Matrices, définitions et opérations

Algèbre Linéaire

Sommaire

- 1. Définitions.
- 2. Opérations.

Matrice: définition

- Soient $n,p \in \mathbb{N}^*$.
- On appelle **matrice réelle** à n lignes et p colonnes un tableau à deux dimensions de nombres réels comportant n lignes et p colonnes.
- L'ensemble des matrices réelles à n lignes et p colonnes se note $M_{n,p}(\mathbb{R})$.

Matrice: coefficients

- Soient $n,p \in \mathbb{N}^*$ et $A \in M_{n,p}(\mathbb{R})$.
- Pour $1 \le i \le n$ et $1 \le j \le p$, le coefficient de A situé à l'intersection de la i-ème ligne et la j-ème colonne est usuellement noté $a_{i,j}$.
- On peut alors désigner A par

$$A = (a_{i,j})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$

Matrice: visualisation

• Voici donc l'allure générale d'une matrice $A \in M_{n,p}(\mathbb{R})$

Matrice: exemple

• Soit $A \in M_{3,2}(\mathbb{R})$ définie par

$$A = \begin{pmatrix} 5 & 3 \\ 0 & 7 \\ -4 & 1 \end{pmatrix}$$

Ses coefficients sont donc

$$a_{1,1} = 5$$
 $a_{1,2} = 3$
 $a_{2,1} = 0$ $a_{2,2} = 7$
 $a_{3,1} = -4$ $a_{3,2} = 1$

Coefficients d'une matrice : remarque

 On retrouve le même principe qu'avec les listes bidimensionnelles en Python : on repère un coefficient d'abord par son numéro de ligne puis par son numéro de colonne.

• La différence étant qu'en Mathématiques on commence l'indexation à 1.

Matrice nulle : définition

- Soient $n,p \in \mathbb{N}^*$.
- La matrice de $M_{n,p}(\mathbb{R})$ dont tous les coefficients sont égaux à 0 est appelée la matrice nulle de $M_{n,p}(\mathbb{R})$ et est notée $0_{n,p}$.
- On a ainsi

$$0_{n,p} = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Matrices ligne et colonne : définition

- Soient $n,p \in \mathbb{N}^*$ et $A \in M_{n,p}(\mathbb{R})$.
- Si n=1 on dit que A est une matrice ligne

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,p} \end{pmatrix}$$

• Si p=1 on dit que A est une matrice colonne ou un vecteur

$$A = \begin{pmatrix} a_{1,1} \\ a_{2,1} \\ \vdots \\ a_{n,1} \end{pmatrix}$$

Matrices ligne et colonne : exemples

• Soit $A \in M_{1.6}(\mathbb{R})$ la matrice ligne définie par

$$A = (18 \quad 2 \quad -6 \quad -7 \quad 0 \quad 666)$$

• Soit $A \in M_{5,1}(\mathbb{R})$ la matrice colonne (aussi appelée vecteur) définie par

$$A = \begin{pmatrix} 5 \\ 2 \\ -1 \\ 0 \\ 3 \end{pmatrix}$$

Espace des vecteurs : définition

• Soit $n \in \mathbb{N}^*$.

• L'ensemble $M_{n,1}(\mathbb{R})$ des matrices à n lignes et 1 colonne, i.e. des vecteurs à n coordonnées se note généralement \mathbb{R}^n .

Matrice carrée : définition

- Soient $n,p \in \mathbb{N}^*$ et $A \in M_{n,p}(\mathbb{R})$.
- Si n = p on dit que A est une matrice carrée d'ordre n.
- L'ensemble des matrices carrées d'ordre n se note $M_n(\mathbb{R})$.

Matrice carrée : exemple

Voici une matrice carrée d'ordre 4

$$A = \begin{pmatrix} 1 & 4 & 6 & 0 \\ -1 & 2 & 0 & 5 \\ 3 & -5 & 3 & 1 \\ 1 & 2 & 1 & 8 \end{pmatrix}$$

Diagonale d'une matrice carrée : définition

- Soient $n \in \mathbb{N}^*$ et $A \in M_n(\mathbb{R})$.
- Les éléments $(a_{i,i})_{1 \le i \le n}$ de la matrice A s'appellent les **coefficients diagonaux** de A.
- L'ensemble de tous les coefficients diagonaux d'une matrice A s'appelle la diagonale de A.

