

Computação Aplicada à Cartografia II

Prof. Luiz Paulo Souto Fortes, PhD

fortes@pq.cnpq.br

1

Página em branco

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Plano de Curso

- 1. Considerações iniciais. Plano de curso
- 2. Introdução ao ambiente de desenvolvimento Open Watcom
- 3. Introdução ao FORTRAN
- 4. Introdução ao FORTRAN
- 5. Introdução ao FORTRAN
- 6. Exercícios práticos
- 7. Primeira Avaliação
- 8. Introdução ao FORTRAN
- 9. Introdução ao FORTRAN
- 10. Introdução ao FORTRAN
- 11. Exercícios práticos em Cartografia
- 12. Segunda avaliação
- 13. Exame final

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

3

Bibliografia

Open Watcom FORTRAN 77 Guides

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (1/18)

- Introdução
 - FORTRAN: FORmula TRANslation
 - Desenvolvida a partir de 1954
 - Várias versões
 - FORTRAN I (1954-1957)
 - FORTRAN II (1958)
 - FORTRAN III (1958) nunca liberada para o público
 - FORTRAN IV (1961)
 - FORTRAN 66 standard (1962-1966) primeira versão padronizada para qualquer computador
 - FORTRAN 77 standard
 - · FORTRAN 90 standard
 - · FORTRAN 95 standard
 - Um das linguagens mais usadas de todos os tempos (ainda hoje...) !!

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

5

Introdução ao FORTRAN (2/18)

- O conjunto de caracteres FORTRAN consiste de 26 letras, 10 dígitos e 13 caracteres especiais
 - Letras

ABCDEFGHIJKLMNOPQRSTUVWXYZ

- Dígitos

0123456789

Caracteres especiais

branco = + - * / () , . \$ ` :

- É um subconjunto do conjunto de caracteres do sistema computacional que está sendo usado
- OpenWatcom também inclui os seguintes caracteres

!\%

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (3/18)

- · Um programa é formado por linhas
 - Cada linha pode ser de um dos três tipos:
 - 1. Linha de comentário
 - Possui um "C", "c" ou "*" na coluna 1
 - Podem estar situadas em qualquer posição do programa fonte
 - Não existe restrição quanto ao número de linhas de comentário no programa (quanto mais, melhor!!)
 - Além disso, a partir de um "!" em qualquer posição de uma linha (exceto na coluna 6 ou entre apóstrofes), o conteúdo do resto da linha é interpretado como comentário
 - Qualquer caracter do conjunto do sistema computacional pode ser utilizado
 - Exemplos
 - C Início do programa
 - c Escrever resultados
 - * Cálculo da média
 - a = soma/n ! Cálculo da média

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

7

Introdução ao FORTRAN (4/18)

- Um programa é formado por linhas
 - Cada linha pode ser de um dos três tipos:
 - 2. Linha inicial
 - Primeira linha de um comando FORTRAN
 - Coluna 6 deve ser branco (ou 0)
 - Colunas 1 a 5 podem ter um número de comando (statement label)
 - Um número de comando não pode aparecer repetido em um módulo de programa (*program unit*)
 - Um módulo de programa é uma sequência de comandos e de linhas de comentário, terminando em um comando FND
 - O corpo de um comando pode ser escrito da coluna 7 à 72
 - As colunas 73 e além são campos de sequência (Sequence field), sendo ignorados pelo compilador
 - Dependendo de uma opção do compilador Open Watcom FORTRAN 77, o comando pode ir até a coluna 132 (melhor não usar...)

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (5/18)

- · Um programa é formado por linhas
 - Cada linha pode ser de um dos três tipos:
 - 3. Linha de continuação
 - Um comando FORTRAN pode continuar numa nova linha
 - Coluna 6 deve ser diferente de branco (ou 0), usando-se um caracter válido do FORTRAN ou do sistema computacional (extensão Open Watcom)
 - Colunas 1 a 5 devem estar em branco
 - FORTRAN 77 permite até 19 linhas de continuação
 - O compilador Open Watcom FORTRAN 77 permite até 61 linhas de continuação quando ocupa-se até a coluna 72, ou até 31 linhas, quando ocupa-se até a coluna 132

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

9

Introdução ao FORTRAN (6/18)

C This and the following five lines are comment lines

Exemplos

```
c The following statement "INDEX = INDEX + 2" has a
c statement number and is continued by placing a "$"
c in column 6.
* Column Numbers
*234567890

10    INDEX = INDEX
    $ + 2
```

* The above blank lines are treated like comment lines.

