- 1、函数 y = x|x| 2x 的严格减区间是_____【[-1,1]】 2、函数 $y = \frac{1}{r^2 + 2r - 4}$ 的严格增区间是______【 $\left(-\infty, -1 - \sqrt{5}\right)$ 和 $\left(-1 - \sqrt{5}, -1\right]$ 】 3、若 $y = x + \frac{a}{x}$ 是 $[2, +\infty)$ 上的严格增函数,则实数 a 的取值范围是_____【 $a \le 4$ 】 4、函数 $y = x + \frac{4}{x+3}$ $(x \in (-3,0])$ 的值域为______【[1,+∞]】 5、函数 $y = \frac{x+1}{x^2+8}$ 的值域为______【 $\left[-\frac{1}{8}, \frac{1}{4}\right]$ 】 6、已知函数 f(x) = x - 1 ($x \in [0, 4]$), 则函数 $y = f(x^2) + (f(x))^2$ 的值域为______ $\left[\left| -\frac{1}{2}, 4 \right| \right]$ 7、已知 $f(x) = \begin{cases} (a-5)x-2, x \ge 2, \\ x^2-2(a+1)x+3a, x < 2. \end{cases}$ 若函数 y = f(x) 在 **R** 上严格减,则实数 a 的取值 范围是_____【1≤a≤4】 8、设 $f(x) = \begin{cases} x^2 - 2ax, x \ge 1, \\ ax - 1, x < 1, \end{cases}$ 若函数 y = f(x) 是 **R** 上的增函数,则实数 a 的取值范围是 _____ [$0 \le a \le \frac{2}{3}$] 9、已知函数 $y = ax^2 + (2a-1)x - 3$ 在区间 $\left[-\frac{3}{2}, 2 \right]$ 上的最大值为 $-\frac{3}{2}$,则实数 a =______ $[0 ext{ od } \frac{7}{16}]$ 10、已知 $f(x) = -x^3 - x$,若 $f(t^2 + 2t + k) + f(-2t^2 + 2t - 5) > 0$ 对任意 $t \in [0, 5]$ 都成立,则 实数k的取值范围是_____【k < 1】 $\frac{\sqrt{5}+1}{2}$ 或 $-\frac{\sqrt{2}}{2}$ 】 **12**、已知集合 $A = [t, t+1] \cup [t+4, t+9]$, $0 \notin A$. 若存在 $\lambda > 0$, 使得对任意 $a \in A$, 都有 $\frac{\lambda}{a} \in A$, 则 *t* = _____【1 或 -3 】 13、若偶函数 y = f(x) 在区间 $[0, +\infty)$ 内严格增且 f(-2) = 1,则不等式 f(x-1) < 1 的解集 为 (A)
- A. (-1,3) B. $(-3,0) \cup (1,+\infty)$ C. $(-\infty,-1) \cup (0,3)$ D. $(-\infty,-1) \cup (3,+\infty)$

14、若
$$f(x) = \frac{x\sqrt{4-x^2}}{x^2+4} + 2$$
 的最大值和最小值分别为 M 、 m ,则 $M+m=$ (D)

A. 0

B. 1

C. 2

D. 4

15、函数
$$y = \frac{(2x+|x|)^2+1}{x^2+10}$$
 (B)

A. 有最大值, 无最小值

B. 有最小值, 无最大值

C. 有最大值, 也有最小值

D. 无最大值, 也无最小值

16、设
$$y = f(x)$$
、 $y = g(x)$ 、 $y = h(x)$ 是定义域为 **R** 的三个函数,则 " $y = f(x) + g(x)$ 、

$$y = g(x) + h(x)$$
、 $y = h(x) + f(x)$ 均不是**R**上的增函数"是" $y = f(x)$ 、 $y = g(x)$ 、 $y = h(x)$

均不是R上的增函数"的(D)

A. 充分非必要条件

B. 必要非充分条件 C. 充要条件

D. 既非充分也非必要条件

17 、 (1) 证 : 对 任 意
$$x_1 < x_2$$
 , 因 $x_2 - x_1 > 0 \Rightarrow f(x_2 - x_1) > 0$, 故

$$f(x_2) = f(x_1) + f(x_2 - x_1) > f(x_1), \quad \text{if } = f(x_1) + f(x_2 - x_1) > f(x_1)$$

