Contents

l.	Linear Algebra	2
	1.1. Vector Spaces	
	1.2. Bases and Dimension	
	1.2 Linear Transformations	,

1. Linear Algebra

1.1. Vector Spaces

Let V be a set, whose elements are called **vectors**. A vector \underline{v} is denoted as $\underline{v} = (v_1, v_2, ..., v_n)$, where each v_i with $1 \le i \le n$ is called the i-th **component** of \underline{v} .

Let + be an operation on such set, a sum of vectors, that has two vectors as arguments and returns another vector. That is, foreach $(\underline{x}, y) \in V \times V$ there exists a vector $\underline{v} \in V$ such that $\underline{x} + y = \underline{v}$.

Let \cdot be another operation, a product between a vector and a real number, that has a real number and a vector as argument and returns another vector. That is, foreach $\lambda \in \mathbb{R}$ and $\underline{v} \in V$ there exists a vector $\underline{w} \in V$ such that $\lambda \cdot v = w$.

Suppose those operations possess the following properties:

- (V, +) is an Abelian group;
- The product has the distributive property, such that for every $\lambda \in \mathbb{R}$ and for every $\underline{x}, \underline{y} \in V$ it is true that $\lambda \cdot (\underline{x} + y) = \lambda \cdot \underline{x} + \lambda \cdot y$;
- The product has the associative property, such that for every $\lambda, \mu \in \mathbb{R}$ and for every $\underline{x} \in V$ it is true that $(\lambda + \mu) \cdot \underline{x} = \lambda \cdot \underline{x} + \mu \cdot \underline{x}$;
- For every vector $\underline{v} \in V$, it is true that $1 \cdot \underline{v} = \underline{v}$.

If that is the case, the set V is called **vector space**. It should be noted that it does not matter what the elements of a vector space actually are (be they numbers, functions, polynomals, etcetera); as long as the aforementioned properties hold for the two operations, such set shares all of the properties that a vector space possesses. For the sake of readability, the product between a real number and a vector is often represented without the dot. That is to say, the expressions $\lambda \cdot \underline{x}$ and $\lambda \underline{x}$ have the same meaning.

Exercise 1.1.1: Denote as \mathbb{R}^n the set containing all vectors of real components¹ in the n-dimensional plane. Prove that \mathbb{R}^n constitutes a vector space.

Solution: It is possible to define both a sum between two vectors in the n-dimensional plane and a product between a vector in the n-dimensional space and a real number. To sum two vectors in the n-dimensional space, it suffices to sum each component with each component. To multiply a vector in the n-dimensional space with a real number it suffices to multiply each component by that number:

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n \end{pmatrix} \qquad \qquad \lambda \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} \lambda v_1 \\ \lambda v_2 \\ \vdots \\ \lambda v_n \end{pmatrix}$$

Both operations obey the properties stated:

- $(\mathbb{R}^n, +)$ constitutes an Abelian group. Infact:
 - The sum has the associative property:

$$\begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n \end{pmatrix} + \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} = \begin{pmatrix} v_1 + w_1 + u_1 \\ v_2 + w_2 + u_2 \\ \vdots \\ v_n + w_n + u_n \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 + u_1 \\ w_2 + u_2 \\ \vdots \\ w_n + u_n \end{pmatrix}$$

• There exists an identity element, in the form of the vector whose components are all zero:

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} v_1 + 0 \\ v_2 + 0 \\ \vdots \\ v_n + 0 \end{pmatrix} = \begin{pmatrix} 0 + v_1 \\ 0 + v_2 \\ \vdots \\ 0 + v_n \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

¹This is a misnomer.

• Each vector in the n-dimensional space has an inverse element with respect to the sum, that is the same vector multiplied by -1:

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + (-1) \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} -v_1 \\ -v_2 \\ \vdots \\ -v_n \end{pmatrix} = \begin{pmatrix} v_1 + (-v_1) \\ v_2 + (-v_2) \\ \vdots \\ v_n + (-v_n) \end{pmatrix} = \begin{pmatrix} -v_1 + v_1 \\ -v_2 + v_2 \\ \vdots \\ -v_n + v_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

• The sum has the commutative property:

$$\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n \end{pmatrix} = \begin{pmatrix} w_1 + v_1 \\ w_2 + v_2 \\ \vdots \\ w_n + v_n \end{pmatrix} = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

• The product has the associative property:

$$(\lambda+\mu) \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} (\lambda+\mu)v_1 \\ (\lambda+\mu)v_2 \\ \vdots \\ (\lambda+\mu)v_n \end{pmatrix} = \begin{pmatrix} \lambda v_1 + \mu v_1 \\ \lambda v_2 + \mu v_2 \\ \vdots \\ \lambda v_n + \mu v_n \end{pmatrix} = \begin{pmatrix} \lambda v_1 \\ \lambda v_2 \\ \vdots \\ \lambda v_n \end{pmatrix} + \begin{pmatrix} \mu v_1 \\ \mu v_2 \\ \vdots \\ \mu v_n \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \mu \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

• The product has the distributive property:

$$\lambda \left(\begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix} \right) = \lambda \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \\ \vdots \\ v_n + w_n \end{pmatrix} = \begin{pmatrix} \lambda(v_1 + w_1) \\ \lambda(v_2 + w_2) \\ \vdots \\ \lambda(v_n + w_n) \end{pmatrix} = \begin{pmatrix} \lambda v_1 + \lambda w_1 \\ \lambda v_2 + \lambda w_2 \\ \vdots \\ \lambda v_n + \lambda w_n \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} + \lambda \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix}$$

• Multiplying a vector by the number 1 leaves the vector unchanged:

$$1 \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} 1v_1 \\ 1v_2 \\ \vdots \\ 1v_n \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

Exercise 1.1.2: Denote as \mathbb{P}_n the set containing all polynomials with real coefficients and degree less than or equal to n. Prove that \mathbb{P}_n constitutes a vector space.

Solution: It is possible to define both a sum between two polynomials with real coefficients and degree $\leq n$ and a product between a polynomial with real coefficients and degree $\leq n$ and a real number. To sum two such polynomials it suffices to sum the coefficients of their monomials having the same degree:

$$\left(a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0\right) + \left(b_m x^m + b_{m-1} x^{m-1} + \ldots + b_1 x + b_0\right) = \\ a_n x^n + a_{n-1} x^{n-1} + \ldots + (a_m + b_m) x^m + (a_{m-1} + b_{m-1}) x^{m-1} + \ldots + (a_1 + b_1) x + (a_0 + b_0)$$

To multiply a polynomial with real coefficients and degree $\leq n$ with a real number it suffices to multiply each coefficient of its monomials by such number:

$$\lambda \big(a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \big) = (\lambda a_n) x^n + (\lambda a_{n-1}) x^{n-1} + \ldots + (\lambda a_1) x + (\lambda a_0) x^{n-1} + \ldots + (\lambda a_n) x^{n-1} + \ldots + (\lambda$$

Both operations satisfy the properties required.

Given a vector space V, a set W is said to be a **subspace** of V if it's a subset of V and it's itself a vector space (with respect to the same operations defined for V).

Exercise 1.1.3: Consider the vector space \mathbb{R}^3 . Prove that the set W_1 is a subspace of \mathbb{R}^3 while W_2 is not.

$$W_1 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3, x_1 + x_2 = 0 \right\} \qquad W_2 = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} : \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3, x_2 = 2x_3 + 1 \right\}$$

Solution: The first set is a subspace of \mathbb{R}^3 because it is a subset of V and is algebraically closed:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_1 \\ x_3 \end{pmatrix} + \begin{pmatrix} y_1 \\ -y_1 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ -x_1 - y_1 \\ x_3 + y_3 \end{pmatrix} \Rightarrow x_2 + y_2 = -x_1 - y_1 \Rightarrow x_2 + y_2 + (x_1 + y_1) = 0$$

$$\lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \lambda \begin{pmatrix} x_1 \\ -x_1 \\ x_3 \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ -\lambda x_1 \\ \lambda x_3 \end{pmatrix} \Rightarrow \lambda x_2 = -\lambda x_1 \Rightarrow \lambda (x_1 + x_2) = 0$$

