BJYZ

Bowen Yao, Jingwu Wang, Yuqi Chen, Ken Chen

Team Member And Role

Bowen Yao: Project Manager

Jingwu Wang: Documentation Lead

Yuqi Chen: Testing Lead

Zikang Chen: Orchestration/IO Lead

Content

- Algorithm
- Testing
- Result and Metrics
- Future Goals

Good to know:)

- Python Version
 - o Python 3.6 or later version
- Pip
 - Default feature in python environment
- Input Library
 - o biopython Library: Fasta/ Fastq file reader

Algorithm

Some Algorithms We Tried

Reference Genome Length - n Read Genome Length - m Seed Length - k (kmer)

- Suffix Array
 - Time complexity is O(m log n)
 - Takes several minutes for 1000 reads
 - Memory Intensive Space O(n)
- Smith-Waterman Algorithm
 - Gives the optimal approximate matching
 - Low Efficiency Time Complexity O(nm)
 - Takes > 1 hour for 1000 reads
- Hash table + Seeds-and-Extends + Smith-Waterman

Reference Genome

- 1. Decide a k (we choose 30)
- 2. Find all k-mers in the reference genome and store them along with their starting indices to a hash table

$$\begin{array}{c} K=3 \\ ATC: [0,4] \\ TCG: [1/5] \\ CGA: [2] \\ GAT: [3] \end{array}$$

Split Reads - retrieve potential candidate

- 1. Set seed length: Let k = 3 represent the length of each seed. Define l as the number of seeds, where $l = \frac{|R|}{2}$, and |R| is the length of the read R.
- 2. Select seeds: Divide the read R into l non-overlapping or overlapping seeds of length k. Denote these seeds as S_1, S_2, \ldots, S_l , where $S_i = R[i:i+k]$.
- 3. Map seeds to reference genome: For each seed S_i , use the precomputed hash table H to find the corresponding start indices in the reference genome G, denoted as

$$H(S_i) = \{I_1^i, I_2^i, \dots\}$$

seed length=3, select seeds for every 2 index

ATC:
$$[0,4]$$

TCG: $[1/5]$

CGA: $[2]$

CGA: $[2]$

GAT: $[2]$

ATC: $[0/4]$, $[0$

Split Reads - apply SW algorithm

- 4. Apply Smith-Waterman: For each retrieved start index I_j^i from the hash table and let p_i represent the position of seed S_i in R. Extract the corresponding region from the reference genome $G[I_j^i p_i : I_j^i p_i + |R|]$. Apply the Smith-Waterman algorithm to align the read R to this region, obtaining the alignment score $A(I_j^i)$.
- 5. Compute final alignment score: After performing the Smith-Waterman algorithm, let $A(I_i^i)$ denote the alignment score for the start index I_i^i .
- 6. Early exit: Set the early exit score threshold as $\tau = 0.3 \times |R|$ where |R| is the length of the read. If $A(I_j^i) > \tau$ then exit the loop and claim I_j^i as the alignment for the read R. Otherwise, proceed to the next start index.
- 7. Reverse complement case: If no start index satisfies $A(I_j^i) > \tau$, compute the reverse complement of R, and repeat the process from step 2.

Parameters

- k: Seed Length [significantly impact the speed]
 - The larger k, the faster
 - The larger k, the lower possibility to find a match
- Seed_num: The number of seeds for each read
 - The larger, the greater possibility of finding a match
 - The larger, the more comparison that slows speed
- DP threshold: Matching similarity

Testing

Testing on I/O

- ReadFasta and ReadFastq
 - Test on empty file
 - Test incorrect input path
 - Test on malformed file
 - Test on a simple correct file
- SAMWriter
 - Validate the SAM file output
 - Check correct header
 - Check correct mapping

Testing on Sequence Mapping

- Comparison of Expected Start Position
 - For each read in the dataset, compare the match index returned by the mapping algorithm with the corresponding expected start position from the ground truth data
- Performance Metrics Calculation:
 - Precision
 - Recall
 - Runtime

Result

Result

<u>Midterm Metrics For Test Dataset 1 (1,000 reads):</u>

Total Time (s)	Reads Per Minute	Precision	Recall
4.28	14,019	1.00	1.00

Break-down:

True Positive	False Positive	True Negative	False Negative
811	0	188	1

Midterm Metrics For Test Dataset 2 (1,000 reads):

Total Time (s)	Reads Per Minute	Precision	Recall
4.24	14,151	1.00	0.98

Break-down:

True Positive	False Positive	True Negative	False Negative
799	0	188	13

Future Goals

Next Steps

Parameter Tuning

 Develop and refine methods to determine the optimal number of seeds and the ideal k-value for improved alignment accuracy.

Implement Parallel Design

 Leverage parallel processing techniques to accelerate the algorithm, efficiently handle larger datasets, and reduce runtime.

Optimize Algorithm Performance

Explore optimization strategies to enhance throughput and overall algorithm efficiency.

Gantt Chart

