New Shepard 4

Group: M8O-BB116-24

Students:
Шитов Артём Сергеевич
Показеев Даниил
Денисович
Сорокина Анна
Сергеевна

Our Team

Показеев Даниил Денисович

тимлид, организатор работы коллектива, конструктор ракетыносителя в Kerbal Space Program

Шитов Артём Сергеевич

создатель физической и математической моделей, составитель отчёта о проделанной работе

Сорокина Анна Сергеевна

создатель программной составляющей проекта, составитель графиков, создатель визуального сопровождения проекта

The Ultimate Goal

Изучить и смоделировать полёт многоразовой космической системы для суборбитальных полётов «New Shepard 4», в частности миссию «Blue Origin NS-16».

Goal and Tasks

The Tasks

- Изучить информацию о строении ракетной системы «New Shepard 4» и совершённом полёте в рамках миссии «Blue Origin NS-16».
- Используя определённый ряд физических законов, создать физическую модель полёта.
- По результатам построения физической модели построить математическую модель совершённого полёта.
- Смоделировать совершённый полёт в Kerbal Space Program.
- Сравнить данные, полученные с помощью моделирования полёта в Kerbal Space Program, с составленной математической моделью.
- Подвести итоги выполненной работы и составить отчёт о проделанной работе.

General Overview

20 июля 2021 года в 09:12, космическая система «New Shepard 4» успешно стартовала с космодрома Launch Site One около города Ван-Хорн в пустыне на западе Техас (USA). В полёт отправились: Джефф Безос, Марк Безос, Уолли Фанк и Оливер Дэмен. Для каждого из них данный полёт являлся первым. Также можно отметить то, что на борту одновременно находились самый молодой (18 лет) и самый старый (82 года) пассажиры космического судна на тот момент.

Ускоритель ракеты совершил посадку на площадку в городе Ван-Хорн, капсула приземлилась там же. Данный полёт один из самых экологичных среди всех полётов и самый экологичный среди запусков, организованных «Blue Origin».

Crew Capsule

Pressurized crew capsule environmentally controlled for comfort with room for six and the largest windows to have flown in space.

Ring & Wedge Fins

Aerodynamically designed to stabilize the booster and reduce fuel use on its flight back to Earth.

Drag Brakes

Deploy from the ring fin to reduce the booster's speed by half on its descent from space.

Engine

The BE-3 (Blue Engine 3) propels the rocket to space and restarts for a controlled pinpoint landing on the pad. The uniquely throttleable engine slows the booster down to just 8 km/h (5 mph) for landing.

Aft Fins

Stabilize the vehicle during ascent, steer it back to the landing pad on descent, and guide the rocket through airspeeds of up to Mach 4.

Landing Gear

All rockets take off, not all rockets land. As a fully reusable rocket, the New Shepard booster uses landing gear that deploys for touchdown.

Space Module Description

- «New Shepard 4» многоразовая стартовая система высотой 15,9 м и макс. диаметром 3,9 м. Она состоит из двух компонентов, а именно ракеты-носителя (стартовый модуль) и капсулы.
- Стартовый модуль («Вооster 4») представляет собой одноступенчатую многоразовую ракету, оснащённую ЖРД ВЕ-3РМ, работающем на водороде (горючее) и кислороде (окислитель). Данный двигатель способен развить тягу около 490 кН (уровень моря), 769 кН (вакуум). Ракета-носитель совершает управляемый спуск с помощью использования двигателя (во время спуска тяга приблизительно равна 90 кН) и приземляется на специальную площадку с использованием четырёх посадочных опор (при взлёте они убираются в корпус). Система оснащена самыми современными системами управления и навигации, что позволяет ей точно выполнять запуски и приземления.
- Капсула («RSS First Step») имеет закруглённую коническую форму, объёмом 15 м³ и предназначена для пассажиров/научных установок, способна вместить в себя до 6 человек. Оснащается системой аварийного спасения и парашютной системой, состоящей из трёх парашютов.

Physical Model

$$m(\tau)\vec{a}(\tau) = \sum_{i=1}^{n} \vec{F}_{i}(\tau)$$

$$m(\tau)\vec{a}(\tau) = \overrightarrow{F_T} + \overrightarrow{F_{\text{TSK}}}(h(\tau)) + \overrightarrow{F_{\text{conp}}}(\vartheta(\tau))$$

II Закон Ньютона для нашего случая

Основное уравнение динамики поступательного движения материальной точки

$$F_{\text{comp}}(\vartheta(\tau)) = C_f \frac{\rho(h(\tau))\vartheta^2(\tau)}{2} S$$

Функция зависимости силы сопротивления от времени

$$F_{mssc}(h(\tau)) = G \frac{m(\tau)M}{(R+h(\tau))^2}$$

Функция зависимости силы тяжести от времени

Mathematical Model

$$\frac{d^2}{d\tau^2}x = \frac{F_T}{m_0 - k\tau} - G\frac{M}{(R+x)^2} - C_f\frac{\mu p_0 e^{\frac{-\mu GM}{RT(x)(R+x)^2}x} \left(\frac{d}{d\tau}x\right)^2}{2\left(m_0 - k\tau\right)RT(x)}S$$
 Уравнение, описывающее движение во время взлета с работающим двигателем

Уравнение, описывающее движение во время взлета с выключенным двигателем

$$\frac{d^{2}}{d\tau^{2}}x = G\frac{M}{(R+x)^{2}} + C_{f}\frac{\mu p_{0}e^{\frac{-\mu GM}{RT(x)(R+x)^{2}}x}\left(\frac{d}{d\tau}x\right)^{2}}{2m_{i}RT(x)}S^{2}$$

Уравнение, описывающее движение во время снижения

Practical Part

Используя язык программирования Python и его библиотеки для решения дифференциальных уравнений дискретным путём, мы воссоздали полёт по построенной нами физико-математической модели.

На рисунке изображено сравнение графика высоты согласно расчетам по нашей модели и графика, полученного с помощью Kerbal Space Program. В пике высот абсолютная погрешность 879.8м, а относительная 0.82%, а максимальная абсолютная погрешность 31163.2м на 375 секунде, относительная при этом 29.8%

Kerbal Space Program

Python ——

Причины расхождения графиков были описаны ранее, в параграфе про погрешность.

Таким образом, мы можем заключить, что наша физико-математическая модель довольно точно описывает миссию «Blue Origin NS-16», но всё же есть небольшая погрешность в связи с некоторыми аппроксимациями и упрощениями.

Other Results

График силы тяжести

График ускорения

Абсолютная погрешность 120 м/с, относительная погрешность 10%

График силы сопротивления

Link to our GitHub repository

Thank you for the attention.