Input:

- A specification containing:
 - 1. a universal set of attributes U, and
 - a set of functional dependencies (FDs) F over U.
- An entity-relationship diagram (ERD) conforming to the specification.

Output: A database schema **R** which is in BCNF with respect to F.

Input:

- A specification containing:
 - 1. a universal set of attributes U, and
 - 2. a set of functional dependencies (FDs) F over U.
- An entity-relationship diagram (ERD) conforming to the specification.

Output: A database schema **R** which is in BCNF with respect to F.

Notes:

- ▶ $\mathbf{R} = \{R_1, R_2, \dots, R_n\}$, where each R_i is a subset of U.
- ▶ The union of all schema(R_i) is U.
- R is called a decomposition of U.

Strategy

- Step 1. Convert ERD into a database schema S.
- Step 2. If any of the relation schemas in **S** are *not* in BCNF with respect to F, then decompose them further, using the DECOMPOSE algorithm, given in this lecture.

Algorithm ERD-TO-BCNF(ERD, F)

- Convert ERD into a database schema $S = \{S_1, \dots, S_m\}$;
- **let** the output database schema **R** be empty;
- for each Si in S do
- if $TEST-BCNF(S_i, F) = YES$
- 5. add Si to R:
- else
- merge $DECOMPOSE(S_i, F)$ and **R**;
- 8 end for
- return the decomposition R;

Normalisation Algorithms

```
Algorithm TEST-BCNF(R, F)
```

- Assume F is a set of canonical FDs
- 1. **for each** (non-trivial) $X \to A$ in F^+ **do**
- 2. **if** X is **not** a superkey with respect to F
- 3. return NO;
- 4. end if
- 5. end for
- 6. return YES;

- Algorithm TEST-BCNF(R, F)
- Assume F is a set of canonical FDs
- 1. for each (non-trivial) $X \to A$ in F^+ do
- 2. **if** X is **not** a superkey with respect to F
- 3. return NO;
- 4. end if
- 5. end for
- 6. return YES;

Note that, in general, we need to consider F^+ , the closure of F, to check whether there are any FDs which violate BCNF.

But we can start trying to find violations in F, and only consider F^+ once we find no violations in F.

- Let schema(PHONE) = {cust-name, phone-num, phone-network}.
- Let F = {cust-name → phone-num, phone-num → phone-network}.

Is PHONE in BCNF with respect to F?

So phone-num \rightarrow phone-network violates BCNF.

- phone-num is the left-hand side of the violating FD
- phone-network is the right-hand side of the violating FD

Split PHONE into two relation schemas:

Database Management

Peter Wood

Normalisation Algorithms

BCNF Algorithm

BCNF Examples
Dependency Preservation
3NF Algorithm

So phone-num \rightarrow phone-network violates BCNF.

- phone-num is the left-hand side of the violating FD
- phone-network is the right-hand side of the violating FD

Split PHONE into two relation schemas:

1. R₁ = NETWORK, with schema(NETWORK) = {phone-num, phone-network}, containing all the attributes in the violating FD, and

 $F_1 = \{ phone-num \rightarrow phone-network \}.$

So phone-num \rightarrow phone-network violates BCNF.

- phone-num is the left-hand side of the violating FD
- phone-network is the right-hand side of the violating FD

Split PHONE into two relation schemas:

- R₁ = NETWORK, with schema(NETWORK) = {phone-num, phone-network}, containing all the attributes in the **violating** FD, and
 - $F_1 = \{ \text{ phone-num} \rightarrow \text{ phone-network} \}.$
- R₂ = CUST, with schema(CUST) = {cust-name, phone-num}, containing the attributes in schema(PHONE) except those in the right-hand side of the violating FD, and
 - $F_2 = \{ \text{ cust-name} \rightarrow \text{phone-num} \}.$

```
1. let the output database schema Out be empty;
```

- 2. if TEST-BCNF(R, F) = YES then
- 3. add R to Out;
- 4. else
- 5. **let** $X \to A$ in F^+ be nontrivial (i.e. A is **not** in X) such that X is **not** a superkey with respect to F;
- 6. **let** R_1 be a relation schema, with schema(R_1) = X merged with A;
- 7. merge $DECOMPOSE(R_1, F)$ and Out;
- 8. **let** R_2 be a relation schema, with schema(R_2) = schema(R) **except** A;
- 9. merge $DECOMPOSE(R_2, F)$ and Out;
- 10. end if
- 11. return Out:

Result. DECOMPOSE(R, F) returns a decomposition of schema(R).

