

CS 348 Computer Networks Lec 6

Spring 2020 IIT Goa

Course Instructor: Dr. Neha Karanjkar

Disclaimer: These slides are adapted from Computer Networking: A Top-down Approach by Kurose & Ross, 6th ed. For copyright information visit: http://www-net.cs.umass.edu/kurose-ross-ppt-6e/

Questions

How do packet-switched networks work?

• How do we understand and analyze the **Performance** of packet-switched networks?

• Why does the Internet use **Packet Switching**? What are the alternatives?

• A packet switch (Router/Switch) must **receive (buffer) the entire packet** before it can begin to transmit the packet onto the next link.

A Router forwards Packets

based on its destination address by consulting a forwarding table

What a Router consists of

Figure 4.4 Router architecture

Example of a Forwarding table

Network Destination	Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	192.168.0.1	192.168.0.100	10
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
192.168.0.0	255.255.255.0	192.168.0.100	192.168.0.100	10
192.168.0.100	255.255.255.255	127.0.0.1	127.0.0.1	10
192.168.0.1	255.255.255.255	192.168.0.100	192.168.0.100	10

Ref: https://en.wikipedia.org/wiki/Routing_table

Some Terms

- **Latency (same as Delay):** How much time it takes for something
 - Example: "Transmission Latency for the packet across the link is 10 ms"
- **Bandwidth**: Maximum number of bits that can be sent or received per unit time (bits per second)
 - Example: "The bandwidth of this link is 10 Mbps"
- **Throughput (same as Rate)**: Number of objects/packets/jobs per unit time
 - Example: "The effective throughput between the end-hosts is 10 Kbps"
- **Bottleneck:** The component of a system which is currently limiting the overall performance
 - Example: "The bottleneck link in the system is this copper cable"

• A packet switch must **receive** (**buffer**) **the entire packet** before it can begin to transmit the packet onto the next link.

- **Transmission Rate** of the link = **R** bits per second
- **Packet Length** = **L** bits
 - => It will take L/R seconds to transmit the entire packet over **one link**. (Thus **Transmission Delay** over **one link** is L/R)
- The Destination will receive the entire packet at time **2L/R**

- **Transmission Rate** of the link = **R** bits per second
- **Packet Length** = **L** bits

Need to send 3 packets of the same length.

After how much time will the Destination receive all 3 packets?

Reference

• Kurose and Ross, Section 1.3