Lecture 24 Many Knapsack Solved All Ways Shortest Path Algorithms

EECS 281: Data Structures & Algorithms

http://xkcd.com/287

Example: Knapsack

- Assume a knapsack with capacity M = 11
- There are *N* = 5 different items

	0	1	2	3	4
Size	1	2	5	6	7
Value	1	6	18	22	28

 Return maxVal, the maximum value the thief can carry in the knapsack

Solve Knapsack Problem

Using multiple algorithmic approaches

- Brute-Force
- Greedy
- · Divide and Conquer
- Dynamic Programming
- Backtracking
- · Branch and Bound

Knapsack Problem Defined

- A thief robbing a safe finds it filled with N items
 - Items have various sizes (or weights)
 - Items have various values
- The thief has a knapsack of capacity M
- Problem: Find maximum value the thief can pack into their knapsack that does not exceed capacity M

Variations on a Theme

- Each item is unique (the Standard)
 - Known as the 0-1 Knapsack Problem
 - Must take an item (1) or leave it behind (0)
- Finite amount of each item (explicit list)
- Infinite number of copies of each item
- · Fractional amount of item can be taken
- Using weight (w_i) instead of size

Knapsack: Brute-Force

- Generate possible solution space
 - Given an initial set of N items
 - Consider all possible subsets
- Filter feasible solution set
 - Discard subsets with setSize > M
- Determine optimal solution
 - Find maxVal in feasible solution set

Brute-Force Pseudocode

```
bool array possSet[1..N] (0:leave,1:take)
maxVal = 0
for i = 1 to 2N

possSet[] = genNextPower(N)
setSize = findSize(possSet[])
setValue = findValue(possSet[])
if setSize <= M and setValue > maxVal
bestSet[] = possSet[]
maxVal = setValue
return maxVal
```

Brute-Force Efficiency

- Generate possible solution space
 - Given an initial set of N items
 - Consider all possible subsets
 - $O(2^N)$
- Filter feasible solution set
 - Discard subsets with setSize > M
 - -O(N)
- Determine optimal solution
 - Find maxVal in feasible solution set
 - -O(N)

O(N2^N)

12

Example: Greedy Knapsack

- Assume a knapsack with capacity M = 11
- There are N different items, where
 - Items have various sizes
 - Items have various values

	0	1	2	3	4
Size	1	2	5	6	7
Value	1	6	18	22	28
Ratio	1	3	3.6	3.67	4

16

Greedy Efficiency

- Sort items by ratio of value to size
 - $-O(N \log N)$
- Choose item with highest ratio first
 - -O(N)

 $O(N \log N) + O(N) \Rightarrow O(N \log N)$

18

22

Dynamic Programming

- · Enumeration with DP
 - Examples: Fibonacci, Binomial Coefficient, Knight Moves
 - These are constraint satisfaction problems
- · Optimization with DP
 - Examples: Knapsack, Longest Increasing Subsequence, Weighted Independent Subset
- Both can be solved top-down or bottom-up, optimizations often favor bottom-up

Greedy Approach

Approaches

- Steal *highest value* items first
 - Might not work if large items have high value
- Steal lowest size (weight) items first
 - Might not work if small items have low value
- Steal highest value density items first
 - Might not work if large items have high value density

If greedy is not optimal, why not?

1

Greedy Pseudocode

Input: integers capacity M, size[1..N], val[1..N]
Output: integer max value size M knapsack can carry

```
maxVal = 0, currentSize = 0
ratio[] = buildRatio(value[], size[])

// Sort all three arrays by ratio
sortRatio(ratio[], value[], size[])
for i = 1 to N //sorted by ratio
if size[i] + currSize <= M
currSize = currSize + size[i]
maxVal = maxVal + value[i]

return maxVal</pre>
```

1

Fractional Knapsack: Greedy

- Suppose that thief can steal a portion of an item
- What happens if we apply a Greedy strategy?
- Is it optimal?

.

