Pergunta 3

February 20, 2019

1 Jupyter + SageMath HelloWorld

1.1 Para o corpo finito primo \mathbb{F}_{37} :

1.1.1 Criação do corpo finito:

1.1.2 Criação do plot da função $x \mapsto x^{35}$:

```
In [60]: list_plot([x^(p-2) for x in Fp])
Out[60]:
```



```
1.1.3 Determinação do menor primo elemento primitivo de \mathbb{F}_{37}:
```

```
In [61]: g = Fp.primitive_element(); g
Out[61]: 2
```

1.1.4 Testar, por amostragem, que: se g é elemento primitivo, então, para todo o expoente n, verifica-se $g^n=1$ sse $n\equiv 0 \ mod \ (p-1)$

```
Note-se que: p \iff q \equiv (p \land q) \lor (\neg p \land \neg q)

In [62]: n = ZZ.random\_element(0,p); n

Out[62]: 15

In [63]: (g^n) = 1 and n = power\_mod(0,1,p-1) or (not(g^n) = 1) and not(n = power\_mod(0,1,p-1))

Out[63]: True
```

1.2 Para o corpo finito primo \mathbb{F}_{163} :

1.2.1 Criação do corpo finito:

1.2.3 Determinação do menor primo elemento primitivo de \mathbb{F}_{163} :

```
In [66]: g = Fp.primitive_element(); g
Out[66]: 2
```

1.2.4 Testar, por amostragem, que: se g é elemento primitivo, então, para todo o expoente n, verifica-se $g^n=1$ sse $n\equiv 0 \ mod \ (p-1)$

1.3 Para o corpo finito primo \mathbb{F}_{263} :

1.3.1 Criação do corpo finito:

1.3.2 Criação do plot da função $x \mapsto x^{261}$:

```
In [70]: list_plot([x^(p-2) for x in Fp])
```

Out[70]:

1.3.3 Determinação do menor primo elemento primitivo de \mathbb{F}_{263} :

```
In [71]: g = Fp.primitive_element(); g
Out[71]: 5
```

1.3.4 Testar, por amostragem, que: se g é elemento primitivo, então, para todo o expoente n, verifica-se $g^n = 1$ sse $n \equiv 0 \mod (p-1)$

1.4 Para o corpo finito primo \mathbb{F}_{1009} :

1.4.1 Criação do corpo finito:

```
In [74]: p = 1009;
    Fp = FiniteField(p);Fp
```

Out[74]: Finite Field of size 1009

1.4.2 Criação do plot da função $x \mapsto x^{1007}$:

In [75]:
$$list_plot([x^(p-2) for x in Fp])$$

Out[75]:

1.4.3 Determinação do menor primo elemento primitivo de \mathbb{F}_{1009} :

```
In [76]: g = Fp.primitive_element(); g
Out[76]: 11
```

1.4.4 Testar, por amostragem, que: se g é elemento primitivo, então, para todo o expoente n, verifica-se $g^n=1$ sse $n\equiv 0 \ mod \ (p-1)$

In [77]: n = ZZ.random_element(0,p); n