

www.vishay.com

Vishay Semiconductors

HALOGEN FREE

High Performance Schottky Rectifier, 65 A

PRODUCT SUMMARY								
Package	TO-247AC							
I _{F(AV)}	65 A							
V _R	15 V							
V _F at I _F	0.46 V							
I _{RM} max.	870 mA at 100 °C							
T _J max.	125 °C							
Diode variation	Single die							
E _{AS}	9 mJ							

FEATURES

- 125 °C T_J operation (V_R < 5 V)
- Single diode configuration
- · Optimized for OR-ing applications
- Ultralow forward voltage drop
- Guard ring for enhanced ruggedness and long term reliability

- Designed and qualified according to JEDEC-JESD47
- · Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

The VS-65PQ015... Schottky rectifier module has been optimized for ultralow forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to 125 °C junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

MAJOR RATINGS AND CHARACTERISTICS									
SYMBOL	CHARACTERISTICS	UNITS							
I _{F(AV)}	Rectangular waveform	65	A						
V _{RRM}		15	V						
I _{FSM}	t _p = 5 μs sine	1500	A						
V _F	65 A _{pk} , T _J = 125 °C	0.46	V						
T _J	Range	- 55 to 125	°C						

VOLTAGE RATINGS									
PARAMETER	SYMBOL	TEST CONDITIONS	VS-65PQ015PbF	VS-65PQ015-N3	UNITS				
Maximum DC reverse voltage	V_{R}	T _J = 100 °C	15	15	V				
	٧R	T _J = 125 °C	5	5] v				

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST COND	VALUES	UNITS			
Maximum average forward current	I _{F(AV)}	50 % duty cycle at T _C = 83 °C, r	65				
Maximum peak one cycle non-repetitive surge current	I _{FSM}	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with rated	1500	Α		
		10 ms sine or 6 ms rect. pulse	V _{RRM} applied	400			
Non-repetitive avalanche energy	E _{AS}	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 2 \text{A}, L = 4.5 \text{mH}$	9	mJ			
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero Frequency limited by T _J maximu	2	Α			

VS-65PQ015PbF, VS-65PQ015-N3

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CO	VALUES	UNITS			
		65 A	T _{.1} = 25 °C	0.50	V		
Forward voltage drap	V _{FM} ⁽¹⁾	130 A	11 = 23 0	0.71			
Forward voltage drop	VFM (1)	65 A	T _{.1} = 125 °C	0.46			
		130 A	1j = 125 C	0.76			
	I _{RM} ⁽¹⁾	T _J = 125 °C	V _R = 5 V	1.2	Α		
Reverse leakage current		T _J = 25 °C	V - Potod V	18	mA		
		T _J = 100 °C	V _R = Rated V _R	870			
Threshold voltage	V _{F(TO)}	$T_{.1} = T_{.1}$ maximum		0.137	mV		
Forward slope resistance	r _t	ıj = ıjınaxımum	4.9	mΩ			
Maximum junction capacitance	C _T	V _R = 5 V _{DC} (test signal ran	4300	pF			
Typical series inductance	L _S	Measured lead to lead 5 m	8	nH			
Maximum voltage rate of change	dV/dt	Rated V _R		10 000	V/µs		

Note

 $^{^{(1)}\,}$ Pulse width $<300~\mu s,$ duty cycle <2~%

THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum junction temperature range	TJ		- 55 to 125	°C			
Maximum storage temperature range	T _{Stg}		- 55 to 150	10			
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	0.8	°C/W			
Typical thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth and greased	0.3	C/VV			
Approximate weight			6	g			
Approximate weight			0.21	oz.			
Mounting torque minimum		New Judicia and those and	6 (5)	kgf · cm			
Mounting torque maximum		Non-lubricated threads	12 (10)	(lbf · in)			
Marking device		Case style TO-247AC (JEDEC)	65PC	Q015			

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

www.vishay.com

Vishay Semiconductors

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Fig. 7 - Maximum Non-Repetitive Surge Current

Fig. 8 - Unclamped Inductive Test Circuit

Note

 $^{(1)}$ Formula used: $T_C = T_J$ - (Pd + Pd_{REV}) x R_{thJC}; Pd = Forward power loss = $I_{F(AV)}$ x V_{FM} at (I_{F(AV)}/D) (see fig. 6); Pd_{REV} = Inverse power loss = V_{R1} x I_R (1 - D); I_R at V_{R1} = 5 V

VS-65PQ015PbF, VS-65PQ015-N3

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code

- 1 Vishay Semiconductors product
- 2 Current rating (65 = 65 A)
- 3 Package:

P = TO-247

- 4 Schottky "Q" series
- 5 Voltage code (015 = 15 V)
- 6 Environmental digit
 - PbF = Lead (Pb)-free and RoHS compliant
 - -N3 = Halogen-free, RoHS compliant, and totally lead (Pb)-free

ORDERING INFORMATION (Example)									
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION						
VS-65PQ015PbF	25	500	Antistatic plastic tube						
VS-65PQ015-N3	25	500	Antistatic plastic tube						

LINKS TO RELATED DOCUMENTS							
Dimensions		www.vishay.com/doc?95542					
Part marking information	TO-247AC modified PbF	www.vishay.com/doc?95226					
	TO-247AC modified -N3	www.vishay.com/doc?95007					
SPICE model		www.vishay.com/doc?95306					

Vishay Semiconductors

TO-247

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS INCHES NOTES		SYMBOL MILLIMETERS		INCHES		NOTES					
STIVIBOL	MIN.	MAX.	MIN.	MAX.	NOTES	NOTES	STIVIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.65	5.31	0.183	0.209			D2	0.51	1.35	0.020	0.053	
A1	2.21	2.59	0.087	0.102			Е	15.29	15.87	0.602	0.625	3
A2	1.17	1.37	0.046	0.054			E1	13.46	-	0.53	-	
b	0.99	1.40	0.039	0.055			е	5.46	BSC	0.215	BSC	
b1	0.99	1.35	0.039	0.053			ØK	0.2	254	0.0)10	
b2	1.65	2.39	0.065	0.094			L	14.20	16.10	0.559	0.634	
b3	1.65	2.33	0.065	0.092			L1	3.71	4.29	0.146	0.169	
b4	2.59	3.43	0.102	0.135			N	7.62	BSC	0.3		
b5	2.59	3.38	0.102	0.133			ØΡ	3.56	3.66	0.14	0.144	
С	0.38	0.89	0.015	0.035			Ø P1	-	7.39	-	0.291	
c1	0.38	0.84	0.015	0.033			Q	5.31	5.69	0.209	0.224	
D	19.71	20.70	0.776	0.815	3		R	4.52	5.49	0.178	0.216	
D1	13.08	-	0.515	-	4		S	5.51	BSC	0.217	'BSC	

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- $^{(7)}$ Outline conforms to JEDEC® outline TO-247 with exception of dimension c and Q

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000