# 정적 경로 설정



# 라우터(router)와 라우팅(routing)

#### ■ 라우터

• 라우팅 테이블을 이용하여 서로 다른 브로드캐스트 영역 간에 패킷을 전달하는 네트워크의 핵심 장치

#### ■ 라우팅

- 정적 라우팅 (static routing) , 동적 라우팅 (dynamic routing)
- 적용된 라우팅 프로토콜을 기반으로 최적 경로 선택 및 패킷 전달
- 정적 경로 (static route) 설정: 동적인 네트워크 상황 변화에 자동으로 적응하지 못하고 라우팅 테이블을 수동으로 설정해야 하기 때문에 많이 사용되지 않을 것 같지만 실제 네트워크 설정 시 폭넓게 사용
- 동적 경로 (dynamic route) 설정: 동적 라우팅 프로토콜에 의해 자동으로 네트워크 탐색 및 등록 과정 수행

#### 정적 경로 설정의 특징

- 정적 라우팅 방식은 동적 라우팅 방식에 비해 설정이 비교적 간단
- 경로 설정을 유지하기 위한 라우팅 정보를 주고받지 않기 때문에 네트워크 및 라우터 장치의 부담이 상대적으로 작음
- 네트워크 토폴로지가 변경될 경우에는 이에 따른 경로 정보 수정을 네트워크 관리자가 일일이 수동으로 해야 하는 함
- 어떠한 경로 설정 방법을 사용할지를 결정하기 위해서는 네트워크의
   전반적인 상황을 고려해야 함.

#### 일반적으로

- 소규모 네트워크에서는 정적 경로 설정 방법을 주로 사용
- 중/대규모 네트워크에서는 동적 경로 설정 방식을 사용하거나 또는 이 두 가지 방식을 혼합하여 사용

# 기본 네트워크 토폴로지



# **Configure R1, R2, and R3 (page 155~156)**

#### Configuration example on R2

- Router>enable
- Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

- Router(config)#hostname R2
- R2(config)#interface gi0/0
- R2(config-if)#ip address 203.230.9.1 255.255.255.0
- R2(config-if)#no shutdown
- R2(config-if)#exit
- R2(config)#interface s0/2/0
- R2(config-if)#ip address 203.230.10.1 255.255.255.0
- R2(config-if)#clock rate 64000
- R2(config-if)#no shutdown
- R2(config-if)#exit
- R2(config)#interface s0/2/1
- R2(config-if)#ip address 203.230.8.2 255.255.255.0
- R2(config-if)#no shutdown
- R2(config-if)#exit

#### **Interfaces**

#### Examining Router Interfaces

- show IP router : routing table을 볼 수 있는 명령어
- show Interfaces : 인터페이스의 상태를 볼 수 있는 명령어
- show IP Interface brief : 인터페이스 정보의 일부를 보여주는 명령어
- show running-config: RAM에 저장된 환경설정 파일을 보여주는 명령어



#### **Routing Table Structure**

- Routing Table은 RAM에 저장되며 다음의 정보를 포함한다.
  - Directly connected networks 라우터의 인터페이스에 직접 연결된 네트워크
  - Remotely connected networks 라우터에 직접 연결되지 않는 네트워크
  - Detailed information 정보 소스, 네트워크 주소 및 서브넷 마스크, 다음 홉 라우터의 IP 주소를 포함하는 네트워크 정보

