Analyse de séquences d'images dynamiques

Irène Buvat U494 INSERM Paris

buvat@imed.jussieu.fr

http://www.guillemet.org/irene

novembre 2003

Plan du cours

- Introduction
 - Séquences d'images dynamiques
 - Interprétation visuelle
 - Interprétation quantitative
 - Notion d'images quantitatives
 - Mesure de l'évolution du signal au cours du temps
- Exploitation des courbes temporelles
 - Modélisation cinétique

directe

par analyse compartimentale

- Imagerie paramétrique

directe

imagerie paramétrique statistique (SPM)

- Analyse multivariée

principe

Analyse factorielle des Séquences d'Images Médicales

- Caractéristiques des approches
 - Régionales et locales
 - Univariées et multivariées
 - Connaissances a priori requises
 - Reproductibilité
 - Complexité
 - Disponibilité
 - Applications

Introduction : séquences d'images dynamiques

- Série d'images acquises dans le temps
 - ⇒ étude fonctionnelle : étude de l'évolution d'un processus physiologique au cours du temps
 - ⇒ étude de mouvement : cinétique ventriculaire

• Exemples

- IRM fonctionnelle pour l'étude de processus cérébraux
- examens dynamiques en SPECT ou PET pour l'étude de l'évolution de la distribution du radiotraceur
- tomodensitométrie dynamique : étude de l'évolution de la distribution d'un produit de contraste dans le temps
- échographie dynamique

• Problème

Extraire l'information pertinente des séquences sous forme synthétique

Exemple: PET

• Etude cérébrale d'un ligand de récepteur dopaminergique marqué au Fluor-18

• Etude myocardique à l'ammoniaque N-13

Exemple: IRM fonctionnelle

- Séquence de 9 images du sein après administration d'un produit de contraste (gadolinium)
 - analyse de la vascularisation de la tumeur

- Séquence d'images IRM d'un ostéosarcome après administration d'un produit de contraste (gadolinium)
 - ⇒ étude de la vascularisation de la tumeur

TTI6 : Analyse de séquences d'images dynamiques - Irène Buvat - novembre 2003 - 5

Exemple: tomodensitométrie dynamique

- Séquence d'images hépatiques après administration d'un produit de contraste iodé
 - ⇒ étude de la vascularisation de la tumeur

Interprétation visuelle

- Examen image par image de la séquence d'images
 - ⇒ long
 - ⇒ fastidieux
 - ⇒ subjectif
 - variabilité intra et inter observateur

"Occlusion de l'artère rénale gauche"

- Examen de la séquence d'images en mode cinéma
 - **⇒** fastidieux
 - ⇒ subjectif
 - > variabilité intra et inter observateur

Interprétation quantitative

- Extraction de paramètres quantitatifs caractérisant le phénomène étudié à partir de la séquence d'images
 - ⇒ classification facilitée
 - extraction manuelle ou automatique
 - ⇒ si extraction automatique, pas de variabilité intra ou inter observateur

"Le taux de métabolisme de glucose dans cette région est de 8,37 mg/min/100g de tissu"

Analyse quantitative : approche générale

- Obtenir des images quantitatives
 - valeur du pixel = grandeur ayant une interprétation physique
- Mesurer l'évolution locale (dans une région) du signal
 - -région = 1 pixel
 - imagerie paramétrique
 - méthodes d'analyse multivariée
 - région tracée manuellement
 - méthode des régions d'intérêt
 - région calculée automatiquement
 - techniques de segmentation
- Caractériser cette évolution au moyen de paramètres présentant une interprétation physiologique
 - modélisation cinétique (e.g., compartimentale)
 - imagerie paramétrique
 - ⇒ analyse multivariée

Notion d'image quantitative

- Valeur dans un pixel = grandeur physique
- Exemples : SPECT ou PET

Tomodensitométrie

IRM: complexe...

