Modélisation statistiques

aurore.lavigne@univ-lille.fr

Plan du cours

Vecteurs aléatoires

Espaces euclidiens

Notations et définitions

Soit (Ω, A, \mathbb{P}) un espace de probabilité et p un entier positif.

Définition

On appelle vecteur aléatoire de dimension p (ou variable aléatoire p-dimensionnelle) le vecteur

$$\mathbf{X} = \left(egin{array}{c} X_1 \ dots \ X_p \end{array}
ight), \ ext{où les } X_i ext{ sont des v.a réelles.}$$

Les v.a . $X_i, i = 1, \dots, p$ sont appelées les marginales de \mathbf{X} .

X est donc une application définie par :

$$\mathbf{X}: \quad \Omega \longrightarrow \mathbb{R}^p$$

$$\omega \longrightarrow \mathbf{X}(\omega) = \begin{pmatrix} X_1(\omega) \\ \vdots \\ X_p(\omega) \end{pmatrix}$$

 La loi de X est caractérisée par sa fonction de répartition (appelée aussi fonction de distribution) jointe définie par

$$F(\mathbf{x}) = \mathbb{P}\left(X_1 \leq x_1, \dots, X_p \leq x_p\right),$$

pour tout $\mathbf{x} = (x_1, ..., x_p)^T$.

- On distingue essentiellement deux grands types vecteurs aléatoires :
 - Vecteur aléatoire discret. Si pour tout $i=1,\ldots,p,\ \Omega(X_i)$ est un sous-ensemble fini ou dénombrable de $\mathbb R$ alors $\Omega(\mathbf X)$ est un sous-ensemble fini ou dénombrable de $\mathbb R^p$. On dit alors que X est un vecteur aléatoire discret. Sa distribution est dite discrète.
 - Vecteur aléatoire continu. Si pour tout $i=1,\ldots,p,\ \Omega(X_i)$ n'est pas un sous-ensemble fini ou dénombrable de $\mathbb{R}.$ On dit alors que \mathbf{X} est un vecteur aléatoire continu. Sa distribution est dite absolûment continue par rapport à la mesure de Lebesgue dans $\mathbb{R}^d.$

Le théorème de Radon-Nikodym

Théorème

Si X est un vecteur aléatoire continu, alors il existe une fonction $f: \mathbb{R}^p \longrightarrow \mathbb{R}$ mesurable telle que

$$\forall B \in \mathcal{B}, \ \mathbb{P}(\mathbf{X} \in B) = \int_B f(\mathbf{x}) d\mathbf{x}.$$

On dit que f est la **fonction de densité de probabilité** (pdf) de X (ou densité jointe des composantes de X).

Propriété.

$$f(\mathbf{x}) \geq 0$$
 pour tout $\mathbf{x} \in \mathbb{R}^p$ et $\int_{\mathbb{R}^p} f(\mathbf{x}) d\mathbf{x} = 1$.

Dans le cas d'un vecteur aléatoire discret, les équivalents de la pdf sont les probabilités

$$p_i = \mathbb{P}(\mathbf{X} = \mathbf{x}_i)$$

où les \mathbf{x}_i sont les valeurs possibles de \mathbf{X} , attention il s'agit de vecteurs.

	cas continu	cas discret
Valeurs possibles	x	\mathbf{x}_i
loi de $\mathbf{X}(pdf/probabilit\acute{es})$	$f(\mathbf{x})$	p_i

Espérance et moments d'un vecteur aléatoire

ullet L'espérance d'un vecteur aléatoire X est définie par

$$\mathbb{E}(\mathbf{X}) = \left(\begin{array}{c} \mathbb{E}(X_1) \\ \vdots \\ \mathbb{E}(X_p) \end{array}\right).$$

ullet De manière général si $g:\mathbb{R}^p\longrightarrow\mathbb{R}^q$ est une fonction mesurable, on a

$$\mathbb{E}(g(\mathbf{X})) = \begin{pmatrix} \mathbb{E}(g_1(\mathbf{X})) \\ \vdots \\ \mathbb{E}(g_q(\mathbf{X})) \end{pmatrix}.$$

 \bullet On suivra la même règle si g est à valeurs dans un espace de matrices.

