Algorytmy Geometryczne

Laboratorium 1 – Sprawozdanie

Jan Smółka

1. Sposób wykonania zadania

1.1. Kod programu

Do rozwiązania zadania posłużyłem się proponowaną przez Prowadzących biblioteką graficzną. W pliku "zadanie_1.ipynb" znajdują się funkcje narzędzia graficznego, wraz z funkcjami realizującymi poszczególne punkty zadania.

Punkty każdego ze zbiorów generowane są za pomocą idiomatycznej konstrukcji języka Python – generatora. Każda z funkcji *square, circle i line* posiada swój generator punktów.

1.2. Metoda badania

Podział każdego ze zbioru punktów zbadano przy użyciu czterech metod obliczania wyznacznika macierzy: wyznacznika dwu- i trójwymiarowego, z biblioteki numerycznej oraz implementowanego samodzielnie. Zbadano również różne tolerancje dla wartości 0: kolejne badane dokładności tworzyły ciąg geometryczny o ilorazie $\frac{1}{10}$, o wyrazach z zakresu $1\div 10^{-30}$. Otrzymane liczności podziałów zamieszczone są w tabelach dołączonych do sprawozdania.

1.3. Wykresy

Dla każdego zbioru punktów sporządzono jeden wykres, dla tolerancji 10^{-16} i dla własnej metody obliczania wyznacznika macierzy 3x3. Dane zgromadzone w tabelach wskazują na brak konieczności obrazowania większej liczby wyników.

Punkty leżące po lewej stronie prostej zaznaczono na wykresach kolorem niebieskim, na prawo – czerwonym, a leżące na prostej – zielonym.

1.4. Środowisko programistyczne

Do wykonania zadania użyto proponowanej przez Prowadzących biblioteki graficznej, za pomocą której zrealizowano funkcje napisane w języku Python, w środowisku Jupyter Notebook. Obliczenia wykonano na komputerze z systemem Windows 11, z procesorem Intel Core i7, o częstotliwości taktowania 2 GHz.

Wyniki Zbiór A

1000 -750 500 250 0 -250 -500 -750 -1000 -250 1000 -1000 -750 -500 0 250 500 750 Poprzedni Dodaj figurę Dodaj linię Dodaj punkt Następny

Rysunek 1 - Zbiór A

2.2. Zbiór B

Rysunek 2 - Zbiór B

2.3. Zbiór C

Rysunek 3 - Zbiór C

2.4. Zbiór D

Rysunek 4 - Zbiór D

3. Analiza otrzymanych wyników

3.1. Wykresy

3.1.1. Zbiory A i B

Zaskakujące, że żaden z punktów na obu wykresach nie ma koloru zielonego. Możliwym powodem takiego stanu rzeczy jest bardzo mała tolerancja dla zera w obu zbiorach oraz mała liczba punktów w stosunku do powierzchni wykresu B

Z punktu widzenia rachunku prawdopodobieństwa szansa, że losowo wybrany punkt z prostokąta $[-b,b]^2$ leży na prostej zadanej wektorem zaczepionym \vec{v} wynosi zaledwie:

$$\frac{2\sqrt{2}\epsilon|\vec{v}|(\min\left(\frac{b}{v_x},\frac{b}{v_y}\right) - \max\left(\frac{-b}{v_x},\frac{-b}{v_y}\right))}{b^2} \cong (Dla\ zbioru\ A: 5,6\times 10^{-3}\times \varepsilon)$$

więc w przypadku zbioru A jest o trzy rzędy wielkości mniejsze od tolerancji.

3.1.2. Zbiór C

Oględziny wykresu nie prowadzą do żadnych zaskakujących wniosków. Rozważana prosta i okrąg posiadają dwa punkty wspólne. Przy wziętym rozkładzie wykryto jeden, i to przy stosunkowo dużej tolerancji względem zera. Taki wynik znajduje uzasadnienie w fakcie, że punkty rozmieszczone są na okręgu stosunkowo rzadko w porównaniu do tolerancji. Istotnie, punkty występują w zgrubnym przybliżeniu w średniej odległości $\frac{1}{5}\pi\cong 0,62$.

3.1.3. Zbiór D

Najbardziej daleko idące wnioski wyciągnąć można z obserwacji wykresu D. Obserwując w dużym powiększeniu położenia punktów poszczególnych kolorów można zauważyć, że w miarę oddalania się od początku i końca wektora AB, maleje jakość współliniowości generowanych punktów. Wynika to ze skończonej precyzji zapisu wektora kierunkowego. Mnożąc go przez coraz większy parametr, również o ograniczonej dokładności, traci się równoległość.

