Selective Transparent Headphone

Zichao Wang, Tianyi Yao, Stephen Xia, Shengjia Zhao

Rice University Department of Electrical and Computer Engineering

Objective

Explore ways to build a selective transparent headphone that propagates speech signal and attenuates all other types of signals.

Project Overview

- Since our objective is to blindly separate an input signal into its principal/independent components, we will use independent component analysis to separate the signal into its components.
- Then, we will utilize a neural network to select which output signal, if any, contains human speech, and forward it to the output.

Independent Component Analysis

- Problem formulation:
 - y = input signals (sound mixtures)
 - s = original sources
- ICA attempts to find the independent sources (individual sounds) that comprise an input signal by solving the following formulation for *A*⁻¹

$$y = As$$

• A is the mixing matrix used to combine the original sources, s, to obtain the observed input signals, y.

Blind Source Separation (BSS)

 Transform M microphone inputs into frequency domain by taking the short-time Fourier transform (STFT).

$$x(\omega,t) = [\boldsymbol{X}_{1}(\omega,t),...,\boldsymbol{X}_{M}(\omega,t)]^{T}$$

• Find subspace filter to reduce reflections and ambient sound.

$$W(\omega) = \Lambda_{\rm s}^{-1/2} E_{\rm s}^H$$

• Find ICA filter matrix, $U(\omega)$, for all sampled frequencies.

• Separation filter: $B(\omega) = U(\omega)W(\omega)$

• Scaling filter: $\widetilde{B}_{m}^{+}(\omega) = diag[B_{m,1}^{+},...,B_{m,D}^{+}]$

Permutation filter: $F(P) = \frac{1}{D} \sum_{n=1}^{D} \cos \theta_n$

• Final filter: $F(\omega) = P(\omega)\widetilde{B}_m^+(\omega)B(\omega)$

Neural Network

- We used a three-layer neural network to distinguish between human speech and background noise.
- More specifically, our neural network consists of an input layer, a
 hidden layer, and an output layer and uses the backpropagation
 algorithm and gradient descent to minimize the cost function.

System Block Diagram

Results

Figure 1: Mixed signal observed at 1st microphone

Figure 3: Estimate source signal one – human speech

Figure 5: Accuracy of neural network

Figure 2: Mixed signal observed at 2nd microphone

Figure 4: Estimated source signal two – music

	Parameters
Sampling Rate	16 kHz
Length of STFT	512
Number of FFT	4096
Points	
Overlap	492
Number of inputs	2
Permutation	5
Reference Range	

Figure 6: Input parameters into the system.

Conclusion and Future Steps

- Figures 3 and 4 show that our BSS method is able to separate an input signal into two independent and distinct sources.
- Our neural network can perform binary classification with 98.6% accuracy.
- Implementation in real-time.
- Explore possibility to separate sources from more than two inputs.

References and Acknowledgements

- Hyvärinen, Aapo, and Erkki Oja. "Independent component analysis: algorithms and applications." Neural networks 13.4 (2000): 411-430.
- Asano, Futoshi, et al. "Combined approach of array processing and independent component analysis for blind separation of acoustic signals." Speech and Audio Processing, IEEE Transactions on 11.3 (2003): 204-215.
- Special thanks to Professor Richard Baraniuk and Dr. Mohammad Golbabaee.