perception update -2,0 -Ve } 40 stre biral w= o12 letis say rewpoint x=2,-1.01 xaug= 12-101 0 wxavg=0+2-202 " -ve label progrented data Marginal mangreented oc initial wt w = (000) 13.7 xb No garate updated weights comemiscande correct hypothery crassion ed?? Test pant w= w-= (-110) -: (1 -1 0) wx = 0+0+0 &0 900 w = w - x = (-2 - 12)-: (1 2-2) wx = -1+2+010 face w= w+x = (-1 0 2) (1 10) wx = -2-1+0 >0 faise w=W =(-1,02) eg = -: (1 -1 0) wx=-1+0+040+ree w=w = (-11012) (12-2) wx = -1 +0+(4) KO+NE w=w+x = (0 12) 3+: (110) wx = -1+0+0=0 fave w=W=(012)7 eal - : (1-10) war = 0 +F1) +0 ×0 +we w=w=(012) 22 - : (12-2) woL = 0+2+ty/20 +Ne w=w= 0112 wor = 0 +1+0 10 the 93+: (110) Haal weight

• *→*

consision marrix

ACTUAL COOKS

of precision and recall,

$$F^{\pm} = \frac{2}{\mu e^{i R}}$$

medicin + $\frac{1}{\mu e^{i R}}$

Drevicted thre

* prove that the number of element in X and Y is also alleros! pp) にもりノニ (X DY / is a keerne). contd (coull) without z do to ken x) = Z Am ton 126cm1x) mes + = Im to K(Xm/X) mFS / but it xm & s , then &m=0

* package libsum or SUM UHE,

innul + Exorth) = LNEN

outhor -> Exorth) = LNEN

monel txt > /xmtmuxm

(b) here n= 1/2,--, N Suppose, Gotob N & amples, there are m support verters then Hm Eamples will have pagrange parameter d=0 and m examples will have non-spread Lagrange

1- tm wT opin)-tmb=0

be constact.

or, 1-tm (tem) = anth (ben) - tmb =0

or, tob = 1- to opino, E anto dun)

= 1- tm = note d(xn) o(xn)

btm = 1-tim = anth peins deins)

 $b = \pm \frac{1}{n} - \frac{1}{2} \times \frac{1}{n} + \frac{1}{n} \times \frac{1}{n} = \frac{1}{n} \times \frac{1}{n} \times \frac{1}{n} \times \frac{1}{n} \times \frac{1}{n} = \frac{1}{n} \times \frac{1}{n}$

 $b = tm - \frac{2\pi}{3} dntn \times bcnis(m)$:: tm = tm

this is true for all the m examples which have non approp

pagrange parameters.

For numerical stability we choose some of
b as the mean of all b-values, then,

b= 1 2 [tm - 2 data k (x no cm)]

where sis the subset of all the examples where lagrange parameter & is now deno.

s **E1**

5= { n | 1 - tn w q d n 1 - tn b= 0]

when, linear discontinent transfor is

Y(X)= wT pa) +b = \(\int m + \box m + \int \int \text{ the - Exotophous} \)

then oval begrangion's, LD(d) = 1 2 dmdn to to dm dn + Edn - Edn to dn. Edntodo - z roth b Low = Zndn- 1 Z dmdn toto K bensem) K (04,4) = DON . DU = DON DU Then the optimization problem in dual space is, maximize LO(d)= でくりーをこれるdmantata Ktemiso) 8.t. 40=0 + DEE0... N) LUOIL とくかtn=0 pod, KKT raditions are, note: with a without to 1) Irimal constraints I-th (wT panith) 60 (convex constraint egivering) and o Anest-ins @ dual constraint 3 commementary siacrness on { 1- theorem.)-thb]=0 for any data point, either, on=0 1-tnwipton-tnb=0 these of are cult 2 - proof 10 405

solve the SVM problem without slack using lagrange multiplier method The optimization mornings minimise Jw.b) = = = 1110112 Sit. FU (midporty) = I ALESIAN) 1 = tn (wT peos+b) 1 £ trwi dro) + trb 1- that Ato) - tob & O convex bo compare 6:1011 to them 1:=1,-1,m phmal Lagrangian, $Lp(\omega,b|X) = \frac{1}{2}||\omega||^2 + \frac{2}{2}dnC \pm -tn\omega Tqn -tnb)$ multiplier \$ oval Lagrangian, LD(d) = int Lp (w.b.d) that first the inflmom of Up wat w. b: $\frac{\partial}{\partial w} L p = 0 = w + \frac{\partial}{\partial w} (-1) \ln \phi n = \omega - \frac{\partial}{\partial w} (w - \frac{\partial}{\partial w} (-1) \ln \phi n) = 0$ =) (Z <ntn = 0 / 36 Lp = 0 = E (-) drtn LOOK LHS

			÷	
·				
		· · ·		,

O coastained optimization (cagrange multipliers) maximile 5- (4-2)2-2(3/2-1)2 34. 21 74012 = 3 soin! If we ignore construent we get on= 2, x2=1 then 24+4012 = 2+41 = 6 is too large for the constraint. L = L (21121) = 5- (21-2)2-2 (2-1)2 +1(3-04) 4 = 1 $4 = 2(3)^{1/3}$ (3)3L = -4a1-2) = -1 =0 fermal 8019 234=4-1 -4(2(2-1)-47=0 = 4:3-2 = 10/3 = -4712+4-41=0 -6 +9/=D サインニダーリナ A= 2/9 $= 3 - x_1 - 4x_2 = 0$ => 6-221-8212 =0 => 6-4+1-8(1-61)=0 7 (F-4+) (M+ 10)=0)

Owhy Kerneis are symmetric?

Inner products are symmetric by debinitions, so,
therefore it the kernel function represent an
inner production some tribbert space, then the
thermal function must be symmetric as well.

K & d) = < 9e), 9(d))

= < 9(e), 9(d))

= < 9(e), 9(d))

= < 9(e), 9(d))

= < 9(e), 9(d))

= < 100), 9(d)

= < 100)

Hilbert Space.

B AAT is PS D makix (inderit) proof Let, ACRMXN d= eigen value of AAT 9= eigenvector of 1 (premuitayby of) (ART) 9 = d9 PAT = ATA aTAAT9 = aTA9 *=*> = GOT OTA 9 d = aT AAT 9 = aTq979 = (09) T 091 / 9 T9 = 3 7 3 where 2 = AT9

here aT 3 ≥0

at 9 20 : 120 80 AAT TS PST. multivarite linear

Х bias 600 21 beoversia e 100 SK m beatures and one bias 500 or m

There are in features and one bias total intl There are N samples for each feature

$$J = \frac{1}{2} |xw - t|^2 = \frac{1}{2} |xw - t|^T (xw - t)$$

Ju J = 1 de (xw-t) · x (xw-t) da (al-su) = 2x

 $0 = x^{T}(xw^{-t})$

gerivatives of matrix products

LIVS L2/ norm

L2 > more peratty on large weights, but lorsn't

LI -> Less penalty for large wt, but leads mony weight 5 towards to (as very very nose) to 20 m. 1000 rg to weight vector to be sporse.

Bias warrionce Trainientt

Q) Ridge:
$$\frac{2}{2}$$
 (4: - Bo $-\frac{2}{2}$ B; oui) $\frac{2}{3}$

+ $\frac{2}{3}$ B; $\frac{2}{3}$ = RSS + $\frac{2}{3}$ $\frac{2}{3}$ B;

+ $\frac{2}{3}$ B; $\frac{2}{3}$ = RSS + $\frac{2}{3}$ $\frac{2}{3}$ B;

showing a parameter $\frac{2}{3}$ resultanian;

showing a parameter $\frac{2}{3}$ resultanian;

which was to be into the short $\frac{2}{3}$ resultanian;

showing a parameter $\frac{2}{3}$ resultanian;

showing a par

power parameter small change in training data

prove parameter estimates

big change in parameter estimates

efted will increse with no of parameters

(3) Layo Bi2 TS Bil

Ridge shrinks without do not make of wes not with.

D Add ones column (y-1xed == y-test)

The procest ones (x-shape to 2) [no new anis] .T, x]

The procest ones (y-1xed == y-test)

@ correct = np. fum (y-pred == y-test)
acroracy = correct / Hen(y-pred)

O gradient descent (g) or B(D) g) with momentum $V^{YH} = VV^{T}(\omega^{Y})$ $V^{YH} = VV^{T}(\omega^{Y})$ $v^{YH} = v^{Y} - v^{YH}$ $v^{YH} = v^{Y} - v^{YH}$

BAtch Gradient Descent (Lector, p.24)

Jul = 1/2 (hn-th) 2

whth = wh - n of (wh)

= wh - n \frac{N}{2} (hn-th) ocn

= wh - n \frac{N}{2} (hn-th) ocn

= wh - n \frac{N}{2} (hn-th) ocn

@ X = design matrix [] NXMO me features

X1 = biased design matrix []] N, M+1 t = [] column vector W = [wo wi wz wm] 1, m+1 row vector (2d a may)
w = Mp-amay(w). reshape (1, shape [1]) = (1, m+1) $h = XI \in W \cdot T = (N, MI) \quad (MI) \cdot I) = (N, I) \quad \text{same as } t$ $e = h \cdot t = N, I = SO, I$ $\text{regranian} \quad \text{SSE} = \sum_{n=1}^{N} (h \cdot t)^{2}$ $\text{regranian} \quad \text{mSF} = \frac{1}{N} \sum_{n=1}^{N} (h \cdot t)^{2} = np \cdot \text{sum}(ch \cdot t) \times 2 \left[\frac{1}{N} \right] \cdot \frac{1}{N} \cdot \frac{1}{$ normal egn: w= (xTx) = XTe t

whose bemose break of X np.linary. pinv(X)

O cost for mothinging inver regression

$$e = h - t = \begin{bmatrix} h_1 - t_1 \\ h_2 - t_2 \end{bmatrix}$$

$$SSE = (h - t_1) \times x \times 2$$

$$NSE = h_1 \cdot n \cdot n \cdot n \cdot n$$

$$NSE = h_2 \cdot n \cdot n \cdot n \cdot n \cdot n \cdot n$$

$$J = \frac{6.5}{100(t)} (h-t)^{T} (h-t)$$

$$\frac{1}{2N} = \frac{1}{2N} \frac{1}{2N} \frac{1}{2N} \frac{1}{2N} = \frac{1}{2N} \frac{1}{$$

$$h = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \omega^{T} \times h = \chi_{I} e \omega T$$

$$h_{I} = \chi_{I$$

$$SSE = (h-t) \times 2$$

$$MSE = (h-t) \times 2$$

$$N$$

0 12 > more neway larger weights noes not drive weisn'ts to sen weight vector is <u>NOT</u> sparse. m A T -> hishbias, now variance, underpit, simpler model arives weights crosser to app. grown change in weining data > big change inestmate - North Libral Library £ 9000 1 - 1=1000 lunder bit) N-examples intentives cost function for 12-regularized in near regression (bn-tn)2 + d10112 $\int (\omega)^{2} = \frac{1}{2} \sqrt{\frac{2}{N}} \left((\omega_{0} + \frac{1}{2} \omega_{0})^{2} + \frac{1}{2} \frac{2}{N} \omega_{0}^{2} \right)^{2} + \frac{1}{2} \frac{2}{N} \omega_{0}^{2}$ (regularization) requierising no = shipping origin of parset > some change in all target values => similar change in estimates momentum & Dar F Stochastic SD Rutch SD NOH = NOTIN WYH = WY - W

der num-iters:

WTH = WY - N = J

Jearning rate

for num-liters;

for sample in data:

with = WY- NVJ

nesterou parelerated gradient

0000

WTH = WT- NOT (B) - MUT) - MNT

Egradient Descent -> VY+1 = (N DJ(WY) vanilla

NDJ(WY) +NV with manartum

(N DJ(WY) +NV with manartum

The types of an haved on data used:

Batch SP - ore all data

Stochastic SD > use any one example and update after each nexation and update and update water.

$$J = \frac{1}{2N} \sum_{n=1}^{N} (h_n - t_n)^2$$

$$4J = \frac{1}{N} \sum_{n=1}^{N} (h_n - t_n) \cdot xn = \frac{1}{N} \cdot np \cdot sum \left((h - t) \cdot x \right)$$

$$w = w - n \cdot grad$$

 $\omega = w - n g rad$ $w = (x^T x)^T x^T t$ $w = (x^T x + ANI)^T x^T t$

for requiarized I is identity mather of shape xT x

I [0] [0] = 0 for not to requierize blackerm

6 cubic spilne smoothing rule 3 points or oroin outoi sie)= a; (otaci) +bi (oraci) 2+ci (oraci) +di + xEE(), silt] overbitting tod n ever model comprently best model vamance swhen training data inneses vanance decresc hius increse and model becomes siskly complex to minke model comical + y

grad = $\nabla J = \lambda \cdot \sum_{n=1}^{N} \frac{(n-tn) \cdot x_{n}}{(n+tn) \cdot x_{n}} \frac{(n-tn) \cdot x_{n}}{(n-tn) \cdot x_{n}} \frac{(n-tn)$ e perception criterion

ninimize Ep(w)= - = tnwTan

nemislavities

restign(wTox)

Min $J(w,b,\xi) = \frac{1}{2}||w||^2 + C\sum_{n=1}^{N} \frac{e_n}{e_n}$

with constaint tn (wT (sen) + b) ≥ 1-E(n

Tynzo and Zzi; EZ +nElin

1-En -th widian) - bth = 0 - O converton)

- En 60 - @ convex briconstraint)

primal Lagrangian

Lp= L(w,b,4,d,r) = = = 1 110112+ CZ 4n + 2 <n (1-an-tn wTan-btn)

一型 かなり

sual Lagrangian

6 (Kir) = Mb Lp (w,b,e,x, r)

 $\delta = \frac{\partial L_{p(U,p)} \xi'(\chi,\chi)}{\partial m} = m - \frac{1}{2} \chi u + u + b(0) = 0 = \frac{1}{2} \chi u + u + b(0)$

commetion $0 = \frac{2Lp}{3b} = \frac{2}{3} \times \frac{2}{3}$

LORIV = 2110112+C ZEN + Zan (1- En-thorigh-thb) - ErnEn

Then the optimization problem in dual space's,

maximide Loki) = Idn- & Idnarthto K timioin)

with constraints OELNEC Uncliently

Note that the constraints of the c

note: C = 4n - E + n 4n - E + n 4n = 0

since, C = 5n 4n = 5n 4n 4n + 2n + 2n + 7n 4n

= 2n 4n 4n 9 4n

model complexity (polyhomial degree)

when training data increase, voniance is reduced and siightly more complicated model minimizes the expected em or.

O show that xTAY is a varial verney if Aid syn. PD. P.

A = QTQ where N = diag (day, no. - 1/4n) and day, horizone o

define F = diag (Val) (Az) -- , (An) then 1 = FTF

Aside:

(AG)T = BTAT

(AG)T = CTBTAT

KNN = memory-based to bit)

O {y (01) = any max $\sum_{t=1}^{K} F_{t}(t^{s})$ wi sixs absence we sonted know

@ maralanobis dis d(any 1= [614) = (614) cecusionation

digit recognition

sample ovanionie mant x ITS=I = Evaldean distance S= dog(0,-2,022,-, 0x-2) normalized Evaldean

3 cosine similary day)=1- XIX 16/1 1/4/1

Kerner-laved listance weighted NN > binary considers TESHIT] > 4100= 350 (2 KMM) . ti)

wrapper method

O Forward selection

for each beather 6 in F-5 because by and add to 5.

Repeat until performance good enough

@ Ballourd Elimination

F= (112) ··· K) is set of features

S= [] romed set of features

Repeat with F-5 is empty

train of using linear sum and F-5

train beaton to with minimum 141

Gind reaton to 5

append to 5

Kenorn S

g affinite-weishted ANN for regression

1. find to nearest points on M2 - one

2. you = \frac{1}{2} with where coi = \frac{1}{2}

\[
\text{The partial in the partial in the point of the p

Repression with KNN

you = to Zti (ti ere values, not cousses)

(i) distance weighted ICNN (regression)

prioral: $y(x) = \frac{1}{2} witi / \frac{1}{1} wi$ prioral: $y(x) = \frac{1}{2} witi / \frac{1}{1} | \frac{1}{2} | \frac{1}{2}$

3 Approaches to RL

Filter method of peature fleetion

D mutual Information

Let there are K examples with I features.

Oii = chserved valle

Oii =
$$\frac{1}{1}$$
 = $\frac{1}{1}$ = $\frac{1}{$

$$S(x,y) = \frac{1}{2} (x - x) (y - y)$$

$$S(x,y) = \frac{1}{2} (x - x) (y - y)$$

$$\int_{1}^{2} (x - x)^{2} (y - y)^{2}$$

$$\int_{1}^{2} (x - x)^{2} (y - y)^{2}$$

GRAPHO
$$1 \le 3(x, y) \le 1$$

GRAPHO $1 \le 3(x, y) \le 1$

GRAPHO $1 \le 3(x, y) \le 1$
 $1 \le 3(x,$

3 amples

*

O prison minant bundion

percaphon

SIM

interone and dession are combined as single rearning mobilem

2 probabilishe Models

> S10933M reggression fred Conditional random fred

others data heed to compute p (u/ol) than p tilly

many neurlapoing

at son minative

@ probabilisme Generative & paire Bies marcol moders ointidec steparate can use 10) for outiler a noverty need to moder dependencies between NaireBias restilent to noise text ausièrem with NB - 210012 HW posterior prob of cour CL gluen + and ata x is, multine cooks p(max). Plan) Z p klcs) b (cs) normanged exponents pena) (Sobemax fr) Z enp(aj(x)) anti = in pocici). b(ck) generative

iza-

O SVM for regoratory

optimization problem

minimize $J(\omega;b) = \frac{1}{2} ||\omega||^2 + C Z \frac{\pi}{2} ||x|| j j$ 1+ $\omega T \Phi(q_{K}, d_{i}) \geq \omega T \Phi(q_{K}, d_{i}) + J - \frac{\pi}{4} ||x|| j j$ $\pi_{K}(j,j) \geq 0$

(for a avery 9k we wank document 9;)
di be ranked higher than document 9;)

Logistic Regressiver nousibration change) inear regression h= othi) = 1-wise = hou=you)

cosistic regression h= othi) = He wise |

ine cihood forction p(tiw) = Thin(r-hn) - th we rog lirerihood, F or J = -In p(t/w) = - 2 ftn uninn + 1- tn/drhn rost or Error or LOSS function LED = - E [thunby + (rtn)-m(rhn)]
where the EOIL) NOT { = 12} Ew = \$wTW Then regularized 105istic regression rest function

Here

There regularized 105istic regression rest function

The work functin h(a)=001= 1+e-w12 hn= h(xn) = o (xn) = 1 -wTxn

softmax legacistion phiti, (mosts), -. (our, tn) Training set: メ= [エ, ユエハ2, --・ハ10] t,,+2,-..,th & { \$ \$ 1, 2, -.., K} WIL = [WIKO, WIKI, WIK2, -] T weight vector per couls, one P(CIN)OL) = e WINTX

E e WJ X MLE profunds obx is $\frac{1}{2} (\tan |x|) = \frac{w_{tn}^{T} xn}{\frac{2}{3} e^{w_{tj}^{T} xn}}$ begg tracks 6 (cn w) has not th is the sent this is -- XN is conta (heritoda Low) neethood is the joint probablisty of all couses LWJ= PK1=34) · L (m) = T p (fulan) rim) = IL p(avm) rost is the -ve log ilicelihood, $E^{D}(\omega) = -\Gamma \sin \Gamma(\omega)$ Wen's wight seiter fr - T an I b (fplau) who example WIK is weight belief the white examples becomes inch $= -L \sum_{n=1}^{\infty} a_n b(tn|xn)$ = -1 & un e windn E (an) XD EDW) = -1 EEE SKEN IN (E WITCH

marchall (monthalas)

```
W X = [ 1 23 ] append ones column to data X.

X = np. array([ [ ==1,13], [=1)5,8] ]) = np. marke(].reshape(a))

ones = np. ones ( X. shape to 1). reshape(=1,1)

X1 = np. append ( ones, X, axis = 1). astype(np.; nt)

X1 = np. C [ np. ones ( X. shape to 1). reshape (=1,1), X]

X1 = np. C [ np. ones ( X. shape to 1) [:, np. newaxis ], X]

X2 = np. C [ np. ones ( X. shape to 1) [:, np. newaxis ], X]

= np. C [ np. atteast - 2d ( inpones ( X. shape to 1) . T ; X]

= np. C [ np. expand-dins ( np. ones ( X. shape to 1), axis = 1), X]
```

osum cavad refine!) Ban acareve zen karning error LOGIS DESY, 3-MN agnort

increse training anomores [Sout wormers trainered It examples one ild,

SUM espect of C min 5(w16) = 211w1/2 + C = 4n

will retarion bone. x nteo, N) st wit appropriate > 1-En

C= 20,000

adding this change dec boon drassing

between CXXI and CNO charge CNO because ye maximilary the margin between dominant could points and we can not offered on any few data pointy which can be note.

Bias vanionce TradeAt Bias 10 W high ilmar refu 10W 100 -d=2 poly hyh 0=10 DOIY 10 W

- @ given pais [1,21,42, 2022] Ond the Kerrer Kd(n). > r(x)) = = + 21727 + 21515 + x1315 21, 25
- @ 4VS 62 1055
- @ Facse: L2 is more repost to pather than Li gradient of 12 1035 cangrow without bounds, 65%, gradient of 12 100 13 bounded, hence influence of outher (silm) ted.

Chate: 12 gives more vames to will consistinction

- @ LI gives sporte sowtion evsed in factor sercetion.
- LOGISTIC 1055 is better than L2 1045 in classification tester
- D SVM small C,

For linearly separable duta, I mall C can affect training accoracy.

A small c an allow lorse siacks thus, the resulting accessioner will have smaller w2 and can have non-3000 taining error.

		to supplied the second

Distance metrics

- @ Hamminy devy) = # of aighterent raises in placed leasth
- 3 Maharonobis 1/3+ance 1/2/3 = Journal 3-by Sis sample row marrix

 SIS sample row marrix

 SIS sample row marrix

 SIS sample row marrix
- (a) asine similarity $deny = + \cos(x) = + \frac{x^{T} + x^{T}}{x^{T} + x^{T}}$ $deny = + \cos(x) = + \frac{x^{T} + x^{T}}{x^{T} + x^{T}}$
- Wevenstein alstonice (edit distance)

 min # 10t has operations (der, insert, instance) both two sortings

 n= 'attens' y= 'hints' dony= 4

	`				
				,	
			4		

1 mutual information

MI $(x,y) = \sum_{x \in y} p(x,y)$. In $(\underbrace{p(x,y)}_{P(x)} p(y)) = 0$ when x = y = KL[p(x,y)] P(x) p(y)

