第七次课后作业参考答案

May 09. 2018

必做题

1 Ex.4.4.2

a)画出这个自动机的可区分性表

	4/四日之十日为70日37日为日次								
解答:									
В	×								
С	×	×							
D		×	×						
E	×		×	×					
F	×	×		×	×				
G		×	×		×	×			
Η	×		×	×		×	×		
I	×	×		×	×		×	×	
	A	В	С	D	Е	F	G	Н	
U.(+ D @) (D D T) (@ D D D & // 3									

故 $\{A, D, G\}, \{B, E, H\}, \{C, F, I\}$ 是等价对。

b)构造最小状态的等价DFA

解答:

	0	1
$\rightarrow \{A, D, G\}$	$\{B, E, H\}$	$\{B, E, H\}$
$\{B, E, H\}$	$\{C, F, I\}$	$\{C, F, I\}$
$*\{C,F,I\}$	$\{A,D,G\}$	$\{B, E, H\}$

2 Ex.5.1.1

c)所有不是ww形式的由a和b构成的串的集合,即不是把某个串重复一遍的串解答:

 $S \rightarrow Y|Z|YZ|ZY$

 $Y \rightarrow a|bYb|bYa|aYb|aYa$

 $Z \rightarrow b|bZb|bZa|aZb|aZa$

3 Ex.5.1.2

c)00011

解答:

最左推导: $S \Rightarrow A1B \Rightarrow 0A1B \Rightarrow 00A1B \Rightarrow 000A1B \Rightarrow 0001B \Rightarrow 00011B \Rightarrow 00011$ 最右推导: $S \Rightarrow A1B \Rightarrow A11B \Rightarrow A11 \Rightarrow 0A11 \Rightarrow 00A11 \Rightarrow 000A11 \Rightarrow 00011$

4 Ex.5.1.5

解答:

设计CFG:

 $G = (V, T, S, P), V = \{S\}, T = \{0, 1, (,), +, *, \phi, e\}, S = \{S\}, P$ 规则如下: $S \to \phi |e|S + S|SS|S^*|(S)|0|1$

5 Ex.5.1.6

b)如果有 $\alpha \stackrel{*}{\Rightarrow} \beta \pi \beta \stackrel{*}{\Rightarrow} \gamma$,那么就有 $\alpha \stackrel{*}{\Rightarrow} \gamma$ 。

证明:

当推导 $\beta \stackrel{*}{\Rightarrow} \gamma$ 是一步的,即 $\beta \Rightarrow \gamma$,由 $\alpha \stackrel{*}{\Rightarrow} \beta$, $\beta \Rightarrow \gamma$ 可得 $\alpha \stackrel{*}{\Rightarrow} \gamma$ 当推导 $\beta \stackrel{*}{\Rightarrow} \gamma$ 是n步的时,如果由 $\alpha \stackrel{*}{\Rightarrow} \beta \pi \beta \stackrel{*}{\Rightarrow} \gamma$,可以得出 $\alpha \stackrel{*}{\Rightarrow} \gamma$ 。则对于 $\beta' \stackrel{*}{\Rightarrow} \gamma$ 是n+1步推导时,有 $\beta' \stackrel{*}{\Rightarrow} u$ 和 $u \Rightarrow \gamma$,其中 $\beta' \stackrel{*}{\Rightarrow} u$ 是n步推导。则由 $\alpha \stackrel{*}{\Rightarrow} \beta' \pi \beta' \stackrel{*}{\Rightarrow} u$,可知 $\alpha \stackrel{*}{\Rightarrow} u$ 。

由此可以归纳得任意 $\alpha \stackrel{*}{\Rightarrow} \beta \pi \beta \stackrel{*}{\Rightarrow} \gamma$,均有 $\alpha \stackrel{*}{\Rightarrow} \gamma$ 。

6 Ex.5.2.1

a)00101

b)1001

c)00011

思考题

7 Ex.5.1.1

d)所有0的个数是1的个数两倍的串的集合解答:

 $S \rightarrow S0S0S1S|S0S1S0S|S1S0S0S|\epsilon$

8 Ex.5.1.3

证明:

只需证明对任意的正则表达式R,存在一个CFG G使得L(R) = L(G)。对正则表达式R使用结构归纳法。

对于任意字母表 Σ 上的正则表达式 $R=\varepsilon$,存在CFG $G=(\{S\},\Sigma,\{S\to\varepsilon\},S)$ 满足 $L(R)=L(G)=\{\varepsilon\}$ 。

对于任意字母表 Σ 上的正则表达式 $R=\emptyset$,存在CFG $G=(\{S\},\Sigma,\emptyset,S)$ 满足 $L(R)=L(G)=\emptyset$ 。

对于任意字母表 Σ 上的正则表达式 $R=a(a\in\Sigma)$,存在CFG $G=(\{S\},\Sigma,\{S\to a\},S)$ 满足L(R)=L(G)=a。

假设对任意字母表 Σ 上的某些正则表达式 R_1 和 R_2 ,分别存在一个CFG $G_1 = (V_1, \Sigma, P_1, S_1)$ 和 $G_2 = (V_2, \Sigma, P_2, S_2)$ 使得 $L(R_1) = L(G_1)$, $L(R_2) = L(G_2)$ 。不妨假设 $V_1 \cap V_2 = \emptyset$ 。

- (1)对于正则表达式 (R_1) ,有 $L((R_1))=L(R_1)$ 。构造CFG $G=(V_1,\Sigma,P,S)$ 。产生式集合P除了包含 P_1 中的所有产生式外,还包含产生式: $S\to(S_1)$ 。因此存在G满足 $L((R_1))=L(G)$ 。
- (2)对于正则表达式 R_1^* ,构造CFG $G = (V_1, \Sigma, P, S_1)$ 。产生式集合P除了包含 P_1 中的所有产生式外,还包含产生式: $S \to S_1S_2|\varepsilon$ 。因此存在G满足 $L(R_1^*) = L(G)$ 。
- (3)对于正则表达式 R_1+R_2 ,构造CFG $G=(V,\Sigma,P,S)$,其中 $V=V_1\cup V_2\cup S$ 。产生式集合P除了包含 P_1 和 P_2 中的所有产生式外,还包含产生式: $S\to S_1|S_2$ 。因此存在G满足 $L(R_1+R_2)=L(G)$ 。
- (4)对于正则表达式 R_1R_2 ,构造CFG $G=(V,\Sigma,P,S)$,其中 $V=V_1\cup V_2\cup S$ 。产生式集合P除了包含 P_1 和 P_2 中的所有产生式外,还包含产生式: $S\to S_1S_2$ 。因此存在G满足 $L(R_1+R_2)=L(G)$ 。

综上,原命题得证。

9 Ex.5.2.2

证明:

设G = (V, T, P, S)。为了证明题中的结论,首先证明对任意的 $w \in T^*$,若 $S \stackrel{*}{\Rightarrow} w$,|w| = n且推导步数为m,则w的语法分析树含有n + m个节点。对m使用数学归纳法。

当m=1时,w只能经历一步推导 $S\to T'$,其中 $T'\in T^*\wedge |T'|=n$,因此|w|=n。此时w的语法分析树的根结点为S,S的子节点从左至右依次为w中的每一个符号,语法分析树的结点个数恰为1+n=n+m,命题得证。

假设当m=k时命题成立,即当 $S \stackrel{*}{\Rightarrow} w$ 经过k步推导得到时,w的语法分析树共有n+k个节点。则当m=k+1时,设 $S \stackrel{*}{\Rightarrow} w$ 的最后一步推导使用了产生式 $X \to w_0$,其中 $w_0 \in T^*$.由已知条件知 $w_0 \neq \varepsilon$ 。设 $|w_0| = p$,则p>0。w可拆分为 $w_1w_0w_2$,因此 $S \stackrel{*}{\Rightarrow} w_1Xw_2$ 经过k步推导得到,且 $|w_1Xw_2| = n-p+1$ 。由归纳假设, w_1Xw_2 的语法分析树共有n-p+1+k个节点。在w的最后一步推导中, w_1Xw_2 的语法分析树中的X被替换为以其自身为根节点的一棵子树。由 $w_0 \neq \varepsilon$ 知X的子节点从左至右依次为 w_0 中的每一个符号。因此w的语法分析树的节点个数为(n-p+1+k)+p=n+(k+1),即当m=k+1时命题成立。

综上,原命题得证。