```
In [1]: import pandas as pd
   import numpy as np
   import seaborn as sns
   from sklearn.model_selection import train_test_split,GridSearchCV
   from sklearn.linear_model import LinearRegression
   from sklearn.tree import DecisionTreeRegressor
   from sklearn.ensemble import RandomForestRegressor
   from sklearn.metrics import mean_squared_error,r2_score
   import matplotlib.pyplot as plt
```

Out[2]: (5000, 9)

In [3]: data.head(5)

Out[3]:

	Date	Time	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Su
0	16/12/2006	17:24:00	4.216	0.418	234.84	18.4	
1	16/12/2006	17:25:00	5.360	0.436	233.63	23.0	
2	16/12/2006	17:26:00	5.374	0.498	233.29	23.0	
3	16/12/2006	17:27:00	5.388	0.502	233.74	23.0	
4	16/12/2006	17:28:00	3.666	0.528	235.68	15.8	

In [4]: data.tail(5)

Out[4]:

	Date	Time	Global_active_power	Global_reactive_power	Voltage	Global_intensity
4995	20/12/2006	4:39:00	0.414	0.258	246.66	2.0
4996	20/12/2006	4:40:00	0.392	0.250	246.06	1.8
4997	20/12/2006	4:41:00	0.388	0.248	246.52	1.8
4998	20/12/2006	4:42:00	0.310	0.144	247.00	1.4
4999	20/12/2006	4:43:00	0.308	0.144	247.21	1.4

In [5]: data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 5000 entries, 0 to 4999 Data columns (total 9 columns): # Column Non-Null Count Dtype ----0 Date 5000 non-null object 1 Time 5000 non-null object 2 Global_active_power 5000 non-null float64 3 Global_reactive_power 5000 non-null float64 4 Voltage 5000 non-null float64 5 Global_intensity 5000 non-null float64 6 Sub_metering_1 5000 non-null int64 7 Sub_metering_2 5000 non-null int64 8 Sub_metering_3 5000 non-null int64 dtypes: float64(4), int64(3), object(2) memory usage: 351.7+ KB data.dtypes In [6]: Out[6]: Date object Time object Global_active_power float64 Global_reactive_power float64

float64

float64

int64

int64

int64

Voltage

Global_intensity

Sub_metering_1

Sub_metering_2

Sub metering 3

dtype: object

Out[7]:

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1
date_time					
2006-12- 16 17:24:00	4.216	0.418	234.84	18.4	0
2006-12- 16 17:25:00	5.360	0.436	233.63	23.0	0
2006-12- 16 17:26:00	5.374	0.498	233.29	23.0	0
2006-12- 16 17:27:00	5.388	0.502	233.74	23.0	0
2006-12- 16 17:28:00	3.666	0.528	235.68	15.8	0
4					

In [8]: data.describe()

Out[8]:

	Global_active_power	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1
count	5000.000000	5000.000000	5000.000000	5000.000000	5000.000000
mean	1.718148	0.120149	240.972194	7.287000	0.787000
std	1.301801	0.109505	3.961620	5.500968	5.147012
min	0.194000	0.000000	229.080000	0.800000	0.000000
25%	0.380000	0.000000	238.157500	1.800000	0.000000
50%	1.626000	0.104000	241.410000	6.800000	0.000000
75%	2.502000	0.176000	244.050000	10.400000	0.000000
max	7.840000	0.646000	249.370000	33.600000	38.000000

```
In [9]: data.isnull().sum()
Out[9]: Global_active_power
                                   0
                                   0
         Global_reactive_power
                                   0
         Voltage
                                   0
         Global_intensity
                                   0
         Sub_metering_1
                                   0
         Sub_metering_2
         Sub_metering_3
                                   0
         dtype: int64
In [10]:
         data.replace('?', np.nan, inplace=True)
         data = data.apply(pd.to_numeric, errors='coerce')
         data.dropna(axis=0, inplace=True)
In [11]: data.isnull().sum()
Out[11]: Global_active_power
                                   0
         Global_reactive_power
                                   0
                                   0
         Voltage
         Global_intensity
                                   0
                                   0
         Sub_metering_1
         Sub_metering_2
                                   0
                                   0
         Sub_metering_3
         dtype: int64
```

In [12]: plt.figure(figsize=(12,10))
 sns.heatmap(data.corr(),annot=True,fmt=".2f",cmap='RdBu',square=True)
 plt.title("Correlation Heatmap")
 plt.show()

