Big Data Platforms

Final Project November 30, 2022

Manish Kumar Ekansh Trivedi Iliyana Staneva Medha Yadav

Agenda

Opportunity

Data

Methodology & Result

Applications

Deployment

Challenges & Future Work

Opportunity

How many publications are we looking at?

One-year predictions of the accumulated number of publications expected for all publications related to COVID-19 literature

https://link.springer.com/article/10.1007/s11192-022-04536-x

(GRAPHIC) K. FRANKLIN/SCIENCE; (DATA) DIMENSIONS DATA USED BY PHILIP SHAPIRA, BIORXIV, 2020, 12, 06, 413682

https://www.science.org/content/article/pivot-covid-19-research-eases-publishing-surge-starts-level

1.8 Million papers annually

https://www.smithsonianmag.com/smart-news/half-academic-studies-are-never-read-more-three-people-180950222/

Methodology Data

Applications

Deployment

A novice researcher's everyday

What can we do?

Data

Data Profile and Preprocessing

Data Profile

- Source: Allen Institute for AI (https://ai2-semanticscholar-cord-19.s3-us-west-2.amazonaws.com/historical_releases.
- html)
- Format: Zipped JSON and CSV files
- Size: ~75 GB; Published Papers in **ISON** format
- Raw Data Variables: title, paper id, metadata, abstract, body text, bibliography, references, back matter

paper_id	title	authors	abstract	body_text
				According to current live statistics at
0000028b5cc154f68				the time of editing this letter, Russia
b8a269f6578f21e31f	"Multi-faceted" COVID-			has been the third country in the
62977	19: Russian experience			world to be affected by COVID-19
	The cell phone vibration	Robert; J Lewis; Nora	for differentiating between	COVID-19 pandemic, an acceleration
0000b6da66572642	test: A telemedicine	Watson; Charles A	conductive and	in the implementation of
0ab8ac9246d526f2f	substitute for the tuning	Riley; Anthony M	sensorineural hearing loss	telemedicine occurred in order to
44d5943	fork test	Tolisano	remains elusive. Our goal	better triage patients while
				morbidity, mortality, hospital stay.
	Infections in			intensive care unit admissions, and
	Hematopoietic Stem Cell			healthcare cost besides healthcare
	Transplantation (HSCT)	Biju George: Sanjav		resource utilization in the setting of
	Patients 24	Bhattacharya		hematopoietic stem cell
	Impactor Combine to on	Onorrouni gaoc		marocadaron ana objectivo. Tito
	ST-segment elevation	Leor; Belî N Cid-Ã	objectives: The COVID-19	COVID-19 outbreak has had an
	myocardial infarction	Lvarez; Armando	outbreak has had an	unclear impact on the treatment and
a35ec0c0f6734e7e8	care. The Spanish	Pé Rez De Prado;	unclear impact on the	outcomes of patients with ST-
d0c541	experience	Xavier Rossello:	treatment and outcomes of	seament elevation muocardial

Opportunity

Deployment

Exploratory Data Analysis

Exploratory Data Analysis

Opportunity

Methodology

Methodology & Results

Methodology: Topic Modeling

Data

Opportunity

LDA: How well is the model doing?

Evaluation Metric

Key characteristics – human interpretability or semantic interpretability of topics.

Human judgment

- Observation-based
- Interpretation-based

Quantitative metrics

- Perplexity
- Coherence

Hybrid approach for evaluation –

- Human judgement Observation based
- Quantitative metrics Coherence Calculation

Model Performance

Model Parameters – 10 max iterations and 5 topics Perplexity Score – 6.56

Top 3 topics post training

Topic 2	Topic 3
social mental research service stress anxiety experience support behavior	virus model viral protein rna sequence human infection detection drug
	social mental research service stress anxiety experience support

Applications

Better words when using TF-IDF tokenization

TF-IDF

Word count

KMeans: How well is the model doing?

- We tried two different embeddings
- Biolink produced a better clusters with cluster sie of 5

Opportunity

Applications

Application I: Question Answering Model – Overview

A simple question answering model can help find quick insights from vast number of papers

1

Bert For Question
Answering Cased
model

Source - Callmenicky

A fine-tuned version of bert-base-cased model

2

Deberta For Question Answering model

Source - nbroad

Uses disentangled attention and enhanced mask decoder on top of BERT 3

Longformer For Question Answering model

Source - allenai

A transformer model for long documents

4

Roberta Fo
Question
Answering

Source - deepset

A Roberta-base model, fine-tuned using the SQuAD2.0 and COVID-19 QA dataset

Application I: Question Answering Model - Results

Results Summary

- ✓ First three models only got the first (and also the easiest) question right
- ✓ The third model returned answers to every questions even if they were incorrect, unlike the first two which returned empty for the remaining 4 questions
- ✓ Last model got two answers while returning incorrect answer for one of them
- ✓ For simpler questions, the last model also provided additional details related to the answers in contrast to the concise answers by other models

This work is shown in Modeling-QA.ipynb notebook file

Sample Outputs

Sample Questions

What is the most common cause of atypical pneumonia?
What is the main reason why NO production is regulated?
What is the name of the molecule that binds to a pulmonary pathogen?
What factors can cause the development of pulmonary fibrosis?
How does pneumoviruses enter respiratory epithelial cells?

