TD8. Variance et Fonctions génératrices II

Exercice 1. Déterminer la fonction génératrice d'une variable aléatoire qui suit :

- a) la loi de Bernoulli de paramètre p;
- b) la loi binomiale de paramètre (n, p);
- c) la loi de Poisson de paramètre λ .

Retrouver ainsi dans chaque cas son espérance et sa variance.

Exercice 2. [Somme aléatoire de variable aléatoires, Formule de Wald] Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires réelles discrètes, toutes de même loi, et N une variable aléatoires à valeurs dans \mathbf{N} . On suppose que N et $X_n, n \in \mathbf{N}$, sont mutuellement indépendantes. Pour $n \in \mathbf{N}^*$, on pose

$$S_n = \sum_{k=1}^n X_k, \qquad \text{et } S_0 = 0.$$

- a) Montrer que S_N est une variable aléatoire.
- b) i) Déterminer la loi de S_N , lorsque les X_k suivent la loi de Bernoulli de paramètre p et N la loi de Poisson de paramètre λ .
 - ii) Déterminer la loi de S_N , lorsque les X_k suivent la loi géométrique de paramètre p et N la loi géométrique de paramètre p'.
- c) On suppose que les variables X_n sont à valeurs dans \mathbb{N} .
 - i) Montrer que $G_{S_N} = G_N \circ G_{X_1}$.
 - ii) Montrer que, si X_1 et N sont d'espérance finie, alors S_N est aussi d'espérance finie et vérifie la première formule de Wald

$$\mathbb{E}(S_N) = \mathbb{E}(X_1)\mathbb{E}(N).$$

iii) Montrer que, si X_1 et N procèdent un moment d'ordre 2, alors S_N possède aussi un moment d'ordre 2 et vérifie la seconde formule de Wald

$$\mathbb{V}(S_N) = \mathbb{V}(X_1)\mathbb{E}(N) + (\mathbb{E}(X_1))^2\mathbb{V}(N).$$

d) On revient au cas général. On suppose que X_1 et N sont d'espérance finie, sans supposant que X_1 est à valeurs dans \mathbf{N} . Montrer les deux formules de Wald.

Exercice 3. [Marche aléatoire dans \mathbb{Z}] Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variable aléatoires, sur le même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes et de même loi définie par

$$\mathbb{P}(X_n = 1) = p$$
 et $\mathbb{P}(X_n = -1) = 1 - p$,

où $p \in [0, 1]$. On pose $S_0 = 0$ et, pour tout $n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n X_k$. La suite (S_n) est appelé marche aléatoire dans \mathbb{Z} . On peut imaginer un mobile partant de l'origine et se déplaçant à chaque instant (entier) de 1 ou -1, les déplacements successifs étant indépendants. Alors S_n représente la position du mobile au bout de n déplacements.

- a) i) Déterminer $u_n = \mathbb{P}(S_n = 0)$, pour tout n.
 - ii) On note $f(x) = \sum_{n \in \mathbb{N}} u_n x^n$. Montrer que :

$$\forall x \in]-1,1[, \ f(x) = \frac{1}{\sqrt{1 - 4p(1 - p)x^2}}.$$

b) Pour tout entier naturel non nul k, on note A_k l'événement "le mobile retourne pour la première fois à l'origine au bout k déplacements", c'est à dire

$$A_k = \{S_k = 0\} \cap \Big(\cap_{i=1}^{k-1} \{S_i \neq 0\} \Big).$$

On pose $v_k = \mathbb{P}(A_k)$, pour tout $k \geq 1$ et $v_0 = 0$.

i) Montrer que, pour tout entier naturel n non nul, on a

$$\mathbb{P}\{S_n = 0\} = \sum_{k=1}^n \mathbb{P}(\{S_n = 0\} \cap A_k).$$

ii) En déduire que, pour tout entier naturel non nul n, on a

$$u_n = \sum_{k=0}^n u_{n-k} v_k.$$

- c) On note g(x) la somme de la série entière $\sum v_n x^n$.
 - i) Montrer que le rayon définissant g(x) est supérieur ou égal à 1. Montrer que

$$\forall x \in]-1, 1[, g(x) = \frac{f(x) - 1}{f(x)} = 1 - \sqrt{1 - 4p(1 - p)x^2}.$$

ii) Déterminer la probabilité de l'événement A: "il existe $n \in \mathbb{N}^*$ tel que $S_n = 0$ ".

