

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings of claims in the application:

LISTING OF CLAIMS:**CLAIMS**

1-23 (canceled)

24. (new) Compounds of the following general formula (I):

I

wherein R₁ and R₂ are fatty acyl groups.

25. (new) Compounds according to claim 24, wherein R₁ and R₂ independently from each other represent a fatty acyl group containing from 16 to 60 carbon atoms, and more particularly wherein R₁ and R₂ are selected from the group comprising:

- $\text{--C}(=\text{O})\left(\text{---CH}_2\right)_{14}\text{CH}_3$ (palmitic acyl),
- $\text{--C}(=\text{O})\left(\text{---CH}_2\right)_{16}\text{CH}_3$ (stearic acyl),

- $\text{--C}(=\text{O})\left(\text{---CH}_2\right)_{18}\text{CH}_3$ (arachidic acyl),
- $\text{--C}(=\text{O})\left(\text{---CH}_2\right)_{20}\text{CH}_3$ (docosanoic acyl),
- $\text{--C}(=\text{O})\left(\text{---CH}_2\right)_{22}\text{CH}_3$ (tetracosanoic acyl),
- $\text{--C}(=\text{O})\text{---CH}(\text{CH}_3)\left[\text{---CH}_2\text{---CH}(\text{CH}_3)\right]_n\text{CH}(\text{OH})\left[\text{---CH}_2\right]_m\text{CH}_3$ (hydroxyphthioceranoic acyl),
wherein m is 14 or 16 and n is an integer from 2 to 10,
- $\text{--C}(=\text{O})\text{---CH}(\text{CH}_3)\left[\text{---CH}_2\text{---CH}(\text{CH}_3)\right]_n\text{CH}_2\left[\text{---CH}_2\right]_m\text{CH}_3$ (phthioceranoic acyl),
wherein m is 14 or 16 and n is an integer from 2 to 10,

26. (new) Compounds according to claim 24, wherein R₁ and R₂ are selected from the group comprising palmitic acyl and stearic acyl, namely compounds of following formulae:

27. (new) Compounds according to claim 24, wherein at least one of R₁ and R₂ represents a hydroxyphthioceranoic acyl group.

28. (new) Compounds according to claim 24, wherein R₁ or R₂ represents a hydroxyphthioceranoic acyl group.

29. (new) Compounds according to claim 24, wherein:

- R₁ represents a hydroxyphthioceranoic acyl group, and R₂ represents a palmitic acyl group or a stearic acyl group, namely compounds of following formula (II):

wherein p is 14 or 16, m is 14 or 16 and n is an integer from 2 to 10, or

- R₂ represents a hydroxyphthioceranoic acyl group, and R₁ represents a palmitic acyl group or a stearic acyl group, namely compounds of following formula (III):

wherein p is 14 or 16, m is 14 or 16 and n is an integer from 2 to 10.

30. (new) Compounds according to claim 24, of following formula II,

wherein:

- n = 2, m = 14 and p = 14 (II.1) ;
- n = 2, m = 14 and p = 16 (II.2) ;
- n = 2, m = 16 and p = 14 (II.3) ;
- n = 2, m = 16 and p = 16 (II.4) ;

- n = 3, m = 14 and p = 14 (II.5) ;
- n = 3, m = 14 and p = 16 (II.6) ;
- n = 3, m = 16 and p = 14 (II.7) ;
- n = 3, m = 16 and p = 16 (II.8) ;

- n = 4, m = 14 and p = 14 (II.9) ;
- n = 4, m = 14 and p = 16 (II.10) ;
- n = 4, m = 16 and p = 14 (II.11) ;
- n = 4, m = 16 and p = 16 (II.12) ;

- n = 5, m = 14 and p = 14 (II.13) ;
- n = 5, m = 14 and p = 16 (II.14) ;
- n = 5, m = 16 and p = 14 (II.15) ;
- n = 5, m = 16 and p = 16 (II.16) ;

- n = 6, m = 14 and p = 14 (II.17) ;
- n = 6, m = 14 and p = 16 (II.18) ;
- n = 6, m = 16 and p = 14 (II.19) ;

- $n = 6, m = 16$ and $p = 16$ (II.20) ;
- $n = 7, m = 14$ and $p = 14$ (II.21) ;
- $n = 7, m = 14$ and $p = 16$ (II.22) ;
- $n = 7, m = 16$ and $p = 14$ (II.23) ;
- $n = 7, m = 16$ and $p = 16$ (II.24) ;

- $n = 8, m = 14$ and $p = 14$ (II.25) ;
- $n = 8, m = 14$ and $p = 16$ (II.26) ;
- $n = 8, m = 16$ and $p = 14$ (II.27) ;
- $n = 8, m = 16$ and $p = 16$ (II.28) ;

- $n = 9, m = 14$ and $p = 14$ (II.29) ;
- $n = 9, m = 14$ and $p = 16$ (II.30) ;
- $n = 9, m = 16$ and $p = 14$ (II.31) ;
- $n = 9, m = 16$ and $p = 16$ (II.32) ;

- $n = 10, m = 14$ and $p = 14$ (II.33) ;
- $n = 10, m = 14$ and $p = 16$ (II.34) ;
- $n = 10, m = 16$ and $p = 14$ (II.35) ;
- $n = 10, m = 16$ and $p = 16$ (II.36) ;

or of following formula III,

wherein:

- $n = 2$, $m = 14$ and $p = 14$ (III.1) ;
- $n = 2$, $m = 14$ and $p = 16$ (III.2) ;

- n = 2, m = 16 and p = 14 (III.3) ;
- n = 2, m = 16 and p = 16 (III.4) ;

- n = 3, m = 14 and p = 14 (III.5) ;
- n = 3, m = 14 and p = 16 (III.6) ;
- n = 3, m = 16 and p = 14 (III.7) ;
- n = 3, m = 16 and p = 16 (III.8) ;

- n = 4, m = 14 and p = 14 (III.9) ;
- n = 4, m = 14 and p = 16 (III.10) ;
- n = 4, m = 16 and p = 14 (III.11) ;
- n = 4, m = 16 and p = 16 (III.12) ;

- n = 5, m = 14 and p = 14 (III.13) ;
- n = 5, m = 14 and p = 16 (III.14) ;
- n = 5, m = 16 and p = 14 (III.15) ;
- n = 5, m = 16 and p = 16 (III.16) ;

- n = 6, m = 14 and p = 14 (III.17) ;
- n = 6, m = 14 and p = 16 (III.18) ;
- n = 6, m = 16 and p = 14 (III.19) ;
- n = 6, m = 16 and p = 16 (III.20) ;

- n = 7, m = 14 and p = 14 (III.21) ;
- n = 7, m = 14 and p = 16 (III.22) ;
- n = 7, m = 16 and p = 14 (III.23) ;
- n = 7, m = 16 and p = 16 (III.24) ;

- n = 8, m = 14 and p = 14 (III.25) ;
- n = 8, m = 14 and p = 16 (III.26) ;
- n = 8, m = 16 and p = 14 (III.27) ;
- n = 8, m = 16 and p = 16 (III.28) ;

- n = 9, m = 14 and p = 14 (III.29) ;
- n = 9, m = 14 and p = 16 (III.30) ;
- n = 9, m = 16 and p = 14 (III.31) ;
- n = 9, m = 16 and p = 16 (III.32) ;

- n = 10, m = 14 and p = 14 (III.33) ;
- n = 10, m = 14 and p = 16 (III.34) ;
- n = 10, m = 16 and p = 14 (III.35) ;
- n = 10, m = 16 and p = 16 (III.36) ;

31. (new) Compounds according to claim 24, of following form HQlae:

III.21

II.21

III.22

II.22

III.23

II.23

32. (new) A composition comprising at least two different compounds of formula I such as defined in claim 24.

