Recitation 6

Markov Chains

Definition (Markov chain)

A sequence of random variables (X_0, X_1, \dots) is a Markov chain with state space E and "transition matrix" P if for all $t \ge 0$,

$$\mathbb{P}(X_{t+1} = y \mid X_0 = x_0, \dots, X_t = x_t) = P(x_t, y)$$

for all x_0, \ldots, x_t such that $\mathbb{P}(X_0 = x_0, \ldots, X_t = x_t) > 0$.

Stochastic matrix: $P_{ij} \ge 0$, $\sum_{i=1}^{n} P_{ij} = 1$ for all $1 \le j \le n$.

Definition (Invariant measure)

A vector $\mu \in \Delta_n$ is called an invariant measure for the transition matrix P if $\mu = P\mu$, i.e. if μ is an eigenvector of P associated with the eigenvalue 1.

Perron-Frobenius theorem

Theorem (Perron-Frobenius, stochastic case)

Let P be a stochastic matrix such that there exists $k \geq 1$ such that all the entries of P^k are strictly positive. Then the following holds:

- 1. 1 is an eigenvalue of P and there exists an eigenvector $\mu \in \Delta_n$ associated to 1.
- 2. The eigenvectors associated to 1 are unique up to scalar multiple (i.e. $Ker(P Id) = Span(\mu)$).
- 3. For all $x \in \Delta_n$, $P^t x \xrightarrow[t \to \infty]{} \mu$.

Is the condition "there exists $k \ge 1$ such that all the entries of P^k are strictly positive" necessary? Let's see!

Definition (Irreducible Markov chain)

If for all $1 \le i, j \le n$, there exists $k \ge 1$ such that $P_{ij}^k > 0$, we say that the Markov chain is irreducible.

- 1. Show that the assumption "there exists $k \geq 1$ such that all the entries of P^k are strictly positive" implies that the Markov chain is irreducible.
- Find an example of a non-irreducible Markov chain for which several invariant measures exist.
- 3. But irreducibility is not enough for the Perron-Frobenius statements to hold. Show that a Markov chain with transition matrix

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

is irreducible but does not fulfill "for all $x \in \Delta_2$, $P^t x \xrightarrow[t \to \infty]{} \mu$ ".

Definition (Irreducible Markov chain)

If for all $1 \le i, j \le n$, there exists $k \ge 1$ such that $P_{ij}^k > 0$, we say that the Markov chain is irreducible.

1. Show that the assumption "there exists $k\geq 1$ such that all the entries of P^k are strictly positive" implies that the Markov chain is irreducible.

Definition (Irreducible Markov chain)

If for all $1 \le i, j \le n$, there exists $k \ge 1$ such that $P_{ij}^k > 0$, we say that the Markov chain is irreducible.

2. Find an example of a non-irreducible Markov chain for which several invariant measures exist.

Definition (Irreducible Markov chain)

If for all $1 \le i, j \le n$, there exists $k \ge 1$ such that $P_{ij}^k > 0$, we say that the Markov chain is irreducible.

2. Find an example of a non-irreducible Markov chain for which several invariant measures exist.

Definition (Irreducible Markov chain)

If for all $1 \le i, j \le n$, there exists $k \ge 1$ such that $P_{ij}^k > 0$, we say that the Markov chain is irreducible.

3. But irreducibility is not enough for the Perron-Frobenius statements to hold. Show that a Markov chain with transition matrix

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

is irreducible but does not fulfill "for all $x \in \Delta_2$, $P^t x \xrightarrow[t \to \infty]{} \mu$ ".

Definition (Irreducible Markov chain)

If for all $1 \le i, j \le n$, there exists $k \ge 1$ such that $P_{ij}^k > 0$, we say that the Markov chain is irreducible.

3. But irreducibility is not enough for the Perron-Frobenius statements to hold. Show that a Markov chain with transition matrix

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

is irreducible but does not fulfill "for all $x \in \Delta_2$, $P^t x \xrightarrow[t \to \infty]{} \mu$ ".

4. Remember from the lecture that the PageRank algorithm actually computes the invariant measure of the transition matrix

$$G = \alpha P + \frac{1 - \alpha}{N} \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \cdots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

with $\alpha \approx 0.85$. Given the previous questions, what would be the problems in taking $\alpha = 1$?

4. Remember from the lecture that the PageRank algorithm actually computes the invariant measure of the transition matrix

$$G = \alpha P + \frac{1 - \alpha}{N} \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \cdots & \vdots \\ 1 & \cdots & 1 \end{bmatrix}$$

with $\alpha \approx 0.85$. Given the previous questions, what would be the problems in taking $\alpha = 1$?

Questions: Stochastic matrices

Remember that P is a stochastic matrix when $P_{i,j} \geq 0$ for all

- $1 \le i, j \le n$ and $\sum_{i=1}^{n} P_{i,j} = 1$ for all j.
 - 1. Show that 1 is an eigenvalue of *P*.
 - 2. Show that all eigenvalues of *P* have absolute value less or equal than *P*.

Questions: Stochastic matrices

Remember that P is a stochastic matrix when $P_{i,j} \geq 0$ for all

- $1 \le i, j \le n$ and $\sum_{i=1}^{n} P_{i,j} = 1$ for all j.
 - 1. Show that 1 is an eigenvalue of *P*.
 - 2. Show that all eigenvalues of P have absolute value less or equal than P.

Questions: Stochastic matrices

Remember that P is a stochastic matrix when $P_{i,j} \geq 0$ for all

- $1 \le i, j \le n$ and $\sum_{i=1}^{n} P_{i,j} = 1$ for all j.
 - 1. Show that 1 is an eigenvalue of *P*.
 - 2. Show that all eigenvalues of P have absolute value less or equal than P.

Questions: Random walks

Let us consider a variant of PageRank in which the edges are non-oriented, i.e. if page i contains a link to page j, then page j contains a link to page i. If we define the transition

$$P_{i,j} = \begin{cases} 1/\mathsf{deg}(j) & \text{if link } i \leftrightarrow j \\ 0 & \text{otherwise} \end{cases}$$

- 1. Show that π defined as $\pi_j = \deg(j)$ is an eigenvector of P of eigenvalue 1.
- 2. Conclude that $x \in \Delta_n$, $P^t x \xrightarrow[t \to \infty]{} \mu$ if the Perron-Frobenius assumption holds.
- 3. Extra Question: Show that if each page has a link to itself and for any pair of pages i, j, there is a path of linked pages joining i and j, the Perron-Frobenius assumption holds.

Questions: Random walks

$$P_{i,j} = \begin{cases} 1/\mathsf{deg}(j) & \text{if link } i \leftrightarrow j \\ 0 & \text{otherwise} \end{cases}$$

1. Show that π defined as $\pi_j = \deg(j)$ is an eigenvector of P of eigenvalue 1.

Questions: Random walks

$$P_{i,j} = \begin{cases} 1/\mathsf{deg}(j) & \text{if link } i \leftrightarrow j \\ 0 & \text{otherwise} \end{cases}$$

2. Conclude that $x\in\Delta_n$, $P^tx\xrightarrow[t\to\infty]{}\mu$ if the Perron-Frobenius assumption holds.

Spectral theorem

Theorem (Spectral theorem)

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then, A has n orthogonal eigenvectors q_1, \ldots, q_n and we can write $A = Q \Lambda Q^\top$, where $Q = \begin{bmatrix} q_1 & \cdots & q_n \end{bmatrix}$ and Λ is diagonal.

Remember that a matrix A is diagonalizable iff it has n linearly independent eigenvectors (equivalently $A=V\Lambda V^{-1}$). Thus, the spectral theorem says that symmetric matrices are diagonalizable in an orthogonal basis.

Questions: Spectral theorem

1. Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric matrices. Show that AB = BA iff A and B diagonalize in the same basis. Does the same hold if we just assume that A, B are diagonalizable?

Questions: Spectral theorem

1. Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric matrices. Show that AB = BA iff A and B diagonalize in the same basis. Does the same hold if we just assume that A, B are diagonalizable?