Homework 2

CMPSC 360

Kinner Parikh January 25, 2022

Question 1:

- 1. This is a statement because the truth value of the statement can be determined: Obama was the president during 2010 or not
- 2. This is not a statement because x is an arbitrary value, which means the truth value of this statement cannot be determined.
- 3. This is a statement because 15 is either an odd number or it is not
- 4. This is a statement because a natural number times two has the possibility of being an even number the truth value can be determined
- 5. This is not a statement because it is an open ended question. There is no truth value that can be determined.

Question 2:

- a) If $1 + 1 = 3 \rightarrow F$, then dogs can fly $\rightarrow F \Rightarrow T$
- b) If $1 + 1 = 2 \rightarrow T$, then dogs can fly $\rightarrow F \Rightarrow F$
- c) If $2 + 2 = 4 \rightarrow T$, then $1 + 2 = 3 \rightarrow T \Rightarrow T$

Question 3:

- 1. p = the sun is shining, q = I will play tennis this afternoon $\Rightarrow p \rightarrow q$
- 2. p = finishing the writing of my computer program before lunch, q = tennis playing this afternoon $\Rightarrow q \rightarrow p$
- 3. $p = low humidity, q = sunshine, r = I will play tennis this afternoon <math>\Rightarrow (p \land q) \rightarrow r$

Question 4:

- a) The election is not decided and the votes have been counted
- b) If the votes have not been counted then the election is not decided
- c) The votes have not been counted or the election is not decided and the votes have been counted

Question 5:

Table 1:
$$\neg(p \rightarrow q) \equiv p \land \neg q$$

$$\begin{array}{c|cccc} p & q & p \rightarrow q & \neg(p \rightarrow q) & p \land \neg q \\ \hline T & T & T & F & F \\ T & F & F & T & T \\ F & T & T & F & F \\ F & F & T & F & F \\ \end{array}$$

Τ

Table 2: $p \vee \neg (p \wedge q) \equiv T$				
p	q	$p \wedge q$	$\neg (p \land q)$	$p \vee \neg (p \wedge q))$
\overline{T}	Т	Т	F	T
Τ	F	F	${ m T}$	${ m T}$
F	Т	F	$^{\mathrm{T}}$	${ m T}$
\mathbf{F}	F	F	T	${f T}$

Question 6:

- a) $r \to p$ b) $(p \land \neg q) \land r$
- c) $(p \land q) \rightarrow r$ d) $r \leftrightarrow (q \lor p)$

Question 7:

- 1. $\neg[(p \land q) \rightarrow r]$ $\neg[\neg(p \land q) \lor r]$ Conditional Equivalence $\neg\neg(p \land q) \land \neg r$ DeMorgan's Law $(p \land q) \land \neg r$ Double Negation
- 2. $\neg[p \to (\neg q \land r)]$ $\neg[\neg p \lor (\neg q \land r)]$ Conditional Equivalence $\neg\neg p \land \neg(\neg q \land r)$ DeMorgan's Law $p \land \neg(\neg q \land r)$ Double Negation $p \land (\neg \neg q \lor \neg r)$ DeMorgan's Law $p \land (q \lor \neg r)$ Double Negation $p \land (r \to q)$ Conditional Equivalence
- 3. $\neg [p \lor q \lor (\neg p \land \neg q \land r)]$

$$\neg p \land \neg q \land \neg (\neg p \land \neg q \land r)
\neg p \land \neg q \land (\neg \neg p \lor \neg \neg q \lor \neg r)
(\neg p \land \neg q) \land (\neg \neg p \lor \neg \neg q \lor \neg r)
(\neg p \land \neg q) \land (p \lor q \lor \neg r)
(\neg p \land \neg q \land p) \lor (\neg p \land \neg q \land q) \lor (\neg p \land \neg q \land \neg r)
[(\neg p \land p) \land \neg q] \lor [\neg p \land (\neg q \land q)] \lor (\neg p \land \neg q \land \neg r)
(F \land \neg q) \lor (\neg p \land F) \lor (\neg p \land \neg q \land \neg r)
F \lor F \lor (\neg p \land \neg q \land \neg r)
\neg p \land \neg q \land \neg r$$

DeMorgan's Law DeMorgan's Rule Associative Rule Double Negation Distributive Rule Associative Rule Contradiction Identity Rule Identity Rules

Question 8:

Simplify
$$\neg((r \to \neg p) \land (r \to p))$$

 $\begin{array}{lll} \neg(r \to \neg p) \vee \neg(r \to p) & \text{DeMorgan's Law} \\ \neg(\neg r \vee \neg p) \vee \neg(\neg r \vee p) & \text{Conditional Equivalence} \\ (\neg \neg r \wedge \neg \neg p) \vee (\neg \neg r \wedge \neg p) & \text{DeMorgan's Law} \\ (r \wedge p) \vee (r \wedge \neg p) & \text{Double Negation} \\ r \wedge (p \vee \neg p) & \text{Distribution} \\ r \wedge T & \text{Tautology} \\ \hline r & \text{Identity Rules} \end{array}$

Question 9:

Prove that
$$[p \to (q \lor r)] \equiv [(p \land \neg q) \to r]$$

$$\begin{array}{lll} p \rightarrow (q \vee r) & & \\ \neg p \vee (q \vee r) & & \text{Conditional Equivalence} \\ (\neg p \vee q) \vee r & \text{Associative Rule} \\ \neg (\neg \neg p \wedge \neg q) \vee r & \text{DeMorgan's Law} \\ \neg (p \wedge \neg q) \vee r & \text{Double Negation} \\ \hline (p \wedge \neg q) \rightarrow r & \text{Conditional Equivalence} \\ \hline (p \wedge \neg q) \rightarrow r & \text{Conditional Equivalence} \\ (p \wedge \neg q) \rightarrow r & \text{Conditional Equivalence} \\ (\neg p \wedge \neg q) \vee r & \text{DeMorgan's Law} \\ (\neg p \vee q) \vee r & \text{Double Negation} \\ \neg p \vee (q \vee r) & \text{Associative Rule} \\ \hline p \rightarrow (q \vee r) & \text{Conditional Equivalence} \\ \hline \end{array}$$

Question 10:

- 1. $Q(1) \Rightarrow False$
- 2. $\neg P(3) \Rightarrow False$
- 3. $P(7) \vee Q(7) = F \vee F \Rightarrow False$
- 4. $P(3) \wedge Q(4) = T \wedge T \Rightarrow True$