D-MATH Prof. M. Struwe

Exercise 12.1 The right shift map on the space ℓ^2 is given by

$$S \colon \ell^2 \to \ell^2$$
$$(x_1, x_2, \dots) \mapsto (0, x_1, x_2, \dots).$$

- (i) Show that that the map S is a continuous linear operator with norm ||S|| = 1.
- (ii) Compute the eigenvalues and the spectral radius of S.
- (iii) Show that S has a left inverse which is not a right inverse, i.e. there exists $T: \ell^2 \to \ell^2$ with $T \circ S = \mathrm{id}_{\ell^2}$ but $S \circ T \neq \mathrm{id}_{\ell^2}$. Is it possible to find a right inverse of S, i.e. $Q: \ell^2 \to \ell^2$ so that $S \circ Q = \mathrm{id}_{\ell^2}$?

Exercise 12.2 Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space over \mathbb{C} . Recall two definitions:

- A linear operator $T \in L(H)$ is called an *isometry* if $||Tx||_H = ||x||_H$ for every $x \in H$;
- An invertible linear operator $T \in L(H)$ is unitary if $T^* = T^{-1}$.

With these definitions,

(i) Prove that T is an isometry if and only if it preserves the scalar product, that is

$$\langle Tx, Ty \rangle_H = \langle x, y \rangle_H$$
 for every $x, y \in H$.

- (ii) Prove that $T \in L(H)$ is unitary if and only if T is a bijective isometry.
- (iii) Prove that if $T \in L(H)$ is unitary, then its spectrum lies on the unit circle:

$$\sigma(T) \subset \mathbb{S}^1 := \{ \lambda \in \mathbb{C} \mid |\lambda| = 1 \}.$$

Exercise 12.3 Let $\Omega \subset \mathbb{R}^m$ be an open bounded subset. Given $k \in L^2(\Omega \times \Omega, \mathbb{C})$ such that $k(x,y) = \overline{k(y,x)}$ for almost every $(x,y) \in \Omega \times \Omega$, consider the operator $K \colon L^2(\Omega,\mathbb{C}) \to L^2(\Omega,\mathbb{C})$ defined by

$$(Kf)(x) = \int_{\Omega} k(x, y) f(y) \, dy,$$

and the operator $A \colon L^2(\Omega, \mathbb{C}) \to L^2(\Omega, \mathbb{C})$ defined by

$$A(f)(x) = f(x) - Kf(x).$$

Prove that injectivity of A and surjectivity of A are equivalent.

Exercise 12.4 Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space over \mathbb{C} .

- (i) Let $A \in L(H)$ be a self-adjoint operator and let $\lambda \in \rho(A)$ be an element in its resolvent set. Show that the resolvent $R_{\lambda} := (\lambda A)^{-1}$ is a normal operator, that is $R_{\lambda}R_{\lambda}^* = R_{\lambda}^*R_{\lambda}$.
- (ii) Let $A, B \in L(H)$ be self-adjoint operators. The Hausdorff distance of their spectra $\sigma(A), \sigma(B) \subset \mathbb{C}$ is defined to be

$$d\Big(\sigma(A),\sigma(B)\Big) := \max \biggl\{ \sup_{\alpha \in \sigma(A)} \Bigl(\inf_{\beta \in \sigma(B)} \lvert \alpha - \beta \rvert \Bigr), \sup_{\beta \in \sigma(B)} \Bigl(\inf_{\alpha \in \sigma(A)} \lvert \alpha - \beta \rvert \Bigr) \biggr\}.$$

Prove that

$$d(\sigma(A), \sigma(B)) \le ||A - B||_{L(H)}.$$

Remark. The Hausdorff distance d is in fact a distance on compact subsets of \mathbb{C} . In particular, it restricts to an actual distance function on the spectra of bounded linear operators.

Exercise 12.5 (Heisenberg's Uncertainty Principle) Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space over \mathbb{C} . Let $D_A, D_B \subset H$ be dense subspaces and let $A: D_A \subset H \to H$ and $B: D_B \subset H \to H$ be symmetric linear operators. Assume that

$$A(D_A \cap D_B) \subset D_B$$
 and $B(D_A \cap D_B) \subset D_A$,

and define the *commutator* of A and B as

$$[A, B]: D_{[A,B]} \subset H \to H, \qquad [A, B](x) \mapsto A(Bx) - B(Ax),$$

where $D_{[A,B]} := D_A \cap D_B$.

