

PCT

世界知的所有権機関

国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C09K 3/18, C08J 7/04, A47G 1/00, C03C 17/23, F21M 7/00, G02B 1/10	A1	(11) 国際公開番号 WO96/29375
(21) 国際出願番号 (22) 国際出願日	PCT/JP96/00733 1996年3月21日(21.03.96)	(43) 国際公開日 1996年9月26日(26.09.96)
(30) 優先権データ 特願平7/99425 1995年3月20日(20.03.95) JP 特願平7/117600 1995年4月6日(06.04.95) JP 特願平7/182019 1995年6月14日(14.06.95) JP 特願平7/182020 1995年6月14日(14.06.95) JP 特願平7/205019 1995年7月8日(08.07.95) JP 特願平7/326167 1995年11月9日(09.11.95) JP 特願平7/354649 1995年12月22日(22.12.95) JP		千国 真(CHIKUNI, Makoto)[JP/JP] 〒802 福岡県北九州市小倉北区中島2丁目1番1号 東陶機器株式会社内 Fukuoka, (JP) 藤嶋 昭(FUJISHIMA, Akira)[JP/JP] 〒211 神奈川県川崎市中原区中原1丁目710-5 Kanagawa, (JP) 橋本和仁(HASHIMOTO, Kazuhito)[JP/JP] 〒247 神奈川県横浜市栄区小菅ヶ谷町2000-10-2-506 Kamagawa, (JP) (74) 代理人 弁理士 伊藤 宏(ITOH, Hiroshi) 〒234 神奈川県横浜市港南区港南台4丁目3番9号 荒井ビル20B号 Kanagawa, (JP)
(71) 出願人(米国を除くすべての指定国について) 東陶機器株式会社(TOTO LTD.)(JP/JP) 〒802 福岡県北九州市小倉北区中島2丁目1番1号 Fukuoka, (JP)		(81) 指定国 AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO特許(KE, LS, MW, SD, SZ, UG), ヨーラシア特許(), 欧州特許(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許(BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(72) 発明者: および (73) 発明者/出願人(米国についてのみ) 早川 信(HAYAKAWA, Makoto)[JP/JP] 小島栄一(KOJIMA, Eiichi)[JP/JP] 則本圭一郎(NORIMOTO, Keiichiro)[JP/JP] 町田光義(MACHIDA, Mitsuyoshi)[JP/JP] 北村 厚(KITAMURA, Atsushi)[JP/JP] 渡部俊也(WATANABE, Toshiya)[JP/JP]		添付公開書類 国際調査報告書

(54) Title: METHOD OF PHOTOCATALYTICALLY MAKING THE SURFACE OF BASE MATERIAL ULTRA-HYDROPHILIC, BASE MATERIAL HAVING ULTRAHYDROPHILIC AND PHOTOCATALYTIC SURFACE, AND PROCESS FOR PRODUCING SAID MATERIAL

(54) 発明の名称 基材の表面を光触媒的に超親水性にする方法、超親水性の光触媒性表面を備えた基材、および、その製造方法

(57) Abstract

A method of making the surface of a base material ultrahydrophilic which comprises the step of coating the surface with a layer containing photocatalytic semiconductor material such as titania and the step of photoexciting the photocatalytic material to adjust the angle of contact of the surface of the above layer with water to about 10° or less. When this method is applied to the surface of a base material such as mirror, lens or windowpane, the growth of waterdrops is prevented and the base material becomes highly antifogging. The articles treated by this method do not undergo any deposition of contaminants on the surfaces thereof and are readily cleaned by rainfall or washing with water.

(57) 要約

基材の表面をチタニア等の光触媒性半導体材料を含む層で被覆する行程と、前記光触媒性材料を光励起して前記層の表面の水との接触角を約10°以下にする行程からなる表面の親水化方法

前記親水化方法を鏡、レンズ、窓ガラスの表面に適用すると、水滴の成長が防止され、高度の防曇性を発揮する。また前記親水化方法が適用された物品は、表面への汚染物の付着が防止され、降雨や水洗によって容易に清浄化される。

情報としての用途のみ
PCTに基づいて公開される国際出願をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

AL	アルバニア	DE	ドイツ	L	リヒテンシュタイン	P	ボーランド
AM	アルメニア	DK	デンマーク	LC	セントルシア	PT	ポルトガル
AT	オーストリア	ES	エストニア	LR	セリランカ	RO	ロシア連邦
AU	オーストラリア	ESI	スペイン	LT	リベリア	RU	ロシダーン
AZ	アゼルバイジャン	FF	フィンランド	LS	レントニア	SDE	スウェーデン
BA	ボスニア・ヘルツェゴビナ	FIR	フランス	LU	リトアニア	SG	シンガポール
BB	バルバドス	GAB	ガボン	LV	ルクセンブルグ	SI	ソロヴェニア
BE	ベルギー	GABE	イギリス	MC	モナコ	SK	ソロヴァキア
BF	ブルキナ・ファソ	GEN	グルジア	MD	モルドバ共和国	SN	セネガル
BB	ブルガリア	GRU	ギニア	MG	マダガスカル	SZ	スウェーデン
BJ	ベナン	HUE	ハンガリー	MK	マケドニア旧ユーゴスラ	TG	チャド
BR	ブラジル	IIS	アイスランド	M	マリア共和国	TGJ	トージキスタン
BY	ベラルーシ	IST	アイスランド	MN	モンゴル	TM	トルコ
CA	カナダ	J	イタリア	MR	モーリタニア	TR	トリニダード・トバゴ
CC	中央アフリカ共和国	KEP	日本	MW	マラウイ	TA	トクリーナ
CG	コンゴ	KG	ケニア	MX	メキシコ	UG	ウガンダ
CH	スイス	KGSP	キルギスタン	NE	ニジェール	UZ	アメリカ合衆国
CI	コート・ジボアール	KM	朝鮮民主主義人民共和国	NL	オランダ	V	ウズベキスタン
CM	カメルーン	KPR	大韓民国	NO	ノールウェー	VN	ヴィエトナム
CN	中国	K2	カザフスタン	NZ	ニューカaledonia		
CZ	キューバ						
	チェコ共和国						

明細書

基材の表面を光触媒的に超親水性にする方法、
超親水性の光触媒性表面を備えた基材、および、その製造方法

5

技術分野

本発明は、広義には、基材の表面を高度の親水性になし、かつ、維持する技術に関する。より詳しくは、本発明は、鏡、レンズ、板ガラスその他の透明基材の表面を高度に親水化することにより、基材の曇りや水滴形成を防止する防曇技術 10 関する。本発明は、また、建物や窓ガラスや機械装置や物品の表面を高度に親水化することにより、表面が汚れるのを防止し、又は表面を自己浄化（セルフクリーニング）し若しくは容易に清掃する技術に関する。

背景技術

15 寒冷時に自動車その他の乗物の風防ガラスや窓ガラス、建物の窓ガラス、眼鏡のレンズ、および各種計器盤のカバーガラスが凝縮湿分で曇るのはしばしば経験されることである。また、浴室や洗面所の鏡や眼鏡のレンズが湯気で曇ることも良く遭遇される。

20 物品の表面に曇りが生じるのは、表面が霧囲気の露点以下の温度に置かれると霧囲気中の湿分が凝縮して表面に結露するからである。

凝縮水滴が充分に細かく、それらの直径が可視光の波長の1／2程度であれば、水滴は光を散乱し、ガラスや鏡は見かけ上不透明となり、可視性が失われる。

25 湿分の凝縮が更に進行し、細かい凝縮水滴が互いに融合してより大きな離散した水滴に成長すれば、水滴と表面との界面並びに水滴と空気との界面における光の屈折により、表面は翳り、ぼやけ、斑模様になり、或いは曇る。その結果、ガラスのような透明物品では透視像が歪んで透視性が低下し、鏡では反射像が乱される。

更に、車両の風防ガラスや窓ガラス、建物の窓ガラス、車両のバックミラー、

眼鏡のレンズ、マスクやヘルメットのシールドが降雨や水しぶきを受け、離散した多数の水滴が表面に付着すると、それらの表面は翳り、ぼやけ、斑模様になり、或いは曇り、やはり可視性が失われる。

本明細書および添付の請求の範囲で用いる“防曇”の用語は、このような曇りや凝縮水滴の成長や水滴の付着による光学的障害を防止する技術を広く意味する。

5 言うまでもなく、防曇技術は安全性や種々の作業の能率に深い影響を与える。例えば、車両の風防ガラスや窓ガラスやバックミラーが曇るや翳ると車両や交通の安全性が損なわれる。内視鏡レンズや歯科用歯鏡が曇ると、的確な診断、手術、処置の障害となる。計器盤のカバーガラスが曇るとデータの読みが困難と
10 なる。

寒冷時や雨天に視界を確保するため、自動車その他の車両の風防ガラスには一般にワイパーやデフレスト装置やヒーターが組み込んである。しかし、自動車の側方窓ガラスや車外に配置されたバックミラーにこれらの装置を取り付けるのは商業的な実現可能性がない。また、建物の窓ガラスや眼鏡のレンズ、内視鏡レンズや歯科用歯鏡、ゴグル、マスク或いはヘルメットのシールド、計器盤のカバーガラスにこれらの防曇装置を取り付けるのは不可能ではないまでも困難である。

15 周知のように、従来用いられている簡便な防曇方法は、ポリエチレングリコールのような親水性化合物或いはシリコーンのような撥水性化合物を含んだ防曇性組成物を表面に塗布することである。しかし、この種の防曇性被膜はあくまで一時的なもので、水洗や接触によって容易に取り除かれ、早期に効果を失うという難点がある。

20 実開平 3-129357 号（三菱レイヨン）には、基材の表面にポリマー層を設け、この層に紫外線を照射した後アルカリ水溶液により処理することにより高密度の酸性基を生成し、これによりポリマー層の表面を親水性にすることからなる鏡の防曇方法が開示されている。しかし、この方法においても、表面に付着する汚染物質により時間が経つにつれて表面は親水性を失い、防曇性能が次第に失われるものと考えられる。

25 実開平 5-68006 号（スタンレー電気）には、親水基を有するアクリル系モノマ

ーと疎水基を有するモノマーとのグラフト重合体からなる防曇性フィルムが開示されている。このグラフト重合体の水との接触角は50°程度であり、この防曇性フィルムは充分な防曇性能を備えていないものと考えられる。

嘉悦默著「ガラスの防曇性コーティング技術」（最新コーティング技術、p. 2
5 37-249、総合技術センター発行、1986）には、従来技術の種々の防曇技術が記載されている。しかし、著者の嘉悦氏は、表面の親水化による防曇技術も実用上克服されるべき大きな問題点があり、現在の防曇性コーティング技術は1つの壁に突き当たっていると考えられる、と述べておられる。

従って、本発明の目的は、鏡、レンズ、ガラス、その他の透明基材の高度の可
10 視性を実現することの可能な防曇方法を提供することである。

本発明の他の目的は、鏡、レンズ、ガラス、その他の透明基材の表面を長期間
にわたって高度の親水性に維持することの可能な防曇方法を提供することである。

本発明の更に他の目的は、鏡、レンズ、ガラス、その他の透明基材の表面をほ
ぼ恒久的に高度の親水性に維持することの可能な防曇方法を提供することである。

15 本発明の他の目的は、耐久性と耐摩耗性に優れた防曇性コーティングを提供す
ることである。

本発明の他の目的は、防曇を要する表面に容易に被着することが可能な防曇性
コーティングを提供することである。

本発明の他の目的は、長期間にわたって表面を高度の親水性に維持し、高度の
20 防曇性能を維持することの可能な防曇性の鏡、レンズ、ガラス、その他の透明基
材、およびその製造方法を提供することである。

他方、建築および塗装の分野においては、環境汚染に伴い、建築外装材料や屋
外建造物やその塗膜の汚れが問題となっている。

大気中に浮遊する煤塵や粒子は晴天には建物の屋根や外壁に堆積する。堆積物
25 は降雨に伴い雨水により流され、建物の外壁を流下する。更に、雨天には浮遊煤
塵は雨によって持ち運ばれ、建物の外壁や屋外建造物の表面を流下する。その結果、
表面には、雨水の道筋に沿って汚染物質が付着する。表面が乾燥すると、表
面には縞状の汚れが現れる。

建築外装材料や塗膜の汚れは、カーボンブラックのような燃焼生成物や、都市煤塵や、粘土粒子のような無機質物質の汚染物質からなる。このような汚染物質の多様性が防汚対策を複雑にしているものと考えられている（橘高義典著“外壁仕上材料の汚染の促進試験方法”、日本建築学会構造系論文報告集、第404号、1
5 989年10月、p. 15-24）。

従来の通念では、建築外装などの汚れを防止するためにはポリテトラフルオロエチレン(PTFE)のような撥水性の塗料が好ましいと考えられていたが、最近では、親油性成分を多く含む都市煤塵に対しては、塗膜の表面を出来るだけ親水性にするのが望ましいと考えられている（高分子、44巻、1995年5月号、p. 307）。
10 そこで、親水性のグラフトポリマーで建物を塗装することが提案されている（新聞“化学工業日報”、1995年1月30日）。報告によれば、この塗膜は水との接触角が30～40°の親水性を呈する。

しかしながら、粘土鉱物で代表される無機質塵埃の水との接触角は20°から50°であり、水との接触角が30～40°のグラフトポリマーに対して親和性を有しその表面に付着しやすいので、このグラフトポリマーの塗膜は無機質塵埃による汚れを防止することができないと考えられる。
15

また、従来、アクリル樹脂、アクリルシリコン樹脂、水性シリコーン、シリコーン樹脂とアクリルとの樹脂とのブロック重合体、アクリルスチレン樹脂、ソルビタン脂肪酸エチレンオキサイド、ソルビタン脂肪酸エステル、ウレタン系アセテート、ポリカーボネートジオールおよび／又はポリイソシアネートの架橋型ウレタン、ポリアクリル酸アルキルエステル架橋体などからなる種々の親水性塗料が市販されている。これらの親水性塗料の水との接触角はせいぜい50～70°であり、親油性成分を多く含む都市煤塵による汚れを効果的に防止することができない。
20

従って、本発明の他の目的は、基材の表面を高度の親水性にする方法を提供することである。
25

本発明の他の目的は、建物や窓ガラスや機械装置や物品の表面を高度に親水化することにより、表面が汚れるのを防止し、又は表面を自己浄化（セルフクリー

ニング) し或いは容易に清掃する方法を提供することである。

本発明の他の目的は、表面が汚れるのを防止し、又は表面を自己浄化し或いは容易に清掃することの可能な高度に親水性の防汚性基材およびその製造方法を提供することである。

5 ある種の装置においては、表面に付着した湿分凝縮水が水滴に成長するとその機能が阻害される。例えば、熱交換器においては、放熱フィンに付着した水滴が大きな水滴に成長すると熱交換効率が低下する。

そこで、本発明の他の目的は、表面を高度に親水化することにより、付着した湿分凝縮水を水膜化し、付着した湿分凝縮水が大きな水滴に成長するのを防止す
10 る方法を提供することである。

発明の開示

本発明者は、光触媒を光励起すると光触媒の表面が高度に親水化されることを世界で初めて発見した。驚くべきことに、光触媒性チタニアを紫外線で光励起
15 したところ、水との接触角が 10° 以下、より詳しくは 5° 以下、特に約 0° になる程度に表面が高度に親水化されることが発見された。

本発明は斯る新発見に基づくもので、本発明は、広義には、基材の表面を高度の親水性にする方法、高度に親水性の表面を備えた基材、およびその製造方法を提供する。本発明に従えば、基材の表面は光触媒半導体材料からなる耐摩耗性の
20 光触媒性コーティングによって被覆される。

光触媒半導体のバンドギャップエネルギーより高いエネルギーの波長をもった光を充分な照度で充分な時間照射すると、光触媒性コーティングの表面は超親水性を呈するに至る。ここで用いる“超親水性 (superhydrophilicity)” 又は “超親水性の (superhydrophilic)” の用語は、水との接触角に換算して約 10° 以下、好ましくは約 5° 以下の高度の親水性 (即ち水濡れ性) を意味する。同様に、“超親水化 (superhydrophilification)” 又は “超親水化する (superhydrophilify)” の用語は、表面を水との接触角に換算して約 10° 以下、好ましくは約 5° 以下の高度の親水性にすることを意味する。

光触媒の光励起によって起こる表面の超親水化現象は、現在のところ、必ずしも明確に説明することはできない。光触媒による超親水化現象は、光触媒の分野において従来知られている光触媒的酸化還元反応による物質の光分解とは必ずしも同じではないように見受けられる。この点に関し、光触媒的酸化還元反応に関する従来の定説は、光励起により電子-正孔対が生成し、生成した電子は表面酸素を還元してスーパーオキサイドイオン (O_2^-) を生成し、正孔は表面水酸基を酸化して水酸ラジカル ($\cdot OH$) を生成し、これらの高度に反応性の活性酸素種 (O_2^- や $\cdot OH$) の酸化還元反応によって物質が分解されるというものであった。

しかしながら、光触媒による超親水化現象は、少なくとも2つの点において、物質の光触媒的分解に関する従来の知見と合致しない。第1に、従来の定説では、ルチルや酸化錫のような光触媒は、伝導体のエネルギー準位が十分に高くないため、還元反応が進行せず、その結果、伝導体に光励起された電子が過剰となり、光励起により生成した電子-正孔対が酸化還元反応に関与することなく再結合すると考えられていた。これに対して、光触媒による超親水化現象は、後述するように、ルチルや酸化錫のような光触媒でも起こることが確認された。

第2に、従来、光触媒性酸化還元反応による物質の分解は光触媒層の膜厚が少なくとも 100 nm 以上でないと起こらないと考えられている。これに対して、光触媒性超親水化は、光触媒性コーティングの膜厚が数 nm のオーダーでも起こることが観察された。

従って、明確には結論できないが、光触媒による超親水化現象は、光触媒的酸化還元反応による物質の光分解とはやや異なる現象であると考えられる。しかしながら、後述するように、光触媒のバンドギャップエネルギーより高いエネルギーの光を照射しなければ表面の超親水化は起こらないことが確認された。おそらくは、光触媒の光触媒作用によって光触媒性コーティングの表面に水が水酸基 (OH^-) の形で化学吸着されることにより、表面が超親水性になると考えられる。

光励起により光触媒性コーティングの表面が一旦高度に親水化されたならば、基材を暗所に保持しても、表面の親水性はある程度の期間持続する。時間の経過に伴い表面水酸基に汚染物質が吸着され、表面が次第に超親水性を失った時には、

再び光励起すれば超親水性は回復する。

- 光触媒性コーティングを最初に超親水化するためには、光触媒のバンドギャップエネルギーより高いエネルギーの波長をもった任意の光源を利用することができます。チタニアのように光励起波長が紫外線領域に位置する光触媒の場合には、光触媒性コーティングで被覆された基材に太陽光が当たるような条件では、太陽光に含まれる紫外線を好適に利用することができる。屋内や夜間には、人工光源により光触媒を光励起することができる。後述するように、光触媒性コーティングがシリカ配合チタニアからなる場合には、蛍光灯に含まれる微弱な紫外線でも容易に親水化することができる。
- 光触媒性コーティングの表面が一旦超親水化された後には、比較的微弱な光によって超親水性を維持し、或いは、回復させることができる。例えば、チタニアの場合には、超親水性の維持と回復は、蛍光灯のような室内照明灯に含まれる微弱な紫外線でも充分に行うことができる。
- 光触媒性コーティングは非常に薄くしても超親水性を発現し、特に金属酸化物からなる光触媒半導体材料は充分な硬度を有するので、光触媒性コーティングは充分な耐久性と耐摩耗性を有する。
- 表面の超親水化は種々の用途に応用することができる。本発明の一観点においては、本発明は、透明部材の防曇方法、防曇性の透明部材、並びに、その製造方法を提供する。本発明に従えば、予め光触媒性コーティングが被覆された透明部材が準備され、或いは、透明部材の表面は光触媒性コーティングによって被覆される。
- 透明部材は、車両用バックミラー、浴室用又は洗面所用鏡、歯科用歯鏡、道路鏡のような鏡；眼鏡レンズ、光学レンズ、写真機レンズ、内視鏡レンズ、照明用レンズのようなレンズ；プリズム；建物や監視塔の窓ガラス；自動車、鉄道車両、航空機、船舶、潜水艇、雪上車、ロープウェーのゴンドラ、遊園地のゴンドラ、宇宙船のような乗り物の窓ガラス；自動車、鉄道車両、航空機、船舶、潜水艇、雪上車、スノーモービル、オートバイ、ロープウェーのゴンドラ、遊園地のゴンドラ、宇宙船のような乗り物の風防ガラス；防護用又はスポーツ用ゴーグル又はマ

スク（潜水用マスクを含む）のシールド；ヘルメットのシールド；冷凍食品陳列ケースのガラス；計測機器のカバーガラスを含む。

光触媒性コーティングを備えた透明部材に光を照射して光触媒を光励起することにより、光触媒性コーティングの表面を超親水化すると、空気中の湿分や湯気が結露しても、凝縮水は個々の水滴を形成することなく一様な水膜になるので、表面には光散乱性の曇りは発生しない。

同様に、窓ガラスや車両用バックミラーや車両用風防ガラスや眼鏡レンズやヘルメットのシールドが降雨や水しぶきを浴びても、表面に付着した水滴は速やかに一様な水膜に広がるので、離散した目障りな水滴が形成されない。

従って、高度の視界と可視性を確保することができ、車両や交通の安全性を保証し、種々の作業や活動の能率を向上させることができる。

本発明の他の観点においては、本発明は、基材の表面を超親水化することにより、基材の表面を降雨により自己浄化（セルフクリーニング）する方法、自己浄化性の基材、並びに、その製造方法を提供する。

基材は、例えば、金属、セラミックス、ガラス、プラスチックス、木、石、セメント、コンクリート、それらの組み合わせ、それらの積層体、又はその他の材料で形成された建物の外装、窓枠、構造部材、窓ガラス；自動車、鉄道車両、航空機、船舶のような乗り物の外装および塗装；機械装置や物品の外装、防塵カバーおよび塗装；交通標識、各種表示装置、広告塔の外装および塗装を含む。基材の表面は光触媒性コーティングにより被覆される。

建物や屋外に配置された機械装置や物品は、日中は太陽光にさらされるので、光触媒性コーティングの表面は高度に親水化される。さらに、表面は時折降雨にさらされる。超親水化された表面が降雨を受ける都度、基材の表面に付着した煤塵や汚染物質は雨滴により洗い流され、表面は自己浄化される。

光触媒性コーティングの表面は水との接触角が 10° 以下、好ましくは 5° 以下、特に約 0° になる程度に高度に親水化されるので、親油性成分を多く含む都市煤塵だけでなく、粘土鉱物のような無機質塵埃も容易に表面から洗い流される。こうして、基材の表面は自然の作用により高度に自己浄化され、清浄に維持され

る。例えば、高層ビルのガラス拭き作業は不要になるか、大幅に省くことができる。

- 本発明の更に他の観点においては、本発明は、建物や窓ガラスや機械装置や物品の表面に光触媒性コーティングを設け、表面を高度に親水化することにより、
5 表面が汚れるのを防止する方法を提供する。

超親水化された表面は、大気中に浮遊する煤塵のような汚染物を同伴する雨水が流下するときに、汚染物が表面に付着するのを阻止する。従って、前述した降雨による自己浄化作用と相俟って、建物などの表面はほぼ恒久的に高度に清浄に維持される。

- 10 本発明の他の観点においては、金属、セラミックス、ガラス、プラスチックス、木、石、セメント、コンクリート、それらの組み合わせ、又はそれらの積層体で形成された装置又は物品（例えば、建物の外装、建物の内装材、窓ガラス、住宅設備、便器、浴槽、洗面台、照明器具、台所用品、食器、流し、調理レンジ、キッチンフード、換気扇）の表面は光触媒性コーティングで被覆され、必要に応じ
15 光励起される。

油や脂肪で汚れたこれらの物品を水に浸漬し、水で濡らし、又は水で濯ぐと、油汚れは超親水化された光触媒性コーティングの表面から糸放され、容易に除去される。例えば、油や脂肪で汚れた食器を洗剤を使用することなく洗浄することができる。

- 20 本発明の他の観点においては、本発明は、基材に付着した水滴の成長を防止し、或いは付着水滴を一様な水膜に広げる方法を提供する。このため、基材の表面は光触媒性コーティングで被覆される。

光触媒性コーティングを光励起して表面を超親水化すると、基材の表面に付着した湿分凝縮水又は水滴は表面に広がり、一様な水膜を形成する。この方法を例
25 えば熱交換器の放熱フィンに適用すると、熱交換媒体の通路が凝縮水によって目詰まりするのを防止し、熱交換効率を増加させることができる。或いは、この方法を鏡、レンズ、窓ガラス、風防ガラス、舗装に適用すれば、水濡れ後の表面の乾燥を促進することができる。

本発明の上記特徴や効果、並びに他の特徴や効果は、以下の実施例の記載について明らかとなろう。

図面の簡単な説明

5 第1図は本発明に使用可能な種々の半導体光触媒の価電子帯と伝導帯の準位を示し；

第2A図および第2B図は基材の表面に形成した光触媒性コーティングを顕微鏡的に拡大して示す模式的断面図で、光触媒の光励起により表面に水酸基が化学吸着される様子を示し；

10 第3図から第5図、第7図、第9図は、夫々、実施例の種々の試料の紫外線照射に伴う水との接触角の時間的变化を示すグラフ；

第6図は、シリコーンからなる光触媒性コーティングの表面のラマン分光スペクトルを示し；

第8図と第16図は、鉛筆硬度試験の結果を示すグラフ；

15 第10図は、シリコーンからなる光触媒性コーティングの膜厚とメチルメルカプタンの分解性能との関係を示すグラフ；

第11A図および第11B図は、夫々、屋外汚れ加速試験装置の正面図および側面図；

17 第12図から第15図は、シリカ配合チタニア中のシリカのモル比と水との接觸角との関係を示すグラフ；

第17図は、異なる親水性をもった表面が都市煤塵と汚泥によって汚れる度合いを示すグラフ；

第18図は、異なる波長の紫外線を光触媒性コーティングの表面に照射したときの水との接触角の時間的变化を示すグラフである。

25

発明を実施するための最良の形態

表面の超親水化を要する基材を準備し、光触媒性コーティングで被覆する。基材が金属、セラミックス、ガラスのような耐熱性の材料で形成されている場合に

は、後述するように光触媒の粒子を焼結することにより光触媒性コーティングを基材の表面に固定することができる。或いは、無定形の光触媒前駆体の薄膜を基材の表面に固定し、加熱して結晶化させることにより、光活性のある光触媒に変換してもよい。

- 5 基材がプラスチックスのような非耐熱性の材料で形成されている場合や基材が塗料で塗装されている場合には、後述するように光触媒を含有する耐光酸化性塗料を表面に塗布し硬化させることにより、光触媒性コーティングを形成することができる。

- 防曇性鏡を製造する場合には、予め反射コーティングが形成された鏡の前面に
10 光触媒性コーティングを被覆するか、被覆工程の前、後、若しくは途中で基材に反射コーティングを形成することができる。

光触媒

- 本発明の光触媒性コーティングに使用する光触媒としては、チタニア (TiO_2)
15 が最も好ましい。チタニアは、無害であり、化学的に安定であり、かつ、安価に入手可能である。更に、チタニアはバンドギャップエネルギーが高く、従って、光励起には紫外線を必要とし、光励起の過程で可視光を吸収しないので、補色成分による発色が起こらない。従って、ガラスやレンズや鏡のような透明部材にコーティングするのに特に適している。
- 20 チタニアとしてはアナターゼとルチルのいづれも使用することができる。アナターゼ型チタニアの利点は、非常に細かな微粒子を分散させたゾルを市場で容易に入手することができ、非常に薄い薄膜を容易に形成することができる。他方、ルチル型チタニアは、高温で焼結することができ、強度と耐摩耗性に優れた被膜が得られるという利点がある。第1図に示したように、ルチル型チタニアはアナターゼ型よりも伝導帯準位が低いが、光触媒による超親水化の目的に使用することができる。

第2A図に示したように、基材10をチタニアからなる光触媒性コーティング12で被覆し、チタニアを紫外線によって光励起すると、光触媒作用によって水

が水酸基 (OH^-) の形で表面に化学吸着され、その結果、表面が超親水性になると考えられる。

本発明の光触媒性コーティングに使用可能な他の光触媒としては、第1図に示したように、 ZnO 、 SnO_2 、 SrTiO_3 、 WO_3 、 Bi_2O_3 、 Fe_2O_3 のような金属酸化物がある。
5 これらの金属酸化物は、チタニアと同様に、表面に金属元素と酸素が存在するので、表面水酸基 (OH^-) を吸着しやすいと考えられる。

第2B図に示したように、光触媒の粒子14を金属酸化物の層16内に配合することにより光触媒性コーティングを形成してもよい。特に、後述するようにシリカ又は酸化錫に光触媒を配合した場合には、表面を高度に親水化することができる。
10

光触媒性コーティングの膜厚

基材がガラスやレンズや鏡のように透明材料からなる場合には、光触媒性コーティングの膜厚は $0.2 \mu\text{m}$ 以下にするのが好ましい。そうすれば、光の干渉による光触媒性コーティングの発色を防止することができる。また、光触媒性コーティングが薄ければ薄いほど基材の透明度を確保することができる。更に、膜厚を薄くすれば光触媒性コーティングの耐摩耗性が向上する。
15

光触媒性コーティングの表面に、更に、親水化可能な耐摩耗性又は耐食性の保護層や他の機能膜を設けてもよい。

20

無定形チタニアの焼成による光触媒層の形成

基材が金属、セラミックス、ガラスのような耐熱性の材料で形成されている場合には、水との接触角が 0° になる程度の超親水性を呈する耐摩耗性に優れた光触媒性コーティングを形成する好ましいやり方の1つは、先ず基材の表面を無定形チタニアで被覆し、次いで焼成により無定形チタニアを結晶性チタニア（アナターゼ又はルチル）に相変化させることである。無定形チタニアの形成には、次のいづれかの方法を採用することができる。
25

(1) 有機チタン化合物の加水分解と脱水縮重合

チタンのアルコキシド、例えば、テトラエトキシチタン、テトライソプロポキシチタン、テトラ n -プロポキシチタン、テトラブトキシチタン、テトラメトキシチタン、に塩酸又はエチルアミンのような加水分解抑制剤を添加し、エタノールやプロパノールのようなアルコールで希釈した後、部分的に加水分解を進行させながら又は完全に加水分解を進行させた後、混合物をスプレーコーティング、フローコーティング、スピンドルコーティング、ディップコーティング、ロールコーティングその他のコーティング法により、基材の表面に塗布し、常温から 200°C の温度で乾燥させる。乾燥により、チタンのアルコキシドの加水分解が完遂して水酸化チタンが生成し、水酸化チタンの脱水縮重合により無定形チタニアの層が基材の表面に形成される。

チタンのアルコキシドに代えて、チタンのキレート又はチタンのアセテートのような他の有機チタン化合物を用いてもよい。

(2) 無機チタン化合物による無定形チタニアの形成

無機チタン化合物、例えば、 $TiCl_4$ 又は $Ti(SO_4)_2$ の酸性水溶液をスプレーコーティング、フローコーティング、スピンドルコーティング、ディップコーティング、ロールコーティングにより、基材の表面に塗布する。次いで無機チタン化合物を約 100°C～200°C の温度で乾燥させることにより加水分解と脱水縮重合に付し、無定形チタニアの層を基材の表面に形成する。或いは、 $TiCl_4$ の化学蒸着により基材の表面に無定形チタニアさせても良い。

20 (3) スパッタリングによる無定形チタニアの形成

金属チタンのターゲットに酸化雰囲気で電子ビームを照射することにより基材の表面に無定形チタニアを被着する。

(4) 焼成温度

無定形チタニアの焼成は少なくともアナターゼの結晶化温度以上の温度で行う。25 400°C～500°C 以上の温度で焼成すれば、無定形チタニアをアナターゼ型チタニアに変換させることができる。600°C～700°C 以上の温度で焼成すれば、無定形チタニアをルチル型チタニアに変換させることができる。

(5) 拡散防止層の形成

基材がナトリウムのようなアルカリ網目修飾イオンを含むガラスや施釉タイルの場合には、基材と無定形チタニア層との間に予めシリカ等の中間層を形成しておくのが良い。そうすれば、無定形チタニアの焼成中にアルカリ網目修飾イオンが基材から光触媒性コーティング中に拡散するのが防止され、水との接触角が
5 0° になる程度の超親水性が実現される。

シリカ配合チタニアからなる光触媒層

水との接触角が0° になる程度の超親水性を呈する耐摩耗性に優れた光触媒性コーティングを形成する他の好ましいやり方は、チタニアとシリカとの混合物からなる光触媒性コーティングを基材の表面に形成することである。チタニアとシリカとの合計に対するシリカの割合は、5～90モル%、好ましくは10～70モル%、より好ましくは10～50モル%にすることができる。シリカ配合チタニアからなる光触媒性コーティングの形成には、次のいづれかの方法を採用することができる。

15 (1) アナターゼ型又はルチル型チタニアの粒子とシリカの粒子とを含む懸濁液を基材の表面に塗布し、基材の軟化点以下の温度で焼結する。

(2) 無定形シリカの前駆体（例えば、テトラエトキシシラン、テトライソプロポキシシラン、テトラn-プロポキシシラン、テトラブロトキシシラン、テトラメトキシシラン、等のテトラアルコキシシラン；それらの加水分解物であるシラノール；又は平均分子量3000以下のポリシロキサン）と結晶性チタニアゾルとの混合物を基材の表面に塗布し、必要に応じて加水分解させてシラノールを形成した後、約100°C以上の温度で加熱してシラノールを脱水縮重合に付すことにより、チタニアが無定形シリカで結着された光触媒性コーティングを形成する。特に、シラノールの脱水縮重合温度を約200°C以上の温度で行えば、シラノールの重合度を増し、光触媒性コーティングの耐アルカリ性能を向上させることができる。

(3) 無定形チタニアの前駆体（チタンのアルコキシド、キレート、又はアセテートのような有機チタン化合物、又は $TiCl_4$ 又は $Ti(SO_4)_2$ のような無機チタン化

合物)の溶液にシリカの粒子を分散させてなる懸濁液を基材の表面に塗布し、チタン化合物を常温から200°Cの温度で加水分解と脱水縮重合に付すことにより、シリカ粒子が分散された無定形チタニアの薄膜を形成する。次いで、チタニアの結晶化温度以上の温度、かつ、基材の軟化点以下の温度に加熱することにより、
5 無定形チタニアを結晶性チタニアに相変化させる。

(4) 無定形チタニアの前駆体(チタンのアルコキシド、キレート、又はアセテートのような有機チタン化合物、又はTiCl₄又はTi(SO₄)₂のような無機チタン化合物)の溶液に無定形シリカの前駆体(例えば、テトラエトキシシラン、テトライソプロポキシシラン、テトラn-プロポキシシラン、テトラブロキシシラン、
10 テトラメトキシシラン、等のテトラアルコキシシラン; それらの加水分解物であるシラノール; 又は平均分子量3000以下のポリシロキサン)を混合し、基材の表面に塗布する。次いで、これらの前駆体を加水分解と脱水縮重合に付すことにより、無定形チタニアと無定形シリカの混合物からなる薄膜を形成する。次いで、チタニアの結晶化温度以上の温度、かつ、基材の軟化点以下の温度に加熱することにより、
15 無定形チタニアを結晶性チタニアに相変化させる。

酸化錫配合チタニアからなる光触媒層

水との接触角が0°になる程度の超親水性を呈する耐摩耗性に優れた光触媒性コーティングを形成する更に他の好ましいやり方は、チタニアと酸化錫との混合物からなる光触媒性コーティングを基材の表面に形成することである。チタニアと酸化錫との合計に対する酸化錫の割合は、1~95重量%、好ましくは1~50重量%にすることができる。酸化錫配合チタニアからなる光触媒性コーティングの形成には、次のいづれかの方法を採用することができる。

(1) アナターゼ型又はルチル型チタニアの粒子と酸化錫の粒子とを含む懸濁液を基材の表面に塗布し、基材の軟化点以下の温度で焼結する。
25

(2) 無定形チタニアの前駆体(チタンのアルコキシド、キレート、又はアセテートのような有機チタン化合物、又はTiCl₄又はTi(SO₄)₂のような無機チタン化合物)の溶液に酸化錫の粒子を分散させてなる懸濁液を基材の表面に塗布し、チ

タン化合物を常温から 200°C の温度で加水分解と脱水縮重合に付すことにより、酸化錫粒子が分散された無定形チタニアの薄膜を形成する。次いで、チタニアの結晶化温度以上の温度、かつ、基材の軟化点以下の温度に加熱することにより、無定形チタニアを結晶性チタニアに相変化させる。

5

光触媒含有シリコーン塗料

水との接触角が 0° になる程度の超親水性を呈する光触媒性コーティングを形成する更に他の好ましいやり方は、未硬化の若しくは部分的に硬化したシリコーン（オルガノポリシロキサン）又はシリコーンの前駆体からなる塗膜形成要素に

10 光触媒の粒子を分散させてなる塗料用組成物を用いることである。

この塗料用組成物を基材の表面に塗布し、塗膜形成要素を硬化させた後、光触媒を光励起すると、実施例 13 および 14 に関連して後述するように、シリコーン分子のケイ素原子に結合した有機基は光触媒の光触媒作用により水酸基に置換され、光触媒性コーティングの表面は超親水化される。

15 このやり方には、幾つかの利点がある。光触媒含有シリコーン塗料は常温又は比較的低温で硬化させることができるので、プラスチックスのような非耐熱性の材料で形成されている基材にも適用することができる。光触媒を含有したこの塗料用組成物は、表面の超親水化を要する既存の基材に、刷毛塗り、スプレーコーティング、ロールコーティングなどにより必要に応じ何時でも塗布することができる。光触媒の光励起による超親水化は、太陽光のような光源でも容易に行うことができる。

更に、鋼板のような塑性加工可能な基材に塗膜を形成した場合には、塗膜を硬化させた後、光励起する前に、鋼板を必要に応じ容易に塑性加工することができる。光励起前には、シリコーン分子のケイ素原子には有機基が結合しており、従って塗膜は充分な可撓性を備えているので、塗膜を損傷せることなく容易に鋼板を塑性加工することができる。塑性加工後には、光触媒を光励起すればシリコーン分子のケイ素原子に結合した有機基は光触媒作用により水酸基に置換され、塗膜の表面は超親水化される。

光触媒含有シリコーン塗料はシロキサン結合を有するので、光触媒の光酸化作用に対する充分な対抗性を有する。

光触媒含有シリコーン塗料からなる光触媒性コーティングの更に他の利点は、表面が一旦超親水化された後には、暗所に保持しても長期間超親水性を維持し、
5 かつ、蛍光灯のような室内照明灯の光でも超親水性を回復することである。

塗膜形成要素としては、メチルトリクロルシラン、メチルトリプロムシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリ t -ブトキシシラン；エチルトリクロルシラン、エチルトリプロムシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリ t -ブトキシシラン；n-プロピルトリクロルシラン、n-プロピルトリプロムシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリイソプロポキシシラン、n-プロピルトリ t -ブトキシシラン；n-ヘキシルトリクロルシラン、n-ヘキシルトリプロムシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、n-ヘキシルトリイソプロポキシシラン、n-ヘキシルトリ t -ブトキシシラン；n-デシルトリクロルシラン、n-デシルトリプロムシラン、n-デシルトリメトキシシラン、n-デシルトリエトキシシラン、n-デシルトリイソプロポキシシラン、n-デシルトリ t -ブトキシシラン；n-オクタデシルトリクロルシラン、n-オクタデシルトリプロムシラン、n-オクタ
10 デシルトリメトキシシラン、n-オクタデシルトリエトキシシラン、n-オクタデシルトリイソプロポキシシラン、n-オクタデシルトリ t -ブトキシシラン；フェニルトリクロルシラン、フェニルトリプロムシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリイソプロポキシシラン、フェニルトリ t -ブトキシシラン；テトラクロルシラン、テトラプロムシラン、テ
15 トラメトキシシラン、テトラエトキシシラン、テトラブトキシシラン、ジメトキシジエトキシシラン；ジメチルジクロルシラン、ジメチルジプロムシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン；ジフェニルジクロルシラン、ジフェニルジプロムシラン、ジフェニルジメトキシシラン、ジフェニルジエトキ
20 シ
25

シシラン；フェニルメチルジクロルシラン、フェニルメチルジプロムシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン；トリクロルヒドロシラン、トリブロムヒドロシラン、トリメトキシヒドロシラン、トリエトキシヒドロシラン、トリイソプロポキシヒドロシラン、トリ t -ブトキシヒドロシラン；ビニルトリクロルシラン、ビニルトリブロムシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリイソプロポキシシラン、ビニルトリ t -ブトキシシラン；トリフルオロプロピルトリクロルシラン、トリフルオロプロピルトリブロムシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリフルオロプロピルトリイソプロポキシシラン、トリフルオロプロピルトリ t -ブトキシシラン； γ -グリシドキシプロピルメチルジメトキシシラン、 γ -グリシドキシプロピルメチルジエトキシシラン、 γ -グリシドキシプロピルトリメトキシシラン、 γ -グリシドキシプロピルトリエトキシシラン、 γ -グリシドキシプロピルトリイソプロポキシシラン、 γ -グリシドキシプロピルトリ t -ブトキシシラン； γ -メタアクリロキシプロピルメチルジメトキシシラン、 γ -メタアクリロキシプロピルメチルジエトキシシラン、 γ -メタアクリロキシプロピルトリメトキシシラン、 γ -メタアクリロキシプロピルトリエトキシシラン、 γ -メタアクリロキシプロピルトリイソプロポキシシラン、 γ -メタアクリロキシプロピルトリ t -ブトキシシラン； γ -アミノプロピルメチルジメトキシシラン、 γ -アミノプロピルメチルジエトキシシラン、 γ -アミノプロピルトリメトキシシラン、 γ -アミノプロピルトリエトキシシラン、 γ -アミノプロピルトリイソプロポキシシラン、 γ -アミノプロピルトリ t -ブトキシシラン； γ -メルカプトプロピルメチルジメトキシシラン、 γ -メルカプトプロピルトリメトキシシラン、 γ -メルカプトプロピルエトキシシラン、 γ -メルカプトプロピルトリエトキシシラン、 γ -メルカプトプロピルトリイソプロポキシシラン、 γ -メルカプトプロピルトリ t -ブトキシシラン； β -(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、 β -(3、4-エポキシシクロヘキシル)エチルトリエトキシシラン；および、それらの部分加水分解物；およびそれらの混合物を使用することができる。

