Network Data Analytics

Last Week Recap

Textual Data Analytics Application

- 1. Brand Reputation Monitoring
 - Social Media, Blogs, News sites
- 2. Advertising Performance Metrics
 - Social Media, Blogs

- · Social Media, Blogs, News
- 2. Call Center Analytics
 - · Call Center Transcripts
- 3. Competitive Analysis
 - · Communication, Surveys
- 4. Market Research
 - Surveys, Feedback

- 1. Prediction of Stocks
 - Financial News, Newspapers
- 2. Prediction of Election Results
 - Social Media
- 3. Movie Intake
 - Twitter

Last Week Recap

Characteristics of textual data:

- Unstructured
- Building blocks are words
 - Words are not independent
- Each text segment (e.g. sentence) encapsulates semantics behind

Syntactical Analysis: transform unstructured text to structured representation

Semantic Analysis

Last Week Recap: Syntactical Analysis

Transform a textual data into a multi-dimensional vector

Approaches:

- Feature Engineering: hand-craft the features (e.g. TF-IDF)
- > Representation learning: auto-learn the features (e.g. neural embedding)

Applications

- > Information retrieval: search relevant documents given a query
- Classification: categorize a text into a pre-defined label
 - e.g. spam email detection, Gmail tabbed categories
- **>** ..

Last Week Recap: Sentiment Analysis

- Computational study of opinions, sentiments, etc., expressed in text.
 - ➤ E.g. extract from text how people feel about different products (Reviews, blogs, discussions, news, comments, feedback, ...)
- Techniques:
 - Classification approach
 - > Lexicon approach

3803ICT course structure

W1. Introduction to Data Analytics

Data Preparation and Preprocessing

W2. Data Preparation and Preprocessing **W8**

Data Analysis and Interpretation

W3. Exploratory Data Analytics

W4. Statistical Data Analytics

W5. Predictive Data Analytics

Visualization

W6. Data Visualization

Analysis of special types of data

W7. Time Series

W8. Textual Data

W9. Graph Data

Analysis with big data infrastructure

W10. Distributed Data Analysis

W11. Cloud-based Data Analysis

W12. Revision

Many Data are Networks

Network Data Analytics

- I. Network Representation
- II. Centrality Analysis
- III. Community Analysis
- IV. Information Diffusion Analysis

I. Network Representation

A network is a graph, or a collection of points connected by lines

- ❖ Points are referred to as **nodes**, **actors** or **vertices**
 - Each node can have content (e.g. tweets in Twitter network)
- Connections are referred to as edges, links or ties
 - > Each edge can have a weight (e.g. similarity between two tweets)

$$V = \{v_1, v_2, \dots, v_n\}$$
 $E = \{e_1, e_2, \dots, e_m\}$
 $|V| = \mathbf{n}$ $|E| = \mathbf{m}$

Directed Edges and Directed Graphs

Edges can have directions. A directed edge is sometimes called an arc

- \Leftrightarrow Edges are represented using their end-points $e(v_2, v_1)$ or just (v_2, v_1)
- In undirected graphs the order does not matter

II. Centrality

- What is centrality?
 - Centrality defines how important an actor is within a network

- Why centrality? a measure of influence
 - ➤ The act or power of producing an effect without apparent exertion of force or direct exercise of command

Centrality: Definition

- ❖ Identify the central figures (influential individuals) in the network
 - Question: who is the most important?

Degree Centrality

- **Question:** who is the most important?
- ❖ Degree centrality (DC): ranks nodes with more connections higher in terms of centrality

$$C_d(v_i) = d_i$$

 \triangleright where d_i is the number of neighbors (count both incoming and outgoing edges)

Node	DC	Rank		
Α	4	2		
В	3	3		
С	5	1		
D	4	2		
Е	3	3		
F	4	2		
G	3	3		

❖ Shortcoming: having more friends does not guarantee that someone is more important?

Eigenvector Centrality

- Principle: Having more important friends provides a stronger signal
- **\Leftrightarrow** Eigenvector centrality $C_e(v_i)$:
 - We would like $C_e(v_i)$ to be higher when important neighbors (i.e. node v_j with high $C_e(v_i)$) point to v_i
 - → An iterative computation: stop upon convergence

$$C_e(v_i) = \frac{1}{\lambda} \sum_{j=1}^n A_{j,i} \times C_e(v_i)$$

- where λ is a normalization factor to avoid numerical overflow
- ❖ Shortcoming: In directed graphs, once a node has a high centrality, it passes all its centrality along all of its out-links.
 - ➤ This is not desirable: not everyone known by a well-known person is well-known
 - ➤ e.g. if you are referred by a well-known person who writes too many reference letters, then you are not too important

PageRank Centrality

Principle:

- > Divide the value of passed centrality by the number of outgoing links
- > Each connected neighbor only gets a fraction of the source node's centrality

$$C_p(v_i) = \frac{1}{\lambda} \sum_{j=1}^n A_{j,i} \times \frac{C_p(v_j)}{d_j^{out}}$$

• where λ is a normalization factor to avoid numerical overflow

PageRank Centrality (PC)

Example

Node	PC	Rank	
А	?	?	
В	?	?	
С	?	?	
D	?	?	
E	?	?	
F	?	?	
G	?	?	

Page Rank Centrality

Step	Α	В	C	D	E	F	G
1	0.143	0.143	0.143	0.143	0.143	0.143	0.143
2	0.071	0.048	0.190	0.167	0.190	0.119	0.214
3	0.024	0.063	0.238	0.147	0.190	0.087	0.250
4	0.032	0.079	0.258	0.131	0.155	0.111	0.234
5	0.040	0.086	0.245	0.152	0.142	0.126	0.210
6	0.043	0.082	0.224	0.158	0.165	0.125	0.204
7	0.041	0.075	0.219	0.151	0.172	0.115	0.228
8	0.037	0.073	0.241	0.144	0.165	0.110	0.230
9	0.036	0.080	0.242	0.148	0.157	0.117	0.220
10	0.040	0.081	0.232	0.151	0.160	0.121	0.215
11	0.040	0.077	0.228	0.151	0.165	0.118	0.220
12	0.039	0.076	0.234	0.148	0.165	0.115	0.223
13	0.038	0.078	0.236	0.148	0.161	0.116	0.222
14	0.039	0.079	0.235	0.149	0.161	0.118	0.219
15	0.039	0.078	0.232	0.150	0.162	0.118	0.220
Rank	7	6	1	4	3	5	2

Effect of PageRank

Other types of centrality (OPTIONAL)

- 1. Centrality in terms of those who you are connected to
 - e.g. degree centrality, eigenvector centrality, Pagerank centrality
- 2. Centrality in terms of how you connect others
 - > e.g. betweenness centrality

- 3. Centrality in terms of how fast you can reach others
 - > e.g. closeness centrality

Other types of centrality (OPTIONAL)

- 1. Centrality in terms of those who you are connected to
 - e.g. degree centrality, eigenvector centrality, Pagerank centrality
- 2. Centrality in terms of how you connect others
 - > e.g. betweenness centrality

- 3. Centrality in terms of how fast you can reach others
 - > e.g. closeness centrality

III. Community Analysis

[real-world] community

A group of individuals with common *economic*, *social*, or *political* interests or characteristics, often living in *relative proximity*

Why analyze communities?

Analyzing communities helps better understand users

Users form groups based on their interests

Groups provide a clear global view of user interactions

E.g., find polarization

Some behaviors are only observable in a group setting and not on an individual level

 Some republican can agree with some democrats, but their parties can disagree

Applications of Community Analysis

- Communities for Recommender Systems
 - group recommendation
 - Knowing individual ratings of A,B,C. What to recommend to the group?
- Communities for Digital Marketing
 - group-specific marketing (e.g., selling products for housewives)
- Communities for User Behavior Analytics
 - collective behavior (e.g., gossip)

Overlapping vs. Disjoint Communities

Overlapping Communities

Disjoint Communities

Community analysis

- The process of finding clusters of nodes
 - With Strong internal connections and
 - Weak connections between different communities
- Ideal decomposition of a large graph:
 - Completely disjoint communities
 - > There are no interactions between different communities.
- In practice,
 - find community partitions that are maximally decoupled.

