Trabajo Práctico No. 5: Vectores, rectas y planos en el espacio

- 1. a) Dados los puntos A(3,-1,2) y B(-1,2,1), halle las componentes de \overrightarrow{AB} y \overrightarrow{BA} . Represente gráficamente.
 - b) Halle las coordenadas del origen A del vector $\mathbf{u} = (3, -1, 4)$, si su extremo coincide con B(1, 2, -3).
 - c) Halle las coordenadas del extremo B del vector $\mathbf{u}=(3,-1,2)$, si su origen es A(1,1,1).
 - d) Si $\mathbf{u} = (4, -12, z)$, hallar z, sabiendo que $\|\mathbf{u}\| = 13$.
- 2. Dados los puntos A(-1, 3, -7), B(2, -1, 5), C(0, 1, -5) y los vectores $\mathbf{u} = \overrightarrow{AB}$, $\mathbf{v} = \overrightarrow{AC}$ y $\mathbf{w} = \overrightarrow{BC}$, calcule:
 - a) $\langle (2\mathbf{u} + \mathbf{w}); (2\mathbf{w} \mathbf{u}) \rangle$
 - b) $\|\mathbf{u} + \mathbf{v}\|^2 \ y \ \|\mathbf{u} \mathbf{v}\|^2$
 - c) $\langle \mathbf{u}, \mathbf{v} \rangle \mathbf{w}$ y $\langle \mathbf{v}, \mathbf{u} \rangle \mathbf{u}$
 - d) Los ángulos interiores del triángulo formado por los vértices A, B y C.
- 3. a) Halle un valor de k para que $\mathbf{u}=(1,k,3)$ y $\mathbf{v}=(2,1,k)$ sean ortogonales. ¿Este valor es único?
 - b) Halle un vector de módulo 2 que tenga la misma dirección que el vector $\mathbf{u} = (1, 2, 3)$. ¿Cuántos vectores existen en estas condiciones?
 - c) Halle un vector de módulo 2 que sea perpendicular al vector $\mathbf{u}=(1,2,3)$. ¿Cuántos vectores existen en estas condiciones?
- 4. Dados los vectores **a** y **b**:

a)
$$\mathbf{a} = (-3t, 24, -1) \text{ y } \mathbf{b} = (-1, 8, -t)$$

b)
$$\mathbf{a} = (2t, -6, 1) \text{ y } \mathbf{b} = (-1, 3t, \frac{1}{2})$$

Halle, en caso de ser posible, los valores de t para que los vectores sean paralelos y/o perpendiculares.

- 5. a) Los vectores \mathbf{u} y \mathbf{v} forman entre sí un ángulo de 45° y $\|\mathbf{u}\| = 3$. Determine el módulo de \mathbf{v} de modo tal que el vector $\mathbf{u} \mathbf{v}$ sea ortogonal al vector \mathbf{u} .
 - b) Si \mathbf{u} y \mathbf{v} son vectores que verifican $\|\mathbf{u} + 5\mathbf{v}\|^2 10\|\mathbf{u}\|$ proy $\operatorname{esc}_{\mathbf{u}} \mathbf{v} = 26\|\mathbf{u}\|^2$, pruebe que $\|\mathbf{u}\| = \|\mathbf{v}\|$.
 - c) Sean $\mathbf{w} = (3, 0, -1)$ y \mathbf{v} un vector arbitrario perpendicular a \mathbf{u} . Halle proy $\operatorname{esc}_{\mathbf{w}} \mathbf{u}$, sabiendo que $\langle 3\mathbf{v} + 2\mathbf{w}, \mathbf{u} \rangle = 14$.

