Case Study II: A Web Server

Prof. Daniel A. Menascé
Department of Computer Science
George Mason University
www.cs.gmu.edu/faculty/menasce.html

© 2004 D. A. Menascé. All Rights Reserved.

Copyright Notice

 Most of the figures in this set of slides come from the book "Performance by Design: computer capacity planning by example," by Menascé, Almeida, and Dowdy, Prentice Hall, 2004. It is strictly forbidden to copy, post on a Web site, or distribute electronically, in part or entirely, any of the slides in this file.

2

The Web Server

- A large company uses an internal Web server to allow its programmers, testers, and documentation personnel to download two types of files:
 - PDF files containing documents and manuals
 - ZIP files containing software files.
- The server has one CPU and 4 identical disks.
- PDF files are stored on disks 1 and 2 (with evenly distributed access)
- ZIP files are stored in disks 3 and 4 (with evenly distributed access)

3

© 2004 D. A. Menascé. All Rights Reserved.

Capacity Planning Questions

- How many PDF and ZIP file downloads can be sustained concurrently with given response times?
- What is the impact of using Secure Sockets Layer (SSL) for secure downloads?

4

From the Web Log

		Elapsed Time
File Type	Size (KB)	(sec)
PDF	303	1.43
ZIP	1233	5.81
ZIP	1077	5.08
PDF	315	1.48
ZIP	1240	5.84
PDF	413	1.95
ZIP	1139	5.37
ZIP	1198	5.64
PDF	323	1.52
ZIP	1188	5.60

© 2004 D. A. Menascé. All Rights Reserved.

PDF File Size Statistics (in KB)
Mean	377.6
Median	375.5
Standard Deviation	43.1
Sample Variance	1859.5
Range	149.2
Minimum	300.4
Maximum	449.6
Sum	155,183
Count	411
1/2 95% Confidence Interval	4.17

Cpdf = 43.1 KB / 377.6 KB = 0.114

Confidence Interval Estimation of the Mean

- Known population standard deviation.
- Unknown population standard deviation:
 - Large samples: sample standard deviation is a good estimate for population standard deviation. OK to use normal distribution.
 - Small samples and original variable is normally distributed: use t distribution with n-1 degrees of freedom.

© 2004 D. A. Menascé. All Rights Reserved.

7

Confidence Interval Estimation of the Mean

$$\Pr[c_1 \le m \le c_2] = 1 - a$$

 (c_1,c_2) : confidence interval

α: significance level (e.g., 0.05)

 $1-\alpha$: confidence coefficient (e.g., 0.95)

 $100(1-\alpha)$: confidence level (e.g., 95%)

8

 $100 (1 - \alpha)$ of the 100 samples include the population mean μ .

9

© 2004 D. A. Menascé. All Rights Reserved.

Central Limit Theorem

• If the observations in a sample are independent and come from the same population that has mean μ and standard deviation σ then the sample mean for **large** samples has a normal distribution with mean μ and standard deviation σ / \sqrt{n} .

$$\overline{x} \sim N(\mathbf{m}, \mathbf{s} / \sqrt{n})$$

• The standard deviation of the sample mean is called the *standard error*.

10

Confidence Interval (large (n>30) samples)

• 100 $(1-\alpha)$ % confidence interval for the population mean:

$$(\overline{x}-z_{1-a/2}\frac{s}{\sqrt{n}},\overline{x}+z_{1-a/2}\frac{s}{\sqrt{n}})$$

 \overline{x} : sample mean

s: sample standard deviation

n: sample size

 $z_{1-\boldsymbol{a}/2}$: (1- $\alpha/2$)-quantile of a unit normal variate (N(0,1)).

12

Confidence Interval (small samples, normally distributed population)

• $100 (1-\alpha)\%$ confidence interval for the population mean:

$$(\overline{x} - t_{[1-a/2;n-1]} \frac{s}{\sqrt{n}}, \overline{x} + t_{[1-a/2;n-1]} \frac{s}{\sqrt{n}})$$

 \overline{x} : sample mean

s: sample standard deviation

n: sample size

 $t_{[1-\mathbf{a}/2;n-1]}$: critical value of the t distribution with n-1 degrees of freedom for an area of $\alpha/2$ for the upper tail.

13

© 2004 D. A. Menascé. All Rights Reserved.

