# 数字逻辑 Digital Logic Circuit

丁贤庆

ahhfdxq@163.com

# 第二次实验时间

▼地点: 电气楼507房间

信安1班: 本周六上午8:00----9:40

信安2班:本周六上午10:10----11:50

计科1班: 本周六下午14:00----15:40

计科2班: 本周日上午8:00----9:40

计科3班: 本周日上午10:10----11:50

# Home work (P350)

- ▼ 1、本周六/周日有实验。地点: 电气实验楼507房间
- ▼ 2、期末考试里,第六章有30分左右的考题。
- ₹3、本周四课上,会有10分钟的课堂小测。
- ▼ 5、本次的作业(不用抄题目)
  - **6.5.13**
  - **6.5.15**
  - 6.5.19

## T触发器特性方程:

$$Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n$$

| Т | Qn+1           |
|---|----------------|
| 0 | Q <sup>n</sup> |
| 1 | Qn             |

T=0时:

$$Q^{n+1} = Q^n$$

T=1时:

$$Q^{n+1} = \overline{Q^n}$$

反之,就是说:如果要保持Q值不变,只要使T=0即可。要保持Q值状态翻转,只要使T=1即可。

| 计数顺序  |       | 电路    | 状态    |       | 进位输出                                    |
|-------|-------|-------|-------|-------|-----------------------------------------|
| 1 数顺厅 | $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$ | (五) |
| 0     | 0     | 0     | 0     | 0     | 0                                       |
| 1     | 0     | 0     | 0     | 1     | 0                                       |
| 2     | 0     | 0     | 1     | 0     | 0                                       |
| 3     | 0     | 0     | 1     | 1     | 0                                       |
| 4     | 0     | 1     | 0     | 0     | 0                                       |
| 5     | 0     | 1     | 0     | 1     | 0                                       |
| 6     | 0     | 1     | 1     | 0     | 0                                       |
| 7     | 0     | 1     | 1     | 1     | 0                                       |
| 8     | 1     | 0     | 0     | 0     | 0                                       |
| 9     | 1     | 0     | 0     | 1     | 0                                       |
| 10    | 1     | 0     | 1     | 0     | 0                                       |
| 11    | 1     | 0     | 1     | 1     | 0                                       |
| 12    | 1     | 1     | 0     | 0     | 0                                       |
| 13    | 1     | 1     | 0     | 1     | 0                                       |
| 14    | 1     | 1     | 1     | 0     | 0                                       |
| 15    | 1     | 1     | 1     | 1     | 1                                       |
| 16    | 0     | 0     | 0     | 0     | 0                                       |

数字逻辑由



|      |       | 由路    | 状态    |       |      |
|------|-------|-------|-------|-------|------|
| 计数顺序 |       |       |       |       | 进位输出 |
|      | $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$ |      |
| 0    | 0     | 0     | 0     | 0     | 0    |
| 1    | 0     | 0     | 0     | 1     | 0    |
| 2    | 0     | 0     | 1     | 0     | 0    |
| 3    | 0     | 0     | 1     | 1     | 0    |
| 4    | 0     | 1     | 0     | 0     | 0    |
| 5    | 0     | 1     | 0     | 1     | 0    |
| 6    | 0     | 1     | 1     | 0     | 0    |
| 7    | 0     | 1     | 1     | 1     | 0    |
| 8    | 1     | 0     | 0     | 0     | 0    |
| 9    | 1     | 0     | 0     | 1     | 0    |
| 10   | 1     | 0     | 1     | 0     | 0    |
| 11   | 1     | 0     | 1     | 1     | 0    |
| 12   | 1     | 1     | 0     | 0     | 0    |
| 13   | 1     | 1     | 0     | 1     | 0    |
| 14   | 1     | 1     | 1     | 0     | 0    |
| 15   | 1     | 1     | 1     | 1     | 1    |
| 16   | 0     | 0     | 0     | 0     | 0    |

