A new algorithm for the effective Deuring correspondence: making SQISign faster.

Antonin Leroux, joint work with Luca De Feo, Patrick Longa, Benjamin Wesolowski

Isogeny Club, October 25, 2022

DGA, France

The supersingular 2-isogeny graph in char. *p*.

Credits to Luca De Feo and Cmglee

The supersingular 2-isogeny graph in char. *p*.

2-Ideal graph in quaternion algebra ramified at p and ∞ .

Credits to Luca De Feo and Cmglee

The supersingular 2-isogeny graph in char. *p*.

2-Ideal graph in quaternion algebra ramified at p and ∞ .

Credits to Luca De Feo and Cmglee

The rest of this talk

The plan:

- Introduction to the Deuring correspondence
- Algorithmic aspects: theory.
- Algorithm aspects: practice, the ideal to isogeny translation.
- Application to SQISign.

Mathematical Background

Quaternion algebra definitions

The quaternion algebra $\mathcal{B}(a,b)$ over $\mathbb Q$ with $a,b\in\mathbb Z$ is

$$\mathcal{B}(a,b) = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + k\mathbb{Q}$$

with
$$i^2 = a$$
, $j^2 = b$ and $k = ij = -ji$.

Quaternion algebra definitions

The quaternion algebra $\mathcal{B}(a,b)$ over $\mathbb Q$ with $a,b\in\mathbb Z$ is

$$\mathcal{B}(a,b) = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + k\mathbb{Q}$$

with $i^2 = a$, $j^2 = b$ and k = ij = -ji.

An **order** \mathcal{O} is a \mathbb{Z} -lattice of rank 4 inside $\mathcal{B}(a,b)$ which is also a ring, it is **maximal** when not contained in another order.

Quaternion algebra definitions

The quaternion algebra $\mathcal{B}(a,b)$ over \mathbb{Q} with $a,b\in\mathbb{Z}$ is

$$\mathcal{B}(a,b) = \mathbb{Q} + i\mathbb{Q} + j\mathbb{Q} + k\mathbb{Q}$$

with $i^2 = a$, $j^2 = b$ and k = ij = -ji.

An **order** \mathcal{O} is a \mathbb{Z} -lattice of rank 4 inside $\mathcal{B}(a,b)$ which is also a ring, it is **maximal** when not contained in another order.

Orders are rings: so we have ideals. In a non-commutative algebra, ideals have distinct left and right orders.

There is $n: \mathcal{B}(a,b) \to \mathbb{Q}$, and the norm is integral over orders, so we can define **ideal norm** as $\{\gcd(n(\alpha)), \alpha \in I\}$.

Elliptic Curve over \mathbb{F}_{p^k} :

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}_{p^k}$

Elliptic Curve over \mathbb{F}_{p^k} :

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}_{p^k}$

Isogeny: rational map between elliptic curves.

When separable, the **degree** is $deg(\varphi) = \# ker(\varphi)$.

4

Elliptic Curve over \mathbb{F}_{p^k} :

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}_{p^k}$

Isogeny: rational map between elliptic curves.

When separable, the **degree** is $deg(\varphi) = \# ker(\varphi)$.

The Vélu formulas (1971) are used to compute an isogeny from its kernel.

Can make it efficient when $\deg \varphi$ is smooth by factoring the isogeny.

Elliptic Curve over \mathbb{F}_{p^k} :

$$y^2 = x^3 + ax + b$$
, $a, b \in \mathbb{F}_{p^k}$

Isogeny: rational map between elliptic curves.

When separable, the **degree** is $deg(\varphi) = \# ker(\varphi)$.

The Vélu formulas (1971) are used to compute an isogeny from its kernel.

Can make it efficient when $\deg \varphi$ is smooth by factoring the isogeny.

An **endomorphism** is an isogeny $\varphi : E \to E$. **End(E)** is a ring.

