Introduction: Topics Covered.

- What is Probability
- Set Theory Basics
- Probability Models
- Conditional Probability
- Total Probability and Bayes Rule
- Independence
- Counting

What is Probability?

- Measured relative frequency of occurrence of an event.
 Example: toss a coin 100 times, measure frequency of heads or compute probability of raining on a particular day and month (using past years' data)
- Or subjective belief about how "likely" an event is (when do not have data to estimate frequency).
 - Example: any one-time event in history or "how likely is it that a new experimental drug will work?"
 - This may either be a subjective belief or derived from the physics, for e.g. if I flip a symmetric coin (equal weight on both sides), I will get a head with probability 1/2.
- For probabilistic reasoning, two types of problems need to be solved

- 1. Specify the probability "model" or learn it (covered in a statistics class).
- 2. Use the "model" to compute probability of different events (covered here).
- We will assume the model is given and will focus on problem 2.

Set Theory Basics

- Set: any collection of objects (elements of a set).
- Discrete sets
 - Finite number of elements, e.g. numbers of a die
 - Or infinite but countable number of elements, e.g. set of integers
- Continuous sets
 - Cannot count the number of elements, e.g. all real numbers between 0 and 1.
- "Universe" (denoted Ω): consists of all possible elements that could be of interest. In case of random experiments, it is the set of all possible outcomes. Example: for coin tosses, $\Omega = \{H, T\}$.
- Empty set (denoted ϕ): a set with no elements

Set Theory Basics

$$A \cup B = \{ \xi \mid \xi \in A \text{ or } \xi \in B \}$$

 $A \cap B = \{ \xi \mid \xi \in A \text{ and } \xi \in B \}$
 $\overline{A} = \{ \xi \mid \xi \not\in A \}$

- If $A \cap B = \phi$, the empty set, then A and B are said to be mutually exclusive (M.E).
- A partition of Ω is a collection of mutually exclusive subsets of Ω such that their union is Ω .

$$A_i \cap A_j = \phi$$
, and $\bigcup_{i=1}^{\infty} A_i = \Omega$.

Using Venn Diagram

$$A \cap B = \phi$$

$$A_i \cap A_j = \phi$$
, and $\bigcup_{i=1} A_i = \Omega$.

De-Morgan's Laws:

$$A \cup B = A \cap B$$
;

$$A \cap B = A \cup B$$

$$A \cup B$$

 $A \cap B$

 $A \cap B$

Example: Consider the experiment where two coins are simultaneously tossed. Elementary events are ---

$$\xi_1 = (H, H), \quad \xi_2 = (H, T), \quad \xi_3 = (T, H), \quad \xi_4 = (T, T)$$

$$W = \{ X_1, X_2, X_3, X_4 \} \qquad A = \{ \xi_1, \xi_2, \xi_3 \}$$

$$A = \left\{ \xi_1, \xi_2, \xi_3 \right\}$$

- Subset: $A \subseteq B$: if every element of A also belongs to B.
- Strict subset: $A \subset B$: if every element of A also belongs to B and B has more elements than A.
- Belongs: ∈, Does not belong: ∉
- Complement: A' or A^c , Union: $A \cup B$, Intersection: $A \cap B$
 - $-A' \triangleq \{x \in \Omega | x \notin A\}$
 - $-A \cup B \triangleq \{x | x \in A, or x \in B\}, x \in \Omega \text{ is assumed.}$
 - $-A \cap B \triangleq \{x | x \in A, and x \in B\}$
- Disjoint sets: A and B are disjoint if $A \cap B = \phi$ (empty), i.e. they have no common elements.

DeMorgan's Laws

$$(A \cup B)' = A' \cap B' \tag{1}$$

$$(A \cap B)' = A' \cup B' \tag{2}$$

- Proofs: Need to show that every element of LHS (left hand side) is also an element of RHS (right hand side), i.e. LHS \subseteq RHS and show vice versa, i.e. RHS \subseteq LHS.
- We show the proof of the first property
 - * If $x \in (A \cup B)'$, it means that x does not belong to A or B. In other words x does not belong to A and x does not B either. This means x belongs to the complement of A and to the complement of B, i.e. $x \in A' \cap B'$.
 - * Just showing this much does not complete the proof, need to show the other side also.
 - * If $x \in A' \cap B'$, it means that x does not belong to A and it does not

belong to B, i.e. it belongs to neither A nor B, i.e. $x \in (A \cup B)'$

* This completes the argument

Probabilistic models

- There is an underlying process called **experiment** that produces exactly ONE **outcome**.
- A probabilistic model: consists of a sample space and a probability law
 - Sample space (denoted Ω): set of all possible outcomes of an experiment
 - Event: any subset of the sample space
 - Probability Law: assigns a probability to every set A of possible outcomes (event)
 - Choice of sample space (or universe): every element should be distinct and mutually exclusive (disjoint); and the space should be "collectively exhaustive" (every possible outcome of an experiment should be included).

• Probability Axioms:

- 1. Nonnegativity. $P(A) \ge 0$ for every event A.
- 2. **Additivity.** If A and B are two **disjoint** events, then $P(A \cup B) = P(A) + P(B)$ (also extends to any countable number of disjoint events).
- 3. **Normalization.** Probability of the entire sample space, $P(\Omega) = 1$.
- Probability of the empty set, $P(\phi) = 0$ (follows from Axioms 2 & 3).
- Discrete probability law: sample space consists of a finite number of possible outcomes, law specified by probability of single element events.
 - Example: for a fair coin toss, $\Omega = \{H, T\}$, P(H) = P(T) = 1/2
 - Discrete uniform law for any event A:

$$P(A) = \frac{\text{number of elements in A}}{n}$$

• Continuous probability law: e.g. $\Omega = [0, 1]$: probability of any single element event is zero, need to talk of probability of a subinterval, [a, b] of [0, 1].

Properties of probability laws

1. If
$$A \subseteq B$$
, then $P(A) \leq P(B)$

2.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

3.
$$P(A \cup B) \le P(A) + P(B)$$

4.
$$P(A \cup B \cup C) = P(A) + P(A' \cap B) + P(A' \cap B' \cap C)$$

5. Note: Some books use A^c for A' (complement of set A).

Conditional Probability

- Given that we know that an event B has occurred, what is the probability that event A occurred? Denoted by P(A|B). Example: Roll of a 6-sided die. Given that the outcome is even, what is the probability of a 6? Answer: 1/3
- When number of outcomes is finite and all are equally likely,

$$P(A|B) = \frac{\text{number of elements of } A \cap B}{\text{number of elements of } B}$$
 (3)

• In general,

$$P(A|B) \triangleq \frac{P(A \cap B)}{P(B)} \tag{4}$$

• P(A|B) is a probability law (satisfies axioms) on the universe B. Exercise: show this.

Total Probability and Bayes Rule

• Total Probability Theorem: Let $A_1, \ldots A_n$ be disjoint events which form a partition of the sample space $(\bigcup_{i=1}^n A_i = \Omega)$. Then for any event B,

$$P(B) = P(A_1 \cap B) + \dots + P(A_n \cap B)$$

= $P(A_1)P(B|A_1) + \dots + P(A_n)P(B|A_n)$ (5)

• Bayes rule: Let $A_1, \ldots A_n$ be disjoint events which form a partition of the sample space. Then for any event B, s.t. P(B) > 0, we have

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(B)} = \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + \dots + P(A_n)P(B|A_n)}$$
(6)

- Inference using Bayes rule
 - There are multiple "causes" $A_1, A_2, ...A_n$ that result in a certain "effect" B. Given that we observe the effect B, what is the probability that the cause was A_i ? Answer: use Bayes rule.
 - Radar detection: what is the probability of the aircraft being present given that the radar registers it?