In [13]: sns.pairplot(data, height=2.5)
 plt.tight_layout()
 plt.show()


```
In [14]: plt.figure(figsize=(12,4))
    plt.subplot(1,2,1)
    plt.hist(data['Global_active_power'],bins=50,color='steelblue',alpha=0.7)
    plt.title('Global Active Power')
    plt.xlabel('Global Active Power (Kilowatts)')
    plt.ylabel('Frequency')
    plt.grid(True)

plt.subplot(1,2,2)
    plt.hist(data['Global_reactive_power'],bins=50,color='green',alpha=0.7)
    plt.title('Global reactive power')
    plt.xlabel('Minute-averaged reactive power-Kw')
    plt.ylabel('Frequency')
    plt.grid(True)
    plt.show()
```



```
In [15]: X = data.drop(columns=['Global_active_power']) # Features
y = data['Global_active_power'] # Target variable

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rando m_state=42)
```

```
In [16]: print(X_train.shape)
    print(X_test.shape)
```

(4000, 6) (1000, 6)

In [17]: X_train.describe()

Out[17]:

	Global_reactive_power	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Suk
count	4000.000000	4000.00000	4000.00000	4000.000000	4000.000000	
mean	0.120554	240.99829	7.22545	0.755250	2.905000	
std	0.109299	3.92977	5.46814	5.044275	9.069732	
min	0.000000	229.08000	0.80000	0.000000	0.000000	
25%	0.000000	238.21750	1.80000	0.000000	0.000000	
50%	0.104000	241.41000	6.60000	0.000000	0.000000	
75%	0.178000	244.05000	10.40000	0.000000	1.000000	
max	0.636000	249.37000	33.60000	38.000000	73.000000	

```
In [18]: # Linear Regression
linear_reg_model = LinearRegression()
linear_reg_model.fit(X_train, y_train)

y_pred_lin_train = linear_reg_model.predict(X_train)
y_pred_lin_test = linear_reg_model.predict(X_test)

train_lin_mse = mean_squared_error(y_train, y_pred_lin_train)
test_lin_mse = mean_squared_error(y_test, y_pred_lin_test)

train_lin_r2 = r2_score(y_train, y_pred_lin_train)
test_lin_r2 = r2_score(y_test, y_pred_lin_test)

print("Train MSE: %.6f , Test MSE: %.6f"%(train_lin_mse,test_lin_mse))
print("Train R2_score: %.6f , Test R2_score: %.6f"%(train_lin_r2,test_lin_r2))
```

Train MSE: 0.003912 , Test MSE: 0.004393 Train R2_score: 0.997664 , Test R2_score: 0.997516

```
In [19]: # Decision Tree regression
         tree = DecisionTreeRegressor()
         tree.fit(X_train, y_train)
         y pred tree train = tree.predict(X train)
         y pred tree test = tree.predict(X test)
         train tree mse = mean squared error(y train, y pred tree train)
         test_tree_mse = mean_squared_error(y_test, y_pred_tree_test)
         train_tree_r2 = r2_score(y_train, y_pred_tree_train)
         test_tree_r2 = r2_score(y_test, y_pred_tree_test)
         print("Train MSE: %.6f , Test MSE: %.6f"%(train tree mse,test tree mse))
         print("Train R2 score: %.6f , Test R2 score: %.6f"%(train tree r2,test tree r
         2))
         Train MSE: 0.000001 , Test MSE: 0.004681
         Train R2 score: 1.000000 , Test R2 score: 0.997353
In [20]: # Hyperparameter Tuning on Decision Tree Regression
         param grid tree = {
             'max_depth': [None, 10, 20, 30],
             'min_samples_split': [2, 5, 10],
             'min samples leaf': [1, 2, 4]
         }
         grid search tree = GridSearchCV(tree, param grid=param grid tree, cv=5, scorin
         g='neg_mean_squared_error')
         grid_search_tree.fit(X_train, y_train)
         best params dt = grid search tree.best params
         best_score_dt = -grid_search_tree.best_score_
         print("Best Parameters (Decision Tree):", best_params_dt)
         print("Best Negative MSE (Decision Tree):", best_score_dt)
         Best Parameters (Decision Tree): {'max_depth': 10, 'min_samples_leaf': 4, 'mi
         n samples split': 2}
         Best Negative MSE (Decision Tree): 0.0035151518385264577
In [21]: best tree model = DecisionTreeRegressor(max depth=10, min samples leaf=4, min
         samples split=5)
         best_tree_model.fit(X_train, y_train)
         y pred tree test best = best tree model.predict(X test)
         test_tree_mse_best = mean_squared_error(y_test, y_pred_tree_test_best)
         test_tree_r2_best = r2_score(y_test, y_pred_tree_test_best)
         print("Best Decision Tree Mean Squared Error:", test_tree_mse)
         print("Best Decision Tree R2 Score:", test tree r2)
         Best Decision Tree Mean Squared Error: 0.004681355
```

