# MAR ATHANASIUS COLLEGE OF ENGINEERING (Affiliated to APJ Abdul Kalam Technological University, TVM) KOTHAMANGALAM



# **Department of Computer Applications**

Mini Project Report

# **MILK STATION**

Done by

Rejitha Ramesh
Reg No: MAC20MCA-2017

Under the guidance of **Prof Elizabeth Poulose** 

2020-2022

# MAR ATHANASIUS COLLEGE OF ENGINEERING (Affiliated to APJ Abdul Kalam Technological University, TVM) KOTHAMANGALAM

## **CERTIFICATE**



# **MILK STATION**

Certified that this is the bonafide record of project work done by

Rejitha Ramesh Reg No: MAC20MCA-2017

During the academic year 2020-2022, in partial fulfilment of requirements for award of the degree,

Master of Computer Applications Of APJ Abdul Kalam Technological University Thiruvananthapuram

**Faculty Guide** 

Prof. Elizabeth Poulose

**Head of the Department** 

Prof. Biju Skaria

**Project Coordinator** 

Prof. Nisha Markose

**Internal Examiner** 

1. Prof. Nisha Markose

2. Prof. Liji Jose P

#### ACKNOWLEDGEMENT

First and foremost, I thank God Almighty for his divine grace and blessings in making all this possible. May he continue to lead me in the years to come.

I would like to express my special gratitude and thanks to Mini project guide Prof. Elizabeth poulose, Assistant Professor, Department of Computer Applications for her guidance and constant supervision as well as for providing necessary information regarding the Mini project & also for her support.

I am highly indebted to our project coordinators Prof. Beena Jacob, Associate Professor and Prof. Nisha Markose, Associate Professor, Department of Computer Applications for their guidance and support.

I am also grateful to Prof. Biju Skaria, Head of the Department, Department of the Computer Applications, for his valuable guidance as well as timely advice which helped me a lot during preparation of the project.

I profusely thank other Professors in the department and all other staffs of MACE, for their guidance and inspirations throughout my course of study. No words can express my humble gratitude to my beloved parents who have been guiding me in all walks of my journey. My thanks and appreciations also go to my friends and people who have willingly helped me out with their abilities.

# **CONTENTS**

| 1 | Intr | oduction                      | 7  |
|---|------|-------------------------------|----|
| 2 | Syst | tem Analysis                  | 10 |
|   | 2.1  | Module Description            | 10 |
|   | 2.2  | Feasibility Analysis          | 11 |
|   |      | 2.2.1 Technical Feasibility   | 1  |
|   |      | 2.2.2 Economical Feasibility  | 1  |
|   |      | 2.2.3 Operational Feasibility | 12 |
|   | 2.3  | System Environment            | 12 |
|   |      | 2.3.1 Software Environment    | 12 |
|   |      | 2.3.2 Hardware Environment    | 15 |
|   | 2.4  | Actors and Roles              | 15 |
|   | 2.5  | Use Case Model                | 16 |
|   |      | 2.5.1 Business Rules          | 16 |
|   |      | 2.5.2 Use Cases               | 17 |
|   |      | 2.5.3 Use Case Diagram        | 18 |
|   | 2.6  | Activity Diagram              | 19 |
|   | 2.7  | Sequence Diagram              | 20 |
|   | 2.8  | Class Diagram                 | 23 |
| 3 |      | tem Design                    | 24 |
|   | 3.1  | Database Design               | 24 |
|   | 3.2  | UI Design                     |    |
| 4 | T    | 4:                            | 24 |
| 4 | res  | ting and Implementation       | 34 |
|   | 4.1  | Testing                       |    |
|   | 4.2  | Implementation                |    |
|   | 13   | Git History                   | 38 |

| 5            | Con  | clusion                       | 39 |
|--------------|------|-------------------------------|----|
| 6            | Scor | oe for Future Enhancements    | 41 |
| 7            | App  | endix                         | 41 |
|              | 7.1  | Minimum Software Requirements | 42 |
|              | 7.2  | Minimum Hardware Requirements | 42 |
| 8 References |      |                               |    |

# LIST OF FIGURES

| 2.5.3  | Use case diagram                      | 18 |
|--------|---------------------------------------|----|
| 2.6    | Activity diagram                      | 19 |
| 2.7.1  | Sequence diagram for registration     | 20 |
| 2.7.2  | Sequence diagram for dairy collection | 21 |
| 2.7.3  | Sequence diagram for purchase product | 21 |
| 2.7.3  | Sequence diagram for payment          | 22 |
| 2.8    | Class diagram                         | 23 |
| 3.2.1  | Home page                             | 28 |
| 3.2.2  | Farmer registration                   | 29 |
| 3.2.3  | Login page                            | 29 |
| 3.2.4  | Supply milk                           | 30 |
| 3.2.5  | Sales details                         | 30 |
| 3.2.6  | Payment for farmer                    | 31 |
| 3.2.7  | Purchase details                      | 31 |
| 3.2.8  | Add product                           | 32 |
| 3.2.9  | Request milk for customer             | 32 |
| 3.2.10 | ) Milk products                       | 33 |
| 3.2.11 | Report                                | 33 |
| 4.3    | Git history                           | 38 |

## 1. INTRODUCTION

The goal of **MILK STATION** is to encourage dairy industries. The **MILK STATION** is a software application to maintain day-to-day transactions in a milk distribution. This software help to register all the suppliers, buyer details, Sales details etc. **MILK STATION** is an application designed to manage activities related to people, their daily work such as collecting milk from members, sales to the customer and all the related processes. It became tough for dairy owners to manage all dairy work manually. To reduce manual work, a **MILK STATION** can help to make day-to-day dairy related activities easier. The whole process admin can manage with one app. Milk software also assists in reporting, and accounting.

**MILK STATION** is been developed with the aim of providing a tool, which will prove efficient enough to manage the customer and daily entries of milk, save the organization's time as well as resources .This project provides new facility to the user, and helps them to save their time and money.

Dairy farm needs a **MILK STATION**. It can ease a variety of a dairy process like member management, report analysis, accounting and finance, milk supply. This website will be showing the details of employees in the milk station information system, it will show quality of milk sold in the dairy, it will help them to know their frequenters customers and their information details in their dairy database. It will help to know daily sale each day enable to access the business progress, It will enable them to their know suppliers who brought for them in daily time.

This Project is based on the concept of managing dairy products and their records. Design of this is so simple that the user won't find difficulties while working on it. This project helps the user for easy management of transaction activities. This web application helps to register all the suppliers, purchase, Sales details etc. This project deals with the purchase and sale of milk by making records in the database. The milk station is a comprehensive approach to manage the Dairy products collection, making payments. The admin of the website can

manage employees and payroll. This is software developed with the purpose of helping the dairy farm mitigate their losses and increase their productivity.

- Facilitate easily maintenance
- Maintain Daily inventory reports and records of Members
- Quick access to all records
- Reduce manual work
- Prevent and reduce human error
- Help with the automatic registration of dairy people
- Allow multiple users to use the software at the same time
- Helping the dairy owner to mitigate the losses and increase productivity

The existing system requires more time for processing. It requires more critical work. This system is more error prone and difficult to maintain. It is costly. Immediate response to the queries is difficult and time consuming. More men power needed.

Productivity of Indian dairy animals is lower compared to other country. It is due to the lack of scientific livestock feeding practice, inadequacy and unavailability of livestock healthcare. Some other problems associated with the system are improper milk marketing facilities and uncertain price of milk for producers, lack of infrastructure for milk collection, transportation, processing, lack of veterinary and extension services, milk losses due to lack of cold chain facilities and lack of clean milk production practices.

The tools used for the development of the project include Html, CSS, Bootstrap and Javascript at the Front End. PHP and MySQL is used as backend. Microsoft Visual Studio Code was used to write the code. The Editor provides all the settings to write your Html, CSS, Javascript. Xampp distribution which offers the MySQL database server is used. XAMPP only offers MySQL (Database Server) & Apache (Webserver) in one setup and you can manage them with the xampp starter. The MySQL database server allows connecting to the

phpMyAdmin. phpMyAdmin is a free software tool written in PHP, intended to handle the administration of MySQL over the Web. PhpMyAdmin supports a wide range of operations on MySQL.

The proposed system will be showing the details of employees in milk station information system, it will show quality of milk selling in the dairy, it will help them to know their frequent customers and their information details in their dairy database. It will be help to know how much they sell each day, enable access to the business progress, it will enable them to know their suppliers who brought from them in regularly. In addition, this system will provide central database for everything being sold and simple management of information being processed.