Independence

- P(A|B) = P(A) and so $P(A \cap B) = P(B)P(A)$: the fact that B has occurred gives no information about the probability of occurrence of A. Example: A= head in first coin toss, B = head in second coin toss.
- "Independence": DIFFERENT from "mutually exclusive" (disjoint)
 - Events A and B are disjoint if $P(A \cap B) = 0$: cannot be independent if P(A) > 0 and P(B) > 0.
 - Example: A = head in a coin toss, B = tail in a coin toss
 - Independence: a concept for events in a sequence. Independent events with P(A)>0, P(B)>0 cannot be disjoint
- Independence of a collection of events

- $P(\cap_{i\in S}A_i) = \prod_{i\in S}P(A_i)$ for every subset S of $\{1,2,..n\}$
- Reliability analysis of complex systems: independence assumption often simplifies calculations
 - What is P(system fails) of the system $A \to B$?* Let $p_i = \text{probability}$ of success of component i.
 - * m components in series: $P(\text{system fails}) = 1 p_1 p_2 \dots p_m$ (succeeds if all components succeed).
 - * m components in parallel: $P(\text{system fails}) = (1 p_1) \dots (1 p_m)$ (fails if all the components fail).
- Independent Bernoulli trials and Binomial probabilities
 - A Bernoulli trial: a coin toss (or any experiment with two possible outcomes, e.g. it rains or does not rain, bit values)
 - Independent Bernoulli trials: sequence of independent coin tosses

- Binomial: Given n independent coin tosses, what is the probability of k heads (denoted p(k))?
 - * probability of any one sequence with k heads is $p^k(1-p)^{n-k}$
 - * number of such sequences (from counting arguments): $\binom{n}{k}$

*
$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
, where $\binom{n}{k} \triangleq \frac{n!}{(n-k)!k!}$

 Application: what is the probability that more than c customers need an internet connection at a given time? We know that at a given time, the probability that any one customer needs connection is p.

Answer:
$$\sum_{k=c+1}^{n} p(k)$$

1 What is a random variable (r.v.)?

- A real valued function of the outcome of an experiment
- Example: Coin tosses. r.v. X = 1 if heads and X = 0 if tails (Bernoulli r.v.).
- A function of a r.v. defines another r.v.
- Discrete r.v.: X takes values from the set of integers

2 Discrete Random Variables & Probability Mass Function (PMF)

• Probability Mass Function (PMF): Probability that the r.v. X takes a value x is PMF of X computed at X = x. Denoted by $p_X(x)$. Thus

$$p_X(x) = P(\{X = x\}) = P(\text{all possible outcomes that result in the event } \{X = x\})$$
 (1)

- Everything that we learnt in Chap 1 for events applies. Let Ω is the sample space (space of all possible values of X in an experiment). Applying the axioms,
 - $-p_X(x) \geq 0$
 - $-P({X \in S}) = \sum_{x \in S} p_X(x)$ (follows from Additivity since different events ${X = x}$ are disjoint)
 - $-\sum_{x\in\Omega}p_X(x)=1$ (follows from Additivity and Normalization).
 - Example: X = number of heads in 2 fair coin tosses (p = 1/2). $P(X > 0) = \sum_{x=1}^{2} p_X(x) = 0.75$.
- Can also define a binary r.v. for any event A as: X = 1 if A occurs and X = 0 otherwise. Then X is a Bernoulli r.v. with p = P(A).
- Bernoulli (X = 1 (heads) or X = 0 (tails)) r.v. with probability of heads p

Bernoulli(p):
$$p_X(x) = p^x (1-p)^{1-x}, x = 0, or x = 1$$
 (2)

• Binomial (X = x heads out of n independent tosses, probability of heads p)

Binomial(n,p):
$$p_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, \dots n$$
 (3)

• Geometric r.v., X, with probability of heads p (X= number of coin tosses needed for a head to come up for the first time or number of independent trials needed to achieve the first "success").

- Example: I keep taking a test until I pass it. Probability of passing the test in the x^{th} try is $p_X(x)$.
- Easy to see that

Geometric(p):
$$p_X(x) = (1-p)^{x-1}p, \quad x = 0, 1, 2, \dots \infty$$
 (4)

• Poisson r.v. X with expected number of arrivals Λ (e.g. if X= number of arrivals in time τ with arrival rate λ , then $\Lambda=\lambda\tau$)

$$Poisson(\Lambda): \ p_X(x) = \frac{e^{-\Lambda}(\Lambda)^x}{x!}, \ x = 0, 1, \dots \infty$$
 (5)

• Uniform(a,b):

$$p_X(x) = \begin{cases} 1/(b-a+1), & if \ x = a, a+1, \dots b \\ 0, & otherwise \end{cases}$$
 (6)

- pmf of Y = g(X)
 - $-p_Y(y) = P(\{Y = y\}) = \sum_{x|g(x) = y} p_X(x)$ Example Y = |X|. Then $p_Y(y) = p_X(y) + p_X(-y)$, if y > 0 and $p_Y(0) = p_X(0)$.

Example Y = |X|. Then $p_Y(y) = p_X(y) + p_X(-y)$, if y > 0 and $p_Y(0) = p_X(0)$. Exercise: $X \sim Uniform(-4,4)$ and Y = |X|, find $p_Y(y)$.

- Expectation, mean, variance
 - Motivating example: Read pg 81
 - Expected value of X (or mean of X): $E[X] \triangleq \sum_{x \in \Omega} x p_X(x)$
 - Interpret mean as center of gravity of a bar with weights $p_X(x)$ placed at location x
 - Expected value of Y = g(X): $E[Y] = E[g(X)] = \sum_{x \in \Omega} g(x) p_X(x)$. Exercise: show this.
 - $-n^{th}$ moment of X: $E[X^n]$. n^{th} central moment: $E[(X-E[X])^n]$.
 - Variance of X: $var[X] \triangleq E[(X E[X])^2]$ (2nd central moment)
 - Y = aX + b (linear fn): E[Y] = aE[X] + b, $var[Y] = a^2var[X]$
 - Poisson: $E[X] = \Lambda$, $var[X] = \Lambda$ (show this)
 - Bernoulli: E[X] = p, var[X] = p(1 p) (show this)
 - Uniform(a,b): E[X] = (a+b)/2, $var[X] = \frac{(b-a+1)^2-1}{12}$ (show this)

3 Multiple Discrete Random Variables: Topics

- Joint PMF, Marginal PMF of 2 and or more than 2 r.v.'s
- PMF of a function of 2 r.v.'s
- Expected value of functions of 2 r.v's
- Expectation is a linear operator. Expectation of sums of n r.v.'s
- Conditioning on an event and on another r.v.
- Bayes rule
- Independence

4 Joint & Marginal PMF, PMF of function of r.v.s, Expectation

- For everything in this handout, you can think in terms of events $\{X = x\}$ and $\{Y = y\}$ and apply what you have learnt in Chapter 1.
- The **joint PMF** of two random variables X and Y is defined as

$$p_{X,Y}(x,y) \triangleq P(X=x,Y=y)$$

where P(X = x, Y = y) is the same as $P({X = x} \cap {Y = y})$.

