

Data Collection and Preprocessing Phase

Date	15 March 2024
Team ID	SWTID1727180793
Project Title	SMS- Spam Detection Using NLP
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

Identifies data sources, assesses quality issues like missing values and duplicates, and implements resolution plans to ensure accurate and reliable analysis.

Section	Description				
		Dimension: 5171 rows × 4 columns			
		Unnamed: 0	label_num		
	count	5171.000000	5171.000000		
	mean	2585.000000	0.289886		
Data Overview	std	1492.883452	0.453753		
	min	0.000000	0.000000		
	25%	1292.500000	0.000000		
	50%	2585.000000	0.000000		
	75%	3877.500000	1.000000		
	max	5170.000000	1.000000		

Data Preprocessing Code Screenshots

Loading Data		<pre>#Load our dataset df = pd.read_csv("spam_ham_dataset.csv")</pre>						
		<pre>#top 5 rows of the dataframes df.head()</pre>						
	Unnamed: 0		label	text	label_num			
	0	605	ham	Subject: enron methanol ; meter # : 988291\r\n	0			
	1	2349	ham	Subject: hpl nom for january 9 , 2001\r\n(see	0			
	2	3624	ham	Subject: neon retreat\r\nho ho ho , we ' re ar	0			
	3	4685	spam	Subject: photoshop , windows , office . cheap	1			
	4	2030	ham	Subject: re : indian springs\r\nthis deal is t	0			


```
# Download stopwords if necessary
                                               nltk.download('stopwords')
                                               # Initialize variables
                                               corpus = [] # List to store preprocessed text
                                               pe = PorterStemmer() # Initialize stemmer
                                               stopword = stopwords.words("english") # List of stopwords
                                               # Loop through all rows in the dataset for text preprocessing
                                               for i in range(len(df)):
                                                   # Remove non-alphanumeric characters
                                                   text = re.sub("[^a-zA-Z0-9]", " ", df["text"][i])
                                                   # Convert text to Lowercase
                                                   text = text.lower()
                                                   # Split the text into words
Feature Engineering
                                                  text = text.split()
                                                   # Apply stemming and remove stopwords
                                                   text = [pe.stem(word) for word in text if word not in set(stopword)]
                                                   # Join the words back into a single string
                                                   text = " ".join(text)
                                                   # Append the processed text to the corpus
                                                   corpus.append(text)
                                               # Convert the preprocessed text data into numerical features using TfidfVectorizer
                                               tfidf = TfidfVectorizer(max_features=35000) # Limit to top 35000 features
                                               X = tfidf.fit_transform(corpus).toarray() # Transform the corpus into a feature matrix
                                               # Extract dependent variable (target labels) from the dataset
                                               y = pd.get_dummies(df['label'])['spam'].values # Convert 'spam' and 'ham' labels to binary values
                                               import pickle ## Importing pickle for dumping models
                                               pickle.dump(cv, open('cv-transform.pkl', 'wb')) ## Saving into cv-transform.pkl file
Save Processed Data
                                                import pickle
                                                pickle.dump(model , open ("spam-sms-mnb-model.pkl" , "wb"))
```