Функции нескольких переменных

Основные утверждения

Математический анализ, 3 семестр

ММФ НГУ

Оглавление

1	Hop	омированные векторные пространства	4
2	Дифференциальное исчисление функций нескольких перемен-		
	ных	K .	Į
	2.1	Производные высших порядков	,
	2.2	Формула Тейлора	8
	2.3	Дифференциалы высших порядков	1(
	2.4	Экстремумы функций нескольких переменных	1.
	2.5		1.
	2.6	Диффеоморфизмы	12
	2.7		12
3	Многообразия		13
	3.1	Определения и способы задания многообразий	13
	3.2	Касательные векторы и пространства, нормальные подпространства	14
		3.2.1 Касательные векторы и пространства	14
		3.2.2 Нормальное подпространство к многообразию	15
	3 3	Карты атласы	1.5

Глава 1

Нормированные векторные пространства

Определение 1.1. \mathcal{V} – в. п-во над \mathbb{R} , если

$$\forall x, y \in \mathcal{V} \ x + y = y + x, \tag{B\Pi.1}$$

$$\forall x, y, z \in \mathcal{V} \ (x+y) + z = x + (y+z), \tag{B\Pi.2}$$

$$\exists \vec{0} \ \forall x \in \mathcal{V} \ \vec{0} + x = x + \vec{0} = x, \tag{B\Pi.3}$$

$$\forall x \in \mathcal{V} \ \exists -x \in \mathcal{V}: \ x + (-x) = \vec{0}, \tag{B\Pi.4}$$

$$\forall \alpha, \beta \in \mathbb{R} \ \forall x \in \mathcal{V} \ (\alpha + \beta)x = \alpha x + \beta x, \tag{B\Pi.5}$$

$$\forall \alpha, \beta \in \mathbb{R} \ \forall x \in \mathcal{V} \ (\alpha \beta) x = \alpha(\beta x), \tag{B\Pi.6}$$

$$\forall \alpha \in \mathbb{R} \ \forall x, y \in \mathcal{V} \ \alpha(x+y) = \alpha x + \alpha y, \tag{B\Pi.7}$$

$$\exists 1 \in \mathbb{R} \ \forall x \in \mathcal{V} \ 1 \cdot x = x. \tag{B\Pi.8}$$

Определение 1.2. $\|\cdot\|\colon \mathcal{V} \to \mathbb{R}_{\geq 0}$ – норма, если

$$\forall x \in \mathcal{V} \|x\| \ge 0, \tag{H.1}$$

$$\forall x, y \in \mathcal{V} \ ||x + y|| \le ||x|| + ||y||, \tag{H.2}$$

$$\forall \alpha \in \mathbb{R} \ \forall x \in \mathcal{V} \ \|\alpha x\| = |\alpha| \|x\|, \tag{H.3}$$

$$||x|| = 0 \Leftrightarrow x = \vec{0}. \tag{H.4}$$

Замечание 1.1. *На нормированном в. п-ве можно определить метрику следу-ющим образом:*

$$\rho(x,y) = ||x - y||.$$

И это действительно будет метрикой.

Определение 1.3. Банахово пространство – полное (относительно метрики из предыдущего замечания) нормированное векторное пространство.

Определение 1.4. $(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ – скалярное произведение, если

$$\forall x \in \mathcal{V} \ (x, x) \ge 0, \tag{C\Pi.1}$$

$$\forall x, y \in \mathcal{V} \ (x, y) = (y, x), \tag{CII.2}$$

$$\forall \alpha, \beta \in \mathbb{R} \ \forall x, y, z \in \mathcal{V} \ (\alpha x + \beta y, z) = (\alpha x, z) + (\beta y, z), \tag{CII.3}$$

$$(x,x) = 0 \Leftrightarrow x = \vec{0}. \tag{C\Pi.4}$$

Определение 1.5. Если \mathcal{V} – в. пр-во и (\cdot,\cdot) – скалярное произведение, то $(\mathcal{V},(\cdot,\cdot))$ – евклидово пространство.

