Correction du jour 13 : logarithme et aire

Partie A

- 1. **a.** $1 \le x \le 2 \Rightarrow 0 \le \ln x \le \ln 2 \Rightarrow 0 \le x \ln x \le 2 \ln 2 \Rightarrow 1 \le 1 + x \ln x \le 1 + 2 \ln 2$. La fonction f est positive sur [1; 2].
 - **b.** On a M(1; 1) et N(2; 1+2ln2): le coefficient directeur de la droite (MN) est $\frac{y_N y_M}{x_N x_M}$ soit $\frac{1+2\ln 2-1}{2-1} = 2\ln 2$.
 - **c.** Une équation de la tangente T_a à \mathscr{C}_f en un point de coordonnées (a; f(a)), avec $1 \le x \le 2$ est : y = f'(a)(x a) + f(a).

Or $f'(x) = \ln x + x \times \frac{1}{x} = 1 + \ln x$: deux droites sont parallèles lorsqu'elles ont le même coefficient directeur.

Donc $f'(x) = 2\ln 2 \iff 1 + \ln x = 2\ln 2 \iff \ln x = 2\ln 2 - \ln e \iff \ln x = \ln(4) - \ln e) \iff x = \frac{4}{e}$: Il existe donc un seul point E entre M et N où la tangente à la courbe est parallèle à la droite (MN).

d. D'après la question précédente l'équation de T est y = f'(a)(x - a) + f(a) avec $a = \frac{4}{e}$. L'équation de la tangente en E est donc (puisque le coefficient directeur est égal à $2 \ln 2$):

$$y = (2\ln 2)x + 1 - \frac{4}{e}$$

- **e.** f' est dérivable sur [1; 2] et $f''(x) = \frac{1}{x} > 0$: f est donc convexe sur [1; 2] et la courbe \mathscr{C}_f est au dessus de la tangente T.
- 2. **a.** On a M' $\left(1; 2\ln 2 \frac{4}{e} + 1\right)$ et N' $\left(1; 4\ln 2 \frac{4}{e} + 1\right)$. aire(MNQP) = $\frac{1}{2}(f(1) + f(2)) \times PQ = \frac{1+1+2\ln 2}{2} \times 1 = 1 + \ln 2$. aire(M'N'QP) = $\frac{2\ln 2 - \frac{4}{e} + 1 + 4\ln 2 - \frac{4}{e} + 1}{2} \times PQ = 3\ln 2 - \frac{4}{e} + 1$.
 - **b.** Avec l'hypothèse que la courbe reste sous la droite (MN) on en déduit l'encadrement :

$$1 + \ln 2 \le \mathcal{A} \le 3 \ln 2 - \frac{4}{e} + 1$$

soit $1,607 < \mathcal{A} < 1,694$

Conclusion $1,6 < \mathcal{A} < 1,7$ à 10^{-1} près

Partie B

1. Intégration par parties : u'(x) = x; $v(x) = \ln x$ Donc $u(x) = \frac{x^2}{2}$; $v'(x) = \frac{1}{x}$. Les dérivées u' et v' étant continues sur [1; 2],

$$\int_{1}^{2} x \ln x \, dx = \left[\frac{x^{2} \ln x}{2} \right]_{1}^{2} - \int_{1}^{2} \frac{x}{2} \, dx = \left[\frac{x^{2} \ln x}{2} - \frac{x^{2}}{4} \right]_{1}^{2} = \frac{4 \ln 2}{2} - 1 - 0 + \frac{1}{4} = 2 \ln 2 - \frac{3}{4}.$$

1

2. \mathscr{A} est, par définition la mesure de la surface limitée par la courbe \mathscr{C}_f , l'axe des abscisses et les droites d'équation x=1 et x=2. D'où $\mathscr{A}=\int_1^2 (1+x\ln x)\,\mathrm{d}x=\int_1^2 1\cdot\mathrm{d}x+\int_1^2 x\ln x\,\mathrm{d}x=1+2\ln 2-\frac{3}{4}=2\ln 2+\frac{1}{4}.$

D'où
$$\mathcal{A} = \int_{1}^{2} (1 + x \ln x) \, dx = \int_{1}^{2} 1 \cdot dx + \int_{1}^{2} x \ln x \, dx = 1 + 2 \ln 2 - \frac{3}{4} = 2 \ln 2 + \frac{1}{4}$$

Conclusion:
$$\mathcal{A} = 2 \ln 2 + \frac{1}{4}$$
.