

Introduction to CloudCAM

SODAR | RESOURCE MONITORING | NOISE MONITORING | CLOUD TRACKING

- CONFIDENTIAL -

Page 1

company overview

- established in 2011 to develop, manufacture, market and support 3D sensors for renewable energy developers and utilities worldwide
- focus on technology support for wind and solar energy project development
- professional team of renewable energy experts
- combined knowledge and expertise of its owners:
 - Fulcrum Energy group has >10 years local & international wind energy development experience through its ownership of Epuron Pty Ltd
 - Orang-utan Engineering developed the core SODAR and telemetry platforms for extensive use in harsh and remote sites
- based in Sydney, Australia

product offering

compact-beam Sodar

- low cost, flexible, reliable monitoring solution
- performance verified by industry experts
- optimised for the wind energy industry

high speed data loggers

- sampling rates up to 200Hz
- uses include met masts, sonic anemometers, high speed solar monitoring
- integrated noise and weather monitoring

- CONFIDENTIAL -

CloudCam

- innovative camera-based cloud monitoring system
- tracking and prediction in development
- target prediction range from 30s to 15 minutes

data management via Flightdeck

- all data can be viewed and downloaded from one location:
 - wind, solar, met, noise data
 - telemetry and location
 - operating status / faults
- data available in both raw and clean formats
- site and equipment details available at the click of a button
 - site history
 - equipment location history

Clouds and Solar Power

clouds have a significant impact

- when clouds block the sun, solar irradiance can drop by up to 80% in just seconds
- solar power output drops just as quickly
- this puts a significant strain on the power system the solar plant is connected to
 - other forms of generation need to immediately pick up where the solar power output dropped off

cloud impacts depend on the system type

off-grid:

- small off-grid diesel power stations with small, medium or high penetration of solar
 - e.g. Epuron's TKLN Project
- larger off-grid townships with high levels of distributed (rooftop) solar
 - E.g. Alice Springs, Carnarvon

grid connected:

- large centralised solar power stations connected to major grids
 - e.g. AGL's 100MW solar power station
- significant levels of distributed solar power generation
 - e.g. >1GW rooftop solar spread across the Sydney region

each of these applications has different management requirements related to geographic coverage, detection or prediction timescales, accuracy and cost.

existing solutions aren't good enough

approach	advantages	disadvantages
reduce solar penetration (max 10% solar)	 minimal capital cost avoids battery / storage capital and O&M costs 	 high diesel generation costs low penetration un-utilized solar resource
fast response energy storage (batteries, flywheels)	 increased solar penetration (~30% of energy) minimize fuel costs reduced greenhouse gas emissions 	 energy storage systems (batteries) required high capital cost high ongoing O&M costs limited solar power contribution
competing cloud detection / prediction systems	minimal capital cost	 low cloud detection rates poor accuracy for multilevel cloud & spontaneous cloud formation

The CloudCAM System

introduction to CloudCAM

- CloudCAM tracks and predicts cloud movements at solar power stations
- this enables users to know in advance the:
 - timing of cloud events (time to onset as well as duration)
 - impact of cloud events (magnitude of change in irradiance and solar power output)
- this information can be integrated with solar power control systems to manage the fluctuations:
 - solar power output can be controlled
 - local storage can be used effectively (batteries, flywheels)
 - alternate generators can be started / stopped as required
- as a result, more solar power can be used in the system
 - greater fuel, cost and greenhouse gas savings

cloud detection

CloudCAM image

CloudCAM image with cloud detection overlay

cloud identification

- each cloud is separately identified
- individual cloud tracking and prediction
 - cloud growth / shrinkage
 - cloud disappearance & reemergence where multi-layered clouds exist
- individual cloud characterisation
 - determine its individual solar "blocking factor"
 - predict the magnitude of impact when it passes the sun

ground-level solar irradiance prediction (30s to 15 min)

0km

ground-level cloud shadow map

CloudCAM system

CloudCAM	cloud detection	cloud prediction	irradiance prediction	power output prediction	optimal plant control
fully self- contained camera system multiple ground based camera options automatic calibration and alignment	horizon shadow screen to prevent false detections detects lens flare, blooming, saturation, dirt - no false detections identification of different cloud types	multi-level clouds moving in different directions / speeds cloud disappearance / re-emergence cloud shrinkage / growth	cloud characteristics used to predict level of impact on solar irradiance irradiance predictions updated every 30s and up to 15min ahead	plant characteristics used to predict actual solar power available	solar power output can be controlled management of solar, batteries, diesels and other plant to ensure reliability maximum savings available from solar energy minimal plant capital and operating costs

CloudCAM

- fish-eye camera with 360/180deg sky coverage
- low cost cloud detection
- sampling rate >1s
 - typical sampling rate 5s
- system comes with integrated and weather sensors (pyranometer, temperature, pressure, humidity, rainfall...)

CloudCAM installed at Uterne Solar Power Station, NT

available now

CloudCAM – advanced system

- currently under development
- improved near-horizon performance
 - Important for centralised / tracking
 PV systems
- improved multi-layer cloud detection and prediction
 - independent tracking of different levels / types of cloud
- ideal for high reliance integrated systems where greatest prediction accuracy is required

two complementary methodologies

CloudCAM

- ground-based camera system
- high spatial (m) and temporal (s)
 resolution
- low geographic coverage (kilometres)

applications:

- highly accurate "nowcasting"
- short term predictions over defined areas
 - 10s to 15min predictions
- ideal for off-grid / centralised power station applications

CloudSAT

- satellite-based system
- high geographic area (country / continental)
- limited geographic resolution (1-4km per pixel)

applications:

- supplements and enhances ground-based view, seeing "over the horizon", to provide longerterm predictions
- allows prediction over large areas e.g. cities or states

CloudSAT: satellite image analysis

- (left) raw satellite image shows cloud cover over the area
- (centre) algorithm removes background land features to reveal clouds only
- (right) clouds categorized as being either light, medium or thick

(axes scales in km; radial circles centred on Alice Springs have radii 50, 100, 200 and 400 km respectively)

advanced irradiance prediction - benefits

CloudCAM applications

low cost site assessment

- determining cloud patterns
- assisting with plant sizing / design
- characterisation of clouds for future cloud control systems

"nowcasting"

- detection of clouds within a defined distance from site
- likelihood of an event in next period

Image courtesy of Epuron 2014

"forecasting"

 based on predicted time to and significance of a cloud event

CloudCAM is available now

- applications
 - resource assessment, nowcasting, forecasting cloud events
- standard inclusions:
 - mounting hardware, solar power supply, communications
 - temperature, humidity, irradiance sensors (pyranometer)
- optional extras
 - additional weather sensors (rain, pressure, wind, PV reference cell etc.)
 - control system integration
 - support services (site analysis, reporting etc)
 - CloudSAT integration

Uterne Solar Power Station, Alice Springs Image courtesy of Epuron 2014

Fulcrum3D Pty Ltd

Level 11, 75 Miller Street North Sydney NSW 2060 AUSTRALIA

www.fulcrum3d.com

T +61 (2) 8456 7400

F +61 (2) 9922 6645

info@fulcrum3d.com