LAPORAN PRAKTIKUM STATISTIKA

(Dosen Pengampu: Fachrul Madrapriya, S.T., M.PSDA.)

Nama : Muhammad Rizal Nurfirdaus

NIM : 20230810161

Kelas : **TINFC-2023-04**

TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER UNIVERSITAS KUNINGAN

Pre Test

1. Bagaimana menurut pendapat Anda penerapan analisis factor pada ilmu komputer? Berikan contoh-contohnya!

Analisis Faktor adalah metode statistik yang digunakan untuk mengidentifikasi faktor-faktor yang mendasari variasi dalam data. Tujuannya adalah untuk menyederhanakan struktur data yang kompleks dengan menggambarkan faktor-faktor yang mendasarinya. Beberapa ahli, seperti Charles Spearman, Louis Leon Thurstone, dan Raymond Cattell, memiliki pandangan berbeda mengenai analisis faktor. Contoh penerapannya meliputi psikologi (identifikasi faktor kepribadian), pembelajaran komputer (faktor yang mempengaruhi pembelajaran komputer), dan ilmu komputer (performa sistem komputer, analisis data, dan pemrosesan citra).

Post Test

1. Buatlah analisis factor dengan data dari analisis kuesioner (pada modul 7)

Analisis:

Tabel diatas menunjukkan bahwa nilai KMO (Kaiser-Meyer-Olkin) sebesar 0,494, yang termasuk dalam kategori "Tidak Dapat Diterima," mengindikasikan bahwa analisis faktor mungkin tidak cocok untuk data ini karena kecukupan sampel yang tidak memadai. Namun, uji Bartlett menunjukkan nilai Chi-Square sekitar 96,576 dengan derajat kebebasan 45 dan signifikan pada p < 0,05 (nilai Sig. 0,000), menunjukkan bahwa terdapat hubungan yang signifikan antar variabel, sehingga analisis faktor bisa dianggap sesuai dari segi korelasi antar variabel. Secara keseluruhan, meskipun uji Bartlett mendukung kelayakan analisis faktor, nilai KMO yang sangat rendah mengindikasikan perlunya pengumpulan data lebih lanjut atau pengurangan variabel sebelum melanjutkan analisis faktor.

Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation	Rotation Sums of Squared Loadings		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	2.866	28.663	28.663	2.866	28.663	28.663	2.466	24.661	24.661
2	2.212	22.119	50.782	2.212	22.119	50.782	1.709	17.088	41.749
3	1.128	11.285	62.067	1.128	11.285	62.067	1.660	16.598	58.34
4	1.050	10.498	72.565	1.050	10.498	72.565	1.422	14.218	72.56
5	.933	9.333	81.897						
6	.614	6.143	88.041						
7	.485	4.854	92.895						
8	.364	3.639	96.534						
9	.229	2.293	98.826						
10	.117	1.174	100.000						

Analisis:

Tabel "Total Variance Explained" dari analisis komponen utama menunjukkan bahwa empat komponen utama pertama menjelaskan 72,565% dari variansi total dalam data. Sebelum rotasi, komponen pertama menjelaskan 28,663%, kedua 22,119%, ketiga 11,285%, dan keempat 10,498%. Setelah rotasi, distribusi variansi menjadi lebih merata: komponen pertama menjelaskan 24,661%, kedua 17,088%, ketiga 16,598%, dan keempat 14,218%. Hal ini menunjukkan bahwa struktur data dapat dijelaskan secara signifikan oleh empat faktor utama, yang meningkatkan interpretabilitas dan memberikan dasar yang kuat untuk analisis lebih lanjut atau pengambilan keputusan.

Analisis:

Scree Plot dari analisis komponen utama menunjukkan bahwa empat komponen pertama memiliki eigenvalue di atas 1, mengindikasikan bahwa mereka signifikan dalam menjelaskan variansi data. Setelah komponen ke-4, eigenvalues menurun drastis dan grafik mendatar, menunjukkan kontribusi minimal dari komponen selanjutnya. Titik lutut yang jelas setelah komponen ke-4 mengindikasikan bahwa menambah lebih banyak komponen tidak memberikan informasi tambahan yang signifikan. Oleh karena itu, mempertahankan empat komponen utama cukup untuk menangkap struktur data yang signifikan.

