import pandas as pd

data=pd.read_csv("adult 3.csv")

data.head(10)

3		age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week	native country
	0	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own-child	Black	Male	0	0	40	United States
	1	38	Private	89814	HS-grad	9	Married- civ- spouse	Farming- fishing	Husband	White	Male	0	0	50	United States
	2	28	Local-gov	336951	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband	White	Male	0	0	40	United States
	3	44	Private	160323	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	0	40	United States
	4	18	?	103497	Some- college	10	Never- married	?	Own-child	White	Female	0	0	30	United States
	5	34	Private	198693	10th	6	Never- married	Other- service	Not-in-family	White	Male	0	0	30	United States
	6	29	?	227026	HS-grad	9	Never- married	?	Unmarried	Black	Male	0	0	40	United States
	7	63	Self-emp-	104626	Prof-	15	Married- civ-	Prof-	Husband	White	Male	3103	0	32	United

data['fnlwgt'].min()

→ np.int64(12285)

data.tail(3)

_		age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week	na ¹ coi
	48839	58	Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried	White	Female	0	0	40	U
	48840	22	Private	201490	HS-grad	9	Never- married	Adm- clerical	Own-child	White	Male	0	0	20	U {

data.shape

→ (48842, 15)

#null values

data.isna().sum() #mean mdeian mode arbitrary

∑ ₹	age	0
_	workclass	0
	fnlwgt	0
	education	0
	educational-num	0
	marital-status	0
	occupation	0
	relationship	0
	race	0
	gender	0
	capital-gain	0
	capital-loss	0
	hours-per-week	0
	native-country	0
	income	0
	dtype: int64	

```
print(data.workclass.value_counts())
→ workclass
                         33906
     Private
     Self-emp-not-inc
                          3862
     Local-gov
                          3136
                          2799
                          1981
     State-gov
     Self-emp-inc
                          1695
                          1432
     Federal-gov
     Without-pay
                            21
     Never-worked
                            10
     Name: count, dtype: int64
data.workclass.replace({'?':'Others'},inplace=True)
print(data['workclass'].value_counts())
workclass
                         33906
     Private
     Self-emp-not-inc
                          3862
     Local-gov
                          3136
                          2799
     Others
     State-gov
                          1981
     Self-emp-inc
                          1695
     Federal-gov
                          1432
     Without-pay
                            21
     Never-worked
                            10
     Name: count, dtype: int64
     C:\Users\afroz\AppData\Local\Temp\ipykernel_6892\4184710730.py:1: FutureWarning: A value is trying to be set on a copy of a DataFrame or
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
       data.workclass.replace({'?':'Others'},inplace=True)
print(data['occupation'].value_counts())
→ occupation
     Prof-specialty
                          6172
     Craft-repair
                          6112
     Exec-managerial
                          6086
     Adm-clerical
                          5611
     Sales
                          5504
     Other-service
                          4923
     Machine-op-inspct
                          3022
     Transport-moving
                          2355
     Handlers-cleaners
                          2072
     Farming-fishing
                          1490
     Tech-support
                          1446
     Protective-serv
                           983
     Priv-house-serv
                           242
     Armed-Forces
                            15
     Name: count, dtype: int64
data.occupation.replace({'?':'Others'},inplace=True)
print(data['occupation'].value_counts())
→ occupation
     Prof-specialty
                          6172
     Craft-repair
                          6112
     Exec-managerial
                          6086
     Adm-clerical
                          5611
     Sales
                          5504
     Other-service
                          4923
     Machine-op-inspct
                          3022
     Others
                          2809
     Transport-moving
                          2355
     Handlers-cleaners
                          2072
     Farming-fishing
                          1490
     Tech-support
                          1446
     Protective-serv
                           983
     Priv-house-serv
                           242
     Armed-Forces
                            15
     Name: count, dtype: int64
     C:\Users\afroz\AppData\Local\Temp\ipykernel_6892\1148816719.py:1: FutureWarning: A value is trying to be set on a copy of a DataFrame or
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting value
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].me
```

```
data=data[data['workclass']!='Without-pay']
data=data[data['workclass']!='Never-worked']
print(data['workclass'].value_counts())
→ workclass
     Private
                         33906
     Self-emp-not-inc
                         3862
                         3136
     Local-gov
     Others
                         2799
                         1981
     State-gov
                         1695
     Self-emp-inc
     Federal-gov
                         1432
     Name: count, dtype: int64
print(data.relationship.value_counts())
→ relationship
                      19708
     Husband
     Not-in-family
                       12582
     Own-child
                       7566
                        5123
     Unmarried
     Wife
                        2327
     Other-relative
                       1505
     Name: count, dtype: int64
print(data.gender.value_counts())
→ gender
               32629
     Male
     Female
              16182
     Name: count, dtype: int64
data['marital-status'].value_counts()
→ marital-status
         21256
     2
     4
         15695
     0
           6464
     5
           1443
           1275
     6
            550
     Name: count, dtype: int64
data.shape
→ (48811, 15)
#outlier detection
import matplotlib.pyplot as plt #visualization
plt.boxplot(data['age'])
plt.show()
```