#### show ip route

■ routing table을 볼 수 있는 명령어

#### show ip route on R1 P Cisco Packet Tracer Instructor - C:₩Packettracer₩그림 4-1. 기본 네트워크 토플로지.pkt File Edit Options View Tools Extensions Help 🗎 📂 🖪 🗁 📶 🗐 🗐 🔎 🕠 🗩 🔎 📠 🍮 (i) ? Set Tiled Background 203.230.9.2/24 203.230.9.1/24 Se0/2/0 203.230.10.1/24 R1#show ip route 203.230.10.2/24 203.230.8.1/24 Codes: L - local, C - connected, S - st Se0/2/1 203.230.11.2/24 (9) Se0/2/0 D - EIGRP, EX - EIGRP external, 203.230.7.1/24 2901 N1 - OSPF NSSA external type 1, PC0 203.230.7.2/24 E1 - OSPF external type 1, E2 i - IS-IS, L1 - IS-IS level-1, L Time: 00:05:59 Power Cycle Devices Fast Forward Time \* - candidate default, U - per-u -----P - periodic downloaded static r Gateway of last resort is not set 203.230.7.0/24 is variably subnetted, 2 subnets, 2 masks 203.230.7.0/24 is directly connected, GigabitEthernet0/0 C 203.230.7.1/32 is directly connected, GigabitEthernet0/0 203.230.8.0/24 is variably subnetted, 2 subnets, 2 masks 203.230.8.0/24 is directly connected, Serial0/2/0 203.230.8.1/32 is directly connected, Serial0/2/0

#### show ip route on R2 🥟 Cisco Packet Tracer Instructor - C:\Packettracer\미리 4-1 기본 네트워크 토롱로지 nkt File Edit Ontions View Tools Extensions Heln 🗎 📂 🖪 🗁 📶 🗐 🗐 🔎 🕠 🗩 🔎 📠 🍮 Set Tiled Background 203.230.9.2/24 203.230.9.1/24 Se0/2/0 203.230.10.1/24 R2#show ip route 203.230.10.2/24 203.230.8.1/24 Codes: L - local, C - connected, S - st Se0/2/1 203.230.11.2/24 D - EIGRP, EX - EIGRP external, 203.230.7.1/24 2901 N1 - OSPF NSSA external type 1, E1 - OSPF external type 1, E2 i - IS-IS, L1 - IS-IS level-1, L Time: 00:05:59 Power Cycle Devices Fast Forward Time \* - candidate default, U - per-u ----P - periodic downloaded static r Gateway of last resort is not set 203.230.8.0/24 is variably subnetted, 2 subnets, 2 masks 203.230.8.0/24 is directly connected, Serial0/2/1 203.230.8.2/32 is directly connected, Serial0/2/1 203.230.9.0/24 is variably subnetted, 2 subnets, 2 masks 203.230.9.0/24 is directly connected, GigabitEthernet0/0 203.230.9.1/32 is directly connected, GigabitEthernet0/0

#### show ip route on R3 P Cisco Packet Tracer Instructor - C:₩Packettracer₩그림 4-1. 기본 네트워크 토플로지.pkt File Edit Options View Tools Extensions Help 🗎 📂 🖪 🗁 📶 🗐 🗐 🔎 🕠 🗩 🔎 📠 🍮 Set Tiled Background 203.230.9.2/24 203.230.9.1/24 Se0/2/0 203.230.10.1/24 R3#show ip route 203.230.10.2/24 203.230.8.1/24 Codes: L - local, C - connected, S - st Se0/2/1 203.230.11.2/24 D - EIGRP, EX - EIGRP external, 203.230.11.1/24 203.230.7.1/24 2901 N1 - OSPF NSSA external type 1, E1 - OSPF external type 1, E2 i - IS-IS, L1 - IS-IS level-1, I Time: 00:05:59 | Power Cycle Devices Fast Forward Time \* - candidate default, U - per-u P - periodic downloaded static r Gateway of last resort is not set 203.230.10.0/24 is variably subnetted, 2 subnets, 2 masks C 203.230.10.0/24 is directly connected, Serial0/2/1 203.230.10.2/32 is directly connected, Serial0/2/1 203.230.11.0/24 is variably subnetted, 2 subnets, 2 masks 203.230.11.0/24 is directly connected, GigabitEthernet0/0 203.230.11.1/32 is directly connected, GigabitEthernet0/0

#### **Understanding routing table**

C 203.230.10.0/24 is directly connected, Serial0/2/1

- C: 네트워크가 이 라우터에 직접 연결되었음을 나타낸다.
- 203.230.10.0: 직접 연결된 네트워크 주소를 나타낸다.
- /24: 직접 연결된 네트워크의 서브넷 마스크 정보를 프리픽스로 나타낸다.
- is directly connected: 해당 네트워크가 직접 연결되어 있음을 명시하고 있다.
- Serial0/2/1: 해당 네트워크가 라우터의 어떤 인터페이스에 연결되었는지를 나타낸다.