Supersingular curves \Leftrightarrow End(E) is a max. order in a quaternion algebra.

p : prime characteristic, $\mathcal{B}(-q,-p)$ where q>0 depends only on p.

Supersingular elliptic curves over \mathbb{F}_{p^2}	Maximal Orders in $\mathcal{B}(-q,-p)$
<i>E</i> (up to Galois conjugacy)	$\mathcal{O}\congEnd(\cline{E})$
Isogeny with $\varphi: E \to E_1$	Ideal I_{φ} left \mathcal{O} -ideal
Degree $\deg(\varphi)$	Norm $n(I_{\varphi})$

p : prime characteristic, $\mathcal{B}(-q,-p)$ where q>0 depends only on p.

Supersingular elliptic curves over \mathbb{F}_{p^2}	Maximal Orders in $\mathcal{B}(-q,-p)$
<i>E</i> (up to Galois conjugacy)	$\mathcal{O}\congEnd(E)$
Isogeny with $\varphi: E \to E_1$	Ideal I_{φ} left \mathcal{O} -ideal
Degree $\deg(\varphi)$	Norm $n(I_{\varphi})$

Example: $p \equiv 3 \mod 4$, q = 1.

p: prime characteristic, $\mathcal{B}(-q,-p)$ where q>0 depends only on p.

Supersingular elliptic curves over \mathbb{F}_{p^2}	Maximal Orders in $\mathcal{B}(-q,-p)$
<i>E</i> (up to Galois conjugacy)	$\mathcal{O}\congEnd(\cline{E})$
Isogeny with $\varphi: E \to E_1$	Ideal I_{φ} left \mathcal{O} -ideal
Degree $\deg(\varphi)$	Norm $n(I_{\varphi})$

Example: $p \equiv 3 \mod 4$, q = 1.

$$E_0: y^2 = x^3 + x$$

p: prime characteristic, $\mathcal{B}(-q,-p)$ where q>0 depends only on p.

Supersingular elliptic curves over \mathbb{F}_{p^2}	Maximal Orders in $\mathcal{B}(-q,-p)$
<i>E</i> (up to Galois conjugacy)	$\mathcal{O}\congEnd(E)$
Isogeny with $\varphi: E \to E_1$	Ideal I_{φ} left \mathcal{O} -ideal
Degree $\deg(\varphi)$	Norm $n(I_{\varphi})$

Example: $p \equiv 3 \mod 4$, q = 1.

$$E_0: y^2 = x^3 + x$$

$$\operatorname{End}(E_0) = \langle 1, \iota, \frac{\iota + \pi}{2}, \frac{1 + \iota \pi}{2} \rangle \cong \langle 1, i, \frac{i + j}{2}, \frac{1 + k}{2} \rangle$$

 $\pi:(x,y)\mapsto (x^p,y^p)$ is the Frobenius morphism with $\pi\circ\pi=[-p].$

 $\iota:(x,y)\mapsto (-x,\sqrt{-1}y)$ is a twisting automorphism with $\iota\circ\iota=[-1].$

Kernel ideals

Let $\varphi: E \to E'$ be an isogeny of degree D. The kernel ideal I_φ of I is defined as

$$I_{\varphi} = \{ \alpha \in \operatorname{End}(E), \alpha(\ker \varphi) = 0 \}.$$

Alternatively, we have

$$I_{\varphi} = \operatorname{Hom}(E', E)\varphi.$$

Kernel ideals

Let $\varphi: E \to E'$ be an isogeny of degree D. The kernel ideal I_{φ} of I is defined as

$$I_{\varphi} = \{ \alpha \in \operatorname{End}(E), \alpha(\ker \varphi) = 0 \}.$$

Alternatively, we have

$$I_{\varphi} = \operatorname{Hom}(E', E)\varphi.$$

Conversely, the kernel of an \mathcal{O} -ideal I (for $\mathcal{O} \cong \operatorname{End}(E)$)

$$E[I] = \{P, \alpha(P) = 0 \text{ for all } \alpha \in I\} = \bigcap_{\alpha \in I} \ker \alpha.$$

We define $\varphi_I : E \to E/E[I]$.

6

A new hard problem?

Supersingular ℓ -Isogeny Problem: Given a prime p and two supersingular curves E_1 and E_2 over \mathbb{F}_{p^2} , compute an ℓ^e -isogeny $\varphi: E_1 \to E_2$ for $e \in \mathbb{N}^*$.

Quaternion ℓ -Isogeny Path Problem: Given a prime number p, two maximal orders $\mathcal{O}_1, \mathcal{O}_2$ of $\mathcal{B}(-q,-p)$, find an ideal J of norm ℓ^e for $e \in \mathbb{N}^*$ with $\mathcal{O}_L(J) \cong \mathcal{O}_1, \ \mathcal{O}_R(J) \cong \mathcal{O}_2$.

A new hard problem?

Supersingular ℓ -Isogeny Problem: Given a prime p and two supersingular curves E_1 and E_2 over \mathbb{F}_{p^2} , compute an ℓ^e -isogeny $\varphi: E_1 \to E_2$ for $e \in \mathbb{N}^*$.

Quaternion ℓ -Isogeny Path Problem: Given a prime number p, two maximal orders $\mathcal{O}_1, \mathcal{O}_2$ of $\mathcal{B}(-q,-p)$, find an ideal J of norm ℓ^e for $e \in \mathbb{N}^*$ with $\mathcal{O}_L(J) \cong \mathcal{O}_1, \ \mathcal{O}_R(J) \cong \mathcal{O}_2$.

Kohel, Lauter, Petit, and Tignol (2014): heuristic *polynomial-time* algorithm KLPT for quaternion path problem.

Complexity proven under GRH by Wesolowski (2022).

A new hard problem?

Supersingular ℓ -Isogeny Problem: Given a prime p and two supersingular curves E_1 and E_2 over \mathbb{F}_{p^2} , compute an ℓ^e -isogeny $\varphi: E_1 \to E_2$ for $e \in \mathbb{N}^*$.

Endomorphism ring problem

Quaternion ℓ -Isogeny Path Problem: Given a prime number p, two maximal orders $\mathcal{O}_1, \mathcal{O}_2$ of $\mathcal{B}(-q, -p)$, find an ideal J of norm ℓ^e for $e \in \mathbb{N}^*$ with $\mathcal{O}_L(J) \cong \mathcal{O}_1, \mathcal{O}_R(J) \cong \mathcal{O}_2$.

Kohel, Lauter, Petit, and Tignol (2014): heuristic *polynomial-time* algorithm KLPT for quaternion path problem.

Complexity proven under GRH by Wesolowski (2022).

Problems with ✗ are hard, ✓ are easy. All ✓ are obtained using KLPT.

Problems with ✗ are hard, ✓ are easy. All ✓ are obtained using KLPT.

$$E_1, E_2 \rightarrow \varphi$$

$$\mathcal{O}_1,\mathcal{O}_2 o I$$

Problems with ✗ are hard, ✓ are easy. All ✓ are obtained using KLPT.

$$E_1, E_2 o \varphi$$
 X

$$E_1, E_2 \rightarrow \varphi$$
 X $\mathcal{O}_1, \mathcal{O}_2 \rightarrow I$ V

Problems with ✗ are hard, ✓ are easy. All ✓ are obtained using KLPT.

$$E \rightarrow \mathcal{O}$$

$$\mathcal{O} o E$$

$$E_1, E_2 o \varphi$$

$$E_1, E_2
ightarrow arphi$$
 $\mathcal{O}_1, \mathcal{O}_2
ightarrow I$ \checkmark

Endomorphism Ring Problem: Given a supersingular elliptic curve E over \mathbb{F}_{p^2} , compute its endomorphism ring.

