Maltsev Conditions on the Feder-Vardi Reduction to Bipartite Graphs with Constants

Ian Payne, Ross Willard

University of Waterloo

October 6, 2013

Plan

- Willard's Lemma about bipartite graphs and two sorted structures
- ▶ The Feder-Vardi construction.
- ▶ Identities that aren't preserved
- Identities that are preserved

Definition

Let $\mathbb{G} = (G, E)$ be a bipartite graph with bipartition $G = A \cup B$. That is, $E \subseteq A \times B \cup B \times A$ and $A \cap B = \emptyset$. Define $\overrightarrow{\mathbb{G}}$ to be the two sorted structure $(A, B; \overrightarrow{E})$ where $\overrightarrow{E} = E \cap A \times B$.

Definition

Let $\mathbb{G}=(G,E)$ be a bipartite graph with bipartition $G=A\cup B$. That is, $E\subseteq A\times B\cup B\times A$ and $A\cap B=\varnothing$. Define $\overrightarrow{\mathbb{G}}$ to be the two sorted structure $(A,B;\overrightarrow{E})$ where $\overrightarrow{E}=E\cap A\times B$.

Definition

A polymorphism of $\overrightarrow{\mathbb{G}}$ is a pair $f=(f^A,f^B)$ of *n*-ary operations on A and B, respectively, that together preserve $E\cap A\times B$.

Definition

Let $\mathbb{G}=(G,E)$ be a bipartite graph with bipartition $G=A\cup B$. That is, $E\subseteq A\times B\cup B\times A$ and $A\cap B=\varnothing$. Define $\overrightarrow{\mathbb{G}}$ to be the two sorted structure $(A,B;\overrightarrow{E})$ where $\overrightarrow{E}=E\cap A\times B$.

Definition

A polymorphism of $\overrightarrow{\mathbb{G}}$ is a pair $f=(f^A,f^B)$ of *n*-ary operations on A and B, respectively, that together preserve $E\cap A\times B$.

$$\begin{array}{c}
f^{A} \quad f^{B} \\
\downarrow \quad \downarrow \\
(a_{1}, b_{1}) \in \overrightarrow{E} \\
(a_{2}, b_{2}) \in \overrightarrow{E} \\
\vdots \\
(a_{n}, b_{n}) \in \overrightarrow{E} \\
(f^{A}(\overline{a}), f^{B}(\overline{b})) \in \overrightarrow{E}
\end{array}$$

Lemma (Willard)

Let Σ be a Maltsev condition satisfied by the two element connected graph, and $\mathbb G$ be a bipartite graph. Then $\mathbb G$ satisfies Σ if and only if $\overrightarrow{\mathbb G}$ does.

Lemma (Willard)

Let Σ be a Maltsev condition satisfied by the two element connected graph, and \mathbb{G} be a bipartite graph. Then \mathbb{G} satisfies Σ if and only if $\overrightarrow{\mathbb{G}}$ does.

► For a relational structure to satisfy an identity means that it has polymorphisms that do.

Lemma (Willard)

Let Σ be a Maltsev condition satisfied by the two element connected graph, and \mathbb{G} be a bipartite graph. Then \mathbb{G} satisfies Σ if and only if $\overrightarrow{\mathbb{G}}$ does.

- For a relational structure to satisfy an identity means that it has polymorphisms that do.
- For a two sorted structure to satisfy an identity, such as $s \approx t$ means that it has polymorphisms (s^A, s^B) and (t^A, t^B) satisfying $s^A \approx t^A$ and $s^B \approx t^B$.

Let $\mathbb{A} = (A, \mathcal{R})$ be a relational structure. Let $\mathcal{R} = \{R_1, \dots, R_m\}$, and k be the maximum arity of the R_i . The Feder-Vardi graph is constructed as follows:

▶ For i = 1, ..., k, there are vertices corresponding to each element of $A \times \{i\}$

- ▶ For i = 1, ..., k, there are vertices corresponding to each element of $A \times \{i\}$
- ▶ For i = 1,...,k, there is a vertex A_i such that its neighbourhood is exactly $A \times \{i\}$.

- ▶ For i = 1, ..., k, there are vertices corresponding to each element of $A \times \{i\}$
- ▶ For i = 1, ..., k, there is a vertex A_i such that its neighbourhood is exactly $A \times \{i\}$.
- ▶ There is a vertex for each element of A, and each $a \in A$ is adjacent to (a, i) for each i.