## **Advantages of Proposed System**

- The initial investment in dairy farming business is low in comparison to other Industry.
- It is environment-friendly.
- The demand for milk product is increasing rapidly.
- This system required less time for completion of any work.
- This system is reduces the chances of error.
- This system should work smoothly and very fast.
- It saves time and manpower.
- The system is user friendly and anyone having computer knowledge can handle it easily.

## 2. SYSTEM ANALYSIS

## 2.1. Module Description

## 1. Registration:

User can register into the system providing their basic details. After registration the admin needs to verify the users.

#### 2. Milk Collection:

The system also monitors the milk collection from farmers. The farmer gives the milk to the vendor, the vendor will have to make the payments to the farmers according to the milk purchases.

#### 3. Milk Sale & Milk Products:

The collected milk will be sold to the customers. The vendor will decide the price based on the thickness of the milk.

#### 4. Purchase Products:

The customers can purchase milk and milk products. After making the payments, the receipt is given to the customers.

## 5. Payments:

This module asks for payment after purchasing milk products to be done online from the customer. It also provides payment to the farmer after milk is supplied. The payments are made as per the purchases, sales and once the vendor updates the purchase details from the farmers, he makes the payments, and the payment details are being updated for future use.

## 6. Report:

The admin gets all the reports from the sales report, payment report and the receipt. The print-out can be generated based on the sales and payment.

## 2.2. Feasibility Analysis

Feasibility study is an assessment of the practicality of a proposed project or system. A feasibility study aims to objectively and rationally uncover the strengths and weaknesses of an existing business or proposed venture, opportunities and threats present in the natural environment, the resources required to carry through, and ultimately the prospects for success. In its simplest terms, the two criteria to judge feasibility are cost required and value to be attained. The various types of feasibilities that are to be determined are:

- Technical Feasibility
- Economical Feasibility
- Operational Feasibility

## 2.2.1. Technical Feasibility

Technical feasibility is used to determine the requirement of technologies for the current system. This assessment focuses on the technical resources available to the organization. It helps organizations determine whether the technical resources meet capacity and whether the technical team is capable of converting the ideas into working systems. Technical feasibility also involves the evaluation of the hardware, software, and other technical requirements of the proposed system.

The web application uses PHP language which is user friendly and efficient along with MySQL. Also the tools, operating system and language used in this system is compatible with the existing one. So the project is technically feasible.

## 2.2.2. Economic Feasibility

Economic feasibility is a kind of cost-benefit analysis of the examined project, which assesses whether it is possible to implement it. This term means the assessment and analysis of a project's potential to support the decision-making process by objectively and rationally identifying its strengths, weaknesses, opportunities and risks associated with it, the resources that will be needed to implement the project, and an assessment of its chances of success. It is

MILK STATION

used to determine the benefits and savings that are expected from the proposed system and

compare them with the costs. If benefits outweigh costs, then the decision is made to design

and implement the system.

2.2.3. Operational Feasibility

Operational feasibility is the measure of how well a proposed system solves the

problems, and takes advantage of the opportunities identified during scope definition and how

it satisfies the requirements identified in the requirements analysis phase of system

development. This feasibility test asks if the system will work when it is developed and

installed. This assessment involves undertaking a study to analyze and determine whether and

how well the organization's needs can be met by completing the project. Operational

feasibility studies also examine how a project plan satisfies the requirements identified in the

requirements analysis phase of system development.

2.3. System Environment

System environment specifies the hardware and software configuration of the new

system. Regardless of how the requirement phase proceeds, it ultimately ends with the

software requirement specification. A good SRS contains all the system requirements to a

level of detail sufficient to enable designers to design a system that satisfies those

requirements. The system specified in the SRS will assist the potential users to determine if

the system meets their needs or how the system must be modified to meet their needs.

2.3.1. Software Environment

Tool: As a Text editor we use Visual Studio Code. It is an integrated development

environment made by Microsoft for Windows, Linux and macOS. As we are developing the

project using Html, CSS, and Javascript, the Visual Studio provide rich library support for

these.

**Operating system:** Windows 7/8/10 or latest

Front end: HTML, CSS, JavaScript

Back end: PHP, MySQL

Department of Computer Applications, MACE

12

**Environment Tools:** XAMPP Server

• PHP

The term PHP is an acronym for Hypertext Preprocessor. It is a server-side scripting language that is used for web development. It can be easily embedded with HTML files.

