

SÍLABO Procesos de Manufactura 2

Código	ASUC01480)	Carácter	Obligatorio		
Prerrequisito	Procesos d	Procesos de Manufactura 1				
Créditos	4	4				
Horas	Teóricas	2	Prácticas	4		
Año académico	2025-00					

I. Introducción

Procesos de Manufactura 2 es una asignatura obligatoria de especialidad que se ubica en el sétimo período de la Escuela Académico Profesional de Ingeniería Mecánica. Tiene como requisito aprobar la asignatura de Procesos de Manufactura 1 y no es prerrequisito de ninguna asignatura. Con esta asignatura se desarrolla en un nivel logrado la competencia transversal Conocimientos de Ingeniería. En virtud de lo anterior, su relevancia reside en brindar al estudiante un panorama general de los tratamientos térmicos y fundiciones.

Los contenidos generales que la asignatura desarrolla son los siguientes: solidificación y tratamiento térmico de metales; fundición de metales; deformación plástica de los metales; procesos de deformación volumétrica; procesos de conformado por lamina; metalurgia de polvos; procesamiento de cerámicas; polímeros y plásticos; procesamiento de plásticos; procesamiento de materiales compuestos; tratamientos superficiales.

II. Resultado de aprendizaje de la asignatura

Al finalizar la asignatura, el estudiante será capaz de utilizar las técnicas de procesos de manufactura con el fin de dirigir y controlar un proceso de fabricación.

III. Organización de los aprendizajes

	ios apronaizajos		
Tratamientos	Duración en horas	24	
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz tratamientos térmicos y termoquímicos más utiliz de las propiedades mecánicas de los aceros.		
Ejes temáticos:	 Materiales industriales, propiedades del acere Tratamientos térmicos del acero Tratamientos termoquímicos del acero Procesos de fundición de metales 	0	

Confo	Duración en horas	24	
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz de de la deformación plástica para el conformado de elementos útiles de mayor resistencia mecán	o de metale	
Ejes temáticos:	 Conformado por deformación plástica de los Proceso de conformado por forja, laminación Proceso de conformado por trefilado, extrusion Proceso de conformado por embutición, dolo 	n ón	do

Te	Duración en horas	24	
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz de de la pulvimetalurgia en la obtención de materio incluirlos en los procesos de manufactura.		
Ejes temáticos:	 Principios de la metalurgia de polvos Materiales sinterizados, importancia en la ind Los materiales cerámicos Polímeros: estructura y propiedades 	ustria	

Materiales o	Duración en horas	24	
Resultado de aprendizaje de la unidad:	Al finalizar la unidad, el estudiante será capaz d de procesos de manufactura, seleccionando n compuestos, ejecutando tratamientos superficio la fabricación de máquinas.	nateriales p	lásticos y
Ejes temáticos:	 Procesamiento de los plásticos Materiales compuestos: estructura y propiedo Oxidación y corrosión de los metales. Recubrimientos protectores 	ades	

IV. Metodología

Modalidad Presencial

La metodología está orientada en la metodología experiencial y colaborativa propiciando la participación de los estudiantes. Asimismo, se considera una estrategia o técnica relacionada a la metodología.

Estrategias y técnicas didácticas que se utilizarán son:

- Aprendizaje colaborativo
- Aprendizaje experiencial
- Aprendizaje basado en problemas
- Clase magistral activa

Modalidad Semipresencial -Blended

La metodología está orientada en la metodología experiencial y colaborativa propiciando la participación de los estudiantes.

Asimismo, se considera una estrategia o técnica relacionada a la metodología.

