Reading Material

CS 5135/6035 Learning Probabilistic Models Lecture 19: Accept-Reject Method; Monte Carlo Integration

Gowtham Atluri

November 4, 2018

• Chapter 2. Random Variable Generation Christian Robert and George Casella. Introducing Monte Carlo Methods with R

• Andrieu et al. An introduction to MCMC for machine learning, Machine learning, 2003.

Topics

- Accept-Reject Methods
 - Limitations inverse-transform methods
 - Approach to sampling
 - Example
 - Advantages of Accept-Reject method
- Integrals in Bayesian approaches
 - Challenges
- Monte Carlo Methods
 - History
 - Gentle introduction
 - · Integration using sampling

Posterior Estimation: Random sampling

- When the posterior has a familiar functional form (due to conjugacy):
 - we can compute a summary of the distribution analytically
 - mean of a Beta(a, b) is $\frac{a}{a+b}$
 - we can simulate data from the posterior and summarize
 - θ ~ Beta(a, b)
- When posterior does not have a familiar form
 - compute values of the posterior on a grid of points
 - we can approximate the posterior by a discrete posterior
 - How to do point estimation?
 - \bullet high-dimensions (i.e., dimensionality of parameters θ)
 - combinatorially evaluating at grid points on all dimensions
 - · computationally prohibitive
 - Solution: Draw samples from the posterior and do point-estimation

CS 5135/6035 Learning Probabilistic Models

Random Sampling

- Uniform random variable is very important
 - many other random variables can be derived and transformed from it
- True vs. Pseudo random numbers
- The inverse transform
 - Compute $F(x) = \int_{-\infty}^{x} f(t)dt$
 - Set u = F(x)
 - Determine $x = F^{-1}(u)$
 - Draw $u \sim \mathcal{U}(0,1)$, then compute $x = F^{-1}(u)$
 - $x \sim f(x)$
- Variants
 - General transformation method
 - Discrete distribution
 - Mixture of densities
- Can we sample from a distribution $f(x) \propto x^{\alpha-1} (\frac{1-x}{1+x})^{\beta-1}$?

Accept-Reject Methods

- How to generate random variables when inverse transform method and even general transformations fail?
 - E.g., if a normalized version of the pdf f(x) is not available?
 - $f(x) \propto x^{\alpha-1} (\frac{1-x}{1+x})^{\beta-1}$
 - If $F(x) = \int_{-\infty}^{x} f(t)dt$ cannot be expressed in a closed form?
 - If it is not trivial to determine F^{-1} ?
- We turn to indirect methods
 - We generate a candidate random variable
 - Accept it subject to passing a test
- This is a powerful class of methods
 - allows us to simulate from virtually any distribution

CS 5135/6035 Learning Probabilistic Models

Accept-Reject Methods

- These Accept-Reject methods require us to know the functional form of density f upto a multiplicative constant
 - f is known as target density
- We use a simpler density g, called the candidate density
 - to generate random variables for which simulation is done
- Constraints:
 - **1** If and g have compatible supports (i.e., g(x) > 0, when f(x) > 0)
 - 1 There is constant M such that $f(x)/g(x) \le M$ for all x
 - So, Mg(x) envelopes f(x)

Accept-Reject Methods

- Approach
 - **1** Generate $y \sim g$
 - 2 Independently generate $u \sim \mathcal{U}(0,1)$

If
$$u \leq \frac{1}{M} \frac{f(y)}{g(y)}$$
, then accept y as a sample

else reject y, discard u, and start again with step 1.

Accept-Reject Method: Example

Example: Draw samples from a distribution $f(x) \propto x^{\alpha-1} (\frac{1-x}{1+x})^{\beta-1}$, where $\alpha = 2.7$ and $\beta = 6.3$

f(x) is our target density

Choices involved:

- We need to select a candidate density
 - ullet Let us treat Uniform distribution as a candidate density $g(x)=\mathcal{U}(0,1)$
 - We can pick any other distribution that we can simulate
- ② Next, we need to select M such that $f(x)/g(x) \leq M, \forall x$
 - Here $f(x) \leq M$, so we need to pick M as $\max(f(x))$

0.001008857762244691

Accept-Reject Method: Example

Approach:

- **①** We generate a sample y from candidate distribution $y \sim \mathcal{U}(0,1)$
- ② We generate a sample u from $u \sim \mathcal{U}(0,1)$
- If $u \leq \frac{1}{M} \frac{f(y)}{g(y)}$, we accept the sample y
- Otherwise, we reject y as a sample from the target distribution.

```
= rand(Uniform(0,1),n);
= rand(n);
                   u.<f(y)/M,Geom.point)
```

