Homework 1

Songyu Ye

September 7, 2025

Problem 1 Check that localization preserves products and colons. Explain how this implies that the following proposition from the textbook.

Proposition 0.1 (S, Prop 1.3.5). Let A be a Dedekind domain and I a non-zero fractional ideal. Then I is invertible.

Solution:

(i) $(a \cdot b)_{\mathfrak{p}} = a_{\mathfrak{p}} \cdot b_{\mathfrak{p}}$.

Proof. Every element of $a_{\mathfrak{p}} \cdot b_{\mathfrak{p}}$ is a finite sum of products

$$\frac{a}{s} \cdot \frac{b}{t} = \frac{ab}{st} \qquad (a \in a, b \in b, s, t \in S),$$

hence lies in $S^{-1}(ab) = (ab)_{\mathfrak{p}}$.

Conversely, $(ab)_{\mathfrak{p}}$ is generated (as an ideal of $A_{\mathfrak{p}}$) by the fractions $\frac{ab}{s}$ with $a \in a, b \in b$, $s \in S$, and

$$\frac{ab}{s} = \frac{a}{1} \cdot \frac{b}{s} \in a_{\mathfrak{p}} \cdot b_{\mathfrak{p}}.$$

So the two ideals are equal. \Box

(ii) $(a:b)_{\mathfrak{p}} = (a_{\mathfrak{p}}:b_{\mathfrak{p}}).$

Proof. Recall

$$(a:b) = \{x \in A \mid xb \subset a\}, \qquad (a_{\mathfrak{p}}:b_{\mathfrak{p}}) = \{z \in A_{\mathfrak{p}} \mid zb_{\mathfrak{p}} \subset a_{\mathfrak{p}}\}.$$

 (\subseteq) : If $\frac{x}{s} \in S^{-1}(a:b)$, then $xb \subset a$, so for any $\frac{b}{t} \in b_{\mathfrak{p}}$ we have

$$\frac{x}{s} \cdot \frac{b}{t} = \frac{xb}{st} \in S^{-1}a = a_{\mathfrak{p}}.$$

Hence $\frac{x}{s} \in (a_{\mathfrak{p}} : b_{\mathfrak{p}}).$

(\supseteq): Assume $\frac{x}{s} \in (a_{\mathfrak{p}} : b_{\mathfrak{p}})$. Choose generators $b = (b_1, \ldots, b_n)$. This is where we use that b is finitely generated. For each $i, \frac{x}{s} \cdot \frac{b_i}{1} \in a_{\mathfrak{p}}$, so there exists $s_i \in S$ with $s_i x b_i \in a$. Let $t = \prod_i s_i \in S$. Then $t x b_i \in a$ for all i, hence $t x b \subset a$, i.e. $t x \in (a : b)$. Therefore

$$\frac{x}{s} = \frac{tx}{ts} \in S^{-1}(a:b) = (a:b)_{\mathfrak{p}}.$$

Now let I be a nonzero fractional ideal in the Dedekind domain A. We want to show I is invertible, i.e. there exists a fractional ideal J such that IJ = A. Pick a nonzero prime $\mathfrak{p} \subset A$. Localize at \mathfrak{p} : in the DVR $A_{\mathfrak{p}}$, every nonzero fractional ideal is of the form

$$I_{\mathfrak{p}} = \mathfrak{p}_{\mathfrak{p}}^n \quad (n \in \mathbb{Z}).$$

Its inverse in $A_{\mathfrak{p}}$ is then

$$J_{\mathfrak{p}} = \mathfrak{p}_{\mathfrak{p}}^{-n},$$

so that $I_{\mathfrak{p}}J_{\mathfrak{p}}=A_{\mathfrak{p}}$. Thus, locally at every prime, I has an inverse. Define globally

$$J:=\prod_{\mathfrak{p}}\mathfrak{p}^{-n_{\mathfrak{p}}},$$

where $I_{\mathfrak{p}} = \mathfrak{p}_{\mathfrak{p}}^{n_{\mathfrak{p}}}$. Only finitely many exponents $n_{\mathfrak{p}}$ are nonzero, so this makes sense.

Now for each prime \mathfrak{q} ,

$$(IJ)_{\mathfrak{q}} = I_{\mathfrak{q}}J_{\mathfrak{q}} = A_{\mathfrak{q}}.$$

Since the localizations are the unit ideal everywhere, we get globally

$$IJ = A$$
.

This is because if IJ were proper, it would be contained in some maximal ideal \mathfrak{m} , hence $(IJ)_{\mathfrak{m}} \subseteq \mathfrak{m}_{\mathfrak{m}}$, contradicting the above. Thus I is invertible with inverse J.

Problem 2 Let A be a Dedekind domain, S a multiplicatively closed subset which is strictly smaller than the set of all nonzero elements.

- 1. Show that the localization $S^{-1}A$ is a Dedekind domain.
- 2. Show that the extension of ideals (and similarly for fractional ideals) induces a surjection from the ideal class group of A to that of $S^{-1}A$.

Solution:

1. Recall that a Noetherian domain R is Dedekind iff for every nonzero prime $\mathfrak{p} \subset R$, the localization $R_{\mathfrak{p}}$ is a DVR.

