(D)

Definición 5.6.1

Matriz de transición

La matriz A de $n \times n$ cuyas columnas están dadas por (5.6.8) se denomina **matriz de transición** de la base B_1 a la base B_2 . Esto es,

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$(\mathbf{u}_1)_{B_2} (\mathbf{u}_2)_{B_2} (\mathbf{u}_3)_{B_2} \dots (\mathbf{u}_n)_{B_2}$$

(5.6.9)

Nota

Si se cambia el orden en el que se escriben los vectores de la base, entonces también debe cambiarse el orden de las columnas en la matriz de transición.

Teorema 5.6.1

Sean B_1 y B_2 bases para un espacio vectorial V. Sea A la matriz de transición de B_1 a B_2 . Entonces para todo $\mathbf{x} \in V$

$$(\mathbf{x})_{B_2} = A(\mathbf{x})_{B_1}$$
 (5.6.10)

Demostración

Se usa la representación de x dada en (5.6.5) y (5.6.6):

$$\mathbf{x} = b_{1}\mathbf{u}_{1} + b_{2}\mathbf{u}_{2} + \dots + b_{n}\mathbf{u}_{n}$$

$$de (5.6.7)$$

$$= b_{1}(a_{11}\mathbf{v}_{1} + a_{21}\mathbf{v}_{2} + \dots + a_{n1}\mathbf{v}_{n}) + b_{2}(a_{12}\mathbf{v}_{1} + a_{22}\mathbf{v}_{2} + \dots + a_{n2}\mathbf{v}_{n})$$

$$+ \dots + b_{n}(a_{1n}\mathbf{v}_{1} + a_{2n}\mathbf{v}_{2} + \dots + a_{nn}\mathbf{v}_{n})$$

$$= (a_{11}b_{1} + a_{12}b_{2} + \dots + a_{1n}b_{n})\mathbf{v}_{1} + (a_{21}b_{1} + a_{22}b_{2} + \dots + a_{2n}b_{n})\mathbf{v}_{2}$$

$$+ \dots + (a_{n1}b_{1} + a_{n2}b_{2} + \dots + a_{nn}b_{n})\mathbf{v}_{n}$$

$$de (5.6.6)$$

$$= c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + \dots + c_{n}\mathbf{v}_{n}$$

$$(5.6.11)$$

Así,

$$(\mathbf{x})_{B_{2}} = \begin{pmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{pmatrix} = \begin{pmatrix} a_{11}b_{1} + a_{12}b_{2} + \dots + a_{1n}b_{n} \\ a_{21}b_{1} + a_{22}b_{2} + \dots + a_{2n}b_{n} \\ \vdots & \vdots & \vdots \\ a_{n1}b_{1} + a_{n2}b_{2} + \dots + a_{nn}b_{n} \end{pmatrix}$$

$$= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{pmatrix} = A(\mathbf{x})_{B_{1}} \qquad (5.6.12)$$

Antes de dar más ejemplos se probará un teorema que es de suma utilidad para los cálculos.