# Connectivity test on local networks



#### Configure static routing for remote networks

Router(config)#ip route network-address subnet-mask {ip-address | exit-interface}

- ip route: 정적 경로 설정을 위한 명령어
- network-address: 목적지 네트워크의 네트워크 주소
- subnet-mask: 목적지 네트워크의 서브넷 마스크
- ip-address: 목적지 네트워크로 패킷을 전송하기 위해 사용해야 할 이웃 라우터 (next hop)의 인터페이스 IP 주소를 지정
- exit-interface: 목적지로 네트워크로 패킷을 전송하기 위해 사용해야 할 이 라우터의 출력 인터페이스를 지정

```
R1(config)#ip route 203.230.9.0 255.255.255.0 203.230.8.2 또는 R1(config)#ip route 203.230.9.0 255.255.255.0 se0/2/0
```

### Static routing configuration using IP addresses

- R1(config)#ip route 203.230.9.0 255.255.255.0 203.230.8.2
- R1(config)#ip route 203.230.10.0 255.255.255.0 203.230.8.2
- R1(config)#ip route 203.230.11.0 255.255.255.0 203.230.8.2

- R2(config)#ip route 203.230.7.0 255.255.255.0 203.230.8.1
- R2(config)#ip route 203.230.11.0 255.255.255.0 203.230.10.2

- R3(config)#ip route 203.230.7.0 255.255.255.0 203.230.10.1
- R3(config)#ip route 203.230.8.0 255.255.255.0 203.230.10.1
- R3(config)#ip route 203.230.9.0 255.255.255.0 203.230.10.1

## Connectivity tests among all devices

Should be successful from any source device to any destination

device



## Any changes in routing table?

```
Gateway of last resort is not set
     203.230.7.0/24 is variably subnetted, 2 subnets, 2 masks
C
        203.230.7.0/24 is directly connected, GigabitEthernet0/0
L
        203.230.7.1/32 is directly connected, GigabitEthernet0/0
     203.230.8.0/24 is variably subnetted, 2 subnets, 2 masks
        203.230.8.0/24 is directly connected, Serial0/2/0
L
        203.230.8.1/32 is directly connected, Serial0/2/0
S
     203.230.9.0/24 [1/0] via 203.230.8.2
     203.230.10.0/24 [1/0] via 203.230.8.2
S
S
     203.230.11.0/24 [1/0] via 203.230.8.2
R1#
```

- S: 네트워크가 정적으로 경로 설정이 되었음을 나타낸다.
- 203.230.9.0: 정적 경로 설정된 네트워크 주소를 나타낸다.
- /24: 정적 경로 설정된 네트워크의 서브넷 마스크 정보를 프리픽스로 나타낸다.
- [1/0]: 대괄호 내의 전 방향 슬래쉬 기호 (/) 앞의 값은 정적 라우팅 프로토콜의 관리 거리 (AD; Administrative Distance)를, 뒤의 값은 메트릭 값을 나타낸다.
- via 203.230.8.2: 해당 목적지 네트워크로 패킷을 전송하려면 IP 주소 203.230.8.2를 가지는 인터페이스로 패킷을 보내면 된다는 의미이다.

