Knowledge Representation and Reasoning Chapter 1. Introduction

Pedro Cabalar

Depto. Computación University of Corunna, SPAIN

February 7, 2021

Outline

- Define Knowledge Representation (KR)
- Define Automated Reasoning
- Identify systems or applications where they might be used
- Pros and Cons

The origins of KR

John McCarthy (1927-2011)

Coins the term Artificial Intelligence
 "It is the science and engineering of making intelligent machines,
 especially intelligent computer programs"

The origins of KR

John McCarthy (1927-2011)

- Programs with Commonsense [1959].
 http://jmc.stanford.edu/articles/mcc59.html
 First AI reasoning system: Advice Taker.
- Keypoint: explicit representation of the domain using logical formulas. In McCarthy's words:

"In order for a program to be capable of learning something it must first be capable of being told it"

The origins of KR

John McCarthy (1927-2011)

Novel idea: using formal logic for commonsense reasoning

 $at(John, car) \rightarrow can(go(home, airport, driving))$

Reasoning about Actions and Change (RAC)

Knowledge Representation (KR) plays a central role in Al.

- Automated reasoning: mechanization of thinking.
 Inference = manipulation of symbols in the machine.
- Example: Modus Ponens $at(John, car) \rightarrow can(go(home, airport, driving))$ at(John, car) can(go(home, airport, driving))

Reasoning about Actions and Change (RAC)

- Commonsense reasoning led to the KR area called Reasoning about Actions and Change.
- Some philosophical problems from the standpoint of Artificial Intelligence [McCarthy & Hayes 69]

http://jmc.stanford.edu/articles/mcchay69.html

They introduce Situation Calculus = First Order Logic + 3 sorts:

- Fluents: system properties whose values may vary along time. These values configure the system state.
- Actions: possible operations that allow a state transition.
- 3 Situations: terms that identify a given instant

RAC scenarios

- Typically, (discrete) dynamic systems: state transitions.
- A simple scenario: a lamp in a corridor with 3 switches.
- Fluents: up1, up2, up3, light (Boolean).
- Actions: *toggle*1, *toggle*2, *toggle*3.
- State: a possible configuration of fluent values. Example: $\{\overline{up1}, up2, up3, \overline{light}\}.$
- Situation: a moment in time. We can just use 0, 1, 2, ...

RAC goals

We want to solve some typical reasoning problems.

The most usual ones:

- Simulation: run a sequence of actions on an initial state
- Temporal explanation: fill gaps from partial observations
- Planning: obtain sequence of actions to reach some goal
- Diagnosis: explain unexpected observed results
- Verification: check system properties

- Paraphrasing McCarthy's comment in a workshop:
 AI researchers start from examples and then try to generalize.
 Philosophers start from the most general case, and never use examples unless they are forced to.
- Advantage: focus on features under study using a synthetic, limited scenario (games, puzzles, etc)
- Real problems usually contain complex factors that happen to be irrelevant for the property under study.

• A classical (planning) example: the N-puzzle.

- Well known: the 8-puzzle has 181440 sates, the 15-puzzle more than 10¹³.
- Complexity: NP-complete.

Alexander Kronrod (1921-1986)

- "Chess is the Drosophila of Al" [A. Kronrod 65]
- Games for AI can play the same role as fruit flies for Genetics.
- Competition: Al versus humans . . .

1994: <u>Chinook</u> [J. Schaeffer] checkers program beats world champion Marion Tinsley

1997: IBM Deep Blue beats Chess World Champion Garry Kasparov

2016: AlphaGo beats Go World Champion Lee Sedol

- Still, we don't have intelligent (rational) machines yet
- Warning: avoid too much focus on the toy problem. Remember we must be capable of generalizing the obtained results.
- Back to the chess example:

"Unfortunately, the competitive and commercial aspects of making computers play chess have taken precedence over using chess as a scientific domain. It is as if the geneticists after 1910 had organized fruit fly races and concentrated their efforts on breeding fruit flies that could win these races." [McCarthy]

• Take the 8-puzzle example. Which is our main goal? Making a very fast solver for 8-puzzle?

