ШАД. Хэндбук поступающего

Автор: Даниил Скороходов

@neuralspeedster

20.09.2025

Содержание

A.	Алго	ебра	4
	A.1.	Подстановки	4
		А.1.1. Умножение подстановок	4
		А.1.2. Циклы и транспозиции	5
		А.1.3. Чётность подстановки	6
	A.2.	Комплексные числа	7
		А.2.1. Геометрическая интерпретация	7
		А.2.2. Формы записи	9
		А.2.3. Об умножении комплексных чисел	. 10
		А.2.4. Извлечение корней	. 11
		А.2.5. Корни из единицы	. 12
	A.3.	Системы линейных уравнений	. 13
	A.4.	Линейная зависимость и ранг	. 14
B.	Мат	ематический анализ	. 15
C.	Комбинаторика		
	C.1.	Основные правила комбинаторики	. 16
		С.1.1. Првила суммы и произведения	. 16
		С.1.2. Принцип Дирихле	. 17
		С.1.3. Примеры	. 18
	C.2.	Множества	. 19
		С.2.1. Операции на множествах	. 19
		С.2.2. Свойства бинарных операций над множествами	. 19
		С.2.3. Кортеж	. 19
		С.2.4. Декартово произведение двух множеств	. 20
		С.2.5. Круги Эйлера и формула включений и исключений	. 20
	C.3.	Перестановки, сочетания и размещения	. 21
D.	Teop	рия вероятностей	. 22
	D.1.	Основные понятия	. 22
		D.1.1. Операции над событиями	. 22
		D.1.2. Аксиомы вероятности	. 23
		D.1.3. Следствия из Аксиом	. 24
E.	Алго	оритмы и структуры данных && программирование	. 25
	E.1.	Основные понятия	. 25
	E 2	Анализ сложности и эффективности структур данных	. 25

		Е.2.1. О-символика	. 25
	E.3.	Дополнительные сведения	. 26
		Е.3.1. Метод двух указателей	. 26
F.	Ана	ализ ланных	. 27

А. Алгебра

Здесь много базы!

А.1. Подстановки

Пусть Ω - конечное множество из n элементов. Удобно считать, что $\Omega = \{1, 2, ..., n\}$. Зададим множество всех биективных преобразований $\Omega \to \Omega$:

$$S = S_n(\Omega) = \{ \sigma : \Omega \to \Omega \mid \sigma - \text{биективно} \}$$
 (1)

Элементы множества S называются nodcmaнoвками(или nepecmahoвками) множества Ω .

Развёрнутая запись подстановки $\pi: i \to \pi(i) \,\, \forall i = 1, 2, ..., n$ имеет вид:

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix} \tag{2}$$

Подстановка $e=e_{\Omega}=\left(egin{smallmatrix} 1&2&\dots&n\\ 1&2&\dots&n \end{matrix}
ight)$ называется единичной подстановкой.

А.1.1. Умножение подстановок

Пусть $\pi, \sigma \in S$. Тогда их произведение $\pi \sigma$ находится из общего определения композиции преобразований:

$$(\pi\sigma)(i) = \pi(\sigma(i)) \tag{3}$$

Пусть, например, $\pi=\begin{pmatrix}1&2&3&4\\2&3&4&1\end{pmatrix}$ и $\sigma=\begin{pmatrix}1&2&3&4\\4&3&2&1\end{pmatrix}$. Тогда:

$$(\pi\sigma)(1) = \pi(\sigma(1)) = \pi(4) = 1$$
 (4)

$$(\pi\sigma)(2) = \pi(\sigma(2)) = \pi(3) = 4 \tag{5}$$

$$(\pi\sigma)(3) = \pi(\sigma(3)) = \pi(2) = 3$$
 (6)

$$(\pi\sigma)(4) = \pi(\sigma(4)) = \pi(1) = 2$$
 (7)

Таким образом, $\pi\sigma=\begin{pmatrix}1&2&3&4\\1&4&3&2\end{pmatrix}$. Заметим, что вообще говоря, $\pi\sigma\neq\sigma\pi$. Имеем:

Свойства произведения подстановок:

