Metodología de la Programación

Grado en Ingeniería Informática de Gestión y Sistemas de Información Escuela de Ingeniería de Bilbao (UPV/EHU) Departamento de Lenguajes y Sistemas Informáticos

riamento de Lenguajes y Sistemas Informatico

Curso: 1º

Curso académico: 2022-2023

Grupo 01

Tema 5: Especificación ecuacional de los TAD

Inducción sobre listas

Última actualización: 11 - 01 - 2023

Índice

1	;Se	cumple $suma(s ++ r) = suma(s) + suma(r)$ para dos listas cualesquiera de enteros s y
	1.1	Especificación ecuacional de la función suma
	1.2	Especificación ecuacional de la función (++)
	1.3	Propiedades a utilizar
	1.4	Caso simple: $s = []$
		1.4.1 Comprobación de la igualdad
		1.4.2 Conclusión
	1.5	Caso inductivo: $s = x : w$
	1.0	1.5.1 Hipótesis de la inducción (h.i.):
		1.5.2 Comprobación de la igualdad
		1.5.3 Conclusión
		The Contention of the Content of the
2	¿Se	cumple $s ++[] = s$ para cualquier lista s ?
	2.1	Especificación ecuacional de la función (++)
	2.2	Propiedades a utilizar
	2.3	Caso simple: $s = []$
		2.3.1 Comprobación de la igualdad
		2.3.2 Conclusión
	2.4	Caso inductivo: $s = x : w$
		2.4.1 Hipótesis de la inducción (h.i.):
		2.4.2 Comprobación de la igualdad
		2.4.3 Conclusión
		2.10
3	¿Se	cumple $nveces(x, s ++ r) = nveces(x, s) + nveces(x, r)$ para cualquier elemento x y para
		listas cualesquiera s y r?
	3.1	Especificación ecuacional de la función <i>nveces</i>
	3.2	Especificación ecuacional de la función (++)
	3.3	Propiedades a utilizar
	3.4	Caso simple: $s = []$
		3.4.1 Comprobación de la igualdad
		3.4.2 Conclusión

MI	P – Ter	na 5: Especificación ecuacional de los TAD – Grupo 01 – Inducción	2		
	3.5	Caso inductivo: $s = y : w$ 3.5.1 Hipótesis de la inducción (h.i.):3.5.2 Comprobación de la igualdad3.5.3 Conclusión	12 12 12 14		
4					
		s cualesquiera s y r?	15		
	4.1 4.2	Especificación ecuacional de la función $esta$	15 15		
	4.3	Propiedades a utilizar	16		
	4.4	Caso simple: $s = []$	16		
		4.4.1 Comprobación de la igualdad	16		
		4.4.2 Conclusión	17		
	4.5	Caso inductivo: $s = y : w$	17		
		4.5.1 Hipótesis de la inducción (h.i.):	17 17		
		4.5.3 Conclusión	19		
5		cumple $esta(x, s) = esta(x, inversa(s))$ para cualquier elemento x y cualquier lista s ?	20		
	5.1 5.2	Especificación ecuacional de la función $esta$	20 20		
	5.3	Propiedades a utilizar	21		
	5.4	Caso simple: $s = []$	21		
		5.4.1 Comprobación de la igualdad	21		
	~ ~	5.4.2 Conclusión	22		
	5.5	Caso inductivo: $s = y : w$	22 22		
		5.5.2 Comprobación de la igualdad	22		
		5.5.3 Conclusión	24		
6	• 6 -		25		
O	6.1	cumple $suma(s) = ultimo(s) + suma(sin_ultimo(s))$ para cualquier lista no vacía s? Especificación ecuacional de la función $suma \dots \dots \dots \dots \dots \dots \dots$	25 25		
	6.2	Especificación ecuacional de la función <i>ultimo</i>	25		
	6.3	Especificación ecuacional de la función sin_ultimo	26		
	6.4	Propiedades a utilizar	26		
	6.5	Caso simple: $s = x : []$	26		
		6.5.1 Comprobación de la igualdad	27 28		
	6.6	Caso inductivo: $s = x : w \ y \ w \neq [$	28		
		6.6.1 Hipótesis de la inducción (h.i.):	28		
		6.6.2 Comprobación de la igualdad	28		
		6.6.3 Conclusión	30		
7	Letr	as griegas utilizadas	31		
L	ista	de figuras			
Lista de tablas					
	1	Denominaciones de las letras griegas utilizadas en los ejemplos de inducción sobre listas	31		

1 ¿Se cumple suma(s ++ r) = suma(s) + suma(r) para dos listas cualesquiera de enteros s y r?

Sean s y r dos listas cualesquiera de enteros. Utilizaremos la inducción para probar que se cumple la siguiente igualdad:

$$suma(s ++ r) = suma(s) + suma(r)$$

La inducción se aplicará sobre la lista s.

Para aplicar dicha técnica, en primer lugar, habrá que dar las ecuaciones correspondientes a las funciones $suma\ y\ (++)$ que aparecen en esa igualdad. En segundo lugar, habrá que probar que la igualdad se cumple en el caso simple, es decir, cuando $s=[\,]$. Para ello, será necesario utilizar las ecuaciones de las funciones $suma\ y\ (++)$. En tercer lugar, habrá que probar que la igualdad se cumple en el caso inductivo, es decir, cuando s=x:w. También en este caso, será necesario utilizar las ecuaciones de las funciones $suma\ y\ (++)$. Además, en el caso inductivo, es necesario hacer uso de la hipótesis de la inducción: consideraremos que la sublista w y la lista r cumplen la igualdad. En este ejemplo, hace falta utilizar dos propiedades adicionales sobre números: $(Prop\ 1.1)\ y\ (Prop\ 1.2)$. Esas propiedades aparecen en el apartado 1.3 de la página 4.

1.1 Especificación ecuacional de la función suma

Dada una lista de tipo Int, la función suma calculará la suma de los elementos de la lista.

Ejemplos

$$\triangleright suma([8,5,9,5]) = 27$$
 $\triangleright suma([5]) = 5$ $\triangleright suma([1]) = 0$

Ecuaciones

Al formular las ecuaciones, representaremos los elementos mediante las letras a, b y c para no generar confusión con los elementos x, s, r y w de la igualdad y del caso inductivo.

La especificación ecuacional es la siguiente:

$$suma :: ([Int]) -> Int$$

$$suma([]) = 0 (Ec. 1.1)$$

$$suma(a:b) = a + suma(b) (Ec. 1.2)$$

1.2 Especificación ecuacional de la función (++)

Dadas dos listas de tipo t, la función (++) devuelve la lista que se obtiene al concatenar las dos listas de entrada. Se respetará el orden de los elementos.

