SD of PA (mean predicted $R^2 = -0.043$). This result suggests that the SD of NA or PA offers little predictive utility. However, the SD of both PA and NA predicted the SD of daily stress levels, with R^2 values of 0.37 () and 0.12 (), respectively, after accounting for the effects of mean ratings.

Across all 18 models using one of the complex affect dynamics measures as a predictor, both average and median predicted R^2 values across the 117 outcomes were negative, indicating generally poor predictive performance. Some complex affect dynamics measures showed moderate effects for specific outcomes. For example, models incorporating the MSSD and SD of NA ratings on their own exhibited R^2 values of 0.30 () and 0.21 (),

respectively, in predicting the SD of daily stress levels. The Gini coefficient of NA ratings was also associated with () in predicting mean daily stress levels. However, compared to models in which the M and/or SD of NA ratings over time were included, the more complex affect measures explained no more than 5.3% of additional outcome variance (Fig. 2).

Discussion

Our analysis of the utility of 22 different measures of EMA-based affect dynamics in predicting 117 different cross-sectional and longitudinal psychological outcomes reveals that complex measures for quantifying affect dynamics offer little additional benefit over simple measures, such as the M and SD, of daily affect fluctuations. By considering an expanded set of affect dynamic measures that account for time-varying processes, and by considering a much wider range of outcomes, our results are consistent with results of Dejonckheere et al. (2019) and support the generality of the conclusion that measures of complex affect dynamics have little power in predicting typically measured psychological outcomes.

Beyond replicating Dejonckheere et al. (2019), our findings align with other EMA research in the literature. For instance, our analysis indicated that affect dynamic measures predict depression and anxiety symptoms in IDAS-II with the highest accuracy. Specifically, mean NA showed the greatest predictive power for the general depression subscale in IDAS-II with predicted R^2 value reaching 0.30, while mean PA showed a poorer predictive effect with predicted R^2 value of 0.17 (Supplementary Fig. 2 in the Additional file 2). This result is consistent with previous findings emphasizing the critical role of negative emotion in internalizing disorders, such as depression and anxiety (Naragon-Gainey, 2019; Young et al., 2019), alongside weaker relationships between positive affect and these conditions (Gilbert, 2012; Naragon-Gainey, 2019).

We also observed domain-specific prediction of EMA-based behavioral targets (sleep, stress, and alcohol use). Mean PA was more predictive than mean NA for average sleep quality, consistent with prior studies linking better sleep primarily to PA rather than NA (De Wild-Hartmann et al., 2013; Galambos et al., 2009; Triantafillou et al., 2019). Conversely, daily stress levels were much more robustly predicted by mean NA, with a predicted R^2 value reaching 0.52, which was the strongest prediction in our results. For comparison, the effect of mean PA on this outcome was only 0.0047. Stress variability was also better predicted by the SD of NA (predicted $R^2 = 0.12$) than the SD of PA (predicted $R^2 = 0.083$). These findings align with previous reports indicating that daily life stress heightens NA, while maintaining relatively stable PA, particularly in individuals with major depressive disorder (Myin-Germeys et al., 2003).

Our findings may reflect a broader trend in time series analysis observed in other fields, in which investigators propose specific measures to capture a particular process of interest without first considering whether the proposed measure indexes a unique feature that is not already captured by existing approaches. The recent development of accessible approaches for highly comparative time series analysis, which allow one to compare the behavior of a given measure with thousands of other analysis methods developed in diverse scientific fields across a large library of time series recorded in different systems can be leveraged to avoid the unnecessary proliferation of redundant methods (Fulcher & Jones, 2014, 2017; Lubba et al., 2019).

Our analysis is not intended to suggest that EMA-based measures of affect dynamics are not useful. Indeed, EMA-based measures of depression and anxiety have demonstrated greater sensitivity and higher post-treatment effect sizes compared to traditional questionnaires (Moore et al., 2016). EMA may also mitigate recall biases inherent in cross-sectional measures (Solhan et al., 2009), enabling more sensitive, ecologically valid, and nuanced assessments of mood and behavior, including social interactions crucial to psychopathology research (Moskowitz & Young, 2005). A particularly promising avenue involves the use of EMA to identify early warning signals that may anticipate critical transitions in psychological states, including clinical relapses (Borsboom, 2017; Cramer et al., 2016; Hofmann et al., 2016; Kalisch et al., 2019; Dablander et al., 2023). For instance, critical slowing down in the variance or autocorrelation of PA and NA has shown promise in forecasting episodes of depression (Kuranova et al., 2020; Schreuder et al., 2020; Van De Leemput et al., 2014; Wichers et al., 2016), bipolar disorder (Bayani et al., 2017; Curtiss et al., 2019b), and sudden therapeutic gains and losses (Olthof et al., 2020), although methodological and practical challenges remain (Bos et al., 2022; Wagner & Eisenman, 2015). Our findings simply indicate that complex EMA-based measures of affect dynamics may have little value in predicting crosssectionally assessed psychological outcomes.