(2)设计二进制同步加1计数器

 $Q_0$ 在每个CP都翻转一次

 $FF_0$ 可采用T0=1的T触发器

 $Q_1$ 仅在 $Q_0$ =1后的下一个CP 到来时翻转

 $FF_1$ 可采用 $T1 = Q_0$ 的T触发器

 $Q_2$ 仅在 $Q_0 = Q_1 = 1$ 后的下一个 CP到来时翻转

FF<sub>2</sub>可采用T2= Q<sub>0</sub>Q<sub>1</sub>的T触发器

 $Q_3$ 仅在 $Q_0 = Q_1 = Q_2 = 1$ 后的下一个CP到来时翻转

FF<sub>3</sub>可采用T3= Q<sub>0</sub>Q<sub>1</sub>Q<sub>2</sub>的T触 发器 直接分析状态表,采用T触发器实现

| 计数顺序 |       | 电路    | 状态    |       | ·<br>进位输出 |
|------|-------|-------|-------|-------|-----------|
| 以数顺厅 | $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$ | 建独制山      |
| 0    | 0     | 0     | 0     | 0     | 0         |
| 1    | 0     | 0     | 0     | 1     | 0         |
| 2    | 0     | 0     | 1     | 0     | 0         |
| 3    | 0     | 0     | 1     | 1     | 0         |
| 4    | 0     | 1     | 0     | 0     | 0         |
| 5    | 0     | 1     | 0     | 1     | 0         |
| 6    | 0     | 1     | 1     | 0     | 0         |
| 7    | 0     | 1     | 1     | 1     | 0         |
| 8    | 1     | 0     |       | 0     | 0         |
| 9    | 1     | 0     | 0     | 1     | 0         |
| 10   | 1     | 0     | ليا   | 0     | 0         |
| 11   | 1     | 0     | 1     | 1     | 0         |
| 12   | 1     | 1     |       | 0     | 0         |
| 13   | 1     | 1     | 0     | 1     | 0         |
| 14   | 1     | 1     | 1     | 0     | 0         |
| 15   | 1     | 1     | 1     | 1     | 1         |
| 16   | 0     | 0     | 0     | 0     | 0         |

#### (a) 4位二进制同步加计数器逻辑图---由T触发器构成





#### 4位二进制同步加计数器时序图



$$f_{Q_0} = \frac{1}{2} f_{CP}$$
  $f_{Q_1} = \frac{1}{4} f_{CP}$   $f_{Q_2} = \frac{1}{8} f_{CP}$   $f_{Q_3} = \frac{1}{16} f_{CP}$ 

结论: ▶ 计数器的功能: 不仅可以计数也可作为分频器。

### (b) 4位二进制同步加计数器逻辑图---由D触发器构成



(c) 在上页电路基础上添加计数使能和并行进位引脚,如下图: 计数使能引脚:控制停止计数(保持不变,Q<sup>n+1</sup>=Q<sup>n</sup>)和允许计数

引脚CET、CEP为计数使能,并行进位: TC = Q<sub>3</sub>Q<sub>2</sub>Q<sub>1</sub>Q<sub>0</sub>·CET





#### 计数器芯片74LVC161 逻辑功能表

| 计    |               |           |     | 输       | 入        |            |       |       |       |       | ;     | 输出    | 1     |    |
|------|---------------|-----------|-----|---------|----------|------------|-------|-------|-------|-------|-------|-------|-------|----|
| 算机学院 | 清零            | 预置        | 使   | 能       | 时钟       | 时钟  预置数据输入 |       |       | 计 数   |       |       | 进位    |       |    |
| 院    | <del>CR</del> | <b>PE</b> | CEP | CET     | СР       | $D_3$      | $D_2$ | $D_1$ | $D_0$ | $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$ | TC |
|      | L             | ×         | ×   | ×       | ×        | ×          | ×     | ×     | X     | L     | L     | L     | L     | L  |
|      | H             | L         | ×   | ×       | <b>↑</b> | $D_3$      | $D_2$ | $D_1$ | $D_0$ | $D_3$ | $D_2$ | $D_1$ | $D_0$ | *  |
|      | H             | Н         | L   | ×       | ×        | ×          | ×     | ×     | ×     |       | 保     | 持     |       | *  |
|      | H             | H         | X   | ${f L}$ | ×        | ×          | ×     | ×     | ×     |       | 保     | 持     |       | *  |
| 数字罗哥 | Н             | Н         | Н   | Н       | 1        | ×          | ×     | ×     | ×     |       | 计     | 数     |       | *  |
|      |               |           |     |         |          |            |       |       |       |       |       |       |       |    |

CR的作用?

清零端

PE的作用?

