

# Comparative Analysis of Hate Classification in Audio: A Study of Waveform vs. Spectrogram-based Approaches



Damian Kopp, Luca Engel, Nino Gerber

#### **Group 45**

## **Problem definition**

- **Objective:** Compare hate speech classification using raw waveforms and spectrogram-based approaches in audio data.
- Hypothesis: Spectrogram-based models will outperform raw waveform models.
- Data Source: Text-to-speech synthesized audio from social media comments.

# **Key Related Works**

- •Traditional ML: Logistic Regression, Random Forest, SVM for audio hate speech detection.
- •wav2vec2: Meta's model for learning speech representations.
- •AST: MIT's attention-based model for audio classification.
- •Coqui-TTS: Open-source Text-to-Speech generator.

#### Method

- Models:
  - Wav2vec2: Fine-tuned on raw audio waveforms.
  - AST: Fine-tuned on spectrograms treated as images.
  - **DistilBERT:** Fine-tuned on text data for comparison.
- Preprocessing: Text extraction, hate speech score assignment, text-to-speech synthesis using Coqui-TTS.
- Training Configurations: Varied learning rates, batch sizes, and gradient accumulation steps due to hardware constraints

| Parameter                         | wav2vec2 | AST  | DistilBERT | Parameter                         |
|-----------------------------------|----------|------|------------|-----------------------------------|
| Learning Rate                     | 4E-5     | 3E-5 | 8E-5       | Learning Rate                     |
| Batch Size                        | 32       | 16   | 32         | Batch Size                        |
| Gradient Accumulation Steps (GAS) | 4        | 2    | 4          | Gradient Accumulation Steps (GAS) |

# Dataset(s)

•Source: UC Berkeley D-Lab "Measuring Hate Speech".

•Details: 39,565 samples, balanced for hate and non-hate speech, synthesized for audio.

## **Validation**

- Models Used: wav2vec2 (raw waveforms), AST (spectrograms), DistilBERT (text).
- Key Metrics:
  - -Validation Set

| Model          | Loss  | Accuracy | Recall | Precision | F1 Score |
|----------------|-------|----------|--------|-----------|----------|
| Wav2vec2       | 0.656 | 0.622    | 0.785  | 0.599     | 0.680    |
| AST            | 0.631 | 0.649    | 0.837  | 0.614     | 0.708    |
| DistilBER<br>T | 0.998 | 0.774    | 0.812  | 0.753     | 0.781    |

### -Test Set

| Model      | Loss  | Accuracy | Recall | Precision | F1 Score |
|------------|-------|----------|--------|-----------|----------|
| Wav2vec2   | 0.660 | 0.619    | 0.782  | 0.594     | 0.676    |
| AST        | 0.644 | 0.632    | 0.819  | 0.600     | 0.693    |
| DistilBERT | 1.064 | 0.754    | 0.793  | 0.741     | 0.766    |

## Limitations

- •Synthetic Data: May not fully capture nuances of real human speech.
- •Computational Constraints: Affected model performance due to reduced batch sizes and steps.

# Conclusion

- Findings: Audio classification is effective for hate speech detection.
- Performance: AST slightly better than wav2vec2; both close to DistilBERT.
- Implications: Potential for further research with larger, diverse, human speech datasets.

#### References

[1] Y. Gong, Y. Chung, and J. R. Glass, "AST: Audio Spectrogram Transformer," CoRR, vol. abs/2104.01778, 2021.

[2] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, "wav2vec 2.0: A framework for self-supervised learning of speech representations," in Advances in Neural Information Processing Systems (NeurIPS), 2020.

[3] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter," CoRR, vol. abs/1910.01108, 2019.