Tóm tắt chương I: Giới thiệu tổng quan

- population
- Sample
- **descriptive statistic:** (Tables, graphs, or numerical summary tool, identification of patterns in the data, the population or sample of interest)
- Statistical inference: (draw conclusion about population parameters)
- Collecting data (có 3 cách: Retrospective; observation; experiment)
- Categorise data (có hai loại : qualitative and quantitative).

Tóm tắt chương II: Các công thức tính xác suất

- Sample space = S (Không gian mẫu là tập hợp các kết cục (outcome) có thể có khi thực hiện một phép thử).
- Event: là một tập con của sample space.
- $P(event) = \frac{|event|}{|S|}$ (nếu các outcome là đồng khả năng (**equally likely**))
- $P(event) = \sum P(outcome \in event).$
- Addition rule: $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- Nếu $A \cap B = \phi$ thì A và B được gọi là xung khắc (mutually exclusive).
- Conditional probability: $P(A/B) = \frac{P(A \cap B)}{P(B)}$
- Multiple rule: $P(A \cap B) = P(A)P(B \mid A)$
- Nếu $P(A \cap B) = P(A)P(B)$ thì A và B được gọi là độc lập (independence).
- Total probability: Nếu $E_1,...,E_n$ là hệ biến cố đầy đủ và xung khắc từng đôi thì $P(A) = \sum_i P(E_i) P(A/E_i)$.
- Bayes theorem: $P(E_k / A) = \frac{P(E_k)P(A/E_k)}{\sum_i P(E_i)P(A/E_i)}$

Tóm tắt chương III: Biến ngẫu nhiên rời rạc (Discrete random variable)

- I) Kiến thức chung:
 - 1) Hàm xác suất (**probabiliy mass function**): f(x) = P(X = x). Nếu biết hàm xác suất f(x) thì có thể tính $P(a < X < b) = \sum_{a < x_i < b} f(x_i)$
 - 2) Hàm phân phối tích lũy: (Cumulative dist function):

$$F(x) = P(X \le x) = \sum_{x_i \le x} f(x_i)$$

Nếu biết hàm phân phối tích lũy thì có thể tính được $P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$ hoặc làm theo cách khác là tìm hàm xác suất f(x) rồi dựa vào đó để tính.

3) Kì vọng (mean or expected value) và phương sai (Variance)

$$\mu = E(X) = \sum_{i} x_{i} f(x_{i}); V(X) = \sum_{i} x_{i}^{2} f(x_{i}) - \mu^{2}; \sigma = \sqrt{V(X)}$$
Chú ý: Nếu cần tính $E(h(X)) - \sum_{i} h(x_{i}) f(x_{i})$

Chú ý: Nếu cần tính $E(h(X)) = \sum_{i} h(x_i) f(x_i)$

- II) Các biến ngẫu nhiên rời rạc thường gặp.
 - 1) Biến ngẫu nhiên đều (**Uniform random variable**). Nếu X nhận n giá trị $x_1, x_2,...,x_n$ thì $P(X = x_i) = \frac{1}{n}$.
 - 2) Biến ngẫu nhiên nhị thức (Binomial)

ĐN: Một thí nghiệm gồm n phép thử (**trial**)Bernoulli thỏa mãn 3 điều kiện:

+ Các PT độc lập (independent)

+ Mỗi PT chỉ có 2 kết quả ký hiệu là "thành công" (success) và "thất bai" (failure)

+ Xác suất của kết quả "thành công" trong một PT luôn không đổi và bằng \boldsymbol{p}

Bnn X nhận giá trị <u>bằng số phép thử có kết quả là thành công</u> trong dãy n PT trên được gọi là bnn nhị thức với tham số n, p.

