SOLUTIONS FOR TERM TEST, FEBRUARY 16, 2018 MATB43

(1) Given a real number a, prove that there exists a sequence of rational numbers converging to a.

Between any two real numbers there is a rational number. So for any $n \in \mathbb{N}$ there exists $a_n \in \mathbb{Q}$ such that

$$a - 1/n < a_n < a .$$

Given $\epsilon > 0$, there exists $N \in \mathbb{N}$, with $1/N < \epsilon$. Then for n > N,

$$|a - a_n| < 1/n < 1/N < \epsilon .$$

Therefore $\{a_n\}$ converges to a.

- (2) Determine whether the following series converge or diverge.
 - (a) $\sum_{k=2}^{\infty} 1/\log k$.

For all k > 1, $\log k < k$. Therefore $1/k < 1/\log k$. The harmonic series $\sum_{k=2}^{\infty} 1/k$ diverges. Therefore by the comparison test, the series $\sum_{k=2}^{\infty} 1/\log k$ diverges.

(b)
$$\sum_{k=1}^{\infty} (1/3^k + 1/5^k)$$
. (Suggestion: $1/3^k + 1/5^k \le (1/3 + 1/5)^k$)

By the binomial theorem, $1/3^k + 1/5^k \le (1/3 + 1/5)^k = 8/15$. Since 8/15 < 1, the geometric series $\sum_{k=1}^{\infty} (8/15)^k$ converges. Therefore by the comparison test $\sum_{k=1}^{\infty} (1/3^k + 1/5^k)$ converges.

(c)
$$\sum_{k=1}^{\infty} (-1)^{k+1} / \sqrt{k}$$
.

For k > 0, $1/\sqrt{k} \to 0$ as $k \to \infty$. and $1/\sqrt{k} > 0$. Therefore by the alternating series test, $\sum_{k=1}^{\infty} (-1)^{k+1}/\sqrt{k}$ converges.

- (3) (a) Give a subsequence of the terms of the alternating harmonic series, whose sum does not converge.
 Take the sequence {1/(2n-1)}, whose sum ∑_{n=1}[∞] 1/(2n-1) is the sum of the positive terms in the alternating harmonic series. The sum of the positive terms in any conditionally convergent series diverges. Therefore this sum diverges.
 - (b) Show that if $\sum_{k=1}^{\infty} a_k$ converges conditionally then there is a subsequence of $\{a_k\}$, whose sum does not converge. Take the subsequence of positive terms of $\{a_k\}$. As discussed in class, it must diverge since $\sum_{k=1}^{\infty} a_k$ converges conditionally.
 - (c) Prove that if $\sum_{k=1}^{\infty} a_k$ converges absolutely, and $\{b_l\}$ is any subsequence of $\{a_k\}$, then $\sum_{l=1}^{\infty} b_l$ converges absolutely. Define a new sequence $\{c_k\}$ by replacing the terms in $\{a_k\}$ by 0 if they do not belong to the sequence $\{b_l\}$. It follows that for all k,

$$|c_k| \le |a_k| .$$

The comparison test then shows that $\sum_{k=1}^{\infty} c_k$ converges absolutely. But

$$\sum_{k=1}^{\infty} c_k = \sum_{l=1}^{\infty} b_l \ .$$

So $\sum_{l=1}^{\infty} b_l$ converges absolutely.

(4) (a) Define functions f_n , for $n \in \mathbb{N}$, by

$$f_n(x) = \frac{x}{1 + nx^2}$$
 , $x \in \mathbb{R}$.

Let f(x) = 0, for all $x \in \mathbb{R}$. Show that $f_n(x) \to f(x)$ for all $x \in \mathbb{R}$.

For fixed $x, \frac{x}{1+nx^2} \to 0$ as $n \to \infty$. Therefore $f_n(x) \to f(x)$.

(b) Determine the maximum and minimum of $f_n(x)$ on \mathbb{R} . f_n is an odd function of x. The derivative of f_n is given by

$$f_n'(x) = \frac{1 - nx^2}{(1 + nx^2)^2} \ .$$

So for $x \ge 0$,

$$f'_n(x) \begin{cases} > 0 & \text{for } x < 1/\sqrt{n} \\ = 0 & \text{for } x = 1/\sqrt{n} \\ < 0 & \text{for } x > 1/\sqrt{n} \end{cases}$$

Thus the maximum of f_n is $1/\sqrt{n}$ and the minimum is $-1/\sqrt{n}$.

(c) Show that $f_n \to f$ uniformly on \mathbb{R} . Given $\epsilon > 0$, choose N so that $1/\sqrt{N} < \epsilon$. Then for all n > N,

$$|f_n(x) - f(x)| = |f_n(x)| < 1/\sqrt{n} < \epsilon$$
,

for all $x \in \mathbb{R}$. Therefore $f_n \to f$ uniformly on \mathbb{R} .

Student Number 1002423727	
Name POON KEEGAM LAST NAME FIRST NAM (Please print in block letters)	KP
THIS BOOK MUST NOT B FROM THE EXAMINATIO	
Course MATB43 (c.g. ANTAO1Y, PHL 20) Instructor JOHN SCHERK	2.5)
Date of Examination Feb 16th 20	18
Room Number Hw 216	Seat Numbe
INSTRUCTIONS	
Write the information sought in the spaces above.	
Write the answers on the RULED SIDE ONLY; all rough drafts of answers should be shown, preferably side.	
Clearly identify the question to which each answer as the answer to a question is divided, note at the end "see also work on page".	~ ~
If a page is left blank write on it "see work on page	".
If more than one book is used, indicate the total num of each. At the conclusion of the examination, place inside Book No. 1.	5051 FF 577 S
DO NOT TEAR ANY PAPER OUT OF THIS B	OOK.

University of Toronto Scarborough

BOOK NO.	
TOTAL NUMBER OF BOOKS USED	

TUT 3

TERM

EXAMINER'S REPORT

Land	IIIVER O REI ORI
1	25
2	25
3	25
4	20
5	
6	
7	
8	
9	
10	
11	
12	
TOTAL	95
	1

1. Consider the set S= 80007 2007
1. Consider the set S= Eq. Q. q. Q. Bongs each Since the nationals are countable, and
Hotel a R Set m= Wal n= Two When and More Consider the Hundreton of (m)=5 m+m, n=0
The purpose (mather the Not () ()
p=07
Consider the integral I = [a-1 a+1] and
Consider the internal I=[a-in, a+in] around a where n EN. Due to the fact that Q dense in R, I g & I, I n EN.
The man flut the feet with a get to new.
the war was a summany seating the hours a SCO (sense
Millian as Design antillance rectioned in I a being T
und sofour. The is a valid sequence mapping (nell) -> K. Now how many
= 1/11 (1(1/2) - a so any element in this interval by the property of the ing
USS than Z TEXO, =P BAR ANTHON St. M7N=> 1an-alle and this
is independent of the specific the clement me choose in In, as all of them share this property.
<u>a</u>
a_1 $a_{-\frac{1}{2}}$ $a_{+\frac{1}{2}}$ $a_{-\frac{1}{3}}a_3$ $a_{+\frac{1}{3}}$
a- 4
Europhical representation of the elevents in the seguene.

(-1) = 1-1/2+/3-1/4

3 a) A posible subsequence is simply the positive clements of the harmonic series. (Eak of Eak). This is divergent, since we know that for any divergent series, both the sun of its positive elements I the sum of its mader elements must diverge on or else the sug absolutely cornereges or diverges. b) Consider the positive sequence of elements of an, Ean's
4 like wise, the negative elements {an's I like wise the negative elements Now, Suppose that from of them disorged, then Is and the gain a We would have that E at - Ear Joyn might convergent convergent would sum to some finite c < 00. But this expressionis simply texms! a rearrangement of the absolute value sum of each element tox of ak Since absolute cornerque sums independently of order this sum is absolutely convergent, but that is a contradistion - litter Fazz ? bus or both must diverge first take at 5 show why of Let An be the partial sums of Eax, & similarly for Bn. Since Eux absolutely converges, An must converge Willed State Charles Minerally So VETO I Dasto WIN I Am An RE HBn has this property as well I be must be absolutely come yent Street the subsequence of Consign Suppose An converges to c, then the sequence of partial 8ums An is bounded above by a (Since there are no negative elevents in the sales Sum of absolute terms) It is also bounded below by zero, again snice everyterin ? O. But By must also be bounded by above by a since Bon is one of the partial sums Aix without finitely many of its terms. We also know Bu to since 1 but to Therefore Dr. Bay bould, since bx 70, it is also increasing. Bu is Bounded & monston (BMCT, Bu converges =) Elbe Converge) / e. Ebx absolutely comerges.

