**Stanford University** 

### Summary statistics estimation based on LD structure

2017/06/06

Yosuke Tanigawa (<u>ytanigaw@stanford.edu</u>) Biomedical Informatics Ph.D. Program

### Motivation: summary statistics imputation from LD

- We have population-level genomic data
  - Linkage-disequilibrium (LD) structure
- GWAS summary statistics
  - Multi-institutional data
- Can we solve the following inference problem?
  - Input: GWAS summary stats for limited loci, LD
  - Output: GWAS summary stats for loci of interest

### Model

### Notation

- $X \in \mathbb{R}^{N \times M}$ : genotype. We assume X is normalized such that is has zero-mean and unit variance.
- $Y \in \mathbb{R}^{N \times 1}$ : traits. We assume Y is normalized such that is has zero-mean and unit variance.
- $\beta \in \mathbb{R}^M$ : effect size.
- N: number of individuals.
- M: number of SNP markers.
- $V \in \mathbb{R}^{M \times M}$ : LD matrix. This can be found by  $V = X^T X$ .

### Model

### Linear regression model

Our regression model is:

$$Y = X\beta + \varepsilon, \quad \varepsilon \sim N(0, I)$$
 (1)

## Least square and marginal effect model

#### Least square

$$\nabla_{\beta}(Y - X\beta)^{T}(Y - X\beta) = -X^{T}(Y - X\beta) = 0$$
(2)

$$\hat{\beta} = (X^T X)^{-1} X^T Y = V^{-1} X^T Y; \quad \text{Var} \left[ \hat{\beta} \right] = \sigma_j^2 V^{-1}$$
(3)

where,  $\sigma_j^2$  is residual variance.

#### Marginal effect

$$\hat{\beta}_M = D^{-1} X^T Y; \quad \text{Var} \left[ \hat{\beta}_M \right] = \sigma_M^2 D^{-1}$$
 (4)

where, D is the diagonal matrix of V.

#### The relationship between two models

Since we have  $V\hat{\beta} = X^TY = D\hat{\beta}_M$ , we have

$$\hat{\beta} = V^{-1}D\hat{\beta}_M \tag{5}$$

#### **Z**-score

We define z-score:

$$Z := \frac{\hat{\beta}_M}{\sqrt{\operatorname{Var}\left[\hat{\beta}_M\right]}} = \frac{X^T Y}{\sqrt{N}} \tag{6}$$

We assume

$$Z \sim N(0, V) \tag{7}$$

#### Imputation of Z-scores

Let's consider to divide Z into two blocks:

- 1.  $Z_t$ : Z-score for typed SNPs
- 2.  $Z_i$ : Z-score for untyped SNPs

i.e.

$$Z^{T} = (Z_{t}^{T} \quad Z_{i}^{T}); \quad V = \begin{pmatrix} V_{tt} & V_{ti} \\ V_{it} & V_{ii} \end{pmatrix}$$

$$(8)$$

Since we modeled the Z-scores as multi-variate normal, the conditional distribution  $p(Z_i \mid Z_t)$  is also normal:

$$Z_i \mid Z_t \sim N(V_{it}V_{tt}^{-1}Z_t, V_{ii} - V_{it}V_{tt}^{-1}V_{ti})$$
(9)

## Z-score to the summary statistics

#### Z-scores to summary statistics

We can convert our estimate of z-score into estimate of marginal effect size  $\hat{\beta}_M$ 

$$\hat{\beta}_M = Z_i \sigma_Z + \mu_Z \tag{10}$$

We can estimate the variance of marginal effects by allele frequency (f):

$$\operatorname{Var}\left[\hat{\beta}_{M}\right] = \sqrt{2Nf(1-f)} \tag{11}$$

We can use these estimates in Eq. (5).

