Retrieval Practice and Learning

What is the most effective way to learn a subject? Many students focus exclusively on the *encoding* process----that is, how to get the knowledge into memory in the first place. For example, taking notes is an activity for encoding knowledge.

Retrieval, on the other hand, is the process of reconstructing that knowledge from memory. Karpicke and Blunt (http://science.sciencemag.org/content/331/6018/772) (2011) demonstrated that retrieval is more effective for learning than activites designed to promote effective encoding. They conducted an experiment in which subjects had to learn about sea otters by reading a passage. Subjects were randomly assigned to one of two conditions: some were instructed to create a concept map (https://en.wikipedia.org/wiki/Concept_map) as they read the passage, while others were instructed to practice retrieval (i.e., read the passage, recall as much as they could, read the text again, and recall again). The two main measurements they recorded were:

- 1. each subject's score on a follow-up learning test one week later
- 2. each subject's prediction of how well they would do on that test

In this lab, you will analyze data from a *replication* of Karpicke and Blunt's experiment, conducted by Buttrick *et al.*

- The data file is : data.csv.
- The codebook (explaining what the variables mean) is : codebook.csv.

In [1]:

```
import numpy as np
import pandas as pd

data_df = pd.read_csv("data.csv")
data_df
```

Out[1]:

	ID	Age	Gender	Date.P1	Date.P2	Condition	IC.1	IC.2	Comp.1	Comp.2	 Scorer.2.
0	KB1	18	Female	11/21/16	11/28/16	Concept	1	1	1	1	 Na
1	KB2	18	Male	11/21/16	11/28/16	Concept	1	1	1	1	 Na
2	KB3	18	Male	11/21/16	11/28/16	Concept	1	1	1	1	 Na
3	KB4	19	Female	11/21/16	11/28/16	Concept	1	1	1	1	 Na
4	KB5	19	Female	11/22/16	11/29/16	Concept	1	1	1	1	 Na
5	KB6	19	Male	11/22/16	11/29/16	Concept	1	1	1	1	 Na
6	KB7	18	Male	11/22/16	12/6/16	Concept	1	1	1	1	 Na
7	KB8	20	Male	11/22/16	11/29/16	Concept	1	1	1	1	 Na
8	KB9	20	Male	11/22/16	11/28/16	Concept	1	1	1	1	 Na
9	KB10	20	Female	11/29/16	12/6/16	Concept	1	1	1	1	 Na
10	KB11	21	Female	11/21/16	11/28/16	Retrieval	1	1	1	1	 Т
11	KB12	18	Female	11/21/16	11/29/16	Retrieval	1	1	1	1	 Т
12	KB13	20	Female	11/21/16	11/28/16	Retrieval	1	1	1	1	 Т
13	KB14	19	Female	11/21/16	11/28/16	Retrieval	1	1	1	1	 Т
14	KB15	18	Female	11/22/16	11/29/16	Retrieval	1	1	1	1	 L
15	KB16	19	Male	11/22/16	11/29/16	Retrieval	1	1	1	1	 L
16	KB18	20	Male	11/22/16	11/29/16	Retrieval	1	1	1	1	 L
17	KB19	21	Female	11/29/16	12/6/16	Retrieval	1	1	1	1	 Т
18	KB20	17	Male	11/29/16	12/6/16	Retrieval	1	1	1	1	 Т
19	KB21	20	Male	11/29/16	12/6/16	Concept	1	1	1	1	 Na
20	KB22	18	Male	11/29/16	12/6/16	Concept	1	1	1	1	 Na
21	KB23	21	Male	11/29/16	12/6/16	Concept	1	1	1	1	 Na
22	KB24	18	Male	11/29/16	12/6/16	Concept	1	1	1	1	 Na
23	KB25	19	Male	11/29/16	12/6/16	Concept	1	1	1	1	 Na
24	KB26	18	Female	11/29/16	12/6/16	Concept	1	1	1	1	 Na
25	KB27	18	Male	11/29/16	12/6/16	Concept	1	1	1	1	 Na
26	KB28	18	Male	11/29/16	12/2/16	Concept	1	1	1	1	 Na
27	KB29	19	Male	1/23/17	1/31/17	Concept	1	1	1	1	 Na
28	KB30	18	Female	1/23/17	1/31/17	Concept	1	1	1	1	 Na
29	KB31	19	Female	1/23/17	2/1/17	Concept	1	1	1	1	 Na
30	KB32	18	Male	1/23/17	1/31/17	Concept	1	1	1	1	 Na
31	KB33	21	Male	1/24/17	1/31/17	Concept	1	1	1	1	 Na
32	KB34	22	Female	1/24/17	1/31/17	Retrieval	1	1	1	1	 L
33	KB35	19	Male	1/24/17	2/2/17	Retrieval	1	1	1	1	 L