Утверждение 1.2. В евклидовом пространстве можно ввести норму следующим образом:

$$||x|| = \sqrt{(x,x)}.$$

Определение 1.6. Две нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ билипшицево эквивалентны, если

$$\exists C > 0: \ \frac{1}{C} ||x||_1 \le ||x||_2 \le C ||x||_1, \quad \forall x \in \mathcal{V}$$

Теорема 1.3. Все нормы в \mathbb{R}^n билипшицево эквивалентны.

Следствие 1.4. Последовательность точек

$$v^m = \begin{pmatrix} v_1^m \\ \vdots \\ v_n^m \end{pmatrix}$$

сходится к точке

$$u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$

 $npu\ m \to \infty\ morдa\ u\ morько\ morдa,\ кorдa\ v_i^m \underset{m \to \infty}{\longrightarrow} u_i\ для\ всех\ i=1,\dots,n.$

Определение 1.7. Введем понятие отображения $F: \mathbb{R}^n \to \mathbb{R}^m$.

$$F(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix},$$

где $x \in U$ и U – область в \mathbb{R}^n .

Следствие 1.5.

$$\lim_{x \to a} F(x) = u \Leftrightarrow \lim_{\eta \to a_i} f_i(\eta) = u_i \quad \text{dir } acex \ i = 1, \dots, m,$$

где

$$u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}.$$

Глава 2

Дифференциальное исчисление функций нескольких переменных

Определение 2.1. Функция $f: \mathcal{D} \to \mathbb{R}$, где \mathcal{D} – область в \mathbb{R}^n , дифференцируема в точке $a \in \mathcal{D}$, если

$$f(a+h) = f(a) + \sum_{k=1}^{n} A_k h_k + o(||h||),$$

где A_k – константы и $h=(h_1,\ldots,h_n)^T$.

Аналогичное определение:

$$f(a+h) = f(a) + \mathcal{L} \langle h \rangle + o(||h||),$$

где \mathcal{L} – линейное отображение.

Нетрудно понять, что $\mathcal{L}\langle h\rangle=df(a)\langle h\rangle$ и

$$A_k = \left. \frac{\partial f(x)}{\partial x_k} \right|_{x=a}$$
 для всех $k=1,\ldots,n.$

Определение 2.2. Пусть \vec{v} – некоторый фиксированный вектор из \mathbb{R}^n .

Производная функции f в точке $a \in \mathcal{D}$ по направлению \vec{v} определяется следующим образом:

$$\partial_{\vec{v}} f(a) = \lim_{t \to 0} \frac{f(a + t\vec{v}) - f(a)}{t}.$$

Если положить $\varphi(t) = f(a+t\vec{v})$, то

$$\partial_{\vec{v}}f(a) = \frac{d\varphi(0)}{dt}.$$

Если $\vec{v} = \vec{e_i}$, то

$$\partial_{\vec{e_i}} f(a) = \frac{\partial f(a)}{\partial x_i} = f'_{x_i}(a).$$

Утверждение 2.1. Если функция f дифференцируема в точке $a \in \mathcal{D}$, то для любого вектора $\vec{v} \in \mathbb{R}^n$ существует $\partial_{\vec{v}} f(a)$, которую можно вычислить следующими способами:

$$\partial_{\vec{v}} f(a) = \left((f'_{x_1}(a), \dots, f'_{x_n}(a))^T, (v_1, \dots, v_n)^T \right),$$

$$\partial_{\vec{v}} f(a) = \left(\operatorname{grad} f(a), \vec{v} \right)$$

Лемма 2.2. Пусть функция $f: \mathcal{D} \to \mathbb{R}$, где \mathcal{D} – выпуклая область в \mathbb{R}^n , имеет в \mathcal{D} ограниченные константой K частные производные, тогда

$$\forall a, b \in \mathcal{D} \quad |f(b) - f(a)| \le nK||b - a||_2$$

или

$$\forall a, b \in \mathcal{D} \quad |f(b) - f(a)| \le K ||b - a||_1.$$

Замечание 2.3. Далее полагается, что множество определения функций – выпуклая область, если не оговорено другое.

Теорема 2.4. Пусть все частные производные функции $f: \mathcal{D} \to \mathbb{R}$ существуют в \mathcal{D} и непрерывны в точке $a \in \mathcal{D}$, тогда f дифференцируема в точке a.

Теорема 2.5. Пусть $f, g \in D(a)$.

Tогда $f+g,fg\in D(a)$

$$d(f+g)(a) = df(a) + dg(a),$$

$$d(fg)(a) = g(a)df(a) + f(a)dg(a).$$

Определение 2.3. Вектор-функция (векторное поле) $f: U \to \mathbb{R}^m$, где $U \subset \mathbb{R}^n$, дифференцируема в точке $a \in U$, если

$$f(a+h) = f(a) + df(a) \langle h \rangle + o(||h||).$$

Определение 2.4. Введем понятие матрицы Якоби отображения $f: U \to \mathbb{R}^m$, где $U \subset \mathbb{R}^n$, в точке $a \in U$:

$$\frac{\partial f(a)}{\partial (x_1, \dots, x_n)} = \frac{\partial f(x)}{\partial (x_1, \dots, x_n)} \Big|_{x=a} = \begin{pmatrix} \frac{\partial f_1(a)}{\partial x_1} & \dots & \frac{\partial f_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(a)}{\partial x_1} & \dots & \frac{\partial f_n(a)}{\partial x_n} \end{pmatrix}.$$

и понятие Якобиана отображения в точке $a \in U$:

$$\mathcal{J}_f(a) = \left| \frac{\partial f(a)}{\partial (x_1, \dots, x_n)} \right|.$$

Теорема 2.6. Если функция $f: U \to \mathbb{R}^m$, где $U \subset \mathbb{R}^n$, дифференцируема в точке $a \in U$, и функция $g: V \to \mathbb{R}^k$, где $V \subset R^m$, дифференцируема в точке f(a), тогда $g \circ f$ дифференцируема в точке $a \in U$ и

$$d(g \circ f)(a) = dg(f(a)) \cdot df(a).$$

Следствие 2.7. Пусть отображение $f: U \to \mathbb{R}^n$, где $U \subset \mathbb{R}^n$, дифференцируемо в точке $a \in U$ и имеет обратное отображение f^{-1} .

Тогда $f^{-1} \in D(f(a))$ и

$$df^{-1}(f(a)) = (df(a))^{-1}.$$

2.1 Производные высших порядков

Определение 2.5. Функция f k-раз дифференцируема в точке $a \in \mathcal{D}$, если любая n-ая частная производная, где $n = 1, \ldots, k-1$, дифференцируема в точке $a \in \mathcal{D}$.

Замечание 2.8. Используют также понятие гладкости функции f.

Функция f класса \mathcal{C}^r в точке $a \in \mathcal{D}$, если каждая ее k-ая производная, где $k=1,\ldots,r$, непрерывна.

По достаточному условию дифференцируемости, функция $f \in D^r$.

Теорема 2.9. Пусть $u = f(x,y) \in D^2(M_0)$, $M_0 = (x_0,y_0) \in U$ и M_0 – внутренняя точка U. Тогда

$$\frac{\partial^2 u(M_0)}{\partial x \partial y} = \frac{\partial^2 u(M_0)}{\partial y \partial x}.$$

Теорема 2.10. Пусть $f: U \to \mathbb{R}^2$ в некоторой окрестности точки $M_0 = (x_0, y_0)$ имеет частные производные $f'_x, f'_y, f''_{xy}, f''_{yx}$ и при этом вторые производные непрерывны в M_0 . Тогда

$$f_{xy}''(M_0) = f_{yx}''(M_0).$$

Следствие 2.11. Пусть $u = f(x_1, \ldots, x_n)$ – m-раз дифференцируемая функция в точке M_0 , при этом $M_0 = (x_1^0, \ldots, x_n^0)$. Тогда в точке M_0 любые смешанные производные равны, то есть

$$\frac{\partial^k f(M_0)}{\partial x_{\pi(1)} \dots \partial x_{\pi(k)}} = \frac{\partial^k f(M_0)}{\partial x_{\sigma(1)} \dots \partial x_{\sigma(k)}},$$

 $e \partial e \ \pi, \sigma \in \mathbb{S}_k \ makue, \ umo \ \pi \neq \sigma.$

2.2 Формула Тейлора

Определение 2.6. Определим понятие мультииндекса.

$$\alpha = (\alpha_1, \ldots, \alpha_n),$$

где $\alpha_i \in \mathbb{N}_{\geq 0}$ для всех $i \in \mathbb{N}$.

