Modelos multinivel

CEPAL

21/3/2022

Lectura de la base

```
encuesta <- readRDS("../Data/encuesta.rds")</pre>
```

Creando theme_cepal

```
theme_cepal <- function(...) theme_light(10) +</pre>
  theme(axis.text.x = element blank(),
        axis.ticks.x = element blank(),
        axis.text.y = element_blank(),
        axis.ticks.y = element_blank(),
        legend.position="bottom",
        legend.justification = "left",
        legend.direction="horizontal",
        plot.title = element text(size = 20, hjust = 0.5),
        ...)
```

Income	Expenditure	Stratum	Sex	Region	Zone
502.6	314.1	idStrt112	Male	Oriente	Rural
502.6	314.1	idStrt112	Female	Oriente	Rural
502.6	314.1	idStrt112	Male	Oriente	Rural
502.6	314.1	idStrt112	Male	Oriente	Rural
502.6	314.1	idStrt112	Female	Oriente	Rural
200.0	323.2	idStrt112	Female	Oriente	Rural


```
B1 <- coef(lm(Income ~ Expenditure, data = encuesta_plot))
(coef_Mod <- encuesta_plot %>% group_by(Stratum) %>%
  summarise(B0 = coef(lm(Income ~ 1))[1]) %>%
  mutate(B1 = B1))
```

Stratum	B0	B1
idStrt001	416.7	1.169
idStrt004	416.5	1.169
idStrt009	392.8	1.169
idStrt010	631.5	1.169
idStrt011	432.5	1.169
idStrt112	330.0	1.169

```
ggplot(data = encuesta plot,
       aes(y = Income, x = Expenditure,
           colour = Stratum)) +
  geom_jitter() + theme(legend.position="none",
    plot.title = element_text(hjust = 0.5)) +
  geom_abline(data = coef_Mod,
              mapping=aes(slope=B1,
                          intercept=B0, colour = Stratum))
  ggtitle(
    latex2exp::TeX("$Ingreso_{ij}\\sim\\hat{\\beta}_{0j}+\'
  theme cepal()
```



```
B0 <- coef(lm(Income ~ Expenditure, data = encuesta_plot))
(coef_Mod <- encuesta_plot %>% group_by(Stratum) %>%
  summarise(B1 = coef(lm(Income ~ -1 + Expenditure))[1]) %2
  mutate(B0 = B0))
```

Stratum	B1	В0
idStrt001	1.672	113.5
idStrt004	1.167	113.5
idStrt009	1.962	113.5
idStrt010	1.720	113.5
idStrt011	1.201	113.5
idStrt112	1.431	113.5

```
ggplot(data = encuesta_plot,
       aes(y = Income, x = Expenditure,
           colour = Stratum)) +
  geom_jitter() + theme(legend.position="none",
    plot.title = element_text(hjust = 0.5)) +
  geom_abline(data = coef_Mod,
              mapping=aes(slope=B1,
                          intercept=B0, colour = Stratum))
  ggtitle(
    latex2exp::TeX("$Ingreso_{ij}\\sim\\hat{\\beta}_{0}+\\]
  theme cepal()
```


Dos tipos de índices son relevantes en los análisis multinivel:

- Los coeficientes de regresión, generalmente denominados como los parámetros fijos del modelo.
- Las estimaciones de la varianza, generalmente denominadas parámetros aleatorios del modelo.

Cualquier análisis de regresión multinivel siempre debe comenzar con el cálculo de las estimaciones de varianza de Nivel 1 y Nivel 2 para la variable dependiente.

► El primer paso recomendado en el análisis de regresión multinivel consiste en una descomposición de la varianza de la variable dependiente en los diferentes niveles.

Ejemplo La varianza del ingreso se descompondrá en dos componentes:

- La varianza dentro dentro del estrato
- la varianza entre los estratos.

Estos dos componentes de varianza se pueden obtener una regresión multinivel.

