CNC-Maroc 2003—Epreuve de math II : Corrigé Par M.Taibi professeur en MP* à Rabat

Partie I

- 1. Notons par P_A le polynôme caractéristique d'une matrice carrée A. Pour tout $C \in M_n(\mathbb{K})$, $P_C(\lambda) = \det(C - \lambda I_n) = \det(^t(C - \lambda I_n)) = \det(^tC - \lambda I_n) = P_{C}(\lambda)$. Donc $Sp_{\mathbb{K}}(C) = Sp_{\mathbb{K}}(^tC)$.
- 2. Les applications $X \mapsto AX$ et $X \mapsto XB$ sont linéaires, donc $\Phi_{A,B}$ est linéaire.
- 3. Soient $V = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ un vecteur propre de A associe à la valeur propre a $W = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}$ un vecteur propre de tB associe à la valeur propre b.

Comme $V \neq 0$ et $W \neq 0$, il existe $(i_0, j_0) \in [1, n]^2$ tel que $v_{i_0} \neq 0$ et $w_{j_0} \neq 0$.

- a) Pa calcul simple: $V^{t}W = (v_{i}w_{j})$ et comme $v_{i_{0}}w_{j_{0}} \neq 0$, la matrice $V^{t}W$ est non nulle.
- b) On $\Phi_{A,B}(V^{t}W) = AV^{t}W + V^{t}WB = (AV)^{t}W + V^{t}(^{t}BW) = aV^{t}W + V^{t}(^{t}BW) = (a+b)V^{t}W$. Et donc, par 3.a), $V^{t}W$ est un vecteur propre de $\Phi_{A,B}$ associe à la valeur propre a+b.
- 4. Soient $\lambda \in Sp(\Phi_{A,B})$ et Y un vecteur propre associé.
 - a) Par $\Phi_{A,B}(Y) = \lambda Y$, on a : $AY + YB = \lambda Y$, donc $AY = \lambda Y YB = Y(\lambda I_n B)$ Soit $k \in N$, supposons que $A^kY = Y(\lambda I_n - B)^k$, on a alors : $A^{k+1}Y = A(A^kY) = A(Y(\lambda I_n - B)^k) = Y(\lambda I_n - B)(\lambda I_n - B)^k = Y(\lambda I_n - B)^{k+1}$ et la relation est démontrée par récurrence.
 - b) Par a), on a $A^kY = Y(\lambda I_n B)^k$ pour tout entier naturel k et par combinaison linéaire, on obtient : $P(A)Y = YP(\lambda I_n B)$ pour tout polyôme $P \in \mathbb{K}[X]$.
 - c) On suppose que le polyôme caractérisyique P_A de A est scindé sur $\mathbb{K}: P_A(X) = (-1)^n \prod_{\mu \in Sp(A)} (X-\mu)^{\beta_m}$ où β_μ est l'ordre de multiplicité de la valeur propre μ . En utilisan 4.b) et le théorème de Cayley-Hamilton, on déduit que : $YP_A(\lambda I_n B) = 0$. Comme Y est une matrice non nulle, il en résulte que $P_A(\lambda I_n B)$ est non inversible (car sinon Y serait nulle). Mais $P_A(\lambda I_n B) = (-1)^n \prod_{\mu \in Sp(A)} ((\lambda \mu)I_n B)^{\beta_\mu}$, donc l'une des matrices facteurs n'est pas inversible,

Mais $P_A(\lambda I_n - B) = (-1)^n \prod_{\mu \in Sp(A)} ((\lambda - \mu)I_n - B)^{\beta_{\mu}}$, donc l'une des matrices facteurs n'est pas inversible, d'où l'existence de $a \in Sp(A)$ tel que $(\lambda - a)I_n - B$ ne soit pas inversible.