Ejemplos

$$\triangleright \ [8,5,9,5] + +[20,17] = [8,5,9,5,20,17] \\ \qquad \qquad \triangleright \ [8,5,9,5] + +[\] = [8,5,9,5]$$

Ecuaciones

También aquí, se utilizarán a, b y c.

La especificación ecuacional es la siguiente:

$$(++) :: ([t], [t]) \to [t]$$

$$[] ++ c = c \qquad (Ec. 1.3)$$

$$(a:b) ++ c = a: (b++c) \quad (Ec. 1.4)$$

1.3 Propiedades a utilizar

Hay que utilizar las siguientes dos propiedades de los números:

- \bigcirc (Prop 1.1) 0 es elemento neutro para la operación de adición de números +: i + 0 = 0 + i = i.
- \bigcirc (Prop 1.2) La adición de números + es asociativa: i + (j + k) = (i + j) + k.

1.4 Caso simple: s = []

Cuando se cumple s = [], la pregunta es la siguiente:

$$\xi suma([] ++ r) = suma([]) + suma(r)?$$

1.4.1 Comprobación de la igualdad

Se ha de comprobar que los dos lados de la igualdad son realmente iguales.

$$\underbrace{suma([] ++ r)}_{\alpha} = \underbrace{suma([]) + suma(r)}_{\beta}?$$

Desarrollo de α y β :

En cada paso, se indicará qué ecuación o propiedad se va a utilizar, a qué parte de la expresión se le aplicará la ecuación o la propiedad, y con qué elementos de la ecuación o la propiedad se asocian los elementos de la expresión que se tiene en ese paso.

Desarrollo de α :

$$\alpha = suma([] ++ \underbrace{r}_{c}) = Ec. 1.3$$

$$= suma(r)$$

Desarrollo de β **:**

$$\beta = \underbrace{suma([\])}_{Ec.\ 1.1} + suma(r) = \underbrace{Ec.\ 1.1}_{i}$$

$$= \underbrace{0 + \underbrace{suma(r)}_{i}}_{Prop\ 1.1} = \underbrace{suma(r)}_{i}$$

1.4.2 Conclusión

En ambos lados (α y β), se ha obtenido el mismo valor. Por tanto, en el caso s = [], se cumple la propiedad que estamos probando.

1.5 Caso inductivo: s = x : w

Cuando s = x : w, la pregunta es la siguiente:

$$isuma((x:w) ++ r) = suma(x:w) + suma(r)?$$

1.5.1 Hipótesis de la inducción (h.i.):

Se ha de considerar que la ecuación se cumple para la sublista w de s y para la lista r:

$$\underbrace{suma(w \ ++ \ r)}_{\lambda} = \underbrace{suma(w) + suma(r)}_{\pi}$$

1.5.2 Comprobación de la igualdad

Se ha de comprobar que los dos lados de la igualdad son iguales en el caso inductivo.

$$\underbrace{suma((x:w) ++ r)}_{\gamma} = \underbrace{suma(x:w) + suma(r)}_{\delta}?$$

Desarrollo de γ y δ :

En cada paso, se indicará qué ecuación o propiedad se va a utilizar, a qué parte de la expresión se le aplicará la ecuación o la propiedad, y con qué elementos de la ecuación o la propiedad se asocian los elementos de la expresión que se tiene en ese paso.

Desarrollo de γ :

$$\gamma = \frac{1}{a} =$$

Desarrollo de δ :

$$\delta = \frac{suma(\underbrace{x} : \underbrace{w}) + suma(r)}{Ec. 1.2}$$

$$= \underbrace{(\underbrace{x} + \underbrace{suma(w)}) + \underbrace{suma(r)}}_{Frop 1.2} = \underbrace{x + \underbrace{(suma(w) + suma(r))}}_{\pi}$$

Se ha utilizado la propiedad $(Prop\ 1.2)$ para mover de sitio los paréntesis.

1.5.3 Conclusión

En el caso inductivo, hemos desarrollado γ y δ y hemos comprobado que son iguales. Por tanto, en el caso s=x:w, se cumple la propiedad que estamos probando.

2 ¿Se cumple s ++[] = s para cualquier lista s?

Utilizaremos la técnica de la inducción para probar que se cumple la igualdad s ++ [] = s para cualquier lista s. La inducción se aplicará sobre la lista s.

Para aplicar dicha técnica, en primer lugar, habrá que dar las ecuaciones correspondientes al operador (++) que aparece en esa igualdad. En segundo lugar, habrá que probar que la igualdad se cumple en el caso simple, es decir, cuando $s=[\,\,]$. Para ello, será necesario utilizar las ecuaciones del operador (++). En tercer lugar, habrá que probar que la igualdad se cumple en el caso inductivo, es decir, cuando s=x:w. También en este caso, será necesario utilizar las ecuaciones del operador (++). Además, en el caso inductivo, es imprescindible hacer uso de la hipótesis de la inducción: consideraremos que la sublista w cumple la igualdad. En este ejemplo, no hace falta utilizar propiedades adicionales.

2.1 Especificación ecuacional de la función (++)

Dadas dos listas de tipo t, la función (++) devuelve la lista que se obtiene al concatenar las dos listas de entrada. Se respetará el orden de los elementos.

Ejemplos

$$\triangleright \ [8,5,9,5] \ + +[20,17] \ = [8,5,9,5,20,17] \\ \triangleright \ \ [8,5,9,5] \ + +[\] \ = [8,5,9,5]$$

Ecuaciones

Al formular las ecuaciones, representaremos los elementos mediante las letras a, b y c para no generar confusión con los elementos x, s y w de la igualdad y del caso inductivo.

La especificación ecuacional es la siguiente:

$$(++) :: ([t], [t]) \to [t]$$

$$[] ++ c = c \qquad (Ec. 2.1)$$

$$(a:b) ++ c = a: (b++c) \quad (Ec. 2.2)$$

2.2 Propiedades a utilizar

No hace falta ninguna propiedad adicional.

2.3 Caso simple: s = []

Cuando s = [], la pregunta es la siguiente:

2.3.1 Comprobación de la igualdad

Se ha de comprobar que los dos lados de la igualdad son realmente iguales.

$$i\underbrace{[] + + []}_{\alpha} = \underbrace{[]}_{\beta}?$$

Desarrollo de α **y** β :

En cada paso, se indicará qué ecuación se va a utilizar, a qué parte de la expresión se le aplicará la ecuación, y con qué elementos de la ecuación se asocian los elementos de la expresión que se tiene en ese paso.

Desarrollo de α :

$$\alpha = \begin{bmatrix} \end{bmatrix} + + \underbrace{ \begin{bmatrix} \end{bmatrix}}_{c} = \underbrace{ \begin{bmatrix} \end{bmatrix}}_{c}$$

$$= \underbrace{ \begin{bmatrix} \end{bmatrix}}_{c}$$

Desarrollo de β :

$$\beta =$$

$$= []$$

En la expresión β no se puede realizar ninguna transformación porque desde el principio tenemos una constante: la lista vacía.

