COMP30040 Subnetting

Thanks to Cristian Olariu

IPv4 address space

32 bits (4 bytes) addresses

- Total number of addresses:
- 2^{32} = 4,294,967,296 IPv4 addresses

Lower than Earth's population (approx. 7b)

History – Class-based subnets (used before 1993 and is now deprecated)

All a router had to do, is look at the first 4 bits of an incoming IP packet.

Subnetting

 Divides a network into sub-networks, i.e UCD has one network, but many schools (sub-nets)

- The Netmask splits the IP Address into:
 - network-prefix (Network ID)
 - and host-number (Host ID)

CIDR – Classless Inter-Domain Routing

Why it exists:

- The 8 bit address boundary had lack of vision
- E.g.: Class B networks are too big, i.e. 65536 hosts
- In CIDR, the address space can be allocated to Internet Providers and endusers on any address bit boundary, using netmasks
- Netmask (network mask):
 - 32 bits long
 - Used to specify
 - how many bits from an IP address define the Network ID,
 - and how many bits define the Hosts IDs

In this example, there are 28 bits of "1" and 4 bits of "0". So, it is said that this is a /28 network.

Example: What network do I belong to?

This is the fixed part of any IP address in this network. This is a /24 network, specifically: 192.168.5.0/28

This is the free part, where bits can take any value, resulting in host IP addresses.

How many hosts does this network have?

Example: 192.168.5.0/24

In network 192.168.5.0/24, there are 254 hosts: $2^{(32-24)} - 2 = 2^8 - 2 = 256 - 2 = 254$ hosts, And the broadcast address is 192.168.5.255

Network ID Decimal:	102	168	0 0 0 0 0 1 0 1 .	0 0 0 0 0 0 0 0
First host's Binary: address Decimal:	102	168	0 0 0 0 0 1 0 1 .	0 0 0 0 0 0 0 1
Other Binary: hosts Decimal:	102	168	0 0 0 0 0 1 0 1 .	x x x x x x x x 2 to 253
Last host's Binary: address Decimal:	102	168	0 0 0 0 0 1 0 1 .	1 1 1 1 1 1 0 254
Broadcast Binary: address Decimal:	110000000	168	0 0 0 0 0 1 0 1.	1 1 1 1 1 1 1 1 255

Subnetting: number of hosts

- If your network has a /n netmask,
- then, there are:

 $2^{(32-n)}-2$ hosts (a.k.a. usable IP addresses)

Reserved ranges, can not be used over the Internet

10.0.0.0 - 10.255.255.255

127.0.0.0 - 127.255.255.255

Localhost

172.16.0.0 - 172.31.255.255

192.168.0.0 - 192.168.255.255

IPv6

- Solution to the scarce IPv4 address domain
- Addresses are on 128 bits
- Total number of IPv6 addresses:
 2¹²⁸ = 340,282,366,920,938,463,463,374,607,431,768,211,456
- More than enough for anybody on Earth to own multiple IP addresses
- IoT will use a lot of these IPv6 addresses.

There are 21 of "1"s in this netmask!

Practice on your own! Use: 192.168.153.33/21

