HW#6 due November 13

1. Estimate the theoretical fracture strength of a brittle material if it is known that fracture occurs by the propagation of an elliptically shaped surface crack of length 0.5 mm and a tip radius of curvature of 5×10^{-3} mm, when a stress of 1035 MPa is applied.

- 2. Suppose that a wing component on an aircraft is fabricated from an aluminum alloy that has a plane-strain fracture toughness of $26.0 \text{ MPa m}^{1/2}$. It has been determined that fracture results at a stress of 112 MPa when the maximum internal crack length is 8.6 mm. For this same component and alloy, compute the stress level at which fracture will occur for a critical internal crack length of 6.0 mm.
- 3. The fatigue data for a brass alloy are given as follows:

Stress Amplitude (MPa)	Cycles to Failure
170	3.7×10^4
148	1.0×10^{5}
130	3.0×10^{5}
114	$1.0 imes 10^6$
92	1.0×10^7
80	$1.0 imes 10^8$
74	$1.0 imes 10^9$

- (a) Make an S-N plot (stress amplitude versus logarithm of cycles to failure) using these data.
- (b) Determine the fatigue strength at 4×10^6 cycles.
- (c) Determine the fatigue life for 120 MPa.