Predicting read depth to maximize statistical power in RNA-Seq experiments

Andrew Bass Princeton University

November 18, 2015

Designing an experiment

Determining the appropriate read depth

Subsampling

Is the power saturated at current read depth?

Is the power saturated at current read depth?

Is the power saturated at current read depth?

Can we model saturation curves?

Per-gene power

$$lpha_i(p) = egin{cases} 1, & i \in \Omega \ ext{and} \ pD_i > \lambda \ 0, & ext{otherwise}. \end{cases}$$

- $ightharpoonup \alpha_i(p)$: indicator function that gene i is significant at p
- ▶ p: subsampling proportion
- Ω: set of significant genes
- ▶ D_i: read depth of gene i
- ightharpoonup λ: minimum read depth in Ω

General model to utilize per-gene power

$$\mathbb{E}[G(p)] = \sum_{i=1}^{m} \mathbb{E}[\alpha_i(p)]$$
 (1)

$$\mathbb{E}[G(p)] = m(1 - \pi_0) \Pr\left(D > \frac{\lambda}{p} \mid \Omega\right)$$
 (2)

$$\mathbb{E}[G(p)] = m(1 - \pi_0) \left[1 - F\left(\frac{\lambda}{p} \mid \Omega\right) \right]$$
 (3)

- \triangleright G(p): number of significant genes at p
- ▶ m: number of genes
- \blacktriangleright π_0 : proportion of non-significant genes
- ► F: cumulative distribution function of per-gene read depth

Think log-normal!

$$\mathbb{E}[G(p)] = m(1-\pi_0)\Phi\left(\frac{\log(p+b)-\mu^*}{\sigma}\right)$$

- $m(1-\pi_0)$: number of significant genes in the experiment
- Φ: Normal CDF
- \blacktriangleright μ^* , σ : adjusted mean and standard deviation from the distribution of counts
- p: subsampling proportion
- ▶ *b*: offset

How do you use the methodology?

Results across all experiments

12 Expression Atlas experiments

Minimum read depth?

Conclusion

- We have a developed a model can help predict the increase in power from an increasing read depth
- Works well across 78 RNA-Seq read experiments that show varying degrees of saturations.
- ▶ A reasonable question: "Is there a minimum read depth that can be applied across all experiments?"

Acknowledgements

David Robinson (QCB PhD student)

John D. Storey (Principal Investigator)

