通讯寄存器表

一、MODBUS-RTU 规约通讯数据表及数据处理说明

1. 系统参数寄存器:

表 1: 系统只读参数寄存器地址和通讯数据表(功能码 03H, 只读):

序号	寄存器地址	参数符号	说明	
1	Н0000	MK	型号1 值为9000	
2	0001Н		型号 2 值为 B131、B132、C131 等:表示为 RS485 通讯方式的产品 值为 B141、B142、C141 等:表示为无线通讯方式的产品	
3	0002Н	U0	电压量程: 默认 250V, 数值为 250	
4	0003Н	10	电流量程,数值取决于实际量程值。 如数值为 100,则表示电流量程为 10A(数值/10 即为电流量程值)	

表 2 : 系统配置参数寄存器地址和通讯数据表(功能码 03H 读、10H 写):

序号	寄存器地址	参数符号	说明
1	0004Н	ADDR BPS	高字节 8 位为地址,1~247; 0 为广播地址; 低字节的高 2 位为数据格式位,为"00"表示为 10 位即"n, 8, 1"; 为"01"表示为 11 位,偶校验,即"e, 8, 1"; 为"10"表示为 11 位,奇校验,即"o, 8, 1"; 为"11"表示为 11 位,无校验,2 停止位,即"n, 8, 2"。 低字节的低 4 位为波特率: 03~07表示 1200~19200BPS; 无线接口型产品波特率固定值为 03(即 n, 8, 1,1200BPS,不可更改), 其他型号产品默认值为 06(即 n, 8, 1,9600BPS,值可根据需要更改);

表 3: 电能量寄存器地址和通讯数据表(功能码 03H 读、10H 写):

序号	寄存器地址	参数符号	说明
1	000CH	+KWh	有功总电能(高位)
1	000DH +KW	±KWI1	有功总电能(低位)

注: 1) 脉冲当量为 3200 imp/KWh, 即读取的数据值/3200 为实际的电度数;

2) 清电度数据, 使用功能码 10H, 写入的数据必须都为 0, 写入其他数据则无效; 写寄存器的所有信息必须按下表:

序号	起始地址	写寄存器数量	字节计数	数据	说明
1	000CH	0002	4	00 00 00 00	清除有功总电能

如:清除1号模块的有功总电能,则:

命令: 01 10 000C 0002 04 00 00 00 00 F3 FA

响应: 01 10 000C 0002 81 CB

2. 电量等寄存器 (功能码 03H)

表 4: 测量电量寄存器地址和通讯数据表(功能码 03H, 只读):

序号	寄存器地址	参数符号	说明	参数类型及计算	
1	0048H	U	电压	无符号数; 值=DATA/100;单位 V	
2	0049Н	I	电流	无符号数; 值=DATA/1000;单位 A	
3	004АН	Р	有功功率	无符号数; 值=DATA/10; 单位 W (单相计量模块中为: 值=DATA,用户应用时应注 意)	
4	004BH	+KWh	有功总电能(高位)	无符号数; 值=DATA/3200;单位 KWh	
4	004CH	TKWII	有功总电能(低位)	数值与 000CH、000DH 寄存器相同	
5	004DH	COS Φ	功率因数	无符号数;值=DATA/1000(部分产品中)	
	004EH		二氧化碳排量(高)	无符号数;值=DATA/1000;单位 Kg	
6	004FH	CO_2	二氧化碳排量(低)	注: 只应用与面板式计量插座中, 其他产品此寄存器无用。	

CRC

7	0050Н	TEMPERATU RE	温度	使用低字节数值 Bit7 位为符号;若 Bit=7 则值为负; 正值 值=DATA 负值 值=DATA(低 8 位)取反+1 注:只应用与面板式计量插座中,其他产品此寄存器无用。
---	-------	-----------------	----	--

注:每个寄存器地址对应的数据为2个字节,所有数据为十六进制数。

3. 继电器状态寄存器(功能码 01H 读、05H 写)

表 5:继电器状态寄存器地址和通讯数据表(部分产品支持此功能):

序号	符号	位地址	说明	备注
1	D00	0000Н	继电器输出状态	1=0N, 0=0FF

注: 位状态值为"1=0N",表示此路继电器为闭合状态,即为"合"状态; 位状态值为"0=0FF",表示此路继电器为断开状态,即为"分"状态;

二、MODBUS-RTU 规约通讯例子及错误说明

1. 功能码 03 (0x03): 读多路寄存器

起始地址: 0000H~004CH, 超过范围命令无效

数据长度: 0001H~0020H, 最多可一次读取 32 个连续寄存器

起始地址+数据长度:1~004DH, 超过范围命令无效

例: 主机要读取地址为01, 开始地址为0048H的2个从机寄存器数据

主机发送: 01 03 0048 0002 CRC

地址 功能码 起始地址 数据长度 CRC 码

从机响应: 01 03 04 5654 00F0

地址 功能码 返回字节数 寄存器数据 1 寄存器数据 2 CRC 码

2. 功能码 10 (0x10): 写多路寄存器

起始地址: 0004H~000DH, 超过范围命令无效; 请不要向未使用的或保留的寄存器地址写入任何数据; (地址 000CH、000DH 为电度值数据区,对电度值的清除参照其数据表后的说明进行);

寄存器数量:0001~0010H, 最多可一次设置 16 个连续寄存器;

起始地址+写寄存器数量:0005H~000EH,超过范围命令无效;

例: 主机要把 0000、0000 保存到地址为 000C、000D 的从机寄存器中去(从机地址码为 01)。

主机发送: 01 10 000C 0002 04 0000 0000 F3FA

地址 功能码 起始地址 写寄存器数量 字节计数 保存数据 1 2 CRC 码

从机响应: 01 10 000C 0002 81CB

地址 功能码 起始地址 写寄存器数量 CRC 码

3. 功能码 01 (0x01): 读 1 路开关量输出状态

起始位: 为 0; 超过范围命令无效

开关量个数:为1;超过范围命令无效

例: 主机要读取地址为00,输出开关量第0路的输出状态。

主机发送: 01 01 0000 0001 CRC

地址 功能码 起始位 读开关量个数 CRC 码

从机响应: 01 01 01 CRC

地址 功能码 数据长度 OUT 状态数据 CRC 码

4. 功能码 05 (0x05): 写 1 路开关量输出(遥控)

控制命令为: "FF00"为输出开关量为"1",即控制继电器"合"; "0000"为输出开关量为"0",即控制继电器"分"。

例: 主机要控制地址为00,第0路开关量D00(或继电器)"合"

主机发送: 01 05 0000 FF00 8C3A

地址 功能码 输出Bit 位 控制命令 CRC 码

从机响应:与主机发送的报文格式及数据内容完全相同

5. 说明: MODBUS-RTU 通讯规约中的寄存器指的是 16 位(即2字节),并且高位在前。

设置参数时,注意不要写入非法数据(即超过数据范围限制的数据值);

EDA 从机返送的错误码的格式如下 (CRC 码除外):

地址码: 1 字节

功能码: 1 字节(最高位为 1)

错误码: 1 字节

CRC 码: 2 字节。

EDA 响应回送如下错误码:

81: 非法的功能码。 接收到的功能码 EDA 模块不支持。

82: 读取或写入非法的数据地址。 指定的数据位置超出 EDA 模块的可读取或写入的地址范围。

83: 非法的数据值。 接收到主机发送的数据值超出 EDA 模块相应地址的数据范围。