	ID	Age	Gender	Date.P1	Date.P2	Condition	IC.1	IC.2	Comp.1	Comp.2	 Scorer.2.
34	KB37	20	Male	1/24/17	1/31/17	Retrieval	1	1	1	1	 L
35	KB38	19	Female	1/24/17	1/31/17	Concept	1	1	1	1	 Na
36	KB39	19	Female	1/25/17	2/1/17	Concept	1	1	1	1	 Na
37	KB40	20	Female	1/25/17	2/2/17	Retrieval	1	1	1	1	 L
38	KB41	19	Female	1/25/17	2/1/17	Retrieval	1	1	1	1	 L
39	KB42	19	Female	1/25/17	2/1/17	Retrieval	1	1	1	1	 L
40	KB43	18	Female	1/25/17	2/1/17	Retrieval	1	1	1	1	 L
41	KB44	20	Male	1/25/17	2/1/17	Concept	1	1	1	1	 Na
42	KB45	19	Female	1/26/17	2/2/17	Retrieval	1	1	1	1	 L

43 rows × 35 columns

In [2]:

```
codebook_df = pd.read_csv("codebook.csv")
codebook_df
```

Out[2]:

	Name	Variable full label	Variable description	Valid range	Scoring	Value indicating missing data	Value indicating inapplicable data	Expe fil
0	ID	Participant ID	Participant's study number/identifier	KB1 - KB52	NaN	0	NaN	
1	netID	UVA netID	Student's UVA netID identifier	NaN	NaN	0	NaN	
2	Date.P1	Date part 1	Date of part 1 session	00/00/00	NaN	0	NaN	
3	Date.P2	Date part 2	Date of part 2 session (1 week later)	00/00/00	NaN	0	NaN	
4	Condition	Condition assigned	Participant's assigned study condition (block	Retrieval OR Concept	NaN	0	NaN	
5	IC.1	Informed consent 1	Informed consent administered for part 1 session	0-1	NaN	0	NaN	"Kar Blunt - in conse
6	IC.2	Informed consent 2	Informed consent administered for part 2 session	0-1	NaN	0	NaN	"Kar Blunt - in conse
7	Comp.1	Compensation 1	Compensation (SONA credit) awarded for part 1	0-1	NaN	0	NaN	0.5
8	Comp.2	Compensation 2	Compensation (SONA credit) awarded for part 2	0-1	NaN	0	NaN	0.5
9	PR.1	Prediction response 1	Q1 response	0-1	(responses: 1 = yes, 0 = no)	0	NaN	"Kar Blunt - Pre que
10	PR.2	Prediction response 2	Q2 response	0.0 - 1.0	NaN	0	NaN	"Kar Blunt - Pre que
11	MCS.1	Map completion score 1	Concept map completion single score	0.0 - 1.0	(score = number of idea units mapped divided b	0	NaN	"Kar Blunt - C
12	Scorer.1	Scorer 1	First scorer for the concept map completion sc	AA - ZZ	NaN	0	NaN	"Kar Blunt - (idea

