loT et sécurité

- **1**⇒Qu'est-ce que «l'IoT»;
- **2**⇒Les menaces sur l'IoT;
- 3⇒Des vulnérabilités spécifiques ;
- **4**⇒Les mécanismes de sécurité;
- **5**⇒Analyse de risques : approche réseau ;
- 6 ⇒ Approche matérielle : le «root of trust» ;
- **7**⇒Chiffrement et IoT.

1 «The Internet of Things»

Jusqu'à 26 milliards d'objets connectés en 2020

Des éco-systèmes très différents

- un large spectre de «devices»:
- capteurs fortements contraints construit avec de l'électronique imprimable;
- véhicules autonomes comme des camions, voitures et avions;
- □ des scénarios d'usage étendus :
 - surveillance de la température;
 - surveillance de processus industriels critiques;
- des attentes de sécurité différentes :
 - public: sécurité des données personnelles et «privacy»;
 - entreprise : sécurité des secrets industriels et des infrastructures critiques ;
- □ mais des bénéfices considérables :
 - analyse de données, «big data»;
 - automatisation;
 - optimisation des ressources et des traitements;

«The Internet of Things»

Une définition et une infrastructure

Un réseau d'objets connectés à Internet capables de collecter et d'échanger des données. des **objets** qui nous entourent au quotidien embarquent : des capteurs plus ou moins sophistiqués; des SoC, «System-On-Chip»; les données capturées d'un objet sont : envoyées à une passerelle qui les envoie ensuite sur Internet; stockées dans le «cloud» pour y être analysées; après analyse, les données traitées sont transmises à une application loT qui : exploite ces données suivant différents besoins; est bâtie sur une plateforme offrant un langage commun capable de faire communiquer capteurs et actionneurs embarqués dans les objets il existe différentes plateformes: certaines basées sur le «cloud» pour intégrer les données de nombreux objets; d'autres supportant le développement d'applications IoT;

2 Les menaces sur l'IoT

- ressources disponibles limitées : faible capacité en batterie, mémoire et vitesse de traitement
 - ⇒ ne peut pas supporter les mesures de sécurité habituelles ;
- manque d'intérêt pour les données : les données de l'IoT ne sont pas forcément vues comme importante, ce n'est pas la motivation première des attaques : c'est le défi qu'ils représentent ;
- □ **disponibilité des outils** : tous les outils pour modifier/analyser/étudier les IoTs sont disponibles pour tous ;
- $\hfill\Box$ pas besoin d'un accès physique : utilisation de communication sans fil ;
- □ interface différente et limitée : les rapports d'erreurs et de sécurité peuvent être facilement ignorés ;
- □ des **ports d'accès physiques** : utilisés pour la programmation ou le déboguage.

Des attaques médiatisées : «Mirai Botnet» constitué de caméras IP et de router personnels ;

- «DDoS» : détournement d'IoT pour
- créer un botnet pour attaquer une cible à l'intérieur ou à l'extérieur du réseau IoT;
- épuiser la batterie de l'IoT victime.

Les menaces sur l'IoT

La sécurité est un équilibre entre le coût et le bénéfice

- un attaquant disposant de **suffisamment** de **temps**, **d'argent** et **d'expertise** peut hacker n'importe quel système;
- \square le but de la sécurité est de rendre le **coût** de l'attaque **trop important** par rapport au gain espéré;

- > attaques matérielles invasives : «reverse engineering», utilisation de micro-sonde sur le processeur ;
- > attaques logicielles passives : exploiter une vulnérabilité dans le code du firmware de l'objet ;
- > **attaques sur les communications** : exploiter des vulnérabilités dans les protocoles réseaux, dans la cryptographie utilisée ou dans les clés de chiffrement utilisées :

