FACULTAD DE CIENCIAS EXACTAS INGENIERÍA Y AGRIMENSURA ESCUELA DE POSGRADO Y EDUCACIÓN CONTINUA

Tópicos Avanzados de Optimización Combinatoria y Teoría de Grafos

Docentes: Graciela Nasini, Daniel Severin, Paola Tolomei, Pablo Torres

Práctica nº 1: Teoría de Grafos

En esta práctica asumimos que todos los grafos son simples (sin lazos ni aristas múltiples).

- 1. a) Probar que para todo grafo G, $\sum_{v \in V(G)} d(v) = 2.|E(G)|$, donde con d(v) notamos el grado de v.
 - b) Demostrar que en todo grafo, la cantidad de vértices de grado impar de todo grafo es par.
- 2. Sea G un grafo y \overline{G} su complemento.
 - a) Si G es isomorfo a \overline{G} , ¿cuál es el cardinal de E(G)? Mostrar que dos grafos G y H son isomorfos si y solo si \overline{G} y \overline{H} son isomorfos.
 - b) Determinar todos los grafos no isomorfos con conjunto de vértices {1, 2, 3, 4}.
- 3. Determinar la cantidad de matchings perfectos en un grafo completo de 2n vértices.
- 4. Sea G el grafo que posee como conjunto de vértices a todos los subconjuntos de cardinal 2 del conjunto $\{1, 2, 3, 4, 5\}$ y dos vértices son adyacentes si y sólo si los respectivos subconjuntos son disjuntos. Probar que G es isomorfo al grafo de Petersen, definido en [LMDC, pág. 545, figura 11.24(a)].
- 5. Sea G = (V, E). Probar que las siguientes proposiciones son equivalentes:
 - a) G es un árbol,
 - b) |E| = |V| 1 y G es conexo,
 - c) |E| = |V| 1 y G es acíclico.
- 6. a) Sea G^n el grafo con n componentes conexas, cada una de ellas isomorfa a K_2 . ¿Cuántos estables maximales tiene G^n ?
 - b) Probar que existen grafos para los cuales el número de cliques maximales es de orden exponencial respecto al número de vértices.
- 7. Determinar un estable, una clique y un 1-empaquetamiento de cardinales máximos para el grafo de Petersen y para el siguiente grafo:

- 8. a) Probar que un conjunto estable y una clique comparten a lo sumo un vértice.
 - b) Probar que un conjunto de vértices S es estable y dominante de G si y sólo si S es estable maximal de G.
 - c) Demostrar que el número de estabilidad de un grafo es una cota superior de su número de dominación.
- 9. a) Probar que si M y M' son matchings de G entonces toda componente conexa del grafo $G[(M\backslash M') \cup (M'\backslash M)]$ es un ciclo par o un camino.
 - b) Mostrar que todo árbol tiene a lo sumo un matching perfecto. Sugerencia: Proceder por inducción o usar el ítem (a).
- 10. La distancia entre 2 vértices u y v, d(u,v), es la cantidad de arcos del camino más corto entre u y v. El diámetro de un grafo G es máx $_{u,v\in V(G)}d(u,v)$. Probar que un grafo de diámetro a lo sumo dos no puede tener un 1-empaquetamiento de más de un elemento.
- 11. Demostrar que todo 1-empaquetamiento es un conjunto estable, pero no es válida la recíproca. Más aún, probar que la diferencia entre los cardinales máximos de un estable y un 1-empaquetamiento no es acotada. Es decir, para todo número natural k, existe un grafo G_k donde esa diferencia es al menos k.
- 12. Demostrar que $\gamma(G)(\Delta(G)+1) \geq n$. Probar que esta cota es tan mala como queramos, i.e. para cada $k \in \mathbb{N}$ existe un grafo G_k tal que $\gamma(G)(\Delta(G)+1) \geq n+k$.
- 13. Sea $S = (v_1, v_2, \dots, v_k)$ una secuencia de vértices distintos de un grafo G. Decimos que la secuencia S es legal si

$$N[v_i] \setminus \bigcup_{j=1}^{i-1} N[v_j] \neq \emptyset, \qquad \forall i = 2, \dots, k,$$

Análogamente, decimos que S es total legal si

$$N(v_i) \setminus \bigcup_{j=1}^{i-1} N(v_j) \neq \emptyset, \quad \forall i = 2, \dots, k.$$

El número de dominación de Grundy, $\gamma_{gr}(G)$, es el tamaño de la secuencia legal de máxima longitud, mientras que el número de dominación de Grundy total, $\gamma_{gr}^t(G)$, es el tamaño de la secuencia total legal de máxima longitud. Denotamos con \widehat{S} al conjunto $\{v_1, v_2, \dots, v_k\}$.

