KEY KEY AOS Math 10 Conic Sections Test B

February 2, 2024

Name and block: ____

True / False

1. (1 point) _____ The distance between two foci of an ellipse is 2c.

2. (1 point) _____ T ___ The directrix of a parabola is perpendicular to the axis of symmetry.

3. (1 point) ____ T __ The graph of $\frac{x^2}{16} + \frac{y^2}{25} = 1$ fits entirely inside the graph of $x^2 + y^2 = 30$

4. (1 point) <u>F</u> The focus of the parabola $x^2 = 8y$ is the lowest point on the parabola.

5. (1 point) ____ F ___ The graphs of $\frac{x^2}{2} - \frac{y^2}{3} = 1$ and $\frac{y^2}{2} - \frac{x^2}{3} = 1$ have the same asymptotes.

6. (1 point) ____ T ___ The major axis of a (non-circular) ellipse is always longer than the minor axis.

7. (1 point) ___F__ The foci of an ellipse are on the minor axis.

8. (1 point) $\underline{\mathbf{T}}$ A circle is an ellipse with a = b.

9. (1 point) \mathbf{F} The eccentricity of an ellipse can be e = 1.14.

10. (1 point) ____F __ The transverse axis of a hyperbola is always longer than the conjugate axis.

Multiple Choice

Work must be shown for credit

1. (3 points) Note the scale is 2 below. Which is the graph of $\frac{(x-3)^2}{9} - \frac{(y+4)^2}{4}$?

В.

- D.
- E.

В.

F.

C.

F.

- 1. ____
- 2. (3 points) Note the scale is 2 below. Which is the graph of $\frac{(x-2)^2}{4} + \frac{(y+4)^2}{9}$?

D.

A.

- E.

2. _

3. (3 points) Note the scale is 2 below. Which is the graph of $(y-4)^2 = 12(x-2)$?

A.

В.

С.

D.

4. (3 points) What are the foci of the hyperbola $\frac{x^2}{16} - \frac{y^2}{12} = 1$?

A.
$$(\pm 2\sqrt{7}, 0)$$

B.
$$(\pm 2, 0)$$

C.
$$(0, \pm 2\sqrt{7})$$

D.
$$(0, \pm 2)$$

- 5. (3 points) Which is **not** a vertex or co-vertex of the ellipse $\frac{x^2}{9} + \frac{(y-2)^2}{7} = 1$

A.
$$(0, 2 - \sqrt{7})$$

C.
$$(-3,2)$$

D.
$$(3, \sqrt{7})$$

5. _

- 6. (3 points) What is the equation of a parabola with
 - a vertex at (3, -2)
 - a horizontal axis of symmetry
 - the parabola passes through the point (0,1)
 - **A.** $(x-3)^2 = 3(y+2)$
 - B. $(x+3)^2 = 12(y+2)$
 - C. $(x-3)^2 = 4(y+2)$
 - D. $(x-3)^2 = 12(y-2)$
 - E. $(x-3)^2 = \frac{4}{9}(y+2)$

6. _____

- 7. (3 points) Write the equation of the ellipse that has a major axis 28 units long and is parallel to the y axis, a minor axis 26 units long, and a center at (11, 8).
 - **A.** $\frac{(x-11)^2}{169} + \frac{(y-8)^2}{196} = 1$
 - B. $\frac{(x-11)^2}{196} + \frac{(y-8)^2}{169} = 1$
 - C. $\frac{(x+11)^2}{196} + \frac{(y+8)^2}{169} = 1$
 - D. $\frac{(x+11)^2}{169} + \frac{(y+8)^2}{196} = 1$

7. _____

- 8. (3 points) Given the equation of a circle in standard form: $(x+3)^2 + (y-4)^2 = 49$. Write the equation in general form.
 - A. $x^2 + y^2 + 6x 8y + 74 = 0$
 - B. $x^2 + y^2 24 = 0$
 - C. $x^2 + y^2 + 74 = 0$
 - D. $x^2 + y^2 +3x 4y 24 = 0$
 - **E.** $x^2 + y^2 + 6x 8y 24 = 0$

8.