2024 ADL HW1 Report

r12944005 陳乙馨

Q1: Data processing

Tokenizer

NLP 模型無法直接處理字詞,需要先將它們轉換為 token進行處理,當文本經過 tokenization 後,會包含以下主要資訊:

- Token IDs:每個 token 都會轉換成一個對應的數字 ID,這些 ID 來自模型的詞彙表。
- Attention mask: 用來區分 token 和 padding。有效 token 會被標記為 1 · padding token (補齊 固定長度)則會被標記為 0。
- Offsets (Offset Mapping): Offsets 是 token 和原始文本之間的位置 mapping。每個 token 都會對應文本中的起始和結束位置。
- Special Tokens:在文本中添加的特殊標誌·例如 [CLS] (用於表示整個句子的輸入)和 [SEP] (用於分隔句子或段落)。
- Squence IDs:用以判斷該 token 是屬於文本輸入的哪一部分(Ex:上下文或是問題)

在這個作業中,我分別使用了 google-bert/bert-base-chinese 和 hf1/chinese-lert-base 兩種模型及其對應的 tokenizer,他們皆是使用了 WordPiece 演算法,WordPiece 會把每個漢字作為一個最基本的 token 單位、再根據出現的頻率高低決定要不要合併某些子詞,頻率出現較低的字對將會優先被合併,這樣可以更有效地減少詞彙表中的低頻詞 (與 BPE 中頻率高的子詞會先被拆解掉不同),同時優化模型對新詞的處理能力。

Answer Span

How did you convert the answer span start/end position on characters to position on tokens after BERT tokenization?

我直接使用了 hugginggace 上 sample code 的方法,首先先將原始文本的 ground truth character span start_char 和 end_char 記錄起來,再利用 offset mapping 去尋找對應到 start_char 的那個 token 的 index、以及對應到 end_char 的那個 token 的 index · 即完成將 character span 轉換為 token span 的標記。

如果碰到一些例外狀況,例如:如果涵蓋整段上下文的起始 token 與結尾 token map 回原始文本後並沒有涵蓋到 (start_char, end_char),則直接插入 cls_index 代表沒有答案。

After your model predicts the probability of answer span start/end position, what rules did you apply to determine the final start/end position?

對於每個問題,模型會 output start_logits 和 end_logits ,他們分別是一個 array,經過 softmax 後記錄每個 token 是 span 的起點或是終點的機率分布 (Ex:當 start_logits = [0.1, 0.5, 0.2, 0.3, 0.1] ,則代表第 1 個 token 被預測為答案開始位置的概率為 0.1、第 2 個 token 的概率為 0.5 … 依此類推)。但是因為每個問題的 tokens 長度不一、array 的長度也會不同,因此需要透過 function create_and_fill_np_array 做 padding 使所有 start_logits 和 end_logits 長度一致、方便做後續處理。

我篩選最終答案的做法也是參考 hugginggace 上的 sample code·就是在 start_logits、 end_logits array 中取作為起點概率 + 終點概率最高的 span 為答案·最後再把 token map 回文本·不過需要注意排除一些例外像是 token index 不在 offset mapping 的範圍內、導致無法 map 到原始的文本。

Q2: Modeling with BERTs and their variants

Optimizer : AdamWScheduler : Linear

• Loss function: Cross-Entropy Loss (According to <a href="https://huggingface.com/huggingface

• max_seq_length: 512

Basic Result

	Multiple Choice	Question Answering
model	<pre>google-bert/bert-base- chinese</pre>	google-bert/bert-base- chinese
epochs	3	10
learning rate	3e-5	1e-5
per_device_train_batch_size	1	2
gradient_accumulation_steps	2	4
evaluation accuracy	0.9541	0.7913
Kaggle public score		0.6678

My Best Result (Variant)

	Multiple Choice	Question Answering
model	hfl/chinese-lert-base	hfl/chinese-lert-base
epochs	3	10
learning rate	3e-5	1e-5
per_device_train_batch_size	2	2
gradient_accumulation_steps	4	4
evaluation accuracy	0.9684	0.8311
Kaggle public score		0.8035

我原本是使用 spec 上過基本 baseline 的參數以及模型 (即 basic result)·結果表現不彰·因此我做了 幾項改變。

- 1. BERT to LERT: 根據 <u>作者 的 github</u>,LERT在十個中文自然語言理解任務中表現都遠優於 baseline,因為 LERT 不僅依賴掩碼語言模型(MLM)進行預訓練,還引入了三種語言學任務,這 使得模型比起 bert 能夠更深入地學習語言的結構和特徵。
- 2. 提高 Multiple Choice 的 batch size (2到8),增強收斂性。

以下是更換模型以及調整參數後的結果比較:

	Multiple Choice Accuracy	Question Answering Accuracy	Kaggle Public Score
google-bert/bert- base-chinese	0.9541	0.7913	0.6678
hfl/chinese-lert- base	0.9684	0.8311	0.8035

Q3: Curves

以下是根據 my best result 所繪製的曲線圖。

Q4: Pre-trained vs Not Pre-trained

Scratch Result

	Multiple Choice	Question Answering
tokenizer	google-bert/bert-base- chinese	google-bert/bert-base- chinese
epochs	3	10
learning rate	3e-5	1e-5
per_device_train_batch_size	2	2
gradient_accumulation_steps	4	4
evaluation accuracy	0.5194	0.0708

我使用了跟 my best result 完全相同的參數、以及 bert-base-chinese 的 tokenizer 來訓練 scratch model,結果顯示他在 multiple choice 的 task 上仍有超過五成的準確度,但對於需要精確得到 span 的 QA 任務來說,準確度就只剩下不到一成。

以下是他和 pre-trained bert-base-chinese 的比較:

	Multiple Choice Accuracy	Question Answering Accuracy
Pretrained	0.9541	0.7913
Not-pretrained	0.5194	0.0708

Reference

- ChatGPT (mainly for sample code comprehension and plotting curves)
- WordPiece Tokenization
- <u>LERT Introduction</u>
- <u>Hugging Face : Multiple Choice</u>
- <u>Hugging Face : Question Answering</u>
- <u>HuggingFace : Tokenizer</u>