data.occupation.replace({'?':'Others'},inplace=True)

data=data[(data['age']<=75)&(data['age']>=17)]

plt.boxplot(data['age'])
plt.show()

data.shape

→ (48438, 15)

plt.boxplot(data['capital-gain'])
plt.show()

plt.boxplot(data['capital-gain'])
plt.show()

plt.boxplot(data['educational-num'])
plt.show()

data=data[(data['educational-num']<=16)&(data['educational-num']>=5)]

plt.boxplot(data['educational-num'])
plt.show()

plt.boxplot(data['hours-per-week'])
plt.show()

data.shape

→ (46720, 15)

data=data.drop(columns=['education']) #redundant features removal

data

	age	workclass	fnlwgt	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week	native- country	inco
0	25	Private	226802	7	Never- married	Machine- op-inspct	Own-child	Black	Male	0	0	40	United- States	<=5(
1	38	Private	89814	9	Married- civ- spouse	Farming- fishing	Husband	White	Male	0	0	50	United- States	<=5(
2	28	Local-gov	336951	12	Married- civ- spouse	Protective- serv	Husband	White	Male	0	0	40	United- States	>5(
3	44	Private	160323	10	Married- civ- spouse	Machine- op-inspct	Husband	Black	Male	7688	0	40	United- States	>5(
4	18	Others	103497	10	Never- married	Others	Own-child	White	Female	0	0	30	United- States	<=5(

from sklearn.preprocessing import LabelEncoder #import libarary encoder=LabelEncoder() #create object data['workclass']=encoder.fit_transform(data['workclass']) #7 categories 0,1, 2, 3, 4, 5, 6, data['marital-status']=encoder.fit_transform(data['marital-status']) #3 categories 0, 1, 2 data['occupation']=encoder.fit_transform(data['occupation']) data['relationship']=encoder.fit_transform(data['relationship']) #5 categories 0, 1, 2, 3, 4 data['race']=encoder.fit_transform(data['race']) data['gender']=encoder.fit_transform(data['gender']) #2 catogories 0, 1 data['native-country']=encoder.fit_transform(data['native-country'])

data

}		age	workclass	fnlwgt	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week	native- country	incom
	0	25	3	226802	7	4	6	3	2	1	0	0	40	39	<=501
	1	38	3	89814	9	2	4	0	4	1	0	0	50	39	<=501
	2	28	1	336951	12	2	11	0	4	1	0	0	40	39	>501
	3	44	3	160323	10	2	6	0	2	1	7688	0	40	39	>501
	4	18	2	103497	10	4	8	3	4	0	0	0	30	39	<=50
															•
	48837	27	3	257302	12	2	13	5	4	0	0	0	38	39	<=501
	48838	40	3	154374	9	2	6	0	4	1	0	0	40	39	>501
	48839	58	3	151910	9	6	0	4	4	0	0	0	40	39	<=501
	48840	22	3	201490	9	4	0	3	4	1	0	0	20	39	<=501
	48841	52	4	287927	9	2	3	5	4	0	15024	0	40	39	>501

data['race'].value_counts()

₹ race 39974 4 4500 2 1 1450 451 0 345 Name: count, dtype: int64

x=data.drop(columns=['income']) y=data['income']

	age	workclass	fnlwgt	educational- num	marital- status	occupation	relationship	race	gender	capital- gain	capital- loss	hours- per- week	native- country
0	25	3	226802	7	4	6	3	2	1	0	0	40	39
1	38	3	89814	9	2	4	0	4	1	0	0	50	39
2	28	1	336951	12	2	11	0	4	1	0	0	40	39
3	44	3	160323	10	2	6	0	2	1	7688	0	40	39
4	18	2	103497	10	4	8	3	4	0	0	0	30	39
48837	27	3	257302	12	2	13	5	4	0	0	0	38	39
48838	40	3	154374	9	2	6	0	4	1	0	0	40	39
48839	58	3	151910	9	6	0	4	4	0	0	0	40	39
48840	22	3	201490	9	4	0	3	4	1	0	0	20	39
48841	52	4	287927	9	2	3	5	4	0	15024	0	40	39

```
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler, OneHotEncoder
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
models = {
    "LogisticRegression": LogisticRegression(),
    "RandomForest": RandomForestClassifier(),
    "KNN": KNeighborsClassifier(),
    "SVM": SVC(),
    "GradientBoosting": GradientBoostingClassifier()
}
results = {}
for name, model in models.items():
    pipe = Pipeline([
        ('scaler', StandardScaler()),
        ('model', model)
    ])
    pipe.fit(X_train, y_train)
    y_pred = pipe.predict(X_test)
    acc = accuracy_score(y_test, y_pred)
    results[name] = acc
    print(f"{name} Accuracy: {acc:.4f}")
    print(classification_report(y_test, y_pred))
LogisticRegression Accuracy: 0.8149
                   precision
                                recall f1-score
                                                    support
            <=50K
                                  0.93
                                             0.88
                                                       7010
                        0.84
                                                       2334
             >50K
                        0.69
                                  0.46
                                             0.55
                                             0.81
                                                       9344
         accuracy
                        0.77
                                  0.70
                                                       9344
        macro avg
                                             0.72
     weighted avg
                        0.80
                                  0.81
                                             0.80
                                                       9344
     RandomForest Accuracy: 0.8488
                   precision
                                recall f1-score
                                                    support
            <=50K
                        0.88
                                  0.93
                                             0.90
                                                       7010
             >50K
                                                       2334
                        0.74
                                  0.61
                                            0.67
         accuracy
                                             0.85
                                                       9344
                        0.81
                                  0.77
                                             0.79
        macro avg
                                                       9344
     weighted avg
                        0.84
                                  0.85
                                            0.84
                                                       9344
```