- 5. Soit $\lambda \in Sp(\Phi_{A,B})$. Si le le polyôme caractérisyique P_A de A est scindé sur \mathbb{K} , par 4.c) il existe $a \in Sp(A)$ tel que $(\lambda a)I_n B$ ne soit pas inversible cad $b = (\lambda a)$ est valeur propre de B et puis $\lambda = a + b \in Sp(A) + Sp(B)$. D'où l'inclusion : $Sp(\Phi_{A,B}) \subset Sp(A) + Sp(B)$ Par 3.b) on a aussi $Sp(A) + Sp(B) \subset Sp(\Phi_{A,B})$, ce qui permet d'écrure : $Sp(\Phi_{A,B}) = Sp(A) + Sp(B)$.
- 6 On suppose que la famille $(Y_1,...,Y_n)$ est libre dans $M_{n,1}(\mathbb{K})$. Soit $(Z_1,...,Z_n) \in (M_{n,1}(\mathbb{K}))^n$ tel que : $\sum_{i=1}^n Y_i^{\ t} Z_i = 0$, alors, pour tout vecteur $Z \in M_{n,1}(\mathbb{K})$, on a: $0 = \left(\sum_{i=1}^n Y_i^{\ t} Z_i\right) Z = \sum_{i=1}^n \underbrace{\binom{t}{Z_i Z} Y_i}_{scalaire} \text{ et comme la}$ famille $(Y_1,...,Y_n)$ est libre, on en déduit que : $\forall i, \forall Z \in M_{n,1}(\mathbb{K})$; ${}^t Z_i Z = 0$ et puis (en prenant $Z = \bar{Z}_i$) en

obtient $Z_i = 0$ pour tout i.

7. Soient $(U_1,...,U_n)$ une base de vecteurs propres de A et $(W_1,...,W_n)$ une base de vecteurs propres de tB . Montrons d'abord que la famille $(U_i^{\ t}W_j)_{1\leq i,j\leq n}$ est une base de $M_n(\mathbb{K})$. Soient $(\alpha_{i,j})$ une famille de scalaires telle que : $\sum_{i,j} \alpha_{i,j} U_i^{\ t}W_j = 0$ et soit $X \in M_{n,1}(\mathbb{K})$, on a alors :

$$0 = \left(\sum_{i,j} \alpha_{i,j} U_i^{\ t} W_j\right) X = \sum_{i,j} \alpha_{i,j} U_i^{\ t} ({}^t W_j X) = \sum_i \underbrace{\left(\sum_j \alpha_{i,j}^{\ t} W_j X\right)}_{\mu_i} U_i^{\ t} \text{ et comme } (U_i) \text{ est libre on en déduit}$$

$$\text{que}: \mu_i = (\sum_j \alpha_{i,j}^{\ t} W_j) X = 0 \text{ pour tout } i \text{ et tout } X, \text{ d'où}: \sum_j \alpha_{i,j}^{\ t} W_j = 0 \text{ pour tout } i \text{ et puisque } (W_j)$$

que :
$$\mu_i = (\sum_i \alpha_{i,j}^{-t} W_j) X = 0$$
 pour tout i et tout X , d'où : $\sum_i \alpha_{i,j}^{-t} W_j = 0$ pour tout i et puisque (W_j)

est libre on a : $\forall (i,j); \ \alpha_{i,j} = 0$ et par conséquent $(U_i \ ^t W_j)_{i,j}$ est une famille libre de $M_n(\mathbb{K})$, de cardinal n^2 , donc c'est une base de $M_n(\mathbb{K})$. De plus, par la question 3.b) cette famille est une base de vecteurs propres de $\Phi_{A,B}$.

En conclusion : $\Phi_{A,B}$ est diagonalisable.