Problème incontournable : l'effet de volume partiel

• Valeur dans un pixel = mélange de signaux issus de différentes structures anatomiques ou fonctionnelles

• 2 causes:

✓ Résolution spatiale limitée du détecteur

2 compartiments présentant 2 niveaux de signal

3 niveaux de signal correspondant à des mélanges entre compartiments

✓ Echantillonnage des images

résolution spatiale parfaite

Mesure de l'évolution du signal : approche pixel

- Calcul de la courbe représentant l'évolution du signal dans chaque pixel
 - une séquence de P images contenant chacune N pixels [] N courbes de P valeurs

- Terminologie
 - générale :

1 courbe = 1 dynamique ou 1 cinétique

- SPECT ou PET:

1 courbe = 1 courbe "activité - temps" (TAC pour Time Activity Curve)

- analyse factorielle:

1 courbe = 1 trixel (pixel tridimensionnel)

Mesure de l'évolution du signal : région d'intérêt

• Tracé (manuel ou automatique) d'une région d'intérêt sur une image ou volume d'intérêt sur une série de coupes

• Report de la région sur chaque image de la séquence

• Mesure du signal moyen dans chaque région

TTI6 : Analyse de séquences d'images dynamiques - Irène Buvat - novembre 2003 - 13

Estimation des courbes temporelles

• Courbe = valeur moyenne dans la région en fonction du temps

• Région 2D (tracée sur une image) ou 3D (tracée sur un volume d'images)

Exploitation des courbes temporelles

- Modélisation cinétique
 - extraction de paramètre(s) à partir d'une ou plusieurs courbes étant donné un modèle

- Imagerie paramétrique
 - modélisation cinétique appliquée indépendamment à chacune des N courbes associées aux N pixels

- Analyse multivariée
 - analyse simultanée de l'ensemble des N courbes associées aux N pixels

images et courbes caractéristiques de la séquence

Modélisation cinétique directe à partir d'une courbe

- Calcul d'une fraction d'éjection
 - acquisition (planaire ou SPECT) cavitaire synchronisée à l'ECG (gated blood pool)
 - une séquence de P images couvrant le cycle cardiaque

- tracé d'une région d'intérêt englobant la cavité et calcul de la courbe activité-temps correspondante

- déduction de la fraction d'éjection définie par : Fraction d'éjection = 100 * $(N_{ts} N_{td}) / N_{ts}$ μ 100 * $(V_{ts} V_{td}) / V_{td}$
- 1 séquence d'images
 - une fraction d'éjection

Modélisation cinétique : analyse compartimentale

Objectif

- calcul de la concentration régionale de traceur et des taux d'échanges entre différents compartiments physiologiques

Méthode

- représentation simplifiée d'un système biologique au moyen d'un ensemble de compartiments présentant des interactions

- formulation des échanges entre les compartiments au moyen d'équations différentielles

$$- dC_p/dt = k_{el}.C_p$$

- résolution des systèmes d'équations différentielles pour l'estimation de paramètres ayant une interprétation biologique

Analyse compartimentale: exemple 1

• Modèle linéaire à 1 compartiment

- Modèle linéaire
 - taux d'élimination du traceur proportionnel à la concentration du traceur
- Equation différentielle correspondante

$$dC_p/dt = -k_{el} \cdot C_p$$

• Problème : déterminer k_{el} à partir des mesures

Solution d'un modèle à 1 compartiment/1 paramètre

• Résolution de l'équation différentielle

- Ajustement des mesures $C_p(t)$
 - ⇒ constante d'élimination k_{el}
- Exemple d'application : injection d'un bolus intraveineux du traceur

Analyse compartimentale : exemple 2

• Modèle linéaire à 1 compartiment

• Equation différentielle correspondante

$$V \cdot dC_p/dt = k_0 - V \cdot k_{el} \cdot C_p$$

• Problème : déterminer k₀ et/ou k_{el} à partir des mesures

Solution d'un modèle à 1 compartiment/2 paramètres

• Solution de l'équation différentielle

$$C_p = (k_0/V.k_{el}).[1-exp(-k_{el} . t)]$$

- Ajustement des mesures $C_p(t)$
 - \Rightarrow constante d'infusion k_0
 - ⇒ constante d'élimination k_{el}
- Exemple d'application : injection intraveineuse continue du traceur et élimination du traceur

