UNIVERSITY OF AGDER

Numpy

Lecture 5

Agenda

- Exercise recap
- Numpy
- Install Numpy in PyCharm

Exercise review - Largest product in a series

The four adjacent digits in the 1000-digit number that have the greatest product are $9 \times 9 \times 8 \times 9 = 5832$.

- Find the five adjacent digits in the 1000-digit number that has the greatest product. What is the value of this product?
- Find the product which is closest to 7777. What is the value of this product?
- What is the number of unique products?

Numpy

- "Numpy is the fundamental package for scientific computing with Python"
- https://docs.scipy.org/doc/numpy/index.html
- Provides a powerful N-dimensional array
- The go-to-tool when doing numerical computing in Python
- Numpy quickstart tutorial:
- https://docs.scipy.org/doc/numpy/user/quickstart.html
- Import numpy:

import numpy as np

Install numpy in PyCharm

- Open PyCharm
- Press PyCharm / file in the menu bar
- Go to preferences / settings
- On the left, select project:<your-project-name>
- Select *project interpreter*
- Click on the + (pluss) button
- Search for and install numpy

A look at the Numpy array

- Unlike Python lists, Numpy arrays can only hold a single data type
- An array containing integers:

```
a = np.array([[1,2,3],[4,5,6]], dtype=int)
```

- Frequently used array attributes:
 - a.shape
 - a.ndim
 - a.size
 - a.dtype

Indexing and slicing

- Selecting values, columns, and rows.
- Works much like standard Python.
- Create array:

```
a = np.arange(25).reshape(5, 5)
```

- a[3] # Select row
- a[:, -1] # Select column
- a[(1,2), 1::2] # Red values

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Indexing and slicing - Try it

- Create array like so:np.arange(25).reshape(5, 5)
- Select highlighted values.

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Indexing and slicing - Try it

- Create array like so:
 np.arange(25).reshape(5, 5)
- Select highlighted values.

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Indexing and slicing - Try it

- Create array like so:
 np.arange(25).reshape(5, 5)
- Select highlighted values.

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Indexing and slicing - Try it

- Create array like so:
 np.arange(25).reshape(5, 5)
- Select highlighted values.

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Playtime

Download the file *numpy_numbers.txt* from Canvas.

Convert it into a numpy array.

- Which row has the greatest sum (adding all the numbers in a row)? What is the value of this sum?
- What is the single greatest value in the array?
- What column has the greatest sum?
- Remove the outermost values. What is the sum of the remaining numbers?