

AMENDMENTS TO THE CLAIMS

1-11. (Cancelled)

12. (Currently Amended) An *in vitro* base conversion method of a DNA sequence, which is a method of converting one or more bases in a target DNA sequence in a cell, consisting of preparing a single-stranded DNA fragment having 300 to 3,000 bases by cleavage from a single-stranded circular DNA, and introducing said single-stranded DNA fragment into a cell, wherein said single-stranded DNA fragment is homologous with a sense strand of the target DNA sequence, and contains the base(s) to be converted, wherein the target DNA is double-stranded DNA and the target DNA sense strand encodes a protein.

13. (Previously Presented) The method according to claim 12, wherein the single-stranded circular DNA is a phagemid DNA.

14. (Cancelled)

15. (Previously Presented) The method according to claim 12, wherein the target DNA sequence in the cell is a DNA sequence causing a disease due to the one or more bases.

16. (Previously Presented) The method according to claim 12, wherein one or more bases in a target DNA sequence in a cell of an organism are converted.

17. (Withdrawn) A cell in which one or more bases in a target DNA sequence have been converted by the method according to claim 12.

18. (Withdrawn) An individual organism which retains the cell according to claim 17 in the body.

19. (Withdrawn) A therapeutic agent, which is an agent for treating a disease caused by conversion of one or more bases in a target DNA sequence, characterized in that a single-

stranded DNA fragment having 300 to 3,000 bases which is prepared from a single-stranded circular DNA, is complementary to the target DNA sequence, and contains the base(s) to be converted, has a form that can be introduced into a cell.

20. (Withdrawn) The therapeutic agent according to claim 19, wherein the single-stranded circular DNA is a phagemid DNA.

21. (Withdrawn) A therapeutic method, which is a method of treating a disease caused by conversion of one or more bases in a target DNA sequence, characterized by introducing a single-stranded DNA fragment having 300 to 3,000 bases which is prepared from a single-stranded circular DNA, is complementary to the target DNA sequence, and contains the base(s) to be converted, into a cell.

22. (Withdrawn) The therapeutic method according to claim 21, wherein the single-stranded circular DNA is a phagemid DNA.

23. (Previously Presented) The method according to claim 12, wherein the target gene is genomic or mitochondrial DNA.