Our results should be considered in relation to several limitations. First, our EMA data were collected over a relatively brief, 28-day period, potentially constraining the generalizability of our dynamical measures, especially since we were unable to characterize dynamics unfolding over longer timescales. Future studies employing longer EMA protocols could provide deeper insights into the temporal stability and predictive validity of these measures. Second, our EMA data were collected once per day. Future work should check the generality of our results using EMA data that are collected multiple times a day, given evidence that the predictive effect of

affect dynamics in psychological outcomes can be improved when emotions are densely sampled (Shin et al., 2022). Third, our sample was restricted to right-handed community-dwelling adults of European ancestry without neurological disorders, potentially limiting the generalizability of our findings across more diverse populations and clinical samples. Finally, although we measured psychological outcomes using subscales and summed scores from established questionnaires, our predictive models yielded relatively small effect sizes. While this result aligns with recent work indicating that it is difficult to reliably predict psychopathology ratings assessed using cross-sectional assessments (Marek et al., 2022), such ratings, when indexed with simple summed scores, contain considerable measurement error that can be mitigated through the appropriate application of latent modelling and other psychometric tools (Tiego et al., 2023). Such approaches have been used in the context of EMA research (Abbott et al., 2024; Cushing et al., 2017; Hamilton et al., 2025) and a direct assessment of whether effect sizes can be improved by refining psychological phenotypes with these methods will be an important avenue of future work.

Conclusion

Our comprehensive evaluation indicates that complex affect dynamics measures minimally improve the predictions of psychological and behavioral outcomes beyond the simplest measures—the mean and standard deviation of PA and NA. Ongoing efforts to predict cross-sectional outcomes with ever-more complex affect dynamic measures are therefore unlikely to yield much benefit. Instead, a more thoughtful consideration of which specific outcomes may be most sensitive to EMA-based measures of affect fluctuations will be required to advance the field.

Declarations

Consent for publication

Not applicable.

Data availability

Data for The Monash Brain & Behavior Project (MBBP) used in this study can be made available upon reasonable request to the authors.

Funding

This research was supported by the National Health and Medical Research Council (IDs: 1197431 and 3251549). AF was additionally supported by the Australian Research Council (ID: FL220100184).

Authors' contributions

YS led the conceptualization, analysis, and drafting of the manuscript. PTL was

responsible for the code review of all analyses. JT and TC contributed to the methodology. BH, JK, and KF assisted with data collection and processing. JCP contributed to conceptualization and methodology. MB provided funding support. AF contributed to conceptualization, methodology, and supervision. All authors contributed to reviewing and editing the manuscript.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

Not applicable.

References

Abbott, M. R., Nahum-Shani, I., Lam, C. Y., Potter, L. N., Wetter, D. W., & Dempsey, W. H. (2024). A latent variable approach to jointly modeling longitudinal and cumulative event data using a weighted two-stage method. *Statistics in Medicine*, *43*(21), 4163–4177. https://doi.org/10.1002/sim.10171

Bayani, A., Hadaeghi, F., Jafari, S., & Murray, G. (2017). Critical slowing down as an early warning of transitions in episodes of bipolar disorder: A simulation study based on a computational model of circadian activity rhythms. *Chronobiology International*, *34*(2), 235–245. https://doi.org/10.1080/07420528.2016.1272608

Borsboom, D. (2017). A network theory of mental disorders. *World Psychiatry*, 16(1), 5-13. https://doi.org/10.1002/wps.20375

Bos, F. M., Schreuder, M. J., George, S. V., Doornbos, B., Bruggeman, R., Van Der Krieke, L., Haarman, B. C. M., Wichers, M., & Snippe, E. (2022). Anticipating manic and depressive transitions in patients with bipolar disorder using early warning signals. *International Journal of Bipolar Disorders*, 10(1), 12. https://doi.org/10.1186/s40345-022-00258-4

Bringmann, L. F., Ferrer, E., Hamaker, E. L., Borsboom, D., & Tuerlinckx, F. (2018). Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model. *Multivariate Behavioral Research*, *53*(3), 293–314. https://doi.org/10.1080/00273171.2018.1439722

Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., Borsboom, D., & Tuerlinckx, F. (2013). A Network Approach to Psychopathology: New Insights into Clinical Longitudinal Data. PLoS ONE, 8(4), e60188. https://doi.org/10.1371/journal.pone.0060188

Brown, N. J. L., & Coyne, J. C. (2017). Emodiversity: Robust predictor of outcomes or statistical artifact? *Journal of Experimental Psychology: General,* 146(9), 1372–1377. https://doi.org/10.1037/xge0000330

Cramer, A. O. J., Van Borkulo, C. D., Giltay, E. J., Van Der Maas, H. L.

J., Kendler, K. S., Scheffer, M., & Borsboom, D. (2016). Major Depression as a Complex Dynamic System. *PLOS ONE*, *11*(12), e0167490. https://doi.org/10.1371/journal.pone.0167490

Curtiss, J., Fulford, D., Hofmann, S. G., & Gershon, A. (2019a). Network dynamics of positive and negative affect in bipolar disorder. *Journal of Affective Disorders*, 249, 270–277. https://doi.org/10.1016/j.jad.2019.02.017

Curtiss, J., Fulford, D., Hofmann, S. G., & Gershon, A. (2019b). Network dynamics of positive and negative affect in bipolar disorder. *Journal of Affective Disorders*, 249, 270–277. https://doi.org/10.1016/j.jad.2019.02.017

Cushing, C. C., Marker, A. M., Bejarano, C. M., Crick, C. J., & Huffhines, L. P. (2017). Latent Variable Mixture Modeling of Ecological Momentary Assessment Data: Implications for Screening and Adolescent Mood Profiles. *Journal of Child and Family Studies*, *26*(6), 1565–1572. https://doi.org/10.1007/s10826-017-0689-5

Dablander, F., Pichler, A., Cika, A., & Bacilieri, A. (2023). Anticipating critical transitions in psychological systems using early warning signals: Theoretical and practical considerations. *Psychological Methods, 28*(4), 765–790. https://doi.org/10.1037/met0000450

Dallman, A. R., Bailliard, A., & Harrop, C. (2022). Identifying Predictors of Momentary Negative Affect and Depression Severity in Adolescents with Autism: An Exploratory Ecological Momentary Assessment Study. *Journal of Autism and Developmental Disorders*, 52(1), 291–303. https://doi.org/10.1007/s10803-021-04935-8

De Haan-Rietdijk, S., Gottman, J. M., Bergeman, C. S., & Hamaker, E. L. (2016). Get Over It! A Multilevel Threshold Autoregressive Model for State-Dependent Affect Regulation. *Psychometrika*, 81(1), 217–241. https://doi.org/10.1007/s11336-014-9417-x

De Wild-Hartmann, J. A., Wichers, M., Van Bemmel, A. L., Derom, C., Thiery, E., Jacobs, N., Van Os, J., & Simons, C. J. P. (2013). Day-to-day associations between subjective sleep and affect in regard to future depressionin a female population-based sample. *British Journal of Psychiatry*, 202(6), 407–412.

https://doi.org/10.1192/bjp.bp.112.123794

Dejonckheere, E., Mestdagh, M., Houben, M., Erbas, Y., Pe, M., Koval, P., Brose, A., Bastian, B., & Kuppens, P. (n.d.). *The Bipolarity of Affect and Depressive Symptoms*.

Duif, M., Thewissen, V., Wouters, S., Lechner, L., & Jacobs, N. (2020). Associations between affect and alcohol consumption in adults: An ecological momentary assessment study. *The American Journal of Drug and Alcohol Abuse*, *46*(1), 88–97. https://doi.org/10.1080/00952990.2019.1635606

- Epskamp, S. (n.d.). Discovering Psychological Dynamics.
- Forbush, K. T., Wildes, J. E., Pollack, L. O., Dunbar, D., Luo, J., Patterson, K., Petruzzi, L., Pollpeter, M., Miller, H., & Stone, A. (2013). Development and Validation of the Eating Pathology Symptoms Inventory (EPSI). *Psychological Assessment*, *25*(3), 859-878. https://doi.org/10.1037/a0032639
- Fulcher, B. D., & Jones, N. S. (2014). Highly Comparative Feature-Based Time-Series Classification. *IEEE Transactions on Knowledge and Data Engineering*, 26(12), 3026–3037. https://doi.org/10.1109/TKDE.2014.2316504
- Fulcher, B. D., & Jones, N. S. (2017). hctsa: A Computational Framework for Automated Time-Series Phenotyping Using Massive Feature Extraction. *Cell Systems*, *5*(5), 527-531.e3. https://doi.org/10.1016/j.cels.2017.10.001
- Galambos, N. L., Dalton, A. L., & Maggs, J. L. (2009). Losing Sleep Over It: Daily Variation in Sleep Quantity and Quality in Canadian Students' First Semester of University. *Journal of Research on Adolescence*, 19(4), 741–761. https://doi.org/10.1111/j.1532-7795.2009.00618.x
- Gilbert, K. E. (2012). The neglected role of positive emotion in adolescent psychopathology. *Clinical Psychology Review*, *32*(6), 467–481. https://doi.org/10.1016/j.cpr.2012.05.005
- Goldschmidt, A. B., Wonderlich, S. A., Crosby, R. D., Engel, S. G., Lavender, J. M., Peterson, C. B., Crow, S. J., Cao, L., & Mitchell, J. E. (2014). Ecological momentary assessment of stressful events and negative affect in bulimia nervosa. *Journal of Consulting and Clinical Psychology*, 82(1), 30–39. https://doi.org/10.1037/a0034974
- Hall, M., Scherner, P. V., Kreidel, Y., & Rubel, J. A. (2021). A Systematic Review of Momentary Assessment Designs for Mood and Anxiety Symptoms. *Frontiers in Psychology*, *12*, 642044. https://doi.org/10.3389/fpsyg.2021.642044
- Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F., & Muthén, B. (2018). At the Frontiers of Modeling Intensive Longitudinal Data: Dynamic Structural Equation Models for the Affective Measurements from the COGITO Study. *Multivariate Behavioral Research*, 53(6), 820-841.
- https://doi.org/10.1080/00273171.2018.1446819
- Hamilton, L. J., Lakhan, P., & Rutter, L. A. (2025). A Latent Variable Approach to Affect Variability in Daily Life Accurately Predicts Psychopathology, Especially Depression Symptoms in a Non-Clinical Sample. *Journal of Emotion and Psychopathology*, 1(2), 569–588. https://doi.org/10.55913/joep.v1i2.82
- Hawes, M. T., & Klein, D. N. (2023). Unique Associations Between Affect Dynamics and Internalizing and Externalizing Subfactors:

- Disentangling Affective Home Base and Variability. *Journal of Psychopathology and Behavioral Assessment*, 45(4), 897–906. https://doi.org/10.1007/s10862-023-10088-y
- Heller, A. S., Stamatis, C. A., Puccetti, N. A., & Timpano, K. R. (2021). The distribution of daily affect distinguishes internalizing and externalizing spectra and subfactors. *Journal of Abnormal Psychology*, *130*(4), 319–332. https://doi.org/10.1037/abn0000670 Hofmann, S. G., Curtiss, J., & McNally, R. J. (n.d.). *A Complex Network Perspective on Clinical Science*.
- Jahng, S., Wood, P. K., & Trull, T. J. (2008). Analysis of affective instability in ecological momentary assessment: Indices using successive difference and group comparison via multilevel modeling. *Psychological Methods, 13*(4), 354–375. https://doi.org/10.1037/a0014173
- Juarascio, A. S., Felton, J. W., Borges, A. M., Manasse, S. M., Murray, H. B., & Lejuez, C. W. (2016). An investigation of negative affect, reactivity, and distress tolerance as predictors of disordered eating attitudes across adolescence. *Journal of Adolescence*, *49*(1), 91–98. https://doi.org/10.1016/j.adolescence.2016.02.005
- Kalisch, R., Cramer, A. O. J., Binder, H., Fritz, J., Leertouwer, Ij., Lunansky, G., Meyer, B., Timmer, J., Veer, I. M., & Van Harmelen, A.-L. (2019). Deconstructing and Reconstructing Resilience: A Dynamic Network Approach. *Perspectives on Psychological Science*, *14*(5), 765–777. https://doi.org/10.1177/1745691619855637
- Koval, P., Pe, M. L., Meers, K., & Kuppens, P. (2013). Affect dynamics in relation to depressive symptoms: Variable, unstable or inert? *Emotion*, *13*(6), 1132–1141. https://doi.org/10.1037/a0033579
- Koval, P., Sütterlin, S., & Kuppens, P. (2016). Emotional Inertia is Associated with Lower Well-Being when Controlling for Differences in Emotional Context. *Frontiers in Psychology*, 6. https://doi.org/10.3389/fpsyg.2015.01997
- Kuppens, P. (2015). It's About Time: A Special Section on Affect Dynamics. *Emotion Review*, 7(4), 297–300. https://doi.org/10.1177/1754073915590947
- Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010). Emotional Inertia and Psychological Maladjustment. *Psychological Science*, *21*(7), 984–991. https://doi.org/10.1177/0956797610372634
- Kuppens, P., Sheeber, L. B., Yap, M. B. H., Whittle, S., Simmons, J. G., & Allen, N. B. (2012). Emotional inertia prospectively predicts the onset of depressive disorder in adolescence. *Emotion*, *12*(2), 283–289. https://doi.org/10.1037/a0025046
- Kuranova, A., Booij, S. H., Menne-Lothmann, C., Decoster, J., Van Winkel, R., Delespaul, P., De Hert, M., Derom, C., Thiery, E., Rutten, B. P. F., Jacobs, N., Van Os, J., Wigman, J. T. W., & Wichers, M.

