Trig Final (TEST v603)

• You should have a calculator (like Desmos) and a unit-circle reference sheet.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 100 meters. The angle measure is 4.5 radians. How long is the arc in meters?

Question 2

Consider angles $\frac{-23\pi}{6}$ and $\frac{13\pi}{4}$. For each angle, use a spiral with an arrow head to **mark** the angle on a circle below in standard position. Then, find **exact** expressions for $\cos\left(\frac{-23\pi}{6}\right)$ and $\sin\left(\frac{13\pi}{4}\right)$ by using a unit circle (provided separately).

Find $\cos(-23\pi/6)$

Find $sin(13\pi/4)$

Question 3

If $\sin(\theta) = \frac{-55}{73}$, and θ is in quadrant III, determine an exact value for $\cos(\theta)$.

Question 4

A mass-spring system oscillates vertically with a midline at y = 6.98 meters, a frequency of 8.84 Hz, and an amplitude of 3.33 meters. At t = 0, the mass is at the minimum height. Write an equation to model the height (y in meters) as a function of time (t in seconds).