Reimplementing Neural Tensor Networks for Knowledge Base Completion in the TensorFlow framework

Dustin Doss, Alex Lenail, Clare Liu

Introduction

- A **knowledge base** stores **entities** and the **relationships** between them to represent **facts about the world**.
- Knowledge bases suffer from <u>incompleteness</u> and an inability to reason over the relationships between entities
- We used <u>TensorFlow</u>, an open-source machine learning library that was recently released by Google, to develop a Neural Tensor Network (NTN) to <u>infer new relationships</u> between entities

Knowledge Base Completion

How can we infer that Microsoft is located in the USA?

Neural Tensor Network

$$g(e_1, R, e_2) = u_R^T f\left(e_1^T W_R^{[1:k]} e_2 + V_R \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} + b_R\right)$$

g = score for the likelihood that e1 and e2 are in the relationship R

W = tensor with k slices f = tanh activation function

b = bias

U, V = standard neural network parameters

Neural Tensor Layer

TensorFlow

TensorFlow is a open-source library released by Google for numerical computation in data flow graphs

Represents algorithms as directed acyclic graphs (DAGs), nodes as operations, and edges as schemas for tensors

Datasets

- **1. Wordnet** a knowledge base for the English language, which groups words into sets of synonyms and contains relations between these sets. Wordnet contains 38,696 entities and 11 relations.
- 2. <u>Freebase</u> a collaborative knowledge base which connects entities as a graph. Freebase contains 75,043 entities and 13 relations

Inputs and Outputs

Inputs: Entity-relationship triplets of the form (e1, R, e2), where e1 is the subject, e2 is the object, and R is the relation

Outputs: Prediction = 1 if e1 and e2 are in relationship, -1 otherwise

Entities: Relations: Training set:

male aender united states nationality female profession politician place_of_death germany place_of_birth writer united_kingdom location england institution france cause_of_death paris religion new york parents actor children london lawyer ethnicity italy spouse

catholicism

antoine_brutus_menier religion roman catholic church cause of death denys_rayner cancer nietzchka keene place of death madison friedrich bessel profession mathematician thomas_harrison_1740 profession engineer richard_brautigan profession novelist anthony_asquith location london robert noyce profession physicist ignaz_franz_castelli profession dramatist russell_bufalino gender male mary de bohun nationalitykingdom of england cato_maximilian_guldberg place of death oslo

Evaluation

Corrupt a selection of entity-relation triplets by randomly switching entities between correct triplets

Evaluate how many of these triplets are classified correctly

Can we predict (Pablo Picaso, nationality, Spain) and (Barack Obama, nationality, USA) again?

Data flow

Loss Function

$$J(\mathbf{\Omega}) = \sum_{i=1}^{N} \sum_{c=1}^{C} \max \left(0, 1 - g\left(T^{(i)} \right) + g\left(T^{(i)}_{c} \right) \right) + \lambda \|\mathbf{\Omega}\|_{2}^{2},$$

- ullet $T^{(i)}$ is a correct relation triplet and $T_c^{(i)}$ is a corrupted relation triplet.
- ullet We want to maximize the score of $T^{(i)}$ while minimizing the score of $T^{(i)}_c$
- Ω represents the model's parameters (U, W, V, b, E)

Baselines

Model	Wordnet	Freebase
Distance Model	68.3	61.0
Hadamard Model	80.0	68.8
Single Layer Model	76.0	85.3
Bilinear Model	84.1	87.7
Socher's NTN	86.2	90.0

Remaining Questions & Future Work

- Adjoining tensor layers indexed by R into one big tensor?
- Varying k?Varying the embedding size?
- How much do the parameters move?
- Relations aren't necessarily so fixed and deterministic could we represent relations as vectors as well?
- Is there some way to properly use RNNs for entity construction from words?
- Are there better ways to represent knowledge than knowledge bases?

Conclusions

- Tensorflow is slow! Multi-GPU support is on the way in a couple weeks.
- <u>Tensorflow is still quite buggy</u>! We had to ask them to fix a lot of stuff, and we ran into a nasty surprise just when we thought we would be done.
- <u>Tensorflow documentation needs work</u> Our entire algorithm hinged on an operation which turned out not to work the way most other operations do which wasn't mentioned in the docs.
- <u>Tensorflow is magic</u>. Automatic Differentiation (AD) applies the chain rule on your operations meaning that once you define inference, training is trivial.