

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

THERMOPHYSICAL PROPERTIES RESEARCH CENTER

AFOSR-TR-74-1165

TRANSPORT PROPERTIES OF SELECTED ELEMENTS
AND COMPOUNDS IN THE GASEOUS STATE
(Part 2)

By P. E. Liley

TPRC Report 22

Prepared for
Air Force Office of Scientific Research

THERMOPHYSICAL PROPERTIES RESEARCH CENTER

Purdue University 2595 Yeager Road West Lafayette, Indiana 47906

West Larayette, Indiana 4

December 1973

83 06 07 105

AD A 129060

UTIC FILE COPY

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM												
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER An. A12 9 060													
	5. TYPE OF REPORT & PERIOD COVERED												
TRANSPORT PROPERTIES OF SELECTED ELEMENTS AND COMPOUNDS IN THE GASEOUS STATE	State-of-the-Art Report												
(Part 2)	6. PERFORMING ORG. REPORT NUMBER TPRC Report 22												
7. AUTHOR(e)	TPRC Report 22 8. CONTRACT OR GRANT NUMBER(*)												
P. E. Liley	AFOSR-72-2396												
9. PERFORMING ORGANIZATION NAME AND ADDRESS Thermophysical and Electronic Properties Information Analysis Center, CINDAS/Purdue Univ. 2595 Yeager Rd., W. Lafayette, IN 47906	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 9750-01												
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE												
Defense Technical Information Center, Defense	December 1973												
Logistics Agency, Attn: DTIC-AI, Cameron Station Alexandria, VA 22314	13. NUMBER OF PAGES												
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)												
•	Unclassified												
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A												
16. DISTRIBUTION STATEMENT (of this Report)	N/A												
Distribution unlimited.	Panel												
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES													
CINDAS/TEPIAC Publication; (DTIC Source Code 41357 Microfiche copies available from DTIC	(1);												
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) *Viscosity*Thermal Conductivity*Diffusion CoefficientGasesLiquidsBinary Mixtures Thermophysical PropertiesData Values													
20 ASTRACT (Continue on reverse side if necessary and identify by black number)													
ZO. ASTRACT (Continue on reverse side II necessary and identity by block number) Tables of viscosity, thermal conductivity, and diffusion coefficient have been prepared for sixty-nine binary mixtures. The temperature range was from 100 to 3000 K. For the substances comprising the binary mixtures recent recommendations were used, some of these being taken from our earlier report (Part 1). For the mixtures the Lennard-Jones 6-12 potential was used for viscosity and diffusion, and a linear mixing rule was employed for thermal conductivity. The precision of the tabulated values is reviewed. It is concluded that significant dis-													
Crepancies can still exist between theoretical and DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE INCLASE.	/ /												

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

ABSTRACT

Tables of viscosity, thermal conductivity and diffusion coefficient have been prepared for sixty-nine binary mixtures. The temperature range was from 100 to 3000 K. For the substances comprising the binary mixtures recent recommendations were used, some of these being taken from our earlier report (Part 1). For the mixtures the Lennard-Jones 6-12 potential was used for viscosity and diffusion, and a linear mixing rule was employed for thermal conductivity. The precision of the tabulated values is reviewed. It is concluded that significant discrepancies can still exist between theoretical and experimental quantities.

TABLE OF CONTENTS

ΑB	STRA	CT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	iii
LIS	T OF	TA	BL	ES			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v
IN	rod	UC'	101	4	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
TH	EORI	ETI	CAL	Aì	۷D	EM	ΙΡΙ	RIC	CAI	L M	ΕT	НC	DS		•	•	•	•	•	•	•	•	•	•	1
SE	LECT	OI	I OF	L	EN	NA	RD	-J(ONE	es e	3-13	2 P	AR	AN	ŒŢ	ER	ts	•	•	•	•	•	•	•	3
CA	LCUI OF (LAT GAS	'ION MD	O]	F I	'R.A ES	NS	PO	RT •	PF	POF	·EF	TI.	ES •	OF •	• PI	UR:	E G	AS	ES •	AN •		•	•	4
SU	MMA	RY	ANI	R	EC	OM	(M)	ENI	rac	CIO	NS		•	•	•	•	•	•	•	•	•	•	•	•	4
RE	FER	ENC	ES	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	5
TA	BLES	S 01	FRE	CC)M	ME	ND	ED	VA	ALI	JES	;	•		•	•	•	•	•	•	•	•	•	•	7
ΑP	PENI	DIX								_						_			_	_	_	_	_	_	76

		Page
1.	Transport Properties of Hydrogen-Nitrogen Mixtures	7
2.	Transport Properties of Hydrogen-Argon Mixtures	8
3.	Transport Properties of Atomic Hydrogen-Nitrogen Mixtures	9
4.	Transport Properties of Atomic Hydrogen-Argon Mixtures	10
5.	Transport Properties of Deuterium-Nitrogen Mixtures	11
6.	Transport Properties of Deuterium-Argon Mixtures	12
7.	Transport Properties of Atomic Deuterium-Nitrogen Mixtures	13
8.	Transport Properties of Atomic Deuterium-Argon Mixtures	14
9.	Transport Properties of Ammonia-Nitrogen Mixtures	15
10.	Transport Properties of Ammonia-Argon Mixtures	16
11.	Transport Properties of Nitrogen Trideuteride-Helium Mixtures	17
12.	Transport Properties of Nitrogen Trideuteride-Nitrogen Mixtures .	18
13.	Transport Properties of Nitrogen Trideuteride-Argon Mixtures	19
l4.	Transport Properties of Nitrogen Tetrahydride-Helium Mixtures	20
l5.	Transport Properties of Nitrogen Tetrahydride-Nitrogen Mixtures .	21
l6.	Transport Properties of Nitrogen Tetrahydride-Argon Mixtures	22
l7.	Transport Properties of Nitrogen Tetradeuteride-Helium Mixtures .	23
l8.	Transport Properties of Nitrogen Tetradeuteride-Nitrogen	
	Mixtures	24
l9.	Transport Properties of Nitrogen Tetradeuteride-Argon Mixtures .	25
20.	Transport Properties of Fluorine-Nitrogen Mixtures	26
21.	Transport Properties of Fluorine-Argon Mixtures	27
22.	Transport Properties of Fluorine-Ammonia Mixtures	28
3.	Transport Properties of Fluorine-Nitrogen Trideuteride Mixtures	29
24.	Transport Properties of Fluorine-Nitrogen Tetrahydride Mixtures	30
25.	Transport Properties of Fluorine-Nitrogen Tetradeuteride Mixtures	31
6.	Transport Properties of Atomic Fluorine-Nitrogen Mixtures	32
7.	Transport Properties of A omic Fluorine-Argon Mixtures	33
8.	Transport Properties of Atomic Fluorine-Ammonia Mixtures	34
9.	Transport Properties of Atomic Fluorine-Nitrogen Trideuteride	o.e
	Mixtures	35
80.	Transport Properties of Atomic Fluorine-Nitrogen Tetrahydride Mixtures	36

31.	Transport Mixtures	Properties of Atomic Fluorine-Nitrogen	Tetradeuter	ride • •	•	37
32.	Transport	Properties of Nitrogen Trifluoride-Nitrog	gen Mixture	8 .	•	38
33.	Transport	Properties of Nitrogen Trifluoride-Argon	Mixtures	•		39
34.	Transport	Properties of Nitrogen Trifluoride-Hydro	gen Mixtur	·es	•	40
35.	Transport Mixtures	Properties of Nitrogen Trifluoride-Atomi	e Hydroger	ı 	•	41
36.	Transport Mixtures	Properties of Nitrogen Trifluoride-Deuter	rium		•	42
37.	Transport Mixtures	Properties of Nitrogen Trifluoride-Atomi	c Deuteriu	m • •	•	43
38.	Transport	Properties of Nitrogen Tetrafluoride-Hel	ium Mixtur	es	•	44
39.	Transport Mixtures	Properties of Nitrogen Tetrafluoride-Nitr	ogen		•	45
40.	Transport	Properties of Nitrogen Tetrafluoride-Arg	on Mixture	8 .	•	46
41.	Transport Mixtures	Properties of Nitrogen Tetrafluoride-Hyd	rogen		•	47
42.	Transport Mixtures	Properties of Nitrogen Tetrafluoride-Atom	mic Hydrog	gen		48
43.	Transport Mixtures	Properties of Nitrogen Tetrafluoride-Deu	terium		•	49
44.	Transport Mixtures	Properties of Nitrogen Tetrafluoride-Atom	mic Deuter	ium	•	50
45.	Transport	Properties of Chlorine Pentafluoride-Heli	ium Mixtur	es		51
46.	-	Properties of Chlorine Pentafluoride-Nitr			•	52
47.	Transport	Properties of Chlorine Pentafluoride-Arg	on Mixture	s .	•	53
48.	Transport Mixtures	Properties of Chlorine Pentafluoride-Hyd	rogen		•	54
49.	Transport Mixtures	Properties of Chlorine Pentafluoride-Atom	mic Hydrog	gen	•	55
50.	Transport Mixtures	Properties of Chlorine Pentafluoride-Deu	terium		•	56
51.	Transport Mixtures	Properties of Chlorine Pentafluoride-Atom	mic Deuter	ium		57
52.	Transport	Properties of Hydrogen Fluoride-Nitrogen	n Mixtures	•	•	58
53.	Transport	Properties of Hydrogen Fluoride-Argon M	lixtures		•	59
54.	Transport	Properties of Deuterium Fluoride-Nitroge	en Mixtures	8 ,	•	60
55.	Transport	Properties of Deuterium Fluoride-Argon	Mixtures		•	61
56.	Transport	Properties of Hydrogen Chloride-Helium	Mixtures		•	62
57.	Transport	Properties of Hydrogen Chloride-Nitrogen	Mixtures	•	•	63
58.	Transport	Properties of Hydrogen Chloride-Argon M	lixtures	• •	•	64

59.	Transport	Properties of Hydrogen Chloride-Hydrogen Mi	xtures	•	•	65
60.	Transport Mixtures	Properties of Hydrogen Chloride-Atomic Hydr	ogen .	•	•	66
61.	Transport	Properties of Hydrogen Chloride-Fluorine Mix	dures	•		67
62.	Transport Mixtures	Properties of Hydrogen Chloride-Atomic Fluor	rine		•	68
63.	Transport	Properties of Deuterium Chloride-Helium Mix	tures	•	•	69
64.	Transport	Properties of Deuterium Chloride-Nitrogen M	ixtures	•	•	70
65.	Transport	Properties of Deuterium Chloride-Argon Mixt	ures .		•	71
66.	Transport	Properties of Deuterium Chloride-Deuterium	Mixtures	1		72
67.	Transport Mixtures	Properties of Deuterium Chloride-Atomic Deu	terium • • •		•	73
68.	Transport	Properties of Deuterium Chloride-Fluorine M	ixtures		•	74
69.	Transport Mixtures	Properties of Deuterium Chloride-Atomic Fluc			•	75

Introduction

Because of continuing current interest, the properties of gases and gas mixtures of interest in chemical laser applications were studied. This final technical report constitutes the second in this series and supplements those substances and mixtures reported earlier [1]*. The present report also recommends further work.

Theoretical and Empirical Methods

In the earlier report the approach was taken that the Lennard-Jones 6-12 potential was used to calculate the viscosity and diffusion coefficients. For user convenience a brief summary of that material is reproduced here. For gaseous viscosity the mixture viscosity, $\mu_{\rm M}$, is given by

$$\mu_{\mathbf{M}} = \frac{1+\mathbf{Z}}{\mathbf{X}+\mathbf{Y}} \tag{1}$$

where

$$X = \frac{x_1^2}{\mu_{11}} + \frac{2x_1 x_2}{\mu_{12}} + \frac{x_2^2}{\mu_{22}}$$

$$Y = \frac{3A_{12}}{5} \left\{ \frac{x_1^2}{\mu_{11}} \frac{M_1}{M_2} + \frac{2x_1 x_2}{\mu_{12}} \frac{(M_1 + M_2)^2}{4M_1 M_2} + \frac{x_2^2}{\mu_{22}} \frac{M_2}{M_1} \right\}$$

$$Z = \frac{3A_{12}}{5} \left\{ x_1^2 \frac{M_1}{M_2} + 2x_1 x_2 \left[\frac{(M_1 + M_2)^2}{4M_1 M_2} \left(\frac{\mu_{12}}{\mu_1} + \frac{\mu_{12}}{\mu_2} \right) - 1 \right] + x_2^2 \frac{M_2}{M_1} \right\}$$

In these equations M_1 , M_2 , x_1 , and x_2 are the molecular weights and mole fractions of components 1 and 2 and the μ_{11} , μ_{12} , and μ_{22} represent the viscosities of component 1, a hypothetical gas 12 and component 2. The gas 12 is assumed to obey the same potential as gases 1 and 2 but to have a molecular weight M_{12} of $2M_1 M_2/(M_1 + M_2)$, a collision diameter σ_{12} of $(\sigma_1 + \sigma_2)/2$ and a well depth ε_{12}/k of $\sqrt{(\varepsilon_1/k)}$ (ε_2/k) . A_{12} is a collision integral function, tabulated simply as A in [1]. The μ_{11} are given by

$$10^{7} \mu_{ij} = 266.93 \sqrt{M_{ij}T} / \left\{ \sigma^{2} \Omega_{22} \left(kT/\epsilon_{ij} \right) \right\}, \begin{cases} i = 1, 2 \\ j = 1, 2 \end{cases} \frac{gm}{cm \text{ sec}}$$
 (2)

where the Ω_{22} is a collision integral, described and also partially tabulated in [1]. The quantities tabulated in our tables are μ_{11} , μ_{12} , and μ_{22} so that equation (1) should then be used to calculate μ_{M} .

^{*} Numbers in square brackets refer to the reference list.

For diffusion the equation

$$10^{5} D_{ij} = \frac{262.8}{P\sigma_{ij}^{2}} \sqrt{\frac{T^{3}}{M_{ij}}} \frac{1}{\Omega_{ij} (kT/\epsilon_{ij})} \frac{cm^{2}}{sec}$$
 (3)

can be used and the quantities tabulated are D_{11} , D_{12} , and D_{21} , for P=1 atm.

For thermal conductivity a more empirical approach was adopted. Values for the pure components were taken from earlier works [2,3] where possible. These values basically are curve-fits for the lower temperatures (i.e., below about 1000 K) faired into power function fits to the data (if any existed) above 1000 K or from a similar analysis of high temperature viscosity data. Values for the mixtures are merely the average (i.e., equimolar) values for the pure components, based on the premise that the thermal conductivity of a mixture is a linear function of its composition.

The summary of theoretical work in our earlier report led to the conclusion that no intermolecular potential is capable of representing the data for all properties to within the experimental error. This is due to orientation effects and inelasticity in collisions coupled with the inability to perform the mathematical calculations to sufficient accuracy and the fact that high energy collision and spectroscopic data may yield still different intermolecular potential values. This conclusion is in part supported by the more recent analysis [6,7] of the ability of the m-6-8 potential to simultaneously fit viscosity and second virial coefficient data for non-polar polyatomic gases. It was found that additional terms were necessary to represent the virial coefficient behaviour. This implied that a more comprehensive potential should then likewise be used to calculate the viscosity (and, of course, other properties). This is an enormous complication, both from the fundamental difficulty of calculating functions for comprehensive potentials and from the more practical viewpoint of fitting such potentials to the experimental data. While it is stated [6] that "work is in progress to modify the m-6-8 potential to include non-spherical effects" one reads on the same page that "one assumes that the molecules collide with a fixed relative orientation and collision integrals are calculated for each orientation independently. The final values of the collision integrals are then determined by a statistical averaging over all these possible orientations". Here is the important fact that the calculations to date assume a fixed relative orientation. This, coupled with the averaging requirement will, in the opinion of the writer, introduce sufficient uncertainty so as to negate possible improvements by modifying the potential. Indeed, it appears probable that this stage has already been reached from a fundamental viewpoint by the failure of

the potential to correctly model the dispersion coefficients, as was already mentioned in the discussion of equation (4) of our earlier report [1]. An extensive review [8] of some aspects of intermolecular forces does nothing to dispel the conclusion that realistic potentials are not yet available for molecules of complex structure. Hence, in the present work our previous use of the Lennard-Jones 6-12 potential is continued, especially as no extensive investigations of the ability of other potentials to represent the transport properties of gaseous mixtures appear to have been made.

Selection of Lennard-Jones 6-12 Parameters

The parameters for substances which have previously received attention in the literature were taken, where possible, from the tables of Svehla [10] for reasons detailed in our earlier report. Parameters for other substances were estimated using procedures either identical or similar to those of Svehla. The following table reproduces values of parameters for pure component substances not tabulated in our previous report.

Lennard-Jones 6-12 Parameters for Pure Gases

Gas	€/K(°K)	σ (Å)	1/√M
He	10.22	2.551	0.49980
N ₂	113.50	3.566	0.18894
A	138.20	3.287	0.15822
H_2	59.70	2.827	0.70430
D D	35.20	2.664	0.70712
NH ₃	558.30	2.900	0.24232
ND_3	337.00	2.900	0.22357
N_2H_4	760.00	3.180	0.17665
N_2D_4	462.00	3.380	0.16664
$\mathbf{F_2}$	112.60	3.357	0.16223
F	112.60	2.968	0.22942
NF ₃	175.00	4.154	0.11868
N_2F_4	240.00	3.880	0.09805
ClF ₅	448.30	4.900	0.08770
HF	330.00	3.148	0.22357
\mathbf{DF}	199.10	2.826	0.21223
HC1	344.70	3.339	0.16559
DC1	208.00	2.980	0.16340
H	37.00	2.701	C. 99210
D_2	35.21	2.952	0.50000

No analogous table to that of our previous report for all the gas pairs considered here is given in this report as the tables of the present report were generated from a computer program in which the mixture parameters were internally generated from the pure corponent values.

Calculation of Transport Properties of Pur. Gases and of Gas Mixtures

The computer print-out was, in fact, programmed so that the tables of viscosity and diffusion coefficient appearing in this report are edited copies of the computer sheets. The thermal conductivity values were based on experimental data, correlated with theory if possible as described in [3], or were generated by applying corrections for internal degrees of freedom to the calculated translational effect. In the latter case, some substances showed a significant divergence between the theoretical and the experimental values. In such cases, the calculated values were reduced to bring them into general accord with the experimental data. A comment is made on this in the Recommendations section. In our programming we adopted the fittings of Neufeld, Janzen, and Aziz [11] to generate the 6-12 collision integrals. It should be noted that their representation is only valid for reduced temperatures from 0.3 to 100 and not from 0.1 to 0.3 or from 100 to 400. Some problems were encountered before this fact was realized. While the lower end gives no practical difficulty, substances with low characteristic well depths, ϵ/k , can yield reduced temperatures over 100. A suitable blocking procedure was thus written into the program to prevent the computer extrapolating the calculation into regions where the reduced temperature exceeded one hundred. For the few cases where this occurred, tables were numerically generated using the approximations

$$\Omega_{11} = 1.10670 (T^*)^{-0.1575}$$

$$\Omega_{22} = 0.07183 (T^*)^{-0.1523}$$
(4)

which have been found to yield collision integrals accurate to 1/4 percent for reduced temperatures over 25. In fact, the use of the Lennard-Jones potential at such high reduced temperatures is physically unrealistic due to the predominance of the repulsive part of the potential for which an exponential dependence on intermolecular separation is preferable to a power one.

Summary and Recommendations

In the eighteen months duration of this project the first six months saw the preparation of tables of the thermal conductivity, viscosity, and Fickian diffusion coefficient for 38 binary mixtures and 9 pure substances which were distributed through AFOSR [1]. The present report gives tables for an additional 69 binary mixtures. Both sets of tables refer to the dilute gas state and present tables at 100 K increments from 100 K to 3000 K. The division of work between the two sets of tables followed AFOSR assessment of relative priority of the different mixtures and pure gases.

As a result of the work, some facts and conclusions can be stated. These can be summarized as

- 1. No tables have yet been generated for pressures above the atmospheric pressure (= dilute gas) state. While a detailed analysis would require a prolonged effort, an approximate study could be made using empirical tools of moderate accuracy. Some of the problems here are connected with the accuracy with which AFOSR/AFWL/others might require the effect of pressure to be known.
- 2. Of the three properties with which we have been concerned, thermal conductivity is the most uncertain. While estimates of the intermolecular potential affect all three properties, for thermal conductivity above the effect of the internal degrees of freedom can outweigh the translational energy contribution. It is proposed to pursue the problem of estimating the internal effect by generalized correlations firstly and then by rigorous theory if time allows.
- 3. Only one intermolecular potential function has been used to any extent to calculate mixture properties. Attention should be expanded to other potentials.
- 4. A useful further approach would be to use the Prandtl number as a means of obtaining thermal conductivies based on critically evaluated viscosity and specific heat values available from TPRC or other reliable sources.

References

÷)

- 1. Liley, P. E., "Transport Properties of Selected Elements and Compounds in the Gaseous State," TPRC Report 20, 75 pp., 1972. [AD 757 528]
- 2. Touloukian, Y.S., Liley, P.E., and Saxena, S.C., "Thermophysical Properties of Matter. 3. Thermal Conductivity of Nonmetallic Liquids and Gases," Plenum Press, N.Y., 531 pp., 1970.
- 3. Ho, C.Y., Powell, R.W., and Liley, P.E., "Thermal Conductivity of the Elements," J. Phys. Chem. Ref. Data, 1, 279-421, 1972; (supplementary volume), 985 pp., 1974.
- 4. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., "Molecular Theory of Gases and Liquids," Wiley, N.Y., 1964.
- 5. We have made no attempt to use some mixing rules which are more recent than those of [4]. Analysis of such later works yields no general conclusions as to their suitability.
- 6. Hanley, H.J.M. and Klein, M., "On the Utility of the m-6-8 Potential Function," N.B.S. TN 628, 77 pp., 1972.

- 7. Ely, J.F. and Hanley, H.J.M., "Analysis of the Viscosity and Second Virial Coefficients of Non-polar Polyatomic Gases Using the m-6-8 Potential," Mol. Phys., 24, 683-7, 1972.
- 8. Certain, P.R. and Bruch, L.W., "Intermolecular Forces," Chapter 4 of "Theoretical Chemistry" (W.B. Brown, ed.), MTP Int. Rev. Sci., Phys. Chem. Series 1, Butterworths, 114-65, 1972. (For a preprint citation see reference 20 of item 1.)
- 9. Brokaw, R.S., "Approximate Formulas for Viscosity and Thermal Conductivity of Gas Mixtures," NASA TN D 2502, 17 pp., 1964; Brokaw, R.W., Svehla, R.A., and Baker, C.E., "Transport Properties of Dilute Gas Mixtures," NASA TN D 2580, 15 pp., 1965.
- 10. Svehla, R.A., "Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures," NASA-TR-R-132, 120 pp., 1962.
- Neufeld, P.D., Janzen, A.R., and Aziz, R.A., "Empirical Equations to Calculate 16 of the Transport Collision Integrals for the Lennard-Jones (12-6) Potential,"
 J. Chem. Phys., <u>57</u>, 1100-2, 1972.

TABLE 1. TRANSPORT PROPERTIES OF HYDROGEN-NITROGEN MIXTURES

Э,

Temp. H ₂ (K)	20 100 71 200 43 300 33 400 39 500	59 600 93 700 41 800 00 900 72 1000	56 1100 50 1200 56 1300 72 1400 99 1500	36 1600 82 1700 39 1800 05 1900 80 2000	64 2100 58 2200 60 2300 71 2400 91 2500	19 2600 56 2700 00 2800 54 2900 15 3000
cient -4 H2-H2	0.20 0.71 1.43 2.33 3.39	4.59 5.93 7.41 9.00	12.56 14.50 16.56 18.72 20.99	23. 36 25. 82 28. 39 31. 05 33. 80	36.64 39.58 42.60 45.71 48.91	52.19 55.56 59.00 62.54 66.15
Diffusion Coefficient $(\mathbf{m^2 s^{-1} \cdot 10^{-4}})$ -N ₂ N ₂ -H ₂ H ₂	0.10 0.37 0.76 1.25 1.83	2. 49 3. 22 4. 03 5. 90	6.84 7.90 9.02 10.19	12.72 14.06 15.46 16.91 18.41	19.95 21.55 23.20 24.89 26.63	28.42 30.26 32.13 34.06 36.02
Diffu (r N ₂ -N ₂	0.03 0.10 0.21 0.34 0.50	0.69 0.89 1.12 1.37 1.63	1.91 2.21 2.52 2.85 3.20	3.56 3.94 4.33 4.73 5.15	5.59 6.03 6.50 7.46	7.96 8.47 9.00 9.54 10.09
$\begin{array}{c} \text{ctivity} \\ 10^{-3} \\ \text{H}_2\text{-H}_2 \end{array}$	68 128 182 221 257	291 325 360 394 428	460 493 526 559 592	624 657 689 720 752	783 813 843 873 903	932 960 987 1014 1042
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) $I_2^{-N_2}$ N ₂ -H ₂ H ₂ -1	38 73 104 127 148	167 187 207 226 245	263 282 300 319 338	356 376 395 414 433	452 469 487 504 522	539 555 571 587 603
Therm (W N_2-N_2	18 26 33 39	4 4 2 8 8 8 8 8 8 8 9 8 9 8 9 9 8 9 9 9 9 9	67 75 80 84	89 95 101 108 115	121 126 131 136 141	146 151 155 160
- 5 H ₂ -H ₂	38 66 89 108 125	141 156 170 184 197	209 221 233 244 256	267 277 288 298 308	318 328 337 347 356	365 374 383 392 400
Viscosity (Nsm ⁻² ·10 ⁻⁵) 1 N ₂ -H ₂ F	35 65 89 109 127	143 159 173 187 200	213 225 237 249 260	272 282 293 304 314	324 343 353 363	372 381 390 399
V (N8 N2-N2	65 128 179 223 262	297 330 361 390 418	445 471 496 521 544	568 591 613 635 656	677 698 718 738 758	778 797 816 835
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000

TABLE 2. TRANSPORT PROPERTIES OF HYDROGEN-ARGON MIXTURES

Temp.	Ž)	Viscosity (Nsm ⁻² ·10 ⁻⁵)	<u></u>	Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10^{-3})	oermal Conductivit (W m ⁻¹ K ⁻¹ · 10 ⁻³)	ctivity 10-3)	Diffue (E	Diffusion Coefficient (m ² s ⁻¹ · 10 ⁻⁴)	cient 4)	Temp.
(4)	H_2-H_2	H ₂ -A	A-A	H ₂ -H ₂	H ₂ -A	A-A	HH	H ₂ -A	A-A	Z
100	38	37	83	89	37	2	0.20	0.10	0.02	100
200	99	20	166	128	2	12	0.71	0.39	0.09	200
300	68	96	237	182	66	17	1.43	0.80	0.19	300
400	. 108	118	298	221	121	22	2.33	1.33	0.32	400
200	125	138	352	257	141	56	3,39	1.94	0.47	200
009	141	156	401	291	160	30	4.59	2.64	0.65	009
700	156	173	447	325	179	34	5, 93	3.43	0.85	700
800	170	188	490	360	198	37	7.41	4.29	1.06	800
006	18	203	531	394	217	40	9.00	5.22	1.30	006
1000	197	218	269	428	235	43	10.72	6.22	1.55	1000
1100	209	232	607	460	252	45	12.56	7.28	1.82	1100
1200	221	245	642	493	270	48	14.50	8.41	2.11	1200
1300	233	258	677	526	288	51	. 16, 56	9.61	2.41	1300
1400	244	271	710	559	306	%	18.72	10.87	2.72	1400
1500	256	584	743	285	324	26	20.99	12.18	3.05	1200
1600	267	296	775	624	341	59	23.36	13.56	3.40	1600
1700	277	307	908	657	359	62	25.82	14.99	3.76	1700
1800	288	319	837	689	376	49	28, 39	16.48	4.14	1800
1900	298	330	998	720	393	29	31.05	18.02	4.52	1900
2000	308	342	968	752	410	69	33.80	19.62	4.93	2000
2100	318	353	925	783	427	72	36.64	21.27	5.34	2100
2200	328	363	953	813	443	74	39, 58	22.97	5.77	2200
2300	337	374	981	843	460	7.7	42.60	24.73	6.21	2300
2400	347	384	1008	873	476	79	45,71	26.53	99.9	2400
2500	356	395	1035	903	492	83	48.91	28.39	7.13	2500
2600	365	405	1062	932	508	æ	52.19	30.29	7.61	2600
2700	374	415	1088	096	523	98	55, 56	32.25	8.10	2700
2800	383	425	1114	286	538	89	59.00	34.25	8.60	2800
2900	392	434	1140	1014	552	91	62.54	36.30	9.12	2900
3000	400	444	1165	1042	268	\$	66.15	38.40	9.64	3000

