Курс математической логики по Штукенбергу Д. Г.

Daniyar Itegulov, Aleksei Latyshev, Ignat Loskutov 26 января 2015 г.

Содержание

1	Базо	вые понятия	5
	1.1	Формальные системы и модели	5
2	Опр	ределения (нужно знать идеально)	7
	2.1	ИВ	7
	2.2	Общезначимость, доказуемость, выводимость	7
	2.3	Теорема о дедукции для ИВ	7
	2.4	Теорема о полноте исчисления высказываний	8
	2.5	ИИВ	8
	2.6	Теорема Гливенко	8
	2.7	Порядки	8
	2.8	Решетки (все свойства)	9
	2.9	Булевы/псевдобулевы алгебры	9
	2.10	Топологическая интерпретация ИИВ	10
	2.11	Модель Крипке	10
		Вложение Крипке в алгебры Гейтинга	11
		Полнота ИИВ в алгебрах Гейтинга и моделях Крипке	11
	2.14	Нетабличность ИИВ	11
	2.15	Предикаты	11
	2.16	Теорема о дедукции в предикатах	12
	2.17	Теорема о полноте исчисления предикатов	12
	2.18	Теории первого порядка, определение структуры и модели	12
	2.19	Аксиоматика Пеано	12
	2.20	Формальная арифметика – аксиомы	13
		2.20.1 Аксиомы	13
	2.21	Рекурсивные функции	13
	2.22	Функция Аккермана	14
	2.23	Существование рек.ф-й не явл. ф-ей Аккермана (определение конечной леммы)	14
	2.24	Представимость	14
	2.25	Выразимость	14
	2.26	Λ емма о связи представимости и выразимости	14
	2.27	Бета-функция Гёделя, Г-последовательность	14
	2 28	Представимость рек ф-й в ФА (знать формуды для самых простых)	15

	2.29	Гёделева нумерация (точно)	15			
	2.30	Выводимость и рекурсивные функции (че там с Тьюрингом)	15			
		Непротиворечивость	16			
		ω-непротиворечивость	16			
		Первая теорема Гёделя о неполноте	16			
		Первая теорема Гёделя о неполноте в форме Россера	16			
		Consis	16			
		Условия Г-Б (наизусть)	16			
		Лемма о самоприменении	17			
		Вторая теорема Гёделя о неполноте ФА	17			
		Теория множеств	17			
		ZFC	17			
	,,	2.40.1 Аксиома равенства	17			
		2.40.2 Аксиома пары	17			
		2.40.3 Аксиома объединений	17			
		2.40.4 Аксиома степени	17			
		2.40.5 Схема аксиом выделения	17			
		2.40.6 Аксиома выбора (не входит в ZF по дефолту)	18			
		2.40.7 Аксиома бесконечности	18			
		2.40.8 Аксиома фундирования	18			
		2.40.9 Схема аксиом подстановки	18			
	2.41	Ординальные числа, операции	18			
		Кардинальные числа, операции	19			
		Диагональный метод, теорема Лёвенгейма-Скулема	19			
		Парадокс Скулема	19			
		Теорема Генцена о непротиворечивости ФА	19			
3	Tick	et 1: ИВ	20			
	3.1	Определения (исчисление, высказывание, оценка)	20			
	3.2	Общезначимость, доказуемость, выводимость	20			
		Схемы аксиом и правило вывода	20			
	3.4	Теорема о дедукции	21			
	3.5	Корректность исчисления высказываний относительно алгебры Яськовского .	21			
4	Tick	Тicket 2: полнота ИВ 22				
	4.1	Полнота исчисления высказываний относительно алгебры Яськовского	22			
		4.1.1 Контрапозиция	22			
		4.1.2 Правило исключененного третьего	22			
		4.1.3 Всякие очевидные вещи типа если выводится из А и из Б то из А и Б тоже	22			
		4.1.4 Правило со звездочкой (14 доказательств)	22			
5	Tick	ее 3: ИИВ	25			
	5.1	ИИВ, структура, модель	25			
	5.2	Опровергаемость исключенного третьего	25			
	5.3	Решетки	26			
	5.4	Алгебра Гейтинга, булева алгебра	27			
	5.5	Алгебра Линденбаума-Тарского	27			

	5.6 5.7 5.8 5.9	Теорема о полноте ИИВ относительно алгебры Гейтинга	28 28 29 31
6	Tick	ret 4: ИИВ2	32
	6.1	Модели Крипке	32
	6.2	Корректность ИИВ относительно моделей Крипке	32
	6.3	Вложение Крипке в Гейтинга	33
	6.4	Полнота ИИВ в моделях Крипке	33
	6.5	Нетабличность интуиционистской логики	33
7	Tick	et 5: Логика 2 порядка	35
	7.1	Основные определения	35
	7.2	Теорема о дедукции	35
	7.3	Корректность исчисления предикатов	36
8	Tick	et 6: Полнота исчисления предикатов	37
	8.1	Свойства противоречивости	37
	8.2	Лемма о дополнении непротиворечивого множества	37
	8.3	Условие о интерпретации непротиворечивого мн-ва	37
	8.4	Несколько лемм	38
	8.5	Построение Γ^*	39
	8.6	Доказательство того, что дополненное бескванторное подмножество Γ^* – мо-	
		дель для Г	40
	8.7	Следствие – если $\models \alpha$, то $\vdash \alpha$	41
9	Tick	et 7: ΦA	42
	9.1	Структуры и модели, теория первого порядка	42
	9.2	Аксиомы Пеано	42
	9.3	Формальная арифметика – аксиомы, схемы, правила вывода	42
		9.3.1 Аксиомы	43
		9.3.2 a = a	43
10	Tick	et 8: рекурс, Аккерман	45
	10.1	Рекурсивные функции	45
	10.2	Характеристическая функция и рекурсивное отношение	45
	10.3	Аккерман не примитивно-рекурсивен, но рекурсивен (второе)	45
		лан, всё не книжку верстаем))))000	

некто Игнат Лоскутов о качестве вёрстки

данияр лолка пиздос)))))
аноним о всяких там хех
латехерах

Mykhail Volkhov, 2538, 2014Sep-2015Jan Я не отвечаю за верность написанного - много информации я придумал сам, много достал из недостоверных источников.

1. Базовые понятия

1.1. Формальные системы и модели

Сделано мной для меня самого, be careful

Мы работаем с формальными системами. Формальная система определяется сигнатурой, грамматикой, набором аксиом и набором правил вывода.

- 1. Сигнатура ФС это (Pr, F, C, Links, Misc, arity):
 - Pr описывает предикаты (число + заглавная буква латинского алфавита)
 - F множество функций (заглавные буквы латинского алфавита)
 - С описывает константы
 - Links множество связок ({«→», «∪», «пробел»})
 - Misc дополнительные элементы ({«(», «)», «пробел»})
 - arity: Foo \cup Pr \cup C \to $\mathbb N$ возвращает арность
- 2. Грамматика описывает то, как мы можем строить выражения в соответствии с нашей сигнатурой.
- 3. Аксиомы выражения в нашей грамматике.
- 4. Правила вывода пары вида (List, List), где List список утверждений. Первый элемент посылки, второй то, что из них следует.

Иногда нам хочется что-то посчитать и мы прикручиваем к формальной системе модель – корректную структуру с оценкой. Структура – это сигнатура с интерпретацией и носителем.

- 1. Сигнатура структуры (R, F, C, arity):
 - Pr множество символов для предикатов
 - F функциональных символов
 - С символов констант
 - arity функция, определяющая арность $\Pr \cup \mathsf{F} \to \mathbb{N}.$
- 2. Интерпретация это приписывание символам значения и правил действия (отображения из $Pr \cup F \cup C$ в носитель)
- 3. Носитель это объединение множеств, в котором обязательно присутствует V множество истинностных значений. Если же мы рассматриваем только нульместные предикаты, на этом можно остановиться, otherwise часто вводится P предметное множество, в которое отображаются элементы из F, C.

ТООО Эта реализация структуры не определяет ничего в районе аксиоматики, но аксиоматически заданные структуры существуют – например в ФА есть Пеано.

Если все аксиомы тавтологии, то структура корректна. В таком случае она называется моделью.

Оценку иногда определяют раньше/позже чем модель, мне удобно думать о ней, как об отдельной сущности, потому что она связывает модель с ФС.

Оценка – это функция оценки и функция тавтологии.

- 1. Функция оценки отображение из (множества всех формул, сгенеренных грамматикой) х (какие-нибудь допаргументы) в V модели. Дополнительные аргументы – например оценки элементов связки.
- 2. Функция тавтологии отображение из множества формул грамматики в $\{0,1\}$ является ли формула тавтологией. Тавтология использует функцию оценки. Например, тавтология это выражение, оценка которого на любых аргументах возвращает $\sigma \in V$ какой-то элемент V.

Когда говорится «сигнатура модели» – имеется в виду ровно она. Когда говорится «сигнатура Φ С» – имеется в виду скорее всего объединение сигнатур, а может только сигнатура самой Φ С. Первый вариант тут предпочтительней.

2. Определения (нужно знать идеально)

Определения тут зачастую дублируют то, что написано в самом конспекте, поэтому удаление этого блока сэкономит бумагу при печати.

2.1. ИВ

Формальная система с алгеброй Яськовского J_0 в качестве модели, множество истинностных значений $\{0,1\}$. Формальная теория нулевого порядка, кванторов нету, предикаты – это пропозициональные переменные. Аксиомы:

- 1. $\alpha \rightarrow \beta \rightarrow \alpha$
- 2. $(\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \gamma)$
- 3. $\alpha \rightarrow \beta \rightarrow \alpha \& \beta$
- 4. $\alpha \& \beta \rightarrow \alpha$
- 5. $\alpha \& \beta \rightarrow \beta$
- 6. $\alpha \rightarrow \alpha \vee \beta$
- 7. $\beta \rightarrow \alpha \vee \beta$
- 8. $(\alpha \to \beta) \to (\gamma \to \beta) \to (\alpha \lor \gamma \to \beta)$
- 9. $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$
- 10. $\neg \neg \alpha \rightarrow \alpha$

2.2. Общезначимость, доказуемость, выводимость

- Общезначимость формулы ее свойство в теории с моделью. Общезначимость можно определить как угодно, в принципе. Например в ИВ общезначимость это что оценка формулы на любых значениях свободных переменных отображает в 1. В модели крипке существование формулы во всех мирах и т.д.
- Доказуемость свойство формулы в теории, значащее, что существует доказательство для этой формулы. Доказательство для теории тоже определяется по разному (последовательность утверждений, каждое из которых есть аксиома или следует по правилу вывода из предыдущих в ИВ, дерево с выводами в S_{∞})
- Выводимость в общем случае часто используется как аналог доказуемости, в ИВ это доказуемость из всего, что и ранее + из посылок.

2.3. Теорема о дедукции для ИВ

Теорема, утверждающая, что из Г, $\alpha \vdash \beta$ следует Г $\vdash \alpha \to \beta$ и наоборот. Доказывается вправо поформульным преобразованием, влево добавлением 1 формулы. Работает в ИВ, ИИВ, предикатах.

2.4. Теорема о полноте исчисления высказываний

Теорема 2.1 (о полноте исчисления высказываний). Исчисление предикатов полно. Общий ход д-ва: строим док-ва для конкретных наборов перменных, 2^n , где n – количество возможных переменных. Потом их мерджим.

2.5. ИИВ

Берем ИВ, выкидываем 10 аксиому, добавляем $\alpha \to \neg \alpha \to \beta$. Она доказывается и в ИВ:

Лемма 2.2. $\alpha, \alpha \vee \neg \alpha, \neg \alpha \vdash \beta$

(1)	α	Допущение
(2)	$\neg \alpha$	Допущение
(3)	lpha ightarrow eg eta ightarrow lpha	Сх. акс. 1
(4)	eg eta ightarrow lpha	M.P. 1,3
(5)	eg lpha ightarrow eg eta ightarrow eg lpha	Сх. акс. 1
(6)	eg eta ightarrow eg lpha	M.P. 2,5
(7)	$(\neg\beta\to\alpha)\to(\neg\beta\to\neg\alpha)\to(\neg\neg\beta)$	Сх. акс. 9
(8)	$(\neg \beta \to \neg \alpha) \to (\neg \neg \beta)$	M.P. 4,7
(9)	$\neg\neg\beta$	M.P. 6,8
(10)	eg eg eta o eta	Сх. акс. 10
(11)	β	M.P. 9,10

А еще в ИИВ главная фишка – недоказуемо $\alpha \lor \neg \alpha$ (можно подобрать такую модель).

2.6. Теорема Гливенко

Теорема 2.3. Гливенко Если в ИВ доказуемо α , то в ИИВ доказуемо $\neg\neg\alpha$ Общий ход д-ва: говорим, что если в ИИВ доказуема δ_i , то в ней же доказуема $\neg\neg\delta_i$. Доказываем руками двойное отрицание 10 аксиомы и то же самое для МР.

2.7. Порядки

Определение. Частичный порядок – рефлексивное, антисимметричное, транзитивное отношение.

Определение. Частично упор. мн-во – множество с частичным порядком на элементах.

Определение. Линейно упорядоч. мн-во – множество с частичным порядком, в котором два любых элемента сравнимы.

Определение. Фундированное мн-во – частично упорядоч. множество, в котором каждое непустое подмножество имеет минимальный элемент.

Определение. Вполне упорядоченное множество – фундированное множество с линейным порядком.

2.8. Решетки (все свойства)

• Просто Решетка – это (L, +, *) в алгебраическом смысле и (L, \leqslant) в порядковом. Решетку можно определить как алгебраическую структуру через аксиомы: коммутативность, ассоциативность, поглощение. Решетку можно определить как упорядоченное множество через множество с частичным порядком на нем, тогда операции +, * определяются как sup и inf:

```
sup p = min\{u \mid u \geqslant alls \in p\}
inf p = max\{u \mid u \leqslant alls \in p\}
a + b = sup\{a, b\}
a * b = inf\{a, b\}
```

Если для двух элементов всегда можно определить a + b и a * b, то такое множество назывется решеткой.

