Earned Value Management

- 1. Motivation
- 2. Key Figures
- 3. About EVM
- 4. Examples

Key Figures

• Budget: 1.115.000 € (100 %)

• Planned Value: 406.000 € (36 %)

• Actual Cost: 366.000 € (33 %)

• Earned Value: 30 % (335.000 €) - estimated

Key Figures - CPI

- Cost Performance Index