KUSHAL AGARWAL 2201mc22_kushal@iitp.ac.in 6287173664 11-02-24

LAB 4 (TASK 1) - PART I

```
%% Firstly, we created a function LSSNEqn to calculate the Least Square
solution
\mathbf{A} = [10.0, 1; 10.1, 1; 10.2, 1; 10.3, 1; 10.4, 1; 10.5, 1; 10.6, 1; 10.7, 1; 10.8, 1; 10.9, 1; 11.0, 10.7, 10.8, 10.7, 10.8, 10.7, 10.8, 10.7, 10.8, 10.7, 10.8, 10.7, 10.8, 10.7, 10.8, 10.7, 10.8, 10.7, 10.8, 10.7, 10.8, 10.7, 10.8, 10.7, 10.8, 10.7, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10
1];
b=[0.0;0.0;1.0;1.5;2.5;3.5;4.5;5.0;6.5;8.0;10.0];
X=LSSNEqn(A,b);
for i=1:11
                temp(i,1)=A(i,1);
end
disp("A=");
disp(A);
disp("b=");
disp(b);
disp('X=');
disp(X);
for i=1:11
               y(i,1)=X(1,1)*A(i,1)+X(2,1);
end
% Plotting the graph according to the data obained
for i=1:11
               hold on
               plot(A(i,1),b(i,1),'r*');
```

end

plot(temp,y);

hold off

<u>OUTPUT</u>

Α	=

10.0000	1.0000
10.1000	1.0000
10.2000	1.0000
10.3000	1.0000
10.4000	1.0000
10.5000	1.0000
10.6000	1.0000
10.7000	1.0000
10.8000	1.0000
10.9000	1.0000
11.0000	1.0000

b=

0 0 1.0000 1.5000 2.5000

3.5000

4.5000

5.0000

5.0000

6.5000

8.0000

10.0000

X=

9.7727

-98.7500

LAB 4 (TASK 1) - PART II

```
% Gram-Schmidt Method for QR decomposition
\mathbf{A} = [10.0, 1; 10.1, 1; 10.2, 1; 10.3, 1; 10.4, 1; 10.5, 1; 10.6, 1; 10.7, 1; 10.8, 1; 10.9, 1; 11.0, 10.7, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10.8, 10
1];
b=[0.0;0.0;1.0;1.5;2.5;3.5;4.5;5.0;6.5;8.0;10.0];
% Copying the first column of A to temp
for i=1:11
temp(i,1)=A(i,1);
end
 [Q,R]=GramSelf(A);
disp("A=");
disp(A);
disp("b=");
disp(b);
% Solving the linear system using backward substitution
Y=Q.'*b;
%disp(Y);
X=BdSubs(R, Y);
disp('X=');
disp(X);
for i=1:11
y(i,1)=X(1,1)*A(i,1)+X(2,1);
end
% Plotting the graph according to the data obained
for i=1:11
hold on
```

```
plot(A(i,1),b(i,1),'r*');
end
plot(temp,y);
hold off
```


OUTPUT

```
A=
  10.0000
             1.0000
  10.1000
             1.0000
  10.2000
             1.0000
  10.3000
             1.0000
             1.0000
  10.4000
  10.5000
             1.0000
  10.6000
             1.0000
  10.7000
             1.0000
  10.8000
             1.0000
  10.9000
             1.0000
  11.0000
             1.0000
```

