```
//Write a C++ program to find the Armstrong number for a given range of number.
#include<iostream>
#include<math.h>
using namespace std;
int main()
{
  int start, end, i, j;
  cout<<"Enter the starting number = ";</pre>
  cin>>start;//5
 cout<<"Enter the ending number = ";</pre>
  cin>>end;//15
 for(i=start;i<=end;i++)</pre>
 {
   int num = i;
   int temp = i;
   int digit=0,sum=0;
   while(num!=0)
   {
     num = num/10;
     digit++;
   }
   for(j=1;j<=digit;j++)
   {
     int rem = temp%10;
     int power = pow(rem,digit);
      sum = sum + power;
```

```
temp = temp/10;
}
if(sum==i)
{
    cout<<i<<" ";
}
return 0;
}</pre>
```

Program ka Logic

1. Input lena:

- a. Program user se do numbers mangta hai: start aur end. Yeh range define karte hain jismein Armstrong numbers dhundne hain.
- b. Example: Agar start = 5 aur end = 15 hai, toh program 5 se 15 tak har number check karega.

2. Armstrong number kya hota hai?:

- a. Ek number Armstrong number hota hai agar uske digits ke cubes (ya digits ki power, jahan power utni hi hoti hai jitne digits hain) ka sum usi number ke barabar ho.
- b. Example: 153 ek Armstrong number hai kyunki:
 - i. Digits: 1, 5, 3 (total 3 digits)
 - ii. Sum: $(1^3 + 5^3 + 3^3 = 1 + 125 + 27 = 153)$
 - iii. Yeh sum original number ke barabar hai, toh 153 Armstrong hai.

3. Kaise kaam karta hai?:

a. **Outer loop**: start se end tak har number i ke liye check karta hai.

b. Digits count karna:

i. Har number ke digits count karne ke liye ek while loop chalega. Number ko 10 se divide karte jao jab tak number 0 na ho jaye. Har division pe digit variable increment hota hai.

c. Sum calculate karna:

 i. Ek for loop chalega jo har digit ko nikalta hai (temp%10), uski power (digit count ke barabar) calculate karta hai (pow(rem, digit)), aur sum mein add karta hai.

d. Check karna:

i. Agar calculated sum original number i ke barabar hai, toh woh number print ho jayega.

Dry Run

Ab ek example ke saath dry run karte hain. Maan le start = 5 aur end = 15.

Input:

- start = 5
- end = 15

Outer Loop:

• Loop chalega i = 5 se i = 15 tak.

i = 5:

- 1. num = i = 5, temp = i = 5, digit = 0, sum = 0
- 2. Digits count karna:
 - a. while(num != 0):
 - i. num = 5 / 10 = 0 (integer division)
 - ii. $digit++ \rightarrow digit = 1$
 - iii. Loop khatam kyunki num = 0

- b. Toh digit = 1 (5 mein 1 digit hai)
- 3. Sum calculate karna:
 - a. for(j = 1; j <= digit; j++) → sirf ek baar chalega kyunki
 digit = 1</pre>
 - i. rem = temp % 10 = 5 % 10 = 5
 - ii. power = pow(rem, digit) = pow(5, 1) = 5
 - iii. sum = sum + power = 0 + 5 = 5
 - iv. temp = temp / 10 = 5 / 10 = 0
 - b. Loop khatam
- 4. Check:
 - a.sum = 5, i = 5
 - b. sum $== i \rightarrow 5 == 5 \text{ (true)}$
 - c. Toh cout << i << "; \rightarrow 5 print hoga

i = 6:

- 1. num = 6, temp = 6, digit = 0, sum = 0
- 2. Digits count:
 - a. num = 6 / 10 = 0
 - b.digit++ → digit = 1
- 3. Sum calculate:
 - a.rem = 6 % 10 = 6
 - b. power = pow(6, 1) = 6
 - c.sum = 0 + 6 = 6
 - d.temp = 6 / 10 = 0
- 4. Check:
 - a.sum = 6, i = 6
 - b. sum == i → true
 - c. 6 print hoga

i = 7:

- 1. num = 7, temp = 7, digit = 0, sum = 0
- 2. Digits count:

a.
$$num = 7 / 10 = 0$$

3. Sum calculate:

a.rem =
$$7 \% 10 = 7$$

b. power =
$$pow(7, 1) = 7$$

$$c.sum = 0 + 7 = 7$$

$$d.temp = 7 / 10 = 0$$

4. Check:

a.
$$sum = 7, i = 7$$

c. 7 print hoga

i = 8:

1.
$$num = 8$$
, $temp = 8$, $digit = 0$, $sum = 0$

2. Digits count:

a.
$$num = 8 / 10 = 0$$

b.digit++
$$\rightarrow$$
digit = 1

3. Sum calculate:

a.rem =
$$8 \% 10 = 8$$

b. power =
$$pow(8, 1) = 8$$

$$c.sum = 0 + 8 = 8$$

$$d.temp = 8 / 10 = 0$$

4. Check:

$$a.sum = 8, i = 8$$

i = 9:

• Same process, result: 9 print hoga

1.
$$num = 10$$
, $temp = 10$, $digit = 0$, $sum = 0$

2. Digits count:

a.
$$num = 10 / 10 = 1$$

c.num =
$$1 / 10 = 0$$

3. Sum calculate:

a. for(
$$j = 1$$
; $j <= 2$; $j++$):

i. First iteration:

1. rem =
$$10 \% 10 = 0$$

2. power =
$$pow(0, 2) = 0$$

$$3. \text{sum} = 0 + 0 = 0$$

4. temp =
$$10 / 10 = 1$$

ii. Second iteration:

1. rem =
$$1 \% 10 = 1$$

2. power =
$$pow(1, 2) = 1$$

$$3.sum = 0 + 1 = 1$$

4. temp =
$$1 / 10 = 0$$

4. Check:

a.
$$sum = 1, i = 10$$

b. sum
$$!= i \rightarrow false$$

c. 10 print nahi hoga

i = 11 to 15:

- Similarly, yeh numbers check honge, lekin inme se koi bhi Armstrong number nahi hai kyunki:
 - o 2-digit numbers ke liye, har digit ki square ka sum original number ke barabar nahi aata.
 - o Example for 11:
 - Digits: 1, 1

■ Sum: (1^2 + 1^2 = 1 + 1 = 2 \neq 11)

Output:

• 5 se 15 ke beech Armstrong numbers hain: 5, 6, 7, 8, 9

• Toh output hoga: 5 6 7 8 9

Kuch Important Points:

- Yeh program single-digit numbers (1-9) ke liye hamesha Armstrong number dega kyunki (n^1 = n).
- 2-digit ya zyada digits ke numbers ke liye, sum match karna mushkil hota hai, isliye is range mein sirf single-digit numbers hi Armstrong hain.
- pow function floating-point values deta hai, lekin yahan integer context mein use hota hai, toh result sahi aata hai.