ECS289: Scalable Machine Learning

Cho-Jui Hsieh UC Davis

Oct 1, 2015

Outline

- Convex vs Nonconvex Functions
- Coordinate Descent
- Gradient Descent
- Newton's method
- Stochastic Gradient Descent

Numerical Optimization

Numerical Optimization:

$$\min_X f(X)$$

- Can be applied to computer science, economics, control engineering, operating research, . . .
- Machine Learning: find a model that minimizes the prediction error.

Properties of the Function

• Smooth function: a function has continuous derivative.

Example: ridge regression

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{2} \| X \boldsymbol{w} - \mathbf{y} \|^2 + \frac{\lambda}{2} \| \boldsymbol{w} \|^2$$

• Non-smooth function: Lasso, primal SVM

Lasso:
$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{2} \|X\boldsymbol{w} - \boldsymbol{y}\|^2 + \lambda \|\boldsymbol{w}\|_1$$

SVM: $\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{i=1}^{n} \max(0, 1 - y_i \boldsymbol{w}^T \boldsymbol{x}_i) + \frac{\lambda}{2} \|\boldsymbol{w}\|^2$

Convex Functions

A function is convex if:

$$\forall x_1, x_2, \forall t \in [0, 1], f(tx_1 + (1 - t)x_2) \le tf(x_1) + (1 - t)f(x_2)$$

No local optimum (why?)

Figure from Wikipedia

Convex Functions

- If f(x) is twice differentiable, then f is convex if and only if $\nabla^2 f(x) \succeq 0$
- Optimal solution may not be unique: has a set of optimal solutions ${\cal S}$
- Gradient: capture the first order change of f:

$$f(\mathbf{x} + \alpha \mathbf{d}) = f(\mathbf{x}) + \alpha \nabla f(\mathbf{x})^{\mathsf{T}} \mathbf{d} + O(\alpha^2)$$

• If f is differentiable, we have the following optimality condition:

$${m x}^* \in {\mathcal S}$$
 if and only if $abla f({m x}) = 0$

Strongly Convex Functions

• f is strongly convex if there exists a m > 0 such that

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{m}{2} \|\mathbf{y} - \mathbf{x}\|_2^2$$

- A strongly convex function has a unique global optimum x^* (why?)
- If *f* is twice differentiable, then

$$f$$
 is strongly convex if and only if $\nabla^2 f(\mathbf{x}) \succ ml > 0$ for all \mathbf{x}

 Gradient descent, coordinate descent will converge linearly (will see later)

Nonconvex Functions

- If f is nonconvex, most algorithms can only converge to stationary points
- \bar{x} is a stationary point if and only if $\nabla f(\bar{x}) = 0$
- Three types of stationary points:
 - (1) Global optimum (2) Local optimum (3) Saddle point
- Example: matrix completion, neural network, ...
- Example: $f(x,y) = \frac{1}{2}(xy a)^2$

Coordinate Descent

Coordinate Descent

- Update one variable at a time
- Coordinate Descent: repeatedly perform the following loop

Step 1: pick an index i

Step 2: compute a step size δ^* by (approximately) minimizing

$$\underset{\delta}{\operatorname{argmin}} f(\boldsymbol{x} + \delta \boldsymbol{e}_i)$$

Step 3:
$$x_i \leftarrow x_i + \delta^*$$

Coordinate Descent (update sequence)

- Three types of updating order:
- Cyclic: update sequence

$$\underbrace{x_1, x_2, \dots, x_n}_{\text{1st outer iteration}}$$
, $\underbrace{x_1, x_2, \dots, x_n}_{\text{2nd outer iteration}}$, ...

- A more general setting: update each variable at least once within every T steps
- Randomly permute the sequence for each outer iteration (faster convergence in practice)

Coordinate Descent (update sequence)

- Three types of updating order:
- Cyclic: update sequence

$$X_1, X_2, \dots, X_n$$
, X_1, X_2, \dots, X_n , ... 1st outer iteration 2nd outer iteration

- A more general setting: update each variable at least once within every T steps
- Randomly permute the sequence for each outer iteration (faster convergence in practice)
- Random: each time pick a random coordinate to update
 - Typical way: sample from uniform distribution
 - Sample from uniform distribution vs sample from biased distribution
 P. Zhao and T. Zhang, Stochastic Optimization with Importance Sampling for Regularized Loss Minimization. In
 - ICML 2015

