

The Panorama of Parallel and High Performance Computing

Concurrency and Parallelism — 2018-19

Master in Computer Science

(Mestrado Integrado em Eng. Informática)

Joao Lourenço <joao.lourenco@fct.unl.pt>

Bibliograpy

Chapter 1 of book

McCool M., Arch M., Reinders J.;

Structured Parallel Programming:

Patterns for Efficient Computation;

Morgan Kaufmann (2012);

ISBN: 978-0-12-415993-8

- Traditionally, software has been written for serial computation:
 - To be run on a single computer having a single Central Processing Unit (CPU)
 - A problem is broken into a discrete series of instructions
 - Instructions are executed one after another (sequentially)
 - Only one instruction may execute at any moment in time

- Is the simultaneous use of multiple compute resources to solve a computational problem:
 - To be executed using multiple processors

- Is the simultaneous use of multiple compute resources to solve a computational problem:
 - To be executed using multiple processors
 - A problem is broken into discrete parts that can be solved concurrently

- Is the simultaneous use of multiple compute resources to solve a computational problem:
 - To be executed using multiple processors
 - A problem is broken into discrete parts that can be solved concurrently
 - Each part is further broken own to a series of instructions

- Is the simultaneous use of multiple compute resources to solve a computational problem:
 - To be executed using multiple processors
 - A problem is broken into discrete parts that can be solved concurrently
 - Each part is further broken own to a series of instructions
 - Instructions from each part execute simultaneously on different processors

- Is the simultaneous use of multiple compute resources to solve a computational problem:
 - To be executed using multiple processors
 - A problem is broken into discrete parts that can be solved concurrently
 - Each part is further broken own to a series of instructions
 - Instructions from each part execute simultaneously on different processors
 - An overall control/coordination mechanism is employed

- Is the simultaneous use of multiple compute resources to solve a computational problem:
 - To be executed using multiple processors
 - A problem is broken into discrete parts that can be solved concurrently
 - Each part is further broken own to a series of instructions
 - Instructions from each part execute simultaneously on different processors
 - An overall control/coordination mechanism is employed

- The computational problem should be able to:
 - Be broken apart into discrete pieces of work that can be solved simultaneously
 - Execute multiple program instructions at any moment in time
 - Be solved in less time with multiple compute resources than with a single compute resource
- The computing resources might be:
 - A single computer with multiple processors
 - An arbitrary number of computers connected by a network (real or virtual systems)
 - A combination of both

management hardware

login / remote partition server node

gateway node

Sunway TaihuLight System

Units of Measures

- High Performance Computing (HPC) units are:
 - Flop: floating point operation, usually double precision unless noted - Flop/s: floating point operations per second
 - Bytes: size of data (a double precision floating point number is 8)
- Typical sizes are millions, billions, trillions...

Mega	Mbyte = 2^20 = 1048576 ~ 10^6 bytes	Mflop/s = 10^6 flop/s
Giga	Gbyte = 2^30 ~ 10^9 bytes	Gflop/s = 10^9 flop/s
Tera	Tbyte = 2^40 ~ 10^12 bytes	Tflop/s = 10^12 flop/s
Peta	Pbyte = 2^50 ~ 10^15 bytes	Pflop/s = 10^15 flop/s
Exa	Ebyte = 2^60 ~ 10^18 bytes	Eflop/s = 10^18 flop/s
Zetta	Zbyte = 2^70 ~ 10^21 bytes	Zflop/s = 10^21 flop/s
Yotta	Ybyte = 2^80 ~ 10^24 bytes	Yflop/s = 10^24 flop/s

