Second and Highen Order in Perturbation Theory

In general, we need to compute metry elements of the fram

 $\langle f | T [\mathcal{H}(x_1) \dots \mathcal{H}(x_n)] | i \rangle$

We will moke use of Jule's Theorem.

Wisk's Theren tells us host to conject time- ordered gurducts of yearters.

Consider run scalar field questos

 $\phi(x) = \phi^{(+)}(x) + \phi^{(-)}(x)$

where

 $\phi^{(+)}(\chi) = \int \frac{d^3k}{(2\pi)^3} e^{-ik \cdot \chi} \hat{a}(k)$

 $\phi^{(-)}(x) = \int \frac{d^3k}{(2\pi)^3} e^{ik \cdot x} \hat{a}^{\dagger}(\vec{k})$

Lot xo > yo. Then

 $T[\phi(x)\phi(y)] = \phi(x)\phi(y)$

= [\(\psi^{(+)}(x) + \(\psi^{(-)}(x) \) [\(\psi^{(+)}(y) + \(\psi^{(-)}(y) \)]

$$= \phi^{(+)}(x) \phi^{(+)}(y) + \phi^{(+)}(x) \phi^{(-)}(y)$$

$$+ \phi^{(-)}(x) \phi^{(+)}(y) + \phi^{(+)}(x) \phi^{(-)}(y)$$

$$+ \phi^{(-)}(y) \phi^{(+)}(x)$$

$$+ \phi^{(-)}(y) \phi^{(+)}(x)$$

$$+ \phi^{(-)}(y) \phi^{(+)}(y) + \phi^{(-)}(y) \phi^{(-)}(y)$$

$$= \phi^{(+)}(x) \phi^{(+)}(y) + \phi^{(-)}(y) \phi^{(+)}(x)$$

$$+ \phi^{(-)}(x) \phi^{(+)}(y) + \phi^{(-)}(y) \phi^{(+)}(x)$$

$$+ \phi^{(-)}(x) \phi^{(+)}(y) + \phi^{(-)}(x) \phi^{(-)}(y)$$

$$+ [\phi^{(+)}(x), \phi^{(-)}(y)]$$

$$= \phi(x) \phi(y) : + [\phi^{(+)}(x), \phi^{(-)}(y)]$$

But

$$\left[\frac{1}{4} (x), \frac{1}{4} (y) \right] = \left[\frac{\sqrt{3}k}{(2\pi)^3} \frac{\sqrt{3}k'}{(2\pi)^3} \frac{\sqrt{3}k'$$

=
$$\int \frac{L^3k}{(2\pi)^3} \frac{d^3k}{(2\pi)^3} \frac{1}{\sqrt{z_E(\vec{k})}} \frac{1}{\sqrt{z_E(\vec{k}')}} e^{-ik\cdot \eta} e^{ik\cdot \eta} (ik\cdot \eta)$$

$$= \sqrt{\frac{d^3k}{(z_{11})^3}} \frac{1}{z_{11}} \frac{1}{z_{11}} e^{-ik\cdot(x-y)}$$

That is

 $T[\phi(x)\phi(y)] = :\phi(x)\phi(y): + b(x-y)$

For you's xo we get

 $T[\phi(x)\phi(y)] = :\phi(x)\phi(y):+b(y-x)$

All of this can be succently written

T[f(x)f(y)] = :f(x)f(y): +) = (x-y)

Now let's generalize this to 4 fields (to see how the gettern goes)

[d(x)d(x)d(x)d(x))] means D=(x,-x2)

= : \(\frac{1}{1}\)\delta_2(\frac{1}{2})\delta_3(\frac{1}{2})\delta_1(\f

+ \(\frac{1}{2}\phi_2(\pi_2)\phi_3(\pi_3)\phi_4(\pi_4) + \(\phi_1)\phi_2(\pi_2)\phi_3(\pi_3)\phi_4(\pi_4)

+ 4 (4) 92(2) 93(2) 9 (4) + ...

+ d(x) d(x2) d(x3) d(x4) + d(x) d(x2) d(x3) d(x4) + ...

