

# Huffman Codes

Correctness Proof

Algorithms: Design and Analysis, Part II

## Correctness of Huffman's Algorithm

Theorem: [Huffman 52] Huffman's algorithm computes a binary tree (with leaves  $\leftrightarrow$  symbols of  $\Sigma$ ) that minimizes the average encoding length

$$L(T) = \sum_{i \in \Sigma} p_i[\text{depth of leaf } i \text{ in } T].$$

Proof: By induction on  $n = |\Sigma|$ . (Can assume  $n \ge 2$ .)

Base case: When n = 2, algorithm outputs the optimal tree.

(Needs 1 bit per symbol)

Inductive step: Fix input with  $n = |\Sigma| > 2$ .

By inductive hypothesis: Algorithm solves smaller subproblems (for  $\Sigma'$ ) optimally.

### Inductive Step

Let  $\Sigma' = \Sigma$  with a, b (symbols with smallest frequencies) replaced by meta-symbol ab. Define  $p_{ab} = p_a + p_b$ .

Recall: Exact correspondence between:



Important: For every such pair T' and T, L(T) - L(T') is (after cancellation)

$$p_a$$
 [a's depth in  $T$ ]  $+p_b$  [b's depth in  $T$ ]  $-p_{ab}$  [ab's depth in  $T'$ ] = Each is one more than

$$= p_A(d+1) + p_b(d+1) - (p_a + p_b)d = p_a + p_b$$
, Independent of  $T, T'!$ 

### Proof of Theorem

Inductive hypothesis: Huffman's algorithm computes a tree  $\hat{T}'$  that minimizes L(T') for  $\Sigma'$ .

Upshot of last slide: Corresponding tree  $\hat{T}$  minimizes L(T) for  $\Sigma$  over all trees in  $X_{ab}$  (i.e., where a & b are siblings)

Key lemma: [Completes proof of theorem] There is an optimal tree (for  $\Sigma$ ) in  $X_{ab}$ . [i.e., a & b were "safe" to merge]

Intuition: Can make an optimal tree better by pushing a & b as deep as possible (since a, b have smallest frequencies).

### Proof of Key Lemma

By exchange argument. Let  $T^*$  be any tree that minimizes L(T)for  $\Sigma$ . Let x, y be siblings at the deepest level of  $T^*$ .

The exchange: Obtain  $\hat{T}$  from  $T^*$  by swapping  $a \leftrightarrow x$ ,  $b \leftrightarrow y$ 



Note:  $\hat{T} \in X_{ab}$  (by choice of x, y).

To finish: Will show that  $L(\hat{T}) \leq L(T^*)$  $[\Rightarrow \hat{T} \text{ also optimal, completes proof}]$ 

#### Reason:

$$L(T^*) - L(\hat{T}) = (p_x - p_a)$$
 [x's depth in  $T^*$  - a's depth in  $T^*$ ]  
+  $(p_y - p_b)$  [y's depth in  $T^*$  - b's depth in  $T^*$ ]  
 $\geq \emptyset$  QED!

 $\geq 0$  since a, b have smallest frequencies  $\geq 0$  by choice of x, y

### Notes on Running Time

Naive implementation:  $O(n^2)$  time, where  $n = |\Sigma|$ .

Speed ups: - Use a heap! [to perform repeated minimum computations]

- Use keys = frequencies
- After extracting the two smallest-frequency symbols, re-Insert the new meta-symbol [new key = sum of the 2 old ones]
- $\Rightarrow$  Iterative,  $O(n \log n)$  implementation.

Even faster: (Non-trivial exercise) Sorting + O(n) additional work.

- Manage (meta-)symbols using two queues.