ΦΥΛΛΑΔΙΟ 2

2.2. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

- **2.1.** Αν οι αριθμοί α,β είναι ομόσημοι, να αποδείξετε ότι: $\alpha < \beta \Leftrightarrow \frac{1}{\alpha} > \frac{1}{\beta}$
- **2.2.** Να αποδείξετε ότι $(x^2+1)(y^2+4) \ge (xy+2)^2$
- **2.3.** Αν ισχύει ότι $\alpha > \beta > 1$, να αποδείξετε ότι: $\beta(\alpha+1) > \alpha+\beta^2$
- **2.4.** Αν ισχύει α > β > 0 , να αποδείξετε ότι $\alpha^7 \frac{1}{\alpha}$ > $\beta^7 \frac{1}{\beta}$
- **2.5.** Να αποδείξετε ότι $\alpha\beta \le \frac{\alpha^2 + \beta^2}{2} \le \frac{\alpha^3 \beta^3}{\alpha \beta}$, για $\alpha \ne \beta$.
- **2.6.** α) Αν $x \ne 3$, να συγκρίνετε τους αριθμούς $\alpha = x^2 + 4$ και $\beta = 6x 5$
 - β) Αν $\alpha < \beta$, να συγκρίνετε τους αριθμούς $\alpha^3 \beta$ και $\alpha^2 \beta \alpha$
- **2.7.** Αν ισχύει $0 < \alpha < \beta$, να συγκρίνετε τους αριθμούς:

$$\alpha$$
) $\frac{\alpha}{\beta}$, 1, $\frac{\beta}{\alpha}$

β)
$$(\alpha \beta)^{10}$$
 και β^{20}

- **2.8.** Να αποδείξετε ότι $x^2 + xy + y^2 \ge 0$
- **2.9.** α) Να αποδείξετε ότι $\alpha^2 + \beta^2 + 5 \ge 2(\alpha 2\beta)$
 - β) Πότε ισχύει η ισότητα στην παραπάνω σχέση?
- **2.10.** Να αποδείξετε ότι $2\alpha^2 6\alpha + 9 > 0$
- **2.11.** α) Αν $x \ne 1$, να αποδείξετε ότι $\frac{x^3 2}{x 1} > \frac{x^2 2x}{x 1}$
 - β) Να αποδείξετε ότι $\frac{x}{x^2+1} \le \frac{1}{2}$

- **2.12.** Αν ισχύει $1 \le \alpha \le 3$ και $-4 \le \beta \le -2$, να βρείτε μεταξύ ποιών αριθμών βρίσκονται οι τιμές των επόμενων παραστάσεων:
- α) $2\alpha + 3\beta$ β) $\alpha \beta$ γ) $\alpha^2 + \beta^2$ δ) $\frac{\alpha}{\beta}$

- **2.13.** Έστω οι αριθμοί $\alpha, \beta, \gamma > 0$. Να αποδείξετε ότι:
- α) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} \ge 2$
- β) $(α + β)(β + γ)(γ + α) \ge 8 αβγ$
- γ) Αν επιπλέον ισχύει α + β + γ =1, τότε: $(\frac{\alpha}{\beta}-1)(\frac{1}{\beta}-1)(\frac{1}{\nu}-1) \ge 8$

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

Θέμα 2ο

- **12673.** Έστω α,β πραγματικοί αριθμοί για τους οποίους ισχύει: $0 < \alpha < \beta$.
- α) Να αποδείξετε ότι $\frac{3}{\beta} < \frac{3}{\alpha}$.
- β) Να αποδείξετε ότι $\alpha^3 + \frac{3}{\beta} < \beta^3 + \frac{3}{\alpha}$.
- **12922.** Δίνονται οι παραστάσεις $A = \alpha^2 + \beta^2$ και $B = 2 \alpha \beta$, α , $\beta \in R$.
 - α) Να βρείτε τις τιμές των α , $\beta \in R$ για τις οποίες A = 0.
 - β) Να αποδείξετε ότι A B ≥ 0 για κάθε α , β ∈ R.
 - γ) Να βρείτε τη σχέση μεταξύ των α , $\beta \in R$ ώστε να ισχύει A B = 0.
- **13266.** Δίνονται οι παραστάσεις $A = \alpha^2 + 4\alpha + 5$ και $B = (2\beta + 1)^2 1$, με α , $\beta \in R$.
 - α) Να δείξετε ότι για κάθε α , $\beta \in R$ ισχύει $A = (\alpha + 2)^2 + 1$.
 - β) i. Nα δείξετε ότι A+B≥0.
 - ii. Για ποιες τιμές των α , $\beta \in R$ ισχύει A+B=0;
- 13323. α) Να αποδείξετε ότι για οποιουσδήποτε πραγματικούς αριθμούς x, y ισχύει:

$$(x-1)^2 + (y+4)^2 = x^2 + y^2 - 2x + 8y + 17$$

β) Να βρείτε τους πραγματικούς αριθμούς x και y ώστε: $x^2 + y^2 - 2x + 8y + 17 = 0$.

14410. Δίνονται οι παραστάσεις A και B με $A = \alpha^2 + \alpha + \frac{1}{4}$ και $B = (\beta - 3)^2$.

α)

- i. Να δείξετε ότι A+B≥0 για κάθε α , $\beta ∈ R$.
- ii. Να προσδιορίσετε τους αριθμούς α , β έτσι, ώστε A+B=0.
- β) Υπάρχουν τιμές των α , $\beta \in R$, ώστε A = -B; Να αιτιολογήσετε την απάντησή σας.

14475. Αν α και β πραγματικοί αριθμοί μ ε $2 \le \alpha \le 4$ και $-4 \le \beta \le -3$, να βρείτε τα όρια μεταξύ των οποίων περιέχεται η τιμή καθεμιάς από τις παραστάσεις:

$$\alpha$$
) $\alpha + 2\beta$

$$\beta$$
) $\alpha - \beta$.

- **14492.** Ορθογώνιο παραλληλόγραμμο έχει μήκος x εκατοστά και πλάτος y εκατοστά, αντίστοιχα. Αν για τα μήκη x και y ισχύει: $4 \le x \le 7$ και $2 \le y \le 3$ τότε:
 - α) Να βρείτε μεταξύ ποιων τιμών κυμαίνεται η τιμή της περιμέτρου του ορθογωνίου παραλληλογράμμου.
- β) Αν το χ μειωθεί κατά 1 και το y τριπλασιαστεί, και να είναι μήκη των πλευρών ενός ορθογωνίου παραλληλογράμμου, τότε να βρείτε μεταξύ ποιων τιμών κυμαίνεται η τιμή της περιμέτρου του νέου ορθογωνίου παραλληλογράμμου.

14704. Αν $2 \le x \le 3$ και $1 \le y \le 2$, να βρείτε μεταξύ ποιων τιμών κυμαίνεται η τιμή καθεμιάς από τις παρακάτω παραστάσεις:

$$\alpha$$
) x + y

$$\gamma$$
) $\frac{x}{y}$

35040. Δίνονται οι παραστάσεις: $K = 2\alpha^2 + \beta^2 + 9$ και $\Lambda = 2\alpha(3-\beta)$, όπου α , $\beta \in R$.

- α) Να δείξετε ότι: $K \Lambda = (\alpha^2 + 2\alpha\beta + \beta^2) + (\alpha^2 6\alpha + 9)$.
- β) Να δείξετε ότι: $K \ge \Lambda$, για κάθε τιμή των α , β .
- γ) Για ποιες τιμές των α , β ισχύει η ισότητα $K = \Lambda$; Να αιτιολογήσετε την απάντησή σας.
- **35549.** Από το ορθογώνιο ABZH αφαιρέθηκε το τετράγωνο ΓΔΕΗ πλευράς *y*.
 - α) Να αποδείξετε ότι η περίμετρος του γραμμοσκιασμένου σχήματος ΕΖΒΑΓΔ που απέμεινε δίνεται από τη σχέση: $\Pi = 2x + 4y$.