=: \$ \$ \$ \$ \$: + \((x - x_2) : \d \d : + \(\) . . . + D(x-x) D(x-x) + D(x-x) D(x-x) + 1 (x - x) (x-x) When taking <0/T[q++3+]10> only the fully contacted terms survive in scalar Vulcare theory. It's conjute nucleon - nucleon scattering 0 44 -> 44 1i> = \(\frac{1}{2E(\frac{1}{2})}\)\(\frac{1}{2E(\frac{1}{2})}\)\(\frac{1}{2}(\frac{1}{2})\)\(\frac{1}{2}(\frac{1} \$(x), \$(y) 1f> = (zE(\$) (ZE(\$) & (\$ The first order that contributes to scattering is second order,

		Let's me Wik's Theorem to evaluate the time - ordered goodst.
		- [++(x)+(x)+(x)+(y)+(y)+(y)]
	5	: 4 t(x) + (x) + (y) + (y) + (y) + (y)
		4+(x) 4 (x) 4 (x) 4+(y) 4(y) 4(y) 4(y) 4(y) 4(y)
		4 (x) 4 (x) 4 (y) 4 (y) b (y) terms with 2 or 3 contractions of out here because they cannot
0	+	: 4 + (x) f(x) f(x) + (y) f(y) f(y): initial state with a 2- partial final state
(50)	+	N' (n-a) =4(x) d(x) 4 (n) d(n) = all 0 because there is not
	+	Find the initial of find state b (x-y): 4 + (x) \(d \((x) \) \((y) \) if (y):
	+	5 (x-y): 4 (x) +(x) + (y) + (y):
		St, we are left to conjuste
		(-ig) [14x d4] bt (x-y) < f1: 4 (x) 4(x) 4 (y) 4(y): 1i>
) j	

	Sa)
0	I and
3	4+(x)+(x)+(x)+(y)+(y)+(y)
+	4+(x) +(x) +(y) +(y) +(y) +(y)
+	4 ta) 4 (x) 4 (y) + (y) + (y) + (y) + (y)
+	4+(x)+(x)+(x)+(y)+(y)+(y): term that would contribute if the initial and final atote are 10>
	state are 10>

= (-15) dtxdty) (x-y) (ZE(=)) ZE(=) (ZE(=)) (ZE(=)) X) (211)3 (211) <01ê(q) (c(q)): [cikin st(q) + eikin â(k)] *[e'kz') &+ (k) + e'kz') 2 (k)] x[eik3.7 2+ (Te3) + eik3.7 & (Te3)] x[ei4,] at () + ei4,] + ()]: a() ()) ist (i) and ist (i) will annihilate to the left. They commute with $\hat{a}(\frac{1}{f_1})$ and $\hat{a}(\frac{1}{f_2})$. Then (0) a(\$) a(\$) & t(\$) = 0 and in turn (0 | a(q) a(q) b+ (1/2) = 0 Limberly is (to) and is (to) annihilate to the right and and commute with $\hat{a}(\vec{\xi})$ and $\hat{a}(\vec{\chi})$. Then b(h) a(x) a(x) 10>=0

and in turn

k(k) at(z) a(z) 10) =0

Therefore the only turn that survey in the wound-ordered

<0 | â(q) â(q) : â(k) â(k) â(k) â(k) â(k) â(q) â(q)

< 0 | â(\$) â(\$\frac{1}{2}) â(\$

<0 | â(\$\frac{1}{6}) â(\$\frac{

< 0 | â(\$\frac{1}{2}) â(\$\frac{1}{2}) â(\$\frac{1}{2}) â(\$\frac{1}{2}) â^{\frac{1}{2}}(\$\frac{1}{2}) â^{\frac{1}{2}}(\$\frac{1}{

70-6)

The end result is:

 $(2\pi)^{12} \left[5^{(3)} (\frac{1}{7} - \frac{1}{k_3}) 5^{(3)} (\frac{1}{7} - \frac{1}{k_4}) + 5^{(3)} (\frac{1}{7} - \frac{1}{k_4}) 5^{(3)} (\frac{1}{7} - \frac{1}{k_3}) \right]$

 $\times \left[S^{(3)} \left(\vec{r} - \vec{k} \right) S^{(3)} \left(\vec{r} - \vec{k} \right) + S^{(3)} \left(\vec{r} - \vec{k} \right) S^{(3)} \left(\vec{r} - \vec{k} \right) \right]$