- Hàm xác suất: $P(X = x) = f(x) = C_n^x p^x (1-p)^{n-x}, x = 0, 1, ..., n$
- Trung bình: $\mu = np$
- Phương sai: $\sigma^2 = np(1-p)$
- 3) Phân phối geometric và Negative Binomial

DN: Gọi bnn X: số phép thử cần thiết cho đến khi có 1 phép thử cho kết quả "thành công" trong dãy n phép thử Bernoulli , X là bnn Geometric

Hàm xác suất: $P(X=x) = f(x) = (1-p)^{x-1}p$

Trung bình: $\mu = 1/p$ Phương sai: $\sigma^2 = (1-p)/p^2$

 $ext{DN: Gọi bnn } X: ext{số phép thử cần thiết cho đến khi có r phép thử cho kết quả "thành công" trong dãy n phép thử Bernoulli , <math>X$ là bnn Negative Geometric

Hàm xác suất: $P(X=x) = f(x) = C^{x-1}_{r-1}(1-p)^{x-r} p^r$

Trung bình: $\mu = r/p$

Phương sai: $\sigma^2 = r(1-p)/p^2$

4) Phân phối Poisson

ĐN: Bnn X chỉ số 'event' xảy ra trong một 'interval' được gọi là bnn Poisson.

Hàm xác suất: $P(X=x) = f(x) = e^{-\lambda} \lambda^x / x!$ (λ là số trung bình các event trong interval đó)

Trung bình: $\mu = \lambda$ Phương sai: $\sigma^2 = \lambda$

Tóm tắt chương IV: Biến ngẫu nhiên liên tục (Continuous random variable)

I) Kiến thức chung:

1) Hàm mật độ (probabiliy densty function):

$$f(x): \int_{-\infty}^{+\infty} f(x)dx = 1; P(a < X < b) = \int_{a}^{b} f(x)dx.$$

Nếu biết hàm mật độ f(x) thì có thể tính $P(a < X < b) = \int_{a}^{b} f(x) dx$

2) Hàm phân phối tích lũy: (Cumulative dist function):

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

Nếu biết hàm phân phối tích lũy thì có thể tính được

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

Nếu biết hàm phân phối tích lũy thì có thể tìm hàm mật đô f(x) =F'(x).

3) Kì vọng (mean or expected value) và phương sai (Variance)

$$\mu = E(X) = \int_{-\infty}^{+\infty} xf(x)dx; V(X) = \int_{-\infty}^{+\infty} x^2 f(x)dx - \mu^2; \sigma = \sqrt{V(X)}$$

Chú ý: Nếu cần tính $E(h(X)) = \int_{-\infty}^{+\infty} h(x)f(x)dx$

Các biến ngẫu nhiên liên tục thường gặp. II)

1) Biến ngẫu nhiên liên tục đều trên đoạn [a, b](Uniform continuous random variable).

Là biến ngẫu nhiên Z có hàm mật độ f(x) = 1/(b-a) với $a \le x \le b$.

- Trung bình $\mu = E(X) = (a+b)/2$,
- phương sai: $\sigma^2 = (b a)^2 / 12$.
- 2) Biến ngẫu nhiên tiêu chuẩn (Standard normal)
- Hàm mật độ: $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$;
- Hàm phân phối tích lũy $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$ (giá trị của hàm này

được tra tại table III-A6- textbook)

- Trung bình: $\mu = 0$
- Phương sai: $\sigma^2 = 1$

- **Tính xác suất** $P(Z < a) = \Phi(a)$; $P(a < Z < b) = \Phi(b) \Phi(a)$ (tra bảng table III-A6-textbook).
- **Tìm a để** $P(Z < a) = \alpha$ thì a sẽ là số thỏa mãn $\Phi(a) = \alpha$
- 3) Biến ngẫu nhiên chuẩn (**Normal**) với trung bình μ và phương sai σ^2

$$P(X < a) = P(Z < \frac{a - \mu}{\sigma}) = \Phi(\frac{a - \mu}{\sigma});$$

$$P(a < X < b) = P(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}) = \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma})$$

- **Tìm a để** $P(X < a) = \alpha \Leftrightarrow P(Z < \frac{a \mu}{\sigma}) = \alpha$ thì a sẽ là số thỏa mãn $\Phi(\frac{a \mu}{\sigma}) = \alpha$
- 4) Phân phối mũ (Exponential)

Là biến ngẫu nhiên **chỉ khoảng thời gian giữa hai 'event'** trong quy trình Poisson.