- ▶ For i = 1, ..., k, there are vertices corresponding to each element of $A \times \{i\}$
- ▶ For i = 1,...,k, there is a vertex A_i such that its neighbourhood is exactly $A \times \{i\}$.
- ▶ There is a vertex for each element of A, and each $a \in A$ is adjacent to (a, i) for each i.
- ▶ There is a vertex, A_e , adjacent to each $a \in A$.

- ▶ For i = 1, ..., k, there are vertices corresponding to each element of $A \times \{i\}$
- ▶ For i = 1,...,k, there is a vertex A_i such that its neighbourhood is exactly $A \times \{i\}$.
- ▶ There is a vertex for each element of A, and each $a \in A$ is adjacent to (a, i) for each i.
- ▶ There is a vertex, A_e , adjacent to each $a \in A$.
- ▶ There is a vertex for each tuple in each relation, and $(x_1, x_2, ..., x_\ell)$ is adjacent to (x_i, i) for $i = 1, ..., \ell$.

- ▶ For i = 1, ..., k, there are vertices corresponding to each element of $A \times \{i\}$
- ▶ For i = 1,...,k, there is a vertex A_i such that its neighbourhood is exactly $A \times \{i\}$.
- ▶ There is a vertex for each element of A, and each $a \in A$ is adjacent to (a, i) for each i.
- ▶ There is a vertex, A_e , adjacent to each $a \in A$.
- ▶ There is a vertex for each tuple in each relation, and $(x_1, x_2, ..., x_\ell)$ is adjacent to (x_i, i) for $i = 1, ..., \ell$.
- ▶ There is a vertex, R_i for each $R_i \in \mathcal{R}$ whose neighbourhood is precisely the set of tuples it contains.

- ▶ For i = 1, ..., k, there are vertices corresponding to each element of $A \times \{i\}$
- ▶ For i = 1,...,k, there is a vertex A_i such that its neighbourhood is exactly $A \times \{i\}$.
- ▶ There is a vertex for each element of A, and each $a \in A$ is adjacent to (a, i) for each i.
- ▶ There is a vertex, A_e , adjacent to each $a \in A$.
- ▶ There is a vertex for each tuple in each relation, and $(x_1, x_2, ..., x_\ell)$ is adjacent to (x_i, i) for $i = 1, ..., \ell$.
- ▶ There is a vertex, R_i for each $R_i \in \mathcal{R}$ whose neighbourhood is precisely the set of tuples it contains.
- ▶ There is a vertex, α , adjacent to each tuple in each relation, and the elements of A.

- ▶ For i = 1, ..., k, there are vertices corresponding to each element of $A \times \{i\}$
- ▶ For i = 1, ..., k, there is a vertex A_i such that its neighbourhood is exactly $A \times \{i\}$.
- ▶ There is a vertex for each element of A, and each $a \in A$ is adjacent to (a, i) for each i.
- ▶ There is a vertex, A_e , adjacent to each $a \in A$.
- ► There is a vertex for each tuple in each relation, and $(x_1, x_2, ..., x_\ell)$ is adjacent to (x_i, i) for $i = 1, ..., \ell$.
- ▶ There is a vertex, R_i for each $R_i \in \mathcal{R}$ whose neighbourhood is precisely the set of tuples it contains.
- There is a vertex, α, adjacent to each tuple in each relation, and the elements of A.
- ► There is a vertex, β , adjacent to (a,i) for each $a \in A$ and i = 1, ..., k. It is also adjacent to α .

 β

 α

$$\alpha$$

Denote by $\mathbb{G}_{\mathbb{A}}$ the graph obtained in this way from \mathbb{A} .

1. $\mathbb{G}_{\mathbb{A}}$ is always bipartite

- 1. $\mathbb{G}_{\mathbb{A}}$ is always bipartite
- 2. $\mathsf{CSP}((\mathbb{G}_{\mathbb{A}})^c) \equiv_{P} \mathsf{CSP}(\mathbb{A})$. [c means "with constants"]

- 1. $\mathbb{G}_{\mathbb{A}}$ is always bipartite
- 2. $CSP((\mathbb{G}_{\mathbb{A}})^c) \equiv_P CSP(\mathbb{A})$. [c means "with constants"]
- 3. A pp-interprets in $(\mathbb{G}_{\mathbb{A}})^c$, but not the other way around.

- 1. $\mathbb{G}_{\mathbb{A}}$ is always bipartite
- 2. $\mathsf{CSP}((\mathbb{G}_{\mathbb{A}})^c) \equiv_P \mathsf{CSP}(\mathbb{A})$. [c means "with constants"]
- 3. A pp-interprets in $(\mathbb{G}_{\mathbb{A}})^c$, but not the other way around.
- 4. (3) implies that any idempotent Maltsev condition satisfied by $\mathbb{G}_{\mathbb{A}}$ is satisfied by \mathbb{A} . So the interesting questions about preservation of idempotent Maltsev conditions are of the form "if \mathbb{A} satisfies Σ , does $\mathbb{G}_{\mathbb{A}}$?

Some polymorphisms were never meant to happen

Some polymorphisms were never meant to happen

Definition

Let $\mathbb{G} = (G, E)$ be a graph. For $a \in G$, define $N(a) = \{b \in G : (a, b) \in E\}$.

Lemma

Let \mathbb{G} be a graph containing a 6 cycle, u-a-c-v-d-b satisfying

- 1. $N(u) \cap N(c) = \{a\}$
- 2. $N(a) \cap N(v) = \{c\}.$

Then \mathbb{G} has no NU-polymorphism, no edge polymorphism, and no Maltsev polymorphism.

For Maltsev.

Let m be an idempotent polymorphism of \mathbb{G} satisfying $m(x, y, y) \approx x$. We will show that m(a, a, b) = a.

For Maltsev.

Let m be an idempotent polymorphism of \mathbb{G} satisfying $m(x, y, y) \approx x$. We will show that m(a, a, b) = a.

▶ By assumption, m(a, b, b) = a and m(v, b, b) = v.

For Maltsev.

Let m be an idempotent polymorphism of \mathbb{G} satisfying $m(x,y,y)\approx x$. We will show that m(a,a,b)=a.

- ▶ By assumption, m(a, b, b) = a and m(v, b, b) = v.
- ▶ m(c, u, d) is adjacent to both m(a, b, b) and (v, b, b) since m is a polymorphism.

For Maltsev.

Let m be an idempotent polymorphism of \mathbb{G} satisfying $m(x, y, y) \approx x$. We will show that m(a, a, b) = a.

- ▶ By assumption, m(a, b, b) = a and m(v, b, b) = v.
- ▶ m(c, u, d) is adjacent to both m(a, b, b) and (v, b, b) since m is a polymorphism.
- ▶ This forces m(c, u, d) = c.

For Maltsev.

Let m be an idempotent polymorphism of \mathbb{G} satisfying $m(x,y,y)\approx x$. We will show that m(a,a,b)=a.

- ▶ By assumption, m(a, b, b) = a and m(v, b, b) = v.
- ▶ m(c, u, d) is adjacent to both m(a, b, b) and (v, b, b) since m is a polymorphism.
- ▶ This forces m(c, u, d) = c.
- ightharpoonup m(a,a,b) is adjacent to m(c,u,d)=c and m(u,u,u)=u.

For Maltsev.

Let m be an idempotent polymorphism of \mathbb{G} satisfying $m(x,y,y)\approx x$. We will show that m(a,a,b)=a.

- ▶ By assumption, m(a, b, b) = a and m(v, b, b) = v.
- ▶ m(c, u, d) is adjacent to both m(a, b, b) and (v, b, b) since m is a polymorphism.
- ▶ This forces m(c, u, d) = c.
- ightharpoonup m(a,a,b) is adjacent to m(c,u,d)=c and m(u,u,u)=u.
- ▶ Therefore, m(a, a, b) = a.

What about the Feder-Vardi graphs?

Theorem

Let $\mathbb{A}=(A,\mathcal{R})$ be a relational structure with $|A|\geq 2$, and at least one nonempty relation with positive arity. Then the Feder-Vardi graph, $\mathbb{G}_{\mathbb{A}}$ of \mathbb{A} has no NU-polymorphism, no edge polymorphism, and no Maltsev polymorphism.

What about the Feder-Vardi graphs?

Theorem

Let $\mathbb{A}=(A,\mathcal{R})$ be a relational structure with $|A|\geq 2$, and at least one nonempty relation with positive arity. Then the Feder-Vardi graph, $\mathbb{G}_{\mathbb{A}}$ of \mathbb{A} has no NU-polymorphism, no edge polymorphism, and no Maltsev polymorphism.

Proof.

Let $a, b \in A$ with $a \neq b$. Then $A_1 - (a, 1) - a - A_e - b - (b, 1)$ satisfies the conditions of the lemma.

