Esercizi di MATEMATICA DISCRETA 9° serie C.L. Informatica e tecnologie per la produzione del software

- 1. Sono assegnate sull'insieme $A=\mathbb{Z}_4$ le leggi di composizione interne + , \cdot .
 - (a) Verificare che $(A, +, \cdot)$ è un anello
 - (b) stabilire se $(A, +, \cdot)$ è un anello di Boole
 - (c) trovare i divisori dello zero di A
 - (d) trovare gli elementi unitari di A (gli elementi che hanno inverso moltiplicativo)
 - (e) trovare tutti i sottogruppi di (A, +)
 - (f) tracciare il diagramma di Hasse del reticolo dei sottogruppi di (A, +) ordinato per inclusione
 - (g) stabilire se questo reticolo è di Boole.
- 2. Sono assegnate sull'insieme $A = \mathbb{Z}_6$ le leggi di composizione interne + , . .
 - (a) Verificare che $(A, +, \cdot)$ è un anello
 - (b) stabilire se $(A, +, \cdot)$ è un anello di Boole
 - (c) trovare i divisori dello zero di A
 - (d) trovare gli elementi unitari di A (gli elementi che hanno inverso moltiplicativo)
 - (e) trovare tutti i sottogruppi di (A, +)
 - (f) tracciare il diagramma di Hasse del reticolo dei sottogruppi di (A, +) ordinato per inclusione
 - (g) stabilire se questo reticolo è di Boole.

- 3. Sono assegnate sull'insieme $A = \mathbb{Z}_7$ le leggi di composizione interne + , .
 - (a) Verificare che $(A, +, \cdot)$ è un anello
 - (b) stabilire se $(A, +, \cdot)$ è un anello di Boole
 - (c) trovare tutti gli elementi unitari di $(A, +, \cdot)$ e stabilire se si tratta di un campo
 - (d) trovare tutti i sottogruppi di (A, +)
 - (e) tracciare il diagramma di Hasse dei sottogruppi di (A, +) ordinato per inclusione; stabilire se questo reticolo è di Boole
 - (f) trovare tutti gli sottogruppi di (A^*, \cdot)
 - (g) tracciare il diagramma di Hasse del reticolo dei sottogruppi di (A*,·) ordinato per inclusione; stabilire se questo reticolo è di Boole.
- 4. Sono assegnate sull'insieme $A = \mathbb{Z}_8$ le leggi di composizione interne +, \cdot .
 - (a) Verificare che $(A, +, \cdot)$ è un anello
 - (b) stabilire se $(A, +, \cdot)$ è un anello di Boole
 - (c) trovare i divisori dello zero di A
 - (d) trovare gli elementi unitari di A (gli elementi che hanno inverso moltiplicativo)
 - (e) trovare tutti i sottogruppi di (A, +)
 - (f) tracciare il diagramma di Hasse del reticolo dei sottogruppi di (A, +) ordinato per inclusione
 - (g) stabilire se questo reticolo è di Boole.

- 5. Sono assegnate sull'insieme $A = \mathbb{Z}_2 \times \mathbb{Z}_2$ le leggi di composizione interne +, \cdot definite come segue: $\forall (x, y), (z, t) \in A$
 - $(x,y) + (z,t) = (x+z,y+t), \quad (x,y) \cdot (z,t) = (xz,yt)$ e sia $B = \{(x,0)|x \in \mathbb{Z}_2\}.$
 - (a) Determinare l'elemento neutro della struttura (A, +)
 - (b) determinare l'elemento neutro della struttura (A, \cdot)
 - (c) provare che (A, +) è un gruppo abeliano
 - (d) provare che (A, \cdot) è un monoide commutativo
 - (e) verificare che $(A, +, \cdot)$ è un anello commutativo
 - (f) stabilire se $(A, +, \cdot)$ è un anello di Boole
 - (g) determinare l'unità di (A, \cdot)
 - (h) trovare i divisori dello zero di A
 - (i) trovare gli elementi unitari di A (gli elementi che hanno inverso moltiplicativo)
 - (j) verificare che B è un sottogruppo di (A, +)
 - (k) verificare che per ogni $\alpha, \beta \in B$ risulta $\alpha \cdot \beta \in B$
 - (l) stabilire se la struttura $(B, +, \cdot)$ è un anello (sottoanello di A)
 - (m) stabilire se $(B, +, \cdot)$ è un anello unitario (cioè se esiste l'unità)
 - (n) stabilire se l'unità di B coincide con l'unità di A
 - (o) tracciare il diagramma di Hasse del reticolo dei sottogruppi di (A, +) ordinato per inclusione
 - (p) stabilire se questo reticolo è di Boole.