Best Decision Tree R2 Score: 0.9973529744288679

```
In [22]: random_model = RandomForestRegressor()
    random_model.fit(X_train, y_train)

y_pred_random_train = random_model.predict(X_train)
    y_pred_random_test = random_model.predict(X_test)

train_ran_mse = mean_squared_error(y_train, y_pred_random_train)
    test_ran_mse = mean_squared_error(y_test, y_pred_random_test)

train_ran_r2 = r2_score(y_train, y_pred_random_train)
    test_ran_r2 = r2_score(y_test, y_pred_random_test)

print("Train MSE: %.6f , Test MSE: %.6f"%(train_ran_mse,test_ran_mse))
    print("Train R2_score: %.6f , Test R2_score: %.6f"%(train_ran_r2,test_ran_r2))
```

Train MSE: 0.000355 , Test MSE: 0.002834 Train R2_score: 0.999788 , Test R2_score: 0.998397

Training vs Testing Data


```
In [29]: # Hyperparameter Tuning on Random Forest Regression
         param grid rf = {
             'n_estimators': [5, 50],
             'max_depth': [None, 10],
             'min_samples_split': [2, 5],
             'min samples leaf': [1]
         }
         grid search rf = GridSearchCV(estimator=random model, param grid=param grid r
         f, cv=5, scoring='neg_mean_squared_error', n_jobs=-1)
         grid search rf.fit(X train, y train)
         best params rf = grid search rf.best params
         best_score_rf = -grid_search_rf.best_score_
         print("Best Parameters (Random Forest):", best_params_rf)
         print("Best Negative MSE (Random Forest):", best_score_rf)
         Best Parameters (Random Forest): {'max depth': None, 'min samples leaf': 1,
         'min_samples_split': 5, 'n_estimators': 50}
         Best Negative MSE (Random Forest): 0.0026500304459620666
In [30]: | best_params_rf = {'max_depth': None, 'min_samples_leaf': 1, 'min_samples_spli
         t': 5, 'n_estimators': 50}
         best rf model = RandomForestRegressor(**best params rf)
         best rf model.fit(X train, y train)
         y_pred_rf_test_best = best_rf_model.predict(X_test)
         test ran mse best = mean squared error(y test, y pred rf test best)
         test_ran_r2_best = r2_score(y_test, y_pred_rf_test_best)
         print("Best Random Forest Mean Squared Error:", test ran mse best)
         print("Best Random Forest R2 Score:", test_ran_r2_best)
```

Best Random Forest Mean Squared Error: 0.00277626922729103
Best Random Forest R2 Score: 0.9984301862095513

```
models = ['Linear Regression (Default)', 'Decision Tree (Default)', 'Decision T
In [32]:
         ree (Best)', 'Random Forest (Default)', 'Random Forest (Best)']
         mse_values = [test_lin_mse, test_tree_mse,test_tree_mse_best, test_ran_mse, te
         st ran mse best]
         r2_values = [test_lin_r2, test_tree_r2,test_tree_r2_best, test_ran_r2, test_ra
         n_r2_best]
         plt.figure(figsize=(10,6))
         sns.barplot(x=models, y=mse_values, hue=models, palette='Purples', dodge=Fals
         e)
         plt.title('Mean Squared Error (MSE) Comparison')
         plt.xlabel('Models')
         plt.ylabel('MSE')
         plt.xticks(rotation=45, ha='right')
         plt.tight_layout()
         plt.show()
         plt.figure(figsize=(10, 6))
         sns.barplot(x=models, y=r2_values, hue=models, palette='Greens', dodge=False)
         plt.title('R-squared (R2) Score Comparison')
         plt.xlabel('Models')
         plt.ylabel('R2 Score')
         plt.xticks(rotation=45, ha='right')
         plt.ylim(0, 1.2)
         plt.tight_layout()
         plt.show()
```


