Basic identities of matrix/vector ops	Gram-Schmidt method to generate or-	from <u>B</u>] to <u>E</u>]	Decomposition (SVD) & Singular Values largest	$-\underline{AJ}$ is full-rank iff rk(A) = min(m, n), i.e. its as linearly	- EROs transform A → EROs A' => there is matrix R	direction of its eigenvectors:	- AJis positive semi-definite ⇒ all its diagonals are
$(A+B)^T = A^T + B^T (AB)^T = B^T A^T (A^{-1})^T = (A^T)^{-1} $	thonormal basis from any linearly in-	$-I_{BE} = (I_{EB})^{-1}$, so $\Rightarrow F_{CB} = I_{CE}F_{EE}I_{EB}$	eigenvalue]] of A ^T A or AA ^T)	independent as possible	s.t. <u>RA = A'</u>	 Perform a succession of reflections/planar 	non-negative
$(AB)^{-1} = B^{-1}A^{-1}$	• Gram-Schmidt is iterative [[#What is a	 Dot-product uniquely determines a vector w.r.t. to basis 	$- \ A\ _{\infty} = \max_{i} \ A_{i\star}\ _{1} $ note that $\ A\ _{1} = \ A^{T}\ _{\infty}$	 Two matrices A, A∈R^{m×n} are equivalent if there exist two invertible matrices P∈IR^{m×m} and 	- ECOs transform A → ECOs A' ⇒ there is matrix C	rotations to change coordinate-system 2) Apply scaling by λ_i to each dimension \mathbf{q}_i	 A is positive semi-definite => max(A_{ii}, A_{jj}) ≥ A_{ij} . i.e. no coefficient larger than on the diagonals
	projection projection]] => we use current j -dim	- If $\underline{a_i} = x \cdot \mathbf{b_i}$ then $x = \sum_i a_i \mathbf{b_i}$ we call $\underline{a_i}$ the	- Frobenius norm: $ A _F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij} ^2}$	$Q \in \mathbb{R}^{n \times n}$ such that $A = PAQ^{-1}$	s.t. <u>AC = A'</u> - Both transform A \rightsquigarrow EROs+ECOs A' => there are	3) Undo those reflections/planar rotations	 Alis positive semi-definite => all upper-left
For $\underline{A \in \mathbb{R}^{m \times n}} A_{ij}$ is the i -th ROW then j -th COLUMN	subspace, to get next (j + 1) dim subspace – Assume orthonormal basis (ONB)	coordinate-vector of x j w.r.t. to B	V i=1 j=1	 Two matrices A, Ã∈ R^{n×n} are similar if there exists an invertible matrix P∈ R^{n×n} such that A = PÃP⁻¹ 	matrices R, C s.t. RAC = A'	Extension to C ⁿ	submatrices are also positive semi-definite – A is positive semi-definite => it has a [[tutorial
$(A^T)_{ij} = A_{ji} (AB)_{ij} = A_{i\star} \cdot B_{\star j} = \sum_k A_{ik} B_{kj} $	$\langle \mathbf{q}_1,, \mathbf{q}_j \rangle \in \mathbb{R}^m \mid \text{for } j \mid \text{dim subspace } U_j \subset \mathbb{R}^m \mid$	Rank-nullity theorem:	• A matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is consistent with the	- Similar matrices are equivalent, with Q = P	FORWARD: to compute these transformation matrices:	• Standard inner product: $(x, y) = x^{\dagger}y = \sum_{i} \overline{x_{i}}y_{i}$	4#Cholesky Decomposition Cholesky
$(Ax)_i = A_{i\star} \cdot x = \sum A_{ij} x_j x^T y = y^T x = x \cdot y = \sum x_i y_i $	* Let $Q_j = [\mathbf{q}_1 \mid \dots \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ be the matrix of	dim(im(f))+dim(ker(f))=rk(A)+dim(ker(A))=n , i.e. properties of transformation-matrices/liner maps	vector norms $\ \cdot\ _a$ on \mathbb{R}^n and $\ \cdot\ _b$ on \mathbb{R}^m if - for all $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$ \Rightarrow $\ Ax\ _b \le \ A\ \ x\ _a$	• AJis diagonalisable iff AJis similar to some diagonal matrix DJ	- Start with [Im A In] i.e. Aland identity matrices	- Conjugate-symmetric: $\langle x, y \rangle = \overline{\langle y, x \rangle}$	Decomposition]] • For any $M \in \mathbb{R}^{m \times n}$, MM^T and M^TM are symmetric
j <u> </u>	columns q ₁ ,,q _j	correspond	 If a = b, · is compatible with · _a 	Properties of determinants	- For every ERO on AJ do the same to LHS (i.e. l_m) - For every ECO on AJ do the same to RHS (i.e. l_n)	• Standard (induced) norm: $ x = \sqrt{\langle x, y \rangle} = \sqrt{x^{\dagger} y}$ • We can [futorial	and positive semi-definite
$x^T A x = \sum_{i} \sum_{j} A_{ij} x_i x_j$	* $P_j = Q_j Q_j^T is [[\#Projection]]$	 f is injective/monomorphism iff ker(f) = {0} iff A is full-rank 	- Frobenius norm is consistent with ₹2 norm => Av ₂ ≤ A _F v ₂	• Consider $\underline{A \in \mathbb{R}^{n \times n}}$, then $A_{ii} \in \mathbb{R}^{(n-1) \times (n-1)}$ the	 Once done, you should get 	1#Eigen-values/vectors diagonalise]] real matrices in	Singular Value Decomposition (SVD) &
	properties orthogonal projection]] onto Uj	Orthogonality concepts	• For a vector norm $\ \cdot\ $ on \mathbb{R}^n , the subordinate	(i, j) minor matrix of Al obtained by deleting i th	$[I_m \mid A \mid I_n] \rightarrow [R \mid A' \mid C]$ with $\underline{RAC = A'}$ • If the sequences of EROs and ECOs were $R_1,, R_{\lambda}$	CJwhich lets us diagonalise more matrices than before	Singular Values
Scalar-multiplication distributes over:	* $P_{\perp j} = I_m - Q_j Q_j^T$ is [[#Projection	 <u>u ⊥ v ⇔ u · v = 0</u>, i.e. <u>u</u> jand <u>v</u> jare orthogonal 	matrix norm $\ \cdot\ $ on $\mathbb{R}^{m \times n}$ is $\ A\ = \max\{\ Ax\ : x \in \mathbb{R}^n, \ x\ = 1\}$	row and j th column from A • Then we define determinant of A i.e. det(A) = A , as	and C ₁ ,,C _µ respectively	Least Square Method	• Singular Value Decomposition of $A \in \mathbb{R}^{m \times n}$ is any
• column-blocks => $\land A = \lambda [A_1 A_2 \dots] = [\lambda A_1 \lambda A_2 \dots]$ • row-blocks => $\land A = \overline{\lambda} [A_1; A_2; \dots] = [\lambda A_1; \lambda A_2; \dots]$	properties orthogonal projection]] onto $(U_j)^{\perp}$	• \underline{u} jand \underline{v} jare orthonormal iff $\underline{u} \perp v$, $\ \underline{u}\ = 1 = \ v\ $ • $A \in \mathbb{R}^{n \times n}$ is orthogonal iff $A^{-1} = A^T$	- Alternative expressions:		$-R = R_{\lambda} \cdots R_{1}$ and $C = C_{1} \cdots C_{\mu}$ so	• If we are solving Ax = b and b ∉ C(A), i.e. no solution,	decomposition of the form <u>A = USV^T</u> where - [[tutorial 1#Orthogonality concepts Orthogonal]]
Consider $A, B \in \mathbb{R}^{m \times n}$ partitioned column/row-wise in	(orthogonal compliment)	- Columns of $A = [a_1 a_n]$ are orthonormal basis	$ A = \max\{ Ax : x \in \mathbb{R}^n, x = 1\}$	$-\det(A) = \sum_{k=1}^{n} (-1)^{j+k} A_{jk} \det(A_{jk}')$ i.e. expansion	$\frac{(R_{\lambda} \cdots R_{1})A(C_{1} \cdots C_{\mu}) = A'}{1 - 1 - 1}$	then Least Square Method is: - Finding xjwhich minimizes Ax-b ₂	$U = [\mathbf{u}_1 \mid \dots \mid \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ and
the same way => matrix-addition distributes over:	- Assume a _{j+1} ∉ U _j => unique decomposition a _{j+1} = v _{j+1} + u _{j+1}	(ONB) $C = \langle \mathbf{a}_1, \dots, \mathbf{a}_n \rangle \in \mathbb{R}^n$, so $A = \mathbf{I}_{EC}$ is	$= \max \left\{ \frac{\ Ax\ }{\ x\ } : x \in \mathbb{R}^n, x \neq 0 \right\}$	along ij-th row *(for any ij)	$-R^{-1} = R_1^{-1} \cdots R_{\lambda}^{-1}$ and $C^{-1} = C_{\mu}^{-1} \cdots C_{1}^{-1}$, where	 Recall for A∈ R^{m×n} [[tutorial 1#Orthogonality 	$V = [\mathbf{v}_1 \dots \mathbf{v}_n] \in \mathbb{R}^{n \times n}$ $- S = \operatorname{diag}_{m \times n} (\sigma_1, \dots, \sigma_p) \text{ where } p = \min(m, n) \text{ and }$
• column-blocks => $A+B=[A_1 A_2]+[B_1 B_2]=[A_1+B_1 A_2+B_2]$	$*\mathbf{v}_{i+1} = P_i\left(\mathbf{a}_{i+1}\right) \in U_i = \text{discard it!!}$	change-in-basis matrix – Orthogonal transformations preserve	$= \max\{\ Ax\ : x \in \mathbb{R}^n, \ x\ \le 1\}$	$-\det(A) = \sum_{k=1}^{n} (-1)^{k+j} A_{kj} \det(A_{kj}'), \text{ i.e. expansion}$	R_i^{-1}, C_j^{-1} are inverse EROs/ECOs respectively	concepts we have unique decomposition for any $\mathbf{b} \in \mathbb{R}^m$: $\mathbf{b} = \mathbf{b}_i + \mathbf{b}_k$	$\sigma_1 \ge \cdots \ge \sigma_p \ge 0$
• row-blocks =>	* $\frac{\mathbf{u}_{j+1} = P_{\perp j} (\mathbf{a}_{j+1}) \in (U_j)^{\perp}}{2}$ => we're after this!!	lengths/angles/distances =>	Vector norms are compatible with their subordinate	k=1 along j th column (for any j 	• BACKWARD: once $R_1,, R_{\lambda}$ and $C_1,, C_{\mu}$ for which $RAC = A'$ are known, starting with $[I_m \mid A \mid I_n]$	*where $\mathbf{b}_i \in C(A)$ and $\mathbf{b}_k \in \ker(A^T)$	- σ ₁ ,, σ _p are singular values of <u>A</u>].
A+B=[A ₁ ;A ₂ ;]+[B ₁ ;B ₂ ;]=[A ₁ +B ₁ ;A ₂ +B ₂ ;]	- Let $\mathbf{q}_{j+1} = \hat{\mathbf{u}}_{j+1} = \mathbf{w}$ we have next ONB	$ Ax _2 = x _2$, $AxAy = x\hat{y}$ * Therefore can be seen as a succession of	matrix norms	When det(A) = 0 we call A a singular matrix	- For $i = 1 \rightarrow \lambda$] perform R_i on \underline{A}], perform $R_{\lambda-i+1}^{-1}$ on		* (Positive) singular values are (positive) b; square-roots of eigenvalues of AA ^T or A ^T A
Consider $A = [A_1; A_2,] \in \mathbb{R}^{m \times k}$, $B = [B_1 B_2] \in \mathbb{R}^{k \times n}$ => matrix-multiplication distributes over:	$\langle \mathbf{q}_1, \dots, \mathbf{q}_{j+1} \rangle$ for $U_{j+1} \Rightarrow$ start next iteration	reflections and planar rotations	• For $\underline{p=1,2,\infty}$ matrix norm $\ \cdot\ _{\underline{p}}$ is subordinate to the vector norm $\ \cdot\ _{\underline{p}}$ (and thus compatible with)	Common determinants For <u>n = 1</u> , det(A) = A ₁₁	LHS (i.e. Im	$\ A\mathbf{x} - \mathbf{b}\ _2$ is minimized $\iff \ A\mathbf{x} - \mathbf{b}_i\ _2 = 0 \iff A\mathbf{x} = \mathbf{A}^T A\mathbf{x} = \mathbf{A}^T \mathbf{b}$ is the normal equation which gives	* i.e. σ_1^2 ,, σ_p^2 are eigenvalues of AA^T or A^TA
• column-blocks => AB = A[B ₁ B ₂] = [AB ₁ AB ₂]	$*\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$ where	$-\det(A) = 1$ or $\det(A) = -1$, and all eigenvalues of A] are s.t. $ \lambda = 1$		- For <u>n = 2</u>], det(A) = A ₁₁ A ₂₂ - A ₁₂ A ₂₁	- For $\underline{j=1 \rightarrow \mu}$ perform $C_{\underline{j}}$ on \underline{A} , perform $C_{\mu-j+1}^{-1}$ on	solution to least square problem:	* A ₂ = \sigma_1 (link to [[tutorial 1#Matrix
• row-blocks => AB = [A ₁ ; A ₂ ;] B = [A ₁ B; A ₂ B;]	$\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T$	• $\underline{A} \in \mathbb{R}^{m \times n}$ is semi-orthogonal iff $\underline{A}^T \underline{A} = I$ or $\underline{A}\underline{A}^T = I$	Trick for proofs: "picking a vector" Often times you might want to pick a vector to prove a	- det(I _n) = 1 • Multi-linearity in columns/rows: if	RHS (i.e. In)	$\ Ax - b\ _2$ is minimized $\iff Ax = b_i \iff A^T Ax = A^T b$	norms matrix norms]]) • Let r = rk(A) then number of strictly positive singular
Consider $A = [A_1 \dots A_p] \in \mathbb{R}^{m \times k}$, $B = [B_1; \dots; B_p] \in \mathbb{R}^{k \times n}$	* Notice:	 If n>m then all m rows are orthonormal vectors If m>n then all n columns are orthonormal 	bound: say the index M is special (e.g. maybe	$A = [a_1 a_j a_n] = [a_1 \lambda x_i + \mu y_i a_n]$ then	- You should get [I _m A I _n] ↔ [R ⁻¹ A' C ⁻¹]	Linear Regression	values is r
=> outer-product sum equivalence:	$Q_j c_j = \sum_{i=1}^{J} (q_i \cdot a_{j+1}) q_i = \sum_{i=1}^{J} \text{proj}_{q_i} (a_{j+1}), \text{ so}$	vectors	$\ A_{M*}\ _1 = \max_i \ A_{j*}\ _1$ - Then you could pick a vector	$\frac{\det(A) = \lambda \det([a_1 \dots x_i \dots a_n]) + \mu \det([a_1 \dots y_i \dots a_n])}{-\text{And the exact same linearity property for } rows}$	n]) with A=R ⁻¹ A'C ⁻¹ You can mix-and-match the forward/backward	• Let $y = f(t) = \sum_{i=1}^{n} s_{j} f_{j}(t)$ be a mathematical model,	- i.e. $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and $\sigma_{r+1} = \cdots = \sigma_p = 0$
• If partition-sizes match => $AB = \sum_{i=1}^{r} A_i B_i$	i=1 i=1 rewrite as	 <u>U⊥V⊂Rⁿ ⇔ u·v=0</u> for all <u>u∈U, v∈V</u>, i.e. they are orthogonal subspaces 	x_{Mj} based on a function of M : e.g. $(x_{M})_{j} = sgn(A_{Mj})$ can help prove $x_{M} \cdot A_{M*} = A_{M*} _{1}$	A = $[a_1;; a_n]$	modes	<i>j</i> =1	$-A = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$
