Aplicacion de tecnicas de estimacion y prueba de hipotesis

Caso: tendencias socio-economicas de algunas lineas de carrea de Ingenieria de sistemas

Alvarez Bautista Burga Casanova Cuyate

Facultad de Ingenieria Industrial y de Sistemas **Universidad Nacional de Ingenieria**

Octubre 2022

- Problema
- Objetivos
- 3 Importancia de los objetivos
- Resultados y Conclusiones

- Problema
- Objetivos
- Importancia de los objetivos
- 4 Resultados y Conclusiones

Problematica

- Empiricamente se observa que en el mundo la precarizacion del trabajo se acrecenta cada vez mas, de igual modo con la evolucion de personas casadas y los salarios promedio de los jovenes
- Con motivo de generar informacion util para la prediccion de estas tendencias socio-economicas se ha procedio a realizar un analisis estadistico sobre 9 hipotesis planteadas

- Problema
- Objetivos
- Importancia de los objetivos
- Resultados y Conclusiones

Objetivos del trabajo

General

Generar informacion relevante para la prediccion de tendencias socio-economicas en el mundo tomando como referencia datos provenientes de distintos países.

Hipotesis especificas

- La distribucion de ingresos de sigue la ley normal
- La eleccion de especialidad es causa de la formacion de 2 grupos en la poblacion.
- Las personas que trabajan una cantidad de horas superior a la media tienen una mejor destribucion de ingresos que aquellas que no lo hacen

- En paises desarrollados existe una mayor cantidad de mujeres con puestos de trabajos relacionados a ingenieria que en paises en via de desarrollo
- Los cientificos de datos poseen un mejor distribucion de ingresos que los ingenieros de datos
- El sector (publico / privado) al que pertenece un trabajador es causa de la diferencia de salarios

Hipotesis especificas

- El promedio de ingresos de las personas que trabajan una cantidad de horas superior a la mediana es mayor al promedio de ingreso de personas que laburan una cantidad menor de horas que la mediana
- Las personas de mediana edad poseen una mejor distribucion de ingreso que las personas jovenes
- El promedio de ingresos de la poblacion mexicana es mayor que la peruana

Cada hipotesis tiene asociado el objetivo de comprobar o rechazar la suposicion

- Problema
- Objetivos
- 3 Importancia de los objetivos
- 4 Resultados y Conclusiones

Acerca de la normalidad de la distribucion de ingesos

Ever no te olvides del texto

Sobre la eleccion de especialidad

Se desea analizar principalmente:

- Si la eleccion de la especializacion es causa de la formacion de 2 clusters en la poblacion
- 2 Que tan confiable resulta usar ANOVA 1

¹Analysis of Variance

Sobre los demas objetivos

Se consideraron las hipotesis de tal forma que brinde información relevante para el análisis del mercado laboral para los egresados de la carrera de *Ingenieria de sistemas*

- Problema
- Objetivos
- 3 Importancia de los objetivos
- Resultados y Conclusiones

Figura: Data sin estandarizar

Figura: Data estandarizada y sin outliers

Puede parecer una distribucion Normal

Figura: Grafica Q-Q

Se aplicó el test de *Jarque-Bera*, para comprobar si la muestra presenta una **curtosis** y **asimetria** correspondientes a una ley normal.

El estadistico de *Jarque Bera* es asintoticamente un estimador de una *Chi-Cuadrado* (χ^2_n) y toma como hipotesis nula que los datos de la muestra siguen la ley normal

Test de Jarque-Bera

$$\mathbf{JB} = \frac{n}{6}(S^2 + \frac{1}{4}(K - 3)^3)$$

Siendo n los grados de libertad

Estimadores de momentos centrales

Tercer Momento Central

$$S = \frac{\hat{\mu}_3}{\hat{\sigma}^3}$$

Cuarto Momento Central

$$K = \frac{\hat{\mu}_4}{\hat{\sigma}^4}$$

Adicionalmente, se usara el test de *Kolmogorov-Smirnov*, donde se plantea que la distribucion de ingresos en la poblacion de ciencia de datos no sigue la ley normal y se comparará con la funcion acumulada teoria de esta

Conclusiones hipotesis 1

Ever no te olvides de las Conclusiones

Antes de realizar cualquier tecnica de inferencia es necesario conocer la forma de las distribuciones, incluso antes de analizar la varianza

Figura: Distribución de ingresos de ingenieros de software en la India

se puede notar como existen 2 grupos en la poblacion

Distribución de los trabajadores en software

Aplicacion del test Kolmogórov-Smirnov

En este caso se va a comprar la funcion de distribucion acumulada observada con la de la distribucion teoria de la normal y la de pareto

Comparacion de salarios DC y DI

 $X_1:$ Salario de científico de datos $\to \overline{X_1} = 1061,79389312977, {\sigma_1}^2 = ?$

 $X_2: {\rm Salario~de~ingeniero~de~datos} \rightarrow \overline{X_1} = 916,603773584, {\sigma_2}^2 = ?$

Test de hipotesis

Como se puede observar las alturas de ambas son diferentes, por lo que se puede considerar que existe una diferencia significativa entre ambas varianzas poblacionales.

Luego:

Estadisitico de prueba es:

$$t = \frac{\overline{X_1} - \overline{X_2} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_{(v)}$$

$$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(\frac{S_1}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_2}{n_2}\right)^2}{n_2 - 1}}$$

Con un nivel de significancia de: $\alpha=0.05$

Reemplazamos datos:

t = 4,74240775380578

v = 149

Region crítica:

$$t_{(149:0.95)} = 1,65514453379796$$

Decisión:

Se rechaza Ho (hipotesis nula) al ser el valor critico es menor que el valor del estadistico de prueba.

Conclusión:

Con un NS de 5% en informacion de las muestras, no existe evidencia suficiente para afirmar que los salarios de los data science son mayores que los de data engineer. Se podria afirmar que este salario tambien depende del tipo de empresa en donde se trabaje, ubicacion de la mepresa en que se trabaja, al sector en que se necesite uno de estos tipos de profesionales, etc.

Comparacion de salarios publico y privado

 X_1 : Salario publico $\to \overline{X_1} = 1110,3886, {\sigma_1}^2 = ?$

 $X_2: {
m Salario \ privado}
ightarrow \overline{X_p rivado} = 1020,8170, {\sigma_2}^2 = ?$

Test de hipotesis

Luego:

$$H_0: \mu_1 \le \mu_2 \to \mu_1 - \mu_2 \le 0$$

 $H_1: \mu_1 > \mu_2 \to \mu_1 - \mu_2 > 0$

Estadisitico de prueba es:

$$t = \frac{\overline{X_1} - \overline{X_2} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} \sim t_0$$

$$v = \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(\frac{S_1}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{S_2}{n_2}\right)^2}{n_2 - 1}}$$

Con un nivel de significancia de: $\alpha = 0.05$ Reemplazamos datos:

t = 2.93398952326531

v = 436

Region crítica:

$$t_{(436; 0.95)} = 1,64835599316749$$

Decisión:

Se rechaza H₀ (hipotesis nula) al ser el valor critico menor que el valor del estadistico de prueba.

Conclusión:

Con un NS de 5% en informacion de las muestras, no existe evidencia suficiente para afirmar que los salarios en compañías publicas son mayores que en las privadas. Se podria afirmar que este salario de acuerdo al tipo de empresa, a depende a la ubicacion de la empresa, al sector que pertenezca, etc.

H0	P1=P2
H1	P1 <p2< td=""></p2<>
RC	Z<-1.645
P1	0.161470865
P2	0.3536413
Pc	0.240809557
Qc=1-Pc	0.759190443
ES	0.004812733
Z	-39.92958611

El Z está en la regió critica, por lo tanto H0 se rechaza. Las personas de mediana edad poseen una mejor distribución de ingreso que las personas jóvenes