Martingale

Since there are some problems about mathjax, I also upload the pdf version \(\subseteq \text{Large} \) Sample \(\subseteq \text{ Martingale}. \)

Basic Definition

- Under measurable space (Ω, \mathcal{F}) :
- Filtration $\{\mathcal{F}_n\}$: $\mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \mathcal{F}_{\infty}$.
- $\{\mathcal{F}_n\}$ -adapted r.s. M_n : $M_n \in \mathcal{F}_n$
- Martingale $\{M_n\}$:
 - $\{\mathcal{F}_n\}$ -adapted
 - $\mathbb{E}|M_n| < \infty$
 - $ullet \ \mathbb{E}\left(M_{n+1}\mid \mathcal{F}_n
 ight)=M_n \quad orall n$
- Sub-Martingale $\{M_n\}$:
 - $M_n \leq \mathbb{E}\left(M_{n+1} \mid \mathcal{F}_n\right) \quad \forall n$
- Super-Martingale $\{M_n\}$:
 - $M_n \geq \mathbb{E}\left(M_{n+1} \mid \mathcal{F}_n\right) \quad \forall n$
- $\{\mathcal{F}_n\}$ -predictable r.s. $H_n: H_n \in \mathcal{F}_{n-1}$.
- Martingale *X* transformation(through predictable *H*) $(H \cdot X)$:
 - $(H \cdot X)_n = \sum_{m=1}^n H_m (X_m X_{m-1})$
 - $\bullet \quad (H \cdot X)_0 = 0$
- Stopping Time T: $[T=n] \in \mathcal{F}_n$.

Proporties

Transformation of martingale

- Martingle M_n + ϕ convex + $\mathbb{E}\left(|\phi\left(M_n\right)|\right) < \infty \rightarrow \phi(M_n)$ ia a sub-martingale;
- Sub-martingle M_n + ϕ non-decreasing &convex + $\mathbb{E}\left(|\phi\left(M_n\right)|\right)<\infty\to\phi(M_n)$ ia a sub-martingale;
- Example:
 - Martingle $M_n + \mathbb{E}|M_n|^p < \infty \to |M_n|^p$ is a sub-martingale;
 - Sub-martingale $M_n o (M_n-a)_+$ is a sub-martingale;
 - Super-martingale $M_n o M_{n \wedge a}$ is a super-martingale.
- Martingle X_n +predictable &bounded $H_n \to (H \cdot X)_n$ is a martingale;
- Sub/Super-martingle X_n +predictable &bounded $H_n \geq 0 \rightarrow (H \cdot X)_n$ is a sub/super-martingale;
- Sub/Super-martingle X_n +T is a stopping time $\to M_{n\wedge T}$ is a sub/super-martingle.
 - Denote $H_n = \mathbf{1}_{T \geq n}$ predictable;
 - Consider $(H \cdot M) = M_{n \wedge T} M_0$.

Doob Sub-martingale Decomposition

For any sub-martingale $\{(X_n, \mathcal{F}_n, \mathbb{P}), n \geq 0\}$, there is a unique decomposition

$$X_n = M_n + A_n$$

where

- $\{(M_n, \mathcal{F}_n, \mathbb{P}), n \geq 0\}$ is a martingale;
- $\{A_n, n \geq 0\}$ is predictable and non-decreasing.

Hint: Denote $d_j := X_j - \mathbb{E}\left[X_j \mid \mathcal{F}_{j-1}\right], d_0 := X_0$, then

- $M_n := \sum_{j=0}^n d_j$
- \bullet $A_n := X_n M_n$

Stopping Times

Wald's Equation

• X_1,X_2,X_3,\cdots are i.i.d. + $\mathbb{E}|X_i|<\infty$ + T is a stopping time + $\mathbb{E}(T)<\infty$. Let then $S_n=\sum_{i=1}^n X_i$,

$$\mathbb{E}S_T = \mathbb{E}X\mathbb{E}T$$

• X_1,X_2,X_3,\cdots are $i.i.d.+\mathcal{E}X_n=0+\mathbb{E}|X_i|^2=\sigma^2<\infty+T$ is a stopping time + $\mathbb{E}(T)<\infty$. Let $S_n=\sum_{i=1}^n X_i$, then

$$\mathbb{E} S_T^2 = \sigma^2 \mathbb{E} T$$

Martingale Convergence Theorem

If X_n is a non-negative super-martingale, the it converges to a a.s. finite X_∞ and

$$\mathbb{E}\left(X_{\infty}\right) < \mathbb{E}\left(X_{0}\right)$$

Levy's 0-1 Law

Suppose X defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and \mathcal{F}_n is a filtration, then

$$\mathbb{E}\left(X\mid\mathcal{F}_{k}
ight)
ightarrow\mathbb{E}\left(X\mid\mathcal{F}_{\infty}
ight),\quad k
ightarrow\infty$$

a.s, and L_1 .

Doob's Maximal Inequality

Suppose Y_n is a sub-martingale and $b \in \mathbb{R}$, denote $\ M_N = \max_{0 \leq n \leq N} Y_n$, then

$$b\mathbb{P}\left(M_{N}\geq b
ight)\leq\mathbb{E}\left(Y_{N}\mathbf{1}_{\left\{ M_{N}\geq b
ight\} }
ight)\leq\mathbb{E}\left(Y_{N}
ight)$$

Hint: Denote $T(\omega)=\inf\{n:Y_n(\omega)\geq b\}$ or N if it's empty and decompose $\mathbb{E}Y_T\leq \mathbb{E}Y_N$ w.r.t to the set $[M_n\leq b]\cup [M_n\geq b]$.

Remark: This inequality controls the maximum probability w.r.t the summation.

Reference

• Martingale: Lecture Notes