振り返りと導入

前回は自然パラメータ空間に Fisher 計量を定義した。本稿では次のことを行う:

• 最小次元実現の間のアファイン変換の存在と一意性を示す。

X を可測空間、 $\mathcal{P} \subset \mathcal{P}(X)$ を X 上の指数型分布族とする。新たな記号として次の 2 つを導入しておく。

定義 0.1. (V,T,μ) を \mathcal{P} の実現、 ψ を (V,T,μ) の対数分配関数とする。

$$P_{(V,T,\mu)} : \Theta_{(V,T,\mu)} \to \mathcal{P}(X), \quad \theta \mapsto \exp(\langle \theta, T(x) \rangle - \psi(\theta)) \cdot \mu$$
 (0.1)

と定義する。

定義 0.2 (真パラメータ空間). (V,T,μ) を \mathcal{P} の実現とする。

$$\Theta_{(V,T,\mu)}^{\mathcal{P}} := P_{(V,T,\mu)}^{-1}(\mathcal{P}) \tag{0.2}$$

を \mathcal{P} の (V,T,μ) に関する真パラメータ空間 (strict parameter space) という。

以降、 \mathcal{P} の実現 (V,T,μ) , (V',T',μ') に対し、 $P_{(V,T,\mu)}$, $P_{(V',T',\mu')}$ を P,P' と略記したり、 $\Theta^{\mathcal{P}}_{(V,T,\mu)}$, $\Theta^{\mathcal{P}}_{(V',T',\mu')}$ を $O^{\mathcal{P}}$ と略記したりすることがある。

1 最小次元実現の間のアファイン変換

本節の目標は、最小次元実現の間のアファイン変換の一意存在を述べた定理 1.12 の証明である。本節では、定理などのステートメントを簡潔にするために圏の言葉を用いる。

命題-定義 1.1. 次のデータにより圏が定まる:

- 対象: P の実現 (V,T,μ) 全体
- 射: (V, T, μ) から (V', T', μ') への射は、V から V' への全射アファイン写像 (L, b) $(L \in \text{Lin}(V, V'), b \in V')$ であって T'(x) = L(T(x)) + b μ -a.e.x をみたすもの
- 合成: アファイン写像の合成 $(L,b) \circ (K,c) = (LK,Lc+b)$

この圏を $C_{\mathcal{P}}$ と書く。

証明 示すべきことは、射の合成が射であること、恒等射の存在、結合律の 3 点である。射の合成が射であることは、全射と全射の合成が全射であることと、 μ と μ' が互いに絶対連続であることから従う。また、 (V,T,μ) の恒等射は明らかに恒等写像 $(\mathrm{id}_V,0)$ であり、結合律はアファイン写像の合成の結合律より従う。

最小次元実現を特徴づける2つの条件を導入する。

命題-定義 1.2 (条件 A). \mathcal{P} の実現 (V, T, μ) に関する次の条件は同値である:

(1) $P: \Theta \to \mathcal{P}(X)$ は単射である。

- (2) $\forall \theta \in V^{\vee}$ に対し「 $\langle \theta, T(x) \rangle$ = const. μ -a.e. $x \implies \theta = 0$ 」が成り立つ。
- (3) V の任意の真アファイン部分空間 W に対し、「 $T(x) \in W$ μ -a.e.x でない」が成り立つ。

これらの条件が成り立つとき、 (V,T,μ) は**条件 A** をみたすという。

証明 (1) ← (2) は 0502_資料.pdf の命題 2.2 で示した。(2) ← (3) は 0523_コメント.pdf の命題 0.4 に記した。

定義 1.3 (条件 B). \mathcal{P} の実現 (V,T,μ) に関する条件

(1) $\Theta^{\mathcal{P}} \bowtie V^{\vee} \& \text{ affine span } 5_{\circ}$

が成り立つとき、 (V,T,μ) は**条件 B** をみたすという。

条件 A は射の一意性を保証する。

命題 1.4 (条件 A をみたす対象からの射の一意性). $(V,T,\mu),(V',T',\mu')$ を $\mathbf{C}_{\mathcal{P}}$ の対象とする。このとき、 (V,T,μ) が条件 A をみたすならば、 (V,T,μ) から (V',T',μ') への射は一意である。

