Réactivité

Réactivité

- I Réactions organiques
- II Thermodynamique et cinétique des réactions
- III Les principaux mécanismes
- IV Les solvants

A - les composés chimiques

1) Réactifs et substrats

Réactif : substance qui entre en relation avec une autre substance

Substrat: molécule qui subit l'attaque du réactif

$$CH_3Br + NaOH \longrightarrow CH_3OH + NaBr$$

substrat réactif

$$CH_3-C > O \\ CI + CH_3O-H \longrightarrow CH_3-C > O \\ CH_3-C > O \\ CH_3+ HCI$$
substrat réactif

- 2) Nature des réactifs
- > Réactifs ioniques :

réactif nucléophile : entité possédant un doublet d'esusceptibles d'être partagés pour former une liaison

- anions : HO⁻, Cl⁻
- molécules neutres : H₂O, NH₃
- Molécules neutres possédant un site polarisé négativement :

- 2) Nature des réactifs
- Réactifs ioniques :
- réactif électrophile : entité pouvant accepter un doublet d'e-pour former une liaison
- cations : H⁺, O₂N⁺
- molécules neutres possédant une lacune électronique : BH₃,
 AICI₃

- 2) Nature des réactifs
- Réactifs ioniques :
 - réactif nucléophile
 - réactif électrophile :
- > Réactifs radicalaires :
- radical libre: espèce chimique possédant un ecélibataire

$$Cl_2 \longrightarrow 2Cl^{\circ}$$

3) Acides et bases

Théorie de Brönsted :mise en jeu d'un proton

Théorie de Lewis

- acides de Lewis : accepteurs d'e-, possédent une lacune électronique

- bases de Lewis : donneurs de doublets d'e-

HO⁻, RO⁻, RNH₂, ...

Caractère acide /base : réaction équilibrée

Caractère nucléophile /électrophile : réaction totale

Les carbocations :

Formation:

- rupture hétérolytique d'une liaison

$$R^{+\delta} - X^{-\delta} \longrightarrow R^+ + X^-$$

Carbocations : une charge positive et une orbitale vide sur un carbone

Structure : Géométrie plane

Les carbocations :

Formation: rupture hétérolytique (charge positive et orbitale vide sur C)

Structure : Géométrie plane

Stabilité : augmente avec le degré de substitution du C

Les carbocations :

- Formation: rupture hétérolytique (charge positive et orbitale vide sur C)
- Structure : Géométrie plane
- Stabilité : augmente avec le degré de substitution du C
- Stabilisation par effet mésomère

$$H_2C=CH-CH_2$$
 \longleftrightarrow $H_2C-CH=CH_2$

Les carbocations :

Migration pour augmenter la stabilité

$$CH_3$$
 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3

$$CH_{3} \xrightarrow{C} CH_{2} \xrightarrow{C} CH_{2} \xrightarrow{C} CH_{2} \xrightarrow{C} CH_{3}$$

$$CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{C} CH_{3}$$

Les carbocations :

Formation:

> rupture hétérolytique d'une liaison

$$R^{+\delta} - X^{-\delta} \longrightarrow R^+ + X^-$$

Rupture facilitée par catalyse acide

AlCl₃ pour les dérivés halogénés

H+ ou Zn++ pour les alcools

> fixation d'un électrophile sur une double liaison

Les carbocations :

Réactivité

Les carbanions :

Formation : rupture hétérolytique d'une liaison

$$R^{-\delta} - M^{+\delta} \longrightarrow R^{-} + M^{+}$$

Carbanions : une charge négative et un doublet libre sur un carbone

Structure : Géométrie pyramidale

Les carbanions :

- Formation : rupture hétérolytique (charge négative et doublet libre sur C)
- Structure : Géométrie pyramidale

Stabilité : diminue avec le degré de substitution du C

$$H_3C^- > H_2C^- > H_2C^- > H_2C^- > R_3$$
 R_1 R_2 R_3 R_2

Stabilité

Les carbanions :

Formation:

> rupture hétérolytique d'une liaison

$$R^{-\delta} - M^{+\delta} \longrightarrow R^{-} + M^{+}$$

Organo-magnésiens, dérivés sodés des alcynes vrais...

