TANUJ GUPTA

Homework 2

Ans:1

Molecule: B2

Quantity	Simulation	Experimental
Bond Length(Angs)	1.63	1.625
Dipole Moment(Debye)	0	0

Vibration Frequency is 971.46Hz from simulation and experimental vibrational frequency is 937.4Hz.

Bond order for B₂ is 2.

Triplet is more stable in Boron and hence it exists in Paramagnetic form.

Molecule: C2

Quantity	Simulation	Experimental
Bond Length(Angs)	1.321	1.307
Dipole Moment(Debye)	0.0000005	0.0000006

Vibration Frefquency is 1623.53Hz from simulation and experimental vibrational frequency is 1557.5Hz.

Expected Bond order for C2 is 3 but simulated bond order is 2.482.

Triplet is more stable in C2 and hence it exists in Paramagnetic form.

Molecule: N2

Quantity	Simulation	Experimental
Bond Length(Angs)	1.113	1.116
Dipole Moment(Debye)	-0.0000005	0.0000006

Vibration Frequency is 2302.53Hz from simulation and experimental vibrational frequency is 2221.5Hz.

Expected Bond order for N2 is 3 but simulated bond order is 2.62.

Singlet is more stable in N2 and hence it exists in Diamagnetic form.

Molecule: F2

Quantity	Simulation	Experimental
Bond Length(Angs)	1.469	1.318
Dipole Moment(Debye)	0.000006	0.0000006

Vibration Frequency is 952.92Hz from simulation and experimental vibrational frequency is 1088Hz.

Expected Bond order for F2 is 1 but simulated bond order is 0.958.

Singlet is more stable in F2 and hence it exists in Diamagnetic form.

Molecule: HF

Quantity	Simulation	Experimental
Bond Length(Angs)	0.940	1.04
Dipole Moment(Debye)	2.214910	1.932

Vibration Frequency is 3839.37Hz from simulation and experimental vibrational frequency is 3711.1Hz.

Expected Bond order for HF is 1 but simulated bond order is 0.770.

Singlet is more stable in HF and hence it exists in Diamagnetic form.

Ans 2

ВНз

$$HOMO - LUMO \text{ energy gap} = -(0.3568-0.0798)$$

= -0.277 eV

B-H simulated bond length is 1.191 Angs each.

BF₃

$$HOMO - LUMO \text{ energy gap} = -(0.4454-0.0238)$$

= -0.4216 eV

B-F simulated bond length is 1.341 Angs each.

CO HOMO – LUMO energy gap = -(0.3846-0.0526) = -0.332 eV

C=O simulated bond length is 1.148 Angs.

C=O simulated bond length is 1.183 Angs. each

H₂O

$$HOMO - LUMO$$
 energy gap = -(0.3103+0.0132)
= -0.3235 eV

O-H simulated bond length is 0.974 Angs. each

H₂S

$$HOMO - LUMO$$
 energy gap = -(0.2644-0.0006)
= -0.2638 eV

S-H simulated bond length is 1.383 Angs. each.

Benzene

$$HOMO - LUMO$$
 energy gap = -(0.2561-0.0087)
= -0.2474 eV

C-H simulated bond length is 1.083 Angs. each.

C-C simulated bond length is 2.795 Angs. each.

C=C simulated bond length is 1.397 Angs. each.

Benzene

Aniline

$$HOMO - LUMO$$
 energy gap = -(0.2461-0.0034)
= -0.2427 eV

C-H simulated bond length is 1.070 Angs. each.

C=C simulated bond length is 1.38 Angs. each.

C-C simulated bond length is 1.39 Angs. each.

C-C simulated bond length(near the carbon-carbon bond next to Nitrogen) is 1.4 Angs. each.

C-N simulated bond length is 1.38 Angs.

N-H simulated bond length is 0.99 Angs.

Aniline