Slido: #ADA2020

CSIE 2136 Algorithm Design and Analysis, Fall 2020

Amortized Analysis

Hsu-Chun Hsiao

Agenda

- Why amortized analysis (均攤分析)
- Aggregate method (聚集方法)
- △ Accounting method (記帳方法) or banker's method
- Potential method (位能方法) or physicist's method

Operations on data structure

- A data structure comes with operations that organize the stored data
- Some operations may be slower than others
- P The cost of the same operation may vary
- Example: stack supports Push, Pop, Multipop

Worst case analysis may be loose

Cost of stack operations push (S, x) = O(1)pop (S) = O(1)multipop $(S, k) = O(\min\{|S|, k\})$

Worst-case time of the $n^{\rm th}$ operation = multipop(S,n) = O(n)

=> Worst-case time of a sequence of n operations = $O(n^2)$

However, this worst-case bound is not tight because this expensive multipop operation can't occur so frequently!

Goal of Amortized analysis

- Obtain an accurate worst-case bound in executing a sequence of operations on a given data structure
- An upper bound for ANY valid sequence of n operations

All of the valid operation sequences on stack when n=3:

```
push, push, pop
push, push, multipop(1)
push, push, multipop(2)
push, pop, push
push, multipop(1), push
```

Types of running-time analysis

Worst case	Running time guarantee for any input of size n
Average case	Expected running time for a random input of size n
Probabilistic	Expected running time of a randomized algorithm
Amortized	Worst-case running time for a sequence of <i>n</i> operations

Amortized analysis: 3 common techniques

Aggregate method (聚集方法)

- Determine an upper bound on the cost over any sequence of n operations, T(n)
- The average cost per operation is then T(n)/n
- All operations have the same amortized cost

Accounting method (記帳方法)

- Each operation is assigned an amortized cost (may differ from the actual cost)
- Each object of the data structure is associated with a credit
- Need to ensure that every object has sufficient credit at any time

Potential method (位能方法)

- Similar to accounting method; each operation is assigned an amortized cost
- The data structure as a whole maintains a credit (i.e., potential)
- Need to ensure that the potential level is nonnegative at any time

Note: these are for analysis purpose only, not for implementation!

Example #1: stack

Implemented using an array or linked list:


```
MULTIPOP(S,k):
    while not STACK-EMPTY(S) and k > 0
        POP(S)
        k = k - 1
```

Operation type	Cost
Push(S,x)	0(1)
Pop(S)	0(1)
Multipop(S, k): pop top k elements at once	$O(\min\{ S ,k\})$

Example #2: k-bit counter

- Counts up from 0 by single operation, INCREMENT
- Implemented using a k-bit array
- P Cost of INCREMENT is O(k) in the worst case

```
0 0 0 0 0 INCREMENT
0 0 0 0 1 INCREMENT
0 0 0 1 0 INCREMENT
0 0 0 1 1 INCREMENT
0 0 0 0 1 1 INCREMENT
```

```
INCREMENT(A):
    i = 0
    while i < A.length and A[i] == 1
        A[i] = 0
        i = i + 1

if i < A.length
        A[i] = 1</pre>
```

More examples

- Redundant ternary counter
- Dynamic binary search
- Queue as two stacks

Aggregate Method (聚集方法)

Chapter 17.1

Aggregate method

Idea: 直接觀察 n 次操作的總花費的上限

Approach:

- 1. Determine an upper bound T(n) on the cost of any sequence of n operations
- 2. Calculate the amortized cost per operation as T(n)/n
 - All operations have the same amortized cost

Aggregate method for stack

Observation: # popped elements ≤ # of pushed elements

- 出來的不可能比進去的多
- Provided For a sequence of n operations, maximum # of push is n
- \triangleright => Total cost for entire sequence is O(n)
- ρ => Amortized cost per operation is O(n)/n = O(1)

Aggregate method for k-bit counter

Counter value	A[3]	A[2]	A[1]	A[0]	Total cost of first n operations
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11
8	1	0	0	0	15

Flip every increment Flip every 2 increments Flip every 4 increments Tlip every 8 increments

Aggregate method for k-bit counter

Observation: Total # of bit flips in n increment operations $= n + n/2 + n/4 + \dots + n/2^k$ < 2n

- ρ => total cost of the sequence is O(n)
- ρ => Amortized cost per operation is O(n)/n = O(1)

Accounting Method (記帳方法)

Chapter 17.2

Accounting method: Idea

- 每個操作指定一個均攤費用 (amortized cost)
- o 若個別操作的均攤費用合理,則算出n個操作的均攤費用
 - Q: 要怎麼知道個別操作的均攤費用是合理的?
- 檢查個別操作的均攤費用是否合理:
 - p 假設每個 object 有個小金庫,確認小金庫在任何情況下都不會透支。
 - 針對此 object 做操作時:
 - 若實際費用比均攤費用低,就存錢到小金庫,供未來實際費用較均攤費用高的操作使用。
 - 若實際費用比均攤費用高,從小金庫裡拿錢補貼。

