

Binary Codes (BCD, Excess-3, Gray)

Arithmatic & Description
Logical Op

Binary Adder, Binary Subtractor, Binary Multiplier

Binary Comparator (Magnitude Comparator)

Data Transmission Decoder, Encoder

Multiplexer (MUX, MPX), De-Multiplexer (Demux)

Howard Hathaway Aiken

(March 8, 1900 – March 14, 1973)

Physicist

Pioneer in computing

Original conceptual designer behind IBM's Harvard Mark I

George Robert Stibitz

(April 30, 1904 – January 31, 1995)
Bell Labs researcher
One of the fathers of the modern first digital computer

Table 1.5Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	Aiken 2421	+3 Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111

Self-complementing

The 9's complement of the decimal number =

The 1's complement (NOT) of its binary code

Calculator Collector

Spring 1993

Issue No. 1

The Beginning

If you're past your mid-30s, you probably remember your first simple hand-held calculator costing over \$50 (in early his staff or 1970's dollars). Depending how much older you are, your even better first could have been upwards to \$400. And we're just talking the basic four functions here — addition, subtraction, multiplication, and division. Percentage and memory features.

Up to no called "nor cal

Company Profile:

- Roundar

Who can forget the "Bowmar Brain" series of calculators from the early '70s?

Bowmar was the first American company that made and sold their own line of portable electronic machines.

The story starts around 1970 when Bowmar, then a manufacturer of Light Emitting Diodes (LEDs), tried to sell their numeric display product to Japanese manufacturers for use in their electronic products

Bowmar wasn't too successful. The Japanese were using a flourescent style display that was cheaper and had a few design features the manufacturers liked better.

So, president Ed White, a consummate entrepreneur, and his staff came up with an even better idea — make the whole electronic calculator themselves.

Up to now, most of the socalled "portable" calculators

Gray Code Analog → Digital

Straight binary number sequence for 7 to 8: 0111 \rightarrow 1000; causes all four bits to change values. **Gray** code for 7 \rightarrow 8: 0100 to 1100; only the first bit changes from 0 to 1; the other three bits remain the same.

Gray Code Algorithm

Step 0: Convert the decimal number to binary number.

Step 1: The MSB (Most Significant Bit) of a gray code and binary code is the same.

Step 2: The next digit of gray code is the XOR of the previous and current digit in the binary code.

ASCII Code

American Standard Code for Information Interchange

USASCII code chart

07 b Β	6 b 5			-	° 0 0	° 0 ,	0	0 1	00	0	1 0	1 1	
B	4+	b 3	p 5	- +	Row	0	-	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	SP	0	0	Р	`	Р
	0	0	0	_		SOH	DC1	!	1	Α.	Q	O	q
	0	0		0	2	STX	DC 2	- 11	2	В	R	b	r
	0	0	-	_	3	ETX	DC3	#	3	C	S	С	\$
	0	1	0	0	4	EOT	DC4	•	4	D	T	đ	t
	0		0	1	5	ENQ	NAK	%	5	Ε	U	е	U
	0	1	-	0	6	ACK	SYN	8	6	F	V	f	V
	0	_	-	1	7	BEL	ETB	•	7	G	W	g	w
	-	0	0	0	8	BS	CAN	(8	н	×	ħ	×
	_	0	0	-	9	нТ	EM)	9	1	Y	i	у
	_	0	1	0	10	LF	SUB	*	:	J	Z	j	Z
	-	0	_	1	11	VT	ESC	+	;	K	C	k .	{
	-	1	0	0	12	FF	FS	•	<	L	\	ì	1
	1	1	0	ı	13	CR	GS	-	#	М	כ	E	}
	_	1	-	0	14	so	RS	•	>	N	^	n	~
		1	_		15	SI	US	/	?	0	-	0	DEL

 $"0" = (011\ 0000)_2 = (48)_{10}$

Table 1.7American Standard Code for Information Interchange (ASCII)