### Dataset description

- Genotype info:
  - UKBB (with population stratification): 112,338 individuals
  - Focusing on chromosome 20
- LD block (plink)
  - --blocks no-pheno-req
  - --blocks-max-kb 1000
  - --blocks-min-maf .05
- GWAS summary statistics
  - ADD, age, sex, C1-C4 (first 4 principle components)
  - Focusing on ADD (additive effects)
  - GWAS from array data
  - GWAS from inputed genotype data

### LD block structure on chromosome 20

- (left) Number of SNPs in a LD block (median 4.0)
  - Note: MAF 5%
- (right) Size of LD block (median 1.1865)



### Z-score distribution (for effect size for imputed data)

Zero-mean and unit-variance normalization for Z-score



# Examples of LD blocks:

In [5]: df\_block.loc[[9, 40]]

Out[5]:

|    | CHR BP1 BP2 KB N |        | NSNPS  | SNPS  |   |                                                |  |
|----|------------------|--------|--------|-------|---|------------------------------------------------|--|
| 9  | 20               | 98930  | 102181 | 3.252 | 5 | rs6116135 rs6116236 rs6139361 rs71870630 rs605 |  |
| 40 | 20               | 170642 | 171189 | 0.548 | 2 | rs1469781 rs6078096                            |  |

## Example 1: LD block chr20:rs6116135-rs6052493

#### LD #9

In [6]: df\_beta\_select\_range(df\_beta\_i, df\_block.BP1[9], df\_block.BP2[9])

Out[6]:

|   | #CHROM | POS    | ID            | REF | ALT1 | TEST | OBS_CT | BETA    | SE       | T_STAT   | Р       | ALT_FREQS |
|---|--------|--------|---------------|-----|------|------|--------|---------|----------|----------|---------|-----------|
| 7 | 20     | 101362 | Affx-16857388 | 2   | 1    | ADD  | 104655 | 0.00086 | 0.003512 | 0.244958 | 0.80649 | 0.762089  |

In [7]: df\_beta\_select\_range(df\_beta\_t\_zscore, df\_block.BP1[9], df\_block.BP2[9])

Out[7]:

|    | Unnamed: 0 | #CHROM | POS    | ID         | Z_BETA    | ALT_FREQS |
|----|------------|--------|--------|------------|-----------|-----------|
| 54 | 927        | 20     | 98930  | rs6116135  | -0.020121 | 0.925180  |
| 55 | 972        | 20     | 100699 | rs6116236  | -0.000057 | 0.851703  |
| 56 | 986        | 20     | 101362 | rs6139361  | -0.026851 | 0.762089  |
| 57 | 1005       | 20     | 102080 | rs71870630 | -0.000697 | 0.701485  |
| 58 | 1007       | 20     | 102181 | rs6052493  | -0.003476 | 0.824852  |

- beta\_hat = 0.004614
- beta\_si = 143.3
- beta (array) = 0.0008603
- condition\_num( $V_tt$ ) = 26.83



## Example 2: LD block chr20:rs1469781-rs6078096

#### LD #40

In [10]: df\_beta\_select\_range(df\_beta\_i, df\_block.BP1[40], df\_block.BP2[40])

Out[10]:

|    | #CHROM | POS    | ID            | REF | ALT1 | TEST | OBS_CT | BETA      | SE      | T_STAT    | Р        | ALT_FREQS |
|----|--------|--------|---------------|-----|------|------|--------|-----------|---------|-----------|----------|-----------|
| 20 | 20     | 170642 | Affx-16356907 | 1   | 2    | ADD  | 109894 | -0.001834 | 0.00296 | -0.619535 | 0.535565 | 0.441836  |

In [11]: df\_beta\_select\_range(df\_beta\_t\_zscore, df\_block.BP1[40], df\_block.BP2[40])

Out[11]:

|     | Unnamed: 0 | #CHROM | POS    | ID        | Z_BETA    | ALT_FREQS |
|-----|------------|--------|--------|-----------|-----------|-----------|
| 296 | 2904       | 20     | 170642 | rs1469781 | -0.019409 | 0.441836  |
| 297 | 2923       | 20     | 171189 | rs6078096 | -0.012905 | 0.554101  |

- beta\_hat = -0.002247
- beta\_si = 92.96
- beta (array) = -0.001834
- condition\_num(V\_tt) = 1.0



### Discussion: What should be refined?

- The variance of estimate is huge
- Numerical instability
  - Inverse operation, condition number, ...
- Missing values in genetic information
  - currently: mean imputation
- MAF >= 0.05 threshold