第四章 组合逻辑电路

4.1 概 述

主要要求:

■ 掌握组合逻辑电路和时序逻辑电路的概念。

□ 了解组合逻辑电路的特点与描述方法。

4.3.2 译码器

主要要求:

- 理解译码的概念。
- 掌握二进制译码器 74HC138 的逻辑功能和 使用方法。
- 理解其他常用译码器的逻辑功能和使用方法。
- 掌握用二进制译码器实现组合逻辑电路的方法。

一、译码的概念与类型

译码是编码的逆过程。

将表示特定意义信息的 二进制代码翻译出来。

译码器(即 Decoder)

实现译码功能的电路

数码显示译码器

二、二进制译码器

将输入二进制代码译成相应输出信号的电路。

译码	译码输入		码	输	出
A_1	A_0	Y_0	Y_1	Y_2	Y_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

译码	输入	译	码	输	出
A_1	A_0	Y_0	$Y_{1}^{'}$	$Y_{2}^{'}$	$Y_3^{'}$
0	0	0	1	1	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	0

译码输出高电平有效

译码输出低电平有效

怎样写出输出端表达式

(一) 3线 - 8线译码器 74HC138 简介

逻辑功能示意图

使能端 S_1 高电平有效, S_2' 、 S_3' 低电平有效,即当 $S_1 = 1$, $S_2' = S_3' = 0$ 时译码,否则禁止译码。

74HC138的功能表:

禁」	上
译码	玛

允	许
译	码
	工
	一 乍
J	_

		输	<i>)</i>					输	ij		出		
	S_1	$\boldsymbol{S}_{2}^{'}+\boldsymbol{S}_{3}^{'}$	A_2	A_1	A_0	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	$\boldsymbol{Y}_{1}^{'}$	Y_0
7	0	X	X	X	X	1	1	1	1	1	1	1	1
	X	1	X	X	X	1	1	1	1	1	1	1	1
	/1	0	0	0	0	1	1	1	1	1	1	1	0
/	1	0	0	0	1	1	1	1	1	1	1	0	1
	1	0	0	1	0	1	1	1	1	1	0	1	1
	1	0	0	1	1	1	1	1	1	0	1	1	1
	1	0	1	0	0	1	1	1	0	1	1	1	1
	1	0	1	0	1	1	1	0	1	1	1	1	1
	1	0	1	1	0	1	0	1	1	1	1	1	1
	1	0	1	1	1	0	1	1	1	1	1	1	1

输出端逻辑式 怎样写?

输出逻辑函数式

$$Y_{0}' = (A_{2}'A_{1}'A_{0}')' = m_{0}'$$

$$Y_{1}' = (A_{2}'A_{1}'A_{0})' = m_{1}'$$

$$Y_{2}' = (A_{2}'A_{1}A_{0}')' = m_{2}'$$

$$Y_{3}' = (A_{2}'A_{1}A_{0})' = m_{3}'$$

$$Y_{4}' = (A_{2}A_{1}'A_{0}')' = m_{4}'$$

$$Y_{5}' = (A_{2}A_{1}'A_{0})' = m_{5}'$$

$$Y_{6}' = (A_{2}A_{1}A_{0}')' = m_{6}'$$

$$Y_{7}' = (A_{2}A_{1}A_{0})' = m_{7}'$$

输出端一般表达式:

$$Y_i' = (S_1(S_2' + S_3')'m_i)'$$

其输出端能提供输 \变量的全部最大项。

有么际义?

(二) 用二进制译码器实现组合逻辑函数

由于二进制译码器的输出端能提供输入变量的全部最小项,而任何组合逻辑函数都可以变换为最小项之和的标准式,因此用二进制译码器和门电路可实现任何组合逻辑函数。当译码器输出低电平有效时,多选用与非门;译码器输出高电平有效时,多选用或门。

☀ [例] 试用译码器和门电路实现逻辑函数 Y = A'B'C + ABC' + C

解: (1) 根据逻辑函数选择译码器

选用 3 线 -8 线译码器 74HC138, 并令 $A_2 = A$, $A_1 = B$, $A_0 = C$ 。

(2) 将函数式变换为标准与 - 或式

$$Y = A'B'C + ABC' + C$$

= $A'B'C + A'BC + AB'C + ABC' + ABC$
= $m_1 + m_3 + m_5 + m_6 + m_7$

(3) 根据译码器的输出有效电平确定需用的门电路

74HC138 输出低电平有效, $Y_i'=m_i'$, $i=0\sim7$

因此,将 Y函数式变换为 $Y = m_1 + m_3 + m_5 + m_6 + m_7$ = $(m_1' \cdot m_3' \cdot m_5' \cdot m_6' \cdot m_7')'$ = $(Y_1' \cdot Y_3' \cdot Y_5' \cdot Y_6' \cdot Y_7')'$