#### **Administrative Distance (AD)**

| Route Source        | Default Administrative Distance |
|---------------------|---------------------------------|
| Connected Interface | 0                               |
| Static              | 1                               |
| EIGRP Summary Route | 5                               |
| eBGP                | 20                              |
| EIGRP(Internal)     | 90                              |
| IGRP                | 100                             |
| OSPF                | 110                             |
| IS-IS               | 115                             |
| RIP                 | 120                             |
| EIGRP(External)     | 170                             |
| iBGP                | 200                             |
| Unknown             | 255                             |

 AD 값은 작을수록 높은 우선순위를 가짐 (단, 임 의의 목적지 네트워크에 대해서 서브넷 마스크의 길이가 동일할 경우에만 AD 값을 이용한 우선순위 적용)

- 예를 들어, 임의의 라우터 상에서 동일한 하나의 목적지 네트워크에 대하여 OSPF 및 RIP 라우팅 프로토콜이 동시에 실행 중이며, 목적지 네트워크에 대한 서브넷 마 스크 길이는 OSPF보다 RIP이 더 구체적인 경우
  - 클래스 B 네트워크 주소인 163.180.0.0에 대하여 OSPF가 163.180.0.0/16 정보를 가지고 있는 반면
  - RIP은 이 네트워크의 서브네트워크인 163.180.116.0/24 정보를 가지고 있다면,
  - 이러한 경우에는 AD 값을 우선순위로 하는 것이 아니라 서브넷 마스크의 길이가 긴 RIP의 라우팅 정보를 우선적으로 반영.

## Static routing configuration using exit-interface

- R1(config)#no ip route 203.230.9.0 255.255.255.0 203.230.8.2
- R1(config)#no ip route 203.230.10.0 255.255.255.0 203.230.8.2
- R1(config)#no ip route 203.230.11.0 255.255.255.0 203.230.8.2
- R1(config)#ip route 203.230.9.0 255.255.255.0 se0/2/0
- R1(config)#ip route 203.230.10.0 255.255.255.0 se0/2/0
- R1(config)#ip route 203.230.11.0 255.255.255.0 se0/2/0
- R2(config)#no ip route 203.230.7.0 255.255.255.0 203.230.8.1
- R2(config)#no ip route 203.230.11.0 255.255.255.0 203.230.10.2
- R2(config)#ip route 203.230.7.0 255.255.255.0 se0/2/1
- R2(config)#ip route 203.230.11.0 255.255.255.0 se0/2/0
- R3(config)#no ip route 203.230.7.0 255.255.255.0 203.230.10.1
- R3(config)#no ip route 203.230.8.0 255.255.255.0 203.230.10.1
- R3(config)#ip route 203.230.7.0 255.255.255.0 se0/2/1
- R3(config)#ip route 203.230.8.0 255.255.255.0 se0/2/1

## Any differences in R1 routing table?

```
R1(config)#do show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
      P - periodic downloaded static route
Gateway of last resort is not set
     203.230.7.0/24 is variably subnetted, 2 subnets, 2 masks
        203.230.7.0/24 is directly connected, GigabitEthernet0/0
C
        203.230.7.1/32 is directly connected, GigabitEthernet0/0
L
     203.230.8.0/24 is variably subnetted, 2 subnets, 2 masks
C
        203.230.8.0/24 is directly connected, Serial0/2/0
ь
        203.230.8.1/32 is directly connected, Serial0/2/0
S
     203.230.9.0/24 is directly connected, Serial0/2/0
S
     203.230.10.0/24 is directly connected, Serial0/2/0
S
     203.230.11.0/24 is directly connected, Serial0/2/0
```