并行置数端

# 计数器

二进制同步加1计数器状态转换表:

| 计数顺序  |       | 电路    | 状态    |       | 进位输出                                    |
|-------|-------|-------|-------|-------|-----------------------------------------|
| 月 数顺厅 | $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$ | (四) |
| 0     | 0     | 0     | 0     | 0     | 0                                       |
| 1     | 0     | 0     | 0     | 1     | 0                                       |
| 2     | 0     | 0     | 1     | 0     | 0                                       |
| 3     | 0     | 0     | 1     | 1     | 0                                       |
| 4     | 0     | 1     | 0     | 0     | 0                                       |
| 5     | 0     | 1     | 0     | 1     | 0                                       |
| 6     | 0     | 1     | 1     | 0     | 0                                       |
| 7     | 0     | 1     | 1     | 1     | 0                                       |
| 8     | 1     | 0     | 0     | 0     | 0                                       |
| 9     | 1     | 0     | 0     | 1     | 0                                       |
| 10    | 1     | 0     | 1     | 0     | 0                                       |
| 11    | 1     | 0     | 1     | 1     | 0                                       |
| 12    | 1     | 1     | 0     | 0     | 0                                       |
| 13    | 1     | 1     | 0     | 1     | 0                                       |
| 14    | 1     | 1     | 1     | 0     | 0                                       |
| 15    | 1     | 1     | 1     | 1     | 1                                       |
| 16    | 0     | 0     | 0     | 0     | 0                                       |



#### 计数器芯片74LVC161 逻辑功能表

| 计     |               |           |     | 输        | 入        |            |       |       |       |       | ;     | 输出    | }          |           |
|-------|---------------|-----------|-----|----------|----------|------------|-------|-------|-------|-------|-------|-------|------------|-----------|
| :算机学院 | 清零            | 预置        | 使   | 能        | 时钟       | 时钟  预置数据输入 |       |       | 计 数   |       |       | 进位    |            |           |
| 院     | <del>CR</del> | <b>PE</b> | CEP | CET      | СР       | $D_3$      | $D_2$ | $D_1$ | $D_0$ | $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$      | <b>TC</b> |
|       | L             | ×         | ×   | ×        | ×        | ×          | ×     | ×     | ×     | L     | L     | L     | L          | L         |
|       | Н             | L         | ×   | ×        | <b>↑</b> | $D_3$      | $D_2$ | $D_1$ | $D_0$ | $D_3$ | $D_2$ | $D_1$ | $D_0$      | *         |
|       | Н             | Н         | L   | X        | ×        | ×          | ×     | ×     | ×     |       | 保     | 持     |            | *         |
|       | Н             | Н         | ×   | L        | ×        | ×          | ×     | ×     | ×     |       | 保     | 持     |            | *         |
| 数字逻辑  | Н             | Н         | Н   | Н        | 1        | ×          | ×     | ×     | ×     |       | 计     | 数     |            | *         |
| 电改    |               |           |     | ميد ريان |          |            |       |       |       |       |       |       | Alab Valla |           |

CR的作用?

清零端

PE的作用?

并行置数端

## 74LVC161的功能表。

|          |    | 输入 |     |     | 功能   |                                                       |    |  |  |
|----------|----|----|-----|-----|------|-------------------------------------------------------|----|--|--|
| CP .     | CR | PE | CEP | CET | 说明   | 解释                                                    |    |  |  |
| ×        | 0  | ×  | ×   | ×   | 异步复位 | $Q_3Q_2Q_1Q_0=0000$                                   |    |  |  |
| <b>↑</b> | 1  | 0  | ×   | X   | 同步置数 | $Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}Q_0^{n+1} = D_3D_2D_1D_1$ |    |  |  |
| ×        | 1  | 1  | 0   | 1   | 但长   | ∩n+1—∩n                                               | 保持 |  |  |
| ×        | 1  | 1  | ×   | 0   | 保持   | $Q^{\mathrm{n+1}}=Q^{\mathrm{n}}$                     | 保持 |  |  |
| <b>↑</b> | 1  | 1  | 1   | 1   | 计数   | 加1计数                                                  |    |  |  |

#### 如何才能得到N进制计数器?

- 1、反馈清零法:利用异步清零输入端CR,得到N进制计数器
- 2、反馈置数法:利用同步置数端PE,在M时制计数器的计数过程中,跳过M-N个状态,得到N进制计数器



