Lecture Notes in Measure Theory

Ashish Kujur

Last Updated: August 10, 2022

Introduction

This is a set of lecture notes which I took for reviewing stuff that I typed after taking class from *Dr. Sachindranath Jayaraman*. All the typos and errors are of mine.

Contents

Lecture 1 — 9th August 2022 — Basic Definitions	1
\$1.1 Algebras and Sigma-algebras	
Lecture 2 S2.1 Lebesgue Integral	2

§1 Lecture 1 — 9th August 2022 — Basic Definitions

§1.1 Algebras and Sigma-algebras

Definition §1.1.1 (Algebra). Let X be any arbitrary set. A collection $\mathscr{A} \subseteq \mathscr{P}(X)$ is called an algebra if

- 1. $X \in \mathcal{A}$
- 2. $\forall A \in \mathcal{A}, X \setminus A \in \mathcal{A}$
- 3. $\forall \mathcal{F} \subseteq \mathcal{A} (\mathcal{F} \text{ finite } \Rightarrow \bigcup \mathcal{F} \in \mathcal{A})$
- 4. $\forall \mathscr{F} \subseteq \mathscr{A} (\mathscr{F} \text{ finite } \Rightarrow \bigcap \mathscr{F} \in \mathscr{A})$

Definition §1.1.2 (σ -Algebra). Let X be any arbitrary set. A collection $\mathscr{A} \subseteq \mathscr{P}(X)$ is called an *algebra* if

- 1. $X \in \mathcal{A}$
- 2. $\forall A \in \mathcal{A}, X \setminus A \in \mathcal{A}$

- 3. $\forall \{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{A}, \bigcup_{i\in\mathbb{N}}A_i\in\mathcal{A}$
- 4. $\forall \{A_i\}_{i\in\mathbb{N}}\subseteq\mathscr{A}$, (\mathscr{F} finite $\Rightarrow \bigcap_{i\in\mathbb{N}} A_i\in\mathscr{A}$)

Example §1.1.3 (Some families of sets that are algebras or σ -algebras , and some that are not). Here's a list of examples:

- 1. Let *X* be any set. Let $\mathscr{A} = \mathscr{P}(X)$. Then \mathscr{A} is a σ -algebra on *X*.
- 2. Let *X* be any set. Let \mathscr{A} be the collection of all subsets *A* of *X* such that *A* or A^c is countable. Then \mathscr{A} is σ -algebra.

Proposition §1.1.4. Let X be any set. The intersection of an arbitrary nonempty collection of σ -algebras on X is a σ -algebra on X.

§1.2 Measures

Definition §1.2.1. A function $\mu : \mathscr{A} \to [0, +\infty]$ is said to be *measure* if it satisfies the following two properties:

- 1. $\mu(\emptyset) = 0$
- 2. $\mu(\bigcup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}\mu(A_n)$

§2 Lecture 2

§2.1 Lebesgue Integral