ECON 301 PS4

1.1 In this research, the impacts of the new minimum wage law on the labor market dynamics which was applied on April 1, 1992 in New Jersey, was examined. The question asked whether the rise of minimum wage from \$4.25 to \$5.05 per hour decreases the employment rate in New Jersey is quite important. Because, since the labor market dynamics are quite sensitive to wage changes, any policy change on minimum wage might lead to big consequences such as high unemployment rate, decline in welfare of society and etc. In this research, 410 fast-food restaurants were surveyed in New Jersey and Pennsylvania before and after the implication. Restaurants in Eastern Pennsylvania were used as a control group since New Jersey is relatively small state and it is closely linked by its nearby states. Researches interviewed with workers before (1st wage) and after (2nd wage) the policy change. Fast-food restaurant were chosen because of their high employment rate of low wage workers, their policy to fit the minimum-wage laws and their homogenous job requirements which makes collecting data easier. With these collected data, researchers conducted some econometrics models and test their hypothesis by comparing the results against the control group.

1.2

. ttest fte	_wave2, b	y(state)				
Two-sample	t test wi	th equal var	iances			
Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Pennsylv	77	21.16558	.9432212	8.276732	19.287	23.04417
New Jers	319	21.02743	.5203094	9.293024	20.00375	22.05111
combined	396	21.05429	.4570134	9.094453	20.15581	21.95278
diff		.1381549	1.156182		-2.134902	2.411212
diff =	mean(Penn	sylv) – mean	(New Jers)		t :	= 0.1195
Ho: diff =	0			degrees	of freedom	= 394
Ha: dif	f < 0		Ha: diff !=	0	Ha: d	iff > 0
Pr(T < t)	= 0.5475	Pr(T > t) = (0.9049	Pr(T > t) = 0.4525

Pennsylv						
		23.33117	1.351149	11.85628	20.64012	26.02222
New Jers	321	20.43941	.5082607	9.106239	19.43945	21.43936
combined	398	20.99887	.4887136	9.749805	20.03808	21.95966
diff		2.891761	1.230207		.4732069	5.310315

According to results, before the policy change the average number of employee is around 20 (std error: 0.50) in New Jersey and 23 (std error:1.35) in Pennsylvania. After the rise in minimum changes in New Jersey, average number of employee in fast-food restaurants increased to 21 (std error:0.52) and decreased to around 21 (std error: 0.94). These results show that an increase in the minimum wage did not lead to a decrease in the employment in New Jersey contrast to conventional economic theory. Im-

Source	SS	df	MS	Numb	er of obs		384
				- F(1,	382)		5.68
Model	456.408692	1	456.408692	2 Prob	> F		0.017
Residual	30720.6883	382	80.420650	1 R-sq	uared		0.014
				– Adj	R-squared		0.012
Total	31177.097	383	81.402342	1 Root	MSE		8.967
dif_fte	Coef.	Std. Err.		P> t	[95% Co	nf.	Interval
state	2.75	1.154355	2.38	0.018	.480314	1	5.01968
_cons	-2.283333	1.035507	-2.21	0.028	-4.31934	1	247325

pact of policy change of minimum wage is 2.75 increase of employment. Since the t-value is greater than 1.96 (p-value< 0.05), the result is statistically significant.

. reg dif_fte	state					
Source	ss	df	MS	Number	of obs =	351
				- F(1, 34	9) =	3.66
Model	277.813658	1	277.813658	Prob >	F =	0.0566
Residual	26504.4967	349	75.9441167	R-squar	ed =	0.0104
				- Adj R-s	quared =	0.0075
Total	26782.3104	350	76.5208869	Root MS	E =	8.7146
dif_fte	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
state	2.276858	1.190436	1.91	0.057	064474	4.61819
_cons	-1.878788	1.072692	-1.75	0.081 -	3.988542	.2309665

Source	ss	df	MS		Number of obs		351
					F(5, 345)		1.44
Model	545.889366		109.177873	3	Prob > F		0.2108
Residual	26236.421	345	76.0475972	2	R-squared		0.0204
					Adj R-squared		0.0062
Total	26782.3104	350	76.5208869)	Root MSE		8.7205
dif_fte	Coef.	Std. Err.		P>	t [95% C	onf.	Interval]
state	2.281507	1.197044	1.91	0.0	5707291	44	4.635929
chain							
entucky	.2345508	1.29674	0.18	0.8	57 -2.315	96	2.785061
roys	-2.084687	1.321259	-1.58	0.1	16 -4.6834	23	.5140495
wendys	7566441	1.491088	-0.51	0.6	12 -3.689	41	2.176122
co_owned	.3729144	1.098762	0.34	0.7	35 -1.7882	01	2.53403
_cons	-1.450031	1.2099	-1.20	0.2	32 -3.829	74	.929677

In the second model, I used state dummy variable (0 for Pennsylvania & 1 for New Jersey), chain categorical variable (Burger King 1, Kentucky Fried Chicken 2, Roy Rogers 3, Wendy's 4) and company dummy variable (Company Owned 1, Not Company Owned 0). This model investigates the effect of restaurants locations, type of the fast-food restaurants and type of ownership on the change of the employment level. The dummy variable "New Jersey" is the dummy variable which shows whether the restaurant is located in New Jersey or not. According to this model being located in New Jersey has a positive effect (~2.28) on employment with 10% significance level. It means that average number of employment is increased by 2.28 if it is located in New Jersey. Compared to basic model that conducted in previous question, this model also includes categorical variables such as chain type and ownership dummy variable. These variables' effects on state variable could be important and could lead the over/under estimation. However, as it can be seen from the results, they do no have that much high effect on state variable. By including these variables, we decrease the effect of overestimated variable in the first regression model.

1.4

reg log_full	meal_dif stat	e					
Source	SS	df	MS	Numb	er of obs		317
				F(1,	315)		5.09
Model	.052112289		.05211228	9 Prob	> F		0.0247
Residual	3.22203683	315	.01022868	8 R-sq	uared		0.0159
				– Adj	R-squared		0.0128
Total	3.27414912	316	.01036123	1 Root	MSE		.10114
log_fullme∼f	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
state	.0325248	.0144097	2.26	0.025	.00417	34	.0608762
_cons	0090863	.0129493	-0.70	0.483	03456	43	.0163917

Source	SS	df	MS		of obs	= 317	
Model	.32386250	8 5	.064772502	F(5, 3: Prob >		= 6.83 = 0.0000	
Residual	2.9502866		.004//2502	R-squa		= 0.0989	
Residuat	2.9502000	1 311	.009486432		reu squared	= 0.0989	
Total	3.2741491	.2 316	.010361231	Root M		= .0974	
log_ful	llmeal_dif	Coef.	Std. Err.		P> t	[95% Conf.	Interval
		*******	********				
	state	.0367495	.0139566	2.63	0.009	.0092882	.064210
	chain						
entucky fried	chicken	007042	.0149151	-0.47	0.637	0363893	.022305
	roys	0004594	.0158925	-0.03	0.977	0317298	.030811
	wendys	.0851266	.0174853	4.87	0.000	.0507222	.11953
	co_owned	.0005565	.0130868	0.04	0.966	0251934	.026306
	_cons	021993	.0142773	-1.54	0.124	0500854	.006099

In this analysis, researches asked if there is an increase in meal prices due to increase in minimum wages of workers. According to competitive model of fast-food industry, an increase in the minimum wage leads to an increase in product prices and the assumption that constant returns to scale in fast-food industry says that the increase in price should be proportional to the share of minimum-wage labor in total factor cost.

To check the validity of assumption, we used log of differences between full-meal prices(small fries + medium soda + entree prices, including tax) as dependent variable and state dummy variable, chain categorical variable and company owned dummy variable as explanatory variables (model 2).

According to results, after tax meal prices in New Jersey increased by $\sim 3.7\%$ as compared to prices in Pennsylvania after the change of minimum wage policy with statistical significance (p<0.05). This results confirm the conventional model about the wage & factor cost relationship.

2.

red protet	t feb mar apr	may lun lu	and sep (oct nov	dec wkends	unar	s end law
eg prerat	c reb mar apr	m ay j un ju	c aug sep o	occ nov	dec wkends	une	i spu taw
Source	ss	df	MS	Numb	er of obs		108
				- F(16	5. 91)		14.44
Model	.764228387	16	.047764274	1 Prot) > F		0.0000
Residual	.301019769	91	.00330793	L R-sc	quared		0.7174
				– Adj	R-squared		0.6677
Total	1.06524816	107	.00995559	Root	MSE		.05751
prcfat	Coef.	Std. Err.		P> t	[95% Co	nf.]	[nterval]
	0022352	.0004208	-5.31	0.000	003071	1 -	.0013993
feb	.0008607	.0289967	0.03	0.976	056737	7	.0584592
mar	.0000923	.0274069	0.00	0.997	054348	1	.0545327
apr	.0582201	.0278195	2.09	0.039	.002960	1	.11348
may	.0716392	.0276432	2.59	0.011	.016729	3	.1265492
jun	.1012618	.0280937	3.60	0.001	.045457	1	.1570665
jul	.1766121	.0272592	6.48	0.000	.12246	5	.2307592
aug	.1926117	.0274448	7.02	0.000	.138095	9	.2471274
sep	.1600164	.028203	5.67	0.000	.103994	7	.2160381
oct	.1010357	.0276702	3.65	0.000	.046072	2	.1559991
nov	.013949	.0281436	0.50	0.621	041954	8	.0698528
dec	.0092005	.027858	0.33	0.742	04613	6	.064537
wkends	.0006259	.0061624	0.10	0.919	01161	5	.0128668
unem	0154259	.0055444	-2.78	0.007	026439	2 -	.0044127
spdlaw	.0670877	.0205683	3.26	0.002	.026231	2	.1079441
beltlaw	0295053	.0232307	-1.27	0.207	075650	3	.0166397
	1 020700	1020522	10 00	0.000	025206		1 224201

According to findings, the effect of time on percentage of fatal accidents is negative and statistically significant.

In terms of months, the one with the maximum effect is August. In August percentage of fatal accidents increase by 0.19 compared to January, since t-value is 7.02 result is statistically significant. The reasons might be rooted by summer holidays effect. On the other hand, the month with the minimum effect is March, however since it is statistically insignificant its effect can be neglected.

The effect of weekends is positive on percentage of fatal accidents but it is

not statistically significant. Unemployment is negatively related with the percentage change of fatal accidents (-0.015) and the effect is statistically significant. The interesting result is the impact of speed law on accident percentage. They are positively related and also statistically significant. The effect of belt law is lead to a decrease in accident percentage but effect is not statistically significant.

3.1 According to results, "afchage", the control group (low-income workers) are not affected by the policy change (t-value : 0.24, statistically not significant).

The "highearn" coefficient says that high-income workers are likely to benefit from duration 17.5% more as compared to low-income workers (t-value: 3.40, statistically significant).

When we examine the affect of policy change ("afhigh"), after the policy change duration of benefits increased 23% (t-value: 3.32, statistically significant). At this point it can be said that policy change might contribute to people who are suffering from injuries and supported them in terms of their finan-

dual	8341.41206	5,334	1.5638192		quared		0.0412
otal	8699.85385	5,348	1.6267490		R-squared : MSE		0.0387 1.2505
ırat	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
nnge	.0106274	.0449167	0.24	0.813	077427	6	.0986824
earn	.1757598	.0517462	3.40	0.001	.074316	1	.2772035
nigh	.2308768	.0695248	3.32	0.001	.094579	В	.3671738
nale	0979407	.0445498	-2.20	0.028	185276	6	0106049
ried	.1220995	.0391228	3.12	0.002	.045402	7	.1987962
dust							
	.2708676	.058666	4.62	0.000	.155858	1	.385877
	.1606709	.0409038	3.93	0.000	.080482	7	.2408591
type							
	.7838129	.156167	5.02	0.000	.477661	7	1.089964
	.3353613	.0923382	3.63	0.000	.154340	7	.516382
	.6403517	.1008698	6.35	0.000	.442605	В	.8380977
	.5053036	.0928059	5.44	0.000	.323366	1	.6872411
	.3936092	.0935647	4.21	0.000	.210184	1	.5770344
	.7866121	.207028	3.80	0.000	.380752	7	1.192472
8	.5139003	.1292776	3.98	0.000	.260463	4	.7673372
cons	.5713505	.10266	5.57	0.000	.370094	9	.7726061

cial status. On the other hand there might be some moral issue, that may lead not critically injured people to stay out of work more by guaranteeing their income stable.

 $3.2\,$ As it can be seen from the results, the R^2 and Adjusted R^2 are around 4%. It means that there are other reasons that affect the duration that we do not include in this model. And the explanatory power of this model is not sufficient. However, it does not mean that equation is useless because the most of the results are statistically significant and have impact on the duration. In addition, lower R^2 does not mean that results are biased therefore equation can be used if we do not want concrete predictive model.

3.3 When we consider the results in Michigan, the interaction term's coefficient (afhigh) is around 14.2% which is less then Kentucky's (%23). However this result is not statistically significant, t-value is 0.93. This result might be happened because of the policy location. The policy change is occurred only in Kentucky therefore the duration is not affected by the policy change in Michigan which gives statistical insignificance.

. reg ldurat a	afchnge highea	rn afhigh	male marrie	d i.ind	ust i.injty	pe :	if mi==1
Source	ss	df	MS		er of obs		1,475
					, 1460)		6.23
Model	157.402557	14	11.2430398				0.0000
Residual	2634.85251	1,460	1.8046935		uared		0.0564
					R-squared		0.0473
Total	2792.25507	1,474	1.89433858	Root	MSE		1.3434
ldurat	Coef.	Std. Err.		P> t	[95% Con	f. 1	Interval]
afchnge	.0945221	.0845739	1.12	0.264	0713771		.2604214
highearn	.1283726	.1106405	1.16	0.246	0886587		.345404
afhigh	.1426902	.1535674	0.93	0.353	158546		.4439265
male	352384	.0967692	-3.64	0.000	5422054		1625625
married	.0890124	.0772949	1.15	0.250	0626086		.2406334
indust							
	.5217602	.1043794	5.00	0.000	.3170106		.7265097
	.0840317	.0786529	1.07	0.286	0702531		.2383165
injtype							
	.5427369	.3578638	1.52	0.130	1592453		1.244719
	.5704354	.2152079	2.65	0.008	.1482856		.9925852
	.8621662	.2267469	3.80	0.000	.4173817		1.306951
	.3487954	.2172853	1.61	0.109	0774294		.7750202