ĐẠI HỌC BÁCH KHOA TPHCM

CÂU HỎI TRẮC NGHIỆM CƠ BẢN

BACHKHOACNCP.COM

Phần I	BÀI TÁ	ẬP CƠ BẢN	
CHƯƠNG 1	I. MATI	RẬN - ĐỊNH THỨC - HỆ PHƯƠNG TRÌNH	2
	Bài 1.	Ma trận	2
	Bài 2.	Định thức	7
	Bài 3.	Hệ phương trình	13
	Bài 4.	Ứng dụng	19
CHƯƠNG 2	2. KHÔN	NG GIAN VÉC TƠ	24
	Bài 1.	Không gian véc tơ	24
	A	Hạng, cơ sở, số chiều OACN	24
	B	Tìm toa đô vecto	26
Phần II	BÀI T	ẬP TỰ LUYỆN	
	Bài 2.	Bài tập tự luyện	31
	Bài 3.	Đề thi Đại Số K213	39
		TÀI LIỆU SƯU TẬP	
		BỞI HCMUT-CNCP	

PHẦN BÀI TẬP CƠ BẢN

CAPMONG MA TRẬN - ĐỊNH THỰC - HỆ PHƯƠNG TRÌNH

MA TRẬN

♥Định nghĩa 1.1.
❷ Ma trận vuông là
⊘ Vết của ma trận là
❷ Ma trận đối xứng là
 ✓ Ma trận dơi xưng là ✓ Ma trận tam giác trên là ✓ Ma trận tam giác dưới là
⊘ Ma trận tam giác dưới là
❷ Ma trận chéo là
❷ Cộng 2 ma trận: Điều kiện
Điều kiện
igotimes Luỹ thừa ma trận
☑ Các phép biến đổi sơ cấp
P1:
❷ Hạng của ma trận
▼Tính chất 1.1.
❷ Điều kiện ma trận khả nghịch là
⊘ Cách tìm ma trận nghịch đảo

Câu 1. Cho $A=\left(\begin{array}{cc} 2 & 1 \\ 3 & m \end{array}\right)$ và $B=\left(\begin{array}{cc} 1 & 2 \\ 2 & -1 \end{array}\right)$. Tính tổng các phần tử trên đường chéo của AB.

$$\bigcirc$$
 10 – m.

$$\bigcirc$$
 $3+m$

$$(c)$$
 2m + 1.

(D) Ba câu kia sai.

Câu 2. Cho hai ma trận
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 4 \end{bmatrix}$$
 và $B = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 0 \\ 3 & 4 & 0 \end{bmatrix}$.

Khẳng định nào sau đây đúng?

$$\bigcirc$$
 BA xác định nhưng AB không xác định.

$$\begin{array}{c} \textbf{(B)} \ AB = \left[\begin{array}{ccc} 14 & 13 & 0 \\ 14 & 18 & 1 \end{array} \right]. \\ \textbf{(D)} \ AB = \left[\begin{array}{ccc} 14 & 13 & 0 \\ 14 & 18 & 0 \end{array} \right]. \\ \end{array}$$

Câu 3. Tổng tất cả các phần tử trên đường chéo gọi là vết của ma trận. Căn bậc hai của vết của ma trận $A^T \cdot A$ là chuẩn Frobenius của ma trận A. Tìm chuẩn Frobenius của ma trận $A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 3 & 5 \\ 4 & 1 & 6 \end{pmatrix}$.

$$\bigcirc$$
 $\sqrt{27}$.

$$\sqrt{35}$$
.

$$\sqrt{97}$$

Câu 4. 1-chuẩn của ma trận là số lớn nhất trong tổng trị tuyệt đối của từng cột. Tìm 1-chuẩn của ma trận

$$AB \text{ Vol} \\ A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 3 & 2 \\ -3 & 1 & 4 \end{pmatrix} \text{ và } B = \begin{pmatrix} 2 & -1 & 3 \\ -1 & 4 & 0 \\ 3 & -1 & 2 \end{pmatrix}. \text{ OACN}_{C}$$

(A) 13. (B) 15. (Câu 5. Cho ma trận $A=\begin{bmatrix} -2&1&1\\-3&1&2\\-2&1&1 \end{bmatrix}$. Tìm số tự nhiên n nhỏ nhất sao cho $r(A^n)=0$.

$$\bigcirc$$
 $\not\exists n.$

$$\binom{\mathbf{B}}{n} = 2.$$

$$(c)$$
 $n=4$

Câu 6. Cho ma trận $A = \begin{pmatrix} -1 & 2 & -1 \\ -2 & 4 & -2 \\ -3 & 6 & -3 \end{pmatrix}$. Ma trận A gọi là ma trận luỹ linh nếu $A^k = 0$. Số nguyên dương

k nhỏ nhất thoả $A^k = 0$ được gọi là chỉ số của ma trận luỹ linh. Tìm chỉ số của ma trận A.

$$\bigcirc$$
 $\not\exists k.$

$$B k = 3.$$

$$\bigcirc k = 2.$$

$$\triangleright$$
 $k=4$.

Câu 7. Tổng tất cả các phần tử trên đường chéo gọi là vết của ma trận. Cho ma trận $A = \begin{pmatrix} 1 & 3 & 2 \\ 4 & 2 & 4 \\ 2 & 2 & 2 \end{pmatrix}$ và

$$B = \begin{pmatrix} 5 & -2 & 4 \\ 1 & 3 & 7 \\ 6 & 4 & 5 \end{pmatrix}$$
. Tìm vết của ma trận AB .

Câu 8. Tìm tất cả các giá trị thực của x và y thỏa: $5\begin{pmatrix} x & 3 \\ 2 & y \end{pmatrix} = \begin{pmatrix} 8 & 10 \\ 1 & x+y \end{pmatrix} + \begin{pmatrix} x & 5 \\ 9 & x \end{pmatrix}$

(A)
$$x = -1, y = -2.$$
 (B) $x = 2, y = 1.$

B
$$x = 2, y = 1.$$

$$\bigcirc x = -2, y = 1.$$
 $\bigcirc x = 1, y = 2.$

Câu 9. Cho $f(x) = 3x^2 - 2x$, và $A = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$. Tính f(A)

$$\bigcirc \binom{19 -4}{8 21}.$$

Câu 10. Cho $f(x) = x^2 + 2x - 5$; $A = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$. Tính f(A).

$$\begin{bmatrix}
-3 & 0 \\
-5 & 2
\end{bmatrix}$$

$$\begin{array}{c|c}
\hline
 & -3 & 5 \\
 & -5 & 7
\end{array}$$

$$\begin{array}{c|c}
\hline
 & -3 & 5 \\
 & -5 & 2
\end{array}$$

Câu 11. Tìm
$$m$$
 để $r(A)=2,$ với $A=\begin{pmatrix} 1 & 2 & -1 \\ 2 & 5 & -3 \\ 3 & 7 & m \end{pmatrix}$.

$$(A) m = -4.$$

$$\bigcirc$$
 $m=0.$

$$(c) m = 1.$$

$$\bigcirc m = 3.$$

Câu 12. Tìm m để ma trận
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & 3 \\ 2 & 3 & m \end{pmatrix}$$
 có hạng bằng 1

$$\bigcirc$$
 $\not\exists m.$

$$(c)$$
 $m \neq 2$

$$\bigcirc$$
 $m=2.$

Câu 13. Cho A =
$$\begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & m \\ m+4 & 2 & 0 \end{pmatrix}$$
. Tìm m để $\mathbf{r}(\mathbf{A})=2$

$$(A)$$
 m = 0 hoặc m = -3. (B) m = -3.

$$(B)$$
 m = -3.

$$\bigcirc$$
 $m \neq 0$.

Câu 14. Cho
$$A=\left[\begin{array}{cccc}1&2&k&1\\2&3&1&k\\3&5&2k&k\end{array}\right]$$
. Tìm k để hạng của ma trận A bằng 3?

$$\bigcirc$$
 $\not\exists k$.

$$B k = 1.$$

$$\triangleright$$
 $\forall k$.

Câu 15. Cho ma trận
$$A = \begin{pmatrix} -2 & 0 & -4 \\ 4 & 2 & 4 \\ 3 & 2 & 2 \end{pmatrix}$$
. Số nguyên dương k nhỏ nhất thoả $r(A^k) = r(A^{k+1})$ gọi là chỉ

số của ma trận A. Tìm chỉ số của ma trận A.

$$\bigcirc k = 1.$$

$$\bigcirc k = 3.$$

B
$$m \neq 1$$
. B $\mathring{\sigma}_1$ H CMU \mathring{C} $m \neq p-2$.

$$(D)$$
 $m \neq 2$.

Câu 17. Cho ma trận
$$A=\begin{pmatrix}1&1&-1\\1&m&2\\1&0&0\end{pmatrix}$$
. Tìm m để hạng ma trận A khác 3

$$\bigcirc$$
 $M = 1.$

$$\bigcirc m = -2.$$

Câu 18. Tìm m để hạng
$$A = \begin{pmatrix} 1 & 4 & -1 & m \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ m & 2 & 2 & 2 \end{pmatrix}$$
 lớn nhất

$$\bigcirc$$
 m=1.

$$\bigcirc m \neq 0 \text{ và } m \neq -1.$$

$$\bigcirc$$
 $m \neq 0$ và $m \neq -1$. \bigcirc $m = 1$ hoặc $m = 0$.

Câu 19. Tính hạng của ma trận:
$$A = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 2 & 3 & 5 & 3 \\ 4 & 7 & 2 & 6 \\ 10 & 17 & 9 & 15 \end{bmatrix}$$

$$(A) r(A) = 1.$$

$$r(A) = 4.$$

Câu 20. Cho
$$A=\left[\begin{array}{ccc}1&2&1\\2&5&2\\3&7&4\end{array}\right]$$
 và M là tập tất cả các phần tử của A^{-1} . Khẳng định nào sau đây đúng?

$$(A)$$
 $\{-1,0,2\} \subset M$.

$$(B)$$
 $\{6, -2, 2\} \subset M$.

$$(c)$$
 $\{6, -1, 0\} \subset M$.

$$\bigcirc$$
 {6, 1, 3} \subset M .

Câu 21. Tìm ma trận
$$X$$
 thỏa mãn $X\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 5 & 6 \\ -1 & 7 \end{bmatrix}$.

$$\begin{array}{c|cc}
 \hline
 & 10 & 7 \\
 & -8 & 16 \\
 & 0 & 12
\end{array}
\right].$$

Câu 22. Cho ma trận
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix} \begin{bmatrix} 2 & 1 & m \\ 3 & 5 & 0 \\ -4 & 0 & 0 \end{bmatrix}$$
. Tìm m để A khả nghịch

$$\bigcirc$$
 M \neq 20.

 $(B) \forall m.$

 $(\mathbf{C}) m \neq 0.$

(D) Không tồn tại m.

Câu 23. Tìm m để hạng của ma trận phụ hợp P_A bằng 4 với

$$A = \begin{bmatrix} 1 & 1 & 1 & -1 \\ 3 & 2 & 1 & 0 \\ 5 & 6 & -1 & 2 \\ 6 & 3 & 0 & m \end{bmatrix}$$

$$\bigcirc$$
 $M \neq 6$.

(B) $m \neq 3$.

$$m \neq 8$$
.

(D) m = 8.

Câu 24. Cho ma trận
$$A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 5 & 3 & -1 \end{bmatrix}$$
. Tính $\det(P_A)$.

Câu 24. Cho ma trận
$$A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 2 \\ 5 & 3 & -1 \end{bmatrix}$$
. Tính $\det(P_A)$.

A 512.

B -64.

Câu 25. Cho $A = \begin{pmatrix} 0 & -1 \\ -3 & 2 \\ 1 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 2 & -1 \end{pmatrix}$ và $C = AB + 2I$. Tìm phần tử c_{22} nằm ở hàng 2 và cột 2 của ma trận C .

2 của ma trận C.

(A) 3.

(D) Ba câu kia sai.

Câu 26. Cho
$$A = \begin{pmatrix} x & 2 \\ 3 & y \end{pmatrix}$$
 và $B = \begin{pmatrix} -1 & 2 \\ 3 & 2 \end{pmatrix}$. Tìm x và y sao cho $AB = BA$.

- (A)(x,y) là tọa độ các điểm nằm trên đường thẳng x-y=3.
- **B** (x,y) là tọa độ các điểm nằm trên đường thẳng x-y=-3.
- $(\mathbf{C})(x,y)$ là tọa độ các điểm nằm trên đường thẳng x+y=1.
- (D) Ba câu kia sai.

Câu 27. Cho
$$A = \begin{pmatrix} 1 & y \\ x & 4 \end{pmatrix}$$
 và $B = \begin{pmatrix} -1 & 2 \\ 3 & 2 \end{pmatrix}$. Tìm x và y sao cho $AB = BA$.

$$(A)$$
 $x = -1, y = 2.$

B
$$x = 3, y = 1.$$

B
$$x = 3, y = 1.$$
 C $x = 3, y = 2.$

D Ba câu kia sai.

Câu 28. Cho
$$A=\left(\begin{array}{cc} 1 & 0 \\ 2 & 5 \end{array}\right)$$
 và $f(x)=x^2-6x+a,$ với a là số thực. Tìm a sao cho $f(A)=0.$

$$\bigcirc$$
 -3 .

(D) Ba câu kia sai.

Câu 29. Cho
$$A=\left(\begin{array}{cc} m & -1 \\ -2m & 2 \\ 0 & 3 \end{array}\right)$$
, với $m\neq 0$. Tìm $r(A)$.

(D) Ba câu kia sai.

Câu 30. Cho
$$A = \begin{pmatrix} m^2 & 0 & 1 \\ -1 & 0 & 2 \\ 1 & 2 & -3 \end{pmatrix}$$
, với m là số thực, và $B = \begin{pmatrix} 1 & -2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$. Tìm $r(AB)$.

Câu 31. Tìm ma trận X thỏa XA - B = 3X + 2I, với $A = \begin{pmatrix} 1 & -1 \\ 3 & 4 \end{pmatrix}$ và $B = \begin{pmatrix} 2 & 1 \\ 6 & -1 \end{pmatrix}$.

- **B** $\begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$. **C** $\begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$. **D** Ba câu kia sai.

Câu 32. Cho $A = \begin{pmatrix} 1 & 2 \\ 1 & -1 \\ 3 & -2 \\ 4 & 5 \\ -1 & 0 \end{pmatrix}$ và $B = A^T.A$. Tìm phần tử hàng 2, cột 1 của ma trận B.

(A) 4.

(B) 13.

(C) 15.

(D) Đáp án khác..

Câu 33. Cho $A \in M_{2\times 3}, B = M_{5\times 4}, X = AYB$. Tìm kích cỡ của ma trận Y

- $(A) Y \in M_{3\times 2}$.
- (B) $Y \in M_{3 \times 5}$.
- $(\mathbf{C}) Y \in M_{2\times 4}$.
- (D) Đáp án khác.

Câu 34. Cho $A, B, C \in M_3$, A khả nghịch. Khẳng định nào sau đây không đúng?

 $(\mathbf{A}) A + B = 0 \Rightarrow B = 0.$

(B) $AB = 0 \Rightarrow B = 0$.

 \triangleright $BA = CA \Rightarrow B = C$.

Câu 35. Cho $A, B, C \in M_n$ là các ma trận khả nghịch. Ma trận X thỏa AX + 2B = XC + A. Khẳng định nào sau đây luôn đúng?

Câu 37. Cho $A \in M_{2\times 3}, B = M_{5\times 4}, X = AYB$. Tìm kích cỡ của ma trận X

- Dáp án khác.

- $(A) A^2 + 3B^T$.

 $(\mathbf{D})(A+2B^T)(A^T-B)$.

Câu 39. Cho $A, B, C \in M_n$ là các ma trận khả nghịch. Ma trận X thỏa $AXB^T = C$. Khẳng định nào sau đây đúng?

 $A X = \frac{C}{ART} .$

B) $X = (A^{-1})C(B^{-1})^T$.

 $(\mathbf{C})X = (A)^{-1}(B^{-1})^T C$.

(D) Cả 3 câu trên đều sai.

