Question 3a - Exercise 4.1.3

b. $f(x) = 1/(x^2 - 4)$ Not a function. If x is -2 or 2, 1/0 is not defined.

c. $f(x) = \sqrt{x^2}$ It is a function and is well-defined.

Question 3b - Exercise 4.1.5

b. {4, 9, 16, 25}

d. $\{0, 1, 2, 3, 4, 5\}$

h. $\{(1,1), (2,1), (3,1), (1,2), (2,2), (3,2), (1,3), (2,3), (3,3)\}$

i. $\{(1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,2), (3,3), (3,4)\}$

l. { \emptyset , {2}, {3}, {2, 3} }

Question 4 I. a - Exercise 4.2.2

c.
$$h: \mathbf{Z} \to \mathbf{Z}$$
. $h(x) = x^3$

one-to-one

but not onto because for all x in \mathbf{Z} there exists no h(x) = 2

g.
$$f: \mathbf{Z} \times \mathbf{Z} \to \mathbf{Z} \times \mathbf{Z}$$
, $f(x,y) = (x+1,2y)$

one-to-one

but not onto because for all (x, y) in $\mathbf{Z} \times \mathbf{Z}$ there exists no f(x, y) = (1, 1)

k.
$$f: \mathbf{Z}^+ \times \mathbf{Z}^+ \to \mathbf{Z}^+, \quad f(x, y) = 2^x + y.$$

not one-to-one because f(0,2) = f(1,1) = 3

and not onto because f(x,y) = 0 does not exist for $\mathbf{Z}^+ \times \mathbf{Z}^+$

Question 4 I. b - Exercise 4.2.4

b. $f:\{0,1\}^3\to\{0,1\}^3$. The output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1. For example, f(001) = 101 and f(110) = 110.

not one-to-one because f(000) = f(100) = 100

and not onto because for all strings x in $\{0,1\}^3$ there is no f(x) = 000.

c. $f:\{0,1\}^3\to\{0,1\}^3$. The output of f is obtained by taking the input string and reversing the bits. For example f(011) = 110.

both one-to-one and onto

d. $f:\{0,1\}^3\to\{0,1\}^4$. The output of f is obtained by taking the input string and adding an extra copy of the first bit to the end of the string. For example, f(100) = 1001.

one-to-one but not onto because for all strings x in $\{0,1\}^3$ there is no f(x) = 1000.

g. Let A be defined to be the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$ and let $B = \{1\}$. $f: P(A) \to P(A)$. For $X \subseteq A$, f(X) = X - B. Recall that for a finite set A, P(A) denotes the power set of A which is the set of all subsets of A.

not one-to-one because for $X = \{2, 3, 4\}$ and $X = \{1, 2, 3, 4\}$, $f(X) = \{2, 3, 4\}$ and not onto because for any $X \subseteq A$, there is no solution to $F(X) = \{1, 2, 3, 4\}$

Question 4 II.

Give an example of a function on the set of integers to the set of positive integers $(f: \mathbf{Z} \to \mathbf{Z}^+)$ that is:

a. one-to-one, but not onto

$$f(x) = \begin{cases} -2x & \text{for } x < 0\\ 2x + 3 & \text{for } x \ge 0 \end{cases}$$

b. onto, but not one-to-one

$$f(x) = |x| + 1$$

c. one-to-one and onto
$$f(x) = \begin{cases} (\mid x \mid \times 2) - 1 & \text{for } x < 0 \\ (x \times 2) + 1 & \text{for } x \geq 0 \end{cases}$$

d. neither one-to-one nor onto

 $f(x) = x^2 + 2$ will map any integer (positive or negative) to the positive set of integers, but not one-to-one as x = -1 and x = 1 both map to 3, nor onto as not all positive integers are the offsets of perfect squares

2

Question 5a - Exercise 4.3.2

c.
$$f : \mathbf{R} \to \mathbf{R}$$
. $f(x) = 2x + 3$
 $f^{-1}(x) = \frac{x-3}{2}$

d. Let A be defined to be the set $\{1,2,3,4,5,6,7,8\}$. $f:P(A)\to\{0,1,2,3,4,5,6,7,8\}$. For $X\subseteq A, f(X)=|X|$. Recall that for a finite set A, P(A) denotes the power set of A which is the set of all subsets of A.

The function f is not one-to-one, so f^{-1} is not well-defined.

g. $f: \{0,1\}^3 \to \{0,1\}^3$. The output of f is obtained by taking the input string and reversing the bits. For example, f(011) = 110.

 $f^{-1}(x)$ is obtained by taking the input string and reversing the bits.

i.
$$f: \mathbf{Z} \times \mathbf{Z} \to \mathbf{Z} \times \mathbf{Z}$$
, $f(x,y) = (x+5, y-2)$
 $f^{-1}(x,y) = (x-5, y+2)$

Question 5b - Exercise 4.4.8

The domain and target set of functions f, g, and h are Z. The functions are defined as:

- f(x) = 2x + 3
- q(x) = 5x + 7
- $h(x) = x^2 + 1$

c.
$$f \circ h$$

 $f \circ h(x) = 5(x^2 + 1) + 7 = 5x^2 + 5 + 7 = 5x^2 + 12$
d. $h \circ f$

a.
$$h \circ f$$

 $h \circ f(x) = (2x+3)^2 + 1 = 4x^2 + 12x + 10$

Question 5c - Exercise 4.4.2

Consider three functions f, g, and h, whose domain and target are Z. Let

$$f(x) = x^2$$
 $g(x) = 2^x$ $h(x) = \left\lceil \frac{x}{5} \right\rceil$

- b. Evaluate $f \circ h(52) = 121$
- c. Evaluate $g \circ h \circ f(4) = 16$
- d. Give a mathematical expression for $h \circ f = \left\lceil \frac{x^2}{5} \right\rceil$.

Question 5d - Exercise 4.4.6

Define the following functions f, g, and h:

- $f: \{0,1\}^3 \to \{0,1\}^3$. The output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1. For example, f(001) = 101 and f(110) = 110.
- $g: \{0,1\}^3 \to \{0,1\}^3$. The output of g is obtained by taking the input string and reversing the bits. For example, g(011) = 110.
- $h: \{0,1\}^3 \to \{0,1\}^3$. The output of h is obtained by taking the input string x, and replacing the last bit with a copy of the first bit. For example, h(011) = 010.

c. What is
$$h \circ f(010)$$
? (111)

d. What is the range of
$$h \circ f$$
? $\{(101), (111)\}$

e. What is the range of $g \circ f$? {(001), (101), (111)}

Question 5e - Exercise 4.4.4 (Extra Credit)

Let $f: X \to Y$ and $g: Y \to Z$ be two functions.

c. Is it possible that f is not one-to-one and $g \circ f$ is one-to-one? Justify your answer. If the answer is "yes", give a specific example for f and g.

No. Given that there exists 2 or more x such that $f(x_1) = f(x_2)$, we conclude there exists 2 or more cases such that $g(f(x_1)) = g(f(x_2))$, which precludes a one-to-one mapping.

d. Is it possible that g is not one-to-one and $g \circ f$ is one-to-one? Justify your answer. If the answer is "yes", give a specific example for f and g.

Yes. As demonstrated in question (a) g may not be one-to-one, but $g \circ f$ may be.

