Advanced Linear Algebra

Name:

SID:

1. (5pt) Let V be a vector space. Prove that -(-v) = v for every $v \in V$. (Recall that -v denotes the additive inverse

Proof. Since

$$-v + (-(-v)) = 0,$$

add a v on both sides and

$$-v + (-(-v)) + v = v.$$

Using the commutativity and associativity, we obtain

$$-(-v) = (-(-v)) + (-v + v) = v.$$

A subset U of V is called a subspece of V if U is also a vector space. 2. (a) (2pt) Write the definition of subspace

- (b) (3pt) Prove that the intersection of every collection of subspaces of V is a subspace of V.
- (c) (Bonus 2pt) Prove that the union of two subspaces of V is a subspace of V if and only if one of the subspaces is contained in the other.

Proof. (a) See textbook.

(b) Let $\{U_{\alpha}\}_{{\alpha}\in I}$ be an arbitrary collection of subspaces of V, then by definition

$$\begin{aligned} &0\in U_{\alpha}, \quad \forall \alpha\in I,\\ \\ &u,w\in U_{\alpha} \quad \Rightarrow \quad u+w\in U_{\alpha}, \quad \forall \alpha\in I,\\ \\ &a\in \mathbb{F},\ u\in U_{\alpha} \quad \Rightarrow \quad au\in U_{\alpha}, \quad \forall \alpha\in I. \end{aligned}$$

Since

$$0 \in U_{\alpha}, \quad \forall \alpha \in I \quad \Rightarrow \quad 0 \in \bigcap_{\alpha \in I} U_{\alpha},$$

$$u, w \in \bigcap_{\alpha \in I} U_{\alpha} \quad \Rightarrow \quad u, w \in U_{\alpha}, \quad \forall \alpha \in I \quad \Rightarrow \quad u + w \in U_{\alpha}, \quad \forall \alpha \in I \quad \Rightarrow \quad u + w \in \bigcap_{\alpha \in I} U_{\alpha},$$

$$a \in \mathbb{F}, \ u \in \bigcap_{\alpha \in I} U_{\alpha} \quad \Rightarrow \quad a \in \mathbb{F}, \ u \in U_{\alpha}, \quad \forall \alpha \in I \quad \Rightarrow \quad au \in \bigcup_{\alpha \in I} U_{\alpha},$$

 $\bigcap_{\alpha \in I} U_{\alpha}$ is a subspace of V by definition.

(c) If one of the subspaces is contained in the other, then the union is equal to one of the subspaces, hence is a subspace.

Conversely, if the two subspaces U_1 and U_2 do not contain each other, then $U_1 \setminus U_2$ and $U_2 \setminus U_1$ are both non-empty, thus there exists $u \in U_1 \setminus U_2$ and $w \in U_2 \setminus U_1$. Note that u + w cannot be in $U_1 \cup U_2$, because if $u + w \in U_1 \cup U_2$, then either $u + w \in U_1$ or $u + w \in U_2$, and it follows that either $\underline{w = (u + w) - u \in U_1}$ or $u = (u + w) - w \in U_2$, while $w \notin U_1$ and $u \notin U_2$ by definition. Therefore $U_1 \cup U_2$ is <u>not closed under addition</u>, hence is not a subspace.

Name:

SID:

1. (5pt) Show that the additive inverse of a certain element in a vector space is unique.

Proof. Let $v \in V$ be the certain element and $u, u' \in V$ be two additive inverses of v. We have

$$u = 0 + u = (v + u') + u = (v + u) + u' = 0 + u' = u'.$$

Therefore the additive inverse must be unique.

2. (a) (2pt) Write the definition of that the sum $U_1 + \cdots + U_m$ of subspaces is a direct sum.

(b) (3pt) Give an example of subspaces U_1 , U_2 and U_3 such that $U_1 \cap U_2 = U_2 \cap U_3 = U_1 \cap U_3 = \{0\}$ but $U_1 + U_2 + U_3 = \{0\}$ is not a direct sum. Verify that your example does satisfy the required property.

(c) (Bonus 2pt) Prove or give a counterexample: If U_1 , U_2 and W are subspaces of V such that

$$V = U_1 \oplus W = U_2 \oplus W,$$

then $U_1 = U_2$.

$$U_3 = \{(x, x) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}.$$

then $U_1=U_2$.

Proof. (a) See textbook. If each element of $U_1+\cdots+U_m$ can be withen in (b) Let $U_1=\{(x,0)\in\mathbb{R}^2\mid x\in\mathbb{R}\}, \quad \text{only one way as a sum}$ $U_2=\{(0,x)\in\mathbb{R}^2\mid x\in\mathbb{R}\}, \quad \text{of } U_1+\cdots+U_m, \text{ where each } U_3=\{(x,x)\in\mathbb{R}^2\mid x\in\mathbb{R}\}.$ is in U_1

Clearly $U_1 \cap U_2 = U_2 \cap U_3 = U_1 \cap U_3 = \{0\}$; $U_1 + U_2 + U_3$ is not a direct sum since

$$0 = (1,0) + (0,1) + (-1,-1).$$

(c) Counterexample: Take $V = \mathbb{R}^2$, U_1 and U_2 and $W = U_3$ as above.

SID:

1. (5pt) Admitting that the span of a list of vectors in V is a subspace of V, show that it is the smallest subspace of V containing all the vectors in the list.

(Remark. With the result, which is proved in quiz 1, that the intersection of every collection of subspaces of V is a subspace of V, it follows that the span of a list of vectors is equivalent to the smallest subspace containing all the vectors in the list.)

Proof. See the last paragraph of the proof of Theorem 2.7 in the textbook.

- **2.** (a) (3pt) Suppose that V is a finite-dimensional vector space and U is a subspace of V such that $\dim U = \dim V$. Prove that U = V.
- (b) (2pt) Suppose that U and V are both n-dimensional subspaces of a vector space of dimension 2n-1. Prove that $U \cap V \neq \{0\}.$
- (c) (Bonus 1pt) Prove or give a counterexample: If v_1, v_2, v_3, v_4 is a basis of V and U is a subspace of V such that $v_1, v_2 \in U$ and $v_3 \notin U$ and $v_4 \notin U$, then v_1, v_2 is a basis of U.

Proof. (a) Let u_1, \dots, u_m be a basis of U, then $m = \dim U = \dim V$. Since u_1, \dots, u_m is a linearly independent list of length dim V, by Theorem 2.39 it is a basis of V, in particular span $(u_1, \dots, u_m) = V$. Therefore U = $\mathrm{span}(u_1,\cdots,u_m)=V.$

(b) By theorem 2.43,

$$2n - 1 = \dim U + \dim V - \dim(U \cap V) = n + n - \dim(U \cap V),$$

hence $\dim(U \cap V) = 1$. Since $\dim\{0\} = 0$, $U \cap V \neq \{0\}$.

(c) Counterexample: consider $U := \operatorname{span}(v_1, v_2, v_3 + v_4)$. Clearly v_1, v_2 is not a basis of U since $\dim U = 3$ (note that the fact that v_1, v_2, v_3, v_4 is linearly independent implies that $v_1, v_2, v_3 + v_4$ is also linearly independent). Either v_3 or $v_4 \in U$ implies that $v_3 = (v_3 + v_4) - v_4$ and $v_4 = (v_3 + v_4) - v_3$ are both in U, which would give that U = V, consequently dim $U = \dim V = 4$, contradicting to that dim U = 3. Therefore $v_1, v_2 \in U$, $v_3, v_4 \notin U$ while v_1, v_2 is not a basis of U.

Name:

SID:

1. (5pt) You have proved the following fact in your homework:

Suppose that v_1, \dots, v_m is linearly independent in V and $w \in V$, then v_1, \dots, v_m, w is linearly independent if and only if

$$w \notin \operatorname{span}(v_1, \cdots, v_m).$$

Use the above fact and Theorem 2.23 (the length of a linearly independent list is no more than that of any span list), prove that if V is a finite-dimensional linear space, then every linearly independent list of vectors in V of length dim V is a basis of V.

Proof. Let dim V=n and v_1, \cdots, v_n be a linearly independent list of vectors in V. If $\mathrm{span}(v_1, \cdots, v_n) \neq V$, then there exists $w \in V \setminus \mathrm{span}(v_1, \cdots, v_n)$, hence, by the fact, v_1, \cdots, v_n, w is a linearly independent list of length n+1 in V. By the definition of the dimension, there exists a span list of V of length n, thus that the length n+1 list v_1, \cdots, v_n, w is linearly independent contradicts Theorem 2.23. Therefore $\mathrm{span}(v_1, \cdots, v_n) = V$, concluding that v_1, \cdots, v_n is a basis of V.

2. (a) (3pt) Prove that the subspaces of \mathbb{R}^2 are precisely $\{0\}$, \mathbb{R}^2 and all lines in \mathbb{R}^2 through the origin. (Hint: classify all the subspaces of \mathbb{R}^2 according to their dimensions)

(b) (2pt) Let $U := \{ f \in \mathbb{R}^{\mathbb{R}} \mid f(0) = 0 \}$, we know that U is a subspace of $\mathbb{R}^{\mathbb{R}}$. Find a subspace W of $\mathbb{R}^{\mathbb{R}}$ such that

$$\mathbb{R}^{\mathbb{R}} = U \oplus W$$
,

and verify your claim.

Proof. (a) Clearly, $\{0\}$, \mathbb{R}^2 and all lines in \mathbb{R}^2 through the origin are subspaces of \mathbb{R}^2 .

Conversely, since dim $\mathbb{R}^2 = 2$, the possible dimensions of its subspaces are 0, 1, 2. The only subspaces of dimension 0 and 2 are $\{0\}$ and \mathbb{R}^2 respectively. If a subspace U is of dimension 1, then U = span(v) for some $0 \neq v = (x, y) \in \mathbb{R}^2$, thereby $U = \{k(x, y) \in \mathbb{R}^2 \mid k \in \mathbb{R}\}$ is a line in \mathbb{R}^2 through the origin.

(b) Define $W := \{ f \in \mathbb{R}^{\mathbb{R}} \mid f \text{ is constant} \}$. Clearly $U \cap W = \{0\}$. To see that $\mathbb{R}^{\mathbb{R}} = U + W$, note that for any $f \in \mathbb{R}^{\mathbb{R}}$, let $g(x) \equiv f(0)$, then f = (f - g) + g and $f - g \in U$, $g \in W$.

Name:

SID:

1. (5pt) Suppose $T \in \mathcal{L}(V, W)$ and v_1, \dots, v_m is a list of vectors in V such that Tv_1, \dots, Tv_m is linearly independent in W. Prove that v_1, \dots, v_m is linearly independent.

Proof. For any $a_1, \dots, a_m \in \mathbb{F}$ such that

$$a_1v_1 + \dots + a_mv_m = 0,$$

we have

$$a_1Tv_1 + \dots + a_mTv_m = T(a_1v_1 + \dots + a_mv_m) = T0 = 0.$$

Since Tv_1, \dots, Tv_m is linearly independent, there must be $a_1 = \dots = a_m = 0$, concluding that v_1, \dots, v_m is linearly independent.

2. (a) (3pt) Prove or disprove: there does not exist a linear map $T: \mathbb{R}^5 \to \mathbb{R}^5$ such that

range
$$T = \text{null } T$$
.

(b) (2pt) Let V be a vector space. Suppose that there exists a linear map on V whose null space and range are both finite-dimensional. Prove that V is finite-dimensional.

Proof. (a) By the fundamental theorem,

$$5 = \dim \mathbb{R}^5 = \dim \operatorname{range} T + \dim \operatorname{null} T.$$

Since 5 is odd, the dimension of range T and null T cannot be equal, consequently they themselves cannot be equal. \square (b) Let $T\colon V\to W$ be a linear map such that null T and range T are both finite-dimensional. Let v_1,\cdots,v_n be a basis of null T and w_1,\cdots,w_m be a basis of range T, then since $w_i\in \mathrm{range}\,T$, we can choose $u_i\in V$ such that $Tu_i=w_i$ for each $i=1,\cdots,m$. The claim is that V is spanned by $v_1,\cdots,v_n,u_1,\cdots,u_m$ (in fact, one can show that $v_1,\cdots,v_n,u_1,\cdots,u_m$ is a basis of V). Indeed, given any $v\in V$, then

$$Tv = a_1 T u_1 + \dots + a_m T u_m,$$

for some $a_1, \dots, a_m \in \mathbb{F}$. Thus $v - (a_1u_1 + \dots + a_mu_m) \in \text{null } T$ since

$$T(v - (a_1u_1 + \dots + a_mu_m)) = Tv - (a_1Tu_1 + \dots + a_mTu_m) = 0.$$

Hence $v - (a_1u_1 + \cdots + a_mu_m) = b_1v_1 + \cdots + b_nv_n$ for some $b_1, \cdots, b_n \in \mathbb{F}$. Therefore

$$v = b_1 v_1 + \dots + b_n v_n + a_1 u_1 + \dots + a_m u_m,$$

concluding that $v \in \text{span}(v_1, \dots, v_n, u_1, \dots, u_m)$ for any $v \in V$, so V is finite-dimensional by definition.

3. (Bonus 2pt) Let V and W be two vector spaces over a same field \mathbb{F} . Show that the inverse of a bijective linear map from V to W is also linear. Note that V and W are not assumed to be finite-dimensional. (Remark. This tells that bijective linear maps are exactly the isomorphisms in the category of vector spaces, if you know about some category theory.)

Proof. Let $T: V \to W$ be a bijective linear map, we need to prove that its inverse $T^{-1}: W \to V$ is also linear. Indeed, for any $w, u \in W$ and $\lambda \in \mathbb{F}$,

$$T^{-1}(\lambda w + u) \xrightarrow{TT^{-1} = 1w} T^{-1}(\lambda TT^{-1}w + TT^{-1}u) \xrightarrow{\text{linearity of } T} T^{-1}T(\lambda T^{-1}w + T^{-1}u) \xrightarrow{T^{-1}T = 1w} \lambda T^{-1}w + T^{-1}u.$$

Therefore T^{-1} is linear.

1. (5pt) Suppose $T \in \mathcal{L}(V, W)$ is injective and v_1, \dots, v_n is linearly independent in V. Show that Tv_1, \dots, Tv_n is linearly independent in W.

Proof. Let $a_1, \dots, a_n \in \mathbb{F}$ be such that

$$0 = a_1 T v_1 + \dots + a_n T v_n = T(a_1 v_1 + \dots + a_n v_n),$$

then since T is injective, $a_1v_1 + \cdots + a_nv_n = 0$ by Theorem 3.16. Since v_1, \cdots, v_n is linearly independent, there must be $a_1 = \cdots = a_n = 0$, concluding that Tv_1, \cdots, Tv_n is linearly independent.

2. (a) (3pt) Suppose that $\varphi \in \mathcal{L}(V, \mathbb{F})$. Suppose that $u \in V$ is not in null φ . Prove that

$$V = \text{null } \varphi \oplus \text{span}(u).$$

Note that V is not required to be finite-dimensional.

(b) (2pt) Suppose φ_1 and φ_2 are both in $\mathcal{L}(V, \mathbb{F})$ and null $\varphi_2 \subset \text{null } \varphi_1$. Show that there exists a scalar $c \in \mathbb{F}$ such that $\varphi_1 = c\varphi_2$. (Hint: the conclusion of (a) may be helpful.)

Proof. (a) Clearly null $\varphi \cap \text{span}(u) = \{0\}$. For any $v \in V$, since $\varphi(u) \neq 0$, we have

$$v = \left(v - \frac{\varphi(v)}{\varphi(u)}u\right) + \frac{\varphi(v)}{\varphi(u)}u$$

where $v - \frac{\varphi(v)}{\varphi(u)}u \in \text{null } \varphi$ because

$$\varphi\left(v - \frac{\varphi(v)}{\varphi(u)}u\right) = \varphi(v) - \frac{\varphi(v)}{\varphi(u)}\varphi(u) = \varphi(v) - \varphi(v) = 0.$$

Therefore $V = \text{null } \varphi \oplus \text{span}(u)$.

(b) If $\operatorname{null} \varphi_1 = V$, take c = 0. If $\operatorname{null} \varphi_1 \neq V$, then there exists $u \in V \setminus \operatorname{null} \varphi_1$. Since $\operatorname{null} \varphi_2 \subset \operatorname{null} \varphi_1$, we also have $u \notin \operatorname{null} \varphi_2$. By (a), we see that

$$V = \text{null } \varphi_2 \oplus \text{span}(u).$$

Thus every $v \in V$ admits a unique decomposition v = w + au for some $w \in \text{null } \varphi_1 \subset \text{null } \varphi_1$ and $a \in \mathbb{F}$. Since $\varphi_2(u) \neq 0$, we see that

$$\varphi_1(v) = a\varphi_1(u) = a\frac{\varphi_1(u)}{\varphi_2(u)}\varphi_2(u) = \frac{\varphi_1(u)}{\varphi_2(u)}\varphi_2(w + au) = \frac{\varphi_1(u)}{\varphi_2(u)}\varphi_2(v),$$

for each $v \in V$. Therefore $c = \frac{\varphi_1(u)}{\varphi_2(u)} \in \mathbb{F}$ satisfies $\varphi_1 = c\varphi_2$.

3. (Bonus 2pt) Let V and W be two finite-dimensional vector spaces over a same field \mathbb{F} . A bijective linear map from V to W is called an isomorphism between V and W. If there exists an isomorphism between V and W, we say that V and W are isomorphic. Prove that V and W are isomorphic if and only if $\dim V = \dim W$.

Proof. If V and W are isomorphic, then there exists a bijective linear map $T: V \to W$. Since null $T = \{0\}$ and range T = W by the bijectivity, by the fundamental theorem,

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T = 0 + \dim W = \dim W.$$

Conversely, if dim $V = \dim W = n$, then let v_1, \dots, v_n and w_1, \dots, w_n be bases of V and W respectively, and define via Theorem 3.5 a linear map $T: V \to W$ such that

$$Tv_i = w_i,$$

for each $i=1,\dots,n$. Such T is surjective since range $T=\operatorname{span}(Tv_1,\dots,Tv_n)=\operatorname{span}(w_1,\dots,w_n)=W$. For any $v=a_1v_1+\dots+a_nv_n\in V$ such that Tv=0, we have

$$0 = Tv = a_1 Tv_1 + \dots + a_n Tv_n = a_1 w_1 + \dots + a_n w_n$$

hence $a_1 = \cdots = a_n$ since w_1, \cdots, w_n is linearly independent, consequently v = 0, concluding that null $T = \{0\}$, so T is injective.

Name:

SID:

1. (5pt) Let $T: \mathcal{P}_2(\mathbb{F}) \to \mathcal{P}_1(\mathbb{F})$ be defined by

$$\begin{array}{cccc} T\colon & \mathcal{P}_2(\mathbb{F}) & \longrightarrow & \mathcal{P}_1(\mathbb{F}) \\ & p & \longmapsto & p'+2p'' \end{array}$$

then we know that T is linear. Compute $\mathcal{M}(T,(1,x-1,x^2),(1,x+1))$.

Proof. We have

$$T(1) = 0$$
 $= 0 \cdot 1 + 0 \cdot (x+1),$
 $T(x-1) = 1$ $= 1 \cdot 1 + 0 \cdot (x+1),$
 $Tx^2 = 2x + 4$ $= 2 \cdot 1 + 2 \cdot (x+1).$

Therefore

$$\mathcal{M}(T, (1, x, x^2), (1, x)) = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

2. Let U, V and $W \neq \{0\}$ be three vector spaces and $T \in \mathcal{L}(U, V)$. The precomposition of T gives a map $(-) \circ T$ from $\mathcal{L}(V, W)$ to $\mathcal{L}(U, W)$, by

$$\begin{array}{cccc} (-) \circ T \colon & \mathcal{L}(V,W) & \longrightarrow & \mathcal{L}(U,W) \\ S & \longmapsto & ST \end{array}$$

i.e. $(-) \circ T$ sends a linear map $S \in \mathcal{L}(V, W)$ to $ST \in \mathcal{L}(U, W)$. You should have seen that $(-) \circ T$ is a linear map (verify it yourself if you haven't!).

(a) (2pt) Suppose that V is finite-dimensional. Prove that T is surjective if and only if $(-) \circ T$ is injective.

(b) (3pt) Suppose that U and V are both finite-dimensional. Prove that T is injective if and only if $(-) \circ T$ is surjective. (Remark. These conclude that, if U and V are both finite-dimensional, then T is an isomorphism if and only if $(-) \circ T$ is an isomorphism. In fact, if we admit the axiom of choice, then the results are true even if U and V are not assumed to be finite-dimensional because the extensions of linear maps would always exist.)

Proof. (a) If T is surjective, then for any $S, S' \in \mathcal{L}(V, W)$ such that ST = S'T, for any $v \in V$, there exists $u \in U$ such that Tu = v, thus

$$Sv = STu = S'Tu = S'v.$$

concluding that S = S', so that $(-) \circ T$ is injective.

If T is not surjective, then let v_1, \dots, v_m be a basis of range T and extend it to $v_1, \dots, v_m, v_{m+1}, \dots, v_n$ a basis of V. We have n > m since range $T \neq V$. Let $w \in W \setminus \{0\}$. Define $S \in \mathcal{L}(V, W)$ by

$$Sv_n = w$$
, $Sv_i = 0$, $\forall i < n$,

then ST = 0 = 0T while $S \neq 0$, so $(-) \circ T$ is not injective.

(b) If T is injective, let u_1, \dots, u_m be a basis of U, then Tu_1, \dots, Tu_m is linearly independent in V, thus we can extend it to $Tu_1, \dots, Tu_m, v_1, \dots, v_n$ a basis of V. For any $F \in \mathcal{L}(U, W)$, define $S \in \mathcal{L}(V, W)$ by

$$S(Tu_i) = Fu_i, \quad \forall i = 1, \cdots, m,$$

and $Sv_j = 0$ for each $j = 1, \dots, n$, then ST = F since they agree on each of the basis elements u_i 's of U, concluding that $(-) \circ T$ is surjective.