ĐÁP ÁN MA TRẬN

1.	A	2.	D	3.	D	4.	D	5.	D	6.	С	7.	В	8.	В	9.	D	10.	D
11.	A	12.	В	13.	A	14.	D	15.	A	16.	A	17.	С	18.	С	19.	В	20.	С
21.	В	22.	С	23.	В	24.	D	25.	A	26.	В	27.	С	28.	С	29.	A	30.	D
31.	Α	32.	С	33.	В	34.	A	35.	D	36.	D	37.	C	38.	A	39.	В		

ĐỊNH THỰC

Câu 1. Cho $m \in \mathbb{R}$, tính định thức của ma trân

$$A = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 3 & 7 \\ 3 & 5 & m \end{array}\right)$$

- (A) $\det(A) = 10 m$.
- (B) $\det(A) = m 10$.
- $(C) \det(A) = 10 + m.$
- (D) Các câu kia sai.

Câu 2. Tính định thức của ma trận $\begin{pmatrix} 1 & 2 & 3 \\ 2 & m & 7 \\ 5 & -1 & 1 \end{pmatrix}$ **B** 67 + 14m.

- \bigcirc 64 + 17m.

(A) 67 - 14m.

Câu 3. Tính định thức của ma trận $A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ b+c & c+a & a+b \end{bmatrix}$

(A) abc.

- (C) 1+a+b+c.
- (\mathbf{D}) (a+b+c)abc.

Câu 4. Tìm m để det(A) = -7, với $A = \begin{pmatrix} 1 & 1 & 1 & -1 \\ 2 & 3 & 1 & 0 \\ 4 & 3 & -2 & 1 \\ 5 & 5 & 4 & m \end{pmatrix}$

- (A) m=-5.
- B Khác.
- $(\mathbf{D}) \text{ m}=-3.$

Câu 5. Tìm m để $\det(A) = 5$, biết $A = \begin{pmatrix} 1 & 2 & -1 & 1 \\ 2 & -3 & -1 & 3 \\ -2 & -4 & 2 & -2 \\ 2 & 1 & m & 4 \end{pmatrix}$

- (A) m=4.
- (B) $m \in 4$.
- $(\mathbf{C}) \forall m.$

 (\mathbf{D}) không tồn tại m.

Câu 6. Tìm tất cả các giá trị thực của m để định thức của ma trận $A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 4 & 3 \\ m & 2 & -1 \end{pmatrix}$ bằng 2.

- $(\mathbf{A}) m = 4$.
- **(B)** m = 1.
- (C) m = 2.
- (D) m = 3.

Câu 7. Giải phương trình $\begin{bmatrix} 2 & 3 & x \end{bmatrix}$

- (A) x = 1.
- (C) x = 3.
- **D** x = -1.

Câu 8. Giải phương trình $\begin{vmatrix} 0 & 1 & -1 \end{vmatrix} = 0$.

- (A) x = -2.
- **(B)** x = 1.
- (C) x = 2.
- (D) x = 3.

Câu 9. Tìm số nghiệm phân biệt của phương trình: $\begin{vmatrix} x & -1 & x^2 \\ x & 1 & 0 \\ 2 & 0 & -1 \end{vmatrix} = 0$

 (\mathbf{A}) 0.

- (B) Ba câu đều sai.
- (C) 2.

(**D**) 1.

Câu 10. Tìm m để $A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & -1 \\ 3 & 7 & m \end{pmatrix}$ khả nghịch.

- (A) m = -5.
- (B) m = 3.
- (C) m = 5.
- (D) m = -3.

Câu 11. Cho ma trận $A=\begin{pmatrix}1&2&1\\3&5&m\\2&4&2\end{pmatrix}$. Tìm m để A khả nghịch.

 $(A) \not\exists m.$

- (B) m = 1.
- $(\mathbf{C}) m \neq 1.$
- (D) Ba câu kia sai.

Câu 12. Cho ma trận $A=\begin{pmatrix}1&0&0\\1&1&-1\\2&m&1\end{pmatrix}$. Tìm m để ma trận A không khả nghịch.

- (A) m = -1.
- (C) m = 2.
- (D) m = -2.

Câu 13. Cho ma trận $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & m & 0 \\ -3 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 2 \\ 1 & 5 & -2 \end{pmatrix}$. Để tồn tại ma trận A^{-1} thì m khác.

Câu 15. Với giá trị nào của m thì $A = \begin{pmatrix} 3 & 1 & 5 \\ 2 & 3 & 2 \\ 5 & -1 & 7 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 1 & 4 & 3 \\ m & 2 & -1 \end{pmatrix}$ khả nghịch?

 $(A) \forall m.$

Câu 16. Với giá trị nào của m thì $A = \begin{pmatrix} 3 & 1 & 5 \\ 2 & 3 & 2 \\ 5 & -1 & 7 \end{pmatrix}$. $\begin{pmatrix} 1 & 2 & 1 \\ 1 & 4 & 3 \\ m & 2 & -1 \end{pmatrix}$ khả nghịch?

- $(A) m \neq 2.$

- \mathbf{D} m = -1.

Câu 17. Cho ma trận $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & -1 & 1 \\ 1 & -2 & m \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 2 & 1 \\ -1 & 2 & 3 \end{pmatrix}$. Tìm m để A khả nghịch

 $(A) \forall m.$

- (B) m = 3.
- C Không tồn tại m. D m = 1.

Câu 18. Cho ma trận $A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & -2 & m \\ 1 & 3 & 2 \end{bmatrix}$. Tìm m để A khả nghịch.

- (A) Đáp án khác.
- (c) $m \neq 2$.
- (D) m = 1.

Câu 19. Cho ma trận $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & -1 \\ 2 & m & 1 \end{pmatrix}$. Tìm m để A **không** khả nghịch

- (A) m = 1.
- (B) $m \neq 1$
- (D) m = -1.

Câu 20. Cho ma trận $A=\begin{pmatrix}1&0&1\\2&1&-1\\m&2&1\end{pmatrix}$. Tìm m để hạng của ma trận A bằng 3

(A) m = 7.

 $(\mathbf{C}) \, \mathbf{m} = -1.$

 $(\mathbf{D}) \ m \neq -1.$

Câu 21. Cho ma trận $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & m & 0 \\ -3 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & -1 \\ 1 & 3 & 2 \\ 1 & 0 & 1 \end{pmatrix}$. Tìm m để tồn tại ma trận A^{-1} .

(A) $m \neq 0$.

(B) m = 0.

 $(\mathbf{D}) \forall m.$

Câu 22. Cho hai ma trận $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 5 \end{bmatrix}$ và $B = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. Tính $\det(2.A^{-1}.B^{2019})$

(A) 1.

(B) 4.

(C)-4.

(D) Đáp án khác.

Câu 23. Cho $A \in M_3[\mathbb{R}]$, biết $\det(A) = -3$. Tính $\det(2A^{-1})$.

 $(A) \det(2A^{-1}) = -\frac{2}{3}.$

B $\det(2A^{-1}) = -24$. **C** $\det(2A^{-1}) = -\frac{8}{3}$. **D** $\det(2A^{-1}) = \frac{-1}{24}$.

Câu 24. Cho hai ma trận $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 5 \end{bmatrix}$ và $B = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.

Tính $\det(A^{-1} \cdot B^{2019})$.

 $\frac{-1}{2^{2019}}$.

Tính $\det(A^{-1} \cdot B^{2019})$.

(A) -2^{2019} .

(B) $\frac{-1}{2}$.

(C) $\frac{1}{2}$.

(D) $\frac{-1}{2^{2019}}$.

(C) $\frac{1}{2}$.

(D) $\frac{-1}{2^{2019}}$.

(E) $\frac{1}{2}$.

(D) $\frac{-1}{2^{2019}}$.

(A) -1.

D 1.

Câu 26. Cho $A, B \in M_3(R)$ có $\det(A) = 2, \det(B) = 3$. Tính $\det(3AB^T)$.

(A) 162.

(D) 18.

Câu 27. Cho hai ma trận $A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 5 \\ -1 & -4 \end{pmatrix}$ và ma trận X thỏa mãn $2AX + B = A^T - BX$. Tìm det(X).

(A) 7.

B 5.

 (\mathbf{C}) 0.

(D) 3.

Câu 28. Cho ma trận X thỏa $X\begin{pmatrix} 1 & 5 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 5 & m \end{pmatrix}$. Tính $\det(X)$.

 $\frac{m-10}{10}$.

 $\frac{10+m}{10}$.

Dáp án khác.

Câu 29. Cho $f(x) = 3x^3 - 4x^2 + 5x - 2$ và ma trận $A = \begin{pmatrix} 1 & 0 \\ -1 & m \end{pmatrix}$. Tính $\det(f(A))$.

 $\bigcirc 6m^3 - 8m^2 + 10m - 4$.

(B) $6m^3 + 8m^2 + 10m - 4$.

 $\bigcirc 6m^3 - 8m^2 - 10m - 4.$ $\bigcirc 6m^3 - 8m^2 + 10m + 4.$

Câu 30. Cho $f(x) = 4x^2 - 5x - 3$ và ma trận $A = \begin{pmatrix} 2 & -1 \\ 0 & m \end{pmatrix}$. Tính $\det(f(A))$.

(A) $92m^2 + 115m - 69$. (B) $92m^2 - 115m - 69$. (C) $92m^2 + 115m + 69$. (D) $92m^2 - 115m + 69$.

Câu 31. Cho $f(x) = 2x^2 - 3x + 5$ và $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$. Tính $\det((f(A))^T)$

(A) 20.

(C) 5.

(D) -5.

- (A) bậc 5.
- (B) bâc 3.
- Các câu kia sai.
- (**D**) bậc 4.

Câu 33. Cho $f(x) = x^2 + 5x - 1$ và ma trận $A = \begin{pmatrix} 1 & 0 & 1 \\ -2 & -1 & 0 \\ 0 & 1 & -2 \end{pmatrix}$. Tính $\det(f(A))$

(A) 9.

(D) -3.

Câu 34. Cho $A \in M_3$ biết det(A) = 2. Tính $det(2P_A^2)$, với P_A là ma trận phụ hợp của ma trận A.

 $(C) 2^4$.

Câu 35. Cho ma trận $A \in M_2(\mathbb{R})$, biết $\det(-A^T) = 3$. Tính $\det(2A^{-1})$.

 $\frac{4}{3}$.

 $\frac{1}{2}$.

 $\frac{1}{2}$.

 $-\frac{1}{3}$.

Câu 36. Cho ma trận $A \in M_3(\mathbb{R})$, biết $\det(A^{-1}) = 2$. Tính $\det((2A)^{-1})$

 $\frac{1}{16}$.

 $(\mathbf{D}) \frac{1}{4}$.

Câu 37. Cho ma trận $A \in M_3(\mathbb{R})$, biết $\det(-A^T) = a, a \neq 0$. Tính $\det(11A^{-1})$ A $-\frac{11^3}{a}$.

B $\frac{11^3}{a}$.

Câu 38. Cho ma trận $A \in M_2[\mathbb{R}]$, biết $\det(-A^T) = a, a \neq 0$. Giá trị của $2 \det(3A^{-1})$ bằng

A $\frac{18}{a}$.

B $-\frac{18}{a}$.

D $-\frac{a}{6}$.

 \bigcirc $-\frac{a}{6}$.

Câu 39. Cho ma trận $A = \begin{pmatrix} 2 & 1 \\ 1 & a \end{pmatrix}$ và $B = \begin{pmatrix} b & -1 \\ 3 & 2 \end{pmatrix}$. Tính $\det(3A^5.B^T)$

- **A** $9(2a-1)^5(2b+3)$. **B** $3(2a-1)^5(2b+3)$. **B** $3(2a-1)^5(2b+3)$.
- Dáp án khác.

Câu 40. Cho ma trận $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ 2 & 3 & 1 \end{pmatrix}$. Tính $\det(2 \cdot A^{-1})$

(A) 1.

B 2.

 $\frac{1}{2}$.

Câu 41. Cho ma trận $A = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 5 & 1 \\ 0 & 2 & 1 \end{pmatrix}$. Tính $\det(P_A)$, với P_A là ma trận phụ hợp của ma trận A.

- $(\mathbf{A}) \det(P_A) = 1.$

Câu 42. Cho hai ma trận $A = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & 1 \end{bmatrix}$ và $B = \begin{bmatrix} 2 & 2 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$. Tính $\det(2(A)^{-1}B^2)$

(A) -8.

(D) 4.

Câu 43. Cho ma trận $A \in M_3(\mathbb{R})$, biết $\det(-2A^{-1}) = -4$. Tính $\det((A^2A^TA^{-1})^T)$

(A) 4.

(B) 2.

(C) 3.

(D) Đáp án khác.

Câu 44. Cho ma trận
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 0 & -1 \\ 1 & 0 & m \end{pmatrix}$$
. Tìm m để $\det(2A^3) = 1$

Câu 45. Cho
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}, B = \begin{pmatrix} a & b & c \\ -5g & -5h & -5i \\ d & e & f \end{pmatrix}$$
. Biết $\det(A) = -2$, tính $\det(B)$.

(A) 10.

(B) -10.

(D) -20.

Câu 46. Cho
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 và $B = \begin{pmatrix} a & 4b & c \\ 2g & 8h & 2i \\ d & 4e & f \end{pmatrix}$. Giả sử $\det(A) = -3, 5$ tính $\det(B)$.

(A) 28.

(D) -14.

Câu 47. Cho
$$A=\begin{pmatrix}a&b&c\\d&e&f\\g&h&i\end{pmatrix}$$
 và $B=\begin{pmatrix}a&b&c\\d&e&f\\a+5d-4g&b+5e-4h&c+5f-4i\end{pmatrix}$. Giả sử
$$\det(A)=2,5. \text{ Tính } \det(B).$$

- (A) -10.
- **B** 10.

(D) -12.5.

Câu 48. Cho
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 định thức của A bằng định thức của ma trận nào sau đây:

 $(\mathbf{A}) E.$

Câu 49. Cho
$$P = \begin{pmatrix} 3 & 3 & -4 \\ -2 & 2 & -2 \\ -1 & -1 & 3 \end{pmatrix}, D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -4 \end{pmatrix}$$
 và $A = PDP^{-1}$. Tính $\det(A)$.

(A) 8.

- BỞI HCMUTC NCE

(D) -4.

Câu 50. Cho $A \in \mathbb{M}_2[\mathbb{R}]$, thoả $A^2 = -2A$. Tìm $\det(A)$.

(A) det(A) = 0 hay det(A) = 4.

(B) det(A) = 0 hay det(A) = 2.

 $(\mathbf{C}) \det(A) = 2 \text{ hay } \det(A) = 4.$

 $(\mathbf{D}) \det(A) = 2 \text{ hay } \det(A) = -4.$

Câu 51. Cho $B = A \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$. Khẳng định nào sau đây **Sai**?

- $(\mathbf{A}) \, r(A) = r(B).$
- **(B)** $\det(A) = \det(B)$. **(C)** A = B.

Câu 52. Cho A là một ma trận vuông cấp 2017 khác 0. Khẳng định nào sau đây luôn đúng?

- $(\mathbf{A}) \det(A) \neq 0$.
- (B) $r(A) \neq 0$.
- $(\mathbf{C}) \operatorname{v\acute{e}t}(A) \neq 0$.
- $(\mathbf{D}) A^2 \neq 0$.

Câu 53. Tìm m để ma trận $A = \begin{pmatrix} 1 & 2 & 1 \\ m & 1 & -1 \\ -1 & 3 & m \end{pmatrix}$ khả nghịch.

- (A) m > -2.
- (B) $m \neq 0$.
- (C) m = 1.
- $(\triangleright) m \neq -1 \land m \neq 3.$

Câu 54. Cho $A, B \in M_3$ thỏa $A \xrightarrow{h_3 \to h_3 + h_2 - h_1} B$. Khẳng định nào sau đây **Sai**?

 $(\mathbf{A}) r(A) = r(B).$

 $(B) \det(A) = \det(B)$.

ĐÁP ÁN ĐỊNH THỰC

1.	A	2.	A	3.	В	4.	D	5.	D	6.	A	7.	A	8.	A	9.	С	10.	A
11.	A	12.	A	13.	A	14.	A	15.	D	16.	С	17.	С	18.	В	19.	D	20.	В
21.	A	22.	С	23.	С	24.	В	25.	В	26.	A	27.	A	28.	A	29.	A	30.	A
31.	A	32.	С	33.	С	34.	A	35.	A	36.	D	37.	A	38.	A	39.	A	40.	A
41.	A	42.	В	43.	A	44.	С	45.	A	46.	A	47.	A	48.	A	49.	A	50.	A
51.	С	52.	В	53.	D	54.	С												

HỆ PHƯƠNG TRÌNH

Câu 1. Tìm tất cả m để hệ phương trình sau là hệ Cramer $\begin{cases} 2x + 3y + mz = 3\\ 3x + 2y - 1z = -3\\ x + 2y - 3z = 0 \end{cases}$

- (D) Các câu kia sai .