b=
0
0
1.0000
1.5000

- 2.5000
- 3.5000
- 4.5000
- 5.0000
- 6.5000
- 8.0000
- 10.0000

X=

- 9.7727
- -98.7500

LAB 4 (TASK 1) - PART III

```
% Given matrix A and vector b
A = [10.0, 1; 10.1, 1; 10.2, 1; 10.3, 1; 10.4, 1; 10.5, 1; 10.6, 1; 10.7, 1;
10.8, 1; 10.9, 1; 11.0, 1];
b = [0.0; 0.0; 1.0; 1.5; 2.5; 3.5; 4.5; 5.0; 6.5; 8.0; 10.0];
% Creating a temporary array to store the first column of A
for i = 1:11
   temp(i, 1) = A(i, 1);
end
% Performing Householder QR decomposition
[Q, R] = HouseSelf(A);
% Displaying Q and R matrices
disp('Q matrix:');
disp(Q);
disp('R matrix:');
disp(R);
\ensuremath{\$} Preparing a temporary matrix for adjusting the size of R
temp3 = [eye(2, 2); zeros(9, 2)];
temp2 = [R(1, 1), R(1, 2); R(2, 1), R(2, 2)];
R = temp2;
% Adjusting the size of Q and R matrices
Q = Q * temp3;
% Solving the linear system using backward substitution
Y = Q.' * b;
X = BdSubs(R, Y);
% Displaying the solution X
disp('Solution (X):');
disp(X);
% Calculating y values for plotting
for i = 1:11
   y(i, 1) = X(1, 1) * A(i, 1) + X(2, 1);
end
```

```
% Plotting the original points and the fitted line
for i = 1:11
   hold on;
   plot(temp(i, 1), b(i, 1), 'r*');
end
plot(temp, y);
hold off;
```


OUTPUT

Q matrix:						
-0.2870	-0.4856	-0.3210	-0.3091	-0.2972	-0.2854	-0.2735
-0.2617	-0.2498	-0.2380	-0.2261			
-0.2899	-0.3903	-0.2568	-0.1578	-0.0587	0.0403	0.1394
0.2385	0.3375	0.4366	0.5356			
-0.2928	-0.2950	0.9004	-0.0830	-0.0664	-0.0498	-0.0333
-0.0167	-0.0001	0.0165	0.0331			
-0.2956	-0.1997	-0.0864	0.9229	-0.0677	-0.0584	-0.0490
-0.0396	-0.0303	-0.0209	-0.0116			
-0.2985	-0.1044	-0.0733	-0.0711	0.9310	-0.0669	-0.0647
-0.0626	-0.0605	-0.0583	-0.0562			
-0.3014	-0.0091	-0.0601	-0.0652	-0.0703	0.9246	-0.0805
-0.0856	-0.0907	-0.0958	-0.1009			
-0.3042	0.0862	-0.0469	-0.0592	-0.0716	-0.0839	0.9038
-0.1085	-0.1209	-0.1332	-0.1455			
-0.3071	0.1815	-0.0337	-0.0533	-0.0728	-0.0924	-0.1119

R matrix:

-34.8404 -3.3151 -0.0000 -0.0998 -0.0000 0 -0.0000 0 -0.0000 0 -0.0000 0 -0.0000 0 -0.0000 0.0000 -0.0000 0 -0.0000 0 0.0000 0

Solution (X):

9.7727

-98.7500

LAB 4 (TASK 1) - PART IV

```
% Given matrix A and vector b
A = [10.0, 1; 10.1, 1; 10.2, 1; 10.3, 1; 10.4, 1; 10.5, 1; 10.6, 1; 10.7, 1;
10.8, 1; 10.9, 1; 11.0, 1];
b = [0.0; 0.0; 1.0; 1.5; 2.5; 3.5; 4.5; 5.0; 6.5; 8.0; 10.0];
% Creating a temporary array to store the first column of A
for i = 1:11
   temp(i, 1) = A(i, 1);
end
% Performing Singular Value Decomposition (SVD) on matrix A
[U, S, V] = svd(A, 0);
% Solving the linear system using SVD
X = V * ((U' * b) ./ diag(S));
% Displaying the solution matrix X
disp('Matrix X is -');
disp(X);
% Calculating y values for plotting
for i = 1:11
   y(i, 1) = X(1, 1) * A(i, 1) + X(2, 1);
end
% Plotting the original points and the fitted line
for i = 1:11
  hold on;
  plot(A(i, 1), b(i, 1), 'r*');
plot(temp, y);
hold off;
OUTPUT
Matrix X is -
   9.7727
 -98.7500
```


