GAUGE AND HIGGS BOSONS

γ (photon)

$$I(J^{PC}) = 0.1(1^{-})$$

Mass $m < 1 \times 10^{-18}$ eV

Charge $q < 1 \times 10^{-46} e$ (mixed charge)

Charge $q < 1 \times 10^{-35}~e$ (single charge)

Mean life $\tau = \mathsf{Stable}$

g or gluon

$$I(J^P) = 0(1^-)$$

Mass m = 0 [a] SU(3) color octet

graviton

$$J=2$$

Mass $m < 1.76 \times 10^{-23} \text{ eV}$

$$J=1$$

Charge
$$= \pm 1 e$$

Mass
$$m = 80.377 \pm 0.012$$
 GeV ^[b]

$$W/Z$$
 mass ratio = 0.88145 \pm 0.00013

$$m_Z - m_W = 10.811 \pm 0.012 \; \text{GeV}$$

$$m_{W^+} - m_{W^-} = -0.029 \pm 0.028 \; {
m GeV}$$

Full width
$$\Gamma=2.085\pm0.042~\text{GeV}$$

$$\left\langle N_{\pi^{\pm}} \right\rangle = 15.70 \pm 0.35$$

$$\langle N_{K^{\pm}}^{\pi^{\pm}} \rangle = 2.20 \pm 0.19$$

 $\langle N_{p} \rangle = 0.92 \pm 0.14$

$$\langle N_p \rangle = 0.92 \pm 0.14$$

$$\langle N_{\sf charged} \rangle = 19.39 \pm 0.08$$

 W^- modes are charge conjugates of the modes below.

W+ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\ell^+ \nu$	[c] (10.86± 0.09) %		_
$e^+ u$	$(10.71 \pm \ 0.16) \%$		40188
$\mu^+ \nu \ au^+ u$	$(10.63 \pm \ 0.15) \%$		40188
$ au^+ u$	$(11.38 \pm \ 0.21) \%$		40169
hadrons	$(67.41 \pm 0.27) \%$		_

Created: 5/31/2023 09:09

https://pdg.lbl.gov

Page 1

$\pi^+\gamma$	< 7	$\times 10^{-6}$	95%	40188
$D_s^+ \gamma$	< 1.3	\times 10 ⁻³	95%	40164
cX	(33.3 ± 2.0)	6)%		_
c s	$(31 \begin{array}{cc} +13 \\ -11 \end{array}$) %		-
invisible	[d] (1.4 \pm 2.	9)%		_
$\pi^+\pi^+\pi^-$	< 1.01	\times 10 ⁻⁶	95%	40188

Z

$$J=1$$

Charge = 0 Mass
$$m = 91.1876 \pm 0.0021$$
 GeV [e] Full width $\Gamma = 2.4955 \pm 0.0023$ GeV $\Gamma(\ell^+\ell^-) = 83.984 \pm 0.086$ MeV [c] $\Gamma(\text{invisible}) = 499.0 \pm 1.5$ MeV [f] $\Gamma(\text{hadrons}) = 1744.4 \pm 2.0$ MeV $\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-) = 1.0001 \pm 0.0024$ $\Gamma(\tau^+\tau^-)/\Gamma(e^+e^-) = 1.0020 \pm 0.0032$ [g]

Average charged multiplicity

$$\langle N_{charged} \rangle = 20.76 \pm 0.16 \quad (S = 2.1)$$

Couplings to quarks and leptons

$$g_V^{\ell} = -0.03783 \pm 0.00041$$
 $g_V^{u} = 0.266 \pm 0.034$
 $g_V^{d} = -0.38^{+0.04}_{-0.05}$
 $g_A^{\ell} = -0.50123 \pm 0.00026$
 $g_A^{u} = 0.519^{+0.028}_{-0.033}$
 $g_A^{d} = -0.527^{+0.040}_{-0.028}$
 $g_A^{\nu\ell} = 0.5008 \pm 0.0008$
 $g_A^{\nu\ell} = 0.53 \pm 0.09$
 $g_A^{\nu\mu} = 0.502 \pm 0.017$

Asymmetry parameters [h]

$$A_e = 0.1515 \pm 0.0019$$
 $A_\mu = 0.142 \pm 0.015$
 $A_\tau = 0.143 \pm 0.004$
 $A_s = 0.90 \pm 0.09$
 $A_c = 0.670 \pm 0.027$
 $A_b = 0.923 \pm 0.020$

Charge asymmetry (%) at Z pole

$$A_{FB}^{(0\ell)} = 1.71 \pm 0.10$$

$$A_{FB}^{(0u)} = 4 \pm 7$$

 $A_{FB}^{(0s)} = 9.8 \pm 1.1$
 $A_{FB}^{(0c)} = 7.07 \pm 0.35$
 $A_{FB}^{(0b)} = 9.92 \pm 0.16$

Z DECAY MODES	Fraction (Γ_i/Γ)				Co		ale factor/ dence level	
e^+e^-	[<i>i</i>]	(3.	3632	2±0.004	2) %			45594
$\mu^+\mu^-$	[<i>i</i>]	(3.	3662	2 ± 0.006	6) %			45594
$ au^+ au^-$	[<i>i</i>]	(3.	3696	6 ± 0.008	3) %			45559
$\ell^+\ell^-$	[c,i]	(3.	3658	3 ± 0.002	3) %			_
$\ell^+\ell^-\ell^+\ell^-$	[<i>j</i>]	(4.	55	±0.17	$) \times 10^{-1}$	-6		45594
invisible	[<i>i</i>]	(20.	000	± 0.055) %			_
hadrons	[<i>i</i>]	(69.	911	± 0.056) %			_
$(u\overline{u}+c\overline{c})/2$		(11.	6	± 0.6) %			_
$(dd+s\overline{s}+bb)/3$		`	6	± 0.4) %			_
c <u>c</u>		`	03	± 0.21) %			_
<u>b </u>		(15.		± 0.05) %			_
$b\overline{b}b\overline{b}$		(3.		± 1.3) × 10	-4		_
ggg		< 1.			%	_	CL=95%	_
$\pi^{0}\gamma$			01				CL=95%	45594
$\eta \gamma$		< 5.					CL=95%	45592
$ ho^0 \gamma$		< 2.					CL=95%	45591
$\omega\gamma$		< 6.					CL=95%	45590
$\eta'(958)\gamma$		< 4.	2				CL=95%	45589
$\phi\gamma$		< 9					CL=95%	45588
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			46				CL=95%	45594
			52				CL=95%	45594
$\gamma \gamma \gamma \\ \pi^{\pm} W^{\mp}$	F 4 3	< 2.	2				CL=95%	45594
$\rho^{\pm}W^{\mp}$	[k]		2				CL=95% CL=95%	10169
ρ – VV $J/\psi(1S)X$	[K]	< 8.		+0.23 -0.25	× 10) × 10			10143
		`		-0.25				
$J/\psi(1S)\gamma$		< 1.				_	CL=95%	45541
$\psi(2S)X$		`	60	± 0.29	$) \times 10^{-1}$			_
$\psi(2S)\gamma$		< 4.				_	CL=95%	45519
$J/\psi(1S)J/\psi(1S)$		< 2.					CL=95%	45489
$\chi_{c1}(1P)X$) × 10			_
$\chi_{c2}(1P)X$		< 3.					CL=90%	_
$\varUpsilon(1S) \; X + \varUpsilon(2S) \; X \ + \varUpsilon(3S) \; X$		(1.	0	± 0.5) × 10	-4		_
$\Upsilon(1\dot{S})\dot{X}$		< 4.	4		× 10	-5	CL=95%	_
$\Upsilon(1S)\gamma$		< 2.	8		× 10	-6	CL=95%	45103
$\Upsilon(2S)X$		< 1.					CL=95%	
https://pdg.lbl.gov	Pag	ge 3			Created	d:	5/31/202	3 09:09

$\Upsilon(2S)_{\alpha}$. 17		v 10-6	CL=95%	45042
$\Upsilon(2S)\gamma$			< 1.7				45043
$\Upsilon(3S)X$			< 9.4			CL=95%	-
$\Upsilon(3S)\gamma$			< 4.8			CL=95%	45006
$\Upsilon(1,2,3S) \Upsilon(1,2,3S)$			< 1.5			CL=95%	_
(D^0/\overline{D}^0) X			(20.7	± 2.0) %		_
$D^{\pm}X$			(12.2) %		_
$D^*(2010)^{\pm}X$		[<i>k</i>]	(11.4) %		_
$D_{s1}(2536)^{\pm}X$			(3.6	± 0.8	$) \times 10^{-3}$		_
$D_{sJ}(2573)^{\pm} X$			(5.8	± 2.2	$) \times 10^{-3}$		_
$D^{*\prime}(2629)^{\pm}X$		9	searched f	or			_
B^+X		[/]	(6.08	± 0.13) %		_
$B_s^0 X$		[/]	(1.59	±0.13) %		_
$B_c^+ X$		9	searched f	or			_
Λ _c ⁺ X Ξ _c ⁰ X			(1.54	± 0.33) %		_
$=$ $\overset{\circ}{0}$ X			seen				_
$\equiv_b^c X$			seen				_
<i>b</i> -baryon X		[/]	(1.38	± 0.22) %		_
anomalous $\gamma+$ hadrons		[<i>n</i>]	< 3.2		$\times 10^{-3}$	CL=95%	_
$e^+e^-\gamma$		[<i>n</i>]	< 5.2		$\times10^{-4}$	CL=95%	45594
$\mu^+\mu^-\gamma$		[<i>n</i>]	< 5.6		$\times10^{-4}$	CL=95%	45594
$\tau^+\tau^-\gamma$		[<i>n</i>]	< 7.3		$\times10^{-4}$	CL=95%	45559
$\ell^+\ell^-\gamma\gamma$		[0]	< 6.8		$\times10^{-6}$	CL=95%	_
$q \overline{q} \gamma \gamma$		[0]	< 5.5		$\times 10^{-6}$	CL=95%	_
$ u \overline{ u} \gamma \gamma$		[0]	< 3.1		$\times10^{-6}$	CL=95%	45594
$e^{\pm}\mu^{\mp}$	LF		< 7.5		$\times10^{-7}$	CL=95%	45594
$e^{\pm} au^{\mp}$	LF		< 5.0		$\times10^{-6}$	CL=95%	45576
$\mu^{\pm} \tau^{\mp}$	LF		< 6.5			CL=95%	45576
p e	L,B		< 1.8		$\times 10^{-6}$	CL=95%	45589
$p\mu$	L,B		< 1.8		\times 10 ⁻⁶	CL=95%	45589

Н

J = 0

was H^0

Mass $m=125.25\pm0.17~{\rm GeV}~{\rm (S}=1.5)$ Full width $\Gamma=3.2^{+2.4}_{-1.7}~{\rm MeV}~{\rm (assumes~equal~on-shell~and~off-shell~effective~couplings)}$

H Signal Strengths in Different Channels

Combined Final States $= 1.03 \pm 0.04$ $WW^* = 1.00 \pm 0.08$ $ZZ^* = 1.02 \pm 0.08$ $\gamma \gamma = 1.10 \pm 0.07$ $c\overline{c}$ Final State $= 8 \pm 22$ (S = 1.9)

 $\begin{array}{l} b\,\overline{b}=0.99\pm0.12\\ \mu^+\,\mu^-=1.21\pm0.35\\ \tau^+\,\tau^-=0.91\pm0.09\\ \gamma^*\,\gamma \text{ Final State}=1.5\pm0.5\\ \text{Fermion coupling }(\kappa_F)=0.95\pm0.05\\ \text{Gauge boson coupling }(\kappa_V)=1.035\pm0.031\\ t\,\overline{t}\,H \text{ Production}=1.10\pm0.18\\ t\,H \text{ production}=6\pm4\\ H \text{ Production Cross Section in }pp \text{ Collisions at }\sqrt{s}=13\text{ TeV}=56.9\pm3.4\text{ pb} \end{array}$

H DECAY MODES		Fraction (Γ_i/Γ)) Confid	dence level	<i>p</i> (MeV/ <i>c</i>)
WW*		(25.7 ± 2.5)) %		_
<i>ZZ</i> *		$(2.80\pm0.30$) %		_
$rac{\gamma}{b} rac{\gamma}{b}$		$(2.50\pm0.20$	$) \times 10^{-3}$		62625
		(53 ± 8)) %		_
e^+e^-		< 3.6	$\times 10^{-4}$	95%	62625
$\mu^+\mu^-$		(2.6 ± 1.3	$) \times 10^{-4}$		62625
$\tau^+\tau^-$		$(6.0 \begin{array}{c} +0.8 \\ -0.7 \end{array}$) %		62600
$Z\gamma$		(3.2 ± 1.5	$) \times 10^{-3}$		29431
$Z \rho(770)$		< 1.21	%	95%	29423
$Z\phi(1020)$		< 3.6	$\times 10^{-3}$	95%	29417
$J/\psi \gamma$		< 3.5	$\times 10^{-4}$	95%	62587
$J/\psiJ/\psi$		< 1.8	$\times 10^{-3}$	95%	62548
$\psi(2S)\gamma$		< 2.0	$\times 10^{-3}$	95%	62571
$\Upsilon(1S)\gamma$		< 4.9	$\times 10^{-4}$	95%	62268
$\Upsilon(2S)\gamma$		< 5.9	$\times 10^{-4}$	95%	62224
$\Upsilon(3S)\gamma$		< 5.7	$\times 10^{-4}$	95%	62197
$\Upsilon(nS)\ \Upsilon(mS)$		< 1.4	$\times 10^{-3}$	95%	_
$ ho$ (770) γ		< 8.8	$\times 10^{-4}$	95%	62623
ϕ (1020) γ		< 4.8	$\times 10^{-4}$	95%	62621
$e\mu$	LF	< 6.1	$\times 10^{-5}$	95%	62625
e au	LF	< 2.2	$\times 10^{-3}$	95%	62612
μau	LF	< 1.5	$\times 10^{-3}$	95%	62612
invisible		< 13	%	95%	_
γ invisible		< 2.9	%	95%	_

Neutral Higgs Bosons, Searches for

Mass limits for heavy neutral Higgs bosons (H_2^0 , A^0) in the MSSM

Charged Higgs Bosons (H^{\pm} and $H^{\pm\pm}$). Searches for

```
Mass limits for m_{H^+} < m(top) in the MSSM
```

m > 155 GeV, CL = 95%

Mass limits for $m_{H^+} > m(top)$ in the MSSM

m > 181 GeV, CL = 95%
$$(\tan\beta = 10)$$

m > 249 GeV, CL = 95% $(\tan\beta = 20)$
m > 390 GeV, CL = 95% $(\tan\beta = 30)$
m > 894 GeV, CL = 95% $(\tan\beta = 40)$
m > 1017 GeV, CL = 95% $(\tan\beta = 50)$
m > 1103 GeV, CL = 95% $(\tan\beta = 60)$

New Heavy Bosons (W', Z', leptoquarks, etc.), Searches for

Additional W Bosons

```
W' with standard couplings

Mass m>6000 GeV, CL = 95% (pp direct search)

W_R (Right-handed W Boson)

Mass m>715 GeV, CL = 90% (electroweak fit)
```

Additional Z Bosons

```
Z_{\rm SM}^{'} with standard couplings Mass m>5150 GeV, CL = 95% (pp direct search) Z_{LR} of SU(2)_L \timesSU(2)_R \timesU(1) (with g_L=g_R) Mass m>630 GeV, CL = 95% (p\overline{p} direct search) Mass m>1162 GeV, CL = 95% (electroweak fit)
```

$$Z_{\chi}$$
 of SO(10) \rightarrow SU(5)×U(1) $_{\chi}$ (with $g_{\chi}=e/\cos\theta_W$)
Mass $m>$ 4800 GeV, CL = 95% (pp direct search)
 Z_{ψ} of $E_6 \rightarrow$ SO(10)×U(1) $_{\psi}$ (with $g_{\psi}=e/\cos\theta_W$)
Mass $m>$ 4560 GeV, CL = 95% (pp direct search)
 Z_{η} of $E_6 \rightarrow$ SU(3)×SU(2)×U(1)×U(1) $_{\eta}$ (with $g_{\eta}=e/\cos\theta_W$)
Mass $m>$ 3.900 × 10³ GeV, CL = 95% (pp direct search)

Scalar Leptoquarks

```
m>1800 GeV, CL = 95% (1st gen., pair prod., B(eq)=1) m>1755 GeV, CL = 95% (1st gen., single prod., B(eq)=1) m>1700 GeV, CL = 95% (2nd gen., pair prod., B(\mu q)=1) m>660 GeV, CL = 95% (2nd gen., single prod., B(\mu q)=1) m>1430 GeV, CL = 95% (3rd gen., pair prod., B(\tau t)=1) m>740 GeV, CL = 95% (3rd gen., single prod., B(\tau t)=1) (See the Particle Listings for assumptions on leptoquark quantum numbers and branching fractions.)
```

Diquarks

Mass
$$m > 7200$$
 GeV, $CL = 95\%$ (E_6 diquark)

Axigluon

Mass
$$m > 6600 \text{ GeV}$$
, $CL = 95\%$

Axions (A^0) and Other Very Light Bosons, Searches for

See the review on "Axions and other similar particles."

The best limit for the half-life of neutrinoless double beta decay with Majoron emission is $> 7.2 \times 10^{24}$ years (CL = 90%).

NOTES

- [a] Theoretical value. A mass as large as a few MeV may not be precluded.
- [b] This value does not include the AALTONEN 22 measurement by CDF. See the W mass section in the listings for details.
- [c] ℓ indicates each type of lepton $(e, \mu, \text{ and } \tau)$, not sum over them.
- [d] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p< 200 MeV.
- [e] The Z-boson mass listed here corresponds to a Breit-Wigner resonance parameter. It lies approximately 34 MeV above the real part of the position of the pole (in the energy-squared plane) in the Z-boson propagator.
- [f] This partial width takes into account Z decays into $\nu \overline{\nu}$ and any other possible undetected modes.
- [g] This ratio has not been corrected for the τ mass.
- [h] Here $A \equiv 2g_V g_A / (g_V^2 + g_A^2)$.
- [i] This parameter is not directly used in the overall fit but is derived using the fit results; see the note "The Z boson" and ref. LEP-SLC 06 (Physics Reports (Physics Letters C) **427** 257 (2006)).
- [j] Here ℓ indicates e or μ .
- [k] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [/] This value is updated using the product of (i) the $Z \to b \, \overline{b}$ fraction from this listing and (ii) the b-hadron fraction in an unbiased sample of weakly decaying b-hadrons produced in Z-decays provided by the Heavy Flavor Averaging Group (HFLAV, http://www.slac.stanford.edu/xorg/hflav/osc/PDG_2009/#FRACZ).
- [\emph{n}] See the \emph{Z} Particle Listings for the γ energy range used in this measurement.
- [o] For $m_{\gamma\gamma}=$ (60 \pm 5) GeV.

LEPTONS

e

$$J=\frac{1}{2}$$

Mass $m=(548.579909065\pm0.000000016)\times 10^{-6}$ u Mass $m=0.51099895000\pm0.00000000015$ MeV $\begin{aligned} |m_{e^+}-m_{e^-}|/m < &8\times 10^{-9}, \text{ CL}=90\%\\ |q_{e^+}+q_{e^-}|/e < &4\times 10^{-8} \end{aligned}$ Magnetic moment anomaly $(g-2)/2=(1159.65218062\pm0.00000012)\times 10^{-6}$ ($g_{e^+}-g_{e^-}$) / $g_{\text{average}}=(-0.5\pm2.1)\times 10^{-12}$ Electric dipole moment $d<0.11\times 10^{-28}$ e cm, CL =90% Mean life $\tau>6.6\times 10^{28}$ yr, CL =90% [a]

 $\boldsymbol{\mu}$

$$J = \frac{1}{2}$$

Mass $m=0.1134289259\pm0.0000000025$ u Mass $m=105.6583755\pm0.0000023$ MeV Mean life $\tau=(2.1969811\pm0.0000022)\times10^{-6}$ s $\tau_{\mu^+}/\tau_{\mu^-}=1.00002\pm0.00008$ $c\tau=658.6384$ m Magnetic moment anomaly $(g-2)/2=(11659206\pm4)\times10^{-10}$ ($g_{\mu^+}-g_{\mu^-}$) / $g_{\rm average}=(-0.11\pm0.12)\times10^{-8}$ Electric dipole moment $|{\rm d}|<1.8\times10^{-19}$ ecm, CL = 95%

Decay parameters [b]

$$\begin{split} \rho &= 0.74979 \pm 0.00026 \\ \eta &= 0.057 \pm 0.034 \\ \delta &= 0.75047 \pm 0.00034 \\ \xi P_{\mu} &= 1.0009^{+0.0016}_{-0.0007} \ [c] \\ \xi P_{\mu} \delta/\rho &= 1.0018^{+0.0016}_{-0.0007} \ [c] \\ \xi' &= 1.00 \pm 0.04 \\ \xi'' &= 0.98 \pm 0.04 \\ \alpha/A &= (0 \pm 4) \times 10^{-3} \\ \alpha'/A &= (-10 \pm 20) \times 10^{-3} \\ \beta/A &= (4 \pm 6) \times 10^{-3} \\ \beta'/A &= (2 \pm 7) \times 10^{-3} \\ \overline{\eta} &= 0.02 \pm 0.08 \end{split}$$

 μ^+ modes are charge conjugates of the modes below.

μ^- DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)					
$e^-\overline{ u}_e u_\mu$	pprox 100%		53					
$e^-\overline{ u}_{f e} u_{\mu}\gamma$	[d] $(6.0\pm0.5)\times10^{-6}$	-8	53					
$e^-\overline{ u}_e u_\mue^+e^-$	[e] $(3.4\pm0.4)\times10^{-2}$	-5	53					
Lepton Family number (LF) violating modes								
${ m e}^- u_{ m e}\overline{ u}_{\mu}$ LF	[f] < 1.2 %	90%	53					
$e^-\gamma$ LF	< 4.2 × 10	-13 90%	53					
$e^-e^+e^-$ LF	< 1.0 × 10		53					
$e^-2\gamma$ LF	$< 7.2 \times 10^{\circ}$	-11 90%	53					

au

$$J=\frac{1}{2}$$

Mass
$$m=1776.86\pm0.12~{\rm MeV}$$
 $(m_{\tau^+}-m_{\tau^-})/m_{\rm average}<2.8\times10^{-4},~{\rm CL}=90\%$ Mean life $\tau=(290.3\pm0.5)\times10^{-15}~{\rm s}$ $c\tau=87.03~\mu{\rm m}$ Magnetic moment anomaly $>-0.052~{\rm and}<0.013,~{\rm CL}=95\%$ ${\rm Re}(d_{\tau})=-0.185~{\rm to}~0.061\times10^{-16}~{\rm e\,cm},~{\rm CL}=95\%$ ${\rm Im}(d_{\tau})=-0.103~{\rm to}~0.0230\times10^{-16}~{\rm e\,cm},~{\rm CL}=95\%$

Weak dipole moment

$${\rm Re}(d_{_T}^w) <~0.50 \times 10^{-17}~e\,{\rm cm},~{\rm CL} = 95\% \\ {\rm Im}(d_{_T}^w) <~1.1 \times 10^{-17}~e\,{\rm cm},~{\rm CL} = 95\% \\$$

Weak anomalous magnetic dipole moment

$$\begin{array}{l} {\rm Re}(\alpha_{\tau}^{\it W}) < \ 1.1 \times 10^{-3}, \ {\rm CL} = 95\% \\ {\rm Im}(\alpha_{\tau}^{\it W}) < \ 2.7 \times 10^{-3}, \ {\rm CL} = 95\% \\ \tau^{\pm} \rightarrow \ \pi^{\pm} \, K_S^0 \, \nu_{\tau} \ ({\rm RATE \ DIFFERENCE}) \ / \ ({\rm RATE \ SUM}) = \\ (-0.36 \pm 0.25)\% \end{array}$$

Decay parameters

See the τ Particle Listings for a note concerning τ -decay parameters.

$$ho(e ext{ or } \mu) = 0.745 \pm 0.008$$
 $ho(e) = 0.747 \pm 0.010$
 $ho(\mu) = 0.763 \pm 0.020$
 $ho(\mu) = 0.985 \pm 0.030$
 $ho(e) = 0.994 \pm 0.040$
 $ho(\mu) = 1.030 \pm 0.059$
 $ho(e ext{ or } \mu) = 0.013 \pm 0.020$
 $ho(\mu) = 0.094 \pm 0.073$

$$(\delta \xi)(e \text{ or } \mu) = 0.746 \pm 0.021$$

 $(\delta \xi)(e) = 0.734 \pm 0.028$
 $(\delta \xi)(\mu) = 0.778 \pm 0.037$
 $\xi(\pi) = 0.993 \pm 0.022$
 $\xi(\rho) = 0.994 \pm 0.008$
 $\xi(a_1) = 1.001 \pm 0.027$
 $\xi(\text{all hadronic modes}) = 0.995 \pm 0.007$
 $\overline{\eta}(\mu) = -1.3 \pm 1.7$
 $(\xi \kappa)(e \text{ or } \mu) \text{ PARAMETER} = 0.5 \pm 0.4$
 $(\xi \kappa)(e) = -0.4 \pm 1.2$
 $(\xi \kappa)(\mu) = 0.8 \pm 0.6$

 au^+ modes are charge conjugates of the modes below. " h^\pm " stands for π^\pm or K^\pm . " ℓ " stands for ℓ 0" stands for ℓ 0"s.

 au^- DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Modes with	one	charged	particle
· 0140			·

mades with		e charged particle	
particle ⁻ \geq 0 neutrals \geq 0 $K^0 \nu_{ au}$		$(85.24 \pm 0.06)\%$	_
("1-prong")			
particle $^- \geq 0$ neutrals $\geq 0 K_L^0 u_ au$		$(84.58 \pm 0.06)\%$	_
$\mu^- \overline{ u}_\mu u_ au$	[g]	$(17.39 \pm 0.04)\%$	885
$\mu^{\dot{-}} \overline{ u}_{\mu} u_{ au} \gamma$	[e]	$(3.67 \pm 0.08) \times 10^{-3}$	885
$e^-\overline{ u}_e \overline{ u}_ au$	[g]	$(17.82 \pm 0.04)\%$	888
$e^-\overline{ u}_e u_ au\gamma$	[e]	(1.83 ± 0.05) %	888
$h^- \geq 0 K_L^0 \; u_ au$		$(12.03 \pm 0.05)\%$	883
$h^- u_ au$		(11.51 \pm 0.05) %	883
$\pi^- u_{ au}$	[g]	$(10.82 \pm 0.05)\%$	883
$\mathcal{K}^- u_ au$	[g]	$(6.96 \pm 0.10) \times 10^{-3}$	820
$h^- \geq 1$ neutrals $ u_ au$		$(37.01 \pm 0.09)\%$	_
$h^- \geq 1\pi^0 u_ au(ext{ex}.K^0)$		$(36.51 \pm 0.09)\%$	_
$\mathit{h}^-\pi^0 u_{_{\overline{T}}}$		$(25.93 \pm 0.09)\%$	878
$\pi^-\pi^0 u_ au$	[g]	$(25.49 \pm 0.09)\%$	878
$\pi^-\pi^0$ non- $ ho$ (770) $ u_ au$		$(3.0 \pm 3.2) \times 10^{-3}$	878
$K^-\pi^0 \nu_{ au}$	[g]	$(4.33 \pm 0.15) \times 10^{-3}$	814
$h^- \geq 2\pi^0 \nu_{ au}$		$(10.81 \pm 0.09)\%$	_
$h^- 2\pi^0 u_{\mathcal{I}}$		(9.48 ± 0.10) %	862
$h^{-} 2\pi^{0} \nu_{\tau} (\text{ex}.K^{0})$		(9.32 ± 0.10) %	862
$\pi^- 2\pi^0 \nu_\tau (\text{ex.} K^0)$	[g]	(9.26 ± 0.10) %	862
$\pi^- 2\pi^0 u_ au$ (ex. K^0),		$< 9 \times 10^{-3}$ CL=95%	862
scalar $\pi^-2\pi^0 u_{ au}(ext{ex}.{ extit{K}}^0)$,		$< 7 \times 10^{-3} \text{CL} = 95\%$	862
$ extstyle K^- 2\pi^0 u_ au (ext{ex}. extstyle K^0)$	[g]	$(6.5 \pm 2.2) \times 10^{-4}$	796

https://pdg.lbl.gov

Page 3

(
$h^->3\pi^0 u_ au$		$(1.34 \pm 0.07) \%$	_
$h^- \geq 3\pi^0 \nu_{\tau} (\text{ex. } K^0)$		$(1.25 \pm 0.07)\%$	_
$h^{-}3\pi^{0}\nu_{\tau}$		(1.18 ± 0.07) %	836
$\pi^{-}3\pi^{0}\nu_{\tau}(\text{ex}.K^{0})$	[g]	$(1.04 \pm 0.07)\%$	836
$\kappa^{-3\pi^{0}}\nu_{\tau}$ (ex. κ^{0} ,	[g]		765
η)	[0]	(=)	
$h^{-}4\pi^{0}\nu_{\tau}(\text{ex}.K^{0})$		$(1.6 \pm 0.4) \times 10^{-3}$	800
$h^{-}4\pi^{0}\nu_{\tau}(\text{ex.}K^{0},\eta)$	[g]	$(1.1 \pm 0.4) \times 10^{-3}$	800
$a_1(1260)\nu_{ au} \rightarrow \pi^- \gamma \nu_{ au}$	[0]	$(3.8 \pm 1.5) \times 10^{-4}$	_
$K^{-} \geq 0\pi^{0'} \geq 0K^{0'} \geq 0\gamma \nu_{\tau}$		(1.552± 0.029) %	820
$\mathcal{K}^{-} \geq 1 \; (\overline{\pi}^0 \; ext{or} \; \mathcal{K}^{\overline{0}} \; ext{or} \; \gamma) \; u_{ au}$		$(8.59 \pm 0.28) \times 10^{-3}$	_
, , ,			
	odes	with K^0 's	
K_S^0 (particles) ν_{τ}		$(9.43 \pm 0.28) \times 10^{-3}$	_
$h^{-}\overline{K}^{0}\nu_{\tau}$		$(9.87 \pm 0.14) \times 10^{-3}$	812
$\pi^- \overline{K}{}^0 u_ au$	[g]		812
,, ,,		$(5.4 \pm 2.1) \times 10^{-4}$	812
$(\text{non-}K^*(892)^-)\nu_{\tau}$		(1 105 2 201) 12-3	
$K^{-}K^{0}\nu_{\tau}$	[g]	$(1.486 \pm 0.034) \times 10^{-3}$	737
$K^-K^0 \geq 0\pi^0 u_ au$ $h^-\overline{K}^0\pi^0 u_ au$		$(2.99 \pm 0.07) \times 10^{-3}$	737
$\pi^{-} \frac{\pi^{0} \pi^{0} \nu_{\tau}}{\pi^{-} \overline{K}^{0} \pi^{0} \nu_{\tau}}$	r 1	$(5.32 \pm 0.13) \times 10^{-3}$	794
$\frac{\pi}{\kappa}$ 0 $_{0}$	[g]	$(3.82 \pm 0.13) \times 10^{-3}$	794
$\overline{\mathcal{K}}^0 ho^- u_ au$ $\mathcal{K}^-\mathcal{K}^0\pi^0 u_ au$	[1	$(2.2 \pm 0.5) \times 10^{-3}$	612 685
$\pi^- \overline{K}{}^0 \geq 1 \pi^0 \nu_{ au}$	[8]	$(1.50 \pm 0.07) \times 10^{-3}$ $(4.08 \pm 0.25) \times 10^{-3}$	000
$\pi^{-}\frac{\kappa}{K^0}\frac{2}{\pi^0}\frac{1}{\pi^0}\frac{\nu_{\tau}}{\nu_{\tau}}(\text{ex.}K^0)$	[م]	$(2.6 \pm 2.3) \times 10^{-4}$	763
$K^{-}K^{0}\pi^{0}\pi^{0}\nu_{\tau}$	[8]	$< 1.6 \times 10^{-4} \text{CL} = 95\%$	619
$\pi^- K^0 \overline{K^0} \nu_{\tau}$		$(1.55 \pm 0.24) \times 10^{-3}$	682
$\pi^- K_S^0 K_S^0 u_ au$	[]	$(2.35 \pm 0.06) \times 10^{-4}$	682
$\pi^- K_S^0 K_I^0 u_ au$	[g]	` ´	682
	[6]	$(2.35 \pm 0.06) \times 10^{-4}$	682
$\pi^- K^{reve{0}}_{L} K^{ar{0}}_{L} u_{ au} \ \pi^- K^0 \overline{K}^0 \pi^0 u_{ au}$		$(3.6 \pm 1.2) \times 10^{-4}$	
	[م]	$(3.0 \pm 1.2) \times 10$ $(1.82 \pm 0.21) \times 10^{-5}$	614 614
$\pi^ K^0_S$ K^0_S π^0 $ u_ au$ K^{*-} K^0 π^0 $ u_ au$ $ ightarrow$	[8]		014
$\pi^- K_S^0 K_S^0 \pi^0 \nu_{\tau}$		$(1.08 \pm 0.21) \times 10^{-5}$	_
5 5		(6 0 1 5) 10 = 6	
$f_1(1285)\pi^-\nu_{\tau} \rightarrow -\nu_0 \nu_0 - 0$		$(6.8 \pm 1.5) \times 10^{-6}$	_
$\pi^{-}K_{S}^{0}K_{S}^{0}\pi^{0}\nu_{\tau}$		(2 4 4 2 2) 42 6	
$f_1(1420)\pi^-\nu_{\tau} \to -2.00$		$(2.4 \pm 0.8) \times 10^{-6}$	_
$\pi^{-}K_{S}^{0}K_{S}^{0}\pi^{0}\nu_{\tau}$		(2 2 4 2 2) 12-4	
$\pi^- {\mathcal K}^0_S {\mathcal K}^0_L \pi^0 u_ au$ $\pi^- {\mathcal K}^0_L {\mathcal K}^0_L \pi^0 u_ au$	[g]	$(3.2 \pm 1.2) \times 10^{-4}$	614
		$(1.82 \pm 0.21) \times 10^{-5}$	614
$K^-K^0_SK^0_S u_ au$ $K^-K^0_SK^0_S\pi^0 u_ au$		$< 6.3 \times 10^{-7} CL = 90\%$	466
3 3		$< 4.0 \times 10^{-7} CL = 90\%$	337
$ extcolor{black}{K^0}h^+h^-h^- \geq 0$ neutrals $ u_ au$		$< 1.7 \times 10^{-3} \text{CL} = 95\%$	760

https://pdg.lbl.gov

Page 4

Created: 5/31/2023 09:09

$\mathcal{K}^-\pi^+\pi^-\pi^0 u_ au$	$(1.31 \pm 0.12) \times 10^{-3}$	763
$K^-\pi^+\pi^-\pi^0 u_{ au}({ m ex}.K^0)$	$(7.9 \pm 1.2) \times 10^{-4}$	763
$\mathit{K}^-\pi^+\pi^-\pi^0 u_{ au}(\mathrm{ex}.\mathit{K}^0,\eta)$	$(7.6 \pm 1.2) \times 10^{-4}$	763
$K^-\pi^+\pi^-\pi^0 u_ au$ (ex. K^0 , ω)	$(3.7 \pm 0.9) \times 10^{-4}$	763
$K^-\pi^+\pi^-\pi^0\nu_{\tau}$ (ex. K^0 , ω , η) g]	$(3.9 \pm 1.4) \times 10^{-4}$	763
${\it K}^-\pi^+{\it K}^- \geq 0$ neut. $ u_ au$	$< 9 \times 10^{-4} \text{CL} = 95^{\circ}$	% 685
${\it K}^-{\it K}^+\pi^- \geq 0$ neut. $ u_ au$	$(1.496\pm\ 0.033)\times 10^{-3}$	685
$K^-K^+\pi^-\nu_{ au}$ [g]	$(1.435\pm\ 0.027)\times10^{-3}$	685
$K^{-}K^{+}\pi^{-}\pi^{0}\nu_{\tau}$ [g]	$(6.1 \pm 1.8) \times 10^{-5}$	618
$K^-K^+K^- u_ au$	$(2.2 \pm 0.8) \times 10^{-5}$ S=5.	.4 472
$K^-K^+K^- u_ au(ex.\ \phi)$	$< 2.5 \times 10^{-6} \text{CL} = 90^{\circ}$	% –
$\mathit{K^-K^+K^-\pi^0} u_{ au}$	$< 4.8 \times 10^{-6} \text{CL} = 90^{\circ}$	% 345
$\pi^- {\it K}^+ \pi^- \geq$ 0 neut. $ u_{ au} $	$< 2.5 \times 10^{-3} \text{CL} = 95\%$	% 794
$e^-e^-e^+\overline{ u}_e u_ au$	$(2.8 \pm 1.5) \times 10^{-5}$	888
$\mu^-e^-e^+\overline{ u}_\mu u_ au$	$< 3.2 \times 10^{-5} \text{CL} = 90^{\circ}$	% 885
$\pi^-e^-e^+ u_{\scriptscriptstyle T}$	seen	883
$\pi^-\mu^-\mu^+ u_{ au}$	$< 1.14 \times 10^{-5} \text{CL} = 90^{\circ}$	% 870

Modes with five charged particles

$$3h^{-}2h^{+} \geq 0 \text{ neutrals } \nu_{\tau} \qquad (9.9 \pm 0.4) \times 10^{-4} \qquad 794$$

$$(ex. K_{S}^{0} \rightarrow \pi^{-}\pi^{+})$$

$$("5-prong")$$

$$3h^{-}2h^{+}\nu_{\tau}(ex.K^{0}) \qquad (8.29 \pm 0.31) \times 10^{-4} \qquad 794$$

$$3\pi^{-}2\pi^{+}\nu_{\tau}(ex.K^{0}, \omega) \qquad (8.27 \pm 0.31) \times 10^{-4} \qquad 794$$

$$3\pi^{-}2\pi^{+}\nu_{\tau}(ex.K^{0}, \omega) \qquad (8.27 \pm 0.31) \times 10^{-4} \qquad -94$$

$$3\pi^{-}2\pi^{+}\nu_{\tau}(ex.K^{0}, \omega) \qquad [g] \quad (7.75 \pm 0.30) \times 10^{-4} \qquad -94$$

$$K^{-}(1285)) \qquad K^{-}2\pi^{-}2\pi^{+}\nu_{\tau} \qquad <5.0 \qquad \times 10^{-6}\text{CL} = 90\% \qquad 716$$

$$K^{+}3\pi^{-}\pi^{+}\nu_{\tau} \qquad <5.0 \qquad \times 10^{-6}\text{CL} = 90\% \qquad 716$$

$$K^{+}K^{-}2\pi^{-}\pi^{+}\nu_{\tau} \qquad <4.5 \qquad \times 10^{-7}\text{CL} = 90\% \qquad 528$$

$$3h^{-}2h^{+}\pi^{0}\nu_{\tau}(ex.K^{0}) \qquad (1.65 \pm 0.11) \times 10^{-4} \qquad 746$$

$$3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}(ex.K^{0}) \qquad (1.63 \pm 0.11) \times 10^{-4} \qquad 746$$

$$3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}(ex.K^{0}, \eta, \qquad (1.11 \pm 0.10) \times 10^{-4} \qquad -94$$

$$f_{1}(1285)) \qquad 3\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}(ex.K^{0}, \eta, \qquad [g] \quad (3.8 \pm 0.9) \times 10^{-5} \qquad -94$$

$$\omega, f_{1}(1285)) \qquad K^{-}2\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}(ex.K^{0}) \qquad [g] \quad (1.1 \pm 0.6) \times 10^{-6} \qquad 657$$

$$K^{+}3\pi^{-}\pi^{+}\pi^{0}\nu_{\tau} \qquad <8 \qquad \times 10^{-7}\text{CL} = 90\% \qquad 657$$

$$3h^{-}2h^{+}2\pi^{0}\nu_{\tau} \qquad <8 \qquad \times 10^{-7}\text{CL} = 90\% \qquad 657$$

$$3h^{-}2h^{+}2\pi^{0}\nu_{\tau} \qquad <8 \qquad \times 10^{-6}\text{CL} = 90\% \qquad 687$$

Miscellaneous other allowed modes

$(5\pi)^-\nu_{\tau}$	(7.8 ± 0.5	$) \times 10^{-3}$	800
$4h^-3h^+ \geq 0$ neutrals $ u_ au$	< 3.0	$\times 10^{-7} CL = 90\%$	682
("7-prong")			
$4h^-3h^+ u_ au$	< 4.3	$\times 10^{-7} \text{CL} = 90\%$	682
$4h^-3h^+\pi^0 u_ au$	< 2.5	$\times 10^{-7} \text{CL} = 90\%$	612

https://pdg.lbl.gov

Page 6

$X^-(S=-1)\nu_{ au}$		(2.92	\pm	0.04) %		_
$K^*(892)^- \geq 0$ neutrals \geq		•	1.42			*	S=1.4	665
$0 \kappa_I^0 u_ au$		`				,		
$K^*(892)^- \nu_{\tau}$		(1.20	\pm	0.07) %	S=1.8	665
$K^*(892)^- \nu_{\tau} \rightarrow \pi^- \overline{K}{}^0 \nu_{\tau}$						$) \times 10^{-3}$		_
$K^*(892)^0 \stackrel{\prime}{K^-} \geq 0$ neutrals $\stackrel{\prime}{ u_{ au}}$		•				$) \times 10^{-3}$		542
$K^*(892)^0 K^{-} \nu_{\tau}$) × 10 ⁻³		542
$\overline{K}^*(892)^0\pi^- \geq 0$ neutrals $ u_ au$						$) \times 10^{-3}$		655
$\overline{K}^*(892)^0 \pi^- \nu_{\tau}$						$) \times 10^{-3}$		655
$(\overline{K}^*(892)\pi)^-\nu_{\tau} \rightarrow \\ \pi^-\overline{K}^0\pi^0\nu_{\tau}$) × 10 ⁻³		_
$K_1(1270)^- \nu_{\tau}$		(4.7	\pm	1.1	$) \times 10^{-3}$		447
$K_1(1400)^- \nu_{\tau}$						$) \times 10^{-3}$	S=1.7	335
$K^*(1410)^- \nu_{ au}$) × 10 ⁻³		326
$K_0^*(1430)^- \nu_{ au}$		<	5			$\times10^{-4}\mathrm{C}$	L=95%	317
$K_2^0(1430)^- \nu_{\tau}$			3			$\times10^{-3}$ C		315
$\eta \pi^- \nu_{ au}$						$ imes$ 10 $^{-5}$ C		797
$\eta \pi^- \pi^0 \nu_ au$	[g]					$) \times 10^{-3}$	_ 3370	778
$\eta\pi^-\pi^0\pi^0 u_ au$) × 10 ⁻⁴		746
$\eta K^- u_{ au}$) × 10 ⁻⁴		719
$\eta K^*(892)^- \nu_{\tau}$.01					$) \times 10^{-4}$		511
$\eta K^- \pi^0 \nu_{\tau}$	[g]					$) \times 10^{-5}$		665
$\eta {\it K}^- \pi^0$ (non- ${\it K}^*$ (892)) $ u_ au$						$ imes$ 10 $^{-5}$ C	L=90%	_
$\eta \overline{K}{}^0 \pi^- u_ au$	[g]	(9.4	\pm	1.5	$) \times 10^{-5}$		661
$\eta \overline{K}{}^0 \pi^- \pi^0 \nu_{ au}$		<	5.0			imes 10 ⁻⁵ C		590
$\eta K^- K^0 \nu_{ au}$			9.0					430
$\eta \pi^+ \pi^- \pi^- \geq 0$ neutrals $\nu_{ au}$						\times 10 ⁻³ C	L=90%	744
$\eta \pi^{-} \pi^{+} \pi^{-} \nu_{\tau} (\text{ex.} K^{0})$						$) \times 10^{-4}$		744
$\eta \pi^- \pi^+ \pi^- \nu_\tau (\text{ex.} K^0, f_1(1285))$	5))							_
$\eta a_1(1260)^- \nu_{ au} ightarrow \eta \pi^- ho^0 \nu_{ au}$						\times 10 ⁻⁴ C		_
$\eta\eta\pi^-\nu_{ au}$			7.4			$\times 10^{-6}$ C		637
$\eta \eta \pi^- \pi^0 \nu_{\tau}$			2.0			\times 10 ⁻⁴ C		559
$\eta \eta K^- \nu_{\tau}$			3.0			\times 10 ⁻⁶ C		382
$\eta'(958)\pi^-\nu_{\tau}$			4.0			$\times 10^{-6}$ C		620
$\eta'(958)\pi^-\pi^0\nu_{\tau}$			1.2			$\times 10^{-5}$ C		591
$\eta'(958) K^- \nu_{ au}$			2.4			$\times 10^{-6} \text{C}$	L=90%	495
$\phi \pi^- \nu_{ au}$						$) \times 10^{-5}$		585
$\phi K^- \nu_{\tau}$	[g]					$) \times 10^{-5}$	6 10	445
$f_1(1285)\pi^-\nu_{\tau}$		•				$) \times 10^{-4}$		408
$f_1(1285)\pi^- u_ au ightarrow \eta\pi^-\pi^+\pi^- u_ au$		(1.18	土	U.U <i>1</i>	$) \times 10^{-4}$	S=1.3	_
$\eta\pi^-\pi^+\pi^- u_ au$ $f_1(1285)\pi^- u_ au o$	[~]	(F 2	丄	0.4) × 10 ⁻⁵		_
$3\pi^{-}2\pi^{+}\nu_{\tau}$	[g]	(J.∠	_	0.4	, ^ 10		_
$\sigma_{n} = \sigma_{n} = \sigma_{n}$								

Lepton Family number (LF), Lepton number (L), or Baryon number (B) violating modes

L means lepton number violation (e.g. $\tau^- \to e^+\pi^-\pi^-$). Following common usage, LF means lepton family violation and not lepton number violation (e.g. $\tau^- \to e^-\pi^+\pi^-$). B means baryon number violation.

$e^-\gamma$	LF	< 3.3	$\times 10^{-8}$ CL=90%	888
$e^-\dot{\gamma}\gamma$		< 2.5	$\times 10^{-4}$ CL=90%	888
$\mu^-\gamma$	LF	< 4.2	$\times 10^{-8}$ CL=90%	885
$\mu^-\gamma\gamma$		< 5.8	$\times 10^{-4}$ CL=90%	885
$e^-\pi^0$	LF	< 8.0	$\times 10^{-8}$ CL=90%	883
$\mu^-\pi^0$	LF	< 1.1	$\times10^{-7}$ CL=90%	880
$e^-K_S^0$	LF	< 2.6	$\times 10^{-8}$ CL=90%	819
$\mu^- K_S^0$	LF	< 2.3	$\times 10^{-8} CL = 90\%$	815
$e^-\eta$	LF	< 9.2	$\times 10^{-8}$ CL=90%	804
$\mu^- \eta$	LF	< 6.5	$\times 10^{-8}$ CL=90%	800
$e^- ho^0$	LF	< 1.8	$\times 10^{-8}$ CL=90%	719
$\mu^- ho^0$	LF	< 1.2	$\times 10^{-8}$ CL=90%	715
$e^-\omega$	LF	< 4.8	$\times 10^{-8}$ CL=90%	716
$\mu^-\omega$	LF	< 4.7	$\times 10^{-8}$ CL=90%	711
$e^{-}K^{*}(892)^{0}$	LF	< 3.2	$\times 10^{-8}$ CL=90%	665
$\mu^- K^* (892)^0$	LF	< 5.9	$\times 10^{-8}$ CL=90%	659
$e^{-}\overline{K}^{*}(892)^{0}$	LF	< 3.4	$\times 10^{-8}$ CL=90%	665
$\mu^{-}\overline{K}^{*}(892)^{0}$	LF	< 7.0	$\times 10^{-8}$ CL=90%	659
$e^- \eta'(958)$	LF	< 1.6	$\times 10^{-7} CL = 90\%$	630
$\mu^- \eta'(958)$	LF	< 1.3	$\times 10^{-7} CL = 90\%$	625
$e^- f_0(980) \to e^- \pi^+ \pi^-$	LF	< 3.2	$\times 10^{-8}$ CL=90%	_
$\mu^- f_0(980) \rightarrow \mu^- \pi^+ \pi^-$	LF	< 3.4	$\times 10^{-8}$ CL=90%	_
$e^-\phi$	LF	< 3.1	$\times 10^{-8}$ CL=90%	596

$\mu^-\phi$	LF	<	8.4	$\times 10^{-8} CL = 90\%$	590
$e^{-}e^{+}e^{-}$	LF	<	2.7	$\times 10^{-8} CL = 90\%$	888
$e^-\mu^+\mu^-$	LF	<	2.7	$\times 10^{-8}$ CL=90%	882
$e^+\mu^-\mu^-$	LF	<	1.7	$\times 10^{-8}$ CL=90%	882
$\mu^-\mathrm{e}^+\mathrm{e}^-$	LF	<	1.8	$\times 10^{-8}$ CL=90%	885
μ^+ e $^-$ e $^-$	LF	<	1.5	$\times 10^{-8}$ CL=90%	885
$\mu^-\mu^+\mu^-$	LF	<	2.1	$\times 10^{-8}$ CL=90%	873
$e^{-}\pi^{+}\pi^{-}$	LF	<	2.3	$\times 10^{-8}$ CL=90%	877
$e^{+}\pi^{-}\pi^{-}$	L	<	2.0	$\times 10^{-8}$ CL=90%	877
$\mu^{-}\pi^{+}\pi^{-}$	LF	<	2.1	$\times 10^{-8}$ CL=90%	866
$\mu^{+}\pi^{-}\pi^{-}$	L	<	3.9	$\times 10^{-8}$ CL=90%	866
$e^-\pi^+K^-$	LF	<	3.7	$\times 10^{-8}$ CL=90%	813
$e^-\pi^-K^+$	LF	<	3.1	$\times 10^{-8}$ CL=90%	813
$e^{+}\pi^{-}K^{-}$	L	<	3.2	$\times 10^{-8}$ CL=90%	813
$e^-K_S^0K_S^0$	LF	<	7.1	$\times 10^{-8}$ CL=90%	736
$e^-K^+K^-$	LF	<	3.4	$\times 10^{-8} CL = 90\%$	738
$e^+K^-K^-$	L	<	3.3	$\times 10^{-8}$ CL=90%	738
$\mu^-\pi^+$ K $^-$	LF	<	8.6	$\times 10^{-8}$ CL=90%	800
$\mu^-\pi^-K^+$	LF	<	4.5	$\times 10^{-8}$ CL=90%	800
$\mu^+\pi^-K^-$	L	<	4.8	$\times 10^{-8}$ CL=90%	800
$\mu^{-} K_{S}^{0} K_{S}^{0}$	LF	<	8.0	$\times 10^{-8}$ CL=90%	696
$\mu^- K^+ K^-$	LF	<	4.4	$\times 10^{-8}$ CL=90%	699
$\mu^{+} K^{-} K^{-}$	L	<	4.7	$\times 10^{-8}$ CL=90%	699
$e^{-}\pi^{0}\pi^{0}$	LF	<	6.5	$\times 10^{-6}$ CL=90%	878
$\mu^-\pi^0\pi^0$	LF	<	1.4	$\times 10^{-5}$ CL=90%	867
$e^-\eta\eta$	LF	<	3.5	$\times 10^{-5}$ CL=90%	699
$\mu^-\eta\eta$	LF	<	6.0	$\times 10^{-5}$ CL=90%	653
$e^{-\frac{1}{\pi}0}\eta$	LF	<	2.4	$\times 10^{-5}$ CL=90%	798
$\mu^-\pi^0\eta$	LF	<	2.2	$\times 10^{-5}$ CL=90%	784
pe-e-	L,B	<	3.0	$\times 10^{-8}$ CL=90%	641
$\overline{p}e^+e^-$	L,B	<	3.0	$\times 10^{-8}$ CL=90%	641
$\frac{1}{p}e^+\mu^-$	L,B	<	2.0	$\times 10^{-8}$ CL=90%	635
$\overline{p}e^{-}\mu^{+}$	L,B	<	1.8	$\times 10^{-8}$ CL=90%	635
$p\mu^-\mu^-$	L,B	<	4.0	$\times 10^{-8} CL = 90\%$	618
$\overline{p}\mu^{+}\mu^{-}$	L,B	<	1.8	$\times 10^{-8}$ CL=90%	618
$\overline{p}\gamma$	L,B	<	3.5	$\times 10^{-6}$ CL=90%	641
$\overline{p}\pi^0$	L,B	<	1.5	$\times 10^{-5}$ CL=90%	632
$\frac{1}{p}2\pi^0$	L,B	<	3.3	$\times 10^{-5}$ CL=90%	604
$\overline{p}\eta$	L,B	<	8.9	$\times 10^{-6}$ CL=90%	475
$\frac{1}{p}\pi^0\eta$	L,B	<	2.7	$\times 10^{-5}$ CL=90%	360
$\Lambda\pi^{-}$	L,B	<	7.2	$\times 10^{-8} CL = 90\%$	525
$\overline{\Lambda}\pi^-$	L,B	<		$\times 10^{-7}$ CL=90%	525
e−light boson	LF	<	2.7	$\times 10^{-3}$ CL=95%	_
μ^- light boson	LF	<		$\times 10^{-3}$ CL=95%	_
. •					

Heavy Charged Lepton Searches

L^{\pm} – charged lepton

Mass m > 100.8 GeV, CL = 95% [h] Decay to νW .

 L^{\pm} – stable charged heavy lepton

Mass m > 102.6 GeV, CL = 95%

Neutrino Properties

See the note on "Neutrino properties listings" in the Particle Listings.

Mass m < 0.8 eV, CL = 90% (tritium decay)

Mean life/mass, $\tau/m > 300$ s/eV, CL = 90% (reactor)

Mean life/mass, $\tau/m > 7 \times 10^9$ s/eV (solar)

Mean life/mass, $\tau/m > 15.4$ s/eV, CL = 90% (accelerator)

Magnetic moment $\mu < 0.064 \times 10^{-10} \ \mu_B$, CL = 90% (solar + radiochemical)

Number of Neutrino Types

Number $\mathit{N} = 2.996 \pm 0.007$ (Standard Model fits to LEP-SLC data)

Number $\textit{N} = 2.92 \pm 0.05$ (S = 1.2) (Direct measurement of invisible Z width)

Neutrino Mixing

The following values are obtained through data analyses based on the 3-neutrino mixing scheme described in the review "Neutrino Masses, Mixing, and Oscillations."

 $\begin{array}{l} \sin^2(\theta_{12}) = 0.307 \pm 0.013 \\ \Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \\ \sin^2(\theta_{23}) = 0.534^{+0.021}_{-0.024} \quad \text{(Inverted order)} \\ \sin^2(\theta_{23}) = 0.547^{+0.018}_{-0.024} \quad \text{(Normal order)} \\ \Delta m_{32}^2 = (-2.519 \pm 0.033) \times 10^{-3} \text{ eV}^2 \quad \text{(Inverted order)} \\ \Delta m_{32}^2 = (2.437 \pm 0.033) \times 10^{-3} \text{ eV}^2 \quad \text{(Normal order)} \\ \sin^2(\theta_{13}) = (2.20 \pm 0.07) \times 10^{-2} \\ \delta, \textit{CP} \text{ violating phase} = 1.23 \pm 0.21 \ \pi \text{ rad} \quad \text{(S} = 1.3) \\ \left\langle \Delta m_{32}^2 - \Delta \overline{m}_{32}^2 \right\rangle < 1.1 \times 10^{-4} \text{ eV}^2, \text{ CL} = 99.7\% \\ \left\langle \Delta m_{32}^2 - \Delta \overline{m}_{32}^2 \right\rangle = (-0.12 \pm 0.25) \times 10^{-3} \text{ eV}^2 \end{array}$

NOTES

- [a] This is the best limit for the mode $e^- \rightarrow \nu \gamma$.
- [b] See the review on "Muon Decay Parameters" for definitions and details.
- [c] P_{μ} is the longitudinal polarization of the muon from pion decay. For V-A coupling, $P_{\mu}=1$ and $\rho=\delta=3/4$.
- [d] This only includes events with energy of e>45 MeV and energy of $\gamma>40$ MeV. Since the $e^-\overline{\nu}_e\nu_\mu$ and $e^-\overline{\nu}_e\nu_\mu\gamma$ modes cannot be clearly separated, we regard the latter mode as a subset of the former.
- [e] See the relevant Particle Listings for the energy limits used in this measurement.
- [f] A test of additive vs. multiplicative lepton family number conservation.
- [g] Basis mode for the τ .
- [h] L^{\pm} mass limit depends on decay assumptions; see the Full Listings.

QUARKS

The u-, d-, and s-quark masses are the $\overline{\mathsf{MS}}$ masses at the scale μ = 2 GeV. The c- and b-quark masses are the $\overline{\text{MS}}$ masses renormalized at the $\overline{\rm MS}$ mass, i.e. $\overline{m}=\overline{m}(\mu=\overline{m})$. The t-quark mass is extracted from event kinematics (see the review "The Top Quark").

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_u = 2.16^{+0.49}_{-0.26}~{
m MeV}$$
 Charge $= \frac{2}{3}~e~~l_z = +\frac{1}{2}$ $m_u/m_d = 0.474^{+0.056}_{-0.074}$

$$\mathsf{Charge} = \frac{2}{3} \ e \quad \mathsf{I}_{\mathsf{Z}} = +\frac{1}{2}$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_s = 93.4^{+8.6}_{-3.4}~{
m MeV}~{
m Charge} = -\frac{1}{3}~e~{
m Strangeness} = -1$$
 $m_s~/~((m_u+m_d)/2) = 27.33^{+0.67}_{-0.77}$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_c=1.27\pm 0.02~{
m GeV}$$
 Charge $=\frac{2}{3}~e$ Charm $=+1$ $m_b-m_c=3.45\pm 0.05~{
m GeV}$

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$m_b = 4.18^{+0.03}_{-0.02} \text{ GeV}$$
 Charge $= -\frac{1}{3} e$ Bottom $= -1$

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \ \mathsf{e} \qquad \quad \mathsf{Top} = +1$$

Mass (direct measurements) $m=172.69\pm0.30~{\rm GeV}^{\;[a,b]}~(S=1.3)$ Mass (from cross-section measurements) $m=162.5^{+2.1}_{-1.5}~{\rm GeV}^{\;[a]}$ Mass (Pole from cross-section measurements) $m=172.5\pm0.7~{\rm GeV}$ $m_t-m_{\overline{t}}=-0.15\pm0.20~{\rm GeV}~(S=1.1)$ Full width $\Gamma=1.42^{+0.19}_{-0.15}~{\rm GeV}~(S=1.4)$ $\Gamma(W\,b)/\Gamma(W\,q\,(q=b,\,s,\,d))=0.957\pm0.034~(S=1.5)$

t-quark EW Couplings

$$\begin{split} F_0 &= 0.693 \pm 0.013 \\ F_- &= 0.315 \pm 0.010 \\ F_+ &= -0.005 \pm 0.007 \\ F_{V+A} &< 0.29, \, \mathrm{CL} = 95\% \end{split}$$

t DECAY MODES		Fraction (Γ_i/Γ)	Confidence leve	<i>p</i> (MeV/ <i>c</i>)		
Wq(q = b, s, d)				_		
Wb				_		
$e u_e b$		(11.10 ± 0.30) %	o de la companya de l	_		
μu_{μ} b		(11.40 ± 0.20) %	o de la companya de l	_		
$ au u_{ au}$ b		(10.7 \pm 0.5) $\%$	6	_		
q q b		(66.5 ± 1.4) %	6	_		
$\gamma q(q=u,c)$		[c] < 1.8 ×	10^{-4} 95%	_		
$\Delta T = 1 \text{ v}$	veak	neutral current (<i>T1</i>)	modes			
Zq(q=u,c)	T1	[d] < 5 imes	10^{-4} 95%	_		
Hu	T1	< 1.9 ×	10^{-4} 95%	_		
Hс	T1	< 7.3	10^{-4} 95%	-		
$\ell^+ \overline{q} \overline{q}'(q=d,s,b; q'=u,c)$	T1	< 1.6 ×	10^{-3} 95%	_		
Lepton Far	Lepton Family number (LF) violating modes					
$e^{\pm}\mu^{\mp}c$	LF	< 8.9 ×	10^{-7}	_		
$e^{\pm}\mu^{\mp}u$	LF	< 7 ×	× 10 ⁻⁸	_		

b' (4th Generation) Quark, Searches for

```
Mass m > 190 GeV, CL = 95% (p \overline{p}, \text{ quasi-stable } b')
Mass m > 1390 GeV, CL = 95% (B(b' \rightarrow Zb) = 1)
Mass m > 1350 GeV, CL = 95% (B(b' \rightarrow Wt) = 1)
Mass m > 1570 GeV, CL = 95% (B(b' \rightarrow Hb) = 1)
Mass m > 46.0 GeV, CL = 95% (e^+e^-, \text{ all decays})
```

t' (4th Generation) Quark, Searches for

```
m(t'(2/3)) > 1280 GeV, CL = 95% (B(t' \rightarrow Zt) = 1) m(t'(2/3)) > 1295 GeV, CL = 95% (B(t' \rightarrow Wb) = 1) m(t'(2/3)) > 1310 GeV, CL = 95% (singlet t') m(t'(2/3)) > 1350 GeV, CL = 95% (t' in a weak isospin doublet (t',b')) m(t'(5/3)) > 1.350 \times 10^3 GeV, CL = 95% (t'(5/3) \rightarrow tW^+)
```

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- [c] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [d] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

LIGHT UNFLAVORED MESONS (S = C = B = 0)

For I=1 (π, b, ρ, a) : $u\overline{d}$, $(u\overline{u}-d\overline{d})/\sqrt{2}$, $d\overline{u}$; for I=0 $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u}+d\overline{d})+c_2(s\overline{s})$

$$I^{G}(J^{P}) = 1^{-}(0^{-})$$

Mass
$$m=139.57039\pm0.00018$$
 MeV (S = 1.8) Mean life $\tau=(2.6033\pm0.0005)\times10^{-8}$ s (S = 1.2) $c\tau=7.8045$ m

$\pi^{\pm} \rightarrow \ell^{\pm} \nu \gamma$ form factors $^{[a]}$

$$F_V = 0.0254 \pm 0.0017$$

 $F_A = 0.0119 \pm 0.0001$

 F_{V} slope parameter $\mathit{a} = 0.10 \pm 0.06$

$$R = 0.059^{+0.009}_{-0.008}$$

 π^- modes are charge conjugates of the modes below.

For decay limits to particles which are not established, see the section on Searches for Axions and Other Very Light Bosons.

π^+ DECAY MODES	Fract	ion (Γ_i/Γ)	Confidence leve	<i>p</i> el (MeV/ <i>c</i>)
$\mu^+ u_\mu$	[b] (99	0.98770±0.000	004) %	30
$\mu^{\dot{+}} u_{\mu}\gamma$	[c] (2	± 0.25	$) \times 10^{-4}$	30
$e^+ \nu_e$	[b] (1	230 ±0.004	$\times 10^{-4}$	70
$e^+ u_{m{e}}\gamma$	[c] (7	± 0.05	$) \times 10^{-7}$	70
$e^+ \nu_e \pi^0$	(1	± 0.006	$(5) \times 10^{-8}$	4
$e^+ \nu_e e^+ e^-$	(3	± 0.5	,	70
$\mu^+ u_{\mu} u \overline{ u}$	< 9)	$\times 10^{-6} 90\%$	% 30
$e^+ \nu_e \nu \overline{\nu}$	< 1	6	$\times 10^{-7} 90\%$	6 70

Lepton Family number (LF) or Lepton number (L) violating modes

$\mu^+ \overline{ u}_e$	L	[d] < 1.5	$\times10^{-3}$ 90%	30
$\mu^+ u_{ m e}$	LF	[d] < 8.0	$\times 10^{-3} 90\%$	
$\mu^-e^+e^+\nu$	LF	< 1.6	$\times 10^{-6} 90\%$	30

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass $m = 134.9768 \pm 0.0005 \text{ MeV}$ (S = 1.1)

HTTP://PDG.LBL.GOV

Page 1

$$m_{\pi^\pm} - m_{\pi^0} = 4.5936 \pm 0.0005$$
 MeV Mean life $\tau = (8.43 \pm 0.13) \times 10^{-17}$ s $~(S=1.2)$ $c au = 25.3$ nm

For decay limits to particles which are not established, see the appropriate Search sections (A^0 (axion) and Other Light Boson (X^0) Searches, etc.).

π^0 DECAY MODES	Fraction (Γ_i/Γ_j)	Scale facto) Confidence le	,
2γ	(98.823±0.0	034) % S=1	L.5 67
$e^+e^-\gamma$	$(1.174\pm0.0$	035) % S=1	1.5 67
γ positronium	(1.82 ± 0.2	$29) \times 10^{-9}$	67
$e^{+} e^{+} e^{-} e^{-}$	(3.34 ± 0.1	16) \times 10 ⁻⁵	67
e^+e^-	(6.46 ± 0.3	$33) \times 10^{-8}$	67
4 γ	< 2	$\times 10^{-8} \text{ CL} = 90$	0% 67
invisible	< 4.4	$\times 10^{-9} \text{ CL} = 90$)% –
$ u_{\mathbf{e}} \overline{ u}_{\mathbf{e}}$	< 1.7	$\times 10^{-6} \text{ CL} = 90$	0% 67
$ u_{\mu}\overline{ u}_{\mu}$	< 1.6	$\times 10^{-6} \text{ CL} = 90$	0% 67
$ u_{ au} \overline{ u}_{ au}$	< 2.1	$\times 10^{-6} \text{ CL} = 90$	0% 67
$\gamma \overline{ u}$	< 1.9	$\times 10^{-7} \text{ CL} = 90$	0% 67

Charge conjugation (C) or Lepton Family number (LF) violating modes

3γ	С	< 3.1	$\times 10^{-8}$ CL=90%	67
$\mu^+\mathrm{e}^-$	LF	< 3.8	$ imes$ 10 $^{-10}$ CL=90%	26
$\mu^-\mathrm{e}^+$	LF	< 3.2	$\times10^{-10}$ CL=90%	26
$\mu^{+} e^{-} + \mu^{-} e^{+}$	LF	< 3.6	$\times 10^{-10}$ CL=90%	26

η

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=547.862\pm0.017$ MeV Full width $\Gamma=1.31\pm0.05$ keV

C-nonconserving decay parameters

$$\begin{array}{ll} \pi^+\pi^-\pi^0 & \text{left-right asymmetry} = (0.09^{+0.11}_{-0.12}) \times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{sextant asymmetry} = (0.12^{+0.10}_{-0.11}) \times 10^{-2} \\ \pi^+\pi^-\pi^0 & \text{quadrant asymmetry} = (-0.09 \pm 0.09) \times 10^{-2} \\ \pi^+\pi^-\gamma & \text{left-right asymmetry} = (0.9 \pm 0.4) \times 10^{-2} \\ \pi^+\pi^-\gamma & \beta \; (\textit{D-wave}) = -0.02 \pm 0.07 \quad (\text{S} = 1.3) \end{array}$$

CP-nonconserving decay parameters

$$\pi^+\pi^-e^+e^-$$
 decay-plane asymmetry $A_\phi=(-0.6\pm3.1) imes10^{-2}$

Other decay parameters

$$\pi^0\pi^0\pi^0$$
 Dalitz plot $\alpha=-0.0288\pm0.0012$ (S = 1.1) Parameter Λ in $\eta\to\ell^+\ell^-\gamma$ decay = 0.716 \pm 0.011 GeV/ c^2

HTTP://PDG.LBL.GOV

Page 2

η DECAY MODES		Fraction (Γ_i/Γ)		Scale factor/ Ifidence level	
	Neutr	al modes			
neutral modes		(71.96 ± 0.30)) %	S=1.3	_
2γ		(39.36 ± 0.18)) %	S=1.1	274
$3\pi^{0}$		$(32.57 \pm 0.21$) %	S=1.2	179
$\pi^0 2\gamma$		$(2.55\pm0.22$			257
$2\pi^0 2\gamma$		< 1.2			238
4 γ		< 2.8	$\times 10^{-4}$	CL=90%	274
invisible		< 1.0	\times 10 ⁻⁴	CL=90%	_
	Charg	ed modes			
charged modes		(28.04 ± 0.30)) %	S=1.3	_
$\pi^{+}\pi^{-}\pi^{0}$		(23.02 ± 0.25)) %	S=1.2	174
$\pi^+\pi^-\gamma$		$(4.28\pm0.07$) %	S=1.1	236
$e^+e^-\gamma$		(6.9 ± 0.4	$) \times 10^{-3}$	S=1.2	274
$\mu^+\mu^-\gamma$		(3.1 ± 0.4	$) \times 10^{-4}$		253
e^+e^-		< 7	\times 10 ⁻⁷	CL=90%	274
$\mu^+\mu^-$		(5.8 ± 0.8	$) \times 10^{-6}$		253
$2e^{+}2e^{-}$		$(2.40\pm0.22$	$(1) \times 10^{-5}$		274
$\pi^{+}\pi^{-}e^{+}e^{-}(\gamma)$		$(2.68\pm0.11$			235
$e^{+}e^{-}\mu^{+}\mu^{-}$		< 1.6	$\times 10^{-4}$	CL=90%	253
$2\mu^{+}2\mu^{-}$		< 3.6	\times 10 ⁻⁴	CL=90%	161
$\mu^{+} \mu^{-} \pi^{+} \pi^{-}$		< 3.6	$\times 10^{-4}$	CL=90%	113
$\pi^+e^-\overline{\nu}_e+$ c.c.		< 1.7	$\times 10^{-4}$	CL=90%	256
$\pi^+\pi^-2\gamma$		< 2.1	$\times 10^{-3}$		236
$\pi^+\pi^-\pi^0\gamma$		< 6	$\times 10^{-4}$	CL=90%	174
$\pi^0 \mu^+ \mu^- \gamma$		< 3	\times 10 ⁻⁶	CL=90%	210
	narge conjugat arge conjugation				
	Family numb			des	
$\pi^0\gamma$	C [e]	< 9	$\times 10^{-5}$	CL=90%	257
$\pi^+\pi^-$	P,CP	< 4.4	$\times 10^{-6}$		236
$2\pi^0$	P,CP	< 3.5	$\times 10^{-4}$		238
$2\pi^0\gamma$	C	< 5	$\times 10^{-4}$	CL=90%	238
$3\pi^0\gamma$	С	< 6	\times 10 ⁻⁵		179
3γ	C	< 1.6	\times 10 ⁻⁵		274
$4\pi^0$	P,CP	< 6.9	× 10 ⁻⁷		40
$\pi^{0} e^{+} e^{-}$		< 8	× 10 ⁻⁶		257
$\pi^{0} \mu^{+} \mu^{-}$		< 5	× 10 ⁻⁶		210
$\mu^{+}e^{-} + \mu^{-}e^{+}$	LF LF	< 6	× 10 ⁻⁶		264

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

also known as σ ; was $f_0(600)$

See the review on "Scalar Mesons below 1 GeV."

Mass (T-Matrix Pole \sqrt{s}) = (400–550)-i(200–350) MeV Mass (Breit-Wigner) = 400 to 800 MeV

Full width (Breit-Wigner) = 100 to 800 MeV

f ₀ (500) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	_
$\gamma\gamma$	seen	_

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances."

T-Matrix Pole $\sqrt{s}=(761\text{--}765)-i~(71\text{--}74)~\text{MeV}$ Mass (Breit-Wigner) $=775.26\pm0.23~\text{MeV}$

Full width (Breit-Wigner) $= 149.1 \pm 0.8$ MeV

ρ(770) DECAY MODES	Fraction (Γ_i/Γ)		Scale factor/ Confidence level	-
p(110) DECAT WODES	Traction (1 ;/1)		Confidence level	(IVIEV/C)
$\pi\pi$	$\sim~100$	%		363
	$ ho$ (770) $^{\pm}$ de	ecays		
$\pi^{\pm}\gamma$	(4.5 ± 0.5	$) \times 10^{-4}$	S=2.2	375
$\pi^{\pm}\eta$	< 6	$\times 10^{-3}$	CL=84%	152
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	< 2.0	$\times 10^{-3}$	CL=84%	254
	$ ho$ (770) 0 de	ecays		
$\pi^+\pi^-\gamma$	(9.9 ± 1.6)	$) \times 10^{-3}$		362
$\pi^{0}\gamma$	(4.7 ± 0.8	$) \times 10^{-4}$	S=1.7	376
$\eta \gamma$	$(3.00\pm0.21$	$) \times 10^{-4}$		194
$^{\eta\gamma}_{\pi^0\pi^0\gamma}$	(4.5 ± 0.8	$) \times 10^{-5}$		363
$\mu^+\mu^-$	[g] (4.55 ± 0.28)	$) \times 10^{-5}$		373
e^+e^-	[g] (4.72 ± 0.05)	$) \times 10^{-5}$		388
$\pi^+\pi^-\pi^0$	$(1.01^{+0.54}_{-0.36}$	$\pm 0.34) \times 10^{-4}$		323
$\pi^+\pi^-\pi^+\pi^-$	(1.8 ± 0.9	$) \times 10^{-5}$		251
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.6 ± 0.8	_		257
$\pi^0 e^+ e^-$	< 1.2	× 10 ⁻⁵	CL=90%	376

$$\omega$$
(782)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=782.66\pm0.13~{\rm MeV}~{\rm (S}=2.0)$ Full width $\Gamma=8.68\pm0.13~{\rm MeV}$

		Scale factor/	
ω (782) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
$\pi^{+}\pi^{-}\pi^{0}$	(89.2 \pm 0.7) %		327
$\pi^0 \gamma$	$(8.35\pm0.27)\%$	S=2.2	380
$\pi^+\pi^-$	$(1.53^{+0.11}_{-0.13})\%$	S=1.2	366
neutrals (excluding $\pi^0 \gamma$)	(7 +8)×	10 ⁻³ S=1.1	_
$\eta\gamma$	(4.5 \pm 0.4) $ imes$	10^{-4} S=1.1	200
$\pi^{0} e^{+} e^{-}$	(7.7 \pm 0.6) $ imes$	10^{-4}	380
$\pi^{0} \mu^{+} \mu^{-}$	(1.34 ± 0.18) $ imes$	10^{-4} S=1.5	349
e^+e^-	$(7.38\pm0.22)\times$	10^{-5} S=1.9	391
$\pi^+\pi^-\pi^0\pi^0$	< 2 ×	10^{-4} CL=90%	262
$\pi^+\pi^-\gamma$	< 3.6 ×	10^{-3} CL=95%	366
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	< 1 ×	10^{-3} CL=90%	256
$\pi^0\pi^0\gamma$	(6.7 ± 1.1) $ imes$	10^{-5}	367
$\eta\pi^{0}\gamma$	< 3.3 ×	10^{-5} CL=90%	162
$\mu^+\mu^-$	(7.4 ± 1.8) $ imes$	10^{-5}	377
3γ	< 1.9 ×	10^{-4} CL=95%	391
Charge conjugation	on (C) violating n	nodes	
$\eta \pi^0$	< 2.1 ×	10^{-4} CL=90%	162
^	< 2.2 ×	10^{-4} CL=90%	367
$3\pi^0$		10^{-4} CL=90%	330
invisible	< 7 ×	10 ⁻⁵ CL=90%	_

$\eta'(958)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=957.78\pm0.06~{
m MeV}$ Full width $\Gamma=0.188\pm0.006~{
m MeV}$

η' (958) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\pi^+\pi^-\eta$	$(42.5 \pm 0.5)\%$,)	232
$ ho^{f 0}\gamma$ (including non-resonant	(29.5 \pm 0.4) %	D	165
$\pi^+ \pi^- \gamma$)			
$\pi^0\pi^0\eta$	$(22.4 \pm 0.5)\%$, D	239
$\omega\gamma$	(2.52 ± 0.07) %	, D	159
$\omega e^+ e^-$	(2.0 \pm 0.4) $ imes$	10^{-4}	159
$\gamma\gamma$	$(2.307\pm0.033)\%$		479
$3\pi^0$	($2.50~\pm0.17$) $ imes$	10 ⁻³	430

HTTP://PDG.LBL.GOV

Page 5

_		1		
$\mu^+\mu^-\gamma$	(1.13 ± 0.28)			467
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	(2.0 ± 0.4)	$) \times 10^{-5}$		401
$\pi^+\pi^-\pi^0$	(3.61 ± 0.17)	$\times 10^{-3}$		428
$(\pi^+\pi^-\pi^0)$ S-wave	(3.8 ± 0.5)	_		428
$\pi^{\mp} \rho^{\pm}$	(7.4 ± 2.3)	$) \times 10^{-4}$		106
$2(\pi^{+}\pi^{-})$	(8.4 ± 0.9)			372
$\pi^{+}\pi^{-}2\pi^{0}$	(1.8 ± 0.4)	$) \times 10^{-4}$		376
$2(\pi^+\pi^-)$ neutrals	< 1	%	95%	_
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.8	$\times 10^{-3}$	90%	298
$2(\pi^+\pi^-)2\pi^0$	< 1	%	95%	197
$3(\pi^{+}\pi^{-})$	< 3.1	$\times 10^{-5}$	90%	189
$\mathcal{K}^{\pm}\pi^{\mp}$	< 4	$\times 10^{-5}$	90%	334
$\pi^{+}\pi^{-}e^{+}e^{-}$	(2.42 ± 0.10)	$) \times 10^{-3}$		458
$\pi^+e^- u_e$ + c.c.	< 2.1	$\times 10^{-4}$	90%	469
$\gamma e^+ e^-$	(4.91 ± 0.27)	$) \times 10^{-4}$		479
$\pi^{0}\gamma\gamma$	(3.20 ± 0.24)	\cdot) \times 10 ⁻³		469
$\pi^0 \gamma \gamma$ (non resonant)	(6.2 ± 0.9	$) \times 10^{-4}$		_
$\eta\gamma\gamma$	< 1.33	$\times 10^{-4}$	90%	322
$4\pi^0$	< 4.94	$\times 10^{-5}$	90%	380
e^+e^-	< 5.6	$\times 10^{-9}$	90%	479
$e^{+}e^{-}e^{+}e^{-}$	(4.5 ± 1.1	$) \times 10^{-6}$		479
invisible	< 6		90%	_

Charge conjugation (C), Parity (P), Lepton family number (LF) violating modes

	•		_		
$\pi^+\pi^-$	P,CP	< 1.8	$\times10^{-5}$	90%	458
$\pi^0\pi^0$	P,CP	< 4	$\times10^{-4}$	90%	459
$\pi^{0} e^{+} e^{-}$	С	[f] < 1.4	$\times10^{-3}$	90%	469
$\pi^0 ho^0$	С	< 4	%	90%	111
$\eta e^+ e^-$	С	[f] < 2.4	$\times10^{-3}$	90%	322
3γ	С	< 1.0	$\times 10^{-4}$	90%	479
$\mu^+\mu^-\pi^0$	С	[f] < 6.0	$\times10^{-5}$	90%	445
$\mu^+\mu^-\eta$	С	[f] < 1.5	$\times10^{-5}$	90%	273
$e\mu$	LF	< 4.7	$\times10^{-4}$	90%	473

$f_0(980)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Scalar Mesons below 1 GeV."

T-matrix pole $\sqrt{s} = (980-1010) - i (20-35) \text{ MeV}^{[h]}$ Mass (Breit-Wigner) = $990 \pm 20 \text{ MeV}^{[h]}$ Full width (Breit-Wigner) = 10 to 100 MeV $^{[h]}$

f ₀ (980) DECAY MODES	Fraction (Γ	· _i /Γ)	p (MeV/c)	
$\pi\pi$	seen		476	
HTTP://PDG.LBL.GOV	Page 6	Created: 7/10/	⁷ 2023 15:48	

$$\begin{array}{ccc} {\it K} \, \overline{\it K} & & {\rm seen} & & 36 \\ \gamma \, \gamma & & {\rm seen} & & 495 \end{array}$$

See the review on "Scalar Mesons below 1 GeV."

T-matrix pole $\sqrt{s}=(960-1030)-i~(20-70)~{\rm MeV}~^{[h]}$ Mass $m=980\pm20~{\rm MeV}~^{[h]}$ Full width $\Gamma=50$ to $100~{\rm MeV}~^{[h]}$

a ₀ (980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi$	seen	319
$K\overline{K}$	seen	†
$\eta'\pi$	seen	†
$ ho \pi$	not seen	137
$\sim \sim$	seen	490

ϕ (1020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

 $I^{G}(J^{PC}) = 1^{-}(0^{+})$

Mass $m=1019.461\pm0.016$ MeV Full width $\Gamma=4.249\pm0.013$ MeV (S =1.1)

ϕ (1020) DECAY MODES	Fraction (Γ_i/Γ)		le factor/ ence level	
K ⁺ K ⁻	(49.1 ±0.5) %	S=1.3	127
$K_I^0 K_S^0$	(33.9 ± 0.4)) %	S=1.2	110
$\rho \pi + \pi^{+} \pi^{-} \pi^{0}$	(15.4 ± 0.4)) %	S=1.2	_
$\eta\gamma$	$(1.301\pm0.025$	5) %	S=1.2	363
$\pi^{0}\gamma$	(1.32 ± 0.05	$) \times 10^{-3}$		501
$\ell^+\ell^-$	_			510
e^+e^-	(2.979 ± 0.033)	,	S=1.3	510
$\mu^+\mu^-$	(2.85 ± 0.19	· .		499
$\eta e^+ e^-$	(1.08 ± 0.04	´ _		363
$\pi^+\pi^-$	(7.3 ± 1.3)	´ _		490
$\omega \pi^0$	(4.7 ± 0.5)	,		171
$\omega\gamma$	< 5			209
$ ho\gamma$	< 1.2	_	CL=90%	215
$\pi^+\pi^-\gamma$	(4.1 ± 1.3)	,		490
$f_0(980)\gamma$	(3.22 ± 0.19)		S=1.1	29
$\pi^0\pi^0\gamma$	(1.12 ± 0.06)	$) \times 10^{-4}$		492
$\pi^+\pi^-\pi^+\pi^-$	$(3.9 \begin{array}{c} +2.8 \\ -2.2 \end{array}$	$)\times 10^{-6}$		410
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	< 4.6	\times 10 ⁻⁶	CL=90%	342

HTTP://PDG.LBL.GOV

Page 7

$\pi^0 e^+ e^-$	($1.33 \ ^{+0.07}_{-0.10}$) $ imes 10^{-5}$	501
$\pi^{0}\eta\gamma$	(7.27 ± 0.30) $\times 10^{-5}$ Si	=1.5 346
$a_0(980)\gamma$	$(7.6 \pm 0.6) \times 10^{-5}$	39
$K^0\overline{K}^0\gamma$	$< 1.9 \times 10^{-8} \text{ CL} =$	90% 110
$\eta'(958)\gamma$	$(6.21 \pm 0.21) \times 10^{-5}$	60
$\eta\pi^{0}\pi^{0}\gamma$	$< 2 \times 10^{-5} \text{ CL} =$	90% 293
$\mu^+\mu^-\gamma$	$(1.4 \pm 0.5) \times 10^{-5}$	499
$ ho\gamma\gamma$	$< 1.2 \times 10^{-4} \text{ CL} =$	90% 215
$\eta\pi^+\pi^-$	$< 1.8 \times 10^{-5} \text{ CL} =$	90% 288
$\eta \mu^+ \mu^-$	$<$ 9.4 \times 10 ⁻⁶ CL=	90% 321
$\etaU ightarrow \etae^+e^-$	$< 1 \times 10^{-6} \text{ CL} =$	90% -
invisible	$< 1.7 \times 10^{-4} \text{ CL} =$	90% –

Lepton Family number (LF) violating modes

 $e^{\pm}\mu^{\mp}$ LF < 2 \times 10⁻⁶ CL=90% 504

$h_1(1170)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Mass $m=1166\pm 6~{\rm MeV}$ Full width $\Gamma=375\pm 35~{\rm MeV}$

$h_1(1170)$ DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

 $ho\pi$ seen 30.

$b_1(1235)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})^{-}$$

Created: 7/10/2023 15:48

Mass $m=1229.5\pm3.2$ MeV (S = 1.6) Full width $\Gamma=142\pm9$ MeV (S = 1.2)

b ₁ (1235) DECAY MODES	Fraction (Γ	- _i /Γ)	Confidence level	(MeV/c)
$\frac{1}{\omega \pi}$ [D/S amplitude ratio = 0.1]	seen 277 ± 0.027]			348
$\pi^{\pm}\gamma$	$(1.6\pm0$.4) × 10	₎ —3	607
ηho	seen			†
$\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	< 50	%	84%	535
$K^*(892)^{\pm} K^{\mp}$	seen			†
$(K\overline{K})^{\pm}\pi^{0}$	< 8	%	90%	248
$K_S^0 K_I^0 \pi^{\pm}$	< 6	%	90%	235
$K_S^0 K_L^0 \pi^{\pm} K_S^0 K_S^0 \pi^{\pm}$	< 2	%	90%	235
$\phi\pi$	< 1.5	%	84%	147

a₁(1260) [i]

$$I^{G}(J^{PC}) = 1^{-}(1^{+})$$

T-Matrix Pole $\sqrt{s} = (1209 \pm 4^{+12}_{-9}) - i(288 \pm 6^{+45}_{-10})$ MeV Mass (Breit-Wigner) = 1230 ± 40 MeV $^{[h]}$ Full width (Breit-Wigner) = 250 to 600 MeV $^{[h]}$

Fraction (Γ_i/Γ)	p (MeV/c)
seen	577
seen	353
seen	353
seen	†
seen	†
seen	_
seen	179
seen	†
seen	†
seen	576
not seen	577
seen	250
seen	†
seen	608
	seen seen seen seen seen seen seen seen

$f_2(1270)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

T-Matrix Pole $\sqrt{s}=(1260\text{--}1283)-i~(90\text{--}110)~\text{MeV}$ Mass (Breit-Wigner) = 1275.4 \pm 0.8 MeV (S = 1.1) Full width (Breit-Wigner) = 186.6 \pm 2.3 MeV (S = 1.5)

f ₂ (1270) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
$\pi\pi$	$(84.3 \begin{array}{c} +2.9 \\ -0.9 \end{array})$	% S=1.2	623
$\pi^{+}\pi^{-}2\pi^{0}$	$(7.7 \ ^{+1.1}_{-3.2})$	% S=1.2	563
$K\overline{K}$	(4.6 ± 0.4)	% S=2.7	404
$2\pi^+2\pi^-$	(2.8 ± 0.4)	% S=1.2	559
$\eta\eta_{_{-}}$	(4.0 ± 0.8)	$\times 10^{-3}$ S=2.1	326
$4\pi^0$	(3.0 ± 1.0):	$\times 10^{-3}$	565
$\gamma\gamma$	(1.42 ± 0.24)	$\times 10^{-5}$ S=1.4	638
$\eta\pi\pi$	< 8	$\times 10^{-3}$ CL=95%	478
$K^0 K^- \pi^+ + \text{c.c.}$	< 3.4	$\times 10^{-3}$ CL=95%	293
e ⁺ e ⁻	< 6	$\times 10^{-10}$ CL=90%	638

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=1281.9\pm0.5$ MeV (S =1.8) Full width $\Gamma=22.7\pm1.1$ MeV (S =1.5)

		Scale factor/	-
<u>f</u> 1(1285) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
4π	$(32.7 \pm 1.9) \%$	S=1.2	568
$\pi^{0}\pi^{0}\pi^{+}\pi^{-}$	$(21.8 \pm \ 1.3) \%$	S=1.2	566
$2\pi^+2\pi^-$	$(10.9 \pm \ 0.6) \%$	S=1.2	563
$ ho^0\pi^+\pi^-$	$(10.9 \pm \ 0.6) \%$	S=1.2	336
$\rho^0 \rho^0$	seen		†
$4\pi^0$	< 7 × 1	0^{-4} CL=90%	568
$\eta\pi^+\pi^-$	$(35 \pm 15)\%$		479
$\eta\pi\pi$	$(52.2 \pm \ 2.0) \%$	S=1.2	482
$a_0(980)\pi$ [ignoring $a_0(980) ightarrow \mathcal{K}\overline{\mathcal{K}}]$	(38 ± 4) %		238
$\eta \pi \pi$ [excluding $a_0(980)\pi$]	$(14 \pm 4)\%$		482
$K\overline{K}\pi$	($9.0\pm~0.4)$ %	S=1.1	308
$K\overline{K}^*$ (892)	not seen		†
$\pi^+\pi^-\pi^0$	$(3.0\pm~0.9)\times1$	0-3	603
$ ho^{\pm}\pi^{\mp}$	< 3.1 × 1	0^{-3} CL=95%	390
$\gamma ho^{f 0}$	($6.1\pm~1.0)~\%$	S=1.7	406
$\phi\gamma$	$(7.4\pm\ 2.6)\times 1$	0^{-4}	236
e^+e^-	< 9.4 × 1	0 ⁻⁹ CL=90%	641

$\eta(1295)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Created: 7/10/2023 15:48

See the review on "Spectroscopy of Light Meson Resonances."

Mass
$$m=1294\pm 4$$
 MeV (S $=1.6$)
Full width $\Gamma=55\pm 5$ MeV

η (1295) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi^+\pi^-$	seen	487
$a_0(980)\pi \\ \eta \pi^0 \pi^0$	seen	248
$\eta \pi^0 \pi^0$	seen	490
$\eta(\pi\pi)_{S ext{-}wave}$	seen	_
$\frac{\sigma \eta}{K \pi}$	seen	_
$KK\pi$	seen	320

 π (1300)

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass $m=1300\pm 100$ MeV ^[h] Full width $\Gamma=200$ to 600 MeV ^[h]

π (1300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$ ho\pi$	seen	404
$\pi(\pi\pi)$ <i>S</i> -wave	seen	-

a₂(1320)

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

T-Matrix Pole $\sqrt{s}=(1305\text{--}1321)-i(52\text{--}58)$ MeV Mass (Breit-Wigner) = 1318.2 ± 0.6 MeV (S = 1.2) Full width (Breit-Wigner) = 107 ± 5 MeV $^{[h]}$

a ₂ (1320) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
3π	$(70.1 \pm 2.7)\%$	S=1.2	624
$\eta\pi$	(14.5 ± 1.2) %		535
$\omega \pi \pi$	(10.6 \pm 3.2) %	S=1.3	366
$K\overline{K}$	(4.9 \pm 0.8) %		437
$\eta'(958)\pi$	($5.5~\pm0.9~) imes1$	0-3	288
$\pi^{\pm}\gamma$	$(2.91\pm0.27)\times1$	0-3	652
$\gamma\gamma$	(9.4 ± 0.7) $ imes 1$	0-6	659
e^+e^-	< 5 × 1	0^{-9} CL=90%	659

 $f_0(1370)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Spectroscopy of Light Meson Resonances." T-Matrix Pole $\sqrt{s}=(1250\text{-}1440)$ -i (60–300) MeV Mass (Breit-Wigner) = 1200 to 1500 MeV Full width (Breit-Wigner) = 200 to 500 MeV

f ₀ (1370) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	672
4π	seen	617
$4\pi^0$	seen	617
$2\pi^+2\pi^-$	seen	612
$\pi^+\pi^-2\pi^0$	seen	615
ho ho	seen	†
$2(\pi\pi)_{S ext{-wave}}$	seen	_

HTTP://PDG.LBL.GOV

Page 11

π (1300) π	seen	†
$a_1(1260)\pi$	seen	35
$\eta \eta$	seen	411
$K\overline{K}$	seen	475
$K\overline{K}n\pi$	not seen	†
6π	not seen	508
$\omega \omega$	not seen	†
$\gamma \gamma$	seen	685
e^+e^-	not seen	685

$\pi_1(1400)$

$$I^{G}(J^{PC}) = 1^{-}(1^{-+})$$

Coupled channel analyses favor the existence of only one broad 1 $^-$ + isovector state consistent with $\pi_1(1600)$ in the 1400–1600 MeV region. See the review on "Spectroscopy of Light Meson Resonances." See also $\pi_1(1600)$.

T-Matrix Pole
$$\sqrt{s} = (1405 \pm 4^{+15}_{-18}) - i (314 \pm 14^{+18}_{-69})$$
 MeV Mass (Breit-Wigner) = 1354 ± 25 MeV (S = 1.8)
Full width (Breit-Wigner) = 330 ± 35 MeV

π_1 (1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi^0$	seen	557
$\eta\pi^-$	seen	556
$ ho$ (770) π	not seen	442

η (1405)

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

See the review on "Spectroscopy of Light Meson Resonances." See also $\eta(1475)$.

Mass
$$m=1408.8\pm 2.0$$
 MeV (S = 2.2)
Full width $\Gamma=50.1\pm 2.6$ MeV (S = 1.7)

$\eta(1405)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{K}\overline{K}\pi$	seen		424
$\eta\pi\pi$	seen		562
$a_0(980)\pi$	seen		345
$\eta(\pi\pi)$ ş-wave	seen		_
$f_0(980)\pi^0 \to \pi^+\pi^-\pi^0$	not seen		_
$f_0(980)\eta$	seen		†
4π	seen		639
ho ho	<58 %	99.85%	†

HTTP://PDG.LBL.GOV

Page 12

$$ho^0 \gamma$$
 seen 491 $K^*(892) K$ seen 123

$h_1(1415)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})$$

was $h_1(1380)$

Mass
$$m=1409^{+9}_{-8}~{
m MeV}~{
m (S}=1.9)$$

Full width $\Gamma=78\pm11~{
m MeV}$

$f_1(1420)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

See the review on "Spectroscopy of Light Meson Resonances."

Mass
$$m = 1426.3 \pm 0.9 \text{ MeV}$$
 (S = 1.1)

Full width $\Gamma = 54.5 \pm 2.6$ MeV

f ₁ (1420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	seen	438
$K\overline{K}^*(892)+$ c.c.	seen	163
$\eta\pi\pi$	possibly seen	573
$\phi\gamma$	seen	349

ω (1420) [j]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1410\pm 60$ MeV ^[h] Full width $\Gamma=290\pm 190$ MeV ^[h]

ω (1420) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$ ho\pi$	seen	480
$\omega\pi\pi$	seen	437
$b_1(1235)\pi$	seen	112
$e^+ e^-$	seen	705

$a_0(1450)$

$$I^{G}(J^{PC}) = 1^{-}(0^{+})$$

See the review on "Spectroscopy of Light Meson Resonances."

T-Matrix Pole $\sqrt{s} = (1290-1500) - i (30-140)$ MeV

 $\mathsf{Mass}\;(\mathsf{Breit\text{-}Wigner}) = 1439 \pm 34\;\mathsf{MeV} \quad (\mathsf{S} = 1.8)$

Full width (Breit-Wigner) = 258 \pm 14 MeV

HTTP://PDG.LBL.GOV

Page 13

Branching fractions are given relative to the one **DEFINED AS 1**.

a ₀ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\eta$	0.093 ± 0.020	607
$\pi \eta'(958)$ $K\overline{K}$	0.033 ± 0.017	384
$K\overline{K}$	0.082 ± 0.028	523
$\omega\pi\pi$	DEFINED AS 1	458
$a_0(980)\pi\pi$	seen	310
$\gamma\gamma$	seen	719

ρ (1450)

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances."

Mass
$$m=1465\pm25$$
 MeV $^{[h]}$

Full width $\Gamma = 400 \pm 60 \text{ MeV}^{[h]}$

ρ (1450) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi$	seen	720
$\pi^+\pi^-$	seen	719
4π	seen	669
e^+e^-	seen	732
ηho	seen	311
$a_2(1320)\pi$	not seen	55
$K\overline{K}$	seen	541
K^+K^-	seen	541
$K\overline{K}^*(892) + \text{c.c.}$	possibly seen	229
$\pi^{0}\gamma$	seen	726
$\eta\gamma$	seen	630
$f_0(500)\gamma$	not seen	_
$f_0(980)\gamma$	not seen	398
$f_0(1370)\gamma$	not seen	92
$f_2(1270)\gamma$	not seen	177

η (1475)

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Created: 7/10/2023 15:48

See the review on "Spectroscopy of Light Meson Resonances." See also $\eta(1405)$.

Mass
$$m = 1475 \pm 4 \text{ MeV}$$
 (S = 1.4)

Full width $\Gamma=90\pm9$ MeV $\ \ (S=1.6)$

η (1475) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}\pi$	seen	477
$K\overline{K}^*$ (892) $+$ c.c.	seen	244
$a_0(980)\pi$	seen	396
$\gamma \gamma$	seen	738
$K_S^0 K_S^0 \eta$	possibly seen	†
$\gamma \phi$ (1020)	possibly seen	385

$f_0(1500)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Spectroscopy of Light Meson Resonances." T-Matrix Pole $\sqrt{s}=(1430-1530)-i~(40-90)$ MeV Mass (Breit-Wigner) = 1522 \pm 25 MeV Full width (Breit-Wigner) = 108 \pm 33 MeV

f ₀ (1500) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi$	(34.5±2.2) %	1.2	749
$\pi^+\pi^-$	seen		748
$2\pi^0$	seen		749
4 π	$(48.9\pm3.3)\%$	1.2	700
$4\pi^0$	seen		700
$2\pi^+2\pi^-$	seen		696
$2(\pi\pi)_{S ext{-wave}}$	seen		_
ho ho	seen		†
$\pi(1300)\pi$	seen		163
$a_1(1260)\pi$	seen		234
$\eta\eta$	$(6.0\pm0.9)\%$	1.1	528
$\eta \eta'(958)$	$(2.2\pm0.8)\%$	1.4	107
$K\overline{K}$	$(8.5\pm1.0)\%$	1.1	579
$\gamma \gamma$	not seen		761

$f_2'(1525)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=1517.4\pm2.5$ MeV (S = 2.8) Full width $\Gamma=86\pm5$ MeV (S = 2.2)

f_2' (1525) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	р (MeV/c)
κ κ	(87.6±2.2) %	1.1	576
$\eta\eta$	$(11.6\pm2.2)~\%$	1.1	525

HTTP://PDG.LBL.GOV

Page 15

$$\pi\pi$$
 (8.3 ± 1.6) \times 10^{-3} 747 $\gamma\gamma$ (9.5 ± 1.1) \times 10^{-7} 1.1 759

$$\pi_1(1600)$$
 $I^G(J^{PC}) = 1^-(1^{-+})$

See the review on "Spectroscopy of Light Meson Resonances" and a note in PDG 06, Journal of Physics **G33** 1 (2006). See also $\pi_1(1400)$.

Mass (T-Matrix Pole \sqrt{s}) = (1480–1680) -i (150–300) MeV Mass (Breit-Wigner) = 1661^{+15}_{-11} MeV (S = 1.2) Full width (Breit-Wigner) = 240 \pm 50 MeV (S = 1.7)

π_1 (1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi\pi\pi$	seen	803
$ ho^{0}\pi^{-}$	seen	641
$f_2(1270)\pi^-$	not seen	318
$b_1(1235)\pi$	seen	357
$\eta'(958)\pi^-$	seen	543
$\eta\pi$	seen	734
$f_1(1285)\pi$	seen	314

*a*₁(1640)

$$I^{G}(J^{PC}) = 1^{-}(1^{++})$$

Mass $m=1655\pm16$ MeV (S = 1.2) Full width $\Gamma=254\pm40$ MeV (S = 1.8)

a ₁ (1640) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$\pi\pi\pi$	seen	800
$f_2(1270)\pi$	seen	314
$\sigma\pi$	seen	_
$ ho\pi_{S-wave}$	seen	638
$ ho\pi_{D-wave}$	seen	638
$\omega\pi\pi$	seen	607
$f_1(1285)\pi$	seen	309
$a_1(1260)\eta$	not seen	†

$\eta_2(1645)$

$$I^{G}(J^{PC}) = 0^{+}(2^{-})$$

Mass $m=1617\pm 5~{
m MeV}$ Full width $\Gamma=181\pm 11~{
m MeV}$

HTTP://PDG.LBL.GOV

Page 16

η_2 (1645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$a_2(1320)\pi$	seen	242
$K\overline{K}\pi$	seen	580
$K^*\overline{K}$	seen	404
$\eta \pi^+ \pi^-$	seen	685
$a_0(980)\pi$	seen	499
$f_2(1270)\eta$	not seen	†

ω (1650) [k]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1670\pm30$ MeV $^{[h]}$ Full width $\Gamma=315\pm35$ MeV $^{[h]}$

ω (1650) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
$ ho\pi$	seen	647
$ ho$ (1450) π	seen	145
$\omega \pi \pi$	seen	617
$\omega \eta$	seen	500
$\begin{array}{c} \omega\eta \\ e^+e^- \end{array}$	seen	835
$\pi^0\gamma$	not seen	830

ω_3 (1670)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1667\pm 4~{\rm MeV}$ Full width $\Gamma=168\pm 10~{\rm MeV}$

ω_3 (1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\rho\pi$	seen	645
$\omega\pi\pi$	seen	615
$b_1(1235)\pi$	possibly seen	361

$\pi_2(1670)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-+})$$

Mass $m=1670.6^{+2.9}_{-1.2}~\text{MeV}~~(\text{S}=1.3)$ Full width $\Gamma=258^{+8}_{-9}~\text{MeV}~~(\text{S}=1.2)$

π_2 (1670) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>р</i> (MeV/ <i>c</i>)
3π	(95.8±1.4) %		808
$f_2(1270)\pi$	(56.3±3.2) %		327

HTTP://PDG.LBL.GOV

Page 17

$ ho\pi$	(31 ±4) %		647
$\sigma\pi$	(10 ± 4) %		_
$\pi(\pi\pi)_{\mathcal{S}}$ -wave	(8.7±3.4) %		_
$\pi^{\pm}\pi^{+}\pi^{-}$	(53 ±4) %		806
$K\overline{K}^{*}(892) + \text{c.c.}$	(4.2±1.4) %		453
ωho	$(2.7\pm1.1$) %		302
$\pi^{\pm}\gamma$	$(7.0\pm1.2$	$) \times 10^{-4}$		829
$\gamma \gamma$	< 2.8	$\times 10^{-7}$	90%	835
$\eta\pi$	< 5	%		739
$\pi^\pm 2\pi^+ 2\pi^-$	< 5	%		735
$ ho$ (1450) π	< 3.6	$\times 10^{-3}$	97.7%	145
$b_1(1235)\pi$	< 1.9	$\times 10^{-3}$	97.7%	364
$f_1(1285)\pi$	possibly s	een		322
$a_2(1320)\pi$	not seen			291

ϕ (1680)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=1680\pm20$ MeV $^{[h]}$ Full width $\Gamma=150\pm50$ MeV $^{[h]}$

ϕ (1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K\overline{K}^*(892)}$ + c.c.	seen	462
$K_S^0 K \pi$	seen	621
$K\overline{K}$	seen	680
e^+e^-	seen	840
$\omega\pi\pi$	not seen	623
$\mathcal{K}^+\mathcal{K}^-\pi^+\pi^-$	seen	544
$\eta\phi$	seen	290
$\eta\gamma$	seen	751
$f_2'(1525)\gamma$	not seen	155

ρ_3 (1690)

$$I^{G}(J^{PC}) = 1^{+}(3^{-})$$

$$\label{eq:mass_m} \begin{split} \text{Mass } m = 1688.8 \pm 2.1 \text{ MeV} \\ \text{Full width } \Gamma = 161 \pm 10 \text{ MeV} \quad \text{(S} = 1.5) \end{split}$$

$ ho_3$ (1690) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor (MeV/c)
4π	(71.1 \pm 1.9) %	790
$\pi^{\pm}\pi^{+}\pi^{-}\pi^{0}$	$(67 \pm 22)\%$	787
$\omega\pi$	$(16 \pm 6)\%$	655
$\pi \pi_{\underline{}}$	(23.6 \pm 1.3) %	834
$K\overline{K}\pi$	(3.8 \pm 1.2) %	629

HTTP://PDG.LBL.GOV

Page 18

KK	($1.58\pm~0.26$) %	1.2	685
$\eta \pi^+ \pi^-$	seen		727
$ ho$ (770) η	seen		520
$\pi\pi ho$	seen		633
$a_2(1320)\pi$	seen		307
ho ho	seen		335

$\rho(1700)$

$$I^{G}(J^{PC}) = 1^{+}(1^{-})$$

See the review on "Spectroscopy of Light Meson Resonances." Mass
$$m=1720\pm20$$
 MeV $^{[h]}$ ($\eta\,\rho^0$ and $\pi^+\,\pi^-$ modes) Full width $\Gamma=250\pm100$ MeV $^{[h]}$ ($\eta\,\rho^0$ and $\pi^+\,\pi^-$ modes)

ρ (1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$2(\pi^{+}\pi^{-})$	seen	803
$ ho\pi\pi$	seen	653
$ ho^{0}\pi^{+}\pi^{-}$	seen	651
$ ho^{\pm}\pi^{\mp}\pi^{0}$	seen	652
$a_1(1260)\pi$	seen	404
$h_1(1170)\pi$	seen	450
π (1300) π	seen	349
ho ho	seen	372
$\pi^+\pi^-$	seen	849
$\pi \pi$	seen	849
$K\overline{K}^*(892)+$ c.c.	seen	496
ηho	seen	545
$a_2(1320)\pi$	not seen	334
$K\overline{K}$	seen	704
e^+e^-	seen	860
$\pi^0 \omega$	seen	674
$\pi^{0}\gamma$	not seen	855
$f_0(1500)\gamma$	not seen	187

*a*₂(1700)

$$I^{G}(J^{PC}) = 1^{-}(2^{+})$$

T-Matrix Pole $\sqrt{s} = (1630-1780) - i (60-250)$ MeV Mass $m=1706\pm14$ MeV (S = 1.2) Full width $\Gamma=378^{+60}_{-50}$ MeV (S = 3.9)

a ₂ (1700) DECAY MODES	Fraction (Γ_{i}	p (MeV/c)
$\eta\pi$	(2.5±0.6) %	758
$\eta' \pi$	seen	574
HTTP://PDG.LBL.GOV	Page 19	Created: 7/10/2023 15:48

853
669
357
695
639
347

$f_0(1710)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

See the review on "Spectroscopy of Light Meson Resonances."

T-matrix pole $\sqrt{s}=(1680-1820)-i~(50-180)~{\rm MeV}$ Mass (Breit-Wigner) = $1733^{+8}_{-7}~{\rm MeV}~(S=1.5)$ Full width (Breit-Wigner) = $150^{+12}_{-10}~{\rm MeV}~(S=1.3)$

f ₀ (1710) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	712
$\eta \eta$	seen	671
$\pi \pi$	seen	856
$\gamma \gamma$	seen	866
$\omega \omega$	seen	372

$\pi(1800)$

$$I^{G}(J^{PC}) = 1^{-}(0^{-}+)$$

Mass $m=1810^{+~9}_{-11}~{\rm MeV}~{\rm (S=2.2)}$ Full width $\Gamma=215^{+7}_{-8}~{\rm MeV}$

π (1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\pi^-\pi^-$	seen	878
$f_0(500)\pi^-$	seen	_
$f_0(980)\pi^-$	seen	624
$f_0(1370)\pi^-$	seen	366
$f_0(1500)\pi^-$	not seen	232
$ ho\pi^-$	not seen	731
$\eta\eta\pi^-$	seen	660
$a_0(980)\eta$	seen	471
$a_2(1320)\eta$	not seen	†
$f_2(1270)\pi$	not seen	441
$f_0(1370)\pi^-$	not seen	366
$f_0(1500)\pi^-$	seen	232
$\eta \eta'(958) \pi^-$	seen	373

HTTP://PDG.LBL.GOV

Page 20

$K_0^*(1430)K^-$	seen	†
$K^*(892)K^-$	not seen	568

ϕ_3 (1850)

$$I^{G}(J^{PC}) = 0^{-}(3^{-})$$

Mass $m=1854\pm7~{
m MeV}$ Full width $\Gamma=87^{+28}_{-23}~{
m MeV}~({
m S}=1.2)$

ϕ_3 (1850) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K}\overline{K}$	seen	785
$K\overline{K}^*(892)+$ c.c.	seen	602

$\eta_2(1870)$

$$I^{G}(J^{PC}) = 0^{+}(2^{-})$$

Mass $m=1842\pm 8~{\rm MeV}$ Full width $\Gamma=225\pm 14~{\rm MeV}$

η_2 (1870) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta\pi\pi$	seen	816
$a_2(1320)\pi$	seen	434
$f_2(1270)\eta$	seen	119
$a_0(980)\pi$	seen	651
$\gamma\gamma$	seen	921

$\pi_2(1880)$

$$I^{G}(J^{PC}) = 1^{-}(2^{-+})$$

Created: 7/10/2023 15:48

Mass $m=1874^{+26}_{-5}$ MeV (S = 1.6) Full width $\Gamma=237^{+33}_{-30}$ MeV (S = 1.2)

π_2 (1880) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\eta\eta\pi^-}$	seen	702
$a_0(980)\eta$	seen	528
$a_2(1320)\eta$	seen	76
$f_0(1500)\pi$	seen	294
$f_1(1285)\pi$	seen	485
$\omega \pi^- \pi^0$	seen	744

f₂(1950)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

T-Matrix Pole $\sqrt{s}=(1830\text{--}2020)-i~(110\text{--}220)~\text{MeV}$ Mass (Breit-Wigner) = $1936\pm12~\text{MeV}~(\text{S}=1.3)$ Full width (Breit-Wigner) = $464\pm24~\text{MeV}$

f ₂ (1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{K^*(892)}\overline{K}^*(892)$	seen	377
$\pi^+\pi^-$	seen	958
$\pi^{0}\pi^{0}$	seen	959
4π	seen	921
$\eta\eta$	seen	798
$K\overline{K}$	seen	833
$\gamma \gamma$	seen	968
$ ho \overline{ ho}$	seen	238

a₄(1970)

$$I^{G}(J^{PC}) = 1^{-}(4^{+})$$

was $a_4(2040)$

Mass
$$m=1967\pm16$$
 MeV (S = 2.1) Full width $\Gamma=324^{+15}_{-18}$ MeV

a ₄ (1970) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
KK	seen	851
$\pi^+\pi^-\pi^0$	seen	959
$ ho\pi$	seen	825
$f_2(1270)\pi$	seen	559
$\omega\pi^-\pi^0$	seen	801
ωho	seen	601
$\eta\pi$	seen	902
$\eta'(958)\pi$	seen	743

f₂(2010)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Created: 7/10/2023 15:48

Mass $m=2011^{+60}_{-80}~{
m MeV}$ Full width $\Gamma=202\pm60~{
m MeV}$

f ₂ (2010) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi\phi$	seen	†
KK	seen	876

$f_0(2020)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

T-Matrix Pole $\sqrt{s}=(1870-2080)-i~(120-240)~{\rm MeV}$ Mass (Breit-Wigner) = $1982^{+54.1}_{-3.0}~{\rm MeV}$ Full width (Breit-Wigner) = $436\pm50~{\rm MeV}$

f ₀ (2020) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)	
$ ho\pi\pi$	seen	814	
$ \frac{\rho \pi \pi}{\pi^0 \pi^0} $	seen	982	
ho ho	seen	617	
$\omega\omega$	seen	608	
$\eta\eta$	seen	826	
$\eta'\eta'$	seen	254	

$f_4(2050)$

$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

Mass $m=2018\pm11$ MeV (S = 2.1) Full width $\Gamma=237\pm18$ MeV (S = 1.9)

f ₄ (2050) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$\omega\omega$	seen	637	
$\pi \pi$	$(17.0 \pm 1.5) \%$	1000	
$K\overline{K}$	$(6.8^{+3.4}_{-1.8}) \times 10^{-3}$	880	
$\eta\eta$	$(2.1\pm0.8)\times10^{-3}$	848	
$\eta \eta \over 4\pi^0$	< 1.2 %	964	
$\gamma \gamma$	seen	1009	
$a_2(1320)\pi$	seen	567	

ϕ (2170)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 7/10/2023 15:48

Mass $m=2163\pm7$ MeV $^{[h]}$ (S =1.1) Full width $\Gamma=103^{+28}_{-21}$ MeV $^{[h]}$ (S =2.2)

ϕ (2170) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
e^+e^-	seen	1082	
$\phi\eta$	seen	727	
$\omega \eta$	seen	848	
$\phi\eta'$	seen	438	

f₂(2300)

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=2297\pm28~{\rm MeV}$ Full width $\Gamma=149\pm40~{\rm MeV}$

f ₂ (2300) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$\phi \phi \over K \overline{K}$	seen	529	
$K\overline{K}$	seen	1037	
$\frac{\gamma}{\Lambda}\frac{\gamma}{\Lambda}$	seen	1149	
$\Lambda\Lambda$	seen	273	

$f_2(2340)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m = 2346^{+21}_{-10} \text{ MeV}$ Full width $\Gamma = 331^{+27}_{-18} \text{ MeV}$

f ₂ (2340) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\phi\phi$	seen	580
$\eta \eta$	seen	1037
$\eta'\eta'$	seen	677

STRANGE MESONS $(S = \pm 1, C = B = 0)$

 $K^+=u\overline{s},~K^0=d\overline{s},~\overline{K}^0=\overline{d}\,s,~K^-=\overline{u}\,s,~$ similarly for K^* 's

Κ±

$$I(J^P) = \frac{1}{2}(0^-)$$

Created: 7/10/2023 15:48

Mass $m=493.677\pm0.016$ MeV $^{\text{[I]}}$ (S = 2.8) Mean life $au=(1.2380\pm0.0020)\times10^{-8}$ s (S = 1.8) c au=3.711 m

CPT violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \to \mu^{\pm} \nu_{\mu}) = (-0.27 \pm 0.21)\%$$

 $\Delta(K^{\pm} \to \pi^{\pm} \pi^{0}) = (0.4 \pm 0.6)\%^{[n]}$

CP violation parameters (Δ = rate difference/sum)

$$\Delta(K^{\pm} \to \pi^{\pm} e^{+} e^{-}) = (-2.2 \pm 1.6) \times 10^{-2}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \mu^{+} \mu^{-}) = 0.010 \pm 0.023$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \gamma) = (0.0 \pm 1.2) \times 10^{-3}$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = (0.04 \pm 0.06)\%$$

$$\Delta(K^{\pm} \to \pi^{\pm} \pi^{0} \pi^{0}) = (-0.02 \pm 0.28)\%$$

T violation parameters

$$K^+ \to \pi^0 \mu^+ \nu_{\mu}$$
 $P_T = (-1.7 \pm 2.5) \times 10^{-3}$ $K^+ \to \mu^+ \nu_{\mu} \gamma$ $P_T = (-0.6 \pm 1.9) \times 10^{-2}$ $K^+ \to \pi^0 \mu^+ \nu_{\mu}$ $Im(\xi) = -0.006 \pm 0.008$

Slope parameter $g^{[o]}$

(See Particle Listings for quadratic coefficients and alternative parametrization related to $\pi\pi$ scattering)

$$K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-} g = -0.21134 \pm 0.00017$$
 $(g_{+} - g_{-}) / (g_{+} + g_{-}) = (-1.5 \pm 2.2) \times 10^{-4}$
 $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0} g = 0.626 \pm 0.007$
 $(g_{+} - g_{-}) / (g_{+} + g_{-}) = (1.8 \pm 1.8) \times 10^{-4}$

K^{\pm} decay form factors [a,p]

Assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{+}) = \lambda_{+}(K_{e3}^{+}) = (2.959 \pm 0.025) \times 10^{-2}$$

 $\lambda_{0}(K_{\mu 3}^{+}) = (1.76 \pm 0.25) \times 10^{-2} \quad (S = 2.7)$

Not assuming μ -e universality

$$\lambda_{+}(K_{e3}^{+}) = (2.956 \pm 0.025) \times 10^{-2}$$

 $\lambda_{+}(K_{\mu3}^{+}) = (3.09 \pm 0.25) \times 10^{-2} \quad (S = 1.5)$
 $\lambda_{0}(K_{\mu3}^{+}) = (1.73 \pm 0.27) \times 10^{-2} \quad (S = 2.6)$

 K_{e3} form factor quadratic fit

$$\lambda'_+$$
 (K^\pm_{e3}) linear coeff. = $(2.59\pm0.04)\times10^{-2}$ λ''_+ (K^\pm_{e3}) quadratic coeff. = $(0.186\pm0.021)\times10^{-2}$ λ'_+ (LINEAR $K^\pm_{\mu3}$ FORM FACTOR FROM QUADRATIC FIT) = $(24\pm4)\times10^{-3}$

$$\lambda''_{+} \text{ (QUADRATIC } K_{\mu 3}^{\pm} \text{ FORM FACTOR)} = (1.8 \pm 1.5) \times 10^{-3} \\ M_{V} \text{ (VECTOR POLE MASS FOR } K_{e3}^{\pm} \text{ DECAY)} = 890.3 \pm 2.8 \\ \text{ MeV} \\ M_{V} \text{ (VECTOR POLE MASS FOR } K_{\mu 3}^{\pm} \text{ DECAY)} = 878 \pm 12 \\ \text{ MeV} \\ M_{S} \text{ (SCALAR POLE MASS FOR } K_{\mu 3}^{\pm} \text{ DECAY)} = 1215 \pm 50 \\ \text{ MeV} \\ \Lambda_{+} \text{ (DISPERSIVE VECTOR FORM FACTOR IN } K_{e3}^{\pm} \text{ DECAY)} = (2.460 \pm 0.017) \times 10^{-2} \\ \Lambda_{+} \text{ (DISPERSIVE VECTOR FORM FACTOR IN } K_{\mu 3}^{\pm} \text{ DECAY)} = (25.4 \pm 0.9) \times 10^{-3} \\ \ln(C) \text{ (DISPERSIVE SCALAR FORM FACTOR in } K_{\mu 3}^{\pm} \text{ decays)} = (182 \pm 16) \times 10^{-3} \\ K_{e3}^{+} \quad |f_{S}/f_{+}| = (-0.08^{+0.34}_{-0.40}) \times 10^{-2} \\ K_{e3}^{+} \quad |f_{T}/f_{+}| = (-1.2^{+1.3}_{-1.1}) \times 10^{-2} \\ \end{cases}$$

$$\begin{array}{ll} = (182 \pm 16) \times 10^{-3} \\ K_{e3}^{+} & \left| f_{S}/f_{+} \right| = (-0.08^{+0.34}_{-0.40}) \times 10^{-2} \\ K_{e3}^{+} & \left| f_{T}/f_{+} \right| = (-1.2^{+1.3}_{-1.1}) \times 10^{-2} \\ K_{\mu3}^{+} & \left| f_{S}/f_{+} \right| = (0.2 \pm 0.6) \times 10^{-2} \\ K_{\mu3}^{+} & \left| f_{T}/f_{+} \right| = (-0.1 \pm 0.7) \times 10^{-2} \\ K^{+} & \rightarrow e^{+} \nu_{e} \gamma & \left| F_{A} + F_{V} \right| = 0.133 \pm 0.008 \quad (S = 1.3) \\ K^{+} & \rightarrow \mu^{+} \nu_{\mu} \gamma & \left| F_{A} + F_{V} \right| = 0.165 \pm 0.013 \\ K^{+} & \rightarrow e^{+} \nu_{e} \gamma & \left| F_{A} - F_{V} \right| < 0.49, \text{ CL} = 90\% \\ K^{+} & \rightarrow \mu^{+} \nu_{\mu} \gamma & \left| F_{A} - F_{V} \right| = -0.153 \pm 0.033 \quad (S = 1.1) \end{array}$$

Charge radius

$$\langle r \rangle = 0.560 \pm 0.031 \text{ fm}$$

Forward-backward asymmetry

$$A_{FB}(K_{\pi\mu\mu}^{\pm}) = \frac{\Gamma(\cos(\theta_{K\mu}) > 0) - \Gamma(\cos(\theta_{K\mu}) < 0)}{\Gamma(\cos(\theta_{K\mu}) > 0) + \Gamma(\cos(\theta_{K\mu}) < 0)} < 0.9 \times 10^{-2}, \text{ CL}$$

$$= 90\%$$

 K^- modes are charge conjugates of the modes below.

K+ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor Confidence lev	, .
	onic and semileptonic m	odes	
$e^+ u_e$	(1.582 ± 0.00)	$(7) \times 10^{-5}$	247
$e^{+}\nu_{e} \\ \mu^{+}\nu_{\mu} \\ \pi^{0}e^{+}\nu_{e}$	(63.56 ± 0.11	S=1.	2 236
$\pi^0 e^+ \nu_e$	(5.07 ± 0.04)	1) % S=2.	1 228
Called K_{e3}^+ .			
$\pi^0 \mu^+ u_\mu$	$(3.352\pm0.03$	33) % S=1.	9 215
Called $K_{\mu 3}^+$.			
$\pi^{0}\pi^{0}e^{+}\nu_{e}$	(2.55 ± 0.04)	1×10^{-5} S=1.	1 206
HTTP://PDG.LBL.GOV	Page 26	Created: 7/10/202	23 15:48

(()				
$\pi^+\pi^-e^+ u_e$	($4.247\pm0.024)\times10^{-5}$		203			
$\pi^{+}\pi^{-}\mu^{+}\nu_{\mu}$	•	1.4 ± 0.9) $\times 10^{-5}$		151			
$\pi^{0}\pi^{0}\pi^{0}e^{+\nu_{e}}$	<	3.5×10^{-6}	CL=90%	135			
	Hadronic	modes					
$\pi^+\pi^0$	(20.67 ±0.08) %	S=1.2	205			
$\pi^+\pi^0\pi^0$	(1.760±0.023) %	S=1.1	133			
$\pi^+\pi^+\pi^-$	(5.583±0.024) %		125			
Leptonic and	semilepton	ic modes with photon	S				
$\mu^+ u_\mu \gamma$	-	6.2 ± 0.8) $\times 10^{-3}$		236			
$\mu^+ \nu_\mu \gamma (SD^+)$		1.33 ± 0.22) $\times 10^{-5}$		_			
$\mu^+ \nu_{\mu} \gamma (SD^+ INT)$	[a,s] <	_	CL=90%	_			
$\mu^+ \nu_{\mu} \gamma (SD^- + SD^- INT)$	[a,s] <		CL=90%	_			
$e^+ \nu_e \gamma$		9.9 ± 1.0) $\times 10^{-6}$		247			
$\pi^0 e^{+\nu_e \gamma}$		$2.66 \pm 0.09 \times 10^{-4}$		228			
$\pi^0 e^+ \nu_e \gamma(SD)$	[a,s] <	_	CL=90%	228			
$\pi^0 \mu^+ \nu_\mu \gamma$	[q,r] ($1.25 \ \pm 0.25 \) \times 10^{-5}$		215			
$\pi^0\pi^0e^+ u_e\gamma$	<	6	CL=90%	206			
Hadronic m	nodes with	photons or $\ell \overline{\ell}$ pairs					
$\pi^+\pi^0\gamma(INT)$	(-	$\pm 4.2 \pm 0.9 \times 10^{-6}$		_			
$\pi^+\pi^0\gamma(DE)$	[q,t] (6.0 ± 0.4) $\times 10^{-6}$		205			
$\pi^+ \pi^0 e^+ e^-$	($4.24 \pm 0.14 \times 10^{-6}$		205			
$\pi^+\pi^0\pi^0\gamma$	[q,r] (7.6 $^{+6.0}_{-3.0}$) $\times 10^{-6}$		133			
$\pi^+\pi^+\pi^-\gamma$	[q,r] (7.1 ± 0.5) $\times 10^{-6}$		125			
$\pi^+ \gamma \gamma$		1.01 ± 0.06) $\times 10^{-6}$		227			
π^+ 3 γ	[q]	1.0×10^{-4}	CL=90%	227			
$\pi^+ e^+ e^- \gamma$	(1.19 ± 0.13) $\times 10^{-8}$		227			
Leptonic modes with $\ell \overline{\ell}$ pairs							
$e^+ u_e u_{\overline{ u}}$	<	6×10^{-5}	CL=90%	247			
$\mu^+ u_{\mu} u \overline{ u}$	<	1.0×10^{-6}	CL=90%	236			
$e^+ u_ee^+e^-$	($2.48 \pm 0.20) \times 10^{-8}$		247			
$\mu^+ u_\mu\mathrm{e}^+\mathrm{e}^-$	($7.06 \pm 0.31) \times 10^{-8}$		236			
$e^+ u_e \mu^+ \mu^-$	(1.7 ± 0.5) $\times 10^{-8}$		223			
$\mu^+ \nu_\mu \mu^+ \mu^-$	<	4.1×10^{-7}	CL=90%	185			

Lepton family number (LF), Lepton number (L), $\Delta S = \Delta Q$ (SQ) violating modes, or $\Delta S = 1$ weak neutral current (S1) modes

$\pi^+\pi^+e^-\overline{ u}_e$	SQ	<	1.3	$\times 10^{-8}$	CL=90%	203
$\pi^+\pi^+\mu^-\overline{\nu}_{\mu}$	SQ	<	3.0	$\times 10^{-6}$	CL=95%	151
$\pi^+ e^+ e^-$	<i>S</i> 1	(3.00 ±0	$0.09) \times 10^{-7}$		227
$\pi^+\mu^+\mu^-$	<i>S</i> 1	(9.17 ±0	$0.14) \times 10^{-8}$	S=1.8	172
$\pi^+ \nu \overline{\nu}$	S1	($1.14 \begin{array}{c} + 0 \\ - 0 \end{array}$	(0.40) $\times 10^{-10}$		227

HTTP://PDG.LBL.GOV

Page 27

$\pi^+\pi^0 u\overline{ u}$	<i>S</i> 1	<	4.3	× 10	0 ^{−5} CL=90%	205
$\mu^- u \mathrm{e}^+ \mathrm{e}^+$	LF	<	2.1	× 10	0 ^{−8} CL=90%	236
$\mu^+ u_{ m e}$	LF	[d]	4	× 10	$^{-3}$ CL=90%	236
$\pi^+\mu^+$ e $^-$	LF	<	1.3	\times 10	$^{-11}$ CL=90%	214
$\pi^+\mu^-\mathrm{e}^+$	LF	<	6.6	\times 10	$^{-11}$ CL $=90\%$	214
$\pi^-\mu^+\mathrm{e}^+$	L	<	4.2	\times 10	0^{-11} CL=90%	214
$\pi^-e^+e^+$	L	<	5.3		0^{-11} CL=90%	227
$\pi^{-}\mu_{-}^{+}\mu^{+}$	L	<	4.2		0^{-11} CL=90%	172
$\pi^-\pi^0e^+e^+$	L	<	8.5		$^{-10}$ CL=90%	205
$\mu^+ \overline{\nu}_e$	L	[d]	3.3		0^{-3} CL=90%	236
$\pi^0 e^+ \overline{\nu}_e$	L	<	3	\times 10	0^{-3} CL=90%	228
$\pi^+ \gamma$		[u] <	2.3	\times 10	o ⁻⁹ CL=90%	227

K⁰

$$I(J^P) = \frac{1}{2}(0^-)$$

50%
$$K_{\rm S}$$
, 50% K_{L} Mass $m=497.611\pm0.013$ MeV (S = 1.2) $m_{K^0}-m_{K^\pm}=3.934\pm0.020$ MeV (S = 1.6)

Mean square charge radius

$$\langle r^2 \rangle = -0.077 \pm 0.010 \text{ fm}^2$$

T-violation parameters in K^0 - \overline{K}^0 mixing [p]

Asymmetry A_T in K^0 - \overline{K}^0 mixing = $(6.6 \pm 1.6) \times 10^{-3}$

CP-violation parameters

$$Re(\epsilon) = (1.596 \pm 0.013) \times 10^{-3}$$

CPT-violation parameters [p]

Re
$$\delta = (2.5 \pm 2.3) \times 10^{-4}$$

Im $\delta = (-1.5 \pm 1.6) \times 10^{-5}$
Re(y), K_{e3} parameter = $(0.4 \pm 2.5) \times 10^{-3}$
Re(x_), K_{e3} parameter = $(-2.9 \pm 2.0) \times 10^{-3}$
 $\left| m_{K^0} - m_{\overline{K}^0} \right| / m_{\text{average}} < 6 \times 10^{-19}$, CL = 90% [v] $(\Gamma_{K^0} - \Gamma_{\overline{K}^0}) / m_{\text{average}} = (8 \pm 8) \times 10^{-18}$

Tests of $\Delta S = \Delta Q$

$$Re(x_{+})$$
, K_{e3} parameter = $(-0.9 \pm 3.0) \times 10^{-3}$

K_S^0

$$I(J^P) = \frac{1}{2}(0^-)$$

Mean life
$$au=(0.8954\pm0.0004)\times10^{-10}$$
 s $(S=1.1)$ Assuming CPT Mean life $au=(0.89564\pm0.00033)\times10^{-10}$ s Not assuming CPT $c au=2.6844$ cm Assuming CPT

CP-violation parameters [x]

$$\operatorname{Im}(\eta_{+-0}) = -0.002 \pm 0.009$$
 $\operatorname{Im}(\eta_{000}) = -0.001 \pm 0.016$
 $|\eta_{000}| = |A(K_S^0 \to 3\pi^0)/A(K_L^0 \to 3\pi^0)| < 0.0088$, CL = 90%

CP asymmetry *A* in $\pi^{+}\pi^{-}e^{+}e^{-} = (-0.4 \pm 0.8)\%$

κ_S^0 DECAY MODE	S
-------------------------	---

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Created: 7/10/2023 15:48

	Hadronic modes	
$\pi^0\pi^0$	$(30.69\pm0.05)~\%$	209
$\pi^+\pi^-$	$(69.20\pm0.05)~\%$	206
$\pi^{+}\pi^{-}\pi^{0}$	$(3.5 \begin{array}{c} +1.1 \\ -0.9 \end{array}) \times 10^{-7}$	133

Modes with photons or $\ell \overline{\ell}$ pairs

Semileptonic modes

$$\pi^{\pm} e^{\mp} \nu_e$$
 [z] $(7.04 \pm 0.08) \times 10^{-4}$ 229

CP violating (CP) and $\Delta S = 1$ weak neutral current (S1) modes

$3\pi^{0}$	CP	< 2.6	$\times 10^{-8}$	CL=90%	139
$\mu^+\mu^-$	<i>S</i> 1	< 2.1	\times 10 ⁻¹⁰	CL=90%	225
e^+e^-	<i>S</i> 1	< 9	\times 10 ⁻⁹	CL=90%	249
$\pi^{0} e^{+} e^{-}$	S1	[y] (3.0 ⁺	$^{1.5}_{1.2}$) × 10 ⁻⁹		230
$\pi^0 \mu^+ \mu^-$	<i>S</i> 1	(2.9 +	$^{1.5}_{1.2}$) × 10 ⁻⁹		177

$$I(J^P) = \frac{1}{2}(0^-)$$

$$\begin{array}{l} m_{{\cal K}_L} - m_{{\cal K}_S} \\ = (0.5293 \pm 0.0009) \times 10^{10} \; \hbar \; {\rm s}^{-1} \quad ({\rm S} = 1.3) \quad {\rm Assuming} \; {\it CPT} \\ = (3.484 \pm 0.006) \times 10^{-12} \; {\rm MeV} \quad {\rm Assuming} \; {\it CPT} \\ = (0.5289 \pm 0.0010) \times 10^{10} \; \hbar \; {\rm s}^{-1} \quad {\rm Not} \; {\rm assuming} \; {\it CPT} \\ {\rm Mean} \; {\rm life} \; \tau = (5.116 \pm 0.021) \times 10^{-8} \; {\rm s} \quad ({\rm S} = 1.1) \\ c\tau = 15.34 \; {\rm m} \end{array}$$

Slope parameters [o]

(See Particle Listings for other linear and quadratic coefficients)

$$K_L^0 \rightarrow \pi^+\pi^-\pi^0$$
: $g = 0.678 \pm 0.008$ (S = 1.5)
 $K_L^0 \rightarrow \pi^+\pi^-\pi^0$: $h = 0.076 \pm 0.006$
 $K_L^0 \rightarrow \pi^+\pi^-\pi^0$: $k = 0.0099 \pm 0.0015$
 $K_L^0 \rightarrow \pi^0\pi^0\pi^0$: $h = (0.6 \pm 1.2) \times 10^{-3}$

K_L decay form factors [p]

Linear parametrization assuming μ -e universality

$$\lambda_{+}(K_{\mu 3}^{0}) = \lambda_{+}(K_{e3}^{0}) = (2.82 \pm 0.04) \times 10^{-2} \quad (S = 1.1)$$

 $\lambda_{0}(K_{\mu 3}^{0}) = (1.38 \pm 0.18) \times 10^{-2} \quad (S = 2.2)$

Quadratic parametrization assuming μ -e universality

$$\lambda'_{+}(K^{0}_{\mu 3}) = \lambda'_{+}(K^{0}_{e3}) = (2.40 \pm 0.12) \times 10^{-2} \quad (S = 1.2)$$
 $\lambda''_{+}(K^{0}_{\mu 3}) = \lambda''_{+}(K^{0}_{e3}) = (0.20 \pm 0.05) \times 10^{-2} \quad (S = 1.2)$
 $\lambda_{0}(K^{0}_{\mu 3}) = (1.16 \pm 0.09) \times 10^{-2} \quad (S = 1.2)$

Pole parametrization assuming μ -e universality

$$M_V^{\mu} (K_{\mu 3}^0) = M_V^e (K_{e 3}^0) = 878 \pm 6 \text{ MeV} \quad (S = 1.1)$$
 $M_S^{\mu} (K_{\mu 3}^0) = 1252 \pm 90 \text{ MeV} \quad (S = 2.6)$

Dispersive parametrization assuming μ -e universality

$$\Lambda_{+} = (2.51 \pm 0.06) \times 10^{-2} \quad (S = 1.5)$$

$$\ln(C) = (1.75 \pm 0.18) \times 10^{-1} \quad (S = 2.0)$$

$$K_{e3}^{0} \quad |f_{S}/f_{+}| = (1.5^{+1.4}_{-1.6}) \times 10^{-2}$$

$$K_{e3}^{0} \quad |f_{T}/f_{+}| = (5^{+4}_{-5}) \times 10^{-2}$$

$$K_{\mu 3}^{0} \quad |f_{T}/f_{+}| = (12 \pm 12) \times 10^{-2}$$

$$K_{L} \rightarrow \ell^{+}\ell^{-}\gamma, K_{L} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-}: \alpha_{K^{*}} = -0.205 \pm 0.022 \quad (S = 1.8)$$

$$K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\gamma, K_{L}^{0} \rightarrow \ell^{+}\ell^{-}\ell'^{+}\ell'^{-}: \alpha_{DIP} = -1.69 \pm 0.08 \quad (S = 1.7)$$

$$K_{L} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}: a_{1}/a_{2} = -0.737 \pm 0.014 \text{ GeV}^{2}$$

$$K_{L} \rightarrow \pi^{0}2\gamma: \qquad a_{V} = -0.43 \pm 0.06 \quad (S = 1.5)$$

CP-violation parameters [x]

$$A_L = (0.332 \pm 0.006)\%$$

 $|\eta_{00}| = (2.220 \pm 0.011) \times 10^{-3} \quad (S = 1.8)$
 $|\eta_{+-}| = (2.232 \pm 0.011) \times 10^{-3} \quad (S = 1.8)$

$$\begin{split} |\epsilon| &= (2.228 \pm 0.011) \times 10^{-3} \quad (S=1.8) \\ |\eta_{00}/\eta_{+-}| &= 0.9950 \pm 0.0007 \,^{[aa]} \quad (S=1.6) \\ \text{Re}(\epsilon'/\epsilon) &= (1.66 \pm 0.23) \times 10^{-3} \,^{[aa]} \quad (S=1.6) \\ \text{Assuming } \textit{CPT} \\ \phi_{+-} &= (43.51 \pm 0.05)^\circ \quad (S=1.2) \\ \phi_{00} &= (43.52 \pm 0.05)^\circ \quad (S=1.3) \\ \phi_{\epsilon} &= \phi_{\text{SW}} = (43.52 \pm 0.05)^\circ \quad (S=1.2) \\ \text{Im}(\epsilon'/\epsilon) &= -(\phi_{00} - \phi_{+-})/3 = (-0.002 \pm 0.005)^\circ \quad (S=1.7) \\ \text{Not assuming } \textit{CPT} \\ \phi_{+-} &= (43.4 \pm 0.5)^\circ \quad (S=1.2) \\ \phi_{00} &= (43.7 \pm 0.6)^\circ \quad (S=1.2) \\ \phi_{\epsilon} &= (43.5 \pm 0.5)^\circ \quad (S=1.3) \\ \textit{CP} \text{ asymmetry } \textit{A in } \textit{K}^0_L \rightarrow \pi^+\pi^-e^+e^- = (13.7 \pm 1.5)\% \\ \beta_{\textit{CP}} \text{ from } \textit{K}^0_L \rightarrow e^+e^-e^+e^- = -0.19 \pm 0.07 \\ \gamma_{\textit{CP}} \text{ from } \textit{K}^0_L \rightarrow e^+e^-e^+e^- = 0.01 \pm 0.11 \quad (S=1.6) \\ \textit{j for } \textit{K}^0_L \rightarrow \pi^+\pi^-\pi^0 = 0.0012 \pm 0.0008 \\ \textit{f for } \textit{K}^0_L \rightarrow \pi^+\pi^-\pi^0 = 0.004 \pm 0.006 \\ |\eta_{+-\gamma}| &= (2.35 \pm 0.07) \times 10^{-3} \end{split}$$

T-violation parameters

 $\phi_{+-\gamma} = (44 \pm 4)^{\circ}$

$${\rm Im}(\xi) \ {\rm in} \ K_{\mu 3}^0 = -0.007 \pm 0.026$$

 $|\epsilon'_{\perp}|_{\alpha}/\epsilon < 0.3$, CL = 90%

CPT invariance tests

$$\phi_{00} - \phi_{+-} = (0.34 \pm 0.32)^{\circ}$$
 $\text{Re}(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2} = (-3 \pm 35) \times 10^{-6}$

 $|g_{E1}|$ for $K_I^0 \to \pi^+\pi^-\gamma < 0.21$, CL = 90%

$\Delta S = -\Delta Q$ in $K_{\ell 3}^0$ decay

Re
$$x = -0.002 \pm 0.006$$

Im $x = 0.0012 \pm 0.0021$

				Scale factor/	
KL DECAY MODES		Fraction (Γ_i	/Γ) Co	onfidence level (MeV/ <i>c</i>)
	Semiler	otonic mod	les		
$\pi^{\pm} e^{\mp} \nu_{e}$				S=1.7	229
Called K_{e3}^0 .		(- ,		
$\pi^{\pm}\mu^{\mp} u_{\mu}$	[z]	(27.04 ±	0.07) %	S=1.1	216
Called $K_{\mu 3}^0$.					
$(\pi\mu atom) u$		$(1.05 \pm)$	$0.11) \times 10^{-7}$		188
$\pi^0\pi^{\pm}e^{\mp}\nu$	[z]		0.11×10^{-5}		207
$\pi^{\pm} e^{\mp} \nu e^{+} e^{-}$	[z]	(1.26 ± 0	$0.04) \times 10^{-5}$		229
Hadronic modes, includi	ng Charge co	oniugation	×Parity Viola	ating (CPV)	modes
$3\pi^0$		(19.52 ± 0.00)	-	S=1.6	139
$\pi^+\pi^-\pi^0$		$(12.54 \pm)$	•		133
$\pi^+\pi^-$	CPV [bb]	(1.967±	$0.010) \times 10^{-3}$	S=1.5	206
$\pi^0\pi^0$	CPV	($8.64 \pm$	$0.06) \times 10^{-4}$	S=1.8	209
Se	emileptonic i	nodes with	h photons		
$\pi^{\pm} e^{\mp} \nu_e \gamma$	-		$0.06) \times 10^{-3}$		229
$\pi^{\pm}\mu^{\mp}\nu_{\mu}\gamma$	[.,_,_,	`	$0.23) \times 10^{-4}$		216
,			4 -		
	nic modes v		ns or $\ell \overline{\ell}$ pairs		
$\pi^0\pi^0\gamma$	г 1	< 2.43	_	CL=90%	209
$\pi^+\pi^-\gamma \ \pi^+\pi^-\gamma$ (DE)	[r,cc]	•	$0.15) \times 10^{-5}$ $0.11) \times 10^{-5}$	S=2.8 S=2.0	206 206
$\pi^0 2\gamma$	[cc]		$0.11^{\circ}) \times 10^{\circ}$ $0.033) \times 10^{-6}$	3—2.0	230
$\pi^0 \gamma e^+ e^-$	[cc]		$0.033) \times 10^{-8}$		230
,			_		
	er modes wi		or $\ell \overline{\ell}$ pairs 0.04) \times 10^{-4}	C 11	240
2γ		(5.47 ± 0 < 7.4	,	S=1.1 CL=90%	249
$\frac{3\gamma}{e^+e^-\gamma}$			$0.4) \times 10^{-6}$		249 249
$\mu^+\mu^-\gamma$			0.11×10^{-7}	S=1.3	225
$e^+e^-\gamma\gamma$	[cc]		$0.33) \times 10^{-7}$		249
$\mu^+\mu^-\gamma\gamma$			$\begin{array}{cc} 0.8 \\ 0.6 \end{array}) \times 10^{-8}$		225
r. r. II	[]	(0.6		
Charge conjugation	- •	•			
violating modes,				S1) modes	
$\mu^+\mu^-$	S1	,	0.11×10^{-9}		225
e^+e^-	<i>S</i> 1	(9 +	$^{6}_{4}$) × 10 ⁻¹	2	249
$\pi^{+}\pi^{-}e^{+}e^{-}$	S1 [cc]	(3.11 ±	$0.19) \times 10^{-7}$		206
$\pi^{0}\pi^{0}e^{+}e^{-}$			$\times 10^{-9}$	CL=90%	209
$\pi^{0}\pi^{0}\mu^{+}\mu^{-}$	<i>S</i> 1	< 9.2	$\times 10^{-1}$	1 CL=90%	57
$\mu^+\mu^-\mathrm{e}^+\mathrm{e}^-$	<i>S</i> 1	$(2.69 \pm$	$0.27) \times 10^{-9}$		225
HTTP://PDG.LBL.GOV	/ Pa	age 32	Created:	7/10/2023	15:48

$e^{+}e^{-}e^{+}e^{-}$	<i>S</i> 1 (3.56 ± 0.21	$\times 10^{-8}$		249
$\pi^0 \mu^+ \mu^-$	CP, $S1[dd] <$	3.8	$\times 10^{-10}$	CL=90%	177
$\pi^{0} e^{+} e^{-}$	CP, $S1[dd] <$	2.8	$\times 10^{-10}$	CL=90%	230
$\pi^0 u \overline{ u}$	CP,S1 $[ee]<$	3.0	$\times 10^{-9}$	CL=90%	230
$\pi^0\pi^0 u\overline{\nu}$	<i>S</i> 1 <	8.1	$\times 10^{-7}$	CL=90%	209
$e^{\pm}\mu^{\mp}$	LF $[z]$ $<$	4.7	$\times 10^{-12}$	CL=90%	238
$e^\pme^\pm\mu^\mp\mu^\mp$	LF $[z]$ $<$	4.12	$\times 10^{-11}$	CL=90%	225
$\pi^0 \mu^\pm e^\mp$	LF $[z]$ $<$	7.6	$\times 10^{-11}$	CL=90%	217
$\pi^0\pi^0\mu^\pm e^\mp$	LF <	1.7	$\times 10^{-10}$	CL=90%	159

Lorentz invariance violating modes

 $\pi^{0}\gamma$ < 1.7 $\times 10^{-7}$ CL=90% 230

$K_0^*(700)$

$$I(J^P) = \frac{1}{2}(0^+)$$

also known as κ ; was $K_0^*(800)$

See the review on "Scalar Mesons below 1 GeV."

