Science Maths 3 MA4704 Lecture 7B

Kevin O'Brien

Kevin.obrien@ul.ie

Dept. of Mathematics & Statistics, University of Limerick

Autumn Semester 2016

The data for these tests are contingency tables showing the relationship between 2 qualitative variables. For example, suppose we have the following information regarding hair and eye colour

	Red hair	Blonde hair	Dark hair	\sum
Blue eyes	30	90	30	150
Brown eyes	20	60	70	150
\sum	50	150	100	300

i.e. 30 people have red hair and brown eyes.

Chi Square Test For Independence

Test for independence

Let $O_{i,j}$ be the entry in the i-th row and j-th column of the contingency table. We wish to choose between the hypotheses

 \mathbf{H}_0 : hair colour and eye colour are independent.

H₁: hair and eye colour are dependent.

Chi Square Test For Independence

Row and column sums

- The number of people in the sample with blue eyes is the sum of the entries in the first row (150).
- The number of people in the sample with brown eyes is the sum of the entries in the second row (150).
- The sum of all the entries is the number of individuals in the sample (300).

Chi Square Test For Independence

• If the traits are independent, then the probability that an individual has a given hair colour and given eye colour is the product of the two corresponding probabilities e.g.

 $P(blond hair, blue eyes) = P(blond hair) \times P(blue eyes)$

- In order to test whether two traits are independent, we need to calculate what we would expect to observe if the traits were independent.
- The following calculations allow us to calculate what we expect to see under the null hypothesis of independence.