BOOTSTRAP

INTRODUÇÃO

- IDEIA BÁSICA: reamostrar de um conjunto de dados, diretamente ou via um modelo ajustado, a fim de criar replicas dos dados, a partir das quais podemos avaliar a variabilidade de quantidades de interesse, sem usar cálculos analíticos.
- APLICAÇÃO DO MB: podem ser aplicados quando existe, ou não, um modelo probabilístico bem definido para os dados.

- METODO: COMPUTER-INTENSIVE

- CONCEITOS BASICOS

DADOS: $y_1, y_2, ..., y_n \sim Y$ com fdp f e fda F

θ: característica populacional

T: estatística; t: valor de T na amostra

- INTERESSE: obter a distribuição de probabilidade de T; viés de T, dp(T); quatis, intervalo de confiança para θ , testes.
- SITUAÇÕES: PARAMETRICA E NÃO-PARAMETRICA
- FUNÇÃO DE DISTRIBUIÇÃO EMPIRICA(FDE)

 \hat{F} : estimativa de F, a partir da distribuição empírica, que coloca probabilidade 1/n em cada y_i .

$$\hat{F}(y) = \frac{\#\{y_j \le y\}}{n}$$

- FUNÇÃO ESTATÍSTICA

Estatística de interesse: t=f(y(1), ..., y(n))

 $t = t(\hat{F})$: função estatística

 $\theta = t(F)$

 $\hat{F} \rightarrow F \Rightarrow T = t(\hat{F}) \rightarrow \theta = t(F)$ em probabilidade(consistência)

- PRECISÃO DA MEDIA AMOSTRAL

Amostra: x_1, \ldots, x_n : $\bar{x} = \frac{\sum x_i}{n}$

Erro padrão de $\bar{x} = \frac{s}{\sqrt{n}}$, $s^2 = \frac{\sum (x_i - \bar{x})^2}{n-1}$

- ERRO PADRÃO DE T: estimador de θ

$$ep(T) = \sqrt{\operatorname{var}(T)}$$

Em geral, var(T) depende de θ , portanto

$$e\hat{p}(T) = \sqrt{\text{var}(T)}$$

Para a maioria dos estimadores, não há formulas para calcular o ep.

BOOTSTRAP

 $\underline{x} = (x_1, \dots, x_n)$: dados independentes $\rightarrow s(\underline{x})$: estatística de interesse

Amostra bootstrap: $\underline{x}^* = (x_1^*, \dots, x_n^*)$, amostramos, com reposição, n vezes de \underline{x}

- ALGORITMO BOOTSTRAP:

gera um grande número de amostras bootstrap independentes: $x^{*1}, x^{*2}, \dots, x^{*B}$

Cada uma de tamanho n. B \approx 200.

- **OBJETIVO:** estimar ep dos estimadores
- RÉPLICA BOOTSTRAP:

Amostra bootstrap $x^* \rightarrow s(x^*)$: réplica bootstrap

- ESTIMADOR BOOTSTRAP DO ERRO PADRÃO: desvio padrão das réplicas bootstrap

$$e\hat{p}_{boot} = \left[\sum_{b=1}^{B} \left[s(\underline{x}^{*b}) - s(\bullet)\right]^{2} / (B-1)\right]^{\frac{1}{2}}$$

$$\text{Com } s(\bullet) = \frac{\sum_{b=1}^{B} s(\underline{x}^{\bullet b})}{B}$$

- ESTIMADOR BOOTSTRAP DE $e\hat{p}_F(\hat{\theta})$: usa \hat{F} no lugar de F, isto é, o estimador bootstrap é

 $ep_{\hat{F}}(\hat{\theta})$: estimador bootstrap **ideal** do ep de $\hat{\theta}$

Não há formula que permite calcular o estimador bootstrap ideal exatamente.