3.2. Tabele

Analiza wyników zgromadzonych w tabelach dostarcza wniosków przede wszystkim na temat wykresu D. Pozostałe tabele obrazują oczywiste własności zbiorów punktów wygenerowanych przyjętymi metodami.

3.2.1. Zbiory A i B

Widać, że dla jednostajnie rozmieszczonych punktów i dostatecznie małej tolerancji, można poprowadzić prostą przez zbiór punktów w taki sposób, by żaden na niej nie leżał. Ma to związek z przytoczonym wcześniej znikomym prawdopodobieństwem znalezienia losowo wybranego punktu na wybranej prostej. Innymi słowy, dostatecznie cienka prosta nie przechodzi przez niemal żaden punkt w rozkładzie jednostajnym, niezależnie od swojego kierunku.

3.2.2. Zbiór C

Brak zaskakujących obserwacji innych niż dokonane przy analizie wykresu. Przy dostatecznie dużej tolerancji jeden punkt okręgu został zakwalifikowany jako leżący na prostej.

3.2.3. Zbiór D

Tabela obrazuje ciekawą zależność – obliczanie wyznacznika macierzy rzędu 2 *szybciej* prowadzi do niekwalifikowania punktów jako leżące na prostej.

Ponadto, samodzielnie implementowane wyznaczniki dla większego zakresu tolerancji kwalifikują więcej punktów jako leżące na prostej niż wyznaczniki biblioteczne.

3.3. Wnioski na temat tolerancji

Tabela do zbioru D dostarcza podstaw by sądzić, że tolerancja *optymalna*, tzn. taka, dla której każda z metod liczenia wyznacznika daje zbliżone rezultaty, przypada w przedziale $10^{-9} \div 10^{-13}$. W przypadku zbiorów A i B przyjęcie wysokiej tolerancji prowadzi do sklasyfikowania od kilku do kilkudziesięciu punktów leżących na prostej, co jest ilością znikomą w porównaniu z licznościami zbiorów. Znaczenie tolerancji dla zbioru C również jest marginalne.

3.4. Wnioski na temat metody obliczania wyznacznika

W tabelach dla zbiorów A, B i C widać, że wybór metody obliczania wyznacznika jest całkowicie nieistotny. Zauważalne, istotne różnice pojawiają się dopiero w przypadku zbioru D. Można zaobserwować, że co do zasady wyznaczniki 2x2 *szybciej*, wraz ze spadkiem tolerancji, przestają klasyfikować punkty jako leżące na prostej, niż wyznaczniki 3x3, które jeszcze przez kilka rzędów wielkości klasyfikują wszystkie 1000 punktów jako współliniowe z AB.

Istotną różnicą pomiędzy wyznacznikami bibliotecznymi i własnymi jest liczba punktów klasyfikowanych dla najmniejszych tolerancji – wyznaczniki własne wskazują na współliniowość kilkuset punktów, podczas gdy biblioteczne dają odpowiedź 0. Ciekawą zależność wykazuje rozkład punktów po poszczególnych stronach prostej, w zależności od użytej metody obliczania wyznacznika – podział dla bibliotecznego wyznacznika 2x2 jest skrajnie niezrównoważony, bibliotecznego wyznacznika 3x3 wprost przeciwnie – niemal idealnie równomierny. Wyznaczniki implementowane samodzielnie nie wykazują takich różnic – w obu przypadkach równomierność danych jest umiarkowanie zaburzona.

4. Dodatek I: Tabele

4.1. Zbiór A

Tabela 1 - Dane dla zbioru A

	Biblioteczny wyznacznik 2x2			Biblioteczny wyznacznik 3x3			Własny wyznacznik 2x2			Własny wyznacznik 3x3		
Ookładność	L	W	P	L	w	Р	L	w	Р	L	w	Р
1	49956	46	49998	49956	46	49998	49956	46	49998	49956	46	49998
1,00E-01	49977	5	50018	49977	5	50018	49977	5	50018	49977	5	50018
1,00E-02	49980	1	50019	49980	1	50019	49980	1	50019	49980	1	50019
1,00E-03	49980	0	50020	49980	0	50020	49980	0	50020	49980	0	50020
1,00E-04	49980	0	50020	49980	0	50020	49980	0	50020	49980	0	50020
1,00E-05	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-06	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-07	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-08	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-09	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-10	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-11	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-12	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-13	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-14	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-15	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-16	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-17	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-18	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1.00E-19	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-20	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-21	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-22	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-23	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-24	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-25	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-26	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-27	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-28	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-29	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908
1,00E-30	50092	0	49908	50092	0	49908	50092	0	49908	50092	0	49908

