Date: Mar 28 Made by Eric

In this note, V always stand for a vector space over \mathbb{F} , V^- stands for a finite dimensional vector space over \mathbb{F} , and T is always a linear operator on V^-

Definition and Theorem

Theorem 1. Let $g:V^-\to \mathbb{F}$ be a linear transformation

$$\exists ! z \in V^-, \forall x \in V^-, \langle x, z \rangle = g(x)$$

Proof. Let $\beta = \{v_1, \dots v_n\}$ be an orthonormal basis of V^-

Let
$$z = \overline{g(v_1)}v_1 + \cdots + \overline{g(v_n)}v_n$$

Then $\forall 1 \leq i \leq n, \langle v_i, z \rangle = \langle v_i, \overline{g(v_1)}v_1 + \dots + \overline{g(v_n)}v_n \rangle = \sum_{j=1}^n g(v_j)\langle v_i, v_j \rangle = g(v_j)$

Let
$$z' \in V^-, \forall x \in V^-, \langle x, z' \rangle = g(x)$$

$$\langle z - z', z' \rangle = g(z - z') = \langle z - z', z \rangle \implies \langle z - z', z' - z \rangle = 0 \implies z - z' = 0$$

$$\Rightarrow z = z'$$

Definition 1. The adjoint T^* of T is the linear operator satisfy

$$\forall x, y \in V^-, \langle T^*(x), y \rangle = \langle x, T(y) \rangle$$

Theorem 2. T^* is well defined and indeed linear

Proof. Let $g_x: V^- \to \mathbb{F}$ be defined by $g_x(y) = \langle T(y), x \rangle$

We now prove g_x is linear

Let $y, y' \in V^-$ and $c \in \mathbb{F}$

$$g_x(y+cy') = \langle T(y+cy'), x \rangle = \langle T(y)+cT(y'), x \rangle = \langle T(y), x \rangle + c\langle T(y'), x \rangle = g_x(y) + cg_x(y') \text{ (done)}$$

We now prove T^* can be defined by at least one wey

For each $x \in V^-$, pick $z_x \in V^-$, so that $\forall y \in V^-, \langle y, z_x \rangle = g_x(y) = \langle T(y), x \rangle$

Define $T^*(x) = z_x$

Notice
$$\forall x, y \in V^-, \langle y, T^*(x) \rangle = \langle y, z_x \rangle = g_x(y) = \langle T(y), x \rangle$$

This implies $\forall x, y \in V^-, \langle T^*(x), y \rangle = \langle x, T(y) \rangle$ (done)

We now prove This is the only way to define adjoint T^*

Assume there exists another adjoint $(T^*)'$ of T different from T^*

Pick $x \in V^-$, such that $(T^*)'(x) \neq T^*(x)$

Let
$$y = T^*(x) - (T^*)'(x)$$

Notice
$$\langle T^*(x), y \rangle = \langle x, T(y) \rangle = \langle (T^*)'(x), y \rangle$$

So
$$\langle T^*(x) - (T^*)'(x), T^*(x) - (T^*)'(x) \rangle = \langle T^*(x) - (T^*)'(x), y \rangle = 0$$

Which give us
$$T^*(x) - (T^*)'(x) = 0$$
, so $T^*(x) = (T^*)'(x)$ CaC (done)

We now prove T^* is linear

Let $c \in \mathbb{F}$ and $u \in V^-$

$$\forall y \in V^-, \langle y, z_{cx+u} \rangle = \langle T(y), cx + u \rangle = \overline{c} \langle T(y), x \rangle + \langle T(y), u \rangle = \overline{c} \langle y, z_x \rangle + \langle y, z_u \rangle = \langle y, cz_x + z_u \rangle$$

This give us $z_{cx+u} = cz_x + z_u$

So
$$T^*(cx + u) = cT^*(x) + T^*(u)$$
 (done)

Corollary 2.1. The adjoint of a linear operator on an infinite vector space may not exist, but if it exists, it is unique and linear following the proof above

Lemma 3.
$$\forall x, y \in V, \langle T^*(x), y \rangle = \langle x, T(y) \rangle$$

 $\forall x, y \in V, \langle T(x), y \rangle = \langle x, T^*(y) \rangle$

Proof. The first one follows the definition

$$\begin{array}{lll} \langle T^*(y),x\rangle = \langle y,T(x)\rangle & \Longrightarrow & \overline{\langle T^*(y),x\rangle} = \overline{\langle y,T(x)\rangle} & \Longrightarrow & \langle x,T^*(y)\rangle = \overline{\langle T^*(y),y\rangle} & \Longrightarrow & \langle x,T^*(y)\rangle & \Longrightarrow & \langle x,T^*(y)\rangle = \overline{\langle T^*(y),y\rangle} & \Longrightarrow & \langle x,T^*(y)\rangle & \Longrightarrow & \langle x,T^*(y)\rangle$$