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (7/18)

• Exemplos

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

11

Introdução ao FORTRAN (8/18)

- · Ordem das linhas e comandos
 - O primeiro comando de um módulo de programa é um dos seguintes comandos:
 - PROGRAM, FUNCTION, SUBROUTINE ou BLOCK DATA
 - O comando PROGRAM identifica o início do programa principal e só pode haver um deles em um programa FORTRAN executável
 - A execução de um programa FORTRAN inicia no primeiro comando executável do programa principal
 - Os comandos FUNCTION, SUBROUTINE e BLOCK DATA identificam o início de subprogramas
 - Se o primeiro comando de um módulo de programa não é um dos comandos acima, ele é interpretado como um programa principal

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (9/18)

· Ordem das linhas e comandos

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

13

Introdução ao FORTRAN (10/18)

- · Nomes simbólicos
 - Nomes simbólicos são nomes que representam variáveis, matrizes, funções, etc.
 - Nomes são formados por letras maiúsculas A-Z e dígitos 0-9, sendo o primeiro obrigatoriamente uma letra
 - Nomes simbólicos são restritos a 6 caracteres

– Exemplos: AMOUNT

AGE

CUST73

- Extensões do Open Watcom FORTRAN 77:
 - Letras minúsculas a-z, \$ e _, podendo ser o primeiro caracter do nome
 - · Nomes de até 32 caracteres

· Exemplos: Evaluate

\$Cheque ComputeAverage

_device IO\$ERROR

IO\$ERROR student_total

- Maiúsculas e minúsculas significam a mesma coisa e espaços são ignorados
 - Account, ACCount, ACCOUNT; C R E DIT, CRE D I T

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (11/18) 6 Tipos de dados em FORTRAN: logical, integer, real, double precision, complex e character (ou seja, logical, numeric ou character)

	+
Size (bytes)	Standard FORTRAN
1 4	l ves l
	extension
	extension
1 4	yes
1 1	extension
	extension extension
	extension
	yes
	yes extension
	extension extension
, •	ves
1 •	l ves l
, •	yes extension
1 •	extension extension
	extension extension
,	
! -	yes
1 11	yes
	(bytes)

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

15

Introdução ao FORTRAN (12/18)

Faixa de variação dos valores para cada tipo

```
Valores possíveis
Data Type
LOGICAL
                                 .true. Ou .false.
LOGICAL*1
                                 .true. Ou .false.
                                 .true. Ou .false.
LOGICAL*4
INTEGER
                                 -2147483648 \le n \le 2147483647
                                         ≤ n ≤
≤ n ≤
INTEGER*1
                                 -128
                                                          127
INTEGER*2
                                 -32768
                                                         32767
                                 -2147483648 \le n \le 2147483647
INTEGER*4
REAL
                                1.175494e-38 \le m \le 3.402823e38
REAL*4
                                1.175494e-38 \le m \le 3.402823e38
                 2.2250738585072e-308 \le m \le 1.79769313486232e308
DOUBLE PRECISION 2.2250738585072e-308 \leq m \leq 1.79769313486232e308
COMPLEX
                                (real, real)
COMPLEX*8
                                (real*4, real*4)
DOUBLE COMPLEX
                                (real*8, real*8)
COMPLEX*16
                                (real*8, real*8)
CHARACTER
                                1 caracter
CHARACTER*n
                                n caracteres
```

OBS: tipos adicionais podem ser criados com o comando STRUCTURE

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (13/18)

- Tipo de dado em função do nome da variável
 - Por default, o FORTRAN assume que as variáveis iniciadas em I, J, K,
 L, M, N são do tipo inteiro, sendo as restantes do tipo real
 - Esse default pode ser alterado com o comando IMPLICIT
 - A programação estruturada recomenda que não se use o default pois erros podem ocorrer com facilidade
 - Por exemplo, erro de digitação dos nomes de variáveis

```
Real*8 lat, long, lat_rad, lon_rad
...
lat = -22.
long = -47.
...
lon_rad = lon * pi / 180. ! lon_rad = ZERO !!
```

 No início de todo o programa FORTRAN usar sempre o comando IMPLICIT NONE

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

17

Introdução ao FORTRAN (14/18)

Constantes

Exemplos

LOGICAL .true.

.false.

INTEGER 1423

+345

-34565788

CHARACTER 'ABCDEFG1234567'

'There''s always tomorrow'

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II 18

Introdução ao FORTRAN (15/18)

• Constantes (continuação)

Exemplos

REAL 123.764

.4352344 1423.34E12 +345.E-4 -.4565788E3

2E6 1234.

