PROBLEM:

Write a program to compute the perimeter and area of a polygon using an input data file and an output file. A file **lab4.c** is provided with some of the print statements in it.

- It is your responsibility to read the Power Point files:
 - o C-3 Characters ControlStructures.pptx, #20-57 on the various Ifs and Switch
 - C-4 Loops.pptx, #1-24
 - Ask any needed questions in class

To get the files you need, first move to your csc60 directory: cd csc60

The following command will create a directory named **lab4** and put all the needed files into it below your csc60 directory.

Type: cp -R /gaia/home/faculty/bielr/files_csc60/lab4 .

Spaces needed: (1) After the cp

↑ space & dot

- (2) After the -R
- (3) After the directory name at the end & before the dot.

After the files are in your account and you are still in **csc60**, you need to type: **chmod 755 lab4** This will give permissions to the directory.

Next move into lab4 directory [cd lab4], and type: chmod 644 lab4*.*

This will give permissions to the files.

Your new lab4 directory should now contain: lab4.c, lab4.dat, lab4sample.dat

INPUT/OUTPUT DESCRIPTION:

- The **test data** will be a file called **lab4sample.dat**. Use it to verify the correctness of your program. It has 3 sets of data.
- The **final data** will be a file called **lab4.dat**. It has 6 sets of data.
- Each line or record of the file will consist of two numbers: the radius and the number of sides of the polygon.
- Print your name and assignment (use fprintf)
- Use an *fscanf* statement in a *while* loop to repeatedly get each set of values. It would be a good idea to make these variable type *double*.
- The output will be a file, lab4.out. The output of the sample data will follow.

FORMULAS

• Remember to translate the algebra of the two formulas into the C language.

Perimeter of the polygon = $2n R \sin PI$

n

Area of the polygon = $\frac{1}{2}$ n R² sin $\frac{2 \text{ PI}}{2 \text{ PI}}$

n

DATA FILES:

There are two data files:

- lab4sample.dat Use it to verify the correctness of your program
- lab4.dat

ALGORITHM DEVELOPMENT:

Open the data file **lab4sample.dat** or **lab4.dat**Do the appropriate error checking

Open the output file **lab4.out**Do the appropriate error checking

Print your name and assignment. Then print the column header lines needed. (use fprintf)

while ((fscanf(..., &radius, &nsides)) == 2)

- Compute the perimeter and area of the polygon.
- _ fprintf the radius, nsides, perimeter, and area as in the Defined Output Appearance.

Close the two files

VIEWING OUTPUT

When you run the program, the whole thing is going to **lab4.out**. Open that file to see your output. Use either "cat" or "vim".

REMINDERS:

- Include your name and lab4 in your comment block, and in your output.
- All numeric variables are to be type **double**.
- Most of the print and fprintf statements are included in lab4.c for you. You need to write the fprintf in the loop.
- The input file name, which will be changed, ought to be in a #define statement. The file will come with two #define statements, for the test file and the final file. Just move the // from in front of one #define statement to the other #define statement.

#define INFILE lab4sample.dat

// #define INFILE lab4.dat

- FOR THE VALUE OF PI, use **M_PI** from math.h (which we already have included).
- To compile, you will need to add **-Im** so math.h can be found. Type: **gcc -Im lab4.c**

<u>DEFINED OUTPUT APPEARANCE (using lab4sample.out)</u>:

Your Name. Lab 4.

Radius	Number	Perimeter	Area Of
	Of Sides	Of Polygon	Polygon
12.60	24.00	78.9422	493.0813
5.60	8.00	34.2884	88.6995
7.85	12.00	48.7615	184.8675

PREPARE YOUR FILE FOR GRADING:

Make sure your program has been corrected from: using **lab4sample.dat** to using **lab4.dat** and has been re-complied.

When all is well and correct,

at the prompt, type: **script StudentName_lab4.txt** [Script will keep a log of your session.]

At the prompt, type: **gcc -lm lab4.c** to compile the code to run the program

At the prompt, type: **cat lab4.out** to show contents of the output file

After the program run is complete,

type: **exit** to leave the script session

Turn in your completed session:

Go to Canvas and turn in two files:

1. lab4.c

2. StudentName lab4.txt