Cosmology Assignment 2

Daniel Herman: daniel.herman@astro.uio.no October 20, 2017 (Code included for exercises 1 and 2 at https://github.com/hermda02/Cosmology-Assignment-2) **Exercise 1.** Compute and plot the Fourier conjugate of the top-hat smoothing function where W(x) = 1 when $x \leq |R|$ and W(x) = 0 elsewhere.

The computed Fourier transform is plotted in figure 1. The number of harmonics and FWHM of the transform are shown on the plots.

Figure 1: The Fourier transform of the top-hat for 5, 25, and 100 harmonics

Exercise 2.

To numerically solve the overdensity random walk, we utilize a recursive algorith where the probability distribution we draw from changes with the smoothing factor S_c , which we decrease by ϵ at the end of each step. We define $S_c = 2\pi/k$ and $\sigma^2(S_c) = \pi/S_c^4$ where $\sigma^2(S_c)$ is the variance of the function P(k) = k. We start with a radius S_c such that $\sigma^2(S_c) < 10^{-4}$. So, we start with k = 0.47, giving us an inital $S_c = 13.368$. We set $\epsilon = 0.03$. We stop taking random steps when $S_c = 1.0$, or after 4000 steps. We see the densities in figure. The probability distribution as given in equation 1 is over-plotted for comparison.

Figure 2: The over/under-densities for 10^5 random walks with k = 0.47 and $\epsilon = 0.03$.

$$P(\delta|M) = \frac{1}{\sqrt{2\pi}\sigma(M)} \exp\left[-\frac{\delta^2}{2\sigma^2(M)}\right]$$
 (1)

Removing all random walks where δ becomes greater than δ_{crit} at any point along the walk, we see the following histogram of final δ values. The analytical expression for the distribution shown for δ provided that δ was never larger than δ_{crit} is given by equation 2 and is over-plotted for comparison.

Figure 3: All random walks in which δ is less than δ_{crit} for every step.

$$P_{nc}(\delta|M) = P(\delta|M) - P([2\delta_{crit} - \delta]|M) = \frac{1}{\sqrt{2\pi}\sigma(M)} \left(\exp\left[-\frac{\delta^2}{2\sigma^2(M)}\right] - \exp\left[-\frac{[2\delta_{crit} - \delta]^2}{2\sigma^2(M)}\right]\right)$$
(2)

Exercise 3.

(1) We see in Exercise 2 that the probability that any perturbation never becomes greater than δ_{crit} is given by the difference between the two probability distribution functions (PDFs). For a mass at point \mathbf{x} to be embedded within a collapsed object of mass > M, the mass at \mathbf{x} must be in an overdense region, where $\delta > \delta_{crit}$. Therefore, the probability $P(\delta > \delta_{crit}|M) = P(>M)$ is equal to all the probability for all possible values of δ (1) subtracted by the total probability that δ is never greater than δ_{crit} (given by the integral over δ of equation 2). So we see:

$$P(>M) = 1 - \int_{-\infty}^{\delta_{crit}} d\delta P_{nc}(\delta|M)$$
 (3)

The probability that a mass at \mathbf{x} is within a collapsed object of mass M is the total probability of all δ 's given mass M (i.e. 1) minus the probability that all δ 's given a mass M never reach a value greater than δ_{crit} . If a δ becomes greater than δ_{crit} , then that δ will collapse, or be a part of a collapsed object. As an expression, this becomes

$$P(>M) = 1 - \int_{-\infty}^{\delta_{crit}} d\delta P_{nc}(\delta|M) \tag{4}$$

(2) Show that: $P(>M) = 2P(\delta > \delta_{crit}|M) = 1 - \text{erf}(\nu/\sqrt{2})$ where $\nu = \delta/\sigma(M)$.

$$\begin{split} P(>M) = & 1 - \int_{-\infty}^{\delta_{crit}} d\delta P_{nc}(\delta|M) = P(\delta > \delta_{crit}|M) \\ = & 1 - P_{nc}(\delta < \delta_{crit}|M) \\ = & 1 - P(\delta < \delta_{crit}|M) - P([2\delta_{crit} - \delta] < \delta_{crit}|M) \\ = & 1 - (P(\delta < \delta_{crit}|M) - P([\delta_{crit} - \delta] < 0|M)) \\ = & 1 - (P(\delta < \delta_{crit}|M) - P(\delta > \delta_{crit}|M)) \\ = & 1 - (1 - P(\delta > \delta_{crit}|M)) + P(\delta > \delta_{crit}|M) \\ = & 2P(\delta > \delta_{crit}|M) \\ = & 2(\frac{1}{\sqrt{2\pi}\sigma(M)}) \Big(\int_{0}^{\infty} d\delta e^{-\frac{\delta^{2}}{2\sigma^{2}(M)}} - \int_{\delta_{crit}}^{\infty} d\delta e^{-\frac{\delta^{2}}{2\sigma^{2}(M)}} \Big) \end{split}$$

The last line of the above expression is brings us to

$$1 - erf(\nu/\sqrt{2}) \tag{5}$$