Variance d'un vecteur aléatoire

La notion de variance peut s'étendre aux vecteurs aléatoires de la manière suivante :

Définition

Si ${\bf X}$ est un vecteur aléatoire de dimension p alors :

$$\mathbb{V}(\mathbf{X}) = \mathbb{E}\left[(\mathbf{X} - \mathbb{E}\mathbf{X}) (\mathbf{X} - \mathbb{E}\mathbf{X})^T \right] = (\sigma_{ij})_{1 \le i, j \le p},$$

avec

$$\sigma_{ij} = \mathbb{C}ov(X_i, X_j) = \mathbb{E}\left[(X_i - \mathbb{E}X_i)(X_j - \mathbb{E}X_j)\right]$$

= $\mathbb{E}\left(X_i X_j\right) - \mathbb{E}(X_i)\mathbb{E}(X_j)$

 $\mathbb{V}(\mathbf{X})$ est connue sous le nom de matrice de variance-covariance de \mathbf{X} . Elle est souvent notée Σ_X ; nous adoptons cette notation.

Propriétés

- 1. Σ_X est une matrice symétrique définie positive.
- 2. Si A est une matrice $q \times p$ déterministe, alors

$$\mathbb{E}(A\mathbf{X}) = A\mathbb{E}(\mathbf{X}) \text{ et } \Sigma_{A\mathbf{X}} = A\Sigma_{\mathbf{X}}A^T.$$

Rappel

- On dit qu'une matrice M est définie positive si pour tout vecteur u, $u^T M u > 0$.
- \bullet Ou bien de manière équivalente toutes les valeurs propres de M sont positives.
- D'autre part, une combinaison linéaire de matrices définies positives de même dimension est définie positive.
- Enfin, le théorème spectral entraı̂ne que si M est symétrique (définie positive), alors il existe une matrice orthogonale P et une matrice diagonale D telle que $M = PDP^T$.
- On en déduit qu'il existe une matrice A, telle que $M=AA^T$; par exemple $A=PD^{1/2}.$

Preuve.

1. La matrice Σ_X est symétrique par construction. En effet, elle s'écrit comme l'espérance d'une matrice symétrique 1 . Montrons que Σ_X est définie positive. Soit le vecteur $u=(u_1,\ldots,u_n)^T$. Alors, on a par définition de l'espérance :

$$u^{T} \Sigma_{X} u = \mathbb{E} \left\{ \left[u^{T} X - \mathbb{E} \left(u^{T} X \right) \right] \left[u^{T} X - \mathbb{E} \left(u^{T} X \right) \right]^{T} \right\}$$
$$= \mathbb{V} \left(u^{T} X \right) = \mathbb{V} \left(\sum_{j=1}^{p} u_{j} X_{j} \right) \geq 0.$$

2. Evident pour l'espérance, par définition. Pour la variance, on a :

$$\mathbb{V}\left(AX\right) = \mathbb{E}\left\{\left[AX - \mathbb{E}\left(AX\right)\right]\left[AX - \mathbb{E}\left(AX\right)\right]^{T}\right\} = A\Sigma_{X}A^{T}.$$

^{1.} le produit d'un vecteur et de sa transposée est toujours symétrique.

Remarque

Plus généralement, on peut définir la covariance de deux vecteurs aléatoires X et Y, de dimension p par

$$\mathbb{C}ov(X,Y) = \mathbb{E}\left[(X - \mathbb{E}X) (Y - \mathbb{E}Y)^T \right]$$

Attention au fait que contrairement au cas de la dimension ${\bf 1},$ si X et Y sont des vecteurs aléatoires on a en général :

$$\mathbb{C}ov(X,Y) \neq \mathbb{C}ov(Y,X).$$

Propriété

Si A et B sont des matrices déterministes alors

$$\mathbb{C}ov\left(AX,BX\right) = A\Sigma_X B^T.$$

- Dans ce cours, on traite uniquement le cas des vecteurs aléatoires continus.
- Ainsi, on considère le vecteur aléatoire

$$\mathbf{X} = (X_1, \dots, X_p)^T$$

où les X_i sont des v.a. unidimensionnelles continues, avec des densités de probabilités respectives

$$f_1(x_1),\ldots,f_p(x_p),$$

et de fonctions de répartition respectives

$$F_1(x_1),\ldots,F_p(x_p).$$

et la densité de probabilité jointe des composantes de X est

$$f(x_1,\ldots,x_p)$$

• La loi de X est caractérisée par sa fonction de répartition (appelée aussi fonction de distribution) jointe

$$F(x_1,\ldots,x_p)=\mathbb{P}\left(X_1\leq x_1,\ldots,X_p\leq x_p\right).$$

On a

$$F(x_1,\ldots,x_p) = \int_{-\infty}^{x_1} \ldots \int_{-\infty}^{x_p} f(u_1,\ldots,u_p) du_1 \ldots du_p,$$

où $f(x_1,\ldots,x_p)$ est la fonction densité de probabilité jointe de X.