Un modelo básico es:

$$y_{ij} = \beta_{0j} + \epsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + \tau_{0j}$$

- \triangleright $y_{ij} = \text{Los ingresos de la persona } i \text{ en el estrato } j.$
- \triangleright $\beta_{0j} = \text{El intercepto en el estrato } j$.
- $ightharpoonup \epsilon_{ij}$ El residual de la persona i en el estrato j.
- $ightharpoonup \gamma_{00} = \text{El intercepto en general.}$
- $au_{0i} =$ Efecto aleatorio para el intercepto.

donde,
$$au_{0j} \sim N\left(0, \sigma_{ au}^{2}\right)$$
 y $\epsilon_{ij} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$.

La correlación intra clásica esta dada por:

$$\rho = \frac{\sigma_{\tau}^2}{\sigma_{\tau}^2 + \sigma_{\epsilon}^2}$$

Modelos multinivel en muestras complejas.

- Aunque existe evidencia suficiente de que las ponderaciones de muestreo deben usarse en el modelado multinivel (MLM) para obtener estimaciones no sesgadas¹, y también sobre cómo deben usarse estas ponderaciones en los análisis de un solo nivel, hay poca discusión en la literatura sobre qué y cómo usar pesos de muestreo en MLM.
- Actualmente, diferentes autores recomiendan cuatro enfoques diferentes sobre cómo usar los pesos de muestreo en modelos jerárquicos.

¹Cai, T. (2013). Investigation of ways to handle sampling weights for multilevel model analyses. Sociological Methodology, 43(1), 178-219.

- ▶ Pfefermann et al. (1998) y Asparouhov (2006) aconsejan utilizar un enfoque de pseudomáxima verosimilitud para calcular estimaciones dentro y entre los diferentes niveles utilizando la técnica de maximización de mínimos cuadrados generalizados ponderados por probabilidad (PWGLS) para obtener estimaciones no sesgadas.²³
- Rabe-Hesketh y Skrondal (2006) proporcionan técnicas de maximización de expectativas para maximizar la pseudoverosimilitud⁴

 $^{^2}$ Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H., & Rasbash, J. (1998). Weighting for unequal selection probabilities in multilevel models. Journal of the Royal Statistical Society: series B (statistical methodology), 60(1), 23-40.

³Asparouhov, T. (2006). General multi-level modeling with sampling weights. Communications in Statistics—Theory and Methods, 35(3), 439-460.

⁴Asparouhov, T., & Muthen, B. (2006, August). Multilevel modeling of complex survey data. In Proceedings of the joint statistical meeting in Seattle (pp. 2718-2726).

Estimación de pseudo máxima verosimilitud

La función de log-verosimilitud para la población esta dada por:

$$L_{U}(\theta) = \sum_{i \in U} \log [f(\mathbf{y}_{i}; \theta)]$$

El estimador de máxima verosimilitud esta dada por:

$$\frac{\partial L_U(\theta)}{\partial \theta} = 0$$

La dificultad que encontramos aquí, es transferir los pesos muéstrales a los niveles inferiores, por ejemplo UPMs -> Stratum.

Pfeffermann et al. (1998) argumentaron que debido a la estructura de datos agrupados, ya no se asume que las observaciones sean independientes y que la probabilidad logarítmica se convierta en una suma entre los elementos de nivel uno y dos en lugar de una simple suma de las contribuciones de los elementos.

Ajuste de pesos (alternativa a los Modelo q-weighted)

fep	q_wei	fep2
150266	2420	2422

Comparando los pesos.

```
ggplot(encuesta, aes(x = wk2, y = wk3)) +
geom_point() + theme_bw() +
labs(x = "q-weighted", y = "Alternativa")
```

Comparando los pesos.


```
library(lme4)
mod_null <- lmer( Income ~ ( 1 | Stratum ),</pre>
                   data = encuesta,
             weights = wk2)
mod_null2 <- lmer( Income ~ ( 1 | Stratum ),</pre>
                     data = encuesta,
             weights = wk3)
coef_mod_null <- bind_cols(coef( mod_null )$Stratum,</pre>
          coef(mod null2 )$Stratum)
colnames(coef mod null) <- c("Intercept Mod 1",</pre>
                              "Intercept Mod 2")
coef_mod_null %>% slice(1:12)
```