証明 (L,b), (K,c) を (V,T,μ) から (V',T',μ') への射とする。射の定義より

$$\begin{cases} T'(x) = L(T(x)) + b & \mu\text{-a.e.}x \\ T'(x) = K(T(x)) + c & \mu\text{-a.e.}x \end{cases}$$
 (1.1)

が成り立つから、2式を合わせて

$$(K - L)(T(x)) = b - c$$
 μ -a.e. x (1.2)

となる。そこで基底を固定して成分ごとに (V,T,μ) の条件 A(2) を適用すれば、K=L を得る。よって上式で K=L として b=c μ -a.e. したがって b=c を得る。以上より (L,b)=(K,c) である。

射が存在するための十分条件を調べる。

命題 1.5 (条件 A, B をみたす対象への射の存在). (V,T,μ) を $\mathbf{C}_{\mathcal{P}}$ の対象とする。このとき、 (V,T,μ) が 条件 A と条件 B をみたすならば、任意の対象(V',T',μ)(V',T',μ) から (V,T,μ) への射が存在する。

この命題の証明には次の補題を用いる。

補題 1.6. $(V,T,\mu),(V',T',\mu')$ を $\mathbf{C}_{\mathcal{P}}$ の対象とし、 $\theta\colon\mathcal{P}\to\Theta^{\mathcal{P}}$ および $\theta'\colon\mathcal{P}\to\Theta'^{\mathcal{P}}$ を P,P' の右逆写像とする。 このとき、任意の $p,q\in\mathcal{P}$ に対し、

$$\langle \theta(p) - \theta(q), T(x) \rangle - \psi(\theta(p)) + \psi(\theta(q))$$

$$= \langle \theta'(p) - \theta'(q), T'(x) \rangle - \psi'(\theta'(p)) + \psi'(\theta'(q))$$
(1.3)

が成り立つ。

証明 $p,q\in \mathcal{P}$ を任意とすると、指数型分布族の定義と μ,μ' が互いに絶対連続であることより、 μ -a.e.x に対し

$$\frac{dp}{d\mu}(x) = \exp(\langle \theta(p), T(x) \rangle - \psi(\theta(p))), \qquad \frac{dp}{d\mu'}(x) = \exp(\langle \theta'(p), T'(x) \rangle - \psi'(\theta'(p)))$$

$$\frac{dq}{du}(x) = \exp(\langle \theta(q), T(x) \rangle - \psi(\theta(q))), \qquad \frac{dq}{du'}(x) = \exp(\langle \theta'(q), T'(x) \rangle - \psi'(\theta'(q)))$$
(1.4)

が成り立つ。さらにp,qが互いに絶対連続であることから、 μ -a.e.xに対し

$$\frac{dp}{dq}(x) = \frac{dp}{d\mu}(x) \left| \frac{dq}{d\mu}(x) \right| = \exp\left\{ \langle \theta(p) - \theta(q), T(x) \rangle - \psi(\theta(p)) + \psi(\theta(q)) \right\}$$
(1.5)

$$\frac{dp}{dq}(x) = \frac{dp}{d\mu'}(x) \left| \frac{dq}{d\mu'}(x) = \exp\left\{ \langle \theta'(p) - \theta'(q), T'(x) \rangle - \psi'(\theta'(p)) + \psi'(\theta'(q)) \right\} \right. \tag{1.6}$$

が成り立つ。log をとって補題の主張の等式を得る。

命題 **1.5** の証明 <u>Step 0: V, V^{\vee} の基底を選ぶ</u> (V, T, μ) の条件 B より、 V^{\vee} のあるアファイン基底 $a^{i} \in \Theta^{\mathcal{P}}$ (i = 0, ..., m) が存在する。そこで $e^{i} := a^{i} - a^{0} \in V^{\vee}$ (i = 1, ..., m) とおくとこれは V^{\vee} の基底である。 さらに e^{i} の双対基底を V の元と同一視したものを $e_{i} \in V$ (i = 1, ..., m) とおいておく。

