Problemas geométricos que arrancan de la teoría clásica de funciones

Celia de Frutos Palacios

24 de marzo de 2018

Capítulo 1

Teorema de Fatou y Teorema de Carathéodory

1.1. Integral de Poisson y Teorema de Fatou

1.1.1. La Integral de Poisson

Definición 1.1.1. Se llama núcleo de Poisson a la función P definida por

$$P:(r,t)\in[0,1)\times\mathbb{R}\mapsto P_r(t)=\sum_{n=-\infty}^{\infty}r^{|n|}e^{int}$$

Si $z = re^{i\theta}$, con $r \in [0,1)$ y $\theta \in \mathbb{R}$, se tiene que

$$P_r(\theta - t) = \text{Re}\left[\frac{e^{it} + z}{e^{it} - z}\right] = \frac{1 - r^2}{1 - 2r\cos(\theta - t) + r^2}$$

Propiedades de la integral de Poisson:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(t)dt = 1, \forall r \in [0, 1)$$
(1.1)

$$P_r(t) > 0, \forall r \in [0, 1), t \in \mathbb{R}$$

$$\tag{1.2}$$

$$P_r(t) = P_r(-t), \forall r \in [0, 1), t \in \mathbb{R}$$

$$\tag{1.3}$$

$$P_r(t) < P_r(\delta), 0 < \delta < |t| \le \pi \tag{1.4}$$

$$\lim_{r \to 1} P_r(\delta) = 0, \forall \delta \in (0, \pi]$$
(1.5)

Definición 1.1.2. Se llama integral de Poisson de una función $f \in L^p(\partial \mathbb{D})$ a la función F definida en \mathbb{D} dada por

$$F(re^{i\theta}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta - t) f(t) dt.$$

Algunas veces nos convendrá referirnos a ella como F = P[f].

1.1.2. Teorema de Fatou

Teorema 1.1.1 (Teorema de Fatou). Para toda función $f \in \mathcal{H}^{\infty}(\mathbb{D})$, existe una función $f^* \in L^{\infty}(\partial \mathbb{D})$ definida en casi todo punto tal que

$$f^*(e^{it}) = \lim_{r \to 1} f(re^{it}) \tag{1.6}$$

Se tiene la igualdad $||f||_{\infty} = ||f^*||_{\infty}$. Para todo $z \in U$, la fórmula integral de Cauchy

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f^*(\xi)}{\xi - z} d\xi \tag{1.7}$$

se satisface, donde γ es el círculo unidad positivamente orientado: $\gamma(t)=e^{it}, 0\leq t\leq 1$ 2π

Las funciones $f^* \in L^{\infty}(\partial \mathbb{D})$ que se obtienen mediante este procedimiento son precisamente aquellas que cumplen la siguiente relación

$$\frac{1}{2\pi i} \int_{-\pi}^{\pi} f^*(e^{it}) e^{-int} dt = 0, n = -1, -2, \dots$$
(1.8)

Demostración. La existencia de f^* se sigue de las observaciones anteriores.

Por 1.6, tenemos que $||f^*||_{\infty} \le ||f||_{\infty}$. Si $z \in U$ y |z| < r < 1, tomemos $\gamma_r(t) = re^{it}, 0 \le t \le 2\pi$. Entonces,

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f(\xi)}{\xi - z} d\xi = \frac{r}{2\pi} \int_{-\pi}^{\pi} \frac{f(re^{it})}{re^{it} - z} dt$$

Sea $\{r_n\}$ una sucesión tal que $r_n \to 1$. Por el teorema de la convergencia dominada de Lebesgue tenemos

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f^*(e^{it})}{1 - ze^{it}} dt \tag{1.9}$$

Por lo que ya hemos probado 1.7. Por el teorema de Cauchy, se sigue que

$$\int_{\gamma_r} f(\xi)\xi^n d\xi = 0, n = 0, 1, \dots$$

Pasando al límite tenemos que f^* cumple 1.8. Además, podemos convertir 1.9 en una integral de Poisson, si $z = re^{i\theta}$

$$f(z) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^*(e^{it}) \sum_{n=0}^{\infty} r^n e^{in(\theta-t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f^*(e^{it}) \sum_{n=-\infty}^{\infty} r^{|n|} e^{in(\theta-t)} dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(\theta-t) f^*(e^{it}) dt$$

De esto concluimos que $||f||_{\infty} \leq ||f^*||_{\infty}$, así que ambas normas coinciden.

1.2. Teorema de Carathéodory

Definición 1.2.1. Aplicación conforme Sean U y $V \subset \mathbb{C}^n$. Una aplicación $f: U \to V$ se llama conforme en un punto $u \in U$ si preserva la orientación y los ángulos entre curvas que pasan por u.