• Si les $X_i, i = 1, ..., p$ sont des v.a. indépendantes alors

$$f(x_1, \dots, x_p) = \prod_{i=1}^p f_i(x_i) \text{ et } F(x_1, \dots, x_p) = \prod_{i=1}^p F_i(x_i).$$

• Réciproquement, si les factorisations précédentes sont vraies, alors les $X_i, i=1,\ldots,p$ sont des v.a indépendantes.

- L'hypothèse d'indépendance des X_i permet donc de simplifier considérablement les calculs.
- Pour cette raison, plusieurs méthodes statistiques supposent toujours l'indépendance des variables aléatoires étudiées.
- Mais il faut faire attention au fait que l'hypothèse d'indépendance est parfois difficile à vérifier en pratique.

Définition

Soit X une variable aléatoire p-dimensionnelle. La densité jointe g d'une partie des composantes de X est obtenue en intégrant la densité jointe de X dans le domaine des variables qui ne sont pas dans la partie considérée. Ainsi, si l'on re-numérote les composantes de X par

$$X_1 \ldots, X_q, X_{q+1}, \ldots, X_p$$

alors on peut écrire

$$g(x_1,\ldots,x_q) = \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f(x_1,\ldots,x_p) dx_{q+1}\ldots dx_p.$$

ullet On obtient également la fonction de distribution jointe G associée par

$$G(x_1,...,x_q) = \mathbb{P}(X_1 \le x_1,...,X_q \le x_q)$$

= $F(x_1,...,x_q,+\infty,...,+\infty)$.

ullet En particulier la densité marginale d'une variable X_i s'écrit :

$$f_i(x_i) = \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} f(x_1, \dots, x_p) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_p.$$

Exemple.

Soient Y_1 et Y_2 deux variables aléatoires réelles indépendantes et de même loi. On note par g et G la fonction de densité et la fonction de répartition de ces variables. On définit

$$X_1 = \min\{Y_1, Y_2\} \text{ et } X_2 = \max\{Y_1, Y_2\}.$$

1. La densité de $X=(X_1,X_2)$ est donnée par

$$f(x_1,x_2) = \left\{ \begin{array}{cc} 2g(x_1)g(x_2) & \text{ si } x_1 \leq x_2 \\ 0 & \text{ sinon} \end{array} \right..$$

2. Les densités marginales de X_1 et X_2

Distribution conditionnelle

 En analyse multi-variée, il est parfois nécessaire de connaître la distribution d'un vecteur aléatoire conditionnellement à un autre vecteur aléatoire. On parle alors de loi conditionnelle.

Définition

La fonction de densité de probabilité conditionnelle de X_1,\dots,X_q sachant $X_{q+1}=x_{q+1},\dots,X_p=x_p$ est définie par

$$h(x_1, ..., x_q | x_{q+1} ... x_p) = \frac{f(x_1, ..., x_p)}{g(x_{q+1}, ..., x_p)},$$

où $f(x_1,\ldots,x_p)$ est la densité jointe de (X_1,\ldots,X_p) et $g(x_{q+1},\ldots,x_p)$ la densité jointe de (X_{q+1},\ldots,X_p) .

- Lorsque les variables aléatoires X_1, \ldots, X_p sont indépendantes alors la densité conditionnelle coı̈ncide avec la densité jointe de $X_1, \ldots X_q$.
- A partir de la densité conditionnelle on, définit la fonction de répartition conditionnelle par

$$F(x_1, \dots, x_q | x_{q+1} \dots x_p) = \frac{\int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_q} f(u_1, \dots, u_q, x_{q+1}, \dots, x_p) du_1 \dots du_q}{g(x_{q+1}, \dots, x_p)}.$$

Vecteurs gaussiens

Définition

 ${\bf X}$ est un vecteur Gaussien à p dimensions si toutes combinaisons linéaires de ses composantes suit une loi normale à une dimension.

Remarque

La normalité de chacune des composantes de ${\bf X}$ ne suffit pas à définir un vecteur gaussien.

