6.6 Model 2 Faktor dengan Interaksi : Efek Tetap

Pengantar

 Interaksi antara 2 perlakuan terjadi apabila respon antara 2 taraf factor A pada satu taraf factor B berbeda dengan respon antara 2 taraf yang sama dari factor A pada taraf yang lain dari factor B.

• Ilustrasi:

Model Linier

Model untuk desain 2 factor dengan interaksi:

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk}$$
 i= 1,2,...,a; j=1,2,...,b; k=1,2,...,n

- τ_i merupakan efek dari factor pertama, β_j merupakan efek dari factor kedua, dan $(\tau\beta)_{ij}$ interaksi antara factor pertama dan kedua.
- Dengan hipotesis yang diuji:
 - Ho : Tidak ada interaksi antara factor I dan factor II
 - H'o : Tidak ada perbedaan pengaruh dari level factor ke I
 - H"o : Tidak ada perbedaan pengaruh dari level factor ke II

Model Linier dalam Matriks (1)

Penjabaran dari model $y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk}$, i= 1,2,...,a; j=1,2,...,b; k=1,2,...,n $y_{111} = \mu + \tau_1 + \beta_1 + (\tau \beta)_{11} + \varepsilon_{111}$ $y_{11n} = \mu + \tau_1 + \beta_1 + (\tau \beta)_{11} + \varepsilon_{11n}$ $y_{1b1} = \mu + \tau_1 + \beta_b + (\tau \beta)_{1b} + \varepsilon_{1b1}$ $y_{1hn} = \mu + \tau_1 + \beta_h + (\tau \beta)_{1h} + \varepsilon_{1hn}$ $y_{ab1} = \mu + \tau_a + \beta_b + (\tau \beta)_{ab} + \varepsilon_{ab1}$ $y_{abn} = \mu + \tau_a + \beta_b + (\tau \beta)_{ab} + \varepsilon_{abn}$

Model Linier dalam Matriks (2)

$$\underline{y}_{abnx1} = \begin{bmatrix} y_{111} \\ \vdots \\ y_{1b1} \\ \vdots \\ y_{abn} \end{bmatrix} \quad \boldsymbol{X}_{abx(1+a+b)} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ \vdots & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ \vdots & \vdots \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ \vdots & \vdots \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ \vdots & \vdots \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ y_{ab1} & \vdots & \vdots & \vdots & \vdots \\ y_{abn} \end{bmatrix} \quad \underline{\boldsymbol{\beta}} = \begin{bmatrix} \tau_1 \\ \tau_a \\ \beta_1 \\ \vdots \\ \varepsilon_{ab1} \\ \vdots \\ \varepsilon_{abn} \end{bmatrix} \quad \underline{\boldsymbol{\beta}} = \begin{bmatrix} \tau_1 \\ \tau_a \\ \beta_1 \\ \vdots \\ \varepsilon_{ab1} \\ \vdots \\ \varepsilon_{abn} \end{bmatrix}$$

Model Linier Dalam Matriks (3)

	$\lceil abn \mid$	bn		bn	an		an	$\mid n \mid$	•	n			n	•	n]
X'X =	\overline{bn}	bn		0	n		\overline{n}	n	•	\overline{n}			0		$\overline{0}$
												•	•		•
	bn	0		bn	n		n	0		0			n		n
	an	n		n	an		0	$\mid n \mid$		0	•		n	•	0
			•						•		•	•	•	•	•
	an	n		n	0		an	0	•	n	•		0		n
	n	\overline{n}		0	n	-	0	n		0	-		0		.0
	n	ņ	:	0	0	•	n	0		n			0		.0
	\dot{n}	0	•	\dot{n}	n		0	Ö		0			n		. 0
			•				•		_						.
	$\lfloor n \rfloor$	0	•	n	0		n	0		0			0		n