DP Knapsack Approach

- A master thief prepares job for apprentice
 - Alarm code, safe combination, and knapsack
 - List of items in safe
 - Table of items to put in knapsacks, $0 < x \le M$
- Apprentice finds one extra item in safe
 - Take it or leave it?
 - Remove just enough to fit the new item
 - · Q: What should be removed?
 - · Q: When should the new item be included?

DP Knapsack Generalization

- Each item will either be taken or left behind
 - If it is too large it is left behind
 - If room can be made to include it, it will be taken only when it improves the haul
- Bottom-Up uses two nested loops
 - Look at items one a time
 - Look at knapsacks from size 0 up to M
 - Build and use a 2D memo

Dynamic Programming: Knapsack

```
uint32_t knapsackDP(const vector<Item> &items, const size_t m) {
const size_t n = items.size();
vector<vector<uint32_t>>
memo(n + 1, vector<uint32_t>(m + 1, 0)); // +1, +1

for (size_t i = 0; i < n; ++i) {
    for (size_t j = 0; j < m + 1; ++j) { // +1 for memo[][m]}
    if (j < items[i].size)
    memo[i + 1][j] = memo[i][j];
else
    memo[i + 1][j] = max(memo[i][j],
    memo[i][j] - items[i].size] + items[i].value);
} // for i
return memo[n][m];
Run time is O(MN)</pre>
```

27

33

Safe

	0	1	2	3	4
Size	1	2	5	6	7
Value	1	6	18	22	28

Knapsack Size

eq		0	1	2	3	4	5	6	7	8	9	10	11	
نج	0	0,	0	0	0	0	0	0	0	0	0	0	0	
$\frac{1}{2}$	1	0	4 1	1	1	1	1	1	1	1	1	1	1	
Щ.	2	0	₹ 1	6	7	7	7	7	7	7	7	7	7	
ms	3	0	1	6	7	7	18	√ 19.	24	25	25	25	25	
Ē	4	0	1	6	7	7	18	22	24	28	29	29	40	•
=	5	0	1	6	7	7	18	22	28	29	34	35	40	7
												-		

Knapsack Branch and Bound

- The Knapsack Problem is an optimization problem
- Branch and Bound can be used to solve optimization problems
 - Knapsack is a maximization
 - Initial estimate and current best solution are a "lower bound"
 - Calculate partial solution, remainder is an "upper bound" estimate

Safe

	0	1	2	3	4
Size	1	2	5	6	7
Value	1	6	18	22	28

Knapsack Size

b		0	1	2	3	4	5	6	7	8	9	10	11
<u>\$</u>	0	0	0	0	0	0	0	0	0	0	0	0	0
Picke.	1	0	1	1	1	1	1	1	1	1	1	1	1
	2	0	1	6	7	7	7	7	7	7	7	7	7
ms	3	0	1	6	7	7	18	19	24	25	25	25	25
<u>te</u>	4	0	1	6	7	7	18	22	24	28	29	29	40
=	5	0	1	6	7	7	18	22	28	29	34	35	40

Reconstructing the Solution

- Included items improve a smaller solution, excluded items do not
- If a smaller solution plus an item is greater than or equal to a full solution without the item it is included, otherwise it is excluded
- Use completed memo to determine the items taken
- Work backward from (n, m) to (0, 0)

Knapsack DP Reconstruction

```
vector<bool> knapDPReconstruct(const vector<Item> &items,
19
                const vector<vector<uint32_t>> &memo, const size_t m) {
      const size_t n = items.size();
      size_t c = m; // current capacity
      vector<bool> taken(n, false); // included items
22
      for (int i = n - 1; i \ge 0; --i) { // use int for -1 loop exit
        if (items[i].size <= c) {</pre>
          if (memo[i][c - items[i].size] + items[i].value >= memo[i][c]) {
            taken[i] = true;
            c -= items[i].size;
          } // if ..item added
       } // if ..item fits
30
     } // for i..0
     return taken;
                                           Run time is O(N)
   } // knapDPReconstruct()
```