Exemple:

$$\left(\begin{array}{c} X \\ -X \end{array}\right) \text{ avec } X \sim \mathcal{N}(0,\sigma^2)$$

n'est pas un vecteur gaussien.

Densité de probabilité de X

Théorème

Si Σ est régulière (déterminant non nul), ${\bf X}$ admet pour densité :

$$f(x_1, x_2, \cdots, x_p) = \frac{1}{(2\pi)^p (det(\Sigma))^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$

Remarque 1

La loi de ${\bf X}$ est entièrement déterminée par la connaissance de son espérance ${\pmb \mu}=(\mu_1,\mu_2,\cdots,\mu_p)^T$ et de sa matrice de variance covariance Σ . On notera

$$\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$$

Remarque 2 : linéarité

Si ${\bf X}$ est un vecteur gaussien de dimension p, ${\bf X} \sim \mathcal{N}({\boldsymbol \mu}, \Sigma)$ et A une matrice à k lignes et p colonnes, et ${\bf b}$ est un vecteur de dimension k, le vecteur $A{\bf X} + b$ est gaussien de dimension k et

$$A\mathbf{X} + \mathbf{b} \sim \mathcal{N}(A\boldsymbol{\mu} + \mathbf{b}, A\Sigma A^T)$$

Remarque 3

Si les composantes de ${\bf X}$ sont décorrélées alors elles sont indépendantes. En effet, on remarque que si $\Sigma=\sigma^2{\bf I}_p$ alors

$$f(x_1, x_2, \dots, x_p) = \prod_{i=1}^{p} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(x_i - \mu_i)^2\right)$$

Propriété de l'espérance conditionnelle

L'espérance conditionnelle de $(Y,X_1,\ldots,X_p)^T$ sachant $X_1=x_1,\ldots,X_p=x_p$ est une fonction affine de x_1,\cdots,x_p . En particulier

$$E(Y|X_1,\dots,X_p) = \sum_{i=1}^p a_i(X_i - E(X_i)) + E(Y)$$

avec

$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_p \end{pmatrix} = V(X)^{-1} \begin{pmatrix} cov(Y, X_1) \\ cov(Y, X_2) \\ \vdots \\ cov(Y, X_p) \end{pmatrix}$$

Loi du χ^2

Soit X_1, \cdots, X_n , n v. a. gaussiennes indépendantes, $X_i \sim \mathcal{N}(0,1)$ pour tout i, alors la variable aléatoire V donnée par $V = \sum_{i=1}^n X_i^2$ suit une loi du χ^2 à n degrés de libertés.

$$V = \sum_{i=1}^{n} X_i^2 \sim \chi_n^2$$

$$E(V) = n$$
 $V(V) = 2n$

Espaces euclidiens

On considère des sous espaces vectoriels de \mathbb{R}^n munis du produit scalaire usuel. On rappelle que

- pour tout $u=(u_1,\cdots,u_n)$ et $v=(v_1,\cdots,v_n)$ de \mathbb{R}^n , $< u,v>=\sum_{i=1}^n u_i v_i$
- $||u|| = \sqrt{\sum_{i=1}^n u_i^2} = \langle u, u \rangle$
- si u et v sont deux vecteur colonnes, $\langle u, v \rangle = u^T v$,
- on dit que u est orthogonal à v si < u, v >= 0.

Sous espaces d'un espace vectoriel euclien

Deux sous-espaces orthogonaux

Soit E un espace vectoriel de \mathbb{R}^n et F et G deux sous-espaces de E. F et G sont deux sous espaces orthogonaux ssi

$$\forall u \in F, \quad \forall v \in G, \quad \langle u, v \rangle = 0$$

Supplémentaire orthogonal

Soit E un espace vectoriel de \mathbb{R}^n et F un sous-espaces de E. Il existe un unique sous espace G de E tel que

- ullet F et G sont orthogonaux
- F et G sont en somme directe
- $F \oplus G = E$

On dit que G est le supplémentaire orthogonal de F dans E, on le note F^{\perp} . C'est l'ensemble des éléments de E orthogonaux à tous les éléments de F.