R(X'X)=(1+a+b+ab)-1-a-b=ab

Model Linier dalam Matriks (4)

$$\mathbf{X}'\underline{\mathbf{y}} = \begin{bmatrix} y_{111} + y_{112} + \dots + y_{abn} \\ y_{111} + y_{112} + \dots + y_{11n} \\ y_{a11} + y_{a12} + \dots + y_{a1n} \\ y_{111} + \dots + y_{11n} + y_{a11} + \dots + y_{a14} \\ \vdots \\ y_{1b1} + \dots + y_{1bn} + y_{ab1} + \dots + y_{abn} \\ y_{111} + \dots + y_{11n} \\ \vdots \\ y_{ab1} + \dots + y_{abn} \end{bmatrix}$$

$$\begin{bmatrix}
\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} y_{ijk} \\
\sum_{j=1}^{b} \sum_{k=1}^{n} y_{1jk} \\
\sum_{j=1}^{b} \sum_{k=1}^{n} y_{ajk} \\
\sum_{i=1}^{a} \sum_{k=1}^{n} y_{i1k} \\
\sum_{i=1}^{a} \sum_{k=1}^{n} y_{ibk} \\
\sum_{k=1}^{n} y_{11k} \\
\vdots \\
\sum_{k=1}^{n} y_{abk}
\end{bmatrix}$$

$$= \begin{bmatrix} y_{...} \\ y_{1..} \\ \vdots \\ y_{a..} \\ y_{.1.} \\ \vdots \\ y_{.b.} \\ y_{11.} \\ \vdots \\ y_{ab.} \end{bmatrix}$$

Pengujian Interaksi

- Model 2 factor: $y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk}$, i=1,2,...,a; j=1,2,...,b; k=1,2,...,n
- Jika $\mu_{ij}=\mu+\tau_i+\beta_j+(\tau\beta)_{ij}$. Tidak ada interaksi jika dan hanya jika $\left(\mu_{ij}-\mu_{ij'}\right)-\left(\mu_{i'j}-\mu_{i'j'}\right)=0$ untuk semua i,i',j,j'
- Dengan mesubstitusikan persamaan di atas, terdapat interaksi jika dan hanya jika

$$\left((\tau \beta)_{ij} - (\tau \beta)_{ij'} \right) - \left((\tau \beta)_{i'j} - (\tau \beta)_{i'j'} \right) = 0$$

Solusi Persamaan Normal dan Pengujian Interaksi

Ada 2 metode untuk memperoleh solusi system persamaan normal dan dilanjutkan pengujian hipotesis:

- Metode Matriks Kebalikan Umum
- Metode Reparameterisasi

1. Metode Matriks Kebalikan Umum

Dalam kasus Model Tak Penuh persamaan normal:

$$(X'X)\underline{b} = X'\underline{y}$$

Solusi dari Sistem persamaan normal:

$$\underline{\boldsymbol{b}} = (\boldsymbol{X}'\boldsymbol{X})^{\boldsymbol{C}}\boldsymbol{X}'\underline{\boldsymbol{y}}$$

Dimana (X'X)^C merupakan matriks kebalikan umum dari X'X dan bersifat tidak unik

- Pengujian interaksi:
 - Ho: **C** $\underline{\boldsymbol{\beta}}$ =0, dimana **C** merupakan matriks berordo (a-1)(b-1)x (a+b+ab+1) yang merupakan penjabaran dari definisi $\left((\tau\beta)_{ij}-(\tau\beta)_{ij'}\right)-\left((\tau\beta)_{i'j}-(\tau\beta)_{i'j'}\right)=0$ untuk seluruh kondisi i,i',j,j'
 - Pengujian dilakukan sesuai dengan Langkah Pengujian Pada Kondisi Umum (Myers 6.1)
 - Statistik Uji:

$$F_{m,n-r} = \frac{\left(\mathbf{C}\underline{\mathbf{b}}\right)'\left\{\mathbf{C}(\mathbf{X}'\mathbf{X})^{\mathbf{C}}\mathbf{C}'\right\}^{-1}(\mathbf{C}\underline{\mathbf{b}})/m}{s^{2}}$$

