

REAL POLYNOMIALS

Why

What are some simple functions? Here's one answer: those that only involve addition and multiplication.¹

Definition

A real polynomial (or polynomial) of degree d is a function $p : \mathbf{R} \to \mathbf{R}$ for which there exists a finite sequence $a = (a_0, a_1, \dots, a_d)$ so that

$$p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^d.$$

In particular, q(x) = ax + b for $a, b \in \mathbf{R}$ is a polynomial of the first degree and $r(x) = ax^2 + bx + c$ for $a, b, c \in \mathbf{R}$ is a polynomial of the second degree.

In a sense, these are "simple" functions. We require addition (and substraction) and multiplication; but no division.

Properties

Proposition 1. Let $p : \mathbf{R} \to \mathbf{R}$ be a polynomial of degree d. Then p is continuous.

Proposition 2. Let $p : \mathbf{R} \to \mathbf{R}$ be a polynomial of degree d. Then p has derivatives of all orders. Every derivative of p is a polynomial.

Proposition 3. Let $p : \mathbf{R} \to \mathbf{R}$ be a polynomial of degree d. The every derivative of order d+1 or greater is the constant 0 function.

¹Future editions will modify and expand.