(2020). Measuring resilience prospectively as the speed of affect recovery in daily life: A complex systems perspective on mental health. *BMC Medicine*, *18*(1), 36. https://doi.org/10.1186/s12916-020-1500-9

Kuranova, A., Wigman, J. T. W., Menne-Lothmann, C., Decoster, J., Van Winkel, R., Delespaul, P., Drukker, M., De Hert, M., Derom, C., Thiery, E., Rutten, B. P. F., Jacobs, N., Van Os, J., Oldehinkel, A. J., Booij, S. H., & Wichers, M. (2021). Network dynamics of momentary affect states and future course of psychopathology in adolescents. *PLOS*ONE, 16(3), e0247458. https://doi.org/10.1371/journal.pone.0247458

Lubba, C. H., Sethi, S. S., Knaute, P., Schultz, S. R., Fulcher, B. D., & Jones, N. S. (2019). catch22: CAnonical Time-series CHaracteristics: Selected through highly comparative time-series analysis. *Data Mining and Knowledge Discovery*, *33*(6), 1821–1852. https://doi.org/10.1007/s10618-019-00647-x

Määttänen, I., Henttonen, P., Väliaho, J., Palomäki, J., Thibault, M., Kallio, J., Mäntyjärvi, J., Harviainen, T., & Jokela, M. (2021). Positive affect state is a good predictor of movement and stress: Combining data from ESM/EMA, mobile HRV measurements and trait questionnaires. *Heliyon*, 7(2), e06243. https://doi.org/10.1016/j.heliyon.2021.e06243

Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., Donohue, M. R., Foran, W., Miller, R. L., Hendrickson, T. J., Malone, S. M., Kandala, S., Feczko, E., Miranda-Dominguez, O., Graham, A. M., Earl, E. A., Perrone, A. J., Cordova, M., Doyle, O., ... Dosenbach, N. U. F. (2022). Reproducible brainwide association studies require thousands of individuals. *Nature*, 603(7902), 654–660. https://doi.org/10.1038/s41586-022-04492-9

Mestdagh, M., Pe, M., Pestman, W., Verdonck, S., Kuppens, P., & Tuerlinckx, F. (2018). Sidelining the mean: The relative variability index as a generic mean-corrected variability measure for bounded variables. *Psychological Methods*, *23*(4), 690–707. https://doi.org/10.1037/met0000153

Miller, D. J., Vachon, D. D., & Lynam, D. R. (2009). Neuroticism, negative affect, and negative affect instability: Establishing convergent and discriminant validity using ecological momentary assessment. *Personality and Individual Differences*, 47(8), 873–877. https://doi.org/10.1016/j.paid.2009.07.007

Moore, R. C., Depp, C. A., Wetherell, J. L., & Lenze, E. J. (2016). Ecological momentary assessment versus standard assessment instruments for measuring mindfulness, depressed mood, and anxiety among older adults. *Journal of Psychiatric Research*, 75, 116–123. https://doi.org/10.1016/j.jpsychires.2016.01.011

- Moskowitz, D. S., & Young, S. N. (n.d.). Ecological momentary assessment: What it is and why it is a method of the future in clinical psychopharmacology. *J Psychiatry Neurosci*.
- Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community Structure in Time-Dependent, Multiscale, and Multiplex Networks. *Science*, *328*(5980), 876–878. https://doi.org/10.1126/science.1184819
- Myin-Germeys, I., Kasanova, Z., Vaessen, T., Vachon, H., Kirtley, O., Viechtbauer, W., & Reininghaus, U. (2018). Experience sampling methodology in mental health research: New insights and technical developments. *World Psychiatry*, 17(2), 123–132. https://doi.org/10.1002/wps.20513
- Myin-Germeys, I., Peeters, F., Havermans, R., Nicolson, N. A., DeVries, M. W., Delespaul, P., & Van Os, J. (2003). Emotional reactivity to daily life stress in psychosis and affective disorder: An experience sampling study. *Acta Psychiatrica Scandinavica*, 107(2), 124–131. https://doi.org/10.1034/j.1600-0447.2003.02025.x
- Naragon-Gainey, K. (2019). Affective models of depression and anxiety: Extension to within-person processes in daily life. *Journal of Affective Disorders*, 243, 241–248. https://doi.org/10.1016/j.jad.2018.09.061
- Olthof, M., Hasselman, F., Strunk, G., Van Rooij, M., Aas, B., Helmich, M. A., Schiepek, G., & Lichtwarck-Aschoff, A. (2020). Critical Fluctuations as an Early-Warning Signal for Sudden Gains and Losses in Patients Receiving Psychotherapy for Mood Disorders. Clinical Psychological Science, 8(1), 25–35. https://doi.org/10.1177/2167702619865969
- Patrick, C. J., Kramer, M. D., Krueger, R. F., & Markon, K. E. (2013). Optimizing efficiency of psychopathology assessment through quantitative modeling: Development of a brief form of the Externalizing Spectrum Inventory. *Psychological Assessment*, *25*(4), 1332–1348. https://doi.org/10.1037/a0034864
- Pe, M. L., Kircanski, K., Thompson, R. J., Bringmann, L. F., Tuerlinckx, F., Mestdagh, M., Mata, J., Jaeggi, S. M., Buschkuehl, M., Jonides, J., Kuppens, P., & Gotlib, I. H. (2015). Emotion-Network Density in Major Depressive Disorder. *Clinical Psychological Science*, 3(2), 292–300. https://doi.org/10.1177/2167702614540645 Schat, E., Tuerlinckx, F., De Ketelaere, B., & Ceulemans, E. (2023). Real-time detection of mean and variance changes in experience sampling data: A comparison of existing and novel statistical process control approaches. *Behavior Research Methods*, 56(3), 1459–1475. https://doi.org/10.3758/s13428-023-02103-7
- Schoevers, R. A., Van Borkulo, C. D., Lamers, F., Servaas, M. N., Bastiaansen, J. A., Beekman, A. T. F., Van Hemert, A. M., Smit, J. H.,

- Penninx, B. W. J. H., & Riese, H. (2021). Affect fluctuations examined with ecological momentary assessment in patients with current or remitted depression and anxiety disorders. Psychological Medicine, 51(11), 1906-1915. https://doi.org/10.1017/S0033291720000689 Schreuder, M. J., Hartman, C. A., George, S. V., Menne-Lothmann, C., Decoster, J., Van Winkel, R., Delespaul, P., De Hert, M., Derom, C., Thiery, E., Rutten, B. P. F., Jacobs, N., Van Os, J., Wigman, J. T. W., & Wichers, M. (2020). Early warning signals in psychopathology: What they tell? BMCMedicine, *18*(1). 269. https://doi.org/10.1186/s12916-020-01742-3
- Scott, L. N., Victor, S. E., Kaufman, E. A., Beeney, J. E., Byrd, A. L., Vine, V., Pilkonis, P. A., & Stepp, S. D. (2020). Affective Dynamics Across Internalizing and Externalizing Dimensions of Psychopathology. *Clinical Psychological Science*, 8(3), 412–427. https://doi.org/10.1177/2167702619898802
- Segal, A., Tiego, J., Parkes, L., Holmes, A. J., Marquand, A. F., & Fornito, A. (2025). Embracing variability in the search for biological mechanisms of psychiatric illness. *Trends in Cognitive Sciences*, *29*(1), 85–99. https://doi.org/10.1016/j.tics.2024.09.010
- Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological Momentary Assessment. *Annual Review of Clinical Psychology*, *4*(1), 1–32. https://doi.org/10.1146/annurev.clinpsy.3.022806.091415
- Shin, K. E., Newman, M. G., & Jacobson, N. C. (2022). Emotion network density is a potential clinical marker for anxiety and depression: Comparison of ecological momentary assessment and daily diary. *British Journal of Clinical Psychology*, *61*(S1), 31–50. https://doi.org/10.1111/bjc.12295
- Simms, L. J., Goldberg, L. R., Roberts, J. E., Watson, D., Welte, J., & Rotterman, J. H. (2011). Computerized Adaptive Assessment of Personality Disorder: Introducing the CAT-PD Project. *Journal of Personality Assessment*, 93(4), 380-389. https://doi.org/10.1080/00223891.2011.577475
- Sizemore, A. E., & Bassett, D. S. (2018). Dynamic graph metrics: Tutorial, toolbox, and tale. *NeuroImage*, *180*, 417-427. https://doi.org/10.1016/j.neuroimage.2017.06.081
- Smyth, J. M., & Smyth, J. M. (2003). Ecological Momentary Assessment Research in Behavioral medicine. *Journal of Happiness Studies*, *4*(1), 35–52. https://doi.org/10.1023/A:1023657221954
- Snippe, E., Smit, A. C., Kuppens, P., Burger, H., & Ceulemans, E. (2023). Recurrence of depression can be foreseen by monitoring mental states with statistical process control. *Journal of Psychopathology and Clinical Science*, 132(2), 145–155. https://doi.org/10.1037/abn0000812
- Solhan, M. B., Trull, T. J., Jahng, S., & Wood, P. K. (2009). Clinical

