1. identifiable. a parameterization for $EY \in \mathbb{R}^n$ [EY = f(b) = XB. Def: | is identifiable for \fi, \begin{aligned} \beta_1, \beta_2, & if \fi\beta_1\beta_1) = \beta_1=\beta_2. \end{aligned} $g(\beta)$ is identifiable \Rightarrow if $|f(\beta_1) = f(\beta_2) \Rightarrow g(\beta_1) = g(\beta_2)$. M= NB+e. knowing ET is not sufficient to tell us the value of $\beta/g(\beta)$. \Rightarrow $\beta/\beta(\beta)$ not identifiable. X^{nxp} ronk(X)=p. $Y=X\beta+e$. Regression model B is identifiable. $X\beta_1 = X\beta_2$. $= > (x'x)^{-1}x' \cdot x\beta_1 = (x'x)^{-1}x' \cdot x\beta_2$ β₁= β₂. rank(X) < p. Y=xB+e. & is no longer identifiable. $(X'X)^{-1}$, not exist! Example: two drugs -> effect on levels of sth. n patients m blood. βı βz. n -> first drug $y = \mu + \zeta_{\beta 2}^{\beta 1} + e.$ n -> second drug.

X not full rank. B has infinite solution to minimize $\|Y - x\beta\|^2 = \sum |y_i - \beta^T x_i|^2$.

Prop:
$$X\beta = \sum_{k=1}^{p} \overrightarrow{X_k} \beta_k$$
. $X = \left(\overrightarrow{X_1} \overrightarrow{X_2}, \dots, \overrightarrow{X_p}\right)$.

Fig. is NOT identifiable (estimable).
$$\Rightarrow$$
 $\exists x_j \in \mathbb{R}$. S.t. $x_i = \sum_{j \neq i} x_j x_j = \sum_{j \neq i} x_j x$

$$r(x) < p$$
. multicollinearity.

consider linear dependence between columns of χ .

for
$$i=1, ..., p$$
.

$$X_{i} = \beta_{0} + \beta_{1}X_{1} + ... + \beta_{i-1}X_{i+1} + \beta_{i+1}X_{i+1} + ... + \beta_{2}X_{p} + e$$
.
$$P_{i}^{2} \qquad \forall \overline{LF}_{i} = \frac{1}{1-P_{i}^{2}} \rightarrow \infty \quad \text{as} \quad P_{i}^{2} \rightarrow 1$$
.

find maximal
$$\{ViF_i\}_i$$
 \longrightarrow remove X_i .
for $i=1, \dots, p+1$.
 $X_i = \beta_0 + \dots + e$.

rule of thumb [max [VIFi]; > 10]