WHAT IS CLAIMED IS:

1	1. A system for securely transmitting Real Time Protocol voice packets
2	during a communication session with a remote multimedia terminal adapter over an Internet
3	protocol network, the system comprising:
4	a local multimedia terminal adapter receiving the voice packets, the local
5	multimedia terminal adapter comprising,
6	a local key stream generator for generating a first key stream;
7	a packet encryptor that encrypts the voice packets using at least a
8	portion of the first key stream to form encrypted voice packets;
9	the remote multimedia terminal adapter receiving the encrypted voice
10	packets, the remote multimedia terminal adapters further comprising,
11	a remote key stream generator for generating the first key stream in
11 12	order to decrypt the encrypted voice packets; and
13 14	a packet decryptor decrypting the encrypted voice packets using the
14	first key stream, wherein both key stream generators are capable of generating a second key
]15	stream to prevent reuse of any portion of the first key stream during the communication
16	session.
1	2. The system of claim 1 wherein the second key stream is generated
1 2	when the system wishes to switch from a first to a second coder/decoder for
3	compression/decompression of the voice packets.
, ,	compression/decompression of the voice packets.
1	3. The system of claim 1 wherein the second key stream is generated
2	when a Message Authentication Code algorithm change occurs.
1	4. The system of claim 1 further comprising a local gateway controller
2	for forwarding the encrypted packets through the Internet protocol network.
2	for forwarding the energited packets through the internet protocor network.
1	
2	5. The system of claim 1 further comprising a remote gateway controller
3	for receiving the encrypted packets from the Internet protocol network and for forwarding
4	encrypted voice packets to the remote multimedia terminal adapter.

and

	\wp	
1	A system for communicating Real Time Protocol voice packets	
2	between a local and a remote location over an Internet protocol network, the system	
3	comprising:	
4	a stream cipher module for encrypting the voice packets; and	
5	a key stream generator for generating a first Real Time Protocol key stream,	
6	the stream cipher module employing the first key stream to encrypt the voice packets for	
7	forwarding to the remote location, the key stream generator producing a second Real Time	
8	Protocol key stream for encrypting the voice packets when the system wishes to switch from	
9	a first communication parameter to a second communication parameter, each of the first and	
10	second parameters being involved in the synchronization of the key stream.	
1	The system of claim 6 wherein the first communication parameter is a	
2	first coder/decoder that compresses/decompresses the voice packets, and the second	
3	communication parameter is a second coder/decoder that compresses/decompresses the voice	
4	packets.	
	The system of claim 6 further comprising a synchronization source for synchronizing and enabling decryption of the voice packets at the remote location	
1	The system of claim 6 further comprising a synchronization source for	
2	synchronizing and chaoming deeryphon of the voice packets at the femote location.	
1	The system of claim 8 wherein the synchronization source is a time	
2	stamp on a voice packet.	
1	The system of claim 9 further comprising a new time stamp sequence	
2	generated when the second Real Time Protocol key stream is generated.	
	///	
1	The system of claim 6 wherein the second key stream is generated by	
2	re-executing the following key derivation function:	
3	F(S, "End-End RTP Key Change <n>")</n>	
4	where N is a counter incremented whenever a new set of Real Time Protocol	
5	keys is re-derived for the same media stream session;	
6	F() is a one-way pseudo-random function used for the purpose of key	
7	derivation;	
8	S is a shared secret - a random value shared between the two endpoints and is	
9	known only to those two endpoints and possibly a trusted server (e.g. gateway controller);	

1	The system of claim 6 wherein the second key stream is generated by
1	
2	re-executing the following key derivation function:
3	F(S, SSRC, "End-End RTP Key Change <n>") where:</n>
4	S is a shared secret - a random value shared between the two endpoints and is
5	known only to those two endpoints and possibly a trusted server (e.g. gateway controller);
Mon.	SSRC is the synchronization source session identifier;
Y \7	N is the counter of the number of key changes for the same SSRC value; and
χ⁄ 8	"End-End RTP Key Change <n>" is a label that is used as a parameter to the</n>
\ _ 9	key derivation function F(), <n> stands for an ASCII representation of a decimal number,</n>
□ 10	representing a counter.
8 9 9 10 10 1 1 2 3 4 5 6 7	A method for securely transmitting Real Time Protocol voice packets
5 2	from a local to a remote location via a communication network, the method comprising:
a 3	generating a first Real Time Protocol key stream for encrypting the voice
J 4	packets;
}= 5	forwarding encrypted voice packets to the remote location;
<u>n</u> 6	generating a second Real Time Protocol key stream for encrypting the voice
₩ ₩ 7	packets in response to a request to change communication parameters for the same media
8	stream; and
9	forwarding voice packets encrypted with the second Real Time Protocol key
10	stream to the remote location.
1	The method of claim 13 further comprising reinitializing a time stamp
2	for synchronizing decryption of the voice packets.
	The method of claim 13 wherein the step of generating a second Real
1	,
2	Time Protocol key stream is by re-executing the following key derivation function:
3	F(S, "End-End RTP Key Change <n>")</n>

12

13

4 5 representing a counter.