Community Detection Algorithm

Most common subgraph searched for:

Clique: a maximum complete subgraph in which all nodes inside the subgraph are adjacent to each other

Find communities by searching for

- The maximum clique: the one with the largest number of vertices, or
- 2. All maximal cliques: cliques that are not subgraphs of a larger clique; i.e., cannot be further expanded

To overcome this, we can

- Use Brute Force
- Relax cliques
- Use cliques as the core for larger communities

Both problems are NP-hard

Clique Percolation Method (CPM)

Clique Percolation Method (CPM)

- Uses cliques as seeds to find larger communities
- CPM finds overlapping communities

❖ Input

 \triangleright A parameter k, and a network

Procedure

- 1. Find all cliques of size k in the given network
- 2. Construct a clique graph.
 - Two cliques are adjacent if they share k-1 nodes
- 3. Each connected component in the clique graph forms a community

Community Detection: Example

Cliques of size 3:

 $\{v_1, v_2, v_3\}, \{v_3, v_4, v_5\}, \{v_4, v_5, v_6\}, \{v_4, v_5, v_7\}, \{v_4, v_6, v_7\}, \{v_5, v_6, v_7\}, \{v_6, v_7, v_8\}, \{v_8, v_9, v_{10}\}$

Communities:

$$\begin{aligned} \{v_1, v_2, v_3\}, \\ \{v_8, v_9, v_{10}\}, \\ \{v_3, v_4, v_5, v_6, v_7, v_8\} \end{aligned}$$

Hierarchical Communities

- Previous methods consider communities at a single level
 - Communities may have hierarchies.
 - Each community can have sub/super communities.
 - ➤ Hierarchical clustering deals with this scenario and generates community hierarchies.

Girvan-Newman Algorithm

- Girvan-Newman Algorithm
 - \triangleright Initially n members are considered as 1 community in hierarchical clustering.
 - > Split communities by removing links that are important
 - An edge is important if it is a bridge
 - Remove that edge will disconnect the network into connected components
 - Repeat until there are no edges

Output:

Girvan-Newman Algorithm: Principle

- Remove the edges with highest betweenness value to form sub communities
- ❖ Edge betweenness: number of shortest paths between pairs of nodes that run along that edge

Girvan-Newman algorithm example

Betweenness(7,8)= 7x7 = 49

Betweenness(1,3) = 1X12=12

Betweenness(3,7)=betweenness(6,7)=betweenness(8,9) = betweenness(8,12)= 3X11=33

Example

Need to re-compute betweenness at every step

Step 1

Step 2

Step 3

Hierarchical network decomposition

Louvain algorithm (OPTIONAL)

Procedure:

- > Construct small communities by optimizing the modularity of the network
- Group small communities into one new community node
- Repeat until no new communities are formed
- Output: hierarchical structure with each level corresponding to each grouping step

Modularity – Community Quality

- We define now the modularity measure Q
 - A_{ii} = effective number of edges between nodes i and j
 - $ightharpoonup c_i$, c_i = communities of nodes i and j
 - > m = total number of edges
 - \triangleright k_i = number of outgoing edges of node i (degree)

Effective number of edges

Expected number of edges

$$Q = \frac{1}{2m} \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(c_i, c_j)$$

- Properties
 - > Q in [-1,1]
 - > 0.3-0.7 < Q means significant community structure