- 1. Ассоциативность: $\forall \alpha, \beta, \gamma \in S_n : \alpha(\beta\gamma) = (\alpha\beta)\gamma.$
- 2. Единичный элемент: $\exists e \in S_n : \forall \alpha \in S_n \alpha e = e \alpha.$
- 3. Обратная подстановка: $\forall \alpha \in S_n \exists \alpha^{-1} \in S_n : \alpha \alpha^{-1} = \alpha^{-1} \alpha = e.$

Порядок группы подстановок или же попросту мощность множества подстановок равна факториалу количества элементов Ω . Действительно, для каждого из n элементов множества Ω можно выбрать одно из n мест, затем для оставшихся n-1 элементов — одно из n-1 мест и так далее. В итоге получаем:

Card
$$S_n = n(n-1)(n-2)...1 = n!$$
 (9)

А.1.2. Циклы и транспозиции

Циклом длины $m \leq n$ множества Ω называется такая подстановка $\sigma \in S_n$, что $\sigma(i) = (i+1) \ \forall i=1,2,...,(m-1)$ и $\sigma(m)=1$, а все элементы Ω , не указанные перечислением, остаются на своих местах. Т. е. $\forall k \notin \{1,...,m\}: \sigma(k)=k$.

Примечание: элементы цикла приведены условно как $\{1,...,m\}$.

Транспозицией называется цикл длины 2. Записывается как $au=(i\ j)$, где $i\ u\ j-$ элементы, которые меняются местами.

Исходя из общего определения цикла, очевидно, что транспозиция оставляет неподвижными все элементы, кроме двух указанных.

Th. 1 (О разложении перестановок). Любая подстановка $\pi \in S_n \setminus \{e\}$ может быть представлена в виде произведения циклов.

Доказательство: Пусть $\pi = \begin{pmatrix} 1 & 2 & \dots & n \\ \pi(1) & \pi(2) & \dots & \pi(n) \end{pmatrix}$. Разобьём множество Ω на непересекающиеся циклы. Для этого будем рассматривать последовательности элементов, которые переходят друг в друга под действием подстановки π .

Следствие 1. Любая подстановка может быть разложена в произведение транспозиций.

Доказательство: Разложим подстановку $\pi=\pi_1\pi_2...\pi_k$, где $\pi_1,\pi_2,...,\pi_k$ — циклы. Каждый цикл π_j можно представить в виде произведения транспозиций, например, так: $\begin{pmatrix} 1 & 2 & ... & m \end{pmatrix} = \begin{pmatrix} 1 & l \end{pmatrix} \begin{pmatrix} 1 & l-1 \end{pmatrix} ... \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix}$.

Индуктивное определение степени подстановки. Пусть $\pi \in S_n$. Тогда:

$$\pi^{s} = \begin{cases} \pi(\pi^{s-1}), & \text{если } s > 0 \\ e, & \text{если } s = 0 \\ \pi^{-1}\left(\left(\pi^{-1}\right)^{-s-1}\right), & \text{если } s < 0 \end{cases}$$
 (10)

Вернёмся к примеру $\pi=\begin{pmatrix}1&2&3&4\\2&3&4&1\end{pmatrix}$ и $\sigma=\begin{pmatrix}1&2&3&4\\4&3&2&1\end{pmatrix}$. Здесь $\pi-$ цикл длины 4, а σ раскладывается в произведение двух транспозиций: $\sigma=\begin{pmatrix}1&4\\2&3\end{pmatrix}$.

$$\sigma^2 = (1 \ 3)(2 \ 4), \ \sigma^4 = (\sigma^2)^2 = e, \ \pi^2 = e$$

Aлгебpa 5

А.1.3. Чётность подстановки

Пусть подстановка $\pi \in S_n$ раскладывается на множители $\pi = \tau_1 \tau_2 ... \tau_k$, где τ_j транспозиции.

Знаком(или чётностью) подстановки называется число

$$\varepsilon_{\pi} = (-1)^k \tag{11}$$

Тh. 2: Чётность подстановки не зависит от выбора разложения на транспозиции.

Th. 2.1 (О знаке произведения):

$$\varepsilon_{\alpha\beta} = \varepsilon_{\alpha}\varepsilon_{\beta} \tag{12}$$

Th. 3: Количество чётных подстановок равно количеству нечётных и равно $\frac{n!}{2}$.

А.2. Комплексные числа

Комплексным числом называется пара действительных чисел (a, b).

$$\mathbb{C} = \{ (a, b) \mid a, b \in \mathbb{R} \} \tag{13}$$

Если z = (a, b), то

$$a = \Re(z) \tag{14}$$

$$b = \Im(z) \tag{15}$$

a называется действительной частью комплексного числа $z,\,b$ — мнимой частью.

Для комплексных чисел операции сложения и умножения определяются так:

1.
$$(a,b) + (c,d) = (a+c,b+d)$$

$$2. \ (a,b)(c,d)=(ac-bd,ad+bc)$$

Заметим, что $(a,0)=a \ \forall a \in \mathbb{R}$. Так что $\mathbb{R} \subset \mathbb{C}$.

Мнимая единица. $(0,1)^2=(0,1)(0,1)=(0\cdot 0-1\cdot 1,0\cdot 1+1\cdot 0)=(-1,0)=-1.$ Число (0,1) принято обозначать i и называть мнимой единицей. Итак,

$$i^2 = -1 \tag{16}$$

Стандартное обозначение для комплексного числа z = (a, b):

$$z = a + bi (17)$$

Для произвольных комплексных чисел нельзя корректно ввести бинарное отношение порядка(<).

А.2.1. Геометрическая интерпретация

Комплексному числу можно сопоставить точку в двумерном пространстве с декартовыми координатами (a,b). По оси абсцисс откладывается действительная часть, по оси ординат — мнимая.

Aлгебра 7

Рис. 1 - комплексная плоскость

Операция сопряжения. Число $\overline{z}=a-bi$ называется сопряжённым числу z=a+bi. Операция сопряжения соотвествует симметрии $S_{\mathfrak{R}}$ относительно действительной оси.

Заметим, что $\mathfrak{I}(z\overline{z})=0\Leftrightarrow z\overline{z}\in\mathbb{R}$

Модуль комплексного числа. Величина $|z| = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$ называется модулем z.

Аргумент комплексного числа. Величина $\arg(z)=\varphi$, где $\varphi\in(-\pi;\pi]$ — ориентированный угол между радиус-вектором z и положительным направлением оси абсцисс называется *аргументом комплексного числа*. Аргумент числа (0,0) не определён.

Неравенство треугольника в комплексных числах. $\forall z_1, z_2 \in \mathbb{C}:$

$$|z_1 + z_2| \le |z_1| + |z_2| \tag{18}$$

(Доказывается алгебраическими преобразованиями или использованием неравенства Коши-Буняковского-Шварца)

Переход в полярные координаты. Пусть z = x + yi Сделаем замену:

$$\begin{cases} r = |z| = \sqrt{x^2 + x^2} \\ \theta = \arg(z) \end{cases}$$
 (19)

Главными называются значения аргумента из полуинтервала $(-\pi;\pi]$.

Явное выражение для главного значения аргумента.

$$Arg(z) = 2 \arctan\left(\frac{y}{x + \sqrt{x^2 + y^2}}\right) \tag{20}$$

Доказательство: Пусть комплексное число (x,y) имеет аргумент θ . Вписанный угол, опирающийся на дугу меры θ , равен половине центрального угла θ . Тогда из прямоугольного треугольника(см. рисунок).

$$\operatorname{tg}\left(\frac{\theta}{2}\right) = \frac{y}{x+r} \tag{21}$$

Это и эквивалентно $\theta = 2 \operatorname{arctg} \left(\frac{y}{x+r} \right)$. \blacksquare

А.2.2. Формы записи

1. Алгебраическая:

$$z = x + yi \tag{22}$$

2. Тригонометрическая:

$$z = r(\cos\varphi + i\sin\varphi) \tag{23}$$

3. Показательная:

$$z = re^{i\varphi} \tag{24}$$

Показательная форма есть просто следствие формулы Эйлера:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi \tag{25}$$

Доказательство самой формулы Эйлера вытекает из следующих трёх разложений. $\forall z \in \mathbb{C}$

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}$$
 (26)

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$
 (27)

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
 (28)

Подставим в разложение экспоненты $z=i\varphi$, где $\varphi\in\mathbb{R}$ и учтем следующие тождества: $i^2=-1,\ i^3=-i,\ i^4=1,\ i^5=i.$ Вообще говоря, $i^n=i^{n-4}.$ Отсюда и следует требуемое. \blacksquare

А.2.3. Об умножении комплексных чисел

Алгебраическое умножение комплексных чисел не столь удобно, особенно при возведении в степень.

Пусть даны два комплексных числа $z_1=r_1(\cos\varphi_1+i\sin\varphi_1)$ и $z_2=r_2(\cos\varphi_2+i\sin\varphi_2)$. Тогда их произведение можно записать в виде:

$$\begin{split} z_1 z_2 &= r_1 r_2 (\cos \varphi_1 + i \sin \varphi_1) (\cos \varphi_2 + i \sin \varphi_2) = \\ &= r_1 r_2 (\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 + i (\sin \varphi_1 \cos \varphi_2 + \cos \varphi_1 \sin \varphi_2)) = \\ &= r_1 r_2 (\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2)) \end{split} \tag{29}$$

Итак,

$$\begin{cases} |z_1 z_2| = |z_1| |z_2| \\ \arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \end{cases} \tag{30}$$

Исходя из этого, можно быстро возводить комплексные числа в произвольную натуральную степень.

Формула Муавра. $\forall z = r(\cos \varphi + i \sin \varphi) \in \mathbb{C}, n \in \mathbb{N}$:

$$z^{n} = r^{n}(\cos(n\varphi) + i\sin(n\varphi)) \tag{31}$$

Доказательство: докажем по индукции.

- 1. База: n=1. Тогда $z^1=z=r(\cos\varphi+i\sin\varphi)$. Это уже получено. Для уверенности можем проверить случай n=2. Легко видеть, что это следствие (30) для $z=z_1=z_2$.
- 2. Предположение индукции. Пусть верно для $n\in\mathbb{N}$: $z^n=r^n(\cos(n\varphi)+i\sin(n\varphi))$
- 3. Шаг индукции. Докажем для n+1. Тогда

$$z^{n+1} = z^n z = r^n r(\cos(n\varphi + \varphi) + i\sin(n\varphi + \varphi)) =$$

$$= r^{n+1}(\cos((n+1)\varphi) + i\sin((n+1)\varphi))$$
(32)

Здесь мы снова использовали (30). Таким образом, формула верна для $n+1\Rightarrow$ она верна $\forall n\in\mathbb{N}.$

Дополнительно. Легко видеть, что умножение $z_1=r_1(\cos\varphi_1+i\sin\varphi_1)$ на $z_2=r_2(\cos\varphi_2+i\sin\varphi_2)$ задаёт композицию поворота $R_o^{\varphi_2}$ и гомотетии $H_O^{r_2}$ точки z_1 на плоскости $\mathbb C$. Полученное преобразование $\mathbb R^2\to\mathbb R^2$ называется поворотной гомотетиней: $H_O^{r_2,\varphi_2}=H_O^{r_2}\!\circ\! R_O^{\varphi_2}$.

А.2.4. Извлечение корней

Алгебраическим корнем степени n>1 числа $z\in\mathbb{C}$ называется множество $\Omega=\{w\mid w^n=z\mid w\in\mathbb{C}, n\in\mathbb{N}\}$ и обозначается $\sqrt[n]{z}$.

$$\forall z \in \mathbb{C} : \operatorname{Card}(\sqrt[n]{z}) = n.$$

Выведем формулу для корней из комплексного числа $z=r(\cos\varphi+i\sin\varphi).$

Пусть
$$\sqrt[n]{z} = \{w_k \mid w_k^n = z \mid k = 0, 1, ..., n-1\}.$$

- 1. Очевидно, что $|w_k|=\sqrt{r}$, где $\sqrt{r}-$ арифметический квадратный корень из действительного числа r. И правда, по формуле Муавра $|z|=|w_k|^n$.
- 2. Пусть $\, \varphi_k = \arg(w_k) .$ Тогда по формуле Муавра: $n \varphi_k = \varphi + 2\pi k .$ Для всех $k \in \{k_0+i \mid i=0,1,...(n-1)\}$ будут получаться все n корней. Поэтому для удобства полагают $k_0=0.$

Итак, доказана формула корней числа $z=r(\cos\varphi+i\sin\varphi)\ \forall k\in\{0,1,...,n-1\}$:

$$w_k = \sqrt{r} \left(\cos \left(\frac{\varphi}{n} + 2\pi \frac{k}{n} \right) + i \sin \left(\frac{\varphi}{n} + 2\pi \frac{k}{n} \right) \right) \tag{33}$$

Все корни из числа z лежат на вершинах правильного n-угольника, вписанного в окружность с центром в начале координат и радиусом \sqrt{r} .