- ALGORITMO BOOTSTRAP: forma computacional de obter uma boa aproximação do valor numérico de $ep_{\hat{x}}(\hat{\theta})$

Para implementar num computador:

- (1) um mecanismo aleatório seleciona inteiros $i_1, i_2, ..., i_n$, entre 1 e n, com probabilidade 1/n;
- (2) a amostra bootstrap consiste nos números

$$\chi_1^* = \chi_{i_1}, \dots, \chi_{i_n}$$

ALGORITMO BOOTSTRAP PARA ESTIMAR ERROS PADRÕES

[1] sele cione B amostras independentes, $\underline{x}^{*1}, \dots, \underline{x}^{*B}$, cada uma consistindo de n valores selecionados com reposição de x. Tome B \approx 25 - 200.

[2] calcule a réplica bootstrap para cada amostra bootstrap:

$$\hat{\theta}^*(b) = s(x^{*b}), \quad b = 1, \dots B.$$

[3] estime o erro padrão $ep_F(\hat{\theta})$ pelo desvio padrão amostral das B réplicas:

 $e\hat{p}_B = \left[\frac{1}{B-1}\sum_{b=1}^B (\hat{\theta}^*(b) - \hat{\theta}^*(\bullet))^2\right]^{\frac{1}{2}}$, estimador bootstrap não paramétrico, onde

$$\hat{\theta}^*(\bullet) = \frac{1}{B} \sum_{b=1}^B \hat{\theta}^*(b)$$

 $\lim_{B\to\infty}e\hat{p}_B=ep_{\hat{F}}=ep_{\hat{F}}(\hat{\theta}^*)$: desvio padrão empírico se aproxima do desvio padrão populacional quando B $\to\infty$.

Neste caso, a "populacional" é a população dos valores $\hat{\theta}^* = s(x^*)$, onde $\hat{F} \to (x_1^*, \dots, x_n^*) = x^*$

BOOTSTRAP PARAMÉTRICA

Útil em problemas para os quais dispomos de alguns conhecimentos sobre a **forma** da população e para comparar com análises não paramétricas.

 $X \rightarrow F$, F: FDA

$$(x_1, x_2, ..., x_n) \sim F$$

Considere um modelo paramétrico para os dados.

 $\hat{F}_{\scriptscriptstyle{pur}}$: estimador de F obtido deste modelo.

 $\hat{\theta}$: estimador do parâmetro θ .

A estimativa bootstrap paramétrica do $ep(\hat{\theta})$ é definida por

$$ep_{\hat{F}_{par}}(\hat{oldsymbol{ heta}}^*)$$

Exemplo: escola de direito

Suponha F ~ $N_2(\underline{\mu},\underline{\nu})$, n = 15 onde

$$\underline{\mu} = \begin{bmatrix} \mu_y \\ \mu_z \end{bmatrix}, \quad \underline{\nu} = \begin{bmatrix} \sigma_y^2 & \sigma_{yz}^2 \\ \sigma_{zy}^2 & \sigma_z^2 \end{bmatrix} \text{ simétrica}$$

Estimamos $\underline{\mu}$ por $\underline{\hat{\mu}} = \begin{bmatrix} \overline{y} \\ \overline{z} \end{bmatrix}$ e V por

$$\hat{V} = \frac{1}{14} \begin{bmatrix} \sum (y_i - \overline{y})^2 & \sum (y_i - \overline{y})(z_i - \overline{z}) \\ \bullet & \sum (z_i - \overline{z})^2 \end{bmatrix}$$

 $\hat{F}_{norm} \rightarrow N_2(\hat{\mu},\hat{V})$: estimador paramétrico de F

 $ep_{\hat{F}_{norm}}(\hat{\theta}^*)$: estimador bootstrap paramétrico de $ep(\hat{\theta})$, onde $\hat{\theta} = cor\hat{r}(y,Z)$.

Retiramos B amostras de tamanho n com reposição da população

$$\hat{F}_{par} = \hat{F}_{norm} \rightarrow (\underline{x}^{*1}, \dots, \underline{x}^{*B})$$

Procede-se, depois, como em (2) e (3) do AB.

