BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI FIRST SEMESTER 2021 - 2022 COURSE HANDOUT (PART II)

Date: 07/08/2021

In addition to Part I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No : MEL G624

Course Title : Advanced VLSI Architecture

Instructor-in-charge : Subhendu Kumar Sahoo

Instructors : G Sahith

1. Scope and Objective:

Study of advanced processor architectures and their implementation techniques that leverage datalevel parallelism and task level parallelism. This includes study of Vector, SIMD and GPU architectures and implementations; study of architectures and implementations that exploit threadlevel parallelism and task level parallelism via multi-processing; study of memory hierarchy design for all the above processors, and application domain specific processor architectures and their implementations.

2. Expected Learning Outcomes:

Gaining understanding of how (beyond instruction-level parallelism) data-level parallelism, thread-level parallelism and task level parallelism can be exploited to architect and implement:

- a. Vector Processors
- b. SIMD processors and Multi-media processors
- c. Graphical Processing Units (GPU) and General Purpose Graphical Processing Units (GPGPU)
- d. Multi-core processors
- e. Memory hierarchy organization for the above processors

3. Text Book:

T1. *Computer Architecture: A Quantitative Approach*, by J.L. Hennessy & D.A. Patterson, Morgan Kaufmann., 6th, 2019.

4. Reference Books:

- R1. Modern Processor Design: Fundamentals of Superscalar Processors, John Paul Shen & Mikko.H.Lipasti , Tata McGraw Hill,2011.
- R2. DSP Processor Fundamentals, Phil Lapesly, Jeff Bier, Amit Shoham, Edward.A.Lee, Wiley India Edition, 2011.
- R3 Journals & Conference Proceedings

4. Course Plan:

Lect No.	Learning Objective	Topics to be covered	Reference
01-03	Classification of computers from architectural point of view, Quantitative principles performance	Fundamentals of Quantitative Design and Analysis	T1- Ch-1 & Appendix-A
04-10	measurement. Memory hierarchy design for high performance.	Memory Hierarchy Design	T1- Ch-2 and Appendix-B
11-13	Review of pipelining concepts.	Pipeline architectures	T1- Appendix-C
14-15	Basics of super scalar architecture.	Superscalar Architectures	Ch-3 - Appendix-C
16-17	Different DSP architectures	Different DSP architectures and their units	Class Notes
18-19	Basics of VLIW architecture	Introduction to VLIW architectures	Chapter-3
20-23	Instruction-level parallelism in high performance processors	Introduction to Parallel Processing, ILP	Chapter-3
24-30	Vector architectures and implementations. Multimedia architectures and implementations	Data-Level Parallelism in Vector, SIMD	Chapter-4
31-36	Graphical Processing Unit Architectures	GPU Architectures	Chapter-4
37	Processing of single set of code by several processors.	Multithreading	Chapter-3
38-39	Small multicore processors	Small multiprocessors	Ch-5
40	Interconnection network to connect multiple processors	Multiprocessor interconnects	Class Notes
41-42	Large multicore processors	Large multiprocessors	Ch-5

The material in the text will be supplemented with papers from Journals. Class Notes will include journal papers, e-material

5. Evaluation Scheme:

EC No.	Evaluation Component	Duration (min)	Marks (Weightage %)	Date and Time	Nature of Component
1	Mid-Semester Exam	90 Min	30%	To be announced	Open Book
2	Assignments, Design Problems	NA	30%	To be announced	Open Book
3	Comprehensive Exam	120 Min	40%	As announced in the Time Table	Open Book/Closed Book

^{*} Details of the assignments will be announced later.

6. Chamber Consultation Hours: To be Announced

7. Make-up Policy:

Make Up for any component will be given only in genuine cases. In all cases prior intimation must be given to IC.

9. Notices: Notices regarding the course will be displayed on Google classroom/CMS.

Instructor - in - charge