HTML codes can also be written in a PHP file. The PHP codes are executed on the server-side

whereas HTML codes are directly executed on the browser.

• HTML

The HyperText Markup Language or HTML is the standard markup language for creating

Web pages. HTML provides a means to create structured documents by denoting structural

semantics for text such as headings, paragraphs, lists, links, quotes and other items. HTML

elements are delineated by tags, written using angle brackets.HTML can embed programs

written in a scripting language such as JavaScript, which affects the behavior and content of

web pages.

• CSS

Cascading Style Sheets (CSS) is used to style and layout web pages. CSS is designed to

enable the separation of presentation and content, including layout, colors, and fonts. This

separation can improve content accessibility; provide more Department of Computer

Application, MACE 13 flexibility and control in the specification of presentation

characteristics; enable multiple web pages to share formatting by specifying the relevant CSS

in a separate.

• JavaScript

JavaScript is a programming language that adds interactivity to your websites.

JavaScript is a high-level, often just-in-time compiled language that conforms to the

ECMAScript standard. It has dynamic typing, prototype-based object-orientation, and first-

class functions. It is multi-paradigm, supporting event-driven, functional, and imperative

programming styles.

Department of Computer Applications, MACE

13

## • MySQL

MySQL is an open-source relational database management system. A relational database organizes data into one or more data tables in which data types may be related to each other; these relations help structure the data. SQL is a language programmers use to create, modify and extract data from the relational database, as well as control user access to the database.

#### • Visual Studio

Microsoft Visual Studio is an integrated development environment from Microsoft. It is used to develop computer programs, as well as websites, web apps, web services and mobile apps. A fully-featured, extensible, free IDE for creating modern applications for Android, iOS, Windows, as well as web applications and cloud services.

#### • XAMPP Server

XAMPP Server is a Web development platform on Windows that allows you to create dynamic Web applications with Apache2, PHP, MySQL and MariaDB.

#### • Github

Git is an open-source version control system that was started by Linus Torvalds the same person who created Linux. Git is similar to other version control systems Subversion, CVS, and Mercurial to name a few. Version control systems keep these revisions straight, storing the modifications in a central repository. This allows developers to easily collaborate, as they can download a new version of the software, make changes, and upload the newest revision. Every developer can see these new changes, download them, and contribute. Git is the preferred version control system of most developers, since it has multiple advantages over the other systems available. It stores file changes more efficiently and ensures file integrity better.

#### 2.2.4. Hardware Environment

**Processor:** Ryzen Core i3 processor or more

**More Main memory:** 8 GB RAM

Hard disk: 256 GB SSD

#### 2.4. Actors and Roles

The main actors involved are:

- Admin
- Farmer
- Vendor
- Customer

## • Admin

The admin has the unique login that completely controls the working. Admin will verify the reports entered by the vendor. Admin provides username and password to each of the vendor after their verification. Admin can see the users and verify them. He can also view the reports. The admin can add or remove users whenever required. The admin gets all the reports from the sales report, payment report and the receipt.

## • Farmer

Farmers can manage the profile. Farmers can login to the website and sell his products to the vendor. The farmer gives the milk to the vendor, the vendor will have to make the payments to the farmers according to the milk purchases. Farmers will receive the payment depending on the quantity of milk provided. After making the payments, the receipt is given to the farmers.

#### Vendor

The vendor manages the profile. The vendor will Collect milk and update customer account. Vendor manages the payment. The farmer gives the milk to the vendor, the vendor will have to make the payments to the farmers according to the milk purchases. The payments are made as per the purchases, sales and once the vendor updates the purchase details from the farmers, he makes the payments, and the payment details are being updated for future use. After making the payments, the receipt is given to the customers and farmers.

#### Customer

A customer can manage the profile. Customer can view milk product details like milk quantity, milk price etc. The customer can see the total monthly or yearly milk details. The customer can view all payment details. After making the payments, the receipt is given to the customers.

## 2.5. Use Case Model

A UML diagram is a diagram based on the UML (Unified Modeling Language) with the purpose of visually representing a system along with its main actors, roles, actions, artefacts or classes, in order to better understand, alter, maintain, or document information about the system.

#### 2.5.1. Business Rules

Once the users register into the system their accounts need to be verified by the admin. The farmer needs to be verified by the vendor. Then only the farmer can supply milk. The payment can be initiated only when the purchase is done.

