KAIST

2021 MAS575 Combinatorics

Homework 3

Fanchen Bu

University: KAIST

Department: Electrical Engineering

Student ID: 20194185

April 12, 2021

Contents

1	HW 3.1	2
2	HW 3.2	3
3	HW 3.3	4
4	HW 3.4	5
5	HW 3.5	6

The (n-1)-dimensional unit sphere is defined as $S^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$. Let m(n) be the maximum number of points in a set X of points in S^{n-1} such that $||x-y|| \in \{a,b\}, \forall x \neq y \in X$, for some fixed a and b. Prove that

$$n(n+1)/2 \le m(n) \le n(n+3)/2.$$

Proof. WLOG, we assume that 0 < a < b < 2, otherwise the cases are very special and clearly not maximal. Let $X = \{x_i\}_{i \in [m]}$ be a maximal set of m points in S^{n-1} satisfying the conditions. Note that for all $x \neq y \in S^{n-1}$, $||x-y|| = \sqrt{2-2\langle x,y\rangle}$, therefore the condition can be rephrased as $\langle x,y \rangle \in \{c,d\}, \forall x \neq y \in X$, where $c=1-a^2/2$ and $d=1-b^2/2$ with -1 < d < c < 1. We define functions $f_i: S^{n-1} \to \mathbb{R}$ as $f_i(y) = (\langle x_i, y \rangle - c)(\langle x_i, y \rangle - d)$. Note that each f_i is a polynomial on S^{n-1} with degree ≤ 2 . We have $f_i(x_j) = (1-c)(1-d) > 0$ if i=j and 0 otherwise. We claim that all these f_i are linearly independent. If the claim is true, we will have m is at most the dimensional of the space of all polynomials from S^{n-1} to \mathbb{R} with degree ≤ 2 , which is $\binom{n}{2} + (n-1) + n + 1 = n(n+3)/2$, providing the desired upper bound, where $\binom{n}{2}$ represents all the y_iy_j terms with $i \neq j$, (n-1) represents all the y_i^2 terms noting that $y_n^2 = 1 - \sum_{i \in [n-1]} y_i^2$, and the last n and 1 represent the linear terms and the constant, respectively. To prove the claim, assume $\sum_{i \in [m]} \alpha_i f_i \equiv 0$, let $y = x_j$ for some $j \in [m]$ we have $\alpha_j f_j(x_j) = 0$, which implies that $\alpha_j = 0$ for all j as j can be arbitrarily chosen. Regarding the lower bound, consider the orthogonal basis of \mathbb{R}^{n+1} , $(e_i)_{i\in[n+1]}$, where e_i is the vector in \mathbb{R}^n with only the *i*-th entry to be 1 and all the other entries are 0. Consider the set $\{e_i + e_j\}_{(i,j) \in {[n+1] \choose 2}}$, all points in which are in a subspace $\{z \in \mathbb{R}^{n+1} : \sum_{k \in [n+1]} z_k = 2, ||z|| = \sqrt{2}\} \cong S^{n-1}$ and it clearly satisfies the condition as the inner product of two distinct points in it must be 0 or 1, completing the proof.

Let k be a positive integer. Let $(r_i)_{i \in [k]}$ be positive integers. For each $i \in [m]$, let $(A_{i,j})_{j \in [k]}$ be a k-tuple of pairwise disjoint sets such that $|A_{i,j}| = r_j, \forall j \in [k]$. Suppose that for each $i \neq i'$, there exist $j_1 < j_2$ and $j_1' < j_2'$ such that

$$A_{i,j_1} \cap A_{i',j'_2} \neq \emptyset$$
 and $A_{i,j_2} \cap A_{i',j'_1} \neq \emptyset$.

Prove that

$$m \le \frac{\left(\sum_{i \in [k]} r_i\right)!}{\prod_{i \in [k]} r_i!}.$$

Remark 2.1. The RHS intuitively represents the case when we use the same $\sum_{i \in [k]} r_i$ numbers to construct all k-tuples, and the inequality says that is the best possible.

Proof. Let us consider a reduced problem first, equivalently when all $r_i = 1$.

Lemma 2.1. Let k be a positive integer. For each $i \in [m]$, let A_i be an ordered list of length k with pairwise disjoint elements in [n]. If for each $i \neq i'$, there exist $a, b \in [n]$ with $a \neq b$ such that a appears before b in A_i and a appears after b in $A_{i'}$, then $m \leq k!$.