### (4) 应用 例 用74LVC161构成九进制加计数器。

(a) 反馈清零法:利用异步清零输入端,在M进制计数器的计数过程中,跳过M-N-1个状态,得到N进制计数器的方法。

| CP  | $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$ |
|-----|-------|-------|-------|-------|
| 0   | 0     | 0     | 0     | 0     |
| 1   | 0     | 0     | 0     | 1     |
| 2   | 0     | 0     | 1     | 0     |
|     |       | • • • |       |       |
|     |       |       |       |       |
| 8   | 1     | 0     | 0     | 0     |
| 9   | 1     | 0     | 0     | 1     |
| ••• |       | • • • |       |       |
|     | 98.   | • • • |       |       |
| 15  | 1     | 1     | 1     | 1     |



$$CR = \overline{Q_0 \cdot Q_3} = 0$$

采用异步清零法时,由于异步清零最后一个状态保持时间很短,通常忽略不计。

#### 设法跳过16-10=6个状态

计数器的模: 计数器状态图中闭合圈包含的稳定的有效状态的数目。本题中最后得到的是模9计数器

# 工作波形



# 状态图



数字逻辑电路

# 利用同步置数端构成九进制计数器

(b) 反馈置数法:利用同步置数端,在M进制计数器的计数过程中,跳过M-N个状态,得到N进制计数器的方法。

| CP | $Q_3$ | $Q_2$ | $Q_1$           | $Q_0$              |   |
|----|-------|-------|-----------------|--------------------|---|
| 0  | 0     | 0     | 0               | 0                  |   |
| 1  | 0     | 0     | 0               | 1                  |   |
| 2  | 0     | 0     | 1               | 0                  |   |
|    |       |       |                 |                    |   |
| 8  | 1     | 0     | 0               | 0                  |   |
|    |       | PE    | $=\overline{Q}$ | $\overline{Q}_3 =$ | 0 |



#### 采用后九种状态作为有效状态,用反馈置数法构成九进制加计数器。

| $Q_3$ | $Q_2$ | $Q_1$ | $Q_{\theta}$ |          |
|-------|-------|-------|--------------|----------|
| 0     | 1     | 1     | 1            | <b>-</b> |
| 1     | 0     | 0     | 0            |          |
| 1     | 0     | 0     | 1            |          |
| 1     | 0     | 1     | 0            |          |
| 1     | 0     | 1     | 1            |          |
| 1     | 1     | 0     | 0            |          |
| 1     | 1     | 0     | 1            |          |
| 1     | 1     | 1     | 0            |          |
| 1     | 1     | 1     | 1            |          |



$$TC = CET \cdot Q_3 \cdot Q_2 \cdot Q_1 \cdot Q_0 = 1$$



# 波形图:



# 该计数器的模为9。

计数器的模: 计数器状态图中闭合圈包含的稳定的有效状态的数目。本题中最后得到的是模9计数器

分析下图所示的时序逻辑电路,试画出其状态图和在CP脉冲作用下 $Q_3$ 、 $Q_2$ 、 $Q_1$ 、 $Q_0$ 的波形,并指出计数器的模是多少?



# 例 用74VC161组成256进制计数器。

#### 解:设计思想

- 1片74161是16进制计数器
- $256 = 16 \times 16$
- 所以256进制计数器需用两片74161构成
- •片与片之间的连接通常有两种方式:

并行进位(低位片的进位信号作为高位片的使能信号)

串行进位(低位片的进位信号作为高位片的时钟脉冲,即异步计数方式)

# 并行进位:低位片的进位作为高位片的使能(采用 同步时钟)



计数状态:0000 0000 ~1111 1111

$$N = 16 \times 16 = 256$$

# 串行进位:低位片的进位作为高位片的时钟



计数状态:0000 0000 ~1111 1111

采用串行进位时,为什么低TC要经反相器后作为高位的CP?

加个反相器,是将TC由1变0的下降沿,变成161芯片所需要的由0变1的上升沿。

#### 串行进位: 低位片的进位作为高位片的时钟



需要将此处的从1到0的下降沿,变为从0到1的上升沿,送给CP时钟输入引脚。



# 在CP的作用下,Y端产生00010111循环序列信号



如要求Y端产生10110010循环序列信号,如何改变电路的连接?

