

Smart Camera MI OD 軟體開發使用者文件

V2.2

© 2017 MStar Semiconductor, Inc. All rights reserved.

非經本公司書面許可,任何單位和個人不得擅自抄襲、複製本文件內容的部分或全部,並不得以任何形式傳播。 注意

您購買的產品、服務或特性等應受晨星半導體有限公司商業合同和條款的約束,本文檔中描述的全部或部分產品,服務或特性可能不在您的購買或使用範圍之內。除非合同另有約定,本文件僅作為使用指導,本文件中的所有陳述,資訊和建議不構成任何明示或暗示的擔保。

晨星半導體股份有限公司

地址:新竹縣竹北市台元街 26 號 4 樓之 1

電話:03-552600

修訂紀錄

版本號	說明	修訂日期
V1.0	創建	12/15/2015
V2.0	• 簡體中文轉繁體中文	03/16/2017
V2.1	• 回傳值整合	04/27/2017
V2.2	• 新增 MI_OD_SetMotionSensitivity 函式	09/20/2017

前言

本文為使用 OD 進行開發的程式師而寫,目的是供您在開發過程中查閱 OD 軟體包的各種參考資訊,包括 API、標 頭檔、錯誤碼等。

本文件描述 OD 軟體的各個 API 的使用方法,以及相關資料結構和錯誤碼。

讀者對象

本文件主要適用於以下工程師

- ▶ 技術支援工程師
- ▶ 軟體開發工程師

TABLE OF CONTENTS

修言	T紀錄.			i
前				
TAI	BLE O	F CONT	ENTS	1
1.	簡介.			2
2.	API	參考		3
			<u>t</u>	
	2.2.	API 列茅	E	4
		MI_OD	_Init	4
			_SetWindowEnable	
		MI_OD	_GetWindowResult	6
		MI_OD	_Run	7
		MI_OD	_SetMotionSensitivity	8
3.	資料	類型		9
	3.1.	概述		9
	3.2.	結構列表	表	9
			ODColor_e	
		3.2.2	ODWindow_e	
		3.2.3	MI_OD_WIN_STATE	
		3.2.4	MI_RET	
4.	流程.		_	
_	审场			12

1.	節介

遮擋檢測(Occlusion detection)功能用於檢測接收到的影片是否出現遮擋,並輸出遮擋檢測結果。

2. API 參考

2.1. API 概述

MI OD Init: 初始化 OD 檢測。

MI OD Uninit: 退出 OD 檢測,釋放記憶體。

MI_OD_SetAttr: 設置 OD 參數。

MI_OD_SetWindowEnable : 使能 OD 檢測。
MI_OD_GetWindowResult : 獲取 OD 檢測結果。

MI OD Run: 運行 OD 檢測。

MI OD SetMotionSensitivity: 設置移動鏡頭警報靈敏度。

2.2. API 列表

MI_OD_Init

描述

初始化 OD 檢測。

語法

OD_HANDLE MI_OD_Init(S32 inImgW, S32 inImgH, ODColor e nClrType, ODWindow e div);

參數

參數描述	說明
inImgW	輸入影像寬
inImgH	輸入影像高
nClrType	OD輸入影像的類型
div	OD 窗口的類型

返回值

返回值	說明
OD_HANDLE	OD 的 handle 控制碼
NULL	錯誤

需求

標頭檔: mi_od.h

函式庫: libMTE_LINUX.so

注意

要減少 OD 的 CPU 使用率,可降低輸入影像的解析度,影像的寬高推薦值為 320、180

MI_OD_Uninit

描述

退出 OD 檢測,釋放記憶體。

語法

void MI_OD_Uninit(OD_HANDLE odHandle) ;

參數

參數描述	說明
odHandle	OD 的 handle 控制碼

返回值

無

需求

標頭檔: mi_od.h

函式庫: libMTE_LINUX.so

注意

無

MI_OD_SetAttr

描述

設置 OD 參數。

語法

MI_RET_MI_OD_SetAttr(OD_HANDLE odHandle, S32 thd_tamper, S32 tamper_blk_thd, S32 min_duration, S32 alpha, S32 M);

參數

<u>x</u>		
參數描述	說明	
odHandle	OD 的 handle 控制碼	
thd_tamper	圖像差異比例門檻值	
tamper_blk_thd	圖像被遮擋區域數量門檻值	
min_duration	圖像差異持續時間門檻值	
alpha	控制產生參考圖像的學習速率	
М	多少張影像更新一次參考圖像	

返回值

返回值	說明
MI_RET_SUCCESS	成功
MI_OD_RET_INVALID_PARAMETER	參數設置錯誤

需求

標頭檔: mi_od.h

函式庫: libMTE_LINUX.so

注意

- ▶ 設置範圍 thd_tamper: 0~10。當 thd_tamper=3 時,子區域中沒被遮擋的影像小於 3/10 則判定為遮擋,因此可調整此值來決定遮擋的程度,值越高則對遮擋的判定越嚴謹。
- ▶ 設置範圍 tamper_blk_thd: 對應 MI_OD_Init 的視窗類型參數,若為 OD_WINDOW_3X3,則 tamper_blk_thd 最多不可超過 9,即 1~9。
- 》 例如 MI_OD_Init 的視窗類型參數為 OD_WINDOW_3X3(9 個子區域)tamper_blk_thd 值為 4 時,當被遮擋的子區域的數量達到 4 個才觸發 MI_OD_Run 的返回值為 1。
- ▶ 設置範圍 alpha: 0~10.
- ▶ min_duration 數值越大,檢測到被遮擋所需的時間越長。
- ▶ MI_OD_Run 的靈敏度可以通過設置 tamper_blk_thd 和 min_duration 來調節。對應高中低 3 檔的推薦 值如下:

参數名

tamper_blk_thd	2	4	8
min_duration	5	15	30

MI_OD_SetWindowEnable

描述

設置指定子視窗的 OD 檢測開啟或關閉。

語法

MI_RET_MI_OD_SetWindowEnable(OD_HANDLE odHandle, S32 col, S32 row, S32 bEnable);

參數

參數描述	說明
odHandle	OD 的 handle 控制碼
col	子窗口行數
row	子窗口列數
bEnable	1: enable,其他 disable

返回值

返回值	說明	
MI_RET_SUCCESS	成功	
MI_OD_RET_INVALID_HANDLE	null handle	
MI_OD_RET_INVALID_WINDOW	視窗設置錯誤	

需求

標頭檔: mi_od.h

函式庫:libMTE_LINUX.so

注意

預設所有子視窗都是 enable 狀態,所有子視窗都為 disable 狀態時,OD 不進行檢測。

MI_OD_GetWindowResult

描述

得到指定子窗口的 OD 檢測結果。

語法

MI_OD_WIN_STATE MI_OD_GetWindowResult(OD_HANDLE odHandle, S32 col, S32 row);

參數

參數描述	說明
odHandle	OD 的 handle 控制碼
col	子窗口行數
row	子窗口列數

返回值

返回值	說明
MI_OD_WIN_STATE_TAMPER	視窗被遮擋
MI_OD_WIN_STATE_NON_TAMPER	視窗沒遮擋
MI_OD_WIN_STATE_NO_FEATURE	視窗特徵不足
MI_OD_WIN_STATE_FAIL	失敗

需求

標頭檔: mi_od.h

函式庫: libMTE_LINUX.so

注意

遮擋檢測結果以 MI OD RUN 回傳值為準。

MI_OD_Run

描述

執行 OD 函式庫。

語法

S32 MI_OD_Run(OD_HANDLE odHandle, const U8 * yImage);

參數

参數描述	說明
odHandle	OD 的 handle 控制碼
yImage	Y的記憶體位址指標

返回值

返回值	說明
-1	失敗
1	檢測到遮擋
0	未檢測到遮擋

需求

標頭檔: mi_od.h

函式庫: libMTE_LINUX.so

注意

减少 OD 演算法的 CPU 使用率,可降低輸入 OD 演算法的 frame rate, frame rate 推薦值為 3~5。

MI_OD_SetMotionSensitivity

描述

設置移動鏡頭警報靈敏度。

語法

MI_RET_MI_OD_SetMotionSensitivity(OD_HANDLE odHandle, U8 level);

參數

參數描述	說明
odHandle	OD 的 handle 控制碼
level	對於鏡頭移動的發報靈敏度

返回值

1 1 - 4	
返回值	說明
MI_RET_SUCCESS	成功
MI_OD_RET_INVALID_HANDLE	null handle
MI_OD_RET_INVALID_PARAMETER	參數設置錯誤

需求

標頭檔: mi_od.h

函式庫: libMTE_LINUX.so

注意

level 值的設置為百分比,範圍 $0\sim100$,值越大則對於鏡頭移動的發報就越靈敏。 此函數為功能性設置,若不呼叫,則內部預設 level=100。

3. 資料類型

3.1. 概述

ODColor e	OD 資料來源輸入的類型
ODWindow e	OD 檢測窗口的類型
MI OD WIN STATE	OD 檢測視窗的結果
MI RET	OD 檢測函數回傳值

3.2. 結構列表

3.2.1 ODColor_e

描述

OD 資料來源輸入的類型。

定義

```
typedef enum
{
    OD_Y = 1,
    OD_COLOR_MAX
} ODColor_e;
```

參數

參數描述	說明
OD_Y	YUV資料來源中的 y 分量
OD_COLOR_MAX	輸入影像類型的最大值

3.2.2 ODWindow_e

描述

OD 檢測視窗的類型,推薦值為 OD_WINDOW_3X3,用於測試。

定義

```
typedef enum

{

OD_WINDOW_1X1 = 0,

OD_WINDOW_2X2,

OD_WINDOW_3X3,

OD_WINDOW_MAX
} ODWindow_e;
```


參數

參數描述	說明
OD_WINDOW_1X1	1個窗□
OD_WINDOW_2X2	4個窗□
OD_WINDOW_3X3	9個窗口
OD_WINDOW_MAX	視窗類型的最大值

3.2.3 MI_OD_WIN_STATE

描述

OD 檢測視窗的結果。

定義

```
typedef enum _MI_OD_WIN_STATE
{
     MI_OD_WIN_STATE_TAMPER = 0,
     MI_OD_WIN_STATE_NON_TAMPER = 1,
     MI_OD_WIN_STATE_NO_FEATURE = 2,
     MI_OD_WIN_STATE_FAIL = -1,
} MI_OD_WIN_STATE;
```

參數

參數描述	說明
MI_OD_WIN_STATE_TAMPER	視窗被遮擋
MI_OD_WIN_STATE_NON_TAMPER	視窗沒遮擋
MI_OD_WIN_STATE_NO_FEATURE	視窗特徵不足
MI_OD_WIN_STATE_FAIL	失敗

3.2.4 MI_RET

描述

OD 檢測函數回傳值。

定義

```
typedef enum _MI_RET_E

{

MI_RET_SUCCESS = 0x00000000,

MI_OD_RET_INVALID_HANDLE = 0x10000503, /*Invalid OD handle*/

MI_OD_RET_INVALID_PARAMETER = 0x10000504, /*Invalid OD parameter*/

MI_OD_RET_INVALID_WINDOW = 0x10000505, /*Invalid window*/

} MI_RET;
```

參數

參數描述	說明
MI_RET_SUCCESS	成功
MI_OD_RET_INVALID_HANDLE	OD handle is null.
MI_OD_RET_INVALID_PARAMETER	參數設置錯誤
MI_OD_RET_INVALID_WINDOW	視窗設置錯誤

4. 流程

5. 實例

Sample code 舉例: \IE\video\MTE\I3\sample\OD\mi_sample_od.c