The second one, on the other hand, is not:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ 2x_3 + 1 \\ x_3 \end{pmatrix} + \begin{pmatrix} y_1 \\ 2y_3 + 1 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ 2x_3 + 2y_3 + 2 \\ x_3 + y_3 \end{pmatrix} \Rightarrow 2x_3 + 2y_3 + 2 \neq 2(x_3 + y_3) + 1$$

1.2. Bases and Dimension

Let $\{\underline{v_1},\underline{v_2},...,\underline{v_n}\}$ be a set of n vectors of a vector space V, and let $\lambda_1,\lambda_2,...,\lambda_n$ be n real numbers (not necessarely distinct). Every summation defined as such:

$$\sum_{i=1}^n \lambda_i \underline{v_i} = \lambda_1 \underline{v_1} + \lambda_2 \underline{v_2} + \ldots + \lambda_i \underline{v_i} + \ldots + \lambda_n \underline{v_n}$$

Is called a **linear combination** of the vectors $\left\{\underline{v_1},\underline{v_2},...,\underline{v_n}\right\}$, with $\lambda_1,\lambda_2,...,\lambda_n$ as **coefficients**. A set of vectors $\left\{\underline{v_1},\underline{v_2},...,\underline{v_n}\right\}$ is said to be **linearly independent** if the only linear combination of such vectors that equals the null vector is the one that has 0 as every coefficient. If there exists a linear combination of such vectors that is equal to the null vector and that has at least a non-zero coefficient, those vectors are said to be **linearly independent**.

Theorem 1.2.1: Let $\{\underline{v_1}, \underline{v_2}, ..., \underline{v_n}\}$ be a set of n vectors of a vector space V. If those vectors are linearly dependent, there exists at least one vector of such set that can be expressed as a linear combination of the remaining vectors, and vice versa.

Proof: If such set of vectors is linearly dependent, there must exist a linear combination of the set that equals the null vector, be it:

$$\sum_{i=1}^n \lambda_i \underline{v_i} = \lambda_1 \underline{v_1} + \lambda_2 \underline{v_2} + \ldots + \lambda_j \underline{v_j} + \ldots + \lambda_n \underline{v_n} = \underline{0}$$

Where there's at least a non-zero coefficient. Let's assume, without loss of generality, that the j-th coefficient is non-zero (whether such coefficient is the only one to be non-zero is irrelevant). The product of such coefficient with the corresponding vector can be moved to the right side of the equation like so:

$$\lambda_1\underline{v_1} + \lambda_2\underline{v_2} + \ldots + \lambda_n\underline{v_n} = -\lambda_j\underline{v_j}$$

Dividing both sides by $-\lambda_i$ gives:

$$-\frac{\lambda_1}{\lambda_j} \underline{v_1} - \frac{\lambda_2}{\lambda_j} \underline{v_2} - \ldots - \frac{\lambda_n}{\lambda_j} \underline{v_n} = \underline{v_j}$$

Each $-\frac{\lambda_i}{\lambda_j}$ is itself a real number, and therefore the expression above is a linear combination that is equal to a vector of the set.

On the other hand, assume that the j-th vector of the set is equal to a linear combination of the remaining vectors like so:

$$\lambda_1\underline{v_1}+\lambda_2\underline{v_2}+\ldots+\lambda_n\underline{v_n}=v_j$$

Moving \boldsymbol{v}_j to the left gives:

$$\lambda_1 v_1 + \lambda_2 v_2 + \ldots + (-1) v_j + \ldots + \lambda_n v_n = \underline{0}$$

Since -1 is a real number, the expression on the left side of the equation is indeed a linear combination of the whole set, that is equal to the null vector.

Exercise 1.2.1: Consider the vector space \mathbb{R}^2 . Check if the vectors $\underline{v_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\underline{v_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ are linearly independent or linearly dependent.