	Name	Variable full label	Variable description	Valid range	Scoring	Value indicating missing data	Value indicating inapplicable data	Expe fil
13	MCS.2	Map completion score 2	Concept map completion double score	0.0 - 1.0	(score = number of idea units mapped divided b	0	NaN	"Kar Blunt - C
14	Scorer.2	Scorer 2	Second scorer for the concept map completion s	AA - ZZ	NaN	0	NaN	"Kar Blunt - (idea
15	MCS.avg	Map completion score average	Average of the first and second scorers' conce	0.0 - 1.0	(score = (MCS.1 + MCS.2)/2)	0	NaN	
16	R1CS.1	Retrieval #1 completion score 1	Retrieval practice #1 completion single score	0.0 - 1.0	(score = number of idea units listed divided b	0	NaN	"Kar Blunt - R pra
17	Scorer.1	Scorer 1	First scorer for the retrieval practice #1 com	AA - ZZ	NaN	0	NaN	"Kar Blunt - (idea
18	R1CS.2	Retrieval #1 completion score 2	Retrieval practice #1 completion double score	0.0 - 1.0	(score = number of idea units listed divided b	0	NaN	"Kar Blunt - R pra
19	Scorer.2	Scorer 2	Second scorer for the retrieval practice #1 co	AA - ZZ	NaN	0	NaN	"Kar Blunt - (idea
20	R1CS.avg	Retrieval #1 average completion score	Average of the first and second scorers' retri	0.0 - 1.0	(score = (R1CS.1 + R1CS.2)/2)	0	NaN	
21	R2CS.1	Retrieval #2 completion score 1	Retrieval practice #2 completion single score	0.0 - 1.0	(score = number of idea units listed divided b	0	NaN	"Kar Blunt - R pra
22	Scorer.1	Scorer 1	First scorer for the retrieval practice #2 com	AA - ZZ	NaN	0	NaN	"Kar Blunt - (idea
23	R2CS.2	Retrieval #2 completion score 2	Retrieval practice #2 completion double score	0.0 - 1.0	(score = number of idea units listed divided b	0	NaN	"Kar Blunt - R pra
24	Scorer.2	Scorer 2	Second scorer for the retrieval practice #2 co	AA - ZZ	NaN	0	NaN	"Kar Blunt - (idea

	Name	Variable full label	Variable description	Valid range	Scoring	Value indicating missing data	Value indicating inapplicable data	Expe fil
25	R2CS.avg	Retrieval #2 average completion score	Average of the first and second scorers' retri	0.0 - 1.0	(score = (R2CS.1 + R2CS.2)/2)	0	NaN	
26	TS.1	Test score 1	Follow-up learning test single score	0.0 - 1.0	(score = number of earned points/25 possible p	0	NaN	"Kar Blunt - (lear
27	Scorer.1	Scorer 1	First scorer of the follow-up learning test	AA - ZZ	NaN	0	NaN	"Kar Blunt - (lear
28	TS.2	Test score 2	Follow-up learning test double score	0.0 - 1.0	(score = number of earned points/25 possible p	0	NaN	"Kar Blunt - (lear
29	Scorer.2	Scorer 2	Second scorer of the follow-up learning test	AA - ZZ	NaN	0	NaN	"Kar Blunt - (lear
30	TS.avg	Test score average	Average of the first and second scorers' test	0.0 - 1.0	(score = (TS.1 + TS.2)/2)	0	NaN	
31	Exc.1	Exclusion part 1	Exclusions for part 1 session	0-1	1 = exclusion, 0 = no exclusion	0	NaN	
32	Exc.2	Exclusion part 2	Exclusions for part 2 session	0-1	1 = exclusion, 0 = no exclusion	0	NaN	
33	Collection	Collection round	Round of SSRP collection (1st round (90% confi	1-2	NaN	0	NaN	

https://ccamp032.hub.cs.ucr.edu/user/ccamp032/lab?

Question 1

Which group felt like they learned more: the subjects who made concept maps or the ones who practiced retrieval? (Or are they about the same?) Make an appropriate visualization and explain what you see.

Hint: Use the variable PR.2, which contains the participants' predictions of how well they would do on a test one week later.

In [3]:

```
data_df.groupby("Condition")["PR.2"].mean().plot.bar()
```

Out[3]:

<matplotlib.axes. subplots.AxesSubplot at 0x211783f5348>

The concept maps group learned more on the subject than the retrieval.

Question 2

Which group actually did better on the follow-up learning test one week later? Make an appropriate visualization and explain what you see.

