TEA-013 Matemática Aplicada II

Prof. Nelson Luís Dias (Lemma, Centro Politécnico, 3320-2025) nldias@ufpr.br

Ensalamento e Horário 2as 4as 6as sala PM-02 07:30--09:10

Objetivos Didáticos

A Disciplina TEA0130 tem por objetivo aprofundar o domínio pelo aluno de modelos matemáticos analíticos e numéricos aplicáveis à Engenharia Ambiental. A disciplina incluirá aplicações de: álgebra linear, espaços vetoriais normados, séries de Fourier e transformadas de Fourier, assim como diversas técnicas de solução de equações numéricas e analíticas diferenciais parciais. Essas técnicas são ilustradas com problemas em Mecânica dos Fluidos, Hidrologia, Meteorologia, Química Ambiental e Ecologia, enfatizando-se a capacidade de formular e de resolver alguns problemas típicos (dispersão,reações químicas, dinâmica de populações, etc.) de importância em Engenharia Ambiental.

Unidades Didáticas

1	Solução numérica de equações diferenciais parciais
2	Análise linear, sistemas lineares em Engenharia
3	Séries e Transformadas de Fourier.
4	Teoria de Distribuições. Funções de Green e Identidades de Green em Engenharia: Hidrógrafa Unitária Instanânea, Problemas de Dispersão de Poluentes.
5	Teoria de Sturm-Liouville e algumas funções especiais adicionais (Legendre, Laguerre, Hermite). Importância da teoria no método de separação de variáveis para equações diferenciais parciais.
6	Equações Diferenciais Parciais: problemas lineares e não-lineares em escoamentos na atmosfera, nos oceanos, em rios e no solo, e problemas de dispersão de poluentes. Classificação e o método das características. Solução por separação de variáveis, transformadas integrais e transformada de Boltzmann.

Programa

Aula	Data	Conteúdo	Progresso
1	seg, 30/07/2018	A delta de Dirac.	A delta de Dirac.
2	qua, 01/08/18	Cálculo com Distribuições.	Cálculo com Distribuições.
3	sex, 03/08/2018	Diferenças finitas: método explícito para a equação de advecção. Fracasso do método. Explicação: instabilidade numérica.	Diferenças finitas: método explícito para a equação de advecção. Fracasso do método. Explicação: instabilidade numérica. Análise de estabilidade de von Neumann.
4	seg, 06/08/2018	Resultados adicionais e aplicações.	Resultados adicionais e aplicações.
5	qua, 08/08/2018	Espaços normados: produto interno.	Espaços normados: produto interno.
6	sex, 10/08/2018	Análise de estabilidade de von Neumann. Método de Lax. Número de Courant, condição de Courant. Difusão Numérica.	Análise de estabilidade de von Neumann. Método de Lax. Número de Courant, condição de Courant. Difusão Numérica. Esquemas numéricos para advecção: Upwind.
7	seg, 13/08/2018	Espaços normados: desigualdade de Schwarz e aplicações	Espaços normados: desigualdade de Schwarz e aplicações
8	qua, 15/08/2018	Espaços normados: espaços vetoriais de dimensão infinita.	Espaços normados: espaços vetoriais de dimensão infinita.
9	sex, 17/08/2018	Esquemas numéricos para advecção: Upwind. Difusão pura. Esquema explícito. Condição de estabilidade. Difusão pura. Esquema implícito. Condição de estabilidade.	Difusão pura. Esquema explícito. Condição de estabilidade. Difusão pura. Esquema implícito. Condição de estabilidade. Esquema implícito: programação matricial e slicing com Numpy.
10	seg, 20/08/2018	Séries de Fourier: Conceitos gerais e cálculo dos termos complexos.	Séries de Fourier: Conceitos gerais e cálculo dos termos complexos.
11	qua, 22/08/2018	Séries de Fourier: série real e complexa. Funções pares e impares.	Séries de Fourier: série real e complexa. Funções pares e impares.
12	sex, 24/08/2018	Esquema implícito: programação matricial e slicing com Numpy. Difusão pura. Crank-Nicholson. A equação de difusão-advecção.	Esquema implícito: programação matricial e slicing com Numpy. Difusão pura. Crank-Nicholson. A equação de difusão- advecção.
13	seg, 27/08/2018	Continuação de funções pares e ímpares, e Exemplos com séries de Fourier.	Continuação de funções pares e ímpares, e Exemplos com séries de Fourier.
14	qua, 29/08/2018	Exemplos com séries de Fourier.	Exemplos com séries de Fourier.
15	sex, 31/08/2018	P1	
16	seg, 03/09/2018	Desigualdade de Bessel e Igualdade de Parseval. Mínimos quadrados.	
17	qua, 05/09/2018	Transformada de Fourier. Teorema da Inversão.	
	sex, 07/09/2018	Feriado: Independência do Brasil.	
18	seg, 10/09/2018	Semana de Engenharia Ambiental	
19	qua, 12/09/2018	Semana de Engenharia Ambiental	
20	sex, 14/09/2018	Semana de Engenharia Ambiental	
21	seg, 17/09/2018	Transformada de Fourier: Cálculo de transformadas.	Transformada de Fourier: Cálculo de transformadas.
22	qua, 19/09/2018	Transformada de Fourier da derivada e aplicação à solução de EDO's e EDP's.	Transformada de Fourier da derivada e aplicação à solução de EDO's e EDP's. Propriedades da Transformada de Fourier: derivada, teorema da convolução.
23	sex, 21/09/2018	Difusão pura em 2 dimensões: ADI.	Difusão pura em 2 dimensões: ADI.
24	seg, 24/09/2018	Propriedades da Transformada de Fourier: derivada, teorema da convolução	
25	qua, 26/09/2018	Teorema de Parseval. Inversa da Transformada de Laplace.	
26	sex, 28/09/2018	P2	
27	seg, 01/10/2018	Condições de contorno em esquemas numéricos de equações diferenciais parciais. Aceleradores (Numba).	
28	qua, 03/10/2018	Operador Adjunto. Operador auto-adjunto. Matriz adjunta. Operadores diferenciais.	