(i) Prove that

$$\left| \langle x, [A, B] x \rangle_H \right| \le 2 ||Ax||_H ||Bx||_H \text{ for every } x \in D_{[A,B]}.$$

(ii) Define now the standard deviation of A

$$\varsigma(A,x) := \sqrt{\langle Ax, Ax \rangle_H - \langle x, Ax \rangle_H^2}$$

at each $x \in D_A$ with $||x||_H = 1$. Verify that $\varsigma(A, x)$ is well-defined for every x (i.e. that the radicand is real and non-negative) and prove that for every $x \in D_{[A,B]}$ with $||x||_H = 1$ there holds

$$\left| \langle x, [A, B] x \rangle_H \right| \le 2\varsigma(A, x) \varsigma(B, x).$$

Remark. The possible states of a quantum mechanical system are given by elements $x \in H$ with $||x||_H = 1$. Each observable is given by a symmetric linear operator $A: D_A \subset H \to H$. If the system is in state $x \in D_A$, we measure the observable A with uncertainty $\varsigma(A, x)$.

(iii) Let $A: D_A \to H$ and $B: D_B \to H$ be as above. A, B is called Heisenberg pair if

$$[A, B] = i \operatorname{Id}$$
.

Show that, if A, B is a Heisenberg pair with B continuous (and $D_B = H$), then A cannot be continuous.

(iv) Consider the Hilbert space $(H, \langle \cdot, \cdot \rangle_H) = (L^2([0,1], \mathbb{C}), \langle \cdot, \cdot \rangle_{L^2})$ and the subspace

$$C^1_0([0,1],\mathbb{C}):=\{f\in C^1([0,1],\mathbb{C})\mid f(0)=0=f(1)\}.$$

Recall that $C_0^1([0,1],\mathbb{C}) \subset L^2([0,1],\mathbb{C})$ is a dense subspace. The operators

$$P: C_0^1([0,1], \mathbb{C}) \to L^2([0,1], \mathbb{C}), \qquad Q: L^2([0,1], \mathbb{C}) \to L^2([0,1], \mathbb{C})$$

 $f(s) \mapsto if'(s) \qquad f(s) \mapsto sf(s)$

correspond to the observables momentum and position. Check that P and Q are well-defined, symmetric operators. Check that $[P,Q]: C_0^1([0,1],\mathbb{C}) \to L^2([0,1],\mathbb{C})$ is well-defined.

Show that P and Q form a Heisenberg pair and conclude that the *uncertainty* principle holds: for every $f \in C_0^1([0,1],\mathbb{C})$ with $||f||_{L^2([0,1],\mathbb{C})} = 1$ there holds

$$\varsigma(P, f)\,\varsigma(Q, f) \ge \frac{1}{2}.$$

Thus we conclude: The more precisely the momentum of some particle is known, the less precisely its position can be known, and vice versa.

Hints to Exercises.

12.2 For (i), use the the complex polarization identity

$$\langle x, y \rangle_H = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2) + \frac{i}{4} (\|x + iy\|_H^2 - \|x - iy\|_H^2).$$

For (iii), use Satz 6.5.3 and Satz 2.2.7.

- **12.3** Use Exercise 11.3.
- 12.4 Prove that $R_{\lambda}^* = R_{\overline{\lambda}}$ and use that resolvents to different values commute (Satz 6.5.2). Argue that it suffices to show the following implication for any $\alpha \in \mathbb{C}$:

$$\inf_{\beta \in \sigma(B)} |\alpha - \beta| > ||A - B||_{L(H)} \qquad \Rightarrow \alpha \in \rho(A).$$

Given $f_{\alpha}(z) = (\alpha - z)^{-1}$, the spectral mapping theorem implies $f_{\alpha}(\sigma(B)) = \sigma(f_{\alpha}(B))$. Show that normal operators R have spectral radius $r_R = ||R||$. Apply Satz 2.2.7.

12.5 For (ii): in order to apply (i), find symmetric operators $\tilde{A}=A-\lambda$ and $\tilde{B}=B-\mu$ satisfying

$$[A, B] = [\tilde{A}, \tilde{B}],$$
 $\varsigma(A, x) = ||\tilde{A}x||_H,$ $\varsigma(B, x) = ||\tilde{B}x||_H.$

For (iii), begin by checking that $[A, B^n]$ is well-defined and prove $[A, B^n] = niB^{n-1}$ for every $n \in \mathbb{N}$.