6. Sono assegnate sull'insieme $A = \mathbb{Z}_3 \times \mathbb{Z}_2$ le leggi di composizione interne +, definite come segue: $\forall (x, y), (z, t) \in A$

$$(x,y) + (z,t) = (x+z,y+t),$$
 $(x,y) \cdot (z,t) = (xz,yt)$
e sia $B = \{(x,0)|x \in \mathbb{Z}_3\}.$

- (a) Determinare l'elemento neutro della struttura (A, +)
- (b) determinare l'elemento neutro della struttura (A, \cdot)
- (c) provare che (A, +) è un gruppo abeliano
- (d) provare che (A, \cdot) è un monoide commutativo
- (e) verificare che $(A, +, \cdot)$ è un anello commutativo
- (f) verificare che $(A, +, \cdot)$ non è un anello di Boole
- (g) determinare l'unità di (A, ·)
- (h) trovare i divisori dello zero di A
- (i) trovare gli elementi unitari di A (gli elementi che hanno inverso moltiplicativo)
- (j) verificare che B è un sottogruppo di (A, +)
- (k) verificare che per ogni $\alpha, \beta \in B$ risulta $\alpha \cdot \beta \in B$
- (l) stabilire se la struttura $(B, +, \cdot)$ è un anello (sottoanello di A)
- (m) stabilire se $(B, +, \cdot)$ è un anello unitario (cioè se esiste l'unità)
- (n) stabilire se l'unità di B coincide con l'unità di A
- (o) tracciare il diagramma di Hasse del reticolo dei sottogruppi di (A, +) ordinato per inclusione
- (p) stabilire se questo reticolo è di Boole.

- 7. Sono assegnate sull'insieme $A = \mathbb{Z}_6 \times \mathbb{Z}_3$ le leggi di composizione interne +, definite come segue: $\forall (x,y), (z,t) \in A$
 - (x,y) + (z,t) = (x+z, y+t), $(x,y) \cdot (z,t) = (xz, yt)$ e sia $B = \{(0,y)|y \in \mathbb{Z}_3\}.$
 - (a) Determinare l'elemento neutro della struttura (A, +)
 - (b) determinare l'elemento neutro della struttura (A, \cdot)
 - (c) provare che (A, +) è un gruppo abeliano
 - (d) provare che (A, \cdot) è un monoide commutativo
 - (e) verificare che $(A, +, \cdot)$ è un anello commutativo
 - (f) verificare che $(A, +, \cdot)$ non è un anello di Boole
 - (g) determinare l'unità di (A, \cdot)
 - (h) trovare i divisori dello zero di A
 - (i) trovare gli elementi unitari di A (gli elementi che hanno inverso moltiplicativo)
 - (j) verificare che B è un sottogruppo di (A, +)
 - (k) verificare che per ogni $\alpha, \beta \in B$ risulta $\alpha \cdot \beta \in B$
 - (l) stabilire se la struttura $(B, +, \cdot)$ è un anello (sottoanello di A)
 - (m) stabilire se $(B, +, \cdot)$ è un anello unitario (cioè se esiste l'unità)
 - (n) stabilire se l'unità di B coincide con l'unità di A.
- 8. Sono assegnate sull'insieme $A=\mathbb{Z}_4\times\mathbb{Z}$ le leggi di composizione interne + , · definite come segue: $\forall (x,y),(z,t)\in A$

$$(x,y) + (z,t) = (x+z,y+t),$$
 $(x,y) \cdot (z,t) = (xz,yt)$
e sia $B = \{(x,0)|x \in \mathbb{Z}_4\}.$

- (a) Determinare l'elemento neutro della struttura (A, +)
- (b) determinare l'elemento neutro della struttura (A, \cdot)
- (c) provare che (A, +) è un gruppo abeliano
- (d) provare che (A, \cdot) è un monoide commutativo
- (e) verificare che $(A, +, \cdot)$ è un anello commutativo
- (f) verificare che $(A, +, \cdot)$ non è un anello di Boole
- (g) determinare l'unità di (A, \cdot)
- (h) trovare i divisori dello zero di A
- (i) trovare gli elementi unitari di A (gli elementi che hanno inverso moltiplicativo)
- (j) verificare che B è un sottogruppo di (A, +)
- (k) verificare che per ogni $\alpha, \beta \in B$ risulta $\alpha \cdot \beta \in B$
- (l) stabilire se la struttura $(B, +, \cdot)$ è un anello (sottoanello di A)
- (m) stabilire se $(B, +, \cdot)$ è un anello unitario (cioè se esiste l'unità)
- (n) stabilire se l'unità di B coincide con l'unità di A.
- 9. Sull'insieme $R = \{a, b, c, d, e, f\}$ è definita la relazione $\leq = \{(a, a)(a, b), (a, c), (a, d), (a, e), (a, f), (b, b), (b, e), (b, f), (c, c), (c, e), (c, f), (d, d), (d, e), (d, f), (e, e), (e, f), (f, f)\}.$
 - (a) Verificare che la relazione ≤ è d'ordine
 - (b) tracciare il diagramma di Hasse dell'insieme ordinato (R, \leq) e stabilire se si tratta di un reticolo; in caso affermativo, stabilire se si tratta di un reticolo distributivo e per ciascun elemento determinare gli eventuali complementi

