Plan du cours

I.	Section d'un pavé droit ou d'un cube	1
11.	Section d'un cylindre de révolution	1
Ш.	Section d'une pyramide ou d'un cône	2
IV.	Section d'une sphère 1. Le plan passe par le centre de la sphère	4
V.	Applications type Brevet	4

I. Section d'un pavé droit ou d'un cube

Propriété

Propriété

II. Section d'un cylindre de révolution

Propriété

Propriété

III. Section d'une pyramide ou d'un cône

Définition

Un **agrandissement** d'une figure ou d'un solide, c'est multiplier les dimensions de cette figure (ou de ce solide) par un nombre k supérieur à 1.

Une **réduction** d'une figure ou d'un solide, c'est multiplier les dimensions de cette figure (ou de ce solide) par un nombre k compris entre 0 et 1.

Propriété

Dans un agrandissement (ou une réduction) de rapport k:

- les **longueurs** sont multipliées par *k* .
- les **aires** sont multipliées par k^2 .
- les **volumes** sont multipliés par k^3 .

Exercice d'application 1 On considère un cône de révolution se de hauteur SO e cône. 2. On sectionne ce cône par un plan parallèle à sa base qui coupe [SO] en O' de telle sorte que SO' = 4 cm. Calculer le volume du cône de hauteur SO' ainsi défini.	Exemple : Soit SABCD un pyramide à base carré, on sait que Combien vaut l'aire d'une pyramide 2 fois plus petite ? Combie	
Exercice d'application 1 On considère un cône de révolution s de hauteur SO = 6 cm et dont le disque de base a pour rayon 5 cm. 1. Calculer le volume de ce cône. 2. On sectionne ce cône par un plan parallèle à sa base qui coupe [SO] en O' de telle sorte que SO' = 4 cm. Calculer le volume du cône de hauteur SO' ainsi défini.		
Exercice d'application 1 On considère un cône de révolution s de hauteur SO = 6 cm et dont le disque de base a pour rayon 5 cm. 1. Calculer le volume de ce cône. 2. On sectionne ce cône par un plan parallèle à sa base qui coupe [SO] en O' de telle sorte que SO' = 4 cm. Calculer le volume du cône de hauteur SO' ainsi défini.		
Exercice d'application 1 On considère un cône de révolution s de hauteur SO = 6 cm et dont le disque de base a pour rayon 5 cm. 1. Calculer le volume de ce cône. 2. On sectionne ce cône par un plan parallèle à sa base qui coupe [SO] en O' de telle sorte que SO' = 4 cm. Calculer le volume du cône de hauteur SO' ainsi défini.		
On considère un cône de révolution de hauteur SO = 6 cm et dont le disque de base a pour rayon 5 cm. 1. Calculer le volume de ce cône. 2. On sectionne ce cône par un plan parallèle à sa base qui coupe [SO] en 0' de telle sorte que SO' = 4 cm. Calculer le volume du cône de hauteur SO' ainsi défini.	La section d'une pyramide ou d'un cône de révolutior	n par un plan parallèle à la base est une réduction de la base.
On considère un cône de révolution de hauteur SO = 6 cm et dont le disque de base a pour rayon 5 cm. 1. Calculer le volume de ce cône. 2. On sectionne ce cône par un plan parallèle à sa base qui coupe [SO] en O' de telle sorte que SO' = 4 cm. Calculer le volume du cône de hauteur SO' ainsi défini.		
de hauteur SO = 6 cm et dont le disque de base a pour rayon 5 cm. 1. Calculer le volume de ce cône. 2. On sectionne ce cône par un plan parallèle à sa base qui coupe [SO] en O' de telle sorte que SO' = 4 cm. Calculer le volume du cône de hauteur SO' ainsi défini.	xercice d'application 1	
disque de base a pour rayon 5 cm. 1. Calculer le volume de ce cône. 2. On sectionne ce cône par un plan parallèle à sa base qui coupe [SO] en O' de telle sorte que SO' = 4 cm. Calculer le volume du cône de hauteur SO' ainsi défini.		
2. On sectionne ce cône par un plan parallèle à sa base qui coupe [SO] en O' de telle sorte que SO' = 4 cm. Calculer le volume du cône de hauteur SO' ainsi défini.	disque de base a pour rayon 5 cm.	
un plan parallèle à sa base qui coupe [SO] en O' de telle sorte que SO' = 4 cm. Calculer le volume du cône de hauteur SO' ainsi défini.		
sorte que SO' = 4 cm. Calculer le volume du cône de hauteur SO' ainsi défini.	un plan parallèle à sa base	
le volume du cône de hauteur SO' ainsi défini.		

Propriété

On distingue trois cas possibles, détaillés ci-dessous.

1. Le plan passe par le centre de la sphère

2. Le plan est tangent à la sphère

3. Le plan ne passe pas par le centre et n'est pas tangent à la sphère

V. Applications type Brevet

Exercice 1

On considère un cône de révolution de sommet S. Sa base est un disque de rayon OA = 6 cm. Sa hauteur est SO = 15 cm. M est le point de la hauteur tel que SM = 10 cm. Le plan parallèle à la base passant par M coupe SA en A'.

Section d'un solide par un plan

uestions	

- 1. Quelle est la nature du plan obtenu?
- 2. Calculer le rayon de la section du cône avec ce plan.
- 3. Calculer le volume du cône de révolution de hauteur SO.
- 4. Le cône de révolution de hauteur SM est-il un agrandissement ou une réduction du précédent cône de révolution. Quel est le rapport k?

nume de ce nouveau cone de revolution.	

Exercice 2

La figure n'est pas en vraie grandeur.

On a dessiné sur la figure ci-contre une sphère de centre O et de rayon 5 cm. Cette sphère est coupée par un plan \mathcal{P} . On donne OI = 3 cm.

- 1/ Quelle est la nature de la section obtenue?
- 2/ Calcule la longueur IM.
- 3/ Donne une valeur arrondie au cm³ près du volume de la boule délimitée par cette sphère.

 	 	• •	 • •	 	• •	• •	• •	• •	• •		 	 • •		• •	٠	 • •	• •	•		 		• •	• •	• •	 	• •	• •	• •	 	٠	 •	• •	 	 		 	• •	• •	 • •	• •	٠
 	 		 	 							 	 			٠	 				 					 				 	٠	 		 	 		 			 		
 	 		 	 							 	 	٠.	٠.	٠	 				 	٠.				 				 	٠	 		 	 		 			 		٠
 	 		 	 				• •		·	 	 • •			÷	 		• •	·	 ··		· ·			 				 	•	 		 ·	 	 ·	 			 		
 	 		 	 							 	 			٠	 				 					 				 	٠	 		 	 		 			 		٠
 	 		 	 							 	 			٠	 				 					 				 		 		 	 		 			 		٠