27/07/23, 5:25 PM Untitled7 (1) - Jupyter Notebook

In [26]: import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

In [27]: df=pd.read_csv("/Users/bob/Downloads/1_fiat500_VehicleSelection_Dat df.fillna(0,inplace=True)

Out [27]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.611
1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.24
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.63
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.49
1544	0.0	0	0.0	0.0	0.0	0.0	0.000000	
1545	0.0	0	0.0	0.0	0.0	0.0	0.000000	
1546	0.0	0	0.0	0.0	0.0	0.0	0.000000	Nul
1547	0.0	0	0.0	0.0	0.0	0.0	0.000000	
1548	0.0	0	0.0	0.0	0.0	0.0	0.000000	

1549 rows × 11 columns

In [28]: df.head()

Out [28]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	
0	1.0	lounge	51.0	882.0	25000.0	1.0	44.907242	8.611559
1	2.0	pop	51.0	1186.0	32500.0	1.0	45.666359	12.24188
2	3.0	sport	74.0	4658.0	142228.0	1.0	45.503300	11.41
3	4.0	lounge	51.0	2739.0	160000.0	1.0	40.633171	17.63460
4	5.0	pop	73.0	3074.0	106880.0	1.0	41.903221	12.49565

In [29]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1549 entries, 0 to 1548 Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	ID	1549 non-null	float64
1	model	1549 non-null	object
2	engine_power	1549 non-null	float64
3	age_in_days	1549 non-null	float64
4	km	1549 non-null	float64
5	previous_owners	1549 non-null	float64
6	lat	1549 non-null	float64
7	lon	1549 non-null	object
8	price	1549 non-null	object
9	Unnamed: 9	1549 non-null	float64
10	Unnamed: 10	1549 non-null	object
dt vn	es: $float64(7)$ o	hiect(4)	

dtypes: float64(7), object(4)

memory usage: 133.2+ KB

```
In [30]: |df.columns
```

```
Out[30]: Index(['ID', 'model', 'engine_power', 'age_in_days', 'km', 'previo
         us_owners',
                'lat', 'lon', 'price', 'Unnamed: 9', 'Unnamed: 10'],
               dtype='object')
```

In [31]: sns.pairplot(df)

Out[31]: <seaborn.axisgrid.PairGrid at 0x7fda987f92d0>


```
In [33]: sns.displot(df['age_in_days'])
```

Out[33]: <seaborn.axisgrid.FacetGrid at 0x7fdac53f3880>


```
In [34]: df1=df.drop(['Unnamed: 10'],axis=1)
    df1
    df1=df1.drop(df1.index[1537:])
    df1.isna().sum()
```

```
Out[34]: ID
                               0
          model
                               0
          engine_power
                               0
          age_in_days
                               0
          km
                               0
          previous_owners
                               0
          lat
                               0
          lon
                               0
          price
                               0
          Unnamed: 9
          dtype: int64
```

In [35]: sns.heatmap(df1.corr())

/var/folders/2n/rrl24lws3pb1nz8_t911srvm0000gn/T/ipykernel_12149/7
81785195.py:1: FutureWarning: The default value of numeric_only in
DataFrame.corr is deprecated. In a future version, it will default
to False. Select only valid columns or specify the value of numeri
c_only to silence this warning.
 sns.heatmap(df1.corr())

Out[35]: <Axes: >

In [36]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

In [37]: df1.isna().sum() Out[37]: ID 0 0 model 0 engine_power age_in_days 0 km 0 previous_owners 0 0 lat 0 lon price 0 Unnamed: 9 0 dtype: int64

```
In [38]: y=df1['price']
         x=df1.drop(['price','Unnamed: 9','model'],axis=1)
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
          print(x train)
                     ID
                         engine_power age_in_days
                                                             km
                                                                 previous_owners
          lat
          1317 1318.0
                                 51.0
                                              701.0
                                                       25692.0
                                                                              1.0
          45.438789
                                 51.0
          940
                 941.0
                                             2162.0
                                                       71000.0
                                                                              1.0
          41.903221
          120
                 121.0
                                 51.0
                                             1096.0
                                                       50000.0
                                                                              1.0
          40.921669
                 806.0
                                 51.0
                                              456.0
                                                       13238.0
                                                                              1.0
          805
          41,903221
          832
                                 51.0
                                             2496.0
                                                       89000.0
                                                                              1.0
                 833.0
          40.667141
          . . .
                                   . . .
                                                 . . .
                                                            . . .
                                                                              . . .
          . . .
          1429 1430.0
                                 51.0
                                             2192.0
                                                      100000.0
                                                                              1.0
          43.817020
                                 51.0
                                              425.0
          756
                 757.0
                                                       17770.0
                                                                              1.0
          41.408138
          340
                 341.0
                                 51.0
                                             1247.0
                                                       22686.0
                                                                              1.0
          41.903221
          1466 1467.0
                                 51.0
                                             1492.0
                                                       58000.0
                                                                              4.0
          44.988739
          1169 1170.0
                                 51.0
                                             1431.0
                                                       87000.0
                                                                              1.0
          44.508839
                         lon
                10.76424026
          1317
          940
                12.49565029
          120
                14.19626999
          805
                12,49565029
                16.60445023
          832
          . . .
          1429
                10.68284988
          756
                13.76593971
```

```
[1075 rows x 7 columns]
```

12,49565029

9.010499954

11.46907997

```
In [39]: model=LinearRegression()
    model.fit(x_train,y_train)
    model.intercept_
```

Out[39]: 8366.390730791745

340 1466

1169

```
In [40]: model.coef_
```

Out[40]: array([-2.45733778e-03, 8.04013394e+00, -8.79036602e-01, -1.83470 200e-02, -1.47760343e+00, 5.00300356e+01, 3.81983637e+00])

In [41]: prediction=model.predict(x_test)
plt.scatter(y_test,prediction)

Out[41]: <matplotlib.collections.PathCollection at 0x7fda68de19f0>

In [42]: model.score(x_test,y_test)

Out[42]: 0.855974762274458

In []: