

GCE

Edexcel GCE

Core Mathematics C2 (6664)

January 2005

advancing learning, changing lives

Mark Scheme

January 2005 6664 Core Mathematics C2 Mark Scheme

Question Number	Scheme	Marks
1.	$(3+2x)^5 = (3^5) + {5 \choose 1} 3^4 \cdot (2x) + {5 \choose 2} 3^3 (2x)^2 + \cdots$	M1
	$= 243,+810x,+1080x^2$	B1, A1, A1 (4)

Question Number	Scheme	Marks
2.	(a) $(\frac{5+13}{2}, \frac{-1+11}{2}), = \underbrace{(9,5)}_{}$	M1, A1 (2)
	(b) $r^2 = (9-5)^2 + (5-1)^2 (= 52)$ or $r^2 = (13-9)^2 + (11-5)^2 (= 52)$ (or equiv.) Equation of circle: $(x-9)^2 + (y-5)^2 = 52$ (or equiv.)	M1 M1, A∜A1
		(4)
		(6)

Question Number	Scheme	Mar	ks
3.	$(a)\log 3^x = \log 5$	M1	
	$x = \frac{\log 5}{\log 3} \qquad \text{or} x \log 3 = \log 5$	A1	
	<u>=1.46</u>	A1 cao	(3)
	(a) $\log_2(\frac{2x+1}{x}) = 2$	M1	,
	$\frac{2x+1}{x} = 2^2 \text{ or } 4$	M1	
	2x+1=4x	M1	
	$x = \frac{1}{2} \text{ or } 0.5$	A1	(4)
			(7)

Question Number	Scheme	Marl	(S
4.	(a) $5(1-\sin^2 x) = 3(1+\sin x)$	M1	
	$5 - 5\sin^2 x = 3 + 3\sin x$		
	$\underline{0 = 5\sin^2 x + 3\sin x - 2} *$	A1 cso	
			(2)
	(b) $0 = (5\sin x - 2)(\sin x + 1)$	M1	
	$\sin x = \frac{2}{5}, -1 \tag{both}$	A1 cso	
	$\sin x = \frac{2}{5} \implies x = \underline{23.6} \qquad (\alpha = 23.6 \text{ or } 156.4)$	B1	
	$, \underline{156.4}$ (180- α)	M1	
	$\sin x = -1 \implies x = \underline{270}$	B1	(5)
	(ignore extra solutions <u>outside</u> the range)		(7)

Question Number	Scheme	Marks
5.	(a) $f(2) = 1 \Rightarrow 8 - 2 \times 4 + 2a + b = 1$ $f(-1) = 28 \Rightarrow -1 - 2 - a + b = 28$ $\text{solving} \begin{cases} 2a + b = 1 \\ -a + b = 31 \end{cases} \Rightarrow \underline{a = -10, b = 21}$	M1 A1 M1 A1 M1 A1 (6)
	(b) $f(3) = 27 - 18 + 3a + b$ = $27 - 18 - 30 + 21 = 0$ $\therefore (x - 3)$ is a factor	M1 A1 c.s.o (2) (8)

Question Number	Scheme	Marks
6.	(a) $ar = 7.2, ar^3 = 5.832 \Rightarrow r^2 = \frac{5.832}{7.2} (= 0.81)$ r = 0.9	M1 A1 (2)
	(b) $a = \frac{7.2}{(a)}, = \frac{8}{2}$	M1, A1 (2)
	(c) $s_{50} = \frac{8(1 - (0.9)^{50})}{1 - 0.9}$	M1
	$= \underline{79.588} (3dp)$	A1 c.a.o (2)
	(d) $s_{\infty} = \frac{8}{1 - 0.9} (= 80)$ $s_{\infty} - s_{50} = 80 - (c) = 0.412$	M1 A1 √ (2) (8)
		(6)

Question Number	Scheme	Marks
7.	(a) $r\theta = 8 \times 0.7, = 5.6(cm)$ (b) $BC^2 = 8^2 + 11^2 - 2 \times 8 \times 11 \times \cos 0.7$ $\Rightarrow BC = 7.098$ $\Rightarrow \text{Perimeter} = (a) + (11 - 8) + BC, = 15.7(cm)$	M1, A1 (2) M1 A1 M1, A1cao (4)
	(c) $\Delta = \frac{1}{2}ab\sin c = \frac{1}{2} \times 11 \times 8 \times \sin 0.7, = AWRT$ 28.3	M1, A1
	$Sector = \frac{1}{2}r^2\theta = \frac{1}{2} \times 8^2 \times 0.7$	M1, A1
	Area of $R = 28.345 22.4 = 5.9455 = 5.95(cm^2)$	A1 (5) (11)

Question Number	Scheme	Marks
8.	(a) $x^2 + 6x + 10 = 3x + 20$ $\Rightarrow x^2 + 3x - 10 = 0$ (x+5)(x-2) = 0 so $x = -5$ or 2 sub a value for x to obtain a value for y in $y = 3x + 20$, $y = 5$ or 26	M1 M1, A1 M1, A1 (5)
	(b) line – curve =, $10 - 3x - x^2$ $\int (10 - 3x - x^2) dx = 10x - \frac{3}{2}x^2 - \frac{x^3}{3}$	M1, A1 M1 A2/1/0√
	$\left[10x - \frac{3}{2}x^2 - \frac{x^3}{3}\right]_{-5}^2 = (20 - \frac{3}{2} \times 4 - \frac{8}{3}) - (-50 - \frac{3}{2} \times 25 + \frac{125}{3})$ $= 11\frac{1}{3} - 45\frac{5}{6} = \frac{57\frac{1}{6}}{6}$	M1 A1 (7)
ALT (b)	$\int (x^2 + 6x + 10)dx = \frac{x^3}{3} + 3x^2 + 10x$ (-1 each incorrect term)	(12) M1 A2/1/0
	use of limits = $(\frac{8}{3} + 12 + 20) - (-\frac{125}{3} + 75 - 50) = (51\frac{1}{3})$ Area of Trapezium = $\frac{1}{2}(5 + 26)(25) = (108\frac{1}{2})$ or 46 62.5 (from integration)	M1 B1√ M1 A1
	Shaded area = Trapezium - $\int = 108 \frac{1}{2} - 51 \frac{1}{3} = 57 \frac{1}{6}$ or $\frac{343}{6}$ or $57.1\dot{6}$	(7)

Question Number	Scheme	Marks
9.	(a) Perimeter $\Rightarrow 2x + 2y + \pi x = 80$	B1
	Area $\rightarrow A = 2xy + \frac{1}{2}\pi x^2$	B1
	$y = \frac{80 - 2x - \pi x}{2}$ and sub in to A	M1
	$\Rightarrow A = 80x - 2x^2 - \pi x^2 + \frac{1}{2}\pi x^2$	
	i.e. $A = 80x - (2 + \frac{\pi}{2})x^2 *$	A1 c.s.o (4)
	(b) $\frac{dA}{dx} = 80 - 2(2 + \frac{\pi}{2})x$ or $80 - 4x - \pi x$ (or equiv.)	M1, A1
	$\frac{dA}{dx} = 0 \Rightarrow 40 = (2 + \frac{\pi}{2})x$ so $x = \frac{40}{2 + \frac{\pi}{2}}$ or $\frac{80}{4 + \pi}$ or Awrt 11.2	M1, A1 (4)
	(c) $\frac{d^2 A}{dx^2} = -4 - \pi$ < 0 :: A is Max	M1 A1 (2)
	(d) Max Area = $80(b) - (2 + \frac{\pi}{2})(b)^2$	M1
	$= \underbrace{\frac{448(m^2)}{}} \tag{448 only for A1}$	A1 cao (2)
		(12)
		\