PHYS 375: Final Project -Gravity Group

Frederick Hobel, Amaar Quadri, Jedri De Luna, Kevin Djuric, Meagan Stewart, Mitchell Shahen, Shivani Hegde

Equations of Stellar Structure

$$egin{align} rac{dP}{dr} &= -rac{GM
ho}{r^2} & rac{d
ho}{dr} &= -\left[rac{GM
ho}{r^2} + rac{dP}{dT}rac{dT}{dr}
ight] igg/rac{dP}{d
ho} \ & rac{dT}{dr} &= \min\left[rac{3\kappa
ho L}{16\pi acT^3r^2}, \, \left(1-rac{1}{\gamma}
ight)rac{T}{P}rac{GM
ho}{r^2}
ight] \ & rac{dM}{dr} &= 4\pi r^2
ho & rac{dL}{dr} &= 4\pi r^2
ho\epsilon & rac{d au}{dr} &= \kappa
ho \end{array}$$

Verification Process of Results

M = 0.66 Solar Mass Star

R = 0.85 Solar Radius

Luminosity = 0.06 Solar Luminosity

Surface Temperature = 3096 K

Gravity Modification: Updated Stellar Equations

$$g = \frac{GM}{r^2}$$

$$g = \frac{GM}{r^2} \left(1 + \frac{\lambda}{r} \right)$$

Small Scale Adjustment

$$g=rac{GM}{r^2}igg(1+rac{r}{\Lambda}igg)$$
 Large Scale Adjustment

$$[\lambda] = [\Lambda] = m$$

Note: This only affects the density gradient and convective temperature gradient equations

Properties' Plots

Convection Zones Shown in Gray

- λ tends to compress/expand stellar core
- Positive λ creates a cusp at stellar center

Pressure Plots

- Degenerate Pressure dominates in all cases
- The pressure decreases rapidly at various radii, dependent on Λ and λ

Energy Generation Plots

- Proton-Proton Chain dominates in all cases
- The gradient is maximized at various radii, dependent on Λ and λ

H-R Diagrams - Small Scale

- Breaks down above $|\lambda| = 1 \times 10^8$
- Radius of the sun is $\sim 7 \times 10^8$

L-M Diagrams - Small Scale

- Positive λ increases luminosity for a given mass since compressed core has greater energy generation
- Varying $|\lambda|$ above 10⁸ changes L-M Diagram curve
- Breaks down above $|\lambda| = 1 \times 10^8$
- Note: Radius of the sun is ~7x10⁸

R-M Diagrams - Small Scale

- Greater lambda compresses the core, which expands the radius based on the Mirror principle
- Varying lambda near 10⁸ moves the trend
- Breaks down below $|\Lambda| = 1 \times 10^9$
- Radius of the sun is $\sim 7 \times 10^8$

H-R Diagrams - Large Scale

- Varying Λ near 10^8 moves the trend line
- Breaks down below $|\Lambda| = 1 \times 10^9$
- Radius of the sun is $\sim 7 \times 10^8$

L-M Diagrams - Large Scale

- Varying Λ below 10^9 moves the trend line towards smaller relative masses
- Breaks down at and below $\Lambda = -1 \times 10^9$
- Note: Radius of the sun is ~7x10⁸

R-M Diagrams - Large Scale

- As lambda decreases, the strength of the gravity on large scales increases so the outer material is pulled inwards and the radii decrease
- Decreasing positive Λ below 10^9 has a large impact on stellar radii
- Negative Lambda breaks down easily beyond $\Lambda = -1 \times 10^9$

Trends Observed

- Non-Convergent H-R, L-M, and R-M plots at sufficiently high λ and low Λ
- Largely Negative Λ and λ values caused the plot to break down immediately upon deviating from the $\Lambda = \infty$ and $\lambda = 0$ lines
- The behaviour of the H-R Diagrams remained unchanged, unlike the positioning
- Increasing positive λ and decreasing positive Λ produced larger luminosities at smaller masses
- Increasing positive λ and decreasing positive Λ produced larger radii at smaller masses
- For minimal changes to observed stellar relationships, $|\lambda| < 10^8$ m or $|\Lambda| > 10^8$ m

Algorithms and Analytical Techniques Used

- Adaptive step RK45, with variable local error
- Simple bisection algorithm
 - Adaptively increase local error requirements as rho_c converges.
 - \circ Speed up convergence by estimating rho_c: $\ln(10)/\ln(2)=3.32$
- Generating a sequence of stars with varying T_c
 - Use information from previous stars to prediction rho_c
 - Prediction overhead is negligible
 - Linear prediction in log-log graph based on last 2 data points
 - Could likely be improved with quadratic fit

Rho_c Prediction Accuracy

Rho_c Prediction Absolute Error	Proportion
<0.01	13.1%
< 0.1	39.1%
<1	56.8%
<10	87%

Mean Percentage Error: 0.25%

Thank you for listening!