故由(1), y = f(x)是奇函数,且在R上严格增

因此
$$f(x^2+3)+f(4x)<0 \Leftrightarrow f(x^2+3)< f(-4x)$$
, 也即 $x^2+3<-4x$

解得 $x \in (-3, -1)$

18、(1) 证: 注意
$$t^2 = 2 + 2\sqrt{1 - x^2} \in [2, 4]$$
 且 $t \ge 0$, 故定义域为 $\left[\sqrt{2}, 2\right]$

同时,
$$\sqrt{1-x^2} = \frac{1}{2}t^2 - 1$$
, 故 $g(t) = \frac{1}{2}t^3 - \frac{3}{2}t^2$

$$\stackrel{\text{def}}{=} \sqrt{2} \le t_1 < t_2 \le 2 \text{ Hz}, \quad g(t_2) - g(t_1) = \frac{1}{2} (t_2 - t_1) (t_2^2 + t_2 t_1 + t_1^2 - 3t_2 - 3t_1)$$

将
$$t_2^2 - (3 - t_1)t_2 + (t_1^2 - 3t_1)$$
视为 t_2 的二次函数 $y = h(t_2)$,因为 $t_1 < t_2 \le 2$,所以

$$h(t_2) \le \max\{h(t_1), h(2)\} = \max\{3t_1^2 - 6t_1, t_1^2 - t_1 - 2\} < 0$$
,即 $y = g(t)$ 在 $\lceil \sqrt{2}, 2 \rceil$ 上严格减

(2) 解: 由(1),
$$f(x)_{\text{max}} = g(t)_{\text{max}} = g(\sqrt{2}) = \sqrt{2} - 3$$
, 当 $x = \pm 1$ 时取得最大值

而
$$f(x)_{\min} = g(t)_{\min} = g(2) = -2$$
, 当 $x = 0$ 时取得最小值

19、 (1) 由题意,此时
$$y = \begin{cases} \frac{30}{4+x}, 0 \le x < 6, \\ 12 - \frac{3}{2}x, 6 \le x \le 8, \end{cases}$$
 故 $y \ge 2$ 当且仅当 $0 \le x < 6$ 或 $6 \le x \le \frac{20}{3}$

答:有效治疗时长为 $\frac{20}{3}$ 小时

(2) 当 $0 \le x < 6$ 时, $y = \frac{20}{4+x} > 2$, $6 \le x \le 8$ 时第一次服用的药剂在血液中的含量为 8-x ,

而新增的药剂在血液中的含量为 $\frac{10m}{4+(x-6)}$, 故 $6 \le x \le 8$ 时血液中药剂的总含量为

$$g(x) = 8 - x + \frac{10m}{x - 2}$$

因为
$$6 \le x_1 < x_2 \le 8$$
 时, $g(x_2) - g(x_1) = (x_1 - x_2) \left(1 + \frac{10m}{(x_2 - 2)(x_1 - 2)}\right) < 0$,所以此时 $y = g(x)$ 严

格減,从而只需 $g(8) \ge 2$,解得 $m \ge \frac{6}{5}$

答: m 的最小值为 $\frac{6}{5}$

20、 (1) 此时
$$f(x) = \sqrt{|x+1|-1} - x$$
, 故 $|x+1|-1 \ge 0$, 解得 $x \ge 0$ 或 $x \le -2$

即: 定义域为(-∞,-2]∪[0,+∞)

(2) 由题意,此时
$$\sqrt{|ax+a|-a} = ax + a \ge 0$$
,故原方程等价于 $\sqrt{ax} = ax + a$

设 $t = \sqrt{ax} \ge 0$, 则关于t的方程 $t^2 - t + a = 0$ 有两个相异的非负实根

故由
$$a \neq 0$$
 知 $\begin{cases} a > 0, \\ \Delta = 1 - 4a > 0, \end{cases}$ 解得 $0 < a < \frac{1}{4}$

