Introdução à Séries Temporais Decomposição de Séries Temporais

Profa. R. Ballini

Bibliografia Básica:

- Bueno, R. L. S. Econometria de Séries Temporais. Cap. 2 2.1 2.7.
- Box, G.E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M.. *Time series analysis: forecasting and control*. Cap. 2 2.1.
- Morettin, P. A. Análise de Séries Temporais. Cap. 2 2.1 2.6 e
 Cap. 3.

Introdução a Série Temporal

Definição

Uma série temporal é uma coleção de observações feitas sequencialmente ao longo do tempo.

Em séries temporais a ordem dos dados é crucial.

Uma série temporal é dita ser **discreta** quando as observações são obtidas em tempos específicos, geralmente equiespaçados.

Análise de séries temporais: estudar procedimentos adequados para análise de um conjunto de dados com estrutura de correlação entre as observações.

Introdução a Série Temporal

Principais objetivos em se estudar séries temporais:

- Descrição. Descrever propriedades da série, ou seja, o padrão de tendência, existência de variação sazonal ou cíclica, observações discrepantes (outliers), alterações estruturais (mudanças no padrão da tendência ou da sazonalidade), etc.
- Predição: predizer valores futuros com base em valores passados. Aqui assume-se que o futuro envolve incerteza, ou seja as previsões não são perfeitas. Porém devemos tentar reduzir os erros de previsão.
- Explicação. Usar a variação em uma série para explicar a variação em outra série.

Introdução a Série Temporal

Abordagens para tratar séries temporais:

- 1. Técnicas Descritivas: gráficos, identificação de padrões, etc.
- 2. Métodos não paramétricos: alisamento ou suavização
- Modelos Probabilísticos: Seleção, comparação e adequação de modelos, estimação, predição. Ferramenta básica é a função de autocorrelação.
- 4. Outras Abordagens: modelos de volatilidade, modelos multivariados, processos de longa dependência, modelos de espaço de estados, modelos não lineares, etc.

Introdução à Séries Temporais

Muitas das propriedades observadas em uma série temporal Y_t podem ser captadas assumindo-se a seguinte forma de decomposição:

$$Y_t = T_t + S_t + \epsilon_t \tag{1}$$

em que T_t é um componente de tendência, S_t é um componente sazonal e ϵ_t é um componente aleatório, de média zero e variância constante (a parte não explicada, que espera-se ser puramente aleatória).

Amplitude da variação sazonal é independente do termo T_t .

Exemplos de séries temporais

Faça os gráficos das seguintes séries:

- 1. PIB agropecuária Brasil, dados trimestrais, desde 2000 T1, fonte IPEADATA.
- 2. PIB anual da Alemanha, fonte IPEADATA, índice média 2005=100, desde 1960.
- Vazões média mensal da usina hidroelétrica de Furnas-Brasil, fonte ONS, desde janeiro de 1999.
- 4. Taxa de Câmbio média mensal R\$/US\$, fonte IPEADATA, desde janeiro de 2000.

Faça uma análise gráfica do comportamento das séries.

Introdução à Séries Temporais

Se o componente S_t tende a aumentar conforme a tendência aumenta, uma outra representação multiplicativa pode ser mais apropriada:

$$Y_t = T_t \times S_t \times \epsilon_t \tag{2}$$

Amplitude da variação sazonal é proporcional ao termo T_t .

Componente Sazonal

Muitas séries temporais exibem um comportamento que tende a se repetir a cada *s* períodos de tempo.

Possíveis modelos sazonais:

 Sazonalidade determinística: Variáveis dummies (binárias). O coeficiente de cada variável dummy representa o fator sazonal do respectivo mês, trimestre, etc.

2. Sazonalidade estocástica: modelo ARMA sazonal.

Removendo Sazonalidade

Existem muitas maneiras de se tentar eliminar a sazonalidade dos dados.

Método mais simples: uso de variáveis dummies.

Este método somente removerá a parte determinística da sazonalidade.

Assuma que temos dados trimestrais, assim podemos fazer a seguinte regressão:

$$Y_t = \beta_0 + \beta_1 D_2 + \beta_3 D_3 + \beta_4 D_4 + \epsilon_t$$

Incluimos dummies para cada trimestre exceto o primeiro, isto para não termos problemas de linearidade perfeita. Isto também significa que todos os efeitos medidos por D_i serão relativos ao primeiro trimestre.