Problems with X are hard, ✓ are easy. All ✓ are obtained using KLPT.

$$egin{aligned} E &
ightarrow \mathcal{O} & \qquad \mathcal{O}
ightarrow E \ & & \qquad \mathcal{O}
ightarrow F \ & \qquad \mathcal{O}_{1}, \mathcal{O}_{2}
ightarrow I \quad \checkmark \end{aligned}$$

Endomorphism Ring Problem: Given a supersingular elliptic curve E over \mathbb{F}_{p^2} , compute its endomorphism ring.

Problems with ✗ are hard, ✓ are easy. All ✓ are obtained using KLPT.

[EHLMP18; W22]: use KLPT to prove *polynomial-time* reduction from supersingular ℓ-isogeny problem to:

Endomorphism Ring Problem: Given a supersingular elliptic curve E over \mathbb{F}_{p^2} , compute its endomorphism ring.

Ideal to isogeny: theory vs practice.

Ideal to isogeny translation

Input: A supersingular curve E, a maximal order \mathcal{O} with $\mathcal{O} \cong \operatorname{End}(E)$, and an \mathcal{O} -ideal I of norm D (both given as 16 coefficients over $\mathcal{B}(-q,-p)$).

Output: The isogeny $\varphi_I : E \to E_I$.

Poly-time in theory when *D* is smooth...

Ideal to isogeny: theory vs practice.

Ideal to isogeny translation

Input: A supersingular curve E, a maximal order \mathcal{O} with $\mathcal{O} \cong \operatorname{End}(E)$, and an \mathcal{O} -ideal I of norm D (both given as 16 coefficients over $\mathcal{B}(-q,-p)$).

Output: The isogeny $\varphi_I : E \to E_I$.

Poly-time in theory when *D* is smooth...

Motivation: make the computation efficient in practice for a big smooth degree D (application to SQISign).

Effective ideal to isogeny: the solution from Galbraith, Petit and Silva

Ideal to isogeny translation

Input: A supersingular *curve* E, a *maximal order* \mathcal{O} with $\mathcal{O} \cong \operatorname{End}(E)$, and an \mathcal{O} -ideal I of norm D (both given as 16 coefficients over $\mathcal{B}(-q,-p)$).

Output: The isogeny $\varphi_I : E \to E_I$.

Effective ideal to isogeny: the solution from Galbraith, Petit and Silva

Ideal to isogeny translation

Input: A supersingular *curve* E, a *maximal order* \mathcal{O} with $\mathcal{O} \cong \operatorname{End}(E)$, and an \mathcal{O} -ideal I of norm D (both given as 16 coefficients over $\mathcal{B}(-q,-p)$).

Output: The isogeny $\varphi_I : E \to E_I$.

An algorithm from Galbraith, Petit and Silva [GPS17]:

- 1. Evaluate the elements of $I \hookrightarrow End(E)$ on the *D*-torsion.
- 2. Find the common kernel E[I] (DLP computations)
- 3. Compute φ_I from $\ker \varphi_I = G$.

Complexity: polynomial in some nice cases...

Generalizing the approach

Ideal to isogeny translation

Input: A supersingular curve E, a maximal order \mathcal{O} with $\mathcal{O} \cong \operatorname{End}(E)$, and an \mathcal{O} -ideal I of norm D (both given as 16 coefficients over $\mathcal{B}(-q,-p)$).

Output: The isogeny $\varphi_I : E \to E_I$.

Two main obstacles for an efficient generic solution:

- 1. The field of definition of the kernel might be very big.
- 2. No nice formula to evaluate the elements of $\operatorname{End}(E)$ when represented as elements in $\mathcal{B}(-q,-p)$ in general.

Generalizing the approach

Ideal to isogeny translation

Input: A supersingular *curve* E, a *maximal order* \mathcal{O} with $\mathcal{O} \cong \operatorname{End}(E)$, and an \mathcal{O} -ideal I of norm D (both given as 16 coefficients over $\mathcal{B}(-q,-p)$).