TABLE 3. TRANSPORT PROPERTIES OF ATOMIC HYDROGEN-NITROGEN MIXTURES

Temp.	(X)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ient)	н-н	0.37	1.22	2.42	3.90	5.66	7.65	9.88	12.32	14.98	17.83	20.88	24.12	27.53	31.13	34.90	38.84	42.94	47.20	51.62	56.20	60.93	65.81	70.83	76.01	81.32	86.78	92.38	98.11	103.98	109.99
Diffusion Coefficient (m² s-1·10-4)	H-2N	0.16	0.57	1.16	1.89	2.75	3,74	4.83	6.03	7.34	8.74	10.23	11.82	13.49	15.25	17.10	19.03	21.04	23.13	25.29	27.54	29.85	32.24	34.71	37.24	39.82	42.52	45.26	48.07	50.95	53.89
Diffue (n	N2-N2	0.03	0.10	0.21	0.34	0.50	0.69	0.89	1.12	1.37	1.63	1.91	2.21	2.52	2.85	3.20	3, 56	3.94	4.33	4.73	5.15	5.59	6.03	6.50	6.97	7.46	7.96	8.47	9.00	9.5	10.09
activity 10-3)	н-н	106	175	230	278	321	362	400	436	470	504	536	567	597	626	655	683	710	737	763	789	814	839	863	888	911	935	958	981	1003	1026
Condi K-1	N2-H	57	96	128	155	180	203	224	245	264	283	301	319	336	353	369	386	402	419	435	452	468	482	497	512	526	540	555	568	581	595
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³)	N_2-N_2	6	18	5 6	33	39	44	49	54	59	63	29	71	75	80	84	88	95	101	108	115	121	126	131	136	141	146	151	155	160	165
~	н-н	85	57	75	91	105	118	130	142	153	164	175	185	194	204	213	222	231	240	249	257	265	273	281	289	297	305	312	320	327	334
Viscosity (Nsm-2 · 10	N2-H	29	25	2	82	66	112	124	135	146	156	166	175	185	194	203	211	220	228	236	244	252	260	267	275	282	289	297	304	311	318
Vi (Nsr	N2-N2	65	128	179	223	262	297	330	361	390	418	445	471	496	521	544	268	591	613	635	656	677	869	718	738	758	778	797	816	835	853
Temp.	2	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 4. TRANSPORT PROPERTIES OF ATOMIC HYDROGEN-ARGON MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000
clent 4) H-H	0.37 2.42 3.90 5.66	7.65 9.88 12.32 14.98	20.88 24.12 27.53 31.13 34.90	38.84 42.94 47.20 51.62 56.20	60, 93 65, 81 70, 83 76, 01 81, 32	86.78 92.38 98.11 103.98
Diffusion Coefficient (m² s ~ · 10 ~) A A-H H	0.17 0.61 1.24 2.02 2.95	4.00 5.18 6.47 7.87	10.98 12.68 14.48 16.37	20.42 22.58 24.82 27.14 29.55	32.04 34.60 37.24 39.96 42.76	45.63 48.57 51.59 54.67 57.83
v Diffur (r A-A	0.02 0.09 0.19 0.32	0.65 0.85 1.30 1.55	1.82 2.11 2.41 2.72 3.05	3.40 3.76 4.14 4.52 4.93	5.34 5.77 6.21 7.13	7.61 8.10 8.60 9.12
ictivity 10-3) H-H	106 175 230 278 321	362 400 436 470 504	536 567 597 626 655	683 710 737 763 789	814 839 863 888 911	935 958 981 1003
hermal Conductivit (W m ⁻¹ K ⁻¹ · 10 ⁻³) \lambda - A - H H - H - H	56 123 150 173	196 217 236 255 273	290 307 324 340 355	371 386 400 415 429	443 456 470 483	509 522 535 547 560
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) A-A A-H H-H	7 12 17 22 26	8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	45 51 54 56	59 62 64 67 69	72 77 79 82	88 89 10 14 14
y)-6) H-H	34 57 75 91	118 130 142 153 164	175 185 194 204 213	222 231 240 249 257	265 273 281 289 297	305 312 320 327 334
Viscosity (Nsm ⁻² ·10 ⁻⁶)	31 56 76 92 107	121 134 146 158 169	180 190 201 210 220	229 239 248 256 265	274 282 290 298 306	314 322 330 337 345
(Ne A-A	83 166 237 298 352	401 447 490 531 569	607 642 677 710 743	775 806 837 866 896	925 953 981 1008 1035	1062 1088 1114 1140 1165
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 2000	2100 2200 2300 2400 2500	2600 2700 2800 3900

TABLE 5. TRANSPORT PROPERTIES OF DEUTERIUM-NITROGEN MIXTURES

神文を 一年にいるとはなるとうできます

Temp. (K)		100	200	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1200	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ent T	र्ग-र्ग	0.16	0.52	1.03	1.66	2.40	3, 25	4.20	5.24	6.37	7.58	8.88	10.25	11.71	13.24	14.84	16.51	18.26	20.07	21.95	23.90	25.91	27.98	30.12	32.32	34.58	36.90	39.28	41.72	44.21	46.77
Diffusion Coefficient (m² s-1·10-4)	N2-12	0.08	0.28	0.57	0.93	1.35	1.84	2.37	2.96	3.60	4.29	5.02	5.80	6.63	7.49	8.40	9.35	10.33	11.36	12.42	13.53	14.66	15.84	17.05	18.29	19.57	20.89	22.23	23.61	25.03	26.47
Diffus: (m	N2-N2	0.03	0.10	0.21	o. 34	0.50	0.69	0.89	1.12	1.37	1.63	1.91	2.21	2.52	2.85	3.20	3.56	я Ж	4.33	4.73	5.15	5.59	6.03	6.50	6.97	7.46	7.96	8.47	9.00	9.5	10.09
tivity 0-2)	٠٠-٠٠ نام-ان	58	101	141	176	210	243	274	305	336	365	393	421	449	476	502	528	554	579	605	630	654	678	702	726	750	774	797	821	844	868
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻²)	N2-172	33	29	83	104	124	143	161	179	197	214	230	246	262	278	293	308	324	340	356	372	387	402	416	431	445	460	474	488	502	516
Therm (W n	41 - 41	G	18	5 6	33	39	4	49	25	29	63	29	71	75	80	\$	88	92	101	108	115	121	126	131	136	141	146	151	155	160	165
_	તુ- ત	58	96	126	152	175	197	218	238	256	275	292	309	325	341	357	372	387	402	416	430	444	457	471	484	497	510	522	535	547	559
Viscosity (Nsm ⁻² ·10 ⁻⁶)	Z-1-Z	22	95	123	150	174	196	217	236	255	273	291	308	324	340	355	371	385	400	414	428	442	455	469	482	495	207	520	532	545	557
^ N	21 - 21 21 - 21	65	128	179	223	262	297	330	361	390	418	445	471	496	521	544	568	591	613	635	656	677	869	718	738	758	778	797	816	835	853
Temp. (K)		100	200	300	400	200	009	700	800	906	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 6. TRANSPORT PROPERTIES OF DEUTERIUM-ARGON MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000
ient A-A	0.02 0.09 0.19 0.32	0.65 0.85 1.06 1.30	1.82 2.11 2.41 3.05	3.40 3.76 4.14 4.52	5,34 5,77 6,21 7,13	7.61 8.10 8.60 9.12
Diffusion Coefficient (m² s ⁻¹ ·10 ⁻⁴) -D ₂ D ₂ -A A	0.08 0.29 0.60 0.98	1.93 2.50 3.12 3.80 4.52	5.30 6.12 6.99 7.90 8.86	9.86 10.90 11.98 13.10	15.46 16.70 17.98 19.29 20.64	22.03 23.45 24.90 26.39 27.92
Diffusi (m) D ₂ -D ₂	0.16 0.52 1.03 1.66 2.40	3.25 4.20 5.24 6.37	8.88 10.25 11.71 13.24 14.84	16.51 18.26 20.07 21.95 23.90	25.91 27.98 30.12 34.58	36.90 39.28 41.72 44.21 46.77
ctivity 10~3) A-A	12 17 22 26	08 49 44 43 44 43 43 43 43 43 43 43 43 43 43	45 51 54 56	59 64 67 69	72 77 79 82	86 89 94 94
hermal Conductivii (W m ⁻¹ K ⁻¹ · 10 ⁻³) 2-D ₂ D ₂ -A A-A	32 56 79 99 108	136 154 171 188 204	219 234 250 265 279	293 308 321 336 349	363 376 389 402 416	429 441 455 467 481
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) D ₂ -D ₂ D ₂ -A A-A	58 101 141 176 210	243 274 305 336 365	393 421 449 476 502	528 554 579 605	654 678 702 726 750	774 797 821 844 868
-•) A-A	83 166 237 298 352	401 447 490 531 569	607 642 677 710 743	775 806 837 866 896	925 953 981 1008 1035	1062 1088 1114 1140 1165
Viscosity (Nsm-2·10-6) D ₂ -A	55 99 134 190	215 238 259 280 300	319 337 355 373 390	406 423 454 469	485 499 514 528 542	556 570 584 597 610
N)	58 96 126 152 175	197 218 238 256 275	292 309 325 341	372 387 402 416 430	444 457 471 484 497	510 522 535 547 559
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000

TABLE 7. TRANSPORT PROPERTIES OF ATOMIC DEUTERIUM-NITROGEN MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
cient *) D-D	0.27 0.90 1.79 2.88	5.65 7.29 9.10 11.06 13.17	15. 42 17. 81 20. 33 22. 99 25. 77	28.68 31.71 34.85 38.12 41.50	44.99 48.59 52.30 56.12 60.05	64.08 68.21 72.45 76.78 81.22
Diffusion Coefficient (m² s ⁻¹ ·10 ⁻⁴) -N ₂ N ₂ -D D	0.12 0.42 0.85 1.39 2.03	2.75 3.56 4.44 5.40 6.43	7.53 8.70 9.93 11.23	14.01 15.49 17.03 18.62 20.27	21.98 23.74 25.55 27.42 29.34	31.31 33.32 35.39 37.51 39.68
Diffus (n N ₂ -N ₂	0.03 0.21 0.34 0.50	0.69 0.89 1.12 1.37	1.91 2.21 2.52 2.85 3.20	3. 56 4. 33 4. 73 15	5.59 6.03 6.97 7.46	7.96 8.47 9.00 9.54 10.09
ctivity 10~) D-D	79 130 170 205 237	267 295 322 347 372	395 418 440 462 483	504 524 544 563	601 619 637 655	690 707 724 741 757
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 $^{-3}$) N ₂ -N ₂ N ₂ -D D-1	44 74 98 119 138	155 172 188 203 217	231 244 257 271 283	296 309 322 335 348	361 372 384 395 407	418 429 439 450 461
Therm: (W n N ₂ -N ₂	9 18 33 39	44 49 59 63	67 71 75 80 84	89 95 101 108 115	121 126 131 141	146 151 155 160 165
-•) D-D	50 83 109 132 152	171 189 206 223 238	254 268 283 296 310	323 336 349 361 373	385 397 409 420	443 453 464 475 486
Viscosity (Nsm ⁻² · 10^{-5})	41 73 98 120 139	157 173 189 204 218	232 246 259 272 284	296 308 331 342	353 364 375 385 395	406 416 426 435 445
(Ne N2-N2	65 128 179 223 262	297 330 361 390 418	445 471 496 521 544	568 591 613 635 656	677 698 718 738	778 797 816 835 853
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000

TABLE 8. TRANSPORT PROPERTIES OF ATOMIC DEUTERIUM-ARGON MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000
ient) D-D	0.27 0.90 1.79 2.88 4.18	5.65 7.29 9.10 11.06 13.17	15.42 17.81 20.33 22.99 25.77	28.68 31.71 34.85 38.12 41.50	44.99 48.59 52.30 56.12 60.05	64.08 68.21 72.45 76.78 81.22
Diffusion Coefficient (m² s ⁻¹ ·10 ⁻⁴) ·A A-D D	0.12 0.45 0.91 1.48 2.16	2.94 3.80 4.74 5.77	8.05 9.30 10.61 12.00	14.97 16.55 18.19 19.90 21.66	23.49 25.37 27.30 29.30 31.35	33.45 35.61 37.82 40.08
Diffu (r A-A	0.02 0.09 0.19 0.32	0.65 0.85 1.06 1.30	2.11 2.11 2.41 2.72 3.05	3.40 3.76 4.14 4.52 93	5.34 6.21 6.66 7.13	7.61 8.10 8.60 9.12
ictivity 10-3) D-D	79 130 170 205 237	267 295 322 347 372	395 418 440 462 483	504 524 544 563 582	601 619 637 655 673	690 707 724 741
mal Conductivit m-1 K-1 · 10-3) A-D D-D	43 71 93 113 131	148 164 179 193 207	220 233 245 258 269	281 294 304 325	336 346 357 367	387 396 406 416 425
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) A-A A-D D-D	12 17 22 26	88 84 84 4 84 83	45 51 54 56	59 64 67 69	72 77 79 82	. 88 88 89 89 89 89 89 89 89 89 89 89 89
/ - s D-D	50 83 109 132 152	171 189 206 223 238	254 268 283 296 310	323 336 349 361 373	385 397 409 420 431	443 453 475 486
Viscosity (Nsm ⁻² ·10 ⁻⁵	44 79 107 130	171 189 206 223 238	254 268 283 296 310	323 336 349 361 373	385 397 409 420 431	443 454 464 475 486
v (Ns A-A	83 166 237 298 352	401 447 490 531 569	607 642 677 710 743	775 806 837 866 896	925 953 981 1008 1035	1062 1088 1114 1140 1165
Temp. (K)	100 200 300 400 500	600 700 800 1000	1100 1200 1300 1400 1500	1600 1700 1800 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000

TABLE 9. TRANSPORT PROPERTIES OF AMMONIA-NITROGEN MIXTURES

Temp.	(¥)	100	200	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
iclent	NH3-NH3	0.02	0.09	0.20	0.35	0.56	0.80	1.08	1.40	1.75	2.14	2.56	3.00	3.47	3, 97	4.49	5.04	5.61	6.20	6.82	7.46	8.12	8.80	9.50	10.22	10.97	11.73	12.51	13.32	14.14	14.98
Diffusion Coefficient (m² s-1·10-4)	N2-NH3	0.02	0.10	0.21	0.37	0.57	0.79	1.04	1.32	1.62	1.95	2.30	2.67	3.06	3.47	3.90	4.35	4.82	5.30	5.81	6.33	6.87	7.43	8 .	8.59	9.19	9.81	10.45	11.10	11.77	12.45
Diffu (r	N_2-N_2	0.03	0.10	0.21	0.34	0.50	0.69	0.89	1.12	1.37	1.63	1.91	2.21	2.52	2.85	3.20	3, 56	3.94	4.33	4.73	5.15	5, 59	6.03	6.50	6.97	7.46	7.96	8.47	9.00	9.54	10.09
activity 10-3)	NH3-NH3	വ	15	25	36	51	99	81	86	115	136	156	176	197	219	242	265	289	313	338	364	391	418	446	472	. 205	532	561	591	620	650
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³)	N2-NHg	2	16	25	35	45	22	65	92	87	66	111	123	136	149	163	177	192	207	223	239	256	272	288	304	322	339	356	373	390	407
Therr (W	N_2-N_2	ග	18	5 6	33	39	44	49	2	29	63	67	11	75	80	\$	88	95	101	108	115	121	126	131	136	141	146	151	156	160	165
.y r ⁶)	NH3-NH3	52	20	103	138	174	209	244	276	308	338	367	395	423	449	474	498	522	545	267	589	611	631	652	672	692	711	730	749	167	286
Viscosit (Nsm ⁻² ·10	N2-NH3	26	6 6	140	183	223	259	293	325	354	383	410	436	461	485	208	531	553	574	595	615	929	655	675	69	712	731	749	767	785	802
5	N2-N2	65	128	179	223	262	297	330	361	330	418	445	471	496	521	\$	268	591	613	635	656	677	698	718	738	758	778	797	816	835	823
Temp.	3	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 10. TRANSPORT PROPERTIES OF AMMONIA-ARGON MIXTURES

Temp. (K)	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
efficient 10-4) NH3-NH3	0.02	0.09	0.20	0.35	0.56	0.80	1.08	1.40	1.75	2.14	2.56	3.00	3.47	3.97	4.49	5.04	5.61	6.20	6.82	7.46	8.12	8.80	9.50	10.22	10.97	11.73	12.51	13, 32	14.14	14.98
Diffusion Coefficient (m² s -1 ·10 -4) A A-NH ₃ NH ₃ -NH	0.02	0.09	0.21	0.37	0.56	0.79	1.04	1:32	1.63	1.96	2.31	2.69	3,08	3, 50	3, 93	4.39	4.86	5.36	5.87	6.40	6.95	7.51	8,09	8, 69	9.30	9,93	10.58	11.24	11.91	12.61
Diff A-A	0.02	0.09	0.19	0.32	0.47	0.65	0.85	1.06	1.30	1.55	1.82	2.11	2.41	2.72	3.05	3.40	3,76	4.14	4.52	4.93	5.34	5.77	6.21	99.9	7.13	7.61	8.10	8.60	9.12	9.64
mal Conductivity m ⁻¹ K ⁻¹ · 10 ⁻³) A-NH ₃ NH ₃ -NH ₃	တ	15	25	36	51	99	81	98	115	136	156	176	197	219	242	265	289	313	338	364	391	418	446	472	502	532	561	591	620	650
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) A-A A-NH ₃ NH ₃ -NH ₃	9	13	ដ	23	38	48	24	29	78	83	100	112	124	136	149	162	175	188	202	216	231	246	261	275	292	308	323	340	355	372
Ther (W	7	12	17	22	5 6	30	8	37	40	43	45	48	51	2	99	29	62	64	29	69	72	74	77	43	85	3 5	98	88	91	8
sity 10 ⁻⁵) NH ₃ -NH ₃	39	20	103	138	174	209	244	276	308	338	367	395	423	449	474	498	522	545	567	589	611	631	652	672	692	711	730	749	292	786
Viscosity (Nsm ⁻² ·10 ⁻⁵) A-NH ₃ NH ₃ -	51	102	154	204	249	291	331	367	401	434	465	495	524	552	579	605	630	655	679	702	726	748	770	792	814	835	826	876	897	917
(P A-A	83	166	237	298	352	401	447	490	531	269	209	642	677	710	743	775	806	837	998	896	925	953	981	1008	1035	1062	1088	1114	1140	1165
Temp. (K)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 11. TRANSPORT PROPERTIES OF NITROGEN TRIDEUTERIDE-HELIUM MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
ient () HE-HE	0.29 0.92 1.84 3.01	6.04 7.88 9.92 12.20 14.60	17.20 20.10 23.00 26.30	33.20 36.90 40.80 44.90 49.10	53.50 58.10 62.80 67.70	78.00 83.40 88.90 94.60 101.00
4 1	0.42 0.85 1.38 2.01	2. 2. 3. 5. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	7.45 8.60 9.82 111.10	13.85 15.31 16.83 18.41 20.04	21.73 23.47 25.26 27.11	30.95 32.94 34.99 37.08
Diffusion Coeff (m² s-1·10 ND3-ND3 ND3-HE	0.10 0.24 0.42 0.65	0.92 1.22 1.56 1.92 2.32	2.74 3.19 3.67 4.17	5.25 5.82 6.41 7.03	8.33 9.01 9.72 10.44	11.94 12.72 13.52 14.34 15.17
ivity 0-3) HE-HE	73 115 152 187 220	252 281 308 332 357	380 403 447 468	488 508 528 547 566	585 603 622 640 657	674 591 708 724 740
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) ₃ -ND ₃ ND ₃ -HE HE-HE	- 66 90 113 137	160 182 203 223 243	262 282 301 321 340	360 380 400 442	464 486 508 531 553	575 598 621 644 668
Therma (W m ND ₃ -ND ₃	- 117 28 47 47	68 83 98 114 130	145 161 178 195 213	232 252 272 294 318	343 369 395 422 449	477 506 535 565 595
) не-не	99 156 202 244 284	322 359 394 429 461	494 525 556 586 614	643 671 698 725 752	778 804 830 855 880	905 929 953 977 1001
Viscosity (Nsm-2·10-5) (D ₃ ND ₃ -HE	- 130 174 212 246	277 306 334 360 386	410 434 457 480 502	523 544 564 585 604	624 643 661 680 698	716 734 751 769 786
V (ND3-RD3	- 96 145 194 240	283 324 361 397 431	463 524 524 580	607 633 659 684 708	732 755 778 800 822	844 865 886 927
Temp. (K)	100 200 300 500 500	600 700 800 1000	1100 1200 1300 1400 1500	1600 1700 1800 · 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000

TABLE 12. TRANSPORT PROPERTIES OF NITROGEN TRIDEUTERIDE-NITROGEN MIXTURES

Temp. (K)	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
Diffusion Coefficient $(m^2 \text{ s}^{-1} \cdot 10^{-4})$ $-N_2 N_2 - \text{ND}_3 \text{ ND}_3 - \text{ND}_3$		0 0.10						4 1.56		6 2.32			6 3.67			4 5.25					3 8.33			_		4 11.94				
usion Coeffici (m² s-1·10-4) N ₂ -ND ₃ ND	1 3	0.10	0.2	0.39	0.59	0.81	1.06	1.3	1.64	1.96	2.3	2.6	3.06	3.47	ж ж	4.34	4.8	5.2	5.78	6.3	6.83	7.3	7.9	8.53	9.13	9.74	10.3	11.01	11.67	12.3
Diffu (: N ₂ -N ₂	0.03	0.10	0.21	o.34	0.50	0.69	0.89	1.12	1.37	1.63	1.91	2.21	2.52	2.85	3.20	3,56	3.94	4.33	4.73	5.15	5.59	6.03	6.50	6.97	7.46	7.96	8.47	9.00	9.54	10.09
ctivity 10 ⁻³) ND ₃ -ND ₃	1 1	17	58	40	ጁ	68	83	86	114	130	145	161	178	195	213	232	252	272.	294	318	343	369	395	422	449	477	206	535	565	595
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) -N ₂ N ₂ -ND ₃ ND ₃ -N	1 1	17	27	36	46	26	99	92	98	96	106	115	126	137	148	160	173	186	201	216	232	247	263	279	292	311	328	345	362	380
Therr (W N ₂ -N ₂	o (18	5 6	83	39	#	49	ጄ	23	63	29	17	75	80	\$	89	92	101	108	115	121	126	131	136	141	146	151	155	160	165
'-*) ND3-ND\$	1 6	96 ,	145	194	240	283	324	361	397	431	463	494	524	552	580	209	633	629	684	708	732	755	778	800	822	844	865	886	906	927
Viscosity (Nsm ⁻² ·10 ⁻⁵) N ₂ -ND ₃ NI	1	111	164	211	254	293	328	362	393	423	452	479	206	531	556	581	604	627	650	672	694	715	736	756	777	797	817	836	855	874
(P	65	128	179	223	262	297	330	361	390	418	445	471	496	521	544	268	591	613	635	929	677	869	718	738	758	778	197	816	835	853
Temp. (K)	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 13. TRANSPORT PROPERTIES OF NITROGEN TRIDEUTERIDE-ARGON MIXTURES

Temp. (K)	100	200	300	400	200	009	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
Diffusion Coefficient (m² s-1·10-4) D ₃ -ND ₃ ND ₃ -A A-A	- 0.02		0.22 0.19		0.58 0.47	0.81 0.65	1.06 0.85			1.96 1.55	2.31 1.82				3.91 3.05	4.36 3.40			5.81 4.52	6.33 4.93	ທ່	က်	7.99 6.21	6	9.18 7.13	9.80 7.61		1.08 8.60	11.75 9.12	2.42 9.64
Diffusion Coeff (m² s-i·10 ND3-ND3 ND3-A	ı	0.10			0.65	0.92		1.56	1.92	2.32							5.82				8.33		9.72		11.18				14.34	
ivity 0-3) A-A	2	12	17	22	56	30	34	37	40	43	45	48		54	56	29	62	64	29	69	72	74	22	79	82	84	98	89	16	ಸ
Conduct K ⁻¹ ·1 ND ₃ -A	t	14	22	31	40	49	29	89	77	98	95	104	114	124	134	145	157	168	180	193	207	221	236	251	265	281	296	312	328	345
Thermal Conductivity (W m ⁻⁴ K ⁻⁴ · 10 ⁻³) ND ₃ -ND ₃ ND ₃ -A A-4	ı	17	28	40	54	68	83	86	114	130	145	161	178	195	213	232	252	272	294	318	343	369	395	422	449	477	206	535	565	595
A-A	83	166	237	298	352	401	447	490	531	569	209	642	677	710	743	775	908	837	998	968	925	953	981	1008	1035	1062	1088	1114	1140	1165
Viscosity (Nsm ⁻² ·10 ⁻⁵) :ND ₃ ND ₃ -A	ı	123	184	238	288	333	374	413	450	485	518	220	581	610	639	299	694	721	747	773	798	822	846	870	894	917	939	962	984 486	1008
Vis (Nsm ND ₃ -ND ₃	ı	96	145	194	240	283	324	361	397	431	463	494	524	552	280	607	633	629	684	208	732	755	778	800	822	844	865	886	906	927
Temp. (K)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 14. TRANSPORT PROPERTIES OF NITROGEN TETRAHYDRIDE-HELIUM MIXTURES

N-H2N	Viscosity (Nsm ⁻² ·10 ⁻⁵) N ₂ H ₄ -N ₂ H ₄ -HE	田田	Thermal Conduct (W m ⁻¹ K ⁻¹ ·1 N ₂ H ₄ -N ₂ H ₄ N ₂ H ₄ -HE	Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) 4-N ₂ H ₄ N ₂ H ₄ -HE HE-	uvit 0-3) HE	Diffusi (m) N ₂ H ₄ -N ₂ H ₄	Diffusion Coefficient $(m^2 s^{-1} \cdot 10^{-4})$ $ -N_2H_4 N_2H_4 - HE HE$	ient) HE-HE	Temp. (K)
43	61	66	14	43	73	0.01	0.09	0.29	100
9	112	156	8	72	115	0.05	0.34	0.92	200
111	153	202	4	86	152	0.11	0.69	1.84	300
o.	187	244	29	123	187	0.20	1.14	3.01	400
~	218	284	74	147	220	0.32	1.66	4.41	200
S	247	322	88	170	252	0.46	2.26	6.04	009
က	273	359	102	191	281	0.62	2.93	7.88	700
0	298	394	116	211	308	0.81	3.66	9.92	800
ဖွ	322	429	131	231	332	1.02	4.45	12.20	900
0	344	461	144	250	357	1.24	5.31	14.60	1000
8	366	494	160	270	380	1.49	6.21	17.20	1100
4	388	525	176	288	403	1.75	7.18	20.10	1200
Š	408	556	192	308	425	2.03	8.20	23.00	1300
2	428	586	209	327	447	2.33	9.27	26.30	1400
က္သ	448	614	224	347	468	2.64	10.39	29.60	1500
ヹ	467	643	240	364	488	2.96	11.56	33.20	1600
8	486	671	256	382	508	3.30	12.78	36.90	1700
4	504	869	272	400	528	3,65	14.05	40.80	1800
8	522	72F	287	417	547	4.02	, 15.37	44.90	1900
4	540	752	302	434	999	4.40	16.73	49.10	2000
619	557	778	317	454	585	4.79	18.14	53, 50	2100
3	574	804	332	467	603	5.20	19.59	58.10	2200
9	591	830	848	485	622	5.62	21.09	62.80	2300
9	209	855	198	501	640	6.05	22.63	67.70	2400
, - 4	623	880	8 6 7	212	657	6.49	24.21	72.80	2500
83	640	902	392	533	674	6.94	25.84	78.00	2600
ιĊ	655	626	407	549	691	7.41	27.50	83.40	2700
တ္	671	953	427	564	708	7.89	29.21	88.90	2800
<u> </u>	989	977	÷.	280	724	8. 38	30.96		2900
-	702	1001	450	292	740	8.88	32.75	101.00	3000

TABLE 15. TRANSPORT PROPERTIES OF NITROGEN TETRAHYDRIDE-NITROGEN MIXTURES

the second of th

Temp. (K)	100	200	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ent N_2-N_2	0.03	0.10	0.21	0.34	0.50	0.69	0.89	1.12	1.37	1.63	1.91	2.21	2.52	2.85	3.20	3.56	3.94	4.33	4.73	5.15	5.59	6.03	6.50	6.97	7.46	7.96	8.47	9.00	9.54	10.09
Diffusion Coefficient ($\mathbf{m}^2 \mathbf{s}^{-1} \cdot 10^{-4}$) $I_4 - N_2 H_4 N_2 H_4 - N_2 N_3$	0.02	0.07	0.16	0.28	0.43	0.60	0.79	1.01	1.24	1.49	1.75	2.04	2.34	2.65	2.98	3, 33	3.69	4.06	4.45	4.85	5.26	5.69	6.13	6.58	7.04	7.52	8.01	8.51	9.02	9.54
Diffusion Coeffic $(m^2 s^{-1} \cdot 10^{-4})$ $N_2H_4-N_2H_4-N_2$	0.01	0.05	0.11	0.20	0.32	0.46	0.62	0.81	1.02	1.24	1.49	1.75	2.03	2.33	2.64	2.96	3,30	3.65	4.02	4.40	4.79	5.20	5.62	6.05	6.49	6.94	7.41	7.89	8.38	8.88
vity 2) N2-N2	G	18	56	33	39	4	49	72	29	63	67	7.1	75	80	\$	88	92	101	108	115	121	126	131	136	141	146	151	156	160	165
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) $H_4-N_2H_4$ $N_2H_4-N_2$ N_2	11	24	35	46	57	99	92	82	92	103	113	123	133	144	154	164	175	186	197	208	219	229	239	249	259	569	279	287	298	307
Thermal (W m ⁻¹ N ₂ H ₄ -N ₂ H ₄	14	30	44	59	74	88	102	116	131	144	160	176	192	209	224	240	256	272	287	302	317	332	348	362	378	392	407	421	436	450
N_2-N_2	65	128	179	223	262	297	330	361	390	418	445	471	496	521	544	268	591	613	635	656	677	698	718	738	758	778	797	816	835	853
Viscosity (Nsm ⁻² ·10 ⁻⁵) pH ₄ N ₂ H ₄ -N ₂	49	86	148	195	239	278	315	349	382	413	442	470	497	523	549	573	597	621	644	999	688	402	730	751	771	791	811	830	849	898
Viscosity (Nsm ⁻² ·10 ⁻ N ₂ H ₄ -N ₂ H ₄ N ₂ H ₄ -N ₂	43	92	111	149	187	225	263	300	336	370	403	434	465	495	523	551	578	604	630	654	629	703	726	749	171	793	815	836	857	877
Temp. (K)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 16. TRANSPORT PROPERTIES OF NITROGEN TETRAHYDRIDE-ARGON MIXTURES

Temp. (K)	100	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
int A-A	0.02	0,19	0.32	0.47	0.65	0.85	1.06	1.30	1.55	1.82	2.11	2.41	2.72	3.05	3.40	3.76	4.14	4.52	4.93	5.34	5.77	6.21	99.9	7.13	7.61	8.10	8.60	9.12	9.64
Diffusion Coefficient (m² s-1·10-4) H ₄ -N ₂ H ₄ N ₂ H ₄ -A A	0.02	0.15	0.27	0.41	0.58	0.77	0.98	1.20	1.45	1.71	1.99	2.28	2.59	2. 92	3.26	3,61	3,98	4.36	4.75	5.16	5.58	6.01	6.45	6.91	7.38	7.86	8.35	8.86	9.37
Diffusion $(m^2 R)$ $N_2 H_4 - N_2 H_4$	0.01	0.11	0.20	0.32	0.46	0.62	0.81	1.02	1.24	1.49	1.75	2.03	2.33	2.64	2.96	3,30	3.65	4.02	4.40	4.79	5.20	5.62	6.05	6.49	6.94	7.41	7.89	•	8.88
vity 3) A-A	72	14	22	56	30	34	37	40	43	45	48	51	54	26	59	62	64	29	69	72	74	77	79	87	2 8	86	89	91	%
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) H ₄ -N ₂ H ₄ N ₂ H ₄ -A A·	10	සි	40	20	29	89	92	82	93	102	112	122	131	140	149	159	168	177	185	194	203	212	220	230	238	246	255	263	272
Thermal (W m ⁻¹ N ₂ H ₄ -N ₂ H ₄	14 30	44	59	74	88	102	116	131	144	160	176	192	209	224	240	256	272	287	302	317	332	348	362	378	392	407	421	436	450
A-A	83	237	298	352	401	447	490	531	569	607	642	677	710	743	775	806	837	998	968	925	953	981	1008	1035	1062	1088	1114	1140	1165
Viscosity (Nsm ⁻² ·10 ⁻⁵) 2H ₄ N ₂ H ₄ -A	56	167	222	273	320	363	404	442	478	513	547	579	610	640	699	269	724	751	778	803	828	853	877	901	925	948	971	993	1015
Viscosity (Nsm ⁻² ·10 N ₂ H ₄ -N ₂ H ₄ N ₂ H ₄ -A	43 76	111	149	187	225	263	300	336	370	403	434	465	495	523	551	578	604	630	654	629	703	726	749	771	793	815	836	857	877
Temp. (K)	100	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 17. TRANSPORT PROPERTIES OF NITROGEN TETRADEUTERIDE-HELIUM MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
lent HE-HE	0.29 0.92 1.84 3.01	6.04 7.88 9.92 12.20 14.60	17.20 20.10 23.00 26.30 29.60	33.20 36.90 40.80 44.90 49.10	53.50 58.10 62.80 67.70 72.80	78.00 83.40 88.90 94.60 101.00
Diffusion Coefficient (m² s-¹·10-⁴) -N₂D₄ N₂D₄-HE HE	0.09 0.33 0.68 1.10	2.18 2.82 3.52 4.28 5.10	5.97 6.89 7.87 8.90	11.10 12.28 13.49 14.76 16.07	17.42 18.81 20.25 21.73 23.25	24.81 26.41 28.05 29.73 31.45
Diffusi (m² N ₂ D ₄ -N ₂ D ₄	0.01 0.05 0.12 0.21 0.33	0.47 0.63 0.81 1.00	1.44 1.68 1.93 2.20	2.77 3.07 3.39 3.72 4.06	4.41 5.15 5.54 5.94	6.34 6.76 7.19 7.62 8.07
ivity 0-3) HE-HE	73 115 152 187 220	252 281 308 332 357	380 403 425 447 468	488 508 528 547 566	585 603 622 640 657	674 691 708 724 740
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) N ₂ D ₄ -N ₂ D ₄ N ₂ D ₄ -HE HE	44 73 99 125 150	173 195 216 236 256	276 296 316 336 354	373 392 410 427 445	463 480 498 515	548 564 581 596 612
Therma (W n N ₂ D ₄ -N ₂ D ₄	15 32 47 63 80	95 110 125 141 155	172 189 207 225 241	258 276 293 308 324	341 357 374 390 406	422 438 454 469 484
9) НЕ-НЕ	99 156 202 244 284	322 359 394 429	494 525 556 586 614	643 671 698 725	778 804 830 855 880	905 929 953 977 1001
Viscosity (Nsm-2·10- D ₄ N ₂ D ₄ -HE	63 112 150 183 213	240 265 289 312 334	355 376 396 416 435	453 471 489 506 524	540 557 573 589 605	621 636 651 666 681
Viscosity (Nsm ⁻² · 10 ⁻ $N_2D_4 - N_2D_4$ $N_2D_4 - HE$	46 87 131 176 219	261 300 337 372 405	437 467 496 524 551	578 603 628 653 677	700 723 745 767 788	809 830 850 870 890
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000

TABLE 18. TRANSPORT PROPERTIES OF NITROGEN TETRADEUTERIDE-NITROGEN MIXTURES

Temp. (K)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ient N_2-N_2	0.03	0.10	0.21	o. %	0.50	0.69	0.89	1.12	1.37	1.63	1.91	2.21	2.52	2.85	3.20	3,56	3.94	4.33	4.73	5.15	5,59	6.03	6.50	6.97	7.46	7.96	8.47	9.00	9.54	10.09
Diffusion Coefficient (m² s-¹·10-⁴) -N²D₄ N²D₄-N² N	0.02	0.07	0.16	0.28	0.43	0.59	0.77	0.98	1.20	1.44	1.69	1.96	2.24	2.54	2.86	3.19	3.53	3.88	4.25	4.63	5.02	5.42	5.84	6.27	6.71	7.16	7.63	8.10	8.58	9.08
Diffusio (m² N ₂ D ₄ -N ₂ D ₄	0.01	0.05	0.12	0.21	0.33	0.47	0.63	0.81	1.00	1.21	1.44	1.68	1.93	2.20	2.48	2.77	3.07	3,39	3.72	4.06	4.41	4.78	5.15	5.54	5.94	6.34	6.76	7.19	7.62	8.07
vity -3) N ₂ -N ₂	G	18	5 6	33	6£	4	49	ጄ	29	63	29	71	75	80	\$	89	95	101	108	115	121	126	131	136	141	146	151	155	160	165
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) D_4 - N_2D_4 N_2D_4 - N_2 N_2	12	25	36	48	29	69	4	88	100	109	119	130	141	152	162	173	185	197	208	219	231	241	252	263	273	284	294	304	314	324
Thermal Conduct (W m ⁻¹ K ⁻¹ ·1 N ₂ D ₄ -N ₂ D ₄ N ₂ D ₄ -N ₂	15	32	47	63	80	95	110	125	141	155	172	189	207	225	241	258	276	293	308	324	341	357	374	390	406	422	438	454	469	484
N_2-N_2	65	128	179	223	262	297	330	361	390	418	445	471	496	521	544	568	591	613	635	929	677	698	718	738	758	778	797	816	835	853
Viscosity (Nsm ⁻² · 10^{-5}) $^{1}_{1}$ $^{1}_{2}$ $^{1}_{2}$ $^{1}_{2}$ $^{1}_{3}$	53	107	159	206	249	288	324	357	389	419	448	475	502	527	552	576	009	623	645	299	689	710	731	752	772	792	811	831	850	869
$\begin{array}{c} \text{Viscosity} \\ (\text{Nsm}^{-2} \cdot 10 \\ \text{N}_2 \text{D}_4 \text{-N}_2 \text{D}_4 \text{-N}_2 \end{array}$	46	87	131	176	219	261	300	337	372	405	437	467	496	524	551	578	603	628	653	677	700	723	745	167	788	809	830	820	870	890
Temp. (K)	100	200	300	400	200	009	400	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 19. TRANSPORT PROPERTIES OF NITROGEN TETRADEUTERIDE-ARGON MIXTURES

Temp. (K)	100	200	300	400	200	009	700	800	306	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
lent A-A	0.02	0.09	0.19	0.32	0.47	0.65	0.85	1.06	1.30	1.55	1.82	2.11	2.41	2.72	3.05	3.40	3.76	4.14	4.52	4.93	5.34	5.77	6.21	6.66	7.13	7.61	8.10	8.60	9.12	9.64
Diffusion Coefficient (m² s-1·10-4) ' ₄ -N ₂ D ₄ N ₂ D ₄ -A	0.02	0.07	0.16	0.27	0.41	0.57	0.75	0.94	1.16	1.39	1.64	1.90	2.18	2.47	2.78	3.10	3.43	3.78	4.13	4.51	4.89	5.28	5.69	6.11	6.54	6.98	7.43	7.89	8.37	8.85
Diffusio (m² N ₂ D ₄ -N ₂ D ₄	0.01	0.05	0.12	0.21	0.33	0.47	0.63	0.81	1.00	1.21	1.44	1.68	1.93	2.20	2.48	2.77	3.07	3.39	3.72	4.06	4.41	4.78	5.15	5.54	5.94	6.34	6.76	7.19	7.62	8.07
vity -3) A-A	7	12	17	22	56	30	ౙ	37	40	43	45	48	21	ጁ	26	29	62	64	29	69	72	74	22	79	85	2 5	98	88	91	94
lermal Conductivit (W m ⁻¹ K ⁻¹ ·10 ⁻³) ₁ -N ₂ D ₄ N ₂ D ₄ -A	11	22	32	42	25	62	72	81	8	66	108	118	129	139	148	158	168	178	187	196	206	215	226	235	244	253	263	274	282	596
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) N_2D_4 – N_2D_4 – N_2D_4 – A	15	32	47	63	80	95	110	125	141	155	172	189	207	225	241	258	276	293	308	324	341	357	374	390	406	422	438	454	469	484
A-A	83	166	237	298	352	401	447	490	531	269	607	642	677	710	743	775	806	837	998	968	925	953	981	1008	1035	1062	1088	1114	1140	1165
Viscosity (Nsm ⁻² ·1 Γ^5) $_2D_4$ N $_2D_4$ -A	09	120	181	237	287	333	375	415	453	488	522	555	586	617	646	675	703	730	756	782	808	833	857	881	902	928	952	974	997	1019
Viscosity (Nsm-2·10 N ₂ D ₄ -N ₂ D ₄ N ₂ D ₄ -A	46	87	131	176	219	261	300	337	372	405	437	467	496	524	551	578	603	628	653	677	700	723	745	167	788	808	830	820	870	890
Temp. (K)	100	200	300	400	200	900	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 20. TRANSPORT PROPERTIES OF FLUORINE-NITROGEN MIXTURES

Temp. (K)	N2-N2	Viscosity (Nsm ⁻² · 10^{-5})	-5) F2-F2	Therm $\langle W_1 \rangle$	Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) $^{1}_{12}$ N ₂ -F ₂ F ₂ -F	ctivity 10^{-3} , F_2 – F_2	Diffus (n N ₂ -N ₂	Diffusion Coefficient $(m^2 s^{-1} \cdot 10^{-4})$ -N ₂ N ₂ -F ₂ F ₂	cient $^{-4}$) $_{\mathbf{F_2}^{-}\mathbf{F_2}}$	Temp (K)
100	65	75	98	73	41	10	0.03	0.03	0.02	100
200	128	145	168	142	8	19	0.10	0.10	0.10	200
300	179	204	236	199	113	28	0.21	0.20	0.20	300
400	223	254	293	248	142	37	0.34	0.34	0.33	400
200	262	298	344	291	168	45	0.50	0.50	0.49	200
009	297	339	391	331	191	52	0.69	0.68	0.67	009
700	330	376	434	367	213	59	0.89	0.80	0.87	700
800	361	411	475	402	233	65	1.12	1.11	1.09	800
006	390	444	513	434	252	11	1.37	1.35	1.33	900
1000	418	476	220	465	271	22	1.63	1.61	1.58	1000
1100	445	507	286	495	288	85	1.91	1.89	1.85	1100
1200	471	537	620	524	306	88	2.21	2.19	2.14	1200
1300	496	565	653	552	322	93	2.52	2.50	2.45	1300
1400	521	593	685	579	338	97	2.85	2.82	2.77	1400
1500	544	620	216	909	354	102	3.20	3.17	3, 10	1500
1600	268	647	747	632	369	107	3.56	3.52	3.45	1600
1700	591	673	777	657	384	112	3.94	3.90	3,82	1700
1800	613	698	908	682	399	116	4.33	4.28	4.20	1800
1900	. 635	723	835	406	413	121	4.73	4.69	4.59	1900
2000	929	748	863	730	427	125	5.15	5.10	5.00	2000
2100	677	772	891	754	442	130	5.59	5, 53	5.42	2100
2200	869	795	918	777	455	134	6.03	5.97	5.86	2200
2300	718	818	945	799	468	138	6.50	6.43	6.30	2300
2400	738	841	972	822	482	143	6.97	6.90	6.76	2400
2500	758	864	866	2	495	147	7.46	7.38	7.24	2500
2600	778	886	1023	998	208	151	7.96	7.88	7.72	2600
2700	797	806	1049	887	521	155	8.47	8.39	8.22	2700
2800	816	930	1074	806	533	159	9.00	8.91	8.73	2800
2900	832	951	1098	929	246	163	. 5 <u>7</u>	9.44	9.25	2900
3000	823	972	1123	920	558	167	10.09	9.98	9.79	3000

TABLE 21. TRANSPORT PROPERTIES OF FLUORINE-ARGON MIXTURES

Temp.	Q.	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
cient 4)	A-A	0.02	0.09	0.19	0.32	0.47	0.65	0.85	1.06	1.30	1.55	1.82	2.11	2.41	2.72	3.05	3.40	3.76	4.14	4.52	4.93	5.34	5.77	6.21	9.66	7.13	7.61	8.10	8.60	9.12	9.64
Diffusion Coefficient (m²s-1·10-1)	F2-A	0.02	0.09	0.20	0.33	0.48	0.66	0.86	1.08	1.31	1.57	1.84	2.12	2.43	2.75	3.08	3.43	3.79	4.17	4.56	4.96	5,38	5.81	6.26	6.71	7.18	7.66	8.16	8.67	9.18	9.71
Diffusio (m ²	F2-F2	0.02	0.10	0.20	0.33	0.49	0.67	0.87	1.09	1.33	1.58	1.85	2.14	2.45	2.77	3.10	3.45	3.82	4.20	4.59	2.00	5.42	5.86	6.30	9.79	7.24	7.72	8.22	8.73	9.25	9.79
tivity [0-3]	A-A	2	12	17	22	56	30	ጷ	37	40	43	45	48	51	54	26	59	62	64	29	69	72	74	77	79	82	%	98	88	91	%
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³)	F2-A	œ	12	22	59	32	41	46	51	55	09	64	89	72	75	79	83	87	96	94	97	101	104	107	111	114	117	120	124	127	130
Therma (W m	F2-F2	10	19	28	37	45	52	29	65	71	77	82	88	693	97	102	107	112	116	121	125	130	134	138	143	147	151	155	159	163	167
େ	A-A	83	166	237	298	352	401	447	490	531	569	209	642	677	710	743	775	908	837	998	968	925	953	981	1008	1035	1062	1088	1114	1140	1165
Viscosity (Nsm-2.10-	F ₂ -A	2	167	236	596	348	396	441	483	522	260	596	631	999	16.	728	761	791	821	820	879	206	932	963	989	1016	1042	1068	1093	1118	1143
8N)	F2-F2	98	168	236	293	344	391	434	475	513	550	586	620	653	685	716	747	777	908	835	863	891	918	945	972	866	1023	1049	1074	1098	1123
Temp. (K)		100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 22. TRANSPORT PROPERTIES OF FLUORINE-AMMONIA MIXTURES

Temp. (K)	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
icient (-d) NH3-NH3	0.02	0.09	0.20	0.35	0.56	0.80	1.08	1.40	1.75	2.14	2.56	3.00	3.47	3.97	4.49	5.04	5.61	6.20	6.82	7.46	8.12	8.80	9.50	10.22	10.97	11.73	12.51	13.32	14.14	14.98
Diffusion Coefficient $(m^2 \text{s}^{-1} \cdot 10^{-4})$ $\cdot F_2 F_2 \text{-NH}_3 \text{NH}_3^{-1}$	0.02	0.10	0.22	0.38	6.58	0.80	1.06	1.34	1.65	1.98	2.33	2.70	3.10	3.52	3.95	4.41	4.89	5.38	5.89	6.42	6.97	7.53	8.11	8.71	9.32	9,95	10.60	11.26	11.94	12.63
Diff. (F ₂ -F ₂	0.02	0.10	0.20	0.33	0.49	0.67	0.87	1.09	1, 33	1.58	1.85	2.14	2.45	2.77	3, 10	3,45	3.82	4.20	4.59	2.00	5.42	5.86	6.30	6.76	7.24	7.72	8.22	8.73	9.25	9.79
ctivity 10-4) (H ₃ -NH ₃	2	15	25	36	51	99	81	86	115	136	156	176	197	219	242	265	289	313	338	364	391	418	446	472	502	532	561	591	620	650
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻⁴) _? -F ₂ F ₂ -NH ₃ NH ₃ -NH ₃	œ	17	27	37	48	29	70	81	93	106	119	132	145	158	172	186	200	215	229	245	261	276	292	308	325	341	358	375	391	409
Therr (W $F_2 - F_2$	10	19	28	37	45	52	29	65	71	77	85	88	93	97	102	107	112	116	121	125	130	134	138	143	147	151	155	159	163	167
uty 10 ⁻⁵) 1 NH ₃ -NH ₃	22	20	103	138	174	509	244	276	308	338	367	395	423	449	474	498	522	545	267	589	611	631	652	672	692	711	730	749	767	786
Viscosit (Nsm ⁻² · 10 F ₂ -NH ₃	25	104	157	206	251	292	330	366	399	431	461	491	519	546	572	597	622	646	670	693	716	738	760	781	802	823	843	864	88	903
(1) F2-F2	98	168	236	293	344	391	434	475	513	220	586	620	653	685	716	747	777	806	835	863	891	918	945	972	866	1023	1049	1074	1098	1123
Temp. (K)	100	200	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 23. TRANSPORT PROPERTIES OF FLUORINE-NITROGEN TRIDEUTERIDE MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
ient $^{\mathfrak{t}}_{\mathfrak{I}}$ $^{\mathfrak{F}}_{\mathfrak{Z}}$ - $\mathfrak{F}_{\mathfrak{Z}}$	0.02 0.10 0.20 0.33	0.67 0.87 1.09 1.33	1.85 2.14 2.45 2.77 3.10	3.45 3.82 4.20 5.00	5.42 5.86 6.30 7.24	7.72 8.22 9.73 9.79
Diffusion Coefficient $(m^2~s^{-1}\cdot 10^{-4})$ D ₃ -ND ₃ F_2 -ND ₃ F_2 -	0.10 0.23 0.39 0.59	0.82 1.07 1.35 1.65	2.33 2.70 3.09 3.50	4.38 4.84 5.33 6.35	6.89 7.44 8.01 8.60 9.20	9.82 10.46 11.11 11.77
Diffusion Coeff $(m^2 s^{-1} \cdot 10)$ ND ₃ -ND ₃ F_2 -ND ₃	0.10 0.24 0.42 0.65	0.92 1.22 1.56 1.92 2.32	2.74 3.19 3.67 4.17	5.25 5.82 6.41 7.03	8.33 9.01 9.72 10.44 11.18	11.94 12.72 13.52 14.34 15.17
ivity $0-3$ F_2-F_2	10 19 28 37 45	52 59 65 71	82 88 93 97	107 112 116 121 125	130 134 138 143 147	151 155 159 163 167
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) D_3 -ND $_3$ F $_2$ -ND $_3$ F $_2$ -	18 28 38 49	60 71 81 92 103	113 124 135 146 157	169 182 194 207 221	236 251 266 282 298	314 330 347 364 381
Thermal (W m' ND ₃ -ND ₃	- 17 28 40 54	68 83 98 114 130	145 161 178 195 213	232 252 272 294 318	343 369 395 422 449	477 506 535 565 595
) F2-F2	86 168 236 293 344	391 434 475 513 550	586 620 653 685 716	747 777 806 835 863	891 918 945 972 998	1023 1049 1074 1098 1123
Viscosity (Nsm $^2 \cdot 10^{-5}$) D ₃ F ₂ -ND ₃	- 126 186 240 288	331 372 410 445 479	512 543 573 602 630	657 684 710 736 761	785 810 833 857 880	902 925 947 969 990
V (Ne ND ₃ -ND ₃	- 96 145 194 240	283 324 361 397 431	463 494 524 552 580	607 633 659 684 708	732 755 778 800 822	844 865 886 906 927
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000

TABLE 24. TRANSPORT PROPERTIES OF FLUORINE-NITROGEN TETRAHYDRIDE MIXTURES

Temp. (K)	100 200 300 400	600 700 800 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
ent F ₂ -F ₂	0.02 0.10 0.20 0.33	0.67 0.87 1.09 1.33	1.85 2.14 2.45 2.77 3.10	3.45 3.82 4.20 4.59 5.00	5.42 5.86 6.30 6.76 7.24	7.72 8.22 8.73 9.25
Diffusion Coefficient $(m^2 s^{-1} \cdot 10^{-4})$ H_4 - N_2H_4 N_2H_4 - F_2 F_2	0.02 0.07 0.16 0.28	0.59 0.79 1.00 1.22 1.47	1.73 2.01 2.31 2.62 2.95	3.29 3.64 4.01 4.40	5.20 5.62 6.06 6.50 6.96	7.43 7.91 8.41 8.91
Diffusion Coeffic (m ² s ⁻¹ · 10 ⁻⁴) $N_2 H_4 - N_2 H_4 N_2 H_4 - F_2$	0.01 0.05 0.11 0.20	0.46 0.62 0.81 1.02	1.49 1.75 2.03 2.33 2.64	2.96 3.30 3.65 4.02	4.79 5.20 5.62 6.05	6.94 7.41 7.89 8.38
ivity 0-3) F ₂ -F ₂	10 19 28 37	52 59 65 71	82 88 93 97 102	107 112 116 121 125	130 134 138 143	151 155 159 163
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) H ₄ -N ₂ H ₄ N ₂ H ₄ -F ₂ F ₂ -	12 25 36 48 59	70 80 90 101 111	121 132 142 153	173 184 194 204 213	223 233 243 252 262	271 281 290 299 308
Thermal (W m · N ₂ H ₄ -N ₂ H ₄	14 30 59 47	88 102 116 131	160 176 192 209 224	240 256 272 287 302	317 332 348 362 378	392 407 421 436 450
F2-F2	86 168 236 293 344	391 434 475 513 550	586 620 653 685 716	747 777 806 835 863	891 918 945 972 998	1023 1049 1074 1098 1123
Viscosity (Nsm ⁻² · 10^{-6}) $N_2 H_4 N_2 H_4 - F_2$	57 113 171 225 274	320 362 402 439	508 540 572 602 631	659 687 713 740 765	790 815 839 863 886	909 932 954 976 998
$Viscosity \ (Nsm^{-2} \cdot 10^{-6} \ N_2 H_4 - N_2 H_4 \ N_2 H_4 - F_2$	43 76 111 149	225 263 300 336 370	403 434 465 495 523	551 578 604 630 654	679 703 726 749	793 815 836 857 877
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000

