期末试卷样卷

	学院		·W	班
学号	姓名	得名	ம்	
一、填空题(每小题:	3 分, 共 15 分)			
$1, \lim_{(x,y)\to(0,0)} (x^2 + y^2) s$	$\sin\frac{1}{x^2+y^2} = \underline{\hspace{1cm}}$			
2 、设 L 为圆周 $x^2 + y$	$y^2 = a^2, \text{in } \oint_I (x^2 + y)$	2) $^{n}ds=$	<u>.</u>	
3、设 $\vec{A} = (x^2 + yz)\vec{i}$ +	L		•	
$4、级数\sum_{n=1}^{\infty}\frac{(2x)^n}{n+2}$ 的以	女敛半径是 			
$5、设 f(x) 是以 2\pi 为$]周期的函数, 在[-π,	π)上的表达式为 $f(x)$	(x) = x,若 $f(x)$	的傅
立叶级数的和函数	数记为 $S(x)$,则 $S(-\pi$	·)=		
二、选择题(每小题:	3 分, 共 15 分)			
1、设函数 $f(x,y)$ =	$2x^2 + ax + xy^2 + 2y \stackrel{\triangle}{\leftarrow}$	点 (1,-1) 取得极值,贝).
(A) -1;	(B) 1;	(C) 5;		
2、函数 f(x,y) = xy	·+2在点(1,2)处取得	的最大方向导数值为	().	
(A) 3;	(B) $\sqrt{5}$;	(C) 5;	(D) 2.	
3、设∑为球面 x² +	$-y^2 + z^2 = R^2$, \iiint_{Σ}	$f(x^2 + y^2 + z^2)ds = ($).	
(A) $4\pi R^4$;	2	(B) $\iiint_{\Omega} R^2 dr;$		
(C) $\int_0^{2\pi} d\theta \int_0^{\pi} d\varphi$	$\int_0^R r^4 \sin \varphi dr;$	(D) $\frac{4\pi R^5}{3}$.		
$4、函数 f(x) = \frac{1}{1+2}$	$-\frac{1}{2x}$ 在点 $x = 0$ 处的幂约	吸数展开式为().	
$(A) \sum_{n=0}^{\infty} 2^n x^n ,$	x < 2;	(B) $\sum_{n=0}^{\infty} (-1)^n 2^n$	$ x < \frac{1}{2};$	

(C)
$$\sum_{n=0}^{\infty} (-1)^n 2^{n+1} x^n$$
, $|x| < \frac{1}{2}$; (D) $\sum_{n=0}^{\infty} 2^{n+1} x^n$, $|x| < 2$.

(D)
$$\sum_{n=0}^{\infty} 2^{n+1} x^n$$
, $|x| < 2$.

5、若级数 $\sum_{n=1}^{\infty} c_n (x-2)^n$ 在 x = -2 处收敛,则此级数在 x = 5 处(

(A) 一定发散;

(B) 一定条件收敛;

(C) 一定绝对收敛;

(D) 收敛性不能确定.

三、计算题(每小题6分,共30分)

1、设z 是由方程 $x+y-z=e^z$ 所确定的x,y 的函数,求 $\frac{\partial^2 z}{\partial x \partial y}$ 及dz.

2、求曲面 $z-e^z+2xy=3$ 在点(1,2,0)处的切平面方程.

3、求由圆锥面 $z = \sqrt{x^2 + y^2}$ 和抛物面 $z = x^2 + y^2$ 所围立体的体积.

4、判断数项级数 $\sum_{n=1}^{\infty} \frac{\cos n\pi}{\sqrt{n^2+n}}$ 的敛散性, 若收敛, 是绝对收敛还是条件收敛?

5、求方程 y'' + 2y' + 5y = 0的通解.

四、(本题 8 分) 求方程 $xy' + (1-x)y = e^{2x}(0 < x < +\infty)$ 满足 $\lim_{x \to 0^+} y(x) = 1$ 的解.

五、(本题 8 分) 设曲线积分 $\int_c xy^2 dx + y\varphi(x) dy$ 与路径无关,其中 $\varphi(x)$ 具有连续的导数,且 $\varphi(0)=0$,计算 $\int_{(0,0)}^{(1,1)} xy^2 dx + y\varphi(x) dy$ 的值.

六、(本题 8 分) 求 $\iint_{\Sigma} (z^2 + x) dy dz - z dx dy$, $\Sigma \not = z = \frac{1}{2} (x^2 + y^2)$ 介于 z = 0 及 z = 2之间部分的下侧.

七、(本题 8 分) 求幂级数 $\sum_{n=1}^{\infty} \frac{x^{2n}}{3n}$ 的收敛域及和函数.

八、(本题 8 分) 设 f(t)连续可导,且