Resolução da <u>Lista 2</u> da disciplina "Matrizes, Vetores e Geometria Analítica"

Exercício 1

Seja $\{u,v,w\}$ um conjunto L.I. (Linearmente Independente) de um espaço vetorial V. Prove que o conjunto $\{u+v-3w,u+3v-w,v+w\}$ é L.D. (Linearmente Dependente).

Resolução

Dizemos que um conjunto vetorial $L\subset V$ é L.I. se, e somente se, este é nulo $(L=\{\emptyset\})$ ou, se $L=u_1,\ldots,u_n$, uma igualdade do tipo

$$a_1u_1+\cdots+a_nu_n=e$$

onde $a \in \mathbb{R}$, for possível **somente** quando $a_1 = \cdots = a_n = 0$. Isto pois nenhum dos seus elementos é combinações linear de outro. Doutra forma, o conjunto em questão é L.D.

Avaliemos o caso proposto. Por hipótese este não é nulo, então para L=0:

$$\{u+v-3w,u+3v-w,v+w\}=\{0,0,0\} \implies egin{cases} u+v-3w=0\ u+3v-w=0\ v+w=0 \end{cases}$$

A resolução do sistema anteriormente descrito tem que u=-4v=4w. Logo, u+v-3w=e é uma possível solução do sistema onde $\exists \ a \neq 0$. O sistema em questão é, portanto, L. D.

Exercícios 2 e 3

Suponha que $\{v_1,\ldots,v_n\}$ é um conjunto L.I. de um espaço vetorial. Mostrar que $\{a_1v_1,\ldots,a_nv_n\}$ também é L.I., desde que os a_i 's sejam todos não nulos. O que acontece se um dos a_i 's for zero? Justifique.

Resolução

Sem perda de sentido, podemos renomear os vetores $\{a_1v_1,\ldots,a_nv_n\}$ como $B=\{u_1,\ldots,u_n\}$, onde u_i é o vetor resultante produto do vetor v_i com o escalar a_i , para $1\leq i\leq n$. Para B ser L.I., conforme a definição de conjunto L.I., faz-se necessário que $b_1u_1+\cdots+b_nu_n=e$, onde $b_1=\cdots=b_n=0$. Ora, a única maneira de se garantir que todos os b's são nulos em uma sequência $b_1a_1u_1+\cdots+b_na_nu_n=0$ é se todo $a\neq 0$ pois doutra forma um b pareado com b0 poderia assumir qualquer valor. \blacksquare

Exercício 4

Determine quais dos seguintes conjuntos são bases de \mathbb{R}^3 :

$$\{(1,1,1),(1,0,1),(1,1,0)\}$$

$$\{(1,1,1),(1,0,1),(1,2,1)\}$$

$$\{(3,0,0),(1,1,0),(2,2,2),(1,3,5)\}$$

Resolução

Seja V um espaço vetorial finitamente gerado. Uma base de V é o subconjunto finito $B\subset V$ para o qual as seguintes condições se verificam:

1.
$$[B] = V$$
;

 $2. B \in L.I.$

Observa-se que os vetores anteriormente descritos possuem a dimensão adequada para satisfazer a primeira condição, mas a maioria não satisfaz a segunda. Seja porque contêm vetores múltiplos (2° caso), um número de vetores superior à dimensão do espaço vetorial (3° caso), ou cujo produto escalar (o valor de $a_i \in \{a_1, \ldots, a_n\}$) para $\{a_1u_1, \ldots, a_nu_n\} = 0$ está indeterminado (4° caso).

Exercício 5

Considere $\{u_1,u_2,u_3\}$ uma base de um espaço vetorial V . Prove que o conjunto $\{v_1,v_2,v_3\}$, onde $v_i=u_1+u_i$, também é uma base de V.

Resolução

Uma base vetorial B é um subconjunto tal que os vetores nele contidos **não são**

- múltiplos entre si;
- nulos.

tal que [B]=e se, e somente se, $[B]=0u_1+0u_2+0u_3$. Assim sendo, para quaisquer u_i,u_j , e u_w diferentes de zero onde $u_i \nmid u_j$ e $u_w \nmid u_j$ segue que $u_i+u_w \nmid u_j$ e mesmo $u_i+u_j \nmid u_j$. Assim, cerificamos que se $\{u_1,u_2,u_3\}$ é um subespaço vetorial L.I., $\{v_1,v_2,v_3\}$ também o é.

Mas seria esse segundo subconjunto também uma base? Conforme o Teorema da invariância:

Seja V um espaço vetorial finitamente gerado. Então duas bases quaisquer de V têm ${f o}$ mesmo número de vetores.

Portanto, vemos que este é o caso ao atestar que esta contém o mesmo número de vetores que a primeira, que é base. ■

Exercício 6

Mostre que se $B = \{v_1, \dots, v_n\}$ é uma base de um espaço vetorial V , a equação:

$$c_1v_1 + \cdots + c_kv_k = c_{k+1}v_{k+1} + \cdots + c_nv_n$$

só pode ser verdadeira quando todos os c_i 's = 0.

Resolução

Por tratar-se de uma base, tem-se que:

$$0(v_1 + \dots + v_k + v_{k+1} + \dots + v_n) = e \implies 0(v_1 + \dots + v_k) = -0(v_{k+1} + \dots + v_n) \implies 0(v_1 + \dots + v_k) = 0(v_{k+1} + \dots + v_n)$$

Substituindo 0 por c, temos que a relação se mantém verdadeira. Aliás, isso só é possível se c=0, pois este é o único número de mesmo valor sendo positivo ou negativo. \blacksquare

Exercício 7

Mostre que, considerando uma base $B=\{v_1,\ldots,v_n\}$ de um espaço V, cada combinação linear é única, isto é, cada vetor $u\in V$ pode ser escrito de maneira única como combinação linear dos vetores de B.

Resolução

Vamos admitir que uma dada combinação linear u admite duas representações distintas:

$$u = \{a_1v_1, \dots, a_nv_n\} = \{b_1v_1, \dots, b_nv_n\}$$

Disso implica que:

$$a_iv_i = b_iv_i \implies \underbrace{a_iv_i + (-a_i)v_i}_e = b_iv_i + (-a_i)v_i \implies (b_i - a_i)v_i = e$$

Por tratar-se de uma base, tem-se que $\prod_{i=1}^n v_i
eq 0$. Logo:

$$(b_i-a_i)v_i=e \implies (b_i-a_i)v_i=0v_i \implies b_i-a_i=0 \implies b_i=a_i$$