

Kontinuumsmechanik

Sommersemester 2017

Klausur vom 28.07.2017

Name			Vorname				
Studiengang			Matrikelnummer				
Es ist erlaubt, eine handge A4-Blattes zu benutzen. hingewiesen, dass keine insbesondere Taschenrech Ich bestätige meine Prüfur	Andere Hil erlei elektror nner, Laptops	lfsmittel sin nische Hilfs	nd nicht erl mittel benu	aubt. Es wi	rd ausdrück	dich darauf	
Unterschrift							
Tragen Sie Nebenrechnungen und die Endergebnisse ausschließlich in die dafür vorgesehenen Kästen ein. Separat abgegebene Blätter werden nicht bewertet.							
Aufgabe	Т	A1	A2	A3	A4	Σ	
Punkte							
Erreichte Punkte							
Handzeichen							

Theorieaufgaben

[10 Punkte]

Aufgabe T1

[2 Punkte]

In einer Saite läuft die skizzierte Transversalwelle mit der Wellenausbreitungsgeschwindigkeit c auf das Lager bei x=l zu. Ihr Maximum ist zum Zeitpunkt $t_0=0$ bei x=0. Skizzieren Sie in den beiden unteren Diagrammen die Verschiebungen $w(x,t_1)$ mit $t_1=\frac{l}{c}$ bzw. $w(x,t_2)$ mit $t_2=\frac{2l}{c}$.

Aufgabe T2

[1 Punkt]

Die eindimensionale Wellengleichung $\ddot{w}(x,t)-c^2w''(x,t)=0$ besitzt die Lösung $w(x,t)=f_1(x-ct)+f_2(x+ct)$. Was beschreibt der Ausdruck $f_2(x+ct)$ dabei anschaulich? Kreuzen Sie alle richtigen Antworten an.

eine mit der Geschwindigkeit c in negative x -Richtung laufende Welle eine mit der Geschwindigkeit c in positive x -Richtung laufende Welle	1 Punkt
eine Schwingung mit steigender Amplitude	
eine Schwingung mit fallender Amplitude	

Aufgabe T3 [1 Punkt]

Der skizzierte Balken besitzt die niedrigsten drei Eigenfrequenzen 100 Hz, 400 Hz und 900 Hz.

Ordnen Sie die jeweiligen Eigenfrequenzen den unten abgebildeten Schwingformen zu.

1 Punkt

$$f=100~\mathrm{Hz}$$
 $f=900~\mathrm{Hz}$ $f=400~\mathrm{Hz}$

Aufgabe T4 [1 Punkt]

Gegeben ist der rechts skizzierte statisch bestimmt gelagerte homogene Euler-Bernoulli-Balken mit konstantem Querschnitt, welcher mittig mit der Einzellast $F(t) = F_0 \cos \Omega t$ zu Schwingungen angeregt wird. Kreuzen Sie alle wahren Aussagen an.

Wenn die Erregerkreisfrequenz Ω gleich der ersten Eigenkreisfrequenz ω_1 ist, tritt Resonanz auf.

Wenn die Erregerkreisfrequenz Ω gleich der zweiten Eigenkreisfrequenz ω_2 ist, tritt Resonanz auf.

eine Erhöhung der Amplitude F_0 führt zu einer Erhöhung der Eigenkreisfrequenz ω_1 eine Erhöhung der Amplitude F_0 führt zu einer Verringerung der Eigenkreisfrequenz ω_1

Aufgabe T5 [1 Punkt]

Gegeben ist der skizzierte Euler Bernoulli Balken mit einer festen Einspannung bei x=0 und der Länge l. Unter Verwendung des Rayleigh-Quotienten soll eine Abschätzung für die erste Eigenkreisfrequenz der Biegeschwingung gemacht werden. Geben Sie eine zulässige Ansatzfunktion $\widetilde{W}_1(x)$ an

z.B. $\widetilde{W}_1(x)=x^2$, $\widetilde{W}_1(x)=x^4$, alles wenn gilt: $\widetilde{W}_1(0)=0$ und $\widetilde{W}_1'(0)=0$

1 Punkt

[1 Punkt]

Aufgabe T8

Die drei skizzierten Euler-Bernoulli-Balken unterscheiden sich lediglich in ihren Randbedingungen. Die zu jedem System gehörende erste Eigenkreisfrequenz sei jeweils ω_A, ω_B bzw. ω_C . Sortieren Sie diese nach Ihrer Größe.

