Statistics with Spa (R) ows

Lecture 11-c

Julia Schroeder

Julia.schroeder@imperial.ac.uk

Outline

- Linear models going big
 - Multiple continuous predictors
 - Interactions between continuous predictors
 - Interactions between categorical predictors
 - •

Multiple continuous predictors

```
> summary(lm(Y0~Cont1+Cont2,data=a))
Call:
lm(formula = Y0 \sim Cont1 + Cont2, data = a)
Residuals:
              10 Median
    Min
                               30
                                      Max
-1.22886 -0.29364 0.00364 0.32803 1.25419
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.89714 0.28444 6.67 1.58e-09 ***
           -4.05761 0.04663 -87.01 < 2e-16 ***
Cont1
                      0.05129 73.97 < 2e-16 ***
Cont2 3.79363
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

Residual standard error: 0.4757 on 97 degrees of freedom Multiple R-squared: 0.9922, Adjusted R-squared: 0.992

F-statistic: 6144 on 2 and 97 DF, p-value: < 2.2e-16

Main effects cannot be interpreted in isolation

IF Cont2 is being held constant, then, with increasing Cont1, Y increases

If Cont1 is being held constant, then, with increasing Cont2, Y decreases

- -> cannot visualize well
- helpful to account for environmental variables

Interactions between continuous predictors

Really hard (if not impossible) to properly interpret

Only do this if you know what it means

Interactions between categorical predictors

- Cat1: male, female
- Cat2: Orange, Green, Purple

• > Possible combinations:

Male Orange, Male Green, Male Purple

• Female Orange, Female Green, Female Purple

Interactions between categorical

> summary(lm(Y3~Cat1*Cat2,data=a))

Call:

```
lm(formula = Y3 \sim Cat1 * Cat2, data = a)
                                                                            Female Green (Reference): b<sub>o</sub>
    Residuals:
        Min
                 10 Median
                                        Max
    -1.2190 -0.2519 0.0102 0.3457 1.2261
                                                                            Difference between reference and
    Coefficients:
                                                                            Male Green: b_0 + b_1
                        Estimate Std. Error t value Pr(>|t|)
b0 (Intercept)
                         -5.7993
                                    0.1162 -49.890 < 2e-16 ***
                        16.4021 0.1567 104.646 < 2e-16 ***
b1 Cat1male
                                                                            Female Orange: b<sub>0</sub> + b<sub>2</sub>
   Cat20ranae
                  14.4821 0.1552 93.313 < 2e-16 ***
                       -6.4878 0.2096 -30.960 < 2e-16 ***
b3 Cat2Purple
b4 Cat1male:Cat2Orange 4.4325
                                    0.2266 19.559 < 2e-16 ***
                                                                            Female Purple: b<sub>0</sub> + b<sub>2</sub>
                                     0.2690 -7.161 1.76e-10 ***
   Cat1male:Cat2Purple -1.9261
                                                                            Male Orange: b_0 + b_4
    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
    Residual standard error: 0.4932 on 94 degrees of freedom
                                                                            Male Purple: b_0 + b_5
    Multiple R-squared: 0.9984, Adjusted R-squared: 0.9983
    F-statistic: 1.168e+04 on 5 and 94 DF, p-value: < 2.2e-16
```

Interactions between categorical predictors * m1<-lm(Y3~Cat1*Cat2,data=a) > an<-aov(m1) * an<-aov(m1)

- Does not test between all categories
- → Tukey test

```
> an<-aov(m1)
> TK<-TukeyHSD(x=an)
> TK
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = m1)
$Cat1
                diff
                                   upr p adj
male-female 13.91706 13.72118 14.11294
$Cat2
                    diff
                                lwr
                                           upr p adj
Orange-Green
               15.845950 15.579905 16.111995
Purple-Green
               -7.498879 -7.810613 -7.187145
Purple-Orange -23.344830 -23.659461 -23.030198
$`Cat1:Cat2`
                                  diff
                                              lwr
                                                         upr p adj
                             16.402149
male: Green-female: Green
                                       15.946138
                                                  16.858159
female:Orange-female:Green
                             14.482141 14.030614 14.933669
male:Orange-female:Green
                             35.316741 34.815130 35.818352
female:Purple-female:Green
                             -6.487805 -7.097479
                                                  -5.878131
                                       7.476961
                                                   8.499540
male:Purple-female:Green
                              7.988251
female:Orange-male:Green
                             -1.920007 -2.347889
                                                  -1.492126
male:Orange-male:Green
                             18.914592 18.434156 19.395029
female:Purple-male:Green
                            -22.889954 -23.482328 -22.297579
male:Purple-male:Green
                             -8.413898 -8.904431 -7.923365
male:Orange-female:Orange
                             20.834600 20.358416 21.310783
female:Purple-female:Orange -20.969946 -21.558877 -20.381016
male:Purple-female:Orange
                             -6.493891 -6.980259
                                                  -6.007522
female:Purple-male:Orange
                            -41.804546 -42.432699 -41.176393
                            -27.328490 -27.861680 -26.795301
male:Purple-male:Orange
male:Purple-female:Purple
                             14.476056 13.840147 15.111964
```

What to use when

Depends on your question

Do you want to:

- predict
- explain
- explore
- account for variables

- ...

Take home

- When running models, always be aware what is categorical and what is continuous, because the the interpretation differs
- Know your data structure!
- Do not overfit less complex models are better