Let \mathfrak{P} be a nonzero prime of $S^{-1}A$. Then $\mathfrak{P} = S^{-1}\mathfrak{p}$ for a unique prime $\mathfrak{p} \subset A$ with $\mathfrak{p} \cap S = \emptyset$. Moreover, $(S^{-1}A)_{\mathfrak{P}} \cong A_{\mathfrak{p}}$. Since A is Dedekind, every $A_{\mathfrak{p}}$ (for $\mathfrak{p} \neq (0)$) is a DVR; hence every $(S^{-1}A)_{\mathfrak{P}}$ is a DVR. Therefore $S^{-1}A$ is Dedekind.

We also check that $S^{-1}A$ is Noetherian and an integral domain. Let I be an ideal of $S^{-1}A$. Consider its contraction in A: $I^c := \{a \in A \mid \frac{a}{1} \in I\}$. This is an ideal of A. Since A is Noetherian, I^c is finitely generated, say by a_1, \ldots, a_n . Then $I = S^{-1}I^c = \left(\frac{a_1}{1}, \ldots, \frac{a_n}{1}\right)$, so I is finitely generated in $S^{-1}A$. Thus every ideal of $S^{-1}A$ is finitely generated, i.e. $S^{-1}A$ is Noetherian.

Finally, $S^{-1}A$ is an integral domain because if $\frac{a}{s} \cdot \frac{b}{t} = 0$ in $S^{-1}A$, then there exists $u \in S$ with uab = 0 in A. Since A is an integral domain and $u \neq 0$, we must have a = 0 or b = 0, hence $\frac{a}{s} = 0$ or $\frac{b}{t} = 0$ in $S^{-1}A$.

2. Recall unique factorization of fractional ideals in Dedekind domains. In A, every nonzero fractional ideal has a unique factorization

$$I = \prod_{\mathfrak{p}} \mathfrak{p}^{n_{\mathfrak{p}}}$$
 $(n_{\mathfrak{p}} \in \mathbb{Z}, \text{ all but finitely many 0}).$

In $S^{-1}A$: the nonzero prime ideals are exactly $S^{-1}\mathfrak{p}$ with $\mathfrak{p} \cap S = \emptyset$ (because if $\mathfrak{p} \cap S \neq \emptyset$, then $S^{-1}\mathfrak{p}$ contains a unit, hence equals $S^{-1}A$). So

$$S^{-1}(\mathfrak{p}^n) = \begin{cases} (S^{-1}\mathfrak{p})^n, & \mathfrak{p} \cap S = \emptyset, \\ S^{-1}A, & \mathfrak{p} \cap S \neq \emptyset. \end{cases}$$

Hence for any fractional ideal $I = \prod_{\mathfrak{p}} \mathfrak{p}^{n_{\mathfrak{p}}}, \, S^{-1}I = \prod_{\mathfrak{p} \cap S = \emptyset} (S^{-1}\mathfrak{p})^{n_{\mathfrak{p}}}.$

Now take an arbitrary class $[J] \in \mathrm{Cl}(S^{-1}A)$. Factor J in $S^{-1}A$: $J = \prod_{\mathfrak{p} \cap S = \emptyset} (S^{-1}\mathfrak{p})^{m_{\mathfrak{p}}}$, with only finitely many nonzero $m_{\mathfrak{p}} \in \mathbb{Z}$. Define the fractional ideal of A by

$$I:=\prod_{\mathfrak{p}\cap S=\varnothing}\mathfrak{p}^{\,m_{\mathfrak{p}}}$$

Then by the argument above, $S^{-1}I = J$. Consequently $[J] = \Phi([I])$, proving that Φ is onto.

Problem 3 Let A be a Dedekind domain. Consider a nonzero ideal a in A. Show that every ideal in the quotient ring A/a is principal. Deduce that every ideal of A is generated by at most two elements.

Solution: Let A be Dedekind and $0 \neq \mathfrak{a} \triangleleft A$. Factor

$$\mathfrak{a} = \prod_{i=1}^r \mathfrak{p}_i^{e_i} \qquad (\mathfrak{p}_i \text{ distinct}).$$

By the Chinese remainder theorem, $A/\mathfrak{a} \cong \prod_{i=1}^r A/\mathfrak{p}_i^{e_i}$. So it suffices to show every ideal of A/\mathfrak{p}^e is principal. This is every ideal in a product of two rings is a product of ideals in each ring.

For a fixed prime \mathfrak{p} , the natural map $A \to A_{\mathfrak{p}}$ induces an isomorphism $A/\mathfrak{p}^e \xrightarrow{\sim} A_{\mathfrak{p}}/\mathfrak{p}^e A_{\mathfrak{p}}$. This is because in general we have an isomorphism $A/B \cong (A/C)/(B/C)$ for ideals $C \subset B \subset A$.