シリコーン塗膜の良好な硬度と平滑性を確保するためには、3次元架橋型シロキサンを10モル%以上含有させるのが好ましい。更に、良好な硬度と平滑性を確保しながら塗膜の充分な可撓性を提供するためには、2次元架橋型シロキサンを60モル%以下含有させるのが好ましい。また、シリコーン分子のケイ素原子に結合した有機基が光励起により水酸基に置換される速度を速めるには、シリコーン分子のケイ素原子に結合する有機基がn-プロピル基若しくはフェニル基からなるシリコーンを使用するのが好ましい。シロキサン結合を有するシリコーンに替えて、シラザン結合を有するオルガノポリシラザン化合物を使用することも可能である。

10

抗菌増強剤の添加

光触媒性コーティングにはAg、Cu、Znのような金属をドーピングすることができる。

光触媒にAg、Cu、又はZnをドーピングするためには、光触媒粒子の懸濁液に15これらの金属の可溶性塩を添加し、得られた溶液を用いて光触媒性コーティングを形成することができる。或いは、光触媒性コーティングを形成後、これらの金属の可溶性塩を塗布し、光照射により光還元析出させてもよい。

Ag、Cu、又はZnでドーピングされた光触媒性コーティングは、表面に付着した細菌を死滅させることができる。更に、この光触媒性コーティングは、黴、藻、20苔のような微生物の成長を抑制する。従って、建物、機械装置、住宅設備、物品等の表面を長期間にわたって清浄に維持することができる。

光活性増強剤の添加

光触媒性コーティングには、更に、Pt、Pd、Rh、Ru、Os、Irのような白金族金属をドーピングすることができる。これらの金属も、同様に、光還元析出や可溶性塩の添加により光触媒にドーピングすることができる。

光触媒を白金族金属でドーピングすると、光触媒の酸化還元活性を増強させることができ、表面に付着した汚染物質を分解することができる。

光励起・紫外線照射

- ガラスやレンズや鏡のような透明部材の防曇に際しては、チタニアのように高いバンドギャップエネルギーを有し紫外線によってのみ光励起される光触媒で光触媒性コーティングを形成するのが好ましい。そうすれば、可視光が光触媒性コーティングに吸収されることはなく、ガラスやレンズや鏡が補色成分によって発色することがない。アナターゼ型チタニアは波長387nm以下、ルチル型チタニアは413nm以下、酸化錫は344nm以下、酸化亜鉛は387nm以下の紫外線で光励起することができる。
- 紫外線光源としては、蛍光灯、白熱電灯、メタルハライドランプ、水銀ランプのような室内照明灯を使用することができる。防曇性のガラスやレンズや鏡は紫外線にさらされ、光触媒の光励起により表面が超親水化される。車両のバックミラーのように太陽光にさらされる条件では、有利なことに太陽光に含まれる紫外線により光触媒は自然に光励起される。
- 光励起は、表面の水との接触角が約10°以下、好ましくは約5°以下、特に約0°になるまで行い、或いは行わせることができる。一般には、0.001mW/cm²の紫外線照度で光励起すれば、数日で水との接触角が約0°になるまで超親水化することができる。地表に降り注ぐ太陽光に含まれる紫外線の照度は約0.1～1mW/cm²であるから、太陽光にさらせばより短時間で表面を超親水化することができる。
- 基材の表面を降雨により自己浄化（セルフクリーニング）したり、汚染物質の付着を防止するに際しては、紫外線或いは可視光で光励起可能な光触媒で光触媒性コーティングを形成することができる。光触媒性コーティングで被覆された物品は屋外に配置され、太陽光の照射と降雨にさらされる。
- 光触媒性コーティングがチタニア含有シリコーンで形成されている場合には、シリコーン分子のケイ素原子に結合した表面有機基が充分な量だけ水酸基に置換されるに充分な照度で光触媒を光励起するのが好ましい。このための最も有利な方法は、太陽光を利用することである。

表面が一旦高度に親水化された後は、親水性は夜間でも持続する。再び太陽光にさらされる度に親水性は回復され、維持される。

本発明の光触媒性コーティングで被覆された基材を使用者に提供するに際しては、光触媒性コーティングを予め超親水化しておくのが望ましい。

5

実施例

以下の実施例は本発明の産業上の利用可能性を種々の観点から示すものである。

実施例 1

10 防曇性鏡—シリカ層を挟んだ防曇性光触媒性コーティング

エタノールの溶媒 86 重量部に、テトラエトキシシラン $\text{Si}(\text{OC}_2\text{H}_5)_4$ (和光純薬、大阪) 6 重量部と純水 6 重量部とテトラエトキシシランの加水分解抑制剤として 36% 塩酸 2 重量部を加えて混合し、シリカコーティング溶液を調整した。混合により溶液は発熱するので、混合液を約 1 時間放置冷却した。この溶液をフローコーティング法により 10 μm 四角のソーダライムガラス板の表面に塗布し、80°C の温度で乾燥させた。乾燥に伴い、テトラエトキシシランは加水分解を受けて先ずシラノール $\text{Si}(\text{OH})_4$ になり、続いてシラノールの脱水縮重合により無定形シリカの薄膜がガラス板の表面に形成された。

次に、テトラエトキシチタン $\text{Ti}(\text{OC}_2\text{H}_5)_4$ (Merck) 1 重量部とエタノール 9 重量部との混合物に加水分解抑制剤として 36% 塩酸を 0.1 重量部添加してチタニアコーティング溶液を調整し、この溶液を前記ガラス板の表面に乾燥空气中でフローコーティング法により塗布した。塗布量はチタニアに換算して $45 \mu\text{g/cm}^2$ とした。テトラエトキシチタンの加水分解速度は極めて早いので、塗布の段階でテトラエトキシチタンの一部は加水分解され、水酸化チタン $\text{Ti}(\text{OH})_4$ が生成し始めた。

次に、このガラス板を 1 ~ 10 分間約 150°C の温度に保持することにより、テトラエトキシチタンの加水分解を完了させると共に、生成した水酸化チタンを脱水縮重合に付し、無定形チタニアを生成させた。こうして、無定形シリカの上に

無定形チタニアがコーティングされたガラス板を得た。

この試料を 500°C の温度で焼成して、無定形チタニアをアナターゼ型チタニアに変換させた。無定形チタニアコーティングの下層には無定形シリカのコーティングが施されているので、焼成の際にガラス板中のナトリウムのようなアルカリ網目修飾イオンがガラス基材からチタニアコーティング中に拡散していないと考えられる。

次に、このガラス板の裏面に真空蒸着によりアルミニウムの反射コーティングを形成して鏡を製作し、# 1 試料を得た。

1 試料を数日間暗所に放置した後、20W のブルーライトブラック (BLB) 灰光灯 (三共電気、FL20BLB) を用いて試料の表面に 0.5 mW/cm^2 の紫外線照度 (アナターゼ型チタニアのバンドギャップエネルギーより高いエネルギーの紫外線 - 387 nm より短い波長の紫外線 - の照度) で約 1 時間紫外線を照射し、# 2 試料を得た。

比較のため、シリカおよびチタニアのコーティングを施さないガラス板の裏面に真空蒸着によりアルミニウムの反射コーティングを形成し、数日間暗所に放置した後、# 3 試料を得た。

2 試料と # 3 試料の水との接触角を接触角測定器 (埼玉県朝霞市の協和界面科学社製、形式 CA-X150) により測定した。この接触角測定器の低角度側検出限界は 1° であった。接触角は、マイクロシリンジから試料表面に水滴を滴下した後 30 秒後に測定した。# 2 試料の表面の水に対する測定器の読みは 0° であり、超親水性を示した。これに対し、# 3 試料の水との接触角は $30\sim40^\circ$ であった。

次に、# 2 試料と # 3 試料について、防曇性と付着水滴の広がりかたを評価した。防曇性の評価は、500ml のビーカーに約 80°C の湯を 300ml 入れ、次いでビーカー上に鏡の表面を下に向けて試料を約 10 秒間保持し、その直後の試料表面の曇りの有無と試験者の顔の映り具合で評価した。

3 試料では鏡の表面は湯気で曇り、試験者の顔の映像がよく映らなかつたが、# 2 試料では曇りは全く観察されず、試験者の顔は明瞭に反映された。

付着水滴の広がり状態の評価は、 45° に傾斜させた鏡の表面にスポイドで上方

から多数の水滴を滴下し、鏡を一度垂直にした後の水滴付着状態と試験者の顔の映り具合で評価した。

- # 3 試料では、鏡の表面に散らばった目障りな孤立した水滴が付着し、水滴による光の屈折により反射像が乱され、反射像を明瞭に観察するのが困難であった。
- 5 これに対し、# 2 試料では、鏡の表面に付着した水滴は孤立した水滴を形成することなく表面に広がって一様な水膜を形成した。水膜の存在により反射像には多少の歪みが観察されたが、試験者の顔の反射像は充分明瞭に認識することができた。

10

実施例 2

防曇性鏡 - シリカ配合チタニアからなる光触媒性コーティング

日本板硝子製の鏡 (MFL3) の表面に実施例 1 と同様の方法で無定形シリカの薄膜を形成した。

- 次に、テトラエトキシシラン（和光純薬）0.69 g とアナターゼ型チタニアゾル
15 （日産化学、TA-15、平均粒径 0.01 μm ）1.07 g とエタノール 29.88 g と純水 0.36 g を混合し、コーティング溶液を調整した。このコーティング溶液をスプレー
コーティング法により鏡の表面に塗布した。この鏡を約 20 分間約 150°C の温度
に保持することにより、テトラエトキシシランを加水分解と脱水縮重合に付し、
アナターゼ型チタニア粒子が無定形シリカのバインダーで結着されたコーティン
20 グを鏡の表面に形成した。チタニアとシリカの重量比は 1 であった。

この鏡を数日間暗所に放置した後、BLB 蛍光灯を用いて 0.5 mW/cm² の照度
で約 1 時間紫外線を照射し、# 1 試料を得た。この鏡の表面の水との接触角を実
施例 1 と同様の接触角測定器で測定したところ、接触角の読みは 0° であった。

- 次に、# 1 試料と光触媒性コーティングのない鏡 MFL3 について実施例 1 と同
25 様の方法で防曇性と付着水滴の広がりかたを評価した。防曇性の検査では、鏡 M
FL3 では鏡の表面に曇りが観察され、試験者の顔の映像がよく映らなかつたが、
1 試料では曇りは全く観察されず、試験者の顔も明瞭に反映された。付着水滴
の広がりかたの検査では、鏡 MFL3 では、表面に分散した水滴により光が屈折し

て反射像が乱され、反射像を明瞭に観察するのが困難であったが、#1試料では、鏡の表面に付着した水滴は表面に広がって一様な水膜を形成し、水膜の存在により反射像には多少の歪みが観察されたが、試験者の顔の反射像は充分明瞭に認識することができた。

5

実施例3

防曇性眼鏡レンズ

市販の眼鏡レンズの両面に実施例1と同様の方法で先ず無定形シリカの薄膜を形成した。

10 次に、実施例2と同様のコーティング溶液をスプレーコーティング法によりレンズの両面に塗布した後、約20分間約150°Cの温度に保持することによりテトラエトキシシランを加水分解と脱水縮重合に付し、アナターゼ型チタニア粒子が無定形シリカのバインダーで結着されたコーティングをレンズの両面に形成した。

このレンズを数日間暗所に放置した後、BLB蛍光灯を用いて 0.5 mW/cm^2 の照度で約1時間紫外線を照射した。このレンズの表面の水との接触角を実施例1と同様の接触角測定器で測定したところ、接触角の読みは 0° であった。このレンズを眼鏡の右側フレームに装着し、比較のため左側フレームには通常のレンズを装着した。

20 数時間後に試験者がこの眼鏡を装着して約5分間入浴したところ、左側の通常のレンズは湯気で曇り視界が失われたが、紫外線照射された光触媒性コーティングを備えた右側のレンズには曇りは全く生じなかった。

次に、試験者がこの眼鏡に故意にシャワーをかけたところ、左側の通常のレンズには目障りな水滴が付着し視界が妨げられたが、右側のレンズに付着した水滴は速やかに水膜に広がり、充分な視界が確保された。

25

実施例4

防曇性ガラスー膜厚7 nmのチタニアコーティング

10 cm四角のソーダライムガラス板の表面にチタンキレート含有液を塗布し、

チタンキレートを加水分解と脱水縮重合に付すことにより、無定形チタニアをガラス板の表面に形成した。このガラス板を 500°C の温度で焼成して、アナターゼ型チタニア結晶からなる表面層を形成した。表面層の膜厚は 7 nm であった。

得られた試料の表面に先ず、BLB 蛍光灯を用いて 0.5 mW/cm^2 の照度で約 1
5 時間紫外線を照射した。この試料の表面の水との接触角を接触角測定器 (ERMA
社製、形式 G-I-1000、低角度側検出限界 3°) で測定したところ、接触角の読み
は 3° 未満であった。

次に、20W の白色蛍光灯 (東芝、FL20SW) を用いて 0.01 mW/cm^2 の紫外
10 線照度で紫外線を照射しながら、接触角の時間的変化を測定した。結果を第 3 図
のグラフに示す。このグラフから分かるように、白色蛍光灯から出る微弱な紫外
線によっても試料の表面が高度の親水性に維持された。

この実施例から、光触媒性チタニアコーティングの膜厚を 7 nm と非常に薄く
しても表面が高度の親水性に維持されることが分かる。これは、窓ガラスのような基材の透明度を確保する上で極めて重要である。

15

実施例 5

防曇性ガラスー膜厚 20 nm のチタニアコーティング

実施例 4 と同様にしてソーダライムガラス板の表面にアナターゼ型チタニア結晶からなる表面層を形成した。表面層の膜厚は 20 nm であった。

20 実施例 4 と同様に、得られた試料の表面に先ず BLB 蛍光灯を用いて 0.5 mW/cm^2 の照度で約 1 時間紫外線を照射した後、白色蛍光灯を用いて 0.01 mW/cm^2 の紫外線照度で紫外線を照射しながら、接触角の時間的変化を測定した。結果を第 4 図のグラフに示す。この実施例においても、白色蛍光灯の微弱な紫外線によって試料の表面が高度の親水性に維持された。

25

実施例 6

防曇性ガラスー無定形チタニアの焼成温度の影響

実施例 1 と同様の方法で、10 cm 四角のソーダライムガラス板の表面に先ず無

定形シリカの薄膜を形成し、次いで、その上に無定形チタニアの薄膜を形成し、複数の試料を得た。

これらのガラス板を夫々 450°C 、 475°C 、 500°C 、 525°C の温度で焼成した。粉末X線回折で調べたところ、 475°C 、 500°C 、 525°C の温度で焼成した試料について、⁵アナターゼ型の結晶質チタニアが検出され、無定形チタニアがアナターゼ型結晶質チタニアに変換されているのが確認されたが、 450°C で焼成した試料についてはアナターゼ型チタニアは検出されなかった。

得られたガラス板の表面に先ず BLB 蛍光灯を用いて 0.5 mW/cm^2 の紫外線照度で約3時間紫外線を照射した後、白色蛍光灯を用いて 0.02 mW/cm^2 の紫外線照度で紫外線を照射しながら、接触角測定器 (CA-X150) を用いて接触角の時間的変化を測定した。得られた結果を表1に示す。¹⁰

表1

焼成温度 ($^{\circ}\text{C}$)	BLB 照射直後 の接触角 ($^{\circ}$)	3日後の 接触角 ($^{\circ}$)	9日後の 接触角 ($^{\circ}$)	14日後の 接触角 ($^{\circ}$)
450	10	13	15	23
475	0	0	0	0
500	0	0	0	0
525	0	0	0	0

¹⁵ 表1から分かるように、 475°C 、 500°C 、 525°C の温度で焼成されアナターゼ結晶が観察された試料については、白色蛍光灯の紫外線を照射し続ける限り接触角が 0° に維持され、ガラス板の表面が超親水性に維持されることが確認された。しかし、 450°C で焼成した試料の無定形チタニア被覆には光触媒活性がなく、時間の経過につれて接触角が増加することが確認された。²⁰

475°C、500°C、525°C の温度で焼成した試料に息を吹きかけたところ、試料の表面には疊りは全く生じなかった。

実施例 7

防暴性ガラスーアルカリ網目修飾イオンの拡散の影響

実施例 1 と同様のチタニアコーティング溶液を調整し、この溶液を 10 cm 四角のソーダライムガラス板の表面にフローコーティング法により塗布した。塗布量は実施例 1 と同様にチタニアに換算して $45 \mu\text{g/cm}^2$ とした。

このガラス板を同様にして 1 ~ 10 分間約 150°C の温度に保持することにより、ガラス板の表面に無定形チタニアを生成させた。この試料を 500°C の温度で焼成して、無定形チタニアをアナターゼ型チタニアに変換させた。

この試料を数日間暗所に放置した後、BLB 蛍光灯を用いて試料の表面に 0.5 mW/cm^2 の紫外線照度で約 1 時間紫外線を照射した。接触角測定器 (CA-X150) により水との接触角を測定したところ、接触角は 3° であった。

この試料の接触角が 0° にならなかったのは、実施例 1 に較べ、この実施例ではガラス基材とチタニア層との間にシリカの層が介在させてないので、 500°C での焼成中にナトリウムのようなアルカリ網目修飾イオンがガラス基材からチタニアコーティング中に拡散し、アナターゼの光触媒活性を阻害したものと考えられる。

従って、水との接触角が 0° になる程度の超親水性を実現するためには、実施例 1 のようにシリカの中間層を介在させた方が良いと考えられる。

20

実施例 8

防暴性ガラスースパッタリングによる無定形チタニアの形成

10 cm 四角のソーダライムガラス板の表面にスパッタリングにより金属チタン膜を被着し、 500°C の温度で焼成した。粉末 X 線回折で調べたところ、ガラス板の表面にはアナターゼ型チタニアが生成していることが観察された。焼成により金属チタンが酸化され、アナターゼが生成したものと考えられる。

焼成直後から BLB 蛍光灯を用いて試料の表面に 0.5 mW/cm^2 の紫外線照度で紫外線を照射しながら、接触角測定器 (CA-X150) により水との接触角を測定し、接触角の時間的変化を観測した。その結果を第 5 図のグラフに示す。このグ

ラフから分かるように、水との接触角は3°未満に維持された。この試験から、スパッタリングにより光触媒層を形成した場合にも紫外線の照射によりガラス板の表面が高度の親水性に維持されることが確認された。

5

実施例9

防曇性ガラス-紫外線照度800ルクス

10 cm四角のソーダライムガラス板の表面に実施例1と同様の方法で無定形シリカの薄膜を形成した。

次に、実施例2のコーティング溶液をスプレーコーティング法によりガラス板10の表面に塗布した。このガラス板を約20分間約150°Cの温度に保持することにより、アナターゼ型チタニア粒子が無定形シリカのバインダーで結着されたコーティングをガラス板の表面に形成した。チタニアとシリカの重量比は1であった。

このガラス板を数日間暗所に放置した後、BLB蛍光灯を用いて0.5 mW/cm²の照度で約1時間紫外線を照射した。紫外線照射後のこのガラス板の表面の水との接触角を接触角測定器(CA-X150)で測定したところ、接触角は0°であった。

次いで、この試料に白色蛍光灯を用いて0.004 mW/cm²(800ルクス)の紫外線照度で4日間紫外線を照射し続けた。照射中は試料表面の接触角は2°未満に維持された。4日後にガラス板に息を吹きかけたところ、曇りは生じなかった。

20 以上のことから、白色蛍光灯のような室内照明下において微弱な紫外線によってガラス板の表面が高度の親水性に維持され、ガラス板が曇るのが防止されることが確認された。

実施例10

防曇性ガラス-シリカ/チタニア配合比の影響

次に、テトラエトキシシラン(和光純薬)とアナターゼ型チタニアゾル(日産化学、TA-15)とエタノールと純水を混合し、テトラエトキシシランとチタニアゾルとの配合比の異なる4種のコーティング溶液を調整した。テトラエトキシ

ランとチタニアゾルとの割合は、テトラエトキシシランを無定形シリカに変換した後のシリカとチタニアの合計に対するシリカの割合に換算して、10モル%、30モル%、50モル%、70モル%になるようにした。