3 loT : un catalogue de vulnérabilités

Technologies

Les différentes phases présentes dans un éco-système loT

- □ «Intelligent Processing»: les données stockées dans les DCs, «Data Centers», sont analysées.
 - «Data Transmission»: du capteur, RFID, SoC vers le DC, du DC vers les unités de traitement et des processeurs vers les contrôleurs, devices ou utilisateurs.
 - «Data Delivery»: remise des résultats à temps et sans altérations.

loT : un catalogue de vulnérabilités

Attaques sur les différentes phases

loT : un catalogue de vulnérabilités

- "ODOS", "Distributed Denial of Service": attaque sur les DCs qui empêchent les utilisateurs légitimes d'accèder à ces DCs
 - «Network level»: épuiser les ressources du CSP, «Cloud Service Provider», avec des connexions ouvertes à moitié (SYN et SYN/ACK mais pas ACK);
 - «Service level»: des requêtes malicieuses vers les services:
- «IP spoofing attack» des attaques associées à des DDoS sur les DCs dont l'origine semble être les clients légitimes
 - Hidding Attack: envoyer de nombreux paquets avec des adresses d'origine aléatoires;
 - «Reflection Attack»: envoyer des paquets à n'importe quelle destination avec l'adresse d'origine de la victime;
 - ⋄ «Impersonation Attack»: l'adresse d'origine des paquets correspondent à celles d'utilisateurs légitimes et l'attaquant tente une attagte «M-I-T-M»;
- □ «Eavesdropping»: interception du trafic pour obtenir des accès non autorisés;
- «Replay Attack»: rejouer des paquets pour obtenir des accès non autorisés;
- □ «Backdoor» : utiliser des accès de déboquages ;
- □ «Sybil Attack»: créer/voler différentes identités d'IoT pour influencer le fonctionnement du système;
- □ «Byzantine failure»: attaquer un ou plusieurs serveurs pour dégrader les performances du Cloud;

Attaques sur les «composants»:

IoT: attaque sur la vie privée

4 Les mécanismes de sécurité pour l'IoT Méthode coût

Méthode	coût		Techno	
Packet Encryption	bas	le mécanisme le plus employé	FIPS-197/AES	
Replay Protection	bas	empêcher le renvoi de paquets enregistrés	date/AES CTR	
		utilisation du chiffrement par chaînage en mode «counter».		
Message Authentication Code	bas	empêcher la modification des messages	HMAC	
		Intégrité et signature des données qui peuvent rester en clair		
Port Protection	bas	empêcher l'accès physique à un port de debogage série ou JTAG		
·		Utiliser des mots de passe d'accès définis en usine		
Secure Bootloader	moyen	garantir que seul des firmwares autorisés s'exécutent		
·		HMAC du firmware, vérification des mises à jour, utilisation d'un TEE		
Pre-Shared Keys	bas	le mécanisme le plus accessible		
		Clés installées par un canal sécurisé dans l'objet		
SSH	haut	utilisable uniquement avec des systèmes basés Unix		
Public Key Exchange	haut	besoin d'un OS sur l'IoT	ECC	
		Gestion de clés et de certificats		
TLS	haute	besoin d'un OS sur l'IoT	Max Fragment Length, RFC6066	
		Gestion de clés, de certificats et de buffers TCP suffisants		
WPA2	haute	besoin d'un OS sur l'IoT	WiFi	
		Pile TCP/IP évoluée pour disposer de l'authentification serveur		

5 «The Internet of Things»: analyse des risques, approche réseau

- □ Pour être utile : communication **temps réel** et **bi-directionnelle** vers Internet ;
 - ⇒type de communication notoirement difficile à sécuriser
- □ besoin d'un **nouveau modèle** de sécurité
 - ⇒ protocoles et «best practices» pour les serveurs, les ordinateurs personnels et les smartphones sont bien connus mais inapplicables directement
 - ⇒ besoin de solution «plug and play» : pas de mise en service, de logiciel et de firmware à mettre à jour à effectuer par l'utilisateur
 - ⇒décaler le problème de la sécurisation du constructeur matériel vers la couche réseau : plus de flexibilité et de robustesse ;
 - ⇒ assurer une sécurité bout en bout, «end-to-end».

