Computer Algorithm:

November 30, 2017

High-level overview and logic

A "good" computer algorithm does two things. (1) It decompose the larger problem into a nested (i.e. recursive) sequence of smaller problems (e.g. in this case, fixed point problem for an operator on a lower-dimensional vector space); and (2) each of these subproblems is guaranteed to have a solution. The purpose of (1) is that it makes it more clear how to update a guess. With a scalar problem this is often as simple as checking one inequality. The purpose of (2) is to make this procedure coherent. In general (1) is easy – even trivial – to accomplish: simply split up a large dimensional guess/verify/update into a series of guesses and verifications and updates. But to accomplish (1) while accomplishing (2) as well requires some economic logic, i.e. the inner problem is a partial equilibrium model given a guess in an outer problem.

- 1. Find L^F that satisfies the resource constraint on labor. To do this, need to guess L^F , then...
 - (a) Compute growth rate given L^f . To do this, need to guess growth rate g, then...
 - i. Compute (partial)-equilibrium given L^f, g . To do this, need to guess w(q, m, n), then... A. Compute Nash equilibrium given L^f, g and w(q, m, n).
 - ii. Then can check consistency: $w(q, m, n) + \nu W^{NC}(q, m, n) = \overline{w}$
 - (b) Then check consistency: $g = g^*$ where g^* is computed by simulating the model over time
- 2. Then check consistency: $L^F + L^I + L^{RD} = 1$.

Details

The details that are missing are the following:

- 1. Initial guesses for (indicated by subscript 0)
 - (a) L_0^F
 - (b) $g_0(L^F)$
 - (c) $w_0(q, m, n|q, L^F)$
- 2. Update rules (indicated by subscript 1):
 - (a)
 - (b) $w_1(q, m, n)$
 - (c) g_1
- 3. Guess L^f
 - (a) Guess q
 - i. Guess w(q, m, n)

¹Conjecture: pure strategy NE exists and is unique. Reasoning:

- A. Compute Nash Equilibrium of innovation race game between incumbent firms and entrant firms, assuming they can hire exactly what workers they want at exogenous wage w(q, m, n).
- B. Involves initial guesses of $z_E(q, m, n)$, $F^*(q, n)$ and/or $z_I(q, m, n)$.
- C. Outputs policy functions $z_E(q, m, n) = \xi \min(m, F^*(q, n))$ and $z_I(q, m, n)$, as well as value functions $A(q, m, n), W^{NC}(q, m, n), W^F(q, m, n)$.