(3) 解不等式 $|x+a| \ge a$ 得: 当 $a \le 0$ 时, y = f(x) 的定义域为 **R**; 当 a > 0 时, y = f(x) 的定义域为 $(-\infty, -2a] \cup [0, +\infty)$

当
$$a \le 0$$
 时, $f(x) = \begin{cases} \sqrt{x-x}, x \ge -a, \\ \sqrt{-2a-x}-x, x < -a, \end{cases}$ 显然 $y = f(x)$ 在 $(-\infty, -a)$ 上严格减,故只需

$$y = \sqrt{x} - x$$
 在 $x \ge -a$ 时严格减,即 $x_2 > x_1 \ge -a$ 时 $(x_2 - x_1) \left(\frac{1}{\sqrt{x_2} + \sqrt{x_1}} - 1 \right) > 0$ 恒成立,解得

$$a \le -\frac{1}{4}$$

当
$$a > 0$$
 时, $f(x) = \begin{cases} \sqrt{x} - x, x \ge 0, \\ \sqrt{-2a - x} - x, x \le -2a, \end{cases}$ 显然 $y = f(x)$ 在 $[0, +\infty)$ 上不单调,故此时

y = f(x)不可能为单调函数

综上,
$$a \le -\frac{1}{4}$$

21、(1) 解:
$$g(x) = f(x) - f(x-1) = -\frac{1}{x^2 - x}$$
, 故 $g(x) = 4$ 当且仅当 $x = \frac{1}{2}$

(2) 解:
$$h(x) = |f(x+a) - f(x)| = |2ax + a^2|$$
, 故 $f(x) \ge h(x)$ 等价于 $x^2 \ge |2ax + a^2|$

因为
$$a > 0$$
, 所以 $\left| 2ax + a^2 \right| = \begin{cases} 2ax + a^2, x \ge -\frac{a}{2}, \\ -2ax - a^2, x < -\frac{a}{2}, \end{cases}$ 从而原不等式等价于不等式组

解得
$$x \in \left[-\frac{a}{2}, a - \sqrt{2}a\right] \cup \left[a + \sqrt{2}a, +\infty\right]$$
或 $x < -\frac{a}{2}$

以存在 $x_2 > x_1$, 其中 $x_2 \ge 0$, 使得 $f(x_2) \le f(x_1)$

综上,不等式的解集为 $\left(-\infty, a-\sqrt{2}a\right]\cup\left[a+\sqrt{2}a,+\infty\right)$

(3) 证: 用反证法, 假设 y = f(x) 在 R 上不严格增, 因为 y = f(x) 在 $(-\infty, 0)$ 上严格增, 所

下设 $t = x_2 - x_1$, 由题意, $h_1(x) = |u(x+t) - u(x)| = |(f(x+t) - f(x)) - (f(x) - f(x-t))|$

$$h_2(x) = v(x) - v(x-t) = |f(x+t) - f(x)| - |f(x) - f(x-t)|$$

若记
$$A = f(x+t) - f(x)$$
, $B = f(x) - f(x-t)$, 则 $|A - B| = |A| - |B|$, 这等价于
$$\begin{cases} AB \ge 0, \\ |A| \ge |B| \end{cases}$$

取
$$x = x_1$$
, 则 $A = f(x_2) - f(x_1) \le 0$

若 A=0 , 则 $|B| \le |A|=0$, 从而 B=0 , 并依此类推得 $f(x_1-kt)=f(x_1-(k-1)t)$ 对一切 $k \in \mathbb{N}$

成立, 当 $k > \frac{x_1}{t} + 1$ 时, 与y = f(x)在 $(-\infty, 0)$ 上严格增矛盾

若A<0,则 $B\leq0$,且当B=0时同上可得矛盾,故B<0

但此时同理可得 $f(x_1-kt) > f(x_1-(k-1)t)$ 对一切 $k \in \mathbb{N}$ 成立, 当 $k > \frac{x_1}{t} + 1$ 时, 又与 y = f(x)

在(-∞,0)上严格增矛盾

综上, y = f(x)在**R**上严格增