REAL*8 1423.34D12

+345.D-4 -.4565788D5

2D6

 É possível atribuir um nome simbólico a uma constante com o uso do comando PARAMETER (o valor da constante não pode mudar no pgm!)

PARAMETER (PI=3.141592653589793D0)

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

19

Introdução ao FORTRAN (16/18)

- · Vetores e matrizes (Arrays)
 - Podem ter até 7 dimensões
 - Normalmente são usadas até 3 dimensões
 - · Uma dimensão: vetor
 - · Duas dimensões: matriz
 - Três dimensões: array de matrizes paralelas
 - Forma genérica:
 - a (d [,d] ...), onde d é declarador de dimensão do tipo
 - d = [limite_inferior:] limite superior
 - Exemplos

DIMENSION A(10), B(-5:5,-10:10)

INTEGER C(10,20)

COMMON /DATA/ X, Y(30,30), Z

- O tamanho máximo de um array é limitado pela memória (RAM) disponível
- Elementos de um array
 - A(5), B(-3, 9), C(7, 16), Y(21, 13)
- Todos os elementos de um array são do mesmo tipo

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (17/18)

Comando de atribuição: V = E

Onde V é uma variável numérica, lógica ou caracter e E uma expressão do tipo aritmética, relacional/lógica ou de caracter, respectivamente

- Expressões
 - Aritméticas
 - Operações entre valores de tipo numérico e que têm como resultado um valor numérico
 - Operadores artiméticos: + * / ** (em ordem inversa de precedência)
 - Exemplo: B + (C D) * 4 / 2
 - Relacionais
 - Operações entre dois valores do mesmo tipo e que têm como resultado um valor lógico
 - Operadores relacionais: .EQ. .NE. .GT. .LT. .GE. .LE.
 - Exemplo: A .LT. B
 - Lógicas
 - Operações entre valores lógicos e que têm como resultado valores lógicos
 - Operadores lógicos .XOR. .OR. .AND. .NOT. (em ordem inversa de precedência)
 - Exemplo: D .OR. E .AND. F { = D .OR. (E .AND. F) }

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

21

Introdução ao FORTRAN (18/18)

· Operadores lógicos

Α	В	A .AND. B	A .OR. B	A .XOR. B	.NOT. A
.TRUE.	.TRUE.	.TRUE.	.TRUE.	.FALSE.	.FALSE.
.TRUE.	.FALSE.	.FALSE.	.TRUE.	.TRUE.	.FALSE.
.FALSE.	.TRUE.	.FALSE.	.TRUE.	.TRUE.	.TRUE.
.FALSE.	.FALSE.	.FALSE.	.FALSE.	.FALSE.	.TRUE.

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (1/20)

- · Comandos de controle
 - O FORTRAN foi desenvolvido ANTES dos conceitos de programação estruturada
 - Importante usar apenas os comandos que seguem estes conceitos estruturados (i.e., comandos sequenciais, condicionais e de repetição)
 - NÃO usar o comando GO TO !!!!

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

23

Introdução ao FORTRAN (2/20)

- Comandos de controle (Cont.)
 - Comandos condicionais
 - IF THEN ELSE END IF
 - Implementa o pseudo-código Se-então-Senão-Fim Se
 - Caso Geral

IF (expressão_lógica) THEN comando(s)

ELSE

comando(s)

END IF

- 1º caso particular: ausência do bloco ELSE

IF (expressão_lógica) THEN
 comando(s)

END IF

2º caso particular (versão antiga do IF):
 IF (expressão_lógica) comando

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (3/20)

- Comandos de controle (Cont.)
 - Comandos condicionais
 - IF THEN ELSE END IF
 - Exemplos

```
IF (A .GT. B) THEN
```

Write (*,*) 'A maior que B'

A = A - B

ELSE

Write (*,*) 'A não maior que B'

END IF

IF (A.GT. B) A = A - B

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

25

Introdução ao FORTRAN (4/20)

- Comandos de controle (Cont.)
 - Comandos condicionais
 - IF THEN ELSE IF ELSE END IF
 - Extensão do caso geral do IF-THEN-ELSE-ENDIF

IF (expressão_lógica_1) THEN
 comando(s)

comando(s)

ELSE IF (expressão_lógica_2) THEN

comando(s)

ELSE

comando(s)

END IF

- Na estrutura acima, o bloco ELSE IF pode se repetir
- O bloco ELSE pode ou não estar presente

