

Modelagem, Extração e Manipulação de Dados

BLOCO: B.I. E ANÁLISE DE DADOS

PROF. RODRIGO EIRAS, M.SC.

[ETAPA 7] AULAS 1 E 2 - EXTRAIR DADOS DE SISTEMAS DE INFORMAÇÃO UTILIZANDO SQL - PARTE 1

Na última aula...

- TP-3
- Dados contínuos e discretos
- Análise de dados
 - Descritiva
 - Diagnóstica
 - Preditiva
 - Prescritiva

Agenda

- Linguagem SQL
 - Seleção
 - Projeção
 - Produto Cartesiano
 - União
 - Diferença entre conjuntos

SQL

Linguagem SQL

Linguagem para:

- Definição de dados: criação das estruturas
 - Data Definition Language (DDL)
- Manipulação de dados: atualização e consultas
 - Data Manipulation Language (DML)

Histórico

Linguagem SQUEL desenvolvida pela IBM para um banco de dados experimental R

Baseada no padrão ANSI e ISO:

- SQL-86
- SQL-89
- SQL-92
- SQL:1999
- SQL:2003

A maioria dos SGBD comerciais suportam o SQL-92, e algumas das caracteristicas das últimas versões

Mais SQL

SQL é considerada a razão principal para o sucesso dos bancos de dados relacionais comerciais

- Tornou-se a linguagem padrão para bases relacionais
- Funciona entre diferentes produtos
- Embedded SQL: Java, C/C++, Cobol...
- Fácil uso para o usuário

SQL como Linguagem de Definição de Dados

Permite especificar:

O esquema de cada relação

O domínio dos valores associados a cada atributo

Restrições de integridade

O conjunto de índices

Visões

Permissão de acesso às relações

DDL

```
mirror object to mirror
mirror_mod.mirror_object
peration == "MIRROR_X":
"Irror_mod.use_x = True"
"Irror_mod.use_y = False
lrror_mod.use_z = False
 _operation == "MIRROR_Y"
__mod.use_x = False
lrror_mod.use_y = True
lrror_mod.use_z = False
 operation == "MIRROR_Z";
 lrror_mod.use_x = False
 lrror_mod.use_y = False
 lrror_mod.use_z = True
 melection at the end -add
   ob.select= 1
  er ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modified
   irror ob.select = 0
 bpy.context.selected_obje
  Mata.objects[one.name].se
 int("please select exactle
  OPERATOR CLASSES ----
     wirror to the selecter
   ject.mirror_mirror_x"
 ext.active_object is not
```

Criando uma base de dados

Criação de um BD

- SQL padrão não oferece tal comando
 - BDs são criados via ferramentas do SGBD
- Alguns SGBDs (SQL Server, DB2, MySQL) oferecem este comando
 - create database nome_BD
 - drop database nome_BD

Comandos para definição de esquemas

- create table
 - o define a estrutura da tabela, suas restrições de integridade e cria uma tabela vazia
- alter table
 - modifica a definição de uma tabela (I / E / A atributos; I / E RIs)
 - RIs básicas:
 - atributos chave não podem ser removidos de uma tabela
 - atributos NOT NULL não podem ser inseridos em uma tabela
- o drop table
 - remove uma tabela com todas as suas tuplas

Criando Esquemas em SQL

Criação de Tabelas

CREATE TABLE

Colunas são especificadas primeiro, sob a forma:

Depois Chaves, integridade referencial e restrições de integridade

```
CREATE TABLE <nome_da_tabela>

(C<sub>1</sub> D<sub>1</sub>, C<sub>2</sub> D<sub>2</sub>, ..., C<sub>n</sub> D<sub>n</sub>,
...

PRIMARY KEY <lista_de_Colunas>,

FOREIGN KEY <nome_da_coluna> REFERENCES
<nome_tab_ref>(<nome_da_coluna_ref>));
```

- cada *C_i* é uma coluna no esquema da tabela
- D_i é o tipo de dado no domínio da coluna C_i

Criando Esquemas em SQL

```
CREATE TABLE Ambulatorios (
                                 int,
            nroa
             andar
                                numeric(3) NOT
 NULL,
             capacidade
                                smallint,
             PRIMARY KEY(nroa)
CREATE TABLE Medicos (
     codm
                         int,
     nome
                         varchar(40) NOT NULL,
     idade
                       smallint NOT NULL,
   especialidade
                    char(20),
   CPF
                    numeric(11) UNIQUE,
   cidade
                    varchar(30),
   nroa
                    int,
   PRIMARY KEY (codm),
   FOREIGN KEY (nroa) REFERENCES Ambulatorios
```

Create Table

Exemplo:

Codigo	Descricao	tipo

create table produto

(codigo integer **not null,** descricao varchar(30), tipo varchar (20)

PRIMARY KEY codigo)

Alterando Tabelas

```
ALTER TABLE nome_tabela

ADD [COLUMN] nome_atributo_1 tipo_1 [{RIs}]

[{, nome_atributo_n tipo_n [{RIs}]}]

[MODIFY [COLUMN] nome_atributo_1 tipo_1 [{RIs}]

[{, nome_atributo_n tipo_n [{RIs}]}]

DROP COLUMN nome_atributo_1

[{, nome_atributo_n }]

ADD CONSTRAINT nome_RI_1 def_RI_1

[{, nome_RI_n def_RI_n}]

DROP CONSTRAINT nome_RI_1

[{, nome_RI_n}]

[{, nome_RI_n}]

[{, nome_RI_n}]
```

Domínios

Restrições

NOT NULL

• Restrição aplicada em colunas cujos valores não podem ser nulos

Valor *Default*

- Usado para inicializar o valor de uma coluna
- DEFAULT <valor> logo após a restrição: .

create table produto

(codigo integer not null,
descricao varchar(30),
tipo varchar (20)
PRIMARY KEY codigo)

Tipos de Domínios em SQL

```
char(n). Character de tamanho n definido pelo usuário
varchar(n).
int
Smallint
numeric(p,d)
real, double precision
float(n)
```


Resumindo então!

- A linguagem SQL, Structured Query Language, é a linguagem utilizada para falar com os Banco de Dados modernos.
- SQL não é uma linguagem de programação.
- É uma linguagem que é usada exclusivamente para interagir com o Banco de Dados como por exemplo: criar tabelas, manipular os dados das tabelas e principalmente, consultar os dados.

SQL e ferramentas de B.I.

- Todas as ferramentas de manipulação e visualização de dados, como o Power BI, nada mais são que tradutores das funcionalidades do SQL.
- As ferramentas capturam as ações que o usuário quer realizar na parte gráfica e converte os comandos para o SQL interagir com o Banco de Dados.

Quadro Resumo de Operações/Operadores em Álgebra Relacional:

OPERAÇÃO	SÍMBOLO	SINTAXE
Projeção	π ("pi")	π sta de campos> (Tabela)
Seleção/ Restrição	("sigma")	σ <condição de="" seleção=""> (Tabela)</condição>
União	U	(Tabela 1) U (Tabela 2)
Interseção		(Tabela 1) ∩ (Tabela 2)
Diferença	-	(Tabela 1) – (Tabela 2)
Produto Cartesiano	X	(Tabela 1) X (Tabela 2)
Junção	X	(Tabela 1) X <condição de="" junção=""> (Tabela 2)</condição>
Divisão	÷	(Tabela 1) ÷ (Tabela 2)
Renomeação	("rho")	ρ Nome(Tabela)
Atribuição	←	Variável ← Tabela

SQL e ferramentas de B.I.

