Karta projektu badawczo-rozwojowego

Tytuł projektu

Implementacja systemu informatycznego Genetix do obsługi procesów logistyki sprzedażowej

Numer ewidencyjny projektu

BR - logistyka - Genetix

OPIS DZIAŁAŃ BADAWCZO ROZWOJOWYCH:

Celem projektu byłą pełna implementacja w Przedsiębiorstwie nowoczesnego, zintegrowanego systemu planowania i optymalizacji procesów logistycznych opartych na platformie Genetix. Rozwiązanie objęło cyfryzację oraz automatyzację kluczowych etapów obsługi zamówień handlowych tj. od momentu przyjęcia, poprzez proces kompletacji, tworzenia jednostek ładunkowych, planowania rozmieszczenia towarów w pojazdach, aż po generowanie tras i kontrolę prawidłowości transportu i ekspedycję załadunku.

Proces spedycji w Spółce jest procesem czasochłonnym i kosztownym. Obejmuje on wszystkie czynności związane z przygotowaniem, załadunkiem i wysyłką gotowych wyrobów do klientów. Ze względu na specyfikę produkcji – okna, drzwi, rolety, konstrukcje aluminiowe i fasady – proces ten wymaga precyzyjnego planowania, odpowiedniego zabezpieczenia ładunków i ścisłej współpracy pomiędzy działem logistyki, magazynem, produkcją i transportem. Podstawowe fazy procesu spedycji wyrobów gotowych obejmują:

1. Przyjęcie zleceń do wysyłki

- Informacje o zamówieniach trafiają do działu logistyki z systemu ERP po zakończeniu produkcji lub kompletacji wyrobów.
- Zamówienia są weryfikowane pod względem kompletności, zgodności z dokumentacją oraz terminu dostawy.

2. Planowanie wysyłki

- Dział logistyki przygotowuje harmonogram wyjazdów i listę dostaw zgodnie z ustalonymi terminami.
- Ustalany jest optymalny dobór pojazdów i tras, z uwzględnieniem rodzaju towaru, wymiarów i miejsc rozładunku.
- W przypadku dużych lub niestandardowych konstrukcji stosuje się indywidualne rozwiązania logistyczne.
- 3. Kompletacja jednostek ładunkowych
- Produkty są grupowane według tras i klientów.
- Wykorzystywane są specjalistyczne nośniki stojaki transportowe, palety, kosze lub skrzynie.
- Na etapie kompletacji stosuje się materiały ochronne (folie, gąbki, przekładki) zapobiegające uszkodzeniom.
- 4. Kontrola jakości przed załadunkiem
- Przed wysyłką każdy wyrób przechodzi kontrolę jakościową i ilościową.
- Sprawdzana jest zgodność z zamówieniem, stan techniczny oraz sposób zabezpieczenia.

Cel/ Opis nowych
zakładanych
właściwości/
funkcjonalności
rozwiązania (produktu
lub procesu)

• Tworzona jest dokumentacja wysyłkowa (listy przewozowe, specyfikacje).

5. Załadunek

- Proces załadunku jest planowany tak, aby zapewnić optymalne wykorzystanie przestrzeni pojazdu, stabilność i bezpieczeństwo ładunku.
- Kolejność rozmieszczenia towarów w pojeździe uwzględnia harmonogram rozładunku u klientów.
- Przy załadunku dużych gabarytów stosuje się dźwigi, wózki widłowe lub specjalistyczne systemy podnośnikowe.
- 6. Dokumentacja i przekazanie towaru
- Do każdej przesyłki dołączana jest pełna dokumentacja: faktura, list przewozowy, instrukcje montażu (jeśli wymagane).
- Kierowca otrzymuje również harmonogram dostaw i kontakty do odbiorców.
- 7. Transport i dostawa
- Pojazdy realizują dostawy według ustalonego planu tras.
- Kierowcy są instruowani w zakresie obchodzenia się z towarem i procedur odbioru u klienta.
- W przypadku transportów międzynarodowych uwzględniane są procedury celne.
- 8. Potwierdzenie dostawy i zamknięcie zlecenia
- Po dostarczeniu towaru odbiorca potwierdza odbiór w dokumentacji przewozowej.
- Informacja o realizacji dostawy jest przekazywana do systemu ERP.
- W przypadku uwag lub reklamacji uruchamiana jest procedura obsługi posprzedażowej.