- assessment of affective instability: Comparing EMA indices, questionnaire reports, and retrospective recall. *Psychological Assessment*, 21(3), 425–436. https://doi.org/10.1037/a0016869
- Soto, C. J., & John, O. P. (2017). The next Big Five Inventory (BFI-2): Developing and assessing a hierarchical model with 15 facets to enhance bandwidth, fidelity, and predictive power. *Journal of Personality and Social Psychology*, 113(1), 117–143. https://doi.org/10.1037/pspp0000096
- South, S. C., & Miller, M. L. (2014). Measuring Momentary Stress, Affect, and Cognition: Relationships with the Internalizing and Externalizing Spectra. *Journal of Psychopathology and Behavioral Assessment*, *36*(1), 93–104. https://doi.org/10.1007/s10862-013-9365-2
- Sperry, S. H., Walsh, M. A., & Kwapil, T. R. (2020). Emotion dynamics concurrently and prospectively predict mood psychopathology. *Journal of Affective Disorders*, *261*, 67–75. https://doi.org/10.1016/j.jad.2019.09.076
- Spiller, T. R., Weilenmann, S., Prakash, K., Schnyder, U., Von Känel, R., & Pfaltz, M. C. (2021). Emotion network density in burnout. *BMC Psychology*, *9*(1), 170. https://doi.org/10.1186/s40359-021-00670-y Thompson, E. R. (2007). Development and Validation of an Internationally Reliable Short-Form of the Positive and Negative Affect Schedule (PANAS). *Journal of Cross-Cultural Psychology*, *38*(2), 227-242. https://doi.org/10.1177/0022022106297301
- Thompson, R. J., Liu, D. Y., Sudit, E., & Boden, M. (2021). Emotion Differentiation in Current and Remitted Major Depressive Disorder. *Frontiers in Psychology*, 12, 685851. https://doi.org/10.3389/fpsyg.2021.685851
- Tiego, J., Martin, E. A., DeYoung, C. G., Hagan, K., Cooper, S. E., Pasion, R., Satchell, L., Shackman, A. J., Bellgrove, M. A., Fornito, A., the HiTOP Neurobiological Foundations Work Group, Abend, R., Goulter, N., Eaton, N. R., Kaczkurkin, A. N., & Nusslock, R. (2023). Precision behavioral phenotyping as a strategy for uncovering the biological correlates of psychopathology. *Nature Mental Health*, *1*(5), 304–315. https://doi.org/10.1038/s44220-023-00057-5
- Triantafillou, S., Saeb, S., Lattie, E. G., Mohr, D. C., & Kording, K. P. (2019). Relationship Between Sleep Quality and Mood: Ecological Momentary Assessment Study. *JMIR Mental Health*, *6*(3), e12613. https://doi.org/10.2196/12613
- Van De Leemput, I. A., Wichers, M., Cramer, A. O. J., Borsboom, D., Tuerlinckx, F., Kuppens, P., Van Nes, E. H., Viechtbauer, W., Giltay, E. J., Aggen, S. H., Derom, C., Jacobs, N., Kendler, K. S., Van Der Maas, H. L. J., Neale, M. C., Peeters, F., Thiery, E., Zachar, P., & Scheffer, M. (2014). Critical slowing down as early warning for the

onset and termination of depression. *Proceedings of the National Academy of Sciences*, 111(1), 87-92. https://doi.org/10.1073/pnas.1312114110

Wagner, T. J. W., & Eisenman, I. (2015). False alarms: How early warning signals falsely predict abrupt sea ice loss. *Geophysical Research Letters*, 42(23). https://doi.org/10.1002/2015GL066297

Watson, D., Anna, L., & Tellegen, A. (1988). Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales. *Journal of Personality and Social Psychology*, *54*(6), 1063–1070. https://doi.org/10.1037//0022-3514.54.6.1063

Watson, D., O'Hara, M. W., Naragon-Gainey, K., Koffel, E., Chmielewski, M., Kotov, R., Stasik, S. M., & Ruggero, C. J. (2012). Development and Validation of New Anxiety and Bipolar Symptom Scales for an Expanded Version of the IDAS (the IDAS-II). *Assessment,* 19(4), 399-420.

https://doi.org/10.1177/1073191112449857

Wichers, M., Groot, P. C., & Psychosystems, ESM Group, EWS Group. (2016). Critical Slowing Down as a Personalized Early Warning Signal for Depression. *Psychotherapy and Psychosomatics*, 85(2), 114–116. https://doi.org/10.1159/000441458

Wilson, R. E., Thompson, R. J., & Vazire, S. (2017). Are fluctuations in personality states more than fluctuations in affect? *Journal of Research in Personality*, 69, 110–123. https://doi.org/10.1016/j.jrp.2016.06.006

Wright, A. G. C., & Woods, W. C. (2020). *Personalized Models of Psychopathology*.

