華中科技大學

电子线路实验报告

音响放大器的设计

院	系	电子信息与通信学院
专业	班级 _	信卓 2201 班
姓	名 _	董浩
学	号 _	U202213781
指导	教师	陈林

2023年12月3日

目 录

1	实验名称	1
2	实验目的	1
3	实验元器件	1
4	实验任务	2
4.1	功能要求	2
4.2	已知条件	2
4.3	技术指标要求	2
4.4	测量内容	2
5	实验原理	3
5.1	实验电路	3
5.2	电路安装与调试技术	3
5.2.1	合理布局,分级装调	3
5.2.2	电路调试技术	4
6	实验过程	5
6.1	实际电路与功率、增益、效率	5
6.2	输入阻抗分析	6
6.3	幅频响应	7
7	实验总结	8

1 实验名称

音响放大器的设计

2 实验目的

- 1. 音响放大器的基本组成
- 2. 音调特性控制方法与实现原理
- 3. 了解集成功率放大器内部电路工作原理,掌握其外围电路的设计与主要性能参数的测试方法;
- 4. 掌握音响放大器的设计方法与电子线路系统的装调技术—综合运用所学知识, 进行小型多级电子线路系统的设计与装调。

3 实验元器件

名称	型号(参数)	数量	
集成功放	LM386	1	
朱风切似 	NE5532	3	
	10ΚΩ	5	
	13ΚΩ	1	
 电阻	30ΚΩ	2	
	47ΚΩ	3	
	75ΚΩ	1	
	10Ω 2W	1	
	0.01μF	2	
	0.22μF	1	
	0.1μF	1	
电容	1μF	1	
	10μF	8	
	220μF	2	
	470μF	1	
 电位器	10ΚΩ	3	
七世前	470ΚΩ	2	
话筒	输出 5mV	1	
音乐播放器	/	1	

4 实验任务

设计一个音响

4.1 功能要求

具有话音放大、音调控制、音量控制、卡拉 OK 伴唱等功能(不含电子混响)。

4.2 已知条件

- 1. 集成功放 LM386。
- 2. 话筒 600Ω, 输出信号 5mV。
- 3. 集成运放 NE5532。
- 4. 10Ω/2W 负载电阻 1 只。
- 5. 8Ω/4W 扬声器 1 只。
- 6. 音源 (MP3 or PC)。
- 7. 电源电压 ±9V(双电源)。

4.3 技术指标要求

- 1. 额定功率: *P*₀≥0.3W (γ<3
- 2. 负载阻抗: R_L =10Ω (2W)
- 3. 频率响应: f_L =50Hz,fH=20kHz
- 4. 输入阻抗: R_i »20kΩ
- 音调控制特性: 1kHz 处增益为 0dB、125Hz 和 8kHz 处有 12dB 的调节范围,
 A_{VL} = A_{VH}≥20dB(选做)

4.4 测量内容

- 1. 测量音调控制特性,填入实验表格中,并绘制音调控制特性曲线
- 2. 测量频率为 1kHz 时的输出功率 P_o 及整机电压增益 A_v ,绘制 1kHz 时的整机输入输出波形
- 3. 输入阻抗 R_i
- 4. 输出效率 η

5 实验原理

5.1 实验电路

图 5-1 实验电路

5.2 电路安装与调试技术

5.2.1 合理布局,分级装调

- 1. 音响放大器是一个小型电路系统,安装前要对整机线路进行合理布局。
- 2. 一般按照电路的顺序一级一级地布线。
- 3. 功放级应远离输入级。
- 4. 每一级的地线尽量接在一起。
- 5. 连线尽可能短, 否则很容易产生自激。
- 6. 安装前应检查元器件的质量。
- 7. 安装时特别要注意功放块、运算放大器、电解电容等主要器件的引脚和极性, 不能接错。
- 8. 从输入级开始向后级安装,也可以从功放级开始向前逐级安装。
- 9. 安装一级调试一级,安装两级要进行级联调试,直到整机安装与调试完成。

5.2.2 电路调试技术

- 1. 电路的调试过程一般是先分级调试,再级联调试,最后进行整机调试与性能 指标测试。
- 2. 分级调试又分为静态调试与动态调试。静态调试时,将输入端对地短路,用万用表测该级输出端对地的直流电压。话放、混放、音调电路均由运放组成,若运放是单电源供电,其静态输出直流电压均为 $V_{CC}/2$,功放级的输出 (OTL电路) 也为 $V_{CC}/2$,且输出电容 CC 两端充电电压也应为 $V_{CC}/2$ 。若是双电源供电,直流电压均为 0。动态调试是指输入端接入规定的信号,用示波器观测该级输出波形,并测量各项性能指标是否满足题目要求,如果相差很大,应检查电路是否接错,元器件数值是否合乎要求,否则是不会出现很大偏差的。
- 3. 级联调试单级电路调试时的技术指标较容易达到,但级联后级间相互影响,可能使单级的技术指标发生很大变化,甚至两级不能进行级联。产生的主要原因:一是布线不太合理,形成级间交叉耦合,应考虑重新布线;二是级联后各级电流都要流经电源内阻,内阻压降对某一级可能形成正反馈,应接RC去耦滤波电路。R一般取几十欧姆,C一般用几百微法大电容与0.1F小电容相并联。由于功放输出信号较大,易对前级产生影响,引起自激。集成块内部电路多极点引起的正反馈易产生高频自激,常见高频自激现象如图5-2所示。

图 5-2 高频自激

6 实验过程

6.1 实际电路与功率、增益、效率

图 6-1 1KHz 工作点

增益:

$$A_v = \frac{v_o}{v_i} = \frac{4.850V}{15.77mV} = 307.546 \tag{6-1}$$

输出功率:

$$P_o = \frac{U^2}{R} = \frac{(4.85/2)^2}{2 \times 10} = 0.294W$$
 (6-2)

电源功率:

$$P = UI = 8.994V \times 0.081A = 0.729W \tag{6-3}$$

电源效率:

$$\eta = \frac{P_o}{P} = 40.384\% \tag{6-4}$$

6.2 输入阻抗分析

在输入端串联 500k Ω 电位器,输出无明显变化,可以认为 $R_i \gg 500 K\Omega$,进行仿真分析得到输入阻抗和频率的关系如图 6-2所示:

图 6-2 输入阻抗分析

由上图及实验结果可知,输入阻抗达到 $M\Omega$ 级别,满足设计要求。

6.3 幅频响应

图 6-3 下限频率

图 6-4 20KHz 工作点

频率	1KHz	50Hz	$f_L = 42Hz$	$f_H = 69KHz$
V_{Ipp}/mV	15.61	15.23	15.24	14.73
V_{Opp}/V	4.880	3.759	3.409	3.406
$A_{\rm v}$	312.62	246.81	223.69	231.23

可知,下限频率 $f_l=42Hz<50Hz$,上限频率 $f_h=69KHz>20KHz$,满足设计要求。

7 实验总结

通过本实验,我通过自己的努力完成了一个比较复杂的音响放大电路,增强了对运算放大器的理解,对集成功率放大器内部电路工作原理和应用有了更强的把握。

电路搭好的时候,发现功放级不接负载波形正常,接了负载之后电流增大,电路开始不稳定,出现自激振荡。后来在功放的输入端接了一个到地的滤波电容,输出正常,但是上限频率达不到要求。最后将滤波电容改小后,上限频率增大,达到要求。本次实验真正的难点在调试上,通过本次实验,我学到了不少调试电路的技巧。