On suppose dans le reste de l'exercice que $p = \frac{1}{2}$.

- d) i) Montrer que l'on peut définir une variable aléatoire T égale au premier indice n non nul pour leque l'événement $\{S_n=0\}$ est réalisé.
 - ii) Montrer que l'on a, pour tout $n \in \mathbb{N}^*$,

$$v_{2n} = \frac{2\binom{2n-2}{n-1}}{n4^n}.$$

- iii) La variable T est-t-elle d'espérance finie?
- e) i) Montrer que, pour tout $n \in \mathbb{N}^*$, on a

$$v_{2n} = u_{2n-2} - u_{2n}.$$

ii) Démontrer que la probabilité que le mobile soit à l'origine à l'issue des 2n premiers déplacements est égal à la probabilité qu'il ne soit jamais à l'origine à l'issue d'aucun des 2n premiers dépalcements. En déduire $\mathbb{P}(S_1 > 0, S_2 > 0, \dots, S_{2n} > 0)$.

* * **

Exercice 4. Soit $n \in \mathbb{N}^*$. On désigne \mathfrak{S}_n l'ensemble des permutations de $[\![1,n]\!]$. On muni \mathfrak{S}_n de la probabilité uniforme. Pour $\sigma \in \mathfrak{S}_n$ et $i \in [\![1,n]\!]$, on dit que $\sigma(i)$ est un maximum (resp. minimum) provisoire de σ si

$$\sigma(i) = \max\{\sigma(1), \sigma(2), \dots, \sigma(i)\}, \qquad \text{(resp. } \sigma(i) = \min\{\sigma(1), \sigma(2), \dots, \sigma(i)\}\text{)}.$$

On désigne par X_n (resp. Y_n) les variables aléatoires représentant le nombre de maximums (resp. minimums) provisoires des permutations de [1, n].

- a) Montrer que X_n et Y_n ont même loi.
- b) i) Déterminer la loi de X_3 , son espérance, et sa variance.
 - ii) Déterminer la loi du couple (X_3, Y_3) et sa covariance.
- c) Pour $n \in \mathbb{N}^*$, on note g_n la fonction génératrice de X_n .
 - i) Pour $1 \leq k \leq n$, on note Z_k la variable indicatrice de l'événement « $\sigma(k)$ est un maximal provisoire ». Montrer que les variables Z_1, \ldots, Z_n sont indépendantes.
 - ii) Exprimer X_n en fonction de Z_1, \ldots, Z_n . En déduire g_n .
 - iii) En déduire $\mathbb{P}(X_n=1), \mathbb{P}(X_n=2), \mathbb{P}(X_n=n).$
 - iv) Déterminer $\mathbb{E}(X_n)$ et $\mathbb{V}(X_n)$.

Exercice 5. [Modèle de Glaton-Watson] On observe des virus qui se reproduisent tous selon la meme loi avant de mourir : un virus donne naissance en un journée à X virus, où X est une variable aléatoire à valeurs dans \mathbf{N} . Pour $k \in \mathbf{N}$, on note $\mathbb{P}(X = k) = p_k$. On suppose $p_1 > 0$ et $p_0 + p_1 < 1$. On note f la fonction génératrice de X.

On part au jour zéro de $X_0 = 1$ virus. Au premier jour, on a donc X_1 virus, où X_1 suit la loi de X; chacun de ces X_1 virus évolue alors indépendamment des autres virus et se reproiduit selon la même loi avant de mourir : cela conduit à avoir X_2 virus au deuxième jour ; et le processus continue de la sorte. On note $u_n = \mathbb{P}(X_n = 0)$.

- a) Calculer u_0, u_1 .
- b) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente.
- c) Montrer que pour $n \in \mathbb{N}$, on a $u_{n+1} = f(u_n)$.
- d) Que peut-on dire de la limite de $(u_n)_{n\in\mathbb{N}}$. Discuter selon la valeur de $\mathbb{E}(X)$. Interpréter le résultat.