Notes of 141A Solid State Physics

hebrewsnabla

2019年1月12日

目录

0	Rev	iew	3
	0.1	Atoms	3
	0.2	Bonding	3
		0.2.1 Covalent	3
		0.2.2 vdW Bonds	4
		0.2.3 Ionic Bonding	4
		0.2.4 Metallic Bonding	4
1	Crys	stal Structure	4
	1.1	definition	5
2	Wav	e Diffraction and Reciprocal Lattice	7
	2.1	reciprocal lattice	7
	2.2	diffraction	8
4	Pho	nons I. Crystal Vibrations	9
5	Pho	nons II. Thermal Properties	1
	5.1	Phonon Heat Capacity	. 1
	5.2	Anharmonic Crystal Interactions / Thermal Expansion	2
	5.3	Thermal Conductivity	2
	5.4	Sommerfeld Model	.3
	5.5	Heat Capacity	.3

ö	Free	Electron Fermi Gas	14
	6.1	Electrical Conductivity and Ohm's Law	14
	6.2	Motion in Magnetic Fields	14
		6.2.1 Hall Effect	14
	6.3	AC Conductivity	14
	6.4	Complex Dielectric Function	15

vibrations, phonon conductivity magnetism, spin many-body physics, superconductivity

0 Review

0.1 Atoms

$$\hat{\mathbf{H}} = -\frac{1}{2}\nabla^2 - \frac{1}{r} \tag{0.1}$$

0.2 Bonding

- -covalent
- -ionic
- -vdW
- -metallic

0.2.1 Covalent

 H_2

$$\hat{\mathbf{H}} = -\frac{1}{2}\nabla^2 - \frac{1}{r_A} - \frac{1}{r_B} \tag{0.2}$$

$$\hat{\mathbf{H}}\Psi = E\Psi \tag{0.3}$$

use variational principle

$$\Phi = C_A \Psi_A + C_B \Psi_B \tag{0.4}$$

$$\langle H \rangle = \langle \Phi | \, \hat{\mathbf{H}} \, | \Phi \rangle$$

$$= \langle C_A \Psi_A + C_B \Psi_B | \, \hat{\mathbf{H}} \, | C_A \Psi_A + C_B \Psi_B \rangle$$

$$= \cdots$$

$$(0.5)$$

$$E = \frac{\langle \Phi | \hat{\mathbf{H}} | \Phi \rangle}{\langle \Phi \rangle \Phi} \tag{0.6}$$

$$\frac{\partial \Phi}{\partial C_A} = 0 \quad \frac{\partial \Phi}{\partial C_B} = 0 \tag{0.7}$$

$$\begin{pmatrix} H_{AA} - E & H_{AB} - ES \\ H_{AB} - ES & H_{BB} - E \end{pmatrix} \begin{pmatrix} C_A \\ C_B \end{pmatrix} = 0$$
 (0.8)

0.2.2 vdW Bonds

dipole interaction

$$\mathbf{E}_{dipole} \propto \frac{1}{r^3} \tag{0.9}$$

$$\mathbf{P}_{induced} \propto \mathbf{E}$$
 (0.10)

thus

$$U_{dipole} \propto \mathbf{E} \cdot \mathbf{P} \propto -\frac{1}{r^6}$$
 (0.11)

 $\begin{array}{l} \text{repulsive} \propto \frac{1}{r^1 2} \\ \text{L-J potential} \ \dots \end{array}$

0.2.3 Ionic Bonding

electropositive atom – low ionization potential (电离能) electronegative atom – large electron affinity (电子亲和性)

E.g. NaCl

$$Na - E_I = 5.1eV, Cl - E_A = 3.6eV$$

Charge transfer -7.9eV

total 5.1 - 3.6 - 7.9

$$U_{ij} = \pm \frac{e^2}{4\pi\epsilon + 0r_{ij}} + \frac{B}{r_{ij}^2}$$
 (0.12)

