Travail, énergie potentielle de pesanteur, énergie mécanique

I . Energie potentielle de pesanteur :

1) Notion d'énergie potentielle de pesanteur :

On a étudié une forme d'énergie, c'est l'énergie cinétique que possède un corps matériel du fait de son mouvement, nous allons voir dans cette leçon une autre forme d'énergie : c'est l'énergie potentielle de pesanteur.

L'énergie potentielle de pesanteur d'un solide est une énergie qu'il possède dans le champ de pesanteur grâce à sa position par rapport à la terre.

2) Expression de l'énergie potentielle de pesanteur :

L'énergie potentielle de pesanteur d'un solide de masse m est donnée par la relation suivante:

 $E_{pp}=m.g. z + C$

E_{pp}: énergie potentielle de pesanteur en (J)

g : l'intensité de pesanteur en (N/kg)

C: constante qui se détermine à partir de l'état de référence.

z: l'altitude du centre de gravité du corps en (m).

Par convention l'énergie potentielle d'un solide est nulle au niveau pris comme état de référence.

<u>1er cas</u> : si l'état de référence est Epp=0 lorsque <u>z=0</u>

0=m.g.0+C donc: C=0 danscecas: E_{pp}=m.g.z

2ème cas : si l'état de référence est Epp=0 lorsque z=z,

 $0 = m.g.z_o + C \quad donc \quad : C = -m.g.z_o \quad : \quad dans \ ce \ cas \quad : \quad E_{pp} = m.g(.z_-.z_o)$

Remarque. - l'énergie

- l'énergie potentielle est une valeur algébrique.

-La valeur de l'énergie potentielle de pesanteur d'un corps dépend du choix de l'état de référence

Exemple: Un corps ponctuel de masse m= 2g, posé sur une table de hauteur h=0,8m comme l'indique la figure suivante:

Calculer l'énergie potentielle de pesanteur du corps dans chacun des cas suivants :

- a) Etat de référence : Epp=0 lorsque z=0
- b) Etat de référence :Epp=0 lorsque z_o=0,8m
- c) Etat de référence :Epp=0 lorsque z_0 '= 0,1m
- d) Etat de référence :Epp=0 lorsque z₀"= 1m.

On a : Epp= m.g.z+C

- a) Pour Epp=0 lorsque z=0 , C=0 donc : Epp= m.g $z_0 = 2.10^{-3} \times 10 \times 0.8 = 0.016J$
- b) Pour Epp=0 lorsque z_0 =0,8m , Epp= m.g. z_0 +C d'où : C= m.g. z_0 donc : Epp= m.g (z_0 - z_0)=2.10⁻³×10(0,8-0,8)=0
- c) Pour Epp=0 lorsque $z_0'=-0.1$ m , Epp= m.g. $z_0'+C$ d'où : $C=m.g. z_0'$ donc : Epp= m.g $(z_0-z_0')=2.10^{-3}\times 10[0.8-(-0.1)]=0.018J$
- d) Pour Epp=0 lorsque z_o "= 1m , Epp= m.g.z" $_o$ +C d'où : C= m.g.z" $_o$ donc : Epp= m.g (z_G - z_o)= $2.10^{-3} \times 10[0.8 1)] = -0.004 J$

Conclusion : L'energie potentielle d'un corps de masse m dont le centre de gravité est situé à l'altitude z_{G} : $E_{pp} = m.g.(z_{G} - z_{réf})$

3) Variation de l'énergie potentielle de pesanteur :

La variation de son énergie de potentielle : $\Delta E_{pp} = E_{pp(finale)} - E_{pp(initiale)}$

Lorsqu'un corps se déplace de la position G_1 à la position G_2 , la variation de son énergie de potentielle :

$$\Delta E_{pp} = E_{PP2} - E_{pp_1} = m.g(z_2 - z_1) \tag{1}$$

Or nous savons que le travail du poids d'un corps durant le déplacement de G_1 à $\ G_2$:

$$WP_{G_1 \to G_2} = m.g.(z_1 - z_2)$$
 (2)

D'après (1) et (2) on déduit que:

$$\triangle E_{pp} = -W\vec{P}_{G_1 \to G_2}$$

pour : $\Delta E_{m} > 0$, $z_2 - z_1 > 0$ Le corps gagne de l'énergie potentielle au cours de sa montée.

pour : $\Delta E_{pp} < 0$, $z_2 - z_1 < 0$ Le corps perd de l'énergie potentielle au cours de sa descente.

II- Energie mécanique :

1) Défintion:

L'énergie mécanique d'un corps solide à un instant donné est la somme de son énergie cinétique et son énergie potentielle de pesanteur à cet instant.

$$E_{M} = E_{c} + E_{pp}$$
.

