Professor: Ekaterina Kostina Tutor: Philipp Elja Müller

Aufgabe 1

- (a) $\rho = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{a_n}} = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{n^{-\frac{1}{2}}}} = \frac{1}{\limsup_{n \to \infty} n^{-\frac{1}{2n}}} = 1$. Die Reihe konvergiert also für alle |x| < 1.
- (b) $\limsup_{n \to \infty} \sqrt[n]{a_n} = \limsup_{n \to \infty} \sqrt[n]{\left|\frac{(-1)^{n!}}{ne^n}\right|} = \limsup_{n \to \infty} \frac{1}{\sqrt[n]{ne}} = \frac{1}{e}$. Folglich kovergiert die Reihe für alle $|x+1| < \rho = \frac{1}{\limsup \sqrt[n]{a_n}} = \frac{1}{\frac{1}{e}} = e$.
- (c) $\limsup_{n\to\infty} \sqrt[n]{a_n} = \limsup_{n\to\infty} \sqrt[n]{\left|\frac{(-2)^{n+1}}{nx_0}\right|} = \limsup_{n\to\infty} 2 \cdot \sqrt[n]{\frac{2}{nx_0}} = 2$. Folglich ist $\rho = \frac{1}{\limsup_{n\to\infty} \sqrt[n]{a_n}} = \frac{1}{2}$. Die Reihe konvergiert also für alle $(x-x_0)^2 < \frac{1}{2}$ und somit für alle $|x-x_0| < \frac{1}{\sqrt{2}}$.

Aufgabe 2

(a) Nach Vorlesung sind konstante Funktionen sowie die Identität auf ganz \mathbb{R} stetig. Also ist auch die Funktion $\min\{1,x\}$ für alle $x\in(-\infty,1)\cup(1,\infty)$ stetig. An der Stelle x=1 gilt $\forall \varepsilon>0$ mit $\delta=\varepsilon$

$$\forall x \in \mathbb{R} \text{ mit } |x - 1| < \delta = \varepsilon : |f(x) - f(1)| = |\min\{1, x\} - 1| = \begin{cases} |1 - 1| = 0 < \varepsilon & |x \ge 1| \\ |x - 1| < \delta = \varepsilon & |x < 1| \end{cases}$$

Also ist die Funktion $\forall x \in \mathbb{R}$ stetig.

(b) $f(x) = \begin{cases} \frac{x^2 - x}{x^2 - 5x + 4} = \frac{(x - 1)x}{(x - 4)(x - 1)} = \frac{x}{x - 4} & x \in \mathbb{R} \setminus \mathbb{N} \\ 2x - 5 & x \in \mathbb{N} \end{cases}$

Behauptung: $2n - 5 \neq \frac{n}{n-4} \forall n \in \mathbb{N}2, 4, 5.$

Beweis. Annahme:

$$2n - 5 = \frac{n}{n - 4}$$
$$(2n - 5)(n - 4) = n$$
$$2n^2 - 5n - 8n + 20 - n = 0$$
$$2n^2 - 14n + 20 = 0$$
$$n^2 - 7n + 10 = 0$$
$$(n - 5)(n - 2) = 0$$

Satz vom Nullprodukt

$$n = 5 \lor n = 2$$

Das steht allerdings im Widerspruch zu $n \in \mathbb{N} \setminus \{2, 4, 5\}$.

Behauptung: Die Funktion ist für alle $x \in \mathbb{N} \setminus \{2,5\}$ unstetig und ansonsten überall stetig.

Beweis. $\forall n \in \mathbb{N}$ ist f für alle $x \in I_n := (n, n+1)$ durch $f(x) = \frac{x}{x-4}$ definiert. Außerdem gilt $x \neq 4$. Für alle $0 > x \in \mathbb{R}$ ist f ebenfalls durch $f(x) = \frac{x}{x-4}$ definiert und es gilt auch $x \neq 4$. Somit ist $f \forall x \in \mathbb{R} \setminus \mathbb{N}$ stetig. Es gilt $\frac{2}{2-4} = -1 = 2 \cdot 2 - 5$. Daher ist f im Intervall (1,3) durch die rationale Funktion $\frac{x}{x-4}$ definiert. Da $x \neq 4$ ist f in diesem Intervall, also insbesonder an der Stelle x = 2 ebenfalls stetig. Außerdem gilt $\frac{5}{5-4} = 5 = 2 \cdot 5 - 5$ und daher muss nach analoger Argumentation f an der Stelle x = 5 stetig sein. An der Stelle x = 4 gibt es eine wesentliche Unstetigkeitsstelle. Für alle $n \in \mathbb{N} \setminus \{2,4,5\}$ definiere die Folge $(a_{n,k})_{k \in \mathbb{N}}$ durch $a_{n,k} = n - \frac{\sqrt{2}}{k}$. Dann gilt $\lim_{k \to \infty} a_{n,k} = n$ und $\lim_{k \to \infty} f(a_{n,k}) = \frac{n}{n-4}$. Allerdings ist $\forall n \in \mathbb{N} \setminus \{2,4,5\}$ $\frac{4}{n-4} \neq 2n - 5$. Folglich ist $f \forall n \in \mathbb{N} \setminus \{2,4,5\}$ unstetig.

