Homework 1

Math 241

Due September 16, 2019 by 5pm

Topics covered: Cell complexes, homotopy, deformation retracts, quotient by contractible theorem, homotopic attachments theorem, homotopy extension property

Instructions:

- This assignment must be submitted on Canvas by the due date.
- You are encouraged to collaborate with other students, but you must write your own solutions. If you do collaborate, please mention this near the corresponding problems.
- Most problems from this assignment come from Hatcher or Bredon, as indicated next to the problem. Note that the statements on this assignment might differ slightly from the books.

 \Box

Problem 5 (Hatcher 0.21). Let X be a connected Hausdorff space that is a union of a finite number of 2-spheres, any two of which intersect in at most one point. Show that X is homotopy equivalent to a wedge sum of S^1 's and S^2 's. Hint: find a tree to collapse to a point.

Solution. \Box

Problem 6. Consider $(X, A) = ([0, 1], \{1/n\} \cup \{0\})$. Let $g : A \to CA$ be the constant map at the cone point, and let $h : A \to CA$ be the inclusion. Show $g \simeq h$. Show g extends to X but h does not. Conclude (X, A) does not have HEP.

 \Box

Problem 7. Let $A \subset X$ be a closed subspace.

whose intersection is contractible. Show that X is contractible.

- (a) Show that the following statements are equivalent. (i) For every Y, every map $g: A \to Y$ extends to a map $G: X \to Y$. (ii) There exists a retract $X \to A$.
- (b) Show that the following statements are equivalent. (i) For every Y, every map $A \to Y$ extends to X, and if $F, G: X \to Y$ are maps whose restriction to A are homotopy equivalent, then $F \simeq G$. (ii) A is a weak deformation retract of X, i.e. there is a homotopy from 1_X to a retract $X \to A$.

Solution. \Box

Problem 8 (Hatcher 0.18). The join X * Y of two spaces is the quotient of $X \times Y \times I$ by the equivalence relation $(x, y, 0) \sim (x, y', 0)$ and $(x, y, 1) \sim (x, y', 1)$. I.e. we collapse $X \times Y \times \{0\}$ and $X \times Y \times \{1\}$ to X and Y, respectively. Show $S^1 * S^1 \simeq S^3$ and more generally $S^n * S^m \simeq S^{n+m+1}$. Hint: observe that $\partial(D^a \times D^b) = \partial D^a \times D^b \cup D^a \times \partial D^b$.

Solution. \Box

Problem 9 (Hatcher 0.14). Given $e_0, e_1, e_2 \ge 1$ such that $e_0 - e_1 + e_2 = 2$, construct a cell structure of S^2 with e_i cells of dimension i.

 \Box

Problem 10 (Hatcher 0.15). Enumerate the sub-complexes of S^{∞} with the standard cell structure that has S^n as its n-skeleton (there are two cells of each dimension).

 \square

Problem 11 (Hatcher 0.6).

- (a) Let X be the subspace of \mathbb{R}^2 consisting of the horizontal segment $[0,1] \times \{0\}$ together with the vertical segments $r \times [0,1-r]$ for $r \in \mathbb{Q} \cap [0,1]$. Show that X deformation retracts to any point in the segment $[0,1] \times \{0\}$, but not to any other point. Hint: First prove that if X deformation retracts to $x \in X$, then for each neighborhood U of x, there exists a neighborhood $V \subset U$ of x such that the inclusion $V \hookrightarrow U$ is nullhomotopic.
- (b) Let Y be the subspace of \mathbb{R}^2 that is the union of an infinite number of copies of X arranged as in the figure below. Let Z be the zigzag subspace of Y homeomorphic to \mathbb{R} indicated by the heavy line in the figure. Show that there is a weak deformation retract of Y onto Z. Deduce that Y is contractible, although it does not retract to any point. Hint: move each point at unit speed "to the right."

 \Box

Problem 12 (Bonus). In this problem you will determine the configuration spaces of two different linkages, each with four rods, attached in a line, with fixed endpoints.

- (a) Consider the linkage L where each of the rods has unit length and that the distance between the two endpoints is 3. Show that C(L) is homeomorphic to S^2 .
- (b) Consider the linkage L where the rods have length 3, 2, 2, 1, and the two endpoints have distance 1. Show that C(L) is homeomorphic to a surface of genus 2.

 \Box

Problem 13 (Bonus). Prove that $GL_n(\mathbb{R})$ deformation retracts to O(n). Hint: you may want to several tools from linear algebra: polar decomposition, the Gram-Schmidt procedure, and the identification of the set of positive matrices with the set of inner products.

 \Box