

Algorithms for Data Science

Optimization: Markov Decision Processes

Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical framework for modeling sequential decision-making under uncertainty.

Components

- States (S): All configurations of the system.
- Actions (A): Available choices in each state.
- Transition Probabilities $P\left(s'\mid s,a\right)$ Probability of transitioning to a new state s'given current state s and action s.
- Rewards R(s,a) Immediate reward after taking action a in state s.
- Policy $\pi(a \mid s)$ Strategy for choosing actions.

Flow of States & Actions in MDP

Value Functions

• State Value Function: (V(s)): Expected cumulative reward starting from state s and following policy π

$$V(s) = \mathrm{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t R\left(s_t, a_t
ight) \mid s_0 = s
ight].$$

• Action Value Function (Q(s,a)): Expected cumulative reward starting from State s, taking action a, and following policy π

$$Q(s,a) = R(s,a) + \gamma \sum_{s'} P\left(s' \mid s,a
ight) V\left(s'
ight)$$

Bellman Equations (Recursive definitions of value functions)

State Value Function:

$$V(s) = \max_{a} \left[R(s,a) + \gamma \sum_{s'} P\left(s' \mid s,a
ight) V\left(s'
ight)
ight].$$

• Action Value Function:

$$Q(s,a) = R(s,a) + \gamma \sum_{s'} P\left(s' \mid s,a
ight) \max_{a'} Q\left(s',a'
ight)$$

• γ : Discount factor, balancing the trade-off between immediate and future rewards $(0 \le \gamma \le 1)$

Solving MDPs with DP

1. Policy Evaluation: Compute the value function $V^{\pi}(s)$ for a given policy π with the recursive update rule:

$$V^{\pi}(s) = \sum_{s} \pi(a \mid s) \left[R(s,a) + \gamma \sum_{s'} P\left(s' \mid s,a
ight) V^{\pi}\left(s'
ight)
ight]$$

2. Policy Improvement: Improve the policy by selecting actions that maximize the value:

$$\pi'(a \mid s) = egin{cases} 1 & ext{ if } a = rg \max_a \left[R(s,a) + \gamma \sum_{s'} P\left(s' \mid s,a
ight) V^{\pi}\left(s'
ight)
ight] \ & ext{otherwise} \end{cases}$$

- 3. **Policy Iteration:** Alternate between policy evaluation and policy improvement until the policy converges.
- **4. Value Iteration:** Iteratively compute the optimal value function $V^*(s)$ using:

$$V^*(s) = \max_{a} \left[R(s,a) + \gamma \sum_{s'} P\left(s' \mid s,a
ight) V^*\left(s'
ight)
ight]$$

Derive the optimal policy from

$$\pi^*(a \mid s) = egin{cases} 1, & ext{if } a = rg \max_a \left[R(s, a) + \gamma \sum_{s'} P\left(s' \mid s, a \right) V^*\left(s'
ight)
ight] \ 0, & ext{otherwise} \end{cases}$$

MDPs: Foundation for Reinforcement Learning

Reinforcement learning (RL) builds on the framework of MDPs for decisionmaking where MDPs provide the mathematical foundation for defining states, actions, rewards, and policies.

Transition Probabilities

- MDPs assume P(s' | s, a) are fully known.
- RL assumes P(s' | s, a) is unknown and must be learned.

Learning Through Exploration

- RL agents interact with the environment to estimate value functions and policies.
- Balance between exploration and exploitation.

