

March 2020

ROS-INDUSTRIAL DEVELOPER'S MEETING

Presenters: Erik Unemyr, Consortium Manager

Dr. Dejanira Araiza, Technical Lead Bey Hao Yun, Development Engineer

Date: 10th March 2020

Agenda

• 09.00-09.10 Introduction

09.10-09.20 Key Updates from Asia Pacific Consortium

09.20-09.30 Technical Presentation – PackML

09.30-09.40 Technical Presentation – Robotic Vision Integration Pipeline

• 09.40-10.00 Community Discussion

The Advanced Remanufacturing and Technology Centre

Key Updates from Asia Pacific Consortium

ROS Growth Trend

Unique Monthly Downloads

Reaching towards 0.5 million unique downloads per month

ROS Growth Trend

Unique monthly Wiki visitors Jul 2018 → Jul 2019

1.	•	China	41,357	(19.88%)
2.		United States	36,531	(17.56%)
3.	•	Japan	19,738	(9.49%)
4.		Germany	15,525	(7.46%)
5.	(0)	South Korea	9,382	(4.51%)
6.	-	India	9,345	(4.49%)
7.	2 5	United Kingdom	4,972	(2.39%)
8.		Taiwan	4,856	(2.33%)
9.		France	4,056	(1.95%)
10.	÷	Canada	3,854	(1.85%)
11.	(p)	Singapore	3,516	(1.69%)
12.		Italy	3,464	(1.66%)
13.		Russia	3,207	(1.54%)
14.	**	Australia	3,114	(1.50%)
15.	3	Spain	3,080	(1.48%)
16.	¥	Hong Kong	2,941	(1.41%)
17.	(Brazil	2,548	(1.22%)
18.	C-	Turkey	2,253	(1.08%)
19.		Netherlands	1,822	(0.88%)
20.		Poland	1,820	(0.87%)

- 8 APAC countries in top 20
- APAC user base grew 12% YoY
- China now number #1 ROS user
- China user base grew 29% YoY
- Japan user base grew 27% YoY

Consortium Membership

Currently 17 members in Asia Pacific (and over 70 worldwide):

Asia Pacific Workshop 2020 - Postponed

• Originally scheduled for May 20-21st this year, we have are postponing the ROS-Industrial Asia Pacific Workshop for the time being, due to the on-going COVID-19 situation. **We will be announcing updates on our key events and activities through our e-mail distribution list.**

See you later this year at Asia's leading Open Source robotics event!

ROS Developer's Training

• We will publish and open for registration our training sessions for 2020 soon – stay tuned for the official announcement. Our tentative training schedule is:

Run	Date	Additional Notes
1	Mon 11 May – Thu 15 May	Member's Only Run
2	Mon 1 Jun – Thurs 4 Jun	
3	Mon 24 Aug – Thurs 27 Aug	
4	Mon 21 Sep – Thurs 24 Sep	Member's Only Run
5	Mon 12 Oct – Thurs 15 Oct	
6	Mon 7 Dec – Thurs 10 Dec	

Leading ROS 2.0 Development Programme

Development of **industry-grade ROS 2.0 components** addressing common pain points and needs by the industry:

Advanced Perception

Object detection, classification, tracking and accurate positioning module

Smart Manipulation

- Flexible and fast grasping library that works with many different types of end effectors
- Integrated collision avoidance

Unified Robotic Communication (Interoperability)

 Allows for robots of different brands to interoperate seamlessly together within an environment and communicate with building infrastructure and equipment

Intelligent Navigation

- Porting of I2R's navigation stack to ROS 2
- Integrated obstacle avoidance

Robotics Middleware Framework (RMF) for Industry

- Project Overview
 - ROS-Industrial Consortium and Open Robotics will collaborate to develop enhancements required to adopt RMF for commercial and industry sectors
 - ROS 2.0 middleware allowing:
 - Connectivity to brownfield systems
 - Interoperability between robots as well as edge devices (including building infrastructure)
 - Task and fleet scheduling
 - Significant portions of project will be Open Sourced

- Sponsor
 - National Robotics Programme (NRP)
- Participating Organizations

Robotics Interoperability – Allowing for Large Scale Deployments

Packages Open Sourced

PackML2

- Solution that enables control of a PackML state machine that communicate between PLCs and ROS
- Has been upgraded from original ROS 1.0 support to ROS 2.0 (tested on Dashing)

