GEL-4250 / GEL-7015Commande multivariable

Extraits de GEL-7029 Observation et commande prédictive
Version 2.1
31 janvier 2020

André Desbiens, Ing. Ph.D. Département de génie électrique et de génie informatique

Université Laval Québec, Canada

Part 3

REVIEW OF MATRIX ALGEBRA AND STOCHASTIC SIGNALS

Homogeneous system of linear equations

A $n \times n$ homogeneous system of linear equations:

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \cdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = 0$$

$$Ax = 0$$

- has a unique solution (the trivial solution x = 0) if and only if $det[A] \neq 0$
- has a solution set with an infinite number of solutions if det[A] = 0

Eigenvalues

If $Av = \lambda v$ where A: $n \times n$, v: $n \times 1$ and λ : 1×1 then

- v is an eigenvector of A (there are n eigenvectors)
- λ is the corresponding eigenvalue (there are n eigenvalues)
- Eigenvalues with Matlab: eig(A)

$$Av = \lambda v$$
$$\lambda v - Av = 0$$
$$[\lambda I - A]v = 0$$

• If we dismiss the trivial solution, we need $det[\lambda I - A] = 0$. This is how the eigenvalues λ are calculated.

Quadratic form

Quadratic form: scalar $Q(x) = x^T A x$ where x: $n \times 1$ and A symmetric

- Positive (semi-) definite if
 - $Q(x) (\ge) > 0 \quad \forall x \ne 0$
 - All eigenvalues of $A \ge 0$
- Negative (semi-) definite if
 - $Q(x) \le 0 \quad \forall x \ne 0$
 - All eigenvalues of $A \le 0$
- Indefinite if
 - Q(x) > 0 for some x and Q(x) < 0 for some other x
 - Some eigenvalues of A > 0 and some < 0</p>
- $A = B^T B$ is positive semi-definite

Matrix differentiation

$$x = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$$

If f(x) is a scalar function of x then: $\frac{\partial f(x)}{\partial x} = \begin{bmatrix} \frac{\partial f(x)}{\partial x_1} & \frac{\partial f(x)}{\partial x_2} & \cdots & \frac{\partial f(x)}{\partial x_n} \end{bmatrix}^T$

If
$$f(x) = Bx$$
 where B is $1 \times n$ then: $\frac{\partial f(x)}{\partial x} = B^T$

If
$$f(x) = x^T A x$$
 where A is $n \times n$ then: $\frac{\partial f(x)}{\partial x} = A x + A^T x$

If *A* is symmetric then:
$$\frac{\partial f(x)}{\partial x} = 2Ax$$

If $f(x) = x^T A x - 2Bx + D$ where A is symmetric and D is a scalar then:

$$\frac{\partial f(x)}{\partial x} = 2Ax - 2B^T$$

Minimization of a quadratic function

A: positive definite and symmetric

$$\frac{\partial \left[x^{T} A x - 2B x + D \right]}{\partial x} = 2Ax - 2B^{T} = 0$$
$$x = A^{-1}B^{T}$$

Minimum or maximum?

$$\frac{\partial^2 \left[x^T A x - 2B x + D \right]}{\partial x^2} = \frac{\partial \left[2A x - 2B^T \right]}{\partial x} = 2A^T = 2A$$

Positive definite: minimum

Mathematical expectation

Time series: recording of N values of the variable e: $\{e(k)\}$ or e(k) for k = 1 to N

If e is a signal whose value has some element of chance associated with it, then

e is a stochastic (random) signal. Therefore it cannot be predicted exactly.

The probability density function (pdf) specifies the probability of the random variable falling within a particular range of values. Example: the well-known normal (or Gaussian) distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \qquad \mu: \text{ mean } \\ \sigma: \text{ standard deviation }$$

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

γ	$P(\mu - \gamma \sigma \le e(k) \le \mu + \gamma \sigma)$
1	0.6826
2	0.9544
3	0.9974

If the pdf does not vary with time then the signal is stationary (for a Gaussian signal: its mean and variance do not vary with time)

The mathematical expectation (or expected value) of e is:

$$E\{e(k)\} = \int_{-\infty}^{\infty} x f(x) dx$$

It corresponds to its "true" mean:

$$\mu_e = E\{e(k)\}$$

The "true" variance: $\sigma_e^2 = E\{(e(k) - \mu_e)^2\}$

Linear operation (a and b are constant):

$$E\{ae(k)+b\}=E\{ae(k)\}+E\{b\}=aE\{e(k)\}+b=a\mu_e+b$$

Covariance

Correlation between 2 random variables: how strongly are they related?

y(k) vs u(k), for k = 1 to N

The correlation is not necessarily instantaneous, i.e. y(k) may be very lightly related to u(k) but may be strongly related to u(k-2). We therefore look for different delays between the two variables.

Measure of how u(k - i) and y(k) are related: cross-covariance

$$C_{yu}(i) = E\left\{ \left(y(k) - \mu_y \right) \left(u(k-i) - \mu_u \right) \right\}$$

Can be scaled (normalized), between -1 and 1: cross-correlation

$$r_{yu}(i) = \frac{C_{yu}(i)}{\sqrt{C_{yy}(0)C_{uu}(0)}} = \frac{C_{yu}(i)}{\sigma_{y}\sigma_{u}}$$

- If $u(k-3) = -y(k) : r_{yu}(3) = -1$
- If u(k-3) and y(k) are independent: $C_{yu}(3) = 0$ (but $C_{yu}(3) = 0$ does not necessarily mean that u(k-3) and y(k) are independent)
- If u(k) = y(k): auto-covariance and auto-correlation
- $C_{yy}(0)$ = variance of y(k)
- $r_{yy}(-i) = r_{yy}(i)$ and $r_{yy}(0) = 1$

