Computer, pensiero computazionale e strutture dati

Informatica di base – a.a. 2018/2019

Silvio Peroni

0000-0003-0530-4305

Dipartimento di Filologia Classica e Italianistica, Università di Bologna, Bologna, Italia silvio.peroni@unibo.it – @essepuntato – https://www.unibo.it/sitoweb/silvio.peroni/

Computer

Qualche definizione?

Definizione (oggi): macchina per l'elaborazione di dati rappresentati da caratteri alfanumerici variamente codificati, che vengono sottoposti a procedimenti aritmetici e logici, memorizzati in archivi e resi reperibili e trasmissibili

Definizione (diciassettesimo secolo): qualcuno che esegue calcoli matematici

Definizione (accezione più generica): qualsiasi **agente** (ovvero, quell'entità in grado di agire se istruita appropriatamente, come una <u>persona</u> o una <u>macchina</u>) che sia in grado di **fare calcoli** e produrre una risposta (detta **output**) a partire da qualche informazione iniziale (detta **input**)

Dai computer umani a quelli meccanici

Computer umani sono stati impiegati:

- per calcolare le coordinate di oggetti extraterrestri
- per creare tabelle di conversione verso il nuovo sistema metrico

Problema: calcoli lunghi, errori facili

Soluzione: Babbage (1822) sviluppa la

Macchina Differenziale (solo un

prototipo parziale)

Limiti e sviluppi

La Macchina Differenziale non era programmabile e, di conseguenza, era in grado di utilizzare solo un numero limitato di operazioni sull'input ricevuto

Babbage (1837) progetta una la **Macchina Analitica** (nessun prototipo, solo disegni del progetto)

Cent'anni dopo

Electronic Numerical Integrator and Computer (ENIAC, 1946): il primo computer interamente digitale, sviluppato negli Stati Uniti d'America

Completamente programmabile attraverso l'uso di cavi e interruttori

Punto fisso nel tempo da cui tutti i moderni computer sono poi stati creati

Programmare o istruire?

Programmare un computer: OK se ci riferiamo a un computer elettronico, ma se ci riferissimo a un computer umano? Possiamo **programmare** una persona?

Casomai diciamo che **parliamo** con una persona per **istruirla** sull'esecuzione di specifiche azioni attraverso l'uso di un particolare **linguaggio** (in questo caso naturale) che viene usato come canale di comunicazione

Si dovrebbero usare gli stessi verbi, ovvero **parlare** e **istruire**, anche quando ci si riferisce ad un computer elettronico

Scrivere un programma: **comunicare** ad un computer elettronico utilizzando un linguaggio (in questo caso formale) che sia l'istruttore umano sia il computer stesso possano comprendere

Pensiero computazionale

Approccio per **risolvere problemi**, sviluppare sistemi e capire il comportamento umano che riprende i **concetti fondamentali della computazione** (= calcolo)

Definisce i **processi mentali** che coinvolgiamo quando **formuliamo un certo problema** ed esprimiamo le relative **soluzioni** usando un **linguaggio** che un **computer** (sia esso umano o macchina) può comprendere e, conseguentemente, **eseguire**

Astrazione: processo di **rimozione dei dettagli trascurabili** di una situazione in modo da semplificarla, per così **focalizzare l'attenzione sulle sue caratteristiche principali**

Quando usiamo le astrazioni

Usiamo queste astrazioni in modo intenzionale o inconscio nella vita quotidiana

Cosa hanno in comune le situazioni qui sotto?

Obiettivi del pensiero computazionale

Dare **nuovamente forma** alle astrazioni che abbiamo già immagazzinato in passato come conseguenza della nostra esperienza personale – e che, spesso, **riutilizziamo inconsciamente**

Essere nuovamente e interamente coscienti di queste astrazioni significa doverle ridefinire usando un linguaggio appropriato per renderle comprensibili a un computer

Obiettivo principale (dell'insegnamento) del pensiero computazionale: permettere alle persone di **pensare come se fossero** *computer scientist*, anche quando bisogna affrontare attività del quotidiano

Organizzare l'informazione

Fa parte del processo di astrazione il descrivere l'informazione presente in una certa situazione secondo un'**organizzazione generica e riutilizzabile** in più contesti

Si usano quelle che comunemente sono chiamate **strutture dati**: una sorta di contenitore dove possiamo posizionare alcune informazioni, e che fornisce dei metodi specifici per aggiungere e richiedere pezzi di questa informazione

Esempi: liste, code, pile, insiemi, dizionari, alberi e grafi

Qualche idea di cosa possano essere questi oggetti?

