CS 192 Papers Reforenced

lec	paper	Learned topic
3	Enabling Zen-shit translation (asgle. 2016)	Representations
1	AlexNet (2012)	OL
1	cornica reception hields (2019)	our brain
4	Visualizing the loss landscape of Neural Net (2017)	ophinytahin
4	The loss surfaces of multilayer networks (2015)	
6	Resnet (2015)	bphinization CNNs
	Batch Norm (2015)	
7		Patch Normalization
7	snapshit Ensembles: Train 1, act M Por Fee (2017) Over Feat (2013)	Ersenysles
8	You only book once (2015)	tv
8	Fast R-CNN (2015)	۷
8	Faster R-CNN (2015)	CV
8	SSD: Single Shat Multibox Petector (2015)	cv
8	Fully eNNC for Semantic Segmentation (2014)	cv
8	U-Net (2015)	cv
9	Rich feature hierarchies for accurate object detection and remarks segmentation (2014)	Virualization
9	shiring for simplicity: The Au convolutional Net (2014)	Visualization
9	Deep Inside Convolutional Networks: Visualizing Image Classification Models and Saliency Maps (2013)	Visualization
9	understanding Neural Networks Through Deep vis (2015)	Visualization
. 9	A Neuron Algorithm of Athist style (2015)	Visualization
10	Schoduled sampling he Sequence prediction with Recurrent Neural Networks (2017)	RNNC
12	Attention Is Ah You Need (2017)	transformers
12	aenerating Wikipedia by summarizing long scauences (2018)	transformers
13	Linguistic Regularities in Continuous Space word Representa	hions NLP
13	Ocep contextualized word representations	NLP
IY	End to End Learning for self-priving cars	mitation learning
14	A Reduction of Invitation Learning and Structured Prediction to No-Respect Online Learning	n Invitation learning
15	simple statistical Gradient-Following Algorithms for connectioning	st RL Policy Caradients
15	Received Models of Visual Attention (2014)	Policy Gradients
15	Truck region policy appropriately (2015)	Policy aradients
15	Trust region policy approximation (2015) Preximal policy ophin12 abon (2017)	Policy Gradients
16	79-Gammon (1992)	Policy Gradients Actor-Cnic /a-leaning
16	Mostering the Game of Go without Human knowledge (2016)	Achor this lu-teaming

lec	Paper	learned topic
17	Pirel Receivent Neural Networks (2016)	Generative Models
17	Image Transformer (2018)	Cienerative Models
17	Autonomous reinforcement learning from raw visual data (2012)	aenerative Models
10	NICE: Nonlinear Independent componente Estimation (2014)	Latent Variable Models
18	Real-NUP: Non-Volume Precening Transformation (2016)	latent Variable Models
19	Generalize adversarial networks (2014)	GANS
19	Progressive Growing of GAN's (2017)	GANS
19	large-Scale GAN Training (2018)	GANS
19	Image - to- Image Translation with Conditional Adversarian Nets (2017)	
19	conditional generative adversarian nets (2014)	GAN
19	Unpaired image-h-image translation using cucle-consistent adversarial networks (2017)	GAN
19	Least Sauares Generaline Adversarias Networks (2017)	GANS
14	Wasserstein generative adversarial networks (2017)	GANG
19	Which training Methods for GAN, do Achially converge? (2018)	GANS
19	Improved Training of Wasserstein GANS (2017)	GANS
19	Spectral Normalization for Generative Adversarial Networks (2018)	GANS
20	why should 1 Trust You?" Explaining the Predictions of Any	Adversarial Examples
	Classifier (2016)	
20	Explaining and Harnessing Adversarial Examples (2014)	Adversarial Examples
20	Robust Physical-World Attacks on Ol Virual Classification (2018)	Adversarian Examples
20	Synthesizing Robust Adversarial Examples (2017)	Adversarian Examples
20	Adversarian Examples that Frol Loth Computer Vision and Time-Limited Humans (2018)	Adversarian Examples
20	Adversariou examples are Not Bugs, They Are Features (2019)	Adversarial Examples
20	Transferability in ML: from Phenomena to BlackBox Attacks using Adversarial Examples (2016)	Advercarial examples
20	Delvins into Transferable Adversaria, Examples and BlackRove Attracks (2017)	Adverrarian Evanupler
21	Meta-learning with Memory-Ausmented Neural Networks (2016)	Meta-Learning
21	A simple Neuran Attentive Meta-learner (2018)	Meta-Learning
21	madning Wetworks for One-shot learning (2017)	Meta-learning
21	prohypical Networks for few-shif learning (2018)	meta-learning
21	Model -Agnostic Meta-learning (2017)	Meter-Learning
ч	Memory-lased control with recurrent neural networks (2015)	Meta-learning.
u	Learning to Reinforcement Learning (2016)	Meta-learning.
u	RLZ; fast Reinforcement learning via slow Reinforcement Learning (2016)	
u	Efficient off-Policy Meta-RL via Probabilishic Context Volvintles (2019	