33. (new) A composition according to claim 32, characterized in that it comprises a mixture of compounds selected from the compounds of following formula (II):

II

wherein p is 14 or 16, m is 14 or 16 and n is an integer from 2 to 10, or

from the compounds of following formula (III):

III

wherein p is 14 or 16, m is 14 or 16 and n is an integer from 2 to 10.

34. (new) A composition according to claim 32, characterized in that it comprises a mixture of compounds selected from the following compounds:

III.21**II.21****III.22****II.22****III.23**

II.23

35. (new) A composition according to claim 34, wherein the compounds represent from about 20% to about 100%, more particularly about 30%, of the total amount of compounds of formula I of said composition.

36. (new) A pharmaceutical composition comprising at least one compound of claim 24, in association with a pharmaceutically acceptable vehicle.

37. (new) A pharmaceutical composition according to claim 36, characterized in that it is presented in a form intended for administration by oral or injectable route.

38. (new) A pharmaceutical composition according to claim 36, characterized in that it comprises one or more other products useful for the treatment or the prophylaxis of tuberculosis, such as BCG or mycobacterial proteins.

39. (new) Products comprising:

- at least one compound of claim 24,

- and at least one other product useful for the treatment or the prophylaxis of tuberculosis, such as BCG or mycobacterial proteins, as a combined preparation for simultaneous, separate or sequential use in the treatment or the prophylaxis of tuberculosis.

40.(new) Method for the treatment or the prophylaxis of tuberculosis, comprising the administration of a therapeutically effective amount to a patient of at least one compound of claim 24.

41.(new) Method of activating immune reaction, and more particularly for activating inflammatory reaction, comprising the administration of a therapeutically effective amount to a patient of at least one compound of claim 24.

42.(new) Method of inducing the activation of T lymphocytes, comprising the administration of a therapeutically effective amount to a patient of at least one compound of claim 24.

43.(new) Method of inducing the production of IFN- γ , TNF- α , IL-4 or granulysin, comprising the administration of a therapeutically effective amount to a patient of at least one compound of claim 24.

44.(new) A process for generating T cell clones, characterized in that it comprises the following stages:

- incubating antigen presenting cells (APCs), notably dendritic cells, with a *Mycobacterium tuberculosis* envelope preparation substantially devoid of proteins, to obtain non-protein envelope antigen loaded APCs,

- contacting peripheral blood mononuclear cells with the envelope antigen loaded APCs to obtain proliferating T cells,
- cloning proliferating T cells by limiting dilution and selecting the clones releasing a molecule selected from the group comprising IFN- γ , TNF- α , granulysin or IL-4 when contacted by envelope antigen loaded APCs to obtain T cell clones.

45. (new) T cell clones such as obtained by the process according to claim 44.

46. (new) A process for screening products, such as sulfoglycolipids extracted from *Mycobacterium tuberculosis*, characterised in that it comprises the following stages:

- contacting dendritic cells loaded with the product to screen, notably sulfoglycolipids extracted from *Mycobacterium tuberculosis*, with T cell clones according to claim 45,
- detecting a molecule selected from the group comprising IFN- γ , TNF- α , granulysin or IL-4, released by the T cell clones.

47. (new) A process for the extraction of compounds of claim 24, from *Mycobacterium tuberculosis*, characterized in that it comprises the following stages:

- treatment of *M. tuberculosis* bacteria with a mixture of methanol and chloroform to obtain a chloroform/methanol extract,
- concentration of the chloroform/methanol extract followed by its partition between a chloroform phase and an aqueous phase,

- taking of the chloroform phase and evaporation of most of the chloroform, followed by addition of acetone thereto to obtain a precipitate and a soluble acetone phase,
- taking of the soluble acetone phase followed by its concentration, and application of the concentrated soluble acetone phase on a silicic acid column irrigated with mixtures of methanol and chloroform,
- elution of a fraction from the above-mentioned silicic acid column by a mixture of chloroform and approximately 20% methanol,
- if necessary purification of the fraction eluted from the silicic acid column to obtain different preparations respectively containing substantially only one compound.