令和4年度

卒業研究

TITLE

TITLE

大阪大学 工学部 応用理工学科 マテリアル生産科学科目 マテリアル科学コース 計算材料設計学領域 number name

目次

1	緒言	1
2	理論	2
3.1	結果 サブセクション	3
4	結言	5
5	謝辞	6
6	付録	7

1 緒言

2 理論 2

2 理論

文章中で数式を使いたい時には\$\$で囲む。A=B+C

$$\hat{\mathcal{H}}^{\text{QP}} = \frac{1}{2} \sum_{ij} |\psi_i^{\text{QP}}\rangle \left(\text{Re}\Sigma_{ij}(\varepsilon_i^{\text{QP}}) + \text{Re}\Sigma_{ij}(\varepsilon_j^{\text{QP}}) \right) \langle \psi_j^{\text{QP}} |$$
 (2.1)

3 結果 3

3 結果

3.1 サブセクション

図 3.1 α - $\mathrm{Al_2O_3:Cr^{3+}}$ の QSGW80 による電子状態

- (1) 物質依存のパラメータやモデルを必要としない計算手法であること
- (2) 半導体・絶縁体のバンドギャップを正確に再現すること
- (3) 母物質のバンドと 3d 不純物バンドの位置関係を正確に再現すること

3.1 サブセクション 4

3.1.1 サブサブセクション

表 3.1 希土類窒化物における最近接交換相互作用・Curie 温度の計算結果

REN	$J/k_{\mathrm{B}}[K]$	$T_{\mathrm{C}}[K]$	$T_{\mathrm{C,expt.}}[K]$
NdN	0.39	12	27.6
GdN	0.38	47	58, 72
TbN	0.16	16	40
DyN	0.13	9.0	17.6
HoN	0.11	5.2	12.8
ErN	0.45	13	6, 3.4

■パラグラフ

4 結言 5

4 結言

5 謝辞 6

5 謝辞

6 付録 7

6 付録

参考文献 8

参考文献

[1] L. Hedin. New method for calculating the one-particle Green's function with application to the electron-gas problem. *Phys. Rev.* **139**, A796 (1965).

- [2]
- [3]
- [4]