- これらのコーティング溶液を10cm四角のソーダライムガラス板の表面にス
- 5 プレコーティング法により塗布し、約20分間約150°Cの温度に保持することにより、テトラエトキシシランを加水分解と脱水縮重合に付し、アナターゼ型チタニア粒子が無定形シリカのバインダーで結着されたコーティングをガラス板の表面に形成した。

- これらの試料を1週間暗所に放置した後、BLB蛍光灯を用いて0.3mW/cm²
- 10 の照度で約1時間紫外線を照射した。紫外線照射後のこれらの試料の表面の水との接触角を接触角測定器(CA-X150)で測定したところ、接触角はいずれも0°であった。

- 次いで、これらの試料のうち、シリカの割合が30モル%および50モル%の試料に白色蛍光灯を用いて0.004mW/cm²の紫外線照度で3日間紫外線を
- 15 照射し続けたところ、照射中は試料表面の接触角は3°未満に維持された。

実施例11

防曇性ガラスールチル型光触媒性コーティング

- テトラエトキシチタン Ti(OC₂H₅)₄(Merck) 1重量部とエタノール9重量部との混合物に加水分解抑制剤として36%塩酸を0.1重量部添加してチタニアコーティング溶液を調整した。このコーティング溶液を10cm四角の複数の石英ガラス板の表面に乾燥空気中でフローコーティング法により塗布した。塗布量はチタニアに換算して45μg/cm²とした。

- 次に、これらのガラス板を1~10分間約150°Cの温度に保持することにより、
- 25 テトラエトキシチタンを加水分解と脱水縮重合に付し、ガラス板の表面に無定形チタニアのコーティングを形成した。

これらの試料を650°Cおよび800°Cの温度で焼成して、無定形チタニアを結晶化させた。粉末X線回折法により調べたところ、650°C焼成試料の結晶型はアナ

ターゼ型であり、800°C 焼成試料の結晶型はルチル型であることが分かった。

得られた試料を 1 週間暗所に放置した後、BLB 蛍光灯を用いて 0.3 mW/cm^2 の照度で 2 日間紫外線を照射した。紫外線照射後に接触角を測定したところ、いづれの試料の表面の水との接触角も 0° であった。

- 5 以上から、アナターゼ型チタニアだけでなく、光触媒がルチルの場合でも表面が高度の親水性に維持されることが分かる。

このことから、光触媒による超親水化現象は、光触媒性酸化還元反応とは必ずしも同じではないように見受けられる。

10

実施例 1 2

防曇性ガラス - 透過性試験

実施例 1 と同様の方法で、10 cm 四角のソーダライムガラス板の表面に先ず無定形シリカの薄膜を形成し、次いで、その上に無定形チタニアの薄膜を形成した。このガラス板を 500°C の温度で焼成し、無定形チタニアをアナターゼ型チタニアに変換した。得られた試料を数日間暗所に放置した。次に、BLB 蛍光灯を内蔵したデシケータ（温度 24°C、湿度 45~50%）内にこのガラス板を配置し、 0.5 mW/cm^2 の照度で 1 日間紫外線を照射し、# 1 試料を得た。# 1 試料の水との接触角を測定したところ 0° であった。

次に、# 1 試料をデシケータから取り出して、60°C に保持した温浴上に迅速に移し、15 秒後に透過率を測定した。測定された透過率を元の透過率で割り、水蒸気の凝縮により生成した曇りに起因する透過率の変化を求めた。

実施例 7 と同様にして、ガラス板の表面をアナターゼ型チタニアで被覆し、# 2 試料を得た。# 2 試料を前記デシケータ内に配置し、 0.5 mW/cm^2 の照度で、水との接触角が 3° になるまで紫外線を照射した。

25 次に、# 2 試料を暗所に放置した。異なる時間間隔で、# 2 試料を暗所から取り出し、水との接触角をその都度測定した。更に、# 2 試料を一旦デシケータ（温度 24°C、湿度 45~50%）内に移し、温度を平衡させた後、# 1 試料と同様に、6 0°C に保持した温浴上に迅速に移し、15 秒後に透過率を測定し、水蒸気の凝縮に

より生成した曇りに起因する透過率の変化を求めた。

比較のため、市販の並板ガラス、アクリル樹脂板、ポリ塩化ビニル板、ポリカーボネート板について、水との接触角を測定した。更に、これらの板材を同じ条件のデシケータ内に移し、温度を平衡させた後、同様に、60°Cに保持した温浴上に迅速に移し、15秒後に透過率を測定し、水蒸気の凝縮により生成した曇りに起因する透過率の変化を求めた。
5

得られた結果を表2に示す。

表2

試料	水との接触角(°)	透過率の変化(%)
# 1 試料	0	100
# 2 試料(3時間後)	5.0	100
# 2 試料(6時間後)	7.7	100
# 2 試料(8時間後)	8.2	100
# 2 試料(24時間後)	17.8	89.8
# 2 試料(48時間後)	21.0	88.5
# 2 試料(72時間後)	27.9	87.0
並板ガラス	40.6	45.5
アクリル樹脂板	64.5	60.6
ポリ塩化ビニル板	75.3	44.7
ポリカーボネート板	86.0	49.0

10

この結果から、水との接触角が10°以下であれば、極めて高い防曇性が実現されることが確認された。

実施例13

15

光触媒含有シリコンコーティング

この実施例は、光触媒を含有する或る種の高分子コーティングに紫外線を照射

すれば、塗膜が高度に親水化されるという発見に関するものである。

基材として 10 cm 四角のアルミニウム基板を使用した。基板の表面を平滑化するため、予めシリコーン層で被覆した。このため、日本合成ゴム（東京）の塗料用組成物“グラスカ”の A 液（シリカゾル）と B 液（トリメトキシメチルシラン）を、シリカ重量とトリメトキシメチルシランの重量の比が 3 になるように混合し、この混合液をアルミニウム基板に塗布し、150°C の温度で硬化させ、膜厚 3 μm のシリコーンのベースコートで被覆された複数のアルミニウム基板（# 1 試料）を得た。

次に、光触媒を含有する高分子塗料により # 1 試料を被覆した。塗料の塗膜形成要素が光触媒の光酸化作用によって劣化するのを防止するため、塗膜形成要素としてシリコーンを選んだ。

より詳しくは、アナターゼ型チタニアゾル（日産化学、TA-15）と前記“グラスカ”の A 液（シリカゾル）を混合し、エタノールで希釈後、更に“グラスカ”的上記 B 液を添加し、チタニア含有塗料用組成物を調整した。この塗料用組成物の組成は、シリカ 3 重量部、トリメトキシメチルシラン 1 重量部、チタニア 4 重量部であった。

この塗料用組成物を # 1 試料の表面に塗布し、150°C の温度で硬化させ、アナターゼ型チタニア粒子がシリコーン塗膜中に分散されたトップコートを形成し、# 2 試料を得た。

次に、# 2 試料に BLB 蛍光灯を用いて 0.5 mW/cm² の照度で 5 日間紫外線を照射し、# 3 試料を得た。この試料の表面の水との接触角を接触角測定器（ERMA 社製）で測定したところ、驚いたことに、接触角の読みは 3° 未満であった。

紫外線照射前の # 2 試料の接触角を測定したところ、70° であった。# 1 試料の接触角を測定したところ、90° であった。更に、# 1 試料に # 2 試料に同じ条件で 5 日間紫外線を照射し、接触角を測定したところ、接触角は 85° であった。

以上から、シリコーンは本来かなり疎水性であるにも拘わらず、光触媒を含有させ、かつ、紫外線照射により光触媒を励起した場合には、高度に親水化される

ことが発見された。

実施例 14

ラマン分光分析

5 実施例 13 の # 2 試料に水銀灯を用いて 22.8 mW/cm^2 の紫外線照度で 2 時間紫外線を照射し、# 4 試料を得た。照射前の # 2 試料と照射後の # 4 試料のラマン分光分析を行った。比較のため、# 1 試料にも同様の条件で紫外線を照射し、照射前後の試料のラマン分光分析を行った。ラマンスペクトルを第 6 図のグラフに示す。# 1 試料の照射前後のラマンスペクトルは同一であったので、第 6
10 図のグラフではカーブ # 1 で示す。

第 6 図のグラフを参照するに、# 2 試料のラマンスペクトルにおいて、波数 2910cm^{-1} の位置には sp^3 混成軌道の C-H 結合対称伸縮の大きなピークが認められ、波数 2970cm^{-1} の位置には sp^3 混成軌道の C-H 結合逆対称伸縮の大きなピークが認められる。従って、# 2 試料には C-H 結合が存在することが帰結される。

15 # 4 試料のラマンスペクトルにおいては、波数 2910cm^{-1} の位置および 2970cm^{-1} の位置のいづれにもピークが認められない。その代わりに、波数 3200cm^{-1} の位置にピークを有する広い幅の O-H 結合対称伸縮が認められる。従って、# 4 試料には C-H 結合が存在せず、その代わりに、O-H 結合が存在することが帰結される。

20 これに対して、# 1 試料のラマンスペクトルにおいては、照射前後を通じて、波数 2910cm^{-1} の位置には sp^3 混成軌道の C-H 結合対称伸縮の大きなピークが認められ、 2970cm^{-1} の位置には sp^3 混成軌道の C-H 結合逆対称伸縮の大きなピークが認められる。従って、# 1 試料には C-H 結合が存在することが確認される。

以上のことから、光触媒を含有するシリコーンに紫外線を照射した場合には、
25 下記の一般式 (1) で示すシリコーンの分子のケイ素原子に結合した有機基が光触媒作用によって水酸基に置換され、式 (2) で示すようなシリコーン誘導体が表面に形成されているものと考えられる。

(式中、Rは、アルキル基又はアリル基を表す)

実施例 15

防暴性プラスチック板-光触媒含有シリコーンからなる防暴性コーティング
 プラスチック基材が光触媒により劣化するのを防止するため、基材の表面を予
 20 めシリコーン層で被覆した。

このため、実施例 13 と同様のやり方で、日本合成ゴムの“グラスカ”の A 液
 と B 液を、シリカ重量とトリメトキシメチルシランの重量の比が 3 になるように
 混合し、コーティング液を調整した。このコーティング液を 10 cm 四角のアクリル樹脂板の表面に塗布し、100°C の温度で硬化させ、膜厚 5 μm のシリコーン
 25 のベースコートで被覆された複数のアクリル樹脂板 (#1) を得た。

次に、アナターゼ型チタニアゾル（日産化学、TA-15）と前記“グラスカ”的
 A 液を混合し、エタノールで希釈後、更に“グラスカ”的 B 液を添加し、組成の
 異なる 4 種のコーティング液を調整した。これらのコーティング液の組成は、チ
 タニア重量とシリカ重量とトリメトキシメチルシラン重量との和に対するチタニ
 30 アの重量の比が、夫々、5%、10%、50%、80% になるように調整した。
 夫々のコーティング液をシリコーン層が被覆された前記アクリル樹脂板に塗布

し、100°Cの温度で硬化させ、アナターゼ型チタニア粒子がシリコーン塗膜中に分散されたトップコートを形成し、#2～#5試料を得た。

- #1～#5試料にBLB蛍光灯を0.5mW/cm²の照度で最大200時間紫外線を照射しながら、異なる時間間隔でこれらの試料の表面の水との接触角を接触角測定器(ERMA社製)で測定し、接触角の時間的変化を観測した。結果を第7図のグラフに示す。

第7図のグラフから分かるように、チタニア含有層のない#1試料においては、紫外線を照射しても水との接触角には殆ど変化が見られない。

- これに対して、チタニア含有トップコートを備えた#2～#5試料においては、紫外線照射に応じて水との接触角が10°未満になるまで親水化されることが分かる。

特に、チタニアの割合が10重量%以上の#3～#5試料においては、水との接触角は3°以下になることが分かる。

- 更に、チタニアの割合が夫々50重量%と80重量%の#4試料と#5試料においては、短時間の紫外線照射で水との接触角は3°以下になることが注目される。

#4試料に息を吹きかけたところ、曇りは生じなかった。#4試料を2週間暗所に放置した後、接触角測定器(CA-X150)により水との接触角を測定したところ、水との接触角は3°以下であった。

20

実施例16

鉛筆スクラッチ試験

チタニア含有トップコートの耐摩耗性を調べるために、鉛筆スクラッチ試験を行った。

- 25 実施例15と同様の方法で、10cm四角の複数のアクリル樹脂板の表面に膜厚5μmのシリコーンのベースコートを被覆し、次いでチタニア含有量の異なるトップコートを夫々被覆した。トップコートのチタニアの割合は、夫々、50重量%、60重量%、90重量%であった。

日本工業規格 (JIS) H8602 に従い、試料の表面を鉛筆の芯でスクラッチし、トップコートが剥離する最も硬い鉛筆芯を検出した。また、ベースコートのみで被覆された試料についても同様に試験した。結果を、第 8 図のグラフに示す。

- チタニアの割合が 90 重量% のトップコートは硬度 5 B の鉛筆芯で剥離したが、
5 チタニア割合が 60 重量% のトップコートは硬度 H の鉛筆芯に耐えることができ、
充分な耐摩耗性を呈した。明らかに、トップコートの耐摩耗性はチタニア含有量
の減少に伴い増加する。

実施例 17

10

膜厚の影響

実施例 13 と同様のやり方で、10 cm 四角のアルミニウム板の表面に先ず膜厚 5 μm のシリコーンのベースコートを形成し、次いで、その上に膜厚の異なるアナターゼ型チタニア含有トップコートを形成し、複数の試料を得た。# 1 試料のトップコート膜厚は 0.03 μm 、# 2 試料のトップコート膜厚は 0.1 μm 、# 3
15 # 3 試料のトップコート膜厚は 0.2 μm 、# 4 試料のトップコート膜厚は 0.6 μm 、
5 試料のトップコート膜厚は 2.5 μm であった。

夫々の試料に BLB 蛍光灯により 0.5 mW/cm^2 の紫外線照度で紫外線を照射しながら、接触角測定器 (ERMA 社製) を用いて試料の表面の水との接触角の時間的変化を調べた。結果を第 9 図のグラフに示す。

20 第 9 図のグラフから分かるように、いづれの試料においても、膜厚に関係なく、照射 50 時間以内に表面は高度に親水化され、水との接触角は 3° 未満になった。特に、チタニア含有トップコートの膜厚を 0.2 μm 以下にしても、トップコート表面を高度に親水化するに充分な光触媒活性が得られることが注目される。この点に関し、一般に、透明層の膜厚が 0.2 μm 以上になれば光の干渉による発色が
25 起ることが知られている。この実施例は、トップコートの膜厚を 0.2 μm 以下にすれば、光の干渉によるトップコートの発色を防止しながらも表面を高度に親水化することができることを示している。

次に、# 1 試料から # 5 試料についてメチルメルカプタンの光分解性能を調べ

た。紫外線を透過可能な石英ガラス製の容積 1 1 リッターのデシケータ内に夫々の試料を配置し、メチルメルカプタンを含有する窒素ガスをメチルメルカプタンの濃度が 3 ppm になるように注入した。デシケータ内に試料から 8 cm の距離のところに 4 W の BLB 蛍光灯を配置し、0.3 mW/cm² の紫外線照度で紫外線を
5 照射した。30 分後にデシケータ内のガスを採取し、ガスクロマトグラフによりメチルメルカプタン濃度を測定し、メチルメルカプタンの除去率を求めた。結果を第 10 図のグラフに示す。

第 10 図のグラフは、光触媒層の膜厚が増加するにつれてメチルメルカプタンの光分解性能が増加することを示している。第 9 図のグラフに関連して前述した
10 ように、光触媒による超親水化現象は膜厚の影響を受けないのに対して、光触媒の光分解性能は明らかに膜厚の影響を受けることが判る。従って、光触媒による超親水化現象は、光触媒の分野において從来知られている光触媒性酸化還元反応とは必ずしも同じではないように見受けられる。

15

実施例 18

チタニア含有シリコーンからなる高親水性光触媒性コーティング

実施例 13 と同様のやり方で、10 cm 四角のアルミニウム板の表面に先ず膜厚 5 μm のシリコーンのベースコートを形成した。

次に、アナターゼ型チタニアゾル（日産化学、TA-15）と前記“グラスカ”の
20 B 液（トリメトキシメチルシラン）を混合し、エタノールで希釈し、チタニア含有塗料用組成物を調整した。トリメトキシメチルシランの重量とチタニアの重量の比は 1 であった。

この塗料用組成物をアルミニウム板に塗布し、150°C の温度で硬化させ、アナターゼ型チタニア粒子がシリコーン塗膜中に分散されたトップコートを形成した。
25 トップコートの膜厚は 0.1 μm であった。

次に、この試料に BLB 蛍光灯を用いて 0.5 mW/cm² の照度で 1 日間紫外線を照射した。この試料の表面の水との接触角を接触角測定器（CA-X150）で測定したところ、接触角の読みは 0° であった。

更に、この試料を3週間暗所に保管しながら、1週間毎に水との接触角を測定した。接触角を表3に示す。

表3

照射直後	1週間後	2週間後	3週間後
0°	2°	1°	3°

5

表3から分かるように、光触媒性表面を一旦超親水化すれば、光励起しなくてもかなりの長期間にわたって超親水性が持続する。

実施例19

10

抗菌性増強剤-Ag 添加光触媒

実施例1と同様の方法で、10cm四角のソーダライムガラス板の表面に無定形シリカの薄膜と無定形チタニアの薄膜を形成し、この試料を500°Cの温度で焼成して、無定形チタニアをアナターゼ型チタニアに変換させ、#1試料を得た。

次に、#1試料の表面に1重量%の乳酸銀水溶液を塗布し、試料から距離20cmのところに20WのBLB蛍光灯を配置して点灯し、試料に紫外線を1分間照射し、#2試料を得た。紫外線照射により、乳酸銀が光還元されて銀が析出すると共に、チタニアの光触媒作用により試料の表面が親水化された。#1試料にも同じ条件で紫外線を照射した。

接触角測定器(ERMA社製)を用いて#1試料と#2試料の表面の水との接触角を調べたところ、いづれも3°未満であった。更に、これらの試料に息を吹きかけたところ、曇りは生じなかった。比較のため、基材のソーダライムガラス板を調べたところ、水との接触角は50°であり、息を吹きかけると容易に曇りが生じた。

次に、#1試料と#2試料とソーダライムガラス板について抗菌性能を調べた。大腸菌(*Escherichia coli* W3110株)を一夜振とう培養した培養液を遠心洗浄し、滅菌蒸留水で1万倍に希釈して菌液を調整した。この菌液0.15ml(10000-50000

CFU) を 10 cm 四角の 3 枚のスライドガラスに滴下し、夫々のスライドガラスを予め 70% エタノールで殺菌した #1 試料と #2 試料とソーダライムガラス板に密着させ、スライドガラスの前面から白色蛍光灯を 3500 ルクスの照度で 30 分間照射した。次に、夫々の試料の菌液を滅菌ガーゼで拭い取って 10 ml の生理食
5 塩水に回収し、回収した菌液を普通寒天培地に塗布した後、37°C で 1 日間培養した。培地上の大腸菌集落数を計数し、大腸菌の生存率を求めた。その結果、#1 試料とソーダライムガラス板については大腸菌の生存率は 70 % 以上であったが、
#2 試料では 10 % 未満であった。

この試験は、光触媒を Ag でドーピングした場合には、基材の表面が高度に親
10 水化されるだけでなく、抗菌性を呈することを示す。

実施例 20

抗菌性増強剤 - Cu 添加光触媒

実施例 1 と同様の方法で、10 cm 四角のソーダライムガラス板の表面に無定
15 形シリカの薄膜を形成し、複数の #1 試料を得た。

次に、実施例 1 と同様の方法で、#1 試料の表面に無定形チタニアの薄膜を生成させ、500°C の温度で焼成して無定形チタニアをアナターゼ型チタニアに変換させた。この試料の表面に 1 重量 % の酢酸銅エタノール溶液をスプレーコーティング法により塗布した後乾燥させ、試料から距離 20 cm のところに配置した 20 W の BLB 蛍光灯により試料に紫外線を 1 分間照射することにより酢酸銅エタノールを光還元析出させ、チタニア結晶が銅でドーピングされた #2 試料を得た。
#2 試料を肉眼で観察したところ、充分な光透過性を備えていた。

ソーダライムガラス板と製作直後の #2 試料および #1 試料（チタニアコーティングなし）の防曇性と水との接触角を検査した。防曇性の検査は、試料に息を吹きかけて試料の表面に曇りを生じさせ、顕微鏡により凝縮水滴の有無を観察することにより行った。接触角は接触角測定器（ERMA 社製）により測定した。結果を表 4 に示す。

表4
試料製作直後

	水との接触角 (°)	防曇性
# 2 試料	10	曇りなし
# 1 試料	9	曇りなし
ソーダライムガラス板	50	曇り有り

更に、# 2 試料と # 1 試料とソーダライムガラス板の夫々に BLB 蛍光灯を 0.
5 5 mW/cm² の紫外線照度で約 1 カ月間照射した後、防曇性と水との接触角を同様に検査した。結果を表 5 に示す。