White noise

$$E\{y(k)\} = 0$$

$$E\left\{ \left(y(k) - \mu_{y} \right) \left(y(i) - \mu_{y} \right) \right\} = E\left\{ y(k) \ y(i) \right\}$$

$$= \begin{cases} = 0 & \text{if } k \neq i \\ = \sigma_{x}^{2} & \text{if } k = i \end{cases}$$

Colored noise

$$E\{y(k)\} = 0$$

$$E\{y(k) \ y(i)\} \begin{cases} \neq 0 & \text{if } k \neq i \\ = \sigma_y^2 & \text{if } k = i \end{cases}$$

If *n* stochastic signals: $e_1(k)$, $e_2(k)$, ..., $e_n(k)$ then the covariance matrix is:

$$Q = \begin{bmatrix} E\{(e_1(k) - \mu_1)(e_1(k) - \mu_1)\} & E\{(e_1(k) - \mu_1)(e_2(k) - \mu_2)\} & \cdots & E\{(e_1(k) - \mu_1)(e_n(k) - \mu_n)\} \\ E\{(e_2(k) - \mu_2)(e_1(k) - \mu_1)\} & E\{(e_2(k) - \mu_2)(e_2(k) - \mu_2)\} & \cdots & E\{(e_2(k) - \mu_2)(e_n(k) - \mu_n)\} \\ \vdots & \vdots & \ddots & \vdots \\ E\{(e_n(k) - \mu_n)(e_1(k) - \mu_1)\} & E\{(e_n(k) - \mu_n)(e_2(k) - \mu_2)\} & \cdots & E\{(e_n(k) - \mu_n)(e_n(k) - \mu_n)\} \end{bmatrix}$$

- symmetric
- variance of $e_i(k)$ on the diagonal
- if $e_i(k)$ and $e_i(k)$ are independent for all $i \neq j$: diagonal matrix
- positive semi-definite

Part 11

OBSERVERS

Prediction equations for a state-space model

Model:
$$y(k) = Cx(k)$$

 $x(k+1) = Ax(k) + Bu(k)$

Predictions:

$$\hat{y}(k+1/k) = Cx(k+1)$$

$$= CAx(k) + CBu(k)$$

$$\hat{y}(k+2/k) = CAx(k+1) + CBu(k+1)$$

$$= CA^2x(k) + CABu(k) + CBu(k+1)$$
...

$$\hat{y}(k+H_p/k) = CA^{H_p}x(k) + CA^{H_p-1}Bu(k) + \dots + CABu(k+H_p-2) + CBu(k+H_p-1)$$

Predictions:

$$\begin{bmatrix} \hat{y}(k+1/k) \\ \hat{y}(k+2/k) \\ \vdots \\ \hat{y}(k+H_p/k) \end{bmatrix} = \begin{bmatrix} CA \\ CA^2 \\ \vdots \\ CA^{H_p} \end{bmatrix} x(k) + \begin{bmatrix} CB & 0 & \dots & 0 \\ CAB & CB & 0 & \dots & 0 \\ \vdots \\ CA^{H_p-1}B & \dots & CAB & CB \end{bmatrix} \begin{bmatrix} u(k) \\ u(k+1) \\ \vdots \\ u(k+H_p-2) \\ u(k+H_p-1) \end{bmatrix}$$

$$= \begin{bmatrix} CA \\ CA^2 \\ \vdots \\ CA^{H_p} \end{bmatrix} x(k) + \begin{bmatrix} CB & 0 & \dots & 0 \\ \vdots & & \dots & 0 \\ \vdots & & \dots & 0 \\ CA^{H_p-1}B & \dots & CA^{H_p-H_c}B & \sum_{i=0}^{H_p-H_c-1} CA^iB \\ CA^{H_p-1}B & \dots & CA^{H_p-H_c+1}B & \sum_{i=0}^{H_p-H_c} CA^iB \end{bmatrix} \begin{bmatrix} u(k) \\ u(k+1) \\ \vdots \\ u(k+H_c-2) \\ u(k+H_c-1) \end{bmatrix}$$

To take into account the control horizon constraint, we keep the first H_c - 1 columns and we sum the remaining columns to form the last one, since $u(k + H_c - 1) = u(k + H_c) = \dots = u(k + H_p - 1)$

- For the predictions to be functions of only u(k), ..., $u(k + H_c 1)$, we need the value of the state vector x(k)
- Infinity of state-space representations for a same linear model: the states may or may not represent real signals
- Even if they represent real signals, the states are very seldom all measured
- \succ An observer is an algorithm to estimate the states (state estimates \hat{x}):
 - Luenberger observer: deterministic observer, designed by poleplacement
 - Kalman filter: stochastic optimal observer

MPC based on a state-space model

Depending of the observer, the estimate of x(k) may have been calculated:

- at time k: $\hat{x}(k/k)$
- at time k-1: $\hat{x}(k/k-1)$
- The model must be controllable and observable

Observers – Controllability/Observability

Controllability: Can we design control inputs to steer the model states to arbitrarily values?

Observability: Without knowing the initial state, can we determine the

state of a model given the input and the output?

 x_1 : controllable, not observable

 x_2 : controllable, observable

 x_3 : not controllable, not observable x_4 : not controllable, observable

UNIVERSITÉ LAVAL

Observers – Controllability

Controllability

For a discrete model with n states and n_u inputs, can we find u(0) to u(n-1) to steer the states from its initial condition x(0) to any x(n)?

Observers – Observability

Observability

For a discrete model with n states and n_y outputs, can we find its initial state x(1) from the knowledge of y(i) and u(i) for i = 1 to n?

