# **Single Cell RNA Analysis**

Biocore Bootcamp



**Bioinformatics Core** 

#### **Overview**

- 1) Data Sets
- 2) Why single cell?
- 2) inDrops Technology
- 3) Dolphinnext pipelines
- 4) Data Structures

#### **BMDC Data Set**



#### **Skin Data Set**













- Not all problems necessitate scRNA-seq
- It is well suited when populations are heterogeneous
- It is a powerful tool for studying intra and inter cell type variations in gene expression
- Useful for unbiased discovery



Adapted from T. Nawy, Nature Methods, (2014).

# **Single Cell Workflows**

#### Single Cell RNA Sequencing Workflow



#### **Single Cell Workflows**

#### Single Cell RNA Sequencing Workflow





Barcoding hydrogel beads





# Sequencing and Analysis Each read assigned to cell





#### inDrops Data Processing



# inDrops Data Processing

| Cell:  | 1 | 2  | • • • | N  |
|--------|---|----|-------|----|
| GENE 1 | 1 | 2  |       | 14 |
| GENE 2 | 4 | 27 |       | 8  |
| GENE 3 | 0 | 0  |       | 1  |
|        |   |    |       |    |
|        | • | •  |       | •  |
| •      | • | •  |       | •  |
| GENE M | 6 | 2  |       | 0  |

#### **Dolphinnext Pipelines**

To process the FASTQs that the instrument generates into a digital gene expression matrix involves many steps, which can be run as a continuous pipeline with dolphinnext



# **Dolphinnext Pipelines**

https://dolphinnext.umassmed.edu/

#### **Dolphinnext Pipelines: bcl2fastq**

- 1) bcl2fastq
  - valid sample barcode



#### **Dolphinnext Pipelines: extract valid reads**

- 1) bcl2fastq
- 2) extract reads
  - valid cell barcode
  - valid UMI







### **Dolphinnext Pipelines: alignment**

- 1) bcl2fastq
- 2) extract reads
- 3) align



#### **Dolphinnext Pipelines: ESAT**



|           | Cell<br>1 | Cell<br>2 | Cell<br>3 | Cell<br>4 |
|-----------|-----------|-----------|-----------|-----------|
| Gene<br>1 | 42        | 43        | 10        | 9         |
| Gene<br>2 | 25        | 24        | 2         | 3         |
| Gene<br>3 | 10        | 9         | 100       | 98        |
| Gene<br>4 | 40        | 39        | 4         | 5         |
| SUM       | 117       | 115       | 116       | 115       |

Bulk = Average of all genes across all cells

Bulk = proportion of each cell type \* cell types average expression profile

|           | Grou      | up A      |           |           |
|-----------|-----------|-----------|-----------|-----------|
|           | Cell<br>1 | Cell<br>2 | Cell<br>3 | Cell<br>4 |
| Gene<br>1 | 42        | 43        | 10        | 9         |
| Gene<br>2 | 25        | 24        | 2         | 3         |
| Gene<br>3 | 10        | 9         | 100       | 98        |
| Gene<br>4 | 40        | 39        | 4         | 5         |
| SUM       | 117       | 115       | 116       | 115       |
|           |           | Gro       | ир В      |           |

#### +1000 Cells

|        |                | Cell<br>1 | Cell<br>2 | Cell<br>3 | Cell<br>4 |
|--------|----------------|-----------|-----------|-----------|-----------|
| es     | Gene<br>1      | 42        | 43        | 10        | 9         |
| Gen    | 1<br>Gene<br>2 | 25        | 24        | 2         | 3         |
|        | Gene<br>3      |           | 9         | 100       | 98        |
| +10000 | Gene<br>4      | 40        | 39        | 4         | 5         |
| Т      | SUM            | 117       | 115       | 116       | 115       |

How can we do this process in a high throughput manner?

