2025 年 CIMC"西门子杯"中国智能制造挑战赛

智能制造工程设计与应用类赛项:工业嵌入式系统开发方向(筹) 初赛 赛题

设计并实现一个包含电压数据采集、处理、显示、存储工业嵌入式系统,需支持以下功能,并通过全流程测试验证其正确性、完整性与可靠性:

一、任务细则

以下所有逻辑层程序功能都需要放在 sysFunction 文件夹下,否则总分按-20 分处理! 1、系统功能

(1) 系统自检:利用命令可以实现系统的自检,通过串口输出自检结果。

具体要求:通过串口输入"test"指令,开始进行系统自检,串口返回输出样例如图所示。

其中,flash 以能否读取到 ID 判断测试是否通过; TF card 以是否存在判断通过。以下举例为 TF 卡测试不通过的样例。

(2) 时间设置:通过串口指令"RTC Config"设置基准时间,更新至RTC 模块并反馈结果。

通过串口一次性输入标准时间(例如: 2025年 01月 01日 12:00:30),串口返回如下图所示。

RTC Config success

Time: 2025-01-01 12:00:30

时间格式中是否有年月日等分割文字或符号不影响评分,例如输入 2025-01-01 01-30-10 也可以。

通过串口指令"RTC now"可以显示当前的时间,串口返回如下图所示。

Current Time: 2025-01-01 12:00:30

2、配置管理

(1) 读取配置:可以从 TF 卡的文件系统中读取 config.ini 文件,更新变比和阈值至 Flash,若文件不存在则返回"无此文件"。具体流程如下:

串口输入"conf",如文件系统中没有该文件,则返回如下图所示。

输入<=== conf 输出===> config.ini file not found.

如读取到该文件,则返回如下图所示。

输入<=== conf 输出===> Ratio = xxxx Limit = xxxx config read success

(注: 为降低难度, 此处不考察配置文件内标签错误的情况)

config.ini 文件格式示例如下图所示。(目前系统只存在一个通道,因此只读取 Ch0 的信息)

config.ini
[Ratio]
Ch0 = 10.5
[Limit]
Ch0 = 100

(2) 变比设置:可以通过指令实现变比的设置,需验证输入有效性(如负值、超量程)。 具体流程如下: 输入指令"ratio",首先读取出原有的变比值,然后提示输入新的变比,有效值范围为 0-100,变量类型为浮点数。如下图所示:

输入<=== ratio 输出===> Ratio = 1.0 Input value(0~100): 输入<=== 10.5 输出===> ratio modified success Ratio = 10.5

如果输入了一个错误的值,则需要返回参数无效,变比值不改变,如下图所示。

输入<=== ratio 输出===> Ratio = 1.0 Input value(0~100): 输入<=== 100.5 输出===> ratio invalid Ratio = 1.0

(3) 阈值设置:可以通过指令设置警报阈值,需验证输入有效性(如负值、超量程)。 具体流程如下:

输入指令"limit",首先读取出原有的警报阈值,然后提示输入新的阈值,有效值范围为 0-500,变量类型为浮点数。如下图所示:

输入<=== limit
输出===> limit = 1.0
Input value(0~500):
输入<=== 50.12
输出===> limit modified success
limit = 50.12

如果输入了一个错误的值,则需要返回参数无效,阈值参数不改变,如下图所示。

输入<=== limit

输出===> limit = 1.0

Input value($0 \sim 500$):

输入<=== 510.12

输出===> limit invalid

limit = 1.0

(4) 参数存储:可以将变比参数存储在外部 flash 中,掉电后参数可以存储,具体流程如下:

输入指令 "config save", 首先读取出当前的参数,通过串口打印出来,然后存储到 flash中。

输入<=== config save

输出===> ratio: 20.5

limit: 100.00

save parameters to flash

输入指令 "config read",从 flash 中读取出相关的参数,通过串口打印出来。

输入<=== config read

输出===> read parameters from flash

ratio: 20.5

limit: 100.00

3、采样控制

- (1) 采样启停(串口):通过指令 start/stop 控制采样过程, LED1 指示灯闪烁(1s 周期), OLED 实时显示时间与电压值。具体操作如下:
- 串口输入"start"启动周期采样模式,例如周期为 5 秒,每 5 秒输出一条采样数据,示例如图所示。(通道电压值保留小数点后两位)

输入<===start

输出===> Periodic Sampling

sample cycle: 5s

2025-01-01 00:30:05 ch0=10.5V

2025-01-01 00:30:10 ch0=10.5V

.....