• e.g. for $A = \begin{bmatrix} \mathbf{a}_1 \mid \mid \mathbf{a}_n \end{bmatrix} \mid B = \begin{bmatrix} \mathbf{b}_1 \mid \mid \mathbf{b}_n \end{bmatrix} \mid \Rightarrow$	$\lim_{n \to \infty} \int_{-\infty}^{\infty} (g_{1}(x_{1}, x_{2}) g_{2}(x_{2}, x_{3}) g_{3}(x_{2}, x_{3}) = \int_{-\infty}^{\infty} \operatorname{proj}_{x_{3}}(g_{2}(x_{3}, x_{3}) g_{3}(x_{3}, x_{3}) g_{3}(x_{3}, x_{3}) = \int_{-\infty}^{\infty} \operatorname{proj}_{x_{3}}(g_{3}(x_{3}, x_{3}) g_{3}(x_{3}, x_{3}) g_{3}(x_{3}, x_{3}) = \int_{-\infty}^{\infty} \operatorname{proj}_{x_{3}}(g_{3}(x_{3}, x_{3}) g_{3}(x_{3}, x_{3}) g_{3}(x_{3}, x_{3}) g_{3}(x_{3}, x_{3}) = \int_{-\infty}^{\infty} \operatorname{proj}_{x_{3}}(g_{3}(x_{3}, x_{3}) g_{3}(x_{3}, x_{3}) g_{3}(x_{3}, x_{3}) g_{3}(x_{3}, x_{3}) g_{3}(x_{3}, x_{3}) = \int_{-\infty}^{\infty} \operatorname{proj}_{x_{3}}(g_{3}(x_{3}, x_{3}) g_{3}(x_{3}, x_{3$	0.44		- Immediately leads to: $ A = A^T $, $ \lambda A = \lambda^n A $, and	 i.e. inverse operations in inverse order for one, and operations in normal order for the other 	where f_j are basis functions and s_j are parameters • Let (t_i, y_i) $1 \le i \le m, m \gg n$ be a set of observations,	i=1 • SVD is similar to [[tutorial
$AB = \sum_{i} \frac{\mathbf{a}_{i} \mathbf{b}_{i}}{\mathbf{a}_{i}}$	$u_{j+1} = a_{j+1} - \sum_{i=1}^{n} (q_i \cdot a_{j+1}) q_i = a_{j+1} - \sum_{i=1}^{n} proj_{q_i} (a_{j+1})$	$ U^{\perp} = \{x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \perp y\} = \{x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \\ - \mathbb{R}^{n} = U \oplus U^{\perp} \text{ and } (U^{\perp})^{\perp} = U \text{ (because finite)}$	$\ \mathbf{e}\ _{\mathcal{B}}(x_{M})_{j} = \begin{cases} 1 & j = M, \\ 0 & j \neq M \end{cases}$ can help prove other properties	$ AB = BA = A B (for any B \in \mathbb{R}^{n \times n})$ • Alternating: if any two columns of A are equal (or	 e.g. you can do [I_m A I_n] → [R⁻¹ A' C] to get 	and $\mathbf{t}, \mathbf{y} \in \mathbb{R}^{m}$ are vectors representing those	1#Eigen-values/vectors[spectral decomposition]],
What is a projection	• Let $a_1,, a_n \in \mathbb{R}^m \mid (\underline{m \ge n})$ be linearly independent, i.e. basis of \underline{n} -dim subspace $U_n = \text{span}\{a_1,, a_n\}$	dimensional)	Properties of matrices	any two rows of \underline{A} are equal), then $ A = 0$ (its	$AC = R^{-1}A'$ \Rightarrow useful for LU factorization	observations $-f_{j}(\mathbf{t})=[f_{j}(\mathbf{t}_{1}),,f_{j}(\mathbf{t}_{m})]^{T}$ is a vector transformed	except it always exists $= \text{If } \underline{n} \leq \underline{m} \text{ [then work with } \underline{A}^T \underline{A} \in \mathbb{R}^{n \times n} \text{]}$
• A projection $\pi: V \to V$ is a endomorphism such that	 We apply Gram-Schmidt to build ONB 	 U⊥V ⇔ U[⊥] = V and vice-versa (because finite dimensional) 	 Consider A∈ R^{m×n} 	singular) - Immediately from this (and multi-linearity) => if	Eigen-values/vectors	$\frac{-j_j(t)=[j_j(t_1),,j_j(t_m)]}{\text{under } f_i$ is a vector transformed	* Obtain eigenvalues $\sigma_1^2 \ge \cdots \ge \sigma_n^2 \ge 0$ of $A^T A$
<u>π-π=π</u> , i.e. it leaves its image unchanged (its	$(\mathbf{q}_1, \dots, \mathbf{q}_n) \in \mathbb{R}^m$ for $U_n \subset \mathbb{R}^m$	$-Y \subseteq X \Longrightarrow X^{\perp} \subseteq Y^{\perp} \text{and } X \cap X^{\perp} = \{0\} $	• If Ax = x for all x then A = I • A is symmetric iff A = A	columns (or rows) are linearly-dependent (some	 Consider A∈R^{n×n} I non-zero x∈Cⁿ is an 	$-A = [f_1(t)] \dots f_n(t) \in \mathbb{R}^{m \times n}$ is a matrix of columns	* Obtain orthonormal eigenvectors $\mathbf{v}_1,, \mathbf{v}_n \in \mathbb{R}^n \mid \text{of } \underline{A}^T \underline{A}$ (apply normalization
idempotent) • A square matrix P such that $P^2 = P$ is called a	$-\underbrace{j=1}_{u_1=a_1} \Rightarrow \underbrace{\frac{u_1=a_1}{u_2=a_2-(q_1\cdot a_2)q_1}}_{u_2=a_2-(q_1\cdot a_2)q_1} \text{ and } \underbrace{\frac{q_2=\hat{u}_2}{u_2=\hat{u}_2}}_{and so}$	- Any x ∈ R ⁿ can be uniquely decomposed into	 A) is Hermitian, iff A=A[†], i.e. its equal to its 	are linear combinations of others) then $ A = 0$ - Stated in other terms \Rightarrow rk(A) < $n \iff A = 0$	eigenvector with eigenvalue $\lambda \in C$ for A j if $Ax = \lambda x$ - If $Ax = \lambda x$ then $A(kx) = \lambda(kx)$ for $k \neq 0$ j.i.e. kx is also	$-z=[s_1,,s_n]^T$ is vector of parameters	e.g. Gram-Schmidt!!!! to eigenspaces E_{G_i}
projection matrix	on - Linear independence guarantees that $\mathbf{a}_{j+1} \notin U_j$	$\underline{\mathbf{x}} = \mathbf{x}_i + \mathbf{x}_k$, where $\underline{\mathbf{x}}_i \in U$ and $\underline{\mathbf{x}}_k \in U^{\perp}$ • For matrix $\underline{A} \in \mathbb{R}^{m \times n}$ and for row-space R(A),	conjugate-transpose - AA ^T and A ^T are symmetric (and positive	$RREF(A) \neq I_n \iff A = 0$ (reduced	an eigenvector	• Then we get equation Az = y => minimizing Az - y 2 is the solution to Linear Regression	* $V = [\mathbf{v}_1 \mid \dots \mid \mathbf{v}_n] \in \mathbb{R}^{n \times n}$ is [[tutorial]
 It is called an orthogonal projection matrix if p² = p = p[†] (conjugate-transpose) 	- For exams: more efficient to compute as	column-space C(A) and null space ker(A)	semi-definite)	row -echelon-form) \iff $C(A) \neq \mathbb{R}^{n} \iff A = 0$ (column-space)	 A has at most n distinct eigenvalues The set of all eigenvectors associated with 	- So applying LSM to Az = y is precisely what Linear	1#Orthogonality concepts orthogonal]] so $v^T = v^{-1}$
 Eigenvalues of a projection matrix must be 0 or 1 	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$	- $R(A)^{\perp} = ker(A)$ and $C(A)^{\perp} = ker(A^{\top})$ - Any $b \in \mathbb{R}^{m}$ can be uniquely decomposed into	 For real matrices, Hermitian/symmetric are equivalent conditions 	For more equivalence to the above, see invertible	eigenvalue $\underline{\lambda}$ is called eigenspace $E_{\underline{\lambda}}$ [of \underline{A}]	Regression is - We can use normal equations for this =>	$\star r = rk(A) = no.$ of strictly +ve σ_i
 Because π: V → V Jis a linear map, its image space U = im(π) and null space W = ker(π) are subspaces of 	1) Gather $Q_j = [\mathbf{q}_1 \mid \dots \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ all-at-once	* $\mathbf{b} = \mathbf{b}_i + \mathbf{b}_k$, where $\mathbf{b}_i \in C(A)$ and $\mathbf{b}_k \in \ker(A^T)$	 Every eigenvalue λ_i of Hermitian matrices is real 	matrix theorem • Interaction with EROs/ECOs:	$-E_{\lambda} = \ker(A - \lambda I)$ - The geometric multiplicity of λ is	$ Az-y _2$ is minimized $\iff A^TAz=A^Ty$	* Let $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$ then $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^m$ are
<u>V</u>] – πJis the identity operator on <u>U</u>]	2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$	$\star b = b_i + b_k$, where $b_i \in R(A)$ and $b_k \in ker(A)$	* and geometric multiplicity of λ _i = geometric multiplic	Swapping rows/columns flips the sign,	$dim(E_{\lambda}) = dim(ker(A - \lambda I))$	Solution to normal equations unique iff A jis full-rank, i.e. it has linearly-independent columns	orthonormal (therefore linearly independent)
 The linear map π* = I_V -π is also a projection with 	all-at-once 3) Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1}	Back-to-basics: revise a-levels	* and eigenvectors x ₁ ,x ₂ associated to distinct	- Scaling a row/column by $\underline{\lambda} \neq 0$ will scale the	·IPhE-speathum $Sp(A) = \{\lambda_1,, \lambda_n\}$ of \underline{A} jis the set of all eigenvalues of \underline{A}	Back to basics: multinomial expansion	The [[tutorial 1#Orthogonality concepts orthogonal compliment]] of
$W = \operatorname{im}(\pi^*) = \ker(\pi) \operatorname{and} U = \ker(\pi^*) = \operatorname{im}(\pi)$ i.e. they swapped	all-at-once	trigenometry	eigenvalues λ ₁ , λ ₂ are orthogonal , i.e. x ₁ ± x ₂ • A lis triangular iff all entries above (lower-triangular)	determinant by \(\lambda\) (by multi-linearity)	• The characteristic polynomial of Alis	+ manipulations on ∑ / ∏	$span\{\mathbf{u}_1, \dots, \mathbf{u}_r\} \Rightarrow$
* π jis a projection along W onto U	Properties of dot product & (induced)	• $\frac{a^2 + b^2 = c^2}{c}$ (Pythagorean theorem) • $c = \sqrt{a^2 + b^2 - 2ab \cdot \cos \gamma}$ (law of cosines)	or below (<i>upper-triangular</i>) the main diagonal are	* Remember to scale by λ^{-1} to maintain equality,	$P(\lambda) = A - \lambda I = \sum_{i=0}^{n} a_i \lambda^{i}$	·	$span\{\mathbf{u}_1,,\mathbf{u}_r\}^{\perp} = span\{\mathbf{u}_{r+1},,\mathbf{u}_m\}$ $\begin{vmatrix} k_1 & k_2 & \dots & k_m \\ & & \ddots & \\ & & & \ddots & \\ & & & & \end{vmatrix}$ span{\(\mu_{r+1},,\mu_m\)} \]
* π* is a projection along U onto W * π* is the identity operator on W	norm	$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ (law of sines)	zero - Triangular matrices => A = \int a_{jj} \ i.e. the	i.e. $det(A) = \lambda^{-1} det([a_1 \lambda a_i a_n])$		$(x_1 + x_2 + \dots + x_m)^n = \sum_{\substack{k_1 + k_2 + \dots + k_m = n \\ k_1, k_2, \dots, k_m}} \binom{n}{k_1, k_2, \dots, k_m} x_m$	to u ₁ ,, u _r
 V]can be decomposed as V = U ⊕W] meaning every 	• $x^T y = y^T x = x \cdot y = \sum_i x_i y_i$	• TODO: angles, triangles, identities, etc.	<u>'i'</u>	Addition of rows/columns does not change determinant	$-a_0 = A \cdot a_{n-1} = (-1)^{n-1} \operatorname{tr}(A) \cdot a_n = (-1)^n $ $- \lambda \in C \text{ is eigenvalue of } A \text{ iff } \lambda \text{ is a root of } P(\lambda) $	k ₁ ,k ₂ ,,k _m ≥0	Then solve for unit-vector \mathbf{u}_{r+2} s.t. it is orthogonal to $\mathbf{u}_1,, \mathbf{u}_{r+1}$
vector $\underline{x} \in V$ can be uniquely written as $\underline{x} = \underline{u} + \underline{w}$ $*\underline{u} \in U$ and $\underline{u} = \pi(\underline{x})$	• x·y = a b cos x̂y	Vector norms (beyond euclidean)	product of diagonal elements • AJis diagonal iff A _{ij} = 0, i × j i.e. if all off-diagonal	• Link to invertable matrices => $ A^{-1} = A ^{-1}$ which	 The algebraic multiplicity of λ is the number of 	• where $\binom{n}{k_1, k_2, \dots, k_m} = \frac{n!}{k_1! k_2! \cdots k_m!}$	And so on [[#Tricks Computing
* $\underline{w \in W}$ Jand $\underline{w = x - \pi(x) = (I_V - \pi)(x) = \pi^*(x)}$	• $x \cdot y = y \cdot x$ • $x \cdot (y + z) = x \cdot y + x \cdot z$	• vector norms are such that: $ x = 0 \iff x = 0$	entries are zero	means A is invertible $\iff A \neq 0$ (because division by zero undefined), i.e. singular matrices are not	times it is repeated as root of $P(\lambda)$	IODO: figure out wtf going on nere ! Pasted image	orthonormal vector-set extensions see this for better methods]]
• An orthogonal projection further satisfies <u>U⊞W</u> i.e. the image and kernel of <u>m</u> jare orthogonal	• ax·y = a(x·y)	$ \lambda x = \lambda x $, $ x+y \le x + y $	 Sometimes refers to rectangular matrices, but most often square matrices 	invertible		of £0250414122252.png[500]] in 2nd tutorial	$U = [\mathbf{u}_1 \mid \mid \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ is [[tutorial]
subspaces	• $x \cdot x = x ^2 = 0 \iff x = 0$ • for $x \neq 0$, we have $x \cdot y = x \cdot z \implies x \cdot (y - z) = 0$	$\cdot \underline{\ell_p}$ norms: $\ x\ _p = \left(\sum_{i=1}^n x_i ^p\right)^{1/p}$	– Written as	• For block-matrices: $-\det \begin{pmatrix} A & B \\ -\det \begin{pmatrix} A & B \\ -\det \begin{pmatrix} A & B \\ -\det \end{pmatrix} = \det(A)\det(B) = \det \begin{pmatrix} A & 0 \\ -\det \begin{pmatrix} A & 0 \\ -\det \end{pmatrix}$	• Let $\lambda_1,, \lambda_n \in \mathbb{C}$ be (potentially non-distinct) eigenvalues of \underline{A} \mathbb{F} with $\underline{x}_1,, \underline{x}_n \in \mathbb{C}^n$ their	Express recursive sequence as non- recursive using eigenvalues	- 1#Orthogonality concepts orthogonal]] so $U^{T} = U^{-1}$
