Les arbres binaires de recherche

Arbres binaires de Recherche ABR

- Les ABR sont des structures de données qui peuvent supporter des opérations courantes sur des ensembles dynamiques.
 - ex: rechercher, minimum, maximum, prédécesseur....
- Cette structure de données est maintenue sous forme d'arbre binaire avec racine.
- Un ABR a pour structure logique un arbre binaire.

Clés

- Chaque nœud d'un ABR est associé à une clé
 - on supposera que chaque clé est numérique
 - □ Il faut que 2 clés soient comparables.

Propriétés des ABR

- soit x un nœud d'un ABR
- x a au plus 2 fils
 - fils gauche
 - fils doit
- si y est un nœud du sous arbre gauche de x alors:
 - □ clé(y)<clé(x)
- si y est un nœud du sous arbre droit de x alors:
 - □ clé(y)>clé(x)

Description d'un noeud

- Un ABR est donc composé de nœuds qui peuvent être créés de manière dynamique
- Si un nœud n'a pas de père, le pointeur est mis à NIL

```
Enregistrement Nœud {
    cle : Entier;
    gauche : ↑Nœud;
    droit : ↑Nœud;
    pere : ↑Nœud;
}
```


Affichage des nœuds d'un ABR dans l'ordre croissant des clés

- Pour afficher dans l'ordre :
 - Parcours en profondeur d'abord infixe.

Recherche d'une clé minimum ou d'une clé maximum

- On sait que la valeur maximum se trouve dans le sous arbre droit de la racine
- Il faut donc chercher le fils droit du fils droit du fils droit....jusqu'à une feuille.

Maximum d'un ABR: Pseudo code

```
ABR-Max(Nœud x): Entier
Début
tant que x.droite ≠ NIL
x ← x.droite;
fin tant que
retourner x
Fin
```

Recherche

 parcours dans l'arbre, depuis la racine jusqu'à l'élément recherché (ou une feuille si l'élément n'existe pas) en branchant à chaque nœud en fonction de la valeur de la clé

```
recherche(o: ↑Nœud, c: clé) : booléen
début
si o ≠ NIL alors
si la_clé(o) = c retourne VRAI;
sinon si la_clé(o) > c retourne recherche(o.filsg, c)
sinon retourne recherche(o.filsd, c)
fsi
sinon retourne FAUX;
fin
```

Successeur et prédécesseur

- Soit x un nœud
- on cherche y tel que
 - □ clé(y)>clé(x)
- et tel que pour tout nœud z
 - z≠x et z≠y
 - on n'ait pas clé(y)>clé(z)>clé(x)

12 est le successeur de 10 22 est le successeur de 15 5 est le successeur de 3

Successeur et prédécesseur

- Le successeur d'un nœud x est le nœud possédant la plus petite clé dans le sous-arbre droit si x en possède un
- sinon c'est le nœud qui est le 1^{er} ancêtre de x dont le fils gauche est aussi un ancêtre de x (ou x lui-même)

Successeur et prédécesseur Exemple

Successeur d'un ABR

```
ABR-Successeur (Nœud x): Noeud
Début
Y: Nœud;
si x.droite ≠ NIL
retourner ABR_MIN(x.droite);
fin si
y ← x.pere;
tant que y ≠ NIL et x == y.droite
x ← y;
y ← y.pere;
fin tant que
retourner y;
Fin
```

Insertion et suppression d'un nœud dans l'ABR

- Les opérations d'insertion et de suppression d'un noeud modifient l'ensemble dynamique représenter par l'ABR
- La structure dynamique doit être modifiée tout en gardant une structure d'ABR

Insertion

- 2 techniques:
 - Insertion à la racine l'ABR
 - Modification de la structure de l'ABR
 - Insertion aux feuilles de l'ABR
 - Modification de la hauteur de l'ABR

Ajout d'une feuille

- recherche de la clé de l'élément que l'on essaye d'insérer
 - □ si élément existant alors rien à faire
 - sinon la recherche s'est arrêtée sur un arbre vide, qu'il suffira de remplacer par l'élément à insérer
- complexité moyenne de PCE(T)
- complexité au pire de h(T)

