Questão 3

Shai Vaz, Alexandre Almeida, Heron Goulart, João Pedro Pedrosa, Roberto Orenstein

2023-10-04

Questão 3

Dados

```
ipca <- rbcb::get_series(code = 433, start_date = "2001-07-01", end_date = "2023-07-01")
ipca <- ipca %>%
    set_names(c("Date", "MoM")) %>%
    mutate(
        MoM = ifelse(Date == "2001-07-01", 0, MoM),
        Index = 100 * cumprod(MoM / 100 + 1),
        IndexLog = log(Index),
        IndexLogDiff = c(NA, diff(IndexLog))
)
```

Repare que ao realizar as transformações indicadas no enunciado, obtivemos exatamente o mesmo dado inicial, afinal a diferença de log é uma aproximação para uma variação percentual. Ou seja, apenas perdemos uma observação e pioramos a qualidade do dado porque a aproximação pela primeira diferença dos logs introduz um erro.

Agora vamos criar uma variável no formato de série temporal.

```
IndexLogDiff_ts <- ts(ipca$IndexLogDiff,start = c(2001,7), frequency = 12)
IndexLogDiff_ts <- na.omit(IndexLogDiff_ts)</pre>
```

Vamos visualizar a série temporal.

```
plot(
    IndexLogDiff_ts*100,
    xlab = "Data",
    ylab = "Variação na Inflação",
    main = "Log-Diferença do Índice de Inflação"
    )
```

Log-Diferença do Índice de Inflação

Teste Phillips Perron

```
pp_test <- pp.test(IndexLogDiff_ts)

tidy(pp_test) %>%
  kable(
  col.names = c(
    "Statistic: Dickey-Fuller Z (alpha)",
    "P Value",
    "Parameter: Truncation lag",
    "Method",
    "Alternative Hypothesis"
  ),
  caption = "Teste Philips Perron"
)
```

Table 1: Teste Philips Perron

Statistic: Dickey-Fuller Z (alpha)	P Value	Parameter: Truncation lag	Method	Alternative Hypothesis
-95.03949	0.01	5	Phillips-Perron Unit Root Test	stationary

Ao analisarmos o p-value do teste de raiz unitária de Phillips-Perron, podemos rejeitar a hipótese nula e concluir que a série é estacionária.

Teste de Dickey-Fuller aumentado

caption = "Teste Dickey-Fuller Aumentado"

```
adf_test <- adf.test(IndexLogDiff_ts, alternative = "stationary", k = 12)

tidy(adf_test) %>%
  kable(
  col.names = c(
    "Statistic: Dickey-Fuller",
    "P Value",
    "Parameter: Lag order",
    "Method",
    "Alternative Hypothesis"
),
```

Table 2: Teste Dickey-Fuller Aumentado

Statistic: Dickey-Fuller	P Value	Parameter: Lag order	Method	Alternative Hypothesis
-3.563361	0.0371268	12	Augmented Dickey-Fuller Test	stationary

O teste de Dickey-Fuller aumentado que aplicamos à série temporal indica que a série é estacionária. Isso é sustentado pelo valor-p, que é menor do que o nível de significância comum. Portanto, podemos rejeitar a hipótese de que a série possui uma raiz unitária.

Funções de Autocorrelação

```
acf(IndexLogDiff_ts,
    main = "Autocorrelation Function: Série Log-Dif")
```

Autocorrelation Function: Série Log-Dif


```
pacf(IndexLogDiff_ts,
    main = "Partial Autocorrelation Function: Série Log-Dif")
```

Partial Autocorrelation Function: Série Log-Dif

Modelo ARMA

Decisão pela FAC/FACP

Pelo FAC, identificamos que a ordem do MA é 4 e, pela FACP, que a ordem do AR é 1. No entanto, vamos fazer modelos alternativos para escolher o melhor pelo critério da informação.

```
# Modelo 1
modelo_arma4 <- arima(IndexLogDiff_ts, order = c(1, 0, 4))

# Modelo 2
modelo_arma1 <- arima(IndexLogDiff_ts, order = c(1, 0, 1))

# Modelo 3
modelo_arma2 <- arima(IndexLogDiff_ts, order = c(1, 0, 2))

# Modelo 4
modelo_arma3 <- arima(IndexLogDiff_ts, order = c(1, 0, 3))

stargazer(
modelo_arma1,
modelo_arma2,
modelo_arma3,
modelo_arma4,</pre>
```

```
header = FALSE,
float = FALSE,
dep.var.caption = "Models",
dep.var.labels = "",
column.labels = c(
    "ARIMA(1,0,1)",
    "ARIMA(1,0,2)",
    "ARIMA(1,0,3)",
    "ARIMA(1,0,4)"),
title = "Resultados dos Modelos ARMA"
)
```

	Models				
	ARIMA(1,0,1)	ARIMA(1,0,2)	ARIMA(1,0,3)	ARIMA(1,0,4)	
	(1)	(2)	(3)	(4)	
ar1	0.669***	0.658***	0.602***	0.367**	
	(0.069)	(0.092)	(0.119)	(0.171)	
ma1	-0.029	-0.019	0.028	0.265	
	(0.092)	(0.107)	(0.126)	(0.171)	
ma2		0.015	0.053	0.193*	
		(0.077)	(0.087)	(0.104)	
ma3			0.063	0.189**	
			(0.077)	(0.081)	
ma4				0.181**	
				(0.077)	
intercept	0.005***	0.005***	0.005***	0.005***	
•	(0.001)	(0.001)	(0.001)	(0.001)	
Observations	264	264	264	264	
Log Likelihood	1,158.117	1,158.136	1,158.449	1,160.557	
σ^2	0.00001	0.00001	0.00001	0.00001	
Akaike Inf. Crit.	-2,308.234	$-2,\!306.271$	-2,304.898	-2,307.113	