- Дистрибутивная решетка решетка, в которой работает дистрибутивность: a*(b+c) = (a*b) + (b*c)
- Импликативная решетка всегда существует псевдодополнение b (b \to a) a \to b = max{c|c \times a \leqslant b} Имеет свойства, что в ней всегда есть максимальный элемент a \to a и что она дистрибутивна.

2.9. Булевы/псевдобулевы алгебры

- Булева алгебра можно определить так:
 - 1. (L, +, *, -, 0, 1) с выполненными аксиомами коммутативность, ассоциативность, поглощение, две дистрибутивности и $\alpha * -\alpha = 0$, $\alpha + -\alpha = 1$.
 - 2. Импликативная решетка над фундированным множеством.

Тогда мы в ней определим 1 как $a \to a$ (традиционно для импликативной), отрицание как $-a = a \to 0$, и тогда последняя аксиома из предыдущего определения будет свойством:

$$a * -a = a * (a \rightarrow 0) = a * (max c : c * a \le 0) = a * 0 = 0$$

Насчет второй аксиомы – должно быть 1. То есть лучше как-то через аксиомы определять, видимо.

$$\alpha + -\alpha = \alpha + (\alpha \to 0) = \alpha + (\max c : c * \alpha \leqslant 0) = \alpha + 0 = \alpha$$
 // не 1

• Псевдобулева алгебра – это импликативная решетка над фундированным множеством с $\neg a = (a \to 0)$

2.10. Топологическая интерпретация ИИВ

Булеву алгебру и алгебру Гейтинга можно интерпретировать на множестве \mathbb{R}^n . Тогда заключения о общезначимости формулы можно делать более наглядно. Давайте возьмем в качестве множества алгебры все открытые подмножества \mathbb{R}^n . Определим операции следующим образом:

- 1. $a + b := a \cup b$
- 2. $a * b := a \cap b$
- 3. $a \rightarrow b := Int(a^c \cup b)$
- 4. $-\alpha := Int(\alpha^c)$
- 5. $0 := \emptyset$
- 6. $1 := \{ \| \{ \text{всех мн-в в L} \} \}$

2.11. Модель Крипке

 $Var = \{P, Q, \dots\}$ Модель Крипке – это $\langle W, \leqslant, \nu \rangle$, где

- W множество «миров»
- < частичный порядок на W (отношение достижимости)
- $v: W \times Var \to \{0,1,_\}$ оценка перменных на W, монотонна (если v(x,P)=1, $x\leqslant y$, то v(y,P)=1 формулу нельзя un'вынудить)

Правила:

- $W, x \vDash P \Leftrightarrow \nu(x, P) = 1$, если $P \in Var$
- $W, x \models (A\&B) \Leftrightarrow W, x \models A\&W, x \models B$
- $W, x \models (A \lor B) \Leftrightarrow W, x \models A \lor W, x \models B$
- $W, x \vDash (A \rightarrow B) \Leftrightarrow \forall y \geqslant x(W, y \vDash A \circledcirc W, y \vDash B)$
- $W, x \vDash \neg A \Leftrightarrow \forall y \in x(W, x \neg \vDash A)$

В мире разрешается быть не вынужденной переменной и ее отрицанию одновремеменно. Формула называется тавтологией в ИИВ с моделью Крипке, если она истинна (вынуждена) в любом мире любой модели Крипке.

2.12. Вложение Крипке в алгебры Гейтинга

Возьмем модель Крипке, возьмем какое-то объединение поддеревьев со всеми потомками, каждое такое объединение пусть будет входить в алгебру Гейтинга. \leq – отношение «быть подмножеством». Определим 0 как \emptyset (пустое объединение поддеревьев); Определим операции:

$$\begin{aligned} + &= \cup, \\ * &= \cap, \\ a \rightarrow b &= \bigcup \{z \in H \mid z \leqslant x^c \cup y\} \end{aligned}$$

Так созданное множество с операциями является импликативной решеткой, в которой мы определим $-a = a \rightarrow 0$, получим булеву алгебру.

2.13. Полнота ИИВ в алгебрах Гейтинга и моделях Крипке

ИИВ полно относительно алгебр Гейтинга и моделей Крипке. Общий ход доказательства первого сводится к вложению в Гейтинга алгебры Линденбаума-Тарского, а второго - к построению дизъюнктивного множества всех доказуемых формул, являющегося миром Крипке.

2.14. Нетабличность ИИВ

Не существует полной модели, которая может быть выражена таблицей (конечной – алгебра Гейтинга и Крипке не табличны, так как и там и там связки определяются иначе). От противного соорудим табличную модель и покажем, что она не полна, привев пример большой дизъюнкции из импликаций, для которой можно построить модель Крипке в которой она не общезначима.

2.15. Предикаты

Теория первого порядка, расширяющая исчисление высказываний. Добавляются две новые аксиомы $\forall x.A \to A[x:=\eta]$, где η свободна для подстановки в $AA[x:=\eta] \to \exists x.A, -//-$ Правила вывода:

$$\frac{A \to B}{A \to \forall x.B}$$

х не входит сводобно в А

$$\frac{A \to B}{\exists x.A \to B}$$

х не входит свободно в В

2.16. Теорема о дедукции в предикатах

Аналогично 1 теореме о дедукции в ИВ, но в доказательстве должны отсутствовать применения правил для кванторов по переменным входящих свободно в выражение γ Γ , γ \vdash α \Rightarrow Γ \vdash γ \rightarrow α

2.17. Теорема о полноте исчисления предикатов

Исчисление предикатов полно (заметим, что относительно любой модели). Суть в том, что если предикаты непротиворечивы, то у них есть модель. Если у них есть модель, то типа там можно по контрпозиции показать \models a.

2.18. Теории первого порядка, определение структуры и модели

Теория первого порядка – это формальная система с кванторами по функциональным символам, но не по предикатам. Рукомахательное определение – это фс с логикой первого порядка в основе, в которой абстрактные предикаты и функциональные символы определяются точно (а может такое определение даже лучше).

Структура по ДГ:

Структурой теории первого порядка мы назовем упорядоченную тройку $\langle D, F, P \rangle$, где F — списки оценок для 0-местных, 1-местных и т.д. функций, и $P = P_0, P_1 \ldots$ — списки оценок для 0-местных, 1-местных и т.д. предикатов, D — предметное множество.

Понятие структуры — развитие понятия оценки из исчисления предикатов. Но оно касается только нелогических составляющих теории; истинностные значения и оценки для связок по-прежнему определяются исчислением предикатов, лежащим в основе теории. Для получения оценки формулы нам нужно задать структуру, значения всех свободных индивидных переменных, и (естественным образом) вычислить результат.

Структура по-моему:

Все то же самое определение из ИВ. Мы просто забиваем на предикаты в ИВ (не определям их), расширяем нашу сигнатуру (добавляя конкретные предикаты и функциональные символы), определяем для нее интерпретацию.

И как всегда,..

Модель – это корректная структура (любое доказуемое утверждение должно быть в ней общезначимо).

2.19. Аксиоматика Пеано

Множество N удовлетворяет аксиоматике Пеано, если:

- 1. $0 \in N$
- 2. $x \in N$, $succ(x) \in N$
- 3. $\nexists x \in N : (succ(x) = 0)$
- 4. $(\operatorname{succ}(a) = \operatorname{c\&succ}(b) = c) \rightarrow a = b$
- 5. $P(0)\&\forall n.(P(n) \rightarrow P(succ(n))) \rightarrow \forall n.P(n)$

2.20. Формальная арифметика – аксиомы

Формальная арифметика – это теория первого порядка, у которой сигнатура определена как: (циферки, логические связки, алгебр. связки, '), а интерпретацию сейчас будем определять. Интерпретация определяет два множества – V, P – истинностные и предметные значения. Пусть множество $V=\{0,1\}$ по-прежнему. $P=\{$ всякие штуки, которые мы можем получать из логических связок и $0\}$

Определим оценки логических связок естественным образом.

Определим алгебраические связки так:

$$+(a,0) = a$$

 $+(a,b') = (a+b)'$
 $*(a,0) = 0$
 $*(a,b') = a*b+a$

2.20.1. Аксиомы

1.
$$a = b \rightarrow a' = b'$$

2.
$$a = b \rightarrow a = c \rightarrow b = c$$

3.
$$a' = b' \rightarrow a = b$$

4.
$$\neg(\alpha' = 0)$$

5.
$$a + b' = (a + b)'$$

6.
$$a + 0 = a$$

7.
$$a * 0 = 0$$

8.
$$a * b' = a * b + a$$

9.
$$\phi[x:=0]$$
& $\forall x.(\phi o \phi[x:=x']) o \phi$ // ϕ содержит св.п x

2.21. Рекурсивные функции

$$\begin{split} Z(x) &= 0 \\ N(x) &= x+1 \\ U_i^n(x_1, \dots, x_n) &= x_i \\ S & f, g_1, \dots, g_n \rangle (x_1, \dots, x_m) = f(g_1(x_1 \dots x_m), \dots g_n(x_1, \dots, x_m)) \\ R & f, g \rangle (x_1 \dots x_n, n) = \begin{cases} f(x_1 \dots x_n) & n = 0 \\ g(x_1 \dots x_n, n, R \langle f, g \rangle (x_1 \dots x_n, n-1)) & n > 0 \end{cases} \\ \mu & f \rangle (x_1, \dots, x_n) - \text{минимальное k, такое что } f(x_1 \dots x_n, k) = 0 \end{split}$$

2.22. Функция Аккермана

$$A(0,n) = n + 1$$

 $A(m,0) = A(m-1,1)$
 $A(m,n) = A(m-1,A(m,n-1))$

2.23. Существование рек.ф-й не явл. ф-ей Аккермана (определение конечной леммы)

Пусть $f(n_1, ..., n_k)$ – примитивная рекурсинвная функция, $k \geqslant 0$.

$$\exists J: f(n_1\dots n_k) < A(J, \sum (n_1, \dots n_k))$$

Доказывается индукцией по рекурсивным функциям.

2.24. Представимость

Функция $f: \mathbb{N}^n \to \mathbb{N}$ называется представимой в формальной арифметике, если существует отношение $\mathfrak{a}(x_1 \dots x_{n+1})$, ее представляющее, причем выполнено следующее:

- 1. $f(a, b, ...) = x \Leftrightarrow \vdash a(\overline{a}, \overline{b}, ..., \overline{x})$
- 2. $\exists ! x. f(a, b, ... x)$ (вот это свойство вроде бы не обязательно, но $\mathcal{L}\Gamma$ его писал).

2.25. Выразимость

Отношение n называется выразимым, если существует предикат N его выражающий, такой что

- 1. $n(x_1,\ldots,x_n)$ истинно $\Rightarrow \vdash N(\overline{x_1},\ldots,\overline{x_n})$
- 2. $\mathfrak{n}(x_1,\ldots,x_n)$ ложно $\Rightarrow \vdash \neg N(\overline{x_1},\ldots,\overline{x_n})$

2.26. Лемма о связи представимости и выразимости

Если п выразимо, то C_n представимо. $C_n=1$ если n, и нулю если !n

2.27. Бета-функция Гёделя, Г-последовательность

 $\beta(b,c,i)=k_i$ Функция, отображающая конечную последовательность из $N(\mathfrak{a}_i)$ в k_i . Работает через магию, математику, простые числа и Гёделеву последовательность, которая подходит под условия китайской теоремы об остатках.

$$\beta(b,c,i)=b\%((i+1)*c+1)$$

2.28. Представимость рек.ф-й в ФА (знать формулы для самых простых)

Рекурсивные функции представимы в ФА

1.
$$z(a,b) = (a = a)\&(b = 0)$$

2. $n(a,b) = (a = b')$
3. $u_i^n = (x_1 = x_1)\&...\&(x_n = x_n)\&(x_{n+1} = x_i)$
4. $s(a_1...a_m,b) = \exists b_1...\exists b_n(G_1(a_1...a_n,b_1)\&...\&Gn(a_1...a_m,b_n)$
5. $r(x_1,...,x_n,k,a) = \exists b\exists c(\exists k(\beta(b,c,0,k)\&\phi(x_1,...,x_n,k))\& B(b,c,x_{n+1},a)\& \forall k(k < x_{n+1} \to \exists d\exists e(B(b,c,k,d)\&B(b,c,k',e)\&G(x_1...x_n,k,d,e))))$

6. $m\langle F \rangle(x_1, \dots, x_{n+1}) = F(x_1, \dots, x_n, x_{n+1}, 0) \& \forall y ((y < x_{n+1}) \to \neg F(x_1, \dots, x_n, y, 0))$

2.29. Гёделева нумерация (точно)

a	$\lceil a \rceil$	описание
(3	
)	5	
,	7	
\neg	9	
\longrightarrow	11	
\vee	13	
&	15	
\forall	17	
\exists	19	
$\chi_{\mathbf{k}}$	$21 + 6 \cdot k$	переменные
f_k^n	$23 + 6 \cdot 2^k \cdot 3^n$	
P_k^n	$25 + 6 \cdot 2^k \cdot 3^n$	п-местные предикаты (=)

2.30. Выводимость и рекурсивные функции (че там с Тьюрингом)

Основные тезисы по вопросу:

- $\bullet \;\; Emulate(input,prog) = plog(R \leqslant f,g) (\leqslant S,input,0),,pb,pc,tb,tc,steps(-//-)),1) == F$
- Proof(term, proof) = Emulate(proof, MY_PROOFCHECKER)
 &&(plog(proof, len(proof)) = term)
- Любая представимая в ФА ф-я является рекурсивной

$$\begin{split} f(x_1, \dots, x_n) &= \\ plog(\langle S \langle G_{\phi}, U_{n+1,1}, \dots, U_{n+1,n}, plog(U_{n+1,n+1}, 1), plog(U_{n+1,n+1}, 2) \rangle \rangle \langle x_1, \dots, x_n), 1) \end{split}$$

 G_{φ} тут принимает n+2 аргумента: $x_1 \dots x_n, p, b$ и возвращает 0 если p- доказательство $\varphi(x_1 \dots x, p)$, представляющего f.

