ML_SVC Parctical Implementation on Wine_Quality Dataset

```
In [71]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import warnings
    warnings.filterwarnings('ignore')
    %matplotlib inline

In [72]: import pandas as pd
    df=pd.read_csv(r"https://raw.githubusercontent.com/aniruddhachoudhury/Red-Wine-Qu

In []:
In [73]: df.head()
```

Out[73]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4

In [74]: df.tail()

Out[74]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	10
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	11
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	11
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	10
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	11
4											•

```
In [75]: |df.columns
Out[75]: Index(['fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar',
                 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density',
                 'pH', 'sulphates', 'alcohol', 'quality'],
                dtype='object')
In [76]: df.info()
          <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 1599 entries, 0 to 1598
         Data columns (total 12 columns):
               Column
                                     Non-Null Count
                                                      Dtype
               _ _ _ _ _ _
                                     _____
          _ _ _
                                                      ____
          0
              fixed acidity
                                     1599 non-null
                                                      float64
              volatile acidity
                                                      float64
          1
                                     1599 non-null
              citric acid
                                                      float64
          2
                                     1599 non-null
          3
              residual sugar
                                     1599 non-null
                                                      float64
              chlorides
                                                      float64
          4
                                     1599 non-null
          5
              free sulfur dioxide
                                     1599 non-null
                                                      float64
          6
              total sulfur dioxide 1599 non-null
                                                      float64
          7
              density
                                     1599 non-null
                                                      float64
          8
              рΗ
                                     1599 non-null
                                                      float64
          9
              sulphates
                                     1599 non-null
                                                      float64
          10 alcohol
                                     1599 non-null
                                                      float64
                                                      int64
              quality
                                     1599 non-null
          11
         dtypes: float64(11), int64(1)
         memory usage: 150.0 KB
In [77]: df.shape
Out[77]: (1599, 12)
In [78]: | df.quality
Out[78]: 0
                  5
                  5
         1
                  5
          2
          3
                  6
         4
                  5
         1594
                  5
         1595
                  6
         1596
                  6
                  5
         1597
         1598
                  6
         Name: quality, Length: 1599, dtype: int64
In [79]: | df.quality.unique()
Out[79]: array([5, 6, 7, 4, 8, 3], dtype=int64)
```

In [80]: df['quality'].value_counts()

Out[80]: 5

681

6 638

199

4 53

18

10 3

Name: quality, dtype: int64

In [81]: df.describe()

Out[81]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.467792
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.895324
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000

In [82]: df.describe().T

Out[82]:

	count	mean	std	min	25%	50%	75%	max
fixed acidity	1599.0	8.319637	1.741096	4.60000	7.1000	7.90000	9.200000	15.90000
volatile acidity	1599.0	0.527821	0.179060	0.12000	0.3900	0.52000	0.640000	1.58000
citric acid	1599.0	0.270976	0.194801	0.00000	0.0900	0.26000	0.420000	1.00000
residual sugar	1599.0	2.538806	1.409928	0.90000	1.9000	2.20000	2.600000	15.50000
chlorides	1599.0	0.087467	0.047065	0.01200	0.0700	0.07900	0.090000	0.61100
free sulfur dioxide	1599.0	15.874922	10.460157	1.00000	7.0000	14.00000	21.000000	72.00000
total sulfur dioxide	1599.0	46.467792	32.895324	6.00000	22.0000	38.00000	62.000000	289.00000
density	1599.0	0.996747	0.001887	0.99007	0.9956	0.99675	0.997835	1.00369
рН	1599.0	3.311113	0.154386	2.74000	3.2100	3.31000	3.400000	4.01000
sulphates	1599.0	0.658149	0.169507	0.33000	0.5500	0.62000	0.730000	2.00000
alcohol	1599.0	10.422983	1.065668	8.40000	9.5000	10.20000	11.100000	14.90000
quality	1599.0	5.636023	0.807569	3.00000	5.0000	6.00000	6.000000	8.00000

```
In [86]: # Checking the distribution of Target Feature
   plt.figure(figsize=(12,6))
   plt.title('Distribution of Quality Feature')
   sns.distplot(df['quality'],bins=30,rug=True,color='Red')
```


In [84]: df.corr()

Out[84]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153794	-0.113181	0.668047	-(
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010504	0.076470	0.022026	(
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060978	0.035533	0.364947	-(
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187049	0.203028	0.355283	-(
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005562	0.047400	0.200632	-(
free sulfur dioxide	-0.153794	-0.010504	-0.060978	0.187049	0.005562	1.000000	0.667666	-0.021946	(
total sulfur dioxide	-0.113181	0.076470	0.035533	0.203028	0.047400	0.667666	1.000000	0.071269	-(
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021946	0.071269	1.000000	-(
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070377	-0.066495	-0.341699	1
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051658	0.042947	0.148506	-(
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069408	-0.205654	-0.496180	(
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050656	-0.185100	-0.174919	-(

→

In [85]: plt.figure(figsize=(15,8))
sns.heatmap(df.corr(),annot=True)

Out[85]: <AxesSubplot:>

Creatingb the Independent Feature

```
In [17]: x=df.drop('quality',axis=1)
```

```
In [ ]:
In [18]: x.head()
Out[18]:
```

free total fixed volatile citric residual sulfur chlorides sulfur density pH sulphates alcohol acidity acidity acid sugar dioxide dioxide 0 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4 7.8 0.88 0.00 2.6 0.098 25.0 0.68 1 67.0 0.9968 3.20 9.8 2 0.04 2.3 0.092 15.0 0.65 7.8 0.76 54.0 0.9970 3.26 9.8 11.2 0.28 0.56 1.9 0.075 17.0 60.0 0.9980 3.16 0.58 9.8 7.4 0.70 0.00 1.9 0.076 11.0 34.0 0.9978 3.51 0.56 9.4

