情報とネットワーク

情報科学の世界II 2018年度 只木 進一(理工学部)

通信手段の発展

- 狼煙(のろし)
 - ▶遠方に視覚的記号を送る
- 飛脚、郵便
 - −情報そのものの物理的な輸送
- 電信、電話
 - Samuel Finley Breese Morse
 - Alexander Graham Bell

電鍵

- モールス信号の例

さ: -・-・-

が:・ー・・・

だ: -・・・

(): • -

が:・ー・・・

<: • • • -

良く使う記号を短くすることで、通信総量を減らす工 夫

アナログ通信の特徴・課題

- ▶内容毎に異なる媒体
 - 映像→写真、音声→テープ
- ▶内容毎に異なる装置
- ▶情報の劣化
 - −雑音の影響
 - −写し間違い

デジタル化の利点

- ▶情報の記号化
 - →音声、画像などもデータ化
- ─情報の内容にかかわらず、同一手段で 送信できる
 - →端末側で媒体に応じて再生
- 情報の劣化が起こらない
 - −情報の補正が可能

デジタル化の課題

- ■データの欠損が発生した場合の対応
 - ▶1 bitでも不足すると使えない
- ■データエラーの検出方法
- データエラーの訂正方法
- データ再送方法

情報通信ネットワークの要素

- 一通信路
 - ■データが流れる媒体
 - ■電話線、イーサ-ケーブル、無線
- 交換機能
 - ▶通信路を相互接続
- →通信プロトコル(protocols)
 - ■通信の各段階における手順・約束

10Base-5 イーサネット

http://tech.mattmillman.com/projects/10base5/

電話の接続

電話交換手

http://img.u-note.me/note/uploadimage/1474011261099.jpg

電話接続の課題

- →回線の占有
 - ■話していなくても、回線を占有し、他の 通信の妨げになる
- 電話交換機による回線接続
 - ▶階層構造が固定的

クロスバ交換機

https://www.youtube.com/watch?v=qEbHP7YyhX0

- →回線を共有するには
 - ▶占有状態を作らない
 - ■データを区切り、一つ毎に送信元、送信 先を付ける
- ▶階層の柔軟化
 - アドレスの工夫
 - −配送手順の工夫

インターネットの仕組み

- 一パケット通信
 - データを小さく切る
 - ■回線を共有
- 階層構造を持ったプロトコル
 - ▶障害への対応
- 開放的システム
- アドレス空間

Packet

- a small paper or cardboard container in which goods are packed for selling
- a small object wrapped in paper or put into a thick envelope so that it can be sent by mail, carried easily or given as a present

プロトコル(protocol)

- 外交儀礼
- データ通信のための取り決め
 - ━手順、方法、データ形式などなど

- −情報通信をモデル化
 - ▶通信開始手順
 - データ送信

情報通信における仮想化・ 抽象化

- ■情報通信の操作・手順を仮想化・抽象 化する
 - ■通信相手の指定、通信路の確保、データの送信
- ─操作・手順を適切な大きさの塊に
- ▶方法とその実装を分離
 - 実装方法が変化しても操作が不変

情報通信における階層化

- 通信には多様な部品・機能が関与
 - ▶物理的回線、電子機器、制御ソフトウェ アなどなど
- → 必然的にマルチベンダー(multi-vendor) 化
 - →適切に階層化して役割を定める

情報通信における階層化

- 機能の階層化・抽象化
 - 物理的通信(信号処理)
 - −媒体の選択、接続手順
 - データ送受信
 - →論理的接続手順
 - データ形式
 - −データ処理
 - ■アプリケーション

コミュニケーションの階層モデル

階層化と通信プロトコル

- 各層が自律して必要な機能を果たす
 - -通信制御サービス:データ通信と制御
- ►各層がそれぞれの上位層・下位層の機能を信頼する

階層化の利点

- 上位層(例えばアプリケーション)は、下位層(ネットワーク)が正しく動作していることを前提とする。
- ►下位層は、定められた機能のみを実装し、上位層が何をしようとしているかに関知しない。
- ■各層の機能要件を明確にできる。

カプセル化とパケット capsulation and packetization

- データのカプセル化
 - ■データを封筒に入れて表書きを付ける
 - データの先頭にヘッダを付ける
 - 表書き・ヘッダにデータ制御情報を

ヘッダ

データ

- 各階層対応した形式

- データは小さく切る:パケット化
- ーデータが大きいと
 - −小さなデータを送る際に非効率
 - 送信失敗時にやり直しコストが大きい
- MTU (Maximum Transmission Unit)
 - →イーサーネットでは1500Byteが標準

電話とパケット通信の違い

- ■電話は回線を占有
 - ■データ通信が無くても占有
 - ▶拡大する需要に対応できない
 - 一同期的通信
 - ▶再送方式なし

電話とパケット通信の違い

- 一パケット通信
 - →回線を共有:バス(bus)
 - →回線を占有しない
 - 細い回線でもデータを送ることが可能
 - −再送手順あり

TCP/IP階層モデル

TCP: Transmission Control Protocol

IP: Internet Protocol

ネットワークの物理実装になるべく依存せず、各コンピュータ・通信装置が稼働するように設計

アプリケーション層

トランスポート層

インターネット層

ネットワークIF層

層	説明	例
アプリケー ション層	個々のアプリ ケーション	SMTP、HTTP
トランスポー ト層	データの packet化	TCP UDP
インターネッ ト層	packetの配送	IP
ネットワーク IF層	通信のための 物理的実装に 対応	Ethernet

TCP/IPの基本アプリケーション

- →TCP/IPでは、基本アプリケーション機能が標準化されて普及
- 一プロトコルは公開
- → Open Source ソフトウェアが普及

TCP/IPの基本アプリケーション

- SMTP (Simple Mail Transfer Protocol)
- FTP (File Transfer Protocol)
- TELNET (Telecommunication Network Protocol)
- HTTP (Hypertext Transfer Protocol)
- NTP (Network Time Protocol)