Theorem 4. Let $\beta = \{v_1, \dots, v_n\}$ be an orthonormal basis of V

$$[T^*]_{\beta} = ([T]_{\beta})^*$$

Proof. Let
$$A = [T^*]_{\beta}$$
 and $B = ([T_{\beta}])^*$

Write
$$T^*(v_j) = \sum_{k=1}^n c_k v_k$$

Write
$$T(v_i) = \sum_{k=1}^n d_k v_k$$

$$A_{i,j} = c_i = \langle T^*(v_j), v_i \rangle = \langle v_j, T(v_i) \rangle = \overline{\langle T(v_i), v_j \rangle} = \overline{d_j} = \overline{([T]_\beta)_{j,i}} = B_{i,j}$$

Corollary 4.1. Let A be an $n \times n$ matrix

$$L_{A^*} = (L_A)^*$$

Proof. Let β be the standard ordered basis of \mathbb{F}^n

$$[(L_A)^*]_\beta = ([L_A]_\beta)^* = A^* = [L_{A^*}]_\beta$$

This give us $(L_A)^* = L_{A^*}$

Theorem 5. Let T and U be linear operators on V

(i)
$$(T + U)^* = T^* + U^*$$

(ii) $(cT)^* = \overline{c}T^*$
(iii) $(T \circ U)^* = U^* \circ T^*$
(iv) $(T^*)^* = T$
(v) $I_V^* = I_V$

Proof. (i)

$$\forall x,y \in V, \langle (T+U)^*(x),y \rangle = \langle x, (T+U)(y) \rangle = \langle x, T(y) \rangle + \langle x, U(y) \rangle = \langle T^*(x),y \rangle + \langle U^*(x),y \rangle = \langle T^*(x)+U^*(x),y \rangle$$

(ii)

$$\begin{array}{lll} \forall x,y \in V, \langle (cT)^*(x),y\rangle = \langle x,(cT)(y)\rangle = \langle x,cT(y)\rangle = \overline{c}\langle x,T(y)\rangle = \overline{c}\langle T^*(x),y\rangle = \langle \overline{c}T^*(x),y\rangle \end{array}$$

(iii)

$$\forall x,y \in V, \langle (T \circ U)^*(x),y \rangle = \langle x, (T \circ U)(y) \rangle = \langle x, T(U(y)) \rangle = \langle T^*(x), U(y) \rangle = \langle U^*(T^*(x)),y \rangle = \langle U^* \circ T^*(x),y \rangle$$

(iv)

$$\forall x, y \in V, \langle (T^*)^*(x), y \rangle = \langle x, T^*(y) \rangle = \langle T(x), y \rangle$$

(v)

$$\forall x, y \in V, \langle I_V^*(x), y \rangle = \langle x, I_V(y) \rangle = \langle x, y \rangle = \langle I_V(x), y \rangle$$

Exercises

2.

2.(c)

Proof. Let $\{v_1, v_2, v_3\}$ be an orthonormal basis

Write
$$v_1 = 1$$
, $v_2 = 2\sqrt{3}(x - \frac{1}{2})$, and $v_3 = 6\sqrt{5}(x^2 - x + \frac{1}{6})$

Let
$$y = v_1 + \sqrt{3}v_2 + 7\sqrt{5}v_3$$

Write
$$f = a_1v_1 + a_2v_2 + a_3v_3$$

$$g(f) = \langle f, y \rangle = a_1 + \sqrt{3}a_2 + 7\sqrt{5}a_3$$

$$v_1(0) = 1$$

$$v_2(0) = -\sqrt{3}$$

$$v_3(0) = \sqrt{5}$$

$$v_1'(1) = 0$$

$$v_2'(1) = 2\sqrt{3}$$

$$v_3'(1) = 6\sqrt{5}$$

$$g(f) = f(0) + f'(1) = (a_1v_1 + a_2v_2 + a_3v_3)(0) + (a_1v_1 + a_2v_2 + a_3v_3)'(1) = a_1 - \sqrt{3}a_2 + \sqrt{5}a_3 + 2\sqrt{3}a_2 + 6\sqrt{5}a_3 = a_1 + \sqrt{3}a_2 + 7\sqrt{5}a_3$$

3.