B amostra de tamanho 15 de $\hat{F}_{\scriptscriptstyle{norm}}$ e calculamos o coeficiente de correlação para cada amostra.

 $e\hat{p}_{B} = 0.124$ (0,131: estimador não paramétrico)

ESTIMADOR BOOTSTRAP DO VIÉS

$$(x_1, x_2, ..., x_n) \sim F; \theta = t(F). \tilde{\theta} = s(x)$$

CONSIDERE O ESTIMADOR $\hat{\theta} = t(\hat{F})$.

O viés de $\tilde{\theta} = s(x)$ é definido por

$$vi\acute{e}s_F = E_F(s(x)) - t(F)$$

Ou seja, esperança do estimador – θ

Estimadores não viciados são importantes na teoria e na pratica estatística.

Podemos usar bootstrap para avaliar o viés de um estimador.

O estimador bootstrap do viés é definido por

 $vi\acute{e}s_{\hat{F}} = E_{\hat{F}}\{s(x^*)\}-t(\hat{F})$: estimador ideal do viés.

Exemplo:

a) t(F) =
$$\mu$$
, $s(x) = \bar{x}$, $vi\acute{e}S_{\hat{F}} = 0$

b)
$$s(x) = \frac{\sum (x_i - \bar{x})^2}{n}$$
; $vi\acute{e}s[s(x)] = -\frac{1}{n}\sigma^2$; neste caso, $vi\acute{e}s_{\hat{F}} = -\frac{1}{n^2}\sum (x_i - \bar{x})^2$

Para a maioria dos estimadores utilizados na prática, o estimador bootstrap do viés deve ser aproximado por simulação:

[1] geramos amostras bootstrap $(\underline{x}^{*1}, \dots, \underline{x}^{*B})$ e calculamos as replicas bootstrap

$$\tilde{\theta}^*(b) = s(x^{*b}), \quad b = 1, \dots, B.$$

[2] aproximamos as esperanças bootstrap $E_{\hat{r}}\{s^*(x)\}$ pela média

$$\widetilde{\theta}^*(\bullet) = \frac{\sum_{b=1}^B \widetilde{\theta}^*(b)}{B} = \frac{\sum_{b=1}^B s(x^{*b})}{B}$$

[3] o estimador bootstrap do viés é

$$vie\hat{s}_{\scriptscriptstyle R} = \tilde{\theta}^*(\bullet) - t(\hat{F})$$

Exemplo: dados hormônio (bio-equivalência)

As concentrações:

	placebo	oldpatch	newpatch	Old-	New-old
				placebo	
subject				Z	У
1	9243	17649	16449	8406	-1200
2	9671	12013	14614	2342	2601
3	11792	19979	17274	8187	-2705
4	13357	21816	23798	8459	1982
5	9055	13850	12560	4795	-1290
6	6290	9806	10157	3516	351
7	12412	17208	16570	4796	-638
8	18806	29044	26325	10238	-2719
Mean				6342	-4520,3

FDA:
$$\frac{\left|E(novo) - E(antigo)\right|}{E(antigo) - E(placebo)} \le 0.20$$
 critério

Parâmetro:
$$\theta = \frac{E(novo) - E(antigo)}{E(antigo) - E(placebo)}$$

Objetivo: calcular o viés e o erro padrão de $\hat{\theta}$

Considere:

 z_i = medidas com o "antigo" – medidas com o "placebo" y_i = medidas com o "novo" – medidas com o "antigo"

$$x_i=(z_i, y_i), i=1, 2, ..., 8$$

 $X=(x_1, x_i, ..., x_8), \sim F$: desconhecida

$$\theta = t(F) = \frac{E_F(y)}{E_F(z)}$$

$$\hat{\theta} = t(\hat{F}) = \frac{\bar{y}}{\bar{Z}} = \frac{\sum_{i=1}^{8} y_i / 8}{\sum_{i=1}^{8} z_i / 8} = -0.0713$$

Nota: Z e Y são dependentes.

 $|\hat{\theta}|$ << 0,20 , portanto aparentemente a condição do FDA está satisfeita e os dois hormônios são bioequivalêntes.

B=400 amostras bootstrap: $x^{*i} = (x_1^{*i}, \dots, x_8^{*i})$

→ 400 réplicas bootstrap

$$\hat{\boldsymbol{\theta}}^* = \frac{\overline{y}^*}{\overline{z}^*}$$

As 400 réplicas tem um desvio padrão amostral, $e\hat{p}_{400} = 0,105$ Média amostral: $\hat{\theta}^*(\bullet) = -0,0670$.

Estimador bootstrap do viés:

$$vie\hat{s}_{400} = -0.0670 - (-0.0713) = 0.0043$$

 $\Rightarrow \frac{vie\hat{s}_{400}}{e\hat{p}_{400}} = \frac{0,0043}{0,105} = 0,041$, portanto viés sob controle.

Regra: $vie\hat{s} < 0.25 * e\hat{p} \Rightarrow podemos ignorar o viés$

$$RMSE = \sqrt{E_F(\hat{\theta} - \theta)^2} = \sqrt{ep_F^2(\hat{\theta}) + vies_F^2(\hat{\theta}, \theta)} = ep_F(\hat{\theta}) \sqrt{1 + \left(\frac{vies_F}{ep_F}\right)^2} \approx ep_F(\hat{\theta}) \left[1 + \frac{1}{2} \left(\frac{vies_F}{ep_F}\right)^2\right]$$

CORREÇÃO DE VIÉS

 \hat{V} : estimador do $vies_F(\hat{\theta}, \theta) \Rightarrow \overline{\theta} = \hat{\theta} - \hat{V}$: estimador corrigido para o viés.

Tomando

$$\hat{V} = vies_{R} = \hat{\theta}^{*}(\bullet) - \hat{\theta}, obtemos \overline{\theta} = 2\hat{\theta} - \hat{\theta}^{*}(\bullet)$$

Exemplo(hormônio):

$$\hat{V}_{400} = 0.0043$$
 e $\hat{\theta} = -0.0713$ $\overline{\theta} = -0.0713 - 0.0043 = -0.0756$

Observações:

- 1) a correção do viés pode ser perigosa na prática. Mesmo que $\bar{\theta}$ seja menos viesado do que $\hat{\theta}$, ele pode ter erro padrão substancialmente maior.
- 2) O viés é mais difícil de estimar do que o ep, \rightarrow B maior para estimar o viés.
- 3) Se $\hat{v} \ll ep$, melhor usar $\hat{\theta}$ do que $\bar{\theta}$.

INTERVALO DE CONFIANÇA

Dado o estimador $\hat{\theta}$ de θ , seu ep estimado, $e\hat{p}(\hat{\theta})$, o intervalo de confiança(IC) usual, com coeficiente de confiança(C.C.) 90%, para θ é

$$\hat{\theta} \pm 1.645 \, e \hat{p}(\hat{\theta})$$

$$\underline{x} = (x_1, \dots, x_n) \sim F \quad e \quad \hat{\theta} = t(\hat{F})$$

 $e\hat{p}(\hat{\theta})$: algum estimador do $ep(\hat{\theta})$, baseado por ex, em réplicas jackknife ou bootstrap.

Então, sob determinadas condições,

$$\hat{\theta} \xrightarrow{D} N(\theta, e\hat{p}(\hat{\theta})), \quad n \to \infty$$

Ou

$$\frac{\hat{\theta} - \theta}{e\hat{p}(\hat{\theta})} \xrightarrow{\bullet} N(0,1) \tag{8}$$

Assim, $\left[\hat{\theta} - Z^{(1-\alpha)} e\hat{p}, \ \hat{\theta} + Z^{(1-\alpha)} e\hat{p}\right]$ é o IC padrão com C.C. igual a 1-2 α .

