РК1

Студент:Чжан Аньци

Группа:ИУ5И-22М

номер по списку группы(Вариант):17

Задач:

1.для произвольной колонки данных построить гистограмму 2.Задача №17. Для набора данных проведите нормализацию для одного (произвольного) числового признака с использованием преобразования Йео-Джонсона (Yeo-Johnson transformation). 3.Задача №37. Для набора данных проведите процедуру отбора признаков (feature selection). Используйте класс SelectPercentile для 5% лучших признаков, и метод, основанный на взаимной информации.

Подключим все необходимые библиотеки:

In [1]:

```
import pandas as pd
from pandas import DataFrame
from pandas.plotting import scatter_matrix
import matplotlib.pyplot as plt
from matplotlib import rcParams
import plotly.graph_objects as go
import plotly.express as px
from plotly.colors import n_colors
import numpy as np
import datetime as dt
import plotly.express as px
import seaborn as sns
import scipy.stats as stats
%matplotlib inline
```

Загрузим непосредственно данные:

In [2]:

```
data = pd. read csv("Life Expectancy Data. csv")
data.info()
 5
     infant deaths
                                       2938 non-null
                                                        int64
 6
     Alcohol
                                       2744 non-null
                                                        float64
 7
     percentage expenditure
                                       2938 non-null
                                                        float64
                                                        float64
 8
     Hepatitis B
                                       2385 non-nu11
 9
     Measles
                                       2938 non-nu11
                                                        int64
 10
     BMI
                                       2904 non-null
                                                        float64
    under-five deaths
                                                        int64
 11
                                       2938 non-null
 12
                                       2919 non-null
                                                        float64
 13
    Total expenditure
                                       2712 non-null
                                                        float64
    Diphtheria
                                       2919 non-null
                                                        float64
                                                        float64
 15
     HIV/AIDS
                                       2938 non-null
    GDP
                                                        float64
 16
                                       2490 non-null
                                       2286 non-null
                                                        float64
 17
     Population
 18
     thinness 1-19 years
                                       2904 non-null
                                                        float64
 19
     thinness 5-9 years
                                       2904 non-null
                                                        float64
 20
                                       2771 non-null
                                                        float64
    Income composition of resources
     Schooling
                                       2775 non-null
                                                        float64
dtypes: float64(16), int64(4), object(2)
memory usage: 505.1+ KB
```

для произвольной колонки данных построить гистограмму

In [3]:

```
Life_expectancy= data['Life expectancy']
plt.figure(figsize=(20, 10), dpi=100)
nums, bins, patches = plt.hist(Life_expectancy, bins=20, edgecolor='k')
plt.xticks(bins, bins)
for num, bin in zip(nums, bins):
    plt.annotate(num, xy=(bin, num), xytext=(bin+1.5, num+0.5))
plt.title("Life expectancy")
plt.xlabel("expectancy")
plt.ylabel("frequency")
plt.show()
```


Для набора данных проведите нормализацию для одного (произвольного) числового признака с использованием преобразования Йео-Джонсона (Yeo-Johnson transformation).

In [4]:

```
from scipy import stats
import matplotlib.pyplot as plt
import scipy

fig = plt.figure()
ax1 = fig.add_subplot(211)
x = Life_expectancy
prob = stats.probplot(x, dist=stats.norm, plot=ax1)
ax1.set_xlabel('')
ax1.set_title('Probplot against normal distribution')
ax2 = fig.add_subplot(212)
xt, lmbda = stats.yeojohnson(x)
prob = stats.probplot(xt, dist=stats.norm, plot=ax2)
ax2.set_title('Probplot after Yeo-Johnson transformation')
plt.show()
```


Для набора данных проведите процедуру отбора признаков (feature selection). Используйте класс SelectPercentile для 5% лучших признаков, и метод, основанный на взаимной информации.

Сначала проводится корреляционный анализ.