- Let A be the set of all values of x, y that satisfy a certain property, then $P((X,Y) \in A) = \sum_{(x,y) \in A} p_{X,Y}(x,y)$
- e.g. X = outcome of first die toss, Y is outcome of second die toss, A = sum of outcomes of the two tosses is even.
- Marginal PMF is another term for the PMF of a single r.v. obtained by "marginalizing" the joint PMF over the other r.v., i.e. the marginal PMF of X, $p_X(x)$ can be computed as follows:

Apply Total Probability Theorem to $p_{X,Y}(x,y)$, i.e. sum over $\{Y=y\}$ for different values y (these are a set of disjoint events whose union is the sample space):

$$p_X(x) = \sum_{y} p_{X,Y}(x,y)$$

Similarly the marginal PMF of Y, $p_Y(y)$ can be computed by "marginalizing" over X

$$p_Y(y) = \sum_{x} p_{X,Y}(x,y)$$

• PMF of a function of r.v.'s: If Z = g(X, Y),

$$p_Z(z) = \sum_{(x,y):g(x,y)=z} p_{X,Y}(x,y)$$

- Read the above as $p_Z(z) = P(Z = z) = P(\text{all values of }(X, Y) \text{ for which } g(X, Y) = z)$

• Expected value of functions of multiple r.v.'s If Z = g(X, Y),

$$E[Z] = \sum_{(x,y)} g(x,y) p_{X,Y}(x,y)$$

- More than 2 r.v.s.
 - Joint PMF of n r.v.'s: $p_{X_1,X_2,...X_n}(x_1,x_2,...x_n)$
 - We can **marginalize** over one or more than one r.v.,

e.g.
$$p_{X_1,X_2,...X_{n-1}}(x_1,x_2,...x_{n-1}) = \sum_{x_n} p_{X_1,X_2,...X_n}(x_1,x_2,...x_n)$$

e.g. $p_{X_1,X_2}(x_1,x_2) = \sum_{x_3,x_4,...x_n} p_{X_1,X_2,...X_n}(x_1,x_2,...x_n)$
e.g. $p_{X_1}(x_1) = \sum_{x_2,x_3,...x_n} p_{X_1,X_2,...X_n}(x_1,x_2,...x_n)$

• Expectation is a linear operator. Exercise: show this

$$E[a_1X_1 + a_2X_2 + \dots a_nX_n] = a_1E[X_1] + a_2E[X_2] + \dots a_nE[X_n]$$

5 Conditioning and Bayes rule

• PMF of r.v. X conditioned on an event A with P(A) > 0

$$p_{X|A}(x) \triangleq P(\lbrace X = x \rbrace | A) = \frac{P(\lbrace X = x \rbrace \cap A)}{P(A)}$$

– $p_{X|A}(x)$ is a legitimate PMF, i.e. $\sum_{x} p_{X|A}(x) = 1$.

• PMF of r.v. X conditioned on r.v. Y. Replace A by $\{Y = y\}$

$$p_{X|Y}(x|y) \triangleq P(\{X=x\} | \{Y=y\}) = \frac{P(\{X=x\} \cap \{Y=y\})}{P(\{Y=y\})} = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$

The above holds for all y for which $p_y(y) > 0$. The above is equivalent to

$$p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$$

$$p_{X,Y}(x,y) = p_{Y|X}(y|x)p_X(x)$$

- $-p_{X|Y}(x|y)$ (with $p_Y(y) > 0$) is a legitimate PMF, i.e. $\sum_x p_{X|Y}(x|y) = 1$.
- Similarly, $p_{Y|X}(y|x)$ is also a legitimate PMF, i.e. $\sum_{y} p_{Y|X}(y|x) = 1$. Show this.

• Bayes rule. How to compute $p_{X|Y}(x|y)$ using $p_X(x)$ and $p_{Y|X}(y|x)$,

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_{Y}(y)}$$
$$= \frac{p_{Y|X}(y|x)p_{X}(x)}{\sum_{x'} p_{Y|X}(y|x')p_{X}(x')}$$

• Conditional Expectation given event A

$$E[X|A] = \sum_{x} x p_{X|A}(x)$$

$$E[g(X)|A] = \sum_{x} g(x) p_{X|A}(x)$$

• Conditional Expectation given r.v. Y = y. Replace A by $\{Y = y\}$

$$E[X|Y = y] = \sum_{x} x p_{X|Y}(x|y)$$

Note this is a function of Y = y.

• Total Expectation Theorem

$$E[X] = \sum_{y} p_Y(y)E[X|Y=y]$$

• Total Expectation Theorem for disjoint events $A_1, A_2, \dots A_n$ which form a partition of sample space.

$$E[X] = \sum_{i=1}^{n} P(A_i)E[X|A_i]$$

Note A_i 's are disjoint and $\bigcup_{i=1}^n A_i = \Omega$

6 Independence

• Independence of a r.v. & an event A. r.v. X is independent of A with P(A) > 0, iff

$$p_{X|A}(x) = p_X(x)$$
, for all x

– This also implies: $P({X = x} \cap A) = p_X(x)P(A)$.

_

• Independence of 2 r.v.'s. R.v.'s X and Y are independent iff

$$p_{X|Y}(x|y) = p_X(x)$$
, for all x and for all y for which $p_Y(y) > 0$

This is equivalent to the following two things(show this)

$$p_{X,Y}(x,y) = p_X(x)p_Y(y)$$

$$p_{Y|X}(y|x) = p_Y(y)$$
, for all y and for all x for which $p_X(x) > 0$

- Conditional Independence of r.v.s X and Y given event A with P(A) > 0 ** $p_{X|Y,A}(x|y) = p_{X|A}(x)$ for all x and for all y for which $p_{Y|A}(y) > 0$ or that $p_{X,Y|A}(x,y) = p_{X|A}(x)p_{Y|A}(y)$
- Expectation of product of independent r.v.s.
 - If X and Y are independent, E[XY] = E[X]E[Y].

$$E[XY] = \sum_{y} \sum_{x} xyp_{X,Y}(x,y)$$

$$= \sum_{y} \sum_{x} xyp_{X}(x)p_{Y}(y)$$

$$= \sum_{y} yp_{Y}(y) \sum_{x} xp_{X}(x)$$

$$= E[X]E[Y]$$

- If X and Y are independent, E[g(X)h(Y)] = E[g(X)]E[h(Y)]. (Show).
- If $X_1, X_2, \dots X_n$ are independent,

$$p_{X_1,X_2,...X_n}(x_1,x_2,...x_n) = p_{X_1}(x_1)p_{X_2}(x_2)...p_{X_n}(x_n)$$

- Variance of sum of 2 independent r.v.'s. Let X, Y are independent, then Var[X + Y] = Var[X] + Var[Y].
- Variance of sum of n independent r.v.'s. If $X_1, X_2, ... X_n$ are independent,

$$Var[X_1 + X_2 + \dots X_n] = Var[X_1] + Var[X_2] + \dots Var[X_n]$$

- Application: Variance of a Binomial, See Example 2.20 Binomial r.v. is a sum of n independent Bernoulli r.v.'s. So its variance is np(1-p)
- Application: Mean and Variance of Sample Mean, Example 2.21 Let $X_1, X_2, ... X_n$ be independent and identically distributed, i.e. $p_{X_i}(x) = p_{X_1}(x)$ for all i. Thus all have the same mean (denote by a) and same variance (denote by v). Sample mean is defined as $S_n = \frac{X_1 + X_2 + ... X_n}{n}$. Since E[.] is a linear operator, $E[S_n] = \sum_{i=1}^n \frac{1}{n} E[X_i] = \frac{na}{n} = a$.

Since E[.] is a linear operator, $E[S_n] = \sum_{i=1}^n \frac{1}{n} E[X_i] = \frac{n}{n} = a$. Since the X_i 's are independent, $Var[S_n] = \sum_{i=1}^n \frac{1}{n^2} Var[X_i] = \frac{nv}{n^2} = \frac{v}{n}$

1 Continuous R.V. & Probability Density Function (PDF)

- A r.v. X is called **continuous** if there is a function $f_X(x)$ with $f_X(x) \ge 0$, called **probability** density function (PDF), s.t. $P(X \in B) = \int_B f_X(x) dx$ for all subsets B of the real line.
- Specifically, for B = [a, b],

$$P(a \le X \le b) = \int_{x=a}^{b} f_X(x) dx \tag{1}$$

and can be interpreted as the area under the graph of the PDF $f_X(x)$.

- For any single value a, $P({X = a}) = \int_{x=a}^{a} f_X(x)dx = 0$.
- Thus $P(a \le X \le b) = P(a < X < b) = P(a \le X < b) = P(a < X \le b)$
- Sample space $\Omega = (-\infty, \infty)$
- Normalization: $P(\Omega) = P(-\infty < X < \infty) = 1$. Thus $\int_{x=-\infty}^{\infty} f_X(x) dx = 1$
- Interpreting the PDF: For an interval $[x, x + \delta]$ with very small δ ,

$$P([x, x+\delta]) = \int_{t=x}^{x+\delta} f_X(t)dt \approx f_X(x)\delta$$
 (2)

Thus $f_X(x)$ = probability mass per unit length near x.

- Expected value: $E[X] = \int_{x=-\infty}^{\infty} x f_X(x) dx$. Similarly define E[g(X)] and var[X]
- Mean and variance of uniform, Example 3.4
- Exponential r.v.

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & if \ x \ge 0\\ 0, & otherwise \end{cases}$$
 (3)

- Show it is a legitimate PDF.
- $-E[X] = 1/\lambda, var[X] = 1/\lambda^2 \text{ (show)}.$
- Example: X = amount of time until an equipment breaks down or a bulb burns out.
- Example 3.5 (Note: you need to use the correct time unit in the problem, here days).

2 Cumulative Distribution Function (CDF)

- Cumulative Distribution Function (CDF), $F_X(x) \triangleq P(X \leq x)$ (probability of event $\{X \leq x\}$).
- Defined for discrete and continuous r.v.'s

Discrete:
$$F_X(x) = \sum_{k \le x} p_X(k)$$
 (4)

Continuous:
$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$
 (5)

- Note the PDF $f_X(x)$ is NOT a probability of any event, it can be > 1.
- But $F_X(x)$ is the probability of the event $\{X \leq x\}$ for both continuous and discrete r.v.'s.
- Properties
 - $-F_X(x)$ is monotonically nondecreasing in x.
 - $-F_X(x) \to 0$ as $x \to -\infty$ and $F_X(x) \to 1$ as $x \to \infty$
 - $-F_X(x)$ is continuous for continuous r.v.'s and it is piecewise constant for discrete r.v.'s
- Relation to PMF, PDF

Discrete:
$$p_X(k) = F_X(k) - F_X(k-1)$$
 (6)

Continuous:
$$f_X(x) = \frac{dF_X}{dx}(x)$$
 (7)

- Using CDF to compute PMF.
 - Example 3.6: Compute PMF of maximum of 3 r.v.'s: What is the PMF of the maximum score of 3 test scores, when each test score is independent of others and each score takes any value between 1 and 10 with probability 1/10?

 Answer: Compute $F_X(k) = P(X \le k) = P(\{X_1 \le k\}, and \{X_2 \le k\}, and \{X_3 \le k\}) = P$

Answer: Compute $F_X(k) = P(A \le k) = P(\{X_1 \le k\}, ana \{X_2 \le k\}, ana \{X_3 \le k\}) = P(\{X_1 \le k\})P(\{X_2 \le k\})P(\{X_3 \le k\})$ (follows from independence of the 3 events) and then compute the PMF using (6).

- For continuous r.v.'s, in almost all cases, the correct way to compute the CDF of a function of a continuous r.v. (or of a set of continuous r.v.'s) is to compute the CDF first and then take its derivative to get the PDF. We will learn this later.

-

- The PDF of a discrete r.v. X, $f_X(x) \triangleq \sum_{j=-\infty}^{\infty} p_X(j)\delta(x-j)$.
- If I integrate this, I get $F_X(x) = \int_{t \le x} f_X(t) dt = \sum_{j \le x} p_X(j)$ which is the same as the CDF definition given in (4)

- Geometric and exponential CDF **
 - Let $X_{geo,p}$ be the number of trials required for the first success (geometric) with probability of success = p. Then we can show that the probability of $\{X_{geo,p} \leq k\}$ is equal to the probability of an exponential r.v. $\{X_{expo,\lambda} \leq k\delta\}$ with parameter λ , if δ satisfies 1-p = $e^{-\lambda\delta}$ or $\delta = -\ln(1-p)/\lambda$

Proof: Equate $F_{X_{geo,p}}(k) = 1 - (1-p)^k$ to $F_{X_{expo,\lambda}}(k\delta) = 1 - e^{-\lambda k\delta}$

- Implication: When δ (time interval between two Bernoulli trials (coin tosses)) is small, then $F_{X_{geo,p}}(k) \approx F_{X_{expo,\lambda}}(k\delta)$ with $p = \lambda \delta$ (follows because $e^{-\lambda \delta} \approx 1 \lambda \delta$ for δ small).
- Binomial(n, p) becomes Poisson(np) for small time interval, δ , between coin tosses Proof idea:
 - Consider a sequence of n independent coin tosses with probability of heads p in any toss (number of heads $\sim Binomial(n, p)$).
 - Assume the time interval between two tosses is δ .
 - Then expected value of X in one toss (in time δ) is p.
 - When δ small, expected value of X per unit time is $\lambda = p/\delta$.
 - The total time duration is $\tau = n\delta$.
 - When $\delta \to 0$, but λ and τ are finite, $n \to \infty$ and $p \to 0$.
 - When δ small, can show that the PMF of a Binomial(n, p) r.v. is approximately equal to the PMF of $Poisson(\lambda \tau)$ r.v. with $\lambda \tau = np$
- The Poisson process is a continuous time analog of a Bernoulli process (Details in Chap 5) **

3 Normal (Gaussian) Random Variable

- The most commonly used r.v. in Communications and Signal Processing
- \bullet X is normal or Gaussian if it has a PDF of the form

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/2\sigma^2}$$

where one can show that $\mu = E[X]$ and $\sigma^2 = var[X]$.

- Standard normal: Normal r.v. with $\mu=0,\,\sigma^2=1.$
- Cdf of a standard normal Y, denoted $\Phi(y)$

$$\Phi(y) \triangleq P(Y \le y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{y} e^{-t^2/2} dt$$

• Let X is a normal r.v. with mean μ , variance σ^2 . Then can show that $Y = \frac{X-\mu}{\sigma}$ is a standard normal r.v.

3

• Computing CDF of any normal r.v. X using the table for Φ : $F_X(x) = \Phi(\frac{x-\mu}{\sigma})$. See Example 3.7.

4 Multiple Continuous Random Variables: Topics

- Conditioning on an event
- Joint and Marginal PDF
- Expectation, Independence, Joint CDF, Bayes rule
- Derived distributions
 - Function of a Single random variable: Y = g(X) for any function g
 - Function of a Single random variable: Y = g(X) for linear function g
 - Function of a Single random variable: Y = g(X) for strictly monotonic g
 - Function of Two random variables: Z = g(X, Y) for any function g

5 Conditioning on an event.

$$f_{X|A}(x) := \begin{cases} \frac{f_X(x)}{P(A)} & \text{if } A \text{ occurs} \\ 0 & \text{otherwise} \end{cases}$$

Consider the special case when $A := \{X \in R\}$, e.g. the region R can be the interval [a, b]. In this case, we should be writing $f_{X|\{X \in R\}}$. But to keep things simple, we misuse notation to also write

$$f_{X|R}(x) := \begin{cases} \frac{f_X(x)}{P(X \in R)} & \text{if } x \in R \\ 0 & \text{otherwise} \end{cases}$$
$$:= \begin{cases} \frac{f_X(x)}{\int_{t \in R} f_X(t) dt} & \text{if } x \in R \\ 0 & \text{otherwise} \end{cases}$$

6 Joint and Marginal PDF

- Two r.v.s X and Y are **jointly continuous** iff there is a function $f_{X,Y}(x,y)$ with $f_{X,Y}(x,y) \ge 0$, called the **joint PDF**, s.t. $P((X,Y) \in B) = \int_B f_{X,Y}(x,y) dx dy$ for all subsets B of the 2D plane.
- Specifically, for $B = [a, b] \times [c, d] \triangleq \{(x, y) : a \le x \le b, c \le y \le d\},\$

$$P(a \le X \le b, c \le Y \le d) = \int_{y=c}^{d} \int_{x=a}^{b} f_{X,Y}(x,y) dx dy$$

• Interpreting the joint PDF: For small positive numbers δ_1, δ_2 ,

$$P(a \le X \le a + \delta_1, c \le Y \le c + \delta_2) = \int_{u=c}^{c+\delta_2} \int_{x=a}^{a+\delta_1} f_{X,Y}(x, y) dx dy \approx f_{X,Y}(a, c) \delta_1 \delta_2$$

Thus $f_{X,Y}(a,c)$ is the probability mass per unit area near (a,c).

• Marginal PDF: The PDF obtained by integrating the joint PDF over the entire range of one r.v. (in general, integrating over a set of r.v.'s)

$$P(a \le X \le b) = P(a \le X \le b, -\infty \le Y \le \infty) = \int_{x=a}^{b} \int_{y=-\infty}^{\infty} f_{X,Y}(x, y) dy dx$$

$$\implies f_X(x) = \int_{y=-\infty}^{\infty} f_{X,Y}(x, y) dy$$

• Example 3.12, 3.13

7 Conditional PDF

• Conditional PDF of X given that Y = y is defined as

$$f_{X|Y}(x|y) \triangleq \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

- For any y, $f_{X|Y}(x|y)$ is a legitimate PDF: integrates to 1.
- Example 3.15
- Interpretation: For small positive numbers δ_1, δ_2 , consider the probability that X belongs to a small interval $[x, x + \delta_1]$ given that Y belongs to a small interval $[y, y + \delta_2]$

$$P(x \le X \le x + \delta_1 | y \le Y \le y + \delta_2) = \frac{P(x \le X \le x + \delta_1, y \le Y \le y + \delta_2)}{P(y \le Y \le y + \delta_2)}$$

$$\approx \frac{f_{X,Y}(x,y)\delta_1\delta_2}{f_Y(y)\delta_2}$$

$$= f_{X|Y}(x|y)\delta_1$$

• Since $f_{X|Y}(x|y)\delta_1$ does not depend on δ_2 , we can think of the limiting case when $\delta_2 \to 0$ and so we get

$$P(x \le X \le x + \delta_1 | Y = y) = \lim_{\delta_2 \to 0} P(x \le X \le x + \delta_1 | y \le Y \le y + \delta_2) \approx f_{X|Y}(x|y)\delta_1 \quad \delta_1 \text{ small } x \in X = 0$$

 \bullet In general, for any region A, we have that

$$P(X \in A|Y = y) = \lim_{\delta \to 0} P(X \in A|y \le Y \le y + \delta) = \int_{x \in A} f_{X|Y}(x|y) dx$$

8 Expectation, Independence, Joint & Conditional CDF, Bayes

- Expectation: See page 172 for E[g(X)|Y=y], E[g(X,Y)|Y=y] and total expectation theorem for E[g(X)] and for E[g(X,Y)].
- Independence: X and Y are independent iff $f_{X|Y} = f_X$ (or iff $f_{X,Y} = f_X f_Y$, or iff $f_{Y|X} = f_Y$)
- If X and Y independent, any two events $\{X \in A\}$ and $\{Y \in B\}$ are independent.
- If X and Y independent, E[g(X)h(Y)] = E[g(X)]E[h(Y)] and Var[X+Y] = Var[X] + Var[Y]Exercise: show this.
- Joint CDF:

$$F_{X,Y}(x,y) := P(X \le x, Y \le y) = \int_{t=-\infty}^{y} \int_{s=-\infty}^{x} f_{X,Y}(s,t) ds dt$$

• Obtain joint PDF from joint CDF:

$$f_{X,Y}(x,y) = \frac{\partial^2 F_{X,Y}}{\partial x \partial y}(x,y)$$

• Conditional CDF:

$$F_{X|Y}(x|y) := P(X \le x|Y = y) = \lim_{\delta \to 0} P(X \le x|y \le Y \le y + \delta) = \int_{t = -\infty}^{x} f_{X|Y}(t|y)dt$$

• Bayes rule when unobserved phenomenon is continuous. Pg 175 and Example 3.18. Recall that $f_{X|Y}(x|y)$ is, by definition, such that, for δ small,

$$P(X \in [x, x + \delta]|Y = y) = f_{X|Y}(x|y)\delta$$

Also, for δ , δ_2 small,

$$P(X \in [x, x + \delta], Y \in [y, y + \delta_2]) = f_{X,Y}(x, y)\delta\delta_2$$

Using Bayes rule for events,

$$P(X \in [x, x+\delta] | Y \in [y, y+\delta_2]) = \frac{P(X \in [x, x+\delta], Y \in [y, y+\delta_2])}{P(Y \in [y, y+\delta_2])} = \frac{f_{X,Y}(x, y)\delta\delta_2}{f_Y(y)\delta_2} = \frac{f_{X,Y}(x, y)\delta}{f_Y(y)}$$