2.31. Непротиворечивость

Теория непротиворечива, если в ней нельзя одновременно вывести а и ¬а. Одновременная выводимость ¬а и а эквивалентна выводимости а&¬а

2.32. ω-непротиворечивость

Теория ω -непротиворечива, если из $\forall \phi(x) \vdash \phi(\overline{x})$ следует $\nvdash \exists p \neg \phi(p)$. Проще говоря, если мы взяли формулу, то невозможно вывести одновременно $\exists x \neg A(x)$ и $A(0), A(1), \dots$

2.33. Первая теорема Гёделя о неполноте

- 1. Если формальная арифметика непротиворечива, то недоказуемо $\sigma(\lceil \overline{\sigma} \rceil)$
- 2. Если формальная арифметика ω -непротиворечива, то недоказуемо $\neg \sigma(\lceil \overline{\sigma} \rceil)$

2.34. Первая теорема Гёделя о неполноте в форме Россера

Если формальная арифметика непротиворечива, то в ней найдется такая формула φ , что varphi φ и varphi varphi varphi

2.35. Consis

Consis – утверждение, формально доказывающее непротиворечивость ΦA To есть \vdash Consis => непротиворечива

2.36. Условия Г-Б (наизусть)

Пусть $\pi g(x,p)$ выражает Proof(x,p). $\pi(x) = \exists t.\pi g(x,t)$ действительно показывает, что выражение доказуемо, если

1.
$$\vdash a = > \vdash \pi(\lceil \overline{a} \rceil)$$

$$2. \, \vdash \pi \, (\lceil \overline{a} \rceil) \to \pi \, \left(\lceil \overline{\pi} (\lceil \overline{a} \rceil) \rceil\right)$$

$$3. \, \vdash \pi \, (\lceil \overline{a} \rceil) \to \pi \, \left(\lceil \overline{(a \to b)} \rceil\right) \to \pi \, \left(\lceil \overline{b} \rceil\right)$$

2.37. Лемма о самоприменении

a(x) – формула, тогда $\exists b$ такой что

$$1. \vdash a \left(\ulcorner \overline{b} \urcorner \right) \to b$$

$$2. \, \vdash \beta \to \alpha \left(\ulcorner \overline{b} \urcorner \right)$$

2.38. Вторая теорема Гёделя о неполноте ФА

Если теория непротиворечива, в ней ⊬ Consis

2.39. Теория множеств

Теория множеств – теория первого порядка, в которой есть единственный предикат \in (в ΦA был =), есть связка \leftrightarrow , есть пустое множество, операции пересечения и объединения. $x \cap y = z$, тогда $\forall t (t \in z \leftrightarrow t \in x \& t \in y) \ x \cup y = z$, тогда $\forall t (t \in z \leftrightarrow t \in x \lor t \in y) \ D_i(x) \forall a \forall b (a \in x \& b \in x \& a \neq b \rightarrow a \cap b = \emptyset)$

2.40. ZFC

2.40.1. Аксиома равенства

 $\forall x \forall y \forall z ((x=y\&y \in z) \to x \in z)$ Если два множества равны, то любой элемент лежащий в первом, лежит и во втором

2.40.2. Аксиома пары

$$\forall x \forall y (\neg (x=y) \to \exists p (x \in p \& y \in p \& \forall z (z \in p \to (x=z \lor y=z)))) \ x \neq y$$
, тогда сущ. $\{x,y\}$

2.40.3. Аксиома объединений

 $\forall x(\exists y(y \in x) \to \exists p \forall y(y \in p \leftrightarrow \exists s(y \in s\&s \in x)))$ Если x не пусто, то из любого семейства множеств можно образовать «кучу-малу», то есть такое множество p, каждый элемент y которого принадлежит по меньшей мере одному множеству s данного семейства s x

2.40.4. Аксиома степени

 $\forall x \exists p \forall y (y \in p \leftrightarrow y \in x) P(x)$ – множество степени x (не путать с $2 \circ -$ булеаном) Это типа мы взяли наш x, и из его элементов объединением и пересечением например понаобразовывали кучу множеств, а потом положили их в p.

2.40.5. Схема аксиом выделения

 $\forall x \exists b \forall y (y \in b \leftrightarrow (y \in x \& \phi(y)))$ Для нашего множества x мы можем подобрать множество побольше, на котором для всех элементов, являющихся подмножеством x выполняется предикат.

2.40.6. Аксиома выбора (не входит в ZF по дефолту)

Если
$$a = Dj(x)$$
 и $a \neq 0$, то $x \in a \neq 0$

2.40.7. Аксиома бесконечности

$$\exists \mathsf{N}(\emptyset \in \mathsf{N\&} \forall x (x \in \mathsf{N} \to x \cup \{x\} \in \mathsf{N}))$$

2.40.8. Аксиома фундирования

 $\forall x (x = \emptyset \lor \exists y (y \in x \& y \cap x = \emptyset)) \ \forall x (x \neq \emptyset \to \exists y (y \in x \& y \cap x = \emptyset))$ Равноценные формулы. Я бы сказал, что это звучит как-то типа «не существует бесконечно вложенных множеств»

2.40.9. Схема аксиом подстановки

 $\forall x \exists ! y. \phi(x,y) \rightarrow \forall \alpha \exists b \forall c (c \in b \leftrightarrow (\exists d.(d \in \alpha \& \phi(d,c))))$ Пусть формула ϕ такова, что для при любом x найдется единственный y такой, чтобы она была истинна на x, y, тогда для любого α найдется множество α , каждому элементу которого α можно сопоставить подмножество α и наша функция будет верна на нем α на α Типа для хороших функций мы можем найти множество α отображением из его элементов α подмножество нашего по предикату.

2.41. Ординальные числа, операции

- Определение вполне упорядоченного множества (фундированное с линейныи порядком).
- Определение транзитивного множества Множество X транзитивно, если $\forall a \forall b ((a \in b \& b \in x) \to a \in x)$
- Ординал транзитивное вполне упорядоченное отношением ∈ мн-во
- Верхняя грань множества ординалов S C|{C = $\min(X)\&C \in X \mid X = \{z \mid \forall (y \in S)(z \geqslant y)\}}$ C = Upb(S) Upb($\{\emptyset\}$) = $\{\emptyset\}$
- Successor ordinal (сакцессорный ординал?) Это $b = a' = a \cup \{a\}$
- Предельны ординал Ординал, не являющийся ни 0 ни successor'ом.
- Недостижимый ординал ε такой ординал, что $\varepsilon = w^{\varepsilon}$ $\varepsilon_0 = \mathrm{Upb}(w, w^w, w^{w^w}, w^{w^w}, \dots)$ минимальный из ε
- Канторова форма форма вида $\sum (a^*w^b + c)$, где b ординал, последовательность строго убывает по b. Есть слабая канторова форма, где вместо $a(a \in N)$ пишут a раз w^b . В канторовой форме приятно заниматься сложениями и прочим, потому что всякие upb слишком ниочем.

$$x + 0 = x$$

$$x + c' = (x + c)'$$

$$x + \lim(a) = \text{Upb}\{x + c \mid c < a\}$$

$$x * 0 = 0$$

$$x * c' = x * c + x$$

$$x * \lim(a) = \text{Upb}\{x * c \mid c < a\}$$

$$x^{0} = 1$$

$$x^{c'} = (x^{c}) * x$$

$$x^{\lim(a)} = \text{Upb}\{x^{c} \mid c < a\}$$

2.42. Кардинальные числа, операции

Определение. Будем называть множества равномощными, если найдется биекция.

Определение. Будем называть A не превышающим по мощности B, если найдется инъекция $A \to B(|A| \leqslant |B|)$

Определение. Будем называть меньше по мощности, чем B, если $|A| \leqslant |B| \& |A| \neq |B|$

Определение. Кардинальное число – число, оценивающее мощность множества.

Определение. Кардинальное число \aleph – это ординальное число a, такое что $\forall x \leqslant a |x| \leqslant |a|$ $\aleph_0 = w$ по определению; $\aleph_1 =$ минимальный кардинал, следующий за \aleph_0

Определение. Кардинальное число \beth – это ординальное число а, такое что $\beth_i = P(\beth_{i-1})$ $\beth_0 = \aleph_0$ $+: |A| + |B| = \max(|A|, |B|)$ (если нет общих элементов) $= |A \cup B|$

2.43. Диагональный метод, теорема Лёвенгейма-Скулема

Диагональный метод – метод доказательства $|2^X| > |X|$

2.44. Парадокс Скулема

Мнимый парадокс, базирующийся на теореме Λ ёвенгейма-Скулема и том факте, что в формальной арифметике существуют несчетные множества. Заковырка в том, что «существует счетное мн-во» выражается в ΦA «не существует биекции». И тогда прийти к противоречию нельзя.

2.45. Теорема Генцена о непротиворечивости ФА

Ну типа мы можем обернуть ΦA в теорию покруче, доказать что в ней невозможно доказать 0=1, а потом доказать, что если S_{∞} непротиворечива, то и S непротиворечива.

3. Ticket 1: ИВ

3.1. Определения (исчисление, высказывание, оценка...)

Формальная система с алгеброй Яськовского J_0 в качестве модели, множество истинностных значений $\{0,1\}$. Формальная теория нулевого порядка, кванторов нету, предикаты - это пропозициональные переменные.

3.2. Общезначимость, доказуемость, выводимость

- Общезначимость формулы ее свойство в теории с моделью. Общезначимость можно определить как угодно, в принципе. Например в ИВ общезначимость это что оценка формулы на любых значениях свободных переменных отображает в 1. В модели крипке существование формулы во всех мирах и т.д.
- Доказуемость свойство формулы в теории, значащее, что существует доказательство для этой формулы. Доказательство для теории тоже определяется по разному (последовательность утверждений, каждое из которых есть аксиома или следует по правилу вывода из предыдущих в ИВ, дерево с выводами в $S\infty$)
- Выводимость в общем случае часто используется как аналог доказуемости, в ИВ это доказуемость из всего, что и ранее + из посылок.

3.3. Схемы аксиом и правило вывода

Аксиомы:

1.
$$\alpha \rightarrow \beta \rightarrow \alpha$$

2.
$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$$

3.
$$\alpha \rightarrow \beta \rightarrow \alpha \& \beta$$

4.
$$\alpha \& \beta \rightarrow \alpha$$

5.
$$\alpha \& \beta \rightarrow \beta$$

6.
$$\alpha \rightarrow \alpha \vee \beta$$

7.
$$\beta \rightarrow \alpha \vee \beta$$

8.
$$(\alpha \to \beta) \to (\gamma \to \beta) \to (\alpha \lor \gamma \to \beta)$$

9.
$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

10.
$$\neg \neg \alpha \rightarrow \alpha$$

Правило вывода М.Р.:

$$\frac{\alpha\quad(\alpha\to\beta)}{\beta}$$

3.4. Теорема о дедукции

Теорема 3.1.
$$\Gamma, \alpha \vdash \beta \Leftrightarrow \Gamma \vdash \alpha \rightarrow \beta$$

 $Доказательство. \Rightarrow$ Если нужно переместить последнее предположение вправо, то рассматриваем случаи – аксиома или предположение, MP, это самое выражение.

- 1. A $A \rightarrow \alpha \rightarrow A$ $\alpha \rightarrow A$
- 2. (там где-то сзади уже было $\alpha \to A$, $\alpha \to A \to B$) $(\alpha \to A) \to (\alpha \to A \to B) \to (\alpha \to B)$ $(\alpha \to A \to B) \to (\alpha \to B)$ $\alpha \to B$
- 3. $\alpha \rightarrow \alpha$ умеем доказывать

⇐ Если нужно переместить влево, то перемещаем, добавляем

 $A \rightarrow B$ (последнее)

А (перемещенное)

В

3.5. Корректность исчисления высказываний относительно алгебры Яськовского

• Индукцией по доказательству – если аксиома, то она тавтология, все ок. Если модус поненс, то таблица истинности для импликации и все ок

4. Ticket 2: полнота ИВ

4.1. Полнота исчисления высказываний относительно алгебры Яськовского

Кстати полноту можно доказывать маханием руками как для предикатов, и я не могу утверждать, что при таком подходе ИВ не будет полно относительно любой модели.

