

Supervised Learning: Classification

Dr Ioanna Stamatopoulou

All material in these lecture notes is based on our textbook: Aurélien Géron, *Hands-On Machine Learning with Scikit-Learn and TensorFlow*, 3rd ed., O'Reilly, 2022

Outline

- Classification Types
 - Binary Classification
 - Multiclass Classification
 - Multilabel Classification
 - Multioutput Classification (outside the scope of this module)
- Performance Measures
 - Accuracy
 - Confusion Matrices
 - Precision and Recall
 - o F₁ Score

Example Case Study

- Handwritten Digit classification
- The MNIST dataset The "Hello World" of ML
- 70,000 images
- Each image has 28 x 28 pixels = 784 features
- Each feature is a value between 0 (white) and 255 (black)
- Visit our textbook's Jupyter notebooks collection here: homl.info/colab3 and select 03_classification

The MNIST dataset

Plotting one digit

```
import matplotlib.pyplot as plt

def plot_digit(image_data):
    image = image_data.reshape(28, 28)
    plt.imshow(image, cmap="binary")
    plt.axis("off")

some_digit = X[0]
plot_digit(some_digit)
save_fig("some_digit_plot") # extra code
plt.show()
```


The MNIST dataset

Plotting an indicative number of digits

```
# extra code - this cell generates and saves Figure 3-2
plt.figure(figsize=(9, 9))
for idx, image_data in enumerate(X[:100]):
    plt.subplot(10, 10, idx + 1)
    plot_digit(image_data)
plt.subplots_adjust(wspace=0, hspace=0)
save_fig("more_digits_plot", tight_layout=False)
plt.show()
```

```
124327
604561
```

Binary Classification

- Binary classification is about identifying instances that belong to <u>one</u> target class ⇒ positive class
- In other words, the aim is to distinguish between two classes
 - An instance either belongs to the target class or it doesn't
 ⇒ negative class
- In relation to MNIST: identify one digit
 - o i.e. 5 and non-5

Performance Measure: Accuracy

- Accuracy measures the ratio (percentage) of correct predictions
- Evaluating the performance of such a classifier can be more challenging than evaluating a regressor!
 - If 10% of images are 5s and an algorithm classifies everything as a non-5, it will be correct 90% of the times!
- Accuracy is **not** the best performance measure for classifiers
 - Especially when dealing with skewed datasets, i.e. when some classes are more frequent than others, i.e. when your instances are far from equally distributed among the classes

Performance Measure: Confusion Matrix

- A Confusion Matrix counts how many times instances of a Class A are classified as Class B for all A-B pairs of classes
 - Rows represent the actual classes
 - Columns represent the predicted classes

 Assuming a perfect performance, only the main diagonal has non-zero values

Confusion Matrix

For the digit 5 of the MNIST dataset

```
from sklearn.metrics import confusion_matrix
cm = confusion matrix(y train 5, y train pred)
CM
array([[53892, 687],
      [ 1891, 3530]])
y_train_perfect_predictions = y_train 5 # pretend we reached perfection
confusion matrix(y train 5, y train perfect predictions)
array([[54579, 0],
      [ 0, 5421]])
```

Performance Measure: Confusion Matrix

Performance Measures: Confusion Matrix, Recall, Precision

Figure 3-2. An illustrated confusion matrix shows examples of true negatives (top left), false positives (top right), false negatives (lower left), and true positives (lower right)

Terminology

Accuracy

The ratio of correct predictions

Confusion Matrix

It counts how many times instances of a Class A are classified as Class B for all A-B pairs of classes i.e. all the true positive/negatives, and all the false positives/negatives

Precision

The accuracy of the positive predictions

$$precision = \frac{TP}{TP + FP}$$

Recall or Sensitivity or TPR (True Positive Rate)

The ratio of positive instances that are correctly detected

$$recall = \frac{TP}{TP + FN}$$

Terminology

F₁ score

The **harmonic mean** of **precision** and **recall**

- for a high F₁ score, both precision as well as recall have to be high
- It favours models that have similar precision and recall

$$F_{1} = \frac{2}{\frac{1}{\text{precision}} + \frac{1}{\text{recall}}} = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} = \frac{TP}{TP + \frac{FN + FP}{2}}$$

Performance Measures: The Precision/Recall trade-off

- Increasing precision reduces recall and vice-versa
 - If someone says, "Let's reach 99% precision," you should ask, "At what recall?"
- Classifiers typically calculate a score for each instance using a decision function
- If the score is higher than a threshold, the instance is classified in the positive class (otherwise to the negative)
- The trade-off depends on the value of the decision threshold

