Learning objectives:

- 1. Learn the concept of **absolute** maximum and minimum points/values of a function.
- 2. Learn the concept of **local** maximum and minimum points/values of a function.
- 3. The Extreme value theorem and the Fermat's theorem.
- 4. Critical numbers of a function.
- 5. The closed interval method.

Absolute maximum and minimum

Let c be a number in the domain D of a function f. Then f(c) is the

- 1. absolute maximum value of f on D if $f(c) \ge f(x)$ for all x in D.
- 2. absolute minimum value of f on D if $f(c) \le f(x)$ for all x in D.

Local maximum and minimum

Let c be a number in the domain D of a function f. Then f(c) is the

- 1. local maximum value of f on D if $f(c) \ge f(x)$ when x is near c.
- 2. local minimum value of f on D if $f(c) \le f(x)$ when x is near c.

Example 1.

- 1. $y = \cos x$.
- 2. $y = x^2$.
- 3. $y = x^3$.

The Extreme value theorem.

If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers c and d in [a, b].

Fermat's Theorem

If f has a local maximum or minimum at c, and if f'(c) exists, then f'(c) = 0.

Example 2.

- 1. $y = \cos x$.
- 2. $y = x^2$.
- 3. $y = x^3$.
- 4. y = |x|.

Critical number

A critical number of a function f is a number c in the domain of f such that either f'(c) = 0 or f'(c) does not exist.

Example 3. Find the critical numbers of the following functions.

- 1. $f(x) = x^{3/5}(4 x)$.
- 2. $f(x) = 2x^3 3x^2 36x$.
- 3. g(t) = |3t 4|.

Fermat's theorem rephrased

If f has a local maximum or minimum at c, then c is a critical number of f.

The closed interval method

To find the absolute maximum and minimum values of a continuous function f on a closed interval [a, b]:

- 1. Find the critical numbers of f in the open interval (a, b).
- 2. Find the values of f at the critical numbers of f in (a, b).
- 3. Find the values of f at the endpoints, that is, find f(a) and f(b).
- 4. The largest of the values from steps 2 and 3 is the absolute maximum value; the smallest of these values is the absolute minimum value.

Example 4. Find the absolute maximum and minimum values of the given function on the given interval.

$$f(x) = x^3 - 3x^2 + 1$$
, $-\frac{1}{2} \le x \le 4$.

Example 5. Find the absolute maximum and minimum values of the given function on the given interval.

$$f(x) = x - 2\sin x , \quad 0 \le x \le 2\pi .$$

Example 6. Find the absolute maximum and minimum values of the given function on the given interval.

$$f(x) = x + \frac{1}{x}$$
, $[-1.5, -0.5] \cup [0.5, 1.5]$.

Example 7. Find the absolute maximum and minimum values of the given function on the given interval.

$$f(\theta) = 2\cos\theta + \sin 2\theta$$
, $[0, \pi/2]$.