Then, we have

1-ig)2 | dy dy dy (x-y) | ZE(3) | ZE(3) | ZE(3) | ZE(3)

x e-ik.x e-ikz.y eikz. J eikz. J

= <0 | a (=) + <0 | 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 3 (1) 3 (1) + <0 | 2+(1/2) 2(1/2) 2(1/2) 2(1/2) 2(1/2) 2(1/3) 2(+ <0 | â(1/2) â(1/2) â(1/2) â(1/2) 10) (211) \$ (1/3) (1/2) (211) \$ (1/2) = <0/2 () 2 + <0/2(1/2)2(1/2)2(1/2)2(1/2)2(1/3)3(3(1/2)3(3)21/3(1/2)3(3)21/3(1/2)3(3)21/3(1/2)3(3)21/3(1/2)3(3)21/3(1/2)3(3)21/3(1/2)3(3)21/3(1/2)3(1/2 = $\langle 0 | \hat{a}(\vec{k}) \hat{a}(\vec{x}) \hat{a}(\vec{k}) \hat{a}(\vec{k}) \hat{a}(\vec{k}) \hat{a}(\vec{x}) \hat$ + (0 | 2(12) 2 | (12) 10 > (211) 3 5 (13) (14 - 12) (211) 5 (14 - 12) (0 | 2 (\$\frac{1}{2},) 2 (\$\frac{1}{2},) 2 (\$\frac{1}{2},) 2 (\$\frac{1}{2},) 10 \rangle (\$\frac{1}{2},) 3 \rangle (\$\frac{1}{2}, -\frac{1}{2},) (\$\frac{1}{2}, -\frac{1}{2},) 2 (\$\frac{1}{2}, + <0 | â(1/2) â + (1/2) | 0>(211) (1/2-3) (211) \$ (1/2-1/3) (1/2-1/3) (1/2-1/3) + (0) 2+ (82) 2 (12) 10 > (211) 5 (12) 5 (12) 5 (12) 5 (12) 5 (12) 5 (12) 5 (12) $+ \frac{(2\pi)^{3}}{3} \left(\frac{1}{4} - \frac{1}{3} \right) \left(\frac{1}{2\pi} \right)^{3} \left(\frac{3}{4} - \frac{1}{7} \right) \left(\frac{2\pi}{4} \right)^{3} \left(\frac{3}{4} - \frac{1}{7} \right) \left(\frac{2\pi}{4} \right)^{3} \left(\frac{3}{4} - \frac{1}{7} \right)$ = <0 | 2+(\$\frac{1}{5}) 2(\$\frac{1}{5}) 0 > (\$\frac{1}{5}] \frac{1}{5} (\frac{1}{5} - \frac{1}{5}) \text{ | 211 | 5 (\frac{1}{5} - \frac{1}{5}) \text{ | 211 $+ (2 \pi)^{3} S^{(3)} (\overline{k}_{2} - \overline{k}_{2}) (2 \pi)^{3} S^{(3)} (\overline{k}_{3} - \overline{k}_{1}) (2 \pi)^{3} S^{(3)} (\overline{k}_{3} - \overline{k}_{1}) (2 \pi)^{3} S^{(3)} (\overline{k}_{3} - \overline{k}_{1})$ $+ (\overline{z_{1}})^{3} \zeta^{(3)} (\overline{k}_{2} - \overline{q}_{1}) (\overline{z_{11}})^{3} \zeta^{(3)} (\overline{k}_{2} - \overline{q}_{2}) (\overline{z_{11}})^{3} \zeta^{(3)} (\overline{k}_{2} - \overline{q}_{1}) (\overline{z_{11}})^{3} \zeta^{(3)} (\overline{k}_{2} - \overline{q}_{1}) (\overline{z_{11}})^{3} \zeta^{(3)} (\overline{k}_{2} - \overline{q}_{2})$ A x C = (2T) 3 (3) (1 - 1) A xD + (211)35(3) (12-1)35(3) (12-1)35(3) (12-1)35(3) (12-1)25(3) (12-1)25(3)