Computing Important Quantiles in Excel

 $z_{1-\mathbf{a}/2} = (1-\alpha/2)$ -quantile of a unit normal variate (N(0,1)): = NORMINV (1- α /2,0,1) = NORMSINV(1- α /2) Half-interval = CONFIDENCE (α , σ ,n)

 $t_{[1-\mathbf{a}/2;n-1]} = (1-\alpha/2)$ -quantile of *t*-variate with *n-1* degrees of freedom = TINV(α ,n-1)

14

ZIP File Size Statistics ((in KB)
Mean	1155.6
Median	1157.9
Standard Deviation	85.7
Sample Variance	7350.0
Range	299.8
Minimum	1000.1
Maximum	1299.9
Sum	680,650
Count	589.0
1/2 95% Confidence Interval	6.92

15

© 2004 D. A. Menascé. All Rights Reserved.

Building the Performance Model

• Computing concurrency levels:

$$\overline{N}_{pdf} = \frac{\sum_{i=1}^{411} e_{i,pdf}}{\text{interval duration}} = \frac{731.5}{200} = 3.7$$

$$\overline{N}_{zip} = \frac{\sum_{i=1}^{589} e_{i,zip}}{\text{interval duration}} = \frac{3207.7}{200} = 16.1$$

 Will use a ratio of 1:4 for PDF to ZIP file downloads.

16

Building the Performance Model

- Computing Service Demands
 - Experiments conducted on a similar machine.
 - A set of *n* dummy files with files sizes of 10 KB, 100 KB, 200 KB, 500 KB, 800 KB, and 1000 KB are used.
 - For each file size, the n files are downloaded while measuring the CPU and disk utilization of the test server.
 - Service demand = utilization/(n / interval)

17

© 2004 D. A. Menascé. All Rights Reserved.

9

Service Demands

$$D_{CPU,pdf} = 0.1046 \times 377.6 - 0.0604 = 39.4$$
msec

$$D_{disk1,pdf} = D_{disk2,pdf} = 0.5 \times (0.4078 \times 377.6 + 0.2919) = 77.1$$
msec

$$D_{\mathit{disk3},\mathit{pdf}} = D_{\mathit{disk4},\mathit{pdf}} = 0$$

$$D_{CPU,zip} = 0.1046 \times 1155.6 - 0.0604 = 120.8$$
msec

$$D_{disk3, zip} = D_{disk4, zip} = 0.5 \times (0.4078 \times 1155.6 + 0.2919) = 235.8$$
msec

$$D_{disk1,zip} = D_{disk2,zip} = 0$$

20

Original Layout QN Model

	Service Demands (sec)		
CPU	0.0394	0.1208	
Disk 1 (PDF)	0.0771	0.0000	
Disk 2 (PDF)	0.0771	0.0000	
Disk 3 (ZIP)	0.0000	0.2358	
Disk 4 (ZIP)	0.0000	0.2358	

Closed QN:

two classes: PDF and ZIP.customer population ratio: 1:4

21

© 2004 D. A. Menascé. All Rights Reserved.

Balanced Configuration

	Service Demands (sec)		
CPU	0.0394	0.1208	
Disk 1 (PDF)	0.0386	0.1179	
Disk 2 (PDF)	0.0386	0.1179	
Disk 3 (ZIP)	0.0386	0.1179	
Disk 4 (ZIP)	0.0386	0.1179	

22

Secure Download Scenarios

- Use of Secure Sockets Layer (SSL) for authentication and data integrity and confidentiality.
- SSL has a handshake phase during which public key encryption is used to exchange secrets used to generate a symmetric key.

25

© 2004 D. A. Menascé. All Rights Reserved.

Symmetric Encryption and Decryption A cyphertext Hi Bob. Encryption Key_e Key_e Key_d Key_e Second D. A. Menascé. All Rights Reserved.

13

Public Key Encryption and Decryption

© 2004 D. A. Menascé. All Rights Reserved.

Performance Considerations

- Public Key (PK) cryptography is order of magnitudes slower than symmetric key cryptography.
 - encrypting a 128-byte block using a public key of 512 bits takes 3.5 msec on a Pentium-II 266 MHz while symmetric key encryption using AES would take less than one microsecond on the same machine.

28

Performance Considerations

- Symmetric key cryptography is not scalable to a large number of users: they are required to share a secret key.
- It is faster to encrypt with a public key than to decrypt with a secret key.

29

© 2004 D. A. Menascé. All Rights Reserved.

15

Performance of Message Digest Functions

 Message digest generation is a fast operation. For example, the hash generation rate of SHA-1 is 13 clock cycles per byte on a Pentium machine. So, a digest of a 1-Mbyte file would be generated in approximately 13 msec on a 1 GHz Pentium machine.

33

© 2004 D. A. Menascé. All Rights Reserved.

17

Verification of a Server Certificate

© 2004 D. A. Menascé. All Rights Reserved.

SSL Connection Establishment

Pc = Probability that a cached session state is reused.

38

37

SSL Connection Establishment

SSL Connection Establishment

SSL Connection Establishment

SSL Connection Establishment

CPU Times for Various Security Options

	Handshake	CPU Processing
	Time (msec)	Time per KB (msec)
Low Security	10.2	0.104
Medium Security	23.8	0.268
High Security	48.0	0.609

Levels of security depend on key lengths and on the strength of the security algorithms used.

Additional Service Demands (sec) for Secure Download

	PDF	ZIP
Low Security	0.0495	0.1304
Medium Security	0.1250	0.3333
High Security	0.2781	0.7519

© 2004 D. A. Menascé. All Rights Reserved.

43

Results for Secure Downloads

No. Concurrent	X_PDF	X_ZIP	R_PDF	R_ZIP
Downloads	(files/sec)	(files/sec)	sec	sec
		Low S	Security	
20	2.25	3.15	1.78	5.09
40	2.26	3.17	3.55	10.08
60	2.25	3.18	5.32	15.10
80	2.25	3.18	7.10	20.12
	Medium Security			
20	1.22	1.75	3.28	9.13
40	1.22	1.76	6.56	18.19
60	1.22	1.76	9.85	27.27
	High Security			
20	0.63	0.91	6.34	17.49
40	0.63	0.92	12.69	34.93

44

Experimental Comparison of Two Servers

- Factors that affect performance: processor speed, number of processors, and main memory.
- Levels: values of a factor.

Factor	Levels
Processor Speed (GHz)	2.0, 2.4, 2.8, 3.1
No. processors	1, 2, 4, 8
Main memory (GB)	1, 2, 4

45

© 2004 D. A. Menascé. All Rights Reserved.

Using Confidence Intervals to Compare the Two Servers

- Select a representative workload and apply it to the two servers and measure the download times in each case.
- Compute the difference between the download times.

			Elapsed Time (sec) Original	Elapsed Time (sec) New	Now-
Ty	pe S	ize (KB)	Server	Server	Original
PI)F	300	1.42	1.39	-0.03
PI)F	301	1.42	1.38	-0.04
PI)F	301	1.42	1.38	-0.03
PE)F	301	1.42	1.38	-0.04
PI)F	302	1.42	1.41	-0.01
PI)F	302	1.42	1.42	0.00
PI)F	302	1.42	1.38	-0.04
_	_				
ZI ZI		1000 1001	4.71 4.72	4.71 4.58	-0.01 -0.14
ZI		1001	4.72	4.58	-0.14
ZI		1002	4.72	4.60	-0.13
ZI		1005	4.73	4.55	-0.18
ZI		1005	4.73	4.71	-0.02
ZI		1005	4.74	4.62	-0.12
ZI	P	1005	4.74	4.58	-0.15
ZI	P	1006	4.74	4.58	-0.16
ZI	Р	1007	4.75	4.62	-0.13

46

Using Confidence Intervals to Compare the Two Servers

- Compute the 95% confidence interval for the average difference between the download times.
- If the 95% confidence interval for the average difference contains zero, then the two servers are statistically identical at the 95% confidence level.

Difference (new-orig) for PDF Files:			
Mean	-0.0357		
Standard Deviation	0.0235		
Lower bound 95% CI Difference	-0.0380		
Upper bound 95% CI Difference	-0.0334		

Difference (new-orig) for ZIP Files:		
Mean	-0.1109	
Standard Deviation	0.0631	
Lower bound 95% CI Difference	-0.1160	
Upper bound 95% CI Difference	-0.1058	

The new server outperforms the original server for both PDF and ZIP files at the 95% confidence

47