Algebra Relacional

Bases de Datos 2 - Tecnologo de Informatica

- Introducción
 - Vision general
- Operadores
 - Operaciones relacionales unarias
 - Operaciones de la teoría de conjuntos
 - Operadores derivados
- Árbol de consulta
- Operadores relacionales adicionales

- Introducción
 - Vision general
- Operadores
 - Operaciones relacionales unarias
 - Operaciones de la teoría de conjuntos
 - Operadores derivados
- Árbol de consulta
- Operadores relacionales adicionales

- Introducción
 - Vision general
- Operadores
 - Operaciones relacionales unarias
 - Operaciones de la teoría de conjuntos
 - Operadores derivados
- Árbol de consulta
- Operadores relacionales adicionales

Visión general

- Conjunto de operadores para consultar BD- Rs.
- Define conjunto de ops estándar en BD- Rs.
- Operadores que reciben relaciones y devuelven relaciones:
 - Sobre conjuntos de tuplas:
 - Unión, Diferencia, Producto Cartesiano.
 - Específicos para BDs Rel.
 - Selección, Proyección, Join.

El Algebra Relacional

Sintaxis

Qué símbolos se utilizan para cada operador y qué parámetros recibe.

Semántica

¿Cuál es el esquema del resultado?.

¿Cuál es la instancia del resultado?.

¿Qué condiciones se deben cumplir para que se pueda aplicar el operador?.

- Introducción
 - Vision general
- Operadores
 - Operaciones relacionales unarias
 - Operaciones de la teoría de conjuntos
 - Operadores derivados
- Arbol de consulta
- Operadores relacionales adicionales

- Introducción
 - Vision general
- Operadores
 - Operaciones relacionales unarias
 - Operaciones de la teoría de conjuntos
 - Operadores derivados
- Árbol de consulta
- Operadores relacionales adicionales

- Permite obtener las tuplas que cumplen una cierta condición.
- Sintaxis:

$$\sigma_{< condicion>} (< relacion>)$$

donde:

- condicion es una condición lógica sobre valores de los atributos de las tuplas resultado.
- relacion es una relación o expresión relacional

Sea R una relación y θ una condición.

$$\sigma_{\theta}(R)$$

da como resultado otra relación

- o con esquema igual que el de R
- con instancia el conjunto de tuplas de las instancias de R que cumplen con θ

Selección Ejemplos

Figura : Esq. base de datos relacional Empresa

Selección Ejemplos

- σ_{APELLIDO1=GONZALEZ} (EMPLEADO)
- $\sigma_{SUELDO>3000}$ (EMPLEADO)
- ullet $\sigma_{APELLIDO1=GONZALEZ}$ and SUELDO>3000 (EMPLEADO)
- $\sigma_{not \ (APELLIDO1=GONZALEZ \ and \ SUELDO>3000)} (EMPLEADO)}$
- σ_{APELLIDO1=APELLIDO2} (EMPLEADO)

Selección Ejemplos

- σ_{APELLIDO1=GONZALEZ} (EMPLEADO)
- $\sigma_{SUELDO>3000}$ (EMPLEADO)
- ullet $\sigma_{APELLIDO1=GONZALEZ}$ and SUELDO>3000 (EMPLEADO)
- $\sigma_{not \ (APELLIDO1=GONZALEZ \ and \ SUELDO>3000)} (EMPLEADO)}$
- $\sigma_{APELLIDO1=APELLIDO2}$ (EMPLEADO)

- Permite obtener las tuplas con un cierto conjunto de atributos.
- Sintaxis:

$$\pi_{<$$
 lista_atributos $>$ $(<$ relacion $>)$

donde:

- lista_atributos es una lista de atributos a aparecer en la relación resultado.
- relacion es una relación o expresión relacional

Sea R una relación.

$$\pi_{A_1,...,A_n}(R)$$

da como resultado otra relación

- con esquema (A_1, \ldots, A_n)
- con tuplas formadas a partir de las de R tomando los valores para los atributos A_1, \ldots, A_n

Observación: Como no se admiten tuplas repetidas, al realizar una proyección, podrían quedar menos tuplas que en la relación de partida.