Output: The isogeny $\varphi_I : E \to E_I$.

Two main obstacles for an efficient generic solution:

- 1. The field of definition of the kernel might be very big.
- 2. No nice formula to evaluate the elements of End(E) when represented as elements in $\mathcal{B}(-q,-p)$ in general.

For 1: Factor φ_I and apply the algorithm on the factor isogenies of small degrees. This means several intermediate curves: we really need to find a solution to 2.

For 2...

Evaluating the elements of an arbitrary endo. ring: a first approach

```
\mathcal{O} \cong \operatorname{End}(E), a point P \longrightarrow \alpha(P) for some \alpha \in \operatorname{End}(E).
```

[FKLPW20]: any $\alpha \in End(E)$.

Idea: use a nice curve E_0 where we can evaluate endomorphisms.

Evaluating the elements of an arbitrary endo. ring: a first approach

$$\mathcal{O}\cong \operatorname{End}(E)$$
, a point $P\longrightarrow \alpha(P)$ for some $\alpha\in\operatorname{End}(E)$.

[FKLPW20]: any $\alpha \in \text{End}(E)$.

Idea: use a nice curve E_0 where we can evaluate endomorphisms.

$$\alpha = \frac{1}{[\deg \psi]} \psi \circ \alpha_0 \circ \hat{\psi}$$

$$\alpha_0 \xrightarrow{E_0 \longleftrightarrow \hat{\psi}} E$$

Evaluating the elements of an arbitrary endo. ring: a first approach

$$\mathcal{O} \cong \operatorname{End}(E)$$
, a point $P \longrightarrow \alpha(P)$ for some $\alpha \in \operatorname{End}(E)$.

[FKLPW20]: any $\alpha \in \text{End}(E)$.

Idea: use a nice curve E_0 where we can evaluate endomorphisms.

$$\alpha = \frac{1}{[\deg \psi]} \psi \circ \alpha_0 \circ \hat{\psi}$$

$$\alpha_0 \xrightarrow{E_0 \longleftrightarrow \hat{\psi}} E$$

- 1. Compute $\psi: E_0 \to E$ with KLPT and the algorithm from [GPS17] (need $T = \deg \psi$ coprime to D!).
- 2. Express α from ψ and some $\alpha_0 \in \text{End}(E_0)$ (Iollipop endomorphism).
- 3. Evaluate ψ , α_0 to derive $\alpha(P)$.

Evaluating the elements of an arbitrary endo. ring: improvement.

$$\mathcal{O} \cong \operatorname{End}(E)$$
, a point $P \longrightarrow \alpha(P)$ for some $\alpha \in \operatorname{End}(E)$.

[FLLW22]: we can restrict to α of smooth norm T coprime with D. **Idea:** if α is in the Eichler order $\operatorname{End}(E_0) \cap \operatorname{End}(E)$, we will first find the version of $\alpha \in \operatorname{End}(E_0)$ and then use an isogeny $\varphi : E_0 \to E$ to compute the version in $\operatorname{End}(E)$. If $n(\alpha)$ is coprime with D, φ can be the isogeny we are translating!

- 1. Compute $\alpha \in \mathcal{B}(-p,-q)$ of smooth norm in $\operatorname{End}(E_0) \cap \operatorname{End}(E)$.
- 2. Compute α as an isogeny in End(E_0) from its kernel.
- 3. Compute α as an isogeny in End(E) from its kernel with $\varphi: E_0 \to E$.
- 4. Evaluate $\alpha(P)$.

Goal of KLPT: find an ideal of smooth norm connecting two maximal orders $\mathcal{O}_1, \mathcal{O}_2$. Takes another connecting ideal I in input.

Goal of KLPT: find an ideal of smooth norm connecting two maximal orders $\mathcal{O}_1, \mathcal{O}_2$. Takes another connecting ideal I in input.

