

Energy Transfer from Excited Electronic States

Molecular Photochemistry
CHEM 4801

Overview of Energy Transfer

Applications of Energy Transfer

$$^*D + A \longrightarrow D + ^*A$$

Photosynthesis

Photovoltaic cells

apo

D435

sgRNA/DNA-bound

Thermodynamics and Spin

Energy transfer from an excited state must be thermodynamically favorable and consistent with quantum-mechanical selection rules (to zero order).

Thermodynamics: *A must be lower in energy (relative to A) than *D (relative to D).

Spin: No change in spin multiplicity unless coupling to a change in angular momentum is possible.

Types of Energy Transfer

Energy transfer may be radiative or non-radiative; non-radiative ET can be divided into exchange (Dexter) and Columbic (Förster or dipolar) mechanisms.

Sensitization: Introduction and Thermodynamics

Sensitization: Definitions and Energetics

Photosensitizers transfer their excitation energy to acceptors. The energy donor is **quenched** when it transfers energy to the acceptor (**photosensitization**).

Emission spectrum of the donor and absorption spectrum of the acceptor must overlap.

Properties and Examples of Sensitizers

_	$E_{\rm s}$	E_{T}	T _S	T _T	_	
Compound	kcal/mol		S			$\Phi_{\rm ST}$
Benzene	110	84	10 -7	10 -6	п,п*	0.2
Acetone	85	78	10 -9	10 -5	n,π*	1.0
Xanthone		74			п,п*	1.0
Acetophenone	79	74	10-10	10-4	n,π*	1.0
4-CF ₃ -Acetophenone		71			n,π*	1.0
Benzophenone	75	69	10-11	10-4	n,π*	1.0
Triphenylene	83	67	5×10^{-8}	10-4	п,п*	0.9
Thioxanthone	78	65				
Anthraquinone		62			n,π*	1.0
4-Ph-Benzoquinone	77	61		10-4	п,п*	1.0
Michler's ketone		61				1.0
Naphthalene	92	61	10 -7	10-4	п,п*	0.7
2-Acetonaphthalene	78	59		10-4	п,п*	1.0
1-Acetonaphthalene	76	57		10-4	п,п*	1.0
Chrysene	79	57	5×10^{-8}		п,п*	0.8
Biacetyl	60	55	10-8	10 -3	n,π*	1.0
Benzil	59	54	10-8	10-4	n,π*	1.0
Camphorquinone	55	50	10-8		n,π*	1.0
Pyrene	77	49	1 0 ⁻⁶		п,п*	0.3
Anthracene	76	47	5×10^{-9}	10-4	п,п*	0.7
9,10-Dichloroanthracene	74	40	5×10^{-9}	10-4	п,п*	0.5
Perylene	66	35	5×10^{-9}		п,п*	0.005

The ideal triplet sensitizer has:

- High triplet energy
- Short singlet lifetime
- Long triplet lifetime
- High quantum yield for ISC
- Minimal absorption overlap with the acceptor

Properties and Examples of Quenchers

	$E_{\rm S}$	$E_{\scriptscriptstyle extsf{T}}$		
Compound	kcal/	kcal/mol		
2-Butene	120	78		
Phenylacetylene	100	72		
Biphenyl	95	66		
ortho-Terphenyl	90	62		
1,3-Butadiene	90	60		
2,4-Pentadiene	90	59		
<i>para</i> -Terphenyl	105	58		
Cyclopentadiene	90	58		
<i>ci</i> s-Stilbene	95	57		
1,3-Cyclohexadiene	80	53		
<i>tran</i> s-Stilbene	90	50		
Azulene	40	30		
Tetracene	45	29		
Oxygen (O_2)		23		

The ideal triplet quencher has:

- Low triplet energy
- Short triplet lifetime (rapid decay to ground state)
- Minimal absorption overlap with the donor

Dexter (Exchange) Energy Transfer and Trivial Energy Transfer

PES for Exchange Energy Transfer

Exchange energy transfer requires a collision between the donor and acceptor. Delocalization results in energy lowering as *D and A approach; at r_c an interaction causes a shift to the lower surface.

Initial state: $\psi(*D)\psi(A)$

Final state: $\psi(D)\psi(*A)$

 $k \propto \langle \psi(D)\psi(*A)|H_e|\psi(*D)\psi(A)\rangle^2$ based on Fermi's golden rule.

Electron Exchange Interaction

Collisional energy transfer involves double electron transfer to and from the donor and acceptor. As a result, *D returns to the ground state and A ends up in an excited state.

Concerted mechanism

Electron Exchange Interaction

Collisional energy transfer involves double electron transfer to and from the donor and acceptor. As a result, *D returns to the ground state and A ends up in an excited state.

