

RELATÓRIO TÉCNICO PARCIAL DYNASIM/UFAL DEZ/16-MAR/17

Projeto: Métodos Computacionais para Análise de Linhas de Ancoragem e

Risers no Programa Dynasim Módulo DOOLINES

Processo: 2015/00402-7 No. SAP: 4600533005

No. Jurídico: 5850.0102342.16.9

Equipe Executora:

Dr. Eduardo Nobre Lages (Coordenador)
Dr. Eduardo Setton Sampaio da Silveira
Dr. Fábio Martins Gonçalves Ferreira
Me. Heleno Pontes Bezerra Neto
Ma. Michele Agra de Lemos Martins
Mestrando Pedro Henrique Rios Silveira
Mestrando Ricardo Vital Barroso
Graduando César Anderson de Melo Rodrigues
Graduando Jéssica Pontes de Vasconcelos
Graduando Weverton Marques da Silva

SUMÁRIO

1.	Apresentação	1
2.	Introdução	
2. 3.	Objetivos	
3. 4.	Justificativas	
5.	Resultados Esperados	
6.	Benefício do projeto/aplicação na indústria	
7.	Metodologia	
8.	Mecanismos de acompanhamento de execução	
9.	Atividades do projeto	8
10.	Referências	8
A.	GRADAÇÃO DA MALHA PARA MINIMIZAÇÃO DE RUÍDOS NA RESPOSTA	11
A.1.	Apresentação	12
A.2.	Introdução	12
A.3.	Problema contínuo	13
A.4.	Problema discreto	16
A.5.	Considerações finais	19
A.6.	Referências	19
В.	GERAÇÃO DA MALHA COM REFINAMENTO ADAPTATIVO	21
B.1.	Apresentação	22
B.2.	Introdução	22
B.3.	Metodologia	23
B.4.	Resultados e discussões	25
B.5.	Considerações finais	26
B.6.	Referências	26
C.	OTIMIZAÇÃO NO CÁLCULO DA CINEMÁTICA DA ONDA PELA IMPLEMENTA DUAS NOVAS METODOLOGIAS	•
C.1.	Apresentação	
C.2.	Introdução	28
C.3.	Ondas Oceânicas	28
C.3.1.	Cinemática de Onda	29

Universidade Federal de Alagoas LABORATÓRIO DE COMPUTAÇÃO CIENTÍFICA E VISUALIZAÇÃO

C.4.	Considerações finais	30
C.5.	Referências	31
D.	IMPLEMENTAÇÃO DE METODOLOGIA DE ANÁLISE NO DOMÍNIO	
D.1.	Apresentação	33
D.2.	Introdução	33
D.2.1.	Análise dinâmica	33
D.2.2.	Linearização da força	34
D.3.	Metodologia	35
D.4.	Resultados e discussões	36
D.5.	Considerações finais	37
D.6.	Referências	38
E. E.1.	FERRAMENTA DE TESTE FUNCIONALApresentação	
E.2.	Introdução	40
E.3.	Teste de software	40
E.3.1.	Teste de unidade	41
E.3.2.	Teste funcional	42
E.3.3.	Teste de software científico	43
E.4.	Considerações finais	43
E.5.	Referências	44
F.	WRAPPER EM LUA DO DOOLINES	45
F.1.	Apresentação	46
F.2.	Introdução	46
F.3.	Criação de um wrapper Lua	47
F.4.	Considerações finais	49
F.5.	Referências	49
G. G.1.	ATUALIZAÇÃO DO MANUAL DO FRAMEWORK DOOLINESApresentação	
G.2.	Comentários	51
H. H.1.	MANUTENÇÃO DO SISTEMAApresentação	
H.2.	Ações realizadas	53