Rotated Component Matrix^a

		Compo	nent	
	1	2	3	4
Butir8	.833			
Butir7	.759	.406		
Butir2	.742			
Butir3	.679	392		
Butir5		805		
Butir6		.691		
Butir10			.887	
Butir9			.834	
Butir1				823
Butir4		.398		.731

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 6 iterations.

Analisis:

Tabel matriks komponen yang telah diputar menunjukkan nilai loading setiap item pada empat komponen setelah rotasi dalam analisis faktor. Metode ekstraksi yang digunakan adalah Principal Component Analysis, dan metode rotasi adalah Varimax dengan Normalisasi Kaiser. Nilai loading mengindikasikan sejauh mana item-item (Butir) berkontribusi pada komponen yang terkait. Meskipun tabel ini tidak memberikan hasil korelasi yang dapat diinterpretasikan, perlu diperhatikan bahwa interpretasi lebih lanjut memerlukan analisis lebih mendalam.

Tugas

1. Dari studi <u>kasus yang telah Anda buat</u>, Buatlah variable (pertanyaan)_minimal 20 dan lengkapi dengan skala pengukuran kemudian analisis dengan metode faktor atau buat studi kasus baru seperti contoh praktikum yang telah dipaparkan yang berhubungan dengan Teknik Informatika

Factor Analysis KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .736 Bartlett's Test of Sphericity Approx. Chi-Square 1602.013 df 190 Sig. .000

Analisis:

Tabel matriks komponen yang telah diputar menunjukkan hasil dari KMO (Kaiser-Meyer-Olkin) dan Uji Bartlett. Nilai KMO sebesar 0,736, menunjukkan tingkat yang cukup baik untuk analisis faktor. Uji Bartlett menunjukkan bahwa korelasi antara item-item dalam data set cukup besar untuk melakukan analisis faktor. Dengan nilai signifikansi sebesar 0,000, kita dapat menyimpulkan bahwa korelasi antara item-item memadai untuk analisis faktor. Informasi ini relevan dalam statistik untuk menentukan apakah data set cocok untuk deteksi struktur melalui analisis faktor.

		Initial Eigenvalu	ies	Extractio	n Sums of Square	ed Loadings	Rotation Sums of Squared Loading		
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	4.655	23.276	23.276	4.655	23.276	23.276	4.599	22.994	22.994
2	4.541	22.705	45.981	4.541	22.705	45.981	4.506	22.532	45.52
3	3.310	16.548	62.530	3.310	16.548	62.530	2.535	12.676	58.20
4	1.795	8.974	71.503	1.795	8.974	71.503	2.004	10.020	68.22
5	1.224	6.118	77.622	1.224	6.118	77.622	1.704	8.518	76.73
6	1.006	5.030	82.651	1.006	5.030	82.651	1.182	5.912	82.65
7	.875	4.376	87.028						
8	.772	3.858	90.885						
9	.437	2.186	93.071						
10	.295	1.474	94.545						
11	.250	1.250	95.795						
12	.212	1.059	96.854						
13	.138	.689	97.543						
14	.124	.621	98.164						
15	.111	.554	98.719						
16	.090	.450	99.169						
17	.076	.378	99.547						
18	.050	.250	99.797						
19	.023	.115	99.912						
20	.018	.088	100.000						

Analisis:

Analisis **Total Variance Explained** menunjukkan bagaimana setiap komponen utama (principal component) berkontribusi terhadap variabilitas dalam data. Dalam tabel yang diberikan, **Komponen 1** memiliki eigenvalue awal sebesar **4.655**, menjelaskan **23.276%** dari varians dengan persentase kumulatif **23.276**. Analisis serupa berlaku untuk **Komponen 2** hingga **Komponen 17**, dengan nilai-nilai yang semakin kecil menunjukkan kontribusi yang lebih rendah terhadap variabilitas dalam dataset ini. Baris terakhir menunjukkan bahwa setelah ekstraksi, semua komponen secara total menjelaskan **100%** varians. Ini memberikan wawasan tentang komponen mana yang paling signifikan dalam menjelaskan variasi dalam dataset.