Step 1: 射 (L,b) の構成 P,P' の右逆写像 $\theta: \mathcal{P} \to \Theta^{\mathcal{P}}$ および $\theta': \mathcal{P} \to \Theta'^{\mathcal{P}}$ をひとつずつ選んで $p^i := P(a^i) \in \mathcal{P} \ (i=0,\ldots,m)$ とおき、(L,b) を次のように定める:

$$L: V' \to V, \quad t' \mapsto \langle \theta'(p^i) - \theta'(p^0), t' \rangle e_i$$
 (1.7)

$$b := \{ \psi(\theta(p^i)) - \psi(\theta(p^0)) - \psi'(\theta'(p^0)) + \psi'(\theta'(p^0)) \} e_i \in V$$
(1.8)

示すべきことは、すべてのpepに対し

$$T(x) = L(T'(x)) + b \quad \mu'$$
-a.e.x (1.9)

が成り立つことと、(L,b) が全射となることである。

Step 2: T(x) = L(T'(x)) + b の証明 各 i = 1, ..., m に対し、補題 1.6 より

$$\langle \theta(p^{i}) - \theta(p^{0}), T(x) \rangle - \psi(\theta(p^{i})) + \psi(\theta(p^{0}))$$

$$= \langle \theta'(p^{i}) - \theta'(p^{0}), T'(x) \rangle - \psi'(\theta'(p^{i})) + \psi'(\theta'(p^{0}))$$

$$\mu'-\text{a.e.}x$$

$$(1.10)$$

となる。ここで (V,T,μ) の条件 A (1) より $\theta(p^i) = a^i$ が成り立つから、(1.10) より

$$\langle a^{i} - a^{0}, T(x) \rangle = \langle \theta'(p^{i}) - \theta'(p^{0}), T'(x) \rangle$$

$$+ \psi(\theta(p^{i})) - \psi(\theta(p^{0})) - \psi'(\theta'(p^{i})) + \psi'(\theta'(p^{0})) \qquad \mu'\text{-a.e.}x$$

$$(1.11)$$

したがって

$$T(x) = L(T'(x)) + b$$
 μ' -a.e. x (1.12)

が成り立つ。

<u>Step 3: (L, b) が全射であることの証明</u> L が全射であることをいえばよい。もし L が全射でなかったとすると、 $T(x) = L(T'(x)) + b \in \text{Im } L + b$ が μ' -a.e.x したがって μ -a.e.x に対し成り立つことになるが、Im L + b は V の真アファイン部分空間だから (V, T, μ) の条件 A (3) に反する。したがって L は全射である。

П

各条件をみたさない場合にも、射が存在する。

補題 1.7 (条件 A をみたさない対象からの射の存在). (V,T,μ) を $\mathbf{C}_{\mathcal{P}}$ の対象とする。このとき、 (V,T,μ) が条件 A をみたさないならば、 (V,T,μ) よりも次元の小さいある対象 (V',T',μ') への射 $(V,T,\mu) \to (V',T',\mu')$ が存在する。

証明 末尾の付録に記した。

補題 1.8 (条件 B をみたさない対象からの射の存在). (V,T,μ) を $\mathbf{C}_{\mathcal{P}}$ の対象とする。このとき、 (V,T,μ) が条件 B をみたさないならば、 (V,T,μ) よりも次元の小さいある対象 (V',T',μ') への射 $(V,T,\mu) \to (V',T',\mu')$ が存在 する。

証明 末尾の付録に記した。

以上の補題を用いて最小次元実現の特徴づけが得られる。

定理 1.9 (最小次元実現の特徴づけ). \mathcal{P} の実現 (V,T,μ) に関する次の条件は同値である:

- (1) (V,T,μ) は P の最小次元実現である。
- (2) (V,T,μ) は条件 A と条件 B をみたす。

証明 $(1) \Rightarrow (2)$ 最小次元実現 (V,T,μ) が条件 A, B のいずれかをみたさなかったとすると、補題 1.7, 1.8 より とくに (V,T,μ) よりも次元の小さい実現が存在することになり、矛盾が従う。