# +1000 Cells

|      |                | Cell<br>1 | Cell<br>2 | Cell<br>3 | Cell<br>4 |
|------|----------------|-----------|-----------|-----------|-----------|
| es   | Gene<br>1      | 42        | 43        | 10        | 9         |
| Gen  | 1<br>Gene<br>2 | 25        | 24        | 2         | 3         |
|      | Gene<br>3      | 10        | 9         | 100       | 98        |
| F10C | Gene<br>4      | 40        | 39        | 4         | 5         |
| T    | SUM            | 117       | 115       | 116       | 115       |

What if we want to store information about these cells or genes??

# **Data Structures: Expression Set Class**

ROW = CELLS COLS = CELL METADATA

phenoData

ROW = GENES COLS = GENE METADATA

featureData



assay(s)

e.g. 'exprs'

DGE UMI TABLE

#### Exprs

|               | 0hrA_TGACGGACAAGTAATC | 0hrA_ATGGGCACACCTTGCC | 0hrA_TCGAAGCTGTTGCACG |
|---------------|-----------------------|-----------------------|-----------------------|
| 0610007P14Rik | 0                     | 2.10985244161277      | 0                     |
| 0610009B22Rik | 0                     | 0                     | 1.72247211812165      |
| 0610009O20Rik | 0                     | 0                     | 0                     |
| 0610010B08Rik | 0                     | 0                     | 0                     |
| 0610010F05Rik | 0                     | 0                     | 0                     |

Cells

# **Data Structures : pData()**

#### pData

|                       | size_factor | UMI_sum | x    | у    | iPC_Comp1 | iPC_Comp2 | iPC_Comp12 | Cluster  | Timepoint |
|-----------------------|-------------|---------|------|------|-----------|-----------|------------|----------|-----------|
| 0hrA_TGACGGACAAGTAATC | 1.47        | 1604.45 | 0.31 | 0.72 | -0.02     | 0.01      | -0.01      | Cluster4 | 0hr       |
| 0hrA_ATGGGCACACCTTGCC | 1.21        | 1333.71 | 0.93 | 0.33 | -0.02     | 0.01      | -0.01      | Cluster3 | 0hr       |
| 0hrA_TCGAAGCTGTTGCACG | 1.30        | 1102.09 | 0.68 | 0.13 | -0.02     | 0.02      | -0.00      | Cluster2 | 0hr       |
| 0hrA_TGTTTGAGTCGGTTCG | 1.63        | 1210.53 | 0.86 | 0.32 | -0.02     | 0.02      | -0.00      | Cluster3 | 0hr       |
| 0hrA_TAAATAGGCACAAGGC | 0.43        | 1714.06 | 0.90 | 0.29 | -0.02     | 0.01      | -0.01      | Cluster3 | 0hr       |
| 0hrA_GATTAGACGGGAACCT | 0.64        | 946.06  | 0.48 | 0.59 | -0.02     | 0.01      | 0.00       | Cluster1 | 0hr       |

Normalization tSNE PCA Clustering Metadata

# **Data Structures : fData()**

fData

|               | C1_score | C2_score | C3_score | C1_bulk | C2_bulk | C3_bulk | 0hr_score | 1hr_score | 4hr_score |
|---------------|----------|----------|----------|---------|---------|---------|-----------|-----------|-----------|
| 0610007P14Rik | 9704     | 704      | 2572     | 0.05    | 0.23    | 0.19    | 1187      | 5052      | 10278     |
| 0610009B22Rik | 5293     | 642      | 1181     | 0.04    | 0.11    | 0.10    | 503       | 11045     | 6766      |
| 0610009O20Rik | 7535     | 2732     | 7733     | 0.00    | 0.01    | 0.01    | 6310      | 7579      | 4016      |
| 0610010B08Rik | 3184     | 5176     | 9845     | 0.00    | 0.01    | 0.00    | 8161      | 5170      | 3772      |
| 0610010F05Rik | 75       | 11158    | 8698     | 0.11    | 0.01    | 0.04    | 10373     | 662       | 4595      |
| 0610010K14Rik | 3888     | 5066     | 2634     | 0.07    | 0.10    | 0.12    | 1774      | 4074      | 10087     |

**Cluster Markers** 

Aggregated Bulk

**Timepoint Markers**