# Any differences in R2 routing table?

```
R2(config)#do show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
      P - periodic downloaded static route
Gateway of last resort is not set
     203.230.7.0/24 is directly connected, Serial0/2/1
S
     203.230.8.0/24 is variably subnetted, 2 subnets, 2 masks
C
        203.230.8.0/24 is directly connected, Serial0/2/1
        203.230.8.2/32 is directly connected, Serial0/2/1
ь
     203.230.9.0/24 is variably subnetted, 2 subnets, 2 masks
C
        203.230.9.0/24 is directly connected, GigabitEthernet0/0
L
        203.230.9.1/32 is directly connected, GigabitEthernet0/0
     203.230.10.0/24 is variably subnetted, 2 subnets, 2 masks
C
        203.230.10.0/24 is directly connected, Serial0/2/0
        203.230.10.1/32 is directly connected, Serial0/2/0
L
S
     203.230.11.0/24 is directly connected, Serial0/2/0
```

## Any differences in R3 routing table?

```
R3(config)#do show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
      P - periodic do□wnloaded static route
Gateway of last resort is not set
S
     203.230.7.0/24 is directly connected, Serial0/2/1
S
     203.230.8.0/24 is directly connected, Serial0/2/1
     203.230.9.0/24 [1/0] via 203.230.10.1
S
     203.230.10.0/24 is variably subnetted, 2 subnets, 2 masks
        203.230.10.0/24 is directly connected, Serial0/2/1
C
L
        203.230.10.2/32 is directly connected, Serial0/2/1
     203.230.11.0/24 is variably subnetted, 2 subnets, 2 masks
        203.230.11.0/24 is directly connected, GigabitEthernet0/0
C
L
        203.230.11.1/32 is directly connected, GigabitEthernet0/0
```

# IP 주소 정보와 출구 인터페이스 정보를 이용한 정적 경로 설정 방법의 차이?

- 두 가지 방법 모두 패킷 전달 결과는 동일
- 라우팅 동작에 큰 차이가 있는 점은 유념해야 할 사항
  - 반복적 또는 순환적 경로 참조 (recursive route lookup)
  - 반복적 경로 참조란 라우터가 패킷 전달을 하기 전에 라우팅 정보 룩업을 여러 번 수행하는 것을 의미
  - 즉, 출력 인터페이스를 직접 설정할 경우에는 해당 출력 인터페이스 룩업후 바로 패킷을 전송할 수 있지만, 이웃 라우터 인터페이스의 IP 주소로 정적 경로 설정을 할 경우에는 이러한 IP 주소를 가지는 인터페이스가 어디에 있는지에 대한 룩업 프로세스를 한 번 더 거쳐야 함
  - 결과적으로, 라우팅 프로세스 측면에서는 출력 인터페이스를 직접 지정하여 정적 경로를 설정하는 것이 IP 주소 정보를 이용하는 설정 방법보다 더 효과적이라 할 수 있음

#### **Static Routes with Exit Interfaces**

#### ■ Zinin's 3 routing principles (Zinin의 3 가지 라우팅 원리)

- Principle 1: "Every router makes its decision alone, based on the information it has in its own routing table."
- Principle 2: "The fact that one router has certain information in its routing table does not mean that other routers have the same information."
- Principle 3: "Routing information about a path from one network to another does not provide routing information about the reverse, or return path."
- Zinin의 3 가지 라우팅 원리
- 원칙 1 : "모든 라우터는 자체 라우팅 테이블에 있는 정보를 토대로 스스로 결정을 내립니다."
- 원칙 2 : "하나의 라우터가 라우팅 테이블에 특정 정보를 가지고 있다는 사실은 다른 라우터가 동일한 정보를 가진다는 것을 의미하지는 않습니다."
- 원칙 3 : "한 네트워크에서 다른 네트워크로의 경로에 대한 정보 라우팅은 역방향 또는 경로를 반환하는 경로 정보를 제공하지 않습니다."

