Домашнее задание по курсу "Математическая логика - 2"

1 Язык и аксиоматика теории множеств

§ 1.3

Условие Доказать, что $\emptyset \neq \{\emptyset\}$.

Доказательство По определению

 $x = y \rightleftharpoons \forall t (t \in x \Leftrightarrow t \in y).$

Пусть $\emptyset = \{\emptyset\}, \Rightarrow \forall t (t \in \{\emptyset\} \Leftrightarrow t \in \emptyset)$ Противоречие для $t = \emptyset$

§ 1.4

Условие Доказать, что $\{\{1,2\},\{2,3\}\}\neq\{1,2,3\}$.

Доказательство По определению

 $x = y \Longrightarrow \forall t (t \in x \Leftrightarrow t \in y).$

Пусть $\{\{1,2\},\{2,3\}\}=\{1,2,3\},$ \Rightarrow $\forall t(t\in\{1,2,3\}\Leftrightarrow t\in\{\{1,2\},\{2,3\}\})$ Противоречие для t=1

§ 1.6

Условие Доказать, что ∃ лишь одно множество, не имеющее элементов.

Доказательство Пусть \exists два множества X и X_0 , не имеющих элементов и такие, что $X \neq X_0$

$$\Rightarrow \exists t (t \in X \Rightarrow t \notin X_0)$$

Противоречие так как $\nexists t \in X$.

§ 1.8

Условие Доказать, что множество всех корней многочлена $\alpha(x) = \beta(x)\gamma(x)$ есть объединение множеств корней $\beta(x)$ и $\gamma(x)$.

Доказательство Чтобы докаказать, что множество корней = объединения множеств, надо доказать, что любой корень является либо корнем $\beta(x)$ либо $\gamma(x)$ и что других корней не существует.

1) Пусть существует корень x_0 , который не является корнем ни $\beta(x)$, ни корнем $\gamma(x)$ $\Rightarrow \alpha(x_0) = 0, \beta(x_0) \neq 0, \gamma(x_0) \neq 0$. Противоречие 2) Пусть x_0 корень $\beta(x)$ или $\gamma(x)$, тогда $\beta(x_0) = 0$ или $\gamma(x_0) = 0 \Rightarrow \alpha(x_0) = 0$

§ 1.9

Условие Доказать, что персечение множеств действительных корней многочленов $\alpha(x)\beta(x)$ с действительными коэффицентами совпадает с множеством всех действительных корней $\gamma(x) = \alpha^2(x) + \beta^2(x)$.

Доказательство Чтобы докаказать, что множество корней = персечение множеств, надо доказать, что любой корень из пересейчения является корнем и что других корней не суще-

1)Если x_0 корень $\alpha(x)\beta(x) \Rightarrow \gamma(x_0) = 0$ 2)Пусть существует корень $\gamma(x)x_0$, который не является корнем ни $\alpha(x)$, ни корнем $\beta(x)$

Тогда
$$\gamma(x_0) = 0 \Rightarrow \alpha^2(x_0) + \beta^2(x_0) = 0 \Rightarrow \alpha(x_0) = 0 \& \beta(x_0) = 0$$

§ 1.11 (а, г, ж)

Условие Доказать следующие тождества

$$a)A \cup A = A \cap A = A$$

Доказательство Распишем по определению

$${Z \mid (Z \in A \lor Z \in A)} = {Z \in A \cup A \mid Z \in A \land Z \in A} = A$$

Упростим

$$\{Z \mid (Z \in A)\} = \{Z \in A \cup A \mid Z \in A\} = A \Leftrightarrow A = \{Z \in A \mid Z \in A\} = A \Leftrightarrow A = A = A$$

Условие $\Gamma(A \cap C) = (A \cap B) \cap C$

Доказательство

Условие $ж)A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Доказательство

§ 1.15

Условие Доказать, что

a)
$$(A_1 \cup ... \cup A_n) \triangle (B_1 \cup ... \cup B_n) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_n \triangle B_n)$$

Доказательство Докажем по индукции:

База индукции

$$n=1) (A_1) \triangle (B_1) \subseteq (A_1 \triangle B_1)$$
 (очевидно)

n=2)
$$(A_1 \cup A_2) \triangle (B_1 \cup B_2) \subseteq (A_1 \triangle B_1) \cup (A_2 \triangle B_2)$$
 (Доказывалось на уроке)

Преположение индукции

Пусть верно для $\forall n < k$

Шаг индукции

Докажем для k+1

$$(A_1 \cup ... \cup A_k + 1) \triangle (B_1 \cup ... \cup B_k + 1) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k + 1 \triangle B_k + 1)$$
 пусть $A_0 = A_1 \cup ... \cup A_k B_0 = B_1 \cup ... \cup B_k$

$$(A_1 \cup \ldots \cup A_{k+1}) \triangle (B_1 \cup \ldots \cup B_{k+1}) \Leftrightarrow (A_0 \cup A_{k+1}) \triangle (B_0 \cup B_{k+1}) \subseteq$$

$$\subseteq (A_0 \triangle B_0) \cup (A_k \triangle B_k)$$

$$(A_0 \triangle B_0) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k \triangle B_k)$$

$$\Rightarrow (A_1 \cup ... \cup A_k + 1) \triangle (B_1 \cup ... \cup B_k + 1) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k + 1 \triangle B_k + 1)$$

Условие б)
$$(A_1 \cap ... \cap A_n) \triangle (B_1 \cap ... \cap B_n) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_n \triangle B_n)$$

Доказательство Докажем по индукции:

База индукции

$$n=1) \ (A_1) \triangle (B_1) \subseteq (A_1 \triangle B_1) \ (очевидно)$$

$$n=2$$
) $(A_1 \cap A_2) \triangle (B_1 \cap B_2) \subseteq (A_1 \triangle B_1) \cup (A_2 \triangle B_2)$ (Доказывалось на уроке)

Преположение индукции

Пусть верно для $\forall n < k$

Шаг индукции

Докажем для k+1

$$(A_1 \cap \dots \cap A_k + 1) \triangle (B_1 \cap \dots \cap B_k + 1) \subseteq (A_1 \triangle B_1) \cup \dots \cup (A_k + 1 \triangle B_k + 1)$$

пусть
$$A_0 = A_1 \cap ... \cap A_k B_0 = B_1 \cap ... \cap B_k$$

$$(A_1 \cap ... \cap A_{k+1}) \triangle (B_1 \cap ... \cap B_{k+1}) \Leftrightarrow (A_0 \cap A_{k+1}) \triangle (B_0 \cap B_{k+1}) \subseteq$$

$$\subseteq (A_0 \triangle B_0) \cup (A_k \triangle B_k)$$

$$(A_0 \triangle B_0) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k \triangle B_k)$$

$$\Rightarrow (A_1 \cap ... \cap A_k + 1) \triangle (B_1 \cap ... \cap B_k + 1) \subseteq (A_1 \triangle B_1) \cup ... \cup (A_k + 1 \triangle B_k + 1)$$

§ 1.17

Условие Определить операции ∪, ∩, \, через:

$$a)\triangle, \cap$$

Доказательство

$$\cap = \cap$$

$$A \cup B = (A \triangle B) \triangle (A \cap B)$$
$$A \setminus B = (A \triangle B) \cap A$$

Условие $б)\triangle, \cup$

Доказательство

Условие $и)\setminus, \triangle$

Доказательство

$$A \cup B = (A \setminus B) \triangle$$
$$A \cap B = (B \setminus (A \setminus B))$$
$$\setminus = \setminus$$

§ 1.18

Условие Доказать, что нельзя определить:

- a) \setminus через \cap и \cup
- б) ∪ через ∩ и \

§ 1.20

Условие Найти все подмножества множеств: \varnothing , $\{\varnothing\}$, $\{x\}$, $\{1,2\}$.

Ответ

$$\varnothing$$
 - нет $\{\varnothing\} - \varnothing$ $\{x\} - \varnothing, \{x\}$ $\{1,2\} - \varnothing, \{1\}, \{2\}, \{1,2\}$

§ 2.1

Условие Доказать, что существуют A, B и C такие, что: а) $A \times B \neq B \times A$

Решение

$$A=1$$
 и $B=2$

Условие 6)
$$A \times (B \times) \neq (A \times B) \times C$$

Решение

§ 2.3

Условие Доказать, что если A, B, C и D не пусты, то: а) $A \subseteq B$ и $C \subseteq D \Leftrightarrow A \times C \subseteq B \times D$ б) A = B и $C = D \Leftrightarrow A \times C = B \times D$

Решение

Очеивдно доказывается методом от противного.

Условие Доказать, что: а) $(A \cup B) \times C = (A \times B) \cup (B \times C)$ б) $A \times (B \cup C) = (A \times B) \cup (A \times C)$ г) $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$

Решение

2 Отношения и функции

§ 2.8(a, в)

Условие

Решение

§ 2.9(a, в)

Условие

Решение

§ 2.12 (б, г)

Условие

Решение

§ 2.13

Условие

Решение

§ 2.14

Условие

Решение

§ 2.22

Условие

Решение

Условие Доказать, что: $A \backsim A$ (рефлексивность) Если $A \backsim B$, то $B \backsim A$ (симметричность) Если $A \backsim B$ и $B \backsim$, то $A \backsim$ (транзетивность)

Решение

§ 4.5

Условие Доказать, что:

- а) Всякое подмножество конечного множества конечно
- б) Объединение конечного числа конечных множест кончено
- в) Прямое произведение конечного числа конечных множеств конечно

Доказательство

Доказательство от противного

§ 4.8

Условие Доказать, что множество тогда и только тогда бесконечно, когда оно эквивалентно некоторому своему подмножеству.

Доказательство

В условие имеется введу, подмножество не равное множетсву, тк иначе есть контрпример.

{1} эквивалентен {1}

Докажем лемму о том, что счетное множество $A \sim A \setminus B$, где B конечное множество.

А - счетное, значит все его элементы можно пронумеровать.

Возьмем множество $A \setminus B$, его мы тоже можем пронумеровать, сдвигая каждый раз нумерацию.

- \Rightarrow) Еслим множество бесконечно, то в нем есть счетное подмножество \Rightarrow \exists подмножество нашего счетного множества, которое ему \sim
- \Leftarrow) Если мноетсво \sim свое подмножеству, то оно не может быть конечным, доказывается от противного \Rightarrow оно бесконечно.

§ 4.10 a

Условие Пусть область определения счета, доказать, что область значений этой функции конечна или счетна.

Доказательство

Докажем, что она не более чем счетна.

Тк область определения счетна, а каждой точки из области оперделения можно поставить в соотвествие значение функции в этой точки \Rightarrow область значений не более чем счетна \Rightarrow область значений этой функции конечна или счетна.

§ 4.13

Условие Доказать, что:

а) Если A бескончено и B - конечное или счетное множество, то $A \cup B \sim A$

Доказательство Рассмотрим 2 варианта А счетно и А не счетно.

Докажем от противного, что в каждом из этих случаях $A \cup B$ счетно и $A \cup B$ не счетно соответственно.

Условие б) Если А бескончено и несчетно, В конечное или счетное множество, то $A \setminus B \sim A$

Доказательство Пусть это не так \Rightarrow $A \setminus B$ - счетно или конечно. Доказываем от противного, что это невозможно.

$\S 4.15$

Условие Доказать, что:

а) Множество целых чисел счетно

Доказательство пронумеруем

1	2	3	4	5	6	7	8	
0	1	-1	2	-2	3	-3	4	

Условие б) Множество рациональных чисел счетно

Доказательство пронумеруем

Условие в) Множество рациональных чисел сегмента [a,b] счетно при a < b

Доказательство Множество рациональных чисел сегмента [a,b] - беконечно. (тк множество плотно)

 \Rightarrow оно не менее чем счетно. Но по доказанному выше оно не более, чем счетно \Rightarrow счетно.

Условие г) Множество пар $\langle x, y \rangle$, где х и у - рациональные числа, счетно

Доказательство Множество рациональных чисел счетно.

Тогда выпишем все рациональный числа сеткой и докажем, что кол-во пар сечтно аналогично доказатульству $4.15\ 6$