0.2.4 Metallic Bonding

Cu, Ag, Au – extended covalent bonds ion cohesion

1 Crystal Structure

"diamond" crystal

FCC lattice - Cu

1.1 definition

Bravais Lattice

- 1. infinite set of points so that everything looks the same no matter where you stand
- 2. set of points defined by $\mathbf{r}_n = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$

primitive cell: smallest periodic space filling volume

E.g. CuO₂ layers

1 dot / unit cell

Wigner Seitz unit cell

symmetry of crystals: mapping that returns original lattice

- translational
- rotational
- inversion
- reflection

bravais 14 lattice

array of descrete points generated by translational operations

$$\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \dots \tag{1.1}$$

where \mathbf{a}_i lattice translation vectors

- 1. triclinic 2 三方
- 2. monoclinic 2
- 3. orthorhumbic 4
- 4. tetragonal 2
- 5. cubic 3

simple cubic 简单立方

face-centered cubic / FCC / 面心立方

- Cu, Ag, Au, Ni, Al (soft metals); NaCl; Diamond, Si, Ge
 - body-centered cubic / BCC / 体心立方
- Fe, V, Ta, Nb, W, Mo, Cr (brittle except Ta)

6. trigonal - 1

7. hexagonal - 1

Index Crystal Planes: Miller Indices crystals of inert atoms
L-J potential

$$U(r) = \dots (1.2)$$

first term: phenomenological repulsive potential to account for Pauli exclusion second term: attractive potential due to spontaneous induced dipole.

Ionic crystals

$$U_{tot} = N(z\lambda e^{-\frac{q}{\rho}} - \frac{\alpha q^2}{R})$$
(1.3)

z – coordination number of the lattice $\alpha = \sum_{j} \frac{(\pm)}{p_{ij}}$ – Madelung Cons.

2 Wave Diffraction and Reciprocal Lattice

Periodicity is important – band gap, diffraction

2.1 reciprocal lattice

for 1D lattice, $\{\mathbf{T}\} = \{ja\hat{\mathbf{x}}\}.$ Suppose n(x) is the elec density thus n(x) = n(x+T)

. . .

$$n(x) = \sum_{j} n_j e^{ig_j x}$$
(2.1)

where $g_j = \frac{2\pi}{\lambda_j}$ since $\lambda_j = \frac{a}{j}$

$$g_j = \frac{2\pi}{a}j\tag{2.2}$$

aka reciprocal lattice vectors.

$$\int_0^a n(x) e^{-g'_j x} dx$$

$$= n'_j a + \sum_{j \neq j'} \int_0^a n_j e^{\frac{2\pi}{a} (j-j')x} dx$$
(2.3)

$$= n'_i a$$

$$n_j = \frac{1}{a} \int_0^a n(x) e^{-g_j x} dx$$
 (2.4)

Generalize to 3D

$$n(\mathbf{r}) = \sum_{\mathbf{G}} n_{\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}}$$
 (2.5)

$$\mathbf{G} = \nu_1 \mathbf{b}_1 + \nu_2 \mathbf{b}_2 + \nu_3 \mathbf{b}_3 \tag{2.6}$$

$$n(\mathbf{r}) = n(\mathbf{r} + \mathbf{T}) \tag{2.7}$$

$$\mathbf{T} = u_1 \mathbf{a}_1 + u_2 \mathbf{a}_2 + u_3 \mathbf{a}_3 \tag{2.8}$$

$$\mathbf{G} \cdot \mathbf{T} = 2\pi n \tag{2.9}$$

2.2 diffraction

Bragg Law ...

diffraction

picture ...

$$\mathbf{E}_T = \mathbf{E}_1 + \mathbf{E}_2 \tag{2.10}$$

$$\mathbf{k} = \frac{2\pi}{\lambda}\hat{\mathbf{n}}, \, \mathbf{k}' = \frac{2\pi}{\lambda}\hat{\mathbf{n}'}$$

$$\Delta r = \mathbf{r} \cdot \hat{\mathbf{n}} - \mathbf{r} \cdot \hat{\mathbf{n}}' \tag{2.11}$$

$$\Delta \phi = \mathbf{r} \cdot k \hat{\mathbf{n}} - \mathbf{r} \cdot k \hat{\mathbf{n}'} = \mathbf{r} \cdot (\mathbf{k} - \mathbf{k'})$$
 (2.12)

