(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年1月25日(25.01.2001)

PCT

(10) 国際公開番号 WO 01/06587 A1

(HIGUCHI, Yoshiaki) [JP/JP]. 寺田一郎 (TERADA,

Ichiro) [JP/JP]. 下平哲司 (SHIMOHTRA, Tetsuji)

221-8755 神奈川県横浜市神奈川区羽沢町1150番地

al.); 〒101-0042 東京都千代田区神田東松下町38番地

了 (HOMMURA, Satoru) [JP/JP]; 〒

(51) 国際特許分類?:

H01M 8/02, 8/10

(21) 国際出願番号:

PCT/JP00/04853

(22) 国際出願日:

2000年7月19日(19.07.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/206784 1999年7月21日(21.07.1999) (81) 指定国 (国内): CA, CN, US.

島本鋼業ビル Tokyo (JP).

旭硝子株式会社内 Kanagawa (JP).

[JP/JP]. 本村

(84) 指定国 (広域): ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(74) 代理人: 弁理士 泉名謙治、外(SENMYO, Kenji et

(71) 出願人 (米国を除く全ての指定国について): 旭硝 子株式会社 (ASAHI GLASS COMPANY, LIMITED) [JP/JP]; 〒100-8405 東京都千代田区有楽町一丁目12 番 1号 Tokyo (JP).

添付公開書類:

国際調査報告書

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 樋口義明

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: SOLID POLYMER ELECTROLYTE TYPE FUEL CELL AND METHOD FOR MANUFACTURING THE SAME

(54) 発明の名称: 固体高分子電解質型燃料電池及びその製造方法

(57) Abstract: A solid polymer electrolyte type fuel cell having, as an electrolyte, a cation exchange film comprising a perfluorocarbon polymer having a sulfonic acid groupe, characterized in that the cation exchange film has been subjected to a stretching treatment, and preferably has a film area which has been increased by 5 to 10% based on its original area through the stretching treatment. The cation exchange film having been subjected to such a stretching treatment is free from wrinkles caused by elongation even when used under conditions wherein humidity is prone to changes, which results in the manufacture of a solid polymer electrolyte type fuel cell having a high output and excellent durability.

(57) 要約:

スルホン酸基を有するパーフルオロカーボン重合体からなる陽イオン交換膜を 電解質とする固体高分子電解質型燃料電池において、前記陽イオン交換膜として 、延伸処理されたもの、好ましくは延伸処理により処理前より膜面積が5~10 0%増大した膜を使用する。上記構成により、乾湿変化しやすい状況下で使用し ても陽イオン交換膜は伸びてしわが発生することがないので、出力が高く 耐久性 に優れる固体高分子電解質型燃料電池を提供することができる。

WO 01/06587 AJ