 infact they are eachother's orthogonal compliments, i.e. U[⊥] = W, W[⊥] = U (because 	• $ x \cdot y \le x y $ (Cauchy-Schwartz inequality)		$\operatorname{diag}_{m \times n}(\mathbf{a}) = \operatorname{diag}_{m \times n}(a_1, \dots, a_p), p = \min(m, n)$	$- \det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B) = \det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$	eigenvectors	• For x_n recursive (e.g. $x_{n+1} = x_n + x_{n-1} \mid x_0 = 0$)	* $S = \text{diag}_{m \times n}(\sigma_1,, \sigma_n)$ AND DONE!!!
finite-dimensional vectorspaces)	• u+v ² + u-v ² = 2 u ² + 2 v ² (parallelogram law)	$-\underline{p=1}$; $\ x\ _1 = \sum_{i=1}^n x_i $	where $\mathbf{a} = [a_1,, a_p]^T \in \mathbb{R}^p$ diagonal entries of \underline{A}] - For $x \in \mathbb{R}^n$	$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1}B) = \det(D) \det(A)$	$-\operatorname{tr}(A) = \sum_{i} \lambda_{i}$ and $\operatorname{det}(A) = \prod_{i} \lambda_{ij}$	x ₁ = 1)	- If m < njthen let B = AT
- so we have $\pi(x) \cdot y = \pi(x) \cdot \pi(y) = x \cdot \pi(y)$ - or equivalently, $\pi(x) \cdot (y - \pi(y)) = (x - \pi(x)) \cdot \pi(y) = 0$	• <u> u+v ≤ u + v </u> (triangle inequality)		- For $x \in \mathbb{R}^n$] $Ax = \text{diag}_{m \times n}(a_1,, a_p)[x_1 x_n]^T = [a_1 x_1 a_p x_p]$	0 0] (C D) Get(A) det(D - CA B) = det(D) det(A-	 A lis diagonalisable iff there exist a basis of Rⁿ 	- Find Alsuch that $[x_{n+1}, x_n,]^T = A[x_n, x_{n-1},]^T$	* apply above method to $\underline{B} = \underline{B} = A^T = USV^T$ * $\underline{A} = B^T = VS^TU^T$
	• $u \perp v \iff u+v ^2 = u ^2 + v ^2$ (pythagorean theorem)	$-\underline{p} = 2$; $ x _2 = \sqrt{\sum_{i=1}^{n} x_i^2} = \sqrt{x \cdot x}$	(if p = m those tail-zeros don't exist)	0 0] if A[or_D] are invertible, respectively • Sylvester's determinant theorem:	consisting of $x_1,, x_n$ - A Jis diagonalisable iff $r_i = g_i$ where	$(e.g. [x_{n+1}, x_n]^T = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} [x_n, x_{n-1}]^T$	Tricks: Computing orthonormal
Projection properties	• $\ c\ ^2 = \ a\ ^2 + \ b\ ^2 - 2\ a\ \ b\ \cos ba$ (law of	Vi=1 - n = ∞r x = m x = max x	- Consider diag _{m×n} (b) then diag _{m×n} (a)+diag _{m×n} (b)=diag _{m×n} (a+b)	$\frac{\det(I_m + AB) = \det(I_n + BA)}{\bullet \text{ Matrix determinant lemma:}}$	r; = geometric multiplicity of λ; and	- Find initial vector $I = [, x_1, x_0]^T$ such that	vector-set extensions
 By Cauchy–Schwarz inequality we have π(x) ≤ x The orthogonal projection onto the line containing 	cosines)	$-\underline{p} = \infty \mathbf{f} \ \mathbf{x}\ _{\infty} = \lim_{p \to \infty} \ \mathbf{x}\ _{p} = \max_{1 \le i \le n} x_{i} $	 Consider diag_{n×b}(c₁,, c_n), q = min(n, k), then 	$= dot(A + m^T) = (1 + m^T A - 1 m) dot(A)$	g_i = geometric multiplicity of λ_i - Eigenvalues of \underline{A}^R are $\lambda_1,, \lambda_n$	$[x_{n+1}, x_n, \dots]^T = A^n I$	• You have orthonormal vectors $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^m$
vector u is proj., = $\hat{u}\hat{u}^T$ which can also be written as	Properties of linear independence • Let $\mathbf{v}_1,, \mathbf{v}_k \in \mathbb{R}^m$ be linearly independent	 Any two norms in Rⁿ are equivalent, meaning there exist r > 0, s > 0 such that: 	$\operatorname{diag}_{m \times n}(a_1,, a_p) \operatorname{diag}_{m \times k}(c_1,, c_q) = \operatorname{diag}_{m \times k}(a_1,, a_p)$	$\frac{c_{1,\dots}}{\det\left(\mathbf{A} \cdot \mathbf{U}\mathbf{V}^{T}\right) = \det\left(\mathbf{I}_{m} \cdot \mathbf{V}^{T}\mathbf{A}^{-1}\mathbf{U}\right) \det(\mathbf{A})}$	 Let P = [x₁ x_n], then 	*(e.g. $[x_{n+1}, x_n]^T = A^n [1, 0]^T$)	need to extend to orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_m \in \mathbb{R}^m$
$ proj_{\mathbf{u}}(\mathbf{v}) = \frac{\vec{u} \cdot \vec{v}}{ \vec{u} \cdot \vec{u} } $ $ - \hat{u} = \frac{\vec{u}}{ \vec{u} } \mathbf{v} \cos \hat{u} \mathbf{a} $ unit vector on the line containing $ \hat{\underline{u}} $	• Let $v_1,, v_k \in \mathbb{R}^m$ be linearly independent • $v_i \neq 0$ (proof by contradiction)	$\forall x \in \mathbb{R}^n, r \ x\ _a \le \ x\ _b \le s \ x\ _a$	* Where $r = \min(p, q) = \min(m, n, k)$ and $s \in \mathbb{R}^{S}$, $s = \min(m, k)$	$-\frac{1}{\det\left(\mathbf{A}+\mathbf{U}\mathbf{W}\mathbf{V}^{T}\right)=\det\left(\mathbf{W}^{-1}+\mathbf{V}^{T}\mathbf{A}^{-1}\mathbf{U}\right)\det(\mathbf{W})\det(\mathbf{W})\det(\mathbf{W})}$	$AD = [\lambda, v, l \mid l\lambda, v \mid l = [v, l \mid lv \mid ldiad(\lambda, l\lambda, l) = DD]$	$\underline{Au = \lambda u \implies A^n u = \lambda^n u}$ to write \underline{I} Jas linear	Special case => two 3D vectors => use cross-product
$-\hat{u} = \frac{u}{\ u\ }$ so $\hat{\underline{u}}$ a unit vector on the line containing	Transformation matrix of linear map	- Equivalence of ℓ_1, ℓ_2 and ℓ_{∞} => $\ x\ _{\infty} \le \ x\ _2 \le \ x\ _1$	- Inverse of square-diagonals =>		=> if P ⁻¹ exists then = A = PDP ⁻¹ , i.e. A Jis diagonalisable	combination of eigenvectors – Substitute that linear combination to get x_n as	$\Rightarrow \underline{a} \times \underline{b} \perp \underline{a}, \underline{b}$ • Extension via standard basis $\underline{I}_m = [\underline{e}_1 \mid \mid \underline{e}_m]$ using
	w.r.t. bases	x 2 ≤ √n x ∞	diag $(a_1,,a_n)^{-1}$ = diag $(a_1^{-1},,a_n^{-1})$, i.e. diagonals cannot be zero (division by zero	Tricks for computing determinant If block-triangular matrix then apply	- P = I _{EB} is change-in-basis matrix for basis	function of n alone	[[tutorial 1#Gram-Schmidt method to generate orthonormal basis from any linearly independent
$\operatorname{proj}_{u}(v) = \hat{u}\hat{u}^{T}v = \frac{1}{\ u\ \ u\ } uu^{T}v = \frac{1}{\ u\ ^{2}} u(u \cdot v) = \frac{u \cdot v}{\ u\ ^{2}}$	For linear map $f: \mathbb{R}^n \to \mathbb{R}^m$, ordered bases $(b_1,, b_n) \in \mathbb{R}^m$ and $(c_1,, c_m) \in \mathbb{R}^m$		undefined) - Determinant of square-diagonals =>	$\det\begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B)$	$\overline{B} = \langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle$ of eigenvectors $-\overline{If} A = F_{FF}$ is transformation-matrix of linear map	Positive (semi-)definite symmetric	vectors (tweaked) GS]]:
A special case of π(x)·(y-π(y))=0 is	 A = F_{CB} ∈ R^{m×n} is the transformation-matrix of 	$\ x\ _1 \le \sqrt{n} \ x\ _2$ • Induce metric $d(x, y) = \ y - x\ _{k}$ has additional	diag $(a_1,,a_n)$ = $\prod a_i$ (since they are	If close to triangular matrix apply EROs/ECOs to get it	f then FEE = IEB FBB IBE	matrices	 Choose candidate vector: just work through e₁,,e_m sequentially starting from e₁ =>
$u \cdot (v - \text{proj}_{u} v) = 0$, since $\text{proj}_{u}(u) = u$	f w.r.t to bases B and C	properties:	technically triangular matrices)	there, then its just product of diagonals	• Spectral theorem : if A is Hermitian then P ⁻¹ exists,	• Consider symmetric $\underline{A} \in \mathbb{R}^{n \times n}$ i.e. $\underline{A} = A^T$ • A is positive-definite iff $x^T A x > 0$ for all $x \neq 0$	denote the current candidate e _k
 If <u>U⊆Rⁿ</u> is a <u>k</u>-dimensional subspace with orthonormal basis (ONB) (u₁,,u_k)∈R^m 	$-f(\mathbf{b}_j) = \sum_{i=1}^m A_{ij} \mathbf{c}_i$ \rightarrow each \mathbf{b}_j basis gets mapped to	- Translation invariance: $\underline{d(x+w, y+w)} = \underline{d(x, y)}$ - Scaling: $\underline{d(\lambda x, \lambda y)} = \lambda \underline{d(x, y)} $	 For square Al, the trace of Alis the sum if its 	• If Cholesky/LU/QR is possible and cheap then do it, then apply AB = A B	– If $\mathbf{x}_i, \mathbf{x}_j$ associated to different eigenvalues then	 A) is positive-definite iff all its eigenvalues are 	 Orthogonalize: Starting from j=r going to j=m with each iteration => with current orthonormal
 Let U=[u₁ u_k]∈ R^{m×k} be the matrix of 	a linear combination of $\sum a_i a_i$ bases	Matrix norms	diagonals, i.e. <u>tr(A)</u> • The (column) rank of <u>A</u> Jis number of linearly	If all else fails, try to find row/column with MOST	x _i ±x _j	strictly positive - AJis positive-definite => all its diagonals are	vectors u ₁ ,,u _j
columns $u_1,, u_k$ Then orthogonal projection onto the subspace U	<u>i</u>	 Matrix norms are such that: A = 0 ← A = 0 , 	independent columns, i.e. rk(A)	zeros – Perform minimal EROs/ECOs to get that	 If associated to same eigenvalue \(\lambda\) then eigenspace E_{\(\lambda\)} has spanning-set \(\lambda\(\lambda_i\),\) 	strictly positive	* Notice (u ₁ ,,u _j) is
is $\pi_U = UU^T$		$ \lambda A = \lambda A + A+B \le A + B $ - Matrices $ m \times n $ are a vector space so matrix	 I.e. its the number of pivots in row-echelon-form I.e. its the dimension of the column-space 	row/column to be all-but-one zeros	* X1 Xn Jare linearly independent => apply	- AJis positive-definite => max(A _{ii} , A _{jj}) > A _{ij} i.e. strictly larger coefficient on the diagonals	* Compute
- Can be rewritten as $\pi_U(v) = \sum_i (\mathbf{u}_i \cdot v) \mathbf{u}_i$	$(\mathbf{F}_{CB})^{-1} = \mathbf{F}^{-1}_{BC}$ (where \mathbf{F}^{-1}_{BC} is the	 Matrices Firm are a vector space so matrix norms are vector norms, all results apply 	rk(A) = dim(C(A))	* Don't forget to keep track of sign-flipping & scaling-factors	Gram-Schmidt \mathbf{q}_{λ_i} , $\leftarrow \mathbf{x}_{\lambda_i}$,	– AJ is positive-definite => all upper-left	$\mathbf{w}_{j+1} = \mathbf{e}_k - \sum_{i=1}^{J} (\mathbf{e}_k \cdot \mathbf{u}_i) \mathbf{u}_i = \mathbf{e}_k - \sum_{i=1}^{J} (\mathbf{u}_i)_k \mathbf{u}_i$
- If $\langle \mathbf{u}_1, \dots, \mathbf{u}_k \rangle$ is not orthonormal , then	transformation-matrix of f^{-1} • The transformation matrix of the identity map is	 Sub-multiplicative matrix norm (assumed by 	* i.e. its the dimension of the image-space $rk(A) = dim(im(f_A)) of linear map f_A(x) = Ax $	 Do Laplace expansion along that row/column => 	* Then $\{q_{\lambda_i},\}$ is orthonormal basis (ONB) of $\underline{E_{\lambda_i}}$	submatrices are also positive-definite - Sylvester's criterion: A Jis positive-definite iff all	*
"normalizing factor" (U ^T U) ⁻¹ is added =>	called change-in-basis matrix	default) is also such that $ AB \le A B $. • Common matrix norms, for some $\underline{A \in \mathbb{R}^{m \times n}}$.	- The (row) rank of Alis number of linearly	notice all-but-one minor matrix determinants go to zero	$-Q = \langle \mathbf{q}_1, \dots, \mathbf{q}_n \rangle \text{is an ONB of } \mathbb{R}^n \Rightarrow$	upper-left submatrices have strictly positive	* NOTE: $\mathbf{e}_k \cdot \mathbf{u}_i = (\mathbf{u}_i)_k$ i.e. k th component of \mathbf{u}_i
$\pi_U = \mathbf{U}(\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T$	- The identity matrix \underline{I}_{m} represents $id_{\mathbb{R}^{m}}$ w.r.t. the standard basis $\underline{E}_{m} = \overline{\langle e_{1},, e_{m} \rangle} = \overline{i.e.} I_{m} = \overline{I}_{EE}$	- A ₁ = max A _{*j} ₁	independent rows – The row/column ranks are always the same,	Representing EROs/ECOs as transfor-	$\frac{Q = [q_1 q_n]}{-q_1,, q_n \text{are still eigenvectors of } A = QDQ^T}$	determinant • AJ is positive semi-definite iff x ^T Ax ≥ 0 for all x _J	· Can rewrite as $\mathbf{w}_{j+1} = \mathbf{e}_k - U_j [(\mathbf{u}_1)_k,, (\mathbf{u}_j)_k]^T = \mathbf{e}_k - [\mathbf{u}_1]$
* For line subspaces U = span(u), we have	- If $B = (b_1,, b_m)$ is a basis of \mathbb{R}^m , then $I_{EB} = [b_1 b_m]$ is the transformation matrix	- ∥A∥ ₂ = σ ₁ (A) i.e. largest singular value of <u>A</u>]	hence $rk(A) = dim(C(A)) = dim(R(A)) = dim(C(A^T)) = rk(A^T)$	mation matrices	(spectral decomposition)	 AJ is positive semi-definite iff all its eigenvalues 	The above matrix form can be more
$(\mathbf{U}^T \mathbf{U})^{-1} = (u^T u)^{-1} = 1/(u \cdot u) = 1/ u $		(square-root of [tutorial 3#Singular Value			- A = QDQ ^T can be interpreted as scaling in	are non-negative	convenient to calculate with