$$I = |\mathbf{E}_{1} + \mathbf{E}_{2}|^{2}$$

$$= \left| \int \mathbf{E} d^{3} \mathbf{r} \right|^{2}$$

$$\propto \left| \int n(\mathbf{r}) e^{i\Delta\phi} d^{3} \mathbf{r} \right|^{2}$$

$$\propto \left| \int n(\mathbf{r}) e^{i\mathbf{r} \cdot (\mathbf{k} - \mathbf{k}')} d^{3} \mathbf{r} \right|^{2}$$
(2.13)

the amplitude

$$F_{k'k} = \int n(\mathbf{r}) e^{i\mathbf{r} \cdot (\mathbf{k} - \mathbf{k}')} d^{3}\mathbf{r}$$

$$= \int e^{-i\mathbf{r} \cdot \mathbf{k}'} n(\mathbf{r}) e^{i\mathbf{r} \cdot \mathbf{k}} d^{3}\mathbf{r}$$

$$= \langle k' | n(r) | k \rangle$$
(2.14)

aka Born approx.

$$n(r) = \sum_{G} n_G e^{i\mathbf{G} \cdot \mathbf{r}}$$
 (2.15)

$$F_{k'k} = \sum_{G} n_{G} \int e^{i(\mathbf{G} - (\mathbf{k} - \mathbf{k}')) \cdot \mathbf{r}} d^{3}\mathbf{r}$$

$$= \sum_{G} n_{G} \delta(\mathbf{G} - (\mathbf{k} - \mathbf{k}'))$$
(2.16)

 $Xray spot - \mathbf{G} = \mathbf{k} - \mathbf{k}'$

9/7

$$\mathbf{k}' - \mathbf{k} = \mathbf{G} \tag{2.17}$$

$$\mathbf{k} \cdot \left(\frac{1}{2}\mathbf{G}\right) = \left|\frac{1}{2}\mathbf{G}\right|^2 \tag{2.18}$$

4 Phonons I. Crystal Vibrations

Phonons: Quantized lattice vibrations

$$\omega = 2\sqrt{\frac{C}{m}} \left| \sin \frac{1}{2} ka \right| \tag{4.1}$$

– phonon dispersion relation zeros: $\frac{1}{2}ka = n\pi \Rightarrow k = \frac{2\pi n}{a}$

9/10

photo \dots

$$u_s^k(t) = u_0 e^{i(ksa - \omega t)}$$
(4.2)

$$\omega(k) = 2\sqrt{\frac{c}{m}} \left| \sin \frac{1}{2} ka \right| \tag{4.3}$$

$$G = \frac{2\pi}{a}P, \quad P \in \mathbb{Z} \tag{4.4}$$

$$u_s^{k+G} = \tag{4.5}$$

 ω vs $k - E = \hbar \omega$ vs $p = \hbar k$

limit

1. long wavelength limit

 $\lambda \to \infty, \; k \to 0$

$$\omega(k) \to 2\sqrt{\frac{c}{m}} \left| \frac{1}{2}ka \right| \propto k$$
 (4.6)

acoustic

$$v_p = \frac{\omega}{k} = \tag{4.7}$$

$$v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k} = \tag{4.8}$$

2. short wl limit

$$k \to \frac{\pi}{a}$$

$$v_g = 0 (4.9)$$

9/12

Phonon scattering

9/19

5 Phonons II. Thermal Properties

5.1 Phonon Heat Capacity

$$U(T) = \sum_{k,p} \langle n_{k,p} \rangle_T \, \hbar \omega_{k,p} \tag{5.1}$$

$$\langle n \rangle = \frac{\sum_{\rm n=0}^{\infty} n \, {\rm e}^{-n\hbar\omega/\,k_{\rm B} \, T}}{\sum_{\rm n=0}^{\infty} {\rm e}^{-n\hbar\omega/\,k_{\rm B} \, T}} \quad \text{(Bose-Einstein Distr.)}$$
(5.2)

