Find the value c that mates the function definal by
$$f(x) = (x^2 + c, x < 1)$$
 $(x-1, x > 1)$

continuous everywhere

$$\lim_{x \to 1^{-}} x \to 1^{-}$$

$$\left(1+c\right)$$

For what value of 'a' is the piecewise function f(x) continuous on the entire real line?

$$f(x) = \begin{cases} x^2 + 3 & x < 1 \\ 0 & x + 6 \end{cases}$$

$$0) \lim_{x \to 1} f(x) = f(1)$$

$$x \to 0$$

$$x \to 0$$

$$x \to 0$$

$$\lim (x^2+3) = (1)^2+3$$
 $|\lim (ax+6) = a(1)+6$
 $|x+1|^2$
 $|a+6|$

(3) Find the value for a.

$$-6 - 6$$

$$-2 = 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

Find	the		o.c	c 2	uch	4404	-(x):	- (را+×	× <u>_</u>	2,
		-								x >2	

continuous everywhere

$$\frac{c(2)+1}{2c+1}$$