Quentin Fortier

January 17, 2022

La plupart des langages de programmation stockent :

- 1 Les entiers positifs avec leur écriture en base 2.
- 2 Les entiers relatifs avec leur codage par complément à 2.
- 3 Les flottants avec la norme IEEE-754.

Question

Comment représenter les nombres à virgules?

Question

Comment représenter les nombres à virgules?

Par définition, $0.1415 = 1 \times 10^{-1} + 4 \times 10^{-2} + 1 \times 10^{-3} + 5 \times 10^{-4}$

Question

Comment représenter les nombres à virgules?

Par définition, $0.1415 = 1 \times 10^{-1} + 4 \times 10^{-2} + 1 \times 10^{-3} + 5 \times 10^{-4}$

Définition : développement en base $\it b$

$$0, x_1 x_2 \dots_b = x_1 \times b^{-1} + x_2 \times b^{-2} + \dots$$

Question

Comment représenter les nombres à virgules?

Par définition, 0,1415 = $1 \times 10^{-1} + 4 \times 10^{-2} + 1 \times 10^{-3} + 5 \times 10^{-4}$

Définition : développement en base $\it b$

$$0, x_1 x_2 \dots_b = x_1 \times b^{-1} + x_2 \times b^{-2} + \dots$$

Exemples : $0, 101_2 =$

Question

Comment représenter les nombres à virgules?

Par définition, $0.1415 = 1 \times 10^{-1} + 4 \times 10^{-2} + 1 \times 10^{-3} + 5 \times 10^{-4}$

Définition : développement en base $\it b$

$$0, x_1 x_2 \dots_b = x_1 \times b^{-1} + x_2 \times b^{-2} + \dots$$

Exemples:
$$0,101_2 = \frac{1}{2} + \frac{1}{2^3} = 0,625 \ (=0,625_{10})$$

Question

Comment représenter les nombres à virgules?

Par définition, 0,1415 = $1 \times 10^{-1} + 4 \times 10^{-2} + 1 \times 10^{-3} + 5 \times 10^{-4}$

Définition : développement en base $\it b$

$$0, x_1 x_2 \dots_b = x_1 \times b^{-1} + x_2 \times b^{-2} + \dots$$

Exemples:
$$0,101_2 = \frac{1}{2} + \frac{1}{2^3} = 0,625 \ (=0,625_{10})$$

$$1,01010101..._2 =$$

Question

Comment représenter les nombres à virgules?

Par définition, $0.1415 = 1 \times 10^{-1} + 4 \times 10^{-2} + 1 \times 10^{-3} + 5 \times 10^{-4}$

Définition : développement en base b

$$0, x_1 x_2 \dots_b = x_1 \times b^{-1} + x_2 \times b^{-2} + \dots$$

Exemples:
$$0,101_2 = \frac{1}{2} + \frac{1}{2^3} = 0,625 \ (=0,625_{10})$$

$$1,01010101..._2 = 1 + \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} \dots = \frac{1}{4^0} + \frac{1}{4} + \frac{1}{4^2} + \dots$$

Question

Comment représenter les nombres à virgules?

Par définition, $0.1415 = 1 \times 10^{-1} + 4 \times 10^{-2} + 1 \times 10^{-3} + 5 \times 10^{-4}$

Définition : développement en base $\it b$

$$0, x_1 x_2 \dots_b = x_1 \times b^{-1} + x_2 \times b^{-2} + \dots$$

Exemples:
$$0,101_2 = \frac{1}{2} + \frac{1}{2^3} = 0,625 \ (= 0,625_{10})$$

$$1,01010101...2 = 1 + \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} ... = \frac{1}{4^0} + \frac{1}{4} + \frac{1}{4^2} + ...$$
$$= \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}.$$

Comment passer d'un développement de 0 < x < 1 en base 10 à un développement dans une autre base b?

On veut écrire x sous la forme $x = 0, x_1x_2x_3..._b$.

Comment passer d'un développement de 0 < x < 1 en base 10 à un développement dans une autre base b?

On veut écrire x sous la forme $x = 0, x_1x_2x_3..._b$.

Comment passer d'un développement de 0 < x < 1 en base 10 à un développement dans une autre base b?

On veut écrire x sous la forme $x = 0, x_1x_2x_3..._b$.