- □ les objets **ne doivent pas disposer** de port ouvert en **entrée** :
 - pour qu'un serveur puisse envoyer des données, «push», à un objet, celui-ci doit être en attente : disposer d'un port de connexion sur lequel le serveur peut se connecter.
 - ⇒risque massif de sécurité:

 - modification et/ou vol de données;

 - exécution de code;
 - \Longrightarrow l'objet connecté doit effectuer uniquement des connexions sortantes :
 - utiliser le modèle publier/s'abonner, «publish/suscribe», pour disposer de lien de communication bi-directionnel;
 - supporter le «scaling» du modèle: jusqu'à
 50 milliards d'objets connectés
 - serveurs hautes performances;
 - nombreux points de présence répartis sur la planète;

Les protocoles adaptés : MQTT, CoAP, Websockets et HTTP 2.0.

- ☐ Chiffrement de «bout en bout», «end to end»:
 - utilisation de TLS, «Transport Layer Security»:
 - chiffrement des communications de l'objet au serveur;
 - authentification du serveur et aussi de l'objet;
 - utilisation d'AES pour le chiffrement des données produites par l'objet connectés;
- □ utilisation du **modèle d'enveloppe** :
 - les données de l'objet sont chiffrées par AES pour le destinataire final avec une clè secrète partagée;
 - ces données chiffrées sont intégrées dans une enveloppe contenant des données en clair pouvant être utilisées par les intermédiaires :
 - * filtrage/routage;
 - * analyse

L'intégralité de l'enveloppe est échangée de manière chiffrée au travers de TLS.

- Contrôle d'accès sécurisé par jeton :
- contrôle d'accès sur «qui» peut transmettre «quoi» en émission comme en réception
 - * millions d'objets connectés essayant d'écouter les bon canaux et les bons topics
 - ⇒ inefficace et non sécurisé de laisser ces objets filtrer les topics auxquels ils n'ont pas souscrit;

PUBLISH

DEVICE

Write Token

SUBSCRIBE

SERVER

"ABC" Channel

Read Token

- ⇒c'est au «réseau» de le faire;
- intégration d'un système de jeton dans le modèle publier/souscrire :
 - distribuer un jeton à un élément pour donner un droit d'accès à un canal de données
 - * contrôle d'accès fin:
 - > quel jeton est crée,

 - > pour quelles données ce jeton autorise l'accès

- > choisir quels appareils peuvent parler ou écouter sur le réseau

suivant les jetons que le réseau distribue.

Groupe de travail IETF: ACE, «Authentication and Authorization for Constrained Environments»

16 novembre 2017: https://tools.ietf.org/html/draft-ietf-ace-oauth-authz-09 basé sur OAuth v2.0 et CoAP.

- □ Surveillance du status d'un objet :
 - surveiller constamment le status «online/offline», la présence, d'un appareil:
 - ⇒ Alerter l'utilisateur ou le système de surveillance si un appareil arrête d'émettre ou de recevoir des données

Que ce soit dans l'IoT des particuliers ou bien industriel : capteur sur une plateforme pétrolière, système de surveillance de domicile, appareil électroménager etc.

