正則接ベクトル東が正値性を持つ 複素代数多様体の研究

岩井雅崇

東北大学数理科学連携研究センター 助教 大阪市立大学数学研究所 兼任研究員

2022年3月16日

講演内容

- 分野全体の概要 複素代数多様体の分類問題・極小モデル理論 (MMP)
- ② 研究内容紹介 接ベクトル東 T_X の曲率が 0 以上の複素代数多様体の分類
 - 特異計量への一般化
 - 葉層構造への一般化

研究分野の概要

私の専門は複素幾何で, 特に (複素) 代数多様体を研究しています.

定義

(複素) 代数多様体 = \mathbb{CP}^N の複素部分多様体

定理 (Chow 49)

ある同次多項式 $F_1(t_0,\ldots,t_N),\ldots,F_l(t_0,\ldots,t_N)$ があって, 代数多様体は次のようにかける.

$$\{(x_0,\ldots,x_N)\in\mathbb{CP}^N|F_1(x_0,\ldots,x_N)=\cdots=F_l(x_0,\ldots,x_N)=0\}$$

(例).
$$X = \{(x_0, \dots, x_3) \in \mathbb{CP}^3 \mid x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0\}$$

三つの方向から研究ができる.

- 代数幾何学 (代数)
- 複素幾何学・微分幾何学 (幾何)
- 多変数複素解析 (解析)

分野全体の大きな問題

大きな問題

代数多様体を分類せよ.

- 複素 1 次元の場合. (1880-1910 年代) 穴の数で分類ができる.
- 複素 2 次元の場合. (1960 年代)Enriques・小平邦彦により分類された.
- 複素 3 次元の場合. (1970-90 年代)多くの数学者により分類手法が確立された. (極小モデルプログラム)

1 次元の場合の分類

まとめ

複素1次元代数多様体は

- 正のリッチ曲率を持った多様体
- 0 のリッチ曲率を持った多様体
- 負のリッチ曲率を持った多様体 に分類できる.

極小モデルプログラム (MMP)

定理

3次元以下の代数多様体 X について, ある代数多様体 Y とある双有理写像 ("ほぼ同型写像")

$$X \dashrightarrow Y$$

があってYは次の3つで構成される.

- 正のリッチ曲率を持った多様体 (Fano 多様体)
- 0のリッチ曲率を持った多様体(Calabi-Yau 多様体)
- 負のリッチ曲率を持った多様体(一般型多様体)

2次元の場合, Y は右のように分類できる. (Enriques-Kodaira classification.)

Class of X	kod(X)	smallest n > 0 with $\mathcal{K}_X^{\otimes n} = 0_X$	$b_1(X)$	possible value of a(X)	d	C2
1) minimal rational surfaces	ottol box 49	with Ky	0	2	8 or 9	4 or 3
2) minimal surfaces of class VII	-00	separate deserta	1 100 00	0,1	≤ 0	≥ 0
 ruled surfaces of genus g ≥ 1 		milla contect	2.9	2	8(1-g)	
4) Enriques surfaces		2	0	2	0	12
5) bi-elliptic surfaces		2, 3, 4, 6	2	2	0	0
6) Kodaira surfaces	0					
a) primary		1	3	1	0	0
b) secondary		2,3,4,6	1	1	0	0
6) K 3-surfaces		1	0	0,1,2	0	24
8) tori		1	4	0,1,2	0	0
minimal properly elliptic surfaces	1	Aug Col	TO OF SE	1,2	0	≥ 0
10) minimal surfaces		rottesting	a substanti		100000	
of general type	2	Grana Blan	≡ 0(2)	2	>0	> 0

予想

4次元以上の代数多様体もこのように分類・構成できるか?

詳しいことを知りたい人は...

- Fields Medal Caucher Birkar ICM2018
 https://www.youtube.com/watch?v=KPTEkNZ4XCk
- Fields Medal Lecture: Classification of algebraic varieties -Caucher Birkar - ICM2018
 - https://www.youtube.com/watch?v=dvp17QM69Ug

私の研究内容について

研究内容

適切な意味で0以上の曲率を持つ多様体が

- リッチ曲率正の多様体と
- リッチ曲率 0 の多様体

に分解されることを調べる.

4次元以上の代数多様体の分類につながる.

特徴

- 接ベクトル東 T_X の曲率が 0以上の場合を扱う.
- 特異計量の手法を用いる.

特異計量とは

特異計量 = 滑らかな計量の極限

- 多変数複素解析の多重劣調和関数から来ている計量.
- ullet regularity の落ちた計量で $+\infty$ になる部分を許容する計量.

定理 (Demailly 93, I.21)

直線束・ベクトル束において,代数多様体の分類 (MMP) で用いられる代数的な正値性が,特異計量を用いて記述できる.

