Monte-Carlo Methods in Derivative Finance

American Style Options

American/Bermudan Options

- American versus Bermudan options
- Examples:
 - American Call/Put
 - Bermudan Swaptions
 - Callable Range Accrual Swaps
- Valuation of Bermudan Option on Binomial Trees

Monte Carlo Simulation and American Options

- How to estimate the continuation value in each exercise point?
- Two main approaches:
 - The least squares approach
 - The exercise boundary parameterization approach

Put Option

- Bermudan put option on stock $payoff = max (K S_T, 0)$
- 8 simulation paths
- Initial stock price $S_0 = 1.00$
- Strike *K* = 1.1
- Maturity time T = 3

Least Square Monte-Carlo

- Determine Early exercise boundary by Polynomial Regression
- Proposed by Longstaff & Schwartz (2001)
- Widely used in Finance

Sampled Paths

Path	t=0	t=1	t=2	t=3
1	1.00	1.09	1.08	1.34
2	1.00	1.16	1.26	1.54
3	1.00	1.22	1.07	1.03
4	1.00	0.93	0.97	0.92
5	1.00	1.11	1.56	1.52
6	1.00	0.76	0.77	0.90
7	1.00	0.92	0.84	1.01
8	1.00	0.88	1.22	1.34

LSM: An Example Cont.

Path	t = 0	t = 1	t = 2	T = 3	Payoff T = 3
1	1.00	1.09	1.08	1.34	0.00
2	1.00	1.16	1.26	1.54	0.00
3	1.00	1.22	1.07	1.03	0.07
4	1.00	0.93	0.97	0.92	0.18
5	1.00	1.11	1.56	1.52	0.00
6	1.00	0.76	0.77	0.90	0.20
7	1.00	0.92	0.84	1.01	0.09
8	1.00	88.0	1.22	1.34	0.00

LSM: An Example Cont.

Path	Υ	Χ
1	0.00e ^{-r}	1.08
2	=	-
3	0.07e ^{-r}	1.07
4	0.18e ^{-r}	0.97
5	=	-
6	0.20e ^{-r}	0.77
7	0.09e ^{-r}	0.84
8	-	

Y: Payoff at time T = 3

discounted by r

X: Stock price at time t = 2

Regression:

$$E\{Y|X\} = c + \alpha X + \beta X^2$$

Recursion for t=1 and t=0

Exercise or Continue?

What Controls Performance

- Order and type of Basis functions Standard Polynomials in Regression (Laquerre, Chebyshev or Hermite orthonormal polynomials)
- Choice of explanatory variables (e.g. Stock price)

American Put

	$S_0 = 36$ $\sigma = 0.2$ $T = 1$	$S_0 = 36$ $\sigma = 0.2$ $T = 2$	$S_0 = 36$ $\sigma = 0.4$ $T = 1$	$S_o = 38$ $\sigma = 0.2$ $T = 1$
Closed Form European	3.844	3.763	6.711	2.852
Binomial Tree Approach	4.478	4.833	7.102	3.25
	difi	(standard	n price deviation) inomial tree appro	ach
$E(Y \mid S) = c + \alpha_1 S$	4.425	4.756	7.031	3.205
	(0.021)	(0.025)	(0.024)	(0.021)
	0.053	0.077	0.071	0.045
$E(Y \mid S) = c + \alpha_1 S + \alpha_2 S^2$	4.47	4.826	7.111	3.259
	(0.021)	(0.021)	(0.020)	(0.021)
	-0.008	-0.007	0.009	-0.009
$E(Y \mid S) = c + \alpha_1 S + \alpha_2 S^2 + \alpha_3 S^3$	4.478	4.837	7.126	3.265
	(0.021)	(0.02)	(0.020)	(0.01)
	0.000	0.004	0.024	0.015
$E(Y \mid S) = c + \alpha_1 L_0(S)$	4.445	4.775	7.076	3.224
	(0.021)	(0.029)	(0.019)	(0.014)
	0.033	0.058	0.026	0.026
$E(Y \mid S) = c + \alpha_1 L_0(S) + \alpha_2 L_1(S)$	4.467	4.821	7.108	3.251
	(0.024)	(0.025)	(0.021)	(0.014)
	0.011	0.012	-0.006	-0.001
$E(Y S) = c + \alpha_1 L_0(S) + \alpha_2 L_1(S) + \alpha_2 L_2(S)$	4.474	4.829	7.116	3.257
	(0.023)	(0.022)	(0.025)	(0.011)
	-0.004	-0.004	0.014	0.007

