Machine Learning Fall 2023

Lecture 4: VC Theory

Lecturer: Liwei Wang Scribe: San Zhang, Si Li

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 All Pairs Shortest Paths

The naive and obvious solution to All Pairs Shortest Path(APSP) problem is to run a Single Source Shortest Path algorithm from each starting vertex v. If the graph has arbitrary edge weights, it takes the Bellman-Ford algorithm $O(|E||V|^2)$ time to solve APSP. But there are better approaches.

4.1.1 Floyd-Warshall Algorithm: Dynamic Programming

Label the vertices 1, 2, ..., n. Define $d^{(k)}(i, j)$ to be the length of a shortest path from i to j, using intermediate vertices from $\{1, 2, ..., k\}$ only. Obviously, $d^{(n)}(i, j)$ is the full problem.

. . .

4.2 Transitive Closure

Our goal is to achieve running time $O(M(n) \log n)$ for APSP where M(n) is the time for $n \times n$ matrix multiplication. Let's see if we can achieve this for a simpler but related problem, namely *Transitive Closure*:

. . .

4.3 Infinite Hypothesis Space

Note that we still have:

$$\Pr[\Pr_{D}(Y \neq \hat{f}(X) - \frac{1}{n} \sum_{i=1}^{n} I[Y_i \neq \hat{f}(X_i)] \geq \epsilon] \leq$$

$$\Pr[\exists f \in \mathcal{F}, \Pr_{D}(Y \neq f(X)) - \frac{1}{n} \sum_{i=1}^{n} I[Y_i \neq f(X_i)] \geq \epsilon]$$
(4.1)

Lecture 4: VC Theory

4.3.1 Step I: Double Sample Trick

Lemma 4.1 Consider 2n iid random variables $X_1, ..., X_n, X_{n+1}, ..., X_{2n}$ with $EX_i = p$. Let $\nu_1 = \frac{1}{n} \sum_{i=1}^n X_i, \nu_2 = \frac{1}{n} \sum_{i=n+1}^n X_i$. For $n \ge \frac{\ln 2}{\epsilon^2}$, we have:

$$\frac{1}{2}\Pr(|\nu_1 - p| \ge 2\epsilon) \le \Pr(|\nu_1 - \nu_2| \ge \epsilon) \le 2\Pr(|\nu_1 - p| \ge \frac{1}{2}\epsilon)$$

Proof: For the second part, note that

$$\Pr(|\nu_1 - \nu_2| \ge \epsilon) \le \Pr(|\nu_1 - p| \ge \frac{\epsilon}{2} \lor |\nu_2 - p| \ge \frac{\epsilon}{2})$$

For the first part, if $|\nu_1 - p| \ge 2\epsilon$, $|\nu_2 - p| \le \epsilon$, we will always have $|\nu_1 - \nu_2| \ge \epsilon$. Therefore,

$$\Pr(|\nu_1 - \nu_2| \ge \epsilon) \ge \Pr(|\nu_1 - p| \ge 2\epsilon) \Pr(|\nu_2 - p| \le \epsilon)$$

Therefore, according to this lemma, we have:

$$\Pr[\exists f \in \mathcal{F}, \Pr_{D}(Y \neq f(X)) - \frac{1}{n} \sum_{i=1}^{n} I[Y_i \neq f(X_i)] \ge \epsilon] \le$$

$$2\Pr[\exists f \in \mathcal{F}, \frac{1}{n} \sum_{i=1}^{n} I[Y_i \neq f(X_i)] - \frac{1}{n} \sum_{i=n+1}^{2n} I[Y_i \neq f(X_i)] \ge \frac{\epsilon}{2}]$$

$$(4.2)$$

4.3.1.1 Step II: Sample and Permute

When drawing (x_i, y_i) , we can follow these two steps: first draw an unordered set $z_1, ..., z_{2n}(z_i = (x_i, y_i))$ and second generate a random permutation $\sigma \in S_{2n}$ as the order. With this method, we have:

$$2\Pr[\exists f \in \mathcal{F}, \frac{1}{n} \sum_{i=1}^{n} I[Y_i \neq f(X_i)] - \frac{1}{n} \sum_{i=n+1}^{2n} I[Y_i \neq f(X_i)] \geq \frac{\epsilon}{2}] =$$

$$2\mathbb{E}_{(z_1, \dots, z_{2n})} \{ \Pr_{\sigma \in S_{2n}} [\exists f \in \mathcal{F}, \frac{1}{n} \sum_{i=1}^{n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] - \frac{1}{n} \sum_{i=n+1}^{2n} I[Y_{\sigma(i)} \neq f(X_{\sigma(i)})] \geq \frac{\epsilon}{2}] \}$$

$$(4.3)$$

References

- [AGM97] N. Alon, Z. Galil and O. Margalit, On the Exponent of the All Pairs Shortest Path Problem, Journal of Computer and System Sciences 54 (1997), pp. 255–262.
 - [F76] M. L. FREDMAN, New Bounds on the Complexity of the Shortest Path Problem, SIAM Journal on Computing 5 (1976), pp. 83-89.