Projekt odpowiadał na rosnące wymagania Spółki w zakresie sprawnej realizacji rosnącej liczby dostaw produktów do klientów, optymalnego wykorzystania przestrzeni transportowej oraz minimalizacji kosztów transportu (poprzez optymalizację powierzchni załadunkowej) i eliminacji ryzyka błędów kompletacji.

System Genetix miał stanowić przeciwwagę dla obecnego w firmie manualnego planowania załadunków i umożliwił automatyczne przetwarzanie danych z systemów ERP i WMS, zastosowanie algorytmów optymalizacyjnych oraz wizualizacji 3D, co istotnie wpłynęło na usprawnienie procesów.

Cele szczegółowe projektu:

- 1. Cyfryzacja planowania kompletacji zastąpienie manualnych operacji w pełni zautomatyzowanym procesem opartym na danych w czasie rzeczywistym.
- 2. Integracja systemów IT zapewnienie płynnej wymiany danych pomiędzy ERP, WMS a Genetix w celu eliminacji konieczności ręcznego wprowadzania informacji.
- 3. Optymalizacja wykorzystania przestrzeni ładunkowej wdrożenie algorytmów analizujących wymiary i wagę jednostek ładunkowych oraz proponujących ich najlepsze rozmieszczenie w pojeździe.
- 4. Zwiększenie elastyczności możliwość obsługi zamówień nietypowych, gabarytowych, wymagających indywidualnego planowania nośników i zabezpieczeń.
- 5. Redukcja błędów i reklamacji wprowadzenie mechanizmów kontroli poprawności kompletacji i zgodności załadunku z planem.
- 6. Poprawa jakości obsługi klienta zwiększenie terminowości dostaw, przewidywalności czasu dostawy i bezpieczeństwa transportu.

System Genetix wprowadził zestaw innowacyjnych funkcji wspierających proces logistyczny:

- Automatyczny import zamówień dane pobierane z ERP są przetwarzane w czasie rzeczywistym, co eliminuje ryzyko błędów i opóźnień.
- Inteligentne planowanie kompletacji grupowanie produktów na odpowiednich nośnikach z uwzględnieniem wymiarów, wagi i zasad transportowych.
- Algorytmy optymalizacji 3D analiza przestrzenna umożliwiająca maksymalne wykorzystanie przestrzeni pojazdu przy jednoczesnym zachowaniu bezpieczeństwa przewozu.
- Planowanie tras dostaw generowanie optymalnych tras na podstawie lokalizacji punktów, dostępności pojazdów, czasu przejazdu i kosztów.
- Integracja z WMS przekazywanie planów kompletacji do magazynu oraz pobieranie informacji o statusie realizacji.
- Weryfikacja załadunku systemowa kontrola zgodności załadunku z planem, co zmniejsza liczbę pomyłek.
- Obsługa zamówień specjalnych ręczne definiowanie parametrów dla niestandardowych ładunków i nośników.
- Raportowanie i analityka tworzenie raportów dotyczących efektywności załadunków, wykorzystania pojazdów, błędów i reklamacji.

Mierzalne rezultaty związane z implementacją systemu Genetix:

- Skrócenie czasu planowania kompletacji i załadunku o minimum 30%.
- Redukcja pustych przestrzeni w pojazdach o 15–20%.
- Obniżenie liczby błędów kompletacyjnych o co najmniej 50%.
- Zmniejszenie czasu dostaw poprzez lepsze planowanie tras.
- Wzrost satysfakcji klienta i spadek liczby reklamacji.
- Poprawa rentowności transportu dzięki optymalizacji zasobów.
- Bazy wiedzy o procesach logistycznych umożliwiająca dalszą analizę w celach ciągłej optymalizacji procesów logistyki.

