The next number will increment significand.

and so on. There are 10 binary digits in significand. \Rightarrow 20 numbers $6/\omega$ 2 and 25.

Gap Size

bias:15

Difference b/w * and ** is:

$$\left(\left(\frac{1}{2^{n}} \right) \times 2^{\frac{1}{4}} - \left(\frac{1}{2^{\frac{1}{6}}} \right) \times 2^{\frac{1}{4}} \right)$$

$$= 2^{\frac{1}{4}} \left(\frac{1}{2^{n}} - \frac{1}{2^{\frac{1}{6}}} \right)$$

$$= 2^{\frac{1}{4}} \left(\frac{2}{2^{\frac{1}{6}}} - \frac{1}{2^{\frac{1}{6}}} \right)$$

$$= 2^{\frac{1}{4}} \left(\frac{2}{2^{\frac{1}{6}}} - \frac{1}{2^{\frac{1}{6}}} \right)$$

$$= 2^{\frac{1}{4}} \times \frac{1}{2^{\frac{1}{6}}} = 2^{\frac{1}{6}} \times 0.0156$$

and so on. There are 10 binary digits in significand.
$$\Rightarrow$$
 20 numbers b/ω 2 and 2°.

Gap Size

How many 16-bit floats between
$$2^{-5}$$
 and 2^{-4} ?

 $2^{-5} = \frac{1}{32}$

0010100000000000

10 minus bias = -5

increment significand. The next number will

Gap Size

Difference b/w * and ** is:

How many 16-bit floats between
$$2^8$$
 and 2^{-7} ?
$$\frac{7}{2} = \frac{1}{256}$$

7. minus bias =
$$-8$$

increment significand. The next number will

Gap Size

Difference b/w * and ** is: