

Whatsapp

Probability Theory

 ML circle Discussion Session (by Abhishek Varghese)

Takeaways

- Understand probability in depth and intuitively
- Understand the concept of Independence and its significance
- Understand what random variables really are and why do we need it
- Understand deeply all the terms/ keywords you may or maynot have known
 - Expectation
 - Correlation
 - Variance, etc

Soft takeaways:

• A push to think on a concept until you deeply understand it

Probability Theory

Session 1

Philosophical Thinking

Foundations of

Probability Theory

The classical definition (and its limitations)

$$P(A) = \frac{\text{Number of favourable outcomes}}{\text{Total number of possible outcomes}}$$

 where, all outcomes are equally likely

1) Sample Space (Ω) : collection of possible outcomes of a random experiment

1) Sample Space (Ω) : collection of possible outcomes of a random experiment

 $\{N \text{ is Even}, \\ N \text{ is Odd}\}$

2) Event: associated with an experiment corresponds to a question about the experiment, that has a yes or no answer.

$$\{HH, HT, TH, TT\}$$

$$\#heads \leq 1$$

$$A = \{HT, TH, TT\}$$

The event A will occur in a given performance of the experiment if and only if the outcome of the experiment corresponds to one of the points of A.

$$A = \{HT, TH, TT\}$$

$$B = \{HH, TH, HT\}$$

$$A \cap B = \{TH, HT\}$$

$$A \cup B = \{HH, TT, TH, HT\}$$

3. ${\mathcal F}$ - Sigma Field of Ω : Collection of subsets of Ω that follow the following rules -

$$\Omega \in \mathcal{F}$$

$$A \in \mathcal{F} \Rightarrow A^c \in \mathcal{F}$$

$$A_1, A_2, A_3, \dots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$$

3. \mathcal{F} - Sigma Field of Ω :

Event Space - Set of all possible events generated from a sample space.

Event Space is a sigma field.

- 4. P Probability Measure on **F**: Mapping of elements (say A) from **F** to the real space, which we denote by P(A). This mapping should follow the following:
 - $P(\Omega) = 1$
 - $P(A) \ge 0$ for every $A \in \mathcal{F}$
- $P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$ for all disjoint $A_1, A_2, A_3, \cdots \in \mathcal{F}$

Definition

A probability Space is a triple (Ω, \mathcal{F}, P) ,

where

- Ω is a set,
- $oldsymbol{\mathcal{F}}$ is a sigma field of subsets of Ω , and
- P is probability measure of $\boldsymbol{\mathcal{F}}$ i.e. A function from set of events to the real space [0,1] following the constraints given in previous slide.

Randomness is not a Fundamental Force of Nature.

• Upto debate

Exercise

A probability Space is a triple (Ω, \mathcal{F}, P) ,

where

- $oldsymbol{\Omega}$ is a set (Sample Space or all possible observations),
- $oldsymbol{\mathscr{F}}$ is a sigma field of subsets of Ω , and
- P is probability measure of \mathcal{F} i.e. A function from set of events to the real space [0,1] following the constraints given in previous slide.

Probability Space for the experiment where a dice is rolled and coin is tossed?

Exercise

A probability Space is a triple (Ω, \mathcal{F}, P) ,

where

- Ω is a set (Sample Space or all possible observations),
- \mathcal{F} is a sigma field of subsets of Ω , and
- P is probability measure of \mathcal{F} i.e. A function from set of events to the real space [0,1] following the constraints given in previous slide.

Probability Space for the experiment where a coin is tossed on pluto? (Roll the dice too because why not)

Reflection

Total number of teeth in a room = 64

Temperature outside > 20

B

Total number of teeth in a room = 64

$$P(A) = 0.3$$

Temperature outside > 20

$$P(B) = 0.4$$

$$P(A) = 0.3$$

$$P(B) = 0.4$$

$$P(A) = 0.3$$

$$P(B) = 0.4$$

- 4. P Probability Measure on **F**: Mapping of elements (say A) from **F** to the real space, which we denote by P(A). This mapping should follow the following:
 - $P(\Omega) = 1$
 - $P(A) \ge 0$ for every $A \in \mathcal{F}$
- $P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$ for all disjoint $A_1, A_2, A_3, \cdots \in \mathcal{F}$

$$P(A \cap B) = P(A) * P(B)$$

Closing Remarks