Insertion d'un nœud aux feuilles

```
ABR-Inserer(T : Noeud, z : Noeud)
Entrées : T la racine de l'ABR, Z le nouveau nœud à
Sorties : T l'arbre dans lequel on a inséré z.
Début
   x,y: Nœud;
                                       z.pere ← y
                                       si y == NIL
                                           \bm{T} \leftarrow \bm{z}
   y \leftarrow NIL;
   x \leftarrow T;
   tant que x \neq NIL
                                           si z.clé < y.clé
                                              y.gauche ← z;
   y \leftarrow x;
   si z.clé < x.clé
                                           sinon
                                              y.droit ← z;
        x \leftarrow x.gauche;
   sinon
                                           fin si
                                       fin si
         x ← x.droit;
   fin si
                                     Fin
   fin tant que
```

Insertion d'un nœud aux feuilles

```
ABR-Inserer(T : Noeud, z : Noeud) : Noeud

Entrées : T la racine de l'ABR, Z le nouveau nœud à inserér

Sorties : T l'arbre dans lequel on a inséré z.

Début

si (T == NIL)

retourner z;

sinon

si (z.clé ≤ T.clé)

T.gauche ← ABR-Inserer(T.gauche,z);

retourner T;

sinon

T.droit ← ABR-Inserer(T.droit,z);

retourner T;

fin si

fin si

Fin
```

Ajout à la racine : exemple (1)

Ajout de 11 à l'arbre suivant :

Généralisation (1)

- Soit un arbre $a = \langle o', g, d \rangle$
- Ajouter le nœud o à a, c'est construire l'arbre <o, a1, a2> tel que :
 - □ a1 contienne tous les nœuds dont la clé est inférieure à celle de o
 - a2 contienne tous les nœuds dont la clé est supérieure à celle de o

Généralisation (2)

- si la_clé(o) < la_clé(o')
 a1 = g1 et a2 = <o', g2, d>
- g1 = nœuds de g dont la clé est inférieure à la clé de o
- g2 = nœuds de g dont la clé est supérieure à la clé de o

Généralisation (3)

- si la_clé(o) > la_clé(o')
 a1 = <o', g, d1> et a2 = d2
- d1 = nœuds de d dont la clé est inférieure à la clé de o
- d2 = nœuds de d dont la clé est supérieure à la clé de o

Suppression

- Recherche du nœud
 - □ si feuille, suppression simple
 - si nœud interne au sens large, suppression du nœud et raccordement du sous-arbre
 - si nœud interne, suppression du nœud et remplacement soit par
 - le nœud du sous-arbre gauche dont la clé est la plus grande
 - le nœud du sous-arbre droit dont la clé est la plus petite
- Complexité
 - Complexité moyenne de PC(a)
 - complexité au pire de h(a)

Suppression d'un nœud

```
Supprimer ABR (Nœud T, Nœud z)
Entrées : Un ABR T et un nœud Z
Sortie : Un ABR T dans lequel le nœud z a été supprimé
Début.
     si T ≠ NIL
          si (z.clé < T.clé)
               retourner (Supprimer ABR(T.gauche, z));
         sinon si (z.clé > T.clé)
                   retourner(Supprimer_ABR(T.droit,z));
              sinon si (T.gauche == NIL)
                        retourner (T.droit);
                   sinon si (T.droit == NIL)
                             retourner (T.gauche)
                        sinon
             T.clé ←successeur(T.gauche,z);
          retourner (Supprimer_ABR(T.gauche,T.clé));
                 fin si
                  fin si
            fin si
      fin si
      retourner T;
```

Notes sur la complexité

- Les différentes opérations ont une complexité au pire de h(a)
 - $|\log_2 n| \le h(a) \le n-1$
 - □ Pour les arbres complets, complexité en O(log₂n)
 - Pour les arbres dégénérés, complexité en O(n)
- La complexité dépend de la forme de l'arbre, qui dépend des opérations d'ajout et de suppression
 - ajout d'éléments par clés croissantes → arbre dégénéré
 - □ en moyenne, la profondeur est de 2 log₂n
 - but = équilibrer les arbres en hauteur

