Insegnamento di Metodi Numerici

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

Docenti: Lucia Romani e Damiana Lazzaro

3 Settembre 2021 - 9:00 ESAME IN PRESENZA

-			_	-		
	(1.	. 1 .	- 1	۲.	•	
	• 1	consideri	10	†11	$n\sigma i \alpha n$	\sim
	1)1	COHSICELI	10	111	1121011	\leftarrow

$$f(x) = x e^{-x} - \gamma, \qquad x \in [0, 6]$$

dove $\gamma \in (0, e^{-1}]$ è una costante assegnata. Scrivere lo script Matlab/Python es1 in cui:

- a) si dica quanti zeri ha f in [0,6] per ogni scelta di γ in $(0,e^{-1})$ (suggerimento: analizzare il comportamento di f in [0,1] e [1,6] separatamente, e nel secondo caso tenere presente che f(6) < 0 per ogni γ); Punti: 2.5
- b) si dica se e come cambia il comportamento di f, e il suo numero di zeri, quando $\gamma = e^{-1}$;

Punti: 2.5

c) si implementi il metodo di Newton per la determinazione degli zeri di una arbitraria equazione non lineare;

Punti: 4

d) si utilizzi il metodo di Newton con valore di innesco 6 e tolleranza 10^{-10} per una f definita da quattro diversi valori di γ così specificati: $\frac{1}{e}, \frac{1}{2e}, \frac{1}{3e}, \frac{1}{4e};$

Punti: 2

e) si confronti (anche graficamente) il numero di iterazioni effettuate nei quattro casi testati al punto d) e si fornisca una spiegazione teorica al risultato ottenuto;

Punti: 2

f) si calcoli il numero di condizionamento del problema relativo al calcolo della radice $x^* := x(\gamma)$ di f e si confronti il suo valore nei casi in cui $\gamma = \frac{1}{e}, \frac{1}{2e}, \frac{1}{3e}, \frac{1}{4e}$ (suggerimento: per il calcolo di K si tenga presente che $x'(\gamma) = \frac{e^x}{1-x}$.

Totale: 16