(2) ⇒(1) (V,T,μ) が条件 A と条件 B をみたすとする。 $\mathcal P$ の任意の実現 (V',T',μ') に対し、命題 1.5 より 全射線型写像 $L:V'\to V$ が存在するから、 $\dim V\leq \dim V'$ である。したがって V は $\mathcal P$ の最小次元実現である。

例 1.10 (正規分布族の最小次元実現). 定理 **1.9** により、**0425_資料.pdf** の例 **3.2** でみた正規分布族の例は最小次元実現であることがわかる。実際、 $T(x) = {}^t(x, x^2)$ の像は \mathbb{R}^2 のいかなる真アファイン部分空間にも a.e. で含まれることはないから、条件 A (3) が成り立つ。また、 $\Theta^{\mathcal{P}} = \mathbb{R} \times \mathbb{R}_{<0}$ となることから条件 B も成り立つ。

本節の目標の定理を示す。

定理 1.11 (最小次元実現の間のアファイン変換). (V,T,μ) , (V',T',μ') がともに最小次元実現ならば、 (V,T,μ) から (V',T',μ') への射 (L,b) がただひとつ存在する。さらに、L は線型同型写像である。

証明 命題 1.4, 1.5 より、射 (L,b): $(V,T,\mu) \to (V',T',\mu')$ はただひとつ存在する。また、命題 1.5 より存在する射 $(V',T',\mu') \to (V,T,\mu)$ をひとつ選んで (K,c) とおくと、合成射 $(K,c) \circ (L,b)$, $(L,b) \circ (K,c)$ は命題 1.4 より恒等射 $(\mathrm{id}_{V'},0)$, $(\mathrm{id}_{V'},0)$ に一致する。したがって L は線型同型写像である。

同じことを圏の言葉を使わずに言い換えると次のようになる。

定理 1.12 (最小次元実現の間のアファイン変換). $(V,T,\mu),(V',T',\mu')$ を $\mathbf{C}_{\mathcal{P}}$ の対象とする。このとき、 $(V,T,\mu),(V',T',\mu')$ がともに最小次元実現ならば、全射線型写像 $L:V\to V'$ とベクトル $b\in V'$ であって

$$T(x) = L(T'(x)) + b$$
 $T'(x) = L(T(x)) + b$ μ -a.e. x (1.13)

をみたすものがただひとつ存在する。さらに、Lは線型同型写像である。

系 1.13 (自然パラメータの変換). 上の定理の状況で、さらに $\theta^0 \in V^\vee$ であって

$$\theta'(p) = {}^{t}L(\theta(p)) + \theta^{0} \quad \theta(p) = {}^{t}L(\theta'(p)) + \theta^{0} \quad (\forall p \in \mathcal{P})$$
(1.14)

をみたすものがただひとつ存在する。ただし写像 $\theta: \mathcal{P} \to \Theta^{\mathcal{P}}$ および $\theta': \mathcal{P} \to \Theta'^{\mathcal{P}}$ は P,P' の $\Theta^{\mathcal{P}},\Theta'^{\mathcal{P}}$ 上への 制限の逆写像である。

証明 Step 1: 一意性 θ^0 が $(V,T,\mu),(V',T',\mu')$ に対し一意であることは L,θ,θ' の一意性より明らかである。

Step 2: 存在 $q \in \mathcal{P}$ をひとつ選んで $\theta^0 := -{}^tL(\theta(q)) + \theta'(q) \in V^\vee$ と定め、この θ^0 が (1.14) をみたすことを示せばよい。そこで $p \in \mathcal{P}$ を任意とすると、補題 1.6 より

$$\langle \theta(p) - \theta(q), T(x) \rangle - \psi(\theta(p)) + \psi(\theta(q))$$

$$= \langle \theta'(p) - \theta'(q), T'(x) \rangle - \psi'(\theta'(p)) + \psi'(\theta'(q))$$

$$\mu\text{-a.e.}x$$
(1.15)

が成り立ち、さらに (1.13) より

$$\langle \theta(p) - \theta(q), L(T(x)) + b \rangle - \psi(\theta(p)) + \psi(\theta(q))$$

$$= \langle \theta'(p) - \theta'(q), T'(x) \rangle - \psi'(\theta'(p)) + \psi'(\theta'(q))$$
(1.16)