Так же определим следующие операции:

$$lpha! = lpha_1! \dots lpha_n!,$$
 $|lpha| = \sum_{k=1}^n lpha_k,$
Пусть $h \in \mathcal{V}: h = (h_1, \dots, h_n)^T,$ то $h^lpha = \prod_{i=1}^n h_i^{lpha_i}.$

Удобство мультииндекса заключается в компактности обозначений. Далее под

$$\frac{\partial^{\alpha} f}{\partial x^{\alpha}}$$

будем подразумевать

$$\frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \left(\frac{\partial^{\alpha_2}}{\partial x_2^{\alpha_2}} \cdots \left(\frac{\partial^{\alpha_n} f}{\partial x_n^{\alpha_n}} \right) \cdots \right).$$

Теорема 2.12.

$$(x_1 + \ldots + x_n)^k = \sum_{\substack{\alpha_i \ge 0, \ i=1,\ldots,n\\\alpha_1 + \ldots \alpha_n = k}} \frac{|\alpha|!}{\alpha!} \prod_{i=1}^n x_i^{\alpha_i}.$$

Пример 2.1. Обозначим за $\mathfrak D$ следующее отображение:

$$\mathfrak{D} = \sum_{i=1}^{n} h_i \frac{\partial}{\partial x_i},$$

где h_i – i-ая компонента фиксированного вектора $h=(h_1,\ldots,h_n)^T.$

Ecлu функция $f \in D^k$, то

$$\mathfrak{D}^{k} f = \left(\sum_{i=1}^{n} h_{i} \frac{\partial}{\partial x_{i}}\right)^{k} f =$$

$$= \left(\sum_{\substack{\alpha_{i} \geq 0, \ i=1,\dots,n \\ \alpha_{1}+\dots\alpha_{n}=k}} \frac{k!}{\alpha_{1}!\dots\alpha_{n}!} \prod_{i=1}^{n} h_{i}^{\alpha_{i}} \frac{\partial^{\alpha_{i}}}{\partial x_{i}^{\alpha_{i}}}\right) f =$$

$$= \left(\sum_{|\alpha|=k} \frac{|\alpha|!}{\alpha!} h^{\alpha} \frac{\partial^{\alpha}}{\partial x^{\alpha}}\right) f.$$

Теорема 2.13 (Формула Тейлора с остаточным членом в форме Пеано). *Пусть* $f \in D^k(a)$, где $a \in U \subset \mathbb{R}^n$.

Tог ∂a

$$f(a+h) = \sum_{i=0}^{k} \left(\sum_{|\alpha|=i} \frac{1}{\alpha!} \frac{\partial^{\alpha} f(a)}{\partial x^{\alpha}} h^{\alpha} \right) + o(\|h\|^{k}),$$

 $ede\ o(\|h\|^k) \to 0\ npu\ \|h\| \to 0.$

Определение 2.7. $\sum_{i=0}^{k} \left(\sum_{|\alpha|=i} \frac{1}{\alpha!} \frac{\partial^{\alpha} f(a)}{\partial x^{\alpha}} h^{\alpha} \right)$ — полином Тейлора порядка k в точке $a \in U$ функции $f \in D^k(a)$.

Лемма 2.14. $h^{\alpha} = o(\|h\|^k)$ $npu \|h\| \to 0$ тогда и только тогда, когда $k < |\alpha|$.

Теорема 2.15 (Единственность полинома Тейлора). Пусть существует полином

$$P = \sum_{i=0}^{k} \sum_{|\alpha|=i} P_{\alpha} h^{\alpha}$$

такой, что

$$f(a+h) - P = o(\|h\|^k)$$

 $npu \|h\| \to 0.$

Tогда P – полином Tейлора.

Следствие 2.16. Пусть $f \in D^k(a)$ и

$$\frac{\partial^{\alpha} f(a)}{\partial x^{\alpha}} = 0$$

 $npu |\alpha| \le k$.