Proposición 1.2.0.1. Sea $U \subset \mathbb{C}$. Una aplicación $f: U \to \mathbb{C}$ es conforme en U si $(y solo si) f \in \mathcal{H}(U)$ y $f'(z) \neq 0 \forall z \in U$.

Demostración. (\Leftarrow) Supongamos que $f: U \to \mathbb{C}$ es holomorfa en U y $f'(z) \neq 0 \,\forall z \in U$. Sea $\gamma: [a,b] \to U$ una curva simple y sea $z=z(t)=x(t)+iy(t)=\gamma(t)$ la ecuación paramétrica de γ . Consideremos $w=(f\circ z)(t)$ holomorfa en U.

Ahora por la regla de la cadena w'(t) = f'(z(t))z'(t). Como el argumento es aditivo para la multiplicación de funciones, tenemos

$$\arg w'(t_0) = \arg f'(z(t_0)) + \arg z'(t_0)$$

f(z) rota el vector tangente a $\gamma(t_0)=z_0$ por el mismo ángulo (arg $f'(z_0)$), independientemente del camino γ .

Si nos fijamos en el módulo, obtenemos un resultado similar,

$$\lim_{z \to z_0} \frac{|f(z) - f(z_0)|}{|z - z_0|} = |f'(z_0)|$$

Así, f(z) cambia el módulo de la distancia entre los puntos por el mismo factor, independientemente de la dirección en la que nos aproximemos a z_0 .

Podemos escribir

$$w - w_0 = f(z) - f(z_0) = \frac{f(z) - f(z_0)}{z - z_0} (z - z_0)$$

Entonces

$$\arg(w - w_0) = \arg\left(\frac{f(z) - f(z_0)}{z - z_0}\right) + \arg(z - z_0)$$

Como $f'(z) \neq 0 \, \forall z \in U$, tomando límites tenemos

$$\phi = \lim_{z \to z_0} \arg(w - w_0) = \arg f'(z_0) + \theta$$

La aplicación f ha rotado el vector tangente a z_0 un ángulo dado por arg $f'(z_0)$. Sean dos curvas que pasan por z_0 con ángulos θ_1 y θ_2 con respecto al eje x. Entonces el ángulo entre sus imágenes en w_0 es

$$\phi_2 - \phi_1 = \theta_2 + \arg f'(z_0) - \theta_1 - \arg f'(z_0) = \theta_2 - \theta_1$$

Por lo tanto, f preserva la orientación y los ángulos entre curvas que pasan por $z,\,\forall z\in U.$

Teorema 1.2.1 (Teorema de Carathéodory). Sea φ una aplicación conforme del disco unidad $\overline{\mathbb{D}}$ en un dominio de Jordan Ω . Entonces φ tiene una extensión continua al disco cerrado $\overline{\mathbb{D}}$, y la extensión es inyectiva de $\overline{\mathbb{D}}$ en Ω .

Demostración. Vamos a suponer que Ω está acotado. Fijemos $\zeta \in \partial \mathbb{D}$. Primero vamos a probar que φ tiene una extensión continua en ζ . Sea $0 < \delta < 1$,

$$D(\zeta, \delta) = \{z : |z - \zeta| < \delta\}$$

y tomemos $\gamma_{\delta} = \mathbb{D} \cap \partial D(\zeta, \delta)$. Entonces $\varphi(\gamma_{\delta})$ es una curva de Jordan de longitud

$$L(\delta) = \int_{\gamma_{\delta}} |\varphi'(z)| \, ds$$

Por la desigualdad de Cauchy-Schwartz, tenemos

$$L^{2}(\delta) \le \pi \delta \int_{\gamma_{\delta}} |\varphi'(z)|^{2} ds$$

entonces para $\rho < 1$

$$\int_{0}^{\rho} \frac{L^{2}(\delta)}{\delta} d\delta \leq \pi \int \int_{\mathbb{D} \cap D(\zeta, \rho)} |\varphi'(z)|^{2} dx dy = \pi \operatorname{Area}(\varphi(\mathbb{D} \cap D(\zeta, \rho))) < \infty$$

Entonces, existe una sucesión $\{\delta_n\} \downarrow 0$ tal que $L(\delta_n) \to 0$. Cuando $L(\delta_n) < \infty$, la curva $\varphi(\gamma_{\delta_n})$ tiene extremos $\alpha_n, \beta_n \in \overline{\Omega}$ y ambos puntos deben estar en $\Gamma = \partial \Omega$. De hecho, si $\alpha_n \in \Omega$, entonces algún punto cerca de α_n tiene dos preimágenes distintas en \mathbb{D} y esto es imposible pues φ es inyectiva. Además,