but > bioses towards high onity features

but > may choose recurrent features

put > wares only with nominal fources & labels

•			×.		
					,
		·			

Bias-variance Trade off mice deg=2 deg = 4 + 000 size wotwy wotwisitusi2 hish var. hish bias they the (ender H+) (simple model) more trianing eg >6x high of coverating enquer beaux get -> big hisho 2(") ·larger fearreset -> Hx highbias bearing come for high bias (undertit) end desired train (training setsize overfolling emor tot emor train over be)(MUDEL COMPRECITY

There Is wrapper I much baster Since numered to reciping the model 2 use statistical method o uses construction 3 might ball to find find find best subset 4 tess prone to verbying more prine to over outing

DSVM for regression

min $J(\omega) = \frac{1}{2} |\omega|^2 + C = \frac{1}{4} |\omega|^$

1 features

Kexamis K Nyj

$$\chi_0^2 = z \quad (0ij - Fij)^2$$

$$\frac{S(V,Y) = E[(X-HM)(Y-HY)]}{\sigma_{\chi}\sigma_{\chi}} = \frac{100(Y,Y)}{\sigma_{\chi}\sigma_{\chi}}$$

A Kernel will be sould it there emptor space such that $K(X/X^2) = \phi(X_1)^T \phi(X_2) = \sum_{i=1}^{N} q_i(X_1) \phi_i(X_2)$ 0 = 2* consider a quadratic difference , with 16(c/3) = (x)2 = (x)2)2 $\chi = \begin{pmatrix} 2/2 \\ 2/2 \end{pmatrix}$ = (21/3/2+2213/20 /2+212-32) J= 61 22 This can be expressed as an inner modulet of space where, = 12 = \$112 2/31 pod= 22+12>4>12+22 thos, 91 ves, 4(3) = 312 + (23122 + 22) = 21/2312 + (22) 22 + (22) 22 = 21/2312 + (22) 22 = 21/22 + (22) 22 = 21/22 + (22) 22 = 21/22 + (22) 22 = 12 (E13) = P(3) A necessary and substrient condition for a Kernel Function to be available is that the gram marix de positive and semideoilire for all choices of Eim) A grammarix of 2 is at of. The inear vector & is projected into a graduate surface. St an the points in this susceed are von- sero 1, her our learnel is void.

+. tn(w'quo1+6')}

NOW, decision hyperpromes are,

$$H1 = \{ 201 \text{ with } \{601 + 6\} = 0 \}$$
 $H2 = \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$
 $= \{ 201 \text{ with } \{601 + 62 = 0 \}$

```
(3) KIED KEINER MULTI-CIOIS PERCEPTION
1 dealine for= Z his [plai, ti) plai, ti) - plai, ai) plat)
                   MERWIN = Znantnontox = Znantn K(xnix)
2 initialize dual params 20 = 0
            G = argrax b-(xi,t)

tet

(m= ssn(bix))
      5 is a #ti +hen meter
       6
        the argmax fast) Thou-sandblash
               (2) mcp ( content of Kernel )
 initialize parameters w=0
  ber := I-N
        y = argmax widelist)
             w=w+ opti.ti) - opti.cj)
  wis coop imagiant and is the weishted average
       w = \frac{7}{12} dis ( phinti) - april ( phinti)
 60y=wTotot)= Z dis (optivity Totot) - optivory Totot)
                 OKP
     define for)= wise = & Loto Klenisc)
     initiaile dual porconeter 2=0
      borisi- N
                           TEST: YOU = sign (bow)
```

MAL Lace Derivity blacks O politicy $ST^* = argmax \in [Z] \text{ sof } R(S+) [TT]$ Cpoliticy expectation) Cpoliticy expectation) R = Reward Reward Reward Rewarda utility ($U(S) = E \left[\sum_{t=0}^{\infty} S^{t} R(S+1) \right] T$, $So=S \left[\sum_{t=0}^{\infty}$

1 vaive Bios

- 3 Biolean 1 Nout vectors x1 x2x3 and output y

 port

 p $= H 2(2^{M-1}) = H2(81)$ = $H2(2^{3-1}) = H14=15$

·**			
•			

O MLE VS MAP

MIE = maximize P (data / params) by searching
over parameters

MAP = maximize pc param I darta) by fearthing over params and accompny for prior over params.

