Thème 5 – Théorème de Gauss

I- Sphère uniformément chargée

On considère une sphère de centre O et de rayon R, chargée uniformément en surface avec une densité σ .

- 1- À partir de considérations d'invariances et de symétries de la distribution de charges, caractériser le champ électrostatique $\vec{E}(M)$ créé en tout point M de l'espace.
- 2- Déduire du théorème de Gauss l'expression de $\vec{E}(M)$. Le champ est-il continu à la traversée de la sphère ?
- 3- Calculer le potentiel scalaire électrostatique V(M) en tout point M de l'espace avec $V(r \to +\infty) = 0$.

II- Cylindre uniformément chargé

On considère un cylindre droit d'axe (O, \vec{u}_z) et de rayon R, de longueur considérée infinie, chargée uniformément en volume avec une densité ρ .

- 1- À partir de considérations d'invariances et de symétries de la distribution de charges, caractériser le champ électrostatique $\vec{E}(M)$ créé en tout point M de l'espace.
- 2- Déduire du théorème de Gauss l'expression de $\vec{E}(M)$. Le champ est-il continu à la traversée du cylindre ?
- 3- Déduire des résultats précédents l'expression du champ $\vec{E}(M)$ créé par un fil rectiligne confondu avec l'axe (O, \vec{u}_{\cdot}) , de longueur considérée infinie, chargé uniformément avec une densité λ .

III- Nappe plane uniformément chargée

Une région de l'espace limitée par deux plans parallèles infinis distants de d contient une distribution de charges électriques dont la densité volumique ρ est uniforme. Le reste de l'espace est dépourvu de charges. L'axe (O, \vec{u}_z) est perpendiculaire aux deux plans situés en $z = \pm d/2$.

- 1- À partir de considérations d'invariances et de symétries de la distribution de charges, montrer que le champ électrostatique $\vec{E}(M)$ créé en tout point M de l'espace n'a qu'une composante non nulle et que celleci ne dépend que de la variable $z: \vec{E}(M) = E_z(z)\vec{u}_z$. Quelle est la valeur de $\vec{E}(M)$ dans le plan médian z=0? En déduire la parité de $E_z(z)$.
- 2- Déduire du théorème de Gauss l'expression de $\vec{E}(M)$ dans les trois régions de l'espace.
- 3- On fait tendre l'épaisseur d de la distribution de charges vers zéro tout en maintenant le produit ρd constant (conservation de la charge totale). Quelle est la densité superficielle σ de charges ? Mettre alors en évidence une discontinuité du champ électrique en présence d'une densité superficielle de charges.

IV- Noyaux d'atomes légers

Du point de vue du potentiel et du champ électrique qu'ils créent, les noyaux de certains atomes légers peuvent être modélisés par une distribution volumique de charge à l'intérieur d'une sphère de centre O et de rayon a, de densité $\rho(r) = \rho_0 \left(1 - \frac{r^2}{a^2}\right)$ où ρ_0 est une constante $(r \le a)$.

- 1- Exprimer la charge totale Q d'un noyau en fonction de a et ρ_0 .
- 2- À partir de considérations d'invariances et de symétries de la distribution de charges, caractériser le champ électrostatique $\vec{E}(M)$ créé en tout point M de l'espace. Que dire du champ en O? Justifier.
- 3- Déduire du théorème de Gauss l'expression de $\vec{E}(M)$.