Recitation #27: Vectors in Two and Three Dimensions and Dot Products

Warm up:

Problem 1 Sketch the vectors $\mathbf{u} = \langle 1, -1 \rangle$ and $\mathbf{v} = \langle 2, 0 \rangle$. Now using your sketch of these vectors, sketch $\mathbf{u} - 2\mathbf{v}$.

Problem 2 If $\vec{u} = \hat{\imath} - 2\hat{\jmath}$ and $\vec{v} = 3\hat{\imath} + 4\hat{k}$, find $\vec{u} \cdot \vec{v}$.

Group work:

Problem 3 Suppose that $\mathbf{u} = \langle 5, -1 \rangle$ and $\mathbf{v} = \langle 2, 3 \rangle$. Find the following quantities:

- (a) $-\mathbf{v}$
- (b) 3**u** 4**v**
- (c) $|\mathbf{u}|$

Problem 4 Suppose that $\mathbf{u}=3\mathbf{i}-4\mathbf{j}$ in a 2-dimensional vector space. Find the following:

- (a) A unit vector in the same direction of \mathbf{u} .
- (b) All unit vectors parallel to **u**. (How does differ from part (a)?)
- (c) Two vector parallel to \mathbf{u} with length 10.
- (d) Two non-zero vectors perpendicular to **u**.

Problem 5 Solve the following problems:

- (a) Which of the points (6,2,3), (-5,-1,4), and (0,3,8) is closest to the xz-plane? Which point lies on the yz-plane?
- (b) Write an equation of the circle of radius 2 centered at (-3,4,1) that lies in a plane parallel to the xy-plane.
- (c) Describe the sphere $x^2 + y^2 + z^2 + 6x 14y 2z = 5$ (ie, find its center and radius).
- (d) Find a vector whose magnitude is 311 and is in the same direction as the vector $\langle 3, -6, 7 \rangle$.

Problem 6 Find a vector (in the xy-plane) with length 4 that makes a $\frac{\pi}{3}$ radian angle with the vector $\langle 3, 4 \rangle$.

Problem 7 Answer the following questions about $proj_v u$.

- (a) Is $\operatorname{proj}_v u$ a vector of the form $c\vec{v}$ or $c\vec{u}$ (where c is a real number)? ie, is $\operatorname{proj}_v u$ parallel to \vec{u} or \vec{v} ?
- (b) If $\vec{u} = 5\hat{i} + 6\hat{j} 3\hat{k}$ and $\vec{v} = 2\hat{i} 4\hat{j} + 4\hat{k}$, find $\text{proj}_v u$.
- (c) For \vec{u} and \vec{v} from part (b), write \vec{u} as the sum of two perpendicular vectors, one of which is parallel to \vec{v} . Verify that the other vector is perpendicular to \vec{v} .

Challenge Problem

Problem 8 Suppose that the deli at the Tiny Sparrow grocery store sells roast beef for \$9 per pound, turkey for \$4 per pound, salami for \$5 per pound, and ham for \$7 per pound. For lunches this week, Sam the sandwhich maker buys 1.5 pounds of roast beef, 2 pounds of turkey, no salami, and half a pound of ham. How can you use a dot product to compute Sam's total bill from the deli?