If T is not injective, then there exists $u \in \text{null } T \setminus \{0\}$; extend u to a basis of U, u, u_1, \dots, u_m . Let $w \in W \setminus \{0\}$, and define $F \in \mathcal{L}(U, W)$ by

$$Fu = w, \quad Fu_i = 0, \quad \forall i = 1, \cdots, m,$$

then F cannot be in the range of $(-) \circ T$, since $STu = 0 \neq w = Fu$ for all $S \in \mathcal{L}(V, W)$.

3. (Bonus 2pt) Let V be a finite-dimensional vector space. Show that the linear map φ given by the following (you don't need to check its linearity here, but do check it yourself if you are not sure about that it is linear)

$$\begin{array}{cccc} \varphi \colon & V & \longrightarrow & \mathcal{L}(\mathcal{L}(V,\mathbb{F}),\mathbb{F}) \\ & v & \longmapsto & (\varphi(v)\colon f \mapsto f(v)) \end{array}$$

i.e. φ sends a vector $v \in V$ to the function $\varphi(v)$ in $\mathcal{L}(\mathcal{L}(V,\mathbb{F}),\mathbb{F})$ that sends an element $f \in \mathcal{L}(V,\mathbb{F})$ to $f(v) \in \mathbb{F}$, is an isomorphism of vector spaces between V and $\mathcal{L}(\mathcal{L}(V,\mathbb{F}),\mathbb{F})$.

(*Remark*. This is not true if V is infinite-dimensional. In fact, we have that φ is an isomorphism if and only if V is finite-dimensional.)

Proof. Since V is finite dimensional, we know by Theorem 3.61 that $\mathcal{L}(V,\mathbb{F})$ and $\mathcal{L}(\mathcal{L}(V,\mathbb{F}),\mathbb{F})$ are both finite dimensional and

$$\dim \mathcal{L}(\mathcal{L}(V,\mathbb{F}),\mathbb{F}) = (\dim \mathcal{L}(V,\mathbb{F})) \cdot \dim \mathbb{F} = \dim V \cdot \dim \mathbb{F} \cdot 1 = \dim V,$$

hence it suffices to verify that φ is injective as a consequence of the Fundamental Theorem of Linear Maps (see the proof of Theorem 3.69 if you don't see how). Indeed, for $v \in V \setminus \{0\}$, we can extend it to a basis v, v_1, \dots, v_n of V and define $f \in \mathcal{L}(V, \mathbb{F})$ by

$$f(v) = 1, \quad f(v_i) = 0, \quad \forall i = 1, \dots, n,$$

so that there exists $f \in \mathcal{L}(V, \mathbb{F})$ such that $f(v) = 1 \neq 0$. Since $\varphi(v) = 0$ means exactly that f(v) = 0 for all $f \in \mathcal{L}(V, \mathbb{F})$, we conclude that $\varphi(v) = 0$ only if v = 0, therefore φ is injective.

 \Box

Name:

SID:

1. (5pt) Let $T: \mathcal{P}_1(\mathbb{F}) \to \mathcal{P}_2(\mathbb{F})$ be defined by

$$T: \mathcal{P}_1(\mathbb{F}) \longrightarrow \mathcal{P}_2(\mathbb{F})$$

 $p \longmapsto xp - 2p'$

then we know that T is linear. Compute $\mathcal{M}(T,(1,x-2),(1,x+1,x^2))$.

Proof. We have

$$T(1) = x = -1 \cdot 1 + 1 \cdot (x+1) + 0 \cdot x^{2},$$

$$T(x-2) = x^{2} - 2x - 2 = 0 \cdot 1 + (-2) \cdot (x+1) + 1 \cdot x^{2},$$

Therefore

$$\mathcal{M}(T, (1, x - 2), (1, x + 1, x^2)) = \begin{pmatrix} -1 & 0 \\ 1 & -2 \\ 0 & 1 \end{pmatrix}$$

2. Let U, V and $W \neq \{0\}$ be three vector spaces and $T \in \mathcal{L}(U, V)$. The post-composition of T gives a map $(-) \circ T$ from $\mathcal{L}(W, U)$ to $\mathcal{L}(W, V)$, by

$$\begin{array}{cccc} T \circ (-) \colon & \mathcal{L}(W,U) & \longrightarrow & \mathcal{L}(W,V) \\ S & \longmapsto & TS \end{array}$$

i.e. $T \circ (-)$ sends a linear map $S \in \mathcal{L}(W,U)$ to $TS \in \mathcal{L}(W,V)$. You should have seen that $T \circ (-)$ is a linear map (verify it yourself if you haven't!).

(a) (2pt) Suppose that W is finite-dimensional. Prove that T is injective if and only if $T \circ (-)$ is injective.

(b) (3pt) Suppose that W and V are both finite-dimensional. Prove that T is surjective if and only if $T \circ (-)$ is surjective.

(*Remark*. These conclude that, if W and V are both finite-dimensional, then T is an isomorphism if and only if $T \circ (-)$ is an isomorphism. In fact, if we admit the axiom of choice, then the results are true even if W and V are not assumed to be finite-dimensional.)

Proof. (a) If T is injective, then for any $S, S' \in \mathcal{L}(W, U)$ such that TS = TS', we have for any $w \in W$,

$$T(Sw) = TSw = TS'w = T(S'w) \Rightarrow Sw = S'w,$$

concluding that S = S', thereby $T \circ (-)$ is injective.

If T is not injective, then there exists $u \in \text{null } T \setminus \{0\}$. Let w_1, \dots, w_m be a basis of W and define $S \in \mathcal{L}(W, U)$ by

$$Sw_i = u, \quad \forall i = 1, \cdots, m,$$

then $S \neq 0$ while TS = 0 since range $S = \operatorname{span}(u) \subset \operatorname{null} T$, concluding that $T \circ (-)$ is not injective.

(b) If T is surjective, then for any $F \in \mathcal{L}(W, V)$, let v_1, \dots, v_n be a basis of range F and $w_1, \dots, w_n \in W$ be such that $Fw_i = v_i$ for each $i = 1, \dots, n$. Let w_{n+1}, \dots, w_m be a basis of null F, then it is known that w_1, \dots, w_m is a basis of W (you should have proved this result for several times; if you have forgotten it, you should reprove it by yourself). Since T is surjective, we can select $u_i \in U$ such that $Tu_i = v_i$ for each $i = 1, \dots, n$. Define $S \in \mathcal{L}(W, U)$ by

$$Sw_i = u_i, \quad \forall i = 1, \cdots, n,$$

and $Sw_j = 0$ for all j > n, then TS = F since they agree on the basis elements w_i 's of W. Therefore $T \circ (-)$ is surjective.

If T is not surjective, then there exists $v \in V \setminus \operatorname{range} T$. Let w_1, \dots, w_m be a basis of W and define $F \in \mathcal{L}(W, V)$ by

$$Fw_i = v, \quad \forall i = 1, \cdots, m,$$

then range $F = \operatorname{span}(v)$ and there does not exist $S \in \mathcal{L}(W, U)$ such that TS = F since range $TS \subset \operatorname{range} T$ for all $S \in \mathcal{L}(W, U)$ and $v \notin \operatorname{range} T$, concluding that $T \circ (-)$ is not surjective.

3. Let V be an n-dimensional vector space and $T \in \mathcal{L}(V)$ satisfy $T^n = 0$ and $T^{n-1} \neq 0$.

(a) (Bonus 1pt) Let $v_0 \in V \setminus \text{null } T^{n-1}$, prove that $v_0, Tv_0, \dots, T^{n-1}v_0$ is a basis of V.

(b) (Bonus 1pt) Define $\Sigma := \{S \in \mathcal{L}(V) \mid ST = TS\}$, then Σ is a subspace of $\mathcal{L}(V)$ (you don't need to verify it here, but again, if you do not see this, verify it yourself). Define the linear map $\varphi \in \mathcal{L}(\Sigma, V)$ by

$$\begin{array}{cccc} \varphi \colon & \Sigma & \longrightarrow & V \\ S & \longmapsto & Sv_0 \end{array}$$

show that φ is an isomorphism, hence conclude that dim $\Sigma = n$.

Proof. (a) Since $v_0, Tv_0, \dots, T^{n-1}v_0$ has length $n = \dim V$, it suffices to show that it is linearly independent by Theorem 2.39. For any $a_1, \dots, a_n \in \mathbb{F}$ such that

$$a_1v_0 + a_2Tv_0 + \dots + a_nT^{n-1}v_0 = 0,$$

apply T^{n-1} to both sides, since $T^n = 0$, we have

$$a_1 T^{n-1} v_0 = T^{n-1} a_1 v_0 = 0.$$

Since $v_0 \notin \text{null } T^{n-1}$, $T^{n-1}v_0 \neq 0$, hence there must be $a_1 = 0$. Thereby

$$a_2 T v_0 + \dots + a_n T^{n-1} v_0 = 0.$$

Again, apply T^{n-2} and we see that $a_2=0$. Do this repeatedly, applying $T^{n-3}, T^{n-4}, \cdots, T, T^0=I$ for each time, and we see that $a_3=a_4=\cdots=a_n=0$, concluding that $v_0,Tv_0,\cdots,T^{n-1}v_0$ is linearly independent. \square (b) Since $I=T^0,T,\cdots,T^{n-1}$ are all in Σ , we see that $\{v_0,Tv_0,\cdots,T^{n-1}v_0\}\subset \operatorname{range}\varphi$, hence by (a) we know that φ is surjective. For the injectivity, notice that if $Sv_0=0$ for some $S\in\Sigma$, then

$$0 = TSv_0 = STv_0 = S(Tv_0).$$

Similarly we obtain that $S(T^iv_0)=0$ for each $i=0,1,\cdots,n-1$. Since $v_0,Tv_0,\cdots,T^{n-1}v_0$ spans V by (a), we conclude that S=0, therefore φ is injective.

Name:

SID:

1. (5pt) Let $V = \mathbb{F}^{\mathbb{F}}$ (recall that $\mathbb{F}^{\mathbb{F}}$ is the set of all functions from \mathbb{F} to \mathbb{F}). Let $U = \{f \in V \mid f(0) = f(1) = 0\}$, then U is a subspace of V and both V and U are infinite-dimensional (you don't need to prove these here). Find a basis of V/U, and conclude that $\dim(V/U) = 2$.

Proof. Let $f_0, f_1 \in \mathbb{F}^{\mathbb{F}}$ be defined by

$$f_{i}(\lambda) = \begin{cases} 1 & \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 & \lambda \neq i \end{cases} \quad \begin{cases} \lambda = i \\ 0 &$$

for any $\lambda \in \mathbb{F}$ and each i = 0, 1. For any $f + U \in V/U$, we have $f - (\underline{f(0)}\underline{f_0} + \underline{f(1)}\underline{f_1}) \in U$, hence

$$f + U = (f(0)f_0 + f(1)f_1) + U = f(0)(f_0 + U) + f(1)(f_1 + U),$$

by Theorem 3.85. Thus $f_0 + U$, $f_1 + U$ spans V/U. For any $a_1, a_2 \in \mathbb{F}$ such that

$$(a_1f_0 + a_2f_1) + U = a_1(f_0 + U) + a_2(f_1 + U) = 0 + U,$$

we have by Theorem 3.85 $a_1f_0 + a_2f_1 \in U$, hence

$$0 = (a_1 f_0 + a_2 f_1)(0) = a_1 f_0(0) + a_2 f_1(0) = a_1, \quad 0 = (a_1 f_0 + a_2 f_1)(1) = a_1 f_0(1) + a_2 f_1(1) = a_2,$$

concluding that $f_0 + U$, $f_1 + U$ is linearly independent. Therefore $f_0 + U$, $f_1 + U$ is a basis of V/U and $\dim(V/U) = 2$.

