Seri de numere reale Definitie. Fie $(*\pi)_m \subset \mathbb{R}, \ \gamma \in \mathbb{N}$ si $s_n = *\gamma_n +$ + Xp+1 + ... + Xn + m > p. Berechea ((Xn)m>p) se numeste suie de numere reale. Notatie ûn contestul definitiei precedente, perechea ((±n)nzp, (sm)nzp) se notează = xn sau n=p ∑ ×_n sou ∑ ×_n. Observatie. În general p=0 sou p=1, cazeuri pe care le vom considera de acum mainte în definitie, teseme etc. Fie $\sum_{n=0}^{\infty} x_n$ or serie de numere reale ($x_n = x_0 + x_0 + x_0 = x_0 + x_0 = x_0 + x_0 = x_0 =$

Termenii seriei.

+ xg+ ...+ xn + n ≥ 0).

2. Elementele sirellie (sm)_n se numesc sumele partiale ale seriei. 3. Daca excista lim sneet $x \in \mathbb{R}$ if $\mathbb{R} \cup \{\pm n\}$, and $x \in \mathbb{R}$ sensite $x \in \mathbb{R}$ sum since $x \in \mathbb{R}$ since $x \in \mathbb{$

4. Junem cà seria $\sum_{n} x_n$ este convergentà

dacă (sn) n'este convergent.

5. Spunem că seria \(\sigma \text{th} n\) este divergenta

dacă nu este convergenta (i.e. (sn) n'este di-

Propositie. Daca seria Z *n este convergenta atunci lim *n=0.

- Chordar (Chritariul suficient de divergență). Docă lim *n + 0 atunci seria > *n este divergentă.

Observatie. Folosind doar afamația » lim *n=0 "me putem decide dacă \(\sum \text{xn} \) este convergentă sau divergentă.

Exercitive seterminati rumele surilor de mai jos si precipati dasa sunt convergente sau divergente: a) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$; b) $\sum_{n=0}^{\infty} q^n$, $q \in \mathbb{R}$.

(0°=1 prin conventie)

Solutie.

a) $x_m = \frac{1}{n(m+1)} + n \in \mathbb{N}^*$

 $\Delta_{n} = \chi_{1} + \chi_{2} + ... + \chi_{n} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + ... + \frac{1}{n(n+1)} =$ $= \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{1} + \frac{1}{n-1} = 1 - \frac{1}{n+1} + n \in \mathbb{N}^*.$

 $\lim_{n\to\infty} s_n = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right) = 1 \Rightarrow \sum_{n=1}^{\infty} x_n = 1.$

Seria = xn este convergentà.

b) = gn+neH.

 $\Delta_n = \mathcal{X}_0 + \mathcal{X}_1 + ... + \mathcal{X}_n = 1 + 2 + 2^2 + ... + 2^n + n \in \mathbb{N}$

 $\Delta m = \begin{cases} m+1 \\ 10 & \frac{2^{m+1}-1}{2^{-1}}; 2^{\frac{1}{2}-1}. \end{cases}$

Dacai q=1 atunci lim sn=0, deci \(\sum_{n=0}^{\infty} \pi_n = \infty; \)

≥ ±n este divergentà. Justinem cà $9 \neq 1$.

lim $9^{n+1} = \begin{cases} \infty; 9 > 1 \\ 0; 9 \in (-1, 1) \end{cases}$ $n \neq \infty$ Deci lim $n = \begin{cases} 0 & 1 \\ \frac{1}{1-q} & 1 \end{cases}$; $q \in (-1,1)$ Daca g ≤-1, seria din enent, nu are sumà, nd dimercenta find divergentà. Daca 9>1, suma seriei din enent, este », find divergentà. Daca ge (-1,1), suma seriei din enunt, este 1-9, fünd convergenta.

Observatie. În aplicații putem folosi (fară demonstrație) convergențele urmatoarelor serii de numere reale:

Observatie. 9 si d din seriele de mai sus sent numere reale care nu depind de n.

Ropozitie. Fie $\sum x_n$, $\sum y_n$ două serii de numere reale convergente si CER. Attenci seriele de numere reale $\sum_{n} (x_n + y_n)$, $\sum_{n} (x_n - y_n)$ si $\sum_{n} c \cdot x_n$ sunt convergente.

 $\hat{J}_n plus, \sum_{n} (x_n + y_n) = \sum_{n} x_n + \sum_{n} y_n$ $\sum (x_m - y_m) = \sum_n x_m - \sum_n y_n,$ $\sum_{n} c \cdot \mathcal{X}_{n} = c \cdot \sum_{n} \mathcal{X}_{n}.$

Testemà (biteriul lui bauchy pentru surii de nu-mere reale). Fie $\underset{n=0}{\overset{\sim}{\succeq}} \times_n$ o serie de numere reale. Urmatoarele afirmații sunt echivalente:

1) \sum_{n=0}^{\pm} \pm_n \text{ este convergentà.}

2) + E>O, 3 need a.c. + n>ne, + med*, [aven | *m+1 + *m+2 + ... + *m+m | < E.

Chriterii de convergentà pentru serii en termeni positivi

The Hastfel incôt existà lim Xn+1 not.l. a) Dacă l<1, atunci seria \(\sum_{n=0}^{\infty} \text{xn este convergentà.} \) b) Daca l>1, atunci seria $\sum_{n=0}^{\infty} x_n$ este divergenta c) Daca l=1, atenci acest criterin me decide.

-+	
2. Chriteriul radicalului. Fie seria $\sum_{n=0}^{\infty} x_n$, $x_n \ge 0 + n \in \mathbb{N}$ artfel încât escistă lim \sqrt{n}	. 4
x _{m≥0} + n∈ H artfel încât escistă lim V	≥n ≥d.
a) Dacă l<1, atunci seria = xn este diver	genta.
b) Daca l>1, otuna seua 2 sen este de	j cide
c) Daca l=1, atunci acest criteriu nu de	to.

3. Chiteriul Raabe-Duhamel. Fie seria \(\sum_{n=0}^{\infty} \tau_n \) \(\tau_{n=0}^{\infty} \) lim $n\left(\frac{9\epsilon_m}{9\epsilon_{m+1}}-1\right) \stackrel{\text{not.}}{=} \ell.$ a) Daca l<1, atunci seria = xn este diverb) Daca l> 1, atanci seria = xn este a) Daca l=1, atunci acest criteriu nu decide

Scanned with CamScanner

4. Chriterial condensatii. Daca (xn)nzo ette un sie descrescator, atunci seriele \$\frac{2}{n} = 0
\[
\sum_{n=0}^{n} \text{ au acleasi natura (i.e. sunt am\]
\[
\sum_{n=0}^{n} \text{ au acleasi natura (i.e. sunt ambele convergente sau sunt amble divergente). 5. Criteriul de comparatie cu inegalitati. Fie suile 5 ×n, 5 ×n > 0 + n ∈ H, Ym≥0 + ne H astfel încât există no € H du proprietatea că, + n≥ no, avem xn ≤ yn a) Daca Syn este convergentà, raturai ≥ ≠n este convergenta. b) Daca ≥ xn este divergentà, raturci = yn este divergentà. Tô. <u>Chriteriul de comparatie cu limità</u>. Fie se-rûle $\sum_{n=0}^{\infty} x_n$, $\sum_{n=0}^{\infty} y_n$, $x_n > 0 + n \in H$, $y_n > 0$

t nett auther incôt excistà lim & not l. a) Dacă le (0,0), atanci serile = xm și ∑ yn au acleasi naturà. b) Daca l=0 ji \ yn este convergentà, atunci Ex xm este convergentà. c) Daca l= 0 si \(\sum_{n=0}^{\infty}\) este divergentà, atunci ≥ ×n este divergentà.