Rechnerorganisation Sommersemester 2022 – 7. Vorlesung

Prof. Stefan Roth, Ph.D.

Technische Universität Darmstadt

12. Juni 2023

Inhalt

- 1 Mikroarchitekturen von Rechnersystemen
- Mikroarchitektur eines ARM-Prozessors
- 3 Eintakt-Prozessor
- Zusammenfassung und Ausblick
- 6 Literatur

Mikroarchitekturen von Rechnersystemen

Schichtenmodell eines Computers

Komponenten eines Rechnersystems

Abbildung: Komponenten eines Rechnersystems (verfeinerte Darstellung)

Anmerkung: Die Komponenten eines Rechnersystems müssen in der Regel eine gemeinsame Zeitbasis haben, damit das Zusammenspiel funktioniert. Diese Zeitbasis nennt man auch Takt/Taktsignal/Systemtakt.

Mikroarchitektur [HH16, S. 385 - 484]

- Einführung in die Mikroarchitektur
- Eintakt-Prozessor
- Mehrtakt-Prozessor
- Pipeline-Prozessor
- Analyse der Rechenleistung
- Ausnahmebehandlung
- Weiterführende Themen

Einführung in die Mikroarchitektur

Mikroarchitektur

• Hardware-Implementierung einer Architektur

Prozessor/Rechnersystem

- Datenpfad: verbindet funktionale Blöcke
- Kontrollpfad: Steuersignale/Steuerwerk

Mikroarchitektur

- Mehrere Implementierungen für eine Architektur (hier ARM®) möglich
- Unterscheidung ist der Takt bzw. die Art der Befehlsausführung
- Wie wird ein Befehl¹, z. B. add, ausgeführt?

Eintakt-Implementierung^a

^aIm Folgenden wird der Begriff Eintakt-Prozessor verwendet.

Jeder Befehl wird in einem Takt ausgeführt.

Mehrtakt-Implementierung

Jeder Befehl wird in Teilschritte zerlegt.

Pipelined-Implementierung

Jeder Befehl wird in Teilschritte zerlegt. Mehrere Teilschritte werden gleichzeitig (parallel) ausgeführt.

¹Instruktion, Maschinenbefehl

Mikroarchitektur eines ARM-Prozessors

Aus Assembler-Programmierung bekannter Prozessor und bekannte Befehle

Untermenge des ARM® Befehlssatzes

- Speicherbefehle: ldr, str
- Arithmetische/logische Befehle: add, sub, and, orr
- Sprungbefehle: b

Beispiel aus letzter Vorlesung – Objekt-Programm Schleife.o

```
Schleife.o: file format elf32-littlearm
Disassembly of section .text:
000000000 <main>:
    0: e3a00001 mov r0, #1
    4: e3a01000 mov r1, #0

00000008 <WHILE>:
    8: e3500c01 cmp r0, #256; 0x100
    c: 0a000002 beq 1c <DONE>
    [...]
```

- Assembler: mov r0, #1
- Dieser Maschinenbefehl enthält (kodiert) alle Informationen und Anweisungen, das Register r0 mit dem Wert 1 zu füllen.

Architekturzustand

Architekturzustand: auf Ebene der Architektur sichtbare Daten

• Für den Programmierer zugänglich

Sichtbare Daten bestimmen den Zustand der Architektur

- PC (Program Counter, Befehlszähler)
- 16 Register
- Status-Flags
- Speicher

Elemente des Architekturzustands

Von-Neumann-Architektur, Harvard-Architektur, Speicher

Von-Neumann-Architektur

• gemeinsamer Speicher für Maschinenbefehle und Daten

Harvard-Architektur

• Befehlsspeicher und Datenspeicher sind getrennt

Verhalten des Speichers

- Die Speicher können, bezogen auf den Takt, asynchron gelesen werden
- Die Speicher werden synchron mit dem Takt geschrieben

Eintakt-Prozessor

Eintakt-Prozessor, Vorgehensweise und Bitfelder eines Befehls

- Beginn der Entwicklung des Datenpfads mit dem Befehl ldr.
- Beispiel
 - ▶ ldr r1, [r2, #5]
 - ▶ ldr Rd, [Rn, imm12]

Eintakt-Prozessor, Datenpfad 1dr Befehlsholphase

• 1. Befehl holen

Eintakt-Prozessor, Datenpfad 1dr Register lesen

• 2. Lesen der Quell-Operanden vom Registerfeld

Eintakt-Prozessor, Datenpfad 1dr immediate

• 3. Erweiterung des immediates². Der Offset ist als vorzeichenloser Wert (12 Bit) im Befehl gespeichert. **Extend** erweitert den Wert auf 32 Bit (mit Nullen).

²Direktwert

Eintakt-Prozessor, Datenpfad 1dr Adressrechnung

• 4. Berechnung der Speicheradresse

Eintakt-Prozessor, Datenpfad 1dr Speicher lesen

• 5. Lesen der Daten aus dem Speicher und Schreiben in das Registerfeld

Eintakt-Prozessor, Datenpfad 1dr PC erhöhen

• 6. Berechnung der Adresse des nächsten Befehls

Eintakt-Prozessor, Datenpfad 1dr Zugriff auf PC

- PC kann Quelle oder Ziel bei Instruktionen sein
 - ▶ Quelle: r15 muss im Registerfeld verfügbar sein. PC wird gelesen als aktueller PC + 8 (Zitat: aus historischen Gründen)
 - ▶ Ziel: Es muss möglich sein, PC als als Zielregister zu verwenden.

Eintakt-Prozessor, Datenpfad str

- Erweiterungen des Datenpfads zur Realisierung des Befehls str
- Schreibe Datum vom Registerfeld in den Datenspeicher

Eintakt-Prozessor, Datenpfad für arithmetische/logische Befehle

- mit immediate Src2; Steuersignal ImmSrc: wenn 0, Erweiterung um 24 Bit (für arithmetische/logische Befehle); wenn 1, Erweiterung um 20 Bit (für ldr/str)
- Schreibe ALUResult in Registerfeld (Register Rd)

ADD Rd, Rn, imm8

Eintakt-Prozessor, Datenpfad für arithmetische/logische Befehle

- mit Register Src2
- Schreibe ALUResult in Registerfeld (Register Rd)

ADD Rd, Rn, Rm

Arithmetisch Logische Einheit (ALU)

$\mathbf{ALUControl}_{1:0}$	Function
00	Add
01	Subtract
10	AND
11	OR

Flags must be stored in FFs if required by by instruction (e.g., CMP, TST, SUBS, ADDS, etc)

Eintakt-Prozessor, Sprungbefehl b

- Berechnen der Sprungadresse
- BTA = (ExtImm) + (PC + 8)
- ExtImm = Imm24 << 2 inkl. Vorzeichenerweiterung

Eintakt-Prozessor, ExtImm I

ImmSrc _{1:0}	Extlmm	Beschreibung
00	{24'b0, Instr _{7:0} }	Zero-extended imm8 (z.B. add)
01	{20'b0, Instr _{11:0} }	Zero-extended imm12 (z. B. ldr/str)
10	$\{6\{Instr_{23}\},\ Instr_{23:0}00\}$	Sign-extended imm24 multiplied by 4 (z. B. b)

Eintakt-Prozessor, ExtImm II

- Funktionserklärung der Einheit ExtImm
- Für die bisher vorgestellten Befehle sind unterschiedliche Funktionen notwendig
 - ▶ Die arithmetischen/logischen Befehle erlauben einen 8 Bit Wert als Direkwert und müssen entsprechend um 24 Bit erweitert werden (vgl. Zeile 1 in Tabelle).
 - ▶ Im Befehl 1dr besteht die Möglichkeit, einen Direktwert der Breite 12 Bit zu speichern. Dieser Wert muss für die Adressrechnung auf 32 Bit erweitert werden. Es ist also notwendig, dass der Wert mit 20 Nullen zu einem 32 Bit Wert konkateniert wird (vgl. Zeile 2 in Tabelle).
 - ▶ Im Befehl b wird das Sprungziel als 24 Bit Adresse angegeben. Es ist eine vorzeichenrichtige Erweiterung vorzunehmen (vgl. Zeile 3 in Tabelle). Außerdem wird der Wert mit vier multipliziert (Linksshift um zwei Stellen).