(c) Sei $x \in \mathbb{Q}$ und damit $f(x) \neq 0$. Dann gilt $\lim_{n \to \infty} a_n = x - \frac{\sqrt{2}}{n} = x$, aber $\lim_{n \to \infty} f(a_n) \stackrel{\sqrt{2} \text{ irrational}}{=} 0 \neq f(x)$ und folglich ist a_n unstetig für alle $x \in \mathbb{Q}$. Sei andererseits $x_0 \in \mathbb{R} \setminus \mathbb{Q}$. Behauptung: Dann existiert $\forall \varepsilon > 0$ ein $\delta > 0$, sodass $\forall |x - x_0| < \delta$: $|f(x) - f(x_0)| < \varepsilon$.

Beweis. Es gibt offensichtlich in jeder δ-Umgebung von x_0 rationale Zahlen. Da die natürlichen Zahlen nach unten beschränkt sind, gibt es mindestens eine rationale Zahl $q=\frac{r}{s}$ mit dem kleinsten Nenner s. Gibt es mehrere solcher Zahlen, so wähle die mit geringstem Abstand zu x_0 . Ist nun $\frac{1}{s}>\varepsilon$, so wähle $\delta=\frac{|x_0-q|}{2}$. Nun gibt es erneut mindestens eine rationale Zahl $q'=\frac{r'}{s'}$ mit dem kleinsten Nenner s' aller rationalen Zahlen in $U_\delta(x_0)$, allerdings ist nun s'>s. Da es nach dem archimedischen Axiom ein $n\in\mathbb{N}$ gibt, sodass $\frac{1}{n}<\varepsilon$, findet man durch diesen Prozess nach endlich vielen Schritten ein δ , sodass der kleinste Nenner s>n ist. Also ist für alle rationalen Zahlen $x\in\mathbb{Q}$ in $U_\delta(x_0): f(x)=|f(x)|<\frac{x_0}{=}$ irrationale $|f(x)-f(x_0)|<\varepsilon$.

(d) Annahme: $\exists x_0 \in \mathbb{R} : f(x_0) \neq g(x_0)$. Per Definition ist jedes $x_0 \in \mathbb{R}$ Grenzwert einer Folge von rationalen Zahlen. Sei also $x_0 = \lim_{n \to \infty} a_n$ mit $a_n \in \mathbb{Q} \forall n \in \mathbb{N}$. Da f stetig ist, gilt $f(x_0) = \lim_{n \to \infty} f(a_n) = g(x_0)$. Damit haben wir unsere Annahme ad absurdum geführt.

Aufgabe 3

Behauptung 1: $f(x) = \frac{x^{42}+42}{x-a} + \frac{x^6+42}{x-b}$ ist stetig im Intervall (a,b) und $g(x) \coloneqq (x^{42}+42) \cdot (x-b) + (x^6+42) \cdot (x-a)$ ist stetig im kompakten Intervall [a,b].