KLPT [KLPT14] \Rightarrow resolution of norms equations in I. Solutions of size $\approx p^2 N^2 = (p/N)pN^3$ where N is the norm of the smallest element in I. In general, we expect $N \approx \sqrt{p}$ and so we have a solution of size p^3 .

Goal of KLPT: find an ideal of smooth norm connecting two maximal orders $\mathcal{O}_1, \mathcal{O}_2$. Takes another connecting ideal I in input.

KLPT [KLPT14] \Rightarrow resolution of norms equations in I. Solutions of size $\approx p^2 N^2 = (p/N)pN^3$ where N is the norm of the smallest element in I. In general, we expect $N \approx \sqrt{p}$ and so we have a solution of size p^3 .

In [FKLPW20,FLLW22]: generalization of KLPT to Eichler orders of the form $\mathbb{Z} + I = \mathcal{O}_R(I) \cap \mathcal{O}_L(I)$. Solutions of size $\approx pN^3 \approx p^{5/2}$.

Goal of KLPT: find an ideal of smooth norm connecting two maximal orders $\mathcal{O}_1, \mathcal{O}_2$. Takes another connecting ideal I in input.

KLPT [KLPT14] \Rightarrow resolution of norms equations in I. Solutions of size $\approx p^2 N^2 = (p/N)pN^3$ where N is the norm of the smallest element in I. In general, we expect $N \approx \sqrt{p}$ and so we have a solution of size p^3 .

In [FKLPW20,FLLW22]: generalization of KLPT to Eichler orders of the form $\mathbb{Z} + I = \mathcal{O}_R(I) \cap \mathcal{O}_L(I)$. Solutions of size $\approx pN^3 \approx p^{5/2}$.

The second algorithm is better because smaller torsion requirement.

A specific choice of parameters

In both cases, we need some $D' \mid D$ torsion and some powersmooth T-torsion defined over \mathbb{F}_{p^2} .

A specific choice of parameters

In both cases, we need some $D' \mid D$ torsion and some powersmooth T-torsion defined over \mathbb{F}_{p^2} .

Need a prime p with $TD' \mid p^2 - 1$ with $T \approx p^{\beta}$ for some $1 < \beta < 2$ (β is half the exponent in norm equation output sizes).

A specific choice of parameters

In both cases, we need some $D' \mid D$ torsion and some powersmooth T-torsion defined over \mathbb{F}_{p^2} .

Need a prime p with $TD' \mid p^2 - 1$ with $T \approx p^{\beta}$ for some $1 < \beta < 2$ (β is half the exponent in norm equation output sizes).

We sieve through families of primes where a portion of the torsion requirement is forced.

A smaller T helps a lot finding a good smoothness bound on T.

For algorithm 1 we have p_{6983}

$$\begin{split} p+1&=2^{33}\cdot 5^{21}\cdot 7^2\cdot 11\cdot 31\cdot 83\cdot 107\cdot 137\cdot 751\cdot 827\cdot 3691\cdot 4019\cdot 6983\\ & \cdot 517434778561\cdot 26602537156291\,,\\ p-1&=2\cdot 3^{53}\cdot 43\cdot 103^2\cdot 109\cdot 199\cdot 227\cdot 419\cdot 491\cdot 569\cdot 631\cdot 677\cdot 857\cdot 859\\ & \cdot 883\cdot 1019\cdot 1171\cdot 1879\cdot 2713\cdot 4283 \end{split}$$

For algorithm 2 we have p_{3923}

$$\begin{split} p+1 &= 2^{65} \cdot 5^2 \cdot 7 \cdot 11 \cdot 19 \cdot 29^2 \cdot 37^2 \cdot 47 \cdot 197 \cdot 263 \cdot 281 \cdot 461 \cdot 521 \\ &\quad \cdot 3923 \cdot 62731 \cdot 96362257 \cdot 3924006112952623 \,, \\ p-1 &= 2 \cdot 3^{65} \cdot 13 \cdot 17 \cdot 43 \cdot 79 \cdot 157 \cdot 239 \cdot 271 \cdot 283 \cdot 307 \cdot 563 \cdot 599 \\ &\quad \cdot 607 \cdot 619 \cdot 743 \cdot 827 \cdot 941 \cdot 2357 \cdot 10069 \,. \end{split}$$

Main idea: public key is a curve E_A and secret key is $End(E_A)$. Proving knowledge of $End(E_A)$ by using KLPT to solve the isogeny problem.