Proof of Lemma 2.1. Consider all the permutations of [n] and choose π among them uniformly at random. For each A_i , the probability that A_i is a subsequence of π in the sense that if x appears before y in A_i then $\pi^{-1}(x) < \pi^{-1}(y)$, is clearly 1/k!. Note that if A_i is a subsequence of π , then no other $A_{i'}$ could be, otherwise there will be no pair (a, b) appearing in different orders. Therefore, we have m disjoint events, each of which happens with probability 1/k!, providing the desired inequality. \square

Now, it remains to restore the original setting. WLOG, we assume all numbers appearing in all these sets are in [n] for some n. First, let us give each k-tuple all possible $r_i!$ orders for its corresponding r_i , and for each i, we join all $A_{i,j}$ together (with all possible $S = \prod_{j \in [k]} r_j!$ ordered instances) to be ordered lists $\mathcal{A}_{i,s}$ of length $R = \sum_{j \in [k]} r_j$ for all $s \in [S]$, where each s is associated with an order among all s possible ones. Now we have s many ordered lists. It is easy to check that the condition that for each s is a sufficient condition of that there exist s is a sufficient condition of that s is a sufficient condit s is a sufficient condition of that s is a sufficient condi

Let $(X_i)_{i \in [n]}$ be disjoint sets. Let $(r_i)_{i \in [n]}$ and $(s_i)_{i \in [n]}$ be positive integers. Suppose that A_{ij} and B_{ij} are subsets of X_i for $(i,j) \in [n] \times [m]$ such that $|A_{ij}| = r_i$ and $|B_{ij}| = s_i$. In addition,

$$(\bigcup_{i} A_{ij}) \cap (\bigcup_{i} B_{ij}) = \emptyset, \forall j \in [m].$$
$$(\bigcup_{i} A_{ij}) \cap (\bigcup_{i} B_{ik}) \neq \emptyset, \forall 1 \leq j < k \leq m.$$

Prove that

$$m \le \prod_{i \in [n]} \binom{r_i + s_i}{r_i}.$$

Remark 3.1. It is a generalization of the skew version of Bollobás Two Families Theorem. Besides, because all X_i are disjoint, the conditions can be rephrased as $A_{ij} \cap B_{i'j'} = \emptyset$ if $i \neq i'$ or j = j', and $\forall j < k, \exists i \ s.t. \ A_{ij} \cap B_{ik} \neq \emptyset$.

Proof. First, we state the lemma that is used in the proof of the original skew version of Bollobás Two Families Theorem as shown in the lecture.

Lemma 3.1. For any fixed $n \in \mathbb{N}$, we can pick a set Y of infinitely many points in \mathbb{R}^n such that every subset of at most n points is linearly independent.

WLOG, we may see each X_i as an infinite subset of $\mathbb{R}^{r_i+s_i}$ such that every subset of size r_i+s_i is linearly independent, where with each $k \in X_i$ we associate a vector $w_k \in \mathbb{R}^{r_i+s_i}$ such that $\{w_k\}_{k \in X_i}$ is in general position. Besides, as all X_i are disjoint and we can see all these $\mathbb{R}^{r_i+s_i}$ as disjoint subspace of a larger space. For any $K \subset X_i$, we let

$$w_K = \bigwedge_{k \in K} w_k \in \wedge^{|K|} \mathbb{R}^{r_i + s_i}.$$

Let

$$a_{ij} = w_{A_{ij}} \in \wedge^{r_i} \mathbb{R}^{r_i + s_i}, b_{ij} = w_{B_{ij}} \in \wedge^{s_i} \mathbb{R}^{r_i + s_i},$$

and we let

$$a_j = \bigwedge_{i \in [n]} a_{ij}, b_j = \bigwedge_{i \in [n]} b_{ij}.$$

By the property of the wedge product and Lemma 3.1, we have

$$a_j \wedge b_j \neq 0, \forall j$$

because $a_{ij} \wedge b_{i'j} \neq 0, \forall i, i', j$ as $A_{ij} \cap B_{i'j} = \emptyset, \forall i, i', j$ and

$$a_i \wedge b_k = 0, \forall i < k$$

because likewise $\forall 1 \leq j < k \leq m, \exists i \ s.t. \ a_{ij} \land b_{ik} = 0.$

We claim that $\{a_j\}_{j\in[m]}$ is linearly independent in $\bigwedge_{i\in[n]} \wedge^{r_i} \mathbb{R}^{r_i+s_i}$ which has dimension $\prod_{i\in[n]} {r_i+s_i \choose r_i}$ and thus gives the desired inequality. To see this, suppose $\sum_j c_j a_j = 0$, then for any fixed k, we have

$$0 = \sum_{j} c_j a_j \wedge b_k = c_k a_k \wedge b_k,$$

which gives $c_k = 0$, completing the proof.

Let a, b, c be positive integers. Let $A = (A_{ij})_{(i,j) \in [m] \times [3]}$ be a matrix of finite sets such that

- 1. $|A_{i,1}| = a, |A_{i,2}| = b, |A_{i,3}| = c, \forall i;$
- 2. $A_{i,j} \cap A_{i,j'} = \emptyset, \forall i, j, j' \text{ with } j \neq j';$
- 3. $\forall 1 \leq i < j \leq m, A_{i,1} \cap A_{i,2} \neq \emptyset \lor A_{i,1} \cap A_{i,3} \neq \emptyset \lor A_{i,2} \cap A_{i,3} \neq \emptyset$.

Prove that

$$m \le \frac{(a+b+c)!}{a!b!c!}.$$

Proof. We first state a Lemma about general position.

Lemma 4.1. Let U and V be linear spaces over an infinite field \mathbb{F} and let $(A_i, B_i)_i$ be pairs of subspaces of U such that $\dim(A_i + B_i) \leq \dim(V)$ for each i. Then there exists a linear map $T: U \to V$ such that for each i, $\dim(T(A_i)) = \dim(A_i)$, $\dim(T(B_i)) = \dim(B_i)$, $\dim(T(A_i) \cap T(B_i)) = \dim(A_i \cap B_i)$.

Let \mathbb{F} be an infinite field and let U denote the full linear space containing all these A_{ij} over \mathbb{F} with $\dim(U) \geq a+b+c$. Consider $V=V_1 \oplus V_2$ over \mathbb{F} for some vector spaces V_1 and V_2 with $\dim(V_1)=a+b+c$ and $\dim(V_2)=b+c$. By Lemma 4.1, we can find linear transformations $T_1:U\to V_1$ and $T_2:U\to V_2$ such that for $i\in\{1,2\}$, $\dim(T_i(A_{j,k}))=\dim(A_{j,k})$, $\forall j,\forall i\leq k\leq 3$ and $\dim(T_i(A_{j,k})\cap T_i(A_{j',k'}))=\dim(A_{j,k}\cap A_{j',k'})$, $\forall j,j',\forall i\leq k,k'\leq 3$. We let $v_i=(\wedge T_1(A_{i,1})\wedge(\wedge T_2(A_{i,2}))$ and let $w_i=(\wedge T_1(A_{i,2})\wedge(\wedge T_1(A_{i,3})\wedge(\wedge T_2(A_{i,3})))$, where $\wedge T_k(A_{i,j})=\bigwedge_{x\in A_{i,j}}T_k(x)\in\wedge^{|A_{i,j}|}V_k$. We claim that $v_i\wedge w_j=0,\forall i< j$ and $v_i\wedge w_i\neq 0,\forall i$. To see this, if i< j, then $A_{i,1}\cap A_{j,2}\neq\emptyset\vee A_{i,1}\cap A_{j,3}\neq\emptyset\vee A_{i,2}\cap A_{j,3}\neq\emptyset$, say $A_{i,k}\cap A_{j,k'}\neq\emptyset$ for some $1\leq k< k'\leq 3$, especially $k\in\{1,2\}$, then $T_k(A_{i,k})\cap T_k(A_{j,k'})$ has positive dimension while $T_k(A_{i,k})$ is a factor in v_i and $T_k(A_{j,k'})$ is a factor in w_j , so $v_i\wedge w_j=0$. On the other hand, for each $i,v_i\wedge w_i\neq 0$ because it is a wedge product of disjoint subspaces. Now we claim that $\{v_j\}_{j\in[m]}$ is linearly independent in $(\wedge^a V_1)\wedge(\wedge^b V_2)$ which has dimension $\binom{a+b+c}{a}\binom{b+c}{b}=\frac{(a+b+c)!}{a!b!c!}$ and thus gives the desired inequality. To see this, suppose $\sum_{j\in[m]}c_ja_j=0$, then we enumerate k from m decreasing to 1, each time we have

$$0 = \sum_{j \le k} c_j a_j \wedge b_k = c_k a_k \wedge b_k,$$

which gives $c_k = 0$, completing the proof.

Let L be a vector space of functions from \mathbb{F}^n to \mathbb{F} such that if $f \in L$ and f(x) = 0 for more than d points x on a line in \mathbb{F}^n , then f(x) = 0 for all points on the line. Prove that the dimension of L is at most $(d+1)^n$.

Remark 5.1. Equivalently, we can prove that if $\dim(L) > (d+1)^n$, then $\exists f \in L$ such that there are d+2 points $\{x_i\}_{i\in[d+2]}$ on a line in \mathbb{F}^n such that $f(x_i)=0, \forall i\in[d+1]$ but $f(x_{d+2})\neq 0$. Besides, $(d+1)^n$ is the dimension of the space of polynomials from \mathbb{F}^n to \mathbb{F} with the order of each variable $\leq d$.

Remark 5.2. For each f, and $v, w \in \mathbb{F}^n$, $w \neq 0$, we let $\tilde{f}_{v,w} : \mathbb{F} \to \mathbb{F}$ be defined as $\tilde{f}_{v,w}(t) = f(v+tw)$. The condition says that if $f \in L$, then for each v, w, $\tilde{f}_{v,w}$ has $\leq d$ zeros or $\tilde{f}_{v,w} \equiv 0$.

Remark 5.3. When n = 1, assume L has dimension m > d + 1, let $\{f_i\}_{i \in [m]}$ be a basis of L. Choose d + 1 distinct points (on a line which is the whole \mathbb{F}) $\{y_i\}_{i \in [d+1]} \subset \mathbb{F}$ and consider the system of d + 1 linear equations $\sum_{i \in [m]} c_i f_i(y_j) = 0, j \in [d+1]$ on m > d+1 variables $(c_i)_{i \in [m]}$. Therefore, there must exist a nontrivial solution $(c_i)_{i \in [m]}$. However, because L is a vector space, $g := \sum_{i \in [m]} c_i f_i \in L$ and now we have $g \not\equiv 0$ but g vanishes on d+1 distinct points on a line, contradicting with the given condition.

Proof. We already prove the case when n=1 above. Now we assume n>1 and suppose the opposite, i.e., assume that L has dimension $m>(d+1)^n$, let $\{f_i\}_{i\in[m]}$ be a basis of L. Choose d+1 distinct points $Y=\{y_i\}_{i\in[d+1]}\subset\mathbb{F}$ and consider the system of $(d+1)^n$ linear equations $\sum_{i\in[m]}c_if_i(y_J)=0$, $J=(j_k)_{k\in[n]}\in[d+1]^n$, where $y_J=(y_{j_k})_{k\in[n]}$. Note that the number of variable m is strictly more than the number of linear equations $(d+1)^n$, therefore there must exist a nontrivial solution $(c_i)_{i\in[m]}$. On the other hand, because L is a vector space and $\{f_i\}_{i\in[m]}$ is a basis, $g:=\sum_{i\in[m]}c_if_i\in L$ and $g\not\equiv 0$. Now we have $g(y_J)=0$ for all $J\in[d+1]^n$. We fix n-1 variables, e.g., we fix $x_2,...,x_n$ with each $x_k\in Y$ and we have $g(y,x_2,...,x_n)=0$ for each $y\in Y$. Note that all points $(y,x_2,...,x_n)_{y\in Y}$ are d+1 points on a line $\{(v,x_2,...,x_n)\}_{v\in \mathbb{F}}$ in \mathbb{F}^n , thus we have $g(v,x_2,...,x_n)=0$ for all $v\in \mathbb{F}$. Also note that this holds for any $x_2,...,x_n\in Y$ as they can be arbitrarily chosen in Y. Now we fix $v_1\in \mathbb{F}$ and fix $v_1,v_2\in \mathbb{F}$. Again, note that this holds for any fixed $v_1,v_2\in \mathbb{F}$. We repeat this process and finally we have g(v)=0 for all $v\in \mathbb{F}^n$, i.e., $v_1,v_2\in \mathbb{F}$ 0, which is a contradiction, completing the proof. $v_1,v_2\in \mathbb{F}$ 1