Kontinuumsmechanik Klausur vom 28.07.2017

1 Punkt

Aufgabe T7 [2 Punkte]

Die unten skizzierte Waage befindet sich im Gleichgewicht. Beide Behälter sind identisch und mit Flüssigkeiten (Dichte ρ_1 bzw. ρ_2) mit gleichem Füllstand h gefüllt. Im linken Behälter schwimmt zusätzlich ein Körper mit der Dichte ρ_3 .

Aufgabe 1 [12 Punkte]

Gegeben ist der wie skizziert gelagerte Stab (Masse pro Länge $\mu=\rho A$, Dehnsteifigkeit EA, Länge l), der durch die Kraft $F(t)=F_0\cos\Omega t$ zu Längsschwingungen u(x,t) angeregt wird.

Gegeben: $A, E, l, \rho, F_0, \Omega$

a) Geben Sie die Feldgleichung und die Randbedingungen an (Herleitung ist nicht notwendig).

Ergebnis:

Feldgleichung:

1 Punkt

 ρ_A

$$\rho A\ddot{u}(x,t) - EAu''(x,t) = q(x,t) = 0$$

oder

$$\mu\ddot{u}(x,t)-EAu^{\prime\prime}(x,t)=q(x,t)=0$$

Randbedingungen

RB1: u(0,t) = 0

1 Punkt

RB2: EAu'(l,t) = F(t)

b) Bestimmen Sie für $F(t)\equiv 0$ die Eigenkreisfrequenzen ω_k und die Eigenformen $U_k(x)$ des Stabs.

Rechnung:

Den Ansatz

$$u(x,t) = U(x)p(t)$$

1 Punkt

in die Feldgleichung eingesetzt führt zu

$$\ddot{p}(t) + \omega^2 p(t) = 0$$

$$U''(x) + \frac{\rho}{E}\omega^2 U(x) = 0.$$

Anpassen des Ansatzes

$$U(x) = A_1 \cos\left(\sqrt{\frac{\rho}{E}}\omega x\right) + A_2 \sin\left(\sqrt{\frac{\rho}{E}}\omega x\right)$$

Klausur vom 28.07.2017

an die Randbedingung. Aus RB1 folgt

$$U(0) = 0$$

weshalb

$$A_1 = 0$$

1 Punkt

gilt.

Aus RB2 folgt mit $F(t) \equiv 0$

$$U'(l) = 0$$

weshalb

$$A_2 \sqrt{\frac{\rho}{E}} \omega \cos \left(\sqrt{\frac{\rho}{E}} \omega l \right) = 0$$

1 Punkt

gilt. Für die nichttriviale Lösung muss damit gelten

$$\cos\left(\sqrt{\frac{\rho}{E}}\omega l\right) = 0$$

$$\Rightarrow \sqrt{\frac{\rho}{E}}\omega_k l = \frac{\pi}{2} + k\pi = (2k - 1)\frac{\pi}{2} \qquad k = 1,...,\infty$$

$$\Rightarrow \omega_k = \left(\frac{\pi}{2} + k\pi\right)\frac{1}{l}\sqrt{\frac{E}{\rho}}$$

1 Punkt

$$\omega_k = \left(\frac{\pi}{2} + k\pi\right) \frac{1}{l} \sqrt{\frac{E}{\rho}}$$

$$U_k(x) = \sin\left(\left(\frac{\pi}{2} + k\pi\right)\frac{1}{l}x\right) \qquad k = 1,..,\infty$$

$$k=1,\ldots,\infty$$

c) F(t) sei nun mit $F(t) = F_0 \cos \Omega t$ gegeben. Bestimmen Sie mit dem Ansatz u(x,t) = $U(x)\cos\Omega t$ eine Lösung für die Zwangsschwingungen.

Rechnung:

Ansatz einsetzen in die Feldgleichung

$$-\Omega^2 \rho A U(x) \cos \Omega t - E A U''(x) \cos \Omega t = 0$$

führt auf

$$U''(x) + \frac{\rho}{F}\Omega^2 U(x) = 0$$
 1 Punkt

Anpassen der Lösung

$$U(x) = A_1 \cos\left(\sqrt{\frac{\rho}{E}}\Omega x\right) + A_2 \sin\left(\sqrt{\frac{\rho}{E}}\Omega x\right)$$

an die Randbedingungen.

