Optimization in Machine Learning

Second order methods Fisher Scoring

Learning goals

- Fisher Scoring
- Newton-Raphson vs. Fisher scoring
- Logistic regression

RECAP OF NEWTON'S METHOD

Second-order Taylor expansion of log-likelihood around the current iterate $\theta^{(t)}$:

$$\ell(\boldsymbol{\theta}) \approx \ell(\boldsymbol{\theta}^{(t)}) + \nabla \ell(\boldsymbol{\theta}^{(t)})^{\top} (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)}) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})^{\top} [\nabla^2 \ell(\boldsymbol{\theta}^{(t)})] (\boldsymbol{\theta} - \boldsymbol{\theta}^{(t)})$$

We then differentiate w.r.t. θ and set the gradient to zero:

$$abla \ell(oldsymbol{ heta}^{(t)}) + [
abla^2 \ell(oldsymbol{ heta}^{(t)})](oldsymbol{ heta} - oldsymbol{ heta}^{(t)}) = \mathbf{0}$$

Solving for $\theta^{(t)}$ yields the pure Newton-Raphson update:

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + [-\nabla^2 \ell(\boldsymbol{\theta}^{(t)})]^{-1} \nabla \ell(\boldsymbol{\theta}^{(t)})$$

Potential stability issue: pure Newton-Raphson updates do not always converge. Its quadratic convergence rate is "local" in the sense that it requires starting close to a solution.

FISHER SCORING

Fisher's scoring method replaces the negative observed Hessian $-\nabla^2\ell(\theta)$ by the Fisher information matrix, i.e., the variance of $\nabla\ell(\theta)$, which, under weak regularity conditions, equals the negative expected Hessian

$$\mathbb{E}[\nabla \ell(\boldsymbol{\theta}) \nabla \ell(\boldsymbol{\theta})^{\top}] = \mathbb{E}[-\nabla^2 \ell(\boldsymbol{\theta})],$$

and is positive semi-definite under exchangeability of expectation and differentiation.

NB: it can be shown that $\mathbb{E}[\nabla \ell(\theta)] = \mathbf{0}$, which provides the expression of the variance of $\nabla \ell(\theta)$ as the expected outer product of the gradients.

Therefore the Fisher scoring iterates are given by

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} + \mathbb{E}[-\nabla^2 \ell(\boldsymbol{\theta}^{(t)})]^{-1} \nabla \ell(\boldsymbol{\theta}^{(t)})$$

NEWTON-RAPHSON VS. FISHER SCORING

Aspect	Newton-Raphson	Fisher scoring
Second-order	Exact negative	Fisher information matrix
Matrix	Hessian matrix	
Curvature	Exact	Approximated
Computational	Higher	Lower (often has a
Cost		simpler structure)
Convergence	Fast but potentially	Slower but more stable
	unstable	
Positive	Not guaranteed	Yes with
Definite		Fisher information
Use Case	General non-linear	Likelihood-based models,
	optimization	especially GLMs

In many cases Newton-Raphson and Fisher scoring are equivalent (see below).

LOGISTIC REGRESSION

The goal of logistic regression is to predict a binary event. Given n observations $(\mathbf{x}^{(i)}, y^{(i)}) \in \mathbb{R}^{p+1} \times \{0, 1\}, y^{(i)} | \mathbf{x}^{(i)} \sim \textit{Bernoulli}(\pi^{(i)}).$

We want to minimize the following risk

$$\mathcal{R}_{emp}(\theta) = -\sum_{i=1}^{n} y^{(i)} \log(\pi^{(i)}) + (1 - y^{(i)} \log(1 - \pi^{(i)}))$$

with respect to $\boldsymbol{\theta}$, where the probabilistic classifier $\pi^{(i)} = \pi\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right) = s\left(f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)\right)$, the sigmoid function $s(f) = \frac{1}{1 + \exp(-f)}$ and the score $f\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right) = \boldsymbol{\theta}^{\top}\mathbf{x}$.

NB: Note that
$$\frac{\partial}{\partial t} s(t) = s(t)(1 - s(t))$$
 and $\frac{\partial f(\mathbf{x}^{(i)} \mid \theta)}{\partial \theta} = (\mathbf{x}^{(i)})^{\top}$.

For more details we refer to the i2ml lecture.

GENERALIZED LINEAR MODELS

 $y | \mathbf{x}$ belongs to an **exponential family** with density:

$$p(y|\delta,\phi) = exp\left\{rac{y\delta-b(\delta)}{a(\phi)} + c(y,\phi)
ight\},$$

where δ is the natural parameter and $\phi > 0$ is the dispersion parameter. We often take $a_i(\phi) = \frac{\phi}{w_i}$, with ϕ a pos. constant, and w_i is a weight.

One can show that mean $\mu=\mu(\mathbf{x})=b'(\delta)=g^{-1}(\eta)$, variance $Var(y|\mathbf{x})=a(\phi)b''(\delta)$, where

$$\frac{\partial b(\delta)}{\partial \theta} = \frac{\partial b(\delta)}{\partial \delta} \frac{\partial \delta}{\partial \mu} \frac{\partial \mu}{\partial \eta} \frac{\partial \eta}{\partial \theta} = \mu \frac{1}{b''(\delta)} \frac{1}{g'(\mu)} \mathbf{x}$$

