FMI, Info, Anul I Logică matematică și computațională

Seminar 1

- (S1.1) Fie T o mulțime și $A,B,X\subseteq T$ cu $A\cap B=\emptyset$ și $A\cup (B\setminus X)=B\cup X$. Să se arate că X=A.
- (S1.2) Fie X o mulţime. Să se arate că nu există o funcţie surjectivă cu domeniul X şi codomeniul $\mathcal{P}(X)$.
- (S1.3) Două mulțimi sunt echipotente dacă există o bijecție între ele.
 - (i) Demonstrați că orice intervale deschise (a, b), (c, d) ale lui \mathbb{R} sunt echipotente.
 - (ii) Demonstrați că (0,1),(0,1],[0,1),[0,1] și $\mathbb R$ sunt echipotente.

FMI, Info, Anul I Logică matematică și computațională

Seminar 2

Dacă $n \in \mathbb{N}$, spunem despre o mulțime A că are n elemente dacă există o bijecție

$$f: A \to \{m \in \mathbb{N} \mid 1 \le m \le n\}.$$

Spunem că o mulțime A este finită dacă există $n \in \mathbb{N}$ astfel încât A are n elemente, iar în caz contrar spunem că A este infinită. O mulțime A se numește numărabilă dacă există o bijecție $f:A\to\mathbb{N}$. O mulțime se numește cel mult numărabilă dacă este finită sau numărabilă.

(S2.1) Arătați, pe rând, următoarele:

- (i) N* este numărabilă.
- (ii) Z este numărabilă.
- (iii) $\mathbb{N} \times \mathbb{N}$ este numărabilă.
- (S2.2) Demonstrați că orice mulțime infinită are o submulțime numărabilă.
- (S2.3) Demonstrați că orice submulțime infinită a unei mulțimi numărabile este numărabilă.
- (S2.4) Demonstrați că o mulțime A este cel mult numărabilă dacă și numai dacă există o funcție injectivă de la A la o mulțime numărabilă (pe care o putem lua ca fiind \mathbb{N}).

(S2.5) Demonstrați următoarele:

- (i) Produsul cartezian a două mulțimi cel mult numărabile este cel mult numărabil.
- (ii) Reuniunea a două mulțimi cel mult numărabile este cel mult numărabilă.

FMI, Info, Anul I Logică matematică și computațională

Seminar 3

- (S3.1) Fie A o mulțime infinită. Demonstrați următoarele, pentru orice mulțime B:
 - (i) Dacă există o funcție injectivă $f:A\to B$, atunci B este infinită.
 - (ii) Dacă $A \subseteq B$, atunci B este infinită.

(S3.2) Demonstrați următoarele:

- (i) Reuniunea unei familii cel mult numărabile de mulțimi cel mult numărabile este mulțime cel mult numărabilă.
- (ii) Reuniunea unui număr finit (≥ 2) de mulțimi numărabile este numărabilă.
- (S3.3) Demonstrați că \mathbb{Q} este numărabilă.
- (S3.4) Arătați că \mathbb{R} nu este numărabilă.
- (S3.5) Fie următoarele propoziții exprimate în limbaj natural:
 - (i) Merg în parc dacă îmi termin treaba și nu apare altceva.
 - (ii) Este necesar să nu plouă ca să putem observa stelele.
- (iii) Treci examenul la logică numai dacă înțelegi subiectul.
- (iv) Treci examenul la logică dacă rezolvi destule probleme.

Transpuneți-le în formule ale limbajului formal al logicii propoziționale.

Logică matematică și computațională

Seminar 4

(S4.1) Fie LP logica propozițională.

- (i) Demonstrați că mulțimea Expr a expresiilor lui LP este numărabilă.
- (ii) Demonstrați că mulțimea Form a formulelor lui LP este numărabilă.

(S4.2) Să se demonstreze că pentru orice $x_0, x_1, x_3, x_4 \dim \{0, 1\}$ avem:

(i)
$$((x_0 \to x_1) \to x_0) \to x_0 = 1$$
;

(ii)
$$(x_3 \to x_4) \to ((x_4 \to x_1) \to (x_3 \to x_1)) = 1$$
.

Fie φ , $\psi \in Form$. Pentru orice $e: V \to \{0,1\}$, notăm cu $e \vDash \varphi$ (și spunem că e satisface φ sau e este model pentru φ) dacă $e^+(\varphi) = 1$. Notăm cu $\vDash \varphi$ (și spunem că φ este tautologie) dacă pentru orice $e: V \to \{0,1\}$ avem că $e \vDash \varphi$. Spunem că φ este satisfiabilă dacă există $e: V \to \{0,1\}$ cu $e \vDash \varphi$ și nesatisfiabilă în caz contrar, când nu există $e: V \to \{0,1\}$ cu $e \vDash \varphi$, i.e. pentru orice $e: V \to \{0,1\}$ avem că $e \nvDash \varphi$. Notăm $\varphi \vDash \psi$ (și spunem că din φ se deduce semantic ψ sau că ψ este consecință semantică a lui φ) dacă pentru orice $e: V \to \{0,1\}$ cu $e \vDash \varphi$ avem $e \vDash \psi$. Notăm cu $\varphi \sim \psi$ dacă pentru orice $e: V \to \{0,1\}$ avem $e \vDash \varphi$ dacă și numai dacă $e \vDash \psi$, i.e. pentru orice $e: V \to \{0,1\}$ avem $e^+(\varphi) = e^+(\psi)$.