Result. The natural join can be applied to all of the relations in DECOMPOSE(R, F) to recover precisely the information stored in any relation over schema(R); this is known as the **lossless join** property.

Lossless join

Database Management

Peter Wood

Normalisation
Algorithms
BCNF Algorithm
Lossless Join
BCNF Examples
Dependency Preservation

Recall example: S is a relation schema, with schema(S) = {ENAME, CNAME, SAL} and

single FD: ENAME \rightarrow SAL

(Modified) relation s over S is given by

ENAME	CNAME	SAL
Jack	Diane	25
Jack	John	25
Donald	Diane	30
Donald	David	30

If we decompose S into {ENAME,CNAME} and {CNAME,SAL} as follows:

ENAME	CNAME
Jack	Diane
Jack	John
Donald	Diane
Donald	David

CNAME	SAL
Diane	25
John	25
Diane	30
David	30

Database Management

Peter Wood

Normalisation
Algorithms
BCNF Algorithm
Lossless Join
BCNF Examples
Dependency Preservation

SAL	
25	BCNF Algorithm
25	Lossless Join
25	BCNF Examples
വ	Dependency Preservation

Database Management

Peter Wood

ENAME	CNAME
Jack	Diane
Jack	John
Donald	Diane
Donald	David

CNAME SAL Diane 25 John 25 Diane 30 David 30

and then perform the natural join, we get

ENAME	CNAME	SAL
Jack	Diane	25
Jack	Diane	30
Jack	John	25
Donald	Diane	25
Donald	Diane	30
Donald	David	30

⇒ with two tuples that were *not* in the original relation

- A decomposition such as that into {ENAME,CNAME} and {CNAME,SAL} is called lossy
- We started knowing Jack's salary was 25
- After decomposing, if we query Jack's salary we get both 25 and 30
- ► The decomposition does not faithfully represent the original information we had

A decomposition such as that into {ENAME,CNAME} and {CNAME,SAL} is called lossy

- We started knowing Jack's salary was 25
- After decomposing, if we query Jack's salary we get both 25 and 30
- The decomposition does not faithfully represent the original information we had
- A decomposition which does faithfully represent the original information is called lossless
- The lossless condition is guaranteed if we ensure that the common attributes between a pair of decomposed relation schemas is a key for one of them
- ► The BCNF algorithm ensures lossless decompositions

Recall example involving employee names (ENAME), salaries (SAL) and children (CNAME). Let's call the relation schema EMP.

The assumed set of FDs was $F_2 = \{ ENAME \rightarrow SAL \}.$

- ► ENAME → SAL violates BCNF in EMP, so decompose EMP into
 - ES, with schema(ES) = { ENAME, SAL }, and EC, with schema(EC) = { ENAME, CNAME }
- Both ES and EC are in BCNF:
 - ENAME is a key in ES
 - the only key for EC is (ENAME, CNAME)

Another Example of BCNF Decomposition

Let STUD be a relation schema, with schema(STUD) = $\{SNUM, POSTCODE, CITY, COUNTRY\}$, with FDs $\{SNUM \rightarrow POSTCODE, POSTCODE \rightarrow CITY, CITY \rightarrow COUNTRY\}$

Database Management

Peter Wood

Normalisation Algorithms

Lossless Join

Dependency Preservation

BCNF Examples
Dependency Preservation

Let STUD be a relation schema, with schema(STUD) = $\{SNUM, POSTCODE, CITY, COUNTRY\}$, with FDs $\{SNUM \rightarrow POSTCODE, POSTCODE \rightarrow CITY, CITY \rightarrow COUNTRY\}$

CITY → COUNTRY violates BCNF in STUD, so decompose STUD into
CC, with schema(CC) = {CITY, COUNTRY}, and STUD1, with schema(STUD1) = {SNUM, POSTCODE, CITY}

- Let STUD be a relation schema, with schema(STUD) = $\{SNUM, POSTCODE, CITY, COUNTRY\}$, with FDs $\{SNUM \rightarrow POSTCODE, POSTCODE \rightarrow CITY, CITY \rightarrow COUNTRY\}$
 - CITY → COUNTRY violates BCNF in STUD, so decompose STUD into
 CC, with schema(CC) = {CITY, COUNTRY}, and STUD1, with schema(STUD1) = {SNUM, POSTCODE, CITY}
 - CC is in BCNF while POSTCODE → CITY violates BCNF in STUD1, so decompose STUD1 into PC, with schema(PC) = {POSTCODE, CITY}, and SINFO = {SNUM, POSTCODE}.