4.1.1. Контрапозиция

Лемма 4.1.
$$(\alpha \rightarrow \beta) \rightarrow (\neg \beta \rightarrow \neg \alpha)$$

Доказательство. Докажем, что $(\alpha \to \beta), \neg \beta \vdash \neg \alpha$:

- (1) $\alpha \to \beta$ Допущение
- (2) $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$ Cx. akc. 9
- (3) $(\alpha \rightarrow \neg \beta) \rightarrow \neg \alpha$ M.P. 1,2
- (4) $\neg \beta \rightarrow \alpha \rightarrow \neg \beta$ Cx. akc. 1
- (5) ¬β Допущение
- (6) $\alpha \rightarrow \neg \beta$ M.P. 5,4
- (7) $\neg \alpha$ M.P. 6,3

После применения теоремы о дедукции 2 раза получим как раз то, что нужно

4.1.2. Правило исключененного третьего

С помощью контрапозиции доказываем два утверждения:

- $\neg(A|\neg A) \to \neg A$ (один раз контрапозицию от этого обратную, там $A \to (A|\neg A)$ акс)
- $\neg(A|\neg A) \rightarrow \neg \neg A$ Потом девятую аксиому и снимаем двойное отрицание

4.1.3. Всякие очевидные вещи типа если выводится из А и из Б то из А и Б тоже

4.1.4. Правило со звездочкой (14 доказательств)

- 1. $\alpha, \beta \vdash \alpha \lor \beta$
 - α
 - $\alpha \to \alpha \vee \beta$
 - $\alpha \vee \beta$
- 2. $\alpha, \neg \beta \vdash \alpha \lor \beta$
 - α
 - $\alpha \to \alpha \vee \beta$
 - $\alpha \vee \beta$
- 3. $\neg \alpha, \beta \vdash \alpha \lor \beta$
 - β
 - $\beta \to \alpha \vee \beta$
 - $\alpha \vee \beta$

4.
$$\neg \alpha, \neg \beta \vdash \neg (\alpha \lor \beta)$$
 $\neg \alpha$
 $\neg \beta$
 $(\alpha \lor \beta \to \alpha) \to (\alpha \lor \beta \to \neg \alpha) \to \neg (\alpha \lor \beta)$
 $\neg \alpha \to \alpha \lor \beta \to \neg \alpha$
 $\alpha \lor \beta \to \neg \alpha$
 $\neg \alpha, \neg \beta, \alpha \lor \beta \vdash \alpha$
 $\neg \alpha$
 $\neg \beta$
 $\alpha \lor \beta$
 $\alpha \to \alpha$
... //A-BO $\neg \beta, \neg \alpha \vdash \beta \to \alpha$
 $\beta \to \alpha$
 $(\alpha \to \alpha) \to ((\beta \to \alpha) \to (\alpha \lor \beta \to \alpha))$
 $(\beta \to \alpha) \to (\alpha \lor \beta \to \alpha)$
 $\alpha \lor \beta \to \alpha$
 α
 $\alpha \lor \beta \to \alpha$

5.
$$\alpha, \beta \vdash \alpha \& \beta$$
 α
 β
 $\alpha \rightarrow \beta \rightarrow \alpha \& \beta$
 $\beta \rightarrow \alpha \& \beta$
 $\alpha \& \beta$

 $\neg(\alpha \vee \beta)$

6.
$$\alpha, \neg \beta \vdash \neg (\alpha \& \beta)$$
 $\neg \beta$

$$((\alpha \& \beta) \rightarrow \beta) \rightarrow ((\alpha \& \beta) \rightarrow \neg \beta) \rightarrow \neg (\alpha \& \beta)$$
 $\alpha \& \beta \rightarrow \beta$

$$(\alpha \& \beta \rightarrow \neg \beta) \rightarrow \neg (\alpha \& \beta)$$
 $\neg \beta \rightarrow \alpha \& \beta \rightarrow \neg \beta$
 $\alpha \& \beta \rightarrow \neg \beta$
 $\neg (\alpha \& \beta)$

7.
$$\neg \alpha, \beta \vdash \neg (\alpha \& \beta)$$
 аналогично

8.
$$\neg \alpha, \neg \beta \vdash \neg (\alpha \& \beta)$$
 аналогично

9.
$$\alpha, \beta \vdash \alpha \rightarrow \beta$$
 β
 $\beta \rightarrow \alpha \rightarrow \beta$
 $\alpha \rightarrow \beta$

10.
$$\alpha, \neg \beta \vdash \neg(\alpha \rightarrow \beta)$$
 α
 $\neg \beta$
 $\neg \beta \rightarrow ((\alpha \rightarrow \beta) \rightarrow \neg \beta)$
 $(\alpha \rightarrow \beta) \rightarrow \neg \beta$
 $\alpha, \neg \beta, \alpha \rightarrow \beta \vdash \beta$
 α
 $\alpha \rightarrow \beta$
 β
 $(\alpha \rightarrow \beta) \rightarrow \beta$
 $((\alpha \rightarrow \beta) \rightarrow \beta) \rightarrow ((\alpha \rightarrow \beta) \rightarrow \neg \beta) \rightarrow \neg(\alpha \rightarrow \beta)$
 $((\alpha \rightarrow \beta) \rightarrow \neg \beta) \rightarrow \neg(\alpha \rightarrow \beta)$
 $\neg \beta \rightarrow (\alpha \rightarrow \beta) \rightarrow \neg \beta$
 $(\alpha \rightarrow \beta) \rightarrow \neg \beta$
 $(\alpha \rightarrow \beta) \rightarrow \neg \beta$
 $\neg(\alpha \rightarrow \beta)$

11.
$$\neg \alpha, \beta \vdash \alpha \rightarrow \beta$$
 β
 $\beta \rightarrow \alpha \rightarrow \beta$
 $\alpha \rightarrow \beta$

- 12. $\neg \alpha, \neg \beta \vdash \alpha \to \beta$ Ну тут типо очевидно (на самом деле тут боль и страдания)
- 13. α ⊢ ¬¬α
 Схема аксиом 9

14.
$$\neg \alpha \vdash \neg \alpha$$
 $\neg \alpha$

5. Ticket 3: ИИВ

5.1. ИИВ, структура, модель

Сигнатура – (R, F, C, r): R – множество символов для предикатов, F – функциональных символов, C – символов констант, r – функция, определяющая арность $x \in R \cup F$.

Интерпретация – это приписывание символам значения и правил действия.

Структура – это носитель М (множество истинностных значений), сигнатура и интерпретация над носителем.

Если все аксиомы верны, то структура корректна. В таком случае она называется моделью.

Выкидываем 10 аксиому, добавляем $\alpha \to \neg \alpha \to \beta$.

Она доказывается и в ИВ.

Лемма 5.1. $\alpha, \alpha \vee \neg \alpha, \neg \alpha \vdash \beta$

(1)	α	Допущение
(2)	$\neg \alpha$	Допущение
(3)	lpha ightarrow eg eta ightarrow lpha	Сх. акс. 1
(4)	eg eta o lpha	M.P. 1,3
(5)	eg lpha ightarrow eg eta ightarrow eg lpha	Сх. акс. 1
(6)	eg eta ightarrow eg lpha	M.P. 2,5
(7)	$(\neg \beta \to \alpha) \to (\neg \beta \to \neg \alpha) \to (\neg \neg \beta)$	Сх. акс. 9
(8)	$(\neg \beta \to \neg \alpha) \to (\neg \neg \beta)$	M.P. 4,7
(9)	$\neg\neg\beta$	M.P. 6,8
(10)	$ eg \neg eta ightarrow eta$	Сх. акс. 10
(11)	β	M.P. 9,10

Таким образом мы умеем доказывать $\alpha \to \alpha \vee \neg \alpha \to \neg \alpha \to \beta$ применив 3 раза теорему о дедукции

Лемма 5.2.
$$\alpha \to \alpha \vee \neg \alpha \to \neg \alpha \to \beta, \alpha \vee \neg \alpha \vdash \alpha \to \neg \alpha \to \beta$$

$$\begin{array}{llll} (1) & (\alpha \to \alpha \vee \neg \alpha) \to (\alpha \to \alpha \vee \neg \alpha \to (\neg \alpha \to \beta)) \to (\alpha \to (\neg \alpha \to \beta)) & \text{Cx. акс. 2} \\ (2) & \alpha \vee \neg \alpha \to \alpha \to \alpha \vee \neg \alpha & \text{Cx. акс. 1} \\ (3) & \alpha \vee \neg \alpha & \text{Допущение} \\ (4) & \alpha \to \alpha \vee \neg \alpha & \text{M.P. 3,2} \\ (5) & (\alpha \to \alpha \vee \neg \alpha \to (\neg \alpha \to \beta)) \to (\alpha \to (\neg \alpha \to \beta)) & \text{M.P. 4,1} \\ (6) & \alpha \to \alpha \vee \neg \alpha \to \beta & \text{Допущение} \\ (7) & \alpha \to \neg \alpha \to \beta & \text{M.P. 6,5} \end{array}$$

5.2. Опровергаемость исключенного третьего

Вводим в наше множество *истинностных значений* дополнительный элемент H (сокращение от слова «Неизвестно»). Отождествим H с $\frac{1}{2}$, так что $\Pi < H < M$. Определим операции на этом множестве *истинностных значений*:

- ullet конъюнкция: минимум из двух значений (например ${\sf I\!\! M} = {\sf H\!\! J}$).
- дизъюнкция: максимум из двух значений (например $extsf{N} \lor extsf{H} = extsf{N}$).

- импликация: $\mathsf{I}\mathsf{I}\to\alpha=\alpha$, $\mathsf{J}\to\alpha=\mathsf{I}\mathsf{I}$, $\mathsf{H}\to\mathsf{J}=\mathsf{J}\mathsf{I}$, $\mathsf{H}\to\mathsf{H}=\mathsf{I}\mathsf{I}$, $\mathsf{H}\to\mathsf{I}\mathsf{I}=\mathsf{I}\mathsf{I}$.
- отрицание: $\neg H = \Pi$, а для остальных элементов все так же.

Назовем формулу 3-тавтологией, если она принимает значение И при любых значениях переменных из множества {И, Л Н}. Теперь нужно всего-лишь проверить, что все аксиомы являются 3-тавтологиями и, что если посылка импликации является тавтологией, то и заключение является тавтологией. Второе очевидно по определению тавтологии, а аксиомы просто проверяются вручную.

Значит любая интуиционистски выводимая формула 3-тавтология. Теперь заметим, что формула $\alpha \vee \neg \alpha$ принимает значение H при $\alpha = H$. Следовательно она не 3-тавтология, а значит невыводима.

5.3. Решетки

Просто peшетка – это (L, +, *) в алгебраическом смысле и (L, \leqslant) в порядковом. Решетку можно определить как алгебраическую структуру через аксиомы:

• Аксиомы идемпотентность

$$\alpha + \alpha = \alpha$$
$$\alpha * \alpha = \alpha$$

• Аксиомы коммутативности

$$\alpha + \beta = \beta + \alpha$$
$$\alpha * \beta = \beta * \alpha$$

• Аксиомы ассоциативности

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$
$$(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma)$$

• Аксиомы поглощения

$$\alpha + (\alpha * \beta) = \alpha$$

 $\alpha * (\alpha + \beta) = \alpha$

Также решетку можно определить как упорядоченное множество с частичным порядком на нем. Тогда операции +, * определяются как sup u inf

$$\sup(\varphi) = \min\{u \mid u \geqslant \forall x \in \varphi\}$$

$$\inf(\varphi) = \max\{u \mid u \leqslant \forall x \in \varphi\}$$

$$\alpha + \beta = \sup(\{\alpha, \beta\})$$

$$\alpha * \beta = \inf(\{\alpha, \beta\})$$

Если для любых двух элементов из множества S можно определить эти две операции, то S называется решеткой.

Дистрибутивная решетка – решетка, в которой добавляется дистрибутивность:

$$\alpha * (\beta + \gamma) = \alpha * \beta + \alpha * \gamma$$

Импликативная решетка – *решетка*, в которой для любых двух элементов α и β из множества существует псевдодополнение α относительно β ($\alpha \to \beta$), которое определяется так:

$$\alpha \to \beta = \max\{\gamma | \gamma * \alpha \leqslant \beta\}$$

Свойства импликативной решетки:

- ullet Существует максимальный элемент lpha
 ightarrow lpha, обычно обозначаемый как 1
- Всякая импликативная решетка дистрибутивна

5.4. Алгебра Гейтинга, булева алгебра

Булева алгебра – (L, +, *, -, 0, 1), с аксиомами:

- Аксиомы коммутативности $\alpha + \beta = \beta + \alpha$
 - $\alpha * \beta = \beta * \alpha$
- Аксиомы ассоциативности

$$(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$$
$$(\alpha * \beta) * \gamma = \alpha * (\beta * \gamma)$$

• Аксиомы поглощения

$$\alpha + (\alpha * \beta) = \alpha$$

 $\alpha * (\alpha + \beta) = \alpha$

• Аксиомы дистрибутивности

$$\alpha + (\beta * \gamma) = (\alpha + \beta) * (\alpha + \gamma)$$

$$\alpha * (\beta + \gamma) = (\alpha * \beta) + (\alpha * \gamma)$$

• Аксиомы дополнительности

$$\alpha * \neg \alpha = 0$$

 $\alpha + \neg \alpha = 1$

Также булеву алгебру можно определить как импликативную решетку над фундированным множеством. Тогда 1 в ней будет $\alpha \to \alpha$, $\neg \alpha = \alpha \to 0$. Тогда $\alpha * \neg \alpha = 0$ будет уже свойством, а $\alpha + \neg \alpha = 1$ все еще аксиомой.

Псевдобулева алгебра (алгебра Гейтинга) – это импликативная решетка над фундированным множеством с $\neg \alpha = \alpha \to 0$ (нет аксиомы $\alpha + \neg \alpha = 1$)

5.5. Алгебра Линденбаума-Тарского

Пусть V – множество формул ИИВ Порядок для решетки: $\alpha\leqslant\beta\Leftrightarrow\alpha\vdash\beta$ $\alpha\sim\beta\Leftrightarrow\alpha\vdash\beta$ и $\beta\vdash\alpha$

 $0 - \alpha \& \neg \alpha = \bot$

$$1 - \alpha \rightarrow \alpha = T$$

$$\alpha \& \beta = \alpha * \beta$$

$$\alpha \lor \beta = \alpha + \beta$$

$$\neg \alpha = -\alpha$$

Получившаяся алгебра называется алгеброй Линденбаума-Тарского и является алгеброй Гейтинга, т.к. для нее выполняется аксиома $\alpha * \neg \alpha = 0$ (по определению).

