Metode pentru Integrarea Numerică (1)

Valentin-Ioan VINTILĂ

Facultatea de Automatică și Calculatoare - CTI Universitatea POLITEHNICA București

16 mai 2023 (Lab. 11)

Cuadraturi

Cuprins

- Metoda dreptunghiurilor
- Metoda trapezelor
- Metode Simpson
- Bibliografie

Definiție (Cuadratură numerică)

Cuadraturi (2)

intervalul de definiție.

Fie $f:[x_0,x_n]\subset\mathbb{R}\to\mathbb{R}$ o funcție integrabilă și continuă pe întreg

 $n \in \mathbb{N}^*$ și $x_k < x_{k+1}$, orall k < n, o mulțime de n+1 puncte distincte ordonate crescător, reprezentând evaluări ale funcției f.

Dacă $(\omega_n)_n \in \mathbb{R}$ este un șir de numere reale, aproximarea:

Totodată, fie mulțimea $M=\{(x_k,y_k)\in\mathbb{R}^2\,|\,y_k=f(x_k),\,k=\overline{0,n}\}$, unde

Cuadraturi (1)

Termenul de cuadratură (cvadratură sau chiar quadratură) este un termen istoric care face referire la procesul de calculare a unei arii.

În literatura numerică, prin cuadratură înțelegem aria de sub graficul unei funcții – adică integrala definită a unei funcții.

 $\int_{x_0}^{x_n} f(x) dx \approx \sum_{k=0}^n \omega_k f(x_k)$

Cuadraturi (3)

De la interpolare, ne amintim:

● Polinomul Lagrange care interpolează M:

$$L(x) = \sum_{k=0}^{n} L_k(x) \cdot f(x_k)$$

Eroarea de interpolare:

$$\varepsilon_L(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \prod_{k=0}^{n} (x - x_k)$$

Care este eroarea integrării numerice? La tablă...

Metoda dreptunghiurilor - exemplu (1)

Să considerăm $f(x) = e^x - 1$. Vrem să o integrăm pe domeniul [0, 2].

Analitic:

$$\int_0^2 f(x) \, dx = \int_0^2 e^x - 1 \, dx = \left[e^x - x \right]_0^2 \approx 4.389$$

Numeric: ..

G & @

Metoda dreptunghiurilor - introducere

poartă denumirea de cuadratură numerică.

Ideea principală – aproximăm aria de sub grafic cu dreptunghiuri.

Cum putem alege dreptunghiurile?

- 1 Înălțimea din stânga / dreapta / mijloc;
- Înălțimea minimă / maximă.

Metoda dreptunghiurilor - exemplu (2)

Metoda dreptunghiurilor - exemplu (3)

Graficul funcției $f(x)=e^x-1$ și integrarea la stânga pe [0,2]

Metoda dreptunghiurilor - exemplu (5)

Graficul funcției $f(x)=e^x-1$ și integrarea din mijloc pe $\left[0,2\right]$

Metoda dreptunghiurilor - eroare

Fără a demonstra formula, considerăm eroarea metodei:

$$\boxed{\varepsilon(f) \leq \frac{x_n - x_0}{24} h^2 \cdot \max_{\xi \in [x_0, x_n]} \left\{ \left| f''(\xi) \right| \right\}}, \text{ cu } h = x_{k+1} - x_k$$

Puteți să o demonstrați ca temă...

6 4 0

Metoda trapezelor – exemplu (1)

Să calculăm integrala pe [0,6] pentru $f(x) = \sin(x+2) + \sqrt{x}$.

Analitic:

$$\int_0^6 f(x) \, dx = \left[-\cos(x+2) + \frac{3}{2} \sqrt{x^3} \right]_0^6 \approx 9.527$$

Numeric: ...

G & @

Metoda dreptunghiurilor - exemplu (4)

Graficul funcției $f(x)=e^x-1$ și integrarea la dreapta pe [0,2]

Metoda dreptunghiurilor - exemplu (6)

Calculată matematic, integrala ar fi fost egală cu $\int_0^2 e^x - 1 \, dx \approx 4.389$, iar folosind aceste trei metode, se obțin următoarele trei rezultate:

$$\int_0^2 e^x - 1 \, dx \approx \begin{cases} \text{din stånga:} & 2.924 \\ \text{din dreapta:} & 6.119 \\ \text{din mijloc:} & 4.323 \end{cases}$$

Observăm cum eroarea cea mai bună se obține în mijloc. Așadar, vom studia în continuare numai acest caz de selecție al înălțimii.

Metoda trapezelor - introducere

Schimbăm figura geometrică:

 $\mathsf{Dreptunghiuri} \to \mathsf{Trapeze}$

Evident, dispar toate subcategoriile – există un singur mod de a crea

Metoda trapezelor – exemplu (2)

Graficul funcției $f(x) = \sin(x+2) + \sqrt{x}$ pe [0,6]

Metoda trapezelor – exemplu (3)

Graficul funcției $f(x) = \sin(x+2) + \sqrt{x}$ pe [0,6], alături de integrarea utilizând un singur trapez (două puncte)

G (()

Metoda trapezelor – exemplu (4)

Graficul funcției $f(x) = \sin(x+2) + \sqrt{x}$ pe [0,6], alături de integrarea utilizând trei trapeze (patru puncte)

G (()

Metoda trapezelor – exemplu (5)

Graficul funcției $f(x)=\sin(x+2)+\sqrt{x}$ pe [0,6], alături de integrarea utilizând șase trapeze (șapte puncte)

Metoda trapezelor – eroare

Fără a demonstra formula, considerăm eroarea metodei:

$$\boxed{\varepsilon(f,h) \leq \frac{x_n - x_0}{12} h^2 \cdot \max_{\xi \in [x_0, x_n]} \left\{ \left| f''(\xi) \right| \right\}}, \text{ cu } h = x_{k+1} - x_k$$

Puteți să o demonstrați ca temă...

6 4 0

Metodele Simpson

Metoda dreptunghiurilor utilizează, la urma urmei, funcții de grad $\mathbf{0}$ (constante) pentru a aproxima ariile.

Metoda trapezelor utilizează la rândul său funcții de grad 1 (segmente) pentru a calcula ariile de sub grafic.

Dacă am folosi funcții de grad 2 (parabole), am ajunge la metoda Simpson 1/3.

Metoda trapezelor – exemplu (6)

Calculată matematic, integrala ar fi fost egală cu $\int_0^6 \sin(x+2) + \sqrt{x} \, dx \approx 9.527$, iar folosind metoda trapezelor (compuse), se obțin următoarele trei rezultate:

$$\int_0^2 e^x - 1 \, dx \approx \begin{cases} \text{un trapez:} & 13.044 \\ \text{trei trapeze:} & 9.104 \\ \text{sase trapeze:} & 9.359 \end{cases}$$

Observăm cum eroarea cea mai bună se obține crescând numărul de trapeze (puncte luate în considerare).

Pentru acest exemplu, am obține o eroare mai mică decât 0.1 cu doar 9 trapeze, respectiv mai mică decât 0.01 cu 44.

Thomas Simpson

Thomas Simpson (1710 - 1761)

Metoda Simpson 1/3 (1)

Începem cu o singură parabolă.

Să zicem că vrem să aproximăm $\int_a^b f(x) \, dx$, unde $f:[a,b] \to \mathbb{R}$ este o funcție integrabil și continuă.

Considerăm punctul de mijloc $m = \frac{a+b}{2}$. Prin interpolarea Lagrange a punctelor (a, f(a)), (m, f(m)) și $(b, \overline{f}(b))$ am obține:

$$L(x) = f(a)\frac{(x-m)(x-b)}{(a-m)(a-b)} + f(m)\frac{(x-a)(x-b)}{(m-a)(m-b)} + f(b)\frac{(x-a)(x-m)}{(b-a)(b-m)}$$

Metoda Simpson 1/3 (2)

Dar ştim că $f(x) \approx L(x)$, deci $\int_a^b f(x) dx \approx \int_a^b L(x) dx$.

Avem deci o modalitate simplă de a aproxima integrala:

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Formula anterioară funcționează pentru o singură parabolă, însă poate fi generalizată pentru mai multe subintervale.

Metoda Simpson 1/3 – exemplu (1)

Vom exemplifica metoda folosind aceeași funcție, $f(x) = \sin(x+2) + \sqrt{x}$, tot pe intervalul [0,6], iar apoi vom compara rezultatele cu ce obținusem anterior la trapeze

Metoda Simpson 1/3 (3)

Fie $f:[x_0,x_n]\subset\mathbb{R}\to\mathbb{R}$ o funcție integrabilă și continuă pe întreg intervalul de definiție. Totodată, fie mulțimea $M = \{(x_k, y_k) \in \mathbb{R}^2 \mid y_k = f(x_k), \ k = \overline{0, n}\}, \text{ unde } n \in \mathbb{N}^* \text{ este par, o}$ mulțime de n+1 puncte distincte și echidistante ordonate crescător, reprezentând evaluări ale funcției f.

Dacă notăm cu $h = \frac{b-a}{n}$ distanța între oricare două abscise x_k și x_{k+1} consecutive, obținem următoarele două formule:

$$\int_{x_0}^{x_n} f(x) dx \approx \frac{h}{3} \sum_{k=1}^{n/2} \left[f(x_{2k-2}) + 4f(x_{2k-1}) + f(x_{2k}) \right]$$

$$= \frac{h}{3} \left[f(x_0) + 4 \sum_{k=1}^{n/2} f(x_{2k-1}) + 2 \sum_{k=1}^{n/2-1} f(x_{2k}) + f(x_n) \right]$$

Metoda Simpson 1/3 – exemplu (2)

Graficul funcției $f(x) = \sin(x+2) + \sqrt{x}$ pe [0, 6]

Metoda Simpson 1/3 – exemplu (3)

Graficul funcției $f(x) = \sin(x+2) + \sqrt{x}$ pe [0,6], alături de integrarea prin Simpson 1/3 cu o parabolă (3 puncte)

Metoda Simpson 1/3 – exemplu (4)

Graficul funcției $f(x) = \sin(x+2) + \sqrt{x}$ pe [0,6], alături de integrarea prin Simpson 1/3 cu două parabole (5 puncte)

6 4 0

Metoda Simpson 1/3 – exemplu (5)

Graficul functiei $f(x) = \sin(x+2) + \sqrt{x}$ pe [0, 6], alături de integrarea prin Simpson 1/3 cu trei parabole (7 puncte)

Metoda Simpson 1/3 – exemplu (6)

Observăm rezultatele obținute prin această aproximare:

$$\int_0^6 \sin(x+2) + \sqrt{x} \, dx \approx \begin{cases} \text{o parabolă:} & 7.441\\ \text{două parabole:} & 9.368\\ \text{trei parabole:} & 9.444 \end{cases}$$

Amintim rezultatul corect, 9.527, respectiv aproximările obținute prin

$$\int_0^6 \sin(x+2) + \sqrt{x} \, dx \approx \begin{cases} \text{un trapez:} & 13.044 \\ \text{trei trapeze:} & 9.104 \\ \text{sase trapeze:} & 9.359 \end{cases}$$

⇒ algoritmul converge mai rapid!

Vom trece în revistă, fără demonstrație, eroarea algoritmului:

$$\varepsilon(f,h) = -\frac{x_n - x_0}{180}h^4 \cdot f^{(4)}(\xi) \Rightarrow \boxed{\varepsilon(f,h) \leq \frac{x_n - x_0}{180}h^4 \cdot \max_{\xi \in [x_0,x_n]} \left\{ |f^{(4)}(\xi)| \right\}}$$

Bonus - Metoda Simpson 3/8

Se poate merge și mai departe, trecând de la ecuații de grad 2 la ecuații de grad 3. Nu insistăm, însă prezentăm pe scurt formula:

$$\int_{x_0}^{x_n} f(x) dx \approx \frac{3h}{8} \left[f(x_0) + 3f(x_1) + 3f(x_2) + 2f(x_3) + 3f(x_4) + 3f(x_5) + 2f(x_6) + \dots + 3f(x_{n-2}) + 3f(x_{n-1}) + f(x_n) \right]$$

$$= \frac{3h}{8} \left[f(x_0) + 3 \sum_{i \neq 3k}^{n-1} f(x_i) + 2 \sum_{j=1}^{n/3-1} f(x_{3j}) + f(x_n) \right]$$

Eroarea este și ea îmbunătățită

$$\varepsilon(x) = -\frac{h^4}{405}(b-a) \cdot f^{(4)}(\xi)$$

Metoda Romberg (1)

Metoda Romberg utilizează:

Metoda trapezelor compuse pentru integrare; 2 Extrapolarea Richardson pentru îmbunătățirea erorii.

Werner Romberg

Werner Romberg (1909 - 2003)

Metoda Romberg (2)

Vom defini câteva valori de forma $\Psi_i^j \in \mathbb{R}$, unde $i \in \overline{0, n}$ și $j \in \overline{0, i}$. Considerăm $h_i = \frac{1}{2^i}(b-a)$. Atunci:

• Prin excepție pentru i = j = 0:

$$\Psi_0^0 = h_1 \big[f(a) + f(b) \big]$$

La nivel logic, aceasta este metoda trapezului.

Pentru j = 0 și i > 0:

$$\boxed{\Psi_{i}^{0} = \frac{1}{2} \Psi_{i-1}^{0} + h_{i} \sum_{k=1}^{2^{i-1}} f(a + (2k-1)h_{i})}, \forall i \geq 1$$

Se poate demonstra (puteti ca temă) că aceasta este de fapt o recurență pentru metoda trapezelor compuse.

Metoda Romberg (3)

1 Ultimul pas – aplicarea extrapolării Richardson pentru i, j > 0:

$$\boxed{\Psi_{i}^{j} = \frac{1}{4^{j} - 1} \left(4^{j} \cdot \Psi_{i}^{j-1} - \Psi_{i-1}^{j-1} \right), \ \forall i \geq j \geq 1}$$

Metoda Romberg – exemplu (1)

Să considerăm funcția $f:[-2,1.5] \to \mathbb{R}$:

$$f(x) = x^4 + x^3 - 3x^2 + 6$$

$$\int_{2}^{1.5} f(x) dx = \left[\frac{x^5}{5} + \frac{x^4}{4} - x^3 + 6x \right]_{2}^{1.5} = 14.809375$$

Numeric: ..

Metoda Romberg – exemplu (2)

$i \smallsetminus j$	o	1	2
0	16.953125		
1	18.627929	19.186197	
2	15.969177	15.082926	14.809375

Tabel pentru Ψ_i^j (rezultatul se află în Ψ_2^2)

Toate resursele bibliografice de care aveți nevoie se găsesc în descrierea cu care a venit atașată această prezentare.

Mulțumesc frumos pentru atenție!

Vă rog frumos să completați formularul de feedback!