Mass (T-Matrix Pole \sqrt{s}) = (630–730) -i (260–340) MeV

Mass (Breit-Wigner) $= 845 \pm 17 \text{ MeV}$

Full width (Breit-Wigner) = $468 \pm 30 \text{ MeV}$

K *(700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	100 %	256

K*(892)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass (T-Matrix Pole \sqrt{s}) = (890 \pm 14) -i (26 \pm 6) MeV $K^*(892)^\pm$ hadroproduced mass $m=891.67\pm0.26$ MeV $K^*(892)^\pm$ in τ decays mass $m=895.5\pm0.8$ MeV $K^*(892)^0$ mass $m=895.55\pm0.20$ MeV (S = 1.7) $K^*(892)^\pm$ hadroproduced full width $\Gamma=51.4\pm0.8$ MeV $K^*(892)^\pm$ in τ decays full width $\Gamma=46.2\pm1.3$ MeV $K^*(892)^0$ full width $\Gamma=47.3\pm0.5$ MeV (S = 1.9)

K*(892) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
$K\pi$	~ 100	%	289
$K^0\gamma$	(2.46 ± 0.21)	< 10 ⁻³	307
$\mathcal{K}^{\pm}\gamma$	(9.8 ± 0.9)	< 10 ⁻⁴	309
$K\pi\pi$	< 7	< 10 ⁻⁴ 95%	223

$K_1(1270)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1253\pm7$ MeV (S = 2.2) Full width $\Gamma=90\pm20$ MeV $^{[h]}$

K ₁ (1270) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$K\rho$	(38 ±13) %	2.2	†
$K_0^*(1430)\pi$	$(28 \pm 4)\%$		†
$K^{*}(892)\pi$	$(21 \pm 10)\%$	2.2	286
$K\omega$	$(11.0 \pm \ 2.0) \%$		†
$K f_0(1370)$ γK^0	($3.0\pm~2.0)$ %		†
γK^0	seen		528

$K_1(1400)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1403\pm7~{\rm MeV}$ Full width $\Gamma=174\pm13~{\rm MeV}~(S=1.6)$

K₁(1400) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	(94 ±6)%	402
$K \rho$	(3.0±3.0) %	293
$K f_0(1370)$	(2.0±2.0) %	†
$K\omega$	$(1.0\pm1.0)\%$	284
${\kappa_0^*(1430)\pi} \over {\gamma\kappa^0}$	not seen	†
γK^0	seen	613
$K\phi$	seen	†

K*(1410)

$$I(J^P) = \frac{1}{2}(1^-)$$

Created: 7/10/2023 15:48

K*(1410) DECAY MODES	Fraction (I	$i/\Gamma)$	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$K^*(892)\pi$	> 40	%	95%	410
$K\pi$	(6.6±1	3) %		612
$K \rho \gamma K^0$	< 7	%	95%	305
$\gamma \mathcal{K}^0$	< 2.3	\times 10 ⁻²	90%	619
$K\phi$	seen			†

K*(1430)

$$I(J^P) = \frac{1}{2}(0^+)$$

Mass $m=1425\pm 50$ MeV ^[h] Full width $\Gamma=270\pm 80$ MeV ^[h]

K ₀ *(1430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(93 ±10)%	619
$K\eta$	$(8.6^{+}_{-}$ $^{2.7}_{3.4})$ %	486
$K \eta'(958)$	seen	†

$K_2^*(1430)$

$$I(J^P) = \frac{1}{2}(2^+)$$

$$K_2^*(1430)^\pm$$
 mass $m=1427.3\pm1.5$ MeV (S = 1.3) $K_2^*(1430)^0$ mass $m=1432.4\pm1.3$ MeV $K_2^*(1430)^\pm$ full width $\Gamma=100.0\pm2.1$ MeV $K_2^*(1430)^0$ full width $\Gamma=109\pm5$ MeV (S = 1.9)

K*(1430) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	<i>p</i> (MeV/ <i>c</i>)
Κπ	(49.9±1.2) %		620
$K^*(892)\pi$	$(24.7\pm1.5)~\%$		420
$K^*(892)\pi\pi$	(13.4 ± 2.2) %		373
$K \rho$	$(8.7\pm0.8)\%$	S=1.2	320
$K\omega$	$(2.9\pm0.8)\%$		313
$K^+\gamma$	$(2.4\pm0.5)\times1$	0^{-3} S=1.1	628
$K\eta$	$(1.5^{+3.4}_{-1.0}) \times 1$	S=1.3	488
$K\omega\pi$	< 7.2 × 1	0^{-4} CL=95%	106
$K^{0}\gamma$	< 9 × 1	0^{-4} CL=90%	627

K(1460)

$$I(J^P) = \frac{1}{2}(0^-)$$

K(1460) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	seen	_
$K\rho$	seen	_
$K_0^*(1430)\pi$	seen	_
$K\phi$	seen	_

$K_1(1650)$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=1650\pm 50$ MeV Full width $\Gamma=150\pm 50$ MeV

K*(1680)

$$I(J^P) = \frac{1}{2}(1^-)$$

Mass $m=1718\pm18$ MeV Full width $\Gamma=322\pm110$ MeV (S = 4.2)

K*(1680) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(38.7±2.5) %	782
$K \rho$	$(31.4^{+5.0}_{-2.1})$ %	571
$K^*(892)\pi$	$(29.9^{+2.2}_{-5.0})$ %	618
$\mathcal{K}\phi$	seen	387
$K\eta$	$(1.4^{+1.0}_{-0.8})\%$	683

K₂(1770) [ff]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1773\pm 8~{\rm MeV}$ Full width $\Gamma=186\pm 14~{\rm MeV}$

K₂(1770) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Κππ		794
$K_2^*(1430)\pi$	seen	287
$K^{\overline{*}}(892)\pi$	seen	654
$K f_2(1270)$	seen	53
$\mathcal{K}\phi$	seen	441
$K\omega$	seen	607

$K_3^*(1780)$

$$I(J^P) = \frac{1}{2}(3^-)$$

Mass $m=1779\pm 8$ MeV (S =1.2) Full width $\Gamma=161\pm 17$ MeV (S =1.1)

K*(1780) DECAY MODES	Fraction (Γ	· _i /Γ) Co	onfidence level	<i>p</i> (MeV/ <i>c</i>)
Κρ Κ*(892)π	(31 ± 9) (20 ± 9)	,		616 657
//			. = / /	

HTTP://PDG.LBL.GOV

Page 36

$K\pi$	(18.8 \pm	1.0) %		815
$K\eta$	(30 ± 1)	.3) %		721
$K_2^*(1430)\pi$	< 16	%	95%	292

K₂(1820) [ff]

$$I(J^P) = \frac{1}{2}(2^-)$$

Mass $m=1819\pm12~{\rm MeV}$ Full width $\Gamma=264\pm34~{\rm MeV}$

Fraction (Γ_i/Γ)	p (MeV/c)
seen	819
seen	328
seen	683
seen	191
seen	640
seen	483
	seen seen seen seen

$K_2^*(1980)$

$$I(J^P) = \frac{1}{2}(2^+)$$

Mass
$$m=1994^{+60}_{-50}$$
 MeV $~(S=2.8)$ Full width $\Gamma=348^{+50}_{-30}$ MeV $~(S=1.3)$

K [*] ₂ (1980) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K^*(892)\pi$	possibly seen	791
$K \rho$	possibly seen	762
$K f_2(1270)$	possibly seen	424
$K\phi$	seen	627
$K\eta$	seen	850

K₄*(2045)

$$I(J^P) = \frac{1}{2}(4^+)$$

Mass
$$m=2048^{+8}_{-9}$$
 MeV (S $=1.1$)
Full width $\Gamma=199^{+27}_{-19}$ MeV

K [*] ₄ (2045) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$K\pi$	(9.9±1.2) %	960
$K^*(892)\pi\pi$	$(9 \pm 5)\%$	804
$K^*(892)\pi\pi\pi$	$(7 \pm 5)\%$	770
$ ho$ K π	(5.7±3.2) %	744

HTTP://PDG.LBL.GOV

Page 37

ω K π	(5.0±3.0) %	740
ϕ K π	$(2.8\pm1.4)~\%$	597
ϕK^* (892)	$(1.4\pm0.7)~\%$	368

CHARMED MESONS $(C = \pm 1)$

 $D^+=c\overline{d},\ D^0=c\overline{u},\ \overline{D}{}^0=\overline{c}\,u,\ D^-=\overline{c}\,d,$ similarly for D^* 's

D^{\pm}

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass $m=1869.66\pm0.05$ MeV Mean life $\tau=(1033\pm5)\times10^{-15}$ s $c\tau=309.8~\mu\mathrm{m}$

c-quark decays

 $\Gamma(c \to \ell^+ \text{ anything})/\Gamma(c \to \text{ anything}) = 0.096 \pm 0.004 ^{[gg]}$ $\Gamma(c \to D^*(2010)^+ \text{ anything})/\Gamma(c \to \text{ anything}) = 0.255 \pm 0.017$

CP-violation decay-rate asymmetries

$$A_{CP}(\mu^{\pm}\nu) = (8 \pm 8)\%$$

$$A_{CP}(K_{S}^{0}e^{\pm}\nu) = (-0.6 \pm 1.6)\%$$

$$A_{CP}(K_{S}^{0}\pi^{\pm}) = (-0.41 \pm 0.09)\%$$

$$A_{CP}(K_{L}^{0}K^{\pm}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm} = (-4.2 \pm 3.4) \times 10^{-2}$$

$$A_{CP}(K^{\mp}2\pi^{\pm}) = (-0.18 \pm 0.16)\%$$

$$A_{CP}(K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{0}) = (-0.3 \pm 0.7)\%$$

$$A_{CP}(K_{S}^{0}\pi^{\pm}\pi^{0}) = (-0.1 \pm 0.7)\%$$

$$A_{CP}(K_{S}^{0}\pi^{\pm}\eta) \text{ in } D^{\pm} \rightarrow K_{S}^{0}\pi^{\pm}\eta = (-0.9 \pm 3.1) \times 10^{-2}$$

$$A_{CP}(K_{S}^{0}\pi^{\pm}\pi^{+}\pi^{-}) = (0.0 \pm 1.2)\%$$

$$A_{CP}(K^{\pm}\pi^{+}\pi^{-}\pi^{0}) \text{ in } D^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}\pi^{0} = -0.04 \pm 0.06$$

$$A_{CP}(K^{\pm}\pi^{0}) = (0.4 \pm 1.3)\% \quad (S = 1.7)$$

$$A_{CP}(\pi^{\pm}\eta) = (0.3 \pm 0.8)\% \quad (S = 1.2)$$

$$A_{CP}(\pi^{\pm}\eta) \text{ in } D^{\pm} \rightarrow \pi^{\pm}\pi^{0}\eta = (-6 \pm 7) \times 10^{-2}$$

$$A_{CP}(\pi^{\pm}\eta^{0}) \text{ in } D^{\pm} \rightarrow \pi^{\pm}\eta\eta = (8 \pm 9) \times 10^{-2}$$

$$A_{CP}(\pi^{\pm}\eta^{0}) \text{ in } D^{\pm} \rightarrow \pi^{\pm}\eta\eta = (8 \pm 9) \times 10^{-2}$$

$$A_{CP}(K_{S}^{0}K^{\pm}) = (-0.6 \pm 0.7)\%$$

$$A_{CP}(K_{S}^{0}K^{\pm}) = (0.11 \pm 0.17)\%$$

$$A_{CP}(K_{S}^{0}K^{\pm}) = (-0.01 \pm 0.07)\%$$

$$A_{CP}(K_{S}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{S}^{0}K^{\pm}\pi^{0} = (1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(K_{L}^{0}K^{\pm}\pi^{0}) \text{ in } D^{\pm} \rightarrow K_{L}^{0}K^{\pm}\pi^{0} = (-1 \pm 4) \times 10^{-2}$$

$$A_{CP}(\phi \pi^{\pm}) = (0.01 \pm 0.09)\% \quad (S = 1.8)$$

$$A_{CP}(K^{\pm} K_0^* (1430)^0) = (8_{-6}^{+7})\%$$

$$A_{CP}(K^{\pm} K_2^* (1430)^0) = (43_{-26}^{+20})\%$$

$$A_{CP}(K^{\pm} K_0^* (700)) = (-12_{-13}^{+18})\%$$

$$A_{CP}(a_0 (1450)^0 \pi^{\pm}) = (-19_{-16}^{+14})\%$$

$$A_{CP}(\phi (1680) \pi^{\pm}) = (-9 \pm 26)\%$$

$$A_{CP}(\pi^{\pm} 2\pi^0) \text{ in } D^{\pm} \rightarrow \pi^{\pm} 2\pi^0 = (5.6 \pm 2.7)\%$$

$$A_{CP}(\pi^{+} \pi^{-} \pi^{\pm}) = (0.5 \pm 2.0)\%$$

$$A_{CP}(2\pi^{\pm} \pi^{\mp} \pi^0) \text{ in } D^{\pm} \rightarrow 2\pi^{\pm} \pi^{\mp} 2\pi^0 = (-4 \pm 4)\%$$

$$A_{CP}(2\pi^{\pm} \pi^{\mp} 2\pi^0) \text{ in } D^{\pm} \rightarrow 2\pi^{\pm} \pi^{\mp} 2\pi^0 = (-4 \pm 4)\%$$

$$A_{CP}(\pi^{+} \pi^{-} \pi^{\pm} \eta) \text{ in } D^{\pm} \rightarrow \pi^{+} \pi^{-} \pi^{\pm} \eta = (3 \pm 5) \times 10^{-2}$$

$$A_{CP}(K_S^0 K^{\pm} \pi^{+} \pi^{-}) = (-4 \pm 7)\%$$

$$A_{CP}(K^{\pm} \pi^0) = (-3 \pm 5)\%$$

$$A_{CP}(K^{\pm} \eta) \text{ in } D^{\pm} \rightarrow K^{\pm} \eta = (-6 \pm 11) \times 10^{-2}$$

χ^2 tests of *CP*-violation (*CPV*)

Local *CPV* in
$$D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm} = 78.1\%$$

Local *CPV* in $D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm} = 31\%$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-12 \pm 11) \times 10^{-3} [hh]$$

D^+ form factors

$$\begin{array}{l} f_{+}(0) \big| V_{cs} \big| \text{ in } \overline{K}^0 \, \ell^+ \, \nu_\ell = 0.719 \pm 0.011 \quad (\mathsf{S} = 1.6) \\ r_1 \equiv a_1/a_0 \text{ in } \overline{K}^0 \, \ell^+ \, \nu_\ell = -2.13 \pm 0.14 \\ r_2 \equiv a_2/a_0 \text{ in } \overline{K}^0 \, \ell^+ \, \nu_\ell = -3 \pm 12 \quad (\mathsf{S} = 1.5) \\ f_{+}(0) \big| V_{cd} \big| \text{ in } \pi^0 \, \ell^+ \, \nu_\ell = 0.1407 \pm 0.0025 \\ r_1 \equiv a_1/a_0 \text{ in } \pi^0 \, \ell^+ \, \nu_\ell = -2.00 \pm 0.13 \\ r_2 \equiv a_2/a_0 \text{ in } \pi^0 \, \ell^+ \, \nu_\ell = -4 \pm 5 \\ f_{+}(0) \big| V_{cd} \big| \text{ in } D^+ \rightarrow \eta \, \ell^+ \, \nu_\ell \, (\ell = e \text{ or } \nu) = (8.4 \pm 0.4) \times 10^{-2} \\ r_1 \equiv a_1/a_0 \text{ in } D^+ \rightarrow \eta \, e^+ \, \nu_e = -5.3 \pm 2.7 \quad (\mathsf{S} = 1.9) \\ r_v \equiv V(0)/A_1(0) \text{ in } D^+ \rightarrow \omega \, e^+ \, \nu_e = 1.24 \pm 0.11 \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } D^+ \rightarrow \omega \, e^+ \, \nu_e = 1.64 \pm 0.16 \\ r_v \equiv V(0)/A_1(0) \text{ in } D^+, D^0 \rightarrow \rho \, e^+ \, \nu_e = 1.64 \pm 0.10 \quad (\mathsf{S} = 1.2) \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } \overline{K}^*(892)^0 \, \ell^+ \, \nu_\ell = 0.84 \pm 0.06 \\ r_v \equiv V(0)/A_1(0) \text{ in } \overline{K}^*(892)^0 \, \ell^+ \, \nu_\ell = 0.802 \pm 0.021 \\ r_3 \equiv A_3(0)/A_1(0) \text{ in } \overline{K}^*(892)^0 \, \ell^+ \, \nu_\ell = 0.0 \pm 0.4 \\ \Gamma_L/\Gamma_T \text{ in } \overline{K}^*(892)^0 \, \ell^+ \, \nu_\ell = 1.13 \pm 0.08 \\ \Gamma_+/\Gamma_- \text{ in } \overline{K}^*(892)^0 \, \ell^+ \, \nu_\ell = 0.22 \pm 0.06 \quad (\mathsf{S} = 1.6) \\ \end{array}$$

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

		Scale factor/	р			
D+ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)			
Inclusive modes						
e^+ semileptonic	(16.07 ± 0.30)) %	_			
μ^+ anything	(17.6 ± 3.2)) %	_			
K^- anything	(25.7 ± 1.4)) %	_			
$\overline{K}{}^0$ anything $+~K^0$ anything	(61 ± 5)) %	_			
\mathcal{K}^+ anything	(5.9 ± 0.8) %	_			
$K^*(892)^-$ anything	(6 ± 5)) %	_			
$\overline{K}^*(892)^0$ anything	(23 ± 5)) %	_			
$K^*(892)^0$ anything	< 6.6		_			
η anything	(6.3 ± 0.7)		_			
η' anything	(1.04 ± 0.18	,	_			
ϕ anything	(1.12 ± 0.04)) %	_			
Leptonic and	semileptonic mod	es				
$e^+\nu_e$	< 8.8		935			
$\gamma e^+ \nu_e$	< 3.0		935			
$\mu^+ u_\mu$	(3.74 ± 0.17)		932			
	(1.20 ± 0.27)		90			
$\frac{\tau^+ \nu_{\tau}}{K^0 e^+ \nu_{e}}$	(8.72 ± 0.09	•	869			
$\overline{K}{}^0\mu^+\nu_{\mu}$	(8.76 ± 0.19)) %	865			
$K^-\pi^+e^+\nu_e$	(4.02 ± 0.18)) % S=3.2	864			
$\overline{\mathit{K}}^{*}(892)^{0}e^{+} u_{e}$, $\overline{\mathit{K}}^{*}(892)^{0} ightarrow$	(3.77 ± 0.17)		722			
$(K^-\pi^+)_{[0.8-1.0]\text{GeV}} e^+ \nu_e$						
$(K^-\pi^+)$ [0.8–1.0]GeV $e^+ u_e$	(3.39 ± 0.09)) %	864			
$(K^-\pi^+)_{S-wave} e^+ u_e$	(2.28 ± 0.11		_			
$\overline{K}^*(1410)^0 e^+ \nu_e$,	< 6	$\times 10^{-3}$ CL=90%	_			
$\overline{K}^*(1410)^0 \rightarrow K^-\pi^+$						
$\overline{K}_{2}^{*}(1430)^{0} e^{+} \nu_{e}$,	< 5	$\times 10^{-4}$ CL=90%	_			
$\overline{\mathit{K}}_{2}^{*}(1430)^{0} \rightarrow \ \mathit{K}^{-}\pi^{+}$						
$K^-\pi^+e^+ u_e$ nonresonant	< 7	$\times 10^{-3}$ CL=90%	864			
$\overline{K}^*(892)^0 e^+ \nu_e$	(5.40 ± 0.10) % S=1.1	722			
$K^-\pi^+\mu^+ u_\mu$	(3.65 ± 0.34)) %	851			
$\overline{\mathit{K}}^{*}(892)^{0}\mu^{+} u_{\mu}$,	(3.52 ± 0.10) %	717			
\overline{K}^* (892) ⁰ $\rightarrow K^-\pi^+$						
$\mathcal{K}^-\pi^+\mu^+ u_\mu$ nonresonant	(1.9 ± 0.5	$) \times 10^{-3}$	851			
$\overline{K}^*(892)^0 \mu^+ \nu_{\mu}$	(5.27 ± 0.15) %	717			
,						

Page 40

Created: 7/10/2023 15:48

HTTP://PDG.LBL.GOV

$K^{-}\pi^{+}\pi^{0}\mu^{+}\nu_{\mu}$		$\times 10^{-3}$ CL=90%	825
$\overline{K}_1(1270)^0 e^+ \nu_e, \ \overline{K}_1^0 \rightarrow$	(1.06 \pm	$0.15) \times 10^{-3}$	_
$rac{{\cal K}^-\pi^+\pi^0}{{\cal K}_0^*(1430)^0\mu^+ u_\mu}$	< 2.3	$\times 10^{-4}$ CL=90%	380
$\overline{K}^{0}(1680)^{0}\mu^{+}\nu_{\mu}$		$\times 10^{-3}$ CL=90%	105
$\pi^0 e^+ \nu_e$	($3.72 \pm$	$0.17) \times 10^{-3}$ S=2.0	930
$\pi^0 \mu^+ u_\mu$	`	$0.15) \times 10^{-3}$	927
$\eta e^+ \nu_e$	•	$0.07) \times 10^{-3}$	855
$\eta \mu^+ u_{\mu}$		$0.11) \times 10^{-3}$	851
$\pi^-\pi^+e^+ u_e$ $f_0(500)^0e^+ u_e$, $f_0(500)^0 o$		$0.11) \times 10^{-3} $ S=1.2 $0.6) \times 10^{-4}$	924
	(0.4 ±	0.0) × 10 ·	_
$\rho_{0}^{0}e^{+}\nu_{e}$		$0.10) \times 10^{-3}$ S=1.2	774
$\rho^0 \mu^+ \nu_\mu$		$0.4) \times 10^{-3}$	770
$\omega e^+_{\perp} \nu_e$		$0.11) \times 10^{-3}$	771
$\omega \mu^+ \nu_{\mu}$		$0.21) \times 10^{-3}$	767
$\eta'(958)e^+\nu_e$		$0.4) \times 10^{-4}$	690
$a(980)^0 e^+ \nu_e, \ a(980)^0 \to \ \eta \pi^0$		$\begin{array}{c} 0.8 \\ 0.7 \end{array}) \times 10^{-4}$	_
$b_1(1235)^0 e^+ \nu_e, \ b_1^0 \to \omega \pi^0$		$\times 10^{-4}$ CL=90%	-
$\phi e^+ u_e$ $D^0 e^+ u_e$	< 1.3	$\times 10^{-5}$ CL=90%	657
	< 1.0	$\times 10^{-4}$ CL=90%	5
Hauronic inc	odes with a <i>K</i> o	or KKK	
$K_S^0\pi^+$	odes with a $\overline{\pmb{K}}$ o $(1.562\pm$		863
$egin{array}{c} \mathcal{K}_{\mathcal{S}}^0\pi^+ \ \mathcal{K}_{\mathcal{L}}^0\pi^+ \end{array}$		0.031) % S=1.7	863 863
$egin{array}{c} {\mathcal K}_{S}^{0} \pi^{+} \ {\mathcal K}_{L}^{0} \pi^{+} \ {\mathcal K}^{-} 2 \pi^{+} \end{array}$	($1.562\pm$	0.031) % S=1.7 0.05) %	
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K_{L}^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ \end{array})$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) %	863 846 846
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$,	$(1.562 \pm $ $(1.46 \pm $ $[ii] (9.38 \pm $	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) %	863 846
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave }\pi^{+}}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \rightarrow K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562 \pm \\ (\ 1.46\ \pm \\ [ii]\ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [jj]\ (\ 1.25\ \pm \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) %	863 846 846 382
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$,	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ \end{array})$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) %	863 846 846
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [ij] \ (\ 1.25\ \pm \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) %	863 846 846 382 714
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(892)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1410)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1410)^{0}\pi^{+}$	$(1.562 \pm $ $(1.46 \pm $ $[ii]$ $(9.38 \pm $ $(7.52 \pm $ $[jj]$ $(1.25 \pm $	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) %	863 846 846 382
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1430)^{0}\pi^{+}$,	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [ij] \ (\ 1.25\ \pm \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) %	863 846 846 382 714
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562 \pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [jj] \ (\ 1.25\ \pm \\ \\ \ (\ 1.04\ \pm \\ \\ \ \text{not seen} \\ \\ [jj] \ (\ 2.3\ \pm \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) %	863 846 846 382 714 381
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$,	$\begin{array}{c} (\ 1.562 \pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [jj] \ (\ 1.25\ \pm \\ \\ \ (\ 1.04\ \pm \\ \\ \ \text{not seen} \\ \\ [jj] \ (\ 2.3\ \pm \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) %	863 846 846 382 714 381
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562 \pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [jj] \ (\ 1.25\ \pm \\ \\ (\ 1.04\ \pm \\ \\ \text{not seen} \\ \\ [jj] \ (\ 2.3\ \pm \\ \\ [jj] \ (\ 2.2\ \pm \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) % 0.7) × 10 ⁻⁴ 1.1) × 10 ⁻⁴	863 846 846 382 714 381 371
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562 \pm \\ (\ 1.46\ \pm \\ \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ \\ [ij] \ (\ 1.25\ \pm \\ \\ \ (\ 1.04\ \pm \\ \\ \ \text{not seen} \\ \\ [ij] \ (\ 2.3\ \pm \\ \\ [ij] \ (\ 2.2\ \pm \\ \ (\ 1.45\ \pm \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) % 0.7) × 10 ⁻⁴ 1.1) × 10 ⁻⁴ 0.26) %	863 846 846 382 714 381 371 58
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [ij] \ (\ 1.25\ \pm \\ \\ (\ 1.04\ \pm \\ \\ \text{not seen} \\ \\ [ij] \ (\ 2.3\ \pm \\ \\ [ij] \ (\ 2.2\ \pm \\ \\ [ii] \ (\ 7.36\ \pm \\ \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) % 0.7) × 10 ⁻⁴ 1.1) × 10 ⁻⁴ 0.26) % 0.21) %	863 846 846 382 714 381 371 58 - 845
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [ij] \ (\ 1.25\ \pm \\ \\ (\ 1.04\ \pm \\ \\ \text{not seen} \\ \\ [ij] \ (\ 2.3\ \pm \\ \\ [ij] \ (\ 2.2\ \pm \\ \\ [ii] \ (\ 7.36\ \pm \\ (\ 6.14\ + \\ \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) % 0.7) × 10 ⁻⁴ 1.1) × 10 ⁻⁴ 0.26) % 0.21) % 0.60 0.35) %	863 846 846 382 714 381 371 58
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$ $K^{-}(2\pi^{+})_{I=2}$ $K_{S}^{0}\pi^{+}\pi^{0}$ $K_{S}^{0}\rho^{+}$ $K_{S}^{0}\rho^{(1450)^{+}}$, $\rho^{+} \to \pi^{+}\pi^{0}$	$\begin{array}{c} (\ 1.562\pm \\ (\ 1.46\ \pm \\ [ii] \ (\ 9.38\ \pm \\ (\ 7.52\ \pm \\ [ij] \ (\ 1.25\ \pm \\ \\ (\ 1.04\ \pm \\ \\ \text{not seen} \\ \\ [ij] \ (\ 2.3\ \pm \\ \\ [ij] \ (\ 2.2\ \pm \\ \\ [ii] \ (\ 7.36\ \pm \\ (\ 6.14\ + \\ \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) % 0.7) × 10 ⁻⁴ 1.1) × 10 ⁻⁴ 0.26) % 0.21) %	863 846 846 382 714 381 371 58 - 845
$K_{S}^{0}\pi^{+}$ $K_{L}^{0}\pi^{+}$ $K^{-}2\pi^{+}$ $(K^{-}\pi^{+})_{S-\text{wave}}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(892)^{0}\pi^{+}$, $\overline{K}^{*}(892)^{0} \to K^{-}\pi^{+}$ $\overline{K}^{*}(1410)^{0}\pi^{+}$, $\overline{K}^{*0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1430)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1430)^{0} \to K^{-}\pi^{+}$ $\overline{K}_{0}^{*}(1680)^{0}\pi^{+}$, $\overline{K}_{0}^{*}(1680)^{0} \to K^{-}\pi^{+}$	$\begin{array}{c} (\ 1.562\pm\\ (\ 1.46\ \pm\\ [ii] \ (\ 9.38\ \pm\\ (\ 7.52\ \pm\\ [ij] \ (\ 1.25\ \pm\\ \\ (\ 1.04\ \pm\\ \\ \text{not seen} \\ \\ [ij] \ (\ 2.3\ \pm\\ \\ [ij] \ (\ 2.2\ \pm\\ \\ [ii] \ (\ 7.36\ \pm\\ (\ 6.14\ +\\ \\ (\ 1.5\ +\\ \\ \end{array}$	0.031) % S=1.7 0.05) % 0.16) % S=1.6 0.17) % 0.06) % 0.12) % 0.7) × 10 ⁻⁴ 1.1) × 10 ⁻⁴ 0.26) % 0.21) % 0.60 0.35) %	863 846 846 382 714 381 371 58 - 845

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 41

$\overline{K}_0^*(1430)^0\pi^+,\ \overline{K}_0^{*0} ightarrow K_0^0\pi^0$		(2.7	± 0.	9) × 10 ⁻³		_
$\overline{K}_0^*(1680)^0\pi^+, \ \overline{K}_0^{*0} o K_5^0\pi^0$		(10	+ 7 -10) × 10 ⁻⁴		_
$\overline{\kappa}^0\pi^+$, $\overline{\kappa}^0 o$ $K^0_S\pi^0$		(6	+ 5	$) \times 10^{-3}$		_
$K^0_S \pi^+ \pi^0$ nonresonant				$) \times 10^{-3}$		845
$K_S^0 \pi^+ \pi^0$ nonresonant and $\frac{\kappa^0}{\kappa^0} \pi^+$		(1.37	+ 0.1 - 0.	²¹ 40) %		-
$(\kappa_S^0 \pi^0)_{S-wave} \pi^+$		(1.27	+ 0.1 - 0.1	²⁷) %		845
$K_S^0\pi^+\omega$		(7.1	± 0.	$5) \times 10^{-3}$		606
$K_{S}^{0}\pi^{+}\eta$		(1.31	± 0.	05) %		722
$K_{S}^{0}\pi^{+}\eta'(958)$		(1.90	± 0.	$21) \times 10^{-3}$		481
$K^{-}2\pi^{+}\pi^{0}$	[<i>kk</i>]	(6.25	± 0.	18)%		817
$K_S^0 2\pi^+\pi^-$	[kk]	(3.10	± 0.	09)%		814
$K_{S}^{0}\pi^{+}2\pi^{0}$		(2.90	± 0.	11) %		817
$K^-2\pi^+\eta$		(1.35	± 0.	$12) \times 10^{-3}$		657
$K_S^0\pi^+\pi^0\eta$		(1.22	± 0.	$25) \times 10^{-3}$		657
$K^{-}3\pi^{+}\pi^{-}$	[<i>ii</i>]	(5.7	± 0.	$5) \times 10^{-3}$	S=1.1	772
$\overline{K}_{-}^{*}(892)^{0}2\pi^{+}\pi^{-}$,		(1.2	± 0.	4) \times 10 ⁻³		645
$\overline{K}^*(892)^0 \to K^-\pi^+ \ \overline{K}^*(892)^0 \rho^0\pi^+, \ \overline{K}^*(892)^0 \to K^-\pi^+$		(2.3	± 0.	4) × 10 ⁻³		239
$\overline{K}^*(892)^0 a_1(1260)^+$	[//]	(9.3	± 1.	9) $\times 10^{-3}$		†
$\mathcal{K}^- ho^0 2\pi^+$		(1.72	± 0.	28) \times 10 ⁻³		524
$K^{-}3\pi^{+}\pi^{-}$ nonresonant		(4.0	± 2.	9) \times 10 ⁻⁴		772
$K_{S}^{0} 2\pi^{+} \pi^{-} \pi^{0}$		(1.53	± 0.	08)%		773
$K_S^0 \pi^+ 3\pi^0$		(5.5	± 0.	$5) \times 10^{-3}$		776
$K^{-}2\pi^{+}2\pi^{0}$				$32) \times 10^{-3}$		776
$K^{+}2K_{S}^{0}$				$13) \times 10^{-3}$		545
$K^+K^-K^0_S\pi^+$		(2.4	± 0.	$5) \times 10^{-4}$		436
	Pionic	modes	:			
$\pi^+\pi^0$				$033) \times 10^{-3}$		925
$2\pi^{+}\pi^{-}$				$09) \times 10^{-3}$		909
$ ho^{f 0}\pi^+$		(8.3	± 1.	4) \times 10 ⁻⁴		767
$\pi^+(\pi^+\pi^-)_{S-wave}$				$14) \times 10^{-3}$		909
$\sigma\pi^+$, $\sigma ightarrow \ \pi^+\pi^-$				$10) \times 10^{-3}$		_
$f_0(980)\pi^+$,		(1.57	± 0.	$32) \times 10^{-4}$		669
$f_0(980) \rightarrow \pi^+\pi^-$				-		
$f_0(1370)\pi^+$,		8)	± 4	$) \times 10^{-5}$		_
$f_0(1370) ightarrow \pi^+ \pi^-$						

$f_2(1270)\pi^+$,		(5.0	\pm	$0.8) \times 10^{-4}$		485
$f_2(1270) \to \pi^+\pi^-$				_		
$ ho(1450)^0 \pi^+$,	<	8		$\times 10^{-5}$	CL=95%	338
$ ho(1450)^0 ightarrow \pi^+\pi^-$						
$f_0(1500)\pi^+$,		(1.1	\pm	$0.4) \times 10^{-4}$		_
$f_0(1500) \to \pi^+\pi^-$				_		
$f_0(1710)\pi^+$,	<	5		× 10 ⁻⁵	CL=95%	_
$f_0(1710) \to \pi^+\pi^-$				-		
$f_0(1790)\pi^+$,	<	7		× 10 ⁻⁵	CL=95%	_
$f_0(1790) \to \pi^+\pi^-$				4		
$(\pi^+\pi^+)_{S-\text{wave}}\pi^-$	<	1.2			CL=95%	909
$2\pi^+\pi^-$ nonresonant	<				CL=95%	909
$\pi^{+}2\pi^{0}$				$0.15) \times 10^{-3}$		910
$2\pi^{+}\pi^{-}\pi^{0}$		•		0.030) %		883
$\pi^{+}3\pi^{0}$				$0.26) \times 10^{-3}$		885
$\pi^{+}4\pi^{0}$		`		$0.4) \times 10^{-3}$		851
$2\pi^{+}\pi^{-}2\pi^{0}$		•		0.05)%		848
$3\pi^{+}2\pi^{-}$				$0.16) \times 10^{-3}$	S=1.1	845
$2\pi^{+}\pi^{-}3\pi^{0}$		•		$0.35) \times 10^{-3}$		803
$3\pi^{+}2\pi^{-}\pi^{0}$		`		$0.27) \times 10^{-3}$		799
$\eta \pi^+$		•		$0.09) \times 10^{-3}$		848
$\eta \pi^+ \pi^0$				$0.35) \times 10^{-3}$	S=2.2	831
$\eta 2\pi^{+}\pi^{-}$				0.20) \times 10 ⁻³		798
$\eta \pi^{+} 2\pi^{0}$				$0.33) \times 10^{-3}$		801
$\eta \pi^{+} 3 \pi^{0}$				0.5) \times 10 ⁻³		759
$\eta^{2}\pi^{+}\pi^{-}\pi^{0}$				$0.34) \times 10^{-3}$		755
$\eta\eta\pi^+$				$0.26) \times 10^{-3}$		700
$\omega \pi^+$				$0.6) \times 10^{-4}$		764
$\omega \pi^+ \pi^0$		•		0.9×10^{-3}		742
$\eta'(958)\pi^+$				$0.19) \times 10^{-3}$		681
$\eta'(958)\pi^{+}\pi^{0}$	4	(1.6	. ± . v	0.5) \times 10 ⁻³		654
Hadronic mod				_	6 00	700
$K_S^0 K^+$ $K_I^0 K^+$		•		$0.09) \times 10^{-3}$	S=2.2	793
		`		$0.16) \times 10^{-3}$		793
$K_S^0 K^+ \pi^0$		`		$0.30) \times 10^{-3}$		744
$K^*(892)^+ K^0_S$, $K^{*+} ightarrow$		(2.89	\pm	$0.30) \times 10^{-3}$		612
$\overline{K}^{+}\pi^{0}$ $\overline{K}^{*}(892)^{0}K^{+}, \overline{K}^{*0} \rightarrow$				4		
$K^*(892)^0 K^+, K^{*0} \rightarrow$		(5.2	\pm	1.4) \times 10 ⁻⁴		613
$\kappa_{S}^{0}\pi^{0}$ $\kappa_{L}^{0}\kappa^{+}\pi^{0}$				2		
				$0.31) \times 10^{-3}$		744
$K^+K^-\pi^+$	<i>i</i>]	(9.68	\pm	$0.18) \times 10^{-3}$		744
$K^{+}\overline{K}^{*}(892)^{0}$,		(2.49	+	$0.08_{0.13} \times 10^{-3}$		613
$\overline{K}^*(892)^0 \xrightarrow{f} K^- \pi^+$		•	_	0.13 /		

A few poorly measured branching fractions:

Doubly Cabibbo-suppressed modes

Boubly cubibbo	suppressed modes	
$K^+\pi^0$	$(2.08 \pm 0.21) \times 10^{-4}$ S=1.4	864
$K^+ \eta$	(1.25 \pm 0.16) \times 10 ⁻⁴ S=1.1	776
$K^+ \eta'(958)$	$(1.85 \pm 0.20) \times 10^{-4}$	571
$K^{+}2\pi^{0}$	$(2.1 \pm 0.4) \times 10^{-4}$	847
$K^*(892)^+\pi^0$	$(3.4 \pm 1.4) \times 10^{-4}$	714
$K^+\pi^+\pi^-$	$(4.91 \pm 0.09) \times 10^{-4}$	846
$K^+ \rho^0$	$(1.9 \pm 0.5) \times 10^{-4}$	679
$K^+ \eta \pi^0$	$(2.1 \pm 0.5) \times 10^{-4}$	726
$K^*(892)^+ \eta$	$(\begin{array}{ccc} 4.4 & + & 1.8 \\ - & 1.5 \end{array}) \times 10^{-4}$	586
$K^*(892)^0\pi^+$, $K^*(892)^0$ $ ightarrow$	$(2.3 \pm 0.4) \times 10^{-4}$	714
$K^{+}\pi^{-} \ K^{+}f_{0}(980)$, $f_{0}(980) ightarrow \pi^{+}\pi^{-}$	(4.4 \pm 2.6) \times 10 ⁻⁵	-
$K_2^*(1430)^0\pi^+$, $K_2^*(1430)^0 ightarrow$	(3.9 ± 2.7) \times 10^{-5}	_
$K^+\pi^-$		

$K^+\pi^+\pi^-$ nonresonant	not seen	846
$K^+\pi^+\pi^-\pi^0$	$(1.21 \pm 0.09) \times 10^{-3}$	817
$\mathcal{K}^+\pi^+\pi^-\pi^0$ nonresonant	$(1.10 \pm 0.07) \times 10^{-3}$	817
$K^+\omega$	$(5.7 \ \ \begin{array}{c} + \ 2.5 \\ - \ 2.1 \end{array}) imes 10^{-5}$	675
$2K^{+}K^{-}$	(6.14 \pm 0.11) $ imes$ 10 ⁻⁵	550
ϕ (1020) 0 K^{+}	$< 2.1 \times 10^{-5} CL = 90\%$	_
$\mathit{K}^{+}\phi$ (1020), $\phi ightarrow~\mathit{K}^{+}\mathit{K}^{-}$	$(4.4 \pm 0.6) \times 10^{-6}$	_
$K^+(K^+K^-)$ $_{S-wave}$	$(5.77 \pm 0.12) \times 10^{-5}$	550

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF), or Lepton number (L), or Baryon number (B) violating modes

· · · · · · · · · · · · · · · · · · ·	` '	•	•	,	
$\pi^{+}e^{+}e^{-}$	C1	< 1.1		$\times 10^{-6}$ CL=90%	930
$\pi^{+}\pi^{0}e^{+}e^{-}$		< 1.4		\times 10 ⁻⁵ CL=90%	925
$\pi^+ \phi$, $ \phi ightarrow e^+ e^-$		[nn] (1.7	$^{+}$ 1.4 $^{-}$ 0.9	$) \times 10^{-6}$	_
$\pi^{+} \mu^{+} \mu^{-}$	C1	< 6.7		$\times 10^{-8}$ CL=90%	918
$\pi^+\phi$, $\phi \rightarrow \mu^+\mu^-$		[nn] (1.8	\pm 0.8	$) \times 10^{-6}$	_
$\rho^+\mu^+\mu^-$	C1	< 5.6		\times 10 ⁻⁴ CL=90%	757
$K^+e^+e^-$		[oo] < 8.5		\times 10 ⁻⁷ CL=90%	870
$K^{+}\pi^{0}e^{+}e^{-}$		< 1.5		$\times 10^{-5}$ CL=90%	864
$K_S^0 \pi^+ e^+ e^-$		< 2.6		\times 10 ⁻⁵ CL=90%	_
$K_{S}^{\bar{0}}K^{+}e^{+}e^{-}$		< 1.1		imes 10 ⁻⁵ CL=90%	792
$K^+\mu^+\mu^-$		[oo] < 5.4		\times 10 ⁻⁸ CL=90%	856
$\pi^{+} e^{+} \mu^{-}$	LF	< 2.1		\times 10 ⁻⁷ CL=90%	927
$\pi^{+} e^{-} \mu^{+}$	LF	< 2.2		$\times 10^{-7} \text{CL} = 90\%$	927
$K^+e^+\mu^-$	LF	< 7.5		\times 10 ⁻⁸ CL=90%	866
$K^+e^-\mu^+$	LF	< 1.0		\times 10 ⁻⁷ CL=90%	866
$\pi^{-}2e^{+}$	L	< 5.3		\times 10 ⁻⁷ CL=90%	930
$\pi^{-}2\mu^{+}$	L	< 1.4		\times 10 ⁻⁸ CL=90%	918
$\pi^-e^+\mu^+$	L	< 1.3		\times 10 ⁻⁷ CL=90%	927
$\rho^- 2\mu^+$	L	< 5.6		\times 10 ⁻⁴ CL=90%	757
$K^{-}2e^{+}$	L	< 9		\times 10 ⁻⁷ CL=90%	870
$K_S^0 \pi^- 2e^+$		< 3.3		\times 10 ⁻⁶ CL=90%	863
$K^{-}\pi^{0}2e^{+}$		< 8.5		\times 10 ⁻⁶ CL=90%	864
$\mathcal{K}^-2\mu^+$	L	< 1.0		imes 10 ⁻⁵ CL=90%	856
$K^-e^+\mu^+$	L	< 1.9		\times 10 ⁻⁶ CL=90%	866
$K^*(892)^- 2\mu^+$	L	< 8.5		\times 10 ⁻⁴ CL=90%	703
Λe^+	L,B	< 1.1		\times 10 ⁻⁶ CL=90%	602
$\overline{\Lambda}e^+$	L,B	< 6.5		\times 10 ⁻⁷ CL=90%	602
$\Sigma^0 e^+$	L,B	< 1.7		\times 10 ⁻⁶ CL=90%	554
$\overline{\Sigma}{}^0 e^+$	L,B	< 1.3		\times 10 ⁻⁶ CL=90%	554
$\overline{n}e^+$		< 1.43	}	\times 10 ⁻⁵ CL=90%	699
ne ⁺		< 2.91		\times 10 ⁻⁵ CL=90%	699

$$D^0$$

$$I(J^P) = \frac{1}{2}(0^-)$$

Mass
$$m=1864.84\pm0.05~{
m MeV}$$
 $m_{D^\pm}-m_{D^0}=4.822\pm0.015~{
m MeV}$ Mean life $\tau=(410.3\pm1.0)\times10^{-15}~{
m s}$ $c au=123.01~\mu{
m m}$

Mixing and related parameters

$$\begin{array}{l} \left|m_{D_1^0}-m_{D_2^0}\right| = (0.997\pm0.116)\times10^{10}~\hbar~\mathrm{s}^{-1}\\ \left(\Gamma_{D_1^0}-\Gamma_{D_2^0}\right)/\Gamma = 2y = (1.394\pm0.056)\times10^{-2}\\ \left|q/p\right| = 0.995\pm0.016\\ A_{\Gamma} = (0.089\pm0.113)\times10^{-3}\\ \phi^{K_S^0\pi\pi} = 0.02_{-0.05}^{+0.04}\\ K^+\pi^-~\mathrm{relative~strong~phase:~cos~}\delta = 0.990\pm0.025\\ K^-\pi^+\pi^0~\mathrm{coherence~factor~}R_{K\pi\pi^0} = 0.792\pm0.033\\ K^-\pi^+\pi^0~\mathrm{average~relative~strong~phase~}\delta^{K\pi\pi^0} = (198\pm10)^\circ\\ K^-\pi^-2\pi^+~\mathrm{coherence~factor~}R_{K3\pi} = 0.52_{-0.09}^{+0.10}\\ K^-\pi^-2\pi^+~\mathrm{average~relative~strong~phase~}\delta^{K3\pi} = (149_{-16}^{+26})^\circ~(S=1.4)\\ D^0\to K^-\pi^-2\pi^+,~R_{K3\pi}~(y~\mathrm{cos}\delta^{K3\pi}-\times\sin\delta^{K3\pi}) = (-3.0\pm0.7)\times10^{-3}~\mathrm{TeV}^{-1}\\ K_S^0K^+\pi^-~\mathrm{coherence~factor~}R_{K_S^0K\pi}^0 = 0.70\pm0.08\\ K_S^0K^+\pi^-~\mathrm{average~relative~strong~phase~}\delta^{K_S^0K\pi}^0 = (0\pm16)^\circ\\ K^*K~\mathrm{coherence~factor~}R_{K^*K}^0 = 0.94\pm0.12\\ K^*K~\mathrm{average~relative~strong~phase~}\delta^{K^*K}^0 = (-17\pm18)^\circ\\ \end{array}$$

CP-even fractions (labeled by the D^0 decay)

CP-even fraction in
$$D^0 \to K_S^0 \pi^+ \pi^- \pi^0$$
 decays = $(23.8 \pm 1.7)\%$ CP-even fraction in $D^0 \to \pi^+ \pi^- \pi^0$ decays = $(97.3 \pm 1.7)\%$ CP-even fraction in $D^0 \to \pi^+ \pi^- \pi^+ \pi^-$ decays = $(74.6 \pm 1.6)\%$ (S = 1.2)
CP-even fraction in $D^0 \to \pi^+ \pi^- 2\pi^0$ decays = 0.68 ± 0.08 CP-even fraction in $D^0 \to 2\pi^+ 2\pi^- \pi^0$ decays = 0.44 ± 0.10 CP-even fraction in $D^0 \to \pi^+ \pi^- 3\pi^0$ decays = $0.52^{+0.34}_{-0.27}$ CP-even fraction in $D^0 \to 2\pi^+ 2\pi^- 2\pi^0$ decays = 0.79 ± 0.26 CP-even fraction in $D^0 \to K^+ K^- \pi^0$ decays = $(73 \pm 6)\%$ CP-even fraction in $D^0 \to K^+ K^- \pi^+ \pi^-$ decays = $(75 \pm 4)\%$

Created: 7/10/2023 15:48

CP-violation decay-rate asymmetries (labeled by the D^0 decay)

$$A_{CP}(K^+K^-) = (-0.07 \pm 0.11)\%$$

```
A_{CP}(2K_S^0) = (-1.9 \pm 1.1)\% (S = 1.1)
A_{CP}(\pi^{+}\pi^{-}) = (0.13 \pm 0.14)\%
A_{CP}(\pi^0\pi^0) = (0.0 \pm 0.6)\%
A_{CP}(\rho\gamma) = (6 \pm 15) \times 10^{-2}
A_{CP}(\phi \gamma) = (-9 \pm 7) \times 10^{-2}
A_{CP}(\overline{K}^*(892)^0\gamma) = (-0.3 \pm 2.0) \times 10^{-2}
A_{CP}(\pi^+\pi^-\pi^0) = (0.4 \pm 0.4)\%
A_{CP}(\eta\pi^+\pi^-) in D^0, \overline{D}{}^0 \rightarrow \eta\pi^+\pi^- = (0.9 \pm 1.3) \times 10^{-2}
A_{CP}(\rho(770)^{+}\pi^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = (1.2 \pm 0.9)\%^{[pp]}
A_{CP}(\rho(770)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-3.1 \pm 3.0)\%^{[pp]}
A_{CP}(\rho(770)^-\pi^+ \to \pi^+\pi^-\pi^0) = (-1.0 \pm 1.7)\%^{[pp]}
A_{CP}(\rho(1450)^{+}\pi^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = (0 \pm 70)\%^{[pp]}
A_{CP}(\rho(1450)^0\pi^0 \to \pi^+\pi^-\pi^0) = (-20 \pm 40)\%^{[pp]}
A_{CP}(\rho(1450)^-\pi^+ \to \pi^+\pi^-\pi^0) = (6 \pm 9)\%^{[pp]}
A_{CP}(\rho(1700)^+\pi^- \to \pi^+\pi^-\pi^0) = (-5 \pm 14)\%^{[pp]}
A_{CP}(\rho(1700)^0\pi^0 \to \pi^+\pi^-\pi^0) = (13 \pm 9)\%^{[pp]}
A_{CP}(\rho(1700)^-\pi^+ \to \pi^+\pi^-\pi^0) = (8 \pm 11)\%^{[pp]}
A_{CP}(f_0(980)\pi^0 \rightarrow \pi^+\pi^-\pi^0) = (0 \pm 35)\%^{[pp]}
A_{CP}(f_0(1370)\pi^0 \rightarrow \pi^+\pi^-\pi^0) = (25 \pm 18)\%^{[pp]}
A_{CP}(f_0(1500)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 18)\%^{[pp]}
A_{CP}(f_0(1710)\pi^0 \to \pi^+\pi^-\pi^0) = (0 \pm 24)\%^{[pp]}
A_{CP}(f_2(1270)\pi^0 \to \pi^+\pi^-\pi^0) = (-4 \pm 6)\%^{[pp]}
A_{CP}(\sigma(400)\pi^0 \to \pi^+\pi^-\pi^0) = (6 \pm 8)\%^{[pp]}
A_{CP} (nonresonant \pi^+\pi^-\pi^0) = (-13 \pm 23)\% [pp]
A_{CP}(\pi^+\pi^-2\pi^0) in D^0, \overline{D}{}^0 \rightarrow \pi^+\pi^-2\pi^0 = (-2.5 \pm 2.0)\%
A_{CP}(a_1(1260)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (5 \pm 6)\%
A_{CP}(a_1(1260)^-\pi^+ \rightarrow 2\pi^+2\pi^-) = (14 \pm 18)\%
A_{CP}(\pi(1300)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (-2 \pm 15)\%
A_{CP}(\pi(1300)^-\pi^+ \rightarrow 2\pi^+2\pi^-) = (-6 \pm 30)\%
A_{CP}(a_1(1640)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (9 \pm 26)\%
A_{CP}(\pi_2(1670)^+\pi^- \rightarrow 2\pi^+2\pi^-) = (7 \pm 18)\%
A_{CP}(\sigma f_0(1370) \rightarrow 2\pi^+ 2\pi^-) = (-15 \pm 19)\%
A_{CP}(\sigma \rho(770)^0 \rightarrow 2\pi^+ 2\pi^-) = (3 \pm 27)\%
A_{CP}(2\rho(770)^0 \rightarrow 2\pi^+2\pi^-) = (-6 \pm 6)\%
A_{CP}(2f_2(1270) \rightarrow 2\pi^+ 2\pi^-) = (-28 \pm 24)\%
A_{CP}(\pi^+\pi^-\pi^0\eta) in D^0, \overline{D}{}^0 \to \pi^+\pi^-\pi^0\eta = (-6 \pm 6) \times 10^{-2}
A_{CP}(K^+K^-\pi^0) = (-1.0 \pm 1.7)\%
A_{CP}(K^*(892)^+K^- \to K^+K^-\pi^0) = (-0.9 \pm 1.3)\%^{[pp]}
A_{CP}(K^*(1410)^+K^- \to K^+K^-\pi^0) = (-21 \pm 24)\%^{[pp]}
A_{CP}((K^{+}\pi^{0})_{S-wave}K^{-} \rightarrow K^{+}K^{-}\pi^{0}) = (7 \pm 15)\%^{[pp]}
A_{CP}(\phi(1020)\pi^0 \to K^+K^-\pi^0) = (1.1 \pm 2.2)\%^{[pp]}
A_{CP}(f_0(980)\pi^0 \to K^+K^-\pi^0) = (-3 \pm 19)\%^{[pp]}
```

```
A_{CP}(a_0(980)^0\pi^0 \to K^+K^-\pi^0) = (-5 \pm 16)\%^{[pp]}
A_{CP}(f_2'(1525)\pi^0 \to K^+K^-\pi^0) = (0 \pm 160)\%^{[pp]}
A_{CP}(K^*(892)^-K^+ \rightarrow K^+K^-\pi^0) = (-5 \pm 4)\%^{[pp]}
A_{CP}(K^*(1410)^-K^+ \to K^+K^-\pi^0) = (-17 \pm 29)\%^{[pp]}
A_{CP}((K^-\pi^0)_{S-wave}K^+ \rightarrow K^+K^-\pi^0) = (-10 \pm 40)\% [pp]
A_{CP}(K^+K^-\eta) in D^0, \overline{D}{}^0 \to K^+K^-\eta = (-1.4 \pm 3.5) \times 10^{-2}
A_{CP}(\phi(1020)\eta \to K^+K^-\eta) \text{ in } D^0, \overline{D}{}^0 \to \phi(1020)\eta = (-2 \pm 1000)\eta
     4) \times 10<sup>-2</sup>
A_{CP}(K_S^0\pi^0) = (-0.20 \pm 0.17)\%
A_{CP}(K_{S}^{0}\eta) = (0.5 \pm 0.5)\%
A_{CP}(K_S^0 \eta') = (1.0 \pm 0.7)\%
A_{CP}(K_S^{0}\phi) = (-3 \pm 9)\%
A_{CP}(K^{-}\pi^{+}) = (0.2 \pm 0.5)\%
A_{CP}(K^+\pi^-) = (-0.9 \pm 1.4)\%
A_{CP}(D_{CP(\pm 1)} \rightarrow K^{\mp} \pi^{\pm}) = (13.1 \pm 1.0)\%
A_{CP}(K^-\pi^+\pi^0) = (0.1 \pm 0.5)\%
A_{CP}(K^+\pi^-\pi^0) = (0 \pm 5)\%
A_{CP}(K_S^0\pi^+\pi^-) = (-0.1 \pm 0.8)\%
A_{CP}(K^{\mp}\pi^{\pm}\eta) in D^0, \overline{D}{}^0 \rightarrow K^{\mp}\pi^{\pm}\eta = (-1.9 \pm 1.6) \times 10^{-2}
A_{CP}(K_S^0 \pi^0 \eta) in D^0, \overline{D}{}^0 \to K_S^0 \pi^0 \eta = (-3.9 \pm 3.3) \times 10^{-2}
A_{CP}(K^{\mp}\pi^{\pm}\pi^{0}\eta) in D^{0}, \overline{D}^{0} \rightarrow K^{\mp}\pi^{\pm}\pi^{0}\eta = (-8 \pm 5) \times 10^{-2}
A_{CP}(K^*(892)^-\pi^+ \to K_5^0\pi^+\pi^-) = (0.4 \pm 0.5)\%
A_{CP}(K^*(892)^+\pi^- \to K_S^0\pi^+\pi^-) = (1 \pm 6)\%
A_{CP}(\overline{K}^{0}\rho^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}) = (-0.1 \pm 0.5)\%
A_{CP}(\overline{K}^0\omega \rightarrow K_S^0\pi^+\pi^-) = (-13 \pm 7)\%
A_{CP}(\overline{K}^0 f_0(980) \rightarrow K_S^0 \pi^+ \pi^-) = (-0.4 \pm 2.7)\%
A_{CP}(\overline{K}^0 f_2(1270) \to K_S^0 \pi^+ \pi^-) = (-4 \pm 5)\%
A_{CP}(\overline{\underline{K}}{}^{0}f_{0}(1370) \rightarrow K_{S}^{0}\pi^{+}\pi^{-}) = (-1 \pm 9)\%
A_{CP}(\overline{K}^0 \rho^0(1450) \to \overline{K}_S^0 \pi^+ \pi^-) = (-4 \pm 10)\%
A_{CP}(\overline{K}^0 f_0(600) \rightarrow K_S^0 \pi^+ \pi^-) = (-3 \pm 5)\%
A_{CP}(K^*(1410)^-\pi^+ \rightarrow K_S^0\pi^+\pi^-) = (-2 \pm 9)\%
A_{CP}(K_0^*(1430)^-\pi^+ \to K_S^0\pi^+\pi^-) = (4 \pm 4)\%
A_{CP}(K_0^*(1430)^+\pi^- \to K_S^0\pi^+\pi^-) = (12 \pm 15)\%
A_{CP}(K_2^*(1430)^-\pi^+ \to K_S^0\pi^+\pi^-) = (3 \pm 6)\%
A_{CP}(K_2^*(1430)^+\pi^- \to K_5^0\pi^+\pi^-) = (-10 \pm 32)\%
A_{CP}(K^{-}\pi^{+}\pi^{+}\pi^{-}) = (0.2 \pm 0.5)\%
A_{CP}(K^+\pi^-\pi^+\pi^-) = (-2 \pm 4)\%
A_{CP}(K^+K^-\pi^+\pi^-) = (1.3 \pm 1.7)\%
A_{CP}(K_1^*(1270)^+K^- \rightarrow K^+K^-\pi^+\pi^-) = (-2.3 \pm 1.7)\%
A_{CP}(K_1^*(1270)^+K^- \to K^{*0}\pi^+K^-) = (-1 \pm 10)\%
A_{CP}(K_1^*(1270)^-K^+ \rightarrow \overline{K}^{*0}\pi^-K^+) = (-10 \pm 32)\%
A_{CP}(K_1^*(1270)^-K^+ \rightarrow K^+K^-\pi^+\pi^-) = (1.7 \pm 3.5)\%
```

$$A_{CP}(K_1^*(1270)^+ K^- \to \rho^0 K^+ K^-) = (-7 \pm 17)\%$$

$$A_{CP}(K_1^*(1270)^- K^+ \to \rho^0 K^- K^+) = (10 \pm 13)\%$$

$$A_{CP}(K_1(1400)^+ K^- \to K^+ K^- \pi^+ \pi^-) = (-4.4 \pm 2.1)\%$$

$$A_{CP}(K^*(1410)^+ K^- \to K^{*0} \pi^+ K^-) = (-20 \pm 17)\%$$

$$A_{CP}(K^*(1410)^- K^+ \to \overline{K^{*0}} \pi^- K^+) = (-1 \pm 14)\%$$

$$A_{CP}(K^*(1680)^+ K^- \to K^+ K^- \pi^+ \pi^-) = (-17 \pm 29)\%$$

$$A_{CP}(K^*(1680)^+ K^- \to K^+ K^- \pi^+ \pi^-) = (-17 \pm 29)\%$$

$$A_{CP}(K^{*0} \overline{K^{*0}}) \text{ in } D^0, \overline{D^0} \to K^{*0} \overline{K^{*0}} = (-5 \pm 14)\%$$

$$A_{CP}(K^{*0} \overline{K^{*0}}) \text{ s-wave} = (-3.9 \pm 2.2)\%$$

$$A_{CP}(\phi \rho^0) \text{ in } D^0, \overline{D^0} \to \phi \rho^0 = (1 \pm 9)\%$$

$$A_{CP}(\phi \rho^0 D\text{-wave}) = (-37 \pm 19)\%$$

$$A_{CP}(\phi \rho^0 D\text{-wave}) = (-37 \pm 19)\%$$

$$A_{CP}(K^*(892)^0 (K^- \pi^+)_{S-wave}) = (-10 \pm 40)\%$$

$$A_{CP}(K^+ K^- \pi^+ \pi^- \text{non-resonant}) = (8 \pm 20)\%$$

$$A_{CP}(K^+ K^- \pi^+ \pi^- \text{non-resonant}) = (8 \pm 20)\%$$

$$A_{CP}(K^+ K^- \pi^+ \mu^-) \text{ in } D^0, \overline{D^0} \to K^+ K^- \mu^+ \mu^- = (-2 \pm 6)\%$$

$$A_{CP}(K^+ K^- \mu^+ \mu^-) \text{ in } D^0, \overline{D^0} \to \pi^+ \pi^- \mu^+ \mu^- = (2.9 \pm 2.1)\%$$

CP-violation asymmetry difference

$$\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-0.154 \pm 0.029)\%$$

χ^2 tests of *CP*-violation (*CPV*) p-values

Local *CPV* in
$$D^0$$
, $\overline{D}{}^0 \to \pi^+\pi^-\pi^0 = 4.9\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \to \pi^+\pi^-\pi^+\pi^- = (0.6 \pm 0.2)\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \to K_S^0\pi^+\pi^- = 96\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \to K^+K^-\pi^0 = 16.6\%$
Local *CPV* in D^0 , $\overline{D}{}^0 \to K^+K^-\pi^+\pi^- = 9.1\%$

T-violation decay-rate asymmetry

$$A_T(K^+K^-\pi^+\pi^-) = (2.9 \pm 2.2) \times 10^{-3} \, [hh]$$

 $A_{\text{Tviol}}(K_S\pi^+\pi^-\pi^0) \text{ in } D^0, \, \overline{D}{}^0 \to K_S\pi^+\pi^-\pi^0 = (-0.3^{+1.4}_{-1.6}) \times 10^{-3}$

CPT-violation decay-rate asymmetry

$$A_{CPT}(K^{\mp}\pi^{\pm}) = 0.008 \pm 0.008$$

Form factors

Most decay modes (other than the semileptonic modes) that involve a neutral K meson are now given as K_S^0 modes, not as \overline{K}^0 modes. Nearly always it is a K_S^0 that is measured, and interference between Cabibbo-allowed and doubly Cabibbo-suppressed modes can invalidate the assumption that $2\Gamma(K_S^0)=\Gamma(\overline{K}^0)$.

D ⁰ DECAY MODES		Fraction ($(\Gamma_i,$	/Γ)	(ale factor/ dence leve(-		
Topological modes										
0-prongs	-	(15		6) %			_		
2-prongs		` (71			•			_		
4-prongs	[<i>rr</i>]	•			,			_		
6-prongs		(6.5			•	-4		_		
Inclusive modes										
e^+ anything		(6.49		0.11) %			_		
μ^+ anything		(6.8	\pm	0.6) %			_		
K^- anything		(54.7	\pm	2.8) %		S=1.3	_		
\overline{K}^0 anything + K^0 anything		(47	\pm	4) %			_		
K^+ anything		(3.4	\pm	0.4) %			_		
$K^*(892)^-$ anything		(15	\pm	9) %			_		
$\overline{K}^*(892)^0$ anything		(9	\pm	4) %			_		
$K^*(892)^+$ anything		< 3.6			%		CL=90%	_		
$K^*(892)^0$ anything		(2.8	\pm	1.3) %			_		
η anything		(9.5	\pm	0.9) %			- - - - - -		
η' anything		(2.48	\pm	0.27) %			_		
ϕ anything		(1.08	\pm	0.04) %			_		
invisibles		< 9.4			\times 10	-5	CL=90%	_		
	Semilep	tonic m	ode	es						
$\mathit{K^-e^+}_{ u_e}$		(3.549)±	0.026	5) %		S=1.2	867		
$K^-\mu^+ u_\mu$		(3.41	\pm	0.04) %			864		
$K^*(892)^{-}e^{+}\nu_{e}$		(2.15	\pm	0.16) %			719		
$K^*(892)^- \mu^+ \nu_\mu$		(1.89			,			714		
$K^{-}\pi^{0}e^{+}\nu_{e}$		(1.6	+	1.3 0.5) %			861		
$\overline{K}{}^0\pi^-e^+\nu_e$		(1.44	\pm	0.04) %			860		
$(\overline{K}{}^0\pi^-)_{S-wave}e^+\nu_e$		•) × 10 ⁻	-4		860		
$K^-\pi^+\pi^-e^+\nu_e$) × 10			843		
$K_1(1270)^-e^+ u_e$		(1.01	\pm	0.18) × 10	-3		511		
$\mathit{K}^-\pi^+\pi^-\mu^+ u_\mu$		< 1.3			\times 10	-3	CL=90%	821		
$(\overline{K}^*(892)\pi)^{-}\mu^{+}\nu_{\mu}$		< 1.5			\times 10	-3	CL=90%	692		
$\pi^-e^+ u_e$		(2.91	\pm	0.04) × 10	-3		927		
$\pi^-\mu^+\nu_\mu$					$) \times 10^{-}$		S=1.3	924		
$\pi^-\pi^0e^+\nu_e$) × 10		_	922		
HTTP://PDG.LBL.GOV	Pa	ge 50		C	reated	: 7/	10/2023	15:48		

$\rho^- e^+ \nu_e$		•			$0.12) \times 10^{-3}$	S=1.9	771
$\rho^- \mu^+ \nu_{\mu}$		•			$0.13) \times 10^{-3}$		767
$a(980)^-e^+\nu_e$, $a^-\to\eta\pi^-$					$0.34 \\ 0.30$) × 10 ⁻⁴		_
$b_1(1235)^- e^+ \nu_e, \ b_1^- \to \omega \pi^-$		<	1.12		× 10 ⁻⁴	CL=90%	_
Hadron	ic mo	ode	s wit	:h c	one \overline{K}		
$K^-\pi^+$		•			0.030) %	S=1.2	861
$egin{array}{c} \mathcal{K}_{\mathcal{S}}^0 \pi^0 \ \mathcal{K}_{L}^0 \pi^0 \end{array}$		•			0.022) %		860
		•			$0.32) \times 10^{-3}$		860
$K_L^0 \eta$		•			$0.16) \times 10^{-3}$	C 12	772
$K_L^0 \eta'$		•			$0.35) \times 10^{-3}$	S=1.3	565
$egin{array}{c} \mathcal{K}^{0}_{L} \omega \ \mathcal{K}^{0}_{S} \pi^{+} \pi^{-} \end{array}$	F::1	•			0.04) %	C 11	670
J	[ii]	•			0.18)%	S=1.1	842
$K_S^0 \rho^0$					$\begin{array}{c} 0.6 \\ 0.8 \end{array}$) × 10 ⁻³		674
$K_{S}^{0}\omega, \ \omega \rightarrow \ \pi^{+}\pi^{-}$					0.6) \times 10 ⁻⁴		670
$K_{\mathcal{S}}^0(\pi^+\pi^-)_{\mathcal{S}-wave}$		(3.3	\pm	0.8) \times 10 ⁻³		842
$K_S^0 f_0(980), f_0 \to \pi^+ \pi^-$		(1.20	+	$_{0.23}^{0.40}) \times 10^{-3}$		549
$K_S^0 f_0(1370), f_0 \to \pi^+ \pi^-$	-	(2.8	+	$\begin{array}{c} 0.9 \\ 1.3 \end{array}) \times 10^{-3}$		†
$K_S^0 f_2(1270), f_2 \to \pi^+ \pi^-$		(9	+:	$^{10}_{6}$) × 10 ⁻⁵		262
$K^*(892)^-\pi^+, K^{*-} \to K^0_S\pi^-$		(1.64	+	0.14) %		711
$K_0^*(1430)^-\pi^+, \ K_0^{*-} ightarrow K_0^0\pi^-$		(2.67	+	$^{0.40}_{0.33}$) \times 10 ⁻³		378
$K_2^*(1430)^-\pi^+, K_2^{*-} \to K_5^0\pi^-$		(3.4	+	$^{1.9}_{1.0}$) × 10^{-4}		367
$K^*(1680)^-\pi^+, K^{*-} \rightarrow K_5^0\pi^-$		(4.4	\pm	3.5) × 10 ⁻⁴		46
$K^*(892)^+\pi^-, K^{*+} \rightarrow K_S^0\pi^+$	[<i>uu</i>]	(1.13	+	$^{0.60}_{0.34}$) \times 10 ⁻⁴		711
$K_0^*(1430)^+\pi^-, K_0^{*+} \rightarrow K_0^0\pi^+$	[uu]	<	1.4		× 10 ⁻⁵	CL=95%	-
$K_2^*(1430)^+\pi^-, K_2^{*+} \rightarrow K_5^0\pi^+$	[uu]	<	3.4		× 10 ⁻⁵	CL=95%	_
$K_S^0\pi^+\pi^-$ nonresonant		(2.5	+	$\begin{array}{c} 6.0 \\ 1.6 \end{array}$) × 10 ⁻⁴		842
$\kappa^-\pi^+\pi^0$					0.6) %	S=2.2	844
$K^-\rho^+$					0.7) %	J 2.2	675
$K^{-}\rho(1700)^{+}, \ \rho^{+} \rightarrow \ \pi^{+}\pi^{0}$		•			1.8) \times 10 ⁻³		†

$K^*(892)^-\pi^+$, $K^*(892)^-\to$		(2.31	+ 0.40 - 0.20) %		711
$\overline{K}^{*}(892)^{0}\pi^{0}, \ \overline{K}^{*}(892)^{0} \rightarrow$		(1.95	± 0.25) %		711
$K_0^-\pi^+ \ K_0^*(1430)^-\pi^+, \ K_0^{*-} ightarrow \ K^-\pi^0$		(4.8	± 2.2) × 10 ⁻³		378
$\overline{K}_0^*(1430)^0\pi^0$, $\overline{K}_0^{*0} o$		(5.9	+ 5.0 - 1.6	$) \times 10^{-3}$		379
$K^{-}\pi^{+}$ $K^{*}(1680)^{-}\pi^{+}$, $K^{*-}\to$ $K^{-}\pi^{0}$		(1.9	± 0.7	$) \times 10^{-3}$		46
$K^-\pi^+\pi^0$ nonresonant		(1.15	+ 0.60 - 0.20) %		844
$K_{S}^{0} 2\pi^{0}$		(0 1	+ 11	$) \times 10^{-3}$	S=2.2	843
$K_{I}^{0}\pi^{0}\pi^{0}$		•	± 0.06	*	5-2.2	
		•				843
$\frac{\mathcal{K}_{S}^{0}(2\pi^{0})_{S-wave}}{\mathcal{K}^{*}(892)^{0}\pi^{0}, \ \mathcal{K}^{*}^{*}0} \rightarrow \mathcal{K}_{S}^{0}\pi^{0}$				$) \times 10^{-3}$		
				$) \times 10^{-3}$		711
$\overline{\mathcal{K}}^*(1430)^0\pi^0,\;\;\overline{\mathcal{K}}^{*0} ightarrow \mathcal{K}^0_S\pi^0$		(4	±23) × 10 ⁻⁵		_
$\overline{\mathcal{K}}^*(1680)^0\pi^0, \ \overline{\mathcal{K}}^{*0} ightarrow \mathcal{K}^0_S\pi^0$		(1.0	± 0.4	$) \times 10^{-3}$		-
$K_S^0 f_2(1270), f_2 \rightarrow 2\pi^0$		(2.3	\pm 1.1	$) \times 10^{-4}$		_
$2 \overset{\circ}{K_{S}^{0}}$, one $\overset{\circ}{K_{S}^{0}} ightarrow 2 \pi^{0}$				$) \times 10^{-4}$		_
$K_5^0 3\pi^0$				$) \times 10^{-3}$		815
$K^{-}2\pi^{+}\pi^{-}$	[ii]	`	± 0.14	•	S=1.1	813
$K^-\pi^+\rho^0$ total	["]	•	± 0.14 ± 0.31	•	5-1.1	609
$K^-\pi^+\rho^0$ 3-body		•		$) \times 10^{-3}$		609
$\overline{K}^*(892)^0 \rho^0$, $\overline{K}^{*0} \rightarrow$		•	± 0.05	•		416
$\frac{K^-\pi^+}{K^*(892)^0} ho^0$ transverse, $\overline{K}^{*0} ightarrow K^-\pi^+$		(1.2	± 0.4) %		417
$K^{-}a_{1}(1260)^{+},~~a_{1}^{+} ightarrow ho^{0}\pi^{+}$		(4.32	± 0.32) %		327
$K_1(1270)^-\pi^+$, $K_1^- o$		(3.9	± 0.4	$) \times 10^{-3}$		_
$K^-\pi^+\pi^-$ total $K_1(1270)^-\pi^+,~~K_1^- ightarrow \overline{K}^*(892)^0\pi^-,~~\overline{K}^{*0} ightarrow$		(6.6	± 2.3) × 10 ⁻⁴		484
$\kappa^-\pi^+$						
$K^-2\pi^+\pi^-$ nonresonant		`	\pm 0.07	,		813
. 3	[vv]	`	\pm 0.6	_		813
$K^0_S \eta, \ \eta ightarrow \ \pi^+ \pi^- \pi^0$		`		$) \times 10^{-3}$		772
$K_{\mathcal{S}}^{0}\omega$, $\omega ightarrow~\pi^{+}\pi^{-}\pi^{0}$		(9.9	\pm 0.6	$) \times 10^{-3}$		670
$K^{-}\pi^{+}2\pi^{0}$		(8.86	± 0.23) %		815
$K^-\pi^+3\pi^0$		(9.5	\pm 0.4	$) \times 10^{-3}$		774
$K^-\pi^+\pi^-2\pi^0$		(1.27	± 0.06) %		773

Fractions of some of the following modes with resonances have already appeared above as submodes of particular charged-particle modes. These nine modes below are all corrected for unseen decays of the resonances.

Hadronic modes with three K's

Pionic modes

	i ionic modes		
$\pi^+\pi^-$	$(1.454 \pm 0.024) \times 10^{-3}$	S=1.4	922
$2\pi^0$	$(8.26 \pm 0.25) \times 10^{-4}$		923
$\pi^+\pi^-\pi^0$	(1.49 ± 0.07) %	S=2.3	907
$ ho^+\pi^-$	($1.01~\pm~0.05$) %		764
$ ho^0\pi^0$	$(3.86 \pm 0.24) \times 10^{-3}$		764
$ ho^-\pi^+$	$(5.15 \pm 0.26) \times 10^{-3}$		764
$ ho(1450)^{+}\pi^{-}$, $ ho^{+} ightarrow \pi^{+}\pi^{0}$	(1.6 ± 2.1) $ imes 10^{-5}$		_
$ ho(1450)^0\pi^0$, $ ho^0 o \pi^+\pi^-$	(4.5 \pm 2.0) $ imes$ 10 ⁻⁵		_
$\rho(1450)^-\pi^+, \ \rho^- \to \ \pi^-\pi^0$	$(2.7 \pm 0.4) \times 10^{-4}$		_
$ ho(1700)^{+}\pi^{-}$, $ ho^{+} ightarrow \pi^{+}\pi^{0}$	$(6.1 \pm 1.5) \times 10^{-4}$		_
$\rho(1700)^0 \pi^0$, $\rho^0 \to \pi^+ \pi^-$	$(7.4 \pm 1.8) \times 10^{-4}$		_
$ ho(1700)^-\pi^+$, $ ho^- o \pi^-\pi^0$	$(4.8 \pm 1.1) \times 10^{-4}$		_
$f_0(980)\pi^0$, $f_0 \to \pi^+\pi^-$	$(3.7 \pm 0.9) \times 10^{-5}$		_
$f_0(500)\pi^0$, $f_0 \to \pi^+\pi^-$	(1.22 \pm 0.22) \times 10 ⁻⁴		_
$f_0(1370)\pi^0$, $f_0 o \pi^+\pi^-$	$(5.5 \pm 2.1) imes 10^{-5}$		_
$f_0(1500)\pi^0$, $f_0 ightarrow \pi^+\pi^-$	$(5.8 \pm 1.6) \times 10^{-5}$		_
$\mathit{f}_{0}(1710)\pi^{0}$, $\mathit{f}_{0} ightarrow \pi^{+}\pi^{-}$	$(4.6 \pm 1.6) \times 10^{-5}$		_
$f_2(1270)\pi^0$, $f_2 ightarrow~\pi^+\pi^-$	$(1.97 \pm 0.21) \times 10^{-4}$		_
$\pi^+\pi^-\pi^0$ nonresonant	$(1.3 \pm 0.4) \times 10^{-4}$		907
$3\pi^0$	$(2.0 \pm 0.5) \times 10^{-4}$		908
$2\pi^{+}2\pi^{-}$	$(7.56 \pm 0.20) \times 10^{-3}$		880

$a_1(1260)^+\pi^-$, $a_1^+ o$		(4.53	±	0.31) × 10 ⁻³		_
$2\pi^+\pi^-$ total $a_1(1260)^+\pi^-$, $a_1^+ o$		(3.13	\pm	0.21) × 10 ⁻³		_
$ ho^0\pi^+$ <i>S</i> -wave $a_1(1260)^+\pi^-$, $a_1^+ ightarrow$		(1.9	±	0.5) × 10 ⁻⁴		_
$ ho^0\pi^+$ D -wave $a_1(1260)^+\pi^-$, $a_1^+ ightarrow$		(6.4	\pm	0.7) × 10 ⁻⁴		_
$a_1(1260)^-\pi^+$, $a_1^- ightarrow$		(2.3	±	0.9) × 10 ⁻⁴		_
$ ho^0\pi^-$ <i>S</i> -wave $a_1(1260)^-\pi^+$, $a_1^- ightarrow~\sigma\pi^-$		(6.0	±	3.4) × 10 ⁻⁵		_
$\pi(1300)^{+}\pi^{-}$, $\pi(1300)^{+}\to$) × 10 ⁻⁴		_
$\pi(1300)^{-}\pi^{+}$, $\pi(1300)^{-}\to$		(2.3	±	2.2	$) \times 10^{-4}$		_
$a_1(1640)^+\pi^-, a_1^+ o$		(3.2	±	1.6	$)\times10^{-4}$		_
$ ho^0\pi^+$ <i>D</i> -wave $a_1(1640)^+\pi^-$, $a_1^+ o\sigma\pi^+$		(1 0		1 /) × 10 ⁻⁴		_
$\pi_2(1670)^+\pi^-, \ \pi_2^+ \to 0.8$		•				$) \times 10^{-4}$		_
$f_2(1270)^0 \pi^+, f_2^0 \rightarrow \pi^+ \pi^-$		(2.0		0.9) ~ 10		
$\pi_2(1670)^+\pi^-$, $\pi_2^+ o \sigma\pi^+$		(2.6	土	1.0) × 10 ⁻⁴		_
$2\rho^0$ total		•) × 10 ⁻³		518
$2\rho_{\rm o}^{0}$, parallel helicities		(8.3	\pm	3.2	$) \times 10^{-5}$		_
$2 ho^0$, perpendicular helici-		(4.8	\pm	0.6	$) \times 10^{-4}$		_
ties $2 ho^0$, longitudinal helicities		(1.27	\pm	0.10) × 10 ⁻³		_
$2\rho(770)^{0}$, <i>S</i> -wave) × 10 ⁻⁴		_
$2\rho(770)^0$, <i>P</i> -wave						$) \times 10^{-4}$		_
$2\rho(770)^0$, <i>D</i> -wave						$) \times 10^{-4}$		_
Resonant $(\pi^+\pi^-)\pi^+\pi^-$		(1.51	\pm	0.12	$) \times 10^{-3}$		_
3-body total						4		
$\sigma \pi^+ \pi^-$) × 10 ⁻⁴		_
$\sigma \rho (770)^0$						$) \times 10^{-4}$		_
$f_0(980)\pi^+\pi^-, f_0 \rightarrow$		(1.8	土	0.5) × 10 ⁻⁴		_
$f_{2}(1270)\pi^{+}\pi^{-}, \ f_{2} ightarrow \pi^{+}\pi^{-}$		(3.7	±	0.6	$)\times10^{-4}$		_
$2f_2(1270), f_2 \rightarrow \pi^+\pi^-$		(1.6	\pm	1.8) × 10 ⁻⁴		_
$f_0(1370)\sigma$, $f_0 \rightarrow$		(1.6	\pm	0.5	$) \times 10^{-3}$		_
$\pi^{+}\pi^{-}2\pi^{0}$		1	1.002)	U U31	1) %		882
$4\pi^0$		•				$) \times 10^{-4}$		883
$\eta\pi^0$	[_{XX}]					$) \times 10^{-4}$	S=1.1	846
$\omega \pi^0$	[xx]					$) \times 10^{-4}$	J 1.1	761
		`						

HTTP://PDG.LBL.GOV

Page 55

$\omega\eta$	$(1.98 \pm 0.18) \times 10^{-3}$	S=1.1	648
$2\pi^{+}2\pi^{-}\pi^{0}$	$(3.46 \pm 0.21) \times 10^{-3}$		844
$\pi^{+}\pi^{-}3\pi^{0}$	$(1.53 \pm 0.21) \times 10^{-3}$		847
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(4.8 \pm 0.4) \times 10^{-3}$		798
$\eta\pi^+\pi^-$	[xx] $(1.16 \pm 0.07) \times 10^{-3}$		827
$\omega \pi^+ \pi^-$	[xx] (1.33 \pm 0.20) \times 10 ⁻³		738
$\omega \pi^0 \pi^0$	$< 1.10 \times 10^{-3}$	CL=90%	740
$\eta 2\pi^0$	$(3.8 \pm 1.3) \times 10^{-4}$		829
$\pi^+\pi^-\pi^0\eta$	$(3.23 \pm 0.22) \times 10^{-3}$		797
$\eta 3\pi^0$	$(2.36 \pm 0.28) \times 10^{-3}$		799
$\eta 2\pi^+ 2\pi^-$	$(6.0 \pm 1.2) \times 10^{-4}$		751
$3\pi^{+}3\pi^{-}$	$(4.3 \pm 1.2) \times 10^{-4}$		795
$\eta'(958)\pi^{0}$	$(9.2 \pm 1.0) \times 10^{-4}$		678
$\eta'(958)\pi^{+}\pi^{-}$	$(4.5 \pm 1.7) \times 10^{-4}$		650
2η	$(2.11 \pm 0.19) \times 10^{-3}$	S=2.2	754
$2\eta\pi^0$	$(7.3 \pm 2.2) \times 10^{-4}$		699
$2\eta\pi^+\pi^-$	$(8.5 \pm 1.4) \times 10^{-4}$		623
3η	$< 1.3 \times 10^{-4}$	CL=90%	421
$\eta \eta'(958)$	$(1.01 \pm 0.19) \times 10^{-3}$		537
	Hadronic modes with a $K\overline{K}$ pair		
K^+K^-	$(4.08 \pm 0.06) \times 10^{-3}$	S=1.6	791
$2K_{S}^{0}$	$(1.41 \pm 0.05) \times 10^{-4}$	S=1.1	789
$K_c^0K^-\pi^+$	$(3.3 \pm 0.5) \times 10^{-3}$	S=1.1	739

$K^*(892)^-K^+$, $K^{*-} ightarrow$	(6.2	± 1.0) × 10 ⁻⁴		_
$K^*(1410)^0K^0_S,\;\;K^{*0} ightarrow$	(5	± 8	$) \times 10^{-5}$		_
$K^+\pi^+ \atop K^*(1410)^-K^+, K^{*-} ightarrow K^0_S\pi^-$	(2.6	± 2.0	$) \times 10^{-4}$		_
$(K^+\pi^-)_{S-wave}K^0_S$	(3.7	± 1.9	$) \times 10^{-4}$		739
$(K^0_S\pi^-)_{S-wave}K^+$	(1.4	\pm 0.6	$) \times 10^{-4}$		739
$a_0(980)^+\pi^-$, $a_0^+ o K_S^0K^+$			$) \times 10^{-4}$		_
$a_0(1450)^+\pi^-, a_0^+ \rightarrow$			$) \times 10^{-5}$		_
$K_S^0 K^+$	(3.2		, , , = 0		
$ ho(1700)^{+}\pi^{-}$, $ ho^{+} ightarrow~K_{S}^{0}K^{+}$	(1.1	\pm 0.6	$) \times 10^{-5}$		_
$K^+K^-\pi^0$	(3.42	± 0.15	$(5) \times 10^{-3}$		743
$K^*(892)^+ K^-$, $K^*(892)^+ o$			$(3) \times 10^{-3}$		_
$K^{+}\pi^{0}$ $K^{*}(892)^{-}K^{+}, K^{*}(892)^{-} \rightarrow$	(5.4	± 0.4) × 10 ⁻⁴		_
$(K^{-}\pi^{0})_{S-wave}K^{-}$	(2.43	± 0.18	$3) \times 10^{-3}$		743
$(K^-\pi^0)_{S-wave}K^+$			$) \times 10^{-4}$		743
$f_0(980)\pi^0, f_0 \to K^+K^-$					743
			$) \times 10^{-4}$		_
$\phi \pi^0$, $\phi \rightarrow K^+ K^-$			$) \times 10^{-4}$	CL 000/	740
$2K_S^0\pi^0$			× 10 ⁻⁴	CL=90%	740
$K^{+}K^{-}\eta$			$) \times 10^{-5}$		514
$\phi(1020)\eta$?) × 10 ⁻⁴		489
$K^+K^-\eta$ nonresonant) × 10 ⁻⁵		514
$2K_S^0\eta$			$) \times 10^{-4}$		508
$K^{+}K^{-}\pi^{0}\pi^{0}$			$) \times 10^{-4}$		681
$K^+K^-\pi^+\pi^-$	(2.47		$\times 10^{-3}$		677
$\phi(\pi^+\pi^-)_{S-wave}, \ \phi ightarrow \kappa^+\kappa^-$	(10	± 5) × 10 ⁻⁵		614
$(\phi ho^0)_{S-wave}$, $\phi ightarrow K^+K^-$	(6.9	± 0.6	$) \times 10^{-4}$		250
$(\phi ho^0)_{P-wave},~\phi ightarrow~K^+K^-$	(4.0	\pm 1.9	$) \times 10^{-5}$		_
$(\phi ho^0)_{D-wave}$, $\phi ightarrow K^+K^-$			$) \times 10^{-5}$		_
$(K^*(892)^0\overline{K}^*(892)^0)_{S-wave}$			$(3) \times 10^{-4}$		_
$K^{*0} \rightarrow K^{\pm} \pi^{\mp}$	•		,		
$(K^*(892)^0\overline{K}^*(892)^0)_{P-wave}$	(1.20	± 0.08	$3) \times 10^{-4}$		_
$K^* \to K^{\pm} \pi^{\mp} $ $(K^*(892)^0 \overline{K}^*(892)^0)_{D-wave},$ $K^* \to K^{\pm} \pi^{\mp}$	(4.7	± 0.4	$) \times 10^{-5}$		-
$K^* ightarrow K^{\pm} \pi^{\mp} \ K^* (892)^0 (K^- \pi^+)_{S-wave} \ ext{3-body}, \ K^{*0} ightarrow K^+ \pi^-$	(1.4	± 0.6) × 10 ⁻⁴		-
3-body, $K^+ \rightarrow K^+ \pi$ $K_1(1270)^+ K^-$, $K_1^+ \rightarrow$	(11) × 10 ⁻⁴		_
$\mathcal{K}^{*0}\pi^+$	(1.4	± 0.9) × 10		

Radiative modes

Doubly Cabibbo suppressed (DC) modes or $\Delta C = 2$ forbidden via mixing (C2M) modes

HTTP://PDG.LBL.GOV

Page 58

$\Delta C = 1$ weak neutral current (C1) modes, Lepton Family number (LF) violating modes, Lepton (L) or Baryon (B) number violating modes

1 7	_	, , , , , , , , , , , , , , , , , , , ,			
$\gamma \gamma$	C1	< 8.5	\times 10 ⁻⁷	CL=90%	932
e^+e^-	C1	< 7.9	$\times 10^{-8}$	CL=90%	932
$\mu^+\mu^-$	C1	< 6.2	$\times10^{-9}$	CL=90%	926
$\pi^{0}e^{+}e^{-}$	C1	< 4	\times 10 ⁻⁶	CL=90%	928
$\pi^{0}\mu^{+}\mu^{-}$	C1	< 1.8	$\times10^{-4}$	CL=90%	915
$\pi^0 u \overline{ u}$		< 2.1	$\times10^{-4}$	CL=90%	928
ηe^+e^-	C1	< 3	$\times10^{-6}$	CL=90%	852
$\eta \mu^+ \mu^-$	C1	< 5.3	$\times10^{-4}$	CL=90%	838
$\pi^{+}\pi^{-}e^{+}e^{-}$	C1	< 7	\times 10 ⁻⁶	CL=90%	922
$ ho^0e^+e^-$	C1	< 1.0	$\times10^{-4}$	CL=90%	771
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	C1	$(9.6 \pm 1.$	$(2) \times 10^{-7}$		894
$\pi^+\pi^-\mu^+\mu^-$ (non-res)		< 5.5	\times 10 ⁻⁷	CL=90%	_
$ ho^0 \mu^+ \mu^-$	C1	< 2.2	$\times10^{-5}$	CL=90%	754
$\omega e^+ e^-$	C1	< 6	\times 10 ⁻⁶	CL=90%	768
$\omega \mu^+ \mu^-$	C1	< 8.3	\times 10 ⁻⁴	CL=90%	751
$K^- K^+ e^+ e^-$	C1	< 1.1	$\times10^{-5}$	CL=90%	791
ϕe^+e^-	C1	< 5.2	$\times10^{-5}$	CL=90%	654
$K^-K^+\mu^+\mu^-$	C1	($1.54 \pm 0.$	$32) \times 10^{-7}$		710
$K^-K^+\mu^+\mu^-$ (non-res)		< 3.3	$\times10^{-5}$	CL=90%	_
$\phi \mu^+ \mu^-$	C1	< 3.1	$\times10^{-5}$	CL=90%	631
$\overline{\it K}{}^0e^+e^-$		[oo] < 2.4	$\times10^{-5}$	CL=90%	866
$\overline{\mathcal{K}}{}^{0}\mu^{+}\mu^{-}$		[<i>oo</i>] < 2.6	$\times10^{-4}$	CL=90%	852
$\mathit{K^-\pi^+e^+e^-}$, $675<$		$(4.0 \pm 0.$	$(5) \times 10^{-6}$		_
$m_{ee}~<$ 875 MeV					
$\mathit{K}^-\pi^+e^+e^-$, $1.005<$		< 5	\times 10 ⁻⁷	CL=90%	_
m_{ee} $< 1.035~{ m GeV}$					
$\overline{K}^*(892)^0 e^+ e^-$		[oo] < 4.7	$\times10^{-5}$	CL=90%	719
$K^-\pi^+\mu^+\mu^-$	C1	< 3.59	\times 10 ⁻⁴	CL=90%	829

$K^-\pi^+\mu^+\mu^-$, 675 $<$ $m_{\mu\mu}$ $<$ 875 MeV		(4	4.2 ± 0.4	$) \times 10^{-6}$		_
$K^*(892)^0 \mu^+ \mu^-$		[00] < 2	2.4	$\times 10^{-5}$	CL=90%	700
$\pi^{+}\pi^{-}\pi^{0}\mu^{+}\mu^{-}$	C1	< 8		× 10 ⁻⁴	CL=90%	863
$\mu^{\pm}e^{\mp}$	LF	[z] < 1	1.3	$\times 10^{-8}$	CL=90%	929
$\pi^0 e^{\pm} \mu^{\mp}$	LF	[z] < 8	8.0	$\times 10^{-7}$	CL=90%	924
$\etae^{\pm}\mu^{\mp}$.	LF	[z] < 2	2.25	$\times 10^{-6}$	CL=90%	848
$\pi^+\pi^-e^\pm\mu^\mp$	LF	[z] < 1	1.71	$\times 10^{-6}$	CL=90%	911
$ ho^0e^\pm\mu^\mp$	LF	[z] < 5	5.0	$\times 10^{-7}$	CL=90%	767
$\omega\mathrm{e}^{\pm}\mu^{\mp}$	LF	[z] < 1	1.71	\times 10 ⁻⁶	CL=90%	764
$K^-K^+e^\pm\mu^\mp$	LF	[z] < 1	1.00	\times 10 ⁻⁶	CL=90%	754
$\phi\mathrm{e}^{\pm}\mu^{\mp}$	LF	[z] < 5	5.1	\times 10 ⁻⁷	CL=90%	648
$\overline{K}^0 e^{\pm} \mu^{\mp}$	LF	[z] < 1	1.74	\times 10 ⁻⁶	CL=90%	863
$\mathit{K}^-\pi^+e^\pm\mu^\mp$	LF	[z] < 1	1.90	$\times 10^{-6}$	CL=90%	848
$\overline{\mathit{K}}^*$ (892) $^0e^\pm\mu^\mp$	LF	[z] < 1	1.25	$\times 10^{-6}$	CL=90%	714
$2\pi^{-}2e^{+}$	L	< 6	9.1	\times 10 ⁻⁷	CL=90%	922
$2\pi^{-}2\mu^{+}$	L	< 1	1.52	$\times 10^{-6}$	CL=90%	894
$\mathcal{K}^-\pi^-2e^+$	L	< ;	5.0	\times 10 ⁻⁷	CL=90%	861
$\mathcal{K}^-\pi^-2\mu^+$	L	< ;	5.3	$\times 10^{-7}$	CL=90%	829
$2K^{-}2e^{+}$	L	< 3	3.4	$\times 10^{-7}$	CL=90%	791
$2K^-2\mu^+$	L	< 1	1.0	$\times 10^{-7}$	CL=90%	710
$\pi^{-}\pi^{-}e^{+}\mu^{+}$	L	< 3	3.06	$\times 10^{-6}$	CL=90%	911
$\mathit{K}^-\pi^-e^+\mu^+$	L	< 2	2.10	$\times 10^{-6}$	CL=90%	848
$2K^{-}e^{+}\mu^{+}$	L	< !	5.8	$\times10^{-7}$	CL=90%	754
pe ⁻	L,B	< 2	2.2	$\times 10^{-6}$	CL=90%	696
$\frac{1}{p}e^+$	L,B	< 1	1.2	\times 10 ⁻⁶	CL=90%	696

$D^*(2007)^0$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Created: 7/10/2023 15:48

Mass
$$m=2006.85\pm0.05$$
 MeV (S = 1.1) $m_{D^{*0}}-m_{D^0}=142.014\pm0.030$ MeV (S = 1.5) Full width Γ < 2.1 MeV, CL = 90%

 $\overline{\it D}^*(2007)^0$ modes are charge conjugates of modes below.

<i>D</i> *(2007) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^0$	(64.7 ±0.9) %	43
$D^0 \gamma$	(35.3 ± 0.9) %	137
$D^0 e^+ e^-$	$(3.91\pm0.33)\times10^{-3}$	137

 $D^*(2010)^{\pm}$

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Mass $m = 2010.26 \pm 0.05 \text{ MeV}$

 $m_{D^*(2010)^+} - m_{D^+} = 140.603 \pm 0.015 \; {
m MeV}$

 $m_{D^*(2010)^+} - m_{D^0} = 145.4258 \pm 0.0017 \text{ MeV}$

Full width $\Gamma = 83.4 \pm 1.8 \text{ keV}$

 $D^*(2010)^-$ modes are charge conjugates of the modes below.

$D^*(2010)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0\pi^+$	(67.7±0.5) %	39
$D^+\pi^0$	(30.7±0.5) %	38
$D^+\gamma$	$(1.6\pm0.4)\%$	136

 $D_0^*(2300)$

$$I(J^P) = \frac{1}{2}(0^+)$$

was $D_0^*(2400)$

Mass
$$m=2343\pm 10$$
 MeV (S = 1.5)
Full width $\Gamma=229\pm 16$ MeV

D_0^* (2300)	DECAY	MODES
----------------	-------	-------

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 7/10/2023 15:48

 $D\pi^{\pm}$

seen

411

D₁(2420)

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass
$$m=2422.1\pm0.6$$
 MeV (S = 1.7) $m_{D_1(2420)^0}-m_{D^{*+}}=411.8\pm0.6$ MeV (S = 1.7) $m_{D_1(2420)^\pm}-m_{D_1(2420)^0}=4\pm4$ MeV Full width $\Gamma=31.3\pm1.9$ MeV (S = 2.8)

 $\overline{D}_1(2420)$ modes are charge conjugates of modes below.

D ₁ (2420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^*(2007)^0 \pi$	seen	359

 $D_1(2430)^0$

$$I(J^P) = \frac{1}{2}(1^+)$$

Mass $m=2412\pm 9~\text{MeV}$ Full width $\Gamma=314\pm 29~\text{MeV}$

D_1 (2430) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^*(2010)^+\pi^-$	seen	345

 $D_2^*(2460)$

$$I(J^P) = \frac{1}{2}(2^+)$$

Mass
$$m=2461.1^{+0.7}_{-0.8}~{\rm MeV}~{\rm (S=6.2)}$$
 $m_{D_2^*(2460)^0}-m_{D^+}=591.5^{+0.7}_{-0.8}~{\rm MeV}~{\rm (S=5.9)}$ $m_{D_2^*(2460)^0}-m_{D^{*+}}=450.9^{+0.7}_{-0.8}~{\rm MeV}~{\rm (S=5.9)}$ $m_{D_2^*(2460)^\pm}-m_{D_2^*(2460)^0}=2.4\pm1.7~{\rm MeV}$ Full width $\Gamma=47.3\pm0.8~{\rm MeV}~{\rm (S=1.5)}$

 $\overline{D}_{2}^{*}(2460)$ modes are charge conjugates of modes below.

D *(2460) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D\pi^-$	seen	509
$D^*(2010)\pi^-$	seen	389

 $D_3^*(2750)$

$$I(J^P) = \frac{1}{2}(3^-)$$

Mass
$$m=2763.1\pm3.2~{\rm MeV}~{\rm (S=2.1)}$$

Full width $\Gamma=66\pm5~{\rm MeV}$

D ₃ *(2750) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D\pi$	seen	743
$D^+\pi^-$	seen	739
$D^0\pi^\pm$	seen	743
$D^*\pi$	seen	639
$D^{*+}\pi^-$	seen	639

CHARMED, STRANGE MESONS $(C = \pm 1, S = \pm 1)$ (including possibly non- $q\overline{q}$ states)

 $D_s^+ = c\overline{s}, \ D_s^- = \overline{c}s,$ similarly for D_s^* 's

 D_s^\pm

$$I(J^P) = 0(0^-)$$

Mass
$$m=1968.35\pm0.07$$
 MeV $m_{D_s^\pm}-m_{D^\pm}=98.69\pm0.05$ MeV Mean life $\tau=(504\pm4)\times10^{-15}$ s $~(S=1.2)$ $c au=151.2~\mu{\rm m}$

CP-violating decay-rate asymmetries

$$A_{CP}(\mu^{\pm}\nu) = (-0.2 \pm 2.5)\%$$

$$A_{CP}(\tau^{\pm}\nu) \text{ in } D_s^+ \to \tau^+\nu_{\tau}, D_s^- \to \tau^-\overline{\nu}_{\tau} = (3 \pm 5)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (0.09 \pm 0.26)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (-0.5 \pm 0.9)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (-0.38 \pm 0.27)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (-2 \pm 6)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (-2 \pm 6)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (3 \pm 5)\%$$

$$A_{CP}(K^{\pm}K_s^0) = (-2 \pm 6)\%$$

$$A_{CP}(K^$$

CP violating asymmetries of P-odd (T-odd) moments

$$A_T(K_S^0 K^{\pm} \pi^+ \pi^-) = (-14 \pm 8) \times 10^{-3} [hh]$$

$D_s^+ \to \phi \ell^+ \nu_\ell$ form factors

$$\begin{array}{l} r_2 = 0.84 \pm 0.11 \quad (\mathsf{S} = 2.4) \\ r_v = 1.80 \pm 0.08 \\ \hline \Gamma_L/\Gamma_T = 0.72 \pm 0.18 \\ f_+(0) \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \eta \, e^+ \nu_e = 0.446 \pm 0.007 \\ f_+(0) \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \eta' \, e^+ \nu_e = 0.48 \pm 0.05 \\ f_+(0) \left| V_{cd} \right| \text{ in } D_s^+ \rightarrow \ K^0 \, e^+ \nu_e = 0.162 \pm 0.019 \\ r_v \equiv V(0)/A_1(0) \text{ in } D_s^+ \rightarrow \ K^*(892)^0 \, e^+ \nu_e = 1.7 \pm 0.4 \\ r_2 \equiv A_2(0)/A_1(0) \text{ in } D_s^+ \rightarrow \ K^*(892)^0 \, e^+ \nu_e = 0.77 \pm 0.29 \\ f_{D_s^+} \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \mu^+ \nu_\mu = 243 \pm 5 \text{ MeV} \\ f_{D_s^+} \left| V_{cs} \right| \text{ in } D_s^+ \rightarrow \ \tau^+ \nu_\tau = 245.3 \pm 3.0 \text{ MeV} \end{array}$$

Unless otherwise noted, the branching fractions for modes with a resonance in the final state include all the decay modes of the resonance. D_s^- modes are charge conjugates of the modes below.

D^+	DECAY	MODES
	DECAI	IVIODES

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

	Inclusi	ve n	node	2				
e^+ semileptonic	[zz]	(±0.15) %	6		_
π^+ anything		(1	19.3	± 1.4	,			_
π^- anything		(43.2	± 0.9) %	6		_
π^0 anything		(1	23	± 7) %	6		_
K^- anything		(18.7	± 0.5) %	6		_
K^+ anything		(28.9	± 0.7) %	6		_
K_S^0 anything		(19.0	± 1.1) %	6		_
η anything	[aaa]	(29.9	± 2.8) %	6		_
ω anything		(6.1	± 1.4) %	6		_
η' anything	[bbb]	(10.3	± 1.4) %	6	S=1.1	_
$\mathit{f}_0(980)$ anything, $\mathit{f}_0 ightarrow \ \pi^+\pi^-$		<	1.3		9	6	CL=90%	_
ϕ anything		(15.7	± 1.0) %	6		_
K^+K^- anything		(15.8	±0.7) %	6		_
$K_S^0 K^+$ anything		(5.8	± 0.5) %	6		_
$K_S^0 K^-$ anything		(1.9	± 0.4) %	6		_
$2K_S^0$ anything		(1.70	± 0.32) %	6		_
$2K^{+}$ anything		<	2.6		>	< 10 ⁻	⁻³ CL=90%	_
2K ⁻ anything		<	6		>	< 10 ⁻	⁻⁴ CL=90%	_

Leptonic and semileptonic modes

-		•		
$e^+ \nu_e$	<	8.3	$\times 10^{-5}$ CL=90%	984
$\mu^+ u_\mu$	(5.43 ± 0.15)	$) \times 10^{-3}$	981
$ au^+ u_ au$	(5.32 ± 0.11)) %	182
$\gamma e^+ \nu_e$	<	1.3	$\times 10^{-4}$ CL=90%	984
$K^+K^-e^+\nu_e$		_		851
$K_S^0 K_S^0 e^+ u_e$	<	3.8	$\times 10^{-4}$ CL=90%	849
$\phi_{ m e}^+ u_{ m e}$	[<i>ccc</i>] (2.39 ± 0.16) % S=1.3	720
$\phi \mu^+ u_{\mu}$	(1.9 ± 0.5) %	715
$\eta e^+ \nu_e + \eta'(958) e^+ \nu_e$	[<i>ccc</i>] (3.03 ± 0.24)) %	_
$\eta\mathrm{e^+} u_\mathrm{e}$	[<i>ccc</i>] (2.32 ± 0.08)) %	908
$\eta'(958)e^+\nu_e$	[<i>ccc</i>] (8.0 ± 0.7	$) \times 10^{-3}$	751
$\eta \mu^+ u_{\mu}$	(2.4 ± 0.5) %	905
$\eta'(958)\mu^+ u_\mu$	(1.1 ± 0.5) %	747
$\omega e^+ \nu_e$	[ddd] <	2.0	$\times 10^{-3}$ CL=90%	829
$K^0 e^+ \nu_e$	(3.4 ± 0.4	$) \times 10^{-3}$	921
$K^*(892)^0 e^+ \nu_e$	[<i>ccc</i>] (2.15 ± 0.28)	$\times 10^{-3}$ S=1.1	782
$f_0(500)e^+\nu_e$, $f_0 \to \pi^0\pi^0$	<	7.3	$\times 10^{-4}$ CL=90%	_
$f_0(980)e^+\nu_e$, $f_0 \to \pi^0\pi^0$	(7.9 ± 1.5	$) \times 10^{-4}$	_
$a_0(980)^0e^+ u_e,\;\;a_0(980)^0 ightarrow$	<	1.2	$\times 10^{-4}$ CL=90%	_
$\pi^0 \stackrel{\pi^+ \eta}{e^+ \nu_e}$	<	6.4	$\times10^{-5}\text{CL}{=}90\%$	980

Hadronic modes with a $K\overline{K}$ pair

	•	
$K^+K^0_S$	$(1.450\pm0.035)\%$	850
$K^+K_I^{0}$	(1.49 ± 0.06)%	850
$K^+\overline{K}^{ar{0}}$	(2.95 ± 0.14)%	850
$K^+K^-\pi^+$ [ii]	(5.37 \pm 0.10)% S=1.1	805
	(4.5 ± 0.4) %	712
$\phi\pi^+$, $\phi o K^+K^-$ [eee]	(2.21 ± 0.06) %	712
$K^{+}\overline{K}^{*}(892)^{0}$	$(\ 12.7 \ \ ^{+4.0}_{-3.1} \ \) \%$	685
$\mathit{K}^{+}\overline{\mathit{K}}^{*}(892)^{0}$, $\overline{\mathit{K}}^{*0}$ $ ightarrow$	(2.58 ± 0.06)%	416
$\mathcal{K}^{+} \frac{\mathcal{K}^{-} \pi^{+}}{\mathcal{K}^{*}} (892)^{0}, \ \ \overline{\mathcal{K}}^{*0} ightarrow \mathcal{K}^{0}_{S} \pi^{0}$	$(4.8 \pm 0.5) \times 10^{-3}$	_
$\mathit{f}_{0}(980)\pi^{+}$, $\mathit{f}_{0} ightarrow~\mathit{K}^{+}\mathit{K}^{-}$	(1.11 ± 0.19)%	732
$\mathit{f}_{0}(1370)\pi^{+}$, $\mathit{f}_{0} ightarrow~\mathit{K}^{+}\mathit{K}^{-}$	$(7.1 \pm 2.9) \times 10^{-4}$	_
$\mathit{f}_{0}(1710)\pi^{+}$, $\mathit{f}_{0} ightarrow \mathit{K}^{+}\mathit{K}^{-}$	$(6.7 \pm 2.8) \times 10^{-4}$	198
$a_0(980)^+\pi^0$, $a_0^+ o K^+K_S^0$	$(1.1 \pm 0.4) \times 10^{-3}$	_
$a_0(1710)^+\pi^0$, $a_0^+ o$	$(3.5 \pm 0.6) \times 10^{-3}$	_
$K^+K^0_S$		
$K^+ \overline{K}_0^* (1430)^0$, $\overline{K}_0^* ightarrow$	(1.76 ± 0.25) $\times 10^{-3}$	218
$\mathcal{K}^-\pi^+$		

 $\eta \pi^+$

$$\begin{array}{c} \eta(1405)\,\pi^{+}, \ \eta(1405) \rightarrow \\ a_{0}(980)^{-}\pi^{+}, \ a_{0}^{-} \rightarrow \\ \eta^{\pi} \\ \eta^{\pi} \\ \eta(1405)\,\pi^{+}, \ \eta(1405) \rightarrow \\ a_{0}(980)^{+}\pi^{-}, \ a_{0}^{+} \rightarrow \\ \eta^{\pi^{+}} \\ f_{1}(1420)\,\pi^{+}, \ f_{1} \rightarrow \\ a_{0}(980)^{-}\pi^{+}, \ a_{0}^{-} \rightarrow \\ \eta^{\pi^{+}} \\ f_{1}(1420)\,\pi^{+}, \ f_{1} \rightarrow \\ a_{0}(980)^{-}\pi^{+}, \ a_{0}^{-} \rightarrow \\ \eta^{\pi^{-}} \\ f_{1}(1420)\,\pi^{+}, \ f_{1} \rightarrow \\ a_{0}(980)^{+}\pi^{-}, \ a_{0}^{+} \rightarrow \\ \eta^{\pi^{+}} \\ 3\pi^{+}2\pi^{-}\pi^{0} \\ \omega^{2}\pi^{+}\pi^{-} \\ a_{0}(980)^{+}\pi^{-}, \ a_{0}^{+} \rightarrow \\ \eta^{2}\pi^{+} \\ 3\pi^{+}2\pi^{-}\pi^{0} \\ \omega^{2}\pi^{+}\pi^{-} \\ [ccc] \ (1.6 \pm 0.5) \% \\ \eta'(958)\,\pi^{+} \\ (958)\,\pi^{+} \\ [bbb,ccc] \ (3.94 \pm 0.25) \% \\ \eta'(958)\,\pi^{+}\pi^{0} \\ \eta'(958)\,\pi^{+}\pi^{0} \\ (6.08 \pm 0.29) \% \\ \eta'(958)\,\pi^{+}\pi^{0} \\ \eta'(958)\,\pi^{+}\pi^{0} \\ (1.09 \pm 0.05) \times 10^{-3} \\ K^{+}\pi \\ K^{+}\pi^{0} \\ K^{+}\pi^{0} \\ K^{+}\pi^{0} \\ K^{+}\eta'(958) \\ K^{+}\pi^{+}\pi^{-} \\ (1.09 \pm 0.05) \times 10^{-3} \\ K^{+}\rho^{0} \\ K^{+}\eta'(958) \\ K^{+}\pi^{+}\pi^{-} \\ (6.20 \pm 0.19) \times 10^{-3} \\ K^{+}\rho^{0} \\ K^{+}\pi^{-} \\ K^{+}(1450)^{0}, \rho^{0} \rightarrow \pi^{+}\pi^{-} \\ K^{+}f_{0}(370), f_{0} \rightarrow \pi^{+}\pi^{-} \\ K^{+}f_{0}(370), f_{0} \rightarrow \pi^{+}\pi^{-} \\ K^{+}f_{0}(370), f_{0} \rightarrow \pi^{+}\pi^{-} \\ K^{+}(1410)^{0}\pi^{+}, K^{*0} \rightarrow \\ K^{+}\pi^{-} \\ K^{*}(1410)^{0}\pi^{+}, K^{*0} \rightarrow \\ K^{+}\pi^{-} \\ K^{*}(1430)^{0}\pi^{+}, K^{*0} \rightarrow \\ K^{+}\pi^{-} \\ K^{*}(1282)^{0}\rho^{+}, K^{*0} \rightarrow \\ K^{*}\pi^{-} \\ K^{*}(227^{+}\pi^{-}) \\ K^{*}(392)^{0}\rho^{+}, K^{*0} \rightarrow \\ K^{$$

HTTP://PDG.LBL.GOV

Page 68

Doubly Cabibbo-suppressed modes

$$2K^{+}\pi^{-}$$
 (1.274±0.031) × 10⁻⁴ 805
 $K^{+}K^{*}(892)^{0}$, $K^{*0} \rightarrow$ (6.0 ±3.4) × 10⁻⁵ –

Baryon-antibaryon mode

$$p\overline{p}$$
 (1.22 ±0.11)×10⁻³ 295
 $p\overline{p}e^{+}\nu_{e}$ < 2.0 ×10⁻⁴CL=90% 296

$\Delta C = 1$ weak neutral current (C1) modes, Lepton family number (LF), or Lepton number (L) violating modes

	_op.oa			0	.0400	
$\pi^{+} e^{+} e^{-}$		[00] <	5.5		\times 10 ⁻⁶ CL=90%	979
$\pi^+\phi$, $\phi \rightarrow e^+e^-$		[nn] (6	$^{+8}_{-4}$	$) \times 10^{-6}$	_
$\pi^+\mu^+\mu^-$		[00] <	1.8		\times 10 ⁻⁷ CL=90%	968
$K^{+} e^{+} e^{-}$	C1	<	3.7		$\times 10^{-6}$ CL=90%	922
$K^+\mu^+\mu^-$	C1	<	1.4		\times 10 ⁻⁷ CL=90%	909
$K^*(892)^+ \mu^+ \mu^-$	C1	<	1.4		\times 10 ⁻³ CL=90%	765
$\pi^+e^+\mu^-$	LF	<	1.1		$\times 10^{-6}$ CL=90%	976
$\pi^+e^-\mu^+$	LF	<	9.4		\times 10 ⁻⁷ CL=90%	976
$\mathit{K}^{+}\mathit{e}^{+}\mu^{-}$	LF	<	7.9		\times 10 ⁻⁷ CL=90%	919
$K^+e^-\mu^+$	LF	<	5.6		$\times 10^{-7} CL = 90\%$	919
π^-2e^+	L	<	1.4		$\times 10^{-6}$ CL=90%	979
$\pi^{-}2\mu^{+}$	L	<	8.6		$\times 10^{-8}$ CL=90%	968
$\pi^-e^+\mu^+$	L	<	6.3		\times 10 ⁻⁷ CL=90%	976
K^-2e^+	L	<	7.7		$\times 10^{-7} CL = 90\%$	922

$K^-2\mu^+$	L	< 2.6	\times 10 ⁻⁸ CL=90%	909
$K^-e^+\mu^+$	L	< 2.6	imes 10 ⁻⁷ CL=90%	919
$K^*(892)^- 2\mu^+$	L	< 1.4	\times 10 ⁻³ CL=90%	765

$$I(J^P) = 0(??)$$

 ${\stackrel{-}{J}}^P$ is natural, width and decay modes consistent with 1^- .

Mass
$$m=2112.2\pm0.4$$
 MeV $m_{D_s^{*\pm}}-m_{D_s^{\pm}}=143.8\pm0.4$ MeV Full width $\Gamma<1.9$ MeV, CL $=90\%$

 $D_{\it s}^{*-}$ modes are charge conjugates of the modes below.

D*+ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D_s^+ \gamma$	(93.5±0.7) %	139
$D_s^+ \gamma D_s^+ \pi^0$	(5.8 ± 0.7) %	48
$D_s^+ e^+ e^-$	$(6.7\pm1.6)\times10^{-3}$	139

$D_{s0}^*(2317)^{\pm}$

$$I(J^P) = 0(0^+)$$

J, P need confirmation.

 J^P is natural, low mass consistent with 0^+ .

See the review on "Heavy Non- $q\overline{q}$ Mesons."

Mass
$$m=2317.8\pm0.5~{
m MeV}$$
 $m_{D_{s0}^*(2317)^\pm}-m_{D_s^\pm}=349.4\pm0.5~{
m MeV}$ Full width $\Gamma~<~3.8~{
m MeV},~{
m CL}=95\%$

 $D_{s0}^*(2317)^-$ modes are charge conjugates of modes below.

D_{s0}^* (2317) $^{\pm}$ DECAY MODES	Fraction (I	Γ _i /Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D_s^+\pi^0$	(100 ⁺ ₋₂	00) %		298
$D_s^+ \gamma$	< 5	%	90%	323
$D_{s}^{*}(2112)^{+}\gamma$	< 6	%	90%	_
$D_s^+ \gamma \gamma \ D_s^* (2112)^+ \pi^0$	< 18	%	95%	323
$D_s^*(2112)^+\pi^0$	< 11	%	90%	_
$D_{s}^{+}\pi^{+}\pi^{-}$ $D_{s}^{+}\pi^{0}\pi^{0}$	< 4	\times 10 ⁻³	90%	194
$D_s^+ \pi^0 \pi^0$	not see	en		205

$$D_{s1}(2460)^{\pm}$$

$$I(J^P) = 0(1^+)$$

See the review on "Heavy Non- $q\overline{q}$ Mesons."

Mass
$$m=2459.5\pm0.6$$
 MeV (S = 1.1) $m_{D_{s1}(2460)^{\pm}}-m_{D_{s}^{*\pm}}=347.3\pm0.7$ MeV (S = 1.2) $m_{D_{s1}(2460)^{\pm}}-m_{D_{s}^{\pm}}=491.1\pm0.6$ MeV (S = 1.1) Full width Γ < 3.5 MeV, CL = 95%

 $D_{\rm s1}(2460)^{-}$ modes are charge conjugates of the modes below.

D _{s1} (2460) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$ \begin{array}{c} D_s^{*+} \pi^0 \\ D_s^{+} \gamma \\ D_s^{+} \pi^{+} \pi^{-} \end{array} $	(48 ±11)%		297
$D_s^+\gamma$	(18 \pm 4) %		442
$D_s^+\pi^+\pi^-$	$(4.3\pm~1.3)~\%$	S=1.1	363
$D_s^{*+}\gamma$	< 8 %	CL=90%	323
$D_{s0}^*(2317)^+ \gamma$	$(3.7^{+}_{-}\ \overset{5.0}{2.4})\ \%$		138

$D_{s1}(2536)^{\pm}$

$$I(J^P) = 0(1^+)$$

J, P need confirmation.

Mass
$$m=2535.11\pm0.06$$
 MeV $m_{D_{s1}(2536)^\pm}-m_{D_s^*(2111)}^{}=422.9\pm0.4$ MeV $m_{D_{s1}(2536)^\pm}-m_{D^*(2010)^\pm}^{}=524.85\pm0.04$ MeV $m_{D_{s1}(2536)^\pm}-m_{D^*(2007)^0}^{}=528.26\pm0.05$ MeV (S = 1.2) Full width $\Gamma=0.92\pm0.05$ MeV

Branching fractions are given relative to the one **DEFINED AS 1**. $D_{\rm S1}(2536)^-$ modes are charge conjugates of the modes below.

D _{s1} (2536) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$D^*(2010)^+ K^0$	0.85 ± 0.12		149
$(D^*(2010)^+ K^0)_{S-wave}$	$0.61\ \pm0.09$		149
$D^+\pi^-K^+$	$0.028 \!\pm\! 0.005$		176
$D^*(2007)^0 K^+$	DEFINED AS 1		167
$D^+ K^0$	< 0.34	90%	381
$D^0 K^+$	< 0.12	90%	391
$D_s^{*+}\gamma$	possibly seen		388
$D_s^{*+} \gamma$ $D_s^+ \pi^+ \pi^-$	seen		437

$$D_{s2}^*(2573)$$

$$I(J^P) = 0(2^+)$$

Mass $m=2569.1\pm0.8~{\rm MeV}~{\rm (S}=2.4)$ $m_{D_{s2}^*(2573)}-m_{D^0}=704\pm3.2~{\rm MeV}$ Full width $\Gamma=16.9\pm0.7~{\rm MeV}$

 $D_{\rm 52}^*(2573)^-$ modes are charge conjugates of the modes below.

D* _{\$2} (2573) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 K^+$	seen	431
$D^*(2007)^0 K^+$	not seen	238
$D^{+}K_{S}^{0}$ $D^{*+}K_{S}^{0}$	seen	422
$D^{*+}K^0_S$	seen	225

$D_{s1}^*(2700)^{\pm}$

$$I(J^P) = 0(1^-)$$

Mass $m=2714\pm 5~{\rm MeV}~{\rm (S}=1.5)$ Full width $\Gamma=122\pm 10~{\rm MeV}$

D_{s1}^* (2700) $^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
D^0K^+	seen	579
$D^{+} K^{0}_{S} \ D^{*0} K^{+}$	seen	573
	seen	438
$D^{*+}K^0_S$	seen	431

$D_{s3}^*(2860)^{\pm}$

$$I(J^P) = 0(3^-)$$

Mass $m=2860\pm7~{
m MeV}$ Full width $\Gamma=53\pm10~{
m MeV}$

$D_{s3}^{*}(2860)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 K^+$	seen	710
$D^{+} K^{0}_{S} \ D^{*0} K^{+}$	seen	704
	seen	589
$D^{*+}K^0_S$	seen	584

BOTTOM MESONS $(B = \pm 1)$

 $B^+ = u\overline{b}$, $B^0 = d\overline{b}$, $\overline{B}{}^0 = \overline{d}b$, $B^- = \overline{u}b$, similarly for B^* 's

B-particle organization

Many measurements of B decays involve admixtures of B hadrons. Previously we arbitrarily included such admixtures in the B^\pm section, but because of their importance we have created two new sections: " B^\pm/B^0 Admixture" for $\Upsilon(4S)$ results and " $B^\pm/B^0/B_s^0/b$ -baryon Admixture" for results at higher energies. Most inclusive decay branching fractions and χ_b at high energy are found in the Admixture sections. $B^0-\overline{B}^0$ mixing data are found in the B^0 section, while $B_s^0-\overline{B}_s^0$ mixing data and $B-\overline{B}$ mixing data for a B^0/B_s^0 admixture are found in the B_s^0 section. CP-violation data are found in the B^\pm , B^0 , and B^\pm B^0 Admixture sections. b-baryons are found near the end of the Baryon section.

The organization of the *B* sections is now as follows, where bullets indicate particle sections and brackets indicate reviews.

