Lecture 15: Rate of deformation & Reynolds Transp. They

Logisties: - ne HU, my apologies

Last Lime: - Motions q(x,t) & 4(x,t) = 9-1(x,t)

- spatial & material fields $\Gamma(z,t)$ $\Omega(X,t)$ spatial and material representations $\Gamma_{m}(X,t) = \Gamma(\Psi(X,t),t)$, $\Gamma_{s}(z,t) = \Omega(\Psi(z,t),t)$

- Spahal & material desivatives

$$\dot{\Omega}(X,t) = \frac{\partial L}{\partial t} \Omega(X,t)$$

$$\left(\frac{\Gamma_s(\infty,t)}{\sigma_{l}} = \frac{3t}{3l} + \Lambda \cdot \Delta L_l \right)$$

spatial representation of material derivative

of a spatial field?

> independent of q.7

Today: More ou rates

- Rate of strain & splu tersors

- Reynolds transport theorem

Rate of deformation tensors

Veloeity gradient talus role of def. gradient Spatient velocity gradient:

$$\vec{\mathbf{f}} = \Delta^{\mathbf{x}} \vec{\mathbf{a}} \qquad \qquad \mathbf{f}_{i} = \frac{9\mathbf{x}_{i}^{2}}{9\mathbf{a}^{2}}$$

Haterial velocity gradient:

$$\begin{aligned}
& \underline{F} = \nabla_{X} \varphi & F_{i,3} = \varphi_{i,1} \\
& \underline{V} = \varphi & V_{i} = \varphi_{i,E} \\
& \dot{F} = \frac{2}{3L} (\nabla_{X} \varphi) = \nabla_{X} (\frac{2\varphi}{2E}) = \nabla_{X} \underline{V} & \dot{F}_{i,1} = V_{i,1}
\end{aligned}$$

Described:
$$\varphi(X + \Delta X) = \varphi(X) + \varphi \Delta X$$

$$\psi(X + \Delta X) = \psi(X) + \varphi \Delta X$$

$$= \psi(X) + \nabla_{X} \psi \Delta X$$

Noke:
$$V(X,t) = y(\varphi(X,t),t)$$

V and or are same vector field

just expressed in a different variable

 $\nabla_{X} \underline{\vee} \neq \nabla_{\mathbf{x}} \underline{\vee} |_{\mathbf{x} = \mathbf{\varphi}(\underline{\mathsf{X}}, \mathsf{t})}$ because gradients are in différent directions

$$\frac{1}{4}iJ = \frac{9X^2}{3}\Lambda^2 = \frac{9X^2}{3}\Omega^2(\frac{1}{6}(\overline{x}'f)'f)$$

$$\dot{f} = \nabla_{X} \underline{V} = \nabla_{x} \underline{y} \underline{f}$$

$$\Rightarrow \underline{I} = \nabla_{x} \underline{y} = \dot{f} \underline{f}^{\dagger}$$

Need to decompose & just like F

$$\nabla \varphi$$
 $u = \varphi - x$

infinitesimal steady: $\nabla u = sym(\nabla u) + shew(\nabla u)$

Decamposition of &

Because me are intrested in instantancons
rates of change me can use adelitimé elecomp.

$$\vec{R} = \text{spen}(\Delta^{x}\vec{n}) = -\frac{c}{2}(\Delta^{x}\vec{n} - \Delta^{x}\vec{n})$$

$$\vec{Q} = \text{shen}(\Delta^{x}\vec{n}) = \frac{c}{2}(\Delta^{x}\vec{n} + \Delta^{x}\vec{n})$$

Interpretation of of and is

\[
\begin{align*}
& \text{T}(\omega) & \text{T}(\omega) + \text{T}(\omega) & \text{T}(\omega) + \text{T}(\omega) \\
& \text{T}(\omega) + \text{D}(\omega) + \text{D}(\omega) & \text{T}(\omega) \\
& \text{T}(\omega) + \text{D}(\omega) & \text{T}(\omega) & \text{T}(\omega) & \text{T}(\omega) \\
& \text{D}(\omega) + \text{D}(\omega) & \text{T}(\omega) & \text{T}(\om

Relation of 1 to u, u, R, R (F=Ru)