#### 2.5.2. Use Cases

## 1. Registration

User can register into the system providing their basic details. After registration the admin needs to verify the users.

## 2. Dairy Collection

The system also monitors the milk collection from farmers. The farmer gives the milk to the vendor, the vendor will have to make the payments to the farmers according to the milk purchases.

#### 3. Milk Products

The collected milk will be sold to the customers. The vendor will decide the price based on the thickness of the milk.

#### 4. Purchase Products

The customers can purchase milk and milk products. After making the payments, the receipt is given to the customers.

## 5. Payments

This module asks for payment after purchasing milk products to be done online from the customer. It also provides payment to the farmer after milk is supplied. The payments are made as per the purchases, sales and once the vendor updates the purchase details from the farmers, he makes the payments, and the payment details are being updated for future use.

## 6. Report

The admin gets all the reports from the sales report, payment report and the receipt. The print-out can be generated based on the sales and payment.

# 2.5.3. Use Case Diagram



Figure 2.5.3: **Use Case Diagram** 

# 2.6. Activity Diagram



Figure 2.6: Activity Diagram

# 2.7. Sequence Diagram

# 1. Registration



Figure 2.7.1: **Sequence Diagram for Registration** 

## 2. Dairy Collection



Figure 2.7.2: Sequence Diagram for Dairy Collection

## 3. Purchase Product



Figure 2.7.3: **Sequence Diagram for Product Purchase** 

## 4. Payment



Figure 2.7.4: **Sequence Diagram for Payment** 

## 2.8. Class Diagram



Figure 2.8: Class Diagram

## 3. SYSTEM DESIGN

# 3.1. Database Design

1) Table name: Farmer

Description: To store farmer details

| Field name  | Data type    | Description              | Constrains  |
|-------------|--------------|--------------------------|-------------|
| Farmer_id   | Int(20)      | Id for farmer            | Primary key |
| Name        | varchar(100) | Name for farmer          | Not null    |
| Contact no  | varchar(100) | Contact number of farmer | Not null    |
| Email       | Varchar(100) | Email for customer       | Not null    |
| Address     | Varchar(100) | Address for farmer       | Not null    |
| Location_id | Int(20)      | Id for location          | Foreign key |
| Society no  | Varchar(100) | Society number of farmer | Not null    |
| Photo       | Blob         | Photo of farmer          | Not null    |
| Proof       | Blob         | Proof of farmer          | Not null    |
| Username    | Varchar(100) | username for farmer      | Not null    |
| Password    | Varchar(100) | password for farmer      | Not null    |

2) Table name: Vendor

Description: To store vendor details

| Field name  | Data type    | Description              | Constrains  |
|-------------|--------------|--------------------------|-------------|
| Vendor_id   | Int(20)      | Id for vendor            | Primary key |
| Name        | varchar(100) | Name for vendor          | Not null    |
| Contact no  | varchar(100) | Contact number of vendor | Not null    |
| Email       | Varchar(100) | Email for vendor         | Not null    |
| Address     | Varchar(100) | Address for vendor       | Not null    |
| Location_id | Int(20)      | Id for location          | Foreign key |
| License no  | Varchar(100) | License number of vendor | Not null    |
| Photo       | Blob         | Photo of vendor          | Not null    |
| Proof       | Blob         | Proof of vendor          | Not null    |
| Username    | Varchar(100) | username for vendor      | Not null    |
| Password    | Varchar(100) | password for vendor      | Not null    |

# 3) Table name: Customer

Description: To store customer details

| Field name  | Data type    | Description                | Constrains  |
|-------------|--------------|----------------------------|-------------|
| Customer_id | Int(20)      | Id for customer            | Primary key |
| Name        | varchar(100) | Name for customer          | Not null    |
| Contact no  | varchar(100) | Contact number of customer | Not null    |
| Email       | Varchar(100) | Email for customer         | Not null    |
| Address     | varchar(100) | Address for customer       | Not null    |
| Location_id | Int(20)      | Id for location            | Foreign key |
| Photo       | Blob         | Photo of customer          | Not null    |
| Proof       | Blob         | Proof of customer          | Not null    |
| Username    | varchar(100) | Username for customer      | Not null    |
| Password    | varchar(100) | Password for customer      | Not null    |

# 4) Table name: **Dairy Products**

Description: To store dairy products details

| Field name      | Data type    | Description                 | Constrains  |
|-----------------|--------------|-----------------------------|-------------|
| Product_id      | Int(20)      | Id for product              | Primary key |
| Product_name    | Varchar(100) | Name of product             | Not null    |
| Quantity        | Varchar(100) | Quantity of product         | Not null    |
| Image           | Blob         | Image of product            | Not null    |
| Amount          | Double       | Amount of milk              | Not null    |
| Vendor_id       | Int(20)      | Id for Vendor               | Foreign key |
| product type_id | Int(20)      | Product type Id for product | Foreign key |

# 5) Table name: **Product Type**

Description: To store product type details

| Field name        | Data type    | Description              | Constrains  |
|-------------------|--------------|--------------------------|-------------|
| Product type_id   | Int(20)      | Id for product type      | Primary key |
| Product type name | Varchar(100) | Name for product type    | Not null    |
| Quantity          | Varchar(100) | Quantity of product type | Not null    |
| Image             | Blob         | Image of product type    | Not null    |
| Amount            | Double       | Amount of product type   | Not null    |
| Vendor_id         | Int(20)      | Id for Vendor            | Foreign key |

## 6) Table name: **Dairy Collection**

Description: To store dairy collection details

| Field name | Data type | Description               | Constrains  |
|------------|-----------|---------------------------|-------------|
| Dc_id      | Int(20)   | Id for dairy collection   | Primary key |
| Quantity   | Double    | Quantity of milk          | Not null    |
| Date       | Date      | Date for dairy collection | Not null    |
| Time       | Time      | Time for dairy collection | Not null    |
| Amount     | Double    | Amount of milk            | Not null    |
| Vendor_id  | Int(20)   | Id for Vendor             | Foreign key |
| Farmer_id  | Int(20)   | Id for farmer             | Foreign key |

## 7) Table name: **Location**

Description: To store location details

| Field name  | Data type    | Description       | Constrains  |
|-------------|--------------|-------------------|-------------|
| Location_id | Int(20)      | Id for location   | Primary key |
| Location    | Varchar(100) | Name for location | Not null    |

# 8) Table name: Purchase Products

Description: To store purchase products details

| Field name      | Data type | Description               | Constrains  |
|-----------------|-----------|---------------------------|-------------|
| Purchase_id     | Int(20)   | Id for purchase product   | Primary key |
| Quantity        | Double    | Quantity of milk          | Not null    |
| Date            | Date      | Date for purchase product | Not null    |
| Time            | Time      | Time for purchase product | Not null    |
| Amount          | Double    | Amount of milk            | Not null    |
| Product_id      | Int(20)   | Id for product            | Foreign key |
| Product type_id | Int(20)   | Id for product type       | Foreign key |
| Customer_id     | Int(20)   | Id for customer           | Foreign key |
| Vendor_id       | Int(20)   | Id for Vendor             | Foreign key |

# 9) Table name: Payment

Description: To store payment details

| Field name  | Data type | Description             | Constrains  |
|-------------|-----------|-------------------------|-------------|
| Payment_id  | Int(20)   | Id for payment          | Primary key |
| Amount      | Double    | Amount of milk          | Not null    |
| Date        | Date      | Date for product        | Not null    |
| Time        | Time      | Time for product        | Not null    |
| Dc_id       | Int(20)   | Id for dairy collection | Foreign key |
| Purchase_id | Int(20)   | Id for purchase product | Foreign key |
| Customer_id | Int(20)   | Id for customer         | Foreign key |
| Vendor_id   | Int(20)   | Id for Vendor           | Foreign key |
| Farmer_id   | Int(20)   | Id for farmer           | Foreign key |

10) Table name: Report

Description: To store report details

| Field name  | Data type | Description              | Constrains  |
|-------------|-----------|--------------------------|-------------|
|             |           |                          |             |
| Report_id   | Int(20)   | Id for report            | Primary key |
| Date        | Date      | Date for report          | Not null    |
| Time        | Time      | Time for report          | Not null    |
| Description | Varchar   | Description about report | Not null    |
| Payment_id  | Int(20)   | Id for payment           | Foreign key |
| Vendor_id   | Int(20)   | Id for vendor            | Foreign key |
| Admin_id    | Int(20)   | Id for admin             | Foreign key |
| Dc_id       | Int(20)   | Id for dairy collection  | Foreign key |

# 3.2. UI Design

# **3.2.1. Home Page**



Figure 3.2.1: **Home Page** 

# 3.2.2. Farmer Registration page



Figure 3.2.2: Farmer Registration Page

## 3.2.3. Login Page



Figure 3.2.3: Login Page

# 3.2.4. Supply Milk



Figure 3.2.4: Supply Milk

## 3.2.5. Sales Details



Figure 3.2.5: Sales Details

# 3.2.6. Payment for Farmer



Figure 3.2.6: **Payment for Farmer** 

## 3.2.7. Purchase Details



Figure 3.2.7: **Purchase Details** 

## 3.2.8. Add Product



Figure 3.2.8: Add Product

# 3.2.9. Request Milk for Customer



Figure 3.2.5: Request Milk for Customer

## 3.2.10. Milk Products



Figure 3.2.10: Milk Products

# **3.2.11. Report**



Figure 3.2.11: **Report** 

## 4. TESTING AND IMPLEMENTATION

## 4.1. Testing

Software testing is a critical element of software quality assurance and represents ultimate review of specification, design and code generation. Once the source code has been generated the program should be executed before the customer gets it with the specific intend of finding and removing all errors, test must be conducted systematically and test must be designed using disciplined techniques.

#### **Test Cases**

Testing is based on test cases. It describes which feature or service test attempts to cover. In test cases specify what you are testing and which particular feature it tests.

- Test the normal use of system
- Test the abnormal, but reasonable use of system
- Test the abnormal and reasonable use of system
- Test the boundary Conditions

## **Unit Testing**

Unit testing is a level of software testing where individual units/ components of the software are tested. The purpose is to validate that each unit of the software performs as designed. In the system the units testing perform separately and each module passes the test cases successfully. In each unit, its working is monitored so that it works safely and accurately. In each modules the unit testing is performed for smooth working of each modules.

## **Integration Testing**

Integration Testing is a level of software testing where individual units are combined and tested as a group. The purpose of this level of testing is to expose faults in the interaction between integrated units. During the Integration testing phase of my project its clear that the combined components/units don't affect the expected processes and other modules. Here we mixed up the units that have passed the test cases during unit test. And check-out the workflow of the modules.

## Unit test cases

| Sl | Procedure         | <b>Expected result</b>         | cted result                                                 |      |
|----|-------------------|--------------------------------|-------------------------------------------------------------|------|
| no |                   |                                |                                                             |      |
| 1. | User registration | Registration successful        | 8                                                           |      |
| 2. | User login        | Login successful               | User logged in                                              | Pass |
| 3. | Add milk          | Milk added successfully        | Milk details is saved and added successfully                | Pass |
| 4. | Purchase milk     | Milk purchased successfully    | Purchased details is saved and added successfully           | Pass |
| 5. | Add product       | Product added successfully     | Product details is saved and added successfully             | Pass |
| 6. | Purchase product  | Product purchased successfully | Product purchased details is saved and added successfully   | Pass |
| 7. | Add payment       | Payment added successfully     | Payment details added successfully                          | Pass |
| 8. | Generate report   | Report generated successfully  | Details such as sales, purchase, payment saved successfully | Pass |

## **Integration test cases**

| Sl | Procedure                          | Test case                                                                                       | Expected                                            | Actual result                                 | Status |
|----|------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|--------|
| no |                                    | description                                                                                     | result                                              |                                               |        |
| 1. | Integrating registration and login | Users give their details in registration module. After successful registration users can login. | Registration<br>and login<br>must work<br>properly. | Successful working of registration and login. | Pass   |
| 2. | Integrating milk and payment       | Farmer adds milk details. Vendor view them. When they make order and they can make payment.     | Milk and payment must work properly.                | Successful working of milk and payment.       | Pass   |
| 3. | Integrating milk products          | Vendor adds milk<br>products. From<br>vendor the customer<br>can order the milk<br>products.    | Milk products<br>order must<br>work<br>properly.    | Successful working of milk products order.    | Pass   |

# **System Testing**

The process of testing an integrated system to verify that it meets specified requirements in my project it satisfied all the requirements such as supply milk, request milk, adding milk products, order milk products etc...

## 4.2. Implementation

Implementation simply means carrying out the activities described in requirement. After testing, the system "Milk Station" is ready for the implementation. Implementation is the stage of the project when the theoretical design is turned in to a working system. Implementation is the process of bringing a newly developed system or revised into operational one. The new system and its components are to be tested in a structured and planned manner. There are some challenges faced by me while implementing the software. Some of them

- Code-reuse: There are huge issues faced by me for compatibility checks and deciding how much code to re-use.
- Version Management: Every time a new release is developed, I have to maintain version and configuration related documentation. In the Git hub helps me to solve such version control issues.