- ullet B^{\pm} mass, mean life, CP violation, branching fractions
- B^0 mass, mean life, B^0 - $\overline{B}{}^0$ mixing, CP violation, branching fractions
- B^{\pm}/B^0 Admixtures CP violation, branching fractions
- $B^{\pm}/B^0/B_s^0/b$ -baryon Admixtures mean life, production fractions, branching fractions
- B^* , $B_1(5721)$, $B_2^*(5747)$, $B_J(5970)$ mass, width
- B_s^0 mass, mean life, B_s^0 - \overline{B}_s^0 mixing, CP violation, branching fractions
- B_s^* , $B_{s1}(5830)^0$, $B_{s2}^*(5840)^0$ mass, width

- B_c^{\pm} mass, mean life, branching fractions
- $B_c(2S)^{\pm}$ mass

At the end of Baryon Listings:

- Λ_b mass, mean life, branching fractions
- $\Lambda_b(5912)^0$, $\Lambda_b(5920)^0$, $\Lambda_b(6070)^0$, $\Lambda_b(6146)^0$, $\Lambda_b(6152)^0$ mass, width
- Σ_b
- Σ_b^* , $\Sigma_b(6097)^+$, $\Sigma_b(6097)^$ mass, width
- \equiv_b^0 , $\equiv_b^$ mass, mean life, branching fractions
- $\Xi_b'(5935)^-$, $\Xi_b(5945)^0$, $\Xi_b(5955)^-$, $\Xi_b(6100)^-$, $\Xi_b(6227)^-$, $\Xi_b(6227)^0$, $\Xi_b(6327)^0$, $\Xi_b(6333)^0$ mass, width
- Ω_b^- mass, mean life, branching fractions
- $\Omega_b(6316)^-$, $\Omega_b(6330)^-$, $\Omega_b(6340)^-$, $\Omega_b(6350)^-$ mass
- b-baryon Admixture mean life, branching fractions

 B^{\pm}

$$I(J^P) = \frac{1}{2}(0^-)$$

 \it{I} , \it{J} , \it{P} need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^\pm}=5279.34\pm0.12$$
 MeV Mean life $\tau_{B^\pm}=(1.638\pm0.004)\times10^{-12}$ s $c au=491.1~\mu{\rm m}$

CP violation

$$A_{CP}(B^+ \to J/\psi(1S)K^+) = (1.8 \pm 3.0) \times 10^{-3} \quad (S = 1.5)$$

 $A_{CP}(B^+ \to J/\psi(1S)\pi^+) = (1.8 \pm 1.2) \times 10^{-2} \quad (S = 1.3)$

```
A_{CP}(B^+ \to J/\psi \rho^+) = -0.05 \pm 0.05
A_{CP}(B^+ \rightarrow J/\psi K^*(892)^+) = -0.048 \pm 0.033
A_{CP}(B^+ \to \eta_c K^+) = 0.01 \pm 0.07 \quad (S = 2.2)
A_{CP}(B^+ \rightarrow \psi(2S)\pi^+) = 0.03 \pm 0.06
A_{CP}(B^+ \to \psi(2S)K^+) = 0.012 \pm 0.020 \quad (S = 1.5)
A_{CP}(B^+ \to \psi(2S)K^*(892)^+) = 0.08 \pm 0.21
A_{CP}(B^+ \to \chi_{c1}(1P)\pi^+) = 0.07 \pm 0.18
A_{CP}(B^+ \to \chi_{c0} K^+) = -0.20 \pm 0.18 (S = 1.5)
A_{CP}(B^+ \rightarrow \chi_{c1} K^+) = -0.009 \pm 0.033
A_{CP}(B^+ \to \chi_{c1} K^*(892)^+) = 0.5 \pm 0.5
A_{CP}(B^+ \to D^0 \ell^+ \nu_{\ell}) = (-0.14 \pm 0.20) \times 10^{-2}
A_{CP}(B^+ \to \overline{D}{}^0\pi^+) = (-3 \pm 5) \times 10^{-3}
A_{CP}(B^+ \to D_{CP(+1)}\pi^+) = -0.0080 \pm 0.0024
A_{CP}(B^+ \to D_{CP(-1)}\pi^+) = 0.017 \pm 0.026
A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]D\pi^{+}) = 0.02 \pm 0.05
A_{CP}(B^+ \to [\pi^+\pi^+\pi^-\pi^-]_D K^+) = 0.10 \pm 0.04
A_{CP}(B^+ \to [\pi^+\pi^-\pi^+\pi^-]_D K^*(892)^+) = 0.02 \pm 0.11
A_{CP}(B^+ \to \overline{D}^0 K^+) = -0.017 \pm 0.005
A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}K^{+}) = -0.31 \pm 0.11
A_{CP}(B^+ \to [\pi^+\pi^+\pi^-\pi^-]_D\pi^+) = (-4 \pm 8) \times 10^{-3}
A_{CP}(B^+ \to [K^-\pi^+]_D K^+) = -0.58 \pm 0.21
A_{CP}(B^+ \to [K^- \pi^+ \pi^0]_D K^+) = -0.27 \pm 0.27 \quad (S = 2.4)
A_{CP}(B^+ \to [K^+\pi^-\pi^0]_D K^+) = -0.024 \pm 0.013
A_{CP}(B^+ \to [K^+ K^- \pi^0]_D K^+) = 0.07 \pm 0.07
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = 0.11 \pm 0.04
A_{CP}(B^+ \to \overline{D}^0 K^*(892)^+) = -0.007 \pm 0.019
A_{CP}(B^+ \to [K^-\pi^+]_{\overline{D}}K^*(892)^+) = -0.75 \pm 0.16
A_{CP}(B^+ \to [K^-\pi^+\pi^-\pi^+]_{\overline{D}}K^*(892)^+) = -0.45 \pm 0.25
A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+) = 0.00 \pm 0.09
A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D\pi^+) = 0.08 \pm 0.09
A_{CP}(B^+ \to [K^+ K^- \pi^0]_D \pi^+) = -0.001 \pm 0.019
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D\pi^+) = 0.001 \pm 0.010
A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)}\pi^+) = -0.09 \pm 0.27
A_{CP}(B^+ \to [K^- \pi^+]_{(D\gamma)} \pi^+) = -0.7 \pm 0.6
A_{CP}(B^+ \to [K^- \pi^+]_{(D\pi)} K^+) = 0.8 \pm 0.4
A_{CP}(B^+ \to [K^-\pi^+]_{(D\gamma)}K^+) = 0.4 \pm 1.0
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+) = -0.02 \pm 0.15
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D K^+) = 0.10 \pm 0.09
A_{CP}(B^+ \to [K_S^0 K^- \pi^+]_D K^+) = -0.04 \pm 0.08
A_{CP}(B^+ \to [K_S^0 K^- \pi^+]_D \pi^+) = 0.003 \pm 0.015
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D \pi^+) = -0.034 \pm 0.020
```

$$A_{CP}(B^{+} \rightarrow [K^{*}(892)^{-}K^{+}]_{D}K^{+}) = 0.08 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow [K^{*}(892)^{+}K^{-}]_{D}K^{+}) = 0.02 \pm 0.10$$

$$A_{CP}(B^{+} \rightarrow [K^{*}(892)^{+}K^{-}]_{D}\pi^{+}) = 0.007 \pm 0.017$$

$$A_{CP}(B^{+} \rightarrow [K^{*}(892)^{+}K^{-}]_{D}\pi^{+}) = -0.020 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow [K^{*}(892)^{+}K^{-}]_{D}\pi^{+}) = -0.020 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(+1)K^{+}) = 0.132 \pm 0.015 \quad (S = 1.8)$$

$$A_{ADS}(B^{+} \rightarrow D_{CP}(+1)K^{+}) = 0.132 \pm 0.015 \quad (S = 1.8)$$

$$A_{ADS}(B^{+} \rightarrow D^{*}(D\gamma)K^{+}) = -0.6 \pm 1.3$$

$$A_{ADS}(B^{+} \rightarrow D^{*}(D\gamma)K^{+}) = 0.72 \pm 0.29$$

$$A_{ADS}(B^{+} \rightarrow D^{*}(D\gamma)K^{+}) = 0.08 \pm 0.13$$

$$A_{ADS}(B^{+} \rightarrow D^{*}(D\gamma)K^{+}) = -0.14 \pm 0.06$$

$$A_{ADS}(B^{+} \rightarrow D^{*}(D\gamma)K^{+}) = -0.14 \pm 0.06$$

$$A_{ADS}(B^{+} \rightarrow D^{*}(D\gamma)K^{+}) = -0.10 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1)K^{+}) = -0.10 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1)K^{+}) = -0.10 \pm 0.07$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.04 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.04 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.013 \pm 0.023$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}K^{+}\pi^{-}\pi^{+}) = -0.013 \pm 0.023$$

$$A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.013 \pm 0.019$$

$$A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) = -0.002 \pm 0.011$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(+1))\pi^{+} = -0.0004 \pm 0.0021 \quad (S = 1.1)$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(+1))\pi^{+} = -0.009 \pm 0.05$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(+1))\pi^{+} = 0.012 \pm 0.010 \quad (S = 1.5)$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(+1))K^{+}(892)^{+} = 0.08 \pm 0.06$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = 0.02 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = -0.23 \pm 0.22$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = 0.03 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = 0.02 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = 0.02 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = 0.02 \pm 0.01$$

$$A_{CP}(B^{+} \rightarrow D_{CP}(-1))K^{+}(892)^{+} = -0.26 \pm 0.27$$

$$A$$

$$\begin{array}{l} \mathbf{A_{CP}(B^{+} \to \eta K^{+})} = -0.37 \pm 0.08 \\ A_{CP}(B^{+} \to \eta K^{*}(892)^{+}) = 0.02 \pm 0.06 \\ A_{CP}(B^{+} \to \eta K_{0}^{*}(1430)^{+}) = 0.05 \pm 0.13 \\ A_{CP}(B^{+} \to \eta K_{2}^{*}(1430)^{+}) = -0.45 \pm 0.30 \\ A_{CP}(B^{+} \to \omega K^{+}) = -0.02 \pm 0.04 \\ A_{CP}(B^{+} \to \omega K^{*}) = -0.29 \pm 0.35 \\ A_{CP}(B^{+} \to \omega K^{*}) = -0.10 \pm 0.09 \\ A_{CP}(B^{+} \to \omega K_{2}^{*}(1430)^{+}) = 0.14 \pm 0.15 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = -0.04 \pm 0.09 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = -0.04 \pm 0.09 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = -0.03 \pm 0.21 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = -0.03 \pm 0.01 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = -0.08 \pm 0.09 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = -0.08 \pm 0.09 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.08 \pm 0.09 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.28 \pm 0.30 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.37 \pm 0.10 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.37 \pm 0.10 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.07 \pm 0.06 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.07 \pm 0.06 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.06 \pm 0.07 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.06 \pm 0.07 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.05 \pm 0.24 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.03 \pm 0.15 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.01 \pm 0.11 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.02 \pm 0.01 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.01 \pm 0.16 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.01 \pm 0.16 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.02 \pm 0.021 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.12 \pm 0.10 \\ A_{CP}(B^{+} \to \kappa^{*}(\pi^{+})) = 0.024 \pm 0.028 \\ (S = 2.3)$$

```
A_{CP}(B^+ \to X_0(1550)K^+) = -0.04 \pm 0.07
A_{CP}(B^+ \to K^{*+}K^+K^-) = 0.11 \pm 0.09
A_{CP}(B^+ \to \phi K^*(892)^+) = -0.01 \pm 0.08
A_{CP}(B^+ \to \phi(K\pi)_0^{*+}) = 0.04 \pm 0.16
A_{CP}(B^+ \to \phi K_1(1270)^+) = 0.15 \pm 0.20
A_{CP}(B^+ \to \phi K_2^*(1430)^+) = -0.23 \pm 0.20
A_{CP}(B^+ \to K^+ \phi \phi) = -0.08 \pm 0.07
A_{CP}(B^+ \to K^+ [\phi \phi]_{\eta_c}) = 0.10 \pm 0.08
A_{CP}(B^+ \to K^*(892)^+ \gamma) = 0.014 \pm 0.018
A_{CP}(B^+ \to X_s \gamma) = 0.028 \pm 0.019
A_{CP}(B^+ \to \eta K^+ \gamma) = -0.12 \pm 0.07
A_{CP}(B^+ \to \phi K^+ \gamma) = -0.13 \pm 0.11 (S = 1.1)
A_{CP}(B^+ \to \rho^+ \gamma) = -0.11 \pm 0.33
A_{CP}(B^+ \rightarrow \pi^+ \pi^0) = 0.03 \pm 0.04
A_{CP}(B^+ \to \pi^+\pi^-\pi^+) = 0.057 \pm 0.013
A_{CP}(B^+ \to \rho^0 \pi^+) = 0.009 \pm 0.019
A_{CP}(B^+ \to f_2(1270)\pi^+) = 0.40 \pm 0.06
A_{CP}(B^+ \to \rho^0(1450)\pi^+) = -0.11 \pm 0.05
A_{CP}(B^+ \to \rho_3(1690)\pi^+) = -0.80 \pm 0.28
A_{CP}(B^+ \rightarrow f_0(1370)\pi^+) = 0.72 \pm 0.22
A_{CP}(B^+ \to \pi^+\pi^-\pi^+ \text{ nonresonant}) = -0.14^{+0.23}_{-0.16}
A_{CP}(B^+ \to \rho^+ \pi^0) = 0.02 \pm 0.11
A_{CP}(B^+ \rightarrow \rho^+ \rho^0) = -0.05 \pm 0.05
A_{CP}(B^+ \to \omega \pi^+) = -0.04 \pm 0.05
A_{CP}(B^+ \to \omega \rho^+) = -0.20 \pm 0.09
A_{CP}(B^+ \to \eta \pi^+) = -0.14 \pm 0.07 (S = 1.4)
A_{CP}(B^+ \to \eta \rho^+) = 0.11 \pm 0.11
A_{CP}(B^+ \to \eta' \pi^+) = 0.06 \pm 0.16
A_{CP}(B^+ \to \eta' \rho^+) = 0.26 \pm 0.17
A_{CP}(B^+ \rightarrow b_1^0 \pi^+) = 0.05 \pm 0.16
A_{CP}(B^+ \to p \overline{p} \pi^+) = 0.00 \pm 0.04
A_{CP}(B^+ \to p \overline{p} K^+) = 0.00 \pm 0.04 \quad (S = 2.2)
A_{CP}(B^+ \to p \overline{p} K^*(892)^+) = 0.21 \pm 0.16 \quad (S = 1.4)
A_{CP}(B^+ \rightarrow p\overline{\Lambda}\gamma) = 0.17 \pm 0.17
A_{CP}(B^+ \to p \overline{\Lambda} \pi^0) = 0.01 \pm 0.17
A_{CP}(B^+ \to K^+ \ell^+ \ell^-) = -0.02 \pm 0.08
A_{CP}(B^+ \to K^+ e^+ e^-) = 0.14 \pm 0.14
A_{CP}(B^+ \to K^+ \mu^+ \mu^-) = 0.011 \pm 0.017
A_{CP}(B^+ \to \pi^+ \mu^+ \mu^-) = -0.11 \pm 0.12
A_{CP}(B^+ \to K^{*+} \ell^+ \ell^-) = -0.09 \pm 0.14
A_{CP}(B^+ \to K^* e^+ e^-) = -0.14 \pm 0.23
A_{CP}(B^+ \to K^* \mu^+ \mu^-) = -0.12 \pm 0.24
```

$$\gamma = (65.9^{+3.3}_{-3.5})^{\circ}$$
 $r_{B}(B^{+} \rightarrow D^{0}K^{+}) = 0.0994 \pm 0.0026$
 $\delta_{B}(B^{+} \rightarrow D^{0}K^{+}) = (127.7^{+3.6}_{-3.9})^{\circ}$
 $r_{B}(B^{+} \rightarrow D^{0}K^{*+}) = 0.101^{+0.016}_{-0.034}$
 $\delta_{B}(B^{+} \rightarrow D^{0}K^{*+}) = (48^{+59}_{-16})^{\circ}$
 $r_{B}(B^{+} \rightarrow D^{*0}K^{+}) = 0.104^{+0.013}_{-0.014}$
 $\delta_{B}(B^{+} \rightarrow D^{*0}K^{+}) = (314.8^{+7.9}_{-9.9})^{\circ}$

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, *e.g.*, $B \to D^{\pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one.

B+ DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Semileptonic and leptonic modes

Semileptonic	na iepton	ic illones	
$\ell^+ \nu_\ell X$ [ggg]	(10.99	± 0.28) %	_
$e^+ \nu_e X_c$	(10.8	± 0.4) %	_
$\ell^+ u_\ell X_u$	(1.65	$\pm 0.21) \times 10^{-3}$	_
$D\ell^+ u_\ell X$	(9.6	\pm 0.7)%	_
	(2.30 =	\pm 0.09) %	2310
$\overline{D}{}^0 au^+ u_ au$	(7.7 =	$\pm 2.5) \times 10^{-3}$	1911
$\overline{D}^*(2007)^0 \ell^+ \nu_{\ell}$ [ggg]	(5.58 :	\pm 0.22) %	2258
\overline{D}^* (2007) 0 $ au^+$ $ u_ au$	(1.88 :	± 0.20) %	1839
$D^-\pi^+\ell^+ u_\ell$	(4.4 :	\pm 0.4) \times 10 ⁻³	2306
$\overline{D}_0^*(2420)^0\ell^+ u_\ell$, $\ \overline{D}_0^{*0} ightarrow$	(2.5	$\pm 0.5) \times 10^{-3}$	_
$D^-\pi^+$		2	
$\overline{D}_2^*(2460)^0 \ell^+ u_\ell, \ \overline{D}_2^{*0} ightarrow$	(1.53	$\pm 0.16) \times 10^{-3}$	2065
$D^-\pi^+$			
$D^{(*)}$ n $\pi \ell^+ \nu_\ell$ (n ≥ 1)	(1.85	\pm 0.25) %	_
$D^{*-}\pi^+\ell^+ u_\ell$	(6.0	$\pm 0.4) \times 10^{-3}$	2254
\overline{D}_1 (2420) $^0\ell^+ u_\ell$, $\overline{D}_1^0 ightarrow$	(3.03	$\pm 0.20) \times 10^{-3}$	2084
$D^{*-}\pi^+$			

HTTP://PDG.LBL.GOV

Page 79

$\overline{D}_1'(2430)^0 \ell^+ \nu_\ell, \ \overline{D}_1'^0 -$	\rightarrow	(2.7	±	0.6) × 10 ⁻³		_
$egin{array}{c} D^{*-}\pi^+ \ \overline{D}_2^*(2460)^0 \ell^+ u_\ell, \ \overline{D}_2^{*0} ightarrow D^{*-}\pi^+ \end{array}$		(1.01	\pm	0.24	$) \times 10^{-3}$	S=2.0	2065
$\overline{D}{}^0\pi^+\pi^-\ell^+ u_\ell$		(1.6	\pm	0.4) × 10 ⁻³		2301
$\overline{D}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell}$		() × 10 ⁻⁴		2248
$D_s^{(*)-}$ K $^+$ ℓ^+ $ u_\ell$		(6.1	\pm	1.0	$) \times 10^{-4}$		_
$D_s^- K^+ \ell^+ u_\ell$		(3.0	+	1.4 1.2	$) \times 10^{-4}$		2242
$D_s^{*-}K^+\ell^+ u_\ell$		(2.9	\pm	1.9	$) \times 10^{-4}$		2185
$\pi^0\ell^+ u_\ell$		() × 10 ⁻⁵		2638
$\eta\ell^+ u_\ell$		($) \times 10^{-5}$		2611
$\eta'\ell^+_{\cdot} u_{\ell}$						$) \times 10^{-5}$		2553
$\omega \ell^+ u_\ell$	[ggg]					$) \times 10^{-4}$		2582
$ ho^0\ell^+ u_\ell$	[ggg]	($) \times 10^{-4}$		2583
$\pi^+\pi^-\ell^+ u_\ell$		() × 10 ⁻⁴		2636
$ ho \overline{ ho} \ell^+ u_\ell$		(2.5	$) \times 10^{-6}$		2467
$ ho \overline{ ho} \mu^+ u_{\mu}$		() × 10 ⁻⁶		2446
$p\overline{p}e^+\nu_e$		(8.2	+	4.0 3.3	$) \times 10^{-6}$		2467
$e^+ u_e$		<	9.8			$\times 10^{-7}$		2640
$\mu^+ u_{\mu}$		<	8.6			$\times 10^{-7}$	CL=90%	2639
$ au^+ u_ au$		(1.09	\pm	0.24	$) \times 10^{-4}$		2341
$\ell^+ u_\ell\gamma$		<	3.0				CL=90%	2640
$e^+ u_e\gamma$		<	4.3			\times 10 ⁻⁶		2640
$\mu^+ u_\mu\gamma$		<					CL=90%	2639
$\mu^+\mu^-\mu^+\nu_\mu$		<	1.6			× 10 ⁻⁸	CL=95%	2634
=0	Inclus							
$D^0 X$		•	8.6			*		-
$\overline{D}^0 X$		(79					_
D ⁺ X D ⁻ X		(2.5		0.5) %		_
		(1.2) %		_
$D_s^+ X$		(7.9) %		_
$D_s^- X$		(1.10	+	0.40 0.32) %		_
$\Lambda_c^+ X$		(2.1	+	0.9 0.6) %		_
$\overline{\Lambda}_c^- X$		(2.8	+	1.1 0.9) %		_
<u>c</u> X		(97	\pm	4) %		_
cX		(23.4	+	2.2 1.8) %		_
$c/\overline{c}X$		(1	20	±) %		_

D, D^* , or D_s modes $\overline{D}^0 \pi^+$ $(4.61 \pm 0.10) \times 10^{-3}$ 2308 $D_{CP(+1)}\pi^+$ $(2.03 \pm 0.19) \times 10^{-3}$ $D_{CP(-1)}\pi^+$ $(2.0 \pm 0.4) \times 10^{-3}$ $\overline{D}^0 \rho^+$ 1.34 ± 0.18) % 2237 \overline{D}^0K^+ $3.64 \pm 0.15 \times 10^{-4}$ 2281 $D_{CP(+1)}K^{+}$ $(1.80 \pm 0.08) \times 10^{-4}$ [hhh] $D_{CP(-1)}K^+$ $(1.96 \pm 0.18) \times 10^{-4}$ [hhh] $3.60 \pm 0.24 \times 10^{-6}$ 2281 $[K^{-}\pi^{+}]_{D}K^{+}$ $\times 10^{-7}$ CL=90% [iii] < $[K^{+}\pi^{-}]_{D}K^{+}$ $\times 10^{-5}$ CL=90% [iii] < 2.0 $[K^{-}\pi^{+}\pi^{0}]_{D}K^{+}$ $[K^{+}\pi^{-}\pi^{0}]_{D}K^{+}$ seen seen $[K^{-}\pi^{+}\pi^{+}\pi^{-}]_{D}K^{+}$ seen $[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{+}$ seen $[K^-\pi^+]_D\pi^+$ $\pm 1.1) \times 10^{-7}$ [iii] (6.3 $[K^{+}\pi^{-}]_{D}\pi^{+}$ \pm 0.4) × 10⁻⁴ (1.7 $[K^-\pi^+\pi^0]_D\pi^+$ $[K^+\pi^-\pi^0]_D\pi^+$ seen seen $[K^-\pi^+\pi^+\pi^-]_D\pi^+$ seen $[K^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}\pi^{+}$ seen $[\pi^{+}\pi^{-}\pi^{0}]_{D}K^{-}$ $\pm 0.9) \times 10^{-6}$ (4.6 $[K_{S}^{0}K^{+}\pi^{-}]_{D}K^{+}$ seen $[K_{S}^{\bar{0}}K^{-}\pi^{+}]_{D}K^{+}$ seen $[K^*(892)^+K^-]_DK^+$ seen $[K_{S}^{0}K^{-}\pi^{+}]_{D}\pi^{+}$ seen $[K^*(892)^+K^-]_D\pi^+$ seen $[K_{S}^{0}K^{+}\pi^{-}]_{D}\pi^{+}$ seen $[K^*(892)^-K^+]_D\pi^+$ seen $\overline{D}{}^{0}K^{*}(892)^{+}$ $(5.3 \pm 0.4) \times 10^{-4}$ 2213 $D_{CP(-1)}K^*(892)^+$ \pm 0.8) × 10⁻⁴ [hhh](2.7 $D_{CP(+1)}K^*(892)^+$ $\pm 0.7 \times 10^{-4}$ [hhh] $+\ 1.8 \\ -\ 4.0$ $D^0 K^*(892)^+$ $) \times 10^{-6}$ 2213 $\overline{D}^0 K^+ \pi^+ \pi^ 5.2 \pm 2.1 \times 10^{-4}$ 2237 $\overline{D}^0 K^+ \overline{K}^0$ $5.5 \pm 1.6 \times 10^{-4}$ 2189 $\overline{D}^0 K^+ \overline{K}^* (892)^0$ $7.5 \pm 1.7 \times 10^{-4}$ 2072 $\overline{D}^0 \pi^+ \pi^+ \pi^ 5.5 \pm 2.0 \times 10^{-3}$ S = 3.62289 $\overline{D}{}^0\,\pi^+\pi^+\pi^-$ nonresonant $) \times 10^{-3}$ \pm 4 2289 $\overline{D}^0 \pi^+ \rho^0$ $4.2 \pm 3.0 \times 10^{-3}$ 2208 $\overline{D}{}^{0} a_{1}(1260)^{+}$ $) \times 10^{-3}$ \pm 4 2123 $\overline{D}^0 \omega \pi^+$ $(4.1 \pm 0.9) \times 10^{-3}$ 2206 $D^*(2010)^-\pi^+\pi^+$ $1.35 \pm 0.22 \times 10^{-3}$ 2247

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D^*(2010)^- K^+ \pi^+$		() × 10 ⁻⁵		2206
$\begin{array}{llllllllllllllllllllllllllllllllllll$			(8.4	\pm	1.5	$) \times 10^{-4}$		2081
$\begin{array}{llllllllllllllllllllllllllllllllllll$. 2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(2260
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(6.1	土	2.4) × 10 ⁻⁶		_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(2.32	±	0.23	$)\times10^{-5}$		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(3.6	±	1.2) × 10 ⁻⁶		-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^-\pi^+$		_	2.0			× 10 ⁻⁶	CI00%	2279
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								CL=90/6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			•					CI -90%	2200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_{2}^{+}(2400) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			0.5			× 10	CL-90/0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D^{+}K^{*0}$		<	4.9			$\times 10^{-7}$	CL=90%	2211
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D^+\overline{K}^{*0}$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{D}^*(2007)^0\pi^+$		(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{D}_{CP(\pm 1)}^{*0}\pi^+$	[<i>jiji</i>]							_
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D_{CP(-1)}^{*0}\pi^{+}$	[jjj]	(2.6	\pm	1.0	$) \times 10^{-3}$		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{D}^*(2007)^0 \omega \pi^+$		(2149
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• • •		`						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	• •	[;;;]							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{D}{D}*0$ $\kappa+$		ì				_		_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CP(-1)	ן עען	ì				_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			`					- :0/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							_	CL=90%	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,		(
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(· _		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(土	1.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								CL 000/	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						0.7		CL=90%	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(
$\overline{D}_{1}^{*}(2420)^{0}\pi^{+} \qquad (3.5 \pm 0.6) \times 10^{-3} \qquad S=1.3 \qquad 2081$ $\overline{D}_{1}(2420)^{0}\pi^{+} \times B(\overline{D}_{1}^{0} \rightarrow (2.5 + \frac{1.6}{1.4}) \times 10^{-4} \qquad S=3.8 \qquad 2081$		[1,1,1,1]	(•		2217
$\overline{D}_1(2420)^0 \pi^+ \times B(\overline{D}_1^0 \to (2.5 + 1.6 \times 1.4) \times 10^{-4} S = 3.8 2081$		[KKK]	(C_1 2	2001
· · · · · · · · · · · · · · · · · · ·	1 ' '		(•		
	$D_1(2420)^0\pi^+ imesB(D_1^0 o \overline{D}^0\pi^+\pi^-)$		(2.5	+	1.6) × 10 ⁻⁴	S=3.8	2081

$\overline{D}_1(2420)^0 \pi^+ \times B(\overline{D}_1^0 \to \overline{D}_1^0 \pi^+ \pi^- \text{(papersonant)})$	(2.2	\pm	0.9) × 10 ⁻⁴		2081
$\overline{D}{}^0\pi^+\pi^-$ (nonresonant)) $\overline{D}_1(2430)^0\pi^+$, $\overline{D}_1^0 o$ $D^*(2010)^-\pi^+$	(3.5	\pm	0.6	$) \times 10^{-4}$		2079
$\overline{D}(2550)^0 \pi^+, \ \overline{D}^0 \to D^*(2010)^- \pi^+$	(7.2	±	1.4	$) \times 10^{-5}$		-
$\overline{D}_{J}^{*}(2600)^{0}\pi^{+}, \overline{D}_{J}^{*0} \rightarrow D^{*}(2010)^{-}\pi^{+}$	(6.8	\pm	1.3) × 10 ⁻⁵		-
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}, \overline{D}_{2}^{*0} \rightarrow D^{-}\pi^{+}$	(3.56	\pm	0.24	$) \times 10^{-4}$		_
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+}, \ \overline{D}_{2}^{*0} \rightarrow$	(2.2	\pm	1.0	$) \times 10^{-4}$		_
$ \overline{D}^{0}\pi^{-}\pi^{+} $ $ \overline{D}_{2}^{*}(2462)^{0}\pi^{+}, \overline{D}_{2}^{*0} \rightarrow $	<	1.6			× 10 ⁻⁴	CL=90%	_
$\overline{D}^0 \pi^- \pi^+ \text{(nonresonant)}$,	0.1		1.0	\10 - 4		
$\overline{D}_{2}^{*}(2462)^{0}\pi^{+},\;\;\overline{D}_{2}^{*0}\to D^{*}(2010)^{-}\pi^{+}$	(2.1	土	1.0) × 10 ⁻⁴		_
$\overline{D}_0^*(2400)^0\pi^+$	(6.4	+	1.4) × 10 ⁻⁴		2136
$\times \ B(\overline{D}_0^*(2400)^0 \to \ D^-\pi^+)$	(•••	_		, // =0		
$\overline{D}_1(2421)^0\pi^+, \ \overline{D}_1^0 \to \ D^{*-}\pi^+$	(7.4	土	1.0	$) \times 10^{-4}$		_
$\overline{D}_2^*(2462)^0\pi^+$, $\overline{D}_2^{*0}\to$	(1.98	\pm	0.30	$) \times 10^{-4}$		_
$\overline{D}_{1}^{*-}\pi^{+}$ $\overline{D}_{1}^{\prime0}(2427)^{0}\pi^{+}$, $\overline{D}_{1}^{\prime0}\to$	(3.5	土	0.9) × 10 ⁻⁴	S=1.5	_
$\overline{D}_{1}^{0}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to \overline{D}_{1}^{*0}\pi^{+}\pi^{-})$	<	6			× 10 ⁻⁶	CL=90%	2081
$\overline{D}_1(2420)^0\pi^+ imes B(\overline{D}_1^0 o \overline{D}^{*0}\pi^+\pi^-)$							
$\overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to \overline{D}^{*0}\pi^{+}\pi^{-}) \ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}$	<	6 1.4 1.3			× 10 ⁻³	CL=90% CL=90% CL=90%	2081 1996 2063
$\overline{D}_{1}(\overline{2420})^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to \overline{D}^{*0}\pi^{+}\pi^{-})$ $\overline{D}_{1}^{*}(2420)^{0}\rho^{+}$ $\overline{D}_{2}^{*}(2460)^{0}\pi^{+}$ $\overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to \overline{D}_{2}^{*0}(2460)^{0}\pi^{+})$	<	1.4 1.3			$\times 10^{-3} \times 10^{-3}$	CL=90%	1996
$ \overline{D}_{1}(2420)^{0} \pi^{+} \times B(\overline{D}_{1}^{0} \to \overline{D}^{*0} \pi^{+} \pi^{-}) $ $ \overline{D}_{1}^{*0}(2420)^{0} \rho^{+} $ $ \overline{D}_{2}^{*}(2460)^{0} \pi^{+} $ $ \overline{D}_{2}^{*}(2460)^{0} \pi^{+} \times B(\overline{D}_{2}^{*0} \to \overline{D}^{*0} \pi^{+} \pi^{-}) $ $ \overline{D}_{1}^{*}(2680)^{0} \pi^{+}, \ \overline{D}_{1}^{*}(2680)^{0} \to $	< < <	1.4 1.3 2.2	±	2.1	$\times 10^{-3} \times 10^{-3}$	CL=90% CL=90%	1996 2063
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\;\; \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\;\; \overline{D}^{0}\to\end{array}$	< < <	1.4 1.3 2.2 8.4			$\times 10^{-3} \\ \times 10^{-3} \\ \times 10^{-5}$	CL=90% CL=90%	1996 2063
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\times B(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\times B(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\;\; \overline{D}_{1}^{*}(2680)^{0}\to\\ D^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\;\; \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\;\; \overline{D}_{3}^{*0}\to\\ \end{array}$	< < < < < < < < < < < < < < < < < < <	1.4 1.3 2.2 8.4 3.3	±	1.5	$ \begin{array}{c} \times 10^{-3} \\ \times 10^{-3} \\ \times 10^{-5} \end{array} $ $ \begin{array}{c} \times 10^{-5} \\ \end{array} $	CL=90% CL=90%	1996 2063
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\ \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+},\end{array}$	< < < < (((1.4 1.3 2.2 8.4 3.3	± ±	1.5 0.32	$\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-5}$) $\times 10^{-5}$	CL=90% CL=90%	1996 2063 2063 —
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\ \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+},\ \overline{D}_{3}^{*0}(2760)^{0}\pi^{+},\\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+},\end{array}$	< < < < < (((((((((((((((1.4 1.3 2.2 8.4 3.3 1.10	± ±	1.5 0.32 0.22	$\times 10^{-3}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-5}$	CL=90% CL=90%	1996 2063 2063 —
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\times B(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\times B(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\ \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+},\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+},\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+}\\ \end{array}$	< < < < < < < < < < < < < < < < < < <	1.4 1.3 2.2 8.4 3.3 1.10 1.00	± ± ±	1.5 0.32 0.22 1.4	$\times 10^{-3}$ $\times 10^{-3}$ $\times 10^{-5}$) $\times 10^{-5}$	CL=90% CL=90% CL=90%	1996 2063 2063 — — 1913 —
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\ \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+},\ \overline{D}_{3}^{*0}(2760)^{0}\pi^{+},\\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+},\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+}\to D^{-}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\rho^{+}\\ \end{array}$	< < < < < < < < < < < < < < < < < < <	1.4 1.3 2.2 8.4 3.3 1.10 1.00 2.0	± ± ±	1.5 0.32 0.22 1.4	$ \begin{array}{r} $	CL=90% CL=90% CL=90%	1996 2063 2063 — — 1913 — — —
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{*}(2740)^{0}\pi^{+},\ \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+},\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+}\to\\ \overline{D}_{2}^{*}(2460)^{0}\rho^{+}\\ \overline{D}^{0}D_{s}^{+}\\ \end{array}$	< < < < < < < < < < < < < < < < < < <	1.4 1.3 2.2 8.4 3.3 1.10 1.00 2.0 4.7 9.0	± ± ±	1.5 0.32 0.22 1.4		CL=90% CL=90% CL=90%	1996 2063 2063 — — 1913 —
$\begin{array}{c} \overline{D}_{1}(2420)^{0}\pi^{+}\timesB(\overline{D}_{1}^{0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2420)^{0}\rho^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}\timesB(\overline{D}_{2}^{*0}\to\\ \overline{D}^{*0}\pi^{+}\pi^{-})\\ \overline{D}_{1}^{*}(2680)^{0}\pi^{+},\ \overline{D}_{1}^{*}(2680)^{0}\to\\ \overline{D}^{-}\pi^{+}\\ \overline{D}(2740)^{0}\pi^{+},\ \overline{D}^{0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2750)^{0}\pi^{+},\ \overline{D}_{3}^{*0}\to\\ D^{*}(2010)^{-}\pi^{+}\\ \overline{D}_{3}^{*}(2760)^{0}\pi^{+},\ \overline{D}_{3}^{*0}(2760)^{0}\pi^{+},\\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+},\ \overline{D}_{2}^{*}(3000)^{0}\pi^{+}\to D^{-}\pi^{+}\\ \overline{D}_{2}^{*}(2460)^{0}\rho^{+}\\ \end{array}$	< < < < < < < < < < < < < < < < < < <	1.4 1.3 2.2 8.4 3.3 1.10 1.00 2.0 4.7 9.0	± ± ±	1.5 0.32 0.22 1.4	$ \begin{array}{r} $	CL=90% CL=90% CL=90%	1996 2063 2063 — — 1913 — — —

$\overline{D}^*(2007)^0 D_s^{*+}$	(1.71	\pm	0.24) %		1651
$D^{(*)} + \overline{D}^{**0}$	(2.7	\pm	1.2) %		_
$\overline{D}^{s}(2007)^{0}D^{*}(2010)^{+}$	(8.1) × 10 ⁻⁴		1713
$\overline{D}{}^{0}D^{*}(2010)^{+}+$	<	1.30			%	CL=90%	1792
$\overline{D}^*(2007)^0 D^+$							
$\overline{D}{}^{0}D^{*}(2010)^{+}$	(3.9	\pm	0.5	$) \times 10^{-4}$		1792
$\overline{D}{}^0D^+$	($) \times 10^{-4}$		1866
$\overline{D}{}^0D^+K^0$	($) \times 10^{-3}$		1571
$D^{+}\overline{D}^{*}(2007)^{0}$	(6.3			$) \times 10^{-4}$		1791
$\overline{D}^*(2007)^0 D^+ K^0$	(2.1			$) \times 10^{-3}$		1475
$\overline{D}^0 D^* (2010)^+ K^0$	(3.8			$) \times 10^{-3}$		1476
$\overline{D}^*(2007)^0 D^*(2010)^+ K^0$ $\overline{D}^0 D^0 K^+$	($) \times 10^{-3}$		1362
	($) \times 10^{-3}$	S=2.6	1577
$\overline{D}^*(2007)^0 D^0 K^+$	($) \times 10^{-3}$		1481
$\overline{D}^0 D^* (2007)^0 K^+$	(6.3			$) \times 10^{-3}$		1481
$\overline{D}^*(2007)^0 D^*(2007)^0 K^+ $ $D^- D^+ K^+$	(0.13	•		1368
	($) \times 10^{-4}$		1571
$X_0(2900)D^+$, $X_0 ightarrow$	(1.2	土	0.5) × 10 ⁻⁵		_
$X_1(2900)D^+, X_1 o D^-K^+$	(6.7	±	2.3) × 10 ⁻⁵		-
$D^-D^+K^+$ nonresonant	(5.3	\pm	1.8	$) \times 10^{-5}$		1571
$D^-D^*(2010)^+K^+$	(6.3			$) \times 10^{-4}$		1475
$D^*(2010)^- D^+ K^+$	(6.0			$) \times 10^{-4}$		1475
$D^*(2010)^- D^*(2010)^+ K^+$	(1.32	\pm	0.18	$) \times 10^{-3}$		1363
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(4.05	\pm	0.30) %		_
$D_s^+\pi^0$	(1.6	\pm	0.5	$) \times 10^{-5}$		2270
$D^{*+}\pi^{0}$	<	2.6			$\times 10^{-4}$	CL=90%	2215
$D_s^+ \eta$	<	4			$\times 10^{-4}$	CL=90%	2235
	<	6			$\times10^{-4}$	CL=90%	2178
$D_{\rho}^{+}\rho^{0}$	<	3.0			$\times10^{-4}$	CL=90%	2197
$D^{*+}\rho^{0}$	<	4			$\times 10^{-4}$	CL=90%	2138
$D^+\omega$	<	4				CL=90%	2195
$D^{*+}\omega$	<	6				CL=90%	2136
D^{+} 31 (1260)0	<	1.8				CL=90%	2079
$D_s^{*+} = (1260)^0$						CL=90%	
$D_s = a_1(1200)$	<	1.3				CL=90%	2015
D_s^+ K^+ K^-	(7.2	土	1.1	$) \times 10^{-6}$	- 0/	2149
$D_{s}^{\dagger}\phi$	<	4.2				CL=90%	2141
$D_{s}^{*} \overline{\phi}$	<	1.2				CL=90%	2079
$D_s^+ K^0$	<	8				CL=90%	2242
$D_s^{*+} K^0$	<	9			\times 10 ⁻⁴	CL=90%	2185
$D_{s}^{*} \eta$ $D_{s}^{+} \rho^{0}$ $D_{s}^{*+} \rho^{0}$ $D_{s}^{+} \omega$ $D_{s}^{*+} \omega$ $D_{s}^{+} a_{1}(1260)^{0}$ $D_{s}^{+} K^{+} K^{-}$ $D_{s}^{+} \phi$ $D_{s}^{+} \phi$ $D_{s}^{+} \overline{K}^{0}$ $D_{s}^{+} \overline{K}^{*}(892)^{0}$	<	4.4			\times 10 ⁻⁶	CL=90%	2172

$D_s^+ K^{*0}$	<	3.5	$\times 10^{-6}$	CL=90%	2172
$D_s^{*+}\overline{K}^*(892)^0$	<	3.5	$\times 10^{-4}$	CL=90%	2112
$D_s^-\pi^+K^+$	($1.80 ~\pm~ 0.22$	$) \times 10^{-4}$		2222
$D_s^{*-}\pi^+K^+$	($1.45 ~\pm~ 0.24$	$) \times 10^{-4}$		2164
$D_s^- \pi^+ K^* (892)^+$	<	5	$\times 10^{-3}$	CL=90%	2138
$D_s^{*-}\pi^+K^*(892)^+$	<	7	$\times 10^{-3}$	CL=90%	2076
$D_s^- K^+ K^+$	(9.7 ± 2.1	$) \times 10^{-6}$		2149
$D_s^{*-} K^+ K^+$	<	1.5	$\times 10^{-5}$	CL=90%	2088

Charmonium modes

$X(4020)^0K^+$, $X^0 ightarrow$		<	1.6			$\times 10^{-5}$	CL=90%	_
$\chi_{c1}(3872)K^*(892)^+$		<	6			× 10 ⁻⁴	CL=90%	940
$\chi_{c1}(3872)^+ K^0, \ \chi_{c1}^+ \rightarrow$	[///]	<					CL=90%	_
$J/\psi(1S)\pi^+\pi^0$	[,,,]		0.1			× 10	CL-3070	
$\chi_{c1}(3872)K^{0}\pi^{+}$		(2.8	+ -	1 2) × 10 ⁻⁴		1085
$Z_c(4430)^+ K^0, Z_c^+ \rightarrow J/\psi \pi^+$		<				× 10 ⁻⁵	CI -05%	1005
$Z_c(4430)^+ K^0, Z_c^+ \rightarrow$						× 10 × 10 ⁻⁵		
$\psi(2S)\pi^+$		<	4.7			× 10	CL=95%	_
$Z_c(4430)^0 K^+, Z_c^0 \rightarrow J/\psi \eta$		<	1.27			$\times10^{-6}$	CL=90%	_
$\psi(4230)^{0}K^{+}, \ \psi^{0} \rightarrow$		<	1.56				CL=95%	_
$J/\psi \pi^+ \pi^-$								
$\psi(4230)K^+, \ \psi \rightarrow \ J/\psi \eta$		<	3.9			$\times10^{-7}$	CL=90%	_
$\psi(4360)K^+, \ \psi \rightarrow J/\psi \eta$		<	1.24			$\times 10^{-6}$	CL=90%	_
ψ (4390) K^+ , $\psi \rightarrow J/\psi \eta$		<	2.41			$\times 10^{-6}$	CL=90%	_
$\chi_{c0}(3915)K^+$, $\chi_{c0} \rightarrow J/\psi \gamma$		<	1.4			$\times10^{-5}$	CL=90%	_
$\chi_{c0}(3915)K^+$, $\chi_{c0} ightarrow$		<	3.8			$\times10^{-5}$	CL=90%	_
$\chi_{c1}(1P)\pi^{0}$								
$X(3930)^0 K^+, X^0 \to J/\psi \gamma$		<	2.5			$\times 10^{-6}$	CL=90%	_
$J/\psi(1S)K^+$		(1.020	0± (0.019	$9) \times 10^{-3}$		1684
$J/\psi(1S)K^0\pi^+$		(1.14	± (0.11	$) \times 10^{-3}$		1651
$J/\psi(1S)K^{+}\pi^{+}\pi^{-}$		(8.1	± :	1.3	$) \times 10^{-4}$	S=2.5	1612
$J/\psi(1S) K^+ K^- K^+$		($) \times 10^{-5}$		1252
$\chi_{c0}(3915){ m K}^+$, $\chi_{c0} ightarrow~{ m p}{\overline { m p}}$		<	7.1			$\times 10^{-8}$	CL=95%	_
$J/\psi(1S)K^*(892)^+$		(1.43	± (80.0	$) \times 10^{-3}$		1571
$J/\psi(1S)K(1270)^+$		(1.8	± (0.5	$) \times 10^{-3}$		1402
$J/\psi(1S)K(1400)^+$		<	5			$\times 10^{-4}$	CL=90%	1308
$J/\psi(1S)\etaK^+$		(1.24	± (0.14	$) \times 10^{-4}$		1510
$\chi_{c1-odd}(3872)K^{+}$,		<	3.8			$\times 10^{-6}$	CL=90%	_
$\chi_{c1-odd} o J/\psi \eta$								
ψ (4160) K^+ , $\psi o extit{J}/\psi\eta$		<	8.7				CL=90%	_
$J/\psi(1\mathcal{S})\eta^\prime\mathcal{K}^+$		<	8.8				CL=90%	1273
$J/\psi(1S)\phi K^+$		(5.0	± (0.4	$) \times 10^{-5}$		1227
$J/\psi(1S) K_1(1650), \;\; K_1 ightarrow \phi K^+$		(6	+10) 6	$) \times 10^{-6}$		_
$J/\psi(1S) K^*(1680)^+, K^* \rightarrow \phi K^+$		(3.4	+ 1	1.9 2.2	$) \times 10^{-6}$		_
$J/\psi(1S) K_2^*(1980), K_2^* \rightarrow \phi K^+$		(1.5	+ (0.9 0.5	$)\times10^{-6}$		-
$J/\psi(1S)K(1830)^+,\ K(1830)^+ o \phiK^+$		(1.3	+ 1	1.3 1.1	$)\times10^{-6}$		-

$\chi_{c1}(4140)K^+,~\chi_{c1} ightarrow J/\psi(1S)\phi$	(10	±	4) × 10 ⁻⁶		-
$\chi_{c1}(4274)K^+, \chi_{c1} \rightarrow J/\psi(1S)\phi$	(3.6	+	2.2 1.8	$) \times 10^{-6}$		_
$\chi_{c0}(4500)K^+, \ \chi_{c0} \rightarrow J/\psi(1S)\phi$	(3.3	+	2.1 1.7	$) \times 10^{-6}$		_
$\chi_{c0}(4700)K^+, \ \chi_{c0} \rightarrow J/\psi(1S)\phi$	(6	+	5 4) × 10 ⁻⁶		_
$J/\psi(1S)\omegaK^+$	(3.20	+	0.60 0.32	$) \times 10^{-4}$		1388
$\chi_{c0}(3915)K^+,~\chi_{c0} ightarrow J/\psi\omega$	(3.0	+	0.9 0.7	$) \times 10^{-5}$		1103
$J/\psi(1S)\pi^+$	(3.92	\pm	0.08	$) \times 10^{-5}$		1728
$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	(1.17	\pm	0.13	$) \times 10^{-5}$		1635
$\psi(2S)\pi^{+}\pi^{+}\pi^{-}$	($) \times 10^{-5}$		1304
$J/\psi(1\mathcal{S}) ho^+$	(4.1	\pm	0.5	$) \times 10^{-5}$	S=1.4	1611
$J/\psi(1\mathcal{S})\pi^+\pi^0$ nonresonant	<				$\times 10^{-6}$		1717
$J/\psi(1S)a_1(1260)^+$	<	1.2			$\times 10^{-3}$	CL=90%	1415
$J/\psi(1\mathcal{S}) ho\overline{\overline{ ho}}\pi^+$	<				$\times 10^{-7}$	CL=90%	643
$J/\psi(1S)\underline{\rho}\overline{\Lambda}$	(1.46			$) \times 10^{-5}$		567
$J/\psi(1S)\overline{\Sigma}^0 p$	<	1.1			$\times 10^{-5}$		_
$J/\psi(1S)\underline{D}^+$	<					CL=90%	871
$J/\psi(1S)\overline{D}{}^0\pi^+$	<					CL=90%	665
$\psi(2S)\pi^+$					$) \times 10^{-5}$		1347
$\psi(2S)K^{+}$					$) \times 10^{-4}$		1284
$\psi(2S) K^*(892)^+$	($) \times 10^{-4}$	S=1.3	1116
$\psi(2S) K^{+} \pi^{+} \pi^{-}$	($) \times 10^{-4}$		1179
$\psi(2S)\phi(1020)K^{+}$	($) \times 10^{-6}$		418
$\psi(3770)K^{+}$	($) \times 10^{-4}$	C 1.4	1218
$\psi(3770)K+,\psi\to D^0\overline{D}^0$ $\psi(3770)K+,\psi\to D^+D^-$	($) \times 10^{-4}$ $) \times 10^{-5}$	S=1.4	1218
$\psi(3770)K^+, \ \psi \rightarrow \ p\overline{p}$	<				$\times 10^{-7}$	CI -05%	1218
$\psi(3770)K^+, \ \psi \rightarrow J/\psi \eta$	<				× 10 × 10 ⁻⁷		_
$\psi(4040)K^+$	($) \times 10^{-3}$	CL-3070	1003
$\psi(4040)K^{+}, \ \psi \rightarrow D^{+}D^{-}$	($) \times 10^{-5}$		_
$\psi(4160)K^{+}$	(5.1	±	2.7	$) \times 10^{-4}$		868
$\psi(4160)K^+, \ \psi \rightarrow \ \overline{D}{}^0D^0$	() × 10 ⁻⁵		_
$\psi(4160)K^+, \ \psi \rightarrow D^+D^-$	($) \times 10^{-5}$		_
ψ (4415) K^+ , $\psi \rightarrow D^+D^-$	($) \times 10^{-5}$		_
ψ (4415) K^+ , $\psi o extit{J}/\psi\eta$	<	9.6			$\times 10^{-7}$	CL=90%	_
$\chi_{c0}\pi^+, \chi_{c0} \rightarrow \pi^+\pi^-$	<	1			\times 10 ⁻⁷	CL=90%	1531
$\chi_{c0}\mathrm{K}^+$	(1.51	+	0.15	$) \times 10^{-4}$		1478
$\chi_{c0} K^*(892)^+$	<					CL=90%	1341
HTTP://PDG.LBL.GOV	Page 8	38		Cr	eated: 7	/10/2023	15:48

$v_{-1}(1P)\pi^{+}$					F		
$\chi_{c1}(1P)\pi^{+}$	(\times 10 ⁻⁵		1468
$\chi_{c1}(1P)K^+$	(4.74	\pm	0.22)	$\times 10^{-4}$		1412
$\chi_{c1}(1P)K^*(892)^+$	(3.0	\pm	0.6)	\times 10 ⁻⁴	S=1.1	1265
$\chi_{c1}(1P) K^0 \pi^+$	(5.8	\pm	0.4)	$\times 10^{-4}$		1370
$\chi_{c1}(1P)K^{+}\pi^{0}$	($\times 10^{-4}$		1373
$\chi_{c1}(1P)K^{+}\pi^{+}\pi^{-}$	Ì			,	$\times10^{-4}$		1319
$\chi_{c1}(2P)K^+, \ \chi_{c1}(2P) \rightarrow$	<					CL=90%	_
$\pi^{+}\pi^{-}\chi_{c1}(1P)$							
$\chi_{c2}K^{+}$	(1 1	_	04)	$\times 10^{-5}$		1379
$\chi_{c2}K^+, \chi_{c2} \rightarrow p\overline{p}\pi^+\pi^-$	<		_		× 10 × 10 ⁻⁷		1319
$\chi_{c2}N$, $\chi_{c2} \rightarrow ppn$						CL=90%	1000
$\chi_{c2} K^*(892)^+$	<	1.2			_	CL=90%	1228
$\chi_{c2} K^0 \pi^+$	(土	0.25)	$\times 10^{-4}$	GL 000/	1336
$\chi_{c2} K^+ \pi^0$	< ,	6.2				CL=90%	1339
$\chi_{c2} K^+ \pi^+ \pi^-$	(\times 10 ⁻⁴		1284
$\chi_{c2}(3930)K^+, \ \chi_{c2} \rightarrow D^+D^-$	(,	\times 10 ⁻⁵		_
$\chi_{c2}(3930)\pi^{+}, \ \chi_{c2} \rightarrow \pi^{+}\pi^{-}$	<					CL=90%	1437
$h_c(1P)K^+$	($\times 10^{-5}$		1401
$h_c(1P)K^+$, $h_c o ho\overline{ ho}$	<	6.4			$\times 10^{-8}$	CL=95%	_
		_					
	· K*	mode	_		E		
$K^0\pi^+$	(\times 10 ⁻⁵		2614
$K^+\pi^0$	(\times 10 ⁻⁵		2615
η^\prime K $^+$	(7.04	\pm	0.25)	\times 10 ⁻⁵		2528
$\eta' K^*(892)^+$	(/ Q	+	1.8	$\times 10^{-6}$		0.470
	(4.0	_	1.6	/\ _ 0		2472
$\eta' K_0^* (1430)^+$	(2472
$\eta' K_0^* (1430)^+$ $\eta' K_0^* (1430)^+$	(5.2	±	2.1)	$\times10^{-6}$		_
$\eta' K_2^{\circ}(1430)^+$	(5.2 2.8	± ±	2.1) 0.5)	$^{\times10^{-6}}_{\times10^{-5}}$	S—1.7	– 2346
$\eta' K_2^* (1430)^+ $ ηK^+	(5.2 2.8 2.4	± ± ±	2.1) 0.5) 0.4)	$\times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6}$	S=1.7	– 2346 2588
$\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$	(5.2 2.8 2.4 1.93	± ± ±	2.1) 0.5) 0.4) 0.16)	$\times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-5}$	S=1.7	– 2346
$\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$ $\eta K_{0}^{*}(1430)^{+}$	(5.2 2.8 2.4 1.93 1.8	± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4)	$\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$	S=1.7	- 2346 2588 2534 -
$\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$		5.2 2.8 2.4 1.93 1.8 9.1	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$\times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-5}$	S=1.7	– 2346 2588
$\eta' K_{2}^{*}(1430)^{+}$ ηK^{+} $\eta K^{*}(892)^{+}$ $\eta K_{0}^{*}(1430)^{+}$ $\eta K_{2}^{*}(1430)^{+}$ $\eta(1295) K^{+} \times B(\eta(1295) \rightarrow$		5.2 2.8 2.4 1.93 1.8	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$	S=1.7	- 2346 2588 2534 -
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $		5.2 2.8 2.4 1.93 1.8 9.1 2.9	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-6}$ $\times 10^{-6}$		- 2346 2588 2534 - 2414 2455
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \Pi) $		5.2 2.8 2.4 1.93 1.8 9.1 2.9	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-6}$ $\times 10^{-5}$ $\times 10^{-5}$ $\times 10^{-6}$ $\times 10^{-6}$	S=1.7 CL=90%	- 2346 2588 2534 - 2414
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $		5.2 2.8 2.4 1.93 1.8 9.1 2.9	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-6} $	CL=90%	- 2346 2588 2534 - 2414 2455
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \Pi) $		5.2 2.8 2.4 1.93 1.8 9.1 2.9	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-6} $		- 2346 2588 2534 - 2414 2455
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9	± ± ± ± ±	2.1) 0.5) 0.4) 0.16) 0.4) 3.0)	$ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-6} $	CL=90%	- 2346 2588 2534 - 2414 2455
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8)	$ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-6} $ $ \times 10^{-6} $	CL=90%	- 2346 2588 2534 - 2414 2455 2425
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8)	$ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-5} $ $ \times 10^{-6} $ $ \times 10^{-6} $	CL=90%	- 2346 2588 2534 - 2414 2455
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3 1.2	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8)	$ \begin{array}{r} \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-5} \end{array} $	CL=90% CL=90%	- 2346 2588 2534 - 2414 2455 2425 2425
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3 1.2	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8)	$ \begin{array}{r} \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-5} \\ \end{array} $	CL=90% CL=90%	- 2346 2588 2534 - 2414 2455 2425 2425 2425
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1420) K^{+} \times B(\eta(1420) \rightarrow K^{*} K) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3 1.2	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8)	$ \begin{array}{r} \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-5} \\ \end{array} $	CL=90% CL=90%	- 2346 2588 2534 - 2414 2455 2425 2425
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1420) K^{+} \times B(\eta(1420) \rightarrow \eta \pi \pi) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3 1.2 2.0 2.9	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8) 0.7)	$ \begin{array}{r} \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6} \\ $	CL=90% CL=90% CL=90% CL=90%	- 2346 2588 2534 - 2414 2455 2425 2425 2425 2427 2458 2420
$ \eta' K_{2}^{*}(1430)^{+} $ $ \eta K^{+} $ $ \eta K^{*}(892)^{+} $ $ \eta K_{0}^{*}(1430)^{+} $ $ \eta K_{2}^{*}(1430)^{+} $ $ \eta(1295) K^{+} \times B(\eta(1295) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow \eta \pi \pi) $ $ \eta(1405) K^{+} \times B(\eta(1405) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1475) K^{+} \times B(\eta(1475) \rightarrow K^{*} K) $ $ \eta(1420) K^{+} \times B(\eta(1420) \rightarrow K^{*} K) $	((((((((((((((((((((5.2 2.8 2.4 1.93 1.8 9.1 2.9 1.3 1.2	± ± ± ± ± +-	2.1) 0.5) 0.4) 0.16) 0.4) 3.0) 0.8) 0.7)	$ \begin{array}{r} \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-5} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-6} \\ \times 10^{-5} \\ \times 10^{-6} \\ $	CL=90% CL=90%	- 2346 2588 2534 - 2414 2455 2425 2425 2425

ϕ (1680) $K^+ \times B(\phi$ (1680) $ o$ $K^*K)$	<	3.4			× 10 ⁻⁶	CL=90%	2344
$f_0(1500)K^+$	(3.7	±	2.2) × 10 ⁻⁶		2393
ωK^+	($) \times 10^{-6}$		2558
$\omega K^*(892)^+$	<	7.4				CL=90%	2503
$\omega(\kappa \pi)_0^{*+}$	(\pm	0.4	$) \times 10^{-5}$		_
$\omega K_0^* (1430)^+$	(2.4) × 10 ⁻⁵		_
$\omega K_2^*(1430)^+$	(2.1) × 10 ⁻⁵		2379
$a_0(980)^+ K^0 \times B(a_0(980)^+ \rightarrow$	<	3.9	_	0		CL=90%	
$\eta \pi^+$)		3.3			× 10	CL-3070	
$a_0(980)^{0}K^{+}{ imes}{ m B}(a_0(980)^{0} ightarrow$	<	2.5			\times 10 ⁻⁶	CL=90%	_
$\eta \pi^0$)	,				\5		
$K^*(892)^0 \pi^+$	($) \times 10^{-5}$		2562
$K^*(892)^+\pi^0$ $K^+\pi^-\pi^+$	($) \times 10^{-6}$		2563
	() × 10 ⁻⁵		2609
$K^+\pi^-\pi^+$ nonresonant	(1.63	+	0.21	$) \times 10^{-5}$		2609
ω (782) K^+	(6	\pm	9	$) \times 10^{-6}$		2558
${\mathcal K}^+ extit{f}_0(980) imes {\mathsf B}(extit{f}_0(980) ightarrow \pi^+ \pi^-)$	(9.4	+	1.0 1.2) × 10 ⁻⁶		2522
$f_2(1270)^0 K^+$	(1 07	+	0.27) × 10 ⁻⁶		_
$f_0(1370)^0 K^+ \times$	<				× 10 ⁻⁵	CI =90%	_
$B(f_0(1370)^0 \to \pi^+\pi^-)$		1.01			× 10	CL-3070	
$\rho^{0}(1450)K^{+}\times$	<	1.17			× 10 ⁻⁵	CL=90%	_
$B(\rho^0(1450) \to \pi^+\pi^-)$					/\ 0	32 30,0	
$f_2'(1525)K^+ \times$	<	3.4			$\times 10^{-6}$	CL=90%	2394
$B(f_2'(1525) \to \ \pi^+\pi^-)$							
$K^{+}\rho^{0}$	(3.7	+	0.5) × 10 ⁻⁶		2559
$K_0^*(1430)^0\pi^+$	(S=1.4	2445
	`				$) \times 10^{-5}$	3=1.4	2443
$K_2^*(1430)^0\pi^+$	(5.6	+	2.2 1.5	$) \times 10^{-6}$		2445
$K^*(1410)^0\pi^+$	<	4.5				CL=90%	2448
$K^*(1680)^0\pi^+$	<	1.2			$\times 10^{-5}$	CL=90%	2358
$K^+\pi^{0}\pi^{0}$	(1.62	\pm	0.19	$) \times 10^{-5}$		2610
$f_0(980) K^+ imes B(f_0 o \pi^0 \pi^0)$	(2.8	\pm	8.0	$) \times 10^{-6}$		2522
$K^-\pi^+\pi^+$	<	4.6			$\times 10^{-8}$	CL=90%	2609
$\mathcal{K}^-\pi^+\pi^+$ nonresonant	<	5.6				CL=90%	2609
$K_1(1270)^0\pi^+$	<	4.0				CL=90%	2489
$K_{1}(1400)^{0}\pi^{+}$	<	3.9			$\times 10^{-5}$		2451
$K^0\pi^+\pi^0$	<	6.6			$\times 10^{-5}$	CL=90%	2609
$K_0^*(1430)^+\pi^0$	(1.19	+	0.20 0.23	$)\times10^{-5}$		_
$\kappa^0 ho^+$	(7.3	+	1.0 1.2	$) \times 10^{-6}$		2558

$K^*(892)^+\pi^+\pi^-$	(7.5			$) \times 10^{-5}$		2557
$K^*(892)^+ \rho^0$	(4.6		1.1			2504
$K^*(892)^+ f_0(980)$	(4.2			$) \times 10^{-6}$		2466
$a_1^+ K^0$	(3.5		0.7	•		_
$b_1^+ K^0 imes B(b_1^+ o \omega \pi^+)$	(9.6	\pm	1.9	$) \times 10^{-6}$		_
$K^*(892)^0 \rho^+$	(9.2	\pm	1.5	$) \times 10^{-6}$		2504
$K_1(1400)^+ ho^0$	<	7.8			$\times 10^{-4}$	CL=90%	2388
$K_2^*(1430)^+ \rho^0$	<	1.5			$\times 10^{-3}$	CL=90%	2381
$b_1^{\overline{0}} K^+ imes B(b_1^0 o \ \omega \pi^0)$	(9.1	\pm	2.0	$) \times 10^{-6}$		_
$b_1^{ar{+}} K^{*0} imes B(ar{b}_1^+ o \ \omega \pi^+)$	<	5.9			$\times 10^{-6}$	CL=90%	_
$b_1^{ar{0}} K^{*+} imes B(b_1^{ar{0}} o \ \omega \pi^0)$	<	6.7			$\times 10^{-6}$	CL=90%	_
$K^+ \overline{K}^0$	(1.31	\pm	0.17	$) \times 10^{-6}$	S=1.2	2593
$\overline{K}{}^0K^+\pi^0$	<	2.4			$\times 10^{-5}$		2578
$K^{+}K_{S}^{0}K_{S}^{0}$	(1.05	\pm	0.04	\times) \times 10 ⁻⁵		2521
$f_0(980)K^+, f_0 \rightarrow K_S^0K_S^0$	() × 10 ⁻⁵		_
$f_0(1710)K^+, f_0 \rightarrow K_S^0K_S^0$	(4.8	+	4.0	$) \times 10^{-7}$		_
$K^+K^0_SK^0_S$ nonresonant	($) \times 10^{-5}$		2521
$K_{S}^{0}K_{S}^{0}\pi^{+}$	<	5.1			$\times 10^{-7}$	CL=90%	2577
$K^{+}K^{-}\pi^{+}$	(5.2	\pm	0.4	$) \times 10^{-6}$		2578
$K^+K^-\pi^+$ nonresonant	() × 10 ⁻⁶		2578
$K^{+}\overline{K}^{*}(892)^{0}$	(5.9) × 10 ⁻⁷		2540
$K^{+}\overline{K}_{0}^{*}(1430)^{0}$	(3.8) × 10 ⁻⁷		2421
$\pi^{+}(K^{+}K^{-})^{'}_{S-wave}$	(8.5			$) \times 10^{-7}$		2578
$K^+K^+\pi^-$	<	1.1			× 10 ⁻⁸	CL=90%	2578
$K^+K^+\pi^-$ nonresonant	<	8.79			$\times10^{-5}$		2578
$f_2'(1525)K^+$	(_	S=1.1	2394
$K^{*+}\pi^{+}K^{-}$	<	1.18				CL=90%	2524
$K^*(892)^+ K^*(892)^0$	(2.9	$) \times 10^{-7}$		2485
$K^{*+}K^{+}\pi^{-}$	<				× 10 ⁻⁶	CL=90%	2524
$K^+K^-K^+$	(\times) \times 10 ⁻⁵		2523
$\mathcal{K}^+\phi$) × 10 ⁻⁶	S=1.1	2516
$f_0(980)K^+ imes {\sf B}(f_0(980) o$				0.0	$) \times 10^{-6}$		2522
K^+K^-	(J. T		5.2) ~ 10		2322
$a_2(1320) K^+ \times$	<	1.1			$\times 10^{-6}$	CL=90%	2449
$B(a_2(1320) \to K^+ K^-)$							
$X_0(1550)K^+ imes$	(4.3	\pm	0.7	$) \times 10^{-6}$		_
$B(X_0(1550) \to K^+K^-)$							
ϕ (1680) $K^+ imes B(\phi(1680) ightarrow$	<	8			\times 10 ⁻⁷	CL=90%	2344
K^+K^-)					_		
$f_0(1710) K^+ \times B(f_0(1710) \rightarrow$	(1.1	\pm	0.6	$) \times 10^{-6}$		2327
$K^+K^-)$							

$K^+K^-K^+$ nonresonant	(2.38	+	0.28) × 10 ⁻⁵		2523
$K^*(892)^+ K^+ K^-$	(3.6		0.00) × 10 ⁻⁵		2466
$K^*(892)^+ \phi$	(10.0		2.0	$) \times 10^{-6}$	S=1.7	2460
$\phi(K\pi)_0^{*+}$	(8.3	\pm	1.6	$) \times 10^{-6}$		_
$\phi K_1(1270)^+$	(6.1	\pm	1.9	$) \times 10^{-6}$		2380
$\phi K_1(1400)^+$	<	3.2				CL=90%	2339
$\phi K^*(1410)^+$	<	4.3			_	CL=90%	_
$\phi K_0^*(1430)^+$	(7.0			$) \times 10^{-6}$		_
$\phi K_2^*(1430)^+$	(8.4	±	2.1	$) \times 10^{-6}$		2332
$\phi K_2^* (1770)^+$	<	1.50				CL=90%	_
$\phi K_2^*(1820)^+$	<	1.63				CL=90%	_
$a_1^+ K^{*0}$	< ,	3.6				CL=90%	_
$K^+ \phi \phi \ \eta' \eta' K^+$	(4.2	±	0.8	$) \times 10^{-6}$	S=2.2	2306
$\frac{\eta}{\omega}\frac{\eta}{\phi}K^+$	<	2.5 1.9			_	CL=90% CL=90%	2338 2374
$X(1812)K^+ \times B(X \rightarrow \omega \phi)$	<	3.2			_	CL=90%	2314
$K^*(892)^+ \gamma$	(\pm	0.22	$) \times 10^{-5}$	S=1.7	2564
$K_1(1270)^+\gamma$	(4.4		0.7 0.6) × 10 ⁻⁵		2491
$\eta K^+ \gamma$	(7.9		0.9) × 10 ⁻⁶		2588
$\eta' K^+ \gamma$	(2.9		1.0 0.9) × 10 ⁻⁶		2528
$\phi K^+ \gamma$	(2.7) × 10 ⁻⁶	S=1.2	2516
$K^+\pi^-\pi^+\gamma$	(2.58	\pm		$) \times 10^{-5}$	S=1.3	2609
$K^*(892)^0\pi^+\gamma$	(2.33			$) \times 10^{-5}$		2562
$K^+ ho^0 \gamma$	(8.2	\pm	0.9	$) \times 10^{-6}$		2559
$(K^+\pi^-)_{NR}\pi^+\gamma$	(9.9	+	1.7 2.0	$) \times 10^{-6}$		2609
$K^0\pi^+\pi^0\gamma$	(4.6	\pm	0.5	$) \times 10^{-5}$		2609
$K_1(1400)^+ \gamma$	(10	+	5 4	$)\times10^{-6}$		2453
$K^*(1410)^+ \gamma$	(2.7	+	0.8 0.6	$)\times 10^{-5}$		_
$K_0^*(1430)^0\pi^+\gamma$	(1.32	+	0.26 0.32	$) \times 10^{-6}$		2445
$K_2^*(1430)^+ \gamma$	(1.4	\pm	0.4	$) \times 10^{-5}$		2447
$K^*(1680)^+ \gamma$	() × 10 ⁻⁵		2360
$K_3^*(1780)^+ \gamma$	<				$\times10^{-5}$	CL=90%	2340
$K_4^{(2045)} + \gamma$	<	9.9				CL=90%	2242
·					_		
Light unfla $ ho^+\gamma$					\times 10 ⁻⁷		2503
$\frac{\rho \cdot \gamma}{\pi + \pi^0}$	($) \times 10^{-6}$	S=1.2	2583 2636
$\pi^+\pi^+\pi^-$	($) \times 10^{-5}$	J—1.2	2630
$\rho^0\pi^+$	($) \times 10^{-6}$		2581
•	`				•		

Charged particle (h^{\pm}) modes

$$h^{\pm} = K^{\pm} \text{ or } \pi^{\pm}$$

HTTP://PDG.LBL.GOV

Page 93 Created: 7/10/2023 15:48

Baryon modes

	Daryon n	nodes	5				
$ ho \overline{ ho} \pi^+$	(1.62	\pm	0.20	$) \times 10^{-6}$		2439
$ ho\overline{p}\pi^+$ nonresonant	<	5.3			$\times 10^{-5}$	CL=90%	2439
$p\overline{p}\pi^+\pi^0$	(4.6	\pm	1.3	$) \times 10^{-6}$		2407
$p\overline{p}K^+$	($) \times 10^{-6}$	S=1.5	2348
$\Theta(1710)^{++}\overline{\rho}, \ \Theta^{++} \rightarrow$	[nnn] <	9.1			$\times 10^{-8}$	CL=90%	_
ρK ⁺							
$f_J(2220)K^+$, $f_J o p\overline{p}$	[nnn] <	4.1			$\times 10^{-7}$	CL=90%	2135
<i>p</i>	(3.1	\pm	0.6	$) \times 10^{-7}$		2322
$ ho\overline{ ho}K^+$ nonresonant	<				$\times 10^{-5}$	CL=90%	2348
$p \overline{p} K^*(892)^+$	(3.6	+	0.8	$) \times 10^{-6}$		2215
$f_J(2220)K^{*+}, f_J o p\overline{p}$	<	7.7			\times 10 ⁻⁷	CL=90%	2059
pΛ	(2.4	+	1.0 0.9	$) \times 10^{-7}$		2430
$p\overline{\Lambda}\gamma$	(2.4	+	0.5) × 10 ⁻⁶		2430
$p\overline{\Lambda}\pi^0$	() × 10 ⁻⁶		2402
$p\overline{\Sigma}(1385)^0$	<	4.7	_		× 10 ⁻⁷	CL=90%	2362
$\Delta^{+}\overline{\Lambda}$	<	8.2				CL=90%	_
$\frac{\overline{\rho}}{\overline{\Sigma}}\gamma$	<	4.6				CL=90%	2413
$p \overline{\Lambda} \pi^+ \pi^-$	(\pm	0.13	$) \times 10^{-5}$		2367
$p\overline{\Lambda}\pi^+\pi^-$ nonresonant	(5.9) × 10 ⁻⁶		2367
$\rho \overline{\Lambda} \rho^0$, $\rho^0 \rightarrow \pi^+ \pi^-$	Ì) × 10 ⁻⁶		2214
$p\overline{\Lambda}f_2(1270), f_2 \rightarrow \pi^+\pi^-$	(2.0) × 10 ⁻⁶		2026
$p\overline{\Lambda}K^{+}K^{-}$	(4.1) × 10 ⁻⁶		2132
$p\overline{\Lambda}\phi$	(8.0			$) \times 10^{-7}$		2119
$\overline{\rho}\dot{\Lambda}K^{+}K^{-}$	(3.7) × 10 ⁻⁶		2132
$\Lambda \overline{\Lambda} \pi^+$	<				$\times 10^{-7}$	CL=90%	2358
$\Lambda \overline{\Lambda} K^+$	(\pm	0.6	$) \times 10^{-6}$		2251
$\Lambda \overline{\Lambda} K^{*+}$	() × 10 ⁻⁶		2098
$\Lambda(1520)\overline{\Lambda}K^+$	($) \times 10^{-6}$		2126
$\Lambda \overline{\Lambda}(1520) K^+$	<	2.08			× 10 ⁻⁶		2126
$\overline{\Delta}{}^{0}p$	<	1.38			_	CL=90%	2403
$\Delta^{++} \overline{p}$	<	1.4				CL=90%	2403
$D^+ p \overline{\overline{p}}$	<	1.5				CL=90%	1860
$D^*(2010)^+ p \overline{p}$	<	1.5				CL=90%	1786
$\overline{D}^{0} p \overline{p} \pi^{+}$	(\pm	0.27	$) \times 10^{-4}$		1789
$\overline{D}^{*0} p \overline{p} \pi^+$	($) \times 10^{-4}$		1709
$D^{-} \stackrel{\prime}{\rho} \stackrel{\prime}{\overline{\rho}} \pi^{+} \pi^{-}$	() × 10 ⁻⁴		1705
$D^{*-}p\overline{p}\pi^{+}\pi^{-}$	() × 10 ⁻⁴		1621
$p \overline{\Lambda}{}^0 \stackrel{\overleftarrow{D}}{\overline{D}}{}^{\acute{0}}$	($) \times 10^{-5}$		_
$p \overline{\Lambda}{}^{0} \overline{D}^{*} (2007)^{0}$	<	5				CL=90%	_
$\frac{1}{\overline{\Lambda}_c} p \pi^+$	(2.3	\pm	0.4	$) \times 10^{-4}$	S=2.4	1980
-	•						

$\overline{\Lambda}_c^- \Delta(1232)^{++}$	<	1.9			$\times10^{-5}$	CL=90%	1928
$\overline{\varLambda}_c^- \Delta_X(1600)^{++}$	(4.7	\pm	1.0	$) \times 10^{-5}$		_
$\overline{\Lambda}_c^- \Delta_X(2420)^{++}$	(3.8	\pm	8.0	$) \times 10^{-5}$		_
	[000] (3.1	\pm	0.7	$) \times 10^{-5}$		_
$\sum_{c} (2520)^{0} p$					$\times 10^{-6}$	CL=90%	1904
$\overline{\Sigma}_c(2800)^0 p$	(2.7	\pm	0.9	$) \times 10^{-5}$		_
$\overline{\Lambda}_c^- p \pi^+ \pi^0$	(1.8	\pm	0.6	$) \times 10^{-3}$		1935
$\overline{\Lambda}_c^- \rho \pi^+ \pi^+ \pi^-$	(2.2	\pm	0.7	$) \times 10^{-3}$		1880
$\overline{\Lambda}_c^- \rho \pi^+ \pi^+ \pi^- \pi^0$	<	1.34			%	CL=90%	1823
$\Lambda_c^+ \Lambda_c^- K^+$	(4.9	\pm	0.7	$) \times 10^{-4}$		739
$\Xi_c(2930)\Lambda_c^+, \ \Xi_c \rightarrow \ K^+\Lambda_c^-$. (1.7	\pm	0.5	$) \times 10^{-4}$		_
$\overline{\Sigma}_c(2455)^0 p$	(3.0	\pm	0.7	$) \times 10^{-5}$		1938
$\overline{\Sigma}_c(2455)^0 p \pi^0$	(3.5	\pm	1.1	$) \times 10^{-4}$		1896
$\overline{\Sigma}_c(2455)^0 p \pi^- \pi^+$	(3.5	\pm	1.1	$) \times 10^{-4}$		1845
$\sum_{c} (2455)^{} p \pi^{+} \pi^{+}$	($) \times 10^{-4}$		1845
$\overline{\Lambda}_{c}(2593)^{-}/\overline{\Lambda}_{c}(2625)^{-}p\pi^{+}$	<	1.9			\times 10 ⁻⁴	CL=90%	_
$\overline{\Xi}_c^0 \Lambda_c^+$	(9.5	\pm	2.3	$) \times 10^{-4}$		1144
$\overline{\Xi}_c^0 \Lambda_c^+, \ \overline{\Xi}_c^0 o \ \overline{\Xi}^+ \pi^-$	(1.76	\pm	0.29	$) \times 10^{-5}$		1144
$\overline{\Xi}_{c}^{0}\Lambda_{c}^{+}, \ \overline{\Xi}_{c}^{0} \rightarrow \Lambda K^{+}\pi^{-}$	(1.14	\pm	0.26	$) \times 10^{-5}$		1144
$ \overline{\Xi}_{c}^{c} \Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \to \overline{\Xi}_{c}^{+} \pi^{-} $ $ \overline{\Xi}_{c}^{0} \Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \to \Lambda K^{+} \pi^{-} $ $ \overline{\Xi}_{c}^{0} \Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \to \rho K^{-} K^{-} \pi^{+} $	(5.5	\pm	1.9	$) \times 10^{-6}$		_
$ \Lambda_{c}^{+} = 0 $ $ \Lambda_{c}^{+} = 0 $	<				× 10 ⁻⁴	CL=90%	1023
$\Lambda_c^+ = \overline{\Xi}_c(2645)^0$	<	7.9			$\times10^{-4}$	CL=90%	_
$\Lambda_{c}^{c} = \overline{\Xi}_{c}(2790)^{0}$	() × 10 ⁻³		_

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

•				•	•	
$\pi^+\ell^+\ell^-$	B1	<	4.9	$\times 10^{-8}$	CL=90%	2638
$\pi^+e^+e^-$	B1	<	8.0	$\times 10^{-8}$	CL=90%	2638
$\pi^+\mu^+\mu^-$	B1	(1.78 ± 0.23	$) \times 10^{-8}$		2634
$\pi^+ u \overline{ u}$	B1	<	1.4	$\times 10^{-5}$	CL=90%	2638
$K^+\ell^+\ell^-$	B1	[ggg] ($4.7 \pm \ 0.5$	$) \times 10^{-7}$	S=2.3	2617
$\mathit{K}^{+}e^{+}e^{-}$	B1	(5.6 ± 0.6	$) \times 10^{-7}$		2617
$\mathcal{K}^+\mu^+\mu^-$	B1	(4.53 ± 0.35	$) \times 10^{-7}$	S=1.8	2612
${\it K}^+\mu^+\mu^-$ nonreso-	B1	($4.37 ~\pm~ 0.27$	$) \times 10^{-7}$		2612
nant						
$K^+ au^+ au^-$	B1	<	2.25	$\times 10^{-3}$	CL=90%	1687
$K^+\overline{ u} u$	B1	<	1.6	$\times 10^{-5}$	CL=90%	2617
$\rho^+ u \overline{ u}$	B1	<	3.0	$\times10^{-5}$	CL=90%	2583
$K^*(892)^+ \ell^+ \ell^-$	B1	[ggg] ($1.01 ~\pm~ 0.11$	$) \times 10^{-6}$	S=1.1	2564
$K^*(892)^+ e^+ e^-$	В1	($1.55 \begin{array}{c} + & 0.40 \\ - & 0.31 \end{array}$	$) \times 10^{-6}$		2564
$K^*(892)^+\mu^+\mu^-$	B1	($9.6~\pm~1.0$	$) \times 10^{-7}$		2560
$K^*(892)^+ \nu \overline{\nu}$	B1	<	4.0	$\times 10^{-5}$	CL=90%	2564

$K^+\pi^+\pi^-\mu^+\mu^-$	B1	(4.3	± 0.4	$) \times 10^{-7}$		2593
$\phi K^+ \mu^+ \mu^-$	B1	(7.9	$+\ 2.1 \\ -\ 1.7$	$) \times 10^{-8}$		2490
$\overline{\Lambda}$ p $ u\overline{ u}$		<	3.0		$\times10^{-5}$	CL=90%	2430
$\pi^{+}e^{+}\mu^{-}$	LF	<	6.4		$\times10^{-3}$		2637
$\pi^{+} e^{-} \mu^{+}$	LF	<	6.4			CL=90%	2637
$\pi^+ e^{\pm} \mu^{\mp}$	LF	<	1.7		$\times10^{-7}$		2637
$\pi^+ e^+ \tau^-$	LF	<	7.4			CL=90%	2338
$\pi^+e^-\tau^+$	LF	<	2.0		$\times10^{-5}$	CL=90%	2338
$\pi^+ e^{\pm} au^{\mp}$	LF	<	7.5		$\times10^{-5}$		2338
$\pi^+\mu^+\tau^-$	LF	<	6.2			CL=90%	2334
$\pi^+\mu^-\tau^+$	LF	<	4.5		$\times10^{-5}$	CL=90%	2334
$\pi^+ \mu^{\pm} \tau^{\mp}$	LF	<	7.2		$\times10^{-5}$	CL=90%	2334
$\mathit{K}^{+}e^{+}\mu^{-}$	LF	<	7.0		$\times10^{-9}$	CL=90%	2616
$K^+e^-\mu^+$	LF	<	6.4		$\times 10^{-9}$	CL=90%	2616
$K^+e^\pm\dot{\mu}^\mp$	LF	<	9.1			CL=90%	2616
$K^+e^+\tau^-$	LF	<	4.3		$\times 10^{-5}$	CL=90%	2312
$K^+e^- au^+$	LF	<	1.5			CL=90%	2312
$\mathit{K}^{+}\mathit{e}^{\pm} au^{\mp}$	LF	<	3.0			CL=90%	2312
$\mathcal{K}^+ \mu^+ au^-$	LF	<	4.5		$\times 10^{-5}$	CL=90%	2298
$K^+\mu^- au^+$	LF	<	2.8			CL=90%	2298
$\mathit{K}^{+}\mu^{\pm} au^{\mp}$	LF	<	4.8		$\times 10^{-5}$		2298
$K^*(892)^+ e^+ \mu^-$	LF	<	1.3			CL=90%	2563
$K^*(892)^+ e^- \mu^+$	LF	<	9.9			CL=90%	2563
K^* (892) $^+$ $e^\pm\mu^\mp$	LF	<	1.4		$\times 10^{-6}$	CL=90%	2563
$\pi^{-}e^{+}e^{+}$	L	<	2.3			CL=90%	2638
$\pi^-\mu^+\mu^+$	L	<	4.0		$\times 10^{-9}$		2634
$\pi^{-}e^{+}\mu^{+}$	L	<	1.5			CL=90%	2637
$\rho^-e^+e^+$	L	<	1.7			CL=90%	2583
$\rho^-\mu^+\mu^+$	L	<	4.2			CL=90%	2578
$\rho^-e^+\mu^+$	L	<	4.7			CL=90%	2582
$K^-e^+e^+$	L	<	3.0		\times 10 ⁻⁸		2617
$K^-\mu^+\mu^+$	L	<	4.1			CL=90%	2612
$K^-e^+\mu^+$	L	<	1.6			CL=90%	2616
$K^*(892)^-e^+e^+$	L	<	4.0			CL=90%	2564
$K^*(892)^- \mu^+ \mu^+$	L	<	5.9			CL=90%	2560
$K^*(892)^-e^+\mu^+$	L	<	3.0			CL=90%	2563
$D^{-}e^{+}e^{+}$	L	<	2.6			CL=90%	2309
$D^{-}e^{+}\mu^{+}$	L	<	1.8			CL=90%	2307
$D^-\mu^+\mu^+$	L	<	6.9			CL=95%	2303
$D^{*-}\mu^{+}\mu^{+}$	L	<	2.4			CL=95%	2251
$D_s^-\mu^+\mu^+$	L	<	5.8		$\times 10^{-7}$	CL=95%	2267
$\overline{D}^0\pi^-\mu^+\mu^+$	L	<	1.5			CL=95%	2295
$\Lambda^0 \mu^+$	L,B	<	6		$\times 10^{-8}$	CL=90%	_

$$B^0$$

$$I(J^P) = \frac{1}{2}(0^-)$$

I, *J*, *P* need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^0}=5279.66\pm0.12$$
 MeV $m_{B^0}-m_{B^\pm}=0.32\pm0.05$ MeV Mean life $\tau_{B^0}=(1.519\pm0.004)\times10^{-12}$ s $c\tau=455.4~\mu{\rm m}$ $\tau_{B^+}/\tau_{B^0}=1.076\pm0.004$ (direct measurements)

B^0 - \overline{B}^0 mixing parameters

$$\begin{array}{l} \chi_d \; (B^0\text{-}\overline{B}{}^0 \; \text{mixing probability}) = 0.1858 \pm 0.0011 \\ \Delta m_{B^0} = m_{B_H^0} - m_{B_L^0} = (0.5065 \pm 0.0019) \times 10^{12} \; \hbar \; \text{s}^{-1} \\ & = (3.334 \pm 0.013) \times 10^{-10} \; \text{MeV} \\ \chi_d = \Delta m_{B^0}/\Gamma_{B^0} = 0.769 \pm 0.004 \\ \text{Re} \big(\lambda_{CP} \; / \; \big| \lambda_{CP} \big| \big) \; \text{Re}(\mathbf{z}) = 0.047 \pm 0.022 \\ \Delta \Gamma \; \text{Re}(\mathbf{z}) = -0.007 \pm 0.004 \; \text{ps}^{-1} \\ \text{Re}(\mathbf{z}) = (-4 \pm 4) \times 10^{-2} \quad (\mathbf{S} = 1.4) \\ \text{Im}(\mathbf{z}) = (-0.8 \pm 0.4) \times 10^{-2} \end{array}$$

CP violation parameters

$$\begin{split} &\text{Re}(\epsilon_{B^0})/(1+\big|\epsilon_{B^0}\big|^2) = (-0.5\pm0.4)\times10^{-3} \\ &A_{T/CP}(B^0\leftrightarrow\overline{B}^0) = 0.005\pm0.018 \\ &A_{CP}(B^0\to D^*(2010)^+D^-) = 0.013\pm0.014 \\ &A_{CP}(B^0\to \overline{D}^0\pi^0) = (0.4\pm2.4)\times10^{-2} \\ &A_{CP}(B^0\to [K^+K^-]_DK^*(892)^0) = -0.05\pm0.10 \\ &A_{CP}(B^0\to [K^+\pi^-]_DK^*(892)^0) = 0.047\pm0.029 \\ &A_{CP}(B^0\to [K^+\pi^-\pi^+\pi^-]_DK^*(892)^0) = 0.037\pm0.034 \\ &A_{CP}(B^0\to [K^-\pi^+]_DK^*(892)^0) = 0.19\pm0.19 \\ &A_{CP}(B^0\to [K^-\pi^+\pi^+\pi^-]_DK^*(892)^0) = -0.01\pm0.24 \\ &R_d^+=\Gamma(B^0\to [\pi^+K^-]_DK^{*0}) / \Gamma(B^0\to [\pi^-K^+]_DK^{*0}) = \\ &0.064\pm0.021 \\ &R_d^-=\Gamma(\overline{B}^0\to [\pi^-K^+]_DK^{*0}) / \Gamma(\overline{B}^0\to [\pi^+K^-]_DK^{*0}) = \\ &0.095\pm0.021 \\ &A_{CP}(B^0\to [\pi^+\pi^-]_DK^*(892)^0) = -0.18\pm0.14 \\ &A_{CP}(B^0\to [\pi^+\pi^-\pi^+\pi^-]_DK^*(892)^0) = -0.03\pm0.15 \\ \end{split}$$

$$\begin{split} R_d^+ &= \Gamma(B^0 \to [\pi^+ K^- \pi^+ \pi^-]_D K^{*0}) / \Gamma(B^0 \to [\pi^- K^+ \pi^+ \pi^-]_D K^{*0}) = 0.074 \pm 0.026 \\ R_d^- &= \Gamma(\overline{B}^0 \to [\pi^- K^+ \pi^+ \pi^-]_D K^{*0}) / \Gamma(\overline{B}^0 \to [\pi^+ K^- \pi^+ \pi^-]_D K^{*0}) = 0.072 \pm 0.025 \\ \textbf{ACP} (\textbf{B}^0 \to \textbf{K}^+ \pi^-) = -0.0834 \pm 0.0032 \\ A_{CP} (B^0 \to \eta' K^*(892)^0) = -0.07 \pm 0.18 \\ A_{CP} (B^0 \to \eta' K^*(1430)^0) = -0.19 \pm 0.17 \\ A_{CP} (B^0 \to \eta' K^*(1430)^0) = 0.14 \pm 0.18 \\ \textbf{ACP} (B^0 \to \eta K^*(1430)^0) = 0.19 \pm 0.05 \\ A_{CP} (B^0 \to \eta K^*(1430)^0) = 0.06 \pm 0.13 \\ A_{CP} (B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ A_{CP} (B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ A_{CP} (B^0 \to \eta K^*(1430)^0) = -0.07 \pm 0.19 \\ A_{CP} (B^0 \to \psi K^*(1430)^0) = -0.07 \pm 0.09 \\ A_{CP} (B^0 \to \psi K^*(1430)^0) = -0.07 \pm 0.09 \\ A_{CP} (B^0 \to \psi K^*(1430)^0) = -0.37 \pm 0.17 \\ A_{CP} (B^0 \to \psi K^*(1430)^0) = -0.37 \pm 0.17 \\ A_{CP} (B^0 \to \psi K^*(1430)^0) = -0.37 \pm 0.17 \\ A_{CP} (B^0 \to \psi K^*(1430)^0) = -0.01 \pm 0.03 \\ A_{CP} (B^0 \to \psi K^*(1450)^- K^+) = -0.10 \pm 0.33 \\ A_{CP} (B^0 \to \psi (1450)^- K^+) = -0.10 \pm 0.33 \\ A_{CP} (B^0 \to K^*(1430)^+ \pi^-) = -0.27 \pm 0.04 \\ A_{CP} (B^0 \to K^*(1430)^+ \pi^-) = -0.27 \pm 0.04 \\ A_{CP} (B^0 \to K^*(1680)^+ \pi^-) = -0.29 \pm 0.24 \\ A_{CP} (B^0 \to K^*(1680)^+ \pi^-) = -0.07 \pm 0.14 \\ A_{CP} (B^0 \to K^*(1680)^+ \pi^-) = -0.15 \pm 0.11 \\ A_{CP} (B^0 \to K^*(1680)^+ \pi^-) = -0.15 \pm 0.11 \\ A_{CP} (B^0 \to K^*(1892)^0 \pi^0) = -0.15 \pm 0.11 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.05 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.05 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.05 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.05 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.10 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.05 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.10 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.07 \pm 0.05 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.01 \pm 0.05 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.01 \pm 0.05 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.01 \pm 0.05 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.01 \pm 0.05 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.01 \pm 0.05 \\ A_{CP} (B^0 \to K^*(892)^0 \pi^+ \pi^-) = 0.01 \pm 0.05 \\ A_{CP} ($$

$$A_{CP}(B^0 \to \rho^+ \pi^-) = 0.13 \pm 0.06 \quad (S = 1.1)$$

$$A_{CP}(B^0 \to \rho^- \pi^+) = -0.08 \pm 0.08$$

$$A_{CP}(B^0 \to a_1(1260)^{\pm} \pi^+) = -0.07 \pm 0.06$$

$$A_{CP}(B^0 \to b_1^- \pi^+) = -0.05 \pm 0.10$$

$$A_{CP}(B^0 \to b_1^- \pi^+) = -0.05 \pm 0.10$$

$$A_{CP}(B^0 \to \rho^- K^*(892)^0) = 0.05 \pm 0.12$$

$$A_{CP}(B^0 \to \rho^- K^*(892)^0) = 0.05 \pm 0.12$$

$$A_{CP}(B^0 \to K^{*0} \ell^+ \ell^-) = -0.05 \pm 0.10$$

$$A_{CP}(B^0 \to K^{*0} \ell^+ \ell^-) = -0.03 \pm 0.01$$

$$A_{CP}(B^0 \to K^{*0} \mu^+ \mu^-) = -0.034 \pm 0.024$$

$$C_{D^*-D^+}(B^0 \to D^*(2010)^- D^+) = -0.02 \pm 0.08$$

$$S_{D^*-D^+}(B^0 \to D^*(2010)^+ D^-) = -0.03 \pm 0.09 \quad (S = 1.1)$$

$$S_{D^*+D^-}(B^0 \to D^*(2010)^+ D^-) = -0.03 \pm 0.09 \quad (S = 1.1)$$

$$S_{D^*+D^-}(B^0 \to D^*(2010)^+ D^-) = -0.80 \pm 0.09$$

$$C_{D^{*+}D^{*-}}(B^0 \to D^* D^* D^+) = -0.01 \pm 0.09 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^* D^* D^+) = -0.01 \pm 0.09 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^* D^* D^*) = -0.01 \pm 0.09 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^* D^* D^*) = -0.03 \pm 0.09$$

$$C_{C}(B^0 \to D^* D^* D^*) = -0.03 \pm 0.10 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^* D^*) = -0.03 \pm 0.10 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^* D^*) = -0.01 \pm 0.10 \quad (S = 1.6)$$

$$S_{D^*+D^*}(B^0 \to D^* D^*) = -0.11 \pm 1.6 \quad (S = 3.5)$$

$$C(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0) = 0.01 \pm 0.29$$

$$S(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0) = 0.01 \pm 0.29$$

$$S(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0) = 0.11 \pm 0.4$$

$$C_{D^+D^-}(B^0 \to D^+D^-) = -0.22 \pm 0.24 \quad (S = 2.5)$$

$$S_{D^+D^-}(B^0 \to D^+D^-) = -0.06 \pm 0.06$$

$$S(B^0 \to J/\psi(1S)\rho^0) = -0.06 \pm 0.06$$

$$S(B^0 \to J/\psi(1S)\rho^0) = -0.06 \pm 0.06$$

$$S(B^0 \to J/\psi(1S)\rho^0) = -0.06 \pm 0.12$$

$$C_{D^*D^0}(B^0 \to K^0\pi^0) = 0.09 \pm 0.13 \quad (S = 1.4)$$

$$S_{C^0P^0}(B^0 \to K^0\pi^0) = 0.53 \pm 0.17 \quad (S = 1.5)$$

$$S_{C^0P^0}(B^0 \to K^0\pi^0) = 0.53 \pm 0.17$$

$$C_{I'(958)K_S^0}(B^0 \to I'^{(958)K_S^0}) = -0.04 \pm 0.20 \quad (S = 2.5)$$

$$S_{I'(958)K_S^0}(B^0 \to I'^{(958)K_S^0}) = 0.43 \pm 0.17 \quad (S = 1.5)$$

$$C_{I'(958)K_S^0}(B^0 \to I'^{(958)K_S^0}) = 0.43 \pm 0.17 \quad (S = 1.5)$$

$$C_{I'(958)K_S^0}(B^0 \to I'^{(958)K_S^0}) = 0.43 \pm 0.17 \quad (S = 1.5)$$

$$C_{I'(958)K_S^0}(B^0 \to I'^{(958)K_S^0}) = 0.04 \pm 0.20 \quad (S = 2.5)$$

$$S_{I'(958)K_S^0}(B^0 \to I'^{(958)K_S^0}) = 0.04 \pm$$

$$C(B^{0} \rightarrow K_{S}^{0}\pi^{0}\pi^{0}) = -0.21 \pm 0.20$$

$$S(B^{0} \rightarrow K_{S}^{0}\pi^{0}\pi^{0}) = 0.89_{-0.37}^{+0.27}$$

$$C_{\rho^{0}K_{S}^{0}}(B^{0} \rightarrow \rho^{0}K_{S}^{0}) = -0.04 \pm 0.20$$

$$S_{\rho^{0}K_{S}^{0}}(B^{0} \rightarrow \rho^{0}K_{S}^{0}) = 0.50_{-0.21}^{+0.17}$$

$$C_{f_{0}K_{S}^{0}}(B^{0} \rightarrow f_{0}(980)K_{S}^{0}) = 0.29 \pm 0.20$$

$$S_{f_{0}K_{S}^{0}}(B^{0} \rightarrow f_{0}(980)K_{S}^{0}) = -0.50 \pm 0.16$$

$$S_{f_{2}K_{S}^{0}}(B^{0} \rightarrow f_{2}(1270)K_{S}^{0}) = -0.5 \pm 0.5$$

$$C_{f_{2}K_{S}^{0}}(B^{0} \rightarrow f_{2}(1270)K_{S}^{0}) = 0.3 \pm 0.4$$

$$S_{f_{2}K_{S}^{0}}(B^{0} \rightarrow f_{2}(1300)K_{S}^{0}) = 0.13 \pm 0.35$$

$$S_{K^{0}\pi^{+}\pi^{-}}(B^{0} \rightarrow K_{1}(1300)K_{S}^{0}) = 0.13 \pm 0.35$$

$$S_{K^{0}\pi^{+}\pi^{-}}(B^{0} \rightarrow K_{1}(1300)K_{S}^{0}) = 0.0 \pm 0.4 \quad (S = 1.4)$$

$$S_{K_{S}^{0}K_{S}^{0}}(B^{0} \rightarrow K_{1}(1300)K_{S}^{0}) = 0.0 \pm 0.4 \quad (S = 1.4)$$

$$S_{K_{S}^{0}K_{S}^{0}}(B^{0} \rightarrow K_{1}^{0}K_{S}^{0}) = 0.0 \pm 0.4 \quad (S = 1.4)$$

$$S_{K_{S}^{0}K_{S}^{0}}(B^{0} \rightarrow K_{1}^{0}K_{S}^{0}) = 0.0 \pm 0.4 \quad (S = 1.4)$$

$$S_{K_{S}^{0}K_{S}^{0}}(B^{0} \rightarrow K_{1}^{0}K_{S}^{0}) = 0.0 \pm 0.1$$

$$C_{K^{+}K^{-}K_{S}^{0}}(B^{0} \rightarrow K^{+}K^{-}K_{S}^{0} \text{ nonresonant}) = 0.06 \pm 0.08$$

$$S_{K^{+}K^{-}K_{S}^{0}}(B^{0} \rightarrow K^{+}K^{-}K_{S}^{0} \text{ inclusive}) = 0.01 \pm 0.09$$

$$S_{K^{+}K^{-}K_{S}^{0}}(B^{0} \rightarrow K_{1}^{0}K_{S}^{0}) = 0.11 \pm 0.14$$

$$S_{K_{S}^{0}K_{S}^{0}}(B^{0} \rightarrow K_{1}^{0}K_{S}^{0}) = 0.01 \pm 0.14$$

$$C_{K_{S}^{0}K_{S}^{0}}(B^{0} \rightarrow K_{1}^{0}K_{S}^{0}) = 0.14 \pm 0.12$$

$$S_{K_{S}^{0}K_{S}^{0}}(B^{0} \rightarrow K_{1}^{0}K_{S}^{0}) = 0.36 \pm 0.33$$

$$S_{K_{S}^{0}\pi^{0}\gamma}(B^{0} \rightarrow K_{1}^{0}K_{1}^{0}\pi^{0}) = 0.36 \pm 0.33$$

$$S_{K_{S}^{0}\pi^{0}\gamma}(B^{0} \rightarrow K_{1}^{0}K_{1}^{0}\pi^{0}) = 0.36 \pm 0.33$$

$$S_{K_{S}^{0}\pi^{0}\gamma}(B^{0} \rightarrow K_{1}^{0}K_{1}^{0}\pi^{0}) = 0.36 \pm 0.32$$

$$S_{K_{1}^{0}K^{0}}(B^{0} \rightarrow K_{1}^{0}K_{1}^{0}K_{1}^{0}\pi^{0}) = 0.14 \pm 0.25$$

$$C_{K_{1}^{0}K_{1}^{0}}(B^{0} \rightarrow K_{1}^{0}K_{1}^{0}K_{1}^{0}) = 0.14 \pm 0.25$$

$$C_{K_{1}^{0}K_{1}^{0}}(B^{0} \rightarrow K_{1}^{0}K_{1}^{0}K_{1}^{0}) = 0.15 \pm 0.22$$

$$C_{K_{1}^{0}K_{1}^{0}}(B^{0} \rightarrow K_{1}^{0}K_{1}^{0}) = 0.15 \pm 0.5 \quad (S = 1.2)$$

$$C_{K_{1}^{0}K_{1}^{0}}(B^{0} \rightarrow K_{1}^{0}K_{1}^{0}) = 0.15 \pm 0.5$$

$$C_{K_{1}^{0}K_{1}^{0}}(B^{0} \rightarrow K_{$$

$$\begin{split} &S(B^0 \to K_{\circ}^0 \rho^0 \gamma) = -0.04 \pm 0.23 \\ &C(B^0 \to \rho^0 \gamma) = 0.4 \pm 0.5 \\ &S(B^0 \to \rho^0 \gamma) = -0.8 \pm 0.7 \\ &C_{\pi\pi}(B^0 \to \pi^+\pi^-) = -0.314 \pm 0.030 \\ &S_{\pi\pi}(B^0 \to \pi^+\pi^-) = -0.670 \pm 0.030 \\ &C_{\pi^0,\pi^0}(B^0 \to \pi^0\pi^0) = -0.33 \pm 0.22 \\ &C_{\rho\pi}(B^0 \to \rho^+\pi^-) = -0.03 \pm 0.07 \quad (S = 1.2) \\ &S_{\rho\pi}(B^0 \to \rho^+\pi^-) = 0.05 \pm 0.07 \\ &\Delta C_{\rho\pi}(B^0 \to \rho^+\pi^-) = 0.01 \pm 0.08 \\ &C_{\rho^0,\pi^0}(B^0 \to \rho^+\pi^-) = 0.01 \pm 0.08 \\ &C_{\rho^0,\pi^0}(B^0 \to \rho^0\pi^0) = 0.27 \pm 0.24 \\ &S_{\rho^0,\pi^0}(B^0 \to \rho^0\pi^0) = 0.23 \pm 0.34 \\ &C_{a_1\pi}(B^0 \to a_1(1260)^+\pi^-) = -0.05 \pm 0.11 \\ &S_{a_1\pi}(B^0 \to a_1(1260)^+\pi^-) = -0.2 \pm 0.4 \quad (S = 3.2) \\ &\Delta C_{a_1\pi}(B^0 \to a_1(1260)^+\pi^-) = -0.11 \pm 0.12 \\ &C(B^0 \to b_1^-K^+) = -0.22 \pm 0.24 \\ &\Delta C(B^0 \to b_1^-K^+) = -1.04 \pm 0.24 \\ &C_{\rho^0,\rho^0}(B^0 \to \rho^0\rho^0) = 0.3 \pm 0.7 \\ &C_{\rho\rho}(B^0 \to \rho^+\rho^-) = 0.00 \pm 0.09 \\ &S_{\rho\rho}(B^0 \to \rho^+\rho^-) = -0.14 \pm 0.13 \\ &|\lambda|(B^0 \to J/\psi K^*(892)^0) < 0.25, \text{CL} = 95\% \\ &\cos 2\beta(B^0 \to J/\psi K^*(892)^0) = 1.7^{+0.7}_{-0.9} \quad (S = 1.6) \\ &\cos 2\beta(B^0 \to [K_S^0\pi^+\pi^-]_{D(*)}h^0) = 0.91 \pm 0.25 \\ &(S_+ S_-)/2(B^0 \to D^{*-}\pi^+) = -0.039 \pm 0.011 \\ &(S_- S_+)/2(B^0 \to D^{*-}\pi^+) = -0.046 \pm 0.023 \\ &(S_- S_+)/2(B^0 \to D^{*-}\pi^+) = -0.024 \pm 0.032 \\ &S_-(B^0 \to D^+\pi^-) = 0.038 \pm 0.021 \\ &S_+(B^0 \to D^-\pi^+) = 0.038 \pm 0.021 \\ &(S_+ S_-)/2(B^0 \to D^-\pi^+) = -0.024 \pm 0.032 \\ &(S_- S_+)/2(B^0 \to D^-\pi^+) = -0.024 \pm 0.032 \\ &(S_- S_+)/2(B^0 \to D^-\rho^+) = -0.10 \pm 0.06 \\ &C_{\eta_c K_S^0}(B^0 \to \eta_c K_S^0) = 0.93 \pm 0.17 \\ &C_{c\overline{c}K^0}(*)^0(B^0 \to C\overline{c}K^0)^0 = (-0.8 \pm 1.7) \times 10^{-2} \\ &sin(2\beta) = 0.699 \pm 0.017 \\ &C_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^0) = (-0.8 \pm 1.7) \times 10^{-2} \\ &S_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^0) = (-0.8 \pm 1.7) \times 10^{-2} \\ &S_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^0) = (-0.8 \pm 1.7) \times 10^{-2} \\ &S_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^0) = (-0.8 \pm 1.7) \times 10^{-2} \\ &S_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^0) = (-0.701 \pm 0.017 \\ &S_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^$$

$$C_{J/\psi K^{*0}} (B^{0} \rightarrow J/\psi K^{*0}) = 0.03 \pm 0.10$$

$$S_{J/\psi K^{*0}} (B^{0} \rightarrow J/\psi K^{*0}) = 0.60 \pm 0.25$$

$$C_{\chi_{c0} K_{S}^{0}} (B^{0} \rightarrow \chi_{c0} K_{S}^{0}) = -0.3^{+0.5}_{-0.4}$$

$$S_{\chi_{c0} K_{S}^{0}} (B^{0} \rightarrow \chi_{c0} K_{S}^{0}) = -0.7 \pm 0.5$$

$$C_{\chi_{c1} K_{S}^{0}} (B^{0} \rightarrow \chi_{c1} K_{S}^{0}) = 0.06 \pm 0.07$$

$$S_{\chi_{c1} K_{S}^{0}} (B^{0} \rightarrow \chi_{c1} K_{S}^{0}) = 0.63 \pm 0.10$$

$$\sin(2\beta_{\text{eff}})(B^{0} \rightarrow \phi K^{0}) = 0.22 \pm 0.30$$

$$\sin(2\beta_{\text{eff}})(B^{0} \rightarrow \phi K_{0}^{*}(1430)^{0}) = 0.97^{+0.03}_{-0.52}$$

$$\sin(2\beta_{\text{eff}})(B^{0} \rightarrow K^{+} K^{-} K_{S}^{0}) = 0.77^{+0.13}_{-0.12}$$

$$\sin(2\beta_{\text{eff}})(B^{0} \rightarrow [K_{S}^{0} \pi^{+} \pi^{-}]_{D^{(*)}} h^{0}) = 0.80 \pm 0.16$$

$$\beta_{\text{eff}} (B^{0} \rightarrow [K_{S}^{0} \pi^{+} \pi^{-}]_{D^{(*)}} h^{0}) = (22 \pm 5)^{\circ}$$

$$2\beta_{\text{eff}} (B^{0} \rightarrow J/\psi \rho^{0}) = (42^{+10}_{-11})^{\circ}$$

$$|\lambda| (B^{0} \rightarrow [K_{S}^{0} \pi^{+} \pi^{-}]_{D^{(*)}} h^{0}) = 1.01 \pm 0.08$$

$$|\sin(2\beta + \gamma)| > 0.40, \text{ CL} = 90\%$$

$$2\beta + \gamma = (83 \pm 60)^{\circ}$$

$$\alpha = (85.2^{+4.8}_{-4.3})^{\circ}$$

$$x_{+}(B^{0} \rightarrow D K^{*0}) = 0.04 \pm 0.17$$

$$x_{-}(B^{0} \rightarrow D K^{*0}) = -0.16 \pm 0.14$$

$$y_{+}(B^{0} \rightarrow D K^{*0}) = -0.26 \pm 0.22$$

$$y_{-}(B^{0} \rightarrow D K^{*0}) = 0.20 \pm 0.25 \quad (S = 1.2)$$

$$r_{B0}(B^{0} \rightarrow D K^{*0}) = 0.257^{+0.021}_{-0.023}$$

$$\delta_{B0}(B^{0} \rightarrow D K^{*0}) = (194.1^{+9.6}_{-8.8})^{\circ}$$

 \overline{B}^0 modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm} X$, the values usually are multiplicities, not branching fractions. They can be greater than one.

B ⁰ DECAY MODES	I	Frac	tion (Γ _i ,	/Γ)		ale factor/ dence level	
$\ell^+ u_\ell X$	[ggg]	(10.33±	0.28) %	6		_
$e^{+}\nu_{e}X_{c}$	[000]	`	10.1 ±	,			_
$\ell^+ \nu_\ell X_{\mu}$		($1.51\pm$	0.19) >	< 10 ⁻³		_
$D\ell^+ u_\ell X$		($9.3~\pm$	0.8)%	6		_
$D^-\ell^+ u_\ell$	[ggg]	($2.24\pm$	0.09) %	6		2309
$D^- au^+ u_ au$		($1.05\pm$	0.23) %	6		1909
$D^*(2010)^-\ell^+ u_\ell$	[ggg]	($4.97\pm$	0.12) %	6		2257
$D^*(2010)^- \tau^+ \nu_{\tau}$		•	$1.58\pm$,		S=1.1	1838
$\overline{D}{}^0\pi^-\ell^+ u_\ell$		(4.1 \pm		_		2308
$D_0^*(2300)^- \ell^+ \nu_\ell, \ D_0^{*-} = \overline{D}^0 \pi^-$	\rightarrow	(3.0 ±	1.2) >	< 10 ⁻³	S=1.8	_
$D_2^*(2460)^-\ell^+\nu_\ell$, D_2^{*-}	\rightarrow	($1.21\pm$	0.33) >	< 10 ⁻³	S=1.8	2065
$\overline{\it D}^{(*)} {\sf n} \pi^{-} \ \overline{\it D}^{(*)} {\sf n} \pi \ell^{+} u_{\ell} ({\sf n} \ \geq \ 1)$		($2.3~\pm$	0.5) %	6		_
$\overline{D}^{*0}\pi^-\ell^+ u_\ell$		(5.8 ±	0.8) >	< 10 ⁻³	S=1.4	2256
$D_1(2420)^-\ell^+ u_\ell, \ D_1^\overline{D}^{*0}\pi^-$	>	(2.80±	0.28) >	< 10 ⁻³		-
$D_1'(2430)^-\ell^+ u_\ell, \ D_1'^\overline{D}^{*0}\pi^-$	\rightarrow	(3.1 ±	0.9)>	< 10 ⁻³		_
$D_2^*(2460)^- \ell^+ \nu_\ell$, D_2^{*-}	\rightarrow	(6.8 ±	1.2) >	< 10 ⁻⁴		2065
$D^{*0}\pi^- \over D^{*0}\pi^- \ell^+ u_\ell$		(1.3 ±	0.5) >	< 10 ^{−3}		2299
$D^{*-}\pi^{+}\pi^{-}\ell^{+}\overset{\circ}{ u_{\ell}}$			1.4 ±				2247
$ ho^-\ell^+ u_\ell$	[ggg]		$2.94\pm$				2583
$\pi^-\ell^+ u_\ell$	[ggg]	($1.50\pm$	0.06) >	< 10 ⁻⁴		2638
$\pi^- \tau^+ \nu_{ au}$		<	2.5			CL=90%	2339
$K^{\pm}X$	Inclusi			0) 0	,		
K + X $D^0 X$		`	78 ±	,			_
$\frac{D^0 X}{D^0 X}$			8.1 ±				_
D^+X		`	47.4 ±	,		CL 000/	_
D^-X		< ,			6	CL=90%	_
			36.9 ±				_
$D_s^+ X$		(10.3 +	1.8)	%		_
$D_s^- X$		<	2.6	9	6	CL=90%	_
$\Lambda_c^{+} X$		<	3.1	0	6	CL=90%	_
$\overline{\Lambda}_{c}^{-}X$		(5.0 ⁺	2.1	/o		_
C				1.0			
$\overline{c}X$		•	95 ±	,			_
c X			24.6 ±				_
\overline{c}/cX		(1	.19 ±	0) %	0		_
HTTP://PDG.LBL.GOV	Pag	e 10	03	Cre	ated:	7/10/202	3 15:48

D, D^* , or D_s modes

D, D	, or <i>D</i>	5 IIIOUES	
$D^-\pi^+$	($2.51\pm 0.08) \times 10^{-3}$	2306
$D^- \rho^+$	($7.6 \pm 1.2 \times 10^{-3}$	2235
$D^ K^0$ π^+	($4.9 \pm 0.9 \times 10^{-4}$	2259
$D^-K^*(892)^+$	($4.5 \pm 0.7) \times 10^{-4}$	2211
$D^-\omega\pi^+$	($2.8 \pm 0.6 \times 10^{-3}$	2204
D^-K^+	($2.05\pm 0.08) \times 10^{-4}$	2279
$D^{-}K^{+}\pi^{+}\pi^{-}$	($3.5 \pm 0.8 \times 10^{-4}$	2236
$D^-K^+\overline{K}^0$	<	3.1×10^{-4} (CL=90% 2188
$D^{-}K^{+}\overline{K}^{*}(892)^{0}$	($8.8 \pm 1.9) \times 10^{-4}$	2070
$\overline{D}{}^0\pi^+\pi^-$	($8.8 \pm 0.5) \times 10^{-4}$	2301
$D^*(2010)^-\pi^+$	($2.74\pm 0.13) \times 10^{-3}$	2255
$\overline{D}{}^0K^+K^-$	($6.1 \pm 0.5 \times 10^{-5}$	2191
$D^-\pi^+\pi^+\pi^-$	($6.0 \pm 0.6 \times 10^{-3}$	2287
$(D^-\pi^+\pi^+\pi^-)$ nonresonant	($3.9 \pm 1.9 \times 10^{-3}$	2287
$D^-\pi^+\rho^0$	($1.1 \pm 1.0 \times 10^{-3}$	2206
$D^{-}a_{1}^{-}(1260)^{+}$	($6.0 \pm 3.3) \times 10^{-3}$	2121
$D^*(2010)^{-}\pi^+\pi^0$	(1.5 ± 0.5) %	2248
$\hat{D}^*(2010)^- \rho^+$	($6.8 \pm 0.9 \times 10^{-3}$	2180
$D^*(2010)^{-1}K^{+1}$	($2.12\pm 0.15) \times 10^{-4}$	2226
$D^*(2010)^- K^0 \pi^+$	($3.0 \pm 0.8 \times 10^{-4}$	2205
$\hat{D}^*(2010)^- K^*(892)^+$	($3.3 \pm 0.6 \times 10^{-4}$	2155
$D^*(2010)^{-1}K^+\overline{K}^0$	<	$4.7 \times 10^{-4} 0$	
$D^*(2010)^- K^+ \overline{K}^* (892)^0$	($1.29 \pm 0.33) \times 10^{-3}$	2007
$D^*(2010)^-\pi^+\pi^+\pi^-$	•	$7.21\pm 0.29) \times 10^{-3}$	2235
$(D^*(2010)^-\pi^+\pi^+\pi^-)$ non-	($0.0 \pm 2.5 \times 10^{-3}$	2235
resonant	•	,	
$D^*(2010)^- \pi^+ ho^0$	($5.7 \pm 3.2 \times 10^{-3}$	2150
$D^*(2010)^- a_1(1260)^+$	(1.30 ± 0.27) %	2061
$\overline{D}_1(2420)^0\pi^-\pi^+$, \overline{D}_1^0 $ ightarrow$	($1.47 \pm 0.35) \times 10^{-4}$	_
$D^{*-}\pi^{+}$			
$D^*(2010)^- K^+ \pi^- \pi^+$	($4.7 \pm 0.4 \times 10^{-4}$	2181
$D^*(2010)^-\pi^+\pi^+\pi^-\pi^0$		$1.76 \pm 0.27) \%$	2218
$D^{*-}3\pi^{+}2\pi^{-}$	($4.7 \pm 0.9 \times 10^{-3}$	2195
$D^*(2010)^- \omega \pi^+$	($2.46 \pm 0.18) \times 10^{-3}$	S=1.2 2148
$\overline{D}_1(2430)^0 \omega, \ \overline{D}_1^0 \rightarrow$	($2.7 \begin{array}{c} + & 0.8 \\ - & 0.4 \end{array}) \times 10^{-4}$	1992
$D^{*-}\pi^{+}$	(- 0.4 / ^ 10	1332
-	,	1.07 + 0.40 \ 1.0-3	
$D^{*-}\rho(1450)^+, \ \rho^+ \to \ \omega \pi^+$		$1.07^{+}_{-} \begin{array}{l} 0.40 \\ 0.34 \end{array}) \times 10^{-3}$	_
$\overline{D}_1(2420)^0\omega,\ \overline{D}_1^0 ightarrow$	($7.0 \pm 2.2 \times 10^{-5}$	1995
$\overline{D}_2^{*-}\pi^+ \overline{D}_2^{0}(2460)^0\omega$, $\overline{D}_2^{0}\to$		-	
	($4.0 \pm 1.4 \times 10^{-5}$	1975
$D^{*-}\pi^{+}$		F	
$D^{*-}b_1(1235)^+, b_1^+ \rightarrow$	<	7×10^{-5} (CL=90% -
$\omega\pi^+$			

$\overline{D}^{**-}\pi^+$	[kkk] ($1.9 \pm 0.9) \times 10^{-3}$		_
$D_1(2420)^-\pi^+$, $D_1^-\to$	($9.9 \ ^{+}_{-} \ ^{2.0}_{2.5} \) \times 10^{-5}$;	_
$D^-\pi^+\pi^-$ $D_1(2420)^-\pi^+, D_1^- \to$	<	3.3×10^{-5}	CL=90%	_
$\overline{D}_{2}^{*-}\pi^{+}\pi^{-}$ $\overline{D}_{2}^{*}(2460)^{-}\pi^{+}, D_{2}^{*-} \rightarrow$	($2.38\pm 0.16) \times 10^{-4}$		2062
$\overline{D}_0^0(2400)^-\pi^+, \ D_0^{*-} \to D^0\pi^-$	($7.6 \pm 0.8) \times 10^{-5}$		2090
$D_{2}^{*}(2460)^{-}\pi^{+}, D_{2}^{*-} \rightarrow D_{2}^{*-}\pi^{+}\pi^{-}$	<	2.4×10^{-5}	CL=90%	-
$\overline{D}_{2}^{*}(2460)^{-} \rho^{+}$ $D^{0} \overline{D}^{0}$		4.9×10^{-3}		1974
		$1.4 \pm 0.7 \times 10^{-5}$		1868
$D^{*0}\overline{D}^{0}$		2.9×10^{-4}		1794
$D^{\cdot}D^+_{\cdot}$	($2.11\pm 0.18) \times 10^{-4}$		1864
$D^{\pm}D^{*\mp}$ (CP -averaged)	($6.1 \pm 0.6 \times 10^{-4}$	-	_
$D^-D_s^+$	($7.2 \pm 0.8) \times 10^{-3}$;	1812
$D^*(2010)^-D_s^+$		$8.0 \pm 1.1 \times 10^{-3}$		1735
$D^{-}D_{s}^{*+}$		$7.4 \pm 1.6 \times 10^{-3}$		1732
$D^*(2010)^-D_s^{*+}$	•	•		
3	•	1.77± 0.14) %		1649
$D_{s0}(2317)^- K^+, \ D_{s0}^- \to D_s^- \pi^0$	($4.2 \pm 1.4 \times 10^{-5}$		2097
3		2.5×10^{-5}	CL=90%	2128
$D_{s0}(2317)^-\pi^+, \ D_{s0}^- \to D_s^-\pi^0$	<	2.5 × 10 °	CL=90%	2128
$D_{sJ}(2457)^-K^+, \ D_{sJ}^- ightarrow$		9.4 $\times 10^{-6}$	CL=90%	_
$D_s J(2437) K^+, D_{sJ} \rightarrow D_s^- \pi^0$		9.4 × 10	CL=90/6	
$D_{sJ}(2457)^{-}\pi^{+}, \ D_{sJ}^{-} \rightarrow$	<	4.0×10^{-6}	CL=90%	_
$D_s^-\pi^0$				
$D_s^- D_s^+$	<	3.6×10^{-5}	CL=90%	1759
$D^{s-}D^{+}$			CL=90%	1674
$D_{s}^{*-}D_{s}^{+}$ $D_{s}^{*-}D_{s}^{*+}$				
			CL=90%	1583
$D_{s0}^{*}(2317)^{+}D^{-}, D_{s0}^{*+} \rightarrow D_{s}^{+}\pi^{0}$	($1.06 \pm 0.16) \times 10^{-3}$	S=1.1	1602
$D_{s0}(2317)^{+}D^{-}, D_{s0}^{+} \rightarrow D_{s}^{*+}\gamma$	<	9.5×10^{-4}	CL=90%	-
$D_{s0}(2317)^+ D^*(2010)^-$,	($1.5 \pm 0.6) \times 10^{-3}$		1509
$D_{s0}^{+} \to D_{s}^{+} \pi^{0}$				
$D_{sJ}(2457)^+ D^-$		$3.5 \pm 1.1 \times 10^{-3}$		_
$D_{sJ}(2457)^+ D^-, \ D_{sJ}^+ o$	(6.5	ļ	_
$D_s^+\gamma$				

$D_{sJ}(2457)^+D^-, \ D_{sJ}^+ o$	<	6.0	× 10 ⁻⁴	CL=90%	-
$D_s^{*+} \gamma \ D_{sJ}(2457)^+ D^-, \ D_{sJ}^+ o$	<	2.0	× 10 ⁻⁴	CL=90%	_
$D_{sJ}^{+}\pi^{+}\pi^{-}$ $D_{sJ}(2457)^{+}D^{-}, D_{sJ}^{+} \rightarrow$	<	3.6	× 10 ⁻⁴	CL=90%	_
$D_s^+ \pi^0 \ D^*(2010)^- D_{sJ}(2457)^+$	(9.3 ±	2.2) × 10 ⁻³		_
$D_{sJ}(2457)^+ D^*(2010), \;\; D_{sJ}^+ ightarrow \ D_s^+ \gamma$	(2.3 +	$0.9 \\ 0.7$) × 10 ⁻³		-
$D^{-}D_{s1}(2536)^{+}, D^{+}_{s1} \rightarrow D^{*0}K^{+} + D^{*+}K^{0}$	(2.8 ±	$0.7) \times 10^{-4}$		1444
$D^{+}K^{+} + D^{+}K^{+}$ $D^{-}D_{s1}(2536)^{+}, D^{+}_{s1} \rightarrow D^{*0}K^{+}$	(1.7 ±	$0.6) \times 10^{-4}$		1444
$D^{*0}K^{+}$ $D^{-}D_{s1}(2536)^{+}, D^{+}_{s1} \rightarrow D^{*+}K^{0}$	(2.6 ±	1.1) × 10 ⁻⁴		1444
$D^{*}(2010)^{-}D_{s1}(2536)^{+},$ $D_{s1}^{+} \rightarrow D^{*0}K^{+} + D^{*+}K^{0}$	(5.0 ±	1.4) × 10 ⁻⁴		1336
$D^{*}(2010)^{-}D_{s1}(2536)^{+}$,	(3.3 ±	1.1) × 10 ⁻⁴		1336
$D_{s1}^{+} ightarrow\ D^{*0}\ K^{+} \ D^{*-}D_{s1}(2536)^{+},\ D_{s1}^{+} ightarrow$	(5.0 ±	1.7) × 10 ⁻⁴		1336
$D^{*+} K^0$ $D^- D_{sJ}(2573)^+, D_{sJ}^+ o$	(3.4 ±	1.8) × 10 ⁻⁵		1414
$D^0 K^+$ $D^*(2010)^- D_{sJ}(2573)^+,$	<	2	× 10 ⁻⁴	CL=90%	1304
$D_{sJ}^{+} ightarrow D^{0} K^{+} \ D^{-} D_{sJ}^{sJ} (2700)^{+}, \ D_{sJ}^{+} ightarrow$	(7.1 ±	1.2) × 10 ⁻⁴		_
$D^{0}K^{+}$ $D^{+}\pi^{-}$	(7.3 ±	1.2) × 10 ⁻⁷		2306
$D_s^+\pi^-$			$0.18) \times 10^{-5}$		2270
$D_s^{*+}\pi^-$	(2.1 ±	$0.4) \times 10^{-5}$	S=1.4	2215
$D_{\varepsilon}^{+}\rho^{-}$	<	2.4	× 10 ⁻⁵	CL=90%	2197
$D_{s}^{s+}\pi^{-}$ $D_{s}^{+}\rho^{-}$ $D_{s}^{s+}\rho^{-}$ $D_{s}^{+}a_{0}^{-}$	(4.1 ±	$1.3) \times 10^{-5}$		2138
$D_{c}^{+}a_{0}^{-}$	<	1.9	× 10 ⁻⁵	CL=90%	_
$D_{s}^{3+}a_{0}^{-}$	<	3.6	\times 10 ⁻⁵	CL=90%	_
$D_{s}^{+} a_{1}(1260)^{-}$	<	2.1	× 10 ⁻³	CL=90%	2080
$D_s^{s+1} a_1(1260)^-$	<	1.7	× 10 ⁻³	CL=90%	2015
$D_s^+ a_2^-$	<	1.9		CL=90%	_
$D^{*+} \stackrel{2}{a_{2}}$		2.0		CL=90%	_
$D_{s}^{s+2} - D_{c}^{-1} K^{+}$ $D_{s}^{s-1} K^{+}$			$0.5) \times 10^{-5}$		2242
$D^{*-}K^+$	•		$0.30) \times 10^{-5}$		2185
$D_s^* K^*(892)^+$			$1.0) \times 10^{-5}$		2172
	(5.5 ±	1.0 / 10	_ /4 & /	2112

HTTP://PDG.LBL.GOV

Page 106

$D_s^{*-} K^*(892)^+$	($3.2 \ + \ 1.5 \) \times 1$.0 ⁻⁵		2112
$D_s^-\pi^+K^0$	($9.7 \pm 1.4) \times 1$	0-5		2222
$D_{s}^{s-}\pi^{+}K^{0}$	<	1.10 × 1	_	CI =90%	2164
$D_s^s K^+ \pi^+ \pi^-$		$1.7 \pm 0.5 \times 1$	_	CL-3070	2198
$D_s^- \pi^+ K^* (892)^0$				CL 000/	
$D_s^* = \pm 4.4*(202)^0$	<	3.0 × 1			2138
$\frac{D_s^{*-}\pi^+K^*(892)^0}{\overline{D}^0K^0}$	<			CL=90%	2076
	($5.2 \pm 0.7) \times 1$	_		2280
$\overline{D}^0 K^+ \pi^-$	($8.8 \pm 1.7) \times 1$			2261
$\overline{D}^0 K^*(892)^0$	($4.5 \pm 0.6 \times 1$	_		2213
$\overline{D}{}^{0}K^{*}(1410)^{0}$	<	6.7×1		CL=90%	2062
$\overline{D}{}^{0}_{0}K_{0}^{*}(1430)^{0}_{0}$		$7 \pm 7) \times 1$	_		2058
$\overline{D}{}^0 K_2^*(1430)^0$	($2.1 \pm 0.9 \times 1$	0-5		2057
$D_0^*(2300)^-{\cal K}^+,\ D_0^{*-} ightarrow \overline{D}{}^0\pi^-$	($1.9 \pm 0.9 \times 1$	0-5		_
$D_2^*(2460)^- K^+, \ D_2^{*-} o$	(2.03± 0.35) × 1	0-5		2029
$\overline{D}{}^0\pi^- \ D_3^*(2760)^-K^+, \ D_3^{*-} ightarrow$	<	1.0 × 1	0-6	CL=90%	_
$\frac{1}{\overline{D}}$ 0 π^-					
$\overline{D}{}^0\pi^- \over \overline{D}{}^0K^+\pi^-$ nonresonant	<	3.7 × 1	0-5	CL=90%	2261
$[K^+K^-]_D K^*(892)^0$	($4.2 \pm 0.7) \times 1$			_
$[\pi^{+}\pi^{-}]_{D}K^{*}(892)^{0}$	($6.0 \pm 1.1) \times 1$			_
$[\pi^{+}\pi^{-}\pi^{+}\pi^{-}]_{D}K^{*0}$	($4.6 \pm 0.9 \times 1$			_
$\overline{D}^0 \pi^0$	($2.67 \pm 0.09) \times 1$			2308
$\overline{D}{}^0 \rho^0$	($3.21 \pm 0.21) \times 1$			2237
$\overline{D}^0 f_2$	($1.56 \pm 0.21) \times 1$	0^{-4}		_
$\overline{D}{}^0 \eta$	($2.36 \pm 0.32) \times 1$		S=2.5	2274
$\overline{D}{}^0\eta'$	($1.38 \pm 0.16) \times 1$		S=1.3	2198
$\overline{D}{}^0\omega$	($2.54 \pm 0.16) \times 1$			2235
$D^0 \phi$	<	2.3 × 1		CL=95%	2183
$D^0K^+\pi^-$	($5.3 \pm 3.2) \times 1$	0^{-6}		2261
$D^0 K^*(892)^0$	(3.0 ± 0.6) $ imes 1$	0^{-6}		2213
$\overline{D}^{*0}\gamma$	<	2.5 imes 1	0-5	CL=90%	2258
$\overline{D}^*(2007)^0 \pi^0$	($2.2~\pm~0.6$) $ imes~1$	0^{-4}	S=2.6	2256
$\overline{D}^*(2007)^0 \rho^0$	<	5.1 × 1	0^{-4}	CL=90%	2182
$\overline{D}^*(2007)^0 \eta$	(2.3 ± 0.6) $ imes 1$	0^{-4}	S=2.8	2220
$\overline{D}^*(2007)^0 \eta'$	($1.40 \pm 0.22) \times 1$	0^{-4}		2141
$\overline{D}^*(2007)^0\pi^+\pi^-$	($6.2 \pm 2.2) \times 1$	0^{-4}		2249
$\overline{D}^*(2007)^0 K^+ \pi^-$	(5.2 ± 1.9) $ imes 1$	0-5		2207
$\overline{D}^*(2007)^0 K^0$	(3.6 ± 1.2) \times 1			2227
$\overline{D}^*(2007)^0 K^*(892)^0$	<			CL=90%	2157
$D^*(2007)^0 K^*(892)^0$	<			CL=90%	2157
$D^*(2007)^0\pi^+\pi^+\pi^-\pi^-$	($2.7~\pm~0.5~) imes 1$	0-3		2219
$D^*(2010)^+ D^*(2010)^-$	($8.0 \pm 0.6 \times 1$	0-4		1711

$\overline{D}^*(2007)^0 \omega$	($3.6 \pm 1.1) \times 10^{-4}$ S=3.1	2180
$D^*(2010)^+D^-$		6.1 ± 1.5) × 10^{-4} S=1.6	1790
$D^*(2007)^0 \overline{D}^*(2007)^0$	•	9 $\times 10^{-5} \text{ CL} = 90\%$	1715
$D^{-}D^{0}K^{+}$		$1.07 \pm 0.11) \times 10^{-3}$	1574
$D^-D^*(2007)^0K^+$		$3.5 \pm 0.4 \times 10^{-3}$	1478
$D^*(2010)^- D^0 K^+$	($2.47 \pm 0.21) \times 10^{-3}$	1479
$D^*(2010)^- D^*(2007)^0 K^+$	($1.06 \pm 0.09) \%$	1366
$D^-D^+K^0$		$7.5 \pm 1.7) \times 10^{-4}$	1568
$D^*(2010)^- D^+ K^0 +$	($6.4 \pm 0.5 \times 10^{-3}$	1473
$D^-D^*(2010)^+K^0$. 2	
$D^*(2010)^- D^*(2010)^+ K^0$		$8.1 \pm 0.7 \times 10^{-3}$	1360
$D^{*-}D_{s1}(2536)^+, D^+_{s1} \rightarrow$	($8.0 \pm 2.4 \times 10^{-4}$	1336
$rac{D^0}{D^0} D^{0} K^0$	($2.7 \pm 1.1) \times 10^{-4}$	1574
$D^0 \overline{D}^0 K^+ \pi^-$		$3.5 \pm 0.5 \times 10^{-4}$	1476
$\frac{D}{D^0}D^*(2007)^0K^0 +$	(1.1 ± 0.5) × 10^{-3}	1478
$\overline{D}^*(2007)^0 D^0 K^0$	(1.1 ± 0.3 / × 10	1110
$\overline{D}^*(2007)^0 D^*(2007)^0 K^0$	($2.4 \pm 0.9 \times 10^{-3}$	1365
$(\overline{D} + \overline{D}^*)(D + D^*)K$	(3.68 ± 0.26) %	_
Charma	:		
$\eta_c K^0$		modes $8.2 \pm 1.1) \times 10^{-4}$	1751
$\eta_c(1S)K^+\pi^-$		$6.4 \pm 0.7 \times 10^{-4}$	1722
$\eta_c(1S)K^+\pi^-(NR)$		$6.6 \pm 1.4 \times 10^{-5}$	_
$X(4100)^-K^+, X^- \rightarrow$	($2.1 \pm 1.1 \times 10^{-5}$	_
$\eta_c \pi^{-}$	`	,	
$\eta_c(1S) K^*(1410)^0$	($2.0 \pm 1.6 \times 10^{-4}$	1395
$\eta_c(1S) K_0^*(1430)^0$	($1.8 \pm 0.4 \times 10^{-4}$	1388
$\eta_c(1S)K_2^*(1430)^0$	($5.3 \begin{array}{l} + & 2.4 \\ - & 2.9 \end{array}) \times 10^{-5}$	1386
$\eta_c(1S)K^*(1680)^0$	($4 \pm 4) \times 10^{-5}$	1166
	(
$\eta_c(1S) K_0^* (1950)^0$	($4.7 \ ^{+}_{-} \ ^{3.2}_{4.0} \) \times 10^{-5}$	_
$\eta_c K^* (892)^0$	($5.2 {}^{+}_{-} {}^{0.8}_{0.9}) \times 10^{-4} S = 1.6$	1646
$\eta_c(2S)K_S^0, \ \eta_c \rightarrow \ p\overline{p}\pi^+\pi^-$	($4.2 \begin{array}{c} + & 1.4 \\ - & 1.2 \end{array}) \times 10^{-7}$	_
$\eta_c(2S)K^{*0}$		1.2	1150
$h_c(1P)K_S^0$		3.9 $\times 10^{-4}$ CL=90% 1.4 $\times 10^{-5}$	1159 1401
$h_c(1P)K^{*0}$		4 $\times 10^{-4}$ CL=90%	1253
$J/\psi(1S)K^0$		$8.91\pm 0.21) \times 10^{-4}$	1683
$J/\psi(1S)K^+\pi^-$		$1.15 \pm 0.05) \times 10^{-3}$	1652
$J/\psi(1S)K^*(892)^0$		$1.27 \pm 0.05) \times 10^{-3}$	1572
$J/\psi(1S)\eta K_S^0$		$5.4 \pm 0.9 \times 10^{-5}$	1508
$J/\psi(1S)\eta'K_S^0$		$\times 10^{-5} \text{ CL}=90\%$	1271
$J/\psi(1S)\phi K^0$		$4.9 \pm 1.0) \times 10^{-5}$ S=1.3	1224
	`	,	- ·

$J/\psi(1S)\omegaK^0$	($2.3 \pm 0.4) \times 1$	10^{-4}		1386
χ_{c0} (3915), $\chi_{c0} ightarrow J/\psi \omega$		$2.1~\pm~0.9~) \times 1$			1102
$J/\psi(1S) K(1270)^0$	(1.3 ± 0.5) \times			1402
$J/\psi(1S)\pi^0$	($1.66 \pm 0.10) \times 1$			1728
$J/\psi(1S)\eta$	(1.08± 0.23) × 1		S=1.5	1673
$J/\psi(1S)\pi^{+}\pi^{-}$	($4.00 \pm 0.15) \times 1$			1716
$J/\psi(1S)\pi^+\pi^-$ nonresonant	<	1.2 ×		CL=90%	1716
$J/\psi(1S) f_0(500), f_0 \to \pi \pi$	($8.8 \ + \ 1.2 \) \times$	10^{-6}		_
$J/\psi(1S) f_2$	($3.3 \begin{tabular}{ccccc} + & 0.5 \\ - & 0.6 \end{tabular} \end{tabular} \end{tabular} \times$	10 ⁻⁶	S=1.5	_
$J/\psi(1S) ho^0$	($2.55^{+}_{-} {\stackrel{0.18}{_{0.16}}}) imes$	10^{-5}		1612
$J/\psi(1S) f_0(980), f_0 \to$	<	1.1 ×	10^{-6}	CL=90%	_
$\pi^+\pi^-$					
$J/\psi(1S) \rho(1450)^0, \ \rho^0 \to$	($2.9 {}^{+}_{-} {}^{1.6}_{0.7}$) $ imes$	10^{-6}		_
$J/\psi \rho (1700)^0$, $\rho^0 \to \pi^+ \pi^-$	(2.0 ± 1.3) \times	10-6		_
$J/\psi(1S)\omega$	($1.8 \frac{+}{-} \frac{0.7}{0.5}) \times$	₁₀ -5		1609
$J/\psi(1S)K^+K^-$		$2.54\pm 0.35) \times 1$	_		1534
$J/\psi(1S) a_0(980), a_0 \rightarrow$	(•	_		_
K+K-	`				
$J/\psi(1S)\phi$		1.1 ×	_	CL=90%	1520
$J/\psi(1S)\eta'(958)$		7.6 \pm 2.4) \times	_		1546
$J/\psi(1S) K_0^0 \pi^+ \pi^-$	($4.5 \pm 0.4 \times 1$			1611
$J/\psi(1S)K^{0}K^{-}\pi^{+}$ + c.c.	<		_	CL=90%	1467
$J/\psi(1S) K^0 K^+ K^-$		$2.5 \pm 0.7) \times 1$	_	S=1.8	1249
$J/\psi(1S)K^0 ho^0$		5.4 ± 3.0) \times	_		1390
$J/\psi(1S)K^*(892)^+\pi^-$	•	$8 \pm 4) \times 1$			1515
$J/\psi(1S)\pi^+\pi^-\pi^+\pi^-$	($1.44 \pm 0.12) \times 1$			1670
$J/\psi(1S) f_1(1285)$	(8.4 \pm 2.1) \times			1385
$J/\psi(1S) K^*(892)^0 \pi^+ \pi^-$	($6.6 \pm 2.2) \times 1$			1447
$\eta_{c2}(1D)K_S^0, \ \eta_{c2} \rightarrow \ h_c \gamma$				CL=90%	_
$\eta_{c2}(1D)\pi^-K^+, \ \eta_{c2} \rightarrow \ h_c\gamma$				CL=90%	- - -
$\chi_{c1}(3872)^- K^+$		5 × 1			_
$\chi_{c1}(3872)^- K^+$,	[III] <	4.2 ×	10^{-6}	CL=90%	_
$\chi_{c1}(3872)^- \rightarrow$					
$J/\psi(1S)\pi^{-}\pi^{0}$					
$\chi_{c1}(3872)K^{0}$		$1.1~\pm~0.4~) imes 1$			1140
$\chi_{c1}(3872) K^*(892)^0$		$1.0~\pm~0.5~) \times 1$			940
$\chi_{c1}(3872)K^{+}\pi^{-}$	($2.1~\pm~0.8~) \times 1$	10 ⁻⁴		1087
$\chi_{c1}(3872)\gamma$		1.3 ×		CL=90%	1220
$Z_c(4430)^{\pm} K^{\mp}, \ Z_c^{\pm} \rightarrow$	($6.0 \ ^{+} \begin{array}{l} 3.0 \\ - \end{array}) imes$	10^{-5}		583
ψ (2S) π^\pm		·			

