Compilers

Topic: Bottom-Up Parsing - LR(1) Parsers

Monsoon 2011, IIIT-H, Suresh Purini

ACK: Some slides are based on Keith Cooper's CS412 at Rice University

LR(1) – Reading the input string from left to right.

LR(1) – Deriving a right-most derivation for the string.

LR(1) – one token look-ahead

- Intuitively: For a grammar to be LR(1) it is sufficient that a left-to-right shift-reduce parser be able to recognize handles of right-sentential form when they appear on the stack.
- Remark: LR(k) and LR(1) grammars have the same expressive power. However, we could probably write a simpler LR(k) grammar for a language than an LR(1)

- Almost all programming language constructs are LR(1) Parsable
- LR-parsing method is the most general non-backtracking shift-reduce parsing method known.
- LR parser can detect a syntactic error as soon as it is possible to do so on a left-to-right scan of the input
- LR(1) Grammars are strictly more powerful than LL(1)

Hierarchy of Context-Free Languages

Hierarchy of Context-Free Languages

- Operator precedence includes some ambiguous
- LL(1) is a subset of SLR(1)

Hierarchy of Context-Free Languages

LR(k) versus LL(k)

Finding Reductions

- LR(k) Each reduction in the parse is detectable with
 - the complete left context,
 - the reducible phrase, itself, and
 - the k terminal symbols to its right
- LL(k) Parser must select the reduction based on
 - The complete left context
 - The next k terminals
 - Thus, LR(k) examines more context

LR(1) versus LL(1)

The following LR(1) grammar has no LL(1) counterpart

0	Goal	\rightarrow	5
1	5	\rightarrow	Α
2			В
3	Α	\rightarrow	(A)
4			<u>a</u>
5	В	\rightarrow	(B >
6			<u>b</u>

- It requires an arbitrary lookahead to choose between A & B
- An LR(1) parser can carry the left context (the '(' s) until it sees a or b
- The table construction will handle it
- In contrast, an LL(1) parser cannot decide whether to expand Goal by A or B
 - → No amount of massaging the grammar will resolve this problem

LR(1) Item

Def: An LR(1) item is of the form $[A \rightarrow \alpha.\beta, a]$, where $A \rightarrow \alpha\beta$ is a production and a is either a terminal symbol or \$.

Grammar	Example LR(1) Items
$S \rightarrow L = R \mid R$	$[S \rightarrow . L = R, id]$ $[S \rightarrow L. = R, id]$
$L \rightarrow R \mid id$	$[S \rightarrow L = . R, id]$ $[S \rightarrow L = R., id]$
$R \to L$	$\begin{bmatrix} L \rightarrow . * R , \$ \end{bmatrix}$ $[L \rightarrow * . R, \$]$
	$[L \rightarrow * R ., $]$

LR(1) Sets of Items

Def: An LR(1) Set of Items I is a collection of LR(1) Items (nothing fancy here, just the usual set definition).

Examples:

- 1. $I_1 = \{ [S \rightarrow . L = R, id], [S \rightarrow L = .R, id] \}$
- 2. $I_2 = \{ [S \rightarrow L = .R, id], [S \rightarrow L = R, id], [L \rightarrow R, s] \}$

$$S \rightarrow L = R \mid R$$

 $L \rightarrow * R \mid id$
 $R \rightarrow L$

Closure of LR(1) Items

Def: If I is the set of LR(1) items for a grammar G, then CLOSURE(I) consists of

- Every item of I
- If $[A \to \alpha.B\beta, a]$ is in CLOSURE(I) and $B \to \gamma$ is a production, then for each terminal b of FIRST(βa), $[B \to .\gamma, b]$ is also present in CLOSURE(I).

