Blending Problem's Solution using CPLEX (LP)

Problem Statement

A firm faces the problem of blending three raw materials into two final products.

The required numerical information is provided in the following table:

	Final Products		Amount available	Unit Cost
Raw Materials	1	2	(in tons)	(\$)
1	[0.4; 0.6]	[0.5; 0.6]	2,000	1.00
2	[0.1; 0.2]	[0.1; 0.4]	1,000	1.50
3	[0.2; 0.5]	[0.2; 0.3]	500	3.00
Quantity required (in tons)	600	700		
Unit selling price (\$)	10	8]	

Model Formulation

Decision Variables:

 Q_{ij} =Quantity of i^{th} raw material in j^{th} product

The Model:

Maximize:

$$Z = [10(Q_{11} + Q_{21} + Q_{31}) + 8(Q_{12} + Q_{22} + Q_{32})] - [1(Q_{11} + Q_{12}) + 1.5(Q_{21} + Q_{22}) + 3(Q_{31} + Q_{32})]$$

Subject to:

 $Q_{11} + Q_{12} \le 2000$

 $Q_{21} + Q_{22} \le 1000$

 $Q_{31} + Q_{32} \le 500$

 $Q_{11} + Q_{21} + Q_{31} = 600$

 $Q_{12} + Q_{22} + Q_{32} = 700$

 $Q_{11} \geq 0.4 \big(Q_{11} + Q_{21} + Q_{31}\big)$

 $Q_{21} \ge 0.1(Q_{11} + Q_{21} + Q_{31})$

 $Q_{31} \ge 0.2(Q_{11} + Q_{21} + Q_{31})$

 $Q_{12} \ge 0.5(Q_{12} + Q_{22} + Q_{32})$

 $Q_{22} \ge 0.1(Q_{12} + Q_{22} + Q_{32})$

 $Q_{32} \ge 0.2(Q_{12} + Q_{22} + Q_{32})$

 $Q_{11} \le 0.6(Q_{11} + Q_{21} + Q_{31})$

 $Q_{21} \leq 0.2 (Q_{11} + Q_{21} + Q_{31})$

 $Q_{31} \le 0.5(Q_{11} + Q_{21} + Q_{31})$

 $Q_{12} \le 0.6(Q_{12} + Q_{22} + Q_{32})$

 $Q_{22} \le 0.4(Q_{12} + Q_{22} + Q_{32})$

 $Q_{32} \le 0.3(Q_{12} + Q_{22} + Q_{32})$

 $Q_{ij} \ge 0 \ \forall \ i, j$

Compact Model Formulation

Index:

- *i, k* = Raw material
- j = Final Product

Model Parameters:

 S_i = Total units of supply of i^{th} raw material

 d_i = Demand of the j^{th} product

 C_i = Unit cost of i^{th} raw material

 p_j =Unit price the j^{th} final product

 \underline{a}_{ij} = Smallest proportion of raw material 'i' that is allowed in the final product 'j'

 \overline{a}_{ij} = Largest proportion of raw material 'i' that is allowed in the final product 'j'

Decision Variables:

 Q_{ij} = Quantity of i^{th} raw material in j^{th} product

The Model

Maximize: $\sum_{j} p_{j} \sum_{i} Q_{ij} - \sum_{i} c_{i} \sum_{j} Q_{ij}$

Subject to:

$\sum_{j} Q_{ij} \leq S_i$	$\forall i$	(Supply or Capacity constraint)
$\sum_i Q_{ij} = d_j$	$\forall j$	(Demand Constraint)
$Q_{ij} \ge \underline{a}_{ij} \sum_{k} Q_{kj}$	∀ i,j	(Minimum proportion in the final product)
$Q_{ij} \ge \overline{a}_{ij} \sum_{k} Q_{kj}$	$\forall i,j$	(Maximum proportion in the final product)
$Q_{ij} \ge 0$	$\forall i,j$	