1

Matrix Theory: Assignment 3

Ritesh Kumar Roll no. : EE20RESCH11005

Abstract—This problem is to demonstrate the way to prove the triangles are congruent and to prove a triangle as isosceles using matrix algebra.

1 Problem

ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal. Show that

1)
$$\triangle ABC \cong \triangle ACF$$

2 Solution

2.1 part 1

Let consider we have a triangle $\triangle ABC$. There are two altitudes BE and CF being drawn from the vertices B and C respectively.

In $\triangle ABE$, taking inner product of sides AE and EB we can write :

$$(\mathbf{A} - \mathbf{E})^{T} (\mathbf{E} - \mathbf{B}) = \|\mathbf{A} - \mathbf{E}\| \|\mathbf{E} - \mathbf{B}\| \cos AEB$$
(2.1.1)

$$\implies \cos AEB = \frac{(\mathbf{A} - \mathbf{E})^T (\mathbf{E} - \mathbf{B})}{\|\mathbf{A} - \mathbf{E}\| \|\mathbf{E} - \mathbf{B}\|}$$
 (2.1.2)

In $\triangle ACF$, taking inner product of sides AF and FC:

$$(\mathbf{A} - \mathbf{F})^{T} (\mathbf{F} - \mathbf{C}) = ||\mathbf{A} - \mathbf{F}|| \, ||\mathbf{F} - \mathbf{C}|| \cos AFC$$
(2.1.3)

$$\implies \operatorname{cosAFC} = \frac{(\mathbf{A} - \mathbf{F})^{T} (\mathbf{F} - \mathbf{C})}{\|\mathbf{A} - \mathbf{F}\| \|\mathbf{F} - \mathbf{C}\|}$$
 (2.1.4)

In triangle $\triangle ABC$,

$$cosAFC = cosAEB (CF \perp AB \& BE \perp AC)$$
(2.1.5)

Given,

$$\|\mathbf{E} - \mathbf{B}\| = \|\mathbf{F} - \mathbf{C}\| \tag{2.1.6}$$

$$\angle FAC = \angle EAB$$
 (Common angle) (2.1.7)

Fig. 1: Isosceles triangle

We know that if the two angles of triangles are equal then the third angle will also be equal.Hence,

$$\angle FCA = \angle EBA$$
 (2.1.8)

Hence by ASA (Angle - Side - Angle) We can say that , $\triangle ABC \cong \triangle ACF$.