Let STUD be a relation schema, with schema(STUD) = $\{SNUM, POSTCODE, CITY, COUNTRY\}$, with FDs $\{SNUM \rightarrow POSTCODE, POSTCODE \rightarrow CITY, CITY \rightarrow COUNTRY\}$

- CITY → COUNTRY violates BCNF in STUD, so decompose STUD into
 CC, with schema(CC) = {CITY, COUNTRY}, and STUD1, with schema(STUD1) = {SNUM, POSTCODE, CITY}
- CC is in BCNF while POSTCODE → CITY violates BCNF in STUD1, so decompose STUD1 into PC, with schema(PC) = {POSTCODE, CITY}, and SINFO = {SNUM, POSTCODE}.
- ► All the relation schemas in the database schema {CC, PC, SINFO} are now in BCNF

- Consider a modified relation schema EMP, with attributes ENAME, CNAME (child name), DNAME (department name) and MNAME (manager name).
- The set of FDs is F = {E → D, D → M, M → D}, where E stands for ENAME, D stands for DNAME and M stands for MNAME (and C stands for child name).
- All three FDs violate BCNF since EC is the only key.
- We can choose any one of them as the basis for the first decomposition step.
- We will consider all three decompositions in turn.

- If we first decompose using D → M, we get two schemas with attributes {D, M} and {E, C, D}.
- FDs D → M and M → D are applicable to {D, M}, but both D and M are keys.
- ▶ FD E \rightarrow D is applicable to {E, C, D} and E is not a superkey.
- ► So we decompose {E, C, D} into {E, D} and {E, C}.
- ► E is a key for {E, D} and EC is the key for {E, C}.
- ➤ So the final database schema comprises {D, M}, {E, D} and {E, C}.

- ▶ If we first decompose using $E \rightarrow D$, we get two schemas with attributes $\{E, D\}$ and $\{E, C, M\}$.
- ▶ E \rightarrow D is applicable to {E, D}, but E is a key.
- What FDs are applicable to {E, C, M}?
- None of E → D, D → M or M → D apply because D is not in {E, C, M}.
- ▶ We have to consider all FDs in F⁺.
- ▶ Recall that $E \to M$ follows from $E \to D$ and $D \to M$.
- ► E → M violates BCNF in {E, C, M} because E is not a key.
- So we decompose {E, C, M} into {E, M} and {E, C}.
- ➤ So the final database schema comprises {E, D}, {E, M} and {E, C}.

- If we first decompose using M → D, we get two schemas with attributes {M, D} and {E, C, M}.
- FDs D → M and M → D are applicable to {M, D}, but both D and M are keys.
- Once again we have {E, C, M}, so it is decomposed as before into {E, M} and {E, C}.
- So the final database schema comprises {M, D}, {E, M} and {E, C}.

- Let \mathcal{R} be a relation schema, with schema(\mathcal{R}) = {C,T,H,R,S,G}.
 - C stands for a course,
 - T stands for a teacher,
 - H stands for hour,
 - R stands for room,
 - S stands for student and
 - ▶ G stands for grade.

An example set of FDs \mathcal{F} over \mathcal{R} :

- 1. $C \rightarrow T$,
- 2. HR \rightarrow C,
- 3. HT \rightarrow R,
- 4. $CS \rightarrow G$ and
- 5. $HS \rightarrow R$.

Recall example: $F_3 = \{SC \rightarrow P, P \rightarrow C\}$.

S stands for Street, C stands for City and P stands for Postcode.