Câu 2. Giải hệ phương trình $\begin{cases} x + 2y - 2z = 2 \\ 3x + 7y - 2z = 5 \\ 2x + 5y + z = 3 \\ x + 3y + 3z = 1 \end{cases}$ (A) (-8, 4, -1). (B) (16, -6, 1). (C) (4; -1; 0). (C) (2; -1;

- (A) m = 3.

Câu 4. Cho hệ phương trình $\begin{cases} 3x_1 + 2x_2 + x_3 - 2x_4 &= 0 \\ 2x_1 + x_2 + 2x_3 - 3x_4 &= -1 \\ 3x_1 + 6x_2 - x_3 + 5x_4 &= -2 \\ x_1 + 2x_2 - 5x_3 + 6x_4 &= 4 \end{cases}$. Khẳng định nào đúng

- (A) Hệ vô số nghiệm theo 2 tham số.
- (B) Hệ vô số nghiệm theo 1 tham số.

C Hệ vô nghiệm.

(D) Hệ có 1 nghiệm duy nhất.

Câu 5. Tìm m để hpt có nghiệm khác 0: $\begin{cases} x+2y+2z &= 0 \\ x+3y+2z+2t &= 0 \\ x+2y+z+2t &= 0 \\ x+y+z+mt &= 0 \end{cases}$

- (**D**) m = 0.

Câu 6. Giải hệ phương trình $\begin{cases} x+y-z+t & = 2\\ 3x+4y-5z+6t & = 7\\ 5x+6y-6z+7t & = 13\\ 7x+9y-11z+13t & = 16 \end{cases}$

 $(\mathbf{A}) t = \alpha, x = \alpha - 1,$

- **(B)** $t = \alpha, x = 2\alpha 1,$ $y = 3 + \alpha, z = 1 + \alpha.$

 $y = 5 - \alpha, z = 2 + \alpha.$ $c t = \alpha, x = 4\alpha - 1,$ $y = 3 - \alpha, z = 1 - \alpha.$

Dáp án khác.

Câu 7. Tìm tất cả $m \in \mathbb{R}$ để hệ có nghiệm không tầm thường: $\begin{cases} x+2y-2z+t &= 0\\ 2x+3y-5z-2t &= 0\\ -x-2y-mz-t &= 0 \end{cases}$

 $(\mathbf{A}) \not\exists m.$

(c) $m \neq -2$.

Câu 8. Tim
d tất cả $m \in \mathbb{R}$ để hệ có nghiệm duy nhất hoặc vô số nghiệm:
 $\begin{cases} x-y-2z &= 3 \\ x-2y+4z &= 1 \\ 2x-y-mz &= 2 \end{cases}$

(A) $m \neq -4$.

(B) m = 10.

(c) $m \neq 10$.

Câu 9. Tìm tất cả $m \in \mathbb{R}$ để hệ chỉ có nghiệm tầm thường $\begin{cases} x-y+z &= 0 \\ x+my-z &= 0 \\ 2x+y-z &= 0 \end{cases}$

(A) m=1.

 \triangleright $\forall m$.

(D) Đáp án khác.

Câu 10. Tìm m để hpt vô nghiệm hoặc vô số nghiệm: $\begin{cases} x+2y-2z &= 1\\ 2x+3y-5z &= 2\\ x-y-mz=3 \end{cases}$

(A) $m \neq -1$.

(B) $m \neq 5$.

(D) m = -1.

Câu 11. Tìm m để họt có nghiệm không tầm thường: $\begin{cases} x+y-z+t & = 0 \\ 3x+4y-5z+6t & = 0 \\ 5x+6y-6z+7t & = 0 \\ 7x+9y-11z+mt & = 0 \end{cases}$

Câu 12. Tìm tất cả giá trị $m \in \mathbb{R}$ để hệ

thường

 $(\mathbf{A}) \forall m.$

 (\mathbf{B}) m = 4.

Câu 13. Với giá trị nào của m thì hệ phương trình

thường?

(A) m = 4.

(B) $m \neq 4$. BOI HCMU(C) $m \in 0$.

(D) m = 3.

Câu 14. Tìm m để hpt có nghiệm duy nhất: $\begin{cases} 2x - 3y - z = 1 \\ x - 2y + z = 2 \\ 3x + y - mz = 3 \end{cases}$

 $\stackrel{\textstyle (A)}{}$ $m \neq 18$.

(c) m = 18.

Câu 15. Tìm tất cả m để hệ phương trình sau chỉ có nghiệm bằng không. $\begin{cases} x + y + z - t = 0 \\ 2x + 3y + 3z - 2t = 0 \\ 3x + 2y + 2z + mt = 0 \\ 4x + 5y + 3z + mt = 0 \end{cases}$

(A) $m \neq -3$.

(c) $m \neq 2$.

(D) Các câu kia sai.

Câu 16. Tìm tất cả m để hệ phương trình sau có nghiệm không tầm thường (nghiệm khác không). $\begin{cases} x + 2y + 2z \\ x + 3y + 2z \\ x + 2y + z \\ x + 2y + z \end{cases}$

 $\bigwedge m=2.$

Câu 17. Trong tất cả các nghiệm của hệ phương trình $\begin{cases} x + y + z + t = 0 \\ 2x + y + 3z + 4t = 0 \\ 3x + 4y + 2z + 5t = 0 \end{cases}$

Tìm nghiệm thoả 2x + y + z - 3t = 4.

(A) Các câu kia sai.

(B) (3, -4, 2, 0).

Câu 18. Tìm tất cả giá trị của m để hệ sau vô nghiệm $\begin{cases} x + y + 2z = 1 \\ 2x + 2y + 4z = 2 \\ 3x + 2y + mz = 5 \end{cases}$

 $(A) \not\exists m.$

(B) m=2.

(C) m = 1.

Câu 19. Trong không gian với hệ trục Oxyz, cho ba mặt phẳng (P): x+2y-z=1, (Q): 2x+5y-3z=04,(R):5x+4y-mz=m. Tìm tất cả các giá trị thực của m để 3 mp không thể đồng quy tại 1 điểm.

(A) m = -1.

(C) Không tồn tại m.

D Ba câu đều sai.

Câu 20. Tìm m để hpt vô nghiệm: $\begin{cases} x + 2y - z &= 1 \\ 2x + 5y - 5z &= 0 \\ 5x + 11y - mz &= m + 3 \end{cases}$

(A) m = -1.

(B) $m \neq 5$.

(D) m = 8.

Câu 21. Tìm tất cả m để hệ phương trình sau vô nghiệm

 A m = 5.
 B $m = \frac{14}{3}$.
 C $\nexists m$.
 D m = 3.

 Câu 22. Tìm tất cả m để hệ phương trình sau có vô số nghiệm $\begin{cases} x + y - 2z = 1 \\ 2x + 3y - 3z = 5 \\ 3x + my - 7z = 4 \end{cases}$

 A $m \neq 2$.
 B $\nexists m$.
 C Các câu kia sai.
 D m = 2.

 Câu 23. Giải hệ phương trình $\begin{cases} 2x - 4y + 6z = 0 \\ 3x - 6y + 9z = 0 \\ 5x - 10y + 15z = 0 \end{cases}$

Câu 24. Tìm tất cả m để hệ phương trình sau vô nghiệm CNCP

 $\begin{array}{rclrcrcr}
x & + & 2y & + & z & = & 1 \\
2x & + & 5y & + & 3z & = & 5 \\
3x & + & 7y & + & m^2z & = & 5
\end{array}$

(A) $m = \pm 2$.

 $(\mathbf{B}) \not\exists m.$

 $(D) m \neq \pm 2.$

Câu 25. Tìm tất cả m để nghiệm của hệ (I) cũng là nghiệm của hệ (II), trong đó

 $\begin{cases} x + 2y + 2z = 0 \\ 3x + 4y + 6z = 0 \\ 2x + 5y + mz = 0 \end{cases} \text{ hệ (II)} \begin{cases} x + y + 2z = 0 \\ 2x + 3y + 4z = 0 \\ 5x + 7y + 10z = 0 \end{cases}$

(D) Các câu kia sai.

Câu 26. Tìm tất cả m để tất cả hai hệ không tương đương.

 $\begin{cases} x + 2y + 1z = 1 \\ 3x + y + 5z = 6 \\ 4x + 5y + mz = 10 \end{cases} \begin{cases} x + y + 2z = 1 \\ 2x + 3y + 4z = 1 \\ 3x + 4y + 5z = 3 \end{cases}$

 $(\mathbf{A}) m \neq 1.$

(B) Các câu kia sai.

(**D**) m = 1.

Câu 27. Tìm tất cả m để hai hệ phương trình sau tương đương

(B) Các câu kia sai. (C) $\nexists m$.

Câu 28. Tìm tất cả m để hệ phương trình sau có nghiệm $\begin{cases} x + my + mz = 1 \\ mx + y + mz = 1 \\ mx + my + z = m \end{cases}$ $\stackrel{\bigcirc}{\textbf{A}} m \neq 1.$ $\stackrel{\bigcirc}{\textbf{B}} m \neq \frac{-1}{2}.$ $\stackrel{\bigcirc}{\textbf{C}} \forall m.$ $\stackrel{\bigcirc}{\textbf{D}} m = \frac{1}{2}.$

Câu 29. Cho $A = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}$. Biết $f(A) = \operatorname{trace}(A)$. Tính $f(A^{10})$.

(A) 2.

(D) 1.

Câu 30. Trong không gian với hệ trực Oxyz, cho ba mặt phẳng (P): x+2y-z=1, (Q): 2x+5y-3z=04,(R):5x+4y-mz=m. Tìm tất cả các giá trị thực m để ba mặt phẳng không giao nhau theo một đường

(A) m = 45.

(B) $m \neq 45$.

 $(c) \forall m.$

(D) Không tồn tai m.

$$\begin{cases} x + 2y + 5z &= 0 \\ x + 3y + 7z &= 0 \\ 2x + 5y + 9z &= 0 \end{cases}; \begin{cases} x + 3y + 2z &= 0 \\ 2x + 5y + 7z &= 0 \\ 3x + 7y + mz &= 0 \end{cases}$$

(C) Không tồn tai m.

(D) Đáp án khác.

Câu 32. Tìm các giá trị m để tất cả nghiệm của (I) là nghiệm của (II)

Câu 32. Tìm các giá trị m để tất cả nghiệm của (I) là nghiệm của (II)

$$x + 2y + z = 0$$
 $x + 2y + 2z = 0$
 $2x + 3y + 5z = 0$; Hệ (H): $\begin{cases} x + 2y + 2z = 0 \\ 3x + 4y + 6z = 0 \\ 2x + 5y + mz = 0 \end{cases}$

 A Không tồn tại m.
 B m = 4.

 $(\mathbf{D}) \forall m.$

Câu 33. Tìm tất cả m để hệ phương trình sau có nghiệm khác không?

 $(\mathbf{A}) m \neq 0.$

(**B**) m = 0.

(D) Đáp án khác.

Câu 34. Tìm m để hệ phương trình có nghiệm không tầm thường:

$$\begin{cases} x+y-z+t & = 0 \\ 3x+4y-5z+6t & = 0 \\ 5x+6y-6z+7t & = 0 \\ 7x+9y-11z+mt & = 0 \end{cases}$$

(A) m = -13.

B) $m \neq -13$.

(**D**) m = 13.

Câu 35. Tìm m để hệ phương trình sau vô nghiệm hoặc vô số nghiệm

$$\begin{cases} x + 2y + 2z &= 8 \\ x + 3y + 2z + 2t &= 12 \\ x + 2y + z + 2t &= -5 \\ x + 2y - z + mt &= 7 \end{cases}$$

(A) $m \neq 6$.

(B) m = 6.

 $(\mathbf{D}) \, \mathbf{m} = -1.$

Câu 36. Tìm tất cả
$$m \in \mathbb{R}$$
 để hệ có nghiệm
$$\begin{cases} x-y-2z &= 2\\ 3x-2y-z &= 0\\ -2x+4y-mz &= m-2 \end{cases}$$

 $(\mathbf{A}) \forall m.$

(B) m = -14.

 $(\mathbf{C}) \not\exists m.$

(D) $m \neq -14$.

Câu 37. Tìm tất cả giá trị thực của m để nghiệm của hệ (I) cũng là nghiệm của hệ (II)

Hệ (I)
$$\begin{cases} x + 2y - z &= 0 \\ 2x - y - z &= 0 \\ x + y - 3z &= 0 \end{cases}$$
 Hệ (II)
$$\begin{cases} x + 2y - 2z &= 0 \\ 4x + 3y + z &= 0 \\ x + 2y - 2mz &= 0 \end{cases}$$

$$\text{H\^{e}} \text{ (II) } \left\{ \begin{array}{ll} x + 2y - 2z & = & 0 \\ 4x + 3y + z & = & 0 \\ x + 2y - 2mz & = & 0 \end{array} \right.$$

 $(\mathbf{D}) \ m \neq 1.$

Câu 38. Tìm m để hệ phương trình $\begin{cases} x_1+x_2-x_3=m\\ 2x_1+x_2+3x_3=-m+1\\ 3x_1+x_2+mx_3=m^2-1 \end{cases}$ có nghiệm duy nhất.

 $\bigwedge m \neq 1$.

B m = 1.

Câu 39. Cho hệ gồm m phương trình tuyến tính và n ẩn số có dạng AX = b có nghiệm duy nhất. Khẳng định nào sau đây đúng?

Hệ có vô số nghiệm theo 2 tham số.

Câu 42. Cho hệ gồm m phương trình tuyến tính và n ẩn số có dạng AX = b có $v\hat{o}$ số nghiệm. Khẳng định TAI LIEU SUU TAF nào sau đây đúng?

D A vuông khả nghịch.

Câu 44. Tìm tất các giá trị m để hệ $\begin{cases} x+y+z+t=0\\ x+2y+3z=0\\ 3x+5y+(2m+1)z+(m-2)t=0 \end{cases}$ có nghiệm không tầm thường (tức là có nghiệm không).

là có nghiệm khác không).

 \triangleright $\forall m$.

(A) Hệ vô nghiệm.

(B) Hệ có 1 nghiệm.

(C) Hê có vô số nghiệm theo 1 tham số.

(D) Hê có vô số nghiệm theo 2 tham số.

Câu 46. Cho họ véc tơ $M = \{x, y, z, t\}$. $r(M) = r(\{x, y, z\})$. Khẳng định nào sau đây luôn đúng?

- (A) z là THTT của $\{x, y, t\}$...
- $r(\{2x+y, x-y, z\} = r(M)...$

- (B) M sinh ra không gian 3 chiều...
- (D) Các câu khác sai...

Câu 47. 8. Cho $M = \{x, y, z\}$ là cơ sở của $V, t \in V$. Khẳng định nào sau đây **không** luôn đúng?

- (A) $r(M) = r(\{M, t\})...$
- (c) $\{x, y, z + t\}$ độc lập tuyến tính..
- (B) Hạng của $\{x; x+y; x+y+z\}$ bằng 3...
- (D) $\{x, y, z, t\}$ phụ thuộc tuyến tính..

Câu 48. Trong R^3 , cho $M = \{(2;1;1), (1;2;3), (5;1;0)\}$ và véc tơ x = (m;4;11). Tìm tất cả các giá trị thực của m để x là tổ hợp tuyến tính của M

- (A) m = -13.
- (B) m = 4.
- (c) m = 11.
- Dáp án khác.

Câu 49. Cho $E = \{x + 2y + z; x + y + z; x + 3y + 2z\}$ và $F = \{x + y; y + z; x + y + z\}$ là hai cơ sở của không gian véc tơ X. Tìm ma trận chuyển tọa độ từ E sang F.

Câu 50. Trong R^3 , cho cơ sở $E = \{(1;1;2), (2;1;3), (1;2;2)\}$ và x = (3;1;5). Tìm $[x]_E$.

Câu 51. Cho $M=\{x,y,z\}$ sinh ra không gian 2 chiều. Khẳng định nào sau đây đúng

- $\bigcirc z$ là tổ hợp tuyến tính của $\{x,y\}$
- $\begin{array}{c} \textbf{B} \ r(M) = 2 \ . \\ \hline \textbf{D} \ \{x,y\} \ \text{độc lập tuyến tính} \ . \end{array}$

Câu 52. Trong KGVT X, cho tập sinh $\{x+y,y+z,z+x\}; x,y,z\in X$. Khẳng định nào sau đây luôn đúng?