Diagonale d'une matrice carrée : visualisation

• La diagonale d'une matrice carrée A est donc constituée des coefficients ayant un numéro de ligne égal à leur numéro de colonne

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{pmatrix}$$

Diagonale d'une matrice carrée : exemple

• Voici une matrice $A \in M_4(\mathbb{R})$ et sa diagonale représentée en rouge

$$A = \begin{pmatrix} 1 & 4 & 6 & 0 \\ -1 & 2 & 0 & 5 \\ 3 & -5 & 3 & 1 \\ 1 & 2 & 1 & 8 \end{pmatrix}$$

La diagonale est donc constituée des coefficients

$$a_{1,1} = 1$$
, $a_{2,2} = 2$, $a_{3,3} = 3$, $a_{4,4} = 8$

Matrice diagonale : définition et visualisation

- Soient $n \in \mathbb{N}^*$ et $A \in M_n(\mathbb{R})$.
- Si pour tous i,j tels que $1 \le i \le n, 1 \le j \le n$ et $i \ne j$ on a $a_{i,j} = 0$, alors la matrice A est dite **diagonale**.
- Il s'agit donc de matrices de la forme

$$A = \begin{pmatrix} a_{1,1} & 0 & \dots & 0 \\ 0 & a_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & a_{n,n} \end{pmatrix}$$

Matrice diagonale : exemple

• Voici une matrice $A \in M_4(\mathbb{R})$ qui est diagonale

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Matrice identité : définition

- Soit $n \in \mathbb{N}^*$.
- La matrice carrée diagonale d'ordre n dont tous les coefficients diagonaux sont égaux à 1 est appelée **matrice identité** d'ordre n et est notée I_n .
- On a donc

$$A = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

Matrice triangulaire supérieure : définition et visualisation

- Soient $n \in \mathbb{N}^*$ et $A \in M_n(\mathbb{R})$.
- Si pour tous i,j tels que $1 \le i \le n, 1 \le j \le n$ et i > j on a $a_{i,j} = 0$, alors la matrice A est dite **triangulaire supérieure**.
- Il s'agit donc de matrices de la forme

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ 0 & a_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{n-1,n} \\ 0 & \dots & 0 & a_{n,n} \end{pmatrix}$$

Matrice triangulaire inférieure : définition et visualisation

- Soient $n \in \mathbb{N}^*$ et $A \in M_n(\mathbb{R})$.
- Si pour tous i,j tels que $1 \le i \le n, 1 \le j \le n$ et i < j on a $a_{i,j} = 0$, alors la matrice A est dite **triangulaire inférieure**.
- Il s'agit donc de matrices de la forme

$$A = \begin{pmatrix} a_{1,1} & 0 & \dots & 0 \\ a_{2,1} & a_{2,2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n,1} & \dots & a_{n,n-1} & a_{n,n} \end{pmatrix}$$

Matrices triangulaire supérieure & inférieure : exemple

• Voici une matrice $A \in M_3(\mathbb{R})$ qui est triangulaire supérieure

$$A = \begin{pmatrix} 1 & -5 & 3 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

• Et voici une matrice $B \in M_3(\mathbb{R})$ qui est triangulaire inférieure

$$B = \begin{pmatrix} 3 & 0 & 0 \\ 5 & 2 & 0 \\ 0 & 4 & -1 \end{pmatrix}$$

Addition de deux matrices : définition

- Soient $n,p \in \mathbb{N}^*$ et $A,B \in M_{n,p}(\mathbb{R})$.
- On définit la **somme** de A et B comme étant la matrice $C \in M_{n,p}(\mathbb{R})$ vérifiant

$$\forall \ 1 \le i \le n, 1 \le j \le p, c_{i,j} = a_{i,j} + b_{i,j}$$

• On note alors C = A + B.

Addition de deux matrices : contrainte

 Pour pouvoir définir la somme de deux matrices il est donc nécessaire qu'elles soient de même taille, i.e. qu'elles possèdent le même nombre de lignes et de colonnes.

Addition de deux matrices : exemple

• Considérons les matrices $A,B \in M_{2,3}(\mathbb{R})$

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -1 & -2 \\ -3 & 1 & 5 \end{pmatrix}$$

 Ces deux matrices possèdent chacune deux lignes et trois colonnes, on peut donc les additionner. On a alors

$$C = A + B = \begin{pmatrix} 1 & -1 & -3 \\ -1 & 2 & 9 \end{pmatrix}$$

Addition de deux matrices : exemple (suite)

• Exemple du coefficient situé sur la seconde ligne et première colonne de $\mathcal C$

$$C = \begin{pmatrix} 1 & -1 & -3 \\ -1 & 2 & 9 \end{pmatrix}$$

• Il faut considérer les coefficients situés eux aussi sur la seconde ligne et première colonne de A et B

$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -1 & -2 \\ -3 & 1 & 5 \end{pmatrix}$$

• Et en faire la somme : 2 + (-3) = 1.

