

### Redes de Computadores - Relatório TP3

João Nunes (A82300) Luís Braga (A82088) Luís Martins (A82298) Grupo 57

16 de Novembro de 2018

#### 1 Questões e Respostas

#### 1. Anote os endereços MAC de origem e destino da trama capturada.

Os endereços origem e destino são dados respetivamente por 4c:cc:6a:e1:c5:49 e 00:0c:29:d2:19:f0, como se pode verificar na figura 1.



Figura 1: Printscreen da primeira trama ethernet que contem a mensagem HTTP GET.

#### 2. Identifique que sistemas se referem. Justifique.

O endereço MAC origem pertence à interface ativa do computador em que está a ser feita a captura, o endereço MAC destino não se refere ao servidor mas sim ao router adjacente, uma vez que o nível de ligação destes serviços são prestados na ligação entre nós adjacentes.

## 3. Qual o valor hexadecimal do campo type da trama ethernet? O que significa?

O valor hexadecimal do campo type da trama (0x0800) significa que campo de dados são pacotes IPv4.

Figura 2: Printscreen da primeiro pacote que contem a mensagem HTTP GET.

4. Quantos bytes são usados deste o início da trama até ao caractere ASCII "G"do método HTTP GET? Calcule e indique, em percentagem, a sobrecarga (overhead) introduzida pela pilha protocular no envio do HTTP GET.

Desde o íncio da trama até ao caractere "G"são usados 54 bytes, uma vez que o GET não pertence à pilha protocolar.

A sobrecarga é dada por 54/440 = 12.27%.



Figura 3: Localização do GET no campo hexadecimal da trama.

Figura 4: Tamanho total de bytes do pacote.

5. Através da visualização direta de uma trama capturada, verifique que, possivelmente, o campo FCS (Frame Check Sequence) usado para a deteção de erros não está a ser usado. Em sua opinião porque será?.

O campo FCS não está a ser usado, porque em ligações com fios pouco susceptíveis a erros, nem sempre as NICs geram o código de deteção de erros.

```
V Ethernet II, Src: Micro-St_e1:c5:49 (4c:cc:6a:e1:c5:49), Dst: Vmware_d2:19:f0 (00:0c:29:d2:19:f0)
> Destination: Vmware_d2:19:f0 (00:0c:29:d2:19:f0)
> Source: Micro-St_e1:c5:49 (4c:cc:6a:e1:c5:49)
Type: IPv4 (0x0800)
```

Figura 5: Valor do campo Ethernet.

### 6. Qual é o endereço Ethernet da fonte? A que sistema de rede corresponde? Justifique.

O endereço Ethernet da fonte é 00:0c:29:d2:19:f0 e corresponde ao router adjacente à máquina que o grupo usou, pois, em relação à pergunta 1, o endereço de origem e destino trocaram, uma vez que se trata da trama de resposta.



Figura 6: Printscreen da trama response.

#### 7. Qual é o endereço MAC do destino? A que sistema corresponde?

O endereço MAC destino é 4c:cc:6a:e1:c5:49 e corresponde à interface ativa do computador, como se pode verificar na figura 6.

## 8. Atendendo ao conceito de desencapsulamento protocolar, identifique os vários protocolos contidos na trama recebida.

Os vários protocolos contindos na trama recebida são os protocolos TCP, IP e Ethernet.

```
> Frame 94: 910 bytes on wire (7280 bits), 910 bytes captured (7280 bits) on interface 0
> Ethernet II, Src: Vmware_d2:19:f0 (00:0c:29:d2:19:f0), Dst: Micro-St_e1:c5:49 (4c:cc:6a:e1:c5:49)
Internet Protocol Version 4, Src: 193.136.19.40, Dst: 192.168.100.214
> Transmission Control Protocol, Src Port: 80, Dst Port: 63877, Seq: 68621, Ack: 387, Len: 856
> [48 Reassembled TCP Segments (69476 bytes): #23(1460), #24(1460), #26(1460), #27(1460), #30(1460), #31(1460), #33(1460),
| Hypertext Transfer Protocol
> Line-based text data: text/html (1573 lines)
```

Figura 7: Campos da trama Ethernet que contem o primeiro byte de resposta HTTP.