Observers\Controllability_Observability.mlx

Structure of an observer

Model:
$$y(k) = Cx(k)$$

 $x(k+1) = Ax(k) + Bu(k)$

General equation of an observer:

$$\hat{x}(k+1/k) = A\hat{x}(k/k-1) + Bu(k) + K[y(k) - \hat{y}(k/k-1)]$$
Model

Output prediction
error

Correction based on feedback

Output prediction:
$$\hat{y}(k/k-1) = C\hat{x}(k/k-1)$$

Gain of correction: K $(n \times n_v)$

If K = 0: open-loop observer (like internal model control)

$$\hat{x}(k+1/k) = A\hat{x}(k/k-1) + Bu(k) + K[y(k) - \hat{y}(k/k-1)]$$

$$= A\hat{x}(k/k-1) + Bu(k) + Ky(k) - KC\hat{x}(k/k-1)$$

$$\hat{x}(k+1/k) = (A - KC)\hat{x}(k/k-1) + Bu(k) + Ky(k)$$

Estimation error

Time evolution of the estimation error, without disturbances and model mismatches:

$$e(k+1) = x(k+1) - \hat{x}(k+1/k)$$

$$= Ax(k) + Bu(k) - (A - KC)\hat{x}(k/k-1) - Bu(k) - Ky(k)$$

$$= A[x(k) - \hat{x}(k/k-1)] - KC[x(k) - \hat{x}(k/k-1)] \quad \text{since } y(k) = Cx(k)$$

$$= (A - KC)[x(k) - \hat{x}(k/k-1)]$$

$$e(k+1) = (A - KC)e(k)$$

- The estimation error will go to zero (the observer is stable) if the eigenvalues of A KC lie within the unit circle (just like the stability of the model x(k+1) = Ax(k))
- The dynamics of the error are dictated by the eigenvalues of A KC
- Selecting K to get the desired eigenvalues (poles): Luenberger observer

Example – Design of a Luenberger observer

Model:
$$y(k) = \begin{bmatrix} -0.5 & 1 \end{bmatrix} x(k)$$

 $x(k+1) = \begin{bmatrix} 0.82 & 0 \\ 0 & 0.9 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(k)$

Observer:

$$K = \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = ?$$

Desired dynamics of the estimation error: all poles equal to 0.3 The poles are obtained from the characteristic equation:

$$\det[zI - A + KC] = 0 = (z - 0.3)(z - 0.3)$$

$$zI - A + KC = \begin{bmatrix} z - 0.82 - 0.5k_1 & k_1 \\ -0.5k_2 & z - 0.9 + k_2 \end{bmatrix}$$

$$\det[zI - A + KC] = z^2 + (-1.72 + k_2 - 0.5k_1)z + ((-0.82 - 0.5k_1)(-0.9 + k_2) + 0.5k_1k_2)$$
$$= z^2 + (-0.6)z + 0.09$$

Solving term by term: $k_1 = 6.76$ $k_2 = 4.5$

 $Observers \backslash Luenb_no_integr.mlx$

Observation in presence of disturbances

Both a model mismatch or a disturbance have a similar effect: they modify y(k) unexpectedly and thus change the state estimates

 To simplify the analysis (without loosing the generality), we assume a perfect model and an output disturbance

What is the estimation error?

Estimation error in presence of disturbances

Plant:
$$y(k) = Cx(k) + p(k)$$
$$x(k+1) = Ax(k) + Bu(k)$$

Observer:
$$\hat{x}(k+1/k) = A\hat{x}(k/k-1) + Bu(k) + K[y(k) - C\hat{x}(k/k-1)]$$

$$= A\hat{x}(k/k-1) + Bu(k) + K[Cx(k) + p(k) - C\hat{x}(k/k-1)]$$

$$= (A - KC)\hat{x}(k/k-1) + Bu(k) + KCx(k) + Kp(k)$$

Estimation error:

$$e(k+1) = x(k+1) - \hat{x}(k+1/k)$$

$$= Ax(k) + Bu(k) - (A - KC)\hat{x}(k/k-1) - Bu(k) - KCx(k) - Kp(k)$$

$$= (A - KC)[x(k) - \hat{x}(k/k-1)] - Kp(k)$$

$$= (A - KC)e(k) - Kp(k)$$

$$e(k+1) = (A - KC)e(k) - Kp(k)$$

- Assumptions:
 - The observer is stable (eigenvalues of A KC lie within the unit circle)
 - The disturbance is constant: p(k) = p
- Since the observation will converge, in steady-state we will have $e(k+1) = e(k) = e(\infty)$ and thus

$$e(\infty) = (A - KC)e(\infty) - Kp$$

$$= (I - A + KC)^{-1}(-Kp)$$

$$y(\infty) - \hat{y}(\infty) = Cx(\infty) - C\hat{x}(\infty) = Ce(\infty)$$

$$= C(I - A + KC)^{-1}(-Kp)$$

- The estimation error will converge to zero only if p = 0
- Therefore, the predictions \hat{y} (based on \hat{x}) and y will not converge to the same value in steady-state: **MPC will not provide a zero static error**
- Solution: add an integral action to the observer, or equivalently, estimate the disturbance

Luenberger observer with integral action

The objective is to obtain $\hat{y}(k/k-1) = y(k)$ in steady-state despite an output disturbance

Let's analyse the right part of the observer as if it was a basic control loop with the controller G_{co} , the plant G_{po} , the set-point r_o , the error e_o , the manipulated variable u_o , the input disturbance p and the controlled variable y_o

Regulator with an integral action (pole z = 1)

$$u_o(k) = u_o(k-1) + K_i e_o(k-1) \Rightarrow G_{co}(z) = \frac{U(z)}{E_o(z)} = \frac{K_i}{z-1}$$

Does that lead to $e_o(\infty) = 0$ (i.e. to $\hat{y}(k/k-1) = y(k)$) in steady-state?