- $(\mathbf{A}) z$ là tổ hợp tuyến tính của $\{x,y\}$.
- \bigcirc dim(X) = 3.

- lacksquare Cơ sở của X gồm 2 véc tơ .
- (x,y,z) là tập sinh của X.

Câu 53. Trong R^3 , cho $M = \{(2;1;1), (1;2;3), (5;1;0)\}$ và véc tơ x = (-2;3;m). Tìm tất cả các giá trị thực

Câu 54. 6. Trong KGVT V, cho cơ sở $E = \{3x - y; 5x - 2y\}$, F là 1 cơ sở khác của V. Biết $\forall u \in V$: $[u]_E = \begin{pmatrix} 7 & 26 \\ -4 & -15 \end{pmatrix} [u]_F$. Tim F.

- (A) $\{x+y, 3x+4y\}$.. (B) $\{x-y, 3x-4y\}$.. (C) $\{-x-y, -3x-4y\}$.. (D) $\{-x+y, -3x+4y\}$..

Câu 55. Trong R^3 , cho cơ sở $E = \{(1, 2, 1), (1, 1, 2), (2, 3, 2)\}\$ và x = (3, 1, 5). Tìm $[x]_{E^3}$

ĐÁP ÁN HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

1.	С	2.	С	3.	В	4.	С	5.	A	6.	A	7.	D	8.	С	9.	С	10.	С
11.	D	12.	A	13.	A	14.	A	15.	A	16.	С	17.	С	18.	A	19.	A	20.	D
21.	В	22.	В	23.	С	24.	A	25.	С	26.	A	27.	С	28.	В	29.	A	30.	С
31.	A	32.	D	33.	С	34.	D	35.	В	36.	A	37.	В	38.	D	39.	A	40.	С
41.	D	42.	В	43.	С	44.	D	45.	С	46.	С	47.	С	48.	A	49.	A	50.	A
51.	В	52.	D	53.	A	54.	A	55.	В										

ỨNG DUNG

(Đề câu 1-2) Giả sử để sản xuất ra một lượng hàng đầu vào có giá trị một dollar của ngành công nghiệp cần lượng hàng có giá trị \$0.1 của ngành công nghiệp, \$0.15 của ngành nông nghiệp và \$0.2 của ngành dịch vụ. Để có được \$1 của ngành nông nghiệp cần \$0.25 của ngành công nghiệp, \$0.15 của ngành nông nghiệp và \$0.1 của ngành dịch vụ. Để có được \$1 của ngành dịch vụ cần \$0.15 của ngành công nghiệp, \$0.1 của ngành nông nghiệp và \$0.05 của ngành dịch vụ.

Câu 1. Ma trận đầu vào là:

Câu 2. Tìm đầu ra (cầu cuối) cho ngành nông nghiệp, biết nhu cầu cuối cùng của các ngành lần lượt là 400, 350, 200 (đơn vị tính là triệu đô).

A 579.403.

B Các câu kia sai.

413.474.

D 674.302.

(Đề câu 3-4) Một chuỗi cửa hàng tiện lợi gồm ba địa điểm khác nhau, ký hiệu: 1, 2 và 3. Một khách hàng sau khi mua hàng tại một trong ba địa điểm trên sẽ được phát phiếu giảm giá vào lần mua tiếp theo tại bất kỳ một trong ba địa điểm đó. Chủ chuỗi cửa hàng nhận thấy rằng khách hàng sử dụng phiếu giảm giá tại các

địa điểm khác nhau theo xác suất sau: $\begin{pmatrix} 0.2 & 0.3 & 0.1 \\ 0.2 & 0.5 & 0.2 \\ 0.6 & 0.2 & 0.7 \end{pmatrix}$ (đơn vị thời gian là một tháng).

Câu 3. Từ mô hình trên, hãy cho biết số 0.1 có ý nghĩa gì?

- A Xác suất một phiếu giảm giá từ vị trí số 1 sẽ được sử dụng ở vị trí số 2 là 0.1.
- B Xác suất một phiếu giảm giá từ vị trí số 1 sẽ được sử dụng ở vị trí số 1 là 0.1.
- C Xác suất một phiếu giảm giá từ vị trí số 3 sẽ được sử dụng ở vị trí số 1 là 0.1.
- D Các câu kia sai.

Câu 4. Giả sử sự phân bố ban đầu tại các cửa hàng 1, 2 và 3 đều là 10000 người. Hỏi sau 2 tháng, cửa hàng nào được nhiều người mua sắm nhất.

(A) Siêu thị B.

(B) Siêu thị C.

C Siêu thị A.

(D) Các câu kia sai.

Câu 5. Một cửa hàng hoa tươi bán 3 loại hoa: hoa hồng, hoa ly và hoa lan. Ngày đầu bán được 10kg hoa hồng, 20kg hoa ly và 16kg hoa lan, doanh thu là 7 triệu 420 ngàn VND. Ngày thứ hai bán được 30kg hoa hồng, 24kg hoa ly và 29kg hoa lan, doanh thu là 13 triệu 760 ngàn VND. Ngày thứ ba bán được 20kg hoa hồng, 22kg hoa ly và mkg hoa lan, doanh thu là 10 triệu 040 ngàn VND. Tìm số nguyên m biết giá của hoa lan là 220 ngàn VND/kg.

A 20.

B 25.

C 18

D 8.

(Đề câu 6-8) Giả sử độ tuổi lớn nhất của một con cái của một loài động vật là 15 tuổi. Người ta chia con cái thành 3 lớp tuổi với thời lượng bằng nhau là 5 năm: lớp thứ nhất I từ 1 đến 5 tuổi, lớp thứ hai II từ 6 đến 10

tuổi, lớp thứ III từ 11 đến 15 tuổi. Ma trận Leslie và phân bố ban đầu được cho như sau: $L = \begin{pmatrix} 0 & 3 & 4 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \end{pmatrix}$

(cột 1, 2, 3 tương ứng với lớp I, II, III và
$$x_o = \begin{pmatrix} 2400 \\ 2000 \\ 1400 \end{pmatrix}$$
.

Câu 6. Số $\frac{1}{4}$ có ý nghĩa gì?

- (A) Tỷ lệ sống sót của lớp thứ nhất là 0.25.
- (B) Tỷ lệ sống sót của lớp thứ ba là 0.25.
- C Tỷ lê sống sót của lớp thứ hai là 0.25.
- (D) Các câu kia sai.

Câu 7. Số lương của loài vật này ở lớp thứ II sau 10 năm.

- (A) 5600.
- (B) 5800.

(C) 300.

(D) Các câu kia sai..

Câu 8. Số lượng của lớp thứ mấy nhiều nhất sau 15 năm.

- (A) Lớp thứ I.
- (B) Các câu kia sai.
- (C) Lớp thứ II.
- D Lớp thứ III.

(Đề cho câu 9 và 10) Một chuỗi nhà hàng có ba chi nhánh: 1, 2 và 3. Qua khảo sát chủ nhà hàng nhận thấy: sau một tháng có 20% số người thường đi chi nhánh 1 chuyển sang chi nhánh 2, và 10% chuyển sang chi nhánh 3; có 30% số người thường đi mua ở chi nhánh 2 chuyển sang chi nhánh 1 và 40% chuyển sang chi nhánh 3; có 30% số người thường đi chi nhánh 3 chuyển sang chi nhánh 1 và 10% chuyển sang chi nhánh 2. Giả sử không có khách hàng nào mới hay rời bỏ hẳn.

Câu 9. Viết ma trận chuyển trạng thái Markov cho mô hình trên.

Câu 10. Giả sử sư phân bố ban đầu tai các chi nhánh 1, 2 và 3 đều là 10000 người. Tính số lương người đi chi nhánh 3 sau 3 tháng.

(Đề cho câu 11 và 12) Cho một quốc gia có ba ngành kinh tế: 1, 2 và 3 với ma trận hệ số đầu vào là
$$A = \begin{pmatrix} 0.4 & 0.2 & 0.4 \\ 0.2 & 0.3 & 0.1 \\ 0.3 & 0.5 & 0.2 \end{pmatrix} \text{ và ma trận cầu cuối } b = \begin{pmatrix} 80 \\ 80 \\ 60 \end{pmatrix}. \text{ (Giả sử giá trị hàng hóa được tính bằng USD)}$$

Câu 11. Số 0, 1 trong ma trận A có ý nghĩa gì?

- (A) Để sản xuất ra một lượng hàng đầu vào có giá trị một USD của ngành 3 cần lượng hàng có giá trị \$0.1 của ngành 1.
- (B) Để sản xuất ra một lượng hàng đầu vào có giá trị một USD của ngành 3 cần lượng hàng có giá trị \$0.1 của ngành 2.
- (C) Để sản xuất ra một lượng hàng đầu vào có giá trị một USD của ngành 2 cần lượng hàng có giá trị \$0.1 của ngành 3.
- (D) Các câu kia sai.

Câu 12. Tính đầu ra của ngành 2.

- (A) 455.836.
- (B) 502.083.
- (C) 465.972.
- (D) 324.305.

Câu 13. Xét mô hình Input-Output mở gồm 3 ngành kinh tế với ma trận hế số đầu vào là $\begin{pmatrix} 0.3 & 0.2 & 0.3 \\ 0.1 & 0.1 & 0.1 \\ 0.1 & 0.2 & 0.1 \end{pmatrix}$.

Tính đầu ra của 3 ngành kinh tế trên, biết ngành kinh tế mở yêu cầu một lương sản phẩm cuối tri giá (20,20,20)?

- **A**) (50.4; 26; 33.6).
- **B**) (68.6; 34; 37.4).
- (C) (53.3; 27; 39.7).
- (D) (52.8; 32; 35.2).

			$(0.1 \ 0.3 \ 0.2)$
Câu 14. Xét mô hình Input	-Output mở gồm 3 ngành l	kinh tế với ma trận hệ số đ	âu vào là $\begin{pmatrix} 0.4 & 0.2 & 0.3 \\ 0.2 & 0.3 & 0.2 \end{pmatrix}$.
Tính đầu ra của 3 ngành kinh 975)?	h tế trên , biết ngành kinh t	tế mở yêu cầu một lượng sải	n phẩm cuối trị giá (325,650,
(1900, 2790, 2740).	B (2790, 1900, 2740).	C (2740, 1900, 2790).	D (2790, 2740, 1900).
(1900, 2790, 2740). Câu 15. Xét mô hình Input	-Output mở gồm 3 ngành l	kinh tế với ma trận hệ số đ	ầu vào là $\begin{pmatrix} 0.1 & 0.3 & 0.2 \\ 0.4 & 0.2 & 0.3 \\ 0.2 & 0.3 & 0.2 \end{pmatrix}$.
Tìm nhu cầu cuối của ngành	n kinh tế mở, biết đầu ra củ	ủa 3 ngành kinh tế trên là	(1500,2000,1600)?
(430, 380, 520).	B (380, 430, 520).	C (430, 520, 380).	(380, 520, 430).
(430, 380, 520). Câu 16. Xét mô hình Input-	-Output mở gồm 3 ngành ki	nh tế mở với ma trận hệ số c	$ \hat{\text{T}}$ ầu vào là $ \begin{pmatrix} 0.3 & 0.2 & 0.3 \\ 0.1 & 0.1 & 0.1 \\ 0.1 & 0.2 & 0.1 \end{pmatrix} $
Tìm nhu cầu cuối ngành kin			
Câu 17. Giả sử độ tuổi lớn lớp:		loài động vật là 30 tuổi. N	
-Lớp 1 (từ 1 đến 10 tuổi): ch	nưa sinh sản. WOA	CNCS	
-Lớp 2 (từ 11 đến 20 tuổi): r			
-Lớp 3 (từ 21 đến 30 tuổi): r	0.0		
Khoảng 50% con cái sống số		C-0	
Giả sử ban đầu ở mỗi lớp tu	ổi có 100 con cái, sau 20 n	ăm số lượng con cái ở lớp 3	3 là bao nhiêu?
A 15.	B 150.	C 180.	D 20.
Câu 18. Khảo sát các cá th	iể cái của một loài hải sản.		thời gian nuôi của chúng.
-Loại 3: từ 0 đến 1 năm.	вол нем	•	
-Loại 2: từ 1 đến 2 năm.	BOT HOM	or ener	
-Loại 1: từ 2 năm trở lên.			
Tỉ lệ sống sót của loại 3 qua của loại 1 qua năm kế tiếp là	-	_	
Giả sử ban đầu ở mỗi loại cơ	$5~10000~{\rm con}$ cái, sau $3~{\rm n\breve{a}m}$	số lượng con cái ở loại 2 là	a bao nhiêu?
A 7780.	B) 4920.	C 14060.	D 12130.
Câu 19. Một hợp tác xã nô dây. Để có sự luân phiên tro hộ nông dân trồng nông sản	ông nghiệp chuyên trồng ba ong sản xuất, mỗi năm hợ n này sang trồng một nông	loại nông sản chính là kho p tác xã đều chuyển một t sản khác. Việc chuyển đổi	oai mì, khoai lang và củ sắn tỉ lệ nhất định số lượng các đó được thể hiện ở ma trận
Markov sau $ \begin{pmatrix} 0.7 & 0.1 & 0.2 \\ 0.2 & 0.6 & 0 \\ 0.1 & 0.3 & 0.8 \end{pmatrix} $). Hiện nay số hộ nông dâ	an trồng khoai mì, khoai la	ng và củ sắn dây lần lượt là
200, 250, 100. Hỏi 1 năm sau	có bao nhiều hộ nông dân	trồng khoai lang?	
A 185.	B 190.	C 120.	D 140.
Câu 20. Giả sử năm 2022, ở mỗi năm có khoảng 10% dân Dự tính dân số thành phố và	n thành phố Ā chuyển ra nạ	goại ô và 15% dân số ngoại	
(A) Thành phố: 90375. Ng	goại ô: 39625.	B Thành phố:39625. N g	goại ô: 93000.

(D) Thành phố:90375. Ngoại ô: 9300. (C) Thành phố:2700. Ngoại ô: 90375. Câu 21. Một thành phố được chia thành 3 khu dân cư 1, 2, 3. Mỗi năm ở khu vực 1 có 10% dân số chuyển đến khu vực 2 và 10% dân số chuyển đến khu vực 3; ở khu vực 2 có 5% dân số chuyển đến khu vực 1 và 10%dân số chuyển đến khu vực 3; ở khu vực 3 có 15% dân số chuyển đến khu vực 1 và 10% dân số chuyển đến khu vưc 2. Hỏi dân số ở khu vực 1 sau 3 năm là bao nhiêu? Biết rằng hiện nay mỗi khu vực có khoảng 1 triệu dân cư. (A) 1115625. (B) 896375. **C** 9955. **D** 988000. Câu 22. Lớp Điện tử viễn thông có 10 bạn đạt điểm kiểm tra cao nhất, gồm các điểm 8,9,10. Biết rằng tổng số điểm của 10 bạn là 87 và tổng số bạn có điểm 9 và 10 bằng tổng số bạn có điểm 8. Hỏi có bao nhiêu bạn đạt điểm 10? (A) 2. **(B)** 3. \bigcirc 4. **(C)** 5. **Câu 23.** Cần 3 thành phần khác nhau A, B, C để sản xuất một lương chất hóa học. A, B và C phải được hòa tan trong nước một cách riêng biệt trước khi chúng kết hợp lại với nhau để tạo ra hợp chất hóa học. Gọi x, y, zlà thể tích dung dịch tương ứng của A, B và C khi kết hợp lại với nhau. Biết rằng nếu kết hợp dung dịch chứa A với tỷ lệ $1,5g/cm^3$ với dung dịch chứa B với tỷ lệ $3,6g/cm^3$ và dung dịch chứa C với tỷ lệ $5,3g/cm^3$ thì tạo ra 25,07g hợp chất hóa học. Nếu tỷ lệ của A, B, C thay đổi thành tương ứng thành $2, 5; 4, 3; 2, 4(g/cm^3)$, khi đó sẽ tạo ra 22,36g hợp chất hóa học. Cuối cùng, nếu tỷ lệ tương ứng là 2,7; 5,5; 3,2 (g/cm^3) , thì sẽ tạo ra 28,14g hợp chất. Tính xấp xỉ thể tích của dung dịch chứa B. (A) $1,4cm^3$. (c) 3, $1cm^3$. $C\hat{q}u$ 24. Giả sử độ tuổi lớn nhất của một loài động vật là 30 tuổi. Người ta chia con cái thành 3 lớp. Lớp I (từ 1 đến 10 tuổi), chưa sinh sản. Lớp II (từ 11 đến 20 tuổi), mỗi con cái sinh trung bình 3 con cái khác. Lớp III (từ 21 đến 30 tuổi), mỗi con cái sinh trung bình 2 con cái khác. Khoảng 40% con cái sống sót từ lớp I sang lớp II, 30% sống sót từ lớp II sang lớp III. Giả sử ban đầu ở mỗi lớp có 100 con cái, sau 20 năm số lượng con cái ở lớp I là bao nhiêu? **B**) 200. (A) 180. (C) 30. **D** 12. Câu 25. Giả sử năm 2010 tình trạng sử dụng đất của một hợp tác xã nông nghiệp X như sau: trồng bông gòn chiếm 30%, trồng dâu tàm chiếm 20% và trồng mì chiếm 50%. Hãy tính % đất được sử dụng để trồng dâu tầm trong năm 2025, giả sử rằng xác suất chuyển đổi trong mỗi giai đoạn 5 năm được cho bởi ma trận và hầu như không thay đổi trong suốt giai đoạn xem xét. (A) 32.73%. **B** 43.52%. $(\mathbf{C}) 23.75\%.$ (D) 20.45%. Câu 26. Xét mô hình Input-Output gồm 3 ngành kinh tế với ma trận hệ số đầu vào là mức sản lượng (hay đầu ra, tổng cầu) của 3 ngành kinh tế trên, biết nhu cầu cho tiêu dùng và xuất khẩu của ba ngành là (20, 30, 10) (tỉ USD) (A) (61, 44, 34). (B) (30, 20, 10). (15, 36, 87).(D) (36, 47, 18). Câu 27. Khảo sát các cá thể cái của một loài hải sản. Phân loại chúng dựa trên thời gian nuôi của chúng. Loại 3 có thời gian nuôi từ 0 đến 1 năm. Loại 2 có thời gian nuôi từ 1 đến 2 năm. Loại 1 có thời gian nuôi từ