KNN Accuracy:	0.8245			
	precision	recall	f1-score	support
<=50K	0.87	0.90	0.88	7010
>50K	0.67	0.60	0.63	2334
			0.00	0244
accuracy			0.82	9344
macro avg	0.77	0.75	0.76	9344
weighted avg	0.82	0.82	0.82	9344
SVM Accuracy:	0.8396			
JVIII Acculacy.	precision	recall	f1-score	support
	precision	recall	11-30016	Support
<=50K	0.86	0.94	0.90	7010
>50K	0.75	0.54	0.63	2334
,,,,,,	01/3	0.5.	0.05	255.
accuracy			0.84	9344
macro avg	0.80	0.74	0.76	9344
weighted avg	0.83	0.84	0.83	9344
GradientBoost	ing Accuracy:	0.8571		
	precision	recall	f1-score	support
. 50%	0.00	0.04	0.01	7010
<=50K	0.88	0.94	0.91	7010
>50K	0.78	0.60	0.68	2334
accuracy			0.86	9344
	0.83	0.77	0.79	9344
macro avg				
weighted avg	0.85	0.86	0.85	9344

```
import matplotlib.pyplot as plt
plt.bar(results.keys(), results.values(), color='skyblue')
plt.ylabel('Accuracy Score')
plt.title('Model Comparison')
plt.xticks(rotation=45)
plt.grid(True)
plt.show()
```



```
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import joblib
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42)
```

```
# Define models
models = {
    "LogisticRegression": LogisticRegression(max_iter=1000),
    "RandomForest": RandomForestClassifier(),
    "KNN": KNeighborsClassifier(),
    "SVM": SVC(),
    "GradientBoosting": GradientBoostingClassifier()
}
results = {}
# Train and evaluate
for name, model in models.items():
   model.fit(X_train, y_train)
   preds = model.predict(X_test)
   acc = accuracy_score(y_test, preds)
   results[name] = acc
   print(f"{name}: {acc:.4f}")
# Get best model
best_model_name = max(results, key=results.get)
best_model = models[best_model_name]
print(f"\n \subseteq Best model: {best_model_name} with accuracy {results[best_model_name]:.4f}")
# Save the best model
joblib.dump(best_model, "best_model.pkl")
print(" Saved best model as best_model.pkl")
    C:\Users\afroz\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\linear model\ logistic.py:465: ConvergenceWarning: lbfg
     STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
        https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
        https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
       n_iter_i = _check_optimize_result(
     LogisticRegression: 0.7958
     RandomForest: 0.8489
     KNN: 0.7704
     SVM: 0.7884
     GradientBoosting: 0.8571
     ☑ Best model: GradientBoosting with accuracy 0.8571
     Saved best model as best_model.pkl
%%writefile app.py
import streamlit as st
import pandas as pd
import joblib
# Load the trained model
model = joblib.load("best_model.pkl")
st.set_page_config(page_title="Employee Salary Classification", page_icon="mi", layout="centered")
st.markdown("Predict whether an employee earns >50K or ≤50K based on input features.")
# Sidebar inputs (these must match your training feature columns)
st.sidebar.header("Input Employee Details")
# 🧎 Replace these fields with your dataset's actual input columns
age = st.sidebar.slider("Age", 18, 65, 30)
education = st.sidebar.selectbox("Education Level", [
    "Bachelors", "Masters", "PhD", "HS-grad", "Assoc<sup>"</sup>, "Some-college"
1)
occupation = st.sidebar.selectbox("Job Role", [
    "Tech-support", "Craft-repair", "Other-service", "Sales",
    "Exec-managerial", "Prof-specialty", "Handlers-cleaners", "Machine-op-inspct",
    "Adm-clerical", "Farming-fishing", "Transport-moving", "Priv-house-serv",
    "Protective-serv", "Armed-Forces"
1)
hours_per_week = st.sidebar.slider("Hours per week", 1, 80, 40)
experience = st.sidebar.slider("Years of Experience", 0, 40, 5)
```

```
# Build input DataFrame ( must match preprocessing of your training data)
input_df = pd.DataFrame({
    'age': [age],
```