

Estructuras de Control

En el python como en muchos otros lenguajes del paradigma estructurado, las estructuras de control de flujo nos van a permitir controlar el comportamiento a futuro durante la ejecución del programa, estas siguen el teorema del programa estructurado o Teorema de Böhm y Jacopini (1966) que dice: "Cualquier programa de ordenador puede diseñarse e implementarse utilizando únicamente las tres construcciones estructuradas (secuencia, selección e iteración; esto es, sin sentencias goto)"

Sentencia IF

Operadores condicionales

Operador	Descripción	Ejemplo
==	Si los valores de dos operandos son iguales, entonces la condición sea verdadera.	(A == b) no es cierto.
I=	Si los valores de dos operandos no son iguales, entonces condición sea verdadera.	
<>	Si los valores de dos operandos no son iguales, entonces condición sea verdadera.	(A <> b) es verdadera. Esto es similar a! = Operador.
>	Si el valor del operando de la izquierda es mayor que el valor del operando de la derecha, a continuación, condición sea verdadera.	(A>b) no es cierto.

Operadores condicionales

Operador	Descripción	Ejemplo
<	Si el valor del operando de la izquierda es menor que el valor del operando de la derecha, a continuación, condición sea verdadera.	(A <b) es="" td="" verdadera.<=""></b)>
>=	Si el valor del operando de la izquierda es mayor o igual al valor del operando de la derecha, a continuación, condición sea verdadera.	(A> = b) no es cierto.
<=	Si el valor del operando de la izquierda es menor o igual al valor del operando de la derecha, a continuación, condición sea verdadera.	(A <= b) es verdadera.

Operadores a nivel de bits

Operator	Descripción	Ejemplo
& Binary AND	operador copia un poco al resultado si existe en ambos operandos	(A y B) (0000 significa 1100)
Binary OR	Se copia un poco si es que existe en cualquier operando.	(A b) = 61 (0011 significa 1101)
^ Binary XOR	Se copia el bit si se establece en un operando, pero no ambos.	(A ^ b) = 49 (medios 0011 0001)
~ Binary Ones Complement	Es unario y tiene el efecto de bits 'flipping'.	(~ A) = -61 (significa 1100 0011 en forma de complemento a 2 debido a un número binario con signo.
<< Binary Left Shift	El valor operandos izquierdo se movió a la izquierda por el número de bits especificado por el operando de la derecha.	un << = 240 (1111 significa 0000)
>> Binary Right Shift	El valor operandos izquierdo se mueve a la derecha por el número de bits especificado por el operando de la derecha.	A >> = 15 (medios) 0000 1111

For loop

While Loop

Implementaciones

 No existen como tal en el lenguaje (no son nativas) pero se pueden implementar

Do While Loop

Switch Case

I.M.C

Tarea

El índice se calcula así:
$$IMC = rac{kg}{m^2}$$

Y tiene los siguientes resultados:

Resultado del IMC	Estado
Menos de 18.49	Infra Peso
18.50 a 24.99	Peso Normal
25 a 29.99	Sobre Peso
30 a 34.99	Obesidad Leve
35 a 39.99	Obesidad Media
40 o Mas	Obesidad Mórbida