Section 9.6: Alternating Series

Warm-Up

Problem 1 Suppose $\sum_{k=1}^{\infty} a_k$ is an infinite series.

- A. Explain what it means for a series $\sum_{k=1}^{\infty} a_k$ to converge absolutely.
- B. Explain what it means for a series $\sum_{k=1}^{\infty} a_k$ to converge conditionally.

Problem 2 Understanding what an alternating series is.

- A. Is the series $\sum_{k=1}^{\infty} \sin(k)$ alternating?
- B. Suppose $\{a_k\}$ is a sequence. Is the series $\sum_{k=1}^{\infty} a_k$ alternating? If it is not, what assumption(s) would be needed on the terms in the sequence $\{a_k\}$ to ensure the series is alternating?

Group Work

Problem 3 Determine if the following series absolutely converge, conditionally converge, or diverge.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n+3}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (n+1)^n}{(2n)^n}$$

Section 9.6: Alternating Series

(c)
$$\sum_{n=1}^{\infty} (-1)^{n+1} n^2 e^{\frac{-n^3}{3}}$$

(d)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \cdot 5}{3^n + 3^{-n}}$$

(e)
$$\sum_{n=4}^{\infty} \frac{(-2)^n}{n}$$

(f)
$$\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^4 + 1}$$

(g)
$$\sum_{n=1}^{\infty} \left[\left(1 + \frac{1}{n} \right)^2 e^{-n} \right]$$

Problem 4 (a) Find an upper bound for how close $\sum_{k=0}^4 \frac{(-1)^k k}{4^k}$ is to the value of $\sum_{k=0}^\infty \frac{(-1)^k k}{4^k}$.

(b) (Calculator Recommended) How many terms are needed to estimate $\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n!}$ to within 10^{-6} ?