Sensitivity of He Flames in X-ray Bursts to Nuclear Physics

Zhi Chen, Advisor: Mike Zingale

Stony Brook University

CeNAM Frontiers Meeting June 23, 2023

Introduction

Goals

- Study the dynamics of the propagating He flames in X-ray bursts via numerical simulation.
- Study the effects of various reaction networks.

Image credit: Anatoly Spitkovsky

Figure: An X-ray burst light curve from 4U 1728–34 [1]

Network: aprox13

Figure: Overview of aprox13, rates with condition: $\rho=10^6~{\rm g~cm^{-3}}$ and $T=2.0\times10^9~{\rm K}.$ Generated using pynucastro: https://github.com/pynucastro/pynucastro

- $(\alpha, p)(p, \gamma)$ approximation
- 13 isotopes, 31 rates

Network: subch full

Figure: Overview of subch full, rates with condition $\rho=10^6$ g cm $^{-3}$ and $T=2.0\times10^9$ K. Generated using pynucastro: https://github.com/pynucastro/pynucastro

- No $(\alpha, p)(p, \gamma)$ approximation
- Additional rates, such as $^{12}\text{C}(^{12}\text{C},p)^{23}\text{Na}$ to give complete representation on carbon and oxygen burning.
- Additional rates, 14 N(α, γ) 18 F(α, p) 21 Ne and 12 C(p, γ) 13 N(α, p) 16 O, discussed in Shen & Bildsten 2009 and Weinberg 2006 [2], [3].
- 28 isotopes, 107 rates

Network: subch full mod

Figure: Overview of subch full mod, rates with condition $\rho=10^6$ g cm⁻³ and $T=2.0\times10^9$ K. Generated using pynucastro:

https://github.com/pynucastro/pynucastro

- Identical to subch full but $^{12}C(p,\gamma)^{13}N(\alpha,p)^{16}O$ and its reverse rate are disabled.
- 27 isotopes, 103 rates

Network: subch simple

Figure: Overview of subch simple, rates with condition $\rho=10^6~{\rm g~cm^{-3}}$ and $T=2.0\times10^9$ K. Generated using pynucastro: https://github.com/pynucastro/pynucastro

- $(\alpha, p)(p, \gamma)$ approximation for heavy isotopes
- The reverse rates of all $^{12}\text{C} + ^{12}\text{C}$, $^{16}\text{O} + ^{16}\text{O}$, and $^{16}\text{O} + ^{12}\text{C}$ are removed.
- Forward and reverse rates of $^{12}{\rm C}+^{20}{\rm Ne}$, $^{23}{\rm Na}(\alpha,\gamma)^{27}{\rm Al}$, and $^{27}{\rm Al}(\alpha,\gamma)^{31}{\rm P}$ are removed
- 22 isotopes, 57 rates

General Numerical Settings

CASTRO

An adaptive mesh, astrophysical compressible hydrodynamics simulation code. Freely available at

https://github.com/AMReX-Astro/Castro.

Microphysics

Software that contains a collection of microphysics routines such as Equation of State and the RHS of reaction networks. Freely available at

https://github.com/AMReX-Astro/Microphysics.

General Simulation Domain

- 2-D r-z cylindrical coordinate system assuming azimuthal symmetry.
- Corotating Frame
- Pure ⁴He accretion layer

Initial Model

Figure: Initial temperature and density profile showing 1/3 of the full domain.

Results: Weighted T and \dot{e}_{nuc} Time Profiles

Figure: *Left*: The weighted temperature time profile. *Right*: The weighted nuclear energy generation rate time profile.

Results: Species Evolution Profiles

Figure: The evolution of the total mass for ¹²C, ¹⁶O, ²⁰Ne, ²⁴Mg, ²⁸Si, and ³²S.