Accounting method: Approach

- 1. Each operation is assigned an amortized cost
 - Let c_i and $\hat{c_i}$ be the actual and amortized costs of the i^{th} op, respectively
- 2. Validity check: Check if the per-op amortized costs are valid
 - Assume every object initially has credit = 0
 - P Check if it has sufficient credit (≥ 0) for any sequence of n ops
 - If amortized cost > actual cost $(\hat{c_i} > c_i)$, the difference becomes credit
 - If amortized cost < actual cost ($\hat{c_i} < c_i$), then withdraw stored credits
 - If the check fails, go back to Step 1
- 3. Calculate total amortized cost T(n) using individual ones

Accounting method

Validity check: Check if the per-op amortized costs are valid

- Assume every object initially has credit = 0
- P Check if it has sufficient credit (≥ 0) for any sequence of n ops
 - If amortized cost > actual cost ($\hat{c}_i > c_i$), the difference becomes credit
 - If amortized cost < actual cost ($\hat{c_i} < c_i$), then withdraw stored credits
- ⇒ For an object *j*, the overall amortized cost is an upper bound of the actual cost:

$$\sum_{op(i,j)=1}^{n} \widehat{c_i} \ge \sum_{op(i,j)=1}^{n} c_i$$

op(i,j) denotes whether the *i*-th op has effect on the *j*-th object

Accounting method

- ♪ 跟 aggregate method 的主要差別
 - Each type of operations can have a different amortized cost
 - Assign valid per-op amortized costs first and then compute T(n)

Accounting method for stack

1. Assign (guess) per-op amortized costs:

Operation	Actual cost	Amortized cost
push(S,x)	1	2 B B
pop(S)	1	0
multipop(S,k)	$min\{ S ,k\}$	0

存1元在x裡 從popped的領1元 從每個popped的領1元

Accounting method for stack

1. Assign (guess) per-op amortized costs:

Operation	Actual cost	Amortized cost		
push(S,x)	1	2 B B		
pop(S)	1	0		
multipop(S,k)	$min\{ S ,k\}$	0		

存1元在x裡 從popped的領1元 從每個popped的領1元

- 2. Show that for an object j, $\sum_{op(i,j)=1}^{n} \widehat{c_i} \ge \sum_{op(i,j)=1}^{n} c_i$
 - push: the pushed object is deposited \$1 credit
 - pop and multipop: use the credit stored with the popped element
 - There is always enough credit to pay for each operation

Accounting method for stack

1. Assign (guess) per-op amortized costs:

Operation	Actual cost	Amortized cost		
push(S,x)	1	2 B B		
pop(S)	1	0		
multipop(S,k)	$min\{ S ,k\}$	0		

存1元在x裡 從popped的領1元 從每個popped的領1元

- 2. Show that for an object j, $\sum_{op(i,j)=1}^{n} \widehat{c_i} \ge \sum_{op(i,j)=1}^{n} c_i$
 - push: the pushed object is deposited \$1 credit
 - pop and multipop: use the credit stored with the popped element
 - P There is always enough credit to pay for each operation
- 3. Per-op amortized costs are all O(1), total amortized cost is T(n) = O(n)

1. Assign (guess) per-op amortized costs:

Operation	Actual cost	Amortized cost
INCRENET	# of bits flipped	\$2 for setting a bit to 1
bit 0 -> 1	1	\$2
bit 1 -> 0	1	\$0 用掉存在bit 1的1元

1. Assign (guess) per-op amortized costs:

Operation	Actual cost	Amortized cost
INCRENET	# of bits flipped	\$2 for setting a bit to 1
bit 0 -> 1	1	\$2
bit 1 -> 0	1	\$0 用掉存在bit 1的1元

2. Validity check:

- 每次 INCRENET 都會把一個 0 設成 1,可能把很多 1 設成 0
- ▷ 可在第一個為1的 bit 存一元
- △ 把1設成0時,花掉存在這個 bit 的一元即可

1. Assign (guess) per-op amortized costs:

Operation	Actual cost	Amortized cost
INCRENET	# of bits flipped	\$2 for setting a bit to 1
bit 0 -> 1	1	\$2
bit 1 -> 0	1	\$0 用掉存在bit 1的1元

- 2. Validity check:
 - 每次 INCRENET 都會把一個 0 設成 1,可能把很多 1 設成 0
 - 可在第一個為1的 bit 存一元
 - △ 把1設成0時,花掉存在這個 bit 的一元即可
- 3. Per-op amortized cost is O(1) =>total amortized cost T(n) = O(n)

Counter value	A[3]	A[2]	A[1]	A[0]	Total cost	Total amortized cost
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	0		

Per-op amortized cost is $O(1) \Rightarrow$ total amortized cost T(n) = O(n)

Counter value	A[3]	A[2]	A[1]	A[0]	Total cost	Total amortized cost
0	0	0	0	0	0	0
1	0	0	0	1	1	2
2	0	0	1 📵	0	3	4
3	0	0	1 (3)	1 (3)	4	6
4	0	1 📵	0	0	7	8
5	0	1	0	1	8	10
6	0	1 (B)	18	0	10	12
7	0	1 (3)	1 (B)	1 📵	11	14
8	1 B	0	0	0	15	16

