star allele calling

October 6, 2022

— title: "Customized star allele calling"

1 Introduction

- Instroduction about SNAPShot
- The process of genotype calling
- Vary each run time
- Benefit of cloud base system

Star-allele calling from genotyping results is crucial for PGx implementation in clinical practice. Additionally, a laboratory-developed test (LDT) panel for PGx implementation is also critical and cost-effective for a specific population; however, the star-alleles calling tools for the panel need to be developed. In this work, therefore, we developed a star-allele calling tool applied for the developed testing panel. The tool also was integrated into the system and website application.

Taken all into consideration, we develop a cloud base system that support user can call genotype and matching with our knowledge database.

2 Methods

2.1 Loading FSA data

Raw data from fragment analysis sofware were loaded using package Biopython (version) package. The intensisty data were stored in different predefined chanel name such as DATA105 for refrernce chanel, for other chanels defined for 4 nucleotites (DATA1: A; DATA2:C; DATA3:G and DATA4:T). Those intensisty data were primary used in peak detection process.

2.2 Reference peak detection

As mentioned aboved, the DATA105 chanel as refrence intensity was used to detect the reference peak. Usually, the information of reference peak depends on the experimen desgin. In this study, we used ??? GeneScan 120 Lize dye size standard (CYP2D6 kit developed by SPMED Co. Ltd. (GTR link)).

We used peak finding function of scipy (version) with default height 800, width of peak, ... However, the setting information can be adjusted by experties.

The number of detected peaks should be equal to number of reference size standard. In case of LIZ 120, there are 9 sizes, therefore the number of peaks should be 9 peaks. Only qualifed peak

detection was used to develop Least Square model as the next step, otherwise, it need to be adjusted by user to detect the correct peaks.

2.3 Sizing model development

As described in the manual of gene mapper software, there were three method to interfer length of DNA based on intensity points (Local Southern, Global Southern and Least Square). In the work, we used Least Square as advance method to develop a model for sizing identification.

The model was developed using numpy (version) python package. Users can choose the order of least sequare method (second-order or third-order). The performance of this model was evaluated using R square index from actual size and precited size. Based on R square, we found that third-order resulted in a slightly higher than second order, therefore, thrid order was set as default of the model. The model development process will be done by each input FSA file.

Workflow

Please see here: https://app.diagrams.net/#G1HzMMyRkVhr8Y_M1wMmXwmZagIEpak1Bb

2.4 Load defined marker with colors

This form is test form and it was based on the format from PGx team.

However this form have a disavantage if testing allele is not biallelic for example triallelic (A > C/T). and this requires a new format to overcome this issue.

2.5 Example call from fsa file with CYP2D6 and 2 panels

20180328-230857:*1/*10B

2.6 Example call from bin file

20180328-230857:*1/*10B

PTC:*1/*1

NTC:

	sample	gene	marker	label	panel	${\tt direction}$	genotype	\
0	20180328-230857	CYP2D6	CYP2D6_001	CYP2D6_14	S1	Forward	GG	
2	20180328-230857	CYP2D6	CYP2D6_002	CYP2D6_10B	S1	Forward	CT	
4	20180328-230857	CYP2D6	CYP2D6_003	CYP2D6_49	S1	Reverse	TT	
6	20180328-230857	CYP2D6	CYP2D6_004	CYP2D6_21	S1	Forward	GG	
8	20180328-230857	CYP2D6	CYP2D6_005	CYP2D6_41	S1	Forward	GG	
10	20180328-230857	CYP2D6	CYP2D6_006	CYP2D6_52	S1	Reverse	GG	
12	20180328-230857	CYP2D6	CYP2D6_007	CYP2D6_18	S1	Forward	GG	
14	20180328-230857	CYP2D6	CYP2D6_008	CYP2D6_2	S1	Reverse	CC	
16	20180328-230857	CYP2D6	CYP2D6_009	CYP2D6_60	S1	Reverse	GG	
18	20180328-230857	CYP2D6	CYP2D6_010	CYP2D6_5	S1	Reverse	AA	
20	20180328-230857	CYP2D6	CYP2D6_011	CYP2D6_4	S2	Forward	GG	
22	20180328-230857	CYP2D6	CYP2D6_013	CYP2D6_17	S2	Forward	CC	
24	20180328-230857	CYP2D6	CYP2D6_012	CYP2D6_3	S2	Forward	AA	
26	20180328-230857	CYP2D6	CYP2D6_015	CYP2D6_6	S2	Reverse	TT	
28	20180328-230857	CYP2D6	CYP2D6_014	CYP2D6_9	S2	Forward	AA	
30	20180328-230857	CYP2D6	CYP2D6_016	CYP2D6_29	S2	Reverse	GG	
32	20180328-230857	CYP2D6	CYP2D6_017	CYP2D6_XN	S2	Reverse	GG	
34	PTC	CYP2D6	CYP2D6 001	CYP2D6 14	S1	Forward	GG	

