杭州电子科技大学软件工程学院学生考试卷(A) 卷

考试课程	高等数学(上)	考试日	期	年 月	日	J.	戓 绩	
课程号		教师号		任课教师姓名			张善卿	
考生姓名		学号 (8 位)		年级		专	卡	

选择题 (本题共8小题,每小题3分,共24分)

1. 设
$$f(x) = \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1}$$
,则 $x = 0$ 是 $f(x)$ 的 (

- (A)可去间断点;
- (B) 跳跃间断点;
- (C)第二类间断点; (D) 连续点。
- 2. 已知 $y = \sin x$, 则 $y^{(10)} = ($)

 - (A) $\sin x$; (B) $\cos x$;
 - (C) $-\sin x$; (D) $-\cos x$.

3、设
$$f(x) = \begin{cases} \sin x, x < 0, \\ \ln(1+x), x \ge 0 \end{cases}$$
则 $f(x)$ 在 $x = 0$ 处(

- (A) 左、右导数都存在
- (B)左导数存在,右导数不存在
- (C) 左导数不存在,右导数存在 (D)左、右导数都不存在
- 4、若f(x)在[a,b]上连续,在(a,b)内可导,且 $x \in (a,b)$ 时,f'(x) > 0,又f(a) < 0,
- 则().
 - (A) f(x) 在[a,b]上单调增加,且f(b) > 0;
 - (B) f(x)在[a,b]上单调增加,且f(b) < 0;

- (C) f(x) 在[a,b]上单调减少,且 f(b) < 0;
- (D) f(x) 在[a,b]上单调增加,但 f(b)的正负号无法确定。
- 5、若 $\int f(x)dx = F(x) + c$, 则 $\int f(ax^2 + b)xdx = c$
 - (A) $F(ax^2 + b) + c$; (B) $\frac{1}{2a}F(ax^2 + b)$;
 - (C) $\frac{1}{2a}F(ax^2+b)+c$; (D) $2aF(ax^2+b)+c$.
- 6、当 $x \to 0$ 时, $\arctan 3x$ 与 $\cos x$ 是等价无穷小,则a为()
 - (A) 4; (B) 3;
 - $(C)^2$; $(D)^1$.
- 7、已知一个函数的导数为 y' = 2x , 且 x = 1 时 y = 2 ,这个函数是 (
 - (A) $y = x^2 + C$; (B) $y = x^2 + 1$;
 - (C) $y = \frac{1}{2}x^2 + C$; (D) y = x + 1
- 8、若f(x)在(a,b)可导且f(a) = f(b),则(
 - (A) 至少存在一点 $\xi \in (a,b)$, 使 $f'(\xi) = 0$;
 - (B) 一定不存在点 $\xi \in (a,b)$, 使 $f'(\xi) = 0$;
 - (C)恰存在一点 $\xi \in (a,b)$,使 $f'(\xi) = 0$;
 - (D) 对任意的 $\xi \in (a,b)$,不一定能使 $f'(\xi) = 0$ 。

二、 填空题(本题共6小题,每小题3分,共18分)

1. 若
$$f(x) = \begin{cases} \frac{\ln(1+2x)}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$$
 在 $x = 0$ 处连续,则 $a =$ _____;

2. 若
$$\rho = \theta \sin \theta + \frac{1}{2} \cos \theta$$
 , 则 $\frac{d\rho}{d\theta}|_{\theta = \frac{\pi}{4}} =$ ______;

- 3. 极限 $\lim_{n\to\infty} 2^n \sin \frac{x}{2^n}$ (x 为不等于零的常数) ______;

- 6. 等边曲线函数 xy = 1 在点 (1, 1) 处的曲率为

三、 计算题 (共6小题,每小题6分,共36分)

1.
$$\lim_{x \to \infty} \left(\frac{3+x}{6+x} \right)^{\frac{x-1}{2}}$$

2. 日知
$$\begin{cases} x = e^{-t}(1 + \cos t) \\ y = e^{-t}(1 + \sin t) \end{cases}$$
, 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

$$3. \int \frac{1}{x\sqrt{x^2 - 1}} dx$$

4.
$$\int e^x \cos x dx$$

5.
$$\int_{2}^{3} \frac{x-3}{(x-1)(x^{2}-1)} dx$$

$$6. \quad \int_{1}^{2} \frac{x}{\sqrt{x-1}} \, dx$$

四、 应用题[本题 8 分]

设直线 y = ax(0 < a < 1) 与抛物线 $y = x^2$ 所围成的图形的面积为 S_1 且它们与直线 x = 1 所围成的图形的面积为 S_2 .

- (1)试确定 a 的值,使得 $S_1 + S_2$ 达到最小,并求出最小值.
- (2)求该最小值所对应的平面图形绕 x 轴旋转一周的旋转体的体积.

五、 综合题[本题 8 分]

设函数 f(x) 连续, f(1) = 1, f(2) = 2 且

$$\int_0^x (2x - t) f(t) dt = 5x^3 + 1,$$

求
$$\int_{1}^{2} f(x)dx = ?$$
。

六、证明题[本题6分]

设函数 f(x) 在[0,1]上连续,而在(0,1)内可导,且 f(0) = 0, f(1) = 1,证明对任意给定的正数 a,b 在(0,1) 内存在不同的 ξ,η 使下式成立:

$$\frac{a}{f'(\xi)} + \frac{b}{f'(\eta)} = a + b.$$

杭州电子科技大学软件工程学院学生答题卷()卷 考试课程 考试日期 年 月 日 成 绩 教师号 课程号 任课教师姓名 考生姓名 学号 (8 位) 年级 专业

