Aufgabenblatt 1, Mathematik für Physiker 1

Finn Jannik Wagner 21.10.2021

Aufgabe 1

Aufgabe 1.1 i)

Es ist zu zeigen das $(M\Delta N)\Delta(N\Delta P)=M\Delta P$ gilt. $A:=(M\Delta N)\Delta(N\Delta P),$ $B:=M\Delta P$

Hierzu eine Fallunterscheidung:

- 1. Fall $x \notin M, N, P$ Ist x in keiner der drei Menge, so ist es weder in A noch B
- 2. Fall $x \in M \land x \notin N, P$
 - $\Rightarrow x \in M\Delta N$, weil es nicht in beiden Mengen ist.
 - $\Rightarrow x \in N\Delta P$, weil es weder in N noch in P ist.
 - $\Rightarrow x \in (M\Delta N)\Delta(N\Delta P)$, weil es nicht in beiden Mengen ist.
 - $\Rightarrow x \in M\Delta P$, weil es nicht in beiden Mengen ist.

Damit gilt $x \in A, B$

3. Fall $x \in P \land x \notin M, N$

Dieser Fall ist equivalent zu Fall 2

- 4. Fall $x \in N \land x \notin M, N$
 - $\Rightarrow x \in M\Delta N$, weil es nicht in beiden Mengen ist.
 - $\Rightarrow x \in N\Delta P$, weil es nicht in beiden Mengen ist.
 - $\Rightarrow x \notin (M\Delta N)\Delta(N\Delta P)$, weil es in beiden Mengen ist.
 - $\Rightarrow x \in M\Delta P$, weil es weder in M noch P ist.

Damit gilt $x \notin A, B$

- 5. Fall $x \in M, N \land x \notin P$
 - $\Rightarrow x \notin M\Delta N$, weil es in beiden Mengen ist.
 - $\Rightarrow x \in N\Delta P$, weil es nicht in beiden Mengen ist.
 - $\Rightarrow x \in (M\Delta N)\Delta(N\Delta P)$, weil es nur in $N\Delta P$ ist.
 - $\Rightarrow x \in M\Delta P$, weil es nur in M ist.

Damit gilt $x \in A, B$

- 6. Fall $x \in M, P \land x \notin N$ $\Rightarrow x \in M \triangle N$, weil es nur in M ist.
 - $\Rightarrow x \in N\Delta P$, weil es nur in P ist.
 - $\Rightarrow x \notin (M\Delta N)\Delta(N\Delta P)$, weil es in $M\Delta N$ und $N\Delta P$ ist.
 - $\Rightarrow x \notin M\Delta P$, weil es in M und P ist.

Damit gilt $x \notin A, B$

- 7. Fall $x \in N, P \land x \notin M$
 - $\Rightarrow x \in M\Delta N$, weil es nur in N ist.
 - $\Rightarrow x \notin N\Delta P$, weil es in N und P ist.
 - $\Rightarrow x \in (M\Delta N)\Delta(N\Delta P)$, weil es nur in $N\Delta P$ ist.
 - $\Rightarrow x \in M\Delta P$, weil es nur in P ist.

Damit gilt $x \in A, B$

- 8. Fall $x \in M, P, N$
 - $\Rightarrow x \notin M\Delta N$, weil es in M und N ist.
 - $\Rightarrow x \notin N\Delta P$, weil es in N und P ist.
 - $\Rightarrow x \notin (M\Delta N)\Delta(N\Delta P)$, weil es weder in $M\Delta N$ noch in $N\Delta P$ ist.
 - $\Rightarrow x \notin M\Delta P$, weil es in M und P ist.

Damit gilt $x \notin A, B$

 \Rightarrow Da in allen acht möglichen Fällen, wie ein Element x in den Mengen verteilt sein kann, die Operationen A und B zum gleichen Ergebnis kommen, sind sie gleich.

