

Mutually Exclusive Events

Two events (A and B) are said to be mutually exclusive if they cannot happen at the same time.

From the *Venn* diagram below, we can see that $A \cap B = \emptyset$. Therefore, $P(A \cap B) = 0$

If A and B are mutually exclusive events, then the probability of A happening **OR** the probability of B happening is P(A) + P(B). So, when considering **mutually exclusive** events,

$$P(A \cup B) = P(A) + P(B)$$

Carla Cruz, Carla Soares Geraldes

Example:

Consider rolling a six sided die.

Event A: rolling a 1. $A = \{1\}$

Event B: rolling a 6. $B = \{6\}$

The set of possible outcomes is $S = \{1, 2, 3, 4, 5, 6\}$

$$P(A) = P(B) = \frac{1}{6}$$

Given 2 generic events, A and B, $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

As A and B are mutually exclusive events, $P(A \cap B) = 0$.

So,
$$P(A \cup B) = P(A) + P(B) = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$