Cariche e corrente elettrica

Cariche e corrente elettrica

Recap sugli ordini di grandezza

Informazione, energia

Trasportare l'energia: La corrente elettrica

Ipotesi del continuo

Intensità di corrente elettrica in un conduttore elettrico filiforme

A che velocità di muovono le cariche?

Cosa succede se la corrente che entra non è uguale a quella che esce?

Recap sugli ordini di grandezza

Prefisso	Simbolo	Valore	Valore in notazione scientifica
Yotta	Υ	1 000 000 000 000 000 000 000 000	10 ²⁴
Zetta	Z	1 000 000 000 000 000 000 000	10 ²¹
Esa, exa	E	1 000 000 000 000 000 000	10 ¹⁸
Peta	Р	1 000 000 000 000 000	10 ¹⁵
Tera	Т	1 000 000 000 000	10 ¹²
Giga	G	1 000 000 000	10 ⁹
Mega	M	1 000 000	10 ⁶
Kilo	K	1 000	10 ³
Etto	h	100	10 ²
Deca	da	10	10 ¹
Unità		1	10 ⁰
Deci	d	1/10	10 ⁻¹
Centi	С	1/100	10 ⁻²
Milli	m	1/1 000	10 ⁻³
Micro	μ	1/1 000 000	10^{-6}
Nano	n	1/1 000 000 000	10 ⁻⁹
Pico	Р	1/1 000 000 000 000	10 ⁻¹²
Femto	f	1/1 000 000 000 000 000	10 ⁻¹⁵
Atto	a	1/1 000 000 000 000 000 000	10 ⁻¹⁸
Zepto	Z	1/1 000 000 000 000 000 000 000	10 ⁻²¹
Yocto	У	1/1 000 000 000 000 000 000 000 000	10 ⁻²⁴

Informazione, energia

Per illustrare questo argomento possiamo usare la regola delle 5W:

1. Why?

Il fine ultimo è comprendere l'informazione e l'energia.

2. Where?

Usiamo dei **materiali conduttori elettrici**: i cavi. Oltre a questi ci sono anche i **semiconduttori**; questi non sono ne conduttori ne isolanti, e sono importantissimi per l'informatica.

3. What?

Cosa usiamo per trasformare l'energia e l'informazione?

Ovviamente usiamo le cariche elettriche.

4. When?

Il tempo è molto legato all'elettrotecnica: esistono circuiti a **regime stazionario,** sinusoidale, dinamici, ecc.

Un esempio di un valore stazionario è il seguente:

L'onda **sinusoidale** è molto importante, perchè questo "va d'accordo" con le macchine: ad esempio, ogni volta che c'è una rivoluzione (pala eolica, motore), il segnale risultante è sinusoidale.

5. Who?

Il chi è quasi scontato: gli utilizzatori finali siamo noi; siamo noi ad utilizzare l'energia e l'informazione, come meglio crediamo e ci torna utile.

Trasportare l'energia: La corrente elettrica

L'energia significa lavoro, infatti compiamo lavoro per trasportare l'informazione. Quando si parla di "corrente elettrica", si dovrebbe sempre parlare di intensità di corrente elettrica;

La **carica elettrica** è quantizzata, e ne abbiamo di due tipi: carica positiva e negativa.

Intensita' di corrente elettrica

Fenomeno

Grandezza

Carica elettrica -9 Negativa

Abbiamo una **superficie**; questa superficie viene **attraversata da delle cariche**, che possono essere positive o negative, ed ogni carica ha la sua velocità; decidiamo inoltre una **normale**; questo vettore ci servirà per "decidere" il verso delle cariche ed attribuire un **segno**:

Possiamo calcolarci la quantità di carica media che attraversa la superficie:

$$Q_S(t) = Quantito' oli carica$$
 $\langle i_S \rangle = \Delta Q_S$
 $della carica rispetto a $\hat{n}$$

Siccome si tratta di una grandezza media, dobbiamo decidere un **intervallo di tempo** su cui effettuare la media (ovviamente più piccolo è, più la misurazione tenderà ad essere "istantanea"):

$$-D \left(i_{S}(t)\right) = \lim_{\Delta t \to 0} \frac{\Delta Q_{S}}{\Delta t} = \lim_{\Delta t \to 0} \frac{Q_{S}(t+\Delta t) - Q_{S}(t)}{\Delta t} = DERIVATA = \int \frac{dQ_{S}}{dt}$$

$$Corrente$$

$$T_{PoTesi}$$

$$del continuo$$

Ipotesi del continuo

Se volessimo fare un esempio: nel caso illustrato precedentemente (le cariche quantizzate che attraversano la superficie), **non potremmo calcolare il limite**, perchè parliamo di **cariche singole** che attraversano la superficie.

Essenzialmente, non può mai accadere la situazione in cui ci troviamo ad avere degli istanti di tempo in cui **non passa alcuna carica** ed altri istanti in cui passa un numero di cariche **diverse da zero**; questo equivale ad avere una **funzione discontinua**.

Insomma, delta_t deve restare sufficientemente grande in modo da permettere sempre ad almeno una carica di passare attraverso la superficie; ergo: delta_t non può tendere a zero (nel caso di cariche quantizzate).

Intensità di corrente elettrica in un conduttore elettrico filiforme

Se consideriamo una superficie chiusa, il numero di cariche che entra ed esce attraverso la superficie sigma è lo stesso, e di conseguenza **il flusso è zero**.

Anche in questo caso possiamo calcolare la derivata in modo da ottenere:

-D Hp. Continuo -D
$$\lim_{\Delta t \to 0} \left[\Delta Q_{\Delta}(t) + \Delta Q_{\Sigma}(t) \right] = 0$$

$$= D I_{\Sigma}(t) = -\frac{dQ_{\Delta}}{dt}$$
Sigma

A che velocità di muovono le cariche?

A differenza di quello che si può pensare, le cariche **all'interno di un conduttore ohmico** è **molto bassa**, nell'ordine dei <u>centimetri al secondo</u>; quello che invece si muove quasi istantaneamente è l'informazione: il capo elettrico e magnetico.

Anche se la corrente è altissima (nell'ordine dei kiloampere), la velocità delle cariche **non varia**; la velocità delle cariche dipende **unicamente dal mezzo in cui esse si muovono.**

Cosa succede se la corrente che entra non è uguale a quella che esce?

$$I_{Sa}(t) + I_{Sb}(t) = -\frac{dQ_a}{dt}$$
 Se $I_{Sa}(t) \neq I_{Sb}(t)$

Facciamo delle ipotesi:

• Ipotesi di condizioni stazionarie

In questa ipotesi, qualunque derivata rispetto al tempo ci restituisce **zero** . In queste condizioni, vale il fatto che il numero di cariche che entra è uguale a quello che esce:

H.P.: Condizioni Stazionarie

$$\frac{d}{dt} \equiv 0 - 0 \quad \mathcal{I}_{So}(t) = \mathcal{I}_{Sb}(t)$$