CS 582: Distributed Systems

Fault Tolerance in Spark

Dr. Zafar Ayyub Qazi Fall 2024

Why Spark?

- Interesting fault tolerance story
- Popular open-source project
 - Opensource at Apache, 50+ companies contributed to it
 - Big startup: Databricks
- Widely used
 - https://databricks.com/customers
 - More than 5000 customers
- Works well for many big data apps

Spark Background

Spark Background

- Arose from an academic setting
 - Amplab @ UC Berkeley
- Project Leader: Matei Zaharia
 - o Back then: PhD student at UC Berkeley advised by Ion Stoica & Scott Shenker
 - Got ACM doctoral thesis award
 - Now: Professor at Stanford University and CTO Databricks
- This paper was published in 2012 in NSDI
- Open sourced from day one ...

Our Focus: Fault Tolerance in Spark

Also provides a programming model and execution strategy

Our general fault tolerance story

- Replicate
 - o If a server fails, have copies on backup servers
- Store data in persistent storage
 - o If a server fails, we don't lose data

Replicated State Machine -> Replicated Log

Replicated State Machine -> Replicated Log

- Paxos/Raft/PBFT
 - Replicate <u>log of operations</u> on different servers
 - Store log of operations & state in persistent storage

Spark Context: Big Data Processing

- Considers applications that use large amounts of data
 - Think about ML, data mining applications
- Many of these are multi-stage and interactive applications
 - o <u>Iterative</u> machine learning & graph processing
 - o Interactive data mining

Challenges

- 1. Writing/Reading to persistent storage is slow
 - 10-100x slower than memory*
- 2. Replicating data can be slow
 - Takes time if you do it synchronously
 - o i.e., you wait for operations to be replicated before proceeding

How to achieve both fault tolerance + speed?

^{*}Latency numbers every programmer should know, check out: https://norvig.com/21-days.html#answers & https://colin-scott.github.io/personal website/research/interactive latency.html

Before Spark: MapReduce

- Made life of programmers easy
 - Provides a simple programming model for big data analysis on large unreliable clusters
- MapReduce framework handles
 - Communication between nodes
 - Scheduling of tasks
 - Failures and stragglers

MapReduce Limitations

- But restricted programming model
 - Some apps don't fit well with MapReduce
- As soon as it got popular, users wanted more:
 - More complex, multi-stage applications (e.g., iterative machine learning & graph processing)
 - More interactive ad-hoc queries
- The only way to share data across jobs in MapReduce was through persistance storage

Examples

FS = Distributed File System

A Strawman Solution

- Store and replicate the data in memory
 - o E.g., data is stored in RAM, and replicated on the RAM of multiple servers
- Speed: get data from RAM which is fast
- Fault tolerance: if a server fails, use a copy from another server
- Any Issues?

Another Possible design

- Only store input data in persistent memory
 - And replicate it
 - o Store in a distributed file system, e.g., Google File System
- Store modified data in RAM
- Only replicate the log of updates
 - Store them in persistent storage & replicate them
 - If you lose modified data, just recreate by reapplying the updates to the orginal data
- Any Issues?

Spark Key Ideas

- Redesign storage interfaces
 - Instead of fine-grained storage interfaces, e.g., key/value storage system or SQL-based systems
 - Design coarse-grained operations
 - o That apply to a number of data elements
 - o So you have to log less data --> matters when dealing with large data
- A new data-sharing primitive
 - Resilient Distributed Datasets (RDDs):
 - o Immutable and created through transformations
 - Store RDDs in memory + track graph of transformations
 - o If a server fails, recreate lost data from the graph of transformations

RDDs

- Immutable, partitioned collections of records
- Can only be built through coarse-grained deterministic transformations (map, filter, join, ...)
- Efficient fault recovery using lineage
 - Log one operation to apply to many elements
 - Recompute lost partitions on failure
 - No cost if nothing fails

Example

- 1. lines = spark.textFile("gfs://...")
- 2. errors = lines.filter(_.startsWith("ERROR")) // lazy!
- 3. errors.persist() // no work yet
- 4. Errors.count() // an action that computes a result

- now errors are materialized in memory
- partitioned across many nodes
- Spark, will try to keep in RAM (will spill to disk when RAM is full)

Reuse of an RDD

- errors.filter(_.contains("MySQL")).count()
- This will be fast because reuses results computed by previous fragment
- Spark will schedule jobs across machines that hold partition of errors

Fault Tolerance

RDDs track the graph of transformations that built them (their lineage) to rebuild lost data

Lineage and Fault Tolerance

- Opportunity for efficient fault tolerance
- Let's say one machine fails
 - Want to recompute *only* its state
 - The lineage tells us what to recompute
 - o Follow the lineage to identify all partitions needed
- Who tracks the lineage?

Generality

- Despite their restrictions, RDDs can express surprisingly many parallel algorithms
- Unify many current programming models
 - Such as MapReduce, Dryad, SQL, Pregel
- Support new apps that these models don't

Limitations

- Suited for batch applications
 - Apply the same operation to many elements of the dataset
 - Sparks remembers each transformation as one step
 - o Can recover without having to log large amounts of data
- Not suitable for apps that require fine grained updates. For such apps more suitable to have
 - Key value stores
 - Classical databases

Discussion

What happens if RAM is full?

Discussion

- What happens if the lineage chain is long?
 - o Is it possible failure recovery may take a long time?

Spark Summary

- Keep intermediate data in memory
 - To provide fast access
 - But makes fault tolerance hard

Proposes RDDs

- o Immutable → to simplify failure recovery
- o Instead of saving data (on persistence storage), track lineage graph
- Lineage graph → graph of transformations
- o Transformations are course grained
 - Applied to several elements of data
 - o Saves the data that needs to be logged; matters when dealing with huge amounts of data
- Limitation: only supports coarse grained operations

Next Lecture

• Distributed Parameter Server