が成り立つから、式を整理して

$$\langle {}^{t}L(\theta(p) - \theta(q)) - (\theta'(p) - \theta'(q)), T'(x) \rangle$$

$$= -\langle \theta(p) - \theta(q), b \rangle + \psi(\theta(p)) - \psi(\theta(q)) - \psi'(\theta'(p)) + \psi'(\theta'(q))$$

$$(1.17)$$

となる。この右辺はxによらないから、 (V',T',μ') の条件A(2)より

$${}^{t}L(\theta(p) - \theta(q)) - \theta'(p) - \theta'(q) = 0 \tag{1.18}$$

$$\therefore \qquad {}^{t}L(\theta(p)) + \theta^{0} = \theta'(p) \tag{1.20}$$

が成り立つ。 $p \in \mathcal{P}$ は任意であったから、(1.14) の成立が示された。

今後の予定

- 指数型分布族 *P* 自体に構造を入れる。
- Amari-Chentsov テンソルを定義する。
- 正規分布族の場合の具体的な計算を行う (Fisher 計量、Levi-Civita 接続、測地線など)。

参考文献

[Ama16] Shun-ichi Amari, **Information Geometry and Its Applications**, Applied Mathematical Sciences, vol. 194, Springer Japan, Tokyo, 2016 (en).

[BN78] O. E. Barndorff-Nielsen, **Information and exponential families: In statistical theory**, Wiley, 1978. [Yos] Taro Yoshino, **bn1970.pdf**, Dropbox.

付録

補題 1.7 の証明 (V,T,μ) が条件 A をみたさないという仮定から、ある $\theta \in V^{\lor}$, $\theta \neq 0$ および $r \in \mathbb{R}$ が存在して

$$\langle \theta, T(x) \rangle = r \qquad \mu\text{-a.e.}x$$
 (1.21)

が成り立つ。そこで $V' := (\mathbb{R}\theta)^{\perp} = \{v \in V \mid \langle \theta, v \rangle = 0\}$ とおくと、ある可測写像 $T' : X \to V'$ および $v_0 \in V$ が存在して $T(x) = T'(x) + v_0$ (μ -a.e.x) が成り立つ。このように定めた組 (V', T', μ) が $\mathcal P$ の実現であることは一旦認めて最後に示すこととし、まず次元と射について確かめる。

まず (V',T',μ) の次元は $\dim V'=\dim V-1<\dim V$ より (V,T,μ) の次元よりも小さい。また、射影 $\pi\colon V\to V'$ をひとつ選べば、 $(\pi,0)$ は明らかに (V,T,μ) から (V',T',μ) への射を与える。

あとは (V',T',μ) が $\mathcal P$ の実現であることを示せばよい。指数型分布族の定義 (0502_資料.pdf) の条件 (E0), (E1), (E2) は明らかに成立しているから、あとは条件 (E3) を確認すればよい。そこで $p\in \mathcal P$ を任意とする。いま (V,T,μ) が $\mathcal P$ の実現であることから、ある $\theta\in V^\vee$ が存在して

$$\frac{dp}{d\mu}(x) = \frac{\exp\langle\theta, T(x)\rangle}{\int_X \exp\langle\theta, T(y)\rangle \,\mu(dy)} \qquad \mu\text{-a.e.}x$$
 (1.22)

が成り立つ。T', v_0 を用いて式変形すると、 μ -a.e.x に対し

$$\frac{dp}{d\mu}(x) = \frac{\exp\left(\langle \theta, T(x) \rangle\right)}{\int_{\mathcal{X}} \exp\left(\langle \theta, T(x) \rangle\right) \, \mu(dy)} \tag{1.23}$$

$$= \frac{\exp(\langle \theta, T'(x) \rangle + \langle \theta, v_0 \rangle)}{\int_{\mathcal{X}} \exp(\langle \theta, T'(x) \rangle + \langle \theta, v_0 \rangle) \ \mu(dy)}$$
(1.24)

$$= \frac{\exp(\langle \theta, T'(x) \rangle)}{\int_{X} \exp(\langle \theta, T'(x) \rangle) \, \mu(dy)}$$
(1.25)