Removendo Sazonalidade

Ajustada a regressão por MQO podemos fazer um teste F para verificarmos a presença de uma sazonalidade trimestral determinística nos dados. A rejeição da hipótese nula significa que a hipótese de que a série Y_t apresenta sazonalidade. Logo, podemos usar ϵ_t como a série dessazonalizada, ou seja,

$$Y_t = \widehat{\beta}_0 + \widehat{\beta}_1 D_2 + \widehat{\beta}_3 D_3 + \widehat{\beta}_4 D_4 + \widehat{\epsilon}_t$$

ou,

$$Y_t = \widehat{Y}_t + \widehat{\epsilon}_t$$

Logo, temos que a própria série menos a parte que capta os efeitos da sazonalidade é igual a parte "filtrada" da série, ou seja, a série dessazonalizada:

$$\widehat{\epsilon}_t = Y_t - \widehat{Y}_t$$

Supondo que esta série de vazões tenha um componente de sazonalidade determinístico, remova a sazonalidade usando a técnica de variáveis *dummies*.

Os dados estão no arquivo VazoesFurnas.xlsx.

Componente de Tendência

Definição:

Tendência: mudança de longo prazo no nível médio da série temporal.

Forma mais simples de tendência é supor crescimento linear:

$$Y_t = \beta_0 + \beta_1 t + \epsilon_t \tag{3}$$

em que β_0 e β_1 são constantes a serem estimadas e ϵ_t denota um erro aleatório com média zero e variância constante.

Nível médio da série no tempo t é dado por $m_t = \beta_0 + \beta_1 t$, denominado de termo de tendência.

A tendência na equação (3) é uma função determinística do tempo, também chamada de *tendência global* (i.e. vale para toda a série).

Remoção da Tendência

Supondo o modelo dado por (3), estima-se por MQO os parâmetros β_0 e β_1 para após obtermos a estimativa do componente aleatório que representa a série original sem a tendência (estimativa de flutuações locais), ou seja,

$$Y_t = \widehat{\beta}_0 + \widehat{\beta}_1 t + \widehat{\epsilon}_t$$

ou,

$$Y_t = \widehat{Y}_t + \widehat{\epsilon}_t$$

Logo, temos que a série original menos a parte que capta os efeitos da tendência:

$$\widehat{\epsilon}_t = Y_t - \widehat{Y}_t$$

Considerando a série do PIB anual da Alemanha faça:

- 1. Gráfico da série;
- 2. Ajuste o modelo com o componente de tendência;
- 3. Remova o componente de tendência;
- 4. Faça o gráfico da série original, componente de tendência e série sem tendência

A partir da série de PIB agropecuária - Brasil, dados trimestrais, desde 2000 T1, fonte IPEADATA.

- 1. Gráfico da série e do log da série;
- Ajuste um modelo com o componente de tendência e sazonal para a série original e do log;
- 3. Remova os componentes de tendência e sazonalidade para a série original e do log;
- 4. Faça os gráficos da série original, e dos componentes tendência, sazonal e resíduos.

Decomposição a partir de Média Móvel

Modelo Aditivo:

$$Y_t = T_t + S_t + \epsilon_t$$

Decomposição a partir da média móvel centrada:

 Cálculo da Média Móvel Centrada: Se N é ímpar:

$$M_t = \frac{Y_{t-(N-1)/2} + \ldots + Y_{t-1} + Y_t + Y_{t+1} + \ldots + Y_{t+(N-1)/2}}{N}$$

Se N é par:

$$M_t = \frac{\frac{Y_{t-N/2}}{2} + Y_{t-(N/2)+1} + \ldots + Y_t + \ldots + Y_{t+(N/2)+1} + \frac{Y_{t-N/2}}{2}}{N}$$

A média móvel calculada com um número de termos idêntico ao período da sazonalidade, elimina da série original o componente de sazonalidade e reduz significativamente o componente erro.

Decomposição a partir de Média Móvel

2.
$$d_t = Y_t - M_t = S_t + \epsilon_t$$
, em que $M_t = \hat{T}_t$

3. Cálculo das estimativas dos índices sazonais:

$$S_t = \frac{1}{k} \left(d_{t_n} + d_{t_n+N} + d_{t_n+2N} + \ldots + d_{t_n+(K-1)N} \right)$$

4. Cálculo do termo errático: $\epsilon_t = d_t - S_t$

Considerando a série do PIB Agropecuária, Brasil, desde primeiro trimestre de 2000, faça:

- 1. Gráfico da série:
- 2. Ajuste um modelo com o componente de tendência e sazonal pelo método de médias móveis;
- 3. Faça os gráficos da série original, e dos componentes tendência, sazonal e resíduos.