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (5/20)

```
• Comandos de controle (Cont.)
```

```
Comandos condicionais
IF - THEN - ELSE IF - ELSE - END IF
Exemplo
IF (A .GT. B) THEN
Write (*,*) 'A maior que B'
A = A - B
ELSE IF (A .LT. B) THEN
Write (*,*) 'A menor que B'
A = B - A
ELSE
Write (*,*) 'A igual a B'
A = 0.0
END IF
```

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

27

Introdução ao FORTRAN (6/20)

```
Comandos de controle (Cont.)
 - Comandos condicionais
     • IF - THEN - ELSE - END IF
         - Exemplos de ninhos de IF
             IF (A .NE. B) THEN
               IF (A .GT. B) THEN
                      Write (*,*) 'A maior que B'
                      A = A - B
               ELSE
                      Write (*,*) 'A menor que B'
                      A = B - A
               END IF
             ELSE
               Write (*,*) 'A igual a B'
               A = 0.0
             END IF
```

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (7/20)

- Comandos de controle (Cont.)
 - Comandos de repetição
 - DO END DO
 - Implementa o pseudo-cógigo Para-faça-Fim Para
 - Caso geral (extensão do FORTRAN 77)

```
DO variável = início, fim [, incremento]
  comando(s)
```

END DO

- Versão FORTRAN 77

DO XX variável = início, fim [, incremento] comando(s)

XX CONTINUE

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II 29

Introdução ao FORTRAN (8/20)

```
Comandos de controle (Cont.)
```

```
- Comandos de repetição
```

• DO - END DO

- Exemplos

DO I = 1, 3**DO** J = 1, 5

Write (*,*) MATRIZ(I, J)

END DO

END DO

DO 20 I = 1, 3

DO 10 J = 1, 5

Write (*,*) MATRIZ(I, J)

CONTINUE

20 CONTINUE

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

```
Introdução ao FORTRAN (9/20)
   Comandos de controle (Cont.)
    - Comandos de repetição
        · DO WHILE - END DO
            - Implementa o pseudo-cógigo Enquanto-faça-Fim Enquanto
           - Extensão do FORTRAN 77
                DO WHILE (expressão_lógica)
                  comando(s)
                END DO
            - Exemplo
                I = 1
                DO WHILE (I.LE. 3)
                  J = 1
                  DO WHILE (J.LE. 5)
                        Write (*,*) MATRIZ( I, J )
                        J = J + 1
                  END DO
                  | = | + 1
                END DO
Prof. Luiz Paulo S. Fortes
                    Computação Aplicada à Cartografia II
                                                                 31
```

```
Introdução ao FORTRAN (10/20)
   Comandos de controle (Cont.)
    - Comandos de repetição
        • WHILE - DO - END WHILE
            - Também Implementa o Enquanto-faça-Fim Enquanto
           - Extensão do FORTRAN 77
                WHILE (expressão_lógica) DO
                  comando(s)
                END WHILE
            - Exemplo
                I = 1
                WHILE (I.LE. 3) DO
                  J = 1
                  WHILE (J.LE. 5) DO
                        Write (*,*) MATRIZ( I, J )
                        J = J + 1
                  END WHILE
                  | = | + 1|
                END WHILE
Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II
                                                                 32
```

Introdução ao FORTRAN (11/20)

- Comandos de controle (Cont.)
 - Comandos de repetição
 - · LOOP UNTIL
 - Implementa o pseudo-código Repita-Até que
 - Extensão do FORTRAN 77

LOOP

comando(s)

UNTIL (expressão_lógica)

- Exemplo

X = 1.0

LOOP

Write (*,*) X, SQRT(X)

X = X + 1

UNTIL (X .GT. 10.0)

- Qual a diferença entre WHILE DO e LOOP UNTIL ?

Prof. Luiz Paulo S. Fortes

Computação Aplicada à Cartografia II

33

Introdução ao FORTRAN (12/20)

- Comandos de entrada e saída (Input/Output)
 - Fornecem meios para o programa FORTRAN se comunicar com os periféricos
 - O comando READ transfere dados para dentro do ambiente de execução do programa
 - Os comandos WRITE e PRINT transferem dados para fora do ambiente de execução
 - Outros comandos realizam funções adicionais, tais como posicionar um certo registro em um arquivo, estabelecer quais arquivos serão processados pelo programa, etc.