表5
紫外線 1 カ月間照射後

	水との接触角 (°)	防曇性
# 2 試料	3	曇りなし
# 1 試料	49	曇り有り
ソーダライムガラス板	53	曇り有り

10

次に、製作直後の # 2 試料および # 1 試料とソーダライムガラス板について実施例 19 と同様の方法で抗菌性能を調べた。その結果、ソーダライムガラス板および # 1 試料については大腸菌の生存率は 70 % 以上であったが、# 2 試料では 10 % 未満であった。

15

次に、製作直後の # 2 試料および # 1 試料とソーダライムガラス板について脱臭性能を調べた。紫外線を透過可能な石英ガラス製の容積 1.1 リッターのデシケータ内に夫々の試料を配置し、メチルメルカプタンを含有する窒素ガスをメチルメルカプタンの濃度が 3 ppm になるように注入した。デシケータ内に試料から 8 cm の距離のところに 4 W の BLB 蛍光灯を配置し、0.3 mW/cm² の紫外線照度で紫外線を照射した。30 分後にデシケータ内のガスを採取し、ガスクロマトグラフによりメチルメルカプタン濃度を測定し、メチルメルカプタンの除去率を求めた。# 1 試料とソーダライムガラス板ではメチルメルカプタンの除去率は 10

%未満であったが、#2試料では除去率は90%以上であり、良好な脱臭性能を示した。

実施例21

5

抗菌性増強剤-Cu添加光触媒

日本合成ゴムの“グラスカ”のA液（シリカゾル）とB液（トリメトキシメチルシラン）を、シリカ重量とトリメトキシメチルシランの重量の比が3になるよう混合し、この混合液を10cm四角のアクリル樹脂板の表面に塗布し、100°Cの温度で硬化させ、膜厚3μmのシリコーンのベースコートで被覆されたアクリル樹脂板を得た。

次に、アナターゼ型チタニアゾル（TA-15）と3重量%の酢酸銅水溶液を混合し、更に“グラスカ”的A液（シリカゾル）を添加し、プロパノールで希釈した。次に“グラスカ”的B液を添加し、チタニア含有塗料用組成物を調整した。この塗料用組成物の組成は、シリカ3重量部、トリメトキシメチルシラン1重量部、チタニア4重量部、酢酸銅は金属銅に換算して0.08重量部であった。

この塗料用組成物をアクリル樹脂板の表面に塗布し、100°Cの温度で硬化させてトップコートを形成した。次に、この試料にBLB蛍光灯を用いて0.5mW/cm²の照度で5日間紫外線を照射し、#1試料を得た。

実施例20と同様の方法で#1試料とアクリル樹脂板について防曇性と水との接触角と抗菌性能と脱臭性能を調べた。アクリル樹脂板では水との接触角は70°であり、息を吹きかけると曇りが発生したが、#1試料では水との接触角は3~9°であり、曇りは生じなかった。抗菌性については、アクリル樹脂板については大腸菌の生存率は70%以上であったが、#1試料では10%未満であった。脱臭性能に関し、アクリル樹脂板ではメチルメルカプタンの除去率は10%未満であったが、#1試料では除去率は90%以上であった。

実施例22

光酸化還元性増強剤-Pt添加光触媒

実施例 1 と同様の方法で、10 cm 四角のソーダライムガラス板の表面に先ず無定形シリカの薄膜を形成し、次いで、その上に無定形チタニアの薄膜を形成し、500°C の温度で焼成して無定形チタニアをアナターゼ型チタニアに変換させた。

次に、この試料に白金濃度 0.1 重量% の塩化白金酸 6 水和物 $H_2PtCl_6 \cdot 6H_2O$ 水溶液を 1 ml 塗布した後、BLB 蛍光灯を用いて 0.5 mW/cm^2 の照度で 1 分間紫外線を照射し、塩化白金酸 6 水和物を光還元し白金を析出させ、チタニア結晶が白金でドーピングされた試料を得た。

得られた試料を 1 日放置した後、BLB 蛍光灯を用いて 0.5 mW/cm^2 の照度で 1 日間紫外線を照射した。紫外線照射後に水との接触角を測定したところ、0°であった。また、実施例 20 と同様の方法でメチルメルカプタンの除去率を求めたところ、98% であった。

実施例 23

セルフクリーニング性能および防汚性能

実施例 13 の #2 試料に BLB 蛍光灯を用いて 0.5 mW/cm^2 の照度で 10 時間紫外線を照射し、#3 試料を得た。この試料の表面の水との接触角を接触角測定器（ERMA 社製）で測定したところ、接触角の読みは 3° 未満であった。

茅ヶ崎市所在の建物の屋上に第 11 A 図および第 11 B 図に示す屋外汚れ加速試験装置を設置した。第 11 A 図および第 11 B 図を参照するに、この装置は、フレーム 20 に支持された傾斜した試料支持面 22 を備え、試料 24 を取り付けるようになっている。フレームの頂部には前方に傾斜した屋根 26 が固定している。この屋根は波形プラスチック板からなり、集まつた雨が試料支持面 22 に取り付けた試料 24 の表面に筋を成して流下するようになっている。

この装置の試料支持面 22 に #3 試料と、実施例 13 の #1 試料と、実施例 13 の #2 試料を夫々複数取り付け、1995 年 6 月 12 日から 9 日間天候条件に暴露した。この間の天気と降雨量は表 6 の通りであった。

表 6

日付	天気	降雨量 (mm)	直射日照時間
6月12日	曇り	0.0	0
6月13日	大雨	53.0	0
6月14日	雨一時曇り	20.5	0
6月15日	曇り一時晴れ	0.0	3.9
6月16日	曇り	0.0	0.2
6月17日	晴れ一時曇り	0.0	9.6
6月18日	晴れ後曇り	0.0	7.0
6月19日	雨後曇り	1.0	0.2
6月20日	曇り時々大雨	56.0	2.4

- 6月14日に観察したところ、#1試料では、試料表面に縦筋状の汚れが観察された。これは、前日の大雨の際に、大気中のカーボンブラックなどの燃焼生成物や都市塵埃のような疎水性汚れが雨に持ち運ばれ、雨が試料表面を流下する間に斯る疎水性汚れが試料表面に付着したものと考えられる。それに対して、#3試料では、汚れは観察されなかった。これは、試料表面の親水性が高いので、疎水性汚れを含んだ雨水が流下しても汚れが親水性表面に付着しにくいことと、汚れが降雨により洗い流されたことによると考えられる。
- #2試料では、斑な汚れが観察された。これは、紫外線照射がなされていない#2試料を試験装置に取り付けた後、光触媒被膜が太陽光による紫外線照射を未だ十分に受けておらず、表面が不均一に親水化されていたためであると考えられる。
- 6月20日に観察したところ、光触媒被膜がない#1試料では、試料表面の縦筋状の汚れが顕著に観察された。これに対して、光触媒被膜がある#3試料と#2試料では、汚れは観察されなかった。
- 水との接触角を測定したところ、#1試料では70°、#2試料および#3試料ではいづれも3°未満であった。#2試料の接触角が3°未満になったのは、太陽光に含まれる紫外線の照射により、#2試料のトップコート中のシリコーン分子のケイ素原子に結合した有機基が光触媒作用によって水酸基に置換され、ト

ップコートが高度に親水化されたことを示している。# 3 試料でも太陽光照射により高親水性が維持されていることが分かる。

実施例 2 4

5

色差試験

実施例 2 3 の # 1 試料と # 2 試料について、屋外汚れ加速試験装置に取り付け前と取り付け 1 カ月後に表面の色差を色差計（東京電色）を用いて計測した。色差は日本工業規格（JIS）H0201 に従い、 ΔE^* 表示を用いた。加速試験装置取り付け前後の色差変化を表 7 に示す。

10

表 7

	縦筋部	バックグラウンド
# 1 試料	4.1	1.1
# 2 試料	0.8	0.5

表 7 は、光触媒被膜がある # 2 試料に比較し、光触媒被膜がない # 1 試料では、雨水の流路である縦筋部に多量の汚れが付着したことを示している。更に、バックグラウンドの汚れにも、# 2 試料と # 1 試料ではかなりの差があることが認められる。

実施例 2 5

油汚れの清浄化性能

20 実施例 2 3 の # 1 試料と # 3 試料の表面にオレイン酸を塗布し、試料表面を水平姿勢に保持しながら夫々の試料を水槽に満たした水の中に浸漬した。# 1 試料では、オレイン酸は試料の表面に付着したままであった。これに対し、# 3 試料では、オレイン酸は丸まって油滴となり、試料の表面から釈放されて浮上した。このように、基材の表面が光触媒性トップコートにより被覆されていると、基材の表面が親水性に維持され、油性汚れが水中で表面から容易に釈放され表面が清浄化されることが確認された。

この実施例は、例えば、食器の表面に光触媒性コーティングを設け、紫外線により光触媒を励起すれば、油で汚れた食器を洗剤を使用することなく水に漬けるだけで簡単に清浄化できることを示している。

5

実施例 2 6

水に濡れた表面の乾燥性能

実施例 2 3 の # 1 試料と # 3 試料の表面を水で濡らした後、晴れた日に屋外に放置し、自然乾燥にゆだねた。気温は約 25 °C であった。30 分後に、# 1 試料を観察したところ、試料の表面には水滴が残存していた。これに対し、# 3 試料 10 の表面は完全に乾燥していた。

光触媒性コーティングを備えた # 3 試料では、付着させた水滴が一様な水膜になり、その故に乾燥が促進されるものと考えられる。

この実施例は、例えば眼鏡レンズや自動車の風防ガラスが水に濡れても、速やかに乾燥させることができることを示している。

15

実施例 2 7

高親水性表面を備えたタイルーチタニア・シリカ焼結膜

アナターゼ型チタニアゾル（大阪の石原産業、STS-11）とコロイダルシリカゾル（日産化学、スノーテックス〇）を固形分のモル比で 88 : 12 の割合で混合 20 し、15 cm 四角の施釉タイル（東陶機器、AB02E01）の表面にスプレーコーティング法により塗布し、800°C の温度で 1 時間焼成し、チタニアとシリカからなる被膜で被覆された試料を得た。被膜の膜厚は 0.3 μm であった。焼成直後の水との接触角は 5° であった。

試料を 1 週間暗所に放置した後の水との接触角は依然 5° であった。

25 BLB 蛍光灯を用いて試料の表面に 0.03 mW/cm² の紫外線照度で 1 日間紫外線を照射したところ、水との接触角は 0° になった。

実施例 28

チタニア・シリカ焼結膜－室内照明下での親水化

- アナターゼ型チタニアゾル (STS-11) とコロイダルシリカゾル (日産化学、スノーテックス 20) を固形分のモル比で 80 : 20 の割合で混合し、15 cm 四角の施釉タイル (AB02E01) の表面にスプレーコーティング法により塗布し、80°C の温度で 1 時間焼成し、チタニアとシリカからなる被膜で被覆された試料を得た。被膜の膜厚は 0.3 μm であった。焼成直後の水との接触角は 5° であった。
試料を 2 週間暗所に放置した後の水との接触角は 14° であった。
白色蛍光灯を用いて試料の表面に 0.004 mW/cm² の紫外線照度で 1 日間
10 紫外線を照射したところ、水との接触角は 4° になった。
従って、室内照明下でも充分に親水化されることが分かった。

実施例 29

チタニア・シリカ焼結膜－シリカの含有率

- 15 アナターゼ型チタニアゾル (STS-11) とコロイダルシリカゾル (日産化学、スノーテックス 20) を異なる割合で混合した複数の懸濁液を調整した。夫々の懸濁液の固形分におけるシリカのモル分率は、0%、5%、10%、15%、20%、25%、30% であった。夫々の懸濁液 0.08 g を別々の 15 cm 四角の施釉タイル (AB02E01) の表面に夫々スプレーコーティング法により均一に塗布し、800°C の温度で 1 時間焼成し、チタニアとシリカからなる被膜で被覆された複数の試料を得た。
焼成直後の各試料の水との接触角は第 12 図のグラフに示す通りであった。第 12 図のグラフから分かるように、シリカを添加すると初期の接触角が低くなる傾向がある。
25 更に、8 日間暗所に放置した後の水との接触角を第 13 図のグラフに示す。第 12 図のグラフと第 13 図のグラフを対比すれば分かるように、シリカのモル分率が 10% 以上の試料では暗所放置による親水性の喪失が小さい。
その後、BLB 蛍光灯を用いて試料の表面に 0.03 mW/cm² の紫外線照度で

2日間紫外線を照射した。照射後の水との接触角を第14図のグラフに示す。チタニアにシリカが添加されている場合には、紫外線照射により容易に親水性が回復することが分かる。

その後更に試料を8日間暗所に放置し、水との接触角を調べた。結果を第15図に示す。チタニアにシリカが添加されている場合には、紫外線照射後暗所に放置しても親水性の喪失が小さいことが分かる。

チタニア・シリカ焼結膜の耐摩耗性を調べるために、鉛筆スクラッチ試験を行った。結果を、第16図のグラフに示す。シリカのモル分率が増加するにつれて耐摩耗性が増大することが分かる。

10

実施例30

汚泥試験

アナターゼ型チタニアゾル(STS-11)とコロイダルシリカゾル(スノーテックス20)との混合物(固形分におけるシリカの割合が10重量%)を固形分換算で4.5mgだけ15cm四角の施釉タイル(AB02E01)に塗布し、880°Cの温度で10分焼成した。この試料に、BLB蛍光灯を用いて0.5mW/cm²の紫外線照度で3時間紫外線を照射し、#1試料を得た。#1試料と施釉タイル(AB02E01)の水との接触角は夫々0°および30°であった。

イエローオーカー64.3重量%、焼成関東ローム粘土21.4重量%、疎水性カーボンブラック4.8重量%、シリカ粉4.8重量%、親水性カーボンブラック4.7重量%を含む粉体混合物を1.05g/リッターの濃度で水に懸濁させたスラリーを調整した。

45度に傾斜させた#1試料および施釉タイル(AB02E01)に上記スラリー150mlを流下させて15分間乾燥させ、次いで蒸留水150mlを流下させて15分間乾燥させ、このサイクルを25回反復した。試験前後の色差変化と光沢度変化を調べた。光沢度の測定は日本工業規格(JIS)Z8741の規定に従って行い、光沢度変化は試験後の光沢度を試験前の光沢度で割ることにより求めた。結果を表8に示す。

表 8

	# 1 試料	施釉タイル(AB02E01)
水との接触角 (°)	0	3 0
色差変化	0.7	5.6
光沢度変化 (%)	93.4	74.1

実施例 3 1

5 水との接触角とセルフクリーニング性能および防汚性能との関係

種々の試料を実施例 3 0 と同様の汚泥試験に付した。調べた試料は、実施例 3 0 の# 1 試料と、チタニアが銅でドーピングされた# 2 試料試料と、施釉タイル(AB02E01) と、アクリル樹脂板と、ポリエステル樹脂をマトリックスとする人造大理石板(東陶機器、ML03)、ポリテトラフルオロエチレン(PTFE) 板であった。# 2 試料は、実施例 3 0 の# 1 試料に、銅濃度 $50 \mu \text{mol/g}$ の酢酸銅 1 水塩の水溶液を 0.3 g スプレーコーティング法により塗布した後乾燥させ、BLB 蛍光灯により 0.4 mW/cm^2 の紫外線照度で紫外線を 10 分間照射して酢酸銅 1 水塩を光還元析出させることにより得た。汚泥試験の結果を表 9 に示す。

15

表 9

試料	水との接触角 (°)	色差変化	光沢度変化 (%)
# 1 試料	0.0	0.7	93.4
# 2 試料	4.0	2.0	81.5
施釉タイル	19.4	4.6	68.3
アクリル樹脂板	50.9	4.5	69.3
人造大理石板	54.8	3.2	85.2
PTFE 板	105.1	0.9	98.2

更に、種々の試料を 1 ヶ月間にわたり実施例 2 3 と同様の汚れ加速試験に付した。用いた試料は、実施例 3 0 の# 1 試料と、施釉タイル(AB02E01) と、アクリル樹脂板と、実施例 1 3 と同様の方法によりシリコーンのベースコートで被覆

したアルミニウム板と、PTFE 板であった。加速試験の結果を表 10 に示す。表 10において、色差変化は、実施例 24 と同様、試料の縦筋部の色差変化を表す。

表 10

試料	水との接触角 (°)	色差変化
# 1 試料	0.0	0.9
施釉タイル	19.4	1.5
アクリル樹脂板	50.9	2.3
シリコーン被覆板	90.0	4.2
PTFE 板	105.1	7.8

5

理解を容易にするため、表 9 と表 10 に示した水との接触角および色差変化を第 17 図のグラフにプロットした。第 17 図のグラフにおいて、カーブ A は汚れ加速試験における大気中のカーボンブラックなどの燃焼生成物や都市塵埃のような汚れによる色差変化と水との接触角との関係を示し、カーブ B は汚泥試験における汚泥による色差変化と水との接触角との関係を示す。

第 17 図のグラフを参照するに、カーブ A から良く分かるように、基材の水との接触角が増加するにつれて燃焼生成物や都市塵埃による汚れが目立つようになる。これは、燃焼生成物や都市塵埃のような汚染物質は基本的に疎水性であり、従って、疎水性の表面に付着しやすいからである。

これに対して、カーブ B は、汚泥による汚れは水との接触角が 20° から 50° の範囲でピーク値を呈することを示している。これは、泥や土のような無機物質は、本来、水との接触角が 20° から 50° 程度の親水性を有し、類似の親水性を有する表面に付着しやすいからである。従って、表面を水との接触角が 20° 以下の親水性にするか、或いは、水との接触角が 60° 以上に疎水化すれば、表面への無機物質の付着を防止することができる事が分かる。

水との接触角が 20° 以下になると汚泥による汚れが減少するのは、表面が水との接触角が 20° 以下の高度の親水性になると、無機物質に対する親和性よりも水に対する親和性の方が高くなり、表面に優先的に付着する水によって無機物

質の付着が阻害されると共に、付着した或いは付着しようとする無機物質が水によって容易に洗い流されるからである。

以上から、建物などの表面に疎水性の汚れ物質と親水性の汚れ物質のいづれもが付着しないようにするため、或いは、表面に堆積した汚れが降雨により洗い流されて表面がセルフクリーニングされるようにするには、表面の水との接触角が 5 20° 以下、好ましくは 10° 以下、更に好ましくは 5° 以下にすればがよいことが分かる。

実施例 3 2

10

チタニア・酸化錫焼結膜－施釉タイル

アナターゼ型チタニアゾル (STS-11) と酸化錫ゾル (多木化学、兵庫県加古川市、平均結晶子径 3.5 nm) を次表 1 1 に示す種々の配合比 (チタニアと酸化錫との合計に対する酸化錫の重量 %) で混合し、15 cm 四角の施釉タイル (AB02 E01) の表面にスプレーコーティング法により塗布し、750°C 又は 800°C の温度で 10 分間焼成し、# 1 試料～# 6 試料を得た。# 2 試料、# 4 試料、# 5 試料、# 6 試料については、焼成後に更に 1 重量 % の硝酸銀水溶液を塗布し光還元析出させることにより銀をドーピングした。更に、施釉タイルに酸化錫ゾルのみ又はチタニアゾルのみを塗布して焼成した # 7 試料～# 9 試料を作製した。# 7 試料と # 9 試料には、焼成後に更に銀をドーピングした。

20 夫々の試料を 1 週間暗所に放置した後、BLB 蛍光灯を用いて試料の表面に 0.3 mW/cm² の紫外線照度で 3 日間紫外線を照射し、水との接触角を測定した。結果を表 1 1 に示す。

表 1 1

試料	SnO ₂ 配合比 (重量%)	焼成温度 (°C)	Ag 添加	水との接触角 (°)
# 1	1	800	なし	0
# 2	5	800	有り	0
# 3	15	800	なし	0
# 4	15	750	有り	0
# 5	50	750	有り	0
# 6	95	800	有り	5
# 7	100	750	有り	8
# 8	0	800	なし	11
# 9	0	800	有り	14

表 1 1 から分かるように、チタニアのみで被覆された# 8 試料および# 9 試料においては、水との接触角は 10° を超えている。これは、焼成中にナトリウム 5 のようなアルカリ網目修飾イオンが釉薬からチタニア中に拡散し、アナターゼの光触媒活性を阻害したからである。それに較べ、SnO₂を配合した# 1 試料から# 6 試料においては、表面が高度に親水化されている。# 7 試料から分かるように、酸化錫もチタニアと同様に半導体光触媒であり、表面を親水化する上で効果がある。理由は明らかではないが、この実施例は、チタニアに酸化錫を添加するとア 10 ルカリ網目修飾イオンの拡散の影響を克服できることを示している。

実施例 3 3

チタニア焼結膜と拡散防止層－施釉タイル

テトラエトキシシラン（コルコート社、エチル 28）を 15 cm 四角の施釉タイル（AB02E01）の表面にスプレーコーティング法により塗布し、約 20 分間約 15 50°C の温度に保持することにより、テトラエトキシシランを加水分解と脱水縮重合に付し、無定形シリカ層を施釉タイルの表面に形成した。

