B62005Y-02 理论计算机科学基础

2017年7月3日

Solutions to Homework #8

主讲教师: 杨光

张远航 2015K8009929045

Sipser 9.8 $R^{\{m,n\}} = R \uparrow m \circ ((R \cup \varepsilon) \uparrow (n-m))$.

- **Sipser 9.11** Proof. Since CLIQUE is NP-complete, CLIQUE is polynomial time reducible to SAT. For any instance $\langle G, k \rangle$ of MAX-CLIQUE we simply use the reduction on $\langle G, k \rangle$ and $\langle G, k + 1 \rangle$ and query the oracle for SAT. If exactly the former accepts while the latter rejects, accept; otherwise, reject.
- **Sipser 9.14** We use the linear-size serial adder described in 9.12. Let $n = 2^k$. Then we have an recursive equation for the size of the entire circuit:

$$T(n) = T\left(\frac{n}{2}\right) + k$$

Solving for T(n) we have $T(n) = O(2^k)$, which suggests that the circuit is of O(n) size.

- Sipser 9.24 Proof. Suppose to the contrary that $TQBF \in SPACE(n^{1/3})$. By the space hierarchy theorem, there is language $L \in SPACE(n^{1+\varepsilon}) \setminus SPACE(n)$. Using the reduction in Theorem 8.9 which shows that TQBF is NP-complete, any input to L can be reduced to one of length $O(n^{2(1+\varepsilon)})$. Then $L \in SPACE(n^{\frac{2}{3}(1+\varepsilon)})$. However, if we pick ε such that $0 < \varepsilon < \frac{1}{2}$, we would have $L \in SPACE(n)$, contradicting our choice of L.
- Sipser 10.2 $2^{12-1} \not\equiv 1 \pmod{12}$.
- Sipser 10.8 Proof. For any language $L \in BPL$ there is a probabilistic log-space TM M that decides L with error probability greater than $\frac{1}{3}$. On input w of length, let C be the number of configurations of M running on x, starting from any state. Construct a $C \times C$ matrix P such that $P_{c_1,c_2} = \frac{1}{2}$ if c_2 is reachable from c_1 in one step and $P_{c_1,c_2} = 0$ otherwise. For every t, P_{c_1,c_2}^t is the probability of reaching configuration c_2 from configuration c_1 in t steps. By computing all powers of P up to the running time of M we can compute the accepting probability of M starting from q_0 , and decide if $x \in L$. Finally, we accept if $P_{c_0,c_{accept}}^t > \frac{2}{3}$.

Sipser 10.11 *Proof.* Assume NP \subseteq BPP. Note that RP \subseteq NP unconditionally, hence we just need to show that NP \subseteq RP. Since SAT is NP-complete and RP is closed under polynomial-time mapping reductions, it is enough to show that SAT is in RP.

By assumption SAT is in BPP. Let M be a probabilistic Turing machine running in polynomial time and accepting SAT with error at most 1/3. Using the amplification lemma, we can define a probabilistic Turing machine M' running in polynomial time and accepting SAT with error at most $2^{-\Omega(n)}$, where n is the input length. We will define a probabilistic Turing machine N running in polynomial time, which on input ϕ , accepts with probability at least 1/2 if ϕ is satisfiable, and accepts with probability 0 if ϕ is unsatisfiable.

The basic idea is to use downward self-reducibility to construct a satisfying assignment with high probability for YES instances, and to accept only if a satisfying assignment has been constructed. More precisely, N does the following on an input ϕ . Assume without loss of generality that the variables in ϕ are $x_1, x_2 \dots x_m.N$ first runs M on ϕ . If M rejects, N rejects. Otherwise N sets x_1 to FALSE in ϕ and runs M on the corresponding formula ϕ_0 . If M accepts, N continues to build a satisfying assignment by setting x_2 to FALSE in ϕ_0 and running M on the corresponding formula ϕ_{00} . If M rejects, N runs M on formula ϕ_1 obtained by setting x_1 to TRUE in ϕ , continuing to build an assignment if M accepts on ϕ_1 and rejecting otherwise. This process continues until either N rejects or all variables are set. If the latter, N checks whether the corresponding assignment satisfies ϕ . If yes, it accepts, otherwise it rejects.

N runs in polynomial time since it makes at most a linear number of calls to the polynomial-time probabilistic TM M, and each of these calls is on an input whose length is at most the length of ϕ (setting variables can only decrease the length of a formula). N never accepts on an unsatisfiable formula, hence all we need to show is that N accepts with probability at least 1/2 on a satisfiable formula. Note that if M always gives correct answers on calls to M, then when ϕ is satisfiable, N constructs a satisfying assignment to ϕ and hence accepts. The probability that this happens is at least $1 - n \cdot 2^{-\Omega(n)}$, which is at most 1/2 for large enough n, since the probability that M gives at least one wrong answer is at most $n \cdot 2^{-\Omega(n)}$ by the union bound.

Sipser 10.12 We construct the branching program as follows. Since A is regular, there is a DFA that recognizes A. Let n be the numbers of states. For each node j of level

 $i=1,2,\cdots,n-1$, add transitions to node s and node t of layer i+1, corresponding to $\delta(q_j,0)$ and $\delta(q_j,1)$. For the last layer, we point each node j to 1 if $\delta(q_j,0)$ or $\delta(q_j,1)$ is an accept state and 0 otherwise.

(盗用一下助教姐姐的图 ……)

Sipser 10.23 By Exercise 10.12 we know that A has a size O(n), depth O(n) circuit. We can simply apply the circuit recursively.