For the benefit and convenience of its customers, Fluke Corporation (Fluke) has reproduced this copy of a manual which is no longer in production. This manual has not been edited or updated since the revision date shown on the lower left hand corner of the first page. Fluke will not be liable for any claims, losses or damages of any kind incurred by any user arising from use of this manual.

8600A Digital Multimeter

Instruction Manual

P/N 391409 NOVEMBER 1974 Rev. 3, 1/77

©1977 John Fluke Mfg. Co., Inc., All rights reserved. Litho in U.S.A.

WARRANTY

Notwithstanding any provision of any agreement the following warranty is exclusive:

The JOHN FLUKE MFG. CO., INC., warrants each instrument it manufactures to be free from defects in material and workmanship under normal use and service for the period of 1-year from date of purchase. This warranty extends only to the original purchaser. This warranty shall not apply to fuses, disposable batteries (rechargeable type batteries are warranted for 90-days), or any product or parts which have been subject to misuse, neglect, accident, or abnormal conditions of operations.

In the event of failure of a product covered by this warranty, John Fluke Mfg. Co., Inc., will repair and calibrate an instrument returned to an authorized Service Facility within 1 year of the original purchase; provided the warrantor's examination discloses to its satisfaction that the product was defective. The warrantor may, at its option, replace the product in lieu of repair. With regard to any instrument returned within 1 year of the original purchase, said repairs or replacement will be made without charge. If the failure has been caused by misuse, neglect, accident, or abnormal conditions of operations, repairs will be billed at a nominal cost. In such case, an estimate will be submitted before work is started, if requested.

THE FOREGOING WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS, OR ADEQUACY FOR ANY PARTICULAR PURPOSE OR USE. JOHN FLUKE MFG. CO., INC., SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN CONTRACT, TORT, OR OTHERWISE.

If any failure occurs, the following steps should be taken:

- 1. Notify the JOHN FLUKE MFG. CO., INC., or nearest Service facility, giving full details of the difficulty, and include the model number, type number, and serial number. On receipt of this information, service data, or shipping instructions will be forwarded to you.
- 2. On receipt of the shipping instructions, forward the instrument, transportation prepaid. Repairs will be made at the Service Facility and the instrument returned, transportation prepaid.

SHIPPING TO MANUFACTURER FOR REPAIR OR ADJUSTMENT

All shipments of JOHN FLUKE MFG. CO., INC., instruments should be made via United Parcel Service or "Best Way"* prepaid. The instrument should be shipped in the original packing carton; or if it is not available, use any suitable container that is rigid and of adequate size. If a substitute container is used, the instrument should be wrapped in paper and surrounded with at least four inches of excelsior or similar shock-absorbing material.

CLAIM FOR DAMAGE IN SHIPMENT TO ORIGINAL PURCHASER

The instrument should be thoroughly inspected immediately upon original delivery to purchaser. All material in the container should be checked against the enclosed packing list. The manufacturer will not be responsible for shortages against the packing sheet unless notified immediately. If the instrument is damaged in any way, a claim should be filed with the carrier immediately. (To obtain a quotation to repair shipment damage, contact the nearest Fluke Technical Center.) Final claim and negotiations with the carrier must be completed by the customer.

The JOHN FLUKE MFG. CO., INC, will be happy to answer all applications or use questions, which will enhance your use of this instrument. Please address your requests or correspondence to: JOHN FLUKE MFG. CO., INC., P.O. BOX C9090, EVERETT, WASHINGTON 98206, ATTN: Sales Dept. For European Customers: Fluke (Holland) B.V., P.O. Box 5053, 5004 EB, Tilburg, The Netherlands.

*For European customers, Air Freight prepaid.

John Fluke Mfg. Co., Inc., P.O. Box C9090, Everett, Washington 98206

Table of Contents

SECTION		TITLE	PAGE
1	INTROD	UCTION AND SPECIFICATIONS	1-1
	1-1.	INTRODUCTION	1-1
	1-9.	SPECIFICATIONS	1-2
2	OPERATI	ING INSTRUCTIONS	2-1
	2-1.	INTRODUCTION	2-1
	2-3.	SHIPPING INFORMATION	2-1
	2-6.	INPUT POWER	2-1
	2-9.	RACK INSTALLATION	2-1
	2-11.	OPERATING FEATURES	2-1
	2-13.	OPERATING NOTES	2-3
	2-15.	Option Information	2-3
	2-17.	Fuses	2-3
	2-19.	Overrange Indication	2-3
	2-21.	Input Overload Protection	2-3
	2-23.	Autoranging	2-3
	2-25.	OPERATION	2-4
3	THEORY	OF OPERATION	3-1
	3-1.	INTRODUCTION	3-1
	3-3.	OVERALL FUNCTIONAL DESCRIPTION	3-1
	3-4.	Introduction	3-1
	3-6.	Input Signal Conditioners	3-1
	3-12.	A/D Converter	3-2
	3-15.	Control and Display	3-2
	3-18.	Data Output Unit (DOU)	3-3
	3-20.	CIRCUIT DESCRIPTION	3-3
	3-22.	Input Signal Conditioners	3-3
	3-37.	A/D Converter	3-6
	3-42.	Control and Display	3-8

${\bf TABLE\ OF\ CONTENTS}, continued$

SECTION	TITLE	AGE
4	MAINTENANCE	4-1
	4-1. INTRODUCTION	4-1
	4-3. SERVICE INFORMATION	4-1
	4-6. GENERAL MAINTENANCE	4-2
	4-7. Access/Disassembly	4-2
	4-10. Cleaning	4-2
	4-12. Fuse Replacement	4-2
	4-14. PERFORMANCE TESTS	4-2
	4-16. DC Voltage Test	4-2
	4-18. Ohms Test	4-2
	4-20. DC Current Test	4-3
	4-22. AC Voltage Test	4-3
	4-24. CALIBRATION	4-3
	4-25. Introduction	4-3
	4-27. DC Volts Calibration	4-3
	4-29. Ohms Calibration	4-5
	4-31. AC Volts Calibration	4-5
	4-33. TROUBLESHOOTING	4-5
	4-35. Initial Troubleshooting	4-6
	4-38. Power Supply Checks	4-6
	4-40. Fault Area Isolation	4-7
5	LIST OF REPLACEABLE PARTS	5-1
	5-1. INTRODUCTION	5-2
	5-4. HOW TO OBTAIN PARTS	5-2
	5-7. USE CODE EFFECTIVITY LIST	5-2
6	OPTIONS AND ACCESSORY INFORMATION	6-1
	6-1. INTRODUCTION	6-1
	6-3. CARRY CASE (C80)	6-1
	6-5. CARRYING CASE (C86)	6-1
	6-7. FRONT PANEL DUST COVER (M00-100-714)	6-1
	6-9. RACK MOUNTING KITS	6-1
	6-10. Introduction	6-1
	6-12. Installation Procedure	6-2
	6-16. DELUXE TEST LEAD KIT (A80)	6-2
	6-18. CURRENT PROBE, CLAMP-ON (80I-600)	6-4
	6-19. Introduction	6-4
	6-21. Operation	6-4
	6-23. HIGH VOLTAGE PROBE (80K-40)	6-5
	6-24. Introduction	6-5
	6-26. Specifications	6-5
	6-27. Operation	6-5
	6-29. HIGH FREQUENCY PROBE (80RF-1)	6-6
	6-30. Introduction	6-6 6-6

TABLE OF CONTENTS, continued

SECTION		TITLE PAGE	E
	6-33.	Operating Notes 6-	6
	6-36.	Operation 6-	6
	6-38.	Theory of Operation 6-	7
	6-41.	Maintenance 6-	7
	6-50.	HIGH FREQUENCY PROBE (81RF) 6-	9
	6-51.	Introduction 6-	9
	6-53.	Specifications 6-	9
	6-54.	Operation 6-	9
	6-56.	TEMPERATURE PROBE (80T-150) 6-	9
	6-59.	BATTERY PACK, OPTION -01 6-	9
	6-60.	Introduction 6-	9
	6-62.	Specifications 6-	9
	6-64.	Operation	9
	6-66.		10
	6-69.		10
	6-80.	DATA OUTPUT UNIT (OPTION -02) 6-	11
	6-81.	Introduction 6-	11
	6-83	Specifications 6-	11
	6-85	Operation 6-	11
7	GENERAL	INFORMATION	1
8	SCHEMAT	IC DIAGRAMS 8-	1

1/77 iii

List of Illustrations

GURE	TITLE	PAGE
1-1.	Model 8600A Outline Drawing	1-5
2-1.	8600A Controls, Indicators and Connectors	2-2
3-1.	Overall Functional Block Diagram	3-2
3-2.	Timing Diagram for Dual-Slope A/D Conversion	3-3
3-3.	Ohms Converter Block Diagram	3-4
3-4.	AC Converter Block Diagram	3-5
3-5.	A/D Converter Block Diagram	3-7
4-1.	Calibration Adjustment Locations	4-4
4-2.	Troubleshooting Flow Chart	4-7
4-3.	A/D Converter Output Signal	4-9
4-4	A/D Converter Control Signals	4-10
5-1.	8600A Final Assembly	5-4
5-2.	Front Panel and Main PCB Assembly (8600A Line Power)	5-9
5-3.	Front Panel and Main PCB Assembly (8600A-01 Battery Power)	5-14
5-4.	Display PCB Assembly	5-15
5-5.	Battery Power Supply PCB Assembly (-01 Option)	5-17
5-6.	AC Converter PCB Assembly	5-20
5-7.	Ohms Converter Assembly	5-22
5-8.	Input Divider PCB Assembly	5-23
5-9.	DOU PCB Assembly -02 Option	5-25

LIST OF ILLUSTRATIONS, continued

TITLE	PAGE
Model C80 Carrying Case	6-1
	6-2
	6-3
	6-4
	6-4
	6-4
	6-5
	6-5
	6-6
	6-7
	6-7
	6-8
	6-9
	6-12
	8-3
	8-7
	8-9
	8-11
Battery Power Supply PCB Assembly (Option -01)	8-13
Data Output Unit PCB Assembly (Option -02)	8-15
	Model C80 Carrying Case Model C86 Carrying Case Rack Mounting Kits, Offset and Center Mount Rack Mounting Kit, Side-By-Side Mounting Deluxe Test Lead Kit (A80) AC Current Probe, Clamp-On (80I-600) High Current Probe (80K-40) High Voltage Probe, Schematic 80RF-1, High Frequency Probe 80RF-1, Schematic Low Frequency Response Check High Frequency Response Check High Frequency Probe (81 RF) DOU Timing Diagram Front Panel and Main PCB Assembly (2 sheets) Display PCB Assembly AC Converter PCB Assembly Ohms Converter PCB Assembly (Option -01)

List of Tables

TABLE	TITLE	PAGE
1-1.	8600A Options	1-1
1-2.	8600A Accessories	1-1
1-3.	Model 8600A Specifications	1-2
2-1.	8600A Controls, Indicators and Connections	
2-2.	Basic Measurement Instructions	2-3
3-1.	Ohms Converter Operating Conditions	3-5
3-2.	AC Converter Relay Operation	3-5
4-1.	Required Test Equipment	4-1
4-2.	DCV Performance Test	4-2
4-3.	Ohms Performance Test	4-3
44.	DC Current Performance Test	4-3
4-5.	ACV Performance Test	4-3
4-6.	DC Volts Calibration Procedure	4-5
4-7.	Ohms Calibration Procedure	4-5
4-8.	AC Volts Calibration Procedure	4-6
4.9.	Fault Area Indication	4-7
4-10.	Input Divider Test	4-8
4-11.	Operation of U8 with Respect To A/D Converter	4-10
4-12.	Range Information	4-11
6-1.	Rack Mounting Kits	6-2
6-2.	8600A Ranges For Current Probe (80I-600)	6-5
6-3.	8600A Ranges For DC HV Probe (80K-40)	6-6
6-4.	DOU Data Identification	6-12
7-1.	List of Abbreviations & Symbols	7-2
7-2.	Federal Supply Codes For Manufacturers	7-3
7-3.	Fluke Technical Service Centers	7-7
7-4.	International Service Center	7-7
7-5.	Sales Representatives - Domestic	7-8
7-6.	Sales Representatives - International	7-9

1/77

Section 1

Introduction & Specifications

1-1. INTRODUCTION

- 1-2. The Model 8600A is a compact and light-weight digital multimeter (DMM). It features a 4½ digit display, push-button selection of range and function, auto polarity, self locating decimal point, self zeroing to eliminate offset uncertainties, and overload protection for all ranges. Autoranging can be selected when the ac volts, dc volts or kilohms functions are selected. Several options and accessories for the 8600A are available (see Section 6).
- 1-3. Push-button controls allow the selection of five ac and dc voltage ranges, five ac and dc current ranges, and six resistance ranges. The measurement capabilities of the 8600A range from 10 microvolts to 1199.9 volts ac and dc, 10 nanoamperes to 1.9999 amperes ac and dc, and 10 milliohms to 19.999 megohms.
- 1-4. The front-panel readout features a 4½ digit display using light emitting diodes (LED's). The display includes a self locating decimal point and a + or polarity indicator. Full-scale readout is 19999 for all ranges and functions except the 1200 volt ac and dc range, which is 11999. A blinking 18888 readout indicates that the 8600A is being operated in an overload condition and provides a test for all segments in the display.
- 1-5. Front panel input connectors are banana type and provide separate connections for current, and volt-ohm inputs. Both the current and volt-ohm inputs are referenced to a common input which is isolated from earth ground and can operate at a potential of up to ±1000V dc or peak V ac with reference to earth ground.
- 1-6. The overload features of the 8600A include a fused current input and an overvoltage protected volt-ohm input. This protection applies for any function and range selected.

1-7. Several options and accessories are available for use with the 8600A. The options are listed and described in Table 1-1, and must be specified at time of purchase. The accessories are listed and described in Table 1-2. Accessories are compatible with all options and can be ordered at time of purchase or after purchase. Detailed information concerning each option and accessory is given in Section 6 of this manual.

Table 1-1. 8600A OPTIONS

MODEL NO	DESCRIPTION
8600A-01	Basic unit w/battery option
8600A-02	Basic unit w/data output unit

Table 1-2. 8600A ACCESSORIES

MODEL NO.	DESCRIPTION
C80	Vinyl Carrying Case w/strap
C86	Molded Hard-Shell Carrying Case
A80	Deluxe Test Lead Kit
801600	Clamp-on AC Current Probe
	(2A to 600A)
80K-40	High Voltage Probe; 1kV to 40kV
81RF	RF Probe: 100kHz to 100 MHz
80RF-1	RF Probe 100 kHz to 500 MHz
M00-100-714	Front Panel Cover
M00-200-611	Rack Mount, Center
M00-200-612	Rack Mount, Offset Left or Right
M00-200-613	Rack Mount, Side-by-Side

1-8 Input power for the 8600A is switch selectable to provide operation at either 115 Vac or 230 Vac, 50 Hz or 60 Hz. The 8600A will also operate from 100 Vac, 50 Hz or 60 Hz, when in the 115V switch position. The 8600A-01

(battery power option) is configured at the factory for 115 Vac, or 230 Vac, 50 Hz or 60 Hz line power operation. The battery power option must not be operated from any other line voltage or frequency than that for which it is configured (see decal on bottom of case). The operation of the front panel controls is the same for all power configurations of the 8600A, 8600A-01, and 8600A-02 instruments.

1-9. SPECIFICATIONS

1-10. Specifications for the Model 8600A are presented in Table 1-3, under headings of DC VOLTAGE, AC VOLTAGE, DC CURRENT, AC CURRENT, OHMS, and GENERAL. Specifications for each option are listed under the option heading.

Table 1-3. MODEL 8600A SPECIFICATIONS

Ranges		±200 mV, ±2V, ±20V, ±200V, ±1200V
Accuracy:	6 Months (15°C	to 35°C)
2V, 20V, and 200V ranges		±(0.04% of input +0.01% of range) ±(0.02% of input +0.005% of range) ±(0.02% of input +0.008% of range)
		±(0.003% of input +0.001% of range)/°C ±(0.001% of input +0.0005% of range)/°C
Input Impedance:		
200 mV and 2V ranges 20V, 200V and 1200V ranges .		
Normal Mode Rejection		60 dB minimum @ 50 Hz, 60 Hz
Common Mode Rejection		120 dB minimum @ dc and 50 Hz, 60 Hz (with 1k Ω in either lead)
Zero Stability		Auto zeroed on all ranges
Ranging		Full autoranging, or manual ranging
Polarity		Automatic bipolar, + or — display
Overload		$\pm 1200 \text{V}$ dc or 1700V peak ac applied continuously to arrange.
Response Time to Rated Accuracy W	ithin Range	1 second maximum to displayed input
VOLTAGE		
Ranges		200 mV, 2V, 20V, 200V, 1200V
Accuracy:	6 Months (15°C	to 35°C)
200 mV range (100% to 1% of range)		30 Hz - 50 Hz; ±(0.5% of input +0.10% of range) 50 Hz - 10 kHz; ±(0.2% of input +0.08% of range) 10 kHz - 50 kHz; ±(0.5% of input + 0.10% of range) 50 kHz - 100 kHz; ±(0.5% of input + 0.5% of range)
2V, 20V and 200V ranges (100% to 1% of range)		50 Hz - 10 kHz; ±(0.2% of input + 0.015% of range) 30 Hz - 50 Hz and 10 kHz - 50 kHz; ±(0.5% of input + 0.025% of range) 50 kHz - 100 kHz; ±(1.0% of input + 0.05% of range)

Table 1-3. MODEL 8600A SPECIFICATIONS

1200V range (100% to 1% of range)	40% 50% 50%
1200 V range (100% to 1% of range)	. 10V to 500V, 50 Hz - 10 kHz; \pm (0.2% of input +0.03% of range)
	500V - 1200V, 50 Hz - 10 kHz; <u>+</u> (0.37% of input + 0.03%)
	or range)
	10V to 1200V, 30 Hz to 50 Hz, 10 kHz to 20 kHz,
_	<u>+</u> (0.5% of input +0.08% of range)
Temperature Coefficient:	
200 mV range	
2V to 1200V ranges	
Response Time to Rated Accuracy Within Range .	
Overtoad	. 1200V rms, 1700V peak ac applied continuously to any range - not to exceed 2 x 10^7 V Hz product (20 kHz max at 1000V)
Ranging	. Full autoranging, or manual ranging
DC CURRENT	
Ranges	. 200 μA, 2 mA, 20 mA, 200 mA, 2000 mA
Ranging	. Manual ranging
Accuracy: 6 Months (15°	C to 35°C)
All Ranges	. ±(0.1% of input + 0.01% of range) on all ranges
Temperature Coefficient:	
All Ranges	$\pm (0.003\% \text{ of input} + 0.001\% \text{ of range})/^{\circ}C$
Voltage Burden	. 0.25V maximum up to 200mA: 0.5V maximum up to 2A
Overload	
Response Time to Rated Accuracy Within Range .	
AC CURRENT	
Ranges	. 200μA, 2 mA, 20 mA, 200 mA, 2000 mA
Ranging	. Manual ranging
Accuracy: 6 Months (15° 6	C to 35°C)
	50 Hz - 10 kHz; ±(0.3% of input + 0.08% of range) all
	ranges (except 2000 mA range 50 Hz - 5 kHz)
Temperature Coefficient:	30 Hz - 50 Hz; \pm (0.6% of input + 0.1% of range) all ranges
All Ranges	+(0.015% of input + 0.005% of range)/°C
	. 0.25V maximum up to 200mA: 0.5V maximum at 2A
·	Protected to 2A on all ranges fueed above 2A
Overload	
·	
Overload	. 1 sec. max. to rated accuracy

Table 1-3. MODEL 8600A SPECIFICATIONS

Accuracy:					•			to 35°C)					
2 k Ω								±(0.1% of input + 0.015% of range) ±(0.1% of input + 0.005% of range) ±(0.05% of input + 0.005% of range) ±(0.2% of input + 0.005% of range)					
Temperature Coefficient:													
								\pm (0.003% of input +0.0005% of range)/°C \pm (0.005% of input + 0.001% of range)/°C					
Configuration								Two wire					
Overvoltage Protection								250V rms or dc, applied continuously					
Maximum Open Circuit Voltage								5 volts					
Response Time:													
20 M Ω range			•					1 second maximum to displayed input 4 seconds maximum to displayed input					
Current Through Unknown	•	٠	٠	•		2	200	Ω 2k Ω 20 k Ω 200 k Ω 2000 k Ω 20 M Ω					
							1m	Α 1mA 100μΑ 10μΑ 1μΑ 0.1μΑ					
GENERAL													
								Seven-segment LED .3" character height, automatic decimal location					
Size	•	•	•		•			8.55" wide x 2.52" high x 10.65" deep (See Figure 1-1) 21.72 cm x 6,40 cm x 27,05 cm					
Weight								3.5 lbs. (1.6 kg) line power, 4.5 lbs. (2.1 kg) with batteries					
Operating Temperatures								0°C to +50°C					
Storage Temperature								-40° C to +75 $^{\circ}$ C (-40° C to + 60 $^{\circ}$ C with batteries)					
Humidity Range		•				•	•	80% RH, +5°C to +35°C 70% RH, +35°C to +50°C					
Overload Indication		•	•			•		Flashing display of +18888 (built in segment test of LED display) for out of range indication					
Maximum Common Mode Voltage .		•						±1000V, dc or peak ac					
Power								100/115/230V ac \pm 10% 50 or 60 Hz, 7 watts line powered					
BATTERY PACK, OPTION -01								10 watts battery powered					
Continuous Operation								8 hours typical (6 hours minimum) 16 hours maximum (@ < 30°C ambient to achieve full charge).					
DATA OUTPUT UNIT (DOU), OPTION													
Available Data						-		Digits, polarity (both logic senses), range, and reference output					
Data Coding	•	•		•		-	-	8-4-2-1 BCD positive true parallel					
Logic Levels	•	•	•	•		•	•	1 = +5V, 0 = 0V					
Drive Capability	•	•	•	-		•	-	All output can drive a minimum of two TTL loads. (i.e. sink 3.2 mA)					
Flags								Busy, busy, and overload					
Controls		•	•			-		External trigger (positive going edge trigger), and External					
	_	-	•	•			٠.	trigger enable					

1-4

Figure 1-1. MODEL 8600A OUTLINE DRAWING

	•		

Section 2

Operating Instructions

2-1. INTRODUCTION

2-2. This section of the manual contains information regarding installation and operation of the Model 8600A DMM. It is recommended that the contents of this section be read and understood before any attempt is made to operate the instrument. Should any difficulties arise during operation, please contact your nearest John Fluke Sales Representative or the John Fluke Mfg. Co., Inc., P.O. Box 43210, Mountlake Terrace, WA 98043; telephone (206) 774-2211. A list of Sales Representatives is located in Section 7 of this manual.

2-3. SHIPPING INFORMATION

- 2-4. The 8600A is packaged and shipped in a foampacked container. Upon receipt of the instrument, a thorough inspection should be made to reveal any possible shipping damage. Special instructions for inspection and claims are included in the shipping carton.
- 2-5. If reshipment of the instrument is necessary, the original container should be used. If the original container is not available, a new container can be obtained from the John Fluke Mfg. Co., Inc. Please reference the instrument model number when requesting a new shipping container.

2-6. INPUT POWER

2-7. The 8600A can be operated from 100, 115, or 230V ac 50 or 60 Hz power lines, as selected by line power select switch S14. Before connecting the instrument to line power, check and, if necessary, set the instrument for operation at local line voltage as follows: (the following procedure should be carried out only by qualified personnel)

CAUTION!

Refer to Section 6 Option —01 for requirements of line voltage change for 8600A —01 instruments.

- a. Remove the phillips screw from the rear of the instrument.
- b. Remove the case; pull it straight back from the front panel.
- c. Locate the power selection switch; near the rear or the main pcb assembly.
- For 100 or 115V ac operation position the slide switch so that 115 appears in the slide aperture.
 For 230V/240V ac operation set the switch so 230 appears.
- e. Replace the case and phillips screw.
- 2-8. The rear panel power input connector is a three-prong, U-ground connector which permits the instrument to be connected, via the power cord, to the appropriate line power. The offset prong on this connector is connected to the 8600A power supply, and should be connected, via the power cord, to a high quality earth ground.

2-9. RACK INSTALLATION

2-10. The 8600A is designed for either bench-top use or for installation in a standard 19-inch equipment rack using an optional accessory rack mounting kit. Rack mounting kits are available for left, right, center, or side-by-side mounting of the 8600A. Information regarding installation of the rack-mounting accessories is given in Section 6 under Rack Installation.