Top500.org — June 2018

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband (/system/179397), IBM DOE/SC/Oak Ridge National Laboratory (/site/48553) United States	2,282,544	122,300.0	187,659.3	8,806
2	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway (/system/178764), NRCPC National Supercomputing Center in Wuxi (/site/50623) China	10,649,600	93,014.6	125,435.9	15,371
3	Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband (/system/179398), IBM DOE/NNSA/LLNL (/site/49763) United States	1,572,480	71,610.0	119,193.6	
4	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000 (/system/177999), NUDT National Super Computer Center in Guangzhou (/site/50365) China	4,981,760	61,444.5	100,678.7	18,482
5	Al Bridging Cloud Infrastructure (ABCI) - PRIMERGY CX2550 M4, Xeon Gold 6148 20C 2.4GHz, NVIDIA Tesla V100 SXM2, Infiniband EDR (/system/179393), Fujitsu National Institute of Advanced Industrial Science and Technology (AIST) (/site/50762) Japan	391,680	19,880.0	32,576.6	1,649

1 TFLOP in a chip

Intel Core i9 X-series

Cost \$2 000

	Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
	1	Summit - IRM Power System AC922 IRM POWER9 22C 3 07GHz NVIDIA	2 282 544	122 300 N	187 459 3	8 804

Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Volta GV100, Dual-rail Mellanox EDR Infiniband (/system/179397), IBM D0E/SC/Oak Ridge National Laboratory (/site/48553) United States

2,282,544 122,300.0 187,659.3 8,806

The Real World is Massively Parallel

- In the natural world, many complex, interrelated events are happening at the same time, yet within a temporal sequence.
- Compared to serial computing, parallel computing is much better suited for modeling, simulating and understanding complex, real world phenomena.
- For example, imagine modeling serially the following systems.

The Real World is Massively Parallel

Sep 19, 2018 Auto Assembly Jet Construction Drive-thru Lunch 17

Uses for Parallel Computing

 Modeling difficult problems in many areas of science and engineering

Uses for Parallel Computing

Industrial and Commercial

Why Use Parallel Computing?

- Save time and/or money
 - In theory, throwing more resources at a task will shorten its time to completion, with potential cost savings. Parallel computers can be built from cheap, commodity components.

Why Use Parallel Computing?

- Solve larger problems
 - Many problems are so large and/or complex that it is impractical or impossible to solve them on a single computer. For example:
 - "Grand Challenge" (en.wikipedia.org/wiki/Grand_Challenge) problems requiring PetaFLOPS and PetaBytes of computing resources.
 - Web search engines/databases processing millions of transactions per second.

Why Use Parallel Computing?

- Use of non-local resources
 - Using compute resources on a wide area network, or even the Internet when local compute resources are scarce. For example:
 - SETI@home (setiathome.berkeley.edu) over 1.6 million users, 4 million computers, in nearly every country in the world. Source: https://setiathome.berkeley.edu/stats.php (Sep, 2016).
 - Folding@home (folding.stanford.edu) uses over 320,000 computers globally (Sep, 2016)

Limits to serial computing

- Both physical and practical reasons pose significant constraints to simply building ever faster serial computers:
 - Transmission speeds
 - the speed of a serial computer is directly dependent upon how fast data can move through hardware. Absolute limits are the speed of light (30 cm/nanosecond) and the transmission limit of copper wire (9 cm/nanosecond). Increasing speeds requires increasing proximity of processing elements.
 - Limits to miniaturization
 - processor technology is allowing an increasing number of transistors to be placed on a chip. However, even with molecular or atomic-level components, a limit will be reached on how small components can be.

Limits to serial computing

- Both physical and practical reasons pose significant consti Stuttering Chip introduction mputers: • Trc Transistors bought per \$, m Core 2 Duo Pentium 4 Log scale nt upon how Pentium III 10' nits are the Pentium II 10 nission limit of Pentium 105 S 486 ients. 8086 386 Lin 101 4004 nber of 10 vith be reached 2000 Sources: Intel; press reports; Bob Colwell; Linley Group; IB Consulting; The Economist *Maximum safe power consumption

Limits to serial computing

The Future

- During the past 20+ years, the trends indicated by ever faster networks, distributed systems, and multi-processor computer architectures (even at the desktop level) clearly show that parallelism is the future of computing.
- In this same time period, there has been a greater than 1000x increase in supercomputer performance, with no end currently in sight.
- The race is already on for Exascale Computing! (10¹⁸ FLOPS)

Performance development

The END