Matching Demand with Supply in the Smart Grid using Agent-Based Multiunit Auction

Tri Kurniawan Wijaya, Kate Larson, Karl Aberer

email: tri-kurniawan.wijaya@epfl.ch, klarson@uwaterloo.ca, karl.aberer@epfl.ch

The E6 (Energy in Communication, Information, and Cyber-physical Systems) workshop at COMSNETS 2013

Motivation

green, abundant, but very unpredictable

Our solution

- Matching demand with supply
 - cut PAR (peak to average ratio) explicitly
 - distribute the load using auction
 - provide minimum load guarantee
- Technology advances
 - integration of software agents

PAR-cut (c: cut percentage)

- ✓ maintain total load
- ✓ minimize shifting distance

Multiunit Auction [initial condition]


```
L = load before PAR-cut
L' = load after PAR-cut
```

```
if L'(t) = L(t), we distribute L(t) L_i^o(t) = L_i(t) if L'(t) > L(t), we distribute L(t), auction L'(t) - L(t) if L'(t) < L(t), we auction L'(t)
```

Multiunit Auction [initial condition]

Multiunit Auction [bid]

- Cost function c:
 - convex and increasing on L(t)
- Reserve price:

$$p(t) = \frac{cost(L(t))}{L(t)}$$

Multiunit Auction [bid]

- Bid: an agent (on behalf of a consumer) submit $\{b_1, ..., b_{|T|}\}$
- Our agents apply myopic best response
 - an agent bid on time slot t if there is a requirement for t
 - if there is not enough load available on t, she bids on the closest available time slot

Multiunit Auction [winners]

- For each time slot,
 - winners: highest bidders
 - smallest set of winners
 - allocate, tentatively, maximum number of resources
 - price paid: highest non-winning bid

Multiunit Auction [multiple round]

! There is a possibility that not all loads are not distributed in one round

Multiunit Auction [truthful bidding]

✓ Truthful bidding is a myopic best response (no incentive for agents to lie about their valuations)

Two main causes:

- pricing mechanism
- agents' myopic best response

Experiments [load shifting] US distribution

Consumer's bid = consumer's valuation $\cdot p(t)$

Experiments [load shifting]Uniform distribution

Consumer's bid = consumer's valuation $\cdot p(t)$

Experiments [price paid] US distribution

Experiments [price paid] Uniform distribution

Experiments [cost saving] US distribution

Experiments [cost saving]Uniform distribution

Experiments [company's additional benefit]

Conclusions

- Matching demand with supply
 - we cut PAR explicitly
 - distribute the loads using multiunit auction
 - provide minimum load guarantee
- Trade-off between convenience and cost
 - load shifting vs price paid
- Cost saving also for consumers without load shifting
- Additional benefit for the utility company

Discussions / Future Work

- Weak consumers may benefit from considering nonmyopic strategies and reasoning over multiple steps at once
- Policy implications of the approach
- Taking time distance into account in measuring customer's load shifting

Matching Demand with Supply in the Smart Grid using Agent-Based Multiunit Auction

Tri Kurniawan Wijaya, Kate Larson, Karl Aberer