Politecnico di Milano Scuola di Ingegneria Industriale e dell'Informazione

APPLIED STATISTICS July 12th, 2022

Problem n.4

The file temperatures.txt reports the measurements of daily maximum temperature y (in Celsius) recorded on June 25th, 2003 and June 25th, 2022 (variable year = 2003, 2022) within the city of Milan. The dataset also reports the UTM coordinates s_k , k = 1, ..., 128, of the measurement locations, and the indication of whether the measurement location is inside or outside a park or a garden (variable park = 1,0, resp.). Consider for the temperatures $y_{ij}(s_k)$ the following model

$$y_{ij}(s_k) = \alpha_i + \beta_j + \delta(s_k),$$

with $\delta(s_k)$ a stationary residual with spherical model without nugget, i = 1, 2 the grouping induced by the variable year (i = 1 for 2003, i = 2 for 2022), and j = 1, 2 the grouping induced by the variable park (j = 1 for park = 1, j = 2 for park = 0).

- a) Assuming $\alpha_1 \neq \alpha_2$, and $\beta_j = 0$, estimate the parameters α_i , i = 1, 2, of the model via generalized least squares. Report the model estimated for $\delta(s_k)$, and discuss the model assumptions.
- b) Assuming $\alpha_i = 0$ for i = 1, 2, and $\beta_1 \neq \beta_2$, estimate the parameters β_j , j = 1, 2, of the model via generalized least squares. Report the model estimated for $\delta(s_k)$, and discuss the model assumptions.
- c) How do these models compare with a stationary model? Which model, between those estimated at points (a) and (b), do you deem more appropriate to describe the data? Comment on your choice.
- d) Use the model selected at point (c) to provide a point prediction $y^*(s_0)$ for the maximum temperature on June 25th, 2022 at location $s_0 = (513852.78, 5035411.95)$ (within Parco Sempione).

Upload your results here:

https://forms.office.com/Pages/ResponsePage.aspx?id=K3EXCvNtXUKAjjCd8ope6-9AS0GWf21HjvGX24HiqFVURThDQTJHNVhHMzJLRONCUU9QTk9HM1BDUS4u