Solution: Consider such linear combination:

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

To test whether $\underline{v_1}$ and $\underline{v_2}$ are linearly dependent or independent, it suffices to solve this system of equations:

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} \lambda_1 \\ 0 \end{pmatrix} + \begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 2\lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} 2\lambda_1 = 0 \\ \lambda_2 = 0 \end{cases} \Rightarrow \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \end{cases}$$

Since the only solution to such system is $\lambda_1=0, \lambda_2=0, \underline{v_1}$ and $\underline{v_2}$ are linearly independent.

Exercise 1.2.2: Consider the vector space \mathbb{R}^2 . Check if the vectors $\underline{v_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\underline{v_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\underline{v_3} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ are linearly independent or linearly dependent.

Solution: Consider such linear combination:

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

To test whether $\underline{v_1}$, $\underline{v_2}$ and $\underline{v_3}$ are linearly dependent or independent, it suffices to solve this system of equations:

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \begin{cases} \lambda_1 + \lambda_2 + 2\lambda_3 = 0 \\ \lambda_2 = 0 \end{cases} \Rightarrow \begin{cases} \lambda_1 = -2\lambda_3 \\ \lambda_2 = 0 \end{cases}$$

Since there are infinite solutions to such system, including non-zero solutions, $\underline{v_1}$, $\underline{v_2}$ and $\underline{v_3}$ are linearly dependent. For example, setting $\lambda_1=1$ results in:

$$1\binom{1}{0} + 0\binom{1}{1} - \frac{1}{2}\binom{2}{0} = \binom{0}{0}$$

Which is, indeed, a correct identity.

A set of vectors $S = \left\{\underline{s_1},...,\underline{s_n}\right\}$ of a vector space V is said to **generate** V if every vector of V can be written as a linear combination of the vectors in S. That is to say, S generates V if for every $\underline{v} \in V$ there exist a set of coefficients $\lambda_1,...,\lambda_n$ such that:

$$\underline{v} = \sum_{i=1}^{n} \lambda_{i} \underline{s_{i}} = \lambda_{1} \underline{s_{1}} + \ldots + \lambda_{n} \underline{s_{n}}$$

Theorem 1.2.2: Let S be a set of vectors of a vector space V that can generate V. Let $\underline{w} \in V$ be a random vector of V. The set of vectors $S \cup \{w\}$ is linearly dependent.

Proof: If S can generate V and \underline{w} belongs to V, there exists a linear combination of the vectors in S such that:

$$\underline{w} = \sum_{i=1}^{n} \lambda_{i} \underline{s_{i}} = \lambda_{1} \underline{s_{1}} + \dots + \lambda_{n} \underline{s_{n}}$$

Moving \underline{w} to the right side of the equation gives:

$$\underline{0} = (-1)\underline{w} + \lambda_1 s_1 + \dots + \lambda_n s_n$$

The expression on the right side of the equation is indeed a linear combination of $S \cup \{\underline{w}\}$, that is equal to the null vector. Since at least -1 is a non zero coefficient, such set is linearly dependent.

A set of vectors that can generate a vector space and is itself linearly independent is called a **basis** for such vector space. The cardinality of a basis is called the **dimension** of the corresponding vector space.

Theorem 1.2.3: A basis of a vector space has the minimum cardinality out of every set of vectors that can generate it. In other words, if a basis of a vector space has cardinality n, at least n vectors are needed to generate such space.

Exercise 1.2.3: Consider the vector space \mathbb{P}_2 . Knowing that the sets $\mathcal{B}_1=\{1,x,x^2\}$ and $\mathcal{B}_2=\{(x+1),(x-1),x^2\}$ are both bases for \mathbb{P}_2 , write the polynomial $p(x)=3x^2+2x-5$ as a linear combination of each.