Proyección Ejemplos

EMPLEADO

							_	_
Nombre	Apellido1	Apellido2	<u>Dni</u>	FechaNac	Dirección	Sexo	Sueldo	Sup

 $\pi_{SEXO,SUELDO}$ (EMPLEADO)

Secuencia de operaciones Descripción general

- Podemos escribir las operaciones como una única expresión de álgebra relacional anidando dichas operaciones, o aplicar una sola expresión una única vez y crear relaciones intermedias.
- Única expresión:

```
\pi_{NOMBRE,APELLIDO1,SUELDO}(\sigma_{Dno=5}(EMPLEADO))
```

Relación intermedia:

```
DEP5_EMPS (NOMBRE, APELLIDO, ..., SALARIO, ...) \leftarrow \sigma_{Dno=5} (EMPLEADO)

RESULTADO \leftarrow \pi_{NOMBRE,APELLIDO,SALARIO} (DEP5_EMPS)
```

- Introducción
 - Vision general
- Operadores
 - Operaciones relacionales unarias
 - Operaciones de la teoría de conjuntos
 - Operadores derivados
- Árbol de consulta
- Operadores relacionales adicionales

- Permite obtener la Unión de dos relaciones tomadas como conjuntos de tuplas.
- Sintaxis:

$$(< relacion >) \bigcup (< relacion >)$$

donde:

relacion es una relación o expresión relacional

- Sean R y S dos relaciones con igual esquema (o compatible).
- La operación:

$$(R \cup S)$$

da como resultado otra relación

- cuyo esquema es igual al de R (y S)
- y tiene como conjunto de tuplas a la unión de las de R y las de S.

- Permite obtener la Intersección de dos relaciones tomadas como conjuntos de tuplas.
- Sintaxis:

$$(< relacion >) \bigcap (< relacion >)$$

donde:

• relacion es una relación o expresión relacional

- Sean R y S dos relaciones con igual esquema (o compatible).
- La operación:

$$(R \cap S)$$

da como resultado otra relación

- cuyo esquema es igual al de R (y S)
- y tiene como conjunto de tuplas a la intersección de las de R y las de S.

- Permite obtener la Diferencia de dos relaciones tomadas como conjuntos de tuplas.
- Sintaxis:

$$(< relacion >) - (< relacion >)$$

donde:

• relacion es una relación o expresión relacional

- Sean R y S dos relaciones con igual esquema (o compatible).
- La operación:

$$(R-S)$$

da como resultado otra relación

- cuyo esquema es igual al de R (y S)
- y tiene como conjunto de tuplas a la resta de las de R menos las de S.

Cuestionario Unión, Intersección, Resta

- $\xi(R \cup (S \cup T)) = ((R \cup S) \cup T) ?$
- ¿La Intersección (∩) también es una operación asociativa?
- La Union e Intersección son conmutativas ¿La resta también lo es?

Producto Cartesiano

Descripción general

- Permite obtener el Producto Cartesiano de dos relaciones tomadas como conjuntos de tuplas.
- Sintaxis:

$$(< relacion >) \times (< relacion >)$$

donde:

relacion es una relación o expresión relacional

- Sean R y S dos relaciones con esquemas (A_1, \ldots, A_n) y (B_1, \ldots, B_m) respectivamente.
- La operación:

$$(R \times S)$$

da como resultado otra relación

- cuyo esquema es $(A_1, \ldots, A_n, B_1, \ldots, B_m)$
- y cuyas tuplas son generadas por todas las combinaciones posibles de las de R con las de S.

Producto Cartesiano Ejemplos

						VENTAS			
FABS			PF	PRODS			#p	Precio	
#f	Nombre	Direcc	#p	Desc	_	1	1	100	
1	Juan	d1	1	t1	-	1	2	200	
2	Pedro	d2	2	t2		1	3	300	
4	Maria	d3	3	t3		1	10	1000	
5	Ana	d2	5	t2		1	11	1100	
6	Pedro	d4	6	t3		2	3	350	
9	Pepe	d5	7	t4		2	6	600	
10	Laura	d4	9	t2		2	7	700	
13	Maria	d3	10	t1		5	3	350	
15	Pedro	d1	11	t3		5	5	200	
16	Oscar	d3	12	t2		9	7	100	
19	Juan	d4	15	t3		9	3	300	
		1				10	3	400	

BD2 - Algebra Relacoinal

VENITA C

$$\sigma_{\#p<3}$$
 (PRODS) $\times \sigma_{\#p<3}$ (VENTAS)

da como resultado:

#p	Desc	#f	#p	Precio
1	t1	1	1	100
1	t1	1	2	200
2	t2	1	1	100
2	t2	1	2	200

Este operador permite combinar las tuplas de dos tablas

$$\pi_{2,3,4,55} (\sigma_{1<3} (PRODS) \times \sigma_{2<3} (VENTAS))$$

da como resultado:

Desc	#f	#p	Precio
t1	1	1	100
t1	1	2	200
t2	1	1	100
t2	1	2	200

 La notación de atributos numerados también puede ser usada en la selección.

