

The Motivation

SLinGen^[1,2] is a code generator for small scale linear algebra applications

Currently SLinGen targets only real-valued applications

Our Goal: Extend SLinGen to generate code for complex dense linear algebra applications

Picking a Storage Layout

Storage Layouts affect Performance!

Experimental Setup: Intel Core i7-7700K(Kaby Lake microarchitecture) 4.20 GHz, 256kB L1 Cache, IMB L2 Cache

Code Generation for Complex Valued Linear Algebra

Ravi Shreyas Anupindi Daniele G. Spampinato Franz Franchetti

Mapping Math to Memory

Reference types translate matrix element accesses to physical layout accesses

New Reference Type for Block Interleaved Storage Layout of Complex Matrices

Loading and Storing

New Loaders and Storers for complex matrices. Both real and imaginary parts have to be packed

New Computational Units

Example for Complex Matrix Multiplication

Building blocks that can be implemented efficiently for any ISA

Results

Performance (Flops/Cycle) vs Dimensions of Matrices

Experimental Setup: Intel Core i7-4790K (Haswell microarchitecture) 4.00 GHz,

256kB L1 Cache, IMB L2 Cache

Competitors:

- Hand written kernel vectorized by gcc auto-vectorize
- Eigen^[4]: C++ template library for linear algebra

Future Work

- Performance improvement from handling register spills
- Support for mixed data type kernels

Acknowledgement

The authors wish to thank Tze Meng Low and Thom Popovici for fruitful discussions and suggestions during the course of the project.

References

- [1] SLinGen source code hosted at https://github.com/danielesgit/slingen
- [2] D. G.Spampinato and M. Püschel, "A Basic Linear Algebra Compiler for Structured Matrices", In Code Generation and Optimization (CGO), pp 117-127, 2016
- [3] D.T. Popovici, F. Franchetti and T. M. Low, "Mixed Data Layout Kernels for Vectorized Complex Arithmetic", in High Performance Extreme Computing (HPEC), pp 1-7, 2017
- [4] Eigen C++ Template Library: http://eigen.tuxfamily.org