Module 2: Number Systems

Priyanshu Mahato

February 17, 2022

Email: pm21ms002@iiserkol.ac.in.These are my personal notes on Number Systems. We will consider \mathbb{N} (Natural Numbers), \mathbb{Z} (Integers), and \mathbb{Q} (rational Numbers), but not \mathbb{R} (Real Numbers).

§1 Natural Numbers

The natural numbers are $1, 2, 3, 4, \ldots$ The set of all natural numbers is denoted by \mathbb{N} .

Definition 1.1. We assume familiarity with the algebraic operations of addition and multiplication on the set \mathbb{N} and also with the linear order relation < on \mathbb{N} defined by "a < b if $a, b \in \mathbb{N}$ and a is less than b".

We discuss the following fundamental properties of the set \mathbb{N} .

- 1. Well Ordering Property
- 2. Principle of Induction

§1.1 Well Ordering Property

Definition 1.2. Every non-empty subset of \mathbb{N} has a least element.

This means that if S is a non-empty subset of N, then there is an element m in S such that $m \leq s$ for all $s \in S$.

In particular, \mathbb{N} itself has the least element 1.

Proof. Let S be a non-empty subset of \mathbb{N} . Let k be an element of S. Then k is a natural number. We define a subset T by $T = \{x \in S : x \leq k\}$. The T is a non-empty subset of $\{1, 2, 3, \ldots, k\}$. Clearly, T is a finite subset of \mathbb{N} and therefore it has a least element, say m. Then $1 \leq m \leq k$. We now show that m is the least element of S. Let s be any element of S.

If s > k, then the inequality $m \le k$ implies m < s.

If $s \leq k$, the $s \in T$; and m being the least element of T, we have $m \leq s$.

Thus m is the least element of S.

§1.2 Principle of Induction

Definition 1.3. Let S be a subset of \mathbb{N} such that,

- i) $1 \in S$ and,
- ii) if $k \in S$, then $k + 1 \in S$.

Then $S = \mathbb{N}$

Proof. Let $T = \mathbb{N} - S$. We prove that $T = \phi$.

Let T be non-empty. then by the Well Ordering Property of \mathbb{N} , the non-empty subset T has a least element, say m.

Since $1 \in S$ and 1 is the least element of \mathbb{N} , m > 1.

Hence, m-1 is a natural number and $m-1 \notin T$. So, $m-1 \in S$.

But by ii) $m-1 \in S \Rightarrow (m-1)+1 \in S$, i.e., $m \in S$.

This contradicts that m is the least element in T. Therefore, our assumption is wrong and $T = \phi$

Therefore, $S = \mathbb{N}$.

Theorem 1.4

Let P(n) be a statement involving a natural number n. If,

- i) P(1) is true, and
- ii) P(k+1) is true whenever P(k) is true,

then P(n) is true for all $n \in \mathbb{N}$.

Proof.