ECE59500RL HW2

Robert (Cars) Chandler — chandl71@purdue.edu

Problem 1

1.1

Any matrix with only nonzero eigenvectors is necessarily invertible. So, we seek to prove that $I - \gamma P^{\pi}$ has only nonzero eigenvectors.

Using the properties of eigenvalues, if λ is an eigenvalue of P^{π} , then $1 - \gamma \lambda$ is an eigenvalue of $I - \gamma P^{\pi}$. So, if we can show that $\gamma \lambda \neq 1$ for all λ , then we can prove the matrix is invertible. Since we are in the discounted setting, we know that $0 < \gamma < 1$. So, if we can show that $\lambda \leq 1$, then we will have achieved our goal.

We know that P^{π} is a row-stochastic matrix, which is to say that each element must be in the interval [0, 1] and the sum of the elements in each row must be 1. Given the definition of the eigenvalue and eigenvector:

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$$

We begin by analyzing the RHS of the equation.

If we consider some $\lambda > 1$ to exist, then by definition:

$$\|\lambda \mathbf{x}\|_{\infty} = |\lambda| \|\mathbf{x}\|_{\infty}$$

and since $\lambda > 1$, then

$$\|\lambda \mathbf{x}\|_{\infty} = |\lambda| \|\mathbf{x}\|_{\infty} > \|\mathbf{x}\|_{\infty}$$

Now, looking at the LHS,

$$||P^{\pi}\mathbf{x}||_{\infty} \le ||\mathbf{x}||_{\infty}$$

This is true because each element in the vector resulting from $P^{\pi}\mathbf{x}$ will be some linear combination of the components of \mathbf{x} where the scalars are at least 0 and at most 1 and sum to 1. So, the greatest magnitude possible from this operation occurs in the case where a row of P^{π} has a 1 that aligns with the maximum magnitude of x and is zero everywhere else.

Now, we have proven that the LHS is less than or equal to $\|\mathbf{x}\|_{\infty}$ and that the RHS is greater than $\|\mathbf{x}\|_{\infty}$. But if these two sides of the equation are to be equal, then this is impossible. Therefore, it is impossible that $\lambda > 1$ for a row-stochastic matrix.

So if $\lambda < 1$ for all eigenvalues of P^{π} , then $1 - \gamma \lambda > 0$, because $0 < \gamma < 1$. Therefore, all eigenvalues of $I - \gamma P^{\pi}$ are nonzero, which means that $I - \gamma P^{\pi}$ must also be invertible.

1.2

Beginning with the Bellman consistency equation:

$$\begin{split} v^{\pi}(s) &= \mathbb{E}_{a \sim \pi(s)} \left[R(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[v^{\pi}(s') \right] \right] \\ &= \sum_{a \in \mathcal{A}} \mathbb{P}(a | s) \left[R(s, a) + \gamma \sum_{s' \in \mathcal{S}} \left[\mathbb{P}(s' | a, s) v^{\pi}(s') \right] \right] \end{split}$$

Which we can write in matrix form. Let $\pi_{|\mathcal{S}| \times |\mathcal{A}|}$ be a matrix such that each element $\pi_{i,j} = \mathbb{P}(a_j|s_i)$ is the probability of applying action $a_j \in \mathcal{A}$ given the current state $s_i \in \mathcal{S}$.

For each $s \in \mathcal{S}$,

Problem 2

2.1

We wish to prove that

$$\left|\max_{x \in X} g_1(x) - \max_{x \in X} g_2(x)\right| \leq \max_{x \in X} \left|g_1(x) - g_2(x)\right|$$

It is true that

$$\begin{aligned} g_1(x) & \leq |g_1(x) - g_2(x)| + g_2(x) \\ \left| \max_{x \in X} g_1(x) - \max_{x \in X} g_2(x) \right| & \leq \max_{x \in X} |g_1(x) - g_2(x)| \end{aligned}$$