Eintakt-Prozessor, Datenpfad und Kontrolleinheit

Eintakt-Prozessor, Learning Nugget

• Learning Nugget 05 – Eintakt-Prozessor

Eintakt-Prozessor, Kontrolleinheit

Eintakt-Prozessor, Kontrolleinheit

- FlagW_{1:0}: Flag Write signal, asserted when ALUFlags should be saved (i.e., on instruction with S=1)
 - ADD, SUB update all flags (NZCV)
- AND, ORR only update NZ flags

So, two bits needed:

FlagW₁ = 1: NZ saved (ALUFlags_{3:2} saved) FlagW₀ = 1: CV saved (ALUFlags_{1:0} saved)

Eintakt-Prozessor, Beispiel add r1,r2,r3

Eintakt-Prozessor, Beispiel orr r1, r2, #f0

Eintakt-Prozessor, Beispiel andeq r5, r6, r7

ARM® Instruction Set, Condition Codes der Befehle

Code	Suffix	Flags	Bedeutung
0000	EQ	Z gesetzt	Gleich
0001	NE	Z ungesetzt	Nicht gleich
0010	CS oder HS	C gesetzt	>= für unsigned
0011	CC oder LO	C ungesetzt	< für unsigned
0100	MI	N gesetzt	Negative
0101	PL	N ungesetzt	Positiv oder Null
0110	VS	V gesetzt	Overflow
0111	VC	V ungesetzt	Kein Overflow
1000	HI	C gesetzt und Z ungesetzt	> für unsigned
1001	LS	C ungesetzt oder Z gesetzt	<= für unsigned
1010	GE	N und V sind gleich	>= für signed
1011	LT	N und V sind ungleich	< für signed
1100	GT	Z ungesetzt, N und V sind gleich	> für signed
1101	LE	Z gesetzt, N und V sind ungleich	<= für signed
1110	AL	werden ignoriert	immer

ARM® Instruction Set, arithmetische/logische Befehle

Eintakt-Prozessor, Datenpfad und Kontrolleinheit

Eintakt-Prozessor, Diskussion

- Eintakt-Prozessor: bearbeitet jeden Befehl in einem Takt
- drei Phasen der Befehlsausführung
 - Befehlsholphase
 - Befehlsdekodierung
 - ► Befehlsausführung
- Taktsignal: Periodendauer/Taktfrequenz $(f = \frac{1}{T})$

- Die Länge des Pfades, der zur Ausführung eines Befehls durchlaufen wird, ergibt eine Ausführungszeit
- Der längste Pfad gibt dann die maximale Taktfrequenz vor

Eintakt-Prozessor, Beispiele für Pfade

Zusammenfassung und Ausblick

Zusammenfassung und Ausblick

Zusammenfassung

- Mikroarchitekturen von Rechnersystemen
- Eintakt-Prozessor, Entwicklung des Datenpfads

Ausblick

- Mikroarchitekturen von Rechnersystemen
- Mehrtakt-Prozessor

Lernkontrolle

- Ich habe die Terminologie im Kontext von Rechnerarchitekturen/Prozessorarchitekturen verstanden und kann diese richtig nutzen

 ✓
- Ich habe die Phasen der Befehlsverarbeitung verstanden und mir eingeprägt 🗸
- Die Methodik, aus der Wirkung eines Maschinenbefehls einen Datenpfad zu konstruieren habe ich verstanden ☑
- Ich habe die Strukturierung einer Mikroarchitektur in Datenpfad und Kontrollpfad verstanden ☑
- ...

Literatur

Literatur

- [BO10] Bryant, Randal E. und David R. O'Hallaron: Computer Systems A Programmer's Perspective.
 Prentice Hall. 2010.
- [HH16] Harris, David Money und Sarah L. Harris: Digital Design and Computer Architecture, ARM^{\circledR} Edition.

Morgan Kaufmann, 2016.