* If $\mathbf{w}_{j+1} = 0$ then $\mathbf{e}_{k} \in \text{span}\{\mathbf{u}_{1},, \mathbf{u}_{j}\} \models \text{discard}$	• If <u>A = LL^T</u> you can use [[#Forward/backward	onto $C(A)$, $C(A)^{\perp} = \ker(A^{T})$ respectively	* [[tutorial 1#Column-wise & row-wise	• $\nabla f = [\partial_1 f,, \partial_n f]^T$ is gradient of $\underline{f} \Rightarrow (\nabla f)_i = \frac{\partial f}{\partial \mathbf{x}_i}$	• \tilde{f} is backwards stable if $\forall x \in X$] $\exists \tilde{x} \in X$] s.t.	$ x _i = x_i $ is vector and $\phi(n)$ is small function of	
w _{j+1} choose next candidate e _{k+1} try this	substitution forward/backward substitution]] to solve equations	- Notice: $QQ^T = I_m = Q_1 Q_1^T + Q_2 Q_2^T$	matrix/vector ops Outer-product sum equivalence]] =>	$-\nabla^T f = (\nabla f)^T$ is transpose of ∇f , i.e. $\nabla^T f$ is row	$\frac{\bar{f}(x) = f(\bar{x})}{\ x\ }$ and $\frac{\ \bar{x} - x\ }{\ x\ } = O(\epsilon_{mach})$	Summing a series is more stable if terms added in	pivoting only needs $O(m^2)$
step again – Normalize : w _{j+1} ≠ <mark>0</mark> so compute unit vector	$- For \underline{Ax = b} \Longrightarrow let y = L^T x$	 Generalizable to <u>A∈C^{m×n}</u> by changing transpose to conjugate-transpose 	i 1		- i.e. exactly the right answer to nearly the right	order of increasing magnitude	Systems of Equations: Iterative Tech-
$\mathbf{u}_{j+1} = \hat{\mathbf{w}}_{j+1}$	- Solve $Ly = b$ by forward substitution to find y - Solve $L^T x = y$ by backward substitution to find x	- Inner product $x^T y \Rightarrow x^{\dagger} y$	$Q_j Q_j^T = [\mathbf{q}_1 \mid \dots \mid \mathbf{q}_j] [\mathbf{q}_1^T; \dots; \mathbf{q}_j^T] = \sum_{i=1}^r \mathbf{q}_i \mathbf{q}_i^T$	vector	question, a subset of stability – ⊕, ⊖, ⊗, ⊗, i nner-product , back-substitution w/	• For FP matrices , let $ M _{ij} = M_{ij} $ i.e. matrix $ M $ of absolute values of M	niques • Let A, R, G ∈ $\mathbb{R}^{n \times n}$ where G^{-1} exists \Rightarrow splitting
- Repeat: keep repeating the above steps, now with		- Orthogonal matrix $U^{-1} = U^{T}$ => unitary matrix $U^{-1} = U^{\dagger}$	* For <u>i * k</u>], =>	of f] - It is rate-of-change in direction u , where $u \in \mathbb{R}^n$ is	triangular systems, are backwards stable	$- fl(\lambda \mathbf{A}) = \lambda \mathbf{A} + E, E _{ij} \leq \lambda \mathbf{A} _{ij} \in_{\text{mach}} $	A=G+R helps iteration
new orthonormal vectors $\mathbf{u}_1, \dots, \mathbf{u}_{j+1}$	• For <u>n = 3</u>]=> L = l ₂₁ l ₂₂ 0	* For orthogonal $U = [\mathbf{u}_1 \dots \mathbf{u}_k] \in \mathbb{R}^{m \times k} = >$	$\prod_{i=1}^{J} \left(\mathbf{I}_{m} - \mathbf{q}_{i} \mathbf{q}_{i}^{T} \right) = \mathbf{I}_{m} - \sum_{i=1}^{J} \mathbf{q}_{i} \mathbf{q}_{i}^{T} = \mathbf{I}_{m} - Q_{j} Q_{j}^{T}$	unit-vector	 If backwards stable f and f has condition number κ(x) then relative error 	$- fl(\mathbf{A} + \mathbf{B}) = (\mathbf{A} + \mathbf{B}) + E, E _{ij} \le \mathbf{A} + \mathbf{B} _{ij} \in_{mach}$	$-\underbrace{Ax = b}_{M = -G^{-1}R}; c = -G^{-1} \frac{b}{b}$
SVD Application: Principal Compo-	[l ₃₁ l ₃₂ l ₃₃]	proj _U = UU ^T projects onto C(U)		$- \underbrace{D_{\mathbf{u}} f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u} = \ \nabla f(\mathbf{x})\ \ \mathbf{u}\ \cos(\theta)\ }_{\mathbf{maximized} \text{ when } \cos \theta = 1$	$\frac{\ f(x) - f(x)\ }{\ f(x)\ } = O\left(\kappa(x) \varepsilon_{mach}\right)$	$-\frac{1}{f(AB) = AB + E, E _{ij} \le n\epsilon_{mach}(A B)_{ij} + O(\epsilon_{mach})}$	2) - Define f(x)=Mx+c and sequence
nent Analysis (PCA)	$LL^T = \begin{bmatrix} l_{11}^2 & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{21}^2 + l_{22}^2 & l_{21}l_{31}^* + l_{22}^* \end{bmatrix}$	For unitary $U = [\mathbf{u}_1 \dots \mathbf{u}_k] \in \mathbb{C}^{m \times k} = 0$	- Re-state: $\underline{\mathbf{u}_{j+1}} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = $	 i.e. when x, u are parallel ⇒ hence ∇f(x) is 	• Accuracy, stability, backwards stability are		$\mathbf{x}^{(R+1)} = f(\mathbf{x}^{(R)}) = M\mathbf{x}^{(R)} + \mathbf{c}$ with starting point $\mathbf{x}^{(0)}$
 Assume A_{uncentered} ∈ R^{m×n} represent m₁ samples of n₁-dimensional data (with m≥n) 	l ₁₁ l ₃₁ l ₂₁ l ₃₁ + l ₂₂ l ₃₂ l ₃₁ + l ₃₂ + l ₃		$\mathbf{u}_{j+1} = \left(\prod_{i=1}^{j} P_{\perp} \mathbf{q}_{i}\right) \mathbf{a}_{j+1} = \left(P_{\perp} \mathbf{q}_{j} \cdots P_{\perp} \mathbf{q}_{1}\right) \mathbf{a}_{j+1}$	direction of max. rate-of-change • $\mathbf{H}(f) = \nabla^2 f = \mathbf{J}(\nabla f)^T$ is the Hessian of f \Rightarrow	norm-independent for fin-dim X, Y	• Taylor series about $\underline{a \in \mathbb{R}}$ is $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + O\left((x-a)^{n+1}\right) \text{ as } \underline{x \to a}$	 Limit of (x_k) is fixed point of f => unique fixed point of f is solution to Ax = b
- Data centering: subtract mean of each column	Forward/backward substitution	Lines and hyperplanes in Euclidean	\1=1		Big-O meaning for numerical analysis		- If <u> - </u> is consistent norm and <u> M < 1</u> then ⟨x _k ⟩
from that column's elements – Let the resulting matrix be $A \in \mathbb{R}^{m \times n}$, who's	• Forward substitution: for lower-triangular [space $\mathbb{E}^n(=\mathbb{R}^n)$	- Projectors P _{⊥ q₁} ,,P _{⊥ qj} are iteratively applied	$\mathbf{H}(f)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$	 In complexity analysis f(n) = O(g(n)) as n→∞ 	- Need $\underline{a=0} = f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + O(x^{n+1})$ as	converges for any x(0) (because Cauchy-completeness)
columns have mean zero	L= 1 \ \	• Consider standard Euclidean space $\mathbb{E}^n(=\mathbb{R}^n)$	to aj+1 removing its components along q1 then	• f has local minimum at x_{loc} jif there's radius $r > 0$] s.t. $\forall x \in B[r; x_{loc}]$ we have $f(x_{loc}) \le f(x)$	• But in numerical analysis $f(\varepsilon) = O(g(\varepsilon))$ as $\varepsilon \to 0$, i.e. $\limsup_{\varepsilon \to 0} \ f(\varepsilon)\ / \ g(\varepsilon)\ < \infty$	x → 0]	* For splitting, we want ∥M∥ < 1 and easy to
- PCA is done on centered data-matrices like At - SVD exists i.e. A = USV and r = rk(A)	ℓ _{n,1} ℓ _{n,n}	 with standard basis (e₁,,e_n) ∈ Rⁿ with standard origin 0∈ Rⁿ 	along q ₂ , and so on	- f has global minimum x_{glob} if $\forall x \in \mathbb{R}^n$ we have	– i.e. ∃C, δ > 0 s.t. ∀ε , we have	-	compute M; c
- Let $A = [\mathbf{r}_1;; \mathbf{r}_m]$ be rows $\mathbf{r}_1,, \mathbf{r}_m \in \mathbb{R}^n = $	- For <u>Lx = b</u>], just solve the first row b ₁	 A line L = Rn+c is characterized by direction n∈ Rⁿ 	• Let $\mathbf{u}_{k}^{(j)} = \left(\prod_{i=1}^{J} P_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{k}$, i.e. $\underline{\mathbf{a}}_{k}$ without its	$f(\mathbf{x}_{glob}) \le f(\mathbf{x})$	$\begin{array}{c} 0 < \ \epsilon\ < \delta \Longrightarrow \ f(\epsilon)\ \le C \ g(\epsilon)\ \\ -O(g) \text{ is set of functions} \end{array}$	e.g. $(1+\varepsilon)^p = \sum_{k=0}^n \binom{p}{k} \varepsilon^k + O\left(\varepsilon^{n+1}\right) = \sum_{k=0}^n \frac{p!}{k!(p-k)!} \varepsilon^k$	$\Phi(\varepsilon^{n+1})$ $\ \mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}\ $
each row corresponds to a sample - Let $A = [c_1 c_n]$ be columns $c_1,, c_n \in \mathbb{R}^m$ =>	$\ell_{1,1} x_1 = b_1 \implies x_1 = \frac{b_1}{\ell_{1,1}}$ and substitute down	(<u>n ≠ 0</u>) and offset from origin <u>c ∈ L</u>] – It is customary that:	components along q ₁ ,,q _i	 A local minimum satisfies optimality conditions: ★ ∇f(x) = 0 e.g. for n = 1 its f'(x) = 0 	$\{f: \limsup_{\epsilon \to 0} \ f(\epsilon)\ / \ g(\epsilon)\ < \infty\}$	as € → 0	b se
each column corresponds to one dimension of the	- Then solve the second row $b_2 - \ell_{2,1} \times_1$	* njis a unit vector, i.e. n = n̂ = 1	- Notice: $\mathbf{u}_j = \mathbf{u}_i^{(j-1)}$ thus $\mathbf{q}_j = \hat{\mathbf{u}}_j = \mathbf{u}_i^{(j-1)} / r_{jj}$	* $\nabla^2 f(\mathbf{x})$ is positive-definite, e.g. for $\underline{n} = 2$ jits	 Smallness partial order O(g₁) ☐ O(g₂) defined by 	Elementary Matrices	Assume Ass diagonal is non-zero (w.l.o.g. permute/change basis if isn't) then A=D+L+U
data • Let $X_1,, X_n$ be random variables where each X_i	${}^{\ell_{2,1}x_1 + \ell_{2,2}x_2 = D_2} \Longrightarrow x_2 = {\ell_{2,2}}$ and	* c∈L is closest point to origin, i.e. c⊥n - If c*\n => L not vector-subspace of R ⁿ		$\frac{f''(x) > 0}{\bullet \text{Interpret } F : \mathbb{R}^n \to \mathbb{R}^m \text{as } m \text{functions } F_i : \mathbb{R}^n \to \mathbb{R}$	set-inclusion $O(g_1) \subseteq O(g_2)$ – i.e. as $\underline{\epsilon} \to 0$, $g_1(\underline{\epsilon})$ goes to zero faster than $g_2(\underline{\epsilon})$	 Identity I_n = [e₁ e_n] = [e₁;; e_n] has elementary vectors e₁,, e_n for rows/columns 	 Where D is diagonal of A , L, U are strict lower/upper triangular parts of A