Лемма 5.3. $\forall \beta \in V \perp \vdash \beta$ (Из лжи следует все)

Доказательство. α & $\neg \alpha$ $\vdash \beta$

- Допущение (1) $\alpha \& \neg \alpha$
- Сх. акс. 4 (2) $\alpha\&
 eg \alpha o lpha$
- (3) $\alpha \& \neg \alpha \rightarrow \neg \alpha$ Cx. akc. 5
- M.P. 1,2 (4) α
- (5) $\neg \alpha$ M.P. 1,3
- (6) $\alpha \rightarrow \neg \alpha \rightarrow \beta$ Cx. akc. 10
- (7) $\neg \alpha \rightarrow \beta$ M.P. 4,6
- (8)M.P. 5,7 β

5.6. Теорема о полноте ИИВ относительно алгебры Гейтинга

Возьмем в качестве алгебры Гейтинга алгебру Линденбаума-Тарского - ξ. Она очевидно является моделью.

Теорема 5.4. $\models \alpha \Rightarrow \vdash \alpha$

Доказательство.
$$\models \alpha \Rightarrow \llbracket \alpha \rrbracket^{\xi} = 1$$
 $\llbracket \alpha \rrbracket^{\xi} = 1 \Rightarrow 1 \leqslant \llbracket \alpha \rrbracket^{\xi}$ (По определению алгебры Λ -Т) $\beta \to \beta \vdash \alpha$ (По определению \leqslant в алгебре Λ -Т) Т.к. $\beta \to \beta$ - тавтология, то и α - тавтология

5.7. Дизъюнктивность ИИВ

Используем алгебру Гёделя $\Gamma(A)$ (γ - функция преобразования). Можно преобразовать любую алгебру Гейтинга, возьмем алгебру Λ -Т. Алгебра Гёделя использует функцию преобразования: $\gamma(a) = b$ значит, что в алгебре A элементу a соответствует элемент b из алгебры Гёделя. Порядок сохраняется естественным образом. Также добавим еще один элемент ш $(\gamma(1) = \omega)$. Таким образом $\Gamma(A) = A \cup \{\omega\}$. Порядок в $\Gamma(A)$:

- $\forall \alpha \in \Gamma(A) \setminus \{1\} \ \alpha \leqslant \omega$
- w ≤ 1

a + b	b = 1	$b = \gamma(v)$
$\alpha = 1$	1	1
$a = \gamma(u)$	1	$\gamma(u+v)$

a * b	b = 1	$b = \gamma(v)$
a = 1	1	$\gamma(\alpha * \nu)$
$a = \gamma(u)$	$\gamma(\mathfrak{u}*\mathfrak{b})$	$\gamma(u * v)$

$a \rightarrow b$	b=1	$b = \gamma(v)$
a = 1	1	$\gamma(a \rightarrow v)$
$a = \gamma(u)$	1	$u \rightarrow v$

a	¬а
a = 1	γ (¬ a)
$a = \gamma(u)$	¬u

Лемма 5.5. Гёделева алгебра является Гейтинговой

Доказательство. Необходимо просто доказать аксиомы коммутативности, ассоциативности и поглощения. \Box

Теорема 5.6. $\vdash \alpha \lor \beta \Rightarrow$ либо $\vdash \alpha$, либо $\vdash \beta$

Доказательство. Возьмем А, построим $\Gamma(A)$. Если $\vdash \alpha \lor \beta$, то $[\![\alpha \lor \beta]\!]^A = 1$ и $[\![\alpha \lor \beta]\!]^{\Gamma(A)} = 1$. Тогда по определению + в алгебре Γ ёделя, $[\![\alpha]\!]^{\Gamma(A)} = 1$, либо $[\![\beta]\!]^{\Gamma(A)} = 1$. Тогда оно такое же и в алгебре Λ -T, а алгебра Λ -T полна.

5.8. Теорема Гливенко

Теорема 5.7. Если в ИВ доказуемо α , то в ИИВ доказуемо $\neg \neg \alpha$.

Доказательство. Разберем все втречающиеся в изначальном доказательстве формулы

1. Заметим, что если в ИИВ доказуемо α , то $\neg\neg\alpha$ так же доказуемо.

Докажем, что $\alpha \vdash \neg \neg \alpha$

(1)	α	Допущение
(2)	lpha ightarrow eg lpha ightarrow lpha	Сх. акс. 1
(3)	eg lpha ightarrow lpha	M.P. 1,2
(4)	eg lpha ightarrow (eg lpha ightarrow eg lpha)	Сх. акс. 1
(5)	$(\neg \alpha \to (\neg \alpha \to \neg \alpha)) \to (\neg \alpha \to ((\neg \alpha \to \neg \alpha) \to \neg \alpha)) \to (\neg \alpha \to \neg \alpha)$	Сх. акс. 2
(6)	$(\neg \alpha \to ((\neg \alpha \to \neg \alpha) \to \neg \alpha)) \to (\neg \alpha \to \neg \alpha)$	M.P. 4,5
(7)	$(\lnot lpha ightarrow ((\lnot lpha ightarrow \lnot lpha) ightarrow \lnot lpha))$	Сх. акс. 1
(8)	eg lpha ightarrow eg lpha	M.P. 7,6
(9)	$(\lnot lpha ightarrow lpha) ightarrow (\lnot lpha ightarrow \lnot lpha) ightarrow \lnot \lnot lpha$	Сх. акс. 9
(10)	$(\neg \alpha \to \neg \alpha) \to \neg \neg \alpha$	M.P. 3,9
(11)	$\neg \neg \alpha$	M.P. 8.10

Значит, если α – аксиома с 1-ой по 9-ую, то $\neg\neg\alpha$ также может быть доказано

2. Пусть α получилось по 10-ой аксиоме $\neg\neg \alpha \to \alpha$. Докажем, что $\vdash \neg\neg (\neg\neg \alpha \to \alpha)$

(1)	$\alpha o \neg \neg \alpha o \alpha$	Сх. акс. 1
(2)	$\neg(\neg\neglpha ightarrowlpha) ightarrow against lpha$	Контрпозиция
(3)	eg lpha ightarrow eg lpha ightarrow lpha	Сх. акс. 10
(4)	$\neg(\neg\neg\alpha o\alpha) o\neg\neg\alpha$	Контрпозиция
(5)	$(\neg(\neg\neg\alpha\to\alpha)\to\neg\alpha)\to(\neg(\neg\neg\alpha\to\alpha)\to\neg\neg\alpha)\to\neg\neg(\neg\neg\alpha\to\alpha)$	Сх. акс. 9
(6)	$(\neg(\neg\neg\alpha\rightarrow\alpha)\rightarrow\neg\neg\alpha)\rightarrow\neg\neg(\neg\neg\alpha\rightarrow\alpha)$	M.P. 2,5
(7)	$\neg\neg(\neg\neglpha ightarrowlpha)$	M.P. 4,6

- 3. Приведем конструктивное доказательство:
 - Если α аксиома, то $\neg\neg\alpha$ доказывается с помощью 1-го и 2-го пунктов
 - Если был применен М.Р., то в изначальном доказательстве были α , $\alpha \to \beta$, β . По индукционному предположению мы знаем, что $\neg\neg\alpha$, $\neg\neg(\alpha \to \beta)$. Нужно доказать

 $\neg\neg\beta$.

Давайте для начала докажем, что

$$\neg\neg\alpha, \neg\neg(\alpha \to \beta), \neg\beta, \alpha, \alpha \to \beta \vdash \beta$$

(1) а Допущение

- (2) $\alpha \to \beta$ Допущение
- (3) β M.P. 1,2

Значит мы знаем, что $\neg\neg\alpha, \neg\neg(\alpha \to \beta), \neg\beta, \alpha \vdash (\alpha \to \beta) \to \beta$. Теперь докажем, что

$$\neg\neg\alpha, \neg\neg(\alpha \to \beta), \neg\beta, \alpha, (\alpha \to \beta) \to \beta \vdash \neg(\alpha \to \beta)$$

(1)
$$((\alpha \to \beta) \to \beta) \to ((\alpha \to \beta) \to \neg \beta) \to \neg(\alpha \to \beta)$$
 Cx. akc. 9

(2)
$$((\alpha \rightarrow \beta) \rightarrow \beta)$$
 Допущение

(3)
$$\neg \beta \rightarrow (\alpha \rightarrow \beta) \rightarrow \neg \beta$$
 Cx. akc. 1

(5)
$$(\alpha \rightarrow \beta) \rightarrow \neg \beta$$
 M.P. 4,3

(6)
$$((\alpha \rightarrow \beta) \rightarrow \neg \beta) \rightarrow \neg(\alpha \rightarrow \beta)$$
 M.P. 2,1

(7) $\neg(\alpha \rightarrow \beta)$ M.P. 5,6

Теперь мы знаем, что $\neg\neg\alpha, \neg\neg(\alpha \to \beta), \neg\beta \vdash \alpha \to \neg(\alpha \to \beta).$ Докажем, что

$$\neg\neg\alpha, \neg\neg(\alpha \to \beta), \neg\beta, \alpha \to \neg(\alpha \to \beta) \vdash \neg\alpha.$$

(1)
$$(\alpha \to \neg(\alpha \to \beta)) \to (\alpha \to \neg\neg(\alpha \to \beta)) \to \neg\alpha$$
 Cx. akc. 9

(2)
$$\alpha \to \neg(\alpha \to \beta)$$
 Допущение

(3)
$$\neg\neg(\alpha \to \beta) \to \alpha \to \neg\neg(\alpha \to \beta)$$
 Cx. akc. 1

$$(4)$$
 $\neg\neg(\alpha \to \beta)$ Допущение

(5)
$$\alpha \rightarrow \neg \neg (\alpha \rightarrow \beta)$$
 M.P. 4,3

(6)
$$(\alpha \to \neg \neg (\alpha \to \beta)) \to \neg \alpha$$
 M.P. 2,1

$$(7) \quad \neg \alpha \qquad \qquad M.P.5,6$$

Теперь мы знаем, что $\neg\neg\alpha$, $\neg\neg(\alpha\to\beta)\vdash\neg\beta\to\neg\alpha$. Наконец докажем, что

$$\neg\neg\alpha, \neg\neg(\alpha \to \beta), \neg\beta \to \neg\alpha \vdash \neg\neg\beta$$

(1)
$$(\neg \beta \rightarrow \neg \alpha) \rightarrow (\neg \beta \rightarrow \neg \neg \alpha) \rightarrow \neg \neg \beta$$
 Cx. akc. 9

$$(2)$$
 $\neg \beta \rightarrow \neg \alpha$ Допущение

(3)
$$\neg\neg\alpha \rightarrow \neg\beta \rightarrow \neg\neg\alpha$$
 Cx. akc. 1

(5)
$$\neg \beta \rightarrow \neg \neg \alpha$$
 M.P. 4,3

(6)
$$(\neg \beta \rightarrow \neg \neg \alpha) \rightarrow \neg \neg \beta$$
 M.P. 2,1

(7)
$$\neg \neg \beta$$
 M.P. 5,6

5.9. Топологическая интерпретация

Булеву алгебру и алгебру Гейтинга можно интерпретировать на множестве \mathbb{R}^n . Тогда заключения о общезначимости формулы можно делать более наглядно. Давайте возьмем в качестве множества алгебры все открытые подмножества \mathbb{R}^n . Определим операции следующим образом:

- $\alpha + \beta = \alpha \cup \beta$
- $\alpha * \beta = \alpha \cap \beta$
- $\alpha \rightarrow \beta = Int(\alpha^c \cup \beta)$
- $-\alpha = Int(\alpha^c)$
- 0 = ∅
- $1 = \cup \{V \subset L\}$

6. Ticket 4: ИИВ2

6.1. Модели Крипке

W – множество миров

V – множество вынужденных переменных

Введем отношение частичного порядка на W - \leqslant (отношение достижимости). И введем оценку переменной $v:W\times V\to \{0,1\}$. v должна быть монотонна (Если v(x,P)=1 и $x\leqslant y$, то v(y,P)=1). Если пременная x истинна в мире w, то мы пишем $w\Vdash x$. Модель Крипке – это $\langle W,\leqslant,v\rangle$.

Теперь можно определить истинность любой формулы (в данном мире) индукцией по построению формулы. Правила:

- $w \Vdash A \& B \Leftrightarrow w \Vdash A и w \Vdash B$;
- $w \Vdash A \lor B \Leftrightarrow w \Vdash A$ или $w \Vdash B$;
- $w \Vdash A \to B \Leftrightarrow$ в любом мире $\mathfrak{u} \geqslant w$, в котором истинна A, так же истинна и B;
- $w \Vdash \neg A \Leftrightarrow$ ни в каком мире $\mathfrak{u} \geqslant w$ формула A не является истинной;

6.2. Корректность ИИВ относительно моделей Крипке

Теорема 6.1. Если формула выводима в ИИВ, то она истинна в моделях Крипке.

Доказательство. Проверим М.Р. и аксиомы (что они истинны во всех мирах):

- М.Р.: по определению импликации в моделях Крипке, если в мире истинно A, A ightarrow B, то истинно и B
- Аксиомы:
 - 1. $A \rightarrow (B \rightarrow A)$

Пусть где-нибудь истинна A, в силу монотонности она истинна во всех бо́льших мирах, так что $B \to A$ тоже будет истинно.

- 2. $(A \to B) \to ((A \to (B \to C)) \to (A \to C))$ Пусть где-нибудь истинно $A \to B$, тогда необходимо доказать, что истинно и $((A \to (B \to C)) \to (A \to C))$.
 - Пусть истинны A, B. Тогда если истинно A \to (B \to C), то истинно и C по монотонности A и B. A, B, C истинны, значит A \to C истинно.
 - Пусть не истинны ни A, ни B. Тогда A \rightarrow (B \rightarrow C) не истинно и C не истинно. Значит A \rightarrow C не может быть истинно, т.к. ни A, ни B, ни C не истинны. Сомнение насчет этого места
- 3. Подобным образом доказываем все аксиомы

6.3. Вложение Крипке в Гейтинга

Не нужно (Д.Г. обещал не спрашивать это)

6.4. Полнота ИИВ в моделях Крипке

Теорема 6.2. ИИВ полно относительно моделей Крипке

Доказательство. Докажем в несколько шагов

1. Дизъюнктивное множество M – такое множество, что если в $M \vdash a \lor b$, то $a \in M$ или $b \in M$.