> attaque d'une base sur un H labile lié à un carbone

$$-\stackrel{|}{C}-H + B^{-} \longrightarrow -\stackrel{|}{C}: + BH$$

Les carbanions :

Réactivité

Les radicaux libres :

- Formation: rupture homolytique d'une liaison par chauffage, irradiation.
- Géométrie plane
- Stabilité augmente avec le degré de substitution du C
- Stabilisation par effet mésomère

$$CH_2 \longleftrightarrow CH_2 \longleftrightarrow CH_2$$

B - les réactions chimiques

- 1) Différents types de réaction
- Réaction de substitution

$$CH_3Br + HO^- \longrightarrow CH_3OH + Br^-$$

Réaction d'addition

$$CH_2=CH_2 + Br_2 \longrightarrow CH_2Br-CH_2Br$$

Réaction d'élimination

$$CH_3-CH_2Br \longrightarrow CH_2=CH_2 + HBr$$

B - les réactions chimiques

Réaction de transposition

$$H_2C = C \longrightarrow H_3C - C \bigcirc H$$

Réaction d'oxydo-réduction

Mise en jeu d'électrons

Réaction d'oxydo-réduction

Oxydation réaction au cours de laquelle est libéré un ou des électrons

R-CH₂-OH
$$\rightleftharpoons$$
 R-CHO + 2 H⁺ + 2 e⁻

Réduction réaction au cours de laquelle est consommé un ou des électrons

R-CH=CH-R' +
$$2 \text{ H}^+$$
 + 2 e^- R-CH₂-CH₂-R'

Réaction d'oxydo-réduction

Oxydants

Ozone (O_3) , acide chromique $(HCrO_4)$, bichromate $(Cr_2O_7^=)$, permanganate (MnO_4^-) , ...

Réducteurs

Dihydrogène (H₂) avec catalyseurs métalliques (Pd, Pt, Ni), hydrures (LiAlH₄, NaBH₄), organomagnésiens (RMgX), ...

2) Caractérisation de la réaction

La réaction est qualifiée par la nature du réactif.

Principaux mécanismes :

- substitutions nucléophiles, électrophiles ou radicalaires
- additions nucléophiles, électrophiles ou radicalaires
- élimination

$$HO^{-} + H_{3}C-Br \longrightarrow CH_{3}OH + Br^{-}$$

3) Réactions stéréosélectives et stéréospécifiques

Réactions stéréosélectives :

$$A \longrightarrow B_1$$
 (majoritaire) + B_2 (stéréo-isomère)

Isomère Z

Isomère E

Isomère Z est majoritaire

Réactions stéréospécifiques :

$$A_1 \longrightarrow B_1$$

$$A_2 \longrightarrow B_2$$

$$A_1$$
 et A_2

 A_1 et A_2 B_1 et B_2

: stéréoisomères

HO-
$$H_5C_2^{"}C_{CH_3}$$

R

HO—
$$C_{CH_3}$$
 + Br

R ne donne que S

Réactions régiosélectives :

$$A \longrightarrow B_1$$
 (majoritaire) + B_2 (isomère de constitution)

$$R-CH=CH_2 + HBr \longrightarrow R-CHBr-CH_3 + R-CH_2-CH_2Br$$

 B_1 B_2

majoritaire

Aspect cinétique : Ea

Aspect thermodynamique : ΔG°

A - Constante d'équilibre et rendement

1) Relations fondamentales

$$A + BC \iff AB + C$$

$$K = \frac{[AB][C]}{[A][BC]}$$

$$\Delta G^{0}_{(T)} = -RT.lnK$$

$$\Delta G^{0} < 0$$

$$\Delta G^0_{(T)} = \Delta H^0_{(T)} - T\Delta S^0_{(T)}$$

 $\Delta G^{0}_{(T)}$ = enthalpie libre standard

 $\Delta H^{0}_{(T)}$ = enthalpie standard

 $\Delta S_{(T)}^0$ = entropie standard

2) Détermination de l'enthalpie

ΔH° déterminé par des mesures calorimétriques ou calculé en utilisant les tables d'enthalpie de liaisons

 ΔH° = rupture des liaisons - formation des liaisons

 $\Delta H^{\circ} > 0$: réaction endothermique

 $\Delta H^{\circ} < 0$: réaction exothermique

3) Détermination de l'entropie

$$S^0$$
 gaz > S^0 liquide > S^0 solide

- Si le nombre de moles diminue au cours de la réaction
 ΔS⁰ est négatif

B - Aspect cinétique

Réactions élémentaires :

réaction monomoléculaire A → B
 v = k[A]
 réaction bimoléculaire A + BC → AB + C

$$v = k [A][BC]$$

$$k = Ae^{-\frac{E_a}{RT}}$$

$$\mathsf{k} = \mathsf{Ae}^{-rac{\mathsf{E}_{a}}{\mathsf{RT}}}$$

Conditions optimales:

- réaction exothermique ⇒ K élevée
- E_a faible ⇒ vitesse élevée

C - Contrôle thermodynamique ou cinétique

L'équilibre est atteint

$$A \stackrel{k_1}{\longleftrightarrow} B$$

$$A \stackrel{\mathsf{k}_2}{\longleftrightarrow} C$$

A I 'équilibre $v = 0 = k_1[A]_{\acute{e}q} = k_{-1}[B]_{\acute{e}q}$

$$\mathsf{K}_1 = \frac{[\mathsf{B}]_{\acute{e}q}}{[\mathsf{A}]_{\acute{e}q}} = \frac{\mathsf{k}_1}{\mathsf{k}_{-1}}$$

$$\mathsf{K}_2 = \frac{[\mathsf{C}]_{\acute{e}q}}{[\mathsf{A}]_{\acute{e}q}} = \frac{\mathsf{k}_2}{\mathsf{k}_{-2}}$$

$$K = \frac{[C]_{\acute{e}q}}{[B]_{\acute{e}q}} = \frac{K_2}{K_1}$$

La réaction est sous contrôle thermodynamique

«conditions de réaction qui favorisent surtout le produit le plus stable »

