Devoir surveillé n° 3 – v1

Durée : 4 heures, calculatrices et documents interdits

I. Polynômes minimaux de matrices (extrait du concours des Mines d'Alès, Albi, Douai et Nantes 1988)

Préliminaires

- \bullet *n* désigne un entier naturel non nul.
- $\mathcal{M}_n(\mathbb{R})$ désigne l'espace vectoriel réel des matrices carrées d'ordre n à coefficients réels.
- I_n désigne la matrice identité d'ordre n de $\mathcal{M}_n(\mathbb{R})$.
- 0_n désigne la matrice nulle d'ordre n de $\mathcal{M}_n(\mathbb{R})$.
- $\mathbb{R}[X]$ désigne l'espace vectoriel sur \mathbb{R} des polynômes à une indéterminée X et à coefficients réels.
- Pour M élément de $\mathcal{M}_n(\mathbb{R})$ et P un polynôme tel que $P(X) = \sum_{k=0}^m a_k X^k$, on note P(M) la matrice de $\mathcal{M}_n(\mathbb{R})$ définie par :

$$P(M) = \sum_{k=0}^{m} a_k M^k \quad \text{avec} \quad M^0 = I_n.$$

- On admettra que pour toute matrice M de $\mathcal{M}_n(\mathbb{R})$ il existe un unique polynôme, appelé polynôme minimal de M, noté $P_M(X)$, vérifiant les trois propriétés suivantes :
 - (i) le coefficient a_m du terme de plus haut degré est égal à 1;
 - (ii) $P_M(M) = 0_n$;
- (iii) $\forall Q \in \mathbb{R}[X], (Q(M) = 0_n) \Rightarrow (P_M \text{ divise } Q).$

L'objet de ce problème est de déterminer les polynômes minimaux de matrices particulières.

Partie A

Soit
$$A = \begin{pmatrix} 2 & 4 & 0 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{pmatrix}$$
.

1) a) Déterminer la matrice N de $\mathcal{M}_3(\mathbb{R})$ telle que $A=2\mathrm{I}_3+N$. Calculer N^2 et N^3 .

- b) En déduire le polynôme minimal de A.
- c) Pour tout k de \mathbb{N}^* , calculer A^k .
- 2) a) Si P est un élément de $\mathbb{R}[X]$ démontrer que

$$P(A) = \begin{pmatrix} P(2) & 4P'(2) & 6P''(2) \\ 0 & P(2) & 3P'(2) \\ 0 & 0 & P(2) \end{pmatrix}$$

où P' et P'' désignent les polynômes dérivés d'ordre 1 et 2 de P.

b) Retrouver le polynôme minimal de A.

Partie B

Soit M élément de $\mathcal{M}_n(\mathbb{R})$.

Pour tout k de \mathbb{N}^* on lui associe la matrice $R_k(M)$ à k lignes et n^2 colonnes formée ainsi :

- La 1ère ligne est la matrice I_n écrite en ligne (c'est-à-dire les lignes à la suite les unes des autres);
- Pour $i \in [2, n]$, la *i*-ème ligne est la matrice M^{i-1} écrite en ligne.

En utilisant la méthode du pivot de Gauss ou en effectuant des combinaisons linéaires sur les lignes de $R_k(M)$, on associe à $R_k(M)$ UNE matrice notée $L_k(M)$ telle que :

• $L_k(M) = (a_{ij})_{\substack{1 \le i \le k \\ 1 \le j \le n^2}}$ avec $a_{ij} = 0$ si i > j.

3) Soit
$$B = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 3 & 4 & 0 & -3 \\ -3 & -6 & 1 & 6 \\ 3 & 6 & 0 & -5 \end{pmatrix}$$
.

- a) Calculer B^2 , écrire $R_3(B)$ et déterminer une matrice $L_3(B)$.
- b) À partir de $L_3(B)$ déterminer une combinaison linéaire nulle non triviale des matrices B^2 , B et I_4 .
- c) Déterminer le polynôme minimal de B.