Suppose that G_{co} has m integrators (m is an integer > 0) and analyze the signal e_o :

$$G_{co}(z) = \frac{K_i}{(z-1)^m} \qquad E_o(z) = \frac{1}{1 + G_{co}(z)} R_o(z) - \frac{1}{1 + G_{co}(z)} P_o(z)$$

We analyze one input at the time (linear superposition)

a) Effect of $R_o(z)$ (with $P_o = 0$)

$$R_o(z) = \frac{z}{(z-1)^n}$$
 $n = 1$: step, $n = 2$: ramp; etc.

$$E_o(z) = \frac{1}{1 + G_{co}(z)} R_o(z) = \frac{z(z-1)^{m-n}}{(z-1)^m + K_i}$$

$$E_o(z) = \frac{z(z-1)^{m-n}}{(z-1)^m + K_i}$$

Using the final value theorem:

$$e_o(\infty) = \lim_{z \to 1} (z - 1) E_o(z) = \lim_{z \to 1} \frac{z(z - 1)^{m - n + 1}}{(z - 1)^m + K_i}$$

$$e_o(\infty) = 0 \text{ if } m - n + 1 > 0 \text{ or if } m > n - 1$$

- r_o is a constant (step): at least one integrator is required in the observer
- u(k) is a constant, plant with one integrator and p(k) is a constant, than r_o is a ramp: at least two integrators are required in the observer
- u(k) is a constant, plant without integrator and p(k) is a ramp, than r_o is a ramp: at least two integrators are required in the observer
- etc.

b) Effect of $P_o(z)$ (with $R_o = 0$)

Except for the sign, same as with R_o : same conclusion

- u(k) is a constant and model with one integrator than p_o is a ramp: two integrators are required in the observer
- etc.

We select the minimal value m leading to $e_o(\infty) = 0$ for both R_o and P_o

In practice, when coupling the observer to a MPC: the number of integrators in the observer for each plant output = 1 + number of integrators in the plant

Observer with two integrators

Example – Design of a Luenberger observer with integration

$$\hat{x}(k+1/k) = 0.8\hat{x}(k/k-1) + Ky(k) - 2K\hat{x}(k/k-1) - K\hat{x}_i(k/k-1) + 0.2u(k)$$

$$\hat{x}_i(k+1/k) = \hat{x}_i(k/k-1) + K_i y(k) - 2K_i \hat{x}(k/k-1) - K_i \hat{x}_i(k/k-1)$$

$$\begin{bmatrix} \hat{x}(k+1/k) \\ \hat{x}_i(k+1/k) \end{bmatrix} = \begin{bmatrix} 0.8 - 2K & -K \\ -2K_i & 1 - K_i \end{bmatrix} \begin{bmatrix} \hat{x}(k/k-1) \\ \hat{x}_i(k/k-1) \end{bmatrix} + \begin{bmatrix} 0.2 \\ 0 \end{bmatrix} u(k) + \begin{bmatrix} K \\ K_i \end{bmatrix} y(k)$$

Identical to the general form:

$$\hat{x}(k+1/k) = (A - KC)\hat{x}(k/k-1) + Bu(k) + Ky(k)$$

$$\det\begin{bmatrix} z - 0.8 - 2K & K \\ 2K_i & z - 1 + K_i \end{bmatrix} = z^2 + (K_i + 2K - 1.8)z + (0.8 - 0.8K_i - 2K)$$

If we want the poles z = 0 and z = 0.7:

$$z^{2} + (K_{i} + 2K - 1.8)z + (0.8 - 0.8K_{i} - 2K) = z(z - 0.7)$$
$$= z^{2} - 0.7z + 0$$

leading to K = -0.2 and $K_i = 1.5$

Direct design with an augmented model

How can we obtain an observer with integration for a plant model by designing an observer without integration for an *augmented model* of the plant? In that case, what is the *augmented model*?

To retrieve the model that was used to design an observer: set K = 0 (open-

loop observer = model)

$$\hat{y}(k/k-1) = C\hat{x}(k/k-1)$$

$$\hat{x}(k+1/k) = A\hat{x}(k/k-1) + Bu(k)$$

which corresponds to the model used for its design

$$y(k) = Cx(k)$$

$$x(k+1) = Ax(k) + Bu(k)$$

Retrieve the model that was used to design an observer with integration by

setting the observer gains to 0

$$\hat{y}(k/k-1) = C\hat{x}(k/k-1) + \hat{x}_i(k/k-1)$$

$$\begin{bmatrix} \hat{x}(k+1/k) \\ \hat{x}_i(k+1/k) \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{x}(k/k-1) \\ \hat{x}_i(k/k-1) \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u(k)$$
$$\hat{y}(k/k-1) = \begin{bmatrix} C & 1 \end{bmatrix} \begin{bmatrix} \hat{x}(k/k-1) \\ \hat{x}_i(k/k-1) \end{bmatrix}$$

$$x_a(k+1) = A_a x_a(k) + B_a u(k)$$
$$y(k) = C_a x_a(k)$$

Indeed, if we design an observer without integration with the augmented model

$$\begin{bmatrix} x(k+1) \\ x_i(k+1) \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x(k) \\ x_i(k) \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u(k)$$
$$y(k) = \begin{bmatrix} C & 1 \end{bmatrix} \begin{bmatrix} x(k) \\ x_i(k) \end{bmatrix}$$

we obtain

$$\begin{bmatrix} \hat{x}(k+1/k) \\ \hat{x}_{i}(k+1/k) \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{x}(k/k-1) \\ \hat{x}_{i}(k/k-1) \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u(k) + \begin{bmatrix} K \\ K_{i} \end{bmatrix} \left(y(k) - \begin{bmatrix} C & 1 \end{bmatrix} \begin{bmatrix} \hat{x}(k/k-1) \\ \hat{x}_{i}(k/k-1) \end{bmatrix} \right)$$
$$\hat{x}_{a}(k+1/k) = A_{a}\hat{x}_{a}(k/k-1) + B_{a}u(k) + K_{a}(y(k) - C_{a}\hat{x}_{a}(k/k-1))$$

