Exercises for Module 9: Linear Algebra III

1. Let $A, B \in M_n(\mathbb{F})$ be similar matrices. Show that their characteristic polynomials coincide.

Froof Let A&B be similar. Then there exists an invertible matrix S such that A = SBS-1

Note that similar matrices have the same determinant: det (A) = det (SBS-1) = det (S) det (B) det (S-1) = det (B) Since $det(S^{-1}) = det(S)^{-1}$ as $SS^{-1} = I$

We can write. $A - \lambda I = SBS^{-1} - \lambda SIS^{-1}$ = 8 (B8-1-YIS-1) $= S(\beta - \lambda I)S^{-1}$

Therefore if A&B are similar, then A-XI & B-XI are similar, and therefore det (A-XI) = dot (B-XI). So A, B have the same char. poly.

2. Show that $A \in M_n(\mathbb{C})$ is invertible if and only if $0 \notin \sigma(A)$.

Kecall that $\lambda \in \sigma(A)$ means λ is an eigenvalue for A, i.e. $det(A-\lambda I)=0$.

Suppose Ofo(A). Then det(A-OI) =0.

=) det (A) = 0

=> A is not invertible by theorem from class.

By contrapositive.

(Suppose A is not invertible.

Then det (A) = 0

0= (IO-A) tob (=

=) 0 E O (A)

3. Suppose N is a nilpotent matrix. Show that $\sigma(N) = \{0\}$.

Suppose N is nilpotent. This means 3 kzl s.t. N = 0.

First, we show EO3 = o(N).

Since N is nilpotent, $N^k=0$ => det(N)=0 => det(N)=0. Thus OGO(N) by previous exercise.

To show $o(N) \subseteq \{0\}$, first note that if $v \not\in D$ is an eigenvector associated with λ , then $N^k v = \lambda^k v$.

(By induction: $Nv = \lambda v$ by dot of eigenvector, if $N^m v = \lambda^m v$ then $N^{m+1}v = NN^m v$ = $N^m v = N^m v$ = $N^m v = N^m v$ = $N^m v = N^m v = N$

Then $N^{k}v = \lambda^{k}v \Rightarrow 0 = \lambda^{k}v \Rightarrow \lambda = 0$ since $v \neq 0$.

Thus if h is an eigenvalue of N, h=0, so ow) = {0}.

$$(0.00) = 203$$

4. Let $A \in M_n(\mathbb{C})$ be an invertible matrix. Show that λ is an eigenvalue of A if and only if λ^{-1} is an eigenvalue of A^{-1} .

Let λ be an eigenvalue of A. $\lambda \neq 0$ by exercise 2.

⇒ A V = A V where V ≠ D by definition

(C) A-1 A v = A-1 X v

C) Iv = $\lambda A^{-1}v$

(=) x'v= A-1v

(=)); is an eigenvalue of A' by definition

5. Suppose $A \in M_n(\mathbb{C})$ is Hermitian. Show that all the eigenvalues of A are real. Hint: Note that if \mathbf{x} is a normalized eigenvector of A with eigenvalue λ , then $\langle A\mathbf{x}, \mathbf{x} \rangle = \lambda$.

Suppose A is Hermitian. This means $A = A^*$. Let λ be an eigenvalue of A. Then $\exists v \neq 0$ s.t $Av = \lambda v$. We can normalize v by dividing by $||v|| = \langle v, v \rangle$, so $\exists x \neq 0$ s.t $Ax = \lambda x$ & ||x|| = 1.

Then $\lambda = \lambda ||x||^2 = \lambda \langle x, x \rangle$ $= \langle x, x \rangle$ by linearity of 1st argument of inner prod $= \langle Ax, x \rangle$ since A^* is the adjoint $= \langle x, Ax \rangle$ since $A = A^*$ $= \langle x, Ax \rangle$ $= \langle x, x \rangle$ $= \langle x, x \rangle$ by conjugate symmetry & linearity $= x \langle x, x \rangle$ $= x \langle x, x \rangle$

Since $\lambda = \overline{\lambda}$, $\lambda \in \mathbb{R}$.

6. Let $A \in M_n(\mathbb{R})$. Show that the eigenvalues of $A^T A$ are non-negative.

Let AEMn(IR). Note that this means the adjoint of A is AT.

Let λ be an eigenvalue of ATA with normalized eigenvector x, i.e. ATA $x = \lambda \times 4$ $\|x\| = 1$.

Then
$$\lambda = \lambda \|x\|^2 = \lambda \langle x, x \rangle = \langle \lambda x, x \rangle$$

$$= \langle A^T A x, x \rangle$$

$$= \langle A x, A x \rangle \quad \text{since } (A^T)^2 = A$$

$$= \|Ax\|^2 \ge 0 \quad \text{by properties of norm}$$