corresponds to column c _i	substitute downand so on until all x _i jare solved	* i.e. 0 ∉ L i.e. L doesn't go through the origin	where $r_{jj} = \left\ \begin{array}{c} \mathbf{u}_{j}^{(j-1)} \\ \mathbf{u}_{j}^{(j-1)} \end{array} \right\ $ – Iterative step:	(one per output-component)	- Roughly same hierarchy as complexity analysis	 Row/column switching: permutation matrix P_{ij} 	• Jacobi Method: G = D; R = L+U =>
 i.e. each X_i corresponds to i th component of data i.e. random vector X = [X₁,, X_n]^T models the 	Backward substitution: for upper-triangular	* \underline{L} is affine-subspace of $\underline{\mathbb{R}^n}$ - If $\underline{\mathbf{c}} = \lambda \underline{\mathbf{n}}$, i.e. $\underline{L} = \underline{\mathbb{R}} \underline{\mathbf{n}}$]=> \underline{L} is vector-subspace of $\underline{\mathbb{R}}^n$	$\mathbf{u}_{k}^{(j)} = \left(P_{\perp} \mathbf{q}_{j}\right) \mathbf{u}_{k}^{(j-1)} = \mathbf{u}_{k}^{(j-1)} - \left(\mathbf{q}_{j} \cdot \mathbf{u}_{k}^{(j-1)}\right) \mathbf{q}_{j}$	$-\underbrace{J(F) = \left[\nabla^T F_1;; \nabla^T F_m\right]}_{F_1} \text{ is } \textbf{\textit{Jacobian matrix} of } \underbrace{F_1}_{F_1}$	but flipped (some break pattern) * e.g, $O(\epsilon^3) < O(\epsilon^2) < O(\epsilon) < O(1)$	obtained by switching ei and ej in In (same for	$M = -D^{-1}(L+U); c = D^{-1}b$
data r ₁ ,,r _m	U = \begin{bmatrix} u_{1,1} & & u_{1,n} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	* i.e. <u>0∈L</u> i.e. <u>L</u> goes through the origin	- i.e. each iteration j of MGS computes P ₁ q _j (and	$\Rightarrow J(F)_{ij} = \frac{\partial F_i}{\partial x_j}$	– Maximum:	rows/columns) - Applying Pij from left will switch rows, from right	$-\mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ij}} \left(\mathbf{b}_{j} - \sum_{j \neq i} A_{ij} \mathbf{x}_{j}^{(k)} \right) \Longrightarrow \mathbf{x}_{\underline{i}}^{(k+1)} \text{ only}$
- Co-variance matrix of \underline{X} is $Cov(A) = \frac{1}{m-1} A^T A \Longrightarrow$	_ [0	* <u>L</u> Jhas <u>dim(L) = 1</u> and orthonormal basis (ONB) { $\hat{\mathbf{n}}$ }	projections under it) in one go		$\frac{O(\max(g_1 , g_2)) = O(g_2) \iff O(g_1) \boxtimes O(g_2)}{* \text{ e.g. } O(\max(\epsilon^k, \epsilon)) = O(\epsilon)}$	will swap columns	\
$(A^T A)_{ij} = (A^T A)_{ji} = Cov(X_i, X_j)$	- For Ux = b1 just solve the last row	 A hyperplane _is characterized by normal n∈Rⁿ 	 At start of iteration i ∈ 1n lwe have ONB 	Conditioning	 Using functions f₁,, f_n let ?(f₁,, f_n) be 	$-P_{ij} = P_{ij}^{I} = P_{ij}^{-1}$, i.e. applying twice will undo it	needs \mathbf{b}_{i} ; $\mathbf{x}^{(k)}$; $A_{i\star}$ => row-wise parallelization • Gauss-Seidel (G-S) Method: $G = D + L$; $R = U$ =>
• v ₁ ,,v _r (columns of <u>V</u>) are principal axes of <u>A</u>]	$u_{n,n} \times_n = b_n \implies x_n = \frac{b_n}{u_{n,n}}$ and substitute up	(<u>n ≠ 0</u>) and offset from origin <u>c ∈ P</u>] – It represents an (n – 1) dimensional slice of the	$q_1, \dots, q_{j-1} \in \mathbb{R}^m$ and residual	 A problem is some <u>f:X → Y</u> where <u>X,Y</u> are normed vector-spaces 	formula defining some function – Then $\mathbb{C}(O(g_1),, O(g_n))$ is the class of functions	• Row/column scaling: $D_i(\lambda)$ obtained by scaling e_i by λ in I_n (same for rows/columns)	$M = -(D+L)^{-1}U$; $c = (D+L)^{-1}b$
• Let $\underline{w} \in \mathbb{R}^{n}$ be some unit-vector => let $\underline{\alpha_{j}} = \underline{r_{j}} \cdot \underline{w}$ be the projection/coordinate of sample $\underline{r_{j}}$ onto \underline{w}_{j}	- Then solve the second-to-last row	n Edimensional space	$\mathbf{u}_{j}^{(j-1)}, \dots, \mathbf{u}_{n}^{(j-1)} \in \mathbb{R}^{m}$	- A problem <i>instance</i> is f with fixed input $x \in X$.	$\{2(f_1,,f_n): f_1 \in O(g_1),,f_n \in O(g_n)\}$	 Applying P_{ij} from left will scale rows, from right 	
- Variance (Bessel's correction) of $\alpha_1,, \alpha_m$ is		u_{n-1} , q - points are hyperplanes for $n=1$ u_{n-1} , q - Lines are hyperplanes for $n=2$	- Compute $r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ \Rightarrow \mathbf{q}_{j} = \left\ \mathbf{u}_{j}^{(j-1)} / r_{jj} \right\ $	shortened to just "problem" *(with $x \in X$ jimplied) - δx is small perturbation of x j	* e.g. $e^{O(1)} = \{e^{f(e)} : f \in O(1)\}$	will scale $\overline{\text{columns}}$ - $D_i(\lambda)$ = diag $(1,,\lambda,,1)$ so all diagonal properties	$-\mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right)$
/	and substitute up	* Planes are hyperplanes for n = 3] — It is customary that:	- For each $k \in (j+1)n$, compute $r_{jk} = \mathbf{q}_j \cdot \mathbf{u}_k^{(j-1)} = $	$\delta f = f(x + \delta x) - f(x)$	- General case: $?_1(O(f_1),,O(f_m)) = ?_2(O(g_1),,O(g_n))$ means	apply, e.g. $D_i(\lambda)^{-1} = D_i(\lambda^{-1})$	- Computing $\mathbf{x}_{i}^{(k+1)}$ needs \mathbf{b}_{i} ; $\mathbf{x}^{(k)}$; $\mathbf{A}_{i\star}$ and
$Var_W = \frac{1}{m-1} \sum_j \alpha_j^2 = \frac{1}{m-1} w^T \left(\sum_j \mathbf{r}_j^T \mathbf{r}_j \right) w = \frac{1}{m-1} w^T$	T _A T _{Aw} and so on until all <u>x</u> _i are solved	- it is customary that: * njis a unit vector, i.e. n = n̂ = 1	$\mathbf{u}_{k}^{(j)} = \mathbf{u}_{k}^{(j-1)} - r_{jk}\mathbf{q}_{j}$	 – A problem (instance) is: * Well-conditioned if all small δx lead to small 	$[]_1(O(f_1),,O(f_m)) \subseteq []_2(O(g_1),,O(g_n))$	• Row addition: $L_{ij}(\lambda) = \mathbf{I}_n + \lambda \mathbf{e}_i \mathbf{e}_i^T$ performs	$\mathbf{x}_{j}^{(k+1)}$ for $j < i > 1$ lower storage requirements
- First (principal) axis defined ⇒	Thin QR Decomposition w/ Gram- Schmidt (GS)	* $\mathbf{c} \in P$ is closest point to origin, i.e. $\mathbf{c} = \lambda \mathbf{n}$ * With those $\Rightarrow P = \{x \in \mathbb{R}^n \mid x \cdot \mathbf{n} = \lambda\}$	- We have next ONB $\langle \mathbf{q}_1,, \mathbf{q}_j \rangle$ and next residual	δf , i.e. if κ j is small (e.g. 1), 101, 102	* e.g. $e^{O(1)} = O(k^{\epsilon})$ means	$R_i \leftarrow R_i + \lambda R_j$ when applying from left	• Successive over-relaxation (SOR):
$w_{(1)} = \arg \max_{\ w\ =1} w^T A^T A w = \arg \max_{\ w\ =1} (m-1)$	Schmidt (GS) Varw = V_1 Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (m \ge n)$,	$= \mathbf{f} \underbrace{\mathbf{c} \cdot \mathbf{n} * 0} = P[\mathbf{not} \text{ vector-subspace of } \mathbf{R}^n]$	$\mathbf{u}_{j+1}^{(j)},,\mathbf{u}_{n}^{(j)}$	* Ill-conditioned if some small δx lead to large $\delta f \mid i.e.$ if κ_{J} is large *(e.g. $10^{6} \mid 10^{16} \mid 10^$	$\{e^{f(\epsilon)}: f \in O(1)\} \subseteq O(k^{\epsilon})$ not necessarily true	$-\lambda e_i e_i^T$ is zeros except for $\lambda \lim_{n \to \infty} (i,j)$ th entry	$G = \omega^{-1} D + L; R = (1 - \omega^{-1})D + U \Longrightarrow$
- i.e. w ₍₁₎ the direction that maximizes variance Var _w i.e. maximizes variance of **projections on	i.e. a ₁ ,, a _n ∈ R ^m are linearly independent - Apply [[tutorial 1#Gram-Schmidt method to	★ i.e. 0 ∉ P J i.e. P J doesn't go through the origin	- NOTE: for $j=1$ => $\mathbf{q}_1, \dots, \mathbf{q}_{j-1} = \emptyset$ i.e. we don't	• Absolute condition number $cond(x) = \hat{\kappa}(x) = \hat{\kappa}$ of f at	- Special case: $f = \overline{\mathbb{C}}(O(g_1), \dots, O(g_n))$ means $f \in \overline{\mathbb{C}}(O(g_1), \dots, O(g_n))$	$-L_{ij}(\lambda)^{-1} = L_{ij}(-\lambda)$ both triangular matrices	$M = -(\omega^{-1}D + L)^{-1}((1 - \omega^{-1})D + U); c = -(\omega^{-1}D + L)^{-1}b$
line Rw(1)	generate orthonormal basis from any linearly	* \underline{P} Jis affine-subspace of $\underline{\mathbb{R}^n}$ - If $\underline{\mathbf{c} \cdot \mathbf{n} = 0}$, i.e. $\underline{P} = (\mathbb{R}\mathbf{n})^{\square}$ $\Rightarrow \underline{P}$ Jis vector-subspace of	have any yet	$\begin{array}{c c} x_{j} \text{is} \\ -\hat{\kappa} = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \frac{\ \delta f\ }{\ \delta x\ } => \text{for most problems} \end{array}$	$* e.g. (\epsilon+1)^2 = \epsilon^2 + O(\epsilon) means$	LU factorization w/ Gaussian elimina-	$(k+1) = \omega \left(\sum_{k=1}^{i-1} A_{i,k}(k+1) \sum_{k=1}^{n} A_{i,k}(k) \right)$
• σ ₁ u ₁ ,, σ _r u _r (columns of <u>US</u>) are principal components/scores of <u>A</u>]	independent vectors[GS]]	Rn	 By end of iteration j = n we have ONB (q₁,,q_n)∈ R^m of n dim subspace 	δ→0 δx ≤δ δx	$\epsilon \mapsto (\epsilon + 1)^2 \in \{\epsilon^2 + f(\epsilon) : f \in O(\epsilon)\} $ not	tion	$\mathbf{x}_{i}^{(k+1)} = \frac{\omega}{A_{ij}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right) + (1 - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)})$
