Computer Algebra

Prof. Franz Winkler Institut für Symbolisches Rechnen (RISC)

Contents

\mathbf{T}	c				
ĸ	Λt	αr	Or	0	AC.
ıυ	$c_{\rm I}$	$c_{\rm I}$	er	ı	c_{Σ}

1.	What is Computer Algebra?
2.	Greatest common divisors of polynomials
	2.1 The Euclidean algorithm52.2 A modular GCD algorithm102.3 Squarefree factorization16
3.	Resultants
4.	Gröbner bases
	4.1. Introduction: From Gauss to Gröbner274.2. Basic theory of Gröbner bases314.3. Solving problems in polynomial ideal theory by Gröbner bases454.4. Gröbner bases at work in robotics61
5.	Factorization
	5.1. Factorization over finite fields655.2. Factorization over the integers695.3. Factorization over algebraic extension fields75
6.	Appendix: Arithmetic in basic domains

The material in these lecture notes is largely taken from

F. Winkler, "Polynomial Algorithms in Computer Algebra", Springer-Verlag Wien New York (1996)

where also proofs of the theorems can be found.

References

- [AdL94] W.W. Adams, P. Loustaunau, An Introduction to Gröbner Bases, Amer. Math. Soc., Graduate Studies in Math., vol.3 (1994)
- [BeW93] T. Becker, V. Weispfenning, Gröbner Bases A Computational Approach to Commutative Algebra, Springer (1993)
- [BCL83] B. Buchberger, G.E. Collins, R. Loos, Computer Algebra Symbolic and Algebraic Computation (2nd ed.), Springer (1983)
- [BuW98] B. Buchberger, F. Winkler, *Gröbner Bases and Applications*, Cambridge Univ. Press, London Math. Soc. Lecture Notes 251 (1998)
- [Coh93] A.M. Cohen, Computer Algebra in Industry, Wiley (1993)
- [CGL95] A.M. Cohen, L. van Gastel, S.V. Lunel, Computer Algebra in Industry 2, Wiley (1995)
- [CLO97] D. Cox, J. Little, D. O'Shea, *Ideals, Varieties, and Algorithms (2nd ed.)*, Springer (1997)
- [GaG99] J. von zur Gathen, J. Gerhard, *Modern Computer Algebra*, Cambridge Univ. Press (1999)
- [GCL92] K.O. Geddes, S.R. Czapor, G. Labahn, Algorithms for Computer Algebra, Kluwer Acad. Publ. (1992)
- [GKW03] J. Grabmeier, E. Kaltofen, V. Weispfenning, Handbook of Computer Algebra: Foundation, Applications, Systems, Springer (2003)
- [Gro68] W. Gröbner, Algebraische Geometrie I, BI Hochschultaschenbücher
- [Gro70] W. Gröbner, Algebraische Geometrie II, BI Hochschultaschenbücher
- [Mis93] B. Mishra, Algorithmic Algebra, Springer (1993)
- [SWP08] J.R. Sendra, F. Winkler, S. Pérez-Díaz, Rational Algebraic Curves A Computer Algebra Approach, Springer (2008)
- [vdW70] B.L. van der Waerden, Algebra I, II, Springer (1991)
- [Win96] F. Winkler, Polynomial Algorithms in Computer Algebra, Springer (1996)