APROXIMAÇÃO PARA AMOSTRAS FINITAS:

Para $\hat{\theta} = \bar{x}$, temos seguinte resultado:

$$Z = \frac{\hat{\theta} - \theta}{e\hat{p}} \sim t_{n-1} \qquad (9)$$

E o IC fica

$$\left|\hat{\theta} - t_{n-1}^{(1-\alpha)} e\hat{p}, \hat{\theta} + t_{n-1}^{(1-\alpha)} e\hat{p}\right|$$

Se $\hat{\theta} = \overline{x}$ e x ~normal, a aproximação é exata e o IC é mais largo, refletindo o fato que o ep não é conhecido. Se n \geq 100, $t_{n-1}^{(1-\alpha)} \cong Z^{(1-\alpha)}$.

INTERVALO BOOTSTRAP-t

Com o uso de bootstrap podemos obter IC acurado aem utilizar a expressão (8).

A distribuição de Z em (9) será estimada diretamente dos dados, ou seja, obtemos uma tabela apropriada para o particular conjunto de dados.

PROCEDIMENTO:

- [1] geramos B amostras bootstrap $\underline{x}^{*1}, \dots, \underline{x}^{*B}$
- [2] para cada amostra construímos

$$Z^*(b) = \frac{\hat{\theta}^*(b) - \hat{\theta}}{e\hat{p}^*(b)}$$

Com $\hat{\theta}^*(b) = s(\underline{x}^{*b})$ valor de $\hat{\theta}$ para a amostra \underline{x}^{*b} $e\hat{p}^*(b)$: erro padrão estimado de $\hat{\theta}^*(b)$ para a amostra \underline{x}^{*b}

[3] o α -percentil de $Z^*(b)$ é estimado pelo $\hat{t}^{(\alpha)}$ tal que

$$\#\{Z^*(b)\leq \hat{t}^{(\alpha)}\}/B=\alpha$$

[4] O IC bootstrap-t é dado por

$$\left[\hat{\theta} - \hat{t}^{(\alpha)} e\hat{p}, \hat{\theta} + \hat{t}^{(1-\alpha)} e\hat{p}\right]$$

Ex: se B=1000, a estimativa do 5%-percentil ($\hat{t}^{(5\%)}$) é 0 50°. maior valor dos $Z^*(b)$.

Intervalo percentil

 \underline{x}^* : dados bootstrap

 $\hat{\theta}^* = s(x^*)$: réplicas bootstrap

 \hat{G}^* : FDA de $\hat{\theta}^*$

O intervalo percentil, com C.C. 1-2 α , é definido pelos percentis α e 1- α de \hat{G}^* :

$$\left[\hat{\theta}_{inf}, \quad \hat{\theta}_{sup}\right] = \left[\hat{G}^{-1}(\alpha), \quad \hat{G}^{-1}(1-\alpha)\right]$$

OBSERVAÇÕES:

1) B α não inteiro, $\alpha \le 0.05$. Considere k=[(B+1) α]. Os quantis α e 1- α são dados pela k-ésima maior. E (B+1-k) maior observação, respectivamente.

Ex.: B=50, α =0,05, B α =2,5, k=[51*0,05]=[2,55]=2, portanto α -percentil é a 2ª. Observação e o (1- α)-percentil é a 49ª. Observação.

2) em amostras grandes, a cobertura do IC bootstrap-t tende a ser mais próxima do CC desejado do que o IC padrão e t.

Ex. Ratos:

16 ratos(7: tratamento; 9: controle)

Dados: tempo de sobrevivência (em dias) após o tratamento

Questão: tratamento prolonga sobrevida após a cirurgia?