2-11. OPERATING FEATURES

2-12. The location of all 8600A controls, indicators and connectors are shown in Figure 2-1, and described in Table 2-1.

Figure 2-1. 8600A CONTROLS, INDICATORS AND CONNECTORS

Table 2-1. 8600A CONTROLS, INDICATORS AND CONNECTORS

FIG. 2-1 REF. NO.	NAME	FUNCTION		
1	INPUT Connectors	Provides the input connections necessary to make current (MA), voltage (V), or resistance (Ω) measurements. All measurements are referenced to the LO INPUT terminals.		
2	Digital Readout	Provides a 4½ digit display (19999 maximum) or the measured input. The readout also includes a properly positioned decimal point, and a + or — sign for dc voltage and current measurements.		
3	POWER Switch	Switches the instrument on or off. The instrument is turned on when the switch is depressed.		
4	RANGE Switches	Provide pushbutton selection of ranges which correspond to the selected function (current, voltage, or resistance). The available ranges are:		
		Voltage: 200 MV, 2, 20, 200, 1200V and AUTO		
		Current: 200µA, 2, 20, 200, 2000 MA		
		Resistance: 200Ω , 2, 20, 200, $2000k\Omega$, $20M\Omega$, and AUTO		
5	FUNCTION Switches	Provide pushbutton selection of one-of-five measurement functions; ACV AC MA, DCV, DC MA, or $K\Omega$.		
6	Input Power Connector	Provides the means of connecting the instrument through the power cord to the ac power line.		

2-13. OPERATING NOTES

2-14. The following paragraphs describe various conditions which should be considered before operating the 8600A.

2-15. Option Information

2-16. Supplementary information is necessary when operating an 8600A which is equipped with one of the available options. Detailed information regarding the operation of each available option is given in Section 6, Options and Accessories.

2-17. Fuses

2-18. The 8600A is equipped with a line power fuse, and a current overload fuse for the current measuring function. The line fuse is located near the transformer on the inside of the instrument. The following procedure should be carried out only by qualified personnel. To gain access, remove ac power, remove the retaining screw on the rear of the case and remove the instrument from the case. When replacement is necessary, use an AGC 1/8A fuse. The current input fuse is located behind the front-panel MA INPUT terminal, and is accessed by turning (ccw) and removing the MA INPUT terminal. Use a John Fluke 376582 replacement fuse or equivalent 2A fast-blo fuse (AGX) 1 inch in length.

2-19. Overrange Indication

2-20. The front panel display, in addition to providing a measurement reading, is designed to serve as an overrange indicator. When the full scale capability of the selected range for any function is exceeded, the display will blink while indicating a 18888 reading. The presence of an overrange indication does not necessarily mean that the instrument is being exposed to a damaging input condition.

2-21. Input Overload Protection

CAUTION

Exceeding the maximum input overload conditions can damage the 8600A.

2-22. Each range and function of the 8600A is equipped with input overload protection. The maximum allowable input overload conditions for each function and range are given in Table 2-2.

2-23. Autoranging

2-24. Autoranging can be selected when the 8600A is in the VDC, VAC, or $K\Omega$ functions. When the AUTO pushbutton is depressed the 8600A will select the lowest range that will display the value of the input signal without causing an overrange indication. Autoranging stops when one of the individual range pushbuttons is depressed.

Table 2-2. BASIC MEASUREMENT INSTRUCTIONS

		8600	A		
DESIRED MEASUREMENT	SELECT FUNCTION	SELECT RANGE	INPUT CONNECTION	MAXIMUM INPUT	REMARKS
DC Volts	DCV	200 MV, 2, 20 200, or 1200V	V- Ω and V- Ω LO	1200V dc or 1700V peak ac, any range	Auto-polarity Auto-ranging
DC Milliamperes	DC MA	200 μA, 2, 20 200 or 2000MA	MA and MA LO*	2A (Fuse Protected)	Manual-ranging Auto-polarity
AC Volts	ACV	200 MV, 2, 20	V- Ω and V- Ω LO	1200V rms (sinusoidal), 1700V peak ac, any range	Auto-ranging Average Responding calibrated to read rms ac volts
AC Milliamperes	AC MA	200 μA, 2, 20 200, or 2000 MA	MA and MA LO*	2A (Fuse Protected)	Manual-ranging Average Responding
Kilohms	kΩ	200 Ω , 2, 20, 200, 2000 k Ω or 20 M Ω	V- Ω and V- Ω LO	250V dc or 250V ac peak, any range	Auto-ranging

*CAUTION: Do not use V-\Omega LO for current measurements, as damage to the multimeter may result.

2-25. OPERATION

- 2-26. Use the following procedure for initial turn-on of the 8600A;
- a. Connect the instrument to ac line power. (See Paragraph 2-6)
- b. Depress the POWER switch.
- c. In accordance with Table 2-2, select the desired function and range; connect the test leads to the corresponding input connectors.

NOTE

Supplemental instructions may be required for instruments with options installed. These instructions, if any, are given in Section 6, Options and Accessories.

CAUTION!

Do not use $V\Omega$ LO for current measurements as damage to the 8600A may result.

static awareness

A Message From

John Fluke Mfg. Co., Inc.

Some semiconductors and custom IC's can be damaged by electrostatic discharge during handling. This notice explains how you can minimize the chances of destroying such devices by:

- 1. Knowing that there is a problem.
- 2. Learning the guidelines for handling them.
- Using the procedures, and packaging and bench techniques that are recommended.

The Static Sensitive (S.S.) devices are identified in the Fluke technical manual parts list with the symbol

The following practices should be followed to minimize damage to S.S. devices.

1. MINIMIZE HANDLING

2. KEEP PARTS IN ORIGINAL CONTAINERS UNTIL READY FOR USE.

3. DISCHARGE PERSONAL STATIC BEFORE HANDLING DEVICES. USE A HIGH RESISTANCE GROUNDING WRIST STRAP.

4. HANDLE S.S. DEVICES BY THE BODY

5. USE STATIC SHIELDING CONTAINERS FOR HANDLING AND TRANSPORT

6. DO NOT SLIDE S.S. DEVICES OVER ANY SURFACE

7. AVOID PLASTIC, VINYL AND STYROFOAM® IN WORK AREA

PORTIONS REPRINTED
WITH PERMISSION FROM TEKTRONIX, INC.
AND GENERAL DYNAMICS, POMONA DIV.

8. WHEN REMOVING PLUG-IN ASSEMBLIES, HANDLE ONLY BY NON-CONDUCTIVE EDGES AND NEVER TOUCH OPEN EDGE CONNECTOR EXCEPT AT STATIC-FREE WORK STATION. PLACING SHORTING STRIPS ON EDGE CONNECTOR HELPS TO PROTECT INSTALLED SS DEVICES.

- 9. HANDLE S.S. DEVICES ONLY AT A STATIC-FREE WORK STATION
- 10. ONLY ANTI-STATIC TYPE SOLDER-SUCKERS SHOULD BE USED.
- 11. ONLY GROUNDED TIP SOLDERING IRONS SHOULD BE USED.

A complete line of static shielding bags and accessories is available from Fluke Parts Department, Telephone 800-526-4731 or write to:

JOHN FLUKE MFG. CO., INC. PARTS DEPT. M/S 86 9028 EVERGREEN WAY EVERETT, WA 98204

Section 3

Theory of Operation

3-1. INTRODUCTION

3-2. The theory of operation for the Model 8600A is arranged under two major headings. The first, titled OVER-ALL FUNCTIONAL DESCRIPTION, discusses the overall operation of the instrument in terms of the functional relationships of the major circuits. The second section is titled CIRCUIT DESCRIPTION and deals with the internal operation of each major circuit in more detail. Block diagrams and simplified circuit diagrams are included in these sections. The complete schematic diagrams are located in Section 8 of this manual.

3-3. OVERALL FUNCTIONAL DESCRIPTION

3-4. Introduction

3-5. The 8600A circuitry can be divided into three major sections. The first of the three sections, termed Input Signal Conditioners, (see Figure 3-1) comprises the Input Divider, Ohms Converter, AC Converter and Current Shunt. The second section is the A/D (analog-to-digital) Converter and the third is the Control and Display section. The basic operational relationship of these functional areas will be discussed in the following paragraphs.

3-6. Input Signal Conditioners

3-7. The term, input signal conditioner, describes the basic function of the four subsections grouped under it. The input divider, current shunts, ohms converter, and ac converter provide the A/D converter with a dc analog voltage representative of the input (ac volts, dc volts, ac current, dc current, or resistance) applied to the instrument. The path that each input signal follows as it is conditioned for the A/D converter is illustrated in Figure 3-1.

- 3-8. DC voltages applied to the input terminals are directed via function switch contacts directly to the A/D converter in the 200 mV and 2V ranges but to the input divider in higher ranges. The input divider divides it by 10, 100 or 1000 in the 20, 200 and 1200 volt ranges respectively. The A/D converter is provided with a dc voltage level, representing full scale, of 200 mV for the 200 mV range and two volts for the 2V through 1200V ranges.
- 3-9. An ac voltage input to the instrument is applied through switch contacts to the ac converter. The converter then changes the ac input to an equivalent dc voltage for the 200 mV and 2V ranges. In the 20 V through 1200 V ranges the feedback within the ac converter is changed by reed relays so that the dc voltage output to the A/D converter is two volts for a full scale indication on the 20 V and 200 V ranges and 1.2 volts on the 1200 V range.
- 3-10. When making a resistance measurement the unknown resistance, connected across the input, is supplied with a known value of current by the ohms converter and input divider. The voltage drop across the unknown resistance is then applied to the A/D converter as a direct representation of that resistance. The input divider is used to change the amount of current applied to the unknown resistance when different ranges are selected.
- 3-11. When making current measurements (ac or dc) the unknown current is applied directly, via the MA INPUT terminals, to the current shunt. The unknown current is directed, via the range switch contacts, through a precision resistor network so that the voltage developed

Figure 3-1. OVERALL FUNCTIONAL BLOCK DIAGRAM

across the known resistance is representative of the unknown current. In the case of dc current inputs the representative dc voltage is applied directly to the A/D converter, while in the case of ac current inputs the representative ac voltage is directed to the ac converter first and then to the A/D converter as an equivalent dc voltage.

3-12. A/D Converter

3-13. The A/D Converter receives the dc voltage output from one of the Input Signal Conditioners and integrates it for 100 mS. Figure 3-2 is an illustration of the output of the integrator. The slope of the integrator output voltage during the Integrate Period is directly proportional but opposite in polarity to the A/D Converter input. At the end of the integrate period the signal conditioner output is disconnected from the A/D input and a dc reference voltage is connected to the input. The A/D converter then integrates the reference voltage, of opposite polarity, which results in a constant slope returning the integrator output toward zero (Read Period). Since the read period slope is held constant the time required for the A/D integrator output voltage to return to zero is proportional to the instrument input.

3-14. The digital representation of the input is obtained by counting the number of cycles of a clock frequency that occur from the start of the read period to the point where the A/D integrator output voltage returns to the zero detect level. The A/D Converter supplies the Control and Display section with a compare signal at the end of the read period. The compare signal stops the counting of the clock oscillator pulses so that the analog value of the instrument input is now digitally represented by the number of oscillator pulses counted in the 4½ digit counter.

3-15. Control and Display

3-16. The Control and Display section provides the properly timed signals that direct the correct Input Signal Conditioner output to the A/D Converter during the integrate period. At the end of integrate time period the Control and Display section connects the appropriate reference supply to the A/D Converter input for the read period. The output of a 1 MHz oscillator is used to maintain the proper timing of the control signals as well as provide the base frequency from which the 100 kHz clock signal for the read period is produced.

Figure 3-2. TIMING DIAGRAM FOR DUAL-SLOPE A/D CONVERSION

3-17. The clock oscillator pulse count, accumulated during the read period, is applied to the LED display to produce the digital readout of the instrument input signal. The range information from the selected range switch positions the decimal point and illuminates the proper display annunciator.

3-18. Data Output Unit (DOU)

3-19. The DOU provides the display data as a rear panel card-edge output. The bcd information presented to the instrument display (polarity, overload, range code, and digit) is also applied to the DOU input. A busy flag is provided so that the output data may not be used while the 8600A is feeding a new input measurement to the DOU. A register pulse train plus one of the data strobe signals time the data transfer to insure that all the data supplied to the DOU output is stable and not taken during transition periods. For detailed information refer to Section 6.

3-20. CIRCUIT DESCRIPTION

3-21. The following circuit descriptions are keyed to the functional blocks defined in the overall functional block diagram of Figure 3-1. Corresponding functional blocks are defined in more detail using either simplified block dia-

grams or by referring to the schematics. Schematics for the 8600A circuits are provided in Section 8.

3-22. Input Signal Conditioners

3-23. INPUT DIVIDER

3-24. The Input Divider comprises a series connected resistor network (R3, R4, R5, R6, R7, and R8) totaling approximately ten megohms. This network is tapped at three points to provided division ratios of 10:1, 100:1, and 1000:1. Relays K2, K3, and K4 each select one of the division ratios; as directed by the range switches.

3-25. OHMS CONVERTER

3-26 The Ohms Converter produces a known amount of current that, when applied to an unknown resistance (Rx) connected across the $V\Omega$ terminals, will develop a voltage (Vx) proportional to the value of Rx. Producing the known amount of current is accomplished with a current follower, U1, two feedback loops, and a current source (U3 and Q3). One feedback loop is from the $V\Omega$ HI terminal to the noninverting input of U1 (Pin 3). The voltage of this loop is applied to the A/D Converter. The other feedback loop is from the output of U1 through R20 and R90 to the inverting input of U1 (Pin 2). The current source (U3 and Q3)

controls the loop and consequently the bias on U1. The current output from U1 changes for each range (refer to table 3-1) but is constant within each range. Figure 3-3 is a simplified circuit diagram.

With Rx = 0 (V Ω HI shorted to V Ω LO) there is OV at the noninverting input of U1. U3 has a negative reference voltage applied to its noninverting input and a greater negative voltage applied to its inverting input. This produces a positive output from U3 and allows Q3 to conduct. Q3 conducts an amount of current such that the voltage drop on R35 equalizes the input voltages on Pins 2 and 3 of U3. The amount of current required by Q3 is constant in all operating conditions. As Q3 is turned on, a negative voltage is applied to the inverting input of U1. The negative input causes the output of U1 to go positive until the current through R20 and R90 satisfies the current requirement of Q3. The voltages at that point are +10V out of U1, and OV at the inverting input of U1, matching the OV at the noninverting input of U1. The 10V out of U1 is dropped across the input divider network. Ten volts is maintained across the input divider in all ranges except the 20 M Ω range. Relay K5 energizes in the 20 M Ω range to change the feedback loop (R20 and R90) by a factor of

ten with R22 and R41. The output of U1 changes from 10V to 1V and only 1V is dropped by the input divider. The value of Ix is dependent on the range relays.

3-28 As Rx increases from 0, Vx (at the V Ω HI terminal) also increases from OV proportional to the value of Rx. Vx appears at the noninverting input of U1 and at the input to the A/D Converter. U1 is turned on more and the output voltage increases until the voltage at the inverting input of U1 equals Vx at the noninverting input. The output voltage of U1 equals 10V + Vx. Since the current drawn by U3 and Q3 is constant, 10V is always dropped by R20 and R90 (except in the 20 M Ω range) and the voltages at the output of U1 and the inverting input of U1 track any changes in Vx (and Rx) at the inverting input of U1. So within each range the current is constant and the voltage, Vx, at the V Ω terminals is proportional to Rx.

3-29 If the voltage at the input terminals is too small or exceeds 2V, autoranging is initiated in the DVM IC (U8). The voltage, (Vx) is held below a maximum of 5V. As Vx increases toward 5V, Q13 and Q12 begin to conduct, holding the voltage at the inverting input of U1 below 5V. Q11 serves as a current sink and holds the noninverting input of U1 below 5V.

Figure 3-3 OHMS CONVERTER BLOCK DIAGRAM

0.2V

8600A					RANG		RELAY		A-D
RANGE	Ro	Ro + 10KΩ	lx	Rx Max.	K2	К3	K4	K5	RANGE
20 Μ Ω	9990ΚΩ	10,000ΚΩ	0.1μΑ	20ΜΩ				Х	2V
2000 Κ Ω	9990ΚΩ	10,000ΚΩ	1μΑ	2000ΚΩ					2V
200	990ΚΩ	1,000ΚΩ	10μΑ	200ΚΩ	x				2V
20	90ΚΩ	100ΚΩ	100μΑ	20ΚΩ		Х			2V
2	0Ω	10ΚΩ	1000μΑ	2ΚΩ			x		2V

 200Ω

Table 3-1. OHMS CONVERTER OPERATING CONDITIONS

Table 3-2. AC CONVERTER RELAY OPERATION

10ΚΩ

1000µA

 $\Omega\Omega$

8600A RANGE	K4	K6	К7	К8	A-D RANGE
1200VAC	Х			X	2V
200VAC	Х		Х		2V
20VAC	Х	Х			2V
2VAC	Х				2V
200mVAC	X				0.2V

3-30. AC CONVERTER

 200Ω

3-31. The AC Converter produces a dc output voltage proportional to the ac input voltage. Table 3-2 presents the relay conditions for each ac volts range; relay K4 is located on the Input Divider pcb and closes to apply the

AC Converter output to the A-D Converter . Figure 3-4 is a simplified circuit diagram of the AC Converter.

Х

3-32 With no ac signal applied to the $V\Omega$ terminals, Q1, U1, and Q7 are biased on such that the current flowing through CL1 and Q7 produces OV at the collector of Q7. An ac signal is coupled by C1 from the $V\Omega$ terminals to input impedance resistor, R17. The ac signal is then applied to the inverting input of Q1 and U2. The network composed of Q1, U2, CR5, Q7, CR11, CR12, and R46 (or R37, R47, and R38 depending on the range selected) is a form of logarithmic amplifier. The net result is that the dc level detected by CR12 and filtered by the low pass (L.P.) filter is proportional to the RMS equivalent of the ac voltage applied to the $V\Omega$ terminals. The dc level from the L.P. filter is applied to the A/D Converter. The degree of logarithmic response is determined by the feedback resistance

Figure 3-4 AC CONVERTER BLOCK DIAGRAM

(R46, R37, R47, and R38) selected by the range relays. The positive half of the signal applied to CR12 is distorted by the action of Q7 and CL1. CL1 presents a variable load to Q7 so that for the positive half cycle, as Q7 draws less current, the voltage on the collector of Q7 rises more rapidly than it would with a purely resistive load. The distortion is introduced to minimize errors in small signal measurements caused by the turn-on time of CR12. The distortion is removed for feedback purposes by the arrangement of R51, C16, and R26. During autozero the A/D Converter is referenced to the offset voltage (stored on capacitors) created by the bias requirements of the circuit. The offset voltage reference is protected from overvoltage conditions by Q8 and Q9.

3-33. CURRENT SHUNT

- 3-34. The Current Shunt produces an output voltage (ac or dc) proportional to the current (ac or dc) applied to the input. A schematic diagram of the Current Shunt is located in Figure 8-1.
- 3-35. The Current Shunt consists of series connected shunt resistors R13, R14, R15, R16, and R2, contacts of range switches S6 through S10, and input protection components F1, CR1, CR2, CR6 and CR8. The input current is applied across a portion of the shunt resistor network via contacts of the selected range switch. The voltage developed by the current flow through the shunt resistance for direct current inputs is applied to the A-D Converter; for alternating current the developed ac voltage is applied to the AC Converter.
- 3-36. The Current Shunt is not only protected against inputs exceeding two amperes, as provided by fuse F1, it is also protected from possible damage caused by an overrange input. Diodes CR1, CR2, CR6, and CR8 will start to conduct if the voltage drop across the shunt resistors exceeds 1.2 volts.

3-37. A/D Converter

3-38. The A-D Converter uses a dual-slope conversion technique. The dc voltage at the input of the A-D Converter is integrated (charges a capacitor) for a controlled amount of time (100 ms). The level to which the capacitor is charged is directly proportional to the level of dc voltage applied to the input. The charged capacitor is then discharged at a controlled rate so that the discharge time is proportional to the level of charge on the capacitor. The discharge time is measured by counting the number of cycles of a reference frequency that occur from the start of discharge to the point where the capacitor reaches a selected zero detect level. Figure 3-5 is a basic illustration of the A-D Converter. The Input Divider is shown as the A-D Converter input voltage source.

- 3-39 The dc voltage from the input divider is gated through Q14 to the noninverting input of buffer, U4, by the 100msec integrate (INT) control signal. The output of U4 is applied to the inverting input of integrator, U5. C28 is charged by U5 and U4 through R80, except that in the lowest range the charge path is through R66 and R80. The slope of the output voltage from U5 is proportional and opposite in polarity to the level of the dc voltage from the input divider. The output of U5 is applied to the input of comparator, U6. As the output of U5 changes away from OV, the output of U6 changes from random noise to a steady state of either OV or +5V, depending on the polarity of the dc voltage from the input divider. At the end of the integrate period Q14 is turned off, U4 and U5 no longer charge C28, and the charge on C28 is held. Also at the end of the integrate period, the state of the output of U6 is memorized in the DVM IC, U8. An appropriate read reference is selected in U8. DE(+R) is selected for negative voltages from the input divider, or DE(-R) is selected for positive voltages. DE(+R) enables Q16, which applies the +1V reference from U17 to the input of U4. DE(-R) enables Q21, which applies the -1Vcharge on C22 to the input of U4 (in the lowest range ±.1V is selected as the reference). A delay of 15 μ sec is introduced in U8 between application of the read reference and the start of the counter. The delay allows adjustment of the zero detect level for comparator, U6. The read reference voltage applied to U4 allows U4 and U5 to discharge C28. The slope of the output of U5 is always the same for the reference applied (1V or .1V). The charge on C28 is proportional to the voltage from the input divider. Therefore the time required to discharge C28 is proportional to the voltage from the input divider. When the output of U5 crosses the zero detect level, the output of U6 changes state, producing the compare output applied to U8. The compare signal stops the counter in U8. The number of counts is proportional to the voltage from the input divider.
- 3-40. After the A-D Converter has integrated the unknown input voltage, integrated the reference voltage, and produced the compare output; the circuits of the converter are zeroed for a new measurement. An auto zero (AZ) control signal from U8 will enable Q15 and Q22 to zero the comparator circuits. The AZ control signal will also enable Q17 to charge capacitor C22 to the reference voltage level. This provides the negative reference voltage, when Q21 is enabled, needed to process a positive input voltage.
- 3-41 The different zero detect levels applied to U6 compensate for the 15 μ sec delay introduced at the end of the integrate period. The delay and subsequently different zero detect levels are used to facilitate a solid zero display in the presence of noise with no input. Also errors due to noise are minimized. The zero detect levels are determined by the logic levels of the read reference switches and the associated resistive network.

Figure 3-5 A/D CONVERTER BLOCK DIAGRAM

3-42. Control and Display

3-43. The control portion of the instrument consists of contacts of the range and function switches, a three-pole-double-throw switch U16, a bipolar ROM U9, and custom integrated circuit U8. The range and function switch positions in conjunction with strobe signal inputs to U16, control the illumination of the polarity indicator on the display and the selection of five or six ranges for the autorange feature. Refer to Figure 8-1 for the schematic diagram of the control circuits.

3-44 All timing and control information is developed in the DVM IC, U8, from an external clock consisting of Y1 and U7. Range information can be manually programed by the front panel range and function switches, or automatically programed by U8. Eight strobe signals (STO-ST7) are developed in U8 and are used for range programming and display timing. Digit information from the counter is strobed out in bcd format on lines W,X,Y, and Z (weighted 8, 4, 2, and 1 respectively). The strobe signals are strobed sequentially but the digit information presented on W, X, Y, and Z is interleaved. The main significant digit (MSD) without polarity appears at STO. The MSD with polarity is presented at ST7. For the display, either STO or ST7 is selected by U16, which is programed by the function switches. The second significant digit (2SD) appears on W, X, Y, and Z at ST2, the 3SD at ST4, the 4SD, at ST6, and the 5SD at ST1. W, X, Y, and Z present the digit information to a seven segment decoder, U10. The strobe signals light the appropriate display LED, U11-U15, through the strobe drivers, Q29-Q39. The decimal point logic (DPL) from U8 outputs a signal at the appropriate strobe signal. For the lowest range and the 20 $M\Omega$ range, lower or upper annunciators will light.

