Substitution nucléophile monomoléculaire du 2-méthylpropan-2-ol en 2-chloro-2-méthylpropane

Référence : Epreuve orale de chimie Florence PORTEU DE BUCHERE (p.317 et suivantes)

Leçons potentielles: 9

Produits:

Nom	Formule brute	Masse molaire (g.mol ⁻¹)	Densité		Sécurité
Acide chlorhydrique	HCl	36,46	1,19	pKa = -3	Corrosif
2-méthylpropan-2-ol	C ₄ H ₁₀ O	74,12	0,8	T _{eb} = 83 °C	Inflammable Irritant
Hydrogénocarbonate de sodium	NaHCO₃	84	-		-
Nitrate d'argent	AgNO₃	169,9	-	-	Comburant Corrosif Ecotoxique
Sulfate de magnésium anhydre	MgSO ₄	120,4	-	-	-
Eau distillée	H ₂ O	18	1	T _{eb} = 100 °C	-

Concentrations:

- Hydrogénocarbonate de sodium (NaHCO₃) à 5% (5g dans 100mL)
- Nitrate d'argent concentration 0.1mol.L⁻¹ (AgNO₃)

Matériels:

Réalisation de la synthèse :

- Potence
- Pince deux doigts
- Erlenmeyer
- Réfrigérant à eau
- Adaptateur
- Clip de sécurité
- Pipette jaugée de 10 mL
- Eprouvette graduée de 25 mL
- Agitateur magnétique
- Barreau aimanté

Récupération de la phase organique :

- Ampoule à décanter
- Béchers (1 pour la phase organique et 1 pour la phase aqueuse (en bas))

Ajout de l'hydrogénocarbonate sodium :

- Erlenmeyer
- Eprouvette graduée de 10 mL

Lavage de la phase organique :

- Ampoule à décanter
- Eprouvette graduée de 20 mL

Séchage avec sulfate de magnésium :

- Spatule
- Erlenmeyer (dans laquelle a été transvasée la phase organique)

Modification protocole:

Doubler les proportions de réactifs pour obtenir une phase organique de volume suffisant (~20mL), un volume inférieur n'est pas raisonnable pour faire correctement une extraction liquide-liquide.

Réalisation de la synthèse :

Pourquoi faut-il agiter vigoureusement puis calmer l'agitation, cela n'a pas beaucoup de sens... -> selon moi, on doit mettre cette question sous le tapis, et dire qu'on ne présente pas le montage (et l'extraction qui s'en suit) par manque de temps.

Ajout de l'hydrogénocarbonate :

Cette réaction dégage beaucoup de dioxyde de carbone gazeux, il est donc préférable de réaliser cette manipulation dans un erlenmeyer plutôt que dans l'ampoule à décanter (qui n'est pas une verrerie adaptée à la réalisation de réaction)

Séchage avec sulfate de magnésium :

Ne pas hésiter à en mettre beaucoup (jusqu'à atteindre la pulvérulence)

Phase réalisée en préparation :

Réaction + agitation pendant 10 min, élimination de la phase aqueuse. Mettre la phase organique dans un erlenmeyer.

Phase présentée devant le jury :

ajout d'hydrogénocarbonate dans l'erlen (pas directement dans l'ampoule par souci de dégazement) -> extraction liquide-liquide

Lavage à l'eau (1 seul)

Séchage au sulfate de magnésium

Filtration (pas sous vide) car on récupère le filtrat -> il faut peser au préalable le récipient destiné à récupérer le filtrat afin de déterminer le rendement.

Calcul du rendement.

Caractérisation:

Mesure de l'indice de réfraction Ajout de nitrate d'argent

<u>Remarque</u>: attention à présenter le mécanisme de la réaction comme une Sn1 (on forme un carbocation tertiaire)