- Muitas das características do SQL foram inspiradas na Álgebra Relacional.
 - A Álgebra Relacional é uma forma de cálculo sobre conjuntos ou relações.
- Seguem algumas das operações fundamentais em Álgebra Relacional. Vamos analisar algumas delas e em detalhe ver como traduzi-las para SQL:
 - Seleção;
 - Projeção;
 - Produto cartesiano;
 - União;
 - Diferença entre conjuntos.

Seleções

- A operação Seleção seleciona as linhas de uma tabela de acordo com as condições estabelecidas.
- O comando em SQL é o SELECT.
- Veja um exemplo de Seleção na visão de negócio dimensional Vendas na imagem.
- No exemplo, são selecionadas as medidas "valores de vendas" e "quantidades" vendidas da "Fato Vendas" do mês de Fevereiro.

SQL - Seleção

SELECT Fato_Vendas.Valor_Vendas,

Fato_Vendas.Quantidade,

DM_Localidade.Estado,

DM_Tempo.Ano

FROM Fato_Vendas, DM_Localidade, DM_Tempo

WHERE Fato_Vendas.Pk_Localidade = DM_Localidade.PK_Localidade

AND Fato_Vendas.Pk_Tempo = DM_Tempo.Pk_Tempo

AND DM_Tempo.Mês = "Fevereiro";

DM_Localidade		
Pk_Localidade		
Pais	Fato_Vendas_2017	
Estado	Pk_Localidade	
Cidade	Pk_Tempo	
	Valor_Vendas	
	Quantidade	

DM_Tempo	
Ano	
Mês	
Dia	

Seleções

Projeções

- A operação Projeção pode ser entendida como uma operação que filtra as colunas de uma tabela.
- É Importante lembrar que a linguagem SQL realiza a Projeção com redundância.
- Para que a redundância seja removida deve ser usada a cláusula DISTINCT no comando SELECT.
- Veja na imagem um exemplo de Projeção com a dimensão Localidade.

SELECT DM_Localidade.Pais,

DM_Localidade.Estado

FROM DM_Localidade

DM_Localidade

Pais

Estado

Cidade

Projeções

Consultas no Power BI

- De acordo com o site da Microsoft, segue um resumo do Editor de Consultas do Power BI, onde as operações que já vimos e as que veremos podem ser executadas de forma gráfica.
- No Power BI, para acessar o Editor de Consultas, selecione Editar Consultas na guia Página Inicial.

Consultas no Power

 Sem conexões de dados, o Editor de Consultas é exibido como um painel em branco, pronto para receber dados.

Consultas no Power

- Quando uma consulta/fonte de dados é carregada, a exibição do Editor de Consultas torna-se mais interessante.
- Eis como o Editor de Consultas aparece após o estabelecimento de uma conexão de dados:
 - Na faixa de opções, muitos botões agora estão ativos para interagir com os dados na consulta.
 - 2. No painel esquerdo, as consultas são listadas e ficam disponíveis para seleção, visualização e formatação.
 - 3. No painel central, dados da consulta selecionada são exibidos e estarão disponíveis para formatação.
 - 4. A janela Configurações de Consulta é exibida, listando as propriedades da consulta e as etapas aplicadas.

SELECT Fato_Vendas.Valor_Vendas, Fato_Vendas.Quantidade, Fato_Vendas.Pk_Localidade, Fato_Vendas.Pk_Tempo

FROM Fato_Vendas_2017

UNION

SELECT Fato_Vendas.Valor_Vendas, Fato_Vendas.Quantidade, Fato_Vendas.Pk_Localidade, Fato_Vendas.Pk_Tempo

FROM Fato Vendas 2016:

Uniões

- A operação UNION tem como resultado uma tabela contendo todas as linhas das duas ou mais tabelas envolvidas na união.
- É necessário que as duas tabelas tenham as mesmas colunas.
- Na imagem abaixo tem um exemplo da operação União unindo duas Fatos distintas.
- Como resultado teremos uma consulta com a união dos registros dos dois anos.