Arbres H-équilibrés / arbres AVL

- Définitions
 - □ déséquilibre(a) = h(g(a)) h(d(a))
 - un arbre a est H-équilibré si pour tous ses sousarbres b, on a :
 - déséquilibre(b) ∈ {-1, 0, 1}
 - un arbre AVL est un arbre de recherche qui est H-équilibré
 - les propriétés et les opérations définies sur les arbres de recherche peuvent s'appliquer aux arbres AVL

Opérations de rotation

- Le problème est d'essayer de rééquilibrer un arbre déséquilibré afin de le ramener à un arbre H-équilibré.
- Cas d'un déséquilibre +2
 - on suppose que les sous-arbres droit et gauche sont H-équilibrés
 - hauteur du sous-arbre gauche supérieure de 2 à la hauteur du sous-arbre droit
 - opération à pratiquer dépend du déséquilibre du sous-arbre gauche qui peut être +1, 0, -1

Déséquilibre +1 sur le fils gauche

- rotation à droite :
 - □ o' devient la racine de l'arbre
 - $\, \square \,$ Le fils droit de $\circ \, {}' \,$ devient le fils gauche de $\circ \,$
 - □ o devient le fils droit de o'

Déséquilibre 0 sur le fils gauche

- rotation à droite :
 - □ o' devient la racine de l'arbre
 - □ Le fils droit de o' devient le fils gauche de o
 - □ o devient le fils droit de o'

Déséquilibre 0 sur le fils gauche

- Si l'arbre A est un arbre binaire de recherche, le résultat est un arbre binaire de recherche
 - □ le déséquilibre de l'arbre résultant est de -1
 - arbre H-équilibré dont la hauteur est identique

Déséquilibre -1 sur le fils gauche

Avec m le déséquilibre de o"

- $[m]^+ = max(0, m)$
- $[m]^- = min(0, m)$
- rotation gauche-droite
 - Rotation à gauche sur le fils gauche
 - Rotation à droite sur la racine

Déséquilibre -1 sur le fils gauche

- Si l'arbre A est un arbre binaire de recherche, le résultat est un arbre binaire de recherche
 - □ le déséquilibre de l'arbre résultant est de 0
 - arbre H-équilibré dont la hauteur est diminuée d'1

Opérations de rééquilibrage

arbre origine	opération	résultat	hauteur
	rotation droite		diminution
_0<+2	rotation droite	⁻¹ >+1	identique
-1 -1 -1	rotation gauche droite	_+1<0>0	diminution
-1 < +2 \\ 0 \\	rotation gauche droite	_°<°>°<	diminution
-1 -1 +2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	rotation gauche droite	_0 < 0 > -1 <	diminution
⁻² >-1	rotation gauche	_o<^o	diminution
^-2 > 0 <u></u>	rotation gauche	1<*1	identique
-2 -1 +1	rotation droite gauche	_+1<0>0 \	diminution
-2 -1 0 +1	rotation droite gauche		diminution
-2 +1	rotation droite gauche	_0 < 0 > -1 <	diminution

Opération d'ajout

- Principe :
 - ajout du nœud par l'opération ajouter-f
 - rééquilibrage de l'arbre en partant de la feuille et en remontant vers la racine
- Complexité :
 - complexité au pire en O(log₂n) en nb de comparaisons
 - au plus une rotation
 - expérimentalement : en moyenne une rotation pour 2 ajouts

Opération de suppression

- Principe :
 - suppression du nœud par l'opération sur les arbres de recherche
 - rééquilibrage de l'arbre en partant du nœud supprimé et en remontant vers la racine
- Complexité :
 - complexité au pire en O(log₂n) en nb de comparaisons et en nb de rotations
 - il peut y avoir plus d'une rotation
 - expérimentalement : en moyenne une rotation pour 5 suppressions