Name: Harshada Nande

Concepts of Operating System Assignment 2 Part A

What will the following commands do?

• echo "Hello, World!"

 The command 'echo "Hello, World" will display the text "Hello, World" in the terminal. echo command used to print the Hello world on the screen.

• name="Productive"

- The command 'name="Productive"' it will used assign the value to the variable.
- o 'name' is the shell variable name and 'Productive' is the value assign to the name variable.

touch file.txt

 The command 'touch file.txt' is used to create the empty file named 'file.txt'. 'touch' command is used to create the empty file.

Is -a

- the "Is -a" command is used to list the all files and directories and also hidden files and directories in the current directory.
- o "Is" is use for list the file and directory.

• rm file.txt

- The command 'rm file.txt' is used to delete the file.txt from the current directory.
- o rm command is used for deleted the file from directory.

• cp file1.txt file2.txt

- The command "cp file1.txt file2.txt" it will be used for the copy the file1.txt data into the file2.txt.
- o cp command use for the copy the data from one file to another file.

mv file.txt /path/to/directory/

 'mv' command is used for move the file from current location to the specific directory. File.txt is the file it is mv from specific directory.

• chmod 755 script.sh

- This command is used to assign read, write and execute permission to owner, group and other users.
- o In the 'chmod 755 script.sh' command gives the read, write and execute permission to the owner and read and execute permission to the group and other users for 'script.sh' file.

• grep "pattern" file.txt

- The 'grep' command is used for searching the specific word in the file.
 'grep "pattern" file.txt' in this command 'pattern' is a word and grep is used for searching the "pattern" word in the file.txt file.
- And display all line in file.txt that contains the 'pattern' word

kill PID

- This command will terminate the process whose PID is mentioned in the command.
- Since the above command doesn't contain any process id, above command will result in an error.

• Is -I | grep ".txt"

 This command uses piping to combine the output of both Is and grep command. Is -I is used to display the contents of current directory with details and grep ".txt" command is used to display all the files conating .txt pattern in their name

• Is -I | grep "^d"

Is command lists the files and directories in long format. grep "^d"
 command filters the output to show only lines that start with "d" which in the Is -I output indicates directories

• grep -r "pattern" /path/to/directory/

 The 'grep' command is used for searching the specific word in the file. 'grep -r "pattern" /path/to/directory/' this command is use for the searching the "pattern" word in the all the file in current directory and subdirectories.

chmod 644 file.txt

- This command is used to assign read, write and execute permission to owner, group and other users.
- o In the 'chmod 644 file.txt' command gives the read and write permission to the owner and only read permission to the group and other users for 'file.txt' file.

cp -r source_directory destination_directory

 The above command is used to copy the source_directory to destination directory. This is done by using -r option so that all files in source_directory are copied recursively.

find /path/to/search -name "*.txt"

 find command is used for searching the files and directories. Given command searches /path/to/search directory and its subdirectories for any file ending with .txt pattern.

• chmod u+x file.txt

 This command is used to gives execute permissions for file.txt file to the user of the file.

echo \$PATH

 This command used for display the value of system environment variable that stores directories where executable program are located.

Part B

Identify True or False:

1. Is is used to list files and directories in a directory.

Ans: Ture

2. mv is used to move files and directories.

Ans: True

3. cd is used to copy files and directories.

Ans: False

4. pwd stands for "print working directory" and displays the current directory.

Ans: True

5. grep is used to search for patterns in files.

Ans: True

6. chmod 755 file.txt gives read, write, and execute permissions to the owner, and read and execute permissions to group and others.

Ans: True

7. mkdir -p directory1/directory2 creates nested directories, creating directory2 inside directory1 if directory1 does not exist.

Ans: True

8. rm -rf file.txt deletes a file forcefully without confirmation.

Ans: True

Identify the Incorrect Commands:

1. chmodx is used to change file permissions.

Ans: Correct command is 'chmod'.

2. cpy is used to copy files and directories.

Ans: Correct command is "cp"

3. mkfile is used to create a new file.

Ans: Correct command is "touch"

4. catx is used to concatenate files.	
Ans: Correct command is "cat"	
E mais consider account files	
5. rn is used to rename files.	
Ans: Correct command is "mv"	

Part C

Question 1: Write a shell script that prints "Hello, World!" to the terminal.

```
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ nano first.txt cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ cat first.txt echo "Hello, World!" cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ bash first.txt Hello, World! cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ cdac@DESKTOP-MATPOSG:~/LinuxAssignment$
```

Question 2: Declare a variable named "name" and assign the value "CDAC Mumbai" to it. Print the value of the variable.

```
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ nano sec.txt
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ cat sec.txt
name="CDAC Mumbai"
echo $name
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ bash sec.txt
CDAC Mumbai
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$
```

Question 3: Write a shell script that takes a number as input from the user and prints it.

```
cdac@DESKTOP-MATPOSG:~, X + v

cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ nano third.txt
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ cat third.txt
echo Enter the number
read num
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ bash third.txt
Enter the number
6
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$
```

Question 4: Write a shell script that performs addition of two numbers (e.g., 5 and 3) and prints the result.

```
cdac@DESKTOP-MATPOSG:~, × + v

cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ nano fourth.txt
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ cat fourth.txt
echo "Enter the first number"
read num1
echo "Enter the second number"
read num2
sum='expr $num1 + $num2'
echo "sum of two number is $sum"
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ bash fourth.txt
Enter the first number
3
Enter the second number
2
sum of two number is 5
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$
```

Question 5: Write a shell script that takes a number as input and prints "Even" if it is even, otherwise prints "Odd".

```
cdac@DESKTOP-MATPOSG:~, × + ∨

cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ nano evenodd.txt
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ cat evenodd.txt
echo "Enter the number"
read num
if [ $((num % 2)) -eq 0 ]
then
echo "$num is even number"
else
echo "$num is odd number"
fi
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ bash evenodd.txt
Enter the number
5
5 is odd number
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$
```

Question 6: Write a shell script that uses a for loop to print numbers from 1 to 5.

```
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ nano forloop
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ cat forloop
a=1
for a in 1 2 3 4 5
do
echo $a
done
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ bash forloop
1
2
3
4
5
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$
```

Question 7: Write a shell script that uses a while loop to print numbers from 1 to 5.

```
cdac@DESKTOP-MATPOSG:~, × + \
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ nano while
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ cat while
a=1
while [ $a -lt 6 ]
do
echo $a
a='expr $a + 1'
done
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ bash while
1
2
3
4
5
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$
```

Question 8: Write a shell script that checks if a file named "file.txt" exists in the current directory. If it does, print "File exists", otherwise, print "File does not exist".

```
cdac@DESKTOP-MATPOSG: ~, × + v

cdac@DESKTOP-MATPOSG: ~/LinuxAssignment$ nano exist
cdac@DESKTOP-MATPOSG: ~/LinuxAssignment$ cat exist
echo "enter the name"
read name
if [ -e $name ]
then
echo "File is exist"
else
echo "file is not exist"
fi
cdac@DESKTOP-MATPOSG: ~/LinuxAssignment$ bash exist
enter the name
while
File is exist
cdac@DESKTOP-MATPOSG: ~/LinuxAssignment$
```

Question 9: Write a shell script that uses the if statement to check if a number is greater than 10 and prints a message accordingly.

```
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ nano if cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ cat if echo Enter the number read num if [ $num -gt 10 ] then echo "Number is greater than 10" else echo "number is less than 10" fi cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ bash if Enter the number 11

Number is greater than 10 cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ bash if Enter the number 3

number is less than 10 cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ |
```

Question 10: Write a shell script that uses nested for loops to print a multiplication table for numbers from 1 to 5. The output should be formatted nicely, with each row representing a number and each column representing the multiplication result for that number.

cdac@DESKTOP-MATP0SG: ~, cdac@DESKTOP-MATP0SG:**~/LinuxAssignment\$ cat** forl do for j in 1 2 3 4 5 do echo "\$i * \$j = " \$((i * j)) done echo done dac@DESKTOP-MATP0SG:~/LinuxAssignment\$ bash for1 * 1 = * 2 = * 3 = * 4 = * 5 = 12345 2 4 6 8 10 2222 1 2 3 4 5 3 6 9 12 15 1 2 3 4 5 4 8 12 16 20 1234 44444 1 2 3 4 5 10 15 20 25 5555 5 cdac@DESKTOP-MATP0SG:**~/LinuxAssignment\$**

Question 11: Write a shell script that uses a while loop to read numbers from the user until the user enters a negative number. For each positive number entered, print its square. Use the break statement to exit the loop when a negative number is entered.

```
cdac@DESKTOP-MATP0SG:<mark>~/LinuxAssignment$ nano while1</mark>
cdac@DESKTOP-MATP0SG:~/LinuxAssignment$ cat while1
while true
do
echo
    "Enter the number"
read no
if [ $no -lt 0 ]
then
    "entering negative number "
echo
break
fi
square=$((no * no))
     "The square of number is $square"
echo
done
cdac@DESKTOP-MATP0SG:~/LinuxAssignment$ bash while1
Enter the number
The square of number is 4
Enter the number
ш
The square of number is 16
Enter the number
-6
entering negative number
cdac@DESKTOP-MATPOSG:~/LinuxAssignment$ |
```

Part E
 Consider the following processes with arrival times and burst times:
Process Arrival Time Burst Time
P1 0 5
P2 1 3
P3 2 6
Calculate the average waiting time using First-Come, First-Served (FCFS)
scheduling.

2. Consider the following processes with arrival times and burst times:

Process	Arrival Time	e Burst Time
---------	--------------	----------------

|-----|

| P1 | 0 | 3 |

| P2 | 1 | 5 |

| P3 | 2 | 1 |

| P4 | 3 | 4 |

Calculate the average turnaround time using Shortest Job First (SJF) scheduling.

process	AZEIKUL	Buest	Response Time	Time	TAT
Pi	0	3	8	7	12
P2 P3	2	t	2	0	5
Pa	3	4	3.5	2.25	5.5
	Avezage			,	- 1
Gantt Ch	.	P.	P3 P,0	P4 4	P2 8 13