Autres exemples de modèles compartimentaux

• Deux compartiments

• Trois compartiments

Quatre compartiments

$$\begin{array}{c|c} & k_{10} \\ \hline & k_{01} \\ \hline & k_{01} \\ \hline & k_{13} \\ \hline & k_{31} \\ \hline \\ & K_{31} \\ \hline & K_{31} \\ \hline \\ \\ K_{41} \\ \hline \\ K_{41} \\ \hline \\ \\$$

$$\begin{split} dX_1/dt &= k_{01}.X_0 - k_{01}.X_1 - k_{21}.X_1 - k_{31}.X_1 + k_{12}.X_2 + k_{13}.X_3 \\ dX_2/dt &= k_{21}.X_1 - k_{12}.X_2 \\ dX_3/dt &= k_{31}.X_1 - k_{13}.X_3 \end{split}$$

TTI6 : Analyse de séquences d'images dynamiques - Irène Buvat - novembre 2003 - 22

Imagerie paramétrique: principe

• Analyse indépendante des courbes temporelles associées à chaque pixel

• Pour chaque courbe, modélisation cinétique et détermination d'un ou plusieurs paramètres caractérisant la cinétique

- Représentation de la distribution spatiale des valeurs de chaque paramètre sous forme d'images
 - images paramétriques

Imagerie paramétrique directe : exemple

• PET myocardique

- conversion des valeurs de concentration du radiotraceur en paramètre physiologique pertinent
- ⇒ gain informatif

Statistical parametric mapping (SPM): introduction

• Imagerie paramétrique pour l'imagerie cérébrale (SPECT/PET et IRM fonctionnelle)

pas de stimulus

stimulus auditif (musique)

stimulus tactile

- Modèle a priori de la réponse neurophysiologique : modèle linéaire général
 - détermination d'une matrice décrivant les signaux attendus en réponse au paradigme fonctionnel mis en œuvre (matrice explicative)
- Ajustement du modèle
 - détermination des régions contribuant à chaque signal réponse attendu
- Inférence statistique régionale possible

Hypothèse testée:

H0: région X significativement activée par le stimulus?

SPM: modèle linéaire général

• Notation matricielle

TTI6 : Analyse de séquences d'images dynamiques - Irène Buvat - novembre 2003 - 26

SPM: solution du modèle linéaire général

$$Y = G \cdot \Box + E$$

• Solution générale des moindres carrés d'un système d'équations linéaires

$$Y = G \cdot \Box + E$$

$$G^{T}Y = (G^{T}G) \cdot b$$

$$(G^{T}G)^{-1} G^{T}Y = (G^{T}G)^{-1}(G^{T}G) \cdot b$$

$$((G^{T}G)^{-1} G^{T}) Y = b$$

- Spécificité de SPM : choix de la matrice explicative G
 - fonction des a priori sur le phénomène étudié
 - tous les effets présents (recherchés ou non recherchés) doivent être représentés dans la matrice explicative

SPM: choix de la matrice réponse G

$$Y = G \cdot \Box + E$$

• Exemple : séquence de 9 images correspondant à 3 images consécutives acquises dans 3 conditions différentes chez un même sujet

matrice explicative correspondante

$$Y = G \cdot \Pi + E$$

• Ecriture de la matrice explicative

$$y_{ti} = g_{t1} \square_{1i} + g_{t2} \square_{2i} + g_{t3} \square_{3i} + e_{ti}$$

Images paramétriques et tests statistiques

Terminologie

- statistique : variable aléatoire fonction d'un échantillon (un ensemble de valeurs) dont la distribution statistique est connue sous certaines hypothèses
- hypothèse nulle H0: affirmation hypothétique à tester
- hypothèse alternative H1 : affirmation acceptée si H0 est rejetée
- niveau de signification ☐ : probabilité qu'une hypothèse nulle valide soit rejetée
- valeur de p : « p-value » : probabilité d'obtenir une statistique de test plus extrême que celle obtenue si H0 est vraie
- vecteur contraste c_k : vecteur tel que $\prod_k c_k = 0$
- inférence statistique : le fait de tirer des conclusions sur les caractéristiques d'un échantillon à partir des observations faites sur l'échantillon

