A. LEAF STRUCTURE

WAXY	Waterproof and prevents water from evaporating
CUTICLE	out of the leaf.
UPPER	Single layer of cells with <u>no chloroplasts</u> .
EPIDERMIS	Thin and transparent for maximum light penetration.
PALISADE	These cells contain many chloroplasts.
MESOPHYLL	They are near the leaf surface and are packed close
CELLS	together to absorb more light.
	Where most photosynthesis takes place.
CHLOROPLASTS	These trap light energy and convert it into
	chemical energy and make leaves look green.
SPONGY	Have air spaces between them.
MESOPHYLL	For fast diffusion of gases in and out of the leaf.
CELLS	
XYLEM	Transports water and minerals to the leaf.
PHLOEM	Transports dissolved sugar/sucrose away from the leaf.
LOWER EPIDERMIS	The bottom layer of a leaf.
STOMATA	Holes that let gases in and out of the leaf.
GUARD CELLS	These cells control the opening and closing of stomata in the
	lower epidermis.

B. TRANSPIRATION

The EVAPORATION of WATER VAPOUR at the SURFACE of the MESOPHYLL CELLS

Followed by the **DIFFUSION** of **WATER VAPOUR** through the **STOMATA**

- Transpiration is the inevitable consequence of gas exchange in the leaf.
- Plants transport water from the roots to the leaves to replace losses from transpiration.

C. HOW WATER MOVES UP THE XYLEM TO THE LEAVES

- Light causes stomata to open;
- (Causing) evaporation of water molecules;
- From spongy mesophyll cells;
- (Causing) tension/ low/negative pressure / suction / pulling force in xylem vessels;
- (At leaf)) water is drawn out of the xylem <u>cell</u> walls by adhesion;
- <u>Hydrogen bonds</u> make water molecules cohesive/stick together;
- Adhesion causes water molecules to stick to the <u>cell walls/cellulose</u> of the xylem;
- (So) <u>continuous water column</u>/transpiration stream produced (in xylem);
- (So) water travels from roots to leaves in xylem <u>vessels</u>;

COHESION is water molecules **STICKING TOGETHER** by **HYDROGEN BONDING**

ADHESION is water molecules STICKING TO the XYLEM WALL

D. FACTORS THAT AFFECT THE RATE OF TRANSPIRATION

The same factors that dry clothes faster on a washing line will speed up transpiration.

LIGHT

- Causes stomata to open
- (So) transpiration will be faster

TEMPERATURE

- Water molecules have more kinetic energy
- Warmer air can hold more water vapour
- (So) transpiration will be faster

WIND

- Water molecules are blown away from the leaf surface
- Means a higher a water concentration gradient between inside and outside the leaf
- (So) transpiration will be faster

HUMIDITY (=amount of water in the air)

- Lots of moisture in air = high humidity
- Means a lower water concentration gradient between inside and outside the leaf
- (So) transpiration will be slower

E. XEROPHYTIC ADAPTATIONS TO REDUCE TRANSPIRATION

- Xerophytes are plants that live in hot, dry places e.g. cacti.
- They have adapted ways of reducing transpiration to reduce water loss.
- Always remember to relate these points to **reducing transpiration** in exams.

ADAPTATION	HOW IT HELPS
THICK WAXY CUTICLE	 Impermeable so prevents evaporation of water from leaf surface Increases the diffusion distance
SMALL/ NO LEAVES	 Less stomata/leaves = Less surface area = Less evaporation of water
FEW STOMATA	
SUNKEN STOMATA (IN PITS) SURROUNDED BY HAIRS	 Less exposed to the air = Traps water <u>vapour</u> = Reduced water concentration gradient = Less evaporation of water
ROLLED UP EAVES	
CAM PHYSIOLOGY	Stomata only open at night (when cooler)Less evaporation of water
DEEP LONG-SPREADING ROOT SYSTEM	A higher chance of finding water
LOWER GROWTH TO THE GROUND	Less exposed to the wind and more shaded.Less evaporation of water

F. HALOPHTIC ADAPTATIONS TO REDUCE WATER LOSS

- Halophytes are plants that live in salty conditions (high salinity soils).
- They have adapted ways of reducing water loss.

ADAPTATION	HOW IT HELPS
SALT EXCRETION	 Certain plant parts e.g. stem can contain salt glands that actively eliminate salt
ROOT LEVEL EXCLUSION	 Plant roots can be structured to exclude 95% of salt in solutions
CELLULAR SEQUESTRATION	Halophytes can accumulate toxic ions and salts within the cell wall or vacuole
TISSUE PARTITIONING	 Halophytes can concentrate salts in particular leaves, which then drop off
ALTERED FLOWERING SCHEDULE	 Halophytes may flower at specific times (e.g. rainy seasons) to minimise salt exposure

G. MEASURING THE RATE OF TRANSPIRATION USING A POTOMETER

Transpiration is the evaporation of water vapour from the leaves.

Really, a potometer indirectly measures the rate of transpiration.

It directly measures the rate of water uptake.

We assume that water uptake = water lost through transpiration.

However, water is also used in photosynthesis and to make cells turgid for support.

Be aware of this limitation as it is often tested.

• Here is **one** type of potometer:

Preparation before using apparatus

1. Apparatus must be setup under water / Shoot must be cut underwater at an angle

- Prevents air bubbles from forming in the apparatus
- If cut in air, air would enter the xylem and break the continuous water column
- This would prevent transpiration
- Only water must enter the xylem

2. Seal all joints of the apparatus with petroleum jelly

- Petroleum jelly is waterproof
- It prevents water from leaking out of the apparatus
- It therefore ensures that all water can only leave through evaporation out of the stomata
- This makes the results more accurate

How it is used

- The air bubble is placed at zero (0).
- As the plant **transpires**, water will move from the **beaker** and **up** the **plant**.
- Measure the distance moved by the air bubble in a fixed time.
- Open the tap to push the air bubble back to zero so repeats can be done.
- This makes results more reliable.
- Used to **investigate** the effect of a **name factor** on the **rate of transpiration**.

Calculating the rate of transpiration

(a) Simplest way

Rate of transpiration = distance moved by air bubble in a fixed time (e.g. 50 mm per hour)

(b) Better way

Rate of transpiration = distance moved by air bubble in a fixed time x area of capillary tube (e.g. 0.26 mm³ of water moved per minute)

• Area of a cylinder (capillary tube) = πr^2 , where r = radius