Notes for Logic (COMP0009)

Raphael Li

$\mathrm{Sep}\ 2025$

Contents

1	Revision	: The syntax and semantics of propositional and first-order logic
	1.1 Prop	positional logic
	1.1.1	Syntax
	1.1.2	Semantics
	1.1.3	Truth tables
	1.1.4	Parse trees
	1.1.5	Disjunctive normal form (DNF)
		Conjunctive normal form (CNF)
	1.2 First	-order logic
	1.2.1	Syntax
	1.2.2	Semantics
	1.2.3	Example: Arithmetic in the set of natural numbers
	1.2.4	First-order structures and directed graphs

1 Revision: The syntax and semantics of propositional and first-order logic

Formally, a *logic* consists of three components:

Component	Describes	
Syntax	The language and grammar for writing formulas	
Semantics	How formulas are interpreted	
Inference system (or proof system)	A syntactic device for proving true statements	

Table 1: The three key components of a logic.

This module concerns algorithms that automatically parse and determine the validity of a formula.

1.1 Propositional logic

1.1.1 Syntax

Formulas are constructed by applying negation, conjunction and disjunction to propositions.

proposition :=
$$p \mid q \mid r \mid \cdots$$

formula := proposition | \neg formula | (formula \circ formula) (where \circ is \land , \lor or \rightarrow)

A proposition or its negation is called a $literal^1$.

For any formula that isn't a proposition, the *main connective* is the one with the largest scope. In other words, it is not in the scope of any other connective.

$$((p \land q) \lor \neg (q \to r))$$

This is the connective with which evaluation begins. This is especially important when building parsers for algorithmically evaluating formulas.

Note that parsers working according to the above definition will recognise $(p \land q)$, but not $p \land q$, as a formula. Regardless, throughout this document we will use a looser definition where brackets may be ommitted in unambiguous cases.

1.1.2 Semantics

A valuation is a function v that maps each proposition to a truth value in $\{\top, \bot\}$.

Figure 1: A valuation maps propositions to truth values.

 $^{^1 \}text{For example}, \, p \text{ and } \neg p \text{ are both literals, but } \neg \neg q \text{ is not.}$

A valuation v can be extended to a unique truth function defined on all possible formulas. A truth function v' must satisfy

$$v'(\neg \phi) = \top \iff v'(\phi) = \bot$$

$$v'(\phi \lor \psi) = \top \iff v'(\phi) = \top \text{ or } v'(\psi) = \top$$

$$v'(\phi \land \psi) = \top \iff v'(\phi) = \top \text{ and } v'(\psi) = \top$$

$$v'(\phi \to \psi) = \top \iff v'(\phi) = \bot \text{ or } v'(\psi) = \top$$

$$v'(\phi \leftrightarrow \psi) = \top \iff v'(\phi) = v'(\psi)$$

for all formulas ϕ and ψ . From now on we use v to denote the more general truth function.

The result of applying a valuation v to a formula ϕ depends only on the propositional letters that occur in ϕ .

A formula ϕ is valid if $v(\phi) = \top$ for all valuations v, which we denote as $\models \phi$. A formula ϕ is satisfiable if $v(\phi) = \top$ for at least one valuation v. All valid formulas are satisfiable, but not vice versa.

Two formulas ϕ and ψ are logically equivalent, written as $\phi \equiv \psi$, if and only if for every valuation v we have $v(\phi) = v(\psi)$.

1.1.3 Truth tables

Consider the propositional formula $((p \vee \neg q) \wedge \neg (q \wedge r))$. We can check its validity and satisfiability by constructing its truth table.

p	q	r	$(p \vee \neg q)$	$\neg (q \wedge r)$	$((p \vee \neg q) \wedge \neg (q \wedge r))$
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	0	1	0
0	1	1	0	0	0
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	0	0

Table 2: The truth table for the formula $((p \vee \neg q) \wedge \neg (q \wedge r))$.

In this case, the formula is satisfiable but not valid.

1.1.4 Parse trees

A parser interprets the semantics of a formula by breaking down its symbols into a *parse tree*, which shows the syntactic relation between symbols. For example, the formula $((p \lor \neg q) \land \neg (q \land r))$ can be broken down into the following parse tree.

Figure 2: The parse tree for the formula $((p \lor \neg q) \land \neg (q \land r))$.

1.1.5 Disjunctive normal form (DNF)

A formula is said to be in *disjunctive normal form* (DNF) if it is a disjunction of one or more conjunctions of one or more literals.

$$\begin{aligned} \text{proposition} &\coloneqq p \mid q \mid r \mid \cdots \\ & \text{literal} &\coloneqq \text{proposition} \mid \neg \text{proposition} \\ & \text{conjunctiveClause} &\coloneqq \text{literal} \mid \text{literal} \land \text{conjunctiveClause} \\ & \text{DNF} &\coloneqq \text{conjunctiveClause} \mid \text{conjunctiveClause} \ \lor \ \text{DNF} \end{aligned}$$

Below is an example of a formula in DNF.

$$\underbrace{(p \wedge \neg q \wedge \neg r)}_{\begin{subarray}{c} \begin{subarray}{c} \beg$$

Any propositional formula has a DNF equivalent. For instance, the formula $(p \lor \neg q) \land \neg (q \land r)$ can be rewritten as follows.

$$(p \vee \neg q) \wedge \neg (q \wedge r)$$
 (De Morgan's law, to remove outer negation)
$$\iff (p \vee \neg q) \wedge (\neg q \vee \neg r)$$
 (distributing conjunctions over disjunctions)
$$\iff (p \wedge \neg q) \vee (\neg q \wedge \neg q) \vee (p \wedge \neg r) \vee (\neg q \wedge \neg r)$$
 (distributing conjunctions over disjunctions)
$$\iff (p \wedge \neg q) \vee \neg q \vee (p \wedge \neg r) \vee (\neg q \wedge \neg r)$$

Alternatively, this can also be achieved by referring to the truth table. From Table 2, we see that the formula can be written in DNF as

$$(\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (p \land \neg q \land \neg r) \lor (p \land \neg q \land r) \lor (p \land q \land \neg r).$$

1.1.6 Conjunctive normal form (CNF)

A formula is said to be *conjunctive normal form* (CNF) if it is a conjunction of one or more disjunctions of one or more literals.

$$\label{eq:continuous} \begin{split} \operatorname{disjunctiveClause} &:= \operatorname{literal} \mid \operatorname{literal} \ \lor \ \operatorname{disjunctiveClause} \\ \operatorname{CNF} &:= \operatorname{disjunctiveClause} \mid \operatorname{disjunctiveClause} \ \land \ \operatorname{CNF} \end{split}$$

Below is a formula in CNF.

$$\underbrace{(p \vee \neg q \vee \neg r)}_{\begin{subarray}{c} conjunctive \\ clause \end{subarray}} \wedge \underbrace{(\neg p \vee q \vee r)}_{\begin{subarray}{c} conjunctive \\ clause \end{subarray}}$$

To find the CNF equivalent of a formula ϕ , we first express its negation $\neg \phi$ in DNF. Then, we negate it again to get $\neg \neg \phi$. Using De Morgan's law, the resultant formula will be in CNF.

For example, let ϕ be the formula $(p \vee \neg q) \wedge \neg (q \wedge r)$. To rewrite it in CNF, we start by constructing the truth table of its negation $\neg \phi$. This allows us to express $\neg \phi$ in DNF.

p	q	r	$((p \vee \neg q) \wedge \neg (q \wedge r))$	Negation of $((p \lor \neg q) \land \neg (q \land r))$
0	0	0	1	0
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	1	0
1	1	0	1	0
1	1	1	0	1

Table 3: The truth table for the negation of $((p \vee \neg q) \wedge \neg (q \wedge r))$. This is obtained by flipping the results of Table 2.