- d) Sean \mathbf{u}, \mathbf{v} y \mathbf{w} , vectores tales que \mathbf{u} es perpendicular a \mathbf{w} y el ángulo que forman \mathbf{v} y \mathbf{w} es de 30°. Halle $\|\mathbf{w}\|$, sabiendo que $\mathbf{v} = (2, -2, 2)$ y $\langle \mathbf{v} \mathbf{u}, \mathbf{w} \rangle = 18$.
- 6. a) Calcule $\mathbf{u} \times \mathbf{v}$ y $\mathbf{v} \times \mathbf{u}$ y represente gráficamente, siendo $\mathbf{u} = (4, -2, 0)$ y $\mathbf{v} = (0, 3, 0)$.
 - b) Calcule $(2\mathbf{u} + \mathbf{v}) \times \mathbf{v}$ y $(2\mathbf{u} \mathbf{v}) \times (2\mathbf{u} + \mathbf{v})$, siendo $\mathbf{u} = (1, -2, 3)$ y $\mathbf{v} = (-3, 3, 1)$.
 - c) Halle un vector de módulo 5, perpendicular a ambos vectores $\mathbf{u}=(1,-2,3)$ y $\mathbf{v}=(0,1,4)$.
 - d) Halle el área del triángulo cuyos vértices son $P=(3,5,2),\ Q=(1,-1,6)$ y R=(-2,1,4).
- 7. *a*) Calcule el volumen del paralelepípedo determinado por los vectores $\mathbf{u} = (1, -2, 3)$, $\mathbf{v} = (0, 1, 4)$ y $\mathbf{w} = (1, 1, 1)$.
 - b) Sean $\mathbf{u} = (1, 2, -3)$, $\mathbf{v} = (2, 1, 5)$ y $\mathbf{w} = (1, 2, -1)$. Halle todos los vectores \mathbf{r} , paralelos a \mathbf{w} , tales que el volumen determinado por \mathbf{u} , \mathbf{v} y \mathbf{r} sea 40.
- 8. Encontrar una ecuación vectorial, paramétrica y, si existen, las ecuaciones simétricas de la recta r en cada uno de los siguientes casos.
 - a) $A(-1,3,2) \in r \text{ y } \mathbf{v} = (2,2,-1) \parallel r$.
 - b) $B(1, -3, 4) \in r \text{ y } \mathbf{v} = (0, 2, 3) \parallel r.$
 - c) $C(0,1,3) \in r \text{ y } \mathbf{v} = (0,5,2) \parallel r.$
 - d) $D(1,-1,1) \in r \text{ y } \mathbf{v} = (0,0,-1) \parallel r.$
 - e) $P_0(7,6,6) \in r \text{ y } P_1(5,2,4) \in r.$
 - f) $P_0(-1,0,4) \in r$ y $P_1(1,0,2) \in r$.
- 9. Hallar la intersección con los planos coordenados de las rectas obtenidas en el inciso anterior, y graficar.
- 10. Halle una ecuación paramétrica de las siguientes rectas y, si existen, sus ecuaciones simétricas:
 - a) Que pase por el punto P(2, -1, 3) y es paralela al vector $\mathbf{v} = (-1, 6, 5)$.
 - b) Que pase por el punto $P_0(-5,0,1)$ y es paralela a la recta L:

$$\begin{cases} x = -1 + 2t \\ y = -t \\ z = -1 + t \end{cases}, \quad t \in \mathbb{R}$$

- c) Que pase por los puntos A(1, -3, 2) y B(4, -2, 6).
- d) Que pase por el punto Q(2,-1,2) y sea perpendicular al plano de ecuación $\pi: 7x+6y+5z=-4.$
- 11. Escriba la ecuación de los siguientes planos:

- a) Perpendicular al vector $\mathbf{v} = (-1, 0, 1)$ que pase por el punto P(4, 2, 0).
- b) Que contenga los puntos $P_0(-7,1,0)$, $P_1(2,-1,3)$ y $P_2(1,-1,0)$.
- c) Que pasa por el punto P(2,3,1) y es paralelo a los vectores $\mathbf{u}=(2,1,1)$ y $\mathbf{v}=(-3,1,0)$.
- d) Paralelo al plano $\pi: 5x-y+3z-1=0$ y pasa por el origen de coordenadas.
- e) Paralelo al plano yz, que pase por el punto P(1,2,3).
- 12. Analice la intersección con los ejes coordenados y los planos coordenados en cada uno de los siguientes casos. Represente gráficamente:

a)
$$z + 4 = 0$$

b)
$$x = -2$$

c)
$$3x + 6y - 12 = 0$$

$$d) \ y + 4z - 16 = 0$$

e)
$$2x + 2y - z = 2$$

$$f) \ 3x + 6y + 3z - 24 = 0$$

- 13. Dada la recta L : $\begin{cases} x=1-t\\ y=t\\ z=3-t \end{cases}$ con $t\in\mathbb{R},$ halle las ecuaciones de los siguientes planos:
 - a) Paralelo a L que pasa por el origen de coordenadas. ¿Es único?
 - b) Perpendicular a L que pasa por el punto P(-1,3,0).