

Chapter 18: Concurrency Control

Database System Concepts, 7th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Outline

- Lock-Based Protocols
- Timestamp-Based Protocols

Lock-Based Protocols

- In concurrent environment many users can access same data in a DBMS simultaneously each has the feel that it has exclusive access to the database.
- To achieve such system we must have interaction amongst those concurrent transactions which is also called a mutual Exclusion.
- A lock is a mechanism to control concurrent access to a data item
- Data items can be locked in two modes :
 - 1. **exclusive** (X) mode. Data item can be both read as well as written. X-lock is requested using **lock-X** instruction.
 - 2. **shared** (S) mode. Data item can only be read. S-lock is requested using **lock-S** instruction.
- Lock requests are made to concurrency-control manager. Transaction can proceed only after request is granted.

Lock-Based Protocols (Cont.)

Lock-compatibility matrix

	S	X	
S	true	false	
X	false	false	

- A transaction may be granted a lock on an item if the requested lock is compatible with locks already held on the item by other transactions
- Any number of transactions can hold shared locks on an item,
 - But if any transaction holds an exclusive on the item no other transaction may hold any lock on the item.
- If a lock cannot be granted, the requesting transaction is made to wait till all incompatible locks held by other transactions have been released. The lock is then granted.

Deadlock

Consider the partial schedule

T_3	T_4
lock-X(B)	
read(B)	
B := B - 50	
write(B)	
	lock-S(A)
	read(A)
	lock-S(B)
lock-X(A)	, ,

- Neither T_3 nor T_4 can make progress executing **lock-S**(*B*) causes T_4 to wait for T_3 to release its lock on *B*, while executing **lock-X**(*A*) causes T_3 to wait for T_4 to release its lock on *A*.
- Such a situation is called a deadlock.
 - To handle a deadlock one of T_3 or T_4 must be rolled back and its locks released.

Deadlock (Cont.)

- The potential for deadlock exists in most locking protocols. Deadlocks are a necessary evil.
- Starvation is also possible if concurrency control manager is badly designed. For example:
 - A transaction may be waiting for an X-lock on an item, while a sequence of other transactions request and are granted an S-lock on the same item.
 - The same transaction is repeatedly rolled back due to deadlocks.
- Concurrency control manager can be designed to prevent starvation.

The Two-Phase Locking Protocol

- A protocol which ensures conflictserializable schedules.
- Phase 1: Growing Phase
 - Transaction may obtain locks
 - Transaction may not release locks
- Phase 2: Shrinking Phase
 - Transaction may release locks
 - Transaction may not obtain locks
- The protocol assures serializability. It can be proved that the transactions can be serialized in the order of their lock points (i.e., the point where a transaction acquired its final lock).

The Two-Phase Locking Protocol

Ti: LOCK X(B) Tj: LOCK X(B)

READ (B) READ (B)

B=B-50 B=B-50

WRITE (B) WRITE (B)

LOCK X-(A) UNLOCK (B)

READ (A) LOCK X-(A)

A=A+50 READ (A)

WRITE (A) A=A+50

UNLOCK (B) WRITE (A)

UNLOCK (A) UNLOCK (A)

Timestamp Based Concurrency Control

Timestamp-Based Protocols

- Each transaction T_i is issued a timestamp $TS(T_i)$ when it enters the system.
 - Each transaction has a unique timestamp
 - Newer transactions have timestamps strictly greater than earlier ones
 - Timestamp could be based on a logical counter
 - Real time may not be unique
 - Can use (wall-clock time, logical counter) to ensure
- Timestamp-based protocols manage concurrent execution such that
 time-stamp order = serializability order
- Several alternative protocols based on timestamps

Timestamp-Ordering Protocol

The timestamp ordering (TSO) protocol

- Maintains for each data Q two timestamp values:
 - W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q) successfully.
 - **R-timestamp**(*Q*) is the largest time-stamp of any transaction that executed **read**(*Q*) successfully.
- Imposes rules on read and write operations to ensure that
 - Any conflicting operations are executed in timestamp order
 - Out of order operations cause transaction rollback

Timestamp-Based Protocols (Cont.)

- Suppose a transaction T_i issues a read(Q)
 - 1. If $TS(T_i) \le W$ -timestamp(Q), then T_i needs to read a value of Q that was already overwritten.
 - Hence, the **read** operation is rejected, and T_i is rolled back.
 - 2. If $TS(T_i) \ge \mathbf{W}$ -timestamp(Q), then the **read** operation is executed, and R-timestamp(Q) is set to

 $max(R-timestamp(Q), TS(T_i)).$

Timestamp-Based Protocols (Cont.)

- Suppose that transaction T_i issues write(Q).
 - 1. If $TS(T_i) < R$ -timestamp(Q), then the value of Q that T_i is producing was needed previously, and the system assumed that that value would never be produced.
 - \triangleright Hence, the **write** operation is rejected, and T_i is rolled back.
 - 2. If $TS(T_i) < W$ -timestamp(Q), then T_i is attempting to write an obsolete value of Q.
 - \triangleright Hence, this **write** operation is rejected, and T_i is rolled back.
 - 3. Otherwise, the **write** operation is executed, and W-timestamp(Q) is set to $TS(T_i)$.

Example of Schedule Under TSO

Is this schedule valid under TSO?

T_{25}	T_{26}
read(B)	
	read(B)
	B := B - 50
	write(B)
read(A)	
	read(A)
display(A + B)	
	A := A + 50
	write(A)
	display(A + B)

 How about this one, where initially R-TS(Q)=W-TS(Q)=0

T_{27}	T_{28}	
read(Q)		
write(Q)	write(Q)	

Another Example Under TSO

A partial schedule for several data items for transactions with timestamps 1, 2, 3, 4, 5, with all R-TS and W-TS = 0 initially

T_1	T_2	T_3	T_4	T_5
				read (X)
	read (Y)			
read (Y)				
		write (<i>Y</i>) write (<i>Z</i>)		
		WITTE (Z)		read (Z)
	read (Z)			1000 (2)
	abort			
read (X)				
		hara especialisi rikuli	read (W)	
		write (W)		
		abort		virmito (V)
				write (Y)
				write (Z)

Correctness of Timestamp-Ordering Protocol

 The timestamp-ordering protocol guarantees serializability since all the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph

- Timestamp protocol ensures freedom from deadlock as no transaction ever waits.
- But the schedule may not be cascade-free, and may not even be recoverable.

Recoverability and Cascade Freedom

- Solution 1:
 - A transaction is structured such that its writes are all performed at the end of its processing
 - All writes of a transaction form an atomic action; no transaction may execute while a transaction is being written
 - A transaction that aborts is restarted with a new timestamp
- Solution 2:
 - Limited form of locking: wait for data to be committed before reading it
- Solution 3:
 - Use commit dependencies to ensure recoverability

Thomas' Write Rule

- Modified version of the timestamp-ordering protocol in which obsolete write operations may be ignored under certain circumstances.
- When T_i attempts to write data item Q, if TS(T_i) < W-timestamp(Q), then T_i is attempting to write an obsolete value of {Q}.
 - Rather than rolling back T_i as the timestamp ordering protocol would have done, this {write} operation can be ignored.
- Otherwise this protocol is the same as the timestamp ordering protocol.
- Thomas' Write Rule allows greater potential concurrency.
 - Allows some view-serializable schedules that are not conflictserializable.