Egzamin maj 2009 r. Arkusz I, poziom rozszerzony, zadanie 3. NAJWIĘKSZY WSPÓLNY DZIELNIK – NWD

Algorytm opisany w Księdze VII *Elementów* Euklidesa pozwala szybko obliczyć największy wspólny dzielnik dwóch liczb naturalnych a i b-nwd (a,b), z których co najmniej jedna jest większa od 0. Oto rekurencyjny sposób obliczania nwd (a,b):

$$nwd(a,b) = \begin{cases} a & dla & b = 0\\ nwd(b, a \mod b) & dla & b \ge 1 \end{cases}$$

gdzie: mod — operator dzielenia modulo; wynikiem jego działania jest reszta z dzielenia a przez b, na przykład 19 mod 7 = 5.

Przykład

 \overline{nwd} (16, 12) = nwd (12, 4) = nwd (4, 0) = 4 — funkcja nwd jest wywoływana w tym przypadku 3 razy:

a	b	reszta = a mod b	wywołanie
16	12	4	(1)
12	4 *	0	(2)
4 (wynik)	0	-	(3)

- a) Podaj liczbę wywołań funkcji dla a=56 i b=72 oraz dla a=72 i b=56.
- b) Podaj w wybranej przez siebie notacji (lista kroków, schemat blokowy lub język programowania, który wybrałeś/aś na egzamin) **nierekurencyjny** algorytm obliczania wartości funkcji *nwd* (*a*, *b*) wraz ze specyfikacją.