Question 1 (50%)

Sum of a geometric progression. A geometric progression is defined by two numbers, the initial term a and a common ratio r:

$$a, ar, ar^2, ar^3 \dots$$

For instance with a = 7 and r = 2, you'll have:

The sum of the first n terms of a geometric progression with the initial term a and the common ration r is:

$$\sum_{i=0}^{n} ar^{i} = a + ar + ar^{2} + \dots + ar^{n}$$

Define a recursive procedure that returns the sum of a geometric progression with n terms and the initial term a and the common ration r.

Question 2 (50%)

(RANDOM N) returns a random number between and including 0 and n-1. Define a procedure that takes two arguments n and r, and prints r random numbers between and including 0 and n. You will need to use PRINT; you can discover how it works by trying it at REPL.