Base orthormée de \mathbb{R}^n

Soit E un sous-espace vectoriel de \mathbb{R}^n . La famille de vecteur (v_1, v_2, \cdots, v_n) est une base orthonormée de E ssi

- (v_1, v_2, \cdots, v_n) est une base de E (famille libre et génératrice),
- pour tout couple (i, j) avec $i \neq j$, v_i et v_j sont orthogonaux,
- pour tout i, $||v_i|| = 1$.
- Il est toujours possible de trouver une base orthonormée d'un sous espace vectoriel de \mathbb{R}^n . On pourra par exemple, utiliser la méthode d'orthonormalisation de Gram-Schmidt.
- Soit u un vecteur de E, la décomposition de u dans la base orthonormée (v_1, v_2, \cdots, v_n) est

$$u = \langle u, v_1 \rangle v_1 + \langle u, v_2 \rangle v_2 + \dots + \langle u, v_n \rangle v_n$$

Matrice orthogonale

Une matrice M est orthogonal si c'est la matrice de passage d'une base orthonormée à une autre base orthonormée.

Si M est une matrice orthogonale alors $M=M^T$.

Projecteur

Déf. 1

Soient E_1 et E_2 deux sous-espaces supplémentaires de \mathbb{R}^n . Soit $u \in \mathbb{R}^n$, la décomposition $u=u_1+u_2$, avec $u_1 \in E_1$ et $u_2 \in E_2$ est unique. On appelle projecteur sur E_1 parallèlement à E_2 , l'application linéaire p de \mathbb{R}^n dans \mathbb{R}^n , qui à tout $u \in \mathbb{R}^n$ associe $p(u)=u_1$.

Déf. 2

On appelle projecteur, une application linéaire p de \mathbb{R}^n dans \mathbb{R}^n telle que $p\circ p=p$.

Les deux définitions sont équivalentes.

Projecteur orthogonal

Définition

Un projecteur p est un projecteur orthogonal, si $Im(p) \perp Ker(p)$.

Remarques

Soit u un vecteur de \mathbb{R}^n , alors $u-p(u)\in Ker(p)$ et est orthogonal à tout vecteur de Im(p).

Proposition

Un projecteur, de matrice P dans une base orthonormée de \mathbb{R}^n , est un projecteur orthogonal si et seulment si sa matrice vérifie $P^2=P$ et $P^T=P$

Propriété

La projection orthogonale sur Im(p) minimise les distances : soient u et v deux vecteurs de \mathbb{R}^n , u fixé et $v \in Im(p)$, ||u-v|| est minimale pour v=p(u).

Théorème de Cochran

Soient V_1, V_2, \cdots, V_k , k sous-espaces vectoriels orthogonaux et supplémentaires de \mathbb{R}^n . On note $p_i = dim(V_i)$ et P_{V_i} une matrice de projection orthogonale sur V_i . Soit $Z \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_n)$.

- 1. $P_{V_i}Z \sim \mathcal{N}(0, \sigma^2 P_{V_i})$
- 2. $P_{V_1}Z, P_{V_2}Z, \cdots, P_{V_k}Z$ sont indépendants.
- 3. $\frac{||P_{V_i}Z||^2}{\sigma^2} \sim \chi_{p_i}^2$.

Application : loi de la variance empirique

Soient X_1, X_2, \dots, X_n , n V.A. i.i.d., où $X_i \sim \mathcal{N}(0, \sigma^2)$. On note X le vecteur $(X_1, X_2, \dots, X_n)^T$. Soit E la droite vectorielle engendrée par le vecteur $(1, 1, \dots, 1)^T$.

- 1. Donner le projeté orthogonal de X dans E. On le note $P_E(X)$.
- 2. Donner le projeté orthogonal de X dans le suplémentaire orthogonal de E dans \mathbb{R}^4 . On le note $P_{E^{\perp}}(X)$.
- 3. D'après le théorème de Cochran que peut on dire de $P_E(X)$ et $P_{E^\perp}(X)$.
- 4. Quelle relation existe-t-il entre la variance empirique $S_n^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X}_n)^2$ et $||P_{E^\perp}(X)||^2$?
- 5. En déduire la loi de S_n^2/σ^2 .

Rappel sur la loi de Student

Soient $U \sim \mathcal{N}(0,1)$ et $V \sim \chi_n^2, \ U$ et V indépendantes, alors la variable T définie par

$$T = \frac{U}{\sqrt{V/n}} \sim \mathcal{S}_n.$$

Rappel sur la loi de Fisher

Soient $V_1 \sim \chi^2_{n_1}$ et $V_2 \sim \chi^2_{n_2}$, V_1 et V_2 indépendantes, alors la variable F définie par

$$F = \frac{V_1/n_1}{V_2/n_2} \sim \mathcal{F}_{n_1,n_2}.$$