E_M : energie mécanique en (J)

E_c: energie cinétique en (J)

E_{pp}: energie potentielle de pesanteur en (J)

2) Conservation de l'énergie mécanique :

a) Cas d'un corps en chute libre:

O n considère un corps solide de masse m en chute libre sous l'action de son poids. En appliquant le théorème de l'énergie cinétique sur le corps entre les positions G₁et G₂:

 $\Delta E c_{G \to G} = \Sigma W \vec{F}_{G \to G} \qquad \underline{\text{le corps en chute libre est soumis uniquement à l'action de son poids , donc}$ $\Delta E c_{G \to G} = W \overline{P}_{G \to G}$

$$\text{d'où}: \qquad \Delta E c_{G_1 \to G_2} = m.g(z_1 - z_2) \tag{1}$$

L'énergie potentielle de pesanteur du corps dans la position G_1 : $E_{pp,1}=m,g, z_1+C$

$$E_{pp1}=m.g. z_1 + C$$

et, l'énergie potentielle de pesanteur du corps dans la position G2:

$$E_{pp2}=m.g. z_2 + C$$

$$z_1$$
 z_1
 \vec{P}
 \vec{Q}_1
 \vec{P}
 \vec{P}
 \vec{P}
 \vec{P}
 \vec{P}
 \vec{P}
 \vec{P}
 \vec{P}
 \vec{P}
 \vec{P}

d'après (1) et (2) on a :
$$\Delta E c_{G_1 \to G_2} = -\Delta E_{pp | G_1 \to G_2}$$

$$E c_2 - E c_1 = -(E_{pp 2} - E_{pp 1})$$

$$E c_2 - E c_1 = E_{pp 1} - E_{pp 2}$$

$$E c_2 + E_{pp 2} = E c_1 + E_{pp 1}$$

$$E c_2 = E_{pp 2} = E c_1 + E_{pp 2}$$

Donc il y'a conservation de l'énergie mécanique du corps entre les positions G₁ et G₂.

b) Cas de glissement d'un corps solide sans frottement sur un plan incliné :

On considère un corps solide en état de glissement sans frottement sur un plan incliné comme l'indique la figure suivante:

Le corps est soumis à l'action de deux forces:

 \vec{P} : son poids.

En appliquant le théorème de l'énergie cinétique sur le corps entre les positions A et B:

$$\Delta E c_{A \to B} = \Sigma W \vec{F}_{A \to B}$$

$$\Delta E c_{A \to B} = W \vec{P}_{A \to B} + W \vec{R}_{A \to B} \qquad \text{et on a:} \qquad W \vec{R}_{A \to B} = 0$$

$$\text{done:} \qquad \Delta E c_{A \to B} = W \vec{P}_{A \to B}$$

$$\text{or:} \qquad \Delta E_{pp_{A \to B}} = -W \vec{P}_{A \to B}$$

$$\text{done:} \qquad \Delta E c_{A \to B} = -\Delta E_{pp_{A \to B}}$$

$$\Rightarrow \qquad E c_{(B)} - E c_{(A)} = E_{pp(A)} - E_{pp(B)}$$

$$E c_{(B)} + E_{pp(B)} = E c_{(A)} + E_{pp(A)}$$

$$E_{m(B)} = E_{m(A)}$$

Donc il y'a conservation de l'énergie mécanique du corps entre A et B.

On dit que le poids est une force conservative, car malgré que le poids travail au cours du mouvement il y'a conservation de l'énergie mécanique.

3) Cas où il n'y'a pas conservation de l'énergie mécanique :

Le mouvement d'un corps solide avec frottement sur un plan incliné

Le corps est soumis à l'action de deux forces:

 \vec{P} : son poids.

et \vec{R} : la réaction du plan incliné.

$$\Delta E c_{A \to B} = \Sigma W \vec{F}_{A \to B} \qquad \Rightarrow \qquad \Delta E c = W \vec{P} + W \vec{R} \qquad \text{dans ce cas le travail de la réaction du plan n'est pas nul.}$$

$$\begin{pmatrix} W \vec{R} = W \vec{R}_N + W \vec{f} & = W \vec{f} \\ A \to B & A \to B & A \to B \end{pmatrix} \qquad \text{donc} \qquad \Delta E c = -\Delta E_{pp} + W \vec{f} \qquad \Rightarrow \qquad \Delta E c + \Delta E_{pp} = W \vec{f}^{\times} \\ W \vec{P} = -\Delta E_{pp} \\ A \to B & A \to B \end{pmatrix} \qquad \text{donc} \qquad \Delta E_{m} = W \vec{f}$$

$$\text{donc} \qquad \Delta E_{m} = W \vec{f}$$

<u>Interprétation</u>: Les forces de frottements ne sont pas conservatives car à cause de leur travail l'énergie mécanique du système diminue, cette diminution est due à une perte d'une partie de l'énergie mécanique par frottement sous forme d'énergie calorifique (chaleur).

$$\Delta E_m = W \overrightarrow{f} = -Q$$