Это легко видеть, исходя из того, что у всех корней одинаковый модуль, и каждый следующий получается из предыдущего поворотом на один и тот же угол $\frac{2\pi}{n}$.

Рис. 2 — корни 5 степени из z=4+4i

А.2.5. Корни из единицы

Положим z=1. Тогда корни степени n выражаются так:

$$\sqrt[n]{1} = \varepsilon_k = \cos\left(\frac{2\pi k}{n}\right) + i\sin\left(\frac{2\pi k}{n}\right) \tag{34}$$

$$\forall k \in \{0, 1, ..., n-1\}.$$

Все корни есть вершины правильного n-угольника, вписанного в окружность единичного радиуса. Её уравнение $z\overline{z}=1$.

Aлzебрa 12

А.3. Системы линейных уравнений

А.4. Линейная зависимость и ранг

В. Математический анализ										

С. Комбинаторика

В этом разделе рассматриваются основные понятия и тождества комбинаторики, а так же основы теории множеств и теории графов.

С.1. Основные правила комбинаторики

С.1.1. Првила суммы и произведения

Правило суммы. Если элемент множества A можно выбрать m способами, а элемент множества B n способами, то выбор «либо A, либо B» может быть сделан m+n способами, при условии, что множества A и B не пересекаются.

Доказательство: Количество способов выбрать «либо A, либо B» равно мощности множества $A \cup B$. По условию $A \cap B = \emptyset$, поэтому надо доказать лемму:

$$A \cap B = \bigotimes \Rightarrow |A \cup B| = |A| + |B| \tag{35}$$

Доказательство леммы: пусть $A=\{a_1,...,a_m\}$ и $B=\{b_1,...,b_n\}$ Тогда

$$A \cup B = \{a_1, ..., a_m, b_1, ..., b_n\} \tag{36}$$

Здесь существенно использовано то, что $A\cap B=\emptyset$, так как тогда $\forall a\in A,\ \forall b\in B:\ a\neq b.$ Следовательно, $|A\cup B|=m+n.$

По лемме, $|A \cup B| = |A| + |B|$, что и требовалось доказать. \blacksquare

Правило произведения. Если объект A можно выбрать m способами и для каждого выбора A объект B можно выбрать n способами, то количество способов выбрать n упорядоченные пары n0 равно n1.

Доказательство: Переформулируем доказываемое утверждение так: пусть $|A|=m,\ |B|=n.$ Тогда надо доказать, что мощность декартова произведения множеств равна произвдению мощностей сомножителей:

$$|A \times B| = m \cdot n \tag{37}$$

. Перед доказательством сформулируем важную лемму, которая доказана в разделе, связанном с теорией множеств. Лемма о дистрибутивности декартова произведения относительно объединения множеств:

$$A \times (B \cup C) = (A \times B) \cup (A \times C) \tag{38}$$

- . Докажем исходное утверждение индукцией по мощности второго сомножителя:
- 1. База индукции.

1.1.
$$n=0:A\times B=A\times \boxtimes=\boxtimes$$
. Но $|\boxtimes|=0=m\cdot n$.
1.2. $n=1:A\times B=A\times \{b_1\}=\{(a_1,b_1),...,(a_m,b_1)\}$. Легко видеть, что

- 2. Предположение индукции. Пусть верно для некоторого $n\in\mathbb{N}$, что $\forall A,B:\ |A imes B|=m\cdot n.$
- 3. Шаг. Докажем для n+1 на основе предположения индукции. Пусть множество $B_{n+1} = B_n \cup \{b_{n+1}\} \ \ \text{и} \ \ |B_n| = n.$

$$A\times B_{n+1}=A\times \left(B_n\cup \left\{b_{n+1}\right\}\right)=A\times B_n\cup A\times \left\{b_{n+1}\right\} \tag{39}$$