Results: Front Position vs. Time

Figure: The flame front
position as a function time for
aprox13, subch full, subch
full mod, and subch
simple. Solid Lines: Data.
Dashed lines: fit

Name	v_{23} [km s ⁻¹]	v_{100} [km s ⁻¹]	t ₁₀ [s]
aprox13	$\textbf{3.369} \pm \textbf{0.016}$	$\textbf{5.234} \pm \textbf{0.027}$	0.7647
subch full	20.732 ± 0.284	5.411 ± 0.105	0.9917
subch full mod	3.468 ± 0.017	$\textbf{7.975} \pm \textbf{0.029}$	0.4873
subch simple	21.095 ± 0.332	5.521 ± 0.120	0.8483

Table: This table shows the instantaneous flame propagation speed at $t=23\,\mathrm{ms}$ and $t=100\,\mathrm{ms}$ calculated using the fitting function. t_{10} shows the expected time for the flame to reach $r=10\,\mathrm{km}$ using the fitting function.

Conclusion

Takeaways: Network Study

- $(\alpha, p)(p, \gamma)$ approximation continues to be an accurate approach in simulating thermonuclear flames propagations in XRBs.
- The 12 C(p, γ) 13 N(α ,p) 16 O is a critical alternative path for burning 12 C. At $T\gtrsim 10^9$ K, these reactions dominate over the triple- α and the slow α capture processes from 12 C to 16 O. This allows a depletion of 12 C, leading to a burst of energy and flame acceleration as temperature reaches $\sim 1.3 \times 10^9$ K.
- Flame speed is on the order of km/s and a simple estimate shows the rise time is on the order of \sim 1 second.
- subch_simple network proved to be the most effective. It is the smallest network that captures the initial acceleration of the propagating flame, which drastically alters the overall flame dynamics.

Acknowledgements

Current Group Members

- Mike Zingale
- Eric JohnsonAlex Smith Clark
- Simon Guichandut
- Khanak Bhargava
- Former Group Member

Former Group Members

- Kiran Eiden
- Max Katz
- Alice Harpole
- Donald Willcox

Funding

- The work at Stony Brook was supported by DOE/Office of Nuclear Physics grant DE-FG02-87ER40317.
- Supported by the Exascale Computing Project (17-SC-20-SC)
- Used resources of the NERSC under Contract No. DE-AC02-05CH11231.
- Used resources of the Oak Ridge Leadership Computing Facility under Contract No. DE-AC05-00OR22725.

References I

- [1] E. Strohmayer, W. Zhang, H. Swank, et al., "Millisecond x-ray variability from an accreting neutron star system," *The Astrophysical Journal Letters*, vol. 469, p. L9, Jan. 2009. DOI: 10.1086/310261.
- [2] K. J. Shen and L. Bildsten, "UNSTABLE HELIUM SHELL BURNING ON ACCRETING WHITE DWARFS," The Astrophysical Journal, vol. 699, no. 2, pp. 1365–1373, Jun. 2009. DOI: 10.1088/0004-637x/699/2/1365. [Online]. Available: https://doi.org/10.1088%2F0004-637x%2F699%2F2%2F1365.
- [3] N. N. Weinberg, L. Bildsten, and H. Schatz, "Exposing the Nuclear Burning Ashes of Radius Expansion Type I X-Ray Bursts,", vol. 639, no. 2, pp. 1018–1032, Mar. 2006. DOI: 10.1086/499426. arXiv: astro-ph/0511247 [astro-ph].

Network: Ā Comparison

Figure: Slice plots of the flame propagation comparing average atomic weight, \bar{A} , for aprox13 (top panel), subch full (second panel from top), subch full mod (third panel), and subch simple (last panel) at 50ms.

Network: \dot{e}_{nuc} Comparison

Figure: This figure shows 4 slice plots of the flame propagation comparing specific energy generation rate, \dot{e}_{nuc} , for <code>aprox13</code> (top panel), <code>subchfull</code> (second panel from top), <code>subchfull</code> mod (third panel), and <code>subchsimple</code> (last panel) at 50ms.