- Dimana m merupakan rank dari matriks C yang berordo mxp.
- Tolak Ho jika F hit > F tabel

Contoh Kasus dengan Metode MKU

- Misal model 2 factor dengan jumlah taraf factor pertama berjumlah 2(a=2), jumlah taraf factor kedua berjumlah 2(b=2), dan ulangan untuk masing-masing kombinasi factor masing2 sebanyak 2(n=2).
- Ho: $((\tau\beta)_{11} (\tau\beta)_{12}) ((\tau\beta)_{21} (\tau\beta)_{22}) = 0$
- Dalam bentuk matriks Ho: $C\underline{\beta}$ =0
- Dimana $\mathbf{C} = [0 \ 0 \ 0 \ 0 \ 1 \ -1 \ -1 \ 1] \boldsymbol{\beta}$

$$= \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} \tau_1 \\ \tau_2 \\ \beta_1 \\ \beta_2 \\ (\tau\beta)_{11} \\ (\tau\beta)_{12} \\ (\tau\beta)_{21} \\ (\tau\beta)_{22} \end{bmatrix}$$

2. Reparameterisasi(1)

Model untuk desain 2 factor dengan interaksi:

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk}$$
 i= 1,2,...,a; j=1,2,...,b; k=1,2,...,n

Definisi:

$$\bar{\tau} = \frac{\sum_{i=1}^{a} \tau_i}{a} \qquad \bar{\beta} = \frac{\sum_{j=1}^{b} \beta_j}{b} \qquad \bar{\mu}_{..} = \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} \mu_{ij}}{ab} \qquad \overline{\tau\beta} = \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} (\tau\beta)_{ij}}{ab}$$

$$\overline{\tau\beta_{i.}} = \frac{\sum_{j=1}^{b} (\tau\beta)_{ij}}{b} \qquad \overline{\tau\beta_{.j}} = \frac{\sum_{i=1}^{a} (\tau\beta)_{ij}}{a}$$

Supaya parameter dapat diduga didefinisikan:

$$\mu^* = \mu + \overline{\tau} + \overline{\beta} + \overline{\tau}\overline{\beta}$$

$$\tau^*_{i} = \tau_i - \overline{\tau} + \overline{(\tau\beta)}_{i.} - \overline{(\tau\beta)}$$

$$\beta^*_{j} = \beta_j - \overline{\beta} + \overline{(\tau\beta)}_{.j} - \overline{(\tau\beta)}$$

$$(\tau\beta)^*_{ij} = (\tau\beta)_{ij} - \overline{(\tau\beta)}_{i.} - (\overline{\tau\beta)}_{.j} + \overline{(\tau\beta)}$$

Sehingga diperoleh parameter baru yang dapat diduga dengan persamaan aditif:

$$y_{ijk} = \mu^* + \tau^*_i + \beta^*_j + (\tau\beta)^*_{ij} + \varepsilon_{ijk}$$
 $i = 1,2$ $j = 1,2$ $k = 1,2,3,4$

Ketika model diatas dijabarkan akan membentuk persamaan dasar model desain 2 factor dengan interaksi.

Reparameterisasi (2)

• Dari definisi sebelumnya, tidak ada interaksi ketika $\left((\tau\beta)_{ij}-(\tau\beta)_{ij'}\right)-\left((\tau\beta)_{i'j'}-(\tau\beta)_{i'j'}\right)=0$ untuk semua i, i', j, dan j' sehingga

$$0 = \sum_{i'=1}^{a} \sum_{j'=1}^{b} \left((\tau \beta)_{ij} - (\tau \beta)_{ij'} \right) - \left((\tau \beta)_{i'j} - (\tau \beta)_{i'j'} \right)$$

Dari persamaan tersebut dapat disimpulkan bahwa tidak ada interaksi jika $(\tau \beta)^*_{ij} = 0$ untuk semua i dan j.

- Untuk mendapatkan solusi dari system persamaan normal $(\mathbf{X}'\mathbf{X})\underline{\boldsymbol{b}} = \mathbf{X}'\underline{\boldsymbol{y}}$ didefinisikan restriksi $\sum_{i=1}^a \tau^*{}_i = 0$, $\sum_{j=1}^b \beta^*{}_j = 0$, $\sum_{i=1}^a \sum_{j=1}^b (\tau\beta)^*{}_{ij} = 0$ $\sum_{i=1}^a (\tau\beta)^*{}_{i.} = 0$, $\sum_{j=1}^b (\tau\beta)^*{}_{.j} = 0$
- Dengan mensubstitusikan matriks model linier desian 2 factor dengan interaksi dan restriksi yang telah didefinisikan maka akan diperoleh solusi dari system persamaan normal.

Reparameterisasi (3)

• Sistem persamaan normal $(X'X)\underline{b} = X'y$

Reparameterisasi (4)

Hasil substitusi:

$$y_{...} = abn\widehat{\mu^*} + bn\sum_{i}\widehat{\tau^*_{i}} + an\sum_{j}\widehat{\beta^*_{j}} + n\sum_{i}\sum_{j}(\widehat{\tau\beta)^*_{ij}}$$

$$y_{i...} = bn\widehat{\mu^*} + bn\widehat{\tau^*_{i}} + n\sum_{j}\widehat{\beta^*_{j}} + n\sum_{i}\sum_{j}(\widehat{\tau\beta)^*_{ij}}$$

$$y_{.j.} = an\widehat{\mu^*} + n\sum_{i}\widehat{\tau^*_{i}} + an\widehat{\beta^*_{j}} + n\sum_{i}\sum_{j}(\widehat{\tau\beta)^*_{ij}}$$

$$y_{ij.} = n\widehat{\mu^*} + n\widehat{\tau^*_{i}} + n\widehat{\beta^*_{j}} + n(\widehat{\tau\beta)^*_{ij}}$$

Dengan memasukkan restriksi sehingga diperoleh:

$$y_{...} = abn\widehat{\mu^*}$$

$$y_{i..} = bn\widehat{\mu^*} + bn\widehat{\tau^*}_i$$

$$y_{.j.} = an\widehat{\mu^*} + an\widehat{\beta^*}_j$$

$$y_{ij.} = n\widehat{\mu^*} + n\widehat{\tau^*}_i + n\widehat{\beta^*}_j + n(\widehat{\tau\beta})^*_{ij}$$

• Diperoleh:

$$\overline{y_{...}} = \widehat{\mu^*}$$

$$\overline{y_{i..}} = \widehat{\mu^*} + \widehat{\tau^*}_i$$

$$\overline{y_{.j.}} = \widehat{\mu^*} + \widehat{\beta^*}_j$$

$$\overline{y_{ij.}} = \widehat{\mu^*} + \widehat{\tau^*}_i + \widehat{\beta^*}_j + (\widehat{\tau\beta})^*_{ij}$$

Reparameterisasi (5)

- ullet Dari penjelasan sebelumnya ${\color{red} {f b}}$ merupakan penduga BLUE dari ${\color{red} {f B}}$
- Diperoleh solusi untuk system persamaan normal:

$$\underline{\boldsymbol{b}^*} = \begin{bmatrix} \widehat{\mu} & * \\ \widehat{\tau} & *_1 \\ \vdots & \vdots \\ \widehat{\beta} & *_1 \\ \widehat{\beta} & *_2 \\ (\widehat{\tau}\widehat{\beta}) & *_{ab} \end{bmatrix} = \begin{bmatrix} \overline{y}_{...} \\ \overline{y}_{1.} - \overline{y}_{...} \\ \overline{y}_{2.} - \overline{y}_{2...} - \overline{y}_{2...} + \overline{y}_{...} \end{bmatrix}$$

Pengujian Hipotesis Pengaruh Interaksi dengan Metode Reparameterisasi (1)

- Ho: $(\tau\beta)^*_{ij} = 0$
- Jumlah kuadrat regresi full dapat diperoleh dengan rumus:

$$JK_{reg(full)} = \underline{\boldsymbol{b}^{*'}}\boldsymbol{X}'\underline{\boldsymbol{y}}$$

Hasil perkalian di atas menghasilkan

$$JK_{reg(full)} = \frac{y \dots^{2}}{abn} + \sum_{i=1}^{a} y_{i..}(\overline{y_{i..}} - \overline{y \dots}) + \sum_{j=1}^{b} y_{.j.}(\overline{y_{.j.}} - \overline{y \dots}) + \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij.}(\overline{y_{ij.}} - \overline{y_{i..}} - \overline{y_{.j.}} + \overline{y \dots})$$

Setelah dijabarkan diperoleh:

$$JK_{reg(full)} = \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{y_{ij.}^{2}}{n}$$

Model tereduksi adalah model ketika tidak ada interaksi:

$$JK_{reg(reduced)} = \sum_{i=1}^{a} \frac{y_{i..}^{2}}{bn} + \sum_{i=1}^{b} \frac{y_{.j.}^{2}}{an} - \frac{y_{...}^{2}}{abn}$$

Pengujian Hipotesis Pengaruh Interaksi dengan Metode Reparameterisasi (2)

Sehingga diperoleh jumlah kuadrat hipotesis:

$$JK_{reg(hipotesis)} = JK_{reg(full)} - JK_{reg(reduced)}$$

$$JK_{reg(hipotesis)} = \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{y_{ij.}^{2}}{n} - \sum_{i=1}^{a} \frac{y_{i..}^{2}}{bn} - \sum_{j=1}^{b} \frac{y_{.j.}^{2}}{an} + \frac{y_{...}^{2}}{abn}$$

- Dengan derajat bebas jumlah kuadrat regresi full ab, derajat bebas jumlah kuadrat regresi tereduksi a+b-1 sehingga derajat bebas jumlah kuadrat regresi hipotesis (a-1)(b-1)
- Dengan demikian statistic uji untuk pengujian pengaruh interaksi adalah:

$$F_{(a-1)(b-1),abn-ab} = \frac{JK_{reg(hipotesis)} / (a-1)(b-1)}{s^2}$$

- $s^2 = \frac{JK_{residual}}{abn-ab}$
- Jika model 2 factor berdasarkan uji di atas menunjukkan tidak ada interaksi maka dilakukan uji untuk factor utama 1 dan factor utama 2 dengan hipotesis

•
$$H'_0$$
: $\tau^*_1 = \cdots = \tau^*_a = 0$

•
$$H''_0: \beta^*_1 = \cdots = \beta^*_h = 0$$

Pengujiannya sama dengan pengujian model 2 factor tanpa interaksi dengan n≥1

Sumber	JK	db
Regresi Model penuh	$\sum\nolimits_{i = 1}^a {\sum\nolimits_{j = 1}^b {{y_{ij.}^2}} / n}$	ab
Model tereduksi	$\sum_{i} y_{i}^{2} / b n + \sum_{j} y_{.j.}^{2} / a n - y_{}^{2} / a b n$	(a+b-1)
Model Hipotesis	$\sum\nolimits_{i=1}^{a} \sum\nolimits_{j=1}^{b} y_{ij.}^{2} \big/ n \ - \sum\nolimits_{i} y_{i}^{2} \big/ b n - \sum\nolimits_{j} y_{.j.}^{2} \big/ a n + y_{}^{2} \big/ ab n$	(a-1)(b-1)
Residual/Galat	$\sum_{i}\!\sum_{j}\!\sum_{k}\!y_{ijk}^{2} \ -\!\sum_{i=1}^{a}\!\sum_{j=1}^{b}\!y_{ij.}^{2}\big/n$	ab(n-1)
Total	$\sum_{i}\sum_{j}\sum_{k}y_{ijk}^{2}$	abn

Tabel Anova Pengujian Pengaruh Interaksi

Sumber	JK	db
Regresi Model penuh	$\sum\nolimits_{i=1}^{a}\sum\nolimits_{j=1}^{b}y_{ij.}^{2}\Big/n$	ab
Nilai Tengah	y /ab n	1
Model Hipotesis(τ)	$\sum_{i} y_{i}^2 / b n - y_{}^2 / a b n$	(a-1)
Model Hipotesis(β)	$\sum_{j} y_{.j.}^{2} / a n - y_{}^{2} / ab n$	(b-1)
Model Hipotesis(τβ)	$\sum\nolimits_{i=1}^{a} \sum\nolimits_{j=1}^{b} y_{ij.}^{2} / n - \sum\nolimits_{i} y_{i}^{2} / b n - \sum\nolimits_{j} y_{j}^{2} / a n + y_{}^{2} / a b n$	(a-1)(b-1)
Residual/Galat	$\textstyle \sum_{i} \sum_{j} \sum_{k} y_{ijk}^2 - \sum_{i=1}^a \sum_{j=1}^b y_{ij.}^2 \big/ n$	ab(n-1)
Total	$\sum_{ m i} \sum_{ m j} \sum_{ m k} { m y}_{ m ijk}^2$	abn

Tabel Anova Umum Model 2 Faktor Dengan Interaksi

Contoh soal:

1. Dari suatu percobaan dua faktor dengan interaksi dengan model sebagai berikut:

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \varepsilon_{ijk}$$

 $i = 1,2$; $j = 1,2$; $k = 1,2$

a. Jika model tersebut ditulis dalam bentuk $y = X\beta + \varepsilon$, tentukanlah X'X, X'y, dan Rank(X)

$$\underline{y} = \begin{bmatrix} y_{111} \\ y_{112} \\ y_{121} \\ y_{211} \\ y_{212} \\ y_{221} \\ y_{222} \end{bmatrix}; \ \underline{\beta} = \begin{bmatrix} \mu \\ \tau_1 \\ \tau_2 \\ \beta_1 \\ \beta_2 \\ \tau_1 \beta_1 \\ \tau_1 \beta_2 \\ \tau_2 \beta_1 \\ \tau_2 \beta_2 \end{bmatrix}; \underline{\varepsilon} = \begin{bmatrix} \varepsilon_{111} \\ \varepsilon_{112} \\ \varepsilon_{122} \\ \varepsilon_{211} \\ \varepsilon_{212} \\ \varepsilon_{221} \\ \varepsilon_{222} \end{bmatrix}$$

$$\mathbf{X'X} = \begin{bmatrix} 8 & 4 & 4 & 4 & 4 & 2 & 2 & 2 & 2 \\ 4 & 4 & 0 & 2 & 2 & 2 & 2 & 2 & 0 & 0 \\ 4 & 0 & 4 & 2 & 2 & 0 & 0 & 2 & 2 \\ 4 & 2 & 2 & 4 & 0 & 2 & 0 & 2 & 0 \\ 4 & 2 & 2 & 0 & 4 & 0 & 2 & 0 & 2 \\ 2 & 2 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 \\ 2 & 0 & 2 & 2 & 0 & 0 & 0 & 2 & 0 \\ 2 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 2 \end{bmatrix}$$

$$\mathbf{X'}\underline{\mathbf{y}} = \begin{bmatrix} y_{...} \\ y_{1..} \\ y_{2..} \\ y_{.1.} \\ y_{.2.} \\ y_{11.} \\ y_{12.} \\ y_{21.} \\ y_{22.} \end{bmatrix}$$

