

Résolution d'équations différentielles ordinaires

- Veuillez déposer vos fichiers sur la plateforme SAVOIR
- Veuillez créer un fichier par exercice et le nommer de manière suivante : NOM_Prenom_TP7_ex1.py
- Respecter les consignes générales (Annexe. 1).
- 1. Utiliser les méthodes numériques pour un système d'équations différentielles avec une condition initiale.

$$\begin{cases} y' = x + 4z & y(0) = 2 \\ z' = 2z - 4y & z(0) = 1 \end{cases}$$

n est saisi dans la console

- Tracer la solution analytique sur [0, 1] (Annexe. 2).
- Utiliser **RK1** pour approcher y(1) et z(1) en n pas. Tracer les itérations comme l'Annexe. 3.
- Utiliser **RK2** pour approcher y(1) et z(1) en n pas. Tracer les itérations comme l'Annexe. 3.
- Observer les erreurs d'approximation en différents points et avec différentes méthodes.
- 2. Utiliser les méthodes numériques pour résoudre une équation différentielle avec une condition initiale :

$$\begin{cases} y'' + 3y' + 40y = 0 & x \in [0,1] \\ y(0) = 1 & y'(0) = \frac{1}{3} \end{cases}$$

- Tracer sur [0, 1] la solution analytique (Annexe. 4)
- Utiliser la méthode d'**Euler** pour approcher y(1) en n pas. Tracer les itérations (Annexe. 5).
- Utiliser la méthode d'**Euler modifiée** pour approcher y(1) en n pas. Tracer les itérations (Annexe. 6).
- Utiliser la méthode d'Adams-Moulton 2 pour approcher y(1) en n pas. Tracer les itérations (Annexe. 7).
- Observer les erreurs d'approximation en différents points et avec différentes méthodes.

Annexe. 1

L'utilisateur lance le programme et se laisse guider dans la console :

- demander à l'utilisateur de saisir le **nombre** des pas si cela concerne l'exercice ;
- afficher les itérations calculées des différentes méthodes
- afficher le tableau d'erreurs des différentes méthodes ;

Tracer dans une figure la solution analytique y(x) (et z(x) ou y'(x)) et les solutions numériques (x_i, y_i) ou (x_i, y_i, z_i) .

Annexe. 2

Annexe. 3

Xi	ı	0.25		l	1.
Erreur RK1 en y _i				l	
Erreur RK1 en z _i	0.	0.695581	0.289867	4.97679	12.0301
Erreur RK2 en y _i				l	
Erreur RK2 en z _i	0.	0.179419	0.969554	1.22972	1.12824

Annexe. 4

Annexe. 5

Annexe. 6

Annexe. 7

Xi	0.	0.2	0.4	0.6	0.8	1.
Erreur Euler en y _i	0.	0.609982	0.184766	2.43209	2.93906	1.32063
Erreur EulerModif en y $_{ m i}$	0.	0.210018	0.423032	0.242941	0.581941	0.0987877
Erreur Adams-Mouton 2 en y_i	0.	0.111943	0.0762261	0.130778	0.195828	0.0189867