 D. Csiba, Z. Qu and P. Richtarik, Stochastic Dual Coordinate Ascent with Adaptive Probabilities. In ICML 2015

Greedy Coordinate Descent

- Greedy: choose the most "important" coordinate to update
- How to measure the importance?
 - By first derivative: $|\nabla_i f(\mathbf{x})|$
 - By first and second derivative: $|\nabla_i f(\mathbf{x})/\nabla_{ii}^2 f(\mathbf{x})|$
 - By maximum reduction of objective function

$$i^* = \underset{i=1,...,n}{\operatorname{argmax}} \left(f(\mathbf{x}) - \min_{\delta} f(\mathbf{x} + \delta \mathbf{e}_i) \right)$$

- Need to consider the time complexity for variable selection
- Useful for kernel SVM (see lecture 6)

Extension: block coordinate descent

• Variables are divided into blocks $\{\mathcal{X}_1, \dots, \mathcal{X}_p\}$, where each \mathcal{X}_i is a subset of variables and

$$\mathcal{X}_1 \cup \mathcal{X}_2, \dots, \mathcal{X}_p = \{1, \dots, n\}, \quad \mathcal{X}_i \cap \mathcal{X}_j = \varphi, \quad \forall i, j$$

- Each time update a \mathcal{X}_i by (approximately) solving the subproblem within the block
- Example: alternating minimization for matrix completion (2 blocks). (See lecture 7)

Coordinate Descent (convergence)

- Converge to an optimum if $f(\cdot)$ is convex and smooth
- Has a linear convergence rate if $f(\cdot)$ is strongly convex
- Linear convergence: error $f(\mathbf{x}^t) f(\mathbf{x}^*)$ decays as

$$\beta, \beta^2, \beta^3, \dots$$

for some $\beta < 1$.

• Local linear convergence: an algorithm converges linearly after $\|\mathbf{x} - \mathbf{x}^*\| \le K$ for some K > 0

Coordinate Descent (nonconvex)

Block coordinate descent with 2 blocks:

converges to stationary points

• With > 2 blocks:

converges to stationary points if each subproblem has a unique minimizer.

Coordinate Descent: other names

- Alternating minimization (matrix completion)
- Iterative scaling (for log-linear models)
- Decomposition method (for kernel SVM)
- Gauss Seidel (for linear system when the matrix is positive definite)
- ...

Gradient Descent

Gradient Descent

Gradient descent algorithm: repeatedly conduct the following update:

$$\mathbf{x}^{t+1} \leftarrow \mathbf{x}^t - \alpha \nabla f(\mathbf{x}^t)$$

where $\alpha > 0$ is the step size

• It is a fixed point iteration method:

$$\mathbf{x} - \alpha \nabla f(\mathbf{x}) = \mathbf{x}$$
 if and only if \mathbf{x} is an optimal solution

• Step size too large \Rightarrow diverge; too small \Rightarrow slow convergence

Gradient Descent: successive approximation

• At each iteration, form an approximation of $f(\cdot)$:

$$f(\mathbf{x}^t + \mathbf{d}) \approx \tilde{f}_{\mathbf{x}^t}(\mathbf{d}) := f(\mathbf{x}^t) + \nabla f(\mathbf{x}^t)^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T (\frac{1}{\alpha} \mathbf{I}) \mathbf{d}$$
$$= f(\mathbf{x}^t) + \nabla f(\mathbf{x}^t)^T \mathbf{d} + \frac{1}{2\alpha} \mathbf{d}^T \mathbf{d}$$

- ullet Update solution by $oldsymbol{x}^{t+1} \leftarrow oldsymbol{x}^t + \operatorname{argmin}_{oldsymbol{d}} ilde{f}_{oldsymbol{x}^t}(oldsymbol{d})$
- $\mathbf{d}^* = -\alpha \nabla f(\mathbf{x}^t)$ is the minimizer of $\operatorname{argmin}_{\mathbf{d}} \tilde{f}_{\mathbf{x}^t}(\mathbf{d})$
- d^* may not decrease the original objective function f

Gradient Descent: successive approximation

• However, the function value will decrease if

Condition 1:
$$\tilde{f}_{\mathbf{x}}(\mathbf{d}) \geq f(\mathbf{x} + \mathbf{d})$$
 for all \mathbf{d} Condition 2: $\tilde{f}_{\mathbf{x}}(\mathbf{0}) = f(\mathbf{x})$

