Unidad VI - Redes Neuronales

Germán Braun

Facultad de Informática - Universidad Nacional del Comahue german.braun@fi.uncoma.edu.ar

3 de octubre de 2025

Agenda

- 1 Aprendizaje Profundo
- 2 Redes Neuronales
- 3 Arquitectura
- 4 Backpropagation Paul Werbos (1974)
- 5 Capacidad de Generalización
- 6 Variantes de las Redes Neuronales
- 7 Conclusiones

Análisis de Datos

machine learning

Figura 0.1: Proceso de Análisis de Datos

Aprendizaje Profundo

Deep Learning

(*) image de Machine Learning and Deep Learning with R

 El aprendizaje profundo es un subcampo específico del aprendizaje automático

- El aprendizaje profundo es un subcampo específico del aprendizaje automático
- Hace énfasis en el aprendizaje en sucesivas capas de representación (de allí su nombre "profundo")

- El aprendizaje profundo es un subcampo específico del aprendizaje automático
- Hace énfasis en el aprendizaje en sucesivas capas de representación (de allí su nombre "profundo")
- El modelo de aprendizaje es la red neuronal, la cual se estructura siguiendo esta idea de capas

- El aprendizaje profundo es un subcampo específico del aprendizaje automático
- Hace énfasis en el aprendizaje en sucesivas capas de representación (de allí su nombre "profundo")
- El modelo de aprendizaje es la red neuronal, la cual se estructura siguiendo esta idea de capas
- El término red neuronal hace referencia a cómo los humanos pensamos

Digit Recognition

Learnable Weights

Redes Neuronales

Intuición (biológica)

Figura 2.1: image de paper

■ Una neurona consiste de un *cuerpo*, *dendritas* (dentrites) y una *axon*

Intuición (biológica)

Figura 2.1: image de paper

- Una neurona consiste de un *cuerpo*, *dendritas* (dentrites) y una *axon*
- Recibe señales a través de las dentritas (sensores) y las envian por el axon

Intuición (biológica)

Figura 2.1: image de paper

- Una neurona consiste de un *cuerpo*, *dendritas* (dentrites) y una *axon*
- Recibe señales a través de las dentritas (sensores) y las envian por el axon
- Son electricamente exitables: si su polaridad cambia, la neurona genera un pulso electro-químico por el axon (se genera una salida)

Arquitectura

Perceptrón Simple

$$sgn(z) = \begin{cases} 1 & \text{si } \Sigma > 0 \\ -1 & \text{si } otherwise \end{cases}$$

- x1 = veces que aparece la palabra "gratis"
- $x^2 = \# \text{ de links}$

$$sgn(z) = \begin{cases} 1 & \text{si } \Sigma > 0 \\ -1 & \text{si } otherwise \end{cases}$$

$$1) z = w_1 x_1 + w_2 x_2 + b$$

- x1 = veces que aparece la palabra "gratis"
- $x^2 = \# \text{ de links}$

$$sgn(z) = \begin{cases} 1 & \text{si } \Sigma > 0 \\ -1 & \text{si otherwise} \end{cases}$$

1)
$$z = w_1 x_1 + w_2 x_2 + b$$

= $(1,2)(3) + (0,7)(4) - 2,0$

- x1 = veces que aparece la palabra "gratis"
- $x^2 = \# \text{ de links}$

$$sgn(z) = \begin{cases} 1 & \text{si } \Sigma > 0 \\ -1 & \text{si } otherwise \end{cases}$$

1)
$$z = w_1 x_1 + w_2 x_2 + b$$

= $(1,2)(3) + (0,7)(4) - 2,0$
= $3,6 + 2,8 - 2,0 = 4,4$

- x1 = veces que aparece la palabra "gratis"
- $x^2 = \# \text{ de links}$

$$sgn(z) = \begin{cases} 1 & \text{si } \Sigma > 0 \\ -1 & \text{si otherwise} \end{cases}$$

1)
$$z = w_1x_1 + w_2x_2 + b$$

= $(1,2)(3) + (0,7)(4) - 2,0$
= $3,6 + 2,8 - 2,0 = 4,4$
2) $\hat{y} = \text{sgn}(z)$

- x1 = veces que aparece la palabra "gratis"
- $x^2 = \# \text{ de links}$

$$sgn(z) = \begin{cases} 1 & \text{si } \Sigma > 0 \\ -1 & \text{si } otherwise \end{cases}$$

- x1 = veces que aparece la palabra "gratis"
- $x^2 = \#$ de links

$$sgn(z) = \begin{cases} 1 & \text{si } \Sigma > 0 \\ -1 & \text{si } otherwise \end{cases}$$

Entrenamiento por corrección de error

1 Iniciación al azar

- Iniciación al azar
- Se muestran muchos ejemplos con las salidas esperadas y en cada caso:

- Iniciación al azar
- Se muestran muchos ejemplos con las salidas esperadas y en cada caso:
 - Se obtiene la salida

- Iniciación al azar
- Se muestran muchos ejemplos con las salidas esperadas y en cada caso:
 - Se obtiene la salida
 - Si la salida es correcta → no se hacen cambios

- Iniciación al azar
- 2 Se muestran muchos ejemplos con las salidas esperadas y en cada caso:
 - Se obtiene la salida
 - Si la salida es correcta → no se hacen cambios
 - Si la salida es incorrecta → penalización: se actualizan los pesos en el sentido opuesto al que contribuyó a la salida incorrecta:

- Iniciación al azar
- 2 Se muestran muchos ejemplos con las salidas esperadas y en cada caso:
 - Se obtiene la salida
 - Si la salida es correcta → no se hacen cambios
 - Si la salida es incorrecta → penalización: se actualizan los pesos en el sentido opuesto al que contribuyó a la salida incorrecta:
 - $y^{(i)} = -1 \ y \ \hat{y}^{(i)} = 1 \rightarrow w = w \eta x^{(i)}$

- Iniciación al azar
- Se muestran muchos ejemplos con las salidas esperadas y en cada caso:
 - Se obtiene la salida
 - Si la salida es correcta → no se hacen cambios
 - Si la salida es incorrecta → penalización: se actualizan los pesos en el sentido opuesto al que contribuyó a la salida incorrecta:
 - $\mathbf{v}^{(i)} = -1 \ \mathbf{v} \ \hat{\mathbf{v}}^{(i)} = 1 \rightarrow w = w \eta x^{(i)}$
 - $y^{(i)} = 1 y \hat{y}^{(i)} = -1 \rightarrow w = w + \eta x^{(i)}$

- Iniciación al azar
- Se muestran muchos ejemplos con las salidas esperadas y en cada caso:
 - Se obtiene la salida
 - Si la salida es correcta → no se hacen cambios
 - Si la salida es incorrecta → penalización: se actualizan los pesos en el sentido opuesto al que contribuyó a la salida incorrecta:
 - $y^{(i)} = -1 \ y \ \hat{y}^{(i)} = 1 \rightarrow w = w \eta x^{(i)}$
 - $\mathbf{v}^{(i)} = 1 \ \mathbf{v} \ \hat{\mathbf{v}}^{(i)} = -1 \rightarrow w = w + \eta x^{(i)}$
 - En concreto:

$$\epsilon^{(i)} = \frac{y^{(i)} - \hat{y}^{(i)}}{2}$$

- Iniciación al azar
- Se muestran muchos ejemplos con las salidas esperadas y en cada caso:
 - Se obtiene la salida
 - Si la salida es correcta → no se hacen cambios
 - Si la salida es incorrecta → penalización: se actualizan los pesos en el sentido opuesto al que contribuyó a la salida incorrecta:
 - $y^{(i)} = -1 \ y \ \hat{y}^{(i)} = 1 \rightarrow w = w \eta x^{(i)}$
 - $y^{(i)} = 1$ y $\hat{y}^{(i)} = -1 \rightarrow w = w + \eta x^{(i)}$
 - En concreto:

$$\epsilon^{(i)} = \frac{y^{(i)} - \hat{y}^{(i)}}{2}$$

- Poder expresivo limitado a funciones booleanas
- Puede expresar solo decisiones lineales

$$w_1x_1 + w_2x_2 - w_0 = 0 \rightarrow (w^Tx - b = 0)$$

Red neuronal XOR

- y₁ aprende OR
- y₂ aprende AND
- y₃ aprende OR AND

Tabla de verdad XOR con neuronas OR y AND

x_1	x_2	y_1 (OR)	y_2 (AND)	y_3 (XOR)
-1	-1	-1	-1	-1
-1	1	1	-1	1
1	-1	1	-1	1
1	1	1	1	-1

$$y_1 = sgn(x_1 + x_2 + 1)$$

$$y_2 = sgn(x_1 + x_2 - 1)$$

$$y_3 = sgn(y_1 - y_2 - 1)$$

Poder expresivo

Figura 3.1: Capacidad de clasificación según dimension de la red

Arquitectura

$$z_j^{[i]} = w_j^{[i]^T} x - b_j^{[i]}$$

dónde

- i es la i^{th} capa de la red and j la j^{th} neurona oculta de la capa
- \mathbf{w} , b, z los pesos, bias y la salida de la red, respectivamente

^(*) image de cheatsheet-deep-learning

Activación / Pérdida

Activación / Pérdida

Pérdida por entropía cruzada (clasificación)

$$L(z, y) = -\left[y\log(z) + (1 - y)\log(1 - z)\right]$$

Activación / Pérdida

Tanh

$$g(z)=rac{e^z-e^{-z}}{e^z+e^{-z}}$$

ReLU
$$g(z) = \max(0,z)$$

$$g(z) = \max(\epsilon z, z)$$
 with $\epsilon \ll 1$

Pérdida por entropía cruzada (clasificación)

$$L(z, y) = -\left[y\log(z) + (1 - y)\log(1 - z)\right]$$

Error cuadrático (regresión)

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(y^{(i)} - \hat{y}^{(i)} \right)^2$$

Generalización del perceptrón

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[1]} = w^{[1]}x - b^{[1]}$$

Generalización del perceptrón

- $a^{[1]} = \sigma(z^{[1]})$
- $a^{[2]} = \sigma(z^{[2]})$

$$z^{[1]} = w^{[1]}x - b^{[1]}$$

$$z^{[2]} = w^{[2]}a^{[1]} - b^{[2]}$$

Generalización del perceptrón

$$a^{[1]} = \sigma(z^{[1]})$$

$$a^{[2]} = \sigma(z^{[2]})$$

$$a^{[3]} = \sigma(z^{[3]})$$

$$z^{[1]} = w^{[1]}x - b^{[1]}$$

$$z^{[2]} = w^{[2]}a^{[1]} - b^{[2]}$$

$$z^{[3]} = w^{[3]}a^{[2]} - b^{[3]}$$

¿Cómo aprende una red?

■ Ejemplo: para una imagen de 64x64 pixels

¿Cómo aprende una red?

- Ejemplo: para una imagen de 64x64 pixels
- SI escala de grises $\rightarrow x$ tiene 4096 entradas

¿Cómo aprende una red?

- Ejemplo: para una imagen de 64x64 pixels
- SI escala de grises \rightarrow x tiene 4096 entradas
- SI imagen RGB (color) \rightarrow 64 x 64 x 3 (Rojo, Verde, Azul) \rightarrow x tiene 12288 entradas

Vectorización de una Red Neuronal

$$\underbrace{\begin{bmatrix} z_1 \\ \vdots \\ z_m \end{bmatrix}}_{\mathbf{z} \in \mathbb{R}^{m \times 1}} = \underbrace{\begin{bmatrix} -\mathbf{w}_1^{[1]\top} - \\ -\mathbf{w}_2^{[1]\top} - \\ \vdots \\ -\mathbf{w}_m^{[1]\top} - \end{bmatrix}}_{W^{[1]} \in \mathbb{R}^{m \times d}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{bmatrix}}_{\mathbf{x} \in \mathbb{R}^{d \times 1}} + \underbrace{\begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \\ \vdots \\ b_m^{[1]} \end{bmatrix}}_{\mathbf{b}^{[1]} \in \mathbb{R}^{m \times 1}}$$

```
\mathbf{x} \in \mathbb{R}^{d \times 1} (d features)

W^{[1]} \in \mathbb{R}^{m \times d} (m neuronas)

\mathbf{b}^{[1]} \in \mathbb{R}^{m \times 1} (bias)

\mathbf{z} \in \mathbb{R}^{m \times 1} (salida)
```

- Imagen: $28 \times 28 = 784$ píxeles $\rightarrow d = 784$
- Primera capa oculta con 128 neuronas $\rightarrow m = 128$

$$\mathbf{x} \in \mathbb{R}^{784 \times 1}$$

$$W^{[1]} \in \mathbb{R}^{128 \times 784}$$

$$\mathbf{b}^{[1]} \in \mathbb{R}^{128 \times 1}$$

$$\mathbf{z} \in \mathbb{R}^{128 \times 1}$$

Backpropagation

Paul Werbos (1974)

 La capacidad de clasificación de las redes neuronales depende de las cantidad de neuronas.

- La capacidad de clasificación de las redes neuronales depende de las cantidad de neuronas.
- Es necesario tener un **procedimiento eficiente** para poder entrenar una red

- La capacidad de clasificación de las redes neuronales depende de las cantidad de neuronas.
- Es necesario tener un **procedimiento eficiente** para poder entrenar una red

- La capacidad de clasificación de las redes neuronales depende de las cantidad de neuronas.
- Es necesario tener un **procedimiento eficiente** para poder entrenar una red
- idea: usar regla de la cadena, i.e. derivada de funciones compuestas

- La capacidad de clasificación de las redes neuronales depende de las cantidad de neuronas.
- Es necesario tener un **procedimiento eficiente** para poder entrenar una red
- idea: usar regla de la cadena, i.e. derivada de funciones compuestas
- Usar score como una señal de feedback para ajustar valores de los pesos
- Algoritmo fundamental en aprendizaje profundo

- La capacidad de clasificación de las redes neuronales depende de las cantidad de neuronas.
- Es necesario tener un **procedimiento eficiente** para poder entrenar una red
- idea: usar regla de la cadena, i.e. derivada de funciones compuestas
- Usar *score* como una señal de feedback para ajustar valores de los pesos
- Algoritmo fundamental en aprendizaje profundo
- Escalabilidad y entrenamiento eficiente

Ejecutar propagación hacia adelante (forward propagation) para obtener la pérdida correspondiente

- Ejecutar propagación hacia adelante (forward propagation) para obtener la pérdida correspondiente
- Back propagar la pérdida para obtener los gradientes

- Ejecutar propagación hacia adelante (forward propagation) para obtener la pérdida correspondiente
- Back propagar la pérdida para obtener los gradientes
- Usar los gradientes para actualizar los pesos de la red

- Ejecutar propagación hacia adelante (forward propagation) para obtener la pérdida correspondiente
- Back propagar la pérdida para obtener los gradientes
- 3 Usar los gradientes para actualizar los pesos de la red

Derivada con respecto a los pesos w, computado usando la regla de la cadena:

$$\frac{\partial L(z,y)}{\partial w} = \frac{\partial L(z,y)}{\partial a} \times \frac{\partial a}{\partial z} \times \frac{\partial z}{\partial w}$$

- Ejecutar propagación hacia adelante (forward propagation) para obtener la pérdida correspondiente
- Back propagar la pérdida para obtener los gradientes
- 3 Usar los gradientes para actualizar los pesos de la red

Derivada con respecto a los pesos w, computado usando la regla de la cadena:

$$\frac{\partial L(z,y)}{\partial w} = \frac{\partial L(z,y)}{\partial a} \times \frac{\partial a}{\partial z} \times \frac{\partial z}{\partial w}$$

Fórmula de actualización de pesos:

$$w \leftarrow w - \alpha \frac{\partial L(z, y)}{\partial w}$$

Actualización de pesos - Error Cuadrático (I)

Datos iniciales:

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad y = 1, \quad w_1 = 1, \quad w_2 = -1, \quad b = 1$$

Datos iniciales:

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad y = 1, \quad w_1 = 1, \quad w_2 = -1, \quad b = 1$$

1. Cálculo hacia adelante

$$z = w_1 x_1 + w_2 x_2 + b = (1)(1) + (-1)(0) + 1 = 2$$
$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-2}} \approx 0,8808$$

Datos iniciales:

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad y = 1, \quad w_1 = 1, \quad w_2 = -1, \quad b = 1$$

1. Cálculo hacia adelante

$$z = w_1 x_1 + w_2 x_2 + b = (1)(1) + (-1)(0) + 1 = 2$$
$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-2}} \approx 0,8808$$

2. Cálculo de la pérdida

$$C = \frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(1 - 0.8808)^2 \approx 0.0072$$

3. Regla de la cadena para actualizar w_1

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} \cdot \frac{\partial z}{\partial w_1}$$

3. Regla de la cadena para actualizar w_1

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} \cdot \frac{\partial z}{\partial w_1}$$

$$\frac{\partial C}{\partial \hat{y}} = \hat{y} - y = 0,8808 - 1 = -0,1192$$

3. Regla de la cadena para actualizar w_1

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} \cdot \frac{\partial z}{\partial w_1}$$

$$\frac{\partial C}{\partial \hat{y}} = \hat{y} - y = 0,8808 - 1 = -0,1192$$

$$\frac{\partial \hat{y}}{\partial z} = \hat{y}(1 - \hat{y}) = 0,8808 \times (1 - 0,8808) = 0,1049$$

3. Regla de la cadena para actualizar w_1

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} \cdot \frac{\partial z}{\partial w_1}$$

$$\frac{\partial C}{\partial \hat{y}} = \hat{y} - y = 0,8808 - 1 = -0,1192$$

$$\frac{\partial \hat{y}}{\partial z} = \hat{y}(1 - \hat{y}) = 0.8808 \times (1 - 0.8808) = 0.1049$$

$$\frac{\partial z}{\partial w_1} = x_1 = 1$$

3. Regla de la cadena para actualizar w_1

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} \cdot \frac{\partial z}{\partial w_1}$$

$$\frac{\partial C}{\partial \hat{y}} = \hat{y} - y = 0,8808 - 1 = -0,1192$$

$$\frac{\partial \hat{y}}{\partial z} = \hat{y}(1 - \hat{y}) = 0.8808 \times (1 - 0.8808) = 0.1049$$

$$\frac{\partial z}{\partial w_1} = x_1 = 1$$

$$\Rightarrow \frac{\partial C}{\partial w_1} = (-0.1192)(0.1049)(1) = -0.0125$$

3. Regla de la cadena para actualizar w_1

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} \cdot \frac{\partial z}{\partial w_1}$$

dónde:

$$\frac{\partial C}{\partial \hat{y}} = \hat{y} - y = 0,8808 - 1 = -0,1192$$

$$\frac{\partial \hat{y}}{\partial z} = \hat{y}(1 - \hat{y}) = 0.8808 \times (1 - 0.8808) = 0.1049$$

$$\frac{\partial z}{\partial w_1} = x_1 = 1$$

$$\Rightarrow \frac{\partial C}{\partial w_1} = (-0.1192)(0.1049)(1) = -0.0125$$

4. Actualización del peso (η tasa de aprendizaje)

$$w_1 \leftarrow w_1 - \eta \frac{\partial C}{\partial w_1} = 1 - 0.1 \times (-0.0125) = 1 + 0.00125 = 1.00125$$

Actualización de pesos - Entropía Cruzada (I)

Datos del ejemplo:

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad y = 1, \quad w_1 = 1, \quad w_2 = -1, \quad b = 1$$

Actualización de pesos - Entropía Cruzada (I)

Datos del ejemplo:

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad y = 1, \quad w_1 = 1, \quad w_2 = -1, \quad b = 1$$

1. Cálculo hacia adelante

$$z = w_1 x_1 + w_2 x_2 + b = (1)(1) + (-1)(0) + 1 = 2$$
$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-2}} \approx 0,8808$$

Actualización de pesos - Entropía Cruzada (I)

Datos del ejemplo:

$$\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad y = 1, \quad w_1 = 1, \quad w_2 = -1, \quad b = 1$$

1. Cálculo hacia adelante

$$z = w_1 x_1 + w_2 x_2 + b = (1)(1) + (-1)(0) + 1 = 2$$
$$\hat{y} = \sigma(z) = \frac{1}{1 + e^{-2}} \approx 0,8808$$

2. Función de pérdida (entropía cruzada)

$$C = -[y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})]$$

$$C = -\log(0.8808) \approx 0.1269$$

Actualización de pesos - Entropía Cruzada (II)

3. Gradiente con entropía cruzada + sigmoide

$$\frac{\partial C}{\partial w_1} = (\hat{y} - y) \cdot x_1$$

Actualización de pesos - Entropía Cruzada (II)

3. Gradiente con entropía cruzada + sigmoide

$$\frac{\partial C}{\partial w_1} = (\hat{y} - y) \cdot x_1$$

$$\begin{split} \frac{\partial L}{\partial \hat{y}} &= -\frac{y}{\hat{y}} + \frac{1-y}{1-\hat{y}} \\ \frac{\partial \hat{y}}{\partial z} &= \sigma'(z) = \hat{y}(1-\hat{y}) \\ \frac{\partial z}{\partial w} &= x \quad \text{(si w es w_1, entonces $x = x_1$; para b es 1)} \\ \frac{\partial L}{\partial w} &= \left(-\frac{y}{\hat{y}} + \frac{1-y}{1-\hat{y}} \right) \cdot \hat{y}(1-\hat{y}) \cdot x = (-y(1-\hat{y}) + (1-y)\hat{y}) \, x = (\hat{y} - y) x \end{split}$$

Actualización de pesos - Entropía Cruzada (III)

$$\frac{\partial C}{\partial w_1} = (\hat{y} - y) \cdot x_1$$

Sustituimos valores:

$$\hat{y} - y = 0.8808 - 1 = -0.1192, \quad x_1 = 1$$

$$\Rightarrow \frac{\partial C}{\partial w_1} = -0.1192 \cdot 1 = -0.1192$$

Actualización de pesos - Entropía Cruzada (III)

$$\frac{\partial C}{\partial w_1} = (\hat{y} - y) \cdot x_1$$

Sustituimos valores:

$$\hat{y} - y = 0.8808 - 1 = -0.1192, \quad x_1 = 1$$

$$\Rightarrow \frac{\partial C}{\partial w_1} = -0.1192 \cdot 1 = -0.1192$$

4. Actualización del peso

$$w_1 \leftarrow w_1 - \eta \cdot \frac{\partial C}{\partial w_1} = 1 - 0.1 \cdot (-0.1192) = 1 + 0.01192 = 1.01192$$

Capacidad de Generalización

Parece todo lindo pero ...

Overfitting!

Parece todo lindo pero ...

Overfitting!

Solución por defecto

■ Aumentar el dataset de entrenamiento

Parece todo lindo pero ...

Overfitting!

Solución por defecto

- Aumentar el dataset de entrenamiento
- Sin embargo, es costoso y time-consuming

Regularización y otras yerbas

- Elección de una apropiada función de pérdida
- Mini-batch
- Otras funciones de activación
- Tasas de aprendizaje adaptativas
- Momentum
- Early Stopping
- Weight Decay
- Dropout

Regularización y otras yerbas (II)

Elección de una apropiada función de pérdida

Entropia cruzada vs. error cuadrátrico

Regularización y otras yerbas (II)

Elección de una apropiada función de pérdida

Entropia cruzada vs. error cuadrátrico

Mini-batch

- El gradiente batch usa todos los ejemplos antes de actualizar los pesos → muy lento!
- Actualizar los pesos usando batches de m ejemplos y entrenar hasta que todos los mini-batches son usados \rightarrow mejor performance!

Regularización y otras yerbas (II)

Elección de una apropiada función de pérdida

Entropia cruzada vs. error cuadrátrico

Mini-batch

- El gradiente *batch* usa todos los ejemplos antes de actualizar los pesos → muy lento!
- Actualizar los pesos usando batches de m ejemplos y entrenar hasta que todos los mini-batches son usados \rightarrow mejor performance!

Otras funciones de activación

- El desvanecimiento del gradiente (vanishing gradient problem) ocurre cuando el gradiente se hace demasiado pequeño al retropropagarse, entonces las capas iniciales no aprenden
- Sucede cuando activación es sigmoide o tanh
- Otras funciones como ReLU permiten atacar este problema

Regularización y otras yerbas (III)

Tasas de aprendizaje adaptativas (η)

- SI η muy grande \rightarrow pérdida total no decrece luego de actualización
- SI η muy chica \rightarrow el aprendizaje es muy lento
- **alternativa I**: reducir η luego de algunas épocas
- alternativa II: Adagrad, RMSprop, Adadelta, Adam, AdaSecant, Nadam

Regularización y otras yerbas (III)

Tasas de aprendizaje adaptativas (η)

- SI η muy grande \rightarrow pérdida total no decrece luego de actualización
- SI η muy chica \rightarrow el aprendizaje es muy lento
- **alternativa I**: reducir η luego de algunas épocas
- alternativa II: Adagrad, RMSprop, Adadelta, Adam, AdaSecant, Nadam

Momentum

- NO garantiza mínimos globales, pero es una optimización para SGD (Stochastic Gradient Descent)
- intuición: acumular una suma decreciente de los gradientes previos para acelear el aprendizaje

Regularización y otras yerbas (III)

Tasas de aprendizaje adaptativas (η)

- SI η muy grande \rightarrow pérdida total no decrece luego de actualización
- SI η muy chica \rightarrow el aprendizaje es muy lento
- **alternativa I**: reducir η luego de algunas épocas
- alternativa II: Adagrad, RMSprop, Adadelta, Adam, AdaSecant, Nadam

Momentum

- NO garantiza mínimos globales, pero es una optimización para SGD (Stochastic Gradient Descent)
- intuición: acumular una suma decreciente de los gradientes previos para acelear el aprendizaje

Early Stopping

■ Detener el entrenamiento cuando la performance mejora con respecto al conjunto de entrenamiento pero no sobre el conjunto de validación → vemos signos de overfitting

Regularización y otras yerbas (IV)

Dropout

- Deactivar, de manera aleatoria, algunas neuronas durante entrenamiento para forzar a otras a aprender
- El dropout es desactivado durante el testing para usar la red completa

Regularización y otras yerbas (IV)

Dropout

- Deactivar, de manera aleatoria, algunas neuronas durante entrenamiento para forzar a otras a aprender
- El dropout es desactivado durante el testing para usar la red completa

Weight Decay

- También llamada L2
- intuición: podar conexiones entre neuronas
- Penaliza proporcionalmente al cuadrado de la magnitud de los pesos

$$L(w,b) = L_0 + \lambda ||\mathbf{w}||^2$$

Variantes de las Redes Neuronales

Redes Neuronales Convolucionales (CNN) [1]

Redes Neuronales Convolucionales (CNN) [1]

■ aplicación → Son ampliamente usadas para procesamiento de imágenes

Redes Neuronales Convolucionales (CNN) [1]

- aplicación → Son ampliamente usadas para procesamiento de imágenes
- intuición I → cuando se procesa una imagen con una ANN, la primera capa fully conectada es muy compleja → conecta cada pixel a cada neurona

Redes Neuronales Convolucionales (CNN) [1]

- aplicación → Son ampliamente usadas para procesamiento de imágenes
- intuición I → cuando se procesa una imagen con una ANN, la primera capa fully conectada es muy compleja → conecta cada pixel a cada neurona
- intuición II → cada neurona oculta será conectada a solo una pequeña región de la imagen

[1] Introducing Convolutional Networks

Redes Neuronales Convolucionales (CNN) [1]

- aplicación → Son ampliamente usadas para procesamiento de imágenes
- intuición I → cuando se procesa una imagen con una ANN, la primera capa fully conectada es muy compleja → conecta cada pixel a cada neurona
- intuición II → cada neurona oculta será conectada a solo una pequeña región de la imagen

[1] Introducing Convolutional Networks

Redes Neuronales Recurrentes (RNN) [2]

Redes Neuronales Convolucionales (CNN) [1]

- aplicación → Son ampliamente usadas para procesamiento de imágenes
- intuición I → cuando se procesa una imagen con una ANN, la primera capa fully conectada es muy compleja → conecta cada pixel a cada neurona
- intuición II → cada neurona oculta será conectada a solo una pequeña región de la imagen

[1] Introducing Convolutional Networks

Redes Neuronales Recurrentes (RNN) [2]

■ aplicación → procesaminento de datos secuenciales (texto, sonido, ...)

Redes Neuronales Convolucionales (CNN) [1]

- aplicación → Son ampliamente usadas para procesamiento de imágenes
- intuición I → cuando se procesa una imagen con una ANN, la primera capa fully conectada es muy compleja → conecta cada pixel a cada neurona
- intuición II → cada neurona oculta será conectada a solo una pequeña región de la imagen

[1] Introducing Convolutional Networks

Redes Neuronales Recurrentes (RNN) [2]

- aplicación → procesaminento de datos secuenciales (texto, sonido, ...)
- intuición I → son redes con memoria, es decir que la salida depende el estado actual y del anterior

Deep Redes Neuronales (DNN)

Redes Neuronales Convolucionales (CNN) [1]

- aplicación → Son ampliamente usadas para procesamiento de imágenes
- intuición I → cuando se procesa una imagen con una ANN, la primera capa fully conectada es muy compleja → conecta cada pixel a cada neurona
- intuición II → cada neurona oculta será conectada a solo una pequeña región de la imagen

[1] Introducing Convolutional Networks

Redes Neuronales Recurrentes (RNN) [2]

- aplicación → procesaminento de datos secuenciales (texto, sonido, ...)
- intuición I → son redes con memoria, es decir que la salida depende el estado actual y del anterior
- intuición II → modela la probabilidad de que una palabra de entrada pertenezca a un slot. "llegaría a Neuquén el 2 de Noviembre"

[2] Recurrent Neural Networks

Conclusiones

Actualmente, el deep learning tiene gran dominancia en el campo de la IA:

"IA y deep learning se consideran equivalentes"

- Actualmente, el deep learning tiene gran dominancia en el campo de la IA:
 - "IA y deep learning se consideran equivalentes"
- Efectivas para resolver una gran cantidad de problemas

- Actualmente, el deep learning tiene gran dominancia en el campo de la IA:
 - "IA y deep learning se consideran equivalentes"
- Efectivas para resolver una gran cantidad de problemas
- Pero..

- Actualmente, el deep learning tiene gran dominancia en el campo de la IA:
 - "IA y deep learning se consideran equivalentes"
- Efectivas para resolver una gran cantidad de problemas
- Pero...
- Requieren de mucho computo paralelo para entrenamiento

- Actualmente, el deep learning tiene gran dominancia en el campo de la IA:
 - "IA y deep learning se consideran equivalentes"
- Efectivas para resolver una gran cantidad de problemas
- Pero..
- Requieren de mucho computo paralelo para entrenamiento
 - GPUs se vuelven esenciales

- Actualmente, el deep learning tiene gran dominancia en el campo de la IA:
 - "IA y deep learning se consideran equivalentes"
- Efectivas para resolver una gran cantidad de problemas
- Pero..
- Requieren de mucho computo paralelo para entrenamiento
 - GPUs se vuelven esenciales
- Requieren gran cantidad de datos

- Actualmente, el deep learning tiene gran dominancia en el campo de la IA:
 - "IA y deep learning se consideran equivalentes"
- Efectivas para resolver una gran cantidad de problemas
- Pero..
- Requieren de mucho computo paralelo para entrenamiento
 - GPUs se vuelven esenciales
- Requieren gran cantidad de datos
 - Tenemos la Big Data!

- Actualmente, el deep learning tiene gran dominancia en el campo de la IA:
 - "IA y deep learning se consideran equivalentes"
- Efectivas para resolver una gran cantidad de problemas
- Pero..
- Requieren de mucho computo paralelo para entrenamiento
 - GPUs se vuelven esenciales
- Requieren gran cantidad de datos
 - Tenemos la Big Data!
 - Supervisado require intervención de expertos!

- Actualmente, el deep learning tiene gran dominancia en el campo de la IA:
 - "IA y deep learning se consideran equivalentes"
- Efectivas para resolver una gran cantidad de problemas
- Pero..
- Requieren de mucho computo paralelo para entrenamiento
 - GPUs se vuelven esenciales
- Requieren gran cantidad de datos
 - Tenemos la Big Data!
 - Supervisado require intervención de expertos!
- Frameworks actuales para construir redes
 - TensorFlow
 - Keras y Deep-dive Keras
 - PyTorch

Bibliografía y material de referencia

Alpaydin, Ethem. Introduction to machine learning. 3era Edición *MIT Press*, 2020.

Brett Lantz. Machine Learning with R. Packt Publishing, 1997.

Tom M. Mitchell. Machine Learning. WCB McGraw-Hill, 1997.

Witten I., Frank E., Hall, M., Pal C.. Data Mining: Practical Machine Learning Tools and Techniques. 4th Edition WMorgan Kaufmann. Elsevier, 2017.

Michael A. Nielsen. Neural Networks and Deep Learning. 4th Edition *Determination Press*, 2015.

http://neuralnetworksanddeeplearning.com

Bibliografía y material de referencia

Andrew Ng. Stanford CS229 - Machine Learning Course. https://www.youtube.com/playlist?list=PLoROMyodv4rMiGOp3WXShtMGqzqpfVfbU

Andrew Ng. Deep Learning Al.
https://www.deeplearning.ai/resources/

Kilian Weinberger. Machine Learning for Intelligent Systems. https://www.cs.cornell.edu/courses/cs4780/2018fa/syllabus/

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning. Springer. 1995

Paul J. Werbos, *Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences*, PhD thesis, Harvard University, 1974.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, *Learning representations by back-propagating errors*, Nature, vol. 323, pp. 533–536, 1986.

DOI: 10.1038/323533a0