Addition de deux matrices : propriétés

- Soient $n,p \in \mathbb{N}^*$ et $A,B,C \in M_{n,p}(\mathbb{R})$.
- A + B = B + A, i.e. l'addition est **commutative**.
- (A + B) + C = A + (B + C), i.e. l'addition est associative.
- $A + 0_{n,p} = 0_{n,p} + A = A$, i.e. la matrice nulle est un **élément neutre** pour l'addition.

Multiplication d'une matrice par un réel : définition

- Soient $n,p \in \mathbb{N}^*$, $A \in M_{n,p}(\mathbb{R})$ et $\lambda \in \mathbb{R}$.
- On définit le **produit** de A par λ comme étant la matrice $C \in M_{n,p}(\mathbb{R})$ vérifiant

$$\forall \ 1 \leq i \leq n, 1 \leq j \leq p, c_{i,j} = \lambda.a_{i,j}$$

• On note alors $C = \lambda A$.

Multiplication d'une matrice par un réel : exemple

• Considérons le réel $\lambda = -2$ et la matrice $A \in M_{3,2}(\mathbb{R})$

$$A = \begin{pmatrix} 1 & 3 \\ 2 & -4 \\ -1 & 0 \end{pmatrix}$$

• On peut effectuer la multiplication de A par λ et l'on obtient alors

$$C = \lambda . A = \begin{pmatrix} -2 & -6 \\ -4 & 8 \\ 2 & 0 \end{pmatrix}$$

Multiplication d'une matrice par un réel : exemple (suite)

• Exemple du coefficient situé sur la troisième ligne et première colonne de $\mathcal C$

$$C = \begin{pmatrix} -2 & -6 \\ -4 & 8 \\ 2 & 0 \end{pmatrix}$$

• Il faut considérer le coefficient situé lui aussi sur la troisième ligne et première colonne de $\cal A$

$$A = \begin{pmatrix} 1 & 3 \\ 2 & -4 \\ -1 & 0 \end{pmatrix}$$

• Et effectuer le produit $(-2) \times (-1) = 2$.

Multiplication d'une matrice par un réel : propriétés

- Soient $n,p \in \mathbb{N}^*$, $A,B \in M_{n,p}(\mathbb{R})$ et $\lambda,\mu \in \mathbb{R}$.
- $\lambda . (A + B) = \lambda . A + \lambda . B$, i.e. la multiplication d'une matrice par un réel est distributive par rapport à l'addition des matrices.
- $(\lambda + \mu).A = \lambda.A + \mu.A$, i.e. la multiplication d'une matrice par un réel est distributive par rapport à l'addition des réels.
- 1.A = A, i.e. 1 est un **élément neutre** pour la multiplication par un réel.
- $0.A = 0_{n,p}$, i.e. 0 est un élément **absorbant** pour la multiplication par un réel.

Multiplication de deux matrices : définition

- Soient $n,p,q \in \mathbb{N}^*$, $A \in M_{n,q}(\mathbb{R})$ et $B \in M_{q,p}(\mathbb{R})$.
- On définit le **produit** de A par B comme étant la matrice $C \in M_{n,p}(\mathbb{R})$ vérifiant

$$\forall \ 1 \le i \le n, 1 \le j \le p, c_{i,j} = \sum_{k=1}^{q} a_{i,k} b_{k,j}$$

• On note alors C = AB.

Multiplication de deux matrices : contrainte

• Pour pouvoir définir le produit AB de deux matrices, il est donc nécessaire que le nombre de colonnes de A soit égal au nombre de lignes de B.

• Le produit comportera alors le même nombre de lignes que A et le même nombre de colonnes que B.

Multiplication de deux matrices : explication de la formule

- Pour calculer le terme $c_{i,j}$ du produit C on effectue donc la somme des produits suivants :
 - Le produit du premier terme de la i-ème ligne de A avec le premier terme de la j-ème colonne de B.
 - Le produit du deuxième terme de la i-ème ligne de A avec le deuxième terme de la j-ème colonne de B.
 - ...
 - Le produit du dernier terme de la i-ème ligne de A avec le dernier terme de la j-ème colonne de B.