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (13/20)

- Comandos de entrada e saída (Input/Output)
 - Arquivos
 - · Podem ser externos ou internos
 - Trataremos aqui apenas dos arquivos externos
 - Arquivos externos existem ou são criados em meios tais como discos rígidos, impressoras, monitores, etc.
 - Um arquivo externo (ou simplesmente arquivo) pode existir antes da execução do programa ou pode ser criado e/ou apagado durante a execução
 - Arquivos são formados por registros
 - Propriedades de arquivos externos
 - Nome: geralmente um arquivo tem um nome
 - Tipo de acesso: refere-se à forma com que um registro é posicionado para leitura ou gravação no arquivo
 - » Sequencial: registros são lidos e gravados em ordem, desde o primeiro até o último
 - » Direto: registros podem ser lidos e gravados em qualquer ordem, através do referenciamento ao número do registro

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

35

Introdução ao FORTRAN (14/20)

- Comandos de entrada e saída (Input/Output)
 - Registros
 - Exemplo
 - Arquivo de pontos de um navegador GPS
 - Cada registro é composto pela identificação do ponto e suas coordenadas geodésicas (latitude, longitude e altitude elipsoidal), por exemplo
 - Podem ser formatados (formatted) e não formatados (unformatted)
 - Formatados: formados por caracteres
 - Não formatados: formados por valores numéricos, lógicos e tb caracteres; basicamente estes valores têm a mesma representação que possuem na memória do computador

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (15/20)

- Comandos de entrada e saída (Input/Output)
 - Registros
 - Exemplo de registros formatados (formatted) e n\u00e3o formatados (unformatted)

INTEGER NUM NUM = 12345 WRITE (*, 100) NUM ! \Rightarrow 5 bytes para escrever NUM FORMAT(1X, I5) WRITE (UNIT=7) NUM ! \Rightarrow 4 bytes para escrever NUM

- · Registro de final de arquivo (endfile)
 - Registro especial situado após todos os outros registros de um arquivo, ou seja, localizado no final do arquivo
 - É um registro que não possui dados
 - Após todos os registros de um arquivo serem lidos, se uma nova tentativa de leitura é efetuada, o registro endfile é "lido" e a condição end-of-file é atingida

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

37

Introdução ao FORTRAN (16/20)

- Comandos de entrada e saída (Input/Output)
 - Unidades (Units)
 - Comandos de entrada e saída referem-se a arquivos externos através de números inteiros denominados unidades
 - Unidades são números inteiros que variam de 0 a 999
 WRITE (1,*) 'Gravação na unidade 1'
 - O comando OPEN associa uma unidade a um arquivo particular, o que se denomina conexão

OPEN (UNIT=1, FILE='FILE1')
OPEN (UNIT=2, FILE='FILE2')

 Para desconectar uma unidade de um arquivo, pode-se usar o comando CLOSE ou usar OPEN com o mesmo número de unidade

CLOSE (UNIT=1) ! ou OPEN (UNIT=1, FILE='FILE3')

- Existem unidades pre-conectadas a arquivos
 - * ou 5: teclado (para leitura)
 - * ou 6: monitor de video (para escrita)

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (17/20)

- Comandos de entrada e saída (Input/Output)
 - Especificadores
 - Comandos de entrada e saída contêm um ou mais especificadores, dependendo do comando

· Especificador de unidade: [UNIT =] u· Especificador de formato: [FMT =] fREC = nr Especificador de registro: • Especificador de status de input/output: IOSTAT = ios· Especificador de erros: ERR = e• Especificador de final de arquivo: END = s• Especificador de status de arquivo: STATUS = sta Especificador de acesso de arquivo: ACCESS = acc · Especificador de formato de registro: FORM = fmEspecificador de comprimento de registro: RECL = rcl

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

39

Introdução ao FORTRAN (18/20)

- · Comandos de entrada e saída (Input/Output)
 - Especificadores
 - Se UNIT é omitida, u deve ser o primeiro especificador usado no comando
 - Se FMT é omitido, f deve ser o segundo especicificador usado no comando; f também pode ser * (= formato livre)
 - Se IOSTAT, ERR e END são especificados, o programa não é terminado caso ocorra um erro ou uma condição end-of_file
 - f, e, s são números (inteiros) de comandos do programa
 - ios = 0 (sem erro), > 0 (erro), < 0 (final de arquivo)
 - sta
 - No comando OPEN: = 'OLD', 'NEW', 'SCRATCH', ou 'UNKNOWN', sendo este último o default; para 'OLD' e 'NEW', FILE tem que ser especificado; para 'SCRATCH', FILE não pode ser especificado (corresponde a arquivo temporário, apagado quando o comando CLOSE é executado)
 - No comando CLOSE: = 'KEEP' ou 'DELETE', sendo o primeiro o default, exceto para arquivos 'SCRATCH', onde o segundo é o default (e a única opção possível neste caso)
 - acc = 'SEQUENTIAL' ou 'DIRECT', sendo o primeiro o default; 'APPEND' é uma extensão Open Watcom
 - fm = 'FORMATTED' ou 'UNFORMATTED'; sendo o primeiro default para arquivos sequenciais e o segundo o default para arquivos de acesso direto
 - rcl = comprimento do registro (inteiro); deve ser fornecido para arquivos de acesso direto e não deve estar presente em arquivos sequenciais