Properties of Accept-Reject algorithm

- It suffices to know f(x) upto a multiplicative constant
 - ullet The normalizing constant can be absorbed into M
 - $\frac{f(x)}{cg(x)} \le M \implies \frac{f(x)}{g(x)} \le M'$
- Efficiency of Accept-Reject algorithm can be measured in terms of its acceptance probability

 - $u \leq \frac{1}{M} \frac{f(y)}{g(y)}$ higher the acceptance probability, fewer wasted simulations from g
- If the bound $f(x) \leq Mg(x)$ is not tight (i.e., M is replaced by a larger
 - the algorithm is still valid, but less efficient
- The probability of acceptance is 1/M
 - M should be as small as possible for computational efficiency.

Monte Carlo Integration

- Integrals in Bayesian approaches
- Challenges with solving integrals
- Monte Carlo methods
 - History
 - A gentle introduction
 - Computing integrals

Integrals in Bayesian approaches

Bayesian approaches require solving integrals in different scenarios:

Normalization (e.g., for determining the posterior distribution)

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y|\theta)p(\theta)d\theta}$$

Marginalization (e.g., for averaging nuisance parameters)

$$p(\theta_1|y) = \int_{\theta_2...\theta_k} p([\theta_1, \theta_2, ..., \theta_k]|y) d\theta_2 ... d\theta_k$$

Expectation (e.g., to obtain summary statistics of the posterior)

$$\mathbb{E}(f(\theta)) = \int f(\theta) p(\theta|y) d\theta$$

Integrals in Bayesian approaches

Challenges:

• Integrals in large dimensional spaces

$$p(\theta_1|y) = \int_{\theta_2...\theta_k} p([\theta_1, \theta_2, ..., \theta_k]|y) d\theta_2 ... d\theta_k$$

• Closed form solutions to integrals are not always possible

Solutions:

- We will rely on numerical approaches
 - Quadrature methods
 - mainly suited for unidimensional integration
 - works with finite intervals
 - Simulation methods: Monte Carlo

CS 5135/6035 Learning P

Monte Carlo Methods: some history

- Stanislow Ulam invented Monte Carlo Methods
- In 1946, he was recovering from illness and was playing solitaire
- He wondered: what are the chances that a particular solitaire laid out with 52 cards would come out successfully?
- Exhaustive combinatorial calculations were not feasible
- He came up with a practical approach
 - simply record the outcomes of 100 games and calculate a crude percentage that way
- He reached out to John von Neumann
 - the pair began to work on the problem together
- Metropolis, a colleague of Ulam and von Neumann, gave a code name 'Monte Carlo'
 - after the European gambling capital

CS 5135/6035 Learning Probabilistic Mode

Monte Carlo Methods: a general introduction

- Monte Carlo methods are a broad class of computational algorithms
 - that rely on repeated random sampling to estimate a desired quantity

Example: Can we determine the value of π using MC method?

Approach:

- 1 Draw a square, and inscribe a circle in it
- Uniformly scatter points over the square
- Ocunt the number of points inside the circle
- Compute fraction of points inside the circle • Area of Circle/Square = $\pi r^2/(2r)^2 = \pi/4$
- **5** $\hat{\pi} = 4 \times$ fraction of points in circle

Monte Carlo Methods: a general introduction

3.1516

- When estimating a value is not possible to compute in traditional ways
 - Monte Carlo methods can be effective
- Monte Carlo Methods rely on an endless flow of random numbers
 - for well-known or new distributions

Monte Carlo methods: Convergence

Estimates converge as the number of samples increase.

Monte Carlo Integration: Introduction

 \bullet Computing a definite integral $\int_a^b f(x) dx$ is equivalent to computing the area under the curve

Example: compute
$$\int_0^5 \frac{4}{1+x^2} dx$$

- The same Monte Carlo approach for computing π applies here too!
 - We know value of integral $A_1 = \int_0^5 1 dx = 5$; $A = 4A_1 = 20$ • Scatter *n* points uniformly in the
 - range [0, 5]
 - Compute proportion of points p in region of interest
 - Area under the curve is the area

Summary

- Accept-reject methods
 - for sampling from arbitrary distribution
 - when inverse-transform methods are not suited
 - \bullet only needs to know $\mathit{f}(x)$ upto a normalizing constant
 - ullet a tighter envelope g(x) results in higher efficiency
- Integrals in Bayesian approaches
 - normalization of posterior
 - point-estimation
 - averaging nuisance parameters
- Integrals can be intractable
 - high-dimensional spaces
 - no closed form solution
- Monte Carlo methods (gentle introduction)
 - relies on random sampling to compute a desired quantity
 - compute integrals by drawing random samples