Лемма 6.3. $M \vdash \alpha \Rightarrow \alpha \in M$

Доказательство. Пусть это не так. Рассмотрим $a \to a \lor \neg a$. Раз $M \vdash a$, то $M \vdash a \lor \neg a$. Т.к. $a \notin M$, то $\neg a \in M$ по определению дизъюнктивности M. Но тогда из $M \vdash a$ и $M \vdash \neg a$ мы можем доказать, что $M \vdash a \& \neg a$. □

- 2. Возьмем множество всех дизъюнктивных множеств с формулами из ИИВ. Мы можем это сделать, т.к. ИИВ дизъюнктивно. Для любого элемента $W_i \vdash \alpha, \alpha \in W_i$, значит в этом мире α вынуждено. Построим дерево с порядком «быть подмножеством». Докажем, что это множество модель Крипке. Проверим 5 свойств:
 - (a) $W,x \Vdash P \Leftrightarrow \nu(x,P) = 1$ если $P \in V$ (V множество вынужденных переменных). Монотонность выполняется по определению дерева
 - (б) $W, x \Vdash (A\&B) \Leftrightarrow W, x \Vdash A$ и $W, x \Vdash B$ С помощью аксиомы $A\&B \to A$ доказываем $W \vdash A$, значит $A \in W$. Аналогично с B
 - (в) $W, x \Vdash (A \lor B) \Leftrightarrow W, x \Vdash A$ или $W, x \Vdash B$ Очевидно по определению дизъюнктивности
 - (r) $W, x \Vdash (A \to B) \Leftrightarrow \forall y \geqslant x(W, y \Vdash A \Rightarrow W, y \Vdash B)$ Мы знаем, что $W \vdash A \to B$. Пусть в W есть A, тогда по M.Р. докажем, что B. Пусть в W есть B, тогда мы уже получили B.
 - (д) $W,x \Vdash \neg A \Leftrightarrow \forall y \geqslant x(W,x \nVdash A)$ Если где-то оказалось A, то оно доказуемо, а значит мы сможем доказать и A& $\neg A$

3. \Vdash А, тогда $W_i \Vdash$ А. Рассмотрим $W_0 = \{$ все тавтологии ИИВ $\}$. $W_0 \Vdash$ А, т.е. \vdash А.

6.5. Нетабличность интуиционистской логики

Теорема 6.4. Не существует полной модели, которая может быть выражена таблицей

Доказательство. Докажем от противного. Построим табличную модель и докажем, что она не полна. В ИВ мы обычно пользуемся алгеброй J_0 Яськовского $V = \{0,1\}, 0 \leqslant 1$. Пусть имеется $V = \{...\}, |V| = n$ - множество истиностных значений. Пусть его размер больше 2. Тогда построим формулу $V_{(1\leqslant j < i\leqslant n+1)}(p_i \to p_j)$ - такая большая дизъюнкция из имплика-

ций

- 1. Она общезначима, т.к. всего таких импликаций у нас будет $C_n^2 >= n$ (по принципу Дирихле встретятся два одинаковых значения и она будет верна, тогда все выражение будет верно)
- 2. Недоказуемость. Построим такую модель Крипке, в которой она будет не общезначима.

 J_0 - алгебра Яськовского. Определим последовательность алгебр L_n по следующим правилам: $L_0 = J_0$, $L_n = \Gamma(L_{n-1})$. Таким образом L_n - упорядоченное множество $\{0, w_1, w_2, ..., 1\}$. Пусть f - оценка в L_n , действующая по следующим правилам на нашу формулу: $f(\mathfrak{a}_1) = 0$, $f(\mathfrak{a}_{n+1}) = 1$, $f(\mathfrak{a}_i) = w_i$ при $j < \mathfrak{i} : f(\mathfrak{a}_i \to \mathfrak{a}_j) = f(\mathfrak{a}_i) \to f(\mathfrak{a}_j) = f(\mathfrak{a}_j)$. Последнее выражение не может являться 1, так что формула недоказуема. (ИИВ полно относительно алгебры Гейтинга)

7. Ticket 5: Логика 2 порядка

7.1. Основные определения

Смотрим коснпект ДГ

7.2. Теорема о дедукции

Теорема 7.1. Если Γ , $\alpha \vdash \beta$, и в доказательстве отсутствуют применения правил для кванторов, использующих свободные переменные из формулы α , то $\Gamma \vdash \alpha \to \beta$

Доказательство. Будем рассматривать формулы в порядке сверху вниз. На і-ой строке встретили формулу δ_i . Тогда докажем, что $\alpha \to \delta_i$. Разберем случаи:

- 1. δ_i старая аксиома, совпадает с α или выводится по правилу М.Р. Тогда мы знаем, что делать из Теоремы о дедукции для ИВ
- 2. δ_i новая аксиома Тогда все то же самое, что и в старой аксиоме, но нужно так же проверить условие.
- 3. $\exists x(\psi) \rightarrow \phi$ новое правило вывода
 - Докажем вспомогательную лемму:

Лемма 7.2.
$$(\alpha \to (\beta \to \gamma)) \to (\beta \to (\alpha \to \gamma))$$

Доказательство. Докажем, что $\alpha \to (\beta \to \gamma)$, β , $\alpha \vdash \gamma$:

- (1) $\alpha \to \beta \to \gamma$ Допущение
- (2) а Допущение
- (3) $\beta \rightarrow \gamma$ M.P. 2,1
- (4) в Допущение
- (5) γ M.P. 4,3
- По индукционному преположению мы знаем, что $\alpha \to \psi \to \phi$. Тогда докажем, что $\alpha \to \psi \to \phi$, $(\alpha \to \psi \to \phi) \to (\psi \to \alpha \to \phi) \vdash \alpha \to \exists x(\psi) \to \phi$:
 - $(1) \quad (\alpha \to \psi \to \varphi) \to (\psi \to \alpha \to \varphi)$

Допущение

(2)
$$\alpha \rightarrow \psi \rightarrow \varphi$$

Допущение

(3)
$$\psi \rightarrow \alpha \rightarrow \varphi$$

M.P. 2,1

(4)
$$\exists x(\psi) \rightarrow \alpha \rightarrow \phi$$

Правило вывода 1

(5)
$$(\exists x(\psi) \to \alpha \to \varphi) \to (\alpha \to \exists x(\psi) \to \varphi)$$

Допущение

(6)
$$\alpha \to \exists x(\psi) \to \varphi$$

M.P. 4,5

- 4. $\phi o orall x(\psi)$ новое правило вывода
 - Докажем вспомогательную лемму 1

Лемма 7.3.
$$(\alpha \& \beta \to \gamma) \to (\alpha \to \beta \to \gamma)$$

Доказательство. Докажем, что $(\alpha \& \beta \to \gamma), \alpha, \beta \vdash \gamma$:

(1) α

Допущение

(2) β

- Допущение
- (3) $\alpha \rightarrow \beta \rightarrow \alpha \& \beta$
- Сх. акс. 1
- (4) $\beta \rightarrow \alpha \& \beta$ M.P. 1,3
- (5) $\alpha \& \beta$

- M.P. 2,4
- (6) $\alpha \& \beta \rightarrow \gamma$
- Допущение

(7) γ

- M.P. 5,6
- Докажем вспомогателньую лемму 2

Лемма 7.4.
$$(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \& \beta \rightarrow \gamma)$$

Доказательство. Докажем, что $\alpha \to \beta \to \gamma$, $\alpha \& \beta \vdash \gamma$:

- (1) $\alpha \& \beta \rightarrow \alpha$
- Сх. акс. 4
- (2) $\alpha \& \beta$
- Допущение
- (3) α
- M.P. 2,1
- (4) $\alpha \& \beta \rightarrow \beta$ Cx. akc. 5
- (5) β
- M.P. 2,4
- (6) $\alpha \to \beta \to \gamma$ Допущение
- (7) $\beta \rightarrow \gamma$
- M.P. 3,6
- (8) γ
- M.P. 5,7
- По индукционному предположению мы знаем, что $\alpha \to \psi \to \phi$. Тогда докажем, что $\alpha \to \psi \to \phi \vdash \alpha \to \psi \to \forall (\phi)$.
 - (1) $(\alpha \rightarrow \psi \rightarrow \varphi) \rightarrow (\alpha \& \psi \rightarrow \varphi)$
- Вспомогательная лемма 1

(2) $\alpha \rightarrow \psi \rightarrow \varphi$

Допущение M.P. 2,1

(3) $\alpha \& \psi \rightarrow \varphi$ (4) $\alpha \& \psi \rightarrow \forall (\varphi)$

- Правило вывода 2
- (5) $(\alpha \& \psi \rightarrow \forall (\phi)) \rightarrow (\alpha \rightarrow \psi \rightarrow \forall (\phi))$
- Вспомогательная лемма 2

(6) $\alpha \rightarrow \psi \rightarrow \forall (\phi)$

M.P. 4,5

7.3. Корректность исчисления предикатов

Смотрим конспект ДГ

8. Ticket 6: Полнота исчисления предикатов

Тут можно почитать конспект Д.Г.

8.1. Свойства противоречивости

Противоречивая теория – теория, в которой можно вывести р, ¬р.

Лемма 8.1. Теория противоречива ⇔ в ней выводится а&¬а

Доказательство. \Leftarrow Если выводится а&¬а, то противоречива – очевидно через аксиомы \Rightarrow Если противоречива, то выводится а&¬а

- (1) ¬α Допущение
- (2) α Допущение
- (3) $\alpha \rightarrow \neg \alpha \rightarrow (\alpha \& \neg \alpha)$ Cx. akc. 10
- (4) $\neg \alpha \rightarrow (\alpha \& \neg \alpha)$ M.P. 1,3
- (5) $\alpha \& \neg \alpha$ M.P. 2,4

Заметим, что всякое подмножество непротиворечивого множества непротиворечиво. Заметим, что всякое бесконечное прот. множество содержит конечное противоречивое подмножество ввиду конечности вывода.

Совместное множество – множество с моделью (все формулы множества верны в какойлибо интерпретации).

8.2. Лемма о дополнении непротиворечивого множества

Лемма 8.2. Для всякого непротиворечивого множества Γ замкнутых формул сигнатуры σ существует множество Γ' , являющееся к тому же полным, имеющее ту же сигнатуру и содержащее Γ .

Доказательство. Для не более чем счетных сигнатур:

Давайте добавлять недостающие формулы в Γ – если есть формула α , добавим α или $\neg \alpha$ в зависимости от того, является ли $\Gamma \cup \alpha$ или $\Gamma \cup \neg \alpha$ противоречивым или нет (выберем непротиворечивый вариант). Одно всегда верно, потому что:

- 1. $\Gamma \cup \alpha$, $\Gamma \cup \neg \alpha$ противоречивы обе \Rightarrow Мы можем доказать, что Γ изначально было противоречиво
- 2. $\Gamma \cup \alpha$, $\Gamma \cup \neg \alpha$ не противоречивы обе \Rightarrow Тогда можно сказать, что $\alpha \to \neg \alpha \to \alpha \& \neg \alpha$.

8.3. Условие о интерпретации непротиворечивого мн-ва

Будем называть интерпретацией непротиворечивого множества формул функцию оценки, тождественно равную 1 на элементах из этого множества. Будем говорить, что $\Gamma \vDash \alpha$, если она тождественна в любой модели Γ .

П

8.4. Несколько лемм

Лемма 8.3. $\Gamma \vdash \alpha \Rightarrow \Gamma \vDash \alpha$

Доказательство. Механическая проверка аксиом

Лемма 8.4. Если у Γ есть модель, то Γ непротиворечиво

Доказательство. Пусть Γ имеет модель, но противоречиво, тогда из Γ выводится $\alpha, \neg \alpha$, по корректности $\Gamma \vDash \alpha, \neg \alpha$, но формула и ее отрицание не могут быть общезначимыми одновременно.

Лемма 8.5. Пусть Γ – полное непротиворечивое множество бескванторных формул. Тогда существует модель для Γ .

Доказательство. Построим модель структурной индукцией по формулам.

Предметное множество – строки, содержащие выражения.

Например $\llbracket c_1 \rrbracket = \langle c_1 \rangle$, $\llbracket f_1(c_1, f_2(c_2)) \rrbracket = \langle f_1(c_1, f_2(c_2)) \rangle$

Мы не хотим заниматься подсчетом, а предпочитаем оставлять то, что нужно вычислить как отдельную функцию. Рассмотрим формулу – предикат. Его оценка истина, если он принадлежит носителю, ложна если его отрицание в носителе (в предметном множестве). Элементы всегда входят противоречиво (элемент не вдохит со своим отрицанием. Связки определим естественным образом. Докажем, что $\gamma \in \Gamma \Leftrightarrow \gamma$ истинна (Γ – предметное множество)

• База:

Если атомарная формула лежит в Γ , то она истинна по определению. Если атомарная формула истинна, то лежит в Γ

- Переход:
 - 1. α&β

Если α&β лежит в Г, то оно истинно по определению

- Пусть $[\![\alpha\&\beta]\!] = \mathsf{N}$, тогда покажем, что $\alpha\&\beta\in\Gamma$. По таблице истинности & ясно, что $[\![\alpha]\!] = \mathsf{N}$ и $[\![\beta]\!] = \mathsf{N}$. Тогда α и β лежат в Γ по индукционному предположению. Тогда с помощью $\alpha\to\beta\to\alpha\&\beta$ можно показать, что и $\alpha\&\beta\in\Gamma$.
- Пусть $[\![\alpha\&\beta]\!] = \Pi$, тогда покажем, что $\neg(\alpha\&\beta) \in \Gamma$. По таблице истинности & ясно, что $[\![\alpha]\!] = \Pi$ или $[\![\beta]\!] = \Pi$. Для определенности возьмем, что α – ложь. Тогда $\neg \alpha$ лежат в Γ по индукционному предположению.

Докажем, что $\neg \alpha \vdash \neg (\alpha \& \beta)$:

2. $\alpha \vee \beta$

- $[\![\alpha \lor \beta]\!] = \mathsf{N}$. Тогда по таблице истинности \lor либо $[\![\alpha]\!] = \mathsf{N}$, либо $[\![\beta]\!] = \mathsf{N}$. Не умаляя общности скажем, что $[\![\alpha]\!] = \mathsf{N}$. Тогда $\alpha \in \Gamma$ по предположению индукции. Легко можно доказать, что и $\alpha \lor \beta \in \Gamma$ с помощью $\alpha \to \alpha \lor \beta$.
- $[\![\alpha \lor \beta]\!] = \Pi$. Тогда по таблице истинности \lor и $[\![\alpha]\!] = \Pi$, и $[\![\beta]\!] = \Pi$. Тогда $\neg \alpha \in \Gamma$ и $\neg \beta \in \Gamma$ по предположению индукции. С помощью 9-ой схемы аксиом мы можем доказать, что и $\neg (\alpha \lor \beta) \in \Gamma$.

3. Аналогично нужно доказать все связки

8.5. Построение Г*

Теорема 8.6. Можно построить из нашего множества формул множество бескванторных формул

Доказательство. Для этого определим такую операцию избавления от 1 квантора: Построим новый язык, отличающийся от нашего контантами, там будут d_i^j , где нижний индекс – это поколение, верхний – нумерационный. Возьмем непротиворечивое множество формул Γ_i и пополним его, получив непротиворечивое множество формул Γ_{i+1} , такое что $\Gamma_i \subset \Gamma_{i+1}$. Возьмем формулу $\gamma \in \Gamma_i$. Рассмотрим случаи:

- 1. Не содержит кванторов Тогда делать ничего не нужно
- 2. $\gamma = \forall x(\alpha)$ Тогда возьмем все константы, использующиеся в Γ_i это будут c_i , d_{α}^j , где $\alpha \leqslant i$. Занумеруем их $\theta_1, \theta_2, \ldots$ И добавим формулы $\alpha_1 = \alpha[x := \theta_1], \ldots$ к Γ_{i+1} .
- 3. $\gamma = \exists x(\alpha)$ Тогда возьмем новую константу d_{i+1}^j и добавим $\alpha[x := d_{i+1}^j]$ к Γ_{i+1} .

Заметим, что сами формулы с кванторами мы не выкидываем – ведь в будущем появятся новые формулы, и процесс для уже использованных кванторных формул нужно будет повторить. Покажем, что полученные множества остаются непротиворечивыми. Γ_i непротиворечиво, а Γ_{i+1} противоречиво, тогда $\Gamma_{i+1} \vdash \alpha \& \neg \alpha$, тогда выпишем конечное доказательство, найдем посылки, новые в Γ_{i+1} , которых нету в Γ_i , выпишем их и впихнем направо по теореме о дедукции: $\Gamma_i \vdash \gamma_1 \to \gamma_2 \to \gamma_3 \to \cdots \to \gamma_n \to \beta \& \neg \beta$ Новые посылки у нас получаются только из пунктов 2 и 3.

- 1. $\gamma_1 = \mathfrak{a}[x := \theta_1]$ из $\forall x(\mathfrak{a})$. Тогда рассмотрим доказательство: (1) $\forall x \alpha \to \alpha[x := \theta]$ Сх. акс. \forall (2) $\forall x \alpha$ $\forall x \alpha$ из Γ_g (3) $\alpha[x := \theta]$ М.Р. 2, 1 (4 . . . k) $\alpha[x := \theta] \to (\gamma_2 \to \dots \to \gamma_n \to \beta \& \neg \beta)$ Исх. формула (k+1) $\gamma_2 \to \dots \to \gamma_n \to \beta \& \neg \beta$ М.Р. 3, k
- 2. $\gamma_1=\mathfrak{a}[x:=d_{i+1}^k]$ из $\exists x(\mathfrak{a})$ выберем переменную, не участвующую в выводе противоречия z. Заменим все вхождения d^k в д-ве на z. Поскольку d_{i+1}^k константа, мы можем

делать такие замены. Поскольку z – константа, специально введенная для замены и раньше не встречавшаяся, то она отсутствует в γ_2, \ldots + мы можем правильно выбрать b, чтобы и в нем отсутствовала d_{i+1}^k . Значит мы можем применить правило для выведения \exists :

$$\begin{array}{llll} (1 \dots k) & \alpha[x := y] \to (\gamma_2 \to \dots \gamma_n \to \beta \& \neg \beta) & \text{Исх. формула} \\ (k+1) & \exists y \alpha[x := y] \to (\gamma_2 \to \dots \gamma_n \to \beta \& \neg \beta) & \Pi \text{равило для} \ \exists \\ (k+2) & \exists x \alpha & \text{Т.к.} \ \exists x \alpha \ \text{из} \ \Gamma_g \\ (k+3 \dots l) & \exists y \alpha[x := y] & \text{Доказуемо} \\ (l+1) & \gamma_2 \to \dots \gamma_n \to \beta \& \neg \beta & \text{M.P. l, k+1} \end{array}$$

Возьмем $\Gamma_0 = \Gamma$. $\Gamma^* = \cup \Gamma_i$. Γ^* также не противоречиво, потому что д-во использует конечное количество предположений, добавленных на каком-то шаге j максимум, значит множество j тоже противоречиво, что невозможно по условию.

8.6. Доказательство того, что дополненное бескванторное подмножество Γ^* – модель для Γ

Теорема 8.7. Дополненное бескванторное подмножество Γ^* – модель для Γ

Доказательство. Выделим в Γ^* бескванторное подмножество G. Пополним его по лемме 2 (лемма о дополнении непротиворечевиого множества) модель сделаем из него по лемме о бескванторной модели. Покажем, что это модель для всего Γ^* , а значит и для Γ . Рассмотрим $\gamma \in \Gamma^*$, покажем, что $[\gamma] = \mathsf{N}$.

• База

Формула не содержит кванторов. Истинность гарантируется леммой о бескванторном множестве.

• Переход

Пусть G это модель для любой формулы из Γ^* с r кванторами, покажем что она остается моделью для r+1 квантора.

1. $\gamma = \forall x(\alpha)$

Покажем, что формула истинна для любого $t \in D$. По построению подели есть такое θ , что $t = "\theta$ (string). По построению Γ^* начиная c шага p+1 мы добавляем формулы вида $\mathfrak{a}[x:=k]$, где k – конструкция из констант и ϕ .симв. Также каждая константа (c_i или d_i^j) из θ добавлена на некотором шаге s_k . То есть будет шаг $l = \max(\max(s_k), p)$, на котором θ обретет смысл и в Γ_{l+1} будет присутствовать $\mathfrak{a}[x:=\theta]$. В формуле \mathfrak{a} на один квантор меньше, значит она истинна по предположению индукции.

2. $\gamma = \exists x(\alpha)$

По построению Γ^* как только добавили $\mathfrak a$ к Γ_i , так сразу в следующем мире Γ_{i+1} появляется $\mathfrak a[x:=d_{i+1}^k]$. Значит формула истинна на значении " d_{i+1}^k ", то есть истинна.

8.7. Следствие – если $\models \alpha$, то $\vdash \alpha$

Теорема 8.8. $\models \alpha \Rightarrow \vdash \alpha$

Доказательство. • Пусть Г \nvdash а, тогда по полноте множества Γ , Γ \vdash ¬а, но у Γ есть модель, в которой Γ \vdash ¬а. То есть Γ \nvdash а. Но Γ по построению то же, что и модель теории, то есть все рассуждения Γ \vdash а равноценны в предикатах \vdash а.

- Пусть \nvdash а, тогда пусть $\Gamma = \{ \neg a \}$
 - 1. Γ непротиворечиво Пусть Γ противоречиво, значит $\forall b \Gamma \vdash b, \Gamma \vdash \neg b;$
 - (a) $\neg a \vdash b, \neg a \vdash b$;
 - (b) $\neg a \vdash a, \neg a \vdash \neg a;$
 - (c) $\vdash \neg a \rightarrow a, \neg a \rightarrow \neg a;$
 - (d) $\vdash (\neg \alpha \rightarrow \alpha) \rightarrow (\neg \alpha \rightarrow \neg \alpha) \rightarrow \neg \neg \alpha;$
 - (e) $\vdash \neg \neg a \rightarrow a$;
 - (f) \vdash а \rightarrow \leftarrow недоказуемо по условию.;
 - 2. Γ подходит под условие теоремы Гёделя о полноти исчисления предикатов, то есть у Γ есть модель. Тогда в ней оценка $[\neg a] = 1$, значит оценка [a] = 0, то есть $\not\models a$. Мы доказали мета-контрпозицию $\not\models a \Rightarrow \not\models a$.

9. Ticket 7: ΦA

9.1. Структуры и модели, теория первого порядка

Теория первого порядка - это формальная система с кванторами по функциональным символам, но не по предикатам. Рукомахательное определение – это фс с логикой первого порядка в основе, в которой абстрактные предикаты и функциональные символы определяются точно (а может такое определение даже лучше).

Структура по ДГ:

Структурой теории первого порядка мы назовем упорядоченную тройку $\langle D, F, P \rangle$, где F – списки оценок для 0-местных, 1-местных и т.д. функций, и $P = P_0, P_1, \ldots$ – списки оценок для 0-местных, 1-местных и т.д. предикатов, D — предметное множество.

Понятие структуры — развитие понятия оценки из исчисления предикатов. Но оно касается только нелогических составляющих теории; истинностные значения и оценки для связок по-прежнему определяются исчислением предикатов, лежащим в основе теории. Для получения оценки формулы нам нужно задать структуру, значения всех свободных индивидных переменных, и (естественным образом) вычислить результат.

Структура по-моему:

Все то же самое определение из ИВ. Мы просто забиваем на предикаты в ИВ (не определям их), расширяем нашу сигнатуру (добавляя конкретные предикаты и функциональные символы), определяем для нее интерпретацию.

Модель – это корректная структура (любое доказуемое утверждение должно быть в ней общезначимо).

9.2. Аксиомы Пеано

Множество N удовлетворяет аксиоматике Пеано, если:

- 1. $0 \in N$
- 2. $x \in N$, $succ(x) \in N$
- 3. $\nexists x \in N : (S(x) = 0)$
- 4. $(\operatorname{succ}(a) = c \& \operatorname{succ}(b) = c) \rightarrow a = b$
- 5. $P(0)\&\forall n.(P(n) \rightarrow P(succ(n))) \rightarrow \forall n.P(n)$

9.3. Формальная арифметика – аксиомы, схемы, правила вывода

Формальная арифметика – это теория первого порядка, у которой сигнатура определена как: (циферки, логические связки, алгебр. связки, '), а интерпретацию сейчас будем определять. Интерпретация определяет два множества – V, P – истинностные и предметные значения. На самом деле нет никакого множества P, мы определяем только V, потому что оно нужно для оценок. Все элементы, которые мы хотели бы видеть, выражаются в сигнатуре.

Пусть множество $V = \{0,1\}$ по-прежнему. Определим оценки логических связок естественным образом. Определим алгебраические связки так:

$$+(a,0) = a$$

 $+(a,b') = (a+b)'$
 $*(a,0) = 0$
 $*(a,b') = a*b+a$

Тут должно быть что-то на уровне док-ва 2+2=4

9.3.1. Аксиомы

- 1. $a = b \rightarrow a' = b'$
- 2. $a = b \rightarrow a = c \rightarrow b = c$
- 3. $a' = b' \rightarrow a = b$
- 4. $\neg (a' = 0)$
- 5. a + b' = (a + b)'
- 6. a + 0 = a
- 7. a * 0 = 0
- 8. a * b' = a * b + a
- 9. $\varphi[x := 0] \& \forall x. (\varphi \rightarrow \varphi[x := x']) \rightarrow \varphi$

9.3.2. a = a

 Λ емма 9.1. $\vdash \alpha = \alpha$

Доказательство. $\vdash \alpha = \alpha$

```
(1)
                                                                                                                                       Сх. акс. ФА 2
           a = b \rightarrow a = c \rightarrow b = c
(2)
           Τ
                                                                                                                                       Сх. акс.
                                                                                                                                       Сх. акс. 1
(3)
           (a = b \rightarrow a = c \rightarrow b = c) \rightarrow T \rightarrow (a = b \rightarrow a = c \rightarrow b = c)
(4)
           T \rightarrow (a = b \rightarrow a = c \rightarrow b = c)
                                                                                                                                       M.P. 1,3
(5)
           T \rightarrow \forall \alpha (\alpha = b \rightarrow \alpha = c \rightarrow b = c)
                                                                                                                                       \Pi B \ \forall
(6)
           T \rightarrow \forall a \forall b (a = b \rightarrow a = c \rightarrow b = c)
                                                                                                                                       \Pi B \forall
           \mathsf{T} \to \forall \mathsf{a} \forall \mathsf{b} \forall \mathsf{c} (\mathsf{a} = \mathsf{b} \to \mathsf{a} = \mathsf{c} \to \mathsf{b} = \mathsf{c})
                                                                                                                                       ПВ∀
(7)
(8)
           \forall a \forall b \forall c (a = b \rightarrow a = c \rightarrow b = c)
                                                                                                                                       M.P. 2,7
(9)
           \forall a \forall b \forall c (a = b \rightarrow a = c \rightarrow b = c) \rightarrow
                                                           \forall b \forall c (a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)
                                                                                                                                       Сх. акс. ИП 1
                                                                                                                                       M.P. 8,9
(10)
           \forall b \forall c (a + 0 = b \rightarrow a + 0 = c \rightarrow b = c)
          \forall b \forall c (a + 0 = b \rightarrow a + 0 = c \rightarrow b = c) \rightarrow
(11)
                                                            (\forall c(\alpha + 0 = \alpha \rightarrow \alpha + 0 = c \rightarrow \alpha = c))
                                                                                                                                       Сх. акс. ИП 1
(12)
          \forall c(\alpha + 0 = \alpha \rightarrow \alpha + 0 = c \rightarrow \alpha = c)
                                                                                                                                       M.P. 10,11
          (\forall c(\alpha + 0 = \alpha \rightarrow \alpha + 0 = c \rightarrow \alpha = c)) \rightarrow
(13)
                                                           (\alpha+0=\alpha\to\alpha+0=\alpha\to\alpha=\alpha)
                                                                                                                                       Сх. акс. ИП 1
                                                                                                                                       M.P. 12,13
(14) \quad a + 0 = a \rightarrow a + 0 = a \rightarrow a = a
(15) a + 0 = a
                                                                                                                                       Сх. акс. ФА 6
          a + 0 = a \rightarrow a = a
                                                                                                                                       M.P. 15,14
(16)
                                                                                                                                       M.P. 15,16
(17)
          a = a
```