Analisis:

Grafik Scree Plot menunjukkan nilai eigen pada komponen-komponen utama. Komponen pertama memiliki nilai eigen yang tinggi, dan kemudian menurun tajam hingga sekitar komponen ketiga. Setelah itu, nilai eigen cenderung datar hingga komponen ke-20. Titik "siku" pada grafik menandai jumlah komponen yang sebaiknya dipertahankan, yang dalam kasus ini terjadi sekitar komponen ketiga. Oleh karena itu, kita dapat mempertimbangkan mempertahankan tiga komponen utama . Grafik ini digunakan dalam analisis faktor untuk menentukan berapa banyak komponen yang harus dipertahankan dalam model statistik.

		nent	Compo			
6	5	4	3	2	1	
					.975	5
					.956	18
					.953	7
					.949	9
					.945	11
				.984		3
				.969		20
				.916		15
				.906		14
				.883		13
			.904			6
			.888			8
	.397		.644			10
		.956				1
		.953				4
	.811					12
	.782		.342			2
	432					17
						19
			.471			16

Analisis:

Tabel "Rotated Component Matrix" yang Anda berikan merupakan hasil dari analisis statistik menggunakan metode **Principal Component Analysis** (**PCA**) dengan rotasi **Varimax** dan normalisasi **Kaiser**. Tabel ini berisi nilai-nilai yang menggambarkan hubungan antara variabel asli dan komponen yang dihasilkan. Terdapat 6 komponen yang mungkin mewakili pola dalam data. Proses rotasi konvergen dalam 9 iterasi. Namun, tanpa informasi lebih lanjut tentang konteks dan tujuan analisis ini, sulit untuk memberikan kesimpulan yang lebih mendalam.

2. Dari analisis faktor di atas, kami dapat menyimpulkan dan memberikan nama untuk masing-masing faktor sebagai berikut:

1. KMO (Kaiser-Meyer-Olkin) dan Uji Bartlett:

- Nilai KMO sebesar 0,736 menunjukkan tingkat yang cukup baik untuk analisis faktor.
- Uji Bartlett menunjukkan bahwa korelasi antara item-item dalam dataset cukup besar untuk melakukan analisis faktor. Nilai signifikansi sebesar 0,000 menandakan bahwa korelasi antara item-item memadai untuk analisis faktor. Informasi ini relevan dalam statistik untuk menentukan apakah dataset cocok untuk deteksi struktur melalui analisis faktor.

2. Analisis Total Variance Explained:

- Menunjukkan kontribusi setiap komponen utama terhadap variabilitas dalam data
- o Komponen 1 memiliki eigenvalue awal sebesar 4,655, menjelaskan 23,276% dari varians dengan persentase kumulatif 23,276.
- Analisis serupa berlaku untuk Komponen 2 hingga Komponen 17, dengan nilai-nilai yang semakin kecil menunjukkan kontribusi yang lebih rendah terhadap variabilitas dalam dataset ini.
- Setelah ekstraksi, semua komponen secara total menjelaskan 100% varians. Ini memberikan wawasan tentang komponen mana yang paling signifikan dalam menjelaskan variasi dalam dataset.

3. Grafik Scree Plot:

- o Menunjukkan nilai eigen pada komponen-komponen utama.
- Komponen pertama memiliki nilai eigen yang tinggi, kemudian menurun tajam hingga sekitar komponen ketiga.
- o Setelah itu, nilai eigen cenderung datar hingga komponen ke-20.
- Titik "siku" pada grafik menandai jumlah komponen yang sebaiknya dipertahankan, dalam kasus ini sekitar komponen ketiga. Oleh karena itu, kita dapat mempertimbangkan mempertahankan tiga komponen utama.

4. Tabel "Rotated Component Matrix":

- Hasil dari analisis statistik menggunakan metode Principal Component Analysis (PCA) dengan rotasi Varimax dan normalisasi Kaiser.
- o Terdapat 6 komponen yang mungkin mewakili pola dalam data.
- o Proses rotasi konvergen dalam 9 iterasi.
- o Tanpa informasi lebih lanjut tentang konteks dan tujuan analisis ini, sulit untuk memberikan kesimpulan yang lebih mendalam.