2.3.2 Conclusión

En ambos lados (α y β), se ha obtenido el mismo valor. Por tanto, en el caso $s = [\]$, se cumple la propiedad que estamos probando.

2.4 Caso inductivo: s = x : w

Cuando s = x : w, la pregunta es la siguiente:

$$\lambda(x:w) ++[] = x:w?$$

2.4.1 Hipótesis de la inducción (h.i.):

Se ha de considerar que la ecuación se cumple para la sublista w de s:

$$\underbrace{w ++ [\]}_{\lambda} = \underbrace{w}_{\pi}$$

2.4.2 Comprobación de la igualdad

También en el caso inductivo, se ha de comprobar que los dos lados de la igualdad son realmente iguales.

$$\underbrace{\lambda\underbrace{(x:w)}_{\gamma} + + [\,]}_{\beta} = \underbrace{x:w}_{\delta}?$$

Desarrollo de γ y δ :

En cada paso, se indicará qué ecuación se va a utilizar, a qué parte de la expresión se le aplicará la ecuación, y con qué elementos de la ecuación se asocian los elementos de la expresión que se tiene en ese paso.

Desarrollo de γ :

$$\gamma = \underbrace{\left(\underbrace{x} : \underbrace{w} \right) + + \underbrace{\left[\right]}_{c}}_{Ec. \ 2.2} = x : \underbrace{\left(\underbrace{w} + + \left[\right] \right)}_{h.i.} = \underbrace{x : \underbrace{\left(\underbrace{w} \right)}_{\pi}}_{x}$$

Desarrollo de δ :

$$\delta = \begin{bmatrix} x : (w) \\ \pi \end{bmatrix}$$

En la expresión δ no se puede realizar ninguna transformación.

2.4.3 Conclusión

En el caso inductivo, hemos desarrollado γ y δ y hemos comprobado que son iguales. Por tanto, en el caso s=x:w, se cumple la propiedad que estamos probando.

3 ¿Se cumple nveces(x, s) + + r) = nveces(x, s) + nveces(x, r) para cualquier elemento x y para dos listas cualesquiera s y r?

Sea x un elemento de cualquier tipo y sean s y r dos listas cualesquiera cuyos componentes son del mismo tipo que x. Utilizaremos la inducción para probar que se cumple la siguiente igualdad:

$$nveces(x, s ++ r) = nveces(x, s) + nveces(x, r)$$

La inducción se aplicará sobre la lista s.

Para aplicar dicha técnica, en primer lugar, habrá que dar las ecuaciones correspondientes a las funciones nveces y (++) que aparecen en esa igualdad. En segundo lugar, habrá que probar que la igualdad se cumple en el caso simple, es decir, cuando s=[]. Para ello, será necesario utilizar las ecuaciones de las funciones nveces y (++). En tercer lugar, habrá que probar que la igualdad se cumple en el caso inductivo, es decir, cuando s=y:w. También en este caso, será necesario utilizar las ecuaciones de las funciones nveces y (++). Además, en el caso inductivo, es necesario hacer uso de la hipótesis de la inducción: consideraremos que el elemento x, la sublista w y la lista r cumplen la igualdad. En este ejemplo, hace falta utilizar dos propiedades adicionales sobre números: $(Prop\ 3.1)$ y $(Prop\ 3.2)$. Esas propiedades aparecen en el apartado 3.3 de la página 11.

3.1 Especificación ecuacional de la función nveces

Dado un elemento de cualquier tipo y una lista cuyos componentes son del mismo tipo que el mencionado elemento, la función *nveces* calculará cuántas veces aparece el elemento en la lista.

Ejemplos

$$\triangleright nveces(5, [8, 5, 9, 5]) = 2$$
 $\triangleright nveces(7, [8, 5, 9, 5]) = 0$ $\triangleright nveces(5, []) = 0$

Ecuaciones

Al formular las ecuaciones, representaremos los elementos mediante las letras a, b y c para no generar confusión con los elementos x, s, w y r de la igualdad y del caso inductivo.

La especificación ecuacional es la siguiente:

$$\begin{array}{lll} nveces :: (t,[t]) -> Int \\ \\ nveces(a,[]) &= 0 & (Ec. \ 3.1) \\ \\ nveces(a,b:c) &= 1 + nveces(a,c) & (Ec. \ 3.2) \\ \\ | \ a \ | = b &= nveces(a,c) & (Ec. \ 3.3) \\ \end{array}$$

3.2 Especificación ecuacional de la función (++)

Dadas dos listas de tipo t, la función (++) devuelve la lista que se obtiene al concatenar las dos listas de entrada. Se respetará el orden de los elementos.

Ejemplos

$$\triangleright \ [8,5,9,5] + +[20,17] = [8,5,9,5,20,17]$$

$$\triangleright \ [8,5,9,5] + +[\] = [8,5,9,5]$$

Ecuaciones

Al formular las ecuaciones, representaremos los elementos mediante las letras a, b y c para no generar confusión con los elementos x, s y w de la igualdad y del caso inductivo.

La especificación ecuacional es la siguiente:

$$(++) :: ([t], [t]) \to [t]$$

$$[] ++ c = c \qquad (Ec. 3.4)$$

$$(a:b) ++ c = a: (b++c) \quad (Ec. 3.5)$$

3.3 Propiedades a utilizar

Hay que utilizar las siguientes dos propiedades de los números:

- \bigcirc (Prop 3.1) 0 es elemento neutro para la operación de adición de números +: i + 0 = 0 + i = i.
- \bigcirc (Prop 3.2) La adición de números + es asociativa: i + (j + k) = (i + j) + k.

3.4 Caso simple: s = []

Cuando se cumple s = [], la pregunta es la siguiente:

$$nveces(x, [] ++ r) = nveces(x, []) + nveces(x, r)?$$

3.4.1 Comprobación de la igualdad

Se ha de comprobar que los dos lados de la igualdad son realmente iguales.

$$\underbrace{nveces(x,[]++r)}_{\alpha} = \underbrace{nveces(x,[]) + nveces(x,r)}_{\beta}?$$

Desarrollo de α y β :

En cada paso, se indicará qué ecuación o propiedad se va a utilizar, a qué parte de la expresión se le aplicará la ecuación o la propiedad, y con qué elementos de la ecuación o la propiedad se asocian los elementos de la expresión que se tiene en ese paso.