	Intercept Mod 1	Intercept Mod 2
idStrt001	424.0	427.1
idStrt002	955.4	949.2
idStrt003	349.4	356.8
idStrt004	423.2	423.9
idStrt005	170.8	179.2
idStrt006	402.3	406.1
idStrt007	307.0	310.6
idStrt008	634.1	632.7
idStrt009	401.7	405.0
idStrt010	628.3	628.4
idStrt011	423.2	425.5
idStrt012	586.8	586.9

mod_null

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: Income ~ (1 | Stratum)
     Data: encuesta
## Weights: wk2
## REML criterion at convergence: 35124
## Random effects:
## Groups Name Std.Dev.
## Stratum (Intercept) 242
## Residual
                        298
## Number of obs: 2422, groups: Stratum, 119
## Fixed Effects:
## (Intercept)
          538
##
```

```
#library(sistats)
sjstats::icc(mod_null)
   # Intraclass Correlation Coefficient
##
        Adjusted ICC: 0.397
##
     Conditional ICC: 0.397
##
```

(tab_pred <- data.frame(Pred = predict(mod_null),</pre> Income = encuesta\$Income,

St	ratu	m = en	cuesta\$S	Stratum))	%>% distinct()	%>%
slice(1:6L)	# S	on las	pendier	ites alea	torias	
		Pred	Income	Stratum		
	1	424	243.2	idStrt001		
	5	424	223.0	idStrt001		
	7	424	893.1	idStrt001		
	15	424	337.5	idStrt001		

224 3 idStrt001

10

424

Scaterplot de y vs \hat{y}


```
\beta_{1j} = \gamma_{10} + \gamma_{11} Stratum_j + \tau_{1j} mod\_Int\_Aleatorio \leftarrow lmer( Income \sim Expenditure + (1 \mid Stratum), data = encuesta, weights = wk2) sjstats::icc(mod\_Int\_Aleatorio)
```

 $Ingreso_{ii} = \beta_0 + \beta_1 Gasto_{ii} + \epsilon_{ii}$

```
##
## Adjusted ICC: 0.280
## Conditional ICC: 0.175
```

##

Intraclass Correlation Coefficient

coef(mod_Int_Aleatorio)\$Stratum %>% slice(1:10L)

	(Intercept)	Expenditure
idStrt001	177.84	0.9416
idStrt002	537.77	0.9416
idStrt003	103.25	0.9416
idStrt004	129.82	0.9416
idStrt005	-23.29	0.9416
idStrt006	123.09	0.9416
idStrt007	122.92	0.9416
idStrt008	407.40	0.9416
idStrt009	211.30	0.9416
idStrt010	275.53	0.9416
		<u> </u>

```
Coef_Estimado <- inner_join(</pre>
  coef(mod Int Aleatorio)$Stratum %>%
       add rownames(var = "Stratum"),
encuesta_plot %>% select(Stratum) %>% distinct())
ggplot(data = encuesta_plot,
       aes(y = Income, x = Expenditure,
           colour = Stratum)) +
  geom jitter() + theme(legend.position="none",
    plot.title = element text(hjust = 0.5)) +
  geom abline(data = Coef Estimado,
              mapping=aes(slope=Expenditure,
                           intercept=`(Intercept)`,
                          colour = Stratum))+
  theme_cepal()
```


Predicción del modelo

	Pred	Income	Stratum
1	372.9	243.2	idStrt001
5	259.6	223.0	idStrt001
7	643.4	893.1	idStrt001
15	374.1	337.5	idStrt001
19	264.0	224.3	idStrt001
20	431.6	464.2	idStrt001

Scaterplot de y vs \hat{y}

$$Ingreso_{ij} = \beta_{0j} + \beta_{1j} Gasto_{ij} + \epsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01} Stratum_j + \tau_{0j}$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11} Stratum_j + \tau_{1j}$$

$$\texttt{mod_Pen_Aleatorio} <- \, \texttt{lmer}($$

$$\texttt{Income} \sim \, \texttt{Expenditure} \, + \, (1 \, + \, \texttt{Expenditure} | \, \texttt{Stratum}) \,,$$

$$\texttt{data} = \, \texttt{encuesta} \,, \, \texttt{weights} \, = \, \texttt{wk2})$$

$$\texttt{sjstats::icc}(\texttt{mod_Pen_Aleatorio})$$

$$\texttt{## } \# \text{Intraclass Correlation Coefficient}$$

$$\texttt{##}$$