Notice that the right hand side does not depend on δ_2 . Taking the limit $\delta_2 \to 0$, we get

$$P(X \in [x, x + \delta]|Y = y) = \lim_{\delta_2 \to 0} P(X \in [x, x + \delta]|Y \in [y, y + \delta_2]) = \frac{f_{X,Y}(x, y)\delta}{f_Y(y)}$$

Thus,

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

• Bayes rule when unobserved phenomenon is discrete. Pg 176 and Example 3.19. For e.g., say discrete r.v. N is the unobserved phenomenon. Then for δ small,

$$\begin{split} P(N = i | X \in [x, x + \delta]) &= P(N = i | X \in [x, x + \delta]) \\ &= \frac{P(N = i) P(X \in [x, x + \delta] | N = i)}{P(X \in [x, x + \delta])} \\ &= \frac{p_N(i) f_{X|N}(x|i) \delta}{\sum_j p_N(j) f_{X|N}(x|j) \delta} \\ &= \frac{p_N(i) f_{X|N}(x|i)}{\sum_j p_N(j) f_{X|N}(x|j)} \end{split}$$

Notice that the right hand side is independent of δ . Thus we can take $\lim_{\delta\to 0}$ on both sides and the right side will not change. Thus we get

$$p_{N|X}(i|x) = P(N = i|X = x) = \lim_{\delta \to 0} P(N = i|X \in [x, x + \delta]) = \frac{p_N(i)f_{X|N=i}(x)}{\sum_j p_N(j)f_{X|N=j}(x)}$$

• Bayes rule with conditioning on events. The derivation is analogous to the above conditioning on discrete r.v.'s case.

Suppose that events $A_1, A_2, \dots A_n$ form a partition, i.e. they are disjoint and their union is the entire sample space. The simplest example is n = 2, $A_1 = A$, $A_2 = A^c$. Then

$$P(A_i|X = x) = \frac{P(A_i)f_{X|A_i}(x)}{\sum_{j} P(A_j)f_{X|A_j}(x)}$$

- More than 2 random variables (Pg 178, 179) **
- 9 Derived distributions: PDF of g(X) and of g(X,Y)
 - Obtaining PDF of Y = g(X). ALWAYS use the following 2 step procedure:
 - Compute CDF first. $F_Y(y) = P(g(X) \le y) = \int_{x|g(x) \le y} f_X(x) dx$
 - Obtain PDF by differentiating F_Y , i.e. $f_Y(y) = \frac{\partial F_Y}{\partial y}(y)$
 - Special Case 1: Linear Case: Y = aX + b. Can show that

$$f_Y(y) = \frac{1}{|a|} f_X(\frac{y-b}{a})$$

- Special Case 2: Strictly Monotonic Case.
 - Consider Y = g(X) with g being a **strictly monotonic** function of X.
 - Thus g is a one to one function.

- Thus there exists a function h s.t. y = g(x) iff x = h(y) (i.e. h is the inverse function of g, often denotes as $h \triangleq g^{-1}$).
- Then can show that

$$f_Y(y) = f_X(h(y)) \left| \frac{dh}{dy}(y) \right|$$

- Proof for strictly monotonically increasing g:

$$F_Y(y) = P(g(X) \le Y) = P(X \le h(Y)) = F_X(h(y)).$$

Differentiate both sides w.r.t y (apply chain rule on the right side) to get:

$$f_Y(y) = \frac{dF_Y}{dy}(y) = \frac{dF_X(h(y))}{dy} = f_X(h(y))\frac{dh}{dy}(y)$$

For strictly monotonically decreasing g, using a similar procedure, we get $f_Y(y) = -f_X(h(y))\frac{dh}{du}(y)$

- Functions of two random variables. Two possible ways to solve this depending on which is easier. Try the first method first: if easy to find the region to integrate over then just do that. Else use the second method.
 - 1. Do the following
 - (a) Compute CDF of Z = g(X, Y), i.e compute $F_Z(z)$. In general, this computed as:

$$F_Z(z) = P(g(X,Y) \le z) = \int_{x,y:g(x,y) \le z} f_{X,Y}(x,y) dy dx.$$

- (b) Differentiate w.r.t. z to get the PDF, i.e. compute $f_Z(z) = \frac{\partial F_Z(z)}{\partial z}$.
- 2. Use a three step procedure
 - (a) Compute conditional CDF, $F_{Z|X}(z|x) := P(Z \le z|X = x)$
 - (b) Differentiate w.r.t. z to get conditional PDF, $f_{Z|X}(z|x) = \frac{\partial F_{Z|X}(z|x)}{\partial z}$
 - (c) Compute $f_Z(z) = \int f_{Z,X}(z,x)dx = \int f_{Z|X}(z|x)f_X(x)dx$
- Special case: PDF of Z = X + Y when X, Y are independent: convolution of PDFs of X and Y.

Outline

Chapter 1 - Some Topics On Probability

Chapter-2 Jointly Gaussian Random Variables

Chapter-3 Optimization: basic fact

Chapter 1 - Some Topics On Probability

- ► Chain rule: $P(A_1, A_2, A_3, ..., A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1, A_2)...P(A_n|A_1, A_2, ..., A_{n-1})$
- ▶ Total Probability: if $B_1, B_2, ..., B_n$ from a partition of the sample space, then $P(A) = \sum_{i=1}^n P(A|B_i)P(B_i)$ Partition: The events are mutually disjoint and their union is equal to the sample space.
- ▶ Union bound: suppose $P(A_i) \ge 1 p_i$ for small probabilities p_i , then $P(\cap_i A_i) = 1 P(\cup_i A_i^c) \ge 1 \sum_i P(A_i^c) \ge 1 \sum_i p_i$

Chapter 1 - Some Topics On Probability

- ▶ Independence: Events A,B are independent if P(A,B) = P(A)P(B)
- ▶ events A_1, A_2, A_3,A_n are mutually independent if for any subset $S \subseteq \{1, 2, 3,n\}, P(\cap_{i \in s} A_i) = \prod_{i \in s} P(A_i)$
- ▶ analogous definition for random variables: for mutually independent r.v.'s the joint pdf of any subset of r.v.'s is equal to the product of the marginal pdf's.

- Conditional Independence: Events A,B are conditionally independent given an event C if P(A,B|C) = P(A|C)P(B|C) extend to a set of events as above extend to r.v.'s as above Given X is independent of $\{Y,Z\}$. Then,
 - ▶ X is independent of Y; X is independent of Z;
 - ▶ X is conditionally independent of Y given Z
 - E[XY/Z] = E[X|Z]E[Y/Z]
 - E[XY/Z] = E[X]E[Y/Z]

- Law of Iterated Expectations: $E_{X,Y}[g(X,Y)] = E_Y[E_{X|Y}[g(X,Y)|Y]]$
- ► Conditional Variance Identity: $Var_{X,Y}[g(X,Y)] = E_Y[Var_{X|Y}[g(X,Y)|Y]] + Var_Y[E_{X|Y}[g(X,Y)|Y]]$
- ► Cauchy-Schwartz Inequality: For vectors v_1, v_2 , $|\langle v_1, v_2 \rangle|^2 \le ||v_1||_2^2 ||v_2||_2^2$

- For scalar r.v.'s $X, Y: |E[XY]|^2 \le E[X^2]E[Y^2]$
- ► For random vectors $X, Y, |E[X'Y]|^2 \le E[||X||_2^2]E[||Y||_2^2]$
- ▶ Proof follows by using the fact that $E[(X \alpha Y)^2] \ge 0$. Get a quadratic equation in α and use the condition to ensure that this is non-negative
- For random matrices $\mathcal{X}, \mathcal{Y}, \|E[\mathcal{X}\mathcal{Y}']\|_2^2 \leq \lambda_{\max}(E[\mathcal{X}\mathcal{X}'])\lambda_{\max}(E[\mathcal{Y}\mathcal{Y}']) = \|E[\mathcal{X}\mathcal{X}']\|_2 \|E[\mathcal{Y}\mathcal{Y}']\|_2$. Recall that for a positive semi-definite matrix M, $\|M\|_2 = \lambda_{\max}(M)$.

