

BUNDESREPUBLIK DEUTSCHLAND

REC'D 17 MAR 2004

WIPO

PCT

EP04/1399

**Prioritätsbescheinigung über die Einreichung
einer Patentanmeldung**

Aktenzeichen: 103 14 022.0

Anmeldetag: 28. März 2003

Anmelder/Inhaber: DaimlerChrysler AG, 70567 Stuttgart/DE

Bezeichnung: Sprühkopf für Hochdruckstrahlanwendungen

IPC: B 05 B 1/04

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 26. Februar 2004
Deutsches Patent- und Markenamt

Der Präsident
Im Auftrag

Brodig

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

DaimlerChrysler AG

Schleicher

21.03.2003

Sprühkopf für Hochdruckstrahlanwendungen

5 Die Erfinung betrifft einen Sprühkopf für Hochdruckstrahlanwendungen mit einem Düsenträger und mindestens einer in einer Bohrung des Düsenträgers angeordneten Wechseldüse die vorzugsweise als Flachstrahldüse ausgebildet ist, wobei die Wechseldüse entlang einer Ringfläche an der Wandung der Bohrung abgedichtet ist, wie er bspw. aus der gattungsbildend zugrunde gelegten US 5,512,318 A1 bekannt ist.

Aus der US 5,512,318 A1 ist ein Verfahren bekannt, das zur Vorbereiten einer Oberfläche dient, welche Oberfläche zur späteren Aufbringen einer thermisch gespritzten Beschichtung vorgesehen ist. Bei dem Verfahren wird eine Flüssigkeit durch eine Flachstrahldüse eines Sprühkopfes gepresst, welche wechselbar in einem Düsenträger des Sprühkopfes angeordnet ist. Der Sprühkopf wird in einem Abstand zwischen 6,2 mm und 50 mm zur Oberfläche geführt und der aufgefächerte Flüssigkeitsstrahl mit einem Druck größer 2068 bar auf die Oberfläche gerichtet. Hierbei wird mit dem Flüssigkeitsstrahl die Oberfläche abgefahren und gleichartig aufgeraut wird.

25 Nach einiger Zeit ist die Wechseldüse verbraucht, weshalb sie gewechselt werden muss. Hierzu ist in dem Düsenträger eine Bohrung angeordnet, in welcher die Wechseldüse angeordnet ist. Die Düse weist einen insbesondere aus einem Elastomer gefertigten Dichtring auf, der sich insbesondere im Einsatz an die Wandung der Bohrung anlegt und derart eine dichtende Ringfläche ausbildet.

Wird ein derartiger Sprühkopf bei Drücken größer 2000 bar betrieben, leckt der Sprühkopf bereits nach einer relativ kurzen Zeit, weshalb dann die Wechseldüsen gewechselt werden
5 müssen. Daher ist die Standzeit des Sprühkopfes sehr gering und für eine Massenproduktion ungünstig. Weiterhin erfordert die Abdichtung mit einem Elastomerelement konstruktiv bedingt zusätzliche Baulänge der Düse für die Unterbringung der Dichtung. Dadurch wird ein Einsatz mit optimalen Abständen zur
10 bestrahlten Oberfläche in beengten Verhältnissen unmöglich bzw. eingeschränkt. (siehe Vergleich Digitalfoto in der Anlage.)

Die Aufgabe der Erfindung ist es, den Düsenträger dahingehend
15 weiter zu entwickeln, dass zumindest dessen Standzeit erhöht ist sowie eine kompaktere Bauweise erreicht wird.

Die Aufgabe wird mit einem Sprühkopf mit den Merkmalen des Anspruchs 1 gelöst. Durch die direkte und dichtwirksame metallische Anlage des Düsensitzes an der Wandung der Bohrung des Düsenträgers ist die Dichtwirkung in diesem Bereich verbessert, weshalb der Sprühkopf länger betrieben werden kann und kleiner baut. Des weiteren ist zumindest die Wechseldüse aus einem Stahl, bevorzugt aus einem Edelstahl und besonders bevorzugt aus einem Luft- und/oder Raumfahrtwerkstoff gefertigt.
25

Sinnvolle Weiterbildungen des Sprühkopfes sind den Unteransprüchen entnehmbar. Im übrigen wird die Erfindung anhand von
30 in den Zeichnungen dargestellten Ausführungsbeispielen näher erläutert. Dabei zeigen:

Fig. 1 ein Ausschnitt eines Sprühkopfes,

Fig. 2 eine Explosionsdarstellung eines Teilbereiches des

35 Sprühkopfes nach Figur 1,

Fig. 3 eine in einer Düsenträger angeordneten Wechseldüse
und

Fig. 4 einen Querschnitt eines Düsensitzes bzw., eines Boh-
rungsbodens.

5 In Figur 1 ist ein Ausschnitt eines Sprühkopfes 9 für Hoch-
druckstrahlanwendungen dargestellt, der für Drücke oberhalb
2000 bar, vorzugsweise zwischen 2000 bar und 4000 bar, insbe-
sondere bei etwa 3000 bar, besonders geeignet ist.

10 Der Sprühkopf 9 weist einen Düsenträger 6 und einen Träger-
halter 10 auf, an dem der Düsenträger 6 angeordnet ist. Der
Trägerhalter 10 ist seinerseits sowohl um seine Längsachse
drehbar sowie entlang von ihr verfahrbar gehalten. Innerhalb
15 des Trägerhalters 10 und des Düsenhalters 6 sind Zufuhrboh-
rungen 11 für das zu versprühende Fluid angeordnet.

Am Außenumfang weist der Düsenträger 6 wenigstens eine Wech-
seldüse 2 auf. Die Wechseldüse 2 ist in einer Bohrung 1 des
Düsenträgers 6 angeordnet, deren Bohrungssachse zum Mittel-
20 punkt des Düsenträgers 6 hin ausgerichtet ist. Des weiteren
ist die Wechseldüse fluidisch mit der zugehörigen Zufuhrboh-
rung 11 des Düsenträgers 6 verbunden. Zur besseren Erkennbar-
keit der einzelnen Bauteile ist der Bereich des Sprühkopfes
9, in dem die Wechseldüse 2 in der Bohrung 1 angeordnet ist,
25 in Figur 2 als Explosionsdarstellung dargestellt.

Die auswechselbare Wechseldüse 2 ist mittels einer Halte-
schraube 5 gegen den Bohrungsboden 3 der Bohrung 1 gepresst,
wodurch der zugeordnete Bereich der Wechseldüse 2 - im fol-
30 genden Düsensitz 4 genannt - direkt am Bohrungsboden 3 an-
liegt. Dadurch kann mittels der Halteschraube 5 ein genau de-
finierter Anlagedruck der Wechseldüse 2 an dem Bohrungsboden
3 eingestellt werden.

Ferner wird durch diese druckbeaufschlagte direkte metallische Anlage des Düsensitzes 4 am Bohrungsboden 2 eine Ringfläche ausgebildet, die über eine sehr lange Zeit selbst bei sehr hohen Drücken bis mindestens 4000 bar immer dichtwirksam

5 ist.

Diese gute Dichtwirkung wird u.a. dadurch erreicht, dass sowohl der Bohrungsboden 3 als auch der Düsensitz 4 konisch ausgeformt ist.

10

Sinnvollerweise ist der Öffnungswinkel des Bohrungsbodens 3 größer als der entsprechende Flankenwinkel des Düsensitzes 4, wodurch eine gute Anlage des Düsensitzes 4 an dem Bohrungsboden 3 gewährleistet ist.

15

Zweckmäßigerweise weichen daher der Flankenwinkel und der Öffnungswinkel um maximal etwa 5° , bevorzugt um maximal etwa 3° und besonders bevorzugt um maximal etwa 1° voneinander ab.

20

Aus fertigungstechnischen und dichtungsseitigen Gründen haben sich ein Flankenwinkel des Düsensitzes 4 von etwa 58° und ein Öffnungswinkel der Bohrung von etwa 60° als besonders günstig erwiesen.

25

Damit die Wechseldüse 2 in einfacher, schneller und zuverlässiger Weise gegenüber der Zuführbohrung 11 zentriert werden kann, ist die Form der Querschnittsfläche des Düsensitzes 4 der Form der Querschnittsfläche des Bohrungsbodens 3 entsprechend ausgebildet. Um eine Verdreh Sicherheit sowie eine Lagersicherung und damit die Ausrichtung des Flachstrahls zu gewährleisten, weichen die entsprechenden Querschnittsflächen von einer Kreisform ab. Insbesondere weisen die Querschnittsflächen - wie in Figur 4 dargestellt - eine Kreisform mit parallel zueinander entfernten Kreisbogensegmenten 12 auf.

