R

بسم الله الرحمن الرحيم

جلسه بیست و یکم – حافظهی جانبی (۱)

جلسهی گذشته

Device Terminology

- Device (mechanical hardware)
- Device controller (electrical hardware)
- ■Device driver (software)

Devices & Controllers

■Components of a simple personal computer

پرسش؟ این دیوایس کنترلر دقیقا کجاست؟

- مثلا الآن یه مانیتور وصل کنیم، دیوایس کنترلر توی مانیتور هست؟ یا قبلا توی مادربردمون قرار گرفته؟ موس و پرینتر و ... چطور؟
 - جواب: هر کدام یه جوری هستند!

Location Of Device Controller

Device	Location of Device Controller
Mouse/Keyboard	On the motherboard (USB or PS/2 controller)
Speakers	Sound card (or integrated motherboard audio controller)
Hard Disk (HDD/SSD)	Inside the drive (HDD controller or SSD controller)
Printer	Inside the printer (Printer controller)
Network Card (NIC)	On the network card (Ethernet or Wi-Fi adapter controller)
USB Devices	On the motherboard (USB host controller) and inside each USB device

Device Controllers

- ■The Device vs. its Controller
- ■Some duties of a device controller:
 - Interface between CPU and the Device
 - Start/Stop device activity
 - Convert serial bit stream to a block of bytes
 - Deal with error detection/correction
 - Move data to/from main memory
- ■Some controllers may handle several (similar) devices

I/O Ports

- Each port has a separate number.
- CPU has special I/O instructions
 - in r4,3 - out 3,r4

 The I/O Port Number
- Port numbers form an "address space"... separate from main memory
- Contrast with
 - load r4,3
 - store 3,r4

Memory-Mapped I/O

- One address space for
 - main memory
 - I/O devices
- CPU has no special instructions
 - load r4,addr
 - store addr,r4
- I/O devices are "mapped" into
 - very high addresses

I/O Device Speed

Figure 12.11 Common PC and data-center I/O device and interface speeds.

Programmed I/O

Steps in printing a string

Interrupt-Driven I/O

■Getting the I/O started:

```
CopyFromUser(virtAddr, kernelBuffer,
byteCount)
EnableInterrupts()
while *serialStatusReg != READY
endWhile
*serialDataReg = kernelBuffer[0]
Sleep ()
```

Interrupt-Driven I/O

■The Interrupt Handler:

```
if i == byteCount
  Wake up the user process
else
  *serialDataReg = kernelBuffer[i]
  i = i + 1
endIf
Return from interrupt
```

Direct Memory Access (DMA)

- Data transferred from device straight to/from memory
- CPU not involved
- The DMA controller:
 - Does the work of moving the data
 - CPU sets up the DMA controller ("programs it")
 - CPU continues
 - The DMA controller moves the bytes

Direct Memory Access (DMA)

I/O Software Layers

User-level I/O software

Device-independent operating system software

Device drivers

Interrupt handlers

Hardware

Programmable Timer

- One-shot mode:
 - Counter initialized then decremented until zero
 - At zero a single interrupt occurs
- Square wave mode:
 - At zero the counter is reinitialized with the same value
 - Periodic interrupts (called "clock ticks") occur

Goals of Timer Software

- Maintain time of day
 - - Must update the time-of-day every tick
- Prevent processes from running too long
- Account for CPU usage
 - Separate timer for every process
 - Charge each tick to the current process
- Handling the "Alarm" syscall
 - User programs ask to be sent a signal at a given time
- Providing watchdog timers for the OS itself
 - - When to stop the disk, switch to low power mode, etc
- Doing profiling, monitoring, and statistics gathering

Software Timers

- Alarms set for 4203, 4207, 4213, 4215 and 4216.
- Each entry tells how many ticks past the previous entry.
- On each tick, decrement the "NextSignal".
- When it gets to 0, then signal the process.

جلسه جدید

Overview of Mass Storage Structure

- Bulk of secondary storage for modern computers is hard disk drives
 (HDDs) and nonvolatile memory (NVM) devices
- HDDs spin platters of magnetically-coated material under moving readwrite heads
 - Drives rotate at 60 to 250 times per second
 - **Transfer rate** is rate at which data flow between drive and computer
 - Positioning time (random-access time) is time to move disk arm to desired cylinder (seek time) and time for desired sector to rotate under the disk head (rotational latency)
 - Head crash results from disk head making contact with the disk surface -- That's bad
- Disks can be removable

Disk Geometry

■ Disk head, surfaces, tracks, sectors ...

Disk Geometry

Example Disk Characteristics

Parameter	IBM 360-KB floppy disk	WD 18300 hard disk
Number of cylinders	40	10601
Tracks per cylinder	2	12
Sectors per track	9	281 (avg)
Sectors per disk	720	35742000
Bytes per sector	512	512
Disk capacity	360 KB	18.3 GB
Seek time (adjacent cylinders)	6 msec	0.8 msec
Seek time (average case)	77 msec	6.9 msec
Rotation time	200 msec	8.33 msec
Motor stop/start time	250 msec	20 sec
Time to transfer 1 sector	22 msec	17 μsec

Disk Surface Geometry

Constant rotation speed

· Want constant bit density

Inner tracks:

• Fewer sectors per track

Outer tracks:

More sectors per track

Virtual Geometry

- Physical Geometry
 - The actual layout of sectors on the disk may be complicated
 - The disk controller does the translation
 - The CPU sees a "virtual geometry".

Virtual Geometry

Sector Formatting

A disk sector

Preamble	Data	ECC	
----------	------	-----	--

- Typically
 - 512 bytes / sector by 2010, (now about 4KB)
 - *ECC* = 16 bytes

Cylinder Skew

Sector Interleaving

No Interleaving

Single Interleaving

Double Interleaving

Disk Scheduling Algorithms

- Time required to read or write a disk block determined by 3 factors
 - Seek time
 - Rotational delay
 - Actual transfer time
- Seek time dominates
 - Schedule disk heads to minimize it!

Disk Scheduling Algorithms

- First-come first serve
- Shortest seek time first
- Scan → back and forth to ends of disk
- C-Scan → only one direction
- Look → back and forth to last request
- C-Look → only one direction

Shortest Seek First (SSF)

Shortest Seek First (SSF)

- **■**Cuts arm motion in half
- ■Fatal problem:
 - -Starvation is possible!

The Elevator Algorithm

- ■Use one bit to track which direction the arm is moving
 - Up
 - Down
- ■Keep moving in that direction
- ■Service the next pending request in that direction
- ■When there are no more requests in the current direction, reverse direction

The Elevator Algorithm (SCAN)

Other Algorithms

- First-come first serve
- Shortest seek time first
- Scan → back and forth to ends of disk
- C-Scan → only one direction
- Look → back and forth to last request
- C-Look → only one direction