此时,OLED 第一行显示时间(只显示时分秒,格式 hh:mm:ss),第二行显示电压值(小数点后保留两位,格式 xx.xx V)

• 串口输入"stop"停止周期采样模式, LED1 常灭。示例如图所示:

输入<===stop

输出===> Periodic Sampling STOP

此时,OLED 第一行显示 "system idle",第二行为空。

(2) 采样启停(按键):通过按下 KEY1,控制采样过程,按下后状态翻转,例如:当前采集停止状态下,按下 KEY1,系统开始采集;系统采集状态下,按下 KEY1,系统停止采集。

内容显示同(1)中所描述。

(3) 周期调整:通过按键 KEY2/KEY3/KEY4 动态修改采样周期(5s/10s/15s),需验证配置持久化(断电重启后生效)。例如按下 KEY3 时,输出如下示意:

输出===> sample cycle adjust: 10s

2025-01-01 00:30:05 ch0=10.5V

2025-01-01 00:30:15 ch0=10.5V

•••••

此时,OLED 数据与串口同步,每10s刷新一次。

(注: 自上电起,除了采集状态下 OLED 显示刷新数据外,其余时刻均第一行显示 "system idle",第二行为空)

(4) 超限提示:

当采样值超过 limit 设置的限制时,需要点亮 LED2,在串口中打印增加 OverLimit 字样和具体的阈值要求,如图所示:

输出===> 2025-01-01 00:30:05 ch0=10.5V OverLimit (10.00)!
2025-01-01 00:30:15 ch0=10.5V OverLimit (10.00)!

4、数据处理

通过指令 hide 将时间戳转换为 Unix 时间戳(4 字节 HEX)和电压值(4 字节 HEX),需满足编码规则。

时间戳: 4字节, Unix 时间戳 (如 2025-01-01 12:30:45 → 1735705845 → 6774C4F5) 电压值: 4字节, 分为两部分:

小数点前: 2字节(高位在前)例如: 12.5V 整数部分 12 → 000C

小数点后: 2 字节(高位在前)例如: 12.5V 小数部分 $0.5*65536=32768 \rightarrow 8000$ 因此 2025-01-01 12:30:45 ch0=12.5V 经过隐藏后数据变为 6774C4F5000C8000,经过解译后验证准确性。

该部分内容处理流程如下:输入"hide",此时串口打印如下图示意:

如果此时出现了 overLimit 事件,则在最后标注*,例如:

输入<===hide

输出===> 6774C4F5000C8000*

6774C4FA000C8000*

输入 unhide,恢复到原有格式。

5、数据存储

- (1) 采集数据存储: 在 TF 卡下建立 sample 文件夹,将实时采样数据存储到该文件夹中,要求如下:
 - a. 每个文件存储 10 条数据,超过 10 条后需新建文件;
 - b. 文件名为 sampleData {datetime}.txt, 其中 datetime 为文件建立时间,格式为连续的 14 个数字,例如 2025-01-01 00:30:10,则文件名为 sampleData20250101003010.txt
 - c. 文件内存储格式与串口输出格式可能不同, 见示例文件。
- (2) 超阈值数据存储:在 TF 卡下建立 overLimit 文件夹,将实时<u>超限采样数据</u>存储到该文件夹中,要求如下:
 - a. 每个文件存储 10 条数据, 超过 10 条后需新建文件:
 - b. 文件名为 overLimit{datetime}.txt, 其中 datetime 为文件建立时间,格式为连续的14 个数字,例如 2025-01-01 00:30:10,则文件名为 overLimit20250101003010.txt
 - c. 文件内存储格式与串口输出格式可能不同, 见示例文件。
 - (3) 日志存储: 在 TF 卡下建立 log 文件夹,将操作内容存储到该文件夹中,要求如下:
 - a. 每次上电后新建一个文件, 直至断电前, 所有的操作日志都记录在该文件中;
 - b. 文件名为 log{id}.txt, 其中 id 从 0 开始,每次重新上电自增 1,例如第一次上电后的日志文件名为 log0.txt,第二次为 log1.txt
 - c. 文件 id 号(上电次数)应当记录在 MCU 中,例如将 TF 卡清空后,第五次上电后应当生成的是 log4.txt,而不是从 0 开始。
- (4) 加密数据存储:在 TF 卡下建立 hideData 文件夹,将操作内容存储到该文件夹中,要求如下:
 - a. 每个文件存储 10 条数据,超过 10 条后需新建文件;
 - b. 文件名为 hideData {datetime}.txt, 其中 datetime 为文件建立时间,格式为连续的 14 个数字,例如 2025-01-01 00:30:10,则文件名为 hideData20250101003010.txt

