December 3, 2024 Announcements:
- HW10 will be posted today; due Dec 10th
- Final exam: December 12th 5:20-7:20pm in
TOMP 208 - cumulative - double-sided manufacture notes
- If taking at DSS, submit the request ASAP! - Course Evals are live!
Today's topic: Graph Isomorphisms
G=
$\sqrt{3}$ c
Definition: the simple graphs $G = (V,E)$ and
$G'=(V',E')$ are isomorphic if there exists a one-to-one and onto function $f:V \rightarrow V'$
such that $(u,v) \in E \iff (f(u),f(v)) \in E^1$
What is a one-to-one function?
$f(x) = f(y) \Rightarrow x = y$ x No two different inputs can be mapped to
(1) x to a same output
What is an onto function?
For every y, there exists an \times s.t. $f(x)=y$
* Every element in the output set input output (1'codomaun") is hit
(2) * For every y, there is at least one x
From (1) and (2), if a function is one-to-one
and onto , then for every y, there is exactly one x, meaning we have a one-to-one
correspondence between the input set and the elements of the output set
Key idea: Isomorphism is a mapping or relabeling
between graphs that have the same structure.
Ex 1
G=(V,E) H=(V',E') a
G and H are womorphic.
f: f(i) = b $G(i) = b$
$f(2) = \alpha$ $f(3) = c$ $\begin{pmatrix} 2 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$
input output $ (1,2) \in E $ $ (f(1), f(2)) \stackrel{?}{\in} E' (b,a) \in E' $
$(2,3) \in E$ $(f(2),f(3))=(\alpha,c) \in E'$
$= \int (u,v) \in E \iff (f(u),f(v)) \in E_1$ $= \int (u,v) \in E \iff (f(u),f(v)) \in E_1$
Fx 2.
G=(V,E) $H=(V',E')$
3 b
yes they are!
2 -> b 3 -> c
Y → d
What about? $1+a$ $f: 2 \rightarrow c$ $3 \rightarrow 6$
3 -> b 4 -> d
• f is one to one and onto V • $(u,v) \in E \iff (f(w),f(v)) \in E'$
E: {(1,2), (2,4), (4,3), (3,1)}
f J t':{(a,c), (4,d), (d,b), (b,a)}
$(u,v) \in E \iff (f(w),f(v)) \in E'$
Proofs
(i) Show that the inverse of an isomorphism
If f is an isomorphism (from G to G'), then
f-1 is an isomorphism (from G' to G).
· Be cause f is an isomorphism, it is one-to-one and onto. Therefore, it has an inverse, which
is also one-to-one and onto.
so the first part of the definition ()
· Now we need to show that;
$(x',y') \in E' \stackrel{(=)}{(f^{-1}(x))},f^{-1}(y')) \in E$
Because f is one-to-one onto: -> there exists a unique x s.t. $f(x) = x^1$
-> there exists a unique y s.t. f(y) = y'
$(\Rightarrow) t_{-l}(t(x)) = x = t_{-l}(x, y)$
$(=) f^{-1}(f(y)) = y = f^{-1}(y')$
Because f is an isomorphism $ (x,y) \in E (=) (f(x), f(y)) \in E^1 $
$(f^{-1}(x'),f^{-1}(y')\in E)$ $(x',y')\in E'$ \vee
So the second part of the def holds
=) the inverse of an isomorphism f:V +V'
is also an isomorphism.
Definition: A property P is called an invariant
for graph isomorphism iff given any simple
graphs G and G', if G has property P and G' is isomorphic to G, then G' must
also have that property
Some invariants
* # of vertices n
+ # of eages m
* degree of a node
(2) Show that the degree of a node is
invariant under isomorphism, that is, if f is an isomorphism from G to G', and
visan arbibrary node in Gothen
$\deg_{G}(v) = \deg_{G'}(f(v))$