Homomorphisms and isomorphisms

Juan Patricio Carrizales Torres May 23, 2023

The notion of an *isomorphism* is that two groups have the same gorup-theoretic structure (any property that can be derived from the axioms of the group holds for both groups). Let (G,*) and (H,\cdot) be groups. A map $\phi:G\to H$ such that $\phi(x*y)=\phi(x)\cdot\phi(y)$ for all $x,y\in G$ is a homomorphism. For this map to be considered an ismorphism, it must be bijective. The symbol \cong represent the equivalence isomorphic relation. Since \cong is an equivalence relation in the set \mathfrak{G} of all groups, it follows that there are equivalence clases that are isomorphic. This is important for the classification of groups using isomorphisms.

1 Excercises