Beweis. Rationale Funktion $\frac{f(x)}{g(x)}$ sind nach Vorlesung $\forall x \in \mathbb{R}$ mit $g(x) \neq 0$ für Polynome f, g wieder stetig. Im Intervall (a, b) ist $x - a \neq 0 \neq x - b$ und $x^{42} + 42$, x - a, $x^6 + 42$ und x - b sind Polynome, sodass $\frac{x^{42} + 42}{x - a}$ und $\frac{x^6 + 42}{x - b}$ sowie deren Summe wieder stetig sind. Analoge Argumentation liefert, dass g im Intervall [a, b] stetig sein muss.

$$\text{Es gilt } g(a) = \underbrace{(a^{42} + 42)}_{>0} \cdot \underbrace{(a - b)}_{<0} + \underbrace{(a^6 + 42) \cdot 0}_{=0} < 0 \text{ und } g(b) = (b^{42} + 42) \cdot 0 + \underbrace{(b^6 + 42)}_{>0} \cdot \underbrace{(b - a)}_{>0} > 0.$$

Die Funktion g(x) hat also im Intervall [a, b] nach Mittelwertsatz eine Nullstelle an der Stelle x_0 . Da g(a) < 0 und g(b) > 0, liegt x_0 im Intervall (a, b). Da $a \ne x_0 \ne b$, gilt $(x_0 - a) \ne 0 \ne (x_0 - b)$. Folglich ist auch $f(x_0) = \frac{x_0^{42} + 42}{x_0 - a} + \frac{x_0^6 + 42}{x_0 - b} = 0$. Daher ist x_0 eine L

Aufgabe 4

1. Z.Z.: Es gibt keine hebbaren Unstetigkeiten.

Beweis. Annahme: $\lim_{x\searrow x_0} = y_0 = \lim_{x\nearrow x_0}$, aber $f(x_0) \neq y_0$. Ist $f(x_0) > y_0$, so existiert nach Definition des Limes ein $x > x_0$ mit $f(x) < f(x_0)$. Dies widerspricht dem monotonen Wachstum von f. Also muss $f(x_0) < y_0$ sein. Dann existiert aber analog ein $x < x_0$ mit $f(x) > f(x_0)$, was ebenfalls dem monotonen Wachstum von f widerspricht. Daher ist unsere Annahme falsch und es gibt keine hebbaren Unstetigkeiten.

2. Z.Z.: Es gibt keine wesentlichen Unstetigkeiten.

Beweis. Sei $\lim_{n\to\infty} x_n = x_0$ mit $x_n < x_0$ und $\lim_{n\to\infty} f(x_n)$ nicht existent. Da die Funktion monoton wachsend ist, muss $f(x_n)$ ebenfalls monoton wachsen. Wäre die Folge auch beschränkt, so würde sie konvergieren. Also muss sie unbeschränkt sein. Sei $x_1 > x_0$. Aufgrund der Unbeschränktheit von $f(x_n)$ existiert ein x_n mit $f(x_n) > f(x_1)$, was aber dem monotonen Wachstum von f widerspricht. Sei andererseits $\lim_{n\to\infty} x_n = x_0$ mit $x_n > x_0$ und $\lim_{n\to\infty} f(x_n)$ nicht existent. Da die Funktion monoton wachsend ist, muss $f(x_n)$ monoton fallen. Wäre die Folge auch beschränkt, so würde sie konvergieren. Also muss sie unbeschränkt sein. Sei $x_1 < x_0$. Aufgrund der Unbeschränktheit von $f(x_n)$ existiert ein x_n mit $f(x_n) < f(x_1)$, was aber dem monotonen Wachstum von f widerspricht.

3. Z.Z.: Es gibt für jedes $n \in \mathbb{N}$ nur endlich viele $a \in]0,1[$ mit

$$|f(a^+) - f(a^-)| := \left| \lim_{x \searrow a} f(x) - \lim_{x \nearrow a} f(x) \right| > \frac{1}{n}$$

Beweis. Annahme: Es gibt unendlich viele Sprungunstetigkeiten im Intervall]0, 1[für ein beliebiges $n_0 \in \mathbb{N}$. Sei]0, b[das Intervall mit dem kleinsten b, in dem noch alle Unstetigkeiten liegen. Die k-te Sprungunstetigkeit sei an der Stelle a_k . Es gilt $\lim_{k\to\infty}a_k=b$. Da f streng monoton wächst, gilt aber $\lim_{k\to\infty}f(a_k)\geq\lim_{k\to\infty}\sum_{l=0}^k|f(a_l^+)-f(a_l^-)|>\sum_{k=0}^\infty\frac{1}{n}$. Diese Reihe divergiert aber, also erhalten wir eine wesentliche Unstetigkeit an der Stelle $b \notin \mathbb{N}$.

Wir erhalten also abzählbar viele Mengen mit jeweils endlich vielen Unstetigkeitsstellen. Die Vereinigung dieser Mengen ist also wieder abzählbar.