Torda $f(a+h) = o(\|h\|^k)$ npu $\|h\| \to 0$.

2.3 Дифференциалы высших порядков

Пусть $f = f(x_1, \dots, x_n)$ – дифференцируемая функция. Тогда дифференциал функции f имеет вид

$$df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n}.$$

Обозначим за δ приращение.

Определение 2.8. Значение $\delta(df)$ при $\delta x_i = dx_i$ для всех $i = 1, \ldots, n$ называется вторым дифференциалом функции f и обозначается d^2f .

$$d^{2}f = \delta \left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} dx_{i} \right) \bigg|_{\substack{\delta x_{i} = dx_{i}, \\ i=1,\dots,n}}$$

Определение 2.9. k-кратный дифференциал функции f определяется следующим образом:

$$\delta(d^{k-1}f)\Big|_{\substack{\delta x_i = dx_i, \\ i=1,\dots,n}} = d^k f.$$

Теорема 2.17. Пусть функция $f = f(x_1, ..., x_n)$ дважды дифференцируема, тогда ее второй дифференциал имеет вид

1. Если x_1, \ldots, x_n – независимые переменные, то

$$d^{2}f = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2}f}{\partial x_{j}\partial x_{i}} dx_{j} dx_{i}.$$

2. Если $x_i = x_i(\xi_1, \dots, \xi_m)$ для всех $i = 1, \dots, n$ дважды дифференцируемые функции, и $f(x_1, \dots, x_n)$ – дважды дифференцируемая функция, тогда

$$d^{2}f = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2}f}{\partial x_{j}\partial x_{i}} dx_{j} dx_{i} + \sum_{k=1}^{n} \frac{\partial f}{\partial x_{k}} \sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\partial^{2}x_{k}}{\partial \xi_{j}\partial \xi_{i}} d\xi_{j} d\xi_{i},$$

в более компактной форме:

$$d^{2}f = \left(\frac{\partial f}{\partial x_{1}}dx_{1} + \dots + \frac{\partial f}{\partial x_{n}}dx_{n}\right)^{2} + \sum_{k=1}^{n} \frac{\partial f}{\partial x_{k}}d^{2}x_{k}.$$

Замечание 2.18. Второй дифференциал функции f от независимых переменных x_1, \ldots, x_n

$$d^{2}f = \left(\frac{\partial f}{\partial x_{1}}dx_{1} + \dots + \frac{\partial f}{\partial x_{n}}dx_{n}\right)^{2}$$

является симметричной квадратичной формой.

Утверждение 2.19. Пусть функция $f: U \to \mathbb{R}$ k раз дифференцируема в точке $a \in U$. Тогда

$$d^k f(a) = \sum_{|\alpha|=k} \frac{k!}{\alpha!} \frac{\partial^{|\alpha|} f}{\partial x^{\alpha}}(a) (dx)^{\alpha}, \quad \text{ide } (dx)^{\alpha} = (dx_1)^{\alpha_1} \cdots (dx_n)^{\alpha_n}$$

Следствие 2.20. Пусть функция $f\colon U\to\mathbb{R}$ k раз дифференцируема в точке $a\in U$. Тогда

$$f(a+h) = f(a) + \frac{1}{1!} df(a) \langle h \rangle + \frac{1}{2!} d^2 f(a) \langle h \rangle^2 + \dots + \frac{1}{k!} d^k f(a) \langle h \rangle^k + o(\|h\|^k)$$

2.4 Экстремумы функций нескольких переменных

2.5 Теорема о неявной функции

Для функции $F: U \to \mathbb{R}^m$, где $U \subset \mathbb{R}^{n+m} = \mathbb{R}^n \times \mathbb{R}^m$, то есть запись $(a,b) \in U$ означает, что $a \in \mathbb{R}^n$, $b \in \mathbb{R}^m$. Определим $F_a \colon U_a \to \mathbb{R}^m$, где $U_a = \{y \in \mathbb{R}^m \mid (a,y) \in U\}$, то есть $F_a(y) = F(a,y)$ и $F_b \colon U_b \to \mathbb{R}^m$ аналогично $(F_b(x) = F(x,b))$.

