Can ARIMA predict Currency Exchange Rates?

Euro to US Dollar

by Maren Beckman

Contents

- Inspiration
- Data
- Time Series Analysis
- Parameters
- Models
- Measuring Success
- Conclusion
- Appendix

Inspiration

"4 Ways to Forecast Exchange Rates" by Joseph Nguyen from investopedia.com

- No method has proven more successful
- Purchasing Power Parity the economist's choice, compares value of goods (McDonald's Big Mac)
- Relative Economic Strength supplements other methods with interest rate data
- Econometrics incorporated various data estimated to impact currency value

Inspiration

continued

- Time series uses only historical values to make predictions
- Most popular time series model is ARIMA
- This investigation focuses on ARIMA

What is ARIMA model?

The ARIMA model takes three parameters:

- "AR" for auto-regressive or how the data relates to its prior values
- "I" for integrated or the level of differencing required to make the data stationary
- "MA" for moving average or how the data trends

DataSource

- Dataset collected from US Federal Reserve Exchange Rates at https://www.federalreserve.gov/data.htm
- Euros to US Dollars
- Euro introduced in January 2002
- Data through August 2018

Exploration

	count	mean	std	min	25%	50%	75%	max
Rate	4189	1.25222	0.141234	0.8594	1.1534	1.2684	1.3494	1.601

Exploration Continued

Euro value burn-in?

The lowest values are in the first year as the Euro gains confidence against US currency.

Exploration Continued

- 2002 values are inconsistent with the rest of the data
- We'll drop the first year of data to get a more established value of the exchange rate

Exploration Continued

2003-2018

- Mean of 1.27
- Range from 1.04 to 1.60
- No outliers, we have normal distribution

Time Series Analysis

- Final data
- Euro is more valuable than Dollar
- Euro ranges from \$1.04 to \$1.60 (in 2008)

Analysis

Stationarity

- ARIMA needs stationary data
- Take the difference of each data point from the prior value
- Visualization of the results of one degree of differencing

• Two degree of differencing was also done

Stationarity Dickey Fuller Test

	Statistic	p-Value
Original Data	-2.403107	0.140861
First Difference	-62.348214	0.00000
Second Difference	-18.877696	0.00000

- Negative statistic indicates strength of stationarity
- Small p-value indicates significance of statistic
- First difference lowest statistic and smallest p-value

This confirms that the first difference best establishes stationarity.

Analysis

Seasonality

Exchange Rate Vs. Day of the Year

Analysis

Seasonality continued

- No visible patterns the records criss cross each other with no repetition - no seasonality
- Non-seasonal ARIMA model will best suit the data.

Model Preparation

70/30 Training/Test

	Count	Start	End	Minimum	Maximum	Median
Training	2756	Jan 2003	Dec 2013	\$1.04	\$1.60	\$1.31
Test	1182	Dec 2013	Aug 2018	\$1.04	\$1.39	\$1.18

Model Preparation

70/30 Training/Test

	Count	Start	End	Minimum	Maximum	Median
Training	2756	Jan 2003	Dec 2013	\$1.04	\$1.60	\$1.31
Test	1182	Dec 2013	Aug 2018	\$1.04	\$1.39	\$1.18

Stronger Dollar value in test set

ARIMA Model

Estimating Parameters

ARIMA parameters to identify:

- Auto-Regressive ('AR') AutoCorrelation Function (ACF) exploring correlations with prior values
- Integrated ('I') Stationarity
- Moving Average ('MA') Partial AutoCorrelation Function (PACF) - exploring isolated correlations between individual values

ACF and **PACF**

- Differenced data shows no correlation
- No clear AR parameter value

ACF and **PACF**

- Differenced data shows no correlation
- No clear AR parameter value

- Differenced data PACF shows no correlation
- No clear MA parameter value

ARIMA Model

Testing Parameters - Auto Arima Grid Search

	order		AIC	BIC
(0,	1,	0)	-18441.104	-18429.261
(1,	1,	0)	-18439.164	-18421.401
(0,	1,	1)	-18439.166	-18421.402
3,	1,	2)	-18437.215	-18395.767
(4,	1,	2)	-18435.327	-18387.957
(4,	1,	3)	-18433.663	-18380.372
(1,	2,	1)	-18409.738	-18386.055
(0,	2,	1)	-18410.152	-18392.389
(1,	2,	2)	-18423.269	-18393.664
(2,	2,	2)	-18414.372	-18378.848
(1,	2,	3)	-18404.859	-18369.334
(2,	2,	3)	-18399.697	-18358.251

AIC and BIC metrics balancing complexity with data explanation

Each model tested captures the data with similar accuracy and parsimony.

