

강화학습 챗봇

Dialogue Policy Optimization

바벨피쉬 김성동

Who am I?

이름:김성동

github: @DSKSD

연락처: tjdehd1222@gmail.com

- * 숭실대 경영/글로벌미디어 전공
- * 텍스트팩토리 NLP Engineer
- * Interest : Deep learning, NLP, Reinforcement Learning

Contents

- 1. What is a Dialogue Policy
- 2. Types of RL in Dialogue System
- 3. Environment:User Simulator
- 4. Challenges

현재까지 대화를 미루어 봤을 때, 챗봇이 어떤 대답을 해야 가치를 최대화 할 수 있을까?

•••• SKT LTE 오전 12:40 **<**5 $Q \equiv$ 무슨일 하는거냥고 물어보는디 그냥 이러케 보내????ㅋㅋㅋ 77 오전 12:10 그래 그냥 알바하고 있다그러라 니가 알아서 뭐하게 이런 뉘앙스를 풍기셈 오전 12:17 ****** LG U+ 9 너는 직업이뭐야 요한 11:56 내일

좋은 대화의 정책을 찾는다..? 때론 인간도 어렵다

대화 유형	정책
목적을 가진 대화(Task Oriented)	상대방이 요청한 일을 처리한다.
목적이 없는 잡담(Chit-Chat)	상대방의 말에 적절한 반응을 한다.
외부 지식을 기반으로한 질문/대답(QA)	상대방의 질문에 맞는 답을 알려준다.

대화의 유형과 목적에 따라 다른 전략(정책)을 취해야 한다

The bAbl project

DSTC6

Dialog System Technology Challenges

Long Beach, USA, December 10, 2017

POMDP-based spoken dialogue system

End-to-End Task-Completion Neural Dialogue Systems(Li et al, 2017)

Closed Domain(Goal-Oriented) Dialogue(Task-Completion)

End-to-End Task-Completion Neural Dialogue Systems(Li et al, 2017)

State : 이전 봇의 Action, 현 유저의 Action, DB 검색결과, 대화 히스토리 등

End-to-End Task-Completion Neural Dialogue Systems(Li et al, 2017)

Rule-based Agent

User: What is the start time for 10 cloverfield lane?

Agent: What movie are you interested in? <u>User:</u> I want to watch at 10 cloverfield lane. Agent: What time would you like to see it?

User: What time is it playing tomorrow? I need 3 tickets.

Agent: What city you would like?

User: I do not care.

Agent: What date would you like to watch it?

User: I want to set it up tomorrow.

Agent: Which theater would you like?

User: Which theater is available?

Agent: How many tickets do you need?

User: I want 3 tickets please!

Agent: Okay, I have booked 3 tickets for 10 cloverfield

lane tomorrow.

User: Thank you. Agent: Thank you.

Failure: Agent does not answer all the questions

(starttime, theater) from user.

RL Agent

User: Which theater can I book 3 tickets for 10

cloverfield lane?

Agent: What time would you like to see it?

User: Which theater and start time are available

tomorrow?

Agent: 11:45am is available.

User: Which theater is available?

Agent: regal la live stadium 14 is available. User: Could you help me to book the tickets?

Agent: Okay - I was able to book 3 tickets for you to see 10 cloverfield lane at regal la live stadium 14 at 11:45am

tomorrow.

User: Thank you. Agent: Thank you.

Success

Reward : Success Rate, # of turns

End-to-End Task-Completion Neural Dialogue Systems(Li et al, 2017)

(a) Frame-level semantics for training

(b) Natural language for end-to-end training

End-to-End Task-Completion Neural Dialogue Systems(Li et al, 2017)

(a) Success Rate

(b) User Rating Distribution

Deep Reinforcement Learning for Dialogue Generation(Li et al, 2016)

Open Domain Dialogue(Chit-Chat)

Figure 1: Dialogue simulation between the two agents.

Deep Reinforcement Learning for Dialogue Generation(Li et al, 2016)

Open Domain Dialogue(Chit-Chat)

Probable response != Good response

Problems with Seq2Seq

Deep Reinforcement Learning for Dialogue Generation(Li et al, 2016)

Open Domain Dialogue(Chit-Chat)

좋은(가치 있는) 대답의 조건 : Reward

Reasonable

p(response|input) is high according to seq2seq model

Nonrepetitive

similarity between response and previous messages is low

Easy to answer

p("i don't know"|response) is low

Policy Gradient(REINFORCE)

Deep Reinforcement Learning for Dialogue Generation(Li et al, 2016)

$$J_{RL}(\theta) = \mathbb{E}_{p_{RL}(a_{1:T})} [\sum_{i=1}^{i=T} R(a_i, [p_i, q_i])]$$

Baseline mutual information model (Li et al. 2015)	Proposed reinforcement learning model
A: Where are you going? (1)	A: Where are you going? (1) State : 이전 2번의 대화
B: I'm going to the restroom. (2)	B: I'm going to the police station. (2)
A: See you later. (3)	A: I'll come with you. (3)
B: See you later. (4)	B: No, no, no, no, you're not going anywhere. (4)
A: See you later. (5)	A: Why? (5) Action : 생성된 문장 그 자체
B: See you later. (6)	B: I need you to stay here. (6)
	A: I don't know what you are talking about. (7)
A: how old are you? (1)	A: How old are you? (1)
B: I'm 16. (2)	B: I'm 16. Why are you asking? (2)
A: 16? (3)	A I thought you were 12. (3)
B: I don't know what you are talking about. (4)	B: What made you think so? (4)
A: You don't know what you are saying. (5)	A: I don't know what you are talking about. (5)
B: I don't know what you are talking about . (6)	B: You don't know what you are saying. (6)
A: You don't know what you are saying. (7)	