- But what can we learn from that? Which is the application to other scenarios?
- We should perhaps wonder which other scenarios. Originally, Al goal was any scenario (General Problem Solver) but was too ambitious.
- It could perhaps suffice with similar scenarios. Small variations or elaborations.

Elaboration

Example: assume we may allow now two holes.

- Less steps to solve. We can even allow simultaneous movements.
- Can we easily adapt our solver to this elaboration?
- Think about an optimized heuristic search algorithm programmed in C, for instance.

Keypoint: representation

- A much more flexible solution:
 add a description of the scenario as an input to our solver.
- In this way, variations of the scenario would mean changing the problem description ... Knowledge Representation (KR) is crucial!
- An explicit representation of the domain rules allows Declarative Problem Solving:

Outline

Keypoint: representation

- Which are the desirable properties of a good KR?
 - Simplicity
 - 2 Natural understanding: correspondence with human language
 - Clear semantics
 - 4 Allows efficiently computable automated reasoning methods or at least, their complexity can be assessed
 - Elaboration tolerance [McCarthy98]

"A formalism is elaboration tolerant to the extent that it is convenient to modify a set of facts expressed in the formalism to take into account new phenomena or changed circumstances." [McCarthy98]

Elaboration tolerance

"Elaborating Missionaries and Cannibals Problem" [J. McCarthy] http://jmc.stanford.edu/articles/missionaries1.html

3 missionaries and 3 cannibals come to a river and find a boat that holds two. If the cannibals ever outnumber the missionaries on either bank, the missionaries will be eaten. How shall they cross?

 McCarthy proposes 22 elaborations of the problem: MCP4=four on each group; MCP5=missionaries can't row; MCP10=there is an island; MCP11=Jesus Christ; MCP15=probabilities...

- Students A and B encode the 8 puzzle as follows:
 - Student A: at(1,1,8) at(1,2,6) at(1,4,hole) ...
 - Student B:
 row(8) = 1 col(8) = 1
 row(6) = 1 col(6) = 2
 row(hole) = 1 col(hole) = 4
- Add more holes: which solution is more elaboration tolerant?
 Solution A requires no changes!
- The real problem comes when our KR formalism has no way to find an elaboration tolerant solution

Elaboration tolerance

- Example of representation: an automaton is simple, and has a clear semantics . . .
- But fails in elaboration tolerance! A small change (say, adding new switches or lamps) means a complete rebuilding

Keypoint: representation

- A practical alternative: use rules to describe the local effects of each performed action.
- For each switch $X \in \{1, 2, 3\}$

Action	precondition	\Rightarrow effect(s)
	(10)	
toggle(X):	up(X)	$\Rightarrow up(X)$
toggle(X):	$\overline{up(X)}$	$\Rightarrow up(X)$
toggle(X):	light	$\Rightarrow \overline{\textit{light}}$
toggle(X):	<i>light</i>	\Rightarrow light

• This language is similar to STRIPS [Fikes & Nilsson 71] still used in planning systems.

Logical Knowledge Representation

Can we just use classical logic instead?

$$toggle(X): up(X) \Rightarrow \overline{up(X)}$$

 $toggle(X, T) \land up(X, true, T - 1) \rightarrow up(X, false, T)$

where we include as new arguments, the temporal indices T > 0, T - 1 plus the fluent values *true*, *false*.

 Problem: when toggle(1), what can we conclude about up(2) and up(3)?

They should remain unchanged! However, our logical theory provides no information (we also have models where their value change).

Logical Knowledge Representation

We would need much more formulae

$$toggle(1, T) \land up(2, true, T - 1) \rightarrow up(2, true, T)$$

 $toggle(1, T) \land up(2, false, T - 1) \rightarrow up(2, false, T)$

$$toggle(1, T) \land up(3, true, T - 1) \rightarrow up(3, true, T)$$

 $toggle(1, T) \land up(3, false, T - 1) \rightarrow up(3, false, T)$
 \vdots

and so on, for any fluent and value that are unrelated to toggle(1).