Uniões

- A operação UNION tem como resultado uma tabela contendo todas as linhas das duas ou mais tabelas envolvidas na união.
- É necessário que as duas tabelas tenham as mesmas colunas.
- Na imagem abaixo tem um exemplo da operação União unindo duas Fatos distintas.
- Como resultado teremos uma consulta com a união dos registros dos dois anos.

SQL - União

SELECT Fato_Vendas.Valor_Vendas, Fato_Vendas.Quantidade, Fato_Vendas.Pk_Localidade, Fato_Vendas.Pk_Tempo

FROM Fato_Vendas_2017

UNION

SELECT Fato_Vendas.Valor_Vendas, Fato_Vendas.Quantidade, Fato_Vendas.Pk_Localidade, Fato_Vendas.Pk_Tempo

FROM Fato_Vendas_2016;

Fato_Vendas_2016	Fato_Vendas_2017
Pk_Localidade	Pk_Localidade
Pk_Tempo	Pk_Tempo
/alor_Vendas	Valor_Vendas
Quantidade	Quantidade

Uniões

Diferença

- A operação Diferença requer como operandos duas tabelas compatíveis, ou seja, estruturalmente idênticas.
- O resultado é uma relação que possui todas as linhas que existem na primeira relação e não existem na segunda.
- Na imagem tem um exemplo da operação Diferença unindo duas Fatos distintas.
- Como resultado teremos uma consulta com os Estados que estão presentes na Fato_Vendas_2017 e não estão presentes na Fato_Vendas_2016.

SQL - Diferença

SELECT DM_Locaidade.Estado

FROM Fato_Vendas_2017, DM_Locaidade

WHERE DM_Locaidade.Pk_Localidade = Fato_Vendas_2017.Pk_Localidade

MINUS

SELECT DM_Locaidade.Estado

FROM Fato_Vendas_2016, DM_Locaidade

WHERE DM_Locaidade.Pk_Localidade = Fato_Vendas_2016.Pk_Localidade

Fato_Vendas_2016

Pk Localidade

Pk_Tempo

Valor Vendas

Quantidade

Fato Vendas 2017

Pk Localidade

Pk_Tempo

Valor Vendas

Quantidade

Diferença

Junções

- A operação Junção tem como resultado uma tabela contendo a junção de duas ou mais tabelas com base em atributos comuns entre elas.
- O JOIN não é uma operação explícita, não existe na álgebra, é apenas um operador lógico.
- Existem 5 tipos de JOIN, são eles: Cross Join, Inner Join, Left Join, Right Join e Full Join.

Junções

- Na imagem temos um resumo gráfico do funcionamento do Cross Join.
- No exemplo temos duas tabelas, para cada uma das tabelas são apresentados seus registros ou linhas e na sequência é apresentado o resultado da junção utilizando Cross Join.

Junções

 A seguir, na imagem abaixo, são apresentados os resultados para os demais tipos de Junção: Inner Join, Left Join, Right Join e Full Join.

SELECT Fato_Vendas.Valor_Vendas,

Fato_Vendas.Quantidade,

DM_Localidade.Estado,

DM_Tempo.Ano

FROM Fato_Vendas, DM_Localidade, DM_Tempo

WHERE Fato_Vendas.Pk_Localidade = DM_Localidade.PK_Localidade

AND Fato_Vendas.Pk_Tempo = DM_Tempo.Pk_Tempo

DM_Localidade			
Pk_Localidade			
Pais	Fato_Vendas_2017		
Estado	Pk_Localidade		
Cidade	Pk_Tempo		
\	Valor_Vendas		
	Quantidade		
	DM_Tempo		
e.PK_Localidade	Ano		
00;	Mês		

Dia

Junções

 Segue o exemplo de Junção das Fatos de Dimensões do processo de negócio Vendas

A B

SELECT <select_list> FROM TableA A LEFT JOIN TableB B ON A.Key = B.Key

SELECT <select_list>
FROM TableA A
LEFT JOIN TableB B
ON A.Key = B.Key
WHERE B.Key IS NULL.

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key

SQL JOINS

SELECT <select_list> FROM TableA A INNER JOIN TableB B ON A.Key = B.Key

© C.L. Mofflett, 2008

SELECT <select_list>
FROM TableA A
RIGHT JOIN TableB B
ON A.Key = B.Key

SELECT <select_list>
FROM TableA A
RIGHT JOIN TableB B
ON A.Key = B.Key
WHERE A.Key IS NULL.

SELECT <select_list>
FROM TableA A
FULL OUTER JOIN TableB B
ON A.Key = B.Key
WHERE A.Key IS NULL
OR B.Key IS NULL

SQL Joins (Resumo)

Combinar dados no Power Bl

Combinar dados no Power Bl

- Combinar dados no Power BI e executar as operações de Junção descritas anteriormente.
 - Nessa etapa, vamos aprender como se faz Junção de forma gráfica.
- Combinar consultas do Power BI é um processo simples, e essencial no processo de preparar dados para seus insights.
 - Há duas formas de combinar as consultas: Acrescentar Consultas e Mesclar Consultas.
- Quando você tem uma ou mais colunas que deseja adicionar a outra consulta, você mescla as consultas. Quando você tem linhas adicionais de dados que deseja adicionar a uma consulta existente, você acrescenta a consulta.

Combinar dados no Power BI

- O resultado de combinar uma ou mais consultas gerará somente uma consulta no final.
- Esta conterá as colunas que lhe importam para criar o melhor modelo possível em seu trabalho.
- As opções Acrescentar Consultas e Mesclar Consultas são encontradas na faixa de opção Página Inicial na subseção Combinar, dentro do Editor de Consultas, conforme figura abaixo.

Combinar consultas (Append)

- Esta operação consiste em pegar os resultados de duas ou mais consultas, que podem ser cada uma delas uma tabela diferente, e transformar em uma só consultas contendo todos os resultados de cada uma das tabelas/consultas utilizadas no processo.
- Segue um exemplo para tangibilizar a funcionalidade Acrescentar Consultas:
- Temos duas Fatos de Vendas, Jan_17 e Fev_17.

Vendas Fev/17

Cod. Produto	Data Compra	Quantidade	Valor
ENX2029	23/02/2017	4	1848
ENX2029	24/02/2017	1	1725
ENX2041	18/02/2017	1	1380
ENX2083	25/02/2017	1	392
ENX2083	08/02/2017	1	684
ENX2062	03/02/2017	2	2182
ENX2100	09/02/2017	2	1899
ENX2062	23/02/2017	1	1566
ENX2041	09/02/2017	4	1278
ENX2062	20/02/2017	3	1353
ENX2083	14/02/2017	3	1812

Vendas Jan/17

Cod. Produto	Data Compra	Quantidade	Valor
ENX2083	17/01/2017	1	2141
ENX2100	03/01/2017	1	799
ENX2046	03/01/2017	1	2410
ENX2091	06/01/2017	3	368
ENX2100	14/01/2017	1	127
ENX2041	24/01/2017	1	556
ENX2046	05/01/2017	1	2497
ENX2046	18/01/2017	3	112
ENX2091	26/01/2017	4	530
ENX2029	11/01/2017	3	1848
ENX2091	04/01/2017	1	1798
ENX2046	31/01/2017	1	1889
ENX2083	18/01/2017	3	1566

Combinar consultas (Append)

 Com o objetivo de juntar as vendas de todos os meses numa tabela Fato para facilitar os insights, combinaremos estas duas consultas em uma.

Combinar consultas (Append)

Para tal, conforme figura abaixo, selecione a tabela "Vendas Jan17"
 (1), clique em Combinar e a opção Acrescentar Consultas (2) ficará visível.

Combinar consultas (Append)

- No exemplo foram utilizados duas tabelas, mas é possível fazer para quantas tabelas desejar.
- O resultado final foi acrescentar as linhas da segunda tabela dentro da primeira tabela, conforme imagem.
- Para um melhor resultado, esta operação requer que as colunas sejam iguais nas consultas. Mas caso não sejam, é possível ainda realizar o processo.

Demo 1 (Append)

Exercício 1 (Append)

- Dentro de <u>DataSets</u> na pasta de <u>Modelagem e Extração de Dados</u>, no Github, existem esses 4 arquivos.
- Combine-os em uma única query no Power BI.
- Salve o resultado.

- O Mesclar Consultas é outra forma de combinar dados que se baseia na combinação entre linhas ao invés de colunas. O resultado que acontece com a mesclagem depende de alguns fatores:
 - Deve haver uma coluna em comum entre as consultas, que possibilite a ação.
 - Ex.: código do produto que deve estar em todas as consultas a serem mescladas;
 - O número de linhas dependerá da combinação de critérios entre as consultas;
 - O número de colunas dependerá de quais colunas foram selecionadas na configuração.
 - O mesclar consultas irá criar uma estrutura de colunas como resultado.

- Para demonstrar a funcionalidade Mesclar dados segue o exemplo.
- A tabela "Produto" será utilizada agora no exemplo, além da consulta "Vendas" criada no exemplo anterior.

- Agora se quisermos combinar a consulta "Vendas" com a consulta "Produto" para saber quais os nomes dos produtos vendidos em cada uma das linhas, é necessário utilizar Mesclar Consultas.
- A consulta "Vendas" ficou assim, só para relembrar:

 Selecione a consulta "Vendas" e em seguida clique em Combinar, clique na setinha de Mesclar Consultas e finalmente Mesclar Consultas como Novas

 Na figura, na caixa em branco (1) escolha qual consulta será mesclada e em seguida selecione a coluna que será a chave. Isto nas duas consultas a serem mescladas (2). Neste caso "Cod. Produto".

- Veja também na figura anterior que a seleção fez correspondência em todas as linhas (3). Clique em OK para finalizar.
- Sobre o Tipo de Junção são os tipos de JOINS já apresentados na Operação Junção.
- Como resultado, será criado uma nova consulta, idêntica à consulta "Vendas", mas com uma nova coluna chamada "Produto", conforme figura

- A nova coluna, está com a palavra "Table" em todas as linhas.
- Isto quer dizer que a tabela "Produto" não foi expandida e se encontra inteira dentro da coluna.
- Com isso o próximo passo é expandir a nova coluna.
- Na figura acima veja o ícone à direita do nome da coluna "Produto".
- É por ele que se faz a expansão das colunas da tabela produto.

- Conforme figura, clique no ícone de Expandir (1).
- A caixa que aparece terá à disposição todas as colunas que a tabela a ser mesclada oferece.
- Neste exemplo temos somente duas colunas para escolher e como o "Cod. Produto" já existe na tabela de "Vendas" a única coluna que nos interessa então é a "Nome Produto".
- Portanto desmarque a coluna "Cod. Produto" (2) e clique em OK.

- O resultado será uma nova coluna com as informações de nome do produto em cada uma das linhas, conforme figura ao lado.
- As quatro primeiras colunas vêm da tabela "Vendas" e a última coluna vem da tabela "Produto".

Demo 2 (Merge)

Exercício 2

- Usando a query resultante do exercício 1, adicione as colunas de cidade (City) e estado (State Abreviation) tendo como resultado uma nova query.
- As novas colunas estão no arquivo da imagem (Zip Code City State.csv), no Github, no mesmo local do exercício anterior.

Zip Code City State.csv

datasets 5 minutes ago

Exercício 3

- Abra o arquivo Exercício3.pbix que está no Github, dentro pasta Modelagem/Datasets
- Prossiga com as instruções

TP-3 — Entrega e Dúvidas