```
## Adjusted ICC: 0.726
## Conditional ICC: 0.510
```

coef(mod_Pen_Aleatorio)\$Stratum %>% slice(1:10L)

	(Intercept)	Expenditure
idStrt001	-35.7062	1.7543
idStrt002	-80.4434	2.4616
idStrt003	0.2362	1.2955
idStrt004	279.3118	0.4547
idStrt005	42.9532	0.5780
idStrt006	229.4414	0.5565
idStrt007	29.0805	1.4039
idStrt008	379.8502	1.1059
idStrt009	122.2335	1.3881
idStrt010	8.6536	1.6779

```
Coef_Estimado <- inner_join(</pre>
  coef(mod Pen Aleatorio)$Stratum %>%
       add rownames(var = "Stratum"),
encuesta_plot %>% select(Stratum) %>% distinct())
ggplot(data = encuesta_plot,
       aes(y = Income, x = Expenditure,
           colour = Stratum)) +
  geom jitter() + theme(legend.position="none",
    plot.title = element text(hjust = 0.5)) +
  geom abline(data = Coef Estimado,
              mapping=aes(slope=Expenditure,
                           intercept=`(Intercept)`,
                           colour = Stratum))+
  theme_cepal()
```


Predicción del modelo

	Pred	Income	Stratum
1	327.7	243.2	idStrt001
5	116.6	223.0	idStrt001
7	831.8	893.1	idStrt001
15	330.0	337.5	idStrt001
19	124.7	224.3	idStrt001
20	437.0	464.2	idStrt001

Scaterplot de y vs \hat{y}

$$\begin{split} \textit{Ingreso}_{ij} &= \beta_{0j} + \beta_{1j} \textit{Gasto}_{ij} + \beta_{2j} \textit{Zona}_{ij} + \epsilon_{ij} \\ \beta_{0j} &= \gamma_{00} + \gamma_{01} \textit{Stratum}_j + \gamma_{02} \mu_j + \tau_{0j} \\ \beta_{1j} &= \gamma_{10} + \gamma_{11} \textit{Stratum}_j + \gamma_{12} \mu_j + \tau_{1j} \\ \beta_{2j} &= \gamma_{20} + \gamma_{21} \textit{Stratum}_j + \gamma_{12} \mu_j + \tau_{2j} \end{split}$$

donde μ_j es el gasto medio en el estrato j.

media_estrato <- encuesta %>% group_by(Stratum) %>% summarise(mu = mean(Expenditure)) encuesta <- inner_join(encuesta,</pre> media estrato, by = "Stratum") mod Pen Aleatorio2 <- lmer(Income ~ 1 + Expenditure + Zone + mu + (1 + Expenditure + Zone + mu | Stratum),

```
data = encuesta, weights = wk2)
sjstats::icc(mod Pen Aleatorio2)
## # Intraclass Correlation Coefficient
```

Adjusted ICC: 0.596 ## Conditional ICC: 0.366

(tab_pred <- data.frame(Pred = predict(mod_Pen_Aleatorio2))</pre> Income = encuesta\$Income, Stratum = encuesta\$Stratum)) %>% distinct() %>%

Scaterplot de y vs \hat{y}