3-45 Range information outputs from U8 appear at a, b, and c (pins 29, 28, and 30) which are weighted 4, 2, and 1 respectively. The range information is also presented on W, X, Y, and Z at ST5 for the DOU output. The outputs at a, b, and c are steady state outputs applied to U9. U9 interprets the information and selects the appropriate relays. Range truth tables are included in table 4-12. In all cases the output of U9 goes low to select a relay because Relay Common is connected to +5V through S4A (DCmA). Relay, K1, is energized only in the 20V, 200V and 1200V ranges of the DCV function. K1 inserts the Input Divider between $V\Omega$ HI terminal and the A/D Converter. The lower two ranges are applied directly to the A/D Converter. In the lowest range for all functions U17 selects the .1V reference and switches R66 into the charge path of C28. In range programming U8 the α input sets the upper range limit and the β input sets the lower limit. Strobe signals are applied through U16 and the range switches to the a and β inputs. For manual range programming α and β are tied together by U16. S6-S11 apply the appropriate

ST signal (ST3 for the 20V range etc.). In autoranging β is always connected to ST1 as the lower limit and α is connected to ST5 (5 ranges) for DCV and ACV functions and to ST6 for the Ohms function.

3-46 For A/D Converter timing all outputs (INT, AZ, DE(+R), and DE(-R)) from U8 are logic NOT outputs. For example the INT output (pin 40) varies between OV and -15V. During the integrate signal pin 40 stops conducting and goes to -15V, biasing the driver, Q10, off. The gate of Q14 goes to -2V allowing it to conduct. At the end of the integrate signal pin 40 conducts and goes to OV, biasing Q10 on which drives the gate of Q14 to -15V, cutting Q14 off. The other control signals work the same way except that the gates of the FETs go to OV during their signal on times.

3-8

Section 4

Maintenance

WARNING!

THESE SERVICING INSTRUCTIONS ARE FOR USE BY QUALIFIED PERSONNEL ONLY. TO AVOID ELECTRIC SHOCK, DO NOT PERFORM ANY SERVICING OTHER THAN THAT CONTAINED IN THE OPERATING INSTRUCTIONS UNLESS YOU ARE QUALIFIED TO DO SO.

4-1. INTRODUCTION

- 4-2. This section of the manual contains information concerning maintenance and servicing of the Model 8600A Digital Multimeter. A calibration interval of 6 months is recommended to insure instrument operation within the 6 month specifications. Test equipment recommended for performance tests, calibration adjustments and trouble-shooting is listed in Table 4-1. If the recommended equipment is not available, equipment of equivalent specifications may be used.
- 4-3. SERVICE INFORMATION

- 4.4. Each instrument manufactured by the John Fluke Mfg. Co., Inc. is warranted for a period of one year upon delivery to the original purchaser. The WARRANTY is printed on the back of the title page located at the front of the manual.
- 4-5. Factory authorized calibration and service for each Fluke product is available at various world wide locations. A complete list of these Technical Centers is included in Section 7. Shipping information is given in Section 2 of this manual. If requested, an estimate will be provided to the customer before any repair work is begun on instruments that are beyond the warranty period.

Table 4-1. REQUIRED TEST EQUIPMENT

NOMENCLATURE	MINIMUM USE SPECIFICATIONS	RECOMMENDED EQUIPMENT John Fluke Model 5200A and 5205A	
AC Calibrator	Voltage Range: 0 to 1000V ac Frequency Range: 30Hz to 100 kHz Voltage Accuracy: 30 Hz to 50 Hz 0.05% 50 Hz to 10 kHz 0.02% 10 kHz to 100 kHz 0.05%		
DC Calibrator	Voltage Range: 0 to 100V dc Accuracy: ±0.003%	John Fluke Model 343A	
DC Current Calibrator	Current Range: 0 to 2 mA Accuracy: 0.006%	John Fluke Model 382A	
DC Current Calibrator	Current Range: 2 mA to 2A Accuracy: 0.02%	John Fluke Model 382A	
Digital Multimeter	Voltage Accuracy: 0.1% Input Impedance: 1000M Ω	John Fluke Model 8600A	
Resistor Decade	Resistance Accuracy: ±0.01%	ESI 1063B	
Oscilloscope	General Purpose with 10 MΩ probe	Tektronix 465	

4-6. GENERAL MAINTENANCE

4-7. Access/Disassembly

- 4-8. Use the following procedure to gain access to the interior of the 8600A.
- a. With the power switch in the OFF position, disconnect the line cord.
- b. Remove the Phillips screw from the rear of the instrument case.
- c. Remove the instrument from the case.
- 4-9. The ohms converter, ac converter and input divider printed circuit boards can be removed from the main board. The ohms converter and input divider boards can be removed by pulling them straight up from the main board until they are free of the connector pins. The ac converter, however, must be removed with care because of a wire connection to the ACMA switch. When the ac converter is free of the connector pins it should then be held to one side so the buss wire can be disconnected.

NOTE!

When reinstalling the plug-in boards, insure that all connector pins are properly aligned before seating the board.

4-10. Cleaning

- 4-11. Clean the instrument periodically to remove dust, grease and other contamination. Use the following procedure:
- a. Clean the interior with clean, dry air at low pressure (20 psi). The contaminants on printed circuit boards can first be loosened by spraying them with Freon T.F. Degreaser (MS 180), then removed with low pressure air.
- b. Clean the front panel and exterior surfaces with anhydrous ethyl alcohol or a soft cloth dampened with a mild solution of detergent and water.

4-12. Fuse Replacement

4-13. The power fuse (F2) is located on the main printed circuit board near the power transformer. Access to the fuse is accomplished by following the Access/Disassembly procedure found in this section of the manual. If replacement is necessary, use a 1/8 ampere fuse for either 115V ac or 230V ac power configuration (½ ampere fuse for 8600A-01). The MA HI terminal is a fuse holder for current overload protection. Using a screwdriver, turn the

terminal ¼ turn counterclockwise. Replace the fuse with a 2A AGX, fast blow, fuse.

4-14. PERFORMANCE TESTS

4-15. The following tests are intended for use in performance testing of the 8600A. The tests compare the instrument performance to the accuracy specifications and are especially suited to acceptance testing of new instruments. Tests should be conducted under the following conditions: ambient temperature 23°C ±5°C, relative humidity less than 80%.

NOTE!

Tolerances and test limits for performance tests are derived from the 6 month instrument specifications.

4-16. DC Voltage Test

4-17. Using the dc voltage calibrator, sequentially apply the voltages indicated in Table 4-2 to the 8600A V- Ω input terminals and select the ranges prescribed. The 8600A should display a reading within the indicated limits.

4-18. Ohms Test

4-19. Using the resistor decade, sequentially apply the resistance values indicated in Table 4-3 to the 8600A V- Ω input terminals, and select the ranges prescribed. The 8600A should display a reading within the indicated limits.

Table 4-2. DCV PERFORMANCE TEST

8600A RANGE	INPUT REQUIRED	8600A DISPLAY LIMITS
200mV	+190.00mV	+189.90 to 190.10mV
200mV	-19.000mV	-18.97 to 19.03mV
2V	+1.9000V	+1.8995 to 1.9005V
2V	1.9000V	-1.8995 to 1.9005V
2V	+ .9000V	+.8997 to .9003V
20V	+19.000V	+18.995 to 19.005V
20V	-19.000V	-18.995 to 19.005V
200V	+190.00V	+189.95 to 190.05V
1200V	+1000.0V	+999.7 to 1000.3V
AUTO	17000V	-169.91 to 170.09mV
AUTO	-1.7000V	-1.6996 to 1.7004V
AUTO	-17.000V	-16.996 to 17.004V
AUTO	-170.00V	-169.96 to 170.04V
AUTO	-1000.0V	-999.7 to 1000.3V

Table 4-3. OHMS PERFORMANCE TEST

8600A	INPUT	8600A DISPLAY
RANGE	REQUIRED	LIMITS
AUTO AUTO AUTO AUTO AUTO AUTO AUTO	SHORT 100.00 Ω 1.0000k Ω 10.000k Ω 100.00k Ω 100.00k Ω 1000.00k Ω 0.000M Ω	00.00 to 00.03 99.87 to 100.13 .9989 to 1.0011 9.994 to 10.006 99.94 to 100.06 999.4 to 1000.6 9.979 to 10.021 18.888 Flashing (20ΜΩ LED lit)

4-20. DC Current Test

4-21. Using the dc current calibrator (check Table 4-1 for correct calibrator) sequentially apply the values of dc current indicated in Table 4-4 to the 8600A MA input terminals and select the ranges prescribed. The 8600A should display a reading within the indicated limits.

Table 4-4. DC CURRENT PERFORMANCE TEST

RANGE	INPUT	READING
200 μA	Open	-00.05 to +00.05
200 μA	+190.00 μA	+189.79 to +190.21
2 mA	+1.9000 mA	+1.8979 to +1.9021
20 mA	+19.000 mA	+18.979 to +19.021
200 mA	+190.00 mA	+189.79 to +190.21
2000 mA	+1.9000 A	+1897.9 to +1902.1

NOTE!

Because the current measurements of ac and dc are made using the same shunt resistors; a check of ac current is not made.

4-22. AC Voltage Test

4-23. Using the ac voltage calibrator, apply the ac voltages indicated in Table 4-5 to the $8600A~V-\Omega$ input terminals and select the ranges prescribed. The 8600A~should display a reading within the indicated limits.

4-24. CALIBRATION

4-25. Introduction

4-26 The 8600A should be calibrated every 6 months or whenever repairs have been made, to insure the instrument continues to operate at its rated accuracy. After calibration is completed, the DC current performance test, paragraph

4-20 should be run through to verify the functioning and accuracy of the current dividers. The calibration should be performed under the following environmental conditions; ambient temperature of 23°C ±5°C and a relative humidity of less than 80%. Refer to Table 4-1 for the recommended test equipment. Calibration adjustment locations are pictured in Figure 4-1. Perform the following preliminary steps before calibrating the instrument.

- a. Remove the instrument from the case.
- b. Connect the 8600A to the appropriate (115V ac or 230V ac) line power.
- c. Turn the instrument on and allow it to warm-up for a minimum of 15 minutes.
- d. Insure that the ac and dc calibrators are up to their normal operating temperatures.

NOTE!
Use only non-metalic adjustment tools.

Table 4-5. ACV PERFORMANCE TEST

8600A RANGE	INPUT REQUIRED	FRE- QUENCY Hz	8600A DISPLAY LIMITS
200 mV	190.00 mV	70 kHz	188.05 to 191.95 mV
200 mV	190.00 mV	500 Hz	189.46 to 190.54 mV
200 mV	39.00 mV	30 kHz	38.60 to 39.40 mV
2 V	1.9000 V	500 Hz	1.8959 to 1.9041 V
2 V	.9000 V	500 Hz	.8979 to .9021 V
2 V	1.9000 V	50 kHz	1.8900 to 1.9100 V
2 V	1.9000 ∨	100 kHz	1.8800 to 1.9200 V
2 V	1.0000 V	30 Hz	.9945 to 1.0055 V
20 V	19.000 V	500 Hz	18.959 to 19.041 V
20 V	19.000 V	70 kHz	18.800 to 19.200 V
200 V	190.00 V	500 Hz	189.59 to 190.41 V
200 V	100.00 V	30 kHz	99.45 to 100.55 V
1200 V	1000.0 V	500 Hz	996.9 to 1003.1 V
1200 V	1000.0 V	20 kHz	994.0 to 1006.0 V

4-27. DC Volts Calibration

4-28. The calibration procedure for the DCV FUNCTION of the 8600A is presented in Table 4-6. Use the recommended dc voltage calibrator (see Table 4-1) to apply the prescribed dc voltages to the V- Ω INPUT terminals and, where required, make the adjustments to meet the specified display limits.

Figure 4-1. CALIBRATION ADJUSTMENT LOCATIONS

Table 4-6. DC VOLTS CALIBRATION PROCEDURE

STEP	8600A RANGE	INPUT REQUIRED	ADJUSTMENT	8600A DISPLAY LIMITS
1	Select	the VDC FUNCTION switch	h on the front panel.	
2	200mV	Short	none	-00.01 to +00.01
3	200mV	1ΜΩ*	C24	-00.01 to +00.01
4	200mV	+.19V	none	note display reading
5	200mV	19V	C30	within 1 digit of step
				4 display
6	(Repeat	steps 3, 4, and 5 until each	step is within limits)	
7	20V	open	none	±00.00 to +00.61
8	2V	+1.9000V	R57	+1.8999 to +1.9001
9	2V	-1.9000V	R57	-1.8999 to -1.9001
10	(Rep	eat steps 8 and 9 until both	are within limits)	
11	2V	+0.9000V	none	+0.8999 to +0.9001
12	200mV	+190.00mV	none	+189.95 to +190.05**
13	200mV	-190.00mV	none	-189.95 to -190.05*
14	20V	+19.000V	R4	+18.999 to +19.001
15	20V	-19.000V	R4	-18.999 to -19.001
16	(Repe	at steps 14 and 15 until bot	h are within limits)	
17	200V	+190.00V	R6	+189.99 to +190.01
18	1200V	+1000.0V	R8	+999.9 to +1000.1
	a 1M Ω resistor across the V V LED on the display should			

4-29. Ohms Calibration

4-30. The calibration procedure for the $K\Omega$ function of the 8600A is presented in Table 4-7. Use the recommended resistor decade (see Table 4-1) to apply the prescribed resistances to the $V\Omega$ INPUT terminals and, where required, make the adjustments to meet the specified display limits.

CAUTION!

Remove any applied voltage from the 8600A input terminals before starting the Ohms Calibration.

4-31. AC Volts Calibration

4-32. The calibration procedure for the ACV FUNCTION of the 8600A is presented in Table 4-8. Use the recommended ac voltage calibrator (see Table 4-1) to apply the prescribed ac voltages at the indicated frequencies to the $V\Omega$ INPUT terminals and, where required, make the adjustments to meet the specified display limits.

4-33. TROUBLESHOOTING

4-34. The following information is provided to assist in locating malfunctions in the 8600A. It is recommended that the theory of operation in Section 3 be read completely before attempting to troubleshoot the instrument.

Table 4-7. OHMS CALIBRATION PROCEDURE

STEP	8600A RANGE	INPUT REQUIRED	ADJUSTMENT	8600A DISPLAY LIMITS
1	Depres	is the K Ω FUNCTION swite	ch on the front panel.	
2	200	Short	none	0.00 to 00.02
3	2000k $Ω$	1000.0k Ω	R21	999.9 to 1000.1
4	2	1.0000kΩ	R27	.9999 to 1.0001
5	20ΜΩ	10.000MΩ	R29	9.997 to 10.003M Ω

Table 4-8. AC VOLTS CALIBRATION PROCEDURE

STEP	8600A RANGE	INPUT VOLTAGE REQUIRED	INPUT FREQUENCY REQUIRED	ADJUSTMENT	8600A DISPLAY LIMITS
1		Simultaneously	select the ACMA and	DCV FUNCTION switche	s. *
2	1200V	none	none	R72	-20.0 to -30.0
3		Select the	VAC FUNCTION swi	itch on the front panel.	
4	2	1.9000V	500Hz	R50	1.8998 to 1.9002
5	2	0.9000V	500Hz	none	.8997 to .9003
6	200	190.00V	500Hz	none	189.90 to 190.10
.7	200	190.00V	50kHz	C2	189.95 to 190.05
8	2	1.9000V	50kHz	C19	1.8995 to 1.9005
9		Repe	at steps 7 and 8 until b	oth are within limits	
10	2	1.9000∨	100kHz	none	1.8875 to 1.9125
11	2	1.9000∨	30Hz	none	1.8950 to 1.9050
12	20	19.000∨	500Hz	none	18.990 to 19.010
13	20	19.000∨	50kHz	C10	18.990 to 19.010
14	200mV	190.00mV	50kHz	none	189.80 to 190.20*1
15	200mV	190.00mV	500Hz	none	189.85 to 190.15**
16	200mV	39.00mV	500Hz	none	38.90 to 39.10*1
17	1200V	1000.0V	500Hz	none	998.0 to 1002.0
18	1200V	1000.0V	20kHz	none	996.0 to 1004.0

^{*} Simultaneous selection of both function switches connects the positive 25mV AC Converter offset to the A-D Converter auto zero input. The A-D Converter action causes the negative display of STEP 2.

4-35. Initial Troubleshooting

- 4-36. The troubleshooting techniques given below should be completed as the first step toward repairing any apparent malfunction in the unit. Improper operation may not always be caused by failures within the 8600A. The following reminders of basic fault isolation techniques will help determine if the cause is the result of an internal failure or faulty external connection.
- a. Carefully check the 8600A control settings: some false indications may be caused by an incorrect or overlooked control setting.
- b. Check associated equipment: insure that associated equipment controls and connections are correct.
- c. Check the 8600A performance: the performance test (par. 4-14) will determine if the malfunction is in the 8600A.

- d. Carefully inspect the interior of the instrument: check for physically damaged parts, loose or broken wires, and improperly seated plug-in assemblies.
- 4-37 When it has been determined by the above checks that the malfunction is within the 8600A multimeter, the following procedure should be used to isolate the problem area. The recommended test equipment for trouble-shooting this instrument is listed in table 4-1. A trouble-shooting flow chart is included in figure 4-2 as an aid in repairing the instrument. Performance tests given in the beginning of this section are referred to by paragraph number and table number. Tests contained in the following sections are referred to by paragraph number. In addition portions of the theory of operation section relevant to the correct operation of the circuitry in question are referred to by paragraph number.

NOTE

Refer to the appropriate schematic for the electrical location of test points specified. Physical test point connectors may not appear on some pcbs.

^{* 200}MV LED on the display should be on.

Figure 4-2 TROUBLESHOOTING FLOW CHART

4-38. Power Supply Checks

- 4-39. Incorrect output voltages from the +5 volt, +15 volt, or -15 volt supplies may cause the unit to exhibit various improper indications. Because of this the power supplies should be checked in the event of any 8600A malfunction. Use the following procedure to check the power supply output voltages.
- a. Connect the test equipment multimeter return lead to the $V-\Omega$ LOW input terminal.
- b. Connect the high input lead to TP12, the +5 volt supply. The power supply voltage should be

- +4.75V to +5.75.
- c. Connect the high input lead to TP4, the -15 volt supply. The power supply voltage should be -15.0 ±0.5 volts.
- d. Connect the high input lead to TP5, the +15 volt supply. The power supply voltage should be $+15.0\pm0.5$ volts.

4-40. Fault Area Isolation

- 441. A malfunction in the 8600A may be isolated to a particular section of the circuitry by observing the front panel display during each mode of operation. The performance tests (par. 4-14) will exercise the 8600A in each function in order to determine the functional operations of the unit affected by the failure.
- 4-42. The indications observed during the 8600A operation in each of four functions (VDC, VAC, Ohms, and DC current) may isolate the failure to a particular area. Table 4-9 lists the fault area indicated by various combinations of proper or improper 8600A operation in each of the four functions exercised in the performance test.
- 443. Troubleshooting information for the indicated fault area is presented in the following paragraphs. Proceed to the troubleshooting information for the indicated failure area. It should be kept in mind that some failures may cause improper operation of functional areas other than the one actually containing the problem.

4-44. INPUT DIVIDER

4.45 Problems in the Input Divider will generally give improper operation in the DCV and OHMS functions, leaving other functions unaffected. There are exceptions, however. For example the relay, K4, must be energized in all ACV ranges to connect the output of the AC Con-

8600A FUNCTION	8600A OPERATION — PROPER OR IMPROPER				
VDC	IMPROPER	PROPER	PROPER	PROPER	IMPROPER
OHMS	IMPROPER	IMPROPER	PROPER	PROPER	IMPROPER
DCI	PROPER	PROPER	IMPROPER	PROPER	IMPROPER
VAC	PROPER	PROPER	PROPER	IMPROPER	IMPROPER
FAULT AREA INDICATED	INPUT DIVIDER	OHMS CONVERTER	CURRENT SHUNT	AC CONVERTER	A/D CONVERTER OR CONTROL AND DISPLAY

verter to the input of the A/D Converter. By inserting a voltage at TP11, all input signal conditioners will be bypassed. The operation of the A/D Converter and the Control and Display sections (with the exception of the range controls) can be checked with the following test. If the instrument passes this test, the indication is that the fault is in the Input Divider or in the range selection.

- a. Select the DCV function and the 200mV range.
- b. With no input to the VΩ terminals, check the voltage at TP11, and at buffer input (U4 pin 3).
 If it is OV proceed to the next step. A voltage on TP11 or at the buffer input indicates that one of the control FETs (Q14, Q15, Q16, Q17, Q21) or Q13 or Q11 may be shorted or leaky.
- c. Connect +190mV to TP11 and the return lead to TP3. Refer to table 4-10 and observe the front panel display as the front panel range switches are changed.

RANGE SETTING	DISPLAY		
200 mV	+190.00		
2V	+ .19		
20V	+ 1.90		
200V	+ 19.00		
1200V	+190.00		
AUTO	DECIMAL MAY BE		
	ANYWHERE		

Table 4-10 INPUT DIVIDER TEST

4-46. OHMS CONVERTER

- 4-47. An instrument malfunction affecting only the ohms mode of operation is generally the result of the ohms converter producing an improper level of current for the particular resistance range being used. The following procedure should be used to evaluate the operation of the ohms converter.
- a. Select the $K\Omega$ function and 20 K range.
- b. Place a good quality short across the V- Ω input terminals.
- c. Measure the voltage level at the cathode of CR2. It should be +10 ±0.1V dc.
- d. If the voltage is incorrect measure the voltage at pin 3 of U1. This point should be 0.00 volts ±100 microvolts.

- e. A voltage level greater than ten volts at CR2 and zero volts at pin 3 of U1 would indicate that the current source (Q3, U3 and associated components) is supplying more current than normal. If the voltage at CR2 were less than ten volts the current from Q3 would probably be less than normal.
- 4-48. The operation of the current source can be checked by measuring the voltage at pins 2 and 3 of U3. The voltage on both pins should be approximately -8.6 volts. Uneven voltages may be caused by improper resistance value of R35 or R91, or a failure in CR10. The voltages at pin 2 and 3 of U3 may be proper and the current supply from Q3 improper if the gate of Q3 were leaking current back to pin 6 of U3.

4-49. CURRENT SHUNTS

4-50. Failures in the current mode of operation affecting all current ranges would probably be attributed to a failure in one of the following areas: 1) the input fuse (F1) open, 2) one or more of diodes CR1, CR6, CR7, or CR8 shorted, or 3) improper connection in the contacts of function switch S2 (ACI), or S4 (DCI) or range switches S6-S10.

4-51. AC CONVERTER

- 4-52. Generally a failure in the ac converter will do one of two things: 1) create a dc voltage output without an ac input signal applied to the 8600A input terminals or 2) not produce the proper dc voltage output when an ac input is applied to the unit. A dc offset voltage created within the ac converter may cause the multimeter display to indicate some substantial value of ac voltage when a short is placed across the input terminals. When the ac converter failure causes the display to remain at zero when an ac signal is applied to the input, the converter is not producing the proper dc voltage output for the A/D converter.
- 4-53. The operation of the ac converter can be checked for the dc voltage offset by performing the following procedure.
- Remove the molded plastic outer case from the 8600A (see par. 4-7 Access/Dissassembly).
- b. Remove the ac converter pcb, take the metal shield off the side and reinstall the board into mainframe.

NOTE!

Take care that all the connector pins on the board are properly aligned before seating the pcb.

- c. Short the V- Ω INPUT terminal HI to LO. Select the 200V RANGE and VAC FUNCTION.
- d. Connect the return lead of the test equipment voltmeter to the 8600A V/Ω LO input terminal.
- e. Connect the high input lead to the ac converter output at pin 9. Note the voltage level.
- f. Move the high input lead to pin 10. The voltage level should be the same as that noted in step e.
- 4-54. A difference in voltage levels between the two pins would be displayed as an offset on the front panel readout. The level at either pin should not exceed +30 millivolts nor be less than +20 millivolt. If the voltage level is too high or there is a difference in voltage level between the two, check current source CL1 or transistors Q1, Q7, and Q9, or capacitors C12 and C13.
- 4-55. The operation of the ac converter with an ac input applied, observed at the circuit locations described below, may indicate the fault area. With the 8600A in the 2V range and AC V function apply a 1V rms 500 Hz signal to the V/Ω INPUT terminals and proceed as described below.
- a. Connect the input return lead of an oscilloscope to the 8600A MA LO terminal.
- b. Connect the scope input probe to the ac converter input at the wire connection on S2A. Note the amplitude of the signal; it should be 2.8 volts peak-to-peak.
- c. Move the scope input probe to U2 pin 6. The ac signal at this point should be about one-quarter of the amplitude of the input signal, or about 0.7 volts peak-to-peak. If correct go to step e.
- d. If the signal is not present at this point or the dc voltage level is close to either the -15 volt or +15 volt supply, U2, Q7, or CL1 are probably defective. If the signal is distorted check the operation of Q1.
- e. Connect the scope input probe to the base of Q7, the signal here should be one-quarter of the amplitude of the input signal.
- f. The ac converter output at pin 9 should be one volt dc plus the dc voltage offset level at pin 10.
- 4-56. A/D CONVERTER OR CONTROL AND DISPLAY
- 4-57. An A/D converter or control and display failure will generally affect the operation of the 8600A in all

functions. The exceptions to this would be a malfunction in an individual function's control signal or range relay signal. The following information is provided to aid in isolating problems within the A/D converter and control and display circuitry.

