Instruction Graph Statics

Andrew Benson

1 Validity

p valid means that the Program p is a valid program.

$$\frac{(\mathbf{V}(s,\ c)::vs,\ U)\ \mathtt{defined}\qquad (\mathbf{V}(s,\ c)::vs,\ \emptyset,\ s,\ U)\ \mathtt{connected}}{\mathbf{P}(\mathbf{V}(s,\ c),\ vs)\ \mathtt{valid}}$$

2 Defined

We let $U \subseteq \mathbb{Z}$ be a subset of the integers.

 $(vs,\ U)$ defined means that the Vertices vs define exactly the set U of vertex indices.

$$\frac{(vs,\ U)\ \text{defined}\qquad n\notin U}{(nil,\ \{\ \})\ \text{defined}\qquad } \frac{(vs,\ U)\ \text{defined}\qquad n\notin U}{(\mathbf{V}(n,\ c)::vs,\ U\cup\{n\})\ \text{defined}}$$

3 Connected

We let $U \subseteq \mathbb{Z}$ be a subset of the integers.

(vs, U_v , n, U) connected means that there exists a path from the vertex represented by n to each vertex represented by an index in U without going through any vertex in U_v . By "represented" we mean that vs contains a vertex for that index.

$$\frac{(vs,\ U)\ \text{defined}\qquad U_v\subseteq U\qquad n\in U_v}{(vs,\ U_v,\ n,\ \emptyset)\ \text{connected}}$$

$$\frac{(vs,\ U)\ \text{defined}\qquad U_v\subseteq U\qquad \mathbf{V}(n,\ \mathbf{end})\in vs\qquad n\notin U_v}{(vs,\ U_v,\ n,\ \{n\})\ \text{connected}}$$

$$\mathbf{V}(n,\ \mathbf{do}\ a\ \mathbf{then}\ n')\in vs$$

$$\frac{(vs,\ U_v\cup\{n\},\ n',\ U)\ \text{connected}}{(vs,\ U_v,\ n,\ U\cup\{n\})\ \text{connected}}$$

$$\mathbf{V}(n,\ \mathbf{do}\ a\ \mathbf{until}\ cnd\ \mathbf{then}\ n')\in vs$$

$$\frac{(vs,\ U_v\cup\{n\},\ n',\ U)\ \text{connected}}{(vs,\ U_v\cup\{n\},\ n',\ U)\ \text{connected}}$$

$$\mathbf{V}(n,\ \mathbf{if}\ cnd\ \mathbf{then}\ n'\ \mathbf{else}\ n'')\in vs \qquad (vs,\ U_v\cup\{n\},\ n',\ U)\ \text{connected}}$$

$$\mathbf{V}(n,\ \mathbf{if}\ cnd\ \mathbf{then}\ n'\ \mathbf{else}\ n'')\in vs \qquad (vs,\ U_v\cup\{n\},\ n',\ U)\ \text{connected}}$$

$$\mathbf{V}(n,\ \mathbf{goto}\ n')\in vs \qquad (vs,\ U_v\cup\{n\},\ n',\ U)\ \text{connected}}$$

$$\mathbf{V}(n,\ \mathbf{goto}\ n')\in vs \qquad (vs,\ U_v\cup\{n\},\ n',\ U)\ \text{connected}}$$

 $(vs,\ U_v,\ n,\ U\cup\{n\})$ connected