		$b_7b_6b_5$								
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111		
0000	NUL	DLE	SP	0	@	P		p		
0001	SOH	DC1	!	1	Α	Q	a	q		
0010	STX	DC2	66	2	В	R	b	r		
0011	ETX	DC3	#	3	C	S	c	S		
0100	EOT	DC4	\$	4	D	T	d	t		
0101	ENQ	NAK	%	5	E	U	e	u		
0110	ACK	SYN	&	6	F	V	f	v		
0111	BEL	ETB	6	7	G	W	g	w		
1000	BS	CAN	(8	H	X	h	X		
1001	HT	EM)	9	I	Y	i	y		
1010	LF	SUB	*	:	J	\mathbf{Z}	j	Z		
1011	VT	ESC	+	;	K	[k	{		
1100	FF	FS	,	<	L	\	1			
1101	CR	GS	_	=	M]	m	}		
1110	SO	RS		>	N	٨	n	~		
1111	SI	US	/	?	O	_	O	DEL		

NUL	Null	DLE	Data-link escape
SOH	Start of heading	DC1	Device control 1
STX	Start of text	DC2	Device control 2
ETX	End of text	DC3	Device control 3
EOT	End of transmission	DC4	Device control 4
ENQ	Enquiry	NAK	Negative acknowledge
ACK	Acknowledge	SYN	Synchronous idle
BEL	Bell	ETB	End-of-transmission block
BS	Backspace	CAN	Cancel
HT	Horizontal tab	EM	End of medium
LF	Line feed	SUB	Substitute
VT	Vertical tab	ESC	Escape
FF	Form feed	FS	File separator
CR	Carriage return	GS	Group separator
SO	Shift out	RS	Record separator
SI	Shift in	US	Unit separator
SP	Space	DEL	Delete

Combinational Logic Binary Codes

Combinational Logic Code Conversion

Decimal Equivalent	BCD 8421	Aiken 2421	Excess-3	8, 4, -2, -1	Gray Code
0	0000	0000	0011	0000	0000
1	0001	0001	0100	0111	0001
2	0010	0010	0101	0110	0011
3	0011	0011	0110	0101	0010
4	0100	0100	0111	0100	0110
5	0101	1011	1000	1011	0111
6	0110	1100	1001	1010	0101
7	0111	1101	1010	1001	0100
8	1000	1110	1011	1000	1100
9	1001	1111	1100	1111	1101
10					1111
11					1110
12					1010
13					1011
14					1001
15					1000

Decimal Equivalent	BCD 8421	Aiken 2421	Excess-3	8, 4, -2, -1	Gray Code
0	0000	0000	0011	0000	0000
1	0001	0001	0100	0111	0001
2	0010	0010	0101	0110	0011
3	0011	0011	0110	0101	0010
4	0100	0100	0111	0100	0110
5	0101	1011	1000	1011	0111
6	0110	1100	1001	1010	0101
7	0111	1101	1010	1001	0100
8	1000	1110	1011	1000	1100
9	1001	1111	1100	1111	1101
10	0001 0000	0001 0000	You fill it	You fill it	1111
11	0001 0001	0001 0001	at home	at home	1110
12	0001 0010	0001 0010			1010
13	0001 0011	0001 0011			1011
14	0001 0100	0001 0100			1001
15	0001 0101	0001 1011			1000

Decimal Equivalent	BCD 8421	Aiken 2421	Excess-3	8, 4, -2, -1	Gray Code
0	0000	0000	0011	0000	0000
1	0001	0001	0100	0111	0001
2	0010	0010	0101	0110	0011
3	0011	0011	0110	0101	0010
4	0100	0100	0111	0100	0110
5	<u> </u>	\longleftrightarrow 1011	1000	1011	0111
6	0110	1100	1001	$\longleftrightarrow \frac{1011}{1010}$	0101
7	0111	1101	1010	1001	0100
8	1000	1110	1011	1000	1100
9	1001	1111	1100	1111	1101
10	0001 0000	0001 0000	You fill it	You fill it	1111
11	0001 0001	0001 0001	at home	at home	1110
12	0001 0010	0001 0010			1010
13	0001 0011	0001 0011			1011
14	0001 0100	0001 0100			1001
15	0001 0101	0001 1011			1000

Combinational Logic Code Conversion

BCD (8421) \rightarrow Excess-3

Table 4.2 *Truth Table for Code Conversion Example*

	Inpu	t BCD		Out	Output Excess-3 Code				
Α	В	C	D	W	X	y	Z		
0	0	0	0	0	0	1	1		
0	0	0	1	0	1	0	0		
0	0	1	0	0	1	0	1		
0	0	1	1	0	1	1	0		
0	1	0	0	0	1	1	1		
0	1	0	1	1	0	0	0		
0	1	1	0	1	0	0	1		
0	1	1	1	1	0	1	0		
1	0	0	0	1	0	1	1		
1	0	0	1	1	1	0	0		

А	В	С	D	W	Χ	Υ	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	?	?	?	?
1	0	1	1	?	?	?	?
1	1	0	0	?	?	?	?
1	1	0	1	?	?	?	?
1	1	1	0	?	?	?	?
1	1	1	1	?	?	?	?

Don't Care Conditions

In practice, in some applications the function is not specified for certain combinations of the variables.

Don't Care Conditions

Functions that have unspecified outputs for some input combinations are called *incompletely specified functions*.

Don't-care conditions can be used on a map to provide further simplification of the Boolean expression.

Don't Care Conditions

To distinguish the don't-care condition from 1's and 0's, an \times is used.

А	В	С	D	W	Χ	Υ	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

 $W(A,B,C,D) = \sum (5,6,7,8,9) + d(10,11,12,13,14,15)$

 $X(A,B,C,D) = \sum (1,2,3,4,9) + d(10,11,12,13,14,15)$

 $Y(A,B,C,D) = \sum (0,3,4,7,8) + d(10,11,12,13,14,15)$

 $Z(A,B,C,D) = \sum (0,2,4,6,8) + d(10,11,12,13,14,15)$

FIGURE 4.4 Logic diagram for BCD-to-excess-3 code converter

FIGURE 4.4
Logic diagram for BCD-to-excess-3 code converter

MAXTERM

$$W(A,B,C,D) = \sum (5,6,7,8,9) + d(10,11,12,13,14,15)$$
$$= \prod (?)$$

$$W(A,B,C,D) = \sum (5,6,7,8,9) + d(10,11,12,13,14,15)$$
$$= \prod (0,1,2,3,4)$$

 $W(A,B,C,D) = \sum (5,6,7,8,9) + d(10,11,12,13,14,15)$ = $\prod (0,1,2,3,4) + D(10,11,12,13,14,15)$

We can assume the don't care conditions are 0 if they help to more simplification

$$W(A,B,C,D) = \sum (5,6,7,8,9) + d(10,11,12,13,14,15)$$
$$= \prod (0,1,2,3,4) + D(10,11,12,13,14,15)$$
$$= ()'$$

			CD			
		00	01	11	10	
	00	O_{m_0}	O_{m_1}	O_{m_3}	O_{m_2}	
۸۵	01	O_{m_4}	1 m ₅	1 m ₇	1 m ₆	
AB	11	X m ₁₂	X m ₁₃	X m ₁₅	X m ₁₄	
	10	1 m ₈	1 m ₉	X m ₁₁	X m ₁₀	