- 4-58. The A/D Converter can be checked by using the following procedure.
- a. Select the DCV function and the 2V range.
- b. Apply +1V dc to 8600A $V\Omega$ terminals.
- c. Connect the oscilloscope probe to TP2. The probe ground return may be connected to TP3 or the mA LO terminal.
- d. The signal at TP2 should be as shown in figure 4-3.
- 4-59. The stable +5V section of the waveform shown in figure 4-3 should be 200msec long for a +1V dc input. If the dc input voltage is increased to 2V, the stable portion of the waveform should be 300msec long. If the waveform is correct, the problem is in the display section. If the waveform is incorrect, refer to figure 4-4 for further test points and waveforms in the A/D Converter. Check the waveforms at the buffer, U4, for the correct voltage from Q14 and the appropriate reference (U17, Q17, and Q21). U4 has a gain of 5 so the waveform at its output should be 5 times its input (not inverted). The output of U5 should be triangular as shown and opposite in polarity to the buffer input.

Figure 4-3. A/D CONVERTER OUTPUT SIGNAL

- 4-60. The control waveforms and timing are important to the correct operation of the A/D Converter. The waveforms and test points are shown in figure 4-4. Continue with the test setup in 4-58. First check the signal at the gate of the FET. If absent or wrong, check that output from U8, keeping in mind that the driver transistors act as inverters. The operation of U8 with respect to the A/D Converter may be checked as follows.
- a. Select DCV function and 2V range.

Figure 4-4. A/D CONVERTER CONTROL SIGNALS

- Apply OV dc to TP2 by connecting it to TP3
 (ground). Refer to table 4-11 for test points and indications.
- c. Apply +5V dc to TP2 by connecting it to TP12
 (+5V supply). Refer to table 4-11 for test points
 and indications.
- 4-61. The operation of the range control system can be checked by observing the interaction of U8, U9, U16, and the function switches. For switching between the lowest range and the higher ranges, U17 changes the reference

applied to U4 and the charge path of C28. Table 4-12 contains truth tables for U8 and U9. It also shows which relays are energized in each range and the internal switching arrangements for U16 and U17. To check a questionable range, select the range manually and check the inputs and outputs given in Table 4-12 that affect that range. Keep in mind that relay common is +5V so in all cases the output of U9 goes low to select a relay. The strobe signals are used to program U8 for the different ranges. U16 together with the range switches apply the ST signals to U8 as explained in Theory of Operation.

TP2 INPUT	FRONT PANEL	AZ	INT	DE(+R)	DE(-R)			
	DISPLAY	U8 PIN 2	U8 PIN 40	U8 PIN 38	U8 PIN 39			
OV dc	OVERRANGE	PULSE	PULSE	OV dc	PULSE			
+5V dc	OVERRANGE	PULSE	PULSE	PULSE	OV dc			
		PULSE PULSE OV dc PULSE AMPLITUDE SHOULD BE 15V (FROM OV dc to -15V dc)						

Table 4-11 OPERATION OF U8 WITH RESPECT TO A/D CONVERTER

RANGE SELECTED	U	B OUTPUT PIN	IS	FUNCTION	U9 INPL	JT PINS
	29 (a)	28 (b)	30 (c)		10	11
200 mV	0	0	1	ACV	1	0
2V	0	1	0	AC MA	1	1
20V	0	1	1	DCV	0	1
1200V	1	0	1	DC MA	1	0
$20~\mathrm{M}\Omega$	1	1	0	ΚΩ	0	0

LOGIC 1 = +5V LOGIC 0 = 0V IN DC mA FUNCTION U9 AND RELAYS INACTIVE

ACV	FUNCTION	DCV FUNCTION			
RANGE	RELAY ENERGIZED	RANGE	RELAY ENERGIZED		
200 mV, 2V	K4	200 mV, 2V	None		
20V	K4, K6	20V	K1, K2		
200V	K4, K7	200V	K1, K3		
1200V	K4, K8	1200V	K1, K4		
онма	S FUNCTION				
RANGE	RELAY ENERGIZED	AC MA FUN	CTION ZED IN ALL RANGES		
200Ω	K4	K4 ENERGIA	ZED IN ALL HANGES		
2ΚΩ	K4				
20ΚΩ	K3				
200ΚΩ	K2	DC MA FUN	CTION		
2000Κ Ω	None	U9 AND RELAYS DEENERGIZED			
$20M\Omega$	K5				

	INTERNAL SWITCH	Α	В	С	D	
U17 4PST	SWITCH CONTROL PIN	-13	5	6	12	+5V TO CONTROL PIN CLOSES SWITCH (ON)
	PINS SWITCHED	1)	3	(1)	(1)	OV OPENS SWITCH (OFF)

	INTERNAL SWITCH	Α	В	С	
U16 3PDT	SWITCH CONTROL PIN	11	10	9	SWITCHES ARE AS SHOWN FOR OV ON CONTROL PIN
	PINS SWITCHED	12)	(15)	(5) (4)	+5V ON CONTROL PIN SWITCHES CENTER ROW FROM TOP TO BOTT
		(13)	1	3	

Table 4-12 RANGE INFORMATION

- 4-62. Errors in the display concerning decimal point location and upper or lower annunciators can be the result of range control problems. A +5V is required from U8 to turn on the annunciators. Decimal point logic is a positive pulse output from U8 occuring at the same time as the appropriate strobe signal. Either STO or ST7 is selected by U16 before being applied to the display board. The digit information to be presented on the front panel is delivered by U8 in BCD format on lines W, X, Y, and Z.
- 4-63. A malfunction caused by the display section of the circuitry will generally cause the 8600A display to indicate the failure in one of five ways; 1) all LED's are dark, 2) one segment of any one or all LED displays are dark, 3) any single LED display is dark, 4) the numbers containing a particular binary code (1, 2, 4 or 8) will not display or 5) one digit is brighter than normal and all others are off. The probable cause for each possible failure indication is given below.
- 4-64. When all LED's are dark, check for +5 volts at the emitter of Q30. Using an oscilloscope check U10 pins 9 through 15, LED segment drive signals, for a squarewave signal alternating between +3.5 volts and +0.4 volts.
- 4-65. When a segment of only one LED is dark the LED is the probable cause of the failure. If, however, the

- same segment in all LED's is out the particular segment drive signal, U10 pins 13, 12, 11, 10, 9, 15, or 14 corresponding to segments A, B, C, D, E, F, and G respectively, can be checked for the required voltage change from +3.5 volts to +0.4 volts as the segment lights.
- 4-66. When one digit in the display remains dark the strobe signal for that digit should be checked. The base of Q37 (MSD), Q29 (2SD), Q31 (3SD), Q33 (4SD) and Q35 (LSD) should go to +5 volts as each is strobed on for 300μ s.
- 4-67. When the display indicates that one of the binary codes (1, 2, 4, or 8) is missing; the bcd output from U8 can be observed at pin 31 (1), 32 (2), 33 (4) and 35 (8). The output at each pin should drop from +5 volts to about zero volts when that code is used to produce the digit being displayed. If the bcd information at U8 is correct the probable cause of the failure is U10.
- 4-68. When one display digit is bright and all others are off, the clock oscillator is the probable cause. Check the operation of U7, U8, and the 1 MHz crystal Y1.

Section 5

Lists of Replaceable Parts

TABLE OF CONTENTS

ASSEMBLY NAME/NUMBER	PART NO.	PAGE
Final Assembly, Model 8600A	8600A	5-3
Front Panel and Main PCB Assembly (8600A-4001)	365866	5-5
Front Panel and Main PCB Assembly (-01 Option) (8600A-4011)	366906	5-10
Display PCB Assembly (8600A-4002)	373860	5-15
Battery Power Supply PCB Assembly (-01 Option) (8600A-4006)	373837	5-16
AC Converter PCB Assembly (8600A-4003)	373852	5-18
Ohms Converter Assembly (8600A-4004)	373845	5-21
input Divider PCB Assembly (8600A-4005)	397463	5-23
OOU PCB Assembly (-02 Option) (8800A-4005)	366369	5-24

5-1. INTRODUCTION

- 5-2. This section contains an illustrated parts breakdown of the instrument. Components are listed alpha-numerically by assembly. Electrical components are listed by reference designation and mechanical components are listed by item number. Each listed part is shown in an accompanying illustration.
- 5-3. Parts lists include the following information:
- a. Reference Designation or Item Number
- b. Description of each part
- c. Fluke Stock Number
- d. Federal Supply Code for Manufacturers. See Appendix A for Code-to-Name list.)
- e. Manufacturer's part Number or Type.
- f. Total Quantity per assembly or component.
- g. Recommended Quantity: This entry indicates the recommended number of spare parts necessary to support one to five instruments for a period of two years. This list presumes an availability of common electronic parts at the maintenance site. For maintenance for one year or more at an isolated site, it is recommended that at least one in each assembly in the instrument be stocked. In the case of optional subassemblies, plug-ins, etc. that are not always part of the instrument, or are deviations from the basic instrument mode, the REC QTY column lists the recommended quantity of the item in that particular assembly.
- h. Use Code is provided to identify certain parts that have been added, deleted or modified during production of the instrument. Each part for which a use code has been assigned may be identified with a particular instrument serial number by consulting the Use Code Effectifity, paragraph 5-7.

5-4. HOW TO OBTAIN PARTS

5-5. Components may be ordered directly from the manufacturer by using the manufacturer's part number, or from the John Fluke Mfg. Co., Inc. factory or authorized representative by using the FLUKE STOCK NUMBER. In the event the part you order has been replaced by a new or improved part, the replacement will be accompanied by an explanatory note and installation instructions, if necessary.

- 5-6. To ensure prompt and efficient handling of your order, include the following information.
- a. Quantity
- b. FLUKE Stock Number
- c. Description
- d. Reference Designation or Item Number
- e. Printed Circuit Board Part Number
- f. Instrument model and Serial number

5-7. USE CODE EFFECTIVITY LIST

USE

CODE SERIAL NUMBER EFFECTIVITY

For U8, page 5-3

- A Up to 42560 order CMOS
- B 42560 and above order PMOS

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE	TOT QTY	REC QTY	USE CDE
	FINAL ASSEMBLY, MODEL 8600A						
	Figure 5-1						
	Front Panel and Main PCB Assembly						
. 1	8600A (Line power only)	365866	89536	365866	1		
2	8600A-01 (Battery Power)	366906	89536	366906	1		
3	Battery Power Supply PCB Assembly (-01 Option)						
	100Vac version	378380	89536	378380	1		
	115 Vac version	373837	89536	373837	1		
	230Vac version	378372	89536	378372	1		İ
4	AC Converter Assembly	373852	89536	373852	1		
5	Ohms Converter Assembly	373845	89536	373845	1		
6	Input Divider Assembly	397463	89536	397463	1		
7	DOU PCB Assembly (8600A-02)	366369	89536	366369	1		
8	Case, molded	330076	89536	330076	1		}
9	Case, molded, DOU (8600-02)	384800	89536	384800	1		
10	Decal, knob	347401	89536	347401	2		
11	Decal, name plate	380667	89536	380667	1		
12	Handle, molded	330092	89536	330092	1		
13	Pad, foot	338632	89536	338632	2		
14	Fuse, slo-blo, 1/8A, spare	166488	71400	MDL	1	5	
15	Socket, DIP, 14-pin (8600A-02)	291542	00779	583527-1	1		
	Line cord	343723	89536	343723	1		
	Test lead, pair	343657	83330	21058	1		
	Fuse, fast acting, ¼A spare (8600A-01)	109322	71400	MDL	1		
U8	IC, 3, 4, 5 Digit, C-MOS, 40 pin	354985	89536	354985	1	1	A
U8	IC, dig, P-MOS, univ auto-ranging, DVM logic	407734	70203	C2506/ 407734	1	1	В
	Indicates MOS device which may be damaged by static discharge.			·			

Figure 5-1. 8600A FINAL ASSEMBLY

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	
	FRONT PANEL AND MAIN PCB ASSY. (8600A Line Power)	365866	89536	365866	REF		
	Main PCB Assy. Figure 5-2						
C21	Cap, polystyrene, 0.022 μ F \pm 10%, 100V	333823	02799	1PJ223K	1		
C22	Cap, polycarbonate, 0.47uF ±10%, 100V	288860	01281	X463VW04791	1		
C23	Cap, cer, 2.7pF ±0.25pF, 100V	363705	80031	W 2222-631-09278	1		
C24, C30 C25,	Cap, var, $0.25 - 1.5 pF \pm 0.25 pF$, 2000V	218206	72982	530-000	2	1	
C26, C27, C35	Cap, Ta, 10uF ±20%, 20V	330662	56289	196D106X0020 JA1	4		
C28	Cap, polypropylene, 0.47uF ±10%, 50V	363085	01281	JF86	1		
C31	Cap, cer, 0.001uF ±20%, 3KV/5.25K	105635	56289	29C300	1		
C39	Cap, mylar, 0.01uF ±20%	159996	01281	663 4W 103-010	1		
C101, C102	Cap, elect, 220uF +50/-10%, 40V	178616	25403	W ET221X040A01	2	1	
C103	Cap, elect, 2000uF +100/-10%, 15V	364182	25088	B4101-2200/15	1	1	
CR1, CR2, CR6, CR8	Diode, Si, 2A, 50V	347559	14099	1N5400	4	1	
CR9, CR15, CR20, CR21, CR24	Diode, Si, 150 mA	203323	07910	1N4448	5	1	
CR14, R56, R60	Zener, reference set	377283	89536	377283	1 .	1	
CR101, CR102 CR103 F2	Rectifier, bridge, 2 amp, 100V Zener, 6.8V, 1 mA Fuse, Slo-Blo, 1/8A	296509 352898 166488	09423 99942 71400	FB100 R4852 MDL	2 1 1	1 1 5	
K1	Relay, Telephone, DPDT	357707	12300	R10E2662-2	1		
L1	Choke, RF, 100uh	111542	99800	1537-76	1		
Q2,Q6	Xstr, Si, PNP	195974	04713	2N3906	2	1	
Q10, Q26, Q27, Q28	Xstr, Si, NPN	159855	07910	CS23030	4	1	

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	USE CDE
Q11	Xstr, Si, NPN, Selected	352138	89536	352138	1	1	
Q16, Q17, Q21, Q22	Xstr, J-FET, N-channel	357889	21845	F2692	4	1	
Q14, Q15	Xstr, J-FET, N-channel	357897	21845	F2691	2	1	
Q13, Q23	Xstr, J-FET, N-channel	370072	12040	TYPE KE4393	2	1	
R1	Res, comp, 100K ±5%, 4/W	148189	01121	CB1045	1		
R2	Res, WW, card, $0.1 \pm 0.05\%$	374611	89536	374611	1	1	
R10, R11, R83	Res, comp, 470K ±5%, ¼W	188441	01121	CB4745	3		
R12, R52	Res, comp, 100K ±5%, 2W	285056	01121	HB1045	2		
R13	Res, WW, 900 ±0.05%, 1/10W	357483	89536	357483	1	1	
R14	Res, WW, 90 ±0.05%, 1/10W	357517	89536	357517	1	1	
R15	Res, WW, 9 ±0.05%, 1/10W	357525	89536	357525	1	1	
R16	Res, WW, card, $1.0 \pm 0.05\%$	356097	89536	356097	1	1	
R18	Res, met film, 60.4K ±1%, 1/8W	291419	91637	MFF1-86042F	1		
R23	Res, met film, 30.1K ±1%, 1/8W	168286	91637	MFF1-83012F	1		
R24	Res, met film, 90.9K ±1%, 1/8W	223537	91637	MFF1-89092F	1		
R57	Res, var, cer, 500 ±10%, ½W	325613	71450	360T501A	1	1	
R62, R65, R67	Res, match set, 3 pc	375782	89536	375782	1	1	
R63, R76	Res, comp, 10K ±5%, ¼W	148106	01121	СВ1035	2		
R66	Res, met film, 22.1K ±1%, 1/8W	235234	91637	MFF1-82212F	1		
R68	Res, comp, 56K ±5%, 1/4W	170738	01121	CB5635	1		
R 70	Res, met film, $8.06K \pm 1\%$, $1/8W$	294942	91637	MFF1-88061F	1		

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	
R71	Res, met film, $2.0K \pm 1\%$, $1/8W$	235226	91637	MFF1-8202F	1		
R74	Res, comp, 4.7M ±5%, ¼W	220046	01121	CB4725	1		
R80	Res, met film, 200K ±1%, 1/8W	261701	91637	MFF1-8204F	1		
R81	Res, comp, 10 ±5%, ¼W	147868	01121	CB1005	1		
R82	Res, comp, 2.7M ±5%, ¼W	193490	01121	CB2755	1		
R84 R103	Res, comp, 2.2K ±5%, ¼W	148049	01121	CB2225	2		
R87	Res, comp, 4.7K ±5%, 4W	148072	01121	CB4725	1		
R94	Res, comp, 1K ±5%, ¼W	148023	01121	CB1025	1		
R98	Res, comp, 220 ±5%, ¼W	147959	01121	CB2215	1		
RN1 S1 thru	Res, network, 15 pc	385815	89536	385185 TYPE 760	1	1	
S13	Switch Assembly, pushbutton	390948	89536	390948	1	1	
S14	Switch, Slide, DPDT 115/230	376789	89536	376798	1	1	
T1	Xfmr, power	374264	89536	374264	1	1	
U4	IC, Op, Amp (yellow dot)	381962	12040	LH0042C	1	1	
U5	IC, Op, Amp (red dot)	385450	89536	385450	1	1	
U6	IC, linear, opnl ampl	352195	12040	LM311N8	1	1	
U7 U8	IC, hex, buffer/conv (See Final Assembly)	355214	04713	MC14009CP	1	1	
U9	IC, bipolar ROM	376061	01295	SN7488AN	1	1	
U16	IC, digital, C-MOS, 2-channel multiplexer	375808	49671	CD4053AE	1	1	
U17	IC, digital, C-MOS, quad switch	363838	49671	CD4016AE	1	1	
U102	IC, voltage regulator	355107	12040	LM340T5	1	1	
U103	IC, voltage regulator	413187	04713	MC7815CP	1	1	
U104	IC, voltage regulator	413179	04713	MC7915CP	1	1	
XF2	Fuseholder, clip	284984	84613	3621-2	2	1	
Y1	Crystal, 1.000 MHz Connector, post	358069 376574	30148 00779	TYPE 815A 5166-333-68	1 24	1	
	Connector, post	379438	00779	86144-5	7		

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE	TOT QTY	REC QTY	USE CDE
	Contact, fuse	397992	89536	397992	1		
	Receptacle, power, 3 prong						
	Insulator, receptacle	338624	89536	338624	1		
	Contact, earth common	338640	89536	338640	1		
	Contact, voltage	338657	89536	338657	2		
	Pushbutton, grey	369546	71590	J52305-J31753	12		
	Pushbutton, green	352211	71590	J52305-J71449	1		
	Socket, IC, 14-pin	291542	00779	583527-1	1		
	Socket, IC, 16-pin	291534	00779	583529-1	3		
	Socket, IC, 40-pin	376244	23880	TSA3100-40W	1		
	Socket, relay, 2-poles	376665	77342	27E501	1		
	Strap, relay retainer	381624	77342	P49	1		
	Front Panel Assembly (Not Illustrated)						
	Display PCB Assembly	373860	89536	373860	1		
C38	Cap, cer, 47 pF ±10%, 2kV	282145	00656	HVD3-47 +10% 2KV-I	1		
F1	Fuse, fast acting, 2A	376582	71400	AGX	1	5	
J1	Jack, banana, red	162065	74970	108902	1		
J2, J3	Jack, banana, black	162073	74970	108903	2		
XF1	Fuseholder	345611	89536	345611	1		
	Lens, display	367920	89536	367920	1		
}	Panel, molded	369041	89536	369041	1		
	Decal, panel	375865	89536	375865	1		
	Retainer, neoprene	352484	77969	9109E	2		
	Indicates MOS device which may be damaged by static discharge.						

Figure 5-2. FRONT PANEL AND MAIN PCB ASSEMBLY (8600A Line Power)

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	
	FRONT PANEL AND MAIN PCB ASSY	366906	89536	366906	REF		
	(8600A-01 Battery Power)						
	Main PCB Assembly - Figure 5-3						
BT1 thru BT4	Battery Ni-Cad, 1.2V	346924	89536	346924	4		
C21	Cap, polystyrene, 0.022uF ±10%, 100V	333823	01281	863VW22391	1		
C22	Cap, polycarbon, $0.47 uF \pm 10\%$, $100V$	288860	01281	X463VW47491	1		
C23	Cap, cer, 2.7pF ±0.25pF, 100V	363705	80031	2222-631-09278	1		
C24, C30	Cap, var, 0.25 - 1.5pF ±0.25pF, 200V	218206	72982	530-000	2	1	
C25, C26, C27, C29, C35	Cap, Ta, 10uF ±20%, 20V	330662	56289	196D106X0020 JA1	5		
C28	Cap, polypropylene, 0.47uF ±10%, 20V	363085	01281	JF86	1		
C31	Cap, cer, 0.001uF ±20%, 3KV/5.25KV	105635	56289	29C300	1		
C39	Cap, mylar, 0.01uF <u>+2</u> 0%	159996	01281	663UW103-010	1		
CR1, CR2, CR6, CR8	Diode, rectifier, Si, 2A, 50V	347559	14099	W 1N5400	4	1	
CR9, CR15, CR20, CR21, CR24	Diode, Si, 150 mA	203323	07910	1N4448	5	1	
CR14, R56, R60	Zener, reference set	377283	89536	377283	1	1	
CR22, CR23	Diode, zener	291575	12969	U Z 8720	2	1	
CR27	Diode, zener	256446	07910	1N755A	1	1	
CR201, CR204	Diode, Si, rectifier, 1A, 100V	343491	01295	1N4002	2	1	
F2	Fuse, Slow blow, 1/2A	109322	71400	MDL	1	5	
K1	Relay, telephone, DPDT	357707	12300	R10E2662-2	1		
L1	Choke, rf, 100uH	111542	99800	1537-76	1		

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	
L2	Inductor, 6 turn	320911	89536	320911	1		
Q2, Q6	Xstr, Si, PNP	195974	04713	2N3906	2	1	
Q10, Q26, Q27, Q28	Xstr, Si, NPN	159855	07910	CS23030	4	1	
Q11	Xstr, Si, NPN, selected	352138	89536	352138	1	1	
Q13,Q23	Xstr, J-FET, N-channel	370072	12040	TYPE KE4393	2	1	
Q14, Q15	Xstr, J-FET, N-channel	357897	21845	F2691	2	1	
Q16, Q17, Q21, Q22	Xstr, J-FET, N-channel	357889	21845	F2692	4	1	
Q43	Triac	413013	89536	413013	1	1	
R1	Res, fxd, comp, 100K ±5%, ¼W	148189	01121	CB1045	1		
R2	Res, fxd, WW, card, 0.1 ±0.05%	374611	89536	374611	1	1	
R10, R11, R83	Res, comp, 470K ±5%, ¼W	188441	01121	CB4745	3		
R12, R52	Res, comp, 100K ±5%, 2W	285056	01121	HB1045	2		
R13	Res, WW, $900 \pm 0.05\%$, $1/10W$	357483	89536	357483	1	1	
R14	Res, WW, $90 \pm 0.05\%$, $1/10W$	357517	89536	357517	1	1	
R15	Res, WW, $9 \pm 0.05\%$, $1/10W$	357525	89536	357525	1	1	
R16	Res, WW, card $1 \pm 0.05\%$	356097	89536	356097	1	1	
R18	Res, met film, 60.4K ±1%, 1/8W	291419	91637	MFF1-86042F	1		
R23	Res, met film, 30.1K ±1%, 1/8W	168286	91637	MFF1-83012F	1		
R24	Res, met, film, 90.9K ±1%, 1/8W	223537	91637	MFF1-89092F	1		
R57	Res, var, cer, 500 ±10%, ½W	325613	71450	360T501A	1	1	
R62, R65, R67	Res, matched set, 3 piece	375782	89536	375782	1	1	
R63, R76	Res, comp, 10K ±5%, 4W	148106	01121	CB1035	2		
R66	Res, met film, 22.1K ±1%, 1/8W	235234	91637	MFF1-82212F	1		

