COURSE 5: Databases

when and why

- Informal:
 - Organize data in a relational database in order to avoid redundancy and data manipulation anomalies.
 - Decompose a relation (table) without loosing information.

Avoid redundancy

CUSTOMER_ID	NAME	LOAN_ID	ТҮРЕ	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
2	Green	103	credit card	12500
2	Green	127	mortgage	20000
3	Avery	389	mortgage	75000
3	Avery	486	credit card	5000
3	Avery	769	mortgage	45000

• INSERT anomaly: insert a new customer

CUSTOMER_ID	NAME	LOAN_ID	ТҮРЕ	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
2	Green	103	credit card	12500
2	Green	127	mortgage	20000
3	Avery	389	mortgage	75000
3	Avery	486	credit card	5000
4	Stark	???	null	null

• UPDATE anomaly: update customer name

CUSTOMER_ID	NAME	LOAN_ID	ТҮРЕ	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
2	Green	103	credit card	12500
2	Green	127	mortgage	20000
3	Avery	389	mortgage	75000
3	Avery	486	credit card	5000
3	Avery	769	mortgage	45000

• DELETE anomaly: delete loan

CUSTOMER_ID	NAME	LOAN_ID	ТҮРЕ	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
2	Green	103	credit card	12500
2	Green	127	mortgage	20000
3	Avery	389	mortgage	75000
3	Avery	486	credit card	5000
4	Stark	700	mortgage	45000

• Decompose relation

• Decompose relation

CUSTOMER					
CUSTOMER_ID	LAST_NAME		••••		
1	Smith				
2	Green				
3	Avery				

LOAN					
LOAN_ID	CUSTOMER_ID	AMOUNT	DATE		
101	1	125000	18/04/21		
102	1	25000	14/04/22		
103	2	12500	03/05/21		
127	2	20000	•••		
389	3	75000	•••		

Decomposition

Decomposition Step 1: Projection

$$\gt S_1 = \prod_{(NAME, LOANID, TYPE, AMOUNT)} R$$

CUSTOMER_ID	NAME	LOAN_ID	TYPE	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
2	Green	103	credit card	12500
3	Smith	389	mortgage	75000

NAME	LOAN_ID	ТҮРЕ	AMOUNT
Smith	101	mortgage	125000
Smith	102	credit card	25000
Green	103	credit card	12500
Smith	389	mortgage	75000

CUSTOMER_ID	NAME
1	Smith
2	Green
3	Smith

$$> S_2 = \prod_{(CUSTOMER_ID, NAME)} R$$

Decomposition Step 2: Join

CUSTOMER_ID	NAME
1	Smith
2	Green
3	Smith

NAME	LOAN_ID	ТҮРЕ	AMOUNT
Smith	101	mortgage	125000
Smith	102	credit card	25000
Green	103	credit card	12500
Smith	389	mortgage	75000

• Lossy decomposition $S_1 \bowtie S_2 \supseteq R$

CUSTOMER_ID	NAME	LOAN_ID	TYPE	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
1	Smith	389	mortgage	75000
3	Smith	101	mortgage	125000
3	Smith	102	credit card	25000
3	Smith	389	mortgage	75000
2	Green	103	credit card	12500

Decomposition Step 1: Projection

$$\triangleright S_1 = \prod_{(CUSTOMERID, LOANID, TYPE, AMOUNT)}$$

CUSTOMER_ID	NAME	LOAN_ID	TYPE	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
2	Green	103	credit card	12500
3	Smith	389	mortgage	75000

	CUSTOMER_ID	LOAN_ID	ТҮРЕ	AMOUNT
)	1	101	mortgage	125000
	1	102	credit card	25000
	2	103	credit card	12500
	3	389	mortgage	75000

CUSTOMER_ID	NAME
1	Smith
2	Green
3	Smith

$$\triangleright S_2 = \prod_{(CUSTOMERID, NAME)} R$$

Decomposition Step 2: Join

CUSTOMER_ID	NAME
1	Smith
2	Green
3	Smith

CUSTOMER_ID	LOAN_ID	ТҮРЕ	AMOUNT
1	101	mortgage	125000
1	102	credit card	25000
2	103	credit card	12500
3	389	mortgage	75000

• Lossless decomposition $S_1 \bowtie S_2 = R$

CUSTOMER_ID	NAME	LOAN_ID	TYPE	AMOUNT
1	Smith	101	mortgage	125000
1	Smith	102	credit card	25000
3	Smith	389	mortgage	75000
2	Green	103	credit card	12500

Decomposition

• lossy decompositions and lossless decompositions.

