

Sistemas Digitais (SD)

Síntese de Circuitos Sequenciais: Minimização do Número de Estados

Aula Anterior

Na aula anterior:

- Definição de circuito sequencial síncrono
- Máquinas de Mealy e de Moore
- ► Especificação de circuitos sequenciais síncronos:
 - Diagrama de estados
- ▶ Projecto de circuitos sequenciais síncronos:
 - Codificação dos estados
 - Tabela de transição de estados
 - Determinação das funções lógicas de saída e estado seguinte

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios Circuitos Combinatórios		L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

J

Sumário

Tema da aula de hoje:

- ► Especificação e projecto de circuitos sequenciais síncronos:
 - Minimização do número de estados
- ► Exemplo (Mealy)

Bibliografia:

- M. Mano, C. Kime: Secções 5.4 a 5.7
- G. Arroz, J. Monteiro, A. Oliveira: Secção 7.1 a 7.4

Revisão: circuito combinatório vs circuito sequencial

- Circuito Combinatório
 - O valor da saída depende apenas do valor nas entradas nesse instante

Circuito Sequencial

- O valor da saída depende do valor actual nas entradas, bem como da história anterior dos estados do circuito
 - Como? → através de elementos de memória (ex: latches e flip-flops)
- Podem ser divididos em:
 - o **Síncronos**: o sinal de relógio sincroniza toda a actividade do circuito
 - Assíncronos: não usam sinal de relógio as transições de estado ocorrem sempre que há uma alteração nas entradas do circuito

Revisão: Circuito Sequencial Síncrono

- ▶ Duas componentes:
 - Bloco de lógica puramente combinatória
 - Implementa as funções necessárias para que o circuito tenha a transição entre estados pretendida
 - Elementos de memória, controlados por um sinal de relógio
 - Mantém o estado do circuito ao longo do tempo

- Revisão: Máquinas de Moore vs. Máquinas de Mealy
 - ► As máquinas de estado síncronas podem ser dividias em:
 - Máquinas de Moore: a saída depende apenas das variáveis de estado actuais;
 - Máquinas de Mealy: a saída é função das variáveis de <u>estado</u> actuais e do valor das <u>entradas</u> presentes no circuito

Projecto de Circuitos Sequenciais Síncronos

- **▶** Procedimento:
 - Especificação formal:
 - Diagrama de estados
 - Fluxograma
 - Simplificação da especificação
 - Projecto:
 - 1. Codificação dos estados
 - 2. Tabelas de transição de estados
 - 3. Determinação das funções lógicas de saída e estado seguinte

Projecto de Circuitos Sequenciais Síncronos

- **▶** Procedimento:
 - Especificação formal:
 - Diagrama de estados
 - o Fluxograma
 - Simplificação da especificação
 - Projecto:
 - 1. Codificação dos estados
 - 2. Tabelas de transição de estados
 - 3. Determinação das funções lógicas de saída e estado seguinte

Exemplo – Detector de Paridade

- ▶ Pretende-se enviar dados por uma linha, em grupos de 3 bits. A linha está sujeita a ruído, pelo que se implementou um protocolo de detecção de erros que garante que cada grupo de 3 bits tem um número par de bits a 1.
- ▶ O circuito sequencial pretendido deverá assinalar na sua saída sempre que ocorrer um erro de transmissão, identificado por um número ímpar de bits num grupo de 3 bits

Exemplo – Detector de Paridade

Problema:

- Como construir o diagrama de estados?
- A solução é única?
- É possível optimizar o número de estados?

Construção do Diagrama de Estados

- O diagrama de estados pode ser construído directamente a partir da definição do problema:
 - Enumerar todas as possíveis combinações de estados que podem ocorrer a partir do estado de Reset (S0), e gerar o valor 1 na saída quando o número de 1's for ímpar, retornando ao estado S0 para processar a próxima sequência de 3 bits.

Construção do Diagrama de Estados

- ▶ Este diagrama de estados pode ser simplificado?
- ► Existem <u>estados equivalentes</u> que podem ser fundidos?

Definição:

Dois estados dizem-se <u>estados equivalentes</u> se, e só se, para cada combinação possível nas entradas, eles geram a mesma saída e transitam para o mesmo estado ou para estados que também sejam equivalentes.

Tabela de Implicações

- Uma linha e uma coluna por estado;
- ▶ Indica quais os pares de estados que são equivalentes;
- ▶ Uma vez que esta matriz é simétrica, apenas se considera a componente inferior à diagonal principal:
 - Exemplo: S1↔ S4 ⇔ S4↔ S1

Tabela de Implicações

▶ 1º Passo: identificar os pares de estados que não podem ser equivalentes, porque geram saídas diferentes para a mesma entrada.

Exemplos:

- Os estados S0 e S6 são necessariamente <u>não</u> equivalentes, porque geram saídas diferentes para a entrada 1
- O estado S0, cuja saída é sempre 0, não pode ser equivalente ao estado S3, pois este gera 1 na sua saída quando a entrada é 1;
 Idem para os estados S4, S5 ou S6.

Tabela de Implicações

▶ 2º Passo: identificar os pares de estados que são equivalentes, pois não só geram as mesmas saídas, como transitam para os mesmos estados (ou equivalentes).

Exemplos:

 Os estados S4 e S5 são <u>equivalentes</u>, porque têm as mesmas saídas, para ambos os valores de entrada, e transitam para o estado S0, para ambos os valores de entrada;
 Idem para os estados S3 e S6.

Tabela de Implicações

▶ 3º Passo: identificar os pares de estados que poderão ser equivalentes caso outros pares também o sejam.

