and ten amino acid residues, inclusive, said peptide being an analog of one of the following naturally occurring peptides terminating at the carboxy-terminus with a Met residue: (a) litorin; (b) the ten amino acid carboxy-terminal region of mammalian gastrin releasing peptide; and (c) the ten amino acid carboxy-terminal region of amphibian bombesin; said therapeutic peptide being of the formula:

$$R_1$$
 $A^0-A^1-A^2-Trp-A^4-A^5-A^6-A^7-W$
 R_2

wherein

- A^0 = Gly, Nle, α -aminobutyric acid, or the D-isomer of any of Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal, or is deleted;
- A^1 = the D or L-isomer of any of pGlu, Nle, or α -aminobutyric acid, or the D-isomer of any cf Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), F_5 -Phe, Trp, Cys, or β -Nal, or is deleted;
- $A^2 = pGlu$, Gly, Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO_2 , OH, H or CH_3), Trp, Cys, B-Nal, His, 1-methyl-His, or 3-methyl-His;
- A^4 = Ala, Val, Gln, Asn, Gly, Leu, Ile, Nle, α -aminobutyric acid, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

 $A^5=$ Gln, Asn, Gly, Ala, Leu, Ile, Nle, α -aminobutyric acid, Met, Val, p-X-Phe (where X = F, Cl, Br, OH, H or CH₃), Trp, Thr, or β -Nal;

 A^6 = Sar, Gly, or the D-isomer of any of Ala, N-methyl-Ala, Val, Gln, Asn, Leu, Ile, Met, p-X-Phe (where X = F, Cl, Br, NO₂, OH, H or CH₃), Trp, Cys, or β -Nal;

 A^7 = 1-methyl-His, 3-methyl-His, or His; provided that, if A^0 is present, A^1 cannot be pGlu; further provided that, if A^0 or A^1 is present, A^2 cannot be pGlu; further provided that, when A^0 is deleted and A^1 is pGlu, R_1 must be H and R_2 must be the portion of Glu that forms the imine ring in pGlu; and further provided that, W can be any one of the following:

(I):
$$\begin{array}{c}
Z_1 & O \\
 & \parallel \\
-NH-CH-R_3-C-V,
\end{array}$$

wherein R_3 is $CHR_{20}-(CH_2)_{n1}$ (where R_{20} is either of H or OH; and nl is either of 1 or 0), or is deleted, and Z_1 is the identifying group of any of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, Gln, p-X-Phe (where X = H, F, Cl, Br, NO₂, OH, or CH₃), F_5 -Phe, Trp, Cys, Met, Pro, HyPro, cyclohexyl-Ala, or β -nal; and V is either OR₄, or

where R_4 is any of C_{1-20} alkyl, C_{3-20} alkenyl, C_{3-20} alkinyl, phenyl, naphthyl, or C_{7-10} phenylalkyl, and each R_5 , and R_6 , independently, is any of H, C_{1-12} alkyl, C_{7-10} phenylalkyl, lower acyl, or,

where R_{22} is any of H, C_{1-12} alkyl, C_{7-10} phenylalkyl, or lower acyl; provided that, when one of R_5 or R_6 is -NHR₂₂, the other is H;

(II):

$$Z_4Z_1 \circ Z_2$$

$$| | | | | /$$

$$-N-CH-C-N$$

$$Z_3$$

wherein Z_1 is the identifying group of any one of the amino acids Gly, Ala, Val, Leu, Ile, Ser, Asp, Asn, Glu, β -Nal, Gln, p-X-Phe

(where X = H, F, Cl, Br, NO₂, OH or CH₃), F₅-Phe, Trp, Cys, Met, Pro, or HyPro; and each Z_2 , Z_3 , and Z_4 , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; or (III):

wherein each Z_{20} and Z_{30} , independently, is H, lower alkyl, lower phenylalkyl, lower naphthylalkyl; further provided that, when either of Z_{20} or Z_{30} is other than H, A^7 is His, A^6 is Gly, A^5 is Val, A^4 is Ala, A^2 is His, and either of R_1 or R_2 is other than H, A^1 must be other than deleted; further provided that, for the formulas (I) through (III), any asymmetric carbon atom can be R, S or a racemic mixture; and further provided that each R_1 and R_2 , independently, is H, C_{1-12} alkyl, C_{7-10} phenylalkyl, COE_1 (where E_1 is C_{1-20} alkyl, C_{3-20} alkenyl, C_{3-20} alkinyl, phenyl, naphthyl, or C_{7-10} phenylalkyl), or lower acyl, and R_1 and R_2 are bonded to the N-terminal amino acid of said peptide, and further provided that when one of R_1 or R_2 is COE_1 , the other must be H, or a pharmaceutically acceptable salt thereof.

The therapeutic peptide of claim I wherein $A^0 = Gly$, D-Phe, or is deleted; $A^1 = p-Glu$, D-Phe, D-Ala, D-B-Nal, D-Cpa, or D-Asn; $A^2 = Gln$, His, 1-methyl-His, or 3-methyl-His; $A^4 = Ala$: $A^5 = Val:$ $A^6 = Sar, Gly, D-Phe, or D-Ala;$ $A^7 = His;$ and, where W is (I) and R_3 is CH_2 or CH_2-CH_2 , Z_1 is the identifying group of Leu or Phe, where W is (I) and R_3 is CHOH- CH_2 , Z_1 is the identifying group of Leu, cyclohexyl-Ala, or Phe and each R_5 and R_6 is H; and where W is (I), V is NHR₆, and R_6 is $\mathrm{NH}_2;$ where W is (II), Z_1 is the identifying group of any one of the amino acids Leu or p-X-Phe (where X = H, F, Cl, Br, NO_2 , OH or CH_3); and each Z_2 , Z_3 and Z_4 , independently, is H, lower alkyl, lower phenylalkyl, or lower naphthylalkyl; and where W is (III), each $\rm Z_{20}$ and $\rm Z_{30}$, is H; and each $\rm R_1$ and $\rm R_2$, independently, is H, lower alkyl, or lower acyl.

- The therapeutic peptide of claim 2 of the formula:

 D-Phe-Gln-Trp-Ala-Val-Gly-His-Leu-ethylamide.
- 4. The therapeutic peptide of claim 2 of the formula: p-Glu-Gln-Trp-Ala-Val-Gly-His-statine-amide.

5. The therapeutic peptide of claim 2 of the formula:

- 6. The peptide of claim $_1$ wherein W is (I), V is OR_4 , and R_4 is any of C_{1-20} alkyl, C_{3-20} alkenyl, C_{3-20} alkinyl, phenyl, naphthyl, or C_{7-10} phenylalkyl, and A^6 is N-methyl-D-Ala or A^1 is D-F₅-Phe.
- 7. The therapeutic peptide of claim 6 of the formula:

D-Phe-Gln-Trp-Ala-Val-N-methyl-D-Ala-His-Leu-methylester.

8. The therapeutic peptide of claim 2 of the formula: