## Importance sampling: 4 taxa case

**Data.** 4 sequences for cats: cat, tiger, leopard, clouded leopard in phylip file 4taxacats.phy:

Cat ATGTTCATAAACCGGTGACTATTTTCAACTAATCACAAACTGAGCTGGCATGGTGGGGACTGC...
CloudedLeopard ATGTTCATAAACCGCTGACTATTTTCAACCAATCACAAAGATAGCTGGCCTGGGGGGACTGC...
Leopard ATGTTCATAAACCGCTGACTATTTTCAACCAATCACAAAGATAGCTGGCATGGTGGGGACTGC...

Conditional clade distribution. From the phylip input file, we obtain the conditional clade distribution from a sample bootstrapped NJ trees with the perl script seq2ccdprobs.pl.

**Sample topology.** From the conditional clade distribution, we sample one topology. Denote by  $p_{ccd}(T)$  the probability of sampling the particular topology T from the conditional clade distribution.

Sample branch lengths given a topology. Let T be the 4-taxon topology sampled from the conditional clade distribution.

1. Choose one tip at random to exclude. Denote the other three sequences by  $seq_1$ ,  $seq_2$ ,  $seq_3$ , where  $seq_1$ ,  $seq_2$  are sisters.



- 2. Compute the matrices of counts between all pairs of the three sequences:  $x_{12}, x_{13}, x_{23}$ , and simulate the branch length between each pair with Tamura-Nei (TN) model, and  $\eta = 0.5$  (see JCvsTN.pdf for details on choosing TN and  $\eta$ ):  $d_{12}, d_{13}, d_{23}$
- 3. Compute the distances between  $seq_1, seq_2$  and its parent x:

$$d_{1x} = \frac{(d_{12} + d_{13} - d_{23})}{2}$$
$$d_{2x} = \frac{(d_{12} + d_{23} - d_{13})}{2}$$

4. Convert  $seq_1, seq_2, seq_3, seq_4$  to matrices like

## Cat ATGTTCAT...

1

5. Estimate the sequence distribution at x from the sequences  $seq_1, seq_2$ . The formula for the likelihood at site j for node x, parent of 1, 2 is:

$$L_{j}^{x}(s) = \left[\sum_{i \in \{A, C, G, T\}} P_{si}(d_{1x}) L_{j}^{1}(i)\right] * \left[\sum_{i \in \{A, C, G, T\}} P_{si}(d_{2x}) L_{j}^{2}(i)\right]$$

$$s \in \{A, C, G, T\}$$

where

$$L_j^k(i) = S_k[i, j], k = 1, 2$$
$$P(t) = \exp(\hat{Q}t)$$

So that the sequence matrix for x is given by  $S_x$ :

$$S_x[i,j] = \frac{\pi_i L_j^x(i)}{\sum_{i=1}^4 \pi_i L_j^x(i)}$$

- 6. Compute the count matrix between  $seq_3$ ,  $seq_4$ :  $x_{34}$  and simulate the branch length  $d_{34}$  with TN model and  $\eta = 0.5$
- 7. Compute the equivalent to the count matrix between x and  $seq_3, seq_4$ :

$$x_{x3} = \sum_{j=1}^{nsites} S_3[,j] * S_x[,j]^T$$

- 8. Simulate branch lengths  $d_{3x}, d_{4x}$  with TN model and  $\eta = 0.5$
- 9. Compute the distances between  $seq_3$ ,  $seq_4$  and its parent y, and between x, y:

$$d_{3y} = \frac{(d_{34} + d_{3x} - d_{4x})}{2}$$
$$d_{4y} = \frac{(d_{34} + d_{4x} - d_{3x})}{2}$$
$$d_{xy} = \frac{(d_{3x} + d_{4x} - d_{34})}{2}$$

10. Compute the density of the branch lengths given the topology, denoted as  $f_{TN}(d|T)$  for  $d = (d_{1x}, d_{2x}, d_{xy}, d_{3y}, d_{4y})$ . We simulate the branch lengths:  $d_{12}, d_{13}, d_{23}, d_{3x}, d_{4x}, d_{34}$  with the TN model as gamma random variables. If we assume these 6 branch lengths are independent (are they?), the joint density is given by

$$f(d_{12}, d_{13}, d_{23}, d_{3x}, d_{4x}, d_{34}) = \prod_{i} \frac{\beta_i^{\alpha_i}}{\Gamma(\alpha_i)} d_i^{\alpha_i - 1} \exp(-\beta_i d_i)$$