Solution: It's trivial to see that, for the first basis, such linear combination is p(x) itself:

$$\lambda_0 1 + \lambda_1 x + \lambda_2 x^2 = -5 + 2x + 3x^2 \Rightarrow \begin{cases} \lambda_0 = -5 \\ \lambda_1 = 2 \\ \lambda_2 = 3 \end{cases}$$

Regarding the second basis, it can be rewritten as:

$$\lambda_0(x+1) + \lambda_1(x-1) + \lambda_2 x^2 \Rightarrow \lambda_0 x + \lambda_0 + \lambda_1 x - \lambda_1 + \lambda_2 x^2 \Rightarrow (\lambda_0 - \lambda_1) + (\lambda_0 + \lambda_1) x + \lambda_2 x^2$$

Equating it term by term:

$$(\lambda_0 - \lambda_1) + (\lambda_0 + \lambda_1)x + \lambda_2 x^2 = -5 + 2x + 3x^2 \Rightarrow \begin{cases} \lambda_0 - \lambda_1 = -5 \\ \lambda_0 + \lambda_1 = 2 \\ \lambda_2 = 3 \end{cases} \Rightarrow \begin{cases} \lambda_0 = -\frac{3}{2} \\ \lambda_1 = \frac{7}{2} \\ \lambda_2 = 3 \end{cases}$$

Therefore:

$$3x^2 + 2x - 5 = -\frac{3}{2}(x+1) + \frac{7}{2}(x-1) + 3x^2$$

The basis of a vector space that renders calculations the most "comfortable" is called the **canonical basis** for such vector space. Such basis is different from vector space to vector space.

Exercise 1.2.4: Determine the dimension of \mathbb{R}^n

Solution: Consider any n-dimensional vector of coordinates $a_1, a_2, ..., a_n$. It's easy to see that such vector is equal to the following linear combination:

$$\begin{pmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{pmatrix} = a_1 \begin{pmatrix} 1 \\ 0 \\ \dots \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \\ \dots \\ 0 \end{pmatrix} + \dots + a_n \begin{pmatrix} 0 \\ 0 \\ \dots \\ 1 \end{pmatrix}$$

A set containing such vectors in linearly independent. Infact:

$$\lambda_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \lambda_2 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \lambda_n \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \Rightarrow \begin{cases} \lambda_1 + 0 + \ldots + 0 = 0 \\ 0 + \lambda_2 + \ldots + 0 = 0 \\ \vdots \\ 0 + 0 + \ldots + \lambda_n = 0 \end{cases} \Rightarrow \begin{cases} \lambda_1 = 0 \\ \lambda_2 = 0 \\ \vdots \\ \lambda_n = 0 \end{cases}$$

This set of vectors is linearly independent and can generate \mathbb{R}^n , therefore it's a basis for \mathbb{R}^n . The dimension of \mathbb{R}^n is then n, since such set has cardinality n. In particular, this specific basis is the canonical basis for \mathbb{R}^n .

Exercise 1.2.5: Determine the dimension of \mathbb{P}_n

Solution: Consider any polynomial of degree at most n having real coefficients:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

Each monomial of such polynomial are itself polynomials of degree at most n having real coefficients. Therefore, the polynomial itself can be seen as a linear combination of the polynomials $\{x^n, x^{n-1}, ..., x^1, x^0\}$ with coefficients $a_n, a_{n-1}, ..., a_1, a_0$.

Such set of vectors is linearly independent. Infact:

This set of vectors is linearly independent and can generate \mathbb{P}_n , therefore it's a basis for \mathbb{P}_n . The dimension of \mathbb{P}_n is then n+1, since such set has cardinality n+1. In particular, this specific basis is the canonical basis for \mathbb{P}_n .

1.3. Linear Transformations

A transformation $\phi: V \mapsto W$, with both V and W being vector spaces, is called a **linear transformation** if and only if:

$$\phi \left(v_1 + v_2 \right) = \phi \left(v_1 \right) + \phi \left(v_2 \right) \ \forall v_1, v_2 \in V \\ \hspace*{1.5cm} \phi (\lambda \underline{v}) = \lambda \phi (\underline{v}) \ \forall \underline{v} \in V, \lambda \in \mathbb{R}$$

In particular, if V=W, the transformation ϕ is said to be an **endomorphism**.

Exercise 1.3.1: Consider the vector space \mathbb{R} (that is, the set of real numbers). Check whether the transformations $\phi_1(x)=2x$ and $\phi_2(x)=x+1$ are linear or not.