Louvain algorithm example

- Initial modularity: Q=0
- Start processing nodes in order

Processing Node 1

- 1. If joining node 1 to node 2:
 - \triangleright Old modularity: Q = 0
 - New modularity: $Q = \frac{1}{2 \times 7} \times \left(1 \frac{2 \times 2}{2 \times 7}\right) = \frac{1}{14} \times \frac{10}{14} > 0$
 - $ightharpoonup \Delta Q = \frac{1}{14} \times \frac{10}{14} (*)$
- 2. If joining node 1 to node 3:
 - \triangleright Old modularity: Q = 0
 - New modularity: $Q = \frac{1}{2 \times 7} \times \left(1 \frac{2 \times 3}{2 \times 7}\right) = \frac{1}{14} \times \frac{8}{14} > 0$
 - $ightharpoonup \Delta Q = \frac{1}{14} \times \frac{8}{14} (**)$

 \rightarrow joining node 1 to node 2 is better (* > **)

New modularity: $Q = \frac{1}{14} \times \frac{10}{14}$

- Processing Node 2:
 - 1. Joining node 2 to node 3 (leaving community of node {1,2})
 - Old modularity: $Q = \frac{1}{14} \times \frac{10}{14}$
 - New modularity: $Q = \frac{1}{2 \times 7} \times \left(1 \frac{2 \times 3}{2 \times 7}\right) = \frac{1}{14} \times \frac{8}{14}$
 - → No improvement
- Processing Node 3
 - 1. Joining node 3 to community {1,2} (via node 1 or 2):
 - Old modularity: $Q = \frac{1}{14} \times \frac{10}{14}$
 - New modularity $Q = \frac{1}{2 \times 7} \times \left(3 \frac{2 \times 2}{2 \times 7} \frac{2 \times 3}{2 \times 7} \frac{2 \times 3}{2 \times 7}\right) = \frac{1}{14} \times \frac{26}{14}$
 - 2. Joining node 3 to node 4:
 - Old modularity: $Q = \frac{1}{14} \times \frac{10}{14}$
 - New modularity $Q = \frac{1}{14} \times \frac{10}{14} + \frac{1}{2 \times 7} \times \left(1 \frac{3 \times 3}{2 \times 7}\right) = \frac{1}{14} \times \frac{15}{14}$
 - Option 1 is the best (highest modularity gain)

- Processing Node 4
 - 1. Joining node 4 with community {1,2,3} via 3

$$Q = \frac{1}{14} \times \left(4 - \frac{2 \times 2}{14} - \frac{2 \times 3}{14} - \frac{2 \times 3}{14} - \frac{3 \times 3}{14} - \frac{2 \times 3}{14} - \frac{2 \times 3}{14} \right) = \frac{1}{14} \times \frac{19}{14}$$

2. Joining node 4 with node 5

$$Q = \frac{1}{14} \times \frac{26}{14} + \frac{1}{2 \times 7} \times \left(1 - \frac{2 \times 3}{2 \times 7}\right) = \frac{1}{14} \times \frac{34}{14}$$

- → option 2 is better
- Finally, nodes 4,5,6 will join the second community

Repeat the procedure on the new merged nodes:

- **❖** m=1
- $Q = \frac{1}{2 \times 1} \left(1 \frac{1 \times 1}{2} \right) > 0$
- \rightarrow {1,2,3} will merge with {4,5,6}

IV. Information Diffusion

- Information diffusion: process by which a piece of information (knowledge) is spread and reaches individuals through interactions.
- Studied in a plethora of sciences.
- ❖ We discuss methods from
 - Sociology, epidemiology, and ethnography
 - > All are useful for social media mining.

https://www.youtube.com/watch?v=9QnfWhtujPA

Notable example

- ❖ Between 1996/1997,
 - Hotmail was one of the first internet businesses to become extremely successful utilizing viral marketing
 - ➤ By inserting the tagline "Get your free e-mail at Hotmail" at the bottom of every e-mail sent out by its users.
- ❖ Hotmail was able to sign up 12 million users in 18 months.
- By the time Hotmail reached 66 million users, the company was establishing
 270,000 new accounts each day.