{S,C,P} is not in BCNF

Decompose {S,C,P} into {P,C} and {P,S}

Р	С
p1	С
p2	С

Р	S
p1	s
p2	s

Only FD that can be tested in the decomposition is $P \rightarrow C$

When we join the two relations, we see that $SC \rightarrow P$ is violated.

A decomposition is **dependency preserving** if the FDs which hold on the original relation schema can be tested on the decomposed schemas, without using joins.

We cannot always find a BCNF decomposition that is dependency preserving.

To test that no FDs are violated, we may need to join relations (expensive).

We can always find a 3NF dependency-preserving decomposition.

Dependency Preservation

For a starting set of attributes and FDs, some BCNF decompositions may be dependency preserving and some not.

Consider the example with attributes { E, C, D, M } and FDs F = {E \rightarrow D, D \rightarrow M, M \rightarrow D}.

We had three possible decompositions

- 1. {D, M}, {E, D} and {E, C}.
- 2. {E, D}, {E, M} and {E, C}.
- 3. {M, D}, {E, M} and {E, C}.

Which of them is dependency-preserving?

3NF Synthesis Algorithm

preserving:

Given a relation schema R and a set of FDs F, the following steps produce a 3NF decomposition of R that satisfies the lossless join condition and is dependency

Database Management

Peter Wood

lormalisation algorithms BCNF Algorithm Lossless Join

3NF Algorithm

Sivi Algoritim

Given a relation schema R and a set of FDs F, the following steps produce a 3NF decomposition of R that satisfies the lossless join condition and is dependency preserving:

1. Find a minimal cover for F, say G.

Given a relation schema R and a set of FDs F, the following steps produce a 3NF decomposition of R that satisfies the lossless join condition and is dependency preserving:

- Find a minimal cover for F, say G.
- 2. For each FD X \rightarrow A in G, use XA as the schema of one of the relations in the decomposition.

Given a relation schema R and a set of FDs F, the following steps produce a 3NF decomposition of R that satisfies the lossless join condition and is dependency preserving:

- 1. Find a minimal cover for F, say G.
- 2. For each FD X \rightarrow A in G, use XA as the schema of one of the relations in the decomposition.
- If none of the schemas from Step 2 includes a superkey for R, add another relation schema that is a key for R.

Given a relation schema R and a set of FDs F, the following steps produce a 3NF decomposition of R that satisfies the lossless join condition and is dependency preserving:

- 1. Find a minimal cover for F, say G.
- For each FD X → A in G, use XA as the schema of one of the relations in the decomposition.
- If none of the schemas from Step 2 includes a superkey for R, add another relation schema that is a key for R.
- Delete any of the schemas from Step 2 that is contained in another.

Example of 3NF Synthesis

Recall the example: $F_3 = \{SC \rightarrow P, P \rightarrow C\}$. S stands for Street, C stands for City and P stands for Postcode.

Database Management

Peter Wood

Normalisation Algorithms

Lossless Join BCNF Examples

Dependency Preservation

3NF Algorithm

Example of 3NF Synthesis

Database Management

Peter Wood

3NF Algorithm

Recall the example: $F_3 = \{SC \rightarrow P, P \rightarrow C\}$. S stands for Street, C stands for City and P stands for Postcode.

Step 1 of the algorithm finds that F_3 is a minimal cover.

Recall the example: $F_3 = \{SC \rightarrow P, P \rightarrow C\}$. S stands for Street, C stands for City and P stands for Postcode.

Step 1 of the algorithm finds that F_3 is a minimal cover.

Step 2 of the algorithm would produce {P,C} and {S,C,P}.

Recall the example: $F_3 = \{SC \rightarrow P, P \rightarrow C\}$. S stands for Street, C stands for City and P stands for Postcode.

Step 1 of the algorithm finds that F_3 is a minimal cover.

Step 2 of the algorithm would produce {P,C} and {S,C,P}.

Step 3 finds that SC is a superkey.

Recall the example: $F_3 = \{SC \rightarrow P, P \rightarrow C\}$. S stands for Street, C stands for City and P stands for Postcode.

Step 1 of the algorithm finds that F_3 is a minimal cover.

Step 2 of the algorithm would produce {P,C} and {S,C,P}.

Step 3 finds that SC is a superkey.

Step 4 deletes {P,C} to leave just {S,C,P}.