MLE > finds w by maximizing liverihood for pland)

more > mulmizes the pusters or prob pland

more > mulmizes

O consistantion maps; now to to discrete outputs

regression

11.

D pot L feator severion of data

reduce the dimension of North A termes

similarity: reduce the dimension throw a turnet or transation. Hinds a turnet of teators

by Herence: peaton severior a smaller set

peaton peaton a smaller set

perception

perception criterion: wtxn 10 for tn=+1
wtxn20 for tn=-1

want: towTocoto for all patterns
minimize: -wTocoto for all miscounified.

patterns M

[Epw] = - = WTOCHTN

percepton

mistakes (misconsided)

Binary percention

initionize $\vec{w} = 0$ for $n = 1, \dots, N$ $hn = sgn(w^{To(n)})$ if $hn \neq tn + hen$ $w = w + tn^{2}(n) - 1$

given number of epochs

Regression SOFTMAX P(KIX)= ewitze hop= L with x T p(tn/sm) = eutr 2n = eutr 2n = e wtr 2n Fow = N. - 4n T b (thorn) = -ty 4n TT e wth 2n

Te wto 2n = - N. Z ne wthan $E_{D}(\omega) = -\frac{1}{N} \left[\frac{2}{2} \sum_{k} \delta_{k}(tn) \cdot \ln \left(\frac{e}{2 \cdot e^{\omega k} \times n} \right) \right] + \frac{2}{N} \sum_{k=1}^{N} \omega_{k} T_{\omega k}$ Let I En = Z FK(tn) WIJXIN - ZK SILLTON (ZE = WIJXIN) $\frac{2En}{2wj} = S; (tn) \propto n - S; (tn). \frac{1}{z e^{wj} \propto n}$ prevent over two w BEN = Philoson - emizan . och

1 2 ED (M) = - T Z [DK(ED) - P(K) 2W)] 2

ZED = [Sxito) - p(cxix)] >ch

there are K-fuch equations for each occurrer.

	•				
					Contract of the Contract of th
					į.
,					
•					le la company de
				·	
			•		

Low v arrance High vamance Low Bias Hunsias Emal mpde/ total error Variance model complexity

MLE V& MAP

	<u> </u>
	mlE maximizes the Inp(DIW)
	like a hood of more (w) w r.t. data D
	MAP maximizes the in P(UD)
	litelithood of data D with moved w
· · · · · · · · · · · · · · · · · · ·	moreover, map additionary uses priors.
<u> </u>	
	~
·	
	-

```
MAP salution for LK
   b(tw) = Thota (-ha) -ta
     b(w) = (2x) my e-2 w w L e-2 w w L
      b(m,t) = b(m) b(m) or b(m) p(m)
now, wmap = argmax b(will)
               = ing max p(tiw) bw)
               = argmin - un p(Hw) - 4h b(w)
                 argain - In IT ho (rba) - In e - 2 wTw
               = argmin - Z +n (hothernith) + of w w
               = argmin - \sum_{n} [t_{n+n}h_{n} + (t_{n+n}h_{n})] + \frac{1}{2}w^{T}w

= argmin E_{D}(w) + E_{W}(w)
```

AMS

Α. , , v

quià
$$\Rightarrow$$
 $V(S) = \max_{a} Q(S,a)$
 $\Rightarrow TT(S) = \underset{a}{\operatorname{argmax}} Q(S,a)$

Trib

form.
The state of the s
" " " " " " " " " " " " " " " " " " "