Тогда

$$|A \times B_{n+1}| = |A \times B_n| + |A \times \{b_{n+1}\}| = m \cdot n + m \cdot 1 = m \cdot (n+1)$$
 (40)

Шаг индукции верен, поэтому утверждение доказано. ■

 $|\{(a_1,b_1),...,(a_m,b_1)\}|=m=m\cdot 1.$

Обобщённые правила суммы и произведения:

- 1. Обобщённое правило суммы. Пусть даны попарно непересекающиеся множества $A_1,A_2,...A_n$. Число способов сделать выбор « A_1 или A_2 ...или A_n » равно $\sum_{i=1}^n |A_i|$. Доказывается по индукции.
- 2. Обобщённное правило произведения. Пусть даны множества $A_1,A_2,...A_n$. Число способов выбрать упорядоченный кортеж $(a_1,...,a_n)\mid a_i\in A_i$ из n элементов равно $\prod_{i=1}^n |A_i|$. Доказывается по индукции.

Пример использования обобщённого правила произведения. Докажем, что порядок группы перестановок $S_n=S(\Omega)$ равен n!, где $n=|\Omega|$. Для первой позиции образа мы можем выбрать любой из n прообразов. Далее для второй позиции уже (n-1) прообраз и т. д. На последнюю позицию можно выбрать единственный элемент множества Ω . Имеем: $P_n=n\cdot (n-1)\cdot \ldots \cdot 1$

С.1.2. Принцип Дирихле

Обозначим
$$\lceil x \rceil = \min\{a \mid a \geq x, \ a \in \mathbb{Z}\}$$

Принцип Дирихле. Если n объектов разместить в m ящиках и n>m, то существует хотя бы один ящик, в котором находится не менее $\left\lceil \frac{n}{m} \right\rceil$ объектов.

Доказательство. Обозначим $k = \left\lceil \frac{n}{m} \right\rceil$ и предположим противное: во всех ящиках лежит меньше k объектов. Тогда для любого ящика, в нем находится не более k-1 объектов. Общее число объектов тогда не превосходит $m \cdot (k-1)$, т. е. имеет место

неравенство $n \leq m \cdot (k-1)$. Но по свойству округления вверх: $k-1 = \left \lceil \frac{n}{m} \right \rceil - 1 < \frac{n}{m}$. Имеем:

$$\begin{cases} n \le m \cdot (k-1) \\ n > m \cdot (k-1) \end{cases} \tag{41}$$

Получили противоречие, значит противное неверно и исходное утверждение доказано. \blacksquare

С.1.3. Примеры

С.2. Множества

«Элемент a принадлежит множеству A» обозначают $a \in A$. Отрицание этого утверждения обозначается $a \notin A$.

Множество B называется подмножеством A, если $\forall x \in B: \ x \in A$. Обозначают $B \subset A$.

Множества A и B называаются равными, если $A\subset B\wedge B\subset A$. Обозначают A=B.

Пустым множеством называется множество, не содержащее ни одного элемента. Оно является подмножеством любого множества. Обозначается \varnothing . $\forall A: \varnothing \subset A$

Мощностью конечного множесвва $A = \{a_1, a_2, ..., a_n\}$ называется количество элементов в нём: |A| = n.

С.2.1. Операции на множествах

Основные бинарные операции над множествами определены так:

- 1. Объединение. $A \cup B = \{x \mid x \in A \lor x \in B\}$
- 2. Пересечение. $A \cap B = \{x \mid x \in A \land x \in B\}$
- 3. Разность. $A \setminus B = \{x \mid x \in A \land x \notin B\}$
- 4. Симметрическая разность. $A \triangle B = (A \setminus B) \cup (B \setminus A)$

С.2.2. Свойства бинарных операций над множествами

- 1. Коммутативность объедиения и пересечения:
 - $A \cup B = B \cup A$
 - $A \cap B = B \cap A$.
- 2. Ассоциативность объедиения и пересечения:
 - $(A \cup B) \cup C = A \cup (B \cup C)$
 - $(A \cap B) \cap C = A \cap (B \cap C)$.
- 3. Дистрибутивность объедиения и пересечения:
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

С.2.3. Кортеж

Кортежем называется упорядоченная п-ка элементов. Обозначается как

$$(a_1, a_2, ..., a_n)$$
 или $\langle a_1, a_2, ..., a_n \rangle$ (42)

.

