INFTrees and INFforests Variable Importance

Theory

The theory behind INFtrees combines the permutation approach to variable importance found in Strobl et al with Breiman et al 1984's notion of grouped predictors.

Grouped Predictors

INFTrees

For a CART, T, representing the model Y $X_1, ..., X_p$ where $Y, X_1, ..., X_p$ are vectors of length n, the INFTrees algorithm proceeds as follows:

```
Algorithm 1 INFTree, VI_{inf}(T)
```

```
for each X_i \in X_1, ..., X_p do Calculate: \Phi_o = RSS(T, (Y, X_1, ...X_p))

Fit the tree T_{X_i}, where T_{X_i} : X_i \sim X_1, ..., X_{i-1}, X_{i+1}, ...X_p

Extract the set P_{X_i} of partitions on X_i from T_{X_i}

Permute X_i with respect to P_{X_i}

Find \Phi^* = RSS(T, (Y, X_1, ..., X_i, ...X_p))

The difference between these values, \Phi^* - \Phi_o, is the variable importance for X_j on T, end for
```

This procedure allows the null hypothesis that Y is independent of X_i given the values of $X_1, ... X_{i-1}, X_{i+1}, ... X_p$ to be tested. Therefor, values of VI_{inf} could be compared in a similar manner to the coefficients of linear regression.

INFForests

The algorithm for determining $VI_{inf}(R)$ follows similarly.

```
Algorithm 2 INFForests, VI_{inf}(R)
```

```
1: Fit a random forest, R on the dataset D fitting the model Y \sim X_1, ..., X_p.
2: for each X_i \in X_1, ..., X_p do
         for each t \in R do
3:
             Calculate: \Xi_o = \frac{1}{\nu_a} RSS(t, \bar{B}^t)
 4:
             Calculate a tree T_i^t that predicts X_i \sim X_1, ..., X_{i-1}, X_{i+1}, ... X_p using the subset of the observations
 5:
    used to fit t
             Permute the subset of X_i contained in \bar{B}_t with respect to the set of partions P_{xi} from T_i.
 6:
             Now find \Xi^* = \frac{1}{\nu_t} RSS(t, \bar{B}_t^*)
 7:
             The difference between these values, \Xi^* - \Xi_o, is the variable importance for X_i on t
 8:
         end for
9:
         Average over all t \in R
10:
                                                 VI_{inf}(X_i,R) = \frac{1}{ntree} \sum^{ntree} \Xi^* - \Xi_o
                                  VI_{inf}(X_j, R) = \frac{1}{ntree} \sum_{t=0}^{ntree} \frac{1}{\nu_t} RSS(t, \bar{B}_t^*) - \frac{1}{\nu_t} RSS(t, \bar{B}^t)
```

11: end for