ALGEBRA 2 HONORS PRECALCULUS

FREEBIE!

FIGMINGO Moth

Thanks for downloading my product!

Be sure to follow me for new products, free items and upcoming sales.

www.teacherspayteachers.com/Store/Jean-Adams
www.flamingomath.com
www.pinterest.com/jeanfaye/

LOGARITHMIC SHUFFLE

Here is a FREE focused practice to help students solve basic logarithmic expressions and equations. Simply copy the activity on one sheet and the solution set on another page. Students can work cooperatively or alone. They will glue or tape the cards on the solution page. There is rigor in the exercise to challenge your brightest students.

Visit my store for more products for your ALGEBRA 2, PRECALCULUS, and AP CALCULUS students.

I appreciate your comments, suggestions, and ideas.

Logarithmic Expressions Shuffle

Directions: Cut out each puzzle piece, find the sides that have matching expressions for each logarithm. Then, glue them onto this page Block #6 is marked as correct for a place to start.

6	

Copy cards on a separate sheet of paper to cut and paste.

$\begin{array}{ c c c c }\hline & 2/3 & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & $	$\log_{x} \frac{1}{25} = -\frac{2}{3}$ $\log_{x} \frac{1}{25} = -\frac{2}{3}$ $\log_{7} 7^{4}$	$1/2$ $\log_x 27 = \frac{3}{4}$	log 100 4 4 4 1 1 1 1 1 1 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\log_x 64 = 3$ 07 6 07 6 07 08 07 08 09 09 09 09 09 09 09 09	$ \log_3 243 = x $	log 1000 S 8 S 8 -2/3
81	$\log_6 x = 3$	log ₈ 1	5 2
10 m d log ₃ 27	0 OF log ₆ 6 ¹⁰	$\log_{\sqrt{2}} \frac{1}{4} = x$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Logarithmic Expressions Shuffle

Directions: Move each piece in the puzzle until every side has a matching expression for the logarithms. Block #6 is in the correct location.

ANSWER KEY

Court !	5	CALLEY STOP			4-16-F-16-F-16-F-16-F-16-F-16-F-16-F-16-	IX SAME	· · · · · · · · · · · · · · · · · · ·	Bet Marine Sales	The State of	A STATE OF THE STATE OF	48 11
	8	4		$\log_3 243 = x$		5		log 1000		Ì	
log 0.00001	5	$\log_x \sqrt{5} = \frac{1}{4}$	25	7	$\log_6 x = 3$	216	12	$\log_x 3 = -2$	$\sqrt{3}/3$	8	$\log_{25} 5$
	216			4			log ₈ 4			-2/3	
$\log_6 x = 3$			lo	$g_x 64 =$	3		2/3	1 6	1	$\log_{\frac{1}{8}} 4 =$	$x \mid$
-5	10	$\log_6 6^{10}$	10	6	log ₉ 27	3/2	1	$_{ m B} = \chi = -1$	$\sqrt{2}$	13	\ \
0					1	og ₁₂ 12		1	log ₂₅ 5	ĺ	
	log ₈ 1		l	og _{1/2} 32			1	×		1/2	
	log ₈ 1	9	$\log_{\sqrt{2}} 8$	og _{1/2} 32	49	$g_x 7 = \frac{1}{2}$		32 =	гv	3	$g_5 x = 4$
].		9			Ì			II			$^{3}_{5}$ $^{\chi}=$
	$ \begin{array}{c} 11 \\ og_{\sqrt{2}} \frac{1}{4} = \\ -4 \end{array} $	9 = x	$\log_{\sqrt{2}} 8$	15 125	2	$\log_x 7 =$	14	32 =		3	$^{3}_{5}$ $^{\chi}=$
log 100	$ \begin{array}{c} 11 \\ og_{\sqrt{2}} \frac{1}{4} = \\ -4 \end{array} $	9	$\log_{\sqrt{2}} 8$	15	49	$\log_x 7 =$	1 4 12	32 =		$g_x 27 = \frac{1}{2}$	$^{3}_{5}$ $^{\chi}=$

FLAMINGO MATH

Let's Connect . . .

I have a passion and drive to create rigorous, engaging lessons of the highest quality for teachers and students.

My products include guided notes, <u>Foldables</u>, <u>SmartBoard®</u> Lessons, games, activities, homework, assessments, and so much more. My resources are focused on three courses for your honors students.

Algebra 2, Pre-Calculus, and Calculus.

Earn credit toward future purchases:

Go to your **My Purchases** page on Teachers Pay Teachers. Look for the **Provide Feedback** button beside each purchase. Click it and you will be taken to a page where you can leave a short comment and a rating for the product. I truly value your feedback and insight. It helps me create new products and improve on existing items to meet your needs and help students succeed.

Thanks, I appreciate your support!

Thank you for downloading my product! I appreciate your patronage. Please feel free to email me at jean@flamingomath.com with any questions, concerns, or special requests you might have.

Terms of Use

© 2012-2016 Jean Adams - Flamingo Math, LLC

All rights reserved. This product is for your **personal classroom use only** and is not transferrable. This license is not intended for use by organizations or multiple users, including but not limited to schools, multiple teachers within a grade level, or school districts. If you would like to share this product with your colleagues or department, please purchase additional licenses from my store at a discounted price.

Copying any part of this publication and posting the product on the Internet in any form, including classroom and/or personal websites, social media, or network drives is strictly prohibited. Violations are subject to penalties of the Digital Millennium Copyright Act (DMCA).

Thank you for respecting my work!

A special thanks to these gifted artists:

