Example with 8 EVs and 8 hours Horizon

EV	Energy Demand (KWh)	Elapsed Time of charging (h)
1	50	6
2	50	6
3	50	6
4	50	6
5	50	6
6	50	6
7	10	1
8	10	1

Optimization Variables

Method 1: Use one circuit for the entire matrix

Method 1: Result

Method 2: Use a circuit for every column of the matrix

$$\theta_{1} \quad \begin{array}{c} |\log_{2} 8| = 3 \text{ qubits} \\ |a_{1,1}| \\ |a_{1,8}| \end{array} \longrightarrow r(1) = c * \begin{bmatrix} |a_{1,1}|^{2} \\ |a_{1,8}|^{2} \end{bmatrix}$$

$$\vdots \quad r = [r(1), ..., r(8)]$$

$$\theta_{8} \quad \begin{array}{c} |\log_{2} 8| = 3 \text{ qubits} \\ |a_{8,1}| \\ |a_{8,8}| \end{array} \longrightarrow r(8) = c * \begin{bmatrix} |a_{8,1}|^{2} \\ |a_{8,8}|^{2} \end{bmatrix}$$

Method 2

$$r_{1}(1) \ r_{1}(2) \ r_{1}(3) \ r_{1}(4) \ r_{1}(5) \ r_{1}(6) \ r_{1}(7) \ r_{1}(8)$$

$$r_{2}(1) \ r_{2}(2) \ r_{2}(3) \ r_{2}(4) \ r_{2}(5) \ r_{2}(6) \ r_{2}(7) \ r_{2}(8)$$

$$r_{3}(1) \ r_{3}(2) \ r_{3}(3) \ r_{3}(4) \ r_{3}(5) \ r_{3}(6) \ r_{3}(7) \ r_{3}(8)$$

$$r_{4}(1) \ r_{4}(2) \ r_{4}(3) \ r_{4}(4) \ r_{4}(5) \ r_{4}(6) \ r_{4}(7) \ r_{4}(8)$$

$$r_{5}(1) \ r_{5}(2) \ r_{5}(3) \ r_{5}(4) \ r_{5}(5) \ r_{5}(6) \ r_{5}(7) \ r_{5}(8)$$

$$r_{6}(1) \ r_{6}(2) \ r_{6}(3) \ r_{6}(4) \ r_{6}(5) \ r_{6}(6) \ r_{6}(7) \ r_{6}(8)$$

$$r_{7}(1) \ r_{7}(2) \ r_{7}(3) \ r_{7}(4) \ r_{7}(5) \ r_{7}(6) \ r_{7}(7) \ r_{7}(8)$$

$$r_{8}(1) \ r_{8}(2) \ r_{8}(3) \ r_{8}(4) \ r_{8}(5) \ r_{8}(6) \ r_{8}(7) \ r_{8}(8)$$

Sum = c

Since
$$sum([|a_{i,1}|^2, ..., |a_{i,1}|^2]) = 1$$
 if $r(i) = c * [|a_{i,1}|^2, ..., |a_{i,1}|^2] \longrightarrow sum(r(i)) = c$

We set c= max aggregate current rate

Method 2: Result

Method 3: Use a circuit for every row of the matrix

Method 2

$$r_{1}(1) \ r_{1}(2) \ r_{1}(3) \ r_{1}(4) \ r_{1}(5) \ r_{1}(6) \ r_{1}(7) \ r_{1}(8)$$

$$r_{2}(1) \ r_{2}(2) \ r_{2}(3) \ r_{2}(4) \ r_{2}(5) \ r_{2}(6) \ r_{2}(7) \ r_{2}(8)$$

$$r_{3}(1) \ r_{3}(2) \ r_{3}(3) \ r_{3}(4) \ r_{3}(5) \ r_{3}(6) \ r_{3}(7) \ r_{3}(8)$$

$$r_{4}(1) \ r_{4}(2) \ r_{4}(3) \ r_{4}(4) \ r_{4}(5) \ r_{4}(6) \ r_{4}(7) \ r_{4}(8)$$

$$r_{5}(1) \ r_{5}(2) \ r_{5}(3) \ r_{5}(4) \ r_{5}(5) \ r_{5}(6) \ r_{5}(7) \ r_{5}(8)$$

$$r_{6}(1) \ r_{6}(2) \ r_{6}(3) \ r_{6}(4) \ r_{6}(5) \ r_{6}(6) \ r_{6}(7) \ r_{6}(8)$$

$$r_{7}(1) \ r_{7}(2) \ r_{7}(3) \ r_{7}(4) \ r_{7}(5) \ r_{7}(6) \ r_{7}(7) \ r_{7}(8)$$

$$r_{8}(1) \ r_{8}(2) \ r_{8}(3) \ r_{8}(4) \ r_{8}(5) \ r_{8}(6) \ r_{8}(7) \ r_{8}(8)$$

Sum = c

Since
$$sum([|a_{i,1}|^2, ..., |a_{i,1}|^2]) = 1$$
 if $r_i = c * [|a_{i,1}|^2, ..., |a_{i,1}|^2] \longrightarrow sum(r_i) = c$

We set c= total rate needed for EV i

Method 3: Result

Comparison: % of Demand met w.r.t. power limit