- Recall: $A = \sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$ with $\sigma_{1} \ge \cdots \ge \sigma_{r} > 0$, so that	$\frac{\mathbf{q}_1,, \mathbf{q}_n \leftarrow GS(\mathbf{a}_1,, \mathbf{a}_n)}{\langle \mathbf{q}_1,, \mathbf{q}_n \rangle \in \mathbb{R}^m \text{for C(A)} }$	* i.e. 0∈PJ i.e. PJgoes through the origin * PJhas dim(P)=n-1	$U_n = \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$	simplified to $\hat{\kappa} = \sup_{\delta x} \frac{\ \delta f\ }{\ \delta x\ }$	necessarily true • Let $f_1 = O(g_1)$, $f_2 = O(g_2)$ and let $k \neq 0$ be a constant	 [[tutorial 1#Representing EROs/ECOs as transformation matrices[Recall that]] you can 	for relaxation factor ω>1] • If A] is strictly row diagonally dominant then
i=1 with o1 2 m 20, 30 that	- For exams: more efficient to compute as	 Notice <u>L = Rn</u> Jand <u>P = (Rn)[□]</u> are orthogonal 	[r ₁₁ r _{1n}]	If Jacobian $J_f(x)$ exists then $\hat{\kappa} = J_f(x) $, where	$-f_1f_2 = O(g_1g_2)$ and $f \cdot O(g) = O(fg)$	represent EROs and ECOs as transformation	Jacobi/Gauss-Seidel methods converge
relates principal axes and principal components - Data compression: If $\sigma_1 \gg \sigma_2$ then compress A	$\frac{\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j}{1) \text{ Cather Qualify}}$	compliments, so: - proj _L = nn T is orthogonal projection onto L	$A = [a_1 a_n] = [q_1 q_n]$ \therefore :	• Relative condition number $\kappa(x) = \kappa of f at x_j $ is	$\frac{-\overline{f_1} * f_2 = O(\max(g_1 , g_2))}{\overline{f_1} * f_2 = O(g)} \Rightarrow \text{if } g_1 = g = g_2 \text{ then}$	matrices R, C respectively - LU factorization => finds A = LU where L, U are	- A is strictly row diagonally dominant if
by projecting in direction of principal component	1) Gather $Q_j = [\mathbf{q}_1 \mid \dots \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ all-at-once	(along P I)	corresponds to [[tutorial 5#Thin QR	- $\kappa = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right) \Rightarrow \text{for most}$	$-\frac{O(k \cdot g) = O(g)}{O(k \cdot g) = O(g)}$	lower/upper triangular respectively Naive Gaussian Elimination performs	$ A_{ii} > \sum_{j \neq i} A_{ij} $
⇒ A≈ σ ₁ u ₁ v ₁ .	2) Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^J$ all-at-once	- proj _P = id _R n - proj _L = I _n - \hat{n}\hat{n}^T is orthogonal projection onto P \(\frac{1}{2} \) (along \(\frac{1}{2} \))	Decomposition w/ Gram-Schmidt (GS) thin QR decomposition]]	δ→0 δx ≤δ \ f(x) / x / x /	Floating-point numbers	$[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid U \mid I_n]$ to get $AI_n = R^{-1}U$ using	• If $\underline{\underline{A}}$ is positive-definite then G-S and SOR $(\underline{\omega} \in (0, 2))$ converge
Generalised Eigenvectors	3) Compute $Q_j c_j \in \mathbb{R}^m$, and subtract from a_{j+1}	L=im(proj_L)=ker(proj_P) and	 Where A∈R^{m×n} is full-rank, Q∈R^{m×n} is 	problems simplified to $\kappa = \sup_{\delta X} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	 Consider base/radix β≥2 (typically 2) and precision 	only row addition $= R^{-1}$, i.e. inverse EROs in reversed order, is	Break up matrices into (uneven
• TODO: this seems low-priority, do when have time	all-at-once j	$\frac{P = \ker(\operatorname{proj}_{L}) = \operatorname{im}(\operatorname{proj}_{P})}{-\mathbb{R}^{n} = \operatorname{Rn} \bullet(\operatorname{Rn})^{\square}} \text{ i.e. all vectors } \underline{\mathbf{v}} \in \mathbb{R}^{n} \text{ uniquely}$	semi-orthogonal, and <u>R∈R^{n×n}</u> lis upper-triangular	J _F (x)	t≥1](24]or 53]for IEEE single/double precisions) • Floating-point numbers are discrete subset	lower-triangular so $L = R^{-1}$	blocks)
gen-eigenvectors jordan chains (common cases)	- Can now rewrite $\mathbf{a}_j = \sum_{i=1}^{n} (\mathbf{q}_i \cdot \mathbf{a}_j) \mathbf{q}_i = Q_j \mathbf{c}_j$	decomposed into v=v _L +v _P	Classical vs. Modified Gram-Schmidt	- If Jacobian $J_f(x)$ exists then $\kappa = \frac{\ f(x)\ /\ x\ }{\ f(x)\ /\ x\ }$	$\mathbf{F} = \{ (-1)^S (m/\beta^t) \beta^e \mid 1 \le m \le \beta^t, s \in \mathbb{B}, m, e \in \mathbb{Z} \}$	 -![[Pasted image 20250419051217.png 400]] The pivot element is simply diagonal entry 	• e.g. symmetric <u>A ∈ R^{n×n}</u> can become
https://www.youtube.com/watch?v=aTh6peJfAQQ&list	-PLJMXXdELet MDgg $= Q_n = [q_1 q_n] \in \mathbb{R}^{m \times n}$, notice its	Reflection w.r.t. hyperplanes and	(for thin QR)	- More important than k for numerical analysis • Matrix condition number Cond(A) = κ(A) = A A ⁻¹	 s jis sign-bit, m/β^t is mantissa, e jis exponent (8) bit for single, 11 bit for double) 	$u_{kk}^{(k-1)}$ fails if $u_{kk}^{(k-1)} \approx 0$	$A = \begin{bmatrix} a_{1,1} & b \\ b^T & C \end{bmatrix}$, then perform proofs on that
gQ0RW5&index=3 • JNF, form	[[tutorial 1#Orthogonality	Householder Maps	These algorithms both compute [[tutorial 5#Thin QR Decomposition w/ Gram-Schmidt (GS) thin QR	=> comes up so often that has its own name	 Equivalently, can restrict to β^{t-1} ≤ m ≤ β^t - 1 for 	$- \underbrace{\tilde{L}\tilde{U} = A + \delta A}_{\text{ }} \underbrace{\ \delta A\ }_{\ L\ \cdot \ U\ } = O(\epsilon_{\text{mach}}) \text{ only}$	Catchup: metric spaces and limits
some tips on how to solve common cases JNF decomposition and basis of generalized	concepts semi-orthogonal]] since Q ¹ Q=I _n - Notice =>	• Two points $\underline{x, y \in E^n}$ are reflections w.r.t hyperplane	decomposition]] ![[Pasted image	 A∈C^{m×m} is well-conditioned if κ(A) is small, ill-conditioned if large 	unique \underline{m}_{J} and \underline{e}_{J} $-\underline{F} \subset \mathbb{R}$ J is idealized (J	backwards stable if L · U ≈ A	Metrics obey these axioms
in decomposition and basis of generalized eigenvectors	$\mathbf{a}_j = Q_j \mathbf{c}_j = \mathbf{Q}[\mathbf{q}_1 \cdot \mathbf{a}_j, \dots, \mathbf{q}_j \cdot \mathbf{a}_j, 0, \dots, 0]^T = \mathbf{Q}\mathbf{r}_j$	$\frac{P = (\mathbf{R}\mathbf{n})^{2} + \mathbf{c}}{1} \text{ if:}$ 1) The translation $\mathbf{x}\mathbf{y} = \mathbf{y} - \mathbf{x}$ is parallel to normal \mathbf{n} .	20250418034701.png 400]] ![[Pasted image 20250418034855.png 400]]	$- \frac{\kappa(A) = \kappa(A^{-1})}{\sigma_1}$ and $\frac{\kappa(A) = \kappa(\gamma A)}{\sigma_1}$	countably infinite and self-similar (i.e. F = βF)	- Work required: $\sim \frac{2}{3} m^3 flops \sim O(m^3) $	$ \begin{array}{c} -\frac{d(x,x)=0}{-x\neq y \implies d(x,y)>0} \end{array} $
General: visualizing transformations	$-\operatorname{Let} R = [r_1 \dots r_n] \in \mathbb{R}^{n \times n} \Longrightarrow$	i.e. $xy = \lambda n$	 Computes at j th step: 	$- \text{ If } \underline{\ \cdot\ } = \ \cdot\ _2 \text{ then } \kappa(A) = \frac{\sigma_1}{\sigma_m}$	 For all x∈R there exists fl(x)∈F s.t. x-fl(x) ≤∈mach x 	- Solving $\underline{Ax = LUx}$ is $-\frac{2}{3}m^3$ flops (back substitution	$-\overline{d(x,y)}=d(y,x)$
of matrices	$A = QR = Q$ $\begin{bmatrix} q'_1 a_1 & \dots & q'_1 a_n \\ & \ddots & \vdots \end{bmatrix}$, notice its	 2) Midpoint m=1/2(x+y)∈P lies on PI i.e. m·n=c·n Suppose P_U = (Ru)[®] goes through the origin with 	 Classical GS ⇒ jjth column of Qjand the jjth column of Rj 	• For $\underline{A \in \mathbb{C}^{m \times n}}$, the problem $f_{\underline{A}}(x) = Ax$ has	* Equivalently fl(x) = x(1+δ), δ ≤ ∈ _{mach}	is O(m ²) - NOTE: Householder triangularisation requires	 - d(x, z)≤d(x, y)+d(y, z) For metric spaces, mix-and-match these
TODO: do when have time -> where standard basis-vectors map to	$\begin{bmatrix} 0 & \mathbf{q}_n^T \mathbf{a}_n \end{bmatrix}$	unit normal $u \in \mathbb{R}^n$	 Modified GS ⇒ j th column of Q and the j th row 	$\kappa = \ A\ \frac{\ x\ }{\ Ax\ } \Longrightarrow \text{if } \underline{A^{-1}} \text{ exists then } \underline{\kappa \leq \text{Cond}(A)}$	• Machine epsilon ε _{machine} = ε _{mach} = ½ β ^{1-t} is	- NOTE: Householder triangularisation requires - \frac{4}{3} m^3	infinite/finite limit definitions:
TODO: rotations, reflections, scaling, shearing, etc	[[tutorial 1#Properties of matrices upper-triangular]]	- Householder matrix $H_U = I_n - 2uu^T$ is reflection w.r.t. hyperplane P_U	of R] • Both have flop (floating-point operation) count of	- If Ax = b], problem of finding x given b lis just	maximum relative gap between FPs – Half the gap between 1 and next largest FP	Partial pivoting computes PA = LU where P is a	$\lim_{X\to +\infty} f(x) = *\infty \iff \forall r \in \mathbb{R}, \exists N \in \mathbb{N}, \forall x > N : f(x) > r$
Cholesky Decomposition	Full QR Decomposition	- Recall: let L _u = Ru	O(2mn ²)	$f_{A^{-1}}(b) = A^{-1}b = \kappa = \ A^{-1}\ \frac{\ b\ }{\ x\ } \le \text{Cond}(A)$	$-2^{-24} \approx 5.96 \times 10^{-8}$ and $2^{-53} \approx 10^{-16}$ for	permutation matrix => <u>PP^T = I</u> , i.e. its orthogonal – For each column <u>j</u> finds largest entry and	$\lim_{X\to p} f(x) = L \iff \forall \varepsilon > 0, \exists \delta > 0, \forall x \in A: \ 0 < d_X(x,p) < 0$