30

35

Diese Lagesicherung ist vorzugsweise vor der Dichtkante auf der Druckseite d.h. in Strömungsrichtung stromaufwärts angeordnet. Dadurch wird eine kompakte und platzsparende Bauweise

mit kleinen Abmessungen erzielt, die den Einsatz des Sprühkopfes in Innenbohrungen mit kleinem Durchmesser ermöglichen.

Wie schon erwähnt, ist die Wechseldüse 2 mittels einer außen-
5 seitig angeordneten Halteschraube 5 im eingebauten Zustand in der Bohrung 1 gehalten. Die Halteschraube 5 umgibt die Wechseldüse außen- und stirnseitig und ist mit der Wandung der Bohrung 2 des Düsenträgers 6 verschraubt.

10 Ein gute Einpressung und Justage der Wechseldüse 2 wird insbesondere dadurch realisiert, dass die Halteschraube 5 an dem Bereich, an dem die Wechseldüse 2 insbesondere direkt anliegt, - im folgenden vereinfachend Schraubenboden 7 genannt - konisch ausgeformt ist. Zusätzlich ist die Wechseldüse 2 im 15 dem Bereich des Schraubenbodens 7, - im folgenden vereinfachend Schraubensitz 8 genannt - in analoger Weise ebenfalls entsprechend konisch ausgeformt.

Figur 3 zeigt eine weitere prinzipielle Ausführungsform der 20 Wechseldüse 2 und der Bohrung 1 eines Düsenträgers 6. In diesem Fall ist die Wechseldüse 2 in der Art einer Senkkopf- schraube mit einem im Längsschnitt trapezförmigen Kopf und einem zylindrischen Schaft ausgebildet. Entlang ihres zylindrischen Schaftes weist die Wechseldüse 2 ein Außengewinde 25 auf, (Dies macht keinen Sinn, da dann eine Lagesicherung nicht mehr gewährleistet werden kann) das in ein entsprechendes Innengewinde der Bohrung 1 eingeschraubt wird. Auch bildet der konische Bereich der Wechseldüse 2, also der Düsensitz 4 mit dem entsprechenden Bohrungsboden 4 eine vollständig um- 30 laufende und dichtwirksame Ringfläche aus.

Eine derartige Wechseldüse 2 kann mit ihrem konischen Bereich sowohl der Zuströmrichtung des den Druck aufweisenden Fluids zugewandt als auch von der Zuströmrichtung abgewandt sein. 35 (Unklar, da es zwei konische Bereiche gibt. Der untere konische Bereich - Düsensitz 4 - ist für die Abdichtung zuständig. Dieser Bereich kann nicht gegen die Halteschraube 5

dichten, da dann eine Leckage über das Gewinde entstehen würde.)

5 Wird der konische Bereich der Wechseldüse der Strömungsrichtung zugewandt, kann zwar die Auswechslung der Düse erschwert sein, jedoch wird dann die Wechseldüse 2 zusätzlich noch durch das Fluid gegen den Bohrungsboden 3 gedrückt und die Dichtwirkung verbessert.

10 Wird der konische Bereich der Wechseldüse hingegen entgegen der Strömungsrichtung ausgerichtet, muss zwar die Wechseldüse fester angezogen werden, wogegen die Auswechslung der Düse jedoch erleichtert ist.

15 Entgegen dem hier dargestellten Ausführungsbeispiel ist es ebenso sinnvoll, die Wechseldüse 2 mit einer ein Innengewinde aufweisenden Halteschraube (nicht dargestellt) am Düsenträger 6 zu befestigen. Hierbei wird die Halteschraube dann nicht in den Düsenträger 6 eingeschraubt, sondern bspw. über einen Dom 20 des Düsenträgers 6 übergestülpt und am Außenumfang des Domes, der die Wechseldüse aufnimmt, angeschraubt.

