Page 2 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

T2DM-1a: 4211 basepairs (long form, exons 1-24) (SEQ ID NO:1)

AAATCAGATGCTCTGTGATTAATCGTGGAGGATTCAGGACACGACCACAAACGCTGCCAGATAAGAGTCC CCTAGCTCGAGTCCGGGAGTCCCGGGCCAGATGGGAGCAGACGCTTGCTGGCGGCAATAGGGAAAGTGAG GCAGCTGCAAGGAGGGCGGCGGGACTGCACTCGAGTGTCCAGACCTGCTCGATGGTGACCACCATGTCGG TGAGGTTGCGGTTCCTGTCCCCTGGGGACACAGGGGCCGTGGGGGTCGTGGGCCGGAGCGCCTCCTTCGC AGGCTTCAGCAGTGCACAGAGCCGGAGGATCGCAAAGTCCATCAACAGGAACTCCGTGAGATCGCGAATG AAGCAAACGCGCTGTGTGGAAAGGCACATTCGGAAGATGGAGTTTCACATCAGCAAGGTGGATGAGCTGT ACGAGGACTACTGCATCCAGTGCCGCCTGCGCGACGGCGCCTCCAGCATGCAGCGGGCCTTCGCCCGGTG ATGTGGCTCATCGAGGGGGCCCTGGAGGTTCACCTGGGCGAGTTCCACATCAGGATGAAAGGCTTGGTGG GCTACGCACGCCTCTGTCCCGGAGACCACTATGAGGTGCTCATGCGTCTGGGCCGCCAGCGTTGGAAGCT CAAGGGTCGGATCGAGTCAGATGACAGCCAGACCTGGGACGAAGAGGAGAAGGCCTTCATCCCCACGCTG GTGACATCGCCGACTTCTTCACGACGCGGCCGCAGGTCATCGTGGTGGACATCACGGAGTTGGGTACCAT CAAGCTGCAGCTGGAGGTGCAGTGGAACCCGTTTGATACTGAGAGCTTCCTGGTGTCACCCAGCCCCACG GGCAAGTTTTCTATGGGCAGCAGGAAGGGCTCCTTGTACAACTGGACACCCCCGAGCACCCCCAGCTTCC GGGAGAGATACTACCTGTCTGTCCTACAGCAGCCAACACAGGCCGTTGCTGCTGGGTGGCCCAAGGGC CACCTCCATCCTCAGCTACCTGTCTGACAGCGACCTCCGGGGTCCCAGCCTAAGAAGCCAGAGTCAGGAG CTGCCTGAGATGGACTCCTTCAGCTCTGAGGACCCCCGAGACACGGAGACCAGCACGTCGGCGTCCACCT CAGATGTGGGCTTCCTGCCCTTGACCTTCGGTCCCCACGCCTCCATTGAAGAGGAGGCTCGGGAGGACCC AGGAACTTAGGAGGGGAGAGCCCCAGCCTGCCACAGGGCTCCCTGTTCCACAGCGGCACAGCCTCGAGTA GCCAGAACGGCCACGAGGAAGGGGCAACCGGGGACAGAGAGGACGGGCCTGGCGTGGCCCTCGAGGGGCCC TCTGCAGGAGGTCCTGGAGTTGCTGAGGCCCACGGACTCCACCCAGCCCCAGCTCCGGGAGCTGGAGTAC CAGGTCCTCGGCTTCCGGGACCGGCTGAAGCCCTGCAGAGCACGGCAGGAGCACACCTCGGCCGAGAGCC TGATGGAGTGCATCCTGGAGAGCTTCGCCTTCCTCAATGCCGACTTCGCCCTGGATGAGCTGTCCCTGTT TGGGGGCTCCCAGGGTCTCCGAAAGGACCGGCCCCTGCCCCCACCGTCATCACTGAAAGCGTCATCCAGG GAACTCACAGCCGGTGCCCCAGAGCTGGACGTGCTGCTGATGGTACACCTCCAAGTCTGCAAAGCTCTGC TGCAGAAACTGGCCTCCCCTAATTTATCAAGGCTGGTCCAGGAATGCCTCCTGGAAGAAGTGGCACAGCA AAAGCACGTTCTGGAGACACTTTCTGTCCTTGACTTTGAGAAGGTCGGCAAGGCAACATCCATTGAAGAG ATCATCCCACAGGCCTCGCGGACGAAGGGGTGCCTGAAGCTGTGGAGAGGGTGCACAGGGCCTGGCAGGG TCCTGTCCTGCCCTGCCACGACGCTGCTGAACCAGCTCAAGAAAACCTTCCAGCACAGAGTCAGAGGGAA GTACCCAGGACAGCTGGAAATAGCGTGCCGCAGGCTCCTGGAGCAGGTGGTCAGCTGTGGTGGGCTGCTC CCCGGAGCTGGGCTCCCAGAAGAACAGATCATTACCTGGTTCCAGTTTCACAGCTACCTGCAGAGGCAGA GCGTCTCTGACCTGGAGAAGCACTTCACCCAGCTCACCAAGGAAGTGACACTCATCGAGGAGCTTCACTG TGCGGGACAGGCCAAGGTGGTCCGGAAGCTGCAGGGGAAGCGGCTGGGCCAGCTCCAGCCTCTGCCCCAG ACCTTAAGAGCCTGGGCGCTGCTCCAGCTGGACGCACTCCGAGGGTGTGCAGGGCGGCCAGCGCTCGCC TGGCTGGTGCAGTCAGGAACAGAAGCTTCCGGGAAAAGGCTTTGCTGTTCTACACCAACGCCCTGGCAGA GAACGACGCAAGGCTCCAGCAGGCCGCATGCCTAGCGCTCAAACACCTCAAGGGCATTGAAAGCATCGAC TCGGTGAAAAAGGACGGTTAGCTTTTGAGAAGATGGACAAGCTCTGCTCAGAACAAAGAGAAGTCTTTTG CCAGGAGGCAGATGTTGAAATCACAATATTTTAAAAAATCCTGGCTGATGAGCACAAATCTCACATCGTT TTTTTTGCTGCTGCCCAGCCTGGACATAGCCTGCACTCTGGGTAATGGTGCTGTGCACTCCTCCAGGAGT GTGAGCTGCCCAGAGCTCTACCTGAGACTCCGGCCATTGACCCAGCCCCAGGGCATGGGCTGGTCTTTTG TACAGAGGCAGAAAAAAGCAAGGCAAAGGTACAGCATTCCAGGGGCTGCACGGCCTCAACAGAGCGCTCA ACTTCTGGCTGAGGGTCTGTGTGACCTTCCCCGAGATGCAGAGCTGAGCCAAACTAGGTGGCCACCTACA

Page 3 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

T2DM-1a: 946 amino acids (long form, exons 1-24) (SEQ ID NO:2)

M S V R L R F L S P G D T G A V G V V G R S A S F A G F S S A Q S R R I A K S I N R N S V R S R M P A K S S K M Y G T L R K G S V C A D P K PQQVKKIFEALKRGLKEYLCVQQAELDHLSGRHKD RRNSRLAFYYDLDKQTRCVERHIRKMEFHISKVD ELYEDYCIQCRLRDGASSMQRAFARCPPSRAARES LQELGRSLHECAEDMWLIEGALEVHLGEFHIRMKG LVGYARLCPGDHYEVLMRLGRQRWKLKGRIESDDS Q T W D E E E K A F I P T L H E N L D I K V T E L R G L G S L A V G A V T C D I A D F F T T R P Q V I V V D I T E L G T I K L Q L E V Q W N F D T E S F L V S P S P T G K F S M G S R K G S L Y N W T P P S T P SFRERYYLSVLQQPTQQALLLGGPRATSILSYLSD SDLRGPSLRSQSQELPEMDSFSSEDPRDTETSTSA STSDVGFLPLTFGPHASIEEEAREDPLPPGLLPEM A H L S G G P F A E Q P G W R N L G G E S P S L P Q G S L F H S G T A SSQNGHEEGATGDREDGPGVALEGPLQEVLELLR PTDSTQPQLRELEYQVLGFRDRLKPCRARQEHTSA ESLMECILESFAFLNADFALDELSLFGGSQGLRKD RPLPPPSSLKASSRELTAGAPELDVLLMVHLQVCK ALLQKLASPNLSRLVQECLLEEVAQQKHVLETLSV LDFEKVGKATSIEEIIPQASRTKGCLKLWRGCTGP GRVLSCPATTLLNQLKKTFQHRVRGKYPGQLEIAC RRLLEQVVSCGGLLPGAGLPEEQIITWFQFHSYLQ RQSVSDLEKHFTQLTKEVTLIEELHCAGQAKVVRK LQGKRLGQLQPLPQTLRAWALLQLDGTPRVCRAAS ARLAGAVRNRSFREKALLFYTNALAENDARLQQAA CLALKHLKGIESIDQTASLCQSDLEAVRAAARETT LSFGEKGRLAFEKMDKLCSEQREVFCQEADVEITI F*

T2DM-1b: 2278 basepairs (short form, exons 1-14) (SEQ ID NO:3)

Page 4 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

AGGCTTCAGCAGTGCACAGAGCCGGAGGATCGCAAAGTCCATCAACAGGAACTCCGTGAGATCGCGAATG AAGCAAACGCGCTGTGTGGAAAGGCACATTCGGAAGATGGAGTTTCACATCAGCAAGGTGGATGAGCTGT ACGAGGACTACTGCATCCAGTGCCGCCTGCGCGACGGCGCCTCCAGCATGCAGCGGGCCTTCGCCCGGTG CCCCCGAGCCGCGCGCGAGAGAGCCTGCAGGAGCTGGGCCGCAGCCTGCACGAGTGCGCCGAGGAC ATGTGGCTCATCGAGGGGCCCTGGAGGTTCACCTGGGCGAGTTCCACATCAGGATGAAAGGCTTGGTGG GCTACGCACGCCTCTGTCCCGGAGACCACTATGAGGTGCTCATGCGTCTGGGCCGCCAGCGTTGGAAGCT CAAGGGTCGGATCGAGTCAGATGACAGCCAGACCTGGGACGAAGAGGAGAAGGCCTTCATCCCCACGCTG GTGACATCGCCGACTTCTTCACGACGCGGCCGCAGGTCATCGTGGTGGACATCACGGAGTTGGGTACCAT CAAGCTGCAGCTGGAGGTGCAGTGGAACCCGTTTGATACTGAGAGCTTCCTGGTGTCACCCAGCCCCACG GGCAAGTTTTCTATGGGCAGCAGGAAGGGCTCCTTGTACAACTGGACACCCCCGAGCACCCCCAGCTTCC GGGAGAGATACTACCTGTCTGTCCTACAGCAGCCAACACAGGCCTTGCTGCTGGGTGGCCCAAGGGC CACCTCCATCCTCAGCTACCTGTCTGACAGCGACCTCCGGGGTCCCAGCCTAAGAAGCCAGAGTCAGGAG CTGCCTGAGATGGACTCCTTCAGCTCTGAGGACCCCCGAGACACGGAGACCAGCACGTCGGCGTCCACCT CAGATGTGGGCTTCCTGCCCTTGACCTTCGGTCCCCACGCCTCCATTGAAGAGGAGGCTCGGGAGGACCC AGGAACTTAGGAGGGGAGAGCCCCAGCCTGCCACAGGGCTCCCTGTTCCACAGCGGCACAGCCTCGAGTA GCCAGAACGGCCACGAGGAAGGGGCAACCGGGGACAGAGAGGACGGGCCTGGCGTGGCCCTCGAGGGGCCC TCTGCAGGAGGTCCTGGAGTTGCTGAGGCCCACGGACTCCACCCAGCCCCAGCTCCGGGAGCTGGAGTAC CAGGTCCTCGGCTTCCGGGACCGGCTGAAGGTATGGCCACCCCGCCCCGGGCGGTGGCCCTGCTTTGCTG ATGGCATGATGACTGGGAGTCGGGGGCTCTGGGGCCACGCAGCCTGGGCCGACATCCTGGCCTCACCTCT GCGTGACCTGGGTGGGCCGTGTCTCTCTGGGCCTTGGTTTCCTCATCTGGCAAGCGGGGATAACAACAGC CCCCATCTCGCACCTTCTGACCTGGGTGGGCGGGGCTG

T2DM-1b: 625 amino acids (short form, exons 1-14) (SEQ ID NO:4)

M S V R L R F L S P G D T G A V G V V G R S A S F A G F S S A Q S R R I A K S I N R N S V R S R M P A K S S K M Y G T L R K G S V C A D P K POOVKKIFEALKRGLKEYLCVQQAELDHLSGRHKD TRRNSRLAFYYDLDKQTRCVERHIRKMEFHISKVD ELYEDYCIQCRLRDGASSMQRAFARCPPSRAARES LQELGRSLHECAEDMWLIEGALEVHLGEFHIRMKG LVGYARLCPGDHYEVLMRLGRQRWKLKGRIESDDS Q T W D E E E K A F I P T L H E N L D I K V T E L R G L G S L A V G A V T C D I A D F F T T R P Q V I V V D I T E L G T I K L Q L E V Q W N P F D T E S F L V S P S P T G K F S M G S R K G S L Y N W T P P S T P SFRERYYLSVLQQPTQQALLLGGPRATSILS YLSD SDLRGPSLRSQSQELPEMDSFSSEDPRDTET TSDVGFLPLTFGPHASIEEEAREDPLPPGLLPEM A H L S G G P F A E Q P G W R N L G G E S P S L P Q G S L F H S G T A S S Q N G H E E G A T G D R E D G P G V A L E G P L Q E V L E L PTDSTQPQLRELEYQVLGFRDRLKVWPPRPGRWPC FADGMMTGSRGLWGHAAWADILASPLRDLGGPCLS G P W F P H L A S G D N N S P H G A Q E D F K S S Q

Page 5 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

T2DM-2a: 828 basepairs (long form, exons 1-4) (SEQ ID NO:5)

T2DM-2b: 597 basepairs (short form, exons 2 & 4) (SEQ ID NO:6)

FIG. 2D

Page 6 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

Gene Organization:

T2DM-1a	l.			
Exon	Begins	Ends	Begins	Ends
	cDNA	cDNA	Genomic*	Genomic*
1	1	55	49036730	49036676
2	56	334	49036419	49036141
3	335	453	48975871	48975753
4	454	600	48965147	48965001
5	601	679	48961095	48961017
6	680	. 703	48956219	48956196
7	704	757	48955921	48955868
8	758	907	48954737	48954588
9	908	971	48954371	48954308
10	972	1141	48953970	48953628
12	1142	1287	48953549	48953404
13	1288	1417	48949789	48949660
14	1418	1990	48947659	48947087
1.5	1991	2121	48942725	48942595
.16	2122	2245	48941278	48941155
17	2246	2381	48940519	48940384
18	2382	2543	48939729	48939568
19	2544	2705	48938211	48938050
20	2706	2908	48937561	48937359
21	2909	2992	48934784	48934701
22	2 2993	3083	48932907	48932817
23	3 3084	4211	48932347	48931220

^{*}Genomic positions correspond to the Build 29 human genome assembly from NCBI (UCSC versoin hg11)

FIG. 3A

Page 7 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

T2DM-1b								
Exon	Begins	Ends	Begins	Ends				
	cDNA	cDNA	Genomic*	Genomic*				
1	1	55	49036730	49036676				
2	56	334	49036419	49036141				
3	335	453	48975871	48975753				
4	454	600	48965147	48965001				
5	601	679	48961095	48961017				
6	680	703	48956219	48956196				
7	704	757	48955921	48955868				
8	758	907	48954737	48954588				
. 9	908	. 971	48954371	48954308				
10	972	1141	48953970	48953628				
12	1142	1287	48953549	48953404				
13	1288	1417	48949789	48949660				
14	1418	2278	48947659	48946799				

^{*}Genomic positions correspond to the Build 29 human genome assembly from NCBI (UCSC version hg11)

FIG. 3B

Page 8 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

Gene Organization:

T2DM-2a									
Exon		Begins cDNA	Ends cDNA	Begins Genomic*	Ends Genomic*				
	1	1	181	48981701	48981881				
	2	182	370	48990713	48990901				
	3	371	420	48998961	48999010				
	4	421	828	49004881	49005288				

^{*}Genomic positions correspond to the Build 29 human genome assembly from NCBI (UCSC versoin hg11)

T2DM-	2b			-	
Exon		Begins	Ends	Begins	Ends
	1	cDNA 1	cDNA 189	Genomic* 48990713	Genomic* 48990901
	2	190	597	49004881	49005288

^{*}Genomic positions correspond to the Build 29 human genome assembly from NCBI (UCSC versoin hg11)

FIG. 3C

Page 9 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

SNP1 -TTGA (IN/DEL)

SNP2 A/G

Page 10 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

SNP3 A/G

SNP4 A/G

SNP5 A/C

Page 11 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

SNP6

-TTAGTGCCGGGCCGGC (IN/DEL)

SNP7 A/G

CAGCGGCAGAGGCCACTGTGACATACCCAAGATGTGACACCTGACCCACTTTCCTGGCAT TACAGAAGCCATCCCAAGTCCAGGTCACCTGATGGCCAAGGTCTATAAAATAGGACCACC TAAAAGAAATGCACCTCCATACACTGCCCACCTTAGCATTACTTCTAGAACCGAGAGACA Page 12 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

SNP8 A/G

CTCTGCAGTGCGTGCTCCACAAGATCAGAGTCCTCCTGCCTTAGTCACTGCCAGGTTTCC
AGTGCCCAAGGACCGGGCTGAGCACGCGGCTGCACCCTGACATACTTGCTTACTAAACGA
ATGACCAGGAACTTAACCTGTCACCTCTTGTAGACAAGACCCATCCACGCTTCCCCAGGA
AGAGACAGAGAGGGGGGGAGATAGAGGAATGCACTTCTTAAAGGCAGCACACAGCCCAGC
CTTACTTGAGGCCTCTTTTCAATGCTTCGAAGATCTTCTTCACCTGCTGGGGCTTCGGGT
CTGCACAGACCGACCCCTTCCGCAGCGTGCCGTACATCTTGGAGGATTTTGCAGGCATTC
GCGATCTCACGGAGTTCCTGTTGATGACTTTCTGTGAGAA (SEQ ID NO:23)

CTCTGCAGTGCGTGCTCCACAAGATCAGAGTCCTCCTGCCTTAGTCACTGCCAGGTTTCC
AGTGCCCAAGGACCGGGCTGAGCACGCGGCTGCACCCTGACATACTTGCTTACTAAACGA
ATGACCAGGAACTTAACCTGTCACCTCTTGTAGACAAGACCCATCCACGCTTCCCCAGGA
AGAGACAGAGAGGGGGGGGGTAGAGGAATGCACTTCTTAAAGGCAGCACACAGCCCAGC
CTTACTTGAGGCCTCTTTTCAATGCTTCGAAGATCTTCTTCACCTGCTGGGGCTTCGGGT
CTGCACAGACCGACCCCTTCCGCAGCGTGCCGTACATCTTGGAGGATTTTGCAGGCATTC
GCGATCTCACGGAGTTCCTGTTGATGGACTTTCTGTGAGAA (SEQ ID NO:24)

SNP9

Page 13 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

SNP10 C/T

SNP11 C/T

GTTTCTGTCTGCTGGTTGTTAAACACGTATGAGCTCCTCACTGCTGTTACCCCTATCAGC ACCTATGCAGGGCCTGAGAAGCTGCTCAAACTGCTTGATCCCCCCAGCCAAGCCAGGCAA

FIG. 4E

Page 14 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

SNP12 G/A

SNP13 G/C

Page 15 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

GGAGGCTGTTAACAGCACGGGAAGTGGTCAAGGGTTCAACAAGAGATGAGCCATCTGGTCCTCCAGAGGTAAACAATTTACAAGAGACACATCAAGCCGGC (SEQ ID NO:34)

SNP14 C/T

GGGTTTCCCCCAAGCCCCTTTCCCCCTTTGCGCCTCCCACTTCTCCTAGATTGAGAGTCA
GCTTGGTTCTTTCCTTTACATCCATTAGTGAGGGTCAGGCTCTTTTGTTATGTTTTTTT
TCTTTTGTATAACTTAATTATTTCAGGGTTCGGGGTGGGCGCTCGCCCCTTGCCCAGTCA
CACTGGTGTGTGTGCGACTCTTACAAAGTTAACAGTTTCTCCAGGTCAAGGGGTGGGATC
CAGGCTTGGTGATGTGCACAATTTCTTTTTGTCCACTTGACACATCTCTGCGTCCTGATTC
TGCTCAGGGACGGACCCAAGAACAAAGCAGCCATTTACCGCCTCCGGAGGGGAGGCCAGC
CCTGTGGCACATCCAGGGCCTTGGAACACCTAGAGACAGAT (SEQ ID NO:36)

FIG. 4G

Page 16 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

AGCATCCGGAGCCCAGGACTGCTCAGTCAACCCTCTGGAATGCCCACAACTCCCCACAGGCCAGCCCGGCCTTGGGACTCCCCCACAGGCCAGCCGGGTGGAGCCGGGTCTGTTTGCTAGTGGAGGCTGTTAACAGCACGGGAAGTGGTCAAGGGTTCAACAAGAGATGAGCCATCTGGTCCTCCAGAGGTAAACAATTTACAAGAGACACATCAAGCCGGC (SEQ ID NO:34)

SNP14 C/T

GGGTTTCCCCCAAGCCCCTTTCCCCCTTTGCGCCTCCCACTTCTCCTAGATTGAGAGTC
AGCTTGGTTCTTTCCTTTACATCCATTAGTGAGGGTCAGGCTCTTTTGTTATGTTTTT
TTTCTTTTGTATAACTTAATTATTTCAGGGTTCGGGGTGGGCGCTCGCCCCTTGCCCAG
TCACACTGGTGTGTGTGCGACTCCTACAAAGTTAACAGTTTCTCCAGGTCAAGGGGTGG
GATCCAGGCTTGGTGATGTGCACAATTTCTTTTTGTCCACTTGACACATCTCTGCGTCCT
GATTCTGCTCAGGGACGCACCCAAGAACAAAGCAGCCATTTACCGCCTCCGGAGGGGAG
GCCAGCCCTGTGGCACATCCAGGGCCTTGGAACACCTAGAGACAGAT (SEQ ID
NO:35)

GGGTTTCCCCCAAGCCCCTTTCCCCCTTTGCGCCTCCCACTTCTCCTAGATTGAGAGTC
AGCTTGGTTCTTTCCTTTACATCCATTAGTGAGGGTCAGGCTCTTTTGTTATGTTTTT
TTTCTTTTGTATAACTTAATTATTTCAGGGTTCGGGGTGGGCGCTCGCCCCTTGCCCAG
TCACACTGGTGTGTGTGCGACTCTTACAAAGTTAACAGTTTCTCCAGGTCAAGGGGTGG
GATCCAGGCTTGGTGATGTGCACAATTTCTTTTTGTCCACTTGACACATCTCTGCGTCCT
GATTCTGCTCAGGGACGCACCCAAGAACAAAGCAGCCATTTACCGCCTCCGGAGGGGAG
GCCAGCCCTGTGGCACATCCAGGGCCTTGGAACACCTAGAGACAGAT (SEQ ID
NO:36)

FIG. 4H

Page 17 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

SNP Table

SNP Name	Source	dbSNP ID	Nucleotide Change	Position
SNP1	dbSNP	rs16437	TTGA IN/DEL	48931488
SNP2	dbSNP	rs1060402	A/G	48933573
SNP3	Joslin		A/G	48940121
SNP4	Joslin		A/G	48942634
SNP5	Joslin		A/C	48954431
SNP6	Joslin		TTAGTGCCGGGCCGGC (SEQ ID NO: 8) IN/DEL	48956026
SNP7	dbSNP	rs2426169	A/G	48960837
SNP8	Joslin		A/G	48964956
SNP9	dbSNP	rs768175	A/C	48966905
SNP10	Joslin		С/Т	48973501
SNP11	dbSNP	rs2426183	С/Т	48978623
SNP12	Joslin		A/G	48981954
SNP13	Joslin		G/C	48990734
SNP14	Joslin		С/Т	49037219

^{*}Genomic positions correspond to the Build 29 human genome assembly from NCBI (UCSC version hg11)

Page 18 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

359	INDLGTIKLNLEITWYPFDVEDMTASSGAGNKAAALQRRMSMYSQGTPE	301
36(301
300	EVNGKQSWDGE	241
300	1 EVNGKQSWDGEETVFLPLIVGFISIKVTELKGLATHILVGSVTCETKELFAARPQVVAVD	24
24(18
24(<u>μ</u> , –	181
180		121
180	OIKTIERYMR	121
120		61
120	KNNNPPKEPQI	61
09		
09	[RS	

FIG. 64

Page 19 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

361	WLHPSPDKPRRLSVLSALQDTFFAKLHRSRSFSDLPSLRPSPKAVLELYSN	42(
360		370
(. (486
421)
371	KAAEEKMPLS	430
481	TSSASSRNSL	54(
431		490
541	. LLQESEEASELKPVELDTSEGNITKQLVKRLTSAEVPMATDRLLSEGSVGGESEGCRSFL	900
491		55(
601	DGSLEDAFNGI	99
551		591
661	LESFDFLNTSDFDEEEDGDEVCNVGGGADSVFSDTETEKHSYRSVHPEARGHLSEALTED	720
721	TGVGTSVAGSPLPLTTGNESLDITIVRHLQYCTQLVQQIVFSSKTPFVARSLLEKLSRQI	780
781	QVMEKLAAVSDENIGNISSVVEAIPEFHKKLSLLSFWTKCCSPVGVYHSPADRVMKQLEA	84(

FIG. 6B

Page 20 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

				24)
006	096	1020	89	Top sequence: predicted Diff40 long form (BAA20840) (SEQ ID NO:23) Bottom sequence: predicted Diff40 short form NCBI (NP_056948) (SEQ ID NO:24)
OLE !	SEA S	SSD :	1068	3) EQ II
HGVSI	DNEV	VTLC		NO:23
YFTS	LTRE	IKML		ID 6948
841 SFARTVNKEYPGLADPVFRTLVSQILDQAEPLLSSSLSSEVVTVFQYYSYFTSHGVSDLE 900	901 SYLSQLARQVSMVQTLQSLRDEKLLQTMSDLAPSNLLAQQEVLRTLALLLTREDNEVSEA 960	961 VTLYLAAASKNQHFREKALLYYCEALTKTNLQLQKAACLALKILEATESIKMLVTLCQSD 1020	ATAF	(SEÇ
VVTVE	EVLRI	LKILE	3TEV?	340) 3I (N
LSSE	LAQQ]	ACLA]	GGRH	AA20 m NC
LSSS	PSNL	LOKA	CVKV	m (B
AEPI	(SDLA	KTNLC	(FPRE	y for short
ΣΙΓΒ(LLQTI	EALTE	EQLDE	long f40 s
TLVS	RDEK	LYYC	RLAY]	ff40 Dif
PVFR	TSÕT,	EKAL	GEDG	d Di cted
GILAD	MVQT	IQHFR	TLLSL	licte oredi
IKEYE	ARQVS	ASKI	/ASET	pred
ARTVI	ZIÕST	'XLA	IRN	nce: Juend
1 SF?	l SYI	l VTI	1021 TEEIRNVASETLLSLGEDGRLAYEQLDKFPRDCVKVGGRHGTEVATAF	equei
84.	305	196	102	Top sequence: predicted Diff40 long form (BAA20840) (SEQ ID NO:23) Bottom sequence: predicted Diff40 short form NCBI (NP_056948) (SEQ
				йй

FIG. 60

Page 21 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

1 MLVGSQSFSPGGPNGII.RSQSFAGFSGLQERRSRCNSFIENSSALKKPQAKLKKMHN 57 . :	58 LGHKNNNPPKEPQPKRVEEVYRALKNGLDEYLEVHQTELDKLTAQLKDMKRNSRLGVLYD 117	59 TLRK.GSVCADPKPQQVKKIFEALKRGLKEYLCVQQAELDHLSGRHKDTRRNSRLAFYYD 117	118 LDKQIKTIERYMRRLEFHISKVDELYEAYCIQRRLQDGASKMKQAFATSPASKAARESLT 177	118 LDKOTRCVERHIRKMEFHISKVDELYEDYCIOCRLRDGASSMORAFARCPPSRAARESLO 177	178 EINRSFKEYTENMCTIEVELENLLGEFSIKMKGLAGFARLCPGDQYEIFMKYGRQRWKLK 237	178 ELGRSLHECAEDMWLIEGALEVHLGEFHIRMKGLVGYARLCPGDHYEVLMRLGRQRWKLK 237	238 GKIEVNGKQSWDGEETVFLPLIVGFISIKVTELKGLATHILVGSVTCETKELFAARPQVV 297	238 GRIESDDSQTWDEEEKAFIPTLHENLDIKVTELRGLGS.LAVGAVTCDIADFFTTRPQVI 296	298 AVDINDLGTIKLNLEITWYPFDMEDMTASSGAGNKAAALQRRMSMYSQGTPETPTFKDHS 357	LOLEVQWNPFDTESFLVSPSPTGKFSMGSI
			П	П		П	(1	(1)	(1	(N

Page 22 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

358	FFRWL.HPSPDKPRRLSVLSALQDTFFAKLHRSRSFSDLPSLRPSPKAVLELY 409	
357	: .	
410	SNLPDDIFENGKAAEEKMPLSLSFSDLPNGDCALTSHSTGSPSNSTNPEITITPAEFNLS 469	
395	:	
470	SLASQNEGMDDTSSASSRNSLGEGQEPKSHLKEEDPI	
434	· : ·	•
530	HLFLENDVAEALLQESEEASELKPVELDTSEGNITKQLVKRLTSAEVPMATDRLLSEGSV 589	_
466	OPGWRNLGGESPSLPQGSLFHSGTASSSQNGHEEGAT 502	
590	მ	_
503	GDREDGPGVALEGPLQEVLELLRPTDSTQPQLRELEYQVLGFRDRL $\underline{\underline{K}}$.PCRARQE 556	
650	SSSLSLTVESALESFDFLNTSDFDEEEDGDEVCNVGGGADSVFSDTETEKHSYRSVHPEA 709	_
557	TI TILLIII TI	

