Identifying Risk of Late Deliveries in a Sports Retail Business

Company Overview - A sports retail business in the Americas

Distribution of orders across regions

21k orders fulfilled on average each year, raking in \$42m in sales.

Orders sourced from USA and Puerto Rico and sold to **22 countries in 5 regions**:

- Central America
- South America
- South of USA
- East of USA
- West of USA

Company Overview - Sells a wide range of products, primarily fishing and sports accessories

Top 10 Categories

Top 10 Products

Fishing	Cleats	Water Sports		Field & Stream Sportsman 16 Gun Fire Safe Fishing	Nike Men's Free 5.0+ Running Shoe Cardio Equipment	Nike Men's Dri-FIT Victory Golf Polo Women's Apparel	Pelican Sunstream 100 Kayak Water Sports	
Accessories	Camping & Hiking	Indoor/Outdoor Games		Perfect Fitness Perfect Rip Deck Cleats				
					O'Brien Men's Neoprene Life Vest Indoor/Outdoor	Nike Men's CJ E TD Football Cle Men's Footwea	eat A ar G	Jnder Armour Girls'
	Cardio Equipment	Miscellaneous	Golf	Diamondback Women's Serene Classic Comfort Bi Camping & Hiking			S S S	Spine Surge Shoes Shop By Sport

Key Problem: Late Deliveries

57% of the deliveries are late.

No decline in late delivery rate over the last 3 yrs.

45% of the late deliveries are orders sent to Central America, but late delivery rate across regions is consistent.

Considered Variables vs Number of Late Deliveries

Considered Variables vs Number of Late Deliveries

Discount Given

Statistical Test: Chi-square Analysis to identify significant variables

Variable	Chi-Square Statistic	P-Value	Reject Null Hypothesis
late_delivery_risk	56028.18	0	Yes
shipping_mode	14009.53	0	Yes
order_country	109.5	0	Yes
customer_state	85.46	0.0001	Yes
type	9.14	0.0274	Yes
order_item_discount	591.28	0.6365	No
product_name	88.46	0.4064	No
category_name	28.99	0.5178	No

Chi-Square Analysis: Shipping mode, order country, customer state, and type significantly impact late delivery.

Low correlations ensure independent variables for stable model predictions

Low correlation: Minimal multicollinearity, ensuring stable and reliable model performance.

First Class ensures 0% late deliveries, while Standard Class has the highest rate at 59.9%.

Ranking of Shipping Modes by Late Rate

• First Class: 0% (No late deliveries)

Second Class: 21%Same Day: 49.6%

•Standard Class: 59.9%

Guyana leads late delivery rates, French Guiana achieves the lowest rate.

Top: Guyana and Costa Rica lead in late delivery rates, over 69%.

Bottom: French Guiana has the lowest late delivery rate at 33.33%, followed by Colombia (54.15%) and Argentina (54.95%).

No statistical significance was found among created features

New features were created as following:

- shipment_efficiency
- price_per_customer
- is_high_value_order
- order_weekday
- is_weekend

None of them are statistically significant

	-			L
	Feature	F-Score	P-Value	
0	<pre>shipment_efficiency</pre>	0.846904	0.357434	
2	is_high_value_order	0.161667	0.687628	
4	is_weekend	0.082937	0.773357	
3	order_weekday	0.016138	0.898912	
1	<pre>price_per_customer</pre>	0.001362	0.970560	

Logistic regression selected for feature significance and interpretability

Variable Selection

Data Split

Pre processing

Evaluation Metrics Threshold Optimization

Categorical Features: ['shipping_mode', 'type', 'order_country']

Numerical Features: None included due to statistical insignificance. Training Set: 80% of the data for model training

Testing Set: 20% of the data for evaluating performance One-Hot Encoding: for categorical variables

Class Balancing: Used class_weight ='balanced' to handle imbalanced data Precision, Recall, F1-Score: To assess classification performance

ROC AUC Score: To evaluate the model's ability to distinguish between late and on-time deliveries Optimized decision threshold based on F1-score to balance precision and recall

Model effectively flags late deliveries while minimizing false positives

- Optimal Threshold: 0.4545
- Max Avg F1: 0.8021
- ROC AUC Score: 0.7445
- Accuracy: 69%

• True positive/negative:

- 53.69% of late deliveries flagged as late.
- 90.29% of on-time deliveries flagged as on-time.

• False positive/negative:

- 9.71% of on-time deliveries flagged as late
- 46.31% of late deliveries flagged as on-time

F1 scores varies across order countries

Two Interactive Streamlit Dashboards were developed using the model based on order country, shipping mode, and payment type

Dashboard 1: High level overview of late delivery rates

- Target user: Operations Executive
- Trends based on Existing data

Dashboard 2: Order level late deliver rates

- Target user: Operations Analysts/ Executives
- Trends based on simulated orders

Dashboard 1: High level overview of late delivery risks. Graphs vary based on region and country selected

Average late delivery risk by country

Top 10 riskiest combination of variables

Heat map of risk based on shipping method and payment

- Country with max risk score: Ecuador (0.70), Country with min risk score: Paraguay (0.53)
- "Premium" shipping methods have the highest risk of late delivery
- Transfer and cash payments have high amount of late delivery risk, while debit has the least amount of late delivery risk

Dashboard 2: Order level late delivery risks. Automatic Charts and Recommendations based on selected country, city, & order

Order Division by Risk Category 🖘

Optimal Threshold for High Risk: 0.45

Distribution of order based on risk of delivery compared to optimal threshold

List of High-Risk Orders

	order_id	order_region	order_country	order_city	order_status	shipping_mode	type
1	ORD-002	West of USA	Estados Unidos	Clovis	SUSPECTED_FRAUD	First Class	TRA
3	ORD-004	West of USA	Estados Unidos	Olympia	SUSPECTED_FRAUD	Second Class	PAY
5	ORD-006	East of USA	Estados Unidos	Chattanooga	PENDING_PAYMENT	Second Class	DE
7	ORD-008	South America	Paraguay	Asunción	CANCELED	First Class	PAY
9	ORD-010	West of USA	Estados Unidos	Eugene	ON_HOLD	First Class	TRA
13	ORD-014	East of USA	Estados Unidos	Owensboro	PENDING_PAYMENT	First Class	CAS
15	ORD-016	East of USA	Estados Unidos	Long Beach	CLOSED	First Class	TRA
17	ORD-018	West of USA	Estados Unidos	Brentwood	ON_HOLD	Second Class	TRA
19	ORD-020	South of USA	Estados Unidos	Asheville	PROCESSING	First Class	CAS
20	ORD-021	East of USA	Estados Unidos	Laurel	PROCESSING	First Class	PAY

Recommendations for Selected Order

The selected order has a High Risk of late delivery (Risk Score: 0.73).

- Switch to 'Standard Class' shipping mode to reduce risk'.
- Switch to 'DEBIT' payment type to reduce risk'.

Validation of Order Level Recommendation by generating recommendations for all simulated data

Late Delivery Risk Percentages:

- Original Late Risk Deliveries: 48.00%
- % Late Risk Deliveries (Only Shipping Updated): 0.00%
- % Late Risk Deliveries (Only Payment Updated): 47.00%
- % Late Risk Deliveries (Both Updated): 0.00%

Overall recommendation: Update the payment type and shipping mode based on recommendation, otherwise **prioritize the update of shipping mode**.

Conclusion for the business to improve its on time delivery

Improve payment processing systems to minimize delays

Aim for fewer transfer, and more cash and debit payment

Offer optimal shipping options for time-sensitive deliveries

Standard class has better efficiency

Investigate why premium options like first class and same day are not as efficient

Size of delivery fleet

Collect more data to help meet customer needs efficiently

Potentially stocking products in local hubs instead of just US and PR

Alternate efficient delivery routes

Local regulations

Thank You

And Happy Holidays! Hope your holiday shopping reaches you on time.

