Data Flow Analysis Assignment 2

Iacopo Ruzzier, Daniele Fassetta, Anna Semeraro

11 aprile 2025

Indice

1	Ver	ry Busy Expressions	2
	1.1	Definizione del problema	2
	1.2	Esempio	2
2	Dor	minator Analysis	
		Definizione del problema	3
		Esempio	
3	Con	astant propagation	4
	3.1	Definzione del problema	4
	3.2	Esempio	4

1 Very Busy Expressions

1.1 Definizione del problema

- Un'espressione è **very busy** in un punto p se, indipendentemente dal percorso preso da p, l'espressione viene usata prima che uno dei suoi operandi venga definito.
- Un'espressione a+b è very busy in un punto p se a+b è valutata in tutti i percorsi da p a Exit e non c'è una definizione di a o b lungo tali percorsi

	Very Busy Expressions
Domain	Expressions
Direction	Backward
	$in[b] = f_b(out[b])$
	$out[b] = \wedge in(succ[b])$
Transfer function	$f_b = Gen_b \cup (x - Kill_b)$
Meet Operation (\land)	Ω
Boundary Condition	$in[exit] = \emptyset$
Initial interior points	$in[b] = \mathcal{U}$

Tabella 1: Very busy expressions

Dove

- \bullet Gen[b]: espressioni valutate all'interno del Basic Block
- \bullet Kill[b]: un'espressione viene uccisa quando un suo operando viene ridefinito all'interno di b

1.2 Esempio

ВВ	Iterazione 1		
	$OUT[B] = \land IN(succ[b])$	$IN[B] = Gen[B] \cup (OUT[B] - Kill[B])$	
BB7	\emptyset (boundary condition)	$a - b \cup (\emptyset - \emptyset) = a - b$	
BB6	a-b	$\emptyset \cup (\{a-b\}-\{a-b,b-a\}) = \emptyset$	
BB5	Ø	$b - a \cup (\emptyset - \emptyset) = b - a$	
BB4	Ø	$a - b \cup (\emptyset - \emptyset) = a - b$	
BB3	a-b	$b-a\cup(\{a-b\}-\emptyset)=\{b-a,a-b\}$	
BB2	$\{b-a\}\cap\{a-a,a-b\}=b-a$	$\emptyset \cup (\{b-a\} - \emptyset) = b - a$	
BB1	b-a	/	

2 Dominator Analysis

2.1 Definizione del problema

- ullet In un CFG diciamo che un nodo X domina un altro nodo Y se il nodo X appare in ogni percorso del grafo che porta dal blocco Entry al blocco Y
- annotiamo ogni basic block B_i con un insieme $Dom[B_i]$:
 - $-B_i \in Dom[B_j] \iff B_i \text{ domina } B_j$
 - $-\ B_i \in Dom[B_i]$: per definizione un nodo domina se stesso

	Dominator Analysis
Domain	Basic Blocks
Direction	Forward
	$out[b] = f_b(in[b])$
	$in[b] = \wedge out(pred[b])$
Transfer function	$f_b = Dom[b] = b \cup x$
Meet Operation (\land)	Ω
Boundary Condition	$in[entry] = \emptyset$
Initial interior points	$in[b] = \mathcal{U}$

Tabella 2: Dominator analysis

2.2 Esempio

ВВ	Iterazione 1		
	$IN[B] = \land OUT(pred[b])$	$DOM[B] = B \cup IN[B]$	
A	\emptyset (boundary condition)	$A \cup \emptyset = A$	
В	A	$B \cup A = \{A, B\}$	
C	A	$C \cup A = \{A, C\}$	
D	$\{A,C\}$	$D \cup \{A,C\} = \{A,C,D\}$	
E	$\{A,C\}$	$E \cup \{A,C\} = \{A,C,E\}$	
F	${A, C, D} \cap {A, C, E} = {A, C}$	$F \cup \{A,C\} = \{A,C,F\}$	
G	$\{A,B\}\cap\{A,C,F\}=A$	$G \cup A = \{A,G\}$	

3 Constant propagation

3.1 Definzione del problema

- L'obiettivo della constant propagation è quello di determinare in quali punti del programma le variabili hanno un valore costante.
- L'informazione da calcolare per ogni nodo del CFG è un insieme di coppie del tipo <variabile, valore costante>.
- Se abbiamo la coppia $\langle x, c \rangle$ al nodo n, significa che x è garantito avere il valore c ogni volta che n viene raggiunto durante l'esecuzione del programma.

	Constant Propagation
Domain	pairs (v,c)
Direction	Forward
	$out[b] = f_b(in[b])$
	$in[b] = \wedge out(pred[b])$
Transfer function	$f_b = Gen[b] \cup (x - Kill[b])$
Meet Operation (\land)	Ω
Boundary Condition	$in[entry] = \emptyset$
Initial interior points	$in[b] = \mathcal{U}$

Tabella 3: Constant propagation

- Gen[b] rappresenta l'insieme di nuovi assegnamenti (all'interno di b) con valore costante. I casi di interesse sono:
 - x = c con c costante: $Gen[b] = Gen[b] \cup (x, c)$
 - x = c1⊕c2 con c1,c2 costanti: $Gen[b] = Gen[b] \cup (x, c1 \oplus c2)$ (calcolando il valore dell'espressione)
 - $x = c \oplus y \circ x = y \oplus c \text{ con } c \text{ costante:}$
 - 1. controlliamo che y sia presente nell'insieme in input: $\exists (y, v_y) \in In[b]$
 - 2. se è vero, $Gen[b] = Gen[b] \cup (x, e)$ con $e = c \oplus v_y$ (o $v_y \oplus c$)
 - $x = y \oplus z$, valutando y e z allo stesso modo del caso precedente:

$$\exists (y, v_y), (z, v_z) \in In[b] \implies Gen[b] = Gen[b] \cup (x, e) \text{ con } e = v_y \oplus v_z$$

Nel caso di definizioni multiple di ${\tt x}$, riteniamo valida solamente l'ultima all'interno di b

• Kill[b]: ogni definizione x = expr uccide le coppie $(x,c) \in \mathcal{D}$ (dominio)

3.2 Esempio

	Iterazione 1		Iterazione 2	
	IN[B]	OUT[B]	IN[B]	
BB1	Ø	Ø	Ø	
BB2	Ø	$\{(k, 2)\}$	Ø	
BB3	$\{(k,2)\}$	$\{(k, 2)\}$	$\{(k,2)\}$	
BB4	$\{(k,2)\}$	$\{(k,2),(a,4)\}$	$\{(k,2)\}$	
BB5	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,5)\}$	$\{(k,2),(a,4)\}$	
BB6	$\{(k,2)\}$	$\{(k,2),(a,4)\}$	$\{(k,2)\}$	
BB7	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,5)\}$	$\{(k,2),(a,4)\}$	
BB8	$\{(k,2),(a,4)\}$	$\{(k,4),(a,4)\}$	$\{(k,2),(a,4)\}$	
BB9	$\{(k,4),(a,4)\} \cap \mathcal{U} = \{(k,4),(a,4)\}$	$\{(k,4),(a,4)\}$	$\{(k,4),(a,4)\} \cap \{(y,8),(k,5),(a,4),(b,2),(x,8)\} =$	
BB10				
BB11				
BB12				
BB13				
BB14				
BB15				

	Iterazione 1			
	IN[B]	OUT[B]		
BB1	Ø	Ø		
BB2	Ø	$\{(k, 2)\}$		
BB3	$\{(k,2)\}$	$\{(k,2)\}$		
BB4	$\{(k,2)\}$	$\{(k,2),(a,4)\}$		
BB5	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,5)\}$		
BB6	$\{(k,2)\}$	$\{(k,2),(a,4)\}$		
BB7	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,5)\}$		
BB8	$\{(k,2),(a,4)\}$	$\{(k,4),(a,4)\}$		
BB9	$\{(k,4),(a,4)\} \cap \mathcal{U} = \{(k,4),(a,4)\}$	$\{(k,4),(a,4)\}$		
BB10				
BB11				
BB12				
BB13				
BB14				
BB15				

Tabella 4: Iterazione 1

Figura 1: Esempio 3

	Iterazione 2		
	IN[B]	OUT[B]	
BB1	Ø	Ø	
BB2	Ø	$\{(k,2)\}$	
BB3	$\{(k,2)\}$	$\{(k, 2)\}$	{
BB4	$\{(k,2)\}$	$\{(k,2),(a,4)\}$	{
BB5	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,5)\}$	$\{(k,$
BB6	$\{(k,2)\}$	$\{(k,2),(a,4)\}$	
BB7	$\{(k,2),(a,4)\}$	$\{(k,2),(a,4),(x,5)\}$	$\{(k,$
BB8	$\{(k,2),(a,4)\}$	$\{(k,4),(a,4)\}$	$\{(k,$
BB9	$\{(k,4),(a,4)\} \cap \{(y,8),(k,5),(a,4),(b,2),(x,8)\} = \{(k,4),(a,4)\}$	$\{(a,4)\}$	$\{(k,4),(a,4)\}\cap\{(a,$
BB10			
BB11			
BB12			
BB13			
BB14			
BB15			

Tabella 5: Iterazioni 2 e 3