- 8. Les matrices A et B sont suposées réelles et symétriques
 - a) L'application $<,>: (M,N) \mapsto tr({}^tMN)$ est le produit scalaire standart sur $M_n(\mathbb{R})$.
 - b) Question classique
 - c) Soient $(X,Y) \in (M_n(\mathbb{R}))^2$, on a: $\langle \Phi_{A,B}(X), Y \rangle = tr({}^{t}(AX + XB)Y)$ $= tr({}^{t}XAY + B {}^{t}XY)$ $= tr({}^{t}XAY) + tr(B {}^{t}XY)$ car tr est linéaire $= tr(^t XAY) + tr(^t XYB)$ d'après 8.b) $= tr({}^tX(AY + YB)$ encore linéairité de tr $=< X, \Phi_{A,B}(Y) >$

Donc $\Phi_{A,B}$ est un endomorphisme autoadjoint de l'espace euclidien $(M_n(\mathbb{R}),<,>)$

Partie II.

Dans cette partie $\mathbb{K} = \mathbb{R}$, et S est une matrice symétrique réelle définie positive.

- 1. Question du cours : Si $\lambda \in Sp(S)$ et X un vecteur propre associe, alors : $\lambda ||X||^2 = |^t XSX > 0$ car $X \neq 0$ et \hat{S} est définie positive, donc $\lambda > 0$.
- 2. Si $X \in S_n(\mathbb{R})$, alors $\Phi_S(X) = SX + XS$ est symétrique car X et S sont symétriques. (transposer pour voir...) Réciproquement : Si $\Phi_S(X) = SX + XS$ est symétrique, alors $SX + XS = {}^tXS + S{}^tX$ soit : $\Phi_S(X - {}^tX) = 0$ et comme Φ_S est définie, on en déduit que : $X = {}^t X$ et par suite $X \in S_n(\mathbb{R})$.
- 3. Soit $A: \left(\begin{array}{cc} a & b \\ b & c \end{array}\right) \in S_2(\mathbb{R}).$
 - a) On suppose A est définie positive et soient λ et μ ses valeurs propres (elles sont strictement positives), on a : $0 < \lambda \mu = \det(A) = ac - b^2$ (*) et $0 < \lambda + \mu = tr(A) = a + c$, donc a ne peut-être négatif ou nul car sinon par (*) $c \le 0$ ce qui contredit a + c > 0.
 - b) Soit $U = \begin{pmatrix} x \\ y \end{pmatrix} \neq 0$, on suppose a > 0 et $ac b^2 > 0$, on a: ${}^tUAU = ax^2 + 2bxy + cy^2 = a(x + \frac{b}{a}y)^2 \frac{b^2}{a}y^2 + cy^2 = a(x + \frac{b}{a}y)^2 + \frac{1}{a}(ac b^2)y^2 > 0. \text{ Donc } A \text{ est } A = 0$ définie positive.
 - c) A est supposée définie positive, $X_{\lambda} = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}$ avec $\lambda > 0$, on a : $\Phi_{A}(X_{\lambda}) = AX_{\lambda} + X_{\lambda}A = \underbrace{\begin{pmatrix} 2\lambda a & (\lambda+1)b \\ (\lambda+1)b & 2c \end{pmatrix}}_{c} .$ Comme $\lambda > 0$, on a, par 3.a et 3.b), $\Phi_{A}(X_{\lambda})$ n'est pas définie positive si et seulement si $4\lambda ac (\lambda+1)^{2}b^{2} \leq 0$ et puisque $\frac{4\lambda}{(\lambda+1)^{2}} \leq 1$, on choisit λ et b tel que : $\frac{4\lambda}{(\lambda+1)^{2}} < 1$ et $\frac{4\lambda}{(\lambda+1)^{2}}ac \leq b^{2} < ac$ ce qui toujours possible.
- 5. Résultat du cours : S est une matrice symétrique réelle, il existe donc $P \in O_n(\mathbb{R})$ (P orthogonale)et $D = diag(\lambda_1, ..., \lambda_n)$ où les λ_i sont réels telles que : $S = PDP^{-1} = PD^{t}P$.

