Marque a opção que apresenta uma ER que gere a linguagem aceita pelos AFNs M₁ e M₂ respectivamente:

1.1. $M_1 = (\{a, b, c\}, \{q_0, q_1, q_2, q_3\}, \delta, q_0, \{q_3\})$ (1 pt)

δ:	x	у
\mathbf{q}_0	{q ₁ }	$\{q_1\}$
qı	$\{q_0, q_2\}$	$\{q_0, q_2\}$
q ₂		

1.1- =

- a) () (xy)*(xy)*
- b) () (xy)*(x + y)*
- c) () $(x + y)^* (x + y)$
- d) () (x + y)*xy
- e) Nenhuma das respostas anteriores

1.2. $M_2 = (\{a, b, c\}, \{q_0, q_1, q_2, q_3\}, \delta, q_0, \{q_3\})$ (1 pt)

δ:	X	y	Z
q ₀			{q ₁ }
q_1	$\{q_1, q_2\}$	$\{q_1\}$	$\{q_1\}$
q_2	{q ₃ }		
q ₃	$\{q_3\}$	$\{q_3\}$	{q ₃ }

- a) () (x+y+z)xx
- b) () z(x+y+z) xx(x+y+z)
- c) $(x+y+z)^* xx (x+y+z)^*$
- d) () $z(xyz)^*(xx(xyz)^*)$
- e) () Nenhuma das respostas anteriores

33 XX 8

3××

- 2. Marque a opção que apresenta uma ER que gere a linguagem denotada pelas gramáticas G₁ e G₂ respectivamente:
 - 2.1. $G_1 = (\{S, X, Y\}, \{a, b, c\}, P, S)$ (1 pt) P: $S \rightarrow Xaa \mid Yba \mid ab$ $X \rightarrow Xa \mid Xb \mid Xc \mid \epsilon$ $Y \rightarrow Yba \mid \epsilon$

- a) () (abc)* aa + ba (ab | ba)*
- b) () (abc)* aa (ab | ba)*
- c) () $(b+c+a)^*$ aa (ab | ba)
- d) () (b+c+a)* | aa + ab + ba (ba)*
- e) Nenhuma das respostas anteriores

- d) () a(ba)*
 e) () Nenhuma das respostas anteriores
- 3. Fazendo a aplicação estrita do algoritmo ER → AFε, quantos estados possuirá o autômato correspondente a ER: a*(bb + a)? (2 pts)

 - e) () Nenhuma das respostas anteriores.

	uj		$Q \times (\Sigma \cup \{\epsilon\}) \rightarrow Q$
	b)	($Q \times (\Sigma \cup \{\epsilon\}) \to 2^{Q}$
	c)		$+ (2^{Q} \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^{Q})$
	d)	($ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	e)		Nenhuma das respostas anteriores.
5	. Co	m rel	ação a teoria das linguagens formais, marque a opção incorreta. (1pt):
	a)	(GR e AFD são formalismos equivalentes.
	b)	(GR é um formalismo gerador de linguagens regulares. ×
	c)	() GR e AFε são formalismos equivalentes. ×
	d)		O AFN permite a transição entre estados sem leitura de símbolos da fita.
	e)	() Linguagem formal é definida como um conjunto de palavras sobre um 🔀
		alfal	
	a at G ₃	firmation $= (\underbrace{\{}_{C} \land CA) \land CA \land CA \land CA \land CA \land CA \land CA \land C$	b ε
	a) ()	Estão entre as transições do AFE: $\delta(S, c) = q_f e \delta(B, c) = q_f$
	b) ()	Estão entre as transições do AFE. $\delta(A, b)=B e \delta(B, a)=q_f$
•	c) 🚛		O conjunto de estados do AFε é: Q={S, A, B}
(d) (O conjunto de estados do AFε é: Q={a, b, c}
	e) ()	O AFε possui dois estados finais
V)c	4		
N (CO	1,4,	3	(5,A,B}, 8,5,EA,B),
	2		Q 8 90 -15 - 15 B - 15 B

4. Qual das opções denota a função programa (δ) do autômato do tipo AFε? (2 pts)

Algoritmo	GR-	+/	AFε

Seja $G = (V, T, P, S)$ uma GLUD	. Então ο AFε M =	= $(\sum, Q, \delta, q_0, F)$ a seguir é tal qu	e
ACEITA(M) = GERA(G):	V	×	
	15 - 007	16 11200	1

$\Sigma = \mathbf{T}$	G3,(E5,A,B), E0,1,C3,P,S)
$Q = V_1 \cup \{q_f\}$	7 - 8-5-
$F = \{q_f\}$	11-11-11-1265 AB3 E. E. B.
$q_0 = S$	N=((0,),(),(5,A,B), 8,5, 4)

Tipo de produção	Transição gerada
$A \rightarrow \varepsilon$	$\delta(A, \varepsilon) = q_f$
$\overrightarrow{A} \rightarrow a$	$\delta(A, a) = q_f$
$A \rightarrow B$	$\delta(A, \varepsilon) = B$
$\overrightarrow{A \rightarrow aB}$	$\delta(A, a) = B$