先行研究

定理

- 1. [Mori 79, Siu-Yau 80.] (Frankel 予想, Hartshorne 予想) T_X の曲率が正ならば, X は \mathbb{CP}^n である.
- 2. [Mok 88, Demailly-Peternell-Schneider 94.] T_X の曲率が 0以上ならば, X は下の二つに分解される.
 - Fano 多様体. (リッチ曲率が正)
 - トーラス. (リッチ曲率が 0)

論文 [I.21][HIIM 21] で T_X の特異曲率が正・0 以上の場合の構造が分かった.

得られた結果 1-特異計量への一般化-

定理

- 1. [Fulger-Murayama 21, I.21.] T_X の特異曲率が正ならば, X は \mathbb{CP}^n である.
- 2. [Hosono-I.-Matsumura 21.] T_X の特異曲率が 0以上ならば, X は下の二つに分解される.
 - 有理連結多様体. (リッチ曲率が正の仲間)
 - トーラス. (リッチ曲率が 0)

2次元代数多様体に対する分類

定理 (HIM 21.)

Xを2次元(極小)代数多様体とする.

 T_X の特異曲率が 0以上ならば, X は以下のいずれかである.

- (有限被覆を除いて)2次元トーラス.
- ② \mathbb{CP}^1 上の \mathbb{CP}^1 東.
- ③ 1次元トーラス上の \mathbb{CP}^1 束.
- \bullet \mathbb{CP}^2 .

X が極小ではない場合も, ある程度分類できている.

得られた結果 2 -葉層構造への一般化-

接ベクトル束 T_X の (特異) 曲率が 0 以上の場合はほぼ分かった.

問題

 T_X の部分束 F について, F の (特異) 曲率が 0 以上の場合, X の構造はどうなるだろうか?

- この問題は Peternell による問題から来ている.
- $\mathcal{F} = T_X$ の場合は先行研究・前研究からわかっている. \rightarrow 上の問題はこれら研究のある種の一般化.

論文 [I.21] で F が葉層構造を持つ場合の構造が分かった.

定理 (I.21)

 $\mathcal{F} \subset T_X$ を部分束とし, 葉層構造をもつとする.

- ① \mathcal{F} が曲率が正ならば, X は \mathbb{CP}^n である.
- ② \mathcal{F} が曲率が 0以上ならば, X は下の二つに分解される.
 - Fano 多様体. (リッチ曲率が正)
- ⑤ F が特異曲率が正ならば, X は下の二つに分解される.
 - \bullet \mathbb{CP}^n
 - 平坦葉層 G をもつ多様体 Y
- ④ F が特異曲率が 0以上ならば, X は下の二つに分解される.
 - 有理連結多様体. (リッチ曲率が正の仲間)
 - ullet 平坦葉層 $\mathcal G$ をもつ多様体 Y

[I.21] は [Mori 79] などの先行研究・前研究の一般化となっている.

2次元代数多様体に対する分類

定理 (Touzet 08 + HIM 21 + I.21)

X を 2次元 (極小) 代数多様体とし, $F \subset T_X$ を部分束とする. F の特異曲率が 0以上ならば, 以下のいずれかである.

- $rank \mathcal{F} = 1$ かつ $c_1(\mathcal{F}) \neq 0$ ケース
 - 1次元代数多様体上の CP¹ 束.
- ② $rank \mathcal{F} = 1 かつ c_1(\mathcal{F}) = 0 ケース$
 - \bullet 1 次元トーラス上の \mathbb{CP}^1 束.
 - (有限被覆を除いて)2次元トーラス.
 - (有限被覆を除いて)1次元トーラスと種数 2以上の 1次元代数多様体の直積.
- $\mathfrak{S} \mathcal{F} = T_X \mathcal{F} \mathcal{A}$
 - (有限被覆を除いて)2次元トーラス.
 - CP¹ 上の CP¹ 束.
 - 1次元トーラス上の CP¹ 束.
 - \bullet \mathbb{CP}^2 .

まとめ・最近の話題

この分野は代数幾何学・複素幾何学 (微分幾何)・多変数複素解析 の複合分野で, 色々な分野の人が参戦しています.

最近の話題

- ① 代数多様体 X に特異点 (KLT 特異点) がある場合.
 - ●KLT 多様体の Beauville-Bogomolov 分解 (Druel19, Höring-Peternell 19, Greb-Guenancia-Kebekus 19).
 - KLT 多様体上の Nonabelian Hodge Correspondence (Greb-Kebekus-Peternell-Taji 19, 20).
 - det T_X が 0 以上の曲率を持つ KLT 多様体の構造定理 (Matsumura-Wang 21).
- ② 代数多様体 *X* と因子 *D* の組 (*X*, *D*) についての研究.
 - ullet (X,D) から誘導される orbifold 構造の研究 (Campana 04, 11, 16).
 - KLT weak Fano (X,D) の smooth locus の orbifold 基本群 $\pi_1(X_{reg},D)$ の有限性 (Braun 21) .