LOW FUNCTION AT EVERY ROUND OF THEGAME T+F

DATASET 1:

$$\{s_{1}, s_{2}, a_{1}^{*}, s_{2}, a_{2}^{*}, ---- \}$$

$$\ell_{1}(\mathcal{K}) = \sum_{t=0}^{T-1} \int_{S_{t}} \left(\mathcal{K}(s_{t}) \neq a_{t}^{*}\right)$$

DATAGET 2:

$$\{S_1, \alpha_1^{\lambda}, S_2, \alpha_2^{*}, ---\}$$

$$\mathcal{L}_{2}\left(\mathcal{H}\right) = \sum_{t=0}^{T-1} \int_{\mathcal{S}_{t} \sim d_{t}} \mathcal{T}\left(\mathcal{S}_{t}\right) \neq a_{t}^{*}$$

	Round	Peurio 2	Round	 Round
k	0.2	۶۰۵ ۲۰۵) [
(TT) 2	- 0-1	1.0	1	
	1.0	0.3		
			0.2	
POLICIES		6	6.3	
20	' •	4		
-	((

AFRANCE
$$T_i = T^3$$

$$R_{EGRET} = N \left(\sum_{i=1}^{N} l_i(\mathcal{H}_i) - \min_{i=1}^{N} l_i(\mathcal{H}_i) \right)$$

BETT RESPUNE:

$$\pi_i = \operatorname{argmin}_{z-1}(\pi)$$

FOLLOW THE LEADER
$$T_i = \alpha_{ij} n_i$$
 $\sum_{j \in I} l_j (\pi)$

IS DAGGER FIL?

Accept Collect D; with π_i :

 $D \leftarrow D \cup D_i$
 $T_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} \sum_{i \in S_i \cap D_i} l_i (\pi_i) + \alpha_{in}^{\pi_i}$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_i (\pi_i) + \alpha_{in}^{\pi_i}$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_i (\pi_i) + \alpha_{in}^{\pi_i}$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_i (\pi_i) + \alpha_{in}^{\pi_i}$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_i (\pi_i) + \alpha_{in}^{\pi_i}$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_i (\pi_i) + \alpha_{in}^{\pi_i} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_i (\pi_j) + \alpha_{in}^{\pi_i} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j) + \alpha_{in}^{\pi_i} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j) + \alpha_{in}^{\pi_i} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j) + \alpha_{ij}^{\pi_i} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j) + \alpha_{ij}^{\pi_i} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j) + \alpha_{ij}^{\pi_i} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j) + \alpha_{ij}^{\pi_i} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$
 $I_{itt} = \alpha_{ij} m_{in} \sum_{j \in I} l_j (\pi_j)$

AVA REAKET + I min Di li (Ti)

AVA REAKET + I min Di li (T