Gradient Descent

Neural Networks Architecture

Neural Networks Architecture

All features are connected to all neurons in the first layer

Neural Networks Architecture

A neuron in the entire network

Understanding a Single Neuron

Wincreases if the connection between two neurons is stronger

GOAL OF THE TRAINING PROCESS

Find out the correct values for weights & biases of each neuron in the network

Points in 2-D

A Single Neuron

Zoom into a neuron

Finding the best-fit line for the given data

Minimize the least square error

Gradient Descent Optimization is the process in which the weights & biases are changed & network is trained

Change W and b to reduce the MSE to find best values