次に、この施釉タイルの表面にアナターゼ型チタニアゾル（STS-11）をスプレー コーティング法により塗布し、800°C の温度で 1 時間焼成した。

この試料と比較のため実施例 3 2 の # 8 試料を 1 週間暗所に放置した後、BLB 蛍光灯を用いて試料の表面に 0.3 mW/cm^2 の紫外線照度で 1 日間紫外線を照射し、水との接触角を測定した。

実施例 3 2 の # 8 試料では水との接触角は 12° であったが、無定形シリカ層 5 を介在させた試料では、水との接触角 3° 未満まで親水化された。無定形シリカ層は釉薬中のアルカリ網目修飾イオンの拡散を防止する上で効果的であると考えられる。

実施例 3 4

10 無定形チタニア焼成膜と拡散防止層－施釉タイル

実施例 1 と同様の方法で、 15 cm 四角の施釉タイル (AB02E01) の表面に先ず無定形シリカの薄膜を形成し、次いで、その上に無定形チタニアの薄膜を形成した。このタイルを 500°C の温度で焼成し、無定形チタニアをアナターゼ型チタニアに変換した。

15 得られた試料を数日間暗所に放置した後、BLB 蛍光灯を用いて 0.5 mW/cm^2 の照度で 1 日間紫外線を照射し、試料を得た。この試料の水との接触角を測定したところ 0° であった。実施例 3 3 と同様に、無定形シリカ層はタイルの表面を高度に親水化する上で効果的であると考えられる。

20 実施例 3 5

施釉タイル－油汚れの清浄化性能

実施例 3 0 の # 1 試料の表面にオレイン酸を塗布し、タイル表面を水平姿勢に保持しながらタイルを水槽に満たした水の中に浸漬したところ、オレイン酸は丸まって油滴となり、タイルの表面から釈放されて浮上した。

25 この実施例も、また、タイルや食器のような陶磁器の表面に光触媒性コーティングを設け、紫外線により光触媒を励起すれば、陶磁器を水に漬けるか又は水で濡らすだけで油で汚れた表面を簡単に清浄化できることを示している。

実施例 3 6

ガラスー油汚れの清浄化性能

実施例 1 と同様の方法で、10 cm 四角のソーダライムガラス板の表面に先ず無定形シリカの薄膜を形成し、次いで、その上に無定形チタニアの薄膜を形成した。このガラス板を 500°C の温度で焼成し、無定形チタニアをアナターゼ型チタニアに変換した。

このガラス板の表面にオレイン酸を塗布し、ガラス板表面を水平姿勢に保持しながらガラス板を水槽に満たした水の中に浸漬したところ、オレイン酸は丸まって油滴となり、ガラス板の表面から釈放されて浮上した。

10

実施例 3 7

ガラスーセルフクリーニング性能および防汚性能

実施例 3 6 の試料を 1 ヶ月間にわたり実施例 2 3 と同様の汚れ加速試験に付した。1 カ月後に目視により観察したところ、縦筋状の汚れは認められなかった。

15

実施例 3 8

施釉タイルー抗菌性増強剤 (Ag ドーピング)

実施例 2 7 と同様の方法で、15 cm 四角の施釉タイル (AB02E01) の表面にチタニアとシリカからなる被膜を形成した。

次に、このタイルの表面に 1 重量% の乳酸銀水溶液を塗布し、BLB 蛍光灯を用いて紫外線を照射することにより乳酸銀を光還元して銀を析出させ、チタニアが銀でドーピングされた試料を得た。水との接触角を調べたところ 0° であった。

次に、このタイルについて実施例 1 9 と同様の方法で抗菌性能を調べたところ、大腸菌の生存率は 10 % 未満であった。

25

実施例 3 9

施釉タイルー抗菌性増強剤 (Cu ドーピング)

実施例 2 7 と同様の方法で、15 cm 四角の施釉タイル (AB02E01) の表面に

チタニアとシリカからなる被膜を形成した。

次に、このタイルの表面に 1 重量 % の酢酸銅 1 水塩の水溶液を塗布し、BLB 蛍光灯を用いて紫外線を照射することにより酢酸銅を光還元して銅を析出させ、チタニアが銅でドーピングされた試料を得た。水との接触角を調べたところ 3° 未
5 満であった。

次に、このタイルについて実施例 19 と同様の方法で抗菌性能を調べたところ、大腸菌の生存率は 10 % 未満であった。

実施例 4 0

10 施釉タイルー光酸化還元性増強剤

実施例 27 と同様の方法で、15 cm 四角の施釉タイル (AB02E01) の表面にチタニアとシリカからなる被膜を形成した。

次に、このタイルの表面に実施例 22 と同様の方法で白金をドーピングした。水との接触角を調べたところ 0° であった。

15 次に、実施例 20 と同様の方法でメチルメルカプタンの除去率を求めたところ、98 % であった。

実施例 4 1

励起波長の影響

20 実施例 32 の #8 試料、および、比較のためチタニア被覆のない施釉タイル (A B02E01) を 10 日間暗所に放置した後、Hg-Xe ランプを用いて次表 12 の条件で紫外線を照射しながら水との接触角の時間的変化を計測した。

表 1 2

紫外線波長 (nm)	紫外線照度 (mW/cm ²)	フォトン密度 (フォトン/scc/cm ²)
313	10.6	1.66×10^{16}
365	18	3.31×10^{16}
405	6	1.22×10^{16}

測定結果を第18A図から第18C図に示す。第18A図から第18C図において、白点でプロットした値は実施例32の#8試料の水との接触角を表し、黒点でプロットした値はチタニア被覆のない施釉タイルの接触角を表す。

5 第18C図から分かるように、アナターゼ型チタニアのバンドギャップエネルギーに相当する波長387nmより低いエネルギーの紫外線(387nmより長い波長の紫外線)では、紫外線を照射しても親水化が起こらない。

それに対して、第18A図および第18B図に示すように、アナターゼ型チタニアのバンドギャップエネルギーより高いエネルギーの紫外線では、紫外線照射に応
10 じて表面が親水化されることが分かる。

以上のことから、表面の親水化は、光半導体が光励起されることに密接な関連があることが確認された。

実施例42

15 光触媒含有シリコーンで被覆したプラスチック板

ポリエチレンテレフタート(PET)のフィルム(富士ゼロックス、モノクロP
PC用OHPフィルム、JF-001)に実施例18と同様のチタニア含有塗料用組成物
を塗布し、110°Cの温度で硬化させ、チタニア含有シリコーンで被覆された#1
試料を得た。

20 更に、他のPETフィルム(JF-001)に水性ポリエステル塗料(高松油脂製、A
-124S)を塗布し、110°Cの温度で硬化させ、プライマーコートを形成した。この
プライマーコートの上に、実施例18と同様のチタニア含有塗料用組成物を塗布
し、110°Cの温度で硬化させ、#2試料を得た。

また、ポリカーボネート(PC)板に実施例18と同様のチタニア含有塗料用組
成物を塗布し、110°Cの温度で硬化させ、#3試料を得た。

更に、他のポリカーボネート板に水性ポリエステル塗料(A-124S)を塗布し、
110°Cの温度で硬化させ、プライマーコートを形成した後、実施例18と同様の
チタニア含有塗料用組成物を塗布し、110°Cの温度で硬化させ、#4試料を得た。

1 試料から# 4 試料および PET フィルム (JF-001) とポリカーボネート板に BLB 蛍光灯を用いて 0.6 mW/cm^2 の照度で紫外線を照射しながら、試料の表面の水との接触角の時間的変化を測定した。結果を表 1 3 に示す。

5

表 1 3

試料	照射前	1 日後	2 日後	3 日後	10 日後
# 1	71°	44°	32°	7°	2°
# 2	73°	35°	16°	3°	2°
# 3	66°	55°	27°	9°	3°
# 4	65°	53°	36°	18°	2°
PET	70°	72°	74°	73°	60°
PC	90°	86°	88°	87°	89°

表 1 3 から分かるように、紫外線照射につれて試料表面が親水化され、およそ 3 日後には表面が超親水化されている。実施例 1 4 に関連して前述したように、チタニア含有シリコーン層のシリコーン分子のケイ素原子に結合した有機基が光

10 励起による光触媒作用によって水酸基に置換されたことに因るものと考えられる。

周知のように、 0.6 mW/cm^2 の紫外線照度は、地表に降り注ぐ太陽光に含まれる紫外線の照度にはほぼ等しい。従って、チタニア含有シリコーンの塗膜をただ単に太陽光にさらすだけでも超親水化を達成することができる事が注目される。

15

実施例 4 3

光触媒含有シリコーンの耐候試験

実施例 1 3 の# 1 試料（シリコーン被覆アルミニウム基板）と# 2 試料（チタニア含有シリコーン塗膜で被覆されたアルミニウム基板）を耐候試験機（スガ試験機製、WEL-SUN-HC）を用いて、カーボンアーク灯による光照射をしながら、
20 60 分中 12 分雨噴霧、温度 40°C の条件で耐候試験に付した。耐候性は、光沢保持率（初期光沢度に対する試験後の光沢度の 100 分率）で評価した。試験結果を表 1 4 に示す。

表14

試料	500 時間	1000 時間	3000 時間
# 1 試料	9 1	9 5	9 0
# 2 試料	9 9	1 0 0	9 8

表14から分かるように、光沢保持率はチタニアの有無に拘わらずほぼ同等で
 5 あった。これは、チタニアの光触媒作用によってシリコーンの主鎖を構成するシ
 ロキサン結合は破壊されていないことを示している。従って、シリコーン分子の
 ケイ素原子に結合した有機基が水酸基に置換されても、シリコーンの耐候性には
 影響がないと考えられる。

以上には本発明の特定の実施例について記載したが、本発明はこれらに限定さ
 10 れるものではなく、種々の修正や変更を施すことができる。更に、本発明は上記
 用途以外の種々の分野に応用することができる。例えば、水中で表面への気泡の
 付着を防止するため超親水化された表面を利用することができます。また、超親水
 化された表面は、一様な水膜を形成し、保持するために利用することができます。
 更に、超親水性の光触媒性コーティングは生体に対する親和性に優れるので、コ
 15 ンタクトレンズ、人工臓器、カテーテル、抗血栓材料、などの医療分野に利用す
 ることができる。

請 求 の 範 囲

1. 反射コーティングを備えた基材と、
前記基材の表面に接合され、光触媒性半導体材料を含む実質的に透明な層とを
備え、
前記光触媒性材料は光励起に応じて前記層の表面を親水性になし、もって、付着した湿分の凝縮水および／又は水滴が前記層の表面に広がり、基材が湿分凝縮水および／又は水滴によって曇り若しくは翳るのが防止されるようになった防曇性鏡。
10
2. 前記層の表面は光励起時に水との接触角に換算して約10°以下の水濡れ性を呈する請求項1に基づく防曇性鏡。
3. 前記層の表面は光励起時に水との接触角に換算して約5°以下の水濡れ性を
15 呈する請求項2に基づく防曇性鏡。
4. 前記光触媒性材料は、TiO₂、ZnO、SnO₂、SrTiO₃、WO₃、Bi₂O₃、Fe₂O₃からなる群から選ばれた1種の酸化物を含む請求項1に基づく防曇性鏡。
- 20 5. 前記光触媒性材料はアナターゼ型チタニアからなる請求項4に基づく防曇性鏡。
6. 前記層は更にSiO₂又はSnO₂を含んでなる請求項4に基づく防曇性鏡。
- 25 7. 前記層は光触媒性材料の粒子が均一に分散された塗膜によって形成されている請求項1に基づく防曇性鏡。
8. 前記塗膜はシリコーンからなり、前記塗膜の表面はシリコーン分子のケイ素

原子に結合した有機基が光励起に応じて光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換されたシリコーン誘導体で形成されている請求項 7に基づく防曇性鏡。

5 9. 前記基材はアルカリ網目修飾イオンを含むガラスからなり、前記基材と前記層との間には前記イオンが基材から前記層中に拡散を防止するための薄膜が介挿されている請求項 1に基づく防曇性鏡。

10. 前記薄膜はシリカの薄膜からなる請求項 9に基づく防曇性鏡。

10

11. 前記層の厚さは約 $0.2 \mu\text{m}$ 以下である請求項 1に基づく防曇性鏡。

12. 前記層は、更に、Ag、Cu、Zn からなる群から選ばれた 1 種の金属を含む請求項 1に基づく防曇性鏡。

15

13. 前記層は、更に、Pt、Pd、Rh、Ru、Os、Ir からなる群から選ばれた 1 種の金属を含む請求項 1に基づく防曇性鏡。

14. 前記鏡は浴室用又は洗面所用鏡である請求項 1～13 のいづれかに基づく防曇性鏡。

20 15. 前記鏡は車両用バックミラーである請求項 1～13 のいづれかに基づく防曇性鏡。

25 16. 前記鏡は歯科用歯鏡である請求項 1～13 のいづれかに基づく防曇性鏡。

17. 透明なレンズ形成体と、

前記レンズ形成体の表面に接合された実質的に透明で光触媒性半導体材料を含

む層とを備え、

前記光触媒性材料は光励起に応じて前記層の表面を親水性になし、もって、付着した湿分の凝縮水および／又は水滴が前記層の表面に広がり、レンズ形成体が湿分凝縮水および／又は水滴によって曇り若しくは翳るのが防止されるようにな
5 った防曇性レンズ。

18. 前記層の表面は光励起時に水との接触角に換算して約10°以下の水濡れ性を呈する請求項17に基づく防曇性レンズ。
- 10 19. 前記層の表面は光励起時に水との接触角に換算して約5°以下の水濡れ性を呈する請求項18に基づく防曇性レンズ。
20. 前記光触媒性材料は、 TiO_2 、 ZnO 、 SnO_2 、 $SrTiO_3$ 、 WO_3 、 Bi_2O_3 、 Fe_2O_3 からなる群から選ばれた1種の酸化物を含む請求項17に基づく防曇性レンズ。
15
21. 前記光触媒性材料はアナターゼ型チタニアからなる請求項20に基づく防曇性レンズ。
22. 前記層は更に SiO_2 又は SnO_2 を含んでなる請求項20に基づく防曇性レンズ。
20
23. 前記層は光触媒性材料の粒子が均一に分散された塗膜によって形成されている請求項17に基づく防曇性レンズ。
24. 前記塗膜はシリコーンからなり、前記塗膜の表面はシリコーン分子のケイ
25 素原子に結合した有機基が光励起に応じて光触媒性材料の光触媒作用により少な
くとも部分的に水酸基に置換されたシリコーン誘導体で形成されている請求項2
3に基づく防曇性レンズ。

25. 前記レンズ形成体はアルカリ綱目修飾イオンを含むガラスからなり、前記レンズ形成体と前記層との間には前記イオンがレンズ形成体から前記層中に拡散を防止するための薄膜が介挿されている請求項17に基づく防曇性レンズ。

5 26. 前記薄膜はシリカの薄膜からなる請求項25に基づく防曇性レンズ。

27. 前記層の厚さは約 $0.2\text{ }\mu\text{m}$ 以下である請求項17に基づく防曇性レンズ。

10 28. 前記層は、更に、Ag、Cu、Znからなる群から選ばれた1種の金属を含む請求項17に基づく防曇性レンズ。

29. 前記層は、更に、Pt、Pd、Rh、Ru、Os、Irからなる群から選ばれた1種の金属を含む請求項17に基づく防曇性レンズ。

15 30. 前記レンズは眼鏡レンズである請求項17～29のいづれかに基づく防曇性レンズ。

31. 前記レンズは光学レンズである請求項17～29のいづれかに基づく防曇性レンズ。

20 32. 前記レンズは写真機レンズである請求項17～29のいづれかに基づく防曇性レンズ。

33. 前記レンズは内視鏡のレンズである請求項17～29のいづれかに基づく防曇性レンズ。

34. 前記レンズはプリズムである請求項17～29のいづれかに基づく防曇性レンズ。

35. 透明な基材と、

前記基材の表面に接合された実質的に透明で光触媒性半導体材料を含む層とを備え、

5 前記光触媒性材料は光励起に応じて前記層の表面を親水性になし、もって、付着した湿分の凝縮水および／又は水滴が前記層の表面に広がり、基材が湿分凝縮水および／又は水滴によって曇り若しくは翳るのが防止されるようになった防曇性透明板状部材。

10 36. 前記層の表面は光励起時に水との接触角に換算して約10°以下の水濡れ性を呈する請求項35に基づく防曇性板状部材。

37. 前記層の表面は光励起時に水との接触角に換算して約5°以下の水濡れ性を呈する請求項36に基づく防曇性板状部材。

15 38. 前記光触媒性材料は、 TiO_2 、 ZnO 、 SnO_2 、 $SrTiO_3$ 、 WO_3 、 Bi_2O_3 、 Fe_2O_3 からなる群から選ばれた1種の酸化物を含む請求項35に基づく防曇性板状部材。

39. 前記光触媒性材料はアナターゼ型チタニアからなる請求項38に基づく防
20 曇性板状部材。

40. 前記層は更に SiO_2 又は SnO_2 を含んでなる請求項38に基づく防曇性板状部材。

25 41. 前記層は光触媒性材料の粒子が均一に分散された塗膜によって形成されて
いる請求項35に基づく防曇性板状部材。

42. 前記塗膜はシリコーンからなり、前記塗膜の表面はシリコーン分子のケイ

素原子に結合した有機基が光励起に応じて光触媒性材料の光触媒作用により少な
くとも部分的に水酸基に置換されたシリコーン誘導体で形成されている請求項 4
1に基づく防曇性板状部材。

5 4 3. 前記基材はアルカリ網目修飾イオンを含むガラスからなり、前記基材と前
記層との間には前記イオンが基材から前記層中に拡散を防止するための薄膜が介
挿されている請求項 3 5に基づく防曇性板状部材。

4 4. 前記薄膜はシリカの薄膜からなる請求項 4 3に基づく防曇性板状部材。

10

4 5. 前記層の厚さは約 $0.2 \mu m$ 以下である請求項 3 5に基づく防曇性板状部材。

4 6. 前記層は、更に、Ag、Cu、Zn からなる群から選ばれた 1 種の金属を含む
請求項 3 5に基づく防曇性板状部材。

15

4 7. 前記層は、更に、Pt、Pd、Rh、Ru、Os、Ir からなる群から選ばれた 1 種の
金属を含む請求項 3 5に基づく防曇性板状部材。

4 8. 前記基材は窓ガラスである請求項 3 5～4 7 のいづれかに基づく防曇性板
20 状部材。

4 9. 前記窓ガラスは、ガラス又はプラスチックスで形成されている請求項 4 8
に基づく防曇性板状部材。

25 5 0. 前記窓ガラスは、自動車、鉄道車両、航空機、船舶、潜水艇、雪上車、ロ
ープウェーのゴンドラ、遊園地のゴンドラ、宇宙船からなる群から選ばれた 1 種
の乗物の窓ガラスである請求項 4 9に基づく防曇性板状部材。

- 5 1. 前記基材は乗物用風防ガラスである請求項 3 5 ~ 4 7 のいづれかに基づく防曇性板状部材。
- 5 2. 前記風防ガラスは、ガラスおよびプラスチックスからなる群から選ばれた
5 1 種の材料で形成されている請求項 5 1 に基づく防曇性板状部材。
- 5 3. 前記風防ガラスは、自動車、鉄道車両、航空機、船舶、潜水艇、雪上車、
スノーモービル、オートバイ、ロープウェーのゴンドラ、遊園地のゴンドラ、宇
宙船からなる群から選ばれた 1 種の乗物の風防ガラスである請求項 5 1 に基づく
10 防曇性板状部材。
- 5 4. 前記基材はゴグル又はマスクのシールドである請求項 3 5 ~ 4 7 のいづれ
かに基づく防曇性板状部材。
- 15 5 5. 前記基材はヘルメットのシールドである請求項 3 5 ~ 4 7 のいづれかに基づく防曇性板状部材。
- 5 6. 前記基材は計測機器のカバーガラスである請求項 3 5 ~ 4 7 のいづれかに基
づく防曇性板状部材。
- 20 5 7. 親水性表面を備えた複合材であつて：
基材と、
前記基材の表面に接合され光触媒性半導体材料を含む層とを備え、
前記光触媒性材料は、光励起に応じて、前記複合材の表面が水との接触角に換
25 算して約 10° 以下の水濡れ性を呈するべく前記複合材の表面を親水性になすこと
とを特徴とする複合材。
- 5 8. 前記複合材の表面は光励起時に水との接触角に換算して約 5° 以下の水濡

れ性を呈する請求項 5 7 に基づく複合材。

5 9. 前記層の表面を更に親水性の保護層で被覆してなる請求項 5 7 に基づく複合材。

5

6 0. 前記層の表面を更に光励起に応じて親水化可能な保護層で被覆してなる請求項 5 7 に基づく複合材。

6 1. 前記基材は金属、セラミックス、ガラス、プラスチックス、木、石、セメント、コンクリート、それらの組み合わせ、およびそれらの積層体からなる群から選ばれた 1 種の材料で形成され、前記層は、複合材の自己浄化のため、複合材が降雨にさらされた時に付着堆積物および／又は汚染物が雨滴により洗い流されるのを可能にする請求項 5 7 に基づく複合材。

