IN THE CLAIMS:

Claim 1 (canceled).

Claim 2 (currently amended and reformatted): A compound of the formula IIa:

$$R^2$$
 R^3
 R^3
 R^4
 R^5

(Ha)

wherein

X is -CH(\mathbb{R}^7)- wherein \mathbb{R}^7 is hydrogen, hydroxy, C_{1-7} alkoxy, -Q \mathbb{R}^8 or -N \mathbb{R}^8 R 9 , wherein R⁸ is a group -Y¹R¹⁰, wherein

 Y^1 is a direct bond, $-C(\Omega)$ -, -C(S)-, -S-, $-C(\Omega)\Omega$ -, $-C(\Omega)NR^{11}$ -, $-SO_2$ - or -SO₂NR¹²- (wherein R^{11} and R^{12} , which may be the same or different, each independently represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2} 3alkyl) and

 \mathbb{R}^{10} is selected from one of the following nine groups:

1) hydrogen, C_{1-7} alkyl, C_{3} 7cycloalkyl, C_{1-4} alkyl Y 8 C1-4alkyl wherein Y 8 is as defined herein, or phenyl,

which alkyl, cycloalkyl, alkylY8alkyl or phenyl group may bear one or more substituents selected from: halogono, amino, C_{1-4} alkylamino, di $(C_{1-4}$ alkyl)amino, hydroxy, carboxy, carbamoyl, C_{1-4} alkoxy, C_{1-4} alkylsulphanyl, C_{1-4} alkylsulphonyl, C_{1-4} alkoxycarbonylamino, C_{1-4} alkanoyl, phenyl, nitro, sulphate, phosphate, Z1,

wherein Z¹ represents a 5-6 membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from oxo, hydroxy, halogeno, C_{1} alkyl, C_{1} ahydroxyalkyl, C_{1} alkoxy, C1-aminoalkyl, C1-72lkanoyl, cyanoC1-4alkyl, $C_{1\rightarrow a} alkoxy C_{1\rightarrow a} alkyl, C_{1\rightarrow a} alkyl sulphonyl C_{1\rightarrow a} alkyl ~ and ~ {\bf 7}^2,$

(wherein Z2 is a 5-6-membered saturated heterocyclic group (linked via carbon or nittogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group-may bear-1 or 2 substituents selected from oxo, bydroxy, halogeno, C. calkyl, C1-thydroxyalkyl, C1-talkexy, C1 taminoalkyl, C₁₋₂alkanoyl, cyanoC₁₋₄alkyl, C₁₋₄alkoxyC₁₋₄alkyl and C_{⊢alkylsulp}honylC_{⊢alkyl},

 $C_{1-2}alkylZ^1$ (wherein Z^1 is as defined herein), and a group $-Y^2R^{13}$. wherein

Y² is -NR¹⁴C(O)- or -O-C(O)- (wherein R¹⁴ represents hydrogen, C1-3alkyl or C1-3alkoxyC2-3alkyl) and

 \mathbb{R}^{13} is $\mathbb{C}_{1.7}$ alkyl, $\mathbb{C}_{3.7}$ cycloalkyl or a group \mathbb{R}^{15} wherein \mathbb{R}^{15} is a phenyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl or aromatic heterocyclic group may bear one or more substituents selected from hydroxy, nitro, halogeno, amino, C1-alkyl, C1-ahaloalkyl, C1-4alkoxy, C1-4hydroxyalkyl, C1-4aminoalkyl, C1-4alkylamino, C_{1-4} hydroxyalkoxy, carboxy, cyano, -CONR 16 R 17 and -NR $^{18}COR^{19}$ (wherein R $^{16},$ R $^{17},$ R 18 and R $^{19},$ which may be the

same or different, each represents hydrogen, C1-3alkyl or C1.3alkoxyC2.3alkyD C1.3alkoxyC2.3alky+;

- 2) R¹⁵ wherein R¹⁵ is as defined herein;
- 3) C₂₋₇alkenylR¹⁵ (wherein R¹⁵ is as defined herein);
- 4) C3-7alkynylR15 (wherein R15 is as defined herein);
- Z¹ (wherein Z¹ is as defined herein);
- 6) C_{1.7}alkylZ¹ (wherein Z¹ is as defined herein);

7) C1-7alkylY3Z1, wherein C1-7alkylY2Z1-(wherein

Z' is as defined herein and

 Y^{8} is -C(O)-, -NR⁵⁹C(O)-, -NR⁵⁹C(O)C₁₋₄alkyl-, -C(O)NR⁶⁰- or -C(O)NR 60 C_{1 42}lkyl-, (wherein R 50 and R 60 , which may be the same or different, each represents hydrogen, C1-3alkyl, C1-3hydroxyalkyl or $\underline{C_{1-3}alkoxy}\underline{C_{2-3}alkyl}$ $\underline{C_{1-3}alkoxy}\underline{C_{2-3}alkyl}$;

8) (C₁₋₇alkvi) Y⁹Z³, wherein (G₁₋₇alkyi) Y⁹Z³ (wherein

ç is 0 or 1,

Z3 is an amino acid group and

Y is a direct bond, -C(O)- or NR61- (wherein R61 is hydrogen, $C_{1,3}$ alkyl or $C_{1,3}$ alkoxy $C_{2,3}$ alkyl) $C_{1,3}$ alkoxy $C_{2,2}$ alkyl)); and

9) C_{1.7}alkylR¹⁵ (wherein R¹⁵ is as defined herein); and

 R^{o} is hydrogen, $C_{1.7}$ alkyl or $C_{3.7}$ eyeloalkyl, which alkyl or cycloalkyl group may bear one or more substituents selected from C_{1-4} alkoxy and phenyl;

 \mathbf{R}^1 , \mathbf{R}^2 and \mathbf{R}^3 are each independently hydrogen, $\mathrm{PO}_3\mathrm{H}_2$, sulphate, C_3 -reycloalkyl, $C_{2\text{--}7}$ alkonyl, $C_{2\text{--}7}$ alkynyl, $C_{1\text{--}7}$ alkanoyl, a group $\mathbb{R}^{20}C_{1\text{--}7}$ alkyl (wherein \mathbb{R}^{70} is phenyl which may bear one or more substituents selected from C1 4alkyl, C14alkoxy, C_{1-4} aminoalkyl and C_{1-4} hydroxyalkoxy), C_{1-7} alkyl or C_{1-7} alkylsulphonyl,

which alkyl or alkylsulphonyl group may bear one or more substituents selected from: halogeno, amino, C₁₋₄alkylamino, dt(C₁₋₄alkyl)amino, hydroxy, C₁₋₄alkoxy, $C_{1.4}$ alkylsulphanyl, $C_{1.4}$ alkylsulphonyl, $C_{1.4}$ alkoxycarbonylamino, $C_{1.4}$ alkanoyl, carboxy, phenyl, nitro, sulphate, phosphate and a group $-\mathbf{Y}^2\mathbf{R}^{21}$, wherein $-\mathbf{Y}^2\mathbf{R}^{21}$ (wherein

 Y^2 is -NR²²C(O)- or O-C(O)- (whercin R²² represents hydrogen, C₁₋₃alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and

 \mathbb{R}^{21} is $C_{1.7}$ alkyl, $C_{3.7}$ cycloalkyl or a group \mathbb{R}^{23} wherein \mathbb{R}^{73} is a phenyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl or aromatic heterocyclic group may bear one or more substituents selected from hydroxy, mtro, halogeno, amino, C1-4alkyl, C1-4haloalkyl, C1-4alkoxy, C_{1-4} hydroxyalkyl, C_{1-4} aminoalkyl, C_{1-4} alkylamino, C_{1-4} hydroxyalkoxy, carboxy, cyano, -CONR 24 R 25 and -NR 26 COR 27 (wherein R 24 , R 25 , R 26 and \mathbb{R}^{27} , which may be the same or different, each represents hydrogen, $\mathbb{C}_{1\cdot3}$ alkyl or C_{1.3}alkoxyC_{2.3}alkyl);

with the proviso that at least two of R^1 , R^2 and R^3 are C_{1-7} alkyl;

 \mathbf{R}^4 is hydrogen, cyano, halogeno, mitro, amino, hydroxy, C_{1-7} alkoxy, C_{1-7} thioalkoxy, C1-7alkanoyl or C1-7alkyl.

