Direct product of Galois connections

Adrián Enríquez Ballester

February 22, 2022

Proposition (Direct product of Galois connections). Let $(L, \sqsubseteq), (L_1^\#, \sqsubseteq_1)$ and $(L_2^\#, \sqsubseteq_2)$ be lattices such that $(L, \alpha_1, \gamma_1, L_1^\#)$ and $(L, \alpha_2, \gamma_2, L_2^\#)$ are Galois connections for some respective abstraction functions

$$\alpha_1: L \to L_1^{\#}$$

$$\alpha_2: L \to L_2^{\#}$$

and concretization functions

$$\gamma_1: L_1^\# \to L$$

$$\gamma_2: L_2^\# \to L$$

The quadruple $(L, \alpha, \gamma, L_1^\# \times L_2^\#)$ is a Galois connection where the abstraction function $\alpha: L \to L_1^\# \times L_2^\#$ is defined as

$$\alpha(l) = (\alpha_1(l), \alpha_2(l)) \quad \forall l \in L$$

and the concretization function $\gamma: L_1^\# \times L_2^\# \to L$ is defined as

$$\gamma(l_1, l_2) = \gamma_1(l_1) \sqcap \gamma_2(l_2) \quad \forall (l_1, l_2) \in L_1^\# \times L_2^\#$$

Proof. Recall the product partial order of the two lattices $(L_1^{\#}, \sqsubseteq_1)$ and $(L_2^{\#}, \sqsubseteq_2)$ defined as

$$(l_1, l_2) \sqsubseteq_{\times} (m_1, m_2) \iff l_1 \sqsubseteq_1 m_1 \land l_2 \sqsubseteq_2 m_2$$
$$\forall l_1, m_1 \in L_1^{\#}, \ \forall l_2, m_2 \in L_2^{\#}$$

with which we already know that $(L_1^\# \times L_2^\#, \sqsubseteq_\times)$ is also a lattice. Let us check that the required properties for α and γ to form a Galois connection are satisfied (i.e. both functions are monotonically increasing, $\gamma \circ \alpha \supseteq$ id and $\alpha \circ \gamma \sqsubseteq_{\times} id$).

First, if $a \sqsubseteq b$ with $a, b \in L$, then

$$\alpha(a) = (\alpha_1(a), \alpha_2(a))$$

$$\alpha(b) = (\alpha_1(b), \alpha_2(b))$$

Due to the corresponding Galois connections for $L_1^\#$ and $L_2^\#$, the monotonicity of α_1 and α_2 implies that $\alpha_1(a) \sqsubseteq_1 \alpha_1(b)$ and $\alpha_2(a) \sqsubseteq_2 \alpha_2(b)$, so $\alpha(a) \sqsubseteq_{\times} \alpha(b)$. This proves that α itself is also monotonically increasing.

Second, if $(l_1, l_2) \sqsubseteq_{\times} (m_1, m_2)$ with $(l_1, l_2), (m_1, m_2) \in L_1^{\#} \times L_2^{\#}$, then

$$\gamma(l_1, l_2) = \gamma_1(l_1) \sqcap \gamma_2(l_2) \gamma(m_1, m_2) = \gamma_1(m_1) \sqcap \gamma_2(m_2)$$

The product partial order requires that $l_1 \sqsubseteq_1 m_1$ and $l_2 \sqsubseteq_2 m_2$, so again, due to the Galois connections for $L_1^{\#}$ and $L_2^{\#}$, it must be the case that $\gamma_1(l_1) \sqsubseteq \gamma_1(m_1)$ and $\gamma_2(l_2) \sqsubseteq \gamma_2(m_2)$. These results together with the definition of \sqcap yield to

$$\gamma_1(l_1) \sqcap \gamma_2(l_2) \sqsubseteq \gamma_1(l_1) \sqsubseteq \gamma_1(m_1)$$
$$\gamma_1(l_1) \sqcap \gamma_2(l_2) \sqsubseteq \gamma_2(l_2) \sqsubseteq \gamma_2(m_2)$$

As $\gamma_1(l_1) \sqcap \gamma_2(l_2)$ is a lower bound of $\{\gamma_1(m_1), \gamma_2(m_2)\}$, it must be smaller or equal than its greatest lower bound, so $\gamma_1(l_1) \sqcap \gamma_2(l_2) \sqsubseteq \gamma_1(m_1) \sqcap \gamma_2(m_2)$.

Once γ has been proved to be monotonically increasing, we are going to verify that $\gamma \circ \alpha \supseteq id$. Let l be an element of the concrete domain L, so we have that

$$(\gamma \circ \alpha)(l) = \gamma(\alpha(l))$$

$$= \gamma(\alpha_1(l), \alpha_2(l))$$

$$= \gamma_1(\alpha_1(l)) \sqcap \gamma_2(\alpha_2(l))$$

The Galois connections for $L_1^\#$ and $L_2^\#$ already satisfy this property, so $l \sqsubseteq \gamma_1(\alpha_1(l))$ and $l \sqsubseteq \gamma_2(\alpha_2(l))$. As l is a lower bound of $\{\gamma_1(\alpha_1(l)), \gamma_2(\alpha_2(l))\}$, it must be smaller or equal than its greatest lower bound, so $l \sqsubseteq \gamma_1(\alpha_1(l)) \sqcap \gamma_2(\alpha_2(l))$.

Finally, for proving that $\alpha \circ \gamma \sqsubseteq_{\times} id$, let (l_1, l_2) be an element of the abstract domain $L_1^{\#} \times L_2^{\#}$. We have that

$$(\alpha \circ \gamma)(l_1, l_2) = \alpha(\gamma(l_1, l_2))$$

= $\alpha(\gamma_1(l_1) \sqcap \gamma_2(l_2))$
= $(\alpha_1(\gamma_1(l_1) \sqcap \gamma_2(l_2)), \alpha_2(\gamma_1(l_1) \sqcap \gamma_2(l_2)))$

Once more, the Galois connections for $L_1^\#$ and $L_2^\#$ already satisfy this property and also require α_1 and α_2 to be monotonically increasing. With all this and by knowing that $\gamma_1(l_1) \sqcap \gamma_2(l_2) \sqsubseteq \gamma_1(l_1)$ and $\gamma_1(l_1) \sqcap \gamma_2(l_2) \sqsubseteq \gamma_2(l_2)$ we have

$$\alpha_1(\gamma_1(l_1) \sqcap \gamma_2(l_2)) \sqsubseteq_1 \alpha_1(\gamma_1(l_1)) \sqsubseteq_1 l_1$$

$$\alpha_2(\gamma_1(l_1) \sqcap \gamma_2(l_2)) \sqsubseteq_2 \alpha_2(\gamma_2(l_1)) \sqsubseteq_2 l_2$$
thus $(\alpha_1(\gamma_1(l_1) \sqcap \gamma_2(l_2)), \alpha_2(\gamma_1(l_1) \sqcap \gamma_2(l_2))) \sqsubseteq_{\times} (l_1, l_2).$