

Chapter 02 Flowchart of Panorama Stitching (Theme 1)

Lin ZHANG
School of Computer Science and Technology
Tongji University

Problem definition of panorama stitching

Panorama stitching is the process of combining multiple photographic images with overlapping fields of view to produce a panorama or a high-resolution image

Let's see an example

Panorama stitching result using the techniques introduced in this course

Problem definition of panorama stitching

- In this course, when we combine two images I_1 and I_2 , actually we have some assumptions about I_1 and I_2 to make sure that they can be stitched theoretically
 - $-I_1$ and I_2 should have common-view areas
 - The physical planes they imaged are coplanar
 - The two cameras do not have lens distortions

Implying that the two images can be linked via a linear geometric transformation, i.e.,

 $\exists H, \ \forall x \in I_1, x' \in I_2, \ \text{if } x \ \text{and } x' \ \text{is a correspondence pair, then, } x' = Hx$

So the core problem for panorama stitching is to find such an H

Problem definition of panorama stitching

Corresponding points can be linked via a unique linear geometric transformation *H*

H-1

How to achieve panorama stitching?

A toy example

Can you imagine how to stitch I_1 and I_2 together manually?

By computerizing the manual process, we can get the algorithms to fulfill this task

How to achieve panorama stitching?

- ✓ Identify the key points on I_1 and I_2
- ✓ Build descriptors for all the key points
- ✓ Matching key points to get the correspondence pairs $S = \{x_i \leftrightarrow x_i'\}_{i=1}^p$ where $x_i \leftrightarrow x_i'$ means that the point x_i from I_1 and the point x_i' from I_2 matches, and p is the number of correspondence pairs
- ✓ Based on S, solve H that can (roughly) map each x_i to x_i . At this step, we need to consider the imperfectness of S, i.e., some correspondence pairs in S may be **outliers**
- ✓ Apply H to I_1 to align it with I_2 ; this step needs to use **image interpolation** techniques

- ✓ Chapter 3 will introduce details about linear geometric transformation
- ✓ Chapter 4 will discuss key point detection and matching
- \checkmark To solve H from the correspondence pairs is a linear least-squares problem, which will be discussed in Chapter 5
- ✓ RANSAC is a universal framework to estimate model from observations with outliers, which will be introduced in Chapter 6; also, the bilinear interpolation technique will be introduced there