$Z_c(4430)^{\pm} K^{\mp}, \ Z_c^{\pm} \rightarrow$	(5.4 + 4.0 -1.2	$\frac{1}{2} \times 10^{-6}$		583
$J/\psi \pi^{\pm}$					
$Z_c(3900)^{\pm} K^{\mp}, Z_c^{\pm} \rightarrow$	<	9	$\times 10^{-7}$		_
$J/\psi\pi^\pm$					
$Z_c(4200)^{\pm} K^{\mp}, X^{\pm} \rightarrow$	(2.2 + 1.3	3.1×10^{-5}		_
$J/\psi \pi^{\pm}$	(– 0.8	} / ^ 10		
$J/\psi(1S) p \overline{p}$	(4.5 ± 0.6	$(5.) \times 10^{-7}$		862
$J/\psi(1S)\gamma$			× 10 ⁻⁶	CL=90%	1732
$J/\psi \mu^+ \mu^-$, $J/\psi \rightarrow \mu^+ \mu^-$	<	1.0		CL=95%	_
$J/\psi(1S)\overline{D}^0$	<	1.3		CL=90%	877
$\psi(2S)\pi^0$		1.17 ± 0.1		GE 3070	1348
$\psi(2S)K^0$	(1283
$\psi(2S)K^{0}\pi^{+}\pi^{-}$	`	2.81 ± 0.3			1177
$\psi(3770)K^0, \ \psi \rightarrow \overline{D}{}^0D^0$	<		× 10 ⁻⁴	CI90%	1217
$\psi(3770)K^0, \ \psi \rightarrow D^-D^+$		1.88		CL=90%	1217
$\psi(2S)\pi^+\pi^-$		2.24 ± 0.3	_	CL=30/0	1332
$\psi(2S)K^+\pi^-$		5.8 ± 0.4			1239
$\psi(2S)K^*(892)^0$	`	5.0 ± 0.4 5.9 ± 0.4	· .		1116
$\chi_{c0}K^0$	(1.9 ± 0.4			1477
$\chi_{c0} K^*(892)^0$	(1.7 ± 0.4			1342
$\chi_{c1}\pi^0$		1.12 ± 0.2			1468
$\chi_{c1} K^0$		3.95 ± 0.2			1411
$\chi_{c1}\pi^-K^+$	•	4.97 ± 0.3			1371
$\chi_{c1} K^* (892)^0$	•	2.38 ± 0.1		S=1.2	1265
				5-1.2	1205
$X(4051)^-K^+, X^- \rightarrow$	($3.0 + 4.0 \\ - 1.8$	$\times 10^{-3}$		_
$\chi_{c1}\pi^{-}$. 00.0	_		
$X(4248)^-K^+,~X^- ightarrow$	($4.0 \begin{array}{c} +20.0 \\ -1.0 \end{array}$	$) \times 10^{-5}$		_
$\chi_{c1}\pi^{-}$			4		
$\chi_{c1}\pi^{+}\pi^{-}K^{0}$	(3.2 ± 0.5	$(5) \times 10^{-4}$		1318
$\chi_{c1}\pi^-\pi^0K^+$	(3.5 ± 0.6	$(5) \times 10^{-4}$		1321
$\chi_{c2}K^0$		1.5			1379
$\chi_{c2} K^*(892)^0$		4.9 ± 1.2		S=1.1	1228
$\chi_{c2}\pi^-K^+$		7.2 ± 1.0			1338
$\chi_{c2} \pi^{+} \pi^{-} K^{0}$		1.70			1282
$\chi_{c2}\pi^-\pi^0K^+$		7.4		CL=90%	1286
$\psi(4660)K^0$, $\psi \rightarrow \Lambda_c^+ \Lambda_c^-$	<	2.3		CL=90%	_
$\psi(4230)^{0}K^{0}, \ \psi^{0} \rightarrow$	<	1.7	$\times 10^{-5}$	CL=90%	_
$J/\psi \pi^+ \pi^-$					
V	K* -	modes			
$K^+\pi^-$	Λ · I	nodes 1.96± 0.0	ns) × 10-5		2615
11 /l	(T.90 □ 0.0	D) V IU ~		∠013

$K^+\pi^-$	($1.96 \pm 0.05) \times 10^{-5}$		2615
$K^0\pi^0$	($9.9 \pm 0.5) \times 10^{-6}$		2615
$\eta' K^0$	(6.6 \pm 0.4) \times 10 ⁻⁵	S=1.4	2528

HTTP://PDG.LBL.GOV

Page 110

$\eta' K^*(892)^0$	(2.8 ± 0.6	$) \times 10^{-6}$		2472
$\eta' K_0^* (1430)^0$		6.3 ± 1.6	_		2346
$\eta' K_2^* (1430)^0$	($1.37\pm~0.3$	$2) \times 10^{-5}$		2346
ηK^0	(1.23^{+}_{-} $\begin{array}{c} 0.2\\ 0.2 \end{array}$	$\binom{7}{4}$) × 10 ⁻⁶		2587
$\eta K^*(892)^0$	(1.59± 0.1	_		2534
$\eta K_0^*(1430)^0$	(1.10± 0.2			2415
$\eta K_2^*(1430)^0$	($9.6~\pm~2.1$			2414
ωK^{0}	(4.8 ± 0.4			2557
$a_0(980)^0 K^0$, $a_0^0 o \eta \pi^0$	<	7.8		CL=90%	_
$b_1^0 {\cal K}^0$, $b_1^0 ightarrow \omega \pi^0$	<	7.8	$\times 10^{-6}$	CL=90%	_
$a_0(980)^{\pm}K^{\mp}, \ a_0^{\pm} \rightarrow \ \eta \pi^{\pm}$	<	1.9	$\times10^{-6}$	CL=90%	- - - -
$b_1^-K^+, \ b_1^- ightarrow \omega \pi^-$	(7.4 ± 1.4	$) \times 10^{-6}$		_
$b_1^{ar{0}} K^{st 0}$, $b_1^{ar{0}} ightarrow \omega \pi^0$	<	8.0		CL=90%	_
$b_1^- K^{*+}$, $b_1^- ightarrow \omega \pi^-$	<	5.0	$\times10^{-6}$	CL=90%	_
$a_0^1(1450)^{\pm} K^{\mp}, \ a_0^{\pm} \rightarrow \eta \pi^{\pm}$	<	3.1	$\times10^{-6}$	CL=90%	_
$K_S^0 X^0$ (Familon)	<	5.3		CL=90%	_
$\omega K^* (892)^0$	(2.0 ± 0.5			2503
$\omega(K\pi)_0^{*0}$		1.84± 0.2	_		_
$\omega K_0^* (1430)^0$	(1.60± 0.3			2380
$\omega K_2^*(1430)^0$	(1.01± 0.2			2380
$\omega K^+\pi^-$ nonresonant		5.1 ± 1.0			2542
$K^+\pi^-\pi^0$	(3.78± 0.3	$2) \times 10^{-5}$		2609
$K^+ \rho^-$		$7.0\ \pm\ 0.9$			2559
$K^{+} \rho (1450)^{-}$	(2.4 ± 1.2			_
$K^{+}\rho(1700)^{-}$	(6 ± 7			_
$(K^+\pi^-\pi^0)$ nonresonant	(2.8 ± 0.6			2609
$(K\pi)_0^{*+}\pi^-, \ (K\pi)_0^{*+} \to$	(3.4 ± 0.5) × 10 ⁻⁵		_
$\stackrel{{\cal K}^+\pi^0}{({\cal K}\pi)^{*0}_0\pi^0},\;\;({\cal K}\pi)^{*0}_0 ightarrow$	(8.6 ± 1.7) × 10 ⁻⁶		_
	(0.0 ± 1.7) \ 10		
$K^+\pi^- \ K_2^*(1430)^0\pi^0$	<	4.0	$\times10^{-6}$	CL=90%	2445
$K^{*}(1680)^{0}\pi^{0}$	<	7.5			2358
$K_{\mathbf{x}}^{*}(1680)^{0}\pi^{0}$ $K_{\mathbf{x}}^{*0}\pi^{0}$		6.1 ± 1.6			_
$K^0 \hat{\pi^+} \pi^-$		4.97± 0.1			2609
$K^0\pi^+\pi^-$ nonresonant	($1.39^{+}_{-} \begin{array}{c} 0.2\\ 0.1 \end{array}$	$(6) \times 10^{-5}$	S=1.6	2609
$K^0 ho^0$		3.4 ± 1.1		S=2.3	2558
$K^*(892)^+\pi^-$	`	7.5 ± 0.4	,		2563
$K_0^*(1430)^+\pi^-$	•	3.3 ± 0.7	•	S=2.0	_
$K_{\mathbf{x}}^{\mathbf{x}+}\pi^{-}$		5.1 ± 1.6			_
$K^{\hat{*}}(1410)^{+}\pi^{-}$, $K^{*+} ightarrow$	<	3.8		CL=90%	_
$\mathcal{K}^0\pi^+$					

$(K\pi)_0^{*+}\pi^-, (K\pi)_0^{*+} \to$	($1.62\pm$	$0.13) \times 10^{-5}$		-
$f_0(980)K^0$, $f_0 \rightarrow \pi^+\pi^-$	(8.1 ±	$0.8) \times 10^{-6}$	S=1.3	2522
$K^0 f_0(500)$	(1.6 +	$^{2.5}_{1.6}$) × 10 ⁻⁷		_
$K^0 f_0(1500)$	(1.3 ±	0.8) \times 10 ⁻⁶		2393
$f_2(1270) K^0$	(2.7 +	$^{1.3}_{1.2}\)\times 10^{-6}$		2459
$f_{x}(1300)K0, f_{x} \rightarrow \pi^{+}\pi^{-}$	($0.7) \times 10^{-6}$		_
$K^*(892)^0 \pi^0$	($0.6) \times 10^{-6}$		2563
$K_2^*(1430)^+\pi^-$	($0.34) \times 10^{-6}$		2445
$K^*(1680)^+\pi^-$	($1.41\pm$	$0.10) \times 10^{-5}$		2358
$K^{+}\pi^{-}\pi^{+}\pi^{-}$	[qqq] <	2.3		CL=90%	2600
$ ho^0$ K $^+$ π^-	(2.8 ±	$0.7) \times 10^{-6}$		2543
$f_0(980)K^+\pi^-$, $f_0 \to \pi\pi$	($^{0.5}_{0.6}~)\times 10^{-6}$		2506
$K^+\pi^-\pi^+\pi^-$ nonresonant	<		\times 10 ⁻⁶	CL=90%	2600
$K^*(892)^0 \pi^+ \pi^-$	($0.5) \times 10^{-5}$		2557
$K^*(892)^0 ho^0$	($3.9 \pm$	$1.3) \times 10^{-6}$	S=1.9	2504
$K^*(892)^0 f_0(980), f_0 \to \pi \pi$	(3.9 +	$^{2.1}_{1.8}\)\times 10^{-6}$	S=3.9	2466
$K_1(1270)^+\pi^-$	<	3.0		CL=90%	2489
$K_1(1400)^+\pi^-$	<	2.7	$\times 10^{-5}$	CL=90%	2451
$a_1(1260)^-K^+$	[qqq] ($1.6~\pm$	$0.4\)\times 10^{-5}$		2471
$K^*(892)^+ \rho^-$	($1.03\pm$	$0.26) \times 10^{-5}$		2504
$K_0^*(1430)^+ \rho^-$	($2.8~\pm$	$1.2) \times 10^{-5}$		_
$K_1(1400)^0 \rho^0$	<	3.0	$\times10^{-3}$	CL=90%	2388
$K_0^*(1430)^0 \rho^0$	($2.7~\pm$	$0.6\)\times 10^{-5}$		2381
$K_0^*(1430)^0 f_0(980), f_0 \to \pi\pi$	($2.7~\pm$	$0.9\)\times 10^{-6}$		_
$K_2^*(1430)^0 f_0(980), f_0 \to \pi\pi$	(8.6 ±	$2.0) \times 10^{-6}$		_
K^+K^-	(1.5) × 10 ⁻⁸		2593
$K^0\overline{K}^0$	($0.16) \times 10^{-6}$		2593
$K^0K^-\pi^+$	(6.7 ±	$0.5) \times 10^{-6}$		2578
$K^*(892)^{\pm}K^{\mp}$	<			CL=90%	2540
$\overline{K}^{*0}K^{0}' + K^{*0}\overline{K}^{0}$			× 10 ⁻⁷		_
$K^+K^-\pi^0$			$0.6\)\times 10^{-6}$		2579
$K_S^0 K_S^0 \pi^0$		9	× 10 ⁻⁷	CL=90%	2578
$K_{S}^{0}K_{S}^{0}\pi^{0}$ $K_{S}^{0}K_{S}^{0}\eta$ $K_{S}^{0}K_{S}^{0}\eta'$ $K_{S}^{0}K_{K}^{+}K^{-}$	<	1.0	$\times 10^{-6}$	CL=90%	2515
$K_0^0 K_0^0 n'$		2.0		CL=90%	2453
$K^0K^+K^-$			$0.11) \times 10^{-5}$		2522
$K^0 \phi$			$0.7) \times 10^{-6}$		2516
$f_0(980)K^0$, $f_0 \to K^+K^-$			$\frac{3.5}{3.0}$) × 10 ⁻⁶		_
$f_0(1500) K^0$	(1.3 +	$^{0.7}_{0.5}$) \times 10 ⁻⁵		2393

(/ (1505))) //)	,	- + 5 7		
$f_2'(1525)^0 K^0$	($\begin{array}{ccc} 3 & + & 5 \\ - & 4 \end{array}) \times 10^{-7}$		_
$f_0(1710) {\it K}^0$, $f_0 ightarrow {\it K}^+ {\it K}^-$	(4.4 \pm 0.9) \times 10 ⁻⁶		_
$K^0K^+K^-$ nonresonant	($3.3~\pm~1.0~)\times10^{-5}$		2522
$K_S^0 K_S^0 K_S^0$	($6.0 \pm 0.5) \times 10^{-6}$	S=1.1	2521
$f_0(980)K^0$, $f_0 \to K_S^0K_S^0$	($2.7 \pm 1.8) \times 10^{-6}$		_
$f_0(1710)K^0$, $f_0 \to K_S^0 K_S^0$	($5.0 \ ^{+}_{-}\ ^{5.0}_{2.6}\) imes 10^{-7}$		_
$f_2(2010)K^0$, $f_2 \to K_S^0 K_S^0$	($5 \pm 6) \times 10^{-7}$		_
$K_S^0 K_S^0 K_S^0$ nonresonant	($1.33\pm 0.31) \times 10^{-5}$		2521
$K_{S}^{0}K_{S}^{0}K_{I}^{0}$	<	•	CL=90%	2521
$K^*(892)^0K^+K^-$	(F		2467
$K^*(892)^0 \phi$	($1.00\pm 0.05) \times 10^{-5}$		2460
$K^+K^-\pi^+\pi^-$ nonresonant	<		CL=90%	2559
$K^*(892)^0 K^- \pi^+$	($4.5 \pm 1.3 \times 10^{-6}$		2524
$K^*(892)^0 \overline{K}^*(892)^0$	($8.3 \pm 2.4 \times 10^{-7}$	S=1.5	2485
$K^+K^+\pi^-\pi^-$ nonresonant	<		CL=90%	2559
$K^*(892)^0 K^+ \pi^-$	<		CL=90%	2524
$\hat{K}^*(892)^0 K^*(892)^0$	<		CL=90%	2485
K*(892)+ K*(892)-	<		CL=90%	2485
$K_1(1400)^0 \phi$	<		CL=90%	2339
$\phi(K\pi)_0^{*0}$	($4.3 \pm 0.4) \times 10^{-6}$		_
$\phi(K\pi)_0^{*0}$ (1.60< $m_{K\pi}$ <2.15) [rrr]	· <		CL=90%	_
$K_0^*(1430)^0 K^- \pi^+$	<		CL=90%	2403
$K_0^*(1430)^0 \overline{K}^*(892)^0$	<	3.3×10^{-6}	CL=90%	2360
$\kappa_0^{(1430)^0} \overline{\kappa}_0^{(1430)^0}$	<		CL=90%	2222
$K_0^*(1430)^0 \phi$	($3.9 \pm 0.8 \times 10^{-6}$	32 33,0	2333
$K_0^*(1430)^0 K^*(892)^0$	<	2	CL=90%	2360
$K_0^{(1130)} K_0^{(32)}$ $K_0^{*}(1430)^0 K_0^{*}(1430)^0$	<		CL=90%	2222
$K^*(1680)^0 \phi$	<		CL=90%	2238
$K^*(1780)^0 \phi$			CL=90%	
$K^*(2045)^0 \phi$,		CL=90%	_
$K_{2}^{(1430)} \rho^{0}$	<		CL=90%	2381
$K_2^*(1430)^0 \phi$		$6.8 \pm 0.9 \times 10^{-6}$		2332
$K_2(1430) \ \varphi$ $K^0 \phi \phi$		$3.7 \pm 0.7 \times 10^{-6}$		
$\eta' \eta' K^0$	(S=1.3 CL=90%	2305 2337
$\eta K^0 \gamma$	< ($7.6 \pm 1.8 \times 10^{-6}$	CL=90%	2537 2587
$\eta' K^0 \gamma$	<		CL=90%	2528
$K^0 \phi \gamma$		$2.7 \pm 0.7 \times 10^{-6}$	CL=90/0	2526 2516
$K + \pi - \gamma$	•	$4.6 \pm 1.4 \times 10^{-6}$		2615
$K^*(892)^0 \gamma$	`	$4.0 \pm 1.4 \times 10^{-5}$ $4.18 \pm 0.25 \times 10^{-5}$	S=2.1	2565
$K^*(1410)\gamma$	(,	3=2.1 CL=90%	2451
$K^+\pi^-\gamma$ nonresonant	<		CL=90%	2615
A A I HOITI COOTIAITE	_	2.0 ^ 10	CL-90/0	2013

$K^*(892)^0 X(214), X \to$	[sss] <	2.26	$\times10^{-8}$ CL=90%	_
$\mu^+\mu^-$			_	
$K^0\pi^+\pi^-\gamma$	(1.99 ± 0.18	$(3) \times 10^{-5}$	2609
$K^+\pi^-\pi^0\gamma$	($4.1\ \pm\ 0.4$	$) \times 10^{-5}$	2609
$K_1(1270)^0 \gamma$	<	5.8	$\times 10^{-5}$ CL=90%	2491
$K_1(1400)^0 \gamma$	<	1.2	$\times10^{-5}$ CL=90%	2454
$K_2^*(1430)^0 \gamma$	(1.24 ± 0.24	$(1) \times 10^{-5}$	2447
$K^{*}(1680)^{0}\gamma$	<	2.0	$\times10^{-3}$ CL=90%	2360
$K_3^*(1780)^0 \gamma$	<	8.3	$\times 10^{-5}$ CL=90%	2340
$K_{4}^{*}(2045)^{0}\gamma$	<	4.3	$\times10^{-3}$ CL=90%	2243

Light unflavored meson modes

HTTP://PDG.LBL.GOV

Page 114

$\phi\phi$	<	2.7	$\times 10^{-8}$	CL=90%	2435
$a_0(980)^{\pm}\pi^{\mp}$, $a_0^{\pm}\to~\eta\pi^{\pm}$	<	3.1	$\times10^{-6}$	CL=90%	_
$a_0(1450)^{\pm}\pi^{\mp}, \ a_0^{\pm} \rightarrow \ \eta \pi^{\pm}$	<	2.3	$\times 10^{-6}$	CL=90%	_
$\pi^+\pi^-\pi^0$	<	7.2		CL=90%	2631
$ ho^{0}\pi^{0}$	(2.0 ±	$0.5\)\times 10^{-6}$		2581
$ ho^{\mp}\pi^{\pm}$	[z] ($0.23) \times 10^{-5}$		2581
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	<			CL=90%	2621
$ ho^0 \pi^+ \pi^-$	<		\times 10 ⁻⁶	CL=90%	2575
$ ho^0 ho^0$	(1.5) \times 10 ⁻⁷		2523
$f_0(980)\pi^+\pi^-, f_0 \rightarrow$	<	3.0	× 10 ⁻⁶	CL=90%	_
$ ho^0 f_0(980), \;\; f_0 ightarrow \;\; \pi^+ \pi^-$	(7.8 ±	$2.5) \times 10^{-7}$		2486
$f_0(980) f_0(980), f_0 \rightarrow$	<		$\times 10^{-7}$	CL=90%	2447
$\pi^+\pi^-$, $f_0 \rightarrow \pi^+\pi^-$					
$f_0(980) f_0(980)$, $f_0 \rightarrow \pi^+ \pi^-$,	<	2.3	\times 10 ⁻⁷	CL=90%	2447
$f_0 \rightarrow K^+ K^-$					
$a_1(1260)^{\mp}\pi^{\pm}$	`		$0.5) \times 10^{-5}$		2494
$a_2(1320)^{\mp}\pi^{\pm}$	[z] <	6.3		CL=90%	2473
$\pi^+\pi^-\pi^0\pi^0$	<	3.1		CL=90%	2622
$\rho^+\rho^-$	($0.19) \times 10^{-5}$		2523
$a_1(1260)^0\pi^0$	<	1.1		CL=90%	2495
$\omega \pi^0$	<	5		CL=90%	2580
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	<	9.0		CL=90%	2609
$a_1(1260)^+ \rho^-$	<	6.1		CL=90%	2433
$a_1(1260)^0 \rho^0$	<	2.4		CL=90%	2433
$b_1^{\mp}\pi^{\pm}, \ b_1^{\mp} ightarrow \omega\pi^{\mp}$	($0.15) \times 10^{-5}$	CI 000/	_
$b_1^0 \pi^0, \ b_1^0 \to \ \omega \pi^0$	<	1.9		CL=90%	_
$b_1^- \rho^+$, $b_1^- \rightarrow \omega \pi^-$	<	1.4		CL=90%	_
$b_1^0 ho^0$, $b_1^0 o\omega\pi^0$	<	3.4		CL=90%	_
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}$	<	3.0	_	CL=90%	2592
$a_1(1260)^+ a_1(1260)^-, a_1^+ \rightarrow$	($1.18\pm$	$0.31) \times 10^{-5}$		2336
$2\pi^{+}\pi^{-}, a_{1}^{-} \rightarrow 2\pi^{-}\pi^{+}$					
$\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{0}$	<	1.1	%	CL=90%	2572
В	aryon m				
p p			$0.32) \times 10^{-8}$		2467
$p\overline{p}\pi^+\pi^-$			$0.19) \times 10^{-6}$		2406
$p\overline{p}K^{+}\pi^{-}$			$0.5) \times 10^{-6}$		2306
$p\overline{p}K^0$		2.66±	$0.32) \times 10^{-6}$	CI 222/	2347
` '	[ttt] <		× 10 ⁻⁸		2318
$f_J(2220)K^0$, $f_J \rightarrow p\overline{p}$			× 10 ⁻⁷	CL=90%	2135
<i>ppK</i> *(892) ⁰	(1.24 +	$0.28 \\ 0.25) \times 10^{-6}$		2216
$f_I(2220)K_0^*, f_I \rightarrow p\overline{p}$	<	1.5	\times 10 ⁻⁷	CL=90%	_

HTTP://PDG.LBL.GOV

Page 115

$p\overline{p}K^+K^-$	($1.21 \pm$	$0.32) \times 10^{-7}$		2179
$ \rho \overline{\rho} \pi^0 $	(5.0 ±	1.9) \times 10 ⁻⁷		2440
p <u>p</u> pp	<			CL=90%	1735
$p\underline{\Lambda}\pi^-$	($0.29) \times 10^{-6}$		2401
$p\Lambda\pi^-\gamma$	<	6.5		CL=90%	2401
$p\overline{\Sigma}(1385)^-$	<	2.6		CL=90%	2363
$\Delta (1232)^{+} \overline{p} + \Delta (1232)^{-} p$	<	1.6	$\times 10^{-6}$	GL 000/	_
$\Delta^0 \overline{\Lambda}$	<	9.3		CL=90%	2364
p <u>Λ</u> K− p <u>Λ</u> D−		8.2		CL=90%	2308
pΛD*-	(0.4) \times 10 ⁻⁵ 0.8) \times 10 ⁻⁵		1765 1685
$p\overline{\nabla}^0\pi^-$	(3.4 ±		CL=90%	2383
$\frac{\rho}{\Lambda} \overline{\Sigma}{}^{0} \pi^{-}$	<	3.2		CL=90%	2392
$\overline{\Lambda}\Lambda K^0$			$\begin{array}{c} 1.0 \\ 0.9 \end{array}) \times 10^{-6}$	CL—9070	2250
<i>ĀΛK</i> * ⁰			$\begin{array}{c} 0.9 \\ 0.8 \\ 0.8 \end{array}) \times 10^{-6}$		2098
	(0.0		
$\overline{\Lambda}\Lambda D^0$	($0.30 \\ 0.26) \times 10^{-5}$		1662
$D^0 \Sigma^0 \overline{\Lambda} + \text{c.c.}$	<	3.1		CL=90%	1611
$\Delta^0 \overline{\Delta}{}^0$		1.5		CL=90%	2335
$\Delta^{++}\overline{\Delta}^{}$	<	1.1		CL=90%	2335
$\overline{D}^0 p \overline{p}$			$0.07) \times 10^{-4}$		1863
$D_{\overline{A}}^{-} \overline{A} p$			$0.9) \times 10^{-5}$		1710
$\overline{D}^*(2007)^0 p \overline{p}$	(1.1) \times 10 ⁻⁵		1788
$D^*(2010)^- p \overline{n}$	($0.4) \times 10^{-3}$		1785
$D^{-}p\overline{p}\pi^{+}$	($0.31) \times 10^{-4}$	6 10	1786
$rac{D^*(2010)^- ho\overline{ ho}\pi^+}{\overline{D}^0 ho\overline{ ho}\pi^+\pi^-}$			$0.5) \times 10^{-4}$	S=1.2	1708
$D^{\circ}pp\pi^{+}\pi$ $D^{*}0 = -+-$	($0.5) \times 10^{-4}$		1708
$\overline{D}^{*0} p \overline{p} \pi^+ \pi^-$	($0.5) \times 10^{-4} \times 10^{-6}$	CL 000/	1623
$\Theta_c \overline{p} \pi^+, \; \Theta_c \to D^- p$ $\Theta_c \overline{p} \pi^+, \; \Theta_c \to D^{*-} p$	<		\times 10 $^{\circ}$ \times 10 $^{-5}$		_
$ \frac{\Theta_c \overline{p} \pi^+, \ \Theta_c \rightarrow D^{*-} p}{\overline{\Sigma}_c^{} \Delta^{++}} $		1.4 8		CL=90% CL=90%	1839
$\frac{\mathcal{L}_c}{\Lambda^-} \frac{\Delta}{n \pi^+ \pi^-}$			$0.14) \times 10^{-3}$		1934
$\frac{\Lambda_c}{\Lambda} = \frac{\rho \Lambda}{\rho}$	($0.14) \times 10^{-5}$ $0.18) \times 10^{-5}$	5—1.5	2021
$\frac{\overline{\Lambda}_{c}^{c} p \pi^{+} \pi^{-}}{\overline{\Lambda}_{c}^{-} p \pi^{0}}$ $\overline{\Lambda}_{c}^{c} p \pi^{0}$	($0.18) \times 10^{-4}$		1982
$\Sigma_c(2455)^{-}p$	<	2.4	× 10 ⁻⁵		_
$\frac{\Sigma_c(2455)^- p}{\Lambda_c^- p \pi^+ \pi^- \pi^0}$	<	5.07	2	CL=90%	1883
$\frac{1}{\Lambda_{C}} p_{\pi} + \pi^{-} \pi^{+} \pi^{-}$	<	2.74	$\times10^{-3}$	CL=90%	1821
$\overline{\Lambda}_c^- p \pi^+ \pi^-$ (nonresonant)	(5.5 ±	$1.0\)\times 10^{-4}$	S=1.3	1934
$\overline{\Sigma}_c(2520)^{} \rho \pi^+$	($1.02\pm$	$0.18) \times 10^{-4}$		1860
$\overline{\Sigma}_c(2520)^0 p \pi^-$	<	3.1	$\times10^{-5}$	CL=90%	1860
$\overline{\Sigma}_c(2455)^0 p\pi^-$	($1.08\pm$	$0.16) \times 10^{-4}$		1895
$\overline{\Sigma}_c(2455)^0 N^0$, $N^0 \rightarrow$	(6.4 ±	$1.7) \times 10^{-5}$		_
$oldsymbol{ ho}\pi^-$					

HTTP://PDG.LBL.GOV Page 116

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

1101211118 1110235, 01/2					
$\gamma \gamma$	B1	<	3.2	$\times 10^{-7}$ CL=90%	2640
e^+e^-	B1	<	2.5	$\times10^{-9}$ CL=90%	2640
$e^+e^-\gamma$	В1	<	1.2	$\times10^{-7}$ CL=90%	2640
$\mu^+\mu^-$	В1	($7 \begin{array}{c} +13 \\ -11 \end{array}$	$) \times 10^{-11}$ S=1.8	2638
$\mu^{+} \mu^{-} \mu^{+} \mu^{-}$	B1	<	1.8	$\times10^{-10}$ CL=95%	2629
SP, $S ightarrow \ \mu^+ \mu^-$,	B1	[vvv] <	6.0	$ imes$ 10 $^{-10}$ CL=95%	_
$P ightarrow~\mu^+\mu^-$					
aa, a $ ightarrow$ $\mu^+\mu^-$		<	2.3	$\times10^{-10}$ CL=95%	_
$ au^+ au^-$	B1	<	2.1	$\times 10^{-3}$ CL=95%	1952
$\pi^0\ell^+\ell^-$	B1	<	5.3	$\times10^{-8}$ CL=90%	2638
$\pi^0e^+e^-$	B1	<	8.4	$\times 10^{-8}$ CL=90%	2638
$\pi^0\mu^+\mu^-$	B1	<	6.9	$\times 10^{-8}$ CL=90%	2634
$\eta \ell^+ \ell^-$	B1	<	6.4	$\times 10^{-8}$ CL=90%	2611
ηe^+e^-	B1	<	1.08	$\times 10^{-7}$ CL=90%	2611
$\eta\mu^+\mu^-$	B1	<	1.12	$\times10^{-7}$ CL=90%	2607
$\pi^0 u \overline{ u}$	B1	<	9	$\times 10^{-6}$ CL=90%	2638
$\kappa^0 \ell^+ \ell^-$	В1	[ggg] (3.3 ± 0	$.6) \times 10^{-7}$	2616
$K^0 e^+ e^-$	В1	($2.5 \begin{array}{c} + & 1 \\ - & 0 \end{array}$	$(\frac{1}{9}) \times 10^{-7}$ S=1.3	2616
$K^0\mu^+\mu^-$	B1	($3.39\pm~0$	$(.35) \times 10^{-7}$ S=1.1	2612
$K^0 u \overline{ u}$	B1	<	2.6	$\times 10^{-5}$ CL=90%	2616
$ ho^0 u \overline{ u}$	B1	<	4.0	$\times10^{-5}$ CL=90%	2583

$K^*(892)^0 \ell^+ \ell^-$	31 [ggg	[] ($9.9 \ + \ 1.2 \ - \ 1.1$	$) \times 10^{-7}$		2565
()	31	(1.03^{+}_{-} 0.19	$) \times 10^{-6}$		2565
$K^*(892)^0 \mu^+ \mu^-$ B	31	(9.4 ± 0.5	$) \times 10^{-7}$		2560
, , , , , , , , , , , , , , , , , , ,	31	(2.1 ± 0.5	$) \times 10^{-8}$		2626
$K^*(892)^0 \nu \overline{\nu}$ B	31	<	1.8	$\times 10^{-5}$	CL=90%	2565
invisible B	31	<	2.4	$\times 10^{-5}$	CL=90%	_
$ u\overline{ u}\gamma$	31	<	1.6		CL=90%	2640
$\phi \mu^+ \mu^-$		<	3.2	$\times 10^{-9}$	CL=90%	2537
7	31	<	1.27		CL=90%	2541
,	.F [z	<u>:</u>] <	1.0	$\times 10^{-9}$	CL=90%	2639
<i>I</i>	.F	<	1.4	$\times 10^{-7}$	CL=90%	2637
- <i> </i>	.F	<	3.8	$\times 10^{-8}$	CL=90%	2615
() -	.F	<	1.6	$\times 10^{-7}$	CL=90%	2563
- () - /	.F	<	1.2	$\times 10^{-7}$	CL=90%	2563
$K^*(892)^0 e^{\pm} \mu^{\mp}$ L	.F	<	1.8	$\times 10^{-7}$	CL=90%	2563
	.F [z	<u>:</u>] <	1.6	$\times 10^{-5}$	CL=90%	2341
	.F [z	<u>:</u>] <	1.4	$\times 10^{-5}$	CL=95%	2340
$\Lambda_c^+ \mu^-$.,B	<	1.4	$\times 10^{-6}$	CL=90%	2143
$\Lambda_c^+ \mu^-$ L $\Lambda_c^+ e^-$ L	.,B	<	4	\times 10 ⁻⁶	CL=90%	2145

B^{\pm}/B^0 ADMIXTURE

CP violation

$$\begin{array}{l} A_{CP}(B\to K^*(892)\gamma) = -0.003 \pm 0.011 \\ A_{CP}(B\to s\gamma) = 0.015 \pm 0.011 \\ A_{CP}(B\to (s+d)\gamma) = 0.010 \pm 0.031 \\ A_{CP}(B\to X_s\ell^+\ell^-) = 0.04 \pm 0.11 \\ A_{CP}(B\to X_s\ell^+\ell^-) & (1.0 < q^2 < 6.0 \ \text{GeV}^2/\text{c}^4) = -0.06 \pm 0.22 \\ A_{CP}(B\to X_s\ell^+\ell^-) & (10.1 < q^2 < 12.9 \ \text{or} \ q^2 > 14.2 \ \text{GeV}^2/\text{c}^4) \\ = 0.19 \pm 0.18 \\ A_{CP}(B\to K^*e^+e^-) = -0.18 \pm 0.15 \\ A_{CP}(B\to K^*\mu^+\mu^-) = -0.03 \pm 0.13 \\ A_{CP}(B\to K^*\ell^+\ell^-) = -0.04 \pm 0.07 \\ A_{CP}(B\to \eta \text{anything}) = -0.13^{+0.04}_{-0.05} \\ \Delta A_{CP}(X_s\gamma) = A_{CP}(B^\pm \to X_s\gamma) - A_{CP}(B^0 \to X_s\gamma) = \\ 0.041 \pm 0.023 \\ \overline{A}_{CP}(B\to X_s\gamma) = (A_{CP}(B^+ \to X_s\gamma) + A_{CP}(B^0 \to X_s\gamma))/2 = 0.009 \pm 0.012 \\ \Delta A_{CP}(B\to K^*\gamma) = A_{CP}(B^+ \to K^{*+}\gamma) - A_{CP}(B^0 \to K^{*0}\gamma) = 0.024 \pm 0.028 \\ \overline{A}_{CP}(B\to K^*\gamma) = (A_{CP}(B^+ \to K^{*+}\gamma) + A_{CP}(B^0 \to K^{*0}\gamma))/2 = -0.001 \pm 0.014 \\ \end{array}$$

The branching fraction measurements are for an admixture of B mesons at the $\Upsilon(4S)$. The values quoted assume that B($\Upsilon(4S) \rightarrow B\overline{B}$) = 100%.

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the treatment of multiple D's in the final state must be defined. One possibility would be to count the number of events with one-or-more D's and divide by the total number of B's. Another possibility would be to count the total number of D's and divide by the total number of B's, which is the definition of average multiplicity. The two definitions are identical if only one D is allowed in the final state. Even though the "one-or-more" definition seems sensible, for practical reasons inclusive branching fractions are almost always measured using the multiplicity definition. For heavy final state particles, authors call their results inclusive branching fractions while for light particles some authors call their results multiplicities. In the B sections, we list all results as inclusive branching fractions, adopting a multiplicity definition. This means that inclusive branching fractions can exceed 100% and that inclusive partial widths can exceed total widths, just as inclusive cross sections can exceed total cross section.

 \overline{B} modes are charge conjugates of the modes below. Reactions indicate the weak decay vertex and do not include mixing.

B DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ p Confidence level (MeV/c)

Created: 7/10/2023 15:48

Semileptonic and leptonic modes

```
\ell^+ \nu_\ell anything
                                                                  10.84 \pm 0.16) %
                                           [ggg,xxx]
   D^-\ell^+\nu_\ell anything
                                                                    2.6 \pm 0.5 ) %
                                                 [ggg]
   \overline{D}^0 \ell^+ \nu_{\ell} anything
                                                                    7.3 \pm 1.5) %
                                                 [ggg]
   \overline{D}\ell^+\nu_\ell
                                                                    2.42 \pm 0.12)%
                                                                                                                         2310
   D^{*-}\ell^{+}\nu_{\ell} anything
                                                 [yyy]
                                                                            \pm 1.3 \times 10^{-3}
   \overline{D}^* \ell^+ \nu_{\ell}
                                                                    4.95 \pm 0.11)%
                                                                                                                         2257
                                                  [zzz]
   \overline{D}^{**}\ell^+\nu_{\ell}
                                                                    2.7 \pm 0.7 ) %
                                          [ggg,aaaa]
       \overline{D}_1(2420)\ell^+\nu_\ell anything
                                                                          \pm 1.3 \times 10^{-3}
                                                                    3.8
                                                                                                           S = 2.4
       \overline{D}\pi\ell^+\nu_\ell anything +
                                                                            \pm 0.5 )%
                                                                                                           S=1.5
             \overline{D}^*\pi\ell^+\nu_\ell anything
       \overline{D}\pi\ell^+\nu_\ell anything
                                                                          \pm 0.6
                                                                                      ) %
       \overline{D}^* \pi \ell^+ \nu_\ell anything
                                                                    1.9 \pm 0.4 ) %
       \overline{D}_{2}^{*}(2460)\ell^{+}\nu_{\ell} anything
                                                                    4.4 \pm 1.6 \times 10^{-3}
       D^{*-}\pi^{+}\ell^{+}\nu_{\ell} anything
                                                                    1.00 \pm 0.34 ) %
   \overline{D}\pi^+\pi^-\ell^+\nu_\ell
                                                                    1.62 \pm 0.32 \times 10^{-3}
                                                                                                                         2301
   \overline{D}^* \pi^+ \pi^- \ell^+ \nu_{\ell}
                                                                    9.4 \pm 3.2 \times 10^{-4}
                                                                                                                         2247
   D_s^- \ell^+ \nu_\ell anything
                                                                                          \times 10^{-3} CL=90%
                                                 [ggg] <
       D_s^- \ell^+ \nu_\ell K^+ anything
                                                                                          \times 10^{-3} CL=90%
                                                 [ggg] <
       D_s^- \ell^+ \nu_\ell K^0 anything
                                                                                          \times 10^{-3} CL=90%
                                                 [ggg] <
   X_c \ell^{\stackrel{s}{+}} \nu_{\ell}
                                                                  10.65 \pm 0.16) %
   X_{u}\ell^{+}\nu_{\ell}
                                                                   1.91 \pm 0.27 ) \times 10^{-3}
       X_{\mu}e^{+}\nu_{e}
                                                                    1.57 \pm 0.19 \times 10^{-3}
```

$X_{\mu}\mu^{+}\nu_{\mu}$		(1.62	\pm	0.21	$) \times 10^{-3}$		_
$K^+\ell^+ u_\ell$ anything	[ggg]	(6.3			′		_
$K^-\ell^+ u_\ell$ anything	[ggg]	($) \times 10^{-3}$		_
$K^0/\overline{K}{}^0\ell^+ u_\ell$ anything	[ggg]	(4.6			,		_
$\overline{D}\tau^+\nu_{\tau}$	[000]	($) \times 10^{-3}$		1911
$\overline{D}^* \tau^+ \nu_{\tau}$		(0.08			1838
,	D D*	`	D ===	طم		•		
D^\pm anything	<i>D</i> , <i>D</i>	, or	D_s mo) 0/		
D^{-1} anything D^{0}/\overline{D}^{0} anything		(23.1 61.6			,	C 12	_
$D^*(2010)^{\pm}$ anything		(22.5			,	S=1.3	_
$\overline{D}^*(2007)^0$ anything		(26.0			•		
D_s^{\pm} anything	[-1	(′		
	[z]	(,		_
$D_s^{*\pm}$ anything		(1.0	,		_
$D_s^{*\pm}\overline{D}^{(*)}$		(3.4	\pm	0.6) %		_
$\frac{DD_{s0}(2317)}{2}$			seen					1605
$\overline{D}D_{sJ}(2457)$			seen					_
$D^{(*)} \overline{D}^{(*)} K^0 +$	[z,bbaa]	(7.1	+	2.7) %		_
$D^{(*)} \overline{D}^{(*)} {\mathcal K}^\pm$					1.7			
$b \to c \overline{c} s$		(22	\pm	4) %		_
	[z,bbaa]	(3.9	\pm	0.4	,		_
$D^*D^*(2010)^{\pm}$	[z]	<	5.9				CL=90%	1711
$DD^*(2010)^{\pm} + D^*D^{\pm}$	[z]	<					CL=90%	_
DD^{\pm}	[z]	<	3.1			$\times 10^{-3}$	CL=90%	1866
$D_s^{(*)\pm}\overline{D}^{(*)}X(n\pi^{\pm})$	[z,bbaa]	(9	+	5 4) %		_
$\overline{D}^*(2010)\gamma$		<	1.1			$\times10^{-3}$	CL=90%	2257
$D_{s}^{+}\pi^{-}$, $D_{s}^{*+}\pi^{-}$, $D_{s}^{+}\rho^{-}$,	[z]	<	4			$\times 10^{-4}$	CL=90%	_
$D_{s}^{*+}\rho^{-}$, $D_{s}^{+}\pi^{0}$, $D_{s}^{*+}\pi^{0}$								
$D_{s}^{+}\eta$, $D_{s}^{*+}\eta$, $D_{s}^{+}\rho^{0}$,	. ,							
3								
$D_{s}^{*+}\rho^{0}$, $D_{s}^{+}\omega$, $D_{s}^{*+}\omega$						2		
$D_{s1}(2536)^+$ anything		<	9.5			\times 10 ⁻³	CL=90%	_
Charmonium modes								
$J/\psi(1S)$ anything		(0.032	•	S=1.1	_
$J/\psi(1S)$ (direct) anythin	g	($) \times 10^{-3}$	S=1.1	_
$\psi(2S)$ anything		($) \times 10^{-3}$		_
$\chi_{c1}(1P)$ anything		($) \times 10^{-3}$	S=1.3	_
$\chi_{c1}(1P)$ (direct) anything	g	($) \times 10^{-3}$		_
$\chi_{c2}(1P)$ anything		($) \times 10^{-4}$	S=1.6	_
$\chi_{c2}(1P)$ (direct) anything	g	(7.5	\pm	1.1	$) \times 10^{-4}$		_
$\eta_{m{c}}(1S)$ anything		<	9			× 10 ⁻³	CL=90%	_

K ₂₄ (2972)	(2.2		0.7) × 10-4		1141
$K\chi_{c1}(3872)$ $KX(3940), X \to D^{*0}D^0$	(2.3 6.7	工	0.7	$) \times 10^{-4}$	CL=90%	1084
$K\chi_{c0}(3915), \chi_{c0} \rightarrow \omega J/v$			+	3 4		CL—90/0	1103
(3313) , $\chi_{c0} = 0.37$				J. 1) / 10		1105
<i>v</i> +	K or K				\ 0 /		
K^{\pm} anything	[z] (78.9		2.5) %		_
K ⁺ anything	(66	±) %		_
K^- anything K^0/\overline{K}^0 anything	[z] (13 64	± ±) %) %		_
$K^*(892)^{\pm}$ anything	[z] (18	±) %		_
$K^*(892)^0 / \overline{K}^*(892)^0$ anythin	ng [z] (2.6) %		_
$K^*(892)\gamma$	(4.2		0.6	$) \times 10^{-5}$		2565
$\eta K \gamma$	(8.5		1.8 1.6	•		2588
$K_1(1400)\gamma$	<	1.27	_	1.0		CL=90%	2454
-,			+	0.6		CL-90/0	
$K_2^*(1430)\gamma$	(1.7	_	0.6 0.5	$) \times 10^{-5}$		2447
$K_2(1770)\gamma$	<	1.2				CL=90%	2342
$K_3^*(1780)\gamma$	<	3.7				CL=90%	2340
$K_4^*(2045)\gamma$	<	1.0				CL=90%	2243
$K \eta'(958)$	(8.3		1.1	· _		2528
$K^*(892)\eta'(958)$	(4.1	±	1.1	$) \times 10^{-6}$	GL 000/	2472
Kη K*(802) m	<	5.2		0 E		CL=90%	2588
$K^*(892)\eta$ $K\phi\phi$	(1.8 2.3		0.5	$) \times 10^{-5}$ $) \times 10^{-6}$		2534 2306
$\frac{\kappa}{b} \stackrel{\varphi \varphi}{ o} \overline{s} \gamma$	($) \times 10^{-4}$		2300
$\frac{b}{b} \rightarrow \frac{b}{d} \gamma$	(9.2			$) \times 10^{-6}$		_
$\frac{\overline{b}}{\overline{b}} \rightarrow \overline{s}$ gluon	<	6.8			%	CL=90%	_
η anything	(2.6	+	0.5 0.8) × 10 ⁻⁴		_
η' anything	(4.2			$) \times 10^{-4}$		_
K^+ gluon (charmless)	<	1.87				CL=90%	_
K^0 gluon (charmless)	(0.7	$) \times 10^{-4}$		_
Light	t unflavore	d meso	n r	node	e		
$ ho\gamma$	t uilliavoie) × 10 ⁻⁶	S=1.2	2583
$\rho/\omega\gamma$	($) \times 10^{-6}$		2303
	[z,ddaa] (358			,	0 1.1	_
π^{0} anything	(235) %		_
η anything	(17.6	\pm	1.6) %		_
$ ho^{f 0}$ anything	(21	\pm	5) %		_
ω anything	<	81			%	CL=90%	_
ϕ anything	(3.43	\pm	0.12			-
$\phi K^*(892)$	<	2.2				CL=90%	2460
π^+ gluon (charmless)	(3.7	\pm	8.0	$) \times 10^{-4}$		_

Baryon modes

$\Lambda_c^+ \ / \ \overline{\Lambda}_c^-$ anything	(3.6 ± 0.4) %		_
Λ_c^+ anything	<	1.3	%	CL=90%	_
$\overline{\Lambda}_c^-$ anything	<	7	%	CL=90%	_
$\overline{\Lambda}_c^- \ell^+$ anything	<	9	$\times10^{-4}$	CL=90%	_
$\overline{\Lambda}_{c}^{-}e^{+}$ anything	<	1.8	$\times10^{-3}$	CL=90%	_
$\overline{\Lambda}_c^- \mu^+$ anything	< -	1.4	\times 10 ⁻³	³ CL=90%	_
$\overline{\Lambda}_{c}^{-}$ p anything	($2.05 ~\pm~ 0.3$	3)%		_
$\overline{\Lambda}_c^c p e^+ \nu_e$	<	8	$\times10^{-4}$	CL=90%	2021
$\overline{\Sigma}_{c}^{}$ anything	(3.4 ± 1.7	$) \times 10^{-3}$		_
$\overline{\Sigma}_{c}^{c}$ anything	<	8	$\times10^{-3}$	CL=90%	_
$\overline{\Sigma}_{c}^{0}$ anything	(3.7 ± 1.7	$) \times 10^{-3}$		_
$\overline{\Sigma}_{c}^{0} N(N = p \text{ or } n)$	<	1.2	$\times10^{-3}$	CL=90%	1938
Ξ_c^0 anything, $\Xi_c^0 ightarrow \Xi^- \pi^+$	($1.93~\pm~0.3$	0) \times 10 ⁻⁴	S=1.1	_
$\Xi_c^+, \ \Xi_c^+ \rightarrow \ \Xi^-\pi^+\pi^+$	($\begin{array}{cccc} 4.5 & + & 1.3 \\ - & 1.2 \end{array}$	$) \times 10^{-4}$		_
$ ho/\overline{ ho}$ anything	[z] (8.0 ± 0.4) %		_
p/\overline{p} (direct) anything	[z] (5.5 ± 0.5			_
$\overline{p}e_{\underline{}}^{+}\nu_{e}$ anything	<	5.9	$\times 10^{-4}$	CL=90%	_
$\Lambda/\overline{\Lambda}$ anything	[z] (4.0 ± 0.5) %		_
$\underline{\Lambda}$ anything	S	een			_
$\overline{\Lambda}$ anything	S	een			_
$\overline{\Xi}^-/\overline{\overline{\Xi}}^+$ anything	[z] (2.7 ± 0.6	$) \times 10^{-3}$		_
baryons anything	(6.8 ± 0.6) %		_
$p\overline{p}$ anything	($2.47\ \pm\ 0.2$	3)%		_
$\Lambda \overline{ ho}/\overline{\Lambda} ho$ anything	[z] (2.5 ± 0.4) %		_
$\Lambda \overline{\Lambda}$ anything	<	5	$\times 10^{-3}$	CL=90%	_

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

			(-	_,		
se^+e^-	B1	($6.7 \pm 1.$	7) $\times 10^{-6}$	S=2.0	_
$s\mu^+\mu^-$	B1	($4.3 \pm 1.$	$0)\times 10^{-6}$		_
$s\ell^+\ell^-$	B1	[ggg] ($5.8 \pm 1.$	$3) \times 10^{-6}$	S=1.8	_
$\pi \ell^+ \ell^-$	B1	<	5.9	$\times 10^{-8}$	CL=90%	2638
πe^+e^-	B1	<	1.10	\times 10 ⁻⁷	CL=90%	2638
$\pi \mu^+ \mu^-$	B1	<	5.0	× 10 ⁻⁸	CL=90%	2634
$K e^+ e^-$	B1	($4.4 \pm 0.$	6) \times 10 ⁻⁷		2617
$K^*(892)e^+e^-$	B1	($1.19 \pm 0.$	$20) \times 10^{-6}$	S=1.2	2565
$K\mu^+\mu^-$	B1	($4.4 \pm 0.$	4) \times 10 ⁻⁷		2612
$K^*(892)\mu^+\mu^-$	B1	($1.06 \pm 0.$	09) \times 10 ⁻⁶		2560
$K\ell^+\ell^-$	B1	($4.8 \pm 0.$	4) $\times 10^{-7}$		2617
$K^*(892)\ell^+\ell^-$	B1	($1.05 \pm 0.$	$10) \times 10^{-6}$		2565
$K \nu \overline{\nu}$	B1	<	1.6	\times 10 ⁻⁵	CL=90%	2617

$K^* u \overline{ u}$	B1	<	2.7	$\times10^{-5}$ CL=90%	_
$\pi \nu \overline{\nu}$	B1	<	8	$\times10^{-6}$ CL=90%	2638
$\rho \nu \overline{\nu}$	B1	<	2.8	$\times10^{-5}$ CL=90%	2583
$se^{\pm}\mu^{\mp}$	LF	[z]	2.2	$\times10^{-5}$ CL=90%	_
$\pie^{\pm}\mu^{\mp}$	LF	<	9.2	$\times 10^{-8}$ CL=90%	2637
$ hoe^\pm\mu^\mp$	LF	<	3.2	$\times 10^{-6}$ CL=90%	2582
K $e^{\pm}\mu^{\mp}$	LF	<	3.8	$\times 10^{-8}$ CL=90%	2616
$K^*(892) e^{\pm} \mu^{\mp}$	LF	<	5.1	$\times 10^{-7} \text{ CL}=90\%$	2563

$B^{\pm}/B^{0}/B_{s}^{0}/b$ -baryon ADMIXTURE

These measurements are for an admixture of bottom particles at high energy (LHC, LEP, Tevatron, $Sp\overline{p}S$).

Mean life
$$au=(1.5673\pm0.0029)\times10^{-12}$$
 s Mean life $au=(1.72\pm0.10)\times10^{-12}$ s Charged b -hadron admixture Mean life $au=(1.58\pm0.14)\times10^{-12}$ s Neutral b -hadron admixture
$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} \, {\rm s} = 1.09\pm0.13$$

$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} \, {\rm s} = 1.09\pm0.13$$

$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} \, {\rm s} = 1.09\pm0.13$$

$$au_{\rm charged} = (1.58\pm0.14)\times10^{-12} \, {\rm s} = 1.09\pm0.13$$

The branching fraction measurements are for an admixture of B mesons and baryons at energies above the $\Upsilon(4S)$. Only the highest energy results (LHC, LEP, Tevatron, $Sp\,\overline{p}S$) are used in the branching fraction averages. In the following, we assume that the production fractions are the same at the LHC, LEP, and at the Tevatron.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

The modes below are listed for a \overline{b} initial state. b modes are their charge conjugates. Reactions indicate the weak decay vertex and do not include mixing.

T DECAY MODES

Created: 7/10/2023 15:48

PRODUCTION FRACTIONS

The production fractions for weakly decaying b-hadrons at high energy have been calculated from the best values of mean lives, mixing parameters, and branching fractions in this edition by the Heavy Flavor Averaging Group (HFLAV) as described in the note " B^0 - \overline{B}^0 Mixing" in the B^0 Particle Listings. We no longer provide world averages of the b-hadron production fractions, where results from LEP, Tevatron and LHC are averaged together; indeed the available data (from CDF and LHCb) shows that the fractions depend on the kinematics (in particular the p_T) of the

produced b hadron. Hence we would like to list the fractions in Z decays instead, which are well-defined physics observables. The production fractions in $p\overline{p}$ collisions at the Tevatron are also listed at the end of the section. Values assume

$$\begin{array}{ll} \mathsf{B}(\overline{b}\to B^+) = \mathsf{B}(\overline{b}\to B^0) \\ \mathsf{B}(\overline{b}\to B^+) + \mathsf{B}(\overline{b}\to B^0) + \mathsf{B}(\overline{b}\to B^0_s) + \mathsf{B}(b\to b\text{-baryon}) = 100\%. \end{array}$$

The correlation coefficients between production fractions are also reported:

cor(
$$B_s^0$$
, b-baryon) = 0.064
cor(B_s^0 , $B^{\pm} = B^0$) = -0.633
cor(b-baryon, $B^{\pm} = B^0$) = -0.813.

The notation for production fractions varies in the literature $(f_d, d_{B^0}, f(b \to \overline{B}^0), \operatorname{Br}(b \to \overline{B}^0))$. We use our own branching fraction notation here, $\operatorname{B}(\overline{b} \to B^0)$.

Note these production fractions are b-hadronization fractions, not the conventional branching fractions of b-quark to a B-hadron, which may have considerable dependence on the initial and final state kinematic and production environment.

B^+	$(40.8 \pm 0.7)\%$
B^0	(40.8 ± 0.7) %
B_s^0	(10.0 ± 0.8) %
<i>b</i> -baryon	$(8.4 \pm 1.1)\%$

DECAY MODES

Semileptonic and leptonic modes

u anything		(23.1 ± 1.5) %	_
$\ell^+ u_\ell$ anything	[ggg]	($10.69\pm\ 0.22$) %	_
$e^+ u_e$ anything		($10.86\pm\ 0.35)\ \%$	_
$\mu^+ u_\mu$ anything		$(\ 10.95 ^{+}_{-}\ 0.25 ^{+})\ \%$	_
$D^-\ell^+ u_\ell$ anything	[ggg]	(2.2 ± 0.4) % S=1.9	_
$D^-\pi^+\ell^+ u_\ell$ anything		$(4.9 \pm 1.9) \times 10^{-3}$	_
$D^-\pi^-\ell^+ u_\ell$ anything		$(2.6 \pm 1.6) \times 10^{-3}$	_
$\overline{D}{}^0\ell^+ u_\ell$ anything	[ggg]	(6.79 ± 0.34) %	_
$\overline{\it D}{}^0\pi^-\ell^+ u_\ell$ anything		(1.07 ± 0.27) %	_
$\overline{\it D}{}^0\pi^+\ell^+ u_\ell$ anything		$(2.3 \pm 1.6) \times 10^{-3}$	_
$D^{*-}\ell^+ u_\ell$ anything	[ggg]	$(2.75\pm\ 0.19)\ \%$	_
$D^{*-}\pi^-\ell^+ u_\ell$ anything		$(6 \pm 7) \times 10^{-4}$	_
$D^{*-}\pi^+\ell^+ u_\ell$ anything		$(4.8 \pm 1.0) \times 10^{-3}$	_
$\overline{D}^0_i \ell^+ u_\ell$ anything $ imes$	[ggg,eeaa]	$(2.6 \pm 0.9) \times 10^{-3}$	_
$B(\overline{D}_j^0 o \ D^{*+}\pi^-)$			

Charmonium modes

$J/\psi(1S)$ anything ($1.16 \pm 0.10) \%$	_
$\psi(2S)$ anything ($3.06 \pm 0.30) \times 10^{-3}$	_
$\chi_{c0}(1P)$ anything ($1.5~\pm~0.6$) %	_
$\chi_{c1}(1P)$ anything (1.4 \pm 0.4) %	_
$\chi_{c2}(1P)$ anything ($6.2 \pm 2.9) \times 10^{-3}$	_
$\chi_c(2P)$ anything, $\chi_c o \phi \phi$ <	$2.8 \times 10^{-7} \text{ CL}=95\%$	_
$\eta_c(1S)$ anything ($5.6 \pm 0.9) \times 10^{-3}$	_
$\eta_c(2S)$ anything, $\eta_c o \phi \phi$ ($3.5 \pm 1.3) \times 10^{-7}$	_
$\chi_{c1}(3872)$ anything, $\chi_{c1} ightarrow <$	$4.5 \times 10^{-7} \text{ CL}=95\%$	_
$\phi\phi$		
$\chi_{c0}(3915)$ anything, $\chi_{c0} ightarrow <$	$3.1 \times 10^{-7} \text{ CL}=95\%$	_
$\phi\phi$		

K or K* modes

$\overline{s}\gamma$		$(3.1 \pm 1.1) \times 10^{-4}$	_
$\overline{S}\overline{\nu}\nu$	B1	$<$ 6.4 $\times 10^{-4}$ CL=90%	_
K^{\pm} anything		$(74 \pm 6)\%$	_
K_S^0 anything		(29.0 ± 2.9) %	_

Pion modes

π^\pm anything		$(397 \pm 21)\%$	_
π^0 anything	[ddaa]	$(278 \pm 60)\%$	_
ϕ anything		(2.82 ± 0.23) %	_

Baryon modes

p/\overline{p} anything	(13.1 ± 1.1) %	_
$\Lambda/\overline{\Lambda}$ anything	(5.9 ± 0.6) %	_
b-baryon anything	(10.2 ± 2.8) %	-

Other modes

charged anything
$$[ddaa] \quad (497 \quad \pm \quad 7 \quad) \ \% \qquad \qquad -$$

$$\text{hadron}^+ \text{ hadron}^- \qquad \qquad (\quad 1.7 \ \frac{+}{-} \ \frac{1.0}{0.7} \) \times 10^{-5} \qquad \qquad -$$

$$\text{charmless} \qquad \qquad (\quad 7 \quad \pm 21 \quad) \times 10^{-3} \qquad \qquad -$$

$\Delta B = 1$ weak neutral current (B1) modes

```
\mu^+\mu^- anything B1 < 3.2 \times 10<sup>-4</sup> CL=90%
```

B*

$$I(J^P) = \frac{1}{2}(1^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

Mass
$$m_{B^*}=5324.71\pm0.21~{
m MeV}$$
 $m_{B^*}-m_B=45.21\pm0.21~{
m MeV}$ $m_{B^{*+}}-m_{B^+}=45.37\pm0.21~{
m MeV}$

B* DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

p (MeV/c)

$$B\gamma$$

seen

45

 $B_1(5721)$

$$I(J^P) = \frac{1}{2}(1^+)$$

I, J, P need confirmation.

$$B_1(5721)^+$$
 mass $= 5725.9^{+2.5}_{-2.7}$ MeV $m_{B_1^+} - m_{B^{*0}} = 401.2^{+2.4}_{-2.7}$ MeV $B_1(5721)^0$ mass $= 5726.1 \pm 1.3$ MeV (S $= 1.2$) $m_{B_1^0} - m_{B^+} = 446.7 \pm 1.3$ MeV (S $= 1.2$) $m_{B_1^0} - m_{B^{*+}} = 401.4 \pm 1.2$ MeV (S $= 1.2$) Full width $\Gamma(B_1(5721)^+) = 31 \pm 6$ MeV (S $= 1.1$) Full width $\Gamma(B_1(5721)^0) = 27.5 \pm 3.4$ MeV (S $= 1.1$)

B₁ (5721) DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

p (MeV/c)

$$B^*\pi$$

seen

365

 $B_2^*(5747)$

$$I(J^P) = \frac{1}{2}(2^+)$$

I, J, P need confirmation.

$$B_2^*(5747)^+$$
 mass $= 5737.2 \pm 0.7$ MeV $m_{B_2^{*+}} - m_{B^0} = 457.5 \pm 0.7$ MeV $B_2^*(5747)^0$ mass $= 5739.5 \pm 0.7$ MeV $(S = 1.4)$ $m_{B_2^{*0}} - m_{B_1^0} = 13.4 \pm 1.4$ MeV $(S = 1.3)$ $m_{B_2^{*0}} - m_{B^+} = 460.2 \pm 0.6$ MeV $(S = 1.4)$ Full width $\Gamma(B_2^*(5747)^+) = 20 \pm 5$ MeV $(S = 2.2)$ Full width $\Gamma(B_2^*(5747)^0) = 24.2 \pm 1.7$ MeV

B *(5747) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$B\pi$	seen	420
$B^*\pi$	seen	376

B_J(5970)

$$I(J^P) = \frac{1}{2}(?^?)$$

I, J, P need confirmation.

$$B_J(5970)^+$$
 mass $m=5964\pm 5$ MeV $m_{B_J(5970)^+}-m_{B^0}=685\pm 5$ MeV $B_J(5970)^0$ mass $m=5971\pm 5$ MeV $m_{B_J(5970)^0}-m_{B^+}=691\pm 5$ MeV $B_J(5970)^+$ full width $\Gamma=62\pm 20$ MeV $B_J(5970)^0$ full width $\Gamma=81\pm 12$ MeV

B _J (5970) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$B\pi$	possibly seen	633	
$B^*\pi$	seen	592	

BOTTOM, STRANGE MESONS $(B = \pm 1, S = \mp 1)$

 $B_s^0 = s\overline{b}, \ \overline{B}_s^0 = \overline{s}\,b, \quad \text{similarly for } B_s^*\text{'s}$

 B_s^0

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m_{B_s^0}=5366.92\pm0.10$$
 MeV $m_{B_s^0}-m_B=87.42\pm0.14$ MeV Mean life $\tau=(1.521\pm0.005)\times10^{-12}$ s $c\tau=456.0~\mu\mathrm{m}$ $\Delta\Gamma_{B_s^0}=\Gamma_{B_{sL}^0}-\Gamma_{B_{sH}^0}=(0.083\pm0.005)\times10^{12}~\mathrm{s}^{-1}$ (S = 1.7)

$B_{\epsilon}^0 - \overline{B}_{\epsilon}^0$ mixing parameters

$$\Delta m_{B_s^0} = m_{B_{sH}^0} - m_{B_{sL}^0} = (17.765 \pm 0.006) \times 10^{12} \ \hbar \ \text{s}^{-1}$$

$$= (1.1693 \pm 0.0004) \times 10^{-8} \ \text{MeV}$$

$$x_s = \Delta m_{B_s^0} / \Gamma_{B_s^0} = 27.03 \pm 0.09$$

$$\chi_s \ (B_s^0 - \overline{B}_s^0 \ \text{mixing parameter}) = 0.499319 \pm 0.000005$$

CP violation parameters in B_s^0

$$\text{Re}(\epsilon_{B_s^0}) \ / \ (1 + |\epsilon_{B_s^0}|^2) = (-0.15 \pm 0.70) \times 10^{-3}$$

HTTP://PDG.LBL.GOV

Page 128

$$C_{KK}(B_s^0 \to K^+K^-) = 0.162 \pm 0.035$$

$$S_{KK}(B_s^0 \to K^+K^-) = 0.14 \pm 0.05 \quad (S = 1.3)$$

$$r_B(B_s^0 \to D_s^\mp K^\pm) = 0.37^{+0.10}_{-0.09}$$

$$r_B(B_s^0 \to D_s^\mp K^\pm \pi^\pm \pi^\mp) = 0.47 \pm 0.08$$

$$\delta_B(B_s^0 \to D_s^\pm K^\mp) = (358 \pm 14)^\circ$$

$$\delta_B(B_s^0 \to D_s^\pm K^\mp \pi^\pm \pi^\mp) = (-6^{+10}_{-13})^\circ$$

$$CP \text{ Violation phase } \beta_s = (2.5 \pm 1.0) \times 10^{-2} \text{ rad}$$

$$|\lambda| (B_s^0 \to J/\psi(1S)\phi) = 1.001 \pm 0.018 \quad (S = 1.2)$$

$$|\lambda| = 0.999 \pm 0.017$$

$$A, CP \text{ violation parameter } = -0.79 \pm 0.08$$

$$C, CP \text{ violation parameter } = 0.19 \pm 0.06$$

$$S, CP \text{ violation parameter } = 0.17 \pm 0.06$$

$$A_{CP}^L(B_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.06$$

$$A_{CP}^L(B_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.10$$

$$A_{CP}(B_s \to J/\psi \overline{K}^*(892)^0) = -0.05 \pm 0.10$$

$$A_{CP}(B_s^0 \to [K^+K^-]_D \overline{K}^*(892)^0) = -0.04 \pm 0.07$$

$$A_{CP}(B_s^0 \to [\pi^+K^-]_D K^*(892)^0) = -0.01 \pm 0.04$$

$$A_{CP}(B_s^0 \to [\pi^+\pi^-]_D K^*(892)^0) = 0.06 \pm 0.13$$

$$S(B_s^0 \to \phi \gamma) = 0.43 \pm 0.32$$

$$C(B_s^0 \to \phi \gamma) = 0.11 \pm 0.31$$

$$A^{\Delta}(B_s^0 \to \phi \gamma) = 0.11 \pm 0.31$$

$$A^{\Delta}(B_s^0 \to \phi \gamma) = -0.7 \pm 0.4$$

$$\Delta_{a_{\perp}} < 1.2 \times 10^{-12} \text{ GeV}, \text{ CL} = 95\%$$

$$\Delta_{a_{\parallel}} = (-0.9 \pm 1.5) \times 10^{-14} \text{ GeV}$$

$$\Delta_{a_{\chi}} = (1.0 \pm 2.2) \times 10^{-14} \text{ GeV}$$

$$\Delta_{a_{\chi}} = (1.0 \pm 2.2) \times 10^{-14} \text{ GeV}$$

$$Re(\xi) = -0.022 \pm 0.033$$

$$Im(\xi) = 0.004 \pm 0.011$$

These branching fractions all scale with $B(\overline{b} \to B_s^0)$.

The branching fraction B(B_s^0 ightarrow $D_s^- \ell^+
u_\ell$ anything) is not a pure measurement since the measured product branching fraction B($\overline{b} \rightarrow B_s^0$) \times ${\sf B}(B_s^0 \to D_s^- \ell^+ \nu_\ell {\sf anything})$ was used to determine ${\sf B}(\overline{b} \to B_s^0)$, as described in the note on " $B^0 - \overline{B}^0$ Mixing"

For inclusive branching fractions, e.g., $B o D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

B _s ⁰ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level (MeV/c)
D_s^- anything	(62 ± 6)	% –
HTTP://PDG LBL GOV	Page 120 C	reated: 7/10/2023 15:48

HTTP://PDG.LBL.GOV

Page 129

Created: 7/10/2023 15:48

Scale factor/ n

	$(9.6 \pm 0.8)\%$		_
	$(9.1 \pm 0.8)\%$		- - - -
	(10.2 \pm 1.0) %		_
[ffaa]	(8.1 ± 1.3) %		_
	(5.4 \pm 1.1) %		_
	($2.44\pm~0.23)~\%$		2321
	(5.3 ± 0.5) %		2266
	$(2.7 \pm 0.7) \times 10^{-3}$		_
	$(4.4 \pm 1.3) \times 10^{-3}$		-
	$(2.7 \pm 1.0) \times 10^{-3}$		_
	$(1.06\pm\ 0.09)\times10^{-4}$		2660
			2320
			2249
			2301
	$(2.4 \pm 0.8) \times 10^{-5}$		_
	$(2.25\pm 0.12) \times 10^{-4}$		2293
			2249
			1824
			1875
			1925
	$(1.9 \pm 0.5) \times 10^{-4}$		1930
	$(1.9 \ ^{+}_{-} \ ^{0.5}_{0.4} \) \times 10^{-3}$		2265
	$(1.32^{+}_{-0.32}) \times 10^{-4}$		_
	$(9.5 \pm 2.0) \times 10^{-3}$		2191
	$(~1.39\pm~0.17)~\%$		1742
	$(1.44\pm\ 0.21)\ \%$	S=1.1	1655
	(4.5 ± 1.4) %		_
			1801
			2278
	$(4.3 \pm 0.9) \times 10^{-4}$		2330
	$(1.04\pm\ 0.13)\times10^{-3}$		2312
	$(7.3 \pm 2.6) \times 10^{-4}$		2259
	$(4.4 \pm 0.6) \times 10^{-4}$		2264
			2117
			2113
	$(1.1 \pm 0.4) \times 10^{-4}$		2112
	[ffaa]	$(9.1 \pm 0.8) \%$ $(10.2 \pm 1.0) \%$ $(8.1 \pm 1.3) \%$ $(5.4 \pm 1.1) \%$ $(2.44 \pm 0.23) \%$ $(5.3 \pm 0.5) \%$ $(2.7 \pm 0.7) \times 10^{-3}$ $(4.4 \pm 1.3) \times 10^{-3}$ $(1.06 \pm 0.09) \times 10^{-4}$ $(2.98 \pm 0.14) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(6.1 \pm 1.0) \times 10^{-3}$ $(2.4 \pm 0.8) \times 10^{-5}$ $(2.25 \pm 0.12) \times 10^{-4}$ $(3.2 \pm 0.6) \times 10^{-4}$ $(4.4 \pm 0.5) \times 10^{-3}$ $(2.8 \pm 0.5) \times 10^{-4}$ $(4.4 \pm 0.5) \times 10^{-4}$ $(1.9 \pm 0.5) \times 10^{-3}$ $(1.32 \pm 0.40) \times 10^{-4}$ $(9.5 \pm 2.0) \times 10^{-3}$ $(1.44 \pm 0.21) \%$ $(4.5 \pm 1.4) \%$ $(3.9 \pm 0.8) \times 10^{-4}$ $(2.8 \pm 1.1) \times 10^{-4}$ $(4.3 \pm 0.9) \times 10^{-4}$ $(1.04 \pm 0.13) \times 10^{-3}$ $(7.3 \pm 2.6) \times 10^{-4}$	$ (9.1 \pm 0.8) \% $ $ (10.2 \pm 1.0) \% $ $ (8.1 \pm 1.3) \% $ $ (5.4 \pm 1.1) \% $ $ (2.44 \pm 0.23) \% $ $ (5.3 \pm 0.5) \% $ $ (2.7 \pm 0.7) \times 10^{-3} $ $ (4.4 \pm 1.3) \times 10^{-3} $ $ (1.06 \pm 0.09) \times 10^{-4} $ $ (2.98 \pm 0.14) \times 10^{-3} $ $ (6.8 \pm 1.4) \times 10^{-3} $ $ (6.1 \pm 1.0) \times 10^{-3} $ $ (2.4 \pm 0.8) \times 10^{-5} $ $ (2.25 \pm 0.12) \times 10^{-4} $ $ (3.2 \pm 0.6) \times 10^{-4} $ $ (4.4 \pm 0.5) \times 10^{-3} $ $ (2.8 \pm 0.5) \times 10^{-4} $ $ (2.2 \pm 0.6) \times 10^{-4} $ $ (1.9 \pm 0.5) \times 10^{-4} $ $ (1.9 \pm 0.5) \times 10^{-4} $ $ (1.9 \pm 0.5) \times 10^{-3} $ $ (1.32 + 0.40) \times 10^{-3} $ $ (1.32 + 0.40) \times 10^{-3} $ $ (1.39 + 0.17) \% $ $ (1.44 \pm 0.21) \% $ $ (3.9 \pm 0.8) \times 10^{-4} $ $ (4.5 \pm 1.4) \% $ $ (3.9 \pm 0.8) \times 10^{-4} $ $ (4.3 \pm 0.9) \times 10^{-4} $ $ (4.3 \pm 0.9) \times 10^{-4} $ $ (4.4 \pm 0.6) \times 10^{-4} $ $ (4.4 \pm 0.6) \times 10^{-4} $ $ (4.4 \pm 0.6) \times 10^{-4} $ $ (3.9 \pm 3.5) \times 10^{-4} $ $ (3.9 \pm 3.5) \times 10^{-4} $ $ (3.0 \pm 0.7) \times 10^{-4} $ $ (3.0 \pm 0.7) \times 10^{-4} $

$rac{\overline{D}^0}{\overline{D}^0} rac{\overline{K}^*(1680)}{\overline{K}^*_0(1950)} \ rac{\overline{D}^0}{\overline{K}^*_3(1780)}$	< 7.8 < 1.1	$\times10^{-4}$	CL=90% CL=90% CL=90%	1997 1890
$\frac{D}{D^0} \frac{K_3(1760)}{K_4^*(2045)}$	< 2.6 < 3.1	\times 10 \times 10 \times 10 \times		1970 1835
$\overline{D}^0 K^- \pi^+$ (non-resonant)	(2.1 ± 0.8)		CL—90/0	2312
$D_{s2}^*(2573)^-\pi^+, D_{s2}^* \rightarrow \overline{D}^0\kappa^-$	(2.6 ± 0.4)			-
$D_{s_1}^*(2700)^-\pi^+,\;\;D_{s_1}^* ightarrow \overline{D}{}^0\kappa^-$	(1.6 ± 0.8	$)\times10^{-5}$		_
$D_{s1}^*(2860)^-\pi^+$, $D_{s1}^* o \overline{D}{}^0\kappa^-$	(5 ± 4	$)\times10^{-5}$		-
$D_{s3}^{*}(2860)^{-}\pi^{+}, D_{s3}^{*} \rightarrow \overline{D}^{0}K^{-}$	(2.2 ± 0.6	$)\times10^{-5}$		_
$\overline{D}{}^0K^+K^-$	(5.6 ± 0.9	$) \times 10^{-5}$		2243
$\overline{D}^0 f_0(980)$	< 3.1	\times 10 ⁻⁶	CL=90%	2242
$\overline{D}{}^{0}\phi$	(3.0 ± 0.5	_		2235
$\overline{D}^{*0}\phi$	(3.7 ± 0.6)	•		2178
$D^{*\mp}\pi^{\pm}$	< 6.1		CL=90%	_
$\eta_c \phi$	(5.0 ± 0.9)			1663
$\eta_c \pi^+ \pi^- \ J/\psi(1S) \phi$	$(1.8 \pm 0.7 \ (1.04 \pm 0.04)$			1840
				1588
$J/\psi(1S)\phi\phi$	$(1.20^{+}_{-0.16})$	-		764
$J/\psi(1S)\pi^0$	< 1.2		CL=90%	1787
$J/\psi(1S)\eta$	(4.0 ± 0.7)	_	S=1.4	1733
$J/\psi(1S)K_S^0$	$(1.92\pm\ 0.14)$	_		1743
$J/\psi(1S)\overline{K}^*(892)^0$	(4.1 ± 0.4)	· .		1637
$J/\psi(1S)\eta'$	(3.3 ± 0.4)	•	C 17	1612
$J/\psi(1S)\pi^+\pi^- \ J/\psi(1S)f_0(500), \ f_0 \rightarrow$	(2.02± 0.17 < 4	$\times 10^{-6}$	S=1.7	1775
$\frac{3}{\pi^{+}}\frac{\psi(13)}{\pi^{0}}\frac{1}{300}, \eta_{0} \rightarrow 0$	< 4	X 10	CL=90/0	_
$J/\psi(1S)\rho$, $\rho \to \pi^+\pi^-$	< 3.4	$\times 10^{-6}$	CL=90%	_
$J/\psi(1S) f_0(980), f_0 \to$	($1.24\pm~0.15$	$(5) \times 10^{-4}$	S=2.1	_
$J/\psi(1S) f_2(1270), \;\; f_2 ightarrow \pi^+ \pi^-$	(1.0 ± 0.4	$)\times10^{-6}$		_
$J/\psi(1S) f_2(1270)_0, \ f_2 \rightarrow \pi^+\pi^-$	(7.3 ± 1.7	$) \times 10^{-7}$		_
$J/\psi(1S) f_2(1270)_{\parallel}, f_2 \rightarrow \pi^+\pi^-$	(1.05± 0.33	$3) \times 10^{-6}$		-
$J/\psi(1S) f_2(1270)_{\perp}, \;\; f_2 ightarrow \pi^+\pi^-$	(1.3 ± 0.7	$)\times10^{-6}$		_
$J/\psi(1S) f_0(1370), f_0 \rightarrow \pi^+\pi^-$	$(4.4 \begin{array}{c} + & 0.6 \\ - & 4.0 \end{array})$	$)\times10^{-5}$		_

$J/\psi(1S)f_0(1500), f_0 \to$	$(2.04^{+}_{-0.24}) \times 10^{-5}$		_
$J/\psi(1S)f_2'(1525)_0, \ f_2' ightarrow \pi^+\pi^-$	$(1.03\pm\ 0.22)\times 10^{-6}$		-
$J/\psi(1S)f_2'(1525)_{\parallel}, \ f_2' \rightarrow$	(1.2 $^+$ $^ ^ ^ ^ ^ ^-$) $ imes$ 10 $^-$ 7		-
$J/\psi(1S)f_2'(1525)_{\perp}, \ f_2' ightarrow \pi^+\pi^-$	$(5 \pm 4) \times 10^{-7}$		-
$J/\psi(1S) f_0(1790), f_0 \rightarrow \pi^+ \pi^-$	(4.9 $^{+10.0}_{-1.0}$) \times 10 ⁻⁶		-
$J/\psi(1S)\pi^+\pi^-$ (nonresonant)	$(1.74^{+}_{-0.34}^{1.10}) \times 10^{-5}$		1775
$J/\psi(1S)\overline{K}{}^0\pi^+\pi^-$	$< 4.4 \times 10^{-5}$	CL=90%	1675
$J/\psi(1S)K^+K^-$	$(7.9 \pm 0.7) \times 10^{-4}$		1601
$J/\psi(1S) K^0 K^- \pi^+ + { m c.c.}$	$(9.5 \pm 1.3) \times 10^{-4}$		1538
$J/\psi(1S)\overline{K}{}^0K^+K^-$	$< 1.2 \times 10^{-5}$	CL=90%	1333
$J/\psi K^*(892)^0 \overline{K}^*(892)^0$	$(1.10\pm\ 0.09)\times10^{-4}$		1083
$J/\psi(1S) f_2'(1525)$	$(2.6 \pm 0.6) \times 10^{-4}$		1310
$J/\psi(1S) ho\overline{ ho}$	$(3.6 \pm 0.4) \times 10^{-6}$		982
$J/\psi(1S)\gamma$	$< 7.3 \times 10^{-6}$	CL=90%	1790
$J/\psi \mu^+ \mu^-, J/\psi \rightarrow \mu^+ \mu^-$	$< 2.6 \times 10^{-9}$	CL=95%	_
$J/\psi(1S)\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	$(7.5 \pm 0.8) \times 10^{-5}$		1731
$J/\psi(1S) f_1(1285)$	$(7.2 \pm 1.4) \times 10^{-5}$		1460
$\psi(2S)\eta$	$(3.3 \pm 0.9) \times 10^{-4}$		1338
$\psi(2S)\eta'$	$(1.29\pm 0.35) \times 10^{-4}$		1158
$\psi(2S)\pi^{+}\pi^{-}$	$(6.9 \pm 1.2) \times 10^{-5}$		1397
$\psi(2S)\phi$	$(5.2 \pm 0.4) \times 10^{-4}$		1120
$\psi(2S)K^0$	$(1.9 \pm 0.5) \times 10^{-5}$		1352
$\psi(2S)K^{-}\pi^{+}$	$(3.1 \pm 0.4) \times 10^{-5}$		1310
$\psi(2S)\overline{K}^*(892)^0$	$(3.3 \pm 0.5) \times 10^{-5}$		1196
$\chi_{c1}\phi$	$(1.97 \pm 0.25) \times 10^{-4}$		1274
$\chi_{c1}(3872)\phi$	$(1.1 \pm 0.4) \times 10^{-4}$		936
$\chi_{c1}(3872)(K^+K^-)_{non-\phi}$	$(8.6 \pm 3.5) \times 10^{-5}$		961
$\pi^{+} \pi^{-} \\ \pi^{0} \pi^{0}$	$(7.0 \pm 1.0) \times 10^{-7}$	CI 000/	2680
	$< 2.1 \times 10^{-4}$	CL=90%	2680
$\eta \pi^0$	$< 1.0 \times 10^{-3}$		2654
$\eta \eta$ $\rho^0 \rho^0$	< 1.43	CL=90% CL=90%	2627
$\eta' K_S^0$	$< 3.20 \times 10^{-4}$ $< 8.16 \times 10^{-6}$	CL=90% CL=90%	2569 2573
$\eta' \eta$	-	CL=90% CL=90%	
$\eta'\eta'$	$< 6.5 \times 10^{-5}$ $(3.3 \pm 0.7) \times 10^{-5}$	CL=90%	2568 2507
$\eta' \phi$	$(3.3 \pm 0.7) \times 10^{-7}$	CL=90%	2495
$\phi f_0(980), f_0(980) \rightarrow \pi^+ \pi^-$	$(1.12\pm 0.21) \times 10^{-6}$	CL—30/0	_

$\phi f_2(1270), f_2(1270) \rightarrow$	(6.1 $^+$ 1.8) $\times10^{-7}$		_
$\phi \rho^0$	$(2.7 \pm 0.8) \times 10^{-7}$		2526
$\phi \pi^+ \pi^-$	$(3.5 \pm 0.5) \times 10^{-6}$		2579
$\phi \phi$	$(1.85\pm 0.14) \times 10^{-5}$		2482
$\phi \phi \phi$	$(2.2 \pm 0.6) \times 10^{-6}$		2165
π^+K^-	$(5.8 \pm 0.7) \times 10^{-6}$		2659
K^+K^-	$(2.66\pm\ 0.22)\times10^{-5}$		2638
$K^0\overline{K}^0$	$(1.76\pm0.31)\times10^{-5}$		2637
$K^0\pi^+\pi^-$	$(9.5 \pm 2.1) \times 10^{-6}$		2653
$K^0 K^{\pm} \pi^{\mp}$	$(8.4 \pm 0.9) \times 10^{-5}$		2622
$K^*(892)^-\pi^+$	$(2.9 \pm 1.1) \times 10^{-6}$		2607
$K^*(892)^{\pm}K^{\mp}$	$(1.9 \pm 0.5) \times 10^{-5}$		2585
$K_0^*(1430)^\pmK^\mp$	$(3.1 \pm 2.5) \times 10^{-5}$		_
$K_2^*(1430)^\pm K^\mp$	$(1.0 \pm 1.7) \times 10^{-5}$		_
$K^{*}(892)^{0}\overline{K}^{0}+$ c.c.	(2.0 ± 0.6) $\times 10^{-5}$		2585
$K_0^*(1430)\overline{K}^0+$ c.c.	$(3.3 \pm 1.0) \times 10^{-5}$		2468
$K_2^*(1430)^0\overline{K}^0+\text{c.c.}$	(1.7 \pm 2.2) \times 10 ⁻⁵		2467
$K_{S}^{0} \overline{K}^{*} (892)^{0} + \text{c.c.}$	(1.6 \pm 0.4) \times 10 ⁻⁵		2585
$K^{0}K^{+}K^{-}$	$(1.3 \pm 0.6) \times 10^{-6}$		2568
$\overline{K}^*(892)^0 \rho^0$	$< 7.67 \times 10^{-4}$	CL=90%	2550
$\overline{K}^*(892)^0 K^*(892)^0$	$(1.11\pm 0.27) \times 10^{-5}$		2531
$\phi K^* (892)^0$	$(1.14\pm\ 0.30)\times10^{-6}$		2507
<i>p</i> p	$< 1.5 \times 10^{-8}$	CL=90%	2514
$p\overline{p}K^+K^-$	$(4.5 \pm 0.5) \times 10^{-6}$		2231
$p\overline{p}K^{+}\pi^{-}$	$(1.39\pm\ 0.26)\times10^{-6}$		2355
$ ho \overline{\overline{p}} \pi^+ \pi^-$	$(4.3 \pm 2.0) \times 10^{-7}$		2454
$p\overline{\Lambda}K^-$ + c.c.	$(5.5 \pm 1.0) \times 10^{-6}$		2358
$\Lambda_c^- \Lambda_\pi^+$	$(3.6 \pm 1.6) \times 10^{-4}$		1979
$\Lambda_c^- \Lambda_c^+$	$< 8.0 \times 10^{-5}$	CL=95%	1405

Lepton Family number (LF) violating modes or $\Delta B = 1$ weak neutral current (B1) modes

					, ,		
γ	γ	B1	<	3.1	$\times10^{-6}$	CL=90%	2683
ϕ	γ	B1	($3.4~\pm$	$0.4) \times 10^{-5}$		2587
	$^{+}\mu^{-}$	B1	($3.01\pm$	$0.35) \times 10^{-9}$		2681
e^{-}	$^+e^-$	B1	<	9.4	\times 10 ⁻⁹	CL=90%	2683
$ au^{-}$	$^+ au^-$	B1	<	6.8	\times 10 ⁻³	CL=95%	2011
	$^{+}\mu^{-}\gamma$		<	2.0	\times 10 ⁻⁹		2681
μ	$^{+}\mu^{-}\mu^{+}\mu^{-}$	B1	<	8.6	\times 10 ⁻¹⁰	CL=95%	2673
	SP , $S \rightarrow \mu^{+}\mu^{-}$,	B1	[vvv] <	2.2	\times 10 ⁻⁹	CL=95%	_
	$P ightarrow \ \mu^+ \mu^-$						
	aa, a $ ightarrow$ $\mu^+\mu^-$		<	5.8	$\times10^{-10}$	CL=95%	_

ϕ (1020) $\mu^{+}\mu^{-}$	B1	$(8.4 \pm 0.4) \times 10^{-7}$	2582
$f_2'(1525)\mu^+\mu^-$		$(1.62\pm\ 0.22)\times10^{-7}$	2464
$\overline{K}^*(892)^0 \mu^+ \mu^-$	B1	$(2.9 \pm 1.1) \times 10^{-8}$	2605
$\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	$(8.4 \pm 1.7) \times 10^{-8}$	2670
$\phi \nu \overline{\nu}$	B1	$< 5.4 \times 10^{-3}$	CL=90% 2587
$e^{\pm}\mu^{\mp}$	LF	$[z] < 5.4 \times 10^{-9}$	CL=90% 2682
$\mu^{\pm} \tau^{\mp}$	LF	$< 4.2 \times 10^{-5}$	CL=95% 2388

$$I(J^P) = 0(1^-)$$

I, J, P need confirmation. Quantum numbers shown are quark-model predictions.

Mass
$$m=5415.4^{+1.8}_{-1.5}~{\rm MeV}~{\rm (S=2.9)}$$
 $m_{B_s^*}-m_{B_s}=48.5^{+1.8}_{-1.5}~{\rm MeV}~{\rm (S=2.9)}$

B* DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

$$B_{m s} \gamma$$

seen

$$B_{s1}(5830)^0$$

$$I(J^P) = 0(1^+)$$

I, J, P need confirmation.

Mass
$$m=5828.70\pm0.20$$
 MeV $m_{B_{s1}^0}-m_{B^{*+}}=503.99\pm0.17$ MeV Full width $\Gamma=0.5\pm0.4$ MeV

$B_{s1}(5830)^0$ DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

$$B^{*+}K^{-}$$

seer

97

$$B_{s2}^*(5840)^0$$

$$I(J^P) = 0(2^+)$$

I, J, P need confirmation.

Mass
$$m=5839.86\pm0.12$$
 MeV $m_{B_{s2}^{*0}}-m_{B^{+}}=560.52\pm0.14$ MeV Full width $\Gamma=1.49\pm0.27$ MeV

Branching fractions are given relative to the one **DEFINED AS 1**.

B* _{s2} (5840) DECAY MODES	Fraction (Γ	_i /Γ)	<i>p</i> (MeV/ <i>c</i>)
B^+K^-	DEFINE	AS 1	252
$B^{*+}K^-$	0.093 ± 0.0	18	141
HTTP://PDG.LBL.GOV	Page 134	Created: 7/10/2	023 15:48

$$B^0 K_S^0$$
 0.43 ±0.11 245 $B^{*0} K_S^0$ 0.04 ±0.04 -

BOTTOM, CHARMED MESONS $(B = C = \pm 1)$

 $B_c^+ = c\overline{b}, B_c^- = \overline{c}b,$ similarly for B_c^* 's

HTTP://PDG.LBL.GOV

$$I(J^P) = 0(0^-)$$

I, J, P need confirmation.

Quantum numbers shown are quark-model predictions.

Mass
$$m=6274.47\pm0.32$$
 MeV $m_{B_c^+}-m_{B_s^0}=907.8\pm0.5$ MeV Mean life $\tau=(0.510\pm0.009)\times10^{-12}$ s

 $\boldsymbol{B}_{\boldsymbol{C}}^{-}$ modes are charge conjugates of the modes below.

B_c^+ DECAY MODES \times B($\overline{b} \rightarrow B_c$)	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\ell^+ u_\ell$ anything	seen		_
$J/\psi(1S)\mu^+\nu_\mu$	seen		2372
$J/\psi(1S) au^+ u_{ au}$	seen		1932
$J/\psi(1S)\pi^+$	seen		2370
$J/\psi(1S)K^+$	seen		2341
$J/\psi(1S)\pi^+\pi^+\pi^-$	seen		2350
$J/\psi(1S)a_1(1260)$	not seen		2169
$J/\psi(1S)K^+K^-\pi^+$	seen		2203
$J/\psi(1S)\pi^+\pi^+\pi^+\pi^-\pi^-$	seen		2309
$\psi(2S)\pi^+$	seen		2051
$J/\psi(1S)D^0K^+$	seen		1539
$J/\psi(1S) D^*(2007)^0 K^+$	seen		1411
$J/\psi(1S) D^*(2010)^+ K^{*0}$	seen		919
$J/\psi(1S)D^+K^{*0}$	seen		1122
$J/\psi(1S)D_S^+$	seen		1821
$J/\psi(1S)D_{s}^{*+}$	seen		1727
$J/\psi(1S) p \overline{\overline{p}} \pi^+$	seen		1791
$\chi_{c0}\pi^{+}$	$(2.4^{+0.9}_{-0.8}) \times 10^{-1}$	-5	2205
$ ho \overline{ ho} \pi^+$	not seen		2970
$D^0 K^+$	seen		2837

Page 135

$D^0\pi^+$	not see	n		2858
$D^{*0}\pi^{+}$	not see			2814
$D^{*0}K^{+}$	not see			2792
$D_s^+ \overline{D}_s^0$	< 7.2	$\times10^{-4}$	90%	2483
$D_s^{+}D_s^{0}$	< 3.0	$\times10^{-4}$	90%	2483
$D^{\stackrel{s}{+}} \overline{D}{}^{0}$	< 1.9	$\times10^{-4}$	90%	2521
$D^{+}D^{0}$	< 1.4	$\times 10^{-4}$	90%	2521
$D_c^{*+}\overline{D}^0$	< 5.3	\times 10 ⁻⁴	90%	2425
$D_s^{+} \overline{D}^* (2007)^0$ $D_s^{*+} D^0$	< 4.6	$\times10^{-4}$	90%	2427
$D_{\bullet}^{*+}D^{0}$	< 9	$\times10^{-4}$	90%	2425
$D_s^{s} D^* (2007)^0$	< 6.6	$\times10^{-4}$	90%	2427
$D^{*}(2010)^{+} \overline{D}^{0}$	< 3.8	$\times10^{-4}$	90%	2467
$\stackrel{\frown}{D}{}^*(2010)^+\overline{D}{}^0$, $D^{*+} \rightarrow$	not see	n		_
$D^+\pi^0/\gamma$				
$D^{+}\overline{D}^{*}(2007)^{0}$	< 6.5	\times 10 ⁻⁴	90%	2466
$D^*(2007)^+D^0$	< 2.0	\times 10 ⁻⁴	90%	_
$D^*(2010)^+D^0$, $D^{*+} o$	not see	n		2467
$D^+\pi^0/\gamma$				
$D^+D^*(2007)^0$	< 3.7	\times 10 ⁻⁴	90%	2466
$D_s^{*+} \overline{D}^* (2007)^0$	< 1.3	$\times 10^{-3}$	90%	2366
$D_s^{*+} D^* (2007)^0$	< 1.3	\times 10 ⁻³	90%	2366
$D^*(2010)^+ \overline{D}^*(2007)^0$	< 1.0	$\times10^{-3}$	90%	2410
$D^*(2010)^+ D^*(2007)^0$	< 7.7	\times 10 ⁻⁴	90%	2410
$D^{+} K^{*0}$	not see	n		2783
$D^+\overline{K}^{*0}$	not see	n		2783
$D_s^+ K^{*0}$	not see	n		2751
$D_s^+ \overline{K}^{*0}$	not see	n		2751
$D_{\varepsilon}^+\phi$	not see	n		2727
$D_{s}^{+} K^{*0}$ $D_{s}^{+} \overline{K}^{*0}$ $D_{s}^{+} \phi$ $K^{+} K^{0}$	not see	n		3098
$B_s^0\pi^+/\ B(\overline{b} o\ B_s)$	seen			_

 $B_c(2S)^{\pm}$

$$I(J^P)=0(0^-)$$

Created: 7/10/2023 15:48

Mass $m=6871.2\pm1.0~{
m MeV}$

$B_c(2S)^{\pm}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$B_c^+\pi^+\pi^-$	seen	504

$c\overline{c}$ MESONS (including possibly non- $q\overline{q}$ states)

 $\eta_c(15)$

HTTP://PDG.LBL.GOV

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=2983.9\pm0.4$ MeV (S = 1.2) Full width $\Gamma=32.0\pm0.7$ MeV

 $\eta_c(1S)$ DECAY MODES Fraction (Γ_i/Γ) Confidence level (MeV/c)Decays involving hadronic resonances $\eta'(958)\pi\pi$ $(1.87\pm0.26)\%$ 1323 $\eta'(958)K\overline{K}$ $(1.61\pm0.25)\%$ 1131 (1.5 ± 0.4) % 1275 $\rho \rho$ $K^*(892)^0 K^- \pi^+ + \text{c.c.}$ $(1.5 \pm 0.5)\%$ 1278 $K^*(892)\overline{K}^*(892)$ $(6.3 \pm 1.2) \times 10^{-3}$ 1196 $K^*(892)^0 \overline{K}^*(892)^0 \pi^+ \pi^ (1.1 \pm 0.5)\%$ 1073 $\phi K^+ K^ (2.9 \pm 1.4) \times 10^{-3}$ 1104 $\phi \phi$ $(1.58\pm0.19)\times10^{-3}$ 1089 $\phi 2(\pi^{+}\pi^{-})$ 90% 1251 $a_0(980)\pi$ 1327 seen $K^*(892)K + c.c.$ < 1.28 90% 1310 $f_{2}(1270)\eta$ 1145 seen $f_2(1270)\eta'$ 984 seen $(2.1 \pm 0.5) \times 10^{-3}$ $\omega \omega$ 1270 $\omega \phi$ 90% 1185 $f_{5}(1270)f_{5}(1270)$ $(9.7 \pm 2.5) \times 10^{-3}$ 774 $f_2(1270) f_2'(1525)$ $(9.1 \pm 3.0) \times 10^{-3}$ 524 $f_0(500)\eta$ seen $f_0(500) \eta'$ seen $f_0(980)\eta$ seen 1264 $f_0(980)\eta'$ seen 1130 $f_0(1500)\eta$ 1016 seen $f_0(1710)\eta'$ 623 seen $f_0(2100)\eta'$ seen † $f_0(2200)\eta$ 498 seen $a_0(1320)\pi$ seen $a_0(1450)\pi$ 1140 seen $a_0(1700)\pi$ seen $a_0(1950)\pi$ 860 seen $K_0^*(1430)\overline{K}$ seen $K_{2}^{*}(1430)\overline{K}$ seen

Page 137

 $K_0^*(1950)\overline{K}$ seen

Decays into stable hadrons

$K\overline{K}\pi$	(7.0 \pm 0.4) %		1381
$K\overline{K}\eta$	$(1.32\pm0.15)\%$		1265
$\eta \pi^+ \pi^-$	(1.7 ± 0.5) %		1428
$\eta 2(\pi^+\pi^-)$	(4.6 ± 1.4) %		1386
$K^+K^-\pi^+\pi^-$	$(6.5 \pm 1.0) \times 10^{-3}$		1345
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(3.4 ± 0.5) %		1304
$K^0 K^- \pi^+ \pi^- \pi^+ + \text{c.c.}$	(5.7 ± 1.6)%		_
$K^+K^-2(\pi^+\pi^-)$	$(7.6 \pm 2.4) \times 10^{-3}$		1254
$2(K^{+}K^{-})$	$(1.38\pm0.29)\times10^{-3}$		1056
$\pi^+\pi^-\pi^0$	$< 5 \times 10^{-4}$	90%	1476
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(4.8 ± 1.1)%		1460
$2(\pi^{+}\pi^{-})$	$(8.7 \pm 1.1) \times 10^{-3}$		1459
$2(\pi^{+}\pi^{-}\pi^{0})$	(16.2 \pm 2.1) %		1409
$3(\pi^+\pi^-)$	(1.8 ± 0.4) %		1407
p p	$(1.35\pm0.13)\times10^{-3}$		1160
$p\overline{p}\pi^0$	$(3.6 \pm 1.4) \times 10^{-3}$		1101
$\Lambda \overline{\Lambda}$	$(1.02\pm0.23)\times10^{-3}$		991
$K^{+}\overline{p}\Lambda$ + c.c.	$(2.5 \pm 0.4) \times 10^{-3}$		772
$\overline{\Lambda}(1520)\Lambda$ + c.c.	$(3.1 \pm 1.3) \times 10^{-3}$		694
$\Sigma^{+}\overline{\Sigma}^{-}$	$(2.1 \pm 0.6) \times 10^{-3}$		901
<u>=-</u> =+	$(9.0 \pm 2.6) \times 10^{-4}$		692
$\pi^+\pi^- ho\overline{ ho}$	$(5.5 \pm 1.9) \times 10^{-3}$		1027

Radiative decays

$$\gamma\gamma$$
 ($1.68\pm0.12)\times10^{-4}$ 1492

Charge conjugation (C), Parity (P), Lepton Family number (LF) violating modes

$\pi^+\pi^-$	P,CP	<	1.1	$\times 10^{-4}$	90%	1485
$\pi^0\pi^0$	P,CP	<	4	\times 10 ⁻⁵	90%	1486
K^+K^-	P,CP	<	6	$\times 10^{-4}$	90%	1408
$K_S^0 K_S^0$	P,CP	<	3.1	\times 10 ⁻⁴	90%	1407

$J/\psi(1S)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3096.900\pm0.006$ MeV Full width $\Gamma=92.6\pm1.7$ keV (S = 1.1)

$J/\psi(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ p Confidence level (MeV/ c)
$\begin{matrix} \\ hadrons \\ virtual \gamma \to hadrons \end{matrix}$	$(87.7 \pm 0.5) \%$ $(13.50 \pm 0.30) \%$	_ _

HTTP://PDG.LBL.GOV

Page 138

ggg	(6	54.1	\pm	1.0) %		_
γ gg	(8.8	\pm	1.1) %		_
e^+e^-	(5.971	L±	0.032	2) %		1548
	a] (8.8	\pm	1.4	$) \times 10^{-3}$		1548
$\mu^+\mu^-$	(5.961	L±	0.033	3) %		1545
Decays involv	ing h	adror	nic	resor	nances		
$ ho\pi$	_	1.69				S=2.4	1448
$\rho^0\pi^0$	•) × 10 ⁻³		1448
$a_2(1320)^0\pi^+\pi^- \to$) × 10 ⁻³		_
$2(\pi^{+}\pi^{-})\pi^{0}$. 2		
$a_2(1320)^+\pi^-\pi^0 + \text{c.c} \rightarrow 2(\pi^+\pi^-)\pi^0$	(3.7	±	0.7) × 10 ⁻³		_
$a_2(1320)\rho$	(1.09	\pm	0.22) %		1123
$\eta \pi^+ \pi^-$	•				$) \times 10^{-4}$		1487
$\eta \pi^+ \pi^- \pi^0$	(1.17	\pm	0.20) %		1470
$\eta \pi^{+} \pi^{-} 3 \pi^{0}$	(4.9	\pm	1.0	$) \times 10^{-3}$		1419
ηho	(1.93	\pm	0.23	$) \times 10^{-4}$		1396
$\eta \phi(2170) \rightarrow \eta \phi f_0(980) \rightarrow$	(1.2	\pm	0.4	$) \times 10^{-4}$		628
$\eta\phi\pi^+\pi^-$							
$\eta \phi$ (2170) $ ightarrow$	<	2.52			$\times 10^{-4}$	CL=90%	_
$\eta K^*(892)^0 \overline{K}^*(892)^0$							
$\eta K^{\pm} K_S^0 \pi^{\mp}$ [[z] (2.2	\pm	0.4	$) \times 10^{-3}$		1278
$\eta K^*(892)^0 \overline{K}^*(892)^0$	(1.15	\pm	0.26	$) \times 10^{-3}$		1003
$\rho \eta'(958)$	(8.1	\pm	8.0	$) \times 10^{-5}$	S=1.6	1281
$\rho^{\pm}\pi^{\mp}\pi^{+}\pi^{-}2\pi^{0}$	(2.8	\pm	8.0) %		1364
$\rho^{+}\rho^{-}\pi^{+}\pi^{-}\pi^{0}$	(6	\pm	4	$) \times 10^{-3}$		1186
$\rho^{+} K^{+} K^{-} \pi^{-} + \text{c.c} \rightarrow$	(3.5	\pm	8.0	$) \times 10^{-3}$		-
$\kappa^{+} K^{-} \pi^{+} \pi^{-} \pi^{0}$ $\rho^{\mp} K^{\pm} K^{0}_{S}$	(1.9	\pm	0.4) × 10 ⁻³		1269
$\rho(1450)\pi \to \pi^{+}\pi^{-}\pi^{0}$) × 10 ⁻³		_
$ ho(1450)^{\pm}\pi^{\mp} \to K_{S}^{0}K^{\pm}\pi^{\mp}$) × 10 ⁻⁴		_
$\rho(1450)^0 \pi^0 \rightarrow K^+ K^- \pi^0$) × 10 ⁻⁴		_
$\rho(1450)\eta'(958) \rightarrow$					$) \times 10^{-6}$		_
$\pi^{+}\pi^{-}\eta'(958)$	(0.0	_	0.1) / 20		
$\rho(1700)\pi \to \pi^{+}\pi^{-}\pi^{0}$	(1.7	+	1.1	$) \times 10^{-4}$		_
$\rho(2150)\pi \to \pi^{+}\pi^{-}\pi^{0}$) × 10 ⁻⁶		_
$\omega \pi^0$					$) \times 10^{-4}$	S=1.4	1446
$\omega \pi^0 \rightarrow \pi^+ \pi^- \pi^0$) × 10 ⁻⁵		_
$\omega \pi^+ \pi^-$	(8.5	±	1.0	$) \times 10^{-3}$	S=1.3	1435
$\omega \pi^0 \pi^0$	(3.4	±	0.8	$) \times 10^{-3}$		1436
$\omega 3\pi^0$	(1.9	\pm	0.6) × 10 ⁻³		1419
$\omega f_2(1270)$	(4.3	\pm	0.6) × 10 ⁻³		1142
$\omega \eta$) × 10 ⁻³	S=1.6	1394
$\omega \pi^{+} \pi^{-} \pi^{0}$) × 10 ⁻³		1418
	`				•		

HTTP://PDG.LBL.GOV

Page 139

$\omega \pi^0 \eta$	(3.4	土	1.7	$) \times 10^{-4}$		1363
$\omega \pi^+ \pi^+ \pi^- \pi^-$	(8.5	\pm	3.4	$) \times 10^{-3}$		1392
$\omega \pi^+ \pi^- 2\pi^0$		•		0.5	,		1394
$\omega \eta' \pi^+ \pi^-$	(1.1	2 ±	0.13	$) \times 10^{-3}$		1173
$\omega \eta'(958)$					$) \times 10^{-4}$		1279
$\omega f_0(980)$	(1.4	\pm	0.5	$) \times 10^{-4}$		1267
$\omega f_0(1710) \rightarrow \omega K \overline{K}$					$) \times 10^{-4}$		878
$\omega f_1(1420)$	(6.8	土	2.4	$) \times 10^{-4}$		1062
$\omega f_2'(1525)$	<	2.2			\times 10 ⁻⁴	CL=90%	1007
$\omega X(1835) \rightarrow \omega \rho \overline{\rho}$	<	3.9			$\times 10^{-6}$	CL=95%	_
$\omega X(1835), X \to \eta' \pi^+ \pi^-$	<	6.2			$\times 10^{-5}$		_
$\omega K^+ K^-$					$) \times 10^{-3}$		1268
$\omega K^{\pm} K_S^0 \pi^{\mp}$	[z] (3.4	\pm	0.5	$) \times 10^{-3}$		1210
$\omega K \overline{K}$	(1.9	\pm	0.4	$) \times 10^{-3}$		1268
$\omega K^*(892)\overline{K} + \text{c.c.}$	(6.1	\pm	0.9	$) \times 10^{-3}$		1097
$\eta' K^{* \pm} K^{\mp}$					$) \times 10^{-3}$		_
$\eta' K^{*0} \overline{K}^0 + \text{c.c.}$					$) \times 10^{-3}$		1000
$\eta'h_1(1415) ightarrow~\eta'K^*\overline{K}+ ext{c.c.}$					$) \times 10^{-4}$		_
$\eta^{\prime} h_1(1415) ightarrow \; \eta^{\prime} K^{*\pm} K^{\mp}$	(1.5	1 ±	0.23	$) \times 10^{-4}$		_
$\eta' h_1(1415) ightarrow \gamma \eta' \eta'$	(4.7	+	1.1 2.0) × 10 ⁻⁷		_
$\overline{K}K^*(892) + \text{c.c.} o$				-	$) \times 10^{-3}$		_
$K_{5}^{0}K^{\pm}\pi^{\mp}$	·	•			,		
$K^+K^*(892)^- + \text{c.c.}$		6.0	+	0.8) × 10 ⁻³	S=2.9	1373
				0		3-2.3	1313
$K^+K^*(892)^- + \text{c.c.} \rightarrow$	(2.6	9 +	0.13	$) \times 10^{-3}$		_
$K^{+}K^{-}\pi^{0}$			1	0.4)10-3		
$K^+K^*(892)^-+ ext{ c.c.} ightarrow K^0K^\pm\pi^\mp+ ext{ c.c.}$	(3.0	土	0.4	$) \times 10^{-3}$		_
$K^{0}\overline{K}^{*}(892)^{0} + \text{c.c.}$,	12	+	0.4) × 10 ⁻³		1373
$K^{0}\overline{K}^{*}(892)^{0} + \text{c.c.} \rightarrow$					$) \times 10^{-3}$		1373
$K^{0}K^{\pm}\pi^{\mp}+\text{c.c.}$	'	J.2		0.4) \ 10		
$\overline{K}^*(892)^0 K^+ \pi^- + \text{c.c.}$	(5.7	±	0.8	$) \times 10^{-3}$		1343
$K^*(892)^{\pm}K^{\mp}\pi^0$					$) \times 10^{-3}$		1344
$K^*(892)^+ K_5^0 \pi^- + \text{c.c.}$) × 10 ⁻³		1342
$K^*(892)^+ K_5^0 \pi^- + \text{c.c.} \rightarrow$) × 10 ⁻⁴		_
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$	`) × 10		
$K^*(892)^0 K^- \pi^+ + \text{c.c.} \rightarrow$,	20		0.5) × 10 ⁻³		_
$K^+K^-\pi^+\pi^-$,	3.0		0.5) × 10		
$K^*(892)^0 K_S^0 \rightarrow \gamma K_S^0 K_S^0$,	63	+	0.6) × 10 ⁻⁶		_
3 3							.
$K^*(892)^0 K_S^0 \pi^0$					$) \times 10^{-4}$		1343
$K^*(892)^{\pm} K^*(700)^{\mp}$	(1.1	+	1.0 0.6	$) \times 10^{-3}$		_
$K^*(892)^0 \overline{K}^*(892)^0$	(2.3	土	0.6	$) \times 10^{-4}$		1266

$K^*(892)^{\pm} K^*(892)^{\mp}$	$(1.00 \ ^{+} \ 0.22 \) imes 10$	₀ -3	1266
$K_1(1400)^\pmK^\mp$	$(3.8 \pm 1.4) \times 10$	-3	1170
$K^*(1410)\overline{K}$ +c.c \rightarrow	$(7 \pm 4) \times 10$		_
$K^{\pm}K^{\mp}\pi^{0}$	(, _ , , , , , , , , , , , , , , , , ,		
$K^*(1410)\overline{K}+ ext{c.c.} ightarrow$	(8 ± 6)×10	_. —5	_
$K^0_SK^\pm\pi^\mp$			
$K_2^*(1430)\overline{K}+{ m c.c.} ightarrow$	(1.0 \pm 0.5) $ imes$ 10	-4	_
$K^{\pm}K^{\mp}\pi^{0}$			
$K_2^*(1430)\overline{K}+ ext{ c.c.} ightarrow$	(4.0 \pm 1.0) $ imes$ 10	_4	_
$^{-}$ K^{0}_{S} K^{\pm} π^{\mp}			
$\overline{K}_{2}^{*}(1430)K$ + c.c.	< 4.0 × 10	-3 CL=90%	1158
-			
$K_2^*(1430)^+ K^- + \text{c.c.} \rightarrow$	$(2.69 \ {}^{+}_{-}\ 0.25 \) imes 10$		_
$K^{+}K^{-}\pi^{0}$ $K_{2}^{*}(1430)^{0}K^{-}\pi^{+}+{ m c.c.} ightarrow$	(2.6 ± 0.9)×10	_3	_
$K_2^+ K^- \pi^+ \pi^-$	(2.0 ± 0.9) × 10	-	
$K_2^*(1430)^+ K_S^0 \pi^- + \text{c.c.}$	$(3.6 \pm 1.8) \times 10$	-3	1116
$\overline{K}_{2}^{*}(1430)^{0} K^{*}(892)^{0} + \text{c.c.}$	$(4.67 \pm 0.29) \times 10$		1011
$K_2^*(1430)^- K^*(892)^+ + \text{c.c.}$	$(3.4 \pm 2.9) \times 10$		1011
- ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			1011
$K_2^*(1430)^- K^*(892)^+ +$	(4 ± 4)×10	•	_
c.c. $ ightarrow$ $K^*(892)^+K^0_{ extsf{S}}\pi^-+$ c.c.			
Λ (092) $\Lambda \in \mathcal{I}$ $+$ C.C.			
		_3 GL 000/	601
$K_2^*(1430)^0 \overline{K}_2^*(1430)^0$	< 2.9 × 10		601
$\frac{K_2^*(1430)^0\overline{K}_2^*(1430)^0}{\overline{K}_2(1770)^0K^*(892)^0 + \text{c.c.}} \rightarrow$	$< 2.9 \times 10$ ($6.9 \pm 0.9) \times 10$		601 —
$\frac{K_2^*(1430)^0 \overline{K}_2^*(1430)^0}{\overline{K}_2(1770)^0 K^*(892)^0 + \text{c.c.}} \rightarrow K^*(892)^0 K^- \pi^+ + \text{c.c.}$	(6.9 ± 0.9) × 10	_4	601 —
$\frac{K_2^*(1430)^0\overline{K}_2^*(1430)^0}{\overline{K}_2(1770)^0K^*(892)^0 + \text{c.c.}} \rightarrow$		_4	601
$\frac{K_2^*(1430)^0 \overline{K}_2^*(1430)^0}{\overline{K}_2(1770)^0 K^*(892)^0 + \text{c.c.}} \rightarrow K^*(892)^0 K^- \pi^+ + \text{c.c.}$	(6.9 ± 0.9) × 10	_4	601
$\frac{K_{2}^{*}(1430)^{0}\overline{K}_{2}^{*}(1430)^{0}}{K_{2}(1770)^{0}K^{*}(892)^{0} + \text{c.c.}} \rightarrow K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.}}{K_{2}^{*}(1980)^{+}K^{-} + \text{c.c.}} \rightarrow K^{+}K^{-}\pi^{0}}$	$(6.9 \pm 0.9) \times 10$ $(1.10 + 0.60 - 0.14) \times 10$	_4 _j _5	601
$\frac{K_{2}^{*}(1430)^{0}\overline{K}_{2}^{*}(1430)^{0}}{\overline{K}_{2}(1770)^{0}K^{*}(892)^{0} + \text{c.c.}} \rightarrow K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.}}$ $K_{2}^{*}(1980)^{+}K^{-} + \text{c.c.} \rightarrow K^{+}K^{-}\pi^{0}$ $K_{4}^{*}(2045)^{+}K^{-} + \text{c.c.} \rightarrow$	(6.9 ± 0.9) × 10	_4 _j _5	601
$K_{2}^{*}(1430)^{0}\overline{K}_{2}^{*}(1430)^{0}$ $\overline{K}_{2}(1770)^{0}K^{*}(892)^{0} + \text{c.c.} \rightarrow K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.}$ $K_{2}^{*}(1980)^{+}K^{-} + \text{c.c.} \rightarrow K^{+}K^{-}\pi^{0}$ $K_{4}^{*}(2045)^{+}K^{-} + \text{c.c.} \rightarrow K^{+}K^{-}\pi^{0}$ $K_{1}^{*}(1270)^{\pm}K^{\mp}$	$(6.9 \pm 0.9) \times 10$ $(1.10 + 0.60 - 0.14) \times 10$ $(6.2 + 2.9 - 1.6) \times 10$	_4 _j _5	-
$\frac{K_{2}^{*}(1430)^{0}\overline{K}_{2}^{*}(1430)^{0}}{\overline{K}_{2}(1770)^{0}K^{*}(892)^{0} + \text{c.c.}} \rightarrow K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.}}$ $K_{2}^{*}(1980)^{+}K^{-} + \text{c.c.}} \rightarrow K^{+}K^{-}\pi^{0}$ $K_{4}^{*}(2045)^{+}K^{-} + \text{c.c.}} \rightarrow K^{+}K^{-}\pi^{0}$ $K_{1}(1270)^{\pm}K^{\mp}$ $K_{1}(1270)K_{5}^{0} \rightarrow \gamma K_{5}^{0}K_{5}^{0}$	$(6.9 \pm 0.9) \times 10$ $(1.10 + 0.60 - 0.14) \times 10$ $(6.2 + 2.9 - 1.6) \times 10$	4 5 6 3 CL=90%	-
$\frac{K_{2}^{*}(1430)^{0}\overline{K}_{2}^{*}(1430)^{0}}{\overline{K}_{2}(1770)^{0}K^{*}(892)^{0} + \text{c.c.}} \rightarrow K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.}}$ $K_{2}^{*}(1980)^{+}K^{-} + \text{c.c.}} \rightarrow K^{+}K^{-}\pi^{0}$ $K_{4}^{*}(2045)^{+}K^{-} + \text{c.c.}} \rightarrow K^{+}K^{-}\pi^{0}$ $K_{1}(1270)^{\pm}K^{\mp}$ $K_{1}(1270)K_{5}^{0} \rightarrow \gamma K_{5}^{0}K_{5}^{0}$	$(6.9 \pm 0.9) \times 10$ $(1.10 \stackrel{+}{-} 0.60) \times 10$ $(6.2 \stackrel{+}{-} 2.9) \times 10$ $< 3.0 \times 10$	-4 -5 -6 -3 CL=90% -7	-
$\frac{K_{2}^{*}(1430)^{0}\overline{K}_{2}^{*}(1430)^{0}}{\overline{K}_{2}(1770)^{0}K^{*}(892)^{0} + \text{c.c.}} \rightarrow K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.}} \rightarrow K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.}} \rightarrow K^{*}(1980)^{+}K^{-} + \text{c.c.}} \rightarrow K^{+}K^{-}\pi^{0} \rightarrow K^{*}(2045)^{+}K^{-} + \text{c.c.}} \rightarrow K^{+}K^{-}\pi^{0} \rightarrow K_{1}(1270)^{\pm}K^{\mp} \rightarrow K_{1}(1270)K^{0}_{S} \rightarrow \gamma K^{0}_{S}K^{0}_{S} \rightarrow 2(1320)^{\pm}\pi^{\mp}} \rightarrow \pi^{0}$	$(6.9 \pm 0.9) \times 10$ $(1.10 \stackrel{+}{-} 0.60) \times 10$ $(6.2 \stackrel{+}{-} 2.9) \times 10$ $< 3.0 \times 10$ $(8.5 \pm 2.5) \times 10$	-4 -5 -6 -3 CL=90% -7	- - 1240 -
$\begin{array}{c} K_{2}^{*}(1430)^{0}\overline{K}_{2}^{*}(1430)^{0} \\ \overline{K}_{2}(1770)^{0}K^{*}(892)^{0} + \text{c.c.} \rightarrow \\ K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.} \end{array}$ $K_{2}^{*}(1980)^{+}K^{-} + \text{c.c.} \rightarrow \\ K^{+}K^{-}\pi^{0} \\ K_{4}^{*}(2045)^{+}K^{-} + \text{c.c.} \rightarrow \\ K^{+}K^{-}\pi^{0} \\ K_{1}(1270)^{\pm}K^{\mp} \\ K_{1}(1270)K_{S}^{0} \rightarrow \gamma K_{S}^{0}K_{S}^{0} \\ a_{2}(1320)^{\pm}\pi^{\mp} \\ \phi \pi^{0} \\ \phi \pi^{+}\pi^{-} \end{array}$	$(6.9 \pm 0.9) \times 10$ $(1.10 \stackrel{+}{-} 0.60) \times 10$ $(6.2 \stackrel{+}{-} 2.9) \times 10$ $< 3.0 \times 10$ $(8.5 \pm 2.5) \times 10$ $[z] < 4.3 \times 10$	-4 -5 -6 -3 CL=90% -7 -3 CL=90%	- 1240 - 1263
$\begin{array}{c} K_{2}^{*}(1430)^{0}\overline{K}_{2}^{*}(1430)^{0} \\ \overline{K}_{2}(1770)^{0}K^{*}(892)^{0} + \text{c.c.} \rightarrow \\ K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.} \end{array}$ $K_{2}^{*}(1980)^{+}K^{-} + \text{c.c.} \rightarrow \\ K^{+}K^{-}\pi^{0} \\ K_{4}^{*}(2045)^{+}K^{-} + \text{c.c.} \rightarrow \\ K^{+}K^{-}\pi^{0} \\ K_{1}(1270)^{\pm}K^{\mp} \\ K_{1}(1270)K_{S}^{0} \rightarrow \gamma K_{S}^{0}K_{S}^{0} \\ a_{2}(1320)^{\pm}\pi^{\mp} \\ \phi \pi^{0} \\ \phi \pi^{+}\pi^{-} \\ \phi \pi^{0}\pi^{0} \end{array}$	$(6.9 \pm 0.9) \times 10$ $(1.10 \stackrel{+}{-} 0.60) \times 10$ $(6.2 \stackrel{+}{-} 2.9) \times 10$ $< 3.0 \times 10$ $(8.5 \pm 2.5) \times 10$ $[z] < 4.3 \times 10^{-6} \text{ or } 1 \times 10^{-7}$	-4 -5 -6 -3 -7 -3 -3 -3 -4 -5 -5 -7 -3 -3 -7 -3 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	- 1240 - 1263 1377
$\begin{array}{c} K_{2}^{*}(1430)^{0}\overline{K}_{2}^{*}(1430)^{0} \\ \overline{K}_{2}(1770)^{0}K^{*}(892)^{0} + \text{c.c.} \rightarrow \\ K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.} \end{array}$ $K_{2}^{*}(1980)^{+}K^{-} + \text{c.c.} \rightarrow \\ K^{+}K^{-}\pi^{0} \\ K_{4}^{*}(2045)^{+}K^{-} + \text{c.c.} \rightarrow \\ K^{+}K^{-}\pi^{0} \\ K_{1}(1270)^{\pm}K^{\mp} \\ K_{1}(1270)K_{S}^{0} \rightarrow \gamma K_{S}^{0}K_{S}^{0} \\ a_{2}(1320)^{\pm}\pi^{\mp} \\ \phi \pi^{0} \\ \phi \pi^{+}\pi^{-} \end{array}$	$(6.9 \pm 0.9) \times 10$ $(1.10 \stackrel{+}{-} 0.60) \times 10$ $(6.2 \stackrel{+}{-} 2.9) \times 10$ $< 3.0 \times 10$ $(8.5 \pm 2.5) \times 10$ $[z] < 4.3 \times 10^{-6} \text{ or } 1 \times 10^{-7}$ $(9.4 \pm 1.5) \times 10$	-4 -5 -6 -3 CL=90% -7 -3 CL=90% -4 S=1.7	1240 - 1263 1377 1365
$\begin{array}{c} K_{2}^{*}(1430)^{0}\overline{K}_{2}^{*}(1430)^{0} \\ \overline{K}_{2}(1770)^{0}K^{*}(892)^{0} + \text{c.c.} \rightarrow \\ K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.} \end{array}$ $K_{2}^{*}(1980)^{+}K^{-} + \text{c.c.} \rightarrow \\ K^{+}K^{-}\pi^{0} \\ K_{4}^{*}(2045)^{+}K^{-} + \text{c.c.} \rightarrow \\ K^{+}K^{-}\pi^{0} \\ K_{1}(1270)^{\pm}K^{\mp} \\ K_{1}(1270)K_{S}^{0} \rightarrow \gamma K_{S}^{0}K_{S}^{0} \\ a_{2}(1320)^{\pm}\pi^{\mp} \\ \phi \pi^{0} \\ \phi \pi^{+}\pi^{-} \\ \phi \pi^{0}\pi^{0} \end{array}$	$(6.9 \pm 0.9) \times 10$ $(1.10 \stackrel{+}{-} 0.60) \times 10$ $(6.2 \stackrel{+}{-} 2.9) \times 10$ $< 3.0 \times 10$ $(8.5 \pm 2.5) \times 10$ $(8.5 \pm 1.5) \times 10$ $(9.4 \pm 1.5) \times 10$ $(5.0 \pm 1.0) \times 10$ $(1.60 \pm 0.32) \times 10$ $(7.4 \pm 0.6) \times 10$	-4 -5 -6 -3 -7 -3 -4 -4 -3 -4 -3 -4 -3 -4 -3 -4 -3 -4 -3 -4 -3	1240 - 1263 1377 1365 1366
$\begin{array}{c} K_{2}^{*}(1430)^{0} \overline{K}_{2}^{*}(1430)^{0} \\ \overline{K}_{2}(1770)^{0} K^{*}(892)^{0} + \text{c.c.} \rightarrow \\ K^{*}(892)^{0} K^{-} \pi^{+} + \text{c.c.} \end{array}$ $K_{2}^{*}(1980)^{+} K^{-} + \text{c.c.} \rightarrow \\ K^{+} K^{-} \pi^{0} \\ K_{4}^{*}(2045)^{+} K^{-} + \text{c.c.} \rightarrow \\ K^{+} K^{-} \pi^{0} \\ K_{1}(1270)^{\pm} K^{\mp} \\ K_{1}(1270) K_{S}^{0} \rightarrow \gamma K_{S}^{0} K_{S}^{0} \\ a_{2}(1320)^{\pm} \pi^{\mp} \\ \phi \pi^{0} \\ \phi \pi^{+} \pi^{-} \\ \phi \pi^{0} \pi^{0} \\ \phi 2(\pi^{+} \pi^{-}) \end{array}$	$(6.9 \pm 0.9) \times 10$ $(1.10 \stackrel{+}{-} 0.60 \atop -0.14) \times 10$ $(6.2 \stackrel{+}{-} 2.9 \atop -1.6) \times 10$ $< 3.0 \times 10$ $(8.5 \pm 2.5) \times 10$ $(8.5 \pm 2.5) \times 10$ $(2 < 4.3 \times 10^{-6} \text{ or } 1 \times 10^{-7}$ $(9.4 \pm 1.5) \times 10$ $(5.0 \pm 1.0) \times 10$ $(1.60 \pm 0.32) \times 10$ $(7.4 \pm 0.6) \times 10$ $(4.6 \pm 0.5) \times 10$	-4 -5 -6 -3 -7 -3 -3 -4 -4 -4 -3 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -2 -4 -4 -3 -2 -2	1240 - 1263 1377 1365 1366 1318
$\begin{array}{l} K_{2}^{*}(1430)^{0} \overline{K}_{2}^{*}(1430)^{0} \\ \overline{K}_{2}(1770)^{0} K^{*}(892)^{0} + \text{c.c.} \rightarrow \\ K^{*}(892)^{0} K^{-} \pi^{+} + \text{c.c.} \end{array}$ $K_{2}^{*}(1980)^{+} K^{-} + \text{c.c.} \rightarrow \\ K^{+} K^{-} \pi^{0} \\ K_{4}^{*}(2045)^{+} K^{-} + \text{c.c.} \rightarrow \\ K^{+} K^{-} \pi^{0} \\ K_{1}(1270)^{\pm} K^{\mp} \\ K_{1}(1270) K_{S}^{0} \rightarrow \gamma K_{S}^{0} K_{S}^{0} \\ a_{2}(1320)^{\pm} \pi^{\mp} \\ \phi \pi^{0} \\ \phi \pi^{+} \pi^{-} \\ \phi \pi^{0} \pi^{0} \\ \phi 2(\pi^{+} \pi^{-}) \\ \phi \eta \\ \phi \eta'(958) \\ \phi \eta \eta' \end{array}$	$(6.9 \pm 0.9) \times 10$ $(1.10 \stackrel{+}{-} 0.60) \times 10$ $(6.2 \stackrel{+}{-} 2.9) \times 10$ $< 3.0 \times 10$ $(8.5 \pm 2.5) \times 10$ $(8.5 \pm 2.5) \times 10$ $(9.4 \pm 1.5) \times 10$ $(5.0 \pm 1.0) \times 10$ $(1.60 \pm 0.32) \times 10$ $(7.4 \pm 0.6) \times 10$ $(4.6 \pm 0.5) \times 10$ $(2.32 \pm 0.17) \times 10$	-4 -5 -6 -3 -7 -3 -4 -90% -4 -4 -3 -4 -3 -4 -3 -4 -3 -4 -3 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -3 -4 -4 -4 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	1240 - 1263 1377 1365 1366 1318 1320
$K_{2}^{*}(1430)^{0}\overline{K}_{2}^{*}(1430)^{0}$ $\overline{K}_{2}(1770)^{0}K^{*}(892)^{0} + \text{c.c.} \rightarrow K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.} \rightarrow K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.} \rightarrow K^{*}(1980)^{+}K^{-} + \text{c.c.} \rightarrow K^{+}K^{-}\pi^{0}$ $K_{4}^{*}(2045)^{+}K^{-} + \text{c.c.} \rightarrow K^{+}K^{-}\pi^{0}$ $K_{1}(1270)^{\pm}K^{\mp}$ $K_{1}(1270)K_{S}^{0} \rightarrow \gamma K_{S}^{0}K_{S}^{0}$ $a_{2}(1320)^{\pm}\pi^{\mp}$ $\phi \pi^{0}$ $\phi \pi^{+}\pi^{-}$ $\phi \pi^{0}\pi^{0}$ $\phi 2(\pi^{+}\pi^{-})$ $\phi \eta$ $\phi \eta'(958)$ $\phi \eta \eta'$ $\phi f_{0}(980)$	$(6.9 \pm 0.9) \times 10$ $(1.10 \stackrel{+}{-} 0.60) \times 10$ $(6.2 \stackrel{+}{-} 1.6) \times 10$ $< 3.0 \times 10$ $(8.5 \pm 2.5) \times 10$ $(8.5 \pm 2.5) \times 10$ $(9.4 \pm 1.5) \times 10$ $(5.0 \pm 1.0) \times 10$ $(1.60 \pm 0.32) \times 10$ $(7.4 \pm 0.6) \times 10$ $(4.6 \pm 0.5) \times 10$ $(2.32 \pm 0.17) \times 10$ $(3.2 \pm 0.9) \times 10$	-4 -5 -6 -3 -7 -3 -4 -90% -7 -3 -4 -4 -3 -4 -4 -3 -4 -4 -4 -4 -4 -4 -4 -5=1.2 -4 -4 -4 -4 -4 -4 -4 -5=1.9	1240 - 1263 1377 1365 1366 1318 1320 1192
$K_{2}^{*}(1430)^{0}\overline{K}_{2}^{*}(1430)^{0}$ $\overline{K}_{2}(1770)^{0}K^{*}(892)^{0} + \text{c.c.} \rightarrow K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.} \rightarrow K^{*}(1980)^{+}K^{-} + \text{c.c.} \rightarrow K^{+}K^{-}\pi^{0}$ $K_{4}^{*}(2045)^{+}K^{-} + \text{c.c.} \rightarrow K^{+}K^{-}\pi^{0}$ $K_{1}(1270)^{\pm}K^{\mp}$ $K_{1}(1270)K_{S}^{0} \rightarrow \gamma K_{S}^{0}K_{S}^{0}$ $a_{2}(1320)^{\pm}\pi^{\mp}$ $\phi\pi^{0}$ $\phi\pi^{0}\pi^{0}$ $\phi\pi^{0}\pi^{0}$ $\phi\eta'(958)$ $\phi\eta\eta'$ $\phi f_{0}(980) \rightarrow \phi\pi^{+}\pi^{-}$	$(6.9 \pm 0.9) \times 10$ $(1.10 \stackrel{+}{-} 0.60 \atop - 0.14) \times 10$ $(6.2 \stackrel{+}{-} 2.9 \atop - 1.6) \times 10$ $< 3.0 $	-4 -5 -6 -3 -7 -3 -4 -90% -4 -4 -3 -4 -3 -4 -4 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	1240 - 1263 1377 1365 1366 1318 1320 1192 885
$K_{2}^{*}(1430)^{0}\overline{K}_{2}^{*}(1430)^{0}$ $\overline{K}_{2}(1770)^{0}K^{*}(892)^{0} + \text{c.c.} \rightarrow K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.} \rightarrow K^{*}(892)^{0}K^{-}\pi^{+} + \text{c.c.} \rightarrow K^{*}(1980)^{+}K^{-} + \text{c.c.} \rightarrow K^{+}K^{-}\pi^{0}$ $K_{4}^{*}(2045)^{+}K^{-} + \text{c.c.} \rightarrow K^{+}K^{-}\pi^{0}$ $K_{1}(1270)^{\pm}K^{\mp}$ $K_{1}(1270)K_{S}^{0} \rightarrow \gamma K_{S}^{0}K_{S}^{0}$ $a_{2}(1320)^{\pm}\pi^{\mp}$ $\phi \pi^{0}$ $\phi \pi^{+}\pi^{-}$ $\phi \pi^{0}\pi^{0}$ $\phi 2(\pi^{+}\pi^{-})$ $\phi \eta$ $\phi \eta'(958)$ $\phi \eta \eta'$ $\phi f_{0}(980)$	$(6.9 \pm 0.9) \times 10$ $(1.10 \stackrel{+}{-} 0.60) \times 10$ $(6.2 \stackrel{+}{-} 1.6) \times 10$ $< 3.0 \times 10$ $(8.5 \pm 2.5) \times 10$ $(8.5 \pm 2.5) \times 10$ $(9.4 \pm 1.5) \times 10$ $(5.0 \pm 1.0) \times 10$ $(1.60 \pm 0.32) \times 10$ $(7.4 \pm 0.6) \times 10$ $(4.6 \pm 0.5) \times 10$ $(2.32 \pm 0.17) \times 10$ $(3.2 \pm 0.9) \times 10$	-4 -5 -6 -3 -7 -3 -4 -90% -7 -3 -4 -4 -3 -4 -4 -3 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	1240 - 1263 1377 1365 1366 1318 1320 1192 885