Compute

- 1) CLOSURE($\{ [S \rightarrow L. = R, \$] \}$)
- 2) CLOSURE({ $[L \rightarrow *.R, =], [L \rightarrow *.R, id] \}$)
- 3) CLOSURE($\{[S \rightarrow L = R, \$]\}$)

$$S \rightarrow L = R \mid R$$

$$L \rightarrow R \mid id$$

$$R \rightarrow L$$

Algorithm for Computing CLOSURE(I)

```
SetOfItems CLOSURE(I) {
    repeat
        for ( each item [A \to \alpha \cdot B\beta, a] in I )
            for ( each production B \to \gamma in G' )
            for ( each terminal b in FIRST(\beta a) )
            add [B \to \cdot \gamma, b] to set I;
    until no more items are added to I;
    return I;
}
```

Computing GOTO(I,X)

• I is an LR(1) Set of Items and X is either a terminal, or a non-terminal, or \$ symbol i.e., $(X \in N \cup T \cup \{\$\})$.

```
SetOfItems GOTO(I,X) {
    initialize J to be the empty set;
    for ( each item [A \to \alpha \cdot X\beta, a] in I )
        add item [A \to \alpha X \cdot \beta, a] to set J;
    return CLOSURE(J);
}
```

Computing LR(1) Sets of Items in an LR(1) Automaton

Note: We have to augment the grammar with the production $S' \longrightarrow S$ where S' is the new start symbol.

LR(1) Automaton

 $R \rightarrow L$

Note: LR(1) items marked in Red in each set are called kernel items. Non-kernels items can be derived from kernel items by applying a closure operation.

LR(1) Parsing Table Contruction

Rules for constructing the Action Part of the LR(1) Parsing Table

- 1. If state i contains $[S' \rightarrow S ., \$]$, set ACTION[i, \$] to acc.
- 2. If state i contains $[A \rightarrow \alpha.a\beta, b]$ and GOTO(i, a) = j, then set ACTION[i, a] = shift j.
- 3. If state i contains $[A \rightarrow \alpha]$, then set ACTION[i, a] to "reduce $A \rightarrow \alpha$ ".

Rules for constructing the GOTO Part of the LR(1) Parsing Table

- 1. For state i and non-terminal A if GOTO(i, A) = j, set GOTO(i, A) = j.
- 2. All the blank entries at the end are made "error".
- 3. The state corresponding to the item $[S' \rightarrow . S]$ is the initial state.

LR(1) Parsing Table Construction

	Action Part			GOTO Part			
	*		id	\$	S	L	R
0	S4		S5		1	2	3
1				acc			
2		S6		R6	4	5	
3				R3			
4	S4					8	7
5		R5		R5			
6	S11		S12			10	9
7		R4		R4	8		
8		R6		R6			
9				R2			
10				R6			
11						10	13
12				R5			
13				R4			

1. $S' \rightarrow S$

 $2. \quad S \to L = R$

3. $S \rightarrow R$

4. $L \rightarrow R$

5. $L \rightarrow id$

6. $R \rightarrow L$

LR(1) Parsing Example

Also try the algorithm on the string * id = id.

Stack	Input	Action			
0	id = * id \$	Shift-5 (Shift State 5, equivalently teminal id)			
0 id 5	= * id \$	Reduce-5 (Reduce using Rule-5, $L \rightarrow id$). Pop id. Push L which is equivalent to pushing GOTO(0, L)			
0 L 2	= * id \$	Shift-6 (Shift =)			
0 L 2 = 6	* id \$	Shift-11 (Shift *)			
0 L 2 = 6 * 11	id \$	Shift-12 (Shift id)			
0 L 2 = 6 * 11 id 12	\$	Reduce-5 (Reduce using Rule 5, $L \rightarrow id$). Pop id. Push L which is equivalent to pushing GOTO(11, L)			
0 L 2 = 6 * 11 L 10	\$	Reduce-6 (Reduce using Rule 6, $R \rightarrow L$). Pop L. Push R which is equivalent to pushing GOTO(11, R)			
0 L 2 = 6 * 11 R 13	\$	Reduce-5 (Reduce using Rule 5, $L \rightarrow R$). Pop *R. Push L which is equivalent to pushing GOTO(6, L)			
0 L 2 = 6 L 10	\$	Reduce-6 (Reduce using Rule 6, $R \rightarrow L$). Pop L. Push R which is equivalent to pushing GOTO(6, R)			
0 L 2 = 6 R 9	\$	Reduce-2 (Reduce using Rule, $S \rightarrow L = R$ Pop L = R. Push S which is equivalent to pushing GOTO(0, S)			
0 S 1	\$	Accept			

LR Parsing Algorithm

- LR Parser Configuration: $(s_0s_1 ... s_m, a_ia_{i+1}a_n)$
- This configuration represents the right-sentential form $X_1X_2 ... X_m a_i a_{i+1} ... a_n$ where X_i is the transition label from the state s_i -1 to s_i .

