Quiz #13; Tuesday, date: 04/24/2018

MATH 53 Multivariable Calculus with Stankova

Section #114; time: 2 - 3:30 pm

GSI name: Kenneth Hung

Student name:

1. Is there a vector field **G** on \mathbb{R}^3 such that $\operatorname{curl} \mathbf{G} = \langle \cos x, \sin y, z \rangle$? Explain.

2. True / False? Given a vector field $\mathbf{F}=\langle P,Q\rangle$ with $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ over the region given below.

Suppose the big circle is C_1 and the small circles are C_2 and C_3 , all counterclockwise, then

$$\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r} + \int_{C_3} \mathbf{F} \cdot d\mathbf{r}.$$

3. True / False? Surface of revolution of a positive differentiable function is always smooth.