Semestralní projekt MI-PAR 2014/2015:

Úloha DOM: i-dominující množina grafu

Tomáš Nesrovnal Adam Léhar

magisterské studium, FIT ČVUT, Kolejní 550/2, 160~00 Praha 6 November 29, 2014

1 Definice problému a popis sekvenčního algoritmu

Naším úkolem bylo nalezení minimální i-dominující množiny W grafu G.

I-dominující množina je definována takto: Je-li dáno přirozené číslo i \geq 0 a uzel u grafu G, pak i-okolí uzlu u je množina všech uzlů G ve vzdálenosti nejvýše i od u, včetně uzlu u samotného. Pak i-dominující množina grafu G je každá množina uzlů takových, že sjednocení jejich i-okolí obsahuje všechny uzly G.

Vstupem algoritmu je graf G reprezentován maticí sousednosti a hodnota i-dominance. Výstupem je počet uzlů minimální i-dominující množiny W a jejich výpis. Jednička reprezentuje uzel obsažený v množině W, nula uzel neobsažený v množině W.

Stavový prostor úlohy reprezentuje m-ární strom, kde m je počet uzlů grafu G. V hloubce k obsahuje každý uzel stromu částečné řešení obsahující k uzlů prohledávaného grafu G. Prohledávání stavového prostoru řešíme jako DFS (prohledávání grafu do hloubky). Pro urychlení výpočtu používáme metodu větví a řezů. M-ární strom reprezentující stavový prostor prořezáváme podle doposud nejlepšího nalezeného řešení. Pokud je hloubka uzlu ve stromu větší nebo rovna než počet uzlů grafu v doposud nejlepším nalezeném řešení, tak tuto větev již dále neprohledáváme protože již nemůže obsahovat zlepšující řešení. Pokud nalezneme řešení obsahující počet uzlů rovných těsné horní mezi problému, můžeme výpočet ihned ukončit. Máme zaručeno, že lepší řešení již neexistuje. Těsná horní mez je rovna $\lceil \frac{prumer(G)}{2i+1} \rceil$, kde G je graf a i je hodnota i-dominance.

2 Popis paralelního algoritmu a jeho implementace v MPI

Po inicializaci master procesor vygeneruje syny korenu stromu stavoveho reseni a rozesle praci ostatnim procesorum. Pote kazdy procesor vstoupi do hlavni smycky, ktera se vykonava, dokud nedojde k ukonceni vypoctu.

V hlavni smycce vybiraji prvky ze zasobniku a testuje se, zdali jsou, nebo nejsou resenim. Po M zpracovanych prvcich, nebo pokud nejsou prvky na zasobinku program prijme zpravy MPI a pote vysle zpravy MPI. Nasleduje popis zprav.

Pokud procesor nalezne lepsi reseni, posle ho ostatnim.

Pokud procesor nema zadnou dalsi praci, pta se na ni postupne ostatnich procesoru. Kdyz odesle pozadavek, nedela nic jineho, nez ze ceka na odpoved a reaguje na prijate zpravy. Pokud procesor dostane zadost o praci, tak pokud ma dostatecny pocet prvku na zasobniku, praci mu posle. Prace se posila ve vice zpravach o velikosti 950kB.

Pokud master procesoru dojde prace, krome zadosti o praci take vysle peska. Pesek je cisty a spinavy. Pokud nejaky procesor poslal praci procesoru s mensim rankem, je spinavy. Kdyz procesor dostane spinaveho peska, posle ho dal jako spinaveho. Po odeslani peska se ocisti. Kdyz se master procesoru vrati cisty pesek, rozesle zpravu o ukonceni vypoctu. Pokud nemaster procesor dostane zpravu o ukonceni vypoctu, odpovi bud ze zpravu prijal, nebo posle reseni s nejmensim poctem uzlu, pokud to byl on, co ho vypocital.

3 Naměřené výsledky a vyhodnocení

4 Závěr

TODO

Table 1: Naměřené hodnoty pro graf 1: n=200, k=4, i=4

	InfiniBand								
	InfiniBand			Ethernet					
p	T(n,p)	C(n,p)	S(n,p)	E(n,p)	T(n,p)	C(n,p)	S(n,p)	E(n,p)	
1	279.39	279.39	1.000	1.000	279.39	279.39	1.000	1.000	
2	155.42	310.84	1.798	0.899	154.94	309.87	1.803	0.902	
3	117.35	352.04	2.381	0.794	119.52	358.57	2.338	0.779	
4	108.20	432.81	2.582	0.646	94.00	376.01	2.972	0.743	
5	86.22	431.08	3.241	0.648	87.36	436.78	3.198	0.640	
6	85.89	515.34	3.253	0.542	78.93	473.58	3.540	0.590	
7	73.82	516.75	3.785	0.541	85.65	599.58	3.262	0.466	
8	58.90	471.19	4.744	0.593	67.80	542.41	4.121	0.515	
9	86.97	782.75	3.212	0.357	69.61	626.47	4.014	0.446	
10	52.38	523.79	5.334	0.533	56.27	562.69	4.965	0.497	
11	92.88	1021.72	3.008	0.273	60.74	668.12	4.600	0.418	
12	44.61	535.27	6.263	0.522	68.27	819.24	4.092	0.341	
13	84.37	1096.78	3.312	0.255	58.26	757.35	4.796	0.369	
14	92.22	1291.08	3.030	0.216	60.91	852.70	4.587	0.328	
15	60.29	904.40	4.634	0.309	47.80	716.97	5.845	0.390	
16	60.91	974.51	4.587	0.287	47.41	758.62	5.893	0.368	
17	72.92	1239.65	3.831	0.225	46.09	783.46	6.062	0.357	
18	42.92	772.52	6.510	0.362	47.49	854.78	5.883	0.327	
19	59.66	1133.53	4.683	0.246	45.67	867.74	6.118	0.322	
20	56.78	1135.60	4.921	0.246	44.35	887.06	6.299	0.315	
21	83.38	1750.93	3.351	0.160	42.45	891.48	6.581	0.313	
22	52.34	1151.53	5.338	0.243	43.32	953.13	6.449	0.293	
23	53.02	1219.38	5.270	0.229	42.45	976.46	6.581	0.286	
24	52.55	1261.24	5.316	0.222	41.57	997.71	6.721	0.280	
25	53.19	1329.69	5.253	0.210	44.19	1104.64	6.323	0.253	
26	264.06	6865.45	1.058	0.041	40.32	1048.43	6.929	0.266	
27	82.18	2218.90	3.400	0.126	36.73	991.62	7.607	0.282	
28	255.99	7167.68	1.091	0.039	38.37	1074.36	7.281	0.260	
29	260.28	7548.19	1.073	0.037	36.48	1058.04	7.658	0.264	
30	274.21	8226.45	1.019	0.034	37.77	1133.14	7.397	0.247	
31	269.25	8346.83	1.038	0.033	36.16	1120.95	7.727	0.249	
32	265.02	8480.53	1.054	0.033	35.94	1150.12	7.774	0.243	

Table 2: Naměřené hodnoty pro graf 2: n=32, k=6, i=1

	InfiniBand								
-					Ethernet				
p	T(n,p)	C(n,p)	S(n,p)	E(n,p)	T(n,p)	C(n,p)	S(n,p)	E(n,p)	
1	274.09	274.09	1.000	1.000	274.09	274.09	1.000	1.000	
2	296.87	593.73	0.923	0.462	141.90	283.81	1.932	0.966	
3	212.40	637.21	1.290	0.430	100.03	300.09	2.740	0.913	
4	144.37	577.47	1.899	0.475	68.74	274.96	3.987	0.997	
5	116.10	580.49	2.361	0.472	57.59	287.95	4.759	0.952	
6	95.85	575.12	2.859	0.477	46.79	280.76	5.858	0.976	
7	82.99	580.90	3.303	0.472	40.19	281.32	6.820	0.974	
8	74.31	594.46	3.689	0.461	35.02	280.15	7.827	0.978	
9	65.53	589.75	4.183	0.465	30.95	278.54	8.856	0.984	
10	59.55	595.50	4.603	0.460	28.06	280.59	9.769	0.977	
11	54.01	594.16	5.074	0.461	26.34	289.72	10.407	0.946	
12	50.36	604.29	5.443	0.454	23.70	284.36	11.567	0.964	
13	57.89	752.54	4.735	0.364	21.69	281.95	12.638	0.972	
14	54.26	759.57	5.052	0.361	20.13	281.80	13.617	0.973	
15	52.56	788.36	5.215	0.348	19.05	285.72	14.389	0.959	
16	39.30	628.82	6.974	0.436	18.11	289.80	15.132	0.946	
17	36.12	613.98	7.589	0.446	16.73	284.43	16.382	0.964	
18	35.27	634.79	7.772	0.432	15.88	285.92	17.255	0.959	
19	33.77	641.63	8.116	0.427	15.10	286.96	18.148	0.955	
20	32.60	652.09	8.407	0.420	14.35	286.92	19.105	0.955	
21	28.67	602.09	9.560	0.455	13.81	289.93	19.852	0.945	
22	30.14	663.05	9.094	0.413	13.21	290.64	20.747	0.943	
23	38.03	874.71	7.207	0.313	12.90	296.61	21.253	0.924	
24	28.35	680.36	9.669	0.403	12.05	289.14	22.751	0.948	
25	36.01	900.13	7.613	0.305	11.94	298.56	22.951	0.918	
26	26.03	676.77	10.530	0.405	11.40	296.46	24.038	0.925	
27	24.39	658.52	11.238	0.416	10.72	289.42	25.570	0.947	
28	24.05	673.50	11.395	0.407	10.45	292.47	26.241	0.937	
29	22.43	650.57	12.218	0.421	10.25	297.18	26.747	0.922	
30	21.13	633.87	12.972	0.432	9.98	299.37	27.467	0.916	
31	19.88	616.16	13.790	0.445	9.62	298.29	28.485	0.919	
32	18.99	607.71	14.433	0.451	8.96	286.61	30.602	0.956	
				-	_	- '			

