Granty + orbits ~ 45 min
Granty mutual attention menun all trys
Most accounterly desired by 6R by weather of
Spur tine Lo parys always from locally in stright 22 but granty warps what "straight" is Lo gradens
Now former gravity
$F = G \frac{Mm}{r^2} \qquad \qquad$

Community field: when field during some of all syll and independent to consume the field: work is put independent $\int_{P} F_{g}(\vec{r}) \cdot d\vec{r} = \mathcal{Y}(B) - \mathcal{Y}(A)$ $\oint_{C} F_{g}(r) \cdot d\vec{r} = 0$ Orbiti $\oint_{C} F_{g}(r) \cdot d\vec{r} = 0$ constantly falling, constantly missing 1/6/13 Nawfor's arms hall

Orbital qued 6 mm = mv Keplin's long of pleneting motion 1. Orbit et a plant is on ellipse w/ Sun a on sours 2. The from plant to Em snup eyou! oney it april the 3. some of period of Cuhe of Gumi-major axis

Lun 2 i) cons. of anywhar monentum:

$$\frac{dA}{d\theta} r d\theta \qquad \frac{dA}{dt} = \frac{1}{2} l \left(r d\theta \right)$$

$$\frac{dA}{dt} = \frac{1}{2} l \left(r d\theta \right)$$

$$= \frac{1}{$$

Len 3:

$$V = \sqrt{\frac{6m}{r}} = \frac{2\pi r}{r}$$

$$\frac{6m}{r} = \frac{4\pi^2 r^2}{r^2}$$

$$\frac{r^3}{r} = \frac{6m}{4\pi^2} = \frac{2\cos 5t}{r^2}$$

$$\frac{r^3}{r} = \frac{r}{r}$$

$$\frac{r^3}{r} = \frac{r}{r}$$

points run 2 proints booting

When on engre will minimin

compant where purition

explain Minimon

her ind 3,1,2

Dovin L. dispure

$$6\frac{mm}{r^2} = m \frac{\sqrt{2}}{h}$$

$$\alpha_{tot} = 6 \frac{M}{(r-R)^2} - 6 \frac{m}{R^2} = \alpha_c = \frac{V_{snic}^2}{r-R}$$

what is
$$V_{ship}$$
? $V_{ship} = \frac{2\pi (r-R)}{\Gamma}$

$$\frac{6M}{(r-R)^2} - \frac{6m}{R^2} = \frac{(2\pi(r-R)/T)^2}{r-R}$$

$$\frac{6M}{(r-R)^2} - \frac{6m}{Q^2} = \frac{4\pi^2(r-R)}{7^2}$$

Mumerical integention

Diffurkint egn: Made som furkin to its denlatus. Initsal conditions spurity believe

 $\rightarrow \alpha = 5t$ $\frac{dx}{dt} = 5,$ x(a)=0

 $\rightarrow x = \frac{1}{2}t^2$ dx = 6

 $\frac{dx}{dt} = x \qquad \longrightarrow \qquad x = 0$

x(0)=1

Sippose ne hur

 $\frac{dx}{dt} = f(x, t), \quad x(t_0) = x_0$

Solving Liftys by heard is heard & eften impossible! on were huminal nethods...

Want to approximate solution x(t)

$$\chi \approx \chi_0 + \frac{d^{\chi}}{dt} \Delta t = \chi_0 + f(\chi_0, t_0) \Delta t$$

$$x_i = x_o + f(x_o, t_o) \Delta t$$
 $t_i = t_o + \Delta t$

$$\chi_{2} = \chi_{1} + f(\chi_{1}, \xi_{1}) \Delta t$$

$$t_{2} = \xi_{1} + \Delta t$$

•

$$\chi_{n+1} = \chi_n + \int [\chi_{n}, t_n] \Delta t$$

$$t_{n+1} = t_n + \Delta t$$