1 $x \times b = x_1, x_2 x_3 \dots_b$, donc $x_1 =$

Comment passer d'un développement de 0 < x < 1 en base 10 à un développement dans une autre base b?

On veut écrire x sous la forme $x = 0, x_1x_2x_3..._b$.

- 2 Pour trouver x_2 , on refait la même chose sur $x \times b x_1 = 0, x_2 x_3 ..._b$.
- **3** ...

Comment passer d'un développement de 0 < x < 1 en base 10 à un développement dans une autre base b?

On veut écrire x sous la forme $x = 0, x_1x_2x_3..._b$.

- 2 Pour trouver x_2 , on refait la même chose sur $x \times b x_1 = 0, x_2x_3..._b$.
- **3** ...

Exemples: $0,625 = 0,?_2$

Comment passer d'un développement de 0 < x < 1 en base 10 à un développement dans une autre base b?

On veut écrire x sous la forme $x = 0, x_1x_2x_3..._b$.

- 2 Pour trouver x_2 , on refait la même chose sur $x \times b x_1 = 0, x_2x_3..._b$.
- **③** ...

Exemples: $0,625 = 0, 1?_2$

 $0,625 \times 2 = 1,25$

Comment passer d'un développement de 0 < x < 1 en base 10 à un développement dans une autre base b?

On veut écrire x sous la forme $x = 0, x_1x_2x_3..._b$.

- 2 Pour trouver x_2 , on refait la même chose sur $x \times b x_1 = 0, x_2 x_3 \dots_b$.
- **③** ...

Exemples: $0,625 = 0, \frac{10}{2}$?

- $0,625 \times 2 = 1,25$
- $0,25 \times 2 = 0,5$

Comment passer d'un développement de 0 < x < 1 en base 10 à un développement dans une autre base b?

On veut écrire x sous la forme $x = 0, x_1x_2x_3..._b$.

- 2 Pour trouver x_2 , on refait la même chose sur $x \times b x_1 = 0, x_2x_3..._b$.
- **3** ...

Exemples: $0,625 = 0, \frac{101}{2}$

- $0,625 \times 2 = 1,25$
- $0,25 \times 2 = 0,5$
- $0,5 \times 2 = 1$

Conversion en base quelconque

Question

Écrire un algorithme C pour afficher les chiffres de l'écriture en base 2 d'un flottant.

Conversion en base quelconque

Question

Écrire un algorithme C pour afficher les chiffres de l'écriture en base 2 d'un flottant.

```
float x = 0.625;
while(x != 0.) {
    x *= 2.;
    int partie_entiere = (int)x;
    printf("%d", partie_entiere);
    x -= partie_entiere;
}
```

Conversion en base quelconque

Question

Écrire un algorithme C pour afficher les chiffres de l'écriture en base 2 d'un flottant.

```
float x = 0.625;
while(x != 0.) {
    x *= 2.;
    int partie_entiere = (int)x;
    printf("%d", partie_entiere);
    x -= partie_entiere;
}
```

Remarque : ici on peut comparer ${\bf x}$ avec ${\bf 0}$ car toutes les opérations sur ${\bf x}$ se font de façon exacte.

Erreurs d'arrondis

 \boldsymbol{x} peut avoir un développement décimal fini mais infini en base 2 :

 $0,1 = 0,000110011001100110011001100..._2$

Erreurs d'arrondis

 \boldsymbol{x} peut avoir un développement décimal fini mais infini en base 2 :

$$0,1 = 0,000110011001100110011001100..._2$$

Comme on ne peut stocker qu'un nombre fini de chiffres sur un PC, il y a une troncature donc une approximation.

De manière générale, les calculs sur les flottants se font avec des approximations.

Erreurs d'arrondis

x peut avoir un développement décimal fini mais infini en base 2 :

$$0,1 = 0,000110011001100110011001100..._2$$

Comme on ne peut stocker qu'un nombre fini de chiffres sur un PC, il y a une troncature donc une approximation.

De manière générale, les calculs sur les flottants se font avec des approximations.

[1]: false

Conversion de flottants quelconques

Pour convertir un flottant d'une base à une autre, on convertit sa partie entière et sa partie fractionnaire.