Tabela 1: dados

Group	Data	Sample Size	mean	Estimated standar error
Treatment	94, 197, 16, 38, 99, 141 23	7	86,86	25,24
Control	52, 104, 146, 10, 51, 30, 40, 27, 46	9	56,22	14,14
		difference	30,63	28,93

Tabela 2: bootstrap estimates of standard error for the mean and median: treatment group. The median is less accurate (has larger standard error) than the mean for this data set.

В	50	100	250	500	1000	∞
mean	19,72	23,63	22,32	23,76	23,02	23,36
median	32,21	36,35	34,46	36,72	36,48	37,83

$$\bar{x} - \bar{y} = 30,63$$
 e $\frac{\bar{x} - \bar{y}}{dp(\bar{x} - \bar{y})} = \frac{30,63}{28,93} = 1,05$ (no)

$$m_1 = med(x) = 94$$
, $m_2 = med(y) = 46 \rightarrow m_1 - m_2 = 48$

$$B = 100 \rightarrow e\hat{p}(m_1) = 11,54, \ e\hat{p}(m_2) = 36,36 \rightarrow e\hat{p}_{boot} = \sqrt{(36,35)^2 + (11,54)^2} = 38,14$$

Estatística para teste: $\frac{48}{38.14}$ = 1,26

IC:

Media dos ratos tratados: $\hat{\theta} = 86,86$ e $e\hat{p} = 25,24$

IC padrão(γ =0,90):

$$[86,86-1,65*25,24; 86,86+1,65*25,24] =$$

[45; 128,4]

B=1000 réplicas: $\hat{\theta}^*$ =?

Tabela 3: percentiles of $\hat{\theta}^*$ based on 1000 bootstrap replications, where $\hat{\theta}$ equals the mean of the treated mice.

2,5%	5%	10%	16%	50%	84%	90%	95%	97,5%
45,9	49,7	56,4	62,7	86,9	112,3	118,7	126,7	135,4

Percentile 5% = 49,7 Percentile 95% = 126,7

Intervalo percentil com C.C. 90% = [49,7; 126,7]

Utilizar os percentis do histograma para definir limites de confiança.

PROCEDIMENTO:

- [1] geramos B amostras bootstrap $\underline{x}^{*1}, \dots, \underline{x}^{*B} \rightarrow \hat{\theta}^{*}(b) = s(\underline{x}^{*b})$
- [2] $\hat{\theta}_{B}^{*(\alpha)}$: α -percentil dos valores $\hat{\theta}^{*}(b) = s(\underline{x}^{*b})$
- [3] IC percentil aproximado com 1-2 α :

$$\begin{bmatrix} \hat{\theta}_{\%, \text{inf}} ; & \hat{\theta}_{\%, \text{sup}} \end{bmatrix} = \begin{bmatrix} \hat{\theta}_{B}^{*(\alpha)} ; & \hat{\theta}_{B}^{*(1-\alpha)} \end{bmatrix}$$

Exemplo: $x_1, x_2, ..., x_{10} \sim N(0,1)$

$$\theta = e^{\mu}$$
, $\mu = m\acute{e}dia \quad populacional \Rightarrow \theta = e^{0} = 1$

 $\hat{\theta} = e^{\bar{x}} = 1,25$ (exemplo artificial)

IC padrão:
$$1,25 \pm 1,96 * e\hat{p}_{1000} = 1,25 \pm 1,96 * 0,34 = [0,59; 1,92]$$

B=1000 réplica
$$\rightarrow \hat{\theta}^* = e^{\bar{x}^*}$$

Percentis empíricos de $\hat{\theta}^* \rightarrow IC$ percentil 95%

→ aprox. Normal não é muito boa nesse caso.

Tabela 4: percentiles of $\hat{\theta}^* = e^{\bar{x}^*}$ for a normal sample of size 10.

2,5%	5%	10%	16%	50%	84%	90%	95%	97,5%
0,75	0,82	0,90	0,98	1,25	1,61	1,75	1,93	2,07