Iterative Deepening Search

- Depth First Iterative Deepening (DFID): DFS with depth bound
- QueuingFn is LIFO as with DFS
 - Expand(state) only returns children such that depth(child) <= threshold
 - This prevents search from going down infinite path
- First threshold is 1
 - If do not find solution, increment threshold and repeat

Example

Analysis

- What about the repeated work?
- Time complexity (number of generated nodes)

```
\triangleright[1+b] + [1+b + b<sup>2</sup>] + .. + [1+b + b<sup>2</sup> + .. + b<sup>d</sup>]
```

- \rightarrow d+(d)b + (d-1) b² + ... + (1) b^d
- $>O(b^d)$
- Repeated work is approximately 1/b of total work
 - **≻**Negligible
 - \triangleright Example: b=10, d=5
 - >N(BFS) = 1,111,100
 - >N(DFID) = 123,450
- Features
 - Shortest solution, not necessarily least cost
 - Is there a better way to decide threshold?

Comparison of Search Techniques

	DFS	BFS	DFID
Complete	N	Υ	Υ
Optimal	N	N	N
Heuristic	N	N	N
Time	b ^m	b ^{d+1}	b ^d
Space	bm	b ^{d+1}	bd

Uniform Cost Search

- QueueingFn is SortByCostSoFar
- Cost from root to current node n is g(n)
 - Add operator costs along path
- First goal found is least-cost solution
- Space & time can be exponential because large subtrees with inexpensive steps may be explored before useful paths with costly steps
- If costs are equal, time and space are O(b^d)
 - Otherwise, complexity related to cost of optimal solution

Open list: C

Open list: B(2) T(1) O(3) E(2) P(5)

Open list: T(1) B(2) E(2) O(3) P(5)

Open list: B(2) E(2) O(3) P(5)

Open list: E(2) O(3) P(5)

Open list: E(2) O(3) A(3) S(5) P(5) R(6)

Open list: O(3) A(3) S(5) P(5) R(6)

Open list: O(3) A(3) S(5) P(5) R(6) G(7)

Open list: A(3) S(5) P(5) R(6) G(7)

Open list: A(3) I(4) S(5) N(5) P(5) R(6) G(10)

Open list: I(4) P(5) S(5) N(5) R(6) G(10)

Open list: P(5) S(5) N(5) R(6) Z(6) G(10)

Open list: S(5) N(5) R(6) Z(6) F(6) G(7) D(8) L(10)

Open list: N(5) R(6) Z(6) F(6) D(8) G(10) L(10)

Open list: Z(6) F(6) D(8) G(10) L(10)

Open list: F(6) D(8) G(10) L(10)

Comparison of Search Techniques

	DFS	BFS	UCS	DFID
Complete	N	Υ	Υ	Υ
Optimal	N	N	Υ	N
Heuristic	N	N	N	N
Time	b ^m	b ^{d+1}	b ^m	b ^d
Space	bm	b ^{d+1}	b ^m	bd