14.3 RIP

The Routing Information Protocol (RIP) is an intradomain routing protocol used inside an autonomous system. It is a very simple protocol based on distance vector routing.

The topics discussed in this section include:

RIP Message Format
Requests and Responses
Timers in RIP
RIP Version 2
Encapsulation

RIP

- □ RIP: Routing Information Protocol
 - Based on distance vector routing
- Design considerations
 - In a AS, RIP deals with routers and networks (links)
 - The destination in a routing table is a network
 - □ The first column defines a *network address*
 - The metric used in RIP is *hop count*
 - Infinity is defined as 16
 - □ Any route in an AS cannot have more than 15 hops

Figure 14.8: Example of a Domain Using RIP

RIP Message Format

- □ Command: 8-bit
 - The type of message: request (1) or response (2)
- □ Version: 8-bit
 - Define the RIP version
- □ Family: 16-bit
 - Define the family of the protocol used
 - TCP/IP: value is 2
- □ Network Address: 14 bytes
 - Defines the address of the destination network
 - 14 bytes for this field to be applicable to any protocol
 - However, IP currently uses only 4 bytes, the rest are all 0s
- □ Distance: 32-bit
 - The hop count from the advertising router to the destination network

Fi 12

RIP Message Format

	Command	Version	Reserved		
Repeated	Family		All 0s		
	Network address				
	All 0s				
	All 0s				
	Distance				

Requests and Response

- □ RIP uses two type of messages
 - Request and response

- □ Request
 - Sent by a router that has just come up or has some time-out entries
 - Can ask specific entries or all entries

Request Messages

	Com: 1	Version	Reserved
ted	Family		All 0s
	Network address		
Repeated	All 0s		
Re	All 0s		
	All 0s		

Con	n: 1	Version	Reserved
Family		nily	All 0s
All 0s			
	All 0s		
All 0s			
	All 0s		

b. Request for all

Requests and Response (Cont.)

- □ Response: solicited or unsolicited
 - A solicited response: sent only in answer to a request
 - Contain information about the destination specified in the corresponding request
 - An unsolicited response: sent periodically
 - □ Every 30s
 - Contains information about the entire routing table
 - □ Also called *update packet*

Example 1

- □ Following Figure shows the update message sent from router R1 to router R2 in Figure 14.8.
 - The message is sent out of interface 130.10.0.2
- □ The message is prepared with the combination of split horizon and poison reverse strategy in mind.
 - Router R1 has obtained information about networks 195.2.4.0, 195.2.5.0, and 195.2.6.0 from router R2.
 - When R1 sends an update message to R2,
 - Replace the actual value of the hop counts for these three networks with 16 (infinity) to prevent any confusion for R2.
- □ The figure also shows the table extracted from the message.
 - Router R2 uses the source address of the IP datagram carrying the RIP message from R1 (130.10.02) as the next hop address.

Figure 14.11 Solution to Example 1

Timers in RIP

- □ RIP uses three timers
 - Periodic timer
 - Expiration timer
 - Garbage collection timer

RIP Timers

Periodic Timer

- □ Periodic timer
 - Control the advertising of regular update message
 - Although protocol specifies 30 s, the working model uses a random number between 25 and 35 s
 - □ Prevent routers update simultaneously

Expiration Timer

- □ Govern the validity of a route
- □ Set to 180 s for a route when a router receives update information for a route
 - If a new update for the route is received, the timer is reset
 - In normal operation, this occurs every 30 s
- □ If timer goes off, the route is considered expired
 - The hop count of the route is set to 16, which means destination is unreachable

Garbage Collection Timer

- □ When a route becomes invalid, the router does not immediately purge that route from its table
- □ It continues advertise the route with a metric value of 16
- □ A garbage collection timer is set to 120 s for that route
- □ When the count reaches zero, the route is purged from the table
- □ Allow neighbors to become aware of the invalidity of a route prior to purging

Example 2

- □ A routing table has 20 entries.
- □ It does not receive information about five routes for 200 seconds.
- □ How many timers are running at this time?

Solution

- □ The timers are listed below:
 - Periodic timer: 1
 - Expiration timer: 20 5 = 15
 - Garbage collection timer: 5

RIP Version 2

□ Does not augment the length of the message of each entry

 \square Only replace those fields in version 1 that were filled with θs with some new fields

RIP Version 2

- □ New fields
 - Routing Tag: carries information such as the autonomous system number
 - □ Enable RIP to receive information from an exterior routing table
 - **Subnet mask**: carries the subnet mask (or prefix)
 - □ RIP2 support classless addressing and CIDR
 - Next-hop address: show the address of the next hop

RIP-v2 Format

	,	Command	Version	Reserved		
Repeated		Fan	nily	Route tag		
		Network address				
		Subnet mask				
		Next-hop address				
		Distance				

Classless Addressing

- □ The most important difference between the two versions
 - classful v.s. classless addressing
- □ RIPv1 uses classful addressing
 - The only entry in the message format is the network address (with a default mask)
- □ RIPv2 support classless addressing
 - Adds one filed for the subnet mask

Authentication

- Protect the message against unauthorized advertisement
- ☐ The first entry of the message is set aside for authentication information
 - Family field = FFFF₁₆
 - □ Not used for routing information but for authentication
 - Authentication type
 - □ Define the method used for authentication
 - Authentication data
 - □ Contain the actual authentication data

Authentication

Command	Version	Reserved
FF	FF	Authentication type
Authentication data 16 bytes		

Multicasting

- □ Version 1 of RIP uses broadcasting to send RIP message to every neighbor
 - All the routers and the hosts receive the packets

- □ RIP version 2
 - Uses the multicast address 224.0.0.9 to multicast RIP message only to RIP routers in the network

Encapsulation

□ RIP message are encapsulated in UDP user datagram

□ The well-known port assigned to RIP in UDP is port 520