Page 23 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

946	1009 SIKMLVTLCQSDTEEIRNVASETLLSLGEDGRLAYEQLDK 1048 . : 887 SIDQTASLCQSDLEAVRAARETTLSFGEKGRLAFEKMDKLCSEQREVFCQEADVEITIF	100
886		82
1008		949
826		16
948	889 SYFTSHGVSDLESYLSQLARQVSMVQTLQSLRDEKLLQTMSDLAPSNLLAQQEVLRTLAL 948	88
992	.: . : . :. . .	707
888		830
902	: :	64
829	0 RSLLEKLSRQIQVMEKLAAVSDENIGNISSVVEAIPEFHKKLSLLSFWTKCCSPVGVYHS	77
646		602
169	710 RGHLSEALTEDTGVGTSVAGSPLPLTTGNESLDITIVRHLQYCTQLVQQIVFSSKTPFVA 769	71

Top sequence: predicted Diff40 long form (BAA20840) (SEQ ID NO:23) Bottom sequence: T2DM-1a (SEQ ID NO:2)

FIG. 70

Page 24 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

28	117	117	177	177	23.7	237	297	296	357	356
. . :	. LGHKNNNPPKEPQPKRVEEVYRALKNGLDEYLEVHQTELDKLTAQLKDMKRNSRLGVLYD	TLRK.GSVCADPKPQQVKKIFEALKRGLKEYLCVQQAELDHLSGRHKDTRRNSRLAFYYD	LDKQIKTIERYMRRLEFHISKVDELYEAYCIQRRLQDGASKWKQAFATSPASKAARESLT	LDKQTRCVERHIRKMEFHISKVDELYEDYCIQCRLRDGASSMQRAFARCPPSRAARESLQ	178 EINRSFKEYTENMCTIEVELENLLGEFSIKMKGLAGFARLCPGDOYEIFMKYGRORWKLK 237 :	ELGRSLHECAEDMWLIEGALEVHLGEFHIRMKGLVGYARLCPGDHYEVLMRLGRQRWKLK	GKIEVNGKOSWDGEETVFLPLIVGFISIKVTELKGLATHILVGSVTCETKELFAARPQVV	GRIESDDSQTWDEEEKAFIPTLHENLDIKVTELRGLGS.LAVGAVTCDIADFFTTRPQVI	AVDINDLGTIKLNLEITWYPFDVEDMTASSGAGNKAAALQRRMSMYSQGTPETPTFKDHS	QLEVQWNPFDTESFLVSPSPTGKFSMGSRKGSLYNWTPPSTPSFRERY
	58	59	118	118	17	178	238	238	298	29

FIG. 84

Page 25 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

358 FFSNLPDDIFENGKAAEEKMPLSLSFSDLPNGDCALTSHSTGSPSNSTNPEITITPAFF. 416	416
: 357 YLSVLQQPTQQALLLGGPRATSILSYLSDSDLRGPSLRSQSQELP	401
	473
: . : . : 	459
474 SGAGAE 479	
	519
520 VLELLRPTDSTQPQLRELEYQVLGFRDRLKVWPPRPGRWPCFADGMMTGSRGLWGHAAWA 579	579
580 DILASPLRDLGGPCLSGPWFPHLASGDNNSPHGAQEDFKSSQ 621	

FIG. 88

Top sequence: predicted Diff40 Short form (RefSeq NP_056948) (SEQ ID NO:24) Bottom sequence: T2DM-1b (SEQ ID NO:4)

Page 26 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

>T2DM1 and T2DM2 refseq, +/-1000bp GCCTGAGGCCACCCTCCAAGTGTCCCCACAGCGCACCACAAGACCACAGGAGTGACCTCC TCACTGGCAGGTATTTGGGGAAACAACTGCTGTCTACTCTTTTGGGTAAAAAGTGAAACA GTAAGTTAAAAACACAAAATATGTCCAGGAAGTATCGATGAGAATGTTCAAGTTAAAGTT CTCCAATGCCATTGCTACAGCAACCTCAAACCCTAGGTTCTCTCTGCACTATTAACACAG TTTAAAGCAATTGCGTTCTTCAGTGAACTCTTTCTTTAGGCCAGTTGATGGCTTCTTAGC GCGGATGGCCAAAGTGAGTGGCCCTACTGCCTGTGCTCAGGGCTCCTGGGCTGATGT GGTGGCTTCTTCCCTTTGTGCTGCTGAACATAGGGAAAGTGAGGTTCACAGTCCACCATC TGGTTGTAGAAACCCTGGCTTTGTGCCTTCCCACCTTCCCCAGCTCACCAAGGTGACACC TGCTGCATCCCCAGTGCCTCTTGACGCAGAAGTGCCGAGCAGCTGACCGGCAGCGAGGCC TGGAGTTCTACACACTTGCCTTGGAGCCTTTTATTTAGGGCCTCAACTTGCCTGGCCTTG GCCCTTTTGTAGGTGGCCACCTAGTTTGGCTCAGCTCTGCATCTCGGGGAAGGTCACACA GACCCTCAGCCAGAAGTTGAGCGCTCTGTTGAGGCCGTGCAGCCCCTGGAATGCTGTACC TTTGCCTTGCTTTTTTCTGCCTCTGTACAAAAGACCAGCCCATGCCCTGGGGCTGGGTCA ATGGCCGGAGTCTCAGGTAGAGCTCTGGGCAGCTCACACTCCTGGAGGAGTGCACAGCAC TTGTGCTCATCAGCCAGGATTTTTTAAAATATTGTGATTTCAACATCTGCCTCCTGGCAA AAGACTTCTCTTTGTTCTGAGCAGAGCTTGTCCATCTTCTCAAAAAGCTAACCGTCCTTTT TCACCTGAAATAGCAAAGGGACCTGTCAGCGGGTTGGATCCTGCCTTGGCACTTCCAACT CTCCTGGGCCAGGGTGGCCCTAGTGCTTAGTGACTGTGGGTCTCAGTGGTCTCTGCAAAG CGGCAGGGGAGGAGTATGTGCGGGAGCCCCCACCTGGTGACTCACATGGCCTGGGGGCC TTGTCTTTACCTCTAGGATGTTCCGCTGAATGGGAACCCTGCCTTGCCTCTGGCTTCTAT CCCAAAGGTCTAAGAAGACAGCGAACACTCCCTGCCACCCCAGCCATGGAGGAGGCCTGC CTTGGCAGGATGCTACAAAGGGTGGAGGTCGGCTCTGTGCCAGGGCTGCTAACGGTGCCC ATCCCAGGTGCCCCAGAGTTGTTCTGCCTGCTGGGAGAGCTGGGTGTGGCCTCTCGCAGA TTCTAAGGGCCCCAGGCACCCCGCTGCGCTGCACAGTTTGTGCCACTTTTTACCGAACGA CAGTGTGGTTTCCCGGGCTGCCGCCCGCACGGCCTCCAGGTCAGACTGGCACAGGCTGGC AGTCTGGTCGATGCTTTCAATGCCCTGTTCGAGATTAGGAGAAAAAGAACCCTTTAGGGG GCCTTCTCAACAGCAGGTAGAGTCCACTTAGTGGCCCTGCAGGGCCAGTCCTAGCATGGT CTCTGGGGCCTCAGCCCCTTCCTTTTCTCCAGGCTTCCAGGTTTTTTAGGTGGCCTCAGG TTCATGAGAGGCACCTCTGGACTCTGGAAGCGTCTCGCCTCTTCAGCCCTTACACCCGCT AGGGAGCCAGGCTGTTAGCAGAACTCGTCATCCTGGATGCCTGCTGAAAGGCTAGAATTG AAAAGGAGACCTGCTGCTTCTGGACCTTCCTGCCTCACGCTCTCCTTGCCCTACT CTCCAGGACAGCCTGTGCCAGTACTTCGCCCAACTCAGGCACATGCCCCCTGGCTGCTCC TGCAGGCCAAGGACCGGCATGCGCTGCAGCGCCCTCTACTGGGCACCTGGCCCTCGCTGG TGGGAGTTCAATCTGTACTGAATTATCTTTCATCTAGCAATTGTGCAATTCCAAATGCAG GTGAGGTTGAGGGAAAGCGGGCATCCCCTCACATCCATGGGATCTATGTGTGGGTTGTAT CAAGAGTCTCAAAAATGCTCATATTCTCCGGTCCTAGAATTGGGTCTAGCCTAAGGAAAT AATTCAGAACTCCATGTTTTTTAAAGCTTTATGCACAAACATGATCATAAGACATGATT TATGATAAAAATTGGATGAAGTAAACTTTCCTATGAAAGCAGCTGAGTAGGTTAAATTAA

Page 27 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

GAAAAAAACACCACAAATAAAGAATTCTAGGCCGGGCGCGGTGGCTCATGCCTGTAATC CCAGCACTTTGGGAGGCCGAGGCGGGCAGATCACGAGGTCAGGAGATCGAGACCATCCTG GCTAACACAGGTAAAACCCCCATCTCTACTAAAAATACAAAAAAATTAGCCGGGCGTGGTG GTGGGCGCCTGTAGTCCCAGTTGCTGGGGAGGCTGAGGCAGGAGAATGGTGTGAACCCAG AAGGCAGAGCTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGTGACAGAAC GTCTAACACAAAATGTTCTTATTTTGTTGACTGTTTTTAAACTATGTTTGGATCAACAAT TTTAAATGCTCACACACCCCACAAACTTTTAAAAGAAGCATACCAGAATGTCAACCATT GTTTCTGCTACATTCTAGGATGATGGATAACTTTCTTTTCTATCTCTGTATTTTGTAACT TTTTTTTTTTTTTTTAAGATGGAGTCTTGCTCTGTCACCCAGGCTGCAGTGCAGTGGC ACGATCTCGGCTCACTGCAACCTCCACCTCCCGGGTTCAAGTCCCGAGTAGCTGGGACTA GCCTCCCAAAGTGCTGAGATTACAGGCGTGAGCCATCACGCCCAGCCCCAGTGGAATCAT TTTGAAGTTAACTAACCTTAACCCTAACCACAAGCAGGCTTTTCTATCAGCCACTAATGG GGAAACGTCAGGCTCACCTTGAGGTGTTTTGAGCGCTAGGCATGCGGCCTGCTGGAGCCTT GCGTCGTTCTCTGCCAGGGCGTTGGTGTAGAACAGCAAAGCCTGGGGAGAGTAAGGAGGC TGTGAATGGAGGGGTAAGCAGAAGTGGAGTCCATGGTTCCGGGTCCATCAGCCACCAGGT GCCGACAGTAAGGCACGCTGTGCCCATCTTTCTCTAAACAACGTTCAGGACACGATCGGT CCATCTTTGGGCCCTGTGTACACAGTCACAAGATCTATACTGTGGTGTTTAATTTATCCC TAAAAACAGATGCCAGGGCTAATACAATGAAGAAAGCTATTTTTGTCTAATAATATTCCG GAAGTGCATTCTGAAACTGCTGTCTATAAAATGCTGAATCAGAGAAATCAGATGCCCAGC TCAGAACAACAGAAGAACTGATCATCCCATGTGCGTTGCCCTCTTCAGCTGAAAACGGGC AAGGCTGCTTGGGCCAGAGGGAAACCTGCCTATTCCCCTCAGCCCTCCTGTCCAAT CCCAGCGGTGACCCTGCCCTCTTCGGTCTCACGACCATGGCCACATCAGTTCATGTCTTT GGGCCTAACTTGACTCAGCTGAAAACAAAGCTGGCACTTGCTTCATGTGTTATTGTAGGG TTTGTCAGAAAGCACACAGGGTTATGCCCGGCCCGCAGTGGAGTCCAGCGTCTGCGGCTG CAAAGGGAAACCCAGGAGTGGGTTTGCCCTCACTCAGTCGAGTGGCTGCACCTTCAACTG CACGGGTGGGGCGATGGAGGGGCCCAGGTGTAGAGTTGGCTCCAGGGACCTGGGCCCAGA GCCAAAAGAGAATGGCCGCCTTTCCATCTGCAGGTGGCTCTCCAAAGTGTCTGCTGCTTT GGGAAGACAGACTGGGAGTAGGATCGGGTCCTCCCGCTCCTACACAGGGCTCTGGTG AAGGCTGTGAGGCCACATCGGTGTGGAAATGTCACACTGCCCACTGCCTCTAACCCCAGG GTCCCAGGTCATGGCAGCCTACTCCTTCCTCAGCACCCTCATCTGAGGCCCAAGCAATCTG TCACTGGGTTGGCCCCCACCTCAGTGTTTCCTACTCTCTAAAGTCTGTCACATGAAGATG AAGGCCCTTTTTTTTTTTTTTTTTGAGACAGAGTCTCACTTCGTTGCCCAGCCTGGGGTG CAGTAGCACAATCTCGGCTCCCTGCAGCCTCTGCTTCCCATGGAGGCCTTGTTTATATAC CCCCATACCCAAAAAACAAAATACACCTGACTTCAGTGGATCCTTGAAGCCAACTACTAG TTTTCAGGAACTACAGAAGACAGAGAAATACATTAAACTACCGTTAAACTTCCTGCAAGC AGAAACGGGGAAAAAAACCTTTAGATTGATTGGAAGCCATCAGCCAATCACAATGTGTGT CCTTATGTAGATACTATTTTAACAAAAAATAAAACAGGATGCTTGAGGCTTGGAAATTTG TAGAGTTGTGATTTTTGAAAGAATTCTTAACCTTTTGACACATATAGTTAACTATTTAAG GTCAAATAGGATGCCTCAGGTTGCTTCAAAGTGATACAGGGGAGTGGAGGGGAAAGGGGC AGGATTGGCCATGGGTTGATGGTGGTTGGGCTTATGGGTGCAGGTGGATTCATTA Page 28 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

TATTGCTCTGTCTACTTTTGCAAGTTCAAAAGTCTCCAAATAAAGAGTTAAAAACAACCA CAAAGTAGGCGGATGGGCTCCAAGAAGGGCTATTGGCAATGGAACTGGAGATTTCCTCTC TAGTCTGGAGCTGAGACCATCAGTGTAGACTATGCCCTTGATGTCACCCTTCCTGAACCC CTCAGGGTGTGGCGCCTTAAACGTACAGTAGTTACAGGCAAAGAGTGAAAAAGCAGAGAG GTCCACTCTCTTGGTTTTCAAATGGACTGAACACAGTGACCCATTACCAGGTAGCCATGA ATATTAATTGAAAGTAAATAAGGATGACTATCAAAACACTAAGAAAGGCTGGGCGCAGTG GTTTGAGACCAGCCTGGCCAACATGGTGAAACCCTGTATCTACTAAAATTACAAAAATTA GCTGGGTATGGTGGTGGGCGCCTGTAATCCCAGCTACTCAGGAGGCTGAGGCAGGAGAAT TGCTTGAACCCAGGAGGTGGAGGTTGCAAGATCGTGGCACTGGACTCCAGCCTGGGCAAC AGAGCAGAACTCTGTCTAAACAGACAGACAAAAAACGCACTAAGAAAAACATTCAGCGTG CAAGTGACATCTCAGAGGCCTAACAGATGTGTTGCTTTGGAAGCAGCAAGGTGCATTCAT GTGTGTTAGATCGTAGCCCAGGTCCCTCCATCAAAATAGCTCACAGCTACTGCAGCCCCT GGCACTCACTTCTTTGTACTTTTCCATGAGAACACCAGCTTACCTATGCCCACACATCTG TGGCCAGGGTCTGCCACCTGCCCTGGACAACGTACCTTTTCCCGGAAGCTTCTGTTCCTG ACTGCACCAGCCAGGCGAGCGCTGGCCCCTGCACACCCTCGGAGTGCCGTCCAGCTGG AGCAGCGCCCAGGCTCTTAAGGTCTGGGGCAGAGGCTGGAGCTGGCCCAGCCGCTTCCCC TGCAGCTTCCGGACCACCTTGGCCTGTCCCGCACAGTGAAGCTCCTCGATGAGTGTCACT AGAAGACAGGAAAGAGGTGGGCCCAGGTCCCCTGAATGGGAGTTTGGCAGGACAGCTGCA AGTTTGCTTGGCTGCCAGTAGCCACAGAGGAACAAATCCCAGACCCACCGGGATGAT CACCAAGGCCCAGCCTGGACTAATTTCACAGGGAGCTCCTGGAATCTCCAGGAAGGCCTT TTAACAAGGGGTCAAATATGCTCCATAAATTAATAAAACCACAGCCCACACTTCCAGGGA CTCTGGCCAGCCAAGATCACCCTCCTACCCAGCTCTGACCTCTGTTCCGTGCTTTTTAAA GCTGACTTCCCTTGGAGCTAATATCAGCCCCCATCGGCTGAACGCAGAATCTCATTAAAT CGGGGTTCCCAAAAGAACAGTTGGCGGGGATGGATGTAGTGGTTCTGAATTATAACCTGA TCTTACCTTCCTTGGTGAGCTGGGTGAAGTGCTTCTCCAGGTCAGAGACGCTCTGCCTCT GCAGGTAGCTGTGAAACTGGAACCAGGTAATGATCTGTTCTTCTGGGAGCCCAGCTCCGG GGAGCAGCCCACCACAGCTGACCACCTGCTCCAGGAGCCTGCGGCACGCTGGCCAAAGGG GAGAGTACATCAGGAGAAACTGAGACCTCGACCCTCCACGCTTCTCAGCTGGGAGTAGCC TGGTCAGCTAAAAGGCTTTCTGGGCCGGGCGCAGTGGCTCGCACCTGTAACCCCAGCACT TTGGGAGGCCAAGGTGGGCAGATCACCTGAGGTCAGGAGTTCGAGACCAGCCTGACCAAC GTTTCCCAGCAACTCTGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGGTGGAGGT TGTAGTGAGCCAAGATTGCGCCACTGCATTCCAGTCTGGGCAACCATGAGTGAAACCCCA TCTCAAAAAAAAAAGGGTTTCTGATGGCACGAGGGCAGGTGTCCCTCACTGCATTCCCT GTGCTGTAGGGGAGGAGTGTGCCCAGCTAGAGTCAGGACTGTGACTCCAACTCACCCTGA GTCAGACCGTGTTGGGTTCATCCCCATGCCCTGGGCCCCACACCACACCTGGATCAAAAT CCCGGAGGCAGGCCTGGGAATATGCATGTCAACAAGCAGTCCAGGTGGTGCTTGGAACA TGACTGTCACCTTTCACTTGCTCCACAGAGAAAGGCAAATTCTGGGGAAGAACGCAGTCC TCTTTACCCGTCAGGCTCTGGTGGGAGGCATGGAATCTGTCCCCAGAAAAATGCTCTGGC TCACAAGGTCAGGAGTTCGAGACCAGCCTGGCCAATATGGCGAAACCCCGTCTCTACTAA AAATACAAAAAAAGAAAATTAGCCAAGCGTGGTGGTGCACACCTGTAATCCCAGCTACTC GGGAGGCTGAGGCAGAAGAATCGCTTGAACCCGGGAGGTAGAGGTTGCAGTGAGCCATGA Page 29 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

AAAAAAATGCACCGGCCCACCAAGTTTGCACGCAGCTTCAGGGCTCCACAGACTGCTCA GAAGGCCCCACGTGGAGGCCCCTTCTCGCCCGGTGAAAGGGCGGTGACTCGCACTGAAGC TGAGAAAGCTCCTCCGTCCGATGGCATGAAGACACAGAGGTGAAGACAGGGCTGAAATGA GGCCAGCTGTGGCCACCCTGAAGGCCCTGGAGACTCAATACAGCCTTTCTGTGGGAGGGG ACGACAGGACAGAAGGGAACCCACCTATTTCCAGCTGTCCTGGGTACTTCCCTCTGACTC TGTGCTGGAAGGTTTTCTTGAGCTGGTTCAGCAGCGTCGTGGCAGGGCAGGACAGGACCC TGCCAGGCCTGTGCACCCTCTCCACAGCTTCAGGCACCCCTTCGTCCGCGAGGCCTGTG GGATGACTGAAAGCCCCAGTTCAGAAACCTGAATGGTGACTCGGGGAGAGCACATGACAA CTTGATGCGAGGTCCCTTCCCTGCATTCCCATGTGACACGTGAGCAACTTTGGCTCTAAG CATCTTACCAGGGCCACCACCTGCAGTCCCCACAACAACCTGGGAGGGGCTGCTGTCACC AGCCTCTCCTTACAGACAAGGAACCTGGCCTTCTGAGGGGAGGTCCCACGGGGCAGAGGC ACAGCTGGGATCACAGCTACTGTTTGACGGCACATTCTGCACCTTGAATGTGGCCTGGGG TTACCTCACTGAACCCCGTGCAGTGCCCTCCTCCTATGCAGATAGGGAAGCAGAGGCTCA GACTTGTCTCCCTTACCTCCCCACAAAGAGTGTGTATCTCTGAGCCCAGCCCAGCCACAG CCTCCACTCTGGGCCCCGATTAACTCTGGCTATTAGGAAGGCAGAAGAGGCTCCCCGAGC TCTCTTCAATGGATGTTGCCTTGCCGACCTTCTCAAAGTCAAGGACAGAAAGTGTCTCCA GAACGTGCTTTTGCTGTGCCACTTCTTCCAGGAGGCATTCCTGGACCAGCCTTGATAAAT TAGGGGAGGCCAGTTTCTGGGAAGCAGCCCAGATGCTCCAGATTAGCATGGAACATGCCC ACCGAGGTCAGCTGTTACGGCTGTGGCTCCCACCTGCTTGTGCCCATCTCTTCTGTCCCG GGGGCAGCTCCCTGACTGTCATTTGGGGATTCCCCTTTCACCAAGGTGGCTGAGCTAATG TGAACCCGTGCATCCAGCCGAGCCTGAAGCCTACCTCTGAGGCTTTCAGTACCATGAGCC GATAAATTTTCCTGTTGGCTGAGCCAGTTTGCATTAGGGTTCTGGCACCTATAAATGAGA GTCACCACCAAAGCCTTTGGTTTAGGGCTTGGCCTGTGTAAGAGCCACACGAGTATTCAC CCAGACCCTGGTCTGCCTCTCTCCACTGGGGAATAGCTTCAGTCTCACGGGCTTCCAGG ATGCAGGTCTGTCACCCCTTCATGCTTCCCACCACCTTCAAGATGAGCCTTTGCAAAGAG GACTCCAAACCCCTGTCTGCCCCTCCCTGACAAGTCCCCTAGCCCAGCCACCTGCAGCAG AGCTTTGCAGACTTGGAGGTGTACCATCAGCAGCACGTCCAGCTCTGGGGCACCGGCTGT GAGTTCCCTGGATGACGCTTTCAGTGATGACGGTGGGGGCAGGGGCCGGTCCTTTCTGAG TTGAATTGAGAACTGGGTGACCATTCCAGTTAGCAGTTCAGCTCCCTCTGAGGGTGGGGG AACCCTCCCTTCCCAGCGAGCCCCAGGTCAGGAGGCCCACTCCAGGTCCCAGGAAGTTCA ACTGAAGAGGAAGGGAAAGGAACAAGGGTGGCAGCAACTCGAAACAGAGCTGGGAGGT GTGGCCAAGGGCCTGGGGAAGGCAGGGCGGCAGTCGTCTTCCAGGATGTCTCGTGGAGG TAGAAGAGAATTCCAACTCATCCCAGCTCTGTGACGCTGGACAAGTCTGCCTCCCCAAGG CTCAGGTGACTCATCTATCAAGGGAGGCAGGAGCCCCACACTCAAGGCCGTGAGGGGTGC ATGAAATACGGTGGGCAAGAGCGCCTCACACCAAGTCCACTCTGTGGTAGAGGCTAGACC TGCTGCCGACCCACTCAGCCACTCAGGAAGGGTGGAAGCAAGTGTGGCACGAAACACCG CACTCGTCCGTGGGATTGTGAGAGGCGAGGAGAAGGAATTGAGCCTCTGCTCTTCCATGT GGTGAGATGCGGATGCAGAAGCCCTCGGGGGCTGGGGCAGGTGAGGCTGCGTAGCCTCGA GGGAAGCTGTCATGAGAGGTGTGGGCCCTGTGGTGGGACAGAGGGAACAGCACTGGATAC

Page 30 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

ACAGAGTCTTACTTTCGCCCAGGCTGAAATGTAGTGGTGCCATCTTGGCTCACTGCAACC TCCGCCTCCCGGGTCCGAGTGATTCTCCTGCCTCAGCCTCCTGAGTAGCTGAGATTACAG GCTCTTGCCACCATGCCCAGCTAATTTTTGTATTTTAGTAGAGACGGGGTTTCATCATG GTGTTGGGATTACAGGCGTGAGCCACTGTGCCTGGCCTCAAAGAACTTCTACTATATACT TGGTGATTATTTTAAGGTTTAAAAAATAATACTAAAAGCTGGTTCCTTGGAGCAGAAGG CTCAGGGGCAGGCTGGGGTGATCTCACCCACTTCGTGGTCTCTGAGGACCGGCTCTGAGG CAAGTGGGGGATGTGCGGGATGGCATGGGGAAGGGTGCACGATAGAGTGACAAGAGCTG AGCCAAGGACAGTGGGAGAAACAGACGGGGAGGCTGGCAGGAAACGTGGAGCTCGGGTCA CCCGGTGGGAGTGGTCGCCACTGGGTCACTGCTGGAAGGAGGTGCACTCACCGGAGACCC TGGGAGCCCCAAACAGGGACAGCTCATCCAGGGCGAAGTCGGCATTGAGGAAGGCGAAG CTCTCCAGGATGCACTCCATCAGGCTCTCGGCCGAGGTGTGCTCCTGCCGTGCTCTGCAG CACTGGCCAGGGGCCTCACGGCAGACTTGGGCAATGTCCCGGTCCCAAGCCCCAATCCCA CACACCGTCCCCCAGCAGAAGCCCAGCCGCTGGCCCAAGGCGTGGCACTGGGCGTGTCAC CCCCAAAGTCCCTCCTGAATGGCCTGTGACAAGGTAGGAGCAGAATCTTGAGGGGGACA GATCTGAAAACCCTCCCCTGTATCTCAGACACCCACGGGGACAAGGCCAATGGCAGGAGT GAGTGAGCTGCCCCAGCGGGGACCAGGGAGGCAGGAGCGCAGGTGCCTCCCCTAAGAGGG GGCCACGCTCATAGATCGCCCAGTTCTAAGAAAACCCTAAAACATGGATATTTATGGGAA ACTGCCCAGCTTTGAAATACCAACAACAAATTTCAAAGTATTTTAAATACATGGTGTAGG TCAGGCAAACGCTTCTTCACGAGGCTCAGAGGCCTGTGGGCTCCAGGTTCCTCCTCCTG TTGGGTTTCTCCCCAACAGATTAAGGGAGAGTGTTGGGGCCACCAACCCGCCACTGGT CAAGTCACCAGAGCCTCCAGTGCCAGCTCCCTCGCTGGAGATTTCTGTCTTGTCCCCAAC GTGTCCAACACAAACTGCAGCCAAGGCACAGCCCAAGCAGAAGCCATAAAACCAAACCAG GATCCTAACTGCGGAGCCAAAGAGAAAATCTTGAGGACGAAGGGAATAACAAGGCTAGTT AATACACACATGCATGTAGACTGCTGATTCTCAATAGTCAAGGTAGTTATGTTCTAGAGG CCAAGGCGGCAGATCACTTGAGGTCAGGAGTTCAAGACCAGCCTGGCCAACATGATGAA ACTGCATCTCTACTAAAAATACAAAAATTAGCCGGGTGTGGTGGCACAGACCTGTAGCCT CAGCTACTCAGGAGGCTGAGGCAGGAGAATTGCTTGACCCGGGGAGGCGGAGGTTGCAGT GAGCCAAGATTGCACCACTGCGCTCCAGCCTGAGCGACAGAGCAAGACTCCATCTCAGAA AAAAAAAAAAAGGGGGGTTATGTTCTATAAAATCACAGCAAAAAAACTGAATCAGC AAAAGCTGAACCATTGCTCCTAAGGGAGTTACTGGGTTAGGTTCCTGTGAACCTCTGGTC ACAGCAGTTTTATCAACTCAGCAATGCAGAACTTTGTATGTGTCTTTTGGTTTAAAGACA CCTTATTTAATAGCTATTGTTGGCTGGGTGTGGTGGCTCACACCTGTAATCCCAGCACTC TGGGAGGCCGAGGCAGGTGGATCACCTGATGTCCGGAGTTCAAGACCAGCCTAGCCAACA TAGTGAAACCCTGTCTCTACTAAAAATACAAAAATTAGCCGGGCATGATGGTACGTGCCT GTAACCCCAGGTACTAGGGAGGCTGAGGCAAGAGAATCACTTGAACCCAGGAGGTGGAGG TTGCAGTAAGCTGAGATCGTGCCACTGCACTCCAGCCTGGACAACAGAGTGAGACTCCGT CTCCAAAAAAAAGGAAAAAAAAAAGCTATTTTTGATTCATTAACATTGAACTCAACAGC CAGCATCGCTACAACTCATGCCTGAAGGAAGCTCATCTAACACACATTTTCTCTGTAAGG TATTTCACAGGCTTCCTGGACTGAGGAACACCAGCCGGCACTGAAGCTCTGGGCTTGGGA GGCATTTAAACAGTGAAACTGTCAACAAAAAGCACAAAAACTTGAAAAACATGGCATTAA ATAGACCATGAGGACACTTGTTTACCATTTGGGCATTGAAACAGGAAGGCAAAGCATTGC CTCGCTTGACCTCAGCTGGGAATGTGTGCTTTGAGCAGCTCAGATTTTCTATCACTCTGC Page 31 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

TTTAGCAAGTAAGTAAATTCCAAAATGCAGAATCCACAAATAATGAGGATAAATCATGTA CTCGCTCTGTTGCCCAGGCTGGAGTGCATTGGTGCGATCTTGGCTCACTGTAACCTCCGC CTCCCGGGTTCAAGTGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGGTGCA CGCTACCATGCTCAGCTAATTCTTTTTGTCTTTTTAGTAGAAACGGGGTTTTGCCATGTTG GCCAGGCTGCTGTTGAACTCGTAGCCTCAAGCAATCCACCTGCCTTGGCCTCCCAAAGTG CTGGGATTACAGATGTGAGCCACTGCGCCCACCATCATATACACATAGATTTGCATAAAT GTGTGTGTGTGTAATTTCTCTCCAGAAAGTCAAACCAAAAACCACGGTCTGTAATCAATT TGCATTGTTCTGACTTCGTTTGCCAAAAAAAGAAAGTTCCTTAAAGACGTTTAAAATGA TTACATTATTGCGGCATTAACATTTTTATGTAAATTGGGTGTAATTTTTCAAAATACAAG TATGTGACAAATGTGCATGCCGACTCAAATTAGTCTACAAAAAAAGGCTGTTAAAAAAGTA CAAAAAAGGTACAGGCACGATGGCTCACGCCTGTAATCCCAACGCTTCGGGAGGCTGAGG CACGAGGATTGCATGAGTCCAGGAGTTTGAGACCAGCCTGGGCAACAAAGTGAGAACTCG TCTCTATAAAAAATAAACAAAATTAGCCAGGCATGGTGATGTGTGCCTGTAGCCTCAACT AGTCAGGAGGCTGAGGGGGGGGGGTCGTGTGATCCCAGGAGGCAGAGGTTGCAGTGAGCC AAGATTGCACCACTGAACTCCAGCCTGGGCAACAGAGTGAGACCCTGTCTCCAGAAAAAT AGGCAGGTCCTTTTTAACAACCATAGTAGTGGTAAACGGAACATATTTTAAAGTTATGGA TGTAAAATGAGAAATTAAACTTTTTTTCCCCTATGTTGATTTGTCCTGTTGGAGGTGTGG TTGGCGATAAAATGTGTTTGAAGAGAGCTGTTAACTATTTCAGTGCCAAAGTGTATCTTA CACAAAAGAGGGGAAAACAGAAAACAGCAAAATCAGAGAAGTGCACAGCCAGTCTGAGGG CATAAGGACCGAGGGAACACAGAGCAGGAAGGGATGGGCCTGCCGGGGCCAGGTGGGAGT TGCCATTTAAAAGAGGGTGTCCAGGCCAGGTGCAGTGGCTCACGCCTGTAATCCCGGCAC TTTGGGAGGCTGAGGCAGGCGGATCACTTGAGGTCAGGAGTTTGAGACCAGCCTGGCCAA CATGGCGAAACCCCATCTCTACTAAAAATACAAAAATTAGCCAGGCGTGGTGGTGCAC CTGTAATCCCAGCTACTCGGGACGCTGAGGCAGGAGAAATGCTTGAACCTGGGAGGAGGA GGTTGCAGTGAGCCGAGATGGCGCCGCTACAACTCTGTTGCCAGCCTGGGCAACAGAGCG AGACTTCATCTCAAAAAATAAATACATAAAAAATAAAAGAGCGTGTTCAGGGAAGGACAC **AAATTTGTGTAAACACGAGAGGAGAATGTAATAATTTGCCTAGGTCAGCACCTCTGAAAG** CCACCTGCCACCTAAGCCCTCCTGTGAACTGAGAACAGCCCCGGGGTATGAGCCCTGTGG AGAAGGTTCAGTGCGGGGTGCGTGGATGAGGCAAACAGGGAACTGTGTGGGGCCTTCCAT GGAGCCAGCTGCGACCCTGACAACACTCCAAGTTTGGGTTTGTAGCCACAAGCCACAGCC CTATCTACTGTGAACTCTTAAAATCTTCCTGAGCCCCATGAGGGCTGTTGTTATCCCCGC AGGCCAGGATGTCGGCCCAGGCTGCGTGGCCCCAGAGCCCCCGACTCCCAGTCATCATGC CATCAGCAAAGCAGGCCACCGCCGGGGCGGGGTGCCATACCTTCAGCCGGTCCCGGA AGCCGAGGACCTGGTACTCCAGCTCCCGGAGCTGGGCTGGGTGGAGTCCGTGGGCCTCA GCAACTCCAGGACCTCCTGCAGAGGCCCCTCGAGGGCCACGCCAGGCCCGTCCTCTGT CCCCGGTTGCCCCTTCCTCGTGGCCGTTCTGGCTACTCGAGGCTGTGCCGCTGTGGAACA CAAACGGGCCTCCAGAGAGGTGGGCCATCTCTGGCAGGAGACCTGGGGGCAGGGGGTCCT CCCGAGCCTCTCTTCAATGGAGGCGTGGGGACCGAAGGTCAAGGGCAGGAAGCCCACAT CTGAGGTGGACGCCGACGTGCTGGTCTCCGTGTCTCGGGGGTCCTCAGAGCTGAAGGAGT

Page 32 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

CCATCTCAGGCAGCTCCTGACTCTGGCTTCTTAGGCTGGGACCCCGGAGGTCGCTGTCAG ACAGGTAGCTGAGGATGGAGGTGGCCCTTGGGCCACCCAGCAGCAAGGCCTGCTGTTTG GCTGCTGTAGGACAGACTGGAGAGGGGACACGGGAGCGGCCTCACCAGCCACCCCAGGGA CCACAGCAAGTCCCCCAGAGGGGCTTCCCCTGACAGACACCCGCTGTGCATGCCCATGTT CTCAGGATGACTGAGGCCTGCCGAGGTGACCAGCATCCCAGAGGTGCAGAAAAAACCCTG CTCCTGGCTATTGCTCATGCCCTGTGGGCTGGGCCCCACGTTCCTGCCTCAGGGCCTTTG CACTGACTGTGCTCTCGTCAGAACACTCTTCCCCATGTGCCTTCATGGCTTGTGCCCTCG CCTCCTCAGGACCTTACATAGGTGTCACCTCTCCTGAGAACCCTGTCCTGGACAGCCTTT TTTAAGTGGCAATTTCTACCTGGCCCCAGTGGGCCCCTTCCCTTCCTGCTGTCTCCCACA GTCCTTATGCCCCTGGGGCTGGCTGTGCACTTCTCGGATTTTGATATCATCTGTTTCCCC TGTAGAATTTCAGCTCCCTGAGGGCACAGTCTTTGCCTGGCCTGGAGCAGAGGCTGGCAT ATAGTTTCGGTTTTTGTTTTGTTTTGAAATAGTCTCGCTCTGTTGCCCAGGCTGG AGTGCAGTGGCACTATCTTGGCTCACTACAACCTTCATCTCCTGGGCTCAAGCAATTCTC CTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGTGGCACTCCATGACGCCTGGCTAATTT TTGTATTTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGGTCTCAAACTCCTGA CCTCAGGTGATCCACCCGCCTCGGCCTCTCAAAGTACTGGGATTACAGGCATGAGCCACT ACCATAGAAACAGCAGCAGCTGTCATTAAGTATTCTGAGGTTGCCGGCCCTATTCCAGGG CCTTCCCATTACCCTCACCACACCCCATGGGGGTGGCACTGCCCTAACCTCGGAGAGGTC CTTAGGCCACACGGGTGGTGAGTACAGTGCCACAGTGTGAATCTGGGTACACGGACACGA ACCCTTACCTCTCATCAGCTGAACCAATGATAATGGTTGATGTTCATTAACTCAGTTAAC TCTCACAGTAATCCCATAAGGGCAGTGCTGTTATTCTCACTTCTCTGATACAGAAATTGA AGTCCAGAGAGGGCTGGCACGGTGGCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCG AGGCGGGTGGATCACCTGACGTCAGGAGTTCAAGACCAGCCTGGCTAACATGGTGAAACC CCGTCTCTACTAAAAATACGAAAATTAGCCAGATGTGGTGGCGTGTGCCTGTAATCCCAG CTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCTGGGAGGAGGTGGAGGTTGCAGT GAGCTGACATTGCGTGACTGCACTCCAGCCTGGGAGACAAGAGCGAAACTCCGTCTCAAA AAAAAAAACAAAGAAAAAAAAAGGCGTATACACTTGCTGGTAGATGGATTGCTGTCTCT GGAAGAATATGGAAGAAACTGATGACAGGAGTTGGTATTAAGGAGGGGACCCTGATCCAT GGAGATCAACAGGAAAGATGTTTTACTGGGCACTCTGTCAAGTACTACTACTAGAAACGT ATATATTAAGGCCAAGGCCATGACTGGGGTGCTAGAACCATCCAGAGAGCCCACTGCAGA TGTCCTGAAGAACCAGCCAAGCCCAGAACCCAGGCTAGGTTGGAGGCTGGCAGCAGAGGA AGAAAGTGCACAGGAAAACACCCAGGATCGCCTCAAACGGAAGCTGAGCCCGAGGCTTGC CATGTCTGGGAGGGCCAGACTGCTCAGCCCAGCTCCTGCGTGCTGCCCCCATCCCAGGGT GACCACAGCGGCCCTGCCCCGGGAAGGCTCACTCACCAGGTAGTATCTCTCCCGGAAGCT GGGGGTGCTCGGGGGTGTCCAGTTGTACAAGGAGCCCTTCCTGCTGCCCATAGAAAACTT GCCCGTGGGGCTGGCTGACACCAGGAAGCTCTCAGTATCAAACGGGCTGGAGGAGAGAAC AGAAGGTCAGGATGCCATCGGCACCCAGAGGCCATTTCAGGCCCAGACGGCCCACAGGGC AGGAGCTCTGCTCTAAACTGTTGCTTGTTTTTTGAGACAGGGTCTTGCTGTGATGCCCAGG TTGGAATGCAGTGGTGCCACCACAGCTCACTGCATCCTTGAACTCCTGGGTTCAAGCGAT CCTCCTGCCTCAGCCTCCTGTGTAGCTATGACCACAGGCATGTACCACCATGCTGGACTA ATTTTTAAATTTATTTTTTTTTTTGTAAAGACAGCGTCTTGCCATGTTGCCCAGGCTGG TCTCGAACTTCTGGGCTCAAGCAATCCTCCTGCCTCAGCCTCCCAAAGTGCTGGGATTAC AGGCCATGAGCCACTGAGCCCAGCCTCTACTAAACTCTTTACACAAATCCTTATTTCCAC Page 33 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

CACACACAGATTTTCTCTGACCCCAAAGCCTTAAAGATCACTAAGAGTGATGCTTACTCT TCAGACATCACTGTACTTAATGGATTTAAGAGGAAATGGGCTGGGTGCTGTGGCTCACAC CTGTAATCCCAACACTTCGGGAAGCCAAGGCAGGCAGATGACTTGAGCTCAGGAGTTCGA GACCAGCCTCCATAACCTGGCAAAACCCCCGTCTCTACAAAAAATGAATACATTAGCTGG GCTAATGTGGTGACCAACAGACACTTGTAGTCCCAGCTACTCAGGAGGCAGAGGTGGAAG GAGCACCTGAGCCTGGGAGGTGGAGGCTGCAGTGAGCCGAGATCATGCCACTGCTCTCCA AAAACAGGAAATGGAGGCTTGGGCCTCCAAGTCCAGGGCCTTGCCCATGGTCACAGGTGC AGCCTAGGAACTCCAGGTTACATGACCTCTACCCCTTTAGAAACCTTTCTCAAGGCTGGG AGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGCGAAACCCCATCTCTCCTAAAAACA TAAAAAATTAGCTGGGCATGGTGGCAGGCACCTGTGATCCCAGCTACTTGAGAGGCTGA GGCTGGGGAATCGCTTAAATCTGGGAGGCAGATGTTGCAGTGAGCCGAGATTGCGCCATT TCAGACTCTGACCGCCCTGAGGGCCCTTAGCCAGATGGTGAGGGACAGTGACTGTGAGCA GGAGAGCAGGATCTGGAGGCAGGAAACCTCAGGTCAATTCATGCTAAATCAAGGAAAGAC ACCAAGGTCTGAAGGGACAGGGAATCTAAGGCCAATTAACGCAATCTTCCTAAAGCTAAC CCAAAAGGAAAAACCCCGTCTCCCCACACTGAGTAGTAAAGGATCAAAGGCAACGCTCCC CTGGCGAAACAGGGACCATCCCTCTATCTGCATAGGGCGCCATCCACCTCAGCCTCTAAC CACAGACCAAATCCTTTATCCAGAAAAGGGGCAGCCCATAGGAACCTCAAACAGGGTACT TAAAGCCCAGAAACTTTGAAACCATGCCCTTGAGCCACATGCTCGGGCCCACTCCCACCC ACCCAGGCTGGAGTGCGGTGGCGCCATCTTGGCTCACTGCAGCCTCCGCCTCCCCGGTTC AAGCGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGAAACTATAGGCCCGTGCCACCACGC CTGGCTAATTTTTGTGTTTTTAGTAGAGATGGGGTTTCGCCTTGTTGGCCAGGCTGGTCT CGAACTCCTGACCTCGGGTGATCTGCCCACCTACGCCTCTCAAAGTGCTGGGATTATAGG TGTGAGCCACCGCGCCCAACCTGCTTTCTTGCTTTAATAAAGTCCTGCTGCTTCATTCCT GCGTTTCATTCCCCTGCTCCTTTTCTGCATTTTGTTCAAGTCTTTGTTCAAAATGCCAGG GACTTGGACAACTCATTGTCAAGACCCTCCACCAGTAACAACTGGACACCCCCAGTTAGA GGCCCTTTGAGAAGCTCAGCCGATGAGCAGGGGACACTCGGTTCAGACCCCTTGTCTGT AAAAGGGTGCGCTTACAGAAGAACCCCCATGTGGAACATGCACAGGGAAGGGTGGGAAT CCAGGCGAGCGCATGGGAGCACCGAGGCAAGTGATGCTCAGCCTGGCCCGTGATGCTCAG CCTGGCCTGTGTCCAGCCTTGCACTCGGAGTAGGTCCCCATAGATCCATTTGCCTC GAAGAAACTTGCTTATAATTATTTGCACAAAGGCCTGGCTCGTGGCACCTGGGCCTGGCC TGACCAGAAGGCCTAGAGCTCAGAGGCTCTGCAAGTGCCCACTTCTCTGCCCAGGGTGTC TGCAGACCCGCAGGCACCCTGGGTCCTAGGCTTGGATGGCACTGAGCTGCCCGCCACCCT GTACACTTCAGGGGCCCCTGGGCGAGGGGTATTCTCAGCCCTACCAGACAGGTGAGGACC CCGAGGGTGCAGGTCGCTCAACAGAATTCACCCAGCTCACGAGGGAGAGGGCAGCAG CTGAGGAGGAAAGGAACACCCTGGAAATGCAAGGCTTCCTTAGAACAGAGAGCTCTG GAGCCCTCCACGCTCATGGGCATGCAGTCCAGGGAGTGATCTCATGGACATGGGCTTCAT GGGTCTGCAGCCGAGAGGGGGACGCAGGTGACCGCTCAGCCCCAGGCCAAGGGGGCAGCC Page 34 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

AGGGTCGGCCAGGAATGAGGGGGTGGGAGCAGCAAGGAGGCCTTCCTGGAGAGGTGAGC CTCCTCCAAGGAGCCAAGCCCGGGAGGCCCCGGAAAGTGTCCCCCCAACCTTCCCTGTGG CTACAGAGAAGTTCTAGGCCTCGACCTGACTGAGGGGTGGGAGTGAGGGACAGATGAGGA CCCGTGAGGGCAGGGACACCCTTGGCAGAGGCTGGTGCAGGAACCCAGGGCCAGAGTGTG GCCAGGCCACCAGGGCCAGCCAGGCCTCCGCTCTCCCCAGGCTGGACGGGACTCAC TTCCACTGCACCTCCAGCTGCAGCTTGATGGTACCCAACTCCGTGATGTCCACCACGATG GAGCCCAGGCCCGCAACTCCGTCACCTGGGGGTGGGGGCTGGAGGGTGGTGTCTGAGCC GAACACCCAGGCACCCCAGCCCTGCCCCGGGCCCCATCCCCACCTTGATGTCCAGGTTC TCATGCAGCGTGGGGATGAAGGCCTTCTCCTCTTCGTCCCAGGTCTGGCTGTCATCTGAC TCGATCCGACCCTTGAGCTTCCAACGCTGGCGGCCCAGACGCATGAGCACCTGTGAACCA GCCCGAGAGGGCCGCGTCAGCCCAGGTGGTTCCCCTTGCTGTCCGCCCAGGGCCCTC CCTGCCAGGCAGAGCCCCAGCTGCAACCCTGGTTCCCAGCAGCTCCCGTCCCCCAAAGAC CTGGCGGGGAGCCCTGAGGATTGACCCCAGAGAGTGGCCGTACCTCATAGTGGTCTCCGG GACAGAGGCGTGCGTAGCCCACCAAGCCTGGAACACAGACATGGCCGGTCTCCCCTCCGC CTTCCACTCTCCCTGACCTGGGACCACAGGTCCTCTCTGGGGTTCCCCCGAGTATAGATT TTCAGTTCAGTGGGGTGAGGATGGGGGGGGGGGGTACACCATCATGATGGAAAATGGACAG AGGGTGCTGGGCCCTCACACCAGGCTCAGAGAGGGGGTGGGACTTGCCAGAAGTCACATGT CACATGGATGCAAAAGCCAGGGCTGGGCTCAGACCCCTGGGATTCTGGCCAATTCCCGTG CCCCTCAGCAGAAGTCTCAGGGCCTCCAGAAAGGCCTCCGCCCACCCCCTCTCAGCCCTG TTACCTTCATCCTGATGTGGAACTCGCCCAGGTGAACCTCCAGGGCCCCCTCGATGAGC GCCTCTAACCATCCCTGCAGCCAGACAGAGGCCACAGGCAGAGACGCCTCCTTGGGGC CCAGAACACCTCCTCCAGCCCCCACTGGCCCAGCTCTCGATGTCCCCACTGCCCGGCCCA GCTCTTGCTGCCCTGCTGCCCAGCCCAGCTTGGCCCGGCCCACCTCGGCGCACTCGTGC AGGCTGCGGCCCAGCTCCTGCAGGCTCTCTCGGGCTGCGCGGCTCGGGGGGCACCGGGCG AAGGCCCGCTGCATGCTGGAGGCGCCGTCGCGCAGGCGGCACTGGATGCAGTAGTCCTCG TACAGCTCATCCACCTGTGGTGGGCACACGGGCTGGTGGCGCTGCCCACGCGGAGGGGCG CCGCTAGCCCAGCCCATGGTGACAGTCACTACCTGTCCAGTCCCATTCAAAGCAGTCACC CCTGGCCCCAGTAGAACATGAACCCCCATAGGCAGGGACCACATCTGCCTCACCTGCCTC ACCTGCCACCACTGCCTCACCTGCCACCCCTACCACCTGCCTCACCTGCCACCCCTGC CTCACCTGCCACCCTGCCTCACCTGCCACCCCTGCCTCCCTGCCTCCCCTGCCACCCC TGCCTCACCTGCCACCCCTGCCTCACCTGCCACCCCTGCCTCACCTGCCACCCCGGCCTC ACCTGCCACCCGGCCTCACCTGCCACCCTGCCAACCCTGTCTCACCTGCCTCTCCTGC CTCTCCTGCCACCCTGCCAACCCTGTCTCACCTGCCTCTCCTGCCTCTCCTGCCACCCC TGCCTCACCTGCTGCATACCCAGCTCCTGGCAGCGACTGGCACAGTGTGCACAGCAAA AATGAGTGAAAGGGACAAGGGAATCTGTCCCTTCACCTCCTCTGCCTGGTTTTTCAACAA TGAAATGGGAGATGACTTTGTGATAACCTGCCACCCACTGGGCAGTGTGGGGGAGTAAAGC AAGATCATGAAACCGTTTGCAGACTCTAAAGCTTACAGATCTGCTATGCGACCTTGGGCC AACCCATGTTCATCTCTGGACCTCTGCTTTTCCAACTGTACAATGGGCTGGGAGGGCTCA CACACAGTCCTCAGGGAGTCCCACCTCAGGGCTGAGCCCCCTGACTCCCACCTCAGGGCT GAGCCCCTGCTGTCCTTCAACTGGCCCGAGGCCCCTGCTCATCCTTAGCCTCCTGCAGCT GCCCCATACCCAGAGGCCCTGATCCCTGTTTCGAGGGCACCTCCCCAGCTCCTGCTAACC

Page 35 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

TGACCTTGCTGATGTGAAACTCCATCTTCCGAATGTGCCTTTCCACACAGCGCGTTTGCT CCCCTGCCACCCTCCTACAGGTCCTAACTCAGAGAATGGGGCCCCTCACCATCCCTGAGG AAGGCTCATCGCAGAGACTCAGCCTTCCCATTCCTAAAATGGGGAGGAGACCCAGGTTTT CAGCCCACCTCACCGTATGCAGACTCACCTTGTCCAGGTCATAATAGAAAGCCTGT GAGGGAGGAAAGGAGGCGGAAGAAGCTGTCAGAGTCCCACATGTTCCTCCAAGGCCTAT GAGGCTCTATGCTGGCGGCGCCTGAGCTCAGAGTCAGAGGACAGAAAGCCATGTCTACAG CCACCCCACCCACTCCTTCCTCTGCCAACGGCAGACTGCTGTCCACGCCAAGGACAGCA CTGATTAAACACATGCACGTGGGATGAGGCAGTTCTAGGTCTGGCTCTTCTATTTCCCAG CTGCGTGTCCCAGGCAAGTCATTCAGCCTTTCTGGGCCTCCGTTTCCTCCTATGTAAAGC AGGGTAGGAGAAGCGCCTACCTCACAGGGAGAAAAAAGGACACAGTAGGCCCTTGACAAA ATGGGAACCATTGAGATTGAAGGAATGGCCTCGGCCATGACAAAAGAACATGAGGGGGAT GGAAGCGGGAGGGCACATGGCACAGCAGTTCAGGCCTTAATGGTGAATTCCTAAGTCTA TTTCTATAGGTTTGTAAAGGGCCAGAGAGTAAATATTTCAGGCTTGGCAGGCCACGGCGC CCCATGCCAAGATCTATAAAGTAGGACCATCCTGGCCAGGCGCAGTGGCTCACGCCTGTA ATCCCAGCACTTTGGGAGGCTGAGGTGGTCAGATCACTTGAGGTCAGGAGTTTAAGTCCA GCCTGGCCAACGTGGCGAAACCCCATCTCTACTAAAAATATAAAAAGTAGCTGGGTGTGG TGGTGCATGCCTGTAATCCCAGCTACTTGCCAGACTTGAGGCAGGAGAATCACTTGAACC TCAGAGGTGGAGGTTGCAGTGATCTAAGACCGTGCCACTGTACTCCAGCCTGGGTGACAG AGACATGGGAAGTGCTGTACCTGCCTGTGGGGTTAAATTCATCAGGGTCAAAGTTTTGTC CTAACTAAGCAACTCTGCCATCATAGTGGGAAAGCAGCCACAGACAATATGTACATGAAC GACTCTAATTTTAAAATATAGTGACTCTAATTTTCACTGGCTGTTAATTTCCAGTGGAGA TTAGAGTCACTATGTCTGAGTCTGGAGGGGTTACCATGGGGTTGTAGATCCACCAGGGAG GAAAAGTAAGCTGTAGGAGAGTATGTAAATTGACATTTCATTTTTGTAAGACAATTTTAA CTCACAATTGCTAAACACATTTACATGATTATGTGACCAGAGAGAAAAATATGGAAAGAT CAATAAAAGATTGTTCTCAAGGGTTAAACGGGATGGGACACGGAAGATTGAATAGAGGAG TGGAATTGTACATATGCGATAATGAAATAAAAATTCCATTTAAGCCAGGTGAAGTGGCTC ACACCTGTAATCCTAGCACTTTGGGAGGCCAAGGCAGGAGGATCACCTGAGCCCAGGCAT TCAAGACCAGTCTGGGCAACACAGCAAGACCCCATCTCTACAAAAAATTTAAAAATTAAAC TGGGCATGGTGGCACACCCTGTAGTCCCAGCTACTTGAGAGGCTGAGGTAAGAGGATTG CTTGAGCCCAGGAGTTTGAGGTTACGGAGAGCTATGATCGTACCACTGCACTTCACCCTG GAAACAATTAAAACTCCATTTAAGAAATAAAGAAACAGGATGGGTGTGGTCGTCATGCC TATAATCCTAGCCTTTTGGGAGGCCGAGGTGAGTGGATCACCTGAGGTCAGGAGTTGGAG CTGGCATGATTGTGCGCGCCTGTAATCCTAGCTACTCAGGAGGCTGAGGCAGGAGAATCA CTTGAACCTGGGAGGCAGAGTTTGCAGTGAATGGAGATCGTGACACTGGACTCCAGCCTG GAAAGAGGAAAGATCCCAAGCCTTTGAAAAGAAGAGTGACTACCCAGCAACGTCTCAAAA Page 36 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

ACCAACATCTTGTTTCAATGAGAACCAGCAGTGTCATGGGGAGCAGGACTCGACATGGGCA TCTTGCTGTGTGGCTCCAGTGCGGTCACTGTGCCCTGGCCTCAGTGTGCCCATCTATGAC ATGGGAGCAGCTAAAACATACAAGTATTTATACTCTTGCCTGCTTTAGAGTTACTTCTAG AATGGAAAGAATGGGAAACGAAGTCCACGGGGTGAGACTCACTGTACCCATGTGAGAAGA GGGGCAGGTGCTGGAGCTGGTGATATCTTGGCAGCACCTTCTCCCACCATCTGCTGCTG GTCACCCGCCCAACTGTCCACTAAGGGTGAGGCATGCTGAGCTTGGCAGGCCTTTCCCTC CCCAAGTCCCTGGCACACACATGAGGCTGGGTCCTTGCCTCCTACCCTGCCCACCCCG TCATTCATTCATTCATTCATTGAAACAGAGTCTGGCTCTATCGTCCAGGCTGGTGT GCAGTGGTACGATCTCACCTCACTGCATCCTCCGCCTCCTGGGTTCAAGCTATTCTCCTG CCTCAGCCTCCCGAGTAGCTGGGACTACAGGCACCCGCCACCACGCCTGGCTAATTTTTG TATTTTTAGTACAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTCAAACTCCTGATCT CGAGTGATCCACCCGCCTTGGCCTCCCAAAGTGCTGAGACTACAAGCGTGAGCCACTGTG CTGAGCCACTGGATGCTATTTTGGTAGAAAAACTCATCTCCCCTCCTCGCTTTCCCAGTC CCTCAGTCAAGCTGGTGGCCTGTTCTGCACATTGGTGCTTTTGGAGGAGGGATTCTGGGAA ACACTGGCTGGGAGGAGAATCCCACAGTAGCAAGGCCTCCTTGCTTTTGTCTCCAAATCT AATTCATTAAGGACATGTGGGGTTTTCTCAAGGCAGCGGAGAGACTTCCCAGATGAA AGGAAGATCCTCCTGCTGAAAGGATGAAGTCCCTGAGCAATGGGATCCTAGCAGTGTCAC CAGATAAAATACAGGACACCTAATTAAAATTAAAATTTCCAATCAACAAGGAACAATTAT TTTAGCATAAGTATGTCCCAAAGATTACATGGGATATACTTATACCTAAACAAATTTGTG ATTTGTCTGAAAAACCAATTTAATGGGAGGCCGGGCACAGTGGCTCATGCCTGTAATCCC AGAACTTTGGGAGGCAGAGCCAAGCGAATCACTTGAGGTCAGGAGTTTGAGACCAGCTTG GCCAACGTGAAACCTTGTCTCTACTAAAAATGTGAAAAAACAGCTGGGCGTGGTGGCGGG TGCCTGTTATCCCAGCTACTCAGGAGGCTGAGGCAGGACAATCGCTTGAATCTGGGAGGC AGAGGTTGCAGGGAGCCGATATCACACCATTGCACTCCAGCCTGGGCAACAGAGTGAGAC TCCATCTCAAAAACAAAACAAAACAAACAAATTTAATGGGGCATGCTATTTGTGA GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTGTTGCTAAGTCGGTCTCTGCTAAG GGAGAGGCAAAAAACCAGAGCAGGTGAGCCTTGGGCAACACAGGGCCCAGGGCCAGCCTG AAAGACACTGCCTTGGCTGGCACAGTGCCTCACACCTGTAATCCCAGCACTTTGGGAGGC CGACACAGGAGGATTGCTGGAGCCCAGGAGTTCAAGACCAGCCTAGGCAACATGATGAGA CCCTGTATCTACAAAAATTTAAAAAATTAGCTGGGCATGGTGCATGCCTATAGTCT CAGTTACTTGGGAGGCTGAGGTAAAAGGATCGTTTGAGCCCAGGAGGTGGAGGTTGCAGT GAGCCGGGATTGTGCCACTGCACTCCAGCCTGGACAACAAAGGGAAATCCTGTCTCAAAA GGCATTGAAGGAACACGCAGGCTTCATCAAGGACAGCGGCAGAGGCCACTGTGACATACC CAAGATGTGACACCTGACCCACTTTCCTGGCATTACAGAAGCCATCCCAAGTCCAGGTCA CCTGATGGCCAAGGTCTATAAAATAGGACCACCTAAAAGAAATGCACCTCCATACACTGC CCACCTTAGCATTACTTCTAGAACCGAGAGACAGTGTGACATGGGCCTAAAACGTGTGAA CTGCTGTACGTGCCAAAGTGAAGTTAACTCAGTGCAACGTGAAGAGGCTATTCCATAAAC CTCTAGTTCTGAGAAAGAGTCACACCGTGACATAGGCTAGAAGGAACGCAGGGTTCATCT GAATTCCTCCTGGTGTCTTTGTGGCGTCCAGACAGGTGGTCCAGCTCAGCCTGCTGCACA CACAGATACTCCCTGCAAGGAAAGCAAGGAAGAGTTTCAAATGGAAGAGGAAGAAGAAGAAG GGAAAGGAAGTAGGCCAAATGGACAATGTCCCCACGTGGAGAGCAGACACGGGGCTCAGC GGGGCTCAGAGGCAGGTAGGAAGCCAGGCTCCCTCACACTGGGGGCTGTGTGCCCCAGCAC CACACAAAATTGGTTACAGGGAAGTTCCTAGTTAATTCCCCCACCAGGCCCACAAGTAGC