Câu 27. Khảo sát các cá thể cái của một loài hải sản. Phân loại chúng dựa trên thời gian nuôi của chúng. Loại 3 có thời gian nuôi từ 0 đến 1 năm. Loại 2 có thời gian nuôi từ 1 đến 2 năm. Loại 1 có thời gian nuôi từ 2 năm trở lên. Tỷ lệ sống sót của loại 3 qua năm kế tiếp là 0.5. Tỷ lệ sống sót của loại 2 qua năm kế tiếp là 0.6. Tỷ lệ sống sót của loại 1 qua năm kế tiếp là 0.7. Tỷ lệ sinh con cái là 0.4 của loại 1 và 0.5 của loại 2. Giả sử ban đầu ở mỗi loại có 20000 con cái, sau 2 năm số lượng con cái ở loại 2 là bao nhiêu?

A 15400. **B** 9000. **C** 24200. **D** 1500.

ĐÁP ÁN ỨNG DỤNG

				3.															
11.	В	12.	D	14.	D	15.	A	16.	С	17.	В	18.	D	19.	В	20.	В	21.	A
22.	D	23.	A	24.	С	25.	A	26.	В	27.	A								

CAMONG Z KHÔNG GIAN VÉC TƠ

Bài 1

KHÔNG GIAN VÉC TƠ

Hạng, cơ sở, số chiều

Câu 1. Cho $M = \{x, y, z\}$ là tập sinh của không gian véctơ V. Khẳng định nào sau đây luôn đúng?

(A) $\{x, y, x + y + z\}$ sinh ra V.

(B) $\{x, 2y, x + y\}$ sinh ra V.

 \bigcirc $\{2x, 3y, 4z\}$ không sinh ra V.

 \triangleright Hạng của $\{x, x, z\}$ bằng 3.

Câu 2. Cho không gian véctơ V có chiều bằng 3, biết $\{x,y\}$ độc lập tuyến tính. Khẳng định nào sau đây đúng?

(A) $V = \langle x, y, 2x \rangle$.

(c) $V = \langle x, y, x + 2y \rangle$.

lacksquare Tập $\{x,y,0\}$ độc lập tuyến tính.

 \triangleright $\{x, y, x - y\}$ sinh ra không gian 2 chiều.

Câu 3. Trong không gian véctơ V cho họ $M = \{x, y, z, t\}$ có hạng bằng 2. Khẳng định nào sau đây luôn đúng? ký hiệu: ĐLTT, PTTT, THTT là độc lập, phụ thuộc và tổ hợp tuyến tính tương ứng.

(A) M sinh ra không gian 3 chiều.

(c) $\{x,y\}$ DLTT.

(3) $\{2x\}$ không là THTT của $\{x,y\}$.

(x, y, x + z) PTTT.

Câu 4. Cho ba vécto $\{x, y, z\}$ là cơ sở của không gian vécto V. Khẳng định nào sau đây luôn đúng?

(A) $\{x, y, 2y\}$ sinh ra V.

 $igorup \{x,2y,z\}$ phụ thuộc tuyến tính.

 \bigcirc Hạng của họ $\{x, x+y, x-2y\}$ bằng 2.

Câu 5. Cho $M=\{x,y,z,t\}$ là tập sinh của không gian véct
ơ $V_{\mathfrak{t}}$ biết $\{x,y,z\}$ độc lập tuyến tính. Khẳng định nào sau đây luôn đúng?

(A) Hạng của $\{x, y, z, 2x + y - z\}$ bằng 4.

(B) dim(V) = 3.

Các câu kia sai.

 \bigcirc t là tổ hợp tuyến tính của $\{x, y, z\}$.

Câu 6. Cho $V = \langle x, y, z, t \rangle$. Giả sử t là tổ hợp tuyến tính của x, y, z. Khẳng định nào luôn đúng?

(A) 2x + y + 3t không là véctơ của V.

(B) Các câu kia sai.

 $(\mathbf{C})x,y,t$ độc lập tuyến tính.

(D) $\{x, y, z\}$ là tập sinh của V.

Câu 7. Trong không gian véctơ thực V cho họ $M=\{x,y,z\}$ phụ thuộc tuyến tính. Khẳng định nào sau đây đúng?

(A) x là tổ hợp tuyến tính của y, z.

(B) Hạng của M bằng 2.

(C) M không sinh ra V.

 \bigcirc 2x là tổ hợp tuyến tính của M.

Câu 8. Cho $M = \{x, y, z\}$ là một cơ sở của không gian véctơ V.

Khẳng định nào sau đây luôn đúng?

(A) $\{x, y, x + z\}$ là cơ sở của V.

 \bigcirc dim(V) = 2.

(x, y, x + y + z) phụ thuộc tuyến tính.

 \triangleright $\{x, y, 2x + y\}$ sinh ra V.

Câu 9. Cho $M = \{x, y, z\}$ là cơ sở của không gian véctơ thực V.

Khẳng định nào sau đây luôn đúng?

 $(\mathbf{A}) \, 4y + 3z \not\in V.$

(B) Hạng của $\{x, y, 2x - y\}$ bằng 2.

(C) $\{2x, 3y, x + z\}$ phụ thuộc tuyến tính.

 $(\mathbf{D}) dim(V) = 2.$

Câu 10. Cho V = <(1,1,1),(2,1,0),(5,3,1)>. Khẳng định nào luôn đúng?

- (A) $\{(1,1,1),(0,0,1)\}\$ là cơ sở của V. (B) $\dim(V) = 3$. (C) $\{(1,0,-1)\} \in V$. (D) Các câu kia sai. **Câu 11.** Cho $M = \{x, y, z\}$ là cơ sở của không gian véctơ V. Khẳng định nào sau đây luôn đúng? (A) Hạng $\{x + y, y + z, x + y + z\} = 2$. (B) $\{x+y, x-y, x+z\}$ là cơ sở của V. (C) Các câu kia sai. (D) $\{x, y, 2x + y\}$ sinh ra V. **Câu 12.** Cho $\{x, y, z\}$ là tập sinh của không gian vécto V. Khẳng định nào sau đây luôn đúng? (B) $x + 2y \notin V$. $(\mathbf{A}) dim(V) = 3.$ (C) $\{x+y, x-y, 3z\}$ là tập sinh của V. (D) Các câu kia sai. **Câu 13.** Cho $M = \{x, y, z\}$ là cơ sở của không gian vecto V. Khẳng định nào sau đây đúng? (A) $\{x, y, x + y, x + z\}$ không sinh ra V. (B) $\{x, 2y, 3z\}$ không là cơ sở của V. $(\mathbf{C})\{x, x+y, x+y+z\}$ là cơ sở của V. (D) Các câu kia sai. **Câu 14.** Cho x, y, z là ba vecto của không gian vecto thực V, biết $M = \{x + y + z, 2x + y + z, x + 2y + z\}$ là cơ sở của V. Khẳng định nào luôn đúng? (A) $\{2x, 3y, 4z\}$ là cơ sở của V. (B) $\{x, 2y, z\}$ phụ thuộc tuyến tính. (C) Hạng của họ $\{x, x+y, x-2y\}$ bằng 3. \triangleright $\{x, y, 2y\}$ sinh ra V. **Câu 15.** Cho $M = \{x, y, z\}$ là tập sinh của không gian vecto V. Khẳng định nào sau đây luôn đúng? (A) $\{2x, 3y, 4z\}$ không sinh ra V. $\bigwedge \bigcap A \bigcirc B$ Hạng của họ $\{x,y,z\}$ bằng 3. $(\mathbf{C})\{x,y,x+y+z\}$ sinh ra V. $(\mathsf{D})\{x,2y,x+y\}$ sinh ra V. **Câu 16.** Trong không gian vecto thực V cho họ $M = \{x, y, z\}$ phụ thuộc tuyến tính. Khẳng định nào sau đây đúng? A x là tổ hợp tuyến tính của y, z. **B** M không sinh ra V. (C) 2x là tổ hợp tuyến tính của M. 🕩 Hạng của M bằng 2. **Câu 17.** Cho 3 vecto $\{x, y, z\}$ là cơ sở của không gian vecto V. Khẳng định nào sau đây luôn đúng? (A) Hạng của họ $\{x, x + y, x - 2y\}$ bằng 2. (B) $\{x, y, x + y + z\}$ không sinh ra V. (x, y, 2y) sinh ra V. $(\mathbf{C})\{x,2y,z\}$ phụ thuộc tuyến tính **Câu 18.** Cho $E = \{x, y, z, t\}$ là tập sinh của không gian vecto V. Khẳng định nào sau đây luôn đúng? (B) dim(V) = 4. $(\mathbf{A}) x + 2y - z \in V.$ $(\mathbf{C})x + 2y \notin V.$ $(\mathbf{D}) dim(V) < 4.$ **Câu 19.** Trong không gian vecto \mathbb{R}^3 cho ba vecto $x_1 = (1,1,1), x_2 = (0,1,1), x_3 = (0,1,m)$. Với giá trị nào của m thì x_3 là tổ hợp tuyến tính của x_1 và x_2 ? $(\mathbf{B}) \ m \neq -1.$ (A) m = -1.(C) m = 1. $(\mathbf{D}) m \neq 1.$ **Câu 20.** Cho $M = \{x, y, z\}$ là cơ sở của không gian véctơ thực V. Với giá trị nào của số thực m thì mx + y + y3z, mx - 2y + z, x - y + z cũng là cơ sở? (A) $m \neq -\frac{7}{5}$. B) Các câu kia sai. $(\mathbf{C}) m \neq \frac{7}{5}.$ (D) $m = \frac{7}{5}$. Câu 21. Trong \mathbb{R}_3 cho họ $M = \{(1,2,3), (2,4,6), (3,4,m)\}$. Với giá trị nào của m thì M sinh ra không gian có chiều là 3? $(\mathbf{A}) \forall m.$ $(B) \not\exists m.$ (D) $m \neq 1$. $(\mathbf{C}) m \neq 3.$ **Câu 22.** Với giá trị nào của k thì $M = \{(1, 1, -2), (2, 2, -4), (-3, 5, k)\}$ là tập sinh của \mathbb{R}_3 **B** k = 6. (A) Không tồn tại k. $(\mathbf{C}) \forall k.$ (D) Ba câu đều sai.
- **Câu 23.** Cho $M = \{x, y, z\}$ là một cơ sở của không gian vecto V. Khẳng định nào sau đây luôn đúng?
- (A) $\{x, y, x + y + z\}$ phụ thuộc tuyến tính.
- (B) dim(V) = 2.

(c) $\{x, y, 2x + y\}$ sinh ra V.

(D) $\{x, y, x + z\}$ là cơ sở của V.

Câu 24. Cho $M = \{x, y, z\}$ là tập độc lập tuyến tính, t không là tổ hợp tuyến tính của M. Khẳng định nào sau đây luôn đúng?

- (A) $\{x, y, z + t, z t\}$ có hạng bằng 3.
- (B) Đáp án khác.
- (\mathbf{C}) x là tổ hợp tuyến tính của $\{y, z, t\}$.
- (D) $\{x+y, x-y, z, t\}$ có hạng bằng 4.

Câu 25. Trong không gian vecto V cho họ $M = \{x, y, z, t\}$ có hạng bằng 2. Khẳng định nào sau đây luôn đúng?

- (A) $\{2x\}$ không là tổ hợp tuyến tính của $\{x,y\}$...
- (B) $\{2x, 3y, x+z\}$ phụ thuộc tuyến tính...

(C) M sinh ra không gian 3 chiều...

(D) $\{x,y\}$ đôc lập tuyến tính..

Câu 26. Cho ba vecto $\{x, y, z\}$ là cơ sở của không gian vecto V. Khẳng định nào sau đây luôn đúng?

- (A) Hạng của họ $\{x, x + y, x 2y\}$ bằng 3.
- (B) $\{x, 2y, z\}$ phụ thuộc tuyến tính.
- $(\mathbf{C})\{x,y,2y\}$ sinh ra V.
- (D) $\{x+y, 3y+2z, x+4y+2z\}$ phu thuôc tuyến tính.

Câu 27. Cho $M = \{x, y, z\}$ là tập độc lập tuyến tính, t không là tổ hợp tuyến tính của M. Khẳng định nào luôn đúng?

- (A) $\{x, y, z + t, z t\}$ có hạng bằng 3.
- (B) x là tổ hợp tuyến tính của $\{y, z, t\}$.
- (c) $\{x+y, x-y, z, t\}$ có hang bằng 4.
- D Ba câu kia sai.

Câu 28. Trong \mathbb{R}_3 , cho $M = \{(2,1,1), (3,2,3), (2,1,5)\}$ và vecto x = (-1, m+1, m). Tìm tất cả các giá trị thực của m để x là tổ hợp tuyến tính của M.

- $(\mathbf{A}) \forall m.$
- (C) m = -2.

Câu 29. Trong không gian vecto V cho họ $M = \{x, y, z, t\}$ có hạng bằng 2. Khẳng định nào sau đây luôn đúng?

- (A) M sinh ra không gian 3 chiều.
- (C) $\{2x\}$ không là tổ hợp tuyến tính của $\{x,y\}$.
- (B) $\{x,y\}$ độc lập tuyến tính. \triangleright $\{x, y, x + z\}$ phụ thuộc tuyến tính.

Câu 30. Cho $V = \langle x, y, z, t \rangle$. Giả sử t là tổ hợp tuyến tính của x,y,z. Khẳng định nào luôn đúng?

- (A) 2x+y+3t không là vecto của V.

C 3 câu kia sai.

BỞI HCMU $\{x,y,t\}$ độc lập tuyến tính. $\{x,y,z\}$ là tập sinh của V.

Câu 31. Cho không gian vecto V có số chiều bằng 3, biết $\{x,y\}$ độc lập tuyến tính, z không là tổ hợp tuyến tính của $\{x,y\}$. Khẳng định nào sau đây luôn đúng?

- (A) $\{x+y, x-y, x+y+3z\}$ là cơ sở của V.
- **(B)** $V = \langle x, y, x + 2y \rangle$.

 $(\mathbf{C})\{x,y,z\}$ không sinh ra V.

(D) Các câu kia sai.

Tìm toa đô vecto

Câu 32. Trong không gian véctơ V cho cơ sở $E = \{e_1, e_2, e_3\}$. Tìm toạ độ véctơ $x = 3e_3 - 4e_1 + 2e_2$ trong cơ $s\mathring{\sigma} E$.

 $(3, -4, 0)^T$.

 $(3, -4, 2)^T$.

 $(C)(-4,2,3)^T$.

 $(2, -4, 3)^T$.

Câu 33. Trong \mathbb{R}_2 cho cơ sở $E = \{(1, 2), (1, 1)\}$. Tìm véctơ x biết $[x]_E = (3, 5)^T$.

(A) x = (8; 11).

(B) x = (2; 3).

C Đáp án khác.

(D) x = (8:13).

Câu 34. Cho $E = \{(1,1,1); (1,0,1)\}$ là cơ sở của không gian véctơ thực V. Tìm toạ độ của véctơ x = (1,4,1)trong cơ sở E.

(A) Các câu kia sai.

 $[x]_E = (4, -3, 0)^T$.

 $(x)_E = (1,4,0)^T$.

 $[x]_E = (4, -3)^T$.

Câu 35. Trong không gian R_4 cho cơ sở $E = \{(0,0,0,1), (0,0,1,-1), (0,1,-2,1), (1,-3,3,-1)\}$. Tìm tọa độ vécto v = (0, 3, -4, 5) trong co sở E. **B** $[v)]_E = (4, 2, 3, 0)^T$. (A) $[v]_E = (0,4,2,3)^T$. $[v]_E = (3, 2, 4, 1)^T.$ $(c)[v]_E = (4,2,3)^T.$ **Câu 36.** Trong không gian vécto V cho ba vécto x, y, z, biết $E = \{x + y + z, x + y, x\}$ là cơ sở của V. Tìm toạ độ véctơ v = 2x - 3y + 4z trong cơ sở E(B) (-4, -3, 5).(A) (4, -7, 5).(7,4,-5). $(\mathbf{C})(3,-4,0).$ **Câu 37.** Tìm tọa độ véctơ x trong cơ sở $\{(1,1,1),(2,1,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, biết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, chiết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, chiết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, chiết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, chiết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, chiết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, chiết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, chiết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, chiết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, chiết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$, chiết tọa độ véctơ x trong cơ sở $\{(1,1,0),(1,0,1),(1,2,1)\}$ $la (2,3,1)^T$. (A) $(3,-1,-2)^T$. (B) Các câu kia sai. $(2,-3,1)^T$. $(3,2,-1)^T$. **Câu 38.** Trong không gian \mathbb{R}_3 cho cơ sở $E = \{(1,2,2), (2,4,3), (1,3,4)\}$. Tìm tọa độ của vecto x = (1,3,5)trong cơ sở E. $(17, 29, 30)^T$. (A) $(12, 29, 3)^T$. $(2 -1 1)^T$ $(-9,6,-1)^T$. **Câu 39.** Trong \mathbb{R}_3 cho 2 cơ sở: $E = \{(1,1,2), (1,1,1), (1,2,1)\}$ và $F = \{(1,1,1), (1,1,0), (1,0,1)\}$. Biết rằng tọa độ của x trong cơ sở E là (2,3,-4). Tìm tọa độ của x trong cơ sở F. (A) (-1,2,4). (C) (-1,-2,4).**Câu 40.** Trong không gian \mathbb{R}_3 cho cơ sở $E = \{(1,2,-1), (2,5,-3), (3,7,-5)\}$. Tìm tọa độ của vecto x = (4,-5,8) trong cơ sở E. (4,-41,-63). (C) (18,39,-29). **Câu 41.** Trong không gian \mathbb{R}^3 cho hai cơ sở $E = \{(1,2,2), (2,4,3), (1,3,4)\}$ và $F = \{(1,0,-1), (1,2,1), (0,1,0)\}$. Biết tọa độ của vecto x trong cơ sở của F là $(2,1,-4)^T$. Tìm tọa độ của vecto x trong cơ sở E TALLEUS $(29, -9, -8)^T$. (A) $(40, -29, 12)^T$. $(\mathbf{C})(27,42,31)^T$. **Câu 42.** Tìm tọa độ của vecto x trong cơ sở $\{u+v+2w, 2u+3v+5w, 3u+5v+7w\}$. Biết vecto x có tọa độ trong cơ sở $\{u, v, w\}$ là (1, 0, -1)(A) $(4, -6, 3)^T$. $(\mathbf{C})(4,-6,-3)^T$. **Câu 43.** Trong \mathbb{R}_3 cho hai cơ sở: $E = \{(1,1,2), (1,1,1), (1,2,1)\}$ và $F = \{(1,1,1), (1,1,0), (1,0,1)\}$. Biết rằng toạ độ của x trong cơ sở E là (2,3,-4). Tìm toạ độ của x trong cơ sở F. (A) $(1,-2,-4)^T$. $(-1, -2, 4)^T$. $(-1,2,4)^T$. $(C)(1,-2,4)^T$. **Câu 44.** Tìm ma trận chuyển cơ sở A từ $E\{x+1; 2x+3\}$ sang cơ sở $F=\{2x+1; 7x+4\}$. \bigcirc $\begin{pmatrix} 4 & 15 \\ 5 & 19 \end{pmatrix}$. **Câu 45.** Tìm ma trận chuyển cơ sở A từ $E\{(1;1;1),(2;1;1),(1;2;1)\}$ sang $F=\{(1;0;1),(0;1;1),(1;1;1)\}$.

Câu 46. Trong không gian với hệ trục Oxyz, cho ba mặt phẳng (P): x+2y-z=1, (Q): 2x+5y-3z=4, (R): 5x+4y-mz=m. Tìm tất cả giá trị thực của m để ba mặt phẳng không thể đồng quy tại một điểm.

(A) m = -1.

B Ba câu đều sai.

C Không tồn tại m.

 \bigcirc m=1.

Câu 47. Trong không gian với hệ trục Oxyz, cho ba mặt phẳng (P): x+2y-z=1, (Q): 2x+5y-3z=4, (R): 5x+4y-mz=m. Tìm tất cả giá trị thực của m để ba mặt phẳng giao nhau theo một đường thẳng.

A Không tồn tại m.

B m = 3.

(c) $m \neq -1$.

 \bigcirc m=1.

Câu 48. Trong hệ trục Oxyz, cho ba mặt phẳng $(P): x + 2y - z = 1, (Q): 2x + 5y - 5z = 0, (R): 5x + 11y + (m^2 - 8)z = m + 3$. Tìm tất cả các giá trị của m để ba mặt phẳng không có điểm chung.

 $\stackrel{\textstyle \bullet}{\mathbf{A}} m = 1.$

C Không tồn tại m.

 \bigcirc m=0.

ĐÁP ÁN KHÔNG GIAN VÉC TƠ

1.	A	2.	D	3.	D	4.	С	5.	С	6.	D	7.	D	8.	A	9.	В	10.	С
11.	В	12.	С	13.	С	14.	A	15.	С	16.	С	17.	A	18.	A	19.	С	20.	С
21.	В	22.	A	23.	D	24.	D	25.	В	26.	D	27.	C	28.	A	29.	D	30.	D
31.	A	32.	В	33.	A	34.	D	35.	В	36.	A	37.	D	38.	D	39.	С	40.	В
41.	В	42.	A	43.	В	44.	В	45.	A	46.	A	47.	A	48.	С				

BÀI TẬP TỰ LUYỆN

Câu 1. Tổng tất cả các phần tử trên đường chéo gọi là vết của ma trận.

Cho ma trận $A=\left(\begin{array}{ccc} 1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 2 & 2 \end{array}\right)$. Tìm vết của ma trận A^{100} .

 \bigcirc $2^{100} + 2$.

(B) 4^{100} .

(c) $2^{100} + 4^{100}$.

 2^{100} .

Câu 2. Cho ma trận $A=\left[\begin{array}{cc}2&2\\2&2\end{array}\right]$. Đặt $B=\left[\begin{array}{cc}1&1\\1&1\end{array}\right]$. Tính A^{100} .

 \bigcirc 2⁹⁹B.

 $^{(B)} 2^{100} B$

(c) $2^{199}B$.

 $\bigcirc 2^{200}B.$

Câu 3. Cho $A=\left[\begin{array}{cc} \cos\pi/3 & \sin\pi/3 \\ -\sin\pi/3 & \cos\pi/3 \end{array}\right], \ X\in M_{2\times 1}[\mathbb{R}].$

Thực hiện phép nhân AX, ta thấy:

- \bigcirc Vécto X quay ngược chiều kim đồng hồ một góc bằng $\pi/3$.
- **B** Vécto X quay cùng chiều kim đồng hồ một góc bằng $\pi/3$.
- \bigcirc Vécto X quay ngược chiều kim đồng hồ một góc bằng $\pi/6$
- D Các câu kia sai.

Câu 4. Cho A = $\begin{bmatrix} \cos \frac{\pi}{3} & \sin \frac{\pi}{3} \\ -\sin \frac{\pi}{3} & \cos \frac{\pi}{3} \end{bmatrix}$, $X \in M_{2 \times 1}[\mathbb{R}]$. Thực hiện phép nhân AX, ta thấy:

- \bigcirc Vecto X quay ngược chiều đồng hồ một góc bằng $\frac{\pi}{6}$.
- B Vecto X quay cùng chiều đồng hồ một góc bằng $\frac{\pi}{3}$.
- \bigcirc Vecto X quay ngược chiều đồng hồ một góc bằng $\frac{\pi}{3}$.
- \bigcirc Vecto X quay cùng chiều đồng hồ một góc bằng $\frac{\pi}{6}$.

Câu 5. Cho $A \in M_3(R)$ thỏa $\det(-(2A)^T) = 2$. Tính $\det(A.P_{2A})$.

 \bigcirc -2...

BỞI HCMU (BCAICF

C 4...

 \bigcirc -4..

Câu 6. Tìm m để hệ $\begin{cases} x_1 - x_2 + 2x_3 = 1\\ 2x_1 - 2x_2 + mx_3 = 1 - m\\ -x_1 + x_2 + (5 - 2m)x_3 = 3m - 6 \end{cases}$ vô số nghiệm.

 \bigcirc $m \neq 4$.

 $\bigcirc m \neq \frac{7}{2} .$

Dáp án khác.

Câu 7. Cho $A \in M_4$ có $\det(A) = 2$. Tính $\det((2A^3)^{-1}P_A)$

 \bigcirc $\frac{1}{2}$.

 $\frac{1}{8}$.

 $\bigcirc \frac{1}{16}$

Câu 8. Cho A là ma trận vuông cấp 5 có hạng bằng 3. Khẳng định nào sau đây SAI?

- \bigcirc det A = 0 ...
- C Ma trận bậc thang của A có 3 hàng khác 0...
- lacktriangle Hệ phương trình AX=0 có vô số nghiệm phụ thuộc 3 tham số tự do..

Câu 9. Cho $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$.

Biết $\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}^n = \begin{bmatrix} a^n & 0 \\ 0 & b^n \end{bmatrix}$ $(n \in \mathbb{N}^+)$. Tính A^n .

- $\bigcirc \begin{bmatrix} 2^n & 1 \\ 0 & 3^n \end{bmatrix}$.

- $\begin{bmatrix}
 2^n & 3^n 2^n \\
 0 & 3^n
 \end{bmatrix}.$ $\begin{bmatrix}
 2^n & 2^n + 3^n \\
 0 & 3^n
 \end{bmatrix}.$

Câu 10. ∞-chuẩn của ma trận là số lớn nhất trong tổng trị tuyệt đối của từng HÀNG. Tìm ∞-chuẩn của ma trận $A = \begin{pmatrix} 5 & -1 & 2 \\ 3 & 7 & 1 \\ 2 & -5 & 7 \end{pmatrix}$.

- (A) 11.
- **C** 14.

- (B) 8.
- D Các câu kia sai.

Câu 11. Cho ma trận $A = \begin{bmatrix} 2 & 6 \\ 0 & 2 \end{bmatrix}$. Tính A^{100} .

- (B) Các câu kia sai.
- $\bigcirc 2^{100} \begin{bmatrix} 1 & 300 \\ 0 & 1 \end{bmatrix}$.

Câu 12. Cho ma trận $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 3 & m \\ 3 & 4 & 2 \end{bmatrix}$. Tìm m để $r(A^{-1}) = 3$.

 $\begin{array}{c} \textbf{B} \ m \neq 1. \\ \textbf{D} \ m \neq 2. \end{array}$

 $\stackrel{\cdot}{\bigcirc} m=3.$ Câu 13. Cho $A=\left(\begin{array}{cc} -1 & 2 \\ 2 & -4 \end{array}\right)$. Tìm A^n .

- (A) $5^n A$.
- C Ba câu kia sai.

Câu 14. Cho $A \in \mathbb{M}_n(\mathbb{R})$, thực hiện các phép biến đổi:

- Hai lần đổi vị trí hai hàng,
- **B**ổI HCMUT-CNCP
- \odot Thay hàng 2 bằng hàng 2 cộng $\frac{3}{4} \times$ hàng 1: $h_2 \to h_2 + \frac{3}{4} h_1$,
- \bigodot Nhân một hàng với $\frac{5}{3}$ và một hàng khác với $\frac{5}{4}$

trên mạ trận A ta thu được ma trận đơn vị. Tính định thức A.

Câu 15. Cho $A=\left(\begin{array}{cccc} 1 & m & 1 & 0 \\ -m & 2 & 2 & 0 \\ 0 & 0 & 3 & 0 \\ -2 & 1 & 4 & 5 \end{array}\right)$, với m là số thực. Tìm r(A).

(A) 3.

(B) 4.

(C) 2.

(D) Ba câu kia sai.

Câu 16. Với giá trị nào của k thì hạng của ma trận A lớn hơn hoặc bằng 4:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & k+5 \\ 2 & 3 & 0 & 0 & 4 \\ 4 & -2 & 5 & 0 & 6 \\ 2 & 1 & 7 & -1 & 8 \\ -1 & k+1 & 4 & 2 & k+5 \end{bmatrix}$$

 $(\mathbf{A}) \not\exists k.$

(B) k = -1.

 $(\mathbf{C}) \forall k.$

(D) k = -5.

$$\text{C\^{a}u 17. Cho } A = \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{pmatrix} . \text{ Trong c\'{a}c ma tr\^{a}n } B = \begin{pmatrix} a+b & b+c & c+d & d+a \\ e+f & f+g & g+h & h+e \\ i+j & j+k & k+l & l+i \\ m+n & n+o & o+p & p+m \end{pmatrix} .$$

$$C = \begin{pmatrix} a-\lambda & b & c & d \\ e & f-\lambda & g & h \\ i & j & k-\lambda & l \\ m & n & o & p-\lambda \end{pmatrix} \text{ v\'{a} } D = \begin{pmatrix} a & -b & c & d \\ -e & f & -g & -h \\ i & -j & k & l \\ m & -n & o & p \end{pmatrix},$$

$$C = \begin{pmatrix} a - \lambda & b & c & d \\ e & f - \lambda & g & h \\ i & j & k - \lambda & l \\ m & n & o & p - \lambda \end{pmatrix}$$
 và
$$D = \begin{pmatrix} a & -b & c & d \\ -e & f & -g & -h \\ i & -j & k & l \\ m & -n & o & p \end{pmatrix}$$

tìm tất cả ma trân có đinh thức bằng đinh thức ma trân

 $(\mathbf{A})D$.

 $(\mathbf{C})C$.

 (D) C, D.

Câu 18. Cho $E = \{x^2 + 2x + 1, 2x^2 + x + 3\}$ là cơ sở của không gian véctơ thực V. Tìm tọa độ của véctơ $p(x) = -x^2 + 7x - 2 \text{ trong co so } E.$

 $(A)[p(x)]_E = (3,2,0)^T.$

B $[p(x)]_E = (5, -3)^T$.

Các câu kia sai.

 $[p(x)]_E = (5, -3, 0)^T.$

Câu 19. Cho $E = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \right\}$ là cơ sở của không gian véctơ thực V. Tìm toạ độ của

vécto $\begin{bmatrix} 10 & 14 \\ 6 & 21 \end{bmatrix}$ trong cơ sở E.

 $(2,4,1)^T$.

 $(5, -3, 4, 0)^T$.

Câu 20. Cho V = <(1,1,1); (2,-1,3); (1,0,1) >. Với giá trị nào của m thì $x=(2,1,m) \in V$.

(A) m = 2.

 $(\mathbf{C}) \forall m.$

Câu 21. Trong không gian V cho vécto x có toạ độ trong cơ sở $E = \{e_1 + e_2 + e_3, 2e_1 + 3e_2 + e_3, e_1 + e_2 + 3e_3\}$ Câu 21. Trong không gian . là $(3, -4, 5)_E$. Khẳng định nào sau đây đúng?