(S4.3) Să se găsească câte un model pentru fiecare dintre formulele:

- (i) $v_0 \rightarrow v_2$;
- (ii) $v_0 \wedge v_3 \wedge \neg v_4$.

(S4.4) Arătați că pentru orice φ , ψ , $\chi \in Form$, avem:

- (i) $\psi \vDash (\varphi \rightarrow \psi)$;
- (ii) $\varphi \to (\psi \to \chi) \sim (\varphi \land \psi) \to \chi$;
- (iii) $\varphi \vee (\varphi \wedge \psi) \sim \varphi$;
- (iv) $\vDash \neg \varphi \rightarrow (\neg \psi \leftrightarrow (\psi \rightarrow \varphi)).$

(S4.5) Să se demonstreze că, pentru orice formulă φ , φ este tautologie dacă și numai dacă $\neg \varphi$ este nesatisfiabilă.

Logică matematică și computațională

Seminar 5

(S5.1) Confirmați sau infirmați:

- (i) pentru orice φ , $\psi \in Form$, $\vDash \varphi \land \psi$ dacă şi numai dacă $\vDash \varphi$ şi $\vDash \psi$;
- (ii) pentru orice $\varphi, \psi \in Form, \vDash \varphi \lor \psi$ dacă și numai dacă $\vDash \varphi$ sau $\vDash \psi$.

(S5.2) Să se găsească toate modelele fiecăreia dintre mulțimile de formule:

- (i) $\Gamma = \{v_n \to v_{n+1} \mid n \in \mathbb{N}\};$
- (ii) $\Gamma = \{v_0\} \cup \{v_n \to v_{n+1} \mid 0 \le n \le 7\}.$

(S5.3) Fie $\Gamma \subseteq Form$ şi $\varphi, \psi \in Form$. Să se demonstreze:

- (i) Dacă $\Gamma \vDash \varphi$ şi $\Gamma \vDash \varphi \to \psi$, atunci $\Gamma \vDash \psi$.
- (ii) $\Gamma \cup \{\varphi\} \vDash \psi$ dacă și numai dacă $\Gamma \vDash \varphi \to \psi$.
- (iii) $\Gamma \vDash \varphi \wedge \psi$ dacă și numai dacă $\Gamma \vDash \varphi$ și $\Gamma \vDash \psi.$

Notație. Pentru orice mulțime Γ de formule și orice formulă φ , notăm cu $\Gamma \vDash_f \varphi$ (și citim din Γ se deduce semantic finit φ) faptul că există o submulțime finită Δ a lui Γ a.î. $\Delta \vDash \varphi$.

- (S5.4) Să se arate că pentru orice mulțime de formule Γ și orice formulă φ avem că $\Gamma \vDash_f \varphi$ dacă și numai dacă $\Gamma \cup \{\neg \varphi\}$ nu este finit satisfiabilă.
- (S5.5) Demonstrați că următoarele afirmații sunt echivalente:
 - (V1) Pentru orice $\Gamma \subseteq Form$, Γ este satisfiabilă ddacă Γ este finit satisfiabilă.
 - (V2) Pentru orice $\Gamma \subseteq Form$, Γ este nesatisfiabilă ddacă Γ nu este finit satisfiabilă.
- (V3) Pentru orice $\Gamma \subseteq Form$, $\varphi \in Form$, $\Gamma \vDash \varphi$ dacă și numai dacă $\Gamma \vDash_{\mathrm{f}} \varphi$.

Logică matematică și computațională

Seminar 6

(S6.1) (Metoda reducerii la absurd)

Să se arate că pentru orice mulțime de formule Γ și orice formule $\varphi,\,\psi,$

$$\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \to \varphi) \Rightarrow \Gamma \vdash \psi.$$

(S6.2) Să se arate că pentru orice formule φ , ψ ,

- (i) $\{\psi, \neg\psi\} \vdash \varphi$;
- (ii) $\vdash \neg \psi \rightarrow (\psi \rightarrow \varphi)$;
- (iii) $\vdash \neg \neg \varphi \rightarrow \varphi$;
- (iv) $\vdash \varphi \rightarrow \neg \neg \varphi$.

(S6.3) ("Reciproca" axiomei 3)

Să se arate că pentru orice formule φ , ψ ,

$$\vdash (\varphi \to \psi) \to (\neg \psi \to \neg \varphi).$$

(S6.4) Să se arate că pentru orice formule φ , ψ ,

$$\{\psi, \neg \varphi\} \vdash \neg(\psi \to \varphi).$$

Logică matematică și computațională

Seminar 7

(S7.1) Să se arate că pentru orice formulă φ ,

$$\vdash (\neg \varphi \to \varphi) \to \varphi.$$

(S7.2) Să se arate că pentru orice formule φ , ψ , χ avem:

- (i) $\{\varphi \wedge \psi\} \vdash \varphi$;
- (ii) $\{\varphi \wedge \psi\} \vdash \psi$;
- (iii) $\{\varphi, \psi\} \vdash \varphi \land \psi$;
- (iv) $\{\varphi, \psi\} \vdash \chi \operatorname{ddaca} \{\varphi \land \psi\} \vdash \chi$.

