UPPSALA UNIVERSITET Matematiska institutionen Inger Sigstam

Skrivtid: 14.00 - 19.00. Tillåtna hjälpmedel: Bara pennor, radergummi, linjal och papper (det sistnämnda tillhandahålles). För godkänd kurs krävs att alla explicita kursmål är godkända samt att tentamenspoängen är minst 18 (inklusive ev bonuspoäng). För betyg 4 eller 5 krävs dessutom att tentamenspoängen är minst 25 resp minst 32. För varje uppgift anges vilket/vilka explicita kursmål som uppgiften berör.

Uppgifterna 1-5 behandlar satslogik. I dessa uppgifter används den satslogiska signaturen $\sigma = \{A, B, C\}$.

- **1.** [Mål 1, 3, 4.] Låt $\sigma = \{A, B, C\}$ vara en satslogisk signatur.
 - (a) Redogör för hur formler i LP(σ) byggs upp.
 - (b) Förklara vad som menas med en σ -struktur.
 - (c) Låt φ vara en formel i LP(σ). Vad menas med att φ är satisfierbar?
 - (d) Låt $\{\psi_1, \dots, \psi_n\}$ vara en mängd av formler och låt φ vara en formel i LP(σ). Vad menas med att $\{\psi_1, \dots, \psi_n\} \models \varphi$? (4)
- **2.** [Mål 5.] Skriv följande sats på konjunktiv normalform (KNF), och på disjunktiv normalform (DNF). Förklara hur du kommit fram till ditt svar!

$$((A \longrightarrow (A \land \neg B)) \land (B \longrightarrow (B \land \neg A)) \tag{4}$$

- 3. [Mål 2.] Konstruera formella bevis i naturlig deduktion för följande påståenden.
 - (a) $A \vdash \neg(\neg A \land B)$

(b)
$$(A \wedge B) \vee C \vdash (A \vee C) \wedge (B \vee C)$$
 (4)

4. [Mål 4.] Avgör om följande slutledningar på formen $\Gamma \models \sigma$ är giltiga. För varje slutledning som inte är giltig, ange en σ -struktur som är motexempel. För varje slutledning som är giltig, konstruera att bevis i naturlig deduktion som vittnar om att $\Gamma \vdash \sigma$.

(a)
$$A \longrightarrow (B \longrightarrow C) \models (A \longrightarrow B) \longrightarrow C$$

(b)
$$(A \longrightarrow B) \longrightarrow C \models A \longrightarrow (B \longrightarrow C)$$
 (4)

- **5.** [Mål 6.] Avgör om följande påståenden på formen $\Gamma \vdash \tau$ gäller, dvs om τ är bevisbar i naturlig deduktion från premisserna i Γ .
 - (a) $A \wedge B \longrightarrow C \vdash A \longrightarrow B \vee C$.
 - (b) $A \lor (B \longrightarrow C), \neg C, B \vdash A$.

Motivera dina svar noggrant!

(4)

FLER UPPGIFTER PÅ NÄSTA SIDA!

Uppgifterna 6-11 behandlar predikatlogik, dvs första ordningens logik.

- **6.** [Mål 7, 9, 10.] Låt $\sigma = \langle \overline{c}; \overline{F}; \overline{P} \rangle$ vara signatur med ställigheterna $\langle 0; 1; 2 \rangle$.
 - (a) Ange alla termer i språket $LR(\sigma)$.
 - (b) Ange alla atomära formler i språket $LR(\sigma)$.

(c) Låt
$$\tau$$
 vara formeln $\neg \overline{F}(\overline{c}) \doteq \overline{c} \wedge \forall x \forall y (\overline{P}(x,y) \longrightarrow \overline{P}(\overline{F}(x), \overline{F}(y)))$.
Ange två σ -strukturer \mathcal{A} och \mathcal{B} sådana att $\mathcal{A} \models \tau$ och $\mathcal{B} \not\models \tau$. (4)

- 7. [Mål 8.] Låt $\sigma = \langle ; \overline{F}; \overline{P}, \overline{D} \rangle$ vara signatur med ställigheterna $\langle ; 2 ; 1, 2 \rangle$. Betrakta σ strukturen $\mathcal{N} = \langle \mathbf{N}, F, P, D \rangle$, där F(n,m) = n + m, $P(n) \iff n$ är ett primtal, och $D(n,m) \iff n$ är delbar med m. Översätt följande till predikatlogiska slutna formler i språket $LR(\sigma)$.
 - (a) Summan av två primtal är aldrig ett primtal.
 - (b) Varje naturligt tal som inte är ett primtal är delbart med ett primtal. (2)
- **8.** [Mål 12.] Låt $\sigma = \langle \overline{c}; ; \overline{P}, \overline{Q} \rangle$ vara signatur med ställigheterna $\langle 0; ; 1, 1 \rangle$. Konstruera bevis i naturlig deduktion för följande påståenden.
 - (a) $\forall x (\overline{P}(x) \vee \overline{Q}(x)), \neg \overline{P}(\overline{c}) \vdash \overline{Q}(\overline{c})$

(b)
$$\forall x (\overline{P}(x) \longrightarrow \overline{Q}(x)), \exists x \neg \overline{Q}(x) \vdash \exists x \neg \overline{P}(x)$$
 (4)

- 9. [Mål 11, 12.] Låt $\sigma = \langle ;; \overline{P}, \overline{Q} \rangle$ vara signatur med ställigheterna $\langle 0;; 1, 1 \rangle$. Avgör om följande slutledningar på formen $\Gamma \models \sigma$ är giltiga. För varje slutledning som inte är giltig, ange en σ -struktur som är motexempel. För varje slutledning som är giltig, konstruera att bevis i naturlig deduktion som vittnar om att $\Gamma \vdash \sigma$.
 - (a) $\forall x (\overline{P}(x) \vee \overline{Q}(x)) \models \forall x \overline{P}(x) \vee \forall x \overline{Q}(x)$ (b) $\forall x \overline{P}(x) \vee \forall x \overline{Q}(x) \models \forall x (\overline{P}(x) \vee \overline{Q}(x))$ (4)
- **10.** [Mål 9, 14.] Låt $\sigma = \langle ;; \overline{R} \rangle$ av ställigheter $\langle ;; 2 \rangle$. Låt $\Gamma = \{ \varphi_1, \varphi_2, \varphi_3 \}$, där

$$\begin{array}{lcl} \varphi_1 & = & \forall x \forall y \forall z (\overline{R}(x,y) \wedge \overline{R}(y,z) \longrightarrow \overline{R}(x,z)) \\ \varphi_2 & = & \forall x \forall y \big(\overline{R}(x,y) \wedge \overline{R}(y,x) \longrightarrow x \doteq y\big) \\ \varphi_3 & = & \forall x \forall y \big(\overline{R}(x,y) \vee \overline{R}(y,x)\big) \end{array}$$

- (a) Ange en modell för Γ .
- (b) Visa att Γ är oberoende, dvs visa att ingen av formlerna i Γ kan bevisas i naturlig deduktion från de övriga två formlerna. Du ska alltså visa att $\varphi_1, \varphi_2 \not\vdash \varphi_3$ och $\varphi_1, \varphi_3 \not\vdash \varphi_2$ och $\varphi_2, \varphi_3 \not\vdash \varphi_1$. (4)
- 11. [Mål 13.] Formulera sundhetssatsen och fullständighetssatsen för första ordningens logik samt förklara i ord vad de innebär. Ange exempel på var i tentauppgifterna du har använt dig av någon av satserna, eller hur man skulle kunna använda dem. (2)