 Consider positive (semi-)definite A∈ R^{n×n} 	• Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (\underline{m \ge n}),$	* $\operatorname{proj}_{L_{U}} = uu^{T} \text{and } \operatorname{proj}_{P_{U}} = I_{n} - uu^{T} \Longrightarrow$	NOTE: Householder method has 2(mn ² -n ³ /3) flop count, but better numerical properties	• For $\mathbf{b} \in \mathbb{C}^{m}$, the problem $f_{\mathbf{b}}(A) = A^{-1}\mathbf{b}$ (i.e. finding $\underline{\mathbf{x}}$)	single/double • FP arithmetic: let ∗, □ be real and floating	row-swaps to make it new pivot $\Rightarrow P_j$	$x \to p$ (X)=2 $x \to 0$, 3550, $x \in X$. Using $(x, p) \in X \to P$
• Cholesky Decomposition is A = LLT where L Jis lower-triangular	i.e. $a_1,, a_n \in \mathbb{R}^m$ are linearly independent • Apply [#Thin QR Decomposition w/ Gram-Schmidt	H _u = proj _{Pu} - proj _{Lu}	 Recall: Q[†]Q=I_n => check for loss of orthogonality 	$in \underline{Ax = b}$ has $\kappa = A A^{-1} = Cond(A)$	counterparts of arithmetic operation – For x, y ∈ F we have	 Then performs normal elimination on that column L_j 	i.e. $\forall \epsilon > 0$, $\exists N \in \mathbb{N}$, $\forall m, n \ge N$: $d(a_m, a_n) < \epsilon$
- For positive semi-definite => always exists, but	(GS)[thin QR decomposition]] to obtain:	* Visualize as preserving component in P _u then flipping component in L _u	with $\ \mathbf{I}_{n} - Q^{\dagger} Q\ = \text{loss}$	Stability	$x \boxtimes y = fl(x * y) = (x * y)(1 + \epsilon), \delta \le \epsilon_{mach}$	- Result is $L_{m-1}P_{m-1} \dots L_2P_2L_1P_1A=U$ where	converge in complete spaces • You can manipulate matrix limits much like in real
non-unique - For positive-definite => always uniquely exists s.t.	- ONB $(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m$ for $\underline{C(A)}$ - Semi-orthogonal $Q_1 = [\mathbf{q}_1 \mathbf{q}_n] \in \mathbb{R}^{m \times n}$ and	 H_U is involutory, orthogonal and symmetric, 	- Classical GS => $\ I_n - Q^{\dagger}Q\ \approx \text{Cond}(A)^2 \epsilon_{\text{mach}}\ $ - Modified GS => $\ I_n - Q^{\dagger}Q\ \approx \text{Cond}(A)\epsilon_{\text{mach}}\ $	• Given a problem $\underline{f}: X \to Y$, an algorithm for \underline{f} is	* Holds for any arithmetic operation ☐ = •, •, •, • ○ - Complex floats implemented pairs of real floats, so	$L_{m-1}P_{m-1}L_2P_2L_1P_1 = L'_{m-1}L'_1P_{m-1}P_1$	analysis, e.g. $\lim_{n\to\infty} (A^n B+C) = \left(\lim_{n\to\infty} A^n\right) B+C$
diagonals of <u>L</u> Jare positive	upper-triangular $R_1 \in \mathbb{R}^{n \times n}$, where $A = Q_1 R_1$	i.e. $H_U = H_U^{-1} = H_U^T$	 NOTE: Householder method has 	$ \vec{f}: X \to Y $ $ \vec{f} $ is computer implementation, so	above applies complex ops as-well	- Setting $L = (L'_{m-1} L'_1)^{-1}$, $P = P_{m-1} P_1$ gives	• Turn metric limit $\lim_{n\to\infty} x_n = L$ into real limit
Finding a Cholesky Decomposition: Compute <u>LL</u> and solve <u>A = LL</u> by matching	[[tutorial 3#Tricks Computing orthonormal vector-set extensions Compute basis extension]] to	Modified Gram-Schmidt	∥I _n -Q [†] Q∥≈ ∈ _{mach}	inputs/outputs are FP	* Caveat: $\epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t}$ must be scaled by	PA=LU - ![[Pasted image 20250420092322.png[450]]	$\lim_{n\to\infty} d(x_n, L) = 0 \text{ to leverage real analysis}$
terms	obtain remaining $\mathbf{q}_{n+1}, \dots, \mathbf{q}_m \in \mathbb{R}^m$, where	Go check [[tutorial 1#Gram-Schmidt method to generate orthonormal basis from any linearly	Multivariate Calculus	- Input $\underline{x \in X}$ jis first rounded to $\underline{f(x)}$, i.e. $\underline{f}(x) = \underline{f}(f(x))$	factors on the order of $2^{3/2}$, $2^{5/2}$ for $8, 8$ respectively	-![[Pasted image 20250420092322.png 450]] -Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$ results in	– Bounded monotone sequences converge in ℝ
- For square roots always pick positive - If there is exact solution then positive-definite	(q ₁ ,,q _m) is ONB for ℝ ^m	independent vectors Classical GM]] first, as this is	 Consider f: Rⁿ → R => when clear write j th component of input as j instead of x; 	- \tilde{f} cannot be continuous (for the most part) - Absolute error => $\ \tilde{f}(x) - f(x)\ _{2}^{2}$ relative error =>	- ' '	$L_{ij} \le 1 \text{so } L = O(1) $ mach Stability depends on growth-factor	 Sandwich theorem for limits in RJ=> pick easy upper/lower bounds
- If there are free variables at the end, then positive	 Notice (q_{n+1},,q_m) is ONB for C(A)[⊥] = ker(A^T) 	just an alternative computation method	 Level curve w.r.t. to c∈R is all points s.t. f(x)=c 	- Absolute error $\Rightarrow \frac{\ f(x) - f(x)\ }{\ \tilde{f}(x) - f(x)\ }$ relative error \Rightarrow	$-\frac{(x_1 \oplus \cdots \oplus x_n) \times (x_1 + \cdots + x_n) + \sum_{i=1}^n x_i \left(\sum_{j=i}^n \delta_j\right), \delta_j \le \epsilon}{-}$	mayu	$-\lim_{n\to\infty} r^n = 0 \iff r < 1 \text{ and }$
semi-definite * i.e. the decomposition is a solution-set	- Let $Q_2 = [\mathbf{q}_{n+1} \mid \mid \mathbf{q}_m] \in \mathbb{R}^{m \times (m-n)}$ let	• Let $P_{\perp \mathbf{q}_j} = \mathbf{I}_m - \mathbf{q}_j \mathbf{q}_j^T$ be projector onto [[tutorial 5#Lines and hyperplanes in Euclidean space \$	 Projecting level curves onto Rⁿ gives contour-map of f 	f(x)	$(x_1 \otimes \cdots \otimes x_n) \approx (x_1 \times \cdots \times x_n)(1+\varepsilon), \varepsilon \le 1.06(n-1)\varepsilon_{\text{mach}}$	$\rho = \frac{\max_{i,j} a_{i,j} }{\max_{i,j} a_{i,j} } \Rightarrow \text{for partial pivoting } \underline{\rho \le 2^{m-1}}$	
parameterized on free variables	$Q = [Q_1 Q_2] \in \mathbb{R}^{m \times m} \mid \text{let } R = [R_1; 0_{m-n}] \in \mathbb{R}^{m \times n}$ • Then full QR decomposition is	mathbb{E} {n}({=} mathbb{R} {n})\$ hyperplane]]	• n +th order partial derivative w.r.t i l of of	• $\underline{\tilde{f}}$ is accurate if $\underline{\forall x \in X}$, $\underline{\ \tilde{f}(x) - f(x)\ } = O(\epsilon_{\text{mach}})$	$-\operatorname{fl}\left(\sum_{i} x_{i} y_{i}\right) = \sum_{i} x_{i} y_{i} (1 + \epsilon_{i}) \text{ where}$	$-\ U\ = O(\rho \ A\) \Longrightarrow \widetilde{L}\widetilde{U} = \widetilde{P}A + \delta A$	$\lim_{n \to \infty} \sum_{i=0}^{n} ar^{i} = \frac{a}{1-r} \iff r < 1$
*e.g. 1 1 1 = LL ^T where	$A = QR = [Q_1 Q_2] \begin{bmatrix} R_1 \\ 0_{m-n} \end{bmatrix} = Q_1 R_1$	(Rq _j) [⊥] , i.e. [[tutorial 5#Lines and hyperplanes in	th order partial derivative w.r.t $\frac{R}{1}$ of f is:	 f is stable if ∀x ∈ X ∃x ∈ X s.t. 	$\frac{1+\varepsilon_i = (1+\delta_i) \times (1+\eta_i) \cdots (1+\eta_n)}{ \delta_i , \eta_i \le \varepsilon_{mach} }$ and	$\frac{\ \delta A\ }{\ A\ } = O(\rho \epsilon_{\text{machine}})$ => only backwards stable	Eigenvalue Problems: Iterative Tech-
[1 1 2]	$-\underline{Q}$ is orthogonal , i.e. $\underline{Q}^{-1} = \underline{Q}^T$, so its a basis	Euclidean space \$ mathbb{E} {n}((=) mathbb{R} {n})\$ orthogonal compliment]] of line Rq _j	$\frac{\partial^{n} k^{+\cdots+n} 1}{\partial x_{i} \partial x_{i} \partial x_{i}} f = \partial^{n} k_{i} \partial x_{i} \partial x_{i} \partial x_{i} \int_{0}^{1} f = f(x_{i}, \dots, x_{k}) = f(x_{i}, \dots, x_{k})$	$\lim_{\substack{i,\dots,i\\k_{-}}}\frac{\ \tilde{f}(x)-f(\tilde{x})\ }{\ f(\tilde{x})\ }=O\left(\epsilon_{mach}\right) \text{ and } \frac{\ \tilde{x}-x\ }{\ x\ }=O\left(\epsilon_{mach}\right)$	* $1+\epsilon_i \approx 1+\delta_i + (\eta_i + \cdots + \eta_n)$	if ρ = O(1)	niques
L= 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	transformation	- Notice:	$\frac{\partial \mathbf{x}^{''}_{ik} \dots \partial \mathbf{x}^{''}_{i1}}{\partial \mathbf{x}^{''}_{i1}}$ $^{''}_{ik}$ $^{''}_{i1}$ $^{''}_{i1}$	 i.e. nearly the right answer to nearly the right 	* $ f(x^T y) - x^T y \le \sum x_i y_i \epsilon_i $	 Full pivoting is PAQ = LU finds largest entry in bottom-right submatrix 	If AJis [[tutorial 1#Properties of matrices diagonalizable]] then [[tutorial]
$L = \begin{bmatrix} 1 & 0 & 0 \\ 1 & c & \sqrt{1-c^2} \end{bmatrix}, c \in [0,1]$	$-\frac{\text{proj}_{C(A)} = Q_1 Q_1^T}{1 + \text{proj}_{C(A)} \perp = Q_2 Q_2^T} \text{ are [[tutorial } \\ \frac{1}{1 + \text{projection properties} \text{orthogonal projections]]}$	$P_{\perp j} = \mathbf{I}_m - Q_j Q_j^T = \prod_{i=1}^{j} (\mathbf{I}_m - \mathbf{q}_i \mathbf{q}_i^T) = \prod_{i=1}^{j} P_{\perp} \mathbf{q}_i$	- Overall, its an N-th order partial derivative	question - outer-product is stable	* Assuming ne _{mach} ≤ 0.1] =>	- Makes it pivot with row/column swaps before	1#Eigen-values/vectors eigen-decomposition]]
<u> </u>	1#Projection properties[orthogonal projections]]	-> ''')] [[\ ''' **]] [±\¶]	where $N = \sum_b n_b$	- outer-product is stable	$ fl(x^Ty)-x^Ty \le \phi(n) \in_{mach} x ^T y $, where	normal elimination	$A = X\Lambda X^{-1}$

