DIFFERENTIALEKVATIONER

Homogena ekvationer

Av 1:a ordningen: y' + ay = 0Lösningarna kan skrivas $y = Ce^{-ax}$

Av 2:a ordningen: y'' + ay' + by = 0

Den karakteristiska ekvationen $r^2 + ar + b = 0$ har rötterna r_1 och r_2 Om r_1 och r_2 är reella tal och $r_1 = r_2$ så kan lösningarna skrivas

 $y = (C_1 x + C_2) e^{r_1 x}$

Om r_1 och r_2 är reella tal och $r_1 \neq r_2$ så kan lösningarna skrivas

 $y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$

Om $r_1 = s + it$ och $r_2 = s - it$ kan lösningarna skrivas

 $y = e^{sx} (C_1 \cos tx + C_2 \sin tx)$

Inhomogena ekvationer

Generellt bestäms den allmänna lösningen som $y = y_h + y_p$, där y_p är en partikulärlösning till den inhomogena ekvationen och y_h den allmänna lösningen till motsvarande homogena ekvation.

Separabla differentialekvationer: g(y)y' = f(x)

Löses enligt $\int g(y)dy = \int f(x)dx$

FUNKTIONSLÄRA

Räta linjen

 $k = \frac{y_2 - y_1}{x_2 - x_1}$

Riktningskoefficient för linje genom punkterna (x_1, y_1) och

 (x_2, y_2) där $x_1 \neq x_2$

y = kx + m

Linje genom punkten (0, m) med riktningskoefficienten k

 $y - y_1 = k(x - x_1)$

Linje genom punkten (x_1, y_1) med riktningskoefficienten k

 $k_1 \cdot k_2 = -1$

Villkor för vinkelräta linjer

Exponential- funktioner

 $y = C \cdot a^x$

C och a är konstanter a > 0 och $a \ne 1$

Potensfunktioner

 $y = C \cdot x^a$

C och a är konstanter