Lista

Sequenza di elementi **ordinati** e potenzialmente **ripetibili** che si possono contare, perché si può sapere quanti elementi essa contiene in un dato momento

Research Articles in Simplified HTML: a Web-first format for HTML-based scholarly articles

Silvio Peroni¹, Francesco Osborne², Angelo Di Iorio¹, Andrea Giovanni Nuzzolese³, Francesco Poggi¹, Fabio Vitali¹ and Enrico Motta²

Digital and Semantic Publishing Laboratory, Department of Computer Science and Engineering, University of Bologna, Bologna, Italy

² Knowledge Media Institute, Open University, Milton Keynes, United Kingdom

Semantic Technologies Laboratory, Institute of Cognitive Sciences and Technologies, Italian National Research Council, Rome, Italy

ABSTRACT

Purpose. This paper introduces the Research Articles in Simplified HTML (or RASH), which is a Web-first format for writing HTML-based scholarly papers; it is accompanied by the RASH Framework, a set of tools for interacting with RASH-based articles. The paper also presents an evaluation that involved authors and reviewers of RASH articles submitted to the SAYE-SD 2015 and SAYE-SD 2016 workshops.

REFERENCES

Alexander C. 1979. The timeless way of building. Oxford: Oxford University Press.

Atkins Jr T, Etemad EJ, Rivoal F. 2017. CSS Snapshot 2017. W3C Working Group Note
31 January 2017. World Wide Web Consortium. Available at https://www.w3.org/ TB/cs3-roadmag/.

Berjon R, Ballesteros S. 2015. What is scholarly HTML? Available at http://scholarly.vernacular.io/.

Bourne PE, Clark T, Dale R, De Waard A, Herman I, Hovy EH, Shotton D. 2011.
FORCE11 White Paper: improving The Future of Research Communications and
e-Scholarship. White Paper, 28 October 2011. FORCE11. Available at https://www.
force11.org/white_paper.

Brooke J. 1996. SUS-A quick and dirty usability scale. Usability Evaluation in Industry 189(194):4-7.

Capadisli S, Guy A, Verborgh R, Lange C, Auer S, Berners-Lee T. 2017. Decentralised authoring, annotations and notifications for a read-write web with dokieli. In: Proceedings of the 17th international conference on web engineering. Cham: Springer, 469–481 DOI 10.1007/978-3-319-60131-1 33.

Pila

Una specie di lista vista da un particolare punto di vista con uno specifico insieme di operazioni che si possono effettuare sugli elementi della pila

Le operazioni di aggiunta e rimozione seguono una strategia last in first out (LIFO)

Coda

Una specie di lista vista da un'altra prospettiva e con uno specifico insieme di operazioni che possono essere effettuate sugli elementi che contiene

Le operazioni di aggiunta e rimozione seguono una strategia first in first out (FIFO)

Insieme

Una collezione di elementi non ordinati e non ripetibili che si possono contare

Dizionario

Una collezione non ordinata di elementi definiti da coppie chiave-valore che si possono contare, dove la chiave non è ripetibile

Albero

Una struttura dati composta da un insieme di nodi collegati tra loro da una relazione gerarchica genitore-figlio

Grafo

Un insieme di nodi di una rete collegati da archi (che possono essere orientati)

Usati per descrivere, in termini astratti, molte situazioni del mondo reale: tragitti tra città, relazioni tra persone nei social network, l'organizzazione dei collegamenti ipertestuali tra pagine Web e le relazioni concettuali nelle basi di dati

Fine

Computer, pensiero computazionale e strutture dati

Informatica di base – a.a. 2018/2019

Silvio Peroni

0000-0003-0530-4305

Dipartimento di Filologia Classica e Italianistica, Università di Bologna, Bologna, Italia silvio.peroni@unibo.it – @essepuntato – https://www.unibo.it/sitoweb/silvio.peroni/