– **Dominant** λ_1 ; \mathbf{x}_1 are such that $[\lambda_1]$ is strictly

largest for which $Ax = \lambda x$ - Rayleigh quotient for Hermitian A = A[†] is

 $R_A(\mathbf{x}) = \frac{\mathbf{x}^{\dagger} A \mathbf{x}}{\mathbf{x}^{\dagger} \mathbf{x}}$

* Eigenvectors are stationary points of R_A |

* $R_A(x)$ | is closest to being like eigenvalue of \underline{x} ,
i.e. $R_A(x) = \arg \min ||Ax - \alpha x||_2$ |

– Assume $dominant \lambda_1; x_1$ exist for AI, and that

with initial $\underline{\mathbf{b}}^{(0)}$ s.t. $\|\mathbf{b}^{(0)}\| = 1$

 $\frac{\mathbf{dominant} \, \underline{\lambda_1}}{\mathbf{dominant} \, \underline{x_1}} = \frac{\mathbf{b}_{(k)} \, \mathbf{b}_{(k)}}{\mathbf{b}_{(k)}} \text{ converges to some } \mathbf{dominant} \, \underline{x_1} \text{ jassociated}$ with $\lambda_1 \Longrightarrow \|A\mathbf{b}^{(k)}\|$ converges to $|\lambda_1|$ * $R_A(\mathbf{x}) - R_A(\mathbf{v}) = O(\|\mathbf{x} - \mathbf{v}\|^2)$ as $\mathbf{x} \to \mathbf{v}$ where \mathbf{v} is – If $\operatorname{proj}_{\mathbf{X}_1}(\mathbf{b}^{(0)}) = 0$ then $(\mathbf{b}_k); (?_k)$ converge to

eigenvecto • Power iteration: define sequence $\frac{\mathbf{b}^{(k+1)}}{\|\mathbf{a}\mathbf{b}^{(k)}\|}$

second dominant λ_2 ; \mathbf{x}_2 instead

- If no dominant λ_1 (i.e. multiple eigenvalues of $maximum \ |\lambda| \ | \ then \ (b_R) \ | \ will converge to linear$ combination of their corresponding eigenvectors

 $\operatorname{proj}_{\mathbf{x}_1} (\mathbf{b}^{(0)}) * \mathbf{0}$

 $\mu_k = R_A \left(\mathbf{b}^{(k)} \right) = \frac{\mathbf{b}^{(k)}^{\dagger} A \mathbf{b}^{(k)}}{\mathbf{b}^{(k)}}$

– Slow convergence if $dominant \lambda_1$ not "very

 $b(k)^{\dagger}b(k)$

dominant" $-\|\mathbf{b}^{(k)} - \alpha_k \mathbf{x}_1\| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$ for phase factor – i.e. will yield smallest $\lambda_{1,\sigma}$ – σ i.e. will yield $\lambda_{1,\sigma}$ $\alpha_R \in \{-1, 1\}$ | it may alternate if $\lambda_1 < 0$ closest to o $\star \alpha_k = \frac{(\lambda_1)^k c_1}{|\lambda_1|^k |c_1|}$ where $c_1 = \mathbf{x}_1^{\dagger} \mathbf{b}^{(0)}$ and

assuming $b^{(k)}; x_1$ are normalized $-(A-\sigma I)$ has **eigenvalues** $(A-\sigma I) = 0$ power-iteration on $(A-\sigma I)$ has $\frac{\lambda_2 - \sigma}{\lambda_1 - \sigma}$ - Eigenvector guess => estimated eigenvalue

Inverse (power-)iteration: perform power iteration on $(A-\sigma I)^{-1}$ to get $\lambda_{1,\sigma}$ closest to σ

 $-(A-\sigma I)^{-1}$ has eigenvalues $(\lambda - \sigma)^{-1}$ so power iteration will yield largest $(\lambda_{1,\sigma} - \sigma)^{-1}$

eigenvalues o

pre-factorization

- Eigenvalue guess => estimated eigenvector

-![[Pasted image 20250420131643.png|300]]
- Can reduce matrix inversion O(m²)|to O(m²)|by

• [[tutorial 6#Multivariate Calculus|Recall]] that $\nabla f(\mathbf{x})$ Interval symultivariate Calcius(special) mat y_1 is direction of max. rate-of-change |yf(x)|.

• Search for stationary point by **gradient descent**: $x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)})$ for step length α .

• A jis positive-definite solving $\underline{Ax = b}$ and corresponds to $\lambda_{1,\sigma}$ and $\lambda_{2,\sigma}$ is 2nd-closest to $\underline{\sigma}$ - Efficiently compute eigenvectors for **known** $\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b} \text{ are equivalent}$

tive Techniques

- Get iterative methods $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \mathbf{p}^{(k)}$ for step length $\underline{a(k)}$ and directions $\underline{p(k)}$.

• Conjugate gradient (CG) method: if $\underline{A} \in \mathbb{R}^{n \times n}$ also symmetric then $(\underline{u}, \underline{v})_A = \underline{u}^T A \underline{v}$ is an inner-product

- GC chooses p(k) that are conjugate w.r.t. Al

i.e. $\langle \mathbf{p}^{(i)}, \mathbf{p}^{(j)} \rangle_{A} = 0$ for $\underline{i \neq j}$ Nonlinear Systems of Equations: Itera-- And chooses $\alpha^{(R)}$ | s.t. **residuals** $\mathbf{r}^{(R)} = -\nabla f(\mathbf{x}^{(R)}) = \mathbf{b} - A\mathbf{x}^{(R)}$ | are orthogonal

 $* k=0 \Rightarrow p^{(0)} = -\nabla f(\mathbf{x}^{(0)}) = \mathbf{r}^{(0)}$ $\star \alpha^{(k)} = \operatorname{argmin}_{\alpha} f(\mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)}) =$

> - Without rounding errors, **CG** converges in ≤n * Similar to to [[tutorial 1#Gram-Schmidt method

to generate orthonormal basis from any linearly independent vectors[Gram-Schmidt]] (different

QR Algorithm to find Schur decomposition A = QUQ†

• Any $\underline{A} \in \mathbb{C}^{m \times m}$ has **Schur decomposition** $\underline{A} = \underline{Q}\underline{U}\underline{Q}^{\dagger}$ \underline{Q} is unitary, i.e. $\underline{Q}^{\dagger} = \underline{Q}^{-1}$ and upper-triangular $\underline{U}\underline{U}$ - Diagonal of U contains eigenvalues of A

![[Pasted image 20250420135506.png|300]]
 For A∈ R^{m×m} | each iteration A^(k) = Q^(k) R^(k) |

produces orthogonal $Q^{(k)^T} = Q^{(k)^{-1}}$ $A^{(k+1)} = R^{(k)}Q^{(k)} = (Q^{(k)}^TQ^{(k)})R^{(k)}Q^{(k)} = Q^{(k)}^TA^{(k)}Q^{(k)}$

 $\begin{array}{l} \operatorname{means} \underline{A^{(k+1)}} \big| \operatorname{is} \mathbf{similar} \operatorname{to} \underline{A^{(k)}} \big| \\ -\operatorname{Setting} \underline{A^{(0)}} = \underline{A} \big| \operatorname{we} \operatorname{get} \underline{A^{(k)}} = \underline{\tilde{Q}^{(k)}}^T \underline{A} \underline{\tilde{Q}^{(k)}} \big| \operatorname{where} \end{array}$

 $\tilde{Q}^{(k)} = Q^{(0)} \cdots Q^{(k-1)}$ Under certain conditions QR algorithm converges to

Schur decomposition We can **apply shift** $\mu^{(k)}$ at iteration $k = \infty$

 $A(k)_{-\mu}(k)_{1-\mu}(k)_{1-\mu}(k)_{2-\mu}(k)_{2-\mu}(k)_{1-\mu}($ eigenvector

 Estimate μ^(k) with Rayleigh quotient => $\mu^{(k)} = (A_k)_{mm} = \tilde{\mathbf{q}}_m^{(k)T} A \tilde{\mathbf{q}}_m^{(k)}$ where $\tilde{\mathbf{q}}_m^{(k)}$ is \underline{m} th column of $\tilde{Q}^{(k)}$