- **2.** Suppose U is a subspace of V. Let $\pi:V\to V/U$ be the usual quotient map, i.e. $\pi(v)=v+U$ for each $v\in V$. Thus $\pi'\in\mathcal{L}((V/U)',V')$.
- (a) (2pt) Show that π' is injective.
- (b) (3pt) Show that range $\pi' = U^0$. Thus conclude that π' is an isomorphism between (V/U)' and U^0 .

Proof. (a) If $\varphi \in (V/U)'$ is not zero, then there exists $v + U \in V/U$ such that $\varphi(v + U) \neq 0$. Thus $\pi'(\varphi)(v) = (\varphi \circ \pi)(v) = \varphi(v + U) \neq 0$, hence $\pi'(\varphi) \neq 0$, concluding that π' is injective.

(b) For any $\varphi \in (V/U)'$ and any $u \in U$, since u + U = 0 + U, we have

$$\pi'(\varphi)(u) = \varphi(u+U) = \varphi(0+U) = 0,$$

hence range $\pi' \subset U^0$. For any $\varphi \in U^0 \subset V'$, define $\widetilde{\varphi} \in (V/U)'$ by

$$\widetilde{\varphi}(v+U) \coloneqq \varphi(v),$$

for each $v+U\in V/U$, then $\widetilde{\varphi}$ is well-defined, because if v+U=w+U for some $v,w\in V$, then $v-w\in U$ by Theorem 3.85, hence $\varphi(v-w)=0$ since $\varphi\in U^0$, and thereby

$$\widetilde{\varphi}(w+U) = \varphi(w) = \varphi(w) + \varphi(v-w) = \varphi(v) = \widetilde{\varphi}(v+U).$$

The verification of the linearity of $\widetilde{\varphi}$ is routine, hence $\widetilde{\varphi}$ is indeed in (V/U)'. Now that for any $v \in V$,

$$\pi'(\widetilde{\varphi})(v) = \widetilde{\varphi}(v+U) = \varphi(v),$$

hence $\pi'(\widetilde{\varphi}) = \varphi$, concluding that range $\pi' \supset U^0$. Therefore we obtain range $\pi' = U^0$.

Since π' is injective by (a), we see that π' , seen as a map from (V/U)' to U^0 , is bijective and linear, concluding that π' is an isomorphism between (V/U)' and U^0 ,

3. (Bonus 2pt) Let V and W both be finite-dimensional vector spaces. Define $\varphi \in \mathcal{L}(\mathcal{L}(V,W),\mathcal{L}(W',V'))$ by

$$\varphi \colon \quad \mathcal{L}(V,W) \quad \longrightarrow \quad \mathcal{L}(W',V') = \mathcal{L}(\mathcal{L}(W,\mathbb{F}),\mathcal{L}(V,\mathbb{F}))$$

$$T \quad \longmapsto \quad T' = (-) \circ T$$

then we know that φ is linear by Theorem 3.101. Show that φ is an isomorphism of vector spaces.

Proof. Since dim $\mathcal{L}(V,W) = (\dim V) \cdot (\dim W) = (\dim V') \cdot (\dim W') = \dim \mathcal{L}(W',V')$, it suffices to show that φ is injective. If $T \neq 0$, then $Tv = w \neq 0$ for certain $v \in V$ and $w \in W$. Extend w to a basis w, w_1, \dots, w_m of W, and define $f \in \mathcal{L}(W,\mathbb{F})$ by

$$f(w) = 1, \quad f(w_i) = 0, \quad \forall i = 1, \dots, m.$$

Then $\varphi(T)(f) = T'(f) = f \circ T \neq 0$ since $f \circ T(v) = f(w) = 1$, hence $\varphi(T) \neq 0$. Therefore φ is injective.

1. (5pt) Suppose that V is finite-dimensional and U and W are two subspaces of V. Prove that

$$(U \cap W)^0 = U^0 + W^0.$$

Proof. For any $\varphi \in U^0$, we have $\varphi(u) = 0$ for all $u \in U$, hence $\varphi(u) = 0$ for all $u \in U \cap W$, thus $\varphi \in (U \cap W)^0$, concluding that $U^0 \subset (U \cap W)^0$. Similarly we have $W^0 \subset (U \cap W)^0$.

Since V is finite-dimensional, so is U, W and $U \cap W$. Let v_1, \dots, v_n be a basis of $U \cap W$ and extend it to a basis $v_1, \dots, v_n, u_1, \dots, u_k$ of U and a basis $v_1, \dots, v_n, w_1, \dots, w_r$ of W. It is clear that $v_1, \dots, v_n, u_1, \dots, u_k, w_1, \dots, w_r$ spans U + W. Since $\dim U \cap W = n$, $\dim U = n + k$, $\dim W = n + r$ and

$$\dim(U+W) = \dim U + \dim W - \dim(U \cap W) = n + k + r,$$

we see that $v_1, \dots, v_n, u_1, \dots, u_k, w_1 \dots, w_r$ is a basis of U + W, in particular it is linearly independent in V. Extend $v_1, \dots, v_n, u_1, \dots, u_k, w_1 \dots, w_r$ to a basis $v_1, \dots, v_n, u_1, \dots, u_k, w_1 \dots, w_r, v_{n+1}, \dots, v_m$ of V. Now, let $\varphi \in (U \cap W)^0$ be arbitrary, define $\varphi_U \in U^0$ and $\varphi_W \in W^0$ by Theorem 3.5 that

$$\varphi_U(v_i) = \begin{cases} 0 & i \le n \\ \varphi(v_i) & i \ge n+1 \end{cases}, \quad \varphi_U(u_j) = 0, \forall j = 1, \dots, k, \quad \varphi_U(w_s) = \varphi(w_s), \forall s = 1, \dots, r,$$

and

$$\varphi_W(v_i) = 0, \forall i = 1, \cdots, m, \quad \varphi_W(u_j) = \varphi(u_j), \forall j = 1, \cdots, k, \quad \varphi_W(w_s) = 0, \forall s = 1, \cdots, r,$$

then $\varphi = \varphi_U + \varphi_W$ since they agree on each of the basis elements of V. Therefore $(U \cap W)^0 = U^0 + W^0$ as desired. \square

- **2.** Let V be a vector space and U a subspace of V such that V/U is finite-dimensional. Let $v_1 + U, \dots, v_n + U$ be a basis of V/U.
- (a) (2pt) Prove that v_1, \dots, v_n is a linearly independent list in V.
- (b) (3pt) Let $W = \text{span}(v_1, \dots, v_n)$, prove that $V = U \oplus W$.
- (c) (Bonus 2pt) Show that every linear map on U can be extended to a linear map on V, i.e. for any vector space X and any linear map $T \in \mathcal{L}(U,X)$, there exists a linear map $\overline{T} \in \mathcal{L}(V,X)$ such that $\overline{T}u = Tu$ for all $u \in U$. (Hint: define $S \in \mathcal{L}(U \times W,X)$ such that S(u,0) = T(u) for all $u \in U$, and then use the canonical isomorphism $U \times W \cong U \oplus W$.)

Proof. (a) Let $a_1, \dots, a_n \in \mathbb{F}$ be such that

$$a_1v_1 + \dots + a_nv_n = 0,$$

then $a_1v_1 + \cdots + a_nv_n = 0 \in U$ implies by Theorem 3.85 that

$$a_1(v_1 + U) + \dots + a_n(v_n + U) = (a_1v_1 + \dots + a_nv_n) + U = 0 + U.$$

Since $v_1 + U, \dots, v_n + U$ is a basis of V/U, it is linearly independent in V/U, hence $a_1 = \dots = a_n = 0$, concluding that v_1, \dots, v_n is linearly independent in V.

(b) By definition, every element in W is of the form $a_1v_1 + \cdots + a_nv_n$ for some $a_1, \cdots, a_n \in \mathbb{F}$. If $a_1v_1 + \cdots + a_nv_n \in U$, then

$$a_1(v_1 + U) + \dots + a_n(v_n + U) = (a_1v_1 + \dots + a_nv_n) + U = 0 + U,$$

hence $a_1 = \cdots = a_n = 0$ since $v_1 + U, \cdots, v_n + U$ is linearly independent in V/U, thus $a_1v_1 + \cdots + a_nv_n = 0$, concluding that $W \cap U = \{0\}$.

To see that V = U + W, let $v \in V$ be an arbitrary vector, then there exists $a_1, \dots, a_n \in \mathbb{F}$ such that

$$v + U = a_1(v_1 + U) + \dots + a_n(v_n + U) = (a_1v_1 + \dots + a_nv_n) + U,$$

since $v_1 + U, \dots, v_n + U$ is a basis of V/U. Hence $v - (a_1v_1 + \dots + a_nv_n) \in U$ by Theorem 3.85. Therefore

$$v = (a_1v_1 + \dots + a_nv_n) + v - (a_1v_1 + \dots + a_nv_n) \in W + U,$$

concluding that V = W + U.

(c) Define $S \in \mathcal{L}(U \times W, X)$ by

$$S: \quad \begin{array}{ccc} U \times W & \longrightarrow & X \\ (u, w) & \longmapsto & T(u) \end{array}$$

then S is indeed linear since

$$S(\lambda(u, w) + (u', w')) = S(\lambda u + u', \lambda w + w') = T(\lambda u + u') = \lambda Tu + Tu' = \lambda S(u, w) + S(u', w'),$$

for any $(u, w), (u', w') \in U \times W$ and $\lambda \in \mathbb{F}$.

Define $\Gamma: U \times W \to U \oplus W = V$ by $\Gamma(u, w) = u + w$ for any $(u, w) \in U \times W$, then Γ is an injective linear map by Theorem 3.77. Since Γ is clearly surjective, Γ is an isomorphism between $U \times W$ and $U \oplus W$. Define $\overline{T} := S\Gamma^{-1} \in \mathcal{L}(V, X)$, then for any $u \in U$,

$$\overline{T}(u) = S\Gamma^{-1}(u) = S(u, 0) = T(u).$$

as desired.

1. (5pt) Prove or give a counterexample: if V is finite-dimensional and U is a subspace of V that is invariant under every operator on V, then $U = \{0\}$ or U = V.

Proof. We show the contrapositive, that if $U \neq \{0\}$ and $U \neq V$, then there exists an operator on V such that U is not invariant under that operator.

If $U \neq \{0\}$ and $U \neq V$, let u_1, \dots, u_n be a basis of U and extend it to a basis $u_1, \dots, u_n, w_1, \dots, w_m$ of V then $n, m \geq 1$ and in particular $w_1 \notin U$. Define $T \in \mathcal{L}(V)$ by

$$T(u_i) = w_1, \forall i = 1, \dots, n, \quad T(w_i) = w_i, \forall j = 1, \dots, m,$$

then U is not invariant under T since $Tu_1 = w_1 \notin U$.

2. Let V be finite-dimensional vector space and $T \in \mathcal{L}(V)$. Define $\varphi \in \mathcal{L}(\mathcal{L}(V))$ by

$$\begin{array}{ccc} \varphi \colon & \mathcal{L}(V) & \longrightarrow & \mathcal{L}(V) \\ & S & \longmapsto & ST \end{array}$$

then we know that φ is linear. Prove that

- (a) (5pt) $\lambda \in \mathbb{F}$ is an eigenvalue of T if λ is an eigenvalue of φ .
- (b) (Bonus 2pt) $\lambda \in \mathbb{F}$ is an eigenvalue of T only if λ is an eigenvalue of φ .

Proof. (a) If $\lambda \in \mathbb{F}$ is an eigenvalue of φ , then

$$ST = \varphi(S) = \lambda S$$

for some nonzero $S \in \mathcal{L}(V)$. Hence

$$S(T - \lambda I) = 0.$$

If $T - \lambda I$ is injective, then $T - \lambda I$ is invertible by Theorem 3.69, hence S = 0, contradicting to our choice of S. Therefore $T - \lambda I$ cannot be injective, hence λ is an eigenvalue of T by Theorem 5.6.

(b) If $\lambda \in \mathbb{F}$ is an eigenvalue of T, then $T - \lambda I$ is not injective by Theorem 5.6, hence $T - \lambda I$ is not surjective by Theorem 3.69. Let v_1, \dots, v_m be a basis of range $(T - \lambda I)$ and extend it to a basis $v_1, \dots, v_m, v_{m+1}, \dots, v_n$ of V, then n > m. Define $S \in \mathcal{L}(V)$ by

$$S(v_i) = \begin{cases} 0 & i \le m \\ v_i & i > m \end{cases}$$

then $S \neq 0$ since n > m. Since range $(T - \lambda I) \subset \text{null } S$, We have

$$0 = S(T - \lambda I) = ST - \lambda S,$$

hence

$$\varphi(S) = ST = \lambda S,$$

concluding that λ is an eigenvalue of φ .

1. (5pt) Suppose V is a finite dimensional complex vector space, $T \in \mathcal{L}(V)$ and the matrix of T with respect to some basis of V contains only real entries. Show that if λ is an eigenvalue of T, then so is $\bar{\lambda}$.

Proof. Write dim V = n. Let M(T) be the matrix of T with respect to the basis of V such that M(T) contains only real entries. Then $\overline{M(T)} = M(T)$. If λ is an eigenvalue of T, then $T - \lambda I$ is not injective, hence is not surjective by Theorem 3.69. By Theorem 3.117, $M(T - \lambda I)$ is not of full rank, hence the columns $C_1, \dots, C_n \in \mathbb{C}^n$ of $M(T - \lambda I)$ are linearly dependent over \mathbb{C} . Thus there exists $a_1, \dots, a_n \in \mathbb{C}$ that are not all zeros such that

$$a_1C_1 + \dots + a_nC_n = 0.$$

Take conjugate of the both sides and we obtain

$$\overline{a_1}\overline{C_1} + \dots + \overline{a_n}\overline{C_n} = 0.$$

Since $\overline{a_1}, \dots, \overline{a_n} \in \mathbb{C}$ are not all zeros and $\overline{C_1}, \dots, \overline{C_n}$ are the columns of $\overline{M(T - \lambda I)} = \overline{M(T)} - \overline{\lambda M(I)} = M(T) - \overline{\lambda}M(I) = M(T - \overline{\lambda}I)$, we see that $M(T - \overline{\lambda}I)$ is not of full rank, hence $T - \overline{\lambda}I$ is not surjective by Theorem 3.117, therefore $T - \overline{\lambda}I$ is not injective by Theorem 3.69, concluding that $\overline{\lambda}$ is an eigenvalue of T by Theorem 5.6.

- **2.** Suppose that V is a vector space, $T, S \in \mathcal{L}(V)$ and $\lambda \in \mathbb{F}$.
- (a) (5pt) If TS = ST, prove that $\text{null}(S \lambda I)$ and $\text{range}(S \lambda I)$ are both invariant under T.
- (b) (Bonus 2pt) If V is of finite dimensional and dim range(ST-TS)=1, prove that either null $(S-\lambda I)$ or range $(S-\lambda I)$ must be invariant under T.

(Hint: If $\operatorname{null}(S - \lambda I)$ is not invariant under T, then there exists $v \in \operatorname{null}(S - \lambda I)$ such that $\operatorname{range}(ST - TS) = \operatorname{span}((S - \lambda I)Tv) \subset \operatorname{range}(S - \lambda I)$, and then...)

Proof. (a) For any $v \in \text{null}(S - \lambda I)$, we have

$$(S - \lambda I)(Tv) = (ST - \lambda T)v = (TS - T(\lambda I))v = T(S - \lambda I)v = T0 = 0,$$

hence $Tv \in \text{null}(S - \lambda I)$, concluding that $\text{null}(S - \lambda I)$ is invariant under T.

For any $v \in \text{range}(S - \lambda I)$, there exists $u \in V$ such that $v = (S - \lambda I)u$, hence we have

$$Tv = T(S - \lambda I)u = (TS - \lambda T)u = (ST - \lambda T)u = (S - \lambda I)(Tu) \in \text{range}(S - \lambda I),$$

concluding that range $(S - \lambda I)$ is invariant under T.

(b) If $\operatorname{null}(S - \lambda I)$ is not invariant under T, then there exists $v \in \operatorname{null}(S - \lambda I)$ such that $(S - \lambda I)(Tv) \neq 0$ by Definition 5.2. Since $v \in \operatorname{null}(S - \lambda I)$, we have $Sv = \lambda v$, hence

$$\operatorname{range}(ST - TS) \ni (ST - TS)v = STv - T(\lambda v) = (S - \lambda I)(Tv) \neq 0.$$

Since dim range(ST-TS)=1, it follows that range $(ST-TS)=\mathrm{span}((S-\lambda I)Tv)$. Now for any $w\in\mathrm{range}(S-\lambda I)$, there exists $u\in V$ such that $(S-\lambda I)u=w$ and we have since $(ST-TS)u\in\mathrm{range}(ST-TS)=\mathrm{span}((S-\lambda I)Tv)$ that

$$(ST - TS)u = \mu(S - \lambda I)Tv \quad \Rightarrow \quad TSu = STu - (S - \lambda I)(\mu Tv)$$

for some $\mu \in \mathbb{F}$. Hence

$$Tw = T(S - \lambda I)u = TSu - \lambda Tu = STu - (S - \lambda I)(\mu Tv) - \lambda Tu = (S - \lambda I)(Tu - \mu Tv) \in \text{range}(S - \lambda I),$$

concluding that range $(S - \lambda I)$ is invariant under T.

Name:

SID:

1. Let V be a vector space and $T \in \mathcal{L}(V)$ such that $T^2 = T$ and $T \neq 0$. You have seen in your homework that $V = \text{null } T \oplus \text{range } T$. Suppose that $\text{null } T \neq \{0\}$. Question:

- (a) (2pt) Find all the eigenvalues of T;
- (b) (2pt) For each eigenvalue λ of T, find $E(\lambda, T)$;
- (c) (1pt) Conclude that T is diagonalizable if V is finite dimensional.

Proof. (a) Since null $T \neq \{0\}$, 0 is an eigenvalue of T; since $T \neq 0$, there exists $v \in V$ such that $Tv \neq 0$, and $T(Tv) = T^2v = Tv$ tells that 1 is an eigenvalue of T. Conversely, if λ is an eigenvalue of T, then there exists $v \in V$ such that $Tv = \lambda v$. Since $\lambda v = Tv = T^2v = \lambda^2 v$, we have $\lambda^2 - \lambda = 0$, hence $\lambda = 0$ or 1.

(b) E(0,T) = null T is clear. We have E(1,T) = range T: $E(1,T) \subset \text{range } T$ is easy; for any $v \in \text{range } T$, there exists $u \in V$ such that Tu = v, hence

$$Tv = T(Tu) = T^2u = Tu = v,$$

thus $v \in E(1,T)$.

(c) By (b), since $V = \text{null } T \oplus \text{range } T$, we have $V = E(0,T) \oplus E(1,T)$, hence by Theorem 5.41 we know that T is diagonalizable.

2. (5pt) Suppose V is a finite-dimensional vector space and $T \in \mathcal{L}(V)$ has a diagonal matrix A with respect to some basis of V and that $\lambda \in \mathbb{F}$. Prove that λ appears on the diagonal of A precisely dim $E(\lambda, T)$ times.

Proof. Clearly, if λ is not an eigenvalue of T, then λ cannot appear in the diagonal of A and dim $E(\lambda, T) = 0$. Let $\lambda_1, \dots, \lambda_m \in \mathbb{F}$ be all the distinct eigenvalues of T and v_1, \dots, v_n be the basis of V with respect to which the matrix of T is A. Since A is diagonal, each v_i is an eigenvector of T, hence if we define the set $S_i := \{v_j \mid Tv_j = \lambda_i v_j\}$ for each $i = 1, \dots, m$, then

$$\{v_1,\cdots,v_n\} = \bigcup_{i=1}^m S_i.$$

Since v_1, \dots, v_n is a basis of $V, |S_i| = \dim \operatorname{span} S_i$ (where $|S_i|$ is the number of elements in S_i) and

$$V = \operatorname{span}(v_1, \dots, v_n) = \operatorname{span} S_1 + \dots + \operatorname{span} S_m,$$

in particular dim span $S_1 + \cdots + \dim \operatorname{span} S_m \geq \dim V$. Since T is diagonalizable, $\dim V = \dim E(\lambda_1, T) + \cdots + \dim E(\lambda_m, T)$, hence

$$\dim \operatorname{span} S_1 + \cdots + \dim \operatorname{span} S_m \ge \dim E(\lambda_1, T) + \cdots + \dim E(\lambda_m, T).$$

On the other hand, we have dim span $S_i \leq \dim E(\lambda_i, T)$ since $S_i \subset E(\lambda_i, T)$ gives span $S_i \subset E(\lambda_i, T)$ for each $i = 1, \dots, m$, therefore there must be dim span $S_i = \dim E(\lambda_i, T)$ for each $i = 1, \dots, m$, hence dim $E(\lambda_i, T) = \dim \operatorname{span} S_i = |S_i|$. By the construction of S_i , $|S_i|$ is the number of times of that λ_i appears on the diagonal of A, concluding the proof.

Alternative Proof (Sketch). Since $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$, take a basis for each $E(\lambda_i, T)$ and put them together, we obtain a basis v_1, \cdots, v_n of V, with respect to which $B := M(T, (v_1, \cdots, v_n))$ is diagonal and $\lambda \in \mathbb{F}$ appears on the diagonal of B precisely dim $E(\lambda, T)$ times.

Since with respect to any basis, we always have $\dim \operatorname{null}(M(T) - \lambda I) = \dim \operatorname{null}(M(T - \lambda I)) = \dim \operatorname{null}(M(T - \lambda I))$, we have $\dim \operatorname{null}(B - \lambda I) = \dim \operatorname{null}(T - \lambda I) = \dim \operatorname{null}(A - \lambda I)$ for any $\lambda \in \mathbb{F}$, and it follows that λ appears on the diagonal of A precisely the times it appears on the diagonal of B, which is $\dim E(\lambda, T)$.