6. Soit $X \in M_n(\mathbb{R})$, $M = \Phi_S(X)$, $Y = P^{-1}XP = (y_{ij})$ et $N = P^{-1}MP = (n_{ij})$.

a)
$$\Phi_D(Y) = DY + YD = P^{-1}SPY + YP^{-1}SP$$

= $P^{-1}(SPYP^{-1} + PYP^{-1}S)P$
= $P^{-1}(SX + XS)P$
= $P^{-1}MP = N$

Done $\Phi_D(Y) = N$.

La relation DY + YD = N donne : $(\lambda_i + \lambda_j)y_{ij} = n_{ij}$ pour tout $(i, j) \in [1, n]^2$, soit : $y_{ij} = \frac{n_{ij}}{\lambda_i + \lambda_j}$ pour tout $(i, j) \in [1, n]^2$.

Dans la suite de la question 6. la matrice M est supposée symétrique définie positive.

b) Par $N = P^{-1}MP$ et M symétrique définie positive, on a : N est symétrique dédinie positive car ${}^tN = {}^t({}^tPMP) = {}^tP^tMP = {}^tPMP = N$ et pour tout $X \in M_{n,1}(\mathbb{R}) \setminus \{0\}$, on a : ${}^tXNX = {}^t(PX)M(PX) > 0$ ($X \neq 0$ et P inversible).

c) Soit
$$U = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \in M_{n,1}(\mathbb{R}).$$

- $^tUYU = \sum_{i,j} y_{ij}.u_iu_j = \sum_{i,j} \frac{n_{ij}}{\lambda_i + \lambda_j}.u_iu_j$ d'après 6.a).
- Pour $\alpha > 0$, on a : $1 \alpha < 1$, donc l'application $t \mapsto \frac{1}{t^{1-\alpha}} = t^{\alpha-1}$ (qui est définie et continue sur [0,1]) est [0,1]—intégrable .

- Pour
$$s \in]0,1]$$
, posons $U(s) = \begin{pmatrix} u_1 s^{\lambda_1 - \frac{1}{2}} \\ \vdots \\ u_n s^{\lambda_n - \frac{1}{2}} \end{pmatrix} \in M_{n,1}(\mathbb{R})$, on a :
$${}^t U(s)NU(s) = \sum_{i,j} n_{ij} (u_i s^{\lambda_i - \frac{1}{2}}) (u_j s^{\lambda_j - \frac{1}{2}}) = \sum_{i,j} n_{ij} . u_i u_j s^{\lambda_i + \lambda_j - 1}$$
, donc l'application

 $s \mapsto^t U(s)NU(s)$ est combinaison linéaire de fonctions continues et]0,1]-intégrables $(\lambda_i + \lambda_j > 0)$ pour tout (i,j), donc intégrable sur]0,1].

$$-\int_{0}^{1} {}^{t}U(s)NU(s)ds = \int_{0}^{1} \sum_{i,j} n_{ij}.u_{i}u_{j}s^{\lambda_{i}+\lambda_{j}-1} = \sum_{i,j} \frac{n_{ij}}{\lambda_{i}+\lambda_{j}}.u_{i}u_{j} = {}^{t}UYU.$$
Si U est non nul, alors pour tout $s \in]0;1]$ $U(s)$ est aussi non nul et puisque N est définie positive, on a : ${}^{t}U(s)NU(s) > 0$ pour tout $s \in]0;1]$ et puis par intégration, on a : ${}^{t}UYU = \int_{0}^{1} {}^{t}U(s)NU(s)ds > 0$.

d) Par ce précède Y est une matrice symétrique définie positive et puis par la relation $X = PY^tP$, on déduit que X est définie positive.

Partie III Dans cette partie $\mathbb{K} = \mathbb{C}$.

