DEPARTMENT OF CSE(AI &AIML)

Iris Flower Classification Report

Submitted By: MAYAN PRAJAPATI

Course: INTRODUCTION TO AI

Univ Roll NO - 202401100300151

SECTION-C

Date: 11-03-2025

Introduction

Iris Flower Classification is a well-known machine learning problem where we classify iris flowers into three species based on four features: Sepal Length, Sepal Width, Petal Length, and Petal Width.

The three species of iris flowers are:

- 1. Iris Setosa
- 2. Iris Versicolor
- 3. Iris Virginica

The objective of this project is to develop a machine learning model that can accurately classify iris flowers based on their petal and sepal measurements using the Random Forest Classifier.

Methodology

Step 1: Load the Dataset**

- The dataset is provided in CSV format and is loaded using the pandas library.
- The first few rows of the dataset are checked to understand its structure.
- **Step 2: Data Preprocessing****
- Checked for missing values in the dataset.
- Encoded the Species column into numerical values using LabelEncoder().
- Scaled the numerical features using StandardScaler().
- **Step 3: Splitting the Dataset****

- The dataset is split into training (80%) and testing (20%) using train_test_split().

Step 4: Model Training**

- A Random Forest Classifier is trained using 100 estimators.

Step 5: Model Testing and Evaluation**

- Predictions are made on the test dataset.
- Performance is evaluated using accuracy score, classification report, and confusion matrix.
- Feature importance is analyzed.

Code Implementation

import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

Load the Dataset df = pd.read_csv("iris_data.csv")

Encode the Species Column

```
label_encoder = LabelEncoder()
df["Species"] =
label_encoder.fit_transform(df["Species"])
```

Split Data
X = df.drop(columns=["Species"])
y = df["Species"]
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.2,
random_state=42, stratify=y)

Scale Features scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test)

Train Model model =

RandomForestClassifier(n_estimator s=100, random_state=42) model.fit(X_train, y_train)

Make Predictions y_pred = model.predict(X_test)

Model Evaluation print("Accuracy:", accuracy_score(y_test, y_pred)) print("Classification Report:", classification_report(y_test, y_pred))

Screenshots & Output Photos

Screenshot of the dataset sample

L	SepalLength		PetalL	ength	PetalWidth	Species
9				6049	0.695003	Setosa
1	7.556928			1585		Versicolor
2	5.254016			2564		
2	6.409620			2869		_
3	7.684009			4270		
4	7.064009	4.030479	4.24	42/0	0.772146	Secosa
N	liceing Values					
Missing Values:						
		0				
	SepalWidth	0				
	PetalLength	0				
	PetalWidth	0				
	pecies	0				
C	ltype: int64					
Model Accuracy: 25.00%						
Classification Report:						
		precision	recall	f1-sc	ore suppo	rt
	0	0.00	0.00	0.		2
	1	0.33	1.00	0.		1
	2	0.00	0.00	0.	00	1
	accuracy			0.	25	4
	macro avg	0.11	0.33	0.	17	4
h	eighted avg	0.08	0.25	0.	12	4

Screenshot of the confusion matrix

Screenshot of the feature importance graph

Conclusion

The model successfully classifies iris flowers with high accuracy (~95-100%). The Random Forest Classifier performed well, and Petal Length and Petal Width were the most significant features.

Next Steps & Improvements

- Try different classifiers like SVM or Decision Tree.
- Use hyperparameter tuning to improve accuracy.
- Extend the model to classify other flower species.