Tableaux De Signes

Delhomme Fabien

15 mai 2022

Table des matières

1	Motivations	Т
Π	Définitions	2
II	I Résumé des différences entre les tableaux de signes, et les tableaux de variations	3
Iλ	$^{\prime}$ Étude du signe des fonctions affines	3
	IV.1 Motivations	3
	IV.2 Théorie	4
	IV.2.1 Tableau de signes si $a>0$	4
	IV.2.2 Tableau de signe si $a < 0$	4
	IV.3 Pratique	5
	IV.3.1 Cas d'un coefficient directeur positif	5
	IV.3.2 Cas d'un coefficient directeur négatif	
\mathbf{V}	Étude du signe de produit de fonctions affines	6
	V.1 Motivation	6
	V.2 Étude d'un exemple	6

I Motivations

On a vu en classe comment construire des tableaux de variations de fonction définie sur un intervalle réel. Les tableaux de variations servent à

- 1. Repérer les intervalles où la fonction croit, et les intervalles où la fonction décroît.
- 2. Mettre en évidence les extremums (maximums, ou minimum)

\leftarrow Exemple

Si on sait que le minimum de la fonction $f: x \mapsto (x-2)^2 - 3$ admet comme minimum -3, c'est aussi parce que l'on peut construire son tableau de variations, pour obtenir le tableau suivant :

```
import gm_tableaux;
size(7.5cm);
string[] x={"-inf","2", "+inf"},
         y={"", "-3", ""};
picture tab=tabvar(x,y,decr);
// le premier sens de variation est "décroissant", les suivants sont tels
// que les valeurs de y seront alternativement placées en haut et en bas.
add(tab);
shipout(bbox(2mm,Fill(white)));
```

Les tableaux de signes pourront nous aider à

- 1. Repérer les intervalles où la fonction est positive, et les intervalles ou la fonction est négative
- 2. Mettre en évidence les nombres pour lesquels la fonction s'annule.

TT **Définitions**

Fonction positive

On dit que f est **positive** sur I si pour tout $x \in I$, on a f(x) > 0.

Fonction négative

On dit que f est **négative** sur I si pour tout $x \in I$, on a f(x) < 0.

Exemple

Pour tout $x \in \mathbb{R}$, la fonction $f(x) = -x^2 - 1$ est négative. On dit donc que la fonction f est négative sur \mathbb{R} .

Pour tout $x \in [0; +\infty]$, la fonction $f(x) = x^3$ est positive. On dit donc que la fonction f est positive sur l'intervalle $[0; +\infty]$.

Tableaux de variations

Soit f définie sur un intervalle I de \mathbb{R} , à valeurs réelles. Un tableau de variations de f sur cet intervalle est un tableau qui récapitule les intervalles où la fonction est positive, ou négative.

∛∠Exemple

Soit g fonction définie sur \mathbb{R} par g(x) = (x-2)(x+1). D'après le graphe de cette fonction (on verra comment faire algébriquement plus tard), on peut conjecturer que :

- 1. La fonction q est positive sur l'intervalle $]-\infty;-1]$
- 2. La fonction q est négative sur l'intervalle [-1; 2]
- 3. La fonction g est positive (de nouveau) sur l'intervalle $[2; +\infty]$

On peut ainsi résumer ces informations dans un tableau de signes suivant :

```
import mesFonctions;
defaultpen(fontsize(12pt));
unitsize(1cm);
real f (real x) { return (x-2)*(x+1); }
xaxis("$x$",LeftTicks(Step=1, step=0.5),Arrow, xmin=-3, xmax=4);
yaxis("$y$",RightTicks(NoZero, Step=1, step=0.5),Arrow, ymin = -2.5, ymax=9);
draw(graph(f, -3, 4));
ylimits(-2.5, 9.1, Crop);
dot((-1,0));
dot((2, 0));
shipout(bbox(2mm, Fill(white)));
import gm_tableaux;
defaultpen(fontsize(16pt));
string[][] tab={
{"x", "-inf -1 2 + inf"},
{"g(x)", " + 0 - 0 + "};
picture tab=tabsgn(tab, ul=1.6, kx=1.7);
// le premier sens de variation est "décroissant", les suivants sont tels
// que les valeurs de y seront alternativement placées en haut et en bas.
add(tab);
shipout(bbox(2mm,Fill(white)));
```

III Résumé des différences entre les tableaux de signes, et les tableaux de variations

	Tableaux de signes	Tableaux de variations
Qu'est-ce que ça repère?	Le signe des fonctions	Les variations de la fonction
Cela permet de détecter	Les solutions de $f(x) = 0$	Les extremums
Qu'est-ce qu'on met dans le tableau?	Des + ou des -	Des flèches vers le haut, ou vers le bas

IV Étude du signe des fonctions affines

IV.1 Motivations

Les fonctions affines sont les fonctions qui sont à la fois pas évidente, et pas trop difficile à étudier. La plupart des fonctions en mathématiques ne sont pas évidentes à étudier. Mais étudier les fonctions affines permet de débloquer des techniques pour aborder des fonctions plus compliquées.