Robustness Bermudan Put

- Results LSM in good agreement with Binomial Tree values for different parameter settings
- Convergence already with two basis functions (Quadratic or first two Laquere polynomials)

Asian Call

- payoff (t) = $\max(0, A(t, \tau) K)$
- *Strike Price K* = 100
- initial value A is variable and τ =0.25 years
- 100 exercise points per year
- 10,000 simulation paths and 20 trails
- Two-dimensional Regression (S and A)
- Comparison with Finite-Difference Results from Longstaff & Schwartz (2001)

Robustness and Accuracy of Asian Call: Standard Polynomials in S and A

Basis-function	S=110	S=120	S=90
	A=100	A=110	A=110
$c + \alpha_1 S + \alpha_2 S^2$	13.24	22.53	3.37
$c + a_1 s + a_2 s$	2.48	2.92	0.77
$c + \alpha S + \alpha S^2 + \alpha S^3$	13.21	22.50	3.36
$c + \alpha_1 S + \alpha_2 S^2 + \alpha_3 S^3$	2.51	2.95	0.78
$c + \alpha_1 A + \alpha_2 A^2$	14.56	23.55	3.93
$\left(\begin{array}{c} c + \alpha_1 A + \alpha_2 A \end{array} \right)$	1.16	1.90	0.21
$c + \alpha_1 A + \alpha_2 A^2 + \alpha_3 A^3$	14.56	23.46	3.93
$\begin{bmatrix} c + a_1 A + a_2 A + a_3 A \end{bmatrix}$	1.16	1.99	0.21

Robustness and Accuracy of Asian Call: Standard Polynomials in S and A

Basis-function	S=110	S=12	S=90
Dasis fulletion	A=100	A=110	A=110
$c + \alpha_1 S + \alpha_2 S^2 + \alpha_3 A + \alpha_4 A^2$	15.57	25.35	4.13
	<i>0.15</i>	<i>0.10</i>	<i>0.01</i>
$c + \alpha_1 S + \alpha_2 S^2 + \alpha_3 A + \alpha_4 A^2 + \alpha_5 SA$	15.60	25.38	4.14
	<i>0.12</i>	<i>0.07</i>	<i>0.00</i>
$c + \alpha_1 S + \alpha_2 S^2 + \alpha_3 A + \alpha_4 A^2 + \alpha_5 SA + \alpha_6 S^2 A^2$	15.63	25.39	4.16
	<i>0.09</i>	<i>0.06</i>	<i>-0.02</i>
$c+\alpha_1S+\alpha_2S^2+\alpha_3A+\alpha_4A^2+\alpha_5SA+\alpha_6S^2A^2+\alpha_7S^3A^3$	15.63	25.39	4.16
	<i>0.09</i>	<i>0.06</i>	<i>-0.02</i>

Convergence Asian Options

- Similar convergence behaviour if Laguere polynomials are used
- Two explanatory variables are required!
- Method is robust, however, options with pathdependent characteristics require a higher number of basis functions

The Early Exercise Boundary Parametrization Approach

- We assume that the early exercise boundary can be parameterized in some way
- We carry out a first Monte Carlo simulation and work back from the end calculating the optimal parameter values
- We then discard the paths from the first Monte Carlo simulation and carry out a new Monte Carlo simulation using the early exercise boundary defined by the parameter values.

