Simulación Multiagente para Mejorar la Movilidad Urbana

EQUIPO 5

A00572499-Santiago Gutierrez
A00832425 - Daniel Rubies Isla
A01252831 - Luis Carlos Rico Almada
A00837426 - Pedro Gabriel Sánchez Valdez

¿Por qué es importante abordar la movilidad urbana?

Aumento de la congestión vehicular.

Problemas de seguridad vial, especialmente en la interacción entre peatones y conductores.

Impactos ambientales graves, como el incremento en la contaminación del aire y el ruido. En México, el uso del automóvil se ha triplicado entre 1990 y 2010, generando un efecto negativo en el desarrollo económico, social y ambiental. Simular y analizar estos problemas en entornos urbanos puede ofrecer soluciones innovadoras y sostenibles.

Bases de la Simulación y la Movilidad Urbana

Permite modelar y analizar el comportamiento de múltiples actores , tal como peatones, vehículos y sistemas de transporte público para comprender , optimizar la dinámica del tráfico y la movilidad de las ciudades.

EVIDENCIA

Las Herramientas como SUMO y MATSim ya han demostrado cómo estas simulaciones pueden mejorar el diseño de ciudades.

Casos de éxito incluyen la gestión de tráfico en Singapur y los Juegos Olímpicos de Londres.

El uso de Unity como herramienta ofrece flexibilidad para simular comportamientos complejos en 3D.

Objetivos de la Investigación

Desarrollar una simulación en Unity que modele las interacciones entre semáforos, peatones y vehículos en un entorno urbano realista.

- Crear comportamientos realistas en peatones y conductores, considerando distracciones, cambios de dirección y cruces indebidos.
- Simular escenarios urbanos dinámicos, como fallas de semáforos o conductores que no respetan normas.
- Evaluar métricas de seguridad y eficiencia, como tiempos de cruce, tasa de incidentes y flujos vehiculares.

Descripción del Proyecto

Este proyecto simulará un entorno urbano donde semáforos, peatones y vehículos interactúan bajo diversas condiciones:

Peatones: Agentes con objetivos claros, capaces de tomar decisiones proactivas (ej., usar pasos peatonales) o reactivas (ej., evitar vehículos).

Conductores: Vehículos que siguen patrones de tráfico comunes, incluyendo distracciones o incumplimiento de normas.

Semáforo : Este agente cambiará de estado, que de acuerdo a su estado , los peatones o vehículos avanzarán o se detendrán .

Escenarios clave:

Cruces con y sin semáforos.

Conductores y peatones que no respetan pasos peatonales.

Áreas congestionadas sin infraestructura adecuada.

Diagrama de protocolos

Metodología- Cómo desarrollaremos la simulación

Diseño del entorno urbano en Unity: Calles, pasos peatonales, semáforos y obstáculos. Programación de agentes autónomos: Peatones y vehículos con comportamientos dinámicos y realistas.

Escenarios variables:

Semáforos funcionales y diferentes densidades de tráfico. Análisis de datos:

Registro de métricas como tiempos de cruce, incidentes y flujos vehiculares.

Métricas y Resultados Esperados-¿Qué mediremos?

Tasa de incidentes: Peatones atropellados o conflictos entre agentes.

Tiempos de espera y cruce: Medidos en pasos peatonales y cruces indebidos.

Eficiencia del tránsito: Flujos vehiculares bajo diferentes condiciones.

Impacto de medidas de seguridad: Comparación entre escenarios con y sin semáforos funcionales.

Plan de trabajo

Tarea	Responsable	Fecha de inicio	Fecha de fin	Esfuerzo	Impedimentos
Descripción del documento	Santiago Gutiérrez	11 Enero 2025	12 Enero 2025	40m	Ninguno
Investigación del documento	Santiago Gutiérrez	11 Enero 2025	12 Enero 2025	50m	Ninguno
Objetivos del documento	Santiago Gutiérrez	11 Enero 2025	12 Enero 2025	30m	Ninguno
Diagrama de clases - UML	Pedro Sánchez	13 Enero 2025	13 Enero 2025	45m	Ninguno
Diagrama de protocolos de interacción	Luis Rico y Daniel Rubies	13 Enero 2025	14 Enero 2025	1 hora	Ninguno
Creación de la PPT	Todos	11 Enero 2025	12 Enero 2025	40 m	Ninguno
Grabación de video	Todos	14 Enero 2025	14 Enero 2025	5 m	Terminar la PPT y documento

Tarea	Responsable	Esfuerzo (horas)	Fecha de inicio	Fecha de fin	Impedimentos
Diagramas de clase y protocolos de interacción finales.	Luis Carlos	3 horas	21 de Enero	30 de Enero	Revisión de diagramas
Conductores que respetan las normas de tránsito y dan prioridad a los peatones en los pasos peatonales.	Pedro	2 horas	23 de Enero	25 de Enero	Ninguno
Peatones que cruzan en áreas no reguladas, ignorando pasos peatonales o semáforos.	Daniel	4 horas	23 de Enero	25 de Enero	Ninguno
Áreas sin infraestructura adecuada para cruces seguros.	Santiago	6 horas	25 de Enero	27 de Enero	Ninguno
Peatones que toman decisiones proactivas al buscar cruces seguros.	Luis Rico	8 horas	25 de Enero	27 de Enero	Ninguno
Conductores que reaccionan de manera anticipada al detectar peatones en áreas críticas.	Pedro	6 horas	27 de Enero	29 de Enero	Ninguno
Uso de semáforos funcionales y su impacto en la reducción de incidentes.	Daniel	7 horas	27 de Enero	29 de Enero	Aplicación de agentes dentro de unity
Generar reportes que permitan visualizar tendencias y patrones en el comportamiento de peatones y conductores.	Daniel	5 horas	27 de Enero	29 de Enero	Generación y recolección de datos de unity.