Knapsack B&B Elements

- promising(): total weight of items < M
- · solution(): any collection that is promising
- lower_bound: starts with highest possible underestimate, ends with maximum value taken
 - Can start w/ Greedy 0-1 Knapsack (by value density)
- upper_bound: sum of value of included items, plus an "overestimate" of value that can fit in remaining space
 - Prune if upper_bound < lower_bound</p>
 - Can use Greedy Fractional Knapsack
- Don't need permutations only combinations

28

Shortest Path Algorithms

EECS 281: Data Structures & Algorithms

Weighted Path Length

- Consider an edge-weighted graph G = (V, E).
- Let C(v_i, v_j) be the weight on the edge connecting v_i to v_i.
- A path in G is a non-empty sequence of vertices P = {v₁, v₂, v₃, ..., v_k}.
- · The weighted path length is given by

$$\sum_{i=1}^{k-1} C(v_i, v_{i+1})$$

Single-Source Shortest Path

- Given an edge-weighted graph
 G = (V, E) and a vertex, v_s ∈ V, find the
 shortest path from v_s to every other vertex
 in V
- To find the shortest path from v_s to v_d, we must find the shortest path from v_s to all other vertexes in G

The shortest weighted path from b to f: {b, a, c, e, f}

A shortest unweighted path from b to f: {b, c, e, f}

Shortest Path Examples

- · Highway system
 - Distance
 - Travel time
 - Number of stoplights
 - Krispy Kreme locations
- · Network of airports
 - Travel time
 - Fares
 - Actual distance

The Shortest Path Problem

Given an edge-weighted graph G = (V, E) and two vertices, $v_s \in V$ and $v_d \in V$, find the path that starts at v_s and ends at v_d that has the smallest weighted path length

The shortest weighted path from b to f: {b, a, c, e, f}

Shortest path problem undefined for graphs with negative-cost cycles

{d, a, c, e, f} cost: 4

{d, a, c, d, a, c, e, f} cost: 2

{d, a, c, d, a, c, e, f} cost: 0

41

..

Dijkstra's Algorithm

- Greedy algorithm for solving shortest path problem
- · Assume non-negative weights
- Find shortest path from v_s to every other vertex

 d_v k_{v} p_{v} F F 0 b С F ∞ d F ∞ е ∞ F

V	k _v	d _v	p_{v}
а	T	3	b
b	T	0	1
С	T	4	а
d	T	6	С
е	F	8	С
f	F	11	d

Dijkstra's Algorithm

For each vertex *v*, need to know:

- k_v: Is the shortest path from v_s to v known? (initially false for all v ∈ V)
- d_v: What is the length of the shortest path from v_s to v? (initially ∞ for all v ∈ V, except v_s = 0)
- p_v : What vertex precedes (is parent of) v on the shortest path from v_s to v? (initially unknown for all $v \in V$)

 k_{v} d_v p_{v} 3 T 0 b С F 5 d F ∞ F е f F

V	k _v	d_v	p _v
а	T	3	b
b	T	0	
С	T	4	а
d	F	6	С
е	F	8	С
f	F	∞	

V	k _v	d_{v}	p_{v}
а	T	3	b
b	T	0	
C	T	4	а
d	T	6	С
е	T	8	С
f	F	9	е

V	k _v	d_v	p _v
а	T	3	b
b	T	0	
С	T	4	а
d	T	6	С
е	T	8	С
f	T	9	е

Dijkstra Complexity

- $O(V^2)$ for a simple nested loop implementation, a lot like Prim's
 - Intuition: for each vertex, find the min using linear search
- O(E log V) for sparse graphs, using heaps
 - E for considering every edge
 - $-\log E = O(\log V^2) = O(\log V)$ for finding the shortest edge in heap

Dijkstra's Algorithm (cont.)

1	while (!pq.isempty)	O(<i>E</i>)
2	<pre>v0 = getMin() //heap top() & pop()</pre>	O(log <i>E</i>)
3	<pre>if (!table[v0].k) //not known</pre>	O(1)
4	table[v0].k = true	O(1)
5	for each vi E Adj[v0]	O(1 + E/V)
6	<pre>d = table[v0].d + distance(vi, v0)</pre>	O(1)
7	<pre>if (d < table[vi].d)</pre>	O(1)
8	table[vi].d = d	O(1)
9	table[vi].p = v0	O(1)
10	insert_pq(d, vi)	O(log <i>E</i>)
11		
12	for each $v \in G(V,E)$	O(V)
13	//build edge set in T	
14	$(v, table[v].p) \in T(V, E')$	O(1)

All-pairs shortest path problem

 Given an edge-weighted graph G = (V, E), for each pair of vertices in V find the length of the shortest weighted path between the two vertices

Solution 1: Run Dijkstra V times Other solutions:

Use Floyd's Algorithm (dense graphs) Use Johnson's Algorithm (sparse graphs)

Dijkstra's Algorithm

Exercise

Find the shortest path from O to T

	k _v	d_{v}	p _v
0			
Α			
В			
С			
D			
Ε			
F			
Т			
-			

NOTE!

- · We usually end up stopping here for lecture material
- You don't need to know Floyd-Warshall for the exam, but it seems a shame to delete perfectly good slides
- If you ever need it for a reference, you've got it!

Solution 2: Floyd's Algorithm

- Floyd-Warshall Algorithm
- Dynamic programming method for solving all-pairs shortest path problem on a dense graph
- Uses an adjacency matrix
- O(V3) (best, worst, average)

Weighted path length

- Consider the set $V_k = \{v_1, v_2, v_3, ..., v_k\}$ for 0 $\leq k \leq |V|$
- $P_{i}(i,j)$ is the shortest path from i to j that passes only through vertices in V_k if such a path exists
- $D_k(i,j)$ is the length of $P_k(i,j)$

$$D_k(i,j) = \begin{cases} |P_k(i,j)| & \text{if } P_k(i,j) \text{ exists} \\ \infty & \text{otherwise} \end{cases}$$

to											
D_0	а	b	С	d	е	f					
а	∞ ∞ 1		8	∞	8						
b	3	∞	5	8	8	8					
С	8	∞	∞	2	4	8					
d	5	8	8	8	8	5					
е	8	8	8	8	8	1					
f	8	8	8	8	∞	8					
	a b c d e	$\begin{array}{c c} D_0 & a \\ \hline a & \infty \\ \hline b & 3 \\ \hline c & \infty \\ \hline d & 5 \\ \hline e & \infty \\ \hline \end{array}$	$\begin{array}{c ccc} D_0 & a & b \\ \hline a & \infty & \infty \\ \hline b & 3 & \infty \\ \hline c & \infty & \infty \\ \hline d & 5 & \infty \\ \hline e & \infty & \infty \\ \hline \end{array}$	$\begin{array}{c cccc} D_0 & a & b & c \\ \hline a & \infty & \infty & 1 \\ \hline b & 3 & \infty & 5 \\ \hline c & \infty & \infty & \infty \\ \hline d & 5 & \infty & \infty \\ \hline e & \infty & \infty & \infty \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

69

 $D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$

 $V_1 = \{a\}$

$$V_0 = \{\}$$

$V_0 = \{\}$										
D_0	а	b	С	d	е	f				
а	8	∞	1	8	∞	∞				
b	3	∞	5	8	∞	∞				
С	8	∞	8	2	4	∞				
d	5	∞	8	8	8	5				
е	8	∞	8	8	8	1				
f	8	∞	8	8	-	∞				

b ∞ ∞	1 4	d ∞ ∞	e &	f ∞ ∞
∞				
	4	∞	∞	∞
∞	∞	2	4	∞
∞	6	∞	∞	5
8	∞	8	8	1
∞	∞	∞	∞	∞
	∞	∞ ∞	∞ 6 ∞ ∞ ∞	∞ 6 ∞ ∞ ∞ ∞ ∞