Sampled Paths

Path	t=0	t=1	t=2	t=3
1	1.00	1.09	1.08	1.34
2	1.00	1.16	1.26	1.54
3	1.00	1.22	1.07	1.03
4	1.00	0.93	0.97	0.92
5	1.00	1.11	1.56	1.52
6	1.00	0.76	0.77	0.90
7	1.00	0.92	0.84	1.01
8	1.00	0.88	1.22	1.34

Application to Example

- We parameterize the early exercise boundary by specifying a critical asset price, S^* , below which the option is exercised.
- At t=1 the optimal S^* for the eight paths is 0.88. At t=2 the optimal S^* is 0.84
- In practice we would use many more paths to calculate the S*

Lower Bound versus Upper Bound Estimates

• Exercise decision estimated by using both methods is suboptimal and therefore the estimated value is lower then the true value (lower bound estimate)

• Algorithm based on Duality principle can be used to estimate upper bounds (See section 8.7 of Glasserman's book: Monte Carlo Methods in Financial Engineering)

Monte-Carlo Methods in Derivative Finance

Estimation of Greeks

Greeks in Derivative Finance

- What are Greeks?
- Why are Greeks important in finance?
 - Valuation and Hedging
 - Quantification of Portfolio Risk Exposure
- Typically the following Greeks are of interest: Delta, Vega and Gamma

Euler Scheme: Bump and Revalue

- V(S) option price at time T
- $\delta = dV/dS$
- Use the Euler formula to approximate δ :

$$\delta = \frac{V(S + \varepsilon) - V(S)}{\varepsilon}$$

- We choose ε as small as possible but not too close to machine precision
- Then we run Monte Carlo at two points: $V(S+\varepsilon)$, V(S)

Results based on Random Seed

- r = 6%, $\sigma = 20\%$, S = 100, K = 99, T = 1
- Result is unstable
 - Increasing iterations does not improve accuracy
 - Variance increases for smaller ε
- How can we reduce variance?

Size	$\varepsilon = 0.01$	$\varepsilon = 0.02$	$\varepsilon = 0.5$
10^4	0.484%	0.005%	0.494%
10^5	0.008%	0.026%	0.599%
10^{6}	53.444%	8.537%	2.726%
10^{7}	26.532%	21.801%	0.488%

Controlling Variance

$$Var(\delta) = \frac{1}{\varepsilon^{2}} \Big[Var(V(S+\varepsilon)) + Var(V(S+\varepsilon)) - 2Cov(V(S+\varepsilon),V(S)) \Big]$$

 We can increase covariance by using the same random seed

Results based on Same Seed

- r = 6%, $\sigma = 20\%$, S = 100, K = 99, T = 1
- As expected a clear improvement of the results

Size	$\varepsilon = 0.01$	$\varepsilon = 0.02$	$\varepsilon = 0.5$
10^{4}	0.102%	0.087%	0.572%
10^{5}	0.121%	0.132%	0.745%
10^{6}	0.047%	0.061%	0.696%
10^{7}	0.003%	0.016%	0.653%

Stability Problems for Digital Options

If shift-size is **very small** and with **insufficient number of paths** the value corresponding to the bumped-scenario might change drastically due to one path crossing the discontinuous boundary.

Note that for this effect will be magnified in the estimate because we are dividing with the shift-size.

