

Design and Analysis of Algorithms

Chapter 2: Asymptotic Analysis

Analysis of algorithms

- Measuring efficiency of an algorithm
 - ✓ Time: How long the algorithm takes (running time)
 - ✓ Space: Memory requirement

Time and space

- Time depends on processing speed
 - ✓ Impossible to change for a given hardware
- Space is a function of available memory
 - ✓ Easier to reconfigure and augment.
 - ✓ Typically, we will focus on time, not space

Measuring running time

- Analysis independent of the underlying hardware
 - ✓ Don't use actual time
 - ✓ Measure in terms of "basic operations"
- Typical basic operations
 - ✓ Compare two values
 - ✓ Assign a value to a variable
- Other operations may be basic, depending on the context
 - ✓ Exchange values of a pair of variables

Input size

- Running time depends on input size
 - ✓ Larger arrays will take longer to sort
- Measure time efficiency as a function of input size
 - ✓ Input size n
 - ✓ Running time t(n)
- Different inputs of size n may each take a different amount of time
- Typically, t(n) is worst-case estimate

Sorting | example 2.1

- Sorting an array with n elements
 - ✓ Naïve algorithms: time proportional to n²
 - ✓ Best algorithms: time proportional to n log n
- How important is this distinction?
- Typical CPUs process up to 10⁸ operations per second
 - ✓ Useful for approximate calculations

Sorting | example 2.1

- Telephone directory for cell phone users in say China
 - ✓ China has about 1 billion (for easy computation) = 10⁹ phones
- Naïve n² algorithm requires 10¹8 operations
 - ✓ 10⁸ operations per second \Rightarrow 10¹⁰ seconds = 2778000 hours = 115700 days = 300 years!
- Smart n log n algorithm takes only about 3 x 10¹⁰ operations
 - ✓ About 300 seconds, or 5 minutes

Video game | example 2.2

- Several objects on screen
- Basic step: find closest pair of objects
- Given n objects, naïve algorithm is again n²
 - ✓ For each pair of objects, compute their distance
 - ✓ Report minimum distance over all such pairs
- There is a clever algorithm that takes time n log n

Video game | example 2.2

- The high-resolution monitor has 2500 x 1500 pixels
 - ✓ 3.75 million points
- Suppose we have $500,000 = 5 \times 10^5$ objects
- The Naïve algorithm takes 25×10^{10} steps => 2500 seconds = 42 minutes response time is unacceptable!
- Smart n log n algorithm takes a fraction of a second

Orders of Magnitude

- When comparing t(n) across problems, focus on orders of magnitude
 - ✓ Ignore constants
- $f(n) = n^3$, eventually grows faster than $g(n) = 5000 n^2$
 - ✓ For small values of n, f(n) is smaller than g(n)
 - \checkmark At n = 5000, f(n) overtakes g(n)
 - ✓ What happens in the limit, as n increases: asymptotic complexity

Typical Functions

- We are interested in orders of magnitude
- Is t(n) proportional to log $n, ..., n^2, n^3, ..., 2^n$?
- Logarithmic, polynomial, exponential ...

Typical Functions t(n)...

Input	log n	n	n log n	n ²	n ³	2 ⁿ	n!
10	3.3	10	33	100	1000	1000	10 ⁶
100	6.6	100	66	104	10 ⁶	10 ³⁰	10157
1000	10	1000	104	10 ⁶	10 ⁹		
104	13	104	10 ⁵	10 ⁸	1012		
10 ⁵	17	105	106	1010			
10 ⁶	20	10 ⁶	10 ⁷				
10 ⁷	23	10 ⁷	108				
10 ⁸	27	108	109				
10 ⁹	30	10 ⁹	1010				
10 ¹⁰	33	1010					

Input size ...

- How do we fix input size?
- Typically, a natural parameter
 - ✓ For sorting and other problems on arrays: array size
 - ✓ For combinatorial problems: number of objects
 - ✓ For graphs, two parameters: number of vertices and number of edges

Choice of basic operations

- Flexibility in identifying "basic operations"
- Swapping two variables involves three assignments

$$tmp \leftarrow x$$

$$x \leftarrow y$$

$$y \leftarrow tmp$$

- Number of swaps is 3 times number of assignments
- If we ignore constants, t(n) is of the same order of magnitude even if swapping values is treated as a basic operation

Worst-case complexity

- Running time on input of size n varies across inputs
- Search for K in an unsorted array A

```
i ← 0
while i < n and A[i] != K do
   i ← i+1
if i < n return i
else return -1</pre>
```

Worst-case complexity

- For each n, the worst-case input forces the algorithm to take the maximum amount of time
 - ✓ If K is not in A, the search scans all elements
- Upper bound for the overall running time
 - ✓ Here worst-case is proportional to n for array size n
- Can construct worst-case inputs by examining the algorithm

Average case complexity

- Worst-case may be very rare: pessimistic
- Compute the average time taken over all inputs
- Difficult to compute
 - ✓ Average over what?
 - ✓ Are all inputs equally likely?
 - ✓ Need probability distribution over inputs

Worst-case vs average case

- Worst-case can be unrealistic
- ... but the average case is hard, if not impossible, to compute
- A good worst-case upper bound is useful
- A bad worst-case upper bound may be less informative
 - ✓ Try to "classify" worst-case inputs, look for simpler subclasses

Comparing time efficiency

- We measure time efficiency only up to an order of magnitude
 - ✓ Ignore constants
- How do we compare functions with respect to orders of magnitude?