Nếu λ là số trung bình các 'event' trên một interval có độ dài là 1 đơn vị thì

Hàm mật độ xác suất: $f(x) = \lambda e^{-\lambda x}$

Hàm phân phối tích lũy: $F(x) = 1 - e^{-\lambda x}$

Trung bình: $\mu = 1/\lambda$ Phương sai: $\sigma^2 = 1/\lambda^2$

- 5) Xấp xỉ chuẩn của phân phối nhị thức và phân phối Poisson.
 - a) Phân phối nhị thức

$$P(X \le x) \approx P \left(Z \le \frac{x + 0.5 - np}{\sqrt{np(1 - p)}} \right)$$

$$P(X \ge x) \approx P \left(Z \ge \frac{x - 0.5 - np}{\sqrt{np(1 - p)}} \right)$$

b) Phân phối Poisson

$$P(X \le x) = P\left(Z \le \frac{x - \lambda}{\sqrt{\lambda}}\right) \approx \Phi\left(\frac{x - \lambda}{\sqrt{\lambda}}\right)$$

Tóm tắt chương VI: Thống kê mô tả (Statistical Descriptive)

Kiến thức chung:

Trung bình mẫu (sample mean)

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Phương sai mẫu (sample variance)

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})}{n-1} = \frac{n}{n-1} \left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \overline{x}^{2} \right)$$

• Độ lệch tiêu chuẩn mẫu (sample standard deviation)

$$s = \sqrt{s^2}$$

- Sample range (Khoảng biến thiên mẫu): $r = \max(x_i) \min(x_i)$
- Median (trung vị mẫu): Là số chia mẫu ra làm hai phần bằng nhau.
 - + Nếu kích thước mẫu là lẻ thì median chính là số đứng ở vị trí chính giữa của mẫu
 - + Nếu kích thước mẫu là chẵn thì median là trung bình của hai số đứng giữa mẫu.
- Mode: Là số xuất hiện nhiều nhất trong mẫu.
- Quartiles (Tứ phân vị): là ba số mà chúng chia mẫu thành 4 phần bằng nhau, kí hiệu là q₁, q₂, q₃
- Khoảng tứ phân vị: $IQR = q_3 q_1$
- Phân phối tần số (Frequency distribution)
- Phân phối tần suất (Relative frequency distribution)
- Phân phối tích lũy (Cumulative distribution)
- Stem and leaf.
- Box plot

Tóm tắt chương VII: Point Estimate and The Central Limit Theorem

(Ước lượng điểm và định lí giới hạn trung tâm)

1) Point estimate

- For μ , the point estimate is the \bar{x} sample mean.
- For σ^2 , the point estimate is s^2 the sample variance.
- For p, the point estimate is $\stackrel{\wedge}{p}$ the sample proportion.
- For $\mu_1 \mu_2$, the estimate is $x_1 x_2$.
- For $p_1 p_2$, the estimate is $p_1 p_2$

2) The Central Limit Theorem

• $\overline{X} \approx N(\mu; \frac{\sigma^2}{n})$ (khi n đủ lớn)

(với μ là trung bình tổng thể ; σ^2 là phương sai tổng thể, n là kích thước mẫu)

Ứng dụng để tính

$$P(a < \overline{X} < b) \approx P(\frac{a - \mu}{\sigma / \sqrt{n}} < Z < \frac{b - \mu}{\sigma / \sqrt{n}}) = \Phi(\frac{b - \mu}{\sigma / \sqrt{n}}) - \Phi(\frac{a - \mu}{\sigma / \sqrt{n}})$$

• $\overline{X}_1 - \overline{X}_2 \approx N(\mu_1 - \mu_2; \frac{{\sigma_1}^2}{n_1} + \frac{{\sigma_2}^2}{n_2}))$ (Khi n₁, n₂ đủ lớn)

(với μ_1 , μ_2 là trung bình tổng thể 1, 2;; σ^2_1 ; σ^2_2 là phương sai tổng thể 1, 2, n_1 ; n_2 là kích thước mẫu 1 và 2).