$\phi \pi^0 f_0(980) \to \phi \pi^0 p^0 \pi^0$		(1.7	_	0.6) × 10 ⁻⁶		1045
$\phi f_0(980) \eta \rightarrow \eta \phi \pi^+ \pi^-$		`	3.2			$) \times 10^{-4}$		1045
$\phi a_0(980)^0 \rightarrow \phi \eta \pi^0$		`	4.4			$) \times 10^{-6}$		_
$\phi f_2(1270)$		•				$) \times 10^{-4}$		1036
$\phi f_1(1285)$						$) \times 10^{-4}$		1030
$\phi f_1(1285) \rightarrow \phi f_1(1285) \rightarrow$			9.4			_		
$\phi \eta_1(1205) \rightarrow \phi \pi^0 f_0(980) \rightarrow$		(9.4	工	2.0) × 10		952
$\phi \pi^0 \eta_0(980) \rightarrow \phi \pi^0 \pi^+ \pi^-$								
$\phi f_1(1285) \rightarrow$		(2 1		2.2) × 10 ⁻⁷		955
$\phi \eta_1(1205) \rightarrow \phi \pi^0 f_0(980) \rightarrow \phi 3\pi^0$		(2.1	土	2.2	$) \times 10^{-7}$		955
		,	2.0		1.0) ~ 10-5		046
$\phi \eta(1405) \rightarrow \phi \eta \pi^+ \pi^-$						$) \times 10^{-5}$	C 0.7	946
$\phi f_2'(1525)$				土	4	$) \times 10^{-4}$	S=2.7	877
$\phi X(1835) \rightarrow \phi p \overline{p}$		<				× 10 ⁻⁷	CL=90%	
$\phi X(1835) \rightarrow \phi \eta \pi^+ \pi^-$			2.8			$\times 10^{-4}$	CL=90%	578
$\phi X(1870) \rightarrow \phi \eta \pi^+ \pi^-$			6.13			$\times 10^{-5}$	CL=90%	_
$\phi K \overline{K}$						$) \times 10^{-3}$	S=1.3	1179
$\phi f_0(1710) \rightarrow \phi K K$						$) \times 10^{-4}$		875
$\phi K^+ K^-$		•				$) \times 10^{-4}$		1179
$\phi K_{S}^{0} K_{S}^{0}$						$) \times 10^{-4}$		1176
$\phi K^{\pm} K^0_S \pi^{\mp}$	[z]	(7.2	\pm	8.0	$) \times 10^{-4}$		1114
$\phi K^*(892)\overline{K} + \text{c.c.}$		(2.18	\pm	0.23	$) \times 10^{-3}$		969
$b_1(1235)^{\pm}\pi^{\mp}$	[z]	(3.0	\pm	0.5	$) \times 10^{-3}$		1300
$b_1(1235)^0\pi^0$		(2.3	\pm	0.6	$) \times 10^{-3}$		1300
$f_2'(1525)K^+K^-$		(1.06	\pm	0.35	$) \times 10^{-3}$		897
$\Delta(1232)^+\overline{p}$		<				$\times 10^{-4}$	CL=90%	1100
$\Delta(1232)^{++}\overline{p}\pi^{-}$		(1.6	\pm	0.5	$) \times 10^{-3}$		1030
$\Delta(1232)^{++}\overline{\Delta}(1232)^{}$						$) \times 10^{-3}$		938
$\overline{\Sigma}(1385)^0 pK^{-}$						$) \times 10^{-4}$		646
$\Sigma(1385)^{0}\overline{\Lambda}$ + c.c.			8.2			$\times 10^{-6}$	CL=90%	911
$\Sigma(1385)^{-}\overline{\Sigma}^{+}$ (or c.c.)	[z]	(3.1	\pm	0.5	$) \times 10^{-4}$		855
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$ (or c.c.)						$) \times 10^{-3}$		697
$\Sigma(1385)^0 \overline{\Sigma}(1385)^0$						$) \times 10^{-3}$		697
$\Lambda(1520)\overline{\Lambda} + \text{c.c.} \rightarrow \gamma \Lambda \overline{\Lambda}$			4.1			$\times 10^{-6}$	CL=90%	_
$\overline{\Lambda}(1520)\Lambda + \text{c.c.}$		<	1.80			$\times 10^{-3}$	CL=90%	807
<u>=0</u> =0 '		(1.17	\pm	0.04	$) \times 10^{-3}$		818
$\Xi(1530)^{-}\overline{\Xi}^{+}$ + c.c.						$) \times 10^{-4}$		600
$\Xi(1530)^0 \overline{\Xi}{}^0$) × 10 ⁻⁴		608
$\Theta(1540) \overline{\Theta}(1540) \rightarrow$	[hhaa]					$\times 10^{-5}$	CL=90%	_
$K_{S}^{0} p K^{-} \overline{n} + \text{c.c.}$								
$\Theta(1540) K^{-} \overline{n} \rightarrow K_{S}^{0} p K^{-} \overline{n}$	[hhaa]	<	2.1			$\times10^{-5}$	CL=90%	_
$\Theta(1540)K_S^0\overline{p} \rightarrow K_S^0\overline{p}K^+n$			1.6			× 10 ⁻⁵	CL=90%	_
$\overline{\Theta}(1540)K^+n \rightarrow K_S^0 \overline{p}K^+n$			5.6			× 10 ⁻⁵	CL=90%	_
$\overline{\Theta}(1540)K^0_S p \to K^0_S p K^{-} \overline{n}$	-					× 10 × 10 ⁻⁵	CL=90%	_
$O(1340)NSP \rightarrow NSPN II$	[maa]	<	1.1			× 10 °	CL=90%	_

Decays into stable hadrons

Deca	ays into stable hadrons		
$2(\pi^{+}\pi^{-})\pi^{0}$	$(4.2 \pm 0.4)\%$	S=2.1	1496
$3(\pi^+\pi^-)\pi^0$	$(2.9 \pm 0.6)\%$		1433
$\pi^{+}\pi^{-}3\pi^{0}$	(1.9 ± 0.9) %		1497
$\pi^+\pi^-$ 4 π^0	$(6.5 \pm 1.3) \times 10^{-3}$		1470
$ ho^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	(1.41 ± 0.22) %		1421
$ ho^+ ho^-\pi^0$	$(6.0 \pm 1.1) \times 10^{-3}$		1298
$\pi + \pi - \pi^0$	(2.10 ± 0.08) %	S=1.6	1533
$2(\pi^+\pi^-\pi^0)$	(1.61 ± 0.20) %		1468
$\pi^+\pi^-\pi^0$ K $^+$ K $^-$	(1.52 ± 0.27) %	S=1.4	1368
$\pi^+\pi^-$	$(1.47 \pm 0.14) \times 10^{-4}$		1542
$2(\pi^{+}\pi^{-})$	$(3.20 \pm 0.25) \times 10^{-3}$	S=1.2	1517
$3(\pi^{+}\pi^{-})$	$(4.3 \pm 0.4) \times 10^{-3}$		1466
$2(\pi^+\pi^-)3\pi^0$	(6.2 ± 0.9) %		1435
$4(\pi^+\pi^-)\pi^0$	$(9.0 \pm 3.0) \times 10^{-3}$		1345
$2(\pi^+\pi^-)\eta$	$(2.29 \pm 0.28) \times 10^{-3}$		1446
$3(\pi^+\pi^-)\eta$	$(7.2 \pm 1.5) \times 10^{-4}$		1379
$2(\pi^{+}\pi^{-}\pi^{0})\eta$	$(1.6 \pm 0.5) \times 10^{-3}$		1381
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\eta$	$(2.4 \pm 0.5) \times 10^{-3}$		1448
$ ho^{\pm}\pi^{\mp}\pi^{f 0}\eta$	$(1.9 \pm 0.8) \times 10^{-3}$		1326
K^+K^-	$(2.86 \pm 0.21) \times 10^{-4}$		1468
$K_S^0 K_I^0$	$(1.95 \pm 0.11) \times 10^{-4}$	S=2.4	1466
$K_S^0 K_L^0 $ $K_S^0 K_S^0$	$< 1.4 \times 10^{-8}$	CL=95%	1466
$K\overline{K}\pi$	$(6.1 \pm 1.0) \times 10^{-3}$		1442
$K^+K^-\pi^0$	$(2.88 \pm 0.12) \times 10^{-3}$		1442
$K^0_S K^\pm \pi^\mp$	$(5.6 \pm 0.5) \times 10^{-3}$		1440
$K_S^0 K_I^0 \pi^0$	$(2.06 \pm 0.26) \times 10^{-3}$		1440
$K^*(892)^0\overline{K}^0+\text{c.c.} o$	$(1.21 \pm 0.18) \times 10^{-3}$		_
$K_0^0 K_1^0 \pi^0$	(1.21 ± 0.10) × 10		
$K_2^*(1430)^0\overline{K}^0 + \text{c.c.} \to$	$(4.3\pm1.3)\times10^{-4}$		_
$K_{S}^{0}K_{L}^{0}\pi^{0}$	(4.5 ± 1.5) × 10		
$K^+K^-\pi^+\pi^-$	(70 10) 10 - 3		1 407
$K^+K^-\pi^0\pi^0$	$(7.0 \pm 1.0) \times 10^{-3}$		1407
$\kappa^0 \kappa^0 = + = -$	$(2.13 \pm 0.22) \times 10^{-3}$		1410
$K_{S}K_{L}^{T}$ M	$(3.8 \pm 0.6) \times 10^{-3}$		1406
$K_{S}^{\circ}K_{L}^{\circ}\pi^{\circ}\pi^{\circ}$	$(1.9 \pm 0.4) \times 10^{-3}$		1408
$K_{S}^{0}K_{L}^{0}\pi^{+}\pi^{-}$ $K_{S}^{0}K_{L}^{0}\pi^{0}\pi^{0}$ $K_{S}^{0}K_{L}^{0}\eta$ $K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$	$(1.45 \pm 0.33) \times 10^{-3}$		1328
$K_S^0K_S^0\pi^+\pi^-$	$(1.68 \pm 0.19) \times 10^{-3}$		1406
$K^+K^0_S\pi^\pm\pi^0$	$(5.7 \pm 0.5) \times 10^{-3}$		1408
$K^+ K^- 2(\pi^+ \pi^-)$	$(3.1 \pm 1.3) \times 10^{-3}$		1320
$K^+K^-\pi^+\pi^-\eta$	$(4.7 \pm 0.7) \times 10^{-3}$		1221
$2(K^{+}K^{-})$	$(7.2 \pm 0.8) \times 10^{-4}$		1131
$K^+K^-K^0_SK^0_S$	$(4.2 \pm 0.7) \times 10^{-4}$		1127
$ ho \overline{p}$	$(2.120 \pm 0.029) \times 10^{-3}$		1232

$ ho \overline{ ho} \pi^0$		(1.19 \pm	0.08	$) \times 10^{-3}$	S=1.1	1176
$p\overline{p}\pi^+\pi^-$		(6.0 \pm	0.5	$) \times 10^{-3}$	S=1.3	1107
$p\overline{p}\pi^{+}\pi^{-}\pi^{0}$	[iiaa]	(2.3 \pm	0.9	$) \times 10^{-3}$	S=1.9	1033
$ ho \overline{ ho} \eta$		($2.00 \pm$	0.12	$) \times 10^{-3}$		948
$p\overline{p}\rho$		< 3.1		\times 10 ⁻⁴	CL=90%	774
$ ho \overline{ ho} \omega$		(9.8 \pm	1.0	$) \times 10^{-4}$	S=1.3	768
$ \rho \overline{\rho} \eta'(958) $		($1.29 \pm$	0.14	$) \times 10^{-4}$	S=2.0	596
$ ho \overline{ ho} a_0(980) ightarrow ho \overline{ ho} \pi^0 \eta$		(6.8 \pm	1.8	$) \times 10^{-5}$		_
$oldsymbol{ ho}\overline{oldsymbol{ ho}}\phi$		(5.19 \pm	0.33	$) \times 10^{-5}$		527
$ ho \overline{n} \pi^-$		(2.12 \pm	0.09	$) \times 10^{-3}$		1174
n n		($2.09 \pm$	0.16	$) \times 10^{-3}$		1231
$n\overline{n}\pi^+\pi^-$		(4 ±	4	$) \times 10^{-3}$		1106
nN(1440)		seen				978
n N(1520)		seen				928
nN(1535)		seen				917
$\Lambda \overline{\Lambda}$				$) \times 10^{-3}$	S=2.8	1074
$\Lambda \overline{\Lambda} \pi^0$				$) \times 10^{-5}$		998
$\Lambda \overline{\Lambda} \pi^+ \pi^-$				$) \times 10^{-3}$		903
$\Lambda \overline{\Lambda} \eta$				$) \times 10^{-4}$		672
$\Lambda \overline{\Sigma}^- \underline{\pi}^+$ (or c.c.)	[z]	(8.3 \pm			S=1.2	950
$pK^{-}\overline{\Lambda}$ +c.c.				$) \times 10^{-4}$		876
$pK^{-}\overline{\Sigma}^{0}$				$) \times 10^{-4}$		819
$\overline{\Lambda}_{n}K_{S}^{0}+\text{c.c.}$				$) \times 10^{-4}$		872
$\Lambda\Sigma$ + c.c.				$) \times 10^{-5}$		1034
$\Sigma^{+}\overline{\Sigma}^{-}$				$) \times 10^{-3}$		992
$\sum_{i=1}^{0} \overline{\sum_{i=1}^{0}}$				$(2) \times 10^{-3}$	S=1.4	988
$\Sigma^{+} \overline{\underline{\Sigma}}^{-} \eta$				$) \times 10^{-5}$		498
<u>=</u> - <u>=</u> +		$(9.7 \pm$	8.0	$) \times 10^{-4}$	S=1.4	807
F	Radia [.]	tive decay	'S			
$\gamma \eta_c(1S)$		(1.7 ±) %	S=1.5	111
		`		,		
$\gamma \eta_c(1S) \rightarrow 3\gamma$			1.0) × 10 ⁻⁶	S=1.1	_
$\gamma \eta_{c}(1S) ightarrow \gamma \eta \eta \eta'$		(4.9 \pm		,		_
3γ			0.22	$) \times 10^{-5}$		1548
$\frac{4}{7}$		< 9		$\times 10^{-6}$	CL=90%	1548
5γ		< 1.5		$\times 10^{-5}$	CL=90%	1548
$\gamma \pi^0$		(3.56 ±				1546
$\gamma \pi^0 \pi^0$		(1.15 \pm				1543
$\gamma 2\pi^{+}2\pi^{-}$		(2.8 ±	0.5	$) \times 10^{-3}$	S=1.9	1517
$\gamma f_2(1270) f_2(1270)$		(9.5 ±	1.7	$) \times 10^{-4}$		878
$\gamma f_2(1270) f_2(1270)$ (non reso-	•	(8.2 ±	1.9) × 10 ⁻⁴		_
nant)		(0 2)	2.1) 10-3		1510
$\gamma \pi^{+} \pi^{-} 2\pi^{0}$				$) \times 10^{-3}$		1518
YNSNS		(δ.1 ±	U.4) × 10 .		1400
$\gamma K_S^0 K_S^0$) × 10 ⁻⁴		1466

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 144

$\gamma(K\overline{K}\pi)[J^{PC}=0^{-+}]$	$(7 \pm 4) \times 10^{-4}$	S=2.1	1442
$\gamma K^+ K^- \pi^+ \pi^-$	$(2.1 \pm 0.6) \times 10^{-3}$		1407
$\gamma K^*(892)\overline{K}^*(892)$	$(4.0 \pm 1.3) \times 10^{-3}$		1266
$\gamma\eta$	$(1.085 \pm 0.018) \times 10^{-3}$		1500
$\gamma \eta \pi^0$	$(2.14 \pm 0.31) \times 10^{-5}$		1497
$\gamma a_0(980)^0 \rightarrow \gamma \eta \pi^0$	$< 2.5 \times 10^{-6}$	CL=95%	_
$\gamma a_2(1320)^{0} \rightarrow \ \gamma \eta \pi^{0}$	$< 6.6 \times 10^{-6}$	CL=95%	_
$\gamma \eta \pi \pi$	$(6.1 \pm 1.0) \times 10^{-3}$		1487
$\gamma \eta_2(1870) \rightarrow \gamma \eta \pi^+ \pi^-$	$(6.2 \pm 2.4) \times 10^{-4}$		_
$\gamma \eta'(958)$	$(5.25 \pm 0.07) \times 10^{-3}$	S=1.3	1400
$\gamma \rho \rho$	$(4.5 \pm 0.8) \times 10^{-3}$	GL 000/	1340
$\gamma \rho \omega$	$< 5.4 \times 10^{-4}$	CL=90%	1338
$\gamma \rho \phi$	$< 8.8 \times 10^{-5}$	CL=90%	1258
$\gamma \omega \omega$	$(1.61 \pm 0.33) \times 10^{-3}$	C 0.1	1336
$\gamma \phi \phi$	$(4.0 \pm 1.2) \times 10^{-4}$	S=2.1	1166
$\gamma \eta (1405/1475) \rightarrow \gamma K K \pi$ $\gamma \eta (1405/1475) \rightarrow \gamma \gamma \rho^0$	$(2.8 \pm 0.6) \times 10^{-3}$	S=1.6	1223
$\gamma \eta (1405/1475) \rightarrow \gamma \gamma \gamma \rho$ $\gamma \eta (1405/1475) \rightarrow \gamma \eta \pi^+ \pi^-$	$(7.8 \pm 2.0) \times 10^{-5}$ $(3.0 \pm 0.5) \times 10^{-4}$	S=1.8	1223
$\gamma \eta(1405/1475) \rightarrow \gamma \eta \eta$	$(3.0 \pm 0.5) \times 10^{-4}$ $(1.7 \pm 0.4) \times 10^{-3}$	C 12	1223
$\gamma \eta (1405/1475) \rightarrow \gamma \gamma \rho \rho$ $\gamma \eta (1405/1475) \rightarrow \gamma \gamma \phi$	`	S=1.3 CL=95%	1223
$\gamma \eta (1405) \rightarrow \gamma \gamma \gamma$ $\gamma \eta (1405) \rightarrow \gamma \gamma \gamma$	< 8.2	CL=95% CL=90%	
$\gamma \eta (1405) \rightarrow \gamma \gamma \gamma \gamma $ $\gamma \eta (1475) \rightarrow \gamma \gamma \gamma$	< 1.86	CL=90% CL=90%	_
$\gamma \eta (1760) \rightarrow \gamma \rho^0 \rho^0$	$(1.3 \pm 0.9) \times 10^{-4}$	CL—9070	1048
$\gamma \eta (1760) \rightarrow \gamma \omega \omega$	$(1.98 \pm 0.33) \times 10^{-3}$		-
$\gamma \eta (1760) \rightarrow \gamma \gamma \gamma$	$< 4.80 \times 10^{-6}$	CL=90%	_
		CL-3070	750
$\gamma \eta$ (2225)	$(3.14 + 0.50 \atop -0.19) \times 10^{-4}$		752
$\gamma f_2(1270)$	$(1.63 \pm 0.12) \times 10^{-3}$	S=1.3	1286
$\gamma f_2(1270) \rightarrow \gamma K_S^0 K_S^0$	$(2.58 \ ^{+} \ 0.60 \) \times 10^{-5}$		_
$\gamma f_1(1285)$	(6.1 \pm 0.8) \times 10 ⁻⁴		1283
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$	$(4.2 \pm 1.5) \times 10^{-4}$		_
$\gamma f_0(1370) \rightarrow \gamma K_S^0 K_S^0$	$(1.1 \pm 0.4) \times 10^{-5}$		_
$\gamma f_1(1420) \rightarrow \gamma K \overline{K} \pi$	$(7.9 \pm 1.3) \times 10^{-4}$		1220
$\gamma f_0(1500) \rightarrow \gamma \pi \pi$	$(1.09 \pm 0.24) \times 10^{-4}$		1183
$\gamma f_0(1500) \rightarrow \gamma \eta \eta$	$(1.7 + 0.6 \\ -1.4) \times 10^{-5}$		_
$\gamma f_0(1500) \rightarrow \gamma K_S^0 K_S^0$	$(1.59 \ ^{+} \ ^{0.24} _{-} \) \times 10^{-5}$		_
$\gamma f_1(1510) \rightarrow \gamma \eta \pi^+ \pi^-$	$(4.5 \pm 1.2) \times 10^{-4}$		
$\gamma f_2'(1525)$	$(5.7 \begin{array}{cc} + & 0.8 \\ - & 0.5 \end{array}) \times 10^{-4}$	S=1.5	1177
$\gamma f_2'(1525) \rightarrow \gamma K_S^0 K_S^0$	$(8.0 \ + \ 0.7 \) \times 10^{-5}$		_
$\gamma f_2'(1525) \rightarrow \gamma \eta \eta$	$(3.4 \pm 1.4) \times 10^{-5}$		_
$\gamma f_2(1640) \rightarrow \gamma \omega \omega$	$(2.8 \pm 1.8) \times 10^{-4}$		_

$\gamma f_0(1710) \rightarrow \gamma \pi \pi$	(3.8	\pm	0.5	$)\times10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	(9.5	+	1.0 0.5	$) \times 10^{-4}$	S=1.5	1075
$\gamma f_0(1710) \rightarrow \gamma \omega \omega$	(3.1	\pm	1.0	$)\times10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	(2.4	+	1.2 0.7	$) \times 10^{-4}$		_
$\gamma f_0(1710) \rightarrow \gamma \omega \phi$	(2.5	\pm	0.6	$)\times10^{-4}$		_
$\gamma f_0(1770) \rightarrow \gamma K_S^0 K_S^0$	(1.11	+	0.20 0.33	$)\times 10^{-5}$		_
$\gamma f_2(1810) \rightarrow \gamma \eta \eta$	(5.4	+	3.5 2.4	$)\times10^{-5}$		_
$\gamma \eta_1(1855) \rightarrow \gamma \eta \eta'$	(2.7	+	0.4 0.5) × 10 ⁻⁶		_
$\gamma f_2(1910) \rightarrow \gamma \omega \omega$	(2.0	\pm	1.4	$) \times 10^{-4}$		_
$\gamma f_2(1950) \rightarrow K^*(999)$	(7.0	\pm	2.2	$) \times 10^{-4}$		_
$\gamma K^*(892)\overline{K}^*(892)$				U 35			
$\gamma f_0(2020) \rightarrow \gamma \eta' \eta'$) × 10 ⁻⁴		_
$\gamma f_4(2050)$) × 10 ⁻³		891
$\gamma f_0(2100) \rightarrow \gamma \eta \eta$) × 10 ⁻⁴		_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$,				$) \times 10^{-4}$		_
$\gamma f_0(2200) \rightarrow \gamma K K$) × 10 ⁻⁴		_
$\gamma f_0(2200) \rightarrow \gamma K_S^0 K_S^0$	(2.72	+	0.19) × 10 ⁻⁴		-
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	<				$\times 10^{-5}$	CL=90%	_
$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$	<			0.0	$\times 10^{-5}$) $\times 10^{-5}$	CL=90%	_
$\gamma f_J(2220) ightarrow \gamma p \overline{p} \ \gamma f_0(2330) ightarrow \gamma K_S^0 K_S^0$					$) \times 10^{-5}$		_
$\gamma f_0(2330) \rightarrow \gamma \eta' \eta'$		6.1) × 10 ⁻⁶		_
$\gamma f_2(2340) \rightarrow \gamma \eta \eta$				_) × 10 ⁻⁵		_
$\gamma f_2(2340) \rightarrow \gamma K_S^0 K_S^0$) × 10 ⁻⁵		_
$\gamma f_2(2340) \rightarrow \gamma \eta' \eta'$				_	$) \times 10^{-6}$		_
,							
$\gamma f_0(2470) \rightarrow \gamma \eta' \eta'$) × 10 ⁻⁷		_
$\gamma X(1835) \rightarrow \gamma \pi^+ \pi^- \eta'$				0.0) × 10 ⁻⁴	S=1.6	1006
$\gamma X(1835) \rightarrow \gamma p \overline{p}$	(7.7	+	1.5 0.9	$) \times 10^{-5}$		-
$\gamma X(1835) \rightarrow \gamma K_S^0 K_S^0 \eta$	(3.3	+	2.0 1.3	$) \times 10^{-5}$		_
$\gamma X(1835) \rightarrow \gamma \gamma \gamma$	<	3.56			\times 10 ⁻⁶	CL=90%	_
$\gamma X(1835) \rightarrow \gamma 3(\pi^+\pi^-)$	(2.4	+	0.7 0.8	$) \times 10^{-5}$		- - - -
$\gamma X(2370) \rightarrow \gamma K^+ K^- \eta'$					$) \times 10^{-5}$		_
$\gamma X(2370) \rightarrow \gamma K_S^0 K_S^0 \eta'$				0.5	$) \times 10^{-5}$		_
$\gamma X(2370) \rightarrow \gamma \eta \eta \eta'$	<	9.2			× 10 ⁻⁶	CL=90%	_
					_		

Page 146

Created: 7/10/2023 15:48

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

$\begin{array}{l} \gamma\rho\overline{\rho}\\ \gamma\rho\overline{\rho}\pi^+\pi^-\\ \gamma\Lambda\overline{\Lambda}\\ \gammaA^0\to \ \gamma\text{invisible}\\ \gammaA^0\to \ \gamma\mu^+\mu^- \end{array}$	$(3.8 \pm 1.$ < 7.9 < 1.3 $[ijaa] < 1.7$ $[kkaa] < 7.8$	$0) \times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-4} \\ \times 10^{-6} \\ \times 10^{-7}$	CL=90% CL=90% CL=90% CL=90%	1232 1107 1074 —
	Dalitz decays			
$\pi^0 e^+ e^-$	($7.6 \pm 1.$	4) \times 10 ⁻⁷		1546
$\eta e^+ e^-$	`	08) \times 10 ⁻⁵		1500
$\eta'(958)e^+e^-$	($6.59 \pm 0.$			1400
$X(1835)e^+e^-, X ightarrow \pi^+\pi^-\eta^\prime$	(3.58 ± 0.	25) × 10 ⁻⁶		_
$X(2120)e^{+}e^{-}, X \rightarrow \pi^{+}\pi^{-}\eta^{\prime}$	(8.2 ± 1.	3) \times 10 ⁻⁷		_
$X(2370)e^{+}e^{-}, X \rightarrow \pi^{+}\pi^{-}\eta'$	(1.08 ± 0.	17) × 10 ⁻⁶		_
$\eta U \rightarrow \eta e^+ e^-$	[<i>llaa</i>] < 9.11	\times 10 ⁻⁷	CL=90%	_
$\eta'(958) U \rightarrow \eta'(958) e^+ e^-$	[<i>Ilaa</i>] < 2.0	\times 10 ⁻⁷	CL=90%	_
$\phi e^+ e^-$	< 1.2	\times 10 ⁻⁷	CL=90%	1381
	Weak decays			
$D^{-}e^{+}\nu_{e}^{}+$ c.c.	< 7.1	× 10 ⁻⁸	CL=90%	984
$\overline{D}^0 e^+ e^- + \text{c.c.}$	< 8.5	× 10 × 10 ⁻⁸	CL=90% CL=90%	987
$D_{s}^{-}e^{+}\nu_{e}+\text{c.c.}$	< 1.3	× 10 × 10 ⁻⁶	CL=90% CL=90%	923
$D_{s}^{*-}e^{+}\nu_{e}+\text{c.c.}$	< 1.8	× 10 ⁻⁶	CL=90%	828
$D^-\pi^+$ + c.c.	< 7.5	× 10 ⁻⁵	CL=90%	977
$\frac{D}{D^0}\frac{\pi}{K^0}$ + c.c.	< 1.7	× 10 × 10 ⁻⁴	CL=90% CL=90%	898
$\frac{D}{D^0}\frac{K}{K^{*0}}$ + c.c.	< 2.5	× 10 × 10 ⁻⁶	CL=90% CL=90%	670
$D_s^-\pi^+$ + c.c.	< 1.3	× 10 × 10 −4	CL=90%	915
$D_s^- \rho^+ + \text{c.c.}$	< 1.3	× 10 ⁻⁵	CL=90%	663
$D_s \rho$ c.e.	\ 1.5	× 10	CL—9070	003
	onjugation (C) , Pa			
	y number (<i>LF</i>) viol			
$\gamma\gamma$	< 2.7	$\times 10^{-7}$	CL=90%	1548
$\gamma \phi$ C	< 1.4	$\times 10^{-6}$	CL=90%	1381
$e^{\pm} \mu^{+}$ LF	< 1.6	× 10 ⁻⁷	CL=90%	1547
$\begin{array}{cccc} \gamma \phi & & & C \\ e^{\pm} \mu^{\mp} & & LF \\ e^{\pm} \tau^{\mp} & & LF \\ \mu^{\pm} \tau^{\mp} & & LF \end{array}$	< 7.5	$\times 10^{-8}$	CL=90%	1039
$\mu^{\pm} \tau^{+}$ LF $\Lambda_{c}^{+} e^{-} + \text{c.c.}$	< 2.0	$\times 10^{-6} \times 10^{-8}$	CL=90%	1035
11 _c = +c.c.	< 6.9	× 10 °	CL=90%	_
	Other decays			
invisible	< 7	× 10 ⁻⁴	CL=90%	_

$\chi_{c0}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

Mass $m=3414.71\pm0.30~{\rm MeV}$ Full width $\Gamma=10.8\pm0.6~{\rm MeV}$

$\chi_{c0}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
Had	Ironic decays		
$2(\pi^{+}\pi^{-})$	$(2.34\pm0.18)\%$		1679
$\rho^0 \pi^+ \pi^-$	$(9.1 \pm 2.9) \times 10^{-2}$	0-3	1607
$f_0(980)f_0(980)$	$(6.6 \pm 2.1) \times 10^{-2}$	0-4	1391
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(3.3 \pm 0.4)\%$		1680
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ $\rho^{+}\pi^{-}\pi^{0}$ + c.c. $4\pi^{0}$	(2.9 \pm 0.4) %		1607
	$(3.3 \pm 0.4) \times 10$	0-3	1681
$\pi^+\pi^-K^+K^-$	(1.81 ± 0.14) %		1580
${m extstyle K}_0^*(1430)^0 \overline{m K}_0^*(1430)^0 ightarrow \ {}_{m \pi}^+ {}_{m \pi}^- {}_{m K}^+ {}_{m K}^-$	$(9.8 \ ^{+4.0}_{-2.8}) \times 10^{-1}$	0 ⁻⁴	_
$K_0^*(1430)^0\overline{K}_2^*(1430)^0 + \text{c.c.} \rightarrow$	$(8.0 \begin{array}{c} +2.0 \\ -2.4 \end{array}) \times 10^{-1}$	0-4	_
$\pi^{+}\pi^{-}K^{+}K^{-}$ $K_{1}(1270)^{+}K^{-}+\text{c.c.} \rightarrow$	$(6.3 \pm 1.9) \times 10^{-2}$	0-3	_
$\pi^+\pi^ K^+$ $K^ K_1(1400)^+$ K^- + c.c. $ ightarrow$ $\pi^+\pi^ K^+$ K^-	< 2.7 × 10	0 ⁻³ CL=90%	_
$f_0(980) f_0(980)$	$(1.6 \ ^{+1.0}_{-0.9} \) imes 1$	0-4	1391
$f_0(980) f_0(2200)$	$(7.9 \ ^{+2.0}_{-2.5}) \times 10^{-1}$	0^{-4}	586
$f_0(1370) f_0(1370)$	< 2.7 × 10	$^{0-4}$ CL=90%	1019
$f_0(1370) f_0(1500)$	$< 1.7 \times 10$	0^{-4} CL=90%	907
$f_0(1370) f_0(1710)$	$(6.7 \ ^{+3.5}_{-2.3}) \times 10^{-1}$	0^{-4}	709
$f_0(1500) f_0(1370)$	< 1.3 × 10		907
$f_0(1500) f_0(1500)$	< 5 × 10		774
$f_0(1500) f_0(1710)$	< 7 × 10		515
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(8.6 \pm 0.9) \times 10^{-2}$		1545
$K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(4.2 \pm 0.4) \times 10^{-2}$		1543
$K^{+}K^{-}\pi^{0}\pi^{0}$	$(5.6 \pm 0.9) \times 10$	0-3	1582
$K^+\pi^-\overline{K}^0\pi^0$ + c.c.	(2.49 ± 0.33) %		1581
$\rho^{+} K^{-} K^{0} + \text{c.c.}$	$(1.21\pm0.21)~\%$	2	1458
$K^*(892)^- \frac{K^+ \pi^0}{K^0 \pi^0 + \text{c.c.}}$	$(4.6 \pm 1.2) \times 10^{-2}$	ე—3	_
$K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-}$	$(5.7 \pm 1.1) \times 10$	0-3	1579
$K^{+}K^{-}\eta\pi^{0}$	$(3.0 \pm 0.7) \times 10^{-2}$	0-3	1468
$3(\pi^{+}\pi^{-})$	(1.20 ± 0.18) %		1633
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	$(7.5 \pm 1.6) \times 10^{-1}$	ე—3	1523

16* (222) 0 16 * (222) 0			
$K^*(892)^0 \overline{K}^*(892)^0$	$(1.7 \pm 0.6) \times 10^{-3}$		1456
$\pi\pi$	$(8.51\pm0.33)\times10^{-3}$		1702
$\pi_{0}^{0}\eta$	$< 1.8 \times 10^{-4}$		1661
$\pi^0 \eta'$	$< 1.1 \times 10^{-3}$		1570
$\pi^0 \eta_c$	$< 1.6 \times 10^{-3}$	CL=90%	383
$\eta\eta$	$(3.01\pm0.19)\times10^{-3}$		1617
$\eta\eta'$	$(9.1 \pm 1.1) \times 10^{-5}$		1521
$\eta' \eta'$	$(2.17\pm0.12)\times10^{-3}$		1413
$\omega\omega$	$(9.7 \pm 1.1) \times 10^{-4}$		1517
$\omega \phi$	$(1.41\pm0.13)\times10^{-4}$		1447
$\omega K^+ K^-$	$(1.94\pm0.21)\times10^{-3}$		1457
K^+K^-	$(6.05\pm0.31)\times10^{-3}$		1634
$K_S^0 K_S^0$	$(3.16\pm0.17)\times10^{-3}$		1633
$\pi^{+}\pi^{-}\eta$	$< 2.0 \times 10^{-4}$	CL=90%	1651
$\pi^+\pi^-\eta'$	$< 4 \times 10^{-4}$	CL=90%	1560
$\overline{K}^0 K^+ \pi^- + \text{c.c.}$	$< 9 \times 10^{-5}$	CL=90%	1610
$K^+K^-\pi^0$	$< 6 \times 10^{-5}$	CL=90%	1611
$K^+K^-\eta$	$< 2.3 \times 10^{-4}$	CL=90%	1512
$K^{+}K^{-}K_{S}^{0}K_{S}^{0}$	$(1.4 \pm 0.5) \times 10^{-3}$		1331
$K_{S}^{0}K_{S}^{0}K_{S}^{0}K_{S}^{0}$	$(5.8 \pm 0.5) \times 10^{-4}$		1327
$K^+K^-K^+K^-$	$(2.82\pm0.29)\times10^{-3}$		1333
$K^+K^-\phi$	$(9.7 \pm 2.5) \times 10^{-4}$		1381
$\overline{K}^0 K^+ \pi^- \phi + \text{c.c.}$	$(3.7 \pm 0.6) \times 10^{-3}$		1326
$K^+K^-\pi^0\phi$	$(1.90\pm0.35)\times10^{-3}$		1329
$\phi \pi^+ \pi^- \pi^0$	$(1.18\pm0.15)\times10^{-3}$		1525
$\phi\phi$	$(8.0 \pm 0.7) \times 10^{-4}$		1370
$\stackrel{\prime}{\phi}\stackrel{\prime}{\phi}\eta$	$(8.4 \pm 1.0) \times 10^{-4}$		1100
$p\overline{p}$	$(2.21\pm0.08)\times10^{-4}$		1426
$p \overline{p} \pi^0$	$(7.0 \pm 0.7) \times 10^{-4}$	S=1.3	1379
$p\overline{p}\eta$	$(3.5 \pm 0.4) \times 10^{-4}$		1187
$p\overline{p}\omega$	$(5.2 \pm 0.6) \times 10^{-4}$		1043
$p\overline{p}\phi$	$(6.0 \pm 1.4) \times 10^{-5}$		876
$p\overline{p}\pi^+\pi^-$	$(2.1 \pm 0.7) \times 10^{-3}$	S=1.4	1320
$p \overline{p} \pi^0 \pi^0$	$(1.04\pm0.28)\times10^{-3}$	_	1324
$p\overline{p}K^+K^-$ (non-resonant)	$(1.22\pm0.26)\times10^{-4}$		890
$p\overline{p}K_S^0K_S^0$	$< 8.8 \times 10^{-4}$	CL=90%	884
$p\overline{n}\pi^-$	$(1.27\pm0.11)\times10^{-3}$		1376
$\frac{\overline{p}}{\overline{n}}\pi^+$	$(1.37\pm0.12)\times10^{-3}$		1376
$p \overline{n} \pi^{-} \pi^{0}$	$(2.34\pm0.21)\times10^{-3}$		1321
$\frac{\overline{p}}{\overline{p}}n\pi^{+}\pi^{0}$	$(2.21\pm0.18)\times10^{-3}$		1321
$\Lambda \overline{\Lambda}$	$(3.59\pm0.15)\times10^{-4}$		1292
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(3.33\pm0.13)\times10^{-3}$ $(1.18\pm0.13)\times10^{-3}$		1153
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$< 5 \times 10^{-4}$	CL=90%	1153
$\Lambda \overline{\Lambda} \eta$	$(2.3 \pm 0.4) \times 10^{-4}$	CL .50/0	979
, ,	(2.3 ±0.7) ∧ 10		519

. _							
$\Sigma(1385)^+\overline{\varLambda}\pi^-+$ c.c.	< 5	$\times 10^{-4}$	CL=90%	1083			
$\Sigma(1385)^-\overline{\varLambda}\pi^++$ c.c.	< 5	\times 10 ⁻⁴	CL=90%	1083			
$K^{+}\overline{p}\Lambda$ + c.c.	$(1.25\pm 0$	$0.12) \times 10^{-3}$	S=1.3	1132			
$nK_{S}^{0}\overline{\Lambda}+{ m c.c.}$	(6.6 ± 0.0)	$0.5) \times 10^{-4}$		1129			
$K^*(892)^+ \overline{p} \Lambda + \text{c.c.}$	(4.8 ± 0.00)	$0.9) \times 10^{-4}$		845			
$K^{+} \overline{p} \Lambda(1520) + \text{c.c.}$	(2.9 ± 0.00)	$0.7) \times 10^{-4}$		859			
$\Lambda(1520)\overline{\Lambda}(1520)$	(3.1 ± 3)	$1.2) \times 10^{-4}$		780			
$\sum_{i=0}^{\infty} \overline{\sum_{i=0}^{\infty}}$	(4.68±0	$0.32) \times 10^{-4}$		1222			
$\Sigma^+ \overline{p} K_S^0 + \text{c.c.}$	(3.52±0	$(0.27) \times 10^{-4}$		1089			
$\Sigma^0 \overline{ ho} K^{+} + ext{c.c.}$	(3.03±0	$0.20) \times 10^{-4}$		1090			
$\Sigma^{+} \overline{\Sigma}^{-}$	(4.6 ± 0.0)	$0.8) \times 10^{-4}$	S=2.6	1225			
$\Sigma^{-}\overline{\Sigma}^{+}$	(5.1 ± 0)	$0.5) \times 10^{-4}$		1217			
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	(1.6 ± 0)	$0.6) \times 10^{-4}$		1001			
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$	(2.3 ± 0.00)	$0.7) \times 10^{-4}$		1001			
$K - \Lambda \overline{\Xi} + c.c.$	(1.94±0	$(0.35) \times 10^{-4}$		873			
<u>=</u> 0 <u>=</u> 0	(4.5 ±0	$0.5) \times 10^{-4}$	S=1.7	1089			
<i>Ξ-Ξ</i> +	(4.45±0	$0.19) \times 10^{-4}$		1081			
$\eta_c \pi^+ \pi^-$	< 7	× 10 ⁻⁴	CL=90%	307			
Radiative decays							

$\gamma J/\psi(1S)$	(1.40±0.05) %				
$\gamma \rho^{0}$	< 9	$\times 10^{-6}$	CL=90%	1619	
$\gamma \omega$	< 8	$\times 10^{-6}$	CL=90%	1618	
$\gamma\phi$	< 6	$\times 10^{-6}$	CL=90%	1555	
$\gamma \gamma$	(2.04 ± 0.09)	$\times 10^{-4}$		1707	
$e^+e^-J/\psi(1S)$	(1.33 ± 0.29)	$\times 10^{-4}$		303	
$\mu^+\mu^-J/\psi(1S)$	< 1.9	$\times 10^{-5}$	CL=90%	226	

$\chi_{c1}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

Mass $m=3510.67\pm0.05~{\rm MeV}~{\rm (S}=1.2)$ Full width $\Gamma=0.84\pm0.04~{\rm MeV}$

$\chi_{c1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)		cale factor/ idence level	-
e^+e^-	$(1.4 \begin{array}{c} +1.5 \\ -1.0 \end{array})$) × 10 ⁻⁷		1755
н	adronic decays			
$3(\pi^{+}\pi^{-})$	(5.8 ± 1.4	$) \times 10^{-3}$	S=1.2	1683
$2(\pi^{+}\pi^{-})$	(7.6 ± 2.6	$) \times 10^{-3}$		1728
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	(1.19 ± 0.15) %		1729
$ ho^{+}\pi^{-}\pi^{0}+$ c.c.	$(1.45\pm0.24$) %		1658
$ ho^+\pi^-\pi^0+$ c.c. $ ho^0\pi^+\pi^ 4\pi^0$	(3.9 ± 3.5	$) \times 10^{-3}$		1657
$4\pi^0$	(5.4 ± 0.8	$) \times 10^{-4}$		1729
HTTP://PDG.LBL.GOV	Page 150	Created:	7/10/2023	3 15:48

$\pi^+\pi^-$ K $^+$ K $^-$	(4.5 ± 1.0) $\times 10^{-3}$		1632
$K^{+}K^{-}\pi^{0}\pi^{0}$	$(1.12\pm0.27)\times10^{-3}$		1634
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.15\pm0.13)\%$		1598
$K_S^0 K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$(7.5 \pm 0.8) \times 10^{-3}$		1596
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0}$ + c.c.	$(8.6 \pm 1.4) \times 10^{-3}$		1632
$ ho^ K^+$ $\overline{K}{}^0$ $+$ c.c.	$(5.0 \pm 1.2) \times 10^{-3}$		1514
$K^*(892)^0\overline{K}^0\pi^0 \to$	$(2.3 \pm 0.6) \times 10^{-3}$		_
$K^{+}\pi^{-}\overline{K}{}^{0}\pi^{0}$ + c.c.	2		
$K^+K^-\eta\pi^0$	$(1.12\pm0.34)\times10^{-3}$		1523
$\pi^+\pi^-K^0_SK^0_S$	$(6.9 \pm 2.9) \times 10^{-4}$		1630
$K^+K^-\eta$	$(3.2 \pm 1.0) \times 10^{-4}$		1566
$\overline{K}^0 K^+ \pi^- + \text{c.c.}$	$(7.0 \pm 0.6) \times 10^{-3}$		1661
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(10 \pm 4) \times 10^{-4}$		1602
$K^*(892)^+K^- + \text{c.c.}$	$(1.4 \pm 0.6) \times 10^{-3}$		1602
$K_J^*(1430)^0\overline{K}^0+\text{c.c.} \rightarrow$	$<$ 8 \times 10 ⁻⁴	CL=90%	_
$K_S^0 K^+ \pi^- + \text{c.c.}$			
$K_J^*(1430)^+ K^- + \text{c.c.} \rightarrow$	$< 2.1 \times 10^{-3}$	CL=90%	-
$K_S^0 K^+ \pi^- + \text{c.c.}$			
$K^+K^-\pi^0$	$(1.81\pm0.24)\times10^{-3}$		1662
$\eta \pi^+ \pi^-$	$(4.62\pm0.23)\times10^{-3}$		1701
$a_0(980)^+\pi^- + { m c.c.} o \eta \pi^+\pi^-$	$(3.2 \pm 0.4) \times 10^{-3}$	S=2.2	_
$a_2(1320)^+\pi^- + \text{c.c.} \to \eta \pi^+\pi^-$	$(1.76\pm0.24)\times10^{-4}$		_
$a_2(1700)^+\pi^- + \text{c.c.} \to \eta \pi^+\pi^-$	$(4.6 \pm 0.7) \times 10^{-5}$		_
$f_2(1270)\eta \rightarrow \eta \pi^+ \pi^-$	$(3.5 \pm 0.6) \times 10^{-4}$		_
$f_4(2050)\eta \rightarrow \eta \pi^+ \pi^-$	$(2.5 \pm 0.9) \times 10^{-5}$		_
$\pi_1(1400)^+\pi^-+$ c.c. $ ightarrow$	$< 5 \times 10^{-5}$	CL=90%	-
$\eta \pi^+ \pi^-$	E		
$\pi_1(1600)^+\pi^- + {\rm c.c.} o$	$< 1.5 \times 10^{-5}$	CL=90%	_
$\eta \pi^{+} \pi^{-}$	10-6	CL 000/	
$\pi_1(2015)^+\pi^- + \text{c.c.} \rightarrow$	$< 8 \times 10^{-6}$	CL=90%	_
$\eta\pi^+\pi^ f_2(1270)\eta$	$(6.7 \pm 1.1) \times 10^{-4}$		1467
$\frac{12(1270)\eta}{\pi^{+}\pi^{-}\eta'}$	$(0.7 \pm 1.1) \times 10$ $(2.2 \pm 0.4) \times 10^{-3}$		1467 1612
$K + K - \eta'$ (958)	$(8.8 \pm 0.9) \times 10^{-4}$		1461
, , ,			1401
$K_0^*(1430)^+ K^- + \text{c.c.}$	$(6.4 \begin{array}{c} +2.2 \\ -2.8 \end{array}) \times 10^{-4}$		_
$f_0(980)\eta'(958)$	($1.6 \ ^{+1.4}_{-0.7}$) $ imes 10^{-4}$		1460
$f_0(1710)\eta'(958)$	$(7 {}^{+7}_{-5}) \times 10^{-5}$		1100
$f_2'(1525)\eta'(958)$	$(9 \pm 6) \times 10^{-5}$		1229
$\pi^0 f_0(980) \rightarrow \pi^0 \pi^+ \pi^-$			1229
$K^{+} \overline{K}^{*} (892)^{0} \pi^{-} + \text{c.c.}$	$(3.5 \pm 0.9) \times 10^{-7}$ $(3.2 \pm 2.1) \times 10^{-3}$		- 1577
$K^*(892)^0 \overline{K}^*(892)^0$	$(3.2 \pm 2.1) \times 10^{-3}$ $(1.4 \pm 0.4) \times 10^{-3}$		1512
$K^{+}K^{-}K_{S}^{0}K_{S}^{0}$	$(1.4 \pm 0.4) \times 10^{-4}$	CL=90%	1390
N NSNS	× 4 × 10 ·	CL—90 /0	1390

$K_{S}^{0}K_{S}^{0}K_{S}^{0}K_{S}^{0}$	(3.5 ± 1.0) $\times 10^{-5}$		1387
$K^+K^-K^+K^-$	(5.4 ± 1.1) \times 10 ⁻⁴		1393
$K^+K^-\phi$	$(4.1 \pm 1.5) \times 10^{-4}$		1440
$\overline{K}^{0}K^{+}\pi^{-}\phi + \text{c.c.}$	$(3.3 \pm 0.5) \times 10^{-3}$		1387
$K^+K^-\pi^0\phi$	$(1.62\pm0.30)\times10^{-3}$		1390
$\phi \pi^{+} \pi^{-} \pi^{0}$	$(7.5 \pm 1.0) \times 10^{-4}$		1578
$\omega\omega$	$(5.7 \pm 0.7) \times 10^{-4}$		1571
$\omega K^+ K^-$	$(7.8 \pm 0.9) \times 10^{-4}$		1513
$\omega \phi$	$(2.7 \pm 0.4) \times 10^{-5}$		1503
$\phi \phi$	$(4.2 \pm 0.5) \times 10^{-4}$		1429
$\phi\phi\eta$	$(3.0 \pm 0.5) \times 10^{-4}$		1172
$p\overline{p}$	$(7.60\pm0.34)\times10^{-5}$		1484
$p\overline{p}\pi^0$	$(1.55\pm0.18)\times10^{-4}$		1438
$p\overline{p}\eta$	$(1.45\pm0.25)\times10^{-4}$		1254
$p\overline{p}\omega$	$(2.12\pm0.31)\times10^{-4}$		1117
$p\overline{p}\phi$	$< 1.7 \times 10^{-5}$	CL=90%	962
$p\overline{p}\pi^+\pi^-$	$(5.0 \pm 1.9) \times 10^{-4}$		1381
$p\overline{p}\pi^0\pi^0$	$< 5 \times 10^{-4}$	CL=90%	1385
$p\overline{p}K^+K^-$ (non-resonant)	$(1.27\pm0.22)\times10^{-4}$		974
$p\overline{p}K_S^0K_S^0$	$< 4.5 \times 10^{-4}$	CL=90%	968
$p\overline{n}\pi^{-}$	$(3.8 \pm 0.5) \times 10^{-4}$		1435
$\overline{p}n\pi^+$	$(3.9 \pm 0.5) \times 10^{-4}$		1435
$p \overline{n} \pi^- \pi^0$	$(1.03\pm0.12)\times10^{-3}$		1383
$\frac{1}{p}n\pi^{+}\pi^{0}$	$(1.01\pm0.12)\times10^{-3}$		1383
$\Lambda \overline{\Lambda}$	$(1.27\pm0.08)\times10^{-4}$		1355
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(2.9 \pm 0.5) \times 10^{-4}$		1223
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$(2.5 \pm 0.6) \times 10^{-4}$		1223
$\Lambda \overline{\Lambda} \eta$	$(5.9 \pm 1.5) \times 10^{-5}$		1059
Σ (1385) $^+\overline{\Lambda}\pi^-+$ c.c.	$< 1.3 \times 10^{-4}$	CL=90%	1157
$\Sigma(1385)^-\overline{\Lambda}\pi^++$ c.c.	$< 1.3 \times 10^{-4}$	CL=90%	1157
$K^+ \stackrel{\frown}{p} \Lambda + c.c.$	(4.2 ± 0.4) \times 10 ⁻⁴	S=1.2	1203
$nK_{S}^{O}\overline{\Lambda}$ + c.c.	$(1.66\pm0.17)\times10^{-4}$		1200
$K^*(892)^+ \overline{p} \Lambda + \text{c.c.}$	$(4.9 \pm 0.7) \times 10^{-4}$		935
$K^{+}\overline{\rho}\Lambda(1520)$ + c.c.	$(1.7 \pm 0.4) \times 10^{-4}$		951
$\Lambda(1520)\overline{\Lambda}(1520)$	$< 9 \times 10^{-5}$	CL=90%	880
$\sum_{i} \sum_{j} \sum_{i} \sum_{j} 0$	$(4.2 \pm 0.6) \times 10^{-5}$		1288
$\Sigma^+ \overline{p} K_S^0 + \text{c.c.}$	$(1.53\pm0.12)\times10^{-4}$		1163
$\Sigma^0 \overline{p} K^+ + \text{c.c.}$	$(1.46\pm0.10)\times10^{-4}$		1163
$\sum + \overline{\sum} -$	$(3.6 \pm 0.7) \times 10^{-5}$		1291
$\frac{\overline{\Sigma}}{\Sigma} + \frac{\overline{\Sigma}}{\Sigma}$	$(5.7 \pm 1.5) \times 10^{-5}$		1283
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	$< 9 \times 10^{-5}$	CL=90%	1081
$\Sigma(1385)^{-}\frac{\Sigma(1385)^{+}}{\Sigma(1385)^{+}}$	$< 5 \times 10^{-5}$	CL=90%	1081
$K^-\Lambda \overline{\Xi}^+ + \text{c.c.}$	$(1.35\pm0.24)\times10^{-4}$	J_ 30/0	963
=0 = 0	$(7.5 \pm 1.3) \times 10^{-5}$		1163
- -	(±1.3) ∧ 10		1100

	$(6.0 \pm 0.6 < 2.1$	$\times 10^{-3}$		1155 —
$K_S^0 K_S^0$	< 6	$\times 10^{-5}$	CL=90%	1683
$\eta_c \pi^+ \pi^-$	< 3.2	$\times 10^{-3}$	CL=90%	413
	Radiative decays			
$\gamma J/\psi(1S)$	(34.3 ± 1.0)) %		389
$\gamma ho^{f 0}$	(2.16 ± 0.17	$() \times 10^{-4}$		1670
$\gamma \omega$	(6.8 ± 0.8	$) \times 10^{-5}$		1668
$\gamma\phi$	(2.4 ± 0.5	$) \times 10^{-5}$		1607
$\gamma \gamma$	< 6.3	\times 10 ⁻⁶	CL=90%	1755
$e^+e^-J/\psi(1S)$	(3.46 ± 0.22)	$(2) \times 10^{-3}$		389
$\mu^+\mu^-J/\psi(1S)$	(2.33±0.29	$(9) \times 10^{-4}$		335

$h_c(1P)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Mass $m=3525.37\pm0.14$ MeV (S =1.2) Full width $\Gamma=0.78\pm0.28$ MeV

h _c (1P) DECAY MODES	Fraction (Γ_j	;/ Г)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\pi^0$	< 5	× 10 ⁻	4 90%	382
$J/\psi(1S)\pi\pi$	not seen			312
$J/\psi(1S)\pi^+\pi^-$	< 2.7	\times 10 $^{-}$	90%	305
p p	< 1.7	× 10	90%	1492
$ ho \overline{ ho} \pi^0$	< 8	× 10	90%	1447
$p\overline{p}\pi^+\pi^-$	$(3.3\pm0.$	6) × 10	3	1390
$p\overline{p}\pi^0\pi^0$	< 6	× 10		1394
$p\overline{p}\pi^+\pi^-\pi^0$	$(4.4\pm1.$			1331
$p\overline{p}\eta$	$(7.4\pm 2.$	2) × 10	4	1264
$\pi^{+}\pi^{-}\pi^{0}$	$(1.9\pm0.$			1749
$\pi^+\pi^-\pi^0\eta_{\perp}$	(8.3 ± 2.4)			1695
$2\pi^{+}2\pi^{-}\pi^{0}$	$(9.4\pm1.)$	7) × 10	-3	1716
$3\pi^{+}3\pi^{-}\pi^{0}$	< 1.0	%	90%	1661
$K^+K^-\pi^+\pi^-$	< 7	\times 10 $^{-}$	90%	1640
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(3.8\pm0.$			1606
$K^+K^-\pi^+\pi^-\eta$	< 2.7	\times 10 $^{-}$		1480
$K^+K^-\pi^0$	< 6	× 10		1670
$K^+K^-\pi^0\eta$	< 2.4			1532
$K^+K^-\eta$	< 1.0	× 10		1574
$2K^{+}2K^{-}\pi^{0}$	< 2.8	× 10	90%	1339
$K^0_{\mathcal{S}} K^\pm \pi^\mp$	< 6	× 10	90%	1668
$K_{\mathcal{S}}^{0}K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$	$(3.2\pm1.$	0) × 10 ⁻	3	1604

Radiative decays

$\gamma\eta$	$(4.7\pm2.1)\times10^{-4}$	1720
$\gamma \eta'$ (958)	$(1.5\pm0.4)\times10^{-3}$	1633
$\gamma \eta_c(1S)$	(57 ±5) %	500

$\chi_{c2}(1P)$

HTTP://PDG.LBL.GOV

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass $m=3556.17\pm0.07$ MeV Full width $\Gamma=1.97\pm0.09$ MeV

$\chi_{c2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
	ronic decays		
$2(\pi^+\pi^-) \atop \pi^+\pi^-\pi^0\pi^0$	$(1.02\pm0.09)\%$		1751
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(1.83\pm0.23)\%$		1752
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$ $\rho^{+}\pi^{-}\pi^{0}+\text{c.c.}$ $4\pi^{0}$	$(2.19\pm0.34)\%$		1682
	(1.11 ± 0.15) $ imes$	₁₀ -3	1752
$K^{+}K^{-}\pi^{0}\pi^{0}$	(2.1 \pm 0.4) $ imes$	10^{-3}	1658
$K^+\pi^-\overline{K}{}^0\pi^0+$ c.c.	$(1.38\pm0.20)\%$		1657
$ ho^ K^+$ $\overline{K}{}^0$ $+$ c.c.	(4.1 ± 1.2) $ imes$	10 ⁻³	1540
$K^*(892)^0 K^- \pi^+ \rightarrow$	(2.9 \pm 0.8) $ imes$	10 ⁻³	_
$K^{-}\pi^{+}K^{0}\pi^{0}+\text{c.c.}$ $K^{*}(892)^{0}\overline{K}^{0}\pi^{0}\to$		_	
$K^*(892)^0 \underbrace{K^0 \pi^0}_{} \rightarrow$	(3.8 \pm 0.9) \times	10^{-3}	_
$K^{+}\pi^{-}\overline{K}^{0}\pi^{0} + \text{c.c.}$		2	
$K^*(892)^- K^+ \pi^0 \rightarrow$	(3.7 \pm 0.8) \times	10-3	_
$K^+\pi^-\overline{K}^0\pi^0+\text{c.c.}$ $K^*(892)^+\overline{K}^0\pi^- o$	($2.9~\pm0.8$) $ imes$	10-3	_
$K + \pi \overline{K^0 \pi^0} + \text{c.c.}$	(2.9 ±0.6) x	10	
$K^+K^-\eta\pi^0$	(1.3 ± 0.4) $ imes$	10-3	1549
$K^+K^-\pi^+\pi^-$	(8.4 ±0.9)×		1656
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	(1.17±0.13) %		1623
$K^0_S K^{\pm} \pi^{\mp} \pi^+ \pi^-$	(7.3 \pm 0.8) \times	10^{-3}	1621
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+$ c.c.	(2.1 ± 1.1) $ imes$	10-3	1602
$K^*(892)^0 \overline{K}^*(892)^0$	(2.3 \pm 0.4) \times	10^{-3}	1538
$3(\pi^{+}\pi^{-})$	($8.6~\pm1.8$) $ imes$		1707
$\phi \phi$	(1.06 ± 0.09) $ imes$	₁₀ -3	1457
$\phi\phi\eta$	(5.3 \pm 0.6) $ imes$	10^{-4}	1206
$\omega\omega$	(8.4 ± 1.0) $ imes$		1597
$\omega K^+ K^-$	(7.3 \pm 0.9) \times		1540
$\omega \phi$	(9.6 ± 2.7) $ imes$		1529
$\pi\pi$	(2.23 ± 0.09) $ imes$		1773
$\rho^0 \pi^+ \pi^-$	(3.7 ± 1.6) \times		1682
$\pi^+\pi^-\pi^0$ (non-resonant)	(2.0 \pm 0.4) \times		1765
$ ho$ (770) $^{\pm}\pi^{\mp}$	(6 ± 4) \times	10 ⁻⁶	_

Page 154

$\pi^+\pi^-\eta$	$(4.8 \pm 1.3) \times 10^{-4}$		1724
$\pi^+\pi^-\eta'$	$(5.0 \pm 1.8) \times 10^{-4}$		1636
$\eta\eta$	$(5.4 \pm 0.4) \times 10^{-4}$		1692
K^+K^-	$(1.01\pm0.06)\times10^{-3}$		1708
$K_S^0 K_S^0$	$(5.2 \pm 0.4) \times 10^{-4}$		1707
$K^*(892)^{\pm}K^{\mp}$	$(1.44\pm0.21)\times10^{-4}$		1627
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(1.24\pm0.27)\times10^{-4}$		1627
$K_2^*(1430)^{\pm} K^{\mp}$	$(1.48\pm0.12)\times10^{-3}$		_
$K_2^{\overline{*}}(1430)^0 \overline{K}^0 + \text{c.c.}$	$(1.24\pm0.17)\times10^{-3}$		1443
$K_3^{\bar{*}}(1780)^{\pm}K^{\mp}$	$(5.2 \pm 0.8) \times 10^{-4}$		_
$K_3^*(1780)^0 \overline{K}^0 + \text{c.c.}$	(5.6 ± 2.1) $\times 10^{-4}$		1274
$a_2(1320)^0 \pi^0$	$(1.29\pm0.34)\times10^{-3}$		_
$a_2(1320)^{\pm}\pi^{\mp}$	$(1.8 \pm 0.6) \times 10^{-3}$		1530
$\frac{a_2}{K^0}(1320)^{\pm}\pi^{\mp}$ $\frac{a_2}{K^0}K^{+}\pi^{-} + \text{c.c.}$	$(1.28\pm0.18)\times10^{-3}$		1685
$K^+K^-\pi^0$	$(3.0 \pm 0.8) \times 10^{-4}$		1686
$K^+K^-\eta$	$< 3.2 \times 10^{-4}$	90%	1592
$K^{+}K^{-}\eta'(958)$	$(1.94\pm0.34)\times10^{-4}$		1488
$\eta \eta'$	$(2.2 \pm 0.5) \times 10^{-5}$		1600
$\eta'\eta'$	$(4.6 \pm 0.6) \times 10^{-5}$		1498
$\pi^+\pi^-K^0_SK^0_S$	$(2.2 \pm 0.5) \times 10^{-3}$		1655
$K^{+}K^{-}K_{S}^{0}K_{S}^{0}$	< 4 × 10 ⁻⁴	90%	1418
$K_S^0 K_S^0 K_S^0 K_S^0$	$(1.13\pm0.18)\times10^{-4}$	30,0	1415
K+K-K+K-	$(1.65\pm0.20)\times10^{-3}$		1421
$K^+K^-\phi$	$(1.42\pm0.29)\times10^{-3}$		1468
$\frac{K}{K^0}K^+\pi^-\phi$ + c.c.	$(4.8 \pm 0.7) \times 10^{-3}$		1416
$K^+K^-\pi^0\phi$	$(2.7 \pm 0.5) \times 10^{-3}$		1419
$\phi \pi^+ \pi^- \pi^0$	$(9.3 \pm 1.2) \times 10^{-4}$		1603
$p\overline{p}$	$(7.33\pm0.33)\times10^{-5}$		1510
$p \overline{p} \pi^0$	$(4.7 \pm 0.4) \times 10^{-4}$		1465
$p\overline{p}\eta$	$(1.74\pm0.25)\times10^{-4}$		1285
$p\overline{p}\omega$	$(3.6 \pm 0.4) \times 10^{-4}$		1152
$p\overline{p}\phi$	$(2.8 \pm 0.9) \times 10^{-5}$		1002
$p\overline{p}\pi^+\pi^-$	$(1.32\pm0.34)\times10^{-3}$		1410
$p \overline{p} \pi^0 \pi^0$	$(7.8 \pm 2.3) \times 10^{-4}$		1414
$p\overline{p}K^+K^-$ (non-resonant)	$(1.91\pm0.32)\times10^{-4}$		1013
$p\overline{p}K_S^0K_S^0$	< 7.9 × 10 ⁻⁴	90%	1007
$p\overline{n}\pi^-$	$(8.5 \pm 0.9) \times 10^{-4}$		1463
$\frac{\overline{p}}{\overline{p}}n\pi^+$	$(8.9 \pm 0.8) \times 10^{-4}$		1463
$p \overline{n} \pi^- \pi^0$	$(2.17\pm0.18)\times10^{-3}$		1411
$\frac{p}{p}n\pi^+\pi^0$	$(2.11\pm0.18)\times10^{-3}$		1411
$\Lambda \overline{\Lambda}$	$(1.83\pm0.16)\times10^{-4}$		1384
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	$(1.25\pm0.15)\times10^{-3}$		1255
$\Lambda \overline{\Lambda} \pi^+ \pi^-$ (non-resonant)	$(6.6 \pm 1.5) \times 10^{-4}$		1255
(11211 1 222 1121)	(= = =) // = = =		

4 -7		4		
$\Lambda \overline{\Lambda} \eta$	•	$.26) \times 10^{-4}$		1096
$\Sigma(1385)^{+}\overline{\Lambda}\pi^{-}+\text{c.c.}$	< 4	× 10 ⁻⁴	90%	1192
$\Sigma(1385)^-\overline{\Lambda}\pi^+ + \text{c.c.}$	< 6	× 10 ⁻⁴	90%	1192
$K^+ \overline{p} \Lambda + \text{c.c.}$		$.5) \times 10^{-4}$		1236
$nK_S^0\overline{\Lambda} + \text{c.c.}$	(3.58±0.	$.28) \times 10^{-4}$		1233
$K^*(892)^+ \overline{p} \Lambda + \text{c.c.}$	(8.2 ± 1	$.1) \times 10^{-4}$		976
$K^+ \overline{p} \Lambda(1520) + \text{c.c.}$	(2.8 ± 0.0)	$.7) \times 10^{-4}$		992
$\Lambda(1520)\overline{\Lambda}(1520)$	(4.6 ± 1	$.5) \times 10^{-4}$		924
$\sum_{i=0}^{\infty} \overline{\sum_{i=0}^{\infty}}$	(3.7 ± 0.0)	$.6) \times 10^{-5}$		1319
$\Sigma^+ \overline{p} K_S^0 + \text{c.c.}$	(8.2 ± 0.0	$.9) \times 10^{-5}$		1197
$\Sigma^0 \overline{p} K^{+} + ext{c.c.}$	(9.1 ± 0)	.8) \times 10 ⁻⁵		1197
$\Sigma^{+}\overline{\Sigma}^{-}$	(3.4 ± 0.0)	$.7) \times 10^{-5}$		1322
$\Sigma^{-}\overline{\Sigma}^{+}$	(4.4 ± 1	.8) \times 10 ⁻⁵		1314
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$	< 1.6	\times 10 ⁻⁴	90%	1118
$\Sigma(1385)^-\overline{\Sigma}(1385)^+$	< 8	$\times10^{-5}$	90%	1118
$K^-\Lambda \overline{\Xi}{}^+ + \text{c.c.}$	(1.76 ± 0.6)	$.32) \times 10^{-4}$		1004
<u>=</u> 0 <u>=</u> 0	(1.83±0	$.22) \times 10^{-4}$		1197
<u>=-=</u> +	(1.44 ± 0.00)	$.12) \times 10^{-4}$		1189
$J/\psi(1S)\pi^+\pi^-\pi^0$	< 1.5	%	90%	185
$\pi^0 \eta_c$	< 3.2	$\times 10^{-3}$	90%	511
$\eta_c(1S)\pi^+\pi^-$	< 5.4	$\times 10^{-3}$	90%	459
	Radiative decays			
$\gamma J/\psi(1S) \\ \gamma \rho^0$	(19.0 ± 0.0)	.5) %		430
$\gamma \rho^0$	< 1.9	$\times 10^{-5}$	90%	1694
$\gamma\omega$	< 6	\times 10 ⁻⁶	90%	1692
$\gamma \phi$	< 7	_	90%	1632
$\gamma \gamma$	(2.85±0.	$.10) \times 10^{-4}$		1778
$\stackrel{'}{e^{+}}e^{-}J/\psi(1S)$		$(.14) \times 10^{-3}$		430
$\mu^{+} \mu^{-} J/\psi(1S)$	`	$(33) \times 10^{-4}$		381
, , , , ,	`	,		

$\eta_c(2S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Quantum numbers are quark model predictions.

Mass
$$m=3637.7\pm1.1~{\rm MeV}~{\rm (S}=1.2)$$
 Full width $\Gamma=13.9\pm2.6~{\rm MeV}$

$\eta_{c}(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	not seen		_
$K\overline{K}\pi$	$(1.9\pm1.2)\%$		1729
$K\overline{K}\eta$	$(5 \pm 4) \times 10^{-3}$	-3	1637
$2\pi^{+}2\pi^{-}$	< 2.1 %	90%	1792
$ ho^{0} ho^{0}$	$< 1.9 \times 10^{-5}$	-3 90%	1645

HTTP://PDG.LBL.GOV

Page 156

$3\pi^{+}3\pi^{-}$	(1.3 ± 0.9)	9) %		1749
$K^+K^-\pi^+\pi^-$	< 1.4	%	90%	1700
$K^{*0}\overline{K}^{*0}$	< 2.9	$\times 10^{-3}$	90%	1585
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.4\pm1.0$)) %		1668
$K^{+}K^{-}2\pi^{+}2\pi^{-}$	< 1.4	%	90%	1627
$K_S^0 K^- 2\pi^+ \pi^- + \text{c.c.}$	$(1.0\pm0.8$	3) %		1666
$2K^{+}2K^{-}$	< 1.3	$\times 10^{-3}$	90%	1470
$\phi\phi$	< 1.1	$\times 10^{-3}$	90%	1506
$p\overline{p}$	< 2.0	$\times 10^{-3}$	90%	1558
$ ho \overline{ ho} \pi^+ \pi^-$	seen			1461
$\gamma\gamma$	$(1.6\pm1.0$	$(1) \times 10^{-4}$		1819
$\gamma J/\psi(1S)$	< 1.4	%	90%	501
$\pi^+\pi^-\eta$	< 6	$\times 10^{-3}$	90%	1766
$\pi^+\pi^-\eta'$	(2.6 ± 1.9)	$(9) \times 10^{-3}$		1680
$\pi^+\pi^-\eta_c(1S)$	< 25	%	90%	538

ψ (2S)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3686.10\pm0.06~{\rm MeV}~{\rm (S}=5.9)$ Full width $\Gamma=294\pm8~{\rm keV}$

$\psi(2S)$ DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
hadrons	(97.85 ± 0.13)) %	
virtual $\gamma ightarrow $ hadrons	(1.73 ± 0.14) % S=1.5	_
ggg	(10.6 ± 1.6)) %	_
γ g g	(1.03 ± 0.29) %	_
light hadrons	(15.4 ± 1.5)) %	_
K^0_S anything	$(16.0 \pm 1.1$) %	_
e^+e^-	(7.93 ± 0.17)	$) \times 10^{-3}$	1843
$\mu^+\mu^-$	(8.0 ± 0.6)	$) \times 10^{-3}$	1840
$\tau^+\tau^-$	(3.1 ± 0.4	$) \times 10^{-3}$	489
Decays into J_i	$/\psi(1\mathcal{S})$ and anyt	hing	
$J/\psi(1S)$ anything	(61.4 ± 0.6)) %	_
$J/\psi(1S)$ neutrals	(25.38 ± 0.32)) %	_
$J/\psi(1S)\pi^+\pi^-$	(34.68 ± 0.30)) %	477
$J/\psi(1S)\pi^0\pi^0$	$(18.24 \pm 0.31$) %	481
$J/\psi(1S)\eta$	(3.37 ± 0.05)) %	199
$J/\psi(1S)\pi^0$	(1.268 ± 0.032	$) \times 10^{-3}$	528
Hadı	onic decays		
$\pi^+\pi^-$	(7.8 ± 2.6)	$) \times 10^{-6}$	1838
$\pi^+\pi^-\pi^0$	(2.01 ± 0.17	$) \times 10^{-4}$ S=1.7	1830

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 157

$\rho(770)\pi \rightarrow \pi^{+}\pi^{-}\pi^{0}$	(3.2	± 1.2	$) \times 10^{-5}$	S=1.8	_
$ ho$ (2150) $\pi ightarrow \pi^+\pi^-\pi^0$	(1.9	$+1.2 \\ -0.4$	$) \times 10^{-4}$		_
$2(\pi^{+}\pi^{-})$	(2.4	-	$) \times 10^{-4}$	S=2.2	1817
$\rho^0 \pi^+ \pi^-$	(2.2) × 10 ⁻⁴	S=1.4	1750
$2(\pi^{+}\pi^{-})\pi^{0}$	(2.9	± 1.0	$) \times 10^{-3}$		1799
$\rho a_2(1320)$	(2.6		$) \times 10^{-4}$		1500
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	(5.3	± 0.9) × 10 ⁻³		1800
$\pi^{+}\pi^{-}4\pi^{0}$	(1.4	± 1.0	$) \times 10^{-3}$		1778
$ ho^{\pm}\pi^{\mp}\pi^{0}\pi^{0}$	< 2.7			CL=90%	1737
$3(\pi^{+}\pi^{-})$		± 2.0	$) \times 10^{-4}$		1774
$2(\pi^{+}\pi^{-}\pi^{0})$	`		$) \times 10^{-3}$		1776
$3(\pi^+\pi^-)\pi^0$	(3.5	± 1.6	$) \times 10^{-3}$		1746
$2(\pi^{+}\pi^{-})3\pi^{0}$	`	±0.31	,		1748
$\eta \pi^+ \pi^-$	< 1.6		,	CL=90%	1791
$\eta_{\pi}^{+} + \pi^{-} \pi^{0}$	(9.5	±1.7	$) \times 10^{-4}$		1778
$\eta^{2}(\pi^{+}\pi^{-})$	`		$) \times 10^{-3}$		1758
$\eta \pi + \pi - \pi^0 \pi^0$	< 4		$\times 10^{-4}$	CL=90%	1760
$\eta \pi^{+} \pi^{-} 3 \pi^{0}$	< 2.1		$\times 10^{-3}$	CL=90%	1736
$\eta^{2}(\pi^{+}\pi^{-}\pi^{0})$	< 2.1		$\times 10^{-3}$	CL=90%	1705
$ ho\eta$	(2.2	± 0.6	$) \times 10^{-5}$		1717
$\eta' \pi^{+} \pi^{-} \pi^{0}$	(4.5		$) \times 10^{-4}$		1692
$\eta' ho$	(1.9	$+1.7 \\ -1.2$	$) \times 10^{-5}$		1625
$\omega\pi^0$	(2.1) × 10 ⁻⁵		1757
$\omega \pi^+ \pi^-$	(7.3	± 1.2	$) \times 10^{-4}$	S=2.1	1748
$\omega \pi^+ \pi^- 2\pi^0$	(8.7	± 2.4	$) \times 10^{-3}$	5 2 .1	1715
$b_1^{\pm} \pi^{\mp}$	(4.0	± 0.6	$) \times 10^{-4}$		1635
$\omega f_2(1270)$	`) × 10 ⁻⁴		1515
$\omega \pi^0 \pi^0$	`		$) \times 10^{-3}$		1749
$\omega 3\pi^0$	< 8	0.00		CL=90%	1736
$b_1^0 \pi^0$		± 0.6	$) \times 10^{-4}$		_
$\omega\eta$			× 10 ⁻⁵		1715
$\omega \eta'$	(3.2	+2.5) × 10 ⁻⁵		1623
$\phi \pi^0$		2.1	× 10 ⁻⁷		1699
$\phi \pi^+ \pi^-$			$) \times 10^{-4}$		1690
$\phi f_0(980) \to \pi^+ \pi^-$			$) \times 10^{-5}$		_
$\phi \eta$			$) \times 10^{-5}$		1654
$\eta \phi(2170), \ \phi(2170) \rightarrow$	< 2.2			CL=90%	_
$\phi f_0(980), f_0 \to \pi^+\pi^-$			-	•	
$\phi \eta'$	(1.54	±0.20	$) \times 10^{-5}$		1555
$\phi f_1(1285)$,		$) \times 10^{-5}$		1436
$\phi \eta (1405) \rightarrow \phi \pi^+ \pi^- \eta$) × 10 ⁻⁶		_
$\phi f'_{2}(1525)$			$) \times 10^{-5}$		1325
/	`	-	, -		

K ⁺ K ⁻	$(7.5 \pm 0.5) \times 10^{-5}$	1776
$K^+K^-\pi^+$	$(7.3 \pm 0.5) \times 10^{-4}$	1754
$K^+K^-\pi^0$	$(4.07 \pm 0.31) \times 10^{-5}$	1754
$K_S^0 K_S^0$	$< 4.6 \times 10^{-6}$	1775
$K_{S}^{0}K_{I}^{0}$	$(5.34 \pm 0.33) \times 10^{-5}$	1775
$K_S^0 K_L^0 \pi^0$	$< 3.0 \times 10^{-4} \text{ CL} = 90\%$	1753
$\kappa^+ \kappa^- \pi^0 \pi^0$	$(2.6 \pm 1.3) \times 10^{-4}$	1728
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(1.26 \pm 0.09) \times 10^{-3}$	1694
$\omega f_0(1710) ightarrow \omega K^+ K^-$	$(5.9 \pm 2.2) \times 10^{-5}$	_
$K^*(892)^0 K^- \pi^+ \pi^0 + \text{c.c.}$	$(8.6 \pm 2.2) \times 10^{-4}$	_
$K^*(892)^+K^-\pi^+\pi^- + \text{ c.c.}$	$(9.6 \pm 2.8) \times 10^{-4}$	_
$K^*(892)^+ K^- \rho^0 + \text{c.c.}$	$(7.3 \pm 2.6) \times 10^{-4}$	_
$K^*(892)^0 K^- \rho^+ + \text{c.c.}$	$(6.1 \pm 1.8) \times 10^{-4}$	_
$K_S^0 K_S^{0} \pi^{+'} \pi^{-}$	$(2.2 \pm 0.4) \times 10^{-4}$	1724
$\kappa_S^0 \kappa_L^0 \pi^0 \pi^0$	$(1.3 \pm 0.6) \times 10^{-3}$	1726
$K_{S}^{0}K_{I}^{0}\eta$	$(1.3 \pm 0.5) \times 10^{-3}$	1661
$K^+K^-\rho^0$	$(2.2 \pm 0.4) \times 10^{-4}$	1616
$K^*(892)^0 \overline{K}_2^*(1430)^0$	$(1.9 \pm 0.5) \times 10^{-4}$	1417
$K^{+}K^{-}\pi^{+}\pi^{-}\eta$	$(1.3 \pm 0.3) \times 10^{-3}$	1574
$K + K - 2(\pi + \pi^{-})$	$(1.9 \pm 0.9) \times 10^{-3}$	1654
$K + K - 2(\pi + \pi^{-})\pi^{0}$	$(1.9 \pm 0.9) \times 10$ $(1.00 \pm 0.31) \times 10^{-3}$	1611
$K + K^*(892)^- + \text{c.c.}$	$(2.9 \pm 0.4) \times 10^{-5}$ S=1.2	1698
$2(K^+K^-)$	$(6.3 \pm 1.3) \times 10^{-5}$	1499
$2(K^+K^-)\pi^0$	$(0.3 \pm 1.3) \times 10$ $(1.10 \pm 0.28) \times 10^{-4}$	1440
$K^+K^-\phi$	$(7.0 \pm 0.20) \times 10^{-5}$	1546
$K_1(1270)^{\pm}K^{\mp}$	$(1.00 \pm 0.28) \times 10^{-3}$	1588
$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}+\text{c.c.}$	$(6.7 \pm 2.5) \times 10^{-4}$	1674
$\eta K^+ K^-$, no $\eta \phi$	$(3.49 \pm 0.17) \times 10^{-5}$	1664
$X(1750)\eta \rightarrow K^+K^-\eta$	$(4.8 \pm 2.8) \times 10^{-6}$	_
$K_1(1400)^{\pm}K^{\mp}$	$< 3.1 \times 10^{-4} \text{ CL} = 90\%$	1532
$K_2^*(1430)^{\pm} K^{\mp}$	$(7.1 \begin{array}{cc} +1.3 \\ -0.9 \end{array}) \times 10^{-5}$	_
2 ` '	0.5	
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	$(1.09 \pm 0.20) \times 10^{-4}$	1697
$\omega K^+ K^-$	$(1.62 \pm 0.11) \times 10^{-4}$ S=1.1	1614
$\omega K_S^0 K_S^0$	$(7.0 \pm 0.5) \times 10^{-5}$	1612
$\omega K^*(892)^+ K^- + \text{c.c.}$	$(2.07 \pm 0.26) \times 10^{-4}$	1482
$\omega K_2^*(1430)^+ K^- + \text{c.c.}$	$(6.1 \pm 1.2) \times 10^{-5}$	1252
$\omega \overline{K}^*(892)^0 K^0$	$(1.68 \pm 0.30) \times 10^{-4}$	1481
$\omega \overline{K}_{2}^{*}(1430)^{0} K^{0}$	$(5.8 \pm 2.2) \times 10^{-5}$	1250
$\omega X(1440) \rightarrow \omega K_S^0 K^- \pi^+ +$	$(1.6 \pm 0.4) \times 10^{-5}$	_
$\omega X (1440) ightarrow \omega K^+ K^- \pi^0$	(1.09 ± 0.26) $\times 10^{-5}$	_
$\omega K(1440) \rightarrow \omega K^{-}K^{-}\pi^{+} + \omega f_1(1285) \rightarrow \omega K_S^{0}K^{-}\pi^{+} + \omega f_2(1285) \rightarrow \omega K_S^{0}K^{-}\pi^{+} + \omega f_1(1285) \rightarrow \omega K_S^{0}K^{-}\pi^{+} + \omega f_2(1285) \rightarrow \omega K_S^{0}K^{0}K^{0}K^{-}\pi^{+} + \omega f_2(1285) \rightarrow \omega K_S^{0}K^{0}K^{0}K^{0}K^{0}K^{0}K^{0}K^{0}K$	$(3.0 \pm 1.0) \times 10^{-6}$	_
C.C.	(3.0 ±1.0) × 10	
5.5.		

$\omega f_1(1285) \rightarrow \omega K^+ K^- \pi^0$	(1.2	± 0.7	$) \times 10^{-6}$		_
$p\overline{p}$	(2.94	± 0.08	$) \times 10^{-4}$		1586
n n	(3.06	± 0.15	$) \times 10^{-4}$		1586
$p\overline{p}\pi^0$	($) \times 10^{-4}$		1543
$N(940)\overline{p} + \text{c.c.} \rightarrow p\overline{p}\pi^0$	(6.4	$^{+1.8}_{-1.3}$	$) \times 10^{-5}$		_
$N(1440)\overline{p}+ { m c.c.} ightarrow p\overline{p}\pi^0$	(7.3	$^{+1.7}_{-1.5}$	$) \times 10^{-5}$	S=2.5	_
$N(1520)\overline{p}+ ext{c.c.} ightarrow \ p\overline{p}\pi^0$	(6.4	$+2.3 \\ -1.8$	$) \times 10^{-6}$		_
$N(1535)\overline{p}+ ext{c.c.} ightarrow \ p\overline{p}\pi^0$	(2.5	± 1.0	$) \times 10^{-5}$		_
$N(1650)\overline{p}+\text{c.c.} \rightarrow p\overline{p}\pi^0$) × 10 ⁻⁵		_
$N(1720)\overline{p}+\text{c.c.} \rightarrow p\overline{p}\pi^0$	(1.79	$^{+0.26}_{-0.70}$) × 10 ⁻⁵		_
$N(2300)\overline{p}+\text{c.c.} \rightarrow p\overline{p}\pi^0$	(2.6	$^{+1.2}_{-0.7}$) × 10 ⁻⁵		_
$N(2570)\overline{p}$ + c.c. $\rightarrow p\overline{p}\pi^0$	(2.13	$^{+0.40}_{-0.31}$) × 10 ⁻⁵		_
$p\overline{p}\pi^+\pi^-$	(6.0	± 0.4	$) \times 10^{-4}$		1491
ρ ρ Κ ⁺ Κ ⁻				$) \times 10^{-5}$		1118
$p\overline{p}\eta$	•) × 10 ⁻⁵		1373
$N(1535)\overline{p}+ { m c.c.} ightarrow \ p\overline{p}\eta$		4.5		$) \times 10^{-5}$		_
$p\overline{p}\pi^+\pi^-\pi^0$	(7.3	± 0.7	$) \times 10^{-4}$		1435
$p \overline{p} \rho^0$	(5.0	± 2.2	$) \times 10^{-5}$		1252
$p\overline{p}\omega$	(6.9	± 2.1	$) \times 10^{-5}$		1247
$p\overline{p}\eta'$	(1.10	± 0.13	$) \times 10^{-5}$		1141
$p\overline{p}\phi$	(6.1	± 0.6	$) \times 10^{-6}$		1109
$\phi X(1835) \rightarrow p \overline{p} \phi$	<	1.82		$\times 10^{-7}$	CL=90%	_
$p\overline{n}\pi^-$ or c.c.	(2.48	±0.17	$) \times 10^{-4}$		_
$p\overline{n}\pi^-\pi^0$	•			$) \times 10^{-4}$		1492
$\Lambda \overline{\Lambda}$	(3.81	± 0.13	$) \times 10^{-4}$	S=1.4	1467
$\Lambda \overline{\Lambda} \pi^0$	(1.4	±0.7	$) \times 10^{-6}$		1412
$\Lambda \overline{\Lambda} \eta$	(2.43	± 0.32	$) \times 10^{-5}$		1197
$\Lambda(1670)\overline{\varLambda} \rightarrow \Lambda \overline{\varLambda} \eta$				$) \times 10^{-5}$		_
$\Lambda \overline{\Lambda} \omega$ (782)	(3.3	± 0.4	$) \times 10^{-5}$		1037
$\Lambda \overline{\Lambda} \pi^+ \pi^-$				$) \times 10^{-4}$		1346
$\Lambda \overline{p} K^+$	(1.00	±0.14	$) \times 10^{-4}$		1327
$\Lambda \overline{p} K^* (892)^+ + \text{c.c.}$				$) \times 10^{-5}$		1087
$\Lambda \overline{p} K^+ \pi^+ \pi^-$	(1.8	± 0.4	$) \times 10^{-4}$		1167
$\overline{\Lambda}nK_{S}^{0}+\text{c.c.}$				$) \times 10^{-5}$		1324
$\Delta^{++}\overline{\Delta}^{}$				$) \times 10^{-4}$		1371
$\Lambda \overline{\Sigma}^+ \pi^- + \text{c.c.}$				$) \times 10^{-4}$		1376
$\Lambda \overline{\Sigma}^- \pi^+ + \text{c.c.}$				$) \times 10^{-4}$		1379
$\Lambda \overline{\Sigma}^0 + \text{c.c.}$	•			$) \times 10^{-6}$		1437
$\Sigma^0 \overline{p} K^+ + \text{c.c.}$				$) \times 10^{-5}$		1291

$\Sigma^{+}\overline{\Sigma}^{-}$	(2.43	± 0.10) × 10 ⁻⁴	S=1.4	1408
$\sum_{i=0}^{\infty} \overline{\sum_{i=0}^{\infty}} 0$	(2.35	± 0.09) × 10 ⁻⁴	S=1.1	1405
$\Sigma^{-}\overline{\underline{\Sigma}}^{+}$,			$) \times 10^{-4}$		1401
$\Sigma^{+}\overline{\Sigma}^{-}\eta$				$) \times 10^{-6}$		1108
$\Sigma(1385)^+\overline{\Sigma}(1385)^-$				$) \times 10^{-5}$		1218
$\Sigma(1385)^{-}\overline{\Sigma}(1385)^{+}$				$) \times 10^{-5}$		1218
$\Sigma (1385)^0 \overline{\Sigma} (1385)^0$				$) \times 10^{-5}$		1218
<u>=</u> - = + =0 = 0				$) \times 10^{-4}$	S=1.1	1284
				$) \times 10^{-4}$	S=4.2	1291
$\Xi(1530)^0 \overline{\Xi}(1530)^0$				$) \times 10^{-5}$		1025
$\Lambda \overline{\Xi}^{+} K^{-} + \text{c.c.}$				$) \times 10^{-5}$		1114
$\Xi(1530)^{-}\overline{\Xi}(1530)^{+}$				$) \times 10^{-4}$		1025
$\Xi(1530)^{-}\overline{\Xi}^{+}$ $\Xi(1530)^{0}\overline{\Xi}^{0}$				$) \times 10^{-6}$ $) \times 10^{-6}$		1165
$\Xi(1690)^-\overline{\Xi}^+ \rightarrow K^-\Lambda\overline{\Xi}^+$	($) \times 10^{-6}$		1169
C C		3.2	± 1.0) × 10		
$\Xi(1820)^{-}\overline{\Xi}^{+} \rightarrow K^{-}\Lambda\overline{\Xi}^{+}$	+ (1.20	±0.32) × 10 ⁻⁵		-
$\Sigma^0 = C.c.$ $\Sigma^0 = K^- + c.c.$	(3.7	± 0.4	$) \times 10^{-5}$		1060
$\Omega^{-}\overline{\Omega}{}^{+}$				$) \times 10^{-5}$	S=1.3	774
$\eta_c \pi^+ \pi^- \pi^0$	<	1.0		$\times 10^{-3}$	CL=90%	512
$h_c(1P)\pi^0$	(7.4	±0.5	$) \times 10^{-4}$		85
$\Lambda_c^+ \overline{p} e^+ e^- + \text{c.c.}$				\times 10 ⁻⁶		830
$\Theta(1540)\overline{\Theta}(1540) ightarrow$	$[\mathit{hhaa}] <$	8.8		$\times 10^{-6}$	CL=90%	_
$K_S^0 p K^- \overline{n} + \text{c.c.}$						
$\Theta(1540) K^- \overline{n} \rightarrow K_S^0 \rho K^- \overline{n}$	$[\mathit{hhaa}] <$	1.0		$\times 10^{-5}$	CL=90%	_
$\Theta(1540) K_S^0 \overline{p} \rightarrow K_S^{0} \overline{p} K^+ n$	$[\mathit{hhaa}] <$	7.0		$\times 10^{-6}$	CL=90%	_
	$[\mathit{hhaa}] <$	2.6		$\times 10^{-5}$	CL=90%	_
$\overline{\Theta}(1540)K_S^0 p \rightarrow K_S^{0} p K^{-} \overline{n}$	$[\mathit{hhaa}] <$	6.0		\times 10 ⁻⁶	CL=90%	_
	Radiative	deca	ys			
$\gamma \chi_{c0}(1P)$	(9.79	± 0.20) %		261
$\gamma \chi_{c1}(1P)$	(9.75	± 0.24) %		171
$\gamma \chi_{c2}(1P)$			± 0.20			128
$\gamma \eta_c(1S)$				$) \times 10^{-3}$	S=1.3	635
$\gamma \eta_{c}(2S)$,			$) \times 10^{-4}$		48
$\gamma \pi^0$,			$) \times 10^{-6}$	S=1.4	1841
$\gamma 2(\pi^{+}\pi^{-})$) × 10 ⁻⁴		1817
$\gamma 3(\pi^{+}\pi^{-})$		1.7			CL=90%	1774
$\gamma \eta'(958)$) × 10 ⁻⁴		1719
$\gamma f_2(1270)$			00) × 10 ⁻⁴	S=1.8	1622
$\gamma f_0(1370) \rightarrow \gamma K \overline{K}$				$) \times 10^{-5}$		1588
$\gamma f_0(1500)$				$) \times 10^{-5}$		1529
$\gamma f_2'(1525)$	(3.3	± 0.8	$) \times 10^{-5}$		1531

$\gamma f_0(1710) \rightarrow \gamma \pi \pi$	(3.5	± 0.6	$) \times 10^{-5}$		_
$\gamma f_0(1710) \rightarrow \gamma K K$	(6.6		$) \times 10^{-5}$		_
$\gamma f_0(2100) \rightarrow \gamma \pi \pi$	(4.8		$) \times 10^{-6}$		1244
$\gamma f_0(2200) \rightarrow \gamma K \overline{K}$	(3.2	± 1.0	$) \times 10^{-6}$		1193
$\gamma f_J(2220) \rightarrow \gamma \pi \pi$	<	5.8			CL=90%	1168
$\gamma f_J(2220) \rightarrow \gamma K \overline{K}$		9.5			CL=90%	1168
$\gamma\eta$	($) \times 10^{-7}$		1802
$\gamma \eta \pi^+ \pi^-$	(8.7	± 2.1	$) \times 10^{-4}$		1791
$\gamma \eta (1405) \rightarrow \gamma K \overline{K} \pi$		9			CL=90%	1569
$\gamma \eta(1405) \rightarrow \gamma \eta \pi^+ \pi^-$		3.6		$) \times 10^{-5}$		_
$\gamma \eta(1405) ightarrow \gamma f_0(980) \pi^0 ightarrow \gamma \pi^+ \pi^- \pi^0$	• <	5.0		× 10 ⁻⁷	CL=90%	_
$\gamma \eta$ (1475) $ ightarrow \gamma K \overline{K} \pi$	<	1.4			CL=90%	_
$\gamma \eta$ (1475) $ ightarrow \gamma \eta \pi^+ \pi^-$	<	8.8		$\times 10^{-5}$	CL=90%	_
$\gamma K^{*0} K^{+} \pi^{-} + \text{c.c.}$	(3.7	±0.9	$) \times 10^{-4}$		1674
$\gamma K^{*0} \overline{K}^{*0}$	(2.4	±0.7	$) \times 10^{-4}$		1613
$\gamma K_{S}^{0} K^{+} \pi^{-} + \text{c.c.}$	(2.6	±0.5	$) \times 10^{-4}$		1753
$\gamma K^+ K^- \pi^+ \pi^-$	(1.9	±0.5	$) \times 10^{-4}$		1726
$\gamma K^+ K^- 2 (\pi^+ \pi^-)$		2.2			CL=90%	1654
$\gamma 2(K^+K^-)$	<	4		$\times 10^{-5}$	CL=90%	1499
$\gamma p \overline{p}$	(3.9	±0.5	$) \times 10^{-5}$	S=2.0	1586
$\gamma f_2(1950) ightarrow \gamma ho \overline{ ho}$	(1.20	±0.22	$) \times 10^{-5}$		_
$\gamma f_2(2150) \rightarrow \gamma \rho \overline{\rho}$	(7.2	± 1.8	$) \times 10^{-6}$		_
$\gamma X(1835) \rightarrow \gamma \rho \overline{\rho}$	(4.6	$^{+1.8}_{-4.0}$	$) \times 10^{-6}$		_
$\gamma X \rightarrow \gamma p \overline{p}$	[nnaa] <	2		$\times 10^{-6}$	CL=90%	_
$\gamma \rho \overline{\rho} \pi^+ \pi^-$				$) \times 10^{-5}$		1491
$\gamma \gamma$				$\times 10^{-4}$	CL=90%	1843
$\gamma\gamma$ J/ ψ	(3.1	$^{+1.0}_{-1.2}$) × 10 ⁻⁴		542
$e^+e^-\eta'$	(1.90	± 0.26	$) \times 10^{-6}$		1719
$e^+e^-\eta_c(1S)$	(3.8	± 0.4	$) \times 10^{-5}$		635
$e^+e^-\chi_{c0}(1P)$				$) \times 10^{-3}$		261
$e^+e^-\chi_{c1}(1P)$	(8.5	± 0.6	$) \times 10^{-4}$		171
$e^{+}e^{-}\chi_{c2}(1P)$	(7.0	± 0.8	$) \times 10^{-4}$		128
Weak decays						
$D^0 e^+ e^- + \text{c.c.}$		1.4		× 10 ⁻⁷	CL=90%	1371
$\Lambda_c^+ \overline{\Sigma}^- + \text{c.c.}$		1.4			CL=90%	586
c - '					33,0	220
	Other de	-	1			
invisible	<	1.6		%	CL=90%	_

 ψ (3770)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=3773.7\pm0.4$ MeV (S = 1.4) Full width $\Gamma=27.2\pm1.0$ MeV

run width i — 27	.2 <u>+</u> 1.0 MeV			
JUSTON DECAY MODES	Γυο ation (Γ /Γ		cale factor/	p (Ma)//a)
ψ (3770) DECAY MODES	Fraction (Γ_i/Γ_i)) Cont	idence level	(iviev/c)
$D\overline{D}$	$(93 \begin{array}{cc} +8 \\ -9 \end{array}$) %	S=2.0	287
$D^0 \overline{D}{}^0$	$(52 \begin{array}{cc} +4 \\ -5 \end{array}$) %	S=2.0	287
D^+D^-	(41 ± 4)) %	S=2.0	254
$J/\psi X$	(5.0 ±2.2	$) \times 10^{-3}$		_
$J/\psi \pi^+ \pi^-$	(1.93±0.2			561
$J/\psi \pi^0 \pi^0$	(8.0 ±3.0	$) \times 10^{-4}$		565
$J/\psi \eta$		$) \times 10^{-4}$		361
$J/\psi \pi^0$	< 2.8	$\times 10^{-4}$	CL=90%	604
$e^{+}e^{-}$	(9.6 ± 0.7	$) \times 10^{-6}$	S=1.3	1887
De	cays to light hadron	ıs		
$b_1(1235)\pi$	< 1.4	$\times 10^{-5}$	CL=90%	1684
$\phi \eta'$	< 7	\times 10 ⁻⁴	CL=90%	1607
$\omega \eta'$	< 4	$\times 10^{-4}$	CL=90%	1672
$ ho^{O'}\eta'$	< 6	$\times 10^{-4}$	CL=90%	1674
$\phi\eta$	(3.1 ± 0.7			1703
$\omega\eta$	< 1.4	$\times 10^{-5}$	CL=90%	1762
$ ho^0 \eta$	< 5	$\times 10^{-4}$	CL=90%	1764
$\phi\pi^{f 0}$	< 3	$\times 10^{-5}$	CL=90%	1746
$\omega \pi^0$	< 6	$\times 10^{-4}$	CL=90%	1803
$\pi^+\pi^-\pi^0$	< 5	\times 10 ⁻⁶	CL=90%	1874
$ ho\pi$	< 5	\times 10 ⁻⁶	CL=90%	1805
$K^*(892)^+ K^- + \text{c.c.}$	< 1.4	\times 10 ⁻⁵	CL=90%	1745
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	< 1.2	\times 10 ⁻³	CL=90%	1745
$K_S^0 K_L^0$	< 1.2	$\times 10^{-5}$	CL=90%	1820
$2(\pi^{+}\pi^{-})$	< 1.12	$\times 10^{-3}$	CL=90%	1861
$2(\pi^{+}\pi^{-})\pi^{0}$	< 1.06	\times 10 ⁻³	CL=90%	1844
$2(\pi^{+}\pi^{-}\pi^{0})$	< 5.85	%	CL=90%	1821
$\omega \pi^+ \pi^-$	< 6.0	\times 10 ⁻⁴	CL=90%	1794
$3(\pi^+\pi^-)$	< 9.1	\times 10 ⁻³		1820
$3(\pi^{+}\pi^{-})\pi^{0}$	< 1.37	%	CL=90%	1792
$3(\pi^+\pi^-)2\pi^0$	< 11.74	%	CL=90%	1760
$\eta \pi^+ \pi^-$	< 1.24	$\times 10^{-3}$		1836
$\pi^{+}\pi^{-}2\pi^{0}$	< 8.9		CL=90%	1862
$ ho^0 \pi^+ \pi^-$	< 6.9	$\times 10^{-3}$		1796
$\eta 3\pi$	< 1.34		CL=90%	1824
$\eta 2(\pi^+\pi^-)$	< 2.43	%	CL=90%	1804
HTTP://PDG.LBL.GOV	Page 163	Created:	7/10/202	3 15:48

$\eta ho^{0} \pi^{+} \pi^{-}$	<	1.45	%	CL=90%	1708
η' 3 π	<	2.44	$\times 10^{-3}$	CL=90%	1741
$K^+K^-\pi^+\pi^-$	<	9.0	\times 10 ⁻⁴	CL=90%	1773
$\phi \pi^+ \pi^-$	<	4.1	$\times 10^{-4}$	CL=90%	1737
$K^+K^-2\pi^0$	<	4.2	\times 10 ⁻³	CL=90%	1774
$4(\pi^{+}\pi^{-})$	<	1.67	%	CL=90%	1757
$4(\pi^{+}\pi^{-})\pi^{0}$	<	3.06	%	CL=90%	1720
$\phi f_0(980)$	<	4.5	$\times 10^{-4}$	CL=90%	1597
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	<	2.36	$\times 10^{-3}$	CL=90%	1741
$K^+K^- ho^0\pi^0$	<	8	$\times 10^{-4}$	CL=90%	1624
$K^+K^- ho^+\pi^-$	<	1.46	%	CL=90%	1623
$\omega K^+ K^-$	<	3.4	$\times 10^{-4}$	CL=90%	1664
$\phi \pi^+ \pi^- \pi^0$	<	3.8	$\times 10^{-3}$	CL=90%	1723
$K^{*0}K^{-}\pi^{+}\pi^{0}$ + c.c.	<	1.62	%	CL=90%	1694
$K^{*+}K^{-}\pi^{+}\pi^{-}$ + c.c.	<	3.23	%	CL=90%	1693
$K^{+}K^{-}\pi^{+}\pi^{-}2\pi^{0}$	<	2.67	%	CL=90%	1705
$K^{+}K^{-}2(\pi^{+}\pi^{-})$	<	1.03	%	CL=90%	1702
$K^+K^-2(\pi^+\pi^-)\pi^0$	<	3.60	%	CL=90%	1661
$\eta K^+ K^-$	<	4.1	\times 10 ⁻⁴	CL=90%	1712
$\eta K^+ K^- \pi^+ \pi^-$	<	1.24	%	CL=90%	1624
$ ho^0$ K $^+$ K $^-$	<	5.0	$\times 10^{-3}$	CL=90%	1666
$2(K^{+}K^{-})$	<	6.0	\times 10 ⁻⁴	CL=90%	1552
$\phi K^+ K^-$	<	7.5	\times 10 ⁻⁴	CL=90%	1598
$2(K^+K^-)\pi^0$	<	2.9	\times 10 ⁻⁴	CL=90%	1494
$2(K^{+}K^{-})\pi^{+}\pi^{-}$	<	3.2	$\times 10^{-3}$	CL=90%	1426
$K_S^0 K^- \pi^+$	<	3.2	$\times 10^{-3}$	CL=90%	1799
$K_{S}^{0}K^{-}\pi^{+}\pi^{0}$	<	1.33	%	CL=90%	1773
$K_{S}^{0}K^{-}\rho^{+}$	<	6.6	$\times 10^{-3}$	CL=90%	1665
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}$	<	8.7	$\times 10^{-3}$	CL=90%	1740
$K_{S}^{0}K^{-}\pi^{+}\rho^{0}$	<	1.6	%	CL=90%	1621
$K_{S}^{0}K^{-}\pi^{+}\eta$	<	1.3	%	CL=90%	1670
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\pi^{0}$		4.18	%	CL=90%	1703
$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}\eta$		4.8	%	CL=90%	1570
$K_{S}^{0}K^{-}\pi^{+}2(\pi^{+}\pi^{-})$		1.22	%	CL=90%	1658
$K_0^0 K^- \pi^+ 2\pi^0$		2.65	%	CL=90%	1742
$K_0^{S}K^{-}K^{+}K^{-}\pi^{+}$					
		4.9	× 10 ⁻³	CL=90%	1491
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\pi^{0}$		3.0	%	CL=90%	1427
$K_{S}^{0}K^{-}K^{+}K^{-}\pi^{+}\eta$		2.2	%	CL=90%	1214
$K^{*0}K^{-}\pi^{+}$ + c.c.		9.7	\times 10 ⁻³	CL=90%	1722
$p\overline{p}\pi^0$		4	\times 10 ⁻⁵		1595
$p\overline{p}\pi^+\pi^-$		5.8	\times 10 ⁻⁴	CL=90%	1544
$\Lambda \overline{\Lambda}$		1.2	\times 10 ⁻⁴		1522
$p\overline{p}\pi^+\pi^-\pi^0$	<	1.85	\times 10 ⁻³	CL=90%	1490

$\omega \underline{p} \overline{p}$	< 2.9	$\times 10^{-4}$	CL=90%	1310
$\Lambda \overline{\Lambda} \pi^0$	< 7	$\times 10^{-5}$	CL=90%	1469
$p\overline{p}2(\pi^+\pi^-)$	< 2.6	$\times 10^{-3}$	CL=90%	1426
$\eta p \overline{p}$	< 5.4	$\times 10^{-4}$	CL=90%	1431
$\eta p \overline{p} \pi^+ \pi^-$	< 3.3	$\times 10^{-3}$	CL=90%	1284
$ ho^{0} p \overline{p}$	< 1.7	$\times 10^{-3}$	CL=90%	1314
p p K+K−	< 3.2	$\times 10^{-4}$	CL=90%	1186
$\eta p \overline{p} K^+ K^-$	< 6.9	$\times 10^{-3}$	CL=90%	737
$\pi^0 p \overline{p} K^+ K^-$	< 1.2	$\times 10^{-3}$	CL=90%	1094
$\phi p \overline{p}$	< 1.3	$\times 10^{-4}$	CL=90%	1178
$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 2.5	$\times 10^{-4}$	CL=90%	1405
$\Lambda \overline{p} K^+$	< 2.8	$\times 10^{-4}$	CL=90%	1387
$\Lambda \overline{p} K^+ \pi^+ \pi^-$	< 6.3	$\times 10^{-4}$	CL=90%	1234
$\Lambda \overline{\Lambda} \eta$	< 1.9	$\times 10^{-4}$	CL=90%	1263
$\Sigma^{+}\overline{\Sigma}^{-}$	< 1.0	$\times 10^{-4}$	CL=90%	1465
$\sum_{0} \frac{\overline{\Sigma}_{0}}{\overline{\Sigma}_{0}}$ $= + \frac{\overline{\Xi}_{0}}{\overline{\Xi}_{0}}$	< 4	$\times 10^{-5}$	CL=90%	1462
<u>=</u> † <u>=</u> -	< 1.5	$\times 10^{-4}$	CL=90%	1347
=0 $=0$	< 1.4	$\times 10^{-4}$	CL=90%	1353
	Radiative decays			
$\gamma \chi_{c2}$	< 6.4	× 10 ⁻⁴	CL=90%	211
$\gamma \chi_{c1}$	(2.49±0.2		GE 3070	254
$\gamma \chi_{c0}$	(6.9 ± 0.6)	_		342
$\gamma \eta_c$	< 7	× 10 ⁻⁴	CL=90%	707
$\gamma \eta_c(2S)$	< 9	\times 10 ⁻⁴	CL=90%	134
$\gamma \eta'$	< 1.8	\times 10 ⁻⁴	CL=90%	1765
$\gamma \eta$	< 1.5	× 10 ⁻⁴	CL=90%	1847
$\gamma \pi^0$	< 2	× 10 ⁻⁴	CL=90%	1884

ψ_2 (3823)

$$I^G(J^{PC}) = 0^-(2^{--})$$

I, J, P need confirmation.

was $\psi(3823)$, X(3823)

Mass
$$m=3823.5\pm0.5$$
 MeV (S = 1.4) Full width Γ < 2.9 MeV, CL = 90%

Branching fractions are given relative to the one **DEFINED AS 1**.

ψ_2 (3823) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi(1S)\pi^+\pi^-$	< 0.06	90%	607
$J/\psi(1S)\pi^0\pi^0$	< 0.11	90%	610
$J/\psi(1S)\pi^0$	< 0.030	90%	646
$J/\psi(1S)\eta$	< 0.14	90%	431
$\chi_{c0}\gamma$	< 0.24	90%	387
$\chi_{c1}\gamma$	DEFINED AS 1		300

HTTP://PDG.LBL.GOV

Page 165

 $\chi_{c2}\gamma$

$$0.28 \begin{array}{l} +0.14 \\ -0.11 \end{array}$$

258

$$\psi_{3}(3842)$$

$$I^G(J^{PC}) = 0^-(3^{--})$$

J, P need confirmation.

Seen by a single experiment only.

Mass
$$m=3842.71\pm0.20$$
 MeV Full width $\Gamma=2.8\pm0.6$ MeV

ψ_3 (3842) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
D^+D^-	seen	443
$D^0 \overline{D}{}^0$	seen	463

$$\chi_{c1}(3872)$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

also known as X(3872)

Mass
$$m=3871.65\pm0.06~{
m MeV}$$
 $m_{\chi_{c1}(3872)}-m_{J/\psi}=775\pm4~{
m MeV}$ Full width $\Gamma=1.19\pm0.21~{
m MeV}~{
m (S}=1.1)$

χ_{c1} (3872) DECAY MODES	Fraction (Γ_i /	′Γ) Conf	idence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	< 2.8	× 10 ⁻⁶	90%	1936
$\pi^+\pi^-\pi^0$	< 9	$\times10^{-3}$	90%	1924
$\pi^+\pi^-J/\psi(1S)$	(3.8± 1.	2) %		650
$\pi^{+}\pi^{-}\pi^{0}J/\psi(1S)$	not seen			588
$\omega \eta_c(1S)$	< 33	%	90%	368
$\omega J/\psi(1S)$	(4.3± 2.	1) %		†
$\phi\phi$	not seen			1646
$D^0 \overline{D}{}^0 \pi^0$	$(49 \begin{array}{c} +18 \\ -20 \end{array}$) %		116
$\overline{D}^{*0} D^0$	(37 ± 9)) %		†
$\frac{\gamma \gamma}{D^0 \overline{D}^0}$	< 11	%	90%	1936
	< 29	%	90%	519
D^+D^-	< 19	%	90%	502
$\pi^0 \chi_{c2}$	< 4	%	90%	273
$\pi^0 \chi_{c1}$	(3.4± 1.	6) %		319
$\pi^0 \chi_{c0}$	< 14	%	90%	_
$\pi^{+}\pi^{-}\eta_{c}(1S)$	< 14	%	90%	745
$\pi^0\pi^0\chi_{c0}$	< 7	%	90%	347
$\pi^+\pi^-\chi_{c0}$	< 2.1	%	90%	340
$\pi^+\pi^-\chi_{c1}$	< 7	$\times 10^{-3}$	90%	218
p p	< 2.4	$\times 10^{-5}$	95%	1693
HTTD://DDC.LBL.COV	Dago 166	Crostodi	7/10/202	2 15.40

HTTP://PDG.LBL.GOV

Page 166

Rad	liativ	e de	cays
i vau	iia ti v	c uc	Cayo

$\gamma D^+ D^-$	< 4	%	90%	502		
$\gamma \overline{D}{}^0 D^0$	< 6	%	90%	519		
γ J/ψ	(8 ± 4	$) \times 10^{-3}$		697		
$\gamma \chi_{c1}$	< 9	$\times 10^{-3}$	90%	344		
$\gamma \chi_{c2}$	< 3.2	%	90%	303		
$\gamma \psi$ (2S)	(4.5± 2.	0) %		181		
C-violating decays						
$\eta J/\psi$	< 1.8	%	90%	491		

$$\chi_{c0}(3915)$$

$$I^{G}(J^{PC}) = 0^{+}(0^{+})$$

was X(3915)

Mass
$$m=3921.7\pm1.8~{\rm MeV}~{\rm (S}=1.5)$$
 Full width $\Gamma=18.8\pm3.5~{\rm MeV}$

χ_{c0} (3915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\frac{\omega J/\psi}{D^{*0} D^0}$	seen	231
$\overline{D}^{*0} D^0$	not seen	312
D^+D^-	seen	591
$\pi^+\pi^-\eta_c(1S)$	not seen	788
$\eta_{c}\eta_{c}$	not seen	668
$ \eta_c \eta \eta_c \pi^0 K K $	not seen	817
$K\overline{K}$	not seen	1898
$\gamma \gamma$	seen	1961
$\pi^0 \chi_{c1}$	not seen	368

$\chi_{c2}(3930)$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

Mass
$$m=3922.5\pm1.0$$
 MeV (S $=1.7$) Full width $\Gamma=35.2\pm2.2$ MeV (S $=1.2$)

χ_{c2} (3930) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\gamma\gamma}$	seen	1961
$D\overline{D}$	seen	607
D^+D^-	seen	592
$D^0 \overline{D}{}^0$	seen	607
$\pi^+\pi^-\eta_c(1S)$	not seen	788
KK	not seen	1898

$$\psi$$
(4040) $^{[ooaa]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4039\pm 1~{\rm MeV}$ Full width $\Gamma=80\pm 10~{\rm MeV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ(4040) DECAY MODES	Fraction (Γ_{i}	/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$(1.07 \pm 0.1$.6) × 10 ⁻	-5	2019
$D\overline{D}$	seen	•		775
$D^0 \overline{D}{}^0$	seen			775
D^+D^-	seen			763
$D^*\overline{D}$ + c.c.	seen			569
$D^*(2007)^0\overline{D}{}^0+{ m c.c.}$	seen			575
$D^*(2010)^+ D^- + \text{c.c.}$	seen			561
$D^*\overline{D}^*$	seen			193
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen			226
$D_{0}^{*}(2010)^{+}D^{*}(2010)^{-}$	seen			193
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.	not seen			_
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.},$				
$D^*(2010)^+D^- + c.c.$				
$D\overline{D}^*\pi$ (excl. $D^*\overline{D}^*$)	not seen			_
$D^0 \overline{D}^{*-} \pi^+ + \text{c.c.}$ (excl.	seen			_
$D^*(2010)^+ D^*(2010)^-)$				
$D_s^+D_s^-$	seen		2	452
$J/\psi \pi^+ \pi^-$	< 4	× 10 ⁻		794
$J/\psi \pi^0 \pi^0$	< 2	× 10 ⁻		797
$J/\psi \eta$	(5.2 ± 0.7)			675
$J/\psi \pi^0$	< 2.8	× 10 ⁻		823
$J/\psi \pi^+\pi^-\pi^0$	< 2	× 10 ⁻		746
$\chi_{c1}\gamma$	< 3.4	× 10 ⁻		494
$\chi_{c2}\gamma$	< 5	× 10		454
$\chi_{c1} \pi^{+} \pi^{-} \pi^{0}$	< 1.1	%	90%	306
$\chi_{c2} \pi^{+} \pi^{-} \pi^{0}$ $h_{c}(1P) \pi^{+} \pi^{-}$	< 3.2	% × 10 ⁻	90%	233
$\phi \pi^+ \pi^-$	< 3	× 10 × 10 ⁻		403
$\frac{\phi \pi}{\Lambda \overline{\Lambda} \pi^+ \pi^-}$	< 3	× 10 × 10 ⁻		1880
$\Lambda \overline{\Lambda} \pi^0$	< 2.9 < 9	× 10 × 10 ⁻		1578 1636
$\Lambda \overline{\Lambda} \eta$	< 9 < 3.0	× 10 × 10		1452
$A\overline{A}$	< 3.0 < 6	× 10 × 10 ⁻		1683
/1/1	< 0	× 10	90%	1003

$\Sigma^{+}\overline{\Sigma}^{-}$	< 1.3	$\times 10^{-4}$	90%	1632
$\Sigma^0 \overline{\Sigma}{}^0$	< 7	$\times10^{-5}$	90%	1630
<u>=</u> + <u>=</u> -	< 1.6	$\times 10^{-4}$	90%	1527
<u>=</u> 0 <u>=</u> 0	< 1.8	$\times 10^{-4}$	90%	1533
$\mu^+\mu^-$	(9 ± 6)	$) \times 10^{-6}$		2017

$$\chi_{c1}(4140)$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

was X(4140)

Mass
$$m=4146.5\pm3.0~{
m MeV}~{
m (S}=1.3)$$
 Full width $\Gamma=19^{+7}_{-5}~{
m MeV}$

χ_{c1} (4140) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi\phi$	seen	216
$\gamma \gamma$	not seen	2073

ψ (4160) [000a]

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass
$$m=4191\pm 5~{
m MeV}$$

Full width $\Gamma=70\pm 10~{
m MeV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4160) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
e^+e^-	$(6.9 \pm 3.3) \times 10$	-6	2096
$\mu^+\mu^-$	seen		2093
$D\overline{D}$	seen		956
$D^0 \overline{D}{}^0$	seen		956
D^+D^-	seen		947
$D^*\overline{D}$ + c.c.	seen		798
$D^*(2007)^0 \overline{D}{}^0 + { m c.c.}$	seen		802
$D^*(2010)^+D^-+$ c.c.	seen		792
$D^* \overline{D}^*$	seen		592
$D^*(2007)^0 \overline{D}^*(2007)^0$	seen		604
$D^*(2010)^+ D^*(2010)^-$	seen		592
$D^0 D^- \pi^+ + \text{c.c.}$ (excl.)	not seen		_
$D^*(2007)^0 \overline{D}^{0} + c.c.,$			
$D^*(2010)^+D^- + c.c.$			

HTTP://PDG.LBL.GOV

Page 169

$D\overline{D}^*\pi + \text{c.c.}$ (excl. $D^*\overline{D}^*$)	seen			_
$D^0 D^{*-} \pi^+ + c.c.$ (excl.	not seen			_
$D^*(2010)^+ D^*(2010)^-)$				
$D_s^+D_s^-$	not seen			719
$D_s^{*+}D_s^- + \text{c.c.}$	seen			385
$J/\psi \pi^+\pi^-$	< 3	$\times10^{-3}$	90%	919
$J/\psi \pi^0 \pi^0$	< 3	$\times10^{-3}$	90%	922
$J/\psi K^+ K^-$	< 2	$\times10^{-3}$	90%	407
$J/\psi\eta$	< 8	$\times10^{-3}$	90%	822
$J/\psi \pi^0$	< 1	$\times10^{-3}$	90%	944
$J/\psi\eta'$	< 5	$\times 10^{-3}$	90%	457
$J/\psi \pi^+\pi^-\pi^0$	< 1	$\times 10^{-3}$	90%	879
$\psi(2S)\pi^+\pi^-$	< 4	$\times 10^{-3}$	90%	396
$\chi_{c1}\gamma$	< 5	$\times 10^{-3}$	90%	625
$\chi_{c2}\gamma$	< 1.3	%	90%	587
$\chi_{c1} \pi^+ \pi^- \pi^0$	< 2	$\times 10^{-3}$	90%	496
$\chi_{c2}\pi^+\pi^-\pi^0$	< 8	\times 10 ⁻³	90%	445
$h_c(1P)\pi^+\pi^-$	< 5	\times 10 ⁻³	90%	556
$h_c(1P)\pi^0\pi^0$	< 2	$\times 10^{-3}$	90%	560
$h_c(1P)\eta$	< 2	$\times 10^{-3}$	90%	348
$h_c(1P)\pi^0$	< 4	\times 10 ⁻⁴	90%	600
$\phi\pi^+\pi^-$	< 2	$\times 10^{-3}$	90%	1961
$\gamma \chi_{c1}$ (3872)	< 1.8	$\times 10^{-3}$	90%	308
$\gamma \chi_{c0}(3915) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.36	\times 10 ⁻⁴	90%	_
$\gamma X(3930) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.18	\times 10 ⁻⁴	90%	_
$\gamma X(3940) \rightarrow \gamma J/\psi \pi^+ \pi^-$	< 1.47	\times 10 ⁻⁴	90%	_
$\gamma \chi_{c0}$ (3915) $\rightarrow \gamma \gamma J/\psi$	< 1.26	\times 10 ⁻⁴	90%	_
$\gamma X(3930) \rightarrow \gamma \gamma J/\psi$	< 8.8	\times 10 ⁻⁵	90%	_
$\gamma X(3940) \rightarrow \gamma \gamma J/\psi$	< 1.79	\times 10 ⁻⁴	90%	_
$\omega\pi^0$	not seen			2020
$\omega\eta$	not seen			1984
p <u>p</u> p <u>p</u>	not seen	_		834
$\Lambda\Lambda$	< 1.5	\times 10 ⁻⁶	90%	1774

ψ (4230)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

also known as Y(4230); was $\psi(4260)$

Mass $m=4222.5\pm2.4$ MeV (S = 1.7) Full width $\Gamma=48\pm8$ MeV (S = 3.6)

ψ (4230) DECAY MODES	Fraction (Γ	$_{i}/\Gamma)$	p (MeV/c)
$\mu^+\mu^-$	(3.2±2.9)	× 10 ⁻⁵	2107
$\eta_c(1S)\pi^+\pi^-$	not seen		1027
HTTP://PDG.LBL.GOV	Page 170	Created:	7/10/2023 15:48

$\eta_c(1S)\pi^+\pi^-\pi^0$	seen	992
$J/\psi \pi^+ \pi^-$	seen	942
$J/\psi f_0(980), f_0(980) \rightarrow \pi^+ \pi$		
$Z_c(3900)^{\pm}\pi^{\mp}, Z_c^{\pm} \rightarrow J/\psi\pi$		_
$J/\psi \pi^0 \pi^0$	seen	944
$J/\psi K^+ K^-$	seen	460
$J/\psi K_S^0 K_S^0$	not seen	447
$J/\psi \eta$		848
$J/\psi \pi^0$	seen	966
$J/\psi \eta'$	not seen seen	504
$J/\psi \pi^+ \pi^- \pi^0$	not seen	904
$J/\psi \eta \pi^0$	not seen	770
$J/\psi \eta \eta$	not seen	211
$\psi(2S)\pi^+\pi^-$		426
$\psi(2S)\eta$	seen	
	not seen	†
$\frac{\chi_{c0}\omega}{\chi_{c1}\pi^{+}\pi^{-}\pi^{0}}$	seen	171
$\frac{\chi_{c1}\pi + \pi - \pi}{\chi_{c2}\pi + \pi - \pi^0}$	not seen	527
$h_c(1P)\pi^+\pi^-$	not seen	477
7 1	seen	583
$\phi\pi^+\pi^- \ \phi f_0(980) o \phi\pi^+\pi^- \ D\overline{D}$	not seen	1976
$\varphi_{10}(900) \rightarrow \varphi_{\pi} \cdot \pi$	not seen	
$D^0 \overline{D}{}^0$	not seen	987
D+ D-	not seen	987
	not seen	978
$D^*\overline{D}+c.c.$	not seen	887
$D^*(2007)^0 \overline{D}{}^0 + \text{c.c.}$	not seen	_
$D^*(2010)^+D^-+c.c.$	not seen	_
$D^*(2007)^0 \overline{D}^*(2007)^0$	not seen	652
$D^*(2010)^+D^*(2010)^-$	not seen	641
$D^0D^-\pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2007)^0 \overline{D}^{*0} + \text{c.c.},$		
$D^*(2010)^+D^- + c.c.$		
$D\overline{D}^*\pi$ +c.c. (excl. $D^*\overline{D}^*$)	not seen	723
$D^0 D^{*-} \pi^+ + \text{c.c.}$ (excl.	not seen	_
$D^*(2010)^+D^*(2010)^-)$		
$D^0D^*(2010)^-\pi^+ + \text{c.c.}$	seen	716
$D_1(2420)\overline{D} + \text{c.c.}$	not seen	†
$D^*\overline{D}^*\pi$	not seen	367
$D_s^+D_s^-$	not seen	760
$D_{s}^{*+}D_{s}^{-}+\text{c.c.}$	not seen	615
$D_{s}^{*+}D_{s}^{-}$ +c.c. $D_{s}^{*+}D_{s}^{*-}$	not seen	†
$p\frac{3}{p}$	not seen	1890
$ \rho \overline{\rho} $ $ \rho \overline{\rho} \pi^0 $	not seen	1854
$p\overline{p}\eta$	not seen	1712
HTTP://PDG.LBL.GOV	Page 171	Created: 7/10/2023 15:48

_		
p <u>p</u> ω	not seen	1610
<u>=</u> -=+	not seen	1645
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	not seen	2087
$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	not seen	2071
$\omega \pi^0$	not seen	2035
$\omega\eta$	not seen	1999
$K_S^0 K^\pm \pi^\mp$	not seen	2032
$K_{S}^{0}K^{\pm}\pi^{\mp} \ K_{S}^{0}K^{\pm}\pi^{\mp}\pi^{0} \ K_{S}^{0}K^{\pm}\pi^{\mp}\eta$	not seen	2009
$K_{S}^{0}K^{\pm}\pi^{\mp}\eta$	not seen	1917
$\mathcal{K}^+\mathcal{K}^-\pi^0$	not seen	2033
$K^{+}K^{-}\pi^{+}\pi^{-}$	not seen	2008
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	not seen	1981
$K^+K^+K^-K^-$	not seen	1813
$K^+K^+K^-K^-\pi^0$	not seen	1762
$ ho \overline{ ho} \pi^+ \pi^-$	not seen	1810
$\rho \overline{\rho} \pi^+ \pi^- \pi^0$	not seen	1764
p <u>p</u> p <u>p</u>	not seen	864
$\Lambda \overline{\Lambda}$	not seen	1791

Radiative decays

$\eta_c(1S)\gamma$	possibly seen	1055
$\eta_c(1S)\pi^0\gamma$	not seen	1049
$\chi_{c1}\gamma$	not seen	650
$\chi_{c2}\gamma$	not seen	612
$\chi_{c1}(3872)\gamma$	seen	334

$\chi_{c1}(4274)$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

was X(4274)

Mass
$$m=4286^{+8}_{-9}~{\rm MeV}~{\rm (S}=1.7)$$
 Full width $\Gamma=51\pm7~{\rm MeV}$

χ_{c1} (4274) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \phi$	seen	522

ψ (4360)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 7/10/2023 15:48

also known as Y(4360); was X(4360)

$$\psi$$
(4360) MASS = 4374 \pm 7 MeV (S = 2.4) ψ (4360) WIDTH = 118 \pm 12 MeV (S = 2.1)

ψ (4360) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$h_c \pi^+ \pi^-$	seen	723
$\psi(2S)\pi^+\pi^-$	seen	579
ψ (3770) $\pi^{+}\pi^{-}$	possibly seen	495
$\psi_2(3823)\pi^+\pi^-$	seen	444
$J/\psi\eta$	seen	983
$D^{+}D^{-}\pi^{+}\pi^{-}$	seen	862
$D_1(2420)\overline{D}+ ext{c.c.}$	possibly seen	431
$\omega \pi^0$	not seen	2115
$\omega \eta$	not seen	2080
$p\overline{p}\eta$	not seen	1806
$p\overline{p}\omega$	not seen	1708

ψ (4415) $^{[ooaa]}$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=4421\pm4~{\rm MeV}$ Full width $\Gamma=62\pm20~{\rm MeV}$

Due to the complexity of the $c\overline{c}$ threshold region, in this listing, "seen" ("not seen") means that a cross section for the mode in question has been measured at effective \sqrt{s} near this particle's central mass value, more (less) than 2σ above zero, without regard to any peaking behavior in \sqrt{s} or absence thereof. See mode listing(s) for details and references.

ψ (4415) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
$D\overline{D}$	seen		1187
$D^0 \overline{D}{}^0$	seen		1187
D^+D^-	seen		1179
$D^*\overline{D}$ + c.c.	seen		1063
$D^*(2007)^0\overline{D}{}^0+ ext{c.c.}$	seen		1067
$D^*(2010)^+D^-+$ c.c.	seen		1059
$D^*\overline{D}^*$	seen		919
$D^*(2007)^0 \overline{D}{}^*(2007)^0 + { m c.c.}$	seen		927
$D^*(2010)^+ D^*(2010)^- + \text{c.c.}$	seen		919
$D^0 D^- \pi^+ ({ m excl.} \ D^* (2007)^0 \overline{D}{}^0$	< 2.3 %	90%	_
$+$ c.c., $D^*(2010)^+D^- +$ c.c.			
$D\overline{D}_{2}^{*}(2460) \rightarrow D^{0}D^{-}\pi^{+}+c.c.$	$(10$ ± 4 $) \%$		_
$D^0 \bar{D}^{*-} \pi^+ + \text{c.c.}$	< 11 %	90%	926
$D_1(2420)\overline{D}+$ c.c.	possibly seen		537
$D_s^+ D_s^-$	not seen		1006
$\omega\chi_{c2}$	possibly seen		330
$D_s^{*+}D_s^- + \text{c.c.}$	seen		_

$D_s^{*+}D_s^{*-}$	not seer	า		652
$\psi_2(3823)\pi^+\pi^-$	possibly	seen		492
ψ (3770) $\pi^{+}\pi^{-}$	possibly	seen		541
$J/\psi\eta$	< 6	$\times 10^{-3}$	90%	1022
$\chi_{c1}\gamma$	< 8	\times 10 ⁻⁴	90%	817
$\chi_{\underline{c2}}\gamma$	< 4	$\times 10^{-3}$	90%	780
$\Lambda \overline{\Lambda}_{\perp}$	< 3.1	$\times 10^{-6}$	90%	1908
$\omega \pi^0$	not seer	า		2139
$\omega \eta$	not seer	า		2105
e^+e^-	(9.4±3	$(.2) \times 10^{-6}$		2210
$\mu^+\mu^-$	(2.0 ± 1	$.0) \times 10^{-5}$		2208

ψ (4660)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

also known as Y(4660); was X(4660)

$$\psi$$
(4660) MASS = 4630 \pm 6 MeV (S = 1.4) ψ (4660) WIDTH = 72^{+14}_{-12} MeV (S = 1.7)

ψ (4660) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	not seen	2315
ψ (2S) $\pi^+\pi^-$	seen	809
$J/\psi\eta$	not seen	1192
$D^0 D^{*-} \pi^+$	not seen	1153
$\psi_2(3823)\pi^+\pi^-$	seen	691
$\chi_{c1}\gamma$	not seen	984
$\chi_{c2}\gamma$	not seen	949
$\Lambda_c^+ \Lambda_c^-$	seen	363
$\Lambda_c^+ \Lambda_c^- D_s^+ D_{s1} (2536)^-$	seen	534
$\omega \pi^0$	not seen	2247
$\omega \eta$	not seen	2215

$b\overline{b}$ MESONS (including possibly non- $q\overline{q}$ states)

 $\eta_b(1S)$

$$I^{G}(J^{PC}) = 0^{+}(0^{-}+)$$

Mass $m=9398.7\pm2.0~{\rm MeV}~{\rm (S}=1.5)$ Full width $\Gamma=10^{+5}_{-4}~{\rm MeV}$

$\eta_b(1S)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
hadrons	seen		_
$3h^{+}3h^{-}$	not seen		4672
$2h^{+}2h^{-}$	not seen		4689
$4h^{+}4h^{-}$	not seen		4648
$\gamma\gamma$	not seen		4699
$\gamma \gamma \ \mu^+ \mu^- \ \tau^+ \tau^-$	$< 9 \times 10^{-3}$	90%	4698
$\tau^+\tau^-$	<8 %	90%	4350

T(15)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 7/10/2023 15:48

Mass $m=9460.40\pm0.10$ MeV Full width $\Gamma=54.02\pm1.25$ keV

r(1s) decay modes	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	-
$\tau^+\tau^-$	(2.60 ± 0.10)) %	4384
e^+e^-	(2.39 ± 0.08) %	4730
$\mu^+\mu^-$	(2.48 ± 0.04)) %	4729
	Hadronic decays		
ggg	(81.7 ± 0.7)) %	_
$\gamma g g$	(2.2 ± 0.6) %	_
$\eta'(958)$ anything	(2.94 ± 0.24)) %	_
$J/\psi(1S)$ anything	(5.4 ± 0.4)	$) \times 10^{-4}$ S=1.4	4223
$J/\psi(1S)\eta_c$	< 2.2	$\times10^{-6}$ CL=90%	3623
$J/\psi(1S)\chi_{c0}$	< 3.4	$\times10^{-6}$ CL=90%	3429
$J/\psi(1S)\chi_{c1}$	(3.9 ± 1.2	$) \times 10^{-6}$	3382
$J/\psi(1S)\chi_{c2}$	< 1.4	$\times10^{-6}$ CL=90%	3359
$J/\psi(1S)\eta_{c}(2S)$	< 2.2	$\times10^{-6}$ CL=90%	3317
$J/\psi(1S)X(3940)$	< 5.4	$\times10^{-6}$ CL=90%	3148
$J/\psi(1S)X(4160)$	< 5.4	$\times 10^{-6}$ CL=90%	3020

HTTP://PDG.LBL.GOV

Page 175

$X(4350)$ anything, $X \rightarrow$	< 8.1	$\times10^{-6}$ CL=90%	_
$J/\psi(1S)\phi \ Z_c(3900)^\pm$ anything, $Z_c ightarrow$	< 1.3	$\times10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^\pm \ Z_c(4200)^\pm$ anything, $Z_c o$	< 6.0	$\times10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^\pm \ Z_c(4430)^\pm$ anything, $Z_c o$	< 4.9	$\times10^{-5}$ CL=90%	_
$J/\psi(1S)\pi^\pm \ X_{cs}^\pm$ anything, $X ightarrow $	< 5.7	$\times10^{-6}$ CL=90%	_
$J/\psi K^\pm \ \psi$ (4230) anything, ψo	< 3.8	$\times 10^{-5} \text{ CL}=90\%$	_
$J/\psi(1S)\pi^+\pi^-$			
ψ (4230) anything, $\psi ightarrow$ $J/\psi(1S) K^+ K^-$	< 7.5	$\times 10^{-6} \text{ CL}=90\%$	_
χ_{c1} (4140) anything, $\chi_{c1} ightarrow J/\psi(1S) \phi$	< 5.2	$\times 10^{-6} \text{ CL}=90\%$	_
χ_{c0} anything	< 4	$\times 10^{-3} \text{ CL} = 90\%$	_
χ_{c1} anything	(1.90 =	± 0.35) $\times 10^{-4}$	_
$\chi_{c1}(1P)X_{tetra}$	< 3.78	$\times 10^{-5}$ CL=90%	_
χ_{c2} anything	(2.8 =	± 0.8) $\times 10^{-4}$	_
$\psi(2S)$ anything		± 0.20) $\times 10^{-4}$	_
$\psi(2S)\eta_c$	< 3.6	$\times 10^{-6}$ CL=90%	3345
$\psi(2S)\chi_{c0}$	< 6.5	$\times10^{-6}$ CL=90%	3124
$\psi(2S)\chi_{c1}$	< 4.5	$\times 10^{-6}$ CL=90%	
$\psi(2S)\chi_{c2}$	< 2.1	$\times 10^{-6} \text{ CL} = 90\%$	
$\psi(2S)\eta_c(2S)$	< 3.2	$\times 10^{-6}$ CL=90%	
$\psi(2S)X(3940)$	< 2.9	$\times 10^{-6} \text{ CL} = 90\%$	
$\psi(2S)X(4160)$	< 2.9	$\times 10^{-6} \text{ CL} = 90\%$	
ψ (4230) anything, $\psi \rightarrow$	< 7.9	$\times 10^{-5} \text{ CL}=90\%$	
$\psi(2S)\pi^+\pi^-$	\ 1.5	× 10 CL=3070	
ψ (4360) anything, $\psi \to \psi$ (2 S) $\pi^+\pi^-$	< 5.2	$\times10^{-5}$ CL=90%	_
ψ (4660) anything, $\psi ightarrow$	< 2.2	$\times10^{-5}$ CL=90%	_
$\psi(2S)\pi^+\pi^-$ $X(4050)^\pm$ anything, $X \to +$	< 8.8	$\times10^{-5}$ CL=90%	_
$\psi(2S)\pi^{\pm}$ $Z_c(4430)^{\pm}$ anything, $Z_c \rightarrow$	< 6.7	$\times10^{-5}$ CL=90%	_
$\psi(2S)\pi^{\pm}$		1	
$\chi_{c1}(3872)$ anything	< 2.5	$\times 10^{-4}$ CL=90%	_
$Z_c(4200)^+ Z_c(4200)^-$	< 2.23	$\times 10^{-5}$ CL=90%	_
$Z_c(3900)^{\pm} Z_c(4200)^{\mp}$	< 8.1	$\times 10^{-6}$ CL=90%	_
$Z_c(3900)^+ Z_c(3900)^-$	< 1.8	$\times 10^{-6}$ CL=90%	_
X(4050) ⁺ X(4050) ⁻	< 1.58	$\times 10^{-5}$ CL=90%	_
$X(4250)^+ X(4250)^-$	< 2.66	$\times 10^{-5} \text{ CL}=90\%$	_

$X(4050)^{\pm} X(4250)^{\mp}$	< 4.42	$\times10^{-5}$ CL=90%	_
$Z_c(4430)^+ Z_c(4430)^-$	< 2.03	$\times10^{-5}$ CL=90%	_
$X(4055)^{\pm}X(4055)^{\mp}$	< 2.33	$\times10^{-5}$ CL=90%	_
$X(4055)^{\pm} Z_c(4430)^{\mp}$	< 4.55	$\times10^{-5}$ CL=90%	_
$ ho\pi$	< 3.68	$\times10^{-6}$ CL=90%	4697
$\omega \pi^0$	< 3.90	$\times 10^{-6}$ CL=90%	4697
$\pi^+\pi^-$	< 5	$\times 10^{-4}$ CL=90%	4728
K^+K^-	< 5	$\times 10^{-4} \text{ CL} = 90\%$	4704
$p\overline{p}$	< 5	$\times 10^{-4} \text{ CL}=90\%$	4636
$\pi^{+}\pi^{-}\pi^{0}$	$(2.1 \pm 0.$		4725
$\phi K^+ K^-$	$(2.4 \pm 0.$	5) \times 10 ⁻⁶	4623
$\omega \pi^+ \pi^-$	$(4.5 \pm 1.$,	4694
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	$(4.4 \pm 0.$	$8) \times 10^{-6}$	4667
$\phi f_2'(1525)$	< 1.63	$\times 10^{-6}$ CL=90%	4551
$\omega f_2(1270)$	< 1.79	$\times 10^{-6}$ CL=90%	4611
$\rho(770)a_2(1320)$	< 2.24	$\times 10^{-6}$ CL=90%	4605
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$	$(3.0 \pm 0.$	$8) \times 10^{-6}$	4579
$K_1(1270)^{\pm} \bar{K}^{\mp}$	< 2.41	$\times10^{-6}$ CL=90%	4634
$K_1(1400)^\pmK^\mp$	$(1.0 \pm 0.$	4) \times 10 ⁻⁶	4613
$b_1(1235)^{\pm}\pi^{\mp}$	< 1.25	$\times 10^{-6}$ CL=90%	4649
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	($1.28 \pm 0.$	30) \times 10 ⁻⁵	4720
$K_S^0 K^+ \pi^- + \text{c.c.}$	(1.6 ± 0 .	4) \times 10 ⁻⁶	4696
$K^{*}(892)^{0}\overline{K}^{0}+\text{c.c.}$	$(2.9 \pm 0.$	9) \times 10 ⁻⁶	4675
$K^*(892)^-K^+ + \text{c.c.}$	< 1.11	$\times10^{-6}$ CL=90%	4675
$f_1(1285)$ anything	$(4.6 \pm 3.$	1) \times 10 ⁻³	_
$D^*(2010)^\pm$ anything	(2.52 ± 0 .	20) %	_
$f_1(1285)X_{tetra}$	< 6.24	$\times 10^{-5}$ CL=90%	_
$\overline{^2H}$ anything	(2.85 ± 0 .	25) \times 10 ⁻⁵	_
Sum of 100 exclusive modes	(1.200 ± 0 .	017) %	_

Radiative decays

-			, -			
$\gamma \pi^+ \pi^-$	(6.3	± 1.8	$) \times 10^{-5}$		4728
$\gamma \pi^0 \pi^0$	(1.7	±0.7	$) \times 10^{-5}$		4728
$\gamma\pi\pi$ (S-wave)	(4.6	±0.7	$) \times 10^{-5}$		4728
$\gamma \pi^0 \eta$	<	2.4		$\times 10^{-6}$	CL=90%	4713
γ K ⁺ K ⁻	[ppaa] (1.14	±0.13	$) \times 10^{-5}$		4704
$\gamma p \overline{p}$	[qqaa] <	6		$\times 10^{-6}$	CL=90%	4636
$\gamma 2h^+2h^-$	(7.0	±1.5	$) \times 10^{-4}$		4720
$\gamma 3h^+3h^-$	(5.4	±2.0	$) \times 10^{-4}$		4703
γ 4 h^+ 4 h^-	(7.4	± 3.5	$) \times 10^{-4}$		4679
$\gamma \pi^+ \pi^- K^+ K^-$	(2.9	±0.9	$) \times 10^{-4}$		4686
$\gamma 2\pi^+ 2\pi^-$	(2.5	± 0.9	$) \times 10^{-4}$		4720
γ 3 π^+ 3 π^-	(2.5	± 1.2	$) \times 10^{-4}$		4703
$\gamma 2\pi^+ 2\pi^- K^+ K^-$	(2.4	± 1.2	$) \times 10^{-4}$		4659

$\gamma \pi^+ \pi^- \rho \overline{\rho}$	(1.5		$) \times 10^{-4}$		4604
$\gamma 2\pi^+ 2\pi^- \rho \overline{\rho}$	(4		$) \times 10^{-5}$		4563
$\gamma 2K^+2K^-$	(2.0	±2.0	$) \times 10^{-5}$		4601
$\gamma \eta'$ (958)	<	1.9			CL=90%	4682
$\gamma \eta$	<	1.0			CL=90%	4714
$\gamma f_0(980)$	<	3		$\times 10^{-5}$	CL=90%	4678
$\gamma f_2'(1525)$	(2.9	± 0.6	$) \times 10^{-5}$		4609
$\gamma f_2(1270)$	(1.01	± 0.06	$) \times 10^{-4}$		4644
$\gamma\eta($ 1405 $)$	<	8.2		$\times 10^{-5}$	CL=90%	4625
$\gamma f_0(1500)$	<	1.5		$\times 10^{-5}$	CL=90%	4608
$\gamma f_0(1500) \rightarrow \gamma K^+ K^-$	(1.0	± 0.4	$) \times 10^{-5}$		_
$\gamma f_0(1710)$	<	2.6		$\times 10^{-4}$	CL=90%	4571
$\gamma f_0(1710) \rightarrow \gamma K^+ K^-$	(1.01	±0.32	$) \times 10^{-5}$		_
$\gamma f_0(1710) \rightarrow \gamma \pi^+ \pi^-$	(5.3	±2.0	$) \times 10^{-6}$		_
$\gamma f_0(1710) \rightarrow \gamma \pi^0 \pi^0$	<	1.4			CL=90%	_
$\gamma f_0(1710) \rightarrow \gamma \eta \eta$	<	1.8			CL=90%	_
$\gamma f_4(2050)$	<	5.3		$\times 10^{-5}$	CL=90%	4515
$\gamma f_0(2200) \rightarrow \gamma K^+ K^-$	<	2		$\times 10^{-4}$	CL=90%	4475
$\gamma f_J(2220) \rightarrow \gamma K^+ K^-$	<	8			CL=90%	4469
$\gamma f_J(2220) \rightarrow \gamma \pi^+ \pi^-$	<	6		$\times 10^{-7}$	CL=90%	_
$\gamma f_J(2220) \rightarrow \gamma p \overline{p}$	<	1.1		$\times 10^{-6}$	CL=90%	_
$\gamma \eta$ (2225) $ ightarrow \gamma \phi \phi$	<	3		$\times 10^{-3}$	CL=90%	4469
$\gamma \eta_c(1S)$	<	2.9			CL=90%	4260
$\gamma \eta_c(2S)$	<	4			CL=90%	4031
$\gamma \chi_{c0}$	<	6.6		$\times 10^{-5}$	CL=90%	4114
$\gamma \chi_{c1}$	(4.7	$+2.4 \\ -1.9$	$) \times 10^{-5}$		4079
$\gamma \chi_{c2}$	<	7.6	1.5	$\times 10^{-6}$	CL=90%	4062
$\gamma \chi_{c1}$ (3872)		4			CL=90%	3938
$\gamma \chi_{c1}$ (3872), $\chi_{c1} \rightarrow$		2.8			CL=90%	_
$\pi^+\pi^-\pi^0J/\psi$						
$\gamma \chi_{c0}(3915) \rightarrow \omega J/\psi$	<	3.0		$\times 10^{-6}$	CL=90%	_
$\gamma \chi_{c1}(4140) \rightarrow \phi J/\psi$		2.2			CL=90%	_
$\gamma X \overline{X} (m_X < 3.1 \text{ GeV})$	[rraa] <	1			CL=90%	_
$\gamma X \overline{X} (m_X < 4.5 \text{ GeV})$	[ssaa] <			$\times10^{-4}$	CL=90%	_
$\gamma X \rightarrow \gamma + \geq 4 \text{ prongs}$	[ttaa] <			$\times10^{-4}$	CL=95%	_
$\gamma A^0 \rightarrow \gamma \mu^+ \mu^-$	[uuaa] <			$\times 10^{-6}$	CL=90%	_
$\gamma A^0 \rightarrow \gamma \tau^+ \tau^-$	[ppaa] <			$\times 10^{-4}$	CL=90%	- - - -
$\gamma A^0 \rightarrow \gamma g g$	[vvaa] <	1		%	CL=90%	_
$\gamma A^0 \rightarrow \gamma s \overline{s}$	[vvaa] <	1		$\times 10^{-3}$	CL=90%	_
1 F 1		(15)	اعدادان		_	
Lepton Family	number	(LF)	violati	ng modes	5	

$e^{\pm}\mu^{\mp}$	LF	< 3.9	$\times 10^{-7}$ CL=90%	4730
$\mu^{\pm} \tau^{\mp}$	LF	< 2.7	$\times10^{-6}$ CL=90%	4563
$e^{\pm} au^{\mp}$	LF	< 2.7	$\times 10^{-6}$ CL=90%	4563

$$\chi_{b0}(1P)$$
 [xxaa]

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m = 9859.44 \pm 0.42 \pm 0.31 \; \text{MeV}$

$\chi_{b0}(1P)$ DECAY MODES	Fraction (Γ_{i}	/Γ) Cor	nfidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \ \varUpsilon(1S)$	(1.94 ± 0.6)	.27) %		391
$D^0 X$	< 10.4	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	< 1.6	$\times 10^{-4}$	90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	$\times 10^{-5}$	90%	4875
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S} \ 2\pi^{+}\pi^{-}K^{-}K^{0}_{S} 2\pi^{0}$	< 5	$\times 10^{-4}$	90%	4846
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.1	$\times 10^{-4}$	90%	4905
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	(1.1 ± 0	.6) \times 10 ⁻⁴		4861
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.7	$\times 10^{-4}$	90%	4846
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$	< 5	$\times 10^{-4}$	90%	4828
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 1.6	$\times 10^{-4}$	90%	4827
$3\pi^{+}3\pi^{-}$	< 8	$\times10^{-5}$	90%	4904
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 6	$\times 10^{-4}$	90%	4881
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(2.4 ± 1	$.2) \times 10^{-4}$		4827
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.0	$\times 10^{-3}$	90%	4808
$4\pi^+4\pi^-$	< 8	$\times 10^{-5}$	90%	4880
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 2.1	$\times 10^{-3}$	90%	4850
$J/\psiJ/\psi$	< 7	$\times 10^{-5}$	90%	3836
$J/\psi\psi(2S)$	< 1.2	$\times 10^{-4}$	90%	3571
$\psi(2S)\psi(2S)$	< 3.1	$\times 10^{-5}$	90%	3273
$J/\psi(1S)$ anything	< 2.3	\times 10 ⁻³	90%	-

 $\chi_{b1}(1P)^{[xxaa]}$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass $m = 9892.78 \pm 0.26 \pm 0.31 \text{ MeV}$

$\chi_{b1}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma (1S)$	$(35.2 \pm 2.0) \%$		423
$D^0 X$	$(12.6 \pm 2.2) \%$		_

HTTP://PDG.LBL.GOV

Page 179

$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	(2.0 ± 0	$(0.6) \times 10^{-4}$		4892
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	(1.3 ± 0	$(0.5) \times 10^{-4}$		4892
$2\pi^{+}\pi^{-}K^{-}K_{5}^{0}2\pi^{0}$	< 6	$\times 10^{-4}$	90%	4863
$2\pi^{+}2\pi^{-}2\pi^{0}$	(8.0 ± 2	$(0.5) \times 10^{-4}$		4921
$2\pi^{+}2\pi^{-}K^{+}K^{-}$		$(0.5) \times 10^{-4}$		4878
$2\pi^+2\pi^-{\it K}^+{\it K}^-\pi^0$		$(.2) \times 10^{-4}$		4863
$2\pi^{+}2\pi^{-}K^{+}K^{-}2\pi^{0}$		$(0.2) \times 10^{-4}$		4845
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	(9.3 ± 3)	$(3.3) \times 10^{-4}$		4844
$3\pi^{+}3\pi^{-}$	($1.9~\pm 0$	$(0.6) \times 10^{-4}$		4921
$3\pi^{+}3\pi^{-}2\pi^{0}$		$(0.5) \times 10^{-3}$		4898
$3\pi^{+}3\pi^{-}K^{+}K^{-}$		$(0.8) \times 10^{-4}$		4844
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(7.5 ± 2)	$(0.6) \times 10^{-4}$		4825
$4\pi^{+}4\pi^{-}$	(2.6 ± 0)	$(0.9) \times 10^{-4}$		4897
$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.4 ± 0	$(0.6) \times 10^{-3}$		4867
ω anything	(4.9 ± 1	.4) %		_
ωX_{tetra}	< 4.44	$\times 10^{-4}$	90%	_
$J/\psi J/\psi$	< 2.7	\times 10 ⁻⁵	90%	3857
$J/\psi \psi(2S)$	< 1.7	\times 10 ⁻⁵	90%	3594
$\psi(2S)\psi(2S)$	< 6	\times 10 ⁻⁵	90%	3298
$J/\psi(1S)$ anything	< 1.1	$\times 10^{-3}$	90%	_
$J/\psi(1S)X_{tetra}$	< 2.27	\times 10 ⁻⁴	90%	_

$h_b(1P)$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Mass $m=9899.3\pm0.8~\mathrm{MeV}$

h _b (1P) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\eta_b(1S)\gamma$	(52 ⁺⁶ ₋₅) %	488

$$\chi_{b2}(1P)^{[xxaa]}$$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass $m = 9912.21 \pm 0.26 \pm 0.31 \; \text{MeV}$

$\chi_{b2}(1P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma (1S)$	(18.0±1.0) %		442
D^0X	< 7.9 %	90%	_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	$(8 \pm 5) \times 10^{-5}$	-5	4902
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 1.0 × 10	-4 90%	4901
$2\pi^{+}\pi^{-}\mathit{K}^{-}\mathit{K}_{S}^{0}2\pi^{0}$	$(5.3\pm2.4)\times10^{-2}$	-4	4873
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(3.5\pm1.4)\times10^{-1}$	-4	4931

HTTP://PDG.LBL.GOV

Page 180

$2\pi^{+}2\pi^{-}$ K^{+} K^{-}	$(1.1\pm0.4)\times10^{-4}$		4888
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	$(2.1\pm0.9)\times10^{-4}$		4872
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	$(3.9\pm1.8)\times10^{-4}$		4855
$3\pi^{+}2\pi^{-}\mathit{K}^{-}\mathit{K}^{0}_{S}\pi^{0}$	$< 5 \times 10^{-4}$	90%	4854
$3\pi^{+}3\pi^{-}$	$(7.0\pm3.1)\times10^{-5}$		4931
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.0\pm0.4)\times10^{-3}$		4908
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$<$ 8 $\times 10^{-5}$	90%	4854
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(3.6\pm1.5)\times10^{-4}$		4835
$4\pi^+4\pi^-$	$(8 \pm 4) \times 10^{-5}$		4907
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.8\pm0.7)\times10^{-3}$		4877
$J/\psiJ/\psi$	$<$ 4 \times 10 ⁻⁵	90%	3869
$J/\psi\psi$ (2 S)	$< 5 \times 10^{-5}$	90%	3608
$\psi(2S)\psi(2S)$	$< 1.6 \times 10^{-5}$	90%	3313
$J/\psi(1S)$ anything	$(1.5\pm0.4)\times10^{-3}$		_

T(25)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10023.4\pm0.5$ MeV $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13$ MeV Full width $\Gamma=31.98\pm2.63$ keV

r(2S) DECAY MODES	Fraction (Γ_i/Γ)		ale factor/ lence level	-
$\Upsilon(1S)\pi^+\pi^-$	(17.85± 0.26) 9	%		475
$\Upsilon(1S)\pi^0\pi^0$	(8.6 ± 0.4)	%		480
$\tau^+\tau^-$	$(2.00\pm\ 0.21)^{\circ}$	%		4686
$\mu^+\mu^-$	$(1.93\pm\ 0.17)^{\circ}$	%	S=2.2	5011
e^+e^-	$(1.91\pm\ 0.16)^{\circ}$	%		5012
$\Upsilon(1S)\pi^0$	< 4	× 10 ⁻⁵	CL=90%	531
$\Upsilon(1S)\eta$	(2.9 ± 0.4)	× 10 ⁻⁴	S=2.0	126
$J/\psi(1\mathcal{S})$ anything	< 6	× 10 ⁻³	CL=90%	4533
$J/\psi(1S)\eta_{m c}$	< 5.4	× 10 ⁻⁶	CL=90%	3984
$J/\psi(1S)\chi_{c0}$	< 3.4	× 10 ⁻⁶	CL=90%	3808
$J/\psi(1S)\chi_{c1}$	< 1.2	× 10 ⁻⁶	CL=90%	3765
$J/\psi(1S)\chi_{c2}$	< 2.0	× 10 ⁻⁶	CL=90%	3745
$J/\psi(1S)\eta_{c}(2S)$	< 2.5	× 10 ⁻⁶	CL=90%	3707
$J/\psi(1S)X(3940)$	< 2.0	× 10 ⁻⁶	CL=90%	3555
$J/\psi(1S)X(4160)$	< 2.0	× 10 ⁻⁶	CL=90%	3442
χ_{c1} anything	(2.2 ± 0.5)	× 10 ⁻⁴		_
$\chi_{c1}(1P)^0 X_{tetra}$	< 3.67	× 10 ⁻⁵	CL=90%	_
χ_{c2} anything	(2.3 ± 0.8)	× 10 ⁻⁴		_
$\psi(2S)\eta_c$	< 5.1	× 10 ⁻⁶	CL=90%	3732
$\psi(2S)\chi_{c0}$	< 4.7	× 10 ⁻⁶	CL=90%	3536
$\psi(2S)\chi_{c1}$	< 2.5	× 10 ⁻⁶	CL=90%	3488

HTTP://PDG.LBL.GOV

Page 181

$\psi(2S)\chi_{c2}$	< 1.9	$\times 10^{-6}$	CL=90%	3464
$\psi(2S)\eta_c(2S)$	< 3.3	$\times 10^{-6}$	CL=90%	3422
$\psi(2S)X(3940)$	< 3.9	$\times 10^{-6}$	CL=90%	3250
$\psi(2S)X(4160)$	< 3.9	$\times 10^{-6}$	CL=90%	3120
$Z_c(3900)^+ Z_c(3900)^-$	< 1.0	$\times 10^{-6}$	CL=90%	_
$Z_c(4200)^+ Z_c(4200)^-$	< 1.67	$\times 10^{-5}$	CL=90%	_
$Z_c(3900)^{\pm} Z_c(4200)^{\mp}$	< 7.3	$\times 10^{-6}$	CL=90%	_
$X(4050)^+ X(4050)^-$	< 1.35	$\times 10^{-5}$	CL=90%	_
$X(4250)^+ X(4250)^-$	< 2.67	$\times 10^{-5}$	CL=90%	_
$X(4050)^{\pm} X(4250)^{\mp}$	< 2.72	$\times 10^{-5}$	CL=90%	_
$Z_c(4430)^+ Z_c(4430)^-$	< 2.03	$\times 10^{-5}$	CL=90%	_
$X(4055)^{\pm} X(4055)^{\mp}$	< 1.11	$\times 10^{-5}$	CL=90%	_
$X(4055)^{\pm} Z_c(4430)^{\mp}$	< 2.11	$\times 10^{-5}$	CL=90%	_
$\overline{^2H}$ anything	$(2.78^{+}_{-0.2})^{0.3}$	$(20.6) \times 10^{-5}$	S=1.2	_
hadrons	(94 ± 11)) %		_
ggg	(58.8 ± 1.2)	!)%		_
γ g g	($1.87\pm~0.2$.8) %		_
ϕ K ⁺ K ⁻	(1.6 ± 0.4	·) × 10 ⁻⁶		4910
$\omega \pi^+ \pi^-$	< 2.58	$\times 10^{-6}$	CL=90%	4977
$K^*(892)^0 K^- \pi^+ + \text{c.c.}$	(2.3 ± 0.7	$() \times 10^{-6}$		4952
$\phi f_2'(1525)$	< 1.33	$\times 10^{-6}$	CL=90%	4843
$\omega f_2(1270)$	< 5.7	$\times 10^{-7}$	CL=90%	4899
$\rho(770) a_2(1320)$	< 8.8	$\times 10^{-7}$	CL=90%	4894
$K^*(892)^0 \overline{K}_2^*(1430)^0 + \text{c.c.}$	(1.5 ± 0.6	$(5) \times 10^{-6}$		4869
$K_1(1270)^{\pm} { ilde K}^{\mp}$	< 3.22	$\times 10^{-6}$	CL=90%	4921
$K_1(1400)^{\pm} K^{\mp}$	< 8.3	$\times 10^{-7}$	CL=90%	4901
$b_1(1235)^{\pm}\pi^{\mp}$	< 4.0	$\times 10^{-7}$	CL=90%	4935
$ ho\pi$	< 1.16	$\times 10^{-6}$	CL=90%	4981
$\pi^+\pi^-\pi^0$	< 8.0	$\times 10^{-7}$	CL=90%	5007
$\omega \pi^0$	< 1.63	$\times 10^{-6}$	CL=90%	4980
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	($1.30\pm~0.2$	$(8) \times 10^{-5}$		5002
$K_{S}^{0}K^{+}\pi^{-}+\text{c.c.}$	($1.14\pm~0.3$			4979
$K^*(892)^0 \overline{K}^0 + \text{c.c.}$	< 4.22	$\times 10^{-6}$	CL=90%	4959
$K^*(892)^-K^+ + \text{c.c.}$	< 1.45	$\times 10^{-6}$	CL=90%	4960
$f_1(1285)$ anything	(2.2 ± 1.6	_		_
$f_1(1285)X_{tetra}$	< 6.47	,	CL=90%	_
Sum of 100 exclusive modes	(2.90± 0.3	$(30) \times 10^{-3}$		_
	`	,		
	Radiative decays			
$\gamma \chi_{b1}(1P)$	(6.9 ± 0.4)	*		130
$\gamma \chi_{b2}(1P)$	(7.15± 0.3	•		111
$\gamma \chi_{b0}(1P)$	(3.8 ± 0.4	· .		163
$\gamma f_0(1710)$	< 5.9	_		4862
$\gamma f_2'(1525)$	< 5.3	× 10 ⁻⁴	CL=90%	4897

HTTP://PDG.LBL.GOV Page 182 Created: 7/10/2023 15:48

$\gamma f_2(1270)$	<	2.41	$\times 10^{-4}$	CL=90%	4931
$\gamma \eta_c(1S)$	<	2.7	$\times 10^{-5}$	CL=90%	4568
$\gamma \chi_{c0}$	<	1.0	$\times 10^{-4}$	CL=90%	4430
$\gamma \chi_{c1}$	<	3.6		CL=90%	4397
$\gamma \chi_{c2}$	<	1.5	$\times 10^{-5}$	CL=90%	4381
$\gamma \chi_{c1}(3872)$	<	2.1	$\times 10^{-5}$	CL=90%	4264
$\gamma \chi_{c1}$ (3872), $\chi_{c1} \rightarrow$	<	2.4	\times 10 ⁻⁶	CL=90%	_
$\pi^+\pi^-\pi^0 J/\psi$					
$\gamma \chi_{c0}(3915) \rightarrow \omega J/\psi$	<	2.8	$\times 10^{-6}$	CL=90%	_
$\gamma \chi_{c1}(4140) \rightarrow \phi J/\psi$	<	1.2	$\times 10^{-6}$	CL=90%	_
$\gamma X(4350) \rightarrow \phi J/\psi$	<	1.3	\times 10 ⁻⁶	CL=90%	_
$\gamma \eta_b(1S)$	($5.5 \begin{array}{c} + & 1.1 \\ - & 0.9 \end{array}$	$\times 10^{-4}$	S=1.2	605
$\gamma \eta_b(1S) ightarrow \gamma$ Sum of 26 exclu-	<	3.7		CL=90%	_
$\gamma \eta_b(1S) ightarrow \gamma { m Sum} { m of} 26 { m exclusive} \ { m sive} { m modes} \ \gamma { m X}_{b \overline{b}} ightarrow \gamma { m Sum} { m of} 26 { m exclusive} \ { m modes} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		3.7 4.9	\times 10 ⁻⁶		- -
sive modes $\gamma X_{b\overline{b}} \rightarrow \gamma \text{Sum of 26 exclusive}$	<	4.9	$ \times 10^{-6} $ $ \times 10^{-6} $	CL=90%	- - -
sive modes $\gamma X_{b\overline{b}} \rightarrow \gamma \text{Sum of 26 exclusive}$ modes	<	4.9	$\times 10^{-6}$ $\times 10^{-6}$ $\times 10^{-4}$	CL=90% CL=90%	- - -
sive modes $\gamma X_{b\overline{b}} \rightarrow \gamma \text{Sum of 26 exclusive}$ modes $\gamma X \rightarrow \gamma + \geq 4 \text{ prongs}$ [yyaa]	< < <	4.9 1.95	$\times 10^{-6}$ $\times 10^{-6}$ $\times 10^{-4}$ $\times 10^{-5}$	CL=90% CL=90% CL=95%	- - - -
sive modes	< < < < <	4.9 1.95 8 8.3	$\times 10^{-6}$ $\times 10^{-6}$ $\times 10^{-4}$ $\times 10^{-5}$ $\times 10^{-6}$	CL=90% CL=90% CL=95% CL=90% CL=90%	- - - -

$\Upsilon_2(1D)$

$$I^{G}(J^{PC}) = 0^{-}(2^{-})$$

was $\Upsilon(1D)$

 $\mathsf{Mass}\ m = 10163.7 \pm 1.4\ \mathsf{MeV}\quad (\mathsf{S} = 1.7)$

$ au_2(1D)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma \gamma \Upsilon(1S)$	seen	679
$\gamma \chi_{bJ}(1P)$	seen	300
$\eta \ \varUpsilon(1S)$	not seen	426
$\pi^+\pi^- \Upsilon(1S)$	$(6.6\pm1.6)\times10^{-3}$	623

$$\chi_{b0}(2P)^{[xxaa]}$$

$$I^G(J^{PC}) = 0^+(0^{++})$$

J needs confirmation.

Mass $m=10232.5\pm0.4\pm0.5~\mathrm{MeV}$

$\chi_{b0}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\gamma \gamma (2S)$	$(1.38\pm0.30)~\%$		207
$\gamma \ \varUpsilon(1S)$	$(3.8 \pm 1.7) \times 10^{-2}$	0-3	743
HTTP://PDG.LBL.GOV	Page 183 Cre	eated: 7/10/202	3 15:48

$D^0 X$	< 8.2	%	90%	_
$\pi^+\pi^-$ K $^+$ K $^-\pi^0$	< 3.4	\times 10 ⁻⁵	90%	5064
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 5	\times 10 ⁻⁵	90%	5063
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 2.2	\times 10 ⁻⁴	90%	5036
$2\pi^{+}2\pi^{-}2\pi^{0}$	< 2.4	\times 10 ⁻⁴	90%	5092
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	< 1.5	\times 10 ⁻⁴	90%	5050
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	< 2.2	\times 10 ⁻⁴	90%	5035
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	< 1.1	\times 10 ⁻³	90%	5019
$3\pi^{+}2\pi^{-}\mathit{K}^{-}\mathit{K}^{0}_{S}\pi^{0}$	< 7	\times 10 ⁻⁴	90%	5018
$3\pi^{+}3\pi^{-}$	< 7	\times 10 ⁻⁵	90%	5091
$3\pi^{+}3\pi^{-}2\pi^{0}$	< 1.2	$\times 10^{-3}$	90%	5070
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	< 1.5	\times 10 ⁻⁴	90%	5017
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	< 7	\times 10 ⁻⁴	90%	4999
$4\pi^+4\pi^-$	< 1.7	\times 10 ⁻⁴	90%	5069
$4\pi^{+}4\pi^{-}2\pi^{0}$	< 6	$\times 10^{-4}$	90%	5039

$$\chi_{b1}(2P)^{[xxaa]}$$

$$I^G(J^{PC}) = 0^+(1^{++})$$

J needs confirmation.

Mass
$$m=10255.46\pm0.22\pm0.50~{
m MeV}$$
 $m_{\chi_{b1}(2P)}-m_{\chi_{b0}(2P)}=23.5\pm1.0~{
m MeV}$

$\chi_{b1}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\omega \ \varUpsilon(1S)$	$(1.63^{+0.40}_{-0.34})\%$	134
$\gamma \ \varUpsilon (2S)$	(18.1 ±1.9) %	229
$\gamma \Upsilon(1S)$	$(9.9 \pm 1.0)\%$	764
$\pi\pi\chi_{b1}(1P)$	$(9.1 \pm 1.3) \times 10^{-3}$	238
$D^0 X$	($8.8~\pm1.7$) %	_
$\pi^+\pi^-$ K $^+$ K $^ \pi^0$	$(3.1 \pm 1.0) \times 10^{-4}$	5075
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	$(1.1 \pm 0.5) \times 10^{-4}$	5075
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	$(7.7 \pm 3.2) \times 10^{-4}$	5047
$2\pi^{+}2\pi^{-}2\pi^{0}$	$(5.9 \pm 2.0) \times 10^{-4}$	5104
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}$	$(10 \pm 4) \times 10^{-5}$	5062
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}\pi^{0}$	$(5.5 \pm 1.8) \times 10^{-4}$	5047
$2\pi^{+}2\pi^{-}\mathit{K}^{+}\mathit{K}^{-}2\pi^{0}$	$(10 \pm 4) \times 10^{-4}$	5030
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	$(6.7 \pm 2.6) \times 10^{-4}$	5029
$3\pi^{+}3\pi^{-}$	$(1.2 \pm 0.4) \times 10^{-4}$	5103
$3\pi^{+}3\pi^{-}2\pi^{0}$	$(1.2 \pm 0.4) \times 10^{-3}$	5081
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	$(2.0 \pm 0.8) \times 10^{-4}$	5029
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	$(6.1 \pm 2.2) \times 10^{-4}$	5011
$4\pi^{+}4\pi^{-}$	$(1.7 \pm 0.6) \times 10^{-4}$	5080
$4\pi^{+}4\pi^{-}2\pi^{0}$	$(1.9 \pm 0.7) \times 10^{-3}$	5051

$$h_b(2P)$$

$$I^{G}(J^{PC}) = 0^{-}(1^{+})^{-}$$

Mass $m = 10259.8 \pm 1.2 \text{ MeV}$

h _b (2P) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
hadrons	not seen	_
$\eta_b(1S)\gamma$	(22 ± 5) %	825
$\eta_b(2S)\gamma$	(48±13) %	257

$\chi_{b2}(2P)^{[xxaa]}$

$$I^G(J^{PC}) = 0^+(2^{++})$$

J needs confirmation.

Mass
$$m=10268.65\pm0.22\pm0.50$$
 MeV $m_{\chi_{b2}(2P)}-m_{\chi_{b1}(2P)}=13.10\pm0.24$ MeV

χ_{b2} (2P) DECAY MODES	Fraction (Γ_{i}	/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\omega \ \varUpsilon(1S)$	$(1.10^{+0.3}_{-0.3}$	⁴ ₀) %		194
$\gamma \ \varUpsilon(2S)$	(8.9 ± 1.2)) %		242
$\gamma \Upsilon(1S)$	(6.6 ± 0.8)) %		776
$\pi \pi \chi_{b2}(1P)$	(5.1 ± 0.9)) × 10	-3	229
$D^0 X$	< 2.4	%	90%	_
$\pi^{+}\pi^{-}K^{+}K^{-}\pi^{0}$	< 1.1	\times 10 ⁻¹	-4 90%	5082
$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	< 9	× 10 ⁻	-5 90%	5082
$2\pi^{+}\pi^{-}K^{-}K_{S}^{0}2\pi^{0}$	< 7	× 10	-4 90%	5054
$2\pi^{+}2\pi^{-}2\pi^{0}$	(3.9 ± 1.6)) × 10 ⁻	-4	5110
$2\pi^{+}2\pi^{-}K^{+}K^{-}$	(9 ± 4)) × 10 ⁻¹	-5	5068
$2\pi^{+}2\pi^{-}$ K^{+} K^{-} π^{0}	(2.4 ± 1.1)) × 10 ⁻¹	-4	5054
$2\pi^{+}2\pi^{-}$ K^{+} K^{-} $2\pi^{0}$	(4.7 ± 2.3)) × 10	-4	5037
$3\pi^{+}2\pi^{-}K^{-}K^{0}_{S}\pi^{0}$	< 4	\times 10 ⁻	-4 90%	5036
$3\pi^{+}3\pi^{-}$	(9 ± 4)) × 10 ⁻¹	-5	5110
$3\pi^{+}3\pi^{-}2\pi^{0}$	(1.2 ± 0.4)) × 10	-3	5088
$3\pi^{+}3\pi^{-}K^{+}K^{-}$	(1.4 ± 0.7)) × 10	-4	5036
$3\pi^{+}3\pi^{-}K^{+}K^{-}\pi^{0}$	(4.2 ± 1.7)) × 10	-4	5017
$4\pi^{+}4\pi^{-}$	(9 ± 5)) × 10 ⁻	-5	5087
$4\pi^{+}4\pi^{-}2\pi^{0}$	(1.3 ± 0.5)) × 10 ⁻	-3	5058

T(35)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10355.1\pm0.5$ MeV $m_{\Upsilon(3S)}-m_{\Upsilon(2S)}=331.50\pm0.13$ MeV Full width $\Gamma=20.32\pm1.85$ keV

HTTP://PDG.LBL.GOV

Page 185

r(3 s) DECAY MODES	Fraction (Γ_j/Γ) Co	Scale factor/ nfidence level		
$\Upsilon(2S)$ anything	(10.6 ± 0.8) %		296	
$\Upsilon(2S)\pi^{+}\pi^{-}$	(2.82± 0.18) %	S=1.6	176	
$\Upsilon(2S)\pi^0\pi^0$	(1.85± 0.14) %		190	
Υ (2S) $\gamma\gamma$	$(5.0 \pm 0.7)\%$		326	
$\Upsilon(2\dot{S})\pi^{0}$	< 5.1 × 10 ⁻	4 CL=90%	298	
$\gamma(1S)\pi^+\pi^-$	(4.37± 0.08) %		813	
$\Upsilon(1S)\pi^0\pi^0$	($2.20\pm~0.13)~\%$		816	
$\Upsilon(1S)\eta$	< 1 × 10	4 CL=90%	677	
$\Upsilon(1S)\pi^0$	< 7 × 10	⁵ CL=90%	846	
$h_b(1P)\pi^0$	$<$ 1.2 \times 10	3 CL=90%	426	
$h_b(1P)\pi^0 \rightarrow \gamma \eta_b(1S)\pi^0$	(4.3 ± 1.4) $ imes 10^-$		_	
$h_b(1P)\pi^+\pi^-$	$<$ 1.2 \times 10 ⁻	4 CL=90%	352	
$\tau^+\tau^-$	$(2.29\pm\ 0.30)\ \%$		4863	
$\mu^+\mu^-$	($2.18\pm~0.21)~\%$	S=2.1	5176	
e^+e^-	(2.18± 0.20) %		5178	
hadrons	$(93 \pm 12)\%$		_	
ggg	$(35.7 \pm 2.6)\%$	2	_	
$\frac{\gamma g}{2\pi}g$	$(9.7 \pm 1.8) \times 10^{-1}$	_	_	
$\frac{1}{2}H$ anything	$(2.33\pm~0.33)\times10^{-4}$	5	_	
	Radiative decays			
$\gamma \chi_{b2}(2P)$	(13.1 \pm 1.6) %	S=3.4	86	
$\gamma \chi_{b1}(2P)$	(12.6 \pm 1.2) %	S=2.4	99	
$\gamma \chi_{b0}(2P)$	($5.9~\pm~0.6$) %	S=1.4	122	
$\gamma \chi_{b2}(1P)$	(10.0 \pm 1.0) \times 10 $^-$		433	
$\gamma \chi_{b1}(1P)$	$(9 \pm 5) \times 10^{-1}$	_	452	
$\gamma \chi_{b0}(1P)$	$(2.7 \pm 0.4) \times 10^{-1}$	4	484	
$\gamma \eta_b(2S)$	< 6.2 × 10		350	
$\gamma \eta_b(1S)$	$(5.1 \pm 0.7) \times 10^{-}$		912	
$\gamma A^0 \rightarrow \gamma$ hadrons		5 CL=90%	_	
		4 CL=95%	_	
$ \gamma A^0 \to \gamma \mu^+ \mu^- \gamma A^0 \to \gamma \tau^+ \tau^- $		6 CL=90%	_	
,		4 CL=90%	_	
Lepton Family number (LF) violating modes				
$e^{\pm} au^{\mp}$ LF			5025	
$e^{\pm}_{\mu}^{\mp}$ LF	< 3.6 × 10 ⁻		5177	
$\mu^{\pm} \tau^{\mp}$ LF	< 3.1 × 10 ⁻	6 CL=90%	5025	

$$\chi_{b1}(3P)^{[xxaa]}$$

$$I^{G}(J^{PC}) = 0^{+}(1^{+})$$

J needs confirmation.

Mass $m=10513.4\pm0.7~\mathrm{MeV}$

$\chi_{b1}(3P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\gamma(1S)\gamma$	seen	1000
Υ (2 S) γ	seen	479
$\Upsilon(3S)\gamma$	seen	157

$$\chi_{b2}(3P)^{[xxaa]}$$

$$I^{G}(J^{PC}) = 0^{+}(2^{+})$$

J needs confirmation.

Mass $m = 10524.0 \pm 0.8 \; \text{MeV}$

$\chi_{b2}(3P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$r(3S)\gamma$	seen	168

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

also known as $\Upsilon(10580)$

Mass $m=10579.4\pm1.2~\mathrm{MeV}$

Full width $\Gamma=20.5\pm2.5~\text{MeV}$

T(4S) DECAY MODES	Fraction (Γ_i/I)	Γ) Conf	idence level	<i>p</i> (MeV/ <i>c</i>)
$B\overline{B}$	> 96	%	95%	326
B^+B^-	(51.4 ± 0.6)	i) %		331
$D_{\underline{s}}^+$ anything $+$ c.c. $B^0\overline{B}^0$	(17.8 ± 2.6)	i) %		_
$B^0\overline{\overline{B}}{}^0$	(48.6 ± 0.6)	5)%		326
$J/\psi K_S^0 + (J/\psi, \eta_c) K_S^0$	< 4	$\times 10^{-7}$	90%	_
non- $B\overline{B}$	< 4	%	95%	_
e^+e^-	$(1.57\pm0.0$	$(8) \times 10^{-5}$		5290
$ ho^+ ho^-$	< 5.7	\times 10 ⁻⁶	90%	5233
$K^*(892)^0 \overline{K}^0$	< 2.0	\times 10 ⁻⁶	90%	5240
$J/\psi(1S)$ anything	< 1.9	\times 10 ⁻⁴	95%	_
D^{st+} anything $+$ c.c.	< 7.4	%	90%	5099
ϕ anything	(7.1 ± 0.6	i) %		5240
$\phi\eta$	< 1.8	\times 10 ⁻⁶	90%	5226
$\phi \eta'$	< 4.3	$\times 10^{-6}$	90%	5196
$ ho\eta$	< 1.3	\times 10 ⁻⁶	90%	5247
HTTP://PDG.LBL.GOV	Page 187	Created:	7/10/2023	3 15:48

$ ho\eta'$	< 2.5	\times 10 ⁻⁶	90%	5217
$\varUpsilon(1S)$ anything	< 4	\times 10 ⁻³	90%	1053
$\varUpsilon(1S)\pi^+\pi^-$	(8.2 ± 0	$(.4) \times 10^{-5}$		1026
\varUpsilon (1 S) η	(1.81 ± 0	$(.18) \times 10^{-4}$		924
$\Upsilon(1S)\eta'$	(3.4 ± 0	$(.9) \times 10^{-5}$		_
$\Upsilon(2S)\pi^+\pi^-$	(8.2 ± 0	$(.8) \times 10^{-5}$		468
$h_b(1P)\pi^+\pi^-$	not seen			600
$h_b(1P)\eta$	(2.18±0	$(.21) \times 10^{-3}$		390
$\eta_b(1S)\omega$	< 1.8	\times 10 ⁻⁴	90%	_
2H anything	< 1.3	\times 10 ⁻⁵	90%	_

Double Radiative Decays

$$\gamma \gamma \Upsilon(\mathsf{D}) \rightarrow \gamma \gamma \eta \Upsilon(1S)$$
 < 2.3 × 10⁻⁵ 90% -

$\Upsilon(10860)$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Mass $m=10885.2^{+2.6}_{-1.6}$ MeV Full width $\Gamma=37\pm4$ MeV

au(10860) DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/ <i>c</i>)
$B\overline{B}X$	$(76.2 \begin{array}{c} +2.7 \\ -4.0 \end{array})\%$		_
В <u>Т</u>	(5.5 ±1.0) %		1322
$B\overline{B}^*$ + c.c.	$(13.7 \pm 1.6)\%$		_
$B^*\overline{B}^*$	(38.1 ± 3.4) %		1127
$B\overline{B}^{(*)}\pi$	< 19.7 %	90%	1015
$B\overline{B}\pi$	(0.0 ± 1.2) %		1015
$B^*\overline{B}\pi + B\overline{B}^*\pi$	(7.3 \pm 2.3) %		_
$\underline{B}^*\overline{B}^*\pi$	(1.0 ± 1.4) %		739
$BB\pi\pi$	< 8.9 %	90%	551
$B_s^{(*)} \overline{B}_s^{(*)} B_s \overline{B}_s$	(20.1 \pm 3.1) %		905
$B_s \overline{B}_s$	$(5 \pm 5) \times 3$	10^{-3}	905
$B_s \overline{B}_s^* + \text{c.c.}$	(1.35 ± 0.32) %		_
$B_s^* \overline{B}_s^*$	(17.6 \pm 2.7) %		543
no open-bottom	$(3.8 \begin{array}{c} +5.0 \\ -0.5 \end{array}) \%$		_
e^+e^-	(8.3 ± 2.1) \times 3	10^{-6}	5443
$K^*(892)^0 \overline{K}{}^0$	< 1.0 ×	10^{-5} 90%	5395
\varUpsilon (1S) $\pi^+\pi^-$	(5.3 \pm 0.6) \times 3	10^{-3}	1306
\varUpsilon (1 ${\cal S}$) η	(8.5 ± 1.7) \times 3	10^{-4}	1229
$\Upsilon(1S)\eta'$	< 6.9 × 3	10^{-5} 90%	985
$\Upsilon(2S)\pi^+\pi^-$	(7.8 \pm 1.3) \times 3		783
Υ (2S) η	(4.1 \pm 0.6) \times 1	10^{-3}	639
$\Upsilon(3S)\pi^+\pi^-$	(4.8 $^{+1.9}_{-1.7}$) $ imes$	10 ⁻³	440

 $\mathsf{HTTP:}//\mathsf{PDG.LBL.GOV}$

Page 188

$\Upsilon(1S) K^+ K^-$	(6.1 ±1	.8) \times 10 ⁻⁴		959
$\eta \Upsilon_J(1D)$	(4.8 ±1	1.1×10^{-3}		_
$h_b(1P)\pi^+\pi^-$	($3.5 \begin{array}{c} +1 \\ -1 \end{array}$	$\frac{10}{3}$) × 10 ⁻³		903
$h_b(2P)\pi^+\pi^-$	($5.7 \begin{array}{c} +1 \\ -2 \end{array}$	$^{7}_{1}$) × 10 ⁻³		544
$\chi_{bJ}(1P)\pi^{+}\pi^{-}\pi^{0}$	(2.5 ±2	$.3) \times 10^{-3}$		894
$\chi_{b0}(1P)\pi^{+}\pi^{-}\pi^{0}$	<	6.3	\times 10 ⁻³	90%	894
$\chi_{b0}(1P)\omega$	<	3.9	\times 10 ⁻³	90%	631
$\chi_{b0}(1P)(\pi^{+}\pi^{-}\pi^{0})_{non-\omega}$	<	4.8	\times 10 ⁻³	90%	_
$\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$	(1.85 ± 0	$.33) \times 10^{-3}$		861
$\chi_{b1}(1P)\omega$	(1.57 ± 0	$.30) \times 10^{-3}$		582
$\chi_{b1}(1P)(\pi^+\pi^-\pi^0)_{non-\omega}$	(5.2 ±1	$.9) \times 10^{-4}$		_
$\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$	(1.17 ± 0	$(30) \times 10^{-3}$		841
$\chi_{b2}(1P)\omega$	(6.0 ± 2	$.7) \times 10^{-4}$		552
$\chi_{b2}(1P)(\pi^+\pi^-\pi^0)_{non-\omega}$	(6 ± 4	$) \times 10^{-4}$		_
$\gamma X_b \rightarrow \gamma \Upsilon(1S) \omega$	<	3.8	$\times10^{-5}$	90%	_
$\eta_b(1S)\omega$	<	1.3	$\times10^{-3}$	90%	1177
$\eta_b(2S)\omega$	<	5.6	$\times 10^{-3}$	90%	399

Inclusive Decays.

These decay modes are submodes of one or more of the decay modes above.

ϕ anything	$(13.8 \begin{array}{c} +2.4 \\ -1.7 \end{array})\%$
D^0 anything $+$ c.c.	(108 ±8)%
D_s anything $+$ c.c.	(46 ±6) %
J/ψ anything	(2.06±0.21) %
B^0 anything $+$ c.c.	(77 ±8) %
B^+ anything $+$ c.c.	$(72 \pm 6)\%$

γ(11020)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

Created: 7/10/2023 15:48

Mass $m=11000\pm 4$ MeV Full width $\Gamma=24^{+8}_{-6}$ MeV

au(11020) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
e^+e^-	$(5.4^{+1.9}_{-2.1}) \times 10^{-6}$	5500
$\chi_{bJ}(1P)\pi^+\pi^-\pi^0$	$(9 \begin{array}{c} +9 \\ -8 \end{array}) \times 10^{-3}$	1007
$\chi_{b1}(1P)\pi^{+}\pi^{-}\pi^{0}$	seen	975
$\chi_{b2}(1P)\pi^{+}\pi^{-}\pi^{0}$	seen	956

OTHER MESONS

 $Z_c(3900)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})$$

was X(3900)

Mass $m=3887.1\pm2.6$ MeV (S = 1.7) Full width $\Gamma=28.4\pm2.6$ MeV

Z_c (3900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi \pi h_{c} \pi^{\pm}$	seen	699
$h_c\pi^\pm$	not seen	318
$\eta_c \pi^+ \pi^-$	not seen	759
$(DD^*)^{\pm}$	seen	_
$D^0 D^{*-} + \text{c.c.}$	seen	152
$D^{-}D^{*0}$ + c.c.	seen	143
$\omega \pi^{\pm}$	not seen	1862
$J/\psi\eta$	not seen	510
$D^{+}D^{*-}$ + c.c	seen	_
$D^0 \overline{D}^{*0} + \text{c.c}$	seen	_

X(4020)[±]

$$I^{G}(J^{PC}) = 1^{+}(?^{?-})$$

Mass $m=4024.1\pm1.9~{
m MeV}$ Full width $\Gamma=13\pm5~{
m MeV}~({
m S}=1.7)$

X(4020) [±] DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$h_c(1P)\pi$ $D^*\overline{D}^*$	seen	450
$D^*\overline{D}^*$	seen	85
$D\overline{D}^*+$ c.c.	not seen	542
$\eta_{\scriptscriptstyle \mathcal{C}} \pi^+ \pi^- \ J/\psi(1S) \pi^\pm$	not seen	872
$J/\psi(1S)\pi^\pm$	not seen	811

$Z_c(4430)$

$$I^G(J^{PC}) = 1^+(1^{+-})$$

G, C need confirmation.

was $X(4430)^{\pm}$

Quantum numbers not established.

Mass $m=4478^{+15}_{-18}~{
m MeV}$ Full width $\Gamma=181\pm31~{
m MeV}$

HTTP://PDG.LBL.GOV

Page 190

Z_c (4430) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\pi^+\psi(2S)$	seen	711
$\pi^+ J/\psi$	seen	1162

$Z_b(10610)$

$$I^{G}(J^{PC}) = 1^{+}(1^{+})^{-}$$

was X(10610)

Mass $m=10607.2\pm 2.0$ MeV Full width $\Gamma=18.4\pm 2.4$ MeV

<i>Z_b</i> (10610) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\varUpsilon(1S)\pi^+$	$(5.4^{+1.9}_{-1.5}) \times 10^{-3}$	1077
$\Upsilon(1S)\pi^0$	not seen	1077
$\Upsilon(2S)\pi^+$	$(3.6^{+1.1}_{-0.8})\%$	551
$\Upsilon(2S)\pi^0$	seen	552
$\Upsilon(3S)\pi^+$	$(2.1^{+0.8}_{-0.6})\%$	207
$\Upsilon(3S)\pi^0$	seen	210
$h_b(1P)\pi^+$	$(3.5^{+1.2}_{-0.9})\%$	671
$h_b(2P)\pi^+$	$(4.7^{+1.7}_{-1.3})\%$	313
$B^{+}\overline{B}{}^{0}$	not seen	505
$B^+\overline{B}^{*0} + B^{*+}\overline{B}^{0}$	$(85.6^{+2.1}_{-2.9})\%$	_

$Z_b(10650)$

$$I^G(J^{PC}) = 1^+(1^{+-})$$

I, G, C need confirmation.

was $X(10650)^{\pm}$

Mass $m=10652.2\pm1.5~{\rm MeV}$ Full width $\Gamma=11.5\pm2.2~{\rm MeV}$

 $Z_h(10650)^-$ decay modes are charge conjugates of the modes below.

$Z_b(10650)^+$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
\varUpsilon (1S) π^+	$(1.7^{+0.8}_{-0.6}) \times 10^{-3}$	1117
$\Upsilon(2S)\pi^+$	$(1.4^{+0.6}_{-0.4})\%$	595
$\Upsilon(3S)\pi^+$	$(1.6^{+0.7}_{-0.5})\%$	259

HTTP://PDG.LBL.GOV

Page 191

$h_b(1P)\pi^+$	(8.4 + 2.9) %	714
$h_b(2P)\pi^+$	(15 ±4)%	360
$B^{+}\overline{B}{}^{0}$	not seen	703
$B^+ \overline{B}^{*0} + B^{*+} \overline{B}^{0}$	not seen	_
$B^{*+}\overline{B}^{*0}$	$(74 \begin{array}{cc} +4 \\ -6 \end{array}) \%$	122

NOTES

- [a] See the review on "Form Factors for Radiative Pion and Kaon Decays" for definitions and details.
- [b] Measurements of $\Gamma(e^+\nu_e)/\Gamma(\mu^+\nu_\mu)$ always include decays with γ 's, and measurements of $\Gamma(e^+\nu_e\gamma)$ and $\Gamma(\mu^+\nu_\mu\gamma)$ never include lowenergy γ 's. Therefore, since no clean separation is possible, we consider the modes with γ 's to be subreactions of the modes without them, and let $[\Gamma(e^+\nu_e) + \Gamma(\mu^+\nu_\mu)]/\Gamma_{\rm total} = 100\%$.
- [c] See the π^\pm Particle Listings for the energy limits used in this measurement; low-energy γ 's are not included.
- [d] Derived from an analysis of neutrino-oscillation experiments.
- [e] Forbidden by angular momentum conservation.
- [f] C parity forbids this to occur as a single-photon process.
- [g] The $\omega \rho$ interference is then due to $\omega \rho$ mixing only, and is expected to be small. If $e\mu$ universality holds, $\Gamma(\rho^0 \to \mu^+ \mu^-) = \Gamma(\rho^0 \to e^+ e^-) \times 0.99785$.
- [h] Our estimate. See the Particle Listings for details.
- [i] See the "Note on $a_1(1260)$ " in the $a_1(1260)$ Particle Listings in PDG 06, Journal of Physics **G33** 1 (2006).
- [j] See also the $\omega(1650)$.
- [k] See also the $\omega(1420)$.
- [/] See the note in the K^{\pm} Particle Listings.
- [n] Neglecting photon channels. See, *e.g.*, A. Pais and S.B. Treiman, Phys. Rev. **D12**, 2744 (1975).
- [o] The definition of the slope parameters of the $K \to 3\pi$ Dalitz plot is as follows (see also "Note on Dalitz Plot Parameters for $K \to 3\pi$ Decays" in the K^{\pm} Particle Listings):

$$|M|^2 = 1 + g(s_3 - s_0)/m_{\pi^+}^2 + \cdots$$

- [p] For more details and definitions of parameters see the Particle Listings.
- [q] See the K^{\pm} Particle Listings for the energy limits used in this measurement.

- [r] Most of this radiative mode, the low-momentum γ part, is also included in the parent mode listed without γ 's.
- [s] Structure-dependent part.
- [t] Direct-emission branching fraction.
- [u] Violates angular-momentum conservation.
- [v] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [x] The *CP*-violation parameters are defined as follows (see also "Note on *CP* Violation in $K_S \to 3\pi$ " and "Note on *CP* Violation in K_L^0 Decay" in the Particle Listings):

$$\begin{split} \eta_{+-} &= |\eta_{+-}| \mathrm{e}^{i\phi_{+-}} = \frac{A(K_L^0 \to \pi^+ \pi^-)}{A(K_S^0 \to \pi^+ \pi^-)} = \epsilon + \epsilon' \\ \eta_{00} &= |\eta_{00}| \mathrm{e}^{i\phi_{00}} = \frac{A(K_L^0 \to \pi^0 \pi^0)}{A(K_S^0 \to \pi^0 \pi^0)} = \epsilon - 2\epsilon' \\ \delta &= \frac{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) - \Gamma(K_L^0 \to \pi^+ \ell^- \nu)}{\Gamma(K_L^0 \to \pi^- \ell^+ \nu) + \Gamma(K_L^0 \to \pi^+ \ell^- \nu)} \;, \\ \mathrm{Im}(\eta_{+-0})^2 &= \frac{\Gamma(K_S^0 \to \pi^+ \pi^- \pi^0)^{CP \text{ viol.}}}{\Gamma(K_L^0 \to \pi^+ \pi^- \pi^0)} \;, \\ \mathrm{Im}(\eta_{000})^2 &= \frac{\Gamma(K_S^0 \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L^0 \to \pi^0 \pi^0 \pi^0)} \;. \end{split}$$

where for the last two relations *CPT* is assumed valid, *i.e.*, $\text{Re}(\eta_{+-0}) \simeq 0$ and $\text{Re}(\eta_{000}) \simeq 0$.

- [y] See the K_S^0 Particle Listings for the energy limits used in this measurement.
- [z] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [aa] $\text{Re}(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.
- [bb] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_I^0 \to \pi^+\pi^-\gamma(DE)$.
- [cc] See the K_L^0 Particle Listings for the energy limits used in this measurement.
- [dd] Allowed by higher-order electroweak interactions.
- [ee] Violates *CP* in leading order. Test of direct *CP* violation since the indirect *CP*-violating and *CP*-conserving contributions are expected to be suppressed.

- [ff] See our minireview under the $K_2(1770)$ in the 2004 edition of this *Review*.
- [gg] This result applies to $Z^0 \to c\overline{c}$ decays only. Here ℓ^+ is an average (not a sum) of e^+ and μ^+ decays.
- [hh] See the Particle Listings for the (complicated) definition of this quantity.
- [ii] The branching fraction for this mode may differ from the sum of the submodes that contribute to it, due to interference effects. See the relevant papers in the Particle Listings.
- [jj] These subfractions of the $K^-2\pi^+$ mode are uncertain: see the Particle Listings.
- [kk] See the listings under " $D \to K\pi\pi\pi$ partial wave analyses" and our 2008 Review (Physics Letters **B667** 1 (2008)) for measurements of submodes of this mode.
- [//] The unseen decay modes of the resonances are included.
- [nn] This is not a test for the $\Delta C=1$ weak neutral current, but leads to the $\pi^+\ell^+\ell^-$ final state.
- [oo] This mode is not a useful test for a ΔC =1 weak neutral current because both quarks must change flavor in this decay.
- [pp] In the 2010 Review, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
- [qq] This value is obtained by subtracting the branching fractions for 2-, 4- and 6-prongs from unity.
- [rr] This is the sum of our $K^-2\pi^+\pi^-$, $K^-2\pi^+\pi^-\pi^0$, $\overline{K}^02\pi^+2\pi^-$, $K^+2K^-\pi^+$, $2\pi^+2\pi^-$, $2\pi^+2\pi^-\pi^0$, $K^+K^-\pi^+\pi^-\pi^0$, branching fractions.
- [ss] This is the sum of our $K^-3\pi^+2\pi^-$ and $3\pi^+3\pi^-$ branching fractions.
- [tt] The branching fractions for the $K^-e^+\nu_e$, $K^*(892)^-e^+\nu_e$, $\pi^-e^+\nu_e$, and $\rho^-e^+\nu_e$ modes add up to 6.17 \pm 0.17 %.
- [uu] This is a doubly Cabibbo-suppressed mode.
- [vv] Submodes of the $D^0 oup K^0_S \pi^+ \pi^- \pi^0$ mode with a K^* and/or ρ were studied by COFFMAN 92B, but with only 140 events. With nothing new for 18 years, we refer to our 2008 edition, Physics Letters **B667** 1 (2008), for those results.
- [xx] This branching fraction includes all the decay modes of the resonance in the final state.
- [yy] This limit assumes the average of B($D^0 \to K^- e^+ \nu_e$) and B($D^0 \to K^- \mu^+ \nu_\mu$) for the B($D^0 \to K^- \ell^+ \nu_\ell$) value.

- [zz] This is the purely e^+ semileptonic branching fraction: the e^+ fraction from τ^+ decays has been subtracted off. The sum of our (non- τ) e^+ exclusive fractions an $e^+\nu_e$ with an $\eta,~\eta',~\phi,~K^0,~{\rm or}~K^{*0}$ is 5.99 \pm 0.31 %.
- [aaa] This fraction includes η from η' decays.
- [bbb] The sum of our exclusive η' fractions $\eta' e^+ \nu_e$, $\eta' \mu^+ \nu_\mu$, $\eta' \pi^+$, $\eta' \rho^+$, and $\eta' K^+$ is $11.8 \pm 1.6\%$.
- [ccc] This branching fraction includes all the decay modes of the final-state resonance.
- [ddd] A test for $u\overline{u}$ or $d\overline{d}$ content in the D_s^+ . Neither Cabibbo-favored nor Cabibbo-suppressed decays can contribute, and $\omega-\phi$ mixing is an unlikely explanation for any fraction above about 2×10^{-4} .
- [eee] We decouple the $D_s^+ o \phi \pi^+$ branching fraction obtained from mass projections (and used to get some of the other branching fractions) from the $D_s^+ o \phi \pi^+$, $\phi o K^+ K^-$ branching fraction obtained from the Dalitz-plot analysis of $D_s^+ o K^+ K^- \pi^+$. That is, the ratio of these two branching fractions is not exactly the $\phi o K^+ K^-$ branching fraction 0.491.
- [fff] This is the average of a model-independent and a K-matrix parametrization of the $\pi^+\pi^-$ S-wave and is a sum over several f_0 mesons.
- [ggg] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [hhh] An $CP(\pm 1)$ indicates the CP=+1 and CP=-1 eigenstates of the D^0 $\overline{D}{}^0$ system.
 - [iii] D denotes D^0 or \overline{D}^0 .
 - [jjj] D^{*0}_{CP+} decays into $D^0\pi^0$ with the D^0 reconstructed in CP-even eigenstates K^+K^- and $\pi^+\pi^-$.
- [kkk] \overline{D}^{**} represents an excited state with mass $2.2 < M < 2.8 \text{ GeV/c}^2$.
 - [///] $\chi_{c1}(3872)^+$ is a hypothetical charged partner of the $\chi_{c1}(3872)$.
- [nnn] $\Theta(1710)^{++}$ is a possible narrow pentaquark state and G(2220) is a possible glueball resonance.
- [ooo] $(\overline{\Lambda}_c^- p)_s$ denotes a low-mass enhancement near 3.35 GeV/c².
- [ppp] Stands for the possible candidates of $K^*(1410)$, $K_0^*(1430)$ and $K_2^*(1430)$.
- $[qqq] \ B^0$ and B^0_s contributions not separated. Limit is on weighted average of the two decay rates.
- [rrr] This decay refers to the coherent sum of resonant and nonresonant J^P = 0^+ $K\pi$ components with $1.60 < m_{K\pi} < 2.15$ GeV/c².
- [sss] X(214) is a hypothetical particle of mass 214 MeV/c² reported by the HyperCP experiment, Physical Review Letters **94** 021801 (2005)

Created: 7/10/2023 15:48

- [ttt] $\Theta(1540)^+$ denotes a possible narrow pentaquark state.
- [uuu] ψ_{DS} is a GeV-scale dark sector antibaryon (mass range 1–3.9 GeV/c²).
- [vvv] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/ c^2 and 214.3 MeV/ c^2 , respectively.
- [xxx] These values are model dependent.
- [yyy] Here "anything" means at least one particle observed.
- [zzz] This is a B($B^0 o D^{*-} \ell^+ \nu_\ell$) value.
- [aaaa] D^{**} stands for the sum of the $D(1\,{}^{1}\!P_{1})$, $D(1\,{}^{3}\!P_{0})$, $D(1\,{}^{3}\!P_{1})$, $D(1\,{}^{3}\!P_{2})$, $D(2\,{}^{1}\!S_{0})$, and $D(2\,{}^{1}\!S_{1})$ resonances.
- [bbaa] $D^{(*)}\overline{D}^{(*)}$ stands for the sum of $D^*\overline{D}^*$, $D^*\overline{D}$, $D\overline{D}^*$, and $D\overline{D}$.
- [ccaa] X(3915) denotes a near-threshold enhancement in the $\omega J/\psi$ mass spectrum.
- [ddaa] Inclusive branching fractions have a multiplicity definition and can be greater than 100%.
- [eeaa] D_j represents an unresolved mixture of pseudoscalar and tensor D^{**} (P-wave) states.
- [ffaa] Not a pure measurement. See note at head of B_s^0 Decay Modes.
- [ggaa] For $E_{\gamma} > 100$ MeV.
- [hhaa] $\Theta(1540)$ is a hypothetical pentaquark state of 1.54 GeV/c² mass and a width of less than 25 MeV/c².
 - [iiaa] Includes $p\overline{p}\pi^+\pi^-\gamma$ and excludes $p\overline{p}\eta$, $p\overline{p}\omega$, $p\overline{p}\eta'$.
- [jjaa] For a narrow state A with mass less than 960 MeV.
- [kkaa] For a narrow scalar or pseudoscalar A^0 with mass 0.21–3.0 GeV.
- [\emph{llaa}] For a dark photon \emph{U} with mass between 100 and 2100 MeV.
- [nnaa] For a narrow resonance in the range 2.2 < M(X) < 2.8 GeV.
- [ooaa] J^{PC} known by production in e^+e^- via single photon annihilation. I^G is not known; interpretation of this state as a single resonance is unclear because of the expectation of substantial threshold effects in this energy region.
- [ppaa] $2m_{\tau} < M(\tau^{+}\tau^{-}) < 9.2 \text{ GeV}$
- [qqaa] 2 GeV $< m_{K^+K^-} < 3$ GeV
- [rraa] $X\overline{X}$ = vectors with m < 3.1 GeV
- [ssaa] X and \overline{X} = zero spin with m < 4.5 GeV
- [ttaa] $1.5 \text{ GeV} < m_X < 5.0 \text{ GeV}$
- [uuaa] 201 MeV < M($\mu^+\mu^-$) < 3565 MeV
- [vvaa] 0.5 GeV $< m_X <$ 9.0 GeV, where m_X is the invariant mass of the hadronic final state.

Created: 7/10/2023 15:48

[xxaa] Spectroscopic labeling for these states is theoretical, pending experimental information.

[yyaa]
$$1.5 \text{ GeV} < m_X < 5.0 \text{ GeV}$$

[zzaa]
$$1.5 \text{ GeV} < m_X < 5.0 \text{ GeV}$$

[aabb] For $m_{\tau^+\,\tau^-}$ in the ranges 4.03–9.52 and 9.61–10.10 GeV.

Created: 7/10/2023 15:48

N BARYONS (S = 0, I = 1/2)

 $p, N^+ = uud; \quad n, N^0 = udd$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass $m=1.007276466621\pm0.000000000053$ u Mass $m=938.27208816\pm0.00000029$ MeV [a] $\left|m_{m p}-m_{\overline{m p}}
ight|/m_{m p}~<~7 imes10^{-10}$, CL $=90\%~^{[b]}$ $\left|q_p + q_{\overline{p}}\right|/e < 7 imes 10^{-10}$, CL = 90% [b] $|q_p + q_e|/e < 1 \times 10^{-21} [c]$ Magnetic moment $\mu = 2.7928473446 \pm 0.0000000008 \ \mu_{N}$ $(\mu_{p} + \mu_{\overline{p}}) / \mu_{p} = (0.002 \pm 0.004) \times 10^{-6}$ Electric dipole moment $d < 0.021 \times 10^{-23}$ e cm Electric polarizability $\alpha = (11.2 \pm 0.4) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (2.5 \pm 0.4) \times 10^{-4} \text{ fm}^3$ (S = 1.2) Charge radius, μp Lamb shift = 0.84087 \pm 0.00039 fm $^{[d]}$ Charge radius = 0.8409 ± 0.0004 fm $^{[d]}$ Magnetic radius $= 0.851 \pm 0.026$ fm ^[e] Mean life $\tau > 9 \times 10^{29}$ years, CL = 90% [f] $(p \rightarrow \text{invisible mode})$ Mean life $\tau > 10^{31}$ to 10^{33} years f (mode dependent)

See the "Note on Nucleon Decay" in our 1994 edition (Phys. Rev. **D50**, 1173) for a short review.

The "partial mean life" limits tabulated here are the limits on τ/B_i , where τ is the total mean life and B_i is the branching fraction for the mode in question. For N decays, p and n indicate proton and neutron partial lifetimes.

p DECAY MODES	Partial mean (10 ³⁰ years)		idence level	<i>p</i> (MeV/ <i>c</i>)
	Antilepton + meson	1		
$N ightarrow e^+ \pi$	> 5300 (n), 3		90%	459
$N ightarrow \mu^+ \pi$	> 3500 (n), 3	> 7700 (p)	90%	453
$N ightarrow u \pi$	> 1100 (n), 3	> 390 (p)	90%	459
$ ho ightarrow ~e^+ \eta$	> 10000		90%	309
$ ho ightarrow \ \mu^+ \eta$	> 4700		90%	297
$n ightarrow \ u \eta$	> 158		90%	310
$N ightarrow \ e^+ ho$	> 217 (n), >	720 (p)	90%	149
$N \rightarrow \mu^+ \rho$	> 228 (n), >	570 (p)	90%	113
https://pdg.lbl.gov	Page 1	Created:	5/31/2023	09:09

$N \rightarrow \nu \rho$	$> 19 \ (n), > 162 \ (p)$	90%	149
$p \rightarrow e^+ \omega$	> 1600	90%	143
$p \rightarrow \mu^+ \omega$	> 2800	90%	105
$n \rightarrow \nu \omega$	> 108	90%	144
$N \rightarrow e^+ K$	> 17 (n), > 1000 (p)	90%	339
$N o \mu^+ K$	> 26 (n), > 1600 (p)	90%	329
$N \rightarrow \nu K$	> 86 (n), $>$ 5900 (p)	90%	339
$n o u K_S^0$	> 260	90%	338
$p \to e^+ K^* (892)^0$	> 84	90%	45
$N \rightarrow \nu K^*(892)$	>78 (n), >51 (p)	90%	45
	Antilepton + mesons		
$p \rightarrow e^+ \pi^+ \pi^-$	> 82	90%	448
$p \rightarrow e^+ \pi^0 \pi^0$	> 147	90%	449
$n \rightarrow e^+\pi^-\pi^0$	> 52	90%	449
$p \rightarrow \mu^+ \pi^+ \pi^-$	> 133	90%	425
$p \rightarrow \mu^+ \pi^0 \pi^0$	> 101	90%	427
$n \rightarrow \mu^+ \pi^- \pi^0$	> 74	90%	427
$n \rightarrow e^+ K^0 \pi^-$	> 18	90%	319
	_		
	Lepton + meson		
$n \rightarrow e^- \pi^+$	> 65	90%	459
$n \rightarrow \mu^- \pi^+$	> 49	90%	453
$n \rightarrow e^- \rho^+$	> 62	90%	150
$n \rightarrow \mu^- \rho^+$	> 7	90%	115
$n \rightarrow e^- K^+$	> 32	90%	340
$n \rightarrow \mu^- K^+$	> 57	90%	330
	Lepton + mesons		
$p \rightarrow e^- \pi^+ \pi^+$	> 30	90%	448
$n \rightarrow e^- \pi^+ \pi^0$	> 29	90%	449
$p \rightarrow \mu^- \pi^+ \pi^+$	> 17	90%	425
$n \rightarrow \mu^- \pi^+ \pi^0$	> 34	90%	427
$p ightarrow e^- \pi^+ K^+$	> 75	90%	320
$p \rightarrow \mu^- \pi^+ K^+$	> 245	90%	279
A	ntilepton + photon(s)		
$p \rightarrow e^+ \gamma$	> 670	90%	469
$p \rightarrow \mu^+ \gamma$	> 478	90%	463
$n \rightarrow \nu \gamma$	> 550	90%	470
$p \rightarrow e^+ \gamma \gamma$	> 100	90% 90%	469
$n \rightarrow \nu \gamma \gamma$	> 100	90% 90%	
, ,		9070	470
	ilepton + single massless		
$p \rightarrow e^+ X$	> 790	90%	-
$p \rightarrow \mu^+ X$	> 410	90%	_

 ${\sf https://pdg.lbl.gov}$

Page 2

Three (or more) leptons

$ ho ightarrow \ e^+ e^+ e^-$	> 793	90%	469
$ ho ightarrow \ e^+ \mu^+ \mu^-$	> 359	90%	457
$p ightarrow e^+ u u$	> 170	90%	469
$n ightarrow e^+ e^- u$	> 257	90%	470
$n ightarrow ~\mu^+ e^- u$	> 83	90%	464
$n ightarrow \mu^+ \mu^- \nu$	> 79	90%	458
$ ho ightarrow \ \mu^+ e^+ e^-$	> 529	90%	463
$p ightarrow~\mu^-e^+e^+$	$> 1.90 \times 10^4$	90%	463
$ ho ightarrow \ \mu^+ \mu^+ \mu^-$	> 675	90%	439
$p \rightarrow \mu^+ \nu \nu$	> 220	90%	463
$ ho ightarrow e^- \mu^+ \mu^+$	> 6	90%	457
$n \rightarrow 3\nu$	$> 5 \times 10^{-4}$	90%	470
	Inclusive modes		
$N ightarrow e^+$ anything	> 0.6 (n, p)	90%	_

$N ightarrow \ e^+$ anything	> 0.6 (n, p)	90%	_
$N ightarrow \ \mu^+$ anything	> 12 (n, p)	90%	_
$N ightarrow \ e^+ \pi^0$ anything	> 0.6 (n, p)	90%	_

$\Delta B = 2$ dinucleon modes

The following are lifetime limits per iron nucleus.

$pp ightarrow \pi^+\pi^+$	> 72.2	90%	_
$pn \rightarrow \pi^+\pi^0$	> 170	90%	_
$nn \rightarrow \pi^+\pi^-$	> 0.7	90%	_
$nn \rightarrow \pi^0 \pi^0$	> 404	90%	_
$pp ightarrow K^+K^+$	> 170	90%	_
$p p ightarrow e^+ e^+$	> 5.8	90%	_
$ ho ho ightarrow ~e^+ \mu^+$	> 3.6	90%	_
$ ho ho ightarrow \ \mu^+ \mu^+$	> 1.7	90%	_
$pn ightarrow e^{+}\overline{ u}$	> 260	90%	_
$pn ightarrow \mu^+ \overline{ u}$	> 200	90%	_
$pn ightarrow au^+ \overline{ u}_{ au}$	> 29	90%	_
$nn \rightarrow \text{ invisible}$	> 1.4	90%	_
nn $ ightarrow u_{m e} \overline{ u}_{m e}$	> 1.4	90%	_
nn $ ightarrow$ $ u_{\mu}\overline{ u}_{\mu}$	> 1.4	90%	_
$pn \rightarrow \text{invisible}$	> 0.06	90%	_
$pp \rightarrow \text{invisible}$	> 0.11	90%	_

P DECAY MODES

p DECAY MODES	Partial mean life (years)	Confidence level	$p \pmod{/c}$
$\overline{p} ightarrow e^- \gamma$	$>7\times10^{5}$	90%	469
$\overline{p} \rightarrow \mu^- \gamma$	$> 5 \times 10^4$	90%	463
$\frac{1}{\overline{p}} \rightarrow e^{-\pi^0}$	$>$ 4 \times 10 ⁵	90%	459

Created: 5/31/2023 09:09

https://pdg.lbl.gov

Page 3

$\overline{ ho} ightarrow \ \mu^- \pi^0$	$> 5 \times 10^4$	90%	453
$\overline{\it p} ightarrow \it e^- \eta$	$> 2 \times 10^4$	90%	309
$\overline{\rho} \rightarrow \mu^- \eta$	$> 8 \times 10^{3}$	90%	297
$\overline{ ho} ightarrow e^- { m K}^0_S$	> 900	90%	337
$\overline{ ho} ightarrow \ \mu^- K_S^{ar{0}}$	$> 4 \times 10^3$	90%	326
$\overline{ ho} ightarrow \ e^- K_L^0$	$> 9 \times 10^{3}$	90%	337
$\overline{ ho} ightarrow \ \mu^- K_L^0$	$> 7 \times 10^{3}$	90%	326
$\overline{ ho} ightarrow e^- \gamma \gamma$	$> 2 \times 10^4$	90%	469
$\overline{\rho} \to \mu^- \gamma \gamma$	$> 2 \times 10^4$	90%	463
$\overline{ ho} ightarrow e^- \omega$	> 200	90%	143

n

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Mass $m=1.0086649160\pm0.0000000005$ u Mass $m=939.5654205\pm0.0000005$ MeV ^[a] $(m_n - m_{\overline{n}})/m_n = (9 \pm 6) \times 10^{-5}$ $m_n - m_p = 1.2933324 \pm 0.0000005 \text{ MeV}$ = 0.00138844919(45) uMean life $\tau = 878.4 \pm 0.5 \text{ s}$ (S = 1.8) $c\tau = 2.6335 \times 10^8 \text{ km}$ Magnetic moment $\mu=-1.9130427\pm0.0000005~\mu_N$ Electric dipole moment $d < 0.18 \times 10^{-25}$ ecm, CL = 90%Mean-square charge radius $\langle r_n^2 \rangle = -0.1155 \pm 0.0017 \text{ fm}^2$ Magnetic radius $\sqrt{\langle r_M^2 \rangle} = 0.864^{+0.009}_{-0.008}$ fm Electric polarizability $\alpha = (11.8 \pm 1.1) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (3.7 \pm 1.2) \times 10^{-4} \text{ fm}^3$ Charge $q = (-0.2 \pm 0.8) \times 10^{-21} e$ Mean $n \overline{n}$ -oscillation time > 8.6 × 10⁷ s, CL = 90% (free n) Mean $n \overline{n}$ -oscillation time > 4.7×10^8 s, CL = 90% [g] (bound n) Mean nn'-oscillation time > 448 s, CL = 90% [h]

$pe^-\nu_e$ decay parameters [i]

n DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
$ ho e^- \overline{ u}_e$	100 %		1
$pe^-\overline{ u}_e\gamma$	[/] $(9.2\pm0.7)\times10^{-2}$	₁ –3	1
hydrogen-atom $\overline{ u}_e$	< 2.7 × 10	95%	1.19
Charge conserve	ation (Q) violating r	node	
$p\nu_{e}\overline{\nu}_{e}$ Q	< 8 × 10	o ⁻²⁷ 68%	1

$N(1440) 1/2^+$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1360 to 1380 (\approx 1370) MeV -2Im(pole position) = 180 to 205 (\approx 190) MeV Breit-Wigner mass = 1410 to 1470 (\approx 1440) MeV Breit-Wigner full width = 250 to 450 (\approx 350) MeV

N(1440) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	55–75 %	398
$N\eta$	<1 %	†
$N\pi\pi$	17–50 %	347
$\mathit{\Delta}(1232)\pi$, $\mathit{P} ext{-}$ wave	6–27 %	147
$N\sigma$	11–23 %	_
$p\gamma$, helicity $=1/2$	0.035–0.048 %	414
$n\gamma$, helicity=1/2	0.02-0.04 %	413

N(1520) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1505 to 1515 (\approx 1510) MeV -2Im(pole position) = 105 to 120 (\approx 110) MeV Breit-Wigner mass = 1510 to 1520 (\approx 1515) MeV Breit-Wigner full width = 100 to 120 (\approx 110) MeV

N(1520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	55–65 %	453
$N\eta$	0.07-0.09 %	142
$N\pi\pi$	25–35 %	410
$\Delta(1232)\pi$	22–34 %	225
${\it \Delta}(1232)\pi$, $\it S$ -wave	15–23 %	225
$arDelta(1232)\pi$, $ extit{D}$ -wave	7–11 %	225
$N \rho$	10–16 %	†
$N ho$, $S\!\!=\!\!3/2$, $S\!\!$ -wave	10–16 %	†

https://pdg.lbl.gov

Page 5

$N ho$, $S\!\!=\!\!1/2$, $D\!\!-\!\!$ wave	0.2-0.4 %	†
$N\sigma$	<10 %	_
$m{ ho}\gamma$	0.31-0.52 %	467
$p\gamma$, helicity $=1/2$	0.01-0.02 %	467
$p\gamma$, helicity=3/2	0.30-0.50 %	467
$n\gamma$	0.30-0.53 %	466
$n\gamma$, helicity $=1/2$	0.04-0.10 %	466
$n\gamma$, helicity=3/2	0.25-0.45 %	466
$p\gamma$, helicity=3/2 $n\gamma$ $n\gamma$, helicity=1/2	0.30-0.50 % 0.30-0.53 % 0.04-0.10 %	467 466 466

N(1535) 1/2⁻

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$$

Re(pole position) = 1500 to 1520 (\approx 1510) MeV -2Im(pole position) = 80 to 130 (\approx 110) MeV Breit-Wigner mass = 1515 to 1545 (\approx 1530) MeV Breit-Wigner full width = 125 to 175 (\approx 150) MeV

N(1535) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	32–52 %	464
$N\eta$	30–55 %	176
$N\pi\pi$	4–31 %	422
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	1-4 %	240
$N \rho$	2-17 %	†
$N ho$, $S\!\!=\!\!1/2$, $S\!\!-\!\!$ wave	2–16 %	†
N ho , $S=3/2$, D -wave	<1 %	†
$N\sigma$	2–10 %	_
$N(1440)\pi$	5–12 %	†
$p\gamma$, helicity $=1/2$	0.15-0.30 %	477
$n\gamma$, helicity=1/2	0.01-0.25 %	477

N(1650) 1/2⁻

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^-)$$

Re(pole position) = 1650 to 1680 (\approx 1665) MeV -2Im(pole position) = 100 to 170 (\approx 135) MeV Breit-Wigner mass = 1635 to 1665 (\approx 1650) MeV Breit-Wigner full width = 100 to 150 (\approx 125) MeV

N(1650) DECAY MODES	Fraction (Γ_i/Γ_i)	p (MeV/c)
$N\pi$	50–70 %	547
$N\eta$	15–35 %	348
ΛK	5-15 %	169
$N\pi\pi$	20-58 %	514
$\Delta(1232)\pi$, $ extit{\it D}$ -wave	6–18 %	345
https://pdg.lbl.gov	Page 6	Created: 5/31/2023 09:09

$N \rho$	12–22 %	†
$N\rho$, $S=1/2$, S -wave	<4 %	†
$N\rho$, $S=3/2$, D -wave	12–18 %	†
$N\sigma$	2–18 %	_
$N(1440)\pi$	6–26 %	150
$p\gamma$, helicity $=1/2$	0.04-0.20 %	558
$n\gamma$, helicity=1/2	0.003-0.17 %	557

N(1675) 5/2

$$I(J^P) = \frac{1}{2}(\frac{5}{2})$$

Re(pole position) = 1650 to 1660 (\approx 1655) MeV -2Im(pole position) = 120 to 150 (\approx 135) MeV Breit-Wigner mass = 1665 to 1680 (\approx 1675) MeV Breit-Wigner full width = 130 to 160 (\approx 145) MeV

N(1675) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	38–42 %	564
$N\eta$	< 1 %	376
ΛK	<0.04 %	216
$N\pi\pi$	25–45 %	532
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	23–37 %	366
N $ ho$	0.1–0.9 %	†
$N \rho$, $S=1/2$	<0.2 %	†
$N ho$, $S\!\!=\!\!3/2$, $D\!\!$ -wave	0.1–0.7 %	†
$N\sigma$	3–7 %	_
$oldsymbol{ ho}\gamma$	0-0.02 %	575
$ ho\gamma$, helicity $=1/2$	0-0.01 %	575
$p\gamma$, helicity=3/2	0-0.01 %	575
$n\gamma$	0-0.15 %	574
$n\gamma$, helicity=1/2	0-0.05 %	574
$n\gamma$, helicity=3/2	0-0.10 %	574

N(1680) 5/2⁺

$$I(J^P) = \frac{1}{2}(\frac{5}{2}^+)$$

Re(pole position) = 1660 to 1680 (\approx 1670) MeV -2Im(pole position) = 110 to 135 (\approx 120) MeV Breit-Wigner mass = 1680 to 1690 (\approx 1685) MeV Breit-Wigner full width = 115 to 130 (\approx 120) MeV

N(1680) DECAY MODES	Fraction (Γ_i	p (MeV/c)
$N\pi$	60–70 %	571
https://pdg.lbl.gov	Page 7	Created: 5/31/2023 09:09

$N\eta$	<1 %	386
$N\pi\pi$	28–53 %	539
Δ (1232) π	11–23 %	374
${\it \Delta}(1232)\pi$, $\it P-wave$	4–10 %	374
$arDelta(1232)\pi$, $\mathit{F} ext{-}$ wave	1–13 %	374
N ho	8-11 %	†
$N ho$, $S\!\!=\!\!3/2$, $P\!\!$ -wave	6–8 %	†
N $ ho$, $S\!\!=\!\!3/2$, $F\!\!$ -wave	2-3 %	†
$N\sigma$	9–19 %	_
$oldsymbol{ ho}\gamma$	0.21-0.32 %	581
$p\gamma$, helicity=1/2	0.001-0.011 %	581
$p\gamma$, helicity=3/2	0.20-0.32 %	581
$n\gamma$	0.021-0.046 %	581
$n\gamma$, helicity $=1/2$	0.004-0.029 %	581
$n\gamma$, helicity=3/2	0.01-0.024 %	581

N(1700) 3/2

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1650 to 1750 (\approx 1700) MeV -2Im(pole position) = 100 to 300 (\approx 200) MeV Breit-Wigner mass = 1650 to 1800 (\approx 1720) MeV Breit-Wigner full width = 100 to 300 (\approx 200) MeV

N(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	7–17 %	594
$N\eta$	1–2 %	422
$N\omega$	10–34 %	†
ΛK	1–2 %	283
$N\pi\pi$	>89 %	564
$\Delta(1232)\pi$	55–85 %	402
${\it \Delta}(1232)\pi$, $\it S$ -wave	50–80 %	402
$\mathit{\Delta}(1232)\pi$, $\mathit{D} ext{-}$ wave	4–14 %	402
$N\rho$, $S=3/2$, S -wave	32–44 %	74
$N\sigma$	2–14 %	_
$N(1440)\pi$	3–11 %	225
$N(1520)\pi$	<4 %	145
$p\gamma$	0.01-0.05 %	604
$p\gamma$, helicity=1/2	0.0-0.024 %	604
$p\gamma$, helicity=3/2	0.002-0.026 %	604
$n\gamma$	0.01-0.13 %	603
$n\gamma$, helicity $=1/2$	0.0–0.09 %	603
$n\gamma$, helicity=3/2	0.01-0.05 %	603

N(1710) 1/2⁺

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1650 to 1750 (\approx 1700) MeV -2Im(pole position) = 80 to 160 (\approx 120) MeV Breit-Wigner mass = 1680 to 1740 (\approx 1710) MeV Breit-Wigner full width = 80 to 200 (\approx 140) MeV

N(1710) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$N\pi$	5–20 %	588
$N\eta$	10–50 %	412
$N\omega$	1–5 %	†
ΛK	5–25 %	269
ΣK	seen	138
$N\pi\pi$	14–48 %	557
${\it \Delta}(1232)\pi$, $\it P$ -wave	3–9 %	394
$N\rho$, $S=1/2$, P -wave	11–23 %	†
$N\sigma$	<16 %	_
$N(1535)\pi$	9–21 %	113
$p\gamma$, helicity $=1/2$	0.002-0.08 %	598
$n\gamma$, helicity= $1/2$	0.0-0.02%	597

N(1720) 3/2⁺

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1660 to 1710 (\approx 1680) MeV -2Im(pole position) = 150 to 300 (\approx 200) MeV Breit-Wigner mass = 1680 to 1750 (\approx 1720) MeV Breit-Wigner full width = 150 to 400 (\approx 250) MeV

N(1720) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	8–14 %	594
$N\eta$	1–5 %	422
$N\omega$	12–40 %	†
ΛK	4–19 %	283
$N\pi\pi$	>50 %	564
$\Delta(1232)\pi$	47–89 %	402
$arDelta(1232)\pi$, $ extit{\it P}$ -wave	47–77 %	402
${\it \Delta}(1232)\pi$, $\it F$ -wave	<12 %	402
$N ho$, $S{=}1/2$, $P{-}$ wave	1–2 %	74
$N\sigma$	2–14 %	_
$N(1440)\pi$	<2 %	225
$N(1520)\pi$, $\emph{S} ext{-}$ wave	1–5 %	145

https://pdg.lbl.gov

Page 9

$p\gamma$	0.05-0.25 %	604
$p\gamma$, helicity $=1/2$	0.05-0.15 %	604
$p\gamma$, helicity=3/2	0.002-0.16 %	604
$n\gamma$	0.0-0.016 %	603
$n\gamma$, helicity $=1/2$	0.0-0.01 %	603
$n\gamma$, helicity=3/2	0.0-0.015 %	603

N(1875) 3/2⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1850 to 1950 (\approx 1900) MeV -2Im(pole position) = 100 to 220 (\approx 160) MeV Breit-Wigner mass = 1850 to 1920 (\approx 1875) MeV Breit-Wigner full width = 120 to 250 (\approx 200) MeV

N(1875) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	3–11 %	695
$N\eta$	3–16 %	559
$N\omega$	15–25 %	371
ΛK	1-2 %	454
ΣK	0.3–1.1 %	384
$N\pi\pi$	>56 %	670
$\Delta(1232)\pi$	4–44 %	520
${\it \Delta}(1232)\pi$, $\it S$ -wave	2–21 %	520
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	2–23 %	520
$N\rho$, $S=3/2$, S -wave	36–56 %	379
$N\sigma$	16–60 %	_
$N(1440)\pi$	2–8 %	365
$N(1520)\pi$	<2 %	301
ΛK*(892)	<0.2 %	†
$p\gamma$	0.001-0.025 %	703
$p\gamma$, helicity=1/2	0.001-0.021 %	703
$p\gamma$, helicity=3/2	<0.003 %	703
$n\gamma$	<0.040 %	702
$n\gamma$, helicity=1/2	<0.007 %	702
$n\gamma$, helicity=3/2	<0.033 %	702

$N(1880) 1/2^{+}$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1820 to 1900 (\approx 1860) MeV -2Im(pole position) = 180 to 280 (\approx 230) MeV Breit-Wigner mass = 1830 to 1930 (\approx 1880) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV

https://pdg.lbl.gov

Page 10

N(1880) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	3–31 %	698
$N\eta$	1-55 %	563
$N\omega$	12–28 %	377
ΛK	1-3 %	459
ΣK	10–24 %	389
$N\pi\pi$	>32 %	673
$\Delta(1232)\pi$	5–42 %	524
$N\rho$, $S=1/2$, P -wave	19–45 %	385
$N\sigma$	8–40 %	539
$N(1535)\pi$	4–12 %	293
<i>N a</i> ₀ (980)	1-5 %	†
ΛK*(892)	0.5–1.1 %	†
$p\gamma$, helicity $=1/2$	seen	706
$n\gamma$, helicity=1/2	0.002-0.63 %	705

N(1895) 1/2⁻⁻

$$I(J^P)=\tfrac{1}{2}(\tfrac{1}{2}^-)$$

Re(pole position) = 1890 to 1930 (\approx 1910) MeV -2Im(pole position) = 80 to 140 (\approx 110) MeV Breit-Wigner mass = 1870 to 1920 (\approx 1895) MeV Breit-Wigner full width = 80 to 200 (\approx 120) MeV

N(1895) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$N\pi$	2–18 %	707
$N\eta$	15–45 %	575
$N\eta'$	10–40 %	†
$N\omega$	16–40 %	395
ΛK	3–23 %	473
ΣK	6–20 %	405
$N\pi\pi$	17–74 %	683
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	3–11 %	535
N ho	14–50 %	403
$N ho$, $S \!\! = \!\! 1/2$, $S \!\! - \!\! $ wave	<18 %	403
$N\rho$, $S=3/2$, D -wave	14–32 %	403
$N\sigma$	<13 %	_
$N(1440)\pi$	2–12 %	382
$\Lambda K^*(892)$	4-9 %	†
$p\gamma$, helicity $=1/2$	0.01–0.06 %	715
$n\gamma$, helicity=1/2	0.003-0.05 %	715

$N(1900) 3/2^+$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1900 to 1940 (\approx 1920) MeV -2Im(pole position) = 90 to 160 (\approx 130) MeV Breit-Wigner mass = 1890 to 1950 (\approx 1920) MeV Breit-Wigner full width = 100 to 320 (\approx 200) MeV

N(1900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	1–20 %	723
$N\eta$	2–14 %	595
$N\eta'$	4–8 %	151
$N\omega$	7–13 %	424
ΛK	2–20 %	495
ΣΚ	3–7 %	431
$N\pi\pi$	>56 %	699
$\Delta(1232)\pi$	30–70 %	553
${\it \Delta}(1232)\pi$, $\it P$ -wave	9–25 %	553
${\it \Delta}(1232)\pi$, $\it F-wave$	21–45 %	553
$N \rho$, $S=1/2$	25–40 %	432
$N\sigma$	1–7 %	_
$N(1520)\pi$	7–23 %	341
$N(1535)\pi$	4–10 %	328
ΛK*(892)	< 0.2 %	†
$p\gamma$	0.001-0.025 %	731
$p\gamma$, helicity=1/2	0.001-0.021 %	731
$p\gamma$, helicity=3/2	<0.003 %	731
$n\gamma$	<0.040 %	730
$n\gamma$, helicity=1/2	<0.007 %	730
$n\gamma$, helicity=3/2	<0.033 %	730

N(2060) 5/2⁻

$$I(J^P) = \frac{1}{2}(\frac{5}{2})$$

Re(pole position) = 2020 to 2130 (\approx 2070) MeV -2Im(pole position) = 350 to 430 (\approx 400) MeV Breit-Wigner mass = 2030 to 2200 (\approx 2100) MeV Breit-Wigner full width = 300 to 450 (\approx 400) MeV

N(2060) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	7–12 %	834
$N\eta$	2–38 %	729
$N\omega$	1–7 %	600

https://pdg.lbl.gov

Page 12

ΛK	10–20 %	644
ΣK	1–5 %	593
$N\pi\pi$	12–52 %	814
${\it \Delta}(1232)\pi$, ${\it D} ext{-}$ wave	4-10 %	680
$N \rho$	5–33 %	605
$N\rho$, $S=1/2$, P -wave	<10 %	605
$N ho$, $S\!\!=\!\!3/2$, $D\!\!$ -wave	5–23 %	605
$N\sigma$	3–9 %	_
$N(1440)\pi$	4–14 %	544
$N(1520)\pi$, $ extit{P}$ -wave	9–21 %	490
$N(1680)\pi$, $\it S-wave$	8–22 %	353
ΛK*(892)	0.3–1.3 %	307
$oldsymbol{ ho}\gamma$	0.03-0.19 %	840
$p\gamma$, helicity $=1/2$	0.02-0.08 %	840
$p\gamma$, helicity=3/2	0.01-0.10 %	840
$n\gamma$	0.003-0.07 %	840
$n\gamma$, helicity $=1/2$	0.001–0.02 %	840
$n\gamma$, helicity=3/2	0.002-0.05 %	840

N(2100) 1/2⁺

$$I(J^P) = \tfrac{1}{2}(\tfrac{1}{2}^+)$$

Re(pole position) = 2050 to 2150 (\approx 2100) MeV -2Im(pole position) = 240 to 340 (\approx 300) MeV Breit-Wigner mass = 2050 to 2150 (\approx 2100) MeV Breit-Wigner full width = 200 to 320 (\approx 260) MeV

N(2100) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	8–32 %	834
$N\eta$	5–45 %	729
$N\eta'$	5-11 %	451
$N\omega$	10–25 %	600
ΛK	<1.0 %	644
$N\pi\pi$	>55 %	814
${\it \Delta}(1232)\pi$, $\it P$ -wave	6–14 %	680
$N\rho$, $S=1/2$, P -wave	35–70	605
$N\sigma$	14–35 %	_
$N(1535)\pi$	26–34 %	478
$\Lambda K^*(892)$	3–11 %	307
$p\gamma$, helicity=1/2	0.001-0.13 %	840
$n\gamma$, helicity=1/2	0.004-0.09 %	840

N(2120) 3/2⁻⁻

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Re(pole position) = 2050 to 2150 (\approx 2100) MeV -2Im(pole position) = 200 to 360 (\approx 280) MeV Breit-Wigner mass = 2060 to 2160 (\approx 2120) MeV Breit-Wigner full width = 260 to 360 (\approx 300) MeV

N(2120) DECAY MODES	Fraction (Γ_j/Γ)	p (MeV/c)
$N\pi$	5–15 %	846
$N\eta$	1–5 %	743
$N\eta'$	2–6 %	474
$N\omega$	4–20 %	617
ΛK	6–11 %	660
$N\pi\pi$	>27 %	827
$\Delta(1232)\pi$	>23 %	693
${\it \Delta}(1232)\pi$, $\it S-wave$	15–70 %	693
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	8–45 %	693
$N ho$, $S\!\!=\!\!3/2$, $S\!\!$ -wave	< 3 %	622
$N\sigma$	4–15 %	_
$\mathcal{N}(1535)\pi$	7–23 %	494
ΛK*(892)	< 0.2 %	339
$ ho\gamma$	0.16–2.1 %	852
$p\gamma$, helicity=1/2	0.07-0.80 %	852
$p\gamma$, helicity=3/2	0.09–1.3 %	852
$n\gamma$	0.04-0.72 %	852
$n\gamma$, helicity $=1/2$	0.04-0.60 %	852
$n\gamma$, helicity=3/2	0.001–0.12 %	852

N(2190) 7/2⁻

$$I(J^P) = \frac{1}{2}(\frac{7}{2}^-)$$

Re(pole position) = 1950 to 2150 (\approx 2050) MeV -2Im(pole position) = 300 to 500 (\approx 400) MeV Breit-Wigner mass = 2140 to 2220 (\approx 2180) MeV Breit-Wigner full width = 300 to 500 (\approx 400) MeV

N(2190) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
$N\pi$	10-20 %	882
$N\eta$	1-5 %	785
$N\omega$	8–20 %	667
ΛK	0.2-0.8 %	705
$N\pi\pi$	22–51 %	864

https://pdg.lbl.gov

Page 14

${\it \Delta}(1232)\pi$, ${\it D}$ -wave	19–31 %	734
$N\rho$, $S=3/2$, D -wave	<11 %	672
$N\sigma$	3–9 %	_
ΛK*(892)	0.2-0.8 %	423
$p\gamma$	<0.08 %	888
$p\gamma$, helicity $=1/2$	<0.06 %	888
$p\gamma$, helicity=3/2	<0.02 %	888
$n\gamma$	<0.04 %	888
$n\gamma$, helicity $=1/2$	<0.01 %	888
$n\gamma$, helicity=3/2	<0.03 %	888

N(2220) 9/2⁺

$$I(J^P) = \frac{1}{2}(\frac{9}{2}^+)$$

Re(pole position) = 2130 to 2200 (\approx 2150) MeV -2Im(pole position) = 360 to 480 (\approx 400) MeV Breit-Wigner mass = 2200 to 2300 (\approx 2250) MeV Breit-Wigner full width = 350 to 500 (\approx 400) MeV

N(2220) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	15–30 %	924

N(2250) 9/2⁻

$$I(J^P) = \frac{1}{2}(\frac{9}{2})$$

Re(pole position) = 2100 to 2200 (\approx 2150) MeV -2Im(pole position) = 350 to 500 (\approx 420) MeV Breit-Wigner mass = 2250 to 2320 (\approx 2280) MeV Breit-Wigner full width = 300 to 600 (\approx 500) MeV

N(2250) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5-15 %	941
$N\eta$	<5 %	852
ΛK	1–3 %	777

N(2600) 11/2⁻

$$I(J^P) = \frac{1}{2}(\frac{11}{2})$$

Created: 5/31/2023 09:09

Breit-Wigner mass = 2550 to 2750 (≈ 2600) MeV Breit-Wigner full width = 500 to 800 (≈ 650) MeV

N(2600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	3–8 %	1126

\triangle BARYONS (S=0, I=3/2)

 $\Delta^{++} = uuu$, $\Delta^{+} = uud$, $\Delta^{0} = udd$, $\Delta^{-} = ddd$

△(1232) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1209 to 1211 (\approx 1210) MeV

 $-2\text{Im}(\text{pole position}) = 98 \text{ to } 102 \ (\approx 100) \text{ MeV}$

Breit-Wigner mass (mixed charges) = 1230 to 1234 (≈ 1232) MeV

Breit-Wigner full width (mixed charges) = 114 to 120 (\approx 117) MeV

Δ(1232) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	99.4 %	229
$N\gamma$	0.55-0.65 %	259
$N\gamma$, helicity $=1/2$	0.11-0.13 %	259
$N\gamma$, helicity=3/2	0.44-0.52 %	259
pe+e-	$(4.2\pm0.7)\times10^{-5}$	259

△(1600) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Created: 5/31/2023 09:09

Re(pole position) = 1470 to 1590 (\approx 1520) MeV -2Im(pole position) = 150 to 320 (\approx 280) MeV Breit-Wigner mass = 1500 to 1640 (\approx 1570) MeV Breit-Wigner full width = 200 to 300 (\approx 250) MeV

△(1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	8-24%	492
$N\pi\pi$	58-84 %	454
$\Delta(1232)\pi$	58–82 %	276
${\it \Delta}(1232)\pi$, $\it P$ -wave	72–82%	276
${\it \Delta}(1232)\pi$, $\it F$ -wave	<2%	276
$N(1440)\pi$	17–27%	†
$N\gamma$	0.001-0.035 %	505
$N\gamma$, helicity=1/2	0.0-0.02 %	505
$N\gamma$, helicity=3/2	0.001–0.015 %	505

⊿(1620) 1/2[−]

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^-)$$

Re(pole position) = 1590 to 1610 (\approx 1600) MeV -2Im(pole position) = 80 to 140 (\approx 110) MeV Breit-Wigner mass = 1590 to 1630 (\approx 1610) MeV Breit-Wigner full width = 110 to 150 (\approx 130) MeV

Δ(1620) DECAY MODES Fraction $(Γi/Γ)$		p (MeV/c)	
$N\pi$	25–35 %	520	
$N\pi\pi$	>67 %	484	
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	44–72 %	311	
$N \rho$	23–32%	†	
$N ho$, $S \!\!=\! 1/2$, $S \!\!$ -wave	23–32%	†	
$N\rho$, $S=3/2$, D -wave	<0.04%	†	
$N(1440)\pi$	<9 %	98	
$N\gamma$, helicity=1/2	0.03-0.10 %	532	

△(1700) 3/2⁻

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^-)$$

Re(pole position) = 1640 to 1690 (\approx 1665) MeV -2Im(pole position) = 200 to 300 (\approx 250) MeV Breit-Wigner mass = 1690 to 1730 (\approx 1710) MeV Breit-Wigner full width = 220 to 380 (\approx 300) MeV

△(1700) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$N\pi$	10–20 %	588	
$N\pi\pi$	>31 %	557	
$\Delta(1232)\pi$	9–70 %	394	
${\it \Delta}(1232)\pi$, $\it S-wave$	5–54 %	394	
$arDelta(1232)\pi$, $ extit{\it D}$ -wave	4–16 %	394	
$N\rho$, $S=3/2$, S -wave	22–32%	†	
$N(1520)\pi$, $ extit{ }P ext{-}$ wave	1–5 %	133	
$N(1535)\pi$	0.5–1.5 %	113	
Δ (1232) η	3–7 %	†	
$N\gamma$	0.22-0.60 %	598	
$N\gamma$, helicity $=1/2$	0.12-0.30 %	598	
$N\gamma$, helicity=3/2	0.10-0.30 %	598	

⊿(1900) 1/2[−]

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^-)$$

Re(pole position) = 1830 to 1900 (\approx 1865) MeV -2Im(pole position) = 180 to 300 (\approx 240) MeV Breit-Wigner mass = 1840 to 1920 (\approx 1860) MeV Breit-Wigner full width = 180 to 320 (\approx 250) MeV

△(1900) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	4–12%	685
ΣK	seen	367
$N\pi\pi$	> 52%	660
${\it \Delta}(1232)\pi$, ${\it D}$ -wave	30–70%	509
N ho	22–60 %	360
$N \rho$, $S=1/2$, S -wave	11–35%	360
$N\rho$, $S=3/2$, D -wave	11–25%	360
$N(1440)\pi$	3–32%	353
$N(1520)\pi$	2–10%	288
$\Delta(1232)\eta$	< 2%	251
$N\gamma$, helicity=1/2	0.06-0.43 %	693

△(1905) 5/2⁺

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^+)$$

Re(pole position) = 1750 to 1800 (\approx 1770) MeV -2Im(pole position) = 260 to 340 (\approx 300) MeV Breit-Wigner mass = 1855 to 1910 (\approx 1880) MeV Breit-Wigner full width = 270 to 400 (\approx 330) MeV

Δ(1905) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$N\pi$	9–15%	698	
$N\pi\pi$	>65%	673	
$\Delta(1232)\pi$	>48%	524	
$arDelta(1232)\pi$, $\mathit{P} ext{-}$ wave	8–43%	524	
$arDelta(1232)\pi$, $\mathit{F} ext{-}$ wave	40–58%	524	
$N\rho$, $S=3/2$, P -wave	17–35%	385	
$N(1535)\pi$	< 1 %	293	
$N(1680)\pi$, $ extit{P}$ -wave	5–15%	133	
$\Delta(1232)\eta$	2–6%	282	
$N\gamma$	0.012-0.036 %	706	
N γ , helicity $=1/2$	0.002-0.006 %	706	
$N\gamma$, helicity=3/2	0.01–0.03 %	706	

△(1910) 1/2⁺

$$I(J^P) = \frac{3}{2}(\frac{1}{2}^+)$$

Re(pole position) = 1800 to 1900 (\approx 1850) MeV -2Im(pole position) = 200 to 500 (\approx 350) MeV Breit-Wigner mass = 1850 to 1950 (\approx 1900) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV

△(1910) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)	
$N\pi$	10-30%	710	
ΣK	4–14%	410	
$\Delta(1232)\pi$	34–66%	539	
$N(1440)\pi$	3–45%	386	
Δ (1232) η	5–13%	310	
$N\gamma$, helicity=1/2	0.0-0.02 %	718	

⊿(1920) 3/2⁺

$$I(J^P) = \frac{3}{2}(\frac{3}{2}^+)$$

Re(pole position) = 1850 to 1950 (\approx 1900) MeV -2Im(pole position) = 200 to 400 (\approx 300) MeV Breit-Wigner mass = 1870 to 1970 (\approx 1920) MeV Breit-Wigner full width = 240 to 360 (\approx 300) MeV

△(1920) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–20 %	723
ΣK	2–6 %	431
$N\pi\pi$	>46 %	699
$\Delta(1232)\pi$	>46 %	553
$\mathit{\Delta}(1232)\pi$, $\mathit{P} ext{-}$ wave	2–28 %	553
$arDelta(1232)\pi$, \emph{F} -wave	44–72 %	553
$\mathit{N}(1440)\pi$, $\mathit{P} ext{-}$ wave	4–86 %	403
$\mathcal{N}(1520)\pi$, $\mathit{S} ext{-}$ wave	<5 %	341
$\mathcal{N}(1535)\pi$	<2 %	328
N a ₀ (980)	seen	41
$\Delta(1232)\eta$	5–17 %	336
$N\gamma$	0.01-0.84 %	731
$N\gamma$, helicity $=1/2$	0.0-0.42 %	731
$N\gamma$, helicity=3/2	0.01–0.42 %	731

⊿(1930) 5/2[−]

$$I(J^P) = \frac{3}{2}(\frac{5}{2}^-)$$

Re(pole position) = 1820 to 1880 (\approx 1850) MeV -2Im(pole position) = 300 to 450 (\approx 320) MeV Breit-Wigner mass = 1900 to 2000 (\approx 1950) MeV Breit-Wigner full width = 200 to 400 (\approx 300) MeV

△(1930) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–15 %	742
$N\gamma$	0.0-0.01 %	749
$N\gamma$, helicity $=1/2$	0.0-0.005 %	749
$N\gamma$, helicity=3/2	0.0-0.004 %	749

△(1950) 7/2⁺

$$I(J^P) = \frac{3}{2}(\frac{7}{2}^+)$$

Re(pole position) = 1870 to 1890 (\approx 1880) MeV -2Im(pole position) = 220 to 260 (\approx 240) MeV Breit-Wigner mass = 1915 to 1950 (\approx 1930) MeV Breit-Wigner full width = 235 to 335 (\approx 285) MeV

△(1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	35–45 %	729
ΣΚ	0.3–0.5 %	441
$N\pi\pi$	37–77 %	706
${\it \Delta}(1232)\pi$, $\it F-wave$	1–9 %	560
$N(1680)\pi$, $ extit{\it P}$ -wave	3–9 %	191
Δ (1232) η	< 0.6 %	349
$N\gamma$	0.06-0.14 %	737
$N\gamma$, helicity=1/2	0.03-0.05 %	737
$N\gamma$, helicity=3/2	0.04-0.09 %	737

∆(2200) 7/2[−]

$$I(J^P) = \tfrac32(\tfrac72^-)$$

Re(pole position) = 2050 to 2150 (\approx 2100) MeV -2Im(pole position) = 260 to 420 (\approx 340) MeV Breit-Wigner mass = 2150 to 2250 (\approx 2200) MeV Breit-Wigner full width = 200 to 500 (\approx 350) MeV

△(2200) DECAY MODES	Fraction $(\Gamma_i / $	Γ) $p \text{ (MeV/}c)$
$N\pi$	2-8 %	894
ΣK	1-7 %	672
https://pdg.lbl.gov	Page 20	Created: 5/31/2023 09:09

$N\pi\pi$	>45 %	876
$\Delta\pi$	>45 %	747
$\Delta\pi$, $\emph{D} ext{-}$ wave	>40 %	747
$\Delta\pi$, $\emph{G} ext{-}$ wave	5–25 %	747
$\Delta\eta$, $ extit{D}$ -wave	seen	614

△(2420) 11/2⁺

$$I(J^P) = \frac{3}{2}(\frac{11}{2}^+)$$

Re(pole position) = 2300 to 2500 (\approx 2400) MeV -2Im(pole position) = 350 to 550 (\approx 450) MeV Breit-Wigner mass = 2300 to 2600 (\approx 2450) MeV Breit-Wigner full width = 300 to 700 (\approx 500) MeV

△(2420) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$N\pi$	5–10 %	1040

$$\Lambda$$
 BARYONS $(S = -1, I = 0)$
 $\Lambda^0 = uds$

Λ

$$I(J^P)=0(\tfrac{1}{2}^+)$$

Mass
$$m=1115.683\pm0.006$$
 MeV $(m_{\Lambda}-m_{\overline{\Lambda}})\ /\ m_{\Lambda}=(-0.1\pm1.1)\times 10^{-5} \quad ({\rm S}=1.6)$ Mean life $\tau=(2.632\pm0.020)\times 10^{-10}$ s $({\rm S}=1.6)$ $(\tau_{\Lambda}-\tau_{\overline{\Lambda}})\ /\ \tau_{\Lambda}=-0.001\pm0.009$ $c\tau=7.89$ cm

Magnetic moment $\mu=-0.613\pm0.004~\mu_{\it N}$ Electric dipole moment $d<~1.5\times10^{-16}~e\,{\rm cm},~{\rm CL}=95\%$

Decay parameters

https://pdg.lbl.gov

Page 21

$$\begin{array}{ll} \mathsf{R} = \left|\mathsf{G}_E/\mathsf{G}_M\right| \text{ in } \varLambda \to \ p\pi^-, \ \overline{\varLambda} \to \ \overline{p}\pi^+ = 0.96 \pm 0.14 \\ \Delta \Phi = \Phi_E \ - \ \Phi_M \text{ in } \varLambda \to \ p\pi^-, \ \overline{\varLambda} \to \ \overline{p}\pi^+ = 37 \pm 13 \text{ degrees} \\ n\pi^0 \qquad \qquad \alpha_0 = 0.75 \pm 0.05 \\ pe^- \overline{\nu}_e \qquad g_A/g_V = -0.718 \pm 0.015 \ ^{[i]} \end{array}$$

A DECAY MODES		Fraction (Γ_i	/Γ) Conf	idence level	<i>p</i> (MeV/ <i>c</i>)
$p\pi^-$		(64.1 ± 0)	.5) %		101
$n\pi^0$		(35.9 ± 0)	.5) %		104
$n\gamma$		(8.3 ± 0	$0.7) \times 10^{-4}$		162
$p\pi^-\gamma$		[o] (8.5 ± 1	$.4) \times 10^{-4}$		101
$pe^{-}\overline{ u}_{e}$		(8.34±0	$(.14) \times 10^{-4}$		163
$ ho\mu^-\overline{ u}_\mu$		(1.51±0	$(.19) \times 10^{-4}$		131
Lepton (L) and	I/or Baryo	on (B) number	violating de	cay modes	
π^+e^-	L,B	< 6	$\times 10^{-7}$	90%	549
$\pi^+\mu^-$	L,B	< 6	$\times 10^{-7}$	90%	544
π^-e^+	L,B	< 4	\times 10 ⁻⁷	90%	549
$\pi^-\mu^+$	L,B	< 6	$\times 10^{-7}$	90%	544
K^+e^-	L,B	< 2	\times 10 ⁻⁶	90%	449
$K^+\mu^-$	L,B	< 3	\times 10 ⁻⁶	90%	441
K^-e^+	L,B	< 2	\times 10 ⁻⁶	90%	449
$K^-\mu^+$	L,B	< 3	\times 10 ⁻⁶	90%	441
$K_S^0 \nu$	L,B	< 2	$\times 10^{-5}$	90%	447
$\overline{p}\pi^+$	В	< 9	$\times 10^{-7}$	90%	101
invisible		< 7.4	$\times 10^{-5}$	90%	_

Λ(1405) 1/2⁻

$$I(J^P)=0(\tfrac{1}{2}^-)$$

Created: 5/31/2023 09:09

Mass $m=1405.1^{+1.3}_{-1.0}~{
m MeV}$ Full width $\Gamma=50.5\pm2.0~{
m MeV}$ Below $\overline{K}~N$ threshold

Λ(1405) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Sigma \pi$	100 %	155

Λ(1520) 3/2[—]

$$I(J^P) = 0(\frac{3}{2}^-)$$

Mass m=1518 to 1520 (≈ 1519) MeV $^{[p]}$ Full width $\Gamma=15$ to 17 (≈ 16) MeV $^{[p]}$

Λ(1520) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	(45 ±1)%	242
$\Sigma \pi$	$(42 \pm 1)\%$	268
$\Lambda\pi\pi$	(10 ± 1) %	259
$\Sigma \pi \pi$	($0.9~\pm0.1$) %	168
$\Lambda\gamma$	(0.85±0.15) %	350

Λ(1600) 1/2⁺

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass m=1570 to $1630~(\approx 1600)~{\rm MeV}$ Full width $\Gamma=150$ to $250~(\approx 200)~{\rm MeV}$

A(1600) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	15–30 %	343
$\Sigma \pi$	10–60 %	338
$\Lambda\sigma$	(19±4) %	_
$\Sigma(1385)\pi$	(9±4)%	158

Λ(1670) 1/2⁻

$$I(J^P)=0(\tfrac{1}{2}^-)$$

Created: 5/31/2023 09:09

Mass m=1670 to 1678 (≈ 1674) MeV Full width $\Gamma=25$ to 35 (≈ 30) MeV

Λ(1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	20–30 %	418
$\Sigma\pi$	25–55 %	398
$\Lambda\eta$	10–25 %	88
$\Sigma(1385)\pi$, $ extit{D} ext{-wave}$	(6.0±2.0) %	235
$N\overline{K}^*(892)$, $S=3/2$, D -wave	$(5\pm4)\%$	†
$\Lambda\sigma$	(20 ±8)%	-

Λ(1690) 3/2[—]

$$I(J^P)=0(\tfrac{3}{2}^-)$$

Mass m=1685 to 1695 (≈ 1690) MeV Full width $\Gamma=60$ to 80 (≈ 70) MeV

Λ(1690) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	20–30 %	433
$\Sigma \pi$	20–40 %	410
$\Lambda\sigma$	(5.0±2.0) %	_
$\Lambda\pi\pi$	\sim 25 %	419
$\Sigma \pi \pi$	\sim 20 %	358
$arSigma(1385)\pi$, $\mathit{S} ext{-}$ wave	(9 ±5)%	251
$\Sigma(1385)\pi$, $ extit{D}$ -wave	(3.0 ± 2.0) %	251

Λ(1800) 1/2⁻

$$I(J^P)=0(\tfrac{1}{2}^-)$$

Mass m=1750 to 1850 (≈ 1800) MeV Full width $\Gamma=150$ to 250 (≈ 200) MeV

A(1800) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	25–40 %	528
$\Sigma \pi$	seen	494
$\Lambda\sigma$	$(15 \pm 4)\%$	_
$\Sigma(1385)\pi$	seen	349
$\Lambda\eta$	0.01 to 0.10	326
$N\overline{K}^*(892)$	seen	†

Λ(1810) 1/2⁺

$$I(J^P)=0(\tfrac{1}{2}^+)$$

Created: 5/31/2023 09:09

Mass m=1740 to 1840 (≈ 1790) MeV Full width $\Gamma=50$ to 170 (≈ 110) MeV

A(1810) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.05 to 0.35	520
$\Sigma \pi$	$(16 \pm \ 5) \ \%$	487
$\Sigma(1385)\pi$	$(40 \pm 15) \%$	340
$N\overline{K}^*(892)$	30–60 %	†

Λ(1820) 5/2⁺

$$I(J^P)=0(\tfrac{5}{2}^+)$$

Mass m=1815 to 1825 (≈ 1820) MeV Full width $\Gamma=70$ to 90 (≈ 80) MeV

Λ(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	55–65 %	545
$\Sigma \pi$	8–14 %	509
$\Sigma(1385)\pi$	5–10 %	366
$N\overline{K}^*(892)$, $S=3/2$, P -wave	(3.0 ± 1.0) %	†

Λ(1830) 5/2⁻

$$I(J^P) = 0(\frac{5}{2}^-)$$

Mass m=1820 to 1830 (≈ 1825) MeV Full width $\Gamma=60$ to 120 (≈ 90) MeV

Λ(1830) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor (MeV/c)
NK	0.04 to 0.08	549
$\Sigma \pi$	35–75 %	512
$\Sigma(1385)\pi$	>15 %	370
$\Sigma(1385)\pi$, $ extit{\it D}$ -wave	$(40 \pm 15) \%$	3.2 370

Λ(1890) 3/2⁺

$$I(J^P) = 0(\frac{3}{2}^+)$$

Created: 5/31/2023 09:09

Mass m=1870 to 1910 (≈ 1890) MeV Full width $\Gamma=80$ to 160 (≈ 120) MeV

Λ(1890) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.24 to 0.36	599
$\Sigma \pi$	3–10 %	560
$\Sigma(1385)\pi$	seen	423
$arSigma(1385)\pi$, $\mathit{P} ext{-}$ wave	$(6.0 \pm 3.0) \%$	423
$arSigma(1385)\pi$, $\mathit{F} ext{-}$ wave	$(4.0 \pm 2.0) \%$	423
$N\overline{K}^*(892)$	seen	236

Λ(2100) 7/2[—]

$$I(J^P) = 0(\frac{7}{2})$$

Mass m=2090 to 2110 (≈ 2100) MeV Full width $\Gamma=100$ to 250 (≈ 200) MeV

Λ(2100) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
N K	25–35 %	751
$\Sigma \pi$	\sim 5 %	705
$\Lambda\eta$	<3 %	617
ΞK	<3 %	491
$\Lambda\omega$	<8 %	443
$\Sigma(1385)\pi$, $ extit{ G-wave}$	$(1.0 \pm 1.0)~\%$	584
$N\overline{K}^*(892)$	10–20 %	515
$N\overline{K}^*(892)$, $S=3/2$, D -wave	(4.0±2.0) %	515

Λ (2110) 5/2 $^{+}$

$$I(J^P) = 0(\frac{5}{2}^+)$$

Mass m=2050 to 2130 (≈ 2090) MeV Full width $\Gamma=200$ to 300 (≈ 250) MeV

Λ(2110) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	5–25 %	744
$\Sigma \pi$	10–40 %	698
$\Lambda \omega$	seen	432
$arLambda\omega$, $\mathit{S}{=}3/2$, $\mathit{P}{ ext{-}}$ wave	(5.0±2.0) %	432
$\Sigma(1385)\pi$	seen	576
$N\overline{K}^{*}(892)$	10–60 %	505

Λ(2350) 9/2⁺

$$I(J^P) = 0(\frac{9}{2}^+)$$

Created: 5/31/2023 09:09

Mass m=2340 to 2370 (≈ 2350) MeV Full width $\Gamma=100$ to 250 (≈ 150) MeV

Λ(2350) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	\sim 12 %	915
$\Sigma \pi$	\sim 10 %	867

Σ BARYONS (S=-1, l=1)

$$\Sigma^+ = uus$$
, $\Sigma^0 = uds$, $\Sigma^- = dds$

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass
$$m=1189.37\pm0.07~{\rm MeV}~{\rm (S}=2.2)$$
 Mean life $\tau=(0.8018\pm0.0026)\times10^{-10}~{\rm s}$ $c\tau=2.404~{\rm cm}$ $\left(\tau_{\Sigma^+}-\tau_{\overline{\Sigma}^-}\right)/\tau_{\Sigma^+}=-0.0006\pm0.0012$ Magnetic moment $\mu=2.458\pm0.010~\mu_N~{\rm (S}=2.1)$ $\left(\mu_{\Sigma^+}+\mu_{\overline{\Sigma}^-}\right)/\mu_{\Sigma^+}=0.014\pm0.015$ $\Gamma(\Sigma^+\to n\ell^+\nu)/\Gamma(\Sigma^-\to n\ell^-\overline{\nu}_\ell)~<~0.043$

Decay parameters

$$\begin{array}{lll} \rho\pi^0 & \alpha_0 = -0.982 \pm 0.014 \\ \overline{\alpha}_0 \; \text{FOR} \; \overline{\Sigma}^- \to \overline{\rho}\pi^0 = 0.99 \pm 0.04 \\ (\alpha_0 + \overline{\alpha}_0) \; / \; (\alpha_0 - \overline{\alpha}_0) = 0.00 \pm 0.04 \\ \text{"} & \phi_0 = (36 \pm 34)^\circ \\ \text{"} & \gamma_0 = 0.16 \; ^{[n]} \\ \text{"} & \Delta_0 = (187 \pm 6)^\circ \; ^{[n]} \\ n\pi^+ & \alpha_+ = 0.068 \pm 0.013 \\ \text{"} & \phi_+ = (167 \pm 20)^\circ \; \; (\text{S} = 1.1) \\ \text{"} & \gamma_+ = -0.97 \; ^{[n]} \\ \text{"} & \Delta_+ = (-73 ^{+133}_{-10})^\circ \; ^{[n]} \\ \rho\gamma & \alpha_\gamma = -0.76 \pm 0.08 \end{array}$$

Σ^+ DECAY MODES	Fraction (Γ_i/Γ) Confidence level	<i>p</i> (MeV/ <i>c</i>)
$p\pi^0$	(51.57±0.30) %	189
$n\pi^+$	(48.31±0.30) %	185
$p\gamma$	$(1.23\pm0.05)\times10^{-3}$	225
$n\pi^+\gamma$	[o] (4.5 ± 0.5) $\times 10^{-4}$	185
$\Lambda e^+ \nu_e$	$(2.0 \pm 0.5) \times 10^{-5}$	71
A C	AO(CO) violating modes on	

$\Delta S = \Delta Q$ (SQ) violating modes or $\Delta S = 1$ weak neutral current (S1) modes

$ne^+\nu_e$	SQ	< 5	$\times 10^{-6}$	90%	224
$n\mu^+ u_\mu$	SQ	< 3.0	$\times 10^{-5}$	90%	202
pe ⁺ e ⁻	<i>S</i> 1	< 7	$\times 10^{-6}$		225
$ ho\mu^+\mu^-$	S1	$(2.4 \begin{array}{c} +1.7 \\ -1.3 \end{array}$) × 10 ⁻⁸		121

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass
$$m=1192.642\pm0.024$$
 MeV $m_{\Sigma^-}-m_{\Sigma^0}=4.807\pm0.035$ MeV (S = 1.1) $m_{\Sigma^0}-m_{\Lambda}=76.959\pm0.023$ MeV Mean life $\tau=(7.4\pm0.7)\times10^{-20}$ s $c\tau=2.22\times10^{-11}$ m

Transition magnetic moment $\left|\mu_{\Sigma\Lambda}\right|=1.61\pm0.08~\mu_{N}$

Σ^0 DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\overline{\Lambda\gamma}$	100 %		74
$\Lambda \gamma \gamma$	< 3 %	90%	74
$\Lambda e^{+}e^{-}$	[q] 5×10^{-3}		74

$$I(J^P) = 1(\frac{1}{2}^+)$$

Mass
$$m=1197.449\pm0.030$$
 MeV (S = 1.2) $m_{\Sigma^-}-m_{\Sigma^+}=8.08\pm0.08$ MeV (S = 1.9) $m_{\Sigma^-}-m_{\Lambda}=81.766\pm0.030$ MeV (S = 1.2) Mean life $\tau=(1.479\pm0.011)\times10^{-10}$ s (S = 1.3) $c\tau=4.434$ cm Magnetic moment $\mu=-1.160\pm0.025$ μ_N (S = 1.7) Σ^- charge radius = 0.78 \pm 0.10 fm

Decay parameters

$$n\pi^ \alpha_- = -0.068 \pm 0.008$$
" $\phi_- = (10 \pm 15)^\circ$
" $\gamma_- = 0.98 \, ^{[n]}$
" $\Delta_- = (249^+_{-120})^\circ \, ^{[n]}$
 $ne^- \overline{\nu}_e$ $g_A/g_V = 0.340 \pm 0.017 \, ^{[i]}$
" $f_2(0)/f_1(0) = 0.97 \pm 0.14$
" $D = 0.11 \pm 0.10$
 $\Lambda e^- \overline{\nu}_e$ $g_{V/g_A} = 0.01 \pm 0.10 \, ^{[i]}$ (S = 1.5)
" $g_{WM/g_A} = 2.4 \pm 1.7 \, ^{[i]}$

Σ- DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$n\pi^-$	(99.848 ± 0.005)	%	193
$n\pi^-\gamma$	[o] (4.6 ± 0.6)	\times 10 ⁻⁴	193
$ne^{-}\overline{ u}_{e}$	(1.017 ± 0.034)	\times 10 ⁻³	230
$n\mu^-\overline{ u}_\mu$	(4.5 ± 0.4)	\times 10 ⁻⁴	210

https://pdg.lbl.gov

Page 28

$$\Lambda e^- \overline{\nu}_e$$
 (5.73 ± 0.27) \times 10⁻⁵ 79 $\Sigma^+ X$ < 1.2 \times 10⁻⁴ 90% -

Lepton number (L) violating modes

$$pe^-e^-$$
 L < 6.7 $\times 10^{-5}$ 90% 231

Σ (1385) 3/2⁺

$$I(J^P)=1(\tfrac{3}{2}^+)$$

$$\Sigma(1385)^+$$
 mass $m=1382.83\pm0.34$ MeV (S = 1.9) $\Sigma(1385)^0$ mass $m=1383.7\pm1.0$ MeV (S = 1.4) $\Sigma(1385)^-$ mass $m=1387.2\pm0.5$ MeV (S = 2.2) $\Sigma(1385)^+$ full width $\Gamma=36.2\pm0.7$ MeV $\Sigma(1385)^0$ full width $\Gamma=36\pm5$ MeV $\Sigma(1385)^-$ full width $\Gamma=39.4\pm2.1$ MeV (S = 1.7)

385) full width I = 39.4 \pm 2.1 MeV $\,$ (S = 1.7 Below \overline{K} N threshold

 Σ (1385) DECAY MODES Confidence level (MeV/c)Fraction (Γ_i/Γ) $\Lambda\pi$ $(87.0 \pm 1.5)\%$ 208 $\Sigma \pi$ $(11.7 \pm 1.5)\%$ 129 $(1.25^{+0.13}_{-0.12})\%$ $\Lambda\gamma$ 241 $\Sigma^+ \gamma$ $(7.0 \pm 1.7) \times 10^{-3}$ 180 $\times 10^{-4}$ < 2.4 90% 173

$\Sigma(1660) 1/2^{+}$

$$I(J^P)=1(\tfrac{1}{2}^+)$$

Created: 5/31/2023 09:09

Re(pole position) = 1585 ± 20 MeV -2Im(pole position) = 290^{+140}_{-40} MeV Mass m=1640 to 1680 (≈ 1660) MeV Full width $\Gamma=100$ to 300 (≈ 200) MeV

Σ (1660) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.05 to 0.15 ($pprox$ 010)	405
$\Lambda\pi$	$(35 \pm 12)\%$	440
$\Sigma \pi$	$(37 \pm 10)\%$	387
$\Sigma \sigma$	$(20 \pm 8)\%$	_
$\Lambda(1405)\pi$	$(4.0 \pm 2.0)\%$	199

$$I(J^P) = 1(\frac{3}{2}^-)$$

Mass m=1665 to 1685 (≈ 1675) MeV Full width $\Gamma=40$ to 100 (≈ 70) MeV

Σ (1670) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.06 to 0.12	419
$\Lambda\pi$	5–15 %	452
$\Sigma \pi$	30–60 %	398
$\Sigma \sigma$	$(7.0 \pm 3.0) \%$	-

Σ(1750) 1/2⁻

$$I(J^P) = 1(\frac{1}{2}^-)$$

Mass m=1700 to $1800~(\approx 1750)~\text{MeV}$ Full width $\Gamma=100$ to $200~(\approx 150)~\text{MeV}$

Σ(1750) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.06 to 0.12	486
$\Lambda\pi$	(14 ± 5) %	507
$\Sigma \pi$	$(16 \pm 4)\%$	456
$\Sigma \eta$	15–55 %	98
$arSigma(1385)\pi$, $ extit{\it D}$ -wave	< 1 %	305
$\Lambda(1520)\pi$	(2.0 \pm 1.0) %	175
$N\overline{K}^*(892), S=1/2$	$(8 \pm 4)\%$	†

Σ(1775) 5/2⁻

$$I(J^P) = 1(\frac{5}{2}^-)$$

Created: 5/31/2023 09:09

Mass m=1770 to $1780~(\approx 1775)~\text{MeV}$ Full width $\Gamma=105$ to $135~(\approx 120)~\text{MeV}$

Σ(1775) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	37–43%	508
$\Lambda\pi$	14–20%	525
$\Sigma \pi$	2–5%	475
$\Sigma(1385)\pi$	8–12%	327
$\Lambda(1520)\pi$, $ extit{P-wave}$	17–23%	202

Σ(1910) 3/2⁻

 $I(J^P)=1(\tfrac{3}{2}^-)$

was $\Sigma(1940)$

Mass m=1870 to $1950~(\approx 1910)~{\rm MeV}$ Full width $\Gamma=150$ to $300~(\approx 220)~{\rm MeV}$

Σ (1910) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.01 to 0.05 ($pprox$ 0.02)	615
$\Lambda\pi$	(6 \pm 4)%	619
$\Sigma \pi$	(86 ± 21)%	574
$\Sigma(1385)\pi$	seen	439
$\Lambda(1520)\pi$	seen	329
$\Delta(1232)\overline{K}$	(3.0 ± 1.0) %	377
$N\overline{K}^*(892)$	seen	274
$N\overline{K}^*$ (892), $S\!\!=\!\!1/2$, $D\!\!$ -wave	(1.0 ± 1.0) %	274

Σ(1915) 5/2⁺

$$I(J^P)=1(\frac{5}{2}^+)$$

Mass m=1900 to 1935 (≈ 1915) MeV Full width $\Gamma=80$ to 160 (≈ 120) MeV

Σ(1915) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
NK	0.05 to 0.15	618
$\Lambda\pi$	($6.0~\pm2.0$) %	623
$\Sigma \pi$	(10.0 \pm 2.0) %	577
$\Sigma(1385)\pi$, $\it P$ -wave	(2.0 \pm 2.0) %	443
$oldsymbol{\Sigma}(1385)\pi$, $\emph{F} ext{-}$ wave	(4.0 \pm 2.0) %	443
$arLambda(1520)\pi$, $ extit{D} ext{-}$ wave	($8.0~\pm2.0$) %	334
$N\overline{K}^*(892)$, $S\!\!=\!\!1/2$, $F\!\!$ -wave	(5.0 ± 3.0) %	282
$N\overline{K}^*(892)$, $S=3/2$, F -wave	($5.0~\pm2.0$) %	282
$\Delta \overline{K}$, P -wave	(16 ± 5)%	383
$\Delta \overline{K}$, F-wave	(5.0 \pm 3.0) %	383

 Σ (2030) 7/2⁺

$$I(J^P) = 1(\frac{7}{2}^+)$$

Mass m=2025 to 2040 (≈ 2030) MeV Full width $\Gamma=150$ to 200 (≈ 180) MeV

Σ (2030) DECAY MODES	Fraction (Γ_i/Γ)	<i>p</i> (MeV/ <i>c</i>)
NK	17–23 %	702
$\Lambda\pi$	17–23 %	700
$\Sigma \pi$	5–10 %	657
$\equiv K$	<2 %	422
$\Sigma(1385)\pi$	5–15 %	532
$arSigma(1385)\pi$, $\mathit{F} ext{-}$ wave	$(1.0\pm1.0)\%$	532
$\Lambda(1520)\pi$	10–20 %	431
$\Delta(1232)\overline{K}$	10–20 %	498
$\Delta(1232)\overline{K}$, <i>F</i> -wave	(15 ± 5)%	498
$\Delta(1232)\overline{K}$, $ extit{ extit{H}}$ -wave	$(1.0\pm1.0)\%$	498
$N\overline{K}^*(892)$, $S=3/2$, F -wave	(14 ± 8)%	439

$$\Xi$$
 BARYONS $(S=-2, I=1/2)$

 $\Xi^0 = uss$, $\Xi^- = dss$

=0

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

Mass
$$m=1314.86\pm0.20$$
 MeV $m_{\Xi^-}-m_{\Xi^0}=6.85\pm0.21$ MeV Mean life $\tau=(2.90\pm0.09)\times10^{-10}$ s $c\tau=8.71$ cm

Magnetic moment $\mu = -1.250 \pm 0.014~\mu_{ extbf{N}}$

Decay parameters

$$\Lambda \pi^0$$
 $\alpha = -0.349 \pm 0.009$
" $\phi = (21 \pm 12)^\circ$
" $\gamma = 0.85 \ [n]$
" $\Delta = (218^{+12}_{-19})^\circ \ [n]$
 $\Lambda \gamma$ $\alpha = -0.70 \pm 0.07$
 $\Lambda e^+ e^ \alpha = -0.8 \pm 0.2$
 $\Sigma^0 \gamma$ $\alpha = -0.69 \pm 0.06$
 $\Sigma^+ e^- \overline{\nu}_e$ $g_1(0)/f_1(0) = 1.22 \pm 0.05$
 $\Sigma^+ e^- \overline{\nu}_e$ $f_2(0)/f_1(0) = 2.0 \pm 0.9$

https://pdg.lbl.gov

Page 32

≡ ⁰ DECAY MODES		Fraction (Γ_i/Γ)	Confidence	level	p (MeV/ c)
$\Lambda\pi^0$	(99.524±0.012) %				135
$\Lambda\gamma$		(1.17 ± 0.0)	7) \times 10 ⁻³		184
$\Lambda e^+ e^-$		(7.6 ± 0.6	$) \times 10^{-6}$		184
$\Sigma^0 \gamma$		(3.33 ± 0.10)	0) $\times 10^{-3}$		117
$\Sigma^+ e^- \overline{ u}_e$		(2.52 ± 0.08)	8) \times 10 ⁻⁴		120
$\Sigma^+ \mu^- \overline{ u}_{\mu}$		(2.33 ± 0.39)	$5) \times 10^{-6}$		64
	$\Delta S = \Delta Q$ (SQ	?) violating mo	des or		
$\Delta S = 2$ forbidden (S2) modes					
$\Sigma^-e^+ u_e$	SQ	< 1.6	$\times 10^{-4}$	90%	112
$\Sigma^- \mu^+ u_\mu$	SQ	< 9	$\times 10^{-4}$	90%	49
$p\pi^-$	52	< 8	\times 10 ⁻⁶	90%	299
$pe^-\overline{\nu}_e$	<i>52</i>	< 1.3	$\times 10^{-3}$		323
$ ho\mu^-\overline{ u}_\mu$	52	< 1.3	$\times 10^{-3}$		309

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

P is not yet measured; + is the quark model prediction.