APPENDIX

Predictive Model: Model optimize recall for late deliveries

```
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.metrics import classification report, precision recall curve
import joblib # Correctly importing joblib
import pandas as pd
from sklearn.metrics import ConfusionMatrixDisplay, roc_curve, auc
# Define the simplified features and categorical preprocessing
simplified_features = ['shipping_mode', 'type', 'order_country']
simplified_categorical_features = simplified_features
# Create a preprocessing pipeline for simplified features
simplified_preprocessor = ColumnTransformer(
    transformers=[
        ('cat', OneHotEncoder(drop='first'), simplified_categorical_features)
# Train the final logistic regression model
final model pipeline = Pipeline(steps=[
    ('preprocessor', simplified preprocessor),
    ('classifier', LogisticRegression(max iter=500, class weight='balanced', random state=42))
final_model_pipeline.fit(X[simplified_features], y)
# Calculate the optimal threshold based on F1-score
precision, recall, thresholds = precision_recall_curve(y, final_model_pipeline.predict_proba(X[simplified_features])[:, 1])
optimal threshold = None
\max f1 = 0
for p, r, t in zip(precision, recall, thresholds):
   f1 = 2 * (p * r) / (p + r) if (p + r) > 0 else 0
    if f1 > max_f1:
       max_f1 = f1
       optimal_threshold = t
print(f"Optimal Threshold: {optimal_threshold}, Max F1: {max_f1}")
```

Optimal Thres Final Model P					582296487
	precision	recall	f1-score	support	
False	0.69	0.02	0.04	26574	
True	0.58	0.99	0.73	35655	
accuracy			0.58	62229	
macro avg	0.63	0.51	0.39	62229	
weighted avg	0.62	0.58	0.44	62229	
ROC AUC Score	: 0.74450802	51898064			

Predictive Model: Model optimize average F1 scores

```
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn.metrics import classification_report, precision_recall_curve, roc_auc_score
from sklearn.preprocessing import OneHotEncoder
import pandas as pd
from sklearn.metrics import ConfusionMatrixDisplay
# Define the simplified features and categorical preprocessing
simplified_features = ['shipping_mode', 'type', 'order_country']
simplified_categorical_features = simplified_features
# Create a preprocessing pipeline for simplified features
simplified_preprocessor = ColumnTransformer(
    transformers=[
        ('cat', OneHotEncoder(drop='first'), simplified_categorical_features)
# Train the final logistic regression model
final_model_pipeline = Pipeline(steps=[
    ('preprocessor', simplified_preprocessor),
    ('classifier', LogisticRegression(max_iter=500, class_weight='balanced', random_state=42))
final_model_pipeline.fit(X[simplified_features], y)
# Calculate the optimal threshold based on F1-score for balanced classes
precision, recall, thresholds = precision recall curve(v, final model pipeline, predict proba(X[simplified features])[:, 1])
optimal threshold = None
\max \text{ avg } f1 = 0
for p, r, t in zip(precision, recall, thresholds):
    f1_false = 2 * (p * recall[0]) / (p + recall[0]) if (p + recall[0]) > 0 else 0 # F1 for False (On-Time)
    f1 \text{ true} = 2 * (p * r) / (p + r) \text{ if } (p + r) > 0 \text{ else } 0 # F1 \text{ for True (Late)}
    avg_f1 = (f1_false + f1_true) / 2 # Average F1 score for both classes
    if avg_f1 > max_avg_f1:
        max_avg_f1 = avg_f1
        optimal threshold = t
print(f"Optimal Threshold (Balanced Classes): {optimal_threshold}, Max Avg F1: {max_avg_f1}")
```

			ced Thresh			
	precision	recall	f1-score	support		
F-1	0.50	0.00	0.70	26574		
False	0.59	0.90	0.72	26574		
True	0.88	0.54	0.67	35655		
accuracy			0.69	62229		
macro avg	0.74	0.72	0.69	62229		
weighted avg	0.76	0.69	0.69	62229		

