

Fundamentos Computacionais

Fundamentos Computacionais

Correção exercícios da Aula05

Hoje

Ao infinito!

(Consequência lógica / Dedução formal)

Equivalências / Inferências

Equivalência de Proposições

Um importante tipo de passo usado na argumentação matemática é a substituição de uma proposição por outra com o mesmo valor-verdade.

Inteligência Artificial (IA)

• IA estuda como simular comportamento inteligente.

Inteligência Artificial (IA)

• IA estuda como simular comportamento inteligente.

• Comportamento inteligente é resultado de **raciocínio** correto sobre **conhecimento** disponível.

Inteligência Artificial (IA)

- IA estuda como simular comportamento inteligente.
- Comportamento inteligente é resultado de raciocínio correto sobre conhecimento disponível.
- Conhecimento e raciocínio correto podem ser representados em lógica.

Inteligência Artificial (IA)

- IA estuda como simular comportamento inteligente.
- Comportamento inteligente é resultado de raciocínio correto sobre conhecimento disponível.
- Conhecimento e raciocínio correto podem ser representados em lógica.
- O formalismo lógico mais simples é a lógica proposicional.

Inteligência Artificial (IA)

- IA estuda como simular comportamento inteligente.
- Comportamento inteligente é resultado de raciocínio correto sobre conhecimento disponível.
- Conhecimento e raciocínio correto podem ser representados em lógica.
- O formalismo lógico mais simples é a lógica proposicional.

• Uma das mais importantes noções da Lógica é a de consequência lógica.

• Uma das mais importantes noções da Lógica é a de consequência lógica.

• Essa noção está na raiz da ideia de **raciocínio** que vulgarmente pode ser entendido como **encadeamento de pensamentos** ou juízos.

- Uma das mais importantes noções da Lógica é a de consequência lógica.
- Essa noção está na raiz da ideia de **raciocínio** que vulgarmente pode ser entendido como **encadeamento de pensamentos** ou juízos.
- Evidentemente, esse encadeamento obedece a **certa ordem** na qual um pensamento se segue a outro.

- Uma das mais importantes noções da Lógica é a de consequência lógica.
- Essa noção está na raiz da ideia de **raciocínio** que vulgarmente pode ser entendido como **encadeamento de pensamentos** ou juízos.
- Evidentemente, esse encadeamento obedece a certa ordem na qual um pensamento se segue a outro.

• Um raciocínio/argumento é um conjunto de proposições, ou de fórmulas, nas quais uma delas (conclusão) deriva, ou é consequência, das outras (premissas).

- Uma das mais importantes noções da Lógica é a de consequência lógica.
- Essa noção está na raiz da ideia de **raciocínio** que vulgarmente pode ser entendido como **encadeamento de pensamentos** ou juízos.
- Evidentemente, esse encadeamento obedece a certa ordem na qual um pensamento se segue a outro.
- Um raciocínio/argumento é um conjunto de proposições, ou de fórmulas, nas quais uma delas (conclusão) deriva, ou é consequência, das outras (premissas).
- Essa derivação é também chamada de **dedução**.

- Uma das mais importantes noções da Lógica é a de consequência lógica.
- Essa noção está na raiz da ideia de **raciocínio** que vulgarmente pode ser entendido como **encadeamento de pensamentos** ou juízos.
- Evidentemente, esse encadeamento obedece a **certa ordem** na qual um pensamento se segue a outro.
- Um raciocínio/argumento é um conjunto de proposições, ou de fórmulas, nas quais uma delas (conclusão) deriva, ou é consequência, das outras (premissas).
- Essa derivação é também chamada de **dedução**.

Exemplo

- "Se meu cliente fosse culpado, a faca estaria na gaveta.
- Ou a faca não estava na gaveta ou Matheus viu a faca.
- Se a faca não estava lá no dia 12 de setembro, então Matheus não viu a faca.
- Além disso, se a faca estava lá no dia 12 de setembro, então a faca estava na gaveta e o martelo estava no celeiro.
- Mas todos sabemos que o martelo não estava no celeiro.
- Portanto, senhoras e senhores, meu cliente é inocente."

• É um formalismo composto por:

- É um formalismo composto por:
 - Linguagem formal: usada para representar conhecimento.

- É um formalismo composto por:
 - Linguagem formal: usada para representar conhecimento.
 - Métodos de inferência: usados para representar raciocínio.

- É um formalismo composto por:
 - Linguagem formal: usada para representar conhecimento.
 - Métodos de inferência: usados para representar raciocínio.
- Tem como principal finalidade:

- É um formalismo composto por:
 - Linguagem formal: usada para representar conhecimento.
 - Métodos de inferência: usados para representar raciocínio.
- Tem como principal finalidade:
 - Representar argumentos, isto é, sequências de sentenças em que uma delas é uma conclusão e as demais são premissas.