Performance Measures: The Precision/Recall trade-off

Figure 3-3. In this precision/recall trade-off, images are ranked by their classifier score, and those above the chosen decision threshold are considered positive; the higher the threshold, the lower the recall, but (in general) the higher the precision

Performance Measures: The Precision/Recall trade-off

Precision Recall F₁ Score

```
from sklearn.metrics import precision score, recall score
precision score(y train 5, y train pred) # == 3530 / (687 + 3530)
0.8370879772350012
# extra code - this cell also computes the precision: TP / (FP + TP)
cm[1, 1] / (cm[0, 1] + cm[1, 1])
0.8370879772350012
recall_score(y_train_5, y_train_pred) # == 3530 / (1891 + 3530)
0.6511713705958311
# extra code - this cell also computes the recall: TP / (FN + TP)
cm[1, 1] / (cm[1, 0] + cm[1, 1])
0.6511713705958311
from sklearn.metrics import f1 score
f1 score(y train 5, y train pred)
0.7325171197343846
# extra code - this cell also computes the f1 score
cm[1, 1] / (cm[1, 1] + (cm[1, 0] + cm[0, 1]) / 2)
0.7325171197343847
```

Multiclass Classification

- Multiclass (or multinomial) classifiers distinguish between more than two classes
- Some classifiers are natively multiclass
 - Logistic Regression, RandomForest
- while others are strictly binary
 - SGDClassifier and SVC (C-Support Vector)
- BUT there are strategies for using multiple binary classifiers to perform multiclass classification!

Multiclass Classification using Binary Classifiers

OvA (or OvR) Strategy

- Train as many Binary Classifiers as your classes
 - For the Handwritten Digits problem you need 10, one for each digit: a 0-detector, a 1-detector, ..., a 9-detector
- To classify one instance:
 - Get the decision score from each classifier
 - Select the class with the highest score
 - ⇒ one-versus-all (OvA)
 - ⇒ or one-versus-the-rest (OvR)

Multiclass Classification using Binary Classifiers

OvO Strategy

For **N** classes you need **N** x (**N** - 1) / 2 classifiers

- Train a Binary Classifier for every pair of classes
 - For the Handwritten Digits problem you need 45,
 - one to distinguish between 0s and 1s
 - one to distinguish between 0s and 2s, ...,
 - one to distinguish between 8s and 9s
- To classify one instance:
 - Select the class that wins more duels!
 - ⇒ one-versus-one (OvO)
- Advantage: each classifier is trained only on part of the Training Set

Multiclass Classification using Binary Classifiers

OvA versus OvO

OvA is generally preferred

- OvO is preferred in cases when an algorithm scales poorly with the size of the Training Set
 - e.g. Support Vector Machine classifiers
 - ⇒ Easier to train many classifiers on small sets rather than one/few classifiers on large sets

Multilabel Classification

- Multilabel classification is about identifying multiple classes for each instance
- The output of the classifier is an array of boolean tags
 - each position represents a particular class;
 - the value (true or false) whether the instance belongs to this class

Multilabel Classification

The MNIST dataset

Learning to identify whether:

- A number is greater or equal to7
- A number is odd

some_digit is a 5:

- Less than 7
- Odd

```
import numpy as np
from sklearn.neighbors import KNeighborsClassifier

y_train_large = (y_train >= '7')
y_train_odd = (y_train.astype('int8') % 2 == 1)
y_multilabel = np.c_[y_train_large, y_train_odd]

knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_multilabel)

K-nearest
Neighbors
supports
multilabel
```

```
knn_clf.predict([some_digit])
array([[False, True]])
```

classification

Multilabel Classification Performance Measure

F₁ Score

- Compute F₁ score per class and average the scores
- Even better: Weigh each score in the average depending on how many instances belonging to each class exist in the set

Multilabel Classification

Chain Classification

- You may wish to use a classifier that does <u>not</u> support multilabel classification:
- Organise the models in a chain:
- Each model in the chain uses
 - The input features of the instance, and
 - The predictions of all the models that come before it in the chain

Error Analysis using Confusion Matrices

Normalising the Confusion Matrix by Row (percentages instead of absolute instance numbers)

Normalising the **Error** by Row and Column (correct predictions are ignored)

Using Error Analysis Results

- After you identify the types of errors your model performs, you can:
 - Gather more training data for the particular classes
 - Engineer new features that could help the classifier
 - Preprocess your data
 - **⇒** Data Augmentation

Thank you!

Coming up next: Supervised Learning: Classification Models