が成り立つ。したがって (V',T',μ) は条件 (E3) も満たし、 \mathcal{P} の実現であることがいえた。

補題 1.8 の証明 (V,T,μ) が条件 B をみたさないとする。すると、ある真ベクトル部分空間 $W \subseteq V^{\vee}$ および $\theta_0 \in \Theta^{\mathcal{P}}$ が存在して $\operatorname{aspan} \Theta^{\mathcal{P}} = W + \theta_0$ が成り立つ。そこで $\widetilde{V} \coloneqq V/W^{\perp}$ と定め、 $\pi \colon V \to \widetilde{V}$ を自然な射影として $\widetilde{T} \coloneqq \pi \circ T \colon X \to \widetilde{V}$ と定める。また、X 上の測度 $\widetilde{\mu} \coloneqq \exp \langle \theta_0, T(x) \rangle \cdot \mu$ と定める。このように定めた組 $(\widetilde{V}, \widetilde{T}, \widetilde{\mu})$ が \mathcal{P} の実現であることは一旦認めて最後に示すこととし、まず次元と射について確かめる。

まず $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ の次元は $\dim \widetilde{V} = \dim V - \dim W^{\perp} = \dim W < \dim V^{\vee} = \dim V$ より (V,T,μ) の次元よりも小さい。また、 $(\pi,0)$ は明らかに (V,T,μ) から $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ への射を与える。

あとは $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ が $\mathcal P$ の実現であることを示せばよい。指数型分布族の定義 $(0502_$ 資料.pdf) の条件 (E0), (E1), (E3) の成立は簡単に確かめられるから、ここでは条件 (E3) だけ確かめる。そこで $p\in \mathcal P$ を任意とする。 (V,T,μ) が $\mathcal P$ の実現であることから、ある $\theta\in V^\vee$ が存在して

$$p(dx) = \frac{\exp \langle \theta, T(x) \rangle}{\int_{X} \exp \langle \theta, T(x) \rangle d\mu(x)} \mu(dx)$$
(1.26)

が成り立つ。ここで線型写像 $\langle \theta - \theta_0, \cdot \rangle : V \to \mathbb{R}$ は $\operatorname{Ker} \langle \theta_0, \cdot \rangle \supset W^{\perp}$ をみたすから、図式

$$V \xrightarrow{\langle \theta - \theta_0, \zeta \rangle} \mathbb{R}$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

を可換にする線型写像 $\widetilde{\theta}$: $\widetilde{V} \to \mathbb{R}$ すなわち線型形式 $\widetilde{\theta} \in \widetilde{V}^{\vee}$ が存在する。この $\widetilde{\theta}$ が条件 (E3) をみたすものであることを確かめればよいが、各 $x \in X$ に対し

$$\langle \widetilde{\theta}, \widetilde{T}(x) \rangle = \langle \theta - \theta_0, T(x) \rangle$$
 (1.28)

$$= \langle \theta, T(x) \rangle - \langle \theta_0, T(x) \rangle \tag{1.29}$$

が成り立つから

$$p(dx) = \frac{\exp \langle \theta, T(x) \rangle}{\int_{X} \exp \langle \theta, T(x) \rangle \ \mu(dx)} \mu(dx)$$
 (1.30)

$$= \frac{\exp\left\langle \widetilde{\theta}, \widetilde{T}(x) \right\rangle \exp\left\langle \theta_0, T(x) \right\rangle}{\int_{\mathcal{X}} \exp\left\langle \widetilde{\theta}, \widetilde{T}(x) \right\rangle \exp\left\langle \theta_0, T(x) \right\rangle \, \mu(dx)} \mu(dx) \tag{1.31}$$

$$= \frac{\exp\left\langle \widetilde{\theta}, \widetilde{T}(x) \right\rangle}{\int_{X} \exp\left\langle \widetilde{\theta}, \widetilde{T}(x) \right\rangle \widetilde{\mu}(dx)} \widetilde{\mu}(dx) \tag{1.32}$$

となる。したがって条件 (E3) の成立が確かめられた。以上より $(\widetilde{V},\widetilde{T},\widetilde{\mu})$ は $\mathcal P$ の実現である。これで証明が完了した。