

Rapport Phase 1 – Projet TER

Analyse et Détection d'Anomalies dans un Réseau 5G

Unlearning dans les Réseaux 5G à l'aide de l'Intelligence Artificielle

Université Paris Cité

Master 1 Réseaux et Systèmes Autonomes (RSA)

Encadrant : [Nom du professeur]

Étudiantes : Ndeye Cisse Gaye, Thinhinane Ziane

Date: Mai 2025

1. Objectif de la Phase 1

Cette première phase vise à :

- Explorer les données d'un réseau 5G
- Détecter des anomalies réseau susceptibles de nuire à la qualité de service (QoS)
- Préparer les entrées identifiées à une future suppression sélective (unlearning) dans un modèle d'intelligence artificielle.

2. Données utilisées

• Nom du dataset : Quality of Service 5G.csv

- Source : Kaggle
- Colonnes principales :
 - Latence (Latency)
 - Puissance du signal (Signal_Strength)
 - o Bande passante requise et allouée (Required_Bandwidth, Allocated_Bandwidth)
 - Type d'application, timestamp...

3. Méthodologie

3.1 Exploration des variables

• Latence : en millisecondes (ms)

• Signal : en dBm (plus c'est négatif, plus c'est faible)

• Bande passante : Kbps ou Mbps → convertie en Mbps

3.2 Règles d'anomalie

Type d'anomalie	Condition
Anomalie de latence	Latency > 100 ms
Anomalie de signal	Signal_Strength < -90 dBm
Anomalie de bande passante	Allocated < Required

Une anomalie globale est marquée si au moins une de ces conditions est vraie.

4. Résultats

Nombre de cas détectés :

Anomalies de latence : 7 casAnomalies de signal : 143 cas

• Anomalies de bande passante : 0 cas

• Anomalies globales : 143 cas

5. Visualisations

Figure 1 – Anomalies de bande passante

Figure 2 – Distribution de la latence avec anomalies

Figure 3 – Distribution du signal avec anomalies

Figure 4 – Anomalies globales (latence, signal, bande passante)

6. Interprétation

- La **majorité des anomalies** sont causées par un **signal faible** (< -90 dBm), ce qui est cohérent avec des environnements 5G saturés.
- Les cas de latence élevée sont rares mais doivent être surveillés.
- L'allocation de bande passante est bien respectée dans ce dataset.

7. Vers la Phase 2 – Unlearning

Les entrées marquées comme anomalies (latence, signal, ou bande passante) seront utilisées pour :

- Expérimenter des techniques d'unlearning, notamment :
 - Gradient Reversal
 - Federated Unlearning
 - Influence Functions
- Le fichier anomalies_detectees.csv sert de base pour ces tests.

8. Conclusion

Cette phase a permis de :

- Comprendre les données réseau 5G
- Définir des critères simples d'anomalie
- Créer un pipeline de détection robuste et automatisable

Prochaine étape : mise en œuvre de l'unlearning avec les données marquées comme anomalies.

Projet réalisé avec Python, Pandas, Matplotlib et Seaborn – Visual Studio Code – Mai 2025