## Section 3.5 - Curve Sketching (Summary)

### Example

Given 
$$f(x) = -x^3 + 3x^2 + 9x - 27$$

Solution

$$f'(x) = -3x^2 + 6x + 9 = 0$$
$$\Rightarrow \boxed{x = -1, 3}$$

$$f''(x) = -6x + 6 = 0$$
$$\Rightarrow -x + 1 = 0 \Rightarrow \boxed{x = 1}$$

|                 | f   | f' | f" |                          |
|-----------------|-----|----|----|--------------------------|
| $(-\infty, -1)$ |     | _  | +  | Decreasing, Concave up   |
| <i>x</i> = -1   | -32 | 0  | +  | Relative Min             |
| (-1, 1)         |     | +  | +  | Increasing, Concave up   |
| <i>x</i> = 1    | -16 | +  | 0  | Point of Inflection      |
| (1, 3)          |     | +  | _  | Increasing, Concave down |
| x = 3           | 0   | 0  | _  | Relative Max             |
| (3, ∞)          |     | _  | _  | Decreasing, Concave down |



### Example

Given 
$$f(x) = \frac{x^2}{x-1}$$

#### Solution

*Vertical Asymptote:* x = 1

$$f'(x) = \frac{2x(x-1) - x^2}{(x-1)^2}$$

$$= \frac{2x^2 - 2x - x^2}{(x-1)^2}$$

$$= \frac{x^2 - 2x}{(x-1)^2}$$

$$= \frac{x(x-2)}{(x-1)^2} = 0$$

$$\Rightarrow x = 0, 2$$

$$f'' = \left(\frac{x^2 - 2x}{(x - 1)^2}\right)'$$

$$= \frac{(2x - 2)(x - 1)^2 - 2(x^2 - 2x)(x - 1)}{(x - 1)^4}$$

$$= \frac{(x - 1)\left[(2x - 2)(x - 1) - 2(x^2 - 2x)\right]}{(x - 1)^4}$$

$$= \frac{2x^2 - 2x - 2x + 2 - 2x^2 + 4x}{(x - 1)^3}$$

$$= \frac{2}{(x - 1)^3}$$



|               | f      | f'     | f"     |                          |
|---------------|--------|--------|--------|--------------------------|
| $(-\infty,0)$ |        | +      | _      | Increasing, Concave down |
| x = 0         | 0      | 0      | _      | RMAX                     |
| (0, 1)        |        | _      | _      | Decreasing, Concave down |
| x = 1         | Undef. | Undef. | Undef. | Vertical Asymptote       |
| (1, 2)        |        | _      | +      | Decreasing, Concave up   |
| x = 2         | 4      | 0      | +      | RMIN                     |
| $(2,\infty)$  |        | +      | +      | Increasing, Concave up   |

#### Example

Graph 
$$f(x) = \frac{\ln x}{x^2}$$

#### **Solution**

Domain: 
$$x > 0$$

$$f'(x) = \frac{\frac{1}{x}x^2 - 2x\ln x}{x^4}$$

$$= \frac{x(1 - 2\ln x)}{x^4}$$

$$= \frac{1 - 2\ln x}{x^3} = 0$$

$$\Rightarrow 1 - 2\ln x = 0$$

$$\ln x = \frac{1}{2} \Rightarrow |x| = e^{1/2} \approx 1.65|$$

$$f(1.65) = \frac{\ln 1.65}{1.65^2} = 0.18$$

$$(1.65, 0.18)$$

$$f''(x) = \left(\frac{1 - 2\ln x}{x^3}\right)'$$

$$= \frac{-2\frac{1}{x}x^3 - 3x^2(1 - 2\ln x)}{x^6}$$

$$= \frac{x^2(-2 - 3 + 6\ln x)}{x^6}$$

$$= \frac{-5 + 6\ln x}{x^4} = 0$$

$$-5 + 6\ln x = 0$$

$$\ln x = \frac{5}{6} \Rightarrow |x| = e^{5/6} \approx 2.3|$$

$$f(2.3) = \frac{\ln 1.65}{1.65^2} = 0.16$$

 $\frac{-\infty}{f'(1) > 0}$ 

Increasing

f''(1) < 0

**Downward** 

(2.3, 0.16)



**Upward** 



**Downward** 

# **Exercises** Section 3.5 - Curve Sketching

## Graph

1. 
$$f(x) = x^4 - 4x^3 + 5$$

$$2. \quad f(x) = \frac{x^2 + 1}{x^2 - 1}$$

3. 
$$f(x) = 2x^{3/2} - 6x^{1/2}$$