CSE 331

Computer Organizations

Homework 1

Due Date 04/11/2022 Friday 17:00

1. A compiler designer wants to improve the performance of a machine for one specific program. The program has the following properties:

	R-type (x10°)	I-Type (x10 ⁶)	J-Type (x10°)
Program instructions	50	30	20

	R-type	I-Type	J-Type
Required Cycles	2	4	3

Assume you can improve only one type with 50%. Which type do you prefer for improvement and how many times can you improve the whole program in the end?

CPI: $0.5 \times 2 + 0.3 \times 4 + 0.2 \times 3 = 1 + 1.2 + 0.6 = 2.8$

Most efficient improvement is I-type with %50. Because total cycle number of I-Type more than other types.

After improvement: 1 + 0.6 + 0.6 = 2.2 -----> (2.8 - 2.2) / 2.8 = %21 faster.

What You Know vs How much you know about it

JORGE CHAM @ 2008

2. In this part you will write an assembly program on MARS for finding and printing all divisible sum pairs as explained below:

Given an array of integers and a positive integer k, determine the number of (i,j) pairs where i < j and ar[i] + ar[j] is divisible by k.

Example

$$ar=\left[1,2,3,4,5,6\right]$$

$$k = 5$$

Three pairs meet the criteria: [1, 4], [2, 3], and [4, 6].

Function Description

Complete the divisibleSumPairs function in the editor below.

divisibleSumPairs has the following parameter(s):

- ullet int n: the length of array ar
- int ar[n]: an array of integers
- int k: the integer divisor

Returns

- int: the number of pairs

Input Format

The first line contains 2 space-separated integers, n and k.

The second line contains n space-separated integers, each a value of arr[i].

Constraints

- $2 \le n \le 100$
- $1 \le k \le 100$
- $1 \le ar[i] \le 100$

Sample Input

Explanation

Here are the 5 valid pairs when k=3:

•
$$(0,2) \rightarrow ar[0] + ar[2] = 1 + 2 = 3$$

•
$$(0,5) \rightarrow ar[0] + ar[5] = 1 + 2 = 3$$

•
$$(1,3) \rightarrow ar[1] + ar[3] = 3 + 6 = 9$$

•
$$(2,4) \rightarrow ar[2] + ar[4] = 2 + 1 = 3$$

•
$$(4,5) \rightarrow ar[4] + ar[5] = 1 + 2 = 3$$