# LLMs4Subjects: LLM-based Automated Subject Tagging for a National Technical Library's Open-Access Catalog

Andrea Delli

s331998

Vincenzo Avantaggiato

Michele Cazzola s323270

# Problem Statement

- TIBKAT technical documents
- GND Tags

#### Subject tagging for technical documents

**Goal:** recommend the most relevant subjects from the GND collection for each technical record.

**TIBKAT**: collection of <u>bilingual</u> (*en*, *de*) technical documents from the Leibniz University's Technical Library Types: Article, Book, Conference, Report, Thesis

**GND** (tags): international authority file used to catalog and link information about people, organizations, topics, and works.

Both documents and tags are pre-processed in JSON format for convenience, while documents are also splitted in **train/dev/test**.



#### Dataset creation

We use a pre-defined **template** to generate a textual description from the JSON of documents and tags.

We create a dataset of **triplets** composed by **(document text, true GND tag, negative GND tag)**, used in experiments that require some training.



#### Metrics

Results are evaluated by comparing the correct labels in the dataset and the ones assigned by us, using the metrics **precision@k**, **recall@k**, **F1@k** (k=5, ..., 50).

Our prediction for each document: rank of 50 most similar GND tags

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

# Experiments

- Baseline models
- Fine-tuning embedding models
- MLP for embedding similarity

## 1st experiment: Compare using Cosine Similarity

Sentence embeddings encode the semantic meaning and relationships between sentences, ensuring that semantically similar sentences have closely related representations.

To measure the distance between embeddings, we use **cosine similarity**.



### 1<sup>st</sup> experiment: Compare using Cosine Similarity

Since **BERT** is originally designed for token-level tasks, it does not naturally provide fixed-size sentence embeddings. To address this limitation, **Sentence-BERT** (SBERT) was developed, modifying BERT by introducing a siamese network architecture to derive semantically meaningful sentence embeddings.



## 1<sup>st</sup> experiment: Compare using Cosine Similarity

All the four embedding models we used belong to the **SBERT** family:

| Model                                    | Embedding<br>size | Parameters<br>(M) | Latency (ms) |
|------------------------------------------|-------------------|-------------------|--------------|
| all-MiniLM-L6-v2                         | 384               | 22.7              | 8            |
| distiluse-base-multilingual-cased-v1     | 512               | 135               | 8            |
| cross-en-de-roberta-sentence-transformer | 768               | 278               | 18           |
| multilingual-e5-large                    | 1024              | 560               | 55           |

#### 1<sup>st</sup> experiment: Results



#### 2<sup>nd</sup> experiment: Fine-tuning an embedding model

#### What if we fine-tune the models?

- fine-tuning is slow
- so, we only perform the experiment on all-MiniLM-L6-v2
- ... for just 1 epoch

Which loss to use?



#### 2<sup>nd</sup> experiment: Fine-tuning an embedding model

#### Losses:

- TripletLoss
- CosineSimilarityLoss
- CosentLoss loss = logsum(1+exp(s(k,l)-s(i,j))+exp...)
- AnglELoss
- MultipleNegativesRankingLoss



### 2<sup>nd</sup> experiment: Results



## 3<sup>rd</sup> experiment: MLP for embedding similarity

- Train a MLP on embeddings from *all-MiniLM-L6-v2*: binary task
- Goal: recognize how much a document is related to a given tag
- Output: tag each document and compute performances (inference)
- Input: document embedding + tag embedding



## 3<sup>rd</sup> experiment: MLP for embedding similarity

#### **Architecture:**

- Input
- Hidden layers
- Output



## 3<sup>rd</sup> experiment: MLP for embedding similarity

Loss function: Binary Cross Entropy (BCE) loss

$$\mathcal{L} = -\sum_{i=1}^{N} y_i \log(\sigma(z_i)) + (1-y_i) \log(1-\sigma(z_i))$$

- y<sub>i</sub>: ground truth for the i-th sample
- z<sub>i</sub>: logit for the i-th sample
- N: number of samples

## 3<sup>rd</sup> experiment: Results



#### Conclusions

- Best result: fine-tuning of all-MiniLM-L6-v2 with MultipleNegativesRanking loss
- MLP: worse, but better than cosine similarity

#### **Future work:**

- fine-tune larger models (resource-intensive)
- train MLP on embeddings from fine-tuned models

# THANK YOU FOR YOUR ATTENTION!

Andrea Delli

s331998

Vincenzo Avantaggiato

s323112

Michele Cazzola

s323270