#### 정적 라우팅의 대표적 활용 예 – Stub networks

- PC0가 PC1이나 PC3와 통신을 하기 위해서는 반드시 라우터 R2를 거쳐야 함
- PC0가 PC1이나 PC3와 통신을 하기 위한 어떤 또 다른 우회 경로가 토폴로지 상에 존재하지 않아 라우터 R1과 R2 간의 시리얼 연결 구간에 장애가 생긴다면 아예 통신을 할 수 없다는 의미
- 이와 같이 외부 네트워크와의 통신 경로가 유일무이한 라우터 R1의 로컬 LAN (203.230.7.0/24)을 스터브 네트워크 (Stub Network)라고 함
- 유사하게 R3의 로컬 LAN (203.230.11.0/24)도 스터브 네트워크임



# 디폴트 정적 경로(Default Static Route) 설정

■ 패킷의 출입 경로가 하나 밖에 없는 스터브 네트워크에 대해서는 디폴트 정적 경로 설정을 적용할 수 있다.

```
R1(config)#ip route 0.0.0.0 0.0.0.0 [exit-interface | ip-address ]
```

- ip route: 정적 경로 설정을 위한 명령어
- 0.0.0.0 (앞): 쿼드 제로 (quad-zero) 네트워크 주소
- 0.0.0.0 (뒤): 쿼드 제로 (quad-zero) 서브넷 마스크로 어떤 IP 주소라도이 서브넷 마스크로 마스킹을 하게 되면 그 결과는 바로 앞에 있는 네트워크 값 0.0.0.0이 될 것이다. 따라서 다른 라우팅 엔트리에 매치되지 않는 모든 IP 주소는 여기에서 매치가 이루어진다.
- exit-interface: 디폴트 네트워크로 가기 위한 출력 인터페이스
- ip-address: 디폴트 네트워크로 가기 이웃 라우터 인터페이스의 IP 주소

#### Default static route configuration on R1

- 203.230.9.0/24, 203.230.10.0/24, 203.230.11.0/24의 세 개의 네트워크에 대한 경로 정보가 코드 값 "S\*"로 표시되는 한 개의 디폴트 정적 경로로만 표시
- 디폴트 정적 경로 설정은 특별한 네트워크 환경에 적용되어 라우팅 프로토콜 설정을 단순하게 해 줄 뿐만 아니라 라우팅 테이블을 간소화 할 수 있음

```
R1(config)#ip route 0.0.0.0 0.0.0.0 203.230.8.2
또는
R1(config)#ip route 0.0.0.0 0.0.0.0 serial0/2/0
R1(config)#do show ip route
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
      * - candidate default, U - per-user static route, o - ODR
      P - periodic downloaded static route
Gateway of last resort is 0.0.0.0 to network 0.0.0.0
     203.230.7.0/24 is variably subnetted, 2 subnets, 2 masks
        203.230.7.0/24 is directly connected, GigabitEthernet0/0
C
        203.230.7.1/32 is directly connected, GigabitEthernet0/0
L
     203.230.8.0/24 is variably subnetted, 2 subnets, 2 masks
        203.230.8.0/24 is directly connected, Serial0/2/0
C
        203.230.8.1/32 is directly connected, Serial0/2/0
L
S* 0.0.0.0/0 [1/0] via 203.230.8.2
                is directly connected, Serial0/2/0
```

# 디버깅(debugging)

- 디버그 (debug) 명령어를 잘 활용하면 라우팅 프로토콜의 동작과 관련된 모든 상세한 내용을 정확히 확인할 수 있고, 라우팅에 문제가 있을 경우 트러블슈팅을 하는데 큰 도움이 됨
- IP 라우팅 프로토콜에 대한 디버깅 기능을 이용하기 위해서는 관리자 모드에서 *debug ip routing* 명령어를 입력
- 기본 네트워크 토폴로지의 라우터 R1에 디버깅 설정

R1>en
R1#debug ip routing
IP routing debugging is on

 디버깅 명령어들은 시스템에 적지 않은 부하를 인가하므로 꼭 필요한 경우에만 주의하여 사용하도록 하고, 디버깅 작업이 끝나면 바로 비활성화

R1#no debug ip routing
IP routing debugging is off

#### ARP & CDP

■ 라우터에서 *show arp* 명령어를 입력하면 장치가 현재 가지고 있는 IP 주소와 MAC 주소 쌍에 대한 정보와 이 정보가 어떤 인터페이스에서 얻어진 것인지 확인 가능

```
R1#show arp
Protocol Address Age (min) Hardware Addr Type Interface
Internet 203.230.7.1 - 0030.A3E3.8201 ARPA GigabitEthernet0/0
Internet 203.230.7.2 30 00D0.BA87.9D53 ARPA GigabitEthernet0/0
```