Per-op amortized cost is $O(1) \Rightarrow$ total amortized cost T(n) = O(n)

Potential Method (位能方法)

Chapter 17.3

Potential method: idea

- 選一個位能函數,將資料結構的狀態對應到一個位能值
 - 對資料結構的操作會改變其狀態,進而改變位能值
- 若位能函數合理,則算出個別操作的均攤費用,進而算出總均攤費用
 - o Q: 要怎麼知道位能函數是合理的?
- 檢查位能函數是否合理:
 - 假設資料結構本身有位能值,此位能值在任何情況都需≥0
 - 使用花費較低的操作時先儲存位能,供未來花費較高的操作使用
- 跟 accounting method 的差異:資料結構本身有 credit,而不是每個 object 都有 credit

Potential method: Approach

- Select a potential function Φ that takes the current data structure state
 as input and outputs a potential level
 - 1. Let D_i be the state of data structure after i^{th} operation
- 2. Validity check: check if the potential level is never lower than the initial value after any sequence of *n* operations
 - WLOG, check if $\Phi(D_0) = 0$; $\forall i = 1 ... n, \Phi(D_i) \ge 0$
 - If the check fails, go back to Step 1
- 3. Calculate the per-op amortized cost based on the potential function
- 4. Calculate total amortized cost based on individual ones

Potential function

- Potential function Φ maps a data structure state to a real number
 - ρ D_0 is the initial state of data structure
 - ρ D_i is the state of data structure after i^{th} operation
 - \circ c_i is the actual cost of i^{th} operation
 - \circ $\widehat{c_i}$ is the amortized cost of i^{th} operation, defined as $\widehat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1})$
- Based on the definition, we have

$$\sum_{i=1}^{n} \widehat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})) = \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

Potential function

$$\sum_{i=1}^{n} \widehat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1})) = \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0})$$

- $\sum_{i=1}^{n} \widehat{c_i}$ is the amortized cost
- $\sim \sum_{i=1}^{n} c_i$ is the actual cost
- - Property of the property of the actual cost is an upper bound on the actual cost.
- Pence, the validity check needs to verify the potential function satisfies
 - $\Phi(D_n) \ge \Phi(D_0)$

Potential method for stack

- 1. Define $\Phi(D_i)$ to be # of objects in the stack after the *i*-th op
- 2. Validity check:
 - $P \Phi(D_0) = 0$, because stack is initially empty
 - $P \Phi(D_i) \ge 0$, because # of objects in stack is always ≥ 0

 $\Phi(D_i)$: the # of objects in the stack after the i-th op

 c_i : the actual cost of the *i*-th op

 $\widehat{c_i}$: the amortized cost of the *i*-th op

- 3. Compute per-op amortized cost:
 - P For push (S, x): $\widehat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1}) = 1 + (|S| + 1) |S| = 2$
 - P For pop(S): $\hat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1}) = 1 + (|S| 1) |S| = 0$
 - For multipop (S, k): $\hat{c}_i = 0$
- 4. All operations have O(1) amortized cost, so total cost of n operations is O(n)

Q: justify why $\hat{c}_i = 0$ for multipop (S, k)

Potential method for k-bit counter

- 1. Define $\Phi(D_i)$ to be # of 1's in the counter after the *i*-th op
- 2. Validity check:
 - $P \Phi(D_0) = 0$, because counter is initially all 0's

 $\Phi(D_i)$: the # of 1's in the counter after the i-th op

 c_i : the actual cost of the *i*-th op

 $\hat{c_i}$: the amortized cost of the *i*-th op

- 3. Compute the amortized cost of INCREMENT:
 - P Let $LSB_0(i)$ be the index of the least significant 0 bit of i
 - ho For example, $LSB_0(01011011) = 2$, and $LSB_0(01011111) = 5$
 - $\widehat{c_i} = c_i + \Phi(D_i) \Phi(D_{i-1})$ $= (LSB_0(i-1) + 1) + (\Phi(D_{i-1}) LSB_0(i-1) + 1) \Phi(D_{i-1}) = 2$
- 4. All operations have O(1) amortized cost, so the total cost of n operations is O(n)

Amortized analysis: 3 common techniques

Aggregate method (聚集方法)

- Determine an upper bound on the cost over any sequence of n operations, T(n)
- The average cost per operation is then T(n)/n
- All operations have the same amortized cost

Accounting method (記帳方法)

- Each operation is assigned an amortized cost (may differ from the actual cost)
- Each object of the data structure is associated with a credit
- Need to ensure that every object has sufficient credit at any time

Potential method (位能方法)

- Similar to accounting method; each operation is assigned an amortized cost
- The data structure as a whole maintains a credit (i.e., potential)
- Need to ensure that the potential level is nonnegative at any time

^{*}三種方法一般都能獲得相同的分析結果,可依個人偏好採用