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (19/20)

- Comandos de entrada e saída (Input/Output)
 - Descrição dos mais usados

```
OPEN ([UNIT =] u, IOSTAT = ios, ERR = e, FILE = f, STATUS = sta, ACCESS = acc, FORM = fm, RECL = rcl)
```

CLOSE ([UNIT =] u, IOSTAT = ios, ERR = e, STATUS = sta)

READ ([UNIT =] u, [FMT=] f, REC = nr, IOSTAT = ios, ERR = e, END = s) lista_de_variáveis

WRITE (([UNIT =] u, [FMT=] f, REC = nr, IOSTAT = ios, ERR = e) lista_de_variáveis

PRINT f, lista_de_variáveis

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

41

Introdução ao FORTRAN (20/20)

- Comandos de entrada e saída (Input/Output)
 - Exemplos

```
OPEN (UNIT=5, FILE='TEST', STATUS='UNKNOWN', ACCESS='SEQUENTIAL', FORM='FORMATTED' )
         OPEN (5, FILE='TEST')
        READ (5, 100) X, Y, Z ! ou
        READ (UNIT=5, FMT=100) X, Y, Z ! ou
100
        FORMAT (3F10.5)
        READ (UNIT=5, FMT='( 3F10.5 )' ) X, Y, Z ! ou
        READ(5, '(3F10.5)') X, Y, Z
        READ (*,100) X, Y, Z ! Leitura do teclado
        READ (*, *) X, Y, Z ! Leitura com formato livre
         WRITE (6, 100) X, Y, Z
        WRITE (UNIT=6, FMT=100) X, Y, Z
        WRITE (UNIT=6, FMT='( 3F10.5 )') X, Y, Z
        WRITE (6, '( 3F10.5 )') X, Y, Z
        WRITE (*, 100) X, Y, Z ! Escrita na tela
         WRITE (*, *) X, Y, Z
                              ! Escrita na tela com formato livre
         CLOSE (5)
```

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Exercícios Propostos (1/2)

- Desenhar o DFD (1 º nível, i.e., diagrama de contexto), escrever o algoritmo em pseudo-código e depois implementar os programasfonte em FORTRAN 77 para:
 - Calcular as raízes x1 e x2 ∈ ℜ de uma equação do 2º grau
 - Os coeficientes a, b e c da equação devem ser lidos de teclado
 - A saída do programa (as raízes da equação) será fornecida na tela
 - Caso não haja raízes $\in \mathfrak{R}$, emitir mensagem "Não há raízes reais"

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

43

Exercícios Propostos (2/2)

- Desenhar o DFD (1 º nível, i.e., diagrama de contexto), escrever o algoritmo em pseudo-código e depois implementar os programas-fonte em FORTRAN 77 para:
 - Calcular a soma dos *n* elementos de uma progressão aritmética de razão *r*
 - O primeiro elemento da PA, n e r devem ser lidos do teclado
 - A saída do programa (os n elementos da PA e a sua soma) deve ser na tela
 - Usar um vetor para armazenar e exibir os elementos da PA (ou seja, os elementos devem ser escritos em linha na tela)
 - Calcular o fatorial de qualquer número inteiro
 - · Fornecer o número do teclado
 - A saída do programa (o número lido e o fatorial) deve ser na tela
 - Emitir mensagem de erro no caso de números negativos ou não inteiros

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (1/16)

- Comando FORMAT
 - Fornece os meios para se especificar a forma com que os dados internos são convertidos em cadeias de caracter e vice-versa
 - Sintaxe

```
label FORMAT fs , onde
```

label:

número de comando usado pelo comando de I/O para identificar o comando FORMAT

fs:

cadeia de caracteres contendo a especificação de formato

- Exemplo

```
REAL X

X = 234.43

WRITE (*, 100) X

100 FORMAT(F10.2)

END
```

Prof. Luiz Paulo S. Fortes

Computação Aplicada à Cartografia II

45

Introdução ao FORTRAN (2/16)