The implementation stage of a project is often very complex and time consuming. This involves careful planning, investigation of the current system and constraints of implementation, training the operating users in the changeover procedures before the system is setup and running. So, "Milk Station" is easy to use. It would be very easy to run also.

## 4.3. Git History



Figure 4.3: Git History

## 5. CONCLUSION

The project can ease a variety of a dairy process like member management, report analysis, accounting and finance, milk supply. This website will be showing the details of employees in the milk station information system, it will show quality of milk sold in the dairy, it will help them to know their frequenters customers and their information details in their dairy database. It will help to know daily sale each day enable to access the business progress, It will enable them to their know suppliers who brought for them in daily time.

This Project is based on the concept of managing dairy products and their records. Design of this is so simple that the user won't find difficulties while working on it. This project helps the user for easy management of transaction activities. This web application helps to register all the suppliers, purchase, Sales details etc. This project deals with the purchase and sale of milk by making records in the database. The milk station is a comprehensive approach to manage the Dairy products collection, making payments. The admin of the website can manage employees and payroll. This is software developed with the purpose of helping the dairy farm mitigate their losses and increase their productivity.

The results provided by system are truly close to what was expected of the system. Since the system aims at providing maximum output from minimum input, the system is coded in such a way that it tries to provide results in most of the cases. The system always has the required requirements to produce the expected results. It is set up in such a way that the controller of the system has to give his minimum effort. The system has a certain flow.

The main advantage of the system is its user-friendly interface and the ability to produce maximum output from minimum input. The system is capable of updating information in more than one database without affecting the integrity constraints. In many of the applications users have to give most of the information in one or more scenarios, The "Milk Station" tries to ensure that user does not feel that kind of boredom. This system provides new features like online payment. This project provides new facility to the user, and helps them to save their time and money.

The milk station required less time for completion of any work. This system is reduces the chances of error. This system should work smoothly and very fast. It saves time and manpower. The system is user friendly and anyone having computer knowledge can handle it easily. Suitable for computerized data entry. It maintains sales information, customer information and milk Rate Information. The initial investment in dairy farming business is low in comparison to other Industry. It is environment-friendly. The demand for milk product is increasing rapidly. Cow dung is good organic manure it increases soil fertility. Cow dung can be used for the production of biogas.

The system certainly possesses certain disadvantages. Productivity of Indian dairy animals is lower compared to other country. It is due to the lack of scientific livestock feeding practice, inadequacy and unavailability of livestock healthcare. Some other problems associated with the system are improper milk marketing facilities and uncertain price of milk for producers, lack of infrastructure for milk collection, transportation, processing, lack of veterinary and extension services, milk losses due to lack of cold chain facilities and lack of clean milk production practices. These days in India production of milk and its products are more hence the diary associations are decreasing the price given to farmers per liter. The dairy products needs to wider marketing facility.

## 6. SCOPE AND FUTURE ENHANCEMENTS

Changes in software engineering technology are indeed rapid. By the time a decision is made to adopt a new method, conduct the training necessary to understand its application and introduced technology into the software development culture. Something new has come along and the process begins. The application has been developed in such a way that any user can access at any time.

This application is built such a way that it should suits for all type of Milk Distributors in future. So every effort is taken to implement this project in this Milk station, on successful implementation in this Milk station, we can target other Milk Distributors in the city. Milk station project is a software application useful for dairy forms for managing daily activities like receiving of milk from various sources.

## 7. APPENDIX

# 7.1. Minimum Software Requirement

Software : Xampp Server, Visual Studio Code

Operating System : Windows

# 7.2. Minimum Hardware Requirement

Hardware capacity: 100 GB (minimum)

RAM : 2 GB

Processor : Intel Core i3 preferred

Display : 1366 \* 768

## 8. REFERENCES

- https://www.coursehero.com/
- https://sites.google.com/
- <a href="https://www.wikipedia.org/">https://www.wikipedia.org/</a>
- https://w3layouts.com/
- <a href="https://www.geeksforgeeks.org/">https://www.geeksforgeeks.org/</a>
- <a href="https://javapoint.com/">https://javapoint.com/</a>