Yang, J. J., Lin, H.-C., Ou, T.-S., Tong, Z., Li, R., Piper, M. E., & Buu, A. (2022). The situational contexts and subjective effects of co-use of electronic cigarettes and alcohol among college students: An ecological momentary assessment (EMA) study. *Drug and Alcohol Dependence*, 239, 109594.

https://doi.org/10.1016/j.drugalcdep.2022.109594

Young, K., Sandman, C., & Craske, M. (2019). Positive and Negative Emotion Regulation in Adolescence: Links to Anxiety and Depression. *Brain Sciences*, *9*(4), 76. https://doi.org/10.3390/brainsci9040076

Table 1. Demographic and affective characteristics of our sample (N = 314).

Variable	Value
Age, mean (SD)	28.18 (7.71)
Sex, n (%)	
Female	212 (67.52)

Male	97 (30.89)
Other	4 (1.27)
PA, mean (SD)	13.75 (2.66)
NA, mean (SD)	9.67 (2.38)

Table 2. Summary of 22 affect dynamic measures.

Measure	Affect	Brief description	Mathematical description	Mathematical equation
(abbreviation)	dynamic			
	feature			
1. Mean PA and NA (M)	Average affect level	Reflects an individual's average level of positive or	The average of all affect ratings over the entire sampling	
		negative affect across time.	period.	
2. Variance or standard	Emotional variability	Indicates the extent to which an individual's emotional	Calculated as the square root of the average squared	
deviation PA and NA (SD)		state fluctuates around their mean level of affect.	deviation from the mean affect rating.	
3. Relative variance or	Relative emotional	Captures emotional fluctuations while accounting for the	The standard deviation divided by the maximum possible	
standard deviation PA and	variability	scale's range, i.e., normalizing variability relative to the	standard deviation at a given mean level.	
NA (SD*)		affect's potential range.		
4. MSSD PA and NA	Emotional instability	Measures the extent of emotional changes between	The square root of the average squared difference	
(MSSD)		consecutive observations, capturing rapid shifts in	between consecutive affect ratings.	
		affective states.		
5. Auto-regression PA and	Emotional inertia	Represents the persistence of affective states over time—	The within-person autoregressive slope in a multilevel	
NA (AR)		how strongly current affect is predicted by previous	AR(1) model, indicating how much a previous affect rating	
		states.	predicts the current one.	
6. Emotion-network	Emotional	Reflects how strongly different affective states influence	Calculated as the average absolute value of within-person	
density (D)	interconnectivity over	each other across time, representing emotional rigidity or	auto- and cross-regressive slopes in a multilevel VAR(1)	
	time	system-level resistance to change.	model.	
7. ICC PA and NA (ICC)	Emotional	Captures how well an individual differentiates between	Derived from the intra-class correlation of affect ratings,	
	granularity/differentia	distinct positive or negative emotions, with higher values	where low ICC reflects greater distinction between	
	tion	indicating less emotional differentiation.	emotion types.	
8. PA-NA correlation (ρ)	Affective bipolarity or	Indicates whether PA and NA are experienced	Calculated as the within-person correlation between PA	

	dialecticism	independently or in opposition, revealing a person's	and NA time series.	
		emotional complexity or bipolar tendency.		
9. Gini coefficient PA and	Emodiversity	Reflects the breadth and evenness in the experience of	A weighted Gini index across emotion frequencies, taking	
NA (G)		various affective states within either valence.	into account both the richness and distribution of reported	
			affective experiences.	
10. Flexibility PA, NA, and	Affective community	Reflects how often affective states transition between	Calculated as the number of community switches made by	
network (F)	switching flexibility	different communities over time, indicating the dynamic	each node (affect item) across successive time windows,	
		reconfiguration of the emotional system.	normalized by the number of transitions. Averaged	
			separately across PA, NA, and all items.	
11. Promiscuity PA, NA,	Affective community	Indicates the extent to which affective states participate in	For each node (affect item), the number of unique	
and network (P)	diversity	multiple communities across time, capturing how widely	communities it belongs to across time windows is divided	
		each affect item integrates with varying emotional	by the total number of communities it could have joined.	
		contexts.	Then averaged over PA, NA, and all items.	

Figure 1. Empirical dependencies of the 22 affect dynamic measures. a. Reordered correlation matrix of all affect dynamic measures. The four white boxes in the correlation matrix heatmap show the hierarchical clusters, which were identified based on Euclidean distance and Ward's linkage method. The matrix rows and columns were reordered according to the optimal leaf ordering of the resulting dendrogram to improve cluster visualization. b. Variance in each affect dynamic measure explained by the Mean and SD of PA and NA. The bars were ordered by descending R² values.

Figure 2. Added explanatory power of all affect dynamic measures in the linear prediction of 117 psychological and behavioral outcomes beyond the M and SD of PA and NA. Blue, yellow, and red bars reflect the predicted R^2 (a negative value indicates overfitting) for each measure alone, when controlling for M in PA and NA, and when controlling for M and SD in PA and NA, respectively. Predicted R^2 across each questionnaire or domain can be found in Supplementary Fig. 2 in the Additional file 2.