Weighted path length

- Consider an edge-weighted graph G = (V,E), where C(v,w) is the weight on the edge (v,w).
- Vertices numbered from 1 to |V| (i.e. $V = \{v_1, v_2, v_3, ..., v_{|V|}\}$)

Suppose k = 0

• $V_0 = \emptyset$, so P_0 paths are the edges in G:

$$P_0(i,j) = \begin{cases} \{i,j\} & \text{if } (i,j) \in E \\ \text{undefined otherwise} \end{cases}$$

• Therefore D_{θ} path lengths are:

$$D_0(i,j) = \begin{cases} |C(i,j)| & \text{if } (i,j) \in E \\ \infty & \text{otherwise} \end{cases}$$

Floyd's Algorithm

- Add vertices to V_k one at a time
- For each new vertex v_k , consider whether it improves each possible path
 - Compute $D_k(i,j)$ for each i,j in V
 - Minimum of:
 - $D_{k-1}(i,j)$
 - $D_{k-1}(i,k) + D_{k-1}(k,j)$

 $D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$

 $V_2 = \{a, b\}$

$V_I = \{a\}$											
D_1	а	b	С	d	е	f					
а	∞	∞	1	∞	∞	∞					
b	3	∞	4	∞	∞	∞					
С	∞	∞	∞	2	4	8					
d	5	∞	6	∞	∞	5					

D ₂	а	b	С	d	е	f
а	8	∞	1	8	∞	∞
b	3	8	4	8	8	8
С	8	∞	8	2	4	∞
d	5	∞	6	8	∞	5
е	8	∞	8	8	∞	1
f	8	∞	8	8	∞	∞

		<i>K</i>				, n 1, 0,			NI NI DI							
		to	V ₂ =	$= \{a,$	<i>b</i> }				$V_3 = \{a, b, c\}$							
	D ₂	а	b	С	d	е	f		D_3	а	b	С	d	е	f	
	а	8	8	1	8	8	8		а	8	∞	1	3	5	8	
	b	3	8	4	8	8	8		b	3	8	4	6	8	8	
	С	8	8	8	2	4	8		С	8	∞	∞	2	4	8	
	d	5	8	6	8	∞	5		d	5	∞	6	∞	10	5	
	е	8	8	8	8	∞	1		е	∞	∞	∞	∞	8	1	
from	f	∞	∞	∞	∞	∞	∞		f	∞	∞	∞	∞	∞	∞	

 $D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$

$D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$ $V_4 = \{a, b, c, d\}$ $V_5 = \{a, b, c, d, e\}$ b С d е f D_5 а b С d f а е 3 5 8 1 3 5 ∞ 1 а 6 3 4 6 8 11 b 3 4 6 8 9 4 7 7 2 ∞ 2 С 4 5 10 5 5 5 6 d 5 6 10 ∞ ∞ ∞ ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ 1 е f

Floyd's Algorithm

```
1 Floyd(G) {
2     // Initialize
3     n = |V|;
4     for (k = 0; k <= n; k++)
5     for (i = 0; i < n; i++)
6         for (j = 0; j < n; j++)
7         d[k][i][j] = infinity;

8
9     for (all (v,w) ∈ E)
10     d[0][v][w] = C(v,w)</pre>
O()
```

What About the Paths?

- · Can't simply reconstruct them at end
- · Add initialization:

 D_{4}

а

b

С

d

е

f

```
1 for (i = 0; i < n; i++)
2 for (j = 0; j < n; j++)
3 // If edge doesn't exist, no path
4 if (C(i,j) == infinity)
5 p[0][i][j] = NIL;
6 else
7 p[0][i][j] = j;
```

```
D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))
                                   V_4 = \{a, b, c, d\}
         V_3 = \{a, b, c\}
                                  D_4
D_3
                                                                f
     а
          b
               С
                                        а
                                             b
                                                  С
                                                      d
                                                           е
                   3
                        5
                                                      3
                                                           5
                                                                8
а
               1
                                   а
                                                  1
               4
                        8
                                        3
                                                  4
                                                      6
                                                           8
                                                               11
b
     3
                   6
                                   b
                   2
                        4
                                        7
                                                      2
                                                           4
С
                                   С
d
     5
                       10
                             5
                                   d
                                        5
                                                           10
                                                                5
               6
                   \infty
                                             ∞
                                                  6
                             1
                                                                1
е
                                   е
f
     ∞
          ∞
               ∞
                   ∞
                        ∞
                             ∞
                                    f
                                        ∞
                                             ∞
                                                  ∞
                                                      ∞
                                                           ∞
                                                                ∞
```

from

 $D_k(i,j) = min(D_{k-1}(i,j), D_{k-1}(i,k) + D_{k-1}(k,j))$ $V_5 = \{a, b, c, d, e\}$ $V_6 = \{a, b, c, d, e, f\}$ D_5 а b С d е f D_6 а b С d е f 5 8 3 5 а 1 3 а ∞ 1 6 b 3 4 6 8 11 b 3 6 8 9 7 2 4 7 7 2 4 5 С С 10 5 5 d 5 6 d 5 6 10 е ∞ ∞ ∞ ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞ 1 е f f

Floyd's Algorithm

```
// Compute next distance matrix
for (k = 1; k <= n; k++)
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
d[k][i][j] = min(d[k-1][i][j], O()
d[k-1][i][k] + d[k-1][k][j]);
</pre>
```

Updating Paths

- When going through the triple-nested loop of the algorithm, if you ever update a weight, you must also update the path
- See code next page

77

72

		to						V_1 =	= { <i>a</i>	}			
	P ₀	а	b	С	d	е	f	P ₁	а	b	С	d	е
	а	-	-	c	-	-	-	а	-	-	С	-	-
	b	a	-	c	-	-	1	b	a	-	a	-	-
	С	-	-	-	d	e	-	С	-	-	-	d	e
	d	a	-	-	-	-	f	d	a	-	a	-	-
	е	-	-	-	-	-	f	е	-	-	-	-	-
from	f	-	-	-	-	-	-	f	-	-	-	-	-

Paths: Primary Loops

```
for (k = 1; k < n; k++)
       for (i = 0; i < n; i++)
         for (j = 0; j < n; j++)
3
4
           // Compute next distance matrix
                                                       O( )
           d[k][i][j] = min(d[k-1][i][j],
                            d[k-1][i][k] + d[k-1][k][j]);
           // Compute next paths matrix
           if (d[k-1][i][j]
               <= d[k-1][i][k] + d[k-1][k][j])
10
             p[k][i][j] = p[k-1][i][j];
                                                       O()
11
             p[k][i][j] = p[k-1][k][j];
```

Worst Case Running Time

- Add vertices to V_k one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall $O(|V|^3)$
- Better than running Dijkstra |V| times?

Worst Case Running Time

- Add vertices to V_k one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall $O(|V|^3)$
- Better than running Dijkstra |V| times?

Worst Case Running Time

- Add vertices to V_k one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall O(|V|³)
- Better than running Dijkstra |V| times?

Worst Case Running Time

- Add vertices to V_k one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall O(|*V*|³)
- Better than running Dijkstra |V| times?

81

81

f

f

f

Worst Case Running Time

- Add vertices to $\boldsymbol{V_k}$ one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall O(|V|³)
- Better than running Dijkstra |V| times?

Worst Case Running Time

- Add vertices to V_k one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall $O(|V|^3)$
- Better than running Dijkstra |V| times?

8

. .

Worst Case Running Time

- Add vertices to $\mathcal{V}_{\mathbf{k}}$ one at a time
 - Outer loop executes |V| times
- For each new vertex, consider whether it improves each possible path
 - Inner loops execute $|V|^2$ times
- Overall $O(|V|^3)$
- Better than running Dijkstra |V| times?