- c. 启用加密存储时, sample 文件夹中不存储数据, 但如果超阈值触发, 则(2)仍要按原有格式存储。
- d. 需同时存储未加密数据和加密数据用于校验准确性,文件内存储格式与串口输出格式可能不同,见示例文件。

二、评分细则

根据测评任务流程进行评分,按评分大类细则分数如下:

评分大类	逻辑 功能	串口	flash	OLED	RTC	tf	LED	KEY	ADC
1、系统上电初始化测试		2	2	1					
2、时钟设置		3			3				
3、系统检测功能	0.5	2			1.5	4			
4、数据采集与参数存储	3.5	9	2	4	7.5	2	1	2	2
5、超阈值数据采集	4	4	2		1.5	2	1		2
6、数据加密	3	3			1.5	4			4
7、操作审计	4					8			
8、配置文件读取	1	1				2			

参赛队伍需严格按照评测逻辑流程完成视频的录制,如进行了其他操作,则评审会进行不得分或扣分。评测流程如下:

1、系统上电初始化测试	(注:此时不要插入 TF 卡,且保证系统上电次数计数器为 0)
	1.1 系统上电(复位)后,串口打印"====system init===="
	1.2 从 flash 中读取设备 ID 号: "Device_ID:2025-CIMC-队伍编号"
	1.3 串口打印"====system ready===="
	1.4 OLED 第一行显示"system idle"
2、时钟设置	
	2.1 串口输入"RTC Config",串口返回"Input Datetime"
	2.2 输入当前标准时间,例如"2025-01-01 15:00:10",返回如赛题要求 1 (2)
	2.3 输入"RTC now",串口返回如赛题要求 1 (2)
3、系统检测功能	(注:此时保证 TF 卡为清空状态)
	3.1 输入"test",开始系统自检
	3.2 串口输出如赛题要求 1 (1) 中的不通过案例, tf 卡不通过
	3.3 断电,插卡,重新上电
	3.4 输入"test",开始系统自检
	3.2 串口输出如赛题要求 1 (1) 中的通过案例,能显示所有状态为 ok
4、数据采集与参数存储	
	4.1 输入"ratio", 设置变比为 1.0, 串口交互如赛题说明 2 (2) 所示
	4.2 输入"ratio", 设置变比为 199.99, 串口交互如赛题说明 2 (2) 所示
	(注: 变比有效范围为 0~100)
	4.3 输入"start", LED1 按 1s 周期闪烁
	4.4 串口按当前采样周期 输出数据,串口交互如赛题说明 3 (1)

CIMC"西门子杯"中国智能制造挑战赛

	4.5 OLED 第一行显示时间,第二行显示电压值,具体要求如赛题 3(1)
	4.6 调整滑动变阻器,电压值发生改变
	4.7 采集约 20 条数据以上,输入 "stop",串口交互如赛题说明 3 (1)
	4.8 OLED 第一行显示"system idle"
	4.9 输入"ratio",设置变比为 10.0,串口交互如赛题说明 2 (2) 所示
	4.10 按下 KEY1, LED1 按 1s 周期闪烁, 系统开始采集, 显示同 4.4、4.5, 当前值应当放大 10 倍
	4.11 采集约 20 条数据以上,按下 KEY3,系统周期修改为 10s,串口交互如赛题说明 3(3)
	4.12 采集约 20 条数据以上,按下 KEY4,系统周期修改为 15s,串口交互如赛题说明 3(3)
	4.13 采集约 20 条数据以上,按下 KEY1,系统停止采集,显示同 4.7、4.8
	4.15 输入"config save",将设定的变比值存储到 flash 中
	4.16 系统断电,拔下 tf 卡,在 sample 文件夹中能看到相关数据(分别打开检验)
	4.17 插卡,系统上电,输入"config read",能读取到存储的变比值
5、超阈值数据采集	
	5.1 输入指令"limit",设置报警阈值为 30(有效范围为 0~200),交互如赛题 2(3)所示
	5.2 输入指令"limit",设置报警阈值为 300(有效范围为 0~200),交互如赛题 2(3)所示
	5.3 输入"start", LED1 按 1s 周期闪烁
	5.4 串口按当前采样周期 输出数据,串口交互如赛题说明 3 (1)
	5.5 调整滑动变阻器,将输出点电压值调整到 3V 以上(变比为 10,则工程值大于 30)
	5.6 串口交互如赛题要求 3 (4) 所示
	5.7 LED2 点亮
	5.8 调整滑动变阻器,将输出点电压值调整到 3V 以下(变比为 10,则工程值小于 30)
	5.9 串口交互如赛题要求正常情况所示
	5.10 LED2 熄灭
	5.11 系统断电,拔下 tf 卡,在 overLimit 文件夹中能看到相关数据(分别打开检验)
	5.12 插卡,系统上电,输入"config read",不能读取到 5.1 设定的阈值
	5.13 重复 5.1 的操作
6、数据加密	
	6.1 输入"start",启动采集过程
	6.2 输入"hide",系统启用数据加密,串口输出如赛题 要求 4 所示
	6.3 采集约 20 条数据以上,调整滑动变阻器到最大,串口输出如赛题要求 4 所示
	6.4 采集约 20 条数据以上,输入"unhide",系统取消数据加密,恢复到原有格式
	6.5 系统断电,拔下 tf 卡
	6.6 在 sample 文件夹中找不到相关数据
	6.7 在 overLimit 中可以看到采集的超阈值的数据
	6.8 在 hideData 中可以看到采集的数据文件,格式按示例所示。
	6.9 利用校验工具,校验加密数据的准确性(确保小数点后两位准确,后面精度不考虑)
7、操作审计	
	7.1 在 log 文件夹下,打开 log0.txt,记录有 2.1、3.1 的操作和结果
	7.2 在 log 文件夹下,打开 log1.txt,记录有 3.4、4.1、4.2、4.3、4.7、4.9、4.10、4.11、4.12、
	4.13、4.15 的操作和结果
	7.3 在 log 文件夹下, 打开 log2.txt, 记录有 5.1、5.2、5.3 的操作和结果
	7.4 在 log 文件夹下, 打开 log3.txt, 记录有 5.13、6.1、6.2、6.4 的操作和结果
8、配置文件读取	
	8.1 确保 tf 卡根目录存在 config.ini 文件, 且格式正确

CIMC"西门子杯"中国智能制造挑战赛

	8.2 系统上电,串口输入 conf,读取文件内信息,如赛题要求 2 (1) 所示
9、说明	
	完成上述工作后,打开代码,说明 1.2 的部分是存储在 flash 中。

注意,如果没有安装 CR2032 电池,每次上电需要重新配置 RTC 时钟,该配置操作不扣分。

三、分数组成

为防止参赛队伍在方案文档和答辩环节中夸大任务完成效果,经专家组讨论,设置功能完成度系数,该系数=(功能演示成绩/100)*100%

最终比赛成绩分数=功能演示成绩(满分 100 分)*60%+技术方案文档(满分 100 分*功能完成度系数)*25%+答辩环节(满分 100 分*功能完成度系数)*15%- 违规扣分分数