

Pontificia Universidad Católica de Chile Departamento de Ciencia de la Computación IIC2223 – Teoría de Autómatas y Lenguajes Formales

SEGUNDO SEMESTRE DE 2024 PROFESOR: CRISTIAN RIVEROS AYUDANTE: AMARANTA SALAS

Ayudantia 15

Repaso Exámen

Problema 1

Sea $\Sigma = \{a, b\}$. Para lenguajes $L_1, L_2 \subseteq \Sigma^*$ se define:

$$L_1|L_2 = \{uv \in L_1 \mid v \in L_2\}$$

Demuestre que si L_1 y L_2 son lenguajes regulares, entonces $L_1|L_2$ también es regular.

Solución

Como L_1 y L_2 son lenguajes regulares, sabemos que existirán los DFA $\mathcal{A}_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$ y $\mathcal{A}_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ tales que $\mathcal{L}(\mathcal{A}_1) = L_1$ y $\mathcal{L}(\mathcal{A}_2) = L_2$. Luego, para demostrar que $L_1|L_2$ es regular, bastará con encontrar un autómata que lo defina.

Sea $\mathcal{A} = (Q_1 \cup Q_1 \times Q_2, \Sigma, \Delta, \{q_{01}\}, F_1 \times F_2), \text{ con } \Delta \text{ dado por:}$

$$\Delta = \{ (p_1, a, q_1) \mid \delta(p_1, a) = q_1 \} \cup$$

$$\{ (p_1, \varepsilon, (p_1, q_{02})) \mid p_1 \in Q_1 \} \cup$$

$$\{ ((p_1, p_2), a, (q_1, q_2)) \mid \delta(p_1, a) = q_1 \land \delta(p_2, a) = q_2 \}$$

Ahora debemos demostrar que $\mathcal{L}(\mathcal{A}) = L_1|L_2$.

1. $L_1|L_2 \subseteq \mathcal{L}(\mathcal{A})$:

Sea $w = uv \in L_1|L_2$. Sabemos entonces que $w \in L_1 \land v \in L_2$, con $w = a_1...a_n$ y $v = a_i...a_n$. Luego, sabemos que existirán ejecuciones:

$$\rho_1:\ q_{01}\xrightarrow{a_1}p_1\xrightarrow{a_2}\dots\xrightarrow{a_n}p_n\ \land\ p_n\in F_1$$

$$\rho_2: q_{02} \xrightarrow{a_i} q_i \xrightarrow{a_{i+1}} \dots \xrightarrow{a_n} q_n \land q_n \in F_2$$

A partir de ρ_1 y ρ_2 podemos construir:

$$\rho:\ q_{01}\xrightarrow{a_1}p_1\xrightarrow{a_2}\dots\xrightarrow{a_{i-1}}p_{i-1}\xrightarrow{\varepsilon}\left(p_{i-1},q_{02}\right)\xrightarrow{a_i}\left(p_i,q_i\right)\xrightarrow{a_{i+1}}\dots\xrightarrow{a_n}\left(p_n,q_n\right)\ \land\ p_n\in F_1\ \land\ q_n\in F_w$$

Es claro que ρ es una ejecución de aceptación de \mathcal{A} sobre w, es decir, $w \in \mathcal{L}(\mathcal{A})$ y por lo tanto $L_1|L_2 \subseteq \mathcal{L}(\mathcal{A})$.

2. $\mathcal{L}(\mathcal{A}) \subseteq L_1|L_2$:

Sea $w \in \mathcal{L}(\mathcal{A})$. Por la construcción de \mathcal{A} , sabemos que existe una ejecución de \mathcal{A} sobre w que tendrá la siguiente forma:

$$\rho:\ q_{01}\xrightarrow{a_1}p_1\xrightarrow{a_2}\dots\xrightarrow{a_{i-1}}p_{i-1}\xrightarrow{\varepsilon}(p_{i-1},q_{02})\xrightarrow{a_i}(p_i,q_i)\xrightarrow{a_{i+1}}\dots\xrightarrow{a_n}(p_n,q_n)\ \land\ p_n\in F_1\ \land\ q_n\in F_2$$

IIC2223 – Ayudantia 15 Página 1 de 4

Luego, por definición de Δ , sabemos que para toda transición de la forma $p_{k-1} \xrightarrow{a_k} p_k$ se cumplirá $\delta_1(p_{k-1}, a_k) = p_k$ y para toda transición de la forma $(p_{k-1}, q_{k-1}) \xrightarrow{a_k} (p_k, q_k)$ se cumplirá $\delta_1(p_{k-1}, a_k) = p_k$ y $\delta_2(q_{k-1}, a_k) = q_k$. Utilizando esto, podemos generar las siguientes ejecuciones de \mathcal{A}_1 y \mathcal{A}_2

$$\rho_1: q_{01} \xrightarrow{a_1} p_1 \xrightarrow{a_2} \dots \xrightarrow{a_n} p_n \land p_n \in F_1$$
$$\rho_2: q_{02} \xrightarrow{a_i} q_i \xrightarrow{a_{i+1}} \dots \xrightarrow{a_n} q_n \land q_n \in F_2$$

Sabemos entonces que $w = a_1...a_n \in L_1$ y que $v = a_i...a_n \in L_2$, lo que a su vez significa que $\exists u.\ uv \in L_1 \land v \in L_2$ y, por tanto $w \in L_1|L_2$.

Por lo tanto $\mathcal{L}(A) = L_1|L_2$ y $L_1|L_2$ es un lenguaje regular.

Problema 2

1. Demuestre que el siguiente lenguaje es libre de contexto:

$$R = \{a^i b^j c^k \mid i < j \lor j < k\}$$

Para esto, demuestre una gramática o un PDA que defina el lenguaje y explique su correctitud.

2. Demuestre que el siguiente lenguaje NO es libre de contexto:

$$S = \{a^i b^j c^k \mid i < j \land j < k\}$$

Solución

1. Sea $G = (\{S, X, C, X', B, Y, A, Y'\}, \{a, b, c\}, P, S)$ una Gramática Libre de Contexto, donde P contiene las siguientes producciones:

Se escoge cual de las 2 condiciones cumplir. Al elegir una, se agrega una cantidad arbitraria de la letra que no influye en la condición. Después, se agrega una cantidad igual de letras tal que i = j o j = k dependiendo del caso. Finalmente, se agrega al menos una letra tal que j > i o k > j según el caso.

2. Por Lema de Bombeo para CFG. Sea para todo N > 0 la palabra $z = a^N b^{N+1} c^{N+2}$. Sean i = N, j = N+1 y k = N+2 se tiene que i < j < k, esto es, z está en S y $|z| \ge N$.

Sea z = uvwxy una descomposición cualquiera tal que $vx \neq \epsilon$ y $|vwx| \leq N$. Sea $z' = uv^iwx^iy$ para algún $i \geq 0$. Luego, se tienen los siguientes casos (no necesariamente excluyentes entre sí):

- (a) Si v o x son combinaciones de 2 letras. Entonces, con i=2, z' ya no está en $\mathcal{L}(a^*b^*c^*)$ ni en S.
- (b) Si $x \in \mathcal{L}(a^*)$. Entonces, con i = 2, se tienen mayor o igual letras a que b y $z' \notin S$.
- (c) Si $x \in \mathcal{L}(b^*)$. Entonces, con i = 2, se tienen mayor o igual letras b que $c \ y \ z' \notin S$.
- (d) Si $v \in \mathcal{L}(b^*)$. Entonces, con i = 0, se tienen mayor o igual letras a que b y $z' \notin S$.
- (e) Si $v \in \mathcal{L}(c^*)$. Entonces, con i = 0, se tienen mayor o igual letras b que c y $z' \notin S$.

Por lo tanto, S no es un Lenguaje Libre de Contexto.

Problema 3

Una gramática \mathcal{G} esta en forma normal de Greibach (GNF) si todas sus reglas son de la forma:

$$X \to aY_1 \dots Y_k$$

para algún $k \geq 0$.

Sea $\mathcal{G} = (V, \Sigma, P, S)$ una gramática en forma normal de Greibach sin variables inútiles. Demuestre que \mathcal{G} es una gramática LL(1) si, y solo si, para todo par de reglas $X \to a\gamma$ y $X \to a'\gamma'$ en P se tiene que, si a = a', entonces $\gamma = \gamma'$.

Solución

Sea G una gramática en forma normal de Greibach sin variables inútiles, con reglas del tipo $X \to a\gamma$ y con $\gamma \in V^*$. Recordamos la definición de LL(1), que es la siguiente: G es LL(1) si para todo par de derivaciones

$$S \Rightarrow^* uX\beta \Rightarrow u\gamma_1\beta \Rightarrow^* uv_1$$

 $S \Rightarrow^* uX\beta \Rightarrow u\gamma_2\beta \Rightarrow^* uv_2$

Si $v_1|_1 = v_2|_1$, entonces $\gamma_1 = \gamma_2$.

 (\Rightarrow) Supongamos que G es LL(1). Sea $X \to a\gamma, X \to a'\gamma' \in P$, tal que a=a'. Por demostrar: $\gamma=\gamma'$. Como G no tiene variables inútiles, entonces

$$S \Rightarrow^* uX\beta$$
 para algún $u y \beta$
 $S \Rightarrow^* uX\beta \Rightarrow ua\gamma\beta$
 $S \Rightarrow^* uX\beta \Rightarrow ua'\gamma'\beta$

Como G no tiene variables inútiles:

$$a\gamma\beta \Rightarrow^* v_1$$
$$a'\gamma'\beta \Rightarrow^* v_2$$

Si a = a', entonces $v_1|_1 = v_2|_1$. Por lo tanto:

$$S \Rightarrow^* uX\beta \Rightarrow ua\gamma\beta \Rightarrow uv_1$$

$$S \Rightarrow^* uX\beta \Rightarrow ua'\gamma'\beta \Rightarrow uv_2$$

$$v_1|_1 = v_2|_1$$

Como la gramática es LL(1), entonces $a\gamma=a'\gamma'$ por lo que $\gamma=\gamma'$.

 (\Leftarrow) Suponemos que para dos reglas $x \to a\gamma$ y $X \to a'\gamma'$, si a = a' entonces $\gamma = \gamma'$. Suponga que

$$S \Rightarrow^* uX\beta \Rightarrow u\gamma_1\beta \Rightarrow^* uv_1$$

$$S \Rightarrow^* uX\beta \Rightarrow u\gamma_2\beta \Rightarrow^* uv_2$$

$$v_1|_1 = v_2|_1$$

Demostraremos que $\gamma_1 = \gamma_2$. Como G está en GNF, $\gamma_1 = a\gamma$ y $\gamma_2 = a\gamma'$. Por derivación por la izquierda, sabemos que $a = v_1|_1 = v_2|_1 = a'$. Luego, tenemos que:

$$X \to a\gamma, X \to a'\gamma' \text{ v } a = a' \Rightarrow \gamma = \gamma'$$

Por lo tanto $\gamma_1 = \gamma_2$ y G es LL(1).

Problema 4

Para un lenguaje $L \subseteq \Sigma^*$ y $a \in \Sigma$, se define $\mathtt{follow}_k(a) = \{v|_k \mid u \cdot a \cdot v \in L\}$. Escriba un algoritmo que reciba como entrada un autómata finito no-determinista $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$, una letra $a \in \Sigma$, una palabra $w \in \Sigma^*$ y k > 0, y responda TRUE si, y solo si, $w \in \mathtt{follow}_k(a)$. Su algoritmo debe tomar tiempo $\mathcal{O}(|\mathcal{A}| \cdot |w|)$. Por último, explique la correctitud de su algoritmo.

Solución

Una posible solución para esta pregunta consiste en la siguiente modificación del algoritmo de evaluación de autómatas no deterministas eval-NFAonthefly. Notar que aprovechamos el hecho de que su tiempo está en $\mathcal{O}(|\mathcal{A}| \cdot |w|)$.

```
eval-follow_k (\mathcal{A} = (Q, \Sigma, \Delta, I, F), a, w, k)
   if |w| > k then
        return FALSE
   end if
   \mathcal{A} = \mathtt{remover\_inútiles}(\mathcal{A})
                                                                                                       \triangleright Búsqueda sobre los estados \mathcal{O}(|\mathcal{A}|)
   S = \emptyset
   for (p, t, q) \in \Delta do
        if t = a then
             S = S \cup \{q\}
        end if
   end for
   S_{final} = \mathtt{eval-NFA} onthefly(\mathcal{A} = (Q, \Sigma, \Delta, S, F), w)
   if S_{final} \cap F \neq \emptyset then
        return TRUE
   else if S_{final} \cap F = \emptyset \wedge |w| = k then
        return alcanzables(S_{final}) \cap F \neq \emptyset
                                                                                                              \triangleright Búsqueda desde S_{final} \mathcal{O}(|\mathcal{A}|)
   end if
   return FALSE
```

Donde remover_inútiles toma un autómata y nos retorna uno nuevo que tiene solo los estados que son alcanzables. Por otro lado alcanzables, dado un conjunto de estados, nos entrega todos los estados alcanzables desde estos usando Δ . Para ambos casos se pueden usar algoritmos de búsqueda lineales sobre la cantidad de estados.

IIC2223 – Ayudantia 15 Página 4 de 4