Desarrollo de α :

$$\alpha =$$

$$= nveces(x, [] ++ \underbrace{r}_{c}) =$$

$$Ec. 3.4$$

$$= nveces(x, r)$$

Desarrollo de β :

$$\beta = \underbrace{nveces(\underbrace{x}_{a}, [\]) + nveces(x, r) =}_{Ec. \ 3.1}$$

$$= 0 + \underbrace{nveces(x, r)}_{i} = \underbrace{nveces(x, r)}_{prop \ 3.1}$$

$$= \underbrace{nveces(x, r)}_{nveces(x, r)}$$

3.4.2 Conclusión

En ambos lados (α y β), se ha obtenido el mismo valor. Por tanto, en el caso $s=[\]$, se cumple la propiedad que estamos probando.

3.5 Caso inductivo: s = y : w

Cuando s = y : w, la pregunta es la siguiente:

$$nveces(x, (y:w) ++ r) = nveces(x, y:w) + nveces(x, r)$$
?

3.5.1 Hipótesis de la inducción (h.i.):

Se ha de considerar que la ecuación se cumple para x, para la sublista w de s y para la lista r:

$$\underbrace{nveces(x, w ++ r)}_{\lambda} = \underbrace{nveces(x, w) + nveces(x, r)}_{\pi}$$

3.5.2 Comprobación de la igualdad

Se ha de comprobar que los dos lados de la igualdad son iguales en el caso inductivo.

$$\underbrace{nveces(x,(y:w) \ ++ \ r)}_{\gamma} = \underbrace{nveces(x,y:w) + nveces(x,r)}_{\delta}?$$

Desarrollo de γ y δ :

En cada paso, se indicará qué ecuación o propiedad se va a utilizar, a qué parte de la expresión se le aplicará la ecuación o la propiedad, y con qué elementos de la ecuación o la propiedad se asocian los elementos de la expresión que se tiene en ese paso.

Desarrollo de γ :

$$\gamma =$$

$$= nveces(x, \underbrace{\left(\underbrace{y}_{a} : \underbrace{w}_{b}\right) + + \underbrace{r}_{c}}_{Ec. \ 3.5}) =$$

$$=\underbrace{nveces(\underbrace{x}_{a},\underbrace{y}_{b}:\underbrace{(w\ ++\ r)}_{c})}_{Ec.\ 3.2\ o\ Ec.\ 3.3}=(\mathbf{dos\ opciones:}\ (\gamma_{1})\ x==y; (\gamma_{2})\ x\neq y)$$

• Opción (γ_1) x == y:

$$= \underbrace{nveces(\underbrace{x}_{a}, \underbrace{y}_{b} : \underbrace{(w ++ r)}_{c})}_{Ec. 3.2} =$$

$$=1+\underbrace{nveces(x,w\ ++\ r)}_{\textstyle\lambda}=$$

$$= 1 + (\underbrace{nveces(x,w) + nveces(x,r)}_{\pi})$$

• Opción
$$(\gamma_2)$$
 $x \neq y$:

$$= nveces(\underbrace{x}_{a}, \underbrace{y}_{b} : \underbrace{(w ++ r)}_{c}) =$$

$$Ec. 3.3$$

$$=\underbrace{nveces(x,w ++ r)}_{h \ i} =$$

$$=\underbrace{nveces(x,w) + nveces(x,r)}_{\pi}$$

Desarrollo de δ :

$$\delta =$$

$$= \underbrace{nveces(\underbrace{x}_{a},\underbrace{y}_{b}:\underbrace{w}_{c}) + nveces(x,r)}_{Ec. \ 3.2 \ \text{o} \ Ec. \ 3.3} + nveces(x,r) = (\textbf{dos opciones: } (\delta_{1}) \ x == y; (\delta_{2}) \ x \neq y)$$

• Opción (δ_1) x == y:

$$= nveces(\underbrace{x}_{a}, \underbrace{y}_{b} : \underbrace{w}_{c}) + nveces(x, r) = \underbrace{Ec. 3.2}$$

$$= (\underbrace{1}_{i} + \underbrace{nveces(x, w)}_{j}) + \underbrace{nveces(x, r)}_{k} = \underbrace{Prop \ 3.2}$$

$$= \underbrace{1 + (\underbrace{nveces(x, w)}_{\pi} + nveces(x, r))}_{\pi}$$

• Opción (δ_2) $x \neq y$:

$$= nveces(\underbrace{x}, \underbrace{y}, \underbrace{y}, \underbrace{w}) + nveces(x, r) =$$

$$Ec. 3.3$$

$$= \underbrace{nveces(x, w) + nveces(x, r)}_{\pi}$$

3.5.3 Conclusión

En el caso inductivo, hemos empezado a desarrollar γ y δ , pero tanto en el caso γ como en el caso δ , hemos tenido que considerar dos subcasos. Ello se debe a que si se cumple x=y, se ha de aplicar la ecuación 3.2, mientras que si se cumple $x\neq y$, se ha de aplicar la ecuación 3.3. Consecuentemente, en el caso γ , se han considerado los subcasos γ_1 (x=y) y γ_2 ($x\neq y$) y, de la misma forma, en el caso δ , se han considerado los subcasos δ_1 (x=y) y δ_2 ($x\neq y$).

Hemos comprobado que en los subcasos γ_1 y δ_1 se llega a la misma expresión y que en los subcasos γ_2 y δ_2 se llega también a la misma expresión. Por tanto, en el caso s=y:w, se cumple la propiedad que estamos probando tanto si se cumple x=y como si se cumple $x\neq y$.

4 ¿Se cumple $esta(x, s ++ r) = esta(x, s) \lor esta(x, r)$ para cualquier elemento x y para dos listas cualesquiera s y r?

Sea x un elemento de cualquier tipo y sean s y r dos listas cualesquiera cuyos componentes son del mismo tipo que x. Utilizaremos la inducción para probar que se cumple la siguiente igualdad:

$$esta(x, s ++ r) = esta(x, s) \lor esta(x, r)$$

La inducción se aplicará sobre la lista s.

Para aplicar dicha técnica, en primer lugar, habrá que dar las ecuaciones correspondientes a las funciones esta y (++) que aparecen en esa igualdad. En segundo lugar, habrá que probar que la igualdad se cumple en el caso simple, es decir, cuando s=[]. Para ello, será necesario utilizar las ecuaciones de las funciones esta y (++). En tercer lugar, habrá que probar que la igualdad se cumple en el caso inductivo, es decir, cuando s=y:w. También en este caso, será necesario utilizar las ecuaciones de las funciones esta y (++). Además, en el caso inductivo, es necesario hacer uso de la hipótesis de la inducción: consideraremos que el elemento x, la sublista w y la lista r cumplen la igualdad. En este ejemplo, hace falta utilizar dos propiedades adicionales sobre números: $(Prop\ 4.1)$ y $(Prop\ 4.2)$. Esas propiedades aparecen en el apartado 4.3 de la página 16.

