

Measures of Attribute Selection

Dr. A. Ramesh

DEPARTMENT OF MANAGEMENT STUDIES

Agenda

- Measures of attribute selection using
 - Information Gain
 - Gain ratio
 - Gini Index

Example

 The following Table presents a training set, D, of classlabeled tuples randomly selected from the AllElectronics customer database

Han, J., Pei, J. and Kamber, M., 2011. *Data mining: concepts and techniques*. Elsevier.

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Example

- In this example, each attribute is discrete-valued
- Continuous-valued attributes have been generalized
- The class label attribute, buys computer, has two distinct values (namely, {yes, no}); therefore, there are two distinct classes (that is, m = 2)
- Let class C₁ correspond to 'yes' and class C₂ correspond to 'no'.
- There are nine tuples of class 'yes' and five tuples of class 'no'.
- A (root) node N is created for the tuples in D

Expected information needed to classify a tuple in D

- To find the splitting criterion for these tuples, we must compute the information gain of each attribute
- Let us consider Class: buys computer as decision criteria D
- Calculate information:
- = $-p_y \log_2 (p_y) p_n \log_2 (p_n)$
- Where p_v is probability of 'yes' and p_n is probability of 'no'

$$Info(D) = -\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right) = 0.940 \text{ bits.}$$

Calculation of entropy for 'Youth'

- Age can be:
 - youth
 - Middle_aged
 - Senior
- Youth

Youth	Class: buys computer
Yes	2
No	3

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	<u>youth</u>	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Calculation of entropy for 'Youth'

Calculate Entropy for youth:

• Entropy youth =
$$-\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5}$$

Middle_aged

middle	Class: buys computer
Yes	4
No	0

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_age	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle ageo	medium	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

Calculation of entropy for 'Middle Age'

Calculate Entropy for middle_aged

$$\bullet = -\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4}$$

For Senior

Senior	Class: buys computer
Yes	3
No	2

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Calculate Entropy for senior

Calculate Entropy for senior
=
$$-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}$$

The expected information needed to classify a tuple in D according to age

The expected information needed to classify a tuple in D if the tuples are

partitioned according to age is

$$Info_{age}(D) = \frac{5}{14} \times \left(-\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5}\right)$$

$$+\frac{4}{14} \times \left(-\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4}\right)$$

$$+\frac{5}{14} \times \left(-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}\right)$$

$$= 0.694 \text{ bits.}$$

Calculation information Gain of Age

Gain of Age:

$$Gain(age) = Info(D) - Info_{age}(D) = 0.940 - 0.694 = 0.246 \text{ bits.}$$

Calculation information Gain of Income

- Calculation of gain for income:
- Income cane be:
 - High
 - Medium
 - Low

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_ageo	medium	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

Calculate Entropy for high

• High:

High	Class: buys computer
Yes	2
No	2

Calculate Entropy for high:

$$= -(2/4)\log_2(2/4) - (2/4)\log_2(2/4)$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	<u>high</u>	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_ageo	medium	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

Calculate Entropy for 'medium'

Medium:

Medium	Class: buys computer
Yes	4
No	2

- Calculate Entropy for Medium:
 - $= -(4/6)\log_2(4/6) (2/6)\log_2(2/6)$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_ageo	mediu m	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

Calculate Entropy for 'low'

• Low:

Low	Class: buys computer
No	1
Yes	3

Calculate Entropy for Low:

$$= -(1/4)\log_2(1/4) - (3/4)\log_2(3/4)$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_ageo	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_ageo	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_ageo	medium	no	excellent	yes
13	middle_ageo	high	yes	fair	yes
14	senior	medium	no	excellent	no

Gain of income

 The expected information needed to classify a tuple in D if the tuples are partitioned according to income is:

Info
$$_{income}$$
 (D) = $(4/14)(-(2/4)\log_2(2/4) - (2/4)\log_2(2/4)) + (6/14)(-(4/6)\log_2(4/6) - (2/6)\log_2(2/6)) + (4/14) - (1/4)\log_2(1/4) - (3/4)\log_2(3/4)$
= 0.911
Gain of income : Info(D) - Info $_{income}$ (D)
= 0.94 - 0.911 = 0.029

