Computing Moments

Generalization: Moments

- Suppose a stream has elements chosen from a set A of N values (say 1 to N)
- Let m_i be the number of times item i occurs in the stream
- The kth moment is

$$\sum_{i\in A} (m_i)^k$$

Special Cases

$$\sum_{i\in A} (m_i)^k$$

- Othmoment = number of distinct elements (Flajolet-Martin)
- 1st moment = count of the numbers of elements
- 2nd moment = a measure of how uneven the distribution is (denoted as *S*)
 - E.g. Stream of length 100, 11 distinct values
 - Item counts: 10, 9, 9, 9, 9, 9, 9, 9, 9, 9 S = 910
 - Item counts: 90, 1, 1, 1, 1, 1, 1, 1, 1, 1, S = 8,110

AMS(Alon-Matias-Szegedy) Method

- Gives an unbiased estimate for the 2^{nd} moment $S = \sum_i m_i^2$ by keeping track of just one variable X:
 - *X.el* corresponds to a item *i*
 - Pick some random time t(t < n) to start, equally likely in a stream of length n
 - If at time t the stream have item i, we set X.e/=i
 - X.val corresponds to the count of the chosen item i
 - Count c(X.val = c), the number of item i starting from the chosen time t

AMS(Alon-Matias-Szegedy) Method

• The estimate of the 2nd moment $(\sum_i m_i^2)$ is:

$$f(X) = n(2 \cdot c - 1)$$

- Note, we will keep track of multiple Xs, $(X_1, X_2, \cdots X_k)$ and our final estimate will be $S = 1/k \sum_{i}^k f(X_i)$
- Let's prove $\mathbf{E}[f(\mathbf{X})] = \sum_i (m_i)^2 = S$

Expectation Analysis

seen

- c_t ··· number of times item at time t appears from time t to n ($c_1 = m_a$, $c_2 = m_a 1$, $c_3 = m_b$)
- $E[f(X)] = \frac{1}{n} \sum_{t=1}^n n(2c_t 1)$ $m_i \dots$ total count of item i in the stream

Expectation Analysis

- $E[f(X)] = \frac{1}{n} \sum_{i} n (1 + 3 + 5 + \dots + 2m_i 1)$
 - calculation: $(1+3+5+\cdots+2m_i-1)=\sum_{i=1}^{m_i}(2i-1)=2\frac{m_i(m_i+1)}{2}-m_i=(m_i)^2$
- Then $\mathbf{E}[f(\mathbf{X})] = \frac{1}{n} \sum_{i} n (m_i)^2 = S$
- We have the second moment (in expectation)!

Higher-Order Moments

- For estimating kth moment we essentially use the same algorithm but change the estimate:
 - For k=2 we used $n(2\cdot c 1)$ (where c=X.val)
 - For **k=3**, can you try to find out what we use?
 - $n(3\cdot c^2 3c + 1)$

Why?

- For k=2: Remember we had $(1+3+5+\cdots+2m_i-1)$ and we showed terms 2c-1 (for c=1,...,m) sum to m^2
 - $\sum_{c=1}^{m} 2c 1 = \sum_{c=1}^{m} c^2 \sum_{c=1}^{m} (c-1)^2 = m^2$
 - So: $2c 1 = c^2 (c 1)^2$
- For k=3: $c^3 (c-1)^3 = 3c^2 3c + 1$
- Generally: Estimate = $n(c^k (c-1)^k)$

Combining Samples

In practice:

- Compute f(X) = n(2c 1) for as many variables X as you can fit in memory
- Average them in groups
- Take median of averages

• Problem: Streams never end

- We assumed there was a number n, the number of positions in the stream
- But real streams go on forever, so *n* is a variable – the number of inputs seen so far

Streams Never End: Fixups

- (1) The variables X have n as a factor keep n separately; just hold the count in X
- (2) Suppose we can only store k counts. We must throw some Xs out as time goes on:
- Objective: Each starting time t is selected with probability k/n
- Solution: (fixed-size sampling)
 - Choose the first k times for k variables
 - When the n^{th} element arrives (n > k), choose it with probability k/n
 - If you choose it, throw one of the previously stored variables **X** out, with equal probability

Summary of Streaming Algorithms

- Queries
 - Filtering a data stream
 - Queries over a sliding window
 - Estimating statistics
- Key techniques
 - Hashing functions
 - Approximation with sketch/summarization
 - Theoretical analysis