Wdrożenie systemu Genetix zostało realizowane w oparciu o iteracyjną metodykę zarządzania projektami, łączącą elementy podejścia klasycznego (waterfall) z elastycznością metodyk zwinnych (Agile). Podejście takie zapewniło możliwości bieżącej weryfikacji postępów, dostosowywania zakresu i funkcjonalności systemu do realnych potrzeb użytkowników oraz minimalizacja ryzyka niepowodzenia projektu. Projekt został dzielony jest na krótkie cykle realizacyjne (iteracje), w ramach których dostarczane były kolejne, działające komponenty systemu. Każda iteracja obejmuje analizę, projektowanie, konfigurację, testy oraz wdrożenie części funkcjonalności. Po zakończeniu iteracji następuje przegląd i odbiór wytworzonych elementów oraz ewentualne wprowadzenie poprawek i dostosowań. Harmonogram i priorytety funkcji były modyfikowane na podstawie wyników poprzednich iteracji i bieżących potrzeb biznesowych.

Fazy projektu w ujęciu iteracyjnym

Faza 1 – Analiza i planowanie

- Zebranie wymagań biznesowych od kluczowych użytkowników.
- Identyfikacja procesów logistycznych, które będą objęte cyfryzacją.
- Określenie priorytetów funkcjonalnych (np. moduł kompletacji, planowania tras, integracji z ERP/WMS).
- Opracowanie wstępnej mapy iteracji.

Faza 2 – Projektowanie rozwiązania

- Przygotowanie architektury systemu i integracji.
- Zdefiniowanie struktur danych, mapowanie pól pomiędzy Genetix a ERP/WMS.

Projektowanie interfejsów użytkownika.

Faza 3 – Iteracyjne wdrożenia modułów

Każda iteracja obejmuje:

- 1. Konfigurację funkcjonalności w systemie Genetix.
- 2. Integrację z wybranymi elementami ERP/WMS.
- 3. Testy jednostkowe i testy akceptacyjne z udziałem użytkowników.
- 4. Wdrożenie próbne w wybranym obszarze operacyjnym.
- 5. Zbieranie feedbacku od zespołu operacyjnego i korekta ustawień.

Faza 4 – Szkolenia

- W każdej iteracji, po wdrożeniu nowej funkcjonalności, prowadzone są krótkie sesje szkoleniowe dla użytkowników końcowych.
- Szkolenia mają charakter warsztatowy, oparte są na rzeczywistych danych i przypadkach.

Faza 5 – Wdrożenie końcowe

- Po zakończeniu wszystkich iteracji system zostaje wdrożony w pełnym zakresie funkcjonalnym.
- Obejmuje to uruchomienie wszystkich modułów, integracji i mechanizmów raportowania.
- Wprowadzane są ostatnie poprawki i optymalizacje.

Faza 6 – Stabilizacja i wsparcie powdrożeniowe

- Monitorowanie działania systemu w środowisku produkcyjnym.
- Bieżące usuwanie usterek i dostosowania na podstawie uwag użytkowników.
- Dokumentacja końcowa i przekazanie systemu do utrzymania.

Harmonogram w modelu iteracyjnym

- Iteracja 1: Integracja z ERP, podstawowe moduły kompletacji.
- Iteracja 2: Moduł optymalizacji 3D i planowania tras.
- Iteracja 3: Moduł kontroli załadunku i raportowania.
- Iteracja 4: Obsługa zamówień specjalnych i pełna integracja z WMS.
- Iteracja 5: Rozszerzenia, optymalizacje, pełne uruchomienie.

Fazy projektu w ujęciu iteracyjnym po Stronie Spółki

Etap 1 – Przygotowanie integracji

Zaangażowane działy: IT, Logistyka, Produkcja, Magazyn, Administracja

- Dział IT: przygotowanie infrastruktury serwerowej i sieciowej, zapewnienie kompatybilności z systemem Kantor.
- Logistyka i Magazyn: dostarczenie map procesów, list towarowych, formatów etykiet i specyfikacji kompletacji.
- Produkcja: opisanie wymagań dot. przekazywania statusów produkcji do systemu Genetix.
- Administracja: wsparcie formalne, podpisanie dokumentów, ustalenie harmonogramu z wykonawcą.