```
as.data.frame( model.matrix(mod_Pen_Aleatorio2)) %>%
    distinct()
```

```
(Coef_Estimado <- inner_join(
  coef(mod_Pen_Aleatorio2)$Stratum %>%
    add_rownames(var = "Stratum"),
  encuesta_plot %>% select(Stratum, Zone) %>% distinct()
))
```

Stratum	(Intercept)	Expenditure	${\sf ZoneUrban}$	mu	Zone
idStrt001	154.4	1.7418	77.353	-0.6954	Rural
idStrt004	112.6	0.4495	-15.163	0.6007	Urban
idStrt009	205.4	1.4888	8.512	-0.5310	Rural
idStrt010	155.2	1.6702	82.972	-0.6101	Urban
idStrt011	164.6	-0.0642	142.837	0.6058	Rural
idStrt112	106.5	0.7362	63.695	0.2932	Rural

```
(Coef_Estimado %<>% inner_join(
  media_estrato, by = "Stratum"))
```

Stratum	(Intercept)	Expenditure	ZoneUrban	mu.x	Zone	mu.y
idStrt001	154.4	1.7418	77.353	-0.6954	Rural	255.2
idStrt004	112.6	0.4495	-15.163	0.6007	Urban	305.5
idStrt009	205.4	1.4888	8.512	-0.5310	Rural	190.2
idStrt010	155.2	1.6702	82.972	-0.6101	Urban	365.9
idStrt011	164.6	-0.0642	142.837	0.6058	Rural	474.8
idStrt112	106.5	0.7362	63.695	0.2932	Rural	216.2

El modelo para el estrato idStrt001 viene dado por:

$$\hat{y}_{ij} = 154.4 + 1.7418$$
Expenditure $+ 77.353$ Zone $+ (-0.6954) \mu_j$

$$\hat{y}_{ij} = 154.4 + 1.7418$$
Expenditure $+ 77.353 (0) + (-0.6954) (255.2)$

$$\hat{y}_{ij} = -23.07 + 1.7418$$
Expenditure

Stratum	Zone	В0	Expenditure
idStrt001	Rural	-23.04	1.7418
idStrt004	Urban	280.89	0.4495
idStrt009	Rural	104.46	1.4888
idStrt010	Urban	14.90	1.6702
idStrt011	Rural	452.24	-0.0642
idStrt112	Rural	169.86	0.7362

```
ggplot(data = encuesta_plot,
       aes(y = Income, x = Expenditure,
           colour = Stratum)) +
  geom_jitter() +
  theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5)) +
  facet_grid( ~ Zone) +
  geom_abline(
    data = Coef_Estimado,
    mapping = aes(
      slope = Expenditure,
      intercept = BO,
      colour = Stratum
  theme cepal()
```


Modelo logístico

```
library(lme4)
encuesta <- encuesta %>% mutate(
  pobreza = ifelse(Poverty != "NotPoor", 1, 0))
mod_logist_null <- glmer( pobreza ~ ( 1 | Stratum ),</pre>
                   data = encuesta,
             weights = wk2,
             family = binomial(link = "logit") )
coef( mod logist null )$Stratum %>% slice(1:12)
```

	(Intercept)
idStrt001	0.2849
idStrt002	-2.7120
idStrt003	-1.1122
idStrt004	0.7008
idStrt005	1.6889
idStrt006	1.4194
idStrt007	2.4396
idStrt008	1.3761
idStrt009	0.2984
idStrt010	0.2650
idStrt011	-2.9291
idStrt012	-0.8685

##

-0.605

```
library(sjstats)
mod_logist_null
## Generalized linear mixed model fit by maximum likelihood
    Approximation) [glmerMod]
##
   Family: binomial (logit)
## Formula: pobreza ~ (1 | Stratum)
##
     Data: encuesta
## Weights: wk2
##
       ATC
           BIC
                     logLik deviance df.resid
## 2618 2630
                      -1307 2614
                                        2420
## Random effects:
## Groups Name Std.Dev.
   Stratum (Intercept) 1.44
## Number of obs: 2422, groups: Stratum, 119
## Fixed Effects:
## (Intercept)
```

sjstats::icc(mod_logist_null)

```
## # Intraclass Correlation Coefficient
##
## Adjusted ICC: 0.386
## Conditional ICC: 0.386
(tab_pred <- data.frame(</pre>
```

<pre>Pred = predict(mod_logist_null, type = "response"),</pre>
<pre>pobreza = encuesta\$pobreza,</pre>
<pre>Stratum = encuesta\$Stratum)) %>% distinct() %>%</pre>
slice(1:6L) # Son las pendientes aleatorias

	Pred	pobreza	Stratum
1	0.5707	1	idStrt001
5	0.5707	0	idStrt001
28	0.0623	0	idStrt002
46	0.2475	0	idStrt003
50	0.2475	1	idStrt003
64	0.6684	0	idStrt004

Estimación de la propoción total con y y \hat{y}

```
weighted.mean(encuesta$pobreza, encuesta$wk2)
## [1] 0.4266
weighted.mean(tab_pred$Pred, encuesta$wk2)
```

```
## [1] 0.4261
```

$$logit(\pi_{ij}) = \beta_0 + \beta_{1j} Gasto_{ij} + \epsilon_{ij}$$

 $\beta_{1j} = \gamma_{10} + \gamma_{11} Stratum_j + \tau_{1j}$

```
mod_logit_Int_Aleatorio <- glmer(
  pobreza ~ Expenditure + (1 | Stratum),
  data = encuesta, family = binomial(link = "logit"),
  weights = wk2)

sjstats::icc(mod_logit_Int_Aleatorio)</pre>
```

```
## # Intraclass Correlation Coefficient
##
## Adjusted ICC: 0.356
## Conditional ICC: 0.304
```

coef(mod_logit_Int_Aleatorio)\$Stratum %>% slice(1:10L)

	(Intercept)	Expenditure
idStrt001	1.3104	-0.0039
idStrt002	-1.2031	-0.0039
idStrt003	-0.0682	-0.0039
idStrt004	1.9640	-0.0039
idStrt005	2.5457	-0.0039
idStrt006	2.5890	-0.0039
idStrt007	3.2405	-0.0039
idStrt008	2.2885	-0.0039
idStrt009	1.0931	-0.0039
idStrt010	1.7075	-0.0039

```
dat_pred <- encuesta %>% group_by(Stratum) %>%
  summarise(
    Expenditure = list(seq(min(Expenditure),
                           max(Expenditure), len = 100))) %>%
 tidyr::unnest_legacy()
dat_pred <- mutate(dat_pred,</pre>
       Proba = predict(mod_logit_Int_Aleatorio,
                       newdata = dat_pred , type = "response"))
ggplot(data = dat_pred,
       aes(y = Proba, x = Expenditure,
           colour = Stratum)) +
   geom_line()+ theme_bw() +
  geom_point(data = encuesta, aes(y = pobreza, x = Expenditure))+
  theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5))
```


Predicción del modelo

Pred	pobreza	Stratum	wk2
0.6225	1	idStrt001	0.8791
0.6225	1	idStrt001	0.8636
0.6225	1	idStrt001	0.8574
0.6225	1	idStrt001	0.8557
0.7253	0	idStrt001	0.8977
0.7253	0	idStrt001	0.9012

Estimación de la propoción total con y y \hat{y}

Pred	pobreza
0.426	0.4266

$$logit(\pi_{ij}) = \beta_{0j} + \beta_{1j} Gasto_{ij} + \epsilon_{ij}$$

$$\beta_{0j} = \gamma_{00} + \gamma_{01} Stratum_j + \tau_{0j}$$

$$\beta_{1j} = \gamma_{10} + \gamma_{11} Stratum_j + \tau_{1j}$$

