1 HMMs

Consider the following Hidden Markov Model.

W_1	$P(W_1)$
0	0.3
1	0.7

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	A	0.9
0	В	0.1
1	A	0.5
1	В	0.5

Suppose that we observe $O_1 = A$ and $O_2 = B$.

Using the forward algorithm, compute the probability distribution $P(W_2|O_1=A,O_2=B)$ one step at a time.

1. Compute $P(W_1, O_1 = A)$.

$$= P(0,=A \mid W_1) \cdot P(W_1)$$

$$= P(W_1 = 1, 0 = A) = 0.5 \cdot 0.7 = 0.35$$

$$P(W_1 = 0, 0 = A) = 0.4 \cdot 0.5 = 0.27$$

3. Using the previous calculation, compute $P(W_2, O_1 = A, O_2 = B)$.

2. Using the previous calculation, compute $P(W_2, O_1 = A)$.

$$= \sum_{\omega_{i}} P(\omega_{i} | \omega_{i}) P(\omega_{i}, 0_{i} = A)$$

=)
$$P(\omega_{\lambda} = 1, 0.1 = A) =$$

= $P(\omega_{\lambda} = 1 | \omega_{\lambda} = 1) \cdot P(\omega_{1} = 1, 0.1 = A)$
+ $P(\omega_{\lambda} = 1 | \omega_{1} = 0) \cdot P(\omega_{1} = 0.10 = A)$
= $0.2 \cdot 0.35 + 0.6 \cdot 0.27$
= $0.02 + 0.162$

4. Finally, compute $P(W_2|O_1 = A, O_2 = B)$.

$$= P(W_{2}, 0:=A, 0z=B)$$

$$= P(W_{2}, 0:=A, 0z=B)$$

$$= W_{2}$$

2 Particle Filtering

Let's use Particle Filtering to estimate the distribution of $P(W_2|O_1=A,O_2=B)$. Here's the HMM again:

W_1	$P(W_1)$
0	0.3
1	0.7

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	A	0.9
0	В	0.1
1	A	0.5
1	В	0.5

We start with two particles representing our distribution for W_1 .

 $P_1:W_1=0$

 $P_2:W_1=1$

Use the following random numbers to run particle filtering:

 $[0.22,\, 0.05,\, 0.23,\, 0.20,\, 0.84,\, 0.54,\, 0.79,\, 0.66,\, 0.14,\, 0.96]$

1. Observe: Compute the weight of the two particles after evidence $O_1 = A$.

$$W(P_1) = P(0_1 = A | W_1 = 0) = 0.9 \longrightarrow \frac{0.9}{0.9 + 0.5} = \frac{0.9}{1.4} = 0.64$$

$$W(P_2) = P(0_1 = A | W_1 = 1) = 0.5 \longrightarrow \frac{0.5}{1.4} = 0.34$$

2. Resample: Using the random numbers, resample P_1 and P_2 based on the weights.

weights =
$$\{0.64, 0.54\}$$

 $P_1 = \text{sample}(\text{weighb}, 0.17) = 0$
 $P_2 = \text{sample}(\text{weighb}, 0.05) = 0$

3. Elapse Time: Now let's compute the elapse time particle update. Sample P_1 and P_2 from applying the time update.

$$P_1 = sumple (P(W_2 | W_1 = 0), 0.33) = 0$$

 $P_2 = sumple (P(W_2 | W_1 = 0), 0.20) = 0$

Let's use Particle Filtering to estimate the distribution of $P(W_2|O_1 = A, O_2 = B)$. Here's the HMM again:

W_1	$P(W_1)$
0	0.3
1	0.7

W_t	W_{t+1}	$P(W_{t+1} W_t)$
0	0	0.4
0	1	0.6
1	0	0.8
1	1	0.2

W_t	O_t	$P(O_t W_t)$
0	A	0.9
0	В	0.1
1	A	0.5
1	В	0.5

We start with two particles representing our distribution for W_1 .

$$P_1: W_1 = 0$$

$$P_2: W_1 = 1$$

Use the following random numbers to run particle filtering:

$$[0.22,\, 0.05,\, 0.33,\, 0.20,\, 0.84,\, 0.54,\, 0.79,\, 0.66,\, 0.14,\, 0.96]$$

4. Observe: Compute the weight of the two particles after evidence $O_2 = B$.

$$\omega(P_1) = P(O_2 = B | \omega_2 = 0) = 0.1 \implies \frac{0.1}{0.2} = 0.5$$

 $\omega(P_2) = P(O_2 = B | \omega_2 = 0) = 0.1 \implies -1/2 = 0.5$

5. Resample: Using the random numbers, resample P_1 and P_2 based on the weights.

6. What is our estimated distribution for $P(W_2|O_1 = A, O_2 = B)$?

$$P(\omega_{2}=0|O_{1}=A,O_{2}=I) = \frac{\Xi \omega(\omega_{2}=0)}{\Xi \omega(all)} = \frac{0.2}{0.2} = I$$

$$P(\omega_{2}=(|O_{1}=A,O_{2}=I)) = \frac{\Xi \omega(\omega_{2}=0)}{\Xi \omega(all)} = \frac{0.2}{0.2} = 0$$