Default reasoning

- Frame problem: adding a simple fluent or action means reformulating all these formulae! [McCarthy & Hayes 69]
- We need a kind of default reasoning.
 Inertia rule: fluents remain unchanged by default
- "By default" = when no evidence on the contrary is available. We must extract conclusions from absence of information.
- Unfortunately, Classical Logic is not well suited for this purpose because

$$\Gamma \vdash \alpha \text{ implies } \Gamma \cup \Delta \vdash \alpha$$

29 / 1

This is called monotonic consequence relation.

• But $\Gamma \vdash \alpha$ by default could mean that adding Δ , $\Gamma \cup \Delta \not\vdash \alpha$. We need Nonmonotonic Reasoning (NMR).

Default reasoning

• An example: suppose up(2, true, 0) and we perform toggle(1, 0). Inertia should allow us to conclude that switch 2 is unaffected:

$$\Gamma \vdash up(2, true, 1)$$

 Elaboration: we are said now that toggle(1) affects up(2) in the following way:

$$toggle(1, T) \land up(2, true, T - 1) \rightarrow up(2, false, T)$$
 (1)

30 / 1

We will need retract our previous conclusion

$$\Gamma \cup (??) \not\vdash up(2, true, 1)$$

Other typical representational problems

- Qualification problem: preconditions are affected by conditions that qualify an action.
- Example: when can we toggle the switch? Elaborations: switch is not broken, switch has not been stuck, we must be close enough, etc.
- The explicit addition of any imaginable "disqualification" is unfeasible. Again: by default, toggle works when nothing prevents it.

Other typical representational problems

- Elaboration: there is a light sensor that activates an alarm, if the latter is connected. The alarm causes locking the door.
- In STRIPS, this means relating indirect effects alarm to each possible action toggle(X).

Action precondition
$$\Rightarrow$$
 effect(s)

 $toggle(X): \overline{light}, connected \Rightarrow alarm$
 $toggle(X): \overline{light}, connected \Rightarrow lock$

Problem: there may be other new ways to turn on a light, or to activate the alarm. We will be forced to relate *lock* to the performed actions!

Other typical representational problems

- This is called ramification problem: postconditions are affected by interactions due to indirect effects.
- lock is an indirect effect of toggling a switch (toggle → light → alarm → lock).
- We would need something like:

```
light(true, T) \land connected(true, T) \rightarrow alarm(true, T)
alarm(true, T) \rightarrow lock(true, T)
```

Outline

KR is a well-established field

Main conferences including KR

- KR: Intl. Conf. on Principles of Knowledge Representation and Reasoning ⇒ last edition https://kr2020.inf.unibz.it/
- IJCAI: Intl. Joint Conf. on Artificial Intelligence
- AAAI: Conf. on Artificial Intelligence
- ECAI: European Conf. on Artificial Intelligence
- JELIA: European Conf. on Logics in Artificial Intelligence
- LPNMR: Intl. Conf. on Logic Programming and Non-Monotonic Reasoning LPNMR'13 cellebrated in Corunna!
- Workshop on Logical Formalizations of Commonsense Reasoning

KR is a well-established field

These are some of the usual topics in KR call for papers:

- Reasoning about actions and change, dynamic logic
- Epistemic reasoning (knowledge and belief)
- Belief revision and update
- Explanation finding, diagnosis, causal reasoning, abduction
- Nonmonotonic logics, default logics, conditional logics
- (Constraint) logic programming, answer set programming
- Qualitative reasoning, spatial reasoning and temporal reasoning
- Argumentation
- Computational aspects of KR, complexity
- Description logics, ontology languages, contextual reasoning
- Inconsistency, paraconsistent logics
- Preference modeling and representation
- Philosophical foundations of KR
- Uncertainty, vagueness, many-valued and fuzzy logics, relational probability