Multiplication de deux matrices : explication de la formule

• Ainsi, pour calculer $c_{i,j}$

$$C = \begin{pmatrix} c_{1,1} & \dots & \dots & c_{1,p} \\ \vdots & & & \vdots \\ \vdots & & c_{i,j} & \vdots \\ \vdots & & & \vdots \\ c_{n,1} & \dots & \dots & c_{n,p} \end{pmatrix}$$

Multiplication de deux matrices : explication de la formule

• Il faut considérer la i-ème ligne de A et la j-ème colonne de B

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,q} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i,1} & a_{i,2} & \dots & a_{i,q} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,q} \end{pmatrix}, B = \begin{pmatrix} b_{1,1} & \dots & b_{1,j} & \dots & b_{1,p} \\ b_{2,1} & \dots & b_{2,j} & \dots & \vdots \\ \vdots & \dots & \vdots & \dots & \vdots \\ b_{q,1} & \dots & b_{q,j} & \dots & b_{q,p} \end{pmatrix}$$

Multiplication de deux matrices : explication de la formule

Il reste alors à effectuer le calcul

$$c_{i,j} = \sum_{k=1}^{q} a_{i,k} b_{k,j} = a_{i,1} b_{1,j} + a_{i,2} b_{2,j} + \dots + a_{i,q} b_{q,j}$$

Multiplication de deux matrices : exemple

• Considérons les matrices $A \in M_{2,3}(\mathbb{R})$ et $B \in M_{3,4}(\mathbb{R})$

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 & -2 \\ -1 & 0 & 1 & -1 \\ 2 & 1 & 1 & 0 \end{pmatrix}$$

• La matrice A possède trois colonnes et la matrice B trois lignes, on peut donc les multiplier. On a alors

$$C = AB = \begin{pmatrix} 1 & 3 & 6 & -4 \\ 7 & 5 & 6 & -2 \end{pmatrix}$$

Multiplication de deux matrices : exemple (suite)

• Exemple du coefficient situé sur la deuxième ligne et troisième colonne de $\mathcal C$

$$C = AB = \begin{pmatrix} 1 & 3 & 6 & -4 \\ 8 & 5 & 6 & -2 \end{pmatrix}$$

• Il faut donc considérer la deuxième ligne de A et la troisième colonne de B

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 3 & -2 \\ -1 & 0 & 1 & -1 \\ 2 & 1 & 1 & 0 \end{pmatrix}$$

• Puis effectuer le calcul $1 \times 3 + 0 \times 1 + 3 \times 1 = 6$.

Multiplication de deux matrices : propriétés

- Soient $n,p,q,r \in \mathbb{N}^*$, $A,A' \in M_{n,q}(\mathbb{R})$, $B,B' \in M_{q,p}(\mathbb{R})$ et $C \in M_{p,r}(\mathbb{R})$.
- A(BC) = (AB) C, i.e. la multiplication est **associative**.
- A(B+B')=AB+AB', i.e. la multiplication est **distributive à gauche** par rapport à l'addition.
- (A + A')B = AB + A'B, i.e. la multiplication est **distributive** à **droite** par rapport à l'addition.

Multiplication de deux matrices : propriétés (suite)

- Soient $n \in \mathbb{N}^*$ et $A \in M_{n,q}(\mathbb{R})$.
- $AI_q = I_n A = A$, i.e. la matrice identité est un **élément neutre** pour la multiplication.
- $A0_{q,p}=0_{n,p}$, i.e. la matrice nulle est un **élément absorbant** pour la multiplication.
- $0_{p,n}A=0_{p,q}$, i.e. la matrice nulle est un **élément absorbant** pour la multiplication.

Multiplication de deux matrices : non commutativité

• Soient $n,p \in \mathbb{N}^*$, $A \in M_{n,p}(\mathbb{R})$ et $B \in M_{p,n}(\mathbb{R})$.

• En général on a $AB \neq BA$.

Multiplication de deux matrices : preuve de la non commutativité

- Il suffit de trouver un contre-exemple à l'égalité.
- Soient

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}$$

• On a alors

$$AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, BA = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}$$

Transposition d'une matrice : définition

- Soient $n,p \in \mathbb{N}^*$ et $A \in M_{n,p}(\mathbb{R})$.
- On définit la transposée de A comme étant la matrice $C \in M_{p,n}(\mathbb{R})$ vérifiant

$$\forall \ 1 \leq i \leq p, 1 \leq j \leq n, c_{i,j} = a_{j,i}$$

• On note alors $C = {}^t A$.

Transposition d'une matrice : remarque

 Cette opération consiste juste à permuter les lignes et les colonnes d'une matrice.