3.(a)

Proof.
$$\begin{bmatrix} 11 \\ -12 \end{bmatrix}$$

3.(c)

Proof.
$$T^*(-2t+4) = 6t+12$$

6.

Proof.
$$U_1^* = (T + T^*)^* = T^* + T = U_1$$

$$U_2^* = (T \circ T^*)^* = (T^*)^* \circ T^* = T \circ T^* = U_2$$

8.

Proof.
$$I_V^* = I_V \implies (T^{-1}T)^* = I_V \implies T^*(T^{-1})^* = I_V \implies (T^*)^{-1} = (T^{-1})^*$$

10.

Proof.
$$(\longleftarrow)$$

$$\forall x \in V, ||T(x)|| = \sqrt{\langle T(x), T(x) \rangle} = \sqrt{\langle x, x \rangle} = ||x||$$

$$(\longrightarrow)$$

Let $x, y \in V$

$$\langle x, y \rangle$$

$$= \frac{1}{4}(i\|x+iy\|^2 - \|x-y\|^2 - i\|x-iy\|^2 + \|x+y\|^2)$$

$$= \frac{1}{4}(i\|T(x+iy)\|^2 - \|T(x-y)\|^2 - i\|T(x-iy)\|^2 + \|T(x+y)\|^2)$$

$$= \frac{1}{4}(i\|T(x)+iT(y)\|^2 - \|T(x)-T(y)\|^2 - i\|T(x)-iT(y)\|^2 + \|T(x)+T(y)\|^2)$$

$$= \langle T(x), T(y) \rangle$$

12.

12.(a)

Proof.
$$T(x) = 0 \iff \forall y \in V, 0 = \langle T(x), y \rangle = \langle x, T^*(y) \rangle$$

12.(b)

Proof.
$$V = R(T^*) \oplus N(T)$$

Let $\{v_1, \dots v_n\}$ be an orthonormal basis of $R(T^*)$ and $\{v_{n+1}, \dots, v_k\}$ be an orthonormal basis of N(T)

Let
$$x \in N(T)^{\perp}$$

Write
$$x = \sum_{i=1}^{k} c_i v_i$$

$$\forall j: n+1 \le j \le k, 0 = \langle x, v_j \rangle = c_j$$

So
$$x \in R(T^*)$$

Let
$$y \in R(T^*)$$

Write
$$y = \sum_{i=1}^{n} d_i v_i$$

$$\forall j: n+1 \leq j \leq k, \langle y, v_j \rangle = 0 \implies \forall j: n+1 \leq j \leq k, y \perp v_j \implies y \in N(T)^\perp$$

13.

13.(a)

Proof.
$$T^*(T(x)) = 0 \iff \forall y \in V, 0 = \langle T^*(T(x)), y \rangle = \langle T(x), T(y) \rangle \iff \forall y \in V, T(x) \perp T(y) \iff T(x) \in R(T)^{\perp} \iff T(x) \in N(T)$$

13.(b)

Proof. Let $\{v_1, \ldots, v_n\}$ be an orthonormal basis of N(T) and $\{v_{n+1}, \ldots v_k\}$ be an orthonormal basis of R(T)

We know
$$R(T^*)^{\perp} = N(T)$$

Then
$$R(T^*) \oplus N(T)$$

So
$$rank(T^*) = dim(V) - dim(N(T)) = rank(T)$$

REMARK: Perpendicular must direct sume the whole space, but direct sum the whole space may not perpendicular

13.(c)

Proof.
$$rank(A^*A) = rank(L_{A^*A}) = rank(L_{A^*} \circ L_A) = dim(V) - N(L_{A^*} \circ L_A) = dim(V) - dim(N(L_A)) = rank(L_A) = rank(A) = rank(A^*) = rank(A^*) = rank(L_{A^*}) = dim(V) - dim(N(L_{A^*})) = dim(V) - dim(N(L_{A^*})) = dim(V) - dim(N(L_{A^*})) = rank(L_{A^*}) = rank(AA^*)$$

14.

Proof. Let $x, u \in V$, and $c \in \mathbb{F}$

$$T(x+cu)=\langle x+cu,y\rangle z=(\langle x,y\rangle+c\langle u,y\rangle)z=\langle x,y\rangle z+c\langle u,y\rangle z=T(x)+cT(u)$$

Let
$$T^*(x) = \langle x, z \rangle y$$

Observe
$$\forall x, v \in V, \langle T(x), v \rangle = \langle \langle x, y \rangle z, v \rangle = \langle x, y \rangle \langle z, v \rangle = \langle z, v \rangle \langle x, y \rangle = \langle x, \langle v, z \rangle y \rangle = \langle x, T^*(v) \rangle$$