Calculation of gain for student

- Calculation of gain for student
- Student can be:
 - Yes (7)No (7)

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	mediur	n no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	mediui	n no	fair	no
9	youth	low	yes	fair	yes
10	senior	mediur	ı yes	fair	yes
11	youth	mediui	ı yes	excellent	yes
12	middle_aged	mediui	n no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	mediui	n no	excellent	no

Calculate Entropy for No

No:

No	Class: buys computer
Yes	3
No	4

Calculate Entropy for No:

$$= -(3/7)\log_2(3/7) - (4/7)\log_2(4/7)$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	_no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	mediui	n <u>no</u>	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	mediui	1 <u>no</u>	fair	no
9	youth	low	yes	fair	yes
10	senior	mediur	n yes	fair	yes
11	youth	mediui	n yes	excellent	yes
12	middle_aged	mediui	n <u>no</u>	excellent	ves
13	middle_aged	high	yes	fair	yes
14	senior	mediui	1 <u>no</u>	excellent	no

Calculate Entropy for 'Yes'

Yes :

Yes	Class: buys computer
Yes	6
No	1

Calculate Entropy for Yes:

$$= -(6/7)\log_2(6/7) - (1/7)\log_2(1/7)$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	mediur	n no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	ng
7	middle_aged	low	yes	excellent	yes
8	youth	mediur	n no	fair	no
9	youth	low	yes	fair	yes
10	senior	mediur	ı <u>ves</u>	fair	yes
11	youth	mediui	ı <u>yes</u>	excellent	yes
12	middle_aged	mediui	n no	excellent	yes
13	middle_aged	high	-yes	fair	yes
14	senior	mediui	n no	excellent	no

Gain of student

- The expected information needed to classify a tuple in D if the tuples are partitioned according to student is:
- Info_{Student} (D) = (7/14) (-(3/7)log₂(3/7) (4/7)log₂(4/7)) + (7/14) (-(6/7)log₂(6/7) (1/7)log₂(1/7)) = 0.789
 - Gain(student) :

Info(D) - Info student (D) =
$$0.94 - 0.789 = 0.151$$

Calculation of gain for credit rating

- Calculation of gain for credit rating
- Credit rating can be:
 - − Fair → §
 - Excellent 6

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Calculate Entropy for Fair

• Fair:

Fair	Class: buys computer
Yes	6
No	2

Calculate Entropy for Fair:

$$= -(6/8)\log_2(6/8) - (2/8)\log_2(2/8)$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes .	fair	yes
14	senior	medium	no	excellent	no

Calculate Entropy for Excellent

• Excellent:

Yes	Class: buys computer					
Yes	3					
No	3					

Calculate Entropy for Excellent:

$$= -(3/6)\log_2(3/6) - (3/6)\log_2(3/6)$$

RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	<u>yes</u>
12	middle_aged	medium	no	<u>excellen</u> t	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Gain for credit rating

- The expected information needed to classify a tuple in D if the tuples are partitioned according to Credit rating is:
- Info Credit rating (D) = $(8/14)(-(6/8)\log_2(6/8) (2/8)\log_2(2/8)) + (6/14)(-(3/6)\log_2(3/6) (3/6)\log_2(3/6))$ =0.892
 - Gain for credit rating :

Info(D) - Info
$$_{\text{Credit rating}}$$
 (D) = $0.94 - 0.892 = 0.048$

Independent variable	Information gain
Age	0.246
Income	0.029
Student	0.151
Credit_rating	0.048

Selection of root classifier

- Because age has the highest information gain among the attributes, it is selected as the splitting attribute
- Node N is labelled with age, and branches are grown for each of the attribute's values
- The tuples are then partitioned accordingly
- Notice that the tuples falling into the partition for age = middle aged all belong to the same class
- Because they all belong to class "yes," a leaf should therefore be created at the end of this branch and labelled with "yes."

Decision tree

Decision tree

The final decision tree returned by the algorithm is shown in Figure

Thank You