which corresponds to the figure of the previous page

For a system with n states, n_u inputs, n_y outputs, with one integrator for each output, the augmented model is:

$$A_a = \begin{bmatrix} A & 0_{n \times n_y} \\ 0_{n_y \times n} & I_{n_y} \end{bmatrix}$$
 $B_a = \begin{bmatrix} B \\ 0_{n_y \times n_u} \end{bmatrix}$
 $C_a = \begin{bmatrix} C & I_{n_y} \end{bmatrix}$

where I_{n_y} is a $n_y \times n_y$ identity matrix and $0_{i \times j}$ is a null matrix of dimensions $i \times j$

Observers\Luenb_with_integr.mlx

Other interpretation: estimation of the output disturbance

Design of an observer based on the augmented model:

$$\begin{bmatrix} \hat{x}(k+1/k) \\ \hat{x}_{i}(k+1/k) \end{bmatrix} = \begin{bmatrix} A & 0_{n \times n_{y}} \\ 0_{n_{y} \times n} & I_{n_{y}} \end{bmatrix} \begin{bmatrix} \hat{x}(k/k-1) \\ \hat{x}_{i}(k/k-1) \end{bmatrix} + \begin{bmatrix} B \\ 0_{n_{y} \times n_{u}} \end{bmatrix} u(k) + \begin{bmatrix} K \\ K_{i} \end{bmatrix} \left(y(k) - \begin{bmatrix} C & I_{n_{y}} \end{bmatrix} \begin{bmatrix} \hat{x}(k/k-1) \\ \hat{x}_{i}(k/k-1) \end{bmatrix} \right)$$

Suppose that it converges, in steady-state we have:

$$\hat{x}(k+1/k) = \hat{x}(k/k-1) = \hat{x}$$
 $y(k) = y$
 $\hat{x}_i(k+1/k) = \hat{x}_i(k/k-1) = \hat{x}_i$ $u(k) = u$

Under theses conditions, solving the observer equations leads to:

$$\hat{x} = (I - A)^{-1} B u$$

$$\hat{x}_i = y - C(I - A)^{-1} B u$$

$$\text{Model transfer function}$$

$$\text{Model transfer function}$$

$$\text{To an IMC structure but with}$$

$$\hat{y} = C\hat{x} + \hat{x}_i$$

$$= C(I - A)^{-1} B u + y - C(I - A)^{-1} B u$$

$$= y \text{ as expected!}$$

Model transfer function Similar to an IMC structure but with feedback (K, K_i): OK with unstable systems

In presence of a constant output disturbance the plant is:

$$x(k+1) = Ax(k) + Bu(k)$$
$$y(k) = Cx(k) + p$$

In steady-state:

$$x = (I - A)^{-1} Bu$$

 $y = Cx + p = C(I - A)^{-1} Bu + p$

And thus the estimation of the integration state is:

$$\hat{x}_i = y - C(I - A)^{-1} B u$$

$$= C(I - A)^{-1} B u + p - C(I - A)^{-1} B u$$

$$= p$$

The estimate of the integration state is p, thus compensating to ensure that $\hat{y}(k/k-1) = y(k)$ in steady state!

 $Observers \backslash Luenb_with_without_integr.mlx$

Observer based on the stochastic plant model:

$$x(k+1) = Ax(k) + Bu(k) + w(k)$$

$$y(k) = Cx(k) + v(k)$$

$$x = [x_1 \dots x_n]^T : n \times 1$$

$$w : n \times 1$$

$$v : n_v \times 1$$

where w(k) is the process noise and v(k) the measurement noise. They are both white noises and are uncorrelated:

$$E\{w(k)\} = E\{v(k)\} = 0 \quad \text{(zero mean)}$$

$$E\{w(k)v^{T}(i)\} = 0 \quad \forall k, i \quad \text{(w and v uncorrelated)}$$

$$E\{w(k)w^{T}(i)\} = 0 \quad k \neq i \quad \text{(random)}$$

$$E\{w(k)w^{T}(k)\} = Q \quad \text{(diagonal cov. matrix)}$$

$$E\{v(k)v^{T}(i)\} = 0 \quad k \neq i \quad \text{(random)}$$

$$E\{v(k)v^{T}(k)\} = R \quad \text{(diagonal cov. matrix)}$$

Kalman filter

$$\hat{x}(k+1/k) = A\hat{x}(k/k-1) + Bu(k) + K(k) [y(k) - C\hat{x}(k/k-1)]$$

where the gain K(k) is calculated at each sampling period to minimize the variance of the estimation error.

- With Gaussian noises: Kalman filter is optimal (i.e. minimum variance estimate of the states)
- Without the Gaussian assumptions: linear observer with minimum variance estimate of the states
- Date back to 1960:

R.E. Kalman, A New Approach to Linear Filtering and Prediction Problems, Trans. of the ASME – Journal of Basic Engineering, 82 (Series D), pp. 35-45, 1960. [8]

www.cs.unc.edu\~welch\kalman

© A. Desbiens, 2020

45

pd: publication date

UNIVERSITÉ LAVAL

Kalman filter:

$$\hat{x}(k+1/k) = A\hat{x}(k/k-1) + Bu(k) + K(k) [y(k) - C\hat{x}(k/k-1)]$$

where the gain K(k) is calculated at each sampling period to minimize

trace
$$\left[E\left\{ \left[x(k+1) - \hat{x}(k+1/k) \right] \left[x(k+1) - \hat{x}(k+1/k) \right]^T \right\} \right]$$

i.e. the sum of the variance of all n estimation errors

$$\sum_{i=1}^{n} E\left\{ \left[x_{i}(k+1) - \hat{x}_{i}(k+1/k) \right]^{2} \right\}$$