Hint: Don't ask which variable you should use. That is for you to figure out. Read the codebook carefully (consulting the <u>original paper (http://science.sciencemag.org/content/331/6018/772)</u>, if necessary), make an informed decision, and explain your choice.

In [4]:

```
data_df.groupby("Condition")["TS.avg"].mean().plot.bar()
```

Out[4]:

<matplotlib.axes._subplots.AxesSubplot at 0x211786e6708>

The Retrieval group perform better than the concept maps.

Question 3

How good were subjects at predicting how well they would do on the follow-up learning test? Calculate a measure of how well subjects predicted their performance and interpret the value in context. (Optionally, you may want to include a visualization as well.)

In [5]:

```
concept_map_pr2 = data_df[data_df["Condition"] == "Concept"]["PR.2"]
concept_map_ts_avg = data_df[data_df["Condition"] == "Concept"]["TS.avg"]
```

In [6]:

```
abs(concept_map_pr2 - concept_map_ts_avg).mean()
```

Out[6]:

0.2753846153846154

In [7]:

```
retrieval_pr2 = data_df[data_df["Condition"] == "Retrieval"]["PR.2"]
retrieval_ts_avg = data_df[data_df["Condition"] == "Retrieval"]["TS.avg"]
```

In [8]:

```
abs(retrieval_pr2 - retrieval_ts_avg).mean()
```

Out[8]:

0.19176470588235295

I took the difference of the concept map prediction response 2 and test score average to find the distance.

Then I calculate the absolute value and the mean of the distance

This will give me the mean of the distance of the concept map prediction response 2 and test score average. I did the same for retrieval Prediction.

Question 4

This was a completely randomized experiment. This means that the condition that each subject was assigned to should be independent of their gender, age, and any other subject characteristics. Does that seem to be true in this case? Calculate a summary measure and/or make a visualization, and explain what you see.

In [9]:

data_df.describe()

Out[9]:

	Age	IC.1	IC.2	Comp.1	Comp.2	PR.1	PR.2	MCS.1	MCS.2	MC
count	43.000000	43.0	43.0	43.0	43.0	26.000000	43.000000	26.000000	26.000000	26.0
mean	19.093023	1.0	1.0	1.0	1.0	0.576923	0.645349	0.631731	0.633423	0.6
std	1.108709	0.0	0.0	0.0	0.0	0.503831	0.172797	0.167637	0.163400	0.1
min	17.000000	1.0	1.0	1.0	1.0	0.000000	0.300000	0.317000	0.333000	0.3
25%	18.000000	1.0	1.0	1.0	1.0	0.000000	0.500000	0.512500	0.512500	0.5
50%	19.000000	1.0	1.0	1.0	1.0	1.000000	0.700000	0.675000	0.658500	0.6
75%	20.000000	1.0	1.0	1.0	1.0	1.000000	0.750000	0.750000	0.779000	0.7
max	22.000000	1.0	1.0	1.0	1.0	1.000000	0.950000	0.917000	0.850000	8.0

8 rows × 22 columns

In [10]:

data_df.describe().plot.bar()

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0x211787a1cc8>

It looks like the students age group plays a role in the randomized experiment.

The mean of the age group experiment is 19 which can affect the experiment. We can assumed the students are freshmans or sophomore in college/university. In addition, there's a total of 43 students participate. Not a lot students participate in the experiment to fully determine the whether the experiment is good or not.

Submission Instructions

Once you are finished, follow these steps:

- 1. Restart the kernel and re-run this notebook from beginning to end by going to Kernel > Restart Kernel and Run All Cells.
- 2. If this process stops halfway through, that means there was an error. Correct the error and repeat Step 1 until the notebook runs from beginning to end.
- 3. Double check that there is a number next to each code cell and that these numbers are in order.

Then, submit your lab as follows:

- 1. Go to File > Export Notebook As > PDF.
- 2. Double check that the entire notebook, from beginning to end, is in this PDF file. (If the notebook is cut off, try first exporting the notebook to HTML and printing to PDF.)
- 3. Upload the PDF and Notebook (ipynb) to iLearn.