Final

1) What are three major consequences of combining QM and Relativity? (3)	ombining QM and Relativity? (3 points)
--	--

2) Lorentz Transforms (5 points)

- a) How does a massive particle $|p^\mu,\sigma\rangle$ transform under a little group transformation $(W^{\rm v}_\mu)$?
- d) How does a mass-less particle $|p^{\mu},\sigma\rangle$ transform under a little group transformation (W^{ν}_{μ}) ?
- c) How does a massive particle $|p^{\mu},\sigma\rangle$ transform under a general Lorentz transformation (Λ^{ν}_{μ}) ?

d) How does a mass-less particle $ p^{\mu} $?	$\langle \sigma angle$ transform under a $\mathfrak g$	general Lorentz transform	nation (Λ_{μ}^{ν})
3) List or draw a diagram of the part What is the spin of each particle?	ticles in the Standard r	nodel.	(3 points)
4) Why is the weak interaction so m energies?	uch weaker than the e	electromagnetic interac	tion at low (2 points)

5) Muon decays:	(10 points)
a) The muon decays via the weak interaction, At low energy ($E << m_W$), this call imated as a point-like interaction. Draw the diagram describing muon decay the assuming a point-like weak interaction. (Indicate which is the XXX)	
b) What are the dimensions of the coupling constant, associated to this diagram?	
c) How does the decay rate Γ (decays/unit time) depend on the muon mass ?	

e) Suppose that the photon could couple at the same vertex to the muon and the e the muon could decay as $\mu \to e\gamma$. Estimate the ratio of the μ lifetime in this w our world without this interaction.	
6) What are some experimantal constraints on a fourth generation of leptons ?	(3 points)
7) What problems might SuperSymmetry solve ?	(3 points)
8) Muon Neutrinos	(3 points)
a) How was the distinction between ν_{μ} and ν_{e} discovered ?	
b) Why was this expected?	
9) Accelerators:	(3 points)
a) What limits the energy of circular proton accelerators?	
b) What limits the energy of circular electron accelerators?	
10) Electron-positron Collisions	(3 points)
a) Consider electron-positron collisions with a center-of-mass energy of 40 GeV ratio of hadron production to di-muon production.	. Estimate the
b) Sketch a graph of the total cross section of $ee \rightarrow \mu\mu$ as a function of E_{CM} from 200. Also sketch the compent of the cross section due to the electro-magnetic in	

11) Spontaneous Symmetry Breaking

(3 points)

What particle spectra would you expect from $L = (dP)^2 + mu^2 + V$ w mu2 > 0 V w mu2 < 0 U(1) + V mu2 < 0

12) Leptons (3 points)

Branching ratios: $\tau \rightarrow eor\mu$

13) Collider Detectors

(3 points)

In a collider experiment at the LHC,

- a) In what ways do the detector signatures of electrons and muons look a-like, in what ways are they different?
- b) In what ways do the detector signatures of electrons and photons look a-like, in what ways are they different?
- c) In what ways do the detector signatures of electrons and quarks look a-like, in what ways are they different?
- **14)** Why are hadronic showers more challenging to measure than electro-magnetic showers ? (3 points)
- 15) Other things being equal is it better to have a tracking detector that is twice as big or that has double the magnetic field? Justify your answer.

 (5 points)
- 16) How are vs detected at the LHC?

(3 points)

- **16) Higgs Physics** (3 points)
 - a) Estimate the ratio of $Br(H \to \mu\mu)/Br(H \to \tau\tau)$
 - b) Draw one possible feynman diagram for production and decay fo the Higgs boson at the LHC.
 - c) Draw one possible feyman diagram for the possible and decay of the Higgs boson at an eletron -positron collider.

16) (3 points)

16) Neutrino Physics

(10 points)

- a) What was the main reason to study vs in the 60s and 70s, before we knew they had mass?
- b) What are dominant kind (indicate particle or anti-particle and flavor) of vsthat come from:
 - i) The sun?

- ii) nuclear reactors?
- ii) cosmic rays?
- iv) nu beams?