Nombres réels, suites

29 août 2018

1 Nombres réels

1.1

Déterminer toutes les isométries de R muni de sa distance usuelle.

1.2

Dans tout ce qui suit, I = [a, b] est un segment de \mathbb{R} , d'intérieur non vide, et f rune fonction continue de I vers \mathbb{R} .

 \sqrt{a}) Montrer que f est bornée sur I. On pourra introduire $c = \sup\{y \in I \mid f \text{ est bornée sur } [a, y]\}$. Prouver ensuite que f atteint sa borne supérieure sur I.

vb) On suppose que f(a)f(b) < 0. Montrer que f s'annule sur I.

En déduire que l'image d'un intervalle par une fonction continue est un intervalle. Que dire si f ne s'annule pas?

$1.3 \sim$

On conserve les notations ci-dessus : I, f. Soit J_{λ} , $\lambda \in \Lambda$, une famille d'intervalles ouverts de $\mathbf R$ recouvrant I (i.e. dont la réunion contient I). Montrer que l'on peut en extraire une sous-famille finie qui recouvre I.

1.4

Soit $(I_n) = (]a_n, b_n[)$ une suite décroissante d'intervalles ouverts bornés non vides de R. Montrer que l'intersection des I_n est non vide dès qu'aucune des suites $(a_n), (b_n)$ n'est stationnaire.

1.5

Etudier la densité de l'ensemble des nombres de la forme $\sqrt{m} - \sqrt{n}$, $(m, n) \in \mathbb{N}^2$.

1.6

 (u_n) et (v_n) deux suites de nombres réels telles que (i) $\lim (u_{n+1} - u_n) = 0$; (ii) $\lim u_n = \lim v_n = +\infty$. Montrer que $\{u_n - v_m \mid m, n \in \mathbb{N}\}$ est dense dans \mathbb{R} . En déduire que $\{\sin(\log(n)) \mid n \in \mathbb{N}\}$ est dense dans [-1,1].

Mg YME IN, m), 1 1+1+1+1+1 Le < 1+-+ m. + 1 mm.

Suites réelles : généralités

1/2.1

Soit (u_n) une suite bornée de réels strictement positifs tels que $\lim_n \frac{u_{n+1}}{u_n} = 1$. La suite (u_n) est-elle convergente?

2.2.

Soit (x_n) une suite bornée de nombres réels telle que $\forall n, 2x_n \leq x_{n-1} + x_{n+1}$. Montrer que $\lim(x_{n+1}-x_n)=0$ et que la suite (x_n) converge.

Soit $u_n = \cos(n! \pi x)$. Montrer que la suite converge pour $x \in \mathbb{Q}$ mais aussi. m! 2e = 2 Nm! + 2 Add

Soit (a_n) et (b_n) deux suites réelles convergentes. Montrer que la suite $\frac{1}{n+1}\sum_{i=0}^n a_i b_{n-i}$ converge.

Suites presque monotones. \sqrt{a}) Soit (u_n) une suite de nombres complexes, et σ un permutation de N. Montrer que (u_n) converge ssi $u_{\sigma(n)}$ converge. Quelles sont les suites réelles (u_n) telles qu'il existe une permutation σ de N telle que la suite $u_{\sigma(n)}$ soit monotone à partir d'un certain rang?

3 Exp et Log

3.1

Soit u_n une suite réelle. On suppose qu'il existe un nombre réel a tel que, lorsque n tend vers $+\infty$, $u_n = 1 + \frac{a}{n} + o(\frac{1}{n})$. Etudier la suite u_n^n .

Application: Etudier la suite $u_n = \left(\left(\sin\left(\frac{n\pi}{6n+1}\right) + \cos\left(\frac{n\pi}{3n+2}\right) \right)^n$.

Soit $u_n = \prod_{k=1}^n (1 + \sqrt{\frac{k}{n^3}})$. Etudier le comportement de la suite u_n .

3.3

- a) Soit x un réel irrationnel et $N \in \mathbb{N}^*$. Montrer qu'il existe des entiers p et qtels que $|x - \frac{p}{q}| \le \frac{1}{qN}$ et $1 \le q \le N$.
- b) Etudier la suite $u_n = \cos^n(n)$.

Cercle de valeurs d'adhérence √

Déterminer l'ensemble des valeurs d'adhérence de $\prod_{k=1}^{n} (1 + \frac{i}{k})$.

$\lim_{n \to \infty} \chi_{\infty} = \lim_{k \to \infty}$

4 Suites récurrentes

4.1

Etudier les suites définies par récurrence par

$$-u_{n+1} = \frac{1}{2}(u_n + 1/u_n)$$

$$-u_{n+1} = 1 + \frac{1}{4}\sin(\frac{1}{u_n})$$

$$-u_{n+1} = \sin 2u_n.$$

$$-u_{n+1} = (u_n - 1)^2$$

$$-u_{n+1} = \frac{1}{6}u_n^3\sin(1/u_n)$$

4.2

Soit (a_n) une suite de réels de [0,1] tendant vers $0, x_0$ dans [0,1] et f continue de [0, 1] dans lui-même. On définit :

$$x_{n+1} = (1 - a_n)x_n + a_n f(x_n).$$

- \sqrt{a}) Montrer que si la série de terme général a_n converge, la suite (x_n) converge.
- \sqrt{b}) On suppose que la suite (x_n) converge vers l non point fixe de f. Montrer que la série de terme général a_n converge.
- \sqrt{c}) On suppose f de classe \mathcal{C}^1 , avec un unique point fixe l, et que la série de terme général a_n diverge. Montrer que la suite (x_n) converge vers l.
- d) Montrer que la suite x_n est toujours convergente.

4.3 \

Soient $a \in [0,1[$ et u_n la suite définie par $u_0 = a$ et la relation de récurrence

$$u_{n+1} = u_n^2 E(1/u_n).$$

Montrer que u_n est stationnaire, ou converge vers 0.

4.4

Etudier les suites (u_n) et (v_n) définies par la donnée de $0 < u_0 < v_0$ et récurrence $u_{n+1} = (u_n v_{n+1})^{1/2}$ et $v_{n+1} = (u_n + v_n)/2$.

4.5

On se donne a_0 et a_1 strictement positifs. Nature de la suite définie par récurrence par $a_{n+2} = \log(1+a_{n+1}) + \log(1+a_n)$. On pourra introduire les suite récurrentes attachées à $f(x) = 2\log(1+x)$.

4.6

Soit u_n une suite réelle telle que $u_{n+1} - \sin u_n$ tende vers 0. Montrer que u_n tende vers 0. Méthode suggérée. Montrer que u_n est bornée, introduire l'ensemble A des valeurs d'adhérence de (u_n) et prouver que $\sin(A) = A$.

4.7

Soit u_n la suite récurrente définie par la donnée de $u_0 \geq 0$ et la relation

$$u_{n+1} = \frac{u_n^2}{n+1}.$$

Montrer qu'il existe un réel $\alpha > 0$ tel que :

$$u_0 > \alpha \Longrightarrow (u_n) \mapsto +\infty$$
 ; $u_0 < \alpha \Longrightarrow (u_n) \mapsto 0$

Etudier le cas restant où $u_0 = \alpha$.