SPM et inférence statistique : principe

- Création d'une image test
 - image test = image d'une statistique dont la distribution est connue sous l'hypothèse nulle H0
 - image test = image fonction des images paramétriques \square_k solutions de SPM, définie au moyen d'un vecteur contraste c_k , avec \square_k $c_k = 0$
 - e.g., image test = image de valeurs de t de Student image test = image de valeurs de Z
- Si hypothèse nulle vérifiée dans le pixel i de l'image test

 ⇒ t₁ ≤ t_i ≤ t₂ ou Z₁ ≤ Z_i ≤ Z₂
- Seuillage de l'image test de sorte que seuls, les pixels pour lesquels l'hypothèse H0 est rejetée sont conservés
 - correction des effets de comparaison multiples

TT16 : Analyse de séquences d'images dynamiques - Irène Buvat - novembre 2003 - 31

SPM et inférence statistique : exemple

• Séquence de 9 images correspondant à 3 images consécutives acquises dans 3 conditions différentes chez un même sujet

- H0 : la réponse à la condition 2 est identique à la réponse à la condition 1
 - \Rightarrow image test $t_i \sim (\prod_{1i} \prod_{2i}) \prod_{1i} c = (1, -1)$
 - ⇒ sous H0, pixels de l'image test ~ distribution t de Student
- Si hypothèse nulle vérifiée dans le pixel i de l'image test

 ⇒ t₁ ≤ t₂ pour

 = 5%
- Seuillage de l'image paramétrique de sorte que seules, les pixels pour lesquels $t < t_1$ ou $t > t_2$ sont conservés
 - image des régions pour lesquelles H0 est rejetée

TTI6 : Analyse de séquences d'images dynamiques - Irène Buvat - novembre 2003 - 32

Analyse multivariée: principe

• Analyse simultanée des courbes temporelles associées à chaque pixel

- Pas de modèle cinétique a priori
 - estimation d'images et de cinétiques représentatives du contenu de la séquence d'images à partir des données (data driven approach)

- Plusieurs approches possibles
 - analyse factorielle des séquences d'images médicales (AFSIM)
 - analyse en composantes principales
 - analyse de Karhunen-Loeve
 - analyse multivariée de la covariance

AFSIM: principe

• Séquence temporelle de P images

étude cardiaque PET à l'eau marquée

- Connaissances a priori
 - nombre de compartiments physiologiques
 - positivité du signal dans chaque compartiment
 - connaissances optionnelles:
 - e.g., régions dans lesquelles certains compartiments sont absents
 - forme grossière d'une ou plusieurs cinétiques (cinétique croissante, constante, ...)
- résumé des informations sous-jacentes à la séquence par un petit nombre d'images et de cinétiques associées

$$y_{ti} = a_{1i}f_{t1} + a_{2i}f_{t2} + ... + a_{Ki}f_{tK} + e_{ti}$$

- Courbe temporelle associée à chaque pixel = combinaison linéaire d'un petit nombre K de cinétiques de base f_k (facteurs)
- Cinétiques de base (facteurs) communes à tous les pixels
- Dans chaque pixel, contributions spécifiques des cinétiques de base données par les coefficients a_{ki}
- Image des coefficients $a_{ki} \ \square$ image factorielle k associée à la cinétique de base k

AFSIM: modèle et notations

terme d'erreur par rapport au modèle

• Notation matricielle

AFSIM: résolution du modèle

- Deux étapes :
 - estimation de E
 - ⇒ analyse orthogonale exploitant les connaissances relatives aux propriétés statistiques de Y (Poisson, Gauss)

- estimation conjointe de F et A
- ⇒ analyse oblique exploitant des connaissances a priori relatives à F et A, e.g. :

positivité des courbes $f_{tk} \ge 0$ positivité des images factorielles $a_{ki} \ge 0$ fonction f_k monotone croissante etc.