### 9. Observe o conteúdo da tabela ARP. Diga o que significa cada uma das colunas.

A primeira tabela contém o endereço IP de uma determinada máquina, na segunda coluna estão discriminados os endereços MAC do nó adjacente à nossa máquina. Portanto, se quisermos comunicar com um IP da tabela teremos de enviar a informação para o nó adjacente com o MAC respectivo. E ainda temos a coluna *Type* que determina o tipo do endereço.

```
C:\Users\luisb>arp -a
Interface: 192.168.56.1 --- 0x8
 Internet Address
                       Physical Address
                                              Type
 192.168.56.255
                       ff-ff-ff-ff-ff
                                              static
 224.0.0.22
                       01-00-5e-00-00-16
                                              static
 224.0.0.251
                       01-00-5e-00-00-fb
                                              static
 224.0.0.252
                       01-00-5e-00-00-fc
                                              static
 239.255.255.250
                       01-00-5e-7f-ff-fa
                                              static
Interface: 172.26.67.41 --- 0xd
                       Physical Address
 Internet Address
                                              Type
 172.26.254.254
                       00-d0-03-ff-94-00
                                              dynamic
 224.0.0.22
                       01-00-5e-00-00-16
                                              static
                                              static
 224.0.0.251
                       01-00-5e-00-00-fb
                                              static
 224.0.0.252
                       01-00-5e-00-00-fc
                       ff-ff-ff-ff-ff
 255.255.255.255
                                              static
```

Figura 8: Tabela ARP.

# 10. Qual é o valor hexadecimal dos endereços origem e destino na trama Ethernet que contém a mensagem com o pedido ARP (ARP Request)? Como interpreta e justifica o endereço destino usado?)

O endereço de origem em hexadecimal é 88:d7:f6:1b:30:32 e o endereço de destino é o ff:ff:ff:ff:ff. O endereço de destino usado é esse, porque como não sabemos qual é o endereço de ip destino é feito um broadcast para o nó adjacente, onde

depois ocorre um *flood* onde todas as máquinas adjacentes recebem o pedido mas só a pretendida há de responder.

```
C:\WINDOWS\system32>ping 192.168.100.207

Pinging 192.168.100.207 with 32 bytes of data:
Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.100.207:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

Figura 9: Resultado do comando ping.



Figura 10: Printscreen dos pacotes ARP.

### 11. Qual o valor hexadecimal do campo tipo da trama Ethernet? O que indica?

O valor do campo tipo é 0x0806 e indica que o protocolo do pacote é ARP, como se pode verificar na figura 10.

#### 12. Qual o valor do campo ARP opcode? O que especifica?

O campo ARP opcode é 1, que significa que é um request.



Figura 11: Valor do campo opcode.

### 13. Identifique que tipo de endereços estão contidos na mensagem ARP? Que conclui?

Os endereços contidos na mensagem ARP são os endereços IP e os endereços de ligação lógicos (MAC adress). Uma vez que sabemos qual é o endereço IP destino, o protocolo ARP permite que dispositivos da mesma network perguntem entre si quais os endereços MAC que têm o IP em questão. Todas as máquinas adjacentes recebem o pedido, mas apenas a pretendida responde ao request.

#### 14. Explicite que tipo de pedido ou pergunta é feita pelo host de origem? É feita um pedido onde se pergunta qual é o MAC adress do endereço IP destino.

42 Who has 192.168.100.207? Tell 192.168.100.214

Figura 12: Pedido feito pelo host de origem.

- 15. Localize a mensagem ARP que é a resposta ao pedido ARP efectuado.
- a. Qual o valor do campo ARP opcode? O que especifica? O valor do campo ARP opcode é 2, o que significa que é um reply.



Figura 13: Primeira mensagem ARP reposta.

b. Em que posição da mensagem ARP está a resposta ao pedido ARP? Está localizada nos bytes 22-26 e é identificado como o Sender MAC Address.



Figura 14: Posição da mensagem ARP.

16. Identifique um pacote de pedido ARP gratuito originado pelo seu sistema. Analise o contéudo de um pedido ARP gratuito e identifique em que se distingue dos restantes pedidos ARP. Registe a trama Ethernet correspondente. Qual o resultado esperado face ao pedido ARP gratuito enviado?

O pedido ARP gratuito distingue-se na maneira em que envia para o mesmo ip da máquina um ARP request, de modo a anunciar a toda a rede o novo endereço físico que entrou na rede, de modo a todas as outras máquinas atualizarem as suas tabelas ARP.

As principais mudanças são a informação sobre a mensagem do pacote (normalmente é um request a perguntar) e é adicionado o campo Is Gratuitous no campo ARP.

O resultado esperado é que o novo endereço seja "anunciado" e as outras tabelas ARP da rede sejam atualizadas.



Figura 15: Informação sobre o pacote ARP gratuito.

# 17. Faça *ping* de n1 para n2. Verifique com a opção *tcpdump* como fui o tráfego nas diversas interfaces dos vários dispositivos. Que conclui?

A topologia CORE utilizada foi a seguinte:



Figura 16: Topologia CORE com hub.

Ao fazer o ping do n1 para o host n2 (figura 17), a mensagem é transmitida para o hub. Os hubs são dispositivos de interligação, que repetem o sinal que chega através da porta de entrada para todas as outras portas. Desta maneira, quando um hub recebe a mensagem do n1, este repete a mensagem para o n2, n3 e o n4, sendo possível verificar o mesmo no tepdump da figura 18, 19 e 20.

