Edge And Corner Detection

Introduction to Computational Photography: EECS 395/495

Northwestern University

What Are Edges?

Rapid changes in image intensity within small region

Edge Detection

Convert a 2D Image into a Set of Curves

Topics:

- (1) Theory of Edge Detection
- (2) Edge Detection Using Gradients
- (3) Edge Detection Using Laplacian
- (4) Canny Edge Detector
- (5) Harris Corner Detector

Causes of Edges

Edges are caused by a variety of factors

Surface Normal Discontinuity

Depth Discontinuity

Surface Color Discontinuity

Illumination Discontinuity

Types of Edges

Real Edges

Problems: Noisy Images and Discrete Images

Edge Detector

We want an Edge Operator that produces:

- Edge Position
- Edge Magnitude (Strength)
- Edge Orientation (Direction)

Crucial Requirements:

- High Detection Rate
- Good Localization
- Robust to Noise

1D Edge Detection

Edges are rapid changes in image brightness in a small region.

Calculus 101: Derivative of a continuous function represents the amount of change in the function.

Edge Detection Using 1st Derivative

Provides Both Location and Strength of an Edge

2D Edge Detection

Edges are rapid changes in image brightness in a small region.

Calculus 101: Partial Derivatives of a 2D continuous function represents the amount of change along each dimension.

Gradient (7)

Gradient (Partial Derivative) Represents the Direction of Most Rapid Change in Intensity

$$\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right]$$

Pronounced as "Del I"

$$\nabla I = \left[\frac{\partial I}{\partial x}, 0 \right]$$

$$\nabla I = \left[0, \frac{\partial I}{\partial y}\right]$$

$$\nabla I = \left[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \right]$$

Gradient (7) as Edge Detector

Gradient Magnitude
$$S = \|\nabla I\| = \sqrt{\left(\frac{\partial I}{\partial x}\right)^2 + \left(\frac{\partial I}{\partial y}\right)^2}$$

Gradient Orientation
$$\theta = \tan^{-1} \left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x} \right)$$

Discrete Gradient (7) Operator

Finite difference approximations:

$$\frac{\partial I}{\partial x} \approx \frac{1}{2\varepsilon} \left(\left(I_{i+1,j+1} - I_{i,j+1} \right) + \left(I_{i+1,j} - I_{i,j} \right) \right)$$

$$\frac{\partial I}{\partial v} \approx \frac{1}{2\varepsilon} \left(\left(I_{i+1,j+1} - I_{i+1,j} \right) + \left(I_{i,j+1} - I_{i,j} \right) \right)$$

$$\begin{array}{c|c} I_{i,j+1} & I_{i+1,j+1} \\ \hline \\ I_{i,j} & I_{i+1,j} \end{array}$$

Can be implemented as Convolution!

$$\frac{\partial}{\partial x} \approx \frac{1}{2\varepsilon} \begin{vmatrix} -1 & 1 \\ -1 & 1 \end{vmatrix}$$

$$\frac{\partial}{\partial x} \approx \frac{1}{2\varepsilon} \begin{vmatrix} -1 & 1 \\ -1 & 1 \end{vmatrix} \qquad \frac{\partial}{\partial y} \approx \frac{1}{2\varepsilon} \begin{vmatrix} 1 & 1 \\ -1 & -1 \end{vmatrix}$$

Note: Convolution flips have been applied

Comparing Gradient (7) Operators

Gradient	Roberts	Prewitt	Sobel (3x3)	Sobel (5x5)
$\frac{\partial I}{\partial x}$	0 1 -1 0	-1 0 1 -1 0 1 -1 0 1	-1 0 1 -2 0 2 -1 0 1	-1 -2 0 2 1 -2 -3 0 3 2 -3 -5 0 5 3 -2 -3 0 3 2
$\frac{\partial I}{\partial y}$	1 0 0 -1	1 1 1 0 0 0 -1 -1 1	1 2 1 0 0 0 -1 -2 -1	-1 -2 0 2 1 1 2 3 2 1 2 3 5 3 2 0 0 0 0 0 -2 -3 -5 -3 -2 -1 -2 -3 -2 -1

Good Localization

Noise Sensitive Poor Detection

Poor Localization Less Noise Sensitive Good Detection

Gradient (7) Using Sobel Filter

Image (I)

 $\partial I/\partial x$

 $\partial I/\partial y$

Gradient Magnitude

Edge Thresholding

Standard: (Single Threshold T)

$$\|\nabla I(x,y)\| < T$$
 Definitely Not an Edge

$$\|\nabla I(x,y)\| \ge T$$
 Definitely an Edge

Hysteresis Based: (Two Thresholds $T_0 < T_1$)

$$\|\nabla I(x,y)\| < T_0$$
 Definitely Not an Edge

$$\|\nabla I(x,y)\| \ge T_1$$
 Definitely an Edge

$$T_0 \le \|\nabla I(x,y)\| < T_1$$
 Is an Edge if a Neighboring Pixel if Definitely an Edge

Sobel Edge Detector

 $\overline{\text{Image}}(I)$

 $\partial I/\partial x$

 $\partial I/\partial y$

Gradient Magnitude

Thresholded Edge

Edge Detection Using 2nd Derivative

First Derivative:

Second Derivative:

Local Extrema Indicate Edges

Zero-Crossings Indicate Edges

Provides Only the Location of an Edge

Laplacian (∇^2) as Edge Detector

Laplacian: Sum of Pure Second Derivatives

$$\nabla^2 I = \frac{\partial^2 I}{\partial x^2} + \frac{\partial^2 I}{\partial y^2}$$

Pronounced as "Del Square I"

"Zero-Crossings" in Laplacian of an image represent edges

Discrete Laplacian(72) Operator

Finite difference approximations:

$$\frac{\partial^{2} I}{\partial x^{2}} \approx \frac{1}{\varepsilon^{2}} \left(I_{i-1,j} - 2I_{i,j} + I_{i+1,j} \right)$$

$$\frac{\partial^{2} I}{\partial y^{2}} \approx \frac{1}{\varepsilon^{2}} \left(I_{i,j-1} - 2I_{i,j} + I_{i,j+1} \right)$$

$$\nabla^{2} I = \frac{\partial^{2} I}{\partial x^{2}} + \frac{\partial^{2} I}{\partial y^{2}}$$

$$I_{i-1,j+1}$$
 $I_{i,j+1}$ $I_{i+1,j+1}$
 $I_{i-1,j}$ $I_{i,j}$ $I_{i+1,j}$
 $I_{i+1,j-1}$ $I_{i+1,j-1}$

Convolution Mask:

Accurate)

Laplacian Edge Detector

Image (I)

Laplacian (0 maps to 128)

Laplacian "Zero Crossings"

Effects of Noise

Where is the edge??

Solution: Gaussian Smooth First

f

 n_{σ}

 $|n_{\sigma}*f|$

 $\nabla(n_{\sigma}*f)$

Derivative of Gaussian $(\nabla(n_{\sigma}))$

$$\nabla(n_{\sigma}*f) = \nabla(n_{\sigma})*f$$
 ...saves us one operation.

Laplacian of Gaussian ($\nabla^2 n_{\sigma}$ or $\nabla^2 G$)

 $abla^2(n_\sigma * f) =
abla^2(n_\sigma) * f$... saves us one operation.

Gradient

VS.

Laplacian

Derivative of Gaussian (∇G)

Laplacian of Gaussian $(\nabla^2 G)$

Inverted "Sombrero" (Mexican Hat)

$$\frac{\partial^2}{\partial x^2}(n_{\sigma}) + \frac{\partial^2}{\partial y^2}(n_{\sigma})$$

Gradient vs. Laplacian

Provides location, magnitude and direction of the edge	Provides only location of the edge
Detection using Maxima	Detection based on
Thresholding	Zero-Crossing
Non-linear operation.	Linear Operation.
Requires two convolutions.	Requires only one convolution.

An operator that has the best of both?

Canny Edge Detector

- Smooth Image with 2D Gaussian: $n_{\sigma}*I$
- Compute Image Gradient using Sobel Operator: $\nabla n_{\sigma} * I$
- Find Gradient Magnitude at each pixel: $|\nabla n_{\sigma} * I|$
- Find Gradient Orientation at each Pixel:

$$\widehat{\boldsymbol{n}} = \frac{\nabla n_{\sigma} * I}{|\nabla n_{\sigma} * I|}$$

• Compute Laplacian along the Gradient Direction \hat{n} at each pixel

$$\frac{\partial^2(n_\sigma*I)}{\partial \hat{\boldsymbol{n}}^2}$$

Canny Edge Detector

- Smooth Image with 2D Gaussian: $n_{\sigma}*I$
- Compute Image Gradient using Sobel Operator: $\nabla n_{\sigma} * I$
- Find Gradient Magnitude at each pixel: $|\nabla n_{\sigma} * I|$
- Find Gradient Orientation at each Pixel:

$$\widehat{\boldsymbol{n}} = \frac{\nabla n_{\sigma} * I}{|\nabla n_{\sigma} * I|}$$

• Compute Laplacian along the Gradient Direction \hat{n} at each pixel

$$\frac{\partial^2(n_\sigma*I)}{\partial \hat{\boldsymbol{n}}^2}$$

 $\overline{\partial}\widehat{\pmb{n}}^2$ Find Zero Crossings in Laplacian to find the edge location