3. (Bonus 2pt) Suppose V is finite-dimensional with dim V > 1 and $T \in \mathcal{L}(V)$. Prove that

$$\{p(T) \mid p \in \mathcal{P}(\mathbb{F})\} \neq \mathcal{L}(V)$$

Proof. By Theorem 5.20, the multiplication of elements in $\{p(T) \mid p \in \mathcal{P}(\mathbb{F})\}$ is commutative. However, for dim V > 1, we have proved in Exercise 3.A.18 that there exists $S, T \in \mathcal{L}(V)$ such that $ST \neq TS$. Therefore the two sets cannot be equal.

Name:

SID: Advanced Linear Algebra

1. (5pt) Prove or give a counterexample: Let V be a finite-dimensional vector space and $T \in \mathcal{L}(V)$. If $V = \text{null } T \oplus \text{range } T$, then T is diagonalizable.

Proof. Counterexample I: Let $V = \mathbb{R}^2$ and

then T is invertible, hence $V = \mathbb{R}^2 = \operatorname{range} T = \{0\} \oplus \operatorname{range} T = \operatorname{null} T \oplus \operatorname{range} T$. It is easy to see that T does not have any eigenvalue, hence is not diagonalizable.

Counterexample II: Let $V = \mathbb{C}^2$ and

$$egin{array}{cccc} T\colon & \mathbb{C}^2 & \longrightarrow & \mathbb{C}^2 \ & m{v} & \longmapsto & egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix} m{v} \end{array}$$

again T is invertible. The only eigenvalue of T is 1 (Theorem 5.32) and $E(1,T) = \text{null}\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \text{span}\{(1,0)^T\}$, hence T is not diagonalizable by Theorem 5.41.

2. (4pt) Prove or give a counterexample: Let $T \in \mathcal{L}(V)$ and there exists a positive integer n such that $T^n = 0$, then I - T is invertible.

Proof. It is easy to verify that $I + T + \cdots + T^{n-1}$ is the inverse of I - T. Therefore I - T is invertible.

Remark: The idea is that we have the expansion that

$$\frac{1}{1-x} = 1 + x + x^2 + \cdots.$$

3. (1pt+Bonus 2pt) Let V be a finite dimensional nonzero real vector space and $T \in \mathcal{L}(V)$. Prove that there exists an invariant subspace of V under T of dimension 1 or 2.

(Hint: Recall Theorem 4.17 that every non-constant polynomial $p \in \mathcal{P}(\mathbb{R})$ has a unique factorization of the form

$$p(x) = c(x - \lambda_1) \cdots (x - \lambda_m)(x^2 + b_1 x + c_1) \cdots (x^2 + b_M x + c_M)$$

where $c, \lambda_1, \dots, \lambda_m, b_1, \dots, b_M, c_1, \dots, c_M \in \mathbb{R}$. Try imitating the proof of Theorem 5.21 that every operator on a finite-dimensional nonzero complex vector space has an eigenvalue.)

Proof. Write dim V = n. Let $v \in V$ with $v \neq 0$, then the list of n + 1 vectors,

$$v.Tv.T^2v.\cdots.T^nv.$$

is not linearly independent, hence there exists $a_0, \dots, a_n \in \mathbb{R}$ that are not all zeros, such that

$$a_0v + a_1Tv + \dots + a_nT^nv = 0.$$

Note that a_1, \dots, a_n cannot be all zeros, otherwise $a_0v = 0$ would give also $a_0 = 0$ since $v \neq 0$. Define $p(x) = a_0 + a_1x + \dots + a_nx^n \in \mathcal{P}(\mathbb{R})$, then p is non-constant, hence by Theorem 4.17,

$$p(x) = c(x - \lambda_1) \cdots (x - \lambda_m)(x^2 + b_1 x + c_1) \cdots (x^2 + b_M x + c_M),$$

where $0 \neq c, \lambda_1, \dots, \lambda_m, b_1, \dots, b_M, c_1, \dots, c_M \in \mathbb{R}$, and either m or M must be no less than 1. Since

$$p(T)v = a_0 + a_1Tv + \dots + a_nT^nv = 0,$$

we see that $p(T) = c(T - \lambda_1 I) \cdots (T - \lambda_m I)(T^2 + b_1 T + c_1 I) \cdots (T^2 + b_M T + c_M I)$ is not injective. Since $c \neq 0$, there must be either $T - \lambda_i I$ or $T^2 + b_j T + c_j I$ is not injective for some $1 \leq i \leq m$ or $1 \leq j \leq M$ respectively. If $T - \lambda_i I$ is not injective, then λ_i is an eigenvalue of T, hence T has an invariant subspace of dimension 1. If $T^2 + b_j T + c_j I$ is not injective, then there exists a non-zero vector $u \in V$ such that $T^2 u + b_j T u + c_j u = 0$. Let $U = \operatorname{span}(u, Tu)$, then for any $u \in U$, u = u + bTu for some $u \in V$ and

$$Tw = T(au + bTu) = aTu + bT^2u = aTu + b(-b_jTu - c_ju) = (a - bb_j)T_u - c_ju \in U,$$

hence U is an invariant subspace under T and $1 \le \dim U \le 2$, concluding the proof. (In fact, you can show that $\dim U = 2$ if you assume that $b_i^2 < c_j$ honestly as in Theorem 4.17)

Name:

SID:

1. (5pt) Prove or disprove: There exists a polynomial $q \in \mathcal{P}_1(\mathbb{R})$ such that

$$\int_0^1 p(x)\cos(\pi x) dx = \int_0^1 p(x)q(x) dx$$

for every $p \in \mathcal{P}_2(\mathbb{R})$.

Proof. Take $q(x) = -\frac{12}{\pi^2}(2x-1)$ as in Exercise 6.B.8. Since $q \in \mathcal{P}_1(\mathbb{R})$, such q does exist.

Remark. For any $n, m \in \mathbb{N}$, does there exist $q \in \mathcal{P}_n(\mathbb{R})$ such that

$$\int_0^1 p(x)\cos(\pi x) dx = \int_0^1 p(x)q(x) dx$$

for every $p \in \mathcal{P}_m(\mathbb{R})$?

2. (5pt) Let n be a positive integer. Recall that the trace of an $n \times n$ real matrix A is defined by

$$\operatorname{tr}(A) := \sum_{i=1}^{n} A_{i,i}.$$

Define $\langle \cdot, \cdot \rangle \colon \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \to \mathbb{R}$ by

$$\langle A, B \rangle := \operatorname{tr}(AB^T),$$

show that $\langle \cdot, \cdot \rangle$ is an inner product on $\mathbb{R}^{n \times n}$.

Proof. Since $(AB^T)_{i,j} = \sum_{k=1}^n A_{i,k} B_{j,k}$,

$$\langle A, B \rangle = \operatorname{tr}(AB^T) = \sum_{l=1}^n \left(\sum_{k=1}^n A_{l,k} B_{l,k} \right) = \left(\sum_{k=1}^n B_{l,k} A_{l,k} \right) = \langle B, A \rangle,$$

so we have the (conjugate) symmetry. The positive definiteness follows from:

$$\langle A, A \rangle = \sum_{l=1}^{n} \left(\sum_{k=1}^{n} A_{l,k}^{2} \right) \ge 0,$$

and $\langle A, A \rangle = 0$ if and only if $A_{l,k} = 0$ for all $l, k \in \{1, \dots, n\}$, if and only if A = 0. For any $n \times n$ real matrix C and $\lambda \in \mathbb{R}$, we have

$$\langle \lambda A + C, B \rangle = \sum_{l=1}^{n} \left(\sum_{k=1}^{n} (\lambda A_{l,k} + C_{l,k}) B_{l,k} \right) = \lambda \left(\sum_{k=1}^{n} A_{l,k} B_{l,k} \right) + \left(\sum_{k=1}^{n} C_{l,k} B_{l,k} \right) = \lambda \langle A, B \rangle + \langle C, B \rangle,$$

so the additivity and homogeneity in first slot are both clear.

3. (Bonus 2pt) Suppose e_1, \dots, e_n is an orthonormal basis of V and v_1, \dots, v_n are vectors in V such that

$$||e_j - v_j|| < \frac{1}{\sqrt{n}}$$

for each j. Prove that v_1, \dots, v_n is a basis of V.

(Hint: Define $T \in \mathcal{L}(V)$ by $Te_i = e_i - v_i$ for each $i = 1, \dots, n$. Show that if I - T is invertible, then v_1, \dots, v_n is a basis of V. Then show that 1 is not an eigenvalue of T using the inequality that

$$\frac{\sum_{i=1}^{n} x_i}{n} \le \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}$$

whenever x_1, \dots, x_n are positive real numbers.)

Proof. Since $(I-T)e_i=v_i$ for each $i=1,\cdots,n$, if I-T is invertible, then it is injective (since here V is f.d.), hence for any $a_1,\cdots,a_n\in\mathbb{F},\ a_1v_1+\cdots+a_nv_n=0$ only if $a_1e_1+\cdots+a_ne_n=0$, only if $a_1=\cdots=a_n=0$ since e_1,\cdots,e_n is a basis. Thus v_1,\cdots,v_n is linearly independent of length dim V=n, so it is a basis.

Thus it suffices to show that I-T is injective. If there exists a nonzero $v \in V$ such that Tv = v, then by Theorem 6.30,

$$||v||^{2} = ||Tv||^{2} = \left\| \sum_{i=1}^{n} \langle v, e_{i} \rangle (e_{i} - v_{i}) \right\|^{2} \le \left(\sum_{i=1}^{n} |\langle v, e_{i} \rangle| ||e_{i} - v_{i}|| \right)^{2}$$

$$< \frac{1}{n} \left(\sum_{i=1}^{n} |\langle v, e_{i} \rangle| \right)^{2} = n \left(\frac{\sum_{i=1}^{n} |\langle v, e_{i} \rangle|}{n} \right)^{2}$$

$$\le n \frac{\sum_{i=1}^{n} |\langle v, e_{i} \rangle|^{2}}{n} = \sum_{i=1}^{n} |\langle v, e_{i} \rangle|^{2} = ||v||^{2},$$

so we obtain $||v||^2 < ||v||^2$, which is impossible. Therefore I - T is injective, hence invertible (as V is f.d.), concluding the proof.

Name: SID:

1. (5pt) Prove or give a counterexample: For every finite dimensional vector space, there exists an inner product on it.

Proof. Let V be finite dimensional and v_1, \dots, v_n be a basis of V, then the assignment $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{F}$ defined by, for any two vectors $v = a_1v_1 + \dots + a_nv_n, u = b_1v_1 + \dots + b_nv_n$ in V,

$$\langle v, u \rangle \coloneqq \sum_{i=1}^{n} a_i \overline{b_i},$$

is an inner product on V (the verification is omitted here, but you need to verify it when answering). Therefore the statement is true.