Behavior of the Parser

Current Configuration: $(s_0s_1 ... s_m, a_ia_{i+1}a_n \$)$

1. If $ACTION[s_m, a_i] = shift s$, then the next configuration is

$$(s_0 s_1 ... s_m s, a_{i+1} a_n \$)$$

Remark: This is equivalent to shifting the terminal symbol a_i as the transition arc (s_m, s) is labeled a_i .

- 2. If ACTION[s_m , a_i] = Reduce A $\rightarrow \beta$, then
 - a) Pop $r = |\beta|$ states from the stack and enter the intermediate configuration $(s_0 s_1 \dots s_{m-r}, a_i a_{i+1} \dots a_n \$)$.
 - b) Shift state s onto the stack where $GOTO(s_{r-m}, A) = s$ Final Configuration: $(s_0s_1 \dots s_{m-r}s, a_ia_{i+1} \dots a_n \$)$.
- 3. If ACTION[s_m , a_i] = accept, accept the input string.
- 4. If $ACTION[s_m, a_i] = error$, declare error and call an error recovery routine.

LR Parsing Algorithm

```
Let a be the first symbol of w$
while(1) { /* repeat forever */
  Let s be the state on top of the stack;
  if (ACTION[s, a] = shift t) \{
              push t onto the stack;
              let a be the next input symbol
  else {
     if (ACTION[s, a] = reduce A \rightarrow \beta) {
              pop |\beta| symbols off the stack;
              let state t now be on top of the stack;
              push GOTO[t, A] onto the stack;
     else {
      if ( ACTION[s, a] = accept ){ print ACCEPT; break; }
      else{ call error-recovery routine; }
```

Handling Precedence and Associativity Rules

- Q: If the state on the top of the parser stack is 3 and the next input symbol is +, should the parser perform a shift action or a reduce action?
 - Perform reduce action if we want to make + left-associativity operation.
 - Perform shift action if we want to make + right-associative.

Handling Precedence and Associativity Rules

- Q: If the state on the top of the parser stack is 3 and the next input symbol is *, should the parser perform a shift action or a reduce action?
 - Perform reduce action if we want to make Prec(+) > Prec(*)
 - Perform shift action if we want to make Prec(+) < Prec(*)

Handling if-then-else ambiguity

- LR(1) automaton for a C-like programming language could have thousands of states.
 - Huge parsing table.
- LALR(1) Approach: If two states have kernels whose first elements are same merge them.

• LALR(1) Table Compaction Approach can reduce the number of LR(1) states from thousands to hundreds.

LR(1) Parsing Table

STATE	A	.CTIC	GOTO		
DIALE	c	\overline{d}	\$	S	\overline{C}
0	s3	$\overline{\mathrm{s4}}$	•	1	$\overline{2}$
1			acc		
$rac{2}{3}$	s6	s7			5
	s3	s4			8
4	r3	r3		li	
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

LALR(1) Parsing Table

STATE	A	CTION	GOTO		
DIAIL	c	d	\$	S	C
0	s36	s47		1	2
1	}		acc		
2	s36	s47			5
36	s36	s47			89
47	r3	r3	r3		
5			r1		
89	r2	r2	r2		

- A Grammar is said to be LALR(1) if after merging states in LR(1) automaton no conflicts arise.
- When a LALR(1) automaton is constructed from LR(1) automaton, we can only expect to see Reduce-Reduce conflicts but not Shift-Reduce conflicts. Why?

$$\{[A \to c \cdot, d], [B \to c \cdot, e]\}$$
$$\{[A \to c \cdot, e], [B \to c \cdot, d]\}$$

• Final Remark: In Practice LALR(1) suffice for our purposes.