29	sex, 05/10/2018	Funcões de Green.	
30	seg, 08/10/2018	Funções de Green.	
31	qua, 10/10/2018	Teoria de Sturm-Liouville Parte I (Evinci: com aula, sem cobrança de presença)	
32	sex, 12/10/2018	Feriado: Padroeira do Brasil	
	seg, 15/10/2018	Dia do Professor	
33	qua, 17/10/2018	Teoria de Sturm-Liouville Parte II	
34	sex, 19/10/2018	Teoria de Sturm-Liouville Aplicações	
35	seg, 22/10/2018	Teoria de Sturm-Liouville Aplicações	
36	qua, 24/10/2018	Equações diferenciais parciais: aplicações em Engenharia. Método das características.	
37	sex, 26/10/2018	Método das características: aplicações.	
38	seg, 29/10/2018	Classificação de EDPs.	
39	qua, 31/10/2018	P3	
	sex, 02/11/2018	Feriado: Finados	
40	seg, 05/11/2018	O método de separação de variáveis: a equação da difusão.	
41	qua, 07/11/2018	O método de separação de variáveis. A equação de Boussinesq não-linear e sua solução.	
42	sex, 09/11/2018	Difusão em coordenadas cilíndricas: uso de funções de Bessel.	
43	seg, 12/11/2018	Equação de Laplace: solução por separação de variáveis.	
44	qua, 14/11/2018	Equação de Laplace: aplicações.	
45	sex, 16/11/2018	Livre.	
46	seg, 19/11/2018	Equação da onda: solução por separação de variáveis.	
47	qua, 21/11/2018	Método das características: solução de d'Alembert para a equação da onda.	
48	sex, 23/11/2018	O método da transformada de Boltzmann para resolver um problema difusivo: placa em movimento.	
50	seg, 26/11/2018	Dia não letivo (CEPE 3017)	
51	qui, 17/01/2019	Revisão	
52	sex, 30/11/2018	P4	
53	seg, 03/12/2018	Revisão	
54	seg, 10/12/2018	F	

Avaliação

A disciplina é semestral. A avaliação da disciplina é contínua: haverá 4 exames parciais (P1, P2, P3, P4) aproximadamente mensais, e 4 trabalhos computacionais (TC), seguidos de um exame final F. O conteúdo de todos os exames é cumulativo. Os trabalhos computacionais não contarão para nota, mas o seu conteúdo será cobrado nos exames parciais. Os alunos poderão solicitar revisão de prova durante o período até a promulgação da nota do exame posterior. Após esse prazo, não será concedida nenhuma revisão. Os alunos que fizerem a revisão de prova devem comparecer à sala do professor com uma cópia impressa da solução da prova, devidamente estudada. As soluções são disponibilizadas eletronicamente em https://www.nldias.github.io, juntamente com as notas.