 $(A) x = -4e_2 + 14e_3.$

 $(\mathbf{C})x = e_1 - 4e_2 + 14e_3.$

BOI HCMU (2) $x_1 = 3e_1 - 4e_2 + 5e_3$.

Câu 22. Cho vecto x có tọa độ trong cơ sở của $E = \{e_1 + e_2 + e_3, 2e_1 + 3e_2 + e_3, e_1 + e_2 + 3e_3\}$ là $(3, -4, 5)_E$. Khẳng định nào sau đây đúng?

(A) $x = -4e_2 + 14e_3$.

B) $x = 3e_1 + 4e_2 - 11e_3$.

 $(\mathbf{C})x = 4e_1 + 14e_3.$

 $(\mathbf{D}) x = e_1 + 4e_2 - 11e_3.$

Câu 23. Trong \mathbb{R}_3 cho hai cơ sở $E = \{(1,1,2), (-1,0,2), (2,1,1)\}$ và $F = \{(-1,1,1), (1,1,2), (0,1,1)\}$. Biết rằng tọa độ của x trong cơ sở F là $(1,-1,1)^T$. Tìm tọa độ của x trong cơ sở E.

(A) $(4, -11, 3)^T$.

 $(-5,-1,8)^T$.

 $(\mathbf{C})(9,-5,-8)^T.$

 $(0,3,-1)^T$.

Câu 24. Vecto x có tọa độ trong cơ sở $\{u, v, w\}$ là (3,2,-5). Tìm tọa độ của vecto x trong cơ sở $\{u+v+2w, 2u+1\}$ 3v + 5w, 3u + 5v + 7w

(A) $(13, -11, 2)^T$.

(B) $(-11, 23, 5)^T$.

C Đáp án khác.

 $(15, -21, 10)^T$.

Câu 25. Biết tọa độ vécto p(x) trong cơ sở $\{1, 1-x, (1-x)^2\}$ là (1, -1, 1). Tìm tọa độ vécto p(x) trong cơ sở $\{x^2, 2x, x+1\}.$

(A) (1, -1, 1).

(B) (2, -1, 1).

(C)(1,1,1).

(D) (1,-1,2).

Câu 26. Trong không gian $P_3[x]$ cho cơ sở $E = \{1, x - 1, (x - 1)^2, (x - 1)^3\}$ và $p(x) = 3x^2 - 4x + 5$. Tìm tọa độ véctơ p(x) trong cơ sở E.

(A) $[p(x)]_E = (0, 2, 4, 1)^T$.

 $[p(x)]_E = (0,4,2,3)^T.$

p(x)	1	(1	9	2 T
p(x)	E = 1	(4,	Ζ,	3)

$$[p(x)]_E = (4,2,3,0)^T.$$

Câu 27. Với giá trị nào của k thì $M = \{(1,1,1), (1,2,3), (0,1,2), (0,2,k)\}$ SINH ra \mathbb{R}^3 ?

(A)
$$k = 4$$
.

(B) $k \neq 4$.

$$(\mathbf{C})$$
 $k \neq 2$.

 \triangleright $\exists k$.

Câu 28. Cho tập hợp $E = \{p_1(x) = x^2 + x + 1; p_2(x) = x^2 + 2x + 3; p_3(x) = 2x^2 + 3x + 4; p_4(x) = 2x + m\}$. Với giá trị nào của m thì E không sinh ra không gian $P_2(x)$

$$(\mathbf{A}) m = 4.$$

(B) m < 2.

$$\bigcirc \forall m.$$

 \triangleright $\not\exists m.$

Câu 29. Trong không gian vecto $P_2(x)$ cho các đa thức $P_1(x) = x^2 + x + 2$, $P_2(x) = x + 1$; $P_3(x) = 2x^2 + 2x + m$. Với giá trị nào của m thì $P_3(x)$ là tổ hợp tuyến tính của $P_1(x)$ và $P_2(x)$.

$$\stackrel{\frown}{\mathbf{A}} m = 4.$$

(B) m < 4.

$$(c)$$
 $m \leq 0$.

(D) với mọi m .

Câu 30. Tìm vécto p(x) biết toạ độ của nó trong cơ sở $E = \{x^2 + x + 2; 2x^2 - 3x + 5, x + 1\}$ là $(3, -4, 5)_E$. Khẳng định nào sau đây đúng?

$$(A) p(x) = -5x^2 + 20x - 13.$$

B
$$p(x) = -5x^2 + 20x - 9$$
.

$$(c)$$
 $p(x) = x^2 - 4x + 1.$

Câu 31. Gọi \mathbb{R}^3 là không gian vecto gồm các vecto trong hệ trục 0xyz có dạng \overrightarrow{OM} , với M là điểm tùy ý trong không gian. Cho họ vecto S gồm các vecto OA, với A thuộc một trong hai đường thẳng phân biệt qua gốc tọa độ. Tìm hạng của họ vecto S.

(A) 4. (C) 3.

Câu 32. Gọi \mathbb{R}^3 là không gian vecto gồm các vecto trong hệ trục Oxyz có dạng \overrightarrow{OM} , với M là điểm tùy ý trong không gian. Cho họ vecto $S = \{\overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}\}\$ là cơ sở của \mathbb{R}^3 . Khẳng định nào sau đây luôn đúng?

- (A) O,A,B,C thuộc 2 đường thẳng phân biệt.
- (B) OABC là tứ diện.
- (C) Bốn điểm O, A, B, C đồng phẳng.
- D Các câu kia sai.

Câu 33. Gọi \mathbb{R}^3 là không gian vecto gồm các vecto trong hệ trục 0xyz có dạng \overrightarrow{OM} , với M là điểm tùy ý trong không gian. Cho họ vecto S gồm các vecto OA, với A thuộc một trong hai đường thẳng phân biệt và cả hai đường này không qua gốc tọa độ. Tìm hạng của họ vecto S.

(A) 4.

BỞI HCMU B 2NCP

(C) 3.

Câu 34. Cho không gian vécto V sinh ra bởi 4 vécto v_1, v_2, v_3, v_4 . Giả sử v_1, v_3 là hệ độc lập tuyến tính cực đại của hệ v_1, v_2, v_3, v_4 .

Khẳng định nào sau đây đúng?

(A) v_1, v_2, v_3 không sinh ra V.

- (B) Các câu kia sai.
- $(\mathbf{C})v_2$ là tổ hợp tuyến tính của v_1, v_3, v_4 .
- $(\mathbf{D}) dim(V) = 4.$

Câu 35. Cho không gian véctơ V = <(1,1,-1),(2,3,5),(3,m,m+4)>. Với giá trị nào của m thì V có chiều lớn nhất?

(A) $m \neq \frac{14}{3}$.

 \triangleright $\forall m$.

 $(\mathbf{C}) m \neq 3.$

(D) m = 5.

Câu 36. Với giá trị nào của k thì $M = \{(1,1,1), (1,2,3), (3,4,5), (1,1,k)\}$ không sinh ra \mathbb{R}_3 ?

(A) Không có giá trị nào của k.

(C) k = 1.

D Các câu kia sai.

Câu 37. Trong không gian vécto \mathbb{R}^3 cho ba vécto

 $x_1 = (1, 1, 1), x_2 = (0, 1, 1), x_3 = (0, 1, m).$

Với giá trị nào của m thì x_3 là tổ hợp tuyến tính của x_1 và x_2 ?

 $(\mathbf{A}) m \neq -1.$

(B) m = -1.

 $(\mathbf{C}) m \neq 1.$

(D) m = 1.

Câu 38. Tìm tất cả m để $M = \{(1,1,1,1), (2,1,3,4), (3,2,1,m), (1,0,2,3)\}$ SINH ra không gian 4 chiều?

BM Toán Ứng Dụng - ĐH Bách Khoa TP.HCM	
igatharpoons abla m.	$oldsymbol{\mathbb{B}} m \neq 5.$
$\bigcirc m \neq 0.$	$lackbox{D} \ orall m.$
Câu 39. Cho $M = \{(1,1,0), (2,1,3), (1,0,3)\}$ là tập sinh là cơ sở của V .	h của không gian véctơ V . Tìm m để $\{(3,1,6),(1,2,m)\}$
	$(\mathbf{B}) m = 0.$
(c) $m=4$.	$(\mathbf{D}) m = 3.$
Câu 40. Cho $M = \{x, y, z\}$ là cơ sở của không gian véc	tơ thực V . Với giá trị nào của số thực m thì $2x + 3y +$
$z, mx + 2y + z, x + y + z$ cũng là cơ sở? $A m \neq \frac{3}{2}.$	B $m = \frac{1}{5}$.
$m \neq \frac{3}{5}.$	$m - \frac{1}{5}$. D Các câu kia sai.
Câu 41. Cho không gian véctơ V có chiều bằng 3 , biết	$\{x,y\}$ độc lập tuyên tính, z không là tô hợp tuyên tính
của x, y . Khẳng định nào sau đây đúng?	
	B) $V = \langle x, y, x + 2y \rangle$.
(A) $\{x, y, 2x - 3y\}$ sinh ra không gian 3 chiều. (C) $V = \langle x + y + z, x - y, x + 3y + 2z \rangle$.	$ \begin{array}{c} $
Câu 42. Cho không gian vécto $V = \langle x, y, z, t \rangle$, biết luôn đúng?	$\{x,y,z\}$ dọc lập tuyến tinh. Kháng dịnh hao sau day
$igatharpoonup^{-1}$ A thì tổ hợp tuyến tính của x, y, z .	$\mathbf{B} \dim(V) = 3.$
$\{x,y,t\}$ phụ thuộc tuyến tính.	\bigcirc
Câu 43. Cho $M = \{x, y, z\}$ là tập độc lập tuyến tính,	CN -
luôn đúng?	v Knong ta to họp tuyến thin của 141. Tring định hao
$\{x,y,z+t,z-t\}$ có hạng bằng 3.	B Các câu kia sai.
\bigcirc $\{x+y,x-y,z,t\}$ có hạng bằng 4.	$\bigcirc x$ là tổ hợp tuyến tính của $\{y, z, t\}$.
Câu 44. Cho không gian véctơ V có số chiều bằng 3, b	
tính của $\{x,y\}$.	
Khẳng định nào sau đây đúng?	
	$\{x,y,z\}$ không sinh ra V .
$\bigcirc V = \langle x, y, x + 2y \rangle.$	D Các câu kia sai.
Câu 45. Cho x, y, z là ba véctơ của không gian véctơ th	
$M = \{x + y + z, 2x + y + z, x + 2y + z \text{ là co sở của } V. \}$	JT-CNCP
Khẳng định nào luôn đúng?	
(A) $\{2x, 3y, 4z\}$ là cơ sở của V .	B Các câu kia sai.
$\bigcirc \{x+y, x-y, 2z\}$ có hạng bằng 2.	
Câu 46. Cho $\{x,y,z,t\}$ là tập sinh của không gian véc	
Giả sử t là tổ hợp tuyến tính của x, y, z . Khẳng định nà	to luôn đúng?

(A) Các câu kia sai .

(B) dim(V) = 3.

(C) x, y, z sinh ra V.

 \triangleright $\{x, y, z\}$ độc lập tuyến tính.

Câu 47. Cho M=x,y,z là tập sinh của không gian vector V, biết họ M có hạng bằng Z. Khẳng định nào sau đây luôn đúng?

(A) x, y độc lập tuyến tính.

B) Các câu kia sai.

 \bigcirc dim V=3.

(D) x + 2y - z, y là cơ sở của V.

Câu 48. Trong không gian vecto thực V cho hộ M=x,y,z phụ thuộc tuyến tính. Khẳng định nào sau đây luôn đúng?

(A) Hạng của họ x, x + y, x - 2z bằng 3.

(B) 2x + 4y là tổ hợp tuyến tính của M.

 $(\mathbf{C}) x$ là tổ hợp tuyến tính của y, z.

 \triangleright $x, y, 2y \sinh ra V.$

Câu 49. Cho M=x,y,z là cơ sở của không gian vecto thực V. Với gái trị nào của số thực m thì x+2y-z,y,-3x+2ykhông là tập sinh của V

 $(\mathbf{A}) m \neq 3.$

(B) m = 3.

(C) $m \neq -3$.

(**D**) m = 3.

Câu 50. Cho không gian vecto V có số chiều bằng tính của $\{x,y\}$. Khẳng định nào sau đây đúng?	g 3, biết $\{x,y\}$ độc lập tuyến tính, z không là tổ hợp tuyến
$igapha \{x, 2y, 3z\}$ không sinh ra V.	B $\{x+z, 2x+y, -x+2y-5z\}$ PTTT.
$\bigcirc V = \langle x, z, x - 2z \rangle.$	\triangleright $\{x+y, -x-y, x+y+3z\}$ là tập sinh của V.
Câu 51. Trong \mathbb{R}^3 , cho tập hợp con $M=\{(1,2,1)$ của M), $(3,5,2)$, $(2,3,1)$ }. Tìm m để vecto $x=(1,m,0)$ là THTT
$lack A \forall m.$	B Ba câu đều sai.
$\bigcirc m \neq 1.$	\bigcirc $m=1.$
Câu 52. Cho $M = \{x, y, z\}$ là tập sinh của không	(B) $\{x, 2y, x + y\}$ sinh ra V.
\bigcirc $\{2x, 3y, 4z\}$ không sinh ra V.	\bigcirc Hạng của $\{x, x, z\}$ bằng 3.
Câu 53. Tìm m để tập hợp $M = \{(1; 2; 3), (2; 4; 6)\}$	
$(A) \not\exists m.$ $(C) m \neq 0.$	$ \begin{array}{c} \textbf{(B)} \ \forall m. \\ \hline \textbf{(D)} \ m \neq 1. \end{array} $
	hính tắc, họ véctơ nào sau đây là một họ trực giao? $F = \{((1, 2, 1), (-1, 0, 1)\}, (1, 1, 1)\}$
	B $F = \{((1;2;1), (-1;0;1)), (1;1;1).$ D $F = \{((1;2;1), (1;0;1)), (1;-1;1).$
Câu 55. Tìm m để tập hợp $M = \{(1,2,3); (2,1,4) \mid A \not\supseteq M$.	
$m \neq 2$.	$ \begin{array}{ccc} & & \\$
Câu 56. Trong không gian vecto V cho họ $M = x$.	
A M phụ thuộc tuyến tính. C M sinh ra không gian 3 chiều.	B Hạng M bằng 4. D M độc lập tuyến tính.
	$\{x,y,z,x+2y\}$. Khẳng định nào sau đây luôn đúng?
A M phụ thuộc tuyến tính. C M sinh ra không gian 3 chiều.	B Hạng M bằng 4. D M độc lập tuyến tính.
T A I I I F	
z $mx + y + 3z$ $mx + 3y - z$ có hang bằng 2.2	n véctơ thực V . Với giá trị nào của số thực m thì $\{x+2y+1\}$
Câu 58. Cho $M = \{x, y, z\}$ là cơ sở của không gian $z, mx + y + 3z, mx + 3y - z\}$ có hạng bằng 2 ? $mathbb{A}$ $m = 5$.	$(\mathbf{B}) m = 1.$
(c) $m=3$.	$(\mathbf{D}) m = 0.$
	, cho hai họ độc lập tuyến tính $M=\{x,y,z\}; N=\{u,v,w\}.$
Khẳng định nào luôn đúng?	$lacksquare$ Hạng của họ $M \cup N$ bằng 4.
$igcup_{M} \cup N$ phụ thuộc tuyến tính.	$lackbox{D} M \cup N$ sinh ra không gian 3 chiều.
	g gian véctơ V , biết $\{x,y\}$ là hệ con độc lập tuyến tính cực
đại của M .	g giair vector v , siet (x,y) ia no con doe iap tayen timir equ
Khẳng định nào sau đây luôn đúng?	
\triangle Hạng của $\{x, y, z, 2x + y - z\}$ bằng 3.	B t là tổ hợp tuyến tính của $\{x, y, z\}$.
$\bigcirc dim(V) = 3.$	D Các câu kia sai.
Câu 61. Cho $V=<(1,1,0,0),(2,1,-1,3),(1,2,0,1)$ Tìm m để $(3,-1,2,m)\in V$.	1), (4, 5, -1, 5) >.
	B $m = -1$. D $m = -12$.
$\bigcirc m=2.$	
Câu 62. Cho $V = <(1,1,1,1), (2,1,3,0), (3,2,1,1)$ Tìm m để $\dim(V)$ lớn nhất.	(4,3,1,m) > .
\bigcirc $M \neq 2$.	$\bigcirc B m \neq 3.$
$\bigcirc \forall m$.	\bigcirc $m \neq 4$.
BACI	HKHOACNCP.COM 2. BÀI TẬP TỰ LUYỆN

Câu 63. Vécto x có toạ độ trong cơ sở $\{u, v, w\}$ là $(3, 1, 5)^T$. Tìm toạ độ của x trong cơ sở u, u + v, u + v + w. $(2,1,-1)^T$. $(A)(2,-4,5)^T$. $(\mathbf{C})(3,1,4)^T$. $(3,4,1)^T$. **Câu 64.** Với giá trị nào của k thì $M = \{(1,1,1), (1,2,3), (0,1,2), (0,2,k)\}$ sinh ra \mathbb{R}_3 (A) Không tồn tại k. (B) $k \neq 4$. (D) k = 4. $(\mathbf{C}) k \neq 2.$ **Câu 65.** Cho không gian vecto V có chiều bằng 3, biết $\{x,y\}$ độc lập tuyến tính, z không là tổ hợp tuyến tính của x, y. Khẳng định nào sau đây đúng. (A) $\{x+y,y+z,x-z\}$ là cơ sở của V. **(B)** $V = \langle x + y, x - y, z \rangle$. (C) $\{x+y, x-y, 2z\}$ có hạng bằng 2... (D) Các câu kia sai. **Câu 66.** Với giá trị nào của k thì $M = \{(1,1,-2),(2,3,-4),(-3,5,k),(2,1,-2)\}$ là cở sở của \mathbb{R}_3 $(\mathbf{A}) k \neq 3.$ (C) k = 6. (D) Không tồn tai k. **Câu 67.** Cho $M = \{x, y, z\}$ là tập sinh của không gian vecto V, biết $\{x, z\}$ độc lập tuyến tính cực đại của M. Khẳng đinh nào sau đây luôn đúng? (B) $V = \langle x + y, x - y, t \rangle$. $(\mathbf{A}) V = \langle 3x, 2y \rangle.$ \bigcirc dim V=3. (C) Hạng của họ $\{x, y, z, 2x + y - z\}$ bằng 4. **Câu 68.** Cho không gian vecto V sinh ra bởi 4 vecto v_1, v_2, v_3, v_4 . Giả sử v_1, v_3 là tập con độc lập tuyến tính cực đại của họ v_1, v_2, v_3, v_4 . Khẳng định nào sau đây luôn đúng? $(A) v_1, 2v_1 + v_3$ là tập sinh của V. (B) dim(V) = 3. $(\mathbf{C})v_2$ là tổ hợp tuyến tính của v_3, v_4 . $\triangleright v_1, v_2, v_3$ không sinh ra V. **Câu 69.** Cho $M = \{x, y, z, t\}$ là tập sinh của không gian vecto V. Biết x,y là tập con độc lập tuyến tính cực đại của M. Khẳng định nào luôn đúng? \bigcirc x là tổ hợp tuyến tính của $\{z,t\}$. (A) t là tổ hợp tuyến tính của $\{x, y, z\}$. \bigcirc y là tổ hợp tuyến tính của $\{z,t\}$. (C) $\{x+y,2x,t\}$ không sinh ra V. **Câu 71.** Cho không gian vecto V sinh ra bởi 4 vecto V sinh ra bởi 4 vecto v_1, v_2, v_3, v_4 . Giả sử $v_5 \in V$ và khác với v_1, v_2, v_3, v_4 . Khẳng định nào sau đây đúng? (A) v_1, v_2, v_3, v_4 là cơ sở của V. (B) V sinh ra bởi 5 vecto v_1, v_2, v_3, v_4, v_5 . (C) Mọi tập sinh ra V phải có ít nhất 4 phần tử. (D) Các câu khác đều sai. **Câu 72.** Cho $M = \{x, y, z\}$ là cơ sở của không gian vecto thực V. Với giá trị nào của số thực m thì $\{2x + 3y + y\}$ z, mx + 2y + z, x + y + z cũng là cơ sở? $(A) m \neq \frac{3}{2}$. (B) $m = \frac{1}{5}$. (c) $m \neq \frac{-3}{5}$. D Các câu kia sai. **Câu 73.** Cho $\{x,y,z\}$ là ba véctơ độc lập tuyến tính của không gian véctơ thực V. Giả sử $E=\{x+y+z,5x+z\}$ 3y + 3z là cơ sở của không gian vécto được sinh ra bởi $\{x + y + z, 2x + y + z, 3x + y + z\}$. Tìm toạ độ của vécto 2x + 4y + 4z trong cơ sở E. $(7,-1,0)^T$. (A) $(7,-1)^T$. $(2,3,0)^T$. Các câu kia sai. **Câu 74.** Trong không gian vecto V cho $E = \{x, y, z\}$ là cơ sở. Khẳng định nào sau đây đúng? (A) $\{x, y, 3z, x - y\}$ sinh ra không gian 2 chiều. (B) $\{2x, x + y, x - y, 3z\}$ là tập sinh của V. (C) $\{x+y+z, 2x+3y+z, y-z\}$ sinh ra V. (D) Hạng của $\{x, y, x + 2y\}$ bằng 3.

Câu 75. Tìm tất cả giá trị thực m để $M = \{(m,1,1), (1,m,1), (1,1,m)\}$ không sinh ra \mathbb{R}^3

(B) m=1, m=2.

BACHKHOACNCP.COM

(A) m=1, m=3.

ĐÁP ÁN PHẦN TỰ LUYỆN

1.	A	2.	С	3.	В	4.	В	5.	В	6.	A	7.	D	8.	D	9.	D	10.	C
11.	D	12.	В	13.	D	14.	A	15.	В	16.	С	17.	A	18.	С	19.	D	20.	С
21.	A	22.	A	23.	С	24.	D	25.	A	26.	D	27.	В	28.	A	29.	A	30.	В
31.	В	32.	В	33.	С	34.	С	35.	A	36.	С	37.	D	38.	A	39.	A	40.	A
41.	D	42.	D	43.	С	44.	A	45.	A	46.	С	47.	В	48.	В	49.	D	50.	В
51.	D	52.	A	53.	A	54.	A	55.	A	56.	A	57.	A	58.	В	59.	С	60.	В
61.	D	62.	A	63.	A	64.	В	65.	В	66.	D	67.	A	68.	A	69.	A	70.	A
71.	В	72.	Α	73.	Α	74.	В	75.	$\overline{\mathbf{C}}$										

ĐỀ THI GIỮA KỲ ĐẠI SỐ K213

Câu 1. Trong không gian véc tơ \mathbb{R}^3 , cho 2 không gian con $U=<$	(1;-1;2),(2;3;1) > và V = <(3;7;0),(4;1;m) >
Tìm tất cả các giá trị thực m để $U \equiv V$.	

(A) 5.

(B) 3.

(C) 1.

 \bigcirc 0.

 (\mathbf{E}) -3.

Câu 2. Trong không gian $P_2[x]$, cho tập các véc tơ $M = \{x^2 + x + 1; 2x^2 + x; x^2 - x - 3; 3x^2 + 2x + m\}$. Tìm tất cả các giá trị thực của mđể Mlà một tập sinh của $P_2[x]$

(A) $m \neq 1$.

(B) $m \neq 0$.

 $(\mathbf{D}) \not\exists m.$

Câu 3. Trong R^3 , hãy tìm tất cả các giá trị thực của m để $M=\{(2;1;-3),(m;1;1),(3;1;-2)\}$ là cơ sở của m để $M=\{(2;1;-3),(m;1;1),(3;1;-2)\}$ là cơ sở của

 $(A) m \neq 6..$

 \bigcirc $\not\exists m.$

Câu 4. Trong R^3 , cho cơ sở $E = \{(2; -3; 3); (1; -1; 1); (1; 1; -2)\}$. Tìm toạ độ của x = (2; 3; 3) trong cơ sở

TAI L7 EU SUU TAP $\begin{pmatrix} 2 \\ 12 \\ 12 \end{pmatrix}$ HCMUT-CNCP $\begin{pmatrix} 2 \\ 13 \\ -1 \end{pmatrix}$.

(E) Đáp án khác.

Câu 5. Trong $P_2[x]$, tìm tất cả các giá trị thực m để $x^2 + mx$ là một tổ hợp tuyến tính của $M = \{4x + 1; x^2 - x^2 + x^2 +$

(A) m = 0.

B m = 18.

m = -6.

(D) m = 12.

(E) Đáp án khác.

Câu 6. Trong không gian véc tơ R^2 , cho 2 cơ sở $E = \{(3;1); (-2;-1)\}$ và $F = \{(2;1); (1;1)\}$ và véc tơ $x \in R^2$. Biết rằng $[x]_E = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$. Hãy tìm $[x]_F$.

(E) $\begin{pmatrix} 11 \\ -15 \end{pmatrix}$.

Câu 7. Trong không gian R^4 , cho không gian con $V = \left\{ (x_1; x_2; x_3; x_4) \in R^4 \middle| \begin{cases} x_1 + x_2 + 2x_3 + x_4 &= 0 \\ 3x_1 + 2x_2 + x_3 + 2x_4 &= 0 \end{cases} \right\}.$

Một cơ sở của V là

- (A) {(0;1;0;-1);(3;-5;1;0)}.
- $(0;2;1;1);(3;-5;1;0) \}.$
- (C) {(0;1;0;-1);(1;3;1;-2)}.

(D) {(4;1;0;2);(0;3;1;1)}.

(E) Đáp án khác.

người dân chuyển từ vùng ven vào trư đi không đáng kể. Biết rằng số người	ung tâm và 10%	2 vùng: vùng trung tâm và ven. Cứ sau mỗi năm, có 15% di chuyển ngược lại. Số người dân đi, đến, sinh ra và chế âm và ven không thay đổi sau mỗi năm. Hãy tính số ngườ
ở vùng trung tâm.		
A 6000.	B) 4000.	© 5000.
D 10000.		(E) Các câu khác sai.
Câu 9. Xét mô hình vĩ mô (I/O) củ $\begin{pmatrix} 0, 3 & 0, 2 \\ 0, 3 & 0, 2 \end{pmatrix}$	a một quốc gia	gồm 3 ngành công nghiệp, nông nghiệp, dịch vụ vớ
•		ăng, tổng giá trị sản phẩm của 3 ngành trong năm 2021 l
trong năm 2021 là bao nhiêu (tỷ USI	O)?	ng cho tiêu dùng và xuất khẩu) của ngành nông nghiệ
(A) 1, 1.	B $0, 5$.	\bigcirc 2, 9.
D 3, 8.		E Các câu khác sai.
loại II từ 3-6 tháng; loại 3: 6 tháng t loại III là 30%. Trong mỗi 3 tháng, tr III sinh được 3 con cái khác; con lớp năm, người to vớt phống con lớp II vi	trở lên. Tỉ lệ số rung bình mỗi c o I chưa sinh đ ò lớp III để bón	sản và được phân loại theo độ tuổi. Loại I từ 0-3 tháng ống sót sau mỗi 3 tháng của loại I là 40%; loại II là 90% con cái lớp II sinh được 10 con cái khác và mỗi con cái lớ ược. Giả sử ban đầu người ta nuôi 1000 con loại I. Sau I. Hỏi tổng số lượng con cái để bán sau 1 năm là bao nhiên
A 1904.	R 432 👪 🔘	ACN 6 1479
D 16324.	452.	$ \begin{array}{c} \text{ i. Hor tong so ruping con car de ban sau 1 main ia bao inner congruph.} \\ \text{ i. 1472.} \\ \text{ i. 1000.} \\ \begin{cases} x_1+x_2+4x_3 & = 1 \\ 2x_1-x_2+mx_3 & = 2+m \text{ có nghiện} \\ -x_1+3x_2-(m+1)x_3 & = m^2+1 \end{cases} \\ \text{ i. In a main ia bao inner congruph.} \\ \text{ i. 1472.} \\ \text{ i. 1000.} \\ \text{ i. 1472.} \\ i. 1472$
10324.	C.Y.	1000.
	A C	$(x_1 + x_2 + 4x_3) = 1$
Câu 11. Tìm tất cả các giá trị thực c	của m để hệ phy	
		$-x_1 + 3x_2 - (m+1)x_2 \equiv m^2 + 1$
duy nhất.		$u_1 + u_2 + (m + 1)u_3 = m + 1$
$m \neq 23$	\mathbf{R} $m \neq 0$	(C) m = 3
$ \begin{array}{c} $	· // /- 0.	(\mathbf{F}) $m \neq -1$
$ \begin{array}{c} $	1). Tim trace	J SƯU TẬP
$(-2 \ 1) \ (-1$	0) BOTH	SMUT-CNCP
$egin{array}{c} oldsymbol{A} & -17. \\ oldsymbol{D} & 5. \\ \end{array}$	B) 12.	1.
D 5.		(E) Đáp án khác.
		$\int_{-\infty}^{\infty} x_1 + 2x_2 - x_3 = -3$
Câu 13 Tìm tất có các giá trị thực	ais m để hô r	phương trình $\begin{cases} x_1 + 2x_2 - x_3 &= 3\\ 2x_1 + (m-1)x_2 + mx_3 &= 2m + 3\\ 3x_1 + (m-2)x_2 + (2m+1)x_3 &= 3m + 3 \end{cases}$
Cuu 10. Thii tat ca cac gia trị thực	cua m de ne p	printing trimin $\begin{cases} 2x_1 + (m-1)x_2 + mx_3 & -2m+1 \\ 2x_1 + (m-1)x_2 + mx_3 & -2m+1 \end{cases}$
		$(3x_1 + (m-2)x_2 + (2m+1)x_3 = 3m + 1$
vô nghiệm.		
$ \begin{array}{c} $	B) $m=2$.	
$m \neq 2$.		E) Đáp án khác.
Câu 14. Tìm tất cả các giá trị thực	m để ma trận .	$A = \begin{pmatrix} -1 & 2 & 3 \\ 2 & -1 & 0 \\ m & 1 & -2 \end{pmatrix}$ có hạng bằng 2.
	\mathbf{B} $m=0$.	$\bigcirc m = 1$.
$ \begin{array}{c} (\mathbf{A}) \ m = -4. \\ (\mathbf{D}) \ m \neq 3. \end{array} $		
Câu 15. Cho đa thức $f(x) = x^3 - 2x$		in $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Tìm vết của ma trận $f(A)$.
A 251.	B 125.	C 118.
D 41.		E Đáp án khác.

Câu 16. Tìm tất cả các giá trị thực của m để ma trận $A=\begin{pmatrix}1&1&2\\2&m&1\\-1&1&0\end{pmatrix}$ khả nghịch.

 \bigcirc m=3.

 $m \neq 0$.

 \triangleright \neq 1.

E Đáp án khác.

Câu 17. Tính định thức của ma trận $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 7 \\ 3 & 5 & m \end{pmatrix}$ với m là một số thực cho trước.

 $\bigcirc M - 10.$

B 10 - m

(c) 2m - 3.

 $\bigcirc 3 - 2m$.

E Đáp án khác.

Câu 18. Cho $A=\begin{pmatrix}1&1\\0&2\end{pmatrix}$ và $B=\begin{pmatrix}2&1\\-1&0\end{pmatrix}$. Tính $\det(3A^3\cdot B^T)$.

A 72.

B 24.

(C) 9.

 \bigcirc 0.

E Đáp án khác.

Câu 19. Trong không gian véc tơ V, cho $M = \{x; y; z\}$ là tập phụ thuộc tuyến tính. Khẳng định nào sau đây đúng?

- (A) rank(M) = 2.
- f B z là tổ hợp của $\{x,y\}$.
- \bigcirc M không là tập sinh của V.

 \bigcirc M không là cơ sở của V.

 \bigcirc dim(V) = 2.

Câu 20. Cho $A = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 11 & 5 \\ -1 & -10 \end{pmatrix}$. Tìm ma trận X cấp 2 sao cho 2AX + 3I = X + B, trong đó

- I là ma trận đơn vị cấp 2. (2 -1)
- $X = \begin{pmatrix} 0 & 3 \\ 1 & -2 \end{pmatrix}$

 $\begin{pmatrix} 7 & 1 \\ 0 & 3 \end{pmatrix}$.

E Dáp án khác.

TÀI LIỆU SƯU TẬP

BổI HCMUT-CNCP

ĐÁP ÁN đề K212

1.	A	2.	A	3.	A	4.	A	5.	D	6.	A	7.	A	8.	A	9.	A	10.	A
11.	A	12.	A	13.	A	14.	A	15.	A	16.	A	17.	A	18.	A	19.	D	20.	A

