Assignment: Goodness of Fit Test

Date: 05/11/2020 Name: D.Saravanan

1. Test an octahedral die whether it is unbiased or not with following data using goodness of fit test:

Score 1 2 3 4 5 6 7 8 Frequency 7 10 11 9 12 10 14 7

Solution:

Null hypothesis: H_0 : Die is unbiased

Alternative hypothesis: H_1 : Die is not unbiased

	Observed	Expected
Score	frequency	frequency
1	7	10
2	10	10
3	11	10
4	9	10
5	12	10
6	10	10
7	14	10
8	7	10

$$\chi^2 = sum \ of \frac{(Observed \ frequency - Expected \ frequency)^2}{Expected \ frequency}$$

$$\chi^2 = \sum_{k=1}^{n} \frac{(O_k - E_k)^2}{E_k}$$

$$\chi^{2} = \sum_{k=1}^{8} \frac{(O_{k} - E_{k})^{2}}{E_{k}} = \frac{(7 - 10)^{2}}{10} + \frac{(10 - 10)^{2}}{10} + \frac{(11 - 10)^{2}}{10} + \frac{(9 - 10)^{2}}{10} + \frac{(12 - 10)^{2}}{10} + \frac{(10 - 10)^{2}}{10} + \frac{(14 - 10)^{2}}{10} + \frac{(7 - 10)^{2}}{10} = 4$$