

Mechanics of Materials III: Beam Bending

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 12 Learning Outcome

 Determine how to find and use the section property of Section Modulus, S

Recall Maximum Stress

$$\sigma_{MAX} = \frac{M c}{I}$$

c is the furthest distance on the cross section from the neutral axis

Section Modulus

$$S \equiv \frac{I}{c}$$

$$\sigma_{MAX} = \frac{M}{S}$$

Section Modulus

$$S \equiv \frac{I}{c}$$

$$\sigma_{MAX} = \frac{M}{S}$$

For Design

maximum bending moment expected

MAX

ACTUAL (ALLOWED

$$FoS > 1$$
 avoids failure

$$FoS = \frac{Failure \quad Stress}{Actual \quad Stress} = \frac{\sigma_{FAILURE}}{\sigma_{ACTUAL}}$$

Construction," American Institute of Steel Construction (most of the resources are free to the public)

Beam Bending

Elastic Flexural Formula

$$\sigma_{x} = -\frac{M}{I} \qquad \sigma_{MAX} = \frac{M}{S}$$

Area Moment of Inertia, I

$$I = \int_{A} r^{2} dA$$

A cross section's resistance to bending about a certain axis

Therefore more area further from the neutral axis provides greater resistance to bending.

This is the reason for I-beam shapes, etc.

Recall from my 2D and 3D Dynamics courses

$$I_{zz}^{P} = \int_{z} \left(x^{2} + y^{2}\right) dm$$

= Mass Moment of Inertia about the z-axis through point P

How much mass is located how far from the axis of rotation.

Resistance to angular

acceleration.