ФИЗИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ МЕТЕОРОЛОГИЧЕСКИХ УСЛОВИЙ НА ЧЕЛОВЕКА

Параметры микроклимата:

- температура
- скорость движения воздуха
- относительная влажность
- атмосферное давление окружающего воздуха

Теплообмен между человеком и окружающей средой осуществляется:

- **У Конвекцией** (C) тело отдает тепло притекающим к нему менее нагретым слоям воздуха (в состоянии покоя около 30 % общей теплоотдачи организма);
- ✓ **Теплопроводностью** (*P*) (передача тепла кондукцией) происходит при соприкосновении поверхности тела работающего с охлажденным или нагретым оборудованием (материалами) (примерно 2-3 % общей теплоотдачи);
- ✓ **Излучением** (**R**) передача тепла инфракрасным излучением в направлении поверхностей с более низкой температурой (в состоянии покоя примерно 45% общей теплоотдачи);
- ✓ Испарением (E) отдача тепла при испарении влаги с поверхности тела человека. При этом важен так называемый «физиологический дефицит влажности» разность между максимальной влажностью при температуре кожи и абсолютной влажностью воздуха. Чем больше этот показатель, тем больше испарение (в состоянии покоя 22-23% от всей теплоотдачи).

Уравнение теплового баланса: $M+S\pm R\pm C\pm P-E=0$,

где M — тепло процессов метаболизма, полученное из химических субстратов пищи, подвергшихся расщеплению в клетках; S — накопленное организмом тепло

Терморегуляция — совокупность процессов регулирования тепловыделений для поддержания постоянной температуры тела человека. Она позволяет сохранять температуру внутренних органов постоянной, близкой к 36,5 °C.

Процессы регулирования тепловыделений осуществляются следующими способами:

- *биохимический способ* изменение интенсивности происходящих в организме окислительных процессов;
- *путём изменения интенсивности кровообращения* заключается в способности организма регулировать подачу крови (которая является теплоносителем) от внутренних органов к поверхности тела и обратно, путём сужения или расширения кровеносных сосудов;
- *путём изменения интенсивности потовыделения* изменяется процесс теплоотдачи за счёт испарения влаги.

Последствия нарушения терморегуляции:

Тепловая гипертермия — повышение температуры тела, обильное потоотделение, жажда, небольшое учащение дыхания, пульса.

Судорожная болезнь — нарушение водно-солевого баланса, судороги мышц (особенно, икроножных), большая потеря пота, сгущение крови.

Тепловой удар — потеря сознания, повышение температуры тела до 40-41°C, слабый и учащённый пульс, потоотделения нет.

Нормируется каждый компонент микроклимата в рабочей зоне производственного помещения в зависимости от способности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделений в рабочем помещении.

Для оценки характера одежды (теплоизоляции) и акклиматизации в различное время года введено понятие **периода года (тёплый, холодный).** Тёплый период года характеризуется среднесуточной температурой наружного воздуха $+10\,^{\circ}$ С и выше, холодный – ниже.

При учете интенсивности труда все виды работ, исходя из общих энерготрат организма, делятся на 3 категории: легкие, средней тяжести и тяжелые.

Категории работ	Энерготраты, Вт	Характер работ, примеры видов работ и профессий
Ia	до 139	Ряд профессий на предприятиях точного приборо- и машиностроения, на часовом, швейном производствах, в сфере управления и тому подобное
16	140-174	Работы, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением (ряд профессий в полиграфической промышленности, на предприятиях связи, контролеры, мастера в различных видах производства и тому подобное)
IIa	175-232	Работы, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения (ряд профессий в механосборочных цехах машиностроительных предприятий, в прядильно-ткацком производстве и тому подобное)
116	233-290	Работы, связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением (ряд профессий в механизированных литейных, прокатных, кузнечных, термических, сварочных цехах машиностроительных и металлургических предприятий и тому подобное)
III	более 290	Работы, связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий (ряд профессий в кузнечных цехах с ручной ковкой, литейных цехах с ручной набивкой и заливкой опок машиностроительных и металлургических предприятий и тому подобное)

Нормируемыми параметрами являются (СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»):

- а) температура воздуха
- б) температура поверхностей
- в) относительная влажность воздуха
- г) скорость движения воздуха
- д) интенсивность теплового облучения

Оптимальные микроклиматические условия — это такое сочетание параметров микроклимата, которое при длительном и систематическом воздействии на человека обеспечивает ощущение теплового комфорта и создаёт предпосылки для высокой работоспособности.

Допустимые микроклиматические условия — это такие сочетания параметров микроклимата, которые могут вызывать напряжение реакций терморегуляции и которые не выходят за пределы физиологических приспособительных возможностей. При этом не возникает нарушений в состоянии здоровья, не наблюдаются дискомфортные теплоощущения, ухудшающие самочувствие и вызывающие понижение работоспособности

Допустимые величины параметров микроклимата на рабочих местах производственных помещений (для холодного периода года)

Показатель	Категория	Класс (подкласс) условий труда	
	работ	оптимальный	допустимый
	•	1	2
	Τ.	22,0 - 24,0	20,0 - 21,9
	Ia		24,1 - 25,0
	Іб	21,0 - 23,0	19,0-20,9
			23,1 - 24,0
Температура	IIa	19,0 - 21,0	17,0-18,9
воздуха, °С			21,1 - 23,0
	116	17,0 - 19,0	15,0 – 16,9
	IJб		19,1 - 22,0
	III	16,0 - 18,0	13,0-15,9
			18,1 - 21,0
	Ia	0,1	0,1
Скорость	Іб	0,1	0,1-0,2
движения	IIa	0,2	0,1-0,3
воздуха, м/с	ІІб	0,2	0,2-0,4
	III	0,3	0,2-0,4
Влажность	I - III	60 - 40	15 - <40;
воздуха, %	1 - 111		>60 - 75
	Ia	21,0 - 25,0	19,0 - 26,0
Температура	Іб	20,0 - 24,0	18,0-25,0
поверхностей,	IIa	18,0-22,0	16,0-24,0
°C	ІІб	16,0-20,0	14,0-23,0
	III	15,0-19,0	12,0 - 22,0

Индекс мепловой нагрузки среды (ТНС-индекс) является эмпирическим показателем, характеризующим сочетанное действие на организм человека параметров микроклимата (температуры, влажности, скорости движения воздуха и теплового облучения).

