Computational Neurodynamics

Topic 4 Simple Neuron Models

Murray Shanahan

Overview

- Integrate-and-fire neurons
- Izhikevich's model

Integrate-and-Fire Neurons 1

- The Hodgkin-Huxley model is biologically accurate, but computationally expensive
- At the opposite end of the spectrum we have the *leaky integrate-and-fire* (LIF) model, which is computationally
 inexpensive but has limited biological fidelity
- In the LIF model, the membrane potential v is given by

$$\tau \frac{dv}{dt} = v_r - v + RI$$

where v_r is the resting potential, I is the dendritic current, and τ and R are constants. (We'll use τ = 5, R = 1, and v_r = -65mV)

Integrate-and-Fire Neurons 2

- The sub-threshold (before spiking) dynamics of the sodium and potassium currents are approximated by the v_r –v term
- The detailed dynamics of the spike itself are ignored. Instead, when the membrane potential reaches a threshold, we record a spike and explicitly reset the neuron

if
$$v \ge \vartheta$$
 then $v \leftarrow v_r$

- A good value for the threshold ϑ is -50mV
- An instantaneous value to represent the actual spike (a Dirac pulse) can be inserted immediately before the neuron is reset

Integrate-and-Fire Neurons 3

• Here we see the regular spiking behaviour of a leaky integrateand-fire neuron, simulated using the Euler method, and subject to a constant dendritic current I = 20

LIF Leakage

- In the absence of dendritic current, the membrane potential drifts back down to its resting value, thanks to the leakage current
- Here, the dendritic current is shut off after 10ms

LIF Refractory Periods

- The simple integrate-and-fire model has no refractory period the period during which a real neuron is unable to fire even if it receives high dendritic current
- To overcome this, we can force the neuron to rest by introducing an absolute refractory period α
- We simply adjust the conditions under which a spike occurs to take account of the time since the last spike
- Let t_{spike} be the time of the most recent spike. Then we have

if
$$v \ge \vartheta$$
 and $t - t_{spike} > \alpha$ then
$$\begin{cases} v \leftarrow v_r \\ t_{spike} \leftarrow t \end{cases}$$

Quadratic Integrate-and-Fire

 The sub-threshold profile of the membrane potential is modeled more accurately in the quadratic integrate-and-fire model

$$\tau \frac{dv}{dt} = a(v_r - v)(v_c - v) + RI$$

- In the absence of dendritic current,
 v decays to the resting potential
 v_r, as long as it is below a critical
 value v_c
- But if it is above v_c
 it increases
 quickly until the
 neuron fires

Izhikevich Neurons 1

- Integrate-and-fire neurons have a limited repertoire of signalling behaviours compared to the variety foud in real neurons, but they are computationally inexpensive to simulate
- Hodgkin-Huxley neurons are biologically accurate, but computationally expensive
- Izhikevich neurons (introduced by Eugene Izhikevich in 2003)
 are a good compromise between computational efficiency and a
 biologically realistic repertoire of behaviours
- This is the main neuron model used on this course

Izhikevich Neurons 2

• In Izhikevich's model, the membrane potential v and a recovery variable u are governed by two equations

$$\frac{dv}{dt} = 0.04v^2 + 5v + 140 - u + I$$

$$\frac{du}{dt} = a(bv - u)$$

where I is the dendritic current, and a and b are parameters of the model

 Note that, without the recovery variable, the model is equivalent to QIF

Izhikevich Neurons 3

 A spike occurs, and the neuron is reset, when the membrane potential reaches a threshold (30mV)

if
$$v \ge 30$$
 then
$$\begin{cases} v \leftarrow c \\ u \leftarrow u + d \end{cases}$$

- By varying the four parameters of the model a, b, c, and d, a wide variety of realistic signalling behaviours can be obtained
- Izhikevich neurons will be used throughout this course. Two types of neurons will be used regular spiking (excitatory) and fast spiking (inhibitory) by setting a, b, c, and d appropriately

Izhikevich Parameters

From Izhikevich, 2003

- This figure (from Izhikevich's paper) shows the role of each of the four parameters of the model
- Remember that a high value for u slows the rate of increase of v, and makes it harder for the neuron to fire

Excitatory Izhikevich Neurons

- If we set a = 0.02, b = 0.2, c = -65, and d = 8, we get regular spiking behaviour
- This is suitable for modelling excitatory neurons

Inhibitory Izhikevich Neurons

- If we set a = 0.02, b = 0.25, c = -65, and d = 2, we get fast spiking behaviour
- This is suitable for modelling inhibitory neurons

Bursting Izhikevich Neurons

- If we set a = 0.02, b = 0.2, c = -50, and d = 2, we get bursting behaviour
- This is gives
 rise to
 oscillations in
 the theta band
 (4-7 Hz), typical
 of hippocampus

Other Neuron Models

- There are several other common neuron models in addition to those we've looked at
 - FitzHugh-Nagumo
 - Hindmarsh-Rose
 - Morris-Lecar
- But we will use the Izhikevich model for the rest of this course, because it presents a good compromise between biological fidelity and computational efficiency

Related Reading

- Izhikevich, E. (2003). Simple Model of Spiking Neurons. *IEEE Transactions on Neural Networks* 14 (6), 1569–1572.
- Izhikevich, E. (2007). *Dynamical Systems in Neuroscience*. MIT Press.
- Trappenberg, T.P. (2010). Fundamentals of Computational Neuroscience. Oxford University Press.