which alkyl group may bear one or more substituents selected from: halogeno, amino, C1-4alkylamino, di(C1-4alkyl)amino, hydroxy, C1-4alkoxy, C_{1-4} alkylsulphanyl, C_{1-4} alkylsulphonyl, C_{1-4} alkoxycarbonylamino, C_{1-4} alkanoyl, carboxy, phenyl, nitro, sulphate, phosphate and a group $-\mathbf{V}^3\mathbf{R}^{28}$, $-\mathbf{V}^3\mathbf{R}^{28}$ wherein

 Y^3 is -NR²⁹C(O)- or -O-C(O)- (wherein R²⁹ represents hydrogen, C₁₋₃alkyl or C1-3alkoxyC2 3alkyl) and

 R^{28} is $C_{1.7}$ alkyl, $C_{3.7}$ cycloalkyl or a group R^{30} wherein R^{30} is a phonyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl or aromatic heterocyclic group may bear one or more substituents selected

from hydroxy, nitro, halogeno, amino, $C_{1.4}$ alkyl, $C_{1.4}$ haloalkyl, $C_{1.4}$ alkoxy, $C_{1.4}$ hydroxyalkyl, $C_{1.4}$ aminoalkyl, $C_{1.4}$ alkylamino, $C_{1.4}$ hydroxyalkoxy, earboxy, eyano, -CONR³¹R³² and -NR³¹COR³² (wherein R³¹, R³², R³³ and R³⁴, which may be the same or different, each represents hydrogen, $C_{1.3}$ alkyl or $C_{1.3}$ alkoxy $C_{2.3}$ alkyl);

R⁵ and R⁶ are each independently selected from hydrogen, -OPO₃H₂, phosphonate, cyano, halogeno, nitro, amino, carboxy, carbamoyl, hydroxy, C₁₋₇alkoxy, C₁₋₇alkanoyl, C₁₋₇thioalkoxy, C₁₋₇alkyl.

which alkyl group may bear one or more substituents selected from: halogeno, amino, C_{1-4} alkylamino, di(C_{1-4} alkyl)amino, hydroxy, C_{1-4} alkoxy, C_{1-4} alkylsulphonyl, C_{1-4} alkylsulphonyl, C_{1-4} alkylsulphonyl, C_{1-4} alkoxycarbonylamino, C_{1-4} alkanoyl, carboxy, phenyl, sulphate, phosphate and a group $-\underline{Y}^3\underline{R}^{28}$, wherein $-\underline{Y}^3\underline{R}^{38}$

(wherein Y^3 is $NR^{29}C(O)$ - or -O-C(O)- (wherein R^{29} represents hydrogen, C_{1-3} alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and

R²⁸ is C₁₋₇alkyl, C₃₋₇cycloalkyl or a group R³⁰ wherein R³⁰ is a phonyl group or a 5-10 membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl or aromatic heterocyclic group may bear one or more substituents selected from hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄haloalkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, cyano, -CONR³¹R³² and -NR³¹COR³² (wherein R³¹, R³², R³³ and R³⁴, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₁alkoxyC₂₋₃alkyl) G₁₋₄alkoxyC₂₋₃alkyl), and

a group $-Y^1R^{35}$, $-Y^4R^{35}$ wherein

Y⁴ is -C(O)-, -OC(O)-, -O, -SO-, -SO₂-, -OSO₂-, -NR³⁶-, -C₁₋₄alkylNR³⁶-, -C₁₋₄alkylC(O)-, -NR³⁷C(O)-, OC(O)O-, -C(O)NR³⁸- or -NR³⁹C(O)O- (wherein R³⁶, R³⁷, R³⁸ and R³⁹, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and

R³⁵ is a sugar morety, a mono-peptide, a di-peptide, a tri-peptide, a tetra-peptide, sulphate, hydroxy, amino, C₁₋₇alkyl, C₁₋₇alkoxy, C₁₋₇alkanoyl, C₁₋₇alkylamino, di(C₁₋₇alkyl)amino, aminoC₁₋₇alkylamino, C₁₋₇alkylaminoC₁₋₇alkylaminoC₁₋₇alkylaminoC₁₋₇alkylamino, C₁₋₇alkylamino, C₁₋₇alkylphosphate, C₁₋₇alkylphosphonate, C₁₋₇alkylcarbamoylC₁₋₇alkyl,

which (which alkyl, alkoxy, alkanoyl, alkylamino, dialkylamino, aminoalkylamino, alkylaminoalkylamino, alkylaminoalkylamino, alkylphosphate, alkylphosphonate or alkylcarbamoylalkyl, may bear one or more substituents selected from: halogeno, amino, C₁₋₄alkylamino, di(C₁₋₄alkyl)amino, hydroxy.

C₁₋₄hydroxyalkyl, C₁₋₄alkoxy, C₁₋₄alkylsulphanyl, C₁₋₄alkylsulphonyl, C₁₋₄alkoxycarbonylamino, C₁₋₄alkanoyl, carboxy, phenyl, nitro, sulphate, phosphate and a group -y⁵R⁴⁰, wherein

Y' is -NR⁴¹C(O)-, C(O)NR⁴²-, -C(O)-O- or -O-C(O)- (wherein R⁴¹ and R⁴² which may be the same or different each represents hydrogen, C₁ 3alkyl or C₁₋₃alkoxyC₂₋₃alkyl) and

R⁴⁰ is C₁₋₇alkyl, C₃₋₇cycloalkyl, carboxyC₁₋₇alkyl or a group R⁴³ wherein R⁴³ is a phenyl group, a benzyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl, benzyl or aromatic heterocyclic group may bear one or more substituents selected from hydroxy, nitro, halogeno, amino, C₁₋₄alkyl, C₁₋₄haloalkyl, C₁₋₄alkoxy, C₁₋₄hydroxyalkyl, C₁₋₄aminoalkyl, C₁₋₄alkylamino, C₁₋₄hydroxyalkoxy, carboxy, cyano, -CONR⁴⁴R⁴⁵ and -NR⁴⁶COR⁴⁷ (wherein R⁴⁴, R⁴⁵, R⁴⁶ and R⁴⁷, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl).

R⁴⁸, wherein R⁴⁸(wherein R⁴⁸ is a phenyl group, a benzyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with

1-4 heteroatoms selected independently from O, N and S, which phenyl, benzyl or aromatic heterocyclic group may bear one or more substituents selected from

hydroxy, nitro, halogeno, amino, C14alkyl, C14haloalkyl, C14alkoxy, $C_{1.4}$ hydroxyalkyl, $C_{1.4}$ aminoalkyl, $C_{1.4}$ alkylamino, di $(C_{1.4}$ alkyl)amino, $di(C_{1.4}alkyl)aminoC_{1.4}alkyl, \\ di(C_{1.4}hydroxyalkyl)aminoC_{1.4}alkyl, \\$ $d_1(C_{1-4} aminoalkyl) amino C_{1-4} alkyl, C_{1-4} hydroxyalkoxy, carboxy, \\$ $C_{1.4}$ carboxyalkyl, phenyl, cyano, -CONR⁴⁹R⁵⁰, -NR⁵¹COR⁵² (wherein R⁴⁹, R⁵⁰, \mathbb{R}^{51} and \mathbb{R}^{52} , which may be the same or different, each represents hydrogen, $C_{1\text{--3}}$ alkyl or $C_{1\text{--3}}$ alkoxy $C_{2\text{--3}}$ alkyl) and $C_{1\text{--4}}$ alkyl R^{53} (wherein R^{53} is as defined herein),

C1.7alkylR⁴⁸ (wherein R⁴⁸ is as defined herein),

R⁵³, wherein R⁵³ (wherein R⁵³ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from

oxo, hydroxy, halogeno, C1-alkyl, C1-hydroxyalkyl, C1-alkoxy, $C_{1 ext{--} carboxyalkyl}$, $C_{1 ext{--} aminoalkyl}$, $di(C_{1 ext{--} alkyl})$ amino $C_{1 ext{--} alkyl}$, C_{1-4} alkoxy C_{1-4} alkyl, C_{1-4} alkylsulphonyl C_{1-4} alkyl and R^{54} , wherein R^{54} (wherein R⁵⁴ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from

oxo, hydroxy, halogeno, C1-alkyl, C1-ahydroxyalkyl, C1-alkoxy, C_{1-a} alkoxy C_{1-a} alkyl and C_{1-a} alkylsulphonyl C_{1-a} alkyl C1-4alkylsulphonylC1-4alkyl)), or

