<u>Maths</u>: Projections et symétries

Contents

1	Pro	jections	2
	1.1	Définition (projection)	2
	1.2	Exemple	2
	1.3	Propriété (linéarité, idempotence)	2
	1.4	Propriété	3
	1.5	Propriété (éléments caractéristiques)	3
2 Symétries		nétries	3
	2.1	Définition (symétrie)	3
	2.2	Exemple	3
	2.3	Propriété (automorphisme, involution)	4
	2.4	Propriété	4
	2.5	Propriété (éléments caractéristiques)	4
	2.6	Propriété (relation projection / symétrie)	5

Dans tout ce qui suit, K désigne un corps, et E un K-espace vectoriel.

1 Projections

1.1 Définition (projection)

Soient A, B deux sous-espaces vectoriels supplémentaires de E (i.e $E = A \oplus B$). La projection (ou le projecteur) sur A parallèlement à B est l'application

$$p : E \longrightarrow E$$
$$a+b \longmapsto a$$

où $(a,b) \in A \times B$.

On appelle A et B les éléments caractéristiques de p.

Remarque : cette application est bien définie puisque $E = A \oplus B$ (donc $\forall x \in E, \exists ! (a, b) \in A \times B \mid x = a + b$).

1.2 Exemple

Prenons $E = \mathbb{R}^2$, et A, B deux droites vectorielles non parallèles (*i.e* $E = A \oplus B$). Soit p la projection sur A parallèlement à B, et $x = a + b \in E$, où $(a, b) \in A \times B$.

1.3 Propriété (linéarité, idempotence)

Soit p une projection de E.

Alors:

- $p \in \mathcal{L}(E)$
- $p \circ p = p$ (idempotence)

Remarque : Comme on travaille dans l'anneau $(\mathcal{L}(E),+,\circ)$, on note $p^2=p\circ p$.

1.4 Propriété

Soit $f \in \mathcal{L}(E) \mid f^2 = f$.

Alors f est une projection.

1.5 Propriété (éléments caractéristiques)

Soit p une projection de E.

Alors:

- $E = \operatorname{Im}(p) \oplus \operatorname{Ker}(p)$
- p est la projection sur Im(p) et parallèlement à Ker(p).

Autrement dit, avec les notations de la définition 1.1, on a :

$$\begin{cases} A = \operatorname{Im}(p) \\ B = \operatorname{Ker}(p) \end{cases}$$

• $\operatorname{Im}(p) = \{x \in E \mid x = p(x)\} = \operatorname{Ker}(p - \operatorname{id}_E)$

2 Symétries

2.1 Définition (symétrie)

Soient A,B deux sous-espaces vectoriels supplémentaires de E (i.e $E=A\oplus B$). La symétrie par rapport à A et parallèlement à B est l'application

où $(a,b) \in A \times B$.

On appelle A et B les éléments caractéristiques de s.

2.2 Exemple

Prenons $E = \mathbb{R}^2$, et A, B deux droites vectorielles non parallèles ($i.e \ E = A \oplus B$). Soit s la symétrie par rapport à A et parallèlement à B, et $x = a + b \in E$, où $(a, b) \in A \times B$.

2.3 Propriété (automorphisme, involution)

Soit s une symétrie de E.

Alors:

- $s \in GL(E)$ (automorphisme)
- $s^2 = id_E$ (involution)

2.4 Propriété

Soit $f \in \mathcal{L}(E) \mid f^2 = \mathrm{id}_E$.

Alors f est une symétrie de E.

2.5 Propriété (éléments caractéristiques)

Soit s une symétrie de E.

Alors:

- $E = \operatorname{Ker}(s \operatorname{id}_E) \oplus \operatorname{Ker}(s + \operatorname{id}_E)$
- s est la symétrie par rapport à $Ker(s id_E)$ et parallèlement à $Ker(s + id_E)$.

Autrement dit, avec les notations de la définition 2.1, on a :

$$\begin{cases} A = \operatorname{Ker}(s - \mathrm{id}_E) \\ B = \operatorname{Ker}(s + \mathrm{id}_E) \end{cases}$$

Remarque:

$$Ker(s - id_E) = \{x \in E \mid s(x) = x\}$$
$$Ker(s + id_E) = \{x \in E \mid s(x) = -x\}$$

2.6 Propriété (relation projection / symétrie)

Soient $p, s \in \mathcal{L}(E) \mid s = 2p - \mathrm{id}_E$.

On a alors :

p projection \Leftrightarrow s symétrie

Et dans ce cas, on a:

$$\begin{cases} \operatorname{Im}(p) = \operatorname{Ker}(s - \mathrm{id}_E) \\ \operatorname{Ker}(p) = \operatorname{Ker}(s + \mathrm{id}_E) \end{cases}$$

 $i.e\ p$ et s ont les mêmes éléments caractéristiques.

