Exam 1 Solutions

Zheming Gao

October 5, 2017

Problem 1

(a) False. Counterexample:

$$S_1 = \{x = (x_1, x_2) \in \mathbb{R}^2 | x_2 = 0, x_1 \ge 0\}$$
 and $S_2 = \{x = (x_1, x_2) \in \mathbb{R}^2 | x_1 = 0, x_2 \ge 0\}$.
Both S_1 and S_2 are convex but $S_1 \cup S_2$ is not convex.

- (b) True. int(S) is open and the interior of an open set is itself.
- (c) False. Counterexample: Let $P = \mathbb{R}^2_+$, i.e. the first quadrant. It is a unbounded polyhedron, but it is not affine.
- (d) False. We have shown in homework that the set of optimal solutions P_0 is a convex set. So if P_0 has two points, then any convex combination of them will be in P_0 . Hence it won't have exactly two points in it.
- (e) True. The objective function c^Tx is countinuous on P, which is a nonempty closed bounded set. So P is a nonempty compact set and c^Tx will reach its maximum and minimum. This is supported by Weierstrass theorem.
- (f) True. Since n = m + 1, the solution space of Ax = b is of Rank(1), which is a one-dimensional subspace. Hence, it has at most two vertices. In conclusion, there are at most two BFS of (LP).
- (g) False. Consider an LP problem with a constant objective function. Then its optimal solutions are basic solutions but not basic.

For example,

Minimize 0
Subject to
$$x_1 + x_2 = 1$$

 $x_1, x_2 \ge 0$.

m=1, but $x=(1/2,1/2)^T$ is an optimal solution.

(h) False. A BS has n-m nonbasic variables so it has at least n-m zero components. Hence, a degenerate BS has more than n-m zero components.

Problem 2

(a) The problem can be reformed as the following,

Minimize
$$-x_1 - x_2$$

Subject to $x_1 - x_2 \le 3$
 $x_1 - x_2 \ge -1$
 $x_1, x_2 \ge 0$.

We plot the figure.

Figure 1: Problem 2

From the figure we see that the problem is unbounded. This is to say that the objective value will goes to $-\infty$.

(b) There are 5 BS, 3 BFS (with '*').

$$[-1, 0, 4, 0]^{T}$$

$$[3, 0, 0, 4]^{T} *$$

$$[0, 1, 4, 0]^{T} *$$

$$[0, -3, 0, 4]^{T}$$

$$[0, 0, 3, 1]^{T} *$$

(c) Start from BFS $x = [0, 1, 4, 0]^T$. The basic matrix is $B = \begin{bmatrix} A2 & A_3 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$ and so $B = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$. Hence the fundamental matrix

2

$$M = \begin{bmatrix} -1 & 1 & 1 & 0 \\ -1 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad M^{-1} = \begin{bmatrix} 0 & -1 & 1 & -1 \\ 1 & -1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Compute reduced cost

$$r_1 = c^T \mathbf{d}^1 = [-1, 0, -1, 0] \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = -2 < 0, \quad r_2 = c^T \mathbf{d}^4 = [-1, 0, -1, 0] \begin{bmatrix} -1 \\ -1 \\ 0 \\ 1 \end{bmatrix} = 1 > 0.$$

Hence we take \mathbf{d}^1 . However, since $\mathbf{d}^1 > 0$ and [B|N]d = 0 (this is easy to check). This is to say that \mathbf{d}^1 is a extremal direction. Thus, $\forall \alpha > 0$ and $x + \alpha \mathbf{d}^1$ is feasible and $c^T(x + \alpha \mathbf{d}^1) \to -\infty$, as $\alpha \to +\infty$. Hence, the LP problem is unbounded.

Problem 3

(a) We plot the figure and it is clear that the optimal value $z^* = 3$ is attained at $x^* = 3$.

Figure 2: Problem 3

(b) Use the similar idea as in homework 2, let $x=x^+-x^-$. The Standard LP problem is

Minimize
$$-x^{+} - x^{-}$$

Subject to $-x^{+} + x^{-} + a_{1} = 1$
 $x^{+} - x^{-} + a_{2} = 3$
 $x^{+}, x^{-}, a_{1}, a_{2} \geqslant 0$.

(Actually, this problem is not equivalent to the original one since it is lacked of the cross term $x^+ \cdot x^- = 0$).

(c) Let's try to use Revised Simplex to solve it. Start from point $x=(x^+,x^-,a_1,a_2)^T=$ $(0,1,0,4)^T$. It is clear that our starting point x is a BFS and $B = \begin{bmatrix} A_2, A_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$.

Then
$$N = \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix}$$
 and The fundamental matrix $M = \begin{bmatrix} 1 & 0 & -1 & 1 \\ -1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. Compute

$$M^{-1} = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{d}^{1} = [1, 1, 0, 0]^{T} \text{ and } \mathbf{d}^{3} = [0, -1, 1, -1]^{T}. \text{ The reduced costs are } r^{1} = c^{T} \mathbf{d}^{1} = [-1, -1, 0, 0] \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = -2 < 0, r^{3} = c^{T} \mathbf{d}^{3} = [-1, -1, 0, 0] \begin{bmatrix} 0 \\ -1 \\ 1 \\ -1 \end{bmatrix} = 1 > 0.$$

Take \mathbf{d}^1 . Since $\mathbf{d}^1 > 0$ and $A\mathbf{d}^1 = 0$, we know that \mathbf{d}^1 is an extremal direction and yields a contradiction that problem is unbounded.

In conclusion, the Revised Simplex method is not a good choice in solving this problem.