LAB 4 (TASK 2) - PART I

```
% Define the matrix A and vector b
A = [10.0*10.0, 10.0, 1; 10.1*10.1, 10.1, 1; 10.2*10.2, 10.2, 1; 10.3*10.3,
10.3, 1; 10.4*10.4, 10.4, 1; 10.5*10.5, 10.5, 1; 10.6*10.6, 10.6, 1;
10.7*10.7, 10.7, 1; 10.8*10.8, 10.8, 1; 10.9*10.9, 10.9, 1; 11.0*11.0, 11.0,
1];
b = [0.0; 0.0; 1.0; 1.5; 2.5; 3.5; 4.5; 5.0; 6.5; 8.0; 10.0];
% Call the LSSNEqn function to solve the system of linear equations
X = LSSNEqn(A, b);
% Creating a vector for the second column of A
for i = 1:11
   temp(i, 1) = A(i, 2);
end
% Display the solution matrix X
disp("Solution matrix x by least square method is ");
disp('X=');
disp(X);
% Calculate y values for plotting
for i = 1:11
   y(i, 1) = X(1, 1) * A(i, 1) + X(2, 1) * A(i, 2) + X(3, 1);
end
% Plotting the original points and the fitted line
for i = 1:11
  hold on
  plot(A(i, 2), b(i, 1), 'r*');
plot(temp, y);
hold off
```

OUTPUT-

```
Solution matrix x by least square method is X=
6.2354
-121.1713
588.0828
```


LAB 4 (TASK 2) - PART II

```
% Define the matrix A and vector b
A = [10.0*10.0, 10.0, 1; 10.1*10.1, 10.1, 1; 10.2*10.2, 10.2, 1; 10.3*10.3,
10.3, 1; 10.4*10.4, 10.4, 1; 10.5*10.5, 10.5, 1; 10.6*10.6, 10.6, 1;
10.7*10.7, 10.7, 1; 10.8*10.8, 10.8, 1; 10.9*10.9, 10.9, 1; 11.0*11.0, 11.0,
1];
b = [0.0; 0.0; 1.0; 1.5; 2.5; 3.5; 4.5; 5.0; 6.5; 8.0; 10.0];
% Creating a vector for the second column of A
for i = 1:11
   temp(i, 1) = A(i, 2);
% Performing QR decomposition using Gram-Schmidt method
[Q, R] = GramSelf(A);
% Displaying Q and R matrices
disp('Q matrix:');
disp(Q);
disp('R matrix:');
disp(R);
% Calculating Y using the transpose of Q and vector b
Y = Q.' * b;
% Displaying the Y vector
disp('Y vector:');
disp(Y);
% Solving the linear system using backward substitution
X = BdSubs(R, Y);
% Displaying the solution vector X
disp('Solution vector X:');
disp(X);
% Calculating y values for plotting
for i = 1:11
  y(i, 1) = X(1, 1) * A(i, 1) + X(2, 1) * A(i, 2) + X(3, 1);
% Plotting the original points and the fitted line
for i = 1:11
  hold on
```

```
plot(A(i, 2), b(i, 1), 'r*');
end
plot(temp, y);
hold off;
```

OUTPUT-

```
0 matrix:
   0.2727
             0.4802
                      0.5248
   0.2782
             0.3932
                      0.2152
   0.2838
             0.3044
                     -0.0263
   0.2893
             0.2138
                     -0.1994
   0.2950
             0.1214
                     -0.3044
   0.3007
            0.0272
                     -0.3410
                     -0.3094
   0.3064
           -0.0689
   0.3123
           -0.1667
                     -0.2096
   0.3181
            -0.2664
                     -0.0415
   0.3240 -0.3679
                     0.1949
           -0.4712
                      0.4995
   0.3300
R matrix:
  366.6518
           34.8247
                      3.3106
            1.0454
                      0.1992
        0
        0
                  0
                      0.0027
Y vector:
  13.4083
  -9.5064
   1.5633
Solution vector X:
   6.2354
 -121.1713
  588.0828
```