Deep Reinforcement Learning for Dialogue Generation(Li et al, 2016)

Model	# of simulated turns	Model	Unigram	Bigram
SEQ2SEQ	2.68	SEQ2SEQ	0.0062	0.015
mutual information	3.40	mutual information	0.011	0.031
RL	4.48	RL	0.017	0.041

Length of the dialogue

Diversity

Setting	RL-win	RL-lose	Tie
single-turn general quality	0.40	0.36	0.24
single-turn ease to answer	0.52	0.23	0.25
multi-turn general quality	0.72	0.12	0.16

Summary

Type of Bots	State	Action	Reward
Social ChatBots	Chat history	System Response	# of turns maximized; Intrinsically motivated reward
InfoBots (interactive Q/A)	User current question + Context	Answers to current question	Relevance of answer; # of turns minimized
Task-Completion Bots	User current input + Context	System dialogue act w/ slot value (or API calls)	Task success rate; # of turns minimized

실제 사람들과 상호작용하기엔 비용이 많이 든다...

OpenAl

강화학습이 이렇게까지 대중화 될 수 있었던 것은 OpenAl gym과 같은 Environment 플랫폼이 있었기 때문!!

ParlAI: A Dialog Research Software Platform

QA datasets

SQuAD

bAbI tasks

MCTest

SimpleQuestions

WikiQA, WebQuestions,

WikiMovies, MTurkWikiMovies

MovieDD (Movie Recommendations)

Goal-Oriented Dialog

bAbl Dialog tasks

Dialog-based Language Learning bAbl Dialog-based Language Learning Movie

MovieDD-QARecs dialog

Visual QA/Dialog VQA

Sentence Completion

QACNN

(Cloze)

QADailyMail

CBT

BookTest

Dialog Chit-Chat

Ubuntu

Movies SubReddit

Cornell Movie

OpenSubtitles

ParlAI: A Dialog Research Software Platform

Observation/action dict

Passed back and forth between agents & environment.

Contains:

.text text of speaker(s)
.id id of speaker(s)
.reward for reinforcement learning
.episode_done signals end of episode

For supervised dialog datasets:

Other media:

.image for VQA or Visual Dialog

매우 General한 Form을 사용

=> 장점이 될 수도 단점이 될수도..

특히, 이미 존재하는 데이터셋을 바탕으로 시뮬레이션이 이루어짐. (원하는 도메인의 데이터를 수집/태깅을 통해 구성해야 확장 가능.)

User Simulation for Task-Completion Dialogues

훈련된 NLU, NLG, DM(DST) 등의 모듈을 사용

Agenda based User Simulator : Goal을 초기화하고 Rule에 의해 Inform한다.

휴리스틱한 Speech Action Rule 사용 ex. 봇이 요청하면, 알려줘라 ex. 봇이 정보를 제공하면, 감사를 표하라 등

> 매 대화 턴마다 -1의 보상, TASK 성공 시 10의 보상

Build your own Dialogue Environment

```
from environment_class import Conv_Env
import MyAgent

env = Conv_Env()
agent = MyAgent()

state = env.reset()
is_done = env.is_done
rewards=[]
while is_done==False:

a = MyAgent(state)
_,state,reward,is_done = env.step(a)
rewards.append(reward)
```

유저: 허기지넹... 봇: 다음 중 선택해주세요. 맛집추천 레시피추천 (BACTION:Request_Slot STYPE:p_task FOOD) 유저: 맛집추천 (Inform_Simple) 봇: 음식이름을 알려주세요 (BACTION:Request_Slot STYPE:food-name) 유저: 맛집추천 어떻게 해? (Jump_Task) 봇: 음식이름을 알려주세요 (BACTION:Request_Slot STYPE:food-name) 유저: 치즈버거로 (Inform_Simple) 봇: 지역을 알려주세요 (BACTION:Request_Slot STYPE:region) 유저: 청주시 흥덕구 (Inform_Simple) 봇: 가격대를 알려주세요 (BACTION:Request_Slot STYPE:price) 유저: 80000 이하로 (Inform Simple) 봇: 다음 중 선택해주세요. 1 3 0 4 (BACTION:Request_Slot STYPE:p_list_FOOD) 유저: 더 보여죠~~ (Inform_Simple) 봇: 다음 중 선택해주세요. 1 2 3 0 (BACTION:Request_Slot STYPE:p list FOOD) 유저: 2로 (Inform Simple) 봇: 여기있습니다. (BACTION:Inform_Last_Info INFO:여기있습니다.) 유저: 고마워 수고행 (Thanks Quit)

gym과 유사한 형태로 구성

시뮬레이션 샘플

Challenges

- 1. Generic RL method for all bot categories
- 2. End2End Trainable model
- 3. Competitive Self-Play between Multiple Agents
- 4. More Composite Task / Multiple Domain
- 5. Online Learning
- 6. External Knowledge access, utilization (retrieval, summary, reconstruction)=>Machine Reading Comprehension

References

<u>Deep learning for Dialogue Systems</u>

The Conversational Intelligence Challenge

<u>Dialogue System Technology Challenges</u>

SIGDIAL2016

End-to-End Task-Completion Neural Dialogue Systems(Li et al, 2017)

Deep Reinforcement Learning for Dialogue Generation(Li et al, 2016)

ParlAI: A Dialog Research Software Platform(Miller et al, 2017)

A User Simulator for Task-Completion Dialogues(Li et al, 2016)

Adversarial Learning for Neural Dialogue Generation(Li et al, 2017)

Composite Task-Completion Dialogue Policy Learning via Hierarchical Deep Reinforcement Learning(Peng et al, 2017)

Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog(Kotter et al, 2017)

Thank you! ODSKSD