Page 37 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

TCCCCCTCTCTCGCCCAGGCTGGAGTGCAGTGGTGATCACAGCTCACTGCAACCTCT ACTTCCTGGGTTCAAATGATTCTTATATCTCAGCCTCTTGAGCAGCTGGGACTACAGGTG TGTGCCACCACCTGGCTGATTTTTGTATTTTTAGTAGAGATGGGGTTTCACTATGTTG GCTGGGATTACAGGGGTGAGCTACCGCATCCAACCTAGTATATGCATTTTAAAGATAGAC AAACCAACCCTTGAAAGCAGCAAGTACCCCAGCCCCGGTCACACAGCAGAAGAAGAGGCTG AACCCACGTCTGAAACCACACAGTGGCCTTCTGAGCCCAAAATCTTCATCCCCATGTTAT GTCAAGGGTCTAGGCCGGGCGCCGTGGCTGACGCCTGTAATCCTAACACTTTGGGAGGCC GAGGTGGGCGGATCACAAGGTCAGGTAATCGAGACCATCCTGGCTAACACAGTGAAACCC CATCTCTCTAAAAATACAAAAACTTAGCCGGGCATGGTGGCACACCTGTAGTCCCAG CTACTCGGGAGGCTGAAGCAGGAGAATTGCTTGAACCTGGGAGGCAGAGGTTGCAGTGAG CCGAGATTGCACCACTGCACCCCACCTGGGCAACAGAGCGAGACTTCATTCCAAAACAAA GAAGGTGGGGGGCGTCTAGATTTGGGGGCCCAAGGCAGGAGTCCCATCTTGCTGGATTTG CTGAGTCATCCCAGGAAGGTCACTCACACTCTCTGGGCTCTACTGACACCACCTCAAATG TGGAAAAGATAGCTTCTGCCAGACTGCTACTCACTGAGGTATTGAGCTCTCTGGGAAGAA GGGGCTGCCTTGGCCCCAGACAAGTCTCAAACATGTGGTCCTTAAAGGACACAGAATCTG TCCTTCAGAAACATGCTCTATCGTCCATGCACATCCCAGCTCCCACTCTGCACAATCCCA GCTTGCTGCAGCCTCCACCTCTACAGGATTTTGCCATATTCCCATGCTGGTCTTGAACTC CTAGGCTCAAGGAATCTGCCTGCCTCGGCCCCCAAAGTGCTGGGATTACAGGGTAGCCA CCGCTGTGCCCAGCCAAGGATGTCTATTTTGAAAACCATTTCATTCTAAGGTGGTTTCCC TTTTTTTTTTTTTTTTTTTTGAGTCTTGCTCTGTCTCCTAGGCTGGAGTGCAATAACGC GATCTTGGCTCACCACACCCCCACCTCCCGGGTTCAAGTGATTCTCCTGCCTCAGCCTC CCGAGTAGCTGGGATTGCAGGCATGCCCCACCACGCCGGCTAATTTTGTATTTTTAGTAG AGACGGGGTTTCACCATGTTGGCCACGCTGGTCTCAAACTCCTGAATTCGTGATCCGCCT GCCTCCGCCTCCAAAGTGCTAAGATTACAGGCCCACTGCGTCTGGCCTGGTTTCAACTT GGCGTGGTGGCTTATGCCTGTAATCCCAGCACTTTGGGAAGCCAAAGCAGGTGGATCACA AGGTCAGGAGTTCAAGACCATCCTGACCAATATGGTGAAACCACGTTCTATTAAAAATAC AAAAACAAATTAGCCGGGCGTGGTGGCAGATGCCTGTAGTCCCAGCTCCTCAGAAGTCTG AAAAAAAAAAAGGCGTAAGTAGGAGAGAATTTAGGGTCTAAGTACCACTATATCTGGG GAAAATCACTCCAGAAACCACTCTTTGGCCCACAGGGCCCCCTGTCATCTGGTCCCCATT GCCCCATAACCTCATCCTCTTTCCTTTGGCTCTAGCCACGCTGGCCTCCTTGCTGCGCCC CAGGGCCTTTGTGTATGTGGCTACCCTGGCCTGGAATGTTCTTTTCCCCTTCAGGAGTGT GCTCCAATGTCACCTTCTTAGCAAGGCCTTCCTTCCAACTGCCCAACTTAAAATGAACCC TCCCTGCCTCTGCCTGCCTTACCCTGGCCTGTTTTCCTCTGTGGCCCTTACTACCATCTGA TATTCTCTGTACTTTTCTGTATTGTGTATTGTCTGTCTCTCCCCCACTAGGAGTC AGCTCCACAGGAGGTAGGGATTTTGTGTGTTTTAGTTTACTTCTGTCCCCTGGCCTGGCAC TCTGTAAGCCCAATAAATATTTGTGGGCTGGGCACAGTGGCTTATGTCTGTAATCCCAGC ACTTTGGGAGGCCAAGGCAGGCAGATCACTTGAGTCAGGAGTTCAAGACCAGCCTGGCCA ACATGGCGAAACCCAGTCTCTACTAAAAATACAAAATATTGGCTGGGCGCGGTAGCTCAC ACCTGTAATCTCAGCACTCTGGGAGGCCGAGATGGACAGATCACCTGAGGTCAGGAGTTC GAGACCAGCCTGGCCAACGTGGTGAAACCCTATCTCTACTAAAAAATACAAAAATTAGCC Page 38 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

AGGCGTGGTGGCAGGTGCCTGTAATCCCAGCTACTCGGTAGGCTGAGGCAAGAGCTACTC TCAGCCTCTGCTTTCTCATCTGTAAAATAAGGAGGCTATGCCAGGTGCAGTGGCTCACGC TTGAACCCAGGAGGCGGAGGTTGCAGTGAGCTGAGATCACACCATTGCACTCCAGCCTGG TGCGTACCTGCAGTCCCAGCTAGTTGGGAGGCTGAGGCAGGAGAATTGCTTGAACCCAAG AGGCAGAGGTTGCAGTGAGCTGAGATTGTGCCACTGCACTTGAGCCTGGGCAACAGAGCG AGACTCCATCTCAAAAAAAAAAAAAAAAAAAAATTTGTGGAGTGACTCATCCTTCTTGTGC AGGCCTCGGCCCAGCTCATCAGTTGGTCTCTGAGCAAGTCTGTCCTTCACTCAAACACCC ACCGCCCTGACCTCTTGCGTGTGTGGGGCTCACAGTGCAGGCTCCTACTGTGGGGCCTTTG CCCACACTGTTGCCTGTCTGCCGAGGCCCTCGACGCACTGTCTCTCTGTTACCTTTCTTC TTGAATCTGCCCCTCTGCAGTGCGTGCTCCACAAGATCAGAGTCCTCCTGCCTTAGTCAC TGCCAGGTTTCCAGTGCCCAAGGACCGGGCTGAGCACGCGGCTGCACCCTGACATACTTG CTTACTAAACGAATGACCAGGAACTTAACCTGTCACCTCTTGTAGACAAGACCCATCCAC GCTTCCCCAGGAAGAGACAGAGAGGAGGCGAGGTAGAGGAATGCACTTCTTAAAGGCAGC ACACAGCCCAGCCTTACTTGAGGCCTCTTTTCAATGCTTCGAAGATCTTCTTCACCTGCT GGGGCTTCGGGTCTGCACAGACCGACCCCTTCCGCAGCGTGCCGTACATCTTGGAGGATT TTGCAGGCATTCGCGATCTCACGGAGTTCCTGTTGATGGACTTTCTGTGAGAAGGGTTGG AAATAGTGACCAGAGCCACAGGGAGTCAGGAGACCCGGCTCAGTCCCACCCCCATCACCA CCAAGCAGTGTGGTTTCCAGAAAGTTATGGAGCCTCTCTGGGTCTCTGCTTTCTCATCTG TAAAATTAGGATCCTGGGCCAGGTGCGGTGGCTCACACTTGTAATCCCAGCACTTCGGGA AGCTGAGGTGGGTGGATCACCTGAGATCAGGGGTTCAAGACCAGTCTGGCCAACATGGCG AAACCCTGTCTCTACTAAAAATACAAAAATTAGCCGGATGTGGTGGTACGTGCCTGTAAT CCCACTTACTCCGGAGGCTGAGGCACAAGAATCGCTTGAACCCGGGAGGTGGAGGTTTCA GTGAGCCGAGATTGCATCACTGCACTCCAACCTGGGTGACAGAGTGAGACTCAGTCTTAA CCTAGATTTGAGGATTAAAAGAAGAGTAATAAAGCTTTTCCACCATGGCTGCCACTGGAG AGCAGCAGCCATGGCTCTGCGCTACCCTATGGCCATGGGCCTCAACAAGGGCCACAAGGT GACCAAGAACGTGAGCAAGCCCAGGCACGCCGCTGCAGTGGGTGTCTGACCAAATACAC TGAGTTTGTGCGGGACATGATCCGGGAGGTGTGTGGCTTTGCCCTGTACAAGCAGCATGC TATGGAGTTACTGAAGGTCTCCAAGGACAAACAGGCCCTCAAGTTCATCAAGGAAAGGGT GGGGACACACCCCCCCAAGAGGAAGCAGGAGGAGCCGAGCCAATGTCCTGGCCGCCA TGAGGAAAGCCACTGCCAGGAAAGACTGAGCCCCCTCCCCTGCCCTCTCCCGGAAATATA GAACAGCTTGACAAAAAAAAAAAAAAAGAACAGTAATAAAAATCTGGTATCAGAAATGAAC TTACAGGAAGAAATACAGTCAAGTAGCCCAAATGCCAATGCTCTGATCACCATGCTCT GCCTGTGCAGGCAATGCCGTGTGGGAGGCCAAGTCATAGTCCTGTGCTTTACCCTTGGGG ATTTTCCTCTGGGGCACCTCCCCAGCTCTGCTTTTTATACTTGTGGTTTTGGGGGAAAGGT TTGGCAAATCCACATTCCAGGCCTGCGTTAGTCAACATATTCTGCTCCCCTGGGCCAAGA AGTATGGGGATCAAGCCTGGCCAGTAGCCAGCCAGGAGTTCAGAATTCACAGAAGGGAGA AGTGTTTTTTCCCCTGGCATTGCTAACCTGGGGAACATATACCTGGGACTTCCAGCCTCC CCAAATCTCCATGACAGTGAGTTCCTGGATCTAGCTATGTCTAAAGCTGAACCTGCCCGT GGACTTTGCAGTTACATGAGCCAACTGGCTCTCTTTTTTTAGCTTAAGCCAGCTGGAGTTG Page 39 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

GGAGTGTGGACTGGATGATCCTAAAAACTGCCTTTCAGTGGTGATGGCTGGGTCCCTCAA CATTTAGAGATGTAGCAGCATCTCAAGACTGATTATAGGAGTACGAGGCCAGGGCACCCT CATCACAGCACAGAGCTGGTTTCCCTGGCATCTAAGCCTCTTCTCAGGATCCCATAACTT ATCCATGAGGCTGGCTGATGCAGCCTTTGCTCACCAACAGATGTGTTGAATTCTGCTCTT AGCCCTCTAAAGCCATCAGCCAGGCGCCCTGGCACCAGGCATCACTTAATGACAACATTC TCACAAAAGAGACATGGTGGAAATGACTCTTAGATCTAACTTTGGCATCAGTTCTCTTTT TTTTTTTTTTTTGAGATGGAGTCTCACTGTCACCCAGCCTGGAGTGCAATGGTGCAATC TCGGCTCACTGCAACCTCCACCTCCTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCCAA GTAGCTGAGATTACAGGCATGCACCACCATACCTGGATAATTTTTGTATTTTTAGTAGAG ACAGGGTTTCACCATGTTGTCCAGGCTGGTCTCGAACTCCTGACCTCAAATGATCCACCT GCCTCAGCCTCCCAAAGTACTAGGATTACAGGTGTGAGCCACCGTGCCTGGCTCAGCATC AGTTATTATAGGGGACTACTGGCCCTTCTCTTCCAACTCCTCCTCTTCCCAGGGGCGGGA GCACCTGCATTTTGGGGGGTCCTTTTATCAAAGCAACTTCACCTCTACATTAACAACACAC TACCCAAGGCTCTGTCTTTTCACTGGTAAAATGGGACCACGTAATACATCAGAGGATGGT GCTGAGAATTCTATTAGATGCCAGGCCCAAAATGTGGCACAAAGGAGACCTTTTACATGC AAGCTGTTGTTAGAATCATCACATCCTATCTGTATCTTTCCCCTGGCTCACAGCTTAGAA AACATTAGGTGCAGGCCAGGCACTGTGGCTCACACCTATAATCCCAGCACTTCGGGAGGC CAAGGTGGGTGGATCAACTGAGGTCAGGAGTTCAAGACCAGCCTGACCAACCTGGTGAAA CCCCGTCTCTACTAAACAAAAATTAGCCAGGCGTGGTGGTGGACACCTGTAATCCCAGC TACTCGGGAGGCTGAGGCAGGAGATCACTTGAACCGGGAGGCAGAGGTTGCAGTGAGCC AAAAAAAAAAGAAAAAAAGAAAATATTAGGAGTTTGGTAAATATTAAGCTCAGCTGAA CGGGGGAAAATACAGTATCCCAAGGGGATTAGAGAACAGAGAACCTGGCCCCTGCAGGCA GAGCGGGATAGCGAGTGCACCCCTGGGTGTTCCCAGCTGGAGACAGAGGGAGCAAAGGTG GAGAATGGGACCTGGTATGCTCTGGGAGTGGATGCAAGGAGCAAGGTTTGACCCAGGCAG AAGTGGGAGTCTGCAGAGGGGCCTGGACCTGGGGCCTCTCTAGTTTTGGGGACCCAGGAT GTGTGAGAGGGGGAGAGGGCAGCTCCCAGAGAAAGTCCAGCTTCCAACACCTTTACAAT GACAAGTAATGTCTCTGTAGAGCAGAGAAACTAAGCTCAGGCCAGGGCTAGTGGGCTGCT GAACAGCTGACACCACAAGCCCAAGGGCCTCAGGAGCCTGGTGAGAACACGTGAGCCTAA GTAACTGGGGGCACCTGCTGCCGCCAGGAGCTCGCTAAGGGCTTTATAGAAATATCTCGA CTTTCACAACCACCCTAGGAGACAGGTATTATTCTTATTATTATTTTGAGATGAAATTTC GCTCTGTCGACAGGCTGGAGTGCAGTGGCACGATCTCTGCTCACTGCAACCTCCGCCTCC CAGGTTCAAGCGATTCTCCTGCCTCAGCCTACCCAGTAGCTGGGATTACAGGCATCTGCT ACCACGTCCAGTAATTTTTGTTTTTTTTTTTAGTAGAGACAGGGCTTCACCTTGTTGGCCAGG CTGGTCTTGAACTCCTGACCTCAGGTGATCTGCCCGCCTTGGCCTCCCAAAGTACTGGGA TTGCAGGCATGAGCCACTGCACCCAGCCATTTGTATATATTTAATGTTAAGTGATGCTTT CCAAAGCCCACAGGGGCTGTGCTCCCTTTCCCCTTGCCCTCAGGGCCCCATCACCC ACCTCTTGAACCGGGCCCTCCGCAAGTTTGCCATCTTGAGGCTGGCAGAGACGGTCAGGG CTGCAGACTCGGGAAAAGGCAGGTTTCTGAGAGGTTAGGGACCCCGGCAGGTGGGCAGCA GGCAGTGGGCCAGGAGCTCGCTCACTCCCAGCTCCTGCCTCCAGCCCCCAACAGGTGTGC ACCGTTGGCCCAGCCCGCTTCCATCCACCTGGGGACCTTATACCCTCGCTGCTGCAGCC ACACCTGGATGCACCTGCTCCCGGGAAAGCTCTGAGCCTAGTGCTCCTTGTGTGAGGTTT AACAGGACAGGCTCAGTGGCCACTCTGAGAGCCCGCCCACCCGGGGAAGGTGATGCACAT

Page 40 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

GCAGCCTCCAGATGGCCAAATCAGGCAGCATGTCTGGCCCAGGTGTCACAGAAGCCGGGG CAGGAAGAGCCTCTGGGGCCGGATGTTTCACCAGGTCTGGGAGGACTCAGTAAATATTAA ACAGCCCTGGCATGCCAGACAAGCTTCCAGACGGGCACGTGCAACCTGCCGGCCCCAGC CCTCACGTGAGGTTGCTACAGCAGTCCTTCTGCCTGGTGTGGTTGGCAGAGGCCTTGGTA CTCGGCTGTTGCAAGTGCAGGCTCTGGAGGCAGACAGGGCCGGGCTCAAGTCCTGCACCT GCCCCCAGCCTCCAGGCGGGACAATTATAGGACTGACTGCACAGGCTTCAGGTGAAGACT CCATGCAACAAGGACGTGAGCCAACCATTTACCCAGGTGCCTGGCGGTGCTGGCCACTGG GTGATGATGACAGGCATGCACTCGGCACTTGCCAAGCTCAAATTCTGCTCTCAGTGCTTT TGTTTTTTTTTTTTTAATTGAGACAAGGTCTTGCTCTGTCTCCCAGGCTGGAATGCAGT AGCGTGATCTCAGCTCACTGTAGCCTCCGCCTCCTGGGCTCAAGTGATCCTCCCACCTCA GCCTCCTGAGTAGCTGGGACCACAGGAGTGCACAATTACACTCGGCTAATTTTTTGTAGT TTTGGTGGAGACAGGGTTTCACCATGTTGCCCAGGCTGGTCTTGAATTCCTGAGCTCAAG TGATCCGCCTGCCTTGGCCTCCCAAAGTGCTGGGATTGCAGGCGTGAGCCACCACGCCCG CCTGGCCTGCTCTTGGTGCTTTACATGTATGGACTCATTTCTCCTGACACAGTCTTTGAG GTCAGGCCCCCTGGTACCGTCCAGGAAACTGAACTTGCATCACTCGCCTCTGGCTCCAGA GTCTGTGTGCTTGACAGCTTCACAGGCAGGCTGGATATGAGCCGCCTCTTTCTCCAGCC TCCTCTCCTTGAAACTTAATGGCTGCTATTTCGTTTTCACACCCACACTTCTTAGCCATC CCAACAGAGGAATTCCCAAGCTGAGGAGGATGTCCCAGTGGCTCCTGGCTCGGGGAGTAC CTGCCTGACTGCCTGGGGGAGGGAGACCTGGCTGAGGAGGGGCAGGAAAGGGGGAAGGGC AACCATGCCTGTCAACTGGGGCAGAGTAGGACAGTATCGGGGCCTGGCCCTCTCCTCCTT CATCCTCACTGTTTATCCTCTCATCTCTCTATCCTCCCACCCCCAGGTCCAGCTCTTGG GAAATGGCCTTATTATGTCAATCATTCACACCTTAGTATAAAATTTCCCCACCAGGTTAC TTCCCCAAGTGAGCCATCTGACTGTGGAGTAAAAATCCCTGTCTATAGTGAAAGGGGTTT CAAGGTGCCAGAGTAGGGGTCAAGGTGGTGATGGGAAGAGAGGGGCATCAGCCCACCCT CTCCATGCAGAGCCCTGCCCTCCTGCCAGGTTGTTTGCCTTGACAGTGCGGCTGCGCTTC GGCCTGCTCGGGTTACCAGGGAACAAGGCCAGAAGGTGGGGCCTGAAACCCAATCAGGCT CCAGCCTGGCTCCAAGGGTTCAGACCCCAGGGAGCTCGACGGAGACAGGAAGTTAAAAA TAGATGCACCGCTTCCCCGTCGGTGTGGGCAGCTTCTTCCTTGCCCTCACACAAGGGGGC GGCAGAGGCCAAGGCCAGGTGGGGGCTGCCCAGGGACCTCCGAACCAGCCCAGGCCCAGC ATCCTCTGGCATCCTTGACAATCAGATGGGGGACAGGAGGGGTCTGAGATATTAGAGCCA TCAGGGCTGTCTTTCCTAGACTAGGACTTGGACACTGTGGGACCCTTGCTGACGGCCAGC CAGGAATCCAGGAAGGGCCAACGAGAGGCAGAGGCCTACCGTGGGGGCACTCTCTGGGC AGAGCTCCCCTCTAGGGCCTGAGGGGACATGTCCCATGGATGCAGGACATTCAGAGGCCC CCACAGGCCTGGCAGGAGGAGGCTGCAGGCCAGGTCTGAAATTTGTGGGGTCTA GTGCGAAATAAAAATGCAAGGCTCTTTATTCAAAATTTATCAAGAATTTTGGGCCAGGCG GTCAGGAGTTCCAGACCAGCCTGGCCAACATGGTGAAAACCCTGTCTCTACTAAAAATTAG CTGGGCATGGTGGCACATGCCTGTGATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATC ACTTGAACCCGGCAAGTGGAGGTTATGGTGAGCTGAGATTGTGCCATTGCACTCCAGCCT GCCCATGCCTGTAGTCCCAGCTACTCAGGAGGCTGAGGCAGAAGAATTGCTTGAACCTGG AAGGTGGAGCTTGCAGTGAGCCTAAATTGCACCACTGCACACCTGGGTGACAGAGCAAGA CTCTGTCTCAAAACACACACAAAAAAATTGTATTAAGAATTTCTATTTGGTGCCAGGCAC AGTGGCTCACACCTGTAATCCCAGCATTCTGGGAGGCCGAGGCAGGTGGATCACCTGAGG TCAGGAGTTCGAGACCAGCCTGACCAATATGGTGAAAACCCTGTCTCTACTAAAAAATACAA Page 41 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

AAAAAAAAAAATTAACTGGCATGGTGAGGCACACCTGTAATCCCAGCTACTCAGGAGG CTGAGACAGGAGAATTGCTTGAACTCAGGAGGCGGAGGTTGCAGTGAGCCGAGAATATGC AAAAATTAGCCGGGCGTGGTGGCACGCTCCTGTAATCCCAGCTACTCAGGAGGCTGAGGC AGGAGAATCACTTGAACCTGGGAGGCGGAGGTTGCAGTGAGCCAAGATCGCGCCATTGCA GTGGGAGGATCATTTGAACCAAGGAGGTCAATGCTGCAGTGAATCGAGATCGCACCACTG CACTACAACCTGGGCGACAGAATGACACCCACAAAAATTTCTAGAGCACAACAGCAGAGC GTTCAATCAAAGTACAGAGCACAGGCTACACGCTCATGAAGCCGCCCTTGGGTACAGGGT CTGCAGACCCTACCCCTCCTTCCAGACCACACAAGGGTCCCTACAGTGCTTCAGTGGACC AGCCCACTCCAGGGCACACAGCTGGGAGAGGGTCACCTGGGCCGGATGGCCCCCTGGCC AGGTAACCCGCACAGCTGACCTTCCCAGCCTTGATTACAGACCCCTGCAAGAAAGTGGGG GACTCTGATAAAGCCCAGGAAGAGGCAGCTCAGAAATGGTTAAGTTGAGAAACAGCATCA TTTCCTGGCCGGTTTATACTTAACCCCCTCTTTGCAGCACTTATGGAGTGCCTGCTGTGT GCCTTTCTCAGGCAGCACCCACTCTTTCTGTTCTCTGAGGCTTGGAGTTGGGGCACTGAG CACTAACTGCTCTGGAGCCTGGGTCAAATTCTTCTCGTCTTGGGGCCATCAACTTAAACCC TTCCCAGGCTCCCCTCCACTGAGAATGTGTCTCAAGGCCTCACTGCAGCCCATGAGGCTC CGCAGGGTCCTCCTCCCTGACTGCTGTCACGCATGCCAGCCGCACACCTGCTTTCT GTCCCTTAAAGCTCATTCCCACCCAGGACATCTGCACTCGCAGCTGCCTCCCGCCGCCGA AGGCTTCCCGGCCCACCCCCATCTGCACACGCGCAGATCCACTTCTTCTGTCCCTTCCTG CCTCCACTCCCATGCCCCTGTCTCGTCAGGCTCTCCCAGGAGACCATGGGTGCCCTCCC CCACCCCAGTTCAGTTCCCTCACAGCACTGCCACCAGCTGGATCTGTCTCAATTATCAC TGGCTTATTGTTTGCTGCCATCAGCTCCCAGGACAGCAGGGCCTGGGTCTGTCCCCAGAG CCCAGGACAGGGCCAGAGTAGGTGCTCCGTGAATATCTGCTGCGTGAACAGGGATTCCTA AGGTGCTTCCAGCTGGGACACTCCAGGATCTTAACCCTGGGGTCCCGGCACCACCACCA TGGGAAGGGAGCCCCCAGGGAAAGGTTAGTGAGCTGGGAGGGCTGACCTCAGGGGGGTGG GAGGGACCTGGCCTGGAGCTCAGGGGTCCTCCCCCAGGACCTAGCAGGAAGCCAA TGCCTGCAGGTGATTCAACGGGAACTGGAGGTGGAGGAGTGGGGGTAGGAGCTCCAGCGGG AGGTCCCAGGGGCCTCTAGCCAGGAGGGCGCTGGGTTTATTCTAAGTAGGTTGGGAATCT CCTACTGAGTTCTGCACTCTGCTCTGGCTGGGGACCCCGACCTGTCCACCCCGTTGGCTC AGACAGACAGAGGTTTGGCCCCTTCAGGATGTCGATAAACTGCCCCAGTCCCCAGGCCTG CCTGCTCGTAAATGGTTCCCTGGGGGCTTGCACAGTGCCTGGCATGAGGCCCTGGAGCGA GGGGGCAGCAGGCCTGAGCTCATCGGGCTGTGGCCTCCAGAAGCAGAAACAACCTTCCTC CCAGGGACTTAGTACCTAAAGCCGGAGGAGACACAGGACGGGGCAGCAGGCCTGG CCCGGCCAGCACCCCAGGGAACTCAGCCACAGGGTCAATGCTGCCCCCCAGGCCCATCT GTGCCAAGCCTGCTCCTCATCCGGTAACCCCCCACAGCACCAGCTGCACCGGCTGCTGG CCCTGCCTCCTCGTGGTTCCTTCCCGACAGCCCCGTGAGCAGGGTGCACCCACAATTCC CATTGTTCAGATGAAGACAAGGCTGAAGAGGTGAGGTCACTTGCCCCAGGTCACAGAGCC CCCGTGGAAGACCCAACCCTGGGCCAGTTTTGCTGTGTGACCTTGGGCCAGTGGCTCCAC ATGGCATCTTGCTCTGTCACCCAGGCTGGAGTGCAGTGGTGTGATCTCGGTACACTGCAA CCTCCACCTCCTGGGTTCAAATAATCCTCCCACCTCAGCTTTCCAAGTAGCTGGGATTAC