Another Example

Database Management

Peter Wood

Normalisation Algorithms

Lossless Join BCNF Examples

Dependency Preservation

3NF Algorithm

3NF Algorithm

Recall the example: $F_2 = \{E \rightarrow S\}$. E stands for ENAME S stands for

E stands for ENAME, S stands for SAL and C stands for CNAME.

4 □ ト 4 □ ト 4 亘 ト 4 亘 ・ 夕 Q ○ |

E stands for ENAME, S stands for SAL and C stands for CNAME.

Step 1 of the algorithm finds that F_2 is a minimal cover.

E stands for ENAME, S stands for SAL and C stands for CNAME.

Step 1 of the algorithm finds that F_2 is a minimal cover.

Step 2 of the algorithm would produce {E,S}.

E stands for ENAME, S stands for SAL and C stands for

CNAME.

Step 1 of the algorithm finds that F_2 is a minimal cover.

Step 2 of the algorithm would produce {E,S}.

Step 3 finds no superkey, so adds relation schema {E,C}.

E stands for ENAME, S stands for SAL and C stands for CNAME.

Step 1 of the algorithm finds that F_2 is a minimal cover.

Step 2 of the algorithm would produce {E,S}.

Step 3 finds no superkey, so adds relation schema {E,C}.

Step 4 finds nothing to delete.

A Third Example

Database Management

Peter Wood

Normalisation Algorithms

> ossless Join CNF Examples

3NF Algorithm

Consider the example: $F = \{AB \rightarrow CD, C \rightarrow AD, D \rightarrow A\}$.

BCNF Algorithm

Lossless Join

BCNF Examples

ependency Preservation

3NF Algorithm

Consider the example: $F = \{AB \rightarrow CD, C \rightarrow AD, D \rightarrow A \}.$

Step 1 of the algorithm finds that F is **not** a minimal cover.

Consider the example: $F = \{AB \rightarrow CD, C \rightarrow AD, D \rightarrow A \}$.

Step 1 of the algorithm finds that *F* is **not** a minimal cover.

First we form a canonical set of FDs:

$$\{AB \rightarrow C,\, AB \rightarrow D,\, C \rightarrow A,\, C \rightarrow D,\, D \rightarrow A \,\}.$$

Consider the example: $F = \{AB \rightarrow CD, C \rightarrow AD, D \rightarrow A\}$.

Step 1 of the algorithm finds that F is **not** a minimal cover.

First we form a canonical set of FDs:

$$\{AB \rightarrow C,\, AB \rightarrow D,\, C \rightarrow A,\, C \rightarrow D,\, D \rightarrow A \,\}.$$

Then we find that $AB \rightarrow D$ and $C \rightarrow A$ are redundant.

3NF Algorithm

Consider the example: $F = \{AB \rightarrow CD, C \rightarrow AD, D \rightarrow A\}$.

Step 1 of the algorithm finds that *F* is **not** a minimal cover.

First we form a canonical set of FDs:

$$\{AB \rightarrow C,\, AB \rightarrow D,\, C \rightarrow A,\, C \rightarrow D,\, D \rightarrow A \,\}.$$

Then we find that AB \rightarrow D and C \rightarrow A are redundant.

So we are left with minimal cover

$$G = \{AB \rightarrow C,\, C \rightarrow D,\, D \rightarrow A \,\}.$$

Consider the example: $F = \{AB \rightarrow CD, C \rightarrow AD, D \rightarrow A\}$.

Step 1 of the algorithm finds that *F* is **not** a minimal cover.

First we form a canonical set of FDs:

$$\{AB \rightarrow C,\, AB \rightarrow D,\, C \rightarrow A,\, C \rightarrow D,\, D \rightarrow A\,\}.$$

Then we find that $AB \rightarrow D$ and $C \rightarrow A$ are redundant.

So we are left with minimal cover

$$G = \{AB \rightarrow C,\, C \rightarrow D,\, D \rightarrow A \,\}.$$

The rest is easy.

3NF Algorithm

Consider the set of attributes { Drinker, Address, Pub, Location, Beer, Cost }, along with the following set of FDs:

- ▶ Drinker → Address
- ▶ Pub → Location
- ▶ Pub, Beer → Cost, Location

Produce a set of 3NF relation schemas for the above.