DETERMINISTIC FINITE AUTOMATA (DFA)

Exercise 1

Create an automaton that models a light-switch (alternatively, a turnstile). Give the transition table for it.

	turn	turn
	off	on
Off	t.off	t.on
On	t.off	t.on

Exercise 2

Create an automaton that is able to recognize phone numbers. The proper format for a phone number is either 6 digits, or 3 digits + a dash + 3 digits.

The alphabet for this problem is $\Sigma = \{0, ..., 9, -\}$. However, as the exact type of the digits is not important in this case, we will consider them uniformly as d, and use the alphabet $\Sigma = \{d, -\}$ instead.

The language for our automaton is $L=\{ddddd,ddd-ddd\}$. Any other string over Σ^* should be rejected.

Create an automaton, that recognizes if a given string is a legal C++ identifier, or not. Such an identifier can contain letters, digits and underscores, but cannot start with a digit. Any other characters are forbidden. Also provide a transition table for the problem.

The alphabet for this problem is $\Sigma = \{l, d, u, o\}$ (standing for letter, digit, underscore, other). Strings containing o or starting with d should be rejected.

- (a) How would you modify the above automaton, if strings containing double sequential underscores were not legal identifiers?
- (b) How would you modify the above automaton, if the string containing only underscores was not a legal identifier?

Exercise 4

Create an automaton that accepts all strings starting with 1 over alphabet $\Sigma = \{0, 1\}$.

Create an automaton that accepts all strings ending with 1 over alphabet $\Sigma = \{0, 1\}$.

Exercise 6

Create an automaton that accepts all strings containing the substring 001 over alphabet $\Sigma = \{0,1\}$.

Exercise 7

Create an automaton that accepts all strings with an even number of 1s over alphabet $\Sigma = \{0,1\}$.

Create an automaton that accepts all strings over alphabet $\Sigma = \{0,1\}$ where the total number of ones can be divided by 3.

Exercise 9

Let L be the set of strings over alphabet $\Sigma = \{a, b\}$ that all start with aba. Create an automaton M that accepts L.

Exercise 10

Let language $L = \{b^n a b^m | n, m \ge 0\}$ and alphabet $\Sigma = \{a, b\}$. Create an automaton M that accepts L (L = L(M)).

Exercise 11

Let language $L = \{b^n a b^m | n, m \ge 1\}$ and alphabet $\Sigma = \{a, b\}$. Create an automaton M that accepts L (L = L(M)).

Exercise 12

Let language $L = \{a^{2n}b^{2m+1}|n,m \geq 0\}$ and alphabet $\Sigma = \{a,b\}$. Create an automaton M that accepts L (L = L(M)).

Let language $L=\{a^nba^m|n,m\geq 0,(n+m)\%2=0\}$ and alphabet $\Sigma=\{a,b\}$. Create an automaton M that accepts L (L=L(M)).