2. (5pt) Let n be a positive integer. Recall that the trace of an $n \times n$ real matrix $A = (a_{ij})$ is defined by

$$\operatorname{tr}(A) := \sum_{i=1}^{n} a_{ii}.$$

Define $\langle \cdot, \cdot \rangle \colon \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \to \mathbb{R}$ by

$$\langle A, B \rangle := \operatorname{tr}(AB^T),$$

then it is easy to see that $\langle \cdot, \cdot \rangle$ is an inner product on $\mathbb{R}^{n \times n}$ (you don't need to show it here). Show that the $n \times n$ matrices E_{ij} , whose entries are all zeros except an 1 in row i, column j, give an orthonormal basis of $(\mathbb{R}^{n \times n}, \langle \cdot, \cdot \rangle)$.

Proof. It is clear that E_{ij} 's form a basis. To show that it is orthonormal, note that there is

$$E_{ij}E_{kl}^T = \begin{cases} E_{ik} & l = j\\ 0 & l \neq j \end{cases}$$

for any $i, j, k, l \in \{1, \dots, n\}$ (This follows from the fact that $(AB^T)_{i,j} = \sum_{k=1}^n A_{i,k} B_{j,k}$). Hence

$$\langle E_{ij}, E_{kl} \rangle = \begin{cases} 1 & i = k, \ l = j \\ 0 & \text{otherwise} \end{cases}$$

concluding that E_{ij} 's are orthonormal.

3. (Bonus 2pt) Suppose V is finite-dimensional and $\langle \cdot, \cdot \rangle_1$, $\langle \cdot, \cdot \rangle_2$ are inner products on V with corresponding norms $\|\cdot\|_1$ and $\|\cdot\|_2$. Prove that there exists a positive number c such that

$$||v||_1 \le c||v||_2$$

for every $v \in V$.

(Hint: Write dim V = n. Let e_1, \dots, e_n be an orthonormal basis of $(V, \langle \cdot, \cdot \rangle_2)$, try showing that

$$||v||_1 \le n \left(\max_{1 \le i \le n} ||e_i||_1 \right) \left(\max_{1 \le j \le n} |\langle v, e_j \rangle_2| \right)$$

and $\max_{1 \leq j \leq n} |\langle v, e_j \rangle_2| \leq ||v||_2$.)

Proof. Write dim V=n. The statement is trivial if n=0, hence we may assume that $n\geq 1$. Let e_1,\dots,e_n be an orthonormal basis of $(V,\langle\cdot,\cdot\rangle_2)$, then by Theorem 6.30,

$$v = \langle v, e_1 \rangle_2 e_1 + \cdots + \langle v, e_n \rangle_2 e_n$$
.

Hence

$$\|v\|_1 = \|\langle v, e_1 \rangle_2 e_1 + \dots + \langle v, e_n \rangle_2 e_n\|_1 \le \sum_{i=1}^n |\langle v, e_i \rangle_2| \|e_i\|_1 \le n \left(\max_{1 \le i \le n} \|e_i\|_1 \right) \left(\max_{1 \le j \le n} |\langle v, e_j \rangle_2| \right).$$

Since by Theorem 6.30,

$$||v||_2 = \sqrt{|\left\langle v, e_1 \right\rangle_2|^2 + \dots + |\left\langle v, e_n \right\rangle_2|^2} \ge \max_{1 \le j \le n} |\left\langle v, e_j \right\rangle_2|,$$

let $c = n \left(\max_{1 \le i \le n} ||e_i||_1 \right) > 0$ and we are done.

Name:

SID:

1. (10pt) Suppose U and W are finite-dimensional subspaces of V. Prove that $P_U P_W = 0$ if and only if $\langle u, w \rangle = 0$ for all $u \in U$ and all $w \in W$.

Proof. If $\langle u, w \rangle = 0$ for all $u \in U$ and all $w \in W$, then $W \subset U^{\perp}$. Since range $P_W = W \subset U^{\perp} = \text{null } P_U$, we see that $P_U P_W = 0$.

Conversely, if $\langle u_0, w_0 \rangle \neq 0$ for some $u_0 \in U$ and $w_0 \in W$, then $w_0 \notin U^{\perp} = \text{null } P_U$, hence $P_U w_0 \neq 0$. Since $w_0 \in W = \text{range } P_W$, we thus see that $P_U P_W \neq 0$.

Quiz 9: 2022/11/27

Name:

SID:

Advanced Linear Algebra

1. (10pt) Suppose that V is finite-dimensional. $T \in \mathcal{L}(V)$, and U is a subspace of V. Prove that U and U^{\perp} are both invariant under T if and only if $P_UT = TP_U$.

Proof. If $P_UT = TP_U$, then for any $u \in U$,

$$Tu = TP_U(u) = P_U(Tu),$$

hence $Tu \in U$, because if not, then Tu = u' + w with nonzero $u' \in U$ and $w \in U^{\perp}$, hence $P_U(Tu) \neq Tu$. For any $w \in U^{\perp}$, we have $P_Uw = 0$, and

$$P_U T w = T P_U w = T 0 = 0,$$

thus $Tw \in \text{null } P_U = U^{\perp}$. Therefore both U and U^{\perp} are invariant under T.

Conversely, if both U and U^{\perp} are invariant under T, then for any $v \in V$, write v = u + w with $u \in U$ and $w \in U^{\perp}$, then $Tw \in U^{\perp} = \text{null } P_U$, hence

$$P_U T v = P_U (T u + T w) = P_U T u + 0 = T u = T P_U u = T P_U (u + w) = T P_U v,$$

concluding that $P_UT = TP_U$.

Name: SID:

1. (8pt) Prove or disprove: There exists $T \in \mathcal{L}(\mathbb{R}^2)$ such that T is not self-adjoint (with respect to the usual inner product) and such that there is a basis of \mathbb{R}^2 consisting of eigenvectors of T.

Proof. Consider the basis (1,0), (1,1) of \mathbb{R}^2 . Define $T \in \mathcal{L}(\mathbb{R}^2)$ by T(1,0) = (1,0) and T(1,1) = (2,2), then (1,0), (1,1) is a basis of \mathbb{R}^2 consisting of eigenvectors of T. T is not self-adjoint, because span $\{(1,0)\}$ is invariant under T while

$$T(0,1) = T(1,1) - T(1,0) = (2,2) - (1,0) = (1,2) \notin \text{span}\{(0,1)\} = (\text{span}\{(1,0)\})^{\perp},$$

contradicting to Theorem 7.28(a) if T is self-adjoint.

- **2.** Suppose $T \in \mathcal{L}(V, W)$. Prove that
 - (a) (2pt) T is injective if and only if T^* is surjective;
 - (b) (2pt) T is surjective if and only if T^* is injective.

Proof. (a) By Theorem 7.7(b), we have range
$$T^* = (\text{null } T)^{\perp}$$
, hence range $T^* = V$ if and only if $\text{null } T = \{0\}$. \Box (b) By Theorem 7.7(d), we have range $T = (\text{null } T^*)^{\perp}$, hence range $T = V$ if and only if $\text{null } T^* = \{0\}$. \Box

Quiz 10: 2022/12/4

Name: SID:

Advanced Linear Algebra

1. (8pt) Prove or disprove: Suppose V is a complex inner product space with $V \neq \{0\}$, then the set of self-adjoint operators on V is a subspace of $\mathcal{L}(V)$.

Disproof. If $T \in \mathcal{L}(V)$ is self-adjoint, then by Theorem 7.10 its matrix with respect to every orthonormal basis of V must always be real. However, let I be the identity operator on V, then I is self-adjoint by definition, but $\mathcal{M}(i I)$ is not real with respect to any orthonormal basis, with i's on its diagonal. These conclude that the set of self-adjoint operators on V is not closed under scalar multiplication when $\mathbb{F} = \mathbb{C}$, hence it is not a subspace.

2. (4pt) Prove that every self-adjoint operator on V has a self-adjoint cube root, i.e. for any self-adjoint $T \in \mathcal{L}(V)$, there exists a self-adjoint $S \in \mathcal{L}(V)$ such that $S^3 = T$.

Proof. By the Spectral Theorem and Theorem 7.13 there exists an orthonormal basis e_1, \dots, e_n of V such that $Te_i = \lambda_i e_i$ with $\lambda_i \in \mathbb{R}$ for each $i = 1, \dots, n$. There exists a (unique) real cube root s_i for each λ_i , and if we define $S \in \mathcal{L}(V)$ by $Se_i = s_i e_i$ for each $i = 1, \dots, n$, then for any $v = \sum_{i=1}^n a_i e_i \in V$, we have

$$S^3v = S^3\left(\sum_{i=1}^n a_i e_i\right) = \sum_{i=1}^n a_i S^3 e_i = \sum_{i=1}^n a_i S_i^3 e_i = \sum_{i=1}^n a_i \lambda_i e_i = \sum_{i=1}^n a_i T e_i = T\left(\sum_{i=1}^n a_i e_i\right) = Tv.$$

If $\mathbb{F} = \mathbb{R}$, then S is self-adjoint by the Real Spectral Theorem. If $\mathbb{F} = \mathbb{C}$, then S is self-adjoint since under the basis e_1, \dots, e_n , we have by Theorem 7.10 $\mathcal{M}(S^*) = \mathcal{M}(S)^* = \mathcal{M}(S)$, which implies $S^* = S$ because $\mathcal{M} : \mathcal{L}(V) \to \mathbb{F}^{n \times n}$ is injective. (Also, one can compute and find that $\langle Sv, v \rangle \in \mathbb{R}$ for all $v \in V$ and then use Theorem 7.15)

Name: SID:

1. (4pt) Prove or disprove: Let V be finite-dimensional inner product space and $T \in \mathcal{L}(V)$, then null $T^*T = \text{null } T$.

Proof. It is clear that $\operatorname{null} T \subset \operatorname{null} T^*T$.

Conversely, for any $v \in \text{null } T^*T$, we have

$$||Tv||^2 = \langle Tv, Tv \rangle = \langle v, T^*Tv \rangle = \langle v, 0 \rangle = 0,$$

hence Tv = 0, concluding that $v \in \text{null } T$.

2. (4pt) Find an isometry matrix S for the matrix

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix}$$

such that $A = S\sqrt{A^*A}$.

Proof. We have

$$A^*A = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 3 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

hence

$$\sqrt{A^*A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

hence

$$S := A(\sqrt{A^*A})^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 3 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

is the desired isometry.

3. (4pt) Find an isometry matrix S for the matrix

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

such that $A = S\sqrt{A^*A}$.

Proof. We have

$$\sqrt{A^*A} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Inspired by Question 2, define $S = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ and we find that

$$S\sqrt{A^*A} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = A,$$

as desired.

Name:

SID:

1. (4pt) Admitting the fact that null $T^*T = \text{null } T$ for any $T \in \mathcal{L}(V)$, prove or disprove: Let V be finite-dimensional inner product space and $T \in \mathcal{L}(V)$, then range $TT^* = \text{range } T$.

Proof. It is clear that range $TT^* \subset \operatorname{range} T$. By the given fact, we have $\operatorname{null} TT^* = \operatorname{null} T^*$, hence

 $\dim \operatorname{range} TT^* = \dim V - \dim \operatorname{null} TT^* = \dim V - \dim \operatorname{null} T^* \xrightarrow{\operatorname{Theorem 7.7(a)}} \dim \operatorname{range} T,$

concluding that range $TT^* = \operatorname{range} T$.

2. (4pt) Find an isometry matrix S for the matrix

$$A = \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix}$$

such that $A = S\sqrt{A^*A}$.

