

TÖL403G GREINING REIKNIRITA

10. Kvik bestun 4

Hjálmtýr Hafsteinsson Vor 2022

Í þessum fyrirlestri

- Bestu tvíleitartré (optimal binary search trees)
 - Endurkvæm formúla (úr kafla 2)
 - Undirverkefnið Tíðnisumma (frequency count)
 - Uppsetning sem kvik bestun
 - Gagnagrind og reiknirit

3.9

Bestu tvíleitartré (binary search trees)

- Tvíleitartré eru tvíundartré með gildum (lyklum) þar sem fyrir hvern hnút v gildir:
 - gildin í vinstra hluttré v eru minni en gildið í v
 - gildin í hægra hluttré v eru stærri en gildið í v

- Hentar vel sem einföld útfærsla á forgangsbiðröð (priority queue)
 - "Meðal"-leitartími fyrir n gildi er O(log(n)) ← ef tréð er í jafnvægi
 - Versta tilfellis leitartími er O(n)
 ← ef tréð er keðja af hnútum
- Ef við erum alltaf með sömu n lyklana þá getum við búið til tvíleitartré sem lágmarkar leitartímann
 - Þá verðum við að vita hversu oft er leitað að hverjum lykli

Gætum notað söguleg gögn, eða ágiskun

Besta tvíleitartré

- Höfum <u>raðað</u> fylki af lyklum (keys) A[1..n] og tíðnifylki f[1..n]
 - Fjöldi leitana að lykli A[i] er f[i]
- Viljum lágmarka heildarleitartímann
 - Kostnaður við eina leit er fjöldi hnúta frá rótinni niður í hnútinn sem inniheldur lykilinn

Heildarkostnaðurinn við allar leitir í tré T er þá:

$$Cost(T, f[1..n]) = \sum_{i=1}^{n} f[i] \cdot (fj\"{o}ldi forfe\~{o}ra v_i \'{i} T)$$
Hnútur v_i er forfa $\~{o}$ ir sjálfs síns

Endurkvæm formúla

Skilgreindum fallið OptCost(i, k):

OptCost(i, k): heildarkostnaður við besta tvíleitartré fyrir lyklana A[i..k] með tíðnir f[i..k]

Fengum svo endurkvæma formúlu fyrir það:

$$OptCost(i, k) = \begin{cases} 0 & \text{ef } i > k \\ \sum_{j=i}^{k} f[i] + \min_{i \le r \le k} \{OptCost(i, r-1) + OptCost(r+1, k)\} & \text{annars} \end{cases}$$

Prófum allar mögulegar rætur *r* og fyrir hverja þeirra finnum við besta vinstra hluttré og besta hægra hluttré!

Tíminn er $O(3^n)$ ef við notum þessa formúlu sem reiknirit

Undirverkefnið Tíðnisumma

- Endurkvæma formúlan inniheldur summu
 - Tekur tíma að reikna hana út

$$OptCost(i, k) = \begin{cases} 0 & \text{ef } i > k \\ \sum_{j=i}^{k} f[i] + \min_{i \le r \le k} \{OptCost(i, r-1) + OptCost(r+1, k)\} & \text{annars} \end{cases}$$

- Getum reiknað hana með kvikri bestun!
 - Fáum einfalt og "skemmtilegt" verkefni til að æfa kvika bestun

Ef við förum beint eftir þessari formúlu þá mun þessi útreikningur taka $O(n^3)$ tíma!

Við erum að gera sömu samlagningarnar aftur og aftur

```
fyrir i = 1 til n
  fyrir k = i til n
  F[i, k] = 0
  fyrir j = i til k
   F[i, k] = F[i, k] + f[j]
```

Tíðnisumma í kvikri bestun

Erum að finna allar hlutsummur n-staka fylkis f

$$F[i, k] = \sum_{j=i}^{k} f[j]$$

Segjum að við höfum reiknað F[i, k]

Þegar við reiknum F(i, k+1) þá leggjum við <u>aftur</u> saman allar tölurnar frá F(i) upp í F(k) og leggjum svo f(k+1) við það

Við ættum að geyma milliniðurstöður og nýta þær

Endurkvæm framsetning:

Reiknirit:

$$F(i, k) = F(i, k-1) + f[k]$$
og $F(i, i) = f[i]$

$$fyrir i = 1 til n$$

$$F[i, i] = f[i]$$

$$fyrir k = i+1 til n$$

$$F[i, k] = F[i, k-1] + f[k]$$

Nú er greinilegt að tíminn er $O(n^2)$

Aftur í bestu tvíleitartré

Nú höfum við aðeins einfaldari endurkvæma formúlu:

Við reiknum þessi gildi út fyrirfram á $O(n^2)$ tíma

Undirverkefni:

Skilgreind af tveimur vísum *i* og *k*: $1 \le i \le n+1$ og $0 \le k \le n$

Gagnagrind:

Tvívíða fylkið *OC*[1..*n*+1, 0..*n*] geymir öll möguleg gildi á fallinu OptCost

Kvik bestun á tvíleitartrjám

Tengsl milli staka:

Hvert stak OC[i, k] byggir á stökunum OC[i, j-1] og OC[j+1, k] fyrir öll j, p.a. $i \le j \le k$ Stök vinstra

Stök fyrir

megin við OC[i, k]Stök oC[i, k]

Fall sem reiknar út OC[i, k]:

Útreikningur á einu staki í fylkinu


```
\frac{\text{COMPUTEOPTCOST}(i, k):}{OptCost[i, k] \leftarrow \infty} for r \leftarrow i to k tmp \leftarrow OptCost[i, r - 1] + OptCost[r + 1, k] if OptCost[i, k] > tmp OptCost[i, k] \leftarrow tmp OptCost[i, k] \leftarrow tmp OptCost[i, k] \leftarrow OptCost[i, k] + F[i, k]
```


Prófum allar mögulega hnúta sem rót og finnum þann sem gefur lægstan kostnað

Útreikningsröð

Eðlilegasta útreikningsröð:

Skálína fyrir skálínu

Vitum að OptCost(i, k) = 0 ef i > kSetjum því OC[i, i-1] = 0

Reiknirit:

Sýnidæmi

- Höfum lyklafylkið A = [1, 2, 3, 4, 5] og tíðnifylkið f = [10, 2, 5, 2, 3]
- Reiknum fyrst út hlutsummur tíðnigildanna:

F	1	2	3	4	5
1	10	12	17	19	22
2		2	7	9	12
3			5	7	10
4				2	5
5					3

Núllstillum hornalínuna

Næsta skálína er bara tíðnifylkið *f* eða *F*[*i*, *i*]

OC	0	1	2	3	4	5
1	0	10				
2	-	0	2			
3	-	ı	0	5		
4	-	ı	ı	0	2	
5	-	ı	1	1	0	3
6	-	-	-	-	-	0

Sýnidæmi, frh.

$$OC[1, 2] = F[1, 2] + min{ $OC[1, 0] + OC[2, 2], \\ OC[1, 1] + OC[3, 2] }$
= 12 + min{ 0+2, 10+0 }
= 12 + 2
= 14$$

F	1	2	3	4	5
1	10	12	17	19	22
2		2	7	9	12
3			5	7	10
4				2	5
5					3

Erum að ákveða hér:

Ef við höfum lyklana [1, 2] með tíðnirnar [10, 2] hvor lykillinn á að vera rót?

Ef
$$r = 1$$
 þá kostnaðurinn $10*1 + 2*2$
 $= 12 + (0+2) = 14$
Ef $r = 2$ þá kostnaðurinn $10*2 + 2*1$
 $= 12 + (10+0) = 22$

	0	1	2	3	4	5
1	0	10	14			
2	1	0	2			
3	ı	ı	9	5		
4	ı	ı	1	0	2	
5	-	-	ı	ı	0	3
6	-	-	-	-	-	0

OC

Æfingadæmi

Reiknið *OC*[2, 5]:

Það er F[2, 5] + lággildi af fjórum gildum:

Hvert af þessum fjórum gildum er lægst?

Hvaða lykil er best að hafa sem rót á [2, 3, 4, 5]?

			4			2	5	
			5				3	
OC	0	4	2	2	1			
00	0	1	2	3	4		5	
1	0	10	14	26	32			
2	-	0	2	9	13			
3	ı	ı	0	5	9		17	
4	ı	ı	ı	0	2		7	
5	ı	1	1	1	0		3	
6	-	-	-	-	-		0	

Önnur útreikningsröð

PHÍ

- Það þarf ekki endilega að reikna fylkið eftir skálínum
- Getum reiknað það eftir línum:

```
OPTIMALBST2(f[1..n]):

INITF(f[1..n])

for i \leftarrow n + 1 downto 1

OptCost[i, i - 1] \leftarrow 0

for j \leftarrow i to n

COMPUTEOPTCOST(i, j)

return OptCost[1, n]
```


eða eftir dálkum:

```
OPTIMALBST3(f[1..n]):

INITF(f[1..n])

for j \leftarrow 0 to n + 1

OptCost[j + 1, j] \leftarrow 0

for i \leftarrow j downto 1

COMPUTEOPTCOST(i, j)

return OptCost[1, n]
```


Tímaflækja

- Í öllum útreikningsröðum þarf að fylla í $\sim n^2/2$ hólf fylkisins
- Útreikningur á hverju hólfi tekur O(n) tíma

Heildartímaflækja: O(n³)

Bæði fyrir OC-fylkið og F-fylkið

■ Minnisnotkun: $O(n^2)$

Donald Knuth náði að bæta tímaflækjuna niður í $O(n^2)$ með viðbótarnokun á kvikri bestun

Ef n er mjög stórt gildi þá er $O(n^2)$ ennþá frekar tímafrekt reiknirit

Kurt Mehlhorn sýndi O(n) tíma gráðugt reiknirit sem finnur oftast besta tréð

Velur rótina þannig að tíðnisumma vinstri og hægri hluttrjáa sé sem líkust

Að finna best tréð

- Geymum í hvert sinn það r sem gefur lægsta kostnaðinn í öðru tvívíðu fylki R
 - Þá er R[i, k] það r sem gaf lægsta kostnað við útreikning á OC[i, k]
- Getum þá rakið okkur til baka:
 - Finnum fyrst rót trésins í R[1, n] = r
 - Þá er rót vinstra hluttrésins í R[1, r-1]
 - og rót hægra hluttrésins í R[r+1, n]
- Finnum síðan rætur hluttrjánna á sama hátt
- Ef við höfum fylkið R þá tekur þetta aðeins O(n) tíma

Fyrirlestraæfingar

- 1. Hvernig væri besta tvíleitartréð í laginu ef jafnar líkur eru á öllum lyklum?
- 2. Lyklarnir 5, 10, 15 hafa tíðnirnar 5, 2, 3. Hvaða tvíleitartré lágmarkar meðalleitarkostnað fyrir þá?
- 3. Hvaða gildi kemur í hornalínuna á fylkinu *OptCost*, þ.e. hvert er gildið á *OptCost*[i, i]?