- Comando FORMAT (Continuação)
 - Como alternativa ao uso do comando FORMAT, pode-se utilizar a a cadeia de caracteres fs no próprio comando de I/O
 - Exemplo

Prof. Luiz Paulo S. Fortes

Computação Aplicada à Cartografia II

Introdução ao FORTRAN (3/16)

- Comando FORMAT (Continuação)
 - Cadeia de caracteres fs
 - Sintaxe

(flist)

flist é uma lista de descritores de formato separados por vírgula

· Descritores de formato

red, onde ed é um editor de formato repetível e r é um número inteiro positivo representando o número de ocorrências de ed

ned, onde ned é um editor de formato não repetível

rfs, onde fs é uma outra cadeia de caracteres

Exemplo

$$(//, 2x, `X = `, F11.3, 2x, `Y = `, F11.3, 2x, `Z = `, F11.3)$$

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

47

Introdução ao FORTRAN (4/16)

- Comando FORMAT (Continuação)
 - Alguns descritores de formato repetíveis

Iw números inteirosFw.d números reais

Ew.d números reais de precisão simples Dw.d números reais de dupla precisão

Lw valores lógicos A caracteres

Aw cadeias de caracteres

onde w é o comprimento total do campo a ser lido ou escrito e d é o comprimento da parte fracionária

OBS: se o número a ser exibido for maior que *w* (descritores I, F, E e D), o campo é preenchido com asteriscos

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (5/16)

- Comando FORMAT (Continuação)
 - Alguns descritores de formato não repetíveis

```
/ muda de registro ou de linha
```

X avança uma posição no registro ou linha nX avança n posições no registro ou linha

'hh...h' grava ou imprime a cadeia de caracteres entre

apóstrofes

nHhh..h grava ou imprime os n caracteres após o

descritor H

\$ mantém o cursor na posição corrente

(extensão)

mantém o cursor na posição corrente

(extensão)

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

49

Introdução ao FORTRAN (6/16)

- Comando FORMAT (Continuação)
 - Exemplos

```
C Exemplo de formato de LEITURA de variáveis C23456789012345678901234567890
```

```
real*8 x, y, z, lat_seg, lon_seg, alt integer lat_grau, lat_min, lon_grau, lon_min character lat_sinal, lon_sinal character*4 ponto

read (*,1000) ponto, x, y, z,
! lat sinal, lat grau, lat min, lat seg,
```

```
! lat_sinal, lat_grau, lat_min, lat_seg,
! lon_sinal, lon_grau, lon_min, lon_seg,
! alt
1000 Format (A4, 5X, 3(F11.3,1X), 4X,
! 2(A1,1X, 2(I2,1X), F8.5, 1X), F8.3)
```

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (7/16)

- Comando FORMAT (Continuação)
 - Exemplos

```
Exemplo de formato de IMPRESSÃO de variáveis
C
\tt C234567890123456789012345678901234567890
                                       real*8 x, y, x, lat_seg, lon_seg, alt
                                        integer lat_grau, lat_min, lon_grau, lon_min
                                         character lat_sinal, lon_sinal
                                         character*4 ponto
                                        write(*,2000) ponto, x, y, z,
                                                                                      lat_sinal, lat_grau, lat_min, lat_seg,
lon_sinal, lon_grau, lon_min, lon_seg,
                                                                                       alt
2000 Format (' Ponto: ', A4, 5X,
                                                                                                     Yangaran (Yangaran (Yangar
```

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

51

Introdução ao FORTRAN (8/16)

- Comando FORMAT (Continuação)
 - Exemplos

```
Exemplo de formato de LEITURA de uma matriz por
    linha, com até 8 elementos por registro
C234567890123456789012345678901234567890
      real*8 M(100,100)
      integer i, j, n
      n = 100
      DO i = 1, n
         read (*, 1000) (M(i,j), j=1,n)
1000
         Format (8F10.3)
```

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

END DO

Introdução ao FORTRAN (9/16)

- Comando FORMAT (Continuação)
 - Exemplos

```
С
    Exemplo de formato de IMPRESSÃO de uma matriz por
    linha, com até 8 elementos por linha
C234567890123456789012345678901234567890
      real*8 M(100,100)
      integer i, j, n
      n = 100
      DO i = 1, n
         write(*, 2000) i, (M(i,j), j=1,n)
Format (´ Linha ´, i3, (8F10.3))
2000
      END DO
```