Etap 2 – Instalacja testowa

Zaangażowane działy: IT, Logistyka, Magazyn

- IT: przygotowanie środowiska testowego (serwer, bazy danych, dostęp VPN).
- Magazyn: przygotowanie próbnych danych do testów (listy zamówień, numery partii).
- Logistyka: przygotowanie testowych tras i planów dostaw.

Etap 3 – Konfiguracja wstępna

Zaangażowane działy: IT, Logistyka

- IT: ustawienie parametrów integracji, uruchomienie podstawowych modułów.
- Logistyka: weryfikacja ustawień kompletacji i tras.

Etap 4 – Szkolenia użytkowników

Zaangażowane działy: Wszystkie działy operacyjne + Administracja

- Magazyn: szkolenie z obsługi terminali, skanerów i kompletacji w systemie Genetix.
- Logistyka: szkolenie z planowania tras i optymalizacji.
- IT: szkolenie administracyjne (backup, monitoring, nadawanie uprawnień).
- Administracja: szkolenie z raportów i zestawień.

Etap 5 – Konfiguracja końcowa

Zaangażowane działy: IT, Logistyka, Magazyn

- Wprowadzanie uwag z testów i szkoleń.
- Dostosowanie ustawień do procesów Witraż (np. specyficzne etykiety, formaty raportów).

Etap 6 – Moduły specjalne

Zaangażowane działy: Logistyka, Magazyn

 Konfiguracja modułów specjalnych, np. wizualizacja załadunku w 3D, obsługa zamówień niestandardowych.

Etap 7 – Instalacja produkcyjna

Zaangażowane działy: IT, Magazyn

- IT: wdrożenie na serwerach produkcyjnych, uruchomienie systemu monitoringu i kopii zapasowych.
- Magazyn: przygotowanie do pracy w nowym systemie (rozmieszczenie stanowisk, terminali).

Etap 8 – Start produkcyjny

Zaangażowane działy: Wszystkie operacyjne

- Pierwsze realizacje zleceń w Genetix w pełnej skali.
- Monitorowanie wydajności i eliminacja błędów.

Etap 9 – Wsparcie powdrożeniowe

Zaangażowane działy: IT, Logistyka, Magazyn

- IT: szybkie reagowanie na błędy, wsparcie przy awariach.
- Logistyka i Magazyn: zgłaszanie problemów i propozycji usprawnień.

Podstawowe etapy projektu

Numer etapu	Nazwa etapu	Data realizacji
1.	Analiza przedwdrożeniowa i Przygotowanie integracji	01.2024 - 05.2024
2.	Projektowanie integracji – Instalacja testowa	06.2024 – 07.2024
3.	Konfiguracja i personalizacja modułów - wstępna	08.2024 – 08.2024
4.	Budowa bazy parametrów logistycznych	08.2024 – 11.2024
5.	Testy funkcjonalne i integracyjne	08.2024 – 11.2024
6.	Szkolenie pracowników	10.2024 – 11.2024
7.	Instalacja produkcyjna	10.2024
8.	Start produktowy	11.2024
9.	Testowanie powdrożeniowe	08.2024 – 11.2024