4.1 Especificación ecuacional de la función esta

Dado un elemento de cualquier tipo y una lista cuyos componentes son del mismo tipo que el mencionado elemento, la función esta decidirá si el elemento aparece en la lista.

Ejemplos

$$> esta(4, [8, 5, 9, 5]) = False \qquad > esta(5, [8, 5, 9, 5]) = True \qquad > esta(5, [\]) = False$$

Ecuaciones

Al formular las ecuaciones, representaremos los elementos mediante las letras a, b y c para no generar confusión con los elementos x, s y w de la igualdad y del caso inductivo.

La especificación ecuacional es la siguiente:

$$\begin{array}{lll} esta:: (t,[t]) -> \ Bool \\ \\ esta(a,[\]) &= False & (Ec.\ 4.1) \\ \\ esta(a,b:c) &= True & (Ec.\ 4.2) \\ \\ |\ a\ /=b &= esta(a,c) & (Ec.\ 4.3) \\ \end{array}$$

4.2 Especificación ecuacional de la función (++)

Dadas dos listas de tipo t, la función (++) devuelve la lista que se obtiene al concatenar las dos listas de entrada. Se respetará el orden de los elementos.

Ejemplos

$$\triangleright [8,5,9,5] + +[20,17] = [8,5,9,5,20,17] \\ \triangleright [8,5,9,5] + +[] = [8,5,9,5]$$

Ecuaciones

Al formular las ecuaciones, representaremos los elementos mediante las letras a, b y c para no generar confusión con los elementos x, s y w de la igualdad y del caso inductivo.

La especificación ecuacional es la siguiente:

$$(++) :: ([t], [t]) \to [t]$$

$$[] ++ c = c \qquad (Ec. 4.4)$$

$$(a:b) ++ c = a: (b++c) \quad (Ec. 4.5)$$

4.3 Propiedades a utilizar

Hay que utilizar las siguientes dos propiedades de los valores Booleanos:

$$\bigcirc \ (Prop \ 4.1) : True \ \lor \ \psi = \psi \ \lor \ True = True.$$

$$\bigcirc$$
 (Prop 4.2): False $\lor \psi = \psi \lor False = \psi$.

4.4 Caso simple: s = []

Cuando se cumple s = [], la pregunta es la siguiente:

$$esta(x, [] ++ r) = esta(x, []) \lor esta(x, r)$$
?

4.4.1 Comprobación de la igualdad

Se ha de comprobar que los dos lados de la igualdad son realmente iguales.

$$\underbrace{esta(x,[\]\ ++\ r)}_{\alpha} = \underbrace{esta(x,[\])\ \lor\ esta(x,r)}_{\beta}?$$

Desarrollo de α y β :

En cada paso, se indicará qué ecuación o propiedad se va a utilizar, a qué parte de la expresión se le aplicará la ecuación o la propiedad, y con qué elementos de la ecuación o la propiedad se asocian los elementos de la expresión que se tiene en ese paso.

Desarrollo de α :

$$\alpha =$$

$$= esta(x, [] ++\underbrace{r}_{c}) =$$

$$= \underbrace{Ec. 4.4}$$

$$= esta(x, r)$$

Desarrollo de β :

$$\beta = \underbrace{esta(\underbrace{x}_{},[\;]) \lor esta(x,r) =}_{Ec.\;4.1}$$

$$= False \lor \underbrace{esta(x,r)}_{\psi} = \underbrace{\psi}_{Prop\;4.2}$$

$$= \underbrace{esta(x,r)}_{}$$

4.4.2 Conclusión

En ambos lados (α y β), se ha obtenido el mismo valor. Por tanto, en el caso $s = [\]$, se cumple la propiedad que estamos probando.

4.5 Caso inductivo: s = y : w

Cuando s = y : w, la pregunta es la siguiente:

$$esta(x, (y:w) ++ r) = esta(x, y:w) \lor esta(x, r)$$
?

4.5.1 Hipótesis de la inducción (h.i.):

Se ha de considerar que la ecuación se cumple para x, para la sublista w de s y para la lista r:

$$\underbrace{esta(x,w) + r}_{\lambda} = \underbrace{esta(x,w) \lor esta(x,r)}_{\pi}$$

4.5.2 Comprobación de la igualdad

Se ha de comprobar que los dos lados de la igualdad son iguales en el caso inductivo.

$$\underbrace{esta(x,(y:w) \ ++ \ r)}_{\gamma} = \underbrace{esta(x,y:w) \ \lor \ esta(x,r)}_{\delta}?$$

Desarrollo de γ y δ :

En cada paso, se indicará qué ecuación o propiedad se va a utilizar, a qué parte de la expresión se le aplicará la ecuación o la propiedad, y con qué elementos de la ecuación o la propiedad se asocian los elementos de la expresión que se tiene en ese paso.

Desarrollo de γ :

$$\gamma =$$

$$= esta(x, \underbrace{(y : w)_{b} + + r_{c}}) =$$

$$Ec. 4.5$$

$$= esta(x, y : (w ++ r)) = (\text{dos opciones: } (\gamma_{1}) x == y; (\gamma_{2}) x =$$

$$=\underbrace{esta(\underbrace{x}_{a},\underbrace{y}_{b}:\underbrace{(w\ ++\ r)}_{c})}_{Ec.\ 4.2\ \text{edo}\ Ec.\ 4.3}=(\textbf{dos\ opciones:}\ (\gamma_{1})\ x==y; (\gamma_{2})\ x\neq y)$$

• Opción $(\gamma_1) x == y$:

$$= \underbrace{esta(\underbrace{x}_{a},\underbrace{y}_{b}:\underbrace{(w ++ r)}_{c})}_{Ec. \ 4.2} =$$

$$= True$$

• Opción (γ_2) $x \neq y$:

$$= \underbrace{esta(\underbrace{x}_{a},\underbrace{y}_{b}:\underbrace{(w \ ++ \ r)}_{c})}_{Ec. \ 4.3} =$$

$$=\underbrace{esta(x,w ++ r)}_{\lambda} =$$

$$=\underbrace{esta(x,w) \ \lor \ esta(x,r)}_{\pi}$$

Desarrollo de δ :

$$\delta =$$

$$= esta(\underbrace{x}_{a}, \underbrace{y}_{b} : \underbrace{w}_{c}) \lor esta(x, r) = (\text{dos opciones: } (\delta_{1}) \ x == y; (\delta_{2}) \ x \neq y)$$

$$Ec. \ 4.2 \ o \ Ec. \ 4.3$$

• Opción $(\delta_1) x == y$:

$$= esta(\underbrace{x}_{a}, \underbrace{y}_{b} : \underbrace{w}_{c}) \lor esta(x, r) =$$

$$Ec. 4.2$$

$$= True \lor \underbrace{esta(x, r)}_{\psi} =$$

$$Prop 4.1$$

$$= True$$

• Opción (δ_2) $x \neq y$:

$$= \underbrace{esta(\underbrace{x}_{a}, \underbrace{y}_{b} : \underbrace{w}_{c})}_{Ec. \ 4.3} \lor esta(x, r) =$$

$$= \underbrace{esta(x, w)}_{\pi} \lor \underbrace{esta(x, r)}_{\pi}$$

4.5.3 Conclusión

En el caso inductivo, hemos empezado a desarrollar γ y δ , pero tanto en el caso γ como en el caso δ , hemos tenido que considerar dos subcasos. Ello se debe a que si se cumple x=y, se ha de aplicar la ecuación 4.2, mientras que si se cumple $x\neq y$, se ha de aplicar la ecuación 4.3. Consecuentemente, en el caso γ , se han considerado los subcasos γ_1 (x=y) y γ_2 ($x\neq y$) y, de la misma forma, en el caso δ , se han considerado los subcasos δ_1 (x=y) y δ_2 ($x\neq y$).

Hemos comprobado que en los subcasos γ_1 y δ_1 se llega a la misma expresión y que en los subcasos γ_2 y δ_2 se llega también a la misma expresión. Por tanto, en el caso s=y:w, se cumple la propiedad que estamos probando tanto si se cumple x=y como si se cumple $x\neq y$.

5 ¿Se cumple esta(x, s) = esta(x, inversa(s)) para cualquier elemento x y cualquier lista s?

Sea x un elemento de cualquier tipo y sea s una lista cualquiera cuyos componentes son del mismo tipo que x. Utilizaremos la inducción para probar que se cumple la siguiente igualdad:

$$esta(x, s) = esta(x, inversa(s))$$

La inducción se aplicará sobre la lista s.

Para aplicar dicha técnica, en primer lugar, habrá que dar las ecuaciones correspondientes a las funciones esta e inversa que aparecen en esa igualdad. En segundo lugar, habrá que probar que la igualdad se cumple en el caso simple, es decir, cuando $s = [\,\,]$. Para ello, será necesario utilizar las ecuaciones de las funciones esta e inversa. En tercer lugar, habrá que probar que la igualdad se cumple en el caso inductivo, es decir, cuando s = y : w. También en este caso, será necesario utilizar las ecuaciones de las funciones esta y inversa. Además, en el caso inductivo, es necesario hacer uso de la hipótesis de la inducción: consideraremos que el elemento x y la sublista w cumplen la igualdad. En este ejemplo, hace falta utilizar dos propiedades adicionales sobre valores Booleanos y una propiedad sobre listas: $(Prop\ 5.1)$, $(Prop\ 5.2)$ eta $(Prop\ 5.3)$. Esas propiedades aparecen en el apartado 5.3 de la página 21.

5.1 Especificación ecuacional de la función esta

Dado un elemento de cualquier tipo y una lista cuyos componentes son del mismo tipo que el mencionado elemento, la función *esta* decidirá si el elemento aparece en la lista.

Ejemplos

$$> esta(4, [8, 5, 9, 5]) = False \qquad > esta(5, [8, 5, 9, 5]) = True \qquad > esta(5, [\]) = False$$

Ecuaciones

Al formular las ecuaciones, representaremos los elementos mediante las letras a, b y c para no generar confusión con los elementos x, s y w de la igualdad y del caso inductivo.

La especificación ecuacional es la siguiente:

$$\begin{array}{lll} esta:: (t,[t]) -> \ Bool \\ \\ esta(a,[\]) &= False & (Ec.\ 5.1) \\ \\ esta(a,b:c) &= True & (Ec.\ 5.2) \\ \\ |\ a|=b &= esta(a,c) & (Ec.\ 5.3) \\ \end{array}$$

5.2 Especificación ecuacional de la función *inversa*

Dada una lista de cualquier tipo, la función inversa devolverá la lista que obtinen poniendo en orden inverso los elementos de la lista de entrada.

Ejemplos

$$\triangleright inversa([8,5,9,5]) = [5,9,5,8]$$
 $\triangleright inversa([8]) = [8]$ $\triangleright inversa([9]) = [9]$

Ecuaciones

Al formular las ecuaciones, representaremos los elementos mediante las letras a y b.

La especificación ecuacional es la siguiente:

$$inversa :: ([t]) \rightarrow [t]$$

$$inversa([\]) = [\] \qquad (Ec. 5.4)$$

$$inversa(a:b) = inversa(b) ++ (a:[\]) \quad (Ec. 5.5)$$

5.3 Propiedades a utilizar

Hay que utilizar las siguientes tres propiedades de los valores Booleanos y de las listas:

- \Diamond (Prop 5.1): True $\lor \psi = \psi \lor True = True$.
- \Diamond (Prop 5.2) False $\lor \psi = \psi \lor False = \psi$.
- \bigcirc $(Prop\ 5.3)\ esta(z,u\ ++\ v)=esta(z,u)\ \lor\ esta(z,v),$ donde, por un lado, z es un elemento de cualquier tipo y, por otro lado, u y v son dos listas cuyos elementos son del mismo tipo que z.

5.4 Caso simple: s = []

Cuando se cumple s = [], la pregunta es la siguiente:

$$esta(x,[\])=esta(x,inversa([\]))?$$

5.4.1 Comprobación de la igualdad

Se ha de comprobar que los dos lados de la igualdad son realmente iguales.

$$\underbrace{esta(x,[])}_{\alpha} = \underbrace{esta(x,inversa([]))}_{\beta}?$$

Desarrollo de α y β :

En cada paso, se indicará qué ecuación o propiedad se va a utilizar, a qué parte de la expresión se le aplicará la ecuación o la propiedad, y con qué elementos de la ecuación o la propiedad se asocian los elementos de la expresión que se tiene en ese paso.

Desarrollo de α :

$$\alpha =$$

$$= esta(\underbrace{x}_{a}, [\]) =$$

$$Ec. 5.1$$

$$= False$$

Desarrollo de β :

$$\beta =$$

$$= esta(x, \underbrace{inversa([\,])}) =$$

$$Ec. 5.4$$

$$= esta(\underbrace{x}, [\,]) =$$

$$Ec. 5.1$$

$$= False$$

5.4.2 Conclusión

En ambos lados (α y β), se ha obtenido el mismo valor. Por tanto, en el caso $s = [\]$, se cumple la propiedad que estamos probando.

5.5 Caso inductivo: s = y : w

Cuando s = y : w, la pregunta es la siguiente:

$$esta(x, y : w) = esta(x, inversa(y : w))$$
?

5.5.1 Hipótesis de la inducción (h.i.):

Se ha de considerar que la ecuación se cumple para x y para la sublista w de s:

$$\underbrace{esta(x,w)}_{\lambda} = \underbrace{esta(x,inversa(w))}_{\pi}$$

5.5.2 Comprobación de la igualdad

Se ha de comprobar que los dos lados de la igualdad son iguales en el caso inductivo.

$$\underbrace{esta(x,y:w)}_{\gamma} = \underbrace{esta(x,inversa(y:w))}_{\delta}?$$

Desarrollo de γ y δ :

En cada paso, se indicará qué ecuación o propiedad se va a utilizar, a qué parte de la expresión se le aplicará la ecuación o la propiedad, y con qué elementos de la ecuación o la propiedad se asocian los elementos de la expresión que se tiene en ese paso.

Desarrollo de γ :

$$\gamma = \underbrace{esta(\underbrace{x},\underbrace{y}_{b}:\underbrace{w}_{c})}_{\text{Ec. 5.2.0 Ec. 5.3}} = (\text{dos opciones: } (\gamma_{1}) \ x == y; (\gamma_{2}) \ x \neq y)$$

• Opción $(\gamma_1) x == y$:

$$=\underbrace{esta(\underbrace{x}_{a},\underbrace{y}_{b}:\underbrace{w}_{c})}_{Ec.\;5.2}=$$

= True

• Opción (γ_2) $x \neq y$:

$$=\underbrace{esta(\underbrace{x}_{a},\underbrace{y}_{b}:\underbrace{w}_{c})}_{Ec.\;5.3}=$$

$$=\underbrace{esta(x,w)}_{h,i} =$$

$$=\underbrace{\underbrace{esta(x,inversa(w))}_{\pi})}$$

Desarrollo de δ :

$$\delta =$$

$$= esta(x, \underbrace{inversa(\underbrace{y} : \underbrace{w}_{b})}) = \underbrace{Ec. \ 5.5}$$

$$=\underbrace{esta(\underbrace{x}_{z},\underbrace{inversa(w)}_{u} + + \underbrace{(y:[\,]))}_{v}}_{Prop\;5.3} =$$

$$= esta(x, inversa(w)) \ \lor \ \underbrace{esta(\underbrace{x}_{a}, \underbrace{y}_{b} : \underbrace{[\]}_{c})}_{Ec.\ 5.2\ o\ Ec.\ 5.3} = \textbf{(dos\ opciones:}\ (\delta_{1})\ x == y; (\delta_{2})\ x \neq y)$$

• Opción $(\delta_1) x == y$:

$$= esta(x, inversa(w)) \lor esta(\underbrace{x}_{a}, \underbrace{y}_{b} : \underbrace{[]}_{c}) = \underbrace{Ec. 5.2}$$

$$= \underbrace{esta(x, inversa(w))}_{\psi} \lor True = \underbrace{V}_{prop 5.1}$$

$$= \underbrace{True}$$

• Opción (δ_2) $x \neq y$:

$$= esta(x, inversa(w)) \lor esta(\underbrace{x}, \underbrace{y} : \underbrace{[])}_{c} = \underbrace{Ec. 5.3}$$

$$= esta(x, inversa(w)) \lor esta(\underbrace{x}, []) = \underbrace{Ec. 5.1}$$

$$= \underbrace{esta(x, inversa(w))}_{\psi} \lor False = \underbrace{\psi}_{Prop \ 5.2}$$

$$= \underbrace{esta(x, inversa(w))}_{\pi}$$

5.5.3 Conclusión

En el caso inductivo, hemos empezado a desarrollar γ y δ , pero tanto en el caso γ como en el caso δ , hemos tenido que considerar dos subcasos. Ello se debe a que si se cumple x=y, se ha de aplicar la ecuación 5.2, mientras que si se cumple $x\neq y$, se ha de aplicar la ecuación 5.3. Consecuentemente, en el caso γ , se han considerado los subcasos γ_1 (x=y) y γ_2 ($x\neq y$) y, de la misma forma, en el caso δ , se han considerado los subcasos δ_1 (x=y) y δ_2 ($x\neq y$).

Hemos comprobado que en los subcasos γ_1 y δ_1 se llega a la misma expresión y que en los subcasos γ_2 y δ_2 se llega también a la misma expresión. Por tanto, en el caso s=y:w, se cumple la propiedad que estamos probando tanto si se cumple x=y como si se cumple $x\neq y$.

6 ¿Se cumple $suma(s) = ultimo(s) + suma(sin_ultimo(s))$ para cualquier lista no vacía s?

Sean s una lista cualquiera de enteros. Utilizaremos la inducción para probar que se cumple la siguiente igualdad:

$$suma(s) = ultimo(s) + suma(sin_ultimo(s))$$

La inducción se aplicará sobre la lista s.

Esta propiedad se cumple solo para listas no vacías, porque las funciones *ultimo* y *sin_ultimo* generan un error si la lista es vacía.

Para aplicar dicha técnica, en primer lugar, habrá que dar las ecuaciones correspondientes a las funciones suma, ultimo y sin_ultimo que aparecen en esa igualdad. En segundo lugar, habrá que probar que la igualdad se cumple en el caso simple, es decir, cuando s=x: []. Para ello, será necesario utilizar las ecuaciones de las funciones suma, ultimo y sin_ultimo . En tercer lugar, habrá que probar que la igualdad se cumple en el caso inductivo, es decir, cuando s=x:w, donde suma es una lista no vacía. También en este caso, será necesario utilizar las ecuaciones de las funciones suma, suma, sin_ultimo . Además, en el caso inductivo, es necesario hacer uso de la hipótesis de la inducción: consideraremos que la sublista sin0 cumple la igualdad. En este ejemplo, hace falta utilizar tres propiedades adicionales sobre números: sin1, sin2, sin3, sin4, sin4, sin5, sin5, sin5, sin6, sin6, sin6, sin7, sin8, sin9, sin9,

6.1 Especificación ecuacional de la función suma

Dada una lista de tipo Int, la función suma calculará la suma de los elementos de la lista.

Ejemplos

$$\triangleright suma([8,5,9,5]) = 27$$
 $\triangleright suma([5]) = 5$ $\triangleright suma([1]) = 0$

Ecuaciones

Al formular las ecuaciones, representaremos los elementos mediante las letras a, b y c para no generar confusión con los elementos x, s y w de la igualdad y del caso inductivo.

La especificación ecuacional es la siguiente:

$$suma :: ([Int]) -> Int$$
 $suma([]) = 0$ (Ec. 6.1) $suma(a:b) = a + suma(b)$ (Ec. 6.2)

6.2 Especificación ecuacional de la función *ultimo*

Dada una lista de cualquier tipo, la función *ultimo* devolverá el elemento situado más a la derecha. Si la lista es vacía, generará un error.

