33. a. Given: $\overrightarrow{AB} = 2\overrightarrow{DB}$ and $\overrightarrow{BC} = 2\overrightarrow{BE}$ Supply the reasons for each step.

$$2. = 2\overrightarrow{DB} + 2\overrightarrow{BE}$$

3. =
$$2(\overrightarrow{DB} + \overrightarrow{BE})$$
 (Hint: See Exercise 32.)

$$4. = 2\overrightarrow{DE}$$

b. What theorem about midpoints does part (a) prove?

- **34.** Suppose two nonvertical vectors (a, b) and (c, d) are perpendicular.
 - **a.** Use slopes to show that $\frac{bd}{ac} = -1$.
 - **b.** Show that ac + bd = 0.
 - **c.** The number ac + bd is called the **dot product** of vectors (a, b) and (c, d). Complete: If (a, b) and (c, d) are perpendicular vectors, then their dot product $\frac{?}{}$.
 - **d.** Verify the statement in part (c) for the vectors in Example 2(b) on page 540 and in Exercise 18 on page 542.

Mixed Review Exercises

- 1. On a number line, point A has coordinate -11 and B has coordinate 7. Find the coordinate of the midpoint of \overline{AB} .
- 2. If M is the midpoint of the hypotenuse \overline{AB} of right triangle ABC, and AM = 6, find MB and MC.
- 3. The lengths of the bases of a trapezoid are 12 and 20. Find the length of the median.
- 4. If the length of one side of an equilateral triangle is 2a, find the length of an altitude.
- 5. Find the measure of each interior angle of a regular hexagon.
- 6. Each side of a regular hexagon ABCDEF has length x. Find AD and AC.
- 7. Find the measure of each exterior angle of a regular octagon.
- 8. Find the coordinates of the fourth vertex of a rectangle that has three vertices at (-3, -2), (2, -2), and (2, 5).
- **9.** The vertices of quad. ABCD are A(2, 0), B(7, 0), C(7, 5), and D(2, 5). Find the area of quad. ABCD.
- 10. The vertices of $\triangle PQR$ are P(0, 0), Q(-6, 0), and R(-6, 6). Find the area of $\triangle PQR$.
- **11.** $\triangle DEF$ has vertices D(-5, 1), E(-2, -3), and F(6, 3).
 - **a.** Use the distance formula to show that $\triangle DEF$ is a right triangle.
 - **b.** Use slopes to show that $\triangle DEF$ is a right triangle.
- **12.** $\triangle ABC$ has vertices A(6, 0), B(4, 8), and C(2, 6).
 - **a.** Find the slope of the altitude from B to \overline{AC} .
 - **b.** Find the slope of the perpendicular bisector of \overline{AB} .