• É um formalismo composto por:

- Linguagem formal: usada para representar conhecimento.
- Métodos de inferência: usados para representar raciocínio.

Tem como principal finalidade:

- Representar argumentos, isto é, sequências de sentenças em que uma delas é uma conclusão e as demais são premissas.
- Validar argumentos, isto é, verificar se sua conclusão é uma consequência lógica de suas premissas.

• É um formalismo composto por:

- Linguagem formal: usada para representar conhecimento.
- Métodos de inferência: usados para representar raciocínio.

Tem como principal finalidade:

- Representar argumentos, isto é, sequências de sentenças em que uma delas é uma conclusão e as demais são premissas.
- Validar argumentos, isto é, verificar se sua conclusão é uma consequência lógica de suas premissas.

Conhecimento pode ser representado de duas formas:

- explícita:
- implícita:

Conhecimento pode ser representado de duas formas:

- explícita: por meio da formalização de sentenças
- implícita:

Conhecimento pode ser representado de duas formas:

- explícita: por meio da formalização de sentenças
- implícita: por meio de consequência lógica (fatos derivados das sentenças)

Conhecimento pode ser representado de duas formas:

- explícita: por meio da formalização de sentenças
- implícita: por meio de consequência lógica (fatos derivados das sentenças)

Passos para formalização de sentenças

• Identifica-se as palavras da sentença que correspondem a conectivos.

Conhecimento pode ser representado de duas formas:

- explícita: por meio da formalização de sentenças
- implícita: por meio de consequência lógica (fatos derivados das sentenças)

Passos para formalização de sentenças

- Identifica-se as palavras da sentença que correspondem a conectivos.
- Identifica-se as partes da sentença que correspondem a proposições atômicas e associa-se a cada uma delas um símbolo proposicional.

Conhecimento pode ser representado de duas formas:

- explícita: por meio da formalização de sentenças
- implícita: por meio de consequência lógica (fatos derivados das sentenças)

Passos para formalização de sentenças

- Identifica-se as palavras da sentença que correspondem a conectivos.
- Identifica-se as partes da sentença que correspondem a proposições atômicas e associa-se a cada uma delas um símbolo proposicional.
- Escreve-se a fórmula correspondente à sentença, substituindo suas proposições atômicas pelos respectivos símbolos proposicionais e seus conectivos lógicos pelos respectivos símbolos conectivos.

Conhecimento pode ser representado de duas formas:

- explícita: por meio da formalização de sentenças
- implícita: por meio de consequência lógica (fatos derivados das sentenças)

Passos para formalização de sentenças

- Identifica-se as palavras da sentença que correspondem a conectivos.
- Identifica-se as partes da sentença que correspondem a proposições atômicas e associa-se a cada uma delas um símbolo proposicional.
- Escreve-se a fórmula correspondente à sentença, substituindo suas proposições atômicas pelos respectivos símbolos proposicionais e seus conectivos lógicos pelos respectivos símbolos conectivos.

Validação de argumentos

- Um argumento é válido se a sua conclusão é uma consequência lógica de suas premissas, ou seja, a veracidade da conclusão está implícita na veracidade das premissas.
- Principais métodos de validação de argumentos:
 - Tabela-verdade (semântico)
 - Baseados em interpretações
 - Prova por dedução (sintático)
 - Baseados em regras de inferência (raciocínio)

Validação de argumentos

- Um argumento é válido se a sua conclusão é uma consequência lógica de suas premissas, ou seja, a veracidade da conclusão está implícita na veracidade das premissas.
- Principais métodos de validação de argumentos:
 - Tabela-verdade (semântico)
 - Baseados em interpretações
 - Prova por dedução (sintático)
 - Baseados em regras de inferência (raciocínio)

Obs.: A validade do argumento é uma função apenas de seu formato lógico e não tem nada a ver com a verdade fatual de nenhum de seus componentes.

Tabela-Verdade

- $2^1 = 2 \text{ linhas}$
- $2^2 = 4 \text{ linhas}$
- $2^3 = 8 \text{ linhas}$

•

• 2⁴⁰ aproximadamente 1 Trilhão de linhas

Ou seja, o uso de **tabela-verdade** para provar a validade de um argumento **pode ser impraticável**.

Então, deve-se utilizar a **prova por dedução**, que utiliza implicações e equivalências tautológicas.

Lógica Proposicional: Demonstração

• Forma utilizada para chegar a conclusões a partir de proposições dadas (premissas).

Consiste em, a partir de dedução, provar que fórmulas são verdadeiras.

