Motivation

- Funktionen mit komplexen Argumenten und komplexen Werten untersuchen
- Analysis neu entwickeln

Neue Definitionen

- U ist ein ein Gebiet (U)
 - offen
 - zusammenhängend

• f: U-> ist stetig, wenn

Differenzierbarkeit in

- differenzierbar, wenn Grenzwert existiert
 - einmal differenzierbar ==> beliebig oft differenzierbar

• mehrere Möglichkeiten der Annäherung, da zweidimensional

(x, 2) - (x, 2) - (x - x) + (x - 2) - (x, 2) - (x, 2) - (x, 2) - (x, 2) + (x - 2) + (x

• Grenzwert

· Jacobi-Matrix

- Multiplikation führt zu Drehstreckung
 - * [[Spezielle Abbildungen]]
- Cauchy-Riemann-Gleichungen
 - seien u und v Real- und Imaginäranteil einer komplex differenzierbaren Funktion

- erfüllt Laplace/Potentialgleichung
- Gradient von v senkrecht auf Gradient von u
 - * Niveaulinien von u senkrecht auf Niveaulinien von v

- f ist holomorph <==> f in jedem Punkt von U komplex differenzierbar
 - auf ganz holomorph <==> ganz holomorph

Komplexe Differenzierbarkeit bekannter Funktionen

- Potenzfunktionen
 - holomorph

- somit sind auch Polynomfunktionen und Potenzreihen holomorph
- Potenzreihen

• Exponentialfunktionen

* nimmt jeden Wert (≠0) unendlich oft an

• Logarithmus

nicht auf ganz definiert

- Winkelfunktionen
- Beispiel

Rechenregeln für Ableitungen

• Rechenregeln bleiben erhalten

[[test/a.md/Analysis]] [[Komplexe Zahlen]]