EKSAMENDATABLAD VIR VERDERE STUDIES FISIKA

Fisiese konstantes

Naam	Simbool	Waarde met eenheid
Swaartekragversnelling	g	9,81 m.s ⁻²
Spoed van lig in 'n vakuum	С	$3,00 \times 10^8 \mathrm{m.s^{-1}}$
Universele swaartekragkonstante	G	6,67 × 10 ⁻¹¹ N.m ² .kg. ⁻²
Coulomb se konstante	k	8,99 × 10 ⁹ N.m ² .C ⁻²
Grootte van lading op 'n elektron	е	1,602 × 10 ⁻¹⁹ C
Massa van 'n elektron	m _e	9,109 x 10 ⁻³¹ kg
Massa van 'n proton	m_p	1,673 × 10 ⁻²⁷ kg
Massa van 'n neutron	m _n	1,675 × 10 ⁻²⁷ kg
Verenigde atoommassa-eenheid	и	1,660 × 10 ⁻²⁷ kg
Avogadro-getal	N _A	6,022 x 10 ²³ mol ⁻¹
Absolute nulpunttemperatuur	T_0	–273,15 °C
1 ligjaar	ly	9,461 × 10 ¹⁵ m
Stefan-Boltzmann-konstante	σ	5,67 × 10 ⁻⁸ W.m ² K ⁻⁴

Formules

Termiese fisika				
$\Delta L = \alpha L_0 \Delta T$	$Q = mc\Delta T$	$Q = mL_f$		
$\Delta V = \beta V_0 \Delta T$		$Q = mL_V$		
Moderne fisika				
$\lambda = \frac{\ln 2}{\frac{t_1}{2}}$		$t = -\frac{\ln\left(\frac{A}{A_0}\right)}{\lambda}$		
$\lambda_{maks}T = 2.9 \times 10^{-1}$	0 ^{−3} m.K	$\frac{L_{ster}}{L_{son}} = \left(\frac{m_{ster}}{m_{son}}\right)^{a}$		

IEB Copyright © 2022 BLAAI ASSEBLIEF OM

Meganika					
<i>v = u + at</i> of		$s = \left(\frac{v+u}{2}\right)t \text{ of }$			
$v_f = v_i + a\Delta t$		$\Delta x = \left(\frac{v_f + v_i}{2}\right)t$			
$v^2 = u^2 + 2as of$		$s = ut + \frac{1}{2}at^2 \text{ of}$			
$V_f^2 = V_i^2 + 2a\Delta x$	($\Delta x = v_i \Delta t + \frac{1}{2} a \left(\Delta t^2 \right)$			
$f=\frac{1}{T}$	$\omega = \frac{\theta}{t}$		$T = \frac{2\pi}{\omega}$		
$s = \theta r$	$v = \omega r$		$a = \frac{v^2}{r}$		
$g = \frac{GM}{r^2}$	$a = \omega^2 r$		$F = m\omega^2 r$		
$ au = r F \perp$	$\tau = r \perp F$				
Gelaaide deeltjies in velde					
$E = \frac{F}{q}$	$E = \frac{V}{d}$		F = qvB sin θ		
Ossillasies					
$a = -\omega^2 x$	$x = x_0 \sin \omega t$		$x = x_0 \cos \omega t$		
$v = v_0 \cos \omega t$	$v = v_0 \sin \omega t$		$v = \pm \omega \sqrt{(x_0^2 - x^2)}$		
$E_{\kappa} = \frac{1}{2}m\omega^2 (x_0^2 -$	$(x_0^2 - x^2)$		$E_{p} = \frac{1}{2}m\omega^{2}x^{2}$		