Aus RB1 folgt

$$U(0) = 0$$

weshalb

$$A_1 = 0$$

gilt.

Aus RB2 EAu'(l,t) folgt

$$EAU'(l)\cos\Omega t = F(t) = F_0\cos\Omega t$$

$$\Rightarrow EAA_2 \sqrt{\frac{\rho}{E}}\Omega\cos\left(\sqrt{\frac{\rho}{E}}\Omega l\right) = F_0$$

$$\Rightarrow A_2 = \frac{F_0}{\sqrt{E\rho}A\Omega\cos\left(\sqrt{\frac{\rho}{E}}\Omega l\right)}$$

$$u(x,t) = \frac{F_0}{\sqrt{E\rho}A\Omega\cos\left(\sqrt{\frac{\rho}{E}}\Omega l\right)}\sin\left(\sqrt{\frac{\rho}{E}}\Omega x\right)\cos\Omega t$$

1 Punkt

d) Für welche Erregerkreisfrequenzen Ω tritt Resonanz auf?

Rechnung:

$$\sqrt{E\rho}A\Omega\cos\left(\sqrt{\frac{\rho}{E}}\Omega l\right) = 0$$

$$\Rightarrow \sqrt{\frac{\rho}{E}}\Omega l = \frac{\pi}{2} + k\pi \qquad k = 1, 2, ..., \infty$$

$$\Rightarrow \sqrt{\frac{\rho}{E}}\Omega l = \frac{\pi}{2} + k\pi$$

$$k=1,2,\ldots,\infty$$

$$\Omega = \left(\frac{\pi}{2} + k\pi\right) \frac{1}{l} \sqrt{\frac{E}{\rho}} = \omega_k$$

Aufgabe 2 [8 Punkte]

Gegeben ist der skizzierte mit der Kraft F vorgespannte Balken (Masse pro Länge μ , Biegesteifigkeit EI, Länge l). Seine Feldgleichung ist

$$\mu \ddot{w}(x,t) + EIw^{IV}(x,t) - Fw^{II}(x,t) = 0$$

Gegeben: *μ*, *EI*, *l*, *F*

a) Geben Sie die Randbedingungen an.

b) Mit der Funktion $\widetilde{W}_1(x)=\sin\left(\pi\frac{x}{l}\right)$ soll eine Näherung für die erste Eigenkreisfrequenz mit Hilfe des Rayleigh-Quotienten bestimmt werden. Zeigen Sie, dass $\widetilde{W}_1(x)$ eine zulässige Funktion ist.

Ergebnis:

Es muss gelten

$$\widetilde{W}_1(0) = 0$$

 $\Rightarrow \sin\left(\pi \frac{0}{l}\right) = 0$
1 Punkt

und

$$\widetilde{W}_1(l) = 0$$

 $\Rightarrow \sin\left(\pi \frac{l}{l}\right) = 0$
1 Punkt

c) Gegeben sei nun der Rayleigh-Quotient mit

$$\widetilde{\omega}_1^2 = \frac{\int_0^l \left(EI\widetilde{W}_1^{\prime\prime}^2(x) + F\widetilde{W}_1^{\prime 2}(x) \right) \mathrm{d}x}{\int_0^l \mu \widetilde{W}_1^2(x) \mathrm{d}x}.$$

Bestimmen Sie $\widetilde{\omega}_1$ unter Verwendung der Ansatzfunktion $\widetilde{W}_1(x) = \sin\left(\pi \frac{x}{t}\right)$.