Page 42 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

AGGCATGTGCCACCACATCCAACTAATTTTTGCATTTTTAGTAGAGACAGGGCTTCACCG AAGTGCTAGGATTACAGGCATGAGCCACCGTGCCCAGCCCAATTTTCTGGTTTTTCAAAA AAATTTTTGTAGAGATTGGGTTGTGCTATGTTGCCCAGGCTGGTCTTGAGTTCCTGGGCT CAAGTGATCCTCCTGCCTCGGCCTCCCAAAGTGCTGGGATTATAGGCGTGAGTCACTGTG CCCAGCCAGAGCCTCAGATTTTTTATCTGCCAAGTGGACCTGCTAAGCTCAGGCAGATCA ACTTCTGGAGACTTTGAAATGATAACTGTTCAGGTTTCAAGGAAATGATAGGTTTATCCC CTCTCTCTCTGTCTCTCTCGGGCTGCAAGCCGGCCTGAGAGTGGGCCTTCGGGTCTCT GGCAGCAGGAGGAGGATGACCCTGCCCTTCCCCAGCCCATTAACAAGCCCCACCCCTGCA CCCCGAAACAGGACACGGGGGGAACTTACGCGATCCTCCGGCTCTGTGCACTGCTGAAGC CTGCGAAGGAGGCGCTCCGGCCCACGACCCCCACGGCCCCTGTGTCCCCAGGGGACAGGA ACCGCAACCTCACCGACATGGTGGTCACCTGCAAGGAGAGGACAGGAGAGTCAGCCTGGC ATCACCATCCAGCGAGTGCCGTCCGCAGGCCAGCCACCTTCCACCAACACCTACAGACCT CACAATGGCCCCAGAGTGTTGTGGGGGCTGGTACTGTGCCCAGCTCACAGGTCAGCAAGC TGAGGTCCCATGAGGTTAGGGGACCTGATGGGGACAGTGATGGGAATGGAATTCGAACC CAGGTGTCTGTACTCTGCACTCTGTGCTCAGGTCCTTAGTGCCGGGCAATGCTGCCTCCC AGAGCAAGGGGACAGCACCTCCTGAACACAGCCCTCTCACCCCCCGAGCTTCTCCTCTCC CCCCATCCTCAAGGGCTCCAGCCCAGCAGGGGGGGCCCACCTACTGCCGAACAGTTACGAT ACAGAGTCCATGCTGGAGTTATGGGGGTCCCAGGGGGAATCTGACCCAGCCATGAAGAGG CGCCCAAGAGCTGAGTAGGAAGGCTGACGTGGGGTGAAGGGGAAGGGTGTCTAAGGCCGA GGGAACAGCCTGGGCAAAGGCCAGGATGCATGAGGGGACTTGGTGTCATCCAGAAACAGC AAGAAGCTCAGTGGGCTAAAGACGAGGTCAGAGAGGGCCGGCAGGGCTCAGGTCCCAAGAG GCATTGGTAGCCCCAAGCAGGGGCTTGGCCTTACAATGGGGCAAGGGTGACTGGGAGCCA TGGGAGGGCTTTCAGCAGGGGGTGGAAAAGTCCAATTCACATGAAGCCAGACTGCTGGTG TCAAGGGCTGCTTCCACCCCGATCCATTGCCCAGTCTCCGACCCGCCCTGCAATGGGGCC AACCCCGAGCCCTGGCTGTCTTCTCTTTTTTCCAAACCATCTCTAGATTGAGAAAATGCC ACCCTATCCCTTGGGAATATAGGTCAGCATCTTCCAGCAAGGGCAGCTGGAAAGTTCTGC TTCATATCTAACCTAAATCTCTGCTGCTACAGTTTCATACTTTGCTCCTTTGCCAGGGTG GTGTCAATCCAAGGATTCCAGGGACCCCATTGCCCAGACAAAACCTACGAAAAAGCTCCA GTCCACCTCATCTTCCTGCACGATGAGACCCCCATGTTCCAACATCTCTTTCCCCCAGGG GCCAAGTCCACCCCACTACACCTCTGCTCACTTGGGGGGTCTCTGCCTGGAAAAACTTCCT GTATCGAGCCACATCTGCCCAGCATCTACTACTGCACCTCCTGGCAGATCTGTGCAGCCT CCACAAGCCTCCTCCCATATATCCCCCACCCCACAGCCCCACATGTGCCGTACATAG GAAAGCTTGGCAACAAAGAAGGTGGACCTGGGCTCAAATCCCAACTGTGCCACTCAGGCT GCTGGAAGGACCAAGGAAAGCATGTCCCGAGAGCCCACAGTGTGCAAGAGACATGTCGGA AGAGCTGGCTGTCTCTGTGCAATTGGCTAAGACCCCAGCTCTGCAGGTGAGCCAGGTGAC CCAGATAAGCCAGGTGACCCAGGGAGAGCCAAGTGAGAGTGAGCGGCTTCTAGCCCGGA TGGAGGAAGGTGGCAAGCATTTGCTGACCACTCGCTGTGTGGCAAGCCTGGTGCCCCATG AGTGGCTACGAATCCATGAACAGCTATGAACCCATGCCCAGCAGTGCTGTGTACAGATGG GGAAGTTGAGGCATCATTCATCAAGTGCTCATTACTAAGCTGGCCCTGCACTAAATGCTT TATGTAAATTATGAAATCCATACAACCCTCTTAAGAGCAGGAGCTTTTGATGATCTAATT CCATAGATGAGGAAACTGAGGCTCAGAGAGGTGATGAGACTAGCCCAGGAGCCCCAGCAG GGCACCTGAGCACTGGGTTTAGAACCCGAGGATGCCCGATGTCAGAGCTTGTCTTACCTG Page 43 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

CGGTCAGGAGAGCCTTGCACTGGGGCCTTGCCCCTGCCCCATAAAGAGGTCCCCTACAG TCCCCTCCTGTGCTGTGCTGAGCCAGCTTGTACCAGCTCCCAACAGTCAACTGGGCCAGG AGCTCAGGAGTTCAAGACCAGCCTGGGCTACATGGTGAAGCCCCGTCTACTAAAATACAA AAAATTAGCCAGGCTTGGTGGCAGGCGCCTGTAATCCCAGCTACTCGGGAGGCTGAGGCA GGAGAATCACTTGAACCTGGGAGGTGGAGGTTGCAGTGAGCTGAGATCATGCCACTGCAC ATAGTCAATTGTTAAATGTTCAGGAATTTTGTGAGCCTGTTGACATCACGTTGGTGGTTT GAAATCAGCCACAGTAAACGTATTTACACCACAGAAAGCGGCAAGTTCTACAAGTTAGGG TTTCTGTCTGCTGGTTGTTAAACACGTATGAGCTCCTCACTGCTGTTACCCCTATCAGCA CCTATGCAGGGCCTGAGAAGCTGCTCAAACTGCTTGATCCCCCCAGCCAAGCCAGGCAAG AGAATAAGGACGGAGTAGGGAGGGATTCCCAAAGGTGAGTAGTTGAGACGTACTCCGGAG CAGAAGCCTTCTGGGCCGTTCCTGGAGCTTCACCCCCAGTCACTCCACTTCAAGGTCAGAG AGAAGGACAATTGCTAAGCAGTTCCTCCCGATGCAAAGCTCAAAACAAGCCCCAGGTCCT CCTGCTCAGTGTGAGAGAGGAGGACGACGAGGGGGAAACTAAGGCTCGGAGCAGACCTG CAGAACCTGACAGCGGATTCATCACTCATAGCACTGTGAGGTTCAATGGCCCCATTTTTC ATATGAGGAAAGAAGGCTCTGAGAGGTGAGAGGCGACTCAGGGACACACATATTTCTTT TCTGACTCTATTGCCCAGGCTGCGTGCAGTGACACGATCTCAGCTCACTGCAACCTCCA CCTGCTGGGCTCAAGCCATCCTCCCACATCAGCCTTTCACGTGGCTGGGACTACAGGCAC ACACCACCATTCCCAGCTAATTTTTGTATTCATTGTAGAGATAGGGTTTCGCCATGTTGT TAGGATTATAGCCGTGAGCCACCGCGCCTGACCAGGACACTCATTTTTCAAACTGAAGTC TGGCTCTTCCTTCTCCACGTGCCATGGCCACATGGATTGGCTTCCTGGCTAAACCCTCC TCATCTTTCAGCCCAGATGTCCCCTCCCCCAGGAAGCCTTCCTGGACACCTCCCCACTCC TAGCTGTGTCTGGTGTTTCCTCTGGATGCCCCTGACCTCCTCTGTTATAGTGGACTGTGA GCATGGAAGATTCATAACACATCTTTATTGAACCAGAAAACAATGAAGGAAAGGTTGACG CTGCTTCCCCTACTTCACCAGGCTGTGCAGCCCAAGAGGAAGGTGCTGGAATAATAACAG TAATACTAATACTAATAACCACTATGTGCTAGACTCTAAGGCAAAGATGGACAAATGTTT TCTGTAAAAAGCCAGATAGAAAGGCTGAGCGCAGTGGCTCACACCTGTAATCCCAGTACT TTGGGAGGCCAAGGTGGGTGGATCACCTGAGGTCAAGAATTCAAGATCAGCCTGGACAAC ATGGTGAAACCCTGTCTCTACTAAAAACACAAAAATTAGCCGGGCGTGGTGGCGCATGCC TGTAGTCCCAGCTACTCTGGAGGCTGAGGCAGGAGAATCACCTGAATCCGGGAGGCAGAG GTTGCAGTGAGCCGAGATCAAGCCACTAAACTCCAGCCTGGACAACAGAGCTAGACTCCA TCTCAAAAACAACAACAAACAAAAAGCCAGATAGTAGATATTTTTGGTTTTTCAGGCC ATACAGTTTTTGTCACAACTACTCAGTTCTAGCATTTTAGAGCAAAACCAGCTGCAGACA GCAGCTGTTGAGGATGATGGGTGGCCCTGCCTCTGACCCTTGGGTAGCCAGCACTGCCTG CTACCTGCTCTGAGGACTTAAAATTCTCATTTCATTCTCCCAACACCATATGAGACAAGT ACTATTACTATCCCCATTTTGCAGATAAGGAAACCGAGGCTCATGCCAGGCGTGGCGACT CACGCCTATAATTCCAGCACTTTGAGAGGCTGAGATGGGCGGATCACTTGAGCCCAGGAG TTCGAGACCAGCCTGGGTCTCATAGTGAGACCCGGTCCCCACAAAAAATACAAAAATTAC CCAGATGTGGTGGCGTGCACCTGTAGTCGAGCTACTGCGGCAGGCTGAGGTGGGAGGATC

Page 44 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

GGAAAGGAAGAAAGAAGGAAACCGAGGCTCAGAGAGGACGGAAATGAGTCCTCCGAGGT CACACAGGTAGGAAATGCCAGAGCTGAAACTGGACCGGGGCGCGCTGGACTCCAAAGCCT GGCTTCGGGACTCCGCTGTGCTTGCTCCCGCAGCTCTGCTGAGGACACGCCCCCCTCCCA GGAGCCAGACCTCCTCCAGCGGGGAAGAGGCCCCCAGAATGGAAATAGGATTGGGAGGGGG ACCTGCCAAGCTAGAAAGATAGCCCTGGGTGGTGGCCGAGAAAAATCAAGCCCAACCTCT TTTGGCTTCAGGGTGTTGCAGCCCCAGCCCCTGTGGGCCCCCTTGGGGCCTGCGGACCGC GACAGTTCCCAGGCAGCTCAGCTGCGCCCCCTCCCGGCTGGGCCTGGTGGGGCTGATCCA TGACGTTGACTTGGAGTCCAGCCAAGCAGTGTTTCTTGTGGTAAAAGAAACAGACCTCCC CCTGGATGATTGGGGATGGCCAGGCTGAGACCCACAATCTCAGGAGCCTTCAGCG GACAGCTCCTGACAAGTCCAGTTTGTCACCTGCGACCAAGGGTGACATTCCTGATGTTTA AGCAATGGCACAGCAGCAAATGGAGGCTGGGTGCTGGAGCAGGGTCTTGAAGACCCTGTC CCCTCCCACCATGTGTCACCACCCCTGCTGGGGCTGGCATTAACCCTTTAGCTACTGGAT GGCTTAGGGCAGCCCTGGGTAACCAGCACTCTGCAGGCATGAGAGACAGTGCAGAGACCC TGCTGGGCCCCAGGGCAGAGAGGGGGGCACAGAGTCATGCAGTTCCCAAACCTTTGGTG AGAACTGATGCCGTTCAGACCCGGCTGGTGTGTGCAGGGAGAGGAAGCCAGATGCTCCCA GACACTGGGGACTGTCCTGGGCCTCCGTCCCCAAGGTGTGGCTGGAGGAAGCAGAGTCTA CTCCCGCTAAGTCTGTCCGCTCACTGCTGGCCAAAGCTGCCCTGCGTCTCCTCCCCACCG CCAGCCAGAGGGAACCTGCAATTTCACCTCATTTAGAGGTAAAACATCTAAATTTAACGT TATGGGCTTTTGGGGCTGGGTGGCTTTTATGCCTGAGTCCCTCACTTAGGGCTCCTTTTT ATCCACTCAAATGCCAGCTAGGGCTTAGTTTGTTTATAGGAGTTTCCAAAATAGCTCCTT TGGTTTCGCATGAAAGGAAATGGCAAAATAGCCCAGGAAGAGGAATGTGAGTTTACACAG AAGACAGACAGGCGCCCGAGGAGGCTTCTCTGGGAACCAGTTCGCCTGTACCAGAGGGGG CCCGAGAAAGTGTGGAGTCCAACAGTCCAACTCGCTCATTTTACCGATGTCAAGACTAAG CCCAGGATGGTCACACAACTTGCCTGGACCACCCAAAGGCGACTGGAAGAGCCAGAAGAA CCCAAACTACTCCTCCCTGCCAAAGCACAGGCCTCAGCTGGAGCCCCCCCTCCAGCCTTTG CCCTGGCTGTCCTCTGCCTGGCACACGCCTCCCTTCCCCCAGGTCTTCCCTATCACTC TCTCCCAGCTTGCAGGCCTCACAACCAAGGCCACCTCCTCAGAGAGGTCCTCCCTGACCC CCTTGGCTAACGTGGACTTGCCCCTCACCCGTATCCTTCAAATAACTCATGGTTCTGATT GTCTTATTCATCAGTTAATCAAGTATGCTTCTCAAGAATCTTCGCTCCAGGGAGCAGGG GTTTTTCTGTCTTTTTAAAAAAAGTTTTTGGGGCCAGGCACACTCCTATAATTATGGGC TCACGCCTGTAATCCCAGCACTTTGGGAGGCTGAGTCTGGTGGATCACCTGAGGTCAGGA GTTCAAGATCAGCCTGGCCAACATGGTGAAACCCCCATCTGTACTAAAAATACAAAAATTA GCCAGGCGTAGTGGCGGGCTCCTGTAATCCCAGCTACTCAGGAGGCTGAAGCGGGAGAAT TGCTTGAACCCAGGAAGCGGAGGTTGCAGTTAGCTGAGATCACACCGTTGCACTCCAGCC ATTATTATTATTATTTATAGAGATGGGTCTTGTTATGTCACCCAGGCTGGTCTCA AACTCCTGGCCTCAAGCGATCCACATGGTGTGAGCCACCATGCCCAGCCTGCTGGTTTTT AAAGAGCATATTTAAATGAAAAGAGACAAATTTAAAGGACCCTTGGTTTAAATAGAGCAG GTTGGAACCAGCTTCAGGGCAGCCCATGGTCCTGGCTCTGCCATCCTCCAGAACCACCTG GAGCCAGGAGGGGACACCCAAGGTGTCTCTGCAGAGGACAGCGGCCTGACGGATAGACAC ACAATGAGTGCCCTGATTTGTGATTTAAGAGAAGAACAAGCAGCTCCTTGGGAAGCCCCA GTGTCCCCTGCGCTCCACTGTCCCAGGACTGCAGGCAAAGGGACGCCTCCTGACCGCAGA ATAGTCAACAGCAGGCACGGGAGTGAGGACCGGGATCCAGGGAGGCCGCTTCCCTCTGTC

Page 45 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

TATCAGTCTGCAGCCCTGGGTCCCAGCTCACTCCATTGGGGTTTTCCCAGATAAAGATGA CTCATGAATTCTTTGAATTATCCAGAGGGCATTTTAATTCAAATGGCCCCATCACTGCC TCGTCACCACTCCCACCAGCCATGCCAGGGGTCAGCCAGGGGTCACCTTGAAGACAAAGC CTCTCTTTGGGAAAGAAGCCTTTGAGGCCACTGTGGGGTGGCTGTGTCGGGGCGCCCAG GTGGGAAGGCAGCTGGGCCCAGGCTAGGGAAGAGCGTGGGGGTGTGGGGGATG AAGGAAGATAAAGATGGGGTAGCGGGAGGGGAGCGGGGAAGCTGGGCCTCCAAGAAGCAC AGGCTGACTTGGGAATCCCATCTCAAACGTGCCTCACCCTGGTCTCCAGCTGTAGGAGCA GTGATAAGGATGAGGACAGGCAGGAGGGACTGAGATGAGATGAGAGCATTTGGAGCCTGG AGAGAGACCCCTGACACTGAGGGAGTGAGGTGACCTGGTGGTGGCTATTCCAGGCCAAGC ACCTTTGTTCAACTGTCAAAAACTAGAAACAGGCCGGGCGCAGTGGCTCATGCCTATAAT CCCAGCACTTTGGGAGGCCAAGGTGGGTGGATAACTTGAGGTCAGGAGTTTGAAACCAGC CTGGTCAACATGGTGAAACCCCATCTCTACTAAAAACACAGAAATTAGCCAGGTGTCGTG GTGCATGCCTGTAATCCCAGCTACTCGGGAAGCTGAGGCAGGAGAATTGCTTGAACCCAG GTGGCAGAGGTTGCAGTGAGCCAAGATTATGCCACTGCACTCTAGCCTGGGTGACAGAGC GAGACTCCAACTCAAAAAAAAAAACCTGAAAACAGCAATAATGCCAGTGGTACCCAACA CGGCTACAGGACTTGTGCAGTGCCAGGCATTGCTCAAAGAATTCACTCATTGAATTCCTG GTACCCAGGAAGTCTGGCCTCAAGCCTGAGCTCTGCCCCCGCTGAGCAGAACCCCTCTTT GGCAGGCACTGTTACCATTGTACAGACCAGGAGGCTGAGGCTCGAGATGGAGCCACCTG AAGTGGCAAGTTGGTAGCATTGTACCTCCAATGACTCACCAAAACGCCTGCATAAAAATC CAGGTGCAGTGGCACTCACCTGTAGTCCCAGCTACCTGGGAGGCTGAGGCAGGAGGAGCA TAGGTCCCAGGAGTGACTAAGGGACACGCAGAGTGGGGCTCTCCAATCAGAAGCCCTCAC TCTGGAATTGGTTATGGGAGGGTCCCTGGACCTCAGCATGTAATGCTTTGCTGTGGAGGC TGTCCTGTGTGTTCAGCAGTGTCCCCACACCAGGAGCACAGCCTGTGACAGCCTGGCACA TCTCCAGACACTGCCACACGTCCCTGTGCTAAAGGCATCTCTTCGGACCTGGGCTGGAGG GTTCATTAACCCGTATGGTGGCTTAGGCATAATTTTCCATGGGCGAAATGAGTAGTATTG AAGACACTATGGTATTTGGTTGGCTACAGTATTGCTCGGGCACCTTCCCCTCACACGAAC AGGTGTGGGACTCTGGCAGACCACAGCCTGACACCTACGGAGCGGCCCTGGGTCTGCG GCTTCCCCTTTCCATCCAAAAACACACAAACAAAAGACGCCTGAGCTTGGTGAACACACG CACTGGTCAGGCTTAGCTCCATGCGGGGAGGATGTAAATTCAAACCCAGGTGGGCTGAAC TCCAAAGCACTCTTCGGCCAACCACTGGTCACTGGAATGAACTGCCCCCAACCCTCTGTC ATCTCGGGGACACAGACCCTGCCCCCCTCCGCAGGGCTGGACAGCAGCAGCTTCCCTC TACAAAACGGTCAAAAAGGCAAAGAAGACTTCCACACCCTGCCGCTGCCTGGGAGAACC CTGAGCTTCCTTTCTGCAGTGACCTCTCCATTAGACGCACAGGCCCACGCATGCGCCCAC GAACACATGTGAATTACTTCTAGGATCAGAAGGCAAAAAAATGTTCTTTAGGTCAAAGAA AATGTGTTATTATAAGAGTAATGTATTCATTGTTATAGCAAGTTGTAATATGCACTTC TTTTTTTTTTTTTTTGAGACGGAGCTTTGCTCTTTTTGCCCAGGCTGGAGTGCAATG GCGCAATCTCGGCTCACCGCAACATCTGCCTCCTGGGTTCAAGCAATTCTCCTGCCTCAG CCTCCTGAGTAGCTGGGATTACAGGCATGCACCACCACGCCTGGGTAATTTTTTGTATTT TTAGTAGAGACAGATTTTCTCCATGTTGGTCAGGCTGGTCTCAAACTCCTGACCTCAGGT

Page 46 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

AATCCGCCTGCCTCGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCACGTCCGG CTCACTTCTTTTTTTTTCTGAGAGAGAGACAGGGCTCACTCTATCACCCAGGCTGGAGTG CAGTGGTGGGATCACAGCTCACTGCAGCCTTGACCTCCTGGGTTCAAGCGATCCTCCCAT CTCCGCCTCCTGAGTAGCTGGGACTACAGGTATGTGCCACTGCACCCGGCTAATTTTTTT AAAATTTCTTTAGAGACAGGGTCTCTCTATGTGGCCCAGGCCAGGGTGCAGTGGTGTGAT CATAGCTCACTGCAGCCTCCAACTCCTGGACTGAAGCAGTCCTCCCACCTCAGCCTCATG AGTAGCTGGGACTACAGGTGTGAGCCCCACACCTGGTCCTATTTCTTATTGGAAGGGCCA CTGCAGGCCAAGATGCTCGGTGCCCAGGGAAGTCATAGCACGGCCCTGCCCTTGACCCCT TCCAGCCATCCTGGGAATCTGTCCCCAGCCACCTCCAGGCCACAGGCTCCTTCCCCATCT CTTCCCCACCCAGGAGCTGTGTTACACAGATCACTTTAGCGTTTCCCACGCTAAACCACT GAAACTGAGGGTTTTATCTCCCACTCTCCTTGCTCCCAGTTCCGCATGGCCACTGGCCTG GCTGAGACAGAGCCGCTGGAAGTGCCCGGCAGGACCTCTCACTTGACCTTCAGCCTCTTA CTTAACCCTCCCAATGCAGGGCGGTAGCCTCCACTGGGTCCTGTTCAGCCCCTACTCCTA GAAATGGTCTGGGGGGTAAGGGTGGGGCCCCCTGCAGAGCCCTTGGATGTGTTTTGCGC CATGGCAGTAGTACACCCACCCCTTCTGCTTCCGCAGAACCTGGCCGGCTCCTCCCCAT CCCAGGGGGAGAGGCTCCTCCTGCTCCCACTTCCCTCCTTTACATTTGGCTACTACTCTT AGGGGTGGGGCTTTGTTTACTTTGCATTTTCCTGATTCCTAATGAGATTAAGCACATTTC CTTAGGTTTACCGGCTTCCCAATCTCCTCTTCTGGGAATTTTCAGTGCCTATTCCTTTGT CCAGTTATCTGCCTTCTTCTTGATTGCTGGGAGCGGCTGATAAATCCTAGATGACCA TCCTTTCTCAGTTTTCTCCCAGCCCCTCACCTTTTAATCTTAAATTGTTCTCTGTGGGTG GCTTCAAATACTTATGTGGCCAAATCCGTCACAGGTTTTCCTTCTGTGTTTTACAATTTG GAAACTGCTTTCTGGTCTCTAAGATTAAGTTGCTAATCTGTTAACCACTGGTGTTTAATT CCCTGGGGGAGAAGCTTGTCTTCCCAGCCAGGCTGCAAAGTCCCCCAGGGTATGTCTCCA TCTCCCCCCCCCCATGAGGCCTTAGTCAAGAGATTCCACTGCTCCTCAGAAATACCG TGAATTTGTCCCCTCCTTCCTGCCTCCACCCCTGCTCGCCAGGACCAATCTCTGCCTCCC CCAGGTGCTGTGGCTCACGCCTGTAACCCCAGCACTTTGGGAGGTCAAAGCGGCAGATC ACCTGAGGTCAGGAGTTCGAGACCAGCCTGACCAACATGGAGAAACCCTGTCTCTACTAA AAATACAAAATTAGCCGGGCGTAGTGGCACATGCCTGTAATCCCAGCTACTCAGGAGGCT GAGGCAGGAGATTGCTTGAACCCGGGAGGCAGAGGTTGCGGTGAGCCGAGATTGCACCA ATAGAAAATGTCCATCAGGGCTGGATGCAGTGGCTCAAGCCTGTAATCTCAGCACTTTT TTTTTTTTTTTGAGATGGAGTCTCGCTCTGTCGCCCAGGCGGAAGTGCAGTGGCTGGAT CTTGGCTCACTGCAACCTTTGCCTCCAGGCTCCAGTGATTCTCCCGCCTCAGCCTCCCAA TTTTTTTTTAGTAGAGTTGGGGTTTCACCATCTTGGCCAGGCTGGTCTCAAACTCCTGACC TCAAGTGATCCTCCCGCCTTGGCCTCCCAAAGTGTGGGGATTACAGCTGTGAGCCACCAT GTCTGGCCAAATCCCACCACTTTGGGAGGCCGAGGTGGGAAGACCGCTTAAAGCCAGGAG TGGGCACATGTTCTCAGGACCCCCTGAGGCTATGTCTTGGGTCATGGTCACTCATAAATA AATTGTTTTAATTAAAAATAAATGTTGAAAAATTAGCTGAGCATGGTGGTATGTACTTGT GGAGCCTCACTCTGTCGCCCAGGCTGGAGTGCAGTGGTGCAATCTCGGCTCACTGCAAGC TCCGCCTCCCGGGTTCACGCCATTCTGCCATTCTCCTGCCTCAGCCTCCCAAGTAGCTGG GACTACAGGCGCCCGCCACTGTGCCCGGCTAATTTTTTGTATTTTTAGTAGAGATGGGGT

Page 47 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

TTCACCGTGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCCGCCCACCTCAGCC TCCCAAGGTGCTGGGATTACAGGCGTGAGCCACCGCACCCAGCTGGGAGGCTAAGGCAGG AGGATTTCTTGAGCCCAGGAGTTCAAGGCTGCAGTGAGCCAGGATTGTGCCACTGCACTC AAAATGTCCCTTAGTTTGTCACTATATTGCCCAGGCTGGTTTGGAACTCCTGGCCTCATG TAATCCTCCCAGCTCAGCCTCCCAAAGCGCCGGGATTACAGGCATAAGCCACTGCACCTG ACCCCAACCGAAAATTCTTAAGGCACATTTTTGACACTAAAAACAGTATTTTATAACTGC TAAAATAGATATGTTAATTCTAGTCTTTTCTTGTGCACAGAAACAAATTACCACTTTAGT TTCTCAAGGAGCACATGTATACATGTTAAATGCATTAATTTGTTTAATATAAACATGAAA AGATCTGGCCCTATCACCAGGCTGGAGTGCAGTGGTGCAATCTTGGCTCACTGCTACCTC TGCCTCCGGGCTCAAGCAATCCTCCCACCTCAGTCTCCTGAGTAGCTGGGACTACAGGC TTTTTTTTTTTTTTTGTAGAGACGGAGTTTCACCATGTTGCCCAGACTATTCTCAAACTCC TGGGCTCAAGCGATCCTCAACCTCCCGAAGTGTTGGGATTCCAGGTGTGAGCCA CGCTCTTGTCACCCAGACTGGAGTGCAGGGGCGCAATCTTGGCTCATTGCAACCTCCACC TCCGTGGTTCAAGCAGTTCCCCGGCCTCAGCCTCCCGAGTAGCTGAGATTACAAGCACAC GCCACCAAGCCCAGCTAATTTTTTGTATTTTTAGTAGAGACAGGGTTTCATCATGTTGA TGGGATTACAGGCATGAGCCACTGCGCCTGGCCCCCATTTCTTATTATACAGTAGTTTAC AAAAAATCCCAGCAGCCAGCTCCAGAGAGGCCTTGTTCTGTGGTGTCTAAGGATGGAGC CCAGGCAGGACGCCAAAAGCTCGCTACCCCTGCCCAGGAAGGCAGGAGCACCGTTGTG TCCCGTTCCTATCCCTCAAAAATAAATCACAGCCAGCTCATGTCATAGGACAGAGCCTGT TCGCAATCCATCCTGTGTCTGCGGATTCTCCCAGGTCTGTAAGGCAGCAGGGAGATGCGG CCTCTCCCACTCCACCCAACACGTAGCCAGGGCGAGGTGGGGCCGGGGGAGAGGCTGACA GGACCCTACGTTAGAAGGGTGAGGCGCTAGGGCCATAGCCTAAGGGCACTGGGAACCCTG TGGGCATGCGCAGTTCAAGCCCATCCCCGCTCCCTCCAGCTGCTGTCCATCCCTGCCACA CCTGACCATTTGCCTAACCTAGATCCTTCCTGTCTTGCATTTCCTCAAGCATCCGGAGCC CAGGACTGCTGAGTCAACCCTCTGGAATGCCCACAACTCCCCACAGGCCAGCCGGCCTTG GGACTCCCGCACAGCCACGTGAGCCGGTGGAGCCGGGTCTGTTTGCTAGTGGAGGCTGTT AACAGCACGGGAAGTGGTCAAGGGTTCAACAAGAGATGAGCCATCTGGTCCTCCAGAGGT AAACAATTTACAAGAGACACATCAAGCCGGCCTGCTGTTCTGGTTTTTCTTTTGACAGTG AAATATGCAGTTTCTTTTTCATCCTGGTGCCTATTGGAGAGGGAGACTGTTCCAGGCACT CTGACCCCAGCTAAAGCGCCTCCCTGGGGCAGGATCTATGCAGGGAGGCAGAAAAGTCAG ATTTTTTTCACATCTTCTTTGTTCCATTCCCAGGACTGAGCAACTTCATGTATTTATGT ATTTATTTATTTATATAGACAGGTTCTCACTATGTCGCCCAGGCTGGAGTGCAGTGGT GCGGTCACAGCTCACTGCAACCTCAATGTCCTAGGCTCCAGTGATCCTCCTGCCTCAGCC TCCTGAGTAGCCGGGACCATAGGTGTGTACCACCATGCCAGGGGAATTTTTGTATCTTTG GTTAGAGAAAGGGTTTTGCTGTGATGTTGCCCAGTCTGGTCTCAAACTCCTGAGCTCAAG CGATTCACCCTCCTGGGCCTCCCAAAGTGCTGGGATTACAGGTGGGAGCCACTGTGCGTG GCCCAGGACTGAGCAACTTTAAGTCAGATGGTTAACCTACATCATGAGGAAAGTGGATTT CCTCCCAAAGGAACAGACTTATTTTCTAGAACCCAAAGCCTTGAATTTCAAGAACCTTTA GCCTTAAATCCATTTCCTGTTGGAAGCAGACCCCCTCCTGGTCTCCCCAGGTATTGCAAC CCTGCTCTACCAGCCACTATAAATGCCCACACAAAAGGAACAGGGGCTCCATTCCTGATG Page 48 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