A média parcial, P, será a média ponderada de:

P4 (obrigatoriamente): peso 1.

As duas maiores notas entre P1, P2 e P3: peso 1 para cada uma das duas.

A ausência na P4 obriga o aluno a fazer a F, que contará como substituta da P4 e, eventualmente, como a própria F. O resultado parcial é: Alunos com P < 40 estão reprovados. Alunos com P \geq 70 estão aprovados. Para os alunos aprovados nesta fase, a sua média final é M = P. Alunos com $40 \leq P < 70$ farão o exame final F . Calcula-se a média final M = (P + F)/2. Alunos que obtiverem M \geq 50 estão aprovados. Alunos com M < 50 estão reprovados. Todas as contas são feitas com 2 algarismos significativos com arredondamento para cima. A sistemática dos exames é a seguinte: para cada prova, eu gero um mapa de prova aleatoriamente, com o nome e a posição dos alunos. Ao chegar à porta da sala de aula, verifique no mapa a sua posição durante a prova. O caderno de prova já estará distribuído, com seu número bem visível. Deixe todo o seu material junto ao quadro negro, e sente-se: tenha com você apenas um estojo contendo: caneta azul, lápis ou lapiseira, apontador, e borracha. Neste curso, não será permitido o uso de calculadoras, exceto quando explicitamente indicado antes de alguma prova. O mapa de prova torna o seu início muito rápido e confortável para você.

É proibido usar telefones celulares durante a prova. É proibido usar bonés, turbantes, etc., durante a prova, exceto por motivos religiosos, e nesse caso o aluno/aluna fica proibido de retirar a cobertura durante a prova. É proibido deixar a sala após o início da prova. Portanto, vá ao banheiro antes, desligue o seu celular e deixe-o junto com o resto do material dentro de sua pasta ou mochila, verifique suas lentes de contato, óculos, etc.. Após o início da prova, você só se retirará após entregar a prova.

Textos para estudo

O texto adotado para este curso é a versão preliminar de: Dias [2016]: Uma cópia atualizada pode ser obtida em http://www.lemma.ufpr.br/wiki/images/a/af/Matappa-2016-07-27.pdf. Um bom material adicional para a UD 1 é Versteeg e Malalasekera [2007]. O livro de Michael Greenberg [Greenberg, 1998] permanece sendo, provavelmente, um dos melhores textos de matemática aplicada existentes, e é recomendado como material adicional. Além disso, nele você encontrará uma grande quantidade de exercícios adicionais que complementam os exercícios resolvidos e propostos no livro texto.

Estudo individual

Reserve pelo menos 6 horas semanais para o estudo em casa desta disciplina. Leia a teoria no livro, evitando pular direto para exemplos e exercícios. Digite e rode os exemplos computacionais; faça o trabalho computacional individualmente, e não deixe para a última hora. Entenda a teoria, principalmente as deduções. Essa é a única maneira de estudar e entender matemática. Evite estudar apenas pelo caderno. Procure depois fazer o maior número possível de problemas, mas cuidado: evite fazer problemas apenas sobre uma parte da matéria. Planeje cuidadosamente seu tempo de estudo para que você consiga fazer exercícios sobre toda a matéria.

Referências

Brutsaert, W. (1967). Evaporation from a Very Small Water Surface at Ground Level: Three-Dimensional Turbulent Diffusion without Convection. Journal of Geophysical Research, 72(22):5361–5369.

Butkov, E. (1988). Física matemática. Guanabara Koogan, Rio de Janeiro.

Dias, N. L. (2016). Uma introdução aos métodos matemáticos para Engenharia. a ser submetido

à editora da UFPR, Curitiba, PR.

Greenberg, M. D. (1998). Advanced engineering mathematics. Prentice Hall, Upper Saddle River, New Jersey 07458, 2a edição.

Versteeg, H. K. e Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics. Pearson Prentice-Hall.