Modern Symmetric Key Ciphers

Part II: Fiestel Ciphers and the DES

Priyank Kalla
Professor
Electrical & Computer Engineering

Product Ciphers

- Product Cipher: Combines S-Boxes, P-Boxes and Mixers, and may use multiple rounds for encipherment
- Two types of Product Ciphers
 - Feistel Cipher: Includes invertible and noninvertible components
 - DES = Feistel Cipher (uses non-invertible mixers and compression P-Boxes)
 - Non-Feistel Cipher: Includes only invertible components
 - AES = Non-Feistel Cipher

Example Product Cipher

Key Mixer: P[7:0] XOR K1[7:0]

A product cipher made of two rounds

- Mixer: Use a non-invertible function f(K): can be linear or polynomial in \mathbb{F}_{2^k}
- But the Mixer is "self-invertible":

$$C = P \oplus f(K)$$

• $P = C \oplus f(K)$

Encryption: $C_1 = P_1 \oplus f(K)$

Decryption: $P_2 = C_2 \oplus f(K) = C_1 \oplus f(K) = P_1 \oplus f(K) \oplus f(K) = P_1 \oplus (00...0) = P_1$

Example of Diffusion and Confusion

- Diffusion:
 - Bit-8 in P has affected bits 1,
 3, 6,7 in C
 - Similarly, each bit in C is affected by several bits in P
- Confusion:
 - Bits 1, 3, 6, 7 in C affected by bit 8 in K_1 and bits 2, 4 in K_2

An Example Product Cipher: Feistel Cipher

Data Encryption Standard (DES)

- DES was published by NIST ~1977, original proposal by IBM
- 64-bit block cipher (64-bit data block), and 56-bit key
- Proof (by IBM?) that the 56-bit partial size key cipher is not a subgroup of the full size key

High-Level Structure of DES

Initial Permutation	Final Permutation
58 50 42 34 26 18 10 02	40 08 48 16 56 24 64 32
60 52 44 36 28 20 12 04	39 07 47 15 55 23 63 31
62 54 46 38 30 22 14 06	38 06 46 14 54 22 62 30
64 56 48 40 32 24 16 08	37 05 45 13 53 21 61 29
57 49 41 33 25 17 09 01	36 04 44 12 52 20 60 28
59 51 43 35 27 19 11 03	35 03 43 11 51 19 59 27
61 53 45 37 29 21 13 05	34 02 42 10 50 18 58 26
63 55 47 39 31 23 15 07	33 01 41 09 49 17 57 25

- Output bit 1 = input bit 58, and so on...
- There's been debate on the security significance of initial and final permutations — don't seem to add to security
- Each DES Round = Feistel Cipher
- 16 DES Rounds

DES Round & Mixer Function

A Round in DES

The Mixer Function in DES

- The Expansion P-Box has a specified table (routing)
- Each of the 8 S-boxes has a separate 6-bit → 4-bit table
- The last P-box is also a permutation table (routing)

Details of DES Function: Expansion P-Box

- The Expansion Permutation P-Box of the DES function
- It's just wiring...

Details of DES Function: S-Boxes

- Each S-Box is a different polynomial function: $\mathbb{F}_{2^6} \to \mathbb{F}_{2^4}$
- Or as a truth table of a 6-input, 4 output Boolean function: $\mathbb{B}^6 \to \mathbb{B}^4$
- Each of the 8 truth tables are different are provided in the DES Spec

- The Final DES
 Cipher and
 Reverse Cipher
- Round 16 does not have a swap

Key Generation for Each Round

- Key Generator takes a 56-bit Key (K)
- Keys are usually provided with 8 parity bits: Adds 8 parity bits to get 64-bit key after every 7 key bits
- These parity bits are dropped before the real key generation
- Generates 16 48-bit Keys (K1, ..., K16) from K

Key Generation View

- Shifts = circular shifts
- All compression P-Box Truth Tables are specified
- Verilog Code for DES is available on the internet
- Never been a good HW problem:)
- I have a DES.blif logic circuit (which can transformed into Verilog)

Other Aspects of DES

- IBM released the design rationale for choices of DES blocks ~1994, as well as their effects
- Avalanche effects: Small change in input, significant change in the output:

Plaintext: 00000000000000000000 Key: 22234512987ABB23

Ciphertext: 4789FD476E82A5F1

Plaintext: 00000000000000000 Key: 22234512987ABB23

Ciphertext: 0A4ED5C15A63FEA3

- Each bit in C depends on various bits of P
- Various publications have also found weaknesses in DES
- Significant criticism came about Key size & Weak Keys: Will study them next week