(S7.3) Fie $n \in \mathbb{N}^*$ și $\varphi_1, \dots, \varphi_n$ formule. Să se arate că (Propoziția 2.61 din curs):

- (i) Pentru orice formulă ψ , $\{\varphi_1, \dots, \varphi_n\} \vdash \psi$ dacă și numai dacă $\vdash \varphi_1 \land \dots \land \varphi_n \rightarrow \psi$ dacă și numai dacă $\{\varphi_1 \land \dots \land \varphi_n\} \vdash \psi$.
- (ii) $\{\varphi_1,\ldots,\varphi_n\}$ este consistentă dacă şi numai dacă $\{\varphi_1\wedge\ldots\wedge\varphi_n\}$ este consistentă.

Logică matematică și computațională

Seminar 8

(S8.1)

- (i) Să se arate că mulțimea modelelor unei mulțimi satisfiabile și finite de formule este infinită.
- (ii) Găsiți o mulțime infinită de formule care nu este semantic echivalentă cu nicio mulțime finită de formule.
- (S8.2) Să se demonstreze Teorema de completitudine tare versiunea 2, dar fără a se folosi, precum în curs, Teorema de completitudine tare versiunea 1.
- (S8.3) Să se arate că Teorema de completitudine tare versiunea 2 implică Teorema de completitudine tare versiunea 1.
- (S8.4) Să se aducă următoarele formule la cele două forme normale prin transformări sintactice:
 - (i) $((v_0 \to v_1) \land v_1) \to v_0;$
 - (ii) $(v_1 \lor \neg v_4) \to (\neg v_2 \to v_3)$.
- (S8.5) Să se aducă formula $\varphi = (v_0 \to v_1) \to v_2$ la cele două forme normale trecându-se prin funcția booleană asociată (i.e. metoda tabelului).

Logică matematică și computațională

Seminar 9

(S9.1) Să se testeze dacă următoarele mulțimi de clauze sunt satisfiabile:

- (i) $\{\{\neg v_0, v_1, \neg v_3\}, \{\neg v_2, \neg v_1\}, \{v_0, v_2\}, \{v_0\}, \{v_2\}, \{v_3\}\}\};$
- (ii) $\{\{v_0, v_1\}, \{\neg v_1, v_2\}, \{\neg v_0, v_2, v_3\}\}.$

(S9.2) Să se determine mulțimea $Res(C_1, C_2)$ în fiecare din următoarele cazuri:

- (i) $C_1 := \{v_1, \neg v_4, v_5\}; C_2 := \{v_4, v_5, v_6\};$
- (ii) $C_1 := \{v_3, \neg v_4, v_5\}; C_2 := \{\neg v_3, v_1, v_6, v_4\};$
- (iii) $C_1 := \{v_1, \neg v_3\}; C_2 := \{v_1, \neg v_2\}.$
- (S9.3) Derivați prin rezoluție clauza $C := \{v_0, \neg v_2, v_3\}$ din mulțimea

$$\mathcal{S} := \{\{v_0, v_4\}, \{\neg v_1, \neg v_2, v_0\}, \{\neg v_4, v_0, v_1\}, \{\neg v_0, v_3\}\}.$$

(S9.4) Să se deriveze prin rezoluție clauza $C := \{\neg v_0, v_2\}$ din forma clauzală a unei formule în FNC echivalente semantic cu:

$$\varphi := ((v_0 \wedge v_1) \to v_2) \wedge (v_0 \to v_1)$$

(S9.5) Să se arate, folosind rezoluția, că formula:

$$\varphi := (v_0 \vee v_2) \wedge (v_2 \to v_1) \wedge \neg v_1 \wedge (v_0 \to v_4) \wedge \neg v_3 \wedge (v_4 \to v_3)$$

este nesatisfiabilă.

(S9.6) Să se ruleze algoritmul Davis-Putnam pentru intrarea:

$$\{\{\neg v_0, \neg v_1, v_2\}, \{\neg v_3, v_1, v_4\}, \{\neg v_0, \neg v_4, v_5\}, \{\neg v_2, v_6\}, \{\neg v_5, v_6\}, \{\neg v_0, v_3\}, \{v_0\}, \{\neg v_6\}\}.$$

(S9.7) Demonstrați, folosindu-vă de proprietățile satisfacerii semantice și de aplicarea sistematică (i.e., via algoritmul Davis-Putnam) a regulii rezoluției:

$$\{\neg v_2, v_2 \to \neg v_3, v_3 \to v_4\} \vDash (\neg v_3 \to \neg (v_1 \to v_2)) \lor (v_1 \to (v_3 \land v_4)) \lor v_4.$$