	10/20/19
	HW 6 returned
	HW7 due now
	HW8 available, due wednesday 12/4/19 at start of class.
	Last Time 'Spherical lines give shortest paths
	· Stereographic projection preserves angles
	(started not finished)
	Warm Up BP1=1BQ1
	Tps2. "Vertical slice" through O, N, & P
	1=110(5=0) NEM, (=17052
	C=Tros2 DN
	$\Rightarrow F(C \setminus \{N\}) = L = ITn(z=0), line in R$
<u> </u>	Today · Finish geometric proof that S.P. preserves angles
	· Alternative (algebraic) proof
	· Notion of distance on R2 corresponding to distance on S2
	under G.P.
	Continuing proof that 5.P- preserves angles:
	Suppose given PES2 & a tangent vector v at Pto S2. (P = N
	Suppose given PES ² & a tangent vector V at Pto S ² . (P \neq N) Let T be the plane in \mathbb{R}^3 containing N , P, & tangent vector
	Also consider great circle D.
	Also Constant State D. C.
	passing through N&P. (D=TTD 052, TTD plane through 0,N&
	F(D) passes through 0 & F(P), and is a line
. •	or the plane. Want to snow $\theta_1 = \theta_2$,
	the angle between D and v is the same as
	the argle between F(D) and L.

Note: Once we prove this, we will deduce that the angle between any: two curies on 52 is preserved by S.P. (because if cures 8, & 82 on 52 have some tangent at P then F(X1) & F(X2) have some tangent at F(P) in R2 - Fis differentiable) So given 8, 82 consider circles C, & C2 as above with some tangents: Our carc snows angle between C, & Cz is preserved => OK Easy lase : Y is honzontal Angle is proved (= 172) -) three planes >> in general Case 2: V not honzontal [=F(C) (5=0) &RBQ = △ RBP (SAS) L) PB = IQB , (PBR = CQBR, LBR = IBR \Rightarrow $0_1 = 0_2$

Alternative approach: algebra/calculus F: 52/ {N3 -> R2 F(P) F-1: R2 -> 52/{N3 CR3 $(u,v) \mapsto \frac{x(u,v) = \frac{1}{1/2 + v^2 + 1}(2u, 2v, u^2 + v^2 + 1)}{2u^2 + v^2 + 1}$ F-1 is a differentiable function means we have an induced map ("the derivative of F-") D(F-1): TFIP) R2 -> TPS2.CR3 $\begin{pmatrix}
\frac{d\times}{du} & \frac{dy}{du} & \frac{d\Xi}{du} \\
\frac{d\times}{dv} & \frac{dy}{dv} & \frac{d\Xi}{dv}
\end{pmatrix}$ linear map given by matrix By the chain rule, D(F-1) has property that is sends the tangent vector to a parametrized curve in R2 to tangent vector to the corresponding curve in is2. So, just need to check that linear map D(F-1) preserves angles.