Wykaz najważniejszych problemów badawczych oraz sposób ich rozwiązania

- 1. Integracja z istniejącymi systemami (ERP/Kantor)
- Problem: Dotychczasowe systemy wykorzystywane w firmie Witraż nie posiadały natywnych interfejsów do wymiany danych z Genetix. Istniało ryzyko braku spójności danych między modułami magazynowymi, produkcyjnymi i księgowymi.
- Rozwiązanie: Przeprowadzono szczegółową analizę interfejsów API i struktur baz danych obu systemów. Stworzono dedykowaną warstwę integracyjną, umożliwiającą automatyczne przesyłanie zamówień, statusów produkcji i informacji o zapasach w czasie rzeczywistym.
- 2. Odwzorowanie procesów logistycznych w systemie
- Problem: Procesy kompletacji i ekspedycji w Witraż są częściowo niestandardowe (m.in. obsługa zamówień niestandardowych, pakowanie elementów o dużych gabarytach). Istniało ryzyko, że standardowe moduły Genetix nie będą w pełni odpowiadały specyfice pracy.
- Rozwiązanie: Wdrożono dodatkowe moduły konfiguracyjne oraz wprowadzono reguły biznesowe dostosowane do specyficznych scenariuszy, takich jak kompletacja wieloetapowa czy pakowanie elementów o zmiennej masie i objętości.
- 3. Optymalizacja rozmieszczenia towarów w magazynie

Problem: Brak systematycznych narzędzi do analizy rotacji towarów powodował, że część magazynu była wykorzystywana nieefektywnie, a proces kompletacji zajmował zbyt dużo czasu.

- Rozwiązanie: Zaimplementowano algorytmy optymalizacji lokalizacji towarów na podstawie historii zamówień i prognoz sprzedaży. System automatycznie proponuje rozmieszczenie, skracając ścieżki kompletacyjne o ok. 15–20%.
- 4. Wsparcie procesów załadunku i transportu
- Problem: Brak narzędzia do automatycznej optymalizacji załadunku pojazdów powodował, że proces ten był czasochłonny i obarczony ryzykiem błędów (np. przekroczenie masy, nieoptymalne rozmieszczenie ładunku).
- Rozwiązanie: Wdrożono moduł wizualizacji załadunku 3D w Genetix, pozwalający planować rozmieszczenie palet i towarów w przestrzeni ładunkowej z uwzględnieniem kolejności rozładunku.
- 5. Akceptacja i szkolenie pracowników
- Problem: Część pracowników miała ograniczone doświadczenie w pracy z nowoczesnymi systemami WMS/TMS, co mogło wydłużyć czas adaptacji.
- Rozwiązanie: Wdrożono cykl szkoleń praktycznych i warsztatów w magazynie, w których pracownicy ćwiczyli scenariusze kompletacji i ekspedycji na rzeczywistych zamówieniach testowych.
- 6. Zapewnienie ciągłości pracy podczas migracji
- Problem: Ryzyko zakłóceń w obsłudze zamówień podczas przejścia ze starego systemu na Genetix.
- Rozwiązanie: Wprowadzono strategię równoległej pracy systemów przez okres przejściowy, co pozwoliło płynnie przenieść procesy i zweryfikować ich poprawność przed pełnym przełączeniem.

Wykaz najważniejszych problemów badawczych oraz sposób ich rozwiązania

Podstawowe prace o charakterze twórczym w projekcie

- 1. Opracowanie i dostosowanie modelu integracji systemów IT
 - Stworzenie dedykowanej architektury wymiany danych pomiędzy istniejącym systemem ERP/Kantor a 4LS Genetix, obejmującej mechanizmy mapowania pól, konwersji danych oraz obsługi wyjątków.
 - Implementacja nowatorskich rozwiązań do synchronizacji informacji w trybie niemal rzeczywistym, minimalizujących opóźnienia w aktualizacji statusów zamówień, produkcji i stanów magazynowych.

