UFSC Blumenau

Universidade Federal de Santa Catarina

Campus Blumenau

Departamento de Engenharia de Controle, Automação e Computação (CAC)

Plano de Ensino

Código da Disciplina	Nome da Disciplina	Créditos semanais			Carga horária	Períodos
		Teóricos	Práticos	PCC	global	
CAC3040	Visão Computacional em Robótica	4	0	0	72	4

Curso:	ENGENHARIA DE CONTROLE E AUTOMAÇÃO		
	I		
Pré-requisito:	BLU3704 - Introdução à Robótica Industrial		
Ano/semestre:	2023/2 (Graduação) (07/08/23 - 16/12/23)	Turma:	8754
Professor:	Marcos Vinicius Matsuo		
E-mail:	marcos.matsuo@ufsc.br		
	Terça, 10:10 - 11:00		Sala: A305
Horário/local:	Terça, 11:00 - 11:50	Sala: A305	
	Sexta, 13:30 - 14:20	Sala: B016	
	Sexta, 14:20 - 15:10		Sala: B016
Horário/local atendimento:	Quarta-feira, 15:20 - 16:	20	Sala C304
	Sexta-feira, 9:00 - 10:0	0	Sala C304

Ementa:

Introdução à visão computacional. Formação de imagens e modelos de câmera. Fundamentos de obtenção e processamento de imagens. Extração de características visuais e segmentação de imagem. Visão 3D: Introdução à múltiplas vistas, calibração de câmeras, visão estéreo. Movimento e rastreamento de objetos.

Objetivos:

Capacitar o aluno a compreender os principais conceitos relacionados à visão em robótica.

Identificar os principais campos de aplicação da visão computacional.

Transmitir conhecimentos sobre formação e processamento de imagens, fornecendo aos alunos a capacidade de modelar e implementar algoritmos de visão.

Introduzir as metodologias de localização de robôs baseadas em visão computacional.

Conteúdo programático:

- 1. Introdução: robôs, sentidos, evolução da visão, visão humana.
- 2. Cor: conceitos, mistura de cores, origem da cor, luz e fontes luminosas, reflexão e refração, espaços de cor, detecção de objetos por cor.

- 3. Imagens digitais: conceitos, compressão, leitura e criação de imagens digitais.
- 4. Processamento de imagens: distorção de imagem, histograma, normalização de histograma, correção de gama, limiarização, kernels, correlação e convolução, detecção de bordas, template matching.
- 5. Extração de features: conceitos, detecção, descrição, matching, transformada hough.
- 6. Como as imagens são formadas: perspectiva, geometria perspectiva, efeitos da perspectiva, câmera pinhole e lentes, outras câmeras.
- 7. Geometria da formação da imagem: coordenadas homogêneas, modelo de formação da imagem, homografia planar.
- 8. Visão 3D: conceitos, percepção humana, estereografia, cálculo de disparidade, sensores 3D.

Metodologia de ensino:

Utilização de transparências ou slides Trabalho teórico extraclasse Trabalho prático extraclasse Estudo dirigido/ Listas de exercícios

Avaliação:

Ao longo da disciplina, o estudante será avaliado através da realização de atividades práticas (LAB) e do desenvolvimento de dois trabalhos (T1 e T2), realizado de forma remota. A nota final (NF) será dada pela seguinte média ponderada:

NF = 0.5*LAB + 0.25*T1 + 0.25*T2;

Estará aprovado o estudante com frequência mínima de 75% e NF maior ou igual a 6,0.

O aluno que obtiver média final inferior a 3,0 será automaticamente reprovado.

Prática como componente curricular (PCC):

Não Aplica

Recuperação:

Ficará em recuperação o aluno que tiver média final superior a 3,0 e inferior a 5,75. A recuperação poderá ser composta por um trabalho e/ou prova de caracter teórico e/ou prático, podendo abranger todo o conteúdo da disciplina.

A nova nota final será então a média aritmética entre a nota alcançada na prova de recuperação e a nota obtida durante semestre.

Cronograma de aulas:

Aula	Tipo	Recurso	Conteúdos / Atividades / Estratégias Avaliativas
TER 08/08	T + P	S + Q + L + C	Apresentação da disciplina. Introdução à Visão Computacional. Imagem digital: conceitos, formatos, compressão, leitura e criação de imagens digitais.
SEX 11/08	T + P	S + Q + L + C	Imagem digital: conceitos, formatos, compressão, leitura e criação de imagens digitais.

TER 15/08	T + P	S + Q + L + C	Transformações geométricas.
SEX 18/08	T + P	S + Q + L + C	Transformações geométricas.
TER 22/08	T + P	S + Q + L + C	Operações Monádicas e diádicas.
SEX 25/08	T + P	S + Q + L + C	Operações Monádicas e diádicas. Laboratório 1.
TER 29/08	T + P	S + Q + L + C	Operações espaciais de filtragem e convolução.
SEX 01/09	T + P	S+Q+L+C	Operações espaciais de filtragem e convolução.
TER 05/09	T + P	S+Q+L+C	Operações espaciais de filtragem e convolução. Laboratório 2.
SEX 08/09			Dia não letivo
TER 12/09	T + P	S+Q+L+C	Template matching.
SEX 15/09	T + P	S+Q+L+C	Operações morfológicas.
TER 19/09	T + P	S+Q+L+C	Operações morfológicas.
SEX 22/09	T + P	S + Q + L + C	Algoritmos morfológicos básicos.
TER 26/09	T + P	S+Q+L+C	Algoritmos morfológicos básicos.
SEX 29/09	T + P	S+Q+L+C	Características de região.
TER 03/10	T + P	S + Q + L + C	Características de região.
SEX 06/10	T + P	S+Q+L+C	Características de região. Laboratório 3.
TER 10/10	T + P	S+Q+L+C	Características de linhas e pontos.
SEX 13/10			Dia não letivo
TER 17/10	T + P	S+Q+L+C	Características de linhas e pontos.
SEX 20/10	T + P	S+Q+L+C	Características de linhas e pontos.
TER 24/10	T + P	S+Q+L+C	Características de linhas e pontos.
SEX 27/10	T + P	S+Q+L+C	Formação de imagem e modelo da câmera.
TER 31/10	T + P	S+Q+L+C	Formação de imagem e modelo da câmera.
SEX 03/11			Dia não letivo
TER 07/11	T + P	S+Q+L+C	Formação de imagem e modelo da câmera.
SEX 10/11	T + P	S+Q+L+C	Apresentação do Trabalho 1.
TER 14/11	T + P	S+Q+L+C	Apresentação do Trabalho 1.
SEX 17/11	T + P	S+Q+L+C	Métodos de calibração de câmera.
TER 21/11	T + P	S+Q+L+C	Métodos de calibração de câmera.
SEX 24/11	T + P	S+Q+L+C	Visão 3D.
TER 28/11	T + P	S+Q+L+C	Visão 3D.
SEX 01/12	T + P	S+Q+L+C	Laboratório 4.
TER 05/12	T + P	S+Q+L+C	Apresentação do Trabalho 2.
SEX 08/12	T + P	S+Q+L+C	Apresentação do Trabalho 2.
TER 12/12	T + P	S+Q+L+C	Recuperação.
SEX 15/12	T + P	S+Q+L+C	Recuperação.

Tipo: (T) Aula Teórica; (P) Aula Prática; Recurso: (S) Slide; (Q) Quadro; (VD) Vídeo; (L) Laboratório; (C) Computador; (VS) Visita; (O) Outros

- 1. Roland Siegwart, Illah Reza Nourbakhsh, Davide Scaramuzza. Introduction to Autonomous Mobile Robots. 2 ed: MIT Press, 2011. ISBN: 0262015358.
- 2. Peter Corke. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. 1 ed.: Springer Verlag NY, 2011. ISBN: 3642201431.
- 3. Szeliski, Richard. Computer vision: algorithms and applications. Springer Science & Business Media, 2010.

Bibliografia complementar:

- 1. Gary Bradski and Adrian Kaehler (2008). Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly.
- 2. David A. Forsyth; Jean Ponce. "Computer Vision A Modern Approach", Prentice Hall, New Jersey, 2003.
- 3. Rafael Gonzalez and Richard Woods. Processamento de Imagens Digitais. Edgar Blucher.
- 4. Richard Hartley, Andrew Zisserman, 2a, Multiple View Geometry in Computer Vision, Cambridge University Press, 2004
- 5. B. K. P. Horn. "Robot Vision", MIT Press, 1986.

Observações:

- A. Atestado médico não abona falta.
- B. Discentes que faltarem em quaisquer das avaliações terão somente direito à segunda chamada mediante requerimento circunstanciado, pessoalmente encaminhado e protocolado na Secretaria dos Cursos no prazo máximo de 72 horas a partir da data de avaliação.
- C. Discentes com nota final menor que 3,0 (três) ou com frequência inferior a 75%, serão reprovados na disciplina.
- D. Plágio. Plagiar é a apresentar ideias, expressões ou trabalhos de outros como se fossem os seus, de forma intencional ou não. Serão caracterizadas como plágio a compra ou apresentação de trabalhos elaborados por terceiros e a reprodução ou paráfrase de material, publicado ou não, de outras pessoas, como se fosse de sua própria autoria, e sem a devida citação da fonte original. Os casos relacionados à compra, reprodução, citação, apresentação etc., de trabalhos, ideias ou expressões serão encaminhados pelo professor da disciplina ao Colegiado do Curso e rigorosamente examinados.
- E. O Regulamento dos Cursos de Graduação da UFSC (resolução 17/CUN/1997) encontra-se no seguinte endereço: http://antiga.ufsc.br/paginas/downloads/UFSC_Resolucao_N17_CUn97.pdf.
- F. Plano de ensino sujeito a alterações.