Advanced Integrated Circuit Technology

Prof. Dr. Stefan E. Schulz

Hon.-Professor for Nanoelectronics Technology
Head of Dept. Back-end of Line, Fraunhofer ENAS

Dr. Reinhard Streiter

Staff Member Professorship Microtechnology

Head of Group Simulation, Dept. Back-end of Line, Fraunhofer ENAS

Status: 1.4.2014

Chapter 1 - 1

Advanced Integrated Circuit Technology

Prof. Dr. Stefan E. Schulz / Dr. Reinhard Streiter

Content

1	History of Microelectronics	
2	Introduction to Microelectronics Technologies	
2.1	Definitions	
2.2	Processes / Basic Technologies	
2.3	Devices	
2.4	Development Trends	
3	Specific Processes for Advanced Micro- and Nanoelectronics	
3.1	Specific CVD Processes	
3.2	Epitaxy	
3.3	Advanced PVD Processes	
3.4	Atomic Layer Deposition	
3.5	Ion Implantation / Special Annealing Processes	
3.6	Advanced Lithography	
3.7	Advanced Dry/Plasma Etching Processes	
3.8	Chemical Mechanical Polishing/Planarization	
3.9	Electrochemical Deposition and Electroless Deposition	

Chapter 1 - 3

	_
	_
	5
	צ'
	0
	$oldsymbol{\circ}$
	2
	⊆
	_
	-
	ഠ
	as a
	Ψ
ш	
	-
	3
	7
	U.
	_
	01
	-4
	-
	0
	ക
	<u></u>
	w
	(0)
	-74
	O)
	-
	$\overline{}$
	_
	10
	9
	യ
	7
	9
	$\boldsymbol{\sigma}$
	>

4	Semiconductor Process and Equipment Simulation and Modeling
4.1	Numerical methods for semiconductor process and equipment simulation
4.2	Models and programming for advanced deposition techniques
4.3	Parameter optimization methods
5	Integrated Circuit Technology
5.1	CMOS Manufacturing Process / CMOS Process Modules
5.2	Specific Aspects of sub 100 nm CMOS Technology
5.3	New Transistor Concepts
5.4	Beyond CMOS Approaches
6	3D Technology for Increased Integration Density
6.1	Background and Motivation
6.2	3D Technology
6.3	Single Processes for 3D

Recommended Literature

- **S. A. Campbell**, *The Science and Engineering of Microelectronic Fabrication*. Oxford Series in Electrical Engineering, Oxford University Press, 1996, ISBN: 0-19-510508-7
- C. Y. Chang, S. M. Sze, *ULSI Technology*. Mcgraw-Hill, 1996, ISBN: 0070630623
- **B. El-Karah**, Fundamentals of semiconductor processing technologies. Kluwer Academic Publishers, 1995.
- **S. Wolf, R. N. Tauber**, *Silicon Processing for the VLSI Era.* Lattice Press, 2000, ISBN 0-9616721-6-1
- **S. Deleonibus**, *Electronic Device Architectures for the Nano-CMOS Era*. Pan Stanford Publishing Pte. Ltd., Singapore, 2009, ISBN 13 978-981-4241-28-1 / ISBN 10 981-4241-28-8.
- **F. Schwierz, H. Wong, J.J. Liou,** *Nanometer CMOS.* Pan Stanford Publishing Pte. Ltd., Singapore, 2010, ISBN-10 981-4241-08-3

Tapan K. Gupta: Copper Interconnect Technology (McGraw-Hill Professional; 1st edition, 2008)

Mikhail Baklanov, Paul S. Ho, Ehrenfried Zschech: Advanced Interconnects for ULSI Technology (John Wiley & Sons, 2012)

Chapter 1 - 5