$$r(X) = ab = 2x2 = 4$$

b. Tentukan matrik kebalikan umum dari **X'X**

$$\mathbf{X'X} = \begin{bmatrix} 8 & 4 & 4 & 4 & 4 & 2 & 2 & 2 & 2 \\ 4 & 4 & 0 & 2 & 2 & 2 & 2 & 2 & 0 & 0 \\ 4 & 0 & 4 & 2 & 2 & 0 & 0 & 2 & 2 \\ 4 & 2 & 2 & 4 & 0 & 2 & 0 & 2 & 0 \\ 4 & 2 & 2 & 0 & 4 & 0 & 2 & 0 & 2 & 0 \\ 2 & 2 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\ 2 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 0 \\ 2 & 0 & 2 & 2 & 0 & 0 & 0 & 2 & 0 \\ 2 & 0 & 2 & 0 & 2 & 0 & 0 & 0 & 2 \end{bmatrix}$$

$$r(X) = r(X'X) = a.b = 2.2 = 4$$

• Pilih matriks Minor (**M**) yang berukuran

4×4 dari matriks X'X:

$$\mathbf{M} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}$$

d. Tunjukkan bahwa $(\tau\beta)_{11}^* = (\tau\beta)_{11} - (\overline{\tau\beta})_1 - (\overline{\tau\beta})_1 + (\overline{\tau\beta})$ dapat diduga.

$$(\tau\beta)_{11}^* = (\tau\beta)_{11} - \frac{(\tau\beta)_{11} + (\tau\beta)_{12}}{2} - \frac{(\tau\beta)_{11} + (\tau\beta)_{21}}{2} + \frac{(\tau\beta)_{11} + (\tau\beta)_{12} + (\tau\beta)_{21} + (\tau\beta)_{21}}{4}$$
$$(\tau\beta)_{11}^* = \frac{1}{4}(\tau\beta)_{11} - \frac{1}{4}(\tau\beta)_{12} - \frac{1}{4}(\tau\beta)_{21} + \frac{1}{4}(\tau\beta)_{22}$$

$$(\boldsymbol{\tau}\boldsymbol{\beta})_{11}^* = \begin{bmatrix} 0 & 0 & 0 & 0 & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \end{bmatrix} \boldsymbol{\beta} = \boldsymbol{t}' \boldsymbol{\beta}$$

 $t'\beta$ dapat diduga jika $t'(X'X)^c(X'X) = t'$

Dengan
$$t' = \begin{bmatrix} 0 & 0 & 0 & 0 & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \end{bmatrix}$$
 dan

maka $t'(X'X)^c(X'X) = t'$

Jadi fungsi
$$(\tau\beta)_{11}^* = (\tau\beta)_{11} - (\overline{\tau\beta})_1 - (\overline{\tau\beta})_1 + (\overline{\tau\beta})$$
 dapat diduga (*estimable*)

Tugas:

1. Tunjukkan

$$F_{Hitung} = \frac{\left(\sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij}^{2} / n - \sum_{i=1}^{a} y_{i...}^{2} / b n - \sum_{j=1}^{b} y_{.j.}^{2} / a n + y_{...}^{2} / a b n\right) / (a-1)(b-1)}{\left(\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} y_{ijk}^{2} - \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij..}^{2} / n\right) / (ab(n-1))}$$

dengan melakukan partisi/reduksi matriks \mathbf{X} dan vektor $\boldsymbol{\beta}$ dari model linier $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ dua faktor dengan interaksi untuk menguji \boldsymbol{H}_0 : $(\boldsymbol{\tau}\boldsymbol{\beta})_{ij}^* = \mathbf{0}$.

Tugas Penyusunan Bahan Ajar Pengantar Model Linier

Disusun oleh:

Terima Kasih