Algebra

— Blatt 12 —

(Tutoriumsblatt)

Aufgabe 0 (Vorbereitung auf das Tutorium)

- (a) Welche besondere Eigenschaft haben die Elemente eines Körper K mit p^n Elementen (wobei $n \in \mathbb{N}$ ist und p eine Primzahl bezeichnet)?
- (b) Sei L|K eine Körpererweiterung, $\alpha \in L$ ein über K algebraisches Element, und $f \in K[x]$ ein Polynom mit $f(\alpha) = 0$. In welcher Beziehung steht f zum Minimalpolynom von α über K?
- (c) Wie sind normale Körpererweiterungen definiert? Welche Kriterien für eine normale Erweiterung sind Ihnen aus der Vorlesung bekannt?
- (d) Sei K ein Körper der Charakteristik p, und nehmen wir an, dass $f = x^p 2_K$ ein irreduzibles Polynom über K ist, mit $2_K = 1_K + 1_K$. Ist das Polynom separabel?

Aufgabe 1

Sei p eine Primzahl, $n \in \mathbb{N}$, $q = p^n$ und $f = x^q - x \in \mathbb{F}_p[x]$. Zeigen Sie:

- (a) Ist $g \in \mathbb{F}_p[x]$ ein irreduzibles Polynom vom Grad d, so ist g genau dann ein Teiler von f, wenn d ein Teiler von n ist.
- (b) Das Polynom f ist genau das Produkt aller irreduziblen, normierten Polynome in $\mathbb{F}_p[x]$, deren Grade n teilen.
- (c) Zerlegen Sie das Polynom $x^9 x$ in $\mathbb{F}_3[x]$ in irreduzible Faktoren.
- (d) Weisen Sie nach, dass das Polynom $g = x^2 + \bar{2}x + \bar{2}$ genau dann irreduzibel über \mathbb{F}_{p^3} ist, wenn $p \equiv 3 \mod 4$ gilt.

Aufgabe 2

Entscheiden Sie, ob die folgenden Erweiterungen normal sind (mit Begründung).

(a)
$$\mathbb{Q}(\sqrt{2+\sqrt{2}})|\mathbb{Q}$$

$$(a) \ \mathbb{Q}(\sqrt{2+\sqrt{2}})|\mathbb{Q} \qquad (b) \ \mathbb{Q}(\sqrt{1+\sqrt{2}})|\mathbb{Q} \qquad (c) \ \mathbb{C}|\mathbb{R} \qquad (d) \ \mathbb{F}_8|\mathbb{F}_2 \qquad (e) \ \mathbb{F}_2^{\mathrm{alg}}|\mathbb{F}_2$$

(d)
$$\mathbb{F}_8|\mathbb{F}_2$$

(e)
$$\mathbb{F}_2^{\text{alg}}|\mathbb{F}_2$$

In Teil (b) darf ohne Beweis verwendet werden, dass die angegebene Körpererweiterung vom Grad 4 ist.

Aufgabe 3

Sei K ein Körper und $f \in K[x]$ ein irreduzibles Polynom. Zeigen Sie:

- (a) Genau dann ist f separabel, wenn die formale Ableitung f' nicht das Nullpolynom ist.
- (b) Im Fall char(K) = p > 0 ist f genau dann nicht separabel, wenn ein Polynom $g \in K[x]$ mit $f = g(x^p)$ existient.

Aufgabe 4 (Zahlentheorie)

Sei R ein faktorieller Ring, K sein Quotientenkörper, und seien $a,b,c\in R\setminus\{0_R\}$. Sei außerdem $d\in R$ ein größter gemeinsamer Teiler von a und b. Zeigen Sie, dass dann cd ein größter gemeinsamer Teiler von ac und bc ist.

Dieses Blatt wird vom 24. bis zum 27. Januar im Tutorium bearbeitet.

Algebra

— Blatt 12 —

(Globalübungsblatt)

Aufgabe 1 (2+2+3+3 Punkte)

Sei $K = \mathbb{F}_{125}$. Bestimmen Sie für jedes $n \in \mathbb{N}$

- (a) die Anzahl der Elemente der Ordnung n in K^{\times} ,
- (b) die Anzahl der Elemente in $\{\alpha^n \mid \alpha \in K^{\times}\},\$
- (c) die Anzahl der Elemente $\alpha \in K$ mit $[\mathbb{F}_5(\alpha) : \mathbb{F}_5] = n$,
- (d) die Anzahl der normierten, irreduziblen Faktoren von $x^{125} x$ in $\mathbb{F}_5[x]$ vom Grad n.

Aufgabe 2 (4+3+3 Punkte)

Beweisen oder widerlegen Sie die folgenden Aussagen.

- (a) Für jede Nullstelle $\alpha \in \mathbb{C}$ des Polynoms $f = x^4 x^2 1$ ist die Erweiterung $\mathbb{Q}(\alpha) \mid \mathbb{Q}$ normal.
- (b) Die Erweiterung $\mathbb{Q}(\alpha, i)|\mathbb{Q}(i)$ mit $\alpha \in \mathbb{C}$ aus Teil (a) ist normal.
- (c) Jede endliche Erweiterung L|K ist Teilerweiterung einer endlichen, normalen Erweiterung L'|K.

Ohne Beweis darf verwendet werden, dass $f = x^4 - x^2 - 1$ über \mathbb{Q} irreduzibel ist.

Aufgabe 3 (10 Punkte)

Sei p eine Primzahl und K ein Körper der Primzahlcharakteristik p. Zeigen Sie, dass die folgenden beiden Aussagen äquivalent sind.

- (i) Jede algebraische Erweiterung von K ist separabel.
- (ii) Der Frobenius-Endomorphismus $\varphi: K \to K, a \mapsto a^p$ ist surjektiv.

Einen Körper K mit der in Aussage (i) genannten Eigenschaft heißt vollkommen. In der Vorlesung wurde gezeigt, dass alle endlichen Körper und alle Körper der Charakteristik 0 vollkommen sind.

Aufgabe 4 (Zahlentheorie)

- (a) Bestimmen Sie eine Zerlegung des Polynoms $f = 2x^4 + 4x^3 + 4x^2 + 2x$ in (i) $\mathbb{Q}[x]$ (ii) $\mathbb{Z}[x]$.
- (b) Sei $a \in \mathbb{Z}$ und $f = x^3 + ax^2 (3+a)x + 1 \in \mathbb{Z}[x]$. Zeigen Sie, dass f in $\mathbb{Q}[x]$ irreduzibel ist.

Abgabe: Dienstag, 1. Februar 2021, 12:15 Uhr

Verspätete Abgaben können aus organisatorischen Gründen leider nicht nachträglich angenommen werden. Bitte geben Sie auf jeder Abgabe die Nummer Ihrer Übungsgruppe an.