In [59]:

```
data = pd.read_csv("Life Expectancy Data.csv")
datal=data[:16]
datal
```

Out[59]:

	Country	Year	Status	Life expectancy	Adult Mortality	infant deaths	Alcohol	percentage expenditure	Hepatitis E
0	Afghanistan	2015	Developing	65.0	263.0	62	0.01	71.279624	65.0
1	Afghanistan	2014	Developing	59.9	271.0	64	0.01	73.523582	62.0
2	Afghanistan	2013	Developing	59.9	268.0	66	0.01	73.219243	64.0
3	Afghanistan	2012	Developing	59.5	272.0	69	0.01	78.184215	67.0
4	Afghanistan	2011	Developing	59.2	275.0	71	0.01	7.097109	68.0
5	Afghanistan	2010	Developing	58.8	279.0	74	0.01	79.679367	66.0
6	Afghanistan	2009	Developing	58.6	281.0	77	0.01	56.762217	63.0
7	Afghanistan	2008	Developing	58.1	287.0	80	0.03	25.873925	64.0
8	Afghanistan	2007	Developing	57.5	295.0	82	0.02	10.910156	63.0
9	Afghanistan	2006	Developing	57.3	295.0	84	0.03	17.171518	64.0
10	Afghanistan	2005	Developing	57.3	291.0	85	0.02	1.388648	66.0
11	Afghanistan	2004	Developing	57.0	293.0	87	0.02	15.296066	67.0
12	Afghanistan	2003	Developing	56.7	295.0	87	0.01	11.089053	65.0
13	Afghanistan	2002	Developing	56.2	3.0	88	0.01	16.887351	64.0
14	Afghanistan	2001	Developing	55.3	316.0	88	0.01	10.574728	63.0
15	Afghanistan	2000	Developing	54.8	321.0	88	0.01	10.424960	62.0

16 rows × 22 columns

```
In [61]:
```

```
df=data1.iloc[:,3:7]
df
```

Out[61]:

	Life expectancy	Adult Mortality	infant deaths	Alcohol
0	65.0	263.0	62	0.01
1	59.9	271.0	64	0.01
2	59.9	268.0	66	0.01
3	59.5	272.0	69	0.01
4	59.2	275.0	71	0.01
5	58.8	279.0	74	0.01
6	58.6	281.0	77	0.01
7	58.1	287.0	80	0.03
8	57.5	295.0	82	0.02
9	57.3	295.0	84	0.03
10	57.3	291.0	85	0.02
11	57.0	293.0	87	0.02
12	56.7	295.0	87	0.01
13	56.2	3.0	88	0.01
14	55.3	316.0	88	0.01
15	54.8	321.0	88	0.01

In [67]:

```
X=df.iloc[:,0]
Y=df.iloc[:,1]
result1 = np.corrcoef(X, Y)
result1
```

Out[67]:

```
array([[1. , 0.02675163], [0.02675163, 1. ]])
```

In [69]:

```
result2 = np.corrcoef(df, rowvar=False)
result2
```

Out[69]:

In [71]:

sns.pairplot(df)

Out[71]:

<seaborn.axisgrid.PairGrid at 0x1b646e1a700>

In [72]:

sns. pairplot(df, kind='reg', diag_kind='hist')

Out[72]:

<seaborn.axisgrid.PairGrid at 0x1b6476a4970>

In [73]:

sns.pairplot(df, hue='Alcohol')

Out[73]:

<seaborn.axisgrid.PairGrid at 0x1b644d26fa0>

In [74]:

```
import matplotlib.pyplot as plt
figure, ax = plt.subplots(figsize=(12, 12))
sns.heatmap(df.corr(), square=True, annot=True, ax=ax)
```

Out[74]:

<AxesSubplot:>


```
In [77]:
```

np.percentile(df, 5, axis=None, out=None, overwrite_input=False, interpolation='linear', keepdims=

Out[77]:

array([[0.01]])

ример выбора характеристик (SelectPercentile)

In [78]:

```
from sklearn.datasets import load_digits
from sklearn.feature_selection import SelectPercentile, chi2

X, y = load_digits(return_X_y=True)

X. shape
```

Out[78]:

(1797, 64)

In [79]:

```
X_new = SelectPercentile(chi2, percentile=5).fit_transform(X, y)
X_new.shape
```

Out[79]:

(1797, 4)