AAATAAACAGCTTGTGCTGGGATTGTAATTCTAGAGTTTCCAAAAGTGTTGCAAAATATT AAACATTCTTGCTTGGGTCTACTGGGAGATGATTTCGTTGGGAATGCATCTCCAATTTTG TAATAAAGATCACCAGGGAAAGAAGGCTTGCTTCATAGGGGCTCATATTACAGGAAATGT GGCTAGCATAGGTAGTTCCCATAAGAAAAAGGACAGTACTAAGTTTTGAGCTCATGTGAA AAAGAAAAGGGGGCCGGGCGTGGTGGCTCACACCTGTAATCCGCACTTTCGGAGGCCGAG GCGGACGGATCACTTGAGGTCAGGAGTTCAAGACCAGCTTGGCCAACATGGCAAAACCCT GTCTCTATTAAAAATACAAAAATTAGCCAGGCGTGGTGGCGGACGCCTGTAATCCCAGCT ACTTGGGAGGCTGAGGCAGGAGATCACTTGAACCCGGGAGGCGGAGGTTGTAGTGAGCC AGGATCGCATCACTGTACTCCAGCCTAGGCGACAAGAGCGAAACTCCATCTCAAAAGAAA AAAAAGAAAAGTGACGTCTGGGGACCAGGATTTTGGGACTCTTTGCAGACATGCCAATAA CCTGTGAGATACACCCCACAGACTGACACAGAGGTGAGCAGAGGCCTTGGAGTCAACAG GTCTTGCTCTGTCACCCAGGCTGGAGTGCAGTGGCGCAATCTCGGCTCACTGCAAGCTCC GCCTCCCGGGTTCACGCCATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGGACTACAGGCG CCCGCTACCATGCCCGGCTAATTTTTTGTATTTTTAGTAGAGACAGGGTTTCACCGTGTT AGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCCACCCGCCTCGGCCTCCCAAAGTGC TGGGATTACAGGCATGAGCCACCGCACCCGGCCACCTCATTCTCACTATGTGACCTTGGA CAAGTCACTTATCCTCTTTGAGCCTCCAGTTCCTCATCTATACATTGGAAGCCACTGAAA TTATCTTACAGTTACTTTCAGTTGCGAGGACTTGCTCTTTTTCTCTCATTAAAAGGAAA ACACAAAATATAATTTATAGCTTATCCTACCACTTTGTGCTGCTAAGGTTAAAATCCAGG GTAGTGGCCAGGCGCGGTGGCTCATGCCTACAATCCTAGCATTTTGGGAGGCCAAGACGG GTGGATCACCTGAGGTCAGGAGTTTTAGACCAGCCTCACCAACATGGAGAAACCCCATCT CTACTAAAAATTAAAAATTAGCTGGGTGTGTTGGTGGGCACCTGTAATCCCAGCTACTC GGGAGACTGAGGCAGGAGAATTGCCTGAACCTGGGAGGCAGAGGTTGCAGTGAGCTGAGA CTACAAACTGGGTGGCTTCAAACAAGGGAAACTTATTGTCTTGCAGTTCTGGAGGTTAGA AGTCCAAATCAAGGTGTCGGCAGGGCCATGCTCCCTCTAAAGCAGCGGTCCCCAACCTTT TTGGCACCAGGGACAAGTTTTGTGGAAGACAATTTTTCCACTGACCAGGGTGGGGGTTGG TACATTGTAATATAATGAAATAATTATACAACTCACATTCCATAATGTGGAATCAGTG GGAGCCCTGAGCTTGTTTTCCTGCAACTAGATGGTCCCATCTGGGGGTGATGGAGACAGT GACAGATCATCAGGCATTAGATTCTCATAAGGAGCATGCAGCCGAGATCCCTCGCATGCG TAGTTCACAATAGGGTTCGTGCTCCTGTGAGAATTGAACGCCTCCACTGATCAGACAGGA TGCTAACCTCCTGCTATGTGGCCCAGTTCCTAACAGACCATGGACAAGTACAAGTCCATG CCTAGCTTCTGGTGATGGCTACCAATCCTTGGCATTTCTGGTCTTGTAGCTGCATGACGC CAATCTCTGCTTCTGTTGTCCCATGGTGCTTCCCAGTGTCTCTGTCTTCACAGCTCTTCC TCTTCTTATAAGGATATGACGGTATTGAATTAGAGGCAGGGCACAATGGCTCACACCTGT AATCCCAACACTTTGGGAGGCCAAGATGGACAGATCACCTGAGGTTAGGAGTTGGAGACC AGCCTGGCCAACATGGCGAAACCCCGTCTCTACTAAAAATACAAACATTAGCCAGGGGTG GTGGTGGGTACCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTCAAACC CAGGAGGCAGAGTTTGTAGTGGGCTGAGATCATGCCATTGCACTCCAACCTGGCTACAGA

Page 49 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

GCAAGCCATCTCAAAAAAAAAAAAAGATGTAGGCCCCTGGGAAGGATGCCTGGCACACTC AGAGGTGGGACAATGGTGACAGTCCTGACACTTTCCCTCTGGAGAGCATGGACCCCTGGT TGGGCCCTTCCTGCCCAGGAACTATTCTGATTCTGCAGCCCTCAGGCTTTATTGCTTTTC CTGCTTAATGAGGTGAGGTTCGCTCAGCCCAGTGGCAATTCCTGTAAAAGCCATTTGGAT ATACTTTGCCCCCTTCCAAGGACGGTAATGAGGTTTGAGGCTTCCAATGGGGGCAGGGGA TGATCTGGGCGCCAAAAGCCCTGGCCTGGGGTCAAAAGATCTGGGCTCCAGCCCCAGCCG GGCTAACTAGGCAGTCTCCTGTCTGAGCTGTACTCCCCTCATGGGTGAAATGGGGATACA GGCACATACTTTATAGCCTGCAGTCTGTGTGTAACAGAGAACCATAAGCTGGTGGGTCGG GGAGTGGGGCTGGGGGTTATTTCTCATGGTTCTGGAAGCGAGGAGTTGGAGATCAGGGTG ACTGCATGGTAAGGTTCTGGTGAGGGCCCTCTTCCAGGTTGCAGACTATGGTCCTCTCAT TTCATCCCCACGTGGAGGGAAGAGGCAAGAGAACACTCTGGAAGTTATAAGAGCACTAAT CCCATTAATCCCATTCACCAGGCCTCCACCCTCGAGATCTATTCACCTCCCAAAGGCCCC TCTCACACAGTGTTGCCAGGCTGTAGTGCAGTGGCGCAATCTCTGCTCACTGCAACCTCC ACCTCCCGGGCTCAAACAATCCTCCCACCTCAGCCTCCTGAGTAGCTGGGACCACAGGTG TGCACCACCACCTGGCTAACTTTTTGTACTTTTAGTAGAGACGAGATTTCACCGTGTT GCTCAGATTGGTCTCAAACTCCTGAGCTTAAGTGATTTGCCCACGTTGGCCTCCCAAAGT GTTGGGATTACAGATGTGAGACACCACATCCAACCTCAACATATGAATTTTAGAGTGACC CAAACATTCAGTCCATCACAGTCTCCTGCAGGATTACAGATGTATAATCAGTCTGTAATC CACAAAGTTCTAAGCAAAGGAAAAGAAGTACCAATATCACTATTGCTATTGTTATTATCA GCACCCAAGACCTTCCCCAGTCTCAGTGAGTGGAATATTAAGATGATCCCAAAGACGCTC GACTTCTCTAACCCGTAATACTCACAGGTTCCACCCCTTTGATTGTGGGCAGAACCTGTG AATATTATGATCTGACTGCCATGGTTACCTTATATGACAAAAGGGAGATTAGCCTGGGTG TGAGACCGAGTCTCGCTCTGTCACCTAGACTGGAGTGCAGTGGCATGATCTCAGCTCACT GCAACCTCTGCCTCCCGGGTTCAAGCAGTTCTCCTGCCTCAGCCTCCTGTTGGCTCTTAC CTTTGGAGGTGAAGGTGGCCAATACAGGAGGCCTCTAGAAGCTGAAAGCAGCCCCCCAGT GACAGCTAGGAAGGAAATGGGGACCTCAGTCCTATGGCCACACGGAACTGAATGACCTTG GAAGTGGATTTGTCCCCAGATCCTCCAGACAAGAACTCAGCCGGACCAACATCTTGCATT TCAGCCTTGCGATGAGCAGAGAACTCAGCCATGCCAGACTCTGGACCAACACAGCTGTGA GCTCATACATGGATATTGTTTTAAGCTGCTGGGTCTGGGATCATTTGTTACACAGCAATA GAAAACCAATACATACTCTGTCAAGGAAGCCTGAGAATGGAAGGCCCCTACTCAATCTAC CCTCCCACTATAGTCTGGTGGTTAGAGACAAGGGCTCTGGAGTCAGATGGAACGGTGTTC GAATCTTGGCAATTCCATCCACTGGCTGTGGAACGTTGTCCACACTCCCTTCCTCACCTC TTATATCCTCGGTTTCCTCATCTGTGAAATAGCAGTGGAAATAAAATGCATGGAAATCAT CAGAGCAGGGTATGCATCGTAAGGACACATAGTAATAGCTCAAGAAACACTGTATATGTT AAACATTAGAAACGAGCTGAGAACTAACACCAATGCACCTGTGTTCTTCAATGCACTGCC TACACACCAGAGAAGAGGGGGAGGAGCCCAGATCTGCTGCTCTGGGAGCTACAGGCCAAT TAGGGAATCAGGAACCTGAACAGAAAACCACAACTTCAGGGAAAGTAGATGGTACATGTG TTATGTTATTGTGGACATGGCGGGCAAAGACAAGACCTTAGGTCTTTGAACTCCCCCTC GGAGTCTGGCACAGGCCTGAGTGGAGCTCCCTCCTCAAGACTTCCTTTGCACTGGCTTCC CTGAGGAAGCATTTGCATTTAGGGTTCTGCTGTGGAACCTCTTTCTCTTGATCTACATGA AGCCTGAGGCCAAGGCCTTACACCTGTAAGGGAGGAGGTGGCCCTGGGCCCAGGAAAAGG

Page 50 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

GTGGGTCCAGTCTCCCAGTTCTGTCCCTGGCATGTACTCTCCCCAGGCCTATCCCACCCC CAAGTCCTCCCAGGCTCCAAACCCTGAGGCCCCACCGACTGTCACTCAAGAAATCACCGA GGCTGGGCATGGTGGTCATGCCTATAATCCCAGCACTTTGGGAGGCTGGGGCAGGTGAA TCACTTGAGGTCAGGAATTCAAGACCAGCCTGGCCAACATGGTGAAACCCCATCTCTACT GAAAATACACAAATTAGCCAGGCGTGGTGGCGGCGCCTGTAATCCCAGCTACTTGGGAG GCTGAGACAATAGAATCGCTTGAGCCTGGGAGGTGGAGGTTGCAGTGAGCCGAGATTGCA TCTCTATACCCATAAGCACAGCCTTGACCGAAGTCCTGACGGCTGAGCATGCAGCTCAAA AGCAAGCGCTGGAGAGGATGTGGGGCAACTGAAACCCTGGTACGCTACTGGTGACATGTA AGAGGGCGCAGCTGCTTTGGAAAACAGCTTGGCAGTTCCTCAAATGGTTAAGTATGAAAT TAAGCAAATGGTTAAATGTAAATACGACCCAGCAGTTCCACTCCTAAGTATACATCCAAG AGGAATGTTAACATATGTCCACGCAAAACCCATACACAGACATTCAGAGCAGCATTACTC ATAGTAGCCAAGAAGTAAAAACAGCTCAAATATTTATCAGCTGATGAGTGGGTAAACAAA ATGTGGGACAGCCATACAAAGGGACACTATAGGGCCATATAAAAGGGACCAAGCCCTGAT GCATGCTGTGAGACAGATGAACCTTGAAAACGGTATGCTAAGTGAAAGAAGCCAGAACCA GCAGGCCACAGAAGGTATGGCTCCACGGACAAGCCAGGTCCAGAGCAGGCAAATCCAGAGA AATAGGTATGGGGTTTCTTCTGGGGTAAAACTGCTCTGGATTTAGATAGTGGTGATGGT TGCACAGCTTTGTGAATATGCCAAAAAAAAGAAAAAAACACTAAATTGTATACTTTTTTT TTTTTTTGAGACAGCCTCCCTCTATTACCCAGGCTGGAGTGCAGTGGCACAATCTTGGCT CACTGCAACCTCTGCCTCCTGGGTTCAAGCGATTTTCCTGCCTCAGCCTCCTGAGATTAC TGTCCATGCTAGAGTGCAGTGGTGCCATCTTGGCTCACTGAAACCTCTGCCTCCCGGGTT TTGGCTACTTTTTGAATTTTTTTGTAGAGACAGGGTTTTGCCATGTTGCCCAGGCTGGTC TCAAACTCCTGGAGTCAAACAATCCATCCGCCTCGGATATTTCTCACTGGCATAATCAGT GCTGAAAGATCATTGAAAAGGGGCTTGCATGATCCAGAGGTCACTGTTATTTAATGCGCT CTCCTCATCTCCTGCAGGTTGTGACTTCAATATACCCTCTCATGAGACCTTTCCTGGCCC CTTATCTGTAAGTGTGACCACCGGGACCCCGTCTCCCAATTCCCTCTTCCTGCTTTATTT TTCTCTTTAGCATTTAATACCATCTGACATTCCAAACATTACCTTGTCCTTGTCTGGTGT TTGTCACCCCAACTAGAAGTGCTAGGGGGCAAGTACTAGGAAGCAGGGTTTTTTCTTTTT CTTTCCTTTTTTTTGAGATGAAATTTCTCTCTCTTGTCTCCCAGGCTGGAGTACAGTGGCG CAATATCGGTTCACTGCAACCTCCACCTCCCGGGTTCAAGTGATTCTCCTGCCTCAGCCT CCCAAGTAGTTGGCACTACAGGTGCCTGCCATCATGCCCAACTAATTTTTGTATTTTTAG TAGAGATGGGGTTTCACTCCGTTGGCCAGGCTGGTCTCGAACTCCTGACCTCATGACTCT CCCAGGAGGCAGAGTTTTTTTTTTTTTTTTTTTTTTTTGAGATGGAGGCTTGCTCTGT CACCCAGGCTGGAGTGCAGTGGCGCAATCTCGGCTCACTGCAAGCTCCCAGGAGGCAGAG TTTTTGTCTGCGTGGTTCACTGCTAAGTCCCCAGCACTAAGAGGACAGGACCTAACACAT TCCTCTCTTATATCAGCTTTGTTCCACATCTTACACTTAGGAGGTGATTCAATTAAACAT TCAACTTCCCAAACTCAGGTGATTCTCCCACCTCAACTCCCCGAGTAGCTGGGACTACAG GCACGCACCACCACCAGCTACTTTTTGTATTTTTAGTAGAGATGGGGTTTCACCATGT

Page 51 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

GTAAATGAACTCATCAACGAATTTCTCCCTGGGTAGCGAAGCTCCCGCTTTTTGAGGTAA CCCAGACTTTCATTTGTATGTTTCCTGAGTCCCTGACTGTACATTCTTCCTGCATATTG TCTCCAGGACTAAGAGAATGGAGCCTTTTGCCAAGAAGAGGTTGCGTTCTCAGGCCTCCA GTTTAGATTAAATAGTGGTTTTACAAGGGGAAACAAAGTGACAAACCCCCAGAAGTTGTG GGGAGCTGAGACGGGGTGGGAATAGGGTTCCCCAGGGACAAACTCCTTCTTGTCCCCCTG CCCAGCGCCCAGGGCACACTGCCCAGTGGGTGAAAGCAGCCAGACACACGGGCTCACTG CAGTTACCAAGCAATCCTAAGTGTATCAAGATGGGCGCGCTGACGACAGCTGCACCGAGT GAATCTGGAATGAATTGGGGGGGTTGTTAAGATCGCCGACTTAAGCCTCTTCTCACAGGAA AAATATTTATTTCACTGAGCTCTGCTTTTTGGAAAGCTGCGCCTGTAACAGTCTGCATCG ATCTAGCAGAGTTTTGGCTACTGCTGGGTTTTGTCTCCCTCTGTCTCGGTTAGCGTGGG CTGTGTGTGTGTGTGTGTGTGTGTGTGTGTCCACAGCACACCCTCCCATTATTA AGCAATCAGCCAAAAGACTCAGCCAGGACACTCTGCTCTTCTTTAACCAGAAAAAAAGATG AACACGAACTGAGTTCGTGGCATGAGGCACGAGACCTTCATGTTTTATCTTCAAAGATGC CTGCTTGAAACTAGCAATTGTTTCTTTTCCCTTTTTATCTAGTAAATTGCTCCCTCTACCT CCTCCCAGTTTGGGAAAAAATACAAGTATGAAGAAGAAAGTAAAAATCACTCCTATGGT ACGGAGTCTCACTGTTGCCCAGGCTGGAGTGCAGTAGCATGCGATCTTGGCTCACTGCAA CCTCCACCTCCTGGGTTCAAGCGATTCTCCTGCCTCAGCCTCCTGAGCAGCTGGGACTAC AGGCCCGCATCACCATGCCCGGCTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCA TGTTGGCCAGGCTGTCCTTTCCTTTTCTACTCTTTGGAGTCGAGGGGCCTGGGTTTGAAT CCTAGCTCTGCCACTTGCTGGCTGTGTAACCCTGAGAATCATGTCACCACTTGGAACCTC GTAAACAAGAGAAAGTATATATAGAGCTTAGTGAAGGTTCAGCAACAATAAATGCAAATG GTACCTATTTTATAGGAGAAATATATACAATTTTTTATCTTCTTTTTCATAAAACAGTAT AGCGTATACAGTTTCCTGTTTCACTGCCTCATTTTAGAGGCAGAGTCTTGCTGTGTTGCC CAGGCTGGCCTCAAACTCCTGTCTGTGCTCAAATGATCCTCCTGCCTCAGCCTCCTGAGT AGCTGGGATTACAGGCACCCACCATGCCCGGCTAATTTTTGTACTTTTAGTAGAGAC GGGGTTTCATCGTGTTGGTCAGGCTGGTCTCGAACTCCTGACCTCATGATCCGCCCACCT CGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCTACCGTGCCCGGCCAACTCACAAGC ATTTCTAATGACTGCAAAATAGTCCATTGGGGGCCCATCCCTACATTAGTTTTTAAACCG TTTCCTATGGATGGAAATAGAAGTTGCTTCCGAAATATTATAAAGATTGCTGTGATAAAC ACCTCCAGACTCAAATCTTGGTCTATGTTTGAGGCTCTGTCTTTAGGATGAATTCTCAGA AGTTAAATTGTTGGTCAAATAGTATGATCACTTCCAAGAGCCTTGATATACCATACTTAG CACTGCAAGTTGCTTTCGAGAAAGATTACCTACAGATGTGTATGAGAGAACCCTGTGGCC AAGCGAGGTGGCTCATGCCTATAGTCCCAACACTTTGGGAGGCCAAGGTGGGAGGATCAC TTGAGCCCAGGAGTTCAAGACCAGCCTTGGCAACATAGTGAGACCCCCATCTCTCCACACA CACAAAGAAAGAGAGGCTGGGCATGGTGGTTCACACCTATAATCCTAGCACTTTAGGA GACCTAGGCAGGTGGATCACTTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGCA AAACCTCATCTCTACTACAGATACAAAAATTAGCCAGGCCTGGTGGCATGTGCCTGTAAT CCCAGCTACTTGGGAGGCTGAGGCAGGAGATTGCTTGAACCTGGGAGGTGGAGGTTGCA GTGAGCTGAGATCACACCACTGCACTTTAGTCTGGGCAACAGAGTGAGACTCTTCTCAGA AAAAAAAAGAGAGAAAGAGAGAGAGAACCCATCTTACCACATCCCAGCTGCATTGAGGAT TATTACCTTTTAGTTGTTAATTTGACAGGCAAAATGACATCTCATTCTTAAATCTGC ATTAAAAAATTTCACCCAGTATTTTTCTAATACTAGTTTTATTGGCTACAATGTGTTGA

Page 52 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

TTGAGAGACAGGGTCTTGCCTGTTGCCCAGGCTGGAGTGCAGTGATGCGATCATACCTCA GTAACAGGGCCTCGGTATATTGCCCAGGCTGGTCTCAAACTCCTGGGCTCAAGTGCTCCT CCTACCTCGGCCTCCCAAAGTACTGGGATTACAGGTGTGAGACACCATACCCAGCCTCCA TAAAATGTTTTAATCAAACTTCTGGGTATGTACCCAAAAGAAGCGAAAGCAGGGACTCTA ACAAATATTTGTACATCTATATTCATAGCCACATTATTCATCATAGCAAAAAGGTGCAAG AGACCCAAATGTCCATTGACAGATGAATGGATAAACAAAATGTGGTGTGTATATATGCAA TGAGATATTATTCAGCCTTAAAAAGGAAGAAAATGTTGACCCATACGACAACATGGATGA ACCATGAAGACATTATGATAAGAAAATATGCCCATCACACAAGGACAAGTGATGTATGAT CCTTTTATATGAGGTTCCTAGAATACTCAAATTCAGAGACAGAAATCAGAATGGTTGGAC TGAGCGAGGTGGCTCACACCTGTAATCCCAGCACTTTGGGAGACCACGGTGGGAGGATCG CTCGAGCCCAGGAGTTTGAGACCAGCCTGGACAACAGAGTGAGATCCTATCTCTACAAAA TAAAACTTTTTAAAAATTAGCCAGGTGTGGTGGTATATGCCTACTACTCAGGAGGCTGAG GTGGGAGGATTGATTAGACTCAAGAGATCAAGGTTACAGTGAGCTGTAATTGCCCCACTG TTTACATGTTATTTATAAGATGTTATTATTACCCTCCAGCCTTCTTTAAAAGATGATGA AACTAAGGCTCAGAGAGATGAAACACGTTCCTAGAGTCACATAGCTTATAAATGGTGAAG ACAGGTTTAGATGCCAGGTCTTACTCTCCAAGGCTACGTTATCCTGCAAATTCTGGTGGA CCTGGGAGGTAAAGGGGAAATACAATCAAGCTCTAGGTGGCAGATGGAGTTAGCAAGTAC CCAGTGCCAAACGGAACTGTTGGCCCTGAGAGCTCAGAGTTCAGTTCTAAATTTATTCTC TCTGACCTTATTGTGGATTCTAAATTTGGCCAAACAAGTTCTTCCAGACCGATTAGTGAC TGCAGCATTTGCTTGCAGAAGCCACCCTGCCGCTGGTTAACAGCCATCTGAAAATGATTC TGGGTTTTCCACCTGATGGTGGACACATGTGCTTGTTGGCCGATTTCTTGGGGACAGTGA CATCAGGAAATATCCAGGCATGAAAATTCTAACCAGGGCCGGGTGCGGTGCCTCACAACT GTAATCCCAGCACTTTGGGAGGCTGAAGGGGGTGGATCACCTGAGGTCAGGAGTTTGAGA CCAGACTGGTTAACATGACAAAACCCCATCTCTACTAAAAATACAAAAATTAGCCAGGCG TGGTGGCAGGCACCTGTAATCCCAGCTACTCGGGAGGCTGAGGCGGAAGAATCACTTGAA CCCTGGAAGCAGAGGTTGCAGTGAGCCGAGATCACACCATTGCACTCCAGCCTAGGTGAC AAAATTCTCCCAAAATTACAAATTAAGACCAAAATAGGCCTCTTTGGGTGGTTTCCAGGC CAGGGAGGAGTTATGGGGTCCTCGGATAATCACCAGCTGAGTCCTGACTTCTCTGGGAAG GTATTGGGGTGACTGACCTGTTTGTGACCCCTTCTCAGACACCCTATCTCCAATCAGGTG GAGGAGGCACGTGACCCACATGGTCTGGCCACTGATGACTGAACAAGCTATGGACACCGG ACCCCGGAGAGACCATTCACTCACTGGCCACGAACATGAGTTCAGATACATGCCCCAAAA GGATGAGCCTGGGTACTGGATTCCCTCCCTCAGAAACGTGAATCAAGAGACACAGGATGT TCCTGTTGGTCCAGATACTTGAGCTAAAAGGTGATGGATACCTGGATGTGGGGTGGTCAT TCTGGGGAGTACGTCCATATAGAAAGAGGAGCAGGTGCTGTGGGATTCTGGATCCCAGTG ATAGAGCTAAGTGGCTGGATCAAGCTTCACCTGAAACCCACTCTACTTGTCTTAGTCCAT TTTGTGTTGCTATAAAAGAATACCTGCAACTGGGTAATGTATAAAGAAAAGAGACTTATT TCATTTTATAGCTCTGCAGTCTGAGACATTTAAAGGGATGGCCTTGACTTCTGGCAAGGG CTTGCACGTTGCATCACCACGCAGGAAAAGGGAAAACAGAAGGGAGACTGCAAAAAAG GGGAAAACCTGAAGGTCATCATAGCTTTATAATAACCCACTCTCACAGCAATGAGTTAGA

Page 53 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

TGGAGAACCAATŤCAGTCTCACGAGAGTGACAGCAAGAACTCACTCACTGGTGAGAGGGT AGCACTTCCAAGCCATTCATGAGGGATTCACCTCCATAGCCCAACACCTCCCACTAGGCC CCGCCTCCCAACACTGCCACAGTGGAGATCAAATTGCAACATGAGTTTTGGTGGAGACAA ACACCCCTATCCAAATCACAGCACTACCCCCGAACTTTCCATTACACGAACCAAAGAAT TTTTGAGACAGGGTCTTGCTCTGTCACCCAGGCTAGAGTGTAGTGGCACAAACACAGCTC TTGTAGAGGCCGGGTGCGGTGTCTCATGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGT GAGTGGATCACCTGAGGTCAGGAGTACAAGACCAACCTGACCAACATGGTGAAAAACCTGT CTCTATTAAAAATACAAAAATTAGCTGGGCGTGGTGGCACATGCCTGTAATCCCAGCTAC TCGGGAGGCTGAGGCAGAGAATCGCTTGAACGCGGGAGGCGGAGGTTGCAGTGAGCCAA AATCACGCCACTGCACTCCAGCCTGGGCAACAGAACGAGACTGTCTTAAAAAATAAAAAA AAAAATTGTAGGGACACAGTTTCACTATGTTGCCCAGGCCAGTCTTCAACTCCTGGGCTT AAGCAATCCTCCTGTCTTTACCTCCCAAAGTGCTGGGATTACAGGCATGAGCCACCACAC CCAGCCTAACATGTTTTTAATAACCAAAAGAAAATAAACATCTCCATAGCCTTGTGACAC ATCCTTTTTTAACCTGAAATTGGTAGAGTAGGTTTCTGATTCATAGAACCCAAACAACA TTCCTCCCTAAAGCAGGCAGAGGCTCTTTGGGAGAGTTTACTTTCAAAACAGTGTCCCTG CAAGTCCCAAGTGACAAGTTCCCCTTTCCTGGTCTGAAGCATTCTGAGGAGAGGCAAAGA GGTTAAGGCTTAGCTGCAGGAACACGCTGTCCCCACGACAACCCCTTCTCAGCCTCGGAA CTGCTGTTATCAGAGTTGTGTTGTCTCTTGAAGGTCCGGACAAAGGGTGAAGCCAGGACT CCTGAGTCTAAAGGGCAGGTCGGGGCCTGGGAGAGAGGGGAAGCTGGCCTGGGGCAGAG ATATGTTTTCCATTTCCCCTGGGGTCCCGCGCAGGACAGCTGCTGTCCATAGCCAGTTCA AACATGGGGCTGATGGGCTCCAGGCGTGGCACCTGTGCCACTACAGTGCGGGGAAGCTCT GACTGCTGCAGCCTCCGTTGTCGCCACATCTGCCCTCGAATTTCCCTTCCAGCTGGTTCT GCAATCAGCAGCCCCTCCAGACATCCCTGGGAGGCTCCAAGGAGCTGACTCCTGATGAGG AAAAGGATCAGCCGCAGACTCACTCCTCCAGCCACTTCCAGACCCACGGGAGGCGTG GGTGTGACCCAGACTACCTGGGAGCATCTGCTTTTGTCTTTATCCAGGGCAGGACCCTCT GAAGGAGGAGCCCTCAGAGAAGAAGGGAAAAGCCAAAAGGAATTAAAAGCCAATTTCCAA ATGGAAATAAATAAGCAGTCATAATTGGCCACATTGGTGAAATTGGGCACTAAGGGCCAG GCAATGGGCTGTGGGATAATGTCACTTGAGGCTTACGGCCACGCTCAGAGGAAGGTGCTG CAGGGCTAGCTTGGAGCCCAGGTGGTGGACTTCATAGGTGCAGCCGTGACTGCTGTCATC CCTCCCATGGGGAGTTGTTGCAGAGAGTGAGACACAGCGCCCTAAGCTATTTCTCCATCT GGTGTGCCTGGATGCCTCTGCCCACCCAGGACCCTCCTCTCGGGTGGCCCACCACTGCCC TTCCATCACAGTTCATACCTTCTCTCGTGGACCCACAGGGGTGTCCACTGGACCAGGACC TTCTTTCCAAGCCTCAGCTTTCTCACCTGTACAATGGGAGTTTGTGCTAGACAAGAAGTT TTCAGGACGACACAGTGGCTCACGCCTGTAATCCCAACACTTGGGGAGGCCGAGGCGGG TGGGTCACTTGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACATGGTGAAACCTCATCTC TACTAAAAATATAAAAATTAGCCAGATTGTCATAGCGCATGCCTGTAGTCCCAGTTACTC GGGAGACTGAAGCCAGGAGAATCACTTGAACCGGGGAGGTGGAGGTTGCAGTGGGCCAAG AAAAAAAGTTTTCAAACTGCTGACTGCACCTGTTTGTAGGCCCTGAGCTCAACTGAGTG AGTCACACAGGTATTCACTGACGTGATTCTGCCTCCAAGGCCACATTTTCTCCAGTGCAC