Aufgabe 1.1 ii)

Hilfslemma 1: Weitere Definition der symmetrischen Differenz Δ

Zu zeigen: $A \triangle B = (A \backslash B) \cup (B \backslash A) = (A \cup B) \backslash (A \cap B)$ Füge beiden Seiten $A \cap B$ hinzu. $\Rightarrow (A \backslash B) \cup (B \backslash A) \cup (A \cap B) = (A \cup B) \backslash (A \cap B) \cup (A \cap B)$ $\Rightarrow (A \backslash B) \cup (B \backslash A) \cup (A \cap B) = (A \cup B)$ Mit Assoziativgesetz $A \backslash (B \backslash C) = (A \backslash B) \cup (A \cap C)$ $\Rightarrow (A \backslash B) \cup (B \backslash (A \backslash A)) = (A \cup B)$ $\Rightarrow (A \backslash B) \cup B = (A \cup B)$ $\Rightarrow (A \cup B) = (A \cup B)$

Eigentliche Aufgabe Finn

Zu zeigen:
$$M \cap (N\Delta P) = (M \cap N)\Delta(M \cap P)$$

 $M \cap (N\Delta P)$
 \Downarrow Hilfslemma 1
 $= M \cap ((N \cup P) \setminus (N \cap P))$

- \Downarrow Anwenden des Distributivgesetzes $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$
- $= (M \cap (N \cup P)) \setminus (M \cap N \cap P)$
 - \Downarrow Anwenden des Distributivgesetzes $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $=(M\cap N)\cup (M\cap P)\backslash (M\cap N)\cap (M\cap P)$
- $= (M \cap N)\Delta(M \cap P)$

Aufgabe 1.2 i)

A	В	$A\vee B$	$\neg(A \vee B)$	$\neg A$	$\neg B$	$\neg A \wedge \neg B$
w	w	W	f	f	f	f
W	\mathbf{f}	W	f	f	w	f
f	w	w	f	w	f	\mathbf{f}
f	\mathbf{f}	f	W	w	w	w

Die Spalten vier und sieben sind für alle Wertekombinationen von A und B gleich.

 $\Rightarrow \neg (A \lor B)$ und $\neg A \land \neg B$ sind equivalent.

Aufgabe 1.2 ii)

A	В	$A \wedge B$	$\neg(A \land B)$	$\neg A$	$\neg B$	$\neg A \vee \neg B$
w	W	w	f	f	f	f
w	f	\mathbf{f}	w	\mathbf{f}	\mathbf{w}	\mathbf{w}
\mathbf{f}	w	\mathbf{f}	W	\mathbf{w}	f	w
\mathbf{f}	\mathbf{f}	\mathbf{f}	w	W	w	W

Die Spalten vier und sieben sind für alle Wertekombinationen von A und B gleich.

 $\Rightarrow \neg (A \land B)$ und $\neg A \lor \neg B$ sind equivalent.

Aufgabe 1.4

Gegeben $M \neq \emptyset$, $S := \{x \in M | \text{x hat Sorgen}\}$, $L := \{x \in M | \text{x trinkt Lik\"or}\}$ und Lik\"orproduzent $\in M$

(a) Wer Sorgen hat, trinkt Likör = $S \subset L$

- (i) Wer Likör trinkt, hat Sorgen = $L \subset S$ Falsch
- (ii) Wer keiene Likör trinkt, hat keine Sorgen = $M \setminus L \subset M \setminus S$ Wahr
- (iii) Niemand hat Sorgen und trinkt keinen Likör = $S \cap (M \setminus L) = \emptyset$ Wahr
- (iv) Jemand hat Sorgen und trinkt keinen Likör = $S \cap (M \setminus L) \neq \emptyset$ Falsch
- (v) Jemand trinkt Likör = $L \neq \emptyset$ Unbestimmt

(b) Wer Likör trinkt, hat keine Sorgen = $L \subset (M \setminus S)$

- (i) Jeder hat Sorgen = S = M Falsch
- (ii) Jemand hat Sorgen = $S \neq \emptyset$ Falsch
- (iii) Niemand hat Sorgen = $S=\emptyset$ Wahr

(c) Trinkt niemand Likör, so haben Likörproduzenten Sorgen = $L=\emptyset\Rightarrow$ Likörproduzent $\in S$

- (i) Jeder trinkt Likör = L=M Unbestimmt
- (ii) Jemand trinkt Likör = $L \neq \emptyset$ Wahr
- (iii) Niemand trinkt Likör = $L=\emptyset$ Falsch