Yansong Li (Jack)

Curriculum Vitae

Mail: Department of Electrical and Computer Engineering

University of Illinois Chicago

851 S. Morgan St., Ste. 1020 (MC 154)

Chicago, IL 60607

E-mail: yli340@uic.edu

Web: https://jackyansongli.github.io

Phone: (224) 334-0452 Pronouns: He/Him Born: Aug 1997

EDUCATION

Ph.D. in Department of Electrical and Computer Engineering

06/2025 (Expected)

University of Illinois Chicago, Chicago, IL

Advisor: Shuo Han

Thesis: Combining Model-Based and Model-Free Reinforcement Learning

Bachelor in Department of Mathematics

07/2020

Southern University of Science and Technology, Shenzhen, China

Advisor: Luchuan Liu

RESEARCH INTERESTS

Reinforcement Learning; Game Theory; Learning Theory; Optimization and Control; Large Language Model in Decision-Making

PUBLICATIONS

*: Corresponding author. †: equal contribution

Peer-Reviewed Conference Publications

- [1] Zeyu Dong, Yimin Zhu, **Yansong Li**, Kevin Mahon, and Yu Sun*, "Generalizing end-to-end autonomous driving in real-world environments using zero-shot LLMs", in *8th Annual Conference on Robot Learning*, 2024.
- [2] **Yansong Li*** and Shuo Han, "Efficient collaboration with unknown agents: Ignoring similar agents without checking similarity", in *Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2024, Auckland, New Zealand, May 6-10, 2024, Mehdi Dastani, Jaime Simão Sichman, Natasha Alechina, and Virginia Dignum, Eds., International Foundation for Autonomous Agents and Multiagent Systems / ACM, 2024, pp. 2363–2365. DOI: 10.5555/3635637.3663161.*
- [3] **Yansong Li*** and Shuo Han, "Solving strongly convex and smooth stackelberg games without modeling the follower", in *American Control Conference, ACC 2023, San Diego, CA, USA, May 31 June 2, 2023*, IEEE, 2023, pp. 2332–2337. DOI: 10.23919/ACC55779.2023.10156010.

October 30, 2024 Page 1 of 4

[4] **Yansong Li*** and Shuo Han, "Accelerating model-free policy optimization using model-based gradient: A composite optimization perspective", in *Learning for Dynamics and Control Conference, L4DC 2022, 23-24 June 2022, Stanford University, Stanford, CA, USA*, Roya Firoozi, Negar Mehr, Esen Yel, Rika Antonova, Jeannette Bohg, Mac Schwager, and Mykel J. Kochenderfer, Eds., ser. Proceedings of Machine Learning Research, vol. 168, PMLR, 2022, pp. 304–315.

Preprints

- [1] **Yansong Li***†, Zeyu Dong[†], Ertai Luo, Yu Wu, Shuo Wu, and Shuo Han, *When to trust your data: Enhancing dyna-style model-based reinforcement learning with data filter*, 2024. arXiv: 2410 . 12160 [cs.LG].
- [2] **Yansong Li***†, Zeyu Dong[†], and Shuo Han, "Bayes-Optimal, Robust, and Distributionally Robust Policies for Uncertain MDPs", *preprint*, Oct. 2024. DOI: 10.25417/uic.27138990.v1.
- [3] **Yansong Li***, Zeyu Dong, and Shuo Han, "Removing Redundant Partner Policies May Be Unnecessary for Ad Hoc Teamwork", *preprint*, Oct. 2024. DOI: 10.25417/uic.27139116.v1.
- [4] Da Shen*, Nian Liu[†], **Yansong Li**[†], Duolei Wang, and Leiyu He, *Goldfish Scheme: A Scheme Interpreter with Python-Like Standard Library*. LIII NETWORK, 2024.

INTERNS

Reseach Interns

LLM in End-To-End Autonomous Driving

05/2024-08/2024

Stony Brook University Advisor: Dantong Yu

CORL has accepted our work as a conference paper

Learning to Help in Multi-Class Classifications and Markov Decision Processes 08/2024-Now

Rutgers University

Advisor: Anand D. Sarwate

Under review

Industry Intern

Developer: Scheme Compiler & GNU T_EX_{MACS}/Mogan

05/2024-Now

LIII NETWORK Advisor: Da Shen

Develop a Scheme compiler with Python-like standard library functionalities and enhance the Lagrangian Market of Lagrangian and Expansion of Lagrangian and Expansion of Lagrangian and Expansion of Lagrangian and Lagrangian and Lagrangian and Lagrangian of Lagrangian and Lagra

TEACHING EXPERIENCE

Southern University of Science and Technology:

MA213-16 Calculus I (Tutorial, Fall 2020)

MA101B Mathematical Analysis (Tutorial, Spring 2019)

Online Control Theory and Optimization (Lecturer, Summer 2021)

Online Reinforcement Learning and Game Theory (Lecturer, Summer

LIII NETWORK

October 30, 2024 Page 2 of 4

Online Online Academic writing with Mogan (Fall 2024) SICP (Fall 2024)

RESEARCH EXPERIENCES

Combining model-based & model-free reinforcement learning.

09/2020-Now

Project Organizer & Corresponding Author

We develop two algorithms that leverage gradient information from an estimated model to accelerate model-free training. The experiments are conducted on an additive nonlinear system with a linear estimated model (published in *L4DC*) and in the mujoco environment with a Gaussian estimated model (under review for *AAAI* and *ICLR*).

AI agent that can effectively collaboration with human

11/2021-2024/05

Project Organizer & Corresponding Author

We utilize stochastic game theory and Stackelberg game formulation. In our setting, human agents are not assumed to be rational, and their utility functions are unknown. Based on these constraints, we develop two algorithms: one for Stackelberg games and another for stochastic games, both designed to facilitate AI-human collaboration. Experiments are conducted in the Overcooked-AI environment. The results have been published in the *ACC* and the *AAMAS* extended abstract. Additionally, two papers extending this formulation to partial observations are available as open-access preprints and are currently under review.

LLM for end-to-end autonomous driving

05/2024-Now

Coauthor

We develop a hybrid system that leverages a large language model (LLM) to provide high-level instructions at low frequency, enhancing the generalization capability of a high-frequency onboard controller running on an iPhone for autonomous driving. This design mitigates the high-latency challenges of LLMs, making our experiments the first real-world implementation of LLMs in this context. The results have been published in the *CORL*. Ongoing research has been submitted to *CVPR* and is currently under review.

OPEN SOURCE COMMUNITY

GNU T_EX_{MACS}/Mogan

09/2022-Now

Contributor

A WYSIWYG editor that can type equations 10 times faster than \LaTeX X. See "A quick tour of \Tau X $_{MACS}$ " for a 3-minute short introduction. Plugins I developed (vim-like keybindings and algorithm2e package) can be found in Jack's Github.

Goldfish Scheme 07/2024-Now

Main developer

A Scheme compiler based on S7 Scheme and C++. This compiler matches the speed and simplicity of S7 Scheme while offering improved support for Microsoft Windows. In Goldfish Scheme, we have implemented the complete set of features from R7RS and included many functionalities inspired by the Python standard library. Goldfish Scheme will be the foundation for GNU TEXMACS/Mogan in the future.

October 30, 2024 Page 3 of 4

PROFESSIONAL SERVICE

Reviewer

Journals

Science China Information Sciences

Conferences

International Conference on Learning Representations (ICLR)

IEEE Conference on Decision and Control (CDC)

International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)

INVITED TALKS

- 1. "Bayes-Optimal, Robust, and Distributionally Robust Policies for Uncertain MDPs", RINGS informal seminar, Rutgers University-New Brunswick, 08/2024.
- 2. "Efficient Collaboration with Unknown Agents: Ignoring Similar Agents without Checking Similarity", Digital Economy Lecture, Beijing Normal University & Hong Kong Baptist University United International College, 10/2023.
- 3. "Solving Strongly Convex and Smooth Stackelberg Games Without Modeling the Follower", 2023 American Control Conference, San Diego, 06/2023.

October 30, 2024 Page 4 of 4