Lecture Notes 09: Nonlinear Equations in One Variable

CPSC 302: Numerical Computation for Algebraic Problems

Jessica Bosch
 jbosch@cs.ubc.ca
http://www.cs.ubc.ca/~jbosch

University of British Columbia Department of Computer Science

2017/2018 Winter Term 1

Outline

1. Fixed Point Iteration

Family of One-Step Methods Theory Convergence

Fixed Point Iteration

This is an intuitively appealing approach which often leads to simple algorithms for complicated problems.

1. Write given problem

$$f(x) = 0$$

as

$$g(x) = x$$

so that $f(x^*) = 0$ iff $g(x^*) = x^*$.

2. Iterate:

$$x_{k+1} = g(x_k), \quad k = 0, 1, \dots,$$

starting with guess x_0 .

It's all in the choice of the function g.

Choosing the Function g

- Note: there are many possible choices g for the given f: this is a family of methods.
- Examples:

```
g(x) = x - f(x),

g(x) = x + 2f(x),

g(x) = x - f(x)/f'(x) (assuming f' exists and f'(x) \neq 0).
```

The first two choices are simple, the last one has potential to yield fast convergence (we'll see later).

- Want resulting method to
 - be simple;
 - converge; and
 - do it rapidly.

Graphical Illustration, $x = e^{-x}$, Starting from $x_0 = 1$

Fixed Point Theorem

Existence:

If $g \in C[a,b]$, $g(a) \ge a$ and $g(b) \le b$, then there is a fixed point x^* in the interval [a,b].

Uniqueness:

If, in addition, the derivative g' exists and there is a constant $\rho < 1$ such that the derivative satisfies

$$|g'(x)| \le \rho \quad \forall \ x \in (a, b),$$

then the fixed point x^* is unique in this interval.

Convergence of Fixed Point Iteration

• Assuming $\rho < 1$ as for the fixed point theorem, obtain

$$|x_{k+1} - x^*| = |g(x_k) - g(x^*)| \le \rho |x_k - x^*|.$$

- This is a **contraction** by factor ρ .
- So

$$|x_{k+1} - x^*| \le \rho |x_k - x^*| \le \rho^2 |x_{k-1} - x^*| \le \dots \le \rho^{k+1} |x_0 - x^*| \to 0.$$

• The smaller ρ the faster convergence is.

Example: Cosh with Two Roots

$$f(x) = g(x) - x, \quad g(x) = 2\cosh(x/4)$$

Fixed Point Iteration with g

For absolute error tolerance 10^{-8} :

- Starting at $x_0 = 2$ converge to x_1^* in 16 iterations.
- Starting at $x_0 = 4$ converge to x_1^* in 18 iterations.
- Starting at $x_0 = 8$ converge to x_1^* (even though x_2^* is closer to x_0).
- Starting at $x_0 = 10$ obtain **overflow** in 3 iterations.

Note: bisection yields both roots in 27 iterations.

Rate of Convergence

- Suppose we want $|x_k x^*| \approx 0.1 |x_0 x^*|$.
- Since $|x_k x^*| \le \rho^k |x_0 x^*|$, want

$$\rho^k \approx 0.1$$
,

i.e.,
$$k \log_{10} \rho \approx -1$$
.

Define the rate of convergence as

$$rate = -\log_{10} \rho$$
.

• Then it takes about $k = \lceil 1/rate \rceil$ iterations to reduce the error by more than an order of magnitude.

Return to Cosh Example

- Bisection: $rate = -\log_{10} 0.5 \approx 0.3 \implies k = 4$.
- For the root x_1^* of fixed point example, $\rho \approx 0.31$ so

$$rate = -\log_{10} 0.31 \approx 0.5 \implies k = 2.$$

• For the root x_2^* of fixed point example, $\rho > 1$ so

$$rate = -\log_{10}(\rho) < 0 \implies \text{no convergence.}$$