采用 5 输入与非门,其输入取自 Y_1' 、 Y_3' 、 Y_5' 、 Y_6' 和 Y_7' 。

(4) 画连线图

☀ [例] 试用译码器实现全加器。

解: (1)分析设计要求,列出真值表

设被加数为 A_i ,加数为 B_i ,低位进位数为 C_{i-1} 。输出本位和为 S_i ,向高位的进位数为 C_i 。

列出全加器的真值表如下:

输		入	输	田
A_i	B_i	C_{i-1}	S_i	C_i
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

(2)根据真值表写函数式

$$\begin{cases} S_i = m_1 + m_2 + m_4 + m_7 \\ C_i = m_3 + m_5 + m_6 + m_7 \end{cases}$$

(3)选择译码器

选用
$$3$$
 线 -8 线译码器 74 HC138。并令 $A_2 = A_i$, $A_1 = B_i$, $A_0 = C_{i-1}$ 。

(4)根据译码器的输出有效电平确定需用的门电路

74HC138 输出低电平有效, $Y_i'=m_i'$, $i=0\sim7$ 因此,将函数式变换为

$$\begin{cases} S_i = m_1 + m_2 + m_4 + m_7 = (m'_1 \cdot m'_2 \cdot m'_4 \cdot m'_7)' \\ C_i = m_3 + m_5 + m_6 + m_7 = (m'_3 \cdot m'_5 \cdot m'_6 \cdot m'_7)' \end{cases}$$

(5) 画连线图

(三)译码器的扩展

例如 两片 74LS138 组成的 4 线 - 16线译码器。

两片2线-4线译码器怎样扩展成3线-8线译码器? 4线-16线译码器能否取代3线-8线译码器?

三、二一十进制译码器

将 BCD 码的十组代码译成 $0 \sim 9$ 十个对应输出信号的电路,又称 4 线 -10 线译码器。

8421BCD 码输入端,从高位输入端,从高位到低位依次为 A_3 、 A_2 、 A_1 和 A_0 。

10 个译码 输出端, 低电平 0 有效。

4 线-10 线译码器 74LS42 真值表

十进	#	偷	À				7	输			出	ļ		
制数	$\overline{A_3}$	$\overline{A_2}$	$\overline{A_1}$	$\overline{A_0}$	$Y_0^{'}$	Y_1	Y_2^{\prime}	Y_3'	Y_4'	Y_5'	Y_6'	Y_7	Y_8'	Y_9
0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
1	0	0	0	1	1	0	1	1	1	1	1	1	1	1
2	0	0	1	0	1	1	0	1	1	1	1	1	1	1
3	0	0	1	1	1	1	1	0	1	1	1	1	1	1
4	0	1	0	0	1	1	1	1	0	1	1	1	1	1
5	0	1	0	1	1	1	1	1	1	0	1	1	1	1
6	0	1	1	0	1	1	1	1	1	1	0	1	1	1
7	0	1	1	1	1	1	1	1	1	1	1	0	1	1
8	1	0	0	0	1	1	1	1	1	1	1	1	0	1
9	1	0	0	1	1	1	1	1	1	1	1	1	1	0
	1	0	1	0	1	1	1	1	1	1	1	1	1	1
无	1	0	1	1	1	1	1	1	1	1	1	1	1	1
关	1	1	0	0	1	1	1	1	1	1	1	1	1	1
项	1	1	0	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	0	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1

四、数码显示译码器

将输入的 BCD 码译成相应输出信号, 以驱动显示器显示出相应数字的电路。

(一) 数码显示译码器的结构和功能示意

输入 BCD 码

输出驱动七段数码管显示相应数字

四、数码显示译码器

将输入的 BCD 码译成相应输出信号, 七段字符显示以驱动显示器显示出相应数字的电路。

 $a \sim g$ 和 DP 为低电平时才能点亮相应发光段。

 $a \sim g$ 和 DP 为高电平时才能点亮相应发光段。

· BCD七段字符显示译码器(代码转换器)7448

输			入				输			1	<u>H</u>	
数字	A_3	A ₂	A ₁	A_0	Ya	Y _b	Y _c	Y _d	Y _e	Y _f	Yg	字形
0	0	0	0	0	1	1	1	1	1	1	0	
1	0	0	0	1	0	1	1	0	0	0	0	a
2	0	0	1	0	1	1	0	1	1	0	1	$f \bigcap_{\alpha} b$
3	0	0	1	1	1	1	1	1	0	0	1	J g J o
4	0	1	0	0	0	1	1	0	0	1	1	e CCC
5	0	1	0	1	1	0	1	1	0	1	1	
6	0	1	1	0	0	0	1	1	1	1	1	
7	0	1	1	1	1	1	1	0	0	0	0	D.]
8	1	0	0	0	1	1	1	1	1	1	1	
9	1	0	0	1	1	1	1	0	0	1	1	
10	1	0	1	0	0	0	0	1	1	0	1	
11	1	0	1	1	0	0	1	1	0	0	1	
12	1	1	0	0	0	1	0	0	0	1	1	
13	1	1	0	1	1	0	0	1	0	1	1	
14	1	1	1	0	0	0	0	1	1	1	1	
15	1	1	1	1	0	0	0	0	0	0	0	

