

## 第十一届中国数据库技术大会

DATABASE TECHNOLOGY CONFERENCE CHINA 2020

## 架构革新 高效可控









↓ 北京国际会议中心 ┃ 0 2020/12/21-12/23



## 华为集团IT数据库上云实践

黄兆勤 | 华为HIS大数据平台首席架构师 2020年12月







### 企业数据库市场以及上云趋势分析

关系型 **70%** 

2021年, 70%的企业应用仍 然首选关系型数据库

> 开源 **25%**

2022年,开源RDBMS产品 占据25%的RDBMS收入

**云化**数仓SnowFlake \$500M ↑ **237%** 

2020年,云化数仓Snowflake 估价120亿美金 公有云 **50%** 

2021, 云RDMBS占据50% 的RDBMS收入

> 场景融合 75%

操作型/分析型场景中的数据库, 重合度达75% in 2019

**传统**数仓TeraData \$478M↓**12%** 

Teradata布2019财年第四季度财报,全年收入19亿美元,同比下降12%

#### 观点:

- 1. 数据库总体市场空间依然强劲增长,中国数据库市场增长迅速,远超全球市场
- 中国数据库市场其中45%以上是云服务形态 , 云数据库 增速远超整个数据库市场增速。
- 3. OLTP和OLAP有融合的趋势,大数据和数据库走向一体化



数据来源: Gartner

预计到2025年中国区数据库市场空间总计约104亿美金(以Gartner为基数),其中OLTP约62亿、OLAP约24亿、NoSQL约18亿





### 流程IT数据库上云进展

### GaussDB: 基于统一的DFV技术架构打造的自研数据库服务

#### 关系型数据库服务

GaussDB(openGauss) (华为开源生态)

GaussDB(for MySQL/PostgreSQL) (开放生态)

### 非关系型数据库服务

GaussDB(for Mongo) (开放生态)

GaussDB(for Cassandra) (开放生态)

GaussDB(for Influx) (开放生态)

GaussDB(for Redis) (开放生态)

#### 数据仓库服务

GaussDB(DWS)

RDS: 开源数据库服务

**RDS for MySQL/PostgreSQL** 

公有云

**HCSO** 

HCS

华为集团内部的数据库业务从自建转向直接使用华为云服务

#### 华为云MySQL:

| 类别  | 华为云-MySQL |
|-----|-----------|
| 实例数 | 5K+       |
| CPU | 6W U+     |
| 内存  | TB级       |
| 存储  | 4PB+      |

#### 华为云PostareSQL:

| 类别  | 华为云-PG |
|-----|--------|
| 实例数 | 400    |
| CPU | 5K U+  |
| 内存  | TB级    |
| 存储  | TB级    |

#### 华为云 MongoDB:

| 类别  | 华为云-Mongo |
|-----|-----------|
| 实例数 | 4K+       |
| CPU | 3W U+     |
| 内存  | TB级       |
| 存储  | PB级       |

#### 华为云DWS (高斯A):

| 类别   | 华为云-PG |
|------|--------|
| 集群数量 | 27     |
| 节点数  | 500    |
| 数据量  | PB级    |

上述为集团内部迁移到华为云的部分数据







### 企业去O上云的复杂度 O(n³) 交易+分析+集成

#### 1. 应用复杂度

数仓 20W+作业依赖 (A) , 主要是(B) ETL作业, 或者(C) 存储过程作业

#### 2. 交易和分析的依赖

数据/服务的上下游依赖,业务对象重构带来模型变化

#### 3. 数据库层面的挑战

云数据库和传统非云数据库能力有区别 (分布式), 不能简单直接搬迁。











### 华为集团去O上云三部曲,应对O(n³)复杂性













### 成果: +治理 +运营 +Al +云的数据库迁移方案

第十一届中国数据库技术大会







### 数据库上云需要大量的投入和积累

#### 数据库上云战场 解决方案专题 DDD领域建模专题 分布式访问专题 分布式事务专题 云数据实时同步专题 数据主权专题 分布式访问中间件专题 融合数据共享专题 数据比对/修复专题 数据归档清理专题 数据库高性能专题 实时数仓计算专题 数据切换策略专题 工具链专题 数据集成 数据融合 数据迁移 ETL 数据稽核 分布式 任务调度 数据服务 CDC 实时计算 中间件 数据库专题 Document Graph **RDBMS KV** Database Database Database In-Memory **TimeSeries** DWS 大数据 Database Database