4) Soit
$$C = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & -1 \\ -1 & 1 & 3 \end{pmatrix}$$
.

- a) Calculer C^2 et C^3 , écrire $R_4(C)$ et déterminer une matrice $L_4(C)$.
- b) À partir de $L_4(C)$ déterminer une combinaison linéaire nulle non triviale des matrices C^3 , C^2 , C et I_3 .
- c) Justifier que C^2 , C et I_3 sont linéairement indépendantes dans $\mathcal{M}_3(\mathbb{R})$ et en déduire le polynôme minimal de C.

- 5) Soit $D = \begin{pmatrix} B & 0_{4,3} \\ 0_{3,4} & C \end{pmatrix}$ élément de $\mathcal{M}_7(\mathbb{R})$, où $0_{m,n}$ désigne la matrice nulle à m lignes et n colonnes.
 - a) Démontrer que :

$$\forall P \in \mathbb{R}[X], \quad P(D) = \begin{pmatrix} P(B) & 0_{4,3} \\ 0_{3,4} & P(C) \end{pmatrix}.$$

b) Déterminer le polynôme minimal de D.

II. Une intégrale égale à une somme

Dans tout ce problème, on considère un réel a strictement positif.

Partie A - Préliminaires

- 1) Justifier que la série $\sum_{k>0} \frac{1}{a^2 + k^2}$ converge.
- 2) Dans cette question, α est un réel strictement positif et β un réel quelconque.
 - a) Soit $f:[0,+\infty[\to\mathbb{R}$ continue. Rappeler la définition de f intégrable sur $[0,+\infty[$.
 - **b)** Justifier que les intégrales $\int_0^{+\infty} \cos(\beta t) e^{-\alpha t} dt$ et $\int_0^{+\infty} \sin(\beta t) e^{-\alpha t} dt$ convergent.
 - c) Prouver que l'intégrale $\int_0^{+\infty} e^{(-\alpha+i\beta)t} dt$ converge et calculer cette intégrale.
 - d) En déduire

$$\int_0^{+\infty} \cos(\beta t) e^{-\alpha t} dt = \frac{\alpha}{\alpha^2 + \beta^2} \quad \text{et} \quad \int_0^{+\infty} \sin(\beta t) e^{-\alpha t} dt = \frac{\beta}{\alpha^2 + \beta^2}.$$

Partie B – Une expression intégrale

- 3) a) Donner un équivalent au voisinage de 0 de $x \mapsto \frac{\sin(ax)}{e^x 1}$.
 - **b)** Prouver la convergence de $\int_0^{+\infty} \frac{\sin(ax)}{e^x 1} dx$.
- 4) Justifier que l'intégrale $I_k = \int_0^{+\infty} \sin(ax) e^{-kx} dx$ est convergente pour tout entier naturel k non nul et donner une expression de la valeur de l'intégrale I_k .

5) Pour tout entier naturel n non nul, on note

$$R_n = \int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} dx - \sum_{k=1}^n \frac{a}{a^2 + k^2}.$$

Montrer que $R_n = \int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} e^{-nx} dx$.

- 6) a) Montrer que, pour tout $x \in [\ln(2), +\infty[$, on a $0 \le \frac{1}{e^x 1} \le 1$.
 - **b)** Justifier qu'il existe un réel K positif tel que, pour tout $x \in]0, \ln 2]$,

$$\left| \frac{\sin(ax)}{e^x - 1} \right| \leqslant K.$$

- c) En déduire que la fonction $x \mapsto \frac{\sin(ax)}{e^x 1}$ est bornée sur $]0, +\infty[$.
- 7) Montrer que

$$\int_0^{+\infty} \frac{\sin(ax)}{e^x - 1} dx = \sum_{k=1}^{+\infty} \frac{a}{a^2 + k^2}.$$

— FIN —