 $= \frac{1}{e^{\hbar\omega/k_{\rm B}T} - 1}$

$$U(T) = \int_{0}^{\omega_{max}} \hbar \omega f(\omega) \tag{5.3}$$

High temp, Debye model, $T >> \theta_D$

$$C = 3Nk_B \tag{5.4}$$

Low temp, Einstein model, $T << \theta_D$

$$C(T) = \dots = \frac{12\pi^4 N k_B}{5} \left(\frac{T}{\theta_D}\right)^3$$
 (5.5)

$$\hbar\omega_{max} = k_B T, k_{max} = \frac{k_B T}{\hbar v}$$
 fraction of modes excited = $\left(\frac{k_{max}}{k_D}\right)^3$

of modes excited =
$$3N \left(\frac{k_{max}}{k_D}\right)^3$$

 $U(T) = (\# \text{ of modes excited}) \langle E \rangle_{mode}$

$$=3N\left(\frac{k_{max}}{k_D}\right)^3 k_B T$$

$$=3N\left(\frac{T}{\theta_D}\right)^3 k_B T$$
(5.6)

 $C(T) = \dots (5.7)$

5.2 Anharmonic Crystal Interactions / Thermal Expansion

true potential of phonons are not hyperbolic but L-J-like

$$U = Cx^2 - gx^3 + \dots (5.8)$$

$$\langle x \rangle_T = \frac{\int_x x P_T(x) dx}{\int_x P_T(x) dx}$$
 (5.9)

$$P_T(x) \propto e^{-U(x)/k_B T} \tag{5.10}$$

$$\langle x \rangle_T = \frac{\int_x x e^{-U(x)/k_B T} dx}{\int_x e^{-U(x)/k_B T} dx}$$

$$= \dots$$

$$= \frac{3g}{4C^2} k_B T$$
(5.11)

5.3 Thermal Conductivity

energy flux

$$j = \frac{\text{enrgy}}{\text{time} \cdot \text{area}} = \frac{P}{A} = -K \frac{dT}{dx}$$
 (5.12)

K – thermal conductivity similar to $j = \sigma E$

$$j = \rho v \tag{5.13}$$

10/2 ankit

5.4 Sommerfeld Model

3D

$$N = \frac{4}{3}\pi k^3 \left(\frac{L}{2\pi}\right)^3 = \dots {(5.14)}$$

$$D(\varepsilon) = \dots \propto \varepsilon^{1/2} \tag{5.15}$$

2D

$$N = \pi k^2 \left(\frac{L}{2\pi}\right)^2 = \dots \tag{5.16}$$

$$D(\varepsilon) = \dots \propto 1 \tag{5.17}$$

$$1DN = 2k \left(\frac{L}{2\pi}\right) = \dots {(5.18)}$$

$$D(\varepsilon) = \dots \propto \varepsilon^{-1/2} \tag{5.19}$$

5.5 Heat Capacity

$$U = \int_0^\infty d\varepsilon D(\varepsilon) f(\varepsilon) \varepsilon \tag{5.20}$$

$$N = \int_0^\infty d\varepsilon D(\varepsilon) f(\varepsilon) \tag{5.21}$$

In metals, $T \ll T_F$

Use Sommerfeld expansion

Consider integral of the form

$$\int_{-\infty}^{\infty} H(\varepsilon) f(\varepsilon) d\varepsilon \tag{5.22}$$

$$K(\varepsilon) = \int_{-\infty}^{\varepsilon} H(\varepsilon') d\varepsilon'$$
 (5.23)

$$H = \frac{\mathrm{d}K}{\mathrm{d}\varepsilon} \tag{5.24}$$

$$\int_{-\infty}^{\infty} H(\varepsilon) f(\varepsilon) d\varepsilon = \int_{-\infty}^{\infty} K(\varepsilon) \left(-\frac{df}{d\varepsilon}\right) d\varepsilon$$
 (5.25)

$$K(\varepsilon) = K(\mu) + \sum_{n=1}^{\infty} \frac{1}{n!} \frac{\mathrm{d}^n K}{\mathrm{d}\varepsilon^n} (\varepsilon - \mu)^n$$
 (5.26)

