Tarea 3 Procesos Estocásticos I

Prof. Rafael Miranda Cordero

Aydte. Fernando Avitúa Varela

18 de septiembre del 2023

Entrega: 25 de septiembre

- 1. Sea $\{X_n : n \in \mathbb{N}\}$ la cadena de Ehrenfest con espacio de estados $\{0, 1, \dots, d\}$ (ejemplo 2 del capitulo 1 del libro de Hoel Port Stone, paginas 7 y 8). Demuestre que la suposición del ejercicio 8 de la tarea 2 es satisfecha por esta cadena. Calcule $\mathbf{E}[X_n]$.
- 2. Sea $\{X_n : n \in \mathbb{N}\}$ la cadena de Ehrenfest. Suponga que X_0 tiene una distribución binomial con parámetros d y 1/2. Encuentre la distribución de X_n .
- 3. Para la cadena de Ehrenfest con espacio de estados $\{0, 1, \dots, d\}$ calcule:
 - a) La matriz de transición P.
 - b) $P^2, P^3 y P^4$.
 - c) Puede dar una forma general para P^n .
- 4. Sea $\{X_n : n \in \mathbb{N}\}$ una cadena de Markov con espacio de estados $S = \{0, 1, 2\}$ y con matriz de probabilidades de transición

$$P = \left(\begin{array}{ccc} 0.4 & 0.3 & 0.3 \\ 0.3 & 0.2 & 0.5 \\ 0.7 & 0 & 0.3 \end{array}\right).$$

Existe algún estado que sea absorbente, recurrente o transitorio en esta cadena, en tal caso indique cuales (argumente cuidadosamente su respuesta). Determine las clases de comunicación de esta cadena.

- 5. Considere la cadena de Markov de la caminata aleatoria simple vista en clase, con probabilidades p y q de moverte un paso a la derecha o uno a la izquierda respectivamente (p+q=1).
 - a) Demuestre que si p, q > 0 entonces el espacio de estados $S = \mathbf{Z}$ es irreducible (todos los estados se comunican entre si).
 - b) Demuestre que si p = q = 1/2 entonces la cadena es recurrente.

c) ¿Existe alguna condición sobre p, q > 0 para que la cadena sea transitoria?

Sugerencia: Use la caracterización de estados recurrentes o transitorios dada por la función G(x, y) y la aproximación de Stirling del factorial.

6. Sea y un estado transitorio. Demuestre que

$$\sum_{n=0}^{\infty} P^n(x,y) \le \sum_{n=0}^{\infty} P^n(y,y)$$

para cualquier $x \in S$.

Sugerencia: Use lo que sabe de la función G(x, y) vista en clase.

7. Demuestre detalladamente que

$$\mathbf{P}_{x}(N(y) \ge m + 1 | N(y) \ge m) = \mathbf{P}_{y}(N(y) \ge 1).$$

8. Considere una cadena de Markov con espacio de estados $S = \{0, 1, 2, 3, 4, 5\}$ y matriz de transición

$$\begin{pmatrix} 1/2 & 1/2 & 0 & 0 & 0 & 0 \\ 1/3 & 2/3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1/8 & 0 & 7/8 & 0 \\ 1/4 & 1/4 & 0 & 0 & 1/4 & 1/4 \\ 0 & 0 & 3/4 & 0 & 1/4 & 0 \\ 0 & 1/5 & 0 & 1/5 & 1/5 & 2/5 \end{pmatrix}.$$

- a) Determine las clases de comunicación de esta cadena.
- b) ¿Hay clases que pueden acceder a otras clases?
- c) Determine cuales estados son transitorios y cuales son recurrentes.
- 9. De un ejemplo de una cadena de Markov con 2 estados absorbentes, 4 recurrentes (no absorbentes) y 3 transitorios.