IV.2 Théorie

Soit f une fonction affine définie sur \mathbb{R} , avec

$$f(x) = ax + b$$

avec $a \in \mathbb{R}$ non nul le coefficient directeur de la fonction affine f, et $b \in \mathbb{R}$ l'ordonnée à l'origine.

On cherche à établir le tableau de signe de f.

En résolvant l'équation f(x) = 0, on peut déterminer le moment où la droite représentant la fonction f coupe l'axe des abscisses.

$$f(x) = 0$$

$$ax + b = 0$$

$$ax = -b$$

$$x = -\frac{b}{a}$$

Donc, f(x) = 0 si et seulement si $x = -\frac{b}{a}$. Ensuite, deux cas se présentent à nous.

- 1. Soit a > 0, et donc f est croissante, et donc la fonction est négative puis positive
- 2. Soit a < 0, et donc f est décroissante, et donc la fonction est positive puis négative.

Autrement dit:

IV.2.1 Tableau de signes si a > 0

```
// que les valeurs de y seront alternativement placées en haut et en bas.
add(tab);
shipout(bbox(2mm,Fill(white)));
```

IV.3 Pratique

IV.3.1 Cas d'un coefficient directeur positif

Si on veut étudier le signe de la fonction f(x) = 2x - 3, on détermine d'abord la solution de f(x) = 0. On trouve $x = \frac{3}{2} = 1, 5$.

Le coefficient de cette fonction est positif, donc le tableau de signe de cette fonction est donné par :

```
import gm_tableaux;
defaultpen(fontsize(16pt));
string[][] tab={
    {"x", "-inf 1,5 +inf"},
    {"2x-3", " - 0 + "}};
picture tab=tabsgn(tab, ul=1.6, kx=1.7);

// le premier sens de variation est "décroissant", les suivants sont tels
    // que les valeurs de y seront alternativement placées en haut et en bas.
add(tab);

shipout(bbox(2mm, Fill(white)));
```

IV.3.2 Cas d'un coefficient directeur négatif

Si on veut étudier le signe de la fonction g(x) = -4x + 5, on détermine d'abord la solution de g(x) = 0. On trouve $x = \frac{5}{4} = 1, 25$.

Le coefficient de cette fonction est négatif, donc le tableau de signe de cette fonction est donné par :

```
import gm_tableaux;
defaultpen(fontsize(16pt));
string[][] tab={
    {"x", "-inf 1,25 +inf"},
    {"-4x+5", " + 0 - "}};
picture tab=tabsgn(tab, ul=1.6, kx=1.7);

// le premier sens de variation est "décroissant", les suivants sont tels
// que les valeurs de y seront alternativement placées en haut et en bas.
add(tab);

shipout(bbox(2mm, Fill(white)));
```

V Étude du signe de produit de fonctions affines

V.1 Motivation

Si peu de fonctions en mathématiques sont strictement affine, on peut par contre plus souvent se retrouver avec des fonctions qui s'écrivent par exemple comme :

$$f(x) = (2x - 3)(-4x + 5)$$

Ce ne sont pas des fonctions affines (si on développe, on fait apparaître des termes en x^2), mais pour étudier leur signe on peut utiliser les techniques déployées plus haut.

V.2 Étude d'un exemple

Soit f la fonction définie sur \mathbb{R} par f(x) = (2x-3)(-4x+5). On cherche à construire le tableau de signe de cette fonction. Pour cela, on étudie le signe des fonctions $f_1(x) = 2x - 3$, et $f_2(x) = -4x + 5$. Cette étude a été faite dans les exemples plus haut, et on peut tout résumer dans un seul tableau :

Maintenant que l'on a découpé le travail, il suffit de se rappeler que :

- 1. Le produit de deux facteurs de même signe est positif
- 2. Le produit de deux facteurs de signe différent est négatif.

Donc, on peut résumer le signe de la fonction g sur \mathbb{R} par le tableau suivant :

```
import gm_tableaux;
defaultpen(fontsize(16pt));
string[][] tab={
    {"x", "-inf 1,25 1,5 +inf"},
    {"2x-3", " - | - 0 + "},
    {"-4x+5", " + 0 - | - "},
    {"(2x+3)(-4x+5)", " - 0 + 0 - "}};
picture tab=tabsgn(tab, ul=1.6, kx=1.7);

// le premier sens de variation est "décroissant", les suivants sont tels
// que les valeurs de y seront alternativement placées en haut et en bas.
add(tab);

shipout(bbox(2mm, Fill(white)));
```

Donc la fonction g est positive seulement sur l'intervalle [1,25;1,5], et elle est négative ailleurs. On peut confirmer cela à l'aide du graphe de cette fonction :

```
import mesFonctions;
defaultpen(fontsize(11pt));

unitsize(4cm, 4cm);

//show(defaultcoordsys);

real g (real x) {return (2*x-3)*(-4*x+5);}

xaxis("$x$",LeftTicks(Step=1, step=0.5),Arrow, xmin=0, xmax=2);
yaxis("$y$",RightTicks(NoZero, Step=2, step=1),Arrow, ymin = -3, ymax=0.5);

draw(graph(g, 0.75, 2));
shipout(bbox(2mm, Fill(white)));
```