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

53

Introdução ao FORTRAN (10/16)

- Funções e subrotinas
 - Uma unidade ou módulo de programa (program unit) é um conjunto de comandos FORTRAN e comentários, podendo ser um programa principal ou um subprograma
 - O programa principal é o módulo de programa onde a execução começa
 - a execução completa do programa principal implica na execução completa do programa
 - Um programa executável pode conter apenas um programa principal
 - Um subprograma é um módulo de programa que possui como primeiro comando SUBROUTINE, FUNCTION ou **BLOCK DATA**

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (11/16)

- Funções e subrotinas
 - Podem ser
 - Funções de comando (Statement functions)
 - Funções intrínsecas (Intrinsic functions)
 - Funções externas (External functions)
 - Subrotinas (Subroutines)

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

55

Introdução ao FORTRAN (12/16)

- Funções e subrotinas
 - Funções de comando (Statement functions)

```
SUBROUTINE CALC( U, V )
REAL POLY, X, Y, U, V, Z, CONST

*

* Defina a Statement Function.

*

POLY(X,Y) = X**2 + Y**2 + 2.0*X*Y + CONST

*

* Invoque a Statement Function.

*

CONST = 23.5
Z = POLY( U, V )

PRINT *, Z

RETURN
END
```

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (13/16)

- · Funções e subrotinas
 - Funções intrínsicas (Intrinsic functions)
 - · São fornecidas pelo compilador FORTRAN
 - ExemploDSIN (LAT)
 - Funções externas (External functions)
 - É um módulo de programa que possui o comando FUNCTION como primeiro comando
 - Exemplo

```
INTEGER FUNCTION VECSUM (A, N)
INTEGER A(N), I
VECSUM = 0
DO I = 1, N
        VECSUM = VECSUM + A(I)
END DO
RETURN
END
```

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

57

Introdução ao FORTRAN (14/16)

- Funções e subrotinas
 - Subrotinas (Subroutines)
 - É um módulo de programa que possui o comando SUBROUTINE como primeiro comando
 - Uma subrotina difere de uma função externa no fato de que ela não retorna um resultado e portanto não possui um tipo associado a ela. Entretanto, é possível retornar valores através de seus argumentos
 - Ao contrário de uma função externa, uma subrotina não pode aparecer numa expressão; subrotinas são referenciadas usando-se o comando CALL
 - Exemplo

```
SUBROUTINE GRA_RAD (ANG, ANG_RAD)
REAL*8 ANG, ANG_RAD, PI
PI = 3.141592653589793D0
ANG_RAD = ANG * PI / 180.D0
RETURN
END
```

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN (15/16)

• Funções e subrotinas

- Argumentos
 - Argumentos fornecem uma forma de comunicação entre módulos de programa
 - Argumentos são passados para subprogramas através de uma lista de argumentos e são recebidos pelo subprograma através de uma lista de argumentos
 - A lista de argumentos passada para uma função ou subrotina deve concordar com a lista de argumentos definida no subprograma em quantidade, ordem e tipo dos argumentos
 - Quando um dos argumentos for um ARRAY, o tamanho do ARRAY no subprograma deve ser menor ou igual ao tamanho no módulo de programa que chama o subprograma; além disso, caso o ARRAY não seja um vetor, é preciso garantir a correspondência entre os elementos (em FORTRAN os argumentos são passados por referência e os ARRAYs armazenados por coluna na memória!)

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

59

Introdução ao FORTRAN (16/16)

- · Funções e subrotinas
 - Dimensionando ARRAYs como argumentos em subprogramas
 - · ARRAYs ajustáveis

```
DIMENSION A (10, 20)
I = 10
J = 20
CALL SQUARE (A, I, J)
SUBROUTINE SQUARE (B, M, N)
DIMENSION B (M, N)
```

ARRAYs que assumem o tamanho da variável passada

```
DIMENSION A (10, 20)
I = 10
CALL SQUARE (A, I)

SUBROUTINE SQUARE (B, M)
DIMENSION B (M, *) OU DIMENSION B (M, 1)
```

- No caso de vetor

DIMENSION B (1)

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II

Introdução ao FORTRAN

- Bibliografia
 - http://www.ibiblio.org/pub/languages/fortran/ch1-1.html/
 - Open Watcom FORTRAN 77 Guides

Prof. Luiz Paulo S. Fortes Computação Aplicada à Cartografia II