Теорема 2.21 (О неявной функции). Пусть $F: U \to \mathbb{R}^m$, где $U \subset \mathbb{R}^{n+m}$, $U \in \mathcal{N}[(a,b)]$ – некоторая окрестность точки (a,b).

Если выполнены следующие условия:

- 1. F(a,b) = 0,
- 2. $F \in C^1[(a,b)]$, то есть F непрерывно дифференцируема в некоторой окрестности точки (a,b),
- 3. $dF_a(b)$ невырожеденный оператор $(\det(dF_a(b)) \neq 0)$,

то найдутся окрестности $V \in \mathcal{N}(a)$, $V \subset \mathbb{R}^n$, $u \ W \in \mathcal{N}(b)$, $W \subset \mathbb{R}^m$, $u \ \text{функция}$ $f \colon V \to \mathbb{R}^m$, $f \in \mathcal{D}(V)$, что

1.
$$F(x,y) = 0 \iff y = f(x)$$
 для $x \in V, y \in W$,

2.
$$df(x) = -(dF_x(y))^{-1}dF_y(x)$$
, $r\partial e \ y = f(x)$.

Следствие 2.22 (О гладкости неявной функции). Если при выполнении условий теоремы о неявной функции потребовать, что бы $F \in \mathcal{C}^r[(a,b)]$, то и неявная функция f будет принадлежать классу \mathcal{C}^r в области определения V.

Следствие 2.23 (Теорема об обратной функции). Пусть $f: U \to \mathbb{R}^n$, $U \subset \mathbb{R}^n$, $U \in \mathcal{N}(b), b \in \mathbb{R}^n$.

Если верно, что

1.
$$f \in C^1(b)$$
,

2. df(b) – невырожденный оператор,

то найдется $V \in \mathcal{N}(f(b))$, $V \subset \mathbb{R}^n$ в которой определена обратная функция $f^{-1}: V \to U$ такая, что $f^{-1} \in \mathcal{D}(V)$ и $df^{-1}(x) = (df(y))^{-1}$, где x = f(y).

2.6 Диффеоморфизмы

2.7 Условные экстремумы

Глава 3

Многообразия

3.1 Определения и способы задания многообразий

Определение 3.1. $M \subset \mathbb{R}^n$ – k-мерное многообразие без края класса \mathcal{C}^r , если Существует диффеоморфизм класса \mathcal{C}^r

$$\varphi \colon (-1,1)^n \to \mathbb{R}^n$$

такой, что $\varphi\left((-1,1)^k \times 0^{n-k}\right) = M.$

Определение 3.2. $M \subset \mathbb{R}^n$ – k-мерное многообразие с краем класса \mathcal{C}^r , если Существует диффеоморфизм класса \mathcal{C}^r

$$\varphi \colon (-1,1)^n \to \mathbb{R}^n$$

такой, что $\varphi((-1,1)^{k-1} \times [0,1) \times 0^{n-k}) = M.$

Определение 3.3. Сужение диффеоморфизма $\varphi \colon (-1,1)^n \to \mathbb{R}^n$ следующим образом:

$$\widetilde{\varphi} \colon (-1,1)^k \to \mathbb{R}^n$$

и $\widetilde{\varphi}(t_1,\ldots,t_k)=\varphi(t_1,\ldots,t_k,\underbrace{0,\ldots,0}_{n-k})$ называется параметризацией элементарного многообразия.

Определение 3.4. $M \subset \mathbb{R}^n$ – k-мерное многообразие без края (с краем), если

 $\forall x \in M \ \exists U \in \mathcal{N}(x) : \ U \cap M$ – элементарное многообразие без края (с краем).

Замечание 3.1. Дальнейшие факты приводятся для многообразий без края.

Теорема 3.2. Если $\forall x \in M \ \exists U \in \mathcal{N}(x) \ u \ F \colon U \to \mathbb{R}^n - \mathcal{C}^r$ гладкий диффеоморфизм такой, что $F(U \cap M) = F(U) \cap (\mathbb{R}^k \times 0^{n-k})$.

Тогда M – k-мерное многообразие.

Теорема 3.3. $f: U \to \mathbb{R}^m$, $\epsilon \partial e U \subset \mathbb{R}^n$ – открытое множество, $f \in \mathcal{C}^r$ и $\forall a \in U \ rank f(a) = k$.

Тогда $M = \{x \in \mathbb{R}^n \mid f(x) = 0\}$ — \mathcal{C}^r гладкое (n-k)-мерное многообразие.

Следствие 3.4. Пусть f(x,y,z) = 0, $f \in \mathcal{C}^r$ и $df(a) \neq 0$. Тогда $M = (x,y,z) \in \mathbb{R}^3 \mid f(x,y,z) = 0$ – \mathcal{C}^r гладкое двумерное многообразие в некоторой окрестности точки a.

Теорема 3.5. Пусть $e\colon U\to \mathbb{R}^n$, где $U\subset \mathbb{R}^k$, отображение класса \mathcal{C}^r и rank f=k в любой точке U.

Тогда y(U) – k-мерное \mathcal{C}^r гладкое многообразие.

3.2 Касательные векторы и пространства, нормальные подпространства

3.2.1 Касательные векторы и пространства

Определение 3.5. Пусть $\gamma(t)$ – некоторая гладкая параметризированная кривая. Определим касательный вектор к γ в точке t_0 следующим образом:

$$\dot{\gamma}(t_0) = \lim_{t \to t_0} \frac{\gamma(t) - \gamma(t_0)}{t - t_0}.$$

Определение 3.6. $\vec{v} \in \mathbb{R}^n$ – Касательный вектор к множеству M в точке $a \in M$, если найдется $\varepsilon > 0$ и гладкая кривая $\gamma \colon (-\varepsilon, \varepsilon) \to M$ такая, что $\gamma(0) = a$, и при этом $\dot{\gamma}(0) = \vec{v}$.

Совокупность всех касательных векторов к множеству M в точке $a \in M$ будем обозначать $T_a(M)$.

Замечание 3.6. Аффинное подпространство $a + T_a(M)$ называется контингенцией.

Утверждение 3.7. Контингенция любого аффинного подпространства $\mathcal{A} \subset \mathbb{R}^n$ в любой его точке совпадает с \mathcal{A} .

Утверждение 3.8. Пусть M – элементарное k-мерное \mathcal{C}^r гладкое многообразие, то есть $M = \varphi((-1,1)^k \times 0^{n-k})$, где φ – некоторый \mathcal{C}^r гладкий диффеоморфизм, $u \ a \in (-1,1)^k \times 0^{n-k}$.

Torða
$$T_{\varphi(a)}(M) = d\varphi(A) \left\langle \mathbb{R}^k \times 0^{n-k} \right\rangle.$$

Следствие 3.9. Если M – гладкое k-мерное многообразие, то $T_a(M)$, где $a \in M$ – линейное k-мерное подпространство.

3.2.2 Нормальное подпространство к многообразию

Определение 3.7. Пусть M – некоторое множество.

Вектор \vec{w} – нормаль к M в точке $a \in M$, если $\forall \vec{v} \in T_a(M)$ верно, что

$$\langle \vec{w}, \vec{v} \rangle = 0.$$

Совокупность всех таких нормалей обозначим $N_a(M)$.

Очевидно, что $N_a(M)$ – линейное подпространство.

Определение 3.8. Пусть $f: U \to R, U \subset \mathbb{R}^n$ – открытое подмножество, $a \in U$. Вектор u – градиент функции f в точке a, если для любого v

$$df(a)\langle v\rangle = \langle u, v\rangle$$

Утверждение 3.10. Пусть $M = \{x \mid f_1(x) = 0, \dots f_{n-k}(x) = 0\}$ – k-мерное \mathcal{C}^r гладкое многообразие.

И отображение

$$f(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_{n-k}(x) \end{pmatrix}$$

имеет постоянный ранг rank f = n - k.

Тогда $\forall a \in M$ векторы $\operatorname{grad} f_1(a), \ldots, \operatorname{grad} f_{n-k}(a)$ – базис $N_a(M)$.

3.3 Карты, атласы

Определение 3.9. Пусть \mathcal{X} – произвольное множество. Картой в \mathcal{X} называется пара (U, h), где U – подмножество в \mathbb{R}^n , а h – отображение U, биективно отображающее U на некоторое открытое множество в \mathbb{R}^n .

Определение 3.10. Две карты (U,h),(V,k) называются пересекающимися, если $V\cap U\neq\varnothing$.

Определение 3.11. Пусть (U,h) и (V,k) – две пересекающиеся карты в \mathcal{X} .

Карты $(U,h),\,(V,k)$ называются согласованными, если они либо не пересекаются, либо

1. оба множества h(W), k(W), где $W=U\cap V$, открыты в \mathbb{R}^n ;

2. отображение

$$(k|_{W}) \circ (h|_{W})^{-1} : h(W) \to k(W)$$

является диффеоморфизмом класса \mathcal{C}^r , где $r \geq 0$.

Определение 3.12. Множество карт $\{(U_{\alpha}, h_{\alpha})\}$ называется атласом на \mathcal{X} , если

1. любые две карты этого множества согласованы;

2.

$$\bigcup_{\alpha} U_{\alpha} = \mathcal{X}.$$

Для любого атласа A обозначим за A_{\max} множество всех карт, согласованных с каждой картой атласа A.

Теорема 3.11. *Множество* A_{\max} – *атлас.*

Следствие 3.12. Каждый атлас A содержится в единственном максимальном атласе A_{\max} .

Доказательство. Если A, B – атласы и A \subset B, то B_{\max} \subset A_{\max} , поэтому $(A_{\max})_{\max}$ \subset A_{\max} и, значит, $(A_{\max})_{\max}$ = A_{\max} . Если A_{\max} \subset B, то B_{\max} \subset $(A_{\max})_{\max}$ = A_{\max} , поэтому B \subset A_{\max} .

То есть атлас A_{\max} максимален в частино упорядоченном множестве всех атласов. И если B — произвольный максимальный атлас такой, что $A \subset B$, то $B \subset B_{\max} \subset A_{\max}$ и, значит, $B = A_{\max}$.

Определение 3.13. Максимальные атласы на \mathcal{X} называются гладкими структурами. Множество \mathcal{X} с заданной на нем гладкой структурой A_{max} называется гладким многообразием, то есть гладкое многообразие – пара $(\mathcal{X}, A_{\text{max}})$.

По определению два многообразия (\mathcal{X}, A_{\max}) и (\mathcal{Y}, B_{\max}) совпадают тогда и только тогда, когда $\mathcal{X} = \mathcal{Y}$ и $A_{\max} = B_{\max}$.

Определение 3.14. Два атласа называются эквивалентными, если они содержатся в одном и том же максимальном атласе. Для этого необходимо и достаточно того, что бы для атласов A, B их объединение $A \cup B$ было атласом.

Для задания многообразия достаточно задать произвольный атлас $A \subset A_{\max}$, то есть гладкими многообразиями считать пары (\mathcal{X}, A) , где A – произвольный атлас на \mathcal{X} .

Два многообразия (\mathcal{X}, A_{\max}) и (\mathcal{Y}, B_{\max}) одинаковы тогда и только тогда, когда $\mathcal{X} = \mathcal{Y}$ и атласы A, B эквивалентны.

Определение 3.15. Число n – размерность пространства \mathbb{R}^n , содержащего образы h(U) носителей карт, называется размерностью многообразия $\mathcal X$ и обозначается $\dim \mathcal X$.

Определение 3.16. Число r – класс гладкости отображений $(k|_W) \circ (h|_W)^{-1}$ будем называть классом гладкости многообразия \mathcal{X} .

Литература

- [1] А. В. Грешнов, Лекции по математическому анализу, 3 семестр, ММФ НГУ.
- [2] В. Н. Потапов, Электронные лекции по математическому анализу, ММФ НГУ.
- [3] С. К. Водопьянов, Дифференциальное исчисление функций многих переменных, ММФ НГУ.
- [4] Ю. Г. Решетняк, Курс математического анализа.
- [5] У. Рудин, Основы математического анализа.
- [6] Ж. Дьедонне, Основы современного анализа.
- [7] М. Спивак, Математический анализ на многобразиях.
- [8] М. М. Постников, Лекции по геометрии. Семестр III. Гладкие многообразия.