Model Training & Prediction

Testing model efficacy

Train four models using different parameters:

• (0, 1, 0)

• (3, 1, 2)

• (0, 1, 1)

• (1, 2, 2)

Out of Sample Forecasting

Predicting values for the test range and comparing those results to the actual values.

ARIMA (0,1,0)

- Increasing straight line
- Predictions are not very accurate
- Residuals are not normally distributed

ARIMA (0,1,1)

Results nearly identical to (0, 1, 1) model

ARIMA (1,2,2)

- Flat straight line
- Reduced residual range, but still not normally distributed

ARIMA (3,1,2)

- Increasing straight line
- Residuals reflect inconsistency with actual values

Prediction Success

Mean Squared Errors

Model	MSE
(0, 1, 0)	0.087535
(0, 1, 1)	0.087527
(1, 2, 2)	0.049368
(3, 1, 2)	0.087295

- Similar accuracy with models (0,1,0), (0,1,1) and (3,1,2)
- Best accuracy with ARIMA (1,2,2)

Prediction Success

Visualizing Residuals over time

- Residuals are not randomly distributed
- Similar accuracy in the first half-year
- (1, 2, 2) has comparatively decreasing residuals

Prediction Success

Visual Comparison of Actual vs Prediction

- Three of four models predicted increasing rates
- Actual Euro value had a dramatic decrease in the first year
- Model (1,2,2) appears to be most accurate

Early Predictions

- Euro value drops about seven months into the test data
- Trends in model predictions are already apparent

Early Prediction Success

Model	MSE
010	0.000282
011	0.000282
122	0.000143
312	0.000273

Conclusion

- ARIMA model applied to exchange rate of Euro to US Dollar
- Dickey Fuller Test, ACF and PACF used to target model parameters
- Four Models selected using Auto ARIMA grid search:
 (1, 2, 2), (3, 1, 2), (0, 1, 0), (0, 1, 1)
- Best model (1, 2, 2) Iowest Mean Squred Error (MSE)
- Observed weak fit residuals were not randomly distributed, histogram of residuals was not normally distributed
- Poor performance over five year test period
- Acceptable accuracy with predictions on first seven months

Further Exploration

Facebook's Prophet

Additive model gaining in popularity.

Bayesian Structural Time Series Models

 Greater transparency without differencing, lags and moving averages (suggested by Kim Larsen from Stitch Fix)

Linear Regression (Boosted Least Squared Regression)

- Benefit of normal distribution of the data
- Create features and predict future values without additional data

Rolling Forecast

- Add new data as available and update predictions
- ARIMA likely to show better accuracy in short-term predictions

References

4 Ways to Forecast Exchange Rates by Joseph Nguyen https://www.investopedia.com/articles/forex/11/4-ways-to-forecast-exchange-rates.asp

Big Mac PP

https://www.investopedia.com/terms/b/bigmacppp.asp

What is an Autoregressive Integrated Moving Average - ARIMA https://www.investopedia.com/terms/a/autoregressive-integrated-moving-average-arima.asp

US Federal Reserve Exchange Rates

https://www.federalreserve.gov/data.htm

Plot each year of a time series on the same x-axis using Pandas by Andrew Tedstone http://atedstone.github.io/pandas-plot-seasons-time-series/

A Gentle Introduction to Autocorrelation and Partial Autocorrelation
https://machinelearningmastery.com/gentle-introduction-autocorrelation-partial-autocorrelation/

A comprehensive Beginner's Guide to Time Series Forecasting by Aarshay Jain https://www.analyticsvidhya.com/blog/2016/02/time-series-forecasting-codes-python/

Sorry ARIMA, but I'm Going Bayesian by Kim Larsen https://www.predictiveanalyticsworld.com/patimes/sorry-arima-but-im-going-bayesian/7565/

Prediction of Foreign Exchange Rate using Regression Techniques http://mtmi.us/rbtr/sept2017/06-Sharma-Hota-Handa-pp29-33.pdf

Time Series Analysis in Python by William Koehrsen https://towardsdatascience.com/time-series-analysis-in-python-an-introduction-70d5a5b1d52a