Note:

*p<0.1; **p<0.05; ***p<0.01

Auto Arima (critérios de informação)

Utilizaremos a função auto.arima, que, de forma automática, calcula todos os modelos dentro de limites dados, calcula seus critérios de informação e escolhe o modelo que minimiza. Aqui, escolhemos os limites de 5 lags para cada parte do modelo (AR e MA).

```
modelo_arma_auto <- auto.arima(
  max.p = 5,
  max.q = 5,
  IndexLogDiff_ts,</pre>
```

```
seasonal = FALSE,
stepwise = FALSE,
approximation = FALSE,
ic = "bic"
)
```

```
tidy(modelo_arma_auto) %>%
kable(
  col.names = c(
    "Term",
    "Estimate",
    "Standard Error"
  ),
  caption = "Information Criteria Minimizer Model"
)
```

Table 3: Information Criteria Minimizer Model

Term	Estimate	Standard Error
ar1 intercept	$\begin{array}{c} 0.6520244 \\ 0.0050400 \end{array}$	$0.0464532 \\ 0.0005318$

Ele sugere que o melhor modelo é, na realidade, o AR(1). Isso ocorre utilizando qualquer dos três criétios como base (AIC, BIC ou AICc). Vamos visualizar, aqui, os modelos pelos critério da informação. Salvaremos esse modelo como modelo_arma5.

```
modelo_arma5 <- arima(IndexLogDiff_ts, order = c(1, 0, 0))</pre>
```

Critério da Informação

Vamos olhar agora, todos os modelos juntos:

```
stargazer(m5,m1,m2,m3,m4,
  header = FALSE,
  float = FALSE,
  dep.var.caption = "Models",
  dep.var.labels = "",
  column.labels = c(
    "AR(1)",
    "ARIMA(1,0,1)",
    "ARIMA(1,0,2)",
    "ARIMA(1,0,3)",
    "ARIMA(1,0,4)"),
  title = "Resultados de todos os modelos realizados"
)
```

	Models				
	AR(1)	ARIMA(1,0,1)	ARIMA(1,0,2)	ARIMA(1,0,3)	ARIMA(1,0,4)
	(1)	(2)	(3)	(4)	(5)
ar1	0.652*** (0.046)	0.669*** (0.069)	0.658*** (0.092)	0.602*** (0.119)	0.367** (0.171)
ma1		-0.029 (0.092)	-0.019 (0.107)	0.028 (0.126)	$0.265 \\ (0.171)$
ma2			$0.015 \\ (0.077)$	0.053 (0.087)	0.193* (0.104)
ma3				$0.063 \\ (0.077)$	0.189** (0.081)
ma4					0.181** (0.077)
intercept	0.005*** (0.001)	0.005*** (0.001)	0.005*** (0.001)	0.005*** (0.001)	0.005*** (0.001)
Observations	264	264	264	264	264
Log Likelihood σ^2 Akaike Inf. Crit.	$ \begin{array}{c} 1,158.069 \\ 0.00001 \\ -2,310.138 \end{array} $	1,158.117 0.00001 $-2,308.234$	1,158.136 0.00001 $-2,306.271$	1,158.449 0.00001 $-2,304.898$	$ \begin{array}{c} 1,160.557 \\ 0.00001 \\ -2,307.113 \end{array} $

Note:

*p<0.1; **p<0.05; ***p<0.01

Note que o modelo que escolhemos originalmente, tem a maior log verossimilhança! Este seria o melhor modelo, portanto, se o critério de decisão fosse esse. Mas ao utilizarmos o critério de informação, punimos o modelo pelo aumento na quantidade de parâmetros.

Decidindo pela minimização dos critérios de informação, o modelo 5, um AR(1), é de fato o melhor modelo. Embora a análise da FAC e FACP tenha nos levado ao modelo ARMA(1,4), o modelo AR(1) é mais parcimonioso e prosseguiremos com ele.

Podemos ver isso mais claramente na tabela seguinte, apenas com os critérios.

```
bind_rows(
    glance(modelo_arma1),
    glance(modelo_arma2),
    glance(modelo_arma3),
    glance(modelo_arma4),
    glance(modelo_arma5)
) %>%
    mutate(
    Model = c(
        "ARIMA(1,0,1)",
        "ARIMA(1,0,3)",
        "ARIMA(1,0,4)",
        "ARIMA(1,0,4)",
        "AR(1)"),
        .before = 1
```

```
> %>%
select(
    c(1,3,4,5)
) %>%
kable(
    col.names = c(
        "Model",
        "Log Likelihood",
        "AIC",
        "BIC"
),
    caption = "Decision Criteria"
)
```

Table 4: Decision Criteria

Model	Log Likelihood	AIC	BIC
$\overline{ARIMA(1,0,1)}$	1158.117	-2308.234	-2293.930
ARIMA(1,0,2)	1158.136	-2306.271	-2288.392
ARIMA(1,0,3)	1158.449	-2304.898	-2283.443
ARIMA(1,0,4)	1160.557	-2307.113	-2282.082
AR(1)	1158.069	-2310.138	-2299.410

Previsão

Plotando as previsões do modelo 5 um ano a frente.

```
plot(forecast(modelo_arma5, h=12),
    main = "12 Month Forecast for AR(1)")
```

12 Month Forecast for AR(1)

Podemos também plotar as previsões para o modelo ARIMA(1,0,4), que foi obtido pela análise da FAC e FACP.

```
plot(forecast(modelo_arma4,h=12),
    main = "12 Month Forecast for ARIMA(1,0,4)")
```

12 Month Forecast for ARIMA(1,0,4)

