DISTRIBUIÇÕES CONJUNTAS DE PROBABILIDADE E COMPLEMENTOS

Problema 1.

A função massa de probabilidade conjunta do par aleatório (X,Y) dada pela seguinte tabela:

$X \setminus Y$	-3	2	4
1	0.1	0.2	0.2
3	0.3	0.1	0.1

- a) Deduza as funções de massa de probabilidade marginal para cada uma das variáveis.
- b) Determine a função massa de probabilidade condicional de (Y|X=1) e o seu valor esperado.
- c) Calcule a covariância e o coeficiente de correlação entre X e Y. Que conclui?
- d) Verifique se as variáveis são independentes.

Problema 2.

Considere um par de variáveis aleatórias (X,Y) discretas, tal que a função de distribuição de X é dada por

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 0.2, & 0 \le x < 1 \\ 0.5, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

e cuja função massa de probabilidade conjunta é dada pela tabela

$X \setminus Y$	0	1	2
?	0.1	0	?
?	0.2	?	0
?	0.3	0.1	?

- a) Determine a função massa de probabilidade marginal de X e complete a tabela.
- b) Calcule o coeficiente de correlação entre X e Y. O que conclui?
- c) Determine V[X|Y=2].

Problema 3.

Uma moeda equilibrada é lançada três vezes. Seja X o número de caras obtidas no primeiro lançamento e Y o número de caras nos três lançamentos.

- a) Determine as funções massa de probabilidade marginal de X e de Y.
- b) Determine a função massa de probabilidade conjunta de X e Y.
- c) Determine E[X|Y=1].
- d) Verifique se X e Y são independentes.

Problema 4.

Um número X é escolhido aleatoriamente do conjunto $\{1, 2, 3, 4, 5\}$. Posteriormente, um número Y é escolhido aleatoriamente do conjunto $\{1, \ldots, X\}$.

- a) Calcule a função massa de probabilidade de X e Y.
- b) Obtenha a função massa de probabilidade condicional de X dado Y=3.
- c) As variáveis X e Y são independentes? Justifique a sua resposta.

Problema 5.

Sejam X_1 e X_2 duas variáveis aleatórias tais que $V(X_1)=\sigma^2$ e $V(X_2)=2\sigma^2$. Considere as variáveis aleatórias

$$Y_1 = X_1 + 2X_2, \qquad Y_2 = X_1 - X_2.$$

Sabendo que $V(Y_2) = \sigma^2$ determine:

- a) O coeficiente de correlação entre X_1 e X_2 .
- b) A variância de Y_1 .

Problema 6.

Um dos elevadores dum grande edifício público transporta, no máximo, 20 pessoas de cada vez. A carga máxima transportada pelo elevador é de 1300 Kg. Os utilizadores deste elevador pertencem a um largo estrato da população em que se verificou que o peso duma pessoa é normalmente distribuído com valor esperado 61 Kg e desvio padrão 10 Kg.

- a) Calcule a probabilidade do peso destes 20 utilizadores exceder a carga máxima.
- b) Acha que, em face do tipo de população que utiliza o elevador, a carga máxima é adequada? Explique a sua opinião.

Problema 7. Suponha que um engenheiro responsável pelas inspecções de motores automóveis tem 36 motores para inspeccionar. A inspecção de um motor leva em média 2 horas com um desvio padrão de 1 hora. Qual a probabilidade de ser necessário mais de 75 horas para inspeccionar os 36 motores?

Problema 8. Um certo componente é crítico para o funcionamento de um sistema eléctrico e deve ser imediatamente substituído quando falha. O tempo médio de vida deste tipo de componente é 100 horas e o desvio padrão 30 horas.

- a) Se existir em stock 30 componentes, qual a probabilidade do sistema funcionar pelo menos 2500 horas?
- b) Quantos componentes devem existir em stock, para que a probabilidade do sistema funcionar continuamente nas próximas 5000 horas seja pelo menos 0.95?