AFSIM: analyse orthogonale

$$Y = F \cdot A + E$$

- 1 séquence de P images de I pixels
- ☐ I courbes temporelles de P points
- ☐ I points dans un espace de dimension P
- Hypothèse : données non bruitées Y E = F . A appartiennent à un sous-espace d'étude S de dimension Q < P

- Estimation de *S* :
 - décomposition en valeurs singulières de Y en utilisant une métrique adaptée aux propriétés statistiques des données
 - \Rightarrow estimation des vecteurs orthogonaux $\{u_a\}_{a=1,0}$
 - $y_{ti} e_{ti} = \hat{y}_{ti} = v_{1i} u_{t1} + ... + v_{Qi} u_{tQ}$

AFSIM: analyse oblique

$$\hat{\mathbf{Y}} = \mathbf{F} \cdot \mathbf{A}$$

 \bullet Hypothèse : les cinétiques de base f_k appartiennent au sous-

espace d'étude S

- Identification itérative des facteurs f_k dans S :
 - utilisation de connaissances a priori sur les f_k et les a_k
 - \Rightarrow formulation de contraintes auxquelles doivent obéir les f_k et les a_k
 - e.g., connaissance a priori = positivité des f_{tk} \Box contraintes : si $f_{tk} < 0$ remplacer f_{tk} par 0

$$f_1, f_2, ..., f_K$$
 $f_1, f_2, ..., f_K$

modification des f_k
pour vérification des contraintes

 $f'_1, f'_2, ..., f'_K$

régression linéaire

 $a_1, a_2, ..., a_K$

modification des a_k
pour vérification des contraintes

 $a'_1, a'_2, ..., a'_K$

AFSIM : exemple en IRM

• Examen cardiaque

- Connaissances a priori
 - positivité des images factorielles et des cinétiques associées
- résumé des informations sous-jacentes à la séquence :

TTI6 : Analyse de séquences d'images dynamiques - Irène Buvat - novembre 2003 - 40

AFSIM: exemple en tomodensitométrie

• Examen hépatique

- Connaissances a priori
 - positivité des images factorielles et des cinétiques associées
- résumé des informations sous-jacentes à la séquence :

TTI6 : Analyse de séquences d'images dynamiques - Irène Buvat - novembre 2003 - 41

Discussion: caractéristiques des approches

- Approches recensées :
 - modélisation cinétique directe compartimentale
 - imagerie paramétrique directeSPM
 - analyse multivariée AFSIM SPM
- Caractéristiques
 - approches régionales et locales
 - approches univariées et multivariées
 - connaissances a priori requises
 - reproductibilité
 - complexité
 - disponibilité

Approches régionales et locales

- Approches régionales : caractérisation de cinétiques relatives à toute une région
 - modélisation cinétique directe
 - modélisation cinétique compartimentale

_>	moins	sensib	les au	bruit	(moy	rennage	e du signa	ıl dans
un	e régioi	n)						
	7 1.	. 17	1 .	1 1		, .	4	

- résultat dépendant du choix des régions, donc potentiellement de l'utilisateur problème de reproductibilité
- ne traitent pas de la superposition de compartiments dans une région, i.e., suppose qu'une région contient exclusivement le signal correspondant à un compartiment ne traitent pas des effets de volume partiel
- Approches locales : caractérisation des cinétiques mesurées dans chaque pixel
 - imagerie paramétrique directe
 - SPM
 - AFSIM
 - SPM et AFSIM traitent de la superposition de compartiments dans un pixel
 - quantification à haute résolution spatiale

Approches univariées et multivariées

- Approches univariées : analyse indépendante de chaque cinétique
 - modélisation cinétique directe
 - modélisation cinétique compartimentale
 - imagerie paramétrique directe
 - n'exploitent pas les corrélations entre les cinétiques ni la complémentarité des informations fournies par les différentes cinétiques
 - plus sensibles au bruit (cohérence spatiale non assurée)
 - permettent de mettre en évidence des effets très marginaux et faiblement représentés dans l'ensemble des cinétiques
- Approches multivariées : analyse simultanée de l'ensemble des cinétiques d'intérêt
 - AFSIM
 - SPM
 - ⇒ modélisation possible des corrélations entre cinétiques locales
 - ⇒ exploite les ressemblances entre cinétiques présentes dans les images

