Проверочная работа по ФИЗИКЕ

8 класс

Вариант 2

Инструкция по выполнению работы

На выполнение работы по физике даётся 45 минут. Работа содержит 11 заданий.

Ответом на каждое из заданий 1, 3-7, 9 является число или несколько чисел. В заданиях 2 и 8 нужно написать текстовый ответ. В заданиях 10 и 11 нужно написать решение задач полностью. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы можно пользоваться непрограммируемым калькулятором.

При необходимости можно пользоваться черновиком. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Постарайтесь выполнить как можно больше заданий.

Желаем успеха!

Таблица для внесения баллов участника

Номер задания	1	2	3	4	5	6	7	8	9	10	11	Сумма баллов	Отметка за работу
Баллы													

Для того чтобы избежать в аэропорту доплаты за лишний вес багажа, Валя решила взвесить свой чемодан заранее. Вещи какой минимальной суммарной массы нужно переложить Вале в ручную кладь, если разрешённая масса багажа 24 кг?

	Ответ: кг.
2	Что обладает большей внутренней энергией: лёд при 0°С или вода той же массы при той же температуре? Объясните свой ответ.
	Ответ:
3	Сопротивление вольтметра 4000 Ом. Найдите силу тока, который течёт через вольтметр

3	Сопротивление вольтметра 4000 Ом. Найдите силу тока, который течёт ч если он показывает напряжение, равное 120 В.

4

Роман решил узнать, какой удельной теплотой плавления обладает шоколад. Для этого он начал нагревать плитку шоколада массой 0,08 кг. На графике представлена зависимость температуры шоколадки от подведённого к ней количества теплоты. Определите удельную теплоту плавления шоколада.

_	
Ответ:	Дж/кг

5

У Толи есть два электрочайника: белый и синий. На белом чайнике написано, что его мощность равна 900 Вт, а на синем надпись стёрлась. Толя захотел узнать мощность синего чайника. Он набрал одинаковое количество воды в оба чайника и одновременно включил их. Белый чайник вскипел за 9 минут, а синий — за 10 минут. Определите мощность синего чайника, если потерями теплоты в обоих случаях можно пренебречь (чайники с термоизоляцией корпуса в настоящее время довольно широко распространены).

:		
:		
:		
:	Ответ:	R _T
· · · · · · · · · · · · · · · · · · ·	OIBCI.	D1.

6

Олег с родителями поехал в горы. Определите, на какой минимальной высоте Олег может встретить снег, если известно, что в среднем при подъёме на каждые 100 м температура падает на 0.6 °C, а температура воздуха у подножья горы +36 °C.

	Ответ:	M.

Для отопления дома в течение суток требуется сжигать 27 кг сухих дров. Хозяин дома решил заменить печь, чтобы можно было сжигать в ней каменный уголь. Пользуясь таблицей, определите, какую массу каменного угля нужно будет сжигать вместо дров для того, чтобы отапливать этот дом после замены печи.

Вещество	Удельная теплота сгорания, Дж/кг	Вещество	Удельная теплота сгорания, Дж/кг
Порох	$0.38 \cdot 10^{7}$	Древесный уголь	$3,4\cdot 10^{7}$
Дрова сухие	$1,0.10^{7}$	Природный газ	$4,4 \cdot 10^{7}$
Торф	$1,4\cdot 10^{7}$	Нефть	$4,4 \cdot 10^{7}$
Каменный уголь	$2,7 \cdot 10^{7}$	Бензин	$4,6 \cdot 10^{7}$
Спирт	$2,7 \cdot 10^7$	Керосин	$4,6 \cdot 10^{7}$
Антрацит	$3.0 \cdot 10^7$	Водород	$12 \cdot 10^7$

Ответ:	КΓ

8 Если через закрепленную катушку пропустить постоянный электрический ток, то она притягивается к закрепленному постоянному магниту (см. рис.). В каком направлении будет действовать на магнит сила со стороны катушки, если ток по катушке будет течь в обратном направлении? Кратко объясните ответ.

Ответ и объяснение: _	 	

ВПР	Физика.	8	кпасс	Вариа	нт 2)

КОД

9

Удивительная привязанность голубей к месту гнездования ещё в древности натолкнула людей на мысль, что можно использовать голубей для передачи почты. И даже во время Великой Отечественной войны, несмотря на существование технических средств связи, голуби с успехом использовались для передачи донесений (голубеграмм).

