

García Esteban, Sergio

19-febrero-2017

Tiempo dedicado (aproximado): 1,5 h

Resumen

Se trata de calcular disipación total, tiempo de simulación y coste según la información publicada en [1].

Cuestiones

- 1. ¿Cuántos micros caben en la superficie de la vitrocerámica? $38014,36 \ / \ 4410,9 = 8,618 \ -> 8 \ {\rm micros}$
- 2. ¿Cuánto disiparía el multiprocesador equivalente? $225 * 8 = 1800 \; \mathrm{W}$
- 3. Velocidad de pico del multiprocesador (FLOP/ciclo).

	Sin multiply/add	Con multiply/add
$\overline{\mathrm{SP}}$	16384	24576
DP	8192	12288

4. Tiempo simulaciones aerodinámicas del avión sin multiply/add, para los tres casos.

	Ala, estacionario	Ala, turbulento	Avión, turbulento
ciclos	1,22*10^14	1,22*10^16	1,22*10^19
t(s)	$5,4253*10^4$	$5,4253*10^6$	5,4253*10^9
t(h)	15,07	1507,03	1507037,03

5. Coste simulaciones, a 0,12 €/KWh.

	Ala, estacionario	Ala, turbulento	Avión, turbulento
€	3,25	325,52	325520

Referencias

[1] SODANI, Avinash, et al. "Knights landing: Second-Generation Intel Xeon Phi Product". IEEE Micro, 2016, vol. 36, no 2, p. 34-46.