- a) Pruebe que si D es un conjunto dominante (total) mínimo de G, entonces existe una secuencia legal (total) S de G tal que $D = \widehat{S}$.
- b) Sea S una secuencia legal (total) de máxima longitud de G. Pruebe que \widehat{S} es un conjunto dominante (total) de G.
- c) Suponga que existen dos vértices u, v de un grafo G que satisfacen N[u] = N[v] (se dice que u, v son mellizos verdaderos). Pruebe que $\gamma_{gr}(G) = \gamma_{gr}(G v)$, donde G v representa el grafo luego de borrar el vértice v. Enuncie y pruebe un resultado similar para el caso "total".
- d) Calcule $\gamma_{gr}(G)$ y $\gamma_{gr}^t(G)$ para los casos en que G es: i) un camino, ii) un ciclo.

- 14. Sea G un grafo con |V(G)| = n y |E(G)| = m, y sean $\Delta(G)$ el grado máximo de los vértices de G, $\delta(G)$ el grado mínimo de los vértices de G, $\chi(G)$ el número cromático de G, $\omega(G)$ el tamaño de la máxima clique de G, $\alpha(G)$ el cardinal del mayor conjunto estable de G y $\gamma(G)$ el cardinal del mínimo conjunto dominante de G. Probar:
 - a) $\chi(G) \leq n + 1 \alpha(G)$. Caracterizar los grafos que verifican esta desigualdad por igualdad.
 - b) Si G es bipartito entonces $\omega(G)\alpha(G) \geq n$. ¿Es cierta esta desigualdad para grafos en general?
 - c) $\chi(G)\alpha(G) \geq n$. Probar que esta cota es tan mala como queramos, i.e. para cada $k \in \mathbb{N}$ existe un grafo G_k tal que $\chi(G)\alpha(G) \geq n + k$.
 - d) $\chi(G)(n \delta(G)) \ge n$.
 - e) $\chi(G) \leq 1 + \max\{\delta(G') : G' \subseteq G\}$. Recordar los grafos color-crítico.
 - $f) \ \chi(G) \le \frac{1}{2} + \sqrt{2m + \frac{1}{4}}.$
 - $g) \ 2\sqrt{n} \le \chi(G) + \chi(\bar{G}) \le n+1.$
 - $h) \ n \le \chi(G)\chi(\bar{G}) \le \left(\frac{n+1}{2}\right)^2.$
 - i) $\gamma_{gr}(G) \leq n \delta(G)$ y $\gamma_{gr}^t(G) \leq n \delta(G) + 1$.
- 15. Una generalización del grafo de Petersen es el grafo de Kneser KG(n, k) que, para $n \ge 2k$, tiene por vértices todos los subconjuntos de cardinal k de un conjunto de cardinal n, y dos vértices son adyacentes si sus correspondientes subconjuntos son disjuntos.
 - a) Probar que $\alpha(KG(n,k)) \geq \binom{n-1}{k-1}$.
 - b) Hallar $\omega(KG(n,k))$.
- 16. Sean G y H dos grafos simples. Una función $\phi: V(G) \mapsto V(H)$ es un homomorfismo de G en H si $\phi(u)\phi(v) \in E(H)$ para toda $uv \in E(G)$. La notación $G \to H$ significa que existe un homomorfismo de G en H.
 - a) Probar que si G es un grafo bipartito entonces $G \to K_2$.
 - b) Demostrar que $\chi(G) = \min\{k: G \to K_k\}.$
 - c) Probar que si $G \to H$ entonces $\omega(G) \le \omega(H)$.
 - d) Demostrar que una función ϕ es un homomorfismo de G en H si y solo si $\phi^{-1}(I)$ es un conjunto estable (independiente) de G para todo estable I de H.
- 17. Dados dos grafos G y H, el grafo producto escalar de G y H, notado $G \square H$ se define de la siguiente forma:

$$V(G\Box H) = V(G) \times H$$

$$E(G \square H) = \{(g_1, h_1)(g_2, h_2) : [g_1 = g_2 \land h_1 h_2 \in E(H)] \lor [h_1 = h_2 \land g_1 g_2 \in E(G)]\}.$$

- a) Probar que si G y H son subgrafos inducidos de $G \square H$.
- b) Demostrar que $\chi(G \square H) = \max\{\chi(G), \chi(H)\}.$

Bibligrafía:

 $\left[\mathrm{LMDC}\right]$ R. Grimaldi. Matemática Discreta y Combinatoria.3
ra. edición. Pearson.

 $\left[\text{LIGT} \right]$ D. West. Introduction to Graph Theory. 2nd. Edition. Pearson.