CSCE 451/851 Homework 3

Assigned: Apr 5, 2020 Due: Apr 19, 2020 23:59:59 Submit: Upload to Canvas as PDF

100 points total

Problem 1 (40 points)

Consider the following set of processes:

Process Name	Arrival Time	Processing Time					
A	0	3					
В	1	5					
С	3	2					
D	9	5					
E	12	5					

Perform FCFS, RR (q = 4), SPN, SRT, on them and get the Finish Time and Turnaround Time for each process. For reference:

- FCFS: First Come First Served
- RR: Round Robin
- SPN: Shortest Process Next
- SRT: Shortest Remaining Time Next

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
FCFS																				
RR																				
SPN																				
SRT																				

Problem 2 (20 points)

Consider a computer with two processes, \mathbb{H} , with high priority, and \mathbb{L} , with low priority. The scheduling rules are such that \mathbb{H} is run whenever it is in ready state. At a certain moment, with \mathbb{L} in its critical region, \mathbb{H} becomes ready to run (e.g., an I/O operation completes). \mathbb{H} now begins busy waiting, but since \mathbb{L} is never scheduled with \mathbb{H} is running, \mathbb{L} never gets the chance to leave its critical region, so \mathbb{H} loops forever. This situation is sometimes referred to as the priority inversion problem.

If instead of priority scheduling, we use round-robin scheduling, will we encounter the same problem? Please explain your answer in detail.

Problem 3 (40 points)

Based on measurements, we know for a certain system the average process runs for a time X before blocking on I/O. It takes a time Y to do a process switch, which is effectively wasted (overhead). For round-robin scheduling with quantum Q, give a formula for the CPU efficiency for each of the following:

•
$$Q=\infty$$

- $\begin{array}{l} \bullet \quad Q > X \\ \bullet \quad Y < Q < X \\ \bullet \quad Q = Y \\ \bullet \quad Q \longrightarrow 0, Q \neq 0 \\ \end{array}$

NOTE: The CPU efficiency is the useful CPU time divided by the total CPU time.