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	
R68	Res, comp, 56K ±5%, 4W	170738	01121	CB5635	1		
R70	Res, met film, 8.06K ±1%, 1/8W	294942	91637	MFF1-88061F	1		
R71	Res, met film, $2K \pm 1\%$, $1/8W$	235226	91637	MFF1-8203F	1		
R74	Res, comp, 4.7M ±5%, ¼W	220046	01121	CB4755	1		
R80	Res, met film, 200K $\pm 1\%$, 1/8W	261701	91637	MFF1-8204F	1		
R81	Res, comp, 10 ±5%, ¼W	147868	01121	CB1005	1		
R82	Res, comp, 2.7M ±5%, ¼W	193490	01121	CB2745	1		
R84	Res, comp, 2.2K ±5%, ¼W	148049	01121	CB2225	1		
R87	Res, comp, 4.7K ±5%, ¼W	148072	01121	CB4725	1	,	
R94	Res, comp, 1K ±5%, ¼W	148023	01121	CB1025	1		
R98	Res, comp, 220 ±5%, ¼W	147959	01121	CB2215	1		
RN1	Res, network, 15 piece	385815	89536	385815	1	1	
S1 thru S13	Switch assembly, push-button	390948	89536	390948	1	1	
T1	Xfmr, power	372003	89536	372003	1		
U4	IC, operational amp, yellow dot	381962	89536	381962	1	1	
U5	IC, operational amp, red dot	385450	89536	385450	1	1	
U6	IC, linear opnl ampl	352195	12040	LM811N8	1	1	
U7	IC, hex, buffer/converter	355214	12040	MC14009CP	1	1	
U8	(See Final Assembly)						
U9	IC, bipolar ROM	376061	01295	SN7488AN	1	1	
U16	IC, digital, C-MOS, 2-channel, multiplexer	375808	49671	CD4053AE	1	1	
U17	IC, digital, C-MOS, Quad, switch	363838	49671	CD4016AE	1	1	ŀ
XBT	Battery holder	390450	89536	390450	4		
XF2	Fuse holder	103283	71400	4405	1	5	
Y1	Crystal, 1.000 MHz	358069	30148	TYPE 815A	1	1	
	Battery polarity label	380675	89536	380675	2		
	Connector, post	379438	00779	86144-5	7		
	Connector, post	376574	00779	5166-333-68	29		
	Contact, battery	344200	89536	344200	8		

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	USE CDE
	Contact, fuse	397992	89536	397992	1		
	Rectacle, power, 3 prong						
	Insulator, receptacle	338624	89536	338624	1		
	Contact, earth common	338640	89536	338640	1		
	Contact, voltage	338657	89536	338657	2 .		
	Pushbutton, grey	369546	71590	J52305-J31753	12		
	Pushbutton, green	352211	71590	J52305-J71449	1		
	Socket, IC, 14 pin	291542	00779	583527-1	1		
	Socket, IC, 16 pin	291534	00779	583529-1	3		
	Socket, IC, 40 pin	376244	23880	TSA3100-40W	1		
	Socket, relay, 2 poles	376665	77342	27E501	1		
	Strap, relay retainer	381624	77342	P 49	1		
	Front Panel Assembly (Not Illustrated)						
	Display PCB Assembly	373860	89536	373860	1		
C38	Cap, cer, 47pF ±10%, 2kV	282145	00656	HVD3 47±10%, 2KV-I	1		
F1	Fuse, fast acting, 2A	376582	71400	AGX	1	5	
J1	Jack, banana, red	162065	74970	108902	1		
J2, J3	Jack, banana, black	162073	74970	108903	2		
XF1	Fuseholder	345611	89536	345611	1		
	Lens, display	367920	89536	367920	1		
	Panel, molded	369041	89536	369041	1		
	Decal, panel	375865	89536	375865	1		
	Retainer, neoprene	352484	77969	91 09E	2		
	Indicates MOS device which may be damaged by static discharge.						

Figure 5-3. FRONT PANEL AND MAIN PCB ASSEMBLY (8600A-01 Battery Power)

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	PART NO.		REC QTY	USE CDE
	DISPLAY PCB ASSEMBLY (8600A-4002) Figure 5-4	373860	89536	373860	REF		
CR3, CR4	Diode, light emitting, red	385914		SSL22	2	1	
Q29, Q31, Q33, Q35, Q37, Q39, Q40, Q41	Xstr, Si, NPN	218396	04713	2N3904	8	2	
Q30, Q32, Q34, Q36, Q38	Xstr, Si, PNP	340026	07263	MPS6563	5	1	
Q42	Xstr, Si, PNP	195974	04713	2N3906	1		
R85	Res, comp, 560 ±5%, ¼W	147991	01121	CB5615	1		
R86	Res, comp, 68 ±5%, ¼W	147918	01121	CB6805	1		
RN2	Res, network	381376	89536	381376	1	1	
U10	IC, TTL, decoder/driver	340109	01295	SN7447AN	1	1	
U11	Display. LED	429936	29083	MAN73/Q3033	1		ŀ
U12 thru U15	Display, LED	429928	29083	MAN72/Q3032	4		
Ося з Ося 4	OCR3						

Figure 5-4. DISPLAY PCB ASSEMBLY

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	
	BATTERY POWER SUPPLY PCB ASSY (-01 Option) (8600A-4006)						
	100VAC Version 115VAC Version 230VAC Version	. 378380 373837 378372	89536 89536 89536	378380 373837 378372	REF REF		
	Figure 5-5						
C201	Cap, mylar, 5.0uF ±5%, 150V (Used on 115V ac version)	364190	56289	TYPE 439 P	1		
C201	Cap, mylar 6.6uF ±5%, 135V (Used on 100V ac version)	394189	56289	TYPE 439P	1		
C201	Cap, metalized polypropylene 2.8uF ±5%, 300V (Used on 230V ac version)	394197	89536	394197	1		
C203, C204	Cap, Ta, 6.8uF ±20%, 35V	363713	56289	196D685X0035 KA1	2		
C204	Cap, Ta, 22uF ±10%, 15V	182816	56289	150D226X9015 B2	1		
C205	Cap, cer, 0.01uF +80/-20%, 500V	105668	56289	33C4186	1		
CR203 thru CR206	Diode, Hi-speed, switching	203323	07910	1N4148	4		
L201	Choke, 6 turn	320911	89536	320911	1		
Q201, Q202	Xstr, Si, NPN	330803	07263	MPS6560	2		
Q203	Xstr, Si, PNP	195974	04713	2N3906	1	!	
R201	Res, comp, 1M ±5%, ¼W	182204	01121	CB1055	1		
R202	Res, comp, 1.2K ±5%, 4W	190371	01121	CB1225	1		
R204	Res, comp, 22 ±5%, 4W	147884	01121	CB2205	1		
R207	Res, comp, 8.2K ±5%, 4W	160796	01121	CB8225	1		
R208	Res, met film, $4.53K \pm 1\%$, $1/8W$	260331	91637	MFF1-84531F	1		
R209	Res, met film, $16.9K \pm 1\%$, $1/8W$	267146	91637	MFF1-81692F	1		
T2	Xfmr, inverter	372011	89536	372011	1		
U202	IC, voltage regulator	413187	04713	MC7815CP	1	1	
U203	IC, voltage regulator	413179	04713	MC7915CP	1	1	
1	Connector, plug/jack, red	170480	74790	105-752	3		
2	Receptacle, Amp Mode II	375329	00779	85863-3	5		

5-16

Figure 5-5. BATTERY POWER SUPPLY PCB ASSEMBLY (-01 Option)

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	
	AC CONVERTER PCB ASSEMBLY (8600A-4003)	373852	89536	373852	REF		
	Figure 5-6						
C1	Cap, cer, 0.05uF GMV, 1KV/2KV	355420	71590	2DD65N5032	1		
C2,C19	Cap, var, 0.25 - 1.5pF, 2000VDC	218206	72982	530-000	2		
C5	Cap, cer, $15pF \pm 2\%$, $100V$	369074	80031	2222-631-10159	1		
C6,C7, C32, C33, C34	Cap, cer, 0.025uF ±20%, 100V	168435	56289	C023B101H253 M	5		
C9	Cap, cer, $27pF \pm 2\%$, $100V$	362749	80031	2222-631-10279	1		
C10	Cap, var, cer, 1.7 10 pF, 250V	375238	91293	9931	1		
C11	Cap, polystyrene, 9100pF	355321	91590	2DRP00J912GA A	1		
C12, C13	Cap, Ta, 330uF ±20%, 3V	385963	56289	196D337X0004 LA3	2		
C14, C20	Cap, mylar, 0.47uF ±10%, 100V	369124	73445	C280MAHA470 K	2		
C15	Cap, Ta, 39uF ±20%, 6V	163915	56289	196D396X0006 JA1	1		
C16	Cap, Ta, 5.6uF ±20%, 20V	368969	56289	196D565X0020	1		
C17	Cap, mica, 400pF ±1%, 500V	385328	71236	DM15F401F	1		
C18	Cap, cer, 2.2pF ±0.25pF, 100V	362731	80031	2222-631-09228	1		
CL1	Current limiter, regulator	334714	07910	TCR5315	1		
CR5, CR11, CR12, CR16, CR17	Diode, low cap	375907	07263	TYPE FD700	5		
K6,K7, K8	Relay, reed, SPST	357566	71707	E8182	3		
Q1	Xstr, dual FET	379321	17856	E7024	1		
Q 7	Xstr, Si, NPN	218396	04713	2N3904	1		
Q8	Xstr, Si, PNP	352146	89536	352146	1		
Q 9	Xstr, Si, NPN	330803	07263	MPS6560	1		
R17	Res, met film, 2M ±0.5%, 1W	354894	80031	MF8C205	1		

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	PART NO.			USE CDE
R25	Res, deposited carbon, 10K ±5%, ¼W	348839	тоуо	R251-41035	1		
R26	Res, deposited carbon, 2.2K ±5%, 1/4W	343400	точо	R251-42225	1		
R32, R33	Res, comp, 15K ±5%, ¼W	148114	01121	CB1535	2		
R37, R38, R45, R46, R47	Res, matched set, 5 pc	426544	89536	426544	1	1	
R40	Res, comp, 240 ±5%, ¼W	221895	01121	CB2415	1		
R43	Res, comp, 150K ±5%, ¼W	182212	01121	CB1545	1		
R49, R89	Res, met film, 68.1K ±1%, 1/8W	236828	91637	MFF1-86812F	- 2		
R50	Res, var, cermet, 50 ± 10%, ½W	285122	71450	360S500A	1	,	
R51	Res, met film, 2.194K ±0.25%, 1/8W	375345	91637	MFF1-82R194P	1		
R72	Res, var, cermet, 20K ±10%, ½W	291609	71450	360S203A	1		
R75	Res, comp, 120K ±5%, ¼W	193458	01121	CB1245	1	ı	
R77	Res, deposited carbon, 62K ±5%, ¼W	384904	тоуо	R251-46235	1		
R79	Res, deposited carbon, 12K ±5%, ¼W	348847	точо	R251-41235	1		
R88	Res, met film, 59.0K ±1%, 1/8W	261677	91637	.MFF1-8593F	1		
U2 .	IC, Operational Amplifier	329912	12040	LM318H	1		
	Connector, plug/jack, red	170480	74970	105-752	2		
	Shield	388314	89536	388314	1		
	Receptacle, Amp MOD II	375329	00779	85863-3	7		

Figure 5-6. AC CONVERTER PCB ASSEMBLY

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	
	OHMS CONVERTER ASSEMBLY (8600A—4004) Figure 5-7	373845	89536	373845	REF		
C3	Cap, mylar, 0.022uF ±20%, 250V	369165	25403	C281A/A22K	1		
C8	Cap, cer, 33pF ±2%, 100V	354852	80031	2222-638-10339	1		
CR2	Diode, zener	266601	07910	1N965B	1		
CR10	Diode, zener				1		
CR22	Diode, Si, hi-speed, switch	203323	03508	1N4148	1		
K5	Relay, reed, SPST	357582	71707	UF40070	1		
Q2,Q12	Xstr, Si, PNP	195974	04713	2N3906	2		
Q3	Xstr, FET, N-channel	357905	21845	F2690	1		
R 19	Res, comp, 220 ±5%, ¼W	147959	01121	CB2215	1		
R21	Res, var, cermet, $200 \pm 10\%$, ½W	285148	71450	360S201A	1		
R22	Res, met film, 2K ±1%, 1/8W	335422	91637	MFF1-8202F	1		
R27	Res, var, cermet, 100 ±10%, ½W	285130	71450	360S101A	1		
R28	Res, WW, power, 9.95K ±0.1%, 5W	363275	ARC 1DY	160-9950-1	1		
R29	Res, var, cermet, $50 \pm 10\%$, ½W	285122	71450	360S500A	1		
R35	Res, WW bobbin, 13.5K ±0.1%, 0.15W	363119	54294	SP21	1		
R41	Res, selected 1				1		
R42, R99	Res, comp, 10K ±5%, ¼W	148106	01121	CB1035	2		
R48	Res, comp, 2.2K ±5%, 4W	148049	01121	CB2225	1		
R90	Res, selected				1		
R91	Res, met film, 4.22K ±1%, 1/8W	168245	91637	MFF1-84221F	1		
U1	IC, operational amplifier	357830	12040	LH0042C	1		
U3	IC, linear, operational amplifier	363515	24355	AD301AN	1		
	Connector, plug/jack, red	170480	74970	105-752	2		
	Receptacle, Amp, MODII	375329	00779	8586303	8		
	Socket, IC, 14-pin DIP	276527	23880	TSA2900-14W	1		
	CR10, R90, and R41 are matched components. Order Part No. 458760		89536				

Figure 5-7. OHMS CONVERTER ASSEMBLY

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	
	INPUT DIVIDER PCB ASSEMBLY (8600A-4005) Figure 5-8	397463	89536	397463	REF		
CR13, CR18, CR19	Diode, Si, 150 mA	203323	03508	1N4148	3		
K2, K3	Relay, dry reed, SPST	357582	71707	UF40070	2		
K4	Coil, reed relay	269019	71707	U6P	1		
	Dry reed, SPST	289850	71707	289850	1		
R4	Res, var, cermet, 5K ±10%, ½W	288282	71450	360S502A	1		
R6	Re, var, cermet, 500 ±10%, ½W	291120	71450	360S501A	1		·
R8	Res, var, cermet, $50 \pm 10\%$, ½W	285122	71450	360S500A	1		
RN3	Res, network, 5 pc	375105	01281	JF002	1		
	Connector, plug/jack, red	170480	74970	105-752	2		
	Receptacle, Amp, MODII	375329	00779	85836-3	9		

Figure 5-8. INPUT DIVIDER PCB ASSEMBLY

REF DESIG OR ITEM NO.	DESCRIPTION	FLUKE STOCK NO.	MFG FED SPLY CDE	MFG PART NO. OR TYPE		REC QTY	
	DOU PCB ASSEMBLY -02 Option (8800A-4005) Figure 5-9	366369	89536	366369	1		
C1, C3	Cap, elect, 220uF +50/-10%, 10V	236935	73445	ET221X010A5	2		
C2	Cap, plstc, $0.022uF \pm 10\%$, $50V$	271577	06001	75F1R5A222	1		
C4	Cap, cer, 0.05uF +80/-10%, 25V	148924	32897	5855Y5U503Z	1		
CR1	Rectifier, bridge	296509	51605	FB100	1		
CR2	Diode, zener, 5.6V	277236	07910	1N752A	1		
Q1, Q2, Q5	Xstr, Si, NPN	218396	04713	2N3904	3		
Q3,Q4	Xstr, Si, PNP	195974	04713	2N3906	2		
R15, R16	Res, desposited carbon, 1K ±5%, ¼W	343426	точо	R251025	2		
R17, R18	Res, comp, 4.7M ±5%, ¼W	220046	01121	CB4755	2		
RN1	Res, network	385930	89536	385930	1		
T 1	Xfrm, power	374652	89536	374652	1		
U1 thru U4, U10	IC, C-MOS, dual 4-bit static shift register	340125	04713	MC14015CP	.5		
U5	IC, C-MOS, dual, type D flip-flop	340117	04713	MC14013CL	1		
U6	IC, C-MOS, NOR Gate	355172	04713	MC14001CL	1		
U7,U8, U12, U13, U14	IC, C-MOS, hex, buffer/inverter	381848	49671	CD4049AE	5		
U9	IC, DTL, C-MOS, quad, bilateral SW	363838	49671	CD4016AE	1		
U11	IC, C-MOS, dual 4-input NOR gate	363820	49671	CD4002AE	1		
U16, U17	Opto-Isolator, photo Xstr	380014	89536	МСТ2	2		
	Cable, flat	385922	08261	5112-007.25X	1		
	Socket, IC, 14 pin	276527	23880	TSA2900-14W	4		
	Socket, IC 16 pin	276535	23880	TSA2900-16W	11		
	Indicates MOS device which may be damaged by static discharge.						

Figure 5-9. DOU PCB ASSEMBLY -02 Option

Section 6

Option & Accessory Information

6-1. INTRODUCTION

6-2. This section of the manual contains information pertaining to the options and accessories available for your instrument. Each of the options and accessories are described under separate major headings containing the model or option number. The option descriptions contain applicable operating and maintenance instruction, and field installation procedures. Replaceable parts and schematics for all options are given in Sections 5 and 8, respectively.

6-3. CARRYING CASE (C80)

6-4. The Model C80 Carrying Case, Figure 6-1, is a soft vinyl plastic container, designed for the storage and transport of the 8600A. The case provides the 8600A with adequate protection against normal handling and storage conditions. A separate storage compartment is provided for test leads, power cord, and other compact accessories.

6-5. CARRYING CASE (C86)

6-6. The Model C86 Carrying Case, Figure 6-2, is a molded polyethylene container, with handle, designed for use in transporting the 8600A. This rugged case provides the 8600A with maximum protection against rough handling and adverse weather conditions. A separate storage compartment is provided for test leads, power cord, and other compact accessories.

6-7. FRONT PANEL DUST COVER (M00-100-714)

6-8. The front panel dust cover is a molded plastic snap-on accessory which fits over the front panel of the

8600A. The dust cover provides protection for the front panel controls, and is useful when storing or transporting the 8600A.

6-9. RACK MOUNTING KITS

6-10. Introduction

6-11. Three rack mounting kits are available for mounting the 8600A in a standard 19-inch equipment rack. The kits, listed in Table 6-1, provide the option of either offset mounting (left/right), center mounting or side-by-side mounting.

Figure 6-1. MODEL C80 CARRYING CASE

Figure 6-2. MODEL C86 CARRYING CASE

6-12. Installation Procedure

- 6-13. Installation instructions for each of the rack mounting kits is given in the following paragraphs. Use the procedure which corresponds to the model number of the kit being installed.
- 6-14. OFFSET AND CENTER MOUNTING KITS (M00-200-611 and M00-200-612)
- a. Remove 8600A carrying handle by removing the handle disc decals and the handle mounting screws.
- b. Remove screw from rear of case and separate the case from the 8600A.
- c. Install the side mounting brackets, as shown in Figure 6-3, and secure them to the mounting panel using the nuts provided.
- d. Insert the front of the 8600A case through the opening on the back side of the mounting panel.
- e. Install the handle mounting screws through the side brackets into the handle mounting bosses.

 Don't over tighten these screws.
- f. Slide the 8600A through the mounting panel and into the case. Install and tighten the retaining screw at the rear of the case.

- 6-15. SIDE—BY—SIDE MOUNTING KIT (M00-200-613)
- Remove the carrying handles from both 8600A's by removing the handle disc decals and the handle mounting screws.
- b. Remove the retaining screw from the rear of the cases and separate the instruments from their cases.
- c. Install the center mounting bracket, as shown in Figure 6-4, and secure it to the mounting panel using the nuts provided.
- d. Install the clamp screw in the center mounting bracket using the nuts and washers provided.
- e. Insert the front of the 8600A cases through the openings on the back side of the mounting panel.

 Make sure the case's handle mounting bosses are inserted into the clamp hole of the center mounting bracket
- f. Tighten the clamp screw.
- g. Install the side mounting brackets and secure them to the front panel using the nuts provided.
- h. Install the handle mounting screws through the side brackets into the handle mounting bosses.

 Don't over tighten these screws.

Slide the 8600A's through the mounting panel and into their cases. Install and tighten the retaining screw at the rear of both cases.

Table 6-1. RACK MOUNTING KITS

MOUNTING STYLE	MODEL NUMBER
Offset	M00-200-611
Center	M00-200-612
Side-By-Side	M00-200-613

6-16. DELUXE TEST LEAD KIT (A80)

6-17. The deluxe test lead kit, shown in Figure 6-5, contains two test leads with probes (red and black), and five pairs of universal probe tips. The probe tips include: alligator clips, test prod tips, pin tips, banana plug tips, and binding post lugs. A convenient plastic pouch is provided for storing the contents of the test lead kit.

Figure 6-3. RACK MOUNTING KITS, OFFSET AND CENTER MOUNTING

Figure 6-4. RACK MOUNTING KIT, SIDE-BY-SIDE MOUNTING

Figure 6-5. DELUXE TEST LEAD KIT (A80)

6-18. CURRENT PROBE, CLAMP-ON (801-600)

6-19. Introduction

6-20. The Model 80I-600, as shown in Figure 6-6, is a clamp-on current probe which is used to extend the current measurement capabilities of the 8600A. The probe is designed to measure currents of 2 to 600 amperes at frequencies of up to 400 Hz with $\pm 3\%$ accuracy. The clamp-

on feature allows current to be measured without breaking the circuit under test.

6-21. Operation

6-22. Use the following procedure for operating the 8600A with the 80I-600 probe:

a. Plug the 80I-600 dual-banana plug into the MA and COMMON INPUT terminals on the 8600A.

Figure 6-6. AC CURRENT PROBE, CLAMP-ON (801-600)

- b. Depress the AC MA pushbutton (FUNCTION)
- c. Select the desired current range in accordance with Table 6-2.
- d. Clamp probe around current carrying conductor to be measured.
- e. Observe ac current reading in amperes on the 8600A readout.

NOTE

Clamping the probe around more than one current carrying conductor at a time produces a reading that is the vector sum of the currents in the conductors.

Table 6-2. 8600A RANGES FOR CURRENT PROBE (801-600)

RANGE SELECTED	CURRENT RANGE WITH 801-600 PROBE	
2000 MA	200A to 600A	
200	20A to 200A	
20	2A to 20A	

6-23. HIGH VOLTAGE PROBE (80K40)

6-24. Introduction

6-25. The Model 80K-40 High Voltage Probe as shown in Figure 6-7, provides the 1000X attenuation necessary to extend the dc voltage measuring capabilities of the 8600A up to 40 kV dc. A schematic of the 80K-40 probe is shown in Figure 6-8.

6-26. Specifications

Overall Accuracy: 20kV to 30kV ±2% (Calibrated

1% at 25kV)

Upper Limit: Changes linear from 2% at 30kV

to 4% at 40kV

Lower Limit: Changes linear from 2% at 20kV

to 4% at 1kV

Voltage Range: 1kV to 40kV

Input Resistance: 1000MΩ

Division Ratio: 1000:1

Figure 6-7. HIGH VOLTAGE PROBE (80K-40)

6-27. Operation

6-28. Use the following procedure for operating the 8600A with the 80K-40 probe:

- a. Plug the 80K-40 dual-banana plug into the V- Ω and LO INPUT terminals on the 8600A.
- b. Depress the DCV pushbutton (FUNCTION)
- c. Select the desired voltage range in accordance with Table 6-3.
- d. Connect the common probe lead to a suitable ground and touch the probe tip to the circuit point to be measured.
- e. Observe dc voltage reading displayed in kilovolts on the 8600A readout.

CAUTION

Before touching probe tip to a high voltage source, always connected probe common lead to circuit common. Removal of the probe common connection during a measurement may result in damage to the 8600A.

Figure 6-8. HIGH VOLTAGE PROBE, SCHEMATIC

Table 6-3, 8600A RANGES FOR DC HV PROBE (80K-40)

RANGE SELECTED	VOLTAGE RANGE WITH 80K-40 PROBE	
200	20 to 40 kV	
20	2 to 20 kV	
2	1 to 2 kV	

6-29. HIGH FREQUENCY PROBE (80RF-1)

6-30. Introduction

6-31. The Model 80RF-1 High Frequency Probe, Figure 6-9, extends the frequency range of the 8600A to include 100 kHz to 500 MHz for ac voltage measurements from 0.25 to 30V rms. The 80RF-1 operates in conjunction with the dc voltage ranges, and is connected to the 8600A using a shielded dual-banana plug and an adapter.