Hinweis:

1)
$$\int \sin^2(\alpha) d\alpha = \frac{1}{2} (\alpha - \sin(\alpha) \cos(\alpha)) = \frac{1}{2} \left(\alpha - \frac{1}{2} \sin(2\alpha) \right)$$

2)
$$\int \cos^2(\alpha) d\alpha = \frac{1}{2} (\alpha + \sin(\alpha) \cos(\alpha)) = \frac{1}{2} (\alpha + \frac{1}{2} \sin(2\alpha))$$

Rechnung:

$$\widetilde{\omega}_1^2 = \frac{\int_0^l \left(EI \frac{\pi^4}{l^4} \sin^2 \left(\pi \frac{x}{l} \right) + F \frac{\pi^2}{l^2} \cos^2 \left(\pi \frac{x}{l} \right) \right) \mathrm{d}x}{\int_0^l \mu \sin^2 \left(\pi \frac{x}{l} \right) \mathrm{d}x}$$

$$\widetilde{\omega}_1^2 = \frac{EI \frac{\pi^4}{l^4} \int_0^l \sin^2\left(\pi \frac{x}{l}\right) dx + F \frac{\pi^2}{l^2} \int_0^l \cos^2\left(\pi \frac{x}{l}\right) dx}{\mu \int_0^l \sin^2\left(\pi \frac{x}{l}\right) dx}$$

$$\widetilde{\omega}_{1}^{2} = \frac{EI\frac{\pi^{4}}{l^{4}}\frac{1}{2}\left(\pi\frac{x}{l} - \sin\left(\pi\frac{x}{l}\right)\cos\left(\pi\frac{x}{l}\right)\right)\right]_{0}^{l} + F\frac{\pi^{2}}{l^{2}}\frac{1}{2}\left(\pi\frac{x}{l} + \sin\left(\pi\frac{x}{l}\right)\cos\left(\pi\frac{x}{l}\right)\right)\right]_{0}^{l}}{\mu\frac{1}{2}\left(\pi\frac{x}{l} - \sin\left(\pi\frac{x}{l}\right)\cos\left(\pi\frac{x}{l}\right)\right)\right]_{0}^{l}}$$

$$\widetilde{\omega_1}^2 = \frac{EI\frac{\pi^4}{l^4} + F\frac{\pi^2}{l^2}}{\mu}$$

Anmerkung: Da $\,\widetilde{W}_1(x)\,$ die erste Eigenform ist, ist $\,\widetilde{\omega}_1\,$ exakt die erste Eigenkreisfrequenz $\,\omega_1\,$

$$\widetilde{\omega}_1 = \sqrt{\frac{EI\frac{\pi^4}{l^4} + F\frac{\pi^2}{l^2}}{\mu}}$$

d) Bestimmen Sie mit dem Ergebnis aus c) die zugehörige Knicklast $\tilde{F}_{
m krit}.$

Rechnung:

unkt
$$\widetilde{\omega}_1 = \sqrt{\frac{EI\frac{\pi^4}{l^4} + \widetilde{F}_{krit}\frac{\pi^2}{l^2}}{\mu}} = 0$$

$$EI\frac{\pi^4}{l^4} + \tilde{F}_{krit}\frac{\pi^2}{l^2} = 0$$

$$\tilde{F}_{krit} = -EI\frac{\pi^2}{l^2}$$

$$\tilde{F}_{\rm krit} = -EI\frac{\pi^2}{l^2}$$

$$\tilde{F}_{\rm krit} = -EI\frac{\pi^2}{l^2}$$

Aufgabe 3 [9 Punkte]

Das skizzierte Modell eines Antriebsstrangs besteht aus zwei diskreten Drehmassen (starre Körper, Massenträgheitsmoment θ_1 bzw. θ_2 bezüglich der Drehachse) sowie dem dargestellten Torsionsstab (Dichte ρ , Schubmodul G, polares Flächenträgheitsmoment I_P , Länge l). Er wird bei x=0 mit dem Moment M_1 und bei x=l mit dem Moment M_2 belastet. Mit dem **Prinzip von Hamilton** sollen die Feldgleichung sowie die dynamischen Randbedingungen bestimmt werden.

Gegeben:
$$\rho$$
, G , I_P , l , M_1 , M_2 , Θ_1 , Θ_2 ,

a) Geben Sie die kinetische Energie ${\cal T}$ und die potentielle Energie ${\cal U}$ des Systems an.