	< 0 \(\ha(\ha)\ha(\frac{1}{2})\ha(\frac{1}{2})\ha(\frac{1}{2})\ha(\frac{1}{2})\lo)(\frac{1}{21})^3\left\(\frac{1}{2}\hat{2}\right)^2\left\(\frac{1}{2}\hat{2}\right)^2\left\(\frac{1}{2}\hat{2}\right)^2\left\(\frac{1}{2}\hat{2}\hat{2}\right)^2\left\(\frac{1}{2}\hat{2}\hat{2}\hat{2}\right)^2\left\(\frac{1}{2}\hat{2}\hat{2}\hat{2}\hat{2}\hat{2}\right)^2\left\(\frac{1}{2}\hat{2}\h
+	(0 â(k) â (\$\frac{7}{2}) 0) (211) \$\frac{3}{2} (\frac{7}{2} - \frac{7}{2}) (\frac{7}{211}) \$\frac{3}{2} (\frac{7}{2} - \frac{7}{2}) (\frac{7}{211}) \$\frac{7}{2} (\frac{7}{2} - \frac{7}{2}) \right)
7	(0 2 (1) 2 (1) 2 (1) 2 (1) 2 (1) 5 (1 - 1) (2 1) 5 (1 - 1)
	(0 â(1/2) â + (3/2) 0 > (211) 3 5 (3) (1/2) 5 (1/2) 5 (1/2) 5 (1/2) 5 (1/2)
	$\langle 0 \hat{c}^{\dagger} (\vec{\gamma}_{2}) \hat{c} (\vec{k}) 0 \rangle (z_{11})^{3} S^{(3)} (\vec{k}_{2} - \vec{\gamma}_{2}) (z_{11})^{3} S^{(3)} ($
+	$ (\overline{z_{11}})^{3} \zeta^{(3)} (\overline{k} - \overline{\zeta_{2}}) $
=	< 0 2 + (2) 2 (10) (10
+	$(z_{11})^{3}$ $S^{(3)}(\bar{h} - \bar{\chi})(z_{11})^{3}$ $S^{(3)}(\bar{h} - \bar{\chi})(z_{11})^{3}$ $S^{(3)}(\bar{h} - \bar{\chi})(z_{11})^{3}$ $S^{(3)}(\bar{h} - \bar{\chi})(z_{11})^{3}$
	(211) 3 S(3) (1 - 52) (211) 3 S(3) (1 - 52) (211) 3 S(3) (1 - 71) (211) 3 S(3) (1 - 71)
@x (C) =	$(z_{11})^{3} S^{(3)}(\overline{k} - \overline{\zeta}^{2})(z_{11})^{3} S^{(3)}(\overline{k} - \overline{\chi}^{2})(z_{11})^{3} S^{(3)}(\overline{k} - \overline{\zeta}^{2})(z_{11})^{3} S^{(3)}(z_{11})^{3} S^{(3)}(z_{11})^{$
3 x 3 +	5 (3)
0	

+6-1(25-31). 16-1(26-25). 2 }

The last equality is due to the fact that

$$\sum_{F}^{4}(x-y)=\sum_{F}^{4}(y-x)$$

Insuting

we mad have

= ---

 $i(-ig)^{2}$ $\left\{ \frac{1}{(x_{1}-y_{1})^{2}-m^{2}} + \frac{1}{(x_{1}-y_{2})^{2}-m^{2}} \right\} (2\pi)^{4} S(x_{1}+x_{2}-y_{1}-y_{2})$ We can write from 2 Feynman Diograms associated with ξ_1 ξ_1 ξ_1 ξ_1 ξ_2 ξ_2 ξ_2 ξ_2 t-channel While Wisk's Therem belied in reducing the number of terms in our calculations of S-metric elements. The number of terms remained signable (imagine even higher orders in perturbation theory), Faynman Diegiams gliminate all of this intermediate work. Whis From our calculation of given decay and maleon - mucleon outlessing in scalar Valence through we see that the final result for the 5-metric element can be Thained from the Feynman diagram (2) for the interestion using the following rules: 1) For each vertex, assign a factor of -ig. 3) Soum over the graphs.

(a) Multiply by an overall factor (211) S(A) (Exi - Exi).