C - Contrôle thermodynamique ou cinétique

L'équilibre n'est pas atteint

$$A \stackrel{k_1}{\longleftrightarrow} B$$

$$A \stackrel{k_2}{\longleftrightarrow} C$$

$$\frac{d[B]}{dt} = k_1[A]$$

$$\frac{d[C]}{dt} = k_2[A]$$

$$\frac{d[C]}{d[B]} = \frac{k_2}{k_1}$$

La réaction est sous contrôle cinétique

« conditions de réaction qui favorisent surtout le produit formé le plus rapidement »

- A basse température, une réaction peut être contrôlée thermodynamiquement
- A température élevée, une réaction est contrôlée cinétiquement

III - Principaux mécanismes

4 grandes catégories:

- substitution
- addition
- élimination
- réarrangement

Classement

- selon leur mécanisme (nucléophile, électrophile)
- selon la nature du substrat

Substitution nucléophile S_{N2}

Substitution nucléophile S_{N2}

$$V = k[ABDCX][OH^{-}]$$

Substitution nucléophile S_{N2}

- Inversion de configuration
- Réaction bimoléculaire V = k[ABDCX][OH-]
- Vitesse augmente avec la polarisabilité de la liaison C-X :
 R-I > R-Br > R-CI >> R-F
- Vitesse assez peu sensible à la polarité du solvant
- Vitesse plus grande avec des substituants A, B, D de petite taille
- Vitesse plus grande avec des nucléophiles de petite taille (ici OH⁻)

Substitution nucléophile S_{N1} \oplus \oplus \oplus OH-OH-

Substitution nucléophile S_{N1}

T1 détermine la vitesse de la réaction

V = k[ABCDX]

Substitution nucléophile S_{N1}

- Si substrat actif optiquement ⇒perte de l'activité optique (mélange racémique)
- Réaction monomoléculaire V = k[ABDCX]
- Vitesse augmente avec la polarisabilité de la liaison C-X :
 R-I > R-Br > R-Cl >> R-F
- Vitesse augmente avec la polarité du solvant
- Vitesse plus grande avec des substituants A, B, D de grande taille
- Vitesse insensible à la taille du nucléophile (ici OH⁻)

Substitution nucléophile S_{N1}

Solvant	constante diélectrique	constante de vitesse relative k
CH ₃ COOH	6	1
CH ₃ OH	33	4
НСООН	58	5 000
H ₂ O	78	1,5 10 ⁵

Compétition S_{N1}/ S_{N2}

Nature du substrat

- Substrat encombré ⇒ S_{N1}
- Substrat peu encombré ⇒ S_{N2}

Nature du nucléophile Nucléophilie élevée favorise S_{N2}

Nature du solvant

- solvant protique favorise S_{N1}
- solvant aprotique, polaire favorise S_{N2}

Elimination E₂

Elimination E₂

- Réaction bimoléculaire
- $V = k[B^-][RX]$
- Réaction stéréospécifique

$$H_3C$$
 H_3C
 H
 H

$$H_3C$$
 H
 CH_3

$$C = C$$
 H

$$H_3C$$
 $C = C$
 CH_3

Elimination E₁

Réaction monomoléculaire

$$V = k[RX]$$

Mélange de 2 alcènes E et Z

Compétition substitution / élimination

Elimination favorisée par:

- élévation de la température
- encombrement stérique
- la basicité

IV - Les solvants

A - Critères de choix d'un solvant

- Un solvant doit solubiliser réactif et substrat
- La température d'ébullition d'un solvant ne doit pas être trop élevée pour permettre son élimination en fin de réaction
- Un solvant ne doit réagir ni avec le réactif ni avec le substrat
- Un solvant peut accélérer ou ralentir une réaction en raison des phénomènes de solvatation

IV - Les solvants

B – Les types de solvants

Solvants apolaires et aprotiques

Chimiquement neutres: hydrocarbures liquides

Solvants protiques

Généralement polaires

Caractère acide au sens de Brönsted

Susceptibles de donner des liaisons hydrogène (solvatent les anions)

Caractère électrophile (H+)

Caractère nucléophile (atome O...)

Solvants hydroxylés (eau, alcool...), acides organiques

IV - Les solvants

Solvants aprotiques polaires

Donneurs de doublets d'é- par leur doublet d'e- non liants

Solvants basiques au sens de Lewis

Solvatent les cations

cétones, éthers, amides...