## 1

## Control Systems

## G V V Sharma\*

|                                                                                                                                           |                      | CONTENTS                          |     |        | 1 Mason's Gain Formula                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|-----|--------|-------------------------------------------------------------------------------------------|
| 1                                                                                                                                         | Mason's Gain Formula |                                   |     |        | 2 Bode Plot                                                                               |
| 1                                                                                                                                         | Mason's Gam Formula  |                                   | 1   | 2.1    | Introduction                                                                              |
| 2                                                                                                                                         | Bode Pl              | lot                               | 1   | 2.2    | Example                                                                                   |
|                                                                                                                                           | 2.1                  | Introduction                      | 1   |        | 3 Second order System                                                                     |
|                                                                                                                                           | 2.2                  | Example                           | 1   | 3.1    | Damping                                                                                   |
| 3                                                                                                                                         | Second               | order System                      | 1   | 3.2    | Example                                                                                   |
|                                                                                                                                           | 3.1                  | Damping                           | 1   |        | 4 Routh Hurwitz Criterion                                                                 |
|                                                                                                                                           | 3.2                  | Example                           | 1   | 4.1    | Routh Array                                                                               |
| 4                                                                                                                                         | Routh 1              | Hurwitz Criterion                 | 1   | 4.2    | Marginal Stability                                                                        |
|                                                                                                                                           | 4.1                  | Routh Array                       | 1   | 4.3    | Stability                                                                                 |
|                                                                                                                                           | 4.2                  | Marginal Stability                | 1   |        | 5 STATE-SPACE MODEL                                                                       |
|                                                                                                                                           | 4.3                  | Stability                         | 1   | 5.1    | Controllability and Observability                                                         |
| 5                                                                                                                                         | State-Si             | pace Model                        | 1   |        | Second Order System                                                                       |
|                                                                                                                                           | 5.1                  | Controllability and Observability | 1   |        | 6 Nyouist Plot                                                                            |
|                                                                                                                                           | 5.2                  | Second Order System               | 1   |        | 7 Phase Margin                                                                            |
| 6                                                                                                                                         | Nyquist              | Plot                              | 1   | 7.0.1. | Consider a unity feedback control system as shown in Fig. 7.0.1. Find the value of K that |
| 7                                                                                                                                         | Phase Margin         |                                   | 1   |        | results in a phase margin of the system to be 30°.                                        |
| 8                                                                                                                                         | Gain M               | largin                            | 2   |        |                                                                                           |
| 9                                                                                                                                         | Comper<br>9.1        | nsators<br>Phase Lead             | 2 2 |        | $U(s)$ $Ke^{-s}/s$ $Y(s)$                                                                 |
| 10                                                                                                                                        | Oscillator           |                                   | 2   |        |                                                                                           |
| Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text. |                      |                                   |     |        |                                                                                           |

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

\*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

**Solution:** Given H(s) = 1 and  $G(s) = Ke^{-s}/s$ Phase Margin(PM) is defined as-

Fig. 7.0.1

$$PM = \phi - (-180^{\circ})$$
 (7.0.1.1)

$$\implies \phi + 180^{\circ} \tag{7.0.1.2}$$

where,

9 Compensators

10 OSCILLATOR

$$\phi = \angle G(j\omega_{gc})H(j\omega_{gc}) \qquad (7.0.1.3)$$

9.1 Phase Lead

 $\omega_{gc}$  is the gain-cross over frequency.

7.0.2. Find  $\omega_{gc}$ .

**Solution:** 

$$\left|G\left(j\omega_{gc}\right)H\left(j\omega_{gc}\right)\right| = 1$$

$$\iff \left|\frac{Ke^{-j\omega_{gc}}}{j\omega_{gc}}\right| = 1$$

$$(7.0.2.2)$$

$$\iff \omega_{gc} = K \quad Assuming K > 0 \quad (7.0.2.3)$$

7.0.3. Find  $\phi$ .

**Solution:** 

$$\phi = \angle G(j\omega_{gc})H(j\omega_{gc})$$
(7.0.3.1)
(7.0.3.2)

(7.0.3.3)

7.0.4. By (7.0.1.1)

$$PM = 30^{\circ}$$
 (7.0.4.1)  
by(7.0.3.1)  $K = \pi/3$  (7.0.4.2)

7.0.5. Verify result by plotting the gain and phase plots of  $G(j(\omega))$ 

**Solution:** The following code plots Fig. 7.0.5

codes/ee18btech11038\_plot.py

The Phase plot is as shown-

 $\implies \angle \frac{Ke^{-jK}}{jK}$ 

 $\implies -90^{\circ} - K(180/\pi)$ 



Fig. 7.0.5