Question

Convertir à la main $1010, 11_2$ en base 10

Conversion de flottants quelconques

Pour convertir un flottant d'une base à une autre, on convertit sa partie entière et sa partie fractionnaire.

Question

Convertir à la main $1010, 11_2$ en base 10

Question

Convertir à la main 22,5625 en base 2

Question

Comment stocker un flottant en mémoire?

Question

Comment stocker un flottant en mémoire?

On utilise la notation scientifique:

$$932, 134 = 9,32134 \times 10^2$$

$$1001,011_2 =$$

Question

Comment stocker un flottant en mémoire?

On utilise la notation scientifique:

$$932, 134 = 9,32134 \times 10^2$$

$$1001,011_2 = 1,\underbrace{001011_2}_{\text{mantisse}} \times \underbrace{2^3}_{2^{\text{exposant}}}$$

Les **float** en OCaml ou Python sont stockés sur 64 bits suivant la norme IEEE754 (en C, les **float** sur 32 bits et les double sur 64) :

Les **float** en OCaml ou Python sont stockés sur 64 bits suivant la norme IEEE754 (en C, les **float** sur 32 bits et les double sur 64) :

- 1 bit pour le signe (0 si $x \ge 0$, 1 si x < 0)
- ② 11 bits pour l'exposant : de $-2^{10} + 1 = -1023$ à $2^{10} = 1024$
- **3** 52 bits (chiffres significatifs) pour l'écriture en base 2 de la mantisse : de $0, \underbrace{00...00}_{52}$ à $0, \underbrace{11...11}_{52}$

Les **float** en OCaml ou Python sont stockés sur 64 bits suivant la norme IEEE754 (en C, les **float** sur 32 bits et les double sur 64) :

- **1** bit pour le signe (0 si $x \ge 0$, 1 si x < 0)
- 2 11 bits pour l'exposant : de $-2^{10}+1=-1023$ à $2^{10}=1024$
- 3 52 bits (chiffres significatifs) pour l'écriture en base 2 de la mantisse : de $0, \underbrace{00...00}_{52}$ à $0, \underbrace{11...11}_{52}$

Exemple:

représente :

Les **float** en OCaml ou Python sont stockés sur 64 bits suivant la norme IEEE754 (en C, les **float** sur 32 bits et les double sur 64) :

- **1** bit pour le signe (0 si $x \ge 0$, 1 si x < 0)
- ② 11 bits pour l'exposant : de $-2^{10} + 1 = -1023$ à $2^{10} = 1024$
- 52 bits (chiffres significatifs) pour l'écriture en base 2 de la mantisse : de $0, \underbrace{00...00}_{52}$ à $0, \underbrace{11...11}_{52}$

Exemple:

représente : $-1,625 \times 2^3$

Exercice du concours ICNA/ENAC

Question 3:

Parmi les affirmations suivantes lesquelles sont vraies :

- A) Un nombre entier naturel qui est représenté en binaire par une suite de 0 et de 1 et qui se termine par 1 est pair.
- B) Le nombre décimal 0,1 possède une représentation binaire finie.
- C) Sur un octet de mémoire le plus grand entier naturel représentable par une suite de 0 ou de 1 est 255.
- D) 110 en binaire représente 10 en base dix.

Exercice du concours ICNA/ENAC

Question 2 Parmi les affirmations suivantes, indiquez celle ou celles qui sont vraies.

- A) Si un nombre réel admet une écriture décimale finie, alors il possède une écriture binaire finie.
- B) Si un nombre réel admet une écriture binaire finie, alors il possède une écriture décimale finie.
- C) Tous les nombres réels admettent une écriture binaire finie.
- D) Tous les nombres entiers naturels admettent une écriture binaire finie.

Exercice du concours ICNA/ENAC

Question 3 Parmi les affirmations suivantes, indiquez celle ou celles qui sont vraies.

- A) L'utilisation de nombres flottants peut provoquer des erreurs d'arrondis, mais celles-ci ne sont jamais graves car les erreurs d'arrondis sont minimes.
- B) L'utilisation de nombres flottants peut provoquer de graves erreurs d'arrondis.
- C) L'utilisation de nombres flottants ne provoque pas d'erreur d'arrondis.
- D) Pour ne pas avoir d'erreur d'arrondis, il suffit de coder les flottants sur 64 bits plutôt que sur 32 bits.