The covariance matrix of the estimation error is denoted *P*:

$$P(k+1/k) = E\left\{ \left[x(k+1) - \hat{x}(k+1/k) \right] \left[x(k+1) - \hat{x}(k+1/k) \right]^T \right\}$$

The result is (prediction form – proof in Annex A):

- 1. Initialization of P(0/-1) and $\hat{x}(0/-1)$ If the confidence in $\hat{x}(0/-1)$ is low than P(0/-1) is large, e.g. 1000I
- 2. Correction gain: $K(k) = AP(k/k-1)C^{T}(CP(k/k-1)C^{T}+R)^{-1}$
- 3. Optimal states:

$$\hat{x}(k+1/k) = A\hat{x}(k/k-1) + Bu(k) + K(k) [y(k) - C\hat{x}(k/k-1)]$$

4. Covariance matrix update (dynamic Riccati equation):

$$P(k+1/k) = A \left[P(k/k-1) - P(k/k-1)C^{T} \left(CP(k/k-1)C^{T} + R \right)^{-1} CP(k/k-1) \right] A^{T} + Q$$

5. Wait for the next sampling time and go to step 2

Innovation sequence

- *A*, *B* and *C* can be time-varying as long as it is known
- Q and R can be time-varying as long as it is known
- If A, B, C, Q and R are constant than after quite a short transient, K and P will become constant, with values that are independent of u and y:

$$P(\infty) = A \left[P(\infty) - P(\infty)C^{T} \left(CP(\infty)C^{T} + R \right)^{-1} CP(\infty) \right] A^{T} + Q$$

$$K(\infty) = AP(\infty)C^{T} \left(CP(\infty)C^{T} + R \right)^{-1}$$

The first equation (algebraic Riccati equation) can be solved (Matlab function idare) to get $P(\infty)$

• If from the beginning we use $K(\infty)$: steady-state Kalman filter (which is the case in the Matlab MPC toolbox) — not much difference because short transient

$$x(k+1) = Ax(k) + Bu(k) + w(k) \longrightarrow Q$$
$$y(k) = Cx(k) + v(k) \longrightarrow R$$

- Selection of R: diagonal matrix with the variance of the measurements on the diagonal ⇒ from the specifications of the sensors or by an estimation from the measurements in steady-state
- Selection of Q: diagonal matrix of the process noises, include the dynamic model mismatches... not obvious! Often in practice: tuning knobs

■ Matlab:
$$x(k+1) = Ax(k) + Bu(k) + Gw(k)$$

 $y(k) = Cx(k) + Du(k) + Hw(k) + v(k)$
Gmodel=ss(A,[B G],C,[D H],Ts];
[KF,K,P]=kalman(Gmodel,Q,R,N);
 $u \rightarrow \hat{x}$
 $v \rightarrow \hat{x}$

$$E\{w(k)\} = E\{v(k)\} = 0$$

$$E\{w(k)w^{T}(i)\} = 0 \quad k \neq i$$

$$E\{w(k)w^{T}(k)\} = Q$$

$$E\{v(k)v^{T}(i)\} = 0 \quad k \neq i$$

$$E\{v(k)v^{T}(k)\} = R$$

$$E\{w(k)v^{T}(i)\} = N$$

Observers\Kalman_Filter.mlx

Filtering form (proof in Annex A):

- 1. Initialization of P(0/-1) and $\hat{x}(0/-1)$
- 2. Correction gain: $K_f(k) = P(k/k-1)C^T (CP(k/k-1)C^T + R)^{-1}$
- 3. Optimal states: $\hat{x}(k/k) = \hat{x}(k/k-1) + K_f(k)[y(k) C\hat{x}(k/k-1)]$
- 4. Prediction of the states: $\hat{x}(k+1/k) = A\hat{x}(k/k) + Bu(k)$
- 5. Covariance matrix update:

$$P(k+1/k) = A \left[P(k/k-1) - P(k/k-1)C^{T} \left(CP(k/k-1)C^{T} + R \right)^{-1} CP(k/k-1) \right] A^{T} + Q$$

6. Wait for the next sampling time and go to step 2

Interpretation by an optimal batch state estimation [9]:

$$\min_{\{\hat{x}(i/k)\}_{i=0}^{k}} \left[\left[\hat{x}(0/k) - \hat{x}(0/-1) \right]^{T} P(0/-1) \left[\hat{x}(0/k) - \hat{x}(0/-1) \right] + \sum_{j=0}^{k-1} \hat{w}^{T}(j) Q^{-1} \hat{w}(j) + \sum_{j=0}^{k} \hat{v}^{T}(j) R^{-1} \hat{v}(j) \right]$$

where
$$\hat{w}(j) = \hat{x}(j+1/k) - A\hat{x}(j/k) + Bu(j)$$

$$\hat{v}(j) = y(j) - C\hat{x}(j/k)$$

- The first term in the cost function: quickly with little influence since only one point
- Dimensions of the problem are always growing: at time k we need to estimate $n \times (k+1)$ variables
- When the number of data becomes large, adding new data does not influence much the results (this is why K(k) quickly converges)

$$\min_{\{\hat{x}(i/k)\}_{i=0}^{k}} \left[\left[\hat{x}(0/k) - \hat{x}(0/-1) \right]^{T} P(0/-1) \left[\hat{x}(0/k) - \hat{x}(0/-1) \right] + \sum_{j=0}^{k-1} \hat{w}^{T}(j) Q^{-1} \hat{w}(j) + \sum_{j=0}^{k} \hat{v}^{T}(j) R^{-1} \hat{v}(j) \right]$$