"End-End RTP Key Change <N>" is a label that is used as a parameter to the

key derivation function F(), <N> stands for an ASCII representation of a decimal number,

keys is re-derived for the same media stream session;

where N is a counter incremented whenever a new set of Real Time Protocol

. 7	$\langle \mathcal{V}$
χ	.`
7	
	Z Z
	7.
	g
	U
	į
	0
	3
	J
	<u>ļ</u> ub
	Ь÷
	m
	þ4

stream to the remote location.

6	F() is a one-way pseudo-random function used for the purpose of key	
7	derivation;;	
8	S is a shared secret - a random value shared between the two endpoints and is	
9	known only to those two endpoints and possibly a trusted server (e.g. gateway controller);	
10	and	
11	"End-End RTP Key Change <n>" is a label that is used as a parameter to the</n>	
12	key derivation function F(), <n> stands for an ASCII representation of a decimal number,</n>	
13	representing a counter.	
ρ	The method of claim 13 wherein the step of generating a second Real	
2	Time Protocol key stream is by re-executing the following key derivation function:	
3	F(S, SSRC, "End-End RTP Key Change <n>") where:</n>	
4	S is a shared secret - a random value shared between the two endpoints and is	
5	known only to those two endpoints and possibly a trusted server (e.g. gateway controller);	
6	SSRC is the synchronization source session identifier;	
7	N is the counter of the number of key changes; and	
8	"End-End RTP Key Change <n>" is a label that is used as a parameter to the</n>	
9	key derivation function F(), <n> stands for an ASCII representation of a decimal number,</n>	
10	representing a counter.	
1	In a communication system having a gateway receiving	
2	communication sessions from two or more multimedia terminal adapters, a method for	
3	securely exchanging voice packets between the multimedia terminal adapters and the	
4	gateway, the method comprising:	
5	generating a first Real Time Protocol key stream for encrypting the voice	
6	packets;	
7	forwarding the voice packets encrypted with the first Real Time Protocol key	
8	stream to the gateway;	
9	generating a second Real Time Protocol key stream for encrypting the voice	
10	packets in response to a collision detection wherein the multimedia terminal adapters have	
11	the same source identifier; and	
12	forwarding voice packets encrypted with the second Real Time Protocol key	

•
in in the
L)
7
m
top 1
M
ļ.
D
rate:
#
Section 2
þá
ļ.
(T

	μ
1	The method of claim 17 wherein the step of generating a second Real
2	Time Protocol key stream is by re-executing the following key derivation function:
3	F(S, SSRC, "End-End RTP Key Change <n>") where:</n>
4	S is a shared secret - a random value shared between the two endpoints and is
5	known only to those two endpoints and possibly a trusted server (e.g. gateway controller);
6	SSRC is the synchronization source session identifier;
7	N is the counter of the number of key changes; and
B	"End-End RTP Key Change <n>" is a label that is used as a parameter to the</n>
) 8	key derivation function F(), <n> stands for an ASCII representation of a decimal number,</n>
10	representing a counter.
	119
1	18. 19 A system for securely transmitting voice packets during a
2	communication session from a local location to a remote location over a communication
3	network, the system comprising:
4	a means for generating a first key stream at the local location;
5	a means for encrypting the voice packets using at least a portion of the first
6	key stream to form encrypted voice packets;
7	a means for forwarding the encrypted voice packets from the local location to
8	the remote location;
9	a means for generating the first key stream at the remote location in order to
10	decrypt the encrypted voice packets; and
11	a means for decrypting the encrypted voice packets using the first key stream,
12	wherein both means for generating are capable of generating a second key stream to prevent
13	reuse of any portion of the first key stream during the communication.
	\mathcal{U}
1	The system of claim 19 wherein the second key stream is generated
2	when the system wishes to switch from a first to a second coder/decoder for
3	compression/decompression of the voice packets.
1	The system of claim 19 wherein the second key stream is generated by
2	re-executing the following key derivation function:
3	F(S, "End-End RTP Key Change <n>")</n>
4	where N is a counter incremented whenever a new set of Real Time Protocol
5	keys is re-derived for the same media stream session;

6	F() is a one-way pseudo-random function used for the purpose of key
7	derivation;
8	S is a shared secret - a random value shared between the two endpoints and is
9	known only to those two endpoints and possibly a trusted server (e.g. gateway controller);
10	and
11	"End-End RTP Key Change <n>" is a label that is used as a parameter to the</n>
12	key derivation function F(), <n> stands for an ASCII representation of a decimal number,</n>
13	representing a counter.
1	The system of claim 19 wherein the second key stream is generated by
2	re-executing the following key derivation function:
3	F(S, SSRC, "End-End RTP Key Change <n>") where:</n>
4	S is a shared secret - a random value shared between the two endpoints and is
5	known only to those two endpoints and possibly a trusted server (e.g. gateway controller);
6	SSRC is the synchronization source session identifier;
7	N is the counter of the number of key changes; and
8	"End-End RTP Key Change <n>" is a label that is used as a parameter to the</n>
9	key derivation function F(), <n> stands for an ASCII representation of a decimal number,</n>
10	representing a counter.
1	The system of claim 19 further comprising a means for synchronizing
2	the voice packets.