Более строго, можно индуктивно сопоставить кортежи множествам:

•
$$\varnothing \leftrightarrow \langle \rangle$$

•
$$\{a_1\} \leftrightarrow \langle a_1 \rangle$$

$$\bullet \ \{a_1,\{a_1,a_2\}\} \leftrightarrow \langle a_1,a_2\rangle$$

Тогда:

$$\bullet \ \{a_1,a_2,...,a_n\} \leftrightarrow \langle a_1,a_2,...,a_n\rangle \underset{\text{def}}{=} \langle \langle a_1,a_2,...,a_{n-1}\rangle,a_n\rangle$$

Альтернативно, можно дать такое определение:

$$\langle a_1, a_2, ..., a_n \rangle = f: [n] \to \{a_1, a_2, ..., a_n\} \tag{43}$$

С.2.4. Декартово произведение двух множеств

С.2.5. Круги Эйлера и формула включений и исключений

С.3. Перестановки, сочетания и размещения

Существуют две схемы выбора m элементов из множества мощности $n \colon 0 < m \le n$: с повторениями и без повторений.

В первой схеме выбранный элемент не возвращается в множество, а во второй схеме на каждом шаге элемент должен быть возвращён в множество.

Перестановка. Определение перестановки было дано в разделе 1.1.

Число всех перестановок длины n равно:

$$P_n = n! (44)$$

Размещением из n элементов по m называют любое упорядоченное подмножество данного множества, содержащего n элементов.

Из определения вытекает, что размещения это комбинации, состоящие из m элементов, которые отличаются друг от друга либо составом, либо порядком расположения элементов.

Число всех размещений из n по m:

$$A_n^m = \frac{n!}{(n-m)!} \tag{45}$$

D. Теория вероятностей

D.1. Основные понятия

Случайное событие — событие, про которое нельзя точно сказать, произойдёт оно или нет. Обозначают буквами латинского алфавита: A, B, C...

Достоверным называется событие, которое происходит всегда. Обозначается Ω .

Невозможным называется событие, которое не может произойти. Обозначается ⊗.

Вероятность случайного события это численная мера объективной возможности наступления данного события. Обозначение: P(A) — вероятность события A.

D.1.1. Операции над событиями

 \overline{A} — событие, противоположное А. Заключается в том, что событие A не произошло.

 $A\cap B$ — произведение событий. Это событие, которое заключается в совместном происхождении событий A,B.

Если $A \cap B = \emptyset$, то события A, B называются несовместными.

Вместо $A \cap B$ иногда пишут AB.

 $A \cup B$ — объединение или сумма событий. Заключается в том, что хотя бы одно из $\{A,B\}$ верно.

Закон де Моргана в терминах событий:

$$\overline{A \cup B} = \overline{A} \cap \overline{B} \tag{46}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B} \tag{47}$$

Диаграммы Венна

Свойства противоположного события:

1.
$$\overline{\overline{A}} = A$$

$$2. \ A \cap \overline{A} = \bigotimes$$

3.
$$A \cup \overline{A} = \Omega$$

Свойства бинарных операций над событиями.

- 1. Коммутативность:
 - $A \cap B = B \cap A$;
 - $A \cup B = B \cup A$.
- 2. Ассоциативность:

- $A \cap (B \cap C) = (A \cap B) \cap C$;
- $A \cup (B \cup C) = (A \cup B) \cup C$.
- 3. Дистрибутивность.
 - $A \cap (B \cup C) = (A \cap B) \cup (A \cap B)$;
 - $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

Операция включения

 $A\subset B$ — событие, которое заключается в том, что происхождение B влечёт A.

Разность и симметрическая разность.

Разность событий A и B определяется как:

$$A \setminus B = A \cap \overline{B} \tag{48}$$

Симметрической разностью называется бинарная операция над событиями, такая, что

$$A \triangle B = (A \cup B) \cap \left(\overline{A} \cup \overline{B}\right) \tag{49}$$

Отрицание симметрической разности:

$$\overline{A \triangle B} = \overline{A} \triangle B = A \triangle \overline{B} = \overline{A} \triangle \overline{B} \tag{50}$$

Поглощение.