Page 54 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

CTCTGTCCTTCAGCAAGTGACCTGAGGCTGGGACTGCCACATGCTGCCTCCCATCAGCAC CTTACCCAGACCTACTGCTGCCTACAACGTGCTTAATGATTGTCAGGTGGCTCACATACC CTGTTCTGTTCGGCTTCACAGTGTCTGCCAGCCCGTGGAGTATGGCACAGTGGCTACTAG CCAGGGTCAGGCAGTGCGACTCCACCTCTCCAAGCGCCCCAGTGCAGCGTCTGATCATAG GGAATAACTCTACCTGCTTCACAGGACTATTCTGTGAATACTAATTAGGATAACATATGT GAAGGTCTTGGCGTTGTGAGCACATGAGCCCAAGGTCAGCTCCCTAAAATGATGAAGTTC ATATCACAAGAGGCCCCTAGAGGTCAGGACAGCCTTTCGGTACCTTTCTATGGCAAACAA GCGGCTGGTTCTCTGCCACCTATTTTCTCCCCCTTCATTGGGCAAGACTGAGCTGGCAGAA TTGTCCCCCCATCCAAGACAACCCTGATCCCCATCCCCAGAAGGAAAACACCTCACCTCT CTCACAATTTGAGAATGGCTGTCAACTCGAGCACATTATTAGATTTAATTGTATCTAATA GGAGTTTCATTCTTATTCCCCAGGCTGGAGTGCAATGGCGTGGTCTCGGCTCACTGCAAA CTCCGCCTCCCGGCTTCAAGCGATTCTCCTGCCTCAGCCTCCCGACTTGCTGGGATTACA GGCTCTCGCCACTACACCTGGCTAATTTCTGTATTTTTAGTAGAGACGGGGTTTCACCAT GTTGGTCAGGCTGGTCTCGAACTCCTGGCTTCAGGTGATCCACCTGCCTCGACCTCCCAA AGTGCTGGCACTATAGGCGTGAGCCACCGCACCTGGCCCCAATATATTACTTTCAAGGAC AAAAACTGCAATTACTTTTGCACCAACCTAATATTTAAGGTAGGACACCGTGAAGCCCAG TGAGATCTCTGTGGTGGACAAACAGCGTGGCTGCTAGGCTGTGAGCCCTCCCGCCTGTCT GCTCTCCATGCTGTGCGCCACTCCTGAGAGCTGGGTCAGCAGTCGCACTGTTGGCTTTGC TCTGACCTCGAGTCTATTTCTTTTCCATGTGTGTGTGCAGCCGCTGCCTGGAGTGGAAAT GGGCTGGCTGAGTCAGGAGGGTTCTCTGCCTGAGTTCCCGTGTGACATTGGGCAAATCAC TCAACGCTCAGAGCTGCGCATTTTTATCTCCATCTGCTTGGAGCAGGAATTGCAAAGAGT TTCAGCTCAGGTTCCAACGCCAAGGTGGGAGATATTGGTTGCTTTGGGTATAGTGTTGAG ATAGATTCTGAGGCTGTGTATGGGCTCACTAGGAAAGGGTGCTGTGTCTGCCATGAAGTG GGAAATCGGTGGGGGAAGAAAAAAGAAACCCGGCTGGGCACGGTGGCTCACACCTGTAAT CCCAACACTTTGGGAGGCCGGGGCAGGAGGATCACCTGAGGTTAGGAGTTTGAGACCAGC CTGGCCAACATGGCAAAAACTTGTCTCTACTAAAAATACAAAAATTAGCCAGGCATGGTG GCGCATGCCTGTAATCCCAGCTACCTGGGAGGCTGAAACAGGAGAATCACTTGAACCCAG GAGGCAGAGATTGCAGTGAGCCAAGATCATGCCACTGCATTCCAGCCTGGGTGACAGAGC GGTGCTGGCCGGGTGCGTGGCTCACGCCTGTAATCCCAGCCTTTTGGGAGGCTGAGGCA GGAGGATCACTTGAGCCCTAGAGTTCAAGACCAGCTTGAGCAACATGGCAAAACCCTGAC TCTACTAAAAATACCAAAAAAAAAAAAAAATGCTGGACGTGGTGATGTGTGACTGTGGT CCCAGCTACTCAGGAGGCTGAGGCAAGAAGATTGCTGGAGCCTAGGCCTGTCTGGCTAAC CTCGCCTGTCGCCCAGGCTGGAGGGCAGTGGTGATCTCGGCTCTCCGCAACCTCCGC CTCCCGGGTTCAAGCAATTCTCCTGCCTCAGCCTCCTGAGTAGCTGGGATTACAGGCACG CACCACGACACTGGGCTAATTTTTTGTATCTTTAGTAGAGATGGGGTTTCCTCATGTTGG CCAGGCTGGTCTCGAACTCCTGACCTTGTGATCCACCCGCCTTGGCCTCCCAAAGTGCTG GGACTACAGGCATGAGCCACTGTGCCTGCCGGGTGGGTTTCTTATGGCGAATGATCCCAC CTTTTGGCCACCATGACTGGTTCAACCAAGGAATCTGCTCCAAGCTAGGTGAAGGAAAAT CAGCCCTAAGGCCCCCGTCGCCACGCACCTCACTGTATCCAGCTATACCTAAAGCCAAA CCGAATCCCAGACATCTAAATTTTATGAGCCAGTAAATTCCCTTCTTTGCTTAAGCCAGT Page 55 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

ATAAATCAGGGTCCCATCCCTTGTAATGCTGAGTCCCAAGGCCCAGACTCTGGGCCTTTC GTTTTTCCATTCAGGCCCCAGAATGAAGACCAAGGAAGGGTTTATTAACATGACAGTGAA CATCTAGGGCCTTATATACATTTTCTTCAATTCAGCCAAGACAAGAGGCCTAGAATACA GAGACGGAGTCACGCTCTGTTGCCCAGAGTCACGCTCTGTTGCTGGAGTGCAGTGGCGCA ATCTCGGCTCACCGCAATCTCCGTCTCCCGGGTTCAAGCAATTCTCCTGCTTCAGCCTCC CAAGTAGCTGGGACTACAGGTGCCTGCCACTACACCCAGCTAAATTTTGTATTTTTAGTA GAGATGGGGTTTCGCCTGTTGCTCAGGCTGGTCTCGAATTCCTGACCTCAGGTGATCCAC CTGCCCCGACCTCTGAAAGTGCTGGGATTACAGGCGTGAGTCACCACGCCCAGCCTAGGA GCGTCTCACTCTGTTGCCTAGGCTGGAGTGCGGTGGTGCCATCTCAGCTCACTGCAACCT CTGCTGGGTTCAAGCGATTCTCCCTCCTCAGCCTCCCAAGTAGCTGGGACTACAGGCGTG TGCCACCATGCCCAGCTAATTTTTGTATTTTTTTTTGTAGCAATGGGGTTTCACCATGTTGGC CAGGCTGGTCTCTAACTCCTGGCCTCAAGTGATCCACTGCCTTAGTCTCCCAAAGTGCTG GGATTACAGGCGTGAGTCACCGCGACCAGCCTAGGACACCTATTTCTTCAAACATAGGAA GAAACATCTTATCTGCATGATCCCTCCTGGGGAGCTATCTTACGGTCTTATGTGATAAGG TGACCTCTCCTTTGGGTGAGTGGAGTAAAAAAGCGGGCGAGGTATCTGGAATATGCTTCT ATCCCTCCTAACCTCCCCTACAAACAAAGCTTTCCTGAATGCCTTGTCCTTAGCTTCCTG GACTCTGAACCTAGCTTGGCTAAATTTTCTTTTTAAAGCATCAGCATAAATCATGAATAC CTTGGGAAGGGAACATTAACCATCAGCCGGCAAAGTTAAAATTCCCCTCCAGCCCACTTA AATGGACTGAAACCTCCACCCCATCCCCAAACGAGCCTCCCTGGCCTTGTCCTTGAACAT TTTGAGAGGGAGTCTCGCTCTGTTACCCAGGCTGGAGTGCAATGGCACGATCTTGGCTCA CTGCAACCTCCACCTCCTGGGTTCAAGTGATTCTCCTGCCTCAACCTCCCAAGTAGCTGT GATTACAGGCACCCGCCACAACGCCCAGCTAATTTTTGTATTTTCAGTAGAGACGGGGTT CCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCGCCCGGCCGCTGCTTTAAGTTCTTA ACACGTCCTCACCGCGCTCAGCTCACTGTACGGCCCCTGCATAGAGAGGGGAGGCCAGG GGCCATGATACTGAACTCACAGCTCTGGGCATTTCTGAAGTCTGGCCCTTGAAGCTTTTC CTAGAGCAAATTGTTTTCTTCTCCCCTTCAGGAAACTGAAAATTCACACAGCAGCCGTGG TTACGGGTAAGTTCCGTAGCCTCTCTGAGCTTCCATTTCTCTTTCTGTGGAAAGGGGATA CTAATACTGCCCACTGTGAGGGCTGTTTCTGAGATTCCATGCTGCTGTGACTAGCATCTG CCTGACTAGCAGAGGATAGTTACAGTGTCAGCGTCCATGGCCCTCTCATGAGACTGGGGC AGGGGGTGGGAAGGGTGTTTGGGACACCCTGGGAACCTTAGCATCATTCTGCCATGGGAG TATGACCTGCTGTTCCCTGGCTGCCCTCAGTCTGAGGCTTGCTCTGCCAGTCCCGGGAGA ACTGTCCACTCATCATCCCGGCAGAGACAGATCTCTTTTTCGCTGTGCACAGGTGGGGAA ACTGACTCTGCCCAGTCACCTGAGTCTGTTGACAGAGGCACCTGGCCATCTGTATCCTGG TCCTCAGCTCTGAGACCAGCAGGAAAGAGAGGGGGACATTCCTAATGGGGGACACAGTGA CCTTCCTCCTCCTGCCCCTGATGCTCCCACCACTGTGGTCCCCTGGTGGTGCCAACCACT CAGACTCCAGAAGCTGAGTCCCCTCTCAGTCCCATGAACAGGCAAAGCTGCTTCCTGCAG CTTTCCCACACACACCCACACAACAATCCAGACTCAGAGAATGGAGTGCCTCAAATTAGG GGAAATGGCCGGGCACAGTGGCTCACACCTGTAATCCCAGCACTTTGGGAAGGTCAAGGCG GGCGGATCACTTGAGGTCAGGAGTTCAAGGCCAGACTGGCCAACATGGCAAAACTCCATC TCCCCTAAAAATACAAAAATTAGCTGGGCGTGGTGGCGGGTGCCTGTAATCCCAGCTACT Page 56 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

TGGGAGGCTGAGGCGCGAGAATCACTTGAACCTGGATGGCAGAGGTTGCAGTGAGCCAAG CATGCACACTCACATATACATTATACACATATGTACACATGGCGCGCACACACCCCATACA TACCCAACCCTGGTTCAGGACCACCTCTCCTGACCCCTAGGCTAGGTCAGGCCACTCTCC TGACACCCTCATTACTCATAGGCTTTCTCTTCAGCACTTTTACCACGATTGTGACTAATT ACATGTGTGATCATTTTGGTACCAGGTAATATTAATAGCTCGAAAAATATTACTGGGCTT TCCTCTTTGGCCTTTCTGGGTAAGTAGCCCTTCCCCTCTCAGGCCTGAGGCACCTGGCTA CCTGGAAAATATTTGAATTTGTACAGAAGGAATAAAGAGGACCATGGCAGATCTAGTTCC TGATCATCAACACAGACTTTGCTATGAGACAGTAGGTTTAGAAGTCACCGCTGCGCACTG ACCCTCTGGGGGGCTTGGGAGGAAAGTGCTCTGAGACCACCCTCCAGCAGCTTAGGGGTGG GGCCCCTGGAGGTGCAGCAAGTTGAGAGGAAGGAAGCCCTGGTGTTTCGCTTTCCTTGGC CTCATTAAGACAAGGGGCAGAGGGACCTGCAGAAGGGTCTGGGAGTAGATGGCTCAGGTA GCTCATGCCTGTAATCCCAGTACTTTGGGAGGCCAAGGCGGGTGGATCACCTGAGGTCAG GAGTTCAAGACCAGCCTGGCCAACCTGGCGAAACCCCATCTCTACTAAAAATACAAAAAT TAGCCGGGCGTGGTGGCAGGCGCCTGTAATCCCAGCTACTCAGGAGGCCGAAGCAAGAGA ATCACTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCTGAGATCGCACCATTGCACTCCAG CGCTCTGAGCCAAGGTAGAGCCAAGTCAACCAGGCAGGCGGAGGCCCAGAGCATGAGTTT TACCTACTGCCGGTTTCGGCCAAAATGCCAGAAAGCCAAGCAGCAATCTTGGGCATCGGA CTTGGCTAGAAATCCCTCTCCTCGGGAAGTCTCGTCATCAACACCCAGACACCCCCAC CCCCACCCACCCAGTGCCAGCTTAGAGAAAAGCTGGGAGGAGCAGAAGGAAATTTG AGACCAAGCATTACCTAAAGGCCTAAAGTACTGGATCAGATTAAATTAAATCTAGTTCTT TTTCCTTGTTGCCCTATGAGTAGGCTTTGTGAGAAATATCAGATCCATTGCAGGAAATAA AGAAAAGACATGTTCTCTGCAGACCCACATGGCAGGTGAGTAAATGTACAGCATGGATAT CCGTCACCAGCGGTGCATTCCCCTAGGCAGCACCACCACCGTCCTGTGGAGCATTGTGTT AGTAGGCGCTCAGTAAACACCCATGAAGTGAGTCAATGTATGATTAAATTCCAACCCTGC TGGCTTCCTCTGGAAGGACAGGTTTTAAGTCAGATCCGACTGGGTTCAAACCTTGGCTTG ACACTTCTGCTATTTATTTATTTATTTGATTTATTTTGAGACAGAGTCTTGCCCTGACAC CCAGGCTGGAGTGCAGTGTGTGATCTCCGCTCACTGCAACCTCCACCTCCCGGCTTCAA GTGATTCTCCTGCCTCAGCCTCCCAAGTAGCTGGAACCAAAGGCATGCACCACCATGCCT GGTTATTTTTAGTTGTATTTTAGTTGTTTAGGGTTTCACCATGTTGGCCAGGCTGATCTC AAACTCCTGACCTCAAGTGATCCACCCACCTCAGCCTCCCACAGTTCTGGGATTACAGGC ATGAGCCACCATGCCCAGCCATGGGTAGGCACTTCTAATGAGCAGAATATGGCAAAAGGG ACAGGATGTCACCTCCAAGATTACGTTATAAAAGACAGTGACTTCCACCTTTCTCTCCC CACACACACATAACTTCTTGGCTTTCTTGCTTTGACACAGCAAGCTGCCATGCTGGAG Page 57 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

GCAATAGATAACTAATACAGCCACTCATTAGCTCTGCCCTCAGACCAGTTCTTAACCTGT ATGTGTGTACCCTCATCTGAAAATGGGCATAATAGCACATCCCCACCATACAGGCTAATT TAGATGGATGGATGGATGAGTGGGTAGATGGGTGGATGAGTGGGTGGGGATG GATGGATGGATGGGTGGATGGTTAGGTGGATAGGTGGATGGGTGCGTGGATG GATGGAAGGATGGATGGATAGATGGAACCACTGGCTGGAGCCGTGTGAATATCACA GAATCAGGAAGTGAAGCCCAATCAGTAAGTCCCGATGGGGCTGTGAATAACCCTCACTGA GCAGCTGTCACAAGGCTAAGCACCTGGCTGTCCCCCTAGGAAAGCCCCTCACCAAGGTGA AGCTCTACCTCCGTCCTCACTTCACCCGCAGCCCGTTCCTCCTGGGGCTGCAAAGGACCA GTGCTTAGAGCTACCTCTGGTCAGAAGCCAGCAGAGTCCTACAGTAAAAGGGGTTGGGGC CCCCTGCTGAGCTCAGTACTGAAGAGGGGGCATGGCCAGGCAGCCCCTCTGCCC TCCACCCAGCAACCCCCAGGCTAGATTCTGCCATCCTTTTCTCATTGATTATGTTCCCCA AGCCACAGCATCTGATAGCCCCAGTAACTGACTCTTGTGGGAAGGCCGCGGCCAGCTGGC CTGAGTCCCACAGCCTGACCATGGCTCCGTCAGTGGCCAGTCCTGGGGGGCAACAGGGACA CAGGGGAAGGGTCAGGCCCCAGCTCTCATGGTGTAACAGATACCAGCTCCAAGTCAGGAG AATGGACTTTCCACCTGCATGCACGTCACAGTGCCCAGAACCCTAACAGACATGCATCAG ACTTGACACCTTCCCCACCCACCACCCAGGTTTGGCTGCCCATAGAGGCGCACACCTGT CCTCCCATCTCCTCGGGCTGGAGCCATGTGAGCAGAAGGGGGATGTGAAGACAGATCCT TGATGTCCACAGGTGCGGGGACTGCTTGCCAACCCATGGCAACTCACCTGTAGCGCATGG AGATTTGGGGGTAAACCCAGTGATGCTGAGTATGTGGGCTGCCCAAGCTGGGTGGCAACC AACCCCAGCATTGAATGTGCTGAGAGCTGGACCGGTGGATGTCCCCACTGCCCTGAGGCA GGTCCAGGAGAAGGCTCCTACCTGCTGTGCAGAGGGCAAGGTAAGTCTTGTCCTTGATCT ACAGCCAGAAGACAGCAGGCTGCTTCTGTCTGCGTCCCAGCCTCCACTCTTCTCTAGAT ACCATCACCACCATGACAACTGCAGTTAACACTTAGTGAAGACCCCTAGGTGCCACGCGC CCATGCAATACCCACAGACCCCTCTGAGGTAGGCCCTGTAATGGTCCCTACGTTAGGGAG GGGCGGTCCCAGGCCCAGCTGGTCAGTGAGGGAGGTAGGATTTGAACCCAGGCAGCCTGG CTTTGGGGCATTGCTCTCTGCCACGTGGCCGGTTCCTACACCCTTGCCAGCTACCCCCTG CAAAGGTGGCCAGCCTGGCTTTGTCCTTCAGGATCCTCTGATCTCTCAGGGGCCTCCA ACCCACCACTGGCTCTCCCTGCTGACAAGCAACTATTTCCTGGCCCCAAAGCCCCAGT CTCTGGAAATGACCCTCCTTCCTCCAGCTCATGGCTGTCAGAGGCTCCTAACTGCAC CCACCCCGATCAGCCAAAGCCAATTACTCCACGTCCAAGACACAGGCGTGTTAAAATGT AAACGGCCATTCATCTGGCAGCGTGACCGTTTGCCCCTATCAGGCCCCAGTCCGGCC TCACCACGCCTCCATGCTCTCCTCAGCGTCAAAGAAACAGCCTTGTCCTGCCAGGGCCTT CGCCAGGCCCGGCCTGGGAAGTCAGGGCTCTCTGACCCAATGGAGCGAATCGTTGCGAGC ATTTATTTAATAGCATTATCTTGATGATGAATAAATCACACCTTCATGAACCATTTTTCC ATTTGTAGCCCCAAGTCAAGACTCCCAAAATGTTACCAGATGTCAGGCATGAAATATACA CCCCTGGCAAGCTCTGCCATGCACAGGAGTCATGCTGCTTTCAATCCACGGGAGAGCCGG ACACGAGCGTTCCAAGGCAGGAGCAGAACTCCATGTTGGCCATTATAAAGACAAGATTCC TTTTCCCCCGCTTTTTATAGCCTCTCTGGGTAAGATGTGTCTGGAAGGAGGTGTGGGCCA GGAAAGAGCATATGTCTGATGCCTGGGATTCCAGGACAGAAAGTACAGCCGACTCCAAGC TCTTGGGATGGGATTGGAGGGTCTCAAAACCTTGCCAGCTTTGGAGTCAGAGAGAAAAGA

Page 58 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

GTCCCAACCCCAGATTTATCATTTGCTAACAAATGTGACCTTGGGCAAATCAGCTCACCT CTCTGGCCCTCAACAGAGATAATCCTGGGACCTATTTCACAGTCATGGAGAGGATTAAAT GGGAAGAGGAATAAAAGGAGTTTGGAGAAGTGCCCAGGACATAGTATGCACTGAGCAAAT TCCGTAGTAAGAGGAGTATTAGTAATAGCTACTATTGATTAGGTGGTGTTGTGAGTTGAA CAGTGTTCCCCCAAAATTCATGTCCACCCAGAGACACAGAATGTGACCATTTGTGGAAAT AGGGTCTTTGCAAATGTAATTAGTTAAGATGAGGTCATACTAGATTAGGGTAGGCCCTAA GTCTAATGACTGGTGTCCTTATTAGAAGAGGGTAGGGCTGGGCACAGTGGTTCACACTT GTAATCCCAGGGCTTTAGGAGGCTGAGACAGGAGGATGGCTTGAGCCCAGAAGTTCAAGA CCAGCCTGGACAACATACTGAAACCCATCCAGTCTCTAAAAAAAGAAACTAAAAGCCAGGT GCAGTGGCTTACATCTGTAATCCTAGAACTTTGGGAGGCTGAGACAGGAGGATCACTTGA GGCCAGGAGTTCAAGACCGGCCTGGGCAACATAGCAAGACCCCATCTCTATTAAAAAATA GATTGCTTGAGCCCAGGAGTTTGAGGCTGCAGTGAGCTATGATCAGGCCACTGCACTCCA GCTTGAGCAACAGAGTGAGATCCTGTCTAAAACAAGATGGGACACACAGGAAGTGGTGGT GCAAAGATGGTGCAGCCGCAAGCTGAGGAACAACAAGGATCCCTGACCACCAGCAGAAGC TAAGAGGCAAGAAAGGATTCTTCCTTAGAGTCTTCAGAGGGAAAGTGGCCCTGCTGACAC CCTGATTTCAAACTTCTAGCATCCAGAACTGTGAAAGAACGAGTTTCTGTTGTTTGAAGC CACCTAGTTGGAGGTGCTTCATTACAGCAGTCCTAGGAAGCTAATACAGGTGGTTACCAT GCACTAGGTTCTCTGCATTATAAATGCATCATATGTGTGAATTCACCTAAATCCTCACAA CAACTGTAAGAGGTTACTATACCATGTTACAGAGAGAGTGATCAAGACTCAGAGAAGTTA AGGGACTCATAGCTGGATCTAGATTTGAATTTGGTCTATCTGGTCTAAAGCCCACTTTTA AGGACCAACTGTGTATGCCAAGTGCTAGAGCCACTTCCTTGCTCAGTCCTCACCGACCAC AGGCCACCCTATTTAGGGTCTGACAAAGCCAGGTTCATCTGACTCCAATGCCAACGCCCA TGCTGTTGACCAGACCATCCCTGCCAACTTCCCAATATGAATGCTTTGAGTGGCTCTCGG CCCCGGGCTGTGGAACACCAGCACCAGTGCCTGGAGGGCAGCAGCTGTCCAGCAAAT GTCTGCTCATTCATTTGTTCACGCATTCAGGGCAAGTCGAACGGCAGACGGGGCAGGAGA TCCAGGGCCAGCATCGATGGTGCAGGGAGCCCTCTGGCCCCTTAAATATCCTCAGACAAT CCCAGAAATCATTCCTGGGTCTACCTTATGTGGGTTTTCTAGAATAGCTACTGCTGAACT AAGGGCAGGAGTGTTTTTCCACCAGGAAACAAGAACCAGTTCATCTGAGTTCCTTCGCCT TTTGTCCCAAGACACAAAAATGTCAAAAATGTGCAAGGGCTCTGGCCACAGATGGATACT GTGTCTCACCCGACGGGCTGCTTCCTGCATGGGGCTGAAGGTCAGGGTGAAGGTTGCTG CCCTGAGAGTCAGGGGAAGTTGGTCTGCCTCCTGCTGTGTCACGTACTTGCCATGGTGTG TGGGATGAGGCCCATCATCTCCCAGAATTAAGCTGTAGCTGACTATAAAACCACAGGTGA GGGCTGGGTGTGGGGGCTCATGCCTGTAATCCCAGAATTTTGGGATGCTAAGGCAGGAGG TTCGCTGGAGCCCAAGAGTTCAAGACCATCCTGGGCAACATAGAGAGACCCCGTCTCTAC TAAAAATACAAAAATTAGCCAGACATGGTGGTGCATGCCTGTGGTCCCAGCTACTCTGGA GGCTGAGGTAGGAGGATCACTTGAGCCCAGGAGGTCAAGGCTGCAGTGAGCCGTGATCAT GCCACTGTACTCCAGCTGGGGCCACAGAGCAATACTCAGTCTCAAAACAAAATAAAAAAA CCCACAGGTGAGGTCACATCAGGCTTTTCCCCTTTATTCTCCCTAAGGGCTCCACAACAT TTAGTAGAGGTCTTGCTTATACCCAGGCTGGTTTCAAACTCCTGGGCTCAAGCAATCCTC TACTGGGCCCTGTCCGTCAATCCATTTGCAGTCACCAAGCACCAGCTGCGTGCACCGCAT TGTGCCAATGTCTGGAAGGATGCTCACAACTATCAACACAGATAACTAATAATATCAACA

Page 59 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

ATACCACAGTGTAAATGCAAAGCAATATGTGCCTGGTCTCATTTAATTCTCACATCAAAC CCTTGGGATACATATCATTAGCACCCTCATTTGCTAGAGAAAACTCAGTTCTGAGGGTGG ATGATTTGCCAAGGCCCTGGGAATTCGGACTAACTCCCTTCATAGGTGGCTGCAAGTGCC TGTGGCCCAGACATTCCCATAGATAGGTCATTTTCTCACACCAGCTTATATTTCTTGTGC CAGACACAGGGTCCAAACCCATTTGCATTACGTCTCTGAGACTTCACAAGACCTTCCTGT TAGACCGAGTTCTGCTCTTGTTGCCCAGGCCTGGGTGCAGTGGCGCAATCTCGGCTCAAT GCAACCTCCACCTCCCGGGTTCGAGCGATTCTTCTGCCTCAGCCTCCTGAGTAGCTGGGA ACCATGTTGGTTAGGCTGGTCTCAAACGCCTGACCTCAGGTGATCCACCTGCCTCGGCCT AGACAAGATCTCACTCTGTCACCCAGGCTGGAGTGCAGTGGGGCGATCTCAGCTCACTGC AACCTCTGCCTCCCTGGTTCAAGTGATTCTCCTGCCTCAGCCTCTCAAGTACCTGGAATT CATGTTGGCCAGGCTTGTCTTGAACTCCTAACCTCAACTGATGCACCTGTCCCGACCTCC CAAAGTGCTGGGATTATAGGCATGAGCCACCGCGCCTTGGCCTTATTATTCGTCTTATAG TCTGCTTTCAGATGAGGACACGGAGCCACAGGAGTTACAAGGGTGGAGGTGCTGGGAAGT CAGGACCAAAATCAGCCTCCTGACTCCCCATCTCATTTTCTCAATCATCATGGGTTTTGC CCCCCAAGAAGAGAACCAGCCACCATGGGTGCTAAACCGGTGGCTGATATAGCAAAGTGT GTTGGAGCAGAGATCCCAGCGGGCTTCCTAGAGGAAGATCACAAAAAATGGGCAGAGCCC ACAAGGCACAGTACAGGTTTCCTCTCTCCAGTCCACATAAGGGCATTCACCAGGAACCTG CCACCCCACAGGCCTGTTTGCATGCCAGGCCAGAGTTGGCCACATGCCCACATATCTCTC CTCGTTCTGCAGGCTCCGGGAAGGAAAGTCCAAGGCCAAGGTTATCATGGGGTTCACATA CCTTAAGGGGTGGGTGGAGGGTTGGCTCACAAGCTACAGGTTATTCAATGCAGTGCTAT TCGTGATCACAAAAGATCGGAACTGATCTCACGTCCATCATCAGGGGACTGGACTAAGAT ATTTTGGCACAACCACATACGACTCAAGTGTCAAGGGAGGAAGAGTGGGGGAGTCTTGAA TAAATAACAAAAGCTGGCGTTGACACAGGACTTTGCACATGGTGGAGGCTCCTTGCAAGT GCTTTGCATGTTATTAACTCATTCAATCCTTACATCACCCCAGGAGGAGGAACCATTATT ATCTGTTTAAAATGCCTGTAATCCCAGCACTTTGGGAGGCCCAGGTGGGAGGATCACTTG AGTTCAGGAGTTCAAGACCAGCCTGGGCAACAAAGTGAGACTTCATCTCTACAAAAAATT CAAAAAATTAGCCAAGCCTGGTGATCCACACCTGTAGTACTAGCTATTCAGGAAGCCAAG GTGGGAGGATTGCTTGAGCCCAGGAATTCGAGGCTGCAGTGAGCCAGGATTGCACCACTA CCAAGAAGTGAAGTTTCTTGCCCCAGGTTCATGGCCAACAACAGTGGACTGGGCCGGGC ACGGTGGCTCACACCTGTAATCCCAGCAATTTGGGAGGCTGAGGTGGGAGGATCGCTTGA GTTCAGGAGTTCGAGACCAGCCTGGGCAACATGGCAAGATCCCATCTCCACTGGTGCAGT GGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCTGAGGTGGGCAGATCACAAGGTCAGG AGATCGAGACCATTCTGGCAAACATGGTGAAACCCTGTCTCTACTAAAAATACAAAAAAA AAAAAAAAATTAGCCGGGCGTGGTGGCGCTCACCTGTAGTCCTAGCTACTCGGGAGGC TGAGGCAGGAGAATCACTTGAACCTGGGAGGCAGAGGTTGCAGTGAGCCGAGATCGCGCC