$$P(a < \overline{X_1} - \overline{X_2} < b) \approx P(\frac{a - \mu_1 - \mu_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} < Z < \frac{b - \mu_1 - \mu_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}) = \Phi(\frac{b - \mu_1 - \mu_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}) - \Phi(\frac{a - \mu_1 - \mu_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}})$$

Tóm tắt chương VIII: Confidence Interval (viết tắt là CI) for population parameter (Khoảng tin cậy cho tham số của tổng thể)

• Bài toán tổng quát của chương này:

Dựa vào mẫu, tìm *ước lượng khoảng (confidence interval = CI)* của một tham số (μ hoặc σ hoặc p) của biến ngẫu nhiên.

 Định nghĩa chung: Ước lượng khoảng của tham số θ với độ tin cậy (confidence level) 1- α là khoảng [L, U] sao cho

$$P(L \le \theta \le U) = 1 - \alpha,$$

trong đó L, U là các hàm của mẫu ngẫu nhiên $(X_1,...,X_n)$.

CI on μ: Với độ tin cậy (confidence level) 1- α thì khoảng tin cậy cho μ là:

TH1 (tổng thể có phân phối chuẩn, σ đã biết).

- Hai phía: $\mu \in [L,U] = [\overline{X} \frac{z_{\alpha/2}\sigma}{\sqrt{n}}, \overline{X} + \frac{z_{\alpha/2}\sigma}{\sqrt{n}}]$ với $z_{\alpha/2}$ là số mà $\Phi(z_{\alpha/2}) = 1 - \frac{\alpha}{2}$.
- Một phía $upper: \mu \leq \overline{X} + z_{\alpha} \sigma / \sqrt{n}$ $lower: \mu \geq \overline{X} - z_{\alpha} \sigma / \sqrt{n}$
- Nếu dùng x để xấp xỉ cho μ thì muốn sai số không vượt quá E thì với độ tin cậy 1-α kích thước mẫu cần tìm là:

$$n = \left(\frac{\sigma \cdot z_{\alpha/2}}{E}\right)^2$$

TH2: (kích thước mẫu lớn) (n > = 30)

- Hai phía: $\mu \in [L,U] = [\overline{X} \frac{z_{\alpha/2}S}{\sqrt{n}}, \overline{X} + \frac{z_{\alpha/2}S}{\sqrt{n}}]$ với $z_{\alpha/2}$ là số mà $\Phi(z_{\alpha/2}) = 1 - \frac{\alpha}{2}$.
- Một phía $upper: \mu \leq \overline{X} + z_{\alpha}S / \sqrt{n}$ $lower: \mu \geq \overline{X} - z_{\alpha}S / \sqrt{n}$

TH3: (tổng thể có phân phối chuẩn, σ chưa biết)

- Hai phía:
$$\mu \in [L, U] = [\overline{X} - \frac{t_{\alpha/2; n-1}S}{\sqrt{n}}, \overline{X} + \frac{t_{\alpha/2; n-1}S}{\sqrt{n}}]$$

với $t_{\alpha/2}$; n-1 là số được tra bởi table V-A9-textbook bằng cách lấy giao của cột $\alpha/2$ và dòng n-1.

CI on σ²: Với độ tin cậy (confidence level) 1- α thì khoảng tin cậy cho σ² là:

- Hai phía
$$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}} \right]$$

Với $\chi^2_{\alpha/2;n-1}$ là giá trị được tra từ Table IV-A8-textbook.

$$upper : \sigma^{2} \leq \frac{(n-1)s^{2}}{\chi_{1-\alpha,n-1}^{2}}$$
- Một phía
$$lower : \sigma^{2} \geq \frac{(n-1)s^{2}}{\chi_{\alpha,n-1}^{2}}$$

 CI on p: Với độ tin cậy (confidence level) 1- α thì khoảng tin cậy cho p là:

- Hai phía
$$\stackrel{\wedge}{p} - z_{\alpha/2} \sqrt{\frac{\stackrel{\wedge}{p}(1-\stackrel{\wedge}{p})}{n}} \le p \le \stackrel{\wedge}{p} + z_{\alpha/2} \sqrt{\frac{\stackrel{\wedge}{p}(1-\stackrel{\wedge}{p})}{n}}$$

- Một phía :
$$lower : p \ge \stackrel{\wedge}{p} - z_{\alpha} \sqrt{\frac{\stackrel{\wedge}{p}(1-\stackrel{\wedge}{p})}{n}}$$

- Với độ tin cậy $1-\alpha$, muốn sai số khi xấp xỉ p bởi $\stackrel{\wedge}{p}$ không vượt quá E thì kích thước mẫu cần thiết là:

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 \stackrel{\wedge}{p} (1 - \stackrel{\wedge}{p})$$

- Với độ tin cậy ít nhất bằng $1-\alpha$, muốn sai số khi xấp xỉ p bởi p không vượt quá E thì kích thước mẫu cần thiết là:

$$n = \left(\frac{z_{\alpha/2}}{E}\right)^2 0.25$$

Tóm tắt chương XI: Hồi quy tuyến tính (Linear Regression) và hệ số tương quan (Correlation).

Với n cặp quan sát $(x_1; y_1);...(x_n; y_n)$ lấy từ tổng thể của biến ngẫu nhiên (X, Y) thì

- The estimated (fitted) linear regression line:

$$\hat{y} = \hat{\beta_o} + \hat{\beta_1} x$$
 với

$$\hat{\beta}_{1} = \frac{S_{xy}}{Sxx} = \frac{\sum x_{i} y_{i} - \frac{\sum x_{i} \sum y_{i}}{n}}{\sum x_{i}^{2} - \frac{\left(\sum x_{i}\right)^{2}}{n}};$$

$$\hat{\beta_0} = \overline{y} - \hat{\beta_1} \, \overline{x}$$

$$\hat{\beta}_1$$
: slope

$$\stackrel{\wedge}{\beta_0}$$
: *i*ntercept

- Sample Correlation - Hệ số tương quan mẫu

$$R = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

Ý nghĩa của R: Đo mức độ tương quan tuyến tính mẫu của X và Y. Giá trị của R càng xấp xỉ lớn thì mức độ tương quan tuyến tính càng manh.

- Tổng bình phương các sai số (SS_E).

$$SS_E = \sum e_i^2 = \sum (y_i - \hat{y}_i)^2 = S_{yy} - \hat{\beta}_1 S_{xy}$$

- Test on β_1 :

1)
$$H_0$$
: $\beta_1 = \beta_{1,0}$ H_1 : $\beta_1 \neq \beta_{1,0}$

2) Test statistic:
$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\frac{SS_E}{(n-2)S_{xx}}}}$$

3) Critical values $\pm t_{\alpha/2;n-2}$

4) Reject H0 nếu
$$T_0 > t_{\alpha/2;n-2} or T_0 < -t_{\alpha/2;n-2}$$

- Test on β_0

1)
$$H_0$$
: $\beta_0 = \beta_{0,0}$ H_1 : $\beta_0 \neq \beta_{0,0}$

2) Test statistic
$$T_0 = \frac{\hat{\beta}_0 - \beta_{0,0}}{\sqrt{\frac{SS_E}{n-2} \left[\frac{1}{n} + \frac{\overline{x}^2}{S_{xx}} \right]}}$$

3) Critical values
$$\pm t_{\alpha/2,n-2}$$

4) Reject H0 nếu
$$T_0 > t_{\alpha/2;n-2} or T_0 < -t_{\alpha/2;n-2}$$

- **Test on \rho**: = population correlation

1)
$$H_0: \rho = 0$$
 $H_1: \rho \neq 0$

2) Test statistic
$$T_0 = \frac{R\sqrt{n-2}}{\sqrt{1-R^2}}$$

3) Critical values
$$\pm t_{\alpha/2;n-2}$$

4) Reject H0 nếu
$$T_0 > t_{\alpha/2;n-2} or T_0 < -t_{\alpha/2;n-2}$$