Proof. We have

$$A^*A = \begin{pmatrix} 25 & 0 \\ 0 & 25 \end{pmatrix},$$

hence

$$\sqrt{A^*A} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix},$$

hence

$$S := A(\sqrt{A^*A})^{-1} = \begin{pmatrix} 3 & 4 \\ -4 & 3 \end{pmatrix} \begin{pmatrix} \frac{1}{5} & 0 \\ 0 & \frac{1}{5} \end{pmatrix} = \begin{pmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix}$$

is the desired isometry.

3. Find an isometry matrix S for the matrix

$$A = \begin{pmatrix} 3 & 0 \\ -4 & 0 \end{pmatrix}$$

such that $A = S\sqrt{A^*A}$.

Proof. We have

$$\sqrt{A^*A} = \begin{pmatrix} 5 & 0 \\ 0 & 0 \end{pmatrix}.$$

Inspired by Question 2, define $S = \begin{pmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix}$ and we find that

$$S\sqrt{A^*A} = \begin{pmatrix} \frac{3}{5} & \frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ -4 & 0 \end{pmatrix} = A,$$

as desired.

Remark. Does the above S still work for $A = \begin{pmatrix} 3 & 4 \\ 0 & 0 \end{pmatrix}$? Can you come up with an explanation for this phenomenon?

Name: SID

1. (4pt) Prove or give a counterexample: The set of nilpotent operators on V is a subspace of $\mathcal{L}(V)$.

Counterexample. Let $V = \mathbb{R}^2$ and consider the two operators

$$N_1 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad N_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

then clearly N_1 and N_2 are nilpotents. However, $N_1+N_2=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, which is invertible, hence is not a nilpotent. \square

2. Let $T \in \mathcal{L}(\mathbb{R}^3)$ be defined by

$$T(x, y, z) = (11x - 4y - 5z, 21x - 8y - 11z, 3x - y),$$

for any $(x, y, z) \in \mathbb{R}^3$.

- (a) (2pt) Find all the eigenvalues of T;
- (b) (4pt) Find all the generalized eigenspaces of T, and hence tell the multiplicity of each eigenvalue of T.

Answers. (a) Eigenvalues: 2 and -1.

(b) Since there are two eigenvalues, the maximum of the multiplicity is 2. Therefore Theorem 8.3 implies that $G(\lambda, T) = \text{null}(T - \lambda I)^2$. A computation thus gives:

$$G(2,T) = \text{span}\{(1,1,1), (0,-1,1)\}, \quad G(1,T) = \text{span}\{(1,3,0)\}.$$

Therefore the eigenvalue $\lambda = 2$ has multiplicity 2 and $\lambda = -1$ has multiplicity 1. (Of course you can compute $\text{null}(T - \lambda I)^3$ directly, but the argument above would save you some time)

3. (Bonus 2pt) Let V be a finite-dimensional inner product space and $N \in \mathcal{L}(V)$ be a nilpotent. Prove that there exists an orthonormal basis of V with respect to which N has an upper-triangular matrix.

Proof. Since we have

$$\operatorname{null} N \subset \operatorname{null} N^2 \subset \cdots \subset \operatorname{null} N^{\dim V} = V$$
,

choose an orthonormal basis $e_1^{(1)}, \cdots, e_{l_1}^{(1)}$ of null N, and then extend it to an orthonormal basis $e_1^{(1)}, \cdots, e_{l_1}^{(1)}, e_1^{(2)}, \cdots, e_{l_2}^{(2)}$ of null N^2 , and then extend it to an orthonormal basis $e_1^{(1)}, \cdots, e_{l_1}^{(1)}, e_1^{(2)}, \cdots, e_{l_2}^{(2)}, e_1^{(3)}, \cdots, e_{l_3}^{(3)}$ of null N^3 ... after $\dim V$ steps we obtain an orthonormal basis $e_1^{(1)}, \cdots, e_{l_{\dim V}}^{(\dim V)}$ of null $N^{\dim V} = V$. Since for any $k \in \mathbb{N}^*$, $N(\text{null }N^k) \subset \text{null }N^{k-1}$, it is easy to see that the matrix of N with respect to this basis is upper-triangular. \square

SID:

1. (6pt) Give an example of an operator T on a finite-dimensional real vector space such that 0 is the only eigenvalue of T but T is not a nilpotent.

(A Family of) Examples. Consider $\theta \in (0, 2\pi) \setminus \{\pi\}$. Note that the counterclockwise rotation by θ , i.e. $R_{\theta} \in \mathcal{L}(\mathbb{R}^2)$ given by $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ has no eigenvalue, since for any nonzero vector $v \in \mathbb{R}^2$, v and $R_{\theta}(v)$ never lie on the same line.

Let $V = \mathbb{R}^3$, $P: V \to \mathbb{R}^2: (x, y, z) \mapsto (x, y, 0)$ be the projection to the xy-plane, $i: \mathbb{R}^2 \hookrightarrow V: (x, y) \mapsto (x, y, 0)$ be the inclusion of the xy-plane into \mathbb{R}^3 , and $T \in \mathcal{L}(V)$ be the composition of maps

$$T: V \xrightarrow{P} \mathbb{R}^2 \xrightarrow{R_\theta} \mathbb{R}^2 \xrightarrow{i} V.$$

i.e. T brings a vector $v \in \mathbb{R}^3$ to its projection to the xy-plane and then rotate it counterclockwisely by θ . To be more explicit, the matrix of T under the canonical basis of $\mathbb{R}^3 = V$ is

$$\mathcal{M}(T) = \begin{pmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

Since v and Tv lie on the same line only if Pv and PTv lie on the same line, and $PTv = Tv = R_{\theta}(Pv)$, by the argument in the previous paragraph we see that v is an eigenvector of T only if v lies on the z-axis. Therefore the only eigenvalue of T is 0. However, T is not a nilpotent, since its restriction to the xy-plane is R_{θ} and the rotation R_{θ} is not a nilpotent.

2. (4pt) Suppose $T \in \mathcal{L}(V)$ is invertible. Prove that $G(\lambda, T) = G(\frac{1}{\lambda}, T^{-1})$ for every $\lambda \in \mathbb{F} \setminus \{0\}$.

Proof. Write $n := \dim V$. For any $v \in V$, since

$$(T - \lambda I)^n v = 0 \quad \Leftrightarrow \quad \left(T^{-1} - \frac{1}{\lambda}I\right)^n v = \left(-\frac{1}{\lambda}T^{-1}\right)^n (T - \lambda I)^n v = 0,$$

because T^{-1} is injective, the conclusion follows.

3. (Bonus 2pt) Give an example of vector space W and $T \in \mathcal{L}(W)$ such that $\operatorname{null} T^k \subsetneq \operatorname{null} T^{k+1}$ and range $T^k \supsetneq \operatorname{range} T^{k+1}$ for every positive integer k.

Example. Let $W = \mathcal{P}(\mathbb{F}) \times \mathcal{P}(\mathbb{F})$ and $T \in \mathcal{L}(W)$ be defined by:

$$T \colon \quad \mathcal{P}(\mathbb{F}) \times \mathcal{P}(\mathbb{F}) \quad \longrightarrow \quad \mathcal{P}(\mathbb{F}) \times \mathcal{P}(\mathbb{F}) \\ (p,q) \qquad \longmapsto \qquad (x \cdot p, q')$$

then null $T^k = \{0\} \times \mathcal{P}_{k-1}(\mathbb{F})$ and $(x^k, 0) \in \operatorname{range} T^k$ while $(x^k, 0) \notin \operatorname{range} T^{k+1}$ for every positive integer k, therefore the desired property follows.

Name:

SID:

1. Let $T \in \mathcal{L}(\mathbb{C}^3)$ be defined by

$$T(x, y, z) = (11x - 4y - 5z, 21x - 8y - 11z, 3x - y),$$

for any $(x,y,z) \in \mathbb{C}^3$. Recall that we have computed last week that the eigenvalues of T are 2 and -1 with $\dim G(2,T) = 2$ and $\dim G(-1,T) = 1$.

- (a) (4pt) Find the characteristic polynomial and the Jordan form of T.
- (b) (4pt) Find the minimal polynomial of T.
- (c) (2pt) Give an example of an operator on \mathbb{C}^3 whose characteristic polynomial equals $(z+1)(z-2)^2$ and whose minimal polynomial equals (z+1)(z-2).

Answer. (a) It is immediate by definition that the characteristic polynomial of T is $(z+1)(z-2)^2$. Since $\dim \operatorname{null}(T-2I)=1$ while $\dim \operatorname{null}(T-2I)^2=2$, $(T-2I)|_{G(2,T)}$ is a non-zero nilpotent, hence the Jordan form of T is

$$J(T) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

(Read 8.D thoroughly if you don't see how this form comes out)

(b) Since $(J(T) - 2I)(J(T) + I) = \begin{pmatrix} 0 & 3 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0$, the minimal polynomial of T cannot be (z - 2)(z + 1), hence by

Theorem 8.48, the minimal polynomial of T must be $(z+1)(z-2)^2$.

(c) Consider the operator given by the matrix

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

It is easy (hence is left to you) to verify that it is the desired example.

Name: SID:

1. Let $T \in \mathcal{L}(\mathbb{C}^3)$ be defined by

$$T(x, y, z) = (-3x + 3y - 2z, -7x + 6y - 3z, x - y + 2z),$$

for any $(x, y, z) \in \mathbb{C}^3$.

- (a) (2pt) Find all the eigenvalues of T.
- (b) (2pt) Find all the generalized eigenspaces of T, and hence tell the multiplicity of each eigenvalue of T and the characteristic polynomial of T.
- (c) (3pt) Find the Jordan form of T.
- (d) (3pt) Find the minimal polynomial of T.
- (e) (Bonus 1pt) Give an example of an operator on \mathbb{C}^3 whose characteristic polynomial equals $(z-1)(z-2)^2$ and whose minimal polynomial equals (z-1)(z-2).

Answer. (a) The eigenvalues are 2 and 1.

(b) Since there are two eigenvalues, the maximum of the multiplicity is 2. Therefore Theorem 8.3 implies that $G(\lambda, T) = \text{null}(T - \lambda I)^2$. A computation thus gives:

$$G(2,T)=\mathrm{span}\{(1,1,-1),(1,2,0)\},\quad G(1,T)=\mathrm{span}\{(1,2,1)\}.$$

Therefore the eigenvalue $\lambda = 2$ has multiplicity 2 and $\lambda = 1$ has multiplicity 1, and the characteristic polynomial of Tis $(z-1)(z-2)^2$

(c) Since $\dim \operatorname{null}(T-2I)=1$ while $\dim \operatorname{null}(T-2I)^2=2$, $(T-2I)|_{G(2,T)}$ is a non-zero nilpotent, hence the Jordan form of T is

$$J(T) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

(Read 8.D thoroughly if you don't see how this form comes out)

(Read 8.D thoroughly if you don't become (a) the first section (d) Since $(J(T) - 2I)(J(T) - I) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0$, the minimal polynomial of T cannot be (z - 2)(z - 1), hence by

Theorem 8.48, the minimal polynomial of T must be $(z-1)(z-2)^2$.

(e) Consider the operator given by the matrix

$$\begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

It is easy (hence is left to you) to verify that it is the desired example.