$$|\alpha_n - \beta_n| \le L(\delta_n) \to 0 \tag{1.10}$$

Sea σ_n el subarco cerrado de Γ que tiene extremos α_n y β_n y con un diámetro menor. Entonces 1.10 implica que diam $(\sigma_n) \to 0$ porque Γ es homeomorfa al círculo. Por el teorema de la curva de Jordan, $\sigma_n \cup \varphi(\gamma_{\delta_n})$ divide al plano en dos regiones, y una de ellas, llamémosla U_n es acotada. Entonces $U_n \subset \Omega$ ya que $\mathbb{C}^* \setminus \overline{\Omega}$ es conexo por arcos. Como

$$\operatorname{diam}(\partial U_n) = \operatorname{diam}(\sigma_n \cup \varphi(\gamma_{\delta_n})) \to 0$$
, concluimos que $\operatorname{diam}(U_n) \to 0$. (1.11)

Tomamos $D_n = \mathbb{D} \cup \{z : |z - \zeta| < \delta_n\}$. Sabemos que para n suficientemente grande, $\varphi(D_n) = U_n$. Si no, por conexión tendríamos que $\varphi(\mathbb{D} \setminus \overline{D_n}) = U_n$ y

$$diam(U_n) \ge diam(\varphi(B(0, 1/2))) > 0$$

que contracide con 1.11. Entonces $\operatorname{diam}(\varphi(D_n)) \to 0$ y $\bigcap \overline{\varphi(D_n)}$ es un solo punto pues $\varphi(D_{n+1}) \subset \varphi(D_n)$. Esto significa que φ tiene una extensión continua en $\mathbb{D} \cap \{\zeta\}$. La extensión a todos estos puntos define una aplicación continua en $\overline{\mathbb{D}}$.

Denotemos ahora por φ a la extensión $\varphi: \overline{\mathbb{D}} \to \overline{\Omega}$. Como $\varphi(\mathbb{D}) = \Omega$, φ lleva $\overline{\mathbb{D}}$ en $\overline{\Omega}$. Para probar que φ es inyectiva, supongamos que $\varphi(\zeta_1) = \varphi(\zeta_2), \zeta_1 \neq \zeta_2$. El argumento utilizado para mostrar que $\alpha_n \in \Gamma$, también prueba que $\varphi(\partial \mathbb{D}) = \Gamma$, así que podemos suponer que $\zeta_j \in \partial \mathbb{D}, j = 1, 2$. La curva de Jordan

$$\{\varphi(r\zeta_1): 0 \le r \le 1\} \cup \{\varphi(r\zeta_2): 0 \le r \le 1\}$$

acota al dominio $W \subset \Omega$, luego $\varphi^{-1}(W)$ es una de las dos componentes de

$$\mathbb{D} \setminus (\{r\zeta_1 : 0 \le r \le 1\} \cup \{r\zeta_2 : 0 \le r \le 1\})$$

Pero como $\varphi(\partial \mathbb{D}) \subset \Gamma$,

$$\varphi(\partial \mathbb{D} \cap \partial \varphi^{-1}(W)) \subset \partial W \cap \partial \Omega = \{\varphi(\zeta_1)\}\$$

y φ es constante en un arco de $\partial \mathbb{D}$, se tiene que φ es constante y esta contradicción prueba que $\varphi(\zeta_1) \neq \varphi(\zeta_2)$.

Teorema 1.2.2. Sea C un camino simple, cerrado y continuamente diferenciable con interior D. Sea $f \in \mathcal{H}(C \cup D)$ una aplicación inyectiva en C. Entonces f es holomorfa e inyectiva en D.

Demostración. La aplicación w = f(z) lleva C en un camino simple, cerrado y continuamente diferenciable C'. Sea w_0 un punto arbitrario que no esté en C'. Entonces,

$$n = \frac{1}{2\pi i} \int_{C_+} \frac{f'(z)}{f(z) - w_0} dz = \frac{1}{2\pi i} \int_{C'} \frac{dw}{w - w_0}.$$

Ahora la última integral es cero si w_0 está fuera de C' y es ± 1 si w_0 está dentro de C'. Sin embargo, n no puede ser negativo pues la primera integral nos da el número de ceros de $f(z) - w_0$ dentro de C. Entonces, n = 1 si w_0 está dentro de C'.

Esto prueba que $f(z) = w_0$ tiene una sola solución si w_0 está dentro de C', que f(z) es holomorfa e inyectiva en D y lleva D en D' (el interior de C') y que la dirección positiva de C' se corresponde con la dirección positiva de C.

Apéndice A

Notación

 $\mathcal{H}(U)$: holomorfa en U

 $\mathcal{H}^{\infty}(U)$: holomorfa y acotada en U

D: disco unidad

 $\overline{\mathbb{D}}$: disco unidad cerrado $\partial \mathbb{D}$: borde del disco unidad

 $L^{\infty}(U)$: