

*Liveor Regression
Independent variable -> Is not offected by others (Rain) Dependent Variable -> Is offected by others. (Grops).
Dependent Variable -> Is offected by others. (Grops).
Application > Economic growths, Product Pricing, Housing
Defor: - Linear Reguerrion is a statistical model used to predict the relationship between independent and dependent reviables.
which variables in particular now rignificant is the one significant predictors of the Regression line to make outrane variables. predictions with highest partible accuracy
Egn: - y = mn+c y: - Dependent m:- Mogne = $\frac{y_2 - y_1}{m_2 - M_1}$
$C = ((\Sigma(Y) * \Sigma(X^2)) - (\Sigma(X) * \Sigma(X*Y))$
For Everos Jo Minimize ((n* \((x^2)) - (\((x)^2) \)
the Ristance of line & Duta Points / Finding the Rest fit line
For Exercise Jo Minimize Ly use -> Aum of Agerros, Sum of Absolute errore, Root Mean Sq. Rerors, etc.
Multiple linear fegrersion
Y=M,* X, +M2* X2+M3* X3++Mn* Xn+C

* Logistic Regreroion Defr: It is a clarable ation of gorithm, used to predict finary outcomes for a given set of independent variables. Sinary outcomes for a given net of the dependent variable's output is Egn of rigmoid func $\frac{g(n)}{p(m)} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 n x)}}$ $\frac{1}{1 + e^{-(\beta_0 + \beta_1 n x)}}$ blod, eventle--> Probability <0.50 Applications: - Weather Greden Inge Categorization, Healthcare linguisti e Regn linear Regr solves Clarifa Problems · So wes Regurion problems Response vois abb . Respons variable rature colculating continuous in nature the posses bility Estimates the troppening. dependent rariable in the independen .s-word. . Straight live

* K. Means Unstering Defor: K-means performs division of objects into clusters which are "rimilar" between them and are "dirrimilar" to the objects belonging to another cluster. Hierarchical Partitional clustering K-means Puzzy C-means A gglomerative Divisive (Jab Dams) (Bottom up) Appla: - Academic Performance, Diagnostic Systems, search Engines, Wireles Sensors Networks, Colour Comprersions Endidean Distance Meanure d= ((x2-x1)2+(y2-y1)2 Higgeithm working. Arruming we have inputs x1,x2, x3, ... and value of k 3tepl: Pick K randompoints as cluster centers called stort step2: Arrigor each xi to nearest cluster by calculating its distance to each Elbow Point (K) calculating its distance to each > measure the Distance Convergence by taking the average of the arigned points.

Are stable Afepti. Repeat steps 243 autil
no set of the clusters arrignments
change. 1teps: Find + new cluster center Grouping based on Il jers ble controids Reposition the -

* Decision Iree Problems that Decision Iree can Nolve: -) Clarification. 2) Regrerrion A clarification free will Regression tree is used when determine a ret of logical the target variable is numerical, if then cond's to clarrify problems or continuous in nature. Dis a dramtages Advantages Dorerfitting occurs when the olgorithm captures noise in the > Limple to Understand, interpret and virualize 2) The model can get unstable 2) little effort required for data due to small variation in preparation 3) A highly complicated Decision 3) Nonlinear parameters don't tree tends to have a low bias which makes it difficult effect its performance. for the model to work with new IMP Terms Entropy - It is the measure of decorer in antropy of the nandompers or unpredictability Information Gain - It is the measure of decrease in entropy ofter the Leof rode - Carries the clarrification or the Decision

* Random Forest Appln - Remote Sensing, Object Detection, Kinect (Gaming) Why Randon Forest? 1) No overfitting 2) High Accuracy 3) Estimates Missing Data What is Random Forest? Random Forest or Roundom Decision Forest is a method that operates by constructing multiple Decision Irees during training phase. The decisions of majority of the trees is choosen by the random. frest as the final decirion * KNN Defr: K Nearest Neighbors, is one of the simplest Supervised Machine Learning algorithm mostly used for darrification How de we choose the factorie's KNN Algorithm is bared on feature similarity: choosing the night value of kisa process called choosing the night value of kisa process called parameter tuning, and it is important for letter accuracy > Squt (n), where n is the total number of data points?

> odd value of k is relected to avoid confusions between

two darress of data

When do we wre KNN ? Data is labelled 2) Data is noirefree. s) Dataret is small. * Aupport Vector Machine The will start in Apply Jace Detection, Jent & Hyper Jent Categorization, clarrification of images, Bioinformatics. SVM is a supervised learning method that looks at data and sorts it into one of the two categories Advantages) Nigh Dimensional Sparl 2) Aparre documents vectors. 3> Regularization parameters * Naire Bayers Clarrifier *Bayes Thm - P(AIB) = P(BIA) P(A) Where is Naire Bayes Used? 37 Medical Riagnoris > Jace Recognition 4) peus Clarrification 1) Weather Prediction as righty scalable with numbers of predictors & Advantages From Limple & Early to implement stata points, it can be start, it can be wred in real time predictions rewritive to irrelevant features. 2) Needs lerstraining 3) Handles both continuous & discrete data

Chamber Medical Red The second of the second Makamaki Bamalah di · North Suchers The second section to the second section is The house of the same · Court of a manufacture and suitable of the best of the best of a system of them are also made to problem and to be about the park a language the both of the same of the same of the water both MERCHANTERS) · Committee of the second second represent colomber Jungeol Colomber · Asiles

*Applications of Machine Learning 6) Arristive Medical Jech > Virtual Arristans 7) Automatic Translation 2) Traffic Predictions 3) Docial Media Personalization 4) Email Span Filtering 5) Online Frand Detection * what does ML Engineer Ho? · Creates & maintains me solutions to solve business · optimizes there solutions for performance & scalability · solves buriners problems like reducing austomers churn, running targeted marketing comparingns and improving product emperience. · Contributes to cutting edge rerewich in and I & ML * Math Required for ML (IMP Topics) * Probability & Statistics - Bayes Theorem, Probability

Distribution, Sampling, Hypothesis

testing * Linear Algebra - Matrices, Vectors , * Loleulus - Differential calculus, Integral talculus.