Exemplos:

 Os estados S1 e S2 apenas poderão ser equivalentes se os estados S3 e S5 forem equivalentes e se os estados S4 e S6 forem equivalentes

a entrada correspondente ao par (S1,S2) deve ser preenchida com os pares (S3,S5) e (S4,S6)

Tabela de Implicações

▶ 4º Passo: eliminar, através de passagens sucessivas da tabela, os elementos que <u>não</u> <u>podem ser equivalentes</u>, dado que a sua equivalência depende da equivalência de outros estados que a tabela indica como <u>não sendo</u> <u>equivalentes</u>.

Exemplos:

- O par (S0,S1) não pode ser equivalente, porque depende do par (S1,S3) que a tabela mostra como sendo não equivalente
- O par (S0,S2) não pode ser equivalente, porque depende do par (S1,S5) que a tabela mostra como sendo não equivalente
- O par (S1,S2) não pode ser equivalente, porque depende do par (S3,S5) que a tabela mostra como sendo não equivalente

Simplificação do Diagrama de Estados

- ▶ De acordo com o processo de simplificação realizado, conclui-se que:
 - O estado S3 é equivalente ao estado S6
 - O estado S4 é equivalente ao estado S5

Simplificação do Diagrama de Estados

- ▶ De acordo com o processo de simplificação realizado, conclui-se que:
 - O estado S3 é equivalente ao estado S6
 - O estado S4 é equivalente ao estado S5

Simplificação do Diagrama de Estados

- ▶ De acordo com o processo de simplificação realizado, conclui-se que:
 - O estado S3 é equivalente ao estado S6
 - O estado S4 é equivalente ao estado S5

Projecto de Circuitos Sequenciais Síncronos

- **▶** Procedimento:
 - Especificação formal:
 - Diagrama de estados
 - o Fluxograma
 - Simplificação da especificação
 - Projecto:
 - 1. Codificação dos estados
 - 2. Tabelas de transição de estados
 - 3. Determinação das funções lógicas de saída e estado seguinte

Codificação dos Estados

Considerando a existência de 5 estados (S₀,S₁,S₂,S₃,S₄) , a codificação usando código binário natural irá usar k flip-flops, em que k = [log₂(5)] = [2.321] = 3

Fatada	Codificação					
Estado	Q_2	Q_1	Q_0			
S_0	0	0	0			
S ₁	0	0	1			
S_2	0	1	0			
S_3 S_4	0	1	1			
S_4	1	0	0			

Tabela de Transição de Estados

Entradas	da Tabela	Saídas da Tabela		
Entrada	Estado Presente	Estado Seguinte	Saída	
0	S_0	S_2	0	
1	S_0	S_1	0	
0	S ₁	S_3	0	
1	S ₁	S_4	0	
0	S_2	S_4	0	
1	S_2	S_3	0	
0	S_3	S_0	1	
1	S_3	S_0	0	
0	S_4	S_0	0	
1	S ₄	S_0	1	

- O que acontece se a máquina transitar para um estado inválido (S₅,S₆,Sっ)? → Lock-out!!!
- ▶ Solução: obrigar a máquina a transitar para um estado válido (ex: S₀)

Tabela de Transição de Estados

Entradas da Tabela		Saídas da Tabela		
Entrada	Estado Presente	Estado Seguinte	Saída	
0	S_0	S_2	0	
1	S_0	S_1	0	
0	S ₁	S_3	0	
1	S ₁	S_4	0	
0	S_2	S_4	0	
1	S_2	S_3	0	
0	S_3	S_0	1	
1	S ₃ S ₃ S ₄	S ₀ S ₀ S ₀	0	
0	S_4	S_0	0	
1	S_4	S_0	1	
X	S ₅ S ₆	S ₀ S ₀	0	
Χ	S ₆	S_0	0	
X	S ₇	S_0	0	

Preenchimento com os estados adicionais, para evitar situações de Lock-out

TÉCNICO LISBOA Síntese de Circuitos Síncronos

■ Tabela de Transição de Estados

Entradas da Tabela			5	Saídas d	la Tabel	а	
Entrada	Estado Presente			Estado Seguinte			Caída
Entrada	Q ₂ (n-1)	Q ₁ (n-1)	Q ₀ (n-1)	Q ₂ (n)	Q ₁ (n)	Q ₀ (n)	Saída
0	0	0	0	0	1	0	0
1	0	0	0	0	0	1	0
0	0	0	1	0	1	1	0
1	0	0	1	1	0	0	0
0	0	1	0	1	0	0	0
1	0	1	0	0	1	1	0
0	0	1	1	0	0	0	1
1	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	1
Χ	1	0	1	0	0	0	0
Χ	1	1	0	0	0	0	0
X	1	1	1	0	0	0	0

Determinação das Funções Lógicas

Entradas da Tabela			Saídas da Tabela				
	Estado Presente			Estado Seguinte			
Entrada	Q ₂ (n-1)) Q ₁ (n-1)	Q ₀ (n-1)	Q ₂ (n) U D ₂ (n)	Q ₁ (n) U 10 11 11 11 11 11 11 11 11 11 11 11 11	Ţ	Saída
0	0	0	0	0	1	0	0
1	0	0	0	0	0	1	0
0	0	0	1	0	1	1	0
1	0	0	1	1	0	0	0
0	0	1	0	1	0	0	0
1	0	1	0	0	1	1	0
0	0	1	1	0	0	0	1
1	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
1	1	0	0	0	0	0	1
X	1	0	1	0	0	0	0
X	1	1	0	0	0	0	0
X	1	1	1	0	0	0	0

Circuito Lógico

Próxima Aula

Tema da Próxima Aula:

- ► Exemplo (Moore)
- ▶ Projecto de circuitos sequenciais baseados em contadores

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás