General Instruction

- Submit uncompressed file(s) in the Dropbox folder via BeachBoard (Not email).
- 1. Implement a program to estimate π using the simulation method.
 - (a) The program should generate n random points of (x, y) where $0 \le x < 1$ and $0 \le y < 1$ for $n \in \{10^3, 10^4, 10^5, 10^6\}$.
 - (b) You can use math.pi to compute error rates.
 - (c) (10 points) Please follow the output format. Note that the estimated π and the error rates may be different. (Fix precision using "0:.nf".format)

```
n = 10 ^3 pi = 3.096000 error = 1.4513 % n = 10 ^4 pi = 3.136800 error = 0.1526 % n = 10 ^5 pi = 3.145280 error = 0.1174 % n = 10 ^6 pi = 3.140568 error = 0.0326 %
```

You can use the formula

$$error(\%) = \left| \frac{\pi - \pi'}{\pi} \right| \times 100,$$

where π' is the estimation.

- (d) (10 points) For $n = 10^4$, draw a scatter plot as Figure 1, i.e., blue color for dots whose distances from the origin (0,0) are less than 1, otherwise red color.
- (e) Submit pi.ipynb.

Figure 1: Estimating π using simulation