Pokročilé spracovanie obrazu - Farebné priestory

Ing. Viktor Kocur viktor.kocur@fmph.uniba.sk

DAI FMFI UK

9.10.2019

HSV

HSV

HSV je farebný model orientovaný na intuitívne využite (tzv. uživateľský model). Hue predstavuje pozíciu na farebnom kruhu (odtieň), saturation je sýtosť a value je jas.

rgb2hsv

rgb2hsv(I) - vráti obraz zapísaný v podľa HSV modelu, má rovnaké rozmery ako I, tj. tiež má tri kanály.

hsv2rgb

hsv2rgb(l_hsv) - urobí to isté ale naopak.

HSV - Úloha

HSV

Použite GUI z minula. Ale namiesto R, G a B sliderov to budú H, S, V slidre. Telo funkcie bude skoro rovnaké obrázok, ale musíte najprv premeniť na HSV, upraviť a potom konvertovať na RGB.

GUI

Ak nemáte uložené GUI, tak si môžete stiahnuť súbory z minulého cvika a upraviť gui_sliders.m.

CIE Lab

CIE Lab

CIE L* a* b* je model s troma zložkami. L predstavuje jas (luminance), a je pozícia na ose zelená-červená a b je pozícia na ose modrá-žltá.

rgb2lab

rgb2lab(I) - vráti obraz zapísaný v podľa CIE Lab modelu, má rovnaké rozmery ako I, tj. tiež má tri kanály.

lab2rgb

lab2rgb(l_lab) - urobí to isté ale naopak.

Úloha

Upravte gui, tak aby slidre reprezentovali zložky L, a, b.

RGB

RGB

RGB je aditívny model, tj. na čierne pozadie pridávame farby. Ak prídáme všetky tri farby, tak vznikne biela farba.

CMY

CMY

CMY je substraktívny model, tj. na biele pozadie pridávame farby. Ak prídáme všetky tri farby, tak vznikne čierna farba.

CMYK

CMYK má navyše čiernu farbu. To je vhodné pre tlačiarne.

CMY vs. RGB

CMY

Pre farbý podľa CMY a RGB platí prechod C = 255 - R, M = 255 - G a Y = 255 - B

CMY vs. RGB

CMY

Pre farbý podľa CMY a RGB platí prechod C = 255 - R, M = 255 - G a Y = 255 - B

RGB

Naopak platí R = M + Y, G = C + Y, B = C + M

Euklidovská vzdialenosť

Úloha

Napíšte skript ktorý zobrazí obrázok farby,png. Pomocou funkcie ginput vyberte tri body a zistite aká je vzdialenosť medzi prvým a zvyšními dvoma pre rôzne farebné modely. Porovnajte, či podobné farby sú pri sebe bližšie ako zdanlivo rôzne farby.

Euklidovská vzdialenosť

$$\rho_e(\vec{a}, \vec{b}) = \sqrt{\sum_{i=1}^n (a_i - b_i)^2}$$

ginput

[x,y] = ginput(n) - vráti vektory x-ových a y-ových súradníc bodov na ktoré užívateľ po zadaní príkazu klikne vo figure

Pseudofarby

Pseudofarby

Pseudofarby využijeme na zafarbenie šedotónového obrázka, tak aby sa zvýraznili niektoré detaily.

colormap

colormap(mapa) – zmení farby ktorými sa vykresluje obrázok na tie ktoré sú v mape. Mapa môže byť buď prednastavená (jet, hsv, winter, copper, bones, gray...), alebo matica $n \times 3$, kde na každom riadku je RGB trojica, ktorá predstavuje farbu.

Kód

```
BW = imread('medical.pgm');
imagesc(BW);
colormap(hsv);
```

Indexované obrázky

Indexovaný obrázok

Indexovaný obrázok je taký, v ktorom každý pixel nieje reprezentovaný vlastnou RGB farbou, ale indexom. Tento index ukazuje ktorá farba sa v danom pixely nachádza. Na to však aby bolo jasné ktorý index korešponduje k akej farbe je nutné mať mapu farieb, tj. maticu $n \times 3$, kde na každom riadku je RGB trojica a n je počet indexovaných farieb.

rgb2ind

[X, map] = rgb2ind(I,n) - vráti indexovaný obraz X (podobný label matici) s n farbami a mapu $n \times 3$ tj. zoznam trojíc farieb v poradí podľa ktorého sa indexuje. X = rgb2ind(I,map) - vráti indexovaný obraz X pre danú mapu.

imhist

hist = imhist(X,map) - vráti histogram, tj. vektor početností pre jednotlivé indexy. V prípade, že si výstup nikam neuložíme, tak sa histogram nakreslí.

Kód

```
[X, map] = rgb2ind(I,30);
imagesc(X);
colormap(map);
figure;
imhist(X,map);
```

Úloha

Úloha

Obrázok zátišia prekonvertujte na indexovaný pre 20 farieb a zistite, ktorá z týchto farieb je dominantná (nájdite jej RGB trojicu). K tomu aj zistite koľko percent pixelov má práve túto farbu.

Hint

Pomôže vám príkaz max, pozrite si ho v helpe.

Pozor!

Pre prípad ak nepoužijete funkciu imhist, tak je dôležité si uvedomiť, že indexy v obrázku začínaju na 0, ale indexy v mape začínajú 1!