Oxidative mechanism

Electron Exchange Interaction

Collisional energy transfer involves double electron transfer to and from the donor and acceptor. As a result, *D returns to the ground state and A ends up in an excited state.

Reductive mechanism

Distance and Spectral Dependence

Dexter proposed that k_{ET} (exchange) was directly proportional to the **spectral overlap integral J** and exhibited an inverse exponential dependence on r_{DA} .

$$k_{\rm ET}({\rm exchange}) = KJ \exp[-2r_{\rm DA}/(r_{\rm D} + r_{\rm A})]$$

Spectral overlap integral normalized for ε_{A}

Orbitals exhibit exponential decay with distance

Rate is independent of absorption characteristics of A

Collision is required as k becomes negligible for $r_{\rm DA} > r_{\rm D} + r_{\rm A}$

Trivial Energy Transfer

Emission of a photon by *D followed by absorption by A is called *trivial energy transfer*.

1. *D
$$\longrightarrow$$
 D + $h\nu$

$$2.A + h\nu \longrightarrow A$$

The rate of trivial energy transfer depends on:

- 1. Quantum yield of emission by *D (Φ_e)
- 2. Concentration of A
- 3. Absorptivity of A (ε_A)
- 4. Spectral overlap of D emission and A absorption

$$J=\int_0^\infty I_{
m D}\epsilon_{
m A}\,dar
u$$
 Spectral overlap integral J

Förster Resonance Energy Transfer (FRET)

Interaction of Transition Dipoles

Coulombic or *Förster resonance energy transfer (FRET)* involves the electrostatic interaction of equal-energy transition dipoles in *D and A.

The oscillating dipole in *D induces an oscillating dipole in A. Conservation of energy requires $\Delta E(*D \rightarrow D) = \Delta E(A \rightarrow *A)$.

Förster Theory

Combining classical theory of interacting dipoles with the transition dipole moments μ_A and μ_D reveals the dependence of k_{ET} (Coulombic) on distance and spectral parameters.

$$k_{\rm ET}({\rm Coulombic}) \sim \frac{\mu_{\rm D}^2 \mu_{\rm A}^2}{r_{\rm DA}^6}$$

From relations between μ , radiative rate k_D^0 , and integrated absorptivity $\int \varepsilon_A dv$,

$$k_{\rm ET}({
m Coulombic}) \sim {k_{
m D}^0 \int \epsilon_{
m A} \over r_{
m DA}^6}$$

Dipole orientation factor

Incorporating the requirement for spectral overlap,

$$k_{\rm ET}({\rm Coulombic}) = \alpha \frac{\kappa^2 k_D^0}{r_{\rm DA}^6} J(\epsilon_{\rm A})$$
—

Spectral overlap integral without $\varepsilon_{\rm A}$ normalized

Förster Theory

Förster theory points to conditions for rapid Coulombic energy transfer (FRET). The *critical separation* r_0 is a convenient distance when measuring FRET efficiency.

$$k_{\rm ET}({\rm Coulombic}) = \alpha \frac{\kappa^2 k_D^0}{r_{\rm DA}^6} J(\epsilon_{\rm A}) \\ \text{The rate of FRET is greatest when:} \\ \text{1. The *D} \rightarrow {\rm D} \text{ and A} \rightarrow {\rm *A} \text{ processes} \\ \text{have large overlap integral } J$$

- 2. The radiative rate of D (k^0_D) is large
- 3. The absorptivity of A (ε_{A}) is large
- *D and A are close in space (r_{DA} small)

Critical separation r_0 is defined as the distance at which FRET is 50% efficient; i.e., the distance at which the rate of de-excitation of *D is equal to the rate of FRET to A.

$$k_{\rm ET} \propto k_{\rm D} \left(\frac{r_0}{r}\right)^6 = \left(\frac{1}{\tau_{\rm D}}\right) \left(\frac{r_0}{r}\right)^6$$

Coulombic and exchange energy transfer differ profoundly in the effects of distance and oscillator strengths. However, both mechanisms depend on spectral overlap.

k(Coulombic) decreases as r^{-6} while k(exchange) decreases as $\exp(-2r)$.

k(Coulombic) depends on the oscillator strengths of *D \rightarrow D and A \rightarrow *A, especially the latter. k(exchange) does not.

Excimers and Exciplexes

Excimers and Exciplexes

When an excited molecule *M coordinates with a ground-state molecule N, the result is an **excimer** (M = N) or **exciplex** ($M \neq N$). Excimer formation is common because *M is often stabilized via orbital interactions with N.

$$*M + N \longrightarrow *[MN]$$

Orbital interactions in exciplexes

Example: pyrene excimer

Fig. 1. Fluorescence spectra of pyrene in *n*-heptane. t = 20 °C, c (mole/l): 5×10^{-5} (a), 1.8×10^{-4} (b), 3.1×10^{-4} (c), 7.0×10^{-4} (d).