Mass
$$m=1321.71\pm0.07~{\rm MeV}$$
 $\left(m_{\Xi^-}-m_{\overline{\Xi}^+}\right)/m_{\Xi^-}=\left(-3\pm9\right)\times10^{-5}$ Mean life $\tau=\left(1.639\pm0.015\right)\times10^{-10}~{\rm s}$ $c\tau=4.91~{\rm cm}$ $\left(\tau_{\Xi^-}-\tau_{\overline{\Xi}^+}\right)/\tau_{\Xi^-}=-0.01\pm0.07$ Magnetic moment $\mu=-0.6507\pm0.0025~\mu_N$ $\left(\mu_{\Xi^-}+\mu_{\overline{\Xi}^+}\right)/\left|\mu_{\Xi^-}\right|=+0.01\pm0.05$

Decay parameters

$$\begin{array}{lll} \varLambda\pi^{-} & \alpha = -0.390 \pm 0.006 & (\mathsf{S} = 1.6) \\ \alpha(\overline{\Xi}^{+}) \text{ for } \overline{\Xi}^{+} \to \overline{\varLambda}\pi^{+} = 0.371 \pm 0.007 \\ (\alpha + \overline{\alpha}) \ / \ (\alpha - \overline{\alpha}) \text{ for } \overline{\Xi}^{-} \to \varLambda\pi^{-}, \ \overline{\Xi}^{+} \to \overline{\varLambda}\pi^{+} = (6 \pm 14) \times 10^{-3} \\ [\alpha(\overline{\Xi}^{-})\alpha_{-}(\varLambda) - \alpha(\overline{\Xi}^{+})\alpha_{+}(\overline{\varLambda})] \ / \ [\text{ sum }] = (0 \pm 7) \times 10^{-4} \\ \text{"} & \phi = (-1.2 \pm 1.0)^{\circ} & (\mathsf{S} = 1.4) \\ \phi \text{ ANGLE FOR } \overline{\Xi}^{+} \to \overline{\varLambda}\pi^{+} & (\tan\phi = \beta/\gamma) = (-1.2 \pm 1.2)^{\circ} \\ \Delta\Phi_{CP} = (\Phi_{-} + \Phi_{+})/2 = (-0.3 \pm 0.8)^{\circ} \\ \text{"} & \gamma = 0.89 \ [^{n}] \\ \text{"} & \Delta = (175.9 \pm 1.5)^{\circ} \ [^{n}] \\ \varLambda\epsilon^{-}\overline{\nu}_{e} & g_{A}/g_{V} = -0.25 \pm 0.05 \ [^{i}] \end{array}$$

≡ DECAY MODES		Fraction (Γ_i/Γ)	Confiden	ce level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda\pi^-$		(99.887±0.03	35) %		140
$\Sigma^-\gamma$		(1.27 ± 0.23)	$3) \times 10^{-4}$		118
$\Lambda e^- \overline{ u}_e$		(5.63 ± 0.31	$1) \times 10^{-4}$		190
$\Lambda\mu^-\overline{ u}_\mu$		$(3.5 \begin{array}{c} +3.5 \\ -2.2 \end{array})$	$) \times 10^{-4}$		163
$\Sigma^0 e^- \overline{ u}_e$		(8.7 ± 1.7)	$) \times 10^{-5}$		123
$\Sigma^0 \mu^- \overline{ u}_\mu$		< 8	$\times 10^{-4}$	90%	70
$\equiv^0 e^{-\frac{r}{\nu_e}}$		< 2.59	$\times 10^{-4}$	90%	7
	$\Delta S = 2$ for	bidden (<i>S2</i>) mo	des		
$n\pi^-$	<i>S</i> 2	< 1.9	$\times10^{-5}$	90%	304
$ne^-\overline{ u}_e$	52	< 3.2	$\times 10^{-3}$	90%	327
n $\mu^-\overline{ u}_\mu$	<i>S2</i>	< 1.5	%	90%	314
$p\pi^-\pi^-$	<i>S</i> 2	< 4	$\times 10^{-4}$	90%	223
$p\pi^-e^-\overline{ u}_e$	<i>S2</i>	< 4	$\times 10^{-4}$	90%	305
$m{p}\pi^-\mu^-\overline{ u}_\mu$	<i>S2</i>	< 4	$\times 10^{-4}$	90%	251
$p\mu^-\mu^-$	L	< 4	$\times 10^{-8}$	90%	272

Ξ(1530) 3/2⁺

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

$$\Xi(1530)^0$$
 mass $m=1531.80\pm0.32$ MeV (S = 1.3) $\Xi(1530)^-$ mass $m=1535.0\pm0.6$ MeV $\Xi(1530)^0$ full width $\Gamma=9.1\pm0.5$ MeV $\Xi(1530)^-$ full width $\Gamma=9.9^{+1.7}_{-1.9}$ MeV

≡ (1530) DECAY MODES	Fraction (Γ_j/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Xi\pi$	100 %		158
$\equiv \gamma$	<3.7 %	90%	202

Ξ(1690)

$$I(J^P) = \frac{1}{2}(??)$$

Created: 5/31/2023 09:09

Mass $m=1690\pm 10$ MeV $^{[p]}$ Full width $\Gamma=20\pm 15$ MeV

 ≡(1690) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	seen	240
$\Sigma \overline{K}$	seen	70
$\equiv \pi$	seen	311
$=\pi^+\pi^-$	possibly seen	213

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

Mass $m=1823\pm 5$ MeV $^{[p]}$ Full width $\Gamma=24^{+15}_{-10}$ MeV $^{[p]}$

 ≡(1820) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	large	402
$\Sigma \overline{K}$	small	324
$\equiv \pi$	small	421
$\Xi(1530)\pi$	small	237

Ξ(1950)

$$I(J^P) = \frac{1}{2}(??)$$

Mass $m=1950\pm15~{
m MeV}~^{[p]}$ Full width $\Gamma=60\pm20~{
m MeV}~^{[p]}$

≡ (1950) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	seen	522
$\Sigma \overline{K}$	possibly seen	460
$\Xi \pi$	seen	519

Ξ(2030)

$$I(J^P) = \tfrac{1}{2}(\ge \tfrac{5}{2}?)$$

Created: 5/31/2023 09:09

Mass $m=2025\pm 5$ MeV $^{[p]}$ Full width $\Gamma=20^{+15}_{-5}$ MeV $^{[p]}$

 ≡(2030) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda \overline{K}$	\sim 20 %	585
$\Sigma \overline{K}$	\sim 80 %	529
$\Xi\pi$	small	574
$\Xi(1530)\pi$	small	416
$\Lambda \overline{K} \pi$	small	499
$\Sigma \overline{K} \pi$	small	428

Ω BARYONS (S=-3, I=0)

$$\Omega^-=sss$$

$$\Omega^-$$

$$I(J^P) = 0(\frac{3}{2}^+)$$

 $J^P=\frac{3}{2}^+$ is the quark-model prediction; and J=3/2 is fairly well established.

Mass
$$m=1672.45\pm0.29~{\rm MeV}$$
 $(m_{\Omega^-}-m_{\overline{\Omega}^+})\ /\ m_{\Omega^-}=(-1\pm8)\times 10^{-5}$ Mean life $\tau=(0.821\pm0.011)\times 10^{-10}~{\rm s}$ $c\tau=2.461~{\rm cm}$ $(\tau_{\Omega^-}-\tau_{\overline{\Omega}^+})\ /\ \tau_{\Omega^-}=0.00\pm0.05$ Magnetic moment $\mu=-2.02\pm0.05~\mu_N$

Decay parameters

$$\alpha(\Omega^{-}) \; \alpha_{-}(\Lambda) \; {\rm FOR} \; \Omega^{-} \to \Lambda K^{-} = 0.0115 \pm 0.0015$$
 $\Lambda K^{-} \qquad \alpha = 0.0154 \pm 0.0020$ $\Lambda K^{-}, \; \overline{\Lambda} K^{+} \; (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) = -0.02 \pm 0.13$ $\Xi^{0} \pi^{-} \qquad \alpha = 0.09 \pm 0.14$ $\Xi^{-} \pi^{0} \qquad \alpha = 0.05 \pm 0.21$

Ω^- DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
ΛK^-	(67.8±0.7) %		211
$\bar{\Xi}^0\pi^-$	(23.6±0.7) %		294
$= \pi^0$	(8.6±0.4) %		289
$\Xi^-\pi^+\pi^-$	$(3.7^{+0.7}_{-0.6}) \times 10^{-1}$	-4	189
$\Xi(1530)^0\pi^-$	< 7 × 10 ⁻¹	-5 90%	17
$\Xi^0 e^- \overline{\nu}_e$	$(5.6\pm2.8) imes10^{-}$	-3	319
$\equiv \gamma$	< 4.6 × 10 ⁻¹	-4 90%	314
	$\Delta S = 2$ forbidden (S2) modes		
$\Lambda\pi^-$	$S2$ < 2.9 \times 10^{-}	-6 90%	449

$$\Omega(2012)^-$$

$$I(J^P) = 0(?^-)$$

Mass $m = 2012.4 \pm 0.9 \text{ MeV}$ Full width $\Gamma = 6.4^{+3.0}_{-2.6} \text{ MeV}$

Branching fractions are given relative to the one **DEFINED AS 1**.

Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
DEFINED AS 1		403
0.83 ± 0.21		392
< 0.30	90%	245
< 0.21	90%	230
< 0.7	90%	226
< 0.08	90%	224
	DEFINED AS 1 0.83±0.21 <0.30 <0.21 <0.7	DEFINED AS 1 0.83 ± 0.21 < 0.30 90% < 0.21 90% < 0.7 90%

$\Omega(2250)^-$

$$I(J^P) = 0(??)$$

Mass $m=2252\pm 9~{\rm MeV}$ Full width $\Gamma=55\pm 18~{\rm MeV}$

$\Omega(2250)^-$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi^-\pi^+\kappa^-}$	seen	532
$\Xi(1530)^0K^-$	seen	437

CHARMED BARYONS (C=+1)

$$\Lambda_c^+ = udc, \quad \Sigma_c^{++} = uuc, \quad \Sigma_c^+ = udc, \quad \Sigma_c^0 = ddc,$$

$$\Xi_c^+ = usc, \quad \Xi_c^0 = dsc, \quad \Omega_c^0 = ssc$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

Mass
$$m=2286.46\pm0.14$$
 MeV Mean life $au=(201.5\pm2.7)\times10^{-15}$ s $~(S=1.6)$ $c au=60.4~\mu{\rm m}$

Decay asymmetry parameters

$$\Lambda\pi^+$$
 $\alpha=-0.84\pm0.09$
 α FOR $\Lambda_c^+\to\Lambda\rho^+=-0.76\pm0.07$

https://pdg.lbl.gov

Page 37

$$\begin{array}{lll} \Sigma^{+}\pi^{0} & \alpha = -0.55 \pm 0.11 \\ \alpha \; \text{FOR} \; \varLambda_{c}^{+} \to \; \Sigma^{0}\pi^{+} = -0.73 \pm 0.18 \\ \alpha \; \text{FOR} \; \varLambda_{c}^{+} \to \; \Sigma(1385)^{+}\pi^{0} = -0.92 \pm 0.09 \\ \alpha \; \text{FOR} \; \varLambda_{c}^{+} \to \; \Sigma(1385)^{0}\pi^{+} = -0.79 \pm 0.11 \\ \varLambda\ell^{+}\nu_{\ell} & \alpha = -0.86 \pm 0.04 \\ \alpha \; \text{FOR} \; \varLambda_{c}^{+} \to \; pK_{S}^{0} = 0.2 \pm 0.5 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \; \text{in} \; \varLambda_{c}^{+} \to \; \Lambda\pi^{+}, \; \overline{\varLambda_{c}^{-}} \to \; \overline{\varLambda}\pi^{-} = -0.07 \pm 0.31 \\ (\alpha + \overline{\alpha})/(\alpha - \overline{\alpha}) \; \text{in} \; \varLambda_{c}^{+} \to \; \Lambda e^{+}\nu_{e}, \; \overline{\varLambda_{c}^{-}} \to \; \overline{\varLambda}e^{-}\overline{\nu}_{e} = 0.00 \pm 0.04 \\ A_{CP}(\Lambda X) \; \text{in} \; \varLambda_{c} \to \; \Lambda X, \; \overline{\varLambda}_{c} \to \; \overline{\varLambda}X = (2 \pm 7)\% \\ \Delta A_{CP} = A_{CP}(\varLambda_{c}^{+} \to \; pK^{+}K^{-}) - A_{CP}(\varLambda_{c}^{+} \to \; p\pi^{+}\pi^{-}) = \\ (0.3 \pm 1.1)\% \end{array}$$

Branching fractions marked with a footnote, e.g. [a], have been corrected for decay modes not observed in the experiments. For example, the submode fraction $\Lambda_c^+ \to p \overline{K}^*(892)^0$ seen in $\Lambda_c^+ \to p K^- \pi^+$ has been multiplied up to include $\overline{K}^*(892)^0 \to \overline{K}^0 \pi^0$ decays.

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Hadronic modes with a p or n : $S = -1$ final states					
pK_S^0		($1.59\pm~0.07)~\%$	S=1.1	873	
$pK^-\pi^+$		$(6.26\pm\ 0.29)\%$	S=1.4	823	
$p\overline{K}^*(892)^0$	[<i>r</i>]	$(~1.95\pm~0.27)~\%$		685	
Δ (1232) $^{++}$ K^-		$(1.08\pm~0.25)~\%$		710	
$\Lambda(1520)\pi^+$	[<i>r</i>]	($2.2~\pm~0.5$) %		628	
$pK^-\pi^+$ nonresonant		(3.5 ± 0.4) %		823	
$pK_S^0\pi^0$		$(1.96\pm\ 0.12)\ \%$		823	
n $K^0_S\pi^+$		$(1.82\pm\ 0.25)\ \%$		821	
$n\pi^+$		$(6.6 \pm 1.3) \times 10^{-4}$		944	
$n\pi^+\pi^0$		$(6.4 \pm 0.9) \times 10^{-3}$		927	
$n\pi^+\pi^-\pi^+$		$(4.5 \pm 0.8) \times 10^{-3}$		895	
$nK^-\pi^+\pi^+$		(1.90 ± 0.12) %		756	
$p\overline{K}^0\eta$		$(8.3 \pm 1.8) \times 10^{-3}$		568	
$pK_S^0\pi^+\pi^-$		$(1.60\pm~0.11)~\%$	S=1.1	754	
$pK^-\pi^+\pi^0$		(4.45 ± 0.28) %	S=1.5	759	
$pK^*(892)^-\pi^+$	[<i>r</i>]	(1.4 ± 0.5) %		580	
$p(K^-\pi^+)_{ ext{nonresonant}}\pi^0$		(4.6 \pm 0.8) %		759	
$\Delta(1232) K^*(892)$		seen		419	
$pK^{-}2\pi^{+}\pi^{-}$		$(1.4 \pm 0.9) \times 10^{-3}$		671	
$pK^-\pi^+2\pi^0$		(1.0 ± 0.5) %		678	

Hadronic modes with a p: S = 0 final states

$$p\pi^0$$
 < 8 $\times 10^{-5}$ CL=90% 945 $p\eta$ (1.41± 0.11) $\times 10^{-3}$ 856

https://pdg.lbl.gov

Page 38

$p\eta'$	(4.9 \pm 0.9) \times 10 ⁻⁴	639
$p\omega(782)^{0}$	(8.3 ± 1.0) $\times 10^{-4}$	751
$ ho\pi^+\pi^-$	$(4.60\pm 0.26) \times 10^{-3}$	927
$p f_0(980)$	[r] (3.4 \pm 2.3) \times 10 ⁻³	614
$ ho 2\pi^{+} 2\pi^{-}$	$(2.3 \pm 1.4) \times 10^{-3}$	852
$ ho K^+ K^-$	$(1.06\pm\ 0.06)\times10^{-3}$	616
$oldsymbol{ ho}\phi$	[r] $(1.06 \pm 0.14) \times 10^{-3}$	590
pK^+K^- non- ϕ	$(5.3 \pm 1.2) \times 10^{-4}$	616
$ ho\phi\pi^0$	$(10 \pm 4) \times 10^{-5}$	460
$pK^+K^-\pi^0$ nonresonant	$< 6.3 \times 10^{-5}$	CL=90% 494

Hadronic modes with a hyperon: S = -1 final states

Hadronic modes with	a nyperon: $S = -1$ final s	tates	
$\Lambda\pi^+$	$(~1.29\pm~0.05)~\%$	S=1.1	864
$\Lambda(1670)\pi^+$, $\Lambda(1670) o\eta\Lambda$	$(3.5 \pm 0.5) \times 10^{-3}$		_
$\Lambda\pi^+\pi^0$	(7.02± 0.35) %	S=1.1	844
Λho^+	$(4.0 \pm 0.5)\%$		636
$\Lambda\pi^-2\pi^+$	(3.62± 0.26) %	S=1.4	807
$\Sigma(1385)^+\pi^0$, $\Sigma^+ o \Lambda\pi^+$	$(5.0 \pm 0.7) \times 10^{-3}$		_
$\Sigma(1385)^0\pi^+$, $\Sigma^0 o\Lambda\pi^0$	$(5.6 \pm 0.8) \times 10^{-3}$		_
$\Sigma(1385)^+\pi^+\pi^-$, $\Sigma^{*+} ightarrow$	($1.0~\pm~0.5$) %		688
$\Sigma(1385)^-2\pi^+$, $\Sigma^{*-} ightarrow$	$(7.6 \pm 1.4) \times 10^{-3}$		688
$\Lambda\pi^ \Lambda\pi^+ ho^0$			
	$(1.4 \pm 0.6)\%$		524
$\Sigma(1385)^+ \rho^0$, $\Sigma^{*+} \rightarrow \Lambda \pi^+$	$(5 \pm 4) \times 10^{-3}$		363
$\Lambda \pi^- 2\pi^+$ nonresonant	< 1.1 %	CL=90%	807
$\Lambda \pi^- \pi^0 2\pi^+$ total	$(2.3 \pm 0.8)\%$	0 1 1	757
$\Lambda \pi^+ \eta$	[r] (1.85 ± 0.11) %	S=1.1	691
\sum_{A} (1385) ⁺ η	[r] (9.1 ± 2.0) × 10 ⁻³		570
$\Lambda \pi^+ \omega$	[r] (1.5 ± 0.5) %	SI 000/	517
$\Lambda\pi^-\pi^02\pi^+$, no η or ω	$< 8 \times 10^{-3}$	CL=90%	757
$\Xi(1690)^0 K^+, \Xi^{*0} \rightarrow \Lambda \overline{K}^0$	$(5.6 \pm 1.1) \times 10^{-3}$	S=1.9	443
$\Sigma^0\pi^+$	$(1.6 \pm 0.5) \times 10^{-3}$	C 11	286
$\sum_{n=0}^{\infty} \pi^{+}$	$(1.27\pm 0.06)\%$	S=1.1	825
$\sum_{\tau} + \pi^0$	$(7.5 \pm 0.8) \times 10^{-3}$		635
$\Sigma + \eta$	$(1.25 \pm 0.09) \%$ $(4.4 \pm 2.0) \times 10^{-3}$		827
$\Sigma^+ \eta'$	$(4.4 \pm 2.0) \times 10^{-3}$ $(1.5 \pm 0.6) \%$		713
$\Sigma + \eta$ $\Sigma + \pi + \pi$	$(1.5 \pm 0.0)\%$ $(4.48 \pm 0.23)\%$	S=1.2	391 804
$\sum_{i=1}^{n} \rho^{i}$	< 1.7 %	3=1.2 CL=95%	575
$\Sigma^{-} \rho \Sigma^{-} 2\pi^{+}$	(1.87± 0.18) %	CL=95/0	799
$\sum_{n=0}^{\infty} \frac{2^n}{n^n} \pi^0$	$(3.5 \pm 0.4)\%$		803
$\sum_{\tau}^{\tau} + \pi^0 \pi^0$	$(\ 3.5 \pm \ 0.4 \) \%$		806
$\sum_{n=0}^{\infty} \frac{n}{\pi} = 2\pi + 1$	$(1.35\pm 0.14)\%$ $(1.10\pm 0.30)\%$		763
$\Sigma + \pi + \pi - \pi^0$	(1.10 ± 0.30) /0		767
<u> </u>			101

(17/1 18 11	, ,	(
$\Sigma^+\omega$	[r] (1.70±	0.20) %		569
$\Sigma^-\pi^02\pi^+$	(2.1 ±	0.4)%		762
$\Sigma^+ {\mathcal K}^+ {\mathcal K}^-$	(3.5 ±	$0.4) \times 10^{-3}$		349
$\Sigma^+\phi$	$[r]$ (3.9 \pm	$0.6) \times 10^{-3}$	S=1.1	295
${\it \Xi}(1690)^0{\it K}^+$, ${\it \Xi}^{*0}$ $ ightarrow$	($1.01\pm$	$0.25) \times 10^{-3}$		286
$\Sigma^+ K^-$				
$\Sigma^+ K^+ K^-$ nonresonant	< 8	\times 10 ⁻⁴	CL=90%	349
$\equiv^0 K^+$	(5.5 \pm	$0.7) \times 10^{-3}$		653
$\Xi^- K^+ \pi^+$	(6.2 \pm	$0.5) \times 10^{-3}$		565
$\Xi(1530)^0K^+$	(4.3 ±	$0.9) \times 10^{-3}$	S=1.1	473
Hadronic modes wit	h a hyperon: :	S=0 final st	ates	
ΛK^+	(6.0 ±	$0.5) \times 10^{-4}$		781
$\Lambda K^+ \pi^+ \pi^-$	< 5	$\times 10^{-4}$	CL=90%	637
$\Sigma^0 {\mathcal K}^+$	(4.9 \pm	$0.6) \times 10^{-4}$		735
$\Sigma^+ K^0_S$	($4.7 \pm$	$1.4) \times 10^{-4}$		736
$\Sigma^0 K^+\pi^+\pi^-$	/ 25	× 10 ⁻⁴	C1 - 0.0%	57/

$\Sigma^{0} K^{+} \pi^{+} \pi$ CL=90% 574 $\Sigma^{+} K^{+} \pi^{-}$ $\Sigma^{+} K^{*} (892)^{0}$ $\Sigma^{-} K^{+} \pi^{+}$ $(2.1 \pm 0.6) \times 10^{-3}$ 670

[r]
$$(3.5 \pm 1.0) \times 10^{-3}$$
 470
 $< 1.2 \times 10^{-3}$ CL=90% 664

Doubly Cabibbo-suppressed modes

$$pK^{+}\pi^{-}$$
 (1.11± 0.17) × 10⁻⁴ 823

Semileptonic modes

$\Lambda e^+ u_e$	($3.56\pm~0.13)~\%$	871
$ ho K^- e^+ u_e$	(8.8 ± 1.8) $ imes 10^{-4}$	874
$\Lambda(1520) e^+ \nu_e$	(1.0 \pm 0.5) $ imes$ 10 ⁻³	639
$\Lambda(1405)^0e^+ u_e$, $\Lambda^0 o hoK^-$	(4.2 \pm 1.9) $ imes$ 10 ⁻⁴	_
$\Lambda \mu^+ u_\mu$	(3.5 ± 0.5) %	867

Inclusive modes

e^+ anything	(3.95 ± 0.35) %	_
p anything	(50 \pm 16) %	_
n anything	(50 ± 16) %	_
Λ anything	$(38.2 \ ^{+} \ ^{2.9} \) \%$	_
K_S^0 anything	($9.9~\pm~0.7$) %	_
3prongs	(24 ± 8) %	-

$\Delta C = 1$ weak neutral current (C1) modes, or Lepton Family number (LF), or Lepton number (L), or Baryon number (B) violating modes

pe^+e^-	C1	< 5.5	$\times 10^{-6}$	CL=90%	951
$p\mu^+\mu^-$ non-resonant	C1	< 7.7	\times 10 ⁻⁸	CL=90%	937
$pe^+\mu^-$	LF	< 9.9	\times 10 ⁻⁶	CL=90%	947
$pe^-\mu^+$	LF	< 1.9	$\times10^{-5}$	CL=90%	947

https://pdg.lbl.gov Created: 5/31/2023 09:09 Page 40

$\overline{p}2e^+$	L,B	< 2.7	$\times 10^{-6}$	CL=90%	951
$\overline{p}2\mu^+$	L,B	< 9.4	\times 10 ⁻⁶	CL=90%	937
$\overline{p}e^+\mu^+$	L,B	< 1.6	$\times10^{-5}$	CL=90%	947
$\Sigma^-\mu^+\mu^+$	L	< 7.0	$\times 10^{-4}$	CL=90%	812
	E	kotic modes	_		
$p\gamma_D$		[s] < 8.0	$\times 10^{-5}$	CL=90%	_

$\Lambda_c(2595)^+$

$$I(J^P) = 0(\frac{1}{2})$$

The spin-parity follows from the fact that $\Sigma_c(2455)\pi$ decays, with little available phase space, are dominant. This assumes that $J^P=1/2^+$ for the $\Sigma_c(2455)$.

Mass
$$m = 2592.25 \pm 0.28$$
 MeV $m - m_{\Lambda^+} = 305.79 \pm 0.24$ MeV Full width $\Gamma = 2.6 \pm 0.6$ MeV

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma_c(2455)\pi$ — the latter just barely — are the only strong decays allowed to an excited Λ_c^+ having this mass; and the submode seems to dominate.

Λ_c (2595) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	[t] —	117
$\Sigma_c(2455)^{++}\pi^-$	24 \pm 7 %	3
$\Sigma_c^{(2455)^0}\pi^+$	24 \pm 7 %	3
$\Lambda_c^+ \pi^+ \pi^-$ 3-body	18 \pm 10 %	117
$\Lambda_c^+ \pi^0$ $\Lambda_c^+ \gamma$	[u] not seen	258
$\Lambda_c^+ \gamma$	not seen	288

$\Lambda_c(2625)^+$

$$I(J^P) = O(\frac{3}{2})$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}$ is the quark-model prediction.

Mass
$$m=2628.11\pm0.19~{
m MeV}~{
m (S}=1.1)$$
 $m-m_{\Lambda_c^+}=341.65\pm0.13~{
m MeV}~{
m (S}=1.1)$ Full width $\Gamma~<~0.97~{
m MeV},~{
m CL}=90\%$

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

Λ_c (2625) $^+$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	≈ 67%	184
https://pdg.lbl.gov	Page 41	Created: 5/31/2023 09:09

Σ_c (2455) ⁺⁺ π^-	<5	90%	103
$\Sigma_{c}(2455)^{0}\pi^{+}$	<5	90%	103
$\Lambda_c^+\pi^+\pi^-$ 3-body	large	1	184
$\Lambda_c^+ \pi^0$	[u] not seen	2	293
$\Lambda_c^+ \gamma$	not seen	3	319

$\Lambda_c(2860)^+$

$$I(J^P) = 0(\frac{3}{2}^+)$$

Mass $m=2856.1^{+2.3}_{-6.0}~{
m MeV}$ Full width $\Gamma=68^{+12}_{-22}~{
m MeV}$

Λ_c (2860) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$D^0 p$	seen	259

$\Lambda_c(2880)^+$

$$I(J^P) = 0(\frac{5}{2}^+)$$

Mass $m = 2881.63 \pm 0.24$ MeV $m - m_{\Lambda_c^+} = 595.17 \pm 0.28$ MeV Full width $\Gamma = 5.6^{+0.8}_{-0.6}$ MeV

Λ_c (2880) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \pi^+ \pi^-$	seen	471
$\Sigma_c(2455)^{0,++}\pi^{\pm}$ $\Sigma_c(2520)^{0,++}\pi^{\pm}$	seen	376
$\Sigma_{c}(2520)^{0,++}\pi^{\pm}$	seen	317
pD^0	seen	316

$\Lambda_c(2940)^+$

$$I(J^P)=0(\tfrac{3}{2}^-)$$

Created: 5/31/2023 09:09

 ${\it J}^{\it P}=3/2^-$ is favored, but is not certain

Mass
$$m=2939.6^{\,+\,1.3}_{\,-\,1.5}~{
m MeV}$$
 Full width $\Gamma=20^{\,+\,6}_{\,-\,5}~{
m MeV}$

Λ_c (2940) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
pD^0	seen	420
$\Sigma_c(2455)^{0,++}\pi^{\pm}$	seen	-

$$\Sigma_c(2455)$$

$$I(J^P) = 1(\frac{1}{2}^+)$$

$$\begin{array}{lll} \Sigma_c(2455)^{++} \text{mass } m = 2453.97 \pm 0.14 \text{ MeV} \\ \Sigma_c(2455)^{+} & \text{mass } m = 2452.65 ^{+0.22}_{-0.16} \text{ MeV} \\ \Sigma_c(2455)^{0} & \text{mass } m = 2453.75 \pm 0.14 \text{ MeV} \\ \Sigma_c(2455)^{++} & -m_{\Lambda_c^+} = 167.510 \pm 0.017 \text{ MeV} \\ m_{\Sigma_c(2455)^{++}} & -m_{\Lambda_c^+} = 166.19 ^{+0.16}_{-0.08} \text{ MeV} \\ m_{\Sigma_c(2455)^+} & -m_{\Lambda_c^+} = 167.290 \pm 0.017 \text{ MeV} \\ m_{\Sigma_c(2455)^{++}} & -m_{\Sigma_c(2455)^0} = 0.220 \pm 0.013 \text{ MeV} \\ m_{\Sigma_c(2455)^{++}} & -m_{\Sigma_c(2455)^0} = -1.10 ^{+0.16}_{-0.08} \text{ MeV} \\ \Sigma_c(2455)^{++} \text{full width } \Gamma = 1.89 ^{+0.09}_{-0.18} \text{ MeV} & (\text{S} = 1.1) \\ \Sigma_c(2455)^{+} & \text{full width } \Gamma = 2.3 \pm 0.4 \text{ MeV} \\ \Sigma_c(2455)^{0} & \text{full width } \Gamma = 1.83 ^{+0.11}_{-0.19} \text{ MeV} & (\text{S} = 1.2) \end{array}$$

 $\Lambda_{c}^{+}\pi$ is the only strong decay allowed to a Σ_{c} having this mass.

 Σ_{c} (2455) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_c^+ \pi$$

 \approx 100 %

94

 $\Sigma_c(2520)$

$$I(J^P) = 1(\frac{3}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${3\over 2}^+$ is the quark-model prediction.

$$\begin{split} & \Sigma_c(2520)^{++} \text{mass } m = 2518.41^{+0.22}_{-0.18} \text{ MeV} \quad (\text{S} = 1.1) \\ & \Sigma_c(2520)^{+} \quad \text{mass } m = 2517.4^{+0.7}_{-0.5} \text{ MeV} \\ & \Sigma_c(2520)^{0} \quad \text{mass } m = 2518.48 \pm 0.20 \text{ MeV} \quad (\text{S} = 1.1) \\ & m_{\Sigma_c(2520)^{++}} - m_{\Lambda_c^+} = 231.95^{+0.18}_{-0.12} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2520)^{+}} - m_{\Lambda_c^+} = 230.9^{+0.7}_{-0.5} \text{ MeV} \\ & m_{\Sigma_c(2520)^{0}} - m_{\Lambda_c^+} = 232.02^{+0.16}_{-0.14} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2520)^{++}} - m_{\Sigma_c(2520)^{0}} = 0.01 \pm 0.15 \text{ MeV} \\ & \Sigma_c(2520)^{++} \quad \text{full width } \Gamma = 14.78^{+0.30}_{-0.40} \text{ MeV} \\ & \Sigma_c(2520)^{+} \quad \text{full width } \Gamma = 17.2^{+4.0}_{-2.2} \text{ MeV} \\ & \Sigma_c(2520)^{0} \quad \text{full width } \Gamma = 15.3^{+0.4}_{-0.5} \text{ MeV} \end{split}$$

 $\Lambda_c^+\pi$ is the only strong decay allowed to a Σ_c having this mass.

Σ_c (2520) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 5/31/2023 09:09

 $\Lambda_c^+ \pi$

 \approx 100 %

179

$$\Sigma_c$$
(2800)

$$I(J^P) = 1(??)$$

$$\begin{split} & \Sigma_c(2800)^{++} \text{ mass } m = 2801^{+4}_{-6} \text{ MeV} \\ & \Sigma_c(2800)^+ \text{ mass } m = 2792^{+14}_{-5} \text{ MeV} \\ & \Sigma_c(2800)^0 \text{ mass } m = 2806^{+5}_{-7} \text{ MeV} \quad (\text{S} = 1.3) \\ & m_{\Sigma_c(2800)^{++}} - m_{\Lambda_c^+} = 514^{+4}_{-6} \text{ MeV} \\ & m_{\Sigma_c(2800)^+} - m_{\Lambda_c^+} = 505^{+14}_{-5} \text{ MeV} \\ & m_{\Sigma_c(2800)^0} - m_{\Lambda_c^+} = 519^{+5}_{-7} \text{ MeV} \quad (\text{S} = 1.3) \\ & \Sigma_c(2800)^{++} \text{ full width } \Gamma = 75^{+22}_{-17} \text{ MeV} \\ & \Sigma_c(2800)^+ \text{ full width } \Gamma = 62^{+60}_{-40} \text{ MeV} \\ & \Sigma_c(2800)^0 \text{ full width } \Gamma = 72^{+22}_{-15} \text{ MeV} \end{split}$$

Σ_c (2800) DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_c^+ \pi$$

seen

443

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2467.71\pm0.23$$
 MeV $~(S=1.3)$ Mean life $au=(453\pm5)\times10^{-15}$ s $c au=135.8~\mu{\rm m}$

Branching fractions marked with a footnote, e.g. [a], have been corrected for decay modes not observed in the experiments. For example, the submode fraction $\Xi_c^+ \to \Sigma^+ \overline{K}^* (892)^0$ seen in $\Xi_c^+ \to \Sigma^+ K^- \pi^+$ has been multiplied up to include $\overline{K}^* (892)^0 \to \overline{K}^0 \pi^0$ decays.

 \equiv_c^+ DECAY MODES

Fraction (Γ_i/Γ)

Scale factor/ pConfidence level (MeV/c)

Cabibbo-favored (S = -2) decays

$p2K_S^0$	(2.5±	$1.3) \times 10^{-3}$		766
$\Lambda \overline{K}^0 \pi^+$		_		852
$\Sigma(1385)^+\overline{K}{}^0$	[r] (2.9±2)	2.0) %		746
$\Lambda K^- 2\pi^+$	(9 ±	4) \times 10 ⁻³		787
$\Lambda \overline{K}^* (892)^0 \pi^+$	[r] < 5	\times 10 ⁻³	CL=90%	608
$\Sigma(1385)^+{\cal K}^-\pi^+$	[r] < 6	$\times 10^{-3}$	CL=90%	678
$\Sigma^+ K^- \pi^+$	(2.7±	1.2) %		810
$\Sigma^+\overline{K}^*(892)^0$	[r] (2.3 ± 1)	1.1) %		658

https://pdg.lbl.gov

Page 44

Σ^0 K $^-$ 2 π^+	(8 ±5	$) \times 10^{-3}$		735
\equiv 0 π +	$(1.6 \pm 0$.8) %		876
$\equiv -2\pi^+$	$(2.9 \pm 1$.3) %		851
$\Xi(1530)^0\pi^+$	[r] < 2.9	$\times 10^{-3}$	CL=90%	749
$\Xi(1620)^0 \pi^+$	seen			_
$\Xi(1690)^0 \pi^+$	seen			644
$\equiv^0 \pi^+ \pi^0$	(6.7 ± 3)	.5) %		856
$= \frac{1}{2} \pi^{-} 2\pi^{+}$	$(5.0\pm 2$.6) %		818
$\equiv^0 e^+ u_e$	(7 ±4) %		884
Ω^- K $^+$ π^+	$(2.0 \pm 1$	$.5) \times 10^{-3}$		399

Cabibbo-suppressed decays

$pK^-\pi^+$	((6.2 ± 3.0)	$) \times 10^{-3}$	S=1.5	944
$p\overline{K}^*(892)^0$	[<i>r</i>]	(3.3 ± 1.7)	$) \times 10^{-3}$		828
$\Sigma^+\pi^+\pi^-$	((1.4 ± 0.8)) %		922
$\Sigma^- 2\pi^+$	((5.1 ± 3.4)	$) \times 10^{-3}$		918
$\Sigma^+ K^+ K^-$		(4.3 ± 2.5)	$) \times 10^{-3}$		579
$oldsymbol{\Sigma}^+\phi$	[r] <	3.2	$\times 10^{-3}$	CL=90%	549
arxiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	<	1.3	$\times 10^{-3}$	CL=90%	501
$\Sigma^+ K^-$			4		
$p\phi(1020)$	((1.2 ± 0.6)	$) \times 10^{-4}$		751

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2470.44\pm0.28$$
 MeV (S $=1.2$) $m_{\Xi_c^0}-m_{\Xi_c^+}=2.72\pm0.23$ MeV (S $=1.1$) Mean life $\tau=(151.9\pm2.4)\times10^{-15}$ s $c\tau=45.5~\mu\mathrm{m}$

Decay asymmetry parameters

$$\Xi^{-}\pi^{+}$$
 $\alpha = -0.64 \pm 0.05$
 $\alpha \text{ FOR } \overline{\Xi}{}^{0} \rightarrow \overline{\Xi}{}^{+}\pi^{-} = 0.61 \pm 0.05$
 $\alpha \text{ FOR } \Xi_{c}^{0} \rightarrow \Lambda \overline{K}^{*}(892)^{0} = 0.15 \pm 0.22$
 $\alpha \text{ FOR } \Xi_{c}^{0} \rightarrow \Sigma^{+}K^{*}(892)^{-} = -0.52 \pm 0.30$

\equiv_c^0 DECAY MODES

Fraction (Γ_i/Γ)

Scale factor (MeV/c)

Cabibbo-favored decays

	•		
$pK^-K^-\pi^+$	$(4.8 \pm 1.2) \times 10^{-3}$	1.1	676
$pK^{-}\overline{K}^{*}(892)^{0}, \overline{K}^{*0} \rightarrow K^{-}\pi^{+}$	$(2.0 \pm 0.6) \times 10^{-3}$		413
$pK^-K^-\pi^+$ (no \overline{K}^{*0})	$(3.0 \pm 0.9) \times 10^{-3}$		676
ΛK_S^0	$(3.2 \pm 0.7) \times 10^{-3}$		906

https://pdg.lbl.gov

Page 45

$\Lambda K^- \pi^+$	$(1.45\pm0.33)~\%$	1.1	856
$\Lambda \overline{K}^{*}(892)^{0}$	$(2.6 \pm 0.7) \times 10^{-3}$		717
$\Lambda \overline{K}{}^0 \pi^+ \pi^-$	seen		786
$\Lambda K^- \pi^+ \pi^+ \pi^-$	seen		703
$\Sigma^0 K_S^0$	$(5.4 \pm 1.6) \times 10^{-4}$		864
$\Sigma^+ K^-$	$(1.8 \pm 0.4) \times 10^{-3}$		868
$\Sigma^0 \overline{K}^* (892)^0$	$(9.8 \pm 2.3) \times 10^{-3}$		658
$\Sigma^+ {\mathcal K}^*(892)^-$	$(4.9 \pm 1.4) \times 10^{-3}$		661
$\equiv -\pi^+$	$(1.43\pm0.32)~\%$	1.1	875
$\Xi^-\pi^+\pi^+\pi^-$	$(4.8 \pm 2.3)\%$		816
$\equiv^0 \phi$, $\phi o K^+ K^-$	$(5.1 \pm 1.3) \times 10^{-4}$		_
$\equiv^0 K^+ K^-$ nonresonant	$(5.6 \pm 1.4) \times 10^{-4}$		444
$\Omega^- K^+$	$(4.2 \pm 1.0) \times 10^{-3}$		522
$\Xi^- e^+ \nu_e$	$(1.04\pm0.24)~\%$		882
$\Xi^-\mu^+ u_\mu$	$(1.01\pm0.25)~\%$		878

Cabibbo-suppressed decays

$\Lambda_c^+ \pi^-$	$(5.5 \pm 1.8) \times 10^{-3}$	115
$\equiv K^+$	$(3.9 \pm 1.2) \times 10^{-4}$	789
$\mathit{\Lambda K^+K^-}(no\;\phi)$	$(4.1 \pm 1.4) \times 10^{-4}$	648
$\Lambda\phi$	$(4.9 \pm 1.5) \times 10^{-4}$	621

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}$ is the quark-model prediction.

Mass
$$m=2578.2\pm0.5~{\rm MeV}~{\rm (S}=1.1)$$
 $m_{\Xi_c^{\prime+}}-m_{\Xi_c^{+}}=110.5\pm0.4~{\rm MeV}$ $m_{\Xi_c^{\prime+}}-m_{\Xi_c^{\prime0}}=-0.5\pm0.6~{\rm MeV}$

The $\Xi_c^{\prime+} - \Xi_c^+$ mass difference is too small for any strong decay to occur.

<u>≡′</u> ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$= \frac{1}{c} \gamma$	seen	108

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

 J^P has not been measured; $\frac{1}{2}^+$ is the quark-model prediction.

Mass
$$m = 2578.7 \pm 0.5 \; \text{MeV}$$
 $m_{\Xi_c'^0} - m_{\Xi_c^0} = 108.3 \pm 0.4 \; \text{MeV}$

https://pdg.lbl.gov

Page 46

The $\Xi_c^{\prime 0}$ – Ξ_c^0 mass difference is too small for any strong decay to occur.

$\equiv_c^{\prime 0}$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\equiv_c^0 \gamma$	seen	106

$$\Xi_c(2645)$$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^+)$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}$ is the quark-model prediction.

$$Ξ_c(2645)^+$$
 mass $m=2645.10\pm0.30$ MeV (S = 1.2) $Ξ_c(2645)^0$ mass $m=2646.16\pm0.25$ MeV (S = 1.3) $m_{Ξ_c(2645)^+}-m_{Ξ_c^0}=174.67\pm0.09$ MeV $m_{Ξ_c(2645)^0}-m_{Ξ_c^+}=178.45\pm0.10$ MeV $m_{Ξ_c(2645)^+}-m_{Ξ_c(2645)^0}=-1.06\pm0.27$ MeV (S = 1.1) $Ξ_c(2645)^+$ full width $\Gamma=2.14\pm0.19$ MeV (S = 1.1) $Ξ_c(2645)^0$ full width $\Gamma=2.35\pm0.22$ MeV

 $\Xi_{\it C}\,\pi$ is the only strong decay allowed to a $\Xi_{\it C}$ resonance having this mass.

Ξ_c (2645) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$= c^0 \pi^+$	seen	102
$\equiv_c^+ \pi^-$	seen	106

$\Xi_c(2790)$

$$I(J^P) = \frac{1}{2}(\frac{1}{2})$$

Created: 5/31/2023 09:09

 ${\it J}^{\it P}$ has not been measured; ${1\over 2}^{\it -}$ is the quark-model prediction.

$$\Xi_c(2790)^+$$
 mass = 2791.9 \pm 0.5 MeV $\Xi_c(2790)^0$ mass = 2793.9 \pm 0.5 MeV $m_{\Xi_c(2790)^+} - m_{\Xi_c'^0} = 213.20 \pm 0.22$ MeV $m_{\Xi_c(2790)^0} - m_{\Xi_c'^+} = 215.70 \pm 0.22$ MeV $m_{\Xi_c(2790)^+} - m_{\Xi_c(2790)^0} = -2.0 \pm 0.7$ MeV $\Xi_c(2790)^+$ width = 8.9 \pm 1.0 MeV $\Xi_c(2790)^0$ width = 10.0 \pm 1.1 MeV

Ξ_c (2790) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi_c'\pi$	seen	159

$$\Xi_c(2815)$$

$$I(J^P) = \frac{1}{2}(\frac{3}{2}^-)$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}$ is the quark-model prediction.

$$\Xi_c(2815)^+$$
 mass $m=2816.51\pm0.25$ MeV (S = 1.2) $\Xi_c(2815)^0$ mass $m=2819.79\pm0.30$ MeV (S = 1.1) $m_{\Xi_c(2815)^+}-m_{\Xi_c^+}=348.80\pm0.10$ MeV $m_{\Xi_c(2815)^0}-m_{\Xi_c^0}=349.35\pm0.11$ MeV $m_{\Xi_c(2815)^+}-m_{\Xi_c(2815)^0}=-3.27\pm0.27$ MeV $\Xi_c(2815)^+$ full width $\Gamma=2.43\pm0.26$ MeV $\Xi_c(2815)^0$ full width $\Gamma=2.54\pm0.25$ MeV

The $\Xi_C \pi \pi$ modes are consistent with being entirely via $\Xi_C(2645)\pi$.

Ξ_c (2815) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Xi_c'\pi$	seen	188
	seen	102
$\Xi_c(2645)\pi$ $\Xi_c^0\gamma$	seen	325

$\Xi_c(2970)$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

was $\Xi_c(2980)$

$$\begin{split} &\Xi_c(2970)^+ \ m = 2964.3 \pm 1.5 \ \text{MeV} \quad (\text{S} = 3.9) \\ &\Xi_c(2970)^0 \ m = 2967.1 \pm 1.7 \ \text{MeV} \quad (\text{S} = 6.7) \\ &m_{\Xi_c(2970)^+} - m_{\Xi_c^+} = 496.6 \pm 1.5 \ \text{MeV} \quad (\text{S} = 3.7) \\ &m_{\Xi_c(2970)^0} - m_{\Xi_c^0} = 496.7 \pm 1.8 \ \text{MeV} \quad (\text{S} = 5.3) \\ &m_{\Xi_c(2970)^+} - m_{\Xi_c(2970)^0} = -2.8 \pm 1.9 \ \text{MeV} \quad (\text{S} = 4.8) \\ &\Xi_c(2970)^+ \ \text{width} \ \Gamma = 20.9^{+2.4}_{-3.5} \ \text{MeV} \quad (\text{S} = 1.2) \end{split}$$

Ξ_c (2970) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \overline{K} \pi$	seen	223
$\Sigma_c(2455)\overline{K}$	seen	122
$\Lambda_c^+\overline{K}$	not seen	410
$ \Sigma_{c}(2455)\overline{K} $ $ \Lambda_{c}^{+}\overline{K} $ $ \Lambda_{c}^{+}K^{-} $ $ \Xi_{c}(2455)\overline{K} $	seen	410
$\Xi_{C} Z \pi$	seen	381
$\Xi_c'\pi$	seen	_
$\Xi_c(2645)\pi$	seen	274

$$\Xi_c(3055)$$

$$I(J^P) = ?(??)$$

Mass $m=3055.9\pm0.4~{\rm MeV}$ Full width $\Gamma=7.8\pm1.9~{\rm MeV}$

Ξ_c (3055) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
Σ^{++} K $^-$	seen	_
ΛD^+	seen	316

$\Xi_c(3080)$

$$I(J^P) = \frac{1}{2}(??)$$

$$\Xi_c(3080)^+ \ m = 3077.2 \pm 0.4 \ {
m MeV}$$

 $\Xi_c(3080)^0 \ m = 3079.9 \pm 1.4 \ {
m MeV} \ ({
m S} = 1.3)$
 $\Xi_c(3080)^+ \ {
m width} \ \Gamma = 3.6 \pm 1.1 \ {
m MeV} \ ({
m S} = 1.5)$
 $\Xi_c(3080)^0 \ {
m width} \ \Gamma = 5.6 \pm 2.2 \ {
m MeV}$

Ξ_c (3080) DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_c^+ \overline{K}_{\pi}$	seen	415
Σ_c (2455) \overline{K}	seen	342
Σ_c (2455) $^{++}$ K $^-$	seen	342
$\Sigma_c(2520)^{++} K^-$	seen	239
$\Sigma_c(2455)\overline{K} + \Sigma_c(2520)\overline{K}$	seen	_
$\Lambda_c^+ \overline{K}$	not seen	536
$\Lambda_c^+ \overline{K} \pi^+ \pi^-$	not seen	144
ΛD^+	seen	362

Ω_c^0

$$I(J^P)=0(\tfrac{1}{2}^+)$$

 ${\it J}^{\it P}$ has not been measured; ${1\over 2}^+$ is the quark-model prediction.

Mass
$$m=2695.2\pm1.7$$
 MeV (S $=1.3$)
Mean life $au=(268\pm26)\times10^{-15}$ s $c au=80~\mu{\rm m}$

No absolute branching fractions have been measured. The following are branching ratios relative to $\Omega^-\pi^+$.

Ω_c^0 DECAY MODES

Fraction (Γ_i/Γ)

Confidence level (MeV/c)

Cabibbo-favored ($S=-3$) decays — relative to $\Omega^-\pi^+$		
$\Omega^-\pi^+$	DEFINED AS 1	821
$\Omega^-\pi^+\pi^0$	1.80 ± 0.33	797

https://pdg.lbl.gov

Page 49

$\Omega^- ho^+$	>1.3	90%	532
$\Omega^-\pi^-2\pi^+$	$0.31\!\pm\!0.05$		753
$\Omega^- e^+ u_e$	$1.98 \!\pm\! 0.15$		829
$\Omega^-\mu^+ u_\mu$	1.94 ± 0.21		824
$\equiv^0 \overline{K}^0$	1.64 ± 0.29		950
$\equiv^0 K^- \pi^+$	1.20 ± 0.18		901
$ar{arXi}^0\overline{K}^{*0}$, $\overline{K}^{*0} o K^-\pi^+$	0.68 ± 0.16		764
$\Omega(2012)^-\pi^+$, $\Omega(2012)^-\to$	0.12 ± 0.05		_
$\equiv -\frac{\Xi^0 K^-}{K^0 \pi^+}$	2.12 ± 0.28		895
$\Omega(2012)^-\pi^+, \ \Omega(2012)^- \rightarrow = -\overline{\kappa}^0$	0.12 ± 0.06		-
$\equiv -\kappa^{-}2\pi^{+}$	0.63 ± 0.09		830
$\Xi(1530)^0 K^- \pi^+, \ \Xi^{*0} \rightarrow$	0.21 ± 0.06		757
$\underline{\underline{=}} - \underline{\underline{\underline{\pi}}}^+ \pi^+$	0.34 ± 0.11		653
$ ho K^- K^- \pi^+$	seen		864
$\Sigma^+ K^- K^- \pi^+$	< 0.32	90%	689
$\Lambda \overline{K}{}^0 \overline{K}{}^0$	1.72 ± 0.35		837

$\Omega_c(2770)^0$

$$I(J^P) = 0(\frac{3}{2}^+)$$

 $\overline{J^P}$ has not been measured; $\frac{3}{2}^+$ is the quark-model prediction.

Mass
$$m=2765.9\pm2.0$$
 MeV (S $=1.2$) $m_{\Omega_c(2770)^0}-m_{\Omega_c^0}^{0}=70.7^{+0.8}_{-0.9}$ MeV

The $\Omega_c(2770)^0 - \Omega_c^0$ mass difference is too small for any strong decay to occur.

$\Omega_c(2770)^0$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Omega_c^0 \gamma$	presumably 100%	70

$$I(J^P) = ?(??)$$

Created: 5/31/2023 09:09

Mass $m=3000.41\pm0.22~{\rm MeV}$ Full width $\Gamma=4.5\pm0.7~{\rm MeV}$

Ω_c (3000) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_c^+ K^-}$	seen	182

 $\Omega_c(3050)^0$

$$I(J^P) = ?(??)$$

Mass $m=3050.19\pm0.13~{
m MeV}$ Full width $\Gamma~<~1.2~{
m MeV},~{
m CL}=95\%$

 $\Omega_c(3050)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Xi_c^+ K^-$

seen

278

 $\Omega_c(3065)^0$

$$I(J^P) = ?(??)$$

Mass $m=3065.54\pm0.26$ MeV Full width $\Gamma=3.3\pm0.6$ MeV (S =1.5)

 $\Omega_c(3065)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Xi_c^+ K^-$

seen

303

 $\Omega_c(3090)^0$

$$I(J^P) = ?(??)$$

Mass $m=3090.1\pm0.5~{\rm MeV}$ Full width $\Gamma=8.7\pm1.3~{\rm MeV}$

 $\Omega_c(3090)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

 $\Xi_c^+ K^-$

seen

340

 $\Omega_c(3120)^0$

$$I(J^P) = ?(?^?)$$

Mass $m=3119.1\pm1.0$ MeV Full width Γ < 2.6 MeV, CL = 95%

 $\Omega_c(3120)^0$ DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

Created: 5/31/2023 09:09

 $\Xi_c^+ K^-$

seen

379

DOUBLY CHARMED BARYONS (C=+2)

 $\Xi_{cc}^{++}=ucc$, $\Xi_{cc}^{+}=dcc$, $\Omega_{cc}^{+}=scc$

$$I(J^P) = ?(??)$$

Mass $m=3621.6\pm0.4$ MeV Mean life $au=(256\pm27)\times10^{-15}$ s

$\underline{z_{cc}^{++}}$ DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_c^+ K^- \pi^+ \pi^+$	DEFINED AS 1		880
$\Xi_c^+\pi^+, \Xi_c^+ \to pK^-\pi^+$ $\Xi_c^{\prime+}\pi^+, \Xi_c^{\prime+} \to \Xi_c^+\gamma, \Xi_c^+ \to$	$0.0022\!\pm\!0.0006$		_
	$0.0031\!\pm\!0.0010$		_
$p K^- \pi^+ \ D^+ p K^- \pi^+$			
$D^+ \rho K^- \pi^+$	< 0.017	90%	562

BOTTOM BARYONS (B=-1)

 $\Lambda_b^0 = udb$, $\Xi_b^0 = usb$, $\Xi_b^- = dsb$, $\Omega_b^- = ssb$

Λ<mark></mark>

$$I(J^P) = 0(\frac{1}{2}^+)$$

Created: 5/31/2023 09:09

$$\begin{split} I(J^P) & \text{ not yet measured; } 0(\frac{1}{2}^+) \text{ is the quark model prediction.} \\ & \text{Mass } m = 5619.60 \pm 0.17 \text{ MeV} \\ & m_{\Lambda_b^0} - m_{B^0} = 339.2 \pm 1.4 \text{ MeV} \\ & m_{\Lambda_b^0} - m_{B^+} = 339.72 \pm 0.28 \text{ MeV} \\ & \text{Mean life } \tau = (1.471 \pm 0.009) \times 10^{-12} \text{ s} \\ & c\tau = 441.0 \ \mu\text{m} \\ & A_{CP}(\Lambda_b \to p\pi^-) = -0.025 \pm 0.029 \quad \text{(S = 1.2)} \\ & A_{CP}(\Lambda_b \to pK^-) = -0.025 \pm 0.022 \\ & A_{CP}(\Lambda_b \to pK^-) = 0.12 \pm 0.09 \\ & \Delta A_{CP}(pK^-/\pi^-) = 0.014 \pm 0.024 \\ & A_{CP}(\Lambda_b \to p\overline{K}^0\pi^-) = 0.22 \pm 0.13 \\ & \Delta A_{CP}(J/\psi p\pi^-/K^-) = (5.7 \pm 2.7) \times 10^{-2} \end{split}$$

https://pdg.lbl.gov

Page 52

$$\begin{array}{l} A_{CP}(\Lambda_b \to \Lambda K^+ \pi^-) = -0.53 \pm 0.25 \\ A_{CP}(\Lambda_b \to \Lambda K^+ K^-) = -0.28 \pm 0.12 \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- \mu^+ \mu^-) = (-4 \pm 5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho \pi^- \pi^+ \pi^-) = (1.1 \pm 2.6) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho \pi^- \pi^+ \pi^-)_{LBM}) = (4 \pm 4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho \pi_- \pi^+ \pi^-)_{LBM}) = (4 \pm 4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho \pi_1 (1260)^-) = (-1 \pm 4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \lambda (1520)^0 \rho (770)^0) = (2 \pm 5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \lambda (1322)^{++} \pi^- \pi^-) = (0.1 \pm 3.3) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- \pi^+ \pi^-)_{LBM}) = (3.5 \pm 1.6) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \lambda (1520)^0 K^* (892)^0) = (5.5 \pm 2.5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \lambda (1520) \rho (770)^0) = (1 \pm 6) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \lambda (1520) \rho (770)^0) = (1 \pm 6) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ \pi^-) = (-7 \pm 5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ \pi^-) = (-7 \pm 5) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ \pi^-) = (0.2 \pm 1.9) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-) = (0.2 \pm 1.9) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to \rho K^- K^+ K^-)_{LBM}) = (2.7 \pm 2.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (\rho K^-)_{highmass} \phi (1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (\rho K^-)_{highmass} \phi (1020)) = (-0.7 \pm 3.4) \times 10^{-2} \\ \Delta A_{CP}(\Lambda_b^0 \to (\rho K^- K^+ K^-)_{LBM}) = (2.7 \pm 2.4) \times 10^{-2} \\ \Delta A_{FB}(\mu \mu) \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.39 \pm 0.04 \\ \Delta (A_{FB}^0(\mu \mu)) \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.39 \pm 0.05 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = -0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.04 \\ A_{FB}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.04 \\ A_{CP}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.04 \\ A_{CP}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.04 \\ A_{CP}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.04 \\ A_{CP}^{h} \text{ in } \Lambda_b \to \Lambda \mu^+ \mu^- = 0.25 \pm 0.0$$

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $\Lambda_b \to \overline{\Lambda}_c$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

A_b^0 DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	•
$J/\psi(1S)$ $\Lambda imes$ B $(b o \Lambda_b^0)$	(5.8 \pm 0.8) $ imes$ 1	0-5	1740
$ hoD^0\pi^-$	(6.2 ± 0.6) \times 1	0^{-4}	2370
$ ho D^+ \pi^- \pi^-$	($2.7~\pm0.4$) $ imes$ 1	0^{-4}	2332
$ hoD^*(2010)^+\pi^-\pi^-$	(5.2 ± 1.0) $ imes 1$	0^{-4}	2277
pD^0K^-	($4.5~\pm0.8~) imes 1$	0-5	2269
$ ho J/\psi \pi^-$	($2.6 \begin{array}{c} +0.5 \\ -0.4 \end{array}$) $ imes$ 1	0^{-5}	1755
$ ho\pi^- J/\psi$, $J/\psi ightarrow \mu^+ \mu^-$	($1.6~\pm0.8~) imes1$	0-6	_
$p J/\psi K^-$	$(3.2 \begin{array}{c} +0.6 \\ -0.5 \end{array}) \times 1$	0^{-4}	1589

https://pdg.lbl.gov

Page 53

$p\eta_c(1S)K^- P_c(4312)^+K^-,$	$(1.06\pm0.26)\times10^{-4}$ < 2.5 $\times10^{-5}$	CL=95%	1670
$P_c(4312)^+ \rightarrow p\eta_c(1S)$	$< 2.5 \times 10^{-5}$	CL=95%	_
$P_c(4380)^+ K^-$, $P_c \rightarrow$	[v] (2.7 ± 1.4) $ imes 10^{-5}$		_
$P_c(4450)^+K^-,\;\;P_c ightarrow P_J/\psi$	[v] (1.3 ± 0.4) $\times 10^{-5}$		-
$\chi_{c1}(1P)pK^-$	$(7.6 \ ^{+1.5}_{-1.3}\) \times 10^{-5}$		1242
$\chi_{c1}(1P) p \pi^-$	($5.0 \ ^{+1.3}_{-1.1}$) $ imes 10^{-6}$		1462
$\chi_{c2}(1P)pK^-$	$(7.9 \ ^{+1.6}_{-1.4}\) \times 10^{-5}$		1198
$\chi_{c2}(1P) p \pi^-$	(4.8 ± 1.9) $\times 10^{-6}$		1427
$pJ/\psi(1S)\pi^+\pi^-K^-$	(6.6 $^{+1.3}_{-1.1}$) \times 10 ⁻⁵		1410
$p\psi(2S)K^-$	(6.6 $^{+1.2}_{-1.0}$) \times 10 ⁻⁵		1063
$\chi_{c1}(3872) p K^-$	$(3.2 \pm 1.4) \times 10^{-5}$		837
$\chi_{c1}(3872)\Lambda(1520)$	(1.9 \pm 0.9) \times 10 ⁻⁵		721
$\psi(2S) p \pi^-$	$(7.5 \ ^{+1.6}_{-1.4}\) \times 10^{-6}$		1320
$ \rho \overline{K}^0 \pi^- $	$(1.3 \pm 0.4) \times 10^{-5}$		2693
pK^0K^-	$< 3.5 \times 10^{-6}$	CL=90%	2639
$\Lambda_{c}^{+}\pi^{-}$	$(4.9 \pm 0.4) \times 10^{-3}$	S=1.2	2342
$\Lambda_c^+ K^-$	$(3.56\pm0.28)\times10^{-4}$	S=1.2	2314
$\Lambda_c^+ a_1(1260)^-$	seen		2153
$\Lambda_c^+ D^-$	$(4.6 \pm 0.6) \times 10^{-4}$		1886
$\Lambda_c^{\stackrel{\leftarrow}{+}}D_s^-$	$(1.10\pm0.10)\%$		1833
$\Lambda_c^+ \pi^+ \pi^- \pi^-$	$(7.6 \pm 1.1) \times 10^{-3}$	S=1.1	2323
$\Lambda_c(2595)^+\pi^-$,	$(3.4 \pm 1.4) \times 10^{-4}$		2210
$\Lambda_c(2595)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-$			
$\Lambda_c(2625)^+\pi^-$,	$(3.3 \pm 1.3) \times 10^{-4}$		2193
$\Lambda_c(2625)^+ \rightarrow \Lambda_c^+ \pi^+ \pi^-$			
Σ_c (2455) $^0\pi^+\pi^-$, $\Sigma_c^0 o$	$(5.7 \pm 2.2) \times 10^{-4}$		2265
$\Lambda_c^+\pi^-$			
$\Sigma_c(2455)^{++}\pi^-\pi^-$, $\Sigma_c^{++}\to$	$(3.2 \pm 1.5) \times 10^{-4}$		2265
$\Lambda_c^+ \pi^+$	(1 00 0 11) 10=3		2121
$\Lambda_c^+ K^+ K^- \pi^ \Lambda_c^+ p \overline{p} \pi^-$	$(1.02\pm0.11)\times10^{-3}$		2184
L	$(2.63\pm0.27)\times10^{-4}$		1805
$\Sigma_c(2455)^0 p \overline{p}, \Sigma_c^0 ightarrow \Lambda_c^+ \pi^-$	$(2.3 \pm 0.5) \times 10^{-5}$		_
$\Sigma_c(2520)^0 p \overline{p}$, $\Sigma_c(2520)^0 \rightarrow$	($3.1~\pm0.7$) \times 10^{-5}		_
$\Lambda_c^+\pi^-$			

$\Lambda_c^+\ell^-\overline{ u}_\ell$ anything	[x] (10.9 ± 2.2) %		_
$\Lambda_c^+ \ell^- \overline{ u}_\ell$	$(\begin{array}{cc} 6.2 & +1.4 \\ -1.3 \end{array}) \%$		2345
$\Lambda_c^+ \tau^- \overline{\nu}_{\tau}$	(1.9 ± 0.5) %		1933
$\Lambda_c^+ \pi^+ \pi^- \ell^- \overline{\nu}_\ell$	(5.6 ± 3.1) %		2335
$\Lambda_c(2595)^+\ell^-\overline{ u}_\ell$	$(7.9 \ ^{+4.0}_{-3.5}) \times 10^{-3}$		2212
$\Lambda_c(2625)^+\ell^-\overline{ u}_\ell$	($1.3 \begin{array}{c} +0.6 \\ -0.5 \end{array}$) %		2195
p h ⁻	$[y] < 2.3 \times 10^{-5}$	CL=90%	2730
$p\pi^-$	$(4.5 \pm 0.8) \times 10^{-6}$		2730
p K -	$(5.4 \pm 1.0) \times 10^{-6}$		2709
pD_s^-	$< 4.8 \times 10^{-4}$	CL=90%	2364
$ ho\mu^-\overline{ u}_{\mu}$	$(4.1 \pm 1.0) \times 10^{-4}$		2730
$\Lambda \mu^+ \mu^-$	$(1.08\pm0.28)\times10^{-6}$		2695
$ ho\pi^-\mu^+\mu^-$	$(6.9 \pm 2.5) \times 10^{-8}$		2720
$pK^-e^+e^-$	$(3.1 \pm 0.6) \times 10^{-7}$		2708
$ hoK^-\mu^+\mu^-$	$(2.6 \ ^{+0.5}_{-0.4}) \times 10^{-7}$		2685
$\Lambda\gamma$	$(7.1 \pm 1.7) \times 10^{-6}$		2699
$\Lambda\eta$	$(9 ^{+7}_{-5}) \times 10^{-6}$		2670
$\Lambda \eta'(958)$	$< 3.1 \times 10^{-6}$	CL=90%	2611
$\Lambda \pi^+ \pi^-$	(4.6 ± 1.9) $ imes 10^{-6}$		2692
$\Lambda K^+ \pi^-$	$(5.6 \pm 1.2) \times 10^{-6}$		2660
$\Lambda K^+ K^-$	$(1.60\pm0.22)\times10^{-5}$		2605
$\Lambda\phi$	$(9.8 \pm 2.6) \times 10^{-6}$		2599
$\rho\pi^-\pi^+\pi^-$	$(2.09\pm0.21)\times10^{-5}$		2715
$pK^-K^+\pi^-$	$(4.0 \pm 0.6) \times 10^{-6}$		2612
$pK^-\pi^+\pi^-$	$(5.0 \pm 0.5) \times 10^{-5}$		2675
p K - K + K -	$(1.25\pm0.13)\times10^{-5}$		2524

$\Lambda_b(5912)^0$

$$J^P = \frac{1}{2}^-$$

Created: 5/31/2023 09:09

Mass $m=5912.19\pm0.17~{\rm MeV}$ Full width $\Gamma~<~0.25~{\rm MeV},~{\rm CL}=90\%$

Λ _b (5912) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \pi^+ \pi^-$	seen	86

$$\Lambda_b (5920)^0$$

$$J^P = \frac{3}{2}^-$$

Mass $m=5920.09\pm0.17$ MeV Full width $\Gamma < 0.19$ MeV, CL=90%

$\frac{\Lambda_b(5920)^0}{\Omega}$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi^+ \pi^-$$

seer

108

$\Lambda_b(6070)^0$

$$J^P = \frac{1}{2}^+$$

Quantum numbers based on quark model expectations.

Mass
$$m=6072.3\pm2.9~{\rm MeV}$$

Full width $\Gamma=72\pm11~{\rm MeV}$

$\Lambda_b(6070)^0$ DECAY MODES

Fraction (Γ_i/Γ)

(MeV/c)

$$\Lambda_b^0 \pi^+ \pi^-$$

seen

343

$\Lambda_b (6146)^0$

$$J^{P} = \frac{3}{2}^{+}$$

Mass
$$m=6146.2\pm0.4~{
m MeV}$$
 $m_{\Lambda_b(6146)^0}-m_{\Lambda_b^0}^{}=526.55\pm0.34~{
m MeV}$ Full width $\Gamma=2.9\pm1.3~{
m MeV}$

Λ_b (6146)⁰ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda^0_{\mu} \pi^+ \pi^-$$

seen

427

$\Lambda_b (6152)^0$

$$J^{P} = \frac{5}{2}^{+}$$

Mass
$$m=6152.5\pm0.4~{
m MeV}$$
 $m_{\Lambda_b(6152)^0}-m_{\Lambda_b^0}^{}=532.89\pm0.28~{
m MeV}$ $m_{\Lambda_b(6152)^0}-m_{\Lambda_b(6146)^0}^{}=6.34\pm0.32~{
m MeV}$ Full width $\Gamma=2.1\pm0.9~{
m MeV}$

$\Lambda_b(6152)^0$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

Created: 5/31/2023 09:09

$$\Lambda_b^0 \pi^+ \pi^-$$

seen

434

$$I(J^P) = 1(\frac{1}{2}^+)$$

I, J, P need confirmation.

Mass
$$m(\Sigma_b^+) = 5810.56 \pm 0.25$$
 MeV
Mass $m(\Sigma_b^-) = 5815.64 \pm 0.27$ MeV
 $m_{\Sigma_b^+} - m_{\Sigma_b^-} = -5.06 \pm 0.18$ MeV
 $\Gamma(\Sigma_b^+) = 5.0 \pm 0.5$ MeV
 $\Gamma(\Sigma_b^-) = 5.3 \pm 0.5$ MeV

Σ_b DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi$$

dominant

133

$$I(J^P) = 1(\frac{3}{2}^+)$$
 I, J, P need confirmation.

Mass
$$m(\Sigma_b^{*+}) = 5830.32 \pm 0.27 \text{ MeV}$$

Mass $m(\Sigma_b^{*-}) = 5834.74 \pm 0.30 \text{ MeV}$
 $m_{\Sigma_b^{*+}} - m_{\Sigma_b^{*-}} = -4.37 \pm 0.33 \text{ MeV}$ (S = 1.6)
 $m_{\Sigma_b^{*+}} - m_{\Sigma_b^{+}} = 19.73 \pm 0.18$
 $m_{\Sigma_b^{*-}} - m_{\Sigma_b^{-}} = 19.09 \pm 0.22$
 $\Gamma(\Sigma_b^{*+}) = 9.4 \pm 0.5 \text{ MeV}$
 $\Gamma(\Sigma_b^{*-}) = 10.4 \pm 0.8 \text{ MeV}$ (S = 1.3)
 $m_{\Sigma_b^{*-}} - m_{\Sigma_b} = 21.2 \pm 2.0 \text{ MeV}$

Σ_h^* DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

$$\Lambda_b^0 \pi$$

dominant

159

 $\Sigma_b(6097)^+$

$$J^{P} = ?$$
?

Mass $m = 6095.8 \pm 1.7 \text{ MeV}$ Full width $\Gamma=31\pm6$ MeV

Σ_b (6097) $^+$ DECAY MODES

Fraction (Γ_i/Γ)

$$\frac{\Sigma_b(6097)^+}{\Lambda_b \pi^+ \times B(b o \Sigma_b(6097)^+)}$$

 $\Sigma_b(6097)^-$

$$J^{P} = ?^{?}$$

Mass $m = 6098.0 \pm 1.8 \text{ MeV}$ Full width $\Gamma=29\pm4$ MeV

https://pdg.lbl.gov

Page 57

Σ_b (6097) $^-$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b \pi^- imes B(b o \ \Sigma_b (6097)^-)$	seen	_

Ξ_b

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

I, J, P need confirmation.

$$m(\Xi_b^-) = 5797.0 \pm 0.6 \; {
m MeV} \quad ({
m S} = 1.7) \ m_{\Xi_b^-} - m_{\Lambda_b^0} = 177.46 \pm 0.31 \; {
m MeV} \quad ({
m S} = 1.3) \ m_{\Xi_b^-} - m_{\Xi_b^0} = 5.9 \pm 0.6 \; {
m MeV} \ {
m Mean life} \; au_{\Xi_b^-} = (1.572 \pm 0.040) imes 10^{-12} \; {
m s}$$

≡ _b DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	р (MeV/ <i>c</i>)
$J/\psi \Xi^- \times B(b \to \Xi_b^-)$	$(1.02^{+0.26}_{-0.21}) \times 1$	0-5	1782
$J/\psi \Lambda K^- \times B(b o \Xi_b^-)$	$(2.5~\pm 0.4~)\times 1$	0-6	1631
$pK^-K^- \times B(b \rightarrow \Xi_b^-)$	$(3.7~\pm 0.8~)\times 1$	0-8	2731
pK-K-	seen		2731
$pK^-\pi^-$	seen		2783
$\Lambda_b^0 \pi^- \times B(b \to \Xi_b^-)/B(b \to \Lambda_b^0)$	$(5.7 \pm 2.0) \times 1$	0^{-4}	99
$=\frac{0}{c}\pi^{-}$	seen		2367
Σ (1385) K^-	(2.6 \pm 2.3) \times 1	0 ⁻⁷	2707
$\Lambda(1405)K^-$	(1.9 \pm 1.2) $ imes$ 1	0 ⁻⁷	2702
$\Lambda(1520) K^{-}$	$(7.6 \pm 3.2) \times 1$	0 ⁻⁷	2673
$\Lambda(1670)K^-$	$(4.5 \pm 2.3) \times 1$	0 ⁻⁷	2629
Σ (1775) K^-	$(2.2 \pm 1.5) \times 1$	0 ⁻⁷	2599
$\Sigma(1915)K^-$	$(2.6 \pm 2.5) \times 1$	0 ⁻⁷	2553
$\equiv \dot{\gamma}$	< 1.3 × 1	0^{-4} 95%	-

Ξ₀

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

I, J, P need confirmation.

$$m(\Xi_b^0) = 5791.9 \pm 0.5 \; {
m MeV}$$
 $m_{\Xi_b^0} - m_{A_b^0} = 172.5 \pm 0.4 \; {
m MeV}$ Mean life $au_{\Xi_b^0} = (1.480 \pm 0.030) imes 10^{-12} \; {
m s}$

\equiv_b^0 DECAY MODES	Fraction (Γ_i/Γ)	Confidence level	(MeV/c)
$p D^0 K^- imes B(b o oldsymbol{arXi}_b^0) \ p \overline{K}^0 \pi^- imes B(b o oldsymbol{arXi}_b^0)/B(\overline{b} o B^0)$	(1.7 ±0.5) > < 1.6 >	< 10 ⁻⁶ < 10 ⁻⁶ 90%	2374 2783

https://pdg.lbl.gov

Page 58

$p K^0 K^- imes B(b o ar{\varXi}^0_b)/B(\overline{b} o $	< 1.1	$\times 10^{-6}$	90%	2730
B^0)				
$\Lambda\pi^{+}\pi^{-} \times B(b \rightarrow \Xi_{b}^{0})/B(b \rightarrow$	< 1.7	\times 10 ⁻⁶	90%	2781
A_b^0)				
$\Lambda K^- \pi^+ \times B(b \rightarrow \Xi_b^0)/B(b \rightarrow$	< 8	\times 10 ⁻⁷	90%	2751
$\Lambda_b^0)$				
$\Lambda K^+ K^- \times B(b \rightarrow \Xi_b^0)/B(b \rightarrow$	< 3	\times 10 ⁻⁷	90%	2698
$\Lambda_b^0)$				
J/ψ Λ	seen			1868
$J/\psi \equiv 0$	seen			1785
$\Lambda_c^+ K^- imes B(b o \ ec \Xi_b^0)$	(6 ±4	$1) \times 10^{-7}$		2416
$pK^-\pi^+\pi^- \times B(b \rightarrow$	(1.9 ± 0)	$0.4) \times 10^{-6}$		2766
$\equiv^0_b)/B(b o \Lambda^0_b)$				
$ ho K^- K^- \pi^+ imes B(b o$	(1.71 ± 0)	$0.31) \times 10^{-6}$		2704
$\Xi_b^0)/B(b o A_b^0)$				
$pK^{-}K^{+}K^{-} \times B(\tilde{b} \rightarrow$	(1.7 ± 1)	1.0) \times 10 ⁻⁷		2620
$ec{arphi}_b^0)/B(b o ec{arLambda}_b^0)$				

$\Xi_b'(5935)^-$

$$J^P = \frac{1}{2}^+$$

Mass $m=5935.02\pm0.05$ MeV $m_{\Xi_b'(5935)^-}-m_{\Xi_b^0}-m_{\pi^-}=3.653\pm0.019$ MeV Full width $\Gamma~<~0.08$ MeV, CL =95%

Ξ_b' (5935) $^-$ DECAY MODES	Fraction (Γ_i/Γ)	$p \; (MeV/c)$
$\overline{\Xi_b^0\pi^-} imes B(\overline{b} o$	(11.8 ± 1.8) %	31
$\Xi_b'(5935)^-)/B(\overline{b} o \Xi_b^0)$		

$\Xi_b(5945)^0$

$$J^P = \frac{3}{2}^+$$

Created: 5/31/2023 09:09

Mass $m=5952.3\pm0.6$ MeV Full width $\Gamma=0.90\pm0.18$ MeV

Ξ_b (5945) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\overline{\Xi_b^-}\pi^+$	seen	78

$$\Xi_b(5955)^-$$

$$J^{P} = \frac{3}{2}^{+}$$

Mass $m = 5955.33 \pm 0.13 \text{ MeV}$ $m_{\Xi_b(5955)^-} - m_{\Xi_b^0} - m_{\pi^-} = 23.96 \pm 0.13$ MeV Full width Γ = 1.65 ± 0.33 MeV

Ξ_b (5955) $^-$ DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

p (MeV/c)

$$\begin{split} \Xi_b^0 \pi^- \times & \mathsf{B}(\overline{b} \to \\ \Xi_b^* (5955)^-) / & \mathsf{B}(\overline{b} \to \Xi_b^0) \end{split}$$

 $(20.7 \pm 3.5) \%$

$\Xi_b(6100)^{\circ}$

$$J^{P} = \frac{3}{2}^{-}$$

J, P need confirmation.

Mass $m = 6100.3 \pm 0.6 \text{ MeV}$

 $m_{\Xi_b(6100)^-}-m_{\Xi_b^-}-2~m_{\pi^\pm}=$ 24.14 \pm 0.24 MeV Full width $\Gamma~<~1.9$ MeV, CL =95%

$\Xi_b(6100)^-$ DECAY MODES

Fraction
$$(\Gamma_i/\Gamma)$$

p (MeV/c)

$$\Xi_b^- \pi^+ \pi^-$$

seen

128

$\Xi_b(6227)^2$

$$J^{P} = ?^{?}$$

Mass $m = 6227.9 \pm 0.9 \text{ MeV}$ Full width $\Gamma=19.9\pm2.6~\text{MeV}$

Ξ_b (6227) DECAY MODES	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$\Lambda_b^0 K^- imes B(b o$	$(3.20\pm0.35)\times10^{-3}$		336
\equiv_b (6227))/B($b o \Lambda_b^0$)			
$\Xi_b^0\pi^- imes B(b o$	(2.8 ± 1.1) %	1.8	398
$\Xi_b($ 6227 $))/B(b ightarrow\ \Xi_b^0)$			

$\Xi_b(6227)^0$

$$J^{P} = ?$$
?

Mass $m=6226.8\pm1.6~{\rm MeV}$ Full width $\Gamma=19^{+5}_{-4}~{\rm MeV}$

Ξ_b (6227)0 DECAY MODES

Fraction (Γ_i/Γ)

Created: 5/31/2023 09:09

$$\overline{\Xi_b^- \pi^+ \times \mathsf{B}(b \to \Xi_b(6227)^0)/\mathsf{B}(b \to \Xi_b^-)}$$

 $(4.5\pm0.9)\%$

398

$\Xi_b(6327)^0$

Mass $m=6327.28\pm0.35~\text{MeV}$ Full width $\Gamma~<~2.56~\text{MeV},~\text{CL}=95\%$

Ξ_b (6327) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 K^- \pi^+$	seen	298

$\Xi_b(6333)^0$

Mass $m=6332.69\pm0.28$ MeV Full width $\Gamma < 1.92$ MeV, CL = 95%

Ξ_b (6333) ⁰ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$\Lambda_b^0 \mathcal{K}^- \pi^+$	seen	309

 Ω_b^-

$$I(J^P) = O(\frac{1}{2}^+)$$
 I, J, P need confirmation.

Mass
$$m=6045.2\pm1.2~{\rm MeV}$$
 $m_{\Omega_b^-}-m_{\Lambda_b^0}=426.4\pm2.2~{\rm MeV}$ $m_{\Omega_b^-}-m_{\Xi_b^-}=247.3\pm3.2~{\rm MeV}$ Mean life $\tau=(1.64^{+0.18}_{-0.17})\times10^{-12}~{\rm s}$ $\tau(\Omega_b^-)/\tau(\Xi_b^-)$ mean life ratio $=1.11\pm0.16$

Ω_b^- DECAY MODES	Fraction ((Γ_i/Γ)	Confidence level	<i>p</i> (MeV/ <i>c</i>)
$J/\psi \Omega^- imes B(b o \Omega_b)$	$(2.9^{+1}_{-0}$	$(0.8) \times 10^{-6}$	ō	1805
$ ho {\mathsf K}^- {\mathsf K}^- imes {\mathsf B}(\overline{b} o \ \Omega_b)$	< 2.3	\times 10 $^{-9}$	90%	2865
$ ho \pi^- \pi^- imes B(\overline{b} o ~\Omega_b)$	< 1.5	$\times 10^{-8}$	90%	2943
$ ho {\sf K}^- \pi^- imes {\sf B}(\overline{b} o \ \Omega_b)$	< 7	\times 10 ⁻⁹	90%	2915
$\Omega_{c}^{0}\pi^{-}$	seen			2419
$\Omega_c^0\pi^-$, $\Omega_c^0 o pK^-K^-\pi^+$	seen			_
$\Xi_c^+ K^- \pi^-$	seen			2472

 $\Omega_b(6316)^{-1}$

$$I(J^P) = ?(?^?)$$

I, J, P need confirmation.

Mass $m=6315.6\pm0.6$ MeV Full width Γ < 4.2 MeV, CL = 95%

 $\Omega_b(6316)^-$ DECAY MODES

Fraction (Γ_i/Γ)

p (MeV/c)

seen

168

 $\Omega_{b}(6330)^{\circ}$

$$I(J^P) = ?(??)$$

 $I(J^P) = ?(?^?)$ I, J, P need confirmation.

Mass $m = 6330.3 \pm 0.6 \text{ MeV}$

Full width Γ < 4.7 MeV, CL = 95%

 $\Omega_h(6330)^-$ DECAY MODES

Fraction (Γ_i/Γ)

seen

206

 $\Omega_b(6340)^{-1}$

$$I(J^P) = ?(?^?)$$

I, J, P need confirmation.

Mass $m = 6339.7 \pm 0.6 \text{ MeV}$

Full width Γ < 1.8 MeV, CL = 95%

 $\Omega_b(6340)^-$ DECAY MODES

Fraction (Γ_i/Γ)

seen

227

 $\Omega_b(6350)$

$$I(J^P) = ?(??)$$

I, J, P need confirmation.

Mass $m = 6349.8 \pm 0.6 \text{ MeV}$

Full width Γ < 3.2 MeV, CL = 95%

 $\Omega_b(6350)^-$ DECAY MODES

Fraction (Γ_i/Γ)

Created: 5/31/2023 09:09

 $\equiv_b^0 K^-$

seen

248

b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b)

These branching fractions are actually an average over weakly decaying b-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the b-baryon production fraction B($b \rightarrow b$ -baryon).

The branching fractions B(b-baryon $\to \Lambda \ell^- \overline{\nu}_\ell$ anything) and B($\Lambda_b^0 \to \Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \to b$ -baryon) were used to determine B($b \to b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \to D^\pm$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

b-baryon ADMIXTURE DECAY MODES $(\Lambda_b, \Xi_b, \Omega_b)$	Fraction (Γ_i/Γ)	Scale factor	<i>p</i> (MeV/ <i>c</i>)
$p\mu^-\overline{ u}$ anything	(5.8 + 2.3) %		_
$ ho \ell \overline{ u}_\ell$ anything	(5.6 ± 1.2) %		_
<i>p</i> anything	$(70 \pm 22)\%$		_
$arLambda \ell^- \overline{ u}_\ell$ anything	(3.8 ± 0.6) %		_
$\Lambda\ell^+ u_\ell$ anything	(3.2± 0.8) %		_
Λ anything	$(39 \pm 7)\%$		_
$ar{arXi}^-\ell^-\overline{ u}_\ell$ anything	$(4.6\pm\ 1.4)\times10^{-3}$	1.2	_

EXOTIC BARYONS

$P_c(4312)^+$

Mass $m=4311.9^{+7.0}_{-0.9}~{\rm MeV}$ Full width $\Gamma=10\pm5~{\rm MeV}$

P_c (4312) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi p$	seen	658

$P_c(4380)^+$

Mass $m=4380\pm30$ MeV Full width $\Gamma=205\pm90$ MeV

P_c (4380) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
$J/\psi p$	seen	741

$P_c(4440)^+$

Mass $m=4440^{+4}_{-5}~\text{MeV}$ Full width $\Gamma=21^{+10}_{-11}~\text{MeV}$

P_c (4440) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
J/ψ p	seen	810

$P_c(4457)^+$

was $P_c(4450)$

Mass
$$m = 4457.3^{+4.0}_{-1.8}~{
m MeV}$$

Full width $\Gamma = 6.4^{+6.0}_{-2.8}~{
m MeV}$

P _C (4457) ⁺ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
J/ψ p	seen	828

NOTES

- [a] The masses of the p and n are most precisely known in u (unified atomic mass units). The conversion factor to MeV, 1 u = 931.494061(21) MeV, is less well known than are the masses in u.
- [b] The $|m_p m_{\overline{p}}|/m_p$ and $|q_p + q_{\overline{p}}|/e$ are not independent, and both use the more precise measurement of $|q_{\overline{p}}/m_{\overline{p}}|/(q_p/m_p)$.
- [c] The limit is from neutrality-of-matter experiments; it assumes $q_n=q_p+q_e$. See also the charge of the neutron.
- [d] The μp and ep values for the charge radius are much too different to average them. The disagreement is not yet understood.
- [e] There is a lot of disagreement about the value of the proton magnetic charge radius. See the Listings.
- [f] The first limit is for $p \to anything$ or "disappearance" modes of a bound proton. The second entry, a rough range of limits, assumes the dominant decay modes are among those investigated. For antiprotons the best limit, inferred from the observation of cosmic ray \overline{p} 's is $\tau_{\overline{p}} > 10^7$ yr, the cosmic-ray storage time, but this limit depends on a number of assumptions. The best direct observation of stored antiprotons gives $\tau_{\overline{p}}/B(\overline{p}\to e^-\gamma)>7\times 10^5$ yr.
- [g] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [h] Lee and Yang in 1956 proposed the existence of a mirror world in an attempt to restore global parity symmetry—thus a search for oscillations between the two worlds. Oscillations between the worlds would be maximal when the magnetic fields B and B' were equal. The limit for any B' in the range 0 to 12.5 μ T is >12 s (95% CL).
- [i] The parameters g_A , g_V , and g_{WM} for semileptonic modes are defined by $\overline{B}_f[\gamma_\lambda(g_V+g_A\gamma_5)+i(g_{WM}/m_{B_i})\;\sigma_{\lambda\nu}\;q^\nu]B_i$, and ϕ_{AV} is defined by $g_A/g_V=|g_A/g_V|e^{i\phi_{AV}}$. See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.
- [j] Time-reversal invariance requires this to be 0° or 180° .
- [k] This coefficient is zero if time invariance is not violated.
- [/] This limit is for γ energies between 0.4 and 782 keV.
- [n] The decay parameters γ and Δ are calculated from α and ϕ using

$$\gamma = \sqrt{1{-}lpha^2}\,\cos\!\phi$$
 , $an\!\Delta = -rac{1}{lpha}\,\sqrt{1{-}lpha^2}\,\sin\!\phi$.

See the "Note on Baryon Decay Parameters" in the neutron Particle Listings.

- [o] See the Listings for the pion momentum range used in this measurement.
- [p] Our estimate. See the Particle Listings for details.
- [q] A theoretical value using QED.
- [r] This branching fraction includes all the decay modes of the final-state resonance.
- [s] Here γ_D stands for a dark photon.
- [t] See AALTONEN 11H, Fig. 8, for the calculated ratio of $\Lambda_c^+\pi^0\pi^0$ and $\Lambda_c^+\pi^+\pi^-$ partial widths as a function of the $\Lambda_c(2595)^+-\Lambda_c^+$ mass difference. At our value of the mass difference, the ratio is about 4.
- [u] A test that the isospin is indeed 0, so that the particle is indeed a Λ_c^+ .
- [v] P_c^+ is a pentaquark-charmonium state.
- [x] Not a pure measurement. See note at head of Λ_b^0 Decay Modes.
- [y] Here h^- means π^- or K^- .

SEARCHES not in other sections

Magnetic Monopole Searches

The most sensitive experiments obtain negative results.

Best cosmic-ray supermassive monopole flux limit:

$$<~1.4\times 10^{-16}~{\rm cm}^{-2}{\rm sr}^{-1}{\rm s}^{-1}~~{\rm for}~1.1\times 10^{-4}<\beta<1$$

Supersymmetric Particle Searches

All supersymmetric mass bounds here are model dependent.

The limits assume:

1) $\widetilde{\chi}_1^0$ is the lightest supersymmetric particle; 2) *R*-parity is conserved, unless stated otherwise;

See the Particle Listings for a Note giving details of supersymmetry.

$$\begin{array}{l} \widetilde{\chi}_i^0 - \text{neutralinos (mixtures of } \widetilde{\gamma}, \ \widetilde{Z}^0, \ \text{and } \widetilde{H}_i^0) \\ \text{Mass } m_{\widetilde{\chi}_1^0} > 0 \ \text{GeV, CL} = 95\% \\ \text{[general MSSM, non-universal gaugino masses]} \\ \text{Mass } m_{\widetilde{\chi}_1^0} > 46 \ \text{GeV, CL} = 95\% \\ \text{[all } \tan\beta, \ \text{all } m_0, \ \text{all } m_{\widetilde{\chi}_2^0} - m_{\widetilde{\chi}_1^0}] \\ \text{Mass } m_{\widetilde{\chi}_2^0} > 62.4 \ \text{GeV, CL} = 95\% \\ \text{[1<$} \tan\beta < 40, \ \text{all } m_0, \ \text{all } m_{\widetilde{\chi}_2^0} - m_{\widetilde{\chi}_1^0}] \\ \text{Mass } m_{\widetilde{\chi}_3^0} > 99.9 \ \text{GeV, CL} = 95\% \\ \text{[1<$} \tan\beta < 40, \ \text{all } m_0, \ \text{all } m_{\widetilde{\chi}_2^0} - m_{\widetilde{\chi}_1^0}] \\ \text{Mass } m_{\widetilde{\chi}_4^0} > 116 \ \text{GeV, CL} = 95\% \\ \text{[1<$} \tan\beta < 40, \ \text{all } m_0, \ \text{all } m_{\widetilde{\chi}_2^0} - m_{\widetilde{\chi}_1^0}] \\ \end{array}$$

$$\widetilde{\chi}^{\pm} - \text{long-lived chargino} \\ \text{Mass } m_{\widetilde{\chi}^{\pm}} > 620 \text{ GeV}, \text{ CL} = 95\% \quad [\text{stable } \widetilde{\chi}^{\pm}] \\ \widetilde{\nu} - \text{sneutrino} \\ \text{Mass } m > 41 \text{ GeV}, \text{ CL} = 95\% \quad [\text{model independent}] \\ \text{Mass } m > 94 \text{ GeV}, \text{ CL} = 95\% \quad [\text{model independent}] \\ \text{Mass } m > 94 \text{ GeV}, \text{ CL} = 95\% \quad [\text{R-Parity Violating}] \\ \widetilde{\nu}_{T} \rightarrow e\mu, \lambda_{312} = \lambda_{321} = 0.07, \lambda_{311}' = 0.11] \\ \widetilde{e} - \text{scalar electron (selectron)} \\ \text{Mass } m > 107 \text{ GeV}, \text{ CL} = 95\% \quad [\text{all } m_{\widetilde{e}_{L}} - m_{\widetilde{\chi}_{1}}] \\ \text{Mass } m > 700 \text{ GeV}, \text{ CL} = 95\% \quad [\text{all } m_{\widetilde{e}_{L}} - m_{\widetilde{\chi}_{1}}] \\ \text{Mass } m > 250 \text{ GeV}, \text{ CL} = 95\% \quad [\text{electron}] \\ \text{Mass } m > 250 \text{ GeV}, \text{ CL} = 95\% \quad [\text{electron}] \\ \mathbb{e}^{\pm}\ell^{\mp} + \mathcal{E}_{T}, \ \widetilde{e}_{R}, \ m_{\widetilde{\chi}_{1}} = 0 \text{ GeV}] \\ \text{Mass } m > 410 \text{ GeV}, \text{ CL} = 95\% \quad [\text{R-Parity Violating}] \\ \text{Important } = 4\ell^{\pm}, \ \widetilde{\ell} \rightarrow l \ \widetilde{\chi}_{1}^{0}, \ \widetilde{\chi}_{1}^{0} \rightarrow \ell^{\pm}\ell^{\mp} \nu] \\ \widetilde{\mu} - \text{scalar muon (smuon)} \\ \text{Mass } m > 700 \text{ GeV}, \text{ CL} = 95\% \quad [\text{electron}] \\ \text{Mass } m > 210, \text{ CL} = 95\% \quad [\ell^{\pm}\ell^{\mp} + \mathcal{E}_{T}, \ m_{\widetilde{\ell}_{R}} = m_{\widetilde{\ell}_{L}} \text{ and } \ell^{\pm} = \widetilde{e}, \ \widetilde{\mu}, \ m_{\widetilde{\chi}_{1}^{0}} = 0 \text{ GeV}] \\ \text{Mass } m > 94 \text{ GeV}, \text{ CL} = 95\% \quad [\text{R-Parity Violating}] \\ \text{Important } = 4\ell^{\pm}, \ \ell^{\pm} \rightarrow l \ \widetilde{\chi}_{1}^{0}, \ \widetilde{\chi}_{1}^{0} \rightarrow \ell^{\pm}\ell^{\mp} \nu] \\ \widetilde{\tau} - \text{scalar tau (stau)} \\ \text{Mass } m > 94 \text{ GeV}, \text{ CL} = 95\% \quad [\text{R-Parity Violating}] \\ \text{Important } = 4\ell^{\pm}, \ \ell^{\pm} \rightarrow l \ \widetilde{\chi}_{1}^{0}, \ \widetilde{\chi}_{1}^{0} \rightarrow \ell^{\pm}\ell^{\mp} \nu] \\ \widetilde{\tau} - \text{scalar tau (stau)} \\ \text{Mass } m > 81.9 \text{ GeV}, \text{ CL} = 95\% \quad [\text{R-Parity Violating}, \ \widetilde{\tau}_{R}, \text{ indirect}, \ \Delta m > 5 \text{ GeV}] \\ \text{Mass } m > 286 \text{ GeV}, \text{ CL} = 95\% \quad [\text{Ing-lived } \widetilde{\tau}] \\ \widetilde{q} - \text{squarks of the first two quark generations} \\ \text{Mass } m > 1.220 \times 10^{3} \text{ GeV}, \text{ CL} = 95\% \quad [\text{R-Parity Violating}] \\ \text{Ijets} + \mathcal{E}_{T}, \text{ Tsqk1}, 1 \text{ non-degenerate } \widetilde{q}, \ m_{\widetilde{\chi}_{1}^{0}} = 0 \text{ GeV}] \\ \text{Mass } m > 1.600 \times 10^{3} \text{ GeV}, \text{ CL} = 95\% \quad [\text{R-Parity Violating}] \\ \text{Ijets} + \ell^{\pm}, \text{ The plane } \ell$$

```
\widetilde{q} — long-lived squark
      Mass m > 1340, CL = 95% [\tilde{t} R-hadrons]
       Mass m > 1250, CL = 95\% [\tilde{b} R-hadrons]
\tilde{b} — scalar bottom (sbottom)
      Mass m > 1.270 \times 10^3 GeV. CL = 95\%
            [b-jets + \not\!\!E_T, Tsbot1, m_{\widetilde{\chi}_1^0} {=} 0 GeV]
      Mass m > 307 GeV, CL = 95\% [R-Parity Violating]
            [\widetilde{b} 
ightarrow td or ts, \lambda_{332}'' or \lambda_{331}'' coupling]
\tilde{t} — scalar top (stop)
       Mass m > 1.310 \times 10^3 \text{ GeV}, CL = 95\%
            [jets + \not\!\!E_T, Tstop1, m_{\widetilde{\chi}^0_1} < 300 GeV]
      Mass m > 1100 GeV, CL = 95\% [R-Parity Violating]
             [\tilde{t} \rightarrow be, Tstop2RPV, prompt]
      Mass m > 460 GeV, CL = 95\%
             [R-Parity Violating, long-lived \widetilde{t}, \widetilde{t} \rightarrow d\overline{\ell}, 0.01cm < c\tau < 1000 cm]
\widetilde{g} — gluino
       Mass m > 2.300 \times 10^3 GeV, CL = 95\%
            [jets + \not\!\!E_T, Tglu1A, m_{\widetilde{\chi}^0_1} < 200 \; {\rm GeV}]
      Mass m > 2.260 \times 10^3 \text{ GeV}, CL = 95\%
                                                                 [R-Parity Violating]
            [\,\geq 4\ell, \lambda_{12k}\,
eq\, 0, m_{\widetilde{\chi}_1^0}\,\,>\, 1000 GeV]
```

Technicolor

The limits for technicolor (and top-color) particles are quite varied depending on assumptions. See the Technicolor section of the full *Review* (the data listings).

Quark and Lepton Compositeness, Searches for

Scale Limits Λ for Contact Interactions (the lowest dimensional interactions with four fermions)

If the Lagrangian has the form

$$\pm \frac{g^2}{2\Lambda^2} \overline{\psi}_{\mathsf{L}} \gamma_{\mu} \psi_{\mathsf{L}} \overline{\psi}_{\mathsf{L}} \gamma^{\mu} \psi_{\mathsf{L}}$$

(with $g^2/4\pi$ set equal to 1), then we define $\Lambda \equiv \Lambda_{LL}^{\pm}$. For the full definitions and for other forms, see the Note in the Listings on Searches for Quark and Lepton Compositeness in the full *Review* and the original literature.

$$\begin{array}{lll} \Lambda_{LL}^{+}(e\,e\,e\,e) &> 8.3 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(e\,e\,e\,e) &> 10.3 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{+}(e\,e\,\mu\,\mu) &> 8.5 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(e\,e\,\mu\,\mu) &> 9.5 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(e\,e\,\tau\,\tau) &> 7.9 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(e\,e\,\tau\,\tau) &> 7.2 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(\ell\,\ell\,\ell\,\ell) &> 9.1 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(\ell\,\ell\,\ell\,\ell) &> 10.3 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(e\,e\,q\,q) &> 24 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(e\,e\,q\,q) &> 37 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(e\,e\,u\,u) &> 12.5 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(e\,e\,u\,u) &> 12.5 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(e\,e\,d\,d) &> 26.4 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(e\,e\,c\,c) &> 9.4 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(e\,e\,c\,c) &> 5.6 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(e\,e\,b\,b) &> 9.4 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(e\,e\,b\,b) &> 10.2 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(\mu\,\mu\,q\,q) &> 23.3 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(\mu\,\mu\,q\,q) &> 23.3 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(\mu\,\mu\,q\,q) &> 40.0 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(\mu\,\mu\,q\,q) &> 40.0 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(\mu\,\mu\,q\,q) &> 3.10 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \Lambda_{LL}^{-}(\mu\,\mu\,q\,q) &> 2.81 \; \mathrm{TeV}, \; \mathrm{CL} = 95\% \\ \end{array}$$

$$\Lambda_{LL}^{+}(qqqq)$$
 > 13.1 none 17.4–29.5 TeV, CL = 95% $\Lambda_{LL}^{-}(qqqq)$ > 21.8 TeV, CL = 95% $\Lambda_{LL}^{+}(\nu\nu qq)$ > 5.0 TeV, CL = 95% $\Lambda_{LL}^{-}(\nu\nu qq)$ > 5.4 TeV, CL = 95%

Excited Leptons

The limits from $\ell^{*+}\ell^{*-}$ do not depend on λ (where λ is the $\ell\ell^{*}$ transition coupling). The λ -dependent limits assume chiral coupling.

$$e^{*\pm}$$
 — excited electron

Mass
$$m > 103.2$$
 GeV, CL = 95% (from $e^* e^*$)
Mass $m > 5.600 \times 10^3$ GeV, CL = 95% (from $e e^*$)
Mass $m > 356$ GeV, CL = 95% (if $\lambda_{\gamma} = 1$)

$$\mu^{*\pm}$$
 — excited muon

Mass
$$m > 103.2$$
 GeV, CL = 95% (from $\mu^* \mu^*$)
Mass $m > 5.700 \times 10^3$ GeV, CL = 95% (from $\mu \mu^*$)

$$\tau^{*\pm}$$
 — excited tau

Mass
$$m>103.2$$
 GeV, CL = 95% (from $\tau^*\tau^*$)
Mass $m>2.500\times 10^3$ GeV, CL = 95% (from $\tau\tau^*$)

$$\nu^*$$
 — excited neutrino

Mass
$$m>1.600\times 10^3$$
 GeV, CL $=95\%$ (from $\nu^*\nu^*$)
Mass $m>213$ GeV, CL $=95\%$ (from ν^*X)

$$q^*$$
 — excited quark

Mass
$$m > 338$$
 GeV, CL = 95% (from $q^* q^*$)
Mass $m > 6700$ GeV, CL = 95% (from $q^* X$)

Color Sextet and Octet Particles

Color Sextet Quarks
$$(q_6)$$

Mass
$$m>84$$
 GeV, $CL=95\%$ (Stable q_6)

Color Octet Charged Leptons (ℓ_8)

Mass
$$m > 86$$
 GeV, $CL = 95\%$ (Stable ℓ_8)

Color Octet Neutrinos (ν_8)

Mass
$$m>~110$$
 GeV, CL $=90\%~~(
u_8
ightarrow~
u_g)$

Extra Dimensions

Please refer to the Extra Dimensions section of the full *Review* for a discussion of the model-dependence of these bounds, and further constraints.

Constraints on the radius of the extra dimensions, for the case of two-flat dimensions of equal radii

(direct tests of Newton's law)
$$R < 3.8~\mu\text{m, CL} = 95\% \quad (p\,p \to j\,G) \\ R < 0.16 - 916~\text{nm} \quad \text{(astrophysics; limits depend on technique and assumptions)}$$

Constraints on the fundamental gravity scale

$$M_{TT}>9.02$$
 TeV, CL $=95\%$ ($p\,p
ightarrow$ dijet, angular distribution) $M_c>4.16$ TeV, CL $=95\%$ ($p\,p
ightarrow$ $\ell \overline{\ell}$)

Constraints on the Kaluza-Klein graviton in warped extra dimensions

$$M_G > 4.78 \text{ TeV}, CL = 95\% \quad (pp \rightarrow e^+e^-, \mu^+\mu^-)$$

Constraints on the Kaluza-Klein gluon in warped extra dimensions

$$\mathit{M}_{\mathit{g}_{KK}}~>~3.8$$
 TeV, CL $=95\%~~(\mathit{g}_{KK}
ightarrow~t\,\overline{t})$

WIMP and Dark Matter Searches

No confirmed evidence found for galactic WIMPs from the GeV to the TeV mass scales and down to 1×10^{-10} pb spin independent cross section at M = 100 GeV.

TESTS OF DISCRETE SPACE-TIME SYMMETRIES

CHARGE CONJUGATION (C) INVARIANCE

PARITY (P) INVARIANCE

$$\begin{array}{lll} \mbox{e electric dipole moment} & & & & & & <0.11\times 10^{-28} \ \mbox{e cm, CL = 90\%} \\ \mu \mbox{ electric dipole moment} \mbox{$|d$} \mbox{$| d$} \mbo$$

$$\begin{split} &\Gamma(\eta'(958)\to \pi^0\pi^0)/\Gamma_{\text{total}} \\ &\Gamma(\eta_c(1S)\to \pi^+\pi^-)/\Gamma_{\text{total}} \\ &\Gamma(\eta_c(1S)\to \pi^0\pi^0)/\Gamma_{\text{total}} \\ &\Gamma(\eta_c(1S)\to \kappa^0\pi^0)/\Gamma_{\text{total}} \\ &\Gamma(\eta_c(1S)\to \kappa^0_S\kappa^0_S)/\Gamma_{\text{total}} \\ &\Gamma(\eta_c(1S)\to \kappa^0_S\kappa^0_S)/\Gamma_{\text{total}} \\ &\rho \text{ electric dipole moment} \\$$

https://pdg.lbl.gov

$$<4 \times 10^{-4}$$
, CL = 90%
 $<1.1 \times 10^{-4}$, CL = 90%
 $<4 \times 10^{-5}$, CL = 90%
 $<6 \times 10^{-4}$, CL = 90%
 $<3.1 \times 10^{-4}$, CL = 90%
 $<0.021 \times 10^{-23}$ ecm
 $<0.18 \times 10^{-25}$ ecm, CL = 90%
 $<1.5 \times 10^{-16}$ ecm, CL = 95%
 $(-4.0 \pm 0.7)\%$
 $(-0.6 \pm 0.9)\%$
 $(4 \pm 5)\%$
 $(-1.6 \pm 1.5)\%$
 $(-5 \pm 5)\%$

Created: 5/31/2023 09:09

TIME REVERSAL (T) INVARIANCE

```
< 0.11 \times 10^{-28} \text{ ecm, CL} = 90\%
e electric dipole moment
                                                                                             <1.8 \times 10^{-19} \text{ ecm, CL} = 95\%
\mu electric dipole moment |d|
\mu decay parameters
                                                                                             (-2 \pm 8) \times 10^{-3}
        transverse e^+ polarization normal to plane of \mu
                spin, e^+ momentum
                                                                                             (-10 \pm 20) \times 10^{-3}
        \alpha'/A
                                                                                             (2 \pm 7) \times 10^{-3}
        \beta'/A
                                                                                             -0.185 to 0.061 \times 10^{-16} ecm, CL = 95%
Re(d_{\tau} = \tau \text{ electric dipole moment})
P_T in K^+ \rightarrow \pi^0 \mu^+ \nu_\mu
                                                                                             (-1.7 \pm 2.5) \times 10^{-3}
P_T \text{ in } K^+ \rightarrow \mu^+ \nu_\mu \gamma
                                                                                             (-0.6 \pm 1.9) \times 10^{-2}
{\rm Im}(\xi) \ {\rm in} \ K^+ 
ightarrow \ \pi^0 \mu^+ 
u_\mu \ {\rm decay} \ ({\rm from \ transverse} \ \mu
                                                                                             -0.006\pm0.008
asymmetry A_T in K^0 - \overline{K}^0 mixing
                                                                                             (6.6 \pm 1.6) \times 10^{-3}
{
m Im}(\xi) in K^0_{\mu 3} decay (from transverse \mu pol.)
                                                                                             -0.007 \pm 0.026
A_T(D^{\pm} \rightarrow \kappa_S^0 \kappa^{\pm} \pi^+ \pi^-)
                                                                                      [c] (-12 \pm 11) \times 10^{-3}
                                                                                      [c] (2.9 \pm 2.2) \times 10^{-3}
A_T(D^0 \to K^+ K^- \pi^+ \pi^-)
A_T(D_s^{\pm} \rightarrow K_S^0 K^{\pm} \pi^+ \pi^-)
                                                                                      [c] (-14 \pm 8) \times 10^{-3}
\Delta S_T^+ (S_{\ell^-, K_S^0}^- - S_{\ell^+, K_S^0}^+)
                                                                                             -1.37 \pm 0.15
\Delta S_T^- (S_{\ell^-, K_S^0}^+ - S_{\ell^+, K_S^0}^-)
                                                                                             1.17 \pm 0.21
\Delta C_T^+ (C_{\ell^-, K_S^0}^- - C_{\ell^+, K_S^0}^+)
                                                                                             0.10\,\pm\,0.16
\Delta C_T^- (C_{\ell^-, K_S^0}^+ - C_{\ell^+, K_S^0}^-)
                                                                                             0.04 \pm 0.16
                                                                                             < 0.021 \times 10^{-23} \ e\, cm
p electric dipole moment
                                                                                             < 0.18 \times 10^{-25} \text{ ecm, CL} = 90\%
n electric dipole moment
```

Page 2

 $n
ightarrow p \, e^- \overline{
u}_e$ decay parameters ϕ_{AV} , phase of g_A relative to g_V triple correlation coefficient D triple correlation coefficient R Λ electric dipole moment triple correlation coefficient D for $\Sigma^-
ightarrow n \, e^- \overline{
u}_e$

https://pdg.lbl.gov

[d] $(180.017 \pm 0.026)^{\circ}$ [e] $(-1.2 \pm 2.0) \times 10^{-4}$ [e] 0.004 ± 0.013 $< 1.5 \times 10^{-16}$ e cm, CL = 95% 0.11 ± 0.10

Created: 5/31/2023 09:09

CP INVARIANCE

 $< 0.50 \times 10^{-17}$ ecm. CL = 95% $Re(d_{\tau}^{W})$ $< 1.1 \times 10^{-17}$ ecm. CL = 95% $\operatorname{Im}(d_{\tau}^{W})$ $1.23\pm0.21~\pi$ rad (S =1.3) δ (CP violating phase in neutrino mixing) $\eta \to \pi^+ \pi^- e^+ e^-$ decay-plane asymmetry $(-0.6 \pm 3.1) \times 10^{-2}$ $\Gamma(\eta \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$ $<4.4 \times 10^{-6}$, CL = 90% $<3.5 \times 10^{-4}$, CL = 90% $\Gamma(\eta \rightarrow 2\pi^0)/\Gamma_{\text{total}}$ $\Gamma(\eta \rightarrow 4\pi^0)/\Gamma_{\text{total}}$ $<6.9 \times 10^{-7}$, CL = 90% $\Gamma(\eta'(958) \rightarrow \pi^{+}\pi^{-})/\Gamma_{\text{total}}$ $<1.8 \times 10^{-5}$, CL = 90% $\Gamma(\eta'(958) \rightarrow \pi^0 \pi^0)/\Gamma_{\text{total}}$ $<4 \times 10^{-4}$, CL = 90% $\kappa^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$ rate difference/sum $(-2.2 \pm 1.6) \times 10^{-2}$ ${\it K}^{\pm}
ightarrow ~\pi^{\pm} \mu^{+} \mu^{-}$ rate difference/sum 0.010 ± 0.023 ${\it K}^{\pm}
ightarrow \, \pi^{\pm} \pi^{0} \, \gamma$ rate difference/sum $(0.0 \pm 1.2) \times 10^{-3}$ ${\it K}^{\pm}
ightarrow ~\pi^{\pm}\pi^{+}\pi^{-}$ rate difference/sum $(0.04 \pm 0.06)\%$ $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ rate difference/sum $(-0.02 \pm 0.28)\%$ $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-} (g_{+} - g_{-}) / (g_{+} + g_{-})$ $(-1.5 \pm 2.2) \times 10^{-4}$ $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} (g_{+} - g_{-}) / (g_{+} + g_{-})$ $(1.8 \pm 1.8) \times 10^{-4}$ $A_S = [\Gamma(K_S^0 \rightarrow \pi^- e^+ \nu_e) - \Gamma(K_S^0 \rightarrow \pi^+ e^- \overline{\nu}_e)]$ $(-4 \pm 6) \times 10^{-3}$ $\operatorname{Im}(\eta_{+-0}) = \operatorname{Im}(\mathsf{A}(\mathsf{K}^0_\mathsf{S} \to \pi^+\pi^-\pi^0, \mathit{CP}\text{-violating})$ -0.002 ± 0.009 $/ A(K_L^0 \rightarrow \pi^+ \pi^- \pi^0))$ $Im(\eta_{000}) = Im(A(K_S^0 \to \pi^0 \pi^0 \pi^0)/A(K_L^0 \to \pi^0 \pi^0 \pi^0))$ -0.001 ± 0.016 $|\eta_{000}| = |A(K_S^0 \to 3\pi^0)/A(K_L^0 \to 3\pi^0)|$ < 0.0088, CL = 90%*CP* asymmetry *A* in $K_S^0 \rightarrow \pi^+\pi^-e^+e^ (-0.4 \pm 0.8)\%$ $\Gamma(K_S^0 \rightarrow 3\pi^0)/\Gamma_{\text{total}}$ $< 2.6 \times 10^{-8}$, CL = 90% linear coefficient j for $K_I^0 \rightarrow \pi^+\pi^-\pi^0$ 0.0012 ± 0.0008 quadratic coefficient f for $K_I^0
ightarrow \pi^+\pi^-\pi^0$ 0.004 ± 0.006 $|\epsilon'_{+-\gamma}|/\epsilon$ for $K_I^0 \to \pi^+\pi^-\gamma$ < 0.3, CL = 90% $|\mathbf{g}_{E1}|$ for $K_I^0 \to \pi^+\pi^-\gamma$ < 0.21, CL = 90% $\Gamma(K_I^0 \rightarrow \pi^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$ [f] $<3.8 \times 10^{-10}$, CL = 90% $\Gamma(K_I^0 \rightarrow \pi^0 e^+ e^-)/\Gamma_{total}$ [f] $<2.8 \times 10^{-10}$, CL = 90% $\Gamma(K_I^0 \to \pi^0 \nu \overline{\nu})/\Gamma_{\text{total}}$ [g] $<3.0 \times 10^{-9}$, CL = 90%

Page 3

$A_{CP}(D^{\pm} ightarrow \mu^{\pm} u)$		(8 ± 8)%
$A_{CP}(D^{\pm} \rightarrow K_{I}^{I} e^{\pm} \nu)$		$(-0.6 \pm 1.6)\%$
<u>_</u>		,
$egin{aligned} A_{CP}(D^\pm ightarrow & K_{S}^0 \pi^\pm) \ A_{CP}(D^\pm ightarrow & K^\mp 2\pi^\pm) \end{aligned}$		$(-0.41 \pm 0.09)\%$
$A_{CP}(D^{\pm} \rightarrow K^{\mp}2\pi^{\pm})$ $A_{CP}(D^{\pm} \rightarrow K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{0})$		$(-0.18 \pm 0.16)\%$
		$(-0.3 \pm 0.7)\%$
$A_{CP}(D^{\pm} \rightarrow K_{S}^{0} \pi^{\pm} \pi^{0})$		$(-0.1 \pm 0.7)\%$
$A_{CP}(D^{\pm} \rightarrow K_{S}^{0} \pi^{\pm} \pi^{+} \pi^{-})$		$(0.0 \pm 1.2)\%$
$A_{CP}(D^{\pm} \rightarrow \pi^{\pm}\pi^{0})$		$(0.4 \pm 1.3)\% (S = 1.7)$
$A_{CP}(D^{\pm} ightarrow \pi^{\pm} \eta)$		$(0.3 \pm 0.8)\% (S = 1.2)$
$A_{CP}(D^{\pm} \rightarrow \pi^{\pm} \eta'(958))$		$(-0.6 \pm 0.7)\%$
$A_{CP}(D^{\pm} \rightarrow \overline{K}^0/K^0K^{\pm})$		$(0.11 \pm 0.17)\%$
$A_{CP}(D^{\pm} ightarrow\ K_{S}^{0}K^{\pm})$		$(-0.01 \pm 0.07)\%$
$A_{CP}(D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm})$		$(0.37 \pm 0.29)\%$
$A_{CP}(D^{\pm} ightarrow \kappa^{\pm} \kappa^{*0})$		$(-0.3 \pm 0.4)\%$
$A_{CP}(D^{\pm} o \phi \pi^{\pm})$		$(0.01 \pm 0.09)\%~(S = 1.8)$
$A_{CP}(D^{\pm} \to K^{\pm} K_0^* (1430)^0)$		$(8^{+7}_{-6})\%$
$A_{CP}(D^{\pm} \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		$(43^{+20}_{-26})\%$
$A_{CP}(D^{\pm} \rightarrow \ \kappa^{\pm} \ \kappa_{0}^{*}(700))$		$(-12^{+18}_{-13})\%$
$A_{CP}(D^{\pm} ightarrow \ a_0(1450)^0 \pi^{\pm})$		$(-19^{+14}_{-16})\%$
$A_{CP}(D^{\pm} \rightarrow \phi(1680)\pi^{\pm})$		$(-9 \pm 26)\%$
$A_{CP}(D^{\pm} ightarrow \pi^{+}\pi^{-}\pi^{\pm})$		$(0.5 \pm 2.0)\%$
$A_{CP}(D^{\pm} \rightarrow K_S^0 K^{\pm} \pi^+ \pi^-)$		$(-4 \pm 7)\%$
$A_{CP}(D^{\pm} ightarrow K^{\pm}\pi^{0})$		$(-3 \pm 5)\%$
Local <i>CPV</i> in $D^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$		78.1%
Local <i>CPV</i> in $D^\pm o K^+K^-\pi^\pm$		31%
$ q/p $ of $D^0-\overline{D}^0$ mixing		0.995 ± 0.016
A_{Γ} of $D^0 - \overline{D}{}^0$ mixing		$(0.089 \pm 0.113) \times 10^{-3}$
<i>CP</i> -even fraction in $D^0 ightarrow \ \pi^+\pi^-\pi^0$ decays		$(97.3 \pm 1.7)\%$
<i>CP</i> -even fraction in $D^0 ightarrow \ \pi^+\pi^-\pi^+\pi^-$ decays		$(74.6 \pm 1.6)\% \ (S = 1.2)$
<i>CP</i> -even fraction in $D^0 ightarrow \ K^+ K^- \pi^0$ decays		$(73 \pm 6)\%$
Where there is ambiguity, the CP test is labelled by the D^0	deca	y mode.
$A_{CP}(D^0 \rightarrow K^+K^-)$		$(-0.07 \pm 0.11)\%$
$A_{CP}(D^0 \rightarrow \kappa_S^0 \kappa_S^0)$		$(-1.9 \pm 1.1)\% \ (S = 1.1)$
$A_{CP}(D^0 o \pi^+\pi^-)$		$(0.13 \pm 0.14)\%$
$A_{CP}(D^0 ightarrow \pi^0\pi^0)$		$(0.0 \pm 0.6)\%$
$A_{CP}(D^0 o ho\gamma)$		$(6 \pm 15) \times 10^{-2}$
$A_{CP}(D^0 o\phi\gamma)$		$(-9 \pm 7) \times 10^{-2}$
$A_{CP}(D^0 o \overline{K}^*(892)^0 \gamma)$		$(-0.3 \pm 2.0) \times 10^{-2}$
$A_{CP}(D^0 ightarrow \pi^+\pi^-\pi^0)$		$(0.4 \pm 0.4)\%$
$A_{CP}(D^0 \to \rho(770)^+\pi^- \to \pi^+\pi^-\pi^0)$	[<i>h</i>]	$(1.2 \pm 0.9)\%$
$A_{CP}(D^0 \to \rho(770)^0 \pi^0 \to \pi^+ \pi^- \pi^0)$	[<i>h</i>]	$(-3.1 \pm 3.0)\%$

4 (00) (7	(70) - + + + - 0	[4]	(10 17)0/
	$(70)^{-}\pi^{+} ightarrow \pi^{+}\pi^{-}\pi^{0})$ $(450)^{+}\pi^{-} ightarrow \pi^{+}\pi^{-}\pi^{0})$		$(-1.0 \pm 1.7)\%$
	$450)^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0})$		$(0 \pm 70)\%$
	$450)^{-}\pi^{+} \rightarrow \pi^{+}\pi^{-}\pi^{0})$	[<i>h</i>]	$(-20 \pm 40)\%$
	$(700)^{+}\pi^{-} \rightarrow \pi^{+}\pi^{-}\pi^{0}$		$(6 \pm 9)\%$
	$(700)^{0} \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}$	[h] [h]	$(-5 \pm 14)\%$ $(13 \pm 9)\%$
	$(700)^{-1}\pi^{+} \rightarrow \pi^{+}\pi^{-}\pi^{0}$		$(13 \pm 9)\%$ $(8 \pm 11)\%$
	$980)\pi^0 \to \pi^+\pi^-\pi^0$	[h]	
$A_{CP}(D^0 \rightarrow f_0(D^0))$	$1370)\pi^{0} \to \pi^{+}\pi^{-}\pi^{0})$	[<i>h</i>]	$(0 \pm 35)\%$
$A_{CP}(D^0 \rightarrow r_0)$	$1570)\pi^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$	[<i>h</i>]	$(25 \pm 18)\%$
$A_{CP}(D^0 \rightarrow I_0(D^0))$	$1710)\pi^0 \rightarrow \pi^+\pi^-\pi^0)$	[<i>h</i>]	$(0 \pm 18)\%$
$A_{CP}(D^0 \rightarrow f_0(D^0))$	$1710)\pi^{2} \rightarrow \pi^{2}\pi^{2}\pi^{3}$ $1270) 0 \rightarrow + - 0$	[<i>h</i>]	$(0 \pm 24)\%$
$A_{CP}(D^0 \rightarrow r_2)$	$1270) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0})$ $1270) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0})$	[<i>h</i>]	$(-4 \pm 6)\%$
$A_{CP}(D^{\circ} \rightarrow \sigma(2))$	$t D^0 \rightarrow \pi^+\pi^-\pi^0)$	[<i>h</i>]	$(6 \pm 8)\%$
		[<i>h</i>]	$(-13 \pm 23)\%$
$A_{CP}(D^0, \overline{D}^0 \rightarrow D^0)$			$(0.5 \pm 1.2)\%$
~	$(1260)^{+}\pi^{-} \rightarrow 2\pi^{+}2\pi^{-})$		$(5 \pm 6)\%$
	$(1260)^-\pi^+ o 2\pi^+2\pi^-)$		$(14 \pm 18)\%$
~ -	$(1300)^{+}\pi^{-} \rightarrow 2\pi^{+}2\pi^{-})$		$(-2 \pm 15)\%$
O -	$(300)^-\pi^+ \rightarrow 2\pi^+2\pi^-)$		$(-6 \pm 30)\%$
	$(1640)^{+}\pi^{-} \rightarrow 2\pi^{+}2\pi^{-})$		$(9 \pm 26)\%$
	$(1670)^+\pi^- \to 2\pi^+2\pi^-)$		$(7 \pm 18)\%$
	$_{0}(1370) \rightarrow 2\pi^{+}2\pi^{-})$		$(-15 \pm 19)\%$
	$(770)^0 \rightarrow 2\pi^+ 2\pi^-)$		(3 ± 27)%
	$(770)^0 \rightarrow 2\pi^+ 2\pi^-)$		$(-6 \pm 6)\%$
	$(1270) \rightarrow 2\pi^{+}2\pi^{-})$		$(-28 \pm 24)\%$
$A_{CP}(D^0 \rightarrow K^+)$			$(-1.0 \pm 1.7)\%$
	$(892)^{+} K^{-} \rightarrow K^{+} K^{-} \pi^{0}$	[<i>h</i>]	$(-0.9 \pm 1.3)\%$
O 1	$(1410)^+ K^- \to K^+ K^- \pi^0$	[<i>h</i>]	$(-21 \pm 24)\%$
	$^{+}\pi^{0})_{S}K^{-} \rightarrow K^{+}K^{-}\pi^{0})$	[<i>h</i>]	$(7 \pm 15)\%$
	$1020)\pi^{0} \rightarrow K^{+}K^{-}\pi^{0})$		$(1.1 \pm 2.2)\%$
	$980)\pi^{0} \to K^{+}K^{-}\pi^{0}$		$(-3 \pm 19)\%$
	$(980)^0 \pi^0 \to K^+ K^- \pi^0$		$(-5 \pm 16)\%$
	$(1525) \pi^0 \to K^+ K^- \pi^0$	[<i>h</i>]	$(0\pm160)\%$
	$(892)^- K^+ \rightarrow K^+ K^- \pi^0)$	[<i>h</i>]	$(-5 \pm 4)\%$
	$(1410)^- K^+ \rightarrow K^+ K^- \pi^0)$	[<i>h</i>]	$(-17\pm29)\%$
	$^{-}\pi^{0})_{S-wave}K^{+} \rightarrow K^{+}K^{-}\pi^{0})$	[<i>h</i>]	$(-10 \pm 40)\%$
$A_{CP}(D^0 \rightarrow \kappa_S^0)$	(π^0)		$(-0.20\pm0.17)\%$
$A_{CP}(D^0 \rightarrow \kappa_S^0)$			$(0.5 \pm 0.5)\%$
$A_{CP}(D^0 \rightarrow \kappa_S^0)$			$(1.0 \pm 0.7)\%$
$A_{CP}(D^0 \rightarrow \kappa_S^0)$			$(-3 \pm 9)\%$
$A_{CP}(D^0 \rightarrow \kappa^{-1})$			$(0.2 \pm 0.5)\%$

$A_{CP}(D^0 o K^+\pi^-)$	$(-0.9 \pm 1.4)\%$
$A_{CP}(D_{CP(\pm 1)} \rightarrow K^{\mp}\pi^{\pm})$	$(13.1 \pm 1.0)\%$
$A_{CP}(D^0 \rightarrow K^-\pi^+\pi^0)$	$(0.1 \pm 0.5)\%$
$A_{CP}(D^0 \rightarrow K^+\pi^-\pi^0)$	(0 ± 5)%
$A_{CP}(D^0 \to K_S^0 \pi^+ \pi^-)$	$(-0.1 \pm 0.8)\%$
$A_{CP}(D^0 \to K^*(892)^-\pi^+ \to K_5^0\pi^+\pi^-)$	$(0.4 \pm 0.5)\%$
$A_{CP}(D^0 \to K^*(892)^+\pi^- \to K_5^0\pi^+\pi^-)$	$(1\pm6)\%$
$A_{CP}(D^0 \to K_S^0 \rho^0 \to K_S^0 \pi^+ \pi^-)$	$(-0.1 \pm 0.5)\%$
$A_{CP}(D^0 \rightarrow \kappa_S^0 \omega \rightarrow \kappa_S^0 \pi^+ \pi^-)$	$(-13 \pm 7)\%$
$A_{CP}(D^0 \to K_S^0 f_0(980) \to K_S^0 \pi^+ \pi^-)$	$(-0.4 \pm 2.7)\%$
$A_{CP}(D^0 \to K_S^0 f_2(1270) \to K_S^0 \pi^+ \pi^-)$	$(-4 \pm 5)\%$
$A_{CP}(D^0 \to K_S^0 f_0(1370) \to K_S^0 \pi^+ \pi^-)$	$(-1 \pm 9)\%$
$A_{CP}(D^0 \to \overline{K}^0 \rho^0 (1450) \to K_S^0 \pi^+ \pi^-)$	$(-4 \pm 10)\%$
$A_{CP}(D^0 \to \overline{K}^0 f_0(600) \to K_5^0 \pi^+ \pi^-)$	$(-3 \pm 5)\%$
$A_{CP}(D^0 \to K^*(1410)^-\pi^+ \to K_5^0\pi^+\pi^-)$	$(-2 \pm 9)\%$
$A_{CP}(D^0 \to K_0^*(1430)^-\pi^+ \to K_5^0\pi^+\pi^-)$	$(4 \pm 4)\%$
$A_{CP}(D^0 \to \kappa_0^*(1430)^-\pi^+ \to \kappa_5^0\pi^+\pi^-)$	$(12\pm15)\%$
$A_{CP}(D^0 \to K_2^*(1430)^-\pi^+ \to K_5^0\pi^+\pi^-)$	$(3\pm6)\%$
$A_{CP}(D^0 \to \kappa_2^*(1430)^+\pi^- \to \kappa_S^0\pi^+\pi^-)$	$(-10 \pm 32)\%$
$A_{CP}(D^0 \to K^-\pi^+\pi^+\pi^-)$	$(0.2 \pm 0.5)\%$
$A_{CP}(D^0 \to K^+\pi^-\pi^+\pi^-)$	$(-2 \pm 4)\%$
$A_{CP}(D^0 \rightarrow K^+K^-\pi^+\pi^-)$	$(1.3 \pm 1.7)\%$
$A_{CP}(D^0 \to K_1^*(1270)^+ K^- \to K^+ K^- \pi^+ \pi^-)$	$(-2.3 \pm 1.7)\%$
$A_{CP}(D^0 \to K_1^*(1270)^+ K^- \to K^{*0} \pi^+ K^-)$	$(-1\pm10)\%$
$A_{CP}(D^0 \to K_1^*(1270)^- K^+ \to \overline{K}^{*0} \pi^- K^+)$	$(-10 \pm 32)\%$
$A_{CP}(D^0 \to K_1^*(1270)^- K^+ \to K^+ K^- \pi^+ \pi^-)$	$(1.7 \pm 3.5)\%$
$A_{CP}(D^0 \to K_1^*(1270)^+ K^- \to \rho^0 K^+ K^-)$	$(-7 \pm 17)\%$
$A_{CP}(D^0 \to K_1^*(1270)^- K^+ \to \rho^0 K^- K^+)$	$(10\pm13)\%$
$A_{CP}(D^0 \to K_1(1400)^+ K^- \to K^+ K^- \pi^+ \pi^-)$	$(-4.4 \pm 2.1)\%$
$A_{CP}(D^0 \to K^*(1410)^+ K^- \to K^{*0} \pi^+ K^-)$	$(-20 \pm 17)\%$
$A_{CP}(D^0 \rightarrow K^*(1410)^- K^+ \rightarrow \overline{K}^{*0} \pi^- K^+)$	$(-1 \pm 14)\%$
$A_{CP}(D^0 \to K^*(1680)^+ K^- \to K^+ K^- \pi^+ \pi^-)$	$(-17 \pm 29)\%$
$A_{CP}(K^{*0}\overline{K}^{*0})$ in D^0 , $\overline{D}^0 \to K^{*0}\overline{K}^{*0}$ $A_{CP}(D^0 \to K^{*0}\overline{K}^{*0}$ S-wave)	$(-5 \pm 14)\%$
$A_{CP}(D^0 o K^{**} \circ K^{**} \circ S$ -wave) $A_{CP}(\phi ho^0)$ in D^0 , $\overline{D}{}^0 o \phi ho^0$	$(-3.9 \pm 2.2)\%$
$A_{CP}(\phi ho^{0})$ in D^{0} , $D^{0} ightarrow \phi ho^{0}$ $A_{CP}(D^{0} ightarrow \phi ho^{0}$ S-wave)	$(1 \pm 9)\%$ $(-3 \pm 5)\%$
$A_{CP}(D \rightarrow \phi \rho^0 \text{ J-wave})$ $A_{CP}(D^0 \rightarrow \phi \rho^0 \text{ D-wave})$	$(-3 \pm 3)\%$ $(-37 \pm 19)\%$
$A_{CP}(D^0 \rightarrow \phi(\pi^+\pi^-)_{S-wave})$	$(6 \pm 6)\%$
$A_{CP}(D^0 \to K^*(892)^0 (K^-\pi^+)_{S-wave})$	$(-10 \pm 40)\%$
O1 () () J-wwwe	, , , , ,

$A_{CP}(D^0 o K^+ K^- \pi^+ \pi^- \text{non-resonant})$	(8 ± 20)%
$A_{CP}((K^-\pi^+)_{P-wave} (K^+\pi^-)_{S-wave})$	$(3\pm11)\%$
Local <i>CPV</i> p-value in D^0 , $\overline{D}^0 \to \pi^+\pi^-\pi^0$	4.9%
Local <i>CPV</i> p-value in D^0 , $\overline{D}{}^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$	$(0.6 \pm 0.2)\%$
Local <i>CPV</i> p-value in D^0 , $\overline{D}^0 o extit{K}^0_{\mathcal{S}} \pi^+ \pi^-$	96%
Local <i>CPV</i> p-value in D^0 , $\overline{D}^0 \rightarrow K^+K^-\pi^0$	16.6%
Local <i>CPV</i> p-value in D^0 , $\overline{D}{}^0 \rightarrow K^+K^-\pi^+\pi^-$	9.1%
$A_{CP}(D_s^{\pm} \rightarrow \mu^{\pm} \nu)$	$(-0.2 \pm 2.5)\%$
$A_{CP}(D_S^{\pm} \rightarrow K^{\pm}K_S^0)$	$(0.09 \pm 0.26)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^+K^-\pi^{\pm})$	$(-0.5 \pm 0.9)\%$
$A_{CP}(D_s^{\pm} \rightarrow \phi \pi^{\pm})$	$(-0.38 \pm 0.27)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^{\pm}K_S^0\pi^0)$	$(-2 \pm 6)\%$
$A_{CP}(D_s^{\pm} \rightarrow 2K_S^0\pi^{\pm})$	$(3\pm5)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^+ K^- \pi^{\pm} \pi^0)$	$(0.0 \pm 3.0)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^{\pm} K_S^0 \pi^+ \pi^-)$	$(-6 \pm 5)\%$
$A_{CP}(D_s^{\pm} \rightarrow K_S^0 K^{\mp} 2\pi^{\pm})$	$(4.1 \pm 2.8)\%$
$A_{CP}(D_s^{\pm} ightarrow \pi^+\pi^-\pi^{\pm})$	$(-0.7\pm3.1)\%$
$A_{CP}(D_s^{\pm} ightarrow \pi^{\pm} \eta)$	$(0.3 \pm 0.4)\%$
$A_{CP}(D_s^{\pm} ightarrow \pi^{\pm} \eta')$	$(-0.9 \pm 0.5)\%$
$A_{CP}(D_s^{\pm} \rightarrow \eta \pi^{\pm} \pi^{0})$	$(-1\pm4)\%$
$A_{CP}(D_s^{\pm} \rightarrow \eta' \pi^{\pm} \pi^{0})$	$(0 \pm 8)\%$
$A_{CP}(D_s^{\pm} \rightarrow \kappa^{\pm} \pi^{0})$	$(2 \pm 4)\%~(S = 1.2)$
$A_{CP}(D_s^{\pm} \rightarrow \overline{K}^0/K^0\pi^{\pm})$	$(0.4 \pm 0.5)\%$
$A_{CP}(D_s^{\pm} ightarrow \ K_S^0 \pi^{\pm})$	$(0.20\pm0.18)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-})$	$(3.7 \pm 2.7)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^{\pm} \eta)$	$(1.8 \pm 1.9)\%$
$A_{CP}(D_s^{\pm} \rightarrow K^{\pm} \eta'(958))$	$(6\pm19)\%$
$A_{CP}(B^+ \rightarrow J/\psi(1S)K^+)$	$(1.8 \pm 3.0) \times 10^{-3} \text{ (S} = 1.5)$
$A_{CP}(B^+ \rightarrow J/\psi(1S)\pi^+)$	$(1.8 \pm 1.2) \times 10^{-2} \text{ (S} = 1.3)$
$A_{CP}(B^+ o J/\psi \rho^+)$	-0.05 ± 0.05
$A_{CP}(B^+ \to J/\psi K^*(892)^+)$	-0.048 ± 0.033
$A_{CP}(B^+ \rightarrow \eta_c K^+)$	$0.01 \pm 0.07 \; (S=2.2)$
$A_{CP}(B^+ \to \psi(2S)\pi^+)$	0.03 ± 0.06
$A_{CP}(B^+ \rightarrow \psi(2S)K^+)$	$0.012 \pm 0.020 \; (S = 1.5)$
$A_{CP}(B^+ \to \psi(2S)K^*(892)^+)$	0.08 ± 0.21
$A_{CP}(B^+ \to \chi_{c1}(1P)\pi^+)$	0.07 ± 0.18
$A_{CP}(B^+ \rightarrow \chi_{c0} K^+)$	$-0.20 \pm 0.18 \text{ (S} = 1.5)$
$A_{CP}(B^+ \to \chi_{c1}K^+)$	-0.009 ± 0.033
$A_{CP}(B^+ \to \chi_{c1} K^*(892)^+)$ $A_{CP}(B^+ \to \overline{D}{}^0 \pi^+)$	0.5 ± 0.5 $(-3 \pm 5) \times 10^{-3}$
$ACD(p_+ \rightarrow p_+ \pi_+)$	$(-2 \pm 2) \times 10^{-2}$