• La transposée d'une matrice A comportera ainsi autant de lignes que A possédait de colonnes et inversement.

Transposition d'une matrice : exemple

• Considérons la matrice $A \in M_{2,3}(\mathbb{R})$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

• Sa transposée est alors égale à

$${}^{t}A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Transposition d'une matrice : propriétés

- Soient $n,p,q,r \in \mathbb{N}^*$, $A,A' \in M_{n,q}(\mathbb{R})$, $B \in M_{q,p}(\mathbb{R})$ et $\lambda \in \mathbb{R}$.
- $\bullet \quad {}^t(A+B) = {}^tA + {}^tB.$
- ${}^t(\lambda.A) = \lambda.^tA.$
- $\binom{t}{A} = A$, i.e. la transposition est **involutive**.
- $\bullet \quad {}^t(AB) = {}^tB{}^tA.$

Matrices symétrique et antisymétrique : définition

• Soient $n \in \mathbb{N}^*$ et $A \in M_n(\mathbb{R})$.

• Si A = A, on dit que A est symétrique.

• Si A = -A, on dit que A est antisymétrique.

Matrices symétrique et antisymétrique : exemple

• Cette matrice $A \in M_3(\mathbb{R})$ est symétrique

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & -12 & 7 \\ 3 & 7 & 0 \end{pmatrix}$$

• Cette matrice $B \in M_4(\mathbb{R})$ est antisymétrique

$$B = \begin{pmatrix} 0 & 2 & 3 & 4 \\ -2 & 0 & -1 & 7 \\ -3 & 1 & 0 & -6 \\ -4 & -7 & 6 & 0 \end{pmatrix}$$

Matrice antisymétrique : propriété

• Soient $n \in \mathbb{N}^*$ et $A \in M_n(\mathbb{R})$.

• Si A est antisymétrique alors ses coefficients diagonaux sont nuls.

Matrice antisymétrique : preuve de la propriété

• L'égalité $\overset{t}{A} = -A$ implique en particulier que

$$\forall \ 1 \leq i \leq n$$
, $a_{i,i} = -a_{i,i}$

• Ce qui signifie bien sûr que

$$\forall \ 1 \leq i \leq n, a_{i,i} = 0$$

Matrice inversible : définition

- Soient $n \in \mathbb{N}^*$ et $A \in M_n(\mathbb{R})$.
- On dit que A est inversible dans $M_n(\mathbb{R})$ s'il existe une matrice $B \in M_n(\mathbb{R})$ telle que

$$AB = BA = I_n$$

• La matrice B est alors notée A^{-1} et s'appelle l'**inverse** de A.

Matrice inversible : remarques

- Toutes les matrices ne sont pas inversibles, la matrice nulle ne l'est par exemple clairement pas.
- Ce concept d'inversibilité est formellement le même que celui des nombres réels.
- Rappelons en effet qu'un réel x est inversible si et seulement si il existe un réel y tel que xy = yx = 1.

Matrice inversible : exemple

Soient

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix}$$

• On vérifie aisément que

$$AB = BA = I_n$$

• Cela signifie que A est inversible et que $A^{-1} = B$. De même B est inversible et $B^{-1} = A$.

Matrice inversible : propriétés

- Soient $n \in \mathbb{N}^*$ et $A,B,C \in M_n(\mathbb{R})$.
- Si A et B sont inversibles, alors AB l'est aussi et $(AB)^{-1} = B^{-1}A^{-1}$.
- Si AC = BC et si C est inversible alors A = B.
- Si CA = CB et si C est inversible alors A = B.

Matrice inversible : preuve de la première propriété

- On suppose donc que A et B sont inversibles. Ainsi A^{-1} et B^{-1} existent.
- On a

$$(AB) (B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$$
$$= AI_nA^{-1}$$
$$= AA^{-1}$$
$$= I_n$$

• Q.E.D.

Matrice inversible : preuve de la deuxième propriété

- On suppose ici que C est inversible. Ainsi C^{-1} existe.
- On a

$$AC = BC$$

$$(AC) C^{-1} = (BC) C^{-1}$$

$$A(CC^{-1}) = B(CC^{-1})$$

$$AI_n = BI_n$$

$$A = B$$

• Q.E.D.

Matrice inversible : remarque

Les propriétés de simplifications sont fausses avec une matrice non inversible.
 On peut facilement le constater avec la matrice nulle, ou encore en considérant les matrices

$$A = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

• On a AC = BC mais $A \neq B$ car la matrice C n'est pas inversible.