Get your free Email at Hotmail

Information Diffusion Process

- Sender(s). A sender or a small set of senders that initiate the information diffusion process;
- Receiver(s). A receiver or a set of receivers that receive diffused information. Commonly, the set of receivers is much larger than the set of senders and can overlap with the set of senders; and
- Medium. This is the medium through which the diffusion takes place. For example, when a rumor is spreading, the medium can be the personal communication between individuals

Information Diffusion in Social Media

Users often repost content posted by others in the network.

Content is often received via immediate neighbors (friends).

Information propagates through friends

An information cascade: a piece of information/decision cascaded among some users, where

- individuals are connected by a network and
- individuals are only observing decisions of their immediate neighbors (friends).

Information Diffusion Model

- The network is a directed graph.
 - Nodes are actors
 - > Edges depict the communication channels between them.
- Nodes can be:
 - > Active: the node has adopted the behavior/innovation/decision/idea;
 - > Inactive: not active
- ❖ An activated node can activate its neighboring nodes; and
- Activation is a progressive process, where nodes change from inactive to active, but not vice versa

Influence Maximization

❖ The problem of finding a small set of nodes in a social network such that their aggregated spread in the network is maximized

Given

- A limited budget B for initial advertising
 - Example: give away free samples of product
- Estimated spread between individuals

Goal

- > To trigger a large spread
 - i.e., further adoptions of a product

Question

Which set of individuals should be targeted at the very beginning?

Influence Maximization: Example

- You are allowed to select k seeds
- A node is activated if $\ge 1/2$ of its neighbors is activate

Maximizing the Spread of Cascade

Problem Statement

- Influence of node set S: f(S)
 - ➤ An expected number of activated nodes at the end of the cascade, if set *S* is the initial active set

❖ Problem:

- \triangleright Given a parameter k (budget), find a k-node set S to maximize f(S)
- \triangleright A constrained optimization problem with f(S) as the objective function
- ❖ It is NP-hard to determine the optimum set for influence maximization

Greedy Algorithm

- ❖ We can use a greedy algorithm
 - Start with an empty set S
 - > For k iterations:
 - Add node v to S that maximizes $f(S \cup \{v\}) f(S)$.

Guarantee:

- \triangleright Theorem: the greedy algorithm provides a (1 1/e) approximation.
- ▶ I.e. The resulting set S activates at least $(1 1/e) \approx 63\%$ of the number of nodes that any size-k set S could activate

```
Algorithm 1 Maximizing the spread of cascades – Greedy algorithm

Require: Diffusion graph G(V, E), budget k

1: return Seed set S (set of initially activated nodes)

2: i = 0;

3: S = \{\};

4: while i \neq k do

5: v = \arg\max_{v \in V \setminus S} f(S \cup \{v\});

or equivalently \arg\max_{v \in V \setminus S} f(S \cup \{v\}) - f(S)

6: S = S \cup \{v\};

7: i = i + 1;

8: end while

9: Return S;
```

Summary

- I. Network Representation
 - > Directed or undirected graph
- II. Centrality Analysis
 - > Different types of centrality: degree, eigenvector, Pagerank
- III. Community Analysis
 - Clique Percolation Method: produces overlapping and single-level communities
 - Girvan-Newman algorithm: produces disjoint and hierarchical communities
- IV. Information Diffusion Analysis
 - ➤ A node can be influenced by its neighbors
 - Influence maximization is NP-hard

References

- [1] https://youtu.be/Qj2uWpYsdcM
- [2] R. Zafarani, M. A. Abbasi, and H. Liu, Social Media Mining: An Introduction, Cambridge University Press, 2014. Free book and slides at http://socialmediamining.info/
- [3] Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018
- [4] http://sociograph.blogspot.ch/2011/11/clique-percolation-in-few-lines-of.html
- [5] https://friendsarena.wordpress.com/category/uncategorized/