

Spanish (spa), day 1

Martes, 18 de julio de 2017

Problema 1. Para cada entero $a_0 > 1$, se define la sucesión a_0, a_1, a_2, \ldots tal que para cada $n \ge 0$:

$$a_{n+1} = \begin{cases} \sqrt{a_n} & \text{si } \sqrt{a_n} \text{ es entero,} \\ a_n + 3 & \text{en otro caso.} \end{cases}$$

Determinar todos los valores de a_0 para los que existe un número A tal que $a_n = A$ para infinitos valores de n.

Problema 2. Sea \mathbb{R} el conjunto de los números reales. Determinar todas las funciones $f: \mathbb{R} \to \mathbb{R}$ tales que, para cualesquiera números reales $x \in y$,

$$f(f(x)f(y)) + f(x+y) = f(xy).$$

Problema 3. Un conejo invisible y un cazador juegan como sigue en el plano euclídeo. El punto de partida A_0 del conejo, y el punto de partida B_0 del cazador son el mismo. Después de n-1 rondas del juego, el conejo se encuentra en el punto A_{n-1} y el cazador se encuentra en el punto B_{n-1} . En la n-ésima ronda del juego, ocurren tres hechos en el siguiente orden:

- (i) El conejo se mueve de forma invisible a un punto A_n tal que la distancia entre A_{n-1} y A_n es exactamente 1.
- (ii) Un dispositivo de rastreo reporta un punto P_n al cazador. La única información segura que da el dispositivo al cazador es que la distancia entre P_n y A_n es menor o igual que 1.
- (iii) El cazador se mueve de forma visible a un punto B_n tal que la distancia entre B_{n-1} y B_n es exactamente 1.

¿Es siempre posible que, cualquiera que sea la manera en que se mueva el conejo y cualesquiera que sean los puntos que reporte el dispositivo de rastreo, el cazador pueda escoger sus movimientos de modo que después de 10⁹ rondas el cazador pueda garantizar que la distancia entre él mismo y el conejo sea menor o igual que 100?

Language: Spanish Tiempo: 4 horas y 30 minutos
Cada problema vale 7 puntos

Spanish (spa), day 2

Miércoles, 19 de julio de 2017

Problema 4. Sean R y S puntos distintos sobre la circunferencia Ω tales que RS no es un diámetro de Ω . Sea ℓ la recta tangente a Ω en R. El punto T es tal que S es el punto medio del segmento RT. El punto J se elige en el menor arco RS de Ω de manera que Γ , la circunferencia circunscrita al triángulo JST, intersecta a ℓ en dos puntos distintos. Sea A el punto común de Γ y ℓ más cercano a R. La recta AJ corta por segunda vez a Ω en K. Demostrar que la recta KT es tangente a Γ .

Problema 5. Sea $N \geqslant 2$ un entero dado. Los N(N+1) jugadores de un grupo de futbolistas, todos de distinta estatura, se colocan en fila. El técnico desea quitar N(N-1) jugadores de esta fila, de modo que la fila resultante formada por los 2N jugadores restantes satisfaga las N condiciones siguientes:

- (1) Que no quede nadie ubicado entre los dos jugadores más altos.
- (2) Que no quede nadie ubicado entre el tercer jugador más alto y el cuarto jugador más alto.

:

(N) Que no quede nadie ubicado entre los dos jugadores de menor estatura.

Demostrar que esto siempre es posible.

Problema 6. Un par ordenado (x, y) de enteros es un punto primitivo si el máximo común divisor de x e y es 1. Dado un conjunto finito S de puntos primitivos, demostrar que existen un entero positivo n y enteros a_0, a_1, \ldots, a_n tales que, para cada (x, y) de S, se cumple:

$$a_0x^n + a_1x^{n-1}y + a_2x^{n-2}y^2 + \dots + a_{n-1}xy^{n-1} + a_ny^n = 1.$$

Language: Spanish

Tiempo: 4 horas y 30 minutos Cada problema vale 7 puntos