- Introducción
 - Vision general
- Operadores
 - Operaciones relacionales unarias
 - Operaciones de la teoría de conjuntos
 - Operadores derivados
- Árbol de consulta
- Operadores relacionales adicionales

Operadores Derivados Operaciones relacionales binarias

- Los operadores presentados antes son los básicos del Álgebra Relacional (conjunto completo de operaciones).
- Se definen otros que se pueden expresar en función de los básicos, pero que expresan operaciones importantes dado que se usan habitualmente.
- Estos operadores son:
 - Join: Permite expresar la combinación de tablas.
 - División: Permite obtener los datos que se relacionan con todos los elementos de otro conjunto.

- Permite combinar tuplas de dos relaciones a través de una condición sobre los atributos.
- Corresponde a una Selección sobre el Producto Cartesiano de las relaciones
- Sintaxis:

$$(< relacion >) \bowtie_{< condicion >} (< relacion >)$$

¿Cómo se ejecuta el Join?

Cuando se realiza un Join entre dos relaciones (R y S), cada vez que una tupla de R y otra de S cumplen la condición del join, se genera una tupla en el resultado.

Para que se genere una tupla en el resultado alcanza con que exista una tupla en R y otra en S que se "conecten" por la condición del Join.

• Sean R y S dos relaciones y θ una condición, la operación:

$$R \bowtie_{\theta} S$$

es equivalente a realizar:

$$\sigma_{\theta}(R \times S)$$

• ¿Cuál es el esquema resultado?

Sean R y S dos relaciones, la operación:

$$R * S$$

es equivalente a realizar:

- Θ-Join con la condición de igualdad entre los atributos de igual nombre
- y luego proyectar eliminando columndas con nombre repetido

 Dar los nombres de fabricantes y la descripción de los productos que vende

$$\pi_{Nombre, Desc}((FABS * VENTAS) * PRODS)$$

② Dar descripción y precio de productos vendidos por Juan.

$$\pi_{\textit{Desc},\textit{Precio}}\left(\left(\sigma_{\textit{Nombre}=\textit{Juan}}\left(\textit{FABS}\right)*\textit{VENTAS}\right)*\textit{PRODS}\right)$$

- Sean R y S dos relaciones con esquemas $(A_1, \ldots, A_n, B_1, \ldots, B_m)$ y (B_1, \ldots, B_m) respectivamente.
- La operación:

$$(R \div S)$$

da como resultado otra relación

- cuyo esquema es (A_1, \ldots, A_n)
- y su contenido son las tuplas tomadas a partir de las de r(R) tales que su valor (a₁,..., a_n) está asociado en r(R) con TODOS los valores (b₁,..., b_m) que están en s(S)

División Ejemplos

• Sean R y S, y Q = R ÷ S

- Observación: Las tuplas solución deben estar relacionadas con todos los valores de S, pero NO se exige que lo este solo con esos valores. Pueden estar relacionadas con otros valores
- Ejemplo:
 - Dar los #p vendidos por todos los fabricantes
 - Resultado: $\pi_{\#p,\#f}$ (VENTAS) \div $\pi_{\#f}$ (FABS)

 Dar los #p vendidos por todos los fabricantes que venden algún producto.

$$\pi_{\#p,\#f}(VENTAS) \div \pi_{\#f}(VENTAS)$$

② Dar los #f que venden todos los productos vendidos por algún fabricante.

$$\pi_{\#f,\#p}(VENTAS) \div \pi_{\#p}(VENTAS)$$

Oar los #f que venden todos los productos con descripción "t1".

$$VEND_T1 \longleftarrow \pi_{\#f,\#p}(VENTAS) \div \pi_{\#f}(\sigma_{Desc=t1}(PRODS))$$

Oar nombre y dirección de fabricantes que venden todos los productos con descripción "t1".

$$\pi_{Nombre,Direc}(FABS * VEND_T1)$$

La división se puede expresar en función de operadores base.

•
$$T(X) \leftarrow R(X, Y) \div S(Y)$$

- $T1 \leftarrow \pi_X(R)$
 - Valores base a incluir en el resultado.
- $T2 \leftarrow \pi_X ((T1 \times S) R)$
 - Tuplas de R a las que les falta relacionarse en R con algún elemento de S.
 - Lo que NO se quiere en el resultado.
- T ← T1 − T2

La división se puede expresar en función de operadores base.

•
$$T(X) \leftarrow R(X,Y) \div S(Y)$$

- $T1 \leftarrow \pi_X(R)$
 - Valores base a incluir en el resultado.
- $T2 \leftarrow \pi_X((T1 \times S) R)$
 - Tuplas de R a las que les falta relacionarse en R con algún elemento de S.
 - Lo que NO se quiere en el resultado.
- T ← T1 − T2

La división se puede expresar en función de operadores base.

•
$$T(X) \leftarrow R(X,Y) \div S(Y)$$

- $T1 \leftarrow \pi_X(R)$
 - Valores base a incluir en el resultado.
- $T2 \leftarrow \pi_X((T1 \times S) R)$
 - Tuplas de R a las que les falta relacionarse en R con algún elemento de S.
 - Lo que NO se quiere en el resultado.
- T ← T1 − T2

Outline

- Introducción
 - Vision general
- Operadores
 - Operaciones relacionales unarias
 - Operaciones de la teoría de conjuntos
 - Operadores derivados
- Árbol de consulta
- Operadores relacionales adicionales

- Notación usada habitualmente en sistemas relacionales para representar consultas internamente.
- Recibe el nombre de árbol de consulta, o también árbol de evaluación de consulta o árbol de ejecución de consulta.
- Es una estructura de datos en árbol que se corresponde con una expresión de álgebra relacional.
- Representa:
 - Las relaciones de entrada de la consulta como los nodos hoja del árbol.
 - Las operaciones como nodos internos.

Árbol de consultas

- Ejecución:
 - Se ejecuta la operación de un nodo interno, siempre que estén disponibles sus operandos.
 - 2 Reemplazar ese nodo interno por la relación que resulta de la ejecución de la operación.
- El proceso concluye cuando se ejecuta el nodo raíz y se obtiene la relación resultante de la consulta.

```
™NumProyecto,NumDptoProyecto,Apellido1,Direccion,FechaNac
(((σUbicacionProyecto='Gijon'(PROYECTO))

⋈ NumDptoProyecto=NumeroDpto (DEPARTAMENTO))

⋈ DniDirector=Dni (EMPLEADO))
```

- ¿Qué árbol representa esta consulta?
- ¿Cuál es su orden de ejecución?

Árbol de consulta

Outline

- Introducción
 - Vision general
- Operadores
 - Operaciones relacionales unarias
 - Operaciones de la teoría de conjuntos
 - Operadores derivados
- Árbol de consulta
- Operadores relacionales adicionales

Operadores relacionales adicionales

- Projección generalizada: $\pi_{F1,F2,Fn}(R)$
- Funciones de agregación: SUM, AVERAGE, MAXIMUM, MINIMUM, COUNT
- Función de agrupamiento:

```
<atributos_agrupacion>\Im <lista_funciones> (R)
```

- Operaciones de recursión: Cierre recursivo
- Concatenación Externa (Outer Join)
- Union Externa (Outer Union)

Recursión Cierre Recursivo

- El cierre recursivo es una operación que se aplica a una relación recursiva entre las tuplas del mismo tipo.
- No puede especificarse en el álgebra relacional básico.
- El álgebra relacional resuelve la recursión si se limitan los niveles de recursividad.

Recursión Cierre Recursivo

$$\begin{split} & \mathsf{DNI_OCHOA} \leftarrow \pi \mathsf{Dni}(\sigma_{\mathsf{Nombre='Eduardo'}} \mathsf{AND} \ \mathsf{Apellido1='Ochoa'}(\mathsf{EMPLEADO})) \\ & \mathsf{SUPERVISION}(\mathsf{Dni1}, \ \mathsf{Dni2}) \leftarrow \pi_{\mathsf{Dni}, \ \mathsf{SuperDni}}(\mathsf{EMPLEADO}) \\ & \mathsf{RESULTADO1}(\mathsf{DNI}) \leftarrow \pi \mathsf{Dni1}(\mathsf{SUPERVISION} \bowtie_{\mathsf{Dni2=Dni}} \mathsf{DNI_OCHOA}) \end{split}$$

Figura: Supervisados por Ochoa directamente

 $RESULTADO2(Dni) \leftarrow \pi_{Dni1}(SUPERVISION \bowtie_{Dni2=Dni} RESULTADO1)$

Figura: Los supervisados por los que supervisa Ochoa

Concatenación Externa Outer Join

 Permiten preservar como resultado del Join todas las tuplas en R, o en S, o aquellas en ambas relaciones idependientemente de si tienen tuplas "conectadas" en la otra relación.

Concatenación Externa Outer Join

Concatenación externa izquierda:

$$R \times_{< condicion >} S$$

Concatenación externa derecha:

$$R \ltimes_{< condicion >} S$$

Concatenación externa completa (Full Outer Join)

Unión Externa

- Permite obtener la unión de tuplas de dos relaciones en el caso de que esas relaciones no sean compatibles con la unión.
- Sean R(X,Y) y S(X,Z) dos relaciones que son parcialmente compatibles, la unión externa da como resultado una relación de la forma T(X,Y,Z)