5.2: The Definite Integral

If f is a function defined for all $a \le x \le b$, we divide the interval [a, b] into n subintervals of equal width $\Delta x = (b-a)/n$. We let $x_0(=a), x_1, x_2, \dots, x_n(=b)$ be the endpoints of the subintervals and we let $x_1^*, x_2^*, x_3^*, \dots, x_n^*$ be any sample points in these subintervals, so x_k^* lies in the k^{th} subinterval $[x_{k-1}, x_k]$. Then the **definite integral of** f **from** a **to** b is

$$\int_{a}^{b} f(x) \ dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_{k}^{*}) \Delta x$$

provided this limit exists and gives the same value for all possible choices of sample points. If it does exist, we say that f is **integrable** on [a, b].

If f takes positive and negative values, then $\int_a^b f(x) dx$ is the area of the region below f above the x-axis (shaded blue in the figure below) minus the region above f below the x-axis (shaded orange in the figure below).

Theorem 1. If f is continuous on [a,b], or if f has only a finite number of jump discontinuities, then f is integrable on [a,b]; that is, the definite integral $\int_a^b f(x) dx$ exists.

Theorem 2. If f is integrable on [a, b], then

$$\int_{a}^{b} f(x) \ dx = \lim_{n \to \infty} \sum_{k=1}^{n} f(x_k) \Delta x$$

where

$$\Delta x = \frac{b-a}{n}$$
 and $x_k = a + k\Delta x$

for $k = 0, 1, 2, \dots, n$

Example 1. Express

$$\lim_{n \to \infty} \sum_{k=1}^{n} (x_k^3 + x_k \sin x_k) \Delta x$$

on the interval $[0, \pi]$ as a definite integral.

Evaluating Integrals

The following formulas are useful for evaluating integrals using the Riemann sum definition.

$$\bullet \ \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

•
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\bullet \sum_{k=1}^{n} k^3 = \left[\frac{n(n+1)}{2}\right]^2$$

The following formulas are rules for working with sums in sigma notation.

$$\bullet \sum_{k=1}^{n} c = nc$$

$$\bullet \sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$$

•
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

•
$$\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$$

Example 2.

- (a) Evaluate the Riemann sum for $f(x) = x^3 6x$, taking the sample points to be the right endpoints and a = 0, b = 3, and n = 6.
- (b) Evaluate $\int_0^3 (x^3 6x) \ dx$.

Example 3. Set up an expression for $\int_1^3 e^x dx$ as a limit of sums.

Example 4. Evaluate the following integrals by interpreting each in terms of areas.

(a)
$$\int_0^1 \sqrt{1-x^2} \ dx$$

(b)
$$\int_0^3 (x-1) dx$$

The Midpoint Rule

$$\int_{a}^{b} f(x) \ dx \approx \sum_{k=1}^{n} f(\bar{x_k}) \Delta x = \Delta x [f(\bar{x_1}) + f(\bar{x_2}) + f(\bar{x_3}) + \dots + f(\bar{x_n})]$$

where

$$\Delta x = \frac{b-a}{n}$$
 and $\bar{x}_k = \frac{1}{2}(x_{k-1} + x_k)$

for k = 1, 2, ..., n.

Example 5. Use the Midpoint Rule with n = 5 to approximate $\int_1^2 \frac{1}{x} dx$.

Properties of the Definite Integral

If we integrate over the interval [b, a] instead of [a, b], then Δx switches from (b - a)/n for the interval [a, b] to (a - b)/n for the interval [b, a]. Since these are the same value with opposite signs,

$$\int_a^b f(x) \ dx = -\int_b^a f(x) \ dx.$$

If a = b, then $\Delta x = 0$ and

$$\int_a^b f(x) \ dx = 0.$$

The following are properties of the definite integral

- $\int_a^b c \ dx = c(b-a)$ where c is a constant
- $\int_a^b cf(x) dx = c \int_a^b f(x) dx$ where c is a constant
- $\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$
- $\int_{a}^{b} [f(x) g(x)] dx = \int_{a}^{b} f(x) dx \int_{a}^{b} g(x) dx$

Example 6. Use the properties of integrals to evaluate $\int_0^1 (4+3x^2) dx$.

The following property tells us how to combine definite integrals of the same function over adjacent intervals

$$\int_a^c f(x) \ dx = \int_a^b f(x) \ dx + \int_b^c f(x) \ dx.$$

Example 7. If it is known that $\int_0^{10} f(x) dx = 17$ and $\int_0^8 f(x) dx = 12$, find $\int_8^{10} f(x) dx$.

The following comparison properties are useful for placing bounds on definite integrals.

- If $f(x) \ge 0$ for $a \le x \le b$, then $\int_a^b f(x) \ dx \ge 0$
- If $f(x) \ge g(x)$ for $a \le x \le b$, then $\int_a^b f(x) \ dx \ge \int_a^b g(x) \ dx$
- If $m \le f(x) \le M$ for $a \le x \le b$, then

$$m(b-a) \le \int_a^b f(x) \ dx \le M(b-a).$$

Example 8. Use the last comparison property above to estimate $\int_0^1 e^{-x^2} dx$.