Universita' degli Studi di Roma - "Tor Vergata" - Facolta' Ingegneria Modelli e Sistemi Esercizi per il corso di Matematica Discreta - a.a. 2006/2007 Docente: Prof. F. Flamini

FOGLIO 3 - Esercizi Riepilogativi con soluzioni

Esercizio 1: Siano

$$f = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{array}\right)$$

e

$$g = \left(\begin{array}{rrrr} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 3 & 5 \end{array}\right)$$

due permutazioni di Σ_5 .

- (i) Determinare la decomposizione ciclica di $f \circ g$ e di $(f \circ g)^{-1}$;
- (ii) Determinare la classe e l'ordine delle permutazioni $f, g, f \circ g$ e $(f \circ g)^{-1}$;
- (iii) Scrivere $f, g, f \circ g$ e $(f \circ g)^{-1}$ come prodotto di trasposizioni.

Svolgimento: (i) In notazione ciclica, si ha che la permutazione f = (1, 2, 3)(4, 5) e q = (1, 2)(3, 4). Percio'

$$f \circ g = (1, 2, 3)(4, 5)(1, 2)(3, 4) = (1, 3, 5, 4).$$

Segue che

$$(f \circ g)^{-1} = (1, 4, 5, 3).$$

(ii) La classe di f e' 3 perche' e' prodotto di un 3-ciclo (di classe 2) e da una trasposizione (di classe 1). La classe di g e' 2, perche' prodotto di 2 trasposizioni. Essendo $f \circ g$ un 4-ciclo, allora la classe di $f \circ g$ e del suo inverso e' 3.

Per quanto riguarda gli ordini, poiche' $f \circ g$ e' un 4-ciclo, ha ordine 4, cosiccome il suo inverso. La permutazione g ha ordine 2: infatti g e' formata da due trasposizioni che sono cicli disgiunti, quindi

$$g^2 = (1,2)(3,4)(1,2)(3,4) = (1,2)(1,2)(3,4)(3,4) = id \circ id = id.$$

Invece l'ordine di f e' 6, come si determina calcolando esplicitamente f, f^2 , f^3 ,, f^5 e $f^6=id$.

(iii) La permutazione f e' di classe 3, che e' un numero dispari. Quindi f si decomporra' in un numero dispari di trasposizioni. Infatti f e' costituita dal 3-ciclo (1,2,3) = (1,2)(2,3) e dalla trasposizione (4,5). Percio'

$$f = (1, 2)(2, 3)(4, 5).$$

Per g non c'e' altro da fare: e' gia prodotto di 2 trasposizioni. Ed in effetti era di classe 2. Ora invece $f \circ g$ e' un 4-ciclo, percio' e' di classe 3, che e' un numero dispari. La sua decomposizione in trasposizioni, essendo una permutazione ciclica e'

$$f \circ g = (1,3)(3,5)(5,4).$$

Stesso discorso si puo' fare per $(f \circ g)^{-1}$.

Esercizio 2: Sia

- (i) Esprimere f come prodotto di cicli disgiunti.
- (ii) Esprimere l'inversa di f in forma ciclica.
- (iii) Calcolare la classe di f e scrivere f come prodotto di trasposizioni.

Svolgimento: Provarci da soli. E' simile al n.1.

Esercizio 3: Dato Σ_3 , il gruppo simmetrico su 3 elementi, determinare per ogni elemento $\sigma \in \Sigma_3$, l'ordine di σ , la classe di σ e la rappresentazione di σ in prodotto di trasposizioni.

Svolgimento: Provarci da soli. E' simile al n.1.

Esercizio 4: Dato Σ_4 , il gruppo simmetrico su 3 elementi, determinare per ogni elemento $\sigma \in \Sigma_4$, l'ordine di σ , la classe di σ e la rappresentazione di σ in prodotto di trasposizioni.

Svolgimento: Provarci da soli. E' simile al n.1.