Podstawowe prace o charakterze twórczym w projekcie

- 2. Projektowanie reguł biznesowych i scenariuszy procesowych w Genetix
 - Stworzenie niestandardowych algorytmów kompletacji towarów uwzględniających zmienność zamówień, specyfikę gabarytów i wymogi transportowe.
 - Opracowanie logiki obsługi zamówień specjalnych (np. produkty wielkogabarytowe, zestawy niestandardowe, towar wymagający specjalnego opakowania).
- 3. Tworzenie i konfiguracja modułu optymalizacji załadunku 3D
 - Implementacja algorytmu automatycznej wizualizacji i rozmieszczenia towaru w przestrzeni ładunkowej z uwzględnieniem kolejności rozładunku, masy, wymiarów i ograniczeń bezpieczeństwa.
 - Wprowadzenie rozwiązań minimalizujących puste przestrzenie oraz liczbę kursów transportowych.
- 4. Rozwój metod analizy rotacji i rozmieszczenia towarów
 - o Zbudowanie modelu analitycznego na bazie danych historycznych, prognoz sprzedaży i sezonowości popytu.
 - Opracowanie autorskich procedur rekomendacji rozmieszczenia towarów w magazynie, które skracają ścieżki kompletacyjne i redukują czas realizacji zamówienia.
- 5. Projektowanie interfejsów użytkownika i ergonomii pracy
 - Stworzenie ekranów i raportów dopasowanych do realnych warunków pracy w magazynie, uwzględniających minimalną liczbę kliknięć i intuicyjne rozmieszczenie funkcji.
 - Udoskonalenie modułów mobilnych dla pracowników magazynu w oparciu o obserwacje z fazy testowej.
- 6. Testowanie i walidacja innowacyjnych rozwiązań w warunkach rzeczywistych
 - Prowadzenie serii eksperymentów w magazynie z wykorzystaniem danych operacyjnych.
 - o Iteracyjne poprawki na podstawie obserwacji, raportów wydajności i sugestii użytkowników.
- 7. Stworzenie dokumentacji wdrożeniowej i procedur operacyjnych
 - Opracowanie unikalnych instrukcji i procedur wspierających użytkowników w pracy z nowym systemem.
 - Włączenie do dokumentacji wyników analiz, konfiguracji modułów i rekomendacji dla dalszego rozwoju systemu.

Poziom innowacyjności projektu

Innowacja w skali przedsiębiorstwa	Innowacja w skali kraju	
Tak	Nie	

Projekt implementacji systemu Genetix stanowił kompleksowe przedsięwzięcie mające na celu pełną cyfryzację i optymalizację procesów logistycznych związanych z realizacją dostaw wyrobów gotowych.

Podsumowanie projektu

z systemów ERP i WMS są automatycznie przetwarzane przez moduły optymalizacyjne Genetix, umożliwiające m.in. planowanie przestrzenne załadunków w technologii 3D, generowanie optymalnych tras dostaw oraz systemową weryfikację poprawności kompletacji.

Rozwiązanie wprowadziło zintegrowany ekosystem informatyczny, w którym dane

Najważniejsze osiągnięcia projektu:

- Pełna cyfryzacja planowania kompletacji eliminacja ręcznych operacji na rzecz automatycznego przetwarzania danych w czasie rzeczywistym.
- Integracja systemów IT płynny przepływ informacji między ERP, WMS i Genetix, bez konieczności ręcznego wprowadzania danych.
- Rozwój narzędzi analitycznych dostęp do raportów i analiz efektywności procesów, umożliwiających dalszą optymalizację logistyki.

	Projekt został realizowany w metodyce iteracyjnej, łączącej zalety podejścia tradycyjnego i zwinnego. Dzięki temu możliwe było bieżące dostosowywanie funkcjonalności do realnych potrzeb operacyjnych, testowanie rozwiązań w warunkach rzeczywistych oraz stopniowe wdrażanie kolejnych modułów w środowisku produkcyjnym.	
	Wdrożenie zaangażowało kluczowe działy firmy – IT, logistykę, magazyn, produkcję i administrację – co zapewniło nie tylko wysoką jakość konfiguracji systemu, ale też lepsze dostosowanie narzędzia do specyfiki przedsiębiorstwa.	
	Efektem końcowym jest sprawny, zintegrowany system zarządzania procesem ekspedycji, który znacząco zwiększył wydajność operacyjną, zredukował koszty transportu oraz podniósł satysfakcję klientów.	
Dokumentacja projektowa (załączniki do karty projektu)		
1.	Analiza przedwdrożeniowa - SYSTEM GENETIX DLA FIRMY WITRAŻ v 1.0 i v 1.1	
2.	Umowa współpracy z firmą informatyczną 4LS z dnia 16.07.2024	
3.	Oferta z dnia 28.05.2024	
4.	Protokół szkolenia z dn. 06.12.2024	