4.2. Zbiór B

Tabela 2 - Dane dla zbioru B

	Biblioteczny wyznacznik 2x2			Bibliotec	zny wyzna	cznik 3x3	Własn	y wyznaczi	nik 2x2	Własn	y wyznacznik 3x3	
Dokładność	L	w	Р	L	w	P	L	w	P	L	w	P
1	49988	0	50012	49986	0	50014	49984	6	50010	49986	0	50014
1,00E-01	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-02	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-03	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-04	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-05	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-06	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-07	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-08	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-09	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-10	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-11	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-12	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-13	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-14	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-15	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-16	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-17	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-18	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-19	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-20	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-21	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-22	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-23	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-24	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-25	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-26	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-27	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-28	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-29	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014
1,00E-30	49988	0	50012	49986	0	50014	49984	0	50010	49986	0	50014

4.3. Zbiór C

Tabela 3 - Dane dla zbioru C

	Biblioteczny wyznacznik 2x2			Biblioteczny wyznacznik 3x3			Własny wyznacznik 2x2			Własny wyznacznik 3x3		
Dokładność	L	w	P	L	w	P	L	w	P	L	w	P
1	506	1	493	506	1	493	506	1	493	506	1	493
1,00E-01	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-02	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-03	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-04	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-05	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-06	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-07	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-08	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-09	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-10	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-11	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-12	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-13	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-14	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-15	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-16	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-17	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-18	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-19	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-20	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-21	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-22	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-23	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-24	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-25	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-26	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-27	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-28	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-29	506	0	494	506	0	494	506	0	494	506	0	494
1,00E-30	506	0	494	506	0	494	506	0	494	506	0	494

4.4. Zbiór D

Tabela 4 - Dane dla zbioru D

	Biblioteczny wyznacznik 2x2			Bibliote	czny wyznac	znik 3x3	Włas	ny wyznaczni	k 2x2	Własny wyznacznik 3x3		
Dokładność	L	W	Р	L	W	P	L	W	Р	L	W	P
1	0	1000	0	0	1000	0	0	1000	0	0	1000	0
1,00E-01	0	1000	0	0	1000	0	0	1000	0	0	1000	0
1,00E-02	0	1000	0	0	1000	0	0	1000	0	0	1000	0
1,00E-03	0	1000	0	0	1000	0	0	1000	0	0	1000	0
1,00E-04	0	1000	0	0	1000	0	0	1000	0	0	1000	0
1,00E-05	0	1000	0	0	1000	0	0	1000	0	0	1000	0
1,00E-06	0	1000	0	0	1000	0	0	1000	0	0	1000	0
1,00E-07	0	1000	0	0	1000	0	0	1000	0	0	1000	0
1,00E-08	0	1000	0	0	1000	0	0	1000	0	0	1000	0
1,00E-09	0	976	24	0	1000	0	0	958	42	0	1000	0
1,00E-10	62	460	478	0	1000	0	19	802	179	0	1000	0
1,00E-11	190	204	606	0	1000	0	55	765	180	0	1000	0
1,00E-12	259	92	649	0	1000	0	68	741	191	0	1000	0
1,00E-13	288	32	680	109	773	118	72	731	197	303	512	18
1,00E-14	300	8	692	368	231	401	73	730	197	352	387	26
1,00E-15	306	2	692	472	35	493	73	730	197	402	301	29
1,00E-16	306	0	694	484	6	510	73	730	197	403	296	30
1,00E-17	306	0	694	488	0	512	73	730	197	403	296	30
1,00E-18	306	0	694	488	0	512	73	730	197	403	296	30
1,00E-19	306	0	694	488	0	512	73	730	197	403	296	30
1,00E-20	306	0	694	488	0	512	73	730	197	403	296	301
1,00E-21	306	0	694	488	0	512	73	730	197	403	296	30
1,00E-22	306	0	694	488	0	512	73	730	197	403	296	30
1,00E-23	306	0	694	488	0	512	73	730	197	403	296	30
1,00E-24	306	0	694	488	0	512	73	730	197	403	296	30
1,00E-25	306	0	694	488	0	512	73	730	197	403	296	30
1,00E-26	306	0	694	488	0	512	73	730	197	403	296	30
1,00E-27	306	0	694	488	0	512	73	730	197	403	296	30
1,00E-28	306	0	694	488	0	512	73	730	197	403	296	30
1,00E-29	306	0	694	488	0	512	73	730	197	403	296	30
1,00E-30	306	0	694	488	0	512	73	730	197	403	296	30