LDA, Decision Trees, and Extra Trees on the MNIST and Yale B Datasets

Kudiyar Orazymbetov, Nico Casale

NCSU

2017/04/23

outline

- 1 introduction
- 2 decision trees
- 3 extra trees
- 4 linear discriminant analysis (LDA)
- 5 results
- 6 conclusion

motivation

0

o applications:

datasets

Modified Nat'l Institute of Standards and Technology (MNIST) database

o source: Yann LeCun et al. [1]

C

Yale Exended Face Database B

source: Yale University [2]

0

- 1 introduction
- 2 decision trees
- 3 extra trees
- 4 linear discriminant analysis (LDA)
- 5 results
- 6 conclusion

decision trees

training decision trees

recursive training algorithm:

- 1. check stopping conditions
 - no more features
 - set is smaller than minLeaf
 - all samples in the same class
 - no feature improves information gain (IG)
- 2. iterate over each available feature, perform a line search to approximate the highest IG
- 3. recur over the subsets given by splitting at the feature and threshold with the highest IG

$$IG(X) = H(X) - \sum_{i=1}^{2} \frac{|S_i|}{|X|} H(S_i)$$
 (1)

$$H(X) = -\sum_{i=1}^{n} P(x_i) \log_2 P(x_i)$$
(2)

- 1 introduction
- 2 decision trees
- 3 extra trees
- 4 linear discriminant analysis (LDA)
- 5 results
- 6 conclusion

extra trees

recursive random tree

- 1. check stopping conditions
 - no more features
 - set is smaller than minLeaf
 - all samples in the same class
- 2. choose random feature. simply use the raw pixels as features.
- 3. find the mean and variance of this feature across the set. generate a random value from a normal distribution with this mean and variance.
- 4. recur on the subsets obtained by splitting the parent set on the randomly chosen feature and threshold

ensemble of random trees votes on test data to build extra-tree classifier

- 1 introduction
- 2 decision trees
- 3 extra trees
- 4 linear discriminant analysis (LDA)
- 5 results
- 6 conclusion

- 1 introduction
- 2 decision trees
- 3 extra trees
- 4 linear discriminant analysis (LDA)
- 5 results
- 6 conclusion

results

best performance

algorithm	MNIST	Yale B
LDA	13.5%	6.8%
decision tree	16.6%	57.9%
extra-trees	4.9%	34%

5-fold cross-validated performance

algorithm	MNIST	Yale B
LDA	14.5%	2.5%
decision Tree	17.9%	74.9%
extra-trees	5.4%	36.3%

conclusion

- o intuition and heuristics needed for each algorithm
- o choice of algorithm depends on features of interest
- o future work:
 - alternative distance metrics
 - normalize input data
 - parallelize algorithms

references

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

Yale face database b.

thanks!