Eiemplos

$$\triangleright \ ultimo([8,5,9,3]) = 3 \qquad \triangleright \ ultimo([8,5,9,5,5]) = 5 \qquad \triangleright \ ultimo([20]) = 20$$

Ecuaciones

Al formular las ecuaciones, representaremos los elementos mediante las letras a y b para no generar confusión con los elementos x, y w de la igualdad y del caso inductivo.

La especificación ecuacional es la siguiente:

$$ultimo :: ([t]) \longrightarrow t$$
 $ultimo([]) = error "Lista vacía." (Ec. 6.3)$
 $ultimo(a : b)$
 $| es_vacia(b) = a$ (Ec. 6.4)
 $| otherwise = ultimo(b)$ (Ec. 6.5)

6.3 Especificación ecuacional de la función sin_ultimo

Dada una lista de cualquier tipo, la función sin_ultimo devolverá la lista que se obtinen al eliminar el elemento situado más a la derecha. Si la lista es vacía, generará un error.

Ejemplos

```
ightharpoonup sin\_ultimo([8,5,9,3]) = [8,5,9]

ho sin\_ultimo([8,5,9,5,5]) = [8,5,9,5]

ho sin\_ultimo([20]) = []
```

Ecuaciones

Al formular las ecuaciones, representaremos los elementos mediante las letras a y b para no generar confusión con los elementos x, s y w de la igualdad y del caso inductivo.

La especificación ecuacional es la siguiente:

$$sin_ultimo :: ([t]) -> [t]$$
 $sin_ultimo([]) = error "Lista vacía." (Ec. 6.6)$
 $sin_ultimo(a : b)$
 $| es_vacia(b) = [] (Ec. 6.7)$
 $| otherwise = a : sin_ultimo(b) (Ec. 6.8)$

6.4 Propiedades a utilizar

Hay que utilizar las siguientes tres propiedades de los números:

- \bigcirc (Prop 6.1) 0 es elemento neutro para la operación de adición de números +: i + 0 = 0 + i = i.
- \bigcirc (Prop 6.2) La adición de números + es asociativa: i + (j + k) = (i + j) + k.
- \bigcirc (Prop 6.3) La adición de números + es conmutativa: i + j = j + i.

6.5 Caso simple: s = x : []

Cuando se cumple s = x : [], la pregunta es la siguiente:

$$suma(x : []) = ultimo(x : []) + suma(sin_ultimo(x : []))?$$

6.5.1 Comprobación de la igualdad

Se ha de comprobar que los dos lados de la igualdad son realmente iguales.

$$\underbrace{suma(x:[\:])}_{\alpha} = \underbrace{ultimo(x:[\:]) + suma(sin_ultimo(x:[\:]))}_{\beta}?$$

Desarrollo de α y β :

En cada paso, se indicará qué ecuación o propiedad se va a utilizar, a qué parte de la expresión se le aplicará la ecuación o la propiedad, y con qué elementos de la ecuación o la propiedad se asocian los elementos de la expresión que se tiene en ese paso.

Desarrollo de α :

$$\alpha = \frac{suma(\underbrace{x}_{a} : \underbrace{[])}_{b} = \underbrace{Ec. 6.2}_{Ec. 6.2}$$

$$= x + \underbrace{suma([])}_{Ec. 6.1} = \underbrace{x + 0}_{Prop 6.1} = \underbrace{x}$$

Desarrollo de β :

$$\beta = \underbrace{ = ultimo(\underbrace{x}_{a} : \underbrace{[]}_{b}) + suma(sin_ultimo(x : [])) = }_{Ec. \ 6.4}$$

$$= x + suma(sin_ultimo(\underbrace{x}_{a} : \underbrace{[]}_{b})) = \underbrace{Ec. \ 6.7}_{Ec. \ 6.7}$$

$$= x + \underbrace{suma([])}_{Ec. \ 6.1} = \underbrace{x}_{e. \ 4.0} + 0 = \underbrace{i}_{e. \ 4.0}$$

$$\underbrace{Prop \ 6.1}_{e. \ 4.0}$$

6.5.2 Conclusión

En ambos lados (α y β), se ha obtenido el mismo valor. Por tanto, en el caso $s = [\]$, se cumple la propiedad que estamos probando.

6.6 Caso inductivo: $s = x : w \mathbf{y} w \neq []$

Siendo $w \neq []$, cuando s = x : w, la pregunta es la siguiente:

$$suma(x:w) = ultimo(x:w) + suma(sin_ultimo(x:w))$$
?

6.6.1 Hipótesis de la inducción (h.i.):

Se ha de considerar que la ecuación se cumple para la sublista no vacía w de s:

$$\underbrace{suma(w)}_{\lambda} = \underbrace{ultimo(w) + suma(sin_ultimo(w))}_{\pi}$$

6.6.2 Comprobación de la igualdad

Se ha de comprobar que los dos lados de la igualdad son iguales en el caso inductivo.

$$\underbrace{suma(x:w)}_{\gamma} = \underbrace{ultimo(x:w) + suma(sin_ultimo(x:w))}_{\delta}?$$

Desarrollo de γ y δ :

En cada paso, se indicará qué ecuación o propiedad se va a utilizar, a qué parte de la expresión se le aplicará la ecuación o la propiedad, y con qué elementos de la ecuación o la propiedad se asocian los elementos de la expresión que se tiene en ese paso.

Desarrollo de γ :

$$\gamma = \\ = suma(\underbrace{x}_{a} : \underbrace{w}_{b}) = \\ Ec. 6.1$$

$$= x + \underbrace{suma(w)}_{\lambda} = \\ \underbrace{\lambda}_{h.i.}$$

$$= \underbrace{x + \underbrace{(ultimo(w) + suma(sin_ultimo(w)))}_{\pi}}$$

Desarrollo de δ :

 $\check{\pi}$

Se ha utilizado la propiedad $(Prop\ 6.2)$ para mover de sitio los paréntesis, mientras que se ha utilizado la propiedad $(Prop\ 6.3)$ para intercambiar de sitio dos elementos.

6.6.3 Conclusión

En el caso inductivo, hemos desarrollado γ y δ y hemos comprobado que son iguales. Por tanto, en el caso s=x:w, siendo $w\neq [\]$, se cumple la propiedad que estamos probando.

7 Letras griegas utilizadas

Las denominaciones de las letras griegas utilizadas en los ejemplos de inducción sobre listas se encuentran en la tabla 1 de la página 31.

```
Letras griegas utilizadas en los ejemplos de inducción sobre listas: \alpha: \text{alfa} \quad \beta: \text{beta} \quad \gamma: \text{gamma} \quad \delta: \text{delta} \quad \lambda: \text{lambda} \quad \pi: \text{pi} \quad \psi: \text{psi}
```

Tabla 1: Denominaciones de las letras griegas utilizadas en los ejemplos de inducción sobre listas.