Gérald TREDAN

R&D Plating Manager

gerald.tredan@radiall.com

Replacement of Cd on Connectors Alernative and Issues

ASETSDefense 2012 – August 27-30, 2012

including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	arters Services, Directorate for Infor	mation Operations and Reports	, 1215 Jefferson Davis	Highway, Suite 1204, Arlington		
1. REPORT DATE JUL 2012	A DEDODE EVE			3. DATES COVERED 00-00-2012 to 00-00-2012			
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER		
Replacement of Cd	on Connectors Ale	rnative and Issues		5b. GRANT NUMBER			
				5c. PROGRAM E	ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NU	JMBER		
				5e. TASK NUMBER			
				5f. WORK UNIT	NUMBER		
	ZATION NAME(S) AND AD outh 52nd Street Ste		284	8. PERFORMING REPORT NUMB	G ORGANIZATION ER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited					
	otes 12: Sustainable Surfiego, CA. Sponsored		_	Defense Worl	kshop, August		
14. ABSTRACT							
15. SUBJECT TERMS							
			17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT b. ABSTRACT c. THIS PAGE unclassified unclassified unclassified p		Same as Report (SAR)	27	RESI ONSIBLE FERSON			

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

Summary

- 1. Company Overview
- Product Overview
- 3. Cadmium alternatives in Europe
- 4. Focus on alternatives to Cd on aluminium connector
 - ⇒ Product requirements
 - ⇒ Research on alternative solution
 - ⇒ Development of alternative solution
 - ⇒ Process qualification
- 5. General Conclusion

1. Company overview

- Founded in 1952
- Revenue 2011: 203 M€ (\$245 M)
- Listed on NYSE-Euronext
- Ownership: 87% Gattaz family, 13% public
- R&D: +/- 8% of revenue each year

Ambition: To be the world preferred partner for high reliability connecting devices

1. Compagny overview

Global presence

- International sales network: 13 sales subs, 50 agents
- Employees > 2000
- In US: New Haven, CT; Chandler, AZ

2. Product overview

2.1 Product lines

MULTIPIN CONNECTORS

RF & MICROWAVE SWITCHES

ANTENNAS

MICROWAVE CABLE ASSEMBLIES

FIBER-OPTICS

RF & MICROWAVE CONNECTORS

2. Product overview

2.2 Interconnect applications

General shell requirements:

- Electrical performance
- Environmental performance
- Mechanical performance

→ Use of Cadmium and Chromate was largely intend for these properties

3. Cadmium alternatives in Europe

Cd free European requirements:

- For 12 years with ELV directive for automotive application
- For 6 years with ROHS directive for electrical application
- For 10 years for aerospace application development of new aircraft program (A380, A400 M, A350, Dassault F7X)

Cd advantages:

- Sacrificial deposit
- Environemental, electrical, properties
- Dissolution potential equivalent to aluminium material

3. Cadmium alternatives in Europe

Cd free european solution overview in 2012

Deposit	Basis metal	Market	Examples of users
ZnNi(12-15%)	Stool allove	Automotive	PSA, RENAULT
	Steel alloys	Aerospace	SAFRAN, EUROCOPTER, DASSAULT
	Aluminium	Connectors	SOURIAU
Lamelar ZnAlu	Steel alloys	Automotive	LISI
ZnCo	Aluminium	Aerospace	AIRBUS, BAE, SOURIAU, AMPHENOL
ENPTFE	Aluminium	Connectors	AMPHENOL, RADIALL

Cd free candidate for connector application

- ZnNi
 - ZnCo
- ZnFeCo

- SnZn
- NiSnBlack EN
 - NiPTFE

- 1. EPX® presentation
- 2. EPX® Requirements
- 3. Alternative solution research
- 4. Alternative solution development

4.1 EPX® Presentation

- A modular and expandable concept
- Designed for rack, cable to cable and front panel applications
- Standard and custom shells sizes

EN 4644 European Standard

A cost saving and user friendly solution

4.2 EPX® Requirements

Application	Civil and Military shell
	2024, 2017 alloy
Basis metal	7075 alloy
	6061 alloy
	Deposit according to MIL DTL 38999L
Donosit	Conductive
Deposit	Color: non reflective
	RoHS and REACH compliant

	File test	Requirement	
	Examination of product	Non reflective color	
	SRT	-65/+175°C: 5 cycles	
	Vibrations	Test 53 gr	
Evaluation of	Durability	500 cycles	
performances	Temperature life	1000h at 175°C	
•	Dynamic Salt spray (*)	500h	
	Lightning strike current and voltage pulse	1600A / 1600V (J54291)	
	Electrical continuity	Shell to shell < 2,5 mΩ	

(*) : dynamic salt spray : 50 mating cycle + 452h NSS + 48h NSS + 450 mating cycle

4. Alternative to Cd on EPX® connectors 4.3 Alternative solution research

Abstracts and comments on MIL DTL 38999 plating requirements

 Pure dense electrodeposited aluminum in accordance with MIL-DTL-83488, Type II, to withstand 500 hours of dynamic salt spray testing. Color shall be nonreflective.

Color is bright

 Nickel fluorocarbon polymer. Nickel with fluorocarbon polymer additives over a suitable underplate to withstand 500 hours of dynamic salt spray testing. Color shall be nonreflective.

NiPTFE specification existes now (AMS 2454) but is not applied

Zinc nickel in accordance with ASTM B841, type D (black), over a suitable underplate to withstand 500 hours of dynamic salt spray testing. Color shall be nonreflective.

6.2.1 The coating shall consist of a zinc nickel alloy that has a minimum of 5 and maximum 12 mass percent nickel, the balance being zinc.

All Zn/Ni formulation are now at 12-15% of Nickel

4.3 Alternative solution research

→ Pure Aluminium

Deposit	Specification
Aluminium	MIL-DTL-83488, Class 2
Chemical conversion	MIL-DTL-5541F, Class 3 Conductive

Designation	Characteristic	Initial	Speed Rate Temperature	NSS 500 hours
	Contact Resistance	5 mΩ	5 mΩ	115 mΩ
Pure aluminium deposit	Aspect			
	Bri	ght and uniform	Pit on several areas	

Conclusion:

Pure aluminium deposit didn't answer the environmental and electrical requirements of the MIL 38999 on EPX connectors

4.3 Alternative solution research

→ Zn/Ni

Main Configurations	Initial Contact Resistance	After SRT	After Salt Spray
Zinc nickel	0,87	0,96	NC
Zinc nickel Black with fixator	486,333	321,000	4000
Zinc nickel black top coat Cr+III	650	481	NC
Zinc nickel black top coat Cr VI	292,333	NC	6000

Initial

After 500H NSS

Conclusion:

- Same results from different suppliers process
- Contact resistance is good without topcoat
- With topcoat all contact resistance are superior to 38999 requirement
- High dispersion of thickness in/out parts compare to cad
- Reproducibility of color is difficult
- Salt Spray test failed for most of samples

4.3 Alternative solution research

→ EN-PTFE

Substrate: Aluminium 6061

Parts: Panel

Test: According MIL-DTL-81706 (load=200 Psi)

Check contact resistance on load (890N)	Initial Contact Resistance (mΩ)	NSS 500 Hours	Final Contact Resistance (mΩ)
Supplier 1	0,35	Several pits	41,21
Supplier 2	0,25	Several pits	216,00
Supplier 3	0,43	Several pits	41,76
Supplier 4	0,15	Several pits	21,58
Supplier 5	0,47	No corrosion	1,11

Conclusion:

- Different behavior between all process supplier formulations (Corrosion and degradation of contact resistance after NSS)
- Ni PTFE provided by Supplier 5 meets electrical requirements after all tests.

4.4 Alternative solution development

→ EN-PTFE: Definition of underplate

		Contact Resistance (mΩ)	Visual aspect after	
Configuration	Initial	After SRT -65°C/+180°C 5 cycles	After NSS	NSS NSS
SnEN + ENPTFE	0,23	0,09	0,12	Pits on screw
SnEN + LP EN + ENPTFE	0,09	0,07	0,08	No corrosion
HP EN + ENPTFE	0,08	0,06	0,06	No corrosion
HP EN + LP EN + ENPTFE	0,34	0,08	0,17	Pits on screw

Aspect after 500 Hours NSS

Conclusion:

All trial tests are in accordance with RADIALL and MIL-DTL-38999L requirements in terms of contact resistance

4. Alternative to Cd on EPX® connectors 4.4 Alternative solution development

→ EN-PTFE: Dissolution potential Cadmium/ENPTFE

Conclusion:

- Potential difference from 300 to 400 Mv/ECS between Cad and NiPTFE
- Each assembly condition needs to be studied in order to validate galvanic corrosion behavior (surface, environmental stress,...)

4.4 Alternative solution development

→ EN-PTFE: Cd/ENPTFE assembly - Electrical performance

NiPFE shell fixed on Cd plated panel

Trial	Initial (mΩ)	After SRT (mΩ)	After NSS (mΩ)
Cadmium/ Standard EN	0,13	0,09	0,15
Cadmium/ ENPTFE	0,11	0,12	0,14

Conclusion:

All trial tests are in accordance with RADIALL's requirement in terms of contact resistance (less than 2.5 milliOhm)

4.4 Alternative solution development

→ EN-PTFE: Cd/ENPTFE assembly

Trial	Visual aspect after 500h NSS
Cadmium / Standard EN	Basis metal corrosion on shell
Cadmium / ENPTFE	Cadmium corrosion

SEM+EDS results

Conclusion:

- Trial with ENPTFE produced better results in terms of corrosion resistance
- Discoloration is due to the degradation of Olive drab topcoat, no apparition of the base metal with ENPTFE sample

Process mapping

Critical steps definition

→ EN-PTFE: Reliability of characterization methods

		Parameters	Methods	Production/Expertise	Acceptance criteria	Accuracy of the method
	0		X-Ray	Prod		
of the	Cha	Thickness	Eddy current	Prod		
4		THICKIIC33	SEM	Ехр		
ē	Ct		Microscope	Ехр		
d	eri	PTFE into the				
deposit	İZ	deposit				
20	zati	Phosphorus				
7	9	Particle size				
		•••				
FC		Surface tension	•••			
	₩	Temperature				
8	a	рН				
Following	4	[Ni]				
<u>8</u>		•••				

R&R approach to define capability of each device

→ EN-PTFE: *Input / Output Matrix (impact on process)*

	Deposition rate (Thickness)	%PTFE (deposit)	%P (deposit)	Distribution of PTFE	•••
Temperature	✓	✓			
рН	✓	✓			
[Ni]	✓				
[NaPO2H2]			✓		
PTFE dispersion quality		√		✓	
•••					

Decrease of the impact of each critical parameter by definition of tight process ranges

→ EN-PTFE: Input / Output Matrix (impact on properties)

	Corrosion resistance	Wear resistance	Hydrophobicity	Coloration	•••
Thickness	✓	✓			
PTFE content	✓	✓	✓	✓	
Phosphorus content	✓				
PTFE distribution	✓	✓			
Particle size	✓	✓	✓		
•••					

Decrease of the impact of each critical parameter by definition of tight process ranges

→ EN-PTFE: Process industrialization

Challenging process requirements:

- Dedicated tooling
- Dedicated stripping line
- To Avoid contamination of other baths
- Agitation method adapted to maintain PTFE particles into solution without degrading them
- Periodic decontamination to avoid total plate out of the bath
- Improvement of method to control PTFE content into the deposit

5. Conclusion

- Cadmium deposit was used for different markets and applications
- European market switched for ZnNi for main applications
- RADIALL launched Cd free project since 2006 and different solutions were tested internally (ZnNi, Pure aluminium deposit, Black EN, NiSn,...)
- According RADIALL evaluation, the best candidate to meet 38999 requirements is the NiPTFE deposit

5. Conclusion

- RADIALL launched industrialization step in order to add NiPTFE on production
- The whole system needs to be considered in order to match product requirements:
 - Surface preparation (etching and zincate step)
 - Underlayer (nature and thickness)
 - NiPTFE parameters (thickness, PTFE%)
- NiPTFE process is more complex than standard EN and industrial experience is limited for such application, a specific process following need to be defined
- RADIALL will be able to propose MPCoating in 2013 for ROHS connectors application

THANK YOUQuestions or Comments ?

Gérald TREDAN R&D Plating Manager Tel: +33.6.22.56.09.86

Email: gerald.tredan@radiall.com