Habrial derivatives:
$$\vec{F}^{T} = \vec{F}^{T} =$$

subshitule
$$F = RU$$
 into $L = \hat{F}F$

$$P = \hat{R}U + RU \cdot (RU)$$

$$= (RU + RU \cdot (RU))^{-1}$$

$$= (RU + RU)$$

$$\underline{\underline{P}} = \underline{\underline{R}} \underline{\underline{R}}^{T} + \underline{\underline{R}} \underline{\underline{U}} \underline{\underline{V}}^{T} \underline{\underline{R}}^{T}$$

$$\underline{\underline{R}} \underline{\underline{R}}^{T} = -(\underline{R}\underline{R})^{T} \qquad \underline{\underline{A}} (\underline{\underline{R}}^{T}\underline{\underline{R}}) = \underline{\underline{Q}}$$

second term is lugered not symmetric

It remains to be seen why we can use of in shear viscosity.

Reynolds Transport Thus

motion f(X,t) with v(x,t) and v(x,t) and v(x,t) with surface v(x,t) and out word unit normal v(x,t).

chargein Q fux across 2Rt due motion of IZ.

Key. Althoug $\Omega_E = \varphi(\Omega_0, t)$ we can compute deriver him without knowleder of φ

Hour to reference config.

$$\frac{d}{dt} \int_{\Omega_{t}} \Phi(x,t) dV_{x} = \frac{d}{dt} \int_{\Omega_{t}} \Phi(x,t) dV_{x}$$

$$\frac{d}{dt} \int_{\Omega_{t}} \Phi(x,t) dV_{x} = \frac{d}{dt} \int_{\Omega_{t}} \Phi(x,t) dV_{x}$$

South fixed exchange duriv. & integral

South (\$\frac{d}{dt}(\pi_1) dV_x = \int_2(\pi_m J + \pi_m j) dV_x

where
$$\mathbf{j} = J (\nabla_{\mathbf{x}} \cdot \underline{\mathbf{v}})_{\mathbf{m}} \rightarrow \text{show labor}$$

$$= \int_{\Omega} \dot{\phi}_{\mathbf{m}} J + \dot{\phi}_{\mathbf{m}} J (\nabla_{\mathbf{x}} \cdot \underline{\mathbf{v}})_{\mathbf{m}} dV_{\mathbf{x}}$$

$$= \int_{\Omega} \dot{\phi}_{\mathbf{m}} + \dot{\phi}_{\mathbf{m}} (\nabla_{\mathbf{x}} \cdot \underline{\mathbf{v}})_{\mathbf{m}} J dV_{\mathbf{x}}$$

$$= \int_{\Omega} \dot{\phi} + \dot{\phi} \nabla_{\mathbf{x}} \cdot \underline{\mathbf{v}} dV_{\mathbf{x}}$$

subst. spatial descript of material desir $\dot{\phi} = \frac{3\phi}{3t} + \underline{v} \cdot \nabla_{x} \phi$ $= \int_{\Omega_{E}} \frac{3\phi}{3t} + \nabla_{x} \cdot (\phi \underline{v}) dV_{x}$ dimpercy then $= \int_{\Omega_{E}} \frac{3\phi}{3t} dV_{x} + \phi \phi \underline{v} \cdot \underline{v} dA_{x}$

What about $J = J(\nabla_x \cdot \underline{v})_m$? $J = \det(\underline{f})$ From leeture 5:

Deriv. of a scalar valued tenser fun:

$$\psi(\underline{\varsigma}(t)) = D\psi(\underline{\varsigma}) : \underline{\varsigma}$$

Dariv. of ole terminant: $D det(\underline{s}) = det(\underline{s}) \underline{s}^T$ From lecture $3: \underline{s}: \underline{D} = tr(\underline{s}^T \underline{D})$ $\Rightarrow \underline{J} = \underline{d} det(\underline{T}) = det(\underline{T}) \underline{T}^T : \underline{T} = \underline{J} tr(\underline{T}^{-1} \underline{\underline{t}})$ $= \underline{J} tr(\underline{T} \underline{T}^T)$ using: $\nabla_{\underline{z}} \underline{v} = \underline{\underline{T}} \underline{F}^T$ $\underline{J} = \underline{J} tr(\nabla_{\underline{z}} \underline{v}) = \underline{J}(\nabla_{\underline{x}} \cdot \underline{v})_{m}$