ТНС-индекс определяется на основе величин температуры смоченного термометра аспирационного психрометра $(t_{\scriptscriptstyle BJ})$ и температуры внутри зачернённого шара $(t_{\scriptscriptstyle III})$ в градусах Цельсия.

Температура внутри зачернённого шара измеряется термометром, резервуар которого помещён в центр зачернённого полого шара: $t_{\rm m}$ отражает влияние температуры воздуха, температуры поверхностей и скорости движения воздуха. Зачернённый шар должен иметь диаметр 90 мм, минимально возможную толщину и коэффициент поглощения 0,95. Точность измерения температуры внутри шара $\pm 0,5$ °C.

ТНС-индекс рассчитывается по уравнению:

THC=0,7
$$t_{BJI}$$
 +0,3 t_{III}

Допустимые величины ТНС-индекса (СанПиН 2.2.4.3359-16 «Санитарно-эпидемиологические требования к физическим факторам на рабочих местах»)

Категория работ по	Величины ТНС-индекса, °С
уровню энерготрат	
Ia	22,2-26,4
Іб	21,5 - 25,8
IIa	20,5-25,1
IIб	19,5-23,9
III	18,0-21,8

Для оценки сочетанного воздействия параметров микроклимата в целях осуществления мероприятий по защите работающих от возможного перегревания используется ТНС-индекс

Инфракрасное излучение

Инфракрасное излучение — область спектра, лежащая в пределах 0,76 мкм - 2000 мкм. Эффект действия инфракрасных лучей зависит от длины волны, которая обуславливает глубину проникновения

Инфракрасное излучение можно разделить на три области:

 ${\bf A}-0.76-2.5~{
m mkm}-{
m kopotkoboлhoboe}$ (проникающее действие через кожу)

B - 2,5 - 50 мкм – средневолновое (поглощается в эпидермисе)

C - > 50 мкм – длинноволновое (поглощается в эпидермисе)

Инфракрасное излучение влияет на:

- □ функциональное состояние человека
- □ его центральную нервную систему
- □ сердечно-сосудистую систему

Характер спектрального состава излучения — важнейшая характеристика для определения способов и методов защиты.

Максимум энергии теплового излучения определяется из закона смещения Вина:

$$\lambda_{max} = \frac{2,898 \cdot 10^{-3}}{T_{\text{\tiny M}}}$$

где λ_{max} — длина волны, мкм; $T_{\rm u}$ — температура источника.

Интенсивность теплового излучения определяется по формуле:

$$E_0 = \frac{0.91F \left[\left(\frac{T_{\text{изл}}}{100} \right)^4 - \left(\frac{T_{\text{обл}}}{100} \right)^4 \right]}{l^2}$$

где E_0 — интенсивность теплового облучения в данной точке, ${\rm Br/m^2}$; F_0 — площадь излучающей поверхности, ${\rm M^2}$; $T_{\rm изл}$ — температура излучающей поверхности $T_{\rm обл}$ — температура облучаемой поверхности.

Допустимые величины интенсивности теплового облучения поверхности тела работающих от производственных источников, нагретых до температуры не более 600°C

Облучаемая поверхность тела, %	Интенсивность теплового облучения, Вт/м², не более
50 и более	35
25-50	70
Не более 25	100

Допустимые величины интенсивности теплового облучения поверхности тела работающих от источников излучения, нагретых до температуры более 600°С (раскаленный или расплавленный металл, стекло, пламя и другие), не должны превышать 140 Вт/м². При этом облучению не должно подвергаться более 25% поверхности тела с обязательным использованием средств индивидуальной защиты, в том числе средств защиты лица и глаз.

Согласно ГОСТ 12.4.123-83 (ССБТ), средства защиты должны обеспечивать тепловую облучённость на рабочих местах не более **350 Вт/м²** и температуру поверхностей оборудования не выше **35°C** при температуре внутри теплоисточника до 100°C и не выше **45°C** при температуре выше 100°C.

Основные методы защиты от теплового излучения

1. Экранирование

По принципу действия экраны бывают:

- Отражающие (имеют низкую степень черноты поверхностей): кирпич, алюминий, жесть, алюминиевые краски
- Поглощающие (выполняются из материалов с малым коэффициентом теплопроводимости): асбест, огнеупорный кирпич, минвата.
- Теплоотводящие: водяная завеса.

2. Защита временем

- 3. Защита расстоянием
- **4. СИЗ** (спецодежда сукно, брезент, химически обработанное с металлическим покрытием синтетическое волокно; очки-щитки из жёлто-зелёного или синего стекла; специальная кожаная или валяная обувь и т.д.)

5. Использование газированной подсоленной воды для восстановления водного баланса и предупреждения перегревания человека

(Подсоленная вода (0,2-0,5 % NaCl) из расчета 4-5 л на человеку в смену. Воду насыщают CO_2 – это придает ей вкус, улучшает секрецию желёз, утоляет жажду, компенсирует потоотделение, компенсирует потерю массы)