Huk 4 Review

1) Lemma 3.6

Define a unary function
$$f$$
 by $f(0) = k$
 $f(t+1) = h(t, f(t))$

Then, if h is total, so is f .

Pf/ By induction on $m \in \mathbb{N}$.

Base case: $f = 0$.

Then: $f(t) = 0$

Then:
$$f(t) = f(0) = k$$
.
 $f(t) = f(0) \uparrow$.

Induction step: assume f(t) to,

Then:
$$f(t+1) = h(t, f(t))$$

= $h(t, c)$

And since h is total,

h(t,c) \(\c' \), for some c'.

i. f(t+1) \(\c' \), for some c'.

End induction step.

f is total.

. 2) Lemma 3.8, very similar.

An "algorithm" for square root

In hwk 5, we ask for a PA definition of integer square roots square roots

So:
$$sqrt(0) = 0$$

 $sqrt(1) = 1$
 $sqrt(2) = 1$ Iden
 $sqrt(3) = 1$
 $sqrt(3) = 1$
 $sqrt(3) = 1$

sqrt(4) = Z sqrt(5) = Z

Sqrf(8) = 2Sqrf(9) = 3 Iden for an algorithm:

Consider
when
squat(A)M
Squat(x+1)
increases from

sart (x).