Pour
$$B=-A$$
, on a, pour tout $X\in M_{n,1}(\mathbb{C}):\Phi_{A,B}(X)=AX-XA$

- 1. On prend $A = \Delta = diag(\mu_1, ..., \mu_n)$ avec les μ_i deux à deux distincts.
 - a) Ici n=2: $X = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \ker(\Phi_{A,-A}) \Leftrightarrow AX XA = 0 \Leftrightarrow \begin{pmatrix} 0 & y(\mu_2 \mu_1) \\ (\mu_1 \mu_2)z & 0 \end{pmatrix} = 0 \Leftrightarrow y = z = 0.$ Donc $X \in \ker(\Phi_{A,-A}) \Leftrightarrow X = \begin{pmatrix} x & 0 \\ 0 & t \end{pmatrix}$. En conclusion: $\ker(\Phi_{A,-A}) = \operatorname{vect}(E_{11}, E_{22})$ où $(E_{ij})_{i,j}$ est la base canonique de $M_n(\mathbb{C})$ et $\dim(\ker(\Phi_{A,-A})) = 2$.
 - b) Ici n est quelconque : Soit $X=(x_{ij})\in M_n(\mathbb{C})$, on a : $X\in \ker(\Phi_{A,-A})\Leftrightarrow XA-AX=0\Leftrightarrow \forall i,j;\ (\mu_i-\mu_j)x_{ij}=0\Leftrightarrow \forall i,j;\ (i\neq j\Rightarrow x_{ij}=0)$. Donc $\ker(\Phi_{A,-A})=vect(E_{ii})_{1\leq i\leq n}$ où $(E_{ij})_{i,j}$ est la base canonique de $M_n(\mathbb{C})$ et par suite $\dim(\ker(\Phi_{A,-A}))=n$. On peut aussi démntrer que $\ker(\Phi_{A,-A})=C[A]=vect(I_n,A,...,A^{n-1})$
- 2. A est une matrice de $M_n(\mathbb{C})$ ayant n valeurs propres deux à deux distinctes.

- a) cours : par exemple :Le polynôme caractéristique de A est scindé sur $\mathbb C$ et à racines simples, donc A est diagonalisable
- b) Soit $P \in GL_n(\mathbb{C})$ tel que $A = P\Delta P^{-1}$, $\Delta = diag(\mu_1, ..., \mu_n)$ Soit $X \in \ker(\Phi_{A,-A})$, posons $Y = P^{-1}XP$, on a alors $\Delta Y = Y\Delta$, donc $Y \in \ker\Phi_{\Delta,-\Delta} = \operatorname{vect}(E_{ii})_{1 \leq i \leq n}$ Soit $X = PDP^{-1}$ où $D = diag(\alpha_1, ..., \alpha_n)$ alors X commute avec A, donc $X \in \ker(\Phi_{A, -A})$. Conclusion : $\ker(\Phi_{A,-A}) = \Psi(\ker\Phi_{\Delta,-\Delta})$ où Ψ est l'isomorphisme d'espace vectoriel $M \mapsto PMP^{-1}$ et $\dim(\ker(\Phi_{A,-A}))=n.$
- 3. Soit $\|.\|$ une norme quelconque sur $M_n(\mathbb{C})$.
 - a) L'application $A \mapsto \Phi_{A,-A}$ est linéaire (evident) et dim $M_n(\mathbb{C}) < +\infty$, donc continue.
 - b) Soit $q \in [1,n]$, l'application $A = (a_{ij})_{1 \le i,j \le n} \mapsto \det((a_{ij})_{1 \le i,j \le p})$ est continue car polynomiale en les coefficients de A.
- 4. Soit $M \in M_n(\mathbb{C})$, Comme \mathbb{C} est algébriquement clos, M est trigonalisabe : $\exists P \in GL_n(\mathbb{C})$; $P^{-1}MP = T$ avec

$$T = \begin{pmatrix} \lambda_1 & * & * \\ & \ddots & * \\ 0 & & \lambda_n \end{pmatrix}$$