What about the Feder-Vardi graphs?

Theorem

Let $\mathbb{A}=(A,\mathcal{R})$ be a relational structure with $|A|\geq 2$, and at least one nonempty relation with positive arity. Then the Feder-Vardi graph, $\mathbb{G}_{\mathbb{A}}$ of \mathbb{A} has no NU-polymorphism, no edge polymorphism, and no Maltsev polymorphism.

Proof.

Let $a, b \in A$ with $a \neq b$. Then $A_1 - (a, 1) - a - A_e - b - (b, 1)$ satisfies the conditions of the lemma.

Darn! No matter what polymorphism \mathbb{A} satisfies, its Feder-Vardi graph can't possibly have any of these nice polymorphisms. Is anything preserved?

▶ Thankfully, $(\mathbb{G}_{\mathbb{A}})^c$ has a WNU polymorphism if and only if \mathbb{A} does.

- ▶ Thankfully, $(\mathbb{G}_{\mathbb{A}})^c$ has a WNU polymorphism if and only if \mathbb{A} does.
- In fact, any identity of the form $f(\text{variables}) \approx g(\text{variables})$ is satisfied by one iff it is satisfied by the other. This includes an unpublished Maltsev condition due to Kozik, Krokhin, Valeroite, and Willard for omitting types $\mathbf{1}$ and $\mathbf{2}$.

- ▶ Thankfully, $(\mathbb{G}_{\mathbb{A}})^c$ has a WNU polymorphism if and only if \mathbb{A} does.
- In fact, any identity of the form $f(\text{variables}) \approx g(\text{variables})$ is satisfied by one iff it is satisfied by the other. This includes an unpublished Maltsev condition due to Kozik, Krokhin, Valeroite, and Willard for omitting types $\mathbf{1}$ and $\mathbf{2}$.
- ▶ If $\mathbb A$ has n-permutable Hagemann-Mitchke polymorphisms for some $n \geq 2$, then $(\mathbb G_{\mathbb A})^c$ has (n+4)-permutable Hagemann-Mitchke polymorphisms.

- Thankfully, (G_A)^c has a WNU polymorphism if and only if A does.
- In fact, any identity of the form $f(\text{variables}) \approx g(\text{variables})$ is satisfied by one iff it is satisfied by the other. This includes an unpublished Maltsev condition due to Kozik, Krokhin, Valeroite, and Willard for omitting types $\mathbf{1}$ and $\mathbf{2}$.
- ▶ If \mathbb{A} has n-permutable Hagemann-Mitchke polymorphisms for some $n \geq 2$, then $(\mathbb{G}_{\mathbb{A}})^c$ has (n+4)-permutable Hagemann-Mitchke polymorphisms.
- ▶ If \mathbb{A} has Hobby-Mckenzie polymorphisms (for omitting types **1** and **5**), so does $(\mathbb{G}_{\mathbb{A}})^c$. (Need to add 8 extra operations).

- Thankfully, (G_A)^c has a WNU polymorphism if and only if A does.
- In fact, any identity of the form $f(\text{variables}) \approx g(\text{variables})$ is satisfied by one iff it is satisfied by the other. This includes an unpublished Maltsev condition due to Kozik, Krokhin, Valeroite, and Willard for omitting types $\mathbf{1}$ and $\mathbf{2}$.
- ▶ If \mathbb{A} has n-permutable Hagemann-Mitchke polymorphisms for some $n \geq 2$, then $(\mathbb{G}_{\mathbb{A}})^c$ has (n+4)-permutable Hagemann-Mitchke polymorphisms.
- ▶ If \mathbb{A} has Hobby-Mckenzie polymorphisms (for omitting types **1** and **5**), so does $(\mathbb{G}_{\mathbb{A}})^c$. (Need to add 8 extra operations).

Our proofs of these results rely on the result stated about two-sorted structures.

Thank you!

References and Acknowledgements

- Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of constraints using finite algebras. *SIAM J. Comput.*, 34(3):720-742 (electronic) 2005.
- Andrei Bulatov. *H*-coloring dichotomy revisited. *Theoret. Comput. Sci.*, 349(1):31-39, 2005
- Thomás Feder and Moshe Y. Vardi. The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group theory. *SIAM J. Comput.*, 28(1):57-104 (electronic), 1998.
- M. Kizik, A. Krokhin, M. Valeriote, R. Willard Characterizations of Several Maltsev Conditions. Preprint