<u>Hinweis:</u> Für einen starren Körper mit der Winkelgeschwindigkeit ω und dem Massenträgheitsmoment Θ bezüglich der Drehachse ist die kinetische Energie $T=\frac{1}{2}\Theta\omega^2$.

$$T = \frac{1}{2} \int_0^l \rho I_P \dot{\vartheta}^2(x, t) \, \mathrm{d}x + \frac{1}{2} \theta_1 \dot{\vartheta}^2(0, t) + \frac{1}{2} \theta_2 \dot{\vartheta}^2(l, t)$$

$$1 \, \text{Punkte}$$

$$U = \frac{1}{2} \int_0^l G I_P \vartheta'^2(x, t) \, \mathrm{d}x$$

$$1 \, \text{Punkte}$$

$$1 \, \text{Punkte}$$

b) Formulieren Sie die virtuelle Arbeit δW der potentiallosen Kräfte und Momente.

$$\delta W = M_1 \delta \ \vartheta(0,t) - M_2 \delta \ \vartheta(l,t)$$
 1 Punkt

c) Existieren geometrische Randbedingungen? Wenn ja, geben Sie diese an.

Ergebnis:
nein

1 Punkt

Kontinuumsmechanik Klausur vom 28.07.2017

d) Bestimmen Sie mit dem **Prinzip von Hamilton** die Feldgleichung sowie die dynamische(n) Randbedingung(en).

Rechnung:

$$\delta \int_{t_0}^{t_1} (T - U) dt + \int_{t_0}^{t_1} \delta W dt = 0$$

$$\begin{split} \Rightarrow \int_{t_0}^{t_1} \left(\int_0^l \rho I_{\mathrm{P}} \dot{\vartheta}(x,t) \delta \dot{\vartheta}(x,t) - G I_{\mathrm{P}} \vartheta'(x,t) \delta \vartheta'(x,t) \mathrm{d}x \right) \mathrm{d}t \\ &+ \int_{t_0}^{t_1} \left(\theta_1 \dot{\vartheta}(0,t) \delta \dot{\vartheta}(0,t) + \theta_2 \dot{\vartheta}(0,t) \delta \dot{\vartheta}(l,t) \right) \mathrm{d}t \\ &+ \int_{t_0}^{t_1} \left(M_1 \delta \vartheta(0,t) - M_2 \delta \vartheta(l,t) \right) \mathrm{d}t = 0 \end{split}$$

Durch Partielle Integration

$$\begin{split} \int_{t_0}^{t_1} -GI_{\mathbf{P}}\vartheta'(x,t)\delta\vartheta(x,t)\mathrm{d}t \bigg]_0^l - \int_{t_0}^{t_1} & \left(\int_0^l \rho I_{\mathbf{P}}\ddot{\vartheta}(x,t)\delta\vartheta(x,t) - GI_{\mathbf{P}}\vartheta''(x,t)\delta\vartheta(x,t)\mathrm{d}x \right) \mathrm{d}t \\ - \int_{t_0}^{t_1} & \left(\theta_1 \ddot{\vartheta}(0,t)\delta\vartheta(0,t) + \theta_2 \ddot{\vartheta}(0,t)\delta\vartheta(l,t) \right) \mathrm{d}t \end{split} \\ + \int_{t_0}^{t_1} & \left(M_1 \delta\vartheta(0,t) - M_2 \delta\vartheta(l,t) \right) \mathrm{d}t = 0 \end{split}$$

$$\begin{split} \Rightarrow \int_{t_0}^{t_1} \left[-GI_{\rm P}\vartheta'(l,t) - \Theta_2\ddot{\vartheta}(0,t) - M_2 \right] \delta\vartheta(l,t) + \left[GI_{\rm P}\vartheta'(0,t) - \Theta_1\ddot{\vartheta}(0,t) + M_1 \right] \delta\vartheta(0,t) \mathrm{d}t \\ - \int_{t_0}^{t_1} \left(\int_0^l \left[\rho I_{\rm P}\ddot{\vartheta}(x,t) \delta\vartheta(x,t) - GI_{\rm P}\vartheta''(x,t) \delta\vartheta(x,t) \right] \, \mathrm{d}x \right) \mathrm{d}t = 0 \end{split}$$

Rechnung:	

Rechnu	ıng:
--------	------

Feldgleichung:

1 Punkt

$$\rho I_{\rm P} \ddot{\vartheta}(x,t) - G I_{\rm P} \vartheta^{\prime\prime}(x,t) = 0$$

dynamische Randbedingung(en):

$$GI_{\rm P}\vartheta'(0,t)-\Theta_1\ddot{\vartheta}(0,t)+M_1=0$$

$$-GI_{\rm P}\vartheta'(l,t)-\Theta_2\ddot{\vartheta}(l,t)-M_2=0$$

Aufgabe 4 [11 Punkte]