6

10. È assegnato il diagramma

- (a) Scrivere la relazione d'ordine \leq su $R = \{a, b, c, d\}$ avente tale diagramma come diagramma di Hasse
- (b) verificare che (R, \leq) è un reticolo
- (c) stabilire se (R, \leq) è di Boole.

11. Sono assegnati i seguenti grafi:

- (a) Quali di essi sono i grafi di una relazione d'ordine?
- (b) stabilire se si tratta di ordine totale o parziale
- 12. È assegnato il seguente diagramma di Hasse di un insieme ordinato $\{a, b, c, d\}$

- (a) Verificare che è un reticolo
- (b) verificare che è di Boole
- (c) disegnare il grafo ordinato della relazione d'ordine
- 13. Si consideri il reticolo $(D_{15}, |)$ dei divisori di 15 ordinato per divisibilità.
 - (a) Tracciare il diagramma di Hasse
 - (b) trovare il complemento di ciascun elemento di D_{15} , se esiste
 - (c) stabilire se detto reticolo è di Boole.
- 14. Si consideri il reticolo $(D_{12}, |)$ dei divisori di 12 ordinato per divisibilità.
 - (a) Tracciare il diagramma di Hasse
 - (b) trovare il complemento di ciascun elemento di D_{12} , se esiste
 - (c) stabilire se detto reticolo è di Boole.
- 15. Si consideri il reticolo (D_{105} , |) dei divisori di 105 ordinato per divisibilità.
 - (a) Tracciare il diagramma di Hasse
 - (b) trovare il complemento di ciascun elemento di D_{105} , se esiste
 - (c) stabilire se detto reticolo è di Boole.
- 16. Si consideri il reticolo $(D_{45},|\;)$ dei divisori di 45 ordinato per divisibilità.
 - (a) Tracciare il diagramma di Hasse

- (b) trovare il complemento di ciascun elemento di D_{45} , se esiste
- (c) stabilire se detto reticolo è di Boole.
- 17. Si consideri il reticolo $(D_{36}, |)$ dei divisori di 36 ordinato per divisibilità.
 - (a) Tracciare il diagramma di Hasse
 - (b) trovare il complemento di ciascun elemento di D_{36} , se esiste
 - (c) stabilire se detto reticolo è di Boole.
- 18. Sull'insieme $\mathcal{R} = \{a, b, c, d\}$ è assegnata la seguente legge di composizione V:

- (a) Tracciare il diagramma di Hasse del reticolo ordinato associato
- (b) scrivere la tabella dell'operazione \wedge
- (c) determinare di ciascun elemento di R gli eventuali complementi
- (d) stabilire se il reticolo è di Boole.
- 19. Sull'insieme $\mathcal{R} = \{a, b, c, d, e, f\}$ è assegnata la seguente legge di composizione \vee :

V	a b c d e f	b	c	d	е	f
a	a	b	С	d	е	f
b	b	b	С	е	е	f
С	С	С	С	е	е	f
d	d	e	e	\mathbf{d}	е	f
е	е	e	е	е	е	f
f	f	f	f	f	f	f

- (a) Tracciare il diagramma di Hasse del reticolo ordinato associato
- (b) trovare la tabella dell'operazione ∧
- (c) stabilire se il reticolo $(\mathcal{R}, \vee, \wedge)$ è distributivo
- (d) per ciascun elemento di \mathcal{R} , determinare gli evenuali complementi
- (e) stabilire se reticolo è di Boole.
- 20. Sull'insieme $A = \{a, b, c, d\}$ sono assegnate le leggi di composizione

- (a) Verificare che $(A, +, \cdot)$ è un anello di Boole
- (b) scrivere le tabelle delle operazioni \vee e \wedge del reticolo di Boole associato.