Neural Networks

Let's say that we are trying to fit data that comes from this data generation process:

X: Uniform distribution on the interval [0,1]

 $Y = \sin(2\pi X)$ (no noise)

We have a training dataset with 25 points:

Recall: Polynomial Regression

One option we can try is polynomial regression, say a degree 2 polynomial:

$$\hat{f}(x) = a + bx + cx^2$$

We have a training dataset with 25 points:

When we fit this data, we get the equation

$$\hat{f}(x) = 1.08 - 1.61x - 0.49x^2$$

What if instead of using x and x^2 we allow a bit more flexibility?

$$\hat{f}(x) = a + bx + cx^2$$

What if instead of using x and x^2 we allow a bit more flexibility?

$$\hat{f}(x) = a + bx + cx^2$$

$$\hat{f}(x) = a + b \cdot g_1(x) + c \cdot g_2(x)$$

What if instead of using x and x^2 we allow a bit more flexibility?

$$\hat{f}(x) = a + bx + cx^2$$

$$\hat{f}(x) = a + b \cdot g_1(x) + c \cdot g_2(x)$$

Where $g_i(x) = anh(eta_0^{(i)} + eta_1^{(i)} \cdot x)$ for constants $eta_j^{(i)}$

We have a training dataset with 25 points:

When we fit this data, we get the equation

$$\hat{f}(x) = 0.38 - 3.16 \cdot g_1(x) + 4.22 \cdot g_2(x)$$

$$g_1(x) = \tanh(-2.43 + 4.74x)$$

$$g_2(x) = \tanh(-0.97 + 1.66x)$$

Polynomial Regression Version

Polynomial Regression

Alternative Embedding

Terminology:

- The model we used is called a **neural network**.
- Each node is a **neuron**.
- The nonlinear function we used in each neuron (tanh) is called an activation function.

Neural Networks

These models are very flexible, so can fit very complicated functions.

However, this comes at the risk of overfitting!

7 Parameters

