주식투자 예측 프로그램

202104005 김예나 201804008 김우원

202207018 장정규

목차

- 프로그램 필요성
- 프로그램 소개
- 데이터 분석
- 사용 알고리즘
- 순서도 및 구현
- 성능 평가
- 결론

프로그램 필요성

- 데이터를 기반으로 패턴을 학습하고 미래를 예측하는 것이 핵심이라고 생각했기 때문에 주 가와 관련있는 데이터들을 선정한 후 학습 데이터셋과 테스트 데이터셋으로 분리 후 모델 을 학습시켜 테스트 데이터로 성능을 평가하는 방법을 사용한다.

프로그램 소개

- 제목: 주식예측 프로그램
- 목적 : 주식 가격 움직임을 예측하여 예측한 방향성을 토대로, 투자자들이 더 나은 투자 전략을 가지고 주식 투자 결정을 할 수 있도록 돕는 것이다.
- 요약: 종가, 시가, 고가, 저가등의 정보가 포함된 10년간의 주식 시계열 데이터를 입력하여 학습시킨 후, 다음 날의 종가를 예측한다.
- 기대효과: 투자자들의 리스크를 줄여 투자 의사 결정을 돕고 투자 전략을 테스트할 수 있게 하는 것을 기대효과로 가진다.

데이터 분석

■ 유진투자 증권 HTS (https://www.eugenefn.com/main.do)

인덱스	이름	데이터타입	값	설명
0	Date	범주형	숫자	주식거래일자
I	Open	연속형	숫자	해당 거래일의 최초 거래 시점에 형성된 가격
2	High	연속형	숫자	해당 거래일 동안 기록된 가장 높은 가격
3	Low	연속형	숫자	해당 거래일 동안 기록된 가장 낮은 가격
4	Close	연속형	숫자	거래일의 마지막 거래 시점에 형성된 가격
5	Volume	연속형	숫자	해당 거래일 동안 거래된 주식의 총량을 나타내는 값
6	RSI	연속형	숫자	주식의 과매수 상태를 나타내는 값
7	RSISignal	연속형	숫자	RSI 지표에서 파생되는 신호로 70을 돌파하여 하락하는 경우, 판매 신호로 간주
8	CCI	연속형	숫자	양수일수록 상슝추세, 음수일수록 하락추세인 값

데이터 분석

인덱스	이름	데이터타입	가	설명
9	CCISignal	연속형	숫자	값이 +100 이상인 경우 과매수 상태, -100 이하인 경우 과매도 상태
10	UpDI	연속형	숫자	DMI중 하나로, 가격이 이전 거래일보다 상승한 경우, 증가하는 값
П	DownDI	연속형	숫자	DMI중 하나로, 가격이 이전 거래일보다 하락한 경우 증가하는 값
12	ADX	연속형	숫자	현재 주식 추세의 강도를 나타내는 값
13	PDI	연속형	숫자	DMI중 하나로, 상슝 추세의 강도가 클수록 높은 값
14	MDI	연속형	숫자	DMI중 하나로, 하락 추세의 강도가 클수록 높은 값
15	WilliamsR	연속형	숫자	과매수 또는 과매도 상태에 있는지를 판단하는 값으로 -20 이하면 과매도
16	WilliamsD	연속형	숫자	WilliamsR 지표를 기반으로 한 주가의 상대강도를 나타내는 지표값
17	MACD	연속형	숫자	가격의 상슝 또는 하락 추세가 강할수록 중하가는 값
18	MACDSignal	연속형	숫자	주식 가격의 상승이나 강세가 클수록 증가하는 값

데이터 분석

인덱스	이름	데이터타입	가	설명
19	MACDOscillator	연속형	숫자	값이 크고 양수인 경우 강한 상승 추세, 값이 크고 음수인 경우 강한 하락 추세
20	Close5ma	연속형	숫자	종가 5일 이동평균 값
21	Close10ma	연속형	숫자	종가 I0일 이동평균 값
22	Close20ma	연속형	숫자	종가 20일 이동평균 값
23	Close60ma	연속형	숫자	종가 60일 이동평균 값
24	INDNB	연속형	숫자	지정 종목의 개인순매수 값
25	INSNB	연속형	숫자	지정 종목의 기관순매수 값
26	FNB	연속형	숫자	외국인 순매수/순매도 값
27	Call	연속형	숫자	금리
29	EX	연속형	숫자	환율(원/달러)
30	SSR	연속형	숫자	공매도 비율

사용 일고리즘: LSTM

- RNN의 한 종류로, 시간적 순서를 가진 시계열 데이터와 같은 처리하는 데 사용되는 신경망 구조
- 과거의 데이터를 토대로 현재(미래)를 예측하는 곳에 사용
- RNN은 반복 모듈을 통해 시간에 따른 의존성을 학습하지만 장기 의존성 문제로 인해 긴 시퀀스데이터에서 오랜 기간의 의존성을 제대로 학습하기 어려운 문제를 가짐
- 과거의 정보를 기억하고 유지하는 역할인 기억 셀(Memory Cell), 시그모이드 활성화 함수와 곱셈 연산을 통해 기억 셀의 동작을 조절하는 게이트 메커니즘을 도입
 - RNN의 장기 의존성 문제를 해결
- 장점: 시계열 데이터에서 더 긴 의존성을 파악할 수 있고, 선택적으로 정보를 저장하고 삭제하면서 필요한 정보만을 유지하고 전달
- 단점: 상대적으로 처리 속도가 느리고 과적합 가능성이 높아짐

전체 순서도

전처리

```
| price_indicator = df.loc[:,'Open':'Close'].values[1:].astype(float) # 가격 관련 지표
 volume_indicator = df.loc[:,'Yolume':'Yolume'].values[1:].astype(float) # 거래량 관련 지표
  etc_indicator = df.loc[:,'RSI':'SSR'].values[1:].astype(float) # 추세 또는 거래량 활용 지표
 scaler = MinMaxScaler(feature_range=(0, 1)) # 0~1 값으로 스케일링
  scaler etc = MinMaxScaler(feature range=(-1, 1)) # -1~1 값으로 스케일링
  scaled_price_indicator = scaler.fit_transform(price_indicator) # 가격 관련 지표에 스케일링
  scaled_volume_indicator = scaler.fit_transform(volume_indicator) # 거래량 관련 지표에 스케일링
 scaled_etc_indicator = scaler_etc.fit_transform(etc_indicator) # 추세 또는 거래량 활용 지표에 스케일링
  price_indicator
: array([[ 26900., 27100., 26400., 26650.],
        [ 26800., 26900., 26200., 26350.],
        [ 26400., 26450., 25650., 25900.],
        [106000., 110500., 106000., 110300.],
        [111000., 112700., 109200., 110300.],
        [110100., 110500., 108500., 108700.]])
```

모델학습

```
input_shape = (seq_length, trainX.shape[2])

model = Sequential()
model.add(LSTM(64, input_shape=input_shape, return_sequences=True))
model.add(Dropout(0.001))
model.add(LSTM(64))
model.add(Dropout(0.001))
model.add(Dropout(0.001))
model.add(Dense(1))
model.add(Activation('softsign')) #linear / softsign
print(input_shape)
(29, 29)
```

구현: 사용자 입력

df= pd.read_csv(os.path.join("C:\ml_workspace\SK하이닉스 13~23.csv"), encoding='utf8') df.describe()

Out[48]:

	Open	Higt	Low	Close	Volume	RSI	RSISignal	CCI	CCISignal	UpDI	 C
count	2566.000000	2566.000000	2566.000000	2566.000000	2.566000e+03	2566.000000	2566.000000	2566.000000	2566.000000	2566.000000	 256
mean	68822.798129	69714.127046	67836.730320	68737.996882	3.723025e+06	0.519573	0.519210	8.346485	8.160978	24.632529	 10
std	30681.834072	31095.626517	30178.490951	30629.049394	1.960378e+06	0.159519	0.131400	107.891457	77.176467	10.247633	
min	23850.000000	24200.000000	23600.000000	23700.000000	8.425620e+05	0.066300	0.137700	-276.060000	-158.160000	1.430000	 8
25%	41000.000000	41350.000000	40350.000000	40900.000000	2.442582e+06	0.405450	0.425975	-76.547500	-59.485000	17.350000	 S
50%	71800.000000	73000.000000	70800.000000	71750.000000	3.258910e+06	0.515400	0.513750	13.300000	10.525000	23.590000	 10
75%	87900.000000	89000.000000	86500.000000	87875.000000	4.465971e+06	0.634575	0.614100	90.610000	75.535000	30.812500	 10
max	149000.000000	150500.000000	142500.000000	148500.000000	2.101944e+07	0.972600	0.902800	361.630000	168.680000	68.210000	 11

8 rows × 29 columns

구현: 자격증명 확인

Out[69]:

	Date	Open	Higt	Low	Close	Volume	RSI	RSISignal	CCI	CCISignal	 Close5ma	Close10ma	Close20ma	Close60ma	INDNB	
324	2014- 04-23	40200	40850	40050	40750	6302966	0.8088	0.6411	170.66	137.01	 103.32	106.15	108.10	106.87	-3253028	8
325	2014- 04-24	40850	40900	40150	40900	4202633	0.7920	0.6713	134.90	136.59	 102.22	105.66	108.04	107.07	-1374110	1
326	2014- 04-25	41100	41350	40650	40750	6413507	0.8049	0.6980	120.38	133.34	 101.07	104.27	107.12	106.55	-1091322	-18
327	2014- 04-28	40450	40800	39900	40500	2962593	0.8049	0.7194	80.43	122.76	 99.90	102.69	105.84	105.77	-299651	
328	2014- 04-29	40250	40500	39600	39700	2864162	0.6694	0.7094	49.35	108.08	 97.98	100.08	103.39	103.54	442888	-3
2561	2023- 05-30	113200	113400	109500	110300	9058509	0.9167	0.7677	160.56	137.10	 106.34	111.41	117.90	123.97	-625685	-6

성능평가:RMSE

```
from sklearn.metrics import mean_squared_error, mean_absolute_error

# 예측 수행
y_pred = model.predict(testX)

# RMSE 계산
rmse = np.sqrt(mean_squared_error(testY, y_pred))
print("Root Mean Squared Error (RMSE):", rmse)

# 평균 제곱근 오차 (RMSE)예측값과 실제값의 차이의 크기
```

24/24 [=============] - 1s 21ms/step

Root Mean Squared Error (RMSE): 0.1183605930153349

성능평가: MAPE

```
def calculate_mape(testY, y_pred):
   actual_values = np.array(testY)
   predicted_values = np.array(y_pred)
   # Calculate absolute percentage errors
   absolute_errors = np.abs((testY - y_pred) / testY)
   # Calculate mean absolute percentage error
   mape = np.mean(absolute_errors) * 100
   return mape
mape = calculate_mape(testY, y_pred)
print(f"MAPE: {mape}%")
#예측 값과 실제 값 사이의 절대 오차의 평균을 계산
#정확도는 87.45043106277341%
```

MAPE: 12.746287935897483%

결론

- 요약: LSTM 일고리즘을 사용하여 더 다양한 종류의 주식 관련 키워드 뿐만 아니라 금리나 환율과 같은 주식 가격을 결정하는 외부 키워드 또한 학습시켜 정확도를 높였다.
- 극복한 점: 초반에 학습을 시키면서 과소적합문제가 계속 발생하여 고통을 받았으나, 학습할 데이터양이 너무 적은 것 같아 최근 10년으로 범위를 늘린 결과 문제를 해결했다. 또한 이 다음에는 과적합 문제가 발생해서 또 다시 고통이 찾아왔지만 적절한 에포크 횟수 조절과 Dropout 레이어를 추가하여 해결할 수 있었다. 수업 시간에 배운 기본이 정말 중요하고 포기하지 않고계속해서 여러 시도를 하면서 이겨내려는 자세라면 못할 것이 없다는 것을 깨달았다.
- Future work
 - 금리나 환율 이외에도 전날 뉴스에서 많이 언급된 단어, 전날 나스닥지수 중감량, 관련 업종 주가 추이 등과 같은 키워드들도 더 많이 수집하여 추가할 것이다.
 - Transformer, GANs과 같은 다른 모델도 사용해서 LSTM모델과 성능이 얼마나 차이나는지 비교 하여 주식예측과 관련된 더 적합하고 정확한 모델이 무엇인지 알아볼 것이다.