But $A_{\mathfrak{p}}$ is a DVR (Dedekind \Rightarrow localizations at nonzero primes are DVRs). In a DVR with uniformizer π , all ideals are powers of the maximal ideal, hence in the quotient $A_{\mathfrak{p}}/\mathfrak{p}^e A_{\mathfrak{p}}$ the ideals are exactly $\frac{\mathfrak{p}^k A_{\mathfrak{p}}}{\mathfrak{p}^e A_{\mathfrak{p}}}$ ($0 \le k \le e$), and each is generated by the class of π^k . Thus every ideal of $A_{\mathfrak{p}}/\mathfrak{p}^e A_{\mathfrak{p}}$, hence of A/\mathfrak{p}^e , is principal.

Now let I be an ideal of A. Pick some nonzero a not in I, and consider the image of I in A/(a). It is principal, generated by some $\bar{b} \in A/a$. Pick a lift $b \in A$ of \bar{b} . Then I contains the ideal (a,b), and the image of I in A/(a,b) is zero. So I=(a,b) is generated by two elements.

Problem 4 Let d be a square free integer (which is either positive or negative). Determine the integral closure of $\mathbb{Z}[\sqrt{d}]$ (a.k.a. the ring of integers) in $\mathbb{Q}(\sqrt{d})$. (For example, give an explicit \mathbb{Z} -basis for the integral closure.)

Solution: We claim that if $K = \mathbb{Q}(\sqrt{d})$ with d square-free, then the ring of integers is

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}[\sqrt{d}], & d \equiv 2, 3 \pmod{4}, \\ \mathbb{Z}\left\lceil \frac{1+\sqrt{d}}{2} \right\rceil, & d \equiv 1 \pmod{4}. \end{cases}$$

Equivalently, an explicit Z-basis is

$$\{1, \sqrt{d}\}$$
 if $d \equiv 2, 3 \pmod{4}$, $\left\{1, \frac{1+\sqrt{d}}{2}\right\}$ if $d \equiv 1 \pmod{4}$.

Let $\alpha = a + b\sqrt{d}$ with $a, b \in \mathbb{Q}$. The minimal polynomial over \mathbb{Q} is

$$x^2 - 2ax + (a^2 - b^2d),$$

so α is an algebraic integer iff the coefficients are integers:

$$2a \in \mathbb{Z}, \qquad a^2 - b^2 d \in \mathbb{Z}.$$
 (*)

Write b = n/r in lowest terms with $n \in \mathbb{Z}, r > 0$ and m = 2a. Then

$$a^2 - b^2 d = \frac{m^2}{4} - \frac{n^2 d}{r^2} \in \mathbb{Z}.$$

Multiply by $4r^2$:

$$m^2r^2 - 4n^2d \in 4r^2\mathbb{Z}.$$

The left hand side is a multiple of r^2 , and d is squarefree, n and r are coprime, so $r^2 \mid 4$, so r = 1 or 2.

Suppose r=1. Then $b=n\in\mathbb{Z}, a=m/2$. If m even, then $a\in\mathbb{Z}$. Condition (*) gives nothing new, so $\alpha\in\mathbb{Z}[\sqrt{d}]$. If m odd, then $a^2=\frac{m^2}{4}\equiv\frac{1}{4}\pmod{1}$. For (*) to hold, we would need $b^2d\equiv\frac{1}{4}\pmod{1}$, which only happens when $d\equiv1\pmod{4}$ (this overlaps with Case B below). So if $d\equiv2,3\pmod{4}$, the only integrals are with $a,b\in\mathbb{Z}$, i.e. $\mathcal{O}_K\subset\mathbb{Z}[\sqrt{d}]$. The reverse inclusion is clear, so $\mathcal{O}_K=\mathbb{Z}[\sqrt{d}]$.

Suppose r = 2. Now b = n/2. Then

$$\alpha = \frac{m}{2} + \frac{n}{2}\sqrt{d} = \frac{m-n}{2} + n \cdot \frac{1+\sqrt{d}}{2}.$$

So
$$\alpha \in \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$$
 if $\frac{m-n}{2} \in \mathbb{Z}$.

If n is even, then $n^2d\equiv 0\pmod 4$. Condition (*) then requires $m^2\equiv 0\pmod 4$, so m is even. Suppose both m,n even. Then $\alpha\in\mathbb{Z}[\sqrt{d}]$ (trivial case). If n is odd, then $n^2d\equiv d\pmod 4$. So condition (*) becomes $m^2\equiv d\pmod 4$. Now m^2 is either 0 or 1 (mod 4). If $d\equiv 1\pmod 4$, then we need $m^2\equiv 1$, so m must be odd. Thus m and n have the same parity. If $d\equiv 2,3\pmod 4$, there is no solution (since $d\equiv 2,3$ cannot be a quadratic residue mod 4).

This implies that m and n have the same parity when $d \equiv 1 \pmod{4}$. If $d \equiv 1 \pmod{4}$, then indeed $\frac{1+\sqrt{d}}{2}$ is integral (it satisfies $x^2 - x + \frac{1-d}{4} = 0$ with integer constant term). Hence we get a larger order:

$$\mathcal{O}_K = \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$$
.

If $d \equiv 2, 3 \pmod{4}$, then the congruence condition forces m, n both even, so the element reduces back to one in $\mathbb{Z}[\sqrt{d}]$. No genuinely new elements appear.