Петросов Д.А., кандидат технических наук, Игнатенко В.А., кандидат технических наук, Белгородский государственный аграрный университет им. В.Я. Горина

ПРИМЕНЕНИЕ ИНФОРМАЦИОННЫХ СЕТЕЙ ПЕТРИ ДЛЯ МОДЕЛИРОВАНИЯ НЕЙРОННОЙ СЕТИ В ЗАДАЧЕ УПРАВЛЕНИЯ АДАПТИРОВАННЫМ ГЕНЕТИЧЕСКИМ АЛГОРИТМОМ ПРИ РЕШЕНИИ ЗАДАЧ СТРУКТУРНО-ПАРАМЕТРИЧЕСКОГО СИНТЕЗА ДИСКРЕТНЫХ СИСТЕМ

Аннотация: в статье рассматривается возможность применения информационных сетей Петри при описании модели нейронной сети, функционирование которой направлено на управление процессом структурно-параметрического синтеза дискретных систем с заданным поведением на основе генетического алгоритма, адаптированный к данной предметной области с помощью вложенных сетей Петри.

Ключевые слова: информационные сети Петри, нейронные сети, генетический алгоритм, структурнопараметрический синтез, дискретные системы

При решении задач структурнопараметрического синтеза дискретных систем возможно использование различных математических аппаратов. Одним из перспективных направлений в данной предметной области являются эволюционные методы, к которым относятся генетические алгоритмы (ГА). Данный эвристический алгоритм позволяет проводить решать задачи моделирования и оптимизации за счет использования механизмов естественного отбора. При этом используется ряд операторов, с помощью которых возможен поиск решений, удовлетворяющих критерию поиска, в многомерном пространстве решений. Каждый оператор ГА обладает настройками функционирования, которые позволяют усилить или уменьшить его влияние на свойства популяшии.

Обычно, при использовании ГА в данной предметной области, настройки функций операторов проводятся экспертом и не изменяются пока решения, полученные с помощью генетического алгоритма, не становятся неудовлетворительными. На изменение качества найденных решений зачастую влияет изменение элементной базы и параметров функционирования элементов, поэтому существующий подход нуждается в корректировке. То есть требуется разработать концепцию управления ГА, которая позволит проводить изменение настроек операторов в автоматизированном режиме минимизировав использование экспертов.

Среди современных методов для автоматизации процессов управления большое распространение получили нейронные сети. Данный математический аппарат, в современных интерпретациях, обладает свойством самообучения, и это свойство предлагается использовать для решения задачи управления адаптированным ГА при решении задачи структурно-параметрического синтеза дискретных систем с заданным поведением.

В работах [1, 2] были предложены модели ГА, адаптированного к решению задач синтеза дискретных систем с помощью вложенных сетей Петри (см. рис. 1). Поэтому, является целесообразным выполнить моделирование нейронной сети для управления предложенными моделями ГА также с помощью теории сетей Петри.

Одним из важных свойств сетей Петри, а в частности информационных сетей Петри (ИСП), которое дает возможность использовать их при моделировании нейронных сетей, является свойство параллелизма.

ИСП как и большинство разновидностей сетей Петри [3, 4] может быть представлена в виде графа, имеющего два типа вершин: позиции и переходы (рисунок 2). Однако, основное отличие данной разновидности сетей, заключается в том, что метка не является атомарным элементом, а представляет собой вещественное число в диапазоне [0; 1].

Рис. 1. Модель генетического алгоритма на основе вложенных сетей Петри

В контексте разрабатываемой модели это число называется «массой метки».

Рис. 2. Пример представления ИСП

Позиции и переходы связаны двумя типами дуг: передающей и информационной. Передающая дуга осуществляет перенос массы метки от позиции к позиции при условии срабатывания перехода. Информационная дуга передаёт лишь информацию о массе метки, которая влияет на поведе-

ние перехода, это свойство ИСП и будет применяться при моделировании процесса самообучения нейронной сети. Перенос массы через переход осуществляется в соответствие со следующими итеративными функциями:

$$\begin{split} P_{i} &= P_{i} - \left(\sum_{i=1,n} (1 - P_{j}) - Pos\left(\sum_{i=1,n} (1 - P_{j}) - \sum_{i=1,n} (P_{i})\right)\right) \cdot \frac{P_{i}}{\sum_{i=1,n} P_{i}} \cdot \left(\sum_{i=1,n} P_{i} - Mcp\right), \\ P_{j} &= P_{j} + \left(\sum_{i=1,n} (1 - P_{j}) - Pos\left(\sum_{i=1,n} (1 - P_{j}) - \sum_{i=1,n} (P_{i})\right)\right) \cdot \frac{(1 - P_{j})}{\sum_{j=1,m} (1 - P_{j})} \cdot \left(\sum_{i=1,n} P_{i} - Mcp\right) \end{split}$$

где P_i — позиция до перехода; п — количество позиций до перехода; P_j — позиция, после перехода; т — число позиций после перехода; Pos(x) — функциональная зависимость вида:

$$\begin{cases} Pos(x) = x, & / npu / x \ge 0, \\ Pos(x) = 0, & / npu / x < 0. \end{cases}$$

Функционирование перехода определяется значением порога срабатывания (M_{CP}) , на который

влияют значения, передаваемые информационными дугами. Численно порог срабатывания определяется в соответствие с формулой:

$$M_{cp} = \sum_{x=1..n} P_x \cdot k_x - \sum_{y=1..m} P_y \cdot k_y$$

где k_x — коэффициент передачи информационной дуги, выходящей из позиции P_x и приходящей на повышающий информационным вход перехода,

 k_y — коэффициент передачи информационной дуги, выходящей из перехода P_y и заканчивающейся понижающим информационным входом.

Формально информационная сеть может быть представлена в виде:

$$NI = \{P, T, F, I, M_0\},\$$

где $P = \{p_i\}, i = 1, 2, ..., n$ – множество позиций сети:

сети; $T = \big\{\!t_j\big\}, \ j = 1, 2, \dots m - \text{множество переходов;}$

 $F = (F_{PT}, F_{TP})$ – множество передающих дуг сети;

 $I = (I_{PT}^+, I_{PT}^-, I_{PPT}^+, I_{PPT}^-)$ – множество информационных дуг;

 $M_0: P \to [0;1]$ — начальное распределение масс меток в сети.

Использование этого аппарата позволяет моделировать различные динамические процессы, такие как апериодический процесс, колебательный

процесс, дифференцирование, а также нейронную сеть [5].

Для изменения весов, при самообучении нейронной сети [6] будем использовать множество информационных дуг, а для проведения расчета выходного управляющего сигнала множество передающих дуг и переходов ИСП, моделирующей работу нейронной сети.

Таким образом модель нейронной сети на основе ИСП будет способна к самообучению, которое будет заключаться в поиске значений коэффициентов передачи информационных дуг, при которых будет реализована требуемая функциональная зависимость между входными и выходными значениями модели нейронной сети.

Обученная нейронная сеть позволит принимать корректные и оперативные меры по настройке параметров работы ГА, что позволит ускорить структурно-параметрический синтез и снизить влияние эксперта (человеческий фактор) на эффективность разработки моделей дискретных систем с заданным поведением.

Литература

- 1. Петросов Д.А. Математическая модель формирования конфигурации вычислительной техники на основе триггеров // Вестник ИЖГТУ им. М.Т. Калашникова. 2009. №3. С. 139 143.
- 2. Петросов Д.А. Адаптация генетического алгоритма при моделировании вычислительной техники с изменяющейся структурой и набором компонентов на основе сетей Петри // Вопросы современной науки и практики. Университет им. В.И. Вернадского. 2009. № 6 (20). С. 151 160.
- 3. Игнатенко В. А., Магергут В. 3. Описание динамических процессов при помощи информационной сети Петри // Научные ведомости БелГУ. Серия: История. Политология. Экономика. Информатика. 2011. №13.С. 161 179.
 - 4. Питерсон Дж. Теория сетей Петри и моделирование систем: пер. с англ. М.: Мир, 1984. 264 с.
- 5. Игнатенко В. А., Магергут В. 3. Информационная сеть Петри как инструмент для параллельной обработки алгоритмов управления // Научные ведомости БелГУ. Серия: История. Политология. Экономика. Информатика. 2011. №19. С. 119 126.
- 6. Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы: Пер. с польск. И. Д. Рудинского. М.: Горячая линия. Телеком. 2006. 452 с.

References

- 1. Petrosov D.A. Matematicheskaja model' formirovanija konfiguracii vychislitel'noj tehniki na osnove triggerov // Vestnik IZhGTU im. M.T. Kalashnikova.2009. №3. S. 139 143.
- 2. Petrosov D.A. Adaptacija geneticheskogo algoritma pri modelirovanii vychislitel'noj tehniki s izmenjajushhejsja strukturoj i naborom komponentov na osnove setej Petri // Voprosy sovremennoj nauki i praktiki. Universitet im. V.I. Vernadskogo. 2009. №6 (20). S. 151 160.
- 3. Ignatenko V. A., Magergut V. Z. Opisanie dinamicheskih processov pri pomoshhi informacionnoj seti Petri // Nauchnye vedomosti BelGU. Serija: Istorija. Politologija. Jekonomika. Informatika. 2011. №13.S. 161 179.
 - 4. Piterson Dzh. Teorija setej Petri i modelirovanie sistem: per. s angl. M.: Mir, 1984. 264 s.
- 5. Ignatenko V. A., Magergut V. Z. Informacionnaja set' Petri kak instrument dlja parallel'noj obrabotki algoritmov upravlenija // Nauchnye vedomosti BelGU. Serija: Istorija. Politologija. Jekonomika. Informatika. 2011. N19. S. 119-126.
- 6. Rutkovskaja D., Pilin'skij M., Rutkovskij L. Nejronnye seti, geneticheskie algoritmy i nechetkie sistemy: Per. s pol'sk. I. D. Rudinskogo. M.: Gorjachaja linija. Telekom. 2006. 452 c.

Petrosov D.A., Candidate of Engineering Sciences (Ph.D.), Ignatenko V.A., Candidate of Engineering Sciences (Ph.D.), Belgorod State Agricultural University named after V.Y. Gorin

APPLICATION INFORMATION PETRI NETWORKS FOR MODELLING NEURAL NETWORK IN THE TASK OF MANAGING THE ADAPTED GENETIC ALGORITHMS IN SOLVING PROBLEMS OF STRUCTURAL AND PARAMETRIC SYNTHESIS OF DISCRETE SYSTEMS

Abstract: the article considers the possibility of using the information in the description of Petri nets model of a neural network, the functioning of which is directed to the management of the process of structural and parametric synthesis of discrete systems with a given behavior on the basis of genetic algorithm adapted to this domain using nested Petri nets.

Keywords: information Petri nets, neural networks, genetic algorithm, structural and parametric synthesis of discrete systems