PackML (Packing Machine Language) state machine is commonly used by PLCs in packaging

https://github.com/dejaniraai/packml_ros2

Robotic Vision Integration Pipeline (RVIP)

 Skeleton project that implements a complete pipeline for object detection, accurate object positioning using ML models, and pose estimation

https://github.com/cardboardcode/rvip-1

PackML

PackML_ROS2: State Machine Based System Programming,
Monitoring and Control in ROS2

Motivation

- State machines allow...
 - Modelling sequential and concurrent processes and systems
 - Composability
 - Simplified implementation of robot control code
 - (Formal) analysis
 - IP protection through abstraction
- The PackML standard
 - State machines to model, program and control packing processes
 - Standard template with states, transitions and triggering events

Background

- PackML ROS package
 - Released in 2016-2017
 - RViz plugin (Indigo)
 - Qt GUI (Kinetic)
 - State machine simulator in C++

- Existing state machine libraries previously adopted in ROS
 - SMACH (Python) http://wiki.ros.org/smach
 - Lifecycle (C++, ROS 2 Crystal and newer) https://github.com/ros2/demos/tree/master/lifecycle
 - Qt state machine libraries https://doc.qt.io/qt-5/statemachine.html

Methodology for Implementation

- 2. PackML use case
- 3. Comparison of PackML ROS 2 and first ROS implementation

1. Porting PackML Kinetic Packages to Dashing

1. Porting PackML Kinetic Packages to Dashing

<u>Issues</u>

- 1 Lack of documentation and examples in ROS 2
- Syntax changes in ROS API, CMakeLists.txt and package.xml
- Intertwined ROS code
- Tests that fail and only for the state machine library

Lessons Learned

- Documenting and sharing the code for the future
- Separation of libraries without ROS content vs. ROS nodes
- Modularity, functions, classes, package structure
- New unit testing implemented, for all the code

2. PackML Use Case

Siemens PLC

packml_plc

ROS 2 OPCUA
client in Python 3

ROS 2 Dashing

OPCUA over TCP/IP

3. PackML ROS 2 vs PackML ROS

No more roscore overhead

In Melodic: 327564K (Core) + 833636K (Master) + 344528K (Logger)+ 504492K (Node) + 1481356K (Qt GUI) ~ 3.5GB

In Dashing: 617824K (Node) + 1864192K (RViz plugin) ~ 2.5GB

- No more topics, only services
- Visualization of state machine state and elapsed time per state
- More code unit testing (>80% LOC)

Robotic Vision Integration Pipeline (RVIP)

Offering easy integration of 2D-3D hybrid pose alignment processes in ROS

What RVIP does? [1/2]

Objective:

To make use of both **2D** and **3D** information of an object to produce **a robust picking action by a robot**.

What RVIP does? [2/2]

Reset

18 fps

RVIP Architecture Diagram [1/2]

RVIP Architecture Diagram [2/2]

Why use RVIP?

Benefits

- <u>Provides</u> real-time object localization (given the right hardware).
- Operates under permissive
 BSD license.
- Integrates easily with existing Manipulation packages (Eg. Movelt)
- Requires no customized training of Machine Learning neural network.
 - But allows it.
- Requires no CAD models.

Get Started with RVIP

industrial consortium asia pacific

Ongoing work is being done to host it on the official **ros_industrial** GitHub repository.

https://github.com/ros-industrial/rvip/pull/1

Get Started with RVIP

ROS industrial consortium asia pacific

If you already have a 2D Computer Vision Architecture (other than **darknet_ros**) in mind, you can follow the vanilla documentation.

BUT if you would like an **Out-Of-Box** complete robotic vision suite using **RVIP**, be sure to refer to **demo.md** In the documentation.

Setup

This section provides instructions on how to install and use **RVIP**. These instructions are only to set up RVIP to run in isolation.

To run RVIP as a complete robotic vision suite, please follow the instructions in demo.md.

Community Discussion

Community Discussion

Technical

- ROS 2.0 related
- Missing features/capabilities
- Packages that need more support/maintenance
- Packages that need performance enhancements
- Hardware/robots/peripherals support

Quality

- Packages that need better quality/analysis
- Development and test processes
- Continuous integration

Commercial

- Software licensing
- Intellectual property
- Other questions and/or requests

Thank You