Cosine Bound (January 2, 2025)

The cosine function is a good lower bound for the standard normal density function near zero.

To establish the bound, let $g(x) = \log \left[\frac{e^{-x^2/2}}{\cos(x)} \right]$, so $g'(x) = \tan(x) - x$. From

Figure 1, the area of $\triangle OAB$ is larger than that of the circular sector OAC, so

$$\frac{\tan(x)}{2} \ge \frac{x}{2}$$

Thus, for $0 \le x \le \pi/2$, $g'(x) \ge 0$ and g(0) = 0, so $g(x) \ge 0$. Because g is an even function, this means $g(x) \ge 0$ for $-\pi/2 \le x \le \pi/2$, which is equivalent to $\cos(x) \le e^{-x^2/2}$.

Figure 1: $tan(x) \ge x$

This suggests that a good lower bound for textbook standard normal probabilities within one standard deviation of the mean is

$$P(0 \le Z \le a) \ge \int_0^a \frac{1}{\sqrt{2\pi}} \cos(x) \, dx = \frac{\sin(a)}{2\pi} \tag{1}$$

Figure 2 shows the difference between both sides of 1 for $0 \le a \le 1$.

Figure 2:
$$P(0 \le Z \le a) - \sin(a)/\sqrt{2\pi}$$

