Optical Bistability As Neural Network Nonlinear Activation Function

Davide Bazzanella

20th March 2018

Università degli studi di Trento

Introduction

All-optical Artificial Neural Networks

Applying integrated photonics to artificial neural networks architecture design

Develop simulations on standard software libraries that help performance comparisons

Introduction

Artificial Neural Networks

Microring Resonator

ANN Simulations

Artificial Neural Networks

ANNs

Artificial Neural Networks are computation systems, composed by a collection of nodes that work seemingly biological neurons.

ANNs blocks

ANNs are composed by single units, *nodes*, which elaborate the information in a way loosely similar to biological neurons.

What can they do?

ANNs can solve complex problems:

- classification
- clustering
- pattern recognition
- time series prediction

ANNs can solve complex problems:

- classification
- clustering
- pattern recognition
- time series prediction

ANNs can solve complex problems:

- classification
- clustering
- pattern recognition
- time series prediction

ANNs can solve complex problems:

- classification
- clustering
- pattern recognition
- time series prediction

ANNs can solve complex problems:

- classification
- clustering
- pattern recognition
- time series prediction

ANNs can obtain arbitrary decision regions¹

The amount of free parameters in an ANN, allow .

¹R. O. Duda et al., Pattern classification, (John Wiley & Sons, 2012)

- training
 - evaluate loss
 - adjust parameters
- validation
- tes

- training
 - evaluate loss
 - adjust parameters
- validation
- test

- training
 - evaluate loss
 - adjust parameters
- validation
- test

- training
 - evaluate loss
 - adjust parameters
- validation
- test

- training
 - evaluate loss
 - adjust parameters
- validation
- test

Microring Resonator

MRR

Consider a MRR in the Add-Drop Filter configuration

$$T(\omega) = f[I(\omega)]$$
$$D(\omega) = f[I(\omega)]$$

MRR

Consider a MRR in the Add-Drop Filter configuration

$$T(\omega) = f[I(\omega)]$$
$$D(\omega) = f[I(\omega)]$$

MRR

Consider a MRR in the Add-Drop Filter configuration

$$T(\omega) = f[I(\omega)]$$
$$D(\omega) = f[I(\omega)]$$

Coupling is governed by

$$\tau$$
 and κ

Theory

Linear

Theory

Nonlinear

Experiments

Setup

ANN Simulations

Simulation Framework

What means simulating? PyTorch library

Fundamental blocks

```
model (FF[f_a])
loss criteria (CEL)
weight update criteria (SGD)
```

 $\mathsf{model}\; \big(\mathit{FF}[\mathit{f_a}]\big)$

Cross-Entropy Loss (also known as negative log likelihood),

$$L(y, \hat{y}) = f_{CEL}(y, \hat{y}) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{i=1}^{C} y_{n,i} \log(\hat{y}_{n,i})$$

Stochastic Gradient Descent with momentum and learning rate scheduler.

Operation Tests

ReLU vs Sigmoid vs ffit

Conclusion

Overview

I assembled an experimental setup from scratch

I characterized the response of the MRR in several aspects

I implemented the bistable response in standard software libraries

Future Perspectives

Continue the current work with a quantitative analysis of specific features

Future Perspectives

Continue the current work with a quantitative analysis of specific features

Enhance the physical theory to describe time dependent phenomena

Future Perspectives

Continue the current work with a quantitative analysis of specific features

Enhance the physical theory to describe time dependent phenomena

Proceed with the development of the simulations to include all the characteristics of the physical system