TABLE 25. TRANSPORT PROPERTIES OF FLUORINE-NITROGEN TETRADEUTERIDE MIXTURES

Carried Control of the Control of th

12 15 0.02 0.02 25 32 0.10 0.07 37 47 0.20 0.16 50 63 0.33 0.27 62 80 0.49 0.41 73 95 0.67 0.57 84 110 0.87 0.75 95 125 1.09 0.94 106 141 1.33 1.16 116 155 1.69 0.94 150 1441 1.33 1.16 150 1441 1.33 1.16 150 1441 1.33 1.16 150 1441 1.33 1.16 150 207 2.45 1.39 150 207 2.45 2.17 161 225 2.45 2.17 150 207 2.45 3.42 204 293 4.25 4.49 225 324 5.00 4.49 245 324 5.00 4.49 <tr< th=""><th>(1 F2-F2</th><th>Viscosity (Nsm⁻² · 10^{-5}) F_2-N_2D_4 N_2D_4</th><th>Therr (W F_2-F_2)</th><th>Thermal Conductivity (W m⁻⁴ K⁻¹ · 10⁻³) -$F_2 F_2$-N₂D₄ N₂D₄-N,</th><th>$10ctivity \cdot 10^{-3}$ N_2D_4-N_2D_4</th><th>Diff F_2 – F_2</th><th>Diffusion Coefficient $(m^2 s^{-1} \cdot 10^{-4})$ $\cdot F_2 = F_2 - N_2 D_4 N_2 D_4 - N_2$</th><th>efficient 10^{-4}) $N_2D_4-N_2D_4$</th><th>Temp. (K)</th></tr<>	(1 F2-F2	Viscosity (Nsm ⁻² · 10^{-5}) F_2 - N_2D_4 N_2D_4	Therr (W F_2 - F_2)	Thermal Conductivity (W m ⁻⁴ K ⁻¹ · 10 ⁻³) - $F_2 F_2$ -N ₂ D ₄ N ₂ D ₄ -N,	$10ctivity \cdot 10^{-3}$ N_2D_4 - N_2D_4	Diff F_2 – F_2	Diffusion Coefficient $(m^2 s^{-1} \cdot 10^{-4})$ $\cdot F_2 = F_2 - N_2 D_4 N_2 D_4 - N_2 $	efficient 10^{-4}) $N_2D_4-N_2D_4$	Temp. (K)
10 12 15 0.02 0.01 19 25 32 0.10 0.07 0.05 28 37 47 0.20 0.11 0.07 0.05 45 62 80 0.33 0.27 0.01 0.01 59 84 110 0.87 0.75 0.44 0.31 65 95 125 0.67 0.57 0.44 65 96 125 0.67 0.57 0.44 65 96 110 0.87 0.75 0.44 71 116 0.87 0.75 0.44 0.77 77 116 125 1.09 0.74 0.77 88 138 189 2.14 1.90 1.16 97 161 225 2.77 2.47 2.12 102 171 241 1.61 3.94 112 141 274 2.12 2.98 <		, 1			•	•	•		
19 25 32 0.10 0.07 0.05 28 37 47 0.20 0.16 0.11 37 47 0.20 0.16 0.11 52 84 110 0.87 0.44 0.01 59 84 110 0.87 0.74 0.59 65 95 125 1.09 0.94 0.77 71 106 141 1.33 1.16 0.95 77 116 155 1.09 0.94 0.77 77 116 141 1.33 1.16 0.95 77 116 155 1.58 1.39 1.16 8 138 189 2.14 1.90 1.16 97 161 225 1.77 2.45 2.12 102 171 241 1.90 1.61 3.9 112 225 2.77 2.47 2.39 116 204 293 4.20 3.76 3.94 125 224 <	59	44	10	12	15	0.02	0.02	0.01	100
28 37 47 0.20 0.16 0.11 37 50 63 0.27 0.20 0.11 52 73 95 0.67 0.44 0.31 59 84 110 0.87 0.75 0.44 65 95 125 1.09 0.94 0.77 71 106 141 1.38 0.94 0.77 71 106 141 1.38 1.16 0.95 77 116 155 1.85 1.39 1.16 93 150 207 2.45 2.17 1.38 88 138 189 2.47 2.13 97 161 225 2.77 2.47 2.12 102 171 241 1.90 1.61 2.98 112 241 276 3.42 2.98 1.61 112 194 276 3.42 2.98 112	119	81	19	22	32	0.10	0.07	0.05	200
37 50 63 0.33 0.27 0.20 45 62 80 0.49 0.41 0.31 59 84 110 0.87 0.75 0.44 65 95 125 1.09 0.94 0.77 71 116 125 1.09 0.94 0.77 77 116 155 1.28 0.95 0.77 82 127 1.81 1.16 0.95 77 116 155 1.58 1.39 0.77 82 127 1.82 1.16 1.38 1.16 93 150 207 2.45 1.16 1.16 97 161 225 2.77 2.47 1.86 97 161 225 2.77 2.47 2.12 102 171 241 3.10 2.77 2.39 112 204 293 4.29 4.29 3.94		121	28	37	47	0.20	0.16	0.11	300
45 62 80 0.49 0.41 0.31 52 73 95 0.67 0.57 0.44 59 84 110 0.87 0.75 0.59 65 95 125 1.09 0.94 0.77 71 106 141 1.33 1.16 0.95 77 116 155 1.58 1.39 0.77 88 138 189 2.14 1.90 1.16 93 150 207 2.14 1.90 1.61 93 150 207 2.14 1.90 1.61 97 161 225 2.77 2.39 102 171 241 3.10 2.77 2.39 112 204 225 3.45 3.09 2.68 112 204 293 4.29 4.29 3.94 125 224 324 5.06 4.89 3.94		163	37	20	63	0.33	0.27	0.20	400
52 73 95 0.67 0.57 0.44 59 84 110 0.87 0.75 0.59 65 95 125 1.09 0.94 0.77 71 116 141 1.33 1.16 0.95 77 116 155 1.64 1.39 1.16 88 127 172 1.85 1.64 1.38 89 138 189 2.14 1.90 1.61 97 161 225 2.77 2.47 2.12 102 189 2.14 1.86 2.68 112 194 276 3.45 2.17 2.98 112 194 276 3.24 2.98 4.29 3.24 2.98 112 214 308 4.59 4.12 3.94 125 224 324 5.00 4.49 3.94 138 256 374 6.36 5.2		205	45	62	80	0.49	0.41	0.31	200
59 84 110 0.87 0.75 0.59 71 106 141 1.33 1.16 0.95 77 116 141 1.33 1.16 0.95 77 116 155 1.58 1.16 0.95 88 127 172 1.85 1.64 1.38 88 138 189 2.14 1.90 1.61 97 161 225 2.77 2.47 2.12 102 171 241 3.10 2.77 2.39 107 182 225 2.77 2.47 2.12 108 276 3.82 3.45 2.98 112 194 276 3.82 3.42 2.98 116 204 293 4.20 3.76 3.94 121 214 308 4.59 4.12 3.61 125 224 324 5.00 4.49 3.94 139 256 374 6.36 5.77 4.64 14		345	25	73	95	0.67	0.57	0.44	009
65 95 125 1.09 0.94 0.77 71 106 141 1.33 1.16 0.95 77 116 155 1.58 1.39 1.16 82 127 172 1.85 1.64 1.38 88 138 189 2.14 1.90 1.61 93 150 207 2.45 2.17 1.86 97 161 225 2.77 2.47 2.12 102 171 241 3.10 2.77 2.39 107 182 256 3.45 3.09 2.68 112 194 276 3.82 3.42 2.98 112 194 276 3.82 3.42 2.98 112 294 276 3.82 3.42 2.98 112 214 308 4.59 4.12 3.94 125 224 3.24 4.84 3.94		283	59	\$	110	0.87	0.75	0.59	700
71 106 141 1.33 1.16 0.95 77 116 155 1.58 1.39 1.16 82 127 172 1.85 1.64 1.38 88 138 189 2.14 1.90 1.61 93 150 207 2.45 2.17 1.86 97 161 225 2.77 2.47 2.12 102 171 241 3.10 2.77 2.39 107 182 256 3.45 3.09 2.68 112 194 276 3.82 3.42 2.98 116 204 293 4.59 4.12 3.61 121 214 308 4.59 4.12 3.61 125 224 3.24 5.00 4.49 3.94 138 245 3.74 5.01 4.64 1.34 138 256 374 4.64 3.94		320	65	92	125	1.09	0.94	0.77	800
77 116 155 1.58 1.39 1.16 82 127 172 1.85 1.64 1.38 88 138 189 2.14 1.90 1.61 93 150 207 2.45 2.17 1.86 97 161 225 2.77 2.47 2.12 102 171 241 3.10 2.77 2.39 112 194 276 3.82 3.42 2.98 116 204 293 4.20 3.76 3.29 121 214 308 4.59 4.12 3.61 125 224 324 5.00 4.49 3.94 130 235 341 5.42 4.87 3.61 134 245 357 6.30 5.67 5.01 143 266 390 6.76 6.99 5.39 147 276 406 7.24 6.52 5.78 155 296 438 8.22 7.40 6.58 159 306 454 9.79 6.85 163 316 484 9.79 8.34 7.46 163		2 2	11	106	141	1,33	1.16	0.95	006
82 127 172 1.85 1.64 1.38 88 138 189 2.14 1.90 1.61 93 150 207 2.45 2.17 1.86 97 161 225 2.77 2.47 2.12 102 171 241 3.10 2.77 2.39 107 182 258 3.45 3.09 2.68 112 194 276 3.82 3.42 2.98 116 204 293 4.20 3.76 3.29 121 214 308 4.59 4.12 3.94 125 224 324 5.00 4.49 3.94 130 235 341 5.42 4.87 4.29 143 266 390 6.76 6.09 5.39 147 276 406 7.24 6.52 5.78 151 286 422 7.40 6.58 6.17 153 306 454 8.73 7.43 <td< td=""><td></td><td>187</td><td>77</td><td>116</td><td>155</td><td>1.58</td><td>1,39</td><td>1.16</td><td>1000</td></td<>		187	77	116	155	1.58	1,39	1.16	1000
88 138 189 2.14 1.90 1.61 93 150 207 2.45 2.17 1.86 97 161 225 2.77 2.47 2.12 102 171 241 3.10 2.77 2.39 107 182 258 3.45 3.09 2.68 112 194 276 3.82 3.42 2.98 116 204 293 4.20 3.76 3.29 121 214 308 4.59 4.12 3.61 125 224 324 5.00 4.49 3.94 125 224 324 5.00 4.49 3.94 130 235 341 5.42 4.87 4.29 134 245 357 6.36 5.27 4.64 143 266 390 6.76 6.09 5.39 147 276 406 7.24 6.35 5.78 153 296 438 8.22 7.40 6.58 <td></td> <td>19</td> <td>83</td> <td>127</td> <td>172</td> <td>1.85</td> <td>1.64</td> <td>1,38</td> <td>1100</td>		19	83	127	172	1.85	1.64	1,38	1100
93 150 207 2.45 2.17 1.86 97 161 225 2.77 2.47 2.12 102 171 241 3.10 2.77 2.47 2.12 102 171 241 3.10 2.77 2.39 107 182 258 3.45 3.09 2.68 112 194 276 3.82 3.42 2.98 116 204 293 4.20 3.76 3.29 121 214 308 4.59 4.12 3.61 125 224 324 5.00 4.49 3.94 125 224 324 5.00 4.49 3.94 130 235 341 5.42 4.87 4.29 134 245 357 6.30 5.77 4.64 143 266 390 6.76 6.99 5.78 147 276 406 7.24 6.52 5.78 155 296 422 7.40 6.58		49	88	138	189	2.14	1.90	1.61	1200
97 161 225 2.77 2.47 2.12 102 171 241 3.10 2.77 2.39 107 182 258 3.45 3.09 2.68 112 194 276 3.82 3.42 2.98 112 194 276 3.82 3.42 2.98 116 204 293 4.20 3.76 3.29 121 214 308 4.59 4.12 3.61 125 224 324 5.00 4.49 3.94 130 235 341 5.42 4.87 4.29 134 245 357 6.30 5.67 4.64 143 266 390 6.76 6.09 5.78 147 276 406 7.24 6.52 5.78 155 296 422 7.40 6.58 5.78 159 306 454 8.73 7.43 163 316 469 9.79 8.34 7.43		8	93	150	207	2.45	2.17	1.86	1300
102 171 241 3.10 2.77 2.39 107 182 258 3.45 3.09 2.68 112 194 276 3.82 3.42 2.98 116 204 293 4.20 3.76 3.29 116 204 293 4.20 3.76 3.29 117 214 308 4.59 4.12 3.61 125 224 324 5.00 4.49 3.94 130 235 341 5.42 4.87 4.29 134 245 357 6.30 5.67 5.01 143 266 390 6.76 6.09 5.39 147 276 4.06 7.24 6.52 5.78 151 286 422 7.40 6.58 159 306 454 8.73 7.40 6.58 163 316 469 9.79 8.34 7.43 167 325 484 9.79 8.34 7.43 </td <td></td> <td>9(</td> <td>97</td> <td>161</td> <td>225</td> <td>2.77</td> <td>2.47</td> <td>2.12</td> <td>1400</td>		9(97	161	225	2.77	2.47	2.12	1400
107 182 258 3.45 3.09 2.68 112 194 276 3.82 3.42 2.98 116 204 293 4.20 3.76 3.29 121 214 308 4.59 4.12 3.61 125 224 324 5.00 4.49 3.94 130 235 341 5.42 4.87 4.29 134 245 357 5.86 5.27 4.64 138 256 374 6.30 5.67 5.01 143 266 390 6.76 6.09 5.39 147 276 406 7.24 6.52 5.78 151 286 422 7.40 6.58 153 306 454 8.73 7.40 6.58 163 316 469 9.79 8.34 7.43 167 325 484 9.79 8.34 7.43	629	æ	102	171	241	3,10	2.77	2.39	1500
112 194 276 3.82 3.42 2.98 116 204 293 4.20 3.76 3.29 121 214 308 4.59 4.12 3.61 125 224 324 5.00 4.49 3.94 130 235 341 5.42 4.87 4.29 134 245 357 6.30 5.67 4.64 138 256 374 6.30 5.67 4.64 143 266 390 6.76 6.09 5.39 147 276 406 7.24 6.52 5.78 151 286 422 7.72 6.52 5.78 153 306 454 8.73 7.40 6.58 163 316 469 9.25 8.34 7.43 167 325 484 9.79 8.34 7.43		0	107	182	258	3,45	3.09	2.68	1600
116 204 293 4.20 3.76 3.29 121 214 308 4.59 4.12 3.61 125 224 324 5.00 4.49 3.94 130 235 341 5.42 4.87 4.29 134 245 357 6.36 5.27 4.64 138 256 374 6.30 5.67 4.64 143 266 390 6.76 6.09 5.39 147 276 406 7.24 6.52 5.78 151 286 422 7.72 6.95 6.17 153 306 454 8.73 7.40 6.58 163 316 469 9.25 8.34 7.43 167 325 484 9.79 8.82 7.87		īΰ	112	194	276	3,82	3,42	2.98	1700
121 214 308 4.59 4.12 3.61 125 224 324 5.00 4.49 3.94 130 235 341 5.42 4.87 4.29 134 245 357 6.36 5.27 4.64 138 256 374 6.30 5.67 5.01 143 266 390 6.76 6.09 5.39 147 276 406 7.24 6.52 5.78 151 286 422 7.72 6.95 6.17 153 306 454 8.73 7.87 7.00 163 316 469 9.25 8.34 7.43 167 325 484 9.79 8.82 7.87		0	116	204	293	4.20	3, 76	3.29	1800
125 224 324 5.00 4.49 3.94 130 235 341 5.42 4.87 4.29 134 245 357 5.86 5.27 4.64 138 256 374 6.30 5.67 5.01 143 266 390 6.76 6.09 5.39 147 276 406 7.24 6.52 5.78 151 286 422 7.72 6.95 6.17 155 296 438 8.22 7.40 6.58 159 306 454 8.73 7.87 7.00 163 316 469 9.25 8.34 7.43 167 325 484 9.79 8.82 7.87		4	121	214	308	4.59	4.12	3.61	1900
130 235 341 5.42 4.87 4.29 134 245 357 5.86 5.27 4.64 138 256 374 6.30 5.67 5.01 143 266 390 6.76 6.09 5.39 147 276 406 7.24 6.52 5.78 151 286 422 7.72 6.95 6.17 155 296 438 8.22 7.40 6.58 159 306 454 8.73 7.87 7.00 163 316 469 9.25 8.34 7.43 167 325 484 9.79 8.82 7.87		æ	125	224	324	5.00	4.49	3.94	2000
134 245 357 5.86 5.27 4.64 138 256 374 6.30 5.67 5.01 143 266 390 6.76 6.09 5.39 147 276 406 7.24 6.52 5.78 151 286 422 7.72 6.95 6.17 155 296 438 8.22 7.40 6.58 159 306 454 8.73 7.87 7.00 163 316 469 9.25 8.34 7.43 167 325 484 9.79 8.82 7.87		=	130	235	341	5.43	4.87	4.29	2100
138 256 374 6.30 5.67 5.01 143 266 390 6.76 6.09 5.39 147 276 406 7.24 6.52 5.78 151 286 422 7.72 6.95 6.17 155 296 438 8.22 7.40 6.58 159 306 454 8.73 7.87 7.00 163 316 469 9.25 8.34 7.43 167 325 484 9.79 8.82 7.87		33	134	245	357	5.86	5.27	4.64	2200
143 266 390 6.76 6.09 5.39 147 276 406 7.24 6.52 5.78 151 286 422 7.72 6.95 6.17 155 296 438 8.22 7.40 6.58 159 306 454 8.73 7.87 7.00 163 316 469 9.25 8.34 7.43 167 325 484 9.79 8.82 7.87		56	138	256	374	6.30	5.67	5.01	2300
147 276 406 7.24 6.52 5.78 151 286 422 7.72 6.95 6.17 155 296 438 8.22 7.40 6.58 159 306 454 8.73 7.87 7.00 163 316 469 9.25 8.34 7.43 167 325 484 9.79 8.82 7.87		47	143	566	390	6.76	60.9	5, 39	2400
151 286 422 7.72 6.95 6.17 155 296 438 8.22 7.40 6.58 159 306 454 8.73 7.87 7.00 163 316 469 9.25 8.34 7.43 167 325 484 9.79 8.82 7.87		69	147	276	406	7.24	6.52	5.78	2500
155 296 438 8.22 7.40 6.58 159 306 454 8.73 7.87 7.00 163 316 469 9.25 8.34 7.43 167 325 484 9.79 8.82 7.87	903 7	06	151	286	422	7.72	6.95	6.17	2600
159 306 454 8.73 7.87 7.00 163 316 469 9.25 8.34 7.43 167 325 484 9.79 8.82 7.87		10	155	296	438	8.22	7.40	6.58	2700
163 316 469 9.25 8.34 7.43 167 325 484 9.79 8.82 7.87		30	159	306	454	8.73	7.87	7.00	2800
167 325 484 9.79 8.82 7.87		20	163	316	469	9.22	8. 34.	7.43	2900
		20	167	325	484	9.79	8.82	7.87	3000

TABLE 26. TRANSPORT PROPERTIES OF ATOMIC FLUORINE-NITROGEN MIXTURES

The second secon

Temp.	(W)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
i ent)	ন ন	0.04	0.17	0.36	09.0	0.88	1.21	1.57	1.97	2.40	2.86	3.35	3.88	4.43	5.01	5.61	6.25	6.91	7.60	8.31	9.02	9.81	10.59	11.40	12,23	13.09	13.97	14.87	15.79	16.74	17.70
Diffusion Coefficient (m² s-1 · 10-4)	N ₂ -F	0.03	0.13	0.27	0.45	0.67	0.91	1.19	1.49	1.81	2.16	2,53	2.93	3.34	3.78	4.24	4.72	5.22	5.74	6.28	6.83	7.41	8.00	8.61	9.24	9.89	10.55	11.23	11.93	12.65	13.38
Diffusi (m	N_2 – N_2	0.03	0.10	0.21	0.34	0.50	0.69	0.89	1.12	1.37	1.63	1.91	2.21	2.52	2.85	3.20	3, 56	3,94	4.33	4.73	5.15	5, 59	6.03	6.50	6.97	7.46	7.96	8.47	9.00	5.54	10.09
tivity 10-3)	다 다	13	27	38	47	5 2	61	29	73	79	%	89	94	66	103	108	112	117	121	126	130	134	138	142	146	150	153	157	161	165	168
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³)	N ₂ -F	11	22	35	40	46	25	28	63	69	73	78	85	87	91	96	100	106	111	117	122	127	132	136	141	145	149	154	158	162	166
Therma (W m	N_2-N_2	O	18	26	33	39	4	49	\$	59	63	29	71	92	80	\$	89	92	101	108	115	121	126	131	136	141	146	151	155	160	165
1	구 구	78	152	213	265	311	354	393	430	464	498	530	561	591	620	648	929	703	729	756	781	908	831	855	879	903	926	949	971	994	1016
Viscosity (Nsm ⁻² ·10 ⁻⁵)	N ₂ -F	20	137	192	239	280	318	354	387	418	448	477	502	532	558	584	609	633	657	089	703	726	748	170	791	813	834	857 27,	874	895	914
A SK	N_2-N_2	65	128	179	223	262	297	330	361	390	418	445	471	496	521	544	568	591	613	635	929	229	869	718	738	758	778	797	816	835	853
Temp.	(1)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 27. TRANSPORT PROPERTIES OF ATOMIC FLUORINE-ARGON MIXTURES

Temp. (K)	100 200 300 400 50 0	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
sient) F-F	0.94 0.17 0.36 0.60 0.88	1.21 1.57 1.97 2.40 2.86	3.35 4.43 5.01	6.25 6.91 7.60 8.31	9.81 10.59 11.40 12.23 13.09	13.97 14.87 15.79 16.74 17.70
Diffusion Coefficient $(m^2 s^{-1} \cdot 10^{-4})$ A A-F	0.03 0.13 0.27 0.45	0.92 1.19 1.49 1.82 2.17	2.55 2.95 3.37 3.81 4.27	4.76 5.26 5.78 6.32 6.89	7.47 8.06 8.68 9.31	10.63 11.32 12.02 12.74 13.48
Diffu (1 A-A	0.02 0.09 0.19 0.32	0.65 0.85 1.06 1.30	1.82 2.11 2.41 2.72 3.05	3.40 3.76 4.14 4.52 4.93	5.34 5.77 6.21 6.66 7.13	7.61 8.10 8.60 9.12 9.64
activity 10~³) F-F	13 27 38 54	61 67 73 84	89 94 99 103	112 117 121 126 130	134 138 142 146 150	153 157 161 165 168
hermal Conductivii (W m ⁻¹ K ⁻¹ · 10 ⁻³) \acksight A-F F-F	10 13 40 40	45 50 55 59	67 71 75 78 82	85 89 92 96	103 106 109 112	118 121 125 128 131
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) A-A A-F F-F	12 17 22 26	30 34 37 40 43	45 48 51 54 56	59 62 64 67 69	72 74 77 79 82	84 86 89 94
-5) F-F	78 152 213 265 311	354 393 430 464 498	530 561 591 620 648	767 703 729 756 781	806 831 855 879 903	926 949 971 994 1016
'iscosity m-2·10 A-F	77 153 217 271 319	364 404 443 479 513	547 579 610 640 669	698 726 753 780 807	832 858 883 908	956 980 1003 1026 1049
$\begin{array}{c} \text{Viscosity} \\ (\text{Nsm}^{-2} \cdot 10^{-5}) \\ \text{A-A} & \text{A-F} \end{array}$	83 166 237 298 352	401 447 490 531 569	607 642 677 710 743	775 806 837 866 896	925 953 981 1008	1062 1088 1114 1140 1165
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000

TABLE 28. TRANSPORT PROPERTIES OF ATOMIC FLUORINE-AMMONIA MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
ficient)-4) NH ₃ -NH ₃	0.02 0.09 0.20 0.35	0.80 1.08 1.40 1.75 2.14	2.56 3.00 3.47 3.97 4.49	5.04 5.61 6.20 6.82 7.46	8.12 8.80 9.50 10.22 10.97	11.73 12.51 13.32 14.14
Diffusion Coefficient (m² s-1·10-4) F-NH3 NH3-	0.03 0.13 0.28 0.49	1.04 1.38 1.74 2.14 2.57	3.03 3.52 4.03 4.58 5.15	5.74 6.36 7.00 7.67 8.36	9.07 9.80 10.56 11.33	12.95 13.79 14.65 15.53
Dif F-F	0.04 0.17 0.36 0.60 0.88	1.21 1.57 1.97 2.40 2.86	3.35 3.88 4.43 5.01	6.25 6.91 7.60 8.31	9.81 10.59 11.40 12.23 13.09	13.97 14.87 15.79 16.74 17.70
uctivity • 10 ⁻³) NH ₃ -NH ₃	5 15 25 36 51	66 81 98 115 136	156 176 197 219 242	265 289 313 338 364	391 418 446 472 502	532 561 591 620 650
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) -F F-NH ₃ NH ₃ -NI	9 20 30 40 51	60 73 84 96 109	122 134 147 160 174	188 202 217 231 246	262 277 293 308 325	342 359 375 391 408
Thern (W F-F	13 25 35 43 51	58 64 71 76 82	87 92 97 102 106	111 115 120 124 128	132 136 140 144 148	152 156 159 163 167
y 0 -5) NH3-NH3	52 70 103 138 174	209 244 276 308 338	367 395 423 474	498 522 545 567 589	611 631 652 672 692	711 730 749 767 786
Viscosity (NEm ⁻² · 10 ⁻⁵) F-NH ₃ NH	52 104 156 205 250	290 328 363 397 428	458 487 515 542 568	594 618 642 666 689	711 733 755 776 797	818 838 858 878 897
() F-F	78 152 213 265 311	354 393 430 464 498	530 561 591 620 648	676 703 729 756	806 831 855 879 903	926 949 971 994 1016
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000

TABLE 29. TRANSPORT PROPERTIES OF ATOMIC FLUORINE-NITROGEN TRIDEUTERIDE MIXTURES

Temp. (K)	V (NSI) EUN-EUN	$rac{ ext{Viscosity}}{ ext{(Nsm}^{-2} \cdot 10^{-5})}$	स स	Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) ND ₃ -ND ₃ ND ₃ -F F ⁻¹	Conduct 1 K-1 · 1 ND ₃ -F	ivity 0-3) F-F	Diffusion Coeff (m² s ⁻¹ ·10 ND ₃ -ND ₃ ND ₃ -F	Diffusion Coefficient $(m^2 s^{-1} \cdot 10^{-4})$ D_3 -ND $_3$ ND $_3$ -F	cient 4) F-F	Temp. (K)
100	,	ı	82	1	,	7	•	ı	2	100
	90	100	- 4	-	6	2 5	,	,	# E	100
200	8	123	701	7.7	7.7	1.7	07.0	0.14	0. L.	200
300	145	182	213	28	33	38	0.24	0.30	0.36	300
400	194	235	265	40	43	47	0.42	0.52	0.60	400
200	240	282	311	54	54	ጁ	0.65	0.78	0.88	200
009	283	325	354	89	64	61	0.92	1.08	1.21	009
200	324	365	393	83	75	67	1.22	1.41	1.57	200
800	361	402	430	86	82	73	1,56	1.78	1.97	800
006	397	437	464	114	96	42	1,92	2.18	2.40	006
1000	431	470	498	130	107	\$ 5	2.32	2.61	2.86	1000
1100	463	502	530	145	117	68	2.74	3.07	3.35	1100
1200	494	532	561	191	127	2	3.19	3.55	3.88	1200
1300	524	562	591	178	138	66	3.67	4.07	4.43	1300
1400	552	590	620	195	149	103	4.17	4.61	5.01	1400
1500	280	618	648	213	160	108	4.70	5.18	5.61	1500
1600	209	645	929	232	172	112	5.25	5.77	6.24	1600
1700	633	671	703	252	184	117	5.82	6.38	6.91	1700
. 008	629	969	729	272	196	121	6.41	7.02	7.60	1800
900	684	721	756	294	210	126	7.03	7.69	8.31	1900
0002	208	746	781	318	224	130	7.67	8.37	9.02	2000
2100	732	770	908	343	238	134	8.33	9.08	9.81	2100
2200	755	794	831	369	253	138	9.01	9.81	10.59	2200
2300	778	817	855	395	268	142	9.72	10.57	11.40	2300
2400	800	840	879	422	284	146	10.44	11.34	12.23	2400
2500	822	862	903	449	299	150	11.18	12.13	13.09	2500
2600	844	885	926	477	315	153	11.94	12.95	13.97	2600
2700	865	206	949	206	331	157	12.72	13.79	14.87	2700
2800	886	928	971	535	347	191	13.52	14.64	15.79	2800
2900	906	950	994	265	365	165	14.34	15.52	16.74	2900
3000	927	971	1016	595	386	168	15.17	16.42	17.70	3000

TABLE 30. TRANSPORT PROPERTIES OF ATOMIC FLUORINE-NITROGEN TETRAHYDRIDE MIXTURES

Temp. (K)	100	200	300	400	200	009	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ent F-F	0.04	0.17	0.36	09.0	0.88	1.21	1.57	1.97	2.40	2.86	3,35	3.88	4.43	5.01	5.61	6.25	6.91	7.60	8.31	9.05	9.81	10.59	11.40	12.23	13.09	13.97	14.87	15.79	16.74	17.70
Diffusion Coefficient (m² s⁻¹·10づ) ¼-N²H₄ N²H₄-F F	0.02	0.10	0.22	0.38	0.58	0.81	1.07	1.36	1.67	2.01	2.37	2.75	3,15	3,58	4.02	4.49	4.97	5.48	00.9	6.54	7.10	7.67	8.27	8.88	9.50	10.14	10.80	11.48	12.17	12.87
Diffusion (m^2) $N_2H_4-N_2H_4$	0.01	0.05	0.11	0.20	0.32	0.46	0.62	0.81	1.02	1.24	1.49	1.75	2.03	2.33	2.64	2.96	3,30	3.65	4.02	4.40	4.79	5.20	5.62	6.05	6.49	6.94	7.41	7.89	8.38	8.88
ivity -3) F-F	13	27	38	47	8	19	6 4	73	43	%	68	8	66	103	108	112	117	121	126	130	134	138	142	146	150	153	157	161	165	168
Conducti K-1 · 10 N ₂ H ₄ -F	13	28	41	25	64	74	84	94	105	114	124	135	145	156	166	176	186	196	206	216	225	235	245	254	264	272	282	291	300	309
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) N ₂ H ₄ -N ₂ H ₄ N ₂ H ₄ -F F-	14	30	44	29	74	88	102	116	131	144	160	176	192	209	224	240	256	272	287	302	317	332	348	362	378	392	407	421	436	450
हर । हर	78	152	213	265	311	354	393	430	464	498	530	561	591	620	648	676	703	729	756	781	908	831	855	879	903	926	949	971	994	1016
$\begin{array}{c} \text{Viscosity} \\ \text{(Nsm}^{-2} \cdot 10^{-5}) \\ \text{·N}_2 H_4 \text{N}_2 H_4 - \text{F} \end{array}$	53	106	160	211	257	300	339	376	411	444	476	206	535	564	591	617	643	899	693	717	740	763	786	808	830	851	873	893	914	934
Vi. (Nsm) N ₂ H ₄ -N ₂ H ₄	43	92	111	149	187	225	263	300	336	370	403	434	465	495	523	551	578	604	630	654	619	703	726	749	771	793	815	836	857	877
Temp. (K)	100	200	300	400	200	009	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

Temp.	_	Viscosity (Nsm $^{-2} \cdot 10^{-6}$)	ity 10 ⁻⁶)	The (1	rmal Cor V m-1 K-	Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³)	D iff)	Diffusion Coefficient (m ² s ⁻¹ · 10 ⁻⁴)	efficient 10-4)	Temp.
4	균.	$F-N_2D_4$	$N_2D_4-N_2D_4$	F- F	F-N2D4	F-N2D4 N2D4-N2D4	ह्म स	F-N2D4	$N_2D_4-N_2D_4$	(K)
100	78	ጄ	4	13	14	15	0.04	0.02	0.01	100
200	152	110	81	27	29	32	0.17	0.10	0.05	200
300	213	164	121	88	42	47	0.36	0.21	0.11	300
400	265	214	163	47	55	63	0.60	0.37	0.20	400
200	311	259	205	ጄ	67	80	0.88	0.56	0.31	200
009	354	300	245	61	78	95	1.21	0.78	0.44	009
200	393	338	283	4 9	88	110	1.57	1.03	0.59	200
800	430	374	320	73	66	125	1.97	1.30	0.77	800
006	464	408	354	79	110	141	2.40	1.59	0.95	900
1000	498	440	387	%	120	155	2.86	1.91	1.16	1000
1100	530	470	419	89	130	172	3, 35	2.25	1.38	1100
1200	561	499	449	94	141	189	3.88	2.61	1.61	1200
1300	591	527	478	66	153	207	4.43	2.99	1.86	1300
1400	620	555	206	103	164	225	5.01	3, 39	2.12	1400
1500	648	581	533	108	174	241	5.61	3.80	2.39	1500
1600	929	209	260	112	185	258	6.25	4.24	2.68	1600
1700	703	631	585	117	196	276	6.91	4.70	2.98	1700
1800	729	656	610	121	207	293	7.60	5.17	3.29	1800
1900	756	089	634	126	217	308	8.31	5.66	3.61	1900
2000	781	703	658	130	227	324	9.02	6.17	3.94	2000
2100	908	726	681	134	237	341	9.81	69.9	4.29	2100
2200	831	748	703	138	247	357	10.59	7.23	4.64	2200
2300	855	770	726	142	258	374	11.40	7.79	5.01	2300
2400	879	792	747	146	268	390	12.23	8.36	5.39	2400
2500	903	813	469	150	278	406	13.09	8.95	5.78	2500
2600	926	834	790	153	287	422	13.97	9.55	6.17	2600
2700	949	855	810	157	297	438	14.87	10.17	6.58	2700
	971	875	830	191	307	454	15.79	10.80	7.00	2800
2900	994	895	850	165	317	469	16.74	11.45	7.43	2900
	1111	1								

TABLE 32. TRANSPORT PROPERTIES OF NITROGEN TRIFLUORIDE-NITROGEN MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
$\begin{array}{l} \text{licient} \\ \text{licient} \\ \text{NF}_3\text{NF}_3 \end{array}$	0.01 0.04 0.03 0.14 0.21	0.29 0.38 0.48 0.58	0.82 0.95 1.08 1.23	1.54 1.70 1.87 2.05 2.23	2.42 2.61 2.81 3.01	3.44 3.89 4.13 4.36
Diffusion Coefficient (m² s ⁻¹ ·10 ⁻⁴) -N² N²-NF³ NF³-N	0.02 0.06 0.14 0.23	0.47 0.61 0.77 0.94	1.31 1.52 1.73 1.96 2.20	2.45 2.71 2.98 3.26 3.55	3.85 4.16 4.48 5.14	5.48 6.20 6.57 6.95
Diffue (n N ₂ -N ₂	0.03 0.10 0.21 0.34	0.69 0.89 1.12 1.37	1.91 2.21 2.52 2.85 3.20	3.56 3.94 4.33 4.73	5.59 6.03 6.50 7.46	7.96 8.47 9.00 9.54 10.09
uctivity $\cdot 10^{-3}$) $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$	4 10 19 36	44 51 64 69	74 80 89 89 94	98 102 106 110	118 122 125 129 133	136 140 143 147 150
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10^{-3}); 1 -N ₂ N ₂ -NF ₃ NF ₃ -N	6 14 22 30 37	44 50 56 61	70 75 79 84 89	94 98 103 114	119 124 128 132 137	141 145 149 153
Therr (W N_2-N_2	18 18 33 39	44 49 59 63	67 71 75 80 84	89 95 101 108 115	121 126 131 136 141	146 151 155 160 165
$\begin{array}{ccc} { m Viscosity} & { m Viscosity} & { m (Nsm}^{-2} \cdot 10^{-5}) & { m (N}_2 - { m NF}_3 & { m NF}$	61 124 181 232 277	318 356 391 425 456	487 516 544 572 598	624 649 674 698 722	745 768 790 813 834	856 877 898 919 939
Viscos Nsm ⁻² ·1 N ₂ -NF ₃	59 119 171 215 255	291 324 355 385 413	440 466 491 515	562 584 607 628 649	670 691 711 731 751	770 789 808 826 845
N ₂ -N ₂	65 128 179 223 262	297 330 361 390 418	445 471 496 521	568 591 613 635 656	677 698 718 738 758	778 797 816 835 853
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000

TABLE 33. TRANSPORT PROPERTIES OF NITROGEN TRIFLUORIDE-ARGON MIXTURES

Temp. (K)	100	200	300	400	200	600	200	008	006	1000	1100	1200	1300	1400	1200	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ent A-A	0.02	60.0	91.0	0.32	0.47	65	0.85	1.06	1.30	1.55	1.82	2.11	2.41	2.72	3.05	3.40	3.76	4.14	4.52	4.93	5.34	5.77	6.21	99.9	7.13	7.61	8.10	8.60	9.12	9.64
Diffusion Coefficient $(\mathrm{m}^2~\mathrm{s}^{-1}\cdot 10^{-4})$ $\mathrm{F_3-NF_3-A}$	0.01	0.06	0 1 3	0.21	0.32	0.44	0.57	0.72	0.88	1.05	1.23	1.42	1.63	1.84	2.07	2.30	2.55	2.80	3.06	3, 33	3.62	3.91	4.20	4.51	4.83	5.15	5.48	5.83	6.17	6.53
$\begin{array}{c} \text{Diffusion} \\ \text{(m}^2 \\ \text{NF}_3\text{-NF}_3 \end{array}$	0.01	0,04	80.0	0.14	0.21	0.99	0.38	0.48	0.58	0.70	0.82	0.95	1,08	1.23	1.38	1.54	1.70	1.87	2.05	2.23	2.42	2.61	2.81	3.01	3.23	3.44	3,67	3,89	4.13	4.36
vity -3) A-A	C	12	17	. 22	5 6	30	3 25	37	40	43	45	48	51	ጁ	26	29	62	64	29	69	72	74	22	43	82	%	98	68	91	\$
Thermal Conductivity (W m ⁻⁴ K ⁻¹ · 10^{-3}) F ₃ -NF ₃ A A-	ro	1	, ,	25	31	37	. 6	47	25	26	29	64	67	71	75	78	82	85	88	91	95	86	101	104	107	110	113	116	119	122
Thermal (W m- NF_3-NF_3	4	10	10	200	ခြေ	44	: E	57	64	69	74	6 8	\$	68	ጿ	86	102	106	110	114	118	122	125	129	133	136	140	143	147	150
A-A	83	166	237	0000	352	401	447	490	531	269	209	642	677	710	743	775	806	837	998	968	925	953	981	1008	1035	1062	1088	1114	1140	1165
Viscosity (Nsm ⁻² · 10^{-5}) $F_3 - A$	69	139	200	255	305	346	386	424	459	493	525	557	587	616	644	672	669	726	752	777	802	827	851	875	888	921	944	296	989	1011
$\begin{array}{c} \text{Vi} \\ \text{(Nsn} \\ \text{NF}_3\text{-NF}_3 \end{array}$. 19	124	181	232	277	318	356	391	425	456	487	516	544	572	598	624	649	674	698	722	745	492	790	813	834	856	877	868	919	939
Temp. (K)	100	200	300	400	200	600	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 34. TRANSPORT PROPERTIES OF NITROGEN TRIFLUORIDE-HYDROGEN MIXTURES

