

**Unit 8: Limit theorems and classical** 

Lec. 20: An introduction to classical

<u>课程</u> > <u>statistics</u>

> <u>statistics</u>

> 14. Exercise: Natural estimators

## 14. Exercise: Natural estimators

Exercise: Natural estimators

3/3 points (graded)

The random variables  $X_i$  are i.i.d. and satisfy  $\mathbf{E}[X_i^2] = \theta$ . Use a natural estimator to calculate an estimate of  $\theta$  based on the values  $X_1 = 1, X_2 = 3, X_3 = -1, X_4 = 2, X_5 = 0$ .

**✓ Answer:** 3

In order to calculate confidence intervals around your estimator, you need information on the variance of your estimator. This variance is determined by  $\mathbf{E}[X_i^2]$  and  $\mathbf{E}[X_i^a]$  for some other power a. What is the value of a?

$$a = \boxed{4}$$

✓ Answer: 4

If you do not have any prior knowledge about the value of  $\mathbf{E}[X_i^a]$ , can you estimate it based on the available data?

Yes ▼

**✓ Answer:** Yes

## **Solution:**

A natural estimator is

$$rac{1}{5}\sum_{i=1}^5 X_i^2 = rac{1}{5}(1+9+1+4+0) = 3.$$

To find the variance of the estimator, you need the variance of  $X_i^2$ . Since  $\text{Var}(X_i^2) = \mathbf{E}[X_i^4] - \left(\mathbf{E}[X_i^2]\right)^2$ , you need to know  $\mathbf{E}[X_i^4]$ . This quantity can be estimated using the natural estimator

$$\frac{1}{n}\sum_{i=1}^n X_i^4.$$

提交

You have used 2 of 3 attempts

• Answers are displayed within the problem

## 讨论

显示讨论

**Topic:** Unit 8 / Lec. 20 / 14. Exercise: Natural estimators