Potential Energy Surfaces

The ground-state complex MN is typically unstable, so excimer emission appears as a broad, featureless peak at lower energy than emission of the monomer *M.

 $\Delta H < 0$ but $\Delta S < 0$ for excimer formation.

Time-resolved experiments show that excimer formation is rate-limited by diffusion.

Fig. 3. Time dependence of excitation (a), monomer component (b), and excimer component (c) of pyrene in cyclohexane. $c = 5 \times 10^{-3}$ mole/1 [8].

A given exciplex *(MQ) can be represented as a quantum-mechanical superposition of four basis states that capture the "essential ingredients" of the exciplex.

$$\psi_{\text{(MQ)}} = a\psi_{\text{(*MQ)}} + b\psi_{\text{(M^*Q)}} + c\psi_{\text{(M^-Q^+)}} + d\psi_{\text{(M^+Q^-)}}$$

Local excitation on M

Electron transfer to M

Local excitation on Q

Electron transfer to Q

In excimers, a = -b and c = -d because M and Q are identical.

Triplet Energy Transfer

Triplet Energy Transfer

Triplet-triplet energy transfer (TET) is the most common and important energy transfer process in organic photochemistry.

TET by the Columbic mechanism is forbidden due to very small $\varepsilon_{\rm A}$.

Compounds with small ΔE_{ST} are ideal triplet sensitizers.

Thermodynamics and Rate

Endothermic TET is negligibly slow for ΔE greater than a few kcal/mol. In contrast, exothermic TET is typically rate limited by diffusion.

$$^*\mathrm{D}(T_1) + \mathrm{A}(S_0) \rightarrow$$
 $\mathrm{D}(S_0) + ^*\mathrm{A}(T_1)$

Donor	Acceptor	Solvent	$k_{\rm dif}$ (s ⁻¹)	$k_{\rm ET} ({\rm s}^{-1})$	k_{-ET} (s ⁻¹)	$\Delta E(D-A)$
triphenylene	naphthalene	<i>n</i> -hexane	10 ¹⁰	2×10^{9}	_	-6
naphthalene	triphenylene	<i>n</i> -hexane	10^{10}	_	<104	+6
naphthalene	biacetyl	benzene	10 ¹⁰	9×10^{9}	_	-5
biacetyl	naphthalene	benzene	10 ¹⁰	_	2×10^{6}	+5
acetone	biacetyl	acetonitrile	10^{10}	5×10^{9}	_	-23
naphthalene	benzophenone	benzene	10 ¹⁰	_	<104	+8

For exothermic TET, rate appears unaffected by ΔE (no "energy gap law"). However, sterics can affect the rate of TET; see *JACS 97*, 4864.

Stern-Volmer Analysis

Stern-Volmer analysis involves measurement of the concentration-dependent quenching of fluorescence or phosphorescence. It is based on a simple mechanistic scheme for quenching.

Reaction	Description	Rate	
$M + hv \rightarrow *M$	absorption	$k_{abs}[M][hv]$	Generation of *M
$*M \rightarrow M + hv$	fluorescence	$k_{em}[*M]$	
$*M \rightarrow M$	other decay pathways	$\sum k_i[*M]$	Consumption of *M
$*M + Q \rightarrow M + *Q$	quenching	$k_q[*M][Q]$	

Stern-Volmer Relation

The quantum yield of emission Φ_{em} depends on the concentration of quencher. Considering kinetics and quantum yields allows us to derive the **Stern-Volmer relation**.

$$k_d = k_{em} + \sum_{i \neq em} k_i$$

$$\Phi_{em} = \frac{k_{em}}{k_d + k_a[Q]}$$

$$\frac{\Phi_{em}^0}{\Phi_{em}} = 1 + k_q \tau_{\mathrm{M}}[Q]$$

$$\frac{I_0}{I} = 1 + k_q \tau_{\mathbf{M}}[\mathbf{Q}]$$

$$\frac{\Phi_{em}^{0}}{\Phi_{em}} = \frac{k_d + k_q[Q]}{k_d} = 1 + \left(\frac{k_q}{k_d}\right)[Q]$$

This equation holds for *any* quenching mechanism: energy transfer, electron transfer, and even reaction of Q with *M!

Stern-Volmer Plot

Assuming our mechanistic scheme holds, a plot of Φ^0_{em}/Φ_{em} (or I_0/I) against [Q] should result in a line with an intercept of 1.0 and a slope of $k_q/k_d = k_q \tau_{*M}$.

$$\frac{\Phi_{em}^0}{\Phi_{em}} = 1 + k_q \tau_{\mathrm{M}}[Q]$$

Evidence for interaction between *M and Q

Rate constants for quenching or reaction

Nonlinear plots suggest interesting mechanisms...