- ▶ Proof: use the following definition of $||M||_2$: $||M||_2 = \max_{x,y:||x||_2=1,||y||_2=1} |x'My|$, and then apply C-S for random vectors.
- Convergence in probability. A sequence of random variables, $X_1, X_2, ... X_n$ converges to a constant a in probability means that for every $\epsilon > 0$, $\lim_{n\to\infty} Pr(|X_n a| > \epsilon) = 0$
- ▶ Convergence in distribution. A sequence of random variables, $X_1, X_2, ... X_n$ converges to random variable Z in distribution means that $\lim_{n\to\infty} F_{X_n}(x) = F_Z(x)$, for almost all points x.

- Convergence in probability implies convergence in distribution
- ▶ Consistent Estimator. An estimator for θ based on n random variables, $\hat{\theta}_n(\underline{X})$, is consistent if it converges to θ in probability for large n.
- ▶ independent and identically distributed (iid) random variables: $X_1, X_2, ... X_n$ are iid iff they are mutually independent and have the same marginal distribution.
- ▶ For all subsets $\subseteq \{1, 2, ... n\}$ of size s, the following two things hold $F_{X_i, i \in S}(x_1, x_2, ... x_s) = \prod_{i \in S} F_{X_i}(x_i)$ (independent) and $F_{X_i}(x_i) = F_{X_1}(x_1)$ (iid)
- ► Clearly the above two imply that the joint distribution for any subset of variables is also equal $F_{X_i,i\in S}(x_1,x_2,\ldots x_s) = \prod_{i=1}^s F_{X_1}(x_i) = F_{X_1,X_2,\ldots X_s}(x_1,x_2,\ldots x_s).$

- ► Moment Generating Function (MGF) $M_X(u)$ $M_X(u) := E[e^{u^T X}]$
- ▶ It is the two-sided Laplace transform of the pdf of X for continuous r.v.'s X.
- ▶ For a scalar r.v. X, $M_X(t) := E[e^{tX}]$, differentiating this i times with respect to t and setting t = 0 gives the i-th moment about the origin.
- ▶ Characteristic Function $C_X(u) := M_X(iu) = E[e^{iu^T X}]$
- ▶ $C_X(-u)$ is the Fourier transform of the pdf or pmf of X: defined only when the Fourier transform exists.
- ► Can get back the pmf or pdf by inverse Fourier transform.

- Markov inequality and its implications
- ▶ Markov inequality: for a non-negative r.v. i.e. for X for which P(X < 0) = 0 $P(X > a) \leq \frac{E[X]}{a}$.
- ► Chebyshev inequality: apply Markov to $(Y \mu_Y)^2$ $P((Y - \mu_Y)^2 > a) \le \frac{\sigma_Y^2}{a}$ if the variance is small, Y does not deviate too much from its mean.
- ▶ Chernoff bounds: apply Markov to e^{tY} for any t > 0. $P(X > a) \le \min_{t>0} e^{-ta} E[e^{tX}]$ $P(X < b) \le \min_{t>0} e^{tb} E[e^{-tX}]$ or sometimes one gets a simpler expression by using a specific value of t > 0

- ▶ Using Chernoff bounding to bound $P(S_n \in [a, b])$, $S_n := \sum_{i=1}^n X_i$ when X_i 's are iid $P(S_n \ge a) \le \min_{t>0} e^{-ta} \prod_{i=1}^n E[e^{tX_i}] = \min_{t>0} e^{-ta} (E[e^{tX_1}])^n := p_1.$ $P(S_n \le b) \le \min_{t>0} e^{tb} \prod_{i=1}^n E[e^{-tX_i}] = \min_{t>0} e^{tb} (E[e^{-tX_1}])^n := p_2$
- ► Thus, using the union bound with $A_1 = S_n < a$, $A_2 = S_n > b$ $P(b < S_n < a) \ge 1 p_1 p_2$ With $b = n(\mu \epsilon)$ and $a = n(\mu + \epsilon)$, we can conclude that w.h.p. $\bar{X}_n := S_n/n$ lies between $\mu \pm \epsilon$.
- ▶ A similar thing can also be done when X_i 's just independent and not iid. Sometimes have an upper bound for $E[e^{tX_1}]$ and that can be used.

Hoeffding inequality: Chernoff bound for sums of independent bounded random variables, followed by using Hoeffding's lemma.

- For Given independent and bounded r.v.'s $X_1, ... X_n$: $P(X_i ∈ [a_i, b_i]) = 1, P(|S_n E[S_n]| ≥ t) ≤$ $2 \exp(\frac{-2t^2}{\sum_{i=1}^n (b_i a_i)^2}) = P(E[S_n] t ≤ S_n ≤ E[S_n] + t)$ or let $\bar{X}_n := S_n/n$ and $\mu_n := \sum_i E[X_i]/n$, then $P(|\bar{X}_n \mu_n| ≥ \epsilon) ≤ 2 \exp(\frac{-2\epsilon^2 n^2}{\sum_{i=1}^n (b_i a_i)^2}) ≤ 2 \exp(\frac{-2\epsilon^2 n^2}{\max_i (b_i a_i)^2})$
- Proof: use Chernoff bounding followed by Hoeffding's lemma

- Weak Law of Large Numbers (WLLN) for i.i.d. scalar random variables, $X_1, X_2, \ldots X_n$, with finite mean μ . Define $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$ For any $\epsilon > 0$, $\lim_{n \to \infty} P(|\bar{X}_n \mu| > \epsilon) = 0$ Proof: use Chebyshev if σ^2 is finite. Else use characteristic function
- ► Central Limit Theorem for i.i.d. random variables. Given an iid sequence of random variables, $X_1, X_2, ... X_n$, with finite mean μ and finite variance σ^2 as the sample mean. Then $\sqrt{n}(\bar{X}_n \mu)$ converges in distribution a Gaussian rv $Z \sim (0, \sigma^2)$
- Many of the above results also exist for certain types of non-iid rv's. Proofs much more difficult.
- ▶ Mean Value Theorem and Taylor Series Expansion