Bert For Question Answering Cased model

What is the most common cause of atypical pneumonia? [Mycoplasma pneumoniae]
What is the main reason why NO production is regulated? [[]
What is the name of the molecule that binds to a pulmonary pathogen? [[]
What factors can cause the development of pulmonary fibrosis? [[]
How does pneumoviruses enter respiratory epithelial cells? [[]

Roberta For Question Answering

|What is the most common cause of atypical pneumonia? | [mycoplasma pneumoniae is a common cause of upper and lower respiratory tract infections. it remains one of the most frequent causes of atypical pneumonia particularly among young adults] |
| What is the main reason why NO production is regulated? | [the formation of such rns is tho ught to be the prime reason why no • can in many cases contribute to the etiology of inflammatory lung disease]

Application II: Graph Databases – Overview

- ✓ Graph databases provide a way to generate and visualize relationships between entities
- ✓ Both Pyspark GraphFrame and neo4j can achieve graph-based data storage. We explored both the tools
- ✓ Each author, paper, and journal acts as a node
- ✓ All nodes are connected as per relationships "has_published" or "has_paper"
- ✓ Data was prepared using python to make it ready to import to neo4j
- ✓ Docker was used to install the neo4j (neo4j version 5.2.0)
- ✓ Bash script (start_neo4j.sh) starts the docker container, neo4j server and imports the data

This work is shown in Prepare-neo4j-data.ipynb notebook file

Application II: Graph Databases – Sample Output

Pyspark GraphFrame

```
dst|relationship|
                src
       patt debra a|PMC8202122|
                                   published|
     wilfong_lalan|PMC8202122|
                                   published|
          toth_sara|PMC8202122|
                                   published|
broussard_stephanie|PMC8202122|
                                   published|
     kanipe_kristen|PMC8202122|
                                   published|
     hammonds_jason|PMC8202122|
                                   published|
     allen victoria PMC8202122
                                   published|
  mautner_beatrice|PMC8202122|
                                   published
   campbell_nakedra|PMC8202122|
                                   published|
       dubey_ajay_k|PMC8202122|
                                   published|
            wu_nini|PMC8202122|
                                   published|
```

Neo4j

Deployment

Productionizing on GCP

Data

Opportunity

Challenges & Future Work

Data Challenges

Deduplication -

How to find the latest or the correct version of a paper if there are multiple versions?

Data Integrity –

Do we trust the information from the metadata file or the JSON files, if there's a conflict?

Handling Missing Data –

Abstract not provided separately for PMC papers

Similar Data Values -

Difficult to differentiate between two authors with same names

Potential future work

Research Browser

- A ReactJS based research browser can be built that can connect to the neo4j database using GraphQL queries
- We can index the data (title, abstract, full paper text, author names, and journal names) in neo4j using its inbuilt procedure methods (APOC)
- Data indexing can enable free text search to complete the research browser search functionality

Automation

 From starting the GCP cluster to data prepressing, modeling, and neo4j database, all these steps can be automated using Airflow

Increased Compute

- For most of our tasks, we used the paper abstract as a source of information due to memory and storage constraints
- Full body text of the paper can provide a lot more information provided additional resources

Thank You

Presented by:

Manish Kumar

Medha Yadav medhaydv@uchicago.edu

Iliyana Staneva iliyanastaneva@uchicago.edu

Ekansh Trivedi ekansh@uchicago.edu

References

- https://www.science.org/content/article/scientists-are-drowning-covid-19-papers-can-new-tools-keep-them-afloat
- https://news.osu.edu/more-than-87000-scientific-papers-on-coronavirus-since-pandemic/
- https://royalsocietypublishing.org/doi/10.1098/rsos.210389
- https://link.springer.com/article/10.1007/s11192-021-04059-x
- https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
- https://www.weforum.org/agenda/2020/03/speed-science-coronavirus-covid19-research-academic
- https://www.science.org/content/article/pivot-covid-19-research-eases-publishing-surge-starts-level
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7230425/
- https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-021-01404-9
- https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528741/
- https://link.springer.com/article/10.1007/s11192-021-03989-w
- https://www.nature.com/nature-index/news-blog/how-coronavirus-is-changing-research-practices-and-publishing
- https://www.nature.com/articles/d41586-020-00502-w
- https://towardsdatascience.com/evaluate-topic-model-in-python-latent-dirichlet-allocation-lda-7d57484bb5d0
- https://towardsdatascience.com/6-tips-to-optimize-an-nlp-topic-model-for-interpretability-20742f3047e2
- https://highdemandskills.com/topic-model-evaluation/
- https://towardsdatascience.com/evaluate-topic-model-in-python-latent-dirichlet-allocation-lda-7d57484bb5d0