Results Digital Call

Results not stable and not nearly as good as with a European option

Size	$\varepsilon = 0.01$	$\varepsilon = 0.02$	$\varepsilon = 0.5$
10^{4}	3.49%	9.45%	6.08%
10^{5}	3.49%	0.90%	1.22%
10^{6}	5.30%	1.94%	5.18%
10^{7}	15.89%	15.28%	0.92%

Improving accuracy

• Central Difference is a higher order formula: $O(\varepsilon^2)$

$$\delta = \frac{V(S+\varepsilon)-2V(S)+V(S-\varepsilon)}{2\varepsilon}$$

• Better results (r = 6%, $\sigma = 20\%$, S = 100, K = 99, T = 1)

sample size	$\varepsilon = 0.01$	$\varepsilon = 0.02$	$\varepsilon = 0.5$
10^{4}	3.49%	35.32%	2.98%
10^{5}	9.45%	5.56%	1.55%
10^{6}	3.49%	3.17%	0.69%
10^{7}	7.76%	11.42%	0.79%

Pathwise method for Delta with zero interest-rates

$$\Delta = \frac{\partial E[g(S_T)]}{\partial S_0} = \frac{\partial}{\partial S_0} \int g(S_T) f(S_T) dS_T$$

$$\Delta = \int \frac{\partial g(S_T)}{\partial S_0} f(S_T) dS_T = E\left[\frac{\partial g(S_T)}{\partial S_0}\right]$$

$$\frac{\partial g(S_T)}{\partial S_0} = \frac{\partial g(S_T)}{\partial S_T} \frac{\partial S_T}{\partial S_0}$$

Minimal Condition for interchange: Payoff should be differentiable almost everywhere

- θ : current stock price
- S_T : stock price at time T
- $f(S_T)$: payoff at time T
- $g(S_T \theta)$: p.d.f. of S_T at stock price θ
- $V(\theta) = E[f(S_T)]$: expected payoff

$$\delta = e^{-rT} \frac{dV}{d\theta}$$

$$V(\theta) = \int f(S_T) g(S_T, \theta) dS_T$$

$$\frac{dV}{d\theta} \stackrel{?}{=} \int f(S_T) \frac{\partial g}{\partial \theta} dS_T$$

$$\Box \int f(S_T) \dot{g} dS_T$$

$$= \int f(S_T) \frac{\dot{g}}{g} g dS_T$$

$$= E \left[f \frac{\dot{g}}{g} \right]$$

Thus we've found an unbiased estimator for delta which is based on a much smoother function – the p.d.f. (or the likelihood) of a certain payoff

Delta is estimated by the following expression

$$e^{-rT}f(S_T)\frac{\dot{g}(S_T,\theta)}{g(S_T,\theta)}$$

Example: delta of a digital

$$\ln S_T \approx \Phi \left[\ln \theta + \left(\mu - \sigma^2 / 2 \right) T, \sigma \sqrt{T} \right]$$

$$g(x,\theta) = \frac{1}{x\sigma\sqrt{T}} \Phi(\zeta(x,\theta))$$

$$\zeta(x,\theta) = \frac{\log(x/\theta) - \left(r - \sigma^2 / 2 \right) T}{\sigma\sqrt{T}}$$

$$S_T = \theta e^{\left(e - \sigma^2 / 2 \right) T + \sigma\sqrt{T} Z}$$

$$e^{-rT} f(S_T) \frac{Z}{\sigma \theta \sqrt{T}} \xrightarrow{\text{Digital}} e^{-rT} I\{S_T > K\} \frac{Z}{\sigma \theta \sqrt{T}}$$

Likelihood method: Results

Good, stable results (r = 6%, $\sigma = 20\%$, S = 100, K = 99, T = 1)

sample size	absolute error	relative error
10^4	0.006115	0.907%
10^{5}	0.001838	0.273%
10^{6}	0.000027	0.004%
10^{7}	0.000068	0.010%

Table 7: Results for a European option

sample size	absolute error	relative error
10^4	0.000311	1.708%
10^{5}	0.000052	0.287%
10^{6}	0.000005	0.027%
10^{7}	0.000015	0.082%

Table 8: Results for a Digital option

Direct Smoothing Methods

Smooth the discontinuous payoff function (Use e.g. CDF of Normal Distribution as smoothing function

Bias should be minimized by suitable smoothing parameters