Permit Number 98014

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name (2)	Air Contaminant	Emission Rates (6)	
No. (1)		Name (3)	lbs/hour	TPY (4)
la	Dry Mill Aspiration Filter No. 1 Baghouse Stack	PM	0.02	0.07
	No. 1 Bagnouse Stack	PM ₁₀	0.02	0.07
		PM _{2.5}	0.02	0.07
Ib	Dry Mill Aspiration Filter No. 2 Baghouse Stack	PM	0.02	0.07
	No. 2 Bagnouse Stack	PM ₁₀	0.02	0.07
		PM _{2.5}	0.02	0.07
Ic	Dry Mill Aspiration Filter No. 3 Baghouse Stack	PM	0.02	0.07
		PM ₁₀	0.02	0.07
		PM _{2.5}	0.02	0.07
Id	Dry Mill Aspiration Filter No. 4 Baghouse Stack	РМ	0.02	0.07
		PM ₁₀	0.02	0.07
		PM _{2.5}	0.02	0.07
lla	Cooler Air Aspiration Filter No. 1 Baghouse Stack	РМ	0.11	0.42
		PM ₁₀	0.11	0.42
		PM _{2.5}	0.11	0.42
IIb	Cooler Air Aspiration Filter No. 2 Baghouse Stack	PM	0.11	0.42
		PM ₁₀	0.11	0.42
		PM _{2.5}	0.11	0.42

IIIa	Wet Mill Aspiration Cyclone	PM	1.46	5.82
	No. 1 Stack	PM ₁₀	0.09	0.35
		PM _{2.5}	0.09	0.35
IIIb	Wet Mill Aspiration Cyclone No. 2 Stack	PM	1.46	5.82
	No. 2 Stack	PM ₁₀	0.09	0.35
		PM _{2.5}	0.09	0.35
IIIc	Wet Mill Aspiration Cyclone No. 3 Stack	PM	1.46	5.82
	No. o otaok	PM ₁₀	0.09	0.35
		PM _{2.5}	0.09	0.35
IIId	Wet Mill Aspiration Cyclone No. 4 Stack	PM	1.46	5.82
	140. 4 Stack	PM ₁₀	0.09	0.35
		PM _{2.5}	0.09	0.35
IIIe	Wet Mill Aspiration Cyclone No. 5 Stack	PM	1.46	5.82
	No. 5 Stack	PM ₁₀	0.09	0.35
		PM _{2.5}	0.09	0.35
IIIf	Wet Mill Aspiration Cyclone No. 6 Stack	PM	1.46	5.82
	No. o Stack	PM ₁₀	0.09	0.35
		PM _{2.5}	0.09	0.35
IIIg	Wet Mill Aspiration Cyclone No. 7 Stack	PM	1.46	5.82
	140. 7 Stack	PM ₁₀	0.09	0.35
		PM _{2.5}	0.09	0.35
IV	Dryer Outlet RTO Stack	VOC	14.80	64.90
		NO _x	40.04	175.40
		SO ₂	1.08	4.01

_				
		PM	6.80	29.70
		PM ₁₀	6.80	29.70
		PM _{2.5}	6.80	29.70
		СО	22.30	97.70
		НАР	0.54	1.87
VII	Starch Silo Stack	PM	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
		PM _{2.5}	<0.01	<0.01
IXa	Storage Silo No. 1 Stack	PM	0.16	0.65
		PM ₁₀	0.08	0.31
		PM _{2.5}	0.01	0.05
IXb	Storage Silo No. 2 Stack	PM	0.16	0.65
		PM ₁₀	0.08	0.31
		PM _{2.5}	0.01	0.05
IXc	Storage Silo No. 3 Stack	PM	0.16	0.65
		PM ₁₀	0.08	0.31
		PM _{2.5}	0.01	0.05
IXd	Storage Silo No. 4 Stack	PM	0.16	0.65
		PM ₁₀	0.08	0.31
		PM _{2.5}	0.01	0.05
Х	Rechipper (5)	PM	0.02	0.07
		PM ₁₀	<0.01	0.02
		PM _{2.5}	<0.01	<0.01

XI	Chipper (5)	PM	0.04	0.15
		PM ₁₀	0.01	0.05
		PM _{2.5}	<0.01	0.01
XII	Debarker (5)	PM	0.29	1.16
		PM ₁₀	0.13	0.53
		PM _{2.5}	0.03	0.13
HANDLING	Material Handling (5)	PM	0.19	0.77
		PM ₁₀	0.09	0.36
		PM _{2.5}	0.01	0.05
DIESEL TANK	Diesel Tank	VOC	<0.01	<0.01

- (1) Emission point identification - either specific equipment designation or emission point number from plot
- Specific point source name. For fugitive sources, use area name or fugitive source name.

(3)	VOC	-	volatile organic compounds as defined in Title 30 Texas Administrative Code §
			101.1

 NO_{\star} total oxides of nitrogen

SO₂ sulfur dioxide

РΜ total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as

represented

total particulate matter equal to or less than 10 microns in diameter, including PM_{10}

PM_{2.5}, as represented

particulate matter equal to or less than 2.5 microns in diameter $PM_{2.5}$

CO carbon monoxide

hazardous air pollutant as listed in § 112(b) of the Federal Clean Air Act or Title 40 HAP

Code of Federal Regulations Part 63, Subpart C

- Compliance with annual emission limits (tons per year) is based on a 12-month rolling period. (4)
- Emission rate is an estimate and is enforceable through compliance with the applicable special (5)condition(s) and permit application representations.
- Planned startup and shutdown emissions are included. Planned maintenance for EPNs Ia Id, IIa, IIb, IIIa - IIIq, and IV has been reviewed and included in the MAERT for specific maintenance activities identified in the permit special conditions. Any other maintenance activities are not authorized by this permit, but will be authorized separately.

Permit	Number	98014
Page		

Emission Sour	oc Maximum	Allowable	Emiccion	Dates
Emission Soun	'es - Maximiin	i Allowabie	-mission	Raies

Date:	March 13, 2014	
-------	----------------	--