Veritabanı sistemlerinde Red-Black Tree algoritması

Muhammed Fatih Aslan Bilgisayar Mühendisliği 3.sınıf 20360859040 04.04.2024

İÇİNDEKİLER

- Red-Black Tree
 - a. Nedir?
 - **b.** Temel Özellikler
 - c. Dengesizlik durumları
- Veritabanı Sistemlerinde RBT Kullanımı
- RBT'nin Avantajları
- RBT'nin Dezavantajları
- 5 Kaynaklar
- 6 Sorular

Red-Black Tree Nedir?

- a. Red-Black Tree; sıralı bir veri yapısıdır.
- b. Arama, ekleme ve silme gibi işlemler yapar.
- c. Kendini dengeleyen bir yapıya sahiptir.
- d. Her düğümün bir renk bilgisi bulunur.

Temel Özellikler

- a. Her düğüm kırmızı ya da siyah olmalıdır.
- b. Kök daima siyah olmalıdır.
- c. Düğüm kırmızı ise her iki çocuğu da siyah olmalıdır.
- d. Her düğüm için, o düğümün soyundan gelen ve yapraklara kadar ilerleyen tüm basit yollardaki siyah düğüm sayısı eşit olmalıdır

Dengesizlik durumları

- Sol Sol dengesizliği
- Sağ Sağ dengesizliği
- Sol Sağ durumu
- Sağ Sol durumu

Veritabanı Sistemlerinde RBT Kullanımı

- Verileri indekslemek ve düzenlemek için kullanılır.
- Arama, ekleme ve silme işlemlerini etkinleştirir.
- Verilere erişirken ve işlerken optimum performans sağlar

Red/Black Tree Find Print Show Null Leaves Delete Insert Animation Completed Step Forward Skip Forward w: 1000 h: 500 Change Canvas Size Skip Back Step Back Pause Move Controls

Animation Speed

Operation	Time Complexity	Space Complexity
Search	O(log n)	O(1)
Insertion	O(log n)	O(1)
Deletion	O(log n)	O(t)
Space	O(n)	O(n)

Red-Black Tree'nin Avantajları

Arama ve Erişim

O(log n) zaman karmaşıklığına sahip olması nedeniyle veri kümelerinde etkili ve hızlı arama ve erişim sağlar

Dengeleme ve Performans

Ekleme ve silme işlemlerinden sonra otomatik dengeleme yapar. Dengeli bir ağaç yapısı işlemlerin zaman karmaşıklığını optimize eder

Veri kümeleriyle başa çıkma

Veri erişim hızını arttırır , bellek kullanımını optimize eder.

$n! > 2^n > n^3 > n^2 > n \log n > n > log n > 1$

Big-O Complexity Chart

Red-Black Tree'nin Dezavantajları

Karmaşıklık

İşlemler bazen ekstra maliyetlere yol açabilir.

Bellek Kullanımı

Her düğümün ekstra renk bilgisi tutması fazla bellek kullanabilir

Dengeleme İşlemleri

Ağaçtaki düğümlerin fiziksel yer değiştirmesi ekstra maliyetlere yol açabilir

Uygulama Karmaşıklığı

Dengeleme kurallarının karmaşıklığı hataların ve uygulamanın doğru şekilde uygulanması için ekstra çaba gerektirebilir

KAYNAKLAR

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

http://www.bilgisayarkavramlari.com

http://cagataykiziltan.net/programin-calisma-hizi-ve-algoritma-verimliligi/zaman-karmasikligi-ve-buyuk-o-notasyonu-time-complexity-and-big-o-notation/

https://medium.com

https://openai.com

SORULARINIZI ALABILIRIM

SON

DİNLEDİĞİNİZ İÇİN TEŞEKKÜRLER