An overview of data calibration algorithms of NeuLAND in the R³B setup

Yanzhao Wang¹, Paula Ulrich¹, Igor Gasparic², Andreas Zilges¹

¹ University of Cologne, Institute for Nuclear Physics, Germany

HK 44 4 DPG-Frühiahrstagung Cologne 2025

Supported by BMBF (05P21PKFN1)

Email: vwang@ikp.uni-koeln.de

² GSI Helmholtzzentrum für Schwerionenforschung, Germany

NeuLAND setup in R³B^[1]

^[1] K. Boretzky et al., Nucl. Instrum. Methods Phys. Res., Sect. A 1014, 165701 (2021).

NeuLAND setup in R³B^[1]

^[1] K. Boretzky et al., Nucl. Instrum. Methods Phys. Res., Sect. A 1014, 165701 (2021).

NeuLAND setup in R³B^[1]

neutron window

Geometry:

- 26 planes
- $= 250 \times 250 \,\mathrm{cm}^2$
- 50 scintillators each plane
- 2600 PMTs in total

Measurements:

- interaction position
- interaction time
- energy deposition

NeuLAND

[1] K. Boretzky et al., Nucl. Instrum. Methods Phys. Res., Sect. A 1014, 165701 (2021).

Processes of digitization

Physical interactions:

Digitization of PMT signals:

Time measurement and TDC calibration

Time measurement with clocks:

Real time calculation:

$$T_{\text{real}} = T_{\text{coarse}} - T_{\text{fine}}$$

- T_{real}: Time value relative to START detector
- T_{coarse}: Clock cycles with a frequency of 200 MHz
- \blacksquare T_{fine} : Fine channel numbers (TDL)

^[1] J. Kalisz, Metrologia 41, 17 (2003).

Time measurement and TDC calibration

Time measurement with clocks:

Real time calculation:

$$T_{\text{real}} = T_{\text{coarse}} - T_{\text{fine}}$$

- T_{real}: Time value relative to START detector
- *T*_{coarse}: Clock cycles with a frequency of 200 MHz
- \blacksquare T_{fine} : Fine channel numbers (TDL)

TDC Calibration (Time resolution ~ 10 ps)

^[1] J. Kalisz, Metrologia 41, 17 (2003).

Position, time and energy calibration parameters

PMT saturation effect^[1]:

 $[\]begin{tabular}{l} [1] Photomultiplier tubes: basics and applications, 3a, \end{tabular}$

Position-Time calibration:

Interaction time:

$$t = \frac{t_r + t_l}{2} - \frac{L}{2 \cdot C_e} + t_{\text{sync}}$$

Interaction position:

$$x = \frac{C_e}{2} \left(t_r - t_l + t_{\text{offset}} \right)$$

Position, time and energy calibration parameters

PMT saturation effect^[1]:

^[1] Photomultiplier tubes: basics and applications, 3a,

Hamamatsu (Nov. 2007), p. 197

Position-Time calibration:

Interaction time:

$$t = \frac{t_r + t_l}{2} - \frac{L}{2 \cdot C_e} + t_{\text{sync}}$$

Interaction position:

$$x = \frac{C_e}{2} \left(t_r - t_l + t_{\text{offset}} \right)$$

Energy calibration relations:

Light attenuation effect:

$$I_{\text{PMT}} = E_{\text{dep}} \cdot \exp(-\alpha \cdot l)$$

PMT saturation:

$$I_{\text{sat}} = I_{\text{PMT}} \cdot / (1 + \lambda \cdot I_{\text{PMT}})$$

PMT gain:

$$W = \mathcal{G} \cdot I_{\text{sat}} + W_0$$

New position calibration

Time differences of adjacent PMTs:

Calibration steps:

- Collect time differences of adjacent PMT signals
- 2. Normalize the distribution and convert to the CDF for each bar
- 3. Linear fitting of the CDF within its

Parameter fitting:

New position calibration

Time differences of adjacent PMTs:

Calibration steps:

- 1. Collect time differences of adjacent PMT signals
- 2. Normalize the distribution and convert to the CDF for each bar

Parameter fitting:

New position calibration

Time differences of adjacent PMTs:

Calibration steps:

- 1. Collect time differences of adjacent PMT signals
- 2. Normalize the distribution and convert to the CDF for each bar
- Linear fitting of the CDF within its quantiles of 0.05 to 0.95

Parameter fitting:

Fitting function:

$$y = a \cdot x + 0.5 - a \cdot b$$

Calculation of parameters:

$$C_e = 2 \cdot a \cdot \text{bar length}$$

$$t_{\text{offset}} = b$$

Current energy calibration method (WIP)

Energy calibration relations

Light attenuation effect for both PMTs:

$$I_{\text{PMT}} = E_{\text{dep}} \cdot \exp(-\alpha \cdot l) \tag{1}$$

PMT saturation:

$$I_{\text{sat}} = I_{\text{PMT}} / (1 + \frac{\lambda}{\lambda} \cdot I_{\text{PMT}})$$
 (2)

PMT gain:

$$W = \mathcal{G} \cdot I_{\text{sat}} + W_0 \tag{3}$$

Assumptions

PMT saturation factor differs from gain factor by a constant value:

$$\lambda = 0.00175 \times \mathcal{G}$$

- Cosmic muon's stopping power is 1.73 MeV cm⁻¹
- Adjacent PMTs have the same gain factor

Calculation of parameters:

- PMT baseline W₀ is determined by the minimum cut on signal widths (i.e. trailing time – leading time).
- Calculation of attenuation factor:

$$\alpha = \ln((W_r - W_0)/(W_l - W_0))/(2 \cdot x)$$

Calculation of gain factor:

$$\mathscr{G} = \frac{W - W_0}{I_{\text{PMT}} (1 - 0.00175(W - W_0))}$$

PMT gains from each event:

Parameter fine tuning with Millepede-II

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1},...,g_{m},p_{1}^{j},...,p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}$: m global parameters

 p_1^j : *l local parameters* for the *j*th μ track

n: the total number of μ tracks

Parameter fine tuning with Millepede-II

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1},...,g_{m},p_{1}^{j},...,p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

g1...m: m global parameters

 p_1^j : *l local parameters* for the *j*th μ track

n: the total number of μ tracks

Features

- Simultaneous fitting of all parameters
- Separation to global and local parameters
- Computation complexity independent of local parameter size
- No muon track reconstruction
- Calibration relation must be linear

Parameter fine tuning with Millepede-II

Residual minimization

$$\partial \sum_{j=0}^{n} \sum_{i} \frac{(\mathcal{Z}_{i}^{j}(g_{1},...,g_{m},p_{1}^{j},...,p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 $g_{1...m}$: m global parameters

 p_1^j : *l local parameters* for the *j*th μ track

n: the total number of μ tracks

Features

- Simultaneous fitting of all parameters
- Separation to global and local parameters
- Computation complexity independent of local parameter size
- No muon track reconstruction
- Calibration relation must be linear

Fine tuning on C_e :

Fine tuning on t_{offset} :

Summary and outlook

Summary

- Principle of digitization processes
- Calibration with TDC for time values
- Calibration with time values for physical values
- Fine tuning with the Millepede-II algorithm

Outlook

- Improve energy calibration
- Apply Millepede-II algorithm on energy-related parameters
- Verify energy parameters via simulation

Side view of Neul AND

Procedures

- 1. Obtain the positions of bars with signals

Side view of NeuLAND

Procedures

- 1. Obtain the positions of bars with signals
- 2. Reconstruct the muon track from the bar positions
- Calculate the positions of the interaction points of the muon
- 4. Calculate the calibration parameters via data fitting

Side view of Neul AND

Procedures

- 1. Obtain the positions of bars with signals
- 2. Reconstruct the muon track from the bar positions
- 3. Calculate the positions of the interaction points of the muon

Side view of NeuLAND

Procedures

- 1. Obtain the positions of bars with signals
- 2. Reconstruct the muon track from the bar positions
- 3. Calculate the positions of the interaction points of the muon
- 4. Calculate the calibration parameters via data fitting

Data fitting in the position calibration:

Side view of NeuLAND

Procedures

- 1. Obtain the positions of bars with signals
- 2. Reconstruct the muon track from the bar positions
- 3. Calculate the positions of the interaction points of the muon
- 4. Calculate the calibration parameters via data fitting

Data fitting in the position calibration:

