加分題:延續上述案例,請依照以下二個混亂矩陣,評估何者較適合用於本案例的情境。

本案例因為「*只能針對較有可能消費的訪客進行廣告*」,所以在混亂矩陣 (Confusion Matrix)中的 TN 將不會是看重的績效。目標找出最大的 TP 且 FP 與 FN 要最小,所以看 F1_Score 績效。Model B 績效(0.6530)大於 Model A(0.6504),本案例選擇 Model B。

Model A			Model B			
	預測為真	預測為假		預測為真	預測為假	
實際為真	853	576	實際為真	846	583	
實際為假	341	7230	實際為假	316	7255	

例題						
	Model A		Model B			
Accuracy =	$\frac{TP + TN}{TP + FN + FP + TN}$	0.8981	0.9001			
Precision =	$\frac{TP}{TP + FP}$	0.7144	0.7281			
Recall =	$\frac{TP}{TP + FN}$	0.5969	0.5920			
F1_Score =	$\frac{2TP}{2TP + FN + FP}$	0.6504	0.6530			

本案例因為「*只能針對較有可能消費的訪客進行廣告*」,所以在混亂矩陣 (Confusion Matrix)中的 TN 將不會是看重的績效。目標找出最大的 TP 且 FP 與 FN 要最小,所以看 F1_Score 績效。Random Forest 績效(0.6667)為最高,本案例選擇 Random Forest。

model	Accuracy	Precision	Recall/Sensitivity	F1_Score	TN	FP	FN	TP
Complement NB	0.8414	0.4982	0.7232	0.5900	1766	279	106	277
Extra Trees	0.8744	0.5933	0.6475	0.6192	1875	170	135	248
Gradient Boosting	0.8764	0.5825	0.7650	0.6614	1835	210	90	293
KNN	0.7434	0.3276	0.5953	0.4226	1577	468	155	228
Random Forest	0.8822	0.6021	0.7467	0.6667	1856	189	97	286
SVM	0.6367	0.2556	0.6815	0.3718	1285	760	122	261