$$\int_{-\infty}^{\infty} H(\varepsilon)f(\varepsilon)d\varepsilon = \int_{-\infty}^{\infty} K(\mu)(-\frac{\mathrm{d}f}{\mathrm{d}\varepsilon})d\varepsilon + \sum_{n=1}^{\infty} \int_{-\infty}^{\infty} \frac{1}{n!} \frac{\mathrm{d}^{n}K}{\mathrm{d}\varepsilon^{n}} (\varepsilon - \mu)^{n} \left(-\frac{\mathrm{d}f}{\mathrm{d}\varepsilon}\right) d\varepsilon$$

$$= K(\mu) + \dots$$

$$= \int_{-\infty}^{\mu} H(\varepsilon)d\varepsilon + \frac{\pi^{2}}{6} (k_{B}T)^{2} H(\mu) + \mathcal{O}((K_{B}T)^{4})$$
(5.27)

thus

$$U = \dots (5.28)$$

$$N = \dots (5.29)$$

6 Free Electron Fermi Gas

6.1 Electrical Conductivity and Ohm's Law

$$\hbar \left(\frac{\mathrm{d}}{\mathrm{d}t} + \frac{1}{\tau}\right)\mathbf{k} = -e\mathbf{E} \tag{6.1}$$

6.2 Motion in Magnetic Fields

$$\mathbf{B} = B\,\hat{\mathbf{k}},\,\mathbf{v} = \frac{\hbar\mathbf{k}}{m}$$

$$m\left(\frac{\mathrm{d}}{\mathrm{d}t} + \frac{1}{\tau}\right)\mathbf{v} = -e\left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c}\right)$$
(6.2)

. . .

$$\begin{pmatrix} J_x \\ J_y \end{pmatrix} = \sigma \begin{pmatrix} E_x \\ E_y \end{pmatrix}$$
(6.3)

 $J_x = n(-e)v_x$

$$\boldsymbol{\sigma} = \frac{\sigma_{DC}}{1 + \omega_0^2 \tau^2} \begin{pmatrix} 1 & -\omega_0 \tau \\ \omega_0 \tau & 1 \end{pmatrix} \tag{6.4}$$

$$\sigma_{DC} = \frac{ne^2\tau}{m}$$

$$\rho = \sigma^{-1} = \frac{1}{\sigma_{DC}} \begin{pmatrix} 1 & \omega_0 \tau \\ \omega_0 \tau & 1 \end{pmatrix}$$
 (6.5)

6.2.1 Hall Effect

6.3 AC Conductivity

$$\mathbf{E} \sim \mathbf{E}_0 e^{I\omega t}, \, \omega >> 1/\tau, \, \omega_c = \frac{eB}{mc}, \, \mathbf{B} = B \,\hat{\mathbf{k}}$$

$$m \left(\frac{\mathrm{d}}{\mathrm{d}t} + \frac{1}{\tau}\right) \mathbf{v} = -e \left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c}\right)$$
(6.6)

assume $\mathbf{v} = \mathbf{v}_0 \, \mathrm{e}^{\mathrm{i}\omega t}$

...

$$\begin{pmatrix} J_x \\ J_y \end{pmatrix} = \sigma \begin{pmatrix} E_x \\ E_y \end{pmatrix}$$
(6.7)

$$\sigma_{xx} = \sigma_{yy} = \frac{\omega_p^2 \tau (1 - i\omega \tau)}{4\pi [(1 - i\omega \tau)^2 + (\omega_c \tau)^2]}$$

$$\sigma_{xy} = -\sigma_{yx} = \frac{\omega_p^2 \omega_c \tau^2}{4\pi [(1 - i\omega \tau)^2 + (\omega_c \tau)^2]}$$
(6.8)

$$\omega_p = \frac{4\pi ne^2}{m} \tag{6.9}$$

$$\boldsymbol{\sigma} = \frac{\omega_p^2}{4\pi\omega} \begin{pmatrix} i & \omega_c/\omega \\ -\omega_c/\omega & i \end{pmatrix}$$
 (6.10)

6.4 Complex Dielectric Function

$$\nabla \cdot \mathbf{D} = 4\pi \rho_f$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{H}}{\partial t} = 0$$

$$\nabla \times \mathbf{H} - \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} = \frac{4\pi}{c} \mathbf{J}_f$$

$$\nabla \cdot \mathbf{J} = -\frac{\partial \rho}{\partial t}$$
(6.12)