Solution:

- The transformation $\phi_1(x)=2x$ is linear. Infact, given two real numbers a and b, is indeed true that 2(a+b)=2a+2b, since the product between real numbers has the distributive property. Similarly, given a real number a and a real number λ , it is true that $2(\lambda a)=2\lambda a$, since the product between real numbers has the associative property;
- The transformation $\phi_2(x)=x+1$ is not linear. Given two real numbers a and b, it results in $\phi_2(a+b)=(a+b)+1=a+b+1$, while $\phi_2(a)+\phi_2(b)=a+1+b+1=a+b+2$.

It can be shown that a linear transformation is equivalent to a manipulation of matrices.

Let $\phi: V \mapsto W$ be a linear transformation between two vector space V and W. Let $B = \{\underline{b_1}, ..., \underline{b_n}\}$ be a basis for V and $C = \{\underline{c_1}, ..., \underline{c_m}\}$ a basis for W. Each vector $\underline{x} \in V$ can be written as a linear combination of the vectors of B:

$$\underline{x} = \sum_{i=1}^{n} \lambda_i \underline{b_i}$$

Applying ϕ to \underline{x} gives:

$$\phi(\underline{x}) = \phi\left(\sum_{i=1}^{n} \lambda_{i} \underline{b_{i}}\right) = \sum_{i=1}^{n} \phi\left(\lambda_{i} \underline{b_{i}}\right) = \sum_{i=1}^{n} \lambda_{i} \phi\left(\underline{b_{i}}\right)$$

The two rightmost equalities stem from the fact that ϕ is linear.

Each $\phi(b_i)$ is a vector of W, since it's the result of applying ϕ to an vector of V. This means that each $\phi(b_i)$ can itself be written as a linear combination of elements of C:

$$\phi(b_i) = \sum_{j=1}^m \gamma_{j,i} c_j$$

Substituting it back in the previous expression gives:

$$\phi(\underline{x}) = \sum_{i=1}^{n} \lambda_i \left(\sum_{j=1}^{m} \gamma_{j,i} c_j \right) = \sum_{i,j=1}^{n,m} \lambda_i \gamma_{j,i} c_j$$

This means that, fixed a given basis B, to know all the relevant information regarding a vector \underline{x} of V it suffices to "store" the λ coefficients of its linear combination with respect to B in a (column) vector. In a similar fashion, to know all the relevant information of its image $\phi(\underline{x})$ it suffices to store the $\sum_{j=1}^m \lambda_i \gamma_{j,i}$ coefficients of its linear combination with respect to C in a (column) vector:

$$\underline{x} \Longleftrightarrow \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix} \qquad \qquad \phi(\underline{x}) \Longleftrightarrow \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}$$

Where, for clarity, each $\sum_{j=1}^m \lambda_i \gamma_{j,i}$ has been written simply as μ_i .

It is then possible to describe the application of the transformation ϕ as the following product of matrices:

$$\begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix} = \begin{pmatrix} \gamma_{1,1} & \gamma_{1,2} & \dots & \gamma_{1,n} \\ \gamma_{2,1} & \gamma_{2,2} & \dots & \gamma_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{m,1} & \gamma_{m,2} & \dots & \gamma_{m,n} \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$$

Exercise 1.3.2: Consider the linear application $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined below. Express it as a matrix multiplication with respect to the two bases \mathcal{B}_1 and \mathcal{B}_2 .

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x-z \\ y+z \end{pmatrix} \qquad \qquad \mathcal{B}_1 = \left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} \right\} \qquad \qquad \mathcal{B}_2 = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$$

Solution: The first step is to express the vectors of \mathcal{B}_1 for \mathbb{R}^3 evaluated in T as linear combinations of the vectors of \mathcal{B}_2 for \mathbb{R}^2 :

$$T \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \lambda_{1,1} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \lambda_{2,1} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad T \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \lambda_{1,2} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \lambda_{2,2} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \qquad T \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} = \lambda_{1,3} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \lambda_{2,3} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$