(CH2) V6(CH2) R53, wherein (CH3) V6(CH3) R53 (wherein

K⁵³ is as defined herein, a is 0, or an integer 1-4, b is 0 or an integer 1 4 and

Y⁶ represents a direct bond, -O-, -C(O)-, -NR⁵⁵-, -NR⁵⁶C(O)- or -C(O)NR⁵⁷. (whercin R⁵⁵, R⁵⁶, and R⁵⁷, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl),

and wherein one or more of the $(CH_2)_a$ or $(CH_2)_b$ groups may bear one or more substituents selected from hydroxy, amino and <u>halogeno</u> halogeno)

with the provise that R^5 is not hydroxy, alkoxy, substituted alkoxy (wherein R^5 is Y^4R^{35} and Y^4 is -O- and R^{35} is C_{1-7} alkyl bearing one or more substituents selected from the list given herein), -OPO₃H₂, -O-C₁₋₇alkanoyl or benzyloxy;

with the further proviso that at least one of \mathbb{R}^5 or \mathbb{R}^6 is a group $-Y^4\mathbb{R}^{35}$ (wherein Y^4 and \mathbb{R}^{35} are as defined herein) but with the further provisos

that when R^5 is $-Y^4R^{35}$ and R^6 is hydrogen, hydroxy, methoxy or methoxycarbonyl, $-Y^4R^{35}$ is not selected from cases wherein:

 Y^4 is C(O)-, -OC(O)-, -O-, -SO-, $-OSO_2$ -, $-NR^{36}$ -, $-NR^{37}C(O)$ - or $-C(O)NR^{38}$ (wherein R^{36} , R^{37} and R^{38} , which may be the same or different, each represents hydrogen, $C_{1\cdot3}$ alkyl or $C_{1\cdot3}$ alkoxy $C_{2\cdot3}$ alkyl) and

R³⁵ is a glycine, valine or lysine group, a dipeptide of glycine and valine groups, C_{1.7}alkyl, C_{1.7}alkoxy, C_{1.7}alkanoyl, (which alkyl, alkoxy or alkanoyl may bear one or more substituents selected from: halogeno, hydroxy, and a group Y⁵R⁴⁰ (wherein Y⁵ is -O-C(O)- and R⁴⁰ is C_{1.7}alkyl) C_{1.7}alkyl), or R⁴⁸, wherein R⁴⁶ (wherein R⁴⁸ is a tetrazolyl group (which may or may not be substituted as herein defined), a phenyl group or a benzyl group which phenyl or benzyl group may bear one or more substituents selected from C_{1.4}alkyl C_{1.4}alkyl); and

that when R^6 is $-Y^4R^{35}$ and R^5 is hydrogen, hydroxy, methoxy or methoxycarbonyl, $-Y^4R^{35}$ is not selected from cases wherein:

Y4 is -C(O)-, -O- or -OSO2- and

R³⁵ is C₁₋₇alkyl, C₁₋₇alkoxy (which alkyl, alkoxy or alkanoyl may bear one or more substituents selected from halogeno), R⁴⁸ (wherein R⁴⁸ is a benzyl group which

benzyl group may bear one or more substituents selected from $C_{1,4}$ alkyl), or \mathbb{R}^{53} (wherein R53 is pipendinyl);

or a salt thereof.

Claim 3 (canceled).

Claim 4 (currently amended and reformatted): A compound according to claim 2 wherein

X is <u>CH(R')-</u>, CH(R') wherein

R' is -OR8 or -NR8R9, wherein -NR8R9 (whorein R8 is a group -Y1R10 (wherein Y1 is -C(O)-, -C(O)O- or -C(O)NR¹¹- (wherein R¹¹ represents hydrogen, C₁₋₃alkyl or C_{1-3} alkoxy C_{2-3} alkyl) and R^{10} is as defined in claim 2) and R^2 is as defined in claim 2 claim 2).