■ CDP는 이웃하고 있는 네트워킹 장치가 어떤 장치인지를 알려주는 프로토콜로써, 시스코 시스템즈의 L2 및 L3 장치에서 동작하는 시스코 전용 프로토콜임

```
R1/sen
R1/sconf t
Enter configuration commands, one per line. End with CNTL/Z.
R1(config) #cdp run

R2/sen
R2/sconf t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config) #cdp run

R3/sen
R3/sconf t
Enter configuration commands, one per line. End with CNTL/Z.
R3(config) #cdp run
```

## show cdp neighbors, show cdp entry, show cdp interface

```
R1#show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge

S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone

Device ID Local Intrfce Holdtme Capability Platform Port ID

R2 Ser 0/2/0 138 R C2900 Ser 0/2/1
```



# Thank You

# 경로 요약(Route Summarization)

- 여러 개의 경로를 요약하여 라우팅 테이블을 간소화 할 수 있는 방법: 경로 요약 또는 경로 통합 (route aggregation)
- 유사한 (엄밀하게는 "연속적인 네트워크주소를 가지는" 이라고 하는 것이더 정확한 설명) 여러 개의 네트워크 정보를 하나로 묶어 라우팅
   업데이트 정보를 간소화 하는 방법
- 경로 요약 방법
  - 경로를 요약하기 위한 첫 번째 단계는 요약을 하고자 하는 대상 네트워크 주소들을 2 진수로 변환하는 것
  - 2. 경로 요약의 두 번째 단계는 요약 경로에 대한 서브넷 마스크를 찾는 것
  - 3. 경로 요약의 마지막 단계는 경로 요약된 네트워크 주소를 결정하는 것. 이를 위해 동일한 값을 갖는 비트 값은 그대로 사용하고 나머지 비트 위치에는 모두 "0"을 추가

## 경로 요약 예제, 그리고 경로 요약 규칙

■ 경로 요약된 네트워크 주소는? 203.230.0.0/20

#### ■ 경로 요약 규칙

- 요약할 네트워크 주소들은 연속적이어야 함
- 요약을 할 대상 네트워크의 수가 2의 멱승 값이어야 함
- 대상 네트워크 주소 중 첫 번째 네트워크 주소가 기저 값이 되어 요약 네트워크 주소가 만들어져야 함

#### 경로 요약에 대한 고찰

- 앞의 예에서 5 개 네트워크를 통합하여 요약 네트워크 주소 203.230.0.0/20을 얻었다.
- 만약 우리의 기본 네트워크 토폴로지에 새로운 외부 네트워크를 구성하여 이 네트워크에 203.230.6.0/24 이나 203.230.12.0/24 주소를 사용해야 한다고 가정해보자. 이 경우 요약 경로 203.230.0.0/20을 가지는 기본 네트워크 토폴로지의 네트워크와 새롭게 추가된 외부 네트워크가 통신을 할 수 있겠는가?
- 또한 2의 멱승 값 4를 기반으로 203.230.7.0/24에서 203.230.10.0/24까지의 네트워크들을 요약해보라. 이번에는 문제가 없는가?
- 더 나아가 203.230.8.0/24에서 203.230.11.0/24까지의 네트워크들을 요약하면, 앞의 경우와는 달리 요약 네트워크 주소가 203.230.8.0/22가 된다. 이번에는 외부 네트워크 (203.230.6.0/24 이나 203.230.12.0/24)와의 연결 시 통신에 문제가 없겠는가?