- 2014 Algebra SEP \sim Fields Day 1 Problems, by E. Dummit
 - 1. (Aug-13.2): Let K be the splitting field of $x^4 2$ over \mathbb{Q} .
 - (a) Find $[K:\mathbb{Q}]$.
 - (b) Give an example of an ideal I of $\mathbb{Q}[x,y]$ such that K is isomorphic to $\mathbb{Q}[x,y]/I$.
 - (c) Find $Gal(K/\mathbb{Q})$.
 - 2. (Aug-04.3):
 - (a) Show that $x^4 2$ is irreducible over $\mathbb{Q}[i]$.
 - (b) If $\sqrt[4]{2} + i$ is a root of a polynomial $f(x) \in \mathbb{Q}[x]$, show that $i\sqrt[4]{2} + i$ is also a root of f(x).
 - (c) Find the degree of the minimal polynomial of $\sqrt[4]{2} + i$ over \mathbb{Q} .
 - 3. (Aug-12.3):
 - (a) Suppose $K, L \subseteq \mathbb{C}$ are Galois over \mathbb{Q} . Show that E = KL is Galois over \mathbb{Q} .
 - (b) If additionally $[K:\mathbb{Q}]$ and $[L:\mathbb{Q}]$ are coprime, show that $\operatorname{Gal}(E/\mathbb{Q}) \cong \operatorname{Gal}(K/\mathbb{Q}) \times \operatorname{Gal}(L/\mathbb{Q})$, and deduce $[E:\mathbb{Q}] = [K:\mathbb{Q}] \cdot [L:\mathbb{Q}]$.
 - (c) Prove there is a subfield F of \mathbb{C} , Galois over \mathbb{Q} , with $[F:\mathbb{Q}]=55$.
 - 4. (Jan-00.3): Let L/K be a finite-degree Galois extension with Galois group G, and $K \subseteq E \subseteq L$. E is said to be a "2-tower" over K if there exists a chain of fields $K = E_0 \subseteq E_1 \subseteq \cdots \subseteq E_n = E$ with each extension of degree 2.
 - (a) If G is abelian, show that E is a 2-tower over K iff |E:K| is a power of 2.
 - (b) Show by example that (a) is false if G is not abelian.
 - 5. (Aug-07.3): Let F be a field of characteristic 0 and E a finite Galois extension of F.
 - (a) If $0 \neq \alpha \in E$ with $E = F[\alpha]$, show that $F[\alpha^2] \neq E$ iff there exists $\sigma \in Gal(E/F)$ with $\alpha^{\sigma} = -\alpha$.
 - (b) Prove there exists an element $\alpha \in E$ with $E = F[\alpha^2]$.
 - 6. (Jan-03.3): Let F/\mathbb{Q} be a finite abelian Galois extension of \mathbb{Q} , embedded in \mathbb{C} . Let $\alpha \in F$ and $f(x) \in \mathbb{Q}[x]$ be its minimal monic polynomial. Assume that $|\alpha| = 1$.
 - (a) Show F is closed under complex conjugation.
 - (b) Show that $|\beta| = 1$ for every root β of f.
 - (c) For $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$, show that $|a_i| \leq 2^n$ for each i.
 - (d) Show that F contains only finitely many algebraic integers having absolute value 1, and that each of these is a root of unity.
 - 7. (Aug-10.3): We say a polynomial $f \in \mathbb{Q}[x]$ is "special" if f is irreducible in $\mathbb{Q}[x]$, its degree is at least 2, and f splits over $\mathbb{Q}[\alpha]$ where α is some root of f in some extension of \mathbb{Q} .
 - (a) If $f \in \mathbb{Q}[x]$ is irreducible with degree at least 2, with splitting field L/\mathbb{Q} whose Galois group is abelian. Show that f is special.
 - (b) If L/\mathbb{Q} is finite and Galois (and not trivial), show that there exists a special polynomial f with a root in L
 - (c) Show that $x^n 2$ is not special for any $n \ge 3$.