| 分类                                     | 工作项         |
|----------------------------------------|-------------|
| 整体架构设计                                 | 数据域架构整体梳理   |
|                                        | DDD领域模型设计   |
|                                        | 数据库选型       |
|                                        | 软件包的去O方案    |
| 切换策略                                   | 具体切换策略和计划   |
| 前端应用改造                                 | 前端功能解耦      |
| 削쐐巡用以迫                                 | 前端交互体验优化    |
| 后端服务改造                                 | 中台服务化       |
|                                        | 数据处理代码实现逻辑  |
|                                        | SQL语法改造     |
|                                        | 跨AZ的读写和高可用  |
|                                        | 性能调优        |
|                                        | 事务一致性       |
|                                        | 表结构重构       |
|                                        | 表关联关系重构     |
| 数据库设计                                  | 同库授权方式调整    |
|                                        | 存储过程逻辑回归中台  |
| 奴///////////////////////////////////// | 视图逻辑回归中台    |
|                                        | 程序调度作业方式重构  |
|                                        | 数据中间件的职责分配  |
|                                        | 读写分离        |
| 分布式方案                                  | 数据库分布式架构    |
| いれが光                                   | 数据库分布式同步方式  |
| 上线方案                                   | 灰度方案/新旧并存方案 |
| 高可用                                    | 容灾,主备方案调整   |
| נועניינפו                              | 跨AZ的读写和高可用  |
| 数据工具                                   | DBLINK集成重构  |
|                                        | CDC集成重构     |
|                                        | 数据集成        |
|                                        | 数据归档,数据迁移   |
|                                        | 推式入湖        |
|                                        | 任务调度工具的重构   |







### 流程IT企业数据上云:能力沉淀1

# ✓统一数据库平台 UniDB





### 企业面对数据库上云的问题1:多种不同类型数据库的融合

UniDB是华为内部 的统一数据库平台



### 数据基础设施

关系型 数据库



内存 数据库











### 企业面对数据库上云的问题2: OLTP/OLAP融合趋势

#### 痛点: 早期Oracle切换高斯前的数据分散



问题1)数据库分散,OLTP分表分库,OLAP拆库

问题2)数据库多地分布,带来的数据汇聚问题

问题3) 交易库和分析库的边界逐步模糊, 交易库承载分析行为

问题4) 企业领域烟囱, 引入大量的技术栈

#### 基于华为云的数据库、数仓、大数据,进行有效管理和融合





### 华为企业数据底座

### 列的革命,是企业面向外部场景多样性的需求驱动下,演进出来的一种多维度融合的数据能力,是平台的革命。

数据底座

交易数据库

分析数据库

数据ETL工具

数据调度工具

数据迁移工具

数据建模工具

数据稽核工具

数据库

大数据

元数据

数据供给

数据安全

数据治理

18+主题域分组

• 干级对象

• 万+逻辑数据实体

W+同步链路

千亿集成行/天

100W+调度任务

W+数据API服务

• 万亿+列

百万级+权限

• W+实例

• 百万W+表

PB级数据

数据服务平面

元数据驱动

数据供给平面

数据集成、调度、共享

数据管理平面

元数据、权限、多租

数据库管控平面

OLTP/OLAP—体化



### 流程IT企业数据上云:能力沉淀2

# ✓数据库迁移解决方案



### 数据库工具,助力企业迁移到基于华为云的数据库生态

集DBA专家经验,为产品团队提供数据库引擎推荐、资源评估和迁移难度分析,其中资源评估数据已成为容量小组评审的标准;评估效率从月至天,总体可节省750人天(按全网迁移1500个应用计算)







### 传统数据库上云的常见问题

### 传统数据库迁移面临的问题

1

源库的运行状态 如何,容量和复 杂度如何,库表 之间关系如何? 2

如何选择合适的 目标库及其规格, 改造风险和工作 量有多大? 3

从源库迁移到目标库,有哪些对象不兼容,在目标库是否有替代方案?

4

对于应用程序改造,如何动态或者静态抓取到应用改造的SQL?

5

人力进行语法改造,成本巨大,如何做到迁移过程半自动化或者自动化。

**6** 

改造过程涉及业 务重构时,如何 为用户提供合适 的改造方案? 兼容性

一致性

7

源库对象较多, 如何保障源库对 象顺利迁移到目 标库? 8

如何保证结构迁 移和数据迁移时, 不影响源库/目标 库正在运行的业 务? 9

源端按业务模块 迁移时,源和目 标如何进行持续 的增量数据同步? 10

语法改造后,如何保证性能符合预期,如何对改造后的对象进行优化?

(11)

迁移完成时,如何保障迁移结果正确,包括结构的准确性与数据的准确性?

(12)

迁移完成后,如何保障云上数据库的开发运维与性能的持续优化?

性能

回滚



### 华为云数据库迁移技术解决方案