6 2. 前記基材は金属、セラミックス、ガラス、プラスチックス、木、石、セメント、コンクリート、それらの組み合わせ、およびそれらの積層体からなる群から選ばれた 1 種の材料で形成され、前記層は、汚染物を含んだ雨水が流下したときに汚染物が表面に付着するのを防止することを特徴とする請求項 5 7 に基づく複合材。

20

6 3. 前記基材は建築材料である請求項 6 1 又は 6 2 に基づく複合材。

6 4. 前記基材は板ガラスである請求項 6 1 又は 6 2 に基づく複合材。

6 5. 前記基材はプラスチック板である請求項 6 1 又は 6 2 に基づく複合材。

6 6. 前記基材は金属板である請求項 6 1 又は 6 2 に基づく複合材。

6 7. 前記基材はタイルである請求項 6 1 又は 6 2 に基づく複合材。

6 8. 前記基材は機械又は製造物品の被覆である請求項 6 1 又は 6 2 に基づく複合材。

5

6 9. 前記基材は建物の窓ガラスである請求項 6 1 又は 6 2 に基づく複合材。

7 0. 前記基材は乗物の窓ガラスである請求項 6 1 又は 6 2 に基づく複合材。

10 7 1. 前記基材は乗物の風防ガラスである請求項 6 1 又は 6 2 に基づく複合材。

7 2. 前記基材は金属、セラミックス、ガラス、プラスチックス、木、石、セメント、コンクリート、それらの組み合わせ、およびそれらの積層体からなる群から選ばれた 1 種の材料で形成され、複合材を水で洗浄するのを容易にするため、
15 前記層は水に浸漬したとき又は水で濡らしたときに付着堆積物および／又は汚染物を釈放することを特徴とする請求項 5 7 に基づく複合材。

7 3. 前記基材は機械又は製造物品の表面である請求項 7 2 に基づく複合材。

20 7 4. 前記基材は機械又は製造物品の被覆である請求項 7 2 に基づく複合材。

7 5. 前記基材は建物の外装板である請求項 7 2 に基づく複合材。

7 6. 前記基材は建物の内装板である請求項 7 2 に基づく複合材。

25

7 7. 前記基材は住宅設備の表面である請求項 7 2 に基づく複合材。

7 8. 前記住宅設備は浴槽である請求項 7 7 に基づく複合材。

7 9. 前記住宅設備は洗面台である請求項 7 7 に基づく複合材。

8 0. 前記基材は台所用品の表面である請求項 7 7 に基づく複合材。

5

8 1. 前記台所用品は食器である請求項 8 0 に基づく複合材。

8 2. 前記台所用品は流しである請求項 8 0 に基づく複合材。

10 8 3. 前記台所用品は調理レンジである請求項 8 0 に基づく複合材。

8 4. 前記台所用品はキッチンフードである請求項 8 0 に基づく複合材。

8 5. 前記台所用品は換気扇である請求項 8 0 に基づく複合材。

15

8 6. 前記基材は金属、セラミックス、ガラス、プラスチックス、木、石、セメント、コンクリート、それらの組み合わせ、およびそれらの積層体からなる群から選ばれた 1 種の材料で形成され、水滴の成長を防止するため、前記層は付着した湿分凝縮水および／又は水滴を前記層の表面に広がらせるべく作用することを
20 特徴とする請求項 5 7 に基づく複合材。

8 7. 前記基材は熱交換器の放熱フィンであり、前記層は付着した湿分凝縮水および／又は水滴を水膜に広げさせて熱交換器の効率を増加させる請求項 8 6 に基づく複合材。

25

8 8. 前記基材は金属、セラミックス、ガラス、プラスチックス、木、石、セメント、コンクリート、それらの組み合わせ、およびそれらの積層体からなる群から選ばれた 1 種の材料で形成され、水濡れ後の基材の乾燥を促進するため、前記

層は付着した水滴を前記層の表面に広がらせるべく作用することを特徴とする請求項 5 7 に基づく複合材。

8 9. 前記基材は鏡、レンズ、板ガラス、風防ガラスからなる群から選ばれた 1
5 種の物品の表面である請求項 8 8 に基づく複合材。

9 0. 前記基材は舗装の表面である請求項 8 8 に基づく複合材。

9 1. 前記光触媒性材料は、 TiO_2 、 ZnO 、 SnO_2 、 $SrTiO_3$ 、 WO_3 、 Bi_2O_3 、 Fe_2O_3 から
10 なる群から選ばれた 1 種の酸化物を含む請求項 5 7 に基づく複合材。

9 2. 前記光触媒性材料はアナターゼ型チタニアからなる請求項 9 1 に基づく複
合材。

15 9 3. 前記光触媒性材料はルチル型チタニアからなる請求項 9 1 に基づく複合材。

9 4. 前記層は更に SiO_2 又は SnO_2 を含んでなる請求項 9 1 に基づく複合材。

9 5. 前記層は光触媒性材料の粒子が均一に分散された塗膜によって形成されて
20 いる請求項 5 7 に基づく複合材。

9 6. 前記塗膜はシリコーンからなり、前記塗膜の表面はシリコーン分子のケイ
素原子に結合した有機基が光励起に応じて光触媒性材料の光触媒作用により少な
くとも部分的に水酸基に置換されたシリコーン誘導体で形成されている請求項 9
25 5 に基づく複合材。

9 7. 前記基材はアルカリ金属イオンおよび／又はアルカリ土類金属イオンを含
み、前記基材と前記層との間には前記イオンが基材から前記層中に拡散を防止す

るための薄膜が介挿されている請求項 5 7 に基づく複合材。

9 8. 前記薄膜はシリカの薄膜からなる請求項 9 7 に基づく複合材。

5 9 9. 前記層の厚さは約 $0.2 \mu\text{m}$ 以下である請求項 5 7 に基づく複合材。

1 0 0. 前記層は、更に、Ag、Cu、Zn からなる群から選ばれた 1 種の金属を含む請求項 5 7 に基づく複合材。

10 1 0 1. 前記層は、更に、Pt、Pd、Rh、Ru、Os、Ir からなる群から選ばれた 1 種の金属を含む請求項 5 7 に基づく複合材。

1 0 2. 付着した湿分凝縮水および／又は水滴によって鏡が曇り若しくは翳るのを防止するための防曇方法であって：

15 実質的に透明で光触媒性半導体材料を含む層で被覆された鏡を準備する工程と；

前記光触媒性材料を光励起することにより前記層の表面を親水性になし、もって、付着湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；
からなる鏡の防曇方法。

20

1 0 3. 付着した湿分凝縮水および／又は水滴によって鏡が曇り若しくは翳るのを防止するための防曇方法であって：

(a) 光触媒性半導体材料の粒子が均一に分散された実質的に透明なシリコーンの層で被覆された鏡を準備する工程と；

25 (b) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させて、前記層の表面を親水性になし、付着湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；

からなる鏡の防曇方法。

104. 付着した湿分凝縮水および／又は水滴によって鏡が曇り若しくは翳るのを防止するための防曇方法であって：

5 (a) 光触媒性半導体材料の粒子が均一に分散された実質的に透明なシリコーンの層で被覆された鏡を準備する工程と；

(b) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させ、もって、前記層の表面を親水性になす工程と；

10 (c) 前記光触媒性材料を光励起することにより、光触媒性材料の光触媒作用により前記層の表面の親水性を維持させ、もって、付着湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；

からなる鏡の防曇方法。

15 105. 付着した湿分凝縮水および／又は水滴によって鏡が曇り若しくは翳るのを防止するための防曇方法であって：

鏡を準備する工程と；

実質的に透明で光触媒性半導体材料を含む層で前記鏡の表面を被覆する工程と；

20 前記光触媒性材料を光励起することにより前記層の表面を親水性になし、もって、付着湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；

からなる鏡の防曇方法。

106. 前記被覆工程は：

25 (a) 光触媒性半導体材料の粒子と、未硬化の若しくは部分的に硬化したシリコーン又はシリコーンの前駆体からなる塗膜形成要素、とを含む塗料用組成物を該表面に塗布する工程と；

(b) 該塗膜形成要素を硬化させる工程と；

(c) 該光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させる工程；
とからなる請求項 105 に基づく防曇方法。

5

107. 付着した湿分凝縮水および／又は水滴によってレンズが曇り若しくは翳るのを防止するための防曇方法であって：

実質的に透明で光触媒性半導体材料を含む層で被覆されたレンズを準備する工程と；

10 前記光触媒性材料を光励起することにより前記層の表面を親水性なし、もって、付着湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；
からなるレンズの防曇方法。

108. 付着した湿分凝縮水および／又は水滴によってレンズが曇り若しくは翳るのを防止するための防曇方法であって：

(a) 光触媒性半導体材料の粒子が均一に分散された実質的に透明なシリコーンの層で被覆されたレンズを準備する工程と；

(b) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なく

20 とも部分的に水酸基に置換させて、前記層の表面を親水性なし、付着湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；
からなるレンズの防曇方法。

109. 付着した湿分凝縮水および／又は水滴によってレンズが曇り若しくは翳るのを防止するための防曇方法であって：

(a) 光触媒性半導体材料の粒子が均一に分散された実質的に透明なシリコーンの層で被覆されたレンズを準備する工程と；

(b) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン

ン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させ、もって、前記層の表面を親水性になす工程と；

(c) 前記光触媒性材料を光励起することにより、光触媒性材料の光触媒作用により前記層の表面の親水性を維持させ、もって、付着湿分凝縮水および／又は水

5 滴を前記層の表面に広がらせる工程；

からなるレンズの防曇方法。

110. 付着した湿分凝縮水および／又は水滴によってレンズが曇り若しくは翳るのを防止するための防曇方法であって：

10 レンズを準備する工程と；

実質的に透明で光触媒性半導体材料を含む層で前記レンズの表面を被覆する工程と；

前記光触媒性材料を光励起することにより前記層の表面を親水性になし、もって、付着湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；

15 からなるレンズの防曇方法。

111. 前記被覆工程は：

(a) 光触媒性半導体材料の粒子と、未硬化の若しくは部分的に硬化したシリコーン又はシリコーンの前駆体からなる塗膜形成要素、とを含む塗料用組成物を該

20 表面に塗布する工程と；

(b) 該塗膜形成要素を硬化させる工程と；

(c) 該光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させる工程；

25 とからなる請求項110に基づく防曇方法。

112. 付着した湿分凝縮水および／又は水滴によって透明板状部材が曇り若しくは翳るのを防止するための防曇方法であって：

実質的に透明で光触媒性半導体材料を含む層で被覆された透明板状部材を準備する工程と；

前記光触媒性材料を光励起することにより前記層の表面を親水性になし、もって、付着湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；

5 からなる透明板状部材の防曇方法。

113. 付着した湿分凝縮水および／又は水滴によって透明板状部材が曇り若しくは翳るのを防止するための防曇方法であって：

(a) 光触媒性半導体材料の粒子が均一に分散された実質的に透明なシリコーン10 層で被覆された透明板状部材を準備する工程と；

(b) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させて、前記層の表面を親水性になし、付着湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；

15 からなる透明板状部材の防曇方法。

114. 付着した湿分凝縮水および／又は水滴によって透明板状部材が曇り若しくは翳るのを防止するための防曇方法であって：

(a) 光触媒性半導体材料の粒子が均一に分散された実質的に透明なシリコーン20 層で被覆された透明板状部材を準備する工程と；

(b) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させ、もって、前記層の表面を親水性になす工程と；

(c) 前記光触媒性材料を光励起することにより、光触媒性材料の光触媒作用により前記層の表面の親水性を維持させ、もって、付着湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；

からなる透明板状部材の防曇方法。

115. 付着した湿分凝縮水および／又は水滴によって透明板状部材が曇り若しくは駆るのを防止するための防曇方法であって：

透明板状部材を準備する工程と；

実質的に透明で光触媒性半導体材料を含む層で前記透明板状部材の表面を被覆する工程と；

前記光触媒性材料を光励起することにより前記層の表面を親水性になし、もって、付着湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；
からなる透明板状部材の防曇方法。

10 116. 前記被覆工程は：

(a) 光触媒性半導体材料の粒子と、未硬化の若しくは部分的に硬化したシリコーン又はシリコーンの前駆体からなる塗膜形成要素、とを含む塗料用組成物を該表面に塗布する工程と；

(b) 該塗膜形成要素を硬化させる工程と；

15 (c) 該光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させる工程；
とからなる請求項 115 に基づく防曇方法。

20 117. 基材の表面を親水化する方法であって：

光触媒性半導体材料を含む層で被覆された基材を準備する工程と；

前記層の表面が水との接触角に換算して約 10° 以下の水濡れ性を呈するまで前記光触媒性材料を光励起する工程；
からなる表面の親水化方法。

25

118. 基材の表面を親水化する方法であって：

(a) 光触媒性半導体材料の粒子が均一に分散されたシリコーンの層で被覆された基材を準備する工程と；

(b) 該光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させ、もって、前記層の表面を親水性になす工程；
からなる基材の親水化方法。

5

119. 更に、水との接触角に換算して約10°以下の水濡れ性を呈するまで光触媒を光励起することを特徴とする請求項118に基づく表面の親水化方法。

120. 基材の表面を親水化する方法であって：

10 基材の表面を光触媒性半導体材料を含む層で被覆する工程と；
前記層の表面が水との接触角に換算して約10°以下の水濡れ性を呈するまで前記光触媒性材料を光励起する工程；
からなる表面の親水化方法。

15 121. 基材の表面を親水化する方法であって：

(a) 光触媒性半導体材料の粒子と、未硬化の若しくは部分的に硬化したシリコーン又はシリコーンの前駆体からなる塗膜形成要素、とを含む塗料用組成物を該表面に塗布する工程と；

(b) 該塗膜形成要素を硬化させる工程と；

20 (c) 該光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させる工程；
からなる表面の親水化方法。

25 122. 更に、水との接触角に換算して約10°以下の水濡れ性を呈するまで光触媒を光励起することを特徴とする請求項121に基づく表面の親水化方法。

123. 基材を清浄化する方法であって：

- 光触媒性半導体材料を含む層で被覆された基材を準備する工程と；
前記基材を屋外に配置する工程と；
前記光触媒性材料を光励起することにより前記層の表面を親水性にする工程
と；
5 前記基材を降雨にさらして、前記層の表面に付着する堆積物および／又は汚染
物を雨滴により洗い流させる工程；
からなる基材の清浄化方法。
124. 基材を清浄化する方法であって：
10 (a) 光触媒性半導体材料の粒子が均一に分散されたシリコーンの層で被覆され
た基材を準備する工程と；
(b) 前記基材を屋外に配置する工程と；
(c) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコー
ン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なく
15 とも部分的に水酸基に置換させ、もって、前記層の表面を親水性になす工程と；
(d) 前記基材を降雨にさらして、前記層の表面に付着する堆積物および／又は
汚染物を雨滴により洗い流させる工程；
からなる基材の清浄化方法。
- 20 125. 基材を清浄化する方法であって：
(a) 光触媒性半導体材料の粒子が均一に分散されたシリコーンの層で被覆され
た基材を準備する工程と；
(b) 前記基材を屋外に配置する工程と；
(c) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコー
ン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なく
25 とも部分的に水酸基に置換させ、もって、前記層の表面を親水性になす工程と；
(d) 前記光触媒性材料を更に光励起することにより、光触媒性材料の光触媒作
用により前記層の表面の親水性を維持させる工程と；

(e) 前記基材を降雨にさらして、前記層の表面に付着する堆積物および／又は汚染物を雨滴により洗い流させる工程；
からなる基材の清浄化方法。

5 126. 基材を清浄化する方法であって：

基材を準備する工程と；
光触媒性半導体材料を含む層で前記基材の表面を被覆する工程と；
前記基材を屋外に配置する工程と；
前記光触媒性材料を光励起することにより前記層の表面を親水性にする工程

10 と；

前記基材を降雨にさらして、前記層の表面に付着する堆積物および／又は汚染物を雨滴により洗い流せる工程；
からなる基材の清浄化方法。

15 127. 前記被覆工程は：

(a) 光触媒性半導体材料の粒子と、未硬化の若しくは部分的に硬化したシリコーン又はシリコーンの前駆体からなる塗膜形成要素、とを含む塗料用組成物を該表面に塗布する工程と；

(b) 該塗膜形成要素を硬化させる工程と；

20 (c) 該光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させる工程；
とからなる請求項126に基づく方法。

25 128. 基材を清浄化する方法であって：

光触媒性半導体材料を含む層で被覆された基材を準備する工程と；
前記光触媒性材料を光励起することにより前記層の表面を親水性にする工程
と；

前記基材を水で灌ぐことにより、前記層の表面に付着する有機堆積物および／又は汚染物を表面から釈放させて水により洗い流す工程；からなる基材の清浄化方法。

5 129. 基材を清浄化する方法であって：

- (a) 光触媒性半導体材料の粒子が均一に分散されたシリコーンの層で被覆された基材を準備する工程と；
- (b) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させ、もって、前記層の表面を親水性になす工程と；
- (c) 前記基材を水で灌ぐことにより、前記層の表面に付着する有機堆積物および／又は汚染物を表面から釈放させて水により洗い流す工程；からなる基材の清浄化方法。

15 130. 基材を清浄化する方法であって：

- (a) 光触媒性半導体材料の粒子が均一に分散されたシリコーンの層で被覆された基材を準備する工程と；
 - (b) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させ、もって、前記層の表面を親水性になす工程と；
 - (c) 前記光触媒性材料を更に光励起することにより、光触媒性材料の光触媒作用により前記層の表面の親水性を維持させる工程と；
 - (d) 前記基材を水で灌ぐことにより、前記層の表面に付着する有機堆積物および／又は汚染物を表面から釈放させて水により洗い流す工程；
- 25 からなる基材の清浄化方法。

131. 基材を清浄化する方法であって：

基材を準備する工程と；

光触媒性半導体材料を含む層で前記基材の表面を被覆する工程と；
前記光触媒性材料を光励起することにより前記層の表面を親水性にする工程
と；
前記基材を水で灌ぐことにより、前記層の表面に付着する有機堆積物および／
5 又は汚染物を表面から釈放させて水により洗い流す工程；
からなる基材の清浄化方法。

132. 前記被覆工程は：
(a) 光触媒性半導体材料の粒子と、未硬化の若しくは部分的に硬化したシリコ
10 ーン又はシリコーンの前駆体からなる塗膜形成要素、とを含む塗料用組成物を該
表面に塗布する工程と；
(b) 該塗膜形成要素を硬化させる工程と；
(c) 該光触媒性材料を光励起することにより、前記層の表面のシリコーン分子
15 のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部
分的に水酸基に置換させる工程；
とからなる請求項131に基づく方法。

133. 基材を清浄化する方法であって：
光触媒性半導体材料を含む層で被覆された基材を準備する工程と；
20 前記光触媒性材料を光励起することにより前記層の表面を親水性にする工程
と；
前記基材を水中に浸漬し又は水で濡らすことにより、前記層の表面に付着する
有機堆積物および／又は汚染物を表面から釈放させる工程；
からなる基材の清浄化方法。

25

134. 基材を清浄化する方法であって：
(a) 光触媒性半導体材料の粒子が均一に分散されたシリコーンの層で被覆され
た基材を準備する工程と；

- (b) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させ、もって、前記層の表面を親水性になす工程と；
5 (c) 前記基材を水中に浸漬し又は水で濡らすことにより、前記層の表面に付着する有機堆積物および／又は汚染物を表面から釈放させて水により洗い流す工程；
からなる基材の清浄化方法。

135. 基材を清浄化する方法であつて：

- 10 (a) 光触媒性半導体材料の粒子が均一に分散されたシリコーンの層で被覆された基材を準備する工程と；
(b) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させ、もって、前記層の表面を親水性になす工程と；
15 (c) 前記光触媒性材料を更に光励起することにより、光触媒性材料の光触媒作用により前記層の表面の親水性を維持させる工程と；
(d) 前記基材を水中に浸漬し又は水で濡らすことにより、前記層の表面に付着する有機堆積物および／又は汚染物を表面から釈放させる工程；
からなる基材の清浄化方法。

20

136. 基材を清浄化する方法であつて：

- 基材を準備する工程と；
光触媒性半導体材料を含む層で前記基材の表面を被覆する工程と；
前記光触媒性材料を光励起することにより前記層の表面を親水性にする工程
25 と；
前記基材を水中に浸漬し又は水で濡らすことにより、前記層の表面に付着する有機堆積物および／又は汚染物を表面から釈放させる工程；
からなる基材の清浄化方法。

137. 前記被覆工程は：

- (a) 光触媒性半導体材料の粒子と、未硬化の若しくは部分的に硬化したシリコーン又はシリコーンの前駆体からなる塗膜形成要素、とを含む塗料用組成物を該表面に塗布する工程と；
5 (b) 該塗膜形成要素を硬化させる工程と；
(c) 該光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させる工程；
10 とかなる請求項 136 に基づく方法。

