 00000)

Full Name: Phan Hoang	Minh Subjects: Physics Of	1
Student's ID: ITITIU19	0.3.1Lecturer/Professor: Dr	
Study Date:	Subject's Code:	Group
Deadline:	Class's Code:	
SCORES	COMMENTS	
Q1)		
	an be obtained via screen and	d the lene is
9	object (condle) and inage (s	
	og en	
•		
	; d' = 30 cm; f = 2	
#2: a < d+	$4: d'' = 30 - 9 \times 4 < 21 cm$	
⇒ 	=	8
·····	>	
(1 d d+	4 30 30
d+4 .22	F	

(=> $d(d+4) = 165 \times 2$ $\Rightarrow \int d = \sqrt{33}h - 2$ (accepted) $d = -\sqrt{33}h - 9$ (rejected)
$m_1 = 10^{-9}(g) \Rightarrow 10^{-12}(kg); v_1 = 10^{-2}(m ls)$ $m_2 = 9.1 \times 10^{-31}(kg); E_2 = 1.6 \times 10^{-19} (F)$
a) Wavelength of smoke: $\lambda = \frac{h}{mv} = \frac{6.63 \times 10^{-30}}{10^{-12} \times 10^{-2}} = 6.63 \times 10^{-20} \text{ (m)}$
Wave length of electron $V = \sqrt{\frac{2E}{m}} = \sqrt{\frac{1.6 \times 10^{-19} \times 2}{9.1 \times 10^{-31}}} \approx 593000 (m/s)$
$\lambda = \frac{h}{m } = \frac{6.63 \times 10^{-3} h}{9.1 \times 10^{-3}!} \approx 1.929 \times 10^{-9} \text{ (m)}$ $= 1.229 \text{ (nm)}$
b) As the navelength of smoke particle was too small, even smaller than X-ray or Gamma decay, it cannot be detected while the wave property of electron in the nitraviolet range, which nakes it detectable

Q3) a) Why 1 Bolner spectrum: n) 2 -> n = 2 Consider = {3; 4; 5; 6; 00} $n = 3 \rightarrow \lambda = 6.58 \times 10^{\circ} (m) = 658 (nm)$ n=4 -) >= 487.5 4875 × 10-0 (m) = 487.5 (nm) $n = 5 \Rightarrow \lambda_{5} = 4.353 \times 10^{-2} (m) = 435.3 (nm)$ $n = 6 - \frac{1}{3} = \frac{4 \cdot 11 \cdot 13}{1 \cdot 10^{-7}} = \frac{4 \cdot 11}{1 \cdot 10^{-7}$ $n = \infty \rightarrow \lambda = 3.656 \times 10^{-2} (n) = 365.6 (nm)$ b) As can be seen, the most frequenty state § 3; 4; 5; 6} is within the range of visible to color | light (red -> purple) Even at the critical point of visible light (purple: 380 nm) the stat quantum must be state highest quantum state must be n = 102, so this Balner spectrum was the earliest discovered Compared to Layman and Passer, where the the fight was partially unvisible

Q4)
$y = 40000 \text{ Km/h} = \frac{1}{2} \text{ C}$
$v_1 = 40000 \text{ Km/h} = \frac{1}{27} \text{ C}$ $v_2 = 0.75 \text{ C}$ $t = 37.5 \text{ mins} = 5/8 \text{ (h)} = 2750 \text{ (s)}$
510 (1)
t = 33.5 mins = 3/8 (h) = 2250 (s)
cc) Pistance of spaceship
d = vt = (400000 Km/h) x (5/8 h)
$= 25000 (KM) = 25 \times 10^6 (n_x)$
b) As two objects more relatively fast, time delayth
was significant.
$\frac{1}{1 - \frac{u^2}{C^2}} = \frac{t}{\sqrt{1 - \frac{u_2^2}{C^2}}} = \frac{t}{\sqrt{1 - \frac{u_1^2}{C^2}}}$
$\sqrt{1-\frac{u^2}{u^2}}$ $\sqrt{1-\frac{u_2^2}{u_1^2}}$ $\sqrt{1-\frac{u_1^2}{u_1^2}}$
(=) $t_2 = 2950$ (2250 s) $\times \sqrt{1 - 0.25^2}$
1 - 0.35
(-1.25/)
= 1489.26(5)
Distance of particle:
$d_2 = 0.25 * (3 \times 10^8 \text{ m/s}) (1489.26 \text{ s})$
$= 3.351 \times 10^{11} (m)$
b) As can be seen, due to time delaytion, the actual
time that particle occel a moves was equal to 66.184%
compared to the res comparable which lowers the actua
distance if without time delay

QŜ)	$\frac{208}{50} \text{ Th } \rightarrow \frac{208}{60} \text{ Ph } + \times \frac{4}{2} \times + \text{ y } \stackrel{\circ}{\rightarrow} \text{ B}$
	ction above From them we have $ 232 = 208 + 4x + 0y $
.b.)(3/832 no 1 Pb 3 65 g 32 Th > 73/4640 mol Th
	Th -> Pb + 6x + 4B 73/4640 3/832 3/832 - 3/832 0.01932
S.0.	from 0.0193 mol of The elecays to 73/4640 est at
	$N = N_0 e^{-t/T}$ $73 = 0.0193 \times e^{-t/14} \rightarrow e^{-t/14} = 0.8152$ $4640 \rightarrow t = -14 \ln (0.8152)$
Sa H	= 2861 (billion years) e age of rock or is approximate 2861 billion years