- Parte de um conjunto de proposições (argumentos) válidos, que são chamados de hipóteses (p) do argumento, e acabam em uma conclusão (q).
 - Ex.: $p1 \land p2 \land p3 \land p4 \dots \rightarrow q$

Lógica Proposicional: Demonstração

- Sempre que, a verdade de p $1 \land p2 \land p3 \dots \land pn$ implicar na verdade de q, podese dizer também que o argumento é válido.
- Para testar se as fórmulas são válidas, utilizaremos regras de dedução da lógica formal.
- Pode ser lido como:
 - "p1, p2, ... pn acarretam q" ou
 - "q decorre de p1, p2, ... pn" ou
 - "q se deduz de p1, p2, ... pn" ou ainda
 - "q se infere de p1, p2, ... pn"

Sequência de Demonstração

Uma sequência de demonstração é uma sequência de fórmulas, onde cada fórmula, ou é uma hipótese ou é o resultado da aplicação de uma das regras de dedução sobre as hipóteses.

- Cada premissa é colocada em uma linha e recebe uma numeração.
- Cada proposição simples, que compõem as premissas e a conclusão, deve ser representada por uma letra maiúscula ligada à sua respectiva palavra-chave.
- Se a conclusão for uma implicação, como A→B, então A deve ser introduzida como premissa e B como conclusão.

Regras de Dedução

Podem ser de dois tipos:

• Equivalência – Apontam fórmulas equivalentes.

 Inferência – permitem a substituição de uma fórmula por outra apenas em um sentido.

Exercícios de Representação

Exercícios

Questão 1: a, b, c

Regras de Equivalência

• Permite substituição em **ambos os sentidos**

Nome/Abreviação	Equivalente a	Expressão
Com utatividade / com	$B \lor A$ $B \land A$	$\begin{array}{c} A \vee B \\ A \wedge B \end{array}$
Ass ociatividade / ass	$A \lor (B \lor C)$ $A \land (B \land C)$	$(A \lor B) \lor C$ $(A \land B) \land C$
Leis de De Morgan / De Morgan	$\neg A \land \neg B$ $\neg A \lor \neg B$	¬(A ∨ B) ¬(A ∧ B)
Condicional / cond	$\neg A \lor B$	$A \rightarrow B$
D upla n egação / dn	А	¬ ¬A
Idem potência / idem	А	$A \vee A$

Sem Piadinhas adul

Regras de Equivalência

• Permite substituição em **ambos os sentidos**

Expressão	Equivalente a	Nome/Abreviação
$\begin{array}{c} A \vee B \\ A \wedge B \end{array}$	$B \lor A$ $B \land A$	Com utatividade / com
(A ∨ B) ∨ C (A ∧ B) ∧ C	$A \lor (B \lor C)$ $A \land (B \land C)$	Associatividade / ass
¬(A ∨ B) ¬(A ∧ B)	$\neg A \land \neg B$ $\neg A \lor \neg B$	Leis de De Morgan / De Morgan
$A \rightarrow B$	$\neg A \lor B$	Condicional / cond
¬¬A	А	D upla n egação / dn
$A \vee A$	Α	Idem potência / idem

Muito menos adu

Regras de Equivalência

• Permite substituição em **ambos os sentidos**

Expressão	Equivalente a	Nome/Abreviação
A ∨ B A ∧ B	$B \lor A$ $B \land A$	Com utatividade / com
(A ∨ B) ∨ C (A ∧ B) ∧ C	$A \lor (B \lor C)$ $A \land (B \land C)$	Ass ociatividade / ass
¬(A ∨ B) ¬(A ∧ B)	$\neg A \land \neg B$ $\neg A \lor \neg B$	Leis de De Morgan / De Morgan
$A \rightarrow B$	$\neg A \lor B$	Condicional / cond
¬¬А	Α	D upla n egação / dn
$A \vee A$	Α	Idem potência / idem

Regras de Inferência

• Permite substituição em **apenas um sentido**

Para a expressão	Podemos deduzir	Nome/Abreviação
$\begin{array}{c} A \to B \\ A \end{array}$	В	Modus Ponens / mp
$\begin{array}{c} A \to B \\ \neg B \end{array}$	⊸A	M odus T ollens / mt
A B	$A \wedge B$	Conj unção / conj
A ∧ B	A B	Simplificação / simp
Α	$A \vee B$	Ad ição / ad
A∨B ¬A	В	S ilogismo D isjuntivo / sd
$\begin{array}{c} A \to B \\ B \to C \end{array}$	$A \rightarrow C$	Silogismo Hipotético / sh

Bibliografia

• GERSTING, J. A. Fundamentos Matemáticos para Ciência da Computação, 5. ed. Rio de Janeiro. LTC, 2004.

• BISPO, C.A., CASTANHEIRA, L.B., MELO, **O. Introdução à Lógica Matemática**, São Paulo. Cengage Learning, 2014.

• PEREIRA, S.L. Lógica Proposicional, USP-São Paulo, 2016.