Claim 5 (previously presented): A compound according to claim 2 wherein R¹, R2 and R3 are each mothyl.

Claim 6 (previously presented): A compound according to claim 2 wherein R4 is hydrogen.

Claim 7 (currently amended and reformatted): A compound according to claim 2 wherein R6 is hydrogen, halogeno, amino, carboxy, hydroxy, C1.7alkoxy or a group Y4R35, ¥4R35 wherein

 Y^4 is -C(O)-, -O- or -OSO₂- and

 R^{33} is C_{1-7} alkyl, C_{1-7} alkoxy (which alkyl or alkoxy may bear one or more substituents selected from halogeno), R^{48} (wherein R^{48} is a benzyl group) or R^{53} (wherein R^{53} is

a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heterostoms selected independently from O, S and N).

Claim 8 (previously presented): A compound according to claim 2 wherein R⁶ is hydrogen, C(O)OCH3 or methoxy.

Claim 9 (currently amended and reformatted): A compound according to claim claims 2 wherein

 $\mathbf{R^5}$ is hydrogen, halogeno, amino, carboxy, carbamoyl, $C_{1\text{-7}}$ alkanoyl, $C_{1\text{-7}}$ thioalkoxy, or a group -Y4R35, -Y4R35 wherein

 Y^4 is -C(O)-, -OC(O) , -O-, -SO-, -OSO₂-, -NR³⁶-, -NR³⁷C(O)- or -C(O)NR³⁸-(wherein R36, R37 and R38, which may be the same or different, each represents hydrogen, C1-salkyl or C1-salkoxyC2-salkyl) and

R35 is a sugar moiety, a mono-peptide, a di-peptide, a tri-peptide, a tetra-peptide, C_{1-7} alkyl, C_{1-7} alkoxy, C_{1-7} alkanoyl, C_{1-7} alkanoylamino C_{1-7} alkyl,

which (which alkyl, alkoxy, alkanoyl, alkanoylaminoalkyl may bear one or more substituents selected from: halogeno, amino, hydroxy, carboxy, and a group YSR40, wherein YR46 (whorein

 Y^5 is C(O)-O- or -O-C(O) and

R⁴⁰ is C_{1.7}alkyl or a group R⁴³ wherein R⁴³ is a benzyl group, group),

R48, wherein R48 (wherein R48 is a phenyl group, a benzyl group or a 5-10-membered aromatic heterocyclic group (linked via carbon or nitrogen) with 1-4 heteroatoms selected independently from O, N and S, which phenyl, benzyl or aromatic heterocyclic group may bear one or more substituents selected from

hydroxy, fluoro, amino, $C_{1.4}$ alkoxy, $C_{1.4}$ hydroxyalkyl, $C_{1.4}$ aminoalkyl. C_{1-4} alkylamino, di(C_{1-4} alkyl)amino, di(C_{1-4} alkyl)amino C_{1-4} alkyl, di(C1-hydroxyalkyl)aminoC1-alkyl, di(C1-aminoxlkyl)aminoC1-alkyl,

C_{1.4}hydroxyalkoxy, carboxy, C_{1.4}carboxyalkyl, cyano, -CONR⁴⁹R⁵⁰,
-NR⁵¹COR⁵² (wherein R⁴⁹, R⁵⁰, R⁵¹ and R⁵², which may be the same or
different, each represents hydrogen, C_{1.3}alkyl or C_{1.3}alkoxyC_{2.3}alkyl) and
C_{1.4}alkylR⁵³ (wherein R⁵³ is as defined herein), C_{1.7}alkylR⁴⁸ (wherein R⁴⁸ is as defined herein), R⁵³, wherein R⁵³ (wherein

R⁵³ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroztoms, selected independently from O, S and N, which heterocyclic group may bear 1 or 2 substituents selected from

oxo, hydroxy, fluoro, chloro, C_{1.4}alkyl, C_{1.4}hydroxyalkyl, C_{1.4}alkoxy, C_{1.4}carboxyalkyl, C_{1.4}aminoalkyl, di(C_{1.4}alkyl)aminoC_{1.4}alkyl, C_{1.4}alkyl, C_{1.4}alkylsulphonylC_{1.4}alkyl and R⁵⁴, wherein R⁵⁴ (wherein R⁵⁴ is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) with 1-2 heteroatoms, selected independently from O, S and N, which heterocyclic group may hear 1 or 2 substituents selected from

0x0, hydroxy, halogeno, $C_{1.4}$ alkyl, $C_{1.4}$ hydroxyalkyl, $C_{1.4}$ alkoxy, $C_{1.4}$ alkoxy $C_{1.4}$ alkyl and $C_{1.4}$ alkylsulphonyl $C_{1.4}$ alkylsulphony

(CII2) 246 (CH2) 1283, wherein (CH2) 246 (CH3) 1283 (wherein

R⁵³ is as defined herein,

a is 0, or an integer 1.4,

b is 0 or an integer 1-4 and

Y⁶ represents a direct bond, -O-, C(O)-, -NR⁵⁵-, -NR⁵⁶C(O)- or -C(O)NR⁵⁷- (wherein R⁵⁵, R⁵⁶, and R⁵⁷, which may be the same or different, each represents hydrogen, C₁₋₃alkyl or C₁₋₃alkoxyC₂₋₃alkyl),

and wherein one or more of the (CH₂)_a or (CH₂)_b groups may bear one or more substituents selected from hydroxy, amino and halogeno halogene));

with the proviso that R^3 is not alkoxy, substituted alkoxy (wherein R^5 is Y^4R^{35} and Y^4 is -O- and R^{35} is $C_{1.7}$ alkyl bearing one or more substituents selected from the list given herein), -O-C1.7alkanoyl or benzyloxy.

Claim 10 (original). A compound according to claim 2 selected from:

- (55)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5H-dibenzo[a,c]cyclohepten-3-yl 3-{[(2R)-2,6-diaminohexanoyl]amino}propanoate,
- (5.5)-5-(acctylamino)-9,10,11-trimethoxy-6,7-dihydro-5H-dibenzo[a,c]cyclohepten-3-yl 3-[(2-aminoacetyl)amino|propanoate,
- N-([(5S)-5-(acetylamino)-9,10,11-trimethoxy 6,7-dihydro-5H-dibenzo[a,c]cyclohepten-3 ylloxymethyl)-2-morpholinoacetamide,
- $(2S,3S,4S,5R,6R)-6-\{[(5S)-5-(acctylamino)-9,10,11-trimethoxy-6,7-dihydro-5H-dibenzo-6,10,11-trimethoxy-6,1$ [a,c]cyclohepten-3-yt]oxy}-3,4,5-trihydroxytetraliydro-2H-pyran-2-carboxylic acid,
- $N \{(5S)-3-(4-\{4-methylpiperazin-1-ylmethyl\}phenylcarbonyloxy\}-9,10,11-mimethoxy 6,$ 7-dihydro-5H dibenzo[a,c]cyclohepten-5-yl]acetamide,
- N-I(5S)-3-(4-{morpholinomethyl] phenylcarbonyloxy)-9,10,11 trimethoxy-6,7-dihydro-5 H-dibenzo[a,c]cyclohepten-5-yl]acetamide.
- (5S)-5-(acctylamino)-9,10,11-trimethoxy-6,7-dihydro-5H-dihenzo[a,c]cyclohepten-3-yl 3-[4-methylpiperazin-1-ylearbonyl]propanoate,
- 5-[{(5S)-5-(acctylamino)-9,10,11-trimethoxy-6,7-dihydro-5H-dihenzo[a,c]cyolohepten-3 -yl}oxycarbonyl]pentanoic acid,
- 4-(3-[(5.5)-5-(acctylamino)-9,10,11-trimethoxy-6,7-dihydro-5H-dihenzo[a,c]cyclohepten-3 ylloxy-3-oxopropyl)benzoic acid and
- (2S)-N-[(5S)-5-(acetylamino) 9,10,11-trimethoxy-6.7-dihydro 5H-dibenzo[a,c]cyclohepten-3-yl]-2-amino-3-hydroxypropanamide,

and salts thereof.

