

HackerRank

Day 7: Spearman's Rank Correlation Coefficient 🌣

23/27 challenges solved

Points: 23

Problem

Submissions

Leaderboard Editorial △

Tutorial

Spearman's Rank Correlation Coefficient

We have two random variables, $oldsymbol{X}$ and $oldsymbol{Y}$:

$$\bullet \ \ X=\{x_i,x_2,x_3,\ldots,x_n\}$$

•
$$Y = \{y_i, y_2, y_3, \dots, y_n\}$$

If \mathbf{Rank}_X and \mathbf{Rank}_Y denote the respective ranks of each data point, then the Spearman's rank correlation coefficient, r_s , is the Pearson correlation coefficient of **Rank**_X and **Rank**_Y.

Example

- $X = \{0.2, 1.3, 0.2, 1.1, 1.4, 1.5\}$
- $Y = \{1.9, 2.2, 3.1, 1.2, 2.2, 2.2\}$

$Rank_X$:

$$\left[\begin{array}{ccccccccc} X: & 0.2 & 1.3 & 0.2 & 1.1 & 1.4 & 1.5 \\ Rank: & 1 & 3 & 1 & 2 & 4 & 5 \end{array} \right]$$

So, Rank $X = \{1, 3, 1, 2, 4, 5\}$

Similarly, $\mathtt{Rank}_Y = \{2,3,4,1,3,3\}$

 r_s equals the Pearson correlation coefficient of ${
m Rank}_X$ and ${
m Rank}_Y$, meaning that $r_s=0.158114$.

Special Case: $oldsymbol{X}$ and $oldsymbol{Y}$ Don't Contain Duplicates

$$r_s = 1 - rac{6 \cdot \sum d_i^2}{n \cdot (n^2 - 1)}$$

Here, d_i is the difference between the respective values of \mathtt{Rank}_X and \mathtt{Rank}_Y .

Proof

Let's define P be the rank of X and Q be the rank of Y. Both P and Q are permutations of set $\{1,2,3,\ldots,n\}$, because data sets X and Y contain no duplicates in this special case.

Mean of P and Q:

$$\sum_i p_i = \sum_i q_i = rac{n\cdot (n+1)}{2}$$

$$\Rightarrow \mu_P = \mu_Q = \mu = rac{(n+1)}{2}$$

Standard Deviation of ${\it P}$ and ${\it Q}$:

ૡ૾

$$\sum_{i} (p_i - \mu_p)^2 = \sum_{i} (p_i - \mu)^2 = \sum_{i} p_i^2 - 2\mu \sum_{i} p_i + \mu^2 \sum_{i} 1 = rac{1}{12}$$

So,

$$\sigma_P = \sigma_Q = \sigma = \sqrt{rac{\sum_i \left(p_i - \mu_p
ight)^2}{n}} = \sqrt{rac{n^2 - 1}{12}}$$

Calculating $\sum_i d_i^2$:

$$\sum_i d_i^2 = \sum_i \left(p_i - q_i
ight)^2 = \sum_i p_i^2 - 2 \sum_i \left(p_i q_i
ight) + \sum_i q_i^2$$

We know that:

$$\sum_i p_i^2 = \sum_i q_i^2 = rac{n\cdot(n+1)\cdot(2n+1)}{6}$$

So,

$$\sum_i \left(p_i q_i
ight) = rac{n \cdot (n+1)(n^2+1)}{6} - rac{1}{2} \sum_i d_i^2 \, .$$

Covariance of P and Q:

$$extstyle egin{aligned} extstyle extstyle$$

 $n \cdot (n+1) \cdot (n^2+1)$ $1 \nabla d^2 = u (\nabla m + \nabla m) + u^2 \nabla d$

3/5

$$\Rightarrow ext{cov}(P,Q) = rac{rac{-\frac{1}{6} - rac{1}{2} \sum_i u_{ar{i}}^2 - \mu \left(\sum_i p_i + \sum_i q_i
ight) + \mu - \sum_i 1}{n}}{n}$$
 $\Rightarrow ext{cov}(P,Q) = rac{rac{n \cdot (n^2-1)}{12} - rac{1}{2} \sum_i d_i^2}{n}$

Spearman's Rank Correlation Coefficient:

We know that the Spearman's rank correlation coefficient (r_s) of X and Y is equal to the Pearson correlation coefficient of P and Q. So,

$$egin{align} r_s &= rac{ extstyle extstyle$$