Maps and Tables

2022-12-26

KEY:

hok = Hokkaidohon = Miyagi

 ${\rm tok}={\rm Tokyo}~{\rm Bay}$

 $\mathrm{sea} = \mathrm{Seto}$ Inland Sea / Hiroshima

 ${\rm kag}={\rm Kagoshima}$

nonSource = western Japan / South Korea

1

Crassostrea gigas

This study

Number of populations = 41 Number of ind per pop = 17.7 Machine Learning output:

	Argentina	Chile	EuropeNorth	EuropeSouth	New.Zealand	NW.America
hok	0	1	1	3	0	2
hon	34	14	68	58	1	59
tok	0	0	0	0	0	0
sea	0	3	0	0	55	0
kag	0	0	0	0	0	0
urce	0	0	0	0	0	0

Undaria pinnatifida

Uwai et al 2006 Phycologia 45:687-695

Number of populations = 61Number of ind per pop = 3.2Machine Learning output:

	France	New.Zealand	USA
hok	2	1	0
hon	0	0	0
tok	0	0	11
sea	2	11	0
kag	0	0	0
nonSource	0	63	0

Didemnum vexillum

Stefanik et al 2012 JEMBE 422–423:64–71

Number of populations = 42Number of ind per pop = 6.4Machine Learning output:

	EuropeNorth	EuropeSouth	NAm_north	NAm_south	NewZealand
hok	0	0	0	0	0
hon	4	14	18	2	21
tok	23	9	22	4	61

${\bf Gracilaria\ vermiculophylla}$

Flanagan et al. 2021 Molecular Ecology

Number of populations = 25Number of ind per pop = 9.6Machine Learning output:

	EuropeNorth	EuropeSouth	soCal	WNA
hok	0	0	0	0
hon	29	39	17	14
tok	0	0	0	0
kag	0	0	0	0
nonSource	0	0	0	0

Haminoea japonica

Hanson et al. 2013 PLoS ONE

Number of populations = 27Number of ind per pop = 5.3Machine Learning output:

	California	Canada	France	Italy	Spain	Washington
hok	0	0	0	0	0	0
hon	15	2	5	17	4	9
tok	0	0	0	0	0	0
sea	0	0	0	0	0	0
kag	0	0	0	0	0	0
nonSource	0	0	0	0	0	0

Batillaria attramentaria

Miura et al. 2005 PNAS

Number of populations = 18Number of ind per pop = 10Machine Learning output:

	NAm_north	NAm_south
hon	20	19
tok	0	1
sea	0	0
kag	0	0
nonSource	0	0

Cercaria batillaria (HL1)

Miura et al. 2005 PNAS

Number of populations = 17Number of ind per pop = 13.5Machine Learning output:

	NAm_north	NAm_south	
hon	42	89	
tok	0	0	
sea	0	0	
kag	0	0	
nonSource	0	0	

Cercaria batillaria (HL6)

Miura et al. 2005 PNAS

Number of populations = 17Number of ind per pop = 25.2Machine Learning output:

	NAm_north	NAm_south
hon	17	235
tok	0	0
sea	0	0
kag	0	0
nonSource	0	0

Mutimo cylindricus

Hanyuda et al 2018 Marine Pollution Data

Number of populations = 15Number of ind per pop = 6.1Machine Learning output:

	USA
hok	15
hon	0
tok	0
sea	0
kag	0
nonSource	0

Hemigrapsus takanoi

Makino et al 2018 Biological Invasions

Number of populations = 59 Number of ind per pop = 10.4 Machine Learning output:

	NorthEurope	SouthEurope
hok	0	0
hon	68	33
tok	0	0
sea	0	0
kag	12	3
nonSource	0	17

Hemigrapsus sanguineus

Blakeslee et al 2017 Marine Biology + GenBank

Number of populations = 27 Number of ind per pop = 16.1 Machine Learning output:

	Europe
hok	0
hon	0
tok	0
sea	2
kag	0
nonSource	8

