Identification paramétrique

Identification du modèle élastique linéaire uniaxial sur l'essai ecrouissage1D_2e-4%.txt. Cet essai se trouve dans le répertoire MIC2M\experience\TP):

	Α	В	С	[
1	3	observe	asservi	
2	temps	sigz	epsz	
3	0	0	0.00E+00	
4	500	79.09	1.00E-03	
5	1000	154.85	2.00E-03	
6	1500	225.61	3.00E-03	

En mode identification, MIC2M va récupérer l'asservissement (ici epsz en fonction du temps) pour imposer les mêmes conditions lors de la simulation que lors de l'essai sur machine et utiliser l'observation (ici sigz) pour calculer l'erreur entre l'expérience et la simulation.

MIC2M pourra ensuite faire évoluer les paramètres du modèle (ici uniquement le module d'Young) pour minimiser par méthode inverse cette erreur.

1- Pour choisir l'essai qui va servir à l'identification, ouvrir avec Excel le fichier *liste_experiences.txt* (MIC2M\experience) et mettre un 1 dans la colonne I (comme Identification). Enregistrer le fichier en .txt.

	А	В	С	D
1	S	I	NOM_ESSAIS	
2	%	%	%	
3	%	%	%VER	
4	1	1	ecrouissage1D_2e-4%	
5	%	%	ecrouissage_2e-4%	

2- Pour indiquer à MIC2M la valeur des paramètres du modèle (ici le module d'Young E), ouvrir avec Excel le fichier *elastique_1D_parametres.txt* (MIC2M\modele\VER) et mettre la valeur du module d'Young initial dans la 2ème colonne et les bornes physiques en colonne 3 et 4. Enregistrer le fichier (attention le séparateur décimal dans Excel doit être le point).

	А	В	С	D
1	E	?	?	?

3- Taper *identification* dans l'espace de travail Matlab et choisir Levenberg-Marquardt comme algorithme d'identification. Vous pouvez suivre l'évolution du processus d'identification en ouvrant les différents fichiers à la racine de MI2M.

Une fois le processus d'identification terminé, les paramètres optimaux se trouvent dans le fichier *meilleur_LM.txt*. Pour vérifier graphiquement la corrélation modèle-experience, refaire une simulation avec les paramètres identifiés (voir le tutorial simulation).

Identification paramétrique

Remarque : Il est possible de mettre des pondérations sur chaque point expérimental dans le calcul de la fonction erreur (entre modèle et expérience) :

1		-1		-1	
1		observe	asservi	observe	
3	temps 0	sigz	epsz	poids 1	
4	_	0	0.00E+00		
	500	79.09	1.00E-03	1	
5	1000	154.85	2.00E-03	1	
6	1500	225.61	3.00E-03	1	
7	2000	285.22	4.00E-03	1	
8	2500	326.85	5.00E-03	1	
9	3000	351.97	6.00E-03	1	
10	3500	369.77	7.00E-03	1	
11	4000	383.52	8.00E-03	1	
12	4500	394.04	9.00E-03	1	
13	5000	401.93	1.00E-02	1	
14	5500	407.73	1.10E-02	1	
15	6000	411.95	1.20E-02	1	
16	6500	414.99	1.30E-02	1	
17	7000	417.18	1.40E-02	1	
18	7500	418.75	1.50E-02	1	
19	8000	419.88	1.60E-02	1	
20	8500	420.69	1.70E-02	0	
21	9000	421.29	1.80E-02	0	
22	9500	421.73	1.90E-02	0	
23	10000	422.06	2.00E-02	0	
24	10500	422.31	2.10E-02	0	
25	11000	422.51	2.20E-02	0	
26	11500	422.66	2.30E-02	0	
27	12000	422.79	2.40E-02	0	
28	12500	422.89	2.50E-02	0	
29	13000	422.97	2.60E-02	0	
30	13500	423.05	2.70E-02	0	
31	14000	423.11	2.80E-02	0	
32	14500	423.17	2.90E-02	0	
33	15000	423.22	3.00E-02	0	
34	15500	423.27	3.10E-02	0	
35	16000	423.31	3.20E-02	0	
36	16500	423.35	3.30E-02	0	
37	17000	423.39	3.40E-02	0	
38	17500	423.42	3.50E-02	0	
39	18000	423.46	3.60E-02	0	
40	18500	423.49	3.70E-02	0	
41	19000	423.52	3.80E-02	0	
42	19500	423.55	3.90E-02	0	
43	20000	423.58	4.00E-02	0	
44					
45					

Dans cet exemple, seuls les 17 premiers sont pris en compte.