$A_{CP}(B^+ \rightarrow D_{CP(+1)}\pi^+)$	-0.0080 ± 0.0024
$A_{CP}(B^+ \rightarrow D_{CP(-1)}\pi^+)$	0.017 ± 0.026
$A_{CP}([\kappa^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}\pi^{+})$	0.02 ± 0.05
$A_{CP}(B^+ \to [\pi^+ \pi^+ \pi^- \pi^-]_D K^+)$	0.10 ± 0.04
$A_{CP}(B^+ \to [\pi^+\pi^-\pi^+\pi^-]_D^-K^*(892)^+)$	0.02 ± 0.11
$A_{CP}(B^+ o \overline{D}{}^0K^+)$	-0.017 ± 0.005
$A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}K^{+})$	-0.31 ± 0.11
$A_{CP}(B^+ \to [\pi^+ \pi^+ \pi^- \pi^-]_D \pi^+)$	$(-4 \pm 8) \times 10^{-3}$
$A_{CP}(B^+ \to [K^-\pi^+]_D K^+)$	-0.58 ± 0.21
$A_{CP}(B^+ \to [K^- \pi^+ \pi^0]_D K^+)$	$-0.27 \pm 0.27 \; (S=2.4)$
$A_{CP}(B^+ \to [K^+\pi^-\pi^0]_D K^+)$	-0.024 ± 0.013
$A_{CP}(B^+ \to [K^+ K^- \pi^0]_D K^+)$	0.07 ± 0.07
$A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+)$	0.11 ± 0.04
$A_{CP}(B^+ \rightarrow \overline{D}^0 K^*(892)^+)$	-0.007 ± 0.019
$A_{CP}(B^+ \to [K^- \pi^+ \pi^- \pi^+]_{\overline{D}} K^*(892)^+)$	-0.45 ± 0.25
$A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+)$	0.00 ± 0.09
$A_{CP}(B^+ \to [K^- \pi^+ \pi^0]_D \pi^+)$	0.08 ± 0.09
$A_{CP}(B^+ \rightarrow [K^+ K^- \pi^0]_D \pi^+)$	-0.001 ± 0.019
$A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D\pi^+)$	0.001 ± 0.010
$A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)}\pi^+)$	-0.09 ± 0.27
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_{(D\gamma)}\pi^+)$	-0.7 ± 0.6
$A_{CP}(B^+ \to [K^- \pi^+]_{(D\pi)} K^+)$	0.8 ± 0.4
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_{(D\gamma)}K^+)$	0.4 ± 1.0
$A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+)$	-0.02 ± 0.15
$A_{CP}(B^+ \rightarrow [K_S^0 K^+ \pi^-]_D K^+)$	0.10 ± 0.09
$A_{CP}(B^+ \rightarrow [\kappa_S^{0} \kappa^- \pi^+]_D \kappa^+)$	-0.04 ± 0.08
$A_{CP}(B^+ \rightarrow [\kappa_S^0 \kappa^- \pi^+]_D \pi^+)$	0.003 ± 0.015
$A_{CP}(B^+ \rightarrow [\kappa_S^{0} \kappa^+ \pi^-]_D \pi^+)$	-0.034 ± 0.020
$A_{CP}(B^+ \to [K^*(892)^- K^+]_D K^+)$	0.08 ± 0.05
$A_{CP}(B^+ \to [K^*(892)^+ K^-]_D K^+)$	0.02 ± 0.10
$A_{CP}(B^+ \to [K^*(892)^+ K^-]_D \pi^+)$	0.007 ± 0.017
$A_{CP}(B^+ \to [K^*(892)^- K^+]_D \pi^+)$	-0.020 ± 0.011
$A_{ADS}(B^+ \rightarrow DK^+)$	-0.451 ± 0.026
$A_{ADS}(B^+ \to D\pi^+)$	0.129 ± 0.014
$A_{ADS}(B^+ \rightarrow D^*(D\gamma)K^+)$	-0.6 ± 1.3
$A_{ADS}(B^+ \rightarrow D^*(D\pi^0)K^+)$	0.72 ± 0.29
$A_{ADS}(B^+ \rightarrow D^*(D\gamma)\pi^+)$	0.08 ± 0.13
$A_{ADS}(B^+ \rightarrow D^*(D\pi^0)\pi^+)$	-0.14 ± 0.06
$A_{ADS}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+)$	-0.33 ± 0.35
$A_{ADS}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+)$	-0.01 ± 0.09

$A_{CP}(B^+ \rightarrow D_{CP(-1)}K^+)$	-0.10 ± 0.07
$A_{CP}(B^+ \to [K^+ K^-]_D K^+ \pi^- \pi^+)$	-0.04 ± 0.06
$A_{CP}(B^+ \to [\pi^+\pi^-]_D K^+\pi^-\pi^+)$	-0.05 ± 0.10
$A_{CP}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+)$	0.013 ± 0.023
$A_{CP}(B^+ \to [K^+K^-]_D \pi^+ \pi^- \pi^+)$	-0.019 ± 0.015
$A_{CP}(B^+ \to [\pi^+\pi^-]_D \pi^+\pi^-\pi^+)$	-0.013 ± 0.019
$A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+)$	-0.002 ± 0.011
$A_{CP}(B^+ o \overline D^{*0}\pi^+)$	$-0.0004\pm0.0021\;(S=1.1)$
$A_{CP}(B^+ o D_{CP(+1)}^{*0}\pi^+)$	0.010 ± 0.007
$A_{CP}(B^+ \to D_{CP(-1)}^{*0}\pi^+)$	-0.09 ± 0.05
$A_{CP}(B^+ \rightarrow D^{*0}K^+)$	$0.012 \pm 0.010 \; (S = 1.5)$
$A_{CP}(B^+ \to D_{CP(+1)}^{*0}K^+)$	$-0.09 \pm 0.05 \; (S=2.6)$
$A_{CP}(B^+ \rightarrow D_{CP(-1)}^*K^+)$	0.07 ± 0.10
$A_{CP}(B^+ \to D_{CP(+1)}K^*(892)^+)$	0.08 ± 0.06
$A_{CP}(B^+ \to D_{CP(-1)}K^*(892)^+)$	-0.23 ± 0.22
$A_{CP}(B^+ \rightarrow D_s^+ \phi)$	0.0 ± 0.4
$A_{CP}(B^+ \rightarrow D_s^+ \overline{D}^0)$	$(-0.4 \pm 0.7)\%$
$A_{CP}(B^+ \rightarrow D^{*+}\overline{D}^{*0})$	-0.15 ± 0.11
$A_{CP}(B^+ \rightarrow D^{*+}\overline{D}^0)$	-0.06 ± 0.13
$A_{CP}(B^+ \rightarrow D^+ \overline{D}^{*0})$	0.13 ± 0.18
$A_{CP}(B^+ \rightarrow D^+ \overline{D}{}^0)$	0.016 ± 0.025
$A_{CP}(B^+ \rightarrow K_S^0 \pi^+)$	-0.017 ± 0.016
$A_{CP}(B^+ \rightarrow K^+\pi^0)$	0.030 ± 0.013
$A_{CP}(B^+ \rightarrow \eta' K^+)$	0.004 ± 0.011
$A_{CP}(B^+ \rightarrow \eta' K^*(892)^+)$	-0.26 ± 0.27
$A_{CP}(B^+ \to \eta' K_0^*(1430)^+)$	0.06 ± 0.20
$A_{CP}(B^+ \to \eta' K_2^*(1430)^+)$	0.15 ± 0.13
$A_{CP}(B^+ \to \eta K^*(892)^+)$	0.02 ± 0.06
$A_{CP}(B^+ \to \eta K_0^*(1430)^+)$	0.05 ± 0.13
$A_{CP}(B^+ \to \eta K_2^*(1430)^+)$	-0.45 ± 0.30
$A_{CP}(B^+ o\ \omegaK^+)$	-0.02 ± 0.04
$A_{CP}(B^+ o\ \omegaK^{*+})$	0.29 ± 0.35
$A_{CP}(B^+ \rightarrow \omega(K\pi)_0^{*+})$	-0.10 ± 0.09
$A_{CP}(B^+ \to \omega K_2^*(1430)^+)$	0.14 ± 0.15
$A_{CP}(B^+ o \kappa^{*0}\pi^+)$	$-0.04 \pm 0.09 \; (S=2.1)$
$A_{CP}(B^+ \to K^*(892)^+ \pi^0)$	$-0.39 \pm 0.21 \ (S=1.6)$
$A_{CP}(B^+ \rightarrow K^+\pi^-\pi^+)$	0.027 ± 0.008
$A_{CP}(B^+ \rightarrow K^+K^-K^+ \text{ nonresonant})$	0.06 ± 0.05
$A_{CP}(B^+ \to f(980)^0 K^+)$	-0.08 ± 0.09

$A_{CD}(B^+ \rightarrow$	$f_0(1500)K^+)$	0.28 ± 0.30
	$f_2'(1525)^0 K^+)$	$-0.08^{+0.05}_{-0.04}$
$A_{CP}(B^+ \rightarrow$	_	0.07 ± 0.06
01	$\kappa_0^*(1430)^0\pi^+)$	0.061 ± 0.032
	$\kappa_0^*(1430)^+\pi^0$	$0.26^{+0.18}_{-0.14}$
	$\kappa_{2}^{*}(1430)^{0}\pi^{+})$	$0.05 + 0.29 \\ -0.24$
$A_{CP}(B^+ \rightarrow$	$\kappa^{+}\pi^{0}\pi^{0}$)	-0.06 ± 0.07
$A_{CP}(B^+ \rightarrow$		-0.03 ± 0.15
$A_{CP}(B^+ \rightarrow$	$K^{*+}\pi^{+}\pi^{-})$	0.07 ± 0.08
$A_{CP}(B^+ \rightarrow$	$\rho^0 K^*(892)^+)$	0.31 ± 0.13
$A_{CP}(B^+ \rightarrow$	$K^*(892)^+ f_0(980))$	-0.15 ± 0.12
$A_{CP}(B^+ \rightarrow$	$a_1^+ K^0$)	0.12 ± 0.11
$A_{CP}(B^+ \rightarrow$	$b_1^+ K^0$)	-0.03 ± 0.15
$A_{CP}(B^+ \rightarrow$	$\kappa^*(892)^0 \rho^+)$	-0.01 ± 0.16
$A_{CP}(B^+ \rightarrow$	$b_1^0 K^+)$	-0.46 ± 0.20
$A_{CP}(B^+ \rightarrow$	-	0.04 ± 0.14
$A_{CP}(B^+ \rightarrow$	$\kappa_{S}^{0} \kappa^{+})$	-0.21 ± 0.14
$A_{CP}(B^+ \rightarrow$	9	0.025 ± 0.031
$A_{CP}(B^+ \rightarrow$	$K^+K^-\pi^+$ nonresonant)	-0.11 ± 0.06
$A_{CP}(B^+ \rightarrow$	$K^+\overline{K}^*(892)^0)$	0.12 ± 0.10
$A_{CP}(B^+ \rightarrow$	$K^{+}\overline{K}_{0}^{*}(1430)^{0})$	0.10 ± 0.17
$A_{CP}(B^+ \rightarrow$	$\phi\pi^+)$	0.1 ± 0.5
$A_{CP}(B^+ \rightarrow$	ϕK^+)	$0.024 \pm 0.028 \; (S=2.3)$
01 \	$X_0(1550)K^+)$	-0.04 ± 0.07
$A_{CP}(B^+ \rightarrow$	$K^{*+}K^+K^-$)	0.11 ± 0.09
$A_{CP}(B^+ \rightarrow$		-0.01 ± 0.08
$A_{CP}(B^+ \rightarrow$	$\phi(\kappa\pi)_0^{*+})$	0.04 ± 0.16
$A_{CP}(B^+ \rightarrow$	$\phi K_1(1270)^+)$	0.15 ± 0.20
$A_{CP}(B^+ \rightarrow$	$\phi K_2^*(1430)^+)$	-0.23 ± 0.20
$A_{CP}(B^+ \rightarrow$	$K^+\phi\phi$)	-0.08 ± 0.07
$A_{CP}(B^+ \rightarrow$	$K^+[\phi\phi]_{\eta_c}$	0.10 ± 0.08
$A_{CP}(B^+ \rightarrow$	$K^*(892)^+\gamma)$	0.014 ± 0.018
$A_{CP}(B^+ \rightarrow$	$X_{s}\gamma)$	0.028 ± 0.019
$A_{CP}(B^+ \rightarrow$	$\eta K^+ \gamma$)	-0.12 ± 0.07
$A_{CP}(B^+ \rightarrow$		$-0.13\pm0.11\;(S=1.1)$
$A_{CP}(B^+ \rightarrow$		-0.11 ± 0.33
$A_{CP}(B^+ \rightarrow$,	0.03 ± 0.04
$A_{CP}(B^+ \rightarrow$		0.009 ± 0.019
	$\rho^0(1450)\pi^+)$	-0.11 ± 0.05
$A_{CP}(B^+ \rightarrow$	$\pi^+\pi^-\pi^+$ nonresonant)	$-0.14^{igoplus 0.23}_{igoplus 0.16}$

. (54 + 0)	
$A_{CP}(B^+ \rightarrow \rho^+ \pi^0)$	0.02 ± 0.11
$A_{CP}(B^+ \rightarrow \rho^+ \rho^0)$	-0.05 ± 0.05
$A_{CP}(B^+ \to \omega \pi^+)$	-0.04 ± 0.05
$A_{CP}(B^+ \to \omega \rho^+)$	-0.20 ± 0.09
$A_{CP}(B^+ \to \eta \pi^+)$	$-0.14 \pm 0.07 \text{ (S} = 1.4)$
$A_{CP}(B^+ \rightarrow \eta \rho^+)$	0.11 ± 0.11
$A_{CP}(B^+ \rightarrow \eta' \pi^+)$	0.06 ± 0.16
$A_{CP}(B^+ \rightarrow \eta' \rho^+)$	0.26 ± 0.17
$A_{CP}(B^+ \rightarrow b_1^0 \pi^+)$	0.05 ± 0.16
$A_{CP}(B^+ \to p\overline{p}\pi^+)$	0.00 ± 0.04
$A_{CP}(B^+ \to p\overline{p}K^+)$	$0.00 \pm 0.04 \; (S=2.2)$
$A_{CP}(B^+ \rightarrow p\overline{p}K^*(892)^+)$	$0.21 \pm 0.16 \; (S = 1.4)$
$A_{CP}(B^+ \to p\overline{\Lambda}\gamma)$	0.17 ± 0.17
$A_{CP}(B^+ \to p \overline{\Lambda} \pi^0)$	0.01 ± 0.17
$A_{CP}(B^+ \rightarrow K^+ \ell^+ \ell^-)$	-0.02 ± 0.08
$A_{CP}(B^+ \rightarrow K^+e^+e^-)$	0.14 ± 0.14
$A_{CP}(B^+ \rightarrow K^+ \mu^+ \mu^-)$	0.011 ± 0.017
$A_{CP}(B^+ \rightarrow \pi^+ \mu^+ \mu^-)$	-0.11 ± 0.12
$A_{CP}(B^+ o K^{*+}\ell^+\ell^-)$	-0.09 ± 0.14
$A_{CP}(B^+ \rightarrow K^* e^+ e^-)$	-0.14 ± 0.23
$A_{CP}(B^+ \rightarrow K^* \mu^+ \mu^-)$	-0.12 ± 0.24
$\operatorname{Re}(\epsilon_{B^0})/(1+ \epsilon_{B^0} ^2)$	$(-0.5 \pm 0.4) \times 10^{-3}$
$A_{T/CP}(B^0 \leftrightarrow \overline{B}{}^0)$	0.005 ± 0.018
$A_{CP}(B^0 \to D^*(2010)^+D^-)$	0.013 ± 0.014
$A_{CP}(B^0 \rightarrow \overline{D}{}^0\pi^0)$	$(0.4 \pm 2.4) \times 10^{-2}$
$A_{CP}(B^0 \to [K^+ K^-]_D K^*(892)^0)$	-0.05 ± 0.10
$A_{CP}(B^0 \to [K^+\pi^-]_D K^*(892)^0)$	0.047 ± 0.029
$A_{CP}(B^0 \to [K^+\pi^-\pi^+\pi^-]_D K^*(892)^0)$	0.037 ± 0.034
$A_{CP}(B^0 \to [K^-\pi^+]_D K^*(892)^0)$	0.19 ± 0.19
$A_{CP}(B^0 \to [K^-\pi^+\pi^+\pi^-]_D K^*(892)^0)$	-0.01 ± 0.24
$R_d^+(B^0 \to [\pi^{\pm} K^{\mp}]_D K^{*0})$	0.064 ± 0.021
$R_d^{-}(\overline{B}^0 \rightarrow [\pi^{\mp} K^{\pm}]_D K^{*0})$	0.095 ± 0.021
$A_{CP}(B^0 \to [\pi^+\pi^-]_D K^*(892)^0)$	-0.18 ± 0.14
$A_{CP}(B^0 \to [\pi^+\pi^-\pi^+\pi^-]_D K^*(892)^0)$	-0.03 ± 0.15
$R_d^+(B^0 \to [\pi^{\pm} K^{\mp} \pi^{\pm} \pi^{\mp}]_D K^{*0})$	0.074 ± 0.026
$R_{d}^{-}(\overline{B}^{0} \rightarrow [\pi^{\mp} K^{\pm} \pi^{\pm} \pi^{\mp}]_{D} K^{*0})$	0.072 ± 0.025
$A_{CP}(B^0 \to \eta' K^*(892)^0)$	-0.07 ± 0.18
$A_{CP}(B^0 \to \eta' K_0^*(1430)^0)$	-0.19 ± 0.17
$A_{CP}(B^0 \to \eta' K_2^*(1430)^0)$	0.14 ± 0.18
$A_{CP}(B^0 \to \eta K_2^*(1430)^0)$ $A_{CP}(B^0 \to \eta K_0^*(1430)^0)$	
$ACD(p_z \rightarrow \mu \nu^0(1430)_z)$	0.06 ± 0.13

$A_{CP}(B^0 \rightarrow$	$\eta K_2^*(1430)^0$	-0.07 ± 0.19
$A_{CP}(B^0 \rightarrow$	$b_1 \overset{-}{K^+})$	-0.07 ± 0.12
$A_{CP}(B^0 \rightarrow$	ωK^{*0})	0.45 ± 0.25
$A_{CP}(B^0 \rightarrow$	$\omega(\kappa\pi)^{*0}_0$	-0.07 ± 0.09
$A_{CP}(B^0 \rightarrow$	$\omega K_2^*(1430)^0$	-0.37 ± 0.17
$A_{CP}(B^0 \rightarrow$	$\kappa^{+}\pi^{-}\pi^{0}$	$(0 \pm 6) \times 10^{-2}$
$A_{CP}(B^0 \rightarrow$	$ ho^- K^+)$	0.20 ± 0.11
$A_{CP}(B^0 \rightarrow$	$ ho$ (1450) $^{-}$ K $^{+}$)	-0.10 ± 0.33
$A_{CP}(B^0 \rightarrow$	$\rho(1700)^- K^+)$	-0.4 ± 0.6
01.	$K^+\pi^-\pi^0$ nonresonant)	0.10 ± 0.18
$A_{CP}(B^0 \rightarrow$	$\kappa^0 \pi^+ \pi^-)$	-0.01 ± 0.05
$A_{CP}(B^0 \rightarrow$	$(\kappa\pi)_0^{*+}\pi^-)$	0.02 ± 0.04
$A_{CP}(B^0 \rightarrow$	$\kappa_2^*(1430)^+\pi^-)$	-0.29 ± 0.24
$A_{CP}(B^0 \rightarrow$	$\kappa^{*}(1680)^{+}\pi^{-})$	-0.07 ± 0.14
$A_{CP}(B^0 \rightarrow$	$f_0(980)K_S^0$	0.28 ± 0.31
$A_{CP}(B^0 \rightarrow$	$(\kappa_{\pi})^{*0}_{0}\pi^{0}_{0}$	-0.15 ± 0.11
$A_{CP}(B^0 \rightarrow$	$\kappa^{*0} \pi^{0}$)	-0.15 ± 0.13
$A_{CP}(B^0 \rightarrow$	$\kappa^*(892)^0\pi^+\pi^-)$	0.07 ± 0.05
$A_{CP}(B^0 \rightarrow$	$K^*(892)^0 \rho^0$	-0.06 ± 0.09
$A_{CP}(B^0 \rightarrow$	$K^{*0} f_0(980)$	0.07 ± 0.10
$A_{CP}(B^0 \rightarrow$	$\kappa^{*+}\rho^{-}$)	0.21 ± 0.15
$A_{CP}(B^0 \rightarrow$	$K^*(892)^0 K^+ K^-)$	0.01 ± 0.05
$A_{CP}(B^0 \rightarrow$	$a_1^- K^+$)	-0.16 ± 0.12
$A_{CP}(B^0 \rightarrow$	$\kappa^0 \kappa^0$)	-0.6 ± 0.7
$A_{CP}(B^0 \rightarrow$	$K^*(892)^0 \phi)$	0.00 ± 0.04
$A_{CP}(B^0 \rightarrow$	$K^*(892)^0 K^- \pi^+)$	0.2 ± 0.4
$A_{CP}(B^0 \rightarrow$	$\phi(\kappa\pi)^{*0}_0$	0.12 ± 0.08
$A_{CP}(B^0 \rightarrow$	$\phi K_2^*(1430)^0$	-0.11 ± 0.10
$A_{CP}(B^0 \rightarrow$	$K^*(892)^0 \gamma)$	-0.006 ± 0.011
$A_{CP}(B^0 \rightarrow$	$K_2^*(1430)^0 \gamma)$	-0.08 ± 0.15
$A_{CP}(B^0 \rightarrow$	$X_{S}\gamma$)	-0.009 ± 0.018
$A_{CP}(B^0 \rightarrow$	$ ho^+\pi^-)$	$0.13 \pm 0.06 \; (S = 1.1)$
$A_{CP}(B^0 \rightarrow$	$\rho^-\pi^+$)	-0.08 ± 0.08
$A_{CP}(B^0 \rightarrow$	$a_1(1260)^{\pm}\pi^{\mp})$	-0.07 ± 0.06
$A_{CP}(B^0 \rightarrow$	$b_1^- \pi^+)$	-0.05 ± 0.10
$A_{CP}(B^0 \rightarrow$	$p \overline{p} K^*(892)^0$	0.05 ± 0.12
$A_{CP}(B^0 \rightarrow$		0.04 ± 0.07
$A_{CP}(B^0 \rightarrow$		-0.05 ± 0.10
$A_{CP}(B^0 \rightarrow$	$K^{*0} e^+ e^-)$	-0.21 ± 0.19
$A_{CP}(B^0 \rightarrow$	$\kappa^{*0} \mu^+ \mu^-$)	-0.034 ± 0.024

$C_{D^*(2010)^-D^+}(B^0 \to D^*(2010)^-D^+)$	-0.02 ± 0.08
$C_{D^*(2010)^+D^-}(B^0 \to D^*(2010)^+D^-)$	$-0.03 \pm 0.09 \; (S=1.1)$
$C_{D^{*+}D^{*-}}(B^0 \to D^{*+}D^{*-})$	$0.01 \pm 0.09 \; (S = 1.6)$
$C_{+} (B^{0} \rightarrow D^{*+}D^{*-})$	$0.00 \pm 0.10 \; (S = 1.6)$
$C_{-}(B^{0} \rightarrow D^{*+}D^{*-})$	0.19 ± 0.31
$S_{-}(B^{0} \rightarrow D^{*+}D^{*-})$	$0.1 \pm 1.6 \; (S = 3.5)$
$C(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0)$	0.01 ± 0.29
$S(B^0 \to D^*(2010)^+ D^*(2010)^- K_S^0)$	0.1 ± 0.4
$C_{D^+D^-} (B^0 \to D^+D^-)$	$-0.22 \pm 0.24 \text{ (S} = 2.5)$
$C_{J/\psi(1S)\pi^0} \; (B^0 o \; J/\psi(1S)\pi^0)$	$0.03 \pm 0.17 \; (S = 1.5)$
$C(B^0 \rightarrow J/\psi(1S)\rho^0)$	-0.06 ± 0.06
$C_{D_{CP}^{(*)}h^0}^{(*)} (B^0 \to D_{CP}^{(*)}h^0)$	-0.02 ± 0.08
$S_{D_{CP}^{(*)}h^0}^{(*)}(B^0 \to D_{CP}^{(*)}h^0)$	-0.66 ± 0.12
$C_{K^0\pi^0}(B^0 \to K^0\pi^0)$	$0.00 \pm 0.13 \; (S = 1.4)$
$C_{\eta'(958)K_S^0}(B^0 \to \eta'(958)K_S^0)$	$-0.04 \pm 0.20 \; (S=2.5)$
$S_{\eta'(958)K_S^0}(B^0 \to \eta'(958)K_S^0)$	$0.43 \pm 0.17 \; (S = 1.5)$
$C_{\eta' K^0} (B^{0} \rightarrow \eta' K^0)$	-0.06 ± 0.04
$C_{\omega K_S^0}(B^0 \rightarrow \omega K_S^0)$	$0.0 \pm 0.4 \; (S=3.0)$
$S_{\omega K_S^0}(B^0 \rightarrow \omega K_S^0)$	0.70 ± 0.21
$C(B^{0} \rightarrow \kappa_{S}^{0} \pi^{0} \pi^{0})$	-0.21 ± 0.20
$S(B^0 \rightarrow \kappa_S^0 \pi^0 \pi^0)$	$0.89^{+0.27}_{-0.30}$
$C_{\rho^0 K_S^0} (B^0 \rightarrow \rho^0 K_S^0)$	-0.04 ± 0.20
$S_{ ho^0 \kappa_S^0} (B^0 \rightarrow \rho^0 \kappa_S^0)$	$0.50 {}^{+ 0.17}_{- 0.21}$
$C_{f_0(980)K_S^0}(B^0 \to f_0(980)K_S^0)$	0.29 ± 0.20
$S_{f_0(980)K_S^0}(B^0 \to f_0(980)K_S^0)$	-0.50 ± 0.16
$S_{f_2(1270)K_S^0}(B^0 \to f_2(1270)K_S^0)$	-0.5 ± 0.5
$C_{f_2(1270)K_S^0}(B^0 \to f_2(1270)K_S^0)$	0.3 ± 0.4
$S_{f_X(1300)K_S^0}(B^0 \to f_X(1300)K_S^0)$	-0.2 ± 0.5
$C_{f_{\chi}(1300)K_{S}^{0}}(B^{0} \rightarrow f_{\chi}(1300)K_{S}^{0})$	0.13 ± 0.35
$S_{K^0\pi^+\pi^-}(B^0 \to K^0\pi^+\pi^-)$ nonresonant)	-0.01 ± 0.33
$C_{K^0\pi^+\pi^-}^{}$ ($B^0 ightarrow~K^0\pi^+\pi^-$ nonresonant)	0.01 ± 0.26
$C_{\mathcal{K}^0_{\mathcal{S}}\mathcal{K}^0_{\mathcal{S}}}(B^0 \to \mathcal{K}^0_{\mathcal{S}}\mathcal{K}^0_{\mathcal{S}})$	$0.0 \pm 0.4 \; (S = 1.4)$

$S_{\mathcal{K}^0_S\mathcal{K}^0_S}(B^0 o\mathcal{K}^0_S\mathcal{K}^0_S)$	-0.8 ± 0.5
$C_{K^+K^-K^0_S}^{(B^0 o K^+K^-K^0_S)}$ nonresonant)	0.06 ± 0.08
$C_{K^+K^-K^0_S}^{S}$ ($B^0 \rightarrow K^+K^-K^0_S$ inclusive)	0.01 ± 0.09
$C_{\phi K_S^0} (B^0 \rightarrow \phi K_S^0)$	0.01 ± 0.14
$S_{\phi K_S^0}(B^0 \rightarrow \phi K_S^0)$	0.59 ± 0.14
$C_{K_SK_SK_S}(B^0 \to K_SK_SK_S)$	-0.14 ± 0.12
$S_{K_SK_SK_S}(B^0 \rightarrow K_SK_SK_S)$	-0.82 ± 0.17
$C_{K_S^0\pi^0\gamma}(B^0 \to K_S^0\pi^0\gamma)$	0.36 ± 0.33
$S_{K_S^0\pi^0\gamma}(B^0 \to K_S^0\pi^0\gamma)$	-0.8 ± 0.6
$C_{K^*(892)^0\gamma}(B^0 \to K^*(892)^0\gamma)$	$-0.04 \pm 0.16 \; (S=1.2)$
$S_{K^*(892)^0\gamma}(B^0 \to K^*(892)^0\gamma)$	-0.15 ± 0.22
$C_{\eta K^0 \gamma} (B^0 \to \eta K^0 \gamma)$	$0.1 \pm 0.4 \; (S = 1.4)$
$S_{\eta K^0 \gamma} (B^0 \rightarrow \eta K^0 \gamma)$	$-0.5 \pm 0.5 \; (S=1.2)$
$C_{K^0\phi\gamma}(B^0 o K^0\phi\gamma)$	-0.3 ± 0.6
$S_{K^0\phi\gamma}^{}(B^0 o K^0\phi\gamma)$	$0.7^{+0.7}_{-1.1}$
$C(B^0 \to K_S^0 \rho^0 \gamma)$	-0.05 ± 0.19
$S(B^0 \rightarrow \kappa_S^0 \rho^0 \gamma)$	-0.04 ± 0.23
$C(B^0 \rightarrow \rho^{0} \gamma)$	0.4 ± 0.5
$S(B^0 \to \rho^0 \gamma)$	-0.8 ± 0.7
$C_{\pi^0 \pi^0}(B^0 \to \pi^0 \pi^0)$	-0.33 ± 0.22
$C_{ ho\pi}~(B^0 o~ ho^+\pi^-)$	$-0.03 \pm 0.07 \; (S=1.2)$
$S_{ ho\pi}~(B^0 ightarrow~ ho^+\pi^-)$	0.05 ± 0.07
$\Delta S_{ ho\pi}~(B^0 ightarrow~ ho^+\pi^-)$	0.01 ± 0.08
$C_{ ho^0 \pi^0} \ (B^0 o \ ho^0 \pi^0)$	0.27 ± 0.24
$S_{ ho^0 \pi^0} (B^0 \to \rho^0 \pi^0)$	-0.23 ± 0.34
$C_{a_1 \pi} (B^0 \to a_1(1260)^+ \pi^-)$	-0.05 ± 0.11
$S_{a_1 \pi}^{-} (B^0 \to a_1(1260)^+ \pi^-)$	$-0.2 \pm 0.4 \; (S = 3.2)$
$\Delta C_{a_1 \pi} (B^0 \to a_1 (1260)^+ \pi^-)$	$0.43 \pm 0.14 \; (S = 1.3)$
$\Delta S_{a_1 \pi} (B^0 \to a_1 (1260)^+ \pi^-)$	-0.11 ± 0.12
$C(B^0 \rightarrow b_1^- K^+)$	-0.22 ± 0.24
$\Delta C (B^0 \rightarrow b_1^- \pi^+)$	-1.04 ± 0.24
$C_{\rho^0\rho^0} (B^0 \to \rho^0\rho^0)$	0.2 ± 0.9
$S_{\rho^0\rho^0}(B^0 \rightarrow \rho^0\rho^0)$	0.3 ± 0.7
$C_{\rho\rho} (B^0 \rightarrow \rho^+ \rho^-)$	0.00 ± 0.09
$\rho \rho \sim r r r$	

$S_{ ho ho}~(B^0 ightarrow~ ho^+ ho^-)$	-0.14 ± 0.13
$ \lambda (B^0 \rightarrow J/\psi K^*(892)^0)$	<0.25, CL $=$ 95%
$\cos 2\beta \ (B^0 \to J/\psi K^*(892)^0)$	$1.7^{+0.7}_{-0.9} (S = 1.6)$
$\cos 2\beta \ (B^0 \to \ [K_S^0 \pi^+ \pi^-]_{D^{(*)}} \ h^0)$	0.91 ± 0.25
$(S_+ + S)/2 (B^0 \rightarrow D^{*-}\pi^+)$	-0.039 ± 0.011
$(S_{-} - S_{+})/2 (B^{0} \rightarrow D^{*-} \pi^{+})$	-0.009 ± 0.015
$(S_+ + S)/2 (B^0 \rightarrow D^- \pi^+)$	-0.046 ± 0.023
$(S_{-} - S_{+})/2 (B^{0} \rightarrow D^{-} \pi^{+})$	-0.022 ± 0.021
$S_+ (B^0 \rightarrow D^- \pi^+)$	0.058 ± 0.023
$S_{-}(B^0 \rightarrow D^+\pi^-)$	0.038 ± 0.021
$(S_+ + S)/2 (B^0 \rightarrow D^- \rho^+)$	-0.024 ± 0.032
$(S_{-} - S_{+})/2 (B^{0} \rightarrow D^{-} \rho^{+})$	-0.10 ± 0.06
$C_{\eta_c K_S^0} (B^0 \to \eta_c K_S^0)$	0.08 ± 0.13
$C_{c \overline{c} K(*)0} (B^0 \rightarrow c \overline{c} K(*)0)$	$(-0.5 \pm 1.5) \times 10^{-2}$
$C_{J/\psi(nS)K^0}(B^0 \to J/\psi(nS)K^0)$	$(-0.8 \pm 1.7) \times 10^{-2}$
$C_{J/\psi K^{*0}} (B^0 \rightarrow J/\psi K^{*0})$	0.03 ± 0.10
$S_{J/\psi K^{*0}} (B^0 \rightarrow J/\psi K^{*0})$	0.60 ± 0.25
$C_{\chi_{c0}\kappa_S^0}(B^0 \to \chi_{c0}\kappa_S^0)$	$-0.3^{+0.5}_{-0.4}$
$S_{\chi_{c0}\kappa_S^0}(B^0 \to \chi_{c0}\kappa_S^0)$	-0.7 ± 0.5
$C_{\chi_{c1}K_S^0}(B^0 \to \chi_{c1}K_S^0)$	0.06 ± 0.07
$\sin(2\beta_{\rm eff})(B^0 \to \phi K^0)$	0.22 ± 0.30
$\sin(2\beta_{\text{eff}})(B^0 \to \phi K_0^*(1430)^0)$	$0.97^{+0.03}_{-0.52}$
$\sin(2\beta_{\rm eff})(B^0 \to [K_S^0 \pi^+ \pi^-]_{D^{(*)}} h^0)$	0.80 ± 0.16
$ \lambda (B^0 \to [K_S^0 \pi^+ \pi^-]_{D(*)} h^0)$	1.01 ± 0.08
$ \sin(2\beta+\gamma) $	>0.40, CL $= 90%$
$2 \beta + \gamma$	$(83\pm60)^{\circ}$
$x_{+}(B^{0} \rightarrow DK^{*0})$	0.04 ± 0.17
$\times_{-}(B^0 \to DK^{*0})$	-0.16 ± 0.14
$y_{-}(B^0 \rightarrow DK^{*0})$	$0.20\pm0.25\;(S=1.2)$
$A_{CP}(B \rightarrow K^*(892)\gamma)$	-0.003 ± 0.011
$A_{CP}(extit{B} ightarrow extit{s}\gamma)$	0.015 ± 0.011
$A_{CP}(B \to (s+d)\gamma)$	0.010 ± 0.031
$A_{CP}(B \rightarrow X_{s}\ell^{+}\ell^{-})$	0.04 ± 0.11
$A_{CP}(B \rightarrow K^* e^+ e^-)$	-0.18 ± 0.15
$A_{CP}(B \rightarrow K^* \mu^+ \mu^-)$	-0.03 ± 0.13
$A_{CP}(B \to K^* \ell^+ \ell^-)$	-0.04 ± 0.07
$A_{CP}(extbf{B} ightarrow \eta$ anything)	$-0.13^{+0.04}_{-0.05}$

$\Delta A_{CP}(X_s \gamma) = A_{CP}(B^{\pm} \rightarrow X_s \gamma) - A_{CP}(B^0 \rightarrow X_s \gamma)$	0.041 ± 0.023
$X_{s}\gamma$)	0.011 ± 0.025
$\overline{A}_{CP}(B \to X_{s} \gamma) = (A_{CP}(B^{+} \to X_{s} \gamma) + A_{CP}(B^{0} \to X_{s} \gamma))/2$	0.009 ± 0.012
$\overline{A}_{CP}(B \to K^* \gamma) = (A_{CP}(B^+ \to K^{*+} \gamma) + A_{CP}(B^0 \to K^{*0} \gamma))/2$	-0.001 ± 0.014
$Re(\epsilon_{B_s^0}) \ / \ (1 + \epsilon_{B_s^0} ^2)$	$(-0.15 \pm 0.70) \times 10^{-3}$
$S_{KK}(B_s^0 \rightarrow K^+K^-)$	$0.14 \pm 0.05 \; (S=1.3)$
$\delta_B(B_s^0 \to D_s^{\pm} K^{\mp} \pi^{\pm} \pi^{\mp})$	$(-6^{+10}_{-13})^{\circ}$
CP Violation phase $\beta_{\mathcal{S}}$	$(2.5 \pm 1.0) imes 10^{-2} \; rad$
$A_{CP}^L(B_s o J/\psi \overline{K}^*(892)^0)$	-0.05 ± 0.06
$A_{CP}^{\parallel}(B_{s} \rightarrow J/\psi \overline{K}^{*}(892)^{0})$	0.17 ± 0.15
$A_{CP}^{\perp}(B_s \rightarrow J/\psi \overline{K}^*(892)^0)$	-0.05 ± 0.10
$A_{CP}(B_s^0 \to [K^+ K^-]_D \overline{K}^*(892)^0)$	-0.04 ± 0.07
$A_{CP}(B_s^0 \to [\pi^+ K^-]_D K^*(892)^0)$	-0.01 ± 0.04
$A_{CP}(B_s^0 \to [\pi^+\pi^-]_D K^*(892)^0)$	0.06 ± 0.13
$S(B_s^0 o \phi \gamma)$	0.43 ± 0.32
$C(B_s^0 \to \phi \gamma)$	0.11 ± 0.31
$\Gamma(\eta_c(1S) \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$	$<1.1 \times 10^{-4}$, CL = 90%
$\Gamma(\eta_{c}(1S) ightarrow \pi^{0}\pi^{0})/\Gamma_{total}$	$<$ 4 \times 10 $^{-5}$, CL $=$ 90%
$\Gamma(\eta_{c}(1S) ightarrow K^{+}K^{-})/\Gamma_{total}$	$<$ 6 \times 10 $^{-4}$, CL $=$ 90%
$\Gamma(\eta_c(1S) ightarrow \ \kappa_S^0 \kappa_S^0) / \Gamma_{total}$	$<3.1 \times 10^{-4}, CL = 90\%$
n electric dipole moment	$< 0.18 \times 10^{-25} \ e \text{cm}, \ \text{CL} = 90\%$
$(\alpha_{-} + \alpha_{+})/(\alpha_{-} - \alpha_{+}) \text{ in } \Lambda \to p\pi^{-}, \overline{\Lambda} \to \overline{p}\pi^{+}$	-0.002 ± 0.004
$\frac{[\alpha(\Xi^{-})\alpha_{-}(\Lambda) - \alpha(\overline{\Xi}^{+})\alpha_{+}(\overline{\Lambda})]}{[\alpha(\Xi^{-})\alpha_{-}(\Lambda) + \alpha(\overline{\Xi}^{+})\alpha_{+}(\overline{\Lambda})]}$	$(0 \pm 7) \times 10^{-4}$
$(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$ in $\Omega^- \to \Lambda K^-$, $\overline{\Omega}{}^+ \to \overline{\Lambda} K^+$	-0.02 ± 0.13
$(\alpha + \overline{\alpha})/(\alpha - \overline{\alpha})$ in $\Lambda_c^+ \to \Lambda \pi^+$, $\overline{\Lambda}_c^- \to \overline{\Lambda} \pi^-$	-0.07 ± 0.31
$(\alpha + \overline{lpha})/(\alpha - \overline{lpha}) \text{ in } \Lambda_c^+ o \Lambda e^+ u_e, \overline{\Lambda}_c^- o \overline{\Lambda} e^- \overline{ u}_e$	0.00 ± 0.04
$A_{CP}(\Lambda_b o p\pi^-)$	$-0.025\pm0.029\;(S=1.2)$
$A_{CP}(\Lambda_b \rightarrow pK^-)$	-0.025 ± 0.022
$A_{CP}(\Lambda_b \rightarrow D_P K^-)$	0.12 ± 0.09
$\Delta A_{CP}(pK^-/\pi^-)$	0.014 ± 0.024
$A_{CP}(\Lambda_b \to p\overline{K}^0\pi^-)$	0.22 ± 0.13
$\Delta A_{CP}(J/\psi p \pi^-/K^-)$	$(5.7 \pm 2.7) \times 10^{-2}$
$A_{CP}(\Lambda_b \to \Lambda K^+ \pi^-)$	-0.53 ± 0.25
$A_{CP}(\Lambda_b \to \Lambda K^+ K^-)$	-0.28 ± 0.12
$\Delta A_{CP}(\Lambda_b^0 \to p K^- \mu^+ \mu^-)$	$(-4 \pm 5) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \to p\pi^-\pi^+\pi^-)$	$(1.1 \pm 2.6) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 o (p\pi^-\pi^+\pi^-)_{LBM})$	$(4 \pm 4) \times 10^{-2}$

$\Delta A_{CP}(\Lambda_h^0 o pa_1(1260)^-)$	$(-1 \pm 4) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^{0} \to N(1520)^0 \rho(770)^0)$	$(2 \pm 5) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^{0} \rightarrow \Delta(1232)^{++}\pi^{-}\pi^{-})$	$(0.1 \pm 3.3) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \to p K^- \pi^+ \pi^-)$	$(3.2 \pm 1.3) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 o (ho K^- \pi^+ \pi^-)_{LBM})$	$(3.5 \pm 1.6) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \to N(1520)^0 K^*(892)^0)$	$(5.5 \pm 2.5) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^{0} \rightarrow \Lambda(1520) \rho(770)^{0})$	$(1 \pm 6) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \rightarrow \Delta(1232)^{++} K^- \pi^-)$	$(4.4 \pm 2.7) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \rightarrow p K_1(1410)^-)$	$(5 \pm 4) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 o p K^- K^+ \pi^-)$	$(-7 \pm 5) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \rightarrow pK^-K^+K^-)$	$(0.2 \pm 1.9) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \rightarrow \Lambda(1520)\phi(1020))$	$(4 \pm 6) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 \rightarrow (pK^-)_{highmass} \phi(1020))$	$(-0.7 \pm 3.4) \times 10^{-2}$
$\Delta A_{CP}(\Lambda_b^0 o (ho K^- K^+ K^-)_{LBM})$	$(2.7 \pm 2.4) \times 10^{-2}$
$A_c(\Lambda)$	-0.22 ± 0.13
$A_S(\Lambda)$	0.13 ± 0.13
$A_c(\phi)$	-0.01 ± 0.12
$A_s(\phi)$	-0.07 ± 0.12
$a_{CP}(\Lambda^{0}_{b} \to p\pi^{-}\pi^{+}\pi^{-})$	$(-0.7 \pm 0.7)\%$
$a_{CP}(\Lambda_{b}^{0} \rightarrow pK^{-}\pi^{+}\pi^{-})$	$(-0.8 \pm 0.9)\%$
$a_{CP}(\Lambda^0_{\ b} \to \ pK^-K^+\pi^-)$	$(-1\pm5)\%$
$a_{CP}(\Lambda_b^0 o pK^-K^+K^-)$	$(1.1 \pm 1.5)\%$
$a_{CP}(\Lambda^{0}_{b} o pK^{-}\mu^{+}\mu^{-})$	$(1\pm5)\%$

CP VIOLATION OBSERVED

$Re(\epsilon)$		$(1.596 \pm 0.013) \times 10^{-3}$
charge asymmetry in $\kappa^0_{\ell 3}$ decays		
$A_L=$ weighted average of $A_L(\mu)$ and μ	$A_L(e)$	$(0.332 \pm 0.006)\%$
$A_L(\mu) = [\Gamma(\pi^- \mu^+ \nu_\mu) - \Gamma(\pi^+ \mu^- \overline{\nu}_\mu)]$	$_{\iota})]/sum$	$(0.304 \pm 0.025)\%$
$A_L(e) = [\Gamma(\pi^- e^+ \nu_e) - \Gamma(\pi^+ e^- \overline{\nu}_e)]$)]/sum	$(0.334 \pm 0.007)\%$
parameters for $K_I^0 ightarrow 2\pi$ decay		
$ \eta_{00} = A(\kappa_I^0 o 2\pi^0) /$		$(2.220 \pm 0.011) \times 10^{-3} \text{ (S} = 1.8)$
$A(\kappa_S^0 \stackrel{-}{ o} 2\pi^0) $		
$ \eta_{+-} = A(K_L^0 \to \pi^+\pi^-) / A(K_S^0) $	\rightarrow	$(2.232 \pm 0.011) \times 10^{-3} \text{ (S} = 1.8)$
$\pi^+\pi^-) $		
$ \epsilon = (2 \eta_{+-} + \eta_{00})/3$		$(2.228 \pm 0.011) \times 10^{-3} \text{ (S} = 1.8)$
$ \eta_{00}/\eta_{+-} $	[<i>i</i>]	$0.9950\pm0.0007\;(S=1.6)$
$Re(\epsilon'/\epsilon) = (1-ig \eta_{00}/\eta_{+-}ig)/3$	[<i>i</i>]	$(1.66 \pm 0.23) \times 10^{-3} \text{ (S} = 1.6)$
https://pdg.lbl.gov	Page 17	Created: 5/31/2023 09:09

Assuming CPT $(43.51 \pm 0.05)^{\circ} (S = 1.2)$ ϕ_{+-} , phase of η_{+-} $(43.52 \pm 0.05)^{\circ} (S = 1.3)$ ϕ_{00} , phase of η_{00} $(43.52 \pm 0.05)^{\circ} (S = 1.2)$ $\phi_{\epsilon} = (2\phi_{+-} + \phi_{00})/3$ Not assuming CPT $(43.4 \pm 0.5)^{\circ} (S = 1.2)$ ϕ_{\perp} , phase of η_{\perp} $(43.7 \pm 0.6)^{\circ} (S = 1.2)$ ϕ_{00} , phase of η_{00} $\phi_{\epsilon} = (2\phi_{+-} + \phi_{00})/3$ $(43.5 \pm 0.5)^{\circ} (S = 1.3)$ *CP* asymmetry *A* in $K_I^0 \rightarrow \pi^+\pi^-e^+e^ (13.7 \pm 1.5)\%$ β_{CP} from $K_I^0 \rightarrow e^+e^-e^+e^ -0.19\,\pm\,0.07$ γ_{CP} from $K_I^0 \rightarrow e^+e^-e^+e^ 0.01 \pm 0.11 \ (S = 1.6)$ parameters for $K_I^0 ightarrow \pi^+\pi^-\gamma$ decay $|\eta_{+-\gamma}| = |A(K_I^0 \rightarrow \pi^+\pi^-\gamma, CP)|$ $(2.35 \pm 0.07) \times 10^{-3}$ violating)/ $\bar{A}(K_S^0 \rightarrow \pi^+\pi^-\gamma)$ | $(44 \pm 4)^{\circ}$ $\phi_{+-\gamma}=$ phase of $\eta_{+-\gamma}$ $\Gamma(K_L^0 ightarrow \pi^+\pi^-)/\Gamma_{total}$ [j] $(1.967 \pm 0.010) \times 10^{-3} (S = 1.5)$ $\Gamma(K_I^0 \rightarrow \pi^0 \pi^0)/\Gamma_{\text{total}}$ $(8.64 \pm 0.06) \times 10^{-4} (S = 1.8)$ $\Delta A_{CP}^{D^0} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$ $(-0.154 \pm 0.029)\%$ $A_{CP}(B^+ \to [K^- \pi^+]_{\overline{D}} K^*(892)^+)$ -0.75 ± 0.16 $A_{CP}(B^+ \rightarrow D_{CP(+1)}K^+)$ $0.132 \pm 0.015 \; (S = 1.8)$ $A_{ADS}(B^+ \rightarrow DK^+)$ -0.451 ± 0.026 $A_{CP}(B^+ \rightarrow \eta K^+)$ -0.37 ± 0.08 $A_{CP}(B^+ \rightarrow K^+\pi^-\pi^+)$ 0.027 ± 0.008 $-0.68^{+0.19}_{-0.17}$ $A_{CP}(B^+ \to f_2(1270)K^+)$ $A_{CP}(B^+ \rightarrow \rho^0 K^+)$ 0.37 ± 0.10 $A_{CP}(B^+ \rightarrow K^+K^-\pi^+)$ -0.122 ± 0.021 $A_{CP}(B^+ \rightarrow \pi^+ (K^+ K^-)_{S=wave})$ -0.66 ± 0.04 $A_{CP}(B^+ \rightarrow K^+K^-K^+)$ -0.033 ± 0.008 $A_{CP}(B^+ \to \pi^+\pi^-\pi^+)$ 0.057 ± 0.013 $A_{CP}(B^+ \to f_2(1270)\pi^+)$ $0.40\,\pm\,0.06$ $A_{CP}(B^+ \to f_0(1370)\pi^+)$ 0.72 ± 0.22 $(65.9^{+3.3}_{-3.5})^{\circ}$ $r_R(B^+ \rightarrow D^0 K^+)$ 0.0994 ± 0.0026 $(127.7^{+3.6}_{-3.9})^{\circ}$ $\delta_B(B^+ \rightarrow D^0 K^+)$ $0.101^{+0.016}_{-0.034}$ $r_{B}(B^{+} \rightarrow D^{0}K^{*+})$ $\delta_B(B^+ \rightarrow D^0 K^{*+})$ $(48^{+59}_{-16})^{\circ}$ $r_{B}(B^{+} \rightarrow D^{*0}K^{+})$ $0.104 ^{+0.013}_{-0.014}$ $\delta_B(B^+ \rightarrow D^{*0}K^+)$ $A_{CP} (B^0 \rightarrow K^+\pi^-)$ -0.0834 ± 0.0032

$A_{CP}(B^0 \to \eta K^*(892)^0)$	0.19 ± 0.05
$A_{CP}(B^0 \to K^*(892)^+\pi^-)$	-0.27 ± 0.04
$S_{D^*(2010)^-D^+}(B^0 \to D^*(2010)^-D^+)$	-0.83 ± 0.09
$S_{D^*(2010)^+D^-}(B^0 \to D^*(2010)^+D^-)$	-0.80 ± 0.09
$S_{D^{*+}D^{*-}}(B^0 \to D^{*+}D^{*-})$	$-0.59 \pm 0.14 \; (S=1.8)$
$S_{+} (B^{0} \rightarrow D^{*+}D^{*-})$	-0.73 ± 0.09
$S_{D^+D^-}(B^0 \to D^+D^-)$	$-0.76^{+0.15}_{-0.13} (S = 1.2)$
$S_{J/\psi(1S)\pi^0} \; (B^0 o \; J/\psi(1S)\pi^0)$	$-0.88 \pm 0.32 \; (S=2.2)$
$S(B^0 o J/\psi(1S)\rho^0)$	$-0.66^{+0.16}_{-0.12}$
$S_{K^0\pi^0} (B^0 \to K^0\pi^0)$	0.58 ± 0.17
$S_{\eta'K^0}(B^0 \rightarrow \eta'K^0)$	0.63 ± 0.06
$S_{K^+K^-K^0_S}(B^0 o K^+K^-K^0_S ext{ nonresonant})$	-0.66 ± 0.11
$S_{K^+K^-K^0_S}(B^0 \to K^+K^-K^0_S \text{ inclusive})$	-0.65 ± 0.12
$C_{\pi\pi} (B^0 \rightarrow \pi^+\pi^-)$	-0.314 ± 0.030
$S_{\pi\pi} (B^0 \rightarrow \pi^+\pi^-)$	-0.670 ± 0.030
$\Delta C_{ ho\pi}~(B^0 ightarrow~ ho^+\pi^-)$	0.27 ± 0.06
$S_{\eta_c K_S^0} (B^0 \rightarrow \eta_c K_S^0)$	0.93 ± 0.17
$\sin(2\beta) \ (B^0 \rightarrow J/\psi K_S^0)$	0.699 ± 0.017
$S_{J/\psi(nS)K^0} \; (B^0 o J/\psi(nS)K^0)$	0.701 ± 0.017
$S_{\chi_{c1}\kappa_S^0}(B^0 \to \chi_{c1}\kappa_S^0)$	0.63 ± 0.10
$\sin(2\beta_{\rm eff})(B^0 \to K^+K^-K^0_{S})$	$0.77^{+0.13}_{-0.12}$
α	$(85.2^{+4.8}_{-4.3})^{\circ}$
$r_{B^0}(B^0 o DK^{*0})$	$0.257 ^{+0.021}_{-0.023}$
$\delta_{B^0}(B^0 \to DK^{*0})$	$(194.1^{+9.6}_{-8.8})^{\circ}$
$C_{KK}(B_s^0 \to K^+K^-)$	0.162 ± 0.035
$r_B(B^0_s o D^{\mp}_sK^\pm)$	$0.37^{igoplus 0.10}_{-0.09}$
$r_B(B^0_S o D^\mp_S K^\pm \pi^\pm \pi^\mp)$	0.47 ± 0.08
$\delta_B(B_s^0 o D_s^{\pm} K^{\mp})$	$(358\pm14)^\circ$
$A_{CP}(B_s \rightarrow \pi^+ K^-)$	0.224 ± 0.012

CPT INVARIANCE

$(m_{W^+}^{}-m_{W^-}^{})\ /\ m_{\sf average}^{}$	$(-3.7 \pm 3.5) \times 10^{-4}$
$(m_{e^+}^{}-m_{e^-}^{})\ /\ m_{ m average}$	$< 8 \times 10^{-9}$, CL = 90%
$ q_{e^{+}} + q_{e^{-}} /e$	$< 4 \times 10^{-8}$
$(g_{o^+} - g_{o^-}) / g_{average}$	$(-0.5 \pm 2.1) \times 10^{-12}$

https://pdg.lbl.gov

Page 19

$(au_{\mu^+} - au_{\mu^-}) / au_{ m average}$		$(2 \pm 8) \times 10^{-5}$
$(g_{\mu^+}^{}-g_{\mu^-}^{}) / g_{average}$		$(-0.11 \pm 0.12) \times 10^{-8}$
$(m_{ au^+} - m_{ au^-})/m_{ ext{average}}$		$< 2.8 \times 10^{-4}$, CL = 90%
$\langle \Delta m_{21}^2 - \Delta \overline{m}_{21}^2 \rangle$ in neutrino mixing		$<1.1 \times 10^{-4} \text{ eV}^2$, $CL = 99.7\%$
$\langle \Delta m_{32}^2 - \Delta \overline{m}_{32}^2 \rangle$ in neutrino mixing		$(-0.12\pm0.25) imes 10^{-3}~\text{eV}^2$
$m_t - m_{\overline{t}}$		$-0.15 \pm 0.20~{ m GeV}~({ m S}=1.1)$
$(m_{\pi^+} - m_{\pi^-}) / m_{average}$		$(2 \pm 5) \times 10^{-4}$
$(\tau_{\pi^+} - \tau_{\pi^-}) / \tau_{\text{average}}$		$(6 \pm 7) \times 10^{-4}$
$(m_{K^+} - m_{K^-}) / m_{\text{average}}$		$(-0.6 \pm 1.8) \times 10^{-4}$
$(\tau_{K^+} - \tau_{K^-}) / \tau_{\text{average}}$		$(0.10 \pm 0.09)\% (S = 1.2)$
$\kappa^{\pm} ightarrow \mu^{\pm} u_{\mu}$ rate difference/sum		$(-0.27 \pm 0.21)\%$
$\kappa^{\pm} ightarrow \pi^{\pm} \pi^{0}$ rate difference/sum	[<i>k</i>]	$(0.4 \pm 0.6)\%$
δ in $K^0 - \overline{K}^0$ mixing		
real part of δ		$(2.5\pm2.3)\times10^{-4}$
imaginary part of δ		$(-1.5 \pm 1.6) \times 10^{-5}$
Re(y), K_{e3} parameter		$(0.4 \pm 2.5) \times 10^{-3}$
$Re(x_{-})$, K_{e3} parameter		$(-2.9 \pm 2.0) \times 10^{-3}$
$\left m_{K^0} - m_{\overline{K}^0} \right / m_{\text{average}}$	[/]	$< 6 \times 10^{-19}$, $CL = 90\%$
$(\Gamma_{K^0} - \Gamma_{\overline{K}^0})/m_{\text{average}}$		$(8 \pm 8) \times 10^{-18}$
phase difference ϕ_{00} – ϕ_{+-}		$(0.34 \pm 0.32)^{\circ}$
$Re(\frac{2}{3}\eta_{+-} + \frac{1}{3}\eta_{00}) - \frac{A_L}{2}$		$(-3 \pm 35) \times 10^{-6}$
$A_{CPT}(D^0 \rightarrow K^-\pi^+)$		0.008 ± 0.008
$\Delta S_{CPT}^{+} (S_{\ell^{+}, \mathcal{K}_{S}^{0}}^{-} - S_{\ell^{+}, \mathcal{K}_{S}^{0}}^{+})$		0.16 ± 0.23
$\Delta S_{CPT}^{-} (S_{\ell^{+}, \mathcal{K}_{S}^{0}}^{+} - S_{\ell^{+}, \mathcal{K}_{S}^{0}}^{-})$		-0.03 ± 0.14
$\Delta C_{CPT}^{+} (C_{\ell^{+}, K_{S}^{0}}^{-} - C_{\ell^{+}, K_{S}^{0}}^{+})$		0.14 ± 0.17
$\Delta C_{CPT}^{-} (C_{\ell^{+}, K_{S}^{0}}^{+} - C_{\ell^{+}, K_{S}^{0}}^{-})$		0.03 ± 0.14
$ m_p - m_{\overline{p}} /m_p$	[<i>n</i>]	$<$ 7 $ imes$ 10 $^{-10}$, CL $=$ 90%
$(\frac{\dot{q}_{\overline{p}}}{m_{\overline{p}}} -\frac{\dot{q}_{p}}{m_{p}})/\frac{\dot{q}_{p}}{m_{p}}$		$(0.1 \pm 6.9) \times 10^{-11}$
$ q_{p}^{T}+q_{\overline{p}}^{T} /e$	[<i>n</i>]	$< 7 \times 10^{-10}$, CL = 90%
$(\mu_{D} + \mu_{\overline{D}}) / \mu_{D}$		$(0.002 \pm 0.004) \times 10^{-6}$
$(m_n - m_{\overline{n}})/m_n$		$(9 \pm 6) \times 10^{-5}$
$(m_{\Lambda}-m_{\overline{\Lambda}})\ /\ m_{\Lambda}$		$(-0.1 \pm 1.1) \times 10^{-5} \text{ (S} = 1.6)$
$(au_{\Lambda} - au_{\overline{\Lambda}}) / au_{\Lambda}$		-0.001 ± 0.009
$(\tau_{\Sigma^+} - \tau_{\overline{\Sigma}^-}) / \tau_{\Sigma^+}$		-0.0006 ± 0.0012
$(\mu_{\Sigma^+} + \mu_{\overline{\Sigma}^-}) / \mu_{\Sigma^+}$		0.014 ± 0.015
$(m_{=-} - m_{=+}) / m_{=-}$		$(-3 \pm 9) \times 10^{-5}$

$$\begin{array}{lll} \left(\tau_{\Xi^{-}} - \tau_{\overline{\Xi}^{+}}\right) / \tau_{\Xi^{-}} & -0.01 \pm 0.07 \\ \left(\mu_{\Xi^{-}} + \mu_{\overline{\Xi}^{+}}\right) / \left|\mu_{\Xi^{-}}\right| & +0.01 \pm 0.05 \\ \left(m_{\Omega^{-}} - m_{\overline{\Omega}^{+}}\right) / m_{\Omega^{-}} & \left(-1 \pm 8\right) \times 10^{-5} \\ \left(\tau_{\Omega^{-}} - \tau_{\overline{\Omega}^{+}}\right) / \tau_{\Omega^{-}} & 0.00 \pm 0.05 \end{array}$$

TESTS OF NUMBER CONSERVATION LAWS

LEPTON FAMILY NUMBER

Lepton family number conservation means separate conservation of each of $\it L_e$, $\it L_{\mu}$, $\it L_{ au}$.

$\Gamma(Z ightarrow e^{\pm}\mu^{\mp})/\Gamma_{\sf total}$	[0]	$< 7.5 \times 10^{-7}$, CL = 95%
$\Gamma(Z ightarrow~e^{\pm} au^{\mp})/\Gamma_{ ext{total}}$	[0]	$<$ 5.0 \times 10 ⁻⁶ , CL = 95%
$\Gamma(Z o \mu^{\pm} \tau^{\mp})/\Gamma_{total}$	[0]	$< 6.5 \times 10^{-6}$, CL = 95%
$\Gamma(H o e \mu)/\Gamma_{total}$		$< 6.1 \times 10^{-5}$, CL = 95%
$\Gamma(H \rightarrow e \tau)/\Gamma_{\text{total}}$		$< 2.2 \times 10^{-3}$, CL = 95%
$\Gamma(H \to \mu \tau)/\Gamma_{\text{total}}$		$<1.5 \times 10^{-3}$, CL = 95%
$\sigma(e^+e^- ightarrow e^{\pm} au^{\mp}) / \sigma(e^+e^- ightarrow \mu^+\mu^-)$		$< 8.9 \times 10^{-6}, CL = 95\%$
$\sigma(e^+e^- ightarrow \mu^{\pm} au^{\mp}) / \sigma(e^+e^- ightarrow \mu^+\mu^-)$		$<$ 4.0 \times 10 ⁻⁶ , CL = 95%
limit on $\mu^- ightarrow {\it e}^-$ conversion		
$\sigma(\mu^{-32}S \rightarrow e^{-32}S)$ /		$< 7 \times 10^{-11}$, CL = 90%
$\sigma(\mu^{-32}S o \ u_{\mu}^{32}P^*)$		
$\sigma(\mu^-{\sf Ti} ightarrowe^-{\sf Ti})$ /		$<$ 4.3 \times 10 ⁻¹² , CL = 90%
$\sigma(\mu^-{\sf Ti} ightarrow $ capture)		
$\sigma(\mu^-{\sf Pb} o e^-{\sf Pb}) /$		$<4.6 \times 10^{-11}, CL = 90\%$
$\sigma(\mu^-Pb\tocapture)$		10
$\sigma(\mu^- Au \rightarrow e^- Au) /$		$< 7 \times 10^{-13}$, CL = 90%
$\sigma(\mu^- \operatorname{Au} o \operatorname{capture})$		
limit on muonium \rightarrow antimuonium conversion $R_g =$		< 0.0030, CL = 90%
G_{C} / G_{F}		2
$\Gamma(\mu^- o e^- u_e \overline{ u}_\mu) / \Gamma_{total}$	[<i>p</i>]	$<1.2 \times 10^{-2}$, CL = 90%
$\Gamma(\mu^- o e^- \gamma)/\Gamma_{\text{total}}$		$<4.2 \times 10^{-13}$, CL = 90%
$\Gamma(\mu^- ightarrow e^- e^+ e^-)/\Gamma_{ ext{total}}$		$<1.0 \times 10^{-12}$, CL = 90%
$\Gamma(\mu^- ightarrow e^- 2\gamma)/\Gamma_{\sf total}$		$< 7.2 \times 10^{-11}$, CL = 90%
$\Gamma(\tau^- o e^- \gamma)/\Gamma_{total}$		$< 3.3 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \gamma)/\Gamma_{\text{total}}$		$< 4.2 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^- \pi^0)/\Gamma_{ m total}$		$< 8.0 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \pi^0)/\Gamma_{\text{total}}$		$<1.1 \times 10^{-7}$, CL = 90%
$\Gamma(\tau^- \to e^- K_S^0)/\Gamma_{\text{total}}$		$< 2.6 \times 10^{-8}, CL = 90\%$
S' total		•

$\Gamma(au^- ightarrow \ \mu^- \kappa_S^0)/\Gamma_{total}$	$< 2.3 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- ightarrow e^- \eta)/\Gamma_{total}$	$<9.2 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o \mu^- \eta)/\Gamma_{total}$	$<6.5 \times 10^{-8}, CL = 90\%$
$\Gamma(au^- o e^- ho^0)/\Gamma_{ ext{total}}$	$< 1.8 \times 10^{-8}, CL = 90\%$
$\Gamma(\tau^- o \mu^- ho^0)/\Gamma_{ ext{total}}$	$<1.2 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to e^- \omega)/\Gamma_{\text{total}}$	$< 4.8 \times 10^{-8}, CL = 90\%$
$\Gamma(\tau^- \to \mu^- \omega)/\Gamma_{\text{total}}$	$< 4.7 \times 10^{-8}, CL = 90\%$
$\Gamma(\tau^- \to e^- K^*(892)^0)/\Gamma_{\text{total}}$	$<3.2 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- K^*(892)^0)/\Gamma_{\text{total}}$	$<5.9 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to e^- \overline{K}^*(892)^0)/\Gamma_{\text{total}}$	$<3.4 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \overline{K}^*(892)^0)/\Gamma_{\text{total}}$	$<7.0 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to e^- \eta'(958))/\Gamma_{\text{total}}$	$<1.6 \times 10^{-7}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \eta'(958))/\Gamma_{\text{total}}$	$<1.3 \times 10^{-7}$, CL = 90%
$\Gamma(\tau^- \rightarrow e^- f_0(980) \rightarrow e^- \pi^+ \pi^-)/\Gamma_{\text{total}}$	$<3.2 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- f_0(980) \to \mu^- \pi^+ \pi^-)/\Gamma_{\text{total}}$	$<3.4 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to e^- \phi)/\Gamma_{\text{total}}$	$<3.1 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \phi)/\Gamma_{\text{total}}$	$< 8.4 \times 10^{-8}, CL = 90\%$
$\Gamma(\tau^- \rightarrow e^- e^+ e^-)/\Gamma_{\text{total}}$	$< 2.7 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to e^- \mu^+ \mu^-)/\Gamma_{\text{total}}$	$< 2.7 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to e^+ \mu^- \mu^-)/\Gamma_{\text{total}}$	$<1.7 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o \mu^- e^+ e^-)/\Gamma_{\text{total}}$	$<1.8 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^+ e^- e^-)/\Gamma_{\text{total}}$	$< 1.5 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- \mu^+ \mu^-)/\Gamma_{\text{total}}$	$< 2.1 \times 10^{-8}$, $CL = 90\%$
$\Gamma(\tau^- o e^- \pi^+ \pi^-)/\Gamma_{\text{total}}$	$< 2.3 \times 10^{-8}$, $CL = 90\%$
$\Gamma(\tau^- o \mu^- \pi^+ \pi^-)/\Gamma_{\text{total}}$	$< 2.1 \times 10^{-8}$, $CL = 90\%$
$\Gamma(au^- ightarrow e^- \pi^+ K^-)/\Gamma_{ ext{total}}$	$< 3.7 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^- \pi^- K^+)/\Gamma_{ ext{total}}$	$< 3.1 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \ e^- \kappa_S^0 \kappa_S^0)/\Gamma_{ ext{total}}$	$< 7.1 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- ightarrow e^- K^+ K^-)/\Gamma_{\text{total}}$	$< 3.4 \times 10^{-8}$, $CL = 90\%$
$\Gamma(au^- o \mu^- \pi^+ K^-)/\Gamma_{total}$	$< 8.6 \times 10^{-8}$, $CL = 90\%$
$\Gamma(\tau^- o \mu^- \pi^- K^+)/\Gamma_{\text{total}}$	$<4.5 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \ \mu^- K_S^0 K_S^0) / \Gamma_{total}$	$< 8.0 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^- K^+ K^-)/\Gamma_{\text{total}}$	$< 4.4 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^- \pi^0 \pi^0) / \Gamma_{ ext{total}}$	$< 6.5 \times 10^{-6}$, $CL = 90\%$
$\Gamma(au^- ightarrow \ \mu^- \pi^0 \pi^0)/\Gamma_{total}$	$< 1.4 \times 10^{-5}$, $CL = 90\%$
$\Gamma(au^- ightarrow e^- \eta \eta)/\Gamma_{ ext{total}}$	$< 3.5 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow \ \mu^- \eta \eta) / \Gamma_{total}$	$< 6.0 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow e^- \pi^0 \eta) / \Gamma_{ ext{total}}$	$< 2.4 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow \ \mu^- \pi^0 \eta) / \Gamma_{ ext{total}}$	$< 2.2 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow e^- ext{light boson})/\Gamma_{ ext{total}}$	$< 2.7 \times 10^{-3}$, CL = 95%
$\Gamma(au^- ightarrow \ \mu^- ext{light boson})/\Gamma_{ ext{total}}$	$<5 \times 10^{-3}$, CL = 95%

LEPTON FAMILY NUMBER VIOLATION IN NEUTRINOS

LEPTON FAMILY NUMBER VIOLATION IN NEU
$\sin^2(\theta_{12})$
$\Delta_{21}^{m_{21}^2}$
$sin^2(heta_{23})$ (Normal order)
Δm_{32}^2 (Inverted order)
Δm_{32}^{2} (Normal order)
$\sin^2(\theta_{13})$
$\Gamma(t ightarrow e^{\pm} \mu^{\mp} c) / \Gamma_{ ext{total}}$
$\Gamma(t ightarrow e^{\pm} \mu^{\mp} u) / \Gamma_{ ext{total}}$
$\Gamma(\pi^+ o \mu^+ \nu_e)/\Gamma_{total}$
$\Gamma(\pi^+ o \mu^- e^+ e^+ \nu)/\Gamma_{\text{total}}$
$\Gamma(\pi^0 ightarrow \ \mu^+ { m e}^-)/\Gamma_{ m total}$
$\Gamma(\pi^0 o \mu^- e^+)/\Gamma_{\text{total}}$
$\Gamma(\pi^0 ightarrow \ \mu^+ \mathrm{e}^- + \ \mu^- \mathrm{e}^+) / \Gamma_{total}$
$\Gamma(\eta ightarrow \mu^+ e^- + \mu^- e^+)/\Gamma_{total}$
$\Gamma(\eta'(958) \rightarrow e\mu)/\Gamma_{total}$
$\Gamma(\phi(1020) ightarrow e^{\pm} \mu^{\mp})/\Gamma_{total}$
$\Gamma(K^+ o \mu^- \nu e^+ e^+)/\Gamma_{\text{total}}$
$\Gamma(K^+ \to \mu^+ \nu_e)/\Gamma_{\text{total}}$
$\Gamma(K^+ \rightarrow \pi^+ \mu^+ e^-)/\Gamma_{\text{total}}$
$\Gamma(K^+ \to \pi^+ \mu^- e^+)/\Gamma_{\text{total}}$
$\Gamma(\kappa_L^0 \to e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$
$\Gamma(K_L^0 o e^{\pm} e^{\pm} \mu^{\mp} \mu^{\mp})/\Gamma_{total}$
$\Gamma(K_L^{0} ightarrow \pi^0 \mu^{\pm} e^{\mp})/\Gamma_{\text{total}}$
$\Gamma(\kappa_L^{ar{0}} ightarrow~\pi^0\pi^0\mu^\pme^\mp)/\Gamma_{ ext{total}}$
$\Gamma(D^{+} \rightarrow \pi^{+} e^{+} \mu^{-})/\Gamma_{total}$
$\Gamma(D^+ o \pi^+ e^- \mu^+)/\Gamma_{\text{total}}$
$\Gamma(D^+ o K^+ e^+ \mu^-)/\Gamma_{\text{total}}$
$\Gamma(D^+ \to K^+ e^- \mu^+)/\Gamma_{\text{total}}$
$\Gamma(D^0 \to \mu^{\pm} e^{\mp})/\Gamma_{\text{total}}$
$\Gamma(D^0 \to \pi^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$
$\Gamma(D^0 \to \eta e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$
$\Gamma(D^0 \to \pi^+\pi^-e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$
$\Gamma(D^0 \to \rho^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$
$\Gamma(D^0 ightarrow \omega e^{\pm} \mu^{\mp})/\Gamma_{ ext{total}}$ $\Gamma(D^0 ightarrow K^- K^+ e^{\pm} \mu^{\mp})/\Gamma_{ ext{total}}$
$\Gamma(D^0 o K K^+ e^{\pm} \mu^{+})/\Gamma_{ ext{total}}$ $\Gamma(D^0 o \phi e^{\pm} \mu^{\mp})/\Gamma_{ ext{total}}$
$\Gamma(D^0 o \overline{K}^0 e^\pm \mu^\mp)/\Gamma_{ ext{total}}$
$\Gamma(D^0 o K^- e^\pm \mu^\mp)/\Gamma_{ ext{total}}$ $\Gamma(D^0 o K^- \pi^+ e^\pm \mu^\mp)/\Gamma_{ ext{total}}$
$\Gamma(D^0 \to \overline{K}^* \pi^+ e^{\pm} \mu^+)/\Gamma_{\text{total}}$ $\Gamma(D^0 \to \overline{K}^* (892)^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$
$\Gamma(D^+ \to \pi^+ e^+ \mu^-)/\Gamma_{\text{total}}$
$S = \frac{1}{2} $

$$0.307 \pm 0.013$$

 $(7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$
 $0.547^{+0.018}_{-0.024}$
 $(-2.519 \pm 0.033) \times 10^{-3} \text{ eV}^2$
 $(2.437 \pm 0.033) \times 10^{-3} \text{ eV}^2$
 $(2.20 \pm 0.07) \times 10^{-2}$
 $<8.9 \times 10^{-7}$
 $<7 \times 10^{-8}$
[q] $<8.0 \times 10^{-3}$, CL = 90%
 $<1.6 \times 10^{-6}$, CL = 90%
 $<3.8 \times 10^{-10}$, CL = 90%
 $<3.6 \times 10^{-10}$, CL = 90%
 $<4.7 \times 10^{-4}$, CL = 90%
 $<4.7 \times 10^{-4}$, CL = 90%
 $<2.1 \times 10^{-8}$, CL = 90%
 $<1.3 \times 10^{-11}$, CL = 90%
 $<1.3 \times 10^{-11}$, CL = 90%
 $<1.3 \times 10^{-11}$, CL = 90%
[o] $<4.7 \times 10^{-12}$, CL = 90%
[o] $<4.7 \times 10^{-12}$, CL = 90%
 $<1.7 \times 10^{-10}$, CL = 90%
 $<2.1 \times 10^{-7}$, CL = 90%
 $<2.1 \times 10^{-7}$, CL = 90%
 $<2.1 \times 10^{-7}$, CL = 90%
 $<1.0 \times 10^{-7}$, CL = 90%
 $<1.0 \times 10^{-7}$, CL = 90%
[o] $<1.3 \times 10^{-8}$, CL = 90%
[o] $<1.3 \times 10^{-8}$, CL = 90%
[o] $<1.3 \times 10^{-8}$, CL = 90%
[o] $<1.5 \times 10^{-8}$, CL = 90%
[o] $<1.71 \times 10^{-6}$, CL = 90%
[o] $<1.71 \times 10^{-6}$, CL = 90%
[o] $<1.00 \times 10^{-6}$, CL = 90%
[o] $<1.00 \times 10^{-6}$, CL = 90%
[o] $<1.74 \times 10^{-6}$, CL = 90%
[o] $<1.90 \times 10^{-6}$, CL = 90%
[o] $<1.90 \times 10^{-6}$, CL = 90%
[o] $<1.25 \times 10^{-6}$, CL = 90%
[o] $<1.25 \times 10^{-6}$, CL = 90%
[o] $<1.25 \times 10^{-6}$, CL = 90%
[o] $<1.00 \times 10^{-6}$, CL = 90%

$\Gamma(D_s^+ o \pi^+ e^- \mu^+)/\Gamma_{ ext{total}}$		$< 9.4 \times 10^{-7}$, CL = 90%
$\Gamma(D_s^+ \to K^+ e^+ \mu^-)/\Gamma_{\text{total}}$		$< 7.9 \times 10^{-7}, CL = 90\%$
$\Gamma(D_s^+ \to K^+ e^- \mu^+)/\Gamma_{\text{total}}$		$<5.6 \times 10^{-7}$, CL = 90%
$\Gamma(D_s \to K + e^{-\mu x})/\Gamma \text{ total}$		$<6.4 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ o \pi^+ e^+ \mu^-)/\Gamma_{ ext{total}}$ $\Gamma(B^+ o \pi^+ e^- \mu^+)/\Gamma_{ ext{total}}$		$<6.4 \times 10^{-3}$, CL = 90% $<6.4 \times 10^{-3}$, CL = 90%
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\Gamma(B^+ \to \pi^+ e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<1.7 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \to \pi^+ e^+ \tau^-)/\Gamma_{\text{total}}$		$<7.4 \times 10^{-5}$, CL = 90% $<2.0 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ o \pi^+ e^- au^+)/\Gamma_{ ext{total}}$ $\Gamma(B^+ o \pi^+ e^\pm au^\mp)/\Gamma_{ ext{total}}$		$<2.0 \times 10^{-5}$, CL = 90% $<7.5 \times 10^{-5}$, CL = 90%
$\frac{\Gamma(B^+ \rightarrow \pi^+ e^+ \tau^+)}{\Gamma(B^+ \rightarrow \pi^+ e^+ \tau^-)}$ total		
$\Gamma(B^+ \to \pi^+ \mu^+ \tau^-)/\Gamma_{\text{total}}$		$<6.2 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to \pi^+ \mu^- \tau^+)/\Gamma_{\text{total}}$		$<4.5 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to \pi^+ \mu^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$		$<7.2 \times 10^{-5}$, CL = 90% $<7.0 \times 10^{-9}$, CL = 90%
$\Gamma(B^+ \to K^+ e^+ \mu^-)/\Gamma_{\text{total}}$		$< 7.0 \times 10^{-3}$, CL = 90% $< 6.4 \times 10^{-9}$, CL = 90%
$\Gamma(B^+ \to K^+ e^- \mu^+)/\Gamma_{\text{total}}$		$< 6.4 \times 10^{-3}$, CL = 90% $< 9.1 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to K^+ e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<9.1 \times 10^{-5}$, CL = 90% $<4.3 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^+ e^+ \tau^-)/\Gamma_{\text{total}}$		_ '
$\Gamma(B^+ \to K^+ e^- \tau^+)/\Gamma_{\text{total}}$		$<1.5 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^+ e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$		$<3.0 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^+ \mu^+ \tau^-)/\Gamma_{\text{total}}$		$<4.5 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^+ \mu^- \tau^+)/\Gamma_{\text{total}}$		$<2.8 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^+ \mu^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$		$<4.8 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ \to K^*(892)^+ e^+ \mu^-)/\Gamma_{\text{total}}$		$<1.3 \times 10^{-6}$, CL = 90%
$\Gamma(B^+ \to K^*(892)^+ e^- \mu^+)/\Gamma_{\text{total}}$		$<9.9 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \to K^*(892)^+ e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	r 1	$<1.4 \times 10^{-6}$, CL = 90%
$\Gamma(B^0 \to e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[0]	
$\Gamma(B^0 \to \pi^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<1.4 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 \to K^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<3.8 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 \to K^*(892)^0 e^+ \mu^-)/\Gamma_{\text{total}}$		$<1.6 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 \to K^*(892)^0 e^- \mu^+)/\Gamma_{\text{total}}$		$<1.2 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 \to K^*(892)^0 e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<1.8 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 \to e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$	[0]	- ·
$\Gamma(B^0 \to \mu^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$	[0]	г
$\Gamma(B \to se^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$	[0]	
$\Gamma(B \to \pi e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<9.2 \times 10^{-8}$, CL = 90%
$\Gamma(B \to \rho e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<3.2 \times 10^{-6}$, CL = 90%
$\Gamma(B \to K e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$		$<3.8 \times 10^{-8}$, CL = 90%
$\Gamma(B \to K^*(892)e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$		$<5.1 \times 10^{-7}$, CL = 90%
$\Gamma(B_s^0 \to e^{\pm} \mu^{\mp})/\Gamma_{\text{total}}$	[0]	$<5.4 \times 10^{-9}$, CL = 90%
$\Gamma(B_s^0 o \mu^{\pm} au^{\mp})/\Gamma_{total}$		$<4.2 \times 10^{-5}$, CL = 95%
$\Gamma(J/\psi(1S) ightarrow e^{\pm} \mu^{\mp})/\Gamma_{total}$		$<1.6 \times 10^{-7}$, CL = 90%
$\Gamma(J/\psi(1S) ightarrow e^{\pm} au^{\mp})/\Gamma_{total}$		$< 7.5 \times 10^{-8}, CL = 90\%$

$\Gamma(J/\psi(1S) ightarrow \ \mu^{\pm} au^{\mp})/\Gamma_{\sf total}$	$<\!\!2.0\times10^{-6}$, CL $=90\%$
$\Gamma(\Upsilon(1S) ightarrow e^{\pm} \mu^{\mp})/\Gamma_{total}$	$< 3.9 \times 10^{-7}$, CL = 90%
$\Gamma(\Upsilon(1S) ightarrow \ \mu^{\pm} au^{\mp})/\Gamma_{\sf total}$	$< 2.7 \times 10^{-6}$, CL = 90%
$\Gamma(\Upsilon(1S) ightarrow e^{\pm} au^{\mp})/\Gamma_{total}$	$< 2.7 \times 10^{-6}$, CL = 90%
$\Gamma(\Upsilon(1S) ightarrow \gamma e^{\pm} \mu^{\mp})/\Gamma_{total}$	$<$ 4.2 \times 10 ⁻⁷ , CL = 90%
$\Gamma(\Upsilon(1S) o \gamma \mu^{\pm} \tau^{\mp})/\Gamma_{total}$	$<6.1 \times 10^{-6}$, CL = 90%
$\Gamma(\Upsilon(1S) ightarrow \gamma e^{\pm} \tau^{\mp})/\Gamma_{total}$	$<6.5 \times 10^{-6}$, CL = 90%
$\Gamma(\Upsilon(2S) ightarrow e^{\pm} au^{\mp})/\Gamma_{total}$	$< 3.2 \times 10^{-6}, CL = 90\%$
$\Gamma(\Upsilon(2S) \to \mu^{\pm} \tau^{\mp})/\Gamma_{total}$	$< 3.3 \times 10^{-6}, CL = 90\%$
$\Gamma(\Upsilon(3S) \rightarrow e^{\pm} \tau^{\mp})/\Gamma_{total}$	$<4.2 \times 10^{-6}$, CL = 90%
$\Gamma(\Upsilon(3S) \rightarrow e^{\pm} \mu^{\mp})/\Gamma_{total}$	$< 3.6 \times 10^{-7}$, CL = 90%
$\Gamma(\Upsilon(3S) \to \mu^{\pm} \tau^{\mp})/\Gamma_{total}$	$< 3.1 \times 10^{-6}, CL = 90\%$
$\Gamma(\Lambda_c^+ o pe^+\mu^-)/\Gamma_{\text{total}}$	$<9.9 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda_c^+ \to pe^-\mu^+)/\Gamma_{\text{total}}$	$< \! 1.9 \times 10^{-5} \text{, CL} = 90\%$

TOTAL LEPTON NUMBER

Violation of total lepton number conservation also implies violation of lepton family number conservation.

$\Gamma(Z ightarrow pe)/\Gamma_{\sf total}$	$< 1.8 \times 10^{-6}$, CL $= 95\%$
$\Gamma(Z ightarrow p \mu)/\Gamma_{total}$	$< 1.8 \times 10^{-6}$, CL $= 95\%$
limit on $\mu^- ightarrow e^+$ conversion	
$\sigma(\mu^{-32}S \rightarrow e^{+32}Si^*)$	$< 9 \times 10^{-10}$, CL $= 90\%$
$\sigma(\mu^{-32}S o \ u_{\mu}^{32}P^*)$	
$\sigma(\mu^{-127}$ I $\rightarrow e^{+127}$ Sb*) /	$< 3 \times 10^{-10}$, CL $= 90\%$
$\sigma(\mu^{-127}$ l $ ightarrow$ anything)	
$\sigma(\mu^- {\rm Ti} ightarrow \ e^+ {\rm Ca}) \ /$	$<3.6 \times 10^{-11}$, CL = 90%
$\sigma(\mu^- {\sf Ti} o {\sf capture})$	0
$\Gamma(\tau^- \rightarrow e^+ \pi^- \pi^-)/\Gamma_{\text{total}}$	$<2.0 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- \to \mu^+ \pi^- \pi^-)/\Gamma_{\text{total}}$	$<3.9 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^+ \pi^- K^-)/\Gamma_{ ext{total}}$	$< 3.2 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow e^+ K^- K^-)/\Gamma_{total}$	$<3.3 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o \mu^+ \pi^- K^-)/\Gamma_{\text{total}}$	$<4.8 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \mu^+ K^- K^-)/\Gamma_{total}$	$< 4.7 \times 10^{-8}$, CL = 90%
$\Gamma(au^- o pe^-e^-)/\Gamma_{ ext{total}}$	$< 3.0 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p} e^+ e^-)/\Gamma_{ ext{total}}$	$< 3.0 \times 10^{-8}, CL = 90\%$
$\Gamma(au^- ightarrow \overline{p}e^+\mu^-)/\Gamma_{ ext{total}}$	$< 2.0 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p}e^-\mu^+)/\Gamma_{total}$	$< 1.8 \times 10^{-8}$, CL = 90%
$\Gamma(au^- o p \mu^- \mu^-)/\Gamma_{total}$	$<$ 4.0 \times 10 ⁻⁸ , CL = 90%
$\Gamma(au^- ightarrow \overline{p}\mu^+\mu^-)/\Gamma_{total}$	$< 1.8 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o \overline{p}\gamma)/\Gamma_{total}$	$< 3.5 \times 10^{-6}$, CL = 90%

0,		5
$\Gamma(au^- ightarrow \overline{p} \pi^0)/\Gamma_{ ext{total}}$		$<1.5 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p}2\pi^0)/\Gamma_{total}$		$<3.3 \times 10^{-5}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p} \eta) / \Gamma_{total}$		$< 8.9 \times 10^{-6}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p} \pi^0 \eta) / \Gamma_{total}$		$< 2.7 \times 10^{-5}$, CL = 90%
$\Gamma(au^- o \Lambda \pi^-)/\Gamma_{total}$		$< 7.2 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \overline{\Lambda}\pi^-)/\Gamma_{total}$		$< 1.4 \times 10^{-7}$, CL $= 90\%$
$t_{1/2}(^{76}\text{Ge} \rightarrow ^{76}\text{Se} + 2 e^{-})$		$>$ 9.0 $ imes$ 10 25 yr, CL $=$ 90%
$t_{1/2}^{/2}(^{136}\text{Xe} \rightarrow ^{136}\text{Ba} + ^{2}e^{-})$		${>}10.7\times10^{25}$ yr, CL $=90\%$
$t_{1/2}^{/2}(\ ^{130}{ m Te}\ ightarrow\ ^{130}{ m Xe}+2\ e^{-}\)$		$> \! 1.5 imes 10^{25}$ yr, CL $= 90\%$
$\Gamma(\pi^+ \to \mu^+ \overline{\nu}_e)/\Gamma_{\text{total}}$	[q]	$< 1.5 \times 10^{-3}$, CL = 90%
$\Gamma(K^+ o \pi^- \mu^+ e^+)/\Gamma_{\text{total}}$		$<$ 4.2 $ imes$ 10 $^{-11}$, CL $=$ 90%
$\Gamma(K^+ o \pi^- e^+ e^+)/\Gamma_{\text{total}}$		$<$ 5.3 $ imes$ 10 $^{-11}$, CL $=$ 90%
$\Gamma(K^+ \to \pi^- \mu^+ \mu^+)/\Gamma_{\text{total}}$		$<$ 4.2 \times 10 ⁻¹¹ , CL = 90%
$\Gamma(K^+ \rightarrow \pi^- \pi^0 e^+ e^+)/\Gamma_{\text{total}}$		$< 8.5 \times 10^{-10}, CL = 90\%$
$\Gamma(K^+ \to \mu^+ \overline{\nu}_e)/\Gamma_{\text{total}}$	[q]	$< 3.3 \times 10^{-3}, CL = 90\%$
$\Gamma(K^+ \to \pi^0 e^{+\overline{\nu}}e)/\Gamma_{\text{total}}$		$< 3 \times 10^{-3}$, CL = 90%
$\Gamma(D^+ \to \pi^- 2e^+)/\Gamma_{\text{total}}$		$<$ 5.3 \times 10 ⁻⁷ , CL = 90%
$\Gamma(D^+ \to \pi^- 2\mu^+)/\Gamma_{\text{total}}$		$<1.4 \times 10^{-8}$, CL = 90%
$\Gamma(D^+ o \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$		$< 1.3 \times 10^{-7}$, CL = 90%
$\Gamma(D^+ \to \rho^- 2\mu^+)/\Gamma_{\text{total}}$		$<$ 5.6 \times 10 ⁻⁴ , CL = 90%
$\Gamma(D^+ \to K^- 2e^+)/\Gamma_{\text{total}}$		$< 9 \times 10^{-7}$, CL = 90%
$\Gamma(D^+ \to K^- 2\mu^+)/\Gamma_{\text{total}}$		$<1.0 \times 10^{-5}$, CL = 90%
$\Gamma(D^+ \to K^- e^+ \mu^+)/\Gamma_{\text{total}}$		$< 1.9 \times 10^{-6}$, CL = 90%
$\Gamma(D^+ \to K^*(892)^- 2\mu^+)/\Gamma_{\text{total}}$		$< 8.5 \times 10^{-4}, CL = 90\%$
$\Gamma(D^+ \to \Lambda e^+)/\Gamma_{\text{total}}$		$<1.1 \times 10^{-6}$, CL = 90%
$\Gamma(D^+ \to \overline{\Lambda}e^+)/\Gamma_{\text{total}}$		$<6.5 \times 10^{-7}$, CL = 90%
$\Gamma(D^+ \to \Sigma^0 e^+)/\Gamma_{\text{total}}$		$<1.7 \times 10^{-6}$, CL = 90%
$\Gamma(D^+ \to \overline{\Sigma}^0 e^+)/\Gamma_{\text{total}}$		$<1.3 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \rightarrow 2\pi^- 2e^+)/\Gamma_{\text{total}}$		$<9.1 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \rightarrow 2\pi^- 2\mu^+)/\Gamma_{\text{total}}$		$<1.52 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \to K^-\pi^-2e^+)/\Gamma_{\text{total}}$		$<5.0 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \to K^-\pi^- 2\mu^+)/\Gamma_{\text{total}}$		$<5.3 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \to 2K^-2e^+)/\Gamma_{\text{total}}$		$<3.4 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \to 2K^- 2\mu^+)/\Gamma_{\text{total}}$		$< 1.0 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \to 2K^- 2\mu^+)/\Gamma_{\text{total}}$ $\Gamma(D^0 \to \pi^- \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$		$< 3.06 \times 10^{-6}, CL = 90\%$
$\Gamma(D^0 \to \pi^- \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$ $\Gamma(D^0 \to K^- \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$		$<3.00 \times 10^{-6}$, CL = 90% $<2.10 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \to K \pi e^+ \mu^+)/\Gamma_{\text{total}}$		$<2.10 \times 10^{-7}$, CL = 90% $<5.8 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \rightarrow 2K^-e^+\mu^+)/\Gamma_{\text{total}}$, , , , , , , , , , , , , , , , , , ,
$\Gamma(D^0 \to pe^-)/\Gamma_{\text{total}}$		$<2.2 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \to \overline{p}e^+)/\Gamma_{\text{total}}$		$<1.2 \times 10^{-6}$, CL = 90%
$\Gamma(D_s^+ \to \pi^- 2e^+)/\Gamma_{\text{total}}$		$<1.4 \times 10^{-6}$, CL = 90%
$\Gamma(D_s^+ o \pi^- 2\mu^+)/\Gamma_{\text{total}}$		$< 8.6 \times 10^{-8}, CL = 90\%$

$\Gamma(D_s^+ o \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$	$<6.3 \times 10^{-7}$, CL = 90%
	$< 7.7 \times 10^{-7}$, CL = 90%
$\Gamma(D_s^+ \to K^- 2e^+)/\Gamma_{\text{total}}$	
$\Gamma(D_s^+ \to K^- 2\mu^+)/\Gamma_{\text{total}}$	$<2.6 \times 10^{-8}$, CL = 90%
$\Gamma(D_s^+ \to K^- e^+ \mu^+)/\Gamma_{\text{total}}$	$<2.6 \times 10^{-7}$, CL = 90%
$\Gamma(D_s^+ \to K^*(892)^- 2\mu^+)/\Gamma_{total}$	$<1.4 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ \rightarrow \pi^- e^+ e^+)/\Gamma_{\text{total}}$	$<2.3 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to \pi^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<4.0 \times 10^{-9}$, CL = 95%
$\Gamma(B^+ \to \pi^- e^+ \mu^+)/\Gamma_{\text{total}}$	$<1.5 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ o ho^- e^+ e^+)/\Gamma_{\text{total}}$	$<1.7 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \to \rho^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<4.2 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \to \rho^- e^+ \mu^+)/\Gamma_{\text{total}}$	$<4.7 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ o K^- e^+ e^+)/\Gamma_{\text{total}}$	$<3.0 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to K^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<4.1 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to K^- e^+ \mu^+)/\Gamma_{\text{total}}$	$<1.6 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \rightarrow K^*(892)^- e^+ e^+)/\Gamma_{\text{total}}$	$<4.0 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \to K^*(892)^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<5.9 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \to K^*(892)^- e^+ \mu^+)/\Gamma_{\text{total}}$	$<3.0 \times 10^{-7}$, CL = 90%
$\Gamma(B^+ \to D^- e^+ e^+)/\Gamma_{\text{total}}$	$<2.6 \times 10^{-6}$, CL = 90%
$\Gamma(B^+ \to D^- e^+ \mu^+)/\Gamma_{\text{total}}$	$<1.8 \times 10^{-6}$, CL = 90%
$\Gamma(B^+ \to D^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<6.9 \times 10^{-7}$, CL = 95%
$\Gamma(B^+ \to D^{*-}\mu^+\mu^+)/\Gamma_{\text{total}}$	$<2.4 \times 10^{-6}$, CL = 95%
$\Gamma(B^+ \to D_s^- \mu^+ \mu^+)/\Gamma_{\text{total}}$	$<5.8 \times 10^{-7}$, CL = 95%
$\Gamma(B^+ \to \overline{D^0}\pi^-\mu^+\mu^+)/\Gamma_{total}$	$<1.5 \times 10^{-6}$, CL = 95%
$\Gamma(B^+ \to \Lambda^0 \mu^+)/\Gamma_{\text{total}}$	$<6 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to \Lambda^0 e^+)/\Gamma_{\text{total}}$	$<3.2 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to \overline{\Lambda}^0 \mu^+)/\Gamma_{\text{total}}$	$<6 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to \overline{\Lambda}^0 e^+)/\Gamma_{\text{total}}$	$< 8 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 \to \Lambda_c^+ \mu^-)/\Gamma_{\text{total}}$	$<1.4 \times 10^{-6}$, CL = 90%
$\Gamma(B^0 o \Lambda_c^+ e^-)/\Gamma_{\text{total}}$	$< 4 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda ightarrow \pi^+ e^-)/\Gamma_{\sf total}$	$< 6 \times 10^{-7}$, CL = 90%
$\Gamma(\Lambda ightarrow \pi^+ \mu^-)/\Gamma_{\sf total}$	$< 6 \times 10^{-7}$, CL = 90%
$\Gamma(\Lambda ightarrow \pi^- e^+)/\Gamma_{total}$	$< 4 \times 10^{-7}$, CL = 90%
$\Gamma(\Lambda o \pi^- \mu^+)/\Gamma_{total}$	$< 6 \times 10^{-7}$, CL = 90%
$\Gamma(\Lambda ightarrow K^+ e^-)/\Gamma_{total}$	$<2 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \to K^+ \mu^-)/\Gamma_{\text{total}}$	$<3 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda ightarrow K^- e^+)/\Gamma_{\sf total}$	$<2 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda \to K^- \mu^+)/\Gamma_{\text{total}}$	$<3 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda o K_S^0 u)/\Gamma_{total}$	$<2 \times 10^{-5}$, CL = 90%
$\Gamma(\Sigma^- o p e^- e^-)/\Gamma_{\sf total}$	$<6.7 \times 10^{-5}$, CL = 90%
$\Gamma(\Xi^- o p\mu^-\mu^-)/\Gamma_{total}$	$<4 \times 10^{-8}$, CL = 90%
$\Gamma(\Lambda_c^+ o \overline{p}2e^+)/\Gamma_{total}$	$< 2.7 \times 10^{-6}$, CL = 90%

$$\begin{split} \Gamma(\Lambda_c^+ \to \ \overline{p}2\mu^+)/\Gamma_{\text{total}} & <9.4 \times 10^{-6}, \ \text{CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \overline{p}\,\text{e}^+\,\mu^+)/\Gamma_{\text{total}} & <1.6 \times 10^{-5}, \ \text{CL} = 90\% \\ \Gamma(\Lambda_c^+ \to \ \Sigma^-\,\mu^+\,\mu^+)/\Gamma_{\text{total}} & <7.0 \times 10^{-4}, \ \text{CL} = 90\% \end{split}$$

BARYON NUMBER

$\Gamma(Z o pe)/\Gamma_{total}$	$< 1.8 \times 10^{-6}$, CL $= 95\%$
$\Gamma(Z o p \mu)/\Gamma_{total}$	$< 1.8 \times 10^{-6}$, CL $= 95\%$
$\Gamma(au^- o pe^-e^-)/\Gamma_{ ext{total}}$	$< 3.0 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p}e^+e^-)/\Gamma_{ ext{total}}$	$< 3.0 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p} e^+ \mu^-)/\Gamma_{total}$	$< 2.0 \times 10^{-8}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p} e^- \mu^+) / \Gamma_{ ext{total}}$	$< 1.8 \times 10^{-8}$, CL = 90%
$\Gamma(au^- o p \mu^- \mu^-)/\Gamma_{ ext{total}}$	$<$ 4.0 \times 10 ⁻⁸ , CL = 90%
$\Gamma(au^- ightarrow \overline{p}\mu^+\mu^-)/\Gamma_{ ext{total}}$	$< 1.8 \times 10^{-8}$, CL $= 90\%$
$\Gamma(\tau^- o \overline{p}\gamma)/\Gamma_{total}$	$< 3.5 \times 10^{-6}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p}\pi^0)/\Gamma_{ ext{total}}$	$< 1.5 \times 10^{-5}$, CL $= 90\%$
$\Gamma(au^- ightarrow \overline{p}2\pi^0)/\Gamma_{ ext{total}}$	$< 3.3 \times 10^{-5}$, CL $= 90\%$
$\Gamma(au^- o \overline{p}\eta)/\Gamma_{total}$	$< 8.9 \times 10^{-6}$, CL = 90%
$\Gamma(au^- ightarrow \overline{p}\pi^0\eta)/\Gamma_{ ext{total}}$	$< 2.7 \times 10^{-5}$, CL $= 90\%$
$\Gamma(au^- o \Lambda \pi^-)/\Gamma_{total}$	$< 7.2 \times 10^{-8}$, CL = 90%
$\Gamma(\tau^- o \overline{\Lambda}\pi^-)/\Gamma_{total}$	$< 1.4 \times 10^{-7}$, CL $= 90\%$
$\Gamma(D^+ o \Lambda e^+)/\Gamma_{ ext{total}}$	$< 1.1 \times 10^{-6}$, CL $= 90\%$
$\Gamma(D^+ o \overline{\Lambda}e^+)/\Gamma_{ ext{total}}$	$<$ 6.5 \times 10 $^{-7}$, CL $=$ 90%
$\Gamma(D^+ o \Sigma^0 e^+)/\Gamma_{ ext{total}}$	$< 1.7 \times 10^{-6}$, CL $= 90\%$
$\Gamma(D^+ o \overline{\Sigma}^0 e^+)/\Gamma_{\text{total}}$	$< 1.3 \times 10^{-6}$, CL $= 90\%$
$\Gamma(D^0 o pe^-)/\Gamma_{\text{total}}$	$< 2.2 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 o \overline{p}e^+)/\Gamma_{\text{total}}$	$< 1.2 \times 10^{-6}$, CL $= 90\%$
$\Gamma(B^+ \to \Lambda^0 \mu^+)/\Gamma_{\text{total}}$	$< 6 \times 10^{-8}$, CL $= 90\%$
$\Gamma(B^+ \to \Lambda^0 e^+)/\Gamma_{\text{total}}$	$< 3.2 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ o \overline{\Lambda}^0 \mu^+)/\Gamma_{total}$	$< 6 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ \to \overline{\Lambda}^0 e^+)/\Gamma_{\text{total}}$	$< 8 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 \to \Lambda_c^+ \mu^-)/\Gamma_{\text{total}}$	$< 1.4 \times 10^{-6}$, CL = 90%
$\Gamma(B^0 \to \Lambda_c^+ e^-)/\Gamma_{\text{total}}$	$<4 \times 10^{-6}$, CL = 90%
p mean life	$[r] > 9 \times 10^{29} \text{ years, CL} = 90\%$
A few examples of proton or bound neutron decay follow	·

A few examples of proton or bound neutron decay follow. For limits on many other nucleon decay channels, see the Baryon Summary Table.

$$au(N
ightarrow e^{+}\pi)$$
 > 5300 (n) , > 16000 $(p) imes 10^{30}$ years, CL = 90%
 $au(N
ightarrow \mu^{+}\pi)$ > 3500 (n) , > 7700 $(p) imes 10^{30}$ years, CL = 90%
 $au(N
ightarrow e^{+}K)$ > 17 (n) , > 1000 $(p) imes 10^{30}$ years, CL = 90%

$\tau(N \rightarrow \mu^+ K)$		$> 26 (n), > 1600 (p) \times 10^{30}$ years, CL =
–		90% >0.86 × 10 ⁸ s, CL = 90%
limit on $n\overline{n}$ oscillations (free n)		,
limit on $n\overline{n}$ oscillations (bound n)	[s]	$>$ 2.7 $ imes$ 10 8 s, CL $=$ 90 $\%$
$\Gamma(\Lambda ightarrow \pi^+ e^-)/\Gamma_{total}$		$<$ 6 $ imes$ 10 $^{-7}$, CL $=$ 90%
$\Gamma(\Lambda ightarrow \pi^+ \mu^-)/\Gamma_{ ext{total}}$		$<$ 6 $ imes$ 10 $^{-7}$, CL $=$ 90%
$\Gamma(\Lambda ightarrow \pi^- \mathrm{e}^+)/\Gamma_{total}$		$<$ 4 $ imes$ 10 $^{-7}$, CL $=$ 90%
$\Gamma(\Lambda o \pi^- \mu^+)/\Gamma_{\text{total}}$		$<$ 6 $ imes$ 10 $^{-7}$, CL $=$ 90%
$\Gamma(\Lambda ightarrow K^+ e^-)/\Gamma_{total}$		$<$ 2 $ imes$ 10 $^{-6}$, CL $=$ 90%
$\Gamma(\Lambda \to K^+ \mu^-)/\Gamma_{\text{total}}$		$< 3 \times 10^{-6}$, CL $= 90\%$
$\Gamma(\Lambda ightarrow K^- e^+)/\Gamma_{ ext{total}}$		$<$ 2 $ imes$ 10 $^{-6}$, CL $=$ 90%
$\Gamma(\Lambda \to K^- \mu^+)/\Gamma_{\text{total}}$		$<$ 3 $ imes$ 10 $^{-6}$, CL $=$ 90%
$\Gamma(\Lambda ightarrow \kappa_S^0 u)/\Gamma_{total}$		$<$ 2 $ imes$ 10 $^{-5}$, CL $=$ 90%
$\Gamma(\Lambda \to \overline{p}\pi^+)/\Gamma_{\text{total}}$		$< 9 \times 10^{-7}$, CL $= 90\%$
$\Gamma(\Lambda_c^+ o \overline{p}2e^+)/\Gamma_{\text{total}}$		$< 2.7 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda_c^+ o \overline{p}2\mu^+)/\Gamma_{\text{total}}$		$< 9.4 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda_c^+ \to \overline{p}e^+\mu^+)/\Gamma_{\text{total}}$		$<1.6 \times 10^{-5}$, CL = 90%

ELECTRIC CHARGE (Q)

$$\begin{array}{lll} \gamma \; {\rm charge} \; ({\rm mixed}) & <1\times 10^{-46} \; e \\ \gamma \; {\rm charge} \; ({\rm single}) & <1\times 10^{-35} \; e \\ e \to \; \nu_e \gamma \; {\rm and} \; {\rm astrophysical} \; {\rm limits} & [t] \; > 6.6\times 10^{28} \; {\rm yr}, \; {\rm CL} = 90\% \\ \nu \; {\rm charge} & <4\times 10^{-35} \; e, \; {\rm CL} = 95\% \\ |q_p + q_e|/e & [u] \; <1\times 10^{-21} \\ n \; {\rm charge} & (-0.2\pm 0.8)\times 10^{-21} \; e \\ \Gamma(n \to \; p\nu_e\overline{\nu}_e)/\Gamma_{\rm total} & <8\times 10^{-27}, \; {\rm CL} = 68\% \end{array}$$

$\Delta S = \Delta Q RULE$

Violations allowed in second-order weak interactions.

$\Gamma(K^+ ightarrow \pi^+ \pi^+ e^- \overline{ u}_e) / \Gamma_{ ext{total}}$	$< 1.3 \times 10^{-8}$, CL $= 90\%$
$\Gamma(K^+ o \pi^+ \pi^+ \mu^- \overline{\nu}_{\mu}) / \Gamma_{\text{total}}$	$< 3.0 \times 10^{-6}$, CL = 95%
$Re(x_+)$, K_{e3} parameter	$(-0.9 \pm 3.0) \times 10^{-3}$
$x = A(\overline{K}^0 \rightarrow \pi^- \ell^+ \nu)/A(K^0 \rightarrow \pi^- \ell^+ \nu) = A(\Delta S = -\Delta Q)/A(K^0 \rightarrow \pi^- \ell^+ \nu)$	$/A(\Delta S = \Delta Q)$
real part of x	-0.002 ± 0.006
imaginary part of x	0.0012 ± 0.0021
$\Gamma(\Sigma^+ o n\ell^+ u)/\Gamma(\Sigma^- o n\ell^-\overline{ u}_\ell)$	< 0.043
$\Gamma(\Sigma^+ o ne^+ u_e)/\Gamma_{ ext{total}}$	$<$ 5 \times 10 $^{-6}$, CL $=$ 90%
$\Gamma(\Sigma^+ o n\mu^+ u_\mu)/\Gamma_{total}$	$< 3.0 \times 10^{-5}, CL = 90\%$

$$\begin{array}{ll} \Gamma(\Xi^0 \rightarrow \ \Sigma^- \, e^+ \, \nu_e)/\Gamma_{total} & <1.6 \times 10^{-4}, \, \mathrm{CL} = 90\% \\ \Gamma(\Xi^0 \rightarrow \ \Sigma^- \, \mu^+ \, \nu_\mu)/\Gamma_{total} & <9 \times 10^{-4}, \, \mathrm{CL} = 90\% \end{array}$$

$\Delta S = 2$ FORBIDDEN

Allowed in second-order weak interactions.

$\Gamma(\Xi^0 o p\pi^-)/\Gamma_{total}$	$<$ 8 $ imes$ 10 $^{-6}$, CL $=$ 90%
$\Gamma(\Xi^0 ightarrow pe^-\overline{ u}_e)/\Gamma_{ ext{total}}$	$< 1.3 \times 10^{-3}$
$\Gamma(\Xi^0 o p\mu^-\overline{ u}_\mu)/\Gamma_{total}$	$< 1.3 \times 10^{-3}$
$\Gamma(\Xi^- o n\pi^-)/\Gamma_{total}$	$<1.9 \times 10^{-5}$, CL = 90%
$\Gamma(\Xi^- o ne^- \overline{ u}_e)/\Gamma_{total}$	$< 3.2 \times 10^{-3}$, CL = 90%
$\Gamma(\Xi^- o n\mu^-\overline{ u}_\mu)/\Gamma_{\sf total}$	$<1.5 \times 10^{-2}$, CL = 90%
$\Gamma(\Xi^- o p\pi^-\pi^-)/\Gamma_{total}$	$< 4 \times 10^{-4}$, CL = 90%
$\Gamma(\Xi^- o p\pi^- e^- \overline{ u}_e)/\Gamma_{total}$	$< 4 \times 10^{-4}$, CL = 90%
$\Gamma(\Xi^- o p\pi^-\mu^-\overline{ u}_\mu)/\Gamma_{\sf total}$	$< 4 \times 10^{-4}$, CL = 90%
$\Gamma(\Omega^- o \Lambda\pi^-)/\Gamma_{total}$	$< 2.9 \times 10^{-6}$, CL $= 90\%$

$\Delta S = 2 \text{ VIA MIXING}$

Allowed in second-order weak interactions, e.g. mixing.

$$m_{\mathcal{K}_{L}^{0}} - m_{\mathcal{K}_{S}^{0}}$$
 $(0.5293 \pm 0.0009) \times 10^{10} \ \hbar \ s^{-1} \ (S = 1.3)$ $m_{\mathcal{K}_{L}^{0}} - m_{\mathcal{K}_{S}^{0}}$ $(3.484 \pm 0.006) \times 10^{-12} \ \text{MeV}$

$\Delta C = 2 \text{ VIA MIXING}$

Allowed in second-order weak interactions, e.g. mixing.

$$|m_{D_1^0} - m_{D_2^0}| = x\Gamma$$
 $(0.997 \pm 0.116) \times 10^{10} \ \hbar \ s^{-1}$ $(\Gamma_{D_1^0} - \Gamma_{D_2^0})/\Gamma = 2y$ $(1.394 \pm 0.056) \times 10^{-2}$

$\Delta B = 2 \text{ VIA MIXING}$

Allowed in second-order weak interactions, e.g. mixing.

$$\chi_d~(B^0 \text{-}\overline{B}^0 \text{ mixing probability})$$
 0.1858 \pm 0.0011
$$\Delta m_{B^0} = m_{B^0_H} - m_{B^0_L}$$
 (0.5065 \pm 0.0019) \times 10¹² \hbar s⁻¹

https://pdg.lbl.gov Page 30 Created: 5/31/2023 09:09

$$\begin{array}{lll} x_d &= \Delta m_{B^0}/\Gamma_{B^0} & 0.769 \pm 0.004 \\ \Delta m_{B^0_s} &= m_{B^0_{sH}} - m_{B^0_{sL}} & (17.765 \pm 0.006) \times 10^{12} \ \hbar \ \mathrm{s}^{-1} \\ x_s &= \Delta m_{B^0_s}/\Gamma_{B^0_s} & 27.03 \pm 0.09 \\ \chi_s &(B^0_s - \overline{B}^0_s \ \mathrm{mixing \ parameter}) & 0.499319 \pm 0.000005 \end{array}$$

$\Delta S = 1$ Weak Neutral Current forbidden

Allowed by higher-order electroweak interactions.

$$\begin{array}{lll} \Gamma(K^{+} \to \pi^{+} e^{+} e^{-})/\Gamma_{\rm total} & (3.00 \pm 0.09) \times 10^{-7} \\ \Gamma(K^{+} \to \pi^{+} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9.17 \pm 0.14) \times 10^{-8} \; (S = 1.8) \\ \Gamma(K^{+} \to \pi^{+} \nu^{\nu} \overline{\nu})/\Gamma_{\rm total} & (1.14^{+} 0.40) \times 10^{-10} \\ \Gamma(K^{+} \to \pi^{+} \pi^{0} \nu^{\nu})/\Gamma_{\rm total} & (2.1 \times 10^{-10}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{S} \to \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{S} \to \pi^{0} e^{+} e^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{S} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{S} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{S} \to \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} e^{+} e^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} e^{+} e^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (9 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \mu^{+} \mu^{-} e^{+} e^{-})/\Gamma_{\rm total} & (2.69 \pm 0.27) \times 10^{-9} \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \mu^{+} \mu^{-})/\Gamma_{\rm total} & (3.56 \pm 0.21) \times 10^{-8} \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{\nu})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{\nu})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{\nu})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{\nu})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{\nu})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{\nu})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{\nu})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{\nu})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{\nu})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^{0} \nu^{\nu})/\Gamma_{\rm total} & (3.0 \times 10^{-9}, \; \text{CL} = 90\% \\ \Gamma(K^{0}_{L} \to \pi^{0} \pi^$$

$\Delta C = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$$\Gamma(D^{+} \to \pi^{+} e^{+} e^{-})/\Gamma_{\text{total}}$$
 <1.1 × 10⁻⁶, CL = 90%

$$\Gamma(D^{+} \to \pi^{+} \mu^{+} \mu^{-})/\Gamma_{\text{total}}$$
 <6.7 × 10⁻⁸, CL = 90%

$$\Gamma(D^{+} \to \rho^{+} \mu^{+} \mu^{-})/\Gamma_{\text{total}}$$
 <5.6 × 10⁻⁴, CL = 90%

$\Gamma(D^0 ightarrow \gamma \gamma)/\Gamma_{total}$	$< 8.5 \times 10^{-7}$, CL = 90%
$\Gamma(D^0 \rightarrow e^+e^-)/\Gamma_{\text{total}}$	$< 7.9 \times 10^{-8}$, $CL = 90\%$
$\Gamma(D^0 o \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<6.2 \times 10^{-9}$, $CL = 90\%$
$\Gamma(D^0 ightarrow \pi^0 e^+ e^-)/\Gamma_{ m total}$	$<$ 4 \times 10 $^{-6}$, CL $=$ 90%
$\Gamma(D^0 ightarrow \ \pi^0 \mu^+ \mu^-)/\Gamma_{ ext{total}}$	$<1.8 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 ightarrow \eta e^+ e^-)/\Gamma_{ ext{total}}$	$< 3 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 o \eta \mu^+ \mu^-)/\Gamma_{ m total}$	$<$ 5.3 \times 10 ⁻⁴ , CL = 90%
$\Gamma(D^0 \rightarrow \pi^+\pi^-e^+e^-)/\Gamma_{\text{total}}$	$< 7 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 \to \rho^0 e^+ e^-)/\Gamma_{\text{total}}$	$<1.0 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 o \pi^+ \pi^- \mu^+ \mu^-)/\Gamma_{\text{total}}$	$(9.6 \pm 1.2) \times 10^{-7}$
$\Gamma(D^0 ightarrow ho^0 \mu^+ \mu^-)/\Gamma_{ ext{total}}$	$< 2.2 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 ightarrow \omegae^+e^-)/\Gamma_{ m total}$	$<6 \times 10^{-6}$, CL = 90%
$\Gamma(D^0 o \omega \mu^+ \mu^-)/\Gamma_{\text{total}}$	$< 8.3 \times 10^{-4}, CL = 90\%$
$\Gamma(D^0 \rightarrow K^- K^+ e^+ e^-)/\Gamma_{\text{total}}$	$<1.1 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 ightarrow \phi{ m e}^+{ m e}^-)/\Gamma_{ m total}$	$< 5.2 \times 10^{-5}, CL = 90\%$
$\Gamma(D^0 o K^- K^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$	$(1.54 \pm 0.32) \times 10^{-7}$
$\Gamma(D^0 o \phi \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<3.1 \times 10^{-5}$, CL = 90%
$\Gamma(D^0 ightarrow K^- \pi^+ \mu^+ \mu^-)/\Gamma_{total}$	$<3.59 \times 10^{-4}$, CL = 90%
$\Gamma(D^0 ightarrow \pi^+ \pi^- \pi^0 \mu^+ \mu^-)/\Gamma_{total}$	$< 8.1 \times 10^{-4}, CL = 90\%$
$\Gamma(D_s^+ o K^+ e^+ e^-)/\Gamma_{\text{total}}$	$<3.7 \times 10^{-6}$, CL = 90%
$\Gamma(D_s^+ o K^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$	$<1.4 \times 10^{-7}$, CL = 90%
$\Gamma(D_s^+ \to K^*(892)^+ \mu^+ \mu^-)/\Gamma_{total}$	$<1.4 \times 10^{-3}$, CL = 90%
$\Gamma(\Lambda_c^+ \to pe^+e^-)/\Gamma_{\text{total}}$	$< 5.5 \times 10^{-6}$, CL = 90%
$\Gamma(\Lambda_c^+ \to p \mu^+ \mu^- \text{non-resonant})/\Gamma_{\text{total}}$	$< 7.7 \times 10^{-8}, CL = 90\%$
C ''' LOLAI	,

$\Delta B = 1$ Weak Neutral Current Forbidden

Allowed by higher-order electroweak interactions.

$\Gamma(B^+ o \pi^+ \ell^+ \ell^-)/\Gamma_{ ext{total}}$		$<$ 4.9 \times 10 ⁻⁸ , CL = 90%
$\Gamma(B^+ o \pi^+ e^+ e^-)/\Gamma_{\text{total}}$		$< 8.0 \times 10^{-8}$, CL = 90%
$\Gamma(B^+ o \pi^+ \mu^+ \mu^-)/\Gamma_{total}$		$(1.78 \pm 0.23) \times 10^{-8}$
$\Gamma(B^+ o \pi^+ u \overline{ u}) / \Gamma_{total}$		$<1.4 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ o K^+ \ell^+ \ell^-)/\Gamma_{\text{total}}$	[y]	$(4.7 \pm 0.5) \times 10^{-7} \text{ (S} = 2.3)$
$\Gamma(B^+ ightarrow K^+ e^+ e^-)/\Gamma_{ ext{total}}$		$(5.6 \pm 0.6) \times 10^{-7}$
$\Gamma(B^+ o K^+ \mu^+ \mu^-)/\Gamma_{total}$		$(4.53 \pm 0.35) \times 10^{-7} \text{ (S} = 1.8)$
$\Gamma(B^+ o K^+\mu^+\mu^-$ nonresonant)/ $\Gamma_{ exttt{total}}$		$(4.37 \pm 0.27) \times 10^{-7}$
$\Gamma(B^+ o K^+ \tau^+ \tau^-)/\Gamma_{\text{total}}$		$< 2.25 \times 10^{-3}$, CL = 90%
$\Gamma(B^+ o K^+ \overline{ u} u) / \Gamma_{total}$		$<1.6 \times 10^{-5}$, CL = 90%
$\Gamma(B^+ o ho^+ u \overline{ u})/\Gamma_{total}$		$< 3.0 \times 10^{-5}, CL = 90\%$
$\Gamma(B^+ o K^*(892)^+ \ell^+ \ell^-)/\Gamma_{total}$	[<i>y</i>]	$(1.01 \pm 0.11) \times 10^{-6} \text{ (S} = 1.1)$

		. 0.40
$\Gamma(B^+ \rightarrow K^*(892)^+ e^+ e^-)/\Gamma_{total}$		$(1.55^{+0.40}_{-0.31}) \times 10^{-6}$
$\Gamma(B^+ o K^*(892)^+ \mu^+ \mu^-)/\Gamma_{total}$		$(9.6 \pm 1.0) \times 10^{-7}$
$\Gamma(B^+ \to K^*(892)^+ \nu \overline{\nu})/\Gamma_{\text{total}}$		$<$ 4.0 \times 10 ⁻⁵ , CL = 90%
$\Gamma(B^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(4.3 \pm 0.4) \times 10^{-7}$
$\Gamma(B^+ \to \phi K^+ \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(7.9^{+2.1}_{-1.7}) \times 10^{-8}$
$\Gamma(B^0 o \gamma\gamma)/\Gamma_{total}$		$< 3.2 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 ightarrow e^+ e^-)/\Gamma_{ ext{total}}$		$< 2.5 \times 10^{-9}$, CL = 90%
$\Gamma(B^0 \rightarrow e^+e^-\gamma)/\Gamma_{\text{total}}$		$<1.2 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 o \mu^+\mu^-)/\Gamma_{\text{total}}$		$(7^{+13}_{-11}) \times 10^{-11} \text{ (S} = 1.8)$
$\Gamma(B^0 \to \mu^+ \mu^- \gamma)/\Gamma_{\text{total}}$		_
$\Gamma(B^0 \to \mu^+\mu^-\mu^+\mu^-)/\Gamma_{\text{total}}$		$< 1.8 \times 10^{-10}$, CL $= 95\%$
$\Gamma(B^0 \to SP, S \to \mu^+\mu^-, P \to \mu^+\mu^-)/\Gamma_{\text{total}}$	[z]	$<6.0 \times 10^{-10}$, CL = 95%
$\Gamma(B^0 \to \tau^+ \tau^-)/\Gamma_{\text{total}}$		$<2.1 \times 10^{-3}$, CL = 95%
$\Gamma(B^0 \to \pi^0 \ell^+ \ell^-)/\Gamma_{\text{total}}$		$<5.3 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 \to \pi^0 e^+ e^-)/\Gamma_{\text{total}}$		$< 8.4 \times 10^{-8}, CL = 90\%$
$\Gamma(B^0 \to \pi^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$		$<6.9 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 o \eta \ell^+ \ell^-)/\Gamma_{ ext{total}}$		$<6.4 \times 10^{-8}$, CL = 90%
$\Gamma(B^0 \rightarrow \eta e^+ e^-)/\Gamma_{\text{total}}$		$<1.08 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 \to \eta \mu^+ \mu^-)/\Gamma_{\text{total}}$		$<1.12 \times 10^{-7}$, CL = 90%
$\Gamma(B^0 o \pi^0 u \overline{ u})/\Gamma_{\text{total}}$		$< 9 \times 10^{-6}$, CL = 90%
$\Gamma(B^0 \to \kappa^0 \ell^+ \ell^-)/\Gamma_{\text{total}}$	[y]	$(3.3 \pm 0.6) \times 10^{-7}$
$\Gamma(B^0 \to K^0 e^+ e^-)/\Gamma_{\text{total}}$		$(2.5^{+1.1}_{-0.9}) \times 10^{-7} \text{ (S} = 1.3)$
$\Gamma(B^0 o \kappa^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(3.39 \pm 0.35) \times 10^{-7} \text{ (S} = 1.1)$
$\Gamma(B^0 \to K^0 \nu \overline{\nu})/\Gamma_{\text{total}}$		$<2.6 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 \to \rho^0 \nu \overline{\nu})/\Gamma_{\text{total}}$		$<4.0 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 \to K^*(892)^0 \ell^+ \ell^-)/\Gamma_{\text{total}}$	[y]	$(9.9^{+1.2}_{-1.1}) \times 10^{-7}$
$\Gamma(B^0 \rightarrow K^*(892)^0 e^+ e^-)/\Gamma_{\text{total}}$		$(1.03^{+0.19}_{-0.17}) \times 10^{-6}$
$\Gamma(B^0 \to K^*(892)^0 \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(9.4 \pm 0.5) \times 10^{-7}$
$\Gamma(B^0 \to \pi^+\pi^-\mu^+\mu^-)/\Gamma_{\text{total}}$		$(2.1 \pm 0.5) \times 10^{-8}$
$\Gamma(B^0 \to K^*(892)^0 \nu \overline{\nu})/\Gamma_{\text{total}}$		$<1.8 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 o invisible)/\Gamma_{total}$		$< 2.4 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 \to \nu \overline{\nu} \gamma)/\Gamma_{\text{total}}$		$<1.6 \times 10^{-5}$, CL = 90%
$\Gamma(B^0 \to \phi \nu \overline{\nu})/\Gamma_{\text{total}}$		$<1.27 \times 10^{-4}$, CL = 90%
$\Gamma(B \to se^+e^-)/\Gamma_{\text{total}}$		$(6.7 \pm 1.7) \times 10^{-6} \text{ (S} = 2.0)$
$\Gamma(B \to s\mu^+\mu^-)/\Gamma_{\text{total}}$		$(4.3 \pm 1.0) \times 10^{-6}$
$\Gamma(B \to s\ell^+\ell^-)/\Gamma_{\text{total}}$	[v]	$(5.8 \pm 1.3) \times 10^{-6} \text{ (S} = 1.8)$
$\Gamma(B \to \pi \ell^+ \ell^-)/\Gamma_{\text{total}}$	13 1	$<5.9 \times 10^{-8}$, CL = 90%
$\Gamma(B \to \pi e^+ e^-)/\Gamma_{\text{total}}$		$<1.10 \times 10^{-7}$, CL = 90%
$\Gamma(B \to \pi \mu^+ \mu^-)/\Gamma_{\text{total}}$		$<5.0 \times 10^{-8}$, CL = 90%
$\Gamma(B \to Ke^+e^-)/\Gamma_{\text{total}}$		$(4.4 \pm 0.6) \times 10^{-7}$
$\Gamma(B \to K^*(892)e^+e^-)/\Gamma_{\text{total}}$		$(1.19 \pm 0.20) \times 10^{-6} \text{ (S} = 1.2)$
, , , , , total		, , , ,

$\Gamma(B \to K \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(4.4 \pm 0.4) \times 10^{-7}$
$\Gamma(B \to K^*(892)\mu^+\mu^-)/\Gamma_{total}$		$(1.06 \pm 0.09) \times 10^{-6}$
$\Gamma(B o K\ell^+\ell^-)/\Gamma_{total}$		$(4.8 \pm 0.4) \times 10^{-7}$
$\Gamma(B \to K^*(892)\ell^+\ell^-)/\Gamma_{\text{total}}$		$(1.05 \pm 0.10) \times 10^{-6}$
$\Gamma(B ightarrow K u \overline{ u}) / \Gamma_{total}$		$<1.6 \times 10^{-5}$, CL = 90%
$\Gamma(B \to K^* \nu \overline{\nu})/\Gamma_{total}$		$< 2.7 \times 10^{-5}$, CL = 90%
$\Gamma(B ightarrow \pi u \overline{ u}) / \Gamma_{total}$		$< 8 \times 10^{-6}$, CL = 90%
$\Gamma(B ightarrow ho u \overline{ u}) / \Gamma_{total}$		$< 2.8 \times 10^{-5}$, CL = 90%
$\Gamma(\overline{b} ightarrow \overline{s}\overline{ u} u)/\Gamma_{total}$		$<6.4 \times 10^{-4}, CL = 90\%$
$\Gamma(\overline{b} \to \mu^+ \mu^- \text{ anything})/\Gamma_{\text{total}}$		$< 3.2 \times 10^{-4}, CL = 90\%$
$\Gamma(B_s^0 \to \gamma \gamma)/\Gamma_{\text{total}}$		$< 3.1 \times 10^{-6}, CL = 90\%$
$\Gamma(B_s^0 \to \phi \gamma)/\Gamma_{\text{total}}$		$(3.4 \pm 0.4) \times 10^{-5}$
$\Gamma(B_s^0 \to \mu^+ \mu^-)/\Gamma_{\text{total}}$		$(3.01 \pm 0.35) \times 10^{-9}$
$\Gamma(B_s^0 \to e^+e^-)/\Gamma_{\text{total}}$		$< 9.4 \times 10^{-9}$, $CL = 90\%$
$\Gamma(B_s^0 o au^+ au^-)/\Gamma_{ ext{total}}$		$<$ 6.8 \times 10 ⁻³ , CL $=$ 95%
$\Gamma(B_s^0 o \mu^+ \mu^- \mu^+ \mu^-)/\Gamma_{\text{total}}$		${<}8.6\times10^{-10}\text{, }\text{CL}=95\%$
$\Gamma(B_s^0 \to SP, S \to \mu^+\mu^-, P \to \mu^+\mu^-)/\Gamma_{\text{total}}$	[z]	$< 2.2 \times 10^{-9}$, $CL = 95\%$
$\Gamma(B_s^0 o \phi(1020)\mu^+\mu^-)/\Gamma_{total}$		$(8.4 \pm 0.4) \times 10^{-7}$
$\Gamma(B_s^0 o \overline{K}^*(892)^0 \mu^+ \mu^-)/\Gamma_{total}$		$(2.9 \pm 1.1) \times 10^{-8}$
$\Gamma(B_s^0 \to \pi^+\pi^-\mu^+\mu^-)/\Gamma_{\text{total}}$		$(8.4 \pm 1.7) \times 10^{-8}$
$\Gamma(B_s^0 o \phi u \overline{ u}) / \Gamma_{total}$		$<$ 5.4 \times 10 ⁻³ , CL = 90%

$\Delta T = 1$ WEAK NEUTRAL CURRENT FORBIDDEN

Allowed by higher-order electroweak interactions.

$$\begin{array}{lll} \Gamma(t \to Z\,q\,(q=u,c))/\Gamma_{\rm total} & [aa] & <5\times 10^{-4}, \, {\rm CL} = 95\% \\ \Gamma(t \to H\,u)/\Gamma_{\rm total} & <1.9\times 10^{-4}, \, {\rm CL} = 95\% \\ \Gamma(t \to H\,c)/\Gamma_{\rm total} & <7.3\times 10^{-4}, \, {\rm CL} = 95\% \\ \Gamma(t \to \ell^+ \overline{q}\,\overline{q}'\,(q=d,s,b;\,q'=u,c))/\Gamma_{\rm total} & <1.6\times 10^{-3}, \, {\rm CL} = 95\% \end{array}$$

NOTES

- [a] Forbidden by angular momentum conservation.
- [b] C parity forbids this to occur as a single-photon process.
- [c] See the Particle Listings for the (complicated) definition of this quantity.
- [d] Time-reversal invariance requires this to be 0° or 180° .
- [e] This coefficient is zero if time invariance is not violated.
- [f] Allowed by higher-order electroweak interactions.
- [g] Violates CP in leading order. Test of direct CP violation since the indirect CP-violating and CP-conserving contributions are expected to be suppressed.
- [h] In the 2010 Review, the values for these quantities were given using a measure of the asymmetry that was inconsistent with the usual definition.
- [i] $Re(\epsilon'/\epsilon) = \epsilon'/\epsilon$ to a very good approximation provided the phases satisfy *CPT* invariance.
- [j] This mode includes gammas from inner bremsstrahlung but not the direct emission mode $K_I^0 \to \pi^+\pi^-\gamma(DE)$.
- [k] Neglecting photon channels. See, e.g., A. Pais and S.B. Treiman, Phys. Rev. **D12**, 2744 (1975).
- [/] Derived from measured values of ϕ_{+-} , ϕ_{00} , $|\eta|$, $|m_{K_L^0} m_{K_S^0}|$, and $\tau_{K_S^0}$, as described in the introduction to "Tests of Conservation Laws."
- [n] The $|m_p m_{\overline{p}}|/m_p$ and $|q_p + q_{\overline{p}}|/e$ are not independent, and both use the more precise measurement of $|q_{\overline{p}}/m_{\overline{p}}|/(q_p/m_p)$.
- [o] The value is for the sum of the charge states or particle/antiparticle states indicated.
- [p] A test of additive vs. multiplicative lepton family number conservation.
- [q] Derived from an analysis of neutrino-oscillation experiments.
- [r] The first limit is for $p \to anything$ or "disappearance" modes of a bound proton. The second entry, a rough range of limits, assumes the dominant decay modes are among those investigated. For antiprotons the best limit, inferred from the observation of cosmic ray \overline{p} 's is $\tau_{\overline{p}} > 10^7$ yr, the cosmic-ray storage time, but this limit depends on a number of assumptions. The best direct observation of stored antiprotons gives $\tau_{\overline{p}}/B(\overline{p}\to e^-\gamma) > 7\times 10^5$ yr.
- [s] There is some controversy about whether nuclear physics and model dependence complicate the analysis for bound neutrons (from which the best limit comes). The first limit here is from reactor experiments with free neutrons.
- [t] This is the best limit for the mode $e^- \to \nu \gamma$.

- [u] The limit is from neutrality-of-matter experiments; it assumes $q_n=q_p+q_e$. See also the charge of the neutron.
- [v] See the K_S^0 Particle Listings for the energy limits used in this measurement.
- [x] See the K_L^0 Particle Listings for the energy limits used in this measurement.
- [y] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [z] Here S and P are the hypothetical scalar and pseudoscalar particles with masses of 2.5 GeV/c^2 and 214.3 MeV/c^2 , respectively.
- [aa] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.