Question 01.

Answer the following question for the Triangular wave generator.

Given, $V_L = -V_H$

(a)	Prove that the frequency of the triangular wave, $f = \frac{P}{4R_iC}$.
(b)	Find the duty cycle of the triangular wave and find the duty cycle of the square wave. Is there any relation between these two duty cycles?
(c)	Draw the wave form of the square wave (V_A) and triangular wave (V_B) .

Question 02.

Answer the following question for the Triangular wave generator.

Given,
$$R_i=10k$$
 , $C=10~\mu F$, $R_2=pR=20k$, $~R1=R=10k$, $V_L=-V_H$ or $V_H=15~V,~V_L=-15~V$

(a)	Find the value of upper threshold and lower threshold value of the Schmitt trigger used in the above triangular wave generator.
(b)	Draw the VTC of the Schmitt trigger used in the above triangular wave generator.
(c)	What is the frequency and time period of the triangular wave generator?

Question 03

Suppose you want to design a triangular wave generator circuit. Required frequency of the wave is 1 kHz.

Duty cycle should be close to 50 %. You have +15V, -15 V power supply, 0.47 μF capacitor and different resistors.

(8	a)	Find the time period, rising time and falling time of the desired triangular wave.
(1	b)	Design a circuit to generate the required wave.
((c)	Suppose you have replaced the power supply of your designed circuit with +5V and -5V what will be new frequency and duty cycle of the triangular wave?

Question 04.

Answer the following question for the Triangular wave generator.

Given,
$$R_i=10k$$
, $C=10~\mu F$, $R_2=pR=20k$, $R1=R=10k$, or $V_{\rm H}=10~{\rm V}$, $V_{\rm L}=-8~{\rm V}$

(a)	Find the values of V_{TH} , V_{TL} , Falling time and Rising Time of the triangular wave
	generator.
(b)	What will be the duty cycle of the triangular wave and the square wave?

Triangular Wave Generator

Q1. a) Triangular wave generator.

Given,
$$V_L = -V_H$$

$$V_{TH} = -\frac{V_L}{P} = \frac{V_H}{P} \left[V_L = -V_H \right]$$

$$V_{TL} = -\frac{V_H}{P}$$

$$V_{H} - V_{TH} = \frac{2R_{i}C}{P_{VH}}$$

$$T_{2} = R_{i}C$$

$$= \frac{2R_{i}C}{P}$$

$$= R_{i}C$$

$$= \frac{2R_{i}C}{V_{L}} = R_{i}C$$

$$= \frac{2R_{i}C}{P}$$

$$= \frac{2R_{i}C}{P}$$

$$T = T_1 + T_2 = \frac{2RiC}{P} + \frac{2RiC}{P}$$

$$4RiC$$

$$= \frac{4 \text{RiC}}{P}$$

$$\therefore f = \frac{P}{4 \text{RiC}} = \frac{P}{4 \text{RiC}} = \frac{P}{4 \text{RiC}}$$

Q1.6) We know,
$$T_{a_1} = R_i C \frac{V_{HH} - V_{TL}}{V_{HH}} V_{HH} = \frac{V_{HH}}{P}$$

$$= R_i C \frac{V_{HH} - V_{TL}}{V_{HH}}$$

$$= \frac{2R_i C}{P}$$

$$T_2 = R_i C \frac{V_{TL} - V_{TH}}{V_{HH}} = \frac{2R_i C}{P}$$

$$= R_i C \frac{V_{TL} - V_{TH}}{V_{HH}} = \frac{2R_i C}{P}$$

$$DC (Tni) = \frac{T_2}{T_1 + T_2} \times 100^{1/2}$$

$$= \frac{2RiC}{2RiC} \times 100^{1/2} = 50^{1/2}$$

D.C. (SQ) =
$$\frac{T_1}{T_1+T_2}$$

= $\frac{2P_1C_p}{2P_1C_p} \times 100 \text{ d.} = 50 \text{ d.}$
Yes, sum of the two duty payeles ois
 100 d. D.C. (T_{ni}) + D.C. (SQ) = 100 d.

Q2. a) Hene,
$$V_{H'} = +15V$$
, $V_{L} = -15V$, $V_{L} = -15V$, $V_{L} = -15V$, $V_{L} = -20$ = 2.

For, ST, $V_{TH} = -20$ = -20 = 2.

 $V_{TL} = -\frac{V_{L}}{P} = -\frac{15}{2} = 7.5V$
 $V_{TL} = -\frac{V_{L}}{P} = -\frac{15}{2} = -7.5$

Q.2. b) The ST weed is a. non-inverting ST, $V_{TL} = -7.5V$, $V_{TL} = -7.5V$, $V_{TL} = -7.5V$, $V_{S} = \frac{V_{TH} + V_{TL}}{V_{H}} = 0$
 $V_{HW} = V_{TH} - V_{TL} = 15V$
 $V_{L} = -15V$
 $V_{S} = -15V$

Q.2(c) A the power supply is symmetrical, $f = \frac{Pc}{4RC} = \frac{R}{4} = \frac{R}{R} = 2$ 3 F- = 5 1 = 5 TV Q.2.9 The ST med= = = = ton= threnting ST From (a), VTH = 7.5 V, 12 = 14 - HL = 5 N NAI = 12 N NAI = 5 N

Q.3.a) We unow, to = falling-time

to = Rising time

to = Ims

The first in the second i TOFF 0=0 5HU = = T2 x180-1. (2 m) = 12 5 / 1/1/4/1/20 9 W MOINT 2m 30 TITE = 2T2 Again, $T = T_1 + T_2$ HY

Again, $T = T_1 + T_3$ $T = T_1 + T_2$ $T = T_2$ $T = T_1 + T_2$ $T = T_2$ # + # T= Ims T, 5:912 # 0.5 ms 71= 28;0

f=1000Hz From, symmetrical power supply,

$$f = \frac{P}{4RiC}$$

$$\Rightarrow 1000 = \frac{P}{4\times Ri\times 0.47\times 10^{-6}}$$

Now, we can assumpe, p=4 1000 = 4 4×8: ×0.47×156

7 R' = 2.127 LD_

As, $P = \frac{R_2}{P_1}$, Assuming, $R_1 = 10 \text{ M}$, $R_2 = 4$, $R_2 = 40 \text{ M}$. Now, $R_1 = 2.127 \text{ M}$, $R_1 = 10 \text{ M}$, $R_2 = 40 \text{ M}$ Ω , Ω , Ω , Ω

Q3.c) Designed cincuit, with ±
$$5 V s upply$$
 $C = 0.47 M$
 $P = 40 M \Omega$
 $R_i = 2.127 M$
 $P = 40 M \Omega$
 $P = 40$

Q4.a) Power supply not symmetrical,

Here,
$$P = \frac{P_0}{P_1} = \frac{20N}{10N} = 2$$
 $V_H = 10V$, $V_L = -8V$
 $V_{TH} = -\frac{V_L}{P}$
 $V_{TL} = -\frac{V_H}{P}$
 V_{TL}

Here,
$$T = RiC = RiC = 100 \text{ ms}$$

$$T_1 = 100 \text{ ms} \times \frac{4 - (-5)}{10} = 90 \text{ ms}$$

$$t_2 = 100 \text{mc} \times \frac{-5-4}{-8} = 112.5 \text{ms}$$

$$V_{TH} = 4V$$
, $V_{TL} = -5V$, $T_1 = 90 \text{ ms}$, $T_2 = 112.5 \text{ ms}$
 $T_1 \longrightarrow \text{falling time}$
 $T_2 \longrightarrow \text{nising time}$

Q4. b) From (a),
$$T_1 = 90 \text{ mS}$$
, $T_2 = 112.5 \text{ mS}$

DC (T_{11}) = $\frac{T_2}{T_1 + T_2} \times 100\% = 55.55\%$

DC (S_2) = $\frac{T_1}{T_1 + T_2} \times 100\% = 44.44\%$

Square Wave Generator

1.

Here suppose R1 = 10k, R2 = 20k, Rx = 1k, Cx = 1 mF, VH = 10V and VL = -10 V

a. Find the period and frequency of the square wave?

- b. What will be the value of the duty cycle of the square wave?
- c. Draw the output waveform with proper labeling.

2.

Here VH = 10 V and VL = -10 V

Design the circuit so that it can generate a square wave with 1 kHz frequency and 50% duty cycle.

3.

suppose R1 = 10k, R2 = 20k, Rx = 1k, Cx = 1 mF

Design the circuit so that it can generate square wave with a 30% duty cycle. Find the frequency of your designed circuit.

4.

Here suppose R1 = 10k, R2 = 20k, Rx = 1k, Cx = 1 mF, VH = 10V and VL = -5VFind out the duty cycle of inverted output signal of the above circuit.

