DILIAN MARROQUIN MATH 331.1001 MIDTERM REVIEW

Definitions

Definition. A **group** (G, *, e) is a set G equipped with a binary operator * and an identity element $e \in G$ such that the following hold:

- 1. Associativity: $(ab)c = a(bc) \forall a, b, c \in G$
- 2. Existence of Identity: $\exists e \in G$ such that $ae = ea = a \forall a \in G$
- 3. Existence of Inverses: Given $a \in G$, $\exists b \in G$ such that ab = ba = e.

Definition. Let (G, *) be a group. A **subgroup** of G is a subset $H \subset G$ such that

- 1. $e \in H$
- 2. $x, y \in H \Rightarrow x * y \in H$
- 3. $x \in H \Rightarrow x^{-1} \in H$.

Definition. Let *G* be a group and $a \in G$. The subset $\langle a \rangle := \{a^k | k \in \mathbb{Z}\}$ is a subgroup of *G* called the **cyclic subgroup** generated by *a*. A group is **cyclic** iff $a \in G$ such that $G = \langle a \rangle$.

Definition. Let $(G, *, e_G)$ and (H, \circ, e_H) be groups. A **group homomorphism** between G and H is a function φ : $G \to H$ such that $\forall a, b, \in G$, $\varphi(a * b) = \varphi(a) \circ \varphi(b)$.

Definition. A function $\varphi: G \to H$ is a **group isomorphism** iff φ is bijective and a homomorphism. $G \cong H$ iff G and H are isomorphic.

Definition. For $x \in G$, the <u>left coset</u> containing x is $xH := \{xh|h \in H\} \subset G$. (Note that $y \in xH$ implies yH = xH).

Definition. Let *G* be a group, $H \le G$ a subgroup. Denote G/H as the **SET of left cosets** of *H* in *G*. The size of this set is the **index** of *H* in *G*, denoted [G:H] = |G/H|.

Definition. Let $\varphi : G \to H$ be a group homomorphism. The **kernel** of φ is the subset of $G \ker \varphi = \{x \in G | \varphi(x) = e_H\}$.

Examples

Example. $\mathbb{Z}/n := \{[0], [1], \dots, [n-1]\}$ set of equivalence classes of $\equiv \pmod{n}$ on \mathbb{Z} .

Example. $GL_n(\mathbb{R}) := \{n \times n \text{ matrix } A | \det(A) \neq 0\}.$ $(GL_n(\mathbb{R}), \cdot, I_n)$ is an abelian group.

THEOREMS

Proposition (8.3 (\Leftarrow Direction)). Let *G* be a group, and $H \subseteq G$ a subset. Then *H* is a subgroup iff $H \neq \emptyset$ and $\forall a, b \in H$, $ab^{-1} \in H$.

Proof. (\Leftarrow) Assume $H \neq \emptyset$ and $\forall a, b \in H$, $ab^{-1} \in H$. Observe that $H \neq \emptyset$ implies $\exists x \in H$. Let a = b = x. Then $xx^{-1} = e \in H$. Now verify Axiom 3: Let $x \in H$. We want to show $x^{-1} \in H$. Let a = e and b = x. Then $ab^{-1} = ex^{-1} \in H$ by assumption. This implies $x^{-1} \in H$. For Axiom 2, let $x, y \in H$. Set a = x. We know $y^{-1} \in H$ by proof of Axiom 3. Therefore $x((y^{-1})^{-1} = xy \in H)$. ■

Theorem (13.1). If |G| = p for p prime, then G is cyclic. In particular, $\forall a \in G - \{e\}$, $G = \langle a \rangle$.

Proof. Let $a \in G \setminus \{e\}$. Corollary 12.6 (if G is a finite group, then $\forall a \in G$, |a||G|) implies |a||p since p = |G|. Therefore |a| = 1 or |a| = p. Since $a \ne e$, then |a| = p. Proposition 12.5 (if |a| = n for $a \in G$, then $|\langle a \rangle| = |a|$) implies $|\langle a \rangle| = p = |G|$.

Theorem (15.3). If $G = \langle a \rangle$ is cyclic order n, then $G \cong \mathbb{Z}/n$.

Proof. Suffices to construct a group isomorphism $\varphi: \mathbb{Z}/n \to G$. Let $\varphi([k]) = a^k$. First we check if φ is well-defined. Suppose $l \in [k]$. WTS $\varphi([k]) = \varphi([l])$, i.e. that $a^k = a^l$. We have $l \in [k]$ which implies $l \equiv k \pmod{n}$. Therefore $\exists m \in \mathbb{Z}$ such that l-k=nm which implies $a^{l-k}=a^{nm}=(a^n)^m=e^m=e$. Therefore $a^{l-k}=e$ which implies $a^l=a^k$. Now we show φ is a group homomorphism: $\varphi([k]+[l])=\varphi([k+l])=a^{k+l}=a^ka^l=\varphi([k])+\varphi([l])$. Next we show φ is surjective. Note that the image of $\varphi(\mathbb{Z}/n)=\{\varphi([k])[k]\in\mathbb{Z}/n\}=\{a^k|[k]\in\mathbb{Z}/n\}=G$. Thus φ is

surjective. Finally, we show φ is injective: Suppose $\varphi([k]) = \varphi([l])$. Then $a^k = a^l$ which implies $a^{k-l} = e$ and by Lemma 14.3 (), we have n|k-l. So $k \equiv l \pmod{n}$ and thus [k] = [l].

PROBLEM SETS