ELECTRONICA GRAL Y APLICADA. EXAMEN PRACTICA REGULAR Programa 2020 COLOCAR APELLIDO Y LEGAJO EN TODAS LAS HOJAS DEL EXAMEN.

Desarrolle los ejercicios. Use hoja lisa y bolígrafo negro o azul. Coloque en cada hoja Apellido v Legaio. Enumere las hoias que use. Importante: Solo use una carilla por hoia. Al finalizar el examen: Saque Fotos a las hojas del Examen y Confeccione un archivo electrónico, formato en .pdf. Suba el archivo a la plataforma (entrega de examen)

EJERCICIO 1.

Sea un circuito serie compuesto por una fuente E1 y una Resistencia R1. La corriente que circula es I1= 50 mA, como se observa en el circuito de la figura 1.

Al circuito se le agrega una Resistencia en serie R2=100 Ohms. La Tensión E1 permanece Constante sin cambiar su valor. La Corriente que circula es ahora I2= 40 mA.

Se observa el circuito resultante. (Divisor de Tensíón)

Determinar:

- A- El Valor de R1 (en omhs) de la Figura 2
- **B-** El Valor de Vs del Divisor de Tensión (en Volts)
- **C-** El Valor de la Fuente E1 (en Volts)

Nota.

Elaborar el ejercicio con fórmulas y desarrollo

EJERCICIO 2.

A- Dibuje el Circuito Electrónico de la Práctica correspondiente al Ensayo Experimental que permite determinar y trazar la curva característica o curva de salida del Transistor NPN. Nota. Indique variables y nombres de los componentes del circuito completo sin omitir los instrumentos de medición del ensayo.

B- Enumere y describa los pasos o etapas del Procedimiento Práctico que permite obtener los valores experimentales del ensayo del circuito electrónico del punto a) que tiene por finalidad trazar las curvas características o de salida del Transistor NPN.

Nota. No omita pasos y defina las variables que utiliza. El Procedimiento que describa debe ser Entendible y Claro.

C- En base a la Tabla que se muestra con datos experimentales: Escriba la Fórmula de la Recta de Carga y los valores de las variables de la misma.

	RECTA DE CARGA EXPERIMENTAL			
IB (uA)	VCE (V)	IC (mA)		
100	0,13	19,9		
80 40 10	0,85	18,5		
	5,3	9,62		
	8,94	2,42		
	10	0		
	0	20		

EJERCICIO 3.

- **A-** Cuántas unidades de 2K x 4 bit's serán necesarias para construir una memoria de 8Kbytes?
- B- Realice un esquema de cómo las conectaría.

EJERCICIO 4.

A- Realice el Esquema en Bloques o Esquema Modular Básico del Regulador de Tensión Serie. Indique el Nombre de los Bloques y la Función que cumplen.

Nota. No olvide indicar nombres, variables y Conexión entre los Bloques. Fuente de alimentación de Entrada y de Salida.

B- Realice el Circuito Electrónico del Regulador Serie de 2 Transistores. Coloque o Indique en el Circuito Electrónico los Bloques que describió en el punto a) **Nota**. Indique todos los componentes, nombre y variables sin omitir nada.

C- Dado los 2 circuitos de Regulación de Tensión del Trabajo Práctico Describa 2 (dos) Similitudes y 2 (dos) Diferencias. Sea Claro y Específico en la Respuesta.

EJERCICIO 5.

A- Realice el Circuito Experimental del práctico del Amplificador Operacional con realimentación positiva aplicado al control de Temperatura.

Nota. Indique y nombre todos los componentes del circuito, no omita nada. No es necesario dibujar en el circuito el Transistor de Salida.

B-Calcule el Ancho de Histéresis (H) del AO en base a los siguientes datos.

Relación de resistencias de realimentación positiva: 4

Tensión de Alimentación del circuito: 12 V

Tensión de Referencia: 8 V

C- Dibuje el Ciclo de Histéresis e indique las variables y valores de los puntos A y B. Se denomina: Vout (Tensión de salida del AO). Vref (Tensión de referencia) Vin (Tensión entrada variable). VinL (Tensión entrada mínima) VinH (Tensión entrada máxima) Complete el Cuadro y Explique la respuesta de la Salida Vout

Nota. Utilice los valores de los puntos A y B

				1
	Estado	Entrada	Salida Vout	Explicación
	1	Vin>VinH		
	2	Vin <vinh< td=""><td></td><td></td></vinh<>		
	3	Vin=Vref		
ĺ	4	Vin <vref< td=""><td></td><td></td></vref<>		
	5	Vin <vinl< td=""><td></td><td></td></vinl<>		

EJERCICIO 6.

A- Escribir la Tabla de la Verdad de la siguiente función, minimizarla y

B- Construir con compuertas .f(d,c,b,a) = \sum_4 (1,2,3,5,7)

EJERCICIO 7.

A- Dada las Tramas de Interrogación y Respuesta Dibuje un Esquema en Bloques que muestre la interconexión del Maestro, los Esclavos, las variables y valores que tienen. **Nota.** Para las Variables digitales use las siglas S_i (Ej. S1 entrada digital 1). Para las variables analógicas use las siglas A_i (Ej. A1 entrada analógica 1).

TRAMAS DE INTERROGACIÓN (0D= CR 0A=LF)

- :010200010003LRC0D0A
- :020200000003LRC0D0A
- :020400000002LRC0D0A
- :030400010002LRC0D0A

TRAMAS DE RESPUESTA (OD= CR OA=LF)

- :02040434025103LRC0D0A
- :01020103LRC0D0A
- :02020106LRC0D0A
- :030404A201BE02LRC0D0A

B- Calcule los códigos de error (LRC) para las Tramas:

```
:02040434025103LRC0D0A LRC= ?
```

EJERCICIO 8.

A- Dibuje un Contator Binario Asíncrono Ascendente usando la menor cantidad de biestables posibles que pueda llegar hasta la cuenta de 39.

EJERCICIO 9.

En el siguiente fragmento de código: el elevador, **A-** ¿en qué piso está? y **B-** ¿a qué piso va?

```
if(Pu1==HIGH)
{
   if(Pisoactual==2)
   {
      digitalWrite(MB, HIGH);

      while (Se1==LOW)
   {
      Se1 =digitalRead(S1);
   }

      digitalWrite(MB,LOW);
   Pisoactual = ..;
}
```

EJERCICIO 10.

A- En la siguiente porción de código, si el valor analógico convertido a binario es: 1001100111

¿El LED de la salida13 está encendido o apagado?

```
void loop()
{
  valor = analogRead(0);
  if (valor >= 500)
  { digitalWrite(13,HIGH);
    Serial.write('e');
  }
  else {digitalWrite(13,LOW);
    Serial.write('a');
  }
    Serial.println(valor);
    delay(200);
}
```

B- En la siguiente porción de código: ¿ A qué velocidad se realiza la comunicación ? Explique brevemente qué hace.

```
char option = ' ';
void setup() {
  pinMode(13,OUTPUT);
  Serial.begin(9600);
}

void loop()
{
  if(Serial.available() != 0)
  {option = Serial.read();
  }
  if(option == 'e')
  {digitalWrite (13,HIGH);
  }
  else if(option == 'a')
  {digitalWrite (13,LOW);
  }
}
```

------FIN EXAMEN PRACTICA 07 OCTUBRE 2021