STATE OF THE PROPERTY OF THE P

Temp. (K)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1960	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ient) H ₂ -H ₂	0.20	0.71	1.43	2.33	3.39	4.59	5.93	7.41	9.00	10.72	12.56	14.50	16.56	18.72	20.99	23.36	25.82	28.39	31.05	33.80	36.64	39.58	42.60	45.71	48.91	52.19	55.56	59.00	62.54	66.15
Diffusion Coefficient $(m^2 s^{-1} \cdot 10^{-4})$ 3 -NF $_3$ NF $_3$ -H $_2$ H $_2$ -	0.07	0.28	0.59	0.98	1.44	1.96	2.55	3.19	3.88	4.63	5.42	6.27	7.16	8.09	9.08	10.10	11.17	12.28	13.43	14.62	15.85	17.12	18.42	19.77	21.15	22.57	24.03	25, 52	27.05	28.61
Diffusic (m² NF3-NF3	0.01	0.04	0.08	0.14	0.21	0.29	0.38	0.48	0.58	0.10	0.82	0.95	1.08	1.23	1.38	1.54	1.70	1.87	2.05	2.23	2.42	2.61	2.81	3.01	3.23	3.44	3.67	3,89	4.13	4.36
ivity -3 F ₂ -H ₂	89	128	182	221	257	291	325	360	394	428	460	493	526	559	269	624	657	689	720	752	783	813	843	873	903	932	096	987	1014	1042
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) ? ₃ -NF ₃ NF ₃ -H ₂ H ₂ -	36	69	100	124	146	167	188	208	229	248	292	286	305	324	343	361	379	397	415	433	450	467	484	501	518	534	550	265	280	296
Therma (W m NF ₃ -NF ₃	4	10	19	28	36	4	51	57	64	69	74	8	\$	88	\$	86	102	106	110	114	118	122	125	129	133	136	140	143	147	150
) H2-H2	38	99	88	108	125	141	156	170	184	197	209	221	233	244	256	267	277	288	298	308	318	328	337	347	356	365	374	383	392	400
$\begin{array}{cc} \text{Viscosity} \\ (\text{Nsm} \overset{2}{\sim} \cdot 10^{-5}) \\ \text{F}_3 \text{NF}_3 \text{-H}_2 \end{array}$	27	52	72	89	104	118	131	143	155	166	177	187	197	207	216	225	234	243	252	260	269	277	285	293	301	308	316	324	331	338
$egin{array}{c} V & (NS) \ NF_3-NF_3 \end{array}$	61	124	181	232	277	318	356	391	425	456	487	516	544	572	598	624	649	674	869	722	745	768	190	813	834	856	877	888	919	6 26
Temp. (K)	100	200	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1500	1600	2700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 35. TRANSPORT PROPERTIES OF NITROGEN TRIFLUORIDE-ATOMIC HYDROGEN MIXTURES

The second secon

NF ₂ -NF ₃ NF ₂ -NF $+++$ NF ₂ -NF ₃ $+++$ $+++$ $+++$ $+++$ $+++$ $++++$ $++++$ $++++$ $++++$ $+++++$ $++++++$ $++++++++++++$ $++++++++++++++++++++++++++++++++++++$	Temp.	Vi. (Nsm	Viscosity (Nsm- $^2 \cdot 10^{-5}$)	_	Therma (W m	Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³)	ivity	Diffusi (m²	Diffusion Coefficient (m² s-1 · 10-4)	cient	Temp.
61 23 34 4 55 106 0.01 0.12 0.37 124 42 57 10 10 93 176 0.04 0.45 1.22 181 57 75 19 125 232 0.08 0.91 2.42 232 69 91 28 153 279 0.14 1.50 3.90 277 81 105 36 179 322 0.01 2.15 3.42 318 110 130 51 226 402 0.38 3.85 1.65 425 110 142 57 247 438 0.48 4.82 1.23 1.65 425 119 142 64 268 473 0.58 1.78 1.78 1.89 1.78 1.78 1.89 1.78 1.78 1.89 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.78 1.7	(2)	NF3-NF3	NF3-H	_	NF3-NF3	NF3-H	Н-Н	NF3-NF3	NF3-H		(X
124 42 57 10 93 176 0.04 0.45 1.22 181 57 75 19 153 279 0.04 0.91 1.242 232 69 91 28 153 279 0.14 1.50 3.90 277 81 105 36 179 322 0.21 2.19 5.65 356 101 130 51 247 438 0.28 7.65 391 110 142 226 402 0.28 2.98 7.65 425 119 144 185 64 288 507 0.48 4.82 12.38 487 166 128 507 0.70 6.98 17.83 516 173 228 60 1.08 10.79 21.39 516 180 325 60 1.08 10.79 11.49 517 169 326 630 <td>100</td> <td>61</td> <td>23</td> <td>8</td> <td>4</td> <td>55</td> <td>106</td> <td>0.01</td> <td>0.12</td> <td>0.37</td> <td>100</td>	100	61	23	8	4	55	106	0.01	0.12	0.37	100
181 57 75 19 125 232 0.08 0.91 2.42 232 69 91 28 153 279 0.014 1.50 3.90 277 81 105 36 153 279 0.21 2.19 5.66 376 101 138 51 226 402 0.28 7.65 9.88 356 101 130 51 226 402 0.28 7.65 9.88 456 101 136 142 57 0.28 0.38 7.65 9.88 456 128 47 488 507 0.70 6.98 17.83 14.89 17.83 17.88 17.83 <	200	124	42	57	10	93	176	0.04	0.45	1.22	200
232 64 91 28 153 279 0.14 1.50 3.90 277 81 105 36 179 322 0.14 1.50 3.90 378 101 118 44 226 0.29 0.29 2.98 7.65 386 101 142 57 247 438 0.48 4.82 12.39 456 119 153 64 268 473 0.58 5.86 14.38 456 118 142 27 247 438 0.48 4.82 12.39 456 118 144 268 473 0.76 6.98 17.83 516 144 153 247 478 473 0.76 6.98 17.83 517 149 84 342 600 1.08 17.83 17.83 524 159 204 89 359 650 1.28 47.20	300	181	57	75	19	125	232	0.08	0.91	2.42	300
277 81 105 36 179 322 0.21 2.19 5.66 318 91 118 44 203 363 0.29 2.98 7.65 326 110 130 51 226 402 0.29 2.98 7.65 326 110 130 51 226 473 0.48 4.85 19.88 425 119 153 64 268 473 0.58 5.96 14.98 456 128 164 203 288 507 0.70 6.98 17.83 516 136 175 74 268 473 0.76 6.98 17.83 17.83 572 144 185 80 325 630 1.28 17.83 17.83 572 159 273 676 1.28 1.75 1.78 17.83 644 187 240 106 473 1.28	400	232	69	91	28	153	279	0.14	1,50	3,90	400
318 91 118 44 203 363 0.29 2.98 7.65 356 101 130 51 226 402 0.38 3.85 9.88 425 119 142 51 247 473 0.58 5.86 14.98 425 128 164 268 473 0.58 5.86 14.98 456 128 164 268 473 0.70 6.98 17.83 487 136 175 74 306 539 0.86 17.8 17.83 544 151 194 89 325 670 0.96 9.45 24.12 558 166 213 94 376 658 1.23 17.83 17.83 624 189 326 670 0.96 9.45 17.83 17.83 17.83 624 180 326 670 0.96 9.45 24.12	200	277	81	105	36	179	322	0.21	2.19	2,66	200
356 101 130 51 226 402 0.38 3.85 9.88 425 119 142 57 247 438 0.48 4.82 12.32 426 119 142 69 288 507 0.58 5.86 14.98 456 128 168 176 69 288 507 0.70 6.98 17.83 516 144 185 80 325 570 0.95 9.45 24.12 544 151 194 84 325 670 0.95 9.45 24.12 558 156 204 376 658 1.23 12.13 31.13 624 173 222 98 392 686 1.54 13.6 42.94 649 180 321 68 774 1.76 16.82 42.13 624 187 240 10.6 4.86 1.24 1.24	009	318	91	118	44	203	363	0.29	2.98	7.65	009
391 110 142 57 247 438 0.48 4.82 12.32 425 119 153 64 268 473 0.58 5.86 14.98 456 123 164 69 288 473 0.58 5.86 14.98 516 136 175 74 306 539 0.58 5.81 17.83 544 151 194 84 326 600 1.08 10.79 24.38 544 151 194 84 342 600 1.08 1.75 24.12 544 151 194 84 342 600 1.08 9.45 24.12 24.12 558 166 213 342 600 1.08 1.079 34.90 644 173 222 98 352 686 1.23 34.90 644 187 40 174 1.84 1.84 1.84	700	356	101	130	51	226	402	0.38	3,85	9.88	700
425 119 153 64 268 473 0.58 5.86 14.98 456 128 128 507 0.70 6.98 17.83 456 128 128 508 507 0.70 6.98 17.83 516 144 185 80 325 570 0.95 9.45 24.12 544 151 194 84 325 600 1.03 1.23 10.79 20.88 572 159 204 325 600 1.23 1.21 20.88 649 166 213 94 376 658 1.24 3.40 3.43 649 180 231 408 376 658 1.36 42.34 42.43 746 1.54 1.54 42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34 42.34 4	800	391	110	142	57	247	438	0.48	4.82	12.32	800
456 128 164 69 288 507 0.70 6.98 17.83 487 136 175 74 306 539 0.82 8.18 20.88 516 144 185 80 325 570 0.95 9.45 24.12 544 151 194 84 325 670 1.03 10.79 27.53 598 166 213 94 376 658 1.23 12.19 31.13 624 173 222 98 392 686 1.54 15.21 34.90 649 180 231 408 714 1.70 16.82 42.94 649 180 231 408 714 1.70 16.82 42.94 649 180 249 376 658 1.24 34.9 42.94 649 180 249 376 658 1.54 42.94 42.94	900	425	119	153	64	268	473	0.58	5.86	14.98	006
487 136 175 74 306 539 0.82 8.18 20.88 516 144 185 80 325 570 0.95 9.45 24.12 544 151 194 84 325 600 1.08 10.79 24.12 544 159 204 89 359 600 1.23 12.19 31.13 598 166 213 98 392 686 1.54 13.67 34.90 649 187 240 106 428 746 1.87 14.99 42.94 698 193 249 110 428 746 1.87 18.49 47.20 698 193 249 110 428 766 2.05 20.22 51.62 722 20 257 114 453 766 2.05 20.12 51.62 789 213 289 128 128 482	1000	456	128	164	69	288	202	0.70	6.98	17.83	1000
516 144 185 80 325 570 0.95 9.45 24.12 544 151 194 84 342 600 1.08 10.79 27.53 572 159 204 89 359 630 1.23 12.19 31.13 598 166 213 94 376 658 1.54 15.21 34.90 649 173 222 98 392 686 1.54 15.62 34.90 698 193 249 106 423 740 1.87 18.49 47.20 698 193 249 110 423 740 1.87 18.49 47.20 698 193 249 114 453 766 2.05 20.22 51.62 722 20 257 114 453 742 2.21 51.62 768 213 289 122 482 843 2.61	1100	487	136	175	74	306	539	0.82	8.18	20.88	1100
544 151 194 84 342 600 1.08 10.79 27.53 572 159 204 89 359 630 1.23 12.19 31.13 598 166 213 94 376 658 1.54 13.67 34.90 624 173 222 98 392 686 1.54 15.21 34.90 649 180 231 102 408 714 1.70 16.82 42.94 674 187 249 110 423 746 18.72 34.94 678 193 746 1.87 18.4 47.20 42.94 47.20 745 206 265 114 453 746 27.23 22.01 56.20 746 213 273 122 482 843 2.61 56.09 813 225 289 129 867 2.81 2.61 2.62	1200	516	144	185	80	325	570	0.95	9.45	24.12	1200
572 159 204 89 359 630 1.23 12.19 31.13 598 166 213 94 376 658 1.36 13.67 34.90 624 173 222 98 392 686 1.54 15.21 38.94 649 180 231 102 408 714 1.70 16.82 42.94 674 187 240 110 423 740 1.87 42.94 47.20 678 193 249 166 2.0 2.0 2.0 42.3 740 1.87 18.49 47.20 698 193 766 2.0 2.0 2.0 2.0 20.02 51.62 746 20 257 114 453 792 2.2 2.0 56.20 748 21 24 23 2.2 2.0 56.20 2.0 2.1 46.0 31.8 46.0 31.8	1300	544	151	194	84	342	009	1.08	10.79	27.53	1300
598 166 213 94 376 658 1.38 13.67 34.90 624 173 222 98 392 686 1.54 15.21 38.84 649 180 231 102 408 714 1.70 16.82 42.94 674 187 240 110 423 740 1.87 18.49 47.20 698 193 249 110 423 776 1.87 18.49 47.20 722 200 257 114 453 766 2.05 20.22 51.62 745 206 265 118 468 818 2.23 22.01 56.20 768 213 273 122 482 843 2.61 25.78 60.93 769 219 284 867 2.81 27.75 70.83 813 25 289 129 32.3 31.86 81.32	1400	572	159	204	89	359	630	1.23	12.19	31.13	1400
624 173 222 98 392 686 1.54 15.21 38.84 649 180 231 102 408 714 1.70 16.82 42.94 674 187 240 106 423 740 1.87 18.49 47.20 698 193 249 110 438 766 2.05 20.22 51.62 722 200 257 114 453 792 2.23 52.01 56.20 745 206 265 118 468 818 2.42 50.02 51.62 768 213 273 122 482 843 2.61 25.78 65.81 790 219 281 125 496 867 2.81 27.75 70.83 813 225 289 129 129 51 91 3.01 29.77 76.01 854 234 325 32 32 <td>1500</td> <td>598</td> <td>166</td> <td>213</td> <td>\$</td> <td>376</td> <td>658</td> <td>1.38</td> <td>13.67</td> <td>34.90</td> <td>1500</td>	1500	598	166	213	\$	376	658	1.38	13.67	34.90	1500
649 180 231 102 408 714 1.70 16.82 42.94 674 187 240 106 423 740 1.87 18.49 47.20 698 193 249 110 438 766 2.05 50.22 51.62 722 200 257 114 453 792 2.23 52.01 56.20 745 206 265 118 468 818 2.42 53.87 60.93 768 213 273 122 482 843 2.61 25.78 65.81 790 219 281 125 496 867 2.81 27.75 70.83 813 225 289 129 510 891 3.01 29.77 76.01 834 231 297 140 551 962 3.67 36.19 86.78 898 248 320 143 57 10	1600	624	173	222	86	392	989	1.54	15.21	38.84	1600
674 187 240 106 423 740 1.87 18.49 47.20 698 193 249 110 438 766 2.05 20.22 51.62 722 200 257 114 453 792 2.23 22.01 56.20 745 206 265 118 468 818 2.42 23.87 60.93 768 213 273 122 482 843 2.61 25.78 65.81 768 213 281 125 482 843 2.61 25.78 65.81 813 225 289 129 510 891 3.01 29.77 76.01 834 231 297 133 524 915 3.23 31.86 81.32 856 237 305 140 551 962 3.67 36.19 92.38 874 327 147 577 1007	1700	649	180	231	102	408	714	1.70	16.82	42.94	1700
698 193 249 110 438 766 2.05 20.22 51.62 722 200 257 114 453 792 2.23 22.01 56.20 745 206 265 118 468 818 2.42 23.87 60.93 768 213 273 122 482 843 2.61 25.78 65.81 790 219 281 125 496 867 2.81 27.75 70.83 813 225 289 129 510 891 3.01 29.77 76.01 834 231 297 133 524 915 3.23 31.86 81.32 877 243 312 140 551 962 3.67 36.19 92.38 89 248 320 147 577 1007 4.13 40.73 103.98 939 260 334 43.6 43.96 <	1800	674	187	240	106	423	740	1.87	18.49	47.20	1800
722 200 257 114 453 792 2.23 22.01 56.20 745 206 265 118 468 818 2.42 23.87 60.93 768 213 273 122 482 843 2.61 25.78 65.81 790 219 281 125 496 867 2.81 27.75 70.83 813 225 289 129 129 3.01 29.77 76.01 834 231 297 133 524 915 3.23 31.86 81.32 856 237 305 136 531 962 3.44 33.99 86.78 877 243 312 140 551 962 3.67 36.19 92.38 898 236 327 147 577 1007 4.13 40.73 103.99 939 260 334 150 590 1029 <t< td=""><td>1900</td><td>869</td><td>193</td><td>249</td><td>110</td><td>438</td><td>992</td><td>2.05</td><td>20.22</td><td>51.62</td><td>1900</td></t<>	1900	869	193	249	110	438	992	2.05	20.22	51.62	1900
745 206 265 118 468 818 2.42 23.87 60.93 768 213 273 122 482 843 2.61 25.78 65.81 790 219 281 125 496 867 2.81 27.75 70.83 813 225 289 129 129 510 891 3.01 29.77 76.01 834 231 297 133 524 915 3.23 31.86 81.32 856 237 305 136 551 962 3.67 36.19 92.38 877 248 320 143 563 984 3.89 38.43 98.11 919 254 327 147 577 1007 4.13 40.73 103.98 939 260 334 150 590 1029 4.36 43.09 109.99	2000	722	200	257	114	453	792	2.23	22.01	56.20	2000
768 213 273 122 482 843 2.61 25.78 65.81 790 219 281 125 496 867 2.81 27.75 70.83 813 225 289 129 510 891 3.01 29.77 76.01 854 231 297 133 524 915 3.23 31.86 81.32 877 243 312 140 551 962 3.67 36.19 92.38 898 248 320 143 563 984 3.89 38.43 98.11 919 254 327 147 577 1007 4.13 40.73 103.98 939 260 334 150 590 1029 4.36 43.09 109.99	2100	745	206	265	118	468	818	2.42	23.87	60.93	2100
790 219 281 125 496 867 2.81 27.75 70.83 813 225 289 129 510 891 3.01 29.77 76.01 834 231 297 133 524 915 3.23 31.86 81.32 856 237 305 136 537 938 3.44 33.99 86.78 877 243 312 140 551 962 3.67 36.19 92.38 898 248 320 143 563 984 3.89 38.43 98.11 919 254 327 147 577 1007 4.13 40.73 103.98 939 260 334 150 590 1029 4.36 43.09 109.99	2200	168	213	273	122	482	843	2.61	25.78	65.81	2200
813 225 289 129 510 891 3.01 29.77 76.01 834 231 297 133 524 915 3.23 31.86 81.32 856 237 305 136 551 962 3.44 33.99 86.78 877 243 312 140 551 962 3.67 36.19 92.38 898 248 320 143 563 984 3.89 38.43 98.11 919 254 327 147 577 1007 4.13 40.73 103.98 939 260 334 150 590 1029 4.36 43.09 109.99	2300	790	219	281	125	496	298	2.81	27.75	70.83	2300
834 231 297 133 524 915 3.23 31.86 81.32 856 237 305 136 537 938 3.44 33.99 86.78 877 243 312 140 551 962 3.67 36.19 92.38 898 248 320 143 563 984 3.89 38.43 98.11 919 254 327 147 577 1007 4.13 40.73 103.98 939 260 334 150 590 1029 4.36 43.09 109.99	2400	813	225	289	129	510	.168	3.01	29.77	76.01	2400
856 237 305 136 537 938 3.44 33.99 86.78 877 243 312 140 551 962 3.67 36.19 92.38 898 248 320 143 563 984 3.89 38.43 98.11 919 254 327 147 577 1007 4.13 40.73 103.98 939 260 334 150 590 1029 4.36 43.09 109.99	2500	834	231	297	133	524	915	3.23	31.86	81.32	2500
877 243 312 140 551 962 3.67 36.19 92.38 898 248 320 143 563 984 3.89 38.43 98.11 919 254 327 147 577 1007 4.13 40.73 103.98 939 260 334 150 590 1029 4.36 43.09 109.99	2600	856	237	305	136	537	938	3.44	33,99	86.78	2600
898 248 320 143 563 984 3.89 38.43 98.11 919 254 327 147 577 1007 4.13 40.73 103.98 939 260 334 150 590 1029 4.36 43.09 109.99	2700	877	243	312	140	551	962	3.67	36.19	92.38	2700
919 254 327 147 577 1007 4.13 40.73 103.98 939 260 334 150 590 1029 4.36 43.09 109.99	2800	868	248	320	143	563	984	3, 89	38.43	98.11	2800
939 260 334 150 590 1029 4.36 43.09 109.99	2900	919	254	327	147	577	1001	4.13	40.73	103.98	2900
	3000	939	260	334	150	230	1029	4.36	43.09	109.99	3000

TABLE 36. TRANSPORT PROPERTIES OF NITROGEN TRIFLUORIDE-DEUTERIUM MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
cient 4) D_2 - D_2	0.16 0.52 1.03 1.66 2.40	3.25 4.20 5.24 6.37 7.58	8.88 10.25 11.71 13.24 14.84	16.51 18.26 20.07 21.95 23.90	25.91 27.98 30.12 32.32 34.58	36.90 39.28 41.72 44.21 46.77
Diffusion Coefficient ($m^2 s^{-1} \cdot 10^{-4}$) 3 -NF $_3$ -D $_2$ -	0.06 0.22 0.44 0.72 1.05	1.43 1.85 2.31 2.82 3.35	3.93 4.54 5.18 5.86 6.57	7.31 8.08 8.88 9.72 10.58	11.47 12.39 13.33 14.31 15.31	16.33 17.39 18.47 19.57 20.70
Diffusi (m² NF ₃ -NF ₃	0.01 0.04 0.08 0.14 0.21	0.29 0.38 0.48 0.58	0.82 0.95 1.08 1.23 1.38	1.54 1.70 1.87 2.05 2.23	2.42 2.61 2.81 3.01	3.44 3.89 4.13 36 36
ivity 0-3) D ₂ -D ₂	58 101 141 176 210	243 274 305 336 365	393 421 449 476 502	528 554 579 605	654 678 702 726 750	774 797 821 844 868
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10^{-3})? 3 -NF $_{3}$ NF $_{3}$ -D $_{2}$ D $_{2}$ -	31 55 80 102 123	143 162 181 200 217	233 266 282 298	313 328 342 357	386 400 413 427 441	455 468 482 495
Therma (W m NF ₃ -NF ₃	4 10 19 28 36	44 51 57 69	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	98 102 106 110	118 122 125 129 133	136 140 143 147 150
D_2 - D_2	58 96 126 152 175	197 218 238 256 275	292 309 325 341 357	372 387 402 416 430	444 457 471 484 497	510 522 535 547 559
$\begin{array}{c} \text{Viscosity} \\ (\text{Nsm}^{-2} \cdot 10^{-5}) \\ \text{IF}_3 \qquad \text{NF}_3 \text{-} D_2 \end{array}$	41 76 103 126 147	166 184 200 216 232	246 261 275 288 301	314 327 339 351 363	375 386 397 408 419	430 441 451 462 472
V. (Nsn NF3-NF3	61 124 181 232 277	318 356 391 425 456	487 516 544 572 598	624 649 674 698 722	745 768 790 813 834	856 877 898 919 939
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000

TABLE 37. TRANSPORT PROPERTIES OF NITROGEN TRIFLUORIDE-ATOMIC DEUTERIUM MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
ent D-D	0.27 0.90 1.79 2.88	5.65 7.29 9.10 11.06 13.17	15.42 17.81 20.33 22.99 25.77	28.68 31.71 34.85 38.12 41.50	44.99 48.59 52.30 56.12 60.05	64.08 68.21 72.45 76.78 81.22
Diffusion Coefficient $(m^2 s^{-1} \cdot 10^{-4})$ F_3 -NF $_3$ NF $_3$ -D D-	0.09 0.33 0.67 1.09	2.17 2.81 3.51 4.27 5.08	5.95 6.88 7.85 8.88	11.08 12.25 13.46 14.73	17.38 18.77 20.21 21.68 23.20	24.76 26.35 27.99 29.66 31.38
Diffusio (m² NF3-NF3	0.01 0.04 0.08 0.14	0.29 0.38 0.48 0.58	0.82 0.95 1.08 1.23	1.54 1.70 1.87 2.05 2.23	2.42 2.61 2.81 3.01	3.67 3.89 4.13 4.36
[vity -3] D-D	79 130 170 204 237	267 295 321 347 371	395 418 440 461 482	503 523 543 563 582	601 619 637 655 673	690 707 724 740 757
Thermal Conductivity (W m ⁻¹ K ⁻¹ \cdot 10 ⁻³) 1 1	41 70 94 116 136	155 173 189 205 220	234 249 262 275 288	300 312 324 336 348	359 370 381 392 403	413 423 443 443
$\begin{array}{c} \text{Thermal} \\ \text{(W m-} \\ \text{NF}_3\text{-NF}_3 \end{array}$	4 10 19 36 36	57 64 69	7.8888	98 102 106 110 114	118 122 125 129 133	136 140 143 147 150
D-D	50 83 109 132 152	171 189 206 223 238	254 268 283 296 310	323 336 349 361 373	385 397 409 420 431	443 453 464 475 486
Viscosity (Nsm- $^2 \cdot 10^{-5}$) NF ₃ NF ₃ -D	32 59 80 98 114	129 143 156 168 180	192 203 214 224 235	245 254 264 273 283	292 301 309 318 326	335 343 351 359 367
V) (Nen NF3-NF3	61 124 181 232 277	318 356 391 425 456	487 516 544 572 598	624 649 674 698 722	745 768 790 813 834	856 877 898 919 939
Temp. (K)	100 200 300 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000

TABLE 38. TRANSPORT PROPERTIES OF NITROGEN TETRAFLUORIDE-HELIUM MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3900
ent HE-HE	0.29 0.92 1.84 3.01	6.04 7.88 9.92 12.20	17.20 20.10 23.00 26.30 29.60	33.20 36.90 40.80 44.90 49.10	53.50 58.10 62.80 67.70 72.80	78.00 83.40 88.90 94.60
Diffusion Coefficient (m² s-1·10-4) '4-N ₂ F ₄ -HE HI	0.09 0.29 0.59 0.95 1.38	1.87 2.42 3.02 3.67 4.36	5.11 5.90 6.74 7.62 8.54	9.50 10.51 11.55 12.63	14.91 16.11 17.34 18.60 19.90	21.24 22.61 24.01 25.45 26.92
Diffusion Coefficier $(m^2 s^{-1} \cdot 10^{-4})$ $N_2F_4-N_2F_4$ N_2F_4-HE	0.01 0.03 0.07 0.12 0.18	0.25 0.33 0.42 0.51	0.73 0.84 0.97 1.10	1.38 1.52 1.68 1.84	2.17 2.35 2.53 2.71 2.90	3.10 3.30 3.72 3.93
ivity 0-3) HE-HE	73 115 152 187 220	252 281 308 332 357	380 403 425 447 468	488 508 528 547 566	585 603 622 640 657	674 691 708 724 740
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) ' ₄ -N ₂ F ₄ N ₂ F ₄ -HE HE	38 61 85 109 131	153 174 194 213 232	248 264 279 294 309	322 335 349 362 374	387 399 412 424 435	447 458 470 481 492
Thermal Conductivity (W m ⁻¹ K-1·10 ⁻³) N ₂ F ₄ -N ₂ F ₄ N ₂ F ₄ -HE HE	3 18 31 43	55 68 81 94 107	117 126 134 142 150	157 163 170 177 183	189 196 202 208 214	220 226 232 238 244
) не-не	99 156 202 244 284	322 359 394 429 461	494 525 556 586 614	643 671 698 725	778 804 830 855 880	905 929 953 977 1001
Viscosity (Nsm ⁻² · 10^{-5}) F ₄ -HE	61 105 139 168 195	219 242 264 285 305	325 344 362 380 397	414 431 447 463 479	494 509 524 538 553	567 581 595 609 622
Viscosity (Nsm ⁻² ·10 ⁻ N ₂ F ₄ -N ₂ F ₄ N ₂ F ₄ -HE	73 146 220 287 349	405 457 506 551 595	637 677 715 752 788	823 857 890 922 954	985 1016 1046 1075 1104	1133 1161 1189 1216
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 2700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000

