

Forward-secrecy on POP

Arthur Villard

School of Computer and Communication Sciences

Decentralized and Distributed Systems lab

Master Thesis – September 2017

Responsible
Prof. Bryan Ford
EPFL / DEDIS

Prof. Ewa Syta Trinity College Supervisor Linus Gasser EPFL / DEDIS

- Online collaborative service (e.g. Wikipedia)
- Authenticate users anonymously against a list
- Link authentication attempts
- Other example: e-voting

- Introduction
- PoP and DAGA interaction
- Implementing DAGA
- Improving DAGA
- Conclusion & Future work

- Introduction
- PoP and DAGA interaction
- Implementing DAGA
- Improving DAGA
- Conclusion & Future work

- PoP: Proof of Personhood DEDIS
 - → Creation of the user list
 - → Authentication protocol
 - → Anonymity within the group
 - → No forward-secrecy
- DAGA: Deniable Anonymous Group Authentication Ewa Syta
 - → Authentication protocol
 - → Forward-secrecy

- Using DAGA as PoP's authentication protocol
- Implementing DAGA in Go
- Improving DAGA

Key concepts

Anonymity

→ No information about the user is known

Accountability

→ The sender can be held responsible for his action

Linkability

→ Two messages come from the same user

Forward-secrecy

→ Breaking a session does not break the previous ones

- Introduction
- PoP and DAGA interaction
- Implementing DAGA
- Improving DAGA
- Conclusion & Future work

9

Integration

DEDIS

10

PoP: How it works

DEDIS

PoP: Weaknesses

- No forward-secrecy
 - → Tag derived from private key
 - → Leakage allows to identify the user in previous sessions
- Cross-service de-anonymisation
 - → Tags independent from the service
 - → Users can be tracked between different services

→ Loss of anonymity

DEDIS

DAGA: How it works

DAGA solutions

- Forward-secrecy
 - → Tags derived from context elements only
 - → Private key used in client proof
 - → Proof does not leak information
- Cross-service de-anonymisation
 - → Different services → Different contexts
 - ? Different tags for the same user

- DAGA can solve PoP weaknesses
- DAGA and PoP can be interfaced
- E-voting

- Introduction
- PoP and DAGA interaction
- Implementing DAGA
- Improving DAGA
- Conclusion & Future work

- Go

• RSA ? Elliptic Curves
$$T_0^i = h_i^{(\prod_{k=1}^m s_k)}$$
 ? $T_0^i = (\prod_{k=1}^m s_k) * H_i$

DEDIS

Distributed randomness

- Library: Complete implementation
- Test coverage 88%
- Example scenario
- Benchmark package

Benchmarks: Communication

- No improvement
- No explanation yet

Benchmarks: Time

- Moore's law 2012 → 2018: ~ /8 from hardware
- Elliptic Curves

- Complete implementation
- Time improvement
- Next step: Integrate it with PoP

- Introduction
- PoP and DAGA interaction
- Implementing DAGA
- Improving DAGA
- Conclusion & Future work

Proof problem

- Anonymity through a client OR proof:
 - → I know (private key 1 OR private key 2 OR ...)
- Growth O(6*n), n = #members
 - → 32768 members / 32 servers
 - Proof ~6,3 MB, total cost ~200 MB → ~20% of total

Improving the proof

- Work with Kasra Edalatnejadkhamene, PhD student
- Survey of the field
- Split the proof
 - → Proof of membership: Accumulator
 - → Proof of knowledge: Signature of knowledge
- No concrete scheme

- Introduction
- PoP and DAGA interaction
- Implementing DAGA
- Improving DAGA
- Conclusion & Future work

Conclusion & Future work

- DAGA and PoP can work together
- Complete Go implementation of DAGA
- Improvement guidelines for the proof
- Next steps

26

- → Integrate DAGA and PoP
- → Optimize network consumption
- → Continue the work on the proof
- → Improve implementation resistance (secure memory management, constant-time, ...)

Distributed randomness

- User public keys (#members)
- Server public keys (#servers)
- Server random commitments (#servers)
- Client random generators (#members)

- Accumulators from Bilinear Pairings and Applications
 L. Nguyen, 2005
- Adjustments:
 - → Trusted setup
 - → Bounded
 - → Efficiency based on trusted authority

Ring signature

How to Leak a Secret, R. Rivest, A. Shamir and Y. Tauman