Banco de Dados

Normalização

Conteúdo

- Definição de Normalização.
- Primeira Forma Normal (1FN).
- Segunda Forma Normal (2FN).
- Terceira Forma Normal (3FN).

Normalização

A terminologia utilizada na normalização, envolve basicamente a teoria de conjuntos (que foi a base para concepção da teoria de normalização), o conceito de banco de dados relacional e a aplicação convencional em ambiente de processamento de dados.

Conjunto	Banco de Dados	Processamento de Dados
Relação	Tabela	Arquivo
Domínio	Possíveis valores para coluna	Possíveis valores para o campo
Tupla	Linha	Registro

Normalização

- Processo para avaliar e corrigir estruturas e tabelas de modo a minimizar as redundâncias de dados,
 reduzindo, assim, a probabilidade de anomalias (em inserção, exclusão ou atualização de dados).
- Atua por meio de uma série de estágios chamados formas normais onde os mais comuns são:
 - Primeira forma normal (1NF);
 - Segunda forma normal (2NF);
 - Terceira forma normal (3NF).
- Consiste da decomposição de esquemas para evitar anomalias nos dados.
- "Bom design" evita redundância de dados e anomalias de inserção, exclusão e atualização.

Normalização

- 3NF é melhor que 2NF, que, por sua vez, é melhor que 1NF.
- Para a maioria das finalidades dos projetos de bancos de dados comerciais, 3NF é o mais alto nível que se precisa chegar no processo de normalização.
- Não se deve assumir que o nível mais alto de normalização seja sempre o mais desejável.
- Mecanismo formal para analisar esquemas de relações baseado nas suas chaves e nas dependências funcionais entre seus atributos.
- Projeto conceitual bem estrutura resulta naturalmente em esquemas normalizados.

Desnormalização

- Desnormalização produz uma forma normal mais baixa.
- O preço a pagar pela melhora de desempenho decorrente da desnormalização é a maior redundância de dados.

Processo de Normalização

No processo de normalização deve-se chegar nas características descritas a seguir:

- Cada tabela representa um único assunto.
- Nenhum item de dados será armazenado desnecessariamente em mais de uma tabela.
- Todos os atributos não primários (atributos que não fazem parte da chave primária) de uma tabela são dependentes da chave primária.
- Todas as tabelas estão livres de anomalias de inserção, atualização e exclusão.

Processo de Normalização

- O objetivo da normalização é garantir que todas as tabelas estejam, pelo menos, na terceira forma normal (3NF).
- Formas normais de nível superior provavelmente não serão encontradas em um ambiente comercial.
- O processo de normalização trabalha em uma relação por vez.
- Ocorre progressiva separação da relação (tabela) em um conjunto de novas relações (tabelas) baseadas nas dependências identificadas

Primeira Forma Normal (1FN)

- Um entidade está na primeira forma normal quando nenhum de seus atributos (na estrutura) possuir repetições. Ou seja, se e somente se todos os seus atributos contiverem apenas valores atômicos (simples, indivisíveis).
- Isso quer dizer que os atributos são únicos (indivisíveis) ou que possuem apenas um valor por célula.
 Assim, é preciso verificar cada um dos atributos para identificar se este possui um único valor para cada ocorrência (registro) da entidade.
- O valor (conteúdo) do atributo (campo) pode, e normalmente é, ser diferente em cada ocorrência (registro)
 da entidade. Ou seja, é preciso evitar a ocorrência de mais de um atributo com a mesma característica em
 um mesmo registro.
- Faz parte da definição formal de uma relação (tabela).
- Estabelecida para não permitir atributos multivalorados, atributos compostos e suas combinações.

<u>CPF</u>	Nome	Sexo	Localizacao	Telefone
1234	Markus	M	Curitiba, PR, Brasil	555-222, 555-333
4321	João	M	Arapoti, PR, Brasil	111-222, 111-333
5678	Lidia	F	Florianópolis, SC, Brasil	444-555, 444-777
8765	Lucia	F	Uberlândia, MG, Brasil	222-333

Como pode-se perceber existem dados compostos (no campo Localizacao, por exemplo: Curitiba, PR, Brasil) e dados multivalorados (no campo Telefone, por exemplo: 555-222, 555-333). Neste caso, primeiro é preciso separar os dados compostos do campo (Localizacao) em 3 campos (Cidade, UF, Pais); segundo, por conta dos dados multivalorados do campo (Telefone), criar uma nova entidade (NumTelefone) e levar a chave primária (CPF) da entidade original para a nova entidade (NumTelefone) gerada. E para essa nova entidade criada, definir uma chave composta (concatenada), a saber: CPF e Telefone.

Conversão para a Primeira Forma Normal (1FN)

Pessoa

<u>CPF</u>	Nome	Sexo	Localizacao	Telefone
1234	Markus	M	Curitiba, PR, Brasil	555-222, 555-333
4321	João	M	Arapoti, PR, Brasil	111-222, 111-333
5678	Lidia	F	Florianópolis, SC, Brasil	444-555, 444-777
8765	Lucia	F	Uberlândia, MG, Brasil	222-333

Pessoa

<u>CPF</u>	Nome	Sexo	Cidade	UF	Pais
1234	Markus	M	Curitiba	PR	Brasil
4321	João	M	Arapoti	PR	Brasil
5678	Lidia	F	Florianópolis	SC	Brasil
8765	Lucia	F	Uberlândia	MG	Brasil

NumTelefone

<u>CPF</u>	<u>Telefone</u>
1234	555-222
1234	555-333
4321	111-222
4321	111-333
5678	444-555
5678	444-777
8765	222-333

Conversão para a Primeira Forma Normal (1FN)

CodCD	NomeCD	Grav	Preco	TotalTemp	Faixa	Musica	Autor	Tempo	
001	CD_A	RCA	20,00		01	MusicaA	X	3:00	
					02	MusicaB	X	3:10	
002	CD_B	EMI	18.00		01	MusicaC	Υ	3:05	
					02	MusicaD	Υ	3:00	

Como pode-se perceber existem diversos atributos que se repetem nesta tabela, a saber: Faixa, Autor e Tempo. Neste caso, é preciso separar a informação que se repete em um nova entidade e levar a chave primária da entidade original para a nova entidade gerada (senão, não será possível relacionar as informações das duas entidades).

Em seguida, é preciso criar uma nova chave para a nova entidade, para tanto, identifica-se um campo (atributo), que unido à chave da entidade original, formará uma chave composta (ou chave concatenada) na nova entidade. Caso não seja possível essa identificação, pode-se criar uma nova chave.

Conversão para a Primeira Forma Normal (1FN)

CD

CodC	NomeCD	Grav	Preco	TotalTemp	Faixa	Musica	Autor	Tempo	
001	CD_A	RCA	20,00		01	MusicaA	X	3:00	
					02	MusicaB	X	3:10	
002	CD_B	EMI	18.00		01	MusicaC	Υ	3:05	
					02	MusicaD	Υ	3:00	

CD

CodCD	NomeCD	Grav	Preco	TotalTemp
001	CD_A	RCA	20,00	
002	CD_B	EMI	18.00	

Item_CD

CodCD	<u>Faixa</u>	Musica	Autor	Tempo
001	01	Musica1	X	3:00
001	02	Musica2	X	3:10
002	01	Musica10	Υ	3:05
002	02	Musica20	Υ	3:00

Em uma tabela relacional, diz-se que uma coluna C2 depende funcionalmente de uma coluna C1 (ou que uma coluna C1 determina a coluna C2) quando, em todas as linhas da tabela, para cada valor de C1 que aparece na tabela, aparece o mesmo valor de C2.

A Dependência Funcional deve ser explicitamente definida por alguém que conheça a semântica dos atributos de uma relação.

É utilizada para identificar as chaves primárias de uma tabela.

Pessoa

CPF	Nome
1234	Markus
4321	João
5678	Lidia
8765	Lucia

Ao analisar o caso abaixo, identifica-se que para este domínio não se pode duplicar o CPF porque ele deve ser único.

Pessoa

CPF	Nome
1234	Markus
4321	João
5678	Lidia
8765	Lucia

Pessoa

Nome
Markus
João
Lidia
Lucia
Ana

Ao analisar o caso abaixo, identifica-se que para este domínio não se pode duplicar o CPF porque ele deve ser único. E nesta simulação temos a duplicidade do CPF: 8765.

Pessoa Pessoa **CPF** Nome **CPF** Nome Markus 1234 Markus 1234 João 4321 João 4321 5678 Lidia 5678 Lidia 8765 Lucia 8765 Lucia 8765 Ana

Ao analisar o caso abaixo, identifica-se que para este domínio não se pode duplicar o CPF porque ele deve ser único. E nesta simulação temos a duplicidade do CPF: 8765, ou seja, isso está errado.

Pessoa Pessoa **CPF** Nome **CPF** Nome 1234 Markus 4321 João 5678 Lidia 8765 Lucia 8765 Ana

Ao analisar o novo caso, identificamos que existem duas pessoas com o mesmo nome (homônimas), ou seja, são pessoas distintas com CPFs diferentes, porém com o mesmo nome, isso é permitido.

Pessoa

CPF	Nome
1234	Markus
4321	João
5678	Lidia
8765	Lucia

Pessoa

CPF	Nome
1234	Markus
4321	João
5678	Lidia
8765	Lucia
2244	Lidia

Ao analisar o novo caso, identificamos que existem duas pessoas com o mesmo nome (homônimas), ou seja, são pessoas distintas porém com o mesmo nome, isso é permitido. Então, podemos perceber que **CPF determina** nome (isso é dependência funcional), entretanto, **Nome** não determina **CPF** porque pode haver nomes iguais.

- Uma entidade (relação/tabela) está na 2FN quando todos os seus atributos não chave dependem unicamente da chave.
- Uma entidade (relação/tabela) encontra-se na 2FN se e somente se estiver na 1FN e não contiver dependências parciais, ou seja, para estar na 2FN não deve possuir atributo não-chave funcionalmente determinado por parte da chave primária.
 - Dependência Parcial: ocorre quando uma coluna depende apenas de uma parte da chave primária composta.
- Reforçando, uma entidade (relação/tabela) está em 2NF quando estiver na 1NF; não tiver dependências parciais; e nenhum atributo for dependente apenas de uma parte da chave primária (composta).

Este é um domínio definido para armazenar algumas informações de projeto e alocação de pessoas (empregados) em projetos.

CPF_Emp	Cod_Pj	Hrs_Trab	Nome_Emp	Nome_Pj	Local_Pj
1234	AMS-200	200	Markus	SistSem	MG
4321	UCM-300	300	João	SistAmz	RO
5678	ATO-400	220	Lidia	SistSoj	MG
1234	UCM-300	280	Markus	SistAmz	PR

Podemos identificar os campos (CPF_Emp e Cod_Pj) como chave. Ainda nesta tabela, percebemos que o campo (Hrs_Trab) depende da chave (CPF_Emp e Cod_Pj) completa.

CPF_Emp	Cod_Pj	Hrs_Trab	Nome_Emp	Nome_Pj	Local_Pj
1234	AMS-200	200	Markus	SistSem	MG
4321	UCM-300	300	João	SistAmz	RO
5678	ATO-400	220	Lidia	SistSoj	MG
1234	UCM-300	280	Markus	SistAmz	PR
		^			

Aqui identificamos o campo (Nome_Emp) sendo dependente parcial da chave, ou seja, o campo (Nome_Emp) depende única e exclusivamente do campo (CPF_Emp). Neste caso, atributo não chave (Nome_Emp) sendo determinado por parte da chave primaria (composta).

CPF_Emp	Cod_Pj	Hrs_Trab	Nome_Emp	Nome_Pj	Local_Pj
1234	AMS-200	200	Markus	SistSem	MG
4321	UCM-300	300	João	SistAmz	RO
5678	ATO-400	220	Lidia	SistSoj	MG
1234	UCM-300	280	Markus	SistAmz	PR
			†		

Nesta tabela identificamos mais duas dependências parciais (Nome_Pj e Local_Pj) que dependem somente de parte (Cod_Pj) da chave.

CPF_Emp	Cod_Pj	Hrs_Trab	Nome_Emp	Nome_Pj	Local_Pj
1234	AMS-200	200	Markus	SistSem	MG
4321	UCM-300	300	João	SistAmz	RO
5678	ATO-400	220	Lidia	SistSoj	MG
1234	UCM-300	280	Markus	SistAmz	PR
			†	†	

Para estar na 2FN os campos não chave deveriam depender exclusivamente da chave primaria (composta) assim como o campo (Hrs_Trab). Isso implica em alguns problemas no momento de inserção, exclusão e atualização dos dados no banco de dados.

CPF_Emp	Cod_Pj	Hrs_Trab	Nome_Emp	Nome_Pj	Local_Pj
1234	AMS-200	200	Markus	SistSem	MG
4321	UCM-300	300	João	SistAmz	RO
5678	ATO-400	220	Lidia	SistSoj	MG
1234	UCM-300	280	Markus	SistAmz	PR
			†	†	†

Inserção

Neste caso de inserção, podemos perceber que ao inserirmos um novo registro os campos (Nome_Pj) e (Local_Pj), para este caso, começam a ter dados duplicados, o que viola a 1FN. Ou seja, se incluirmos uma pessoa em um projeto que já existe, repetimos os dados do projeto, isso é uma redundância desnecessária.

CPF_Emp	Cod_Pj	Hrs_Trab	Nome_Emp	Nome_Pj	Local_Pj
1234	AMS-200	90	Markus	SistSem	MG
4321	UCM-300	300	João	SistAmz	RO
5678	ATO-400	220	Lidia	SistSoj	MG
1234	UCM-300	90	Markus	SistAmz	PR
2244	AMS-200	100	Carlos	SistSem	MG

Exclusão

Neste caso de exclusão, se excluirmos a "Lidia", os dados do projeto "SistSoj" também são excluídos. Isso é um problema de anomalia de exclusão dos dados ocasionado pela falta de normalização.

	CPF_Emp	Cod_Pj	Hrs_Trab	Nome_Emp	Nome_Pj	Local_Pj
	1234	AMS-200	90	Markus	SistSem	MG
	4321	UCM-300	300	João	SistAmz	RO
γ = ι ι	5678	ATO-400	220	Lidia	SistSoj	MG
_	1234	UCM-300	90	Markus	SistAmz	PR

Atualização

Na atualização, ao atualizarmos os dados do "SistAmz", por exemplo: o "Local_Pj, precisamos percorrer e atualizar todos os campos como podemos perceber na tabela abaixo. Isso também é um problema de anomalia, agora de atualização dos dados, ocasionado pela falta de normalização.

CPF_Emp	Cod_Pj	Hrs_Trab	Nome_Emp	Nome_Pj	Local_Pj	
1234	AMS-200	90	Markus	SistSem	MG	
4321	UCM-300	300	João	SistAmz	RO	
5678	ATO-400	220	Lidia	SistSoj	MG	
1234	UCM-300	90	Markus	SistAmz	RO	

Para resolver estes problemas precisamos normalizar esta tabela, identificando o campos que são determinados pela chave primária e derivando novas tabelas, e também definindo a integridade referencial entre estas novas tabelas.

CPF_Emp	<u>Cod_Pj</u>	Hrs_Trab	Nome_Emp	Nome_Pj	Local_Pj
1234	AMS-200	200	Markus	SistSem	MG
4321	UCM-300	300	João	SistAmz	RO
5678	ATO-400	220	Lidia	SistSoj	MG
1234	UCM-300	280	Markus	SistAmz	PR
		<u> </u>	†	†	†

Nome_Emp
Markus
João
Lidia

CPF_Emp	<u>Cod_Pj</u>	Hrs_Trab
1234	AMS-200	90
4321	UCM-300	300
5678	ATO-400	220
1234	UCM-300	90

Cod_Pj	Nome_Pj	Local_Pj
AMS-200	SistSem	MG
UCM-300	SistAmz	RO
ATO-400	SistSoj	MG

- Uma relação está em 3FN se e somente se estiver na 2FN e nenhum atributo não-primo (isto é, que não seja membro de uma chave) for **transitivamente dependente** da chave primária.
 - **Dependência Transitiva**: ocorre quando uma coluna, além de depender da chave primária de uma tabela, depende de outra coluna ou conjunto de colunas da tabela.
 - Uma relação para estar na 3FN não deve ter um atributo não-chave funcionalmente determinado por um outro atributo não-chave, ou seja, para uma tabela estar na 3FN deve estar na 2FN e não conter dependências transitivas.

Na tabela abaixo, podemos identificar que os campos que são determinados pela chave primária "CPF_Emp" são: Nome_Emp, Sexo_Emp e Cod_Dep.

CPF_Emp	Nome_Emp	Sexo_Emp	Cod_Dep	Nome_Dep	Ger_Dep
1234	Markus	M	1a	RH	Sheila
4321	João	M	2b	ADM	Tertuliano
5678	Lidia	F	3c	TI	Fabio
8765	Carlos	M	2b	ADM	Tertuliano

Neste caso, podemos identificar que os campos que são determinados pela chave primária "CPF_Emp" são:

Nome_Emp, Sexo_Emp e Cod_Dep. E o campo Nome_Dep não depende do campo CPF_Emp mas sim, do campo Cod_Dep

assim como o campo Ger_Dep. Ou seja, temos dois campos não chave (Nome_Dep e Ger_Dep) dependendo de outro campo

(Dep_Cod) não chave.

Então dizemos que **CPF_Emp** determina transitivamente **Dep_Nome** e **Dep_Ger**, porque **CPF_Emp** determina **Cod_Dep** e **CodDep** determina **Nome_Dep**.

CPF_Emp	Nome_Emp	Sexo_Emp	Cod_Dep	Nome_Dep	Ger_Dep
1234	Markus	M	1a	RH	Sheila
4321	João	M	2b	ADM	Tertuliano
5678	Lidia	F	3c	TI	Fabio
8765	Carlos	M	2b	ADM	Tertuliano

Anomalia na inserção

Neste caso de inserção podemos perceber, que ao inserirmos um novo registro, os campos (Nome_Dep) e (Ger_Dep), para este caso, começam a ter dados repetidos. Ou seja, se incluirmos uma pessoa em um departamento que já existe, repetimos os dados do departamento, isso é uma redundância desnecessária.

CPF_Emp	Nome_Emp	Sexo_Emp	Cod_Dep	Nome_Dep	Ger_Dep
1234	Markus	M	1a	RH	Sheila
4321	João	M	2b	ADM	Tertuliano
5678	Lidia	F	3c	TI	Fabio
8765	Carlos	M	2b	ADM	Tertuliano
2244	Paulo	M	3c	TI	Fabio

Anomalia na Exclusão

Neste caso de exclusão, se excluirmos a "Lidia", o departamento "TI" também será excluído. Isso é um problema de anomalia de exclusão.

CPF_Emp	Nome_Emp	Sexo_Emp	Cod_Dep	Nome_Dep	Ger_Dep
1234	Markus	M	1a	RH	Sheila
4321	João	M	2b	ADM	Tertuliano
5678	Lidia	F	3c	TI	Fabio
8765	Carlos	M	2b	ADM	Tertuliano

Anomalia na atualização

Na atualização, ao atualizarmos os dados do departamento "ADM", por exemplo: o "Ger_Dep", precisamos percorrer e atualizar todos os campos que tem o nome do departamento com "ADM", como podemos perceber na tabela abaixo. Isso também é um problema de anomalia dos dados, ocasionado pela falta de normalização.

CPF_Emp	Nome_Emp	Sexo_Emp	Cod_Dep	Nome_Dep	Ger_Dep
1234	Markus	M	1a	RH	Sheila
4321	João	M	2b	ADM	Tertuliano
5678	Lidia	F	3c	TI	Fabio
8765	Carlos	M	2b	ADM	Tertuliano

Para resolver estes problemas, precisamos normalizar esta tabela identificando o campos que são determinados pela chave primária e os que têm dependências transitivas, removendo-os para novas tabelas derivadas do domínio analisado, e também definindo a integridade referencial entre estas novas tabelas.

EmpregadoDepartamento

CPF_Emp	Nome_Emp	Sexo_Emp	Cod_Dep	Nome_Dep	Ger_Dep
1234	Markus	M	1a	RH	Sheila
4321	João	M	2b	ADM	Tertuliano
5678	Lidia	F	3c	TI	Fabio
8765	Carlos	M	2b	ADM	Tertuliano
			<u> </u>		

Empregado

CPF_Emp	Nome_Emp	Sexo_Emp	Cod_Dep
1234	Markus	М	1a
4321	João	M	2b
5678	Lidia	F	3c
8765	Carlos	M	2b

Departamento

Cod_Dep	Nome_Dep	Ger_Dep
1 a	RH	Sheila
2b	ADM	Tertuliano
3c	TI	Fabio

Sistema = Fiep =

FIEP SESI SENAI IEL

nosso i é de indústria.