Why?

$$f(\mathbf{x}^t + \mathbf{d}^*) \le \tilde{f}_{\mathbf{x}^t}(\mathbf{d}^*)$$

 $\le \tilde{f}_{\mathbf{x}^t}(\mathbf{0})$
 $= f(\mathbf{x}^t)$

- \bullet Condition 2 is satisfied by construction of $\tilde{f}_{\mathbf{x}^t}$
- Condition 1 is satisfied if $\frac{1}{\alpha}I \succeq \nabla^2 f(\mathbf{x})$ for all \mathbf{x} (why?)

Gradient Descent: step size

A function has L-Lipchitz continuous gradient if

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L\|\mathbf{x} - \mathbf{y}\| \quad \forall \mathbf{x}, \mathbf{y}$$

• If f is twice differentiable, this implies

$$\nabla^2 f(\mathbf{x}) \leq LI \quad \forall \mathbf{x}$$

- \bullet In this case, Condition 2 is staisfied if $\alpha \leq \frac{1}{L}$
- Theorem: gradient descent converges if $\alpha \leq \frac{1}{L}$
- **Theorem:** gradient descent converges linearly with $\alpha \leq \frac{1}{L}$ if f is strongly convex

Gradient Descent

- In practice, we do not know L.....
- ullet Step size lpha too large: the algorithm diverges
- \bullet Step size α too small: the algorithm converges very slowly

Gradient Descent: line search

- d^* is a "descent direction" if and only if $(d^*)^T \nabla f(\mathbf{x}) < 0$
- Armijo rule bakctracking line search: Try $\alpha = 1, \frac{1}{2}, \frac{1}{4}, \dots$ until it staisfies

$$f(\mathbf{x} + \alpha \mathbf{d}^*) \le f(\mathbf{x}) + \gamma \alpha (\mathbf{d}^*)^T \nabla f(\mathbf{x})$$

where 0 $< \gamma < 1$

Gradient Descent: line search

- Gradient descent with line search:
 - Converges to optimal solutions if f is smooth
 - Converges linearly if f is strongly convex
- ullet However, each iteration requires evaluating f several times
- Several other step-size selection approaches
 (an ongoing research topic, especially for stochastic gradient descent)

Gradient Descent: applying to ridge regression

Input: $X \in \mathbb{R}^{N \times d}$, $\mathbf{y} \in \mathbb{R}^N$, initial $\mathbf{w}^{(0)}$ Output: Solution $\mathbf{w}^* := \operatorname{argmin}_{\mathbf{w}} \frac{1}{2} \|X\mathbf{w} - \mathbf{y}\|^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$

- 1: t = 0
- 2: while not converged do
- 3: Compute the gradient

$$\mathbf{g} = X^{\mathsf{T}}(X\mathbf{w} - \mathbf{y}) + \lambda \mathbf{w}$$

- 4: Choose step size α^t
- 5: Update $\mathbf{w} \leftarrow \mathbf{w} \alpha^t \mathbf{g}$
- 6: $t \leftarrow t + 1$
- 7: end while

Time complexity: O(nnz(X)) per iteration

Proximal Gradient Descent

• How can we apply gradient descent to solve the Lasso problem?

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{2} \| X \boldsymbol{w} - \boldsymbol{y} \|^2 + \lambda \underbrace{\| \boldsymbol{w} \|_1}_{non-differentiable}$$

• General composite function minimization:

$$\underset{\boldsymbol{x}}{\operatorname{argmin}} f(\boldsymbol{x}) := \{g(\boldsymbol{x}) + h(\boldsymbol{x})\}$$

where g is smooth and convex, h is convex but may be non-differentiable

Usually assume h is simple (for computational efficiency)

Proximal Gradient Descent: successive approximation

• At each iteration, form an approximation of $f(\cdot)$:

$$f(\mathbf{x}^t + \mathbf{d}) \approx \tilde{f}_{\mathbf{x}^t}(\mathbf{d}) := g(\mathbf{x}^t) + \nabla g(\mathbf{x}^t)^T \mathbf{d} + \frac{1}{2} \mathbf{d}^T (\frac{1}{\alpha} \mathbf{l}) \mathbf{d} + h(\mathbf{x}^t + \mathbf{d})$$
$$= g(\mathbf{x}^t) + \nabla g(\mathbf{x}^t)^T \mathbf{d} + \frac{1}{2\alpha} \mathbf{d}^T \mathbf{d} + h(\mathbf{x}^t + \mathbf{d})$$

- ullet Update solution by $oldsymbol{x}^{t+1} \leftarrow oldsymbol{x}^t + \operatorname{argmin}_{oldsymbol{d}} ilde{f}_{oldsymbol{x}^t}(oldsymbol{d})$
- This is called "proximal" gradient descent
- ullet Sometimes $oldsymbol{d}^* = \operatorname{argmin}_{oldsymbol{d}} ilde{f}_{oldsymbol{x}^t}(oldsymbol{d})$ has a closed form solution

Proximal Gradient Descent: ℓ_1 -regularization (*)

• The subproblem:

$$\begin{aligned} \boldsymbol{x}^{t+1} = & \boldsymbol{x}^t + \underset{\boldsymbol{d}}{\operatorname{argmin}} \nabla g(\boldsymbol{x}^t)^T \boldsymbol{d} + \frac{1}{2\alpha} \boldsymbol{d}^T \boldsymbol{d} + \lambda \| \boldsymbol{x}^t + \boldsymbol{d} \|_1 \\ = & \underset{\boldsymbol{u}}{\operatorname{argmin}} \frac{1}{2} \| \boldsymbol{u} - (\boldsymbol{x}^t - \alpha \nabla g(\boldsymbol{x}^t)) \|^2 + \lambda \alpha \| \boldsymbol{u} \|_1 \\ = & \mathcal{S}(\boldsymbol{x}^t - \alpha \nabla g(\boldsymbol{x}^t), \alpha \lambda), \end{aligned}$$

where \mathcal{S} is the soft-thresholding operator defined by

$$S(a,z) = \begin{cases} a-z & \text{if } a > z \\ a+z & \text{if } a < -z \\ 0 & \text{if } a \in [-z,z] \end{cases}$$

Proximal Gradient: soft-thresholding

Figure from http://jocelynchi.com/soft-thresholding-operator-and-the-lasso-solution/

Proximal Gradient Descent for Lasso

Input: $X \in \mathbb{R}^{N \times d}$, $\mathbf{y} \in \mathbb{R}^N$, initial $\mathbf{w}^{(0)}$ Output: Solution $\mathbf{w}^* := \operatorname{argmin}_{\mathbf{w}} \frac{1}{2} \|X\mathbf{w} - \mathbf{y}\|^2 + \lambda \|\mathbf{w}\|_1$

- 1: t = 0
- 2: while not converged do
- 3: Compute the gradient

$$\mathbf{g} = X^T (X \mathbf{w} - \mathbf{y})$$

- 4: Choose step size α^t
- 5: Update $\mathbf{w} \leftarrow \mathcal{S}(\mathbf{w} \alpha^t \mathbf{g}, \alpha^t \lambda)$
- 6: $t \leftarrow t + 1$
- 7: end while

Time complexity: O(nnz(X)) per iteration

Iteratively conduct the following updates:

$$\mathbf{x} \leftarrow \mathbf{x} - \alpha \nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x})$$

where α is the step size

• If $\alpha = 1$: converges quadratically when \mathbf{x}^t is close enough to \mathbf{x}^* :

$$\|\mathbf{x}^{t+1} - \mathbf{x}^*\| \le K \|\mathbf{x}^t - \mathbf{x}^*\|^2$$

for some constant K. This means the error $f(\mathbf{x}^t) - f(\mathbf{x}^*)$ decays quadratically:

$$\beta, \beta^2, \beta^4, \beta^8, \beta^{16}, \dots$$

 Only need few iterations to converge in this "quadratic convergence region"

However, Newton's update rule is more expensive than gradient descent/coordinate descent

- Need to compute $\nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x})$
- Closed form solution: $O(d^3)$ for solving a d dimensional linear system
- Usually solved by another iterative solver:

```
gradient descent
coordinate descent
conjugate gradient method
```

- Useful for the cases where the quadratic subproblem can be solved more efficiently than the original problem
- Examples: primal L2-SVM/logistic regression, ℓ_1 -regularized logistic regression, . . .