Gegeben ist der skizzierte, beidseitig fest eingespannte Euler-Bernoulli-Balken (Masse pro Länge μ , Biegesteifigkeit EI, Länge l)

Gegeben: μ, ΕΙ, l

a) Geben Sie die Feldgleichung und die Randbedingungen an.

b) Skizzieren Sie die zwei Eigenformen, die zu den beiden niedrigsten Eigenkreisfrequenzen gehören (ohne Rechnung).

c) Setzen Sie den Ansatz $w(x,t) = W(x)\sin(\omega t)$ in die Feldgleichungen, und bestimmen Sie die Differentialgleichung für W(x).

Rechnung:

$$\mu \ddot{w}(x,t) + EIw^{IV}(x,t) = 0$$
$$-\omega^2 \mu W(x) \sin(\omega t) + EIW^{IV}(x) \sin(\omega t) = 0$$
$$W^{IV}(x) - \omega^2 \frac{\mu}{EI} W(x) = 0$$

Differentialgleichung:

$$W^{IV}(x) - \omega^2 \frac{\mu}{EI} W(x) = 0$$

1 Punkt

d) Geben Sie die allgemeine Lösung für W(x) an. Verwenden Sie dabei die Abkürzung $\lambda^4=\frac{\mu\omega^2}{EI}$

$$W(x) = A\cos(\lambda x) + B\sin(\lambda x) + C\cosh(\lambda x) + D\sinh(\lambda x)$$

1 Punkt

e) Berechnen Sie die Charakteristische Gleichung für die Bestimmung von λ durch Anpassen der allgemeinen Lösung an die Randbedingungen.

Hinweise:

1)
$$1 = \sin^2(\alpha) + \cos^2(\alpha)$$
$$1 = \cosh^2(\alpha) - \sinh^2(\alpha)$$

2) Ein lineares Gleichungssystem der Form $\underline{A}\vec{r}=\vec{0}$ hat dann nichttriviale Lösungen, wenn die Determinante von \underline{A} Null ist.

Rechnung:

$$W(x) = A\cos(\lambda x) + B\sin(\lambda x) + C\cosh(\lambda x) + D\sinh(\lambda x)$$

Anpassen an die Randbedingungen:

$$w(0,t) = 0 \to W(0) = 0 \to A + C = 0 \to C = -A$$

 $w'^{(0,t)} = 0 \to W'(0) = 0 \to B + D = 0 \to D = -B$
 $w(l,t) = 0 \to W(l) = 0$
 $w'(l,t) = 0 \to W'(l) = 0$

Aus
$$W(l) = 0$$
 folgt

$$A\cos(\lambda l) + B\sin(\lambda l) - A\cosh(\lambda l) - B\sinh(\lambda l) = 0.$$

1 Punkt

Aus W'(l) = 0 folgt

$$-A\sin(\lambda l) + B\cos(\lambda l) - A\sinh(\lambda l) - B\cosh(\lambda l) = 0.$$

1 Punkt

In Matrixschreibweise $A\vec{r} = \vec{0}$

$$\begin{bmatrix} \cos(\lambda l) - \cosh(\lambda l) & \sin(\lambda l) - \sinh(\lambda l) \\ -\sin(\lambda l) - \sinh(\lambda l) & \cos(\lambda l) - \cosh(\lambda l) \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Bestimmung der Determinanten von A

$$\det(\underline{A}) = (\cos(\lambda l) - \cosh(\lambda l))(\cos(\lambda l) - \cosh(\lambda l)) - (-\sin(\lambda l) - \sinh(\lambda l))(\sin(\lambda l) - \sinh(\lambda l))$$

1 Punkt

$$\det(\underline{A}) = \cos^2(\lambda l) - 2\cos(\lambda l)\cosh(\lambda l) + \cosh^2(\lambda l) + \sin^2(\lambda l) - \sinh^2(\lambda l)$$

$$\det(\underline{A}) = -2\cos(\lambda l)\cosh(\lambda l) + 2$$

Charakteristische Gleichung:

$$-2\cos(\lambda l)\cosh(\lambda l) + 2 = 0$$