• Lossy: $R \rightarrow decompose(R)$: S1, S2 \rightarrow recompose(S1,S2) \blacksquare R

lossy =/= less data, (less is more!)
lossy = lost information

• Lossless R \rightarrow decompose(R): S1, S2 \rightarrow recompose(S1,S2) = R

Decomposition

Lossy

$$\prod_{R_1} R \bowtie \prod_{R_2} R \supseteq R$$

Lossless

$$\prod_{R1} R \bowtie \prod_{R2} R = R$$

CUSTOMER_ID	NAME
1	Smith
2	Green
3	Smith

X	Υ	Z	Т
X1	Y1	Z1	T1
X1	Y2	Z1	T2
X2	Y2	Z2	T2
X2	Y3	Z2	T3
Х3	Y3	Z2	T4

- CUSTOMER_ID → NAME
- $X \rightarrow Z$
- $Z \nrightarrow T$, $(Y,Z) \nrightarrow X$
- $\bullet \ \mathsf{X} \to \mathsf{X}$

U → V functional dependency:
 every value of U uniquely
 determines the value of V
 U determinant, V dependent

CUSTOMER_ID	NAME
1	Smith
2	Green
3	Smith

X	Υ	Z	Т
X1	Y1	Z1	T1
X1	Y2	Z1	T2
X2	Y2	Z2	T2
X2	Y3	Z2	T3
Х3	Y3	Z2	T4

- CUSTOMER_ID → CUSTOMER_ID
- $(X, Y) \rightarrow (X, Y)$
- $Z \rightarrow Z$
- $(Z,T) \rightarrow T$

$$U \rightarrow V$$
 trivial dependency:

$$V \subseteq U$$

CUSTOMER_ID	NAME
1	Smith
2	Green
3	Smith

X	Υ	Z	Т
X1	Y1	Z1	T1
X1	Y2	Z1	T2
X2	Y2	Z2	T2
X2	Y3	Z2	T3
Х3	Y3	Z2	T4

- CUSTOMER_ID -> NAME
- $(X, Y) \rightarrow (T)$

$$U \rightarrow V$$
 non-trivial dependency:
 $V \nsubseteq U$

CUSTOMER_ID	NAME
1	Smith
2	Green
3	Smith

•	CUSTOMER	ID -> NAME

- $(X, Y) \rightarrow T$
- X →T
- Y → T

Х	Υ	Z	Т
X1	Y1	Z1	T1
X1	Y2	Z1	T2
X2	Y2	Z2	T2
X2	Y3	Z2	T3
Х3	Y3	Z2	T4

U → V fully-functional dependency:

$$U' \subseteq U \Rightarrow U' \rightarrow V$$

Functional dependencies properties

- Reflexive if $V \subseteq U$ then $U \rightarrow V$
- Transitivity $U \rightarrow V$ and $V \rightarrow W$, then $U \rightarrow W$
- Augmentation

- $X \rightarrow Y$ then $X \cup Z \rightarrow Y \cup Z$
- $X \rightarrow Y$ then $X \cup Z \rightarrow Y$
- $X \rightarrow Y$ and $X \subseteq Z$, then $Z \rightarrow Y$
- $X \rightarrow Y$ and $W \subseteq Z$, then $X \cup Z \rightarrow Y \cup W$

Normal Forms

NF1 NF2 NF3 BCNF NF4 NF5

ATOMIC ATTRIBUTES

- Atomic attributes
- No multi-valued attributes

• The domain of each attribute contains only atomic values and each attribute contains only a value of its domain.

• A relational database is at least in NF1

EMP_ID	NAME	EMAIL
1	Williams	williams@gmail.com williams@yahoo.com
2	Davis	davis@gmail.com davis@academy.com
3	Miller	miller@gmail.com
4	Stewart	stewart@gmail.com office@academy.com

NO PARTIAL DEPENDENCIES

- Tables in NF1
- No non-key attributes (not part of the key) that depend on a subset of the attributes forming the key.

There are no partial dependencies.

Х	Υ	Z	Т
X1	Y1	Z1	T1
X2	Y1	Z1	T2
X2	Y2	Z2	Т3
X2	Y3	Z2	Т3
X2	Y3	Z2	T3

Х	Υ	Z	Т
X1	Y1	Z1	•••
X2	Y1	Z1	
X2	Y2	Z2	
X2	Y3	Z2	•••
X2	Y3	Z2	•••

- partial $(X,Y) \rightarrow Z$
 - $Y \rightarrow Z$

Х	Υ	Z	T
X1	Y1	•••	T1
X2	Y1	•••	T2
X2	Y2	•••	T3
X2	Y3	•••	T3
X2	Y3	•••	T3

- total $(X,Y) \rightarrow T$
 - X → T
 - Y → T

Х	Υ	Z	Т
	Y1		T1
	Y1	•••	T2
	•••	•••	•••
•••	•••	•••	•••
	•••		

Х	Υ	Z	Т
	•••	•••	•••
X2	•••		T2
X2			T3
	•••	•••	•••

AIRPORT_ID	AIRPLANE_ID	DEPARTURE	AIRPLANE_MODEL	BOARDING_GATE
1	101	30/03/20 17:00	Boeing 777	42
1	102	02/05/20 09:30	Airbus A320	50
2	201	06/08/20 10:45	Boeing 757	35
2	202	10/10/20 06:20	Airbus A320	10
1	101	06/04/20 16:35	Boeing 777	23

dependencies

K1 -> X

(K1, K2) -> Y

dependencies

K1 -> X

(K1, K2) -> Y

K1 = AIRPLANE_ID

K2 = AIRPORT_ID, DEPARTURE

Y = BOARDING_GATE

X = AIRPLANE_MODEL

AIRPORT_ID	AIRPLANE_ID	DEPARTURE	AIRPLANE_MODEL	BOARDING_GATE
1	101	30/03/20 17:00	Boeing 777	42
1	102	02/05/20 09:30	Airbus A320	50
2	201	06/08/20 10:45	Boeing 757	35
2	202	10/10/20 06:20	Airbus A320	10
1	101	06/04/20 16:35	Boeing 777	23

AIRPORT_ID	AIRPLANE_ID	DEPARTURE	BOARDING_GATE
1	101	30/03/20 17:00	42
1	102	02/05/20 09:30	50
2	201	06/08/20 10:45	35
2	202	10/10/20 06:20	10
1	101	06/04/20 16:35	23

AIRPLANE_ID	AIRPLANE_MODEL
101	Boeing 777
102	Airbus A320
201	Boeing 757
202	Airbus A320

SCORES(PLAYER_ID, TOURNAMENT_ID, SCOR, PLAYER_NAME, RANK)

BILL(BILL_ID, CLIENT_ID, CLIENT_NAME, CLIENT_PHONES, PRODUCT_ID, PRODUCT_NAME, PROD_CAT_ID, PROD_CAT_NAME, QUANTITY)

RENT(CLIENT_ID, RENT_DATE, CAR_ID, CAR_MODEL, DISCOUNT, PRICE)

RENT_DATE → DISCOUNT

RESERVATION(CUSTOMER_ID, HOTEL_ID, CHECKIN_DATE, HOTEL_CITY, CUSTOMER_NAME)

k1 -> X

(K1, K2) -> Y total

SCORES(#PLAYER_ID, #TOURNAMENT_ID, SCOR, PLAYER_NAME, RANK)

K1 = PLAYER_ID

K2 = TOURNAMENT_ID

Y = SCOR

X = PLAYER_NAME, RANK

#PLAYER_ID, #TOURNAMENT_ID, SCOR

BILL_PROD(#BILL_ID, CLIENT_ID, CLIENT_NAME, #PRODUCT_ID, PRODUCT_NAME, PROD_CAT_ID, PROD_CAT_NAME, QUANTITY)