Estrategias y técnicas didácticas que se utilizarán son:

- Aprendizaje colaborativo
- Aprendizaje experiencial
- Aprendizaje basado en problemas
- Clase magistral activa

V. Evaluación Modalidad Presencial

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	- Evaluación individual teórica / Prueba objetiva	0%	
Consolidado	1	Semana 1 - 4	- Evaluación teórico-práctica grupal / Prueba de desarrollo	50%	
C1	2	Semana 5 - 7	- Evaluación teórico-práctica grupal / Prueba de desarrollo	50%	20%
Evaluación parcial EP	1 y 2	Semana 8	- Evaluación teórico-práctica grupal / Prueba de desarrollo	25%	7
Consolidado	3	Semana 9 - 12	- Evaluación teórico-práctica grupal / Prueba de desarrollo	50%	00%
2 C2	4	Semana 13 - 15	- Evaluación teórico-práctica grupal / Prueba de desarrollo	50%	20%
Evaluación final EF	Todas las unidades	Semana 16	- Evaluación teórico-práctica grupal / Prueba de desarrollo	35%	%
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluación final	- Evaluación teórico-práctica grupal / Prueba de desarrollo		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

Modalidad Semipresencial - Blended

Rubros	Unidad por evaluar	Fecha	Entregable/Instrumento	Peso parcial	Peso Total
Evaluación de entrada	Prerrequisito	Primera sesión	- Evaluación grupal / Prueba objetiva	0%	•
Consolidado 1 C1	1	Semana 1 - 3	 Actividades virtuales Evaluación teórico-práctica grupal / Prueba de desarrollo 	15% 85%	20%
Evaluación parcial EP	1 y 2	Semana 4	- Evaluación teórico-práctica grupal / Prueba de desarrollo	25%	6
Consolidado 2 C2	3	Semana 5 - 7	 Actividades virtuales Evaluación teórico-práctica grupal / Prueba de desarrollo 	15% 85%	20%
Evaluación final EF	Todas las unidades	Semana 8	- Evaluación teórico-práctica grupal / Prueba de desarrollo	35%	76
Evaluación sustitutoria *	Todas las unidades	Fecha posterior a la evaluación final	Evaluación teórico-práctica grupal / Prueba de desarrollo		

^{*} Reemplaza la nota más baja obtenida en los rubros anteriores.

VI. Bibliografía

Básica

Socconini, L. (2019). Lean company: más allá de la manufactura. Marge Books. https://acortar.link/sAongR

Complementaria:

Groover, M. (2007). Fundamentos de manufactura moderna: materiales, procesos y sistemas. (3.ª ed.). México: McGraw-Hill Interamericana.

Faura, M. (2020) Problemas básicos de procesos de conformado por deformación plástica. Cartagena: ediciones@upct.es

Goñi, J. (2011). Máquinas, instrumentos y procesos de manufactura. (2.ª ed.). Lima: Universidad de Lima, Fondo Editorial.

Puértolas, R. (2009) Tecnología de materiales. Madrid, España: Editorial Síntesis, S.A.

VII. Recursos digitales:

CIROS. (Software de computadora).

Fluidsim Hidráulica. (Software de computadora).

FluidSIM-Neumática. (Software de computadora).

FLEXSIM. (Software de computadora).

- Fundicionesbou (2016). Fundición de metales. Consulta: 20 de octubre de 2016. www.fundicionesbou.com/productos-fundicion-de-metales.html
- González, J. (2016). *Metalurgia mecánica*. Consulta: 20 de octubre de 2016. https://books.google.com.pe/books?isbn=9681857828
- Leyensetter, A. y Witemberger, G. (2016). *Tecnología de los oficios metalúrgicos*. Consulta: 20 de octubre de 2016. https://books.google.com.pe/books?isbn=8429160663
- Kucher, A. (2016). *Tecnología de los metales*. Consulta: 20 de octubre de 2016. www.freelibros.org/ingenieria-de.../tecnologia-de-metales-a-kucher.html
- Materias FC y TUMSS. (2016). *Procesos de fundición de metales*. Consulta: 20 de octubre de 2016. materias.fcyt.umss.edu.bo/tecno-ll/PDF/cap-22.pdf
- Silva, D. (2016). Deformación plástica de los metales. Consulta: 20 de octubre de 2016. https://prezi.com/fk2tkwex9oxg/deformacion-plastica-de-los- metales/