where
$$\hat{w}(j) = \hat{x}(j+1/k) - A\hat{x}(j/k) + Bu(j)$$

 $\hat{v}(j) = y(j) - C\hat{x}(j/k)$

- Clearly shows the influence of Q and R:
 - o If Q is large and R small: the estimation relies on the measurement equation: y(k) = Cx(k)
 - If R is large and Q small: the estimation relies on the state equation:

$$x(k+1) = Ax(k) + Bu(k)$$

Leads to the moving horizon estimator for nonlinear systems

Observers — Kalman filter with integration

Kalman filter with integration

• A stochastic output disturbance p(k) can be added

$$x(k+1) = Ax(k) + Bu(k) + w(k)$$
$$y(k) = Cx(k) + v(k) + p(k)$$

where
$$x_i(k+1) = A_i x_i(k) + B_i e(k)$$
 with $e(k)$ being a white noise $p(k) = C_i x_i(k)$

- The output disturbance model is defined by A_i , B_i and C_i
- If it is an integrator then the disturbance p(k) is then not stationary and its mean is p(0)
 - ➤ This is the stochastic equivalent to a constant disturbance with the Luenberger observer
- As with the <u>Luenberger observer with integration</u>, we may want to use two or more integrators in series

Observers – Kalman filter with integration

$$x(k+1) = Ax(k) + Bu(k) + w(k)$$

$$y(k) = Cx(k) + v(k) + p(k)$$

$$p(k) = C_i x_i(k)$$

$$y(k) = C_i x_i(k)$$

Augmented model:

$$\begin{bmatrix} x(k+1) \\ x_i(k+1) \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & A_i \end{bmatrix} \begin{bmatrix} x(k) \\ x_i(k) \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u(k) + \begin{bmatrix} w(k) \\ B_i e(k) \end{bmatrix}$$

$$y(k) = \begin{bmatrix} C & C_i \end{bmatrix} \begin{bmatrix} x(k) \\ x_i(k) \end{bmatrix} + v(k)$$

$$y_a(k) = C_a x_a(k) + v(k)$$

$$y_a(k) = C_a x_a(k) + v(k)$$

Observers – Kalman filter with integration

Augmented model:

$$\begin{bmatrix} x(k+1) \\ x_i(k+1) \end{bmatrix} = \begin{bmatrix} A & 0 \\ 0 & A_i \end{bmatrix} \begin{bmatrix} x(k) \\ x_i(k) \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u(k) + \begin{bmatrix} w(k) \\ B_i e(k) \end{bmatrix}$$

$$y(k) = \begin{bmatrix} C & C_i \end{bmatrix} \begin{bmatrix} x(k) \\ x_i(k) \end{bmatrix} + v(k)$$

$$y_a(k) = C_a x_a(k) + v(k)$$

$$y_a(k) = C_a x_a(k) + v(k)$$

Corresponding Kalman filter:

$$\hat{x}_a(k+1/k) = A_a \hat{x}_a(k/k-1) + B_a u(k) + K(k) [y(k) - C_a \hat{x}_a(k/k-1)]$$

Example

The output disturbance model is an integrator: p(k) = p(k - 1) + Te(k) where T is the sampling period

Observers – Kalman filter with integration

■ The augmented model is therefore: $A_a = \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}$, $B_a = \begin{bmatrix} B \\ 0 \end{bmatrix}$, $C_a = \begin{bmatrix} C & 1 \end{bmatrix}$ and therefore the corresponding observer

$$\hat{x}_a(k+1/k) = A_a \hat{x}_a(k/k-1) + B_a u(k) + K(k) [y(k) - C_a \hat{x}_a(k/k-1)]$$

is identical to the <u>Luenberger with integration</u>, except for the gain K(k) which is calculated differently

- After convergence it will therefore ensure that, despite the non stationary disturbance, the mean of \hat{y} will be equal to the mean of y
 - This is the stochastic equivalent for a deterministic observer of having $\hat{y} = y$ in steady–state for a constant disturbance
- In the MIMO case, the model can be <u>augmented as with the Luenberger</u> observer

ANNEX A – KALMAN FILTER

Prediction form – proof

Estimation error:

$$\varepsilon(k+1) = x(k+1) - \hat{x}(k+1)$$

$$= Ax(k) + Bu(k) + w(k) - A\hat{x}(k) - Bu(k) - K(k) [y(k) - C\hat{x}(k)]$$

$$= A[x(k) - \hat{x}(k)] + w(k) - K(k) [Cx(k) + v(k) - C\hat{x}(k)]$$

$$= A\varepsilon(k) + w(k) - K(k) [C\varepsilon(k) + v(k)]$$

Cost function to minimize:

$$J = \operatorname{tr} \left[E \left\{ \varepsilon(k+1)\varepsilon^{T}(k+1) \right\} \right]$$

$$= \operatorname{tr} \left[E \left\{ \left(A\varepsilon(k) + w(k) - K(k) \left[C\varepsilon(k) + v(k) \right] \right) \left(A\varepsilon(k) + w(k) - K(k) \left[C\varepsilon(k) + v(k) \right] \right)^{T} \right\} \right]$$

$$= \operatorname{tr} \left[E \left\{ A\varepsilon(k)\varepsilon^{T}(k)A^{T} + w(k)w^{T}(k) + K(k) \left[C\varepsilon(k) + v(k) \right] \left[C\varepsilon(k) + v(k) \right]^{T} K^{T}(k) \right\} \right]$$

$$= \operatorname{tr} \left[E \left\{ A\varepsilon(k)\varepsilon^{T}(k)A^{T} + w(k)w^{T}(k) + K(k) \left[C\varepsilon(k) + v(k) \right] \left[C\varepsilon(k) + v(k) \right]^{T} K^{T}(k) \right\} \right]$$

$$J = \operatorname{tr} \left[E \begin{cases} A \varepsilon(k) \varepsilon^{T}(k) A^{T} + w(k) w^{T}(k) + K(k) \left[C \varepsilon(k) + v(k) \right] \left[C \varepsilon(k) + v(k) \right]^{T} K^{T}(k) \\ -A \varepsilon(k) \left[C \varepsilon(k) + v(k) \right]^{T} K^{T}(k) - K(k) \left[C \varepsilon(k) + v(k) \right] \varepsilon^{T}(k) A^{T} \end{cases} \right] \right]$$

$$= \operatorname{tr} \left[E \begin{cases} A \varepsilon(k) \varepsilon^{T}(k) A^{T} + w(k) w^{T}(k) + K(k) \left[C \varepsilon(k) \varepsilon^{T}(k) C^{T} + v(k) v^{T}(k) \right] K^{T}(k) \\ -A \varepsilon(k) \varepsilon^{T}(k) C^{T} K^{T}(k) - K(k) C \varepsilon(k) \varepsilon^{T}(k) A^{T} \end{cases} \right] \right]$$

Since
$$P(k + 1/k) = E\{\varepsilon(k + 1)\varepsilon^{T}(k + 1)\}, Q = E\{w(k)w^{T}(k)\}\$$
and $R = E\{v(k)v^{T}(k)\}$:
$$J = \text{tr}\left[P(k + 1/k)\right]$$

$$= \text{tr}\left[AP(k/k - 1)A^{T} + Q + K(k)\left[CP(k/k - 1)C^{T} + R\right]K^{T}(k)\right]$$

$$-AP(k/k - 1)C^{T}K^{T}(k) - K(k)CP(k/k - 1)A^{T}$$
(A.1)

Derivative of the trace of some matrices: $\frac{d}{dK(k)} \operatorname{tr} [K(k)A] = A^{H}$

$$\frac{d}{dK(k)}\operatorname{tr}\left[AK^{H}(k)\right] = A$$

$$\frac{d}{dK(k)}\operatorname{tr}\left[K(k)AK^{H}(k)\right] = 2K(k)A$$

where H is the conjugate transpose for complex matrices. In our case, they are real, thus H becomes T:, The minimum of the cost function is found with:

$$\frac{d}{K(k)} \operatorname{tr} \left[\frac{AP(k/k-1)A^{T} + Q + K(k) \left[CP(k/k-1)C^{T} + R \right] K^{T}(k)}{-AP(k/k-1)C^{T} K^{T}(k) - K(k)CP(k/k-1)A^{T}} \right] =$$

$$= 2K(k) \left[\frac{CP(k/k-1)C^{T} K^{T}(k) - K(k)CP(k/k-1)A^{T}}{-AP(k/k-1)C^{T} - AP(k/k-1)C^{T}} - \frac{AP(k/k-1)C^{T} - AP(k/k-1)C^{T}}{-AP(k/k-1)C^{T}} \right] = 0$$

which leads to:
$$K(k) = AP(k/k-1)C^T \left[CP(k/k-1)C^T + R \right]^{-1}$$

From A.1:
$$P(k+1/k) = AP(k/k-1)A^{T} + Q + K(k) [CP(k/k-1)C^{T} + R]K^{T}(k)$$

 $-AP(k/k-1)C^{T}K^{T}(k) - K(k)CP(k/k-1)A^{T}$

Inserting $K(k) = AP(k/k-1)C^T \left[CP(k/k-1)C^T + R \right]^{-1}$ into the previous result gives (note that $P^T = P$ and $(CPC^T + R)^T = CPC^T + R$):

$$P(k+1/k) = AP(k/k-1)A^{T} + Q$$

$$+ \begin{bmatrix} AP(k/k-1)C^{T} \left[CP(k/k-1)C^{T} + R \right]^{-1} \left[CP(k/k-1)C^{T} + R \right] \\ \times \left[CP(k/k-1)C^{T} + R \right]^{-1} CP(k/k-1)A^{T} \end{bmatrix}$$

$$- AP(k/k-1)C^{T} \left[CP(k/k-1)C^{T} + R \right]^{-1} CP(k/k-1)A^{T}$$

$$- AP(k/k-1)C^{T} \left[CP(k/k-1)C^{T} + R \right] CP(k/k-1)A^{T}$$

$$= AP(k/k-1)A^{T} + Q - AP(k/k-1)C^{T} \left[CP(k/k-1)C^{T} + R \right]^{-1} CP(k/k-1)A^{T}$$

Finally:

$$P(k+1/k) = A \left[P(k/k-1) - P(k/k-1)C^{T} \left(CP(k/k-1)C^{T} + R \right)^{-1} CP(k/k-1) \right] A^{T} + Q$$

Filtering form - proof

Let suppose that at time k the best possible estimate $\hat{x}(k/k)$ is available, then, since w(k) is a random noise with a zero mean, the best prediction is:

$$\hat{x}(k+1/k) = A\hat{x}(k/k) + Bu(k)$$

and it must be equal to:

$$\hat{x}(k+1/k) = A\hat{x}(k/k-1) + Bu(k) + K(k) [y(k) - C\hat{x}(k/k-1)]$$

Therefore:

$$\hat{x}(k/k) = \hat{x}(k/k-1) + A^{-1}K(k) [y(k) - C\hat{x}(k/k-1)]$$

If we define $K_f(k) = A^{-1}K(k)$ then:

$$K_{f}(k) = P(k/k-1)C^{T} \left[CP(k/k-1)C^{T} + R \right]^{-1}$$
$$\hat{x}(k/k) = \hat{x}(k/k-1) + K_{f}(k) \left[y(k) - C\hat{x}(k/k-1) \right]$$