DPRL Assignment 2

- Implement the following exercise in python using standard functions (no MDP packages)
- Consider a system that slowly deteriorates over time:
 - When it is new it has a failure probability of 0.1
 - the probability of failure increases every time unit linearly with 0.01
 - Replacement costs are 1, after replacement the part is new
- Compute the stationary distribution and use this to find the long-run average replacement costs
- Solve the average-cost Poisson equation
- Preventive replacement is possible at cost 0.5. What is the average optimal policy? Solve it using:
 - policy iteration
 - value iteration

How and what to submit VII

- Report (.pdf) of max 2 A4 pages plus appendix with relevant figures/tables/screenshots
- Separate Python code file (.py)
- Implement the algorithm in an efficient way, it should run very fast
- Report should include the solution method. Mathematically describe the method that you coded, including implementation choices and initialization and stopping criteria of the method
- Comment on your findings, are they as expected?