36	PTC	CYP2D6	CYP2D6_002	CYP2D6_10B	S1	Forward	CC
38	PTC	CYP2D6	CYP2D6_003	CYP2D6_49	S1	Reverse	TT
40	PTC	CYP2D6	CYP2D6_004	CYP2D6_21	S1	Forward	GG
42	PTC	CYP2D6	CYP2D6_005	CYP2D6_41	S1	Forward	GG
44	PTC	CYP2D6	CYP2D6_006	CYP2D6_52	S1	Reverse	GG
46	PTC	CYP2D6	CYP2D6_007	CYP2D6_18	S1	Forward	GG
48	PTC	CYP2D6	CYP2D6_008	CYP2D6_2	S1	Reverse	CC
50	PTC	CYP2D6	CYP2D6_009	CYP2D6_60	S1	Reverse	GG
52	PTC	CYP2D6	CYP2D6_010	CYP2D6_5	S1	Reverse	AA
54	PTC	CYP2D6	CYP2D6_011	CYP2D6_4	S2	Forward	GG
56	PTC	CYP2D6	CYP2D6_013	CYP2D6_17	S2	Forward	CC
58	PTC	CYP2D6	CYP2D6_012	CYP2D6_3	S2	Forward	AA
60	PTC	CYP2D6	CYP2D6_015	CYP2D6_6	S2	Reverse	TT
62	PTC	CYP2D6	CYP2D6_014	CYP2D6_9	S2	Forward	AA
64	PTC	CYP2D6	CYP2D6_016	CYP2D6_29	S2	Reverse	GG
66	PTC	CYP2D6	CYP2D6_017	CYP2D6_XN	S2	Reverse	GG
68	NTC	CYP2D6	CYP2D6_001	CYP2D6_14	S1	Forward	
70	NTC	CYP2D6	CYP2D6_002	CYP2D6_10B	S1	Forward	
72	NTC	CYP2D6	CYP2D6_003	CYP2D6_49	S1	Reverse	
74	NTC	CYP2D6	CYP2D6_004	CYP2D6_21	S1	Forward	
76	NTC	CYP2D6	CYP2D6_005	CYP2D6_41	S1	Forward	
78	NTC	CYP2D6	CYP2D6_006	CYP2D6_52	S1	Reverse	
80	NTC	CYP2D6	CYP2D6_007	CYP2D6_18	S1	Forward	
82	NTC	CYP2D6	CYP2D6_008	CYP2D6_2	S1	Reverse	
84	NTC	CYP2D6	CYP2D6_009	CYP2D6_60	S1	Reverse	
86	NTC	CYP2D6	CYP2D6_010	CYP2D6_5	S1	Reverse	
88	NTC	CYP2D6	CYP2D6_011	CYP2D6_4	S2	Forward	
90	NTC	CYP2D6	CYP2D6_013	CYP2D6_17	S2	Forward	
92	NTC	CYP2D6	CYP2D6_012	CYP2D6_3	S2	Forward	
94	NTC	CYP2D6	CYP2D6_015	CYP2D6_6	S2	Reverse	
96	NTC	CYP2D6	CYP2D6_014	CYP2D6_9	S2	Forward	
98	NTC	CYP2D6	CYP2D6_016	CYP2D6_29	S2	Reverse	
100	NTC	CYP2D6	CYP2D6_017	CYP2D6_XN	S2	Reverse	