$$V_{TH} = \frac{P_1}{P_1 + P_2}$$

$$= 10 \times \frac{10}{10 + 20} = 3.33$$

$$V_{TL} = \frac{V_L \times \frac{P_1}{P_1 + P_2}}{P_1 + P_2} = -3.33$$

$$T_{1} = \tau \ln \frac{V_{H} - V_{TL}}{V_{H} - V_{TH}}$$

$$= 1 \times \ln \frac{10 - (-3.33)}{10 - 3.33}$$

$$= 0.69 S$$

$$T_{2} = \tau \ln \frac{V_{L} - V_{TH}}{V_{L} - V_{TL}}$$

$$= 0.69 S$$

$$= 0.69 S$$

$$T = T_1 + T_2 = 0.69 + 0.69 = 1.385$$

 $f = \frac{1}{2} = 0.72 \text{ Hz}$

1. b) Dufy eyem =
$$\frac{1}{17+12} \times 100\%$$
.
$$= \frac{0.69}{0.69+0.69} \times 100\%$$

$$= 50\%$$

Assuming,
$$R_1 = R_2 = 10 \text{ N}_{\perp}$$
 $V_{TH} = \text{8V}_{H} \times \frac{P_1}{P_1 + P_2} = 5 \text{V}$
 $V_{TL} = \text{V}_{\perp} \times \frac{P_1}{P_1 + P_2} = -5 \text{V}$

given, $f = 1 \text{ N}_{\perp} + 2 \text{ N}_{\perp} + 2 \text{ m}_{\perp} = 1 \text$

Dufy cycle = 50% and, T= Title.

 $T_1 + T_2 = 0.5, \exists T_1 = T_2 = T_2$ $= 0.5 \times 10^{-3}$

TI= T ln VH -VTL

 $0.5 \times 10^{-3} = 7 ln \frac{15}{5}$ $7 = 4.55 \times 10^{-4}$

Rx ex = 4.55 × 109

assuming; ex = 1, det

 $R_{x} = \frac{4.55 \times 10^{-4}}{C_{x}}$

= 4551

3. ime corotant
$$\Rightarrow$$
 $J = R_X \cdot C_X = 1 \text{kg.} \times 1 \text{mF}$
= $1 \times 10^3 \times 1 \times 10^{-3} = 1 \text{sec}$

given, squane wave duty cycle => 30%.

means,
$$\frac{T_i}{T_i + T_L} \times 100\% = 30\%$$

$$\frac{T_1}{T_1+T_L} = 0.3 \quad \text{Vol and } = 0.00000$$

$$= T_1 = 0.3T_1 + 0.3T_2$$

we know,
$$T_1 = J \ln \frac{V_H - V_{TL}}{V_H - T_{TH}}$$

$$R_{1} = 10 \text{ kr.}$$

$$R_{2} = 20 \text{ kr.}$$

$$= \int \ln \frac{V_{H} - \left(\frac{R_{I}}{R_{I} + R_{L}}\right) \times V_{L}}{V_{H} - \left(\frac{R_{I}}{R_{I} + R_{L}}\right) \times V_{H}}$$

$$\therefore \frac{R_1}{R_1 + R_2} = \frac{10}{30}$$

$$= l_3 = 0.33$$

$$= 1 \times \ln \frac{\sqrt{H - \frac{1}{3}}}{\sqrt{H - \frac{1}{3}}}$$

$$= 1 \times \ln \frac{3\sqrt{H - \sqrt{1}}}{3}$$

$$T_{I} = 1 \times l_{n} \frac{3V_{H} - V_{L}}{2V_{H}}$$

$$T_{L} = \int \int_{\Omega} \frac{V_{L} - V_{TH}}{V_{L} - V_{TL}}$$

$$= \int \int_{\Omega} \frac{V_{L} - \left(\frac{R_{L}}{R_{l} + R_{L}}\right) V_{H}}{V_{L} - \left(\frac{R_{L}}{R_{l} + R_{L}}\right) V_{L}}$$

$$T_2 = 1 \ln \frac{3V_L - V_H}{2V_L}$$

$$\frac{7}{2} \ln \frac{3V_H - V_L}{2V_H} = 3 \ln \frac{3V_L - V_H}{3V_L}$$

as, there is two unknowns

VH and Vi in the equation,

$$7 \ln \frac{30 - V_L}{20} = 3 \ln \frac{3V_L - 10}{2V_L}$$

using calculator, we get ->

$$T = 1 \times \ln \frac{30 - 10}{20}$$

:.
$$T_L = 1 \times \ln \frac{30-10}{20}$$

= 0.00

$$f = \frac{1}{0} = \infty H_2$$

4.
$$T = F \times Q_X = IS$$
 $V_H = +10V$, $V_L = -5V$
 $V_{TH} = V_H \frac{PL}{F_{1}+F_{1}} = 10 \times \frac{10}{10+20} = 3.33$
 $V_{TL} = V_L \frac{PL}{F_{1}+F_{2}} = -5 \times \frac{10}{10+20} = -1.67$
 $T_1 = T \times ln \frac{V_H - V_{TL}}{V_H - V_{TH}}$
 $= I \times ln \frac{10 - (-1.67)}{10 - 3.33} = 80.559$
 $T_L = T ln \frac{V_L - V_{TH}}{V_L - V_{TH}} = I \times ln \frac{5 - 3.32}{5 - (-1.67)}$

Duyck = The Nove = 37.97.