Задача коммивояжера Метод полного перебора и алгоритм имитации отжига

А.И. Колесников В.Г. Пиневич

МГТУ им. Н.Э. Баумана

10 сентября 2022 г.

Формулировка задачи

- Каждое ребро является характеризуется весом положительным числом стоимостью движения по нему.
- Найдем такой обход графа, который будет включать ровно один раз каждую его вершину. Такой обход называется гамильтоновым циклом.
- Задача коммивояжера заключается в том, чтобы найти гамильтоновый цикл минимальной стоимости.

Метод полного перебора

Перестановки:				
1	2	3		
1	3	2		
2	1	3		
2	3	1		
3	1	2		
.3	2	1		

Потенциальные пути:					
	0	1	2	3	0
	0	1	3	2	0
	0	2	1	3	0
	0	2	3	1	0
	•	_	•	_	•
	0	3	1	2	0
	U	3	2	1	U

Из всех полученных путей выбираем путь с минимальной длиной.

Ответ: 0 1 3 2 0

Алгоритм имитации отжига

Пример 1

Исходные данные

4

0 1 4 6

1 0 5 2

4 5 0 3

6 2 3 0

	Маршрут	Длина	Относительная	Затраченное
		пути	погрешность,	время, с
			%	
Метод перебора	1 3 4 2 1	10	0,0	0,004
Метод имита-	1 3 4 2 1	10	0,0	0,003
ции отжига при				
coolingRate = 0.1,				
${\tt repeatRate} = 1$				

Пример 2

	Средняя длина	Относительная	Затраченное
	полученного	погрешность,	время, с
	пути	%	
Полный перебор	0,015	0	0,034
Алгоритм имита-	0,11	633	0,005
ции отжига при			
coolingRate = 0.1,			
${ t repeatRate} = 10$			
Алгоритм ими-	0,015	0	0,002
тации отжига при			
coolingRate = 0.99,			
${ t repeatRate}=1$			
Алгоритм имита-	0,033	120	0,005
ции отжига при			
coolingRate = 0.9,			
${ t repeatRate} = 10$			

Пример 3

cooling	repeat	Средняя длина	Относительная	Затраченное
Rate	Rate	полученного пути	погрешность, %	время, с
0,9	100	0,042	151	0,078
0,99	1	0,018	5,8	0,003
0,99	10	0,0179	5,68	0,003
0,999	1	0,018	5,8	0,005
0,999	10	0,0177	4,17	0,020
0,999	100	0,0179	5,31	0,165
0,9999	10	0,0179	5,65	0,112
0,9999	100	0,0178	4,86	0,955

Выводы

- Метод перебора не может быть использован для вычислений маршрута коммивояжера для достаточно больших графов. Применение этого метода на практике не представляется возможным, поскольку его алгоритмическая сложность o(n!).
- Метод имитации отжига является методом приближенного вычисления и требует подбора параметров в зависимости от входных данных, однако позволяет находить решения для более сложных задач, чем метод перебора.