10. Ticket 8: рекурс, Аккерман

10.1. Рекурсивные функции

Рассмотрим примитивы, из которых будем собирать выражения:

- 1. $Z: \mathbb{N} \to \mathbb{N}, Z(x) = 0$
- 2. N: $\mathbb{N} \to \mathbb{N}$, N(x) = x'
- 3. Проекция. $U_i^n : \mathbb{N}^n \to \mathbb{N}$, $U_i^n(x_1, ..., x_n) = x_i$
- 4. Подстановка. Если $f: \mathbb{N}^n \to \mathbb{N}$ и $g_1, \dots, g_n : \mathbb{N}^m \to \mathbb{N}$, то $S \langle f, g_1, \dots, g_n \rangle : \mathbb{N}^m \to \mathbb{N}$. При этом $S \langle f, g_1, \dots, g_n \rangle (x_1, \dots, x_m) = f(g_1(x_1, \dots, x_m), \dots, g_n(x_1, \dots, x_m))$
- 5. Примитивная рекурсия. Если $f: \mathbb{N}^n \to \mathbb{N}$ и $g: \mathbb{N}^{n+2} \to \mathbb{N}$, то

$$R\langle f,g\rangle(x_1\dots x_n,n) = \begin{cases} f(x_1,\dots,x_n) & n=0\\ g(x_1,\dots,x_n,n,R\langle f,g\rangle(x_1,\dots,x_n,n-1)) & n>0 \end{cases}$$

6. Минимизация. Если $f: \mathbb{N}^{n+1} \to \mathbb{N}$, то $\mu \langle f \rangle : \mathbb{N}^n \to \mathbb{N}$, при этом $\mu \langle f \rangle (x_1, \dots, x_n)$ — такое минимальное число у, что $f(x_1, \dots, x_n, y) = 0$. Если такого у нет, результат данного примитива неопределен.

Пример:

$$a + b = R\langle U_1^2, S\langle N, U_3^3 \rangle\rangle(a, b)$$

10.2. Характеристическая функция и рекурсивное отношение

- *Характеристическая фукнция* функция от выражения, которая возвращает 1 если выражение истинно, 0 иначе.
- Рекурсивное отношение отношение, характеристическая функция которого рекурсивна.

10.3. Аккерман не примитивно-рекурсивен, но рекурсивен (второе)

Функция Аккермана – это функция, удовлетворяющая следующим правилам:

$$A(m,n) = \begin{cases} n+1 & m=0 \\ A(m-1,n) & m>0, n=0 \\ A(m-1,A(m,n-1)) & m>0, n>0 \end{cases}$$

Например:

$$A(2,0) = A(1,1) = A(0,A(1,0)) = A(0,2) = 3$$

Лемма 10.1. $A(m, n) \ge 1$

Доказательство.
$$A(\mathfrak{m},\mathfrak{n})$$
 определена только на натуральных числах $A(\mathfrak{0},\mathfrak{0})=1, A(\mathfrak{1},\mathfrak{0})=A(\mathfrak{0},\mathfrak{1})=2, A(\mathfrak{0},\mathfrak{1})=2$, а все остальное ещё больше

Лемма 10.2. A(1,n) = n + 2

Доказательство.

$$A(1,n) = A(0,A(1,n-1))$$
 $= A(0,A(0,A(1,n-2)))$
 $= A(0,A(0,A(0,...A(1,0))))$
 $= A(0,A(0,A(0,...2)))$
 $= n+2$ (п раз инкрементируем двойку)

Лемма 10.3. A(2, n) = 2n + 3

Доказательство.
$$A(2,n)=A(1,A(1,\ldots A(2,0)))=A(1,A(1,\ldots 3))=2n+3$$
 (n раз к тройке прибавляем $A(0,1)=2$)

Лемма 10.4. $A(m, n) \ge n + 1$

Доказательство. В первом случае $A \geqslant n+1 = n+1$

Во втором А может перейти в первый случай, который работает хорошо, или в третий.

В третьем случае мы можем получить A(0,n) если первый аргумент был нулем, тогда все ок, можем получить A(1,0), тогда это второй случай, для него условие выполнено.

Третий ссылается на второй, а второй на третий, но тут нет противоречия, потому что мы знаем, что функция Аккермана завершается. \Box

Лемма 10.5.
$$A(m, n) < A(m, n + 1)$$

Доказательство. Проведем индукцию по т:

База:

$$A(0,n) = n + 1 < n + 2 = A(0, n + 1)$$

• Переход:

$$A(k+1,m) < A(k+1,m)+1$$
 $\leqslant A(k,A(k+1,m))$ (По 10.4) $\leqslant A(k+1,m+1)$ (3-е свойства ф-ии Аккермана)

Лемма 10.6. $A(m, n + 1) \leq A(m + 1, n)$

Доказательство. Проведем индукцию по n:

• База: A(m, 0+1) = A(m, 1) = A(m+1, 0) (ii)

• Переход, предположение:

$$A(\mathfrak{m},\mathfrak{j}+1)\leqslant A(\mathfrak{m}+1,\mathfrak{j})$$
 По 10.4
$$(\mathfrak{j}+1)+1\leqslant A(\mathfrak{m},\mathfrak{j}+1)$$
 По монотонности
$$A(\mathfrak{m},(\mathfrak{j}+1)+1)\leqslant A(\mathfrak{m},A(\mathfrak{m},\mathfrak{j}+1))$$
 По монотонности + предположение
$$A(\mathfrak{m},A(\mathfrak{m},\mathfrak{j}+1)+1)\leqslant A(\mathfrak{m},A(\mathfrak{m}+1,\mathfrak{j})) = A(\mathfrak{m}+1,\mathfrak{j}+1)$$
 По 3-му свойству ф-ии Аккермана

Лемма 10.7. A(m, n) < A(m + 1, n)

Доказательство.
$$A(m, n) < A(m, n + 1) \le A(m + 1, n)$$
 (По 10.5, 10.6)

Лемма 10.8. $A(m_1, n) + A(m_2, n) < A(max(m_1, m_2) + 4, n)$

Доказательство.

$$A(m_1,n) + A(m_2,n)$$
 $\leqslant A(\max(m_1,m_2),n) + A(\max(m_1,m_2),n)$
 $= 2 \cdot A(\max(m_1,m_2),n)$
 $< 2 \cdot A(\max(m_1,m_2),n) + 3$
 $= A(2,A(\max(m_1,m_2),n))$ По 10.2
 $< A(2,A(\max(m_1,m_2)+3,n))$ Строгая монотоннасть по обоим арг.
 $< A(\max(m_1,m_2)+2,A(\max(m_1,m_2)+3,n))$ По 10.7
 $= A(\max(m_1,m_2)+3,n+1)$ 3-е свойство ф-ии Аккермана
 $\leqslant A(\max(m_1,m_2)+4,n)$ По 10.6

Лемма 10.9. A(m, n) + n < A(m + 4, n)

Доказательство.

$$A(m,n) + n$$

 $< A(m,n) + n + 1$
 $= A(n,m) + A(0,n)$
 $< A(m+4,n)$

Теорема 10.10. Функция аккерманна не притивно-рекурсивна

Доказательство. Пусть
$$f(n_1 \dots n_k)$$
 - примитивная рекурсинвная функция, $k \geqslant 0$. $\exists J: f(n_1 \dots n_k) < A(J, \sum (n_1 \dots n_k))$ Пусть $\overline{n} = (n_1, \dots, n_k)$

Индукция по рекурсивным функциям

- База:
 - $f(\overline{n})$ N или Z или U_i^k

1.
$$f(\overline{n}) = N, k = 1;$$
 Пусть $J = 1$, по (i) и лемме 3с $f(n) = N(n) = n+1 = A(0,n) < A(1,n) = A(J,n) = A(J,\sum(\overline{n}))$

2.
$$f(\overline{n})=Z, k=1;$$
 $f(n)=0< A(J,n)$ (потому что $A\geqslant 1)=A(J,\sum (\overline{n}))$

3.
$$f(\overline{n}) = U_j^k; k = k;$$
 Пусть $J = 1$ $f(n_1 \dots, n_k) = U_{kj}(n_1 \dots, n_k) = n_j$ Пусть $n_j = 0$, тогда $f(n) = 0 < A(J, \sum(\overline{n}))$ для любого нормального J Пусть $n_j > 0$, тогда $f(n) = (n_j - 1) + 1 = A(0, n_j - 1) < A(1, n) = A(J, \sum(\overline{n}))$

- Переход
 - 1. Предположим, что $f(\overline{n}) = S\langle h, g_1 \dots g_m \rangle(\overline{n}) = h(g_1(\overline{n}) \dots g_m(\overline{n}))$ По предположению индукции существует J_0 для h, J_1, \dots, J_m для $g_1 \dots g_m$.

$$f(\overline{n}) = h(g_1(\overline{n}),...)$$
 $\leqslant A(J_0, \sum \{i = 1..m\}(\overline{n}))$ По выбору J_0 $< (J_0, \sum (A(J_i, \sum (\overline{n}))))$ По выбору J_i и строгой монотонности $//J* = \max(J_1..J_m) + 4(m-1)$ $< A(J_i, A(J*, \sum (\overline{n})))$ По 10.8 примененной $m-1$ раз $< A(J_i, A(J*+1, \sum (\overline{n})))$ По монотонности $\leqslant A(J_0, A(\max(J_0, J*) + 1, \sum (\overline{n})))$ По монотонности $\leqslant A(\max(J_0, J*) + 1, \sum (\overline{n}) + 1)$ З-е свойство ф-ии Аккермана $= A(\max(J_0, J*) + 2, \sum (\overline{n}))$ По 10.6

Тогда пусть
$$j = max(J_0, J*) + 2$$

2. Пусть
$$f(\overline{n}) = R \langle h, g \rangle (\overline{n})$$
 $f(n_1, \ldots, n_k, 0) = h(n_1, \ldots, n_k)$ $f(n_1, \ldots, n_k, m+1) = g(n_1, \ldots, n_k, m, f(n_1, \ldots, n_k, m))$ По предположению имеем $J_0(h), J_1(g)$. Пусть $J = \max(J_0, J_1) + 4$

(а)
$$f(\overline{n},0)$$
 $\leqslant f(\overline{n},0) + \sum (\overline{n})$ $= h(\overline{n}) + \sum (\overline{n})$ $< A(J_0, \sum (\overline{n})) + \sum (\overline{n})$ $< A(J_0 + 4, \sum (\overline{n}))$ По 10.9 $< A(J, \sum (\overline{n}))$ По монотонности $= A(J, \sum (\overline{n}) + 0)$

$$f(\overline{n},k+1)\\ = g(\overline{n},k,f(\overline{n},k))\\ < A(J_1,\sum(\overline{n})+k+f(\overline{n},k)) & \text{По выбору } J_1\\ < A(J_1,\sum(\overline{n})+k+1+f(\overline{n},k)) & \text{По монотонности}\\ = A(J_1,A(0,\sum(\overline{n})+k)+f(\overline{n},k)) & \text{По 1-му свойству } \Phi\text{-ии Аккермана}\\ < A(J_1,A(0,\sum(\overline{n})+k)+H(J,\sum(\overline{n})+k)) & \text{По предположению}\\ < A(J_1,A(J,\sum(\overline{n})+k)+A(J,\sum(\overline{n})+k)) & \text{По монотонности } (J>0)\\ = A(J_1,2*[A(J,\sum(\overline{n})+k)])\\ < A(J_1,2*[A(J,\sum(\overline{n})+k)]+3)\\ = A(J_1,A(2,A(J,\sum(\overline{n})+k))) & \text{По 10.2}\\ < A(J_1,A(J_1+1,A(J,\sum(\overline{n})+k))) & \text{По строгой монотонности } (J_1>2)\\ = A(J_1+1,A(J,\sum(\overline{n})+k)+1) & \text{По 3-му свойству } \Phi\text{-ии Аккермана}\\ \leqslant A(J_1+2,A(J,\sum(\overline{n})+k)) & \text{По монот. } J>\max(..)+4 \end{cases}$$

По 3-му свойству ф-ии Аккермана, J!=0

Теорема 10.11. Функция Аккермана рекурсивна

 $=A(J, \sum (\overline{n}) + (k+1))$

Доказательство. Можем сказать, что он рекурсивный, потому что мы можем его написать на компьютере, а тьюринг выражается в рекурсивных функциях. \Box