# Отчет по лабораторной работа № 2

Математическое моделирование

Королев Иван Андреевич

# Содержание

| Сг | Список литературы                                                                                                                                                       |                     |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 5  | Выводы                                                                                                                                                                  | 13                  |
| 4  | Выполнение лабораторной работы         4.1       Решение задача о погоне из примера лабораторной работы          4.2       Решение 12 Варианта самостоятельного задания | <b>8</b><br>8<br>11 |
| 3  | Теоретическое введение                                                                                                                                                  | 7                   |
| 2  | Задание                                                                                                                                                                 | 6                   |
| 1  | Цель работы                                                                                                                                                             | 5                   |

# Список иллюстраций

| 4.1 | Задаем начальные параметры задачи, функция движения лодки, |    |
|-----|------------------------------------------------------------|----|
|     | функция движения катера                                    | 8  |
| 4.2 | Решение ДУ для 1-го случая                                 | 8  |
| 4.3 | Решение ДУ для 2-го случая                                 | 9  |
| 4.4 | Подготовка данных для движения лодки                       | 9  |
| 4.5 | Траектория движения катера для 1-го случая                 | 10 |
| 4.6 | Траектория движения катера для 2-го случая                 | 10 |
| 4.7 | Решение задачи                                             | 11 |
| 4.8 | Решение задачи                                             | 12 |
| 4.9 | Решение залачи                                             | 12 |

# Список таблиц

# 1 Цель работы

Задача о погоне. Рассмотрим задачу преследования браконьеров береговой охраной. Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

# 2 Задание

Написать решение задачи о погоне на языке программирования Julia.

## 3 Теоретическое введение

Julia — высокоуровневый свободный язык программирования с динамической типизацией, созданный для математических вычислений. Эффективен также и для написания программ общего назначения. Синтаксис языка схож с синтаксисом других математических языков, однако имеет некоторые существенные отличия.

### 4 Выполнение лабораторной работы

# 4.1 Решение задача о погоне из примера лабораторной работы

Решение задача о погоне из примера лабораторной работы. Построение траектории движения катера береговой охраны и лодки при n=2. (рис. 4.1).

Рис. 4.1: Задаем начальные параметры задачи, функция движения лодки, функция движения катера

Решение ДУ для 1-го случая (рис. 4.2).

```
[33]: # Решение ДУ для 1 случая
prob_case1 = ODEProblem(du_dt, r0_case1, theta0_case1)
sol_case1 = solve(prob_case1, saveat=0.01)
```

Рис. 4.2: Решение ДУ для 1-го случая

Решение ДУ для 2-го случая (рис. 4.3).

```
[34]: # Решение ДУ для 2 случая
prob_case2 = ODEProblem(du_dt, r0_case2, theta0_case2)
sol_case2 = solve(prob_case2, saveat=0.01)
```

Рис. 4.3: Решение ДУ для 2-го случая

Подготовка данных для движения лодки (рис. 4.4).

```
[35]: # Подготовка данных для движения лодки
       ugol = [fi for i in range(0, 15)]
       x_{lims} = [x(i) \text{ for } i \text{ in } range(0, 15)]
[35]: 16-element Vector{Float64}:
          -0.0
          -1.000000000000000000
          -2.000000000000000004
          -3.0000000000000001
          -4.0000000000000001
          -5.0000000000000001
          -6.0000000000000000
          -7.00000000000000000
          -8.0000000000000000
          -9.0000000000000000
        -10.0000000000000000
        -11.00000000000000002
         -12.00000000000000004
        -13.00000000000000004
        -14.00000000000000004
        -15.0000000000000004
```

Рис. 4.4: Подготовка данных для движения лодки

Траектория движения катера для 1-го случая (рис. 4.5).



[39]: Траектория движения катера береговой охраны и лод



Рис. 4.5: Траектория движения катера для 1-го случая

Траектория движения катера для 2-го случая (рис. 4.6).

```
[41]: plot(title="Траектория движения катера береговой охраны и лодки", legend=:best) plot!(sol_case2.t, sol_case2.u, proj=:polar, lims=(0, 15), label="Катер (случай 2)")
[41]: Траектория движения катера береговой охраны и лод
```



Рис. 4.6: Траектория движения катера для 2-го случая

#### 4.2 Решение 12 Варианта самостоятельного задания

Задаем начальные параметры из условия задания, , функция движения лодки, функция движения катера, решение ДУ для 1-го случая, решение ДУ для 2-го случая, подготовка данных(рис. 4.7).

#### вариант 24

```
[66]: # Параметры
      k = 11.4 # расстояние от лодки до катера
      n = 4.1 # отношение скорости катера к скорости лодки
      r0_case1 = k / 5.1 # начальное расстояние для 1 случая
      r0_case2 = k / 3.1 # начальное расстояние для 2 случая
      theta0_case1 = (0.0, 2 * pi) # начальный угол для 1 случая
      theta0_case2 = (-pi, pi) # начальный угол для 2 случая
      fi = 3 * pi / 4 # угол движения лодки
      # Функция движения лодки
      x(t) = tan(fi) * t # Лодка движется по прямой
      # Функция движения катера в полярных координатах
      definition_f(r, p, t) = r / sqrt(15.81)
      # Решение ДУ для 1 случая
      prob_case1 = ODEProblem(definition_f, r0_case1, theta0_case1)
      sol_case1 = solve(prob_case1, saveat=0.01)
      # Решение ДУ для 2 случая
      prob_case2 = ODEProblem(definition_f, r0_case2, theta0_case2)
      sol_case2 = solve(prob_case2, saveat=0.01)
      # Подготовка данных для движения лодки
      ugol = [fi for i in range(0, 15)] # Углы для построения прямой лодки
      x_lims = [x(i) for i in range(0, 15)] # Координаты лодки
```

Рис. 4.7: Решение задачи

Траектории движения катера и лодки, точки пересечения. (рис. 4.8), (рис. 4.9).

```
[67]: # Построение графика траектории движения катера и лодки
plot(title="Траектория движения катера и лодки", legend=:best)
plot!(sol_case1.t, sol_case1.u, proj=:polar, lims=(0, 15), label="Катер (случай 1)")
plot!(sol_case2.t, sol_case2.u, proj=:polar, lims=(0, 15), label="Катер (случай 2)")
plot!(ugol, x_lims, proj=:polar, lims=(0, 15), label="Лодка")
```

#### Траектория движения катера и лодки

[67]:



Рис. 4.8: Решение задачи

```
## Onpedenenue movek nepecevenum
function find_intersection1(x)
return (1140 * exp(10 * x) / sqrt(1581)) / 509 # Вычисление movики пересечения для 1 случая
end

function find_intersection2(x)
return (114 * exp((10 * x / sqrt(1581)) + (10 * pi / sqrt(1581)))) / 31 # Вычисление movики пересечения для 2 случая
end

intersection1 = find_intersection1(fi)
intersection2 = find_intersection2(fi - pi)

# Выбод movek пересечения
println("Точка пересечения (случай 1): ", intersection1)
println("Точка пересечения (случай 2): ", intersection2)

Точка пересечения (случай 1): 9.6281/08843/764688
```

Рис. 4.9: Решение задачи

## 5 Выводы

Рассмотрел задачу преследования браконьеров береговой охраной. Определил по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

# Список литературы