Пусть голубь с донесением пролетел 20 км со скоростью 20 м/с, затем он в течение некоторого времени пережидал сильную грозу с дождём, а оставшиеся 10 км он летел со скоростью 12 м/с.

- 1) Определите время, затраченное голубем на первый участок пути.
- 2) Сколько времени голубь пережидал грозу, если средняя скорость голубя составила 9 м/с?

Ответ: 1)	c
 2)	c

В электрическом чайнике мощностью 700 Вт можно за 10 минут вскипятить 1 литр воды, имеющей начальную температуру 20°С. Плотность воды равна 1000 кг/м³, её удельная теплоёмкость c = 4200 Дж/(кг.°C).

- 1) Какую работу совершает электрический ток, протекающий через нагревательный элемент этого чайника, при кипячении данной порции воды?
- 2) Какое количество теплоты нужно передать данной порции воды для того, чтобы она закипела?
- 3) Найдите КПД этого чайника.

Напишите полное решение этой задачи.

]	Pei	пеі	ниє	e:																_
F																					
																				Ш	<u></u>
L																				Ш	<u> </u>
L																					<u> </u>
L	_																				<u> </u>
																					<u> </u>
_																				\square	<u> </u>
_																				\square	<u> </u>
L	\dashv												_	_		_				\square	<u> </u>
ŀ	\dashv													_	\dashv					\square	<u> </u>
_														_						$\vdash \vdash$	<u> </u>
		0-											_	_		_				\vdash	
		U.	гве	Т.										_						\vdash	$\overline{}$

(11)

Костя изготовил самодельный фонарик. В качестве источника света он использовал миниатюрную лампу накаливания, сопротивление которой равно r=2 Ом и может считаться постоянным. Для ограничения силы тока через лампу к ней последовательно подключался резистор, на котором было написано, что его сопротивление равно R=3 Ом. Затем эта цепь подключалась к трём последовательно соединённым батарейкам с напряжением по U=1,5 В каждая. Костя узнал, что резистор, купленный в магазине, имеет точность номинала $\pm 5\%$. Школьнику стало интересно, какая мощность будет выделяться в лампочке фонарика.

- 1) В каких пределах может лежать сопротивление резистора, включённого последовательно с лампочкой?
- 2) Укажите диапазон значений силы тока, который может протекать через лампу.
- 3) Рассчитайте минимальную и максимальную возможную мощность, выделяющуюся в пампе

Напишите полное решение этой задачи.

Система оценивания проверочной работы

Правильный ответ на каждое из заданий 1, 3-7 оценивается 1 баллом. Полный правильный ответ на задание 9 оценивается 2 баллами. Если в ответе допущена одна ошибка (одно из чисел не записано или записано неправильно), выставляется 1 балл; если оба числа записаны неправильно или не записаны – 0 баллов.

№ задания	Ответ
1	5
3	0,03
4	162,5
5	810
6	6000
7	10
9	1000; 1500

Решения и указания к оцениванию заданий 2, 8, 10 и 11

•	Решение								
2	Вода. Чтобы превратить лёд, находящийся при температуре плавления, в воду той же								
	температуры, необходимо затратить энергию. Следовательно, вода обладает большей								
	внутренней энергией.								
	Указания к оцениванию	Баллы							
	Дан правильный ответ на вопрос задачи и приведено полностью правильное								
	объяснение.								
	В решении имеется один или несколько из следующих недостатков.								
	Дан правильный ответ на вопрос задачи без объяснения.								
	И (ИЛИ)								
	В решении имеется неточность в объяснении.								
	Все случаи решения, которые не соответствуют вышеуказанным критериям	0							
	выставления оценок в 1 или 2 балла.								
	Максимальный балл	2							

8

Решение

Сила будет направлена от катушки. (Вариант: влево; магнит будет отталкиваться от катушки).

Катушка, по которой течёт постоянный электрический ток, обладает двумя магнитными полюсами (северным и южным). При изменении направления тока в катушке её полюса поменяются местами. Поэтому если магнит сначала притягивался к катушке, то после изменения направления тока в катушке он будет отталкиваться от неё.