Creating the Dependent Feature

```
In [19]: y=df['quality']
In [20]: y
Out[20]:
          0
                  5
          1
                  5
                  5
                   6
          3
                  5
          4
          1594
                  5
          1595
                  6
          1596
                  6
                  5
          1597
          1598
          Name: quality, Length: 1599, dtype: int64
```

Creating SVM Model Training

```
In [88]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33,random_state=35
```

```
In [89]: x_test.head()
```

Out[89]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcoh
1536	6.1	0.53	80.0	1.9	0.077	24.0	45.0	0.99528	3.60	0.68	10
617	11.5	0.31	0.51	2.2	0.079	14.0	28.0	0.99820	3.03	0.93	9
660	7.2	0.52	0.07	1.4	0.074	5.0	20.0	0.99730	3.32	0.81	9
657	12.0	0.50	0.59	1.4	0.073	23.0	42.0	0.99800	2.92	0.68	10
1489	6.2	0.57	0.10	2.1	0.048	4.0	11.0	0.99448	3.44	0.76	10

```
In [32]: y_train.head()

Out[32]: 548    6
    355    6
    1296    5
    209    7
    140    5
    Name: quality, dtype: int64
```

Standardizing the model

```
In [97]: x_train_tf
Out[97]: array([[-0.29458893, -0.07144684, -0.10770066, ..., 0.77756879,
                 -0.03112232, -1.29807621],
                [0.227194, 0.50492002, -0.57281118, ..., -1.12824789,
                 -0.48461901, 0.56762073],
                [-0.4105407, -0.7850439, 0.20237302, ..., 1.36902914,
                 -0.03112232, -0.64508228],
                [-0.4105407, -0.62036765, -0.10770066, ..., -1.06253008,
                 -0.48461901, -1.20479137],
                [-0.00470953, -1.38885679, 1.0809151, ..., -0.33963409,
                 -0.20118358, 1.87360859],
                [-0.99029951, 0.53236606, -1.39967431, ..., -0.73394099,
                 -1.16486404, -0.83165198]])
In [98]: x test
Out[98]: array([[-1.28017892, -0.01655475, -0.98624274, ..., 1.89477167,
                  0.13893894, -0.0853732 ],
                [1.85051868, -1.22418055, 1.23595194, ..., -1.85114387,
                  1.55611608, -0.55179744],
                [-0.64244422, -0.07144684, -1.03792169, ..., 0.05467281,
                  0.87587105, -0.73836713],
                [-0.17863717, 0.47747398, 0.30573091, ..., -0.01104501,
                 -0.42793192, 0.28776619],
                [0.40112164, 1.38319332, -0.15937961, ..., -0.14248064,
                  0.08225185, -0.36522774],
                [0.74897693, -0.181231, 0.46076775, ..., -0.86537663,
                  0.13893894, 0.47433588]])
```

Train the Support Vector Classifier Without Hyperparameter Tuning

```
In [101]: # fitting Kernal SVM to the Training Set
    from sklearn.svm import SVC
    from sklearn.metrics import classification_report , confusion_matrix

# train the model on train set
    model=SVC()
    model.fit(x_train,y_train)

# print prediction
    predictions=model.predict(x_test)
    print(classification_report(y_test , predictions))
```

	precision	recall	f1-score	support
3	0.00	0.00	0.00	2
4	0.00	0.00	0.00	21
5	0.68	0.70	0.69	220
6	0.55	0.72	0.62	211
7	0.55	0.25	0.34	64
8	0.00	0.00	0.00	10
accuracy			0.61	528
macro avg	0.30	0.28	0.28	528
weighted avg	0.57	0.61	0.58	528

```
Observations:
Here Accuracy of Model is 60%
```

Applying GridSearchCV for better Accuracy

```
In [105]: from sklearn.model selection import GridSearchCV
          # defining parameter range
          param grid={'C':[0.1,1,10,100,1000],
                      'gamma':[1,0.1,0.01,0.001,0.0001],
                     'kernel':['rbf']}
          grid=GridSearchCV(SVC(), param_grid, refit=True, verbose=3)
          grid.fit(x_train, y_train)
          0.0s
          [CV 3/5] END .......C=0.1, gamma=1, kernel=rbf;, score=0.435 total time=
          0.0s
          [CV 4/5] END .......C=0.1, gamma=1, kernel=rbf;, score=0.430 total time=
          [CV 5/5] END .......C=0.1, gamma=1, kernel=rbf;, score=0.430 total time=
          0.0s
          [CV 1/5] END ......C=0.1, gamma=0.1, kernel=rbf;, score=0.586 total time=
          0.0s
          [CV 2/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.636 total time=
          0.0s
          [CV 3/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.607 total time=
          0.0s
          [CV 4/5] END ......C=0.1, gamma=0.1, kernel=rbf;, score=0.612 total time=
          0.0s
          [CV 5/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.556 total time=
          0.0s
          [CV 1/5] END .....C=0.1, gamma=0.01, kernel=rbf;, score=0.544 total time=
          0.0s
                            C-0 1 gamma-0 01 kannal-nhf. ccono-0 500 total time-
          [C// 3/5] END
In [107]: # print best parameterafter tuning
          print(grid.best params )
          #print how our model looks after hyper-parameter tuning
          print(grid.best estimator )
          {'C': 1, 'gamma': 0.1, 'kernel': 'rbf'}
          SVC(C=1, gamma=0.1)
 In [ ]:
```