$$W(A,B,C,D) = \sum (5,6,7,8,9) + d(10,11,12,13,14,15)$$

= $\prod (0,1,2,3,4) + D(10,11,12,13,14,15)$
= $((A'B'))'$

			C	D	
		00	01	11	10
	00	O_{m_0}	O_{m_1}	\bigcup_{m_3}	\bigcup_{m_2}
۸۵	01	O_{m_4}	1 m ₅	1 m ₇	1 m ₆
AB	11	X m ₁₂	X m ₁₃	X m ₁₅	X m ₁₄
	10	1 m ₈	1 m ₉	X m ₁₁	X m ₁₀

$$W(A,B,C,D) = \sum (5,6,7,8,9) + d(10,11,12,13,14,15)$$

= $\prod (0,1,2,3,4) + D(10,11,12,13,14,15)$
= $((A'B')+(A'C'D'))'$

		CD					
		00	01	11	10		
AB	00	O_{m_0}	\bigcup_{m_1}	O_{m_3}	O_{m_2}		
	01	O_{m_4}	1 m ₅	1 m ₇	1 m ₆		
	11	X m ₁₂	X m ₁₃	X m ₁₅	X m ₁₄		
	10	1 m ₈	1 m ₉	X m ₁₁	X m ₁₀		

 $W(A,B,C,D) = \sum (5,6,7,8,9) + d(10,11,12,13,14,15)$ = $\prod (0,1,2,3,4) + D(10,11,12,13,14,15)$

= ((A'B')+(A'C'D'))' Here the "don't care conditions" did not help ⊗

= (A+B)(A+C+D)

		CD					
		00	01	11	10		
AB	00	O_{m_0}	\bigcup_{m_1}	\bigcup_{m_3}	O_{m_2}		
	01	O_{m_4}	1 m ₅	1 m ₇	1 m ₆		
	11	X m ₁₂	X m ₁₃	X m ₁₅	X m ₁₄		
	10	1 m ₈	1 m ₉	X m ₁₁	X m ₁₀		

 $X(A,B,C,D) = \sum (1,2,3,4,9) + d(10,11,12,13,14,15)$ = $\prod (0,5,6,7,8) + D(10,11,12,13,14,15)$

= ((BD)+(BC)+(B'C'D'))' Here the "don't care conditions" helped ☺

= (B'+D')(B'+C')(B+C+D)

			CD		
		00	01	11	10
AB	00	O _{mo}	1 m ₁	1 m ₃	1 m ₂
	01	1 m ₄	O_{m_5}	O_{m_7}	O_{m_6}
	11	X m ₁₂	X m ₁₃	X m ₁₅	X m ₁₄
	10	O _{m8}	1 m ₉	X m ₁₁	X m ₁₀

$$Y(A,B,C,D) = \sum (0,3,4,7,8) + d(10,11,12,13,14,15)$$

= ?

$$Z(A,B,C,D) = \sum (0,2,4,6,8) + d(10,11,12,13,14,15)$$

= ?

Your Turn!

Excess-3-to-BCD BCD-to-Aiken Aiken-to-BCD Aiken-to-Excess-3 A -

4.9 An ABCD-to-seven-segment decoder is a combinational circuit that converts a decimal digit in BCD to an appropriate code for the selection of segments in an indicator used to display the decimal digit in a familiar form. The seven outputs of the decoder (a, b, c, d, e, f, g) select the corresponding segments in the display, as shown in Fig. P4.9(a). The numeric display chosen to represent the decimal digit is shown in Fig. P4.9(b). Using a truth table and Karnaugh maps, design the BCD-to-seven-segment decoder using a minimum number of gates. The six invalid combinations should result in a blank display. (HDL—see Problem 4.51.)

(a) Segment designation

(b) Numerical designation for display

FIGURE P4.9

Combinational Logic Display Decoder

Binary Number BCD Excess-3 B \rightarrow 7-Seg-Dec. Aiken Gray D \rightarrow d \rightarrow

Binary Number

Binary Number

Binary Number

From 10 to 15, don't care conditions!

0,1,2,13,14,15, don't care conditions!

Combinational Logic Binary Code Arithmetic

Combinational Logic BCD Adder

Book: Page 144-146