- 1. $A \cup (A \cap B) = A$
- $2. \ A \cap (A \cup B) = A$
- 3. $\overline{A} \cup (A \cap B) = \overline{A} \cup B$
- 4. $\overline{A} \cap (A \cup B) = \overline{A} \cap B$

Декомпозиция бинарных операций.

- 1. $A \cup B = A \triangle B \triangle AB$
- 2. $A \setminus B = A \setminus (AB)$

D.1.2. Аксиомы вероятности

- 1. $\forall A \ P(A) \ge 0$ (неотрицательность);
- 2. $P(\Omega) = 1$ (Вероятность достоверного события);
- 3. $\forall A, B: A \cap B = \emptyset: \ P(A \cup B) = P(A) + P(B).$ (Аддитивное свойство вероятности).

D.1.3. Следствия из Аксиом

Теорема о вероятности противоположных событий.

$$P(A) + P(\overline{A}) = 1 \tag{51}$$

.

Доказательство: так как

$$\begin{cases} A \cup \overline{A} = \Omega \\ A \cap \overline{A} = \emptyset \end{cases} \tag{52}$$

то из аксиом 2 и 3: $P\!\left(A\cup\overline{A}\right)=P(\Omega)=1.$ \blacksquare

Следствие из теоремы.

Вероятность объединения n попарно независимых событий.

$$\begin{split} \forall A_1,A_2,...A_n: \forall i,j: \ i\neq j: A_i\cap A_j &= \varnothing: \\ P\biggl(\bigcup_{1\leq i\leq n}A_i\biggr) &= \sum_{i=1}^n P(A_i) \end{split} \tag{53}$$

Доказательство: по индукции. n=2: это аксиома 3.

Пусть верно для $n\in\mathbb{N}.$ Тогда $P\Bigl(\bigcup_{1\leq i\leq n}A_i\Bigr)=\sum_{i=1}^nP(A_i)$ Докажем для n+1:

$$\begin{split} P\bigg(\bigcup_{1\leq i\leq n+1}A_i\bigg) &= P\bigg(\left[\bigcup_{1\leq i\leq n}A_i\right]\cup A_{n+1}\bigg) = P\bigg(\bigcup_{1\leq i\leq n}A_i\bigg) + \\ &+ P\big(A_{n+1}\big) = \sum_{i=1}^n P(A_i) + P\big(A_{n+1}\big) = \sum_{i=1}^{n+1} P(A_i) \ \blacksquare \end{split} \tag{54}$$

Е. Алгоритмы и структуры данных && программирование

Е.1. Основные понятия

Алгоритм — точное или формализованное описание вычислительного процесса, ведущее от входных данных к искомому результату.

Структуры данных — множество элементов данных и связи между ними.

Физические данные существуют в памяти машины, а теоретические нет.

Элементарные данные не могут быть разделены на более мелкие части. Если же данные могут быть разделены на логически более мелкие части, то они называются сложными.

Е.2. Анализ сложности и эффективности структур данных

Должны быть некие критерии хорошего алгоритма.

Два основных критерия, используемых на практике:

- 1. Быстродействие;
- 2. Объём потребляемой памяти.

Прямое измерение времени работы программной реализации измеряет далеко не только быстродействие алгоритма. На время выполнения влияют так же способ реализации, умения программиста, среда разработки и мощность компъютера.

Измеренеия скорости и памяти носят теоретический характер.

- T(n) функция теоретического времени работы алгоритма.
- V(n) функция теоретической пространственной сложности алгоритма.

Получить точную формулу нельзя, можно только получить скорость и порядок скорости изменения времени выполнения.

Е.2.1. О-символика

$$f(n) = O(g(n)) \Leftrightarrow \exists N, C > 0 : \forall n > N : |g(n)| \le C \cdot |f(n)| \tag{55}$$

Е.3. Дополнительные сведения

Е.З.1. Метод двух указателей

Задача на массиве a[n] решаема методом двух указателей \Leftrightarrow (Предикат из условия $P(x)\equiv 1:\ \forall x\in [L,R]\Rightarrow P(X)\equiv 1 \forall x\in [L',R']\subset [L,R])$

F. Анализ данных

Анализ данных 27