Page 60 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

TACTAAAAACTGCAAAAATTAGCCAGGCATGGCGGCATACACCTGTAGTCCCAGCTACC CAGGAGGCTGAAGTGGGAGGATCACCCGAGCTCAGGAGGTTGAGGCTGCAGTGAGCCAAG CAAACAAACAGTAGACCTGGAATTTGGTGCAAGCAGCAGGGCCAGATCCATGCTTGGTCC TCTCCTCCCAGCATCTCTGTTTTGTCCTGGGTCCCTCTGCCAGGAGCTCCCTGGAACCCG GGAAGGAAGAAGCATGCAGACAAGCGTCAGCACCCCCACCCTCCGCTGGCCTTGGGGA GCAGGTGTCATTAGACGAGGCTCAACTGAAGCCTGCATCTGAAACAGATTCTCATAACTC AGGCGCTGTGGTAGCCAACTTCTCTCTACAGTCAATTACGGCCAGCGGGCCCACTGATT ATTTTTATAGCCTTTCCTGGAGTCATGACAAGGAAAACTAAATGATCCACAGGACCCCTT TTCCCCACTTTGAGTTAATCAACAGAACTCAAGTCTGGGCAGCCAATATGTTGGTGTTGA GAAAAGCTGTTCTCAAGCAGAACTAATTGGCAACAGAAATGGAATTTTCTTCCCCACCTC CCTAAAAACATAAACATGCTTTATCCCAGAGAATTACCCTTCAGAATAGGTATTGCAGA CGTGTCGTGTGCAGCCGCCTGTGCGAGGCTGGTAATCTCACGCCGACCTGGCCAAAGGCT GCCTGTGCTGGTTACAGCTCAACCAGAGCAGCCTCTTACGCAATACAATGGTCATGAAGG TCAGTGGCCCAAACCAGCCCAGCCAGACCAGAGTGGACACTTGCTTTCCTGATGCCCAGC ACCTATCTCCTGCTCCTACGAACAGCCTTTGGCTTTTGTTGGGTCGGGGGGTGGGAGGGC - ACCCTGATTTGCAGGTACAAGTGTGAGTGGCATTGATACCCCCTCAACTCCAGAGATGAG CTCTGACAGGCGTAAGCCAAAGAACATATTCCGGGGAAATTTCAAGAAGGGGCATATGAC CTAACAAGAAACAATAGCTGGCACAGTGGCTCACACCTTAATCCCAGGACTTTGGGGGGC TAAGGCGGGTGAATCTATTTCAGCTCAGGAGTTTGAGACCAGCCTGATCAACAAAGTGAG ACCCCAGTCTCTGCAAAAAATAAAAACTGGCTGGGCGTGGTGGTGCATGCCTGTAGTCCC AGCTACTTGGGAGGCTGAGATGGGAGGATCTGCTTGAGCCCAGGAGGTGGAGGCTGCAGT GAGCCAAGATTGCACCACTGCACTCCAGCCTGGGCGACAAAGCCAAACTCTGTCTCAAAA TATAATGAGGCTTCTGGAAAAGATAGCTCTTTTTATTTTAGAGAAATTGAGGTTCAAAGA CGTGATGTAACTGCTCAGAGGTATACAGTGAGGTGGTAGGGGATCCAGGGTTTGAACCCA AGTCTGTAGGACTGAGGAGTTTGCAACCCTTCACTGCAGGCGCTACTGAAAGGCAGCATA AACCTTGGACGAAGCCAGAAGAGCTGGATTCAAACCCAGTTCTGCCATTTACTCCCTGTG TAATTTCAGGCAAGTCACTTAACCTCTCTGTTCCTCAGTTTCCATATCTGTAAAGTGGGG CTTCTAAGGGCACCTCCATTTGCAGGATCTGAGAGGTAAATAATTAACAGCAATATCTGT AAAGTGCATGCAACAGTGCCTGTCACGGACCAAGGATTCGCCCCTTCCTCACCACACCGT TGATGTTATCAGATCTGTAATCCCTACGCCATGTGTTCCTTTCTGTAGCACAGCTGCCAG GCTTGCCTCTCCTGCAGGAGAAGCTGTGCCACAAAGATGTGGGACGTCACAAACACGCAG AATTCCACCCATTCAGGTGGCAAAAAGTAAGATGTTTGACAAATGCCATGTGTAGAGGGT GGCTTGTGAATTGGTACAACCATTAGAAGATAATTCAGCATACGATTTCATATTCCAGCA ATTCTACTTCCAGGTACAAACTTGAGACACACTCCTGTATGTGTGCAATAGGACAGTACA AGAACCCTCAAAGCAGAACCGTGTATGTAGCAAACAAAACTGACAAATGGAAACAACCCA CATGGTCATAGACAGGAAAAATAAATGCTGGTATGCCATGGAATAGTACACAGCAGAGAA AAGTGAATGAACAAGTGATAAGCAATTATATCAACGAATTTTAGCAATAAAATGATTTAT AAAAATGTAAGTGCAGGGGCTGGGCACCATGGCTCACACCTGTAATCCCAGCCCTTTGGG ATGCTAAGGCAGGCTGATTGCTTGAGGCCAGGAGTTTGAGGCCAGCCTGGGCAATATGCA ACATGCCAAAGCCCCGTCTCTACAAAAACGTAGCCAAGTGTGGTGGTGCACGCCTGTAGT CCCAGCTACCAGGGAGGCTGAGGTGGGAGGATCACCTGAGCCCAAGAAGTCAAGGCTACA Page 61 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

GTGAGCTGAGATTGCACCACTGCACTCCAGCCTGGGTGACAGAGTGAGACCCTGTCTCAA AATATGTGTGTGTGTGTGTCTGCATGTATGTGCCAGAAGACAAGATATATCTTTACGT AAAGTTCAAACAGCAGTAAAAGTAAATGATATATTATTTTTGGCATACATGTAAGTGATAA AACTTTTTTTTTTTTGAGACGGAGTTTCGCACTCATCGCCCAGGCTGGAGTGCAGTGGA GCAATCTTGGCTCACCGCAACCTCTGCCTGCCATGTTCAAGTAATTCTCCTGCCTCGGCC TCCCTAGTAGCTGGGTTTACAGGCATGCACCACCACCTGGCTAATTTTATATTTTTAG TAGAGACGGGGTTTCTCCATGTTGGTCAGGCTGGTCTCGAACTCCTGACCTCAGGTGATC TGCCCGCCTTGGCCTCCCAAAGTACTGGGATTACAGGCATGAGCCACCGTGCCTGGTGAT GCTGATAATTGCCCAACATTGTGAATGTGCGTAATGCCGCTGAATTGTACCCTTAAAATG GCTAAAGTGATAAATTCTATCCACAATTTTTAGAAAGGCAAGGGAAAGCTAAACACAGAA CGGAAGTTGATATAAAATGGTTGTCTGAGTTCCAGCACGCAGGTGGGACCATGGGTTCAC AGGCATTTATCATTTTATAAATAGCTATAAAGAGATTGTTAGATGGAAGTGTAGGTGGGG CTGTTCAGGTGCCCTTTCAGTATGTCATTATGGAATTATGAATCATTCAATCCTACTTAC TTTTTCTTTTTTTTTTTTTTGAGACGGAGTCTCACTCCATTGGCCAGGTTGGAGTGCA GTGGTGAGATCTCAGCTTGCTGCAACCTCCAGCTCCTGGGTTCAAGTGATTCTTGTGCCT CAGCCTCCCGAGTAGCTGGGATTACAGGTTCATGTCACCACACCTGTCTTATTTTTGTAT TTTTAGTAGAGACGGGCTGTCTCTACTCCTGTTGGTCAGACTGGTATCAAACTCCTGACT GCAGGTGATCCACCTGCCTCGGCCTCCCAAAGTACTGGGATTACAGGTGTGAGCCACCAC ACCTGGTCAATTCTACTTGAGGTCCATTTTTAAAATTCTAGAGGAGGCCGGGTGCA GTGTCTCACACCTCTAATCTCAGAAACTTTGGGAGGCCAAGGCAGGTGGATCACCTGAAG TCAGTAGTTCAAGACCAACGTGGCCAACATAGCAAAACCCTGTCTCTACTAAAAATACAA AAATTAGTTAAGCGTGGTAGTGTGCACCTATAATCCCAGCTACTCGGGAGGCTGAGGCAG GAGAATCACCTGAACCCGGGAGGCAGAGGTTGCAGTGAGCCGAGATTACACCATTGTACT ATGAGACGTGTGTGGTAAGGAGAAAATAAACCAGAAAAGGGATGAAGAAGACCAGGGAG TGAAGGAAGCTGTAATTTTAAATGGAGAGTCAGGATGGCCTCGCTGCAAAGGTGATGTTT GTGTAAAGACCTGCGCGATATGAACAAGTGGGCCACTTGGATATCTGAAGAATGAGCACC CAGGCATAGAGAAAAGCGATTGCAAAGGTCCTGGGGCAGGACTGTGCCCGACCTCAAGAA CAGCAATTGTGGGGAGTGGGAAGGAGAGAGATAAGGTTAGAGAGGCCTGGGCCCTGCAG GCCTTGTGGGCCGTGATGAGGACTTTGCCTGTGCTCTGGGCAAGGTGGGACCAGGGCTGG AGATAGGAGGTGTCCTGAACAGAGAAGGAACTGGATCTAATTTCATTTTAACAGGACCCT GCTGGCTGCACACGGAGAGTAGACCAGGAGGGGGGGCAAGAGGAGAAGCAGAGACACTGGT GGGGAGGCAACTGCAATAGCCCAGAGAGAGACACCATGGCCGCTGGGACCAGGGTGGAGG GAGCGGAGGTGACAGAGCTGTCAGCTTCTGGGTGCAGGTTGACAGGGGAGCCAACGGAAT TTCTTTTCTGTTCCTCTTTGTTTTTTGAGACAGCGTCTCATTCTGTCACTCAGGCTGGATT GCAGTGGCACAAACATGGCTCATTGCAGCTTCAACTTCCTGGGCTCAAGTGAGCCTCCTA CCTCAGTTTCCCGAGTACCTGGGACCACAGGTGCATGCAACCACACCCAGCTAATTTTTA AAAATATGTTTGTAGAGACAAAGGTCTTGCTATGTTGACCAGGCTGGTCTTGAACTCCTG GTCTCAAGCGATCCTCCTGCCTTGGCCTCCCAAAGTGCTGAGATTGTAGGTGTGAGCCAC CACGTCCAGTGTAGAATTTCTTTTTTGCTGGAAAGTGGGAGAGGCTGGGCTCTATTTAAG TGTTTAAGGGTCAAGAAAGTTTGAGACCTGGTTATAAAGTAGAGACATGGCCATCCAAAC AGTCTTGCTCTATCACCCAGTGCAGTGGCGCGATCTCGGCTCACTGCAACCTCCGCCTCC

Page 62 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

CAAGTTCAAGCGATTCTCCTGCCTCAGCCTCCCGAGTAACTGAGATTACAGGAGCCCGCC ACTGCGCCTGGCTAATTTTTGTATTTTTAGTAGAGACGGGGTTTCACCATCTTGGCCAGG CTTGTCTTGAACTCCTGACCTCGTGATCCACGTGCCTCGGCCTCCCAAAGTGCTGGGATT ACAGGCATGAGCCACTGCGCCTGGCCTGATGGGATAAAATTTTTTAAAAAAATAGGCTGGG CACGGTGGCCCACACCTGTAATCCCAGCATTTTGGGAGGCCAAGGTGGGCGGATCACCTG AGGTCAGGAGTTTGAGACCAGCCTGGCCAACATGGCGAAACCCCCGTCTCTACTAAAAAT ACAGAAATCAGGCATGGTGGCATGTGCCTGTAATCCTAGCTACTCGGGAGGCTGAGGCAG GAGAATTTCTTGAACCTGGGAGGCAGAGGTTGAAGTGAGCAGGATCACGCCACTGCACTC AGGACTTCTGTGATGTGGGCATTAAAATGAATGTTTTTAGGTCTTCATGGGCTCACATGGA AAAATGTCCAGGACACCTGTTGGTTGAAAGAAGGAAGATGCAGAATAAAATGTATAGAAT GATCCCATTTTTGAAAATTAAAATTACGTGACAAAGAAAAAAATAGGAATGAAGTGAATG TCTGTTGCCCCAGGCTGGAGTGCAGTGGCGCAATCTCGGCTCACTGCAAGCTCCGCCTCC CGGGTTCACGCCATTCTCCTGCCTCAGCCTCCCGAGTGGCTGGGATTACAGGCGCCCACC ACCATGCCCAGCTAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCACTGTGTTAGCCAG GATGGTCTCGATCTCCTGACCTCGTGATCCACCCGCCTCGGCCTCCCAGAGTGCTGGGAT TACAGGTGTGAGCCACTGCGCCCGGCCAAGACAACGGGCTCTTAACAGGGGTGGCCCAGG GTGAGTATAGGAGCTACTGAGGTTTAAACTCAGGCGCCCCTTCCTACCTCGCAAAACAA TAAAACACGCATGCTTGGGGCCGGGCATGGTGGTTCATGCCTGTAATTCCAGCACTTTTG GAGGCCTACGCGGGTAGATCACCTGAGGTCAGGAGTTCGAGACCAGCCTGACCAATATGG TGAAACCCCATCTCTACTAAAAATACAACAATTAGCCAGGTGTGGTGGTGGGCACCTGTA GTCCCAGCTACTCAGGAGCTCCTGAGACAGGAGAATCACTTGAACCCAGGAGGCGGAGGT TGCAGTGAGCTGAGATCGCACCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCTGTT AAAAAAAAAAAAAGAAAGAAAGAAAAAAAAAGTGCACGTTTTTTAGTTCTCTTTTAAACT GCTGTGGGCATGGTTCTCCTCTTGTATTGCAGTTGCGTTTCTCTTAGCTAATGTCCCACC TGGGCCTTGTCCTTGGCCTGGACTATAAGAGAGCGGAACTTGAGAATGAGAAATATTTTC CTCTCGTGCTTGCTGGCTTAGGCCCTTAAAACTGGAAAGGGCCCACCTGGCTCCTAGAGT TTCTAAAAATAGCAAGCTATCTGAACTTTTCCTATAGGTTTGGCTTAGCCGTTCCTCTGA CTTGTTCCAAGATGCCATTTCTGTTAGGGCATCATTCGCTGTGCATGAAAACAAAGGATG GCAGGAGACAGACTAGAAACGGAAGAGGACTAATCGGGAGCCGCTGCGGACAGAATCCAG AAATGCCCTGCAAATGCAGACACAGTGGACGCAATGGAGAGTGCATACCAGGGCCTGTGT CGCTGGTGGAGCTGGGGCCCACATGCCGCTAGTGTAGACAGGATCTCTACTCCACCCGAT CTCTCTGCATCCACTCCAGTGCTTCGGGCAAGAGAGAGGGGGTTTGGCTGCTGGTTTAAGT GAGATGGGGAAATTGAAAGATTTGCATCCAAGGCCCATGCCTGGGGTCTGAATTCCTTTG GAAGAGGACTGAGGACTGTTCAGGAGACGATTTTTGACAATCCAGACACAACCATAGATG CTGTGGAACCAGTGGTATGCTGGCAAAGGTTTAGCAACCAGCTCTCCAAGGGAAAGTGAG ACTTCGGTTTATTATAAATTGTATTGACGTAGGCTGGGCGCAGTGGCTCGTGCCTGTAAT CCCAACACTTTGGGAGGCTGAGGTAGGTGGATCACTTGAGGTTAGGAGTTCGAGACCAGC CTGGCCAGCATGGTGAAACCCTGTCTCTGCCAAAAATATAAAAAACTAGCCAGGCATGGT AGCGGGTGCCTGTAATCCTAGCTATTTGGGAAGGTGAGACAGGAGAATTGCTTGAACCTG GGAGGCGGAAGTTGCAGTGAGCCATGATTACGCCACTGTCCTCCAGCCTAGGCAACAGAG TGTGACTCCATCTCAAAAAAAAAAAAAATTGTTTTGATGTAAATGATGTGCAGCACACA ATTTACAAATAAAATAAAACTTACAATACCTTTTCTTTTATAAATGTAATATAATCATT TCACTCACAGGTAGCAGTTTTGTTGATTTTTTGCCCCCAGCAAAATCTGTAATCAACCTAT

Page 63 of 65 TYPE 2 DIABETES MELLITUS GENES Andrzej S. Krolewski, et al. 10/694,685 10276-078001

GGTTACAATTGATGAAGGAGTGTAATTCTTCAGAAATACCAGTTAATATTTTCCTTTCTA GGCCCAGGCTGGAGTGCAATGGTGAGATCACAGCTCATGGCAGCCTCAACCTCTTGGGCT CTCGGCTAGTTTTTCTCAAATTATTTGTAGAAATGGGGTCTTGTTATGTTGCCCAGGCT GGTCTCAAACTCTTGGGCTCAAATGATCCTCCTGTCTCAGCCTCCCAAAATGCTGGAATT ACATGCATGAGTCACCACACTCAGCCTTGACTACCTTTGTTTTTCATAGAATTTATTGAA TTGTAAGTTCATATAATTTAATTTTTAACAATGGTGTGTTTAGCAACCCGTTCACCTAAT TCCTGAAAATCTGACAATCAGCTTTCACAAGCTGGCACAAGCTGCCTCCAGCACACCTCT GTCTGGGGACAACATGGCAAAGAATATCACCGAACTGAGGAGGAAGCCATTCTCTTCACA TCTGCCCAGAACCCAGGGTATCTCAAGCACTAAACAGCGGGAAGCTTTGGGAGTTTACAG AGATGGCACCATGGACGCTGCTGTGCTGGGCAGGGAAGCATCTCCAAATGGCCTCAGAGG AAAGAGGAAGCAGGAAGGATGAATAAAACTAGAGACTGGTTCACAAAGGCACTCGAAATA CCCCTTTGGAGCTCCCCAGGATGAACTGGGGGGACCCTGGGGGGGAGCACTGAGGTTCTGAT GGGGAAAACCTCAGCAACCAGTGGGCATCTGGGCCAAATCACTTAGCACAAACGCTGAGC CACAAAATCATGATACGCTTTCAACAACCCATTAGGCACCTCAGAAGCTGCAGGGCCATA GGGTTGTTACAACCGACACCCATGCAGGTGGTACCACAGGCCATCAGTCCTTTTCCCCAA GTCCACCTTCATTCCCGCCTCCTCCAGTACCATCCTGGACTTCTCTAGGGAAGTGGTGGG CCACGGCCAGCTAATTTTTGTATTTTAATAGAGATGAGGTTTCACCATGTTGGCCAGGC TAGTCTCAAACACCTGACTTCAGGTGATCCGCCTGCCTTGGCCTCTCAAAGTGCTGAGAT TACAGGCGTGAGCCACCGCGCCCCAGCCTCACTCCAAACTTGATCTTACTCTCAGACATCT TACTCTCAGACGCTTAAGTTCTCAGTTCGGAACTTAAGCGCTCTTCAACCAGACTCATGG AATCTCAGGGTTGCGGAGAGATTTTAGAGGTTTCCTGAAATAGTCCCTTTGTTTTAAAGA CGAGGAAGCTGAGAAGGGAAGTGACTTGCTCAAGGTCACAGAGAAAATCCAGGGTGGA GTTCACAGCCAGTCCCTGAAAGGAAAGGAGGCCTGGATCAGTACAGAGCTGCTTTGGGAT GGAATTTTCCAAGGGAAGAAAAAGAAAAGGCCACATCTGGGTGCTGGGACCTTTCACTC TGGCCGATGCTGGAACCCCAGGGATTCCCCACCTGCTGTGTTTTCCTGGCCCTTGAG TGTAACCTGCACCCTCCCTTTCCGTGCCAGGGAGACACGAGCTGACTTTATCTGTCTCTT ATCTCTTGGCTGCCAGCCACAGCTGCAGGGATATATATGCAAATAGCTTACGATAAT ATTAATATGTGATTCCCCCCAGGGGAGGCATGTGGAAAGCGCTGTATGCGTTTCACAATT CTGTTTCATCCAAAAACACTGCACGGCCCAGAGTGATTCGAAACAGATTTTCTGCAAAG GCAAAATAAAATTGGAACAAAACCTAGTTGAGGCATATGCCAGTCTCCCTGCCCCCAGCT CTCTCCACCTCTGACATATTAACCCTCTTCTCTCATGCCCCCAGGAGCCTCCTACGACAA GGCAGCAAATCTAGGAAATTGCACTGGGCACTCTTCGTTCAAGCCTGGAGCCCCTGCCCC ATCCCAGGGCAGCCAGCCTCCACCCTGGGCTGACACATCCTTTAGAGAGTAAAAGGCTGC CTCCATCCATACCTCCTTCTCCTTCACCCCTGCTGCTTGGGATAATTGCAGAACCATGGA GCACAGAATACAGAATACTGGGGGTGTACAGGAGAGTTTAGCCAAAGCAAGTCAGAAAAA CCTAGGTCTTTTTCGTTTCTGCCACTGACCGGCTGTGTGACCTCAGCAAGTCACTTCAC TTCGCCCAGCTGCTTTCCTCAGGGTACAATGAGGACACCAATAATACTTACCCTGCAG GGGGCTTACCGGGATTTCCCGAGCCGACGCTTCAAAAATGCCTACACAGTGCCTGGCGTA Page 64 of 65
TYPE 2 DIABETES MELLITUS GENES
Andrzej S. Krolewski, et al.
10/694,685
10276-078001

TAGCAGATACACAAGGAATAGCTGTCATCATGAGAATCTCTTAAAGATCACCTAGTTCAA CCACTGTTTTAGAAACGGACAAATGGAGGCCTGCAGAGGGCAAATAACTTGCCTAAGGCC ACACAGCACGATACCGCCATCCCATCTCAGCCTCAACCCAGGTTCCCTCCTCCGGCCTTG GGAGCTCCAGGTGGCCTGTGAGGAACGGCTGCCTCCTCTGTCACCCCCAGCTCCAGAAG TCTGTCCACACAAGGCGGCGTCACGGCACACATGGGGAGCAGTCACTTCACACTCACCAT CGAGCAGGTCTGGACACTCGAGTGCAGTCCCGCCGCCCTCCTTGCAGCTGCCTCACTTTC CCTATTGCCGCCAGCAAGCGTCTGCTCCCATCTGGCCCGGGACTCCCGGACTCGAGCTAG GGCTCTGCAAATTCCATCCACACTGGCCACCAGCCGCTGGTCCCGCTCTCTGGGAAGATC GCCTTGAGGACCTGCTGCGCCCCGAGTCTTCCTTCTGGTGCAGGGAGGCCGGTGCCCTGC CGGGCTCTGATAATGCAGCCGGGACTCTTATCTGGCCTGTGTCAGGGTGCAGGCGGCCAT GCCGCCTGCTCTGGACGCGGCCGATTGCTTGTCAGTGTCACTCCCAGCTCTGCCGGG GGGAATTCCATGCTGGCCCCCAGCAGGCGGGCCCCCACCCCTTCACGTCCCACCCCCCA CTCCCATTTTGGCAAGGGGACTGGGAAAAGGCAGCTAATTTCAAGTCCGCACAGCGTTTG TGGTCGTGTCCTGAATCCTCCACGATTAATCACAGAGCATCTGATTTCTGCTTTGCCTCA GAGAGGGGCGGAGGGGACGCCTGGAAGTTTCTGTTTACTCCATTCTGCACCAGGCTGCGT GCTAATCACAAACAGACTGGGACGCAGCCTACCCCTCCTAAACTGCTCTTGGCCACCCCC TCCCTCCTCCAGCCCTCTCCTTCCTTCTTACCTTGTCACTTTCCTCCAGCCCCTTCCT CACTCTTTCTCCTTTCCCTTTTTTTCCCCTTTTCCCATCTGTCCGCCTCTTCAGTCCA GATCTGATCCATTGCACACCCCTTCCTTCCGTCCTGGGTTTCCCCCAAGCCCCTTTCCCC CTTTGCGCCTCCCACTTCTCCTAGATTGAGAGTCAGCTTGGTTCTTTCCTTTACATCCAT AAGTTAACAGTTTCTCCAGGTCAAGGGGTGGGATCCAGGCTTGGTGATGTGCACAATTTC AGCAGCCATTTACCGCCTCCGGAGGGGAGGCCAGCCCTGTGGCACATCCAGGGCCTTGGA ACACCTAGAGACAGATTTCTCTCCCTCGCCTTGGCTCCTTTCCACTCTGCAGCTAGTGTG GAAAAGAAACCAGAAATAAACAGCACCAAAGAACAGGAACGGACACCCCTCCCCATTAAA GCACACACAGACTCTGAAGGGTAATTTGGCAAAGACCTCTGAAAACCAGAGATGAGGG TTATCATAGGAAATGATGGGAAATAACTGAAATGCTCATCCAATAATGACTGCTTGAACA AGATGTGAAAGATATGGTACATCAGGC

FIG. 9MM

_
_
0
÷
=
S
Ö
\sim
ш.
_
n
=
_
$\overline{}$
U)
$\boldsymbol{\sigma}$
Ē
=
w
-
Ψ
Ö
~
Ξ.
Ψ
-
=
O
രാ
~~
U)
OD .
$\overline{}$
\mathbf{z}
ĭ
ŭ
<u>e</u> u
eren
eren
feren
eferenc
teferen
Referen
M2 Referen
DM2 Referen
2DM2 Referen
2DM2 Referen
DM2 Referen
2DM2 Referen
d T2DM2 Referen
2DM2 Referen
d T2DM2 Referen
d T2DM2 Referen
d T2DM2 Referen
d T2DM2 Referen
d T2DM2 Referen
M1 and T2DM2 Referen
M1 and T2DM2 Referen
DM1 and T2DM2 Referen
M1 and T2DM2 Referen
DM1 and T2DM2 Referen

T2DM1 and T2DM2 Reference Sequence and SNP Position	Position
SNP2, 2,350 to 2,750	
SNP3, 8,898 to 9,298 SNP4, 11,411 to 11,811	
SNP5, 23,208 to 23,608 SNP6, 24,803 to 25,202	
SNP7, 29,614 to 30,014	
SNP8, 33,733 to 34,133	
SNP9, 35,682 to 36,082	
SNP10, 42,2/8 to 42,6/8	
ONT 11, 41, 410 UC 41, 40 UC 41, 41, 410 UC 41, 41, 410 UC 41, 41, 410 UC 41, 41, 410 UC	
SNF12, 30,731 (0.31,131)	
T2DM2 exon1, 50,678 to 50,858	SNP14, 105,996 to 106,396
T2DM2 exon2, 59,690 to 59,879	
T2DM2 exon3. 67.939 to 67.988	to 67.988
120 Ave	T2DM2 exon 4 73 859 to 74 265
REFSEQ +/-1000bp, 1 to 106,707	
T2DM1 EX3, 44,730 to 44,848	T2DM1 EX1, 105,653 to 105,707 T2DM1D40L EX2, 105,118 to 105,396
T2DM1 EX4, 33,978 to 34,124 T2DM1 EX5, 29,994 to 30,072	
TOPM4 EVE OF 1721 to 51 106	
12DM1 EX7, 24,845 to 24,898	
T2DM1 FXR 23 565 to 23 714	
T2DM EX9. 23.285 to 23.348	
T2DM1 EX10, 22,904 to 22,947	
T2DM1 EX11, 22,605 to 22,730	
T2DM1 EX12_22,381 to 22,526	
T2DM1 EX13, 18,637 to 18,766	
T2DM1 EX14 SHORT, 15,776 to 16,636	
T2DM1 EX14 LONG, 16,064 to 16,636	
T2DM1 EX15 LONG, 11,572 to 11,702	
T2DM1 EX16 LQNG, 10,132 to 10,255	
T2DM1 EX17 LONG, 9,361 to 9,496	
T2DM1 EX18 LONG, 8,545 to 9,093	
T2DM1 EX19 LONG, 7,027 to 7,188	
T2DM1 EX20 LONG, 6,336 to 6,538	
T2DM1 EX21 LONG, 3,678 to 3,761	
T2DM1 EX22 LONG, 1,794 to 1,884	

T2DM1 EXON 23 LONG, 197 to 1,324

91,001

84,001