Soit $\mu = \min\{|\lambda_i - \lambda_j'|, \lambda_i \neq \lambda_j\} > 0$ et $\mu = 1$ si les λ_i sont tous égaux. Pour tout $p \in \mathbb{N}^*$, posons $T_p = T + \frac{\mu}{\rho}D$ avec $D=diag(1,\frac{1}{2},...,\frac{1}{n}).$ Posons $\delta_i=\lambda_i+\frac{\mu}{ip},$ on a pour $i,j\in \llbracket 1,\mathbf{n} \rrbracket$ tels que $i\neq j$:

- * Si $\lambda_i = \lambda_j$, alors $\delta_i \neq \delta_j$
- * Si $\lambda_i \neq \lambda_j$, supposons $\delta_i = \delta_j$, alors $|\lambda_i \lambda_j| = \mu \left| \frac{1}{ip} \frac{1}{jp} \right| < \mu$ impossible, donc $\delta_i \neq \delta_j$

Les valeurs propres de T_p , a savoir les δ_i , sont deux à deux distinctes, donc T_p est diagonalisable. Or $T=\lim_p T_p$ et par suite $M=PTP^{-1}=\lim_{p\to+\infty}PT_pP^{-1}$. La conclusion en résulte.

- 5. Soit $r \in [0,n]$.
 - a) Si r = n, alors $O_r = \{C \in M_n(\mathbb{C}), rg(C) > r\} = \emptyset$ donc c'est un ouvert Supposons $r \leqslant n-1$, soit $M=(m_{ij})_{i,j}$ un élément de $O_r=\{C\in M_n(C), rg(C)\geqslant r+1\}$, comme $rg(M) \geqslant r+1$, il existe une matrice carrée extraite de M d'ordre r+1 qui soit inversible ie : il existe I, $J \subset [1,n]$ avec card(I) = card(J) = r+1 tel que la matice $M' = (m_{ij})_{(i,j) \in I \times J}$ soit inversible, donc $\det\left(M'\right)\neq0.$

L'application $\Psi: M_n(\mathbb{C}) \to \mathbb{C}$, $X = (x_{ij})_{i,j} \mapsto \det(X' = (x_{ij})_{(i,j) \in I \times J})$ est continue et comme $\Psi(M)$ est non nulle, il exist V voisinage de M dans $M_n(\mathbb{C})$ tel que : $\forall X \in V$, $\Psi(X) \neq 0$ c'est à dire tout point de V est de rang $\geqslant r+1 > r$, donc $V \subset O_r$.

En conclusion : O_r est un ouvert de $M_n(\mathbb{C})$.

- b) Soit $m \geqslant 2$ et $s \in \llbracket 1, m \rrbracket$, Notons $\Gamma = \{M \in M_m(\mathbb{C}); rg(M) = s\}$, on $a : \Gamma \subset \Gamma' = \mathcal{C}_{M_m(C)}^{O_s}$ Γ' est fermé dans $M_m(\mathbb{C})$ (complémentaire d'un ouvert de $M_m(\mathbb{C})$), donc $\bar{\Gamma} = adh(\Gamma) \subset \bar{\Gamma}'$ ce qui permet de conclure que si $(A_p)_p$ est une suite de points de Γ $(\forall p, rg(A_p) = s)$, convergeant vers A, alors $A \in \Gamma'$ ie $rg(A) \leqslant s$.
- 6. Soit $A \in M_n(\mathbb{C})$, par 4., il existe une suite $(A_p)_p$ de matrices diagonalisable à valeurs propres deux à deux distinctes telle que $\lim_{n} A_p = A$.

Si $X \in \ker \Phi_{A_p, -A_p}$, alors $\Phi_{A_p, -A_p}(X) = 0$ et par 3.a) $0 = \lim_p \Phi_{A_p, -A_p}(X) = \Phi_{A, -A}(X)$ et par suite $X \in \ker \Phi_{A, -A}$. D'où $\forall p \in \mathbb{N}$, $\ker \Phi_{A_p, -A_p} \subset \ker \Phi_{A, -A}$ et puis $n = \dim \ker \Phi_{A_p, -A_p} \leqslant \dim \ker \Phi_{A, -A}$.