CS301 Computer Architecture

DR GAYATHRI ANANTHANARAYANAN

gayathri@iitdh.ac.in

Materials in these slides are borrowed from textbooks and existing Architecture courses

Course Details & Logistics

Tuesday – 3 to 3.55 PM

Wednesday – 2 to 2.55 PM

Thursday - 5 to 5.55 PM

CS311– Computer Architecture Lab

Monday – 10AM to 12.55 PM

Books:

TA information:

Chandrasekhar - chandrashekar.s@iitdh.ac.in

Omkar Shende – 212011004@iitdh.ac.in

Text Book: Computer Organisation and Architecture, Smruti Ranjan Sarangi, McGrawHill 2015

Reference Book: Computer Architecture A Quantitative Approach, Fifth edition, by David Patterson and John L. Hennesy, Morgan Kaufmann, 2017.

Tentative Grading Components

CS 301 CA THEORY

EVALUATION COMPONENT	WEIGHTAGE
QUIZZES (2)	25
MID SEM	25
END SEM	40
VIVA	10

CS 311 CA LAB

EVALUATION COMPONENT	WEIGHTAGE
IN SEMESTER LABS	80
LAB EXAM	20

- You will build a software model of a processor
- Programming will be in Java
- 6 Labs/Experiments in total (each of varying complexity)
- For each experiment, marks will be based on code, and report submitted,
 Demos & Viva

Note

- Academic honesty is expected from each student participating in the course.
- NO sharing (willing, unwilling, knowing, unknowing) of assignments/codes between students is allowed.
- Academic violations will be handled as per the rules mentioned in Section 5.9 of the B.Tech Rule book

Abstractions in a Computer System

Applications / Programs

Operating Systems

Computer Microarchitecture

Digital Circuits/VLSI

Transistors

Lenovo Core i5 7th Gen - (8 GB/1 TB HDD/DOS/2 GB Graphics) IP 320E Laptop

₹41,990

(F) Assured

All 801 reviews

4.2 *

₹47,990

4.3 *

Policy

10,153 Ratings & 2,216 Reviews All 2216 reviews

NVIDIA GeForce 940MX for High Graphics Performance Intel Core i5 Processor (7th Gen) 8 GB DDR4 RAM DOS Operating System 1 TB HDD 15.6 inch Display Warranty: 1 Year Onsite Warranty

Returns: 10 Days Replacement

Intel Core i5 Processor (8th Gen)
8 GB DDR4 RAM
64 bit Windows 10 Operating
System
1 TB HDD
15.6 inch Display
Warranty: 1 Year Onsite Warranty

Warranty: 1 Year Onsite Warranty Returns: 10 Days Replacement Policy

Dell Vostro 15 3000 Core i5 8th Gen -

GB Graphics) 3578 Laptop

3,615 Ratings & 801 Reviews

(8 GB/1 TB HDD/Windows 10 Home/2

BUY NOW

BUY NOW

i3 v/s i5 v/s i7

 Classification of manufactured chips based on maximum safe operating frequency

Generations

- Reducing feature size
 - Transistors are smaller, switch faster, consume less energy
- Improved Computer Architecture

Based on the same principles

How does it work?

- * Program List of instructions given to the computer
- Information store data, images, files, videos
- Computer Process the information store according to the instructions in the program

What does a computer look like?

* Let us take the lid off a desktop computer

 Memory – Stores programs and data. Gets destroyed when the computer is powered off

Hard disk – stores programs/data permanently

Lets Make a Full System!

What does a computer look like?

Feature	Computer	Our Brilliant Brain
Intelligence	Dumb	Intelligent
Speed of basic calculations	Ultra-fast	Slow
Can get tired	Never	After sometime
Can get bored	Never	Almost always

Computers are ultra-fast and ultra-dumb

How to Instruct a Computer?

- Write a program in a high level language C,
 C++, Java
- * Compile it into a format that the computer understands
- Execute the program

What Can a Computer Understand?

- * Computer can clearly NOT understand instructions of the form
 - Multiply two matrices
 - * Compute the determinant of a matrix
 - * Find the shortest path between Mumbai and Delhi
- * They understand:
 - * Add a + b to get c
 - Multiply a * b to get c

The Language of Instructions

- * Humans can understand
 - Complicated sentences
 - English, French, Spanish
- * Computers can understand
 - Very simple instructions

The semantics of all the instructions supported by a processor is known as its instruction set architecture (ISA). This includes the semantics of the instructions themselves, along with their operands, and interfaces with peripheral devices.

Relation with Theory of Computation

- A modern computer is a practical Turing Machine
 - The memory refers to the tape
 - Both program instructions and data reside in memory
 - Program counter refers to the state
 - Program counter indicates which instruction is to be executed next
 - The processor itself refers to the transition table
 - Based on the instruction, it performs some modifications on data

Relation with Synchronous Digital Systems

- "Control" can be a hardwired circuit. This makes it "application specific".
- Alternatively, "control" can be "programmable". This allows it to do a lot more.

Computer Inspired from the Turing Machine

Elements of a Computer

- * Memory (array of bytes) contains
 - * The program, which is a sequence of instructions
 - * The program data → variables, and constants
- * The program counter(PC) points to an instruction in a program
 - * After executing an instruction, it points to the next instruction by default
 - * A branch instruction makes the PC point to another instruction (not in sequence)
- CPU (Central Processing Unit) contains the
 - Program counter, instruction execution units

Designing Practical Machines

The Harvard Mark I

Von-Neumann Architecture

The ENIAC

Problems with Harvard/ Von-Neumann Architectures

* The memory is assumed to be one large array of bytes

* It is very very slow

General Rule: Larger is a structure, slower it is

- * Solution:
 - Have a small array of named locations (registers) that can be used by instructions
 - * This small array is very fast

Insight: Accesses exhibit locality (tend to use the same variables frequently in the same window of time)

Uses of Registers

- * A CPU (Processor) contains set of registers (16-64)
- * These are named storage locations.
- * Typically values are loaded from memory to registers.
- Arithmetic/logical instructions use registers as input operands
- * Finally, data is stored back into their memory locations.

Example of a Program in Machine Language with Registers

```
1: r1 = mem[b] // load b
2: r2 = mem[c] // load c
3: r3 = r1 + r2 // add b and c
4: mem[a] = r3 // save the result
```

- * r1, r2, and r3, are registers
- * mem → array of bytes representing memory

Machine with Registers

