一、折线图

绘制折线图我们通常使用plot函数画曲线(折线)。每一个plot函数对应一条曲线,画多条线的时候调用多个plot函数即可。

plot()函数:

前两个参数为x、y。x: X轴数据,列表或数组; y: Y轴数据,列表或数组。后面还有很多的修饰曲线的参数,常用的有: color控制曲线颜色, linestyle (缩写ls) 控制曲线的风格, marker控制数据点的风格等,其对应的常用字符在文章最后的附录。

示例:

代码及注释,其中除了plot之外的函数,在"matplotlib综述"一文中介绍:

```
fig, axes = plt.subplots(1, 1, figsize=(8, 4))
# 折线图
axes.plot(x, y, linestyle='-', color='#DE6B58', marker='x', linewidth=1.5)
axes.plot(x, y2, linestyle='-', color='#E1A084', marker='x', linewidth=1.5)
# 设置最小刻度间隔
axes.yaxis.set_minor_locator(MultipleLocator(2.5))
axes.xaxis.set_minor_locator(MultipleLocator(0.5))
# 画网格线
axes.grid(which='minor', c='lightgrey')
# 设置x、y轴标签
axes.set_ylabel("Generation Consistency")
axes.set_xlabel("KB Row Number")
# 设置y轴的刻度
axes.set_yticks([70, 75, 80, 85, 90, 95])
# 对每个数据点加标注
for x_, y_ in zip(x, y):
    axes.text(x_, y_, y_, ha='left', va='bottom')
for x_, y_ in zip(x, y2):
    axes.text(x_, y_, y_, ha='left', va='bottom')
# 展示图片
plt.show()
```

效果如下:

二、柱状图

1、普通柱状图

使用bar函数绘制柱状图,其常用参数如下:

参数	说明
х	柱形图的横坐标序列,可以是数字,也可以是字符串的列表,如x=['class1', 'class2', 'class3', 'class4', 'class5']此时起到了tick_label的作用
у	柱形图的高度,通常就是我们需要展示的数据
align	柱体对齐方式
color	ylabel()类似
edgecolor	柱体边缘线条的颜色
tick_label	x轴的文字标签
alpha	透明度,数值越小越透明
ls	linestyle的缩写,柱体边缘线条的样式
lw	linewidth的缩写,边缘线条的宽度
width	柱体的宽度
label	标签,在展示图例时用到
hatch	柱体填充,取值有: / , \ , , - , + , x , o , O , . , *等 , 且符号数量越多 , 越密集

其中非常常用的是width、label、alpha、edgecolor、hatch。

此外,常用 axe.set_xticks 来设置刻度,使用 axe.set_xticklabels 来设置每个刻度上的标签。 axes.spines['top'].set_visible(False)可以用来设置边框不可见,可选的有top、right、bottom、left四条边。

示例:

代码及注释:

```
fig, axes = plt.subplots(1, 1, figsize=(5, 3))
# 画柱状图
axes.bar(x, a1, width=0.4, label='height', color="#D2ACA3")
# 图例
axes.legend(loc='best')
# 设置坐标轴刻度、标签
axes.set_xticks([0, 1, 2, 3, 4, 5])
axes.set_yticks([160, 165, 170, 175, 180, 185, 190])
axes.set_ylim((160, 190))
axes.set_xticklabels(['zhouyi', 'xuweijia', 'lurenchi', 'chenxiao', 'weiyu', 'guhaiyao'])
# 设置title
axes.set_title('NLP group members heights')
# 网格线
axes.grid(linewidth=0.5, which="major", axis='y')
# 隐藏上、右边框
axes.spines['top'].set_visible(False)
axes.spines['right'].set_visible(False)
```

效果:

2、两对柱子竖直方向堆积

底下的柱体和普通柱状图画法一样。

画上面的柱子时,只需要再调用一个bar函数,这个bar函数要添加bottom参数,将bottom的值设置为底下柱子的数值即可。

示例:

```
axes.bar(x, y1, width=0.4, label='height', color='#D2ACA3')
axes.bar(x, y2, width=0.4, bottom=y1, color="#EBDFDF", label='increse')
```


3、两对柱子并排排列

调用两次bar函数绘制两组柱体。让一组柱子的x值为x-width/2,另一组柱子的x值为x+width/2,即可实现两条柱子并排排列。示例:

```
axes.bar(x - width / 2, a1, width=width, label='2015', color="#D2ACA3")
axes.bar(x + width / 2, a2, width=width, label='2020', color="#EBDFDF")
```


4、给每根柱体加标注

一般使用循环的形式加text,并将参数ha设置为center、va设置为bottom。示例:

```
for i in range(6):
    axes.text(x[i], a1[i], ha='center', va='bottom')
```


三、饼状图

饼图使用 plt.pie 函数绘制, 其各参数如下:

参数	说明
values	需要展示的百分比数据
explode	饼片边缘偏离半径的百分比,如果对应的饼片为0,则不偏离
labels	饼片显示的标签
autopct	显示的百分比样式
startangle	第一个饼片逆时针旋转的角度,以x轴为起始位置
shadow	是否绘制阴影
pctdistance	百分比的text离圆心的距离,相对于半径
labeldistance	饼片标签离圆心的距离,相对于半径
colors	饼片的颜色

其中labels、value、colors、explode是维数相同的列表。还有一些常用的参数: textprops可以设置所有文字 (label和value) 的属性、wedgeprops可以将饼状图设置为环状图。

pie()函数的返回值为饼片列表、文字标签列表、数值标签列表。可以先获得返回值,再通过setp()函数对相应的文字进行操作、调整。

此外,一般会使用plt.axis('equal')让饼状图看起来更圆。

示例:

代码及注释:

效果:

如果给pie函数加上了wedgeprops参数,则可画出环形饼图,示例如下: 将上面的代码中的pie函数的参数增加 wedgeprops=dict(width=0.4):

附录

color:

颜色字符	说明	颜色字符	说明
'b'	蓝色	'm'	洋红色 magenta
'g'	绿色	'y'	黄色
'r'	红色	'k'	黑色
'c'	青绿色 cyan	'w'	白色
'#008000'	RGB某颜色	'0.8'	灰度值字符串

marker:

标记字符	说明	标记字符	说明	标记字符	说明
12	点标记	'1'	下花三角标记	'h'	竖六边形标记
','	像素标记(极小点)	'2'	上花三角标记	'H'	横六边形标记
'0'	实心圈标记	'3'	左花三角标记	141	十字标记
'y'	倒三角标记	'4'	右花三角标记	'x'	x标记
1.11	上三角标记	's'	实心方形标记	'D'	菱形标记
'>'	右三角标记	'p'	实心五角标记	'd'	瘦菱形标记
'<'	左三角标记	1+1	星形标记	TI.	垂直线标记

linestyle:

风格字符	说明
121	实线
1221	破折线
1-21	点划线
1:1	虚线
11.1.1	无线条