- Uses a functional isolation forest to determine anomalies and an autoencoder to extract attributes from anomalous objects
- Isolation forest
 - Generates forest by selecting attributes in an arbitrary order and generating a tree for each attribute
 - Assumes that anomalies will be easy to detect and should exist fairly close to the root

Encoder

 Multilayer feed forward network with the same number of nodes on first and last layer

Finding a solution

- Isolation Forest
 - Shows empirical evidence that using solely an isolation forest is infeasible for accurately recognizing anomalous log data, but shows good results for detecting non anomalous log results.
- Isolation forest + one autoencoder
 - Works well at separating anomalous and non-anomalous log messages, as well as extracting features that weigh heavily in likelihood of anomaly
 - Isolation forest is generated based on features that are deemed important by autoencoder
- Isolation forest + two autoencoders
 - One pre isolation forest autoencoder finds the important features to construct forest from, the forest determines the percentage of positive predicted logs
 - Second autoencoder (post I.F.) determines thresholds for anomalous logs based on output of first autoencoder + I.F.