TABLE 39. TRANSPORT PROPERTIES OF NITROGEN TETRAFLUORIDE-NITROGEN MIXTURES

and the same of the same of the same

Temp. (K)	100	200	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ent N ₂ -N ₂	0.03	0.10	0.21	0.3 \$	0.50	0.69	0.89	1.12	1.37	1.63	1.91	2.21	2.52	2.85	3.20	3.56	3.94	4.33	4.73	5.15	5.59	6.03	6.50	6.97	7.46	7.96	8.47	9.00	9.54	10.09
Diffusion Coefficient $(m^2 s^{-1} \cdot 10^{-4})$ F_4 - N_2F_4 N_2F_4 - N_2	0.02	0.06	0.13	0.23	0.34	0.46	0.61	0.76	0.93	1.11	1.31	1.51	1.73	1.96	2.20	2.45	2.71	2.98	3.26	3.55	3.85	4.16	4.48	4.80	5.14	5.49	5.84	6.20	6.57	6.95
Diffusion (m^2) $N_2F_4-N_2F_4$	0.01	0.03	0.07	0.12	0.18	0.25	0.33	0.42	0.51	0.62	0.73	0.84	0.97	1.10	1.23	1.38	1.52	1.68	1.84	2.00	2.17	2.35	2.53	2.71	2.90	3.10	3, 30	3, 51	3.72	3.93
ivity -3 N ₂ -N ₂	6	18	56	33	39	44	49	54	29	63	49	7.1	75	80	\$	89	95	101	108	115	121	126	131	136	141	146	151	155	160	165
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) F_4 -N ₂ F_4 N ₂ F_4 -N ₂ N ₂ -	9	12	22	32	41	49	28	29	92	82	92	98	104	111	117	123	129	135	142	149	155	191	165	172	177	183	188	193	199	204
Thermal (W m ⁻ N ₂ F ₄ -N ₂ F ₄	က	7	18	31	43	55	89	81	\$	107	117	126	134	142	150	157	163	170	177	183	189	196	202	208	214	220	226	232	238	244
N ₂ -N ₂	65	128	179	223	262	297	330	311	390	418	445	471	496	521	544	999	591	613	635	929	677	869	718	738	758	418	797	816	835	853
Viscosity (Nsm ⁻² · 10 ⁻⁵) $N_2F_4 N_2F_4-N_2$	62	125	182	232	276	316	354	388	421	453	483	512	539	266	593	618	643	299	691	715	738	760	783	802	826	847	898	883	910	930
$Vi \\ (Nsm \\ N_2F_4-N_2F_4$	73	146	220	287	349	405	457	206	551	595	637	677	715	752	788	823	857	890	922	954	985	1016	1046	1075	1104	1133	1161	1189	1216	1243
Temp. (K)	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 40. TRANSPORT PROPERTIES OF NITROGEN TETRAFLUORIDE-ARGON MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3900
ient) A-A	0.02 0.09 0.19 0.32 0.47	0.65 0.85 1.06 1.30 1.55	1.82 2.11 2.41 3.05	3.40 3.76 4.14 4.52	5.34 5.77 6.21 6.66 7.13	7.61 8.10 8.60 9.12
Diffusion Coefficient (m² s-1·10-1) ¡F₄-N²F₄ N²F₄-A A	0.01 0.06 0.12 0.21 0.31	0.43 0.56 0.70 0.86 1.03	1.21 1.40 1.60 1.82 2.04	2.27 2.52 2.77 3.03 3.30	3.58 3.86 4.16 4.46	5.10 5.43 5.76 6.11 6.46
Diffusion Coeffic (m ² s ⁻¹ · 10 ⁻⁴ N ₂ F ₄ -N ₂ F ₄ -A	0.01 0.03 0.07 0.12 0.18	0.25 0.33 0.42 0.51 0.62	0.73 0.84 0.97 1.10 1.23	1.38 1.52 1.68 1.84 2.00	2.17 2.35 2.53 2.71 2.90	3, 10 3, 30 3, 72 3, 93
ivity	7 112 117 22 26	30 34 37 40 43	45 48 51 54 56	59 62 64 67	72 74 77 79 82	88 88 98 98 98 98 98 98 98 98 98 98 98 9
hermal Conductivit (W m ⁻¹ K ⁻¹ ·10 ⁻³) ? ₄ -N ₂ F ₄ N ₂ F ₄ -A A	5 17 26 34	42 51 59 67 75	81 87 92 98 103	108 112 117 122 126	130 135 139 143 148	152 156 160 164 169
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) N ₂ F ₄ -N ₂ F ₄ N ₂ F ₄ -A A-	3 18 31 43	55 68 81 94 107	117 126 134 142 150	157 163 170 177 183	189 196 202 208 214	220 226 232 238
A-A	83 166 237 298 352	401 447 490 531 569	607 642 677 710	775 806 837 866 896	925 953 981 1008 1035	1062 1088 1114 1140 1165
Viscosity (Nsm ⁻² · 10^{-5}) N ₂ F ₄ N ₂ F ₄ -A	72 147 216 277 332	381 427 470 511 549	586 621 655 688 720	751 782 812 841 869	897 925 952 979 1005	1031 1053 1082 1107 1131
Vi (Nsn N ₂ F4-N ₂ F4	73 146 220 287 349	405 457 506 551 595	637 677 715 752 788	823 857 890 922 954	985 1016 1046 1075 1104	1133 1161 1189 1216 1243
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000

TABLE 41. TRANSPORT PROPERTIES OF NITROGEN TETRAFLUORIDE-HYDROGEN MIXTURES

Temp. (K)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ent H ₂ -H ₂	0.20	0.71	1.43	2,33	3,39	4.59	5, 93	7,41	9.00	10.72	12,56	14,50	16.56	18.72	20.99	23.36	25.82	28.39	31.05	33.80	36.64	39, 58	42.60	45.71	48.91	52.19	55, 56	59.00	62.54	66.15
Diffusion Coefficient $(m^2 s^{-4} \cdot 10^{-4})$ 7_4 - $N_2 F_4$ $N_2 F_4$ - H_2 H_2	0.07	0.29	0.61	1.02	1.50	2.05	2.66	3.34	4.07	4.86	5.70	6.59	7.53	8.51	9.55	10.63	11.75	12.92	14.13	15.38	16.68	18.01	19.39	20.80	22.26	23.75	25.29	26.86	28.46	30.11
Diffusio (m^2 N_2F_4 - N_2F_4	0.01	0.03	0.07	0.12	0.18	0.25	0.33	0.42	0.51	0.62	0.73	0.84	0.97	1.10	1.23	1.38	1.52	1.68	1.84	2.00	2.17	2.35	2.53	2.71	2.90	3.10	3,30	3.51	3.72	3.93
ivity 1-3) H ₂ -H ₂	68	128	182	221	257	291	325	360	394	428	460	493	526	559	265	624	657	689	720	752	783	813	843	873	903	932	096	987	1014	1042
Thermal Conductivity (W m $^{-4}$ K $^{-1} \cdot 10^{-3}$) F ₄ -N ₂ F ₄ N ₂ F ₄ -H ₂ H ₂ -	35	29	100	126	150	173	196	220	244	267	288	309	330	350	371	390	410	429	448	467	486	504	522	540	558	576	593	609	626	643
Thermal Conductivity (W m ⁻⁴ K ⁻¹ · 10 ⁻³) $N_2F_4-N_2F_4$ $N_2F_4-H_2$ H_2-H_2	က	2	18	31	43	55	89	81	\$	107	117	126	134	142	150	157	163	170	177	183	189	196	202	208	214	220	226	232	238	244
H ₂ -H ₂	38	99	89	¥01	125	141	156	170	184	197	509	221	233	244	256	267	277	288	298	308	318	328	337	347	326	365	374	383	392	400
Viscosity (Nsm ⁻² · 10 ⁻⁵) $N_2 F_4 N_2 F_4 - H_2$	27	53	75	93	110	125	139	152	164	176	188	199	209	219	230	239	249	258	268	277	286	294	303	311	320	328	336	344	352	360
Vi (Nsn N ₂ F ₄ -N ₂ F ₄	73	146	220	287	349	405	457	206	551	595	637	229	715	752	788	823	857	890	922	954	985	1016	1046	1075	1104	1133	1161	1189	1216	1243
Temp. (K)	100	200	300	400	200	009	100	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 42. TRANSPORT PROPERTIES OF NITROGEN TETRAFLUORIDE-ATOMIC HYDROGEN MIXTURES

Temp.	(K)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1200	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ent	н-н	0.37	1.22	2.42	3.90	5. 66	7.65	9.88	12.32	14.98	17.83	20.88	24.12	27.53	31.13	34.90	38.84	42.94	47.20	51.62	56.20	60.93	65.81	70.83	76.01	81.32	86.78	92.38	98.11	103.98	109.99
Diffusion Coefficient (m² s-1·10-4)	N ₂ F ₄ -H	0.12	0.46	0.95	1.57	2.30	3.13	4.06	5.08	6.18	7.37	8.63	9.97	11,39	12.88	14.44	16.07	17.76	19.53	21.36	23.25	25.21	27.23	29.31	31.45	33,65	35.91	38.22	40.59	43.02	45.51
Diffusio (m²	N2F4-N2F4 N2F4-H	0.01	0.03	0.07	0.12	0.18	0.25	0.33	0.42	0.51	0.62	0.73	0.84	0.97	1.10	1.23	1.38	1.52	1.68	1.84	2.00	2.17	2,35	2,53	2.71	2.90	3.10	3.30	3.51	3.72	3.93
vity	н-н	106	176	232	279	322	363	402	438	473	207	539	570	009	630	658	989	714	740	992	792	818	843	867	891	915	938	362	3 86	1001	1029
Conducti K ⁻¹ ·10	N2F4-H	22	91	125	155	182	509	235	259	283	307	328	348	367	386	404	421	438	455	471	487	503	519	534	549	564	579	594	809	622	636
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³)	N2F4-N2F4 N2F4-H	က	2	18	31	43	55	89	81	94	107	117	126	134	142	150	157	163	170	177	183	189	196	202	208	214	220	226	232	238	244
	н-н	34	22	75	91	105	118	130	142	153	164	175	185	194	204	213	222	231	240	249	257	265	273	281	289	297	305	312	320	327	334
Viscosity (Nsm ⁻² ·10 ⁻⁵)	N2F4-H	23	43	29	73	85	97	107	117	126	135	144	152	161	169	176	18	191	198	202	212	219	226	232	239	245	252	258	264	270	276
Vis (Nsm	N2 F4-N2 F4 N2 F4-H	73	146	220	287	349	405	457	206	551	595	637	677	715	752	788	823	857	890	922	952	985	1016	1046	1075	1104	1133	1161	1189	1216	1243
Temp.	(V)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 43. TRANSPORT PROPERTIES OF NITROGEN TETRAFLUORIDE-DEUTERIUM MIXTURES

Maria Com

Temp. (K)	100	300	400	200	009	700	800	900	1000	1100	1200	1300	1400	1200	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ent D ₂ -D ₂	0.16	1.03	1.66	2.40	3.25	4.20	5.24	6.37	7.58	8.88	10.25	11.71	13.24	14.84	16.51	18.26	20.07	21.95	23.90	25.91	27.98	30.12	32.32	34.58	36.90	39.28	41.72	44.21	46.77
Diffusion Coefficient $(m^2 s^{-4} \cdot 10^{-4})$ 7_4 -N $_2F_4$ N $_2F_4$ -D $_2$ D $_3$	90.0	0.22	0.75	1.09	1.49	1.93	2.42	2.94	3,51	4.11	4.75	5.42	6.13	6.87	7.65	8.46	9.30	10.17	11.07	12.00	12,96	13,95	14.97	16.02	17.09	18.20	19,33	20.48	21.66
Diffusio $\binom{m^2}{N_2}F_4-N_2^2F_4$	0.01	0.03	0.12	0.18	0.25	0.33	0.42	0.51	0.62	0.73	0.84	0.97	1.10	1.23	1.38	1.52	1.68	1.82	2.00	2.17	2.35	2,53	2.71	2.90	3.10	3,30	3.51	3.72	3.93
ivity 0-3) D ₂ -D ₂	58	141	176	210	243	274	305	336	365	393	421	449	476	205	528	554	579	605	630	654	849	702	726	750	774	797	821	844	868
Thermal Conductivity (W m ⁻⁴ K ⁻⁴ · 10 ⁻³) F_4 N ₂ F_4 N ₂ F_4 D ₂ ·	30	# 6 <u>2</u>	103	126	149	171	193	215	236	255	273	291	309	326	342	358	374	391	406	421	437	452	467	482	497	511	526	541	556
Thermal (W m $^{\prime}$ N ₂ F ₄ -N ₂ F ₄	a 00	- 8	31	43	55	89	81	ጄ	107	117	126	134	142	150	157	163	170	177	183	189	196	202	208	214	220	226	232	238	244
D ₂ -D ₂	58	126	152	175	197	218	238	256	275	292	309	325	341	357	372	387	402	416	430	444	457	471	484	497	510	522	535	547	559
Viscosity (Nsm $^{-2} \cdot 10^{-5}$) $N_2 F_4 N_2 F_4 - D_2$	42	108	133	156	176	195	213	230	247	263	278	293	307	321	335	348	361	374	387	399	412	424	435	447	459	470	481	492	503
Vi (Nsn N ₂ F ₄ -N ₂ F ₄	73	220	287	349	405	457	206	551	595	637	229	715	752	788	823	857	890	922	954	985	1016	1046	1075	1104	1133	1161	1189	1216	1243
Temp. (K)	100	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 44. TRANSPORT PROPERTIES OF NITROGEN TETRAFLUORIDE-ATOMIC DEUTERIUM MIXTURES

Temp.	4	100	200	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ant	D-D	0.27	0.00	1.79	2.88	4.18	5.65	7.29	9.10	11.06	13.17	15.42	17.81	20.33	22.99	25.77	28.68	31.71	34.85	38.12	41.50	44.99	48, 59	52.30	56.12	60.05	64.08	68,21	72.45	76.78	81.22
Diffusion Coefficient (m ² s ⁻¹ · 10 ⁻⁴)	N2F4-D	0.09	0.34	0.69	1.14	1.67	2.28	2.95	3.69	4.49	5,36	6.28	7.25	8.28	9.36	10.50	11.68	12.92	14.20	15.53	16.90	18.33	19.80	21.31	22.86	24.46	26.10	27.79	29.51	31.28	33.09
Diffusior (m² s	N2F4-N2F4	0.01	0.03	0.07	0.12	0.18	0.25	0.33	0.42	0.51	0.62	0.73	0.84	0.97	1.10	1.23	1.38	1.52	1.68	1.84	2.00	2.17	2.35	2.53	2.71	2.90	3.10	3,30	3.51	3.72	3.93
vity 3)	D-D	43	130	170	204	237	267	295	321	347	371	395	418	440	461	482	503	523	543	563	582	601	619	637	655	673	069	707	724	740	757
Conducti K-1 · 10	N ₂ F ₄ -D	41	89	94	117	140	161	181	201	220	239	256	272	287	301	316	330	343	356	370	382	395	407	419	431	443	455	466	478	489	200
Thermal Conductivity (W m^{-1} K ⁻¹ · 10 ⁻³)	N2F4-N2F4	က	7	18	댦	43	55	68	81	8	107	117	126	134	142	150	157	163	170	177	183	189	196	202	208	214	220	226	232	238	244
	D-D	20	83	109	132	152	171	189	506	223	238	254	897	283	596	310	323	336	349	361	373	385	397	409	420	431	443	453	464	475	486
Viscosity (Nsm ⁻² ·10 ⁻⁵)	N_2F_4-D	32	61	\$	104	121	137	152	166	179	192	204	216	822	239	250	260	271	281	291	301	311	320	329	339	348	357	366	374	383	391
Vis (Nsm	$N_2 F_4 - N_2 F_4$	73	146	220	287	349	405	457	206	551	595	637	229	715	752	788	823	857	890	922	954	985	1016	1046	1075	1104	1133	1161	1189	1216	1243
Temp.		100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 45. TRANSPORT PROPERTIES OF CHLORINE PENTAFLUORIDE-HELIUM MIXTURES

Temp. (K)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
fficient 10-d) CLF ₅ -CLF ₅	0.00	0.01	0.03	0.05	0.08	0.11	0.15	0.19	0.24	0.29	0.35	0.41	0.47	0.53	09.0	0.68	0.75	0.83	0.91	0.99	1.08	1.17	1.26	1.36	1.46	1.56	1.66	1.76	1.87	1.98
Diffusion Coeffici ent (m² s-1·10-4) E HE-CLF, CLF ₅ -	0.00	0.20	0.41	0.67	0.97	1.32	1.71	2.13	2.59	3.08	3.61	4.17	4.76	5, 39	6.04	6.72	7.43	8.17	8.93	9.72	10.54	11.38	12.25	13.15	14.07	15.01	15.98	16.97	17.99	19.03
Dif HE-HE	0.29	0.92	1.84	3.01	4.41	6.04	7.88	9.92	12.20	14.60	17.20	20.10	23.00	26.30	29.60	33.20	36.90	40.80	44.90	49.10	53.50	58.10	62.80	67.70	72.80	78.00	83.40	88.90	94.60	101.00
uctivity • 10~3) CLF ₅ -CLF ₅	7	13	19	25	32	38	4	20	24	63	. 29	74	79	85	6	95	100	105	109	112	115	118	121	123	125	127	129	131	133	135
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) IE HE-CLF ₅ CLF ₅ -(40	2	85	901	126	145	162	179	194	210	223	238	252	266	279	291	304	316	328	339	350	360	371	381	391	400	410	419	428	437
The HE-HE	73	115	152	187	220	252	281	308	332	357	380	403	425	447	468	488	208	528	547	266	585	603	622	640	657	674	691	708	724	740
ity .0-5) CLF ₅ -CLF ₅	40	74	111	150	188	225	260	292	324	354	382	410	436	461	486	510	533	555	577	598	619	640	099	089	669	718	736	755	773	790
Viscosity (Nsm ⁻² ·10 ⁻⁵ HE-CLF ₅ CI	41	73	86	119	139	156	173	189	204	218	232	245	259	271	78	596	308	319	331	342	353	363	374	3 84	395	405	415	425	435	444
не-не	66	156	202	244	284	322	329	394	429	461	494	525	556	586	614	643	671	698	725	752	778	804	830	855	880	902	8 28	953	977	1001
Temp. (K)	100	200	300	400	200	009	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 46. TRANSPORT PROPERTIES OF CHLORINE PENTAFLUORIDE-NITROGEN MIXTURES

Temp. (K)	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
efficient 10 ⁻⁴) CLF ₅ -CLF ₅	0.00	0.01	0.03	0,05	0.08	0.11	0.15	0.19	0.24	0.29	0.35	0.41	0.47	0.53	0.60	0.68	0.75	0.83	0.91	0.99	1.08	1,17	1.26	1.36	1.46	1.56	1.66	1.76	1.87	1.98
Diffusion Coefficient $(m^2 s^{-1} \cdot 10^{-4})$ $I_2 N_2$ -CLF $_5$ CLF $_5$ -C	0.01	0.04	0.03	0.15	0.23	0.32	0.42	0.54	0.66	0.79	0.93	1.08	1.24	1.40	1.57	1.76	1.94	2.14	2.34	2.55	2.77	2.99	3.22	3.46	3.70	3, 95	4.21	4.47	4.74	5.01
$Dil N_2 - N_2$	0.03	0.10	0.21	0.34	0.50	0.69	0.89	1.12	1.37	1.63	1,91	2,21	2.52	2.85	3.20	3, 56	3.94	4,33	4.73	5,15	5.59	6.03	6.50	6.97	7.46	7.96	8. 47	9.00	9.54	10.09
$rac{ m thetivity}{1\cdot 10^{-3}}$ $ m CLF_5-CLF_5$	7	13	19	25	32	38	44	20	57	63	29	74	42	85	06	95	100	105	109	112	115	118	121	123	125	127	129	131	133	135
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) N ₂ N ₂ -CLF ₅ CLF ₅ -C	œ	15	22	29	35	41	46	52	58	63	29	72	22	82	87	92	97	103	108	113	118	122	126	129	133	137	140	143	146	150
The N_2-N_2	တ	18	56	ಜ	39	#	49	ጁ	59	63	29	71	75	80	%	83	95	101	108	115	121	126	131	136	141	146	151	155	160	165
ity 10 ⁻⁵) CLF ₅ -CLF ₅	40	74	111	150	188	225	260	292	324	354	382	410	436	461	486	510	533	555	577	598	619	640	099	089	669	718	736	755	773	750
Viscosity (Nsm ⁻² ·10 ⁻⁵) N ₂ -CLF ₅ CLF	42	%	126	165	199	231	260	287	313	337	360	383	404	425	445	465	484	503	521	539	556	573	290	607	623	639	655	671	989	702
N2-N2	65	128	179	223	262	297	330	361	390	418	445	471	496	521	544	268	591	613	635	656	677	869	718	738	758	778	797	816	832	853
Temp. (K)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 47. TRANSPORT PROPERTIES OF CHLORINE PENTAFLUORIDE-ARGON MIXTURES

Temp. (K)	100	200	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
Diffusion Coefficient (m ² s- ¹ · 10 ⁻⁴) A A-CLF ₅ CLF ₅ -CLF ₆	0.00	0.01	0.03	0.05	80.0	0.11	0.15	0.19	0.24	0.29	0.35	0.41	0.47	0.53	09.0	0.68	0.75	0.83	0.91	0.99	1.08	1.17	1.26	1.36	1.46	1.56	1.66	1.76	1.87	1.98
ffusion Coeffic (m² s-1·10-4 A-CLF ₅ CLF	0.01	0.04	80.0	0.14	0.21	0.29	0.38	0.49	09.0	0.72	0.85	0.98	1.13	1.28	1.44	1.60	1.77	1,95	2.14	2.33	2, 53	2.73	2.94	3,16	3, 38	3,61	3,85	4.08	4.33	4.58
Diff A-A	0.02	0.09	0.19	0.32	0.47	0.65	0.85	1.06	1.30	1.55	1.82	2.11	2.41	2.72	3,05	3.40	3.76	4.14	4.52	4.93	5.34	5.77	6.21	99.9	7.13	7.61	8.10	8.60	9.12	9.64
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) A A-CLF ₅ CLF ₅ -CLF ₆	2	13	19	25	32	38	4	20	57	63	29	74	79	82	06	95	100	105	109	112	115	118	121	123	125	127	129	131	133	135
nermal Conductivi (W m ⁻¹ K ⁻¹ · 10 ⁻³ A-CLF ₅ CLF ₅ -(-	12	18	23	59	35	39	43	48	23	26	61	65	69	73	2.2	81	%	88	06	93	96	66	101	103	105	107	110	112	114
The (1 A-A	~	12	17	22	56	30	፠	37	40	43	45	48	51	ጄ	26	59	62	64	29	69	72	74	77	79	82	2	86	68	6	\$
osity • 10 ⁻⁵) CLF ₅ -CLF ₅	40	74	111	150	188	225	260	292	324	354	382	410	436	461	486	510	533	555	577	298	619	640	099	089	669	718	736	755	773	08.
Viscosity (Nsm ⁻² ·10 ⁻⁵) A-CLF ₅ CLF ₅	49	66	149	195	237	276	312	345	377	407	435	463	489	515	539	563	587	609	632	653	675	695	716	736	756	922	795	814	833	108
A-A	83	166	237	298	352	401	447	490	531	269	607	642	677	710	743	775	806	837	998	896	925	953	981	1008	1035	1062	1088	1114	1140	1165
Temp. (K)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	. 0081	1900	2010	2100	2200	2300	2400	2500	2600	2700	2800	2900	2000

TABLE 48. TRANSPORT PROPERTIES OF CHLORINE PENTAFLUORIDE-HYDROGEN MIXTURES

Temp. (K)	•	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1200	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
MIXTURES efficient 10-4)	CLF 5-CLF 5	0.00	0.01	0.03	0.05	0.08	0.11	0.15	0.19	0.24	0.29	0.35	0.41	0.47	0.53	09.0	0.68	0.75	0.83	0.91	0.99	1.08	1.17	1.26	1.36	1.46	1.56	1.66	1.76	1.87	1.98
Diffusion Coefficient (m² s-1·10-4)	n2-℃ Lr 5	0.05	0.19	0.41	0.70	1.05	1.44	1.88	2.36	2.89	3,45	4.05	4.69	5.37	6.08	6.82	7.59	8.40	9.24	10.11	11.01	11.94	12.89	13.88	14.90	15.94	17.01	18,11	19.23	20.38	21.56
OKIDE-H Dif H _H	20 <u>-</u> 20	0.20	0.71	1.43	2, 33	3, 39	4.59	5.93	7.41	9.00	10.72	12.56	14.50	16.56	18.72	20.99	23.36	25.82	28.39	31.05	33,80	36.64	39, 58	42.60	45.71	48.91	52.19	55.56	59.00	62.54	66.15
PROPERTIES OF CHLOKINE PENTAFLUORIDE-HYDROGEN MIXTURES Thermal Conductivity $(W \text{ m}^{-1} \text{ K}^{-1} \cdot 10^{-3})$ CTF H=H=H=CTF CTF CTF CTF CTF CTF CTF CTF	CLF 5-CLF 5	7	13	19	25	32	38	44	20	22	63	29	74	79	82	06	95	100	105	109	112	115	118	121	123	125	127	129	131	133	135
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³)	12-CIF6	37	20	100	123	144	164	184	205	225	245	263	283	302	322	341	359	378	397	414	432	449	465	482	498	514	529	544	559	573	288
The The	211-211	89	128	182	221	257	291	325	360	394	428	460	493	526	559	265	624	657	689	720	752	783	813	843	873	903	932	096	286	1014	1042
		40	74	111	150	188	225	260	292	324	354	382	410	436	461	486	510	533	555	577	598	619	640	099	089	669	718	736	755	773	790
Viscosity (Nsm ⁻² ·10 ⁻⁵)	n2−C Lr 5	17	35	21	65	77	88	66	108	118	126	135	143	150	158	165	172	179	186	193	199	206	212	218	224	230	236	242	248	5 27	259
ทั	112-112	38	99	88	108	125	141	156	170	184	197	209	221	233	244	256	267	277	288	298	308	318	328	337	347	356	365	374	383	392	400
Temp.	4	100	200	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 49. TRANSPORT PROPERTIES OF CHLORINE PENTAFLUORIDE-ATOMIC HYDROGEN MIXTURES

Temp. (K)	100 200 300 400	500 600 700 800	1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
efficient 10-4) CLF ₅ -CLF ₅	0.00 0.01 0.03	0.08 0.11 0.15 0.19	0.24	0.35 0.41 0.47 0.53	0.68 0.75 0.91	1.08 1.17 1.26 1.36 1.46	1.56 1.66 1.76 1.87 1.98
Diffusion Coefficient $(m^2 \text{ s}^{-1} \cdot 10^{-4})$ I H-CLF, CLF,-C	0.08 0.31 0.65 1.09	1.61 2.20 2.86 3.59	4.38 5.23	6.14 7.10 8.11 9.17	11.45 12.66 13.92 15.23	17.98 19.42 20.90 22.43 24.00	25.61 27.26 28.95 30.69
DÍ: H-H	0.37 1.22 2.42 3.90	5.66 7.65 9.88	14.98 17.83	20.88 24.12 27.53 31.13	38.84 42.94 47.20 51.62	60.93 65.81 70.83 76.01 81.32	86.78 92.38 98.11 103.98 109.99
nductivity -1 · 10-3) CLF ₅ -CLF ₅	13 19 25	32 38 50	57 63	67 74 79 85	95 100 105 112	115 118 121 123 125	127 129 131 135
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) H H-CLF ₅ CLF ₅ -Cl	56 124 151	176 200 222 243	263 283	301 320 338 355 372	389 405 421 436 450	464 478 492 505 518	531 543 556 568 580
Th H-H	106 175 230 278	321 362 400 436	470 504	536 567 597 626 655	683 710 737 763 789	814 839 863 888 911	935 958 981 1003 1026
ity 10 ⁻⁵) CLF ₅ -CLF ₅	40 74 111 150	188 225 260 292	324	382 410 436 461 486	510 533 555 577 598	619 640 660 680 699	718 736 755 773
Viscosity (Nsm ⁻² ·10 ⁻⁵) H-CLF ₅ CLF ₅	14 29 41 51	68 76 83	90	103 109 115 121 126	132 137 142 147	157 162 167 171 171	180 185 189 194 198
н-н	34 57 75 91	105 118 130 142	153 164	175 185 194 204 213	222 231 240 249 257	265 273 281 289 297	305 312 320 327 334
Temp. (K)	100 200 300 400	500 600 700 800	900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000

TABLE 50. TRANSPORT PROPERTIES OF CHLORINE PENTAFLUORIDE-DEUTERIUM MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
officient 10-4) CLF ₅ -CLF ₅	0.00 0.01 0.03 0.05	0.11 0.15 0.19 0.24 0.29	0.35 0.41 0.53 0.60	0.68 0.75 0.93 0.99	1.08 1.17 1.26 1.36 1.46	1.56 1.66 1.76 1.87 1.98
Diffusion Coefficient $(m^2 \ s^{-1} \cdot 10^{-4})$ $>_2 \ D_2$ -CLF $_5$ CLF $_5$ -C	0.04 0.15 0.31 0.52	1.06 1.37 1.72 2.10 2.51	2. 3. 94 3. 89 4. 40 93	5.49 6.07 6.68 7.30	8.62 9.31 10.12 10.75	12.28 13.07 13.88 14.71 15.56
Diff D ₂ -D ₂	0.16 0.52 1.03 1.66 2.40	3.25 4.20 5.24 6.37	8.88 10.25 11.71 13.24 14.84	16.51 18.26 20.07 21.95 23.90	25.91 27.98 30.12 32.32	36.90 39.28 41.72 44.21 46.77
ductivity · 10-3) CLF ₅ -CLF ₅	7 13 19 25 32	38 50 57 63	68 74 79 85	95 100 105 109 112	115 118 121 123 125	127 · 129 131 133 135
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10^{-3}) D ₂ D ₂ -C Σ F ₅ CLF ₅ -C	32 57 80 100 121	140 159 177 196 214	230 247 264 280 296	311 327 342 357 371	384 398 411 424 438	450 463 476 488 501
$\begin{array}{c} \text{The} \\ \text{(1)} \\ \text{D}_2 \text{D}_2 \end{array}$	58 101 141 176 210	243 274 305 336 365	393 421 449 476 502	528 554 579 605 630	654 678 702 726 750	774 797 821 844 868
tty_5) 10-5) CLF5-CLF5	40 74 111 150 188	225 260 292 324 354	382 410 436 461 486	510 533 555 577 598	619 640 660 680 699	718 736 773 790
Viscosity (Nsm ⁻² ·10 D ₂ -CLF ₅ C	27 53 75 94	126 141 154 167 179	190 201 212 223 233	243 253 262 272 281	290 299 307 316 324	333 341 349 357 365
D-20	58 96 126 152 175	197 218 238 256 275	292 309 325 341 357	372 387 402 416 430	444 457 471 484 497	510 522 535 547 559
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000

