÷	Write a proof for the divisibility test for 13.
Ş	 Find a divisibility test for: 25
Û	Find a divisibility test for: 6 6 6 12 6 14 d 15
Sur	Determine whether each of these integers is divisible by 11:
	₹ 10763732
2	Determine whether each of these integers is divisible by 3, 9, or 11:
	* 201 984
	d 10 415 486 358
6,80	Consider an integer of the form $n^2 - n + 7$, $n \in \mathbb{Z}$. By considering different values of n , determine the possible values of its last digit. Prove that these are the only possible values.
<u>Z</u>	For each of the following binary numbers:
	find the highest power of 2 that divides the number determine whether the number is divisible by 3.
	101110101001
S	For each of the following ternary (base 3) numbers:
	if find the highest power of 3 that divides the number
	determine whether the integer is divisible by 2
	determine whether the integer is divisible by 4.
	10 200 122 221 210
6	Find a divisibility test for 7 when the number is written in base 8. Generalise this result to base n .
T	Find a divisibility test for 9 when the number is written in base 8. Generalise this result to base n .
ë	A positive integer X has a base 25 representation given by $(x_n x_{n-1} x_0)_{25}$.
	Show that X is divisible by 5 if x_0 is divisible by 5.
	\S Show that X is divisible by 2 if the sum of its digits (in base 25) is even.
	Without using a conversion to base 10, determine whether or not $(664089735)_{25}$ is divisible by 20.