Hence we have

$$\neg \phi = (\neg p \land q) \lor (p \land q \land r)$$
 (DNF of $\neg \phi$)

$$\neg \neg \phi = \neg ((\neg p \land q) \lor (p \land q \land r))$$
 (negating both sides)

$$\phi = (p \lor \neg q) \land (\neg p \lor \neg q \lor \neg r)$$
 (double negation; De Morgan's laws)

which gives us ϕ in CNF.

1.2 First-order logic

1.2.1 Syntax

A first-order language L(C, F, P) is determined by a set C of constant symbols, a set F of function symbols and a non-empty set P of predicate symbols. Each function symbol and predicate symbol has an associated arity $n \in \mathbb{N}$. We write f^n and p^n to represent an n-ary function symbol and an n-ary predicate symbol respectively. Moreover, let V be a countably infinite set of variable symbols.

$$\operatorname{term} \coloneqq c \mid v \mid f^n(\operatorname{term}_0, \operatorname{term}_1, \cdots, \operatorname{term}_{n-1}) \qquad (\text{where } c \in C, \ v \in V \text{ and } f^n \in F)$$

$$\operatorname{atom} \coloneqq p^n(\operatorname{term}_0, \operatorname{term}_1, \cdots, \operatorname{term}_{n-1}) \qquad (\text{where } p^n \in P)$$

$$\operatorname{formula} \coloneqq \operatorname{atom} \mid \neg \operatorname{formula} \mid (\operatorname{formula}_0 \vee \operatorname{formula}_1) \mid \exists v \text{ formula} \qquad (\text{where } v \in V)$$

This definition is functionally complete. Formulas involving universal quantifiers, implications and equivalence symbols can always be rewritten using only symbols defined above.

A closed term is a term with no variable symbols. A sentence is a formula with no free variables.

1.2.2 Semantics

For a first-order language L(C, F, P), we may construct a corresponding first-order structure² S = (D, I) where $I = (I_c, I_f, I_p)$.

$$S = (\underbrace{D}_{\substack{\text{non-empty} \\ \text{domain}}}, \underbrace{(I_c, I_f, I_p)}_{\substack{\text{interpretation } I}})$$

Here,

- I_c maps each constant symbol in C to an element of D.
- I_f maps each n-ary function symbol in F to an n-ary function over D.
- I_p maps each n-ary predicate symbol $p \in P$ to an n-ary relation over D (i.e. a subset of D^n).

 $^{^2}$ Also known as an L-structure.

• We may occasionally use I to denote a general interpretation function where

$$I(c) = I_c(c)$$
 (for all $c \in C$)

$$I(f) = I_f(f)$$
 (for all $f \in F$)

$$I(p) = I_p(p)$$
 (for all $p \in P$)

If P includes the equality symbol =, then it is always interpreted as the binary relation of true equality.

$$I_p(=) = \{(d,d) : d \in D\}$$

Given a structure S=(D,I), a variable assignment A is a map from V to D. For any variable $v \in V$, two variable assignments A and A^* are said to be v-equivalent if $A(x)=A^*(x)$ for all $x \in V \setminus \{v\}$. In other words, two variable assignments are said to be v-equivalent if they are completely identical except possibly for the element in D assigned to v. This is written as $A \equiv_v A^*$.

Given a structure S and a variable assignment A, we may interpret any term as follows.

$$c^{S,A} = I_c(c)$$

$$v^{S,A} = A(v)$$

$$f^n(t_0, t_1, \dots, t_{n-1})^{S,A} = \underbrace{(I_f(f^n))}_{\text{interpreted function}} (t_0^{S,A}, t_1^{S,A}, \dots, t_{n-1}^{S,A})$$

Formulas are evaluated as follows.

