1 目的

RLC 直列共振回路の特性を理解し、これを実験的に確かめること。

2 原理

図2にRLC直列回路を示す。

図1 RLC 直列回路

いま回路に流れる電流を、 $i = \sqrt{2} I \sin \omega t$ と仮定すると

$$\begin{cases}
e_{R} = \sqrt{2}RI \sin \omega t \\
e_{L} = \sqrt{2}\omega LI \sin \left(\omega t + \frac{\pi}{2}\right) \\
e_{C} = \sqrt{2}\frac{1}{\omega C}I \sin \left(\omega t - \frac{\pi}{2}\right) \\
e = e_{R} + e_{L} + e_{C} = \sqrt{2}E \sin(\omega t + \theta)
\end{cases}$$
(1)

これらをベクトル図に示した物が図2である。これより

図2 ベクトル図

$$E^{2} = E_{R}^{2} + (E_{L} - EC)^{2} = \left\{ R^{2} + \left(\omega L - \frac{1}{\omega C} \right)^{2} \right\} I^{2} = Z^{2} I^{2}$$

$$\therefore E = ZI = \left\{ R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2 \right\}^{\frac{1}{2}} I \tag{2}$$

また

$$\theta = \tan^{-1} \frac{E_L - EC}{E_R} = \tan^{-1} \frac{\omega L - \frac{1}{\omega C}}{R}$$
(3)

ところで図2の回路においてリアクタンス成分が0になる条件を直列共振条件という。このときは

$$\omega_0 L - \frac{1}{\omega_0 C} = 0 \tag{4}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{5}$$

$$Z_0 = R \tag{6}$$

$$I_0 = \frac{E}{R} \tag{7}$$

$$\theta = \tan^{-1} 0 = 0^{\circ} \tag{8}$$

が成立し、インピーダンス Z は最小に、電流は最大に、また位相角 θ は 0 となる。また、このとき

$$\begin{cases}
E_{R0} = RI_0 = R \times \frac{E}{R} = E \\
E_{C0} = \frac{1}{\omega_0 C} I_0 = \frac{E}{\omega_0 CR} \\
E_{L0} = \omega_0 L I_0 = \omega_0 L \times \frac{E}{R}
\end{cases}$$
(9)

となる。いま電源周波数 f を変化したときの I, Z, θ , の変化を図??に模式的に示す。図よりわかるように、直列共振回路は特定の周波数成分の信号を取り出すときに使用される。以上の性質を実験によって確かめることとする。

3 実験方法

実験回路を図3に示す。回路素子部分をブレッドボード上に結線し交流電源として発信器を用いる。発信器の出力側にオシロスコープの CH1 側を接続し、抵抗 R に CH2 側を接続して波形を観

測から実験値を読み取る。また、適宜デジタルマルチメータを用いて各素子の電圧を観測する。

図4 実験回路図

3.1 実験 1 周波数特性

- (1) 実験回路を結線して発振器出力を常に一定に保ちながら周波数を $500~\rm{Hz}\sim100~\rm{kHz}$ まで変化させて各素子の電圧を測定し、周波数に対する電流の特性を測定する、特に、電流が最大となる今日進展はより細かく測定する。($R=1~\rm{[k\Omega]}, C=47~\rm{[nF]},$ 発振器出力 = $1~\rm{[V]}$)
 - (2) 抵抗値を変えて(1)の実験を行う。ただし、束帯電圧は抵抗 R のみとする。

3.2 実験 2 静電容量依存性

周波数を固定して回路の静電容量を変化させ、制電少量に対する電流の特性を測定する。 コンデンサ C の値は $0.001~\mu$ F \sim 0.2 μ F まで変化させて測定を行う。 (f=11~[kHz], 出力 = 1~[V], $R=1~[k\Omega]$, L は (1) で用いた物、抵抗の電圧を測定し、 $I=|V_R|/R$ とする。)

3.3 実験 3 r L の測定

コイルの束帯分 r_L をマルチメータを使って測定する。以後、コイルの抵抗としては、この値を使用する。

3.4 使用器具

この実験で使用した器具を表1に示す。

表 1 使用器具

器具名	メーカ名	型番	シリアルナンバー
デュアルディスプレイマルチメータ	TEXIO	DL-2040	13020563
デュアルディスプレイマルチメータ	TEXIO	DL-2040	130205538
発信器	KENWOOD	AG-2040	6050017
可変コンデンサ	НР	4440B	1224J04420

表 2 実験 1(1) の実験結果

周波数 [kHz]	R にかかる電圧 [V]	C にかかる電圧 [V]	L にかかる電圧 [V]
0.5	0.1561	0.98	0.0177
0.6	0.1852	0.955	0.0237
0.8	0.2524	0.998	0.0404
1	0.3244	0.995	0.0651
2	0.635	0.975	0.2474
3	0.863	0.896	0.496
3.5	0.922	0.828	0.612
4	0.946	0.716	0.746
4.5	0.941	0.663	0.796
5	0.897	0.552	0.87
6	0.825	0.4315	0.943
8	0.648	0.253	0.994
10	0.521	0.162	1.007
20	0.2631	0.0417	1.016
30	0.1722	0.0181	1.004
40	0.1284	0.0095	1.005
50	0.1025	0.0045	1.004
60	0.0844	0.0018	1.007
80	0.061	0	1.011
100	0.0464	0	1.004

4 実験結果

4.1 実験1の実験結果

実験 1(1)、(2) の実験結果を表 3、cal:result1(2) に示す。

- 4.2 実験2の実験結果
- 4.3 実験3の実験結果
- 5 結果の考察
- 6 調査事項

表 3 実験 1(1) の実験結果

周波数 [kHz]	R の電圧 [V]
0.5	0.3119
0.6	0.3564
0.8	0.4625
1	0.573
2	0.845
3	0.947
3.5	0.976
4	0.978
4.5	0.975
5	0.970
6	0.938
8	0.866
10	0.775
20	0.481
30	0.33
40	0.257
50	0.0248
60	0.1706
80	0.1235
100	0.0908