DaimlerChrysler AG

Schleicher
21.03.2003

Patentansprüche

5 1. Sprühkopf für Hochdruckstrahl-Anwendungen mit einem Düsenträger und mindestens einer in einer Bohrung des Düsenträgers angeordneten Wechseldüse, welche Wechseldüse entlang einer Ringfläche gegenüber der Wandung der Bohrung abgedichtet ist,

10 dadurch gekennzeichnet, dass die Bohrung (1) an dem Bereich, an dem die Wechseldüse (2) direkt anliegt, - im folgenden vereinfachend Bohrungsboden (3) genannt - konisch ausgeformt ist, dass die Wechseldüse (2) im Bereich des Bohrungsbodens (3), - im folgenden vereinfachend Düsensitz (4) genannt - ebenfalls konisch ausgeformt ist, und dass im eingebauten, funktionstüchtigen Zustand der Düsensitz (4) entlang einer Ringfläche, insbesondere einer Ringlinie, direkt und dichtend an den Bohrungsboden (3) anliegt.

15 2. Sprühkopf nach Anspruch 1,

20 dadurch gekennzeichnet, dass der Öffnungswinkel des Bohrungsbodens (3) größer als der entsprechende Flankenwinkel des Düsensitzes (4) ist.

25 3. Sprühkopf nach Anspruch 2,

30 dadurch gekennzeichnet, dass der Flankenwinkel von dem Öffnungswinkel um maximal etwa 5°, bevorzugt um maximal etwa 3° und besonders be-

vorzugt um maximal etwa 1° voneinander abweichen.

4. Sprühkopf nach Anspruch 2,

dadurch gekennzeichnet,

dass der Flankenwinkel des Düsensitzes (4) etwa 58° und der Öffnungswinkel des Bohrungsbodens (3) etwa 60° beträgt.

5. Sprühkopf nach Anspruch 1,

dadurch gekennzeichnet,

dass zur Lagesicherung der Wechseldüse (2) im Düsenträger die Form der Querschnittsfläche des Düsensitzes (4) der Form der Querschnittsfläche des Bohrungsbodens (3) entspricht und

15 dass die Querschnittsflächen von einer Kreisform abweichen.

6. Sprühkopf nach Anspruch 5,

dadurch gekennzeichnet,

20 dass die Querschnittsflächen eine Kreisform mit parallel zueinander entfernten Kreisbogensegmenten aufweisen.

7. Sprühkopf nach Anspruch 1,

dadurch gekennzeichnet,

25 dass die Lagesicherung auf der Hochdruckseite erfolgt.

8. Sprühkopf nach Anspruch 1,

dadurch gekennzeichnet,

30 dass die Wechseldüse (2) mittels einer außenseitig angeordneten Halteschraube (5) im eingebauten Zustand in der Bohrung (1) gehalten ist,

dass die Halteschraube (5) in die Bohrung (2) des Düsenträgers (6) eingeschraubt ist,

35 dass die Halteschraube (5) an dem Bereich, an dem die Wechseldüse (2) insbesondere direkt anliegt, - im folgenden vereinfachend Schraubenboden (7) genannt - konisch ausgeformt ist,

dass die Wechseldüse (2) im Bereich des Schraubenbo-
dens (7), - im folgenden vereinfachend Schraubensitz (8)
genannt - ebenfalls entsprechend konisch ausgeformt ist.

Figur 1

Figur 2

Figur 3

Figur 4

DaimlerChrysler AG

Schleicher

21.03.2003

Zusammenfassung

5 Die Erfindung betrifft einen Sprühkopf für Hochdruckstrahl-Anwendungen mit einem Düsenträger und mindestens einer in einer Bohrung des Düsenträgers angeordneten Wechseldüse, welche Wechseldüse entlang einer Ringfläche gegenüber der Wandung der Bohrung abgedichtet ist. Damit der Sprühkopf für Drücke größer 2000 bar besser geeignet ist, ist die Bohrung an dem Bereich, an dem die Wechseldüse direkt anliegt, - im folgenden vereinfachend Bohrungsboden genannt - konisch ausgeformt. Des weiteren ist die Wechseldüse im Bereich des Bohrungsbodens, - im folgenden vereinfachend Düsensitz genannt - ebenfalls konisch ausgeformt. Ferner liegt im eingebauten, funktionstüchtigen Zustand der Düsensitz entlang einer Ringfläche, insbesondere einer Ringlinie, direkt und dichtend an den Bohrungsboden an.