K1 = BILL_ID
K2 = PRODUCT_ID
Y = PRODUCT_NAME,PROD_CAT_ID,
PROD_CAT_NAME, QUANTITY
X = CLIENT_NAME, CLIENT_ID

#BILL_ID, #PRODUCT_ID, PRODUCT_NAME, PROD_CATE_ID, PROD_CAT_NAME, QUANTITY

dependencies

K1 -> X

(K1, K2) -> Y total

K1,K2

X, Y

_NAME, PROD_CATE_ID, PROD_CAT_NAME,

#BILL_ID, #PRODUCT_ID, PRODUCT_NAME, PROD_CATE_ID, PROD_CAT_NAME, QUANTITY

K1 = PRODUCT_ID

 $K2 = BILL_ID$

Y = QTE

X = PRODUCT_NAME, PROD_CAT_ID,

PROD_CAT_NAME

K1,K2

Y

K1

X

#BILL_ID, #PRODUCT_ID,QTE

#BILL_ID, CLIENT_ID, CLIENT_NAME

Databases C6: Normal Forms

#PRODUCT_ID,
PRODUCT_NAME,PROD_CATE_ID,
PROD_CAT_NAME

K1,K2 X, Y

RENT(#CLIENT_ID, #RENT_DATE, CAR_ID, CAR_MODEL, DISCOUNT, PRICE)

 $\mathsf{RENT_DATE} \to \mathsf{DISCOUNT}$

CLIENT_ID, RENT_DATE \rightarrow CAR_ID, CAR_MODEL, PRICE

CAR_MODEL -> PRICE

K1 = RENT_DATE

K2 = CLIENT_ID, RENT_DATE

Y = CAR_ID, CAR_MODEL, PRICE

X = DISCOUNT

K1 X

#CLIENT_ID, #RENT_DATE, CAR_ID, CAR MODEL, PRICE

#RENT_DATE, DISCOUNT

NO TRANSITIVE DEPENDENCIES

- Tables in NF2
- Non-key attributes (not part of the key) depend on the entire key and only on the key.

There are no transitive dependencies.

AIRPORT_ID	AIRPLANE_ID	DEPARTURE	MODEL	CAPACITY	REVISION_DATE	BOARDING_GATE
1	101	30/03/20 17:00	Boeing 777	451	01/01/2021	42
1	102	02/05/20 09:30	Airbus A320	150	01/03/2020	50
2	201	06/08/20 10:45	Boeing 757	295	03/05/2020	35
2	202	10/10/20 06:20	Airbus A320	150	04/06/2021	10
1	101	06/04/20 16:35	Boeing 777	451	08/09/2020	23

AIRPORT_ID	AIRPLANE_ID	DEPARTURE	BOARDING_GATE
1	101	30/03/20 17:00	42
1	102	02/05/20 09:30	50
2	201	06/08/20 10:45	35
2	202	10/10/20 06:20	10
1	101	06/04/20 16:35	23

AIRPLANE_ID	MODEL	CAPACITY	REVISION_DATE
101	Boeing 777	451	01/01/2021
102	Airbus A320	150	01/03/2020
201	Boeing 757	259	03/05/2020
202	Airbus A320	150	04/06/2021

AIRPLANE_ID	MODEL	CAPACITY	REVISION_DATE
101	Boeing 777	451	01/01/2021
102	Airbus A320	150	01/03/2020
201	Boeing 757	259	03/05/2020
202	Airbus A320	150	04/06/2021

K -> X

X -> Y

dependencies

K -> X

X -> Y

K = AIRPLANE_ID

X = AIRPLANE_MODEL

Y = CAPACITY

Z= REVISION_DATE

AIRPLANE_ID	MODEL	CAPACITY	REVISION_DATE
101	Boeing 777	451	01/01/2021
102	Airbus A320	150	01/03/2020
201	Boeing 757	259	03/05/2020
202	Airbus A320	150	04/06/2021

AIRPLANE_ID	REVISION_DATE
101	01/01/2021
102	01/03/2020
201	03/05/2020
202	04/06/2021

MODEL	CAPACITY
Boeing 777	451
Airbus A320	150
Boeing 757	259

PAYMENTS(EMPLOYEE_ID, JOB_ID, SALARY, JOB_BONUS)

AWARD(YEAR, CATEGORY, WINNER, WINNER_NATIONALITY, CEREMONY_DATE, CEREMONY_LOCATION)

