Departamento de Análisis Matemático, Universidad de Granada

Análisis Matemático, Grado en Ingeniería de Tecnologías de Telecomunicación Convocatoria de febrero de 2014

Ejercicio 1. (2 puntos) Calcula los siguientes límites:

a)
$$\lim_{x \to 0} \frac{\int_0^{e^{-1/x^2}} \sqrt{1 + 3 \sec^4(t)} \, dt}{e^{-1/x^2}}$$

b)
$$\lim_{x \to 0} \frac{\sqrt{1 + \tan(x)} - \sqrt{1 + \sin(x)}}{x^3}$$

Ejercicio 2. (2 puntos) Estudiar la existencia de extremos relativos de la función $f(x,y) = 2x^2 + 3y^2 - 4x - 5$ en \mathbb{R}^2 . Calcular los extremos absolutos de f en el conjunto

$$A = \{(x, y) \in \mathbb{R}^2 : 1/4 \leqslant x^2 + y^2 \leqslant 16\}.$$

Ejercicio 3. (2 puntos) Calcular $\iint_A \sqrt{9-x^2-y^2}d(x,y)$ donde

$$A = \{(x, y) \in \mathbb{R}^2 : 4 \le x^2 + y^2 \le 9, x \ge 0\}.$$

Ejercicio 4. (**2 puntos**) Se quiere construir un canalón con una plancha de metal de 30 cm de anchura doblando un tercio de la misma por cada lado con un ángulo θ . ¿Cómo se debe elegir θ para que el canalón pueda llevar la mayor cantidad de agua?

Ejercicio 5. (2 puntos) ¿Hay algún número a > 0 que verifique $a^{x/a} \ge x$ para todo x > 0? En caso afirmativo calcúlalo.

Granada, 10 de febrero de 2014