- ⇒un appareil offline peut signifier:
 - □ b une tentative locale de manipulation, «tampering»;
 - > une situation de perte de connexion Internet ou une panne de courant;
- disposer d'un canal indépendant et sécurisé pour échanger des données de présence pour chaque appareil qui peut être personnalisé:
 - * statut online/offline; * accélération;
 - température;géolocalisation;

Par exemple:

- la serrure d'une porte connectée peut alerter son propriétaire du changement de statut de la serrure si son téléphone n'est pas à 10m de là;
- si un ensemble de capteurs d'une usine de génération d'énergie solaire passent offline, le réseau peut dépêcher un technicien pour identifier le problème;

- «User friendly» configuration et mise à jour :
- différentes étapes dans la vie d'un objet connecté :
 - l'objet est opérationnel et se connecte à Internet ;
 - l'objet doit être configuré et son logiciel doit être maintenu à jour ;

Exemple : un utilisateur vient d'acheter un système de 6 caméras connectées avec détection de mouvement pour la sécurité de sa maison : il espère que tout va fonctionner...

mais il doit :

0

- configurer son firewall qui bloque leur connexion;
- mettre à jour leur firmware : mise à jour des fonctionnalités et correction des failles de sécurité ; et souvent, si cela marche il ne fera plus de mise à jour...
- Utilisation du modèle publier/souscrire avec les ports HTTP en sortie (port 80 et 443):
 - le réseau: 2. le serveur renvoie un canal privé partagé:

 - > intégrer l'objet;

automatiquement: 1. le serveur informe les objets au travers

- d'un canal en diffusion :
- 2. chaque objet effectue sa mise à jour ;
- 3. en cas d'un objet offline, il fera la mise à jour au moment où il redeviendra online;

Protection matérielle : «roots of trust»

- □ **protection automatique** de leur fonctionnement et des données contenus ;
- ⇒ les données sensibles conservées dans un stockage non-sécurisé doivent être chiffrées et leur intégrité protégée pour fournir une fonction de **stockage sécurisé**;
- □ **vérification basée sur la cryptographie** du logiciel embarqué et des mises à jour ;
- possibilité de **mise à jour à distance**, «OTA», «Over-The-Air», du firmware même en cas de malware;
- □ **espace mémoire suffisant** pour permettre d'aller vers une version antérieure de firmware en cas de faille critique mais de manière sécurisée : empêcher une attaque par «*rollback*».
- ⇒ ces propriétés de sécurité doivent être **isolées** des applications présentes sur l'objet.
- □ chemin sécurisé: les données à protéger ne doivent pas circuler par des canaux non sécurisés
- ⇒ adaptation du DMA pour gérer des canaux sécurisés, plusieurs bus de données, MMU avec tables distinctes, etc.

Isolation basée hardware

- Trusteed Execution Environment:
 - réalise toutes les opérations de sécurité évoquées plus haut;
 - protège les applications contre :
 - * les autres applications;
 - un système d'exploitation compromis;
 - ⇒ Pour un «bootstrapping» automatique et sécurisé: **installation des** «*credentials*» lors de leur fabrication **en usine**.
- Rich Execution Environment: l'environnement normal d'exécution.

7 Chiffrement et IoT

- Cryptographie asymétrique:
- utilisable sur la plupart des processeurs embarqués;
- difficulté sur des processeurs «ultra low-cost»;
- $\Longrightarrow \text{remplacement par de la cryptographie "post-quantum"}: \text{taille beaucoup plus grande des clés et signatures};$
- ☐ Cryptographie **symétrique**:
 - ♦ le coût énergétique est négligeable par rapport à celui des communications sans fil;
- ☐ Cryptographie «*Lightweight*»:
 - ⋄ réservée aux environnements fortement contraints : étiquette RFID, capteurs, carte sans-contact, etc.
 - ⋄ combinaison de «Block Ciphers», «Stream Ciphers» et «Hash Functions»/MAC demandant de faible ressources en lors de l'exécution (taille RAM et puissance CPU) et en espace mémoire (taille faible des clés et des données);

Symétrique	ECC	DH/DSA/RSA	recommandé
80	163	1024	
112	233	2048	RFC 7525
128	283	3072	ENISA 2013
192	409	7680	
256	571	15360	

Chiffrement asymétrique :

- * implémentation efficace de courbes elliptiques (Curve25519), mais prends du temps si non accéléré matériellement;
- ⋆ obligatoire pour l'utilisation de TLS.