6-32. Specifications

Voltage:

0.25V to 30V

Response:

Responds to peak value of

input. Calibrated to read rms value of a sine wave

input.

AC to DC Transfer

Accuracy:

Loaded with 10 megohms

+10%.

100 kHz—	100 MH2
100 MHz	500 MHz
+5%	+7%
+7%	+15%
	100 MHz

< +3 db at 10 kHz and 700 MHz

Input Impedance:

4 megohms shunted by 2

 ± 0.5 pf

Maximum Input:

30 volts rms ac, 200 volts dc

Cable Connections:

Shielded dual banana plug fits all standard %-inch dual

banana connectors.

Cable Length:

4 ft. (121.9 cm) minimum

Weight:

3½ oz. net

Accessories:

Ground lead, straight tip,

hook tip, high frequency

adapter

6-33. Operating Notes

6-34. The straight and the hooked tips supplied with the probe are useful for making voltage measurements up to 100 MHz. For measurements above 100 MHz use the high frequency adapter tip with mating connector and 50 ohm terminations.

6-35. The maximum input to the probe is 30V rms or 200V dc. These voltage limits may be used in combination so that the ac component of an ac signal superimposed on dc level can be measured.

CAUTION

Changing the dc level of the input signal by more than 200 volts will damage the probe.

Figure 6-9. 80RF-1, HIGH FREQUENCY PROBE

6-36. Operation

6-37. Use the following procedure for operating the 8600A with the 80RF-1 probe:

- a. Connect the 80RF-1 shielded dual-banana plug to the 8600A $V-\Omega$ and LO INPUT terminals.
- b. Attach the desired probe tip to the probe body.
- c. Depress the DCV pushbutton (FUNCTION)
- d. Select the 20, 200, or 1200V range.

NOTE

The probe loading error caused by the $1000 M\Omega$ input impedance on the 8600 A 200 mV and 2V ranges can be corrected by placing a $10 M\Omega \pm 5\%$ resistor across the dual-banana plug terminals.

- e. Connect the probe's ground lead to a suitable ground when using the straight or hooked probe tip. The ground clip is not required when using the high frequency adapter with an appropriate 50 ohm termination.
- f. Touch the probe tip to the circuit point to be measured.
- g. Observe the voltage reading displayed in volts rms on the 8600A readoug.

6-38. Theory of Operation

6-39. A schematic diagram of the 80RF-1 High Frequency probe is given in Figure 6-10. Capacitor C1 is used

Figure 6-10. 80RF-1 SCHEMATIC

as a dc blocking capacitor, diode CR1 is used as a detector, and resistors R1, R2, R3 and R_{in} form a divider network. During the negative half cycle of the ac input voltage, C1 charges through CR1 to the negative peak value of the input signal. This negative charge path provides the zero reference for the dc output signal. During the positive half cycle of the input signal the charge on C1 is added to the peak value of the positive input to produce a positive peak-peak voltage at the junction of C1 and CR1. The divider network scales this voltage to provide a dc output voltage which is equal to the rms value of the input signal.

6-40. Diode CR2 compensates for the non-linearity of the detector, and R3 is a selected part having a value of $50 \text{ k}\Omega$ to $100 \text{ k}\Omega$.

6-41. Maintenance

- 6-42. PERFORMANCE TEST
- 643. The low and high frequency tests given below are used to verify the ac-to-dc transfer accuracy of the 80RF-1 High Frequency Probe.
- 6-44. LOW FREQUENCY RESPONSE
- 645. Connect equipment as shown in Figure 6-11, and perform the following steps.

Figure 6-11. LOW FREQUENCY RESPONSE CHECK

- a. With equipment as shown in connection "A" adjust the ac signal source for an output of 3.000V rms at 100 kHz as measured on the DVM.
- b. In connection "B" with the DVM set to measure V dc, observe a probe output of 3.15 to 2.85V dc.
- c. Placing cables back in connection "A", decrease the ac signal source by 10 db (0.95V rms).
- d. Moving back to connection "B", observe a voltmeter indication of between 1.00 and 0.90V dc (10 db down from 3.0V dc).
- e. In connection "A", decrease the ac signal source an additional 10 db (to 0.3V rms) as indicated by the voltmeter in its ac function.
- f. Back to "B", observe a voltmeter reading of .315 to .285V dc.
- g. Return the ac signal source back to 3.000V rms.
- h. Repeat steps a through g with frequencies of 500 kHz, 1 MHz, and 10 MHz.
- 6-46. HIGH FREQUENCY RESPONSE

- 6-47. Connect equipment to the 80RF-1 probe as shown in Figure 6-12, and perform the following steps:
- a. Set the ac signal source to 100 MHz with an output level of 10 milliwatts as indicated on the power meter. Ensure that the ac signal source has stabilized at the 10 milliwatt output.
- Observe that the voltmeter indication is between
 0.757 and 0.657V dc, (0.707V dc corresponds to
 10 milliwatts into 50 ohms.)
- c. Repeat the above for frequencies of 200 MHz, 300 MHz, 400 MHz, and 480 MHz.

6-48. CALIBRATION

- 6-49. Should the 80RF-1 require recalibration, perform the following steps:
- a. Perform steps a and b in paragraph 6-44, with a frequency of 1 MHz.
- b. Observe the dc voltmeter; a reading below 3V dc calls for a decrease in the value of R3, a reading above 3V dc calls for an increase in R3. Resistor R3 should be a 1/8W metal film type. In a probe that is working properly, a $30~k\Omega$ change in R3 will produce about a 1% deviation in the reading.

Figure 6-12. HIGH FREQUENCY RESPONSE CHECK

6-50. HIGH FREQUENCY PROBE (81RF)

6-51. Introduction

6-52. The Model 81RF High Frequency Probe, Figure 6-13, extends the frequency range of the 8600A to include 100 kHz to 100 MHz for ac voltage measurements from 0.25 to 30V rms. The 81RF operates in conjunction with the dc voltage range, and is connected to the 8600A using shielded dual-banana plug and an adapter.

6-53. Specifications

Transfer Accuracy:

±1 dB from 100 kHz to 100 MHz

Voltage Range:

.25V rms to 30V rms (operated into a 10 MΩ input resistance voltmeter). Peak responding calibrated to read rms value of a sinewaye.

Maximum DC Input:

350V

Input Impedance:

 $12M\Omega$ shunted by ≈ 15 pf

maximum

6-54. Operation

- 6-55. Use the following procedure for operating the 8600A with the 81RF probe:
- a. Connect the 81RF shielded dual-banana plug to the 8600A $V-\Omega$ and LO INPUT terminals.
- b. Attach the desired probe tip to the probe body.
- c. Depress the DCV pushbutton (FUNCTION)
- d. Select the desired voltage range.
- e. Connect the probe's ground lead to a suitable ground.
- f. Touch the probe tip to the circuit point to be measured.
- g. Observe the voltage reading displayed in volts rms on the 8600A readout.

Figure 6-13. HIGH FREQUENCY PROBE (81RF)

6-56. TEMPERATURE PROBE (80T-150)

- 6-57. The Model 80T-150 Temperature Probe is a self-contained temperature-to-voltage converter. It is designed to provide a direct temperature reading on the display of any high impedance voltmeter ($1 \text{M}\Omega$) capable of 1 mV resolution, and at least 300 mV full-scale readout. The probe can be configured to provide either one of two temperature displays: $-50 \text{ to } +150^{\circ}\text{C} \text{ or } -58 \text{ to } +300^{\circ}\text{F}$.
- 6-58. Operating power for the probe is provided by an internal lithium battery. Typically, the battery will provide up to 1000 hours of continuous operation before replacement is necessary. An on/off switch is provided to conserve the battery when not in use.

6-59. BATTERY PACK, OPTION -01

6-60. Introduction

6.61. The Battery Pack provides the 8600A with the capability of operating as a portable (battery-operated) instrument. Four nickle cadmium (Ni-cad) batteries allow, typically 8 hours of portable operation before recharging is necessary. The batteries are recharged by connecting the 8600A to the ac power line. If desired, the 8600A can be operated during the charging process, however, the charging time will be increased.

6-62. Specification

6-63. The specifications for the Battery Pack are given in Section 1 of this manual.

6-64. Operation

CAUTION!

Damage may result if alkaline, zinc-carbon, or mercury batteries are charged in the 8600A.

6-65. With a fully charged battery pack, the 8600A can be disconnected from line power and operated for typically 8 hours, as a portable instrument. When all the display decimal points flash on and off, the battery pack should be recharged by switching the POWER switch to OFF and connecting the instrument to the ac power line. The total charge time is approximately 16 hours. If desired, the 8600A can be operated during the charging process, however, the charge time will be extended to approximately 43 hours.

NOTE

Battery manufacturers recommend that Ni-cad batteries be recharged at least every 90 days. Storage temperatures below +25°C are recommended.

6-66. Theory of Operation

- 6-67. The 8600A equipped with the battery pack option (-01) uses the power transformer configuration shown in Figure 7-2 and the battery power supply pcb shown in Figure 7-6. With the POWER switch in the ON position, the batteries are connected to the input of the battery power supply pcb, a dc-to-dc converter.
- 6-68. The +5 volts from the battery is applied to the primary windings of T201, causing transistors Q201 and Q202 to alternately conduct. The alternating current in the primary windings is stepped up by the secondary winding and applied to a bridge rectifier consisting of CR203 through CR206. The two halves of the rectifier output are applied to two voltage regulators, U202 and U203. The resulting +15V and -15V power supply voltages provide the operating power for the instrument.

6-69. Maintenance

6-70. INPUT POWER

- 6-71. The 8600A-01, in addition to battery operation, is capable of operating from either 100, 115, or 230V ac, 50 or 60 Hz line power. Before connecting the instrument to line power, check and, if necessary, use the following procedure to prepare the unit for operation at the local line voltage:
- a. Remove the phillips screw from the rear of the instrument.
- b. Remove the case from the unit by pulling it straight back from the front cover.

- c. Locate the Battery Power Supply PCB Assembly (See Figure 5-1) and determine the size of the large capacitor C201 on the pcb (See Figure 5-5). The relationship of this capacitor to line power is as follows:
 - 1. 5.0uF 115V ac 60 Hz
 - 2. 6.6uF 100V ac 50 Hz
 - 3. 2.8uF 230V ac 50 Hz
- d. Install the appropriate capacitor. The capacitors specifications and John Fluke part numbers are given in the Lists of Replaceable Parts, Section 5. (Battery Power Supply PCB Assembly).
- e. Install the unit in its case and insert the phillips screw.

6-72. CHARGING NI-CAD BATTERIES

- 6-73. With regard to the charging of nickel-cadmium batteries, there are some phenomena which should be considered. For instance, charging Ni-Cad batteries with cell case temperatures above 25°C will cause the cell's charge capacity to decrease. The decrease in capacity is linear from 100% of rated capacity at 25°C to only 60% of rated capacity at 50°C, and as low as 45% at 60°C. Cell case temperatures typically run from 5°C to 10°C above ambient temperature during charging due to heat dissipated by the charging circuit. Due to the enclosed nature of the light-weight case on the 8600A, the temperature inside the case typically runs an additional 10° to 15°C above ambient temperature. For most complete charging and longest battery life, the 8600A-01 should be charged at less than 23°C ambient. Cell charge times are also affected by low temperatures. Charging the batteries at less than 5°C will reduce charge storage capacity and reduce battery life. The battery manufacturer recommends allowing the instrument to warm up to room temperature before charging the unit.
- 6-74. Charge capacity may also be affected by a cell's charging-discharging routine, due to a memory-type phenomenon. For instance, if a Ni-Cad battery pack is used in a daily routine where it is allowed to discharge by only 30% before being fully recharged again, it will eventually become a battery pack capable of delivering only 30% of its rated capacity. To return such a battery pack to its rated capacity, connect an external load which will discharge the battery completely at a rate equal to its capacity divided by 20. For example, a pack of four series-connected 1.2-volt cells having individual capacity ratings of 3.5 ampere hours should be discharged at a rate of $3.5A \div 20 = .175A$. This requires a load resistor of $4.8V \div .175A = 27.5$ ohms (approximate) with a

power rating of at least (4.8V)(.175A) = .85W. (A 2-watt carbon composition resistor is suitable.)

6-75. Allow the battery pack to discharge for 30 hours, then charge the battery pack at twice the discharge rate for 20 hours. (In the example, the charging rate would be 0.35 amperes at 4.8 volts.) When charging is complete, discharge the pack at the capacity-divided-by-20 rate for 30 hours, then recharge at twice the discharge rate for a period of 20 hours. The battery pack should now be restored to its rated capacity.

6-76. BATTERY REPLACEMENT

6-77. Use the following procedure for removing and replacing batteries:

CAUTION!

Do not attempt to charge alkaline, zinc-carbon or mercury batteries in the 8600A.

- a. Disconnect line cord. Remove retaining screw at rear of instrument case, and remove instrument from case.
- b. On the underside of the pcb, remove the two threaded bolts securing the battery holders.
- c. Remove the holder tops and batteries.
- d. Replace the batteries with 1.2 volt nickel-cadmium batteries (JF Part No. 346924). Install the batteries in the direction indicated by the polarity markings on the battery holder.

6-78. FUSE REPLACEMENT

6-79. The input power fuse F1 is located on the interior of the instrument near the power transformer. If replacement is necessary, use an MDL 1/8A (slo-blo) for battery powered instruments.

CAUTION!

Line potential exists on the fuseholder whenever the instrument is plugged into the line.

6-80. DATA OUTPUT UNIT (OPTION -02)

6-81. Introduction

6-82. The Data Output Unit (DOU) provides digital measurement information to a rear panel output connector for use by remote display instruments or data printers. The output data is in parallel bcd format and is compatible with the Fluke Model 2010A Digital Printer.

6-83. Specifications

6-84. The specifications for the DOU are presented in Section 1 of this manual.

6-85. Operation

6-86. DOU DATA IDENTIFICATION

6-87. The data available at the rear panel DOU connector is listed in Table 6-4. The connector pin assignment and logic level requirement for each signal is provided.

6-88. DATA UPDATE

6-89. Refer to figure 8-6 and the timing diagram (figure 6-14) for the following discussion. The DOU output can be updated by an external command (ARM ENABLE, ARM INPUT) or allowed to update automatically (FREE RUN) at the end of each new instrument measurement. A logic level 1 (+4.75 to +5.25V) applied to ARM ENABLE (pin B) and a logic level 0 applied to FREE RUN will prevent acquisition of new data by the DOU. A positive going trigger applied to ARM INPUT (pin C) will enable the DOU to acquire data. New data will start to load into the DOU after the next measurement is complete. BZ (from the instrument to the DOU) occurs synchronously with the second STO signal after a measurement is complete and lasts for one strobe cycle. BZ is presented to U10 as a data input. ST5 clocks the data into U10. As soon as data appears in U10, RG is applied through U11 and the isolation circuit to U4, U3, U2, and U1. At this time the busy flags are applied to the DOU output signifying that data is being changed. U10 enables the data on W to be serially loaded into the bottom of U4 during the first strobe cycle. When ST5 occurs again, the data in U10 is shifted to enable the data on X to be loaded into U4. Four strobe cycles are required to load the new data. When the fifth ST5 signal occurs, U10 is emptied of data and all its outputs are 0. RG is then inhigited by U11 and the clocking of data ceases. The busy flags are cleared from the DOU output and the data can be read. ARM INPUT may go to 0 at any time in the cycle but it must go to 0 before a data update can be externally commanded. If desired the DOU will automatically update at the end of each instrument measurement. If FREE RUN is allowed to be high, the DOU will automatically update the data after each measurement.

6-90. BUSY FLAG

6-91. The updating period of the DOU is signified by the BUSY (pin 2) and BUSY (pin 4) outputs from the DOU. During this period the data on the output connector pins will be changing to reflect the updated input. Either the positive true BUSY or negative true BUSY flag can be used to inhibit the data recording instrument during this time period.

Table 6-4. DOU DATA IDENTIFICATION

DOU DATA NAME DOU PIN NO.		DOU DATA NAME	REMARKS	
H5V BUSY FLAG POL FLAG BUSY FLAG (8800A) POL FLAG OVERLOAD Q RANGE CODE b W6 Y6 W5 Y5 W4 Y4 W3 Y3 W2 Y2 (GND) W1 (GND) Y1	1 A B B C D F F F F F F F F F F F F F F F F F F	LOGIC RETURN ARM ENABLE ARM INPUT FREE RUN NOT USED a RANGE CODE c RANGE CODE X6 4 BITS Z6 LSD (8800A) X5 4 BITS Z5 LSD (8600A) X4 4 BITS Z4 4SD X3 4 BITS Z3 3SD X2 4 BITS Z2 2SD X1 (GND 4 BITS MSD Z1 ONE ACTIVE NOT USED NOT USED	BCD BIT WEIGHT	

Figure 6-14 DOU TIMING DIAGRAM

6-92. POLARITY FLAG

6-93. The polarity of the dc voltage input to the A-D Converter determines which polarity sign will be presented at DOU output pin 3; pin 5 provides POL in Model 8800A only. A positive dc level at the converter will cause DOU output pin 3 to go to logic 1 and pin 5 (8800A) to go to logic 0. A negative converter input will cause the opposite logic level output from each pin.

6-94. OVERLOAD INDICATION

6-95. The DOU provides a single-bit output indication of a display overload condition. When the digit count exceeds the display capacity pin 6 of the DOU output connector changes from a logic 0 to logic 1.

6-96. RANGE CODE

6-97. The instrument range is presented in a three-bit bcd format at DOU output connector pins H, 7, and F. The output code representing each range is presented in Table 6-4.

6-98. DISPLAY DIGIT

6-99. The numerical value of each digit of the instrument display is presented in a four-bit bcd format at the DOU output connector. The connector pin assignments for each significant digit of the display are provided in Table 6-4. The most significant digit (DOU connector pins 18, 19, V, and W) needs only one active bit to represent the two display digits, 1 or 0. The three remaining bits are connected to ground in the DOU and, in most cases, the corresponding bits in the remote display unit must also be grounded to represent a logic 0.

6-100. DOU INTERFACE CABLE

6-101. A mating DOU connector is supplied with the DOU option for fabrication of a custom interface cable. Use the following procedure when constructing the interface cable.

a. Assemble the following equipment:

- 1. Teflon or vinyl insulated wire, 26 gauge, 31 pieces cut to the desired length.
- 2. Sleeving, # 16 for vinyl wire, or # 18 for teflon.
- 3. Rosin core solder, 60/40.
- 4. Wire strippers.
- 5. Soldering iron, pencil-type (45 W max.)
- 6. DOU mating connector.
- 7. Mating connector for interface instrument.

- b. Strip one-half inch of insulation from the DOU connector end of the wires and tin each wire.
- c. Cut 31 pieces of sleeving one-half inch long.
- d. Place one piece of sleeving over each prepared wire.
- e. Solder a connector contact pin to each wire.
- f. Slide the sleeving over each solder connection.
- g. Insert one connector contact pin into each DOU mating connector position corresponding to the desired data output.
- h. Prepare the mating connector for the interface instrument. Ensure that the data line connections, at the interface instrument mating connector, place the DOU data on the correct pins.

Section 7 General Information

7-1. This section of the manual contains generalized user information as well as supplemental information to the List of Replaceable Parts contained in Section 5.

REV. 5 7/89

D9816

Westermann Wilhelm Augusta-Anlage

Mannheim-Nackarau Germany

\$0482 Sony Corp. Tokyo, Japan

Oshino Electric Lamp Works

Tokoyo, Japan

0AD86 IN General El Paso, TX

Autosplice Inc. Woodside, NY

Noritake Co. Inc. Burlington, MA

Topaz Semiconductor Inc San Jose, CA

Conductive (Pkg) Containers Inc. Brookfield, WI

Emhart Fastening Group

Shelton, CT

S-Mos Systems Inc.

San Jose, CA

Everready LTD

Ever Ready Special Battery Div. Dawley Telford Salop UK

Marcon Electronics Corp

Keamy, NJ

Nytronics Comp. Group Inc.

Darrlingon, NC

Welwyn International Inc. Westlake, OH

Aerovox Corp. New Bedford, MA

00686

Film Capacitors Inc.

Passaic, NJ

AMP, Inc.

Harrisburg, Pennsylvania

Sangamo Weston Inc Components Div

Pickens, NC

Allied Plastics Co. Los Angeles, CA

01101

Wabash Inc

(Formerly Wabash Magnetics) Wabash, IN

Allen Bradley Co. Milwaukee, WI

TRW Electronics & Defense Sector

R F Devices Lawndale, CA

01295

TX Instruments Inc. Semiconductor Group

Dallas, TX

01526 Genicom

Waynesboro, VA

01537

Motorola Communications & Electronics Inc.

Franklin Park, IL.

01686

RCL Electronics/Shallcross Inc.

Electro Components Div. Manchester, NH

01884

Sprague Electric Co. (Now 56289)

Varian Associates Inc. Pulse Engineering Div.

Convoy, CT

01963 Cherry Electrical Products Corp

Waukegan, IL

02111

Spectrol Electronics Corp. City of Industry, CA

Amperex Electronic Corp. Ferrox Cube Div. Saugerties, NY

02131

General Instrument Corp. Government Systems Div.

Westwood, MA

02395

Sonar Radio Corp. Hollywood, FL

02533

Leigh Instruments Ltd. Frequency Control Div. Don Mills, Ontario, Canada

02606

Fenwal Labs Division of Travenal Labs

Morton Grove, IL

02660

Bunker Ramo-Eltra Corp.

Amphenol NA Div. Broadview, IL.

02697

Parker-Hannifin Corp. O-Ring Div

Lexington, KY

RCA-Solid State Div.

Somerville, NJ

02768

ITW (IL Tool Works)

Fastex Division Des Plaines, IL

02799

Arco Electronics Inc. Chatsworth, CA

Nylon Molding Corp. Monrovia, CA

03445 Lercon Electronics Inc

Burbank, CA

กรรกร

General Electric Co.

Semiconductor Products & Batteries

Aubum, NY

03797

Genisco Technology Corp.

Eltronics Div. Rancho Dominguez, CA

03877

Gilbert Engineering Co.Inc Incon Sub of Transitron

Electronic Corp. Glendale, AZ

03888

KDI Electronics Inc. Pyrofilm Div.

Whippany, NJ

03911

Clairex Corp.

Clairex Electronics Div. Mount Vernon, NY

03080

Muirhead Inc. Mountainside, NJ

Hartford, CT

04009

Cooper Industries, Inc. Arrow Hart Div.

Essex International Inc.

Wire & Cable Div.

Anaheim, CA

04221 Midland-Ross Corp.

Midtex Div. N. Mankato, MN

AVX Corp. AVX Ceramics Div.

Myrtle Beach, SC

04423

Telonic Berkley Inc.

Laguna Beach, CA

04713

Motorola Inc.

Semiconductor Group Phoenix, AZ

04946

Standard Wire and Cable Rancho Dominquez, CA

05173

General Radio NY,NY.

Replaced by:

24655

Genrad INC. Concord, MA

05236

Jonathan Mfg. Co. Fullerton, CA

05245 Corcom Inc. Libertyville, IL

05276 ITT Pomona

Electronics Div. Pomona, CA

Westinghouse Elec. Corp. Semiconductor Div.

Youngwood, PA

Ultronix Inc

Grand Junction, CO

Union Carbide Corp. Materials Systems Div.

Cleveland, OH

05571

Sprague Electric Co.

(Now 56289)

Viking Connectors Inc

Sub of Criton Corp. Chatsworth, CA

LYN-TRON Burbank, CA

EG & G Wakefield Engineering

Wakefield, MA

05839 Advance Electrical Chicago, IL

05972 Loctite Corp.

06001 General Electric Co. Electric Capacitor Product

Section Columbia, SC

06141

Fairchild Weston Systems Inc. Data Systems Div.

Sarasota, FL

06192 La Deau Mfg. Co. Glendale, CA

06229 Electrovert Inc. Elmsford, NY

06383 Panduit Corp. Tinley Park, IL

06473 Bunker Ramo Corp. Amphenol NA Div. SAMS Operation

Chatsworth, CA 06540 Mite Corp

Amatom-Electrical Div

Beede Electrical Instrument Penacook, NH

06665
Precision Monolithics
Sub of Boums Inc.
Santa Clara, CA

06666 General Devices Co. Inc.

06739 Electron Corp. Littleton, CO

INpolis, IN

06743 Gould Inc. Foil Div. Eastlake, OH

06751 Components Inc. Semcor Div. Phoenix, AZ

06776 Robinson Nugent Inc. New Albany, IN

06915 Richco Plastic Co. Chicago, IL

06961 Vernitron Corp. Piezo Electric Div. Bedford, OH

06980 EIMAC (See Varian) San Carlos, CA 07047 Ross Milton Co., The Southampton, PA

07138 Westinghouse Electric Corp. Industrial & Government

Tube Div. Horseheads, NY

07233
Benchmark Technology Inc.
City of Industry, CA

07239 Biddle Instruments Blue Bell, PA

07256 Silicon Transistor Corp. Sub of BBF Inc. Chelmsford, MA

07261 Avnet Corp. Culver City, CA

07263 Fairchild Semiconductor North American Sales Ridgeview, CT

07344 Bircher Co. Inc., The Rochester, NY

07374 Optron Corp Woodbridge, CT

07557 Campion Co. Inc. Philadelphia, PA

07597 Burndy Corp. Tape/Cable Div. Rochester, NY

07716 TRW Inc. (Can use 11502) IRC Fixed Resistors/ Burlington Burlington, VT

07792 Lerma Engineering Corp. Northampton, MA

07810 Bock Corp. Madison, WI

07910 Teledyne Semiconductor

Mtn. View, CA 07933

07933 Raytheon Co. Semiconductor Div. Mountain View, CA

08FG6 Calmos Systems Inc. Kanata, Ont. Canada

080A9 Dallas Semiconductor Dallas, TX 08111 MF Electronics New Rochelle, NY

Industro Transistor Corp. Long Island City, NY

08261 Spectra-Strip An Eltra Co. Garden Grove, CA

08445 Electri-Cord Mfg., Inc Westfield, PA

08530 Reliance Mica Corp. Brooklyn, NY

08718 ITT Cannon Electric Phoenix Div. Phoenix, AZ

08806 General Electric Co. Minature Lamp Products Cleveland, OH

08863 Nylomatic Fallsington, PA

08988 Skottie Electronics Inc. Archbald, PA

09021 Airco Inc. Airco Electronics Bradford, PA

09023 Cornell-Dublier Electronics Fuquay-Varina, NC

09214
General Electric Co.
Scmiconductor Products Dept.
Aubum, NY

09353 C and K Components Inc. Newton, MA

09423 Scientific Components Inc. Santa Barbara, CA

09922 Burndy Corp. Norwalk, CT

09969 Dale Electronics Inc. Yankton, SD

09975 Burroughs Corp. Electronics Components Detroit, MI

1A791 LFE Electronics Danvers, MA 1B715

(United Shoe & Nylock Corp)
-Nylock Fastener Corp.Paramus, NJ

10059

Barker Engineering Corp. Kenilworth, NJ

10389 IL Tool Works Inc. Licon Div. Chicago, IL

11236 CTS Corp. Resistor Products Div. Berne, IN

11237 CTS Corp of CA Electro Mechanical Div. Paso Robles, CA

11295 ECM Motor Co. Schaumburg, IL

Columbia Broadcasting System CBS Electronic Div. Newburyport, MA

11403 Vacuum Can Co. Best Coffee Maker Div. Chicago, IL

11502 (can also use 35009) TRW Inc. TRW Resistive Products Div.

Boone, NC

Keystone Columbia Inc. Freemont, IN

11532 Teledyne Relays Teledyne Industries Inc. Hawthome, CA

11711 General Instrument Corp. Rectifier Div. Hicksville, NY

11726 Qualidyne Corp. Santa Clara, CA

12014 Chicago Rivet & Machine Co.

Naperville, IL

12020
Ovenaire
Div. of Electronic Technologies

Div. of Electronic Technologies Charlottesville, VA 12038

Simco
(Div of Ransburg Corp)
Hatfield, PA

12040 National Semiconductor Corp. Danbury, CT

12060 Diodes Inc. Northridge, CA

12136

PHC Industries Inc.

Formerly Philadelphia Handle Co.

Camden, NJ

12300 AMF Canada Ltd. Potter-Brumfield Guelph, Ontario, Canada

12323

Practical Automation Inc.

Shelton, CT

12327 Freeway Corp. Cleveland, OH

12/06

Elpac Electronics Inc. Santa Ana. CA

12443 Budd Co.,The Plastics Products Div.

Hitachi Metals Inernational Ltd. Hitachi Magna-Lock Div.

Big Rapids, MO

Phoenixville, PA

12615

US Terminals Inc. Cincinnati, OH

12617 Hamlin Inc. LaKe Mills, WI

12673

Wesco Electrical Greenfield, MA

12607

Clarostat Mfg. Co. Inc. Dover, NH

12749

James Electronic Inc. Chicago, IL

12856

MicroMetals Inc. Anaheim, CA

12881 Metex Corp. Edison, NJ

12895

Cleveland Electric Motor Co.

Cleveland, OH

12954 Microsemi Corp. Components Group Scottsdale, AZ

12969 Unitrode Corp. Lexington, MA 13050 Potter Co. Wesson, MS

13103

Thermalloy Co., Inc. Dallas, TX

13327

Solitron Devices Inc. Tappan, NY

13511

Bunker-Ramo Corp. Amphenol Cadre Div. Los Gatos, CA

13606

Sprague Electric Co. (Use 56289)

13689

SPS Technologies Inc. Hatfield, NJ

13764 Micro Plastics Flippin, AZ

13010

Burr-Brown Research Corp.

Tucson, AZ

14099 Semtech Corp. Newbury Park, CA

14140

McGray-Edison Co. Commercial Development Div.

Manchester, NH

14189 Ortronics, Inc. Orlando, FL

14193 Cal-R-Inc. Santa Monica, CA

.

Anderson Electronics Hollidaysburg, PA

14329

Wells Electronics Inc. South Bend, IN

14482

Watkins-Johnson Co. Palo Alto, CA

14552

Microsemi Corp.

(Formerly Micro-Semiconductor)

Santa Ana, CA

14604

Elmwood Sensors, Inc Pawtucket, RI

14655

Cornell-Dublier Electronics Div. of Federal Pacific Electric Co. Govt Cont Dept.

Newark, NJ

14704

Crydom Controls (Division of Int Rectifier) El Segundo, CA

14752

Electro Cube Inc. San Gabriel, CA

14036

General Instrument Corp.
Discrete Semi Conductor Div.

Hicksville, NY

14949 Trompeter Electronics

Chatsworth, CA

15412 Amtron Midlothian, IL

15542

Scientific Components Corp. Mini-Circuits Laboratory Div.

Brooklyn, NY

15636 Elec-Trol Inc. Saugus, CA

15782

Bausch & Lomb Inc. Graphics & Control Div.

Austin, TX

15801

Fenwal Eletronics Inc. Div. of Kidde Inc. Framingham, MA

15818

Teledyne Inc. Co.
Teledyne Semiconductor Div.
Mountain View, CA

15849 Useco Inc. (Now 88245)

15898

International Business Machines Corp. Essex Junction, VT

16068

International Diode Div.

Harrison, NJ

16162 MMI Southfield, MI

16245 Conap Inc. Olean, NY

16258 Space-Lok Inc. Burbank, CA

16352 Codi Corp. Linden, NJ

16469 MCL Inc. LaGrange, IL 16473

Cambridge Scientific Industries Div. of Chemed Corp. Cambridge, MD

16733

Cablewave Systems Inc. North Haven, CT

16742

Paramount Plastics Fabricators Inc. Downey, CA

16758

General Motors Corp. Delco Electronics Div. Kokomo, IN

17060

Circuit Structures Lab Burbank, CA

10110

Electronic Molding Corp. Woonsocket, RI

17229

High Pressure Eng. Co. Inc.

OK City, OK

17504

Aluminum Filter Co. Carpinteria, CA

17545

Atlantic Semiconductors Inc. Asbury Park, NJ

17745

Angstrohm Precision, Inc. Hagerstown, MD

17856 Siliconix Inc. Santa Clara, CA

E G & Gvactee Inc. St. Louis, MO

15005

KRL/Bantry Components Inc.

Manchester, NH

18310

Concord Electronics New York, NY

18324 Signetics Corp. Sacramento, CA

18377 Parlex Corp. Methuen, MA

18520

Sharp Electronics Corp.
Paramus, NJ

18542

Wabash Inc. Wabash Relay & Electronics Div.

Wabash Kel Wabash, IN

18565 2Y384 23732 26402 Chomerics Inc. North American Philips Lighting Corp. Tracor Applied Sciences Inc. Lumex,Inc. Woburn, MA Van Wert, OH Rockville, MD Bayshore, NY 23880 Vishay Intertechnology Inc. Enochs Mfg. Inc. Stanford Applied Engineering Frequency Sources Inc. Sources Div. Vishay Resistor Products Group INpolis, IN Santa Clara, CA Malvem, PA Chelmsford, MA 20891 23936 Cosar Corp. William J. Purdy Co. 26806 Norton-Chemplast Dallas, TX Pamotor Div. American Zettler Inc. Santa Monica, CA Burlingame, CA Irvine, CA 21317 Electronics Applications Co. 27014 Scanbe Mfg. Co. El Monte, CA National Semiconductor Corp. Div. of Zero Corp. Penn Engineering Co. Santa Clara, CA El Monte, CA 21604 S. El Monte, CA Buckeye Stamping Co. 18736 Columbus, OH Corning Glass Works Corning Voltronics Corp. Analog Devices Inc. Electronics East Hanover, NJ Norwood, MA Wilmington, NC Solitron Devices Inc. Semiconductor Group 24444 27264 Rivera Beach, FL. General Semiconductor Molex Inc. Micro-Power Industries, Inc. Lisle, IL Long Island City, NY 21847 Tempe, AZ Acrtech 27440 Now TRW Microwave Inc. Industrial Screw Products GTE Products Corp. Sunnyvale, CA Bradford Electronics Los Angeles, CA Precision Material Products Bradford, PA Business Parts Div. 27494 Titusville.PA Vectron Corp. 24618 Staffall, Inc. Replaced by: S.W. Electronics Transcon Mfg. Providence, RI Now: D.J. Associates Inc. Robinson Electronics Inc. San Luis Obispo, CA DuPont, El DeNemours & Co. Inc. 24655 27745 **DuPont Connector Systems** Genrad Inc. Associated Spring Barnes Group Inc. Advanced Products Div (Replaced General Radio 05173) Syracuse, NY Garry Corp. New Cumberland, PA Concord, MA Langhome, PA 27918 Component Parts Corp. Lenox-Fugle Electronics Inc. South Plainfield, NJ Micro Semiconductor Bellmore, NY Bendix Corp., The Navigation & Control Group (Now 14552) 27956 Terboro, NJ 22670 24796 Relcom (Now 14482) GM Nameplate AMF Inc. Seattle, WA Potter & Brumfield Div. Perine Machine Tool Corp. San Juan Capistrano, CA Alpha Metals Kent, WA Chicago, IL ITT Semiconductors 24931 Palo Alto, CA Specialty Connector Co. 28198 Delta Electronics Greenwood, IN Positronic Industries Alexandria, VA Springfield, MO 22784 24995 Palmer Inc. ECS 28213 MN Mining & Mfg. Co. Cleveland, OH Grants Pass, OR MN Mining & Mfg. Co. Textool Products Dept. Consumer Products Div. Electronic Product Div. 25088 3M Center Product Comp. Corp. Irving, TX Siemen Corp. Saint Paul, MN Mount Vernon, NY Isilen, NJ 28309 Caddock Electronics Inc. 25099 Kaiser Riverside, CA CTS Microelectronics Cascade Gasket Minette, Al., Lafayette, NY Kent, WA 28425 Mepco/Centralab Inc. 22227 Serv-O-Link A N. American Philips Co. I.R.C., Inc. Amperex Electronic Corp. Euless, TX Mineral Wells, TX Microcircuits Divison Semiconductor & Micro-Circuit Div. Philadelphia, PA Slatersville, RI 28478 Deltrol Corporation 2R178 25435 Deltrol Controls Div. S.W. Electronics & Mfg. Corp. Wire Products Moldtronics, Inc Milwaukee, WI Cleveland, OH Cherry Hill, NJ Downers Grove, IL 28480 Hewlett Packard Co. Boyd Corporation Mark Eyelet and Stamping Inc. Dabum Electronic & Cable Corp. Corporate HQ Portland, OR Wolcott, CT Norwood, NJ

Palo Alto, CA

28484 31433 36701 33246 Van Waters & Rogers Emerson Electric Co. Kemet Electonics Corp. Epoxy Technology Inc. Gearmaster Div Simpsonville, NC Billerica, MA Valley Field, Quebec, Canada McHenry, IL 28520 Pioneer Sterilized Wiping Cloth Co. Army Safeguard Logistics Command Mallory Capacitor Corp. Heyco Molded Products Huntsville, AL Portland, OR Sub of Emhart Industries Kenilworth, NJ INpolis, IN 31471 33297 Gould Inc NEC Electronics USA Inc. Lumax Industrials, Inc Semiconductor Div Electronic Arrays Inc. Div. Maxim Industries Santa Clara, CA Mountain View, CA Middleboro, MA Altoona, PA 33919 4F434 Monsanto Co. Metal Masters Inc. Nortek Inc. Plastic Sales Santa Clara, CA Baldwin, MS Cranston, RI Los Angeles, CA 40402 Stackpole Components Co. Cannon Electric 34114 Roderstein Electronics Inc. Raleith, NC Woodbury, TN Oak Industries Statesville, NC Rancho Bernardo, CA 31827 42498 Omega Engineering Inc. National Radio Budwig Stamford, CT Ramona, CA CTS Electronics Corp. Melrose, MA Brownsville,TX 3D536 31918 Aimsco Inc. ITT-Schadow Nytronics Inc.(Now 53342) Seattle, WA Eden Prairie, MN Silicon General Inc. Garden Grove, CA 32293 Panasonic Industrial Co. Jolo Industries Inc. San Antonio, TX Intersil Advanced Micro Devices (AMD) Garden Grove, CA Cupertino, CA Sunnyvale, CA 32539 Datron Systems Solid Power Corp. Mura Corp. 34359 Wilkes Barre, PA MN Mining & Mfg. Co. Westbury, Long Island, N.Y. Farmingdale, NY Commercial Office Supply Div. 44655 Ohmite Mfg. Co. 32550 Saint Paul, MN Symbex Corp. Skokie, IL **Bivar** Painesville, OH Santa Ana, CA Harris Corp. 32719 Harris Semiconductor Lumberg Inc. AB Enterprise Inc. Siltronics Products Group Richmond, VA Ahoskie, NC Melbourne, FL Santa Ana, CA 47379 ISOCOM Asvid Engineering Inc. Campbell, CA Griffith Plastics Corp. Rockwell International Corp. Newport Beach, CA Laconia, NH Burlingame, CA 30315 34641 IDT (International Development & Trade) Advanced Mechanical Components Instrument Specialties Itron Corp. Dallas, TX Euless, TX San Diego, CA Northridge, CA 49671 34649 RCA Corp. Intel Corp. New York, NY IL Tool Works Inc. Murata Erie North America Inc. Chicago, IL Carlisle Operations Santa Clara, CA Carlisle, Pennsylvania 34802 Raytheon Company General Instrument Corp. Electromotive Inc. Executive Offices Capacitor Div. Bourns Inc. Kenilworth, NJ Lexington, MA Hicksville, NY Trimpot Div. Riverside, CA 5D590 Mostek Corp. Hartwell Special Products 30838 Replaced by: SGS Thompson Microelec-Fastec 33025 Piacentia, CA Chicago, ILL M/A ComOmni Spectra, Inc. (Replacing tronics Omni Spectra) 35000 Renfrew Electric Co. Ltd. Microwave Subsystems Div. IRC Div. Solid State Scientific Inc. Tempe, AZ Panel Components Corp. Toronto, Ontario, Canada Santa Rosa, CA Willow Grove, PA 33096 35986 Alpha Industries Inc. CO Crystal Corp. Nobel Electronics Amrad Loveland, CO Melrose Park, IL Suffern, NY Microelectronics Div. Hatfield, PA 5W664 22172 36665 NDK General Electric Co. Mitel Corp. Div. of Nihon Dempa Kogyo LTD Metro Supply Company Owensboro, KY Kanata, Ontario, Canada Sacramento, CA Lynchburg, VA

5U802 Dennison Mfg. Co. Framingham, MA SGS - Thomson Microelectronics Inc. Carrollton, TX 50120 Eagle-Picher Industries Inc. Electronics Div. CO Springs, CO 50157 Midwest Components Inc. Muskegon, MS Teac Corp. of America Industrial Products Div Montebello, CA MMI, Inc. (Monolithic Memories Inc) Military Products Div. Santa Clara, CA Metal Masters, Inc. City of Industry, CA Hypertronics Corp. Hudson, MA Electronic Concepts, Inc. Estontown, NJ

50579 Litronix Inc. Cupertino, CA

Cuperino, CA
50891
Semiconductor Technology

Stuart, FL 50934 Tran-Tec Coro

Tran-Tec Corp Columbus, NE

51167 Aries Electronics Inc. Frenchtown, NJ

51284 Mos Technology Norristown, PA

51249 Heyman Mfg. Co. Cleveland, OH

Verbatim Corp. Sunnyvale, CA

51398 MUPAC Corp. Brockton, MA

51406 Murata Erie, No. America Inc. (Also see 72982) Marietta, GA 51499 Amtron Corp. Boston, MA

51506 Accurate Screw Machine Co. (ASMCO) Nutley, NJ

51605 CODI Semiconductor Inc. Kenilworth, NJ

51642 Centre Engineering Inc. State College, PA

51705 ICO/Rally Palo alto, CA

51791 Statek Corp. Orange, CA

51984 NEC America Inc. Falls Church, VA

52063 Exar Integrated Systems Sunnyvale, CA

52072

Circuit Assembly Corp. Irvine, CA

52152 MN Mining & Mfg. Saint Paul, MN

52333 API Electronics Haugpauge,Long Island,NY

52361 Communication Systems Piscataway, NJ

52500 Amphenol, RF Operations

52525 Space-Lok Inc. Lerco Div. Burbank, CA

Burlington, MA

52531 Hitachi Magnetics Edmore, MO

52745 Timco Los Angeles, CA

52763 Stettner-Electronics Inc.

Stettner-Electronics Inc. Chattanooga, TN

Sprague-Goodman Electronics Inc. Garden City Park, NY

52771 Moniterm Corp. Amatrom Div. Santa Clara, CA 52840 Western Digital Corp. Costa Mesa, CA

53021 Sangamo Weston Inc. (See 06141)

53036 Textool Co. Houston, TX

53184 Xciton Corp. Lathan, NY

53217 Technical Wire Products Inc. Santa Barbara, CA

53342 Opt Industries Inc. Phillipsburg, NJ

Conaga Park, CA

53673
Thompson CSF Components Corp.
(Semiconductor Div)

53718 Airmold/W. R. Grese & Co. Roanoke Rapids, NC

53848 Standard Microsystems Hauppauge, NY

53894 AHAM Inc. RanchoCA, CA

53944 Glow-Lite Pauls Valley, OK

Plasmetex Industries Inc. San Marcos, CA

54294 Shallcross Inc. Smithfield, NC

Sullins Electronic Corp.
San Marcos, CA

54473 Matsushita Electric Corp. (Panasonic) Secaucus, NJ

54492 Cinch Clamp Co., Inc. Santa Rosa, CA

54583 TDK Garden City, NY

54590 RCA Corp Distribution & Special Products

Cherry Hill, NY

Piher International Corp. Arlington Heights, IL 54937 DeYoung Mfg. Bellevue, WA

54590 RCA Corp.

Electronic Components Div. Cherry Hill, NJ

55026

American Gage & Machine Co. Simpson Electric Co. Div. Elgin, IL

55112

Plessey Capacitors Inc. (Now 60935)

55261 LSI Computer Systems Inc. Melville, NY

55285 Bercquist Co. Minneapolis, MN

55322 Samtech Inc. New Albany, IN

55408 STI-CO Industries Co Buffalo, NY

55464 Central Semiconductor Corp. Hauppauge, NY

55557 Microwave Diode Corp. W.Stewarstown, NH

55566 R A F Electronic Hardware Inc.

Seymour, CT 55576 Synertek

Santa Clara, CA
55680
Nichicon/America/Corp.

Schaumburg, IL
55943
D J Associates, Inc

(Replaced Transcon Mfg.-24618)

56282 Utek Systems Inc. Olathe, KS

Fort Smith, AZ

56289 Sprague Electric Co. North Adams, MA

56365 Square D Co. Corporate Offices Palatine, IL.

56375 WESCORP Div. Dal Industries Inc Mountain View, CA

56481 Shugart Associates Sub of Xerox Corp. Sunnyvale, CA

56637

RCD Components Inc. Manchester, NH

Zilog Inc. Campbell, CA

Vamistor Corp. of TN Sevierville, TN

56880 Magnetics Inc. Baltimore, MD

Endicott Coil Co. Inc. Binghamton, NY

57053

Gates Energy Products Denver, CO

Cambridge Thermionic Cambridge, MA Replaced by: 71279

Interconnection Products Inc.

57668 R-ohm Corp Irvine, CA

SGS - Thomson Microelectronics Inc

Montgomeryville, PA

Hitachi Magnalock Corp. (Now 12581)

58104 Simco Atlanta, GA

58364 BYCAP Inc. Chicago, IL

Precision Lamp Cotat, CA

Superior Electric Co. Bristol, CT

Communications Instruments Inc.

Fairview, NC

KOA-Speer Electronics Inc.

Bradford, PA

59422

Holmberg Electronics

Irvine, CA

59610 Souriau Inc Valencia, CA

HV Component Associates Howell, NJ

59640 Supertex Inc.

Sunnyvale, CA 59660 Tusonix Inc. Tucson, AZ

59730

Thomas and Betts Corp. IA City, IA

59231 Semtronics Corp. Watchung, NJ

GH053:

American Components Inc. an Insilco Co. RPC Div. Hayesville, NC

6L611

Allen, Robert G. Inc. Van Nuys, CA

6U850

Burgess Switch Co., Inc Northbrook, IL

60 1095

AMD Enterprises, Inc. Roswell, GA

SGS/ATES Semiconductor Corp.

INpolis, IN

Micron Technology Inc. Boise, ID

Power Dynamics Inc West Orange, NJ

Precicontact Inc. Langhome, PA

Squires Electronics Inc Cornelius, OR

60395 Xicor Inc. Milpitas, CA

60399

Torin Engineered Blowers Div. of Clevepak Corp. Torrington, CT

60496 Micrel Inc. Sunnyvale, CA

60705 Cera-Mite Corp. (formerly Sprague) Grafton, WI

Inmos Corp. CO Springs, CO

60935

Westlake Capacitor Inc. Tantalum Div. Greencastle, IN

60958 ACIC

Intercomp Wire & Cable Div.

Hayesville, NC

Fujitsu Microelectronics Inc

San Jose, CA

61394

SEEQ Technology Inc. San Jose, CA

61429 Fox Electronics Cape Coral, FL

Aromat Corp. New Providence, NJ

IR-ONICS Inc Warwick, RI

61772

Integrated Device Technology

Santa Clara, CA

61802 Toshiba Houston, TX

61857 SAN-O Industrial Corp. Bohemia, Long Island, NY

61935 Schurter Inc. Petaluma, CA

62351 Apple Rubber Lancaster, NY

62643 United Chemicon Rosemont, IL

Seiko Instruments Torrance, CA

62793 Lear Siegler Inc. Energy Products Div. Santa Ana, CA

Ward Leonard Electric Co.Inc.

Mount Vernon, NY

Lamb Industries Portland, OR

Linear Technology Milpitas, CA

64537 KDI Electronics Whippany, NJ

64782

Precision Control Mfg. Inc.

