

Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias de la Computación

Procesamiento de Imágenes Digitales

Arturo Olvera López aolvera@cs.buap.mx

Operaciones orientadas a la región

Operaciones regionales

Convolución

Máscara de Convolución

Bordes

Imagen

Perfil de intensidad

Bordes

Derivada (X,Y)

Gradiente

Gradiente

Bordes

-1	-1	-1	-1	0	1
0	0	0	-1	0	1
1	1	1	-1	0	1

Prewitt

-1	-2	-1	1	0	1
0	0	0	-2	0	2
1	2	1	1	0	1

Sobel

Roberts

Brújula

- Kirsch

$$H_0^K = \begin{bmatrix} -5 & 3 & 3\\ -5 & 0 & 3\\ -5 & 3 & 3 \end{bmatrix}$$

$$H_1^K = \begin{bmatrix} -5 & -5 & 3 \\ -5 & 0 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$

$$H_2^K = \begin{bmatrix} -5 & -5 & -5 \\ 3 & 0 & 0 \\ 3 & 3 & 3 \end{bmatrix}$$

$$H_3^K = \begin{bmatrix} 3 & -5 & -5 \\ 3 & 0 & -5 \\ 3 & 3 & 3 \end{bmatrix} \qquad H_7^K = \begin{bmatrix} 3 & 3 & 3 \\ -5 & 0 & 3 \\ -5 & -5 & 3 \end{bmatrix}.$$

$$H_0^K = \begin{bmatrix} -5 & 3 & 3 \\ -5 & 0 & 3 \\ -5 & 3 & 3 \end{bmatrix} \qquad H_4^K = \begin{bmatrix} 3 & 3 - 5 \\ 3 & 0 - 5 \\ 3 & 3 - 5 \end{bmatrix},$$

$$H_1^K = \begin{bmatrix} -5 & -5 & 3 \\ -5 & 0 & 3 \\ 3 & 3 & 3 \end{bmatrix} \qquad H_5^K = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 0 & -5 \\ 3 & -5 & -5 \end{bmatrix},$$

$$H_2^K = \begin{bmatrix} -5 & -5 & -5 \\ 3 & 0 & 0 \\ 3 & 3 & 3 \end{bmatrix} \qquad H_6^K = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 0 & 3 \\ -5 & -5 & -5 \end{bmatrix},$$

$$H_7^K = \begin{bmatrix} 3 & 3 & 3 \\ -5 & 0 & 3 \\ -5 & -5 & 3 \end{bmatrix}.$$

- Robinson

$$R_0 = \begin{pmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$

Laplaciano

• Filtro de segundo orden

Sharpen

Laplaciano

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
	-1	0	-1	-1	-1

Laplaciano

Suavizado

Suavizado

- Suavizado
- Ruido:
 - Sal
 - Pimienta

- Reducir transiciones altas

Promedios

Aritmético

Promedios

Ponderado w=5

$$\frac{1}{w} \begin{pmatrix} 1 & 1 & 1 \\ 1 & w & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Valores típicos: W=2,4,12

Promedio

Gaussiano

$$4e^{-x^2/\sqrt{2}}$$

$$\frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix} \qquad \frac{1}{32} \begin{pmatrix} 1 & 4 & 1 \\ 4 & 12 & 4 \\ 1 & 4 & 1 \end{pmatrix}$$

$$\frac{1}{32} \begin{pmatrix} 1 & 4 & 1 \\ 4 & 12 & 4 \\ 1 & 4 & 1 \end{pmatrix}$$

En general:

$$Ae^{-x^2/s}$$

Promedios

-Armónico

$$f'(x,y) = \frac{mn}{\sum_{(s,t)\in S_{x,y}} \frac{1}{g(s,t)}}$$

harmonic mean filter works well for salt noise, but fails for pepper noise.

-Contra armónico

$$f'(x,y) = \frac{\sum_{(s,t) \in S_{x,y}} g(s,t)^{Q+1}}{\sum_{(s,t) \in S_{x,y}} g(s,t)^{Q}} \qquad \qquad \begin{cases} Q > 0 \Rightarrow Pimienta \\ Q < 0 \Rightarrow Sal \end{cases}$$

Filtro Mediana

Mediana

Promedio α-recortado

- Combinación mediana-media
- Considerando regiones de 3 x 3:

Suavizado

Transformaciones Geométricas

Transf. Geométricas

- Escalar (+,-)
- Rotar
- Reflejar

Ampliar

Scaling

$$c_x = 0 = 0$$
 $0 = c_y = 0$
 $0 = 0 = 1$

$$x = c_x v$$

Reducir

Rotar

+- 90°

Rotation

$$\begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$x = v \cos \theta - w \sin \theta$$
$$y = v \cos \theta + w \sin \theta$$

Reflejar

Operaciones Aritméticas/Lógicas

Operaciones A/L

- Operador entre dos imágenes: Píxel a Píxel
 - Alineación:
 - Superior
 - Punto de Referencia

- Aritméticas: +,-,*,/
- Lógicas: AND, OR, XOR, NOT

Transformación de histograma

Expansión aut. de histograma

Valores expandidos:

$$E[j, canal] = \frac{255}{NM} \sum_{k=0}^{j} H[k, canal]$$

Expansión automática de histograma

Expansión aut. de histograma

Enfoques controladas

Contracción

$$I'(i,j) = \frac{C_{\text{MAX}} - C_{\text{MIN}}}{I(i,j)_{\text{MAX}} - I(i,j)_{\text{MIN}}} (I(i,j) - I(i,j)_{\text{MIN}}) + C_{\text{MIN}}$$

Expansión

$$I'(i,j) = \frac{I(i,j) - I(i,j)_{MIN}}{I(i,j)_{MAX} - I(i,j)_{MIN}} (MAX - MIN) + MIN$$

Falso Color

Falso-Color

División de Intensidad

Falso color

División de intensidad

FIGURE 6.19 An alternative representation of the intensity-slicing technique.

Interpolación lineal

Interpolación lineal

Interpolación lineal