TABLE 51. TRANSPORT PROPERTIES OF CHLORINE PENTAFLUORIDE-ATOMIC DEUTERIUM MIXTURES

40 21 50 7 43 79 0.00 0.05 74 41 83 13 71 130 0.01 0.02 111 58 109 19 44 170 0.00 0.07 186 85 192 25 114 204 0.06 0.07 225 172 132 25 134 237 0.03 0.47 260 108 18 44 169 295 0.11 1.17 260 108 18 44 169 295 0.15 2.08 262 118 206 50 185 224 0.05 0.11 1.17 384 128 223 57 202 347 0.24 3.19 385 140 254 67 231 396 0.35 4.45 11 486 179 30 280 440 0.47	Temp. (K)	Vis (Nem	cosity 2 · 10-5	ć ć	Thermal Conductivity (W m-1 K-1 10-3)	nermal Conductivit (W m ⁻¹ K ⁻¹ · 10 ⁻³)	ار بر در	Diffusion (m ² t	C 00.	ent c. c.	Temp. (K)
40 21 50 7 43 79 0.00 0.06 74 41 83 13 71 130 0.01 0.02 111 58 109 19 19 41 170 0.03 0.47 150 75 132 25 114 204 0.03 0.79 0.79 225 97 171 38 152 267 0.01 1.06 226 108 189 44 169 295 0.05 0.75 1.17 226 108 189 44 169 295 0.15 2.01 1.17 2.02 347 0.03 1.17 1.00 0.03 0.15 2.01 1.17 1.00 3.18 321 321 321 3.18 3.18 321 321 321 321 321 321 321 440 0.02 3.18 445 440 0.04 0.04 3.18 <th></th> <th>CAFSCAFS</th> <th>CLES</th> <th></th> <th>CHES-CHES</th> <th>CTS JTC</th> <th>J-7</th> <th>CULT-CULT 8</th> <th></th> <th>414</th> <th></th>		CAFSCAFS	CLES		CHES-CHES	CTS JTC	J-7	CULT-CULT 8		414	
74 41 83 13 71 130 0.01 0.22 111 58 199 19 44 170 0.03 0.47 150 152 132 25 114 204 0.05 0.47 188 85 152 32 134 237 0.05 0.17 225 108 189 44 169 295 0.15 2.08 260 108 189 44 169 295 0.15 2.08 324 128 223 57 202 377 0.19 2.08 382 128 63 217 347 0.29 3.79 1.16 446 171 286 67 418 0.41 1.16 3.79 1.46 451 175 286 67 426 418 0.41 5.88 1.41 0.14 5.88 1.44 0.14 5.88 1.44	100	40	21	20	4	43	42	0.00	0.06	0.27	100
111 58 109 19 94 170 0.03 0.47 150 72 132 25 114 204 0.05 0.79 225 97 171 38 152 257 0.08 1.17 260 108 189 44 169 295 0.15 2.08 260 108 189 44 169 295 0.15 2.08 260 108 189 44 169 295 0.15 2.08 292 118 206 50 185 223 57 0.09 3.18 324 137 223 67 202 347 0.24 3.18 3.18 410 155 268 74 204 0.24 4.45 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.1	200	74	41	83	13	71	130	0.01	0.22	0.90	200
150 72 132 25 114 204 0.05 0.79 188 85 152 32 134 237 0.08 1.17 225 97 171 38 152 267 0.11 1.60 292 118 206 50 185 244 109 2015 2.01 292 118 206 50 185 223 63 2.01 0.13 2.01 324 128 223 57 202 347 0.24 3.18 3.21 0.19 3.18 3.21 0.19 3.18 3.21 3.21 3.21 3.21 0.24 3.18 3.21 3.21 3.21 0.24 3.18 3.21 3.21 3.21 3.21 0.24 3.18 3.21 3.21 0.24 3.18 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21	300	111	28	109	19	94	170	0.03	0.47	1.79	300
188 85 152 32 134 237 0.08 1.17 225 97 171 38 152 267 0.11 1.60 260 108 189 44 169 295 0.15 2.08 292 118 206 50 185 321 0.19 2.61 324 128 223 57 202 347 0.24 3.19 382 126 52 67 0.11 0.24 3.19 382 140 163 283 57 202 347 0.24 3.19 410 155 268 74 246 418 0.41 5.15 1.25 440 163 283 79 259 440 0.47 5.88 2.73 461 0.53 4.45 1.15 486 179 328 49 0.68 48 0.60 7.46 2.88	400	150	72	132	25	114	204	0.05	0.79	2.88	400
225 97 171 38 152 267 0.11 1.60 260 108 189 44 169 295 0.15 2.08 252 118 206 50 185 321 0.19 2.08 354 128 202 57 202 347 0.29 3.18 382 128 58 217 371 0.29 3.79 410 155 268 74 246 418 0.41 5.18 410 155 268 74 246 418 0.41 5.18 410 155 268 74 246 418 0.41 5.18 446 171 296 85 259 440 0.47 5.88 51 186 323 100 31 9.6 0.41 5.18 51 188 326 489 489 60 0.99 1.01	200	188	85	152	32	134	237	0.08	1.17	4.18	200
260 108 189 44 169 295 0.15 2.08 292 118 206 50 185 321 0.19 2.01 324 128 223 63 217 0.24 3.18 324 137 238 63 217 0.29 3.79 382 146 254 67 231 395 0.35 4.45 430 163 288 79 259 440 0.47 5.88 461 171 296 85 273 461 0.47 5.88 461 177 296 85 273 461 0.47 5.88 510 186 323 95 289 480 0.68 8.31 511 186 323 100 324 482 0.68 8.31 512 218 112 324 543 0.68 8.31 518	009	225	97	171	38	152	267	0.11	1.60	5.65	909
292 118 206 50 185 321 0.19 2.61 324 128 223 57 202 347 0.24 3.18 354 137 238 63 217 371 0.29 3.18 382 146 254 67 231 395 0.35 4.45 430 155 268 74 269 440 0.41 5.15 461 171 296 85 273 461 0.63 4.45 461 171 296 85 273 461 0.53 4.45 510 310 32 296 482 0.60 7.46 513 194 336 100 311 523 0.68 8.31 510 323 106 31 523 663 0.68 8.31 511 328 106 323 112 34 0.68 11.10 <	700	260	108	189	44	169	295	0.15	2.08	7.29	100
324 128 223 57 202 347 0.24 3.18 354 137 238 63 217 371 0.29 3.79 362 146 254 67 231 395 0.29 3.79 410 155 268 74 246 418 0.41 5.15 436 163 283 79 259 460 0.47 5.88 436 173 310 30 286 461 0.41 5.18 510 173 296 85 273 461 0.47 5.88 510 186 323 95 286 0.60 7.46 553 194 336 105 287 0.68 8.31 577 208 361 105 324 553 0.75 9.99 598 216 373 112 347 582 0.99 12.03	800	292	118	506	20	185	321	0.19	2.61	9.10	800
354 137 238 63 217 371 0.29 3.79 382 146 254 67 231 395 0.35 4.45 410 155 268 74 246 418 0.41 5.15 436 163 283 79 259 440 0.47 5.88 461 171 296 85 273 461 0.47 5.88 461 171 296 85 273 461 0.53 6.65 486 179 310 286 482 0.60 7.46 510 186 323 95 289 660 7.46 533 194 336 106 323 0.68 8.31 555 201 349 136 363 10.10 11.05 538 216 373 118 363 619 11.06 640 222 385	900	324	128	223	57	202	347	0.24	3.18	11.06	006
382 146 254 67 231 395 0.35 4.45 410 155 268 74 246 418 0.41 5.15 436 163 283 79 259 440 0.47 5.88 461 171 296 85 273 461 0.63 6.65 461 179 310 286 482 0.60 7.46 510 186 323 95 299 503 0.60 7.46 553 194 336 100 311 523 0.75 9.19 577 208 361 105 324 543 0.83 10.10 578 216 373 112 347 582 0.99 12.03 640 229 386 115 368 619 1.26 9.99 640 229 440 124 48 69 1.46 1.41	1000	354	137	238	63	217	371	0.29	3.79	13.17	1000
410 155 268 74 246 418 0.41 5.15 436 163 283 79 259 440 0.47 5.88 461 171 296 85 273 461 0.53 6.65 486 179 310 90 286 482 0.60 7.46 510 186 323 95 299 503 0.68 8.31 533 194 336 100 311 523 0.75 9.19 555 201 349 105 324 543 0.75 9.19 577 208 361 109 336 563 0.99 12.03 640 222 385 112 349 619 1.17 14.08 640 222 385 118 368 619 1.17 14.08 680 249 420 123 429 1.24 1.40 <td>1100</td> <td>382</td> <td>146</td> <td>254</td> <td>67</td> <td>231</td> <td>395</td> <td>0.35</td> <td>4.45</td> <td>15.42</td> <td>1100</td>	1100	382	146	254	67	231	395	0.35	4.45	15.42	1100
436 163 283 79 259 440 0.47 5.88 461 171 296 85 273 461 0.53 6.65 486 179 310 90 286 482 0.60 7.46 510 186 323 95 299 503 0.68 8.31 553 194 336 100 311 523 0.75 9.19 555 201 349 105 324 543 0.68 8.31 577 208 361 109 336 563 0.91 11.05 598 216 373 112 347 582 0.99 12.03 640 222 385 115 347 582 0.99 12.03 640 229 397 118 368 619 1.17 14.08 680 243 420 123 389 655 1.36 <td>1200</td> <td>410</td> <td>155</td> <td>268</td> <td>74</td> <td>246</td> <td>418</td> <td>0.41</td> <td>5.15</td> <td>17.81</td> <td>1200</td>	1200	410	155	268	74	246	418	0.41	5.15	17.81	1200
461 171 296 85 273 461 0.53 6.65 486 179 310 90 286 482 0.60 7.46 510 186 323 95 299 503 0.68 8.31 553 194 336 100 311 523 0.75 9.19 555 201 349 105 324 543 0.68 8.31 577 208 361 109 324 543 0.83 10.10 577 208 361 102 324 563 0.91 11.05 619 222 385 112 347 582 0.99 12.03 640 223 449 121 379 679 1.17 14.08 680 243 420 123 389 655 1.36 1.36 1.40 718 255 443 125 399 673 </td <td>1300</td> <td>436</td> <td>163</td> <td>283</td> <td>79</td> <td>259</td> <td>440</td> <td>0.47</td> <td>5.88</td> <td>20.33</td> <td>1300</td>	1300	436	163	283	79	259	440	0.47	5.88	20.33	1300
486 179 310 90 286 482 0.60 7.46 510 186 323 95 299 503 0.68 8.31 533 194 336 100 311 523 0.75 9.19 555 201 349 105 324 543 0.83 10.10 577 208 361 109 336 563 0.91 11.05 578 216 373 112 347 582 0.91 11.05 640 222 385 115 358 601 1.17 14.08 640 229 397 118 368 619 1.17 14.08 680 249 431 123 389 655 1.36 15.16 699 249 431 125 399 673 1.46 17.41 736 262 443 122 448 707 1.	1400	461	171	596	85	273	461	0.53	6.65	22.99	1400
510 186 323 95 299 503 0.68 8.31 533 194 336 100 311 523 0.75 9.19 555 201 349 105 324 543 0.83 10.10 577 208 361 109 336 563 0.91 11.05 598 216 373 112 347 582 0.99 12.03 640 229 397 118 368 619 1.17 14.08 660 236 409 121 379 637 1.26 15.16 680 243 420 123 389 655 1.36 16.27 699 249 431 125 399 673 1.46 17.41 718 255 443 127 408 690 1.56 19.77 775 268 464 131 427 724	1500	486	179	310	06	286	482	09.0	7.46	25.77	1200
533 194 336 100 311 523 0.75 9.19 555 201 349 105 324 543 0.83 10.10 577 208 361 109 336 563 0.91 11.05 598 216 373 112 347 582 0.99 12.03 619 222 385 115 358 601 1.08 13.04 640 229 397 118 368 619 1.17 14.08 660 236 409 121 379 637 1.26 15.16 680 243 420 123 389 655 1.36 16.27 699 249 431 125 399 673 1.46 17.41 718 255 443 127 408 690 1.56 18.57 756 262 453 129 418 707 1.66 19.77 773 274 475 131 426 757 <td>1600</td> <td>510</td> <td>186</td> <td>323</td> <td>95</td> <td>299</td> <td>503</td> <td>0.68</td> <td>8.31</td> <td>28.68</td> <td>1600</td>	1600	510	186	323	95	299	503	0.68	8.31	28.68	1600
555 201 349 105 324 543 0.83 10.10 577 208 361 109 336 563 0.91 11.05 598 216 373 112 347 582 0.91 11.05 619 226 385 115 358 601 1.08 13.04 660 229 397 118 368 619 1.17 14.08 660 236 409 121 379 637 1.26 15.16 680 243 420 123 389 655 1.36 16.27 699 249 431 125 399 673 1.46 17.41 718 255 443 127 408 690 1.56 18.57 736 262 453 129 418 707 1.66 19.77 755 268 464 131 427 724 <	1700	533	194	336	100	311	523	0.75	9.19	31.71	1700
577 208 361 109 336 563 0.91 11.05 598 216 373 112 347 582 0.99 12.03 619 222 385 115 358 601 1.08 13.04 640 229 397 118 368 619 1.17 14.08 660 236 409 121 379 637 1.26 15.16 680 243 420 123 389 655 1.36 16.27 699 249 431 125 399 673 1.46 17.41 736 262 443 127 408 690 1.56 18.57 755 268 464 131 427 724 1.76 21.00 773 274 475 133 436 740 1.87 22.26 773 280 486 135 446 757 1.98 23.54	1800	555	201	349	105	324	543	0.83	10.10	34.85	1800
598 216 373 112 347 582 0.99 12.03 619 222 385 115 358 601 1.08 13.04 640 229 397 118 368 619 1.17 14.08 660 236 409 121 379 637 1.26 15.16 680 243 420 123 389 655 1.36 16.27 699 249 431 125 399 673 1.46 17.41 718 255 443 127 408 690 1.56 18.57 736 262 453 129 418 707 1.66 19.77 755 268 464 131 427 724 1.76 21.00 773 274 475 133 446 757 1.98 23.54	1900	577	208	361	109	336	563	0.91	11.05	38.12	1900
619 222 385 115 358 601 1.08 13.04 640 229 397 118 368 619 1.17 14.08 660 236 409 121 379 637 1.26 15.16 680 243 420 123 389 655 1.36 16.27 718 259 431 125 408 690 1.56 17.41 736 262 453 129 418 707 1.66 19.77 755 268 464 131 427 724 1.76 21.00 773 274 475 133 436 740 1.87 22.26 773 280 486 135 446 757 1.98 23.54	2000	298	216	373	112	347	283	0.99	12.03	41.50	2000
640 229 397 118 368 619 1.17 14.08 660 236 409 121 379 637 1.26 15.16 680 243 420 123 389 655 1.36 16.27 699 249 431 125 399 673 1.46 17.41 718 255 443 127 408 690 1.56 18.57 736 262 453 129 418 707 1.66 19.77 755 268 464 131 427 724 1.76 21.00 773 274 475 133 436 740 1.87 22.26 773 280 486 135 446 757 1.98 23.54	2100	619	222	385	115	358	601	1.08	13.04	44.99	2100
660 236 409 121 379 637 1.26 15.16 680 243 420 123 389 655 1.36 16.27 699 249 431 125 399 673 1.46 17.41 718 255 443 127 408 690 1.56 18.57 736 262 453 129 418 707 1.66 19.77 755 268 464 131 427 724 1.76 21.00 773 274 475 133 436 740 1.87 22.26 779 280 486 135 446 757 1.98 23.54	2200	640	229	397	118	368	619	1.17	14.08	48.59	2200
680 243 420 123 389 655 1.36 16.27 699 249 431 125 399 673 1.46 17.41 718 255 443 127 408 690 1.56 18.57 736 262 453 129 418 707 1.66 19.77 755 268 464 131 427 724 1.76 21.00 773 274 475 133 436 740 1.87 22.26 790 280 486 135 446 757 1.98 23.54	2300	099	236	409	121	379	637	1.26	15.16	52.30	2300
699 249 431 125 399 673 1.46 17.41 60. 718 255 443 127 408 690 1.56 18.57 64. 736 262 453 129 418 707 1.66 19.77 68. 755 268 464 131 427 724 1.76 21.00 72. 773 274 475 133 436 740 1.87 22.26 76. 790 280 486 135 446 757 1.98 23.54 81.	2400	089	243	420	123	389	655	1.36	16.27	56.12	2400
718 255 443 127 408 690 1.56 18.57 64. 736 262 453 129 418 707 1.66 19.77 68. 755 268 464 131 427 724 1.76 21.00 72. 773 274 475 133 436 740 1.87 22.26 76. 790 280 486 135 446 757 1.98 23.54 81.	2500	669	249	431	125	399	673	1.46	17.41	60.05	2500
736 262 453 129 418 707 1.66 19.77 68. 755 268 464 131 427 724 1.76 21.00 72. 773 274 475 133 436 740 1.87 22.26 76. 790 280 486 135 446 757 1.98 23.54 81.	2600	718	255	443	127	408	069	1.56	18.57	64.08	2600
755 268 464 131 427 724 1.76 21.00 72. 773 274 475 133 436 740 1.87 22.26 76. 790 280 486 135 446 757 1.98 23.54 81.	2700	736	262	453	129	418	707	1.66	19.77	68.21	2700
773 274 475 133 436 740 1.87 22.26 76. 790 280 486 135 446 757 1.98 23.54 81.	2800	755	268	464	131	427	724	1.76	21.00	72.45	2800
790 280 486 135 446 757 1.98 23.54 81.	2900	773	274	475	133	436	740	1.87	22.26	76.78	2900
	3000	190	280	486	135	446	757	1.98	23.54		3000

TABLE 52. TI .NSPORT PROPERTIES OF HYDROGEN FLUORIDE-NITROGEN MIXTURES

Temp.		100	200	300	400	200	900	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
cient	HF-HF	0.02	0.09	0.20	0.36	0.55	0.78	1.04	1, 33	1.64	1.98	2.34	2.72	3.13	3,56	4.00	4.47	4.96	5.47	5.99	6.54	7.10	7.68	8.28	8.89	9.52	10.17	10.84	11.52	12.21	12.92
Diffusion Coefficient (m² s ⁻¹ ·10 ⁻⁴)	N_2 -HF	0.02	0.10	0.21	0.36	0.54	0.75	0.99	1.24	1.52	1.82	2.14	2.48	2.84	3.32	3,62	4.03	4.46	4.91	5.37	5.85	6.35	6.86	7.38	7.92	8.48	9.02	9.63	10.23	10.84	11.47
Diffus (r)	$N_2 - N_2$	0.03	0.10	0.21	0.34	0.50	0.69	0.89	1.12	1.37	1.63	1.91	2.21	2.52	2.85	3.20	3.56	3,94	4.33	4.73	5.15	5.59	6.03	6.50	6.97	7.46	7.96	8.47	9.00	9.54	10.09
ctivity 10-3)	HF-HF	G	17	56	35	44	51	59	99	73	80	87	8	101	108	115	122	129	135	141	147	154	160	166	172	177	183	189	194	200	205
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³)	N2-HF	G	17	5 6	፠	41	4	ጃ	09	99	72	77	85	88	8	66	105	112	118	124	131	137	143	148	154	159	163	170	174	180	185
Therm (W	Z-Z Z-Z	G	18	56	33	39	4	49	8	29	63	29	71	75	80	8	68	92	101	108	115	121	126	131	136	141	146	151	155	160	165
	HF-HF	42	82	125	167	506	242	277	309	339	368	395	421	446	471	494	517	540	561	582	603	623	643	662	681	100	718	736	754	772	789
Viscosity (Nsm ⁻² ·10 ⁻⁵)	N_2 -HF	51	103	153	197	236	272	305	336	365	393	420	445	470	494	517	539	561	583	604	624	4 49	664	684	703	722	740	759	777	795	812
(N_2-N_2	65	128	179	223	262	297	330	361	390	418	445	471	496	521	544	568	591	613	635	656	677	869	718	738	758	778	797	816	835	853
Temp.	(W)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 53. TRANSPORT PROPERTIES OF HYDROGEN FLUORIDE-ARGON MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
nt A-A	0.02 0.09 0.19 0.32 0.47	0.65 0.85 1.06 1.30 1.55	1.82 2.11 2.41 2.72 3.05	3.40 3.76 4.14 4.52 4.93	5.34 5.77 6.21 6.66	7.61 8.10 8.60 9.12 9.64
Diffusion Coefficient (m² s-1·10-4) 7-HF HF-A A	0.02 0.09 0.21 0.36	0.75 0.98 1.24 1.52 1.82	2.14 2.48 3.22 3.62	4.04 4.92 5.38	6.36 6.87 7.94 8.50	9.07 9.66 10.26 10.88 11.50
Diffusic (m² HF-HF	0.02 0.09 0.20 0.36 0.55	0.78 1.04 1.33 1.64	2.34 2.72 3.13 3.56 4.00	4.47 4.96 5.47 6.54	7.10 7.68 8.28 8.89 9.52	10.17 10.84 11.52 12.21 12.92
otivity 10 ⁻³) A-A	7 12 17 22 26	30 34 37 40 43	45 51 54 56	59 62 64 67	72 74 77 79	84 89 91 94
Conduction K-1 · J	8 14 21 35	40 46 51 56 61	66 71 76 81 86	91 95 99 104 108	113 117 121 125 125	133 137 141 145 149
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) HF-HF HF-A A-A	9 17 26 35	51 59 66 73 80	87 94 101 108 115	122 129 135 141 147	154 160 166 172 177	183 189 194 200 205
6) A-A	83 166 237 298 352	401 447 490 531	607 642 677 710 743	775 806 837 866 896	925 953 981 1008 1035	1062 1088 1114 1140 1165
Viscosity (Nsm-2·10 ⁻⁶) IF HF-A	57 114 171 221 267	308 347 383 417 449	480 509 538 565 592	618 643 668 692 715	738 761 784 806 827	849 870 890 911
Vi _i (Nsi HF–HF	42 82 125 167 206	242 277 309 339 368	395 421 446 471	517 540 561 582 603	623 643 662 681 700	718 736 754 772 789
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000

TABLE 54. TRANSPORT PROPERTIES OF DEUTERIUM FLUORIDE-NITROGEN MIXTURES

Temp. (K)		100	200	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
icient -4) DF-DF		0.03	0.14	0.30	0.52	0.78	1.08	1.42	1.79	2.19	2.62	3.08	3, 57	4.09	4.64	5.21	5.80	6.42	7.07	7.74	8.43	9.14	9.88	10.63	11.41	12.21	13.03	13.88	14.74	15.62	16.52
Diffusion Coefficient (m² s-¹ · 10-⁴) N° N°-DF DF-	2.	0.03	0.12	0.25	0.42	0.62	0.86	1.12	1.41	1.72	2.05	2.41	2.79	3.19	3.61	4.05	4.51	4.98	5.48	5.99	6.53	7.08	7.65	8.23	8.83	9.45	10.08	10.73	11.40	12.08	12.78
Diffu (1	7. 7.	0.03	0.10	0.21	0.34	0.50	0,69	0.89	1.12	1.37	1.63	1.91	2.21	2.52	2.85	3.20	3,56	3,94	4.33	4.73	5.15	5.59	6.03	6.50	6.97	7.46	7.96	8.47	9.00	9.52	10.09
ictivity 10 ⁻³) DF-DF		12	25	37	48	58	68	77	86	95	105	114	122	130	138	146	154	161	168	175	182	189	196	203	209	216	222	229	235	241	247
Thermal Conductivity (W m ⁻¹ K ⁻¹ \cdot 10 ⁻³)	2	10	21	31	40	48	26	63	20	77	2 2	06	96	102	109	115	121	128	134	141	148	155	161	167	172	178	184	190	195	200	206
Therr (W	7. 7.	6	18	56	33	39	44	49	22	29	63	29	11	75	80	2 2	89	95	101	108	115	121	126	131	136	141	146	151	155	160	165
y-5) DF-DF	; }	69	140	208	268	322	372	417	460	200	538	575	610	344	929	708	739	769	798	827	855	883	910	937	963	686	1014	1040	1064	1089	1113
Viscosity (Nsm ⁻² ·10 ⁻⁵)	2	99	133	191	242	287	328	366	402	436	468	498	528	556	584	611	637	663	889	713	737	160	78	807	829	852	873	895	916	937	958
Z)	2.1	65	128	179	223	262	297	330	361	390	418	445	471	496	521	544	568	591	613	635	656	229	869	718	738	758	778	797	816	835	853
Temp. (K)		100	200	300	400	200	009	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 55. TRANSPORT PROPERTIES OF DEUTERIUM FLUORIDE-ARGON MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
cient 4) A-A	0.02 0.09 0.19 0.32 0.47	0.65 0.85 1.06 1.30 1.55	1.82 2.11 2.41 2.72 3.05	3.40 3.76 4.14 4.52 4.93	5.34 5.77 6.21 6.66 7.13	7.61 8.10 8.60 9.12 9.64
Diffusion Coefficient (m² s-1·10-4) DF DF-A A	0.03 0.11 0.25 0.42 0.62	0.85 1.12 1.40 1.71 2.05	2.41 2.79 3.19 3.61 4.05	4.52 5.00 5.49 6.01	7.10 7.67 8.25 8.86 9.48	10.11 10.77 11.44 12.12 12.82
Diffus (m DF-DF	0.03 0.14 0.30 0.52 0.78	1.08 1.42 1.79 2.19 2.62	3.08 3.57 4.09 4.64 5.21	5.80 6.42 7.07 7.74 8.43	9.14 9.88 10.63 11.41 12.21	13.03 13.88 14.74 15.62 16.52
ctivity 10 ⁻³) A-A	7 12 17 22 26	30 34 37 40 43	45 48 51 54 56	59 62 67 69	72 74 77 79 82	94 91 94
hermal Conductivii (W m ⁻¹ K ⁻¹ · 10 ⁻³))F-DF DF-A A-A	9 18 29 34 42	49 55 61 67 74	79 85 90 96 101	106 111 116 121 125	130 135 140 144 149	153 157 161 166 170
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) DF-DF DF-A A-A	12 25 37 48 58	68 77 86 95 105	114 122 130 138 146	154 161 168 175 182	189 196 203 209 216	222 229 235 241 247
6) A-A	83 166 237 298 352	401 447 490 531 569	607 642 677 710 743	775 806 837 866 896	925 953 981 1008 1035	1062 1088 1114 1140 1165
Viscosity (Nsm ⁻² · 10 ⁻⁵ DF DF-A	73 149 217 276 329	377 421 463 502 540	575 610 643 675 706	737 767 796 824 852	880 907 933 959 985	1010 1035 1060 1084 1108
V (Ns) DF-DF	69 140 208 268 322	372 417 460 500 538	575 610 644 676 708	739 769 798 827 855	883 910 937 963 989	1014 1040 1064 1089 1113
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000

TABLE 56. TRANSPORT PROPERTIES OF HYDROGEN CHLORIDE-HELIUM MIXTURES

Temp. (K)	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ient } HE-HE	0.29	0.92	1.84	3.01	4.41	6.04	7.88	9.92	12.20	14.60	17.20	20.10	23.00	26.30	29.60	33,20	36,90	40.80	44.90	49.10	53.50	58.10	62.80	67.70	72.80	78.00	83.40	88.90	94.60	101.00
Diffusion Coefficient (m² s-1·10-1) -HCL HCL-HE HE	1	0.35	0.40	1.14	1,65	2.24	2.89	3.61	4.39	5.23	6.12	7.07	8.07	9.13	10.23	11,39	12,59	13,84	15,14	16.48	17.86	19.30	20.77	22.29	23.84	25.44	27.09	28.77	30.49	32.25
Diffusi (m HCL-HCL	ı	0.06	0.13	0.23	0.36	0.51	0.68	0.86	1.07	1.29	1.52	1.77	2.04	2.32	2.61	2.92	3.24	3.57	3.91	4.27	4.63	5.01	5.41	5.81	6.22	6.64	7.08	7.52	7.98	8.44
'vity ~3) HE-HE	73	115	152	187	220	252	281	308	332	357	380	403	425	447	468	488	508	528	547	266	585	603	622	640	657	674	691	802	724	740
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) L-HCL HCL-HE HE	ı	62	83	103	122	140	156	172	186	200	213	227	239	252	264	276	288	300	311	332	333	344	355	366	376	386	396	406	416	426
Thermal Conduct (W m ⁻¹ K ⁻¹ ·1) HCL-HCL HCL-HE	ı	6	14	19	24	28	32	36	40	44	47	51	2	28	61	65	89	72	75	43	82	85	88	92	92	86	102	105	109	112
HE-HE	66	156	202	244	282	317	350	382	412	441	470	497	523	549	574	598	622	646	699	692	714	736	757	778	799	820	840	098	880	899
Viscosity (Nsm ⁻² ·10 ⁻⁵) HCL HCL-HE	ı	116	155	188	218	246	272	297	320	343	365	386	407	426	446	465	484	502	520	537	555	571	588	605	621	637	653	899	683	669
Viscosity (Nsm ⁻² ·10 ⁻¹ HCL-HCL HCL-HE	ı	96	146	196	243	286	327	365	402	436	469	200	531	260	588	615	642	899	693	718	742	992	789	812	834	856	878	899	920	941
Temp. (K)	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 57. TRANSPORT PROPERTIES OF HYDROGEN CHLORIDE-NITROGEN MIXTURES

Temp. (K)	100	200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
sion Coefficient n² s ⁻¹ ·10 ⁻⁴) N ₂ -HCL HCL-HCL	ı	90.0	0.13	0.23	0.36	0.51	0.68	0.86	1.07	1.29	1.52	1.77	2.04	2.32	2.61	2.92	3.24	3.57	3,91	4.27	4.63	5.01	5.41	5.81	6.22	6.64	7.08	7.52	7.98	8.44
Diffusion Coefficient (m² s ⁻¹ ·10 ⁻⁴) N ₂ N ₂ -HCL HCL-1	ı	0.08	0.17	0.29	0.44	0.61	08.0	1.00	1.23	1.47	1.73	2.01	2.30	2.60	2.92	3.26	3.61	3,97	4.34	4.73	5.13	5.54	5.97	6.41	98.9	7.32	7.79	8.27	8.77	9.28
Diff. N ₂ -N ₂	0.03	0.10	0.21	0.34	0.50	0.69	0.89	1.12	1.37	1.63	1.91	2.21	2.52	2.85	3.20	3.56	3,94	4.33	4.73	5.15	5, 59	6.03	6.50	6.97	7.46	7.96	8.47	9.00	9.54	10.09
mal Conductivity ' m ⁻¹ K ⁻¹ ·10 ⁻³) N ₂ -HCL HCL-HCL	1	တ	14	19	24		32	36	40	44	47	51	54	28	61	65	89	72	75	79	82	85	89	92	92	98	102	105	109	112
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) -N ₂ N ₂ -HCL HCL-H	ı	13	20	26	31	36	40	45	49	53	57	61	64	69	72	92	81	98	91	97	101	105	110	114	118	122	126	130	134	138
$\begin{array}{c} \text{The} \\ \text{(V)} \\ \text{N}_2 - \text{N}_2 \end{array}$	6	18	56	33	33	#	49	72	29	63	29	11	75	80	\$	88	92	101	108	115	121	126	131	136	141	146	151	155	160	165
ty 10 ⁻⁵) HCL-HCL	ı	96	146	196	243	286	327	365	402	436	469	200	531	260	588	615	642	899	693	718	742	992	789	812	834	856	878	899	920	941
Viscosity (Nsm ⁻² ·10 ⁻⁵) N ₂ -HCL HC	1	113	167	215	259	298	334	369	401	431	461	489	516	542	267	592	616	640	663	685	707	729	750	772	792	813	833	853	872	892
N ₂ -N ₂	65	128	179	223	262	297	330	361	390	418	445	471	496	521	24 4	568	591	613	635	656	249	869	718	738	758	778	797	816	835	853
Temp. (K)	100	200	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 58. TRANSPORT PROPERTIES OF HYDROGEN CHLORIDE-ARGON MIXTURES