Bellevue, WA

64834 West M G Co. San Francisco, CA

64961

Electronic Hardware LTD North Hollywood, CA

65092

Sangamo Weston Inc. Weston Instruments Div. Newark, NJ

65786 Cypress Semi San Jose, CA

Rohm Corp & Whatney

65964 Evox Inc. Bannockburn, II.

Irvine, CA

66150 Entron Inc. Winslow Teltronics Div.

66302

VLSI Technology Inc. San Jose, CA

66419 Exel San Jose, CA

Glendale, NY

66450

Dyna-Tech Electronics, Inc. Walled Lake, MI

66608 Bering Industries Freemont, CA

BKC International Electronics Lawrence, MA

66958 SGS Semiconductor Corp.

Phoenix, AZ

66967 Powerex Inc Aubum, NY

67183 Altera Santa Clara, CA

68919 WIMA

% Harry Levinson Co. Scattle, WA

7F361 75042 Richmond-Division of Dixico Beckman Industrial corp. ITT Cannon Div. of ITT TRW Inc. % Zellerbach Paper Co. Fountain Valley, CA Helipot Div. IRC Fixed Resistors Seattle, WA Fullerton, CA Philadelphia, PA 71482 7F844 General Instrument Corp. 73168 75297 Moore Business Forms, Inc Clare Div. Fenwal Inc. Kester Solder Div. Seattle, WA Chicago, IL Ashland, MA Litton Systems, Inc Des Plaines, IL 7G902 71590 73293 Textron Inc. Mepco/Centralab Hughes Aircraft Co. Camcar Div. A North American Philips Co. Electron Dynamics Div. Kurz-Kasch Inc. Rockford, IL Fort Dodge, IA Torrance, CA Dayton, OH 73445 75378 Universal Plastics 71707 Amperex Electronic Corp. CTS Knights Inc. Welshpool, WA Coto Corp. Hicksville, NY Sandwich, IL Providence, RI 75382 AMD Plastics 71744 Carlingswitch Inc. Kulka Electric Corp. East Lake, OH General Instrument Corp. Hartford, CT (Now 83330) Lamp Div/Worldwide Mount Vernon, NY 7K354 Chicago, IL 73586 Omni Spectra Inc Circle F Industries Los Altos, CA 71785 Trenton, NJ Performance Semiconductor Corp. TRW Inc. Sunnyvale, CA Cinch Connector Div. 7Z884 Elk Grove Village, IL Federal Screw Products Inc. 75915 **ALPS** Chicago, IL Littelfuse Tracor Seattle, WA (Formerly: Tracor-Littelfuse) Dow Coming Corp. 73743 Des Plaines, IL 7X634 Midland, MI Fischer Special Mfg. Co. Duracell USA Cold Spring, KY Div. of Dart & Kraft Inc. Oak Switch Systems Inc. Valdese, NC AMAX Specialty Metals Corp. 73893 Crystal Lake, IL Newark, NJ Microdot Mt. Clemens, MS Almetal Universal Joint Co. TRW Assemblies & Fasteners Group Cleveland, OH Electro Motive Mfg. Corp. Fastener Div. JFD Electronic Components Florence, NC Moutainside, NJ Div. of Murata Erie Atlantic India Rubber Works Inc. Oceanside, NY Chicago, IL AMCA International Corp. AMF Inc. Continental Screw Div. 73905 Potter & Brumfield Div. New Bedford, MA FL Industries Inc. Princeton, IN Amperite Company Union City, NJ San Jose, CA Nytronics Inc. 73040 Ray-O-Vac Corp 70003 New York, NY Guardian Electric Mfg. Co. Madison, WI Cooper-Belden Corp. Chicago, IL Geneva, IL 77638 72619 General Instrument Corp. Amperex Electronic Corp. Quam Nichols Co. Rectifier Div. Bimbach Co. Inc. Dialight Div. Chicago, IL Brooklyn, NY Farmingdale, NY Brooklyn, NY 74217 71034 72653 Radio Switch Co. Shakeproof Lock Washer Co. Bliley Electric Co. G C Electronics Co. Marlboro, NJ (Now 78189) Erie, PA Div. of Hydrometals Inc. Rockford, IL. Piezo Crystal Co. Rubbercraft Corp. of CA Ltd. 72794 Div. of PPA Industries Inc. Torrance, CA Westinghouse Electric Corp. Dzus Fastner Co. Inc. Carlisle, PA Bryant Div. West Islip, NY 78189 Bridgeport, CT IL Tool Works Inc. Holo-Krome Co. Shakeproof Div. Gulton Industries Inc. Elmwood, CT Elgin, IL Interconnection Products Inc. Gudeman Div. Formerly Midland-Ross Cambion Div. Chicago, IL Santa Ana, CA Hoyt Elect.Instr. Works Inc. Sigma Instruments Inc. Penacook, NH South Braintree, MA Elastic Stop Nut Bussman Manufacturing Div. of Harrard Industries 74840 Div. McGraw-Edison Co. Union, NJ Struthers Dunn Inc. IL Capacitor Inc. St. Louis, MO Lincolnwood, IL Pitman, NJ 71450 Erie Specialty Products, Inc 78553 CTS Corp. Johnson EF Co. Formerly: Murata Eric Eaton Corp. Elkhart, IN Erie, PA Waseca, MN Engineered Fastener Div.

Cleveland, OH

81439 Stoeger Industries Therm-O-Disc Inc. Hubbell Corp. Illuminated Products Inc. South Hackensack, NJ Mansfield, OH Mundelein, IL (Now 76854) 83330 87516 Western Rubber Co. International Rectifier Corp. Standard Crystal Kulka Smith Inc. Goshen, IN Los Angeles, CA KS City, KS A North American Philips Co. Manasquan, NJ C - W Industries Korry Electronics Inc. 83478 Aeronautical Standards Group Southampton, PA Scattle, WA Rubbercraft Corp. of America Dept. of Navy & Air Force West Haven, CT 81741 88219 Zierick Mfg. Corp. Chicago Lock Co. GNB Inc. Mount Kisco, NY Chicago, IL Industrial Battery Div. Associated Spring Barnes Group Langhome, PA 82227 Gardena, CA Ken-Tronics, Inc. Airpax Corp. 88245 Milan, IL Cheshire Div. 83740 Winchester Electronics Cheshire, CT Union Carbide Corp. Litton Systems-Useco Div. **SD528** Van Nuys, CA Battery Products Div. Baumgartens 82240 Danbury, CT Atlanta, GA Simmons Fastner Corp. 88486 Albany, NY Triangle PWC Inc. 84171 Arco Electronics Jewitt City, CT Eaton Corp. Commack, NY Cutler Hammer Product Sales Office Palmer Electronics Corp. Mountain View, CA South Gate, CA 88690 84411 American Shizuki Essex Group Inc. TRW Capacitors Div. Ogallala, NE Wire Assembly Div. Tellabs Inc. Switchcraft Inc. Dearborn, MI Naperville, IL Sub of Raytheon Co. Chicago, IL 84613 20000 FIC Corp. Atlantic India Rubber Co. Tektronix 82415 Goshen, IN Rockville, MD Beaverton, OR Airpax Corp Frederick Div. 84682 Frederick, MD Essex Group Inc. Philips (Now Fluke) Mepco/Electra Inc. Peabody, MA Mahwah, NJ Morristown, NJ Roanwell Corp. 89020 New York, NY 84830 Amerace Corp. Ford Aerospace & Lee Spring Co. Inc Buchanan Crimptool Products Div. Communications Corp. 82877 Union, NJ Brooklyn, NY Western Development Rotron Inc. Laboratories Div. Custom Div. 89265 Palo Alto, CA Woodstock, NY Potter-Brumfield Bearing Distributing Co. (Sec 77342) San Fransisco, CA 80145 82879 LFE Corp. ПT 89462 Process Control Div. Royal Electric Div. Waldes Truarc, Inc. Bearing Sales Co. Clinton, OH Pawtucket, RI Long Island, NY Los Angeles, CA 83003 85480 Sprague Products Varo Inc. 89536 W. H. Brady Co. (Now 56289) Garland, TX Industrial Product John Fluke Mfg. Co., Inc. Milwaukee, WI Everett, WA 83014 Boums Instruments Inc. Hartwell Corp. 89597 Riverside, CA Placentia, CA Brady WH Co Fredericks Co. Huntingdon Valley, PA Industrial Products Div 83055 Milwaukee, WI Hammerlund Mfg. Co. Inc. Signalite Fuse Co. Paramus, NJ (Now 71744) 85932 Bunker Ramo-Eltra Corp. Amphenol Div. Electro Film Inc. Broadview, IL Valencia, CA Computer Products Inc. TRW Assemblies & Fasteners Group Stevens-Amold Div. Fasteners Div. 89730 South Boston, MA Cambridge, MA General Electric Precision Metal Products Co. Lamp Div. Pcabody, MA Newark, NJ Grayhill Inc. Parker-Hannifin Corp. La Grange, IL O-Seal Div. 86684 Culver City, CA Radio Corp. of America Data Composition Svc, Inc Laurel, MD (Now 54590) Litton Systems Inc.

86928

Glendale, CA

Seastrom Mfg. Co. Inc.

98171

Port Plastics

Tukwila, WA

Winchester Electronics Div.

Watertown, CT

Bendix Corp.

Eatonville, NJ

Electric & Fluid Power Div.

9W423 Amatom El Mont, CA

90201

Mallory Capacitor Co. Sub of Emhart Industries Inc. Indianapolis, IN

00015

Best Stamp & Mfg. Co. KS City, MO

90303 Duracell Inc.

Technical Sales & Marketing

Bethel, CT

91094 Essex Group Inc. Suflex/IWP Div. Newmarket, NH

91247 IL Transformer Co.

Chicago, IL

91293 Johanson Mfg. Co. Boonton, NJ

91462 Alpha Industries Inc. Logansport, IN

91502 Associated Machine Santa Clara, CA

91506 Augat Alcoswitch N. Andover, MA

91507 Froeliger Machine Tool Co.

Stockton, CA

Dale Electronics Inc. Columbus, NE

91662 Elco Corp. A Gulf Western Mfg. Co. Connector Div. Huntingdon, PA

IIT Cannon/Gremar (Now 08718)

91802 Industrial Devices Inc. Edgewater, NJ

91833 Keystone Electronics Corp.

NY, NY

King's Electronics Co. Inc. Tuckahoe, NY

91929 Honeywell Inc. Micro Switch Div. Freeport, IL. 91934 Miller Electric Co. Woonsocket, RI

9196/ National Tel-Tronics

Div. of electro Audio Dynamics Inc Meadville, PA

91984

Maida Development Co. Hampton, VA

91985 Norwalk Valve Co. S. Norwalk, CT

92218 Wakefield Corp., The Wakefield, ME

92527 VTC Inc. Bloomington, MN

92607 Tensolite Co. Div. of Carlisle Corp. Buchanan, NY

92914 Alpha Wire Corp. Elizabeth, NJ

93332 Sylvania Electric Products Semiconductor Products Div. Woburn, MA

94144 Raytheon Co. Microwave & Power Tube Div. Quincy, MA

94222 Southco Inc. Concordville, PA

94988 Wagner Electric Corp. Sub of Mcgraw-Edison Co. Whippany, NJ

95146 Alco Electronic Products Inc. Switch Div.

95263 Leecraft Mfg. Co. Long Island City, NY

North Andover, MA

95275 Vitramon Inc. Bridgeport, CT

95303 RCA Corp. Receiving Tube Div. Cincinnati, OH

95348 Gordo's Corp. Bloomfield, NJ

95354 Methode Mfg. Corp. Rolling Meadows, IL 955/3
Campion Laboratories Inc.
Detroit, MI

95712 Bendix Corp. Electrical Comp. Div. Franklin, IN

95987 Weckesser Co. Inc. (Now 85480)

96733 SFE Technologies San Fernando, CA

96853
Gulton Industries Inc.
Measurement & Controls Div.
Manchester, NH

96881 Thomson Industries Inc. Port WA, NY

97464 Industrial Retainer Ring Irvington, NJ

97525 EECO Inc. Santa Ana, CA

97540 Whitehall Electronics Corp. Master Mobile Mounts Div. Fon Meyers, FL

97913 Industrial Electronic Hardware Corp. NY, NY

97945 Pennwalt Corp. SS White Industrial Products Piscataway, NJ

97966 CBS Electronic Div. Danvers, MA

98094 Machlett Laboratories Inc. Santa Barbara. CA

98159 Rubber-Teck Inc. Gardena, CA 98278 Malco A Microdot Co. South Pasadena, CA

98291 Sealectro Corp. BICC Electronics Trumbill, CT

98372 Royal Industries Inc. (Now 62793)

98388 Lear Siegler Inc. Accurate Products Div. San Deigo, CA

98978 IERC

(International Electronic Research Corp.)
Burbank, CA

99120 Plastic Capacitors Inc. Chicago, IL

99217 Bell Industries Inc. Elect. Distributor Div. Sunnyvale, CA

99378 ATLEE of DE Inc. N. Andover, MA

99392 Mepco/Electra Inc. Roxboro Div. Roxboro, NC

99515 Electron Products Inc. Div. of American Capacitors Duarte, CA

99779 Bunker Ramo- Eltra Corp. Barnes Div. Lansdown, PA

99800 American Precision Industries Delevan Div. East Aurora, NY

99942 Mepco/Centralab A North American Philips Co. Milwaukee, WI

U.S. Service Locations

California

Fluke Technical Center 16969 Von Karman Avenue Suite 100 Irvine, CA 92714 Tel: (714) 863-9031

Fluke Technical Center 46610 Landing Parkway Fremont, CA 94538 Tel: (415) 651-5112

Colorado

Fluke Technical Center 14180 East Evans Avenue Aurora, CO 80014 Tel: (303) 695-1171

Florida

Fluke Technical Center 940 N. Fern Creek Avenue Orlando, FL 32803 Tel: (407) 896-4881

Fluke Technical Center 1150 W. Euclid Ave. Palatine, IL 60067 Tel: (312) 705-0500

Fluke Technical Center 5640 Fishers Lane Rockville, MD 20852 Tel: (301) 770-1576

New Jersey

Fluke Technical Center East 66 Midland Avenue Paramus, NJ 07652-0930 Tel: (201) 599-9500

Fluke Technical Center 1801 Royal Lane, Suite 307 Dallas, TX 75229 Tel: (214) 869-2848

Washington

Fluke Technical Center John Fluke Mfg. Co., Inc. 1420 75th St. S.W. M/S 6-30 Everett, WA 98203 Tel: (206) 356-5560

International

Argentina Coasin S.A. Virrey del Pino 4071 DPTO E-65 1430 CAP FED **Buenos Aires** Tel: 54 1 522-5248

Philips Customer Support Scientific and Industrial 23 Lakeside Drive Tally Ho Technology Park East Burwood Victoria 3151

Australia

Philips Customer Support Scientific & Industrial 25-27 Paul St. North North Ryde N.S.W. 2113 Tel: 61 02 888 8222

Oesterreichische Philips Industrie Unternehmensbereich Prof. Systeme Triesterstrasse 66 Postfach 217 A-1101 Wein Tel: 43 222-60101, x1388

Philips & MBLE Associated S.A. Scientific & Industrial Equip. Div Service Department. 80 Rue des deux Gares B-1070 Brussels Tel: 32 2 525 6111

Brazil

Hi-Tek Electronica Ltda. Al. Amazonas 422, Alphaville CEP 06400 Barueri San Paulo Tel: 55 11 421-5477

Fluke Electronics Canada Inc. 400 Britannia Rd. East, Unit #1 Mississauga Ontario L4Z 1X9 Tel: 416-890-7600

Chile

Intronica Chile Ltda. Casilla 16228 Santiago 9 Tel: 56 2 2321886, 2324308

Fluke International Corp. P.O. Box 9085 Beijing Tel: 86 01 512-3436

Colombia

Sistemas E Instrumentacion, Ltda. Carrera 13, No. 37-43, Of, 401 Ap. Aereo 29583 Bogota DE Tel: 57 232-4532

Denmark

Philips A/S Technical Service I & E Strandlodsveij 1A PO Box 1919 DK-2300 Copenhagen S Tel: 45 1 572222

Ecuador

Proteco Coasin Cia., Ltda. P.O. Box 228-A Ave. 12 de Octubre 2285 y Orellana Quito Tel: 593 2 529684

Egypt

Philips Egypt 10, Abdel Rahman el Rafei st. el. Mohandessin P.O. Box 242 Dokki Cairo Tel: 20-2-490922

England

Philips Scientific Test & Measuring Division Colonial Way Watford Hertforshire WD2 4TT Tel: 44 923-40511

Finland

Ov Philips AB Central Service Sinikalliontie 1-3 P.O. Box 11 SF-02630 ESPOO Tel: 358-0-52572

France

S.A. Philips Industrielle et Comerciale, Science et Industry 105 Rue de Paris Bp 62 93002 Bobigny, Cedex Tel: 33-1-4942-8040

Germany (F.R.G.)

Philips GmbH Service fuer FLUKE - Produkte Department VSF Oskar-Messter-Strasse 18 D-8045 Ismaning/Munich, West Germany Tel: 49 089 9605-239

Greece

Philips S.A. Hellenique 15, 25th March Street 177 78 Tavros 10210 Athens Tel: 30 1 4894911

Hong Kong Schmidt & Co (H.K.) Ltd. 18/FL., Great Eagle Centre 23 Harbour Road Wanchai Tel: 852 5 8330222

India

Hinditron Services Pvt. Ltd 1st Floor, 17-B, Mahal Industrial Estate Mahakali Road, Andheri East Bombay 400 093 Tel: 91 22 6300043

Hinditron Services Pvt. Inc. 33/44A Raj Mahal Villas Extn. 8th Main Road Bangalore 560 080 Tel: 91 812 363139

Hinditron Services Pvt. Ltd. Field Service Center Emerald Complex 1-7-264 5th Floor 114 Sarojini Devi Road Secunderabad 500 003 Tel: 08 42-821117

Hindtron Services Pvt. Ltd. 15 Community Centre Panchshila Park New Delhi 110 017 Tel: 011-6433675

Indonesia

P.T. Lamda Triguna P.O. Box 6/JATJG Jakarta 13001 Tel: (021) 8195365

israe!

R.D.T. Electronics Engineering, Ltd. P.O. Box 43137 Tel Aviv 61430 Tel: 972 3 483211

Italy

Philips S.p.A. Sezione I&E / T&M Viale Elvezia 2 2005 Monza Tel: 39 39 3635342

Japan

John Fluke Mfg. Co., Inc. Japan Branch Sumitomo Higashi Shinbashi Bidg. 1-1-11 Hamamatsucho Minato-ku Tokyo 105 Tel: 81 3 434-0181

Korea

Myoung Corporation Yeo Eui Do P.O. Box 14 Seoul 150 Tel: 82 2 784-9942

Malaysia

Mecomb Malaysia Sdn. Bhd. P.O. Box 24 46700 Petaling Jaya Selangor Tel: 60 3 774-3422

Mexico

Mexel Servicios en Computacion Instrumentacion y Perifericos Blvd. Adolfo Lopez Mateos No. 163 Col. Mixcoac Mexico D.F. Tel: 52-5-563-5411

Netherlands

Philips Nederland Test & Meetapparaten Div. Postbus 115 5000 AC Tilburg Tel: 31-13-352445

New Zealand

Philips Customer Support Scientific & Industrial Division 2 Wagener Place Mt. Albert Auckland Tel: 64 9 894-160

Norway

Morgenstierne & Co. A/S Konghellegate 3 P.O. Box 6688, Rodelokka Oslo 5 Tel: 47 2 356110

Pakistan

International Operations (PAK) Ltd. 505 Muhammadi House I.I. Chundrigar Road P.O. Box 5323 Karachi Tel: 92 21 221127, 239052

Importaciones & Representaciones Electronicas S.A. Avad Franklin D. Roosevelt 105 Lima 1 Tel: 51 14 288650

Philippines

Spark Radio & ElectronicS Inc. Greenhills, P.O. Box 610 San Juan, Metro-Manila Zip 3113 Tel: 63-2-775192

Portugal

Decada Espectral Equipmentos de Elec. e Científicos Av. Bomberios Voluntarios Lote 102B, Miraflores/Alges 1495 Lisboa Tel: 351 1 410-3420

Singapore

Rank O'Connor's Singapore (PTE) Ltd. 98 Pasir Panjang Road Singapore 0511 Tel: 65 4737944

South Africa

South African Philips (Pty) Ltd. Service Department 195 Main Rd Martindale, Johannesburg, 2092 Tel: 27 11 470-5255

Spain

Philips Iberica S.A.E. Depto. Tecnico Instrumentacion c/Martinez Villergas 2 28027 Madrid Tel: 34 1 4042200

Philips Kistaindustrier AB Customer Support Borgarfjordsgatan 16 S-16493 Kista

Switzerland

Philips A.G. Technischer Kundendienst Postfach 670 Allmendstrasse 140 CH-8027 Zurich Tel: 41 1 482211

Taiwan

Schmidt Electronics Corp. 5th Floor, Cathay Min Sheng Commercial Building, 344 Min Sheng East Road Taipei Tel: 886 2501-3468

Thailand

Measuretronix Ltd. 2102/63 Ramkamhaeno Rd. Bangkok 10240 Tel: 66 2 374-2516, 374-1632

Turkey Turk Philips Ticaret A.S. Inonu Caddesi 78/80 Posta Kutusu 504-Beyoglu Istanbul Tel: 90 1 1435891

Uruguay Coasin Uruguaya S.A Casilla de Correo 1400 Libertad 2525 Montevideo Tel: 598-2-789015

Venezuela

Coasin C.A. Calle 9 Con Calle 4, Edif. Edinurbi Apartado de Correos Nr-70-136 Los Ruices Caracas 1070-A Tel: 58 2 241-0309, 241-1248

West Germany Philips GmbH

Department VSF Service fuer FLUKE - Produkte Oskar - Messter - Strasse 18 D-8045 Ismaning / Munich Tel: 49 089 9605-260

Section 8 Schematic Diagrams

TABLE OF CONTENTS

FIGURE NO.	NAME	DRAWING NO.	PAGE
8-1	Front Panel and Main PCB Assembly (2 sheets)	. 8600A-1001	8-3
8-2	Display PCB Assembly	. 8600 A -1002	8-7
8-3	AC Converter PCB Assembly	. 8600A-1003	8-9
8-4	Ohms Converter PCB Assembly	. 8600A-1004	8-11
8-5	Battery Power Supply PCB Assembly (Option -01) .	. 8600A-1006	8-13
8-6	Data Output Unit PCB Assembly (Option -02)	8800A-1005	8-15

BATTERY POWER SUPPLY

NOTES: 1. UNLESS OTHERWISE SPECIFIED ALL RESISTANCES ARE IN OHMS AND ALL CAPACITANCES ARE IN MICROFARADS 2. EARTH GROUND 3. ANALOG COMMON LOGIC COMMON 4. REF ASSY DWG 8600A-4001 & 8600A-4011

I FOR ALL OTHER MAIN POB CKTY

FIGURE 8-1. (2 of 2) FRONT PANEL AND MAIN PCB ASSEMBLY (8600A-1001)

FIGURE 8-2. DISPLAY PCB ASSEMBLY (8600A-1002)

HIGHEST REF DES	REF DES NOT USED
C 34	c3,4,8,21-31
CLI	
CR17	CRI-4,6-10,13-15
K8	K1-5
R89	R1-16,18-24,27-3134- 36,39,41,42,44,48,52- 71,73,74,76,78,80-87
Q 9	Q2-6
U2	UI

FIGURE 8-3. AC CONVERTER PCB ASSEMBLY (8600A-1003)

NOTES:

- I. UNLESS OTHERWISE SPECIFIED ALL RESISTANCES ARE IN OHMS
 AND ALL CAPACITANCES ARE IN MICROFARADS.
- 2. O DENOTES SCREWDRIVER ADJUST.
- 3. D B FACTORY SELECTED VALUE.
- 4. ANALOG COMMON
- 5. DENOTES CALIBRATION ADJ POINTS.
- 6. REFERENCE ASSY DWG 8600A-4004

FIGURE 8-4. OHMS CONVERTER PCB ASSEMBLY (8600A-1004)

NOTES:

I. UNLESS OTHERWISE SPECIFIED ALL RESISTANCES ARE IN OHMS AND ALL CAPACITANCES ARE IN MICROFARADS.

CAPACITOR VALUE SELECTED FOR AC LINE VOLTAGE (i.e. 115, 230, etc.).

3. REF ASSY DWG 8600A- 4006.

4.

ANALOG COMMON

LOGIC COMMON

HIGHEST REF DES	REF DES NOT USED
C 205	
CR 206	CR201,202
L 201	
Q 203	
R209	R203
T 201	
U 203	

FIGURE 8-5. BATTERY POWER SUPPLY PCB ASSEMBLY, OPTION -01 (8600A-1006)

NOTES:

UNLESS OTHERWISE SPECIFIED;

- I. ALL RESISTANCE VALUES IN OHMS, TOL ±5% .
- 2. ALL CAPACITANCE VALUES IN MICROFARADS.
- 3 UIS IS NOT REQUIRED ON 8600A .
- PART OF RN I (RESISTOR NETWORK

- 5 PART OF U5 .
 6 PART OF U6 .
 7 JUMPER AS REQUIRED
- 8. SEE 8800A-4005 FOR ASSY.

HIGHEST REF DES	NOT USED
C4 CR2 U17 Q5 R18 RN1	
' '	

FIGURE 8-6. DATA OUTPUT UNIT PCB ASSEMBLY, -02 OPTION (8800A-1005)