138. 屋外に配置された基材の表面を清浄に維持する方法であって：

- 光触媒性半導体材料を含む層で被覆された基材を準備する工程と；
前記基材を屋外に配置する工程と；
15 前記光触媒性材料を光励起することにより前記層の表面を親水性にする工程；
からなり、汚染物を含んだ雨水が流下したときに汚染物が基材の表面に付着するのを防止することからなる方法。

139. 屋外に配置された基材の表面を清浄に維持する方法であって：

- 20 (a) 光触媒性半導体材料の粒子が均一に分散されたシリコーンの層で被覆された基材を準備する工程と；
(b) 前記基材を屋外に配置する工程と；
(c) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なく25 とも部分的に水酸基に置換させて、前記層の表面を親水性にする工程；
とかなり、もって、汚染物を含んだ雨水が流下したときに汚染物が基材の表面に付着するのを防止することからなる方法。

140. 屋外に配置された基材の表面を清浄に維持する方法であって：

- (a) 光触媒性半導体材料の粒子が均一に分散されたシリコーンの層で被覆された基材を準備する工程と；
- (b) 前記基材を屋外に配置する工程と；
- 5 (c) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させ、もって、前記層の表面を親水性になす工程と；
- (d) 前記光触媒性材料を更に光励起することにより、光触媒性材料の光触媒作用により前記層の表面の親水性を維持させる工程と；
- 10 からなり、汚染物を含んだ雨水が流下したときに汚染物が基材の表面に付着するのを防止することからなる方法。

141. 屋外に配置された基材の表面を清浄に維持する方法であって：

- 基材を準備する工程と；
- 15 基材の表面を光触媒性半導体材料を含む層で被覆する工程と；
- 前記基材を屋外に配置する工程と；
- 前記光触媒性材料を光励起することにより前記層の表面を親水性にする工程；
- からなり、汚染物を含んだ雨水が流下したときに汚染物が基材の表面に付着するのを防止することからなる方法。

20

142. 前記被覆工程は：

- (a) 光触媒性半導体材料の粒子と、未硬化の若しくは部分的に硬化したシリコーン又はシリコーンの前駆体からなる塗膜形成要素、とを含む塗料用組成物を該表面に塗布する工程と；
- 25 (b) 該塗膜形成要素を硬化させる工程と；
- (c) 該光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させる工程；

とからなる請求項 141 に基づく方法。

143. 基材に付着した水滴の成長を防止する方法であって：

- 光触媒性半導体材料を含む層で被覆された基材を準備する工程と；
5 前記光触媒性材料を光励起することにより前記層の表面を親水性になす工程
と；

付着した湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；
からなる水滴成長防止方法。

10 144. 基材に付着した水滴の成長を防止する方法であって：

- (a) 光触媒性半導体材料の粒子が均一に分散された実質的に透明なシリコーン
の層で被覆された基材を準備する工程と；
(b) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させ、もって、前記層の表面を親水性になす工程と；
15 (c) 付着した湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；
からなる水滴成長防止方法。

145. 基材に付着した水滴の成長を防止する方法であって：

- 20 (a) 光触媒性半導体材料の粒子が均一に分散された実質的に透明なシリコーン
の層で被覆された基材を準備する工程と；
(b) 前記層の光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させ、もって、前記層の表面を親水性になす工程と；
25 (c) 前記光触媒性材料を光励起することにより、光触媒性材料の光触媒作用により前記層の表面の親水性を維持させる工程と；
(d) 付着した湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；
からなる水滴成長防止方法。

146. 基材に付着した水滴の成長を防止する方法であつて：

- 基材を準備する工程と；
- 光触媒性半導体材料を含む層で前記基材の表面を被覆する工程と；
- 5 前記光触媒性材料を光励起することにより前記層の表面を親水性になす工程と；
- 付着した湿分凝縮水および／又は水滴を前記層の表面に広がらせる工程；
- からなる水滴成長防止方法。

10 147. 前記被覆工程は：

- (a) 光触媒性半導体材料の粒子と、未硬化の若しくは部分的に硬化したシリコーン又はシリコーンの前駆体からなる塗膜形成要素、とを含む塗料用組成物を該表面に塗布する工程と；
- (b) 該塗膜形成要素を硬化させる工程と；
- 15 (c) 該光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させる工程；
- とからなる請求項146に基づく方法。

20 148. 光触媒性材料を光励起する前記工程は太陽光を用いて行うことを特徴とする請求項102～147のいづれかに基づく方法。

149. 光触媒性材料を光励起する工程は蛍光灯、白熱電灯、メタルハライドランプ、水銀ランプからなる群から選ばれた1種の電灯を用いて行うことを特徴とする請求項102～147のいづれかに基づく方法。

150. 光触媒性材料を光励起する前記工程は、前記層の水濡れ性が水との接触角に換算して約10°以下になるまで行うことを特徴とする請求項102～116お

および 123～147 のいづれかに基づく方法。

151. 光触媒性材料を光励起する前記工程は、前記層の水濡れ性が水との接触角に換算して約 5° 以下になるまで行うことを特徴とする請求項 150 に基づく
5 方法。

152. 光触媒性材料を光励起する前記工程は、前記層の水濡れ性が水との接触角に換算して約 5° 以下になるまで行うことを特徴とする請求項請求項 117～12
2 のいづれかに基づく方法。

10

153. 前記工程 (b) は前記層の水濡れ性が水との接触角に換算して約 10° 以
下になるまで行うことを特徴とする請求項 103、104、108、109、113、114、129、
130、134、135、144、又は 145 に基づく方法。

15 154. 前記工程 (b) は前記層の水濡れ性が水との接触角に換算して約 5° 以
下になるまで行うことを特徴とする請求項 153 に基づく方法。

155. 前記工程 (c) は前記層の水濡れ性が水との接触角に換算して約 10° 以
下になるまで行うことを特徴とする請求項 104、106、109、111、114、116、124、
20 125、127、130、132、135、137、139、140、142、145、又は 147 に基づく方法。

156. 前記工程 (c) は前記層の水濡れ性が水との接触角に換算して約 5° 以
下になるまで行うことを特徴とする請求項 155 に基づく方法。

25 157. 前記光触媒性材料は、 TiO_2 、 ZnO 、 SnO_2 、 $SrTiO_3$ 、 WO_3 、 Bi_2O_3 、 Fe_2O_3 か
らなる群から選ばれた 1 種の酸化物を含む請求項 102～147 のいづれかに基づく
方法。

158. 前記光触媒性材料はアナターゼ型チタニアからなる請求項157に基づく方法。

159. 前記層は更に SiO_2 又は SnO_2 を含んでなる請求項157に基づく方法。

5

160. 前記鏡の基材はアルカリ網目修飾イオンを含むガラスで形成されており、前記基材の表面は前記イオンが基材から前記層中に拡散を防止するための薄膜で被覆されている請求項102~106のいづれかに基づく方法。

10 161. 前記薄膜はシリカの薄膜からなる請求項160に基づく方法。

162. 前記レンズはアルカリ網目修飾イオンを含むガラスで形成され、前記レンズの表面は前記イオンが基材から前記層中に拡散を防止するための薄膜で被覆されている請求項107~111のいづれかに基づく方法。

15

163. 前記薄膜はシリカの薄膜からなる請求項162に基づく方法。

164. 前記透明板状部材はアルカリ網目修飾イオンを含むガラスで形成され、前記透明板状部材の表面は前記イオンが基材から前記層中に拡散を防止するための薄膜で被覆されている請求項112~116のいづれかに基づく方法。

165. 前記薄膜はシリカの薄膜からなる請求項164に基づく方法。

166. 前記基材はアルカリ金属イオンおよび／又はアルカリ土類金属イオンを含み、前記基材の表面は前記イオンが基材から前記層中に拡散を防止するための薄膜で被覆されている請求項117~147のいづれかに基づく方法。

167. 前記薄膜はシリカの薄膜からなる請求項166に基づく複合材。

168. 前記層の厚さは約 $0.2 \mu\text{m}$ 以下である請求項 102~147 のいづれかに基づく方法。

5 169. 前記層の表面に付着した細菌や微生物を死滅させ若しくは成長を抑制するため、前記層は、更に、Ag、Cu、Zn からなる群から選ばれた 1 種の金属を含む請求項 102~147 のいづれかに基づく方法。

10 170. 光触媒性材料の酸化還元作用を増強させるため、前記層は、更に、Pt、Pd、Rh、Ru、Os、Ir からなる群から選ばれた 1 種の金属を含む請求項 102~147 のいづれかに基づく方法。

171. 防曇性鏡の製造方法であって：

反射コーティングを備えた若しくは備えていない基材を準備する工程と；
15 光触媒性半導体材料を含む実質的に透明な層で前記基材の表面を被覆する工程と；

必要に応じ、前記被覆工程の前、後、若しくは途中において前記基材の反対面に反射コーティングを形成する工程；
からなる方法。

20

172. 防曇性レンズの製造方法であって：

レンズ形成体を準備する工程と；
光触媒性半導体材料を含み光反応性の実質的に透明な層で前記レンズ形成体の表面を被覆する工程；
25 からなる方法。

173. 防曇性透明板状部材の製造方法であって：

透明な基材を準備する工程と；

光触媒性半導体材料を含み実質的に透明で光励起時に水との接触角に換算して約10°以下の水濡れ性を呈する光反応性の層で前記基材の表面を被覆する工程；
からなる方法。

5

174. 自己浄化性複合材の製造方法であって：

基材を準備する工程と；

光触媒性半導体材料を含み光励起時に水との接触角に換算して約10°以下の水濡れ性を呈する光反応性の層で前記基材の表面を被覆する工程；

10 からなる方法。

175. 親水性表面を備えた複合材の製造方法であって：

基材を準備する工程と；

光触媒性半導体材料を含み光励起時に水との接触角に換算して約10°以下の水濡れ性を呈する光反応性の層で前記基材の表面を被覆する工程；
からなる方法。

176. 前記層の水濡れ性が水との接触角に換算して約10°以下になるまで前記光触媒性材料を光励起する工程を更に行うことからなる請求項171～175のいづれかに基づく方法。

177. 光触媒性材料を光励起する前記工程は前記層の水濡れ性が水との接触角に換算して約5°以下になるまでを行うことを特徴とする請求項176に基づく方法。

25

178. 前記光触媒性材料は、TiO₂、ZnO、SnO₂、SrTiO₃、WO₃、Bi₂O₃、Fe₂O₃からなる群から選ばれた1種の酸化物を含む請求項171～175のいづれかに基づく方法。

179. 前記光触媒性材料はアナターゼ型チタニアからなる請求項178に基づく方法。

5 180. 前記被覆工程は：

(a) 光触媒性半導体材料の粒子と、未硬化の若しくは部分的に硬化したシリコーン又はシリコーンの前駆体からなる塗膜形成要素、とを含む塗料用組成物を該表面に塗布する工程と；

(b) 該塗膜形成要素を硬化させる工程と；

10 (c) 該光触媒性材料を光励起することにより、前記層の表面のシリコーン分子のケイ素原子に結合した有機基を光触媒性材料の光触媒作用により少なくとも部分的に水酸基に置換させる工程；

とからなる請求項171～175のいづれかに基づく方法。

15 181. 前記工程(c)は前記層の表面の水濡れ性が水との接触角に換算して約10°以下になるまで行う請求項180に基づく方法。

182. 前記工程(c)は前記層の表面の水濡れ性が水との接触角に換算して約5°以下になるまで行う請求項181に基づく方法。

20

183. 前記被覆工程は：

(a) 該表面を無定形チタニアの薄膜で被覆する工程と；

(b) 該薄膜を基材の軟化点以下の温度に加熱して無定形チタニアを結晶性チタニアに変換する工程；

25 からなる請求項171～175のいづれかに基づく方法。

184. アルカリ網目修飾イオンが基材から前記層中に拡散するのを防止するため、前記被覆工程の前に前記基材をシリカの薄膜で被覆することを特徴とする請

求項 183 に基づく方法。

185. 前記工程 (a) は、該表面に有機チタン化合物の溶液を塗布し、次いで該有機チタン化合物を加水分解と脱水縮重合に付すことにより該表面に無定形チタニアの薄膜を形成することからなる請求項 183 に基づく方法。
5
186. 前記有機チタン化合物は、チタンのアルコキシド、キレート、アセテートからなる群から選ばれることを特徴とする請求項 185 に基づく方法。
- 10 187. 前記工程 (a) は、該表面に無機チタン化合物の溶液を塗布し、次いで該無機チタン化合物を加水分解と脱水縮重合に付すことにより該表面に無定形チタニアの薄膜を形成することからなる請求項 183 に基づく方法。
- 15 188. 前記無機チタン化合物は、 $TiCl_4$ 又は $Ti(SO_4)_2$ である請求項 187 に基づく方法。
189. 前記工程 (a) はスパッタリングにより行うことからなる請求項 183 に基づく方法。
- 20 190. 前記層は更に SiO_2 を含む請求項 178 に基づく方法。
191. 前記被覆工程は：
(a) 結晶性チタニアの粒子とシリカの粒子を含む懸濁液を該表面に塗布する工程と；
25 (b) 該基材を基材の軟化点以下の温度に加熱することにより該粒子を基材に固定すると共に粒子を焼結する工程；
からなる請求項 190 に基づく方法。

192. アルカリ網目修飾イオンが基材から前記層中に拡散するのを防止するため、前記被覆工程の前に前記基材をシリカの薄膜で被覆することを特徴とする請求項191に基づく方法。

5 193. 前記被覆工程は：

(a) 無定形シリカの前駆体に結晶性チタニアの粒子を分散させてなる懸濁液を該表面に塗布する工程と；

(b) 該前駆体を、必要に応じて加水分解させ、脱水縮重合に付すことにより、無定形シリカで結着されたチタニア粒子の層を該表面に形成する工程；

10 からなる請求項190に基づく方法。

194. 前記被覆工程は：

(a) 有機チタン化合物の溶液にシリカの粒子を分散させてなる懸濁液を該表面に塗布する工程と；

15 (b) 該有機チタン化合物を加水分解と脱水縮重合に付すことにより、シリカ粒子が分散された無定形チタニアの薄膜を形成する工程と；

(c) 該薄膜を基材の軟化点以下の温度に加熱することにより無定形チタニアを結晶性チタニアに変換する工程；

からなる請求項190に基づく方法。

20

195. 前記被覆工程は：

(a) 有機チタン化合物と無定形シリカの前駆体を含む溶液を該表面に塗布する工程と；

25 (b) 該有機化合物を加水分解と脱水縮重合に付すことにより、無定形チタニアと無定形シリカを含む薄膜を形成する工程と；

(c) 該薄膜を基材の軟化点以下の温度に加熱することにより無定形チタニアをアナターゼ型チタニアに変換する工程；

からなる請求項190に基づく方法。

196. 前記有機チタン化合物は、チタンのアルコキシド、キレート、アセテートからなる群から選ばれることを特徴とする請求項194に基づく方法。

5 197. 前記有機チタン化合物は、チタンのアルコキシド、キレート、アセテートからなる群から選ばれることを特徴とする請求項195に基づく方法。

198. 前記前駆体は、テトラアルコキシラン、シラノール、平均分子量3000以下のポリシロキサン又はそれらの混合物である請求項193に基づく方法。

10

199. 前記前駆体は、テトラアルコキシラン、シラノール、平均分子量3000以下のポリシロキサン又はそれらの混合物である請求項195に基づく方法。

200. 前記層は更に SnO_2 を含む請求項178に基づく方法。

15

201. 前記被覆工程は：

(a) アナターゼ型チタニアの粒子と酸化錫の粒子を含む懸濁液を該表面に塗布する工程と；

(b) 該基材を 900°C 以下の温度に加熱することにより該粒子を基材に固定す
20 ると共に粒子を焼結する工程；

からなる請求項200に基づく方法。

202. アルカリ網目修飾イオンが基材から前記層中に拡散するのを防止するため、前記被覆工程の前に前記基材をシリカの薄膜で被覆することを特徴とする請
25 求項191に基づく方法。

203. 前記被覆工程は：

(a) 有機チタン化合物の溶液に酸化錫の粒子を分散させてなる懸濁液を該表面

に塗布する工程と；

(b) 該有機チタン化合物を加水分解と脱水縮重合に付すことにより、酸化錫粒子が分散された無定形チタニアの薄膜を形成する工程と；

(c) 該薄膜を 900°C 以下の温度に加熱することにより無定形チタニアを結晶

5 性チタニアに変換する工程；

からなる請求項 200 に基づく方法。

204. 前記被覆工程は前記層の厚さが約 0.2 μm 以下になるように行われる請求項 171～175 のいづれかに基づく方法。

10

205. 表面に付着した湿分の凝縮水および／又は水滴によって鏡が曇り若しくは翳るのを防止するようになった防曇性鏡であって：

反射コーティングを備えた基材と；

前記基材の表面に接合され、光触媒性材料の粒子が均一に分散された実質的に

15 透明なシリコーンの塗膜とを備え；

前記塗膜の表面は、光触媒性材料を光励起したときには、シリコーン分子のケイ素原子に結合した有機基が少なくとも部分的に水酸基に置換され、高度の親水性を呈することを特徴とする防曇性鏡。

20 206. 表面に付着した湿分の凝縮水および／又は水滴によってレンズが曇り若しくは翳るのを防止するようになった防曇性レンズであって：

透明なレンズ形成体と；

前記レンズ形成体の表面に接合され、光触媒性材料の粒子が均一に分散された実質的に透明なシリコーンの塗膜とを備え；

25 前記塗膜の表面は、光触媒性材料を光励起したときには、シリコーン分子のケイ素原子に結合した有機基が少なくとも部分的に水酸基に置換され、高度の親水性を呈することを特徴とする防曇性レンズ。

207. 表面に付着した湿分の凝縮水および／又は水滴によってガラスが曇り若しくは駆けるのを防止するようになった防曇性ガラスであって：

- 透明な基材と；
前記基材の表面に接合され、光触媒性材料の粒子が均一に分散された実質的に
5 透明なシリコーンの塗膜とを備え；
前記塗膜の表面は、光触媒性材料を光励起したときには、シリコーン分子のケイ素原子に結合した有機基が少なくとも部分的に水酸基に置換され、高度の親水性を呈することを特徴とする防曇性ガラス。

FIG. 1

FIG. 2A

FIG. 2B

*FIG. 3**FIG. 4*

*FIG. 5**FIG. 6*

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11A

FIG. 11B

FIG. 12

FIG. 13

*FIG. 14**FIG. 15*

FIG. 16

FIG. 17

FIG. 18A

(313 nm)

FIG. 18B

(365 nm)

FIG. 18C

(405 nm)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/00733

A. CLASSIFICATION OF SUBJECT MATTER

Int. Cl⁶ C09K3/18, C08J7/04, A47G1/00, C03C17/23, F21M7/00,
G02B1/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Int. Cl⁶ C09K3/18, C08J7/04, A47G1/00, C03C17/23, F21M7/00,
G02B1/10

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	JP, 61-83106, A (Giken Kogyo K.K.), April 26, 1986 (26. 04. 86) (Family: none)	1 - 207

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
June 12, 1996 (12. 06. 96)

Date of mailing of the international search report
June 25, 1996 (25. 06. 96)

Name and mailing address of the ISA/
Japanese Patent Office
Facsimile No.

Authorized officer
Telephone No.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int.Cl. * C09K3/18, C08J7/04, A47G1/00, C03C17/23,
F21M7/00, G02B1/10

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int.Cl. * C09K3/18, C08J7/04, A47G1/00, C03C17/23,
F21M7/00, G02B1/10

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	J P, 61-83106, A (技研興業株式会社) 26. 4月. 1986 (26. 04. 86) (ファミリーなし)	1-207

 C欄の続きにも文献が列挙されている。 パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」特に関連のある文献ではなく、一般的技術水準を示す
もの

「E」先行文献ではあるが、国際出願日以後に公表されたも
の

「L」優先権主張に疑義を提起する文献又は他の文献の発行
日若しくは他の特別な理由を確立するために引用する
文献(理由を付す)

「O」口頭による開示、使用、展示等に言及する文献

「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「T」国際出願日又は優先日後に公表された文献であって
出願と矛盾するものではなく、発明の原理又は理
論の理解のために引用するもの

「X」特に関連のある文献であって、当該文献のみで発明
の新規性又は進歩性がないと考えられるもの

「Y」特に関連のある文献であって、当該文献と他の1以
上の文献との、当業者にとって自明である組合せに
よって進歩性がないと考えられるもの

「&」同一パテントファミリー文献

国際調査を完了した日

12. 06. 96

国際調査報告の発送日

25.06.96

国際調査機関の名称及びあて先

日本国特許庁 (ISA/JP)

郵便番号 100

東京都千代田区霞が関三丁目4番3号

特許庁審査官(権限のある職員)

本 堂 裕 司

印

4 H 9049

電話番号 03-3581-1101 内線 3443