Aula 18

Definição: Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função contínua sobre os pontos duma curva $C\subset D_f$ a qual é parametrizada por um caminho seccionalmente regular $\gamma:[t_0,t_1]\subset\mathbb{R}\to\mathbb{C}$, com $C=\gamma([t_0,t_1])$. Então, define-se o **integral de** f **ao longo de** γ , e representa-se por $\int_{\gamma}f(z)dz$, ou mais simplesmente $\int_{\gamma}f$, como

$$\int_{\gamma} f(z)dz := \sum_{j=0}^{n-1} \int_{s_j}^{s_{j+1}} f(\gamma(t))\gamma'(t)dt.$$

Proposição: Sejam $f,g:\Omega\subset\mathbb{C}\to\mathbb{C}$ funções contínuas, $a,b\in\mathbb{C}$ constantes, e γ,γ_1,γ_2 parametrizações seccionalmente regulares de curvas em Ω . Então, tem-se

- $\int_{-\gamma} f = -\int_{\gamma} f$ ($-\gamma$ designa a parametrização em sentido inverso de γ).
- $\int_{\gamma_1+\gamma_2} f = \int_{\gamma_1} f + \int_{\gamma_2} f$ $(\gamma_1+\gamma_2 \text{ designa a concatenação dos caminhos } \gamma_1 \text{ e } \gamma_2).$

Proposição: Um caminho $\tilde{\gamma}: [\tilde{t_0}, \tilde{t_1}] \to \mathbb{C}$ diz-se uma reparametrização da curva parametrizada por $\gamma: [t_0, t_1] \to \mathbb{C}$ se existe uma aplicação de classe C^1 $\alpha: [t_0, t_1] \to [\tilde{t_0}, \tilde{t_1}]$, com $\alpha'(t) > 0$ para todo o t, e $\alpha(t_0) = \tilde{t_0}$, $\alpha(t_1) = \tilde{t_1}$, tal que $\gamma(t) = \tilde{\gamma}(\alpha(t))$. Nesse caso, dada uma função contínua f nos pontos da curva, tem-se

$$\int_{\gamma} f = \int_{\tilde{\gamma}} f.$$

Proposição: Sejam $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função contínua nos pontos duma curva em D_f parametrizada por um caminho seccionalmente regular γ . Então, tem-se

$$\left| \int_{\gamma} f(z)dz \right| \le L(\gamma) \cdot \sup_{t} |f(\gamma(t))|,$$

onde $L(\gamma)$ designa o comprimento percorrido pela parametrização γ e dado por $\int_{t_0}^{t_1} |\gamma'(t)| dt$.

Teorema Fundamental do Cálculo

Teorema (Teorema Fundamental do Cálculo/Regra de Barrow):

Sejam $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função contínua nos pontos duma curva em D_f parametrizada por um caminho seccionalmente regular γ e seja F uma função holomorfa sobre os pontos da curva tal que F'(z)=f(z) nesses pontos.

Então, tem-se

$$\int_{\gamma} f(z) dz = \int_{\gamma} F'(z) dz = F(\gamma(t_1)) - F(\gamma(t_0)).$$

Em particular, se o caminho é fechado, tem-se que $\gamma(t_1)=\gamma(t_0)$ e

$$\oint_{\gamma} f(z)dz = \oint_{\gamma} F'(z)dz = 0.$$

Exemplos:

$$\oint_{|z|=1} \frac{1}{z} \, dz = 2\pi i$$

$$\oint_{|z|=1} \frac{1}{z^2} \, dz = 0$$

Conjuntos Conexos

<u>Definição</u>: Um conjunto Ω diz-se **desconexo** se existem dois abertos A_1, A_2 tais que:

- $\Omega \subset A_1 \cup A_2$
- $\Omega \cap A_1 \neq \emptyset$ e $\Omega \cap A_2 \neq \emptyset$
- $(\Omega \cap A_1) \cap (\Omega \cap A_2) = \emptyset$

Um conjunto Ω diz-se **conexo por arcos** se, dados quasiquer dois pontos $z_1, z_2 \in \Omega$ existe um caminho com imagem contida em Ω que os une.

<u>Teorema</u>: Se f é contínua e Ω é conexo, então $f(\Omega)$ é conexo.

Proposição: Se um conjunto é conexo por arcos então é conexo.

Se um conjunto é aberto e conexo, então é conexo por arcos.

Teorema (Teorema da Independência do Caminho): Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função contínua num domínio D_f aberto e conexo. Então as seguintes proposições são equivalentes entre si.

- i) f tem primitiva em D_f , ou seja, uma função holomorfa $F:D_f\in\mathbb{C}\to\mathbb{C}$ tal que F'(z)=f(z) para todo o $z\in D_f$.
- ii) Para qualquer caminho fechado γ em D_f tem-se

$$\oint_{\gamma} f(z) \, dz = 0$$

iii) Se $z_0,z_1\in D_f$ são quaisquer dois pontos e $\gamma,\tilde{\gamma}$ quaisquer dois caminhos em D_f , de z_0 para z_1 , tem-se

$$\int_{\gamma} f(z) \, dz = \int_{\tilde{\gamma}} f(z) \, dz.$$