• At each iteration, form an approximation of $f(\cdot)$:

$$f(\mathbf{x}^t + \mathbf{d}) \approx \tilde{f}_{\mathbf{x}^t}(\mathbf{d}) := f(\mathbf{x}^t) + \nabla f(\mathbf{x}^t)^T \mathbf{d} + \frac{1}{2\alpha} \mathbf{d}^T \nabla^2 f(\mathbf{x}) \mathbf{d}$$

- ullet Update solution by $oldsymbol{x}^{t+1} \leftarrow oldsymbol{x}^t + \operatorname{argmin}_{oldsymbol{d}} ilde{f}_{oldsymbol{x}^t}(oldsymbol{d})$
- ullet When $oldsymbol{x}$ is far away from $oldsymbol{x}^*$, needs line search to gaurantee convergence
- Assume $LI \succeq \nabla^2 f(\mathbf{x}) \succeq mI$ for all \mathbf{x} , then $\alpha \leq \frac{m}{L}$ gaurantee the objective function value deacrease because

$$\frac{L}{m}\nabla^2 f(\mathbf{x}) \succeq \nabla^2 f(\mathbf{y}) \ \forall \mathbf{x}, \mathbf{y}$$

• In practice, we often just use line search.

Proximal Newton (*)

- What if f(x) = g(x) + h(x) and h(x) is non-smooth $(h(x) = ||x||_1)$?
- At each iteration, form an approximation of $f(\cdot)$:

$$f(\mathbf{x}^t + \mathbf{d}) \approx \tilde{f}_{\mathbf{x}^t}(\mathbf{d}) := g(\mathbf{x}^t) + \nabla g(\mathbf{x}^t)^T \mathbf{d} + \frac{\alpha}{2} \mathbf{d}^T \nabla^2 g(\mathbf{x}) \mathbf{d} + h(\mathbf{x} + \mathbf{d})$$

- ullet Update solution by $oldsymbol{x}^{t+1} \leftarrow oldsymbol{x}^t + \operatorname{argmin}_{oldsymbol{d}} ilde{f}_{oldsymbol{x}^t}(oldsymbol{d})$
- Need another iterative solver for solving the subproblem

Stochastic Gradient: Motivation

- Widely used for machine learning problems (with large number of samples)
- Given training samples x_1, \ldots, x_n , we usually want to solve the following empirical risk minimization (ERM) problem:

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{i=1}^{n} \ell_{i}(\boldsymbol{x}_{i}),$$

where each $\ell_i(\cdot)$ is the loss function

Minimize the summation of individual loss on each sample

Assume the objective function can be written as

$$f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$$

• Stochastic gradient method:

Iterative conducts the following updates

- ① Choose an index *i* (uniform) randomly
- $\eta^t > 0$ is the step size

Assume the objective function can be written as

$$f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$$

Stochastic gradient method:

Iterative conducts the following updates

- 1 Choose an index i (uniform) randomly
- $\eta^t > 0$ is the step size
- Why does SG work?

$$E_i[\nabla f_i(\mathbf{x})] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}) = \nabla f(\mathbf{x})$$

Assume the objective function can be written as

$$f(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} f_i(\mathbf{x})$$

• Stochastic gradient method:

Iterative conducts the following updates

- 1 Choose an index i (uniform) randomly
- $\eta^t > 0$ is the step size
- Why does SG work?

$$E_i[\nabla f_i(\mathbf{x})] = \frac{1}{n} \sum_{i=1}^n \nabla f_i(\mathbf{x}) = \nabla f(\mathbf{x})$$

- Is it a fixed point method? No if $\eta > 0$ because $\mathbf{x}^* \eta \nabla_i f(\mathbf{x}^*) \neq \mathbf{x}^*$
- Is it a descent method? No, because $f(\mathbf{x}^{t+1}) < f(\mathbf{x}^t)$

- Step size η has to decay to 0
 (e.g., η^t = Ct^{-a} for some constant a, C)
 Many variants proposed recently (SVRG, SAGA, ...)
- Widely used in online setting

Objective function:

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{w}^{T} \boldsymbol{x}_{i} - y_{i})^{2} + \lambda \|\boldsymbol{w}\|^{2}$$

- How to write as $\operatorname{argmin}_{\boldsymbol{w}} \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{w})$?
- How to decompose into *n* components?

Objective function:

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{w}^{T} \boldsymbol{x}_{i} - y_{i})^{2} + \lambda \|\boldsymbol{w}\|^{2}$$

- How to write as $\operatorname{argmin}_{\boldsymbol{w}} \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{w})$?
- First approach: $f_i(\mathbf{w}) = (\mathbf{w}^T \mathbf{x}_i y_i)^2 + \lambda ||\mathbf{w}||^2$
- Update rule:

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^{t} - 2\eta^{t} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i}) \mathbf{x}_{i} - 2\eta^{t} \lambda \mathbf{w}$$
$$= (1 - 2\eta^{t} \lambda) \mathbf{w} - 2\eta^{t} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i}) \mathbf{x}_{i}$$

Objective function:

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{w}^{T} \boldsymbol{x}_{i} - y_{i})^{2} + \lambda \|\boldsymbol{w}\|^{2}$$

- How to write as $\operatorname{argmin}_{\boldsymbol{w}} \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{w})$?
- First approach: $f_i(\mathbf{w}) = (\mathbf{w}^T \mathbf{x}_i y_i)^2 + \lambda ||\mathbf{w}||^2$
- Update rule:

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^{t} - 2\eta^{t} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i}) \mathbf{x}_{i} - 2\eta^{t} \lambda \mathbf{w}$$
$$= (1 - 2\eta^{t} \lambda) \mathbf{w} - 2\eta^{t} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i}) \mathbf{x}_{i}$$

• Need O(d) complexity per iteration even if data is sparse

Objective function:

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{w}^{T} \boldsymbol{x}_{i} - y_{i})^{2} + \lambda \|\boldsymbol{w}\|^{2}$$

- How to write as $\operatorname{argmin}_{\boldsymbol{w}} \frac{1}{n} \sum_{i=1}^{n} f_i(\boldsymbol{w})$?
- First approach: $f_i(\mathbf{w}) = (\mathbf{w}^T \mathbf{x}_i y_i)^2 + \lambda ||\mathbf{w}||^2$
- Update rule:

$$\mathbf{w}^{t+1} \leftarrow \mathbf{w}^{t} - 2\eta^{t} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i}) \mathbf{x}_{i} - 2\eta^{t} \lambda \mathbf{w}$$
$$= (1 - 2\eta^{t} \lambda) \mathbf{w} - 2\eta^{t} (\mathbf{w}^{T} \mathbf{x}_{i} - y_{i}) \mathbf{x}_{i}$$

- Need O(d) complexity per iteration even if data is sparse
- Solution: store $\mathbf{w} = s\mathbf{v}$ where s is a scalar

Objective function:

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{w}^{T} \boldsymbol{x}_{i} - y_{i})^{2} + \lambda \|\boldsymbol{w}\|^{2}$$

Second approach:

define
$$\Omega_i = \{j \mid X_{ij} \neq 0\}$$
 for $i = 1, ..., n$
define $n_j = |\{i \mid X_{ij} \neq 0\}|$ for $j = 1, ..., d$
define $f_i(\mathbf{w}) = (\mathbf{w}^T \mathbf{x}_i - y_i)^2 + \sum_{j \in \Omega_i} \frac{\lambda n}{n_i} w_j^2$

• Objective function:

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (\boldsymbol{w}^{T} \boldsymbol{x}_{i} - y_{i})^{2} + \lambda \|\boldsymbol{w}\|^{2}$$

Second approach:

define
$$\Omega_i = \{j \mid X_{ij} \neq 0\}$$
 for $i = 1, ..., n$
define $n_j = |\{i \mid X_{ij} \neq 0\}|$ for $j = 1, ..., d$
define $f_i(\mathbf{w}) = (\mathbf{w}^T \mathbf{x}_i - y_i)^2 + \sum_{j \in \Omega_i} \frac{\lambda n}{n_i} w_j^2$

• Update rule when selecting index i:

$$w_j^{t+1} \leftarrow w_j^t - 2\eta^t (\mathbf{x}_i^T \mathbf{w}^t - y_i) X_{ij} - \frac{2\eta^t \lambda n}{n_i} w_j^t, \quad \forall j \in \Omega_i$$

• Solution: update can be done in $O(|\Omega_i|)$ operations

Coming up

• Next class: Parallel Optimization Methods

Questions?