Указания к оцениванию	Баллы
Приведён полностью правильный ответ на вопрос и дано правильное объяснение.	2
В решении имеется один или несколько из следующих недостатков.	1
Приведён только правильный ответ на вопрос без объяснения.	
ИЛИ	
Приведено правильное объяснение, но правильный ответ на вопрос дан лишь	
частично.	
И (ИЛИ)	
В решении дан правильный ответ на вопрос, но в объяснении имеется неточность.	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1 или 2 балла.	
Максимальный балл	2

10

Решение

- 1) Найдём работу электрического тока: $A = P \cdot t = 420000 \, \text{Дж} = 420 \, \text{кДж}.$
- 2) Определим количество теплоты, которое необходимо передать данной порции воды, чтобы она закипела $\Delta Q = c\rho V \Delta t = 336000~\mathrm{Д} \mathrm{m} = 336~\mathrm{k} \mathrm{J} \mathrm{m}$.
- 3) Определим КПД чайника: КПД = Q/A = 80 %

Ответ: 1) 420000 Дж; 2) 336000 Дж; 3) 80 %

Указания к оцениванию	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории, физические законы, закономерности, формулы	
и т.п., применение которых необходимо для решения задачи выбранным способом	
(формулы для связи работы с мощностью; массы с плотностью и объёмом;	
выражения для количества теплоты при нагревании и для КПД);	
II) проведены нужные рассуждения, верно осуществлена работа с графиками,	
схемами, таблицами (при необходимости), сделаны необходимые математические	
преобразования и расчёты, приводящие к правильному числовому ответу	
(допускается решение «по частям» с промежуточными вычислениями; часть	
промежуточных вычислений может быть проведена «в уме»; задача может	
решаться как в общем виде, так и путём проведения вычислений непосредственно	
с заданными в условии численными значениями);	
III) представлены правильные численные ответы на все три вопроса задачи	
с указанием единиц измерения искомых величин	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	2
двух пунктов задачи	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	1
одного пункта задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1, 2 или 3 балла	
Максимальный балл	3

[11]

Решение

- 1) Сопротивление резистора может лежать в пределах от 0.95~R до 1.05~R, т.е. от 2.85~Om до 3.15~Om.
- 2) Ток, текущий в цепи, определяется суммарным напряжением батареек и полным сопротивлением цепи: I=3U/(R+r). Отсюда максимальный ток через лампу составит $\approx 0.928~A$, а минимальный $\approx 0.874~A$.
- 3) Для расчёта мощности, выделяющейся в лампе, воспользуемся законом Джоуля-Ленца: $N = I^2 r$. Тогда диапазон мощностей составит: 1527 MBt < N < 1722 MBt.

Ответ:

- 1) 2,85 Om < R < 3,15 Om;
- 2) 0,874 A < I < 0,928 A.
- 3) 1527 MBT < N < 1722 MBT.

Указания к оцениванию	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории, физические законы, закономерности, формулы	
и т.п., применение которых необходимо для решения задачи выбранным	
способом;	
II) проведены нужные рассуждения, верно осуществлена работа с графиками,	
схемами, таблицами (при необходимости), сделаны необходимые математические	
преобразования и расчёты, приводящие к правильному числовому ответу	
(допускается решение «по частям» с промежуточными вычислениями; часть	
промежуточных вычислений может быть проведена «в уме»; задача может	
решаться как в общем виде, так и путём проведения вычислений непосредственно	
с заданными в условии численными значениями);	
III) представлен правильный численный ответ на все три вопроса задачи	
с указанием единиц измерения искомой величины	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	2
двух пунктов задачи	
Приведено полное верное решение (I, II) и дан правильный ответ (III) только для	1
одного пункта задачи	
Все случаи решения, которые не соответствуют вышеуказанным критериям	0
выставления оценок в 1, 2 или 3 балла	
Максимальный балл	3

Система оценивания выполнения всей работы

Максимальный балл за выполнение работы -18.

Рекомендуемая таблица перевода баллов в отметки по пятибалльной шкале

Отметка по пятибалльной шкале	«2»	«3»	«4»	«5»
Первичные баллы	0–4	5–7	8–10	11–18