

## planetmath.org

Math for the people, by the people.

## Thom isomorphism theorem

 ${\bf Canonical\ name} \quad {\bf Thom Isomorphism Theorem}$ 

 $\begin{array}{lll} \text{Date of creation} & 2013\text{-}03\text{-}22 \ 15\text{:}40\text{:}52 \\ \text{Last modified on} & 2013\text{-}03\text{-}22 \ 15\text{:}40\text{:}52 \\ \end{array}$ 

Owner antonio (1116) Last modified by antonio (1116)

Numerical id 6

Author antonio (1116) Entry type Theorem Classification msc 55-00 Let  $\xi \to X$  be a d-dimensional vector bundle over a topological space X, and let  $h^*$  be a multiplicative generalized cohomology theory, such as ordinary cohomology. Let  $\tau \in h^d(D(\xi), S(\xi))$  be a Thom class for  $\xi$ , where  $D(\xi)$  and  $S(\xi)$  are the associated disk and sphere bundles of  $\xi$ .

Since  $h^*$  is a multiplicative theory, there is a generalized cup product map

$$h^*(D(\xi)) \otimes_{h^*} h^*(D(\xi), S(\xi)) \to h^*(D(\xi), S(\xi)),$$

where the tensor product is over the coefficient ring  $h^*(pt)$  of the theory. Using the isomorphism  $p^*: h^*(X) \cong h^*(D(\xi))$  induced by the homotopy equivalence  $p: D(\xi) \to X$ , we obtain a homomorphism

$$T: h^n(X) \to h^{n+d}(D(\xi), S(\xi)) \cong \tilde{h}^{n+d}(X^{\xi})$$

taking  $\alpha$  to  $p^*(\alpha) \cdot \tau$ . Here  $X^{\xi}$  stands for the Thom space  $D(\xi)/S(\xi)$  of  $\xi$ .

Thom isomorphism theorem T is an isomorphism  $h^*(X) \cong \tilde{h}^{*+d}(X^{\xi})$  of graded modules over  $h^*(\operatorname{pt})$ .

**Remark 1** When  $\xi$  is a trivial bundle of dimension 1, this generalizes the suspension isomorphism. In fact, a typical proof of this theorem for compact X proceeds by induction over the number of open sets in a trivialization of  $\xi$ , using the suspension isomorphism as the base case and the Mayer-Vietoris sequence to carry out the inductive step.

**Remark 2** There is also a homology Thom isomorphism  $\tilde{h}_{*+d}(X^{\xi}) \cong h_{*}(X)$ , in which the map is given by cap product with the Thom class rather than cup product.