4.5. Power Series

A power series is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

where x is a variable of indeterminate. It can be interpreted as an infinite polynomial. The c_n 's are the *coefficients* of the series. The sum of the series is a function

$$f(x) = \sum_{n=0}^{\infty} c_0 x^n$$

For instance the following series converges to the function shown for -1 < x < 1:

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + \dots + x^n + \dots = \frac{1}{1-x}.$$

More generally given a fix number a, a power series in (x - a), or centered in a, or about a, is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots + c_n (x-a)^n + \dots$$

4.5.1. Convergence of Power Series. For a given power series $\sum_{n=1}^{\infty} c_n (x-a)^n$ there are only three possibilities:

- (1) The series converges only for x = a.
- (2) The series converges for all x.
- (3) There is a number R, called radius of convergence, such that the series converges if |x a| < R and diverges if |x a| > R.

The interval of convergence is the set of values of x for which the series converges.

 $\it Example$: Find the radius of convergence and interval of convergence of the series

$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n} \, .$$

Answer: We use the Ratio Test:

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(x-3)^{n+1}/(n+1)}{(x-3)^n/n} = (x-3) \frac{n}{n+1} \underset{n \to \infty}{\longrightarrow} x - 3,$$

So the power series converges if |x-3| < 1 and diverges if |x-3| > 1. Consequently, the radius of convergence is R=1. On the other hand, we know that the series converges inside the interval (2,4), but it remains to test the endpoints of that interval. For x=4 the series becomes

$$\sum_{n=1}^{\infty} \frac{1}{n} \,,$$

i.e., the harmonic series, which we know diverges. For x=2 the series is

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \,,$$

i.e., the alternating harmonic series, which converges. So the interval of convergence is [2, 4).