Connaissances a priori requises

• Peu

- modélisation cinétique directe
- imagerie paramétrique directe
 - → modèle grossier parfois suffisant (e.g., temps du max de la courbe)

- AFSIM

- ⇒ a priori triviaux parfois suffisants (e.g., positivité des cinétiques de base et des images factorielles)
- possible mise en évidence d'effets inattendus

• Beaucoup

- modélisation cinétique compartimentale
 - nécessité de formuler précisément un modèle physiologique sous forme compartimentale
- SPM
- nécessité de formuler précisément et de façon exhaustive un modèle explicatif des données mesurées

	résultats fortement dépendants de la pertinence du
mo	odèle
	seuls, les effets attendus peuvent être mis en
év	idence

Reproductibilité des approches

- Peu reproductibles
 - modélisation cinétique directe ou compartimentale si le tracé des régions d'intérêt est manuel
 - variabilité intra et inter observateurs potentiellement grande
- Très reproductibles
 - imagerie paramétrique directe
 - résultats entièrement spécifiés par le modèle paramétrique
 - SPM
 - résultats entièrement spécifiés par le modèle de matrice explicative et la définition du contraste en cas d'inférence statistique
 - AFSIM
 - nécessité d'introduire suffisamment de contraintes pour tendre vers une unicité de la solution et avoir ainsi des résultats reproductibles

Complexité des approches

• Simples

- modélisation cinétique directe
- imagerie paramétrique directe
- complexité entièrement déterminée par la complexité du modèle cinétique
- Apprentissage nécessaire
 - modélisation cinétique compartimentale
 - SPM
 - AFSIM
 - nécessaire apprentissage pour une bonne maîtrise des approches et une exploitation optimale de leurs potentialités

Disponibilité des méthodes

- Logiciels répandues ou méthodes aisément programmables
 - modélisation cinétique directe
 - imagerie paramétrique directe
 - complexité du programme entièrement déterminée par la complexité du modèle cinétique
 - routine d'ajustement souvent nécessaire
- Logiciels spécialisés
 - modélisation cinétique compartimentale
 - e.g., http://www.pmod.com
 - SPM
 - e.g., http://www.fil.ion.ucl.ac.uk/spm/
 - AFSIM
 - e.g., http://www.apteryx.fr/pixies

Application des méthodes

- Travaux les plus sophistiqués en médecine nucléaire SPECT et PET (méthodes pionnières d'imagerie fonctionnelle)
 - modélisation cinétique directe (e.g., calcul de la fraction d'éjection en imagerie cardiaque)
 - imagerie paramétrique directe (e.g., imagerie cardiaque, rénale)
 - modélisation cinétique compartimentale (e.g., PET, ou SPECT imagerie hépatique)
 - SPM (PET ou SPECTcérébral)
 - AFSIM (PET et SPECT cardiaque, SPECT rénal ou hépatique)
- Travaux abondants en IRM fonctionnelle cérébrale
 - SPM
 - analyses multivariées (type AFSIM)
- Travaux débutants dans les autres modalités (émergentes) d'imagerie fonctionnelle
 - difficulté pour obtenir des images quantitatives e.g., tomodensitométrie avec produit de contraste : non linéarité entre intensité du signal mesuré et concentration du produit de contraste
 - ⇒ prépondérance de l'analyse visuelle des séquences d'images

Remerciements

Ce cours a été réalisé notamment grâce aux contributions de :

- M. Di Paola, U494 INSERM, Paris
- F. Frouin, U494 INSERM, Paris
- M. Janier, CERMEP, Lyon
- P. Merlet, SHFJ, Orsay
- D. Revel, CERMEP, Lyon
- http://www.crump.ucla.edu/lpp/lpphome.html
- http://gaps.cpb.uokhsc.edu/gaps/pkbio/pkbio.html
- http://www.fil.ion.ucl.ac.uk/spm/
- http://www.fmri.org/fmri.htm