

Welcome to Hadoop Distributed File System (HDFS)

Big Data Problem - Storage

Question: If you have 100TB data, How would you store it?

Big Data Problem - Storage - Approach

Build NAS or SAN

Have 100 ITB drives and make 100 subfolders mount these.

Big Data Problem - Storage - Challenges

- What about failovers & backups?
- How do we distribute the data uniformly across disks?
- Is this best use of resources?
- How do we handle frequent access to files?
- · How do we scale out?

HDFS - Namenodes and Datanodes

HDFS - Design

- I. Very large files
- 2. Streaming data access
- 3. Commodity hardware

HDFS - Limitations

- I. Low-latency data access
- 2. Lots of small files
- 3. Multiple writers, arbitrary file modifications

HDFS - Blocks

1. The files are split into a chunk of 128M blocks.

HDFS - Blocks

1. The files are split into a chunk of 128M blocks.

560 MB File => How Many Blocks and of what sizes?

HDFS - Blocks

The files are split into a chunk of 128M blocks.

560 MB File => How Many Blocks and of what sizes?

128MB 128MB 128MB 128MB 48MB

CLOUD X LAB

HDFS - Blocks - Advantages

HDFS - Replication

HDFS - Replica Placement Policy

HDFS - Replication Factor

- Default and recommended Replication factor: 3
- Can be set for the entire HDFS
- Can be set for individual files
- For not so important file you can decrease the replication factor
- Increase replication factor for important files

HDFS - Replication - Failover

Datanodes

HDFS - Driver

HDFS

HDFS - If multiple namenodes?

Data node

Anatomy of a File Write

Anatomy of a File Read

Namenode - Metadata

1. Keeping a backup of namespace image & editlogs on two locations

Namenode - Single Point of Failure

 To recover metadata we needed to merge the image with editlogs.

Namenode - Single Point of Failure

Keeping a backup of namespace image & editlogs on two locations

Namenode - Single Point of Failure

2. Keeping A Secondary Namenode

Namenode - Single Point of Failure?

3. HDFS high availability (HA) - Quorum journal manager (QJM) (in 2.x)

HDFS Federation (2.x)

Multiple Namenodes - different namenode for different sub folders

Namenode Metadata

Meta-data

I. The entire metadata is in main memory.

Types of Metadata

- 1. List of files
- 2. List of Blocks for each file
- 3. List of DataNode for each block
- 4. File attributes, e.g. access time, replication factor, file size, file name, directory name

A Transaction Log or Edit Log

1. Records file creations, file deletions. etc

HDFS - Hands-on

How to Transfer Files?

HDFS - Access files

- 1. hadoop fs -ls sample.txt
- 2. hadoop fs -ls /user/abhinav9884/sample.txt
- 3. hadoop fs -ls hdfs:///user/abhinav9884/sample.txt
- 4. hadoop fs -ls hdfs://ip-172-31-53-48.ec2.internal:8020/user/abhinav9884/sample.tx t

Where ip-172-31-53-48.ec2.internal is the namenode host

Where are the blocks?

hdfs fsck -blocks -locations -racks -files /user/abhinav9884/sample.txt

Set Replication

To set replication factor as I

hadoop fs -setrep -w I /user/abhinav9884/sample.txt

Check blocks

hdfs fsck -blocks -locations -racks -files /user/abhinav9884/sample.txt

Summary

- HDFS
- HDFS Design
- HDFS Namenode, Datanode, Secondary Namenode, Standby Namenode and High Availability
- Hands-on demos

Thank You!

TODAY'S CLASS

- Recap
 - HDFS Architecture
 - Hadoop I.0 Architecture
 - Hadoop 2.0 / Yarn
- Cluster Overview
 - o Hue
- Using HDFS, Hive, Pig, Oozie
 - From Web
 - From Command