```
mod_logit_Pen_Aleatorio <- glmer(
  pobreza ~ Expenditure + (1 + Expenditure| Stratum),
  data = encuesta, weights = wk2,
  binomial(link = "logit"))

sjstats::icc(mod_logit_Pen_Aleatorio)</pre>
```

```
## # Intraclass Correlation Coefficient
##
## Adjusted ICC: 0.830
## Conditional ICC: 0.677
```

coef(mod_logit_Pen_Aleatorio)\$Stratum %>% slice(1:10L)

	(Intercept)	Expenditure
idStrt001	1.2576	-0.0036
idStrt002	-0.9801	-0.0071
idStrt003	2.7782	-0.0182
idStrt004	-0.5403	0.0045
idStrt005	-0.3587	0.0112
idStrt006	3.4107	-0.0056
idStrt007	4.3334	-0.0078
idStrt008	5.4260	-0.0165
idStrt009	5.6493	-0.0287
idStrt010	2.3016	-0.0053

```
dat_pred <- encuesta %>% group_by(Stratum) %>%
  summarise(
    Expenditure = list(seq(min(Expenditure),
                           max(Expenditure), len = 100))) %>%
 tidyr::unnest_legacy()
dat_pred <- mutate(dat_pred,</pre>
       Proba = predict(mod_logit_Pen_Aleatorio,
                       newdata = dat_pred , type = "response"))
ggplot(data = dat_pred,
       aes(y = Proba, x = Expenditure,
           colour = Stratum)) +
   geom_line()+ theme_bw() +
  geom_point(data = encuesta, aes(y = pobreza, x = Expenditure))+
  theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5))
```


Predicción del modelo

Pred	pobreza	Stratum	wk2
0.6241	1	idStrt001	0.8791
0.6241	1	idStrt001	0.8636
0.6241	1	idStrt001	0.8574
0.6241	1	idStrt001	0.8557
0.7197	0	idStrt001	0.8977
0.7197	0	idStrt001	0.9012

Estimación de la propoción total con y y \hat{y}

Pred	pobreza
0.4259	0.4266

$$\begin{split} logit(\pi_{ij}) &= \beta_{0j} + \beta_{1j} \textit{Gasto}_{ij} + \beta_{2j} \textit{Zona}_{ij} + \epsilon_{ij} \\ \beta_{0j} &= \gamma_{00} + \gamma_{01} \textit{Stratum}_j + \gamma_{02} \mu_j + \tau_{0j} \\ \beta_{1j} &= \gamma_{10} + \gamma_{11} \textit{Stratum}_j + \gamma_{12} \mu_j + \tau_{1j} \\ \beta_{2j} &= \gamma_{20} + \gamma_{21} \textit{Stratum}_j + \gamma_{12} \mu_j + \tau_{2j} \end{split}$$

donde μ_j es el gasto medio en el estrato j.

```
##
## Adjusted ICC: 0.786
## Conditional ICC: 0.573
```

Intraclass Correlation Coefficient

Gráfica del modelo obtenido

```
dat_pred <- encuesta %>% group_by(Stratum, Zone, mu) %>%
 summarise(
    Expenditure = list(seg(min(Expenditure),
                           max(Expenditure), len = 100))) %>%
 tidyr::unnest legacy()
dat_pred$Proba = predict(mod_logit_Pen_Aleatorio2,
                       newdata = dat pred , type = "response")
ggplot(data = dat_pred,
       aes(y = Proba, x = Expenditure,
           colour = Stratum)) +
   geom_line()+ theme_bw() +facet_grid(.~Zone)+
 geom_point(data = encuesta, aes(y = pobreza, x = Expenditure))+
 theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5))
```


Predicción del modelo

Pred	pobreza	Stratum	Zone	wk2
0.6074	1	idStrt001	Rural	0.8791
0.6074	1	idStrt001	Rural	0.8636
0.6074	1	idStrt001	Rural	0.8574
0.6074	1	idStrt001	Rural	0.8557
0.6933	0	idStrt001	Rural	0.8977
0.6933	0	idStrt001	Rural	0.9012

Estimación de la propoción total con y y \hat{y}

Zone	Pred	pobreza
Rural	0.4577	0.4584
Urban	0.3938	0.3939