$$S \models_{A} p^{n}(t_{0}, t_{1}, \cdots, t_{n-1}) \iff (t_{0}^{S,A}, t_{1}^{S,A}, \cdots, t_{n-1}^{S,A}) \in I_{p}(p^{n})$$

$$S \models_{A} \neg \text{formula} \iff S \not\models_{A} \text{formula}$$

$$S \models_{A} (\text{formula}_{0} \lor \text{formula}_{1}) \iff S \models_{A} \text{formula}_{0} \text{ or } S \models_{A} \text{formula}_{1}$$

$$S \models_{A} \exists v \text{ formula} \iff S \models_{A[x \mapsto d]} \text{formula for some } d \in D$$

Given a structure S and a formula ϕ , we say that

- ϕ is "valid in S" if $S \models_A \phi$ for every variable assignment A. This is written as $S \models \phi$.
- ϕ is "satisfiable in S" if $S \models_A \phi$ for some variable assignment A.
- ϕ is "valid" if ϕ is valid in all possible structures. This is written as $\models \phi$.
- ϕ is "satisfiable" if there exists some structure in which ϕ is satisfiable.

A formula ϕ is valid if and only if $\neg \phi$ is not satisfiable.

Proof. Let $\neg \phi$ be a formula that is not satisfiable. Hence we have

$$\neg \exists S \ \exists A \quad S \models_A \neg \phi \iff \neg \exists S \ \exists A \quad S \not\models_A \phi$$

$$\iff \forall S \neg \exists A \quad S \not\models_A \phi$$

$$\iff \forall S \ \forall A \quad \neg S \not\models_A \phi$$

$$\iff \forall S \ \forall A \quad S \models_A \phi$$

which means S is valid.

If ϕ is a sentence, then ϕ is valid in S if and only if it is also satisfiable in S.

1.2.3 Example: Arithmetic in the set of natural numbers

Consider the first-order language L(C, F, P) defined as follows. Also assume a countably infinite set V of variable symbols.

$$C=1,2,3,\cdots$$
 (constant symbols)
$$F=\{+,\times\}$$
 (function symbols, both binary)
$$P=\{=,<\}$$
 (predicate symbols, both binary)
$$V=\{x,y,z,\cdots\}$$
 (variable symbols)

A term is a string of symbols that represents a "thing" or an "object" — this can be a constant, a variable, or a function output.

- x
- 1+3
- \bullet $2 \times x + 1$

Of the terms shown above, only the second one is a closed terms because it has no variable symbols.

An atom is a string of symbols that represents the output of a predicate, which is a truth value.

- 1 = 2
- *y* < 3
- $x + 1 < 2 \times z + 3$

Finally, a formula is constructed by applying negations, disjunctions, and existential quantifiers to atoms.

- $1 = 2 \land y < 3$
- $\bullet \ \neg \exists z \ x+1 < 2 \times z+3$

The latter example is a sentence because all of its variable symbols are bounded.

For this particular first-order language, we may use the structure of ordinary arithmetic³, defined as $N = \{\mathbb{N}, \{I_c, I_f, I_p\}\}\$ where

 \bullet I_c is a function that maps numerical symbols to the corresponding natural number.

$$I_c(1) = 1$$

 $I_c(2) = 2$
 $I_c(3) = 3$
:

- I_f maps + and × to the addition and multiplication operations in arithmetic respectively.
- I_p maps = and < to the following relations.

$$I_p(=) = \{(n, n) : n \in \mathbb{N}\}\$$

 $I_p(<) = \{(m, n) \in \mathbb{N}^2 : m < n\}$

³There is also a similar structure $R = (\mathbb{R}, I)$ where the domain is the set of real numbers.

1.2.4 First-order structures and directed graphs

Consider a first-order language with only one binary predicate symbol p.

$$L(C, F, \{p\})$$

Any first-order structure $S = \{D, \{I_c, I_f, I_p\}\}$ for this language can be represented as a directed graph, where each vertex is an element of D and each directed edge represents an element of the relation $I_p(p)$.

Figure 3: The first-order structure S can be visualised as a directed graph.