Claim 11 (original): A compound according to claim 2 selected from N-[(5S)-3-(4-{4 methylpiperazin-1-ylmethyl}phenylcarbonyloxy)-9,10,11-trimethoxy-6, 7-dihydro-5H-dibenzo[a,c]cyclohepten-5-yl]acetamide and (2S)-N-[(5S)-5-(acetylamino)-9,10,11-trimethoxy-6,7-dihydro-5H-dibenzo[a,c]-cyclohepten-3-yl]-2-amino-3 hydroxypropanamide, and salts thereof.

Claim 12 (original): A compound according to claim 2 selected from (2S)-N-[(5S)-5-(acetylamino)-9,10,11-trimethoxy 6,7-dihydro-5H-dibenzo[a,c]-cyclohepten-3-yl]-2-arnino-5-[(2-nitroethanimidoyi)amino]pentanamide and salts thereof.

Claim 13. (original; previously formatted): A process for the manufacture of a compound of formula IIa as defined in claim 2 which comprises:

(a) for the preparation of compounds of formula IIa and salts thereof in which R⁵ or R⁶ is a group Y⁴R²⁵ (wherein R³⁵ is as defined in claim 2 and Y⁴ is a group -OC(O)- or NHC(O)-), the reaction of a compound of formula III or IV:

(wherein X, R^1 , R^2 , R^3 , R^4 , R^5 , R^6 are as defined in claim 2 and Y^7 is O- or -NH-), by acylation or coupling reactions;

Page 15

- (b) for the preparation of compounds of formula Ha and salts thereof in which R⁵ or R⁶ is a group Y⁴R²⁵ (wherein R³⁵ is C₁₋₇alkoxy which may be substituted as defined in claim 2 and Y⁴ is a group -OC(O)- or -NHC(O)-), the reaction of a compound of formula HI and IV, by acylation reactions;
- (c) for the preparation of compounds of formula Ha and salts thereof in which R⁵ or R⁶ is a group Y⁴R³⁵ (wherein R³⁵ is ammoC₁₋₇alkylamino, C₁₋₇alkylaminoC₁₋₇alkylamino, di(C₁₋₇alkylaminoC₁₋₇alkylamino and may be substituted as defined in claim 2, or is R⁵³ (wherein R⁵³ is as defined in claim 2) and Y⁴ is a group -OC(O)- or -NHC(O)-), can be prepared by the reaction of a compound of formula III or IV, acylation reactions;
- (d) for the preparation of compounds of formula Ha and salts thereof in which R⁵ or R⁶ is a group Y⁴R³⁵ (wherein R³⁵ is a sugar moiety and Y⁴ is a group -O- or -NH-), the reaction of a compound of formula III or IV, glycosylation reactions;
- (e) for the preparation of compounds of formula IIa and salts thereof in which R⁵ or R⁶ is a group Y⁴R⁵⁵ (wherein R³⁵ is sulphate and Y⁴ is a group O- or -NH-), the reaction of a compound of formula III or IV, by sulphonylation reactions;
- (f) for the preparation of compounds of formula Ha and salts thereof in which R⁵ or R⁶ is a group Y⁴R³⁵ (wherein R³⁵ is C₁₋₇alkylphosphate and may be substituted as defined in claim 2 and Y⁴ is a group O- or -NH-), the reaction of a compound of formula Hi or IV, by phosphorylation reactions;
- (g) for the preparation of compounds of formula Ha and salts thereof in which R⁵ is amino the reaction of a carboxylic acid of formula V:

(V)

(wherein X, R^1 , R^2 , R^3 , R^4 and R^6 are as defined in claim 2) via Curtius rearrangement and hydrolysis; and

(h) for the preparation of compounds of formula Ha and salts thereof in which R⁵ or R⁶ is chloro the reaction of a compound of formula HI or IV by the Sandmeyer reaction; and when a pharmaceutically acceptable salt of a compound of formula Ha is required, reaction of the compound obtained with an acid or base whereby to obtain the desired pharmaceutically acceptable salt.

Claim 14 (original): A pharmaceutical composition which comprises as active ingredient a compound of formula Ha as defined in claim 2 or a pharmaceutically acceptable salt thereof in association with a pharmaceutically acceptable excipient or carrier.

Claim 15 (original): A method for producing a vascular damaging effect in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula IIa or a pharmaceutically acceptable sait thereof as defined in claim 2.