- β) Αν ισχύει 5 < x < 8 και 1 < y < 2, να βρείτε μεταξύ ποιων αριθμών βρίσκεται η τιμή της περιμέτρου του παραπάνω γραμμοσκιασμένου σχήματος.
- **36884.** α) Να δείξετε ότι για οποιουσδήποτε πραγματικούς αριθμούς x, y ισχύει:

$$(x-1)^2+(y+3)^2=x^2+y^2-2x+6y+10.$$

- β) Να βρείτε τους αριθμούς x, y, ώστε: $x^2 + y^2 2x + 6y + 10 = 0$.
- **36899.** Δίνονται πραγματικοί αριθμοί α , β με α > 0 και β > 0. Να δείξετε ότι:
 - α) $\alpha + \frac{4}{\alpha} \ge 4$.
 - β) $\left(\alpha + \frac{4}{\alpha}\right) \left(\beta + \frac{4}{\beta}\right) \ge 16$.
- **37179.** Δίνονται οι παραστάσεις: $K = 2a^2 + \beta^2$ και $\Lambda = 2\alpha\beta$, όπου α , $\beta \in \mathbb{R}$.
 - α) Να αποδείξετε ότι: $K \ge \Lambda$,για κάθε τιμή των α , β .
 - β) Για ποιες τιμές των α , β ισχύει η ισότητα $K\!=\!\Lambda$;
- **37817.** Δίνεται η παράσταση $A = x^4 + \frac{x^4 4}{x^2 2}$, $x \neq \pm \sqrt{2}$..
 - α) Να δείξετε ότι $A = x^4 + x^2 + 2$.
 - β)
- i. Να αιτιολογήσετε γιατί A>0 για κάθε $x \neq \pm \sqrt{2}$.
- ii. Για ποια τιμή του x η παράσταση A παίρνει τη μικρότερη τιμή της;

14602. Av $0 < \alpha < 1$, τότε:

- α) Να αποδείξετε ότι $0 < \alpha^3 < \alpha$.
- β) Να διατάξετε από τον μικρότερο προς τον μεγαλύτερο τους αριθμούς:

$$0$$
, α^3 , 1 , α , $\frac{1}{\alpha}$

14713. Δίνεται η παράσταση $A = \frac{\alpha^3 + 2\alpha^2 + 9\alpha + 18}{\alpha^2 + 2\alpha}$, $\alpha > 0$. Να αποδείξετε ότι:

$$\alpha$$
) $\alpha^3 + 2\alpha^2 + 9\alpha + 18 = (\alpha^2 + 9)(\alpha + 2)$.

β) Για κάθε α>0ισχύει

i.
$$A = \frac{\alpha^2 + 9}{\alpha}$$
.

 $A \ge 6$. Πότε ισχύει η ισότητα A = 6;

Θέμα 4ο

14820. α) Να αποδείξετε ότι οι παρακάτω ανισότητες ισχύουν για κάθε $x \in \mathbb{R}$ και να βρείτε για ποιες τιμές του x ισχύουν ως ισότητες.

$$x^2 + x + 1 \ge \frac{3}{4}$$
.

$$x^2 - x + 1 \ge \frac{3}{4}$$
.

- β) Να δείξετε ότι $(x^2+x+1)(x^2-x+1) > \frac{9}{16}$ για κάθε $x \in \mathbb{R}$.
- γ) Δίνεται η παράσταση $A = \frac{(x^3-1)(x^3+1)}{x^2-1}$.
 - i. Να βρείτε για ποιες τιμές του $x \in \mathbb{R}$ ορίζεται η παράσταση A.

ii. Με τη βοήθεια του β) ή με οποιοδήποτε άλλο τρόπο θέλετε, να εξετάσετε αν η παράσταση A μπορεί να πάρει την τιμή $\frac{9}{16}$.

Σχολικό Βιβλίο

MUST SEE!!!

Θεωρία: Ιδιότητες σελ. 54,55, πως γράφω διαστήματα: σελ. 57, 58

Εφαρμογή: 1, 2 (SOS)

Ασκήσεις: A1,2,3, 4,5,6,7 B1,2,3,4