```
# ping 10.0.0.10
PING 10.0.0.10 (10.0.0.10) 56(84) bytes of data.
64 bytes from 10.0.0.10; icmp_req=1 ttl=64 time=0.100 ms
64 bytes from 10.0.0.10; icmp_req=2 ttl=64 time=0.053 ms
64 bytes from 10.0.0.10; icmp_req=3 ttl=64 time=0.052 ms
64 bytes from 10.0.0.10; icmp_req=4 ttl=64 time=0.057 ms
64 bytes from 10.0.0.10; icmp_req=5 ttl=64 time=0.053 ms
64 bytes from 10.0.0.10; icmp_req=5 ttl=64 time=0.054 ms
64 bytes from 10.0.0.10; icmp_req=7 ttl=64 time=0.055 ms
64 bytes from 10.0.0.10; icmp_req=8 ttl=64 time=0.055 ms
64 bytes from 10.0.0.10; icmp_req=9 ttl=64 time=0.051 ms
64 bytes from 10.0.0.10; icmp_req=10 ttl=64 time=0.057 ms
64 bytes from 10.0.0.10; icmp_req=10 ttl=64 time=0.054 ms
64 bytes from 10.0.0.10; icmp_req=11 ttl=64 time=0.054 ms
64 bytes from 10.0.0.10; icmp_req=12 ttl=64 time=0.081 ms

[]
```

Figura 17: Resultado do comando ping feito do n1 para o n2.

```
vcmd

h 64

11:49:37.740362 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 7, length 64

11:49:38.739355 IP 10.0.0.20 > 10.0.0.10: ICMP echo request, id 19, seq 8, length 64

11:49:38.739373 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 8, length 64

11:49:39.740257 IP 10.0.0.20 > 10.0.0.10: ICMP echo request, id 19, seq 9, length 64

11:49:39.740272 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 9, length 64

11:49:40.739343 IP 10.0.0.20 > 10.0.0.10: ICMP echo request, id 19, seq 10, length 64

11:49:40.739361 IP 10.0.0.20 > 10.0.0.10: ICMP echo reply, id 19, seq 10, length 64

11:49:41.740550 IP 10.0.0.20 > 10.0.0.10: ICMP echo request, id 19, seq 11, length 64

11:49:41.740567 IP 10.0.0.20 > 10.0.0.10: ICMP echo reply, id 19, seq 11, length 64

11:49:42.740717 IP 10.0.0.20 > 10.0.0.10: ICMP echo request, id 19, seq 11, length 64

11:49:42.740717 IP 10.0.0.20 > 10.0.0.10: ICMP echo request, id 19, seq 12, length 64

11:49:42.740742 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 12, length 64
```

Figura 18: Resultado do tepdump no n2.

```
h 64
11:49:37.740365 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 7, length 64
11:49:38.739350 IP 10.0.0.10 > 10.0.0.20: ICMP echo request, id 19, seq 8, length 64
11:49:38.739377 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 8, length 64
11:49:39.740253 IP 10.0.0.20 > 10.0.0.10: ICMP echo request, id 19, seq 9, length 64
11:49:39.740275 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 9, length 64
11:49:40.739338 IP 10.0.0.20 > 10.0.0.10: ICMP echo request, id 19, seq 10, length 64
11:49:40.739365 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 10, length 64
11:49:41.740543 IP 10.0.0.20 > 10.0.0.10: ICMP echo reply, id 19, seq 11, length 64
11:49:41.740572 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 11, length 64
11:49:42.740710 IP 10.0.0.20 > 10.0.0.10: ICMP echo reply, id 19, seq 11, length 64
11:49:42.740747 IP 10.0.0.20 > 10.0.0.10: ICMP echo reply, id 19, seq 12, length 64
11:49:42.740747 IP 10.0.0.20 > 10.0.0.20: ICMP echo reply, id 19, seq 12, length 64
```

Figura 19: Resultado do tepdump no n3.

```
h 64
11:49:37.740366 IP 10.0.0.10 > 10.0.0.20; ICMP echo reply, id 19, seq 7, length 64
11:49:38.739353 IP 10.0.0.20 > 10.0.0.10; ICMP echo request, id 19, seq 8, length 64
11:49:38.739378 IP 10.0.0.10 > 10.0.0.20; ICMP echo reply, id 19, seq 8, length 64
11:49:39.740255 IP 10.0.0.20 > 10.0.0.10; ICMP echo request, id 19, seq 9, length 64
11:49:39.740276 IP 10.0.0.10 > 10.0.0.20; ICMP echo reply, id 19, seq 9, length 64
11:49:40.739341 IP 10.0.0.20 > 10.0.0.10; ICMP echo request, id 19, seq 10, length 64
11:49:40.739366 IP 10.0.0.10 > 10.0.0.20; ICMP echo reply, id 19, seq 10, length 64
11:49:41.740547 IP 10.0.0.20 > 10.0.0.10; ICMP echo request, id 19, seq 11, length 64
11:49:41.740573 IP 10.0.0.20 > 10.0.0.10; ICMP echo reply, id 19, seq 11, length 64
11:49:42.740713 IP 10.0.0.20 > 10.0.0.10; ICMP echo reply, id 19, seq 11, length 64
11:49:42.740749 IP 10.0.0.20 > 10.0.0.10; ICMP echo reply, id 19, seq 12, length 64
11:49:42.740749 IP 10.0.0.20 > 10.0.0.20; ICMP echo reply, id 19, seq 12, length 64
```

Figura 20: Resultado do topdump no n4.

18. Na topologia de rede substitua o hub por um switch. Repita os procedimentos que realizou na pergunta anterior. Comente os resultados obtidos quanto à utilização de hubs e switches no contexto de controlar ou dividir domínios de colisão. Documente as suas observações e conclusões com base no tráfego observado/capturado.

A topologia CORE utilizada foi a seguinte:



Figura 21: Topologia CORE com switch.

O hub neste caso foi substituido por um switch, os resultados obtidos são diferentes. Quando o laptop n1 faz ping para o host n2 (figura 22), a mensagem é transmitida para o switch. No entanto, ao contrário de repetir o sinal como o hub, este recebe a mensagem e transmite para o host pretendido. Desta forma, quando verificamos os resultados das figuras 23 à 25, verificando o tepdump da figura 24 e 25, os hosts n3 e n4 estão inativos, não efetuam o *listen* como acontece com o hub.

Com base nos resultados obtidos dos hubs e switches no contexto de controlar ou dividir os domínios de colisão, podemos afirmar que, como os hubs repetem as mensagens para todos os nodos ligados a ele, ao apenas ter um canal de comunicação, a probablididade de colisão é muito grande, para além da necessidade de repetir o envio da mensagem. No entanto, os switches têm o principal objetivo de eliminar as colisões, uma vez que limitam o envio de mensagens apenas para o destino pretendido, funcionando como uma espécie de uma *ponte*. Desta forma, ao ter várias portas para cada interface, garante vários domínios de colisão, o que diminui a probabilidade de colisão, sendo esta a melhor escolha no que toca no contexto de controlar e dividir os domínios de colisão.

```
icmp_req=71 ttl=64
bytes from
                                                icmp_req=72
bytes from
bytes from
bytes from
                                                                        ttl=64 time=0.066
ttl=64 time=0.046
 bytes from
bytes from
bytes from
                                                icmp_req=78 ttl=64
icmp_req=79 ttl=64
 bytes from
                                               icmp_req=81 ttl=64 time=0.050 icmp_req=82 ttl=64 time=0.052
bytes from
bytes from
bytes from
                                                icmp_req=83 ttl=64 time=0.089
                                               icmp_req=84 ttl=64 time=0.110
icmp_req=85 ttl=64 time=0.108
icmp_req=85 ttl=64 time=0.068
icmp_req=87 ttl=64 time=0.067
bytes from
bytes from
bytes from
  oytes from
                                                                        ttl=64 time=0.001
ttl=64 time=0.066
bytes from
bytes from 10.0.0.10; icmp_req=89 ttl=64 time=0.066 ms bytes from 10.0.0.10; icmp_req=90 ttl=64 time=0.067 ms bytes from 10.0.0.10; icmp_req=91 ttl=64 time=0.065 ms bytes from 10.0.0.10; icmp_req=92 ttl=64 time=0.066 ms
bytes from
```

Figura 22: Resultado do comando ping feito do n1 para o n2.

```
th 64
11:47:22.595438 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 87, length 64
11:47:23.595724 IP 10.0.0.20 > 10.0.0.10: ICMP echo request, id 19, seq 88, length 64
11:47:24.595343 IP 10.0.0.20 > 10.0.0.10: ICMP echo request, id 19, seq 88, length 64
11:47:24.595343 IP 10.0.0.20 > 10.0.0.10: ICMP echo request, id 19, seq 89, length 64
11:47:24.595361 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 89, length 64
11:47:25.595401 IP 10.0.0.20 > 10.0.0.10: ICMP echo request, id 19, seq 90, length 64
11:47:25.595420 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 90, length 64
11:47:26.596273 IP 10.0.0.20 > 10.0.0.10: ICMP echo reply, id 19, seq 91, length 64
11:47:26.596291 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 91, length 64
11:47:27.595399 IP 10.0.0.20 > 10.0.0.10: ICMP echo reply, id 19, seq 91, length 64
11:47:27.595399 IP 10.0.0.20 > 10.0.0.10: ICMP echo reply, id 19, seq 92, length 64
11:47:27.595417 IP 10.0.0.10 > 10.0.0.20: ICMP echo reply, id 19, seq 92, length 64
```

Figura 23: Resultado do topdump no n2.



Figura 24: Resultado do tepdumo no n3.



Figura 25: Resultado do tcpdump no n4.

#### 2 Conclusão

Este trabalho abordou temas como a deteção e correção de erros, protocolos de acesso e de controlo de ligação, edereços MAC, Address Resolution Protocol (ARP) e Ethernet, o que contribuiu para o grupo consolidar os conhecimentos relativamente aos temas em questão. Para além de fortalecer estes conhecimentos, a captura e análise de tramas Ethernet, através do Wireshark, foi bastante importante, uma vez que deu ao grupo uma visão mais realista das tramas e da sua constituição. A análise também ofereceu uma melhor percepção do mecanismo de envio e relação dos vários endereços existentes.

O estudo do protocolo ARP foi essencial também, no que toca na consolidação de conhecimentos relacionados com os mecanismos de mapeamento. O manuseamento de core, tal como no trabalho anterior, proporcionou uma noção ainda melhor do seu funcionamento, e as consequências de usar um certo tipo de equipamentos de ligação.