Canny Edge Detector

- Smooth Image with 2D Gaussian: $n_{\sigma}*I$
- Compute Image Gradient using Sobel Operator: $\nabla n_{\sigma} * I$
- Find Gradient Magnitude at each pixel: $|\nabla n_{\sigma} * I|$
- Find Gradient Orientation at each Pixel:

$$\widehat{\boldsymbol{n}} = \frac{\nabla n_{\sigma} * I}{|\nabla n_{\sigma} * I|}$$

• Compute Laplacian along the Gradient Direction \hat{n} at each pixel

$$\frac{\partial^2(n_\sigma*I)}{\partial \hat{\boldsymbol{n}}^2}$$

 Find Zero Crossings in Laplacian to find the edge location

Canny Edge Detector Results

Image

$$\sigma = 2$$

$$\sigma = 1$$

 $\sigma = 4$

Edge Illusions: Hering Illusion

Ewald Hering, 1861

Edge Illusions: Café Wall Illusion

Richard Gregory, 1979

Corners

Corner: Point where Two Edges Meet. i.e., Rapid Changes of Image Brightness in Two Directions within a Small Region

"Flat" Region

"Edge" Region

"Corner" Region

Image Gradients

$$I_{x} = \frac{\partial I}{\partial x}$$

$$I_{y} = \frac{\partial I}{\partial y}$$

Distribution of Image Gradients

Distribution of I_x and I_y is different for all three regions.

Fitting Elliptical Disk to Distribution

Distribution of I_x and I_y is different for all three regions.

Fitting Elliptical Disk to Distribution

 λ_1 : Length of Semi-Major Axis

 λ_2 : Length of Semi-Minor Axis

Fitting an Elliptical Disk

Length of Semi-Major Axis = $\lambda_1 = E_{max}$ Length of Semi-Minor Axis = $\lambda_2 = E_{min}$

Fitting an Elliptical Disk

Second Moments at each pixel:

$$a = \sum_{i \in W} (I_{x_i}^2)$$

$$a = \sum_{i \in W} (I_{x_i}^2) \qquad b = 2 \sum_{i \in W} (I_{x_i} I_{y_i})$$

$$c = \sum_{i \in W} (I_{y_i}^2)$$

Ellipse Axes Lengths:

$$\lambda_1 = E_{max} = \frac{1}{2} \left[a + c + \sqrt{b^2 + (a - c)^2} \right]$$

$$\lambda_2 = E_{min} = \frac{1}{2} \left[a + c - \sqrt{b^2 + (a - c)^2} \right]$$

Interpretation of λ_1 and λ_2

 $\lambda_1 \sim \lambda_2$ Both are Small

 $\lambda_1\gg\lambda_2 \ \lambda_1$ is Large λ_2 is Small

 $\lambda_1 \sim \lambda_2$ Both are Large

Harris Corner Response Function

Flat: $\lambda_1 \sim \lambda_2$ λ_1 and λ_2 are small.

$$R = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2$$

where: $0.04 \le k \le 0.06$ (Designed Empirically)

[Harris1988]

Harris Corner Response Function

Flat: $\lambda_1 \sim \lambda_2$ λ_1 and λ_2 are small.

$$\lambda_1$$

$$R = \lambda_1 \lambda_2 - k(\lambda_1 + \lambda_2)^2$$

where: $0.04 \le k \le 0.06$ (Designed Empirically)

Harris Corner Detection Example

Image

Detected Corners

Corner Response R

Corner Response R > T

Harris Corner Detection Example

Image

Detected Corners

Corner Response R

Corner Response R > T

Corner Illusions: The Bulge

Kiyoshi Kitaoka, 1998

References

Textbooks:

Robot Vision (Chapter 8) Horn, B. K. P., MIT Press

Computer Vision: A Modern Approach (Chapter 8) Forsyth, D and Ponce, J., Prentice Hall

Digital Image Processing (Chapter 3) González, R and Woods, R., Prentice Hall

Papers:

[Canny1986] Canny, J., A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

[Harris1988] Harris, C. and Stephens, M., A combined corner and edge detector. Proceedings of the 4th Alvey Vision Conference. pp. 147–151.

[Marr1980] Marr, D. and Hildreth, E., Theory of Edge Detection," Proc. R. Soc. London, B 207, 187-217, 1980.

Image Credits

- I.1 Adapted from Fig 3.1, Nalwa, V., A Guided Tour of Computer Vision.
- I.2 Adapted from Fig 3.3, Nalwa, V., A Guided Tour of Computer Vision.
- I.3 Matlab Demo Image
- I.4 http://en.wikipedia.org/wiki/File:Caf%C3%A9_wall.svg
- I.5 http://www.michaelbach.de/ot/geom_KitaokaBulge/index.html
- I.6 Matlab Demo Image