one Exercice 1.

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 6 \\ u_{n+1} = 2u_n - 5 \end{cases}$$

Démontrer par récurrence que pour tout entier naturel n on a :

$$u_n = 2^n + 5$$
.

•00 Exercice 2.

Soit (v_n) la suite géométrique de raison q et de premier terme v_0 .

Démontrer que : $\forall n \in \mathbb{N}, v_n = v_0 q^n$.

••• Exercice 3.

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 2 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{1 + u_n} \end{cases}$$

Démontrer que : $\forall n \in \mathbb{N}, u_n = \frac{2}{2n+1}$.

$\bullet \infty$ Exercice 4.

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n e^{2u_n} \end{cases}$$

Démontrer par récurrence que pour tout entier naturel n on $a: u_n > 0$.

•00 Exercice 5.

Soit la suite $(w_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} w_0 = 0 \\ \forall n \in \mathbb{N}, \ w_{n+1} = 3w_n - 2n + 3 \end{cases}$$

Démontrer que pour tout entier naturel n on a :

$$w_n \geqslant n$$

•• Exercice 6.

Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} v_0 = 3 \\ \forall n \in \mathbb{N}, \ v_{n+1} = \frac{1}{3}v_n + 4 \end{cases}$$

1. Calculer v_1 .

2. Montrer par récurrence que pour tout entier naturel n, on a $v_{n+1} \ge v_n$.

3. En déduire la monotonie de la suite (v_n) .

••• Exercice 7.

Soit la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par :

$$\begin{cases} u_1 = 0 \\ u_{n+1} = \frac{1}{2 - u_n} \end{cases}$$

1. Calculer u_2 , u_3 et u_4 .

- 2. Conjecturer l'expression de u_n en fonction de n.
- 3. Démontrer cette conjecture par récurrence puis en déduire u_{2023} .

• co Exercice 8.

Soit \mathscr{P}_n la proposition « 2^n est un multiple de 3 ».

- 1. Démontrer que \mathscr{P}_n est héréditaire.
- 2. \mathcal{P}_n est-elle vraie pour tout entier naturel n?

••• Exercice 9.

Soit \mathcal{P}_n la proposition « $10^n - 1$ est un multiple de 9 ».

- 1. Démontrer que \mathscr{P}_n est héréditaire.
- 2. \mathscr{P}_n est-elle vraie pour tout entier naturel n?

••• Exercice 10.

a un réel strictement positif. Démontrer que : $\forall n \in \mathbb{N}, (1+a)^n \ge 1+na$. (*Inégalité de Bernoulli*).

••• Exercice 11.

Soit n un entier naturel et $a_0, a_1, a_2 \ldots, a_{n+1}$ des nombres réels non nuls.

Démontrer que pour tout entier naturel n,

$$\prod_{k=0}^{n} \frac{a_{k+1}}{a_k} = \frac{a_{n+1}}{a_0}$$

••o Exercice 12.

Soit n un entier naturel non nul.

Démontrer par récurrence que pour tout entier naturel n non nul,

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$