- ▶ Delta method: if $\sqrt{N}(X_N \theta)$ converges in distribution to Z then $\sqrt{N}(g(X_N) g(\theta))$ converges in distribution to $g'(\theta)Z$ as long as $g'(\theta)$ is well defined and non-zero. Thus if $Z \sim (0, \sigma^2)$, then $g'(\theta)Z \sim (0, g'(\theta)^2 \sigma^2)$.
- ▶ If $g'(\theta) = 0$, then one can use what is called the second-order Delta method. This is derived by using a second order Taylor series expansion or second-order mean value theorem to expand out $g(X_N)$ around θ .
- ▶ Second order Delta method: Given that $\sqrt{N}(X_N \theta)$ converges in distribution to Z. Then, if $g'(\theta) = 0$, $N(g(X_N) g(\theta))$ converges in distribution to $\frac{g''(\theta)}{2}Z^2$. If $Z \sim (0, \sigma^2)$, then $Z^2 = \sigma^2 \frac{g''(\theta)}{2} \chi_1^2$ where χ_1^2 is a r.v. that has a chi-square distribution with 1 degree of freedom.
- ► Slutsky's theorem

- First note that a scalar Guassian r.v. X with mean μ and variance σ^2 has the following pdf $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ Its characteristic function can be computed by computing the Fourier transform at -t to get $C_X(t) = e^{j\mu t}e^{-\frac{\sigma^2t^2}{2}}$ Next we prove a sequence of if and only if conditions for a random vector X to be jointly Gaussian. Any one of these could serve as the definition of j G. A random vector X is jointly Gaussian if and only if one of the following (and hence all of the following) holds
- ▶ The $n \times 1$ random vector X is jointly Gaussian if and only if the scalar $u^T X$ is Gaussian distributed for all $n \times 1$ vectors

- ► The random vector X is jointly Gaussian if and only if its characteristic function, $C_X(u) := E[e^{iu^T X}]$ can be written as $C_X(u) = e^{iu^T \mu} e^{-u^T \Sigma u/2}$ where $\mu = E[X]$ and $\Sigma = cov(X)$.
- Proof: X is j G implies that $V = u^T X$ is G with mean $u^T \mu$ and variance $u^T \Sigma u$. Thus its characteristic function, $C_V(t) = e^{itu^T \mu} e^{-t^2 u^T \Sigma u/2}$. But $C_V(t) = E[e^{itV}] = E[e^{itu^T X}]$. If we set t = 1, then this is $E[e^{iu^T X}]$ which is equal to $C_X(u)$. Thus, $C_X(u) = C_V(1) = e^{iu^T \mu} e^{-u^T \Sigma u/2}$.
- Proof (other side): we are given that the charac function of X, $C_X(u) = E[e^{iu^TX}] = e^{iu^T\mu}e^{-u^T\Sigma u/2}$. Consider $V = u^TX$. Thus, $C_V(t) = E[e^{itV}] = C_X(tu) = e^{iu^T\mu}e^{-t^2u^T\Sigma u/2}$. Also, $E[V] = u^T\mu$, $var(V) = u^T\Sigma u$. Thus V is G.

- The random vector X is jointly Gaussian if and only if its joint pdf can be written as $f_X(x) = \frac{1}{(\sqrt{2\pi})^n det(\Sigma)} e^{-(X-\mu)^T \Sigma^{-1} (X-\mu)/2}$
- ▶ Proof: follows by computing the characteristic function from the pdf and vice versa.
- ► The random vector X is j G if and only if it can be written as an affine function of i.i.d. standard Gaussian r.v's.
- ▶ Proof uses 2.
- ▶ Proof: suppose X = AZ + a where $Z \sim (0, I)$; compute its c.f. and show that it is a c.f. of a j G, joint pdf given by (18) and thus it is j G.
- ▶ Proof (other side): suppose X is j G; let $Z := \Sigma^{-1/2}(X \mu)$ and write out its c.f.; can show that it is the c.f. of iid standard G.

- ▶ The random vector X is j G if and only if it can be written as an affine function of jointly Gaussian r.v's.
- ▶ Proof: Suppose X is an affine function of a j G r.v. Y, i.e. X = BY + b. Since Y is j G, by 18, it can be written as Y = AZ + a where $Z \sim (0, I)$ (i.i.d. standard Gaussian). Thus, X = BAZ + (Ba + b), i.e. it is an affine function of Z, and thus, by 18, X is j G.
- ▶ Proof (other side): X is j G. So by 18, it can be written as X = BZ + b. But $Z \sim (0, I)$ i.e. Z is a j G r.v. Properties:
- ▶ If X_1, X_2 are j G, then the conditional distribution of X_1 given X_2 is also j G.
- ▶ If the elements of a j G r.v. X are pairwise uncorrelated (i.e. non-diagonal elements of their covariance matrix are zero), then they are also mutually independent.
- ightharpoonup Any subset of X is also j G.

Chapter-3 Optimization: basic fact

ightharpoonup Claim: $\min_{t_1,t_2} f(t_1,t_2) = \min_{t_1} (\min_{t_2} f(t_1,t_2))$ Proof: show that LHS \geq RHS and LHS \leq RHS Let $[\hat{t}_1, \hat{t}_2] \in \arg\min_{t_1, t_2} f(t_1, t_2)$ (if the minimizer is not unique let \hat{t}_1, \hat{t}_2 be any one minimizer), i.e. $\min_{t_1, t_2} f(t_1, t_2) = f(\hat{t}_1, \hat{t}_2)$ Let $\hat{t}_2(t_1) \in \arg\min_{t_2} f(t_1, t_2)$, i.e. $\min_{t_2} f(t_1, t_2) = f(t_1, \hat{t}_2(t_1))$ Let $\hat{t}_1 \in \arg\min f(t_1, \hat{t}_2(t_1))$, i.e. $\min_{t_1} f(t_1, \hat{t}_2(t_1)) = f(\hat{t}_1, \hat{t}_2(\hat{t}_1))$ Combining last two equations, $f(\hat{t}_1, \hat{t}_2(\hat{t}_1)) = \min_{t_1} f(t_1, \hat{t}_2(t_1)) = \min_{t_1} (\min_{t_2} f(t_1, t_2))$

Chapter-3 Optimization: basic fact

- ▶ Notice that $f(t_1, t_2) \min_{t_2} f(t_1, t_2) f(t_1, \hat{t}_2(t_1)) \min_{t_1} f(t_1, \hat{t}_2(t_1)) f(\hat{t}_1, \hat{t}_2(\hat{t}_1))$
- ▶ The above holds for all t_1, t_2 . In particular use $t_1 \equiv \hat{t}_1$, $t_2 \equiv \hat{t}_2$. Thus, $\min_{t_1,t_2} f(t_1,t_2) = f(\hat{t}_1,\hat{t}_2) \ge \min_{t_1} f(t_1,\hat{t}_2(t_1)) = \min_{t_1} (\min_{t_2} f(t_1,t_2))$ Thus LHS ≥ RHS. Notice also that $\min_{t_1,t_2} f(t_1,t_2) f(t_1,t_2) = f(\hat{t}_1,\hat{t}_2)$ and this holds for all t_1,t_2 . In particular, use $t_1 \equiv \hat{t}_1, t_2 \equiv \hat{t}_2(\hat{t}_1)$. Then, $\min_{t_1,t_2} f(t_1,t_2) f(\hat{t}_1,\hat{t}_2(\hat{t}_1)) = \min_{t_1} (\min_{t_2} f(t_1,t_2))$ Thus, LHS ≤ RHS and this finishes the proof.