Vorlesung Machine Learning und Data Mining

Übungsblatt für den 9.11.2004

Aufgabe 1

Gegeben sei eine Beispielmenge mit folgenden Eigenschaften:

- Die Datenmenge enthält 1000 Beispiele.
- Jedes Beispiel ist durch 10 nominale Attribute A_1, \ldots, A_{10} beschrieben.
- Jedes dieser Attribute hat 10 Werte.
- a) Wie viele Entscheidungsbäume müßten bei vollständiger Suche untersucht werden (Abschätzung der Größenordnung)?
- (Hinweis: Dies ist analog zu der Frage: Wie viele Entscheidungsbäume gibt es für diese Daten?)
- b) Wie viele (partielle) Entscheidungsbäume müssen maximal beim Verfahren des TDIDT untersucht werden?
- c) Wie oft wird jedes Beispiel im Worst-Case angefaßt?
- d) Was würde sich bei a) und b) ändern, wenn die Attribute nicht nominal, sondern numerisch wären (die sonstigen Annahmen bleiben gleich)?

Aufgabe 2

Gegeben sei folgende Beispielmenge:

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No
D15	Sunny	Mild	Normal	Weak	No

a) Erzeugen Sie einen Entscheidungsbaum mittels des Verfahrens ID3 (TDIDT mit Maß Gain).

Anmerkung: Hier bietet es sich an, in Gruppen zu arbeiten.

- b) Wiederholen Sie die Berechnungen für die Auswahl des Tests in der Wurzel mit den Maß Information-Gain-Ratio und Gini-Index. Ändert sich etwas?
- c) Ersetzen Sie das Beispiel D1 durch

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	?	Hot	High	Weak	No

(Attributwert für Outlook unbekannt) und berechnen Sie nun den Gain des Attributs Outlook, indem Anteile der Beispiele in die Teilbäume propagiert werden (siehe letzter Punkt auf Folie 25).