VE320 Homework Five

Due: 2021/6/23 23:59

- (a) A sample of semiconductor has a cross-sectional area of 1 cm² and a thickness of 0.1 cm. Determine the number of electron-hole pairs that are generated per unit volume per unit time by the uniform absorption of 1 watt of light at a wavelength of 6300Å. Assume each photon creates one electron-hole pair. (b) If the excess minority carrier lifetime is 10μs, what is the steady-state excess carrier concentration?
- 2. Consider a silicon sample at T=300 K that is uniformly doped with acceptor impurity atoms at a concentration of $N_a=10^{16}$ cm⁻³. At t=0, a light source is turned on generating excess carriers uniformly throughout the sample at a rate of $g'=8\times 10^{20}$ cm⁻³ s⁻¹. Assume the minority carrier lifetime is $\tau_{n0}=5\times 10^{-7}$ s, and assume mobility values of $\mu_n=900$ cm²/V·s and $\mu_p=380$ cm²/V·s. (a) Determine the conductivity of the silicon as a function of time for $t\geq 0$. (b) What is the value of conductivity at (i) t=0 and (ii) $t=\infty$?
- 3. Consider a bar of p-type silicon that is uniformly doped to a value of $N_a = 2 \times 10^{16} \text{ cm}^{-3}$ at T = 300 K. The applied electric field is zero. A light source is incident on the end of the semiconductor as shown in Figure below. The steady-state concentration of excess carriers generated at x = 0 is $\delta p(0) = \delta n(0) = 2 \times 10^{14} \text{ cm}^{-3}$. Assume the following parameters: $\mu_n = 1200 \text{ cm}^2/\text{V} \cdot \text{s}$, $\mu_p = 400 \text{ cm}^2/\text{V} \cdot \text{s}$, $\tau_{n0} = 10^{-6} \text{ s}$, and $\tau_{p0} = 5 \times 10^{-7} \text{ s}$ Neglecting surface effects, (a) determine the steady-state excess electron and hole concentrations as a function of distance into the semiconductor, and (b) calculate the steady-state electron and hole diffusion current densities as a function of distance into the semiconductor.

- 4. The x = 0 end of an N_a = 1 × 10¹⁴ cm⁻³ doped semi-infinite (x ≥ 0) bar of silicon maintained at T = 300 K is attached to a "minority carrier digester" which makes n_p = 0 at x = 0 (n_p is the minority carrier electron concentration in a p-type semiconductor). The electric field is zero. (a) Determine the thermal-equilibrium values of n_{p0} and p_{p0}.
 (b) What is the excess minority carrier concentration at x = 0? (c) Derive the expression for the steady-state excess minority carrier concentration as a function of x.
- 5. An n-type silicon semiconductor, doped at $N_d = 4 \times 10^{16}$ cm⁻³, is steadily illuminated such that $g' = 2 \times 10^{21}$ cm⁻³ s⁻¹. Assume $\tau_{n0} = 10^{-6}$ s and $\tau_{p0} = 5 \times 10^{-7}$ s.

 (a) Determine the thermal-equilibrium value of $E_F E_{Fi}$. (b) Calculate the quasi-Fermi

levels for electrons and holes with respect to E_{Fi} . (c) What is the difference (in eV) between E_{Fn} and E_{F} ?

6. Consider an n-type semiconductor as shown in Figure below, doped at $N_d=10^{16}~\rm cm^{-3}$ and with a uniform excess carrier generation rate equal to $g'=10^{21}~\rm cm^{-3}\cdot s^{-1}$. Assume that $D_p=10~\rm cm^2/s$ and $\tau_{p0}=10^{-7}~\rm s$. The electric field is zero. (a) Determine the steady-state excess minority carrier concentration versus x if the surface recombination velocity at x=0 is (i)s=0, $(ii)s=2000~\rm cm/s$, and $(iii)s=\infty$. (b) Calculate the excess minority carrier concentration at x=0 for (i)s=0, $(ii)s=2000~\rm cm/s$ and $(iii)s=\infty$.

