Portfolio Construction using Black-Litterman Model and Factors

Alvaro Cea

July 31, 2023

Contents

1	Intr	oducti	on	1								
	1.1	Develo	p computational tools and external libraries	1								
2	The	Cheory										
	2.1 Fama-French Model											
3	Res	ults		2								
	3.1	Portfol	lio and Factor analysis	2								
			Asset selection									
		3.1.2	Factor collection									
		3.1.3	P&L and backtesting									
	3.2	Black-	Litterman implementation	3								
		3.2.1	Prior and posterior returns construction	3								
		3.2.2	Views on	3								
		3.2.3	Covariance treatment	3								
		3.2.4	Portfolio weights optimisation	3								
		3.2.5	Analysis and discussion									
		3.2.6	Performance comparison	3								

1 Introduction

1.1 Develop computational tools and external libraries

• getFamaFrenchFactors https://pypi.org/project/getFamaFrenchFactors/

2 Theory

2.1 Fama-French Model

It is one of the multi-factor models which is widely used in both academia and industry to estimate the excess return of an investment asset. It is an extension to Capital Asset Pricing Model (CAPM) by adding two additional factors apart from the market risk when estimating the excess returns of an asset. The three factors considered in this model are:

Market factor (MKT) — Excess market return Size factor (SMB) — Excess return with a small market cap over those with a large market cap Value factor (HML) — Excess return of value stocks over growth stocks.

The Fama-French model is widely known as a stock market benchmark to evaluate investment performance.

3 Results

3.1 Portfolio and Factor analysis

3.1.1 Asset selection

3.1.2 Factor collection

OLS Regression Results

Dep. Variable	:			У	R-sq	uared:		0.608				
Model:	L:		0	LS	Adj.	R-squared:		0.587				
Method:		Least Squares				atistic:		28.98				
Date:		Mon, 31 Jul 2023			Prob	(F-statist	ic):	1.92e-11				
Time:		12:17:38				Likelihood:		126.50				
No. Observati	ons:	60			AIC:			-245.0				
Df Residuals:				56	BIC:			-236.6				
Df Model:				3								
Covariance Ty	pe:	ı	nonrobu	st								
========	======			====		=======	========	=======				
	coei	std	err		t	P> t	[0.025	0.975]				
const	0.015	5 0.	.004	3	.671	0.001	0.007	0.024				
Mkt-RF	0.8628	3 0.	.094	9	. 194	0.000	0.675	1.051				
SMB	-0.3160	0	. 152	-2	.084	0.042	-0.620	-0.012				
HML	-0.3282	2 0	. 109	-3	.022	0.004	-0.546	-0.111				
 Omnibus:	======	:======	 2.3	===== 81	==== Durb	======= in-Watson:	========	2.596				
Prob(Omnibus)	:	0.304			Jarq	ue-Bera (JB):	1.661				
Skew:			0.1	60	-	(JB):		0.436				
Kurtosis:			3.7			. No.		39.9				
=========		.======		====	=====		=========	=======				

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

- 3.1.3 P&L and backtesting
- 3.2 Black-Litterman implementation
- 3.2.1 Prior and posterior returns construction
- 3.2.2 Views on
- 3.2.3 Covariance treatment
- 3.2.4 Portfolio weights optimisation
- 3.2.5 Analysis and discussion
- 3.2.6 Performance comparison