THE REPORT OF THE PERSON OF TH

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
cient 4) A A-A	0.02 0.09 0.19 0.32 0.47	0.65 0.85 1.06 1.30	1.82 2.11 2.41 3.05	3.40 3.76 4.14 4.52	5.34 5.77 6.21 6.66 7.13	7.61 8.10 8.60 9.12 9.64
Diffusion Coefficient (m² s-1·10-4) L-HCL HCL-A A·	0.07 0.16 0.28 0.42	0.52 0.77 0.97 1.19 1.43	1.68 1.95 2.23 2.53 2.84	3.17 3.51 3.86 4.23 4.61	5.00 5.40 5.82 6.24 6.68	7.13 7.59 8.06 8.55 9.04
Diffusion Coeffici (m ² s ⁻¹ ·10 ⁻⁴) HCL-HCL HCL-A	0.06 0.13 0.23 0.36	0.51 0.68 0.86 1.07 1.29	1.52 1.77 2.04 2.32	2.92 3.24 3.57 4.27	4.63 5.01 5.41 6.22	6.64 7.08 7.52 8.44
[vity -3) A-A	7 113 119 25 32	38 50 57 63	67 79 85 90	95 100 105 109 112	115 118 121 123 125	127 129 131 133 135
Conducti K-1·10 HCL-A	11 16 22 29	33 38 44 53 85 53	57 62 66 71 75	88 88 92 95	98 101 105 107 110	112 115 118 121 123
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) HCL-HCL HCL-A A	- 9 119 24	28 32 34 44 44	47 51 58 61	65 68 72 75	88 88 88 88 88 88 88 88 88 88 88 88 88	98 102 105 109 112
A-A	83 166 237 298 352	401 447 490 531 569	607 642 677 710	775 806 837 866 896	925 953 981 1008 1035	1062 1088 1114 1140 1165
Viscosity (sm ⁻² ·10 ⁻⁵) CL HCL-A	- 127 191 247 299	346 389 429 468 504	539 572 604 635 665	694 723 750 778 804	830 856 881 906 930	954 978 1001 1024 1047
Viscosity (Nsm ⁻² ·10 ⁻⁵ HCL-HCL HCL-A	- 96 146 196 243	286 327 365 402 436	469 500 531 560 588	615 642 668 693 718	742 766 789 812 834	856 878 899 920 941
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000

TABLE 59. TRANSPORT PROPERTIES OF HYDROGEN CHLORIDE-HYDROGEN MIXTURES

Temp. (K)	100	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ent H ₂ -H ₂	0.20	1,43	2, 33	3, 39	4.59	5.93	7.41	9.00	10.72	12.56	14.50	16.56	18.72	20.99	23, 36	25.82	28.39	31.05	33.80	36.64	39, 58	42.60	45.71	48.91	52.19	55, 56	59.00	62.54	66.15
Diffusion Coefficient (m² s-1·10-4) L-HCL HCL-H2 H2	0.32	0.69	1.17	1.73	2.37	3,09	3,88	4.74	5.66	6.65	7.69	8.79	9.95	11.16	12.42	13.74	15.11	16.53	18.00	19.21	21.08	22.69	24.35	26.05	27.80	29.59	31.43	33, 31	35.23
Diffusion (m ²)	0.06	0.13	0.23	0.36	0.51	0.68	0.86	1.07	1.29	1.52	1.77	2.04	2.32	2.61	2.92	3.24	3.57	3.91	4.27	4.63	5.01	5.41	5.81	6.22	6.64	7.08	7.52	7.98	8.44
jvity -3 H ₂ -H ₂	68 128	182	221	257	291	325	360	394	428	460	493	526	559	592	624	657	689	720	752	783	813	843	873	903	932	960	987	1014	1042
Thermal Conductivity (W m ⁻⁴ K ⁻¹ ·10 ⁻³) :L-HCL HCL-H ₂ H ₂ -	- 89	86	120	140	159	178	198	217	236	253	272	290	308	326	344	362	380	397	415	432	449	466	482	499	515	531	546	561	577
Thermal Conductivity (W m ⁻⁴ K ⁻¹ ·10 ⁻³) HCL-HCL HCL-H ₂ H ₂ -H ₂	, 6	14	19	24	28	32	ဗ္တ	40	44	47	51	\$	28	61	65	89	72	75	79	88	82	68	92	92	86	102	105	109	112
H-H	38 66	83	108	125	141	156	170	184	197	209	221	233	244	256	267	277	288	298	308	318	328	337	347	326	365	374	383	392	400
Viscosity (Nsm ⁻² ·10 ⁻⁵) HCL HCL-H ₂	57	83	104	123	140	126	171	185	199	212	224	237	248	260	271	282	292	303	313	323	333	343	352	362	371	380	389	398	407
Viscosity (Nsm ⁻² ·10 ⁻⁵ HCL-HCL HCL-H ₂	, 96	146	196	243	286	327	365	402	436	469	200	531	260	588	615	642	899	693	718	742	166	789	812	834	856	878	889	920	941
Temp. (K)	100 200	300	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 60. TRANSPORT PROPERTIES OF HYDROGEN CHLORIDE-ATOMIC HYDROGEN MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
ent H-H	0.37 1.22 2.42 3.90 5.66	7.65 9.88 12.32 14.98	20.88 24.12 27.53 31.13	38.84 42.94 47.20 51.62 56.20	60.93 65.81 70.83 76.01 81.32	86.78 92.38 98.11 103.98
Diffusion Coefficient (m² s-1·10-1) L-HCL HCL-H	0.52 1.08 1.80 2.65	3.62 4.70 5.89 7.17 8.56	10.03 11.60 13.25 14.99 16.80	18.70 20.68 22.74 24.87 27.07	29.35 31.70 34.12 36.62	41.81 44.50 47.27 50.10 52.99
Diffusion Coeffic (m² s-1·10-4 HCL-HCL HCL-H	0.06 0.13 0.33	0.51 0.68 0.86 1.07	1.52 1.77 2.04 2.32	2.92 3.24 3.57 4.27	4.63 5.01 5.41 6.22	6.64 7.08 7.52 7.98 8.44
lvity	106 176 232 279 322	363 402 473 507	539 570 600 630 658	686 714 740 766 792	818 843 867 891 915	938 962 984 1007 1029
Conducti K-1·10 HCL-H	92 123 149 173	195 217 237 256 275	293 310 327 344 359	375 391 406 420 435	450 464 478 492 505	518 532 544 558 571
Thermal Conductivity (W m 4 K-1·10-3) HCL-HCL HCL-H H-	. 611 1946 1947	28 38 44 44 44	47 54 58 61	65 68 72 75	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	98 102 105 109 112
Н-Н	34 57 75 91	118 130 142 153	175 185 194 204 213	222 231 240 249 257	265 273 281 289 297	305 312 320 327 334
Viscosity (Nsm ⁻² ·10 ⁻⁵) ·HCL HCL-H	- 47 66 83 97	110 122 134 145 155	165 175 184 193 202	210 219 227 235 243	251 259 266 274 281	288 295 302 309 316
Viscosity (Nsm-2·10- HCL-HCL HCL-	- 96 146 196 243	286 327 365 402 436	469 500 531 560 588	615 642 668 693 718	742 766 789 812 834	856 878 899 920
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000

TABLE 61. TRANSPORT PROPERTIES OF HYDROGEN CHLORIDE-FLUORINE MIXTURES

THE PROPERTY OF THE PARTY OF TH

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
ient) F ₂ -F ₂	0.02 0.10 0.20 0.33	0.67 0.87 1.09 1.33 1.58	1.85 2.14 2.45 2.77 3.10	3.45 3.82 4.20 5.00	5, 42 5, 86 6, 30 7, 24	7.72 8.22 9.25 9.79
Diffusion Coefficient $(\mathrm{m^2~s^{-1}\cdot 10^{-4}})$ L-HCL HCL-F ₂ F ₂ .	0.08 0.17 0.29 0.43	0.60 0.78 0.99 1.21 1.45	1.70 1.57 2.26 2.56 2.87	3.20 3.54 4.26 4.65	5.04 5.86 6.29 6.73	7.18 7.65 8.12 8.61 9.11
Diffusion Coeffic (m² s-1·10-4 HCL-HCL HCL-F2	0.06 0.13 0.23 0.36	0.51 0.68 0.86 1.07	1.52 1.77 2.04 2.32 2.61	2.92 3.24 3.57 3.91 4.27	4.63 5.01 5.41 5.81 6.22	6.64 7.08 7.52 7.98 8.44
ivity 0-3) F2-F2	10 19 28 37 45	52 59 65 71	88 93 97 102	107 112 116 121 125	130 134 138 143	151 155 159 163
ermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) -HCL HCL-F ₂ F ₂	- 11 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	40 45 50 55	69 77 77	96 94 98 102	106 109 113 117 121	124 128 132 136 139
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) HCL-HCL HCL-F ₂ F ₂ -	- 6 41 119 42	82 88 9 4 84 44	47 51 58 58 61	65 68 72 75	8 8 8 8 8 8 8 8	98 102 105 109 112
F2-F2	86 168 236 293 344	391 434 475 513 550	586 620 653 685 716	747 777 806 835 863	891 918 945 972 998	1023 1049 1074 1098 1123
$ootnote{Viscosity} (Nsm^2 \cdot 10^{-5})$ CL HCL-F ₂	130 193 248 298	344 386 425 462 498	531 564 595 625 654	683 711 738 764 790	816 841 865 890 914	937 960 983 1006
Viscosity (Nsm ⁻² ·10 ⁷ HCL-HCL HCL-F ₂	- 96 146 196 243	286 327 365 402 436	469 500 531 560 588	615 642 668 693 718	742 766 789 812 834	856 878 899 920 941
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000

TABLE 62. TRANSPORT PROPERTIES OF HYDROGEN CHLORIDE-ATOMIC FLUORINE MIXTURES

Temp. (K)	160	200	008	400	200	600	200	800	006	1000	1100	1200	1300	1400	1200	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ont F-F	0.04	0.17	0.36	0, 60	0.88	1.21	1.57	1.97	2.40	2.86	3, 35	3,88	4,43	5,01	5,61	6.25	6,91	7.60	8.31	9.05	9,81	10.59	11,40	12.23	13.09	13.97	14.87	15.79	16.74	17.70
Diffusion Coefficient (m² s-1·10-1) L-HCL HCL-F F	•	0.10	0.23	0.40	0.59	0.82	1.08	1,36	1.66	1.99	2,34	2.71	3.10	3, 52	3.95	4.40	4.87	5.36	5,87	6.39	6.93	7.49	8.06	8.65	9.26	9.88	10.52	11.18	11.85	12.53
Diffusion (m² e	ľ	0.06	0.13	0.23	0.36	0.51	0.68	0.86	1.07	1.29	1,52	1.77	2.04	2,32	2.61	2.92	3.24	3.57	3,91	4.27	4.63	5.01	5.41	5.81	6.22	6.64	7.08	7.52	7.98	8.44
vity J) F-F	13	27	38	47	ጄ	61	49	73	79	84	83	94	66	103	108	112	117	121	126	130	134	138	142	146	150	153	157	191	165	168
ermal Conductivit (W m ⁻¹ K ⁻¹ · 10 ⁻³) -HCL HCL-F	1	18	5 6	33	39	4	49	72	23	64	89	72	92	8	2 2	88	92	96	100	104	108	111	115	119	122	125	129	133	137	140
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) HCL-HCL HCL-F F-	ı	6	14	19	24	28	32	36	40	44	47	51	54	58	61	65	89	72	75	42	82	82	89	92	95	86	102	105	109	112
ह्म स	78	152	213	265	311	354	393	430	464	498	530	561	591	620	648	929	703	729	756	781	908	831	855	879	903	926	949	971	994	1016
Viscosity (Nsm-2·10-5) HCL HCL-F	ı	120	178	229	276	318	356	393	427	460	491	521	549	577	604	631	929	681	206	730	753	777	799	822	8	998	887	806	929	920
Vie (Nsm) HCL-HCL	ı	96	146	196	243	286	327	365	402	436	469	200	531	260	288	615	642	899	693	718	742	992	789	812	834	856	878	899	920	941
Temp. (K)	100	200	300	400	200	009	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 63. TRANSPORT PROPERTIES OF DEUTERIUM CHLORIDE-HELIUM MIXTURES

Temp.	Ž)	Viscosity (Nsm ⁻² ·10 ⁻⁵	و)	Therm: (W m	Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³)	tivity 0-3)	Diffus)	Diffusion Coefficient (m² s-1 · 10-4)	ient)	Temp.
3	DCL-DCL DCL-HE	DCI-HE	HE-HE	DCL-DCL DCL-HE	DCL-HE	HE-HE	DCL-DCL DCL-HE		HE-HE	Y
100	79	83	66	ı	ı	73	0.02	0.12	0.29	100
200	160	139	155	19	29	115	0.09	0.42	0.92	200
300	238	184	199	24	88	152	0.21	0.83	1.84	300
400	308	223	244	28	107	187	0.35	1.35	3.01	400
200	372	258	78	32	126	220	0.53	1.95	4.41	200
009	429	290	322	37	144	252	0.74	2.64	6.04	900
200	482	321	359	41	161	281	0.97	3.41	7.88	700
800	532	350	394	45	176	308	1.23	4.26	9.92	800
900	579	378	429	<u>8</u>	191	332	1.50	5.17	12.20	006
1000	623	404	461	ጿ	202	357	1.80	6.16	14.60	1000
1100	999	430	494	58	219	380	2.12	7.21	17.20	1100
1200	707	455	525	63	233	403	2.45	8.33	20.10	1200
1300	746	479	556	67	246	425	2.81	9.51	23.00	1300
1400	784	503	586	77	259	447	3.19	10.75	26.30	1400
1500	821	226	614	75	271	468	3,58	12.06	29.60	1200
1600	857	548	643	79	283	488	3.99	13.41	33.20	1600
1700	892	570	129	83	295	508	4.41	14.83	36.90	1700
1800	926	591	869	87	307	528	4.86	16.30	40.80	1800
1900	096	613	725	91	319	547	5.32	17.83	44.90	1900
2000	992	633	752	92	330	266	5.79	19.41	49.10	2000
2100	1024	654	778	66	342	585	6.28	21.05	53, 50	6.6
2200	1056	674	8 0 4	102	352	603	6.79	22.73	58.10	06.2
2300	1087	693	830	106	364	622	7.31	24.47	62.80	2300
2400	1118	713	855	109	374	640	7.85	26.26	67.70	2400
2500	1148	732	880	112	384	657	8.40	28.09	72.80	2500
2600	1177	750	902	115	394	674	8.96	29.98	78.00	2600
2700	1206	492	929	119	405	169	9.54	31.91	83.40	2700
2800	1235	787	953	121	414	802	10.13	33.89	88.90	2800
. 500	1264	805	977	124	424	724	10.74	35.92	94.60	2900
3000	1292	823	1001	126	433	740	11.36	37.99	101.00	3000
	_					•				

TABLE 64. TRANSPORT PROPERTIES OF DEUTERIUM CHLORIDE-NITROGEN MIXTURES

Temp. (K)	100 200 300 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500 2500 2600 2800 2900
Diffusion Coefficient (m ² s ⁻¹ ·10 ⁻⁴) -N ₂ N ₂ -DCL DCL-DCL	0.02 0.02 0.10 0.09 0.21 0.21 0.35 0.35 0.52 0.53	0.72 0.74 0.93 0.97 1.17 1.23 1.43 1.50 1.71 1.80	2.01 2.12 2.33 2.45 2.66 2.81 3.01 3.19 3.38 3.58	3.76 3.99 4.16 4.41 4.58 4.86 5.01 5.32 5.45 5.79	5.91 6.28 6.39 6.79 6.87 7.31 7.38 7.85 7.89 8.40 8.42 8.96 8.97 9.54 9.52 10.13 10.09 10.74
Diffu (1) N2-N2	0.03 0.10 0.21 0.34	0.69 0.89 1.12 1.37	2.21 2.52 2.52 2.85 3.20	3.56 3.94 4.33 5.15	5.59 6.50 6.97 7.46 7.96 8.47 9.00
iductivity 1.10 ⁻³) DCL-DCL	19 28 32	37 41 50 54	58 63 67 71	79 83 87 91	99 102 106 1109 1115 1119 124
rmal Cor W m ⁻¹ K- N ₂ -DCL	- 18 25 31 35	4 4 4 5 5 4 4 5 5 8 5 8 5 8 5 8 5 8 5 8	62 67 71 75	28 89 89 89 80 105 80 80 80 80 80 80 80 80 80 80 80 80 80	110 114 112 122 126 130 135 142
The	33 33 39	44 45 59 63 63	67 75 80 84	89 95 101 108 115	121 126 131 131 141 151 151 165
ty 10-é) DCL-DCL	79 160 238 308 372	429 482 532 579 623	666 707 746 784 821	857 892 926 960	1024 1056 1087 1118 1148 1177 1206 1235 1264
Viscosity (Nsm-2·10-6) N ₂ -DCL DCI	71 143 206 261 310	354 396 434 471 505	539 571 601 631 661	689 717 744 770	822 847 872 897 921 944 968 991 1014
) N ₂ -N ₂	65 128 179 223 262	297 330 361 390 418	445 471 496 521 544	568 591 613 635 656	677 698 718 758 778 778 797 816 835
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500 2600 2900 3000

TABLE 65. TRANSPORT PROPERTIES OF DEUTERIUM CHLORIDE-ARGON MIXTURES

Temp (K)	100 200 300 400 500	600 700 800 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000
nt A-A	0.02 0.09 0.19 0.32	0.65 0.85 1.06 1.30 1.55	1.82 2.11 2.41 2.72 3.05	3.40 4.14 4.52	5.34 5.77 6.21 6.66 7.13	7.61 8.10 8.60 9.12 9.64
Diffusion Coefficient (m² s-1·10-4) ?L-DCL DCL-A A	0.02 0.09 0.20 0.34 0.50	0.69 0.91 1.14 1.40 1.67	1.96 2.27 2.60 2.94 3.30	3.68 4.07 4.90 5.33	5.78 6.25 6.72 7.22 7.72	8.24 8.77 9.32 9.87 10.45
Diffusion (m² s DCL-DCL	0.02 0.09 0.21 0.35	0.74 0.97 1.23 1.50	2.12 2.45 2.81 3.19 3.58	3.99 4.41 4.86 5.32	6.28 6.79 7.31 7.85 8.40	8.96 9.54 10.13 10.74 11.36
-3) A-A	12 19 22 26	30 34 40 43	45 51 54 56	62 62 64 69	72 77 79 82	8 8 8 8 8 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) -DCL DCL-A A	- 15 25 29	33 41 45 48	51 55 59 62 65	69 72 75 82	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100 102 104 107
Thermal Conductivity (W m ⁻¹ K ⁻¹ · 10 ⁻³) DCL-DCL DCL-A A.	19 24 32 32	37 41 50 54	58 63 67 71	79 83 87 91	99 102 106 109	115 119 121 124 126
A-A	83 166 237 298 352	401 447 490 531 569	607 642 677 710 743	775 806 837 866 896	925 953 981 1008	1062 1088 1114 1140 1165
Viscosity (Nsm ⁻² ·10 ⁻⁶) DCL DCL-A	80 163 238 304 362	415 464 510 554 595	635 673 710 745 780	813 846 878 910	971 1001 1030 1059 1087	1115 1143 1170 1197 1224
Vis (Nsm DCL-DCL	79 160 238 308 372	429 482 532 579 623	666 707 746 784 821	857 892 926 960	1024 1056 1087 1118 1148	1177 1206 1235 1264 1292
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 3000

TABLE 66. TRANSPORT PROPERTIES OF DEUTERIUM CHLORIDE-DEUTERIUM MIXTURES

Temp. (K)	100	200	300	400	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ent D2-D2	0.16	0.52	1.03	1.66	2.40	3.25	4.20	5.24	6.37	7.58	88 88	10.25	11.71	13.24	14.84	16.51	18.26	20.07	21.95	23.90	25.91	27.98	30.12	32.32	34.58	36.90	39.28	41.72	44.21	46.77
n Coeffici s-1.10-1) DCL-D2	0.08	0.31	0.63	1.04	1.52	2.07	2.68	3, 35	4.08	4.86	5,69	6.58	7.51	8.49	9.52	10.59	11.71	12.87	14.08	15,33	16.62	17.95	19.32	20.73	22.18	23.67	25.20	26.76	28.36	30.00
Diffusion Coefficient (m² s-1·10-1) DCL-DCL DCL-D2 D2	0.02	0.09	0.21	0.35	0.53	0.74	0.97	1.23	1.50	1.80	2.12	2.45	2.81	3.19	3.58	3, 99	4.41	4.86	5.32	5.79	6.28	6.79	7.31	7.85	8.40	8.96	9.54	10.13	10.74	11.36
ivity 0-3) D2-D2	58	101	141	176	210	243	274	305	336	365	393	421	449	476	502	528	554	579	605	630	654	678	702	. 426	750	774	797	821	844	898
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) UL-DCL DCL-D ₂ D ₂ -	ì	09	82	102	121	140	157	175	193	209	225	242	258	273	288	303	318	333	348	362	376	390	404	417	431	444	458	471	484	497
Therma (W m' DCL-DCL	•	19	24	28	35	37	41	45	20	ጁ	28	63	29	71	75	79	83	87	91	92	66	102	106	109	112	115	119	121	124	126
D2-D2	28	96	126	152	175	197	218	238	256	275	292	309	325	341	357	372	387	402	416	430	444	457	471	484	497	510	522	535	547	559
Viscosity (Nsm ⁻² ·10 ⁻⁵) OCL DCL-D ₂	55	103	141	174	203	229	254	277	299	320	341	361	380	399	417	435	452	469	486	202	518	534	550	265	280	595	610	625	639	653
Viscosity (Nsm-2 · 10° DCL-DCL DCL-D	43	160	238	308	372	429	482	532	579	623	999	707	746	787	821	857	892	926	096	892	1024	1056	1087	1118	1148	1177	1206	1235	1264	1292
Temp. (K)	100	200	300	400	200	009	200	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 67. TRANSPORT PROPERTIES OF DEUTERIUM CHLORIDE-ATOMIC DEUTERIUM MIXTURES

Temp. (K)	100	200	400	200	009	200	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000
ent D-D	0.27	1.30	2,88	4.18	5,65	7.29	9.10	11.06	13.17	15.42	17.81	20.33	22.99	25.77	28.68	31.71	34.85	38.12	41.50	44.99	48.59	52.30	56.12	60.05	64.08	68.21	72.45	76.78	81.22
Diffusion Coefficient $(m^2 s^{-1} \cdot 10^{-4})$ L-DCL DCL-D	0.13	0.47	1.58	2.32	3, 15	4.09	5.11	6.22	7.41	8.68	10.02	11.44	12.94	14.51	16.14	17.85	19.62	21.46	23,36	25, 33	27.36	29.45	31.60	33.81	36.08	38.40	40.79	43.23	45.73
Diffusion (m² s	0.02	0.09	0.35	0.53	0.74	0.97	1.23	1.50	1.80	2.12	2.45	2.81	3,19	3.58	3.99	4.41	4.86	5.32	5.79	6.28	6.79	7.31	7.85	8.40	8.96	9.54	10.13	10.74	11.36
vity -3) D-D	79	170	204	237	267	295	321	347	371	395	418	440	461	482	503	523	543	563	285	601	619	637	655	673	069	707	724	740	757
Thermal Conductivity (W m ⁻⁴ K ⁻¹ ·10 ⁻³) 3L-DCL DCL-D D	1 6	1 26	116	134	152	168	183	198	212	226	240	253	266	278	291	303	315	327	336	350	360	371	382	392	402	413	422	432	441
Thermal (W m ⁻ DCL-DCL	۱ ۲	25 25 27 27 28	28	32	37	41	45	20	%	58	63	29	11	75	42	83	87	91	92	66	102	106	109	112	115	119	121	124	126
D-D	200	109	132	152	171	189	206	223	238	254	897	283	296	310	323	336	349	361	373	385	397	409	420	431	443	453	464	475	486
Viscosity (Nsm ⁻² ·10 ⁻⁵) DCL DCL-D	4 8	113	139	162	184	. 203	222	240	257	273	289	304	319	334	348	362	376	389	402	415	428	440	453	465	477	488	200	512	523
Viscosity (Nsm ⁻² ·10 ⁻ DCL-DCL DCL-D	79	238	308	372	429	482	532	579	623	999	202	746	784	821	857	892	926	096	992	1024	1056	1087	1118	1148	1177	1206	1235	1264	1292
Temp. (K)	100	300	001	200	009	700	800	006	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900	3000

TABLE 68. TRANSPORT PROPERTIES OF DEUTERIUM CHLORIDE-FLUORINE MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
Coefficient -1 \cdot 10 \dashv) DCL \vdash F ₂ F ₂ \vdash F ₂	. 0.02 0.09 0.10 0.20 0.20 0.35 0.33 0.51 0.49		1.98 1.85 2.29 2.14 2.62 2.45 2.96 2.77 3.33 3.10	3.70 3.45 4.10 3.82 4.51 4.20 4.93 4.59 5.37 5.00	5.82 5.42 6.29 5.86 6.77 6.30 7.26 6.76 7.77 7.24	8.29 7.72 8.83 8.22 9.37 8.73 9.94 9.25 10.51 9.79
Diffusion Coefficient (m ² s ⁻¹ ·10 ⁻⁴) DCL-DCL DCL-F ₂ F ₂	0.09 0.21 0.35 0.53			3.99 4.41 5.32 5.79	6.28 6.79 7.31 7.85	8.96 9.54 10.13 10.74 11.36
vity -3) F ₂ -F ₂	10 19 28 37 45	52 59 65 71	82 88 93 97 102	107 112 116 121 125	130 134 138 143	151 155 159 163 167
Conducti K-1·10 DCL-F ₂	- 19 32 38	44 50 55 60 65	70 75 80 88	93 97 101 106 110	114 118 122 126 129	133 137 140 143
Thermal Conductivity (W m ⁻⁴ K ⁻¹ · 10 ⁻³) DCL-DCL DCL-F ₂ F ₂ -F ₂	19 28 32	37 45 56 56	58 63 67 71	79 83 87 91	99 102 106 109 112	115 119 121 124 126
2 - 2 H	86 168 236 293 344	391 434 475 513	586 620 653 685 716	747 777 806 835 863	891 918 945 972 998	1023 1049 1074 1098 1123
Viscosity (Nsm $^2 \cdot 10^{-5}$) OCL DCL-F ₂	_ 165 239 303 359	411 458 503 545 586	624 661 697 731	798 830 862 892 923	952 982 1010 1039 1066	1094 1121 1148 1174 1200
$rac{ ext{Viscosity}}{ ext{Nsm}^{-2} \cdot 10^{-5}}$	- 160 238 308 372	429 482 532 579 623	666 707 746 784 821	857 892 926 960 992	1024 1056 1087 1118 1148	1177 1206 1235 1264 1292
Temp. (K)	100 200 300 400 500	600 700 800 900 1000	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000

TABLE 69. TRANSPORT PROPERTIES OF DEUTERIUM CHLORIDE-ATOMIC FLUORINE MIXTURES

Temp. (K)	100 200 300 400 500	600 700 800 900	1100 1200 1300 1400 1500	1600 1700 1800 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000
ient F-F	0.04 0.17 0.36 0.60 0.88	1.21 1.57 1.97 2.40 2.86	3, 35 3, 88 4, 43 5, 01	6.25 6.91 7.60 8.31 9.05	9.81 10.59 11.40 12.23 13.09	13.97 14.87 15.79 16.74 17.70
Diffusion Coefficient (m² s-1·10~) L-DCL DCL-F	0.03 0.13 0.28 0.48	0.98 1.28 1.60 1.96 2.34	2.75 3.18 3.64 4.12 4.62	5.14 5.69 6.26 6.84 7.45	8.08 8.73 9.40 10.08	11.51 12.25 13.02 13.79 14.59
Diffusion (m ² i	0.02 0.09 0.21 0.35	0.74 0.97 1.23 1.50	2.12 2.45 2.81 3.19 3.58	3.99 4.41 4.86 5.32	6.28 6.79 7.31 7.85 8.40	8.96 9.54 10.13 10.74 11.36
vity -3) F-F	13 27 38 47 54	61 67 73 79	89 94 99 103 108	112 117 121 126 130	134 138 142 146 150	153 157 161 165
Thermal Conductivity (W m ⁻¹ K ⁻¹ ·10 ⁻³) JL-DCL DCL-F	- 23 31 43	49 54 69 69	73 78 83 87 91	95 100 104 108 112	116 120 124 127 131	134 138 141 144 147
Thermal (W m ⁻ DCL-DCL	- 19 28 32	37 45 56 56	58 63 67 71 75	79 83 87 91	99 102 106 109 112	115 119 121 124 126
स	78 152 213 265 311	354 393 430 464 498	530 561 591 620 648	676 703 729 756 781	806 831 855 879 903	926 949 971 994 1016
cosity -2 · 10 ⁻⁵) DCL-F	76 154 222 281 333	381 425 467 506 543	579 613 647 679 710	741 770 800 828 856	884 911 937 964 989	1015 1040 1065 1089 1114
Viscosity (Nsm ⁻² ·10 ⁻⁵) DCL-DCL DCL-F	79 160 238 308 372	429 482 532 579 623	666 707 746 784 821	857 892 926 960	1024 1056 1087 1118 1148	1177 1206 1235 1264 1292
Temp. (K)	100 200 300 400 500	600 700 900 900 1000	1100 1200 1300 1400 1500	1600 1700 1900 1900 2000	2100 2200 2300 2400 2500	2600 2700 2800 2900 3000

APPENDIX

Errata to TPRC Report 20 [1]

ao	change	to
page 1, Eq. 3	10 ⁶ D	10 ⁵ D
page 6, line 7	[16]	[22]
page 7, line 8 of text	[8]	[5]
page 9, lines 6, 8 of text	Table 2	Table 1
pages 18-64	Nsm ⁻² · 10 ⁻⁴	$Nsm^{-2} \cdot 10^{-5}$
pages 18-64	The diffusion coefficient tabulated is for p = 1 atm.	

END DATE FILMED

6—83 DTIC