Spatial Convolution

Matthew Engelhard

Many slides created by Tim Dunn

What if we'd like to find a 1 anywhere in a larger image?

Examining filter output $\sigma(x_i^R \odot b)$, where x_i^R is the portion of image i where the filter is placed.

Examining filter output $\sigma(x_i^R \odot b)$, where x_i^R is the portion of image i where the filter is placed.

Examining filter output $\sigma(x_i^R \odot b)$, where x_i^R is the portion of image i where the filter is placed.

What if we want to know if a 1 is present anywhere in the image?

filter image

-1	1	-1
1	-1	1
-1	1	-1

-1	-1	-1	-1	-1
-1	-1	-1	1	-1
-1	-1	1	-1	1
-1	-1	-1	1	-1
-1	-1	-1	-1	-1

filter image

filter

image

 $x_i^R \odot b$

-1	5	

filter

-1	5	-5

filter

-1	5	-5
3		

filter

-1	5	-5
3	-5	

filter

-1	5	-5
3	-5	9

filter

image

 $x_i^R \odot b$

-1	5	-5
З	-5	9
-1		

filter

-1	5	-5
З	-5	9
-1	5	

filter

-1	5	-5
3	-5	9
-1	5	-5

filter

-1	5	-5
3	-5	9
-1	5	-5

filter

Each location where the filter was centered has been evaluated: "how similar is this location to the filter"?

-1	5	-5
3	-5	9
-1	5	-5

filter

In this way, we learn to identify a hierarchy of features rather than a huge number of complex feature

Low-level structure: lines, curves

Low-level structure: lines, curves

Mid-level structure: shapes

Mid-level structure: shapes

High-level structure: groups of shapes

High-level structure: groups of shapes \rightarrow objects

Deep Learning for Image Analysis

Diabetic Retinopathy Classification

Healthy Retina

Unhealthy Retina

Summary

- The convolution operation is the building block of the convolutional neural network (CNN)
- Convolving an image with a filter gives us a feature map that tells us how much each region of the image matches the filters
- CNNs learn to recognize high-level structure in images by building hierarchical representations of features