# 数字逻辑电

#### 3. 环形计数器

#### (1) 工作原理

① 基本环形计数器 Q3连线到D0,就构成基本环形计数器

置初态 $Q_3Q_2Q_1Q_0=0001$ ,

第一个 $CP:Q_3Q_2Q_1Q_0=0010$ ,

第二个 $CP:Q_3Q_2Q_1Q_0=0100$ ,

第三个*CP*:Q<sub>3</sub>Q<sub>2</sub>Q<sub>1</sub>Q<sub>0</sub>=1000,

第四个CP:Q<sub>3</sub>Q<sub>2</sub>Q<sub>1</sub>Q<sub>0</sub>=0001,

第五个CP:Q<sub>3</sub>Q<sub>2</sub>Q<sub>1</sub>Q<sub>0</sub>=0010,



# ② 扭环形计数器

a、电路

Q4 连线到D0,就构成扭环计数器



#### b、状态表

#### c、状态图



| 状态编号 | $Q_4$ | $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$ |
|------|-------|-------|-------|-------|-------|
| 0    | 0     | 0     | 0     | 0     | 0     |
| 1    | 0     | 0     | 0     | 0     | 1     |
| 2    | 0     | 0     | 0     | 1     | 1     |
| 3    | 0     | 0     | 1     | 1     | 1     |
| 4    | 0     | 1     | 1     | 1     | 1     |
| 5    | 1     | 1     | 1     | 1     | 1     |
| 6    | 1     | 1     | 1     | 1     | 0     |
| 7    | 1     | 1     | 1     | 0     | 0     |
| 8    | 1     | 1     | 0     | 0     | 0     |
| 9    | 1     | 0     | 0     | 0     | 0     |

# **74LVC161**



## 74LVC161的功能表。

| _ | 输入       |    |    |     |     | 功能        |                                                       |    |  |
|---|----------|----|----|-----|-----|-----------|-------------------------------------------------------|----|--|
|   | СР       | CR | PE | CEP | CET | 说明        | 解释                                                    |    |  |
|   | ×        | 0  | ×  | ×   | ×   | 异步复位      | $Q_3Q_2Q_1Q_0=0000$                                   |    |  |
|   | <b>↑</b> | 1  | 0  | ×   | X   | 同步置数      | $Q_3^{n+1}Q_2^{n+1}Q_1^{n+1}Q_0^{n+1} = D_3D_2D_1D_0$ |    |  |
|   | ×        | 1  | 1  | 0   | 1   | <b>但性</b> | ∩n+1 ∩n                                               | 保持 |  |
|   | ×        | 1  | 1  | ×   | 0   | 保持        | $Q^{n+1}=Q^n$                                         | 保持 |  |
|   | <b>↑</b> | 1  | 1  | 1   | 1   | 计数        | 加1计数                                                  |    |  |

#### 如何才能得到N进制计数器?

- 1、反馈清零法:利用异步清零输入端CR,得到N进制计数器
- 2、反馈置数法:利用同步置数端PE,在M时制计数器的计数过程中,跳过M-N个状态,得到N进制计数器



### (4) 应用 例 用74LVC161构成九进制加计数器。

(a) 反馈清零法:利用异步清零输入端,在M进制计数器的计数过程中,跳过M-N-1个状态,得到N进制计数器的方法。

| CP  | $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$ |
|-----|-------|-------|-------|-------|
| 0   | 0     | 0     | 0     | 0     |
| 1   | 0     | 0     | 0     | 1     |
| 2   | 0     | 0     | 1     | 0     |
|     |       | • • • |       |       |
|     |       |       |       |       |
| 8   | 1     | 0     | 0     | 0     |
| 9   | 1     | 0     | 0     | 1     |
| ••• |       | • • • |       |       |
|     | 98.   | • • • |       |       |
| 15  | 1     | 1     | 1     | 1     |



$$CR = \overline{Q_0 \cdot Q_3} = 0$$

采用异步清零法时,由于异步清零最后一个状态保持时间很短,通常忽略不计。

#### 设法跳过16-10=6个状态

计数器的模: 计数器状态图中闭合圈包含的稳定的有效状态的数目。本题中最后得到的是模9计数器

# 工作波形



# 状态图



数字逻辑电路

# 利用同步置数端构成九进制计数器

(b) 反馈置数法:利用同步置数端,在M进制计数器的计数过程中,跳过M-N个状态,得到N进制计数器的方法。

|                           |       |       |       |       | _        |  |  |
|---------------------------|-------|-------|-------|-------|----------|--|--|
| СР                        | $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$ |          |  |  |
| 0                         | 0     | 0     | 0     | 0     | <b>—</b> |  |  |
| 1                         | 0     | 0     | 0     | 1     |          |  |  |
| 2                         | 0     | 0     | 1     | 0     |          |  |  |
|                           |       |       |       |       |          |  |  |
| 8                         | 1     | 0     | 0     | 0     | Ц        |  |  |
| $PE = \overline{Q_3} = 0$ |       |       |       |       |          |  |  |
|                           |       |       |       |       |          |  |  |