	phenotyp				
0	wildtype				
2	heterozygous mutant				
4	wildtype				
6	wildtype				
8	wildtype				
10	wildtype				
12	wildtype				
14	wildtype				
16	wildtype				
18	wildtype				
20	wildtype				
22	wildtype				

```
24
                 wildtype
26
                 wildtype
                wildtype
28
30
                 wildtype
                wildtype
32
34
                 wildtype
36
                 wildtype
38
                 wildtype
40
                 wildtype
42
                 wildtype
                wildtype
44
46
                wildtype
48
                 wildtype
50
                 wildtype
52
                 wildtype
54
                 wildtype
56
                 wildtype
                wildtype
58
60
                wildtype
62
                 wildtype
64
                 wildtype
66
                 wildtype
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
                                              label panel direction genotype \
            sample
                                 marker
                       gene
0 20180328-230857 CYP2D6 CYP2D6_001 CYP2D6_14
                                                             Forward
                                                                            GG
  phenotype
0 wildtype
```

sample gene marker label panel direction base size \backslash 0 20180328-230857 CYP2D6 CYP2D6_001 CYP2D6_14 S1 Forward G 29.04

height color 0 6967.0 blue

3 Update bin range to call genotype example

```
sample
                                  marker
                                                label panel direction base
                       gene
   20180328-230857
                     CYP2D6
                              CYP2D6_001
                                            CYP2D6_14
                                                          S1
                                                               Forward
                                                                           G
  20180328-230857
                     CYP2D6
                              CYP2D6_001
                                            CYP2D6_14
                                                          S1
                                                               Forward
                                                                           Α
   20180328-230857
                     CYP2D6
                              CYP2D6_002
                                          CYP2D6_10B
                                                         S1
                                                                           C
                                                               Forward
  20180328-230857
                     CYP2D6
                              CYP2D6_002
                                          CYP2D6_10B
                                                               Forward
                                                                           Τ
   basetype
                                min_height
                                              is_forward
                                                          is_detected peak
             min_bin
                       max_bin
  wildtype
                                                                 False
0
                   20
                             25
                                        500
                                                       1
     mutant
1
                   27
                             36
                                        500
                                                        1
                                                                 False
2
   wildtype
                   28
                                        500
                                                       1
                                                                  True
                                                                          32
                             38
     mutant
                   31
                             37
                                        500
                                                                  True
                                                                          32
    size height status
                                                                       message \
                          Peak(s) could not be detected. Please check pe...
0
                          Peak(s) could not be detected. Please check pe...
1
2
    32.6
           901.0
                      ok
   35.55
          1019.0
                      ok
   color
    blue
1
   green
2
   black
3
     red
```


4 Example of adjusting height

	:	sample	gene	maı	rker	label	panel	direction	base	\
0	20181106-	730829	CYP2D6	CYP2D6	_001 0	YP2D6_14	S1	Forward	G	
1	20181106-	730829	CYP2D6	CYP2D6	_001 0	YP2D6_14	S1	Forward	Α	
2	20181106-	730829	CYP2D6	CYP2D6	_002 CY	P2D6_10B	S1	Forward	C	
3	20181106-	730829	CYP2D6	CYP2D6	_002 CY	P2D6_10B	S1	Forward	T	
	basetype	min_bin	max_b	in min	_height	is_forwa	ard is	s_detected	peak	\
0	wildtype	25		35	500		1	True	25	
1	mutant	27		36	500		1	False		
2	wildtype	28	;	38	500		1	False		
3	mutant	31	;	37	500		1	True	25	

```
size height status
                                                                     message \
   28.18 891.0
0
                         Peak(s) could not be detected. Please check pe...
1
2
                         Peak(s) could not be detected. Please check pe...
3
   34.14
          542.0
                     ok
   color
   blue
0
1
   green
2
   black
3
     red
```