Upper bounds, "big O"

 t(n) is said to be O(g(n)) if we can find suitable constants c and n₀ so that cg(n) is an upper bound for t(n) for n beyond n₀

• $t(n) \le cg(n)$ for every $n \ge n_0$

Big O | example

- 100n + 5 is O(n) 100n + 5≤ 100n + 5n, for $n \ge 1$ = $105n \le 105n$, so $n_0 = 1$, c = 105
- n₀ and c are not unique!
- Of course, by the same argument, 100n+5 is also O(n)

Big O | example

• $100n^2 + 20n + 5$ is $O(n^2)$

$$100n^{2} + 20n + 5$$

 $\leq 100n^{2} + 20n^{2} + 5n^{2}$, for $n \geq 1$
 $\leq 125n^{2}$
 $n_{0} = 1$, $c = 125$

What matters is the highest term

 \checkmark 20n + 5 dominated by 100n²

Big O | example

- n³ is not O(n²)
 - ✓ No matter what c we choose, cn^2 will be dominated by n^3 for $n \ge c$

Useful properties

- If
 - \checkmark f₁(n) is O(g₁(n))
 - \checkmark f₂(n) is O(g₂(n))
- then $f_1(n) + f_2(n)$ is $O(max(g_1(n),g_2(n)))$
- Proof
 - \checkmark f₁(n) \le c₁g₁(n) for all n > n₁
 - \checkmark f₂(n) \le c₂g₂(n) for all n > n₂

Why is this important?

- Algorithm has two phases
 - \checkmark Phase A takes time O(g_A(n))
 - ✓ Phase B takes time $O(g_B(n))$
- Algorithm as a whole takes time
 - \checkmark max(O(g_A(n)),O(g_B(n)))
- For an algorithm with many phases, least efficient phase is an upper bound for the whole algorithm

Lower bounds, Ω (omega)

• t(n) is said to be $\Omega(g(n))$ if we can find suitable constants c and n_0 so that cg(n) is a lower bound for t(n) for n beyond n_0

 \checkmark t(n) ≥ cg(n) for every n ≥ n₀

Lower bounds

- n^3 is $\Omega(n^2)$
 - \checkmark n³ \ge n² for all n
 - \checkmark n₀ = 0 and c = 1
- Typically, we establish lower bounds for problems as a whole, not for individual algorithms
 - Sorting requires $\Omega(n \log n)$ comparisons, no matter how clever the algorithm is.

Tight bounds, 0 (theta)

- t(n) is $\Theta(g(n))$ if it is both O(g(n)) and $\Omega(g(n))$
- Find suitable constants c₁, c₂, and n₀ so that

 \checkmark c₂g(n) \le t(n) \le c₁g(n) for every n \ge n₀

Tight bounds

- n(n-1)/2 is $\Theta(n^2)$
 - ✓ Upper bound $n(n-1)/2 = n^2/2 n/2 \le n^2/2, \text{ for } n \ge 0$
 - ✓ Lower bound $n(n-1)/2 = n^2/2 n/2 \ge n^2/2 (n/2 \times n/2) \ge n^2/4, \text{ for } n \ge 2$
- Choose $n_0 = max(0,2) = 2$, $c_1 = 1/2$ and $c_2 = 1/4$

Summary

- f(n) = O(g(n)) means g(n) is an upper bound for f(n)
- Useful to describe the limit of worst-case running time for an algorithm
- $f(n) = \Omega(g(n))$ means g(n) is a lower bound for f(n)
- Typically used for classes of problems, not individual algorithms
- $f(n) = \Theta(g(n))$: matching upper and lower bounds Best possible algorithm has been found

Calculating Complexity Examples

- Iterative programs
- Recursive programs

Example 2.3

Maximum value in an array

```
function maxElement(A):
    maxval = A[0]
    for i = 1 to n-1:
        if A[i] > maxval:
            maxval = A[i]
    return(maxval)
```


Example 2.4

Check if all elements in an array are distinct

```
function noDuplicates(A):
    for i = 0 to n-1:
        for j = i+1 to n-1:
        if A[i] == A[j]:
            return(False)
    return(True)
```


Example 2.5

Matrix multiplication

```
function matrixMultiply(A,B):
for i = 0 to n-1:
  for j = 0 to n-1:
   C[i][j] = 0
    for k = 0 to n-1:
     C[i][j] = C[i][j] + A[i][k]*B[k][j]
return(C)
```

Exercise 2.1

- Towers of Hanoi
 - Three pegs, A, B, C
 - Move n disks from A to B
 - Never put a larger disk above a smaller one
 - C is transit peg
- What is the complexity class of this recursive example?

Summary

- Iterative programs
 - Focus on loops
- Recursive programs
 - Write and solve a recurrence
- Will see more complicated examples
 - Need to be clear about "accounting" for basic operations