#### 采用后九种状态作为有效状态,用反馈置数法构成九进制加计数器。

| $Q_3$ | $Q_2$ | $Q_1$ | $Q_{\theta}$ |          |
|-------|-------|-------|--------------|----------|
| 0     | 1     | 1     | 1            | <b>-</b> |
| 1     | 0     | 0     | 0            |          |
| 1     | 0     | 0     | 1            |          |
| 1     | 0     | 1     | 0            |          |
| 1     | 0     | 1     | 1            |          |
| 1     | 1     | 0     | 0            |          |
| 1     | 1     | 0     | 1            |          |
| 1     | 1     | 1     | 0            |          |
| 1     | 1     | 1     | 1            |          |
|       |       |       |              |          |



$$TC = CET \cdot Q_3 \cdot Q_2 \cdot Q_1 \cdot Q_0 = 1$$



# 波形图:



# 该计数器的模为9。

计数器的模: 计数器状态图中闭合圈包含的稳定的有效状态的数目。本题中最后得到的是模9计数器

分析下图所示的时序逻辑电路,试画出其状态图和在CP脉冲作用下 $Q_3$ 、 $Q_2$ 、 $Q_1$ 、 $Q_0$ 的波形,并指出计数器的模是多少?



# 例 用74VC161组成256进制计数器。

#### 解:设计思想

- 1片74161是16进制计数器
- $256 = 16 \times 16$
- 所以256进制计数器需用两片74161构成
- •片与片之间的连接通常有两种方式:

并行进位(低位片的进位信号作为高位片的使能信号)

串行进位(低位片的进位信号作为高位片的时钟脉冲,即异步计数方式)

# 并行进位:低位片的进位作为高位片的使能(采用 同步时钟)



计数状态:0000 0000 ~1111 1111

$$N = 16 \times 16 = 256$$

# 串行进位:低位片的进位作为高位片的时钟



计数状态:0000 0000 ~1111 1111

采用串行进位时,为什么低TC要经反相器后作为高位的CP?

加个反相器,是将TC由1变0的下降沿,变成161芯片所需要的由0变1的上升沿。

#### 串行进位: 低位片的进位作为高位片的时钟



需要将此处的从1到0的下降沿,变为从0到1的上升沿,送给CP时钟输入引脚。



# 在CP的作用下,Y端产生00010111循环序列信号



如要求Y端产生10110010循环序列信号,如何改变电路的连接?

#### 3. 环形计数器

#### (1) 工作原理

① 基本环形计数器 Q3连线到D0,就构成基本环形计数器

置初态 $Q_3Q_2Q_1Q_0=0001$ ,

第一个CP:Q<sub>3</sub>Q<sub>2</sub>Q<sub>1</sub>Q<sub>0</sub>=0010,

第二个CP:Q<sub>3</sub>Q<sub>2</sub>Q<sub>1</sub>Q<sub>0</sub>=0100,

第三个CP:Q<sub>3</sub>Q<sub>2</sub>Q<sub>1</sub>Q<sub>0</sub>=1000,

第四个CP:Q<sub>3</sub>Q<sub>2</sub>Q<sub>1</sub>Q<sub>0</sub>=0001,

第五个CP:Q<sub>3</sub>Q<sub>2</sub>Q<sub>1</sub>Q<sub>0</sub>=0010,



# ② 扭环形计数器

a、电路

Q4 连线到D0,就构成扭环计数器



#### b、状态表

#### c、状态图



| 状态编号 | $Q_4$ | $Q_3$ | $Q_2$ | $Q_1$ | $Q_0$ |
|------|-------|-------|-------|-------|-------|
| 0    | 0     | 0     | 0     | 0     | 0     |
| 1    | 0     | 0     | 0     | 0     | 1     |
| 2    | 0     | 0     | 0     | 1     | 1     |
| 3    | 0     | 0     | 1     | 1     | 1     |
| 4    | 0     | 1     | 1     | 1     | 1     |
| 5    | 1     | 1     | 1     | 1     | 1     |
| 6    | 1     | 1     | 1     | 1     | 0     |
| 7    | 1     | 1     | 1     | 0     | 0     |
| 8    | 1     | 1     | 0     | 0     | 0     |
| 9    | 1     | 0     | 0     | 0     | 0     |