Response computation:

- 1. Compute End(E_2) from ψ, φ .
- 2. Apply KLPT to compute I_{σ} connecting End(E_A) and End(E_2). For security, need generic version of the algorithm!
- 3. Translate I_{σ} into σ .

Most compact PQ signature scheme with PK + Signature combined.

Name	Public Key (bytes)	Signature (bytes)	Security
SQISign	64	204	NIST-1
Falcon-512	897	666	NIST-1
Dilithium2	1312	2420	NIST-1

Most compact PQ signature scheme with PK + Signature combined.

Name	Public Key (bytes)	Signature (bytes)	Security
SQISign	64	204	NIST-1
Falcon-512	897	666	NIST-1
Dilithium2	1312	2420	NIST-1

Implementation in C with recent finite field arithmetic from Patrick Longa: Efficient *verification* and reasonably efficient *signature* for isogenies. But $\approx 10^3$ times slower than Falcon or Dilithium.

Most compact PQ signature scheme with PK + Signature combined.

Name	Public Key (bytes)	Signature (bytes)	Security
SQISign	64	204	NIST-1
Falcon-512	897	666	NIST-1
Dilithium2	1312	2420	NIST-1

Implementation in C with recent finite field arithmetic from Patrick Longa: Efficient *verification* and reasonably efficient *signature* for isogenies. But $\approx 10^3$ times slower than Falcon or Dilithium.

	Keygen	Sign	Verify	method	article
Mcycles	1823	7020	143	SQISign	[FK L PW20]
Mcycles	421	1987	30	New Id-to-Iso	[F L LW22]

Signature: $\approx 400 ms$ Verification: $\approx 6 ms$

Most compact PQ signature scheme with PK + Signature combined.

Name	Public Key (bytes)	Signature (bytes)	Security
SQISign	64	204	NIST-1
Falcon-512	897	666	NIST-1
Dilithium2	1312	2420	NIST-1

Implementation in C with recent finite field arithmetic from Patrick Longa: Efficient *verification* and reasonably efficient *signature* for isogenies. But $\approx 10^3$ times slower than Falcon or Dilithium.

	Keygen	Sign	Verify	method	article
Mcycles	1823	7020	143	SQISign	[FK L PW20]
Mcycles	421	1987	30	New Id-to-Iso	[F L LW22]

Signature: $\approx 400 ms$ Verification: $\approx 6 ms$

Non-standard security assumption but safe from recent attacks!

- Norm equations have a role to play.
 - 1. Smaller solutions mean:
 - 1.1 Speed-up: SQISign and the ideal-to-isogeny translation.
 - 1.2 Security analysis: understanding the link between the endomorphism ring problem and all the other problems.

- Norm equations have a role to play.
 - 1. Smaller solutions mean:
 - 1.1 Speed-up: SQISign and the ideal-to-isogeny translation.
 - 1.2 Security analysis: understanding the link between the endomorphism ring problem and all the other problems.
- Work on SQISign (NIST submission):
 - 1. Finding good parameters for SQISign.
 - 2. Understanding the security of SQISign.

- Norm equations have a role to play.
 - 1. Smaller solutions mean:
 - 1.1 Speed-up: SQISign and the ideal-to-isogeny translation.
 - 1.2 Security analysis: understanding the link between the endomorphism ring problem and all the other problems.
- Work on SQISign (NIST submission):
 - 1. Finding good parameters for SQISign.
 - 2. Understanding the security of SQISign.
- Find constructive applications of the new attacks (on-going work).