LAB 4 (TASK 2) - PART III

```
% Define the matrix A and vector b
A = [10.0*10.0, 10.0, 1; 10.1*10.1, 10.1, 1; 10.2*10.2, 10.2, 1; 10.3*10.3,
10.3, 1; 10.4*10.4, 10.4, 1; 10.5*10.5, 10.5, 1; 10.6*10.6, 10.6, 1;
10.7*10.7, 10.7, 1; 10.8*10.8, 10.8, 1; 10.9*10.9, 10.9, 1; 11.0*11.0, 11.0,
1];
b = [0.0; 0.0; 1.0; 1.5; 2.5; 3.5; 4.5; 5.0; 6.5; 8.0; 10.0];
% Creating a vector for the second column of A
for i = 1:11
   temp(i, 1) = A(i, 2);
% Save the original matrix A in 'flag' for later use in calculations
flag = A;
% Performing Householder QR decomposition
[Q, R] = HouseSelf(A);
% Creating a temporary matrix for adjusting the size of R
temp3 = [eye(3, 3); zeros(8, 3)];
temp2 = [R(1, 1), R(1, 2), R(1, 3); R(2, 1), R(2, 2), R(2, 3); R(3, 1), R(3, 1)]
2), R(3, 3)];
R = temp2;
% Adjusting the size of Q and R matrices
Q = Q * temp3;
% Calculating Y using the transpose of Q and vector b
Y = Q.' * b;
% Solving the linear system using backward substitution
X = BdSubs(R, Y);
% Displaying the solution vector X
disp('Solution vector X:');
disp(X);
% Calculating y values for plotting
for i = 1:11
   y(i, 1) = X(1, 1) * flag(i, 1) + X(2, 1) * flag(i, 2) + X(3, 1);
% Plotting the original points and the fitted line
for i = 1:11
```

```
hold on
   plot(flag(i, 2), b(i, 1), 'r*');
end
plot(temp, y);
hold off;

OUTPUT-
Solution vector X:
   6.2354
-121.1713
588.0828
```


LAB 4 (TASK 2) - PART IV

```
% Define the matrix A and vector b
A = [10.0*10.0, 10.0, 1; 10.1*10.1, 10.1, 1; 10.2*10.2, 10.2, 1; 10.3*10.3,
10.3, 1; 10.4*10.4, 10.4, 1; 10.5*10.5, 10.5, 1; 10.6*10.6, 10.6, 1;
10.7*10.7, 10.7, 1; 10.8*10.8, 10.8, 1; 10.9*10.9, 10.9, 1; 11.0*11.0, 11.0,
1];
b = [0.0; 0.0; 1.0; 1.5; 2.5; 3.5; 4.5; 5.0; 6.5; 8.0; 10.0];
% Creating a vector for the second column of A
for i = 1:11
   temp(i, 1) = A(i, 2);
% Performing Singular Value Decomposition (SVD) on matrix A
[U, S, V] = svd(A, 0);
% Solving the linear system using SVD
X = V * ((U' * b) ./ diag(S));
% Displaying the solution vector X
disp('Solution vector X:');
disp(X);
% Calculating y values for plotting
for i = 1:11
   y(i, 1) = X(1, 1) * A(i, 1) + X(2, 1) * A(i, 2) + X(3, 1);
end
% Plotting the original points and the fitted line
for i = 1:11
  hold on
  plot(A(i, 2), b(i, 1), 'r*');
end
plot(temp, y);
hold off;
OUTPUT-
Solution vector X:
   6.2354
-121.1713
 588.0828
```