Predictive Model: Visualization of Precision-Recall Curve

Simulated Data for Current Orders

```
# Simulate 100 orders
np.random.seed(42)
regions = np.random.choice(list(region to countries.keys()), size=100)
countries = [np.random.choice(region to countries[region]) for region in regions]
cities = [np.random.choice(country to cities[country]) for country in countries]
order_statuses = ["PENDING_PAYMENT", "PENDING", "PROCESSING", "ON_HOLD", "COMPLETE", "CLOSED", "SUSPECTED_FRAUD", "CANCELED", "PAYMENT_REVIEW"]
shipping modes = ["First Class", "Same Day", "Second Class", "Standard Class"]
payment types = ["PAYMENT", "TRANSFER", "DEBIT", "CASH"]
products = [f"Product {i}" for i in range(1, 21)]
simulated data = pd.DataFrame({
    "order id": [f"ORD-{i:03d}" for i in range(1, 101)],
    "order region": regions,
    "order country": countries,
    "order city": cities,
    "order status": np.random.choice(order_statuses, 100),
    "shipping mode": np.random.choice(shipping modes, 100),
    "type": np.random.choice(payment types, 100),
    "product name": np.random.choice(products, 100),
    "order_date_(dateorders)": [datetime(2023, 1, 1) + timedelta(days=np.random.randint(1, 365)) for _ in range(100)]
# Predict late delivery risk based on shipping mode
simulated data["late delivery risk"] = final model pipeline.predict proba(simulated data[["shipping mode","order status","type","order country"]])[:, 1]
simulated data["risk category"] = np.where(simulated data["late delivery risk"] >= optimal threshold, "High Risk", "Low Risk")
```

Recommendation for Current Orders - at order level and for all simulations

```
if not selected_order.empty:
    st.subheader("Recommendations for Selected Order")
# Extract selected order details
selected_shipping_mode = selected_order["shipping_mode"].iloc[0]
selected_payment_type = selected_order["type"].iloc[0]
selected_risk_score = selected_order["late_delivery_risk"].iloc[0]

# Provide recommendations
if selected_risk_score >= optimal_threshold:
    st.write(f"The selected order has a **High Risk** of late delivery (Risk Score: {selected_risk_score:.2f}).")

# Check and recommend lower-risk shipping mode
if selected_payment_type in heatmap_data.columns:
    recommended_shipping = heatmap_data[selected_payment_type].idxmin()
    st.write(f"- **Switch to '(recommended_shipping)' shipping mode to reduce risk'.**")

# Check and recommend lower-risk payment type
if selected_shipping_mode in heatmap_data.index:
    recommended_payment = heatmap_data.loc[selected_shipping_mode].idxmin()
    st.write(f"- **Switch to '(recommended_payment)' payment type to reduce risk'.**")
else:
    st.write("The selected order has a **Low Risk** of late delivery. No changes recommended.")
```

```
# Iterate through late orders
for , order in late orders.iterrows():
   current shipping mode = order["shipping mode"]
   current payment type = order["type"]
   # Recommend a new shipping mode and payment type
   recommended shipping = heatmap data.loc[:, current payment type].idxmin()
   recommended payment = heatmap data.loc[current shipping mode].idxmin()
   # Predict risk scores with updates
   updated shipping risk = heatmap data.loc[recommended shipping, current payment type]
   updated payment risk = heatmap data.loc current shipping mode, recommended payment
   updated both risk = heatmap data.loc[recommended shipping, recommended payment]
   # Append results
   recommended changes.append(
           "order id": order["order id"],
           "current shipping mode": current shipping mode,
           "current payment type": current payment type,
           "recommended shipping mode": recommended shipping,
           "recommended payment type": recommended payment,
           "original risk": order["late delivery risk"],
           "updated shipping risk": updated shipping risk,
           "updated payment risk": updated payment risk,
           "updated both risk": updated both risk,
   new risk scores shipping.append(updated shipping risk)
   new risk scores payment.append(updated payment risk)
   new risk scores both.append(updated both risk)
```