EXAMS(TEST_ID, STUDENT_ID, SUBJECT_ID, S_CREDITS, GRADE, CREDITS)

INSURANCE(CLIENT_ID, AUTO_ID, TYPE, PRICE, AUTO_NO, DATE, CLIENT_NAME)

PAYMENTS(EMPLOYEE_ID, JOB_ID, SALARY, JOB_BONUS)

JOB_ID -> JOB_BONUS

K = EMPLOYEE_ID

 $X = JOB_ID$

Y = JOB_BONUS

Z= SALARY

AWARD(#YEAR, #CATEGORY, WINNER, WINNER_NATIONALITY, CEREMONY_DATE, CEREMONY_LOCATION)

YEAR - > CEREMONY_DATE
YEAR -> CEREMONY_LOCATION
(YEAR, CATEGORY) -> WINNER

K =

X =

Y =

Z=

#

AWARD(#YEAR, #CATEGORY, WINNER, WINNER_NATIONALITY, CEREMONY_DATE, CEREMONY_LOCATION)

(YEAR, CATEGORY) -> WINNER -> WINNER_NATIONALITY

CEREMONY(#YEAR, CEREMONY_DATE, CEREMONY_LOCATION)
AWARD(#YEAR, #CATEGORY, WINNER, WINNER_NATIONALITY)

K = (YEAR, CATEGORY)

X = WINNER

Y = WINNER_NATIONALITY

Z=

K X, Y, Z

EXAMS(#TEST_ID, #STUDENT_ID, SUBJECT_ID, S_CREDITS, GRADE, CREDITS, DATE)

```
SUBJECT_ID -> S_CREDITS

TEST_ID -> SUBJECT_ID

#TEST_ID, #STUDENT_ID -> GRADE

#TEST_ID, #STUDENT_ID -> CREDITS

#TEST_ID, #STUDENT_ID -> SUBJECT_ID
```

K X, Z

Х

K =

X =

Y =

Z=


```
EXAMS( #TEST_ID, #STUDENT_ID, GRADE, CREDITS, DATE)

TEST(#TEST_ID, SUBJECT_ID, S_CREDITS)

SUBJECT_ID -> S_CREDITS TEST_ID -> SUBJECT_ID

#TEST_ID, #STUDENT_ID -> GRADE

#TEST_ID, #STUDENT_ID -> CREDITS

#TEST_ID, #STUDENT_ID -> SUBJECT_ID
```

K = TEST_ID
X = SUBJECT_ID
Y =
Z = S_CREDITS

Databases C6: Normal Forms

EXAMS(#TEST_ID, #STUDENT_ID, GRADE, CREDITS, DATE)

```
SUBJECT_ID -> S_CREDITS TEST_ID -> SUBJECT_ID

#TEST_ID, #STUDENT_ID -> GRADE

#TEST_ID, #STUDENT_ID -> CREDITS

#TEST_ID, #STUDENT_ID -> SUBJECT_ID
```

K = TEST_ID
X = SUBJECT_ID
Y =
Z = S_CREDITS

Databases C6: Normal Forms

ALL DETERMINANT ARE CANDIDATE KEYS

- Tables in NF3
- For any functional dependency U → V, U is a candidate key.

All determinants are candidate keys.

MANUFACTURING(CAR, STEP, STATION, TIME)
STATION -> STEP
(CAR, STEP) -> STATION
(CAR, STEP) -> TIME

K1 = CAR K2 = STEP X = STATION Y= TIME

(K1,K2) -> X,Y

X -> K2

MANUFACTURING(CAR, STEP, STATION, TIME)
STATION -> STEP
(CAR, STEP) -> STATION
(CAR, STEP) -> TIME

K1 = CAR K2 = STEP X = STATION Y= TIME

Databases C6: Normal Forms

(K1,K2) -> X,Y

X -> K2

--fiecare utilizator isi allege un produs preferat pentru o categorie,

--un utilizator alege un unic produs pentru o categorie

K1 = USER
K2 = PROD_CATEGORY
X = WIN_PROD
Y=

(USER, WIN_PROD , !!!
PROD_CATEGORY)

Databases C6: Normal Forms

K1

X, Y

(WIN_PROD, PROD_CATEGORY)