We then transform those branch lengths into the desired parameters (keeping the variable  $d_{13}$  for the transformation to be bijective):

$$d_{1x} = \frac{(d_{12} + d_{13} - d_{23})}{2}$$

$$d_{2x} = \frac{(d_{12} + d_{23} - d_{13})}{2}$$

$$d_{13} = d_{13}$$

$$d_{3y} = \frac{(d_{34} + d_{3x} - d_{4x})}{2}$$

$$d_{4y} = \frac{(d_{34} + d_{4x} - d_{3x})}{2}$$

$$d_{xy} = \frac{(d_{3x} + d_{4x} - d_{34})}{2}$$

The determinant of the Jacobian in absolute value is 4. Thus, the joint density for the transformed variables is

$$f(d_{1x}, d_{2x}, d_{3y}, d_{4y}, d_{xy}, d_{13}) = \left[\prod_{i} \frac{\beta_{i}^{\alpha_{i}}}{\Gamma(\alpha_{i})}\right] (d_{1x} + d_{2x})^{\alpha_{12} - 1} \exp\left(-\beta_{12}(d_{1x} + d_{2x})\right)$$

$$* d_{13}^{\alpha_{13} - 1} \exp\left(-\beta_{13}d_{13}\right)$$

$$* (d_{13} - d_{1x} + d_{2x})^{\alpha_{23} - 1} \exp\left(-\beta_{23}(d_{13} - d_{1x} + d_{2x})\right)$$

$$* (d_{3y} + d_{xy})^{\alpha_{3x} - 1} \exp\left(-\beta_{3x}(d_{3y} + d_{xy})\right)$$

$$* (d_{4y} + d_{xy})^{\alpha_{4x} - 1} \exp\left(-\beta_{4x}(d_{4y} + d_{xy})\right)$$

$$* (d_{3y} + d_{4y})^{\alpha_{34} - 1} \exp\left(-\beta_{34}(d_{3y} + d_{4y})\right) * 4$$

We want to integrate out  $d_{13}$ ,

$$f_{TN}(d_{1x}, d_{2x}, d_{3y}, d_{4y}, d_{xy}) = \int_{0}^{\infty} f(d_{1x}, d_{2x}, d_{3y}, d_{4y}, d_{xy}, d_{13}) dd_{13}$$

$$= \left[ \prod_{i} \frac{\beta_{i}^{\alpha_{i}}}{\Gamma(\alpha_{i})} \right] (d_{1x} + d_{2x})^{\alpha_{12} - 1} \exp\left( -\beta_{12}(d_{1x} + d_{2x}) \right)$$

$$* 4 \exp\left( -\beta_{23}(-d_{1x} + d_{2x}) \right)$$

$$* (d_{3y} + d_{xy})^{\alpha_{3x} - 1} \exp\left( -\beta_{3x}(d_{3y} + d_{xy}) \right)$$

$$* (d_{4y} + d_{xy})^{\alpha_{4x} - 1} \exp\left( -\beta_{4x}(d_{4y} + d_{xy}) \right)$$

$$* (d_{3y} + d_{4y})^{\alpha_{34} - 1} \exp\left( -\beta_{34}(d_{3y} + d_{4y}) \right)$$

$$* \int_{0}^{\infty} d_{13}^{\alpha_{13} - 1}(d_{13} - d_{1x} + d_{2x})^{\alpha_{23} - 1} \exp\left( -(\beta_{13} + \beta_{23})d_{13} \right) dd_{13}$$

are we keeping the constants? if not, we only need to check that the integral is finite (which mathematica could not do, unless certain conditions)

**Importance weight.** Let p(T) denote the prior distribution of tree T (for topology only, or with bl?), and let L(T, d) denote the likelihood of T under the GTR model.

$$L(T,d) = \prod_{k} L_k(T,d)$$

$$L_k(T,d) = \sum_{i=1}^4 \sum_{j=1}^4 \pi_i P_{ij}(d_{xy}) P_{i1}(d_{1x}) P_{i2}(d_{2x}) P_{j3}(d_{3y}) P_{j4}(d_{4y})$$

## (likelihood correct?)

Then, the importance weight is

$$w(T) = \frac{p(T)L(T,d)}{g(T)}$$
$$g(T) = p_{ccd}(T)f_{TN}(d|T)$$

## Algorithm 1: Importance sampling

**Input:** PHYLIP or NEXUS file with DNA sequences for 4 taxa; likelihood model (e.g. GTR) and prior

- Compute the conditional clade probabilities by bootstrapping and NJ:  $p_{ccd}$
- for i = 1 to N do
  - Sample a topology  $T \sim p_{ccd}$
  - Sample branch lengths from TN model  $d|T \sim f_{TN}(d|T)$
  - Compute importance weight w(T) with likelihood and prior
- Normalize importance weights