Análise de redundância - RDA

Gabriela Medeiros e Marília Melo Favalesso

Mestrandas do Programa de Conservação e Manejo de Ambientes Naturais - UNIOESTE, Cascavel.

Introdução

- Objetivo: Estabelecer uma relação causal entre uma matriz de variáveis descritoras (Y) com uma matriz de variáveis preditoras (X); ordenação.
- Regressão múltipla multivariada → PCA
- Criar uma ordenação com a relação de Y~X.
- É uma análise canônica (≥ 2 matrizes de dados)
- Rao (1965) / Wollenberg (1977)

RDA x outras análises

Ordenação simples da matriz Y

Y

Análise de Componentes Principais (PCA)

Análise de correspondência (CA)

Ordenação de Y (eixo único) sob restrição de X

Regressão múltipla

RDA x outras análises

Ordenação de Y sob restrição de X

Análise de correlação canônica (CCoA)

Ordenação de Y sob restrição de X

Análise de redundância (RDA)

Preparando os dados

Preparando a matriz Y e X

- Matriz de variável resposta Y deve possuir um tamanho *n* x *p*, onde *n* é o tamanho de objetos e *p* o número de variáveis.
- A matriz de variáveis independentes deve possuir um tamanho $n \times m$ com $m \le n$.
- Centralização das variáveis em suas médias ou padroniza-las caso as dimensões não sejam homogêneas (por exemplo, T°C, pH, etc)*

RDA: Passo 1

Regressar cada uma das variáveis resposta Y_j de \mathbf{Y} com as variáveis de \mathbf{X} e calcular os valores ajustados.

$$Y_{j} = \beta_{0} + \beta_{1}X_{1} + \beta_{2}X_{2} + ... + \beta_{m}X_{m} + \varepsilon_{j}$$

$$\hat{B}^{=(X^{T}X)^{-1}X^{T}Y}$$

RDA: Passo 2 e 3

Fazer a matriz de variância/covariância correspondente a tabela de valores ajustados

$$S\hat{Y}'\hat{Y} = [1/(n-1)]\hat{Y}^T\hat{Y}$$

Realizar uma análise de componentes principais com com a finalidade de reduzir a dimensionalidadade dos dados

Encontramos os autovalores e uma matriz de autovetores (matriz **U**)

Como na PCA, a **Matriz U** são os escores das variáveis da Matriz Y

RDA: Passo 4, 5 e 6

Gerar dois conjuntos de escores a partir da matriz U:

Escores dos locais no espaço de variáveis resposta Y

 \downarrow

$$F = YU$$

Escores ajustados dos locais no espaço de variáveis preditoras X

$$Z = \hat{Y}U = XBU$$

Escores ajustados dos locais

$$\rightarrow C = BU$$

(Contribuição das variáveis preditores)

1

"Essa decomposição equivale a dizer que os valores em cada uma das colunas C são iguais aos coeficinetes de regressçao padronizados da matriz X" Gotelli & Ellison (2011)

A forma da concha do caramujo *Lirroraria angulifera* foi medida para amostras de 9 países

Matriz resposta Y: Medidas de conchas de caramujos

País	Proporcionalidade	Circularidade	Altura do epiral
Angola	1.36	0.76	1.69
Bahamas	1.51	0.76	1.86
Belize	1.42	0.76	1.85
Brasil	1.43	0.74	1.71
Flórida	1.45	0.74	1.86
Haiti	1.49	0.76	1.89
Libéria	1.36	0.75	1.69
Nicarágua	1.48	0.74	1.69
Serra Leoa	1.35	0.73	1.72

Matriz resposta X: Variáveis ambientais

País	Precipitação	Nº de meses	TºC média	Altura média do
		secos	mensal	dossel
Angola	363	9	26.4	30
Bahamas	1.181	2	25.1	3
Belize	1.5	2	29.5	8
Brasil	2.15	4	26.4	30
Flórida	1.004	1	25.3	10
Haiti	1.242	6	27.5	10
Libéria	3.874	3	27	30
Nicarágua	3.292	0	26	15
Serra Leoa	4.329	4	26.6	35

Pergunta: Como o formato das conchas covariam com os locais e as suas variáveis ambientais?

Matriz resposta Y

0.76	1.69
0.76	1.86
0.76	1.85
0.74	1.71
0.74	1.86
0.76	1.89
0.75	1.69
0.74	1.69
0.73	1.72
	0.76 0.76 0.74 0.74 0.76 0.75 0.74

Matriz preditora X

363	9	26.4	30
1.181	2	25.1	3
1.5	2	29.5	8
2.15	4	26.4	30
1.004	1	25.3	10
1.242	6	27.5	10
3.874	3	27	30
3.292	0	26	15
4.329	4	26.6	35

$$Y_j = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_m X_m + \varepsilon_j$$

P.S: As variáveis foram transformadas

Matriz de valores ajustados

$$\hat{Y} = XB$$

05	0.01	-0.04
09	0	0.09
)	0.01	0.08
05	-0.01	-0.08
05	0	0.03
04	0.02	0.09
05	-0.01	-0.07
03	-0.01	0
06	-0.01	-0.10
	09 05 05 04 05 03	09 0 0 0.01 05 -0.01 05 0 04 0.02 05 -0.01 03 -0.01

Matriz var/covar

$$S_{\hat{Y}}$$
' \hat{Y}

Análise de componentes principais

$$U = egin{array}{c|cccc} \textbf{0.55} & -\textbf{0.81} & -0.19 \\ \hline 0.08 & 0.27 & -\textbf{0.96} \\ \hline \textbf{0.83} & \textbf{0.52} & 0.21 \\ \hline \end{array}$$

Matriz autovetores

Escores dos locais

$$F = YU$$

$$F = \begin{array}{|c|c|c|c|} \hline \textbf{2.21} & -0.03 & -0.63 \\ \hline \textbf{2.44} & -0.06 & -0.62 \\ \hline \textbf{2.38} & 0 & -0.61 \\ \hline \textbf{2.26} & -0.08 & -0.62 \\ \hline \textbf{2.4} & -0.02 & -0.59 \\ \hline \textbf{2.45} & -0.03 & -0.61 \\ \hline \textbf{2.21} & -0.03 & -0.62 \\ \hline \textbf{2.28} & -0.13 & -0.63 \\ \hline \textbf{2.23} & -0.01 & -0.59 \\ \hline \end{array}$$

Matriz dos escores ajustados dos locais

$$Z = \hat{Y}U = XBU$$

-0.06	0.02	-0.01
0.13	-0.03	0
0.07	0.04	0.01
-0.09	0	0
0.05	-0.02	0
0.1	0.02	0
-0.09	0	0
0.01	0.01 -0.03 0	
-0.12	0	0

*CP1 explica 94% da variância total dos dados

Z =

Contribuição da Matriz X

0.01	0	0
0.03	0.01	0
0	0.02	0
-0.11	0	0

Correlação das variáveis ambientais X com a matriz F

	Componente 1	Componente 2	Componente 3
Precipitação	-0.55	-0.19	0.11
Nº de meses secos	-0.28	0.34	-0.18
TºC média mensal	0.02	0.49	0.11
Altura média do dossel	-0.91	0.04	-0.04

Figura 1 - Bi-plot dos dois primeiros eixos da RDA, da regressão dos dados de conchas de caramujos contra os dados ambientais, sendo todos eles medidos em 9 países.

