Divide and Conquer Algorithms

Introduction

- Solves computational problem by
 - Dividing it into subproblems of smaller size
 - Solve each problem recursively
 - Merging solutions to sub-problems to produce solution
- •.g.,
 - Merge Sort
 - Quick Sort
- Complexity analyzed using recurrence relations

Divide and Conquer

Divide Step:

- If input size smaller than certain threshold solve by straightforward method
- Divide input data into two or more disjoint subsets

Recur:

- Recursively solve subproblems associated with the subsets
- Conquer
 - Take the solutions to the subproblems and merge them into a solution to the original problem

Sorting

- Merge Sort
 - Divide: Trivial
 - Conquer: Recursively Sort each sub-array
 - Combine: Linear-time merge
- Quick Sort
 - Divide: Split array based on pivot
 - Conquer: Recursively split
 - Combine: Trivial

Powering a Number

- Compute aⁿ
- Naive algorithm: $\Theta(n)$
- Divide and Conquer Algorithm
 - $a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if n is even} \\ a^{(n-1)/2} \cdot a^{n/2} & \text{if n is odd} \end{cases}$
 - $T(n) = T(n/2) + \Theta(1) = T(n) = \mathbb{Q}(n)$

Matrix Multiplication

- Input: $X = [x_{ij}], Y = [y_{ij}], i,j = 1,2,3,...,n$
- Output: $Z = [z_{ij}] = XxY$
 - $z_{ij} = \sum_{k=1}^{n} x_{ik} \cdot y_{kj}$
 - \bigcirc Q n^3)
- Divide and conquer can reduce cost

Divide and Conquer Strategy

Idea

- \blacksquare n x n matrix = 2x2 matrix of (n/2)x(n/2) submatrices
- Rewrite $Z = X \times Y$ as
- $\begin{pmatrix} i & j \\ k & l \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f \\ g & h \end{pmatrix}$
- i= ae+bg
- j= af+bh
- k= ce+dg
- \blacksquare l= cf+dh

Divide and Conquer Strategy

- Analysis
 - 8 multiplications of $(n/2)\times(n/2)$ submatrices
 - \blacksquare 4 additions of $(n/2)\times(n/2)$ submatrices
- $T(n) = 8T(n/2) + \Theta(n^2)$
- This is $\Theta(n^3)$ not better than brute force

Strassen's Method

Multiply 2×2matrices with 7 recursive multiplications

$$\blacksquare$$
 P1= a·(f–h)

$$\blacksquare$$
 P2= (a+ b) ·h

$$\blacksquare$$
 P4= d·(g–e)

$$\blacksquare$$
 P5= (a+ d) ·(e+ h)

$$\blacksquare$$
 P6= (b-d) ·(g+ h)

$$\blacksquare$$
 P7= (a–c) ·(e+ f)

$$r = P5 + P4 - P2 + P6$$

$$=$$
 s=P1+ P2

$$=$$
 t=P3+ P4

- 7 multiplications, 18 adds/subs
- No reliance on commutativity of

15CSE211: Design and Analysis of Algorithms

Amrita School of Engineering Plication
Vidhya Balasubramanian
Amrita Vishwa Vidyapeetham

Strassen's Algorithm

- Partition: A and B into $(n/2)\times(n/2)$ submatrices.
 - Form terms to be multiplied using + and –.
- Conquer: Perform 7 multiplications of $(n/2)\times(n/2)$ submatrices recursively
- Combine: Form C using +and –on $(n/2)\times(n/2)$ submatrices.
- $T(n) = 7T(n/2) + \mathbf{Q}n^2$
- This is $\mathbb{I}(n^{2.81})$

Closest Pair Problem

- Input: n points in a plane, each given by a pair of real numbers
- Output: Pair of points with shortest distance between them
- Brute Force
 - Compute distance between every pair and find the minimum distance pair
 - \square (n^2)
- Apply divide and conquer

Strategy

- Partition S into S1, S2 by vertical line *l* defined by median x -coordinate in S
- Recursively compute closest pair distances $\delta 1$ and $\delta 2$. Set $d = \min(\delta 1, \delta 2)$.
- Now compute the closest pair with one point each in S1

and S2

Divide and Conquer Strategy

In each candidate pair (p, q), where p∈S1 and q∈ S2, the points p, q must both lie within δ of l

It's possible that all n/2 points of S1 (and S2) lie within δ of l.

Conquer Step

Points in P1, P2 (δ strip around l) have a special structure, that helps solve the conquer step faster

Consider a point p∈S1.

All points of S2 within distance δ of p must lie in a $\delta \times 2\delta$

rectangle R.

15CSE211: Design and Analysis of Algorithms

Amrita School of Engineering Amrita Vishwa Vidyapeetham

Vidhya Balasubramanian

Conquer Step

- How many points can be inside R if each pair is at least δ apart?
 - In 2D, this number is at most 6! therefore 6x n/2 distance comparisons
 - This is still costly
 - In order to determine at most 6 potential counterpoints of p, project p and all points of P2 onto line l
 - Pick out points whose projection is within δ of p; at most six.
 - Presorting by 'y' axis can help make this faster
- Complexity: $T(n) = 2T(n/2) + \Theta(n)$

Why does this work

Idea:

A rectangle of width d and height 2d can contain at most six points such that any two points are at distance at least d

Proof

- Place points into the box until it is impossible to add any more.
- Imagine a circle around each point of radius d, which cannot contain any other point inside it
- If you try to move any one of these points in any direction within the boundaries of the rectangle, then you would be moving two points too close together. https://www.cs.mcgill.ca/~cs251/ClosestPair/proofbox.html

15CSE211: Design and Analysis of Algorithms

Amrita School of Engineering Amrita Vishwa Vidyapeetham

Problems

Given an array having first n ints and next n chars

- Write an in-place algorithm to rearrange the elements of the array as: $A = i1 \ c1 \ i2 \ c2 \dots in \ cn$
- Give an algorithm to divide an integer array into 2 subarrays s.t their averages are equal i.e average of values of left array must be same as average of right array