真值表 卡诺图

(f)

(g)

BCD一七段显示译码器7448的逻辑图

$$Y_a = (A_3'A_2'A_1'A_0 + A_3A_1 + A_2A_0')'$$

$$Y_b = (A_3 A_1 + A_2 A_1 A_0' + A_2 A_1' A_0)'$$

$$Y_c = (A_3 A_2 + A_2 A_1 A_0)'$$

$$Y_d = (A_2 A_1 A_0 + A_2 A_1 A_0 + A_2 A_1 A_0)'$$

$$\boldsymbol{Y_e} = (\boldsymbol{A_2}\boldsymbol{A_1'} + \boldsymbol{A_0})'$$

$$Y_f = (A_3'A_2'A_0 + A_2'A_1 + A_1A_0)'$$

$$Y_g = (A_3'A_2'A_1' + A_2A_1A_0)'$$

七段译码器

 A_3 、 A_2 、 A_1 、 A_0 : BCD码输入信号。

a~g: 译码输出,高电平有效。

RI/RBO 灭灯输入/灭零输出信号

- (1)灭灯输入。低电平时,数码管全灭;
- (2) 灭零输出信号。 $\overline{RBI} = 0$ 时, $\overline{RBO} = 0$ 。

 \overline{LT} : 试灯信号输入。当 $\overline{LT}=0$ 且 $\overline{RI}=1$ (无效)时,不论 $A_3\sim A_0$ 状态如何, $a\sim g$ 七段全亮。

RBI : 灭零输入信号(不显示 0 ,其它数码正常显示)。 $\overline{RBI} = 0$ ($\overline{LT} = 1$)时,不显示数码0。 \overline{RBO} 作为灭零输出。

有灭零控制的8位数码显示系统

灭零控制

·整数部分:最高位是 $\mathbf{0}$,而且灭掉以后,输出 次高位的 \overline{RBI} 输入信号 RBO 作为

·小数部分:最低位是**0**,而且灭掉以后,输出 为次低位的 *RBI* 输入信号

RBO 作

讨论:写出下面电路中 F_1 的最简与或式, F_2 的最简或与式。

讨论:使用如图所示电路中的译码器和与门实现逻辑函数。

$$F(A,B,C) = B'C + BC' + AC$$

4.3.3 数据选择器

主要要求:

- 理解数据选择器和数据分配器的作用。
- 理解常用数据选择器的逻辑功能及其使用。
- 掌握用数据选择器实现组合逻辑电路的方法。

一、数据选择器和数据分配器的作用

数据选择器:根据地址码的要求,从多路输入信号中选择其中一路输出的电路.

又称多路选择器(Multiplexer, 简称MUX)或多路开关。

数据选择器的输入信号个数 N 与地址码个数 n 的关系为 $N=2^n$

数据分配器:根据地址码的要求,将一路数据分配器: 根据地址码的要求,将一路数据分配到指定输出通道上去的电路。

Demultiplexer, 简称DMUX

二、数据选择器的逻辑功能及其使用

8 选 1 数据选择器 CT74HC151

CT74HC151的逻辑功能示意图

8 选 1 数据选择器 CT74HC151 真值表

イ	Ì)	•	输出
S'	A_2	A_1	A_0	Y
1	X	X	X	0
0	0	0	0	$oldsymbol{D_0}$
0	0	0	1	D_1
0	0	1	0	D_2
0	0	1	1	D_3
0	1	0	0	D_4
0	1	0	1	D_5
0	1	1	0	D_6
0	1	1	1	D_7

CT74HC151 输出函数表达式

箱	输			输出
S'	A_2	A_1	A_0	Y
1	X	X	X	0
0	0	0	0	D_0
0	0	0	1	D_1
0	0	1	0	D_2
0	0	1	1	D_3
0	1	0	0	D_4
0	1	0	1	D_5
0	1	1	0	D_6
0	1	1	1	D_7

$$Y = A_{2}'A_{1}'A_{0}'D_{0} + A_{2}'A_{1}'A_{0}D_{1} +$$

$$A_{2}'A_{1}A_{0}'D_{2} + A_{2}'A_{1}A_{0}D_{3} +$$

$$A_{2}A_{1}'A_{0}'D_{4} + A_{2}A_{1}'A_{0}D_{5} +$$

$$A_{2}A_{1}'A_{0}'D_{6} + A_{2}A_{1}A_{0}D_{5} +$$

$$= m_{0}D_{0} + m_{1}D_{1} + m_{2}D_{2} + m_{3}D_{3} +$$

$$m_{4}D_{4} + m_{5}D_{5} + m_{6}D_{6} + m_{7}D_{7}$$

其输出端能提供地址 输入变量的全部最小项。 能实现函数 发生器吗? 怎样实现?