Table 3: Naměřené hodnoty pro graf 3: n=50, k=3, i=2

	Table 3: Namerene hodnoty pr								
	InfiniBand				Ethernet				
p	T(n,p)	C(n,p)	S(n,p)	E(n,p)	T(n,p)	C(n,p)	S(n,p)	E(n,p)	
1	253.28	253.28	1.000	1.000	253.28	253.28	1.000	1.000	
2	178.78	357.56	1.417	0.708	121.49	242.99	2.085	1.042	
3	119.63	358.88	2.117	0.706	82.27	246.81	3.079	1.026	
4	90.40	361.58	2.802	0.700	61.34	245.37	4.129	1.032	
5	73.02	365.09	3.469	0.694	49.69	248.43	5.098	1.020	
6	60.67	364.01	4.175	0.696	41.26	247.58	6.138	1.023	
7	52.10	364.70	4.861	0.694	35.22	246.52	7.192	1.027	
8	45.62	364.93	5.552	0.694	118.03	944.22	2.146	0.268	
9	40.53	364.74	6.250	0.694	27.40	246.58	9.245	1.027	
10	36.66	366.57	6.909	0.691	24.77	247.70	10.225	1.023	
11	33.48	368.31	7.565	0.688	22.74	250.18	11.136	1.012	
12	30.49	365.82	8.308	0.692	20.76	249.08	12.202	1.017	
13	28.68	372.85	8.831	0.679	19.29	250.81	13.128	1.010	
14	26.18	366.52	9.675	0.691	17.98	251.67	14.090	1.006	
15	25.13	376.94	10.079	0.672	60.78	911.67	4.167	0.278	
16	29.20	467.19	8.674	0.542	19.56	312.99	12.948	0.809	
17	27.64	469.88	9.164	0.539	18.84	320.25	13.445	0.791	
18	73.49	1322.77	3.447	0.191	18.18	327.27	13.931	0.774	
19	66.12	1256.30	3.831	0.202	17.51	332.65	14.466	0.761	
20	66.48	1329.61	3.810	0.190	16.47	329.36	15.380	0.769	
21	23.46	492.62	10.797	0.514	15.96	335.06	15.875	0.756	
22	22.86	503.01	11.078	0.504	15.55	342.11	16.287	0.740	
23	70.13	1613.00	3.612	0.157	14.92	343.22	16.973	0.738	
24	42.20	1012.79	6.002	0.250	14.53	348.62	17.436	0.727	
25	21.32	533.12	11.877	0.475	14.23	355.78	17.798	0.712	
26	38.35	997.13	6.604	0.254	13.85	360.11	18.287	0.703	
27	20.70	559.01	12.233	0.453	13.47	363.72	18.801	0.696	
28	19.69	551.41	12.861	0.459	13.38	374.52	18.936	0.676	
29	19.65	569.89	12.889	0.444	12.79	370.98	19.799	0.683	
30	19.50	584.97	12.989	0.433	38.15	1144.44	6.639	0.221	
31	19.22	595.75	13.179	0.425	12.40	384.45	20.423	0.659	
32	18.40	588.85	13.764	0.430	12.33	394.47	20.547	0.642	

Figure 1: Porovnání doby výpočtu s komunikací přes InfiniBand

Figure 2: Porovnání zrychlení s komunikací přes InfiniBand

Figure 3: Porovnání doby výpočtu s komunikací přes Ethernet

Figure 4: Porovnání zrychlení s komunikací přes Ethernet

Figure 5: Porovnání zrychlení s různými komunikačními sítěmi pro graf 1

Figure 6: Porovnání zrychlení s různými komunikačními sítěmi pro graf $2\,$

Figure 7: Porovnání zrychlení s různými komunikačními sítěmi pro graf $3\,$

