

KVM: PCI device assignment

Chris Wright Red Hat August 10, 2010

Agenda

- Anatomy of a PCI device
- Current mechanism
- Shortcomings
- Future

PCI: Device Anatomy

- PCI Configuration space
 - Header + Device Dependent Region
- Device-specific registers
 - Configuration space, PIO, MMIO
- Interrupts
 - INTx, MSI, MSI-X
- DMA

PCI: Configuration Space

31 1615 0)
Device ID		Vendor ID		00h
Status		Command		04h
Class Code			Revision ID	08h
BIST	Header Type	Lat. Timer	Cache Line S.	0Ch
			10h	
Base Address Registers				14h
				18h
				1Ch
				20h
				24h
Cardbus CIS Pointer				28h
Subsystem ID		Subsystem Vendor ID		2Ch
Expansion ROM Base Address				30h
Reserved Cap. Pointe			Cap. Pointer	34h
Reserved				38h
Max Lat.	Min Gnt.	Interrupt Pin	Interrupt Line	3Ch
			MSI	40h
Device Dependent Region				
MSI-X			MSI-X	50h

PCI: Device-specific registers

"It is strongly recommended that PCI Express devices place no registers in Configuration Space other than those in headers or Capability structures architected by applicable PCI specifications." -- PCIe 2.1

PCI: Device-specific registers

"It is strongly recommended that PCI Express devices place no registers in Configuration Space other than those in headers or Capability structures architected by applicable PCI specifications." -- PCIe 2.1

And I want a pony

PCI: Interrupts

- INTx shared interrupts
- MSI, MSI-X
 - 0xFEE0_0000h

PCI: DMA

- Program device with bus addresses
- Device capable of issuing PCI memory transactions
- IOMMU required for any isolation/integrity

PCI: IOMMU

- DMA isolation
- Interrupt protection
- Routing ID issues
- ACS

KVM Device Assignment

- Goal: guest owns and drives device
- Requirements: maintain isolation
- Ideal world: maintain mobility

KVM Device Assignment: Mechanism

- Libvirt
- Qemu
- KVM

KVM Device Assignment: libvirt

- Handles complex reset logic
- Handles ACS filtering
- Unbind physical driver, bind pci-stub
- Set proper security context for sysfs files
- Rest pushed to gemu

KVM Device Assignment: qemu

- Add device to guest pci bus
- Manages config space access
 - PCI sysfs files
- Calls KVM ioctl interface

KVM Device Assignment: ioctl

- KVM_ASSIGN_PCI_DEVICE
 - enable pci device, reserve pci resources
 - reset device
 - create iommu domain, map guest
 - attach device to iommu domain
- KVM_DEASSIGN_PCI_DEVICE
 - detach device from iommu domain
 - reset device
 - release pci resources, disable pci device

KVM Device Assignment: ioctl

- KVM_ASSIGN_DEV_IRQ
 - enable host irq (INTx, MSI, MSI-X)
 - enable guest irq (INTx, MSI, MSI-X)
- KVM_DEASSIGN_DEV_IRQ
 - disable host irq
 - disable guest irq
- KVM_ASSIGN_SET_MSIX_NR
- KVM_ASSIGN_SET_MSIX_ENTRY

KVM Device Assignment: Shortcomings

- Solved issues
 - < 4k BAR (slow map)
 - Deprivileged QEMU: sysfs resource files, ioport access
 - hot unplug
- Unsolved issues
 - Capabilities mess (PCI and PCIe)
 - Topology disconnect
 - Memory locking
 - Device whitelist
 - ROM
 - SR-IOV management
 - Shared interrupts
 - KVM as device driver

KVM Device Assignment: Future

- VFIO
- PRI
- graphics?

Future: VFIO

UIO based

- UIO provides crude interrupt support
- rest via PCI sysfs files (config, BAR)
- no MSI or IOMMU support

VFIO

- Tom Lyon posted v3 in July
- PCI config space access and virtualization
- BARs, read/write/mmap for MMIO, read/write for PIO
- INTx, MSI, MSI-X interrupts via eventfd
- IOMMU support via UIOMMU
- works with qemu and userspace drivers

Future: VFIO interfaces

- VFIO DMA MAP IOVA
- VFIO_EVENTFD_{IRQ,MSI,MSIX}
- VFIO_BAR_LEN
- VFIO_DOMAIN_{,UN}SET
- Magic values for BAR/config space access via read/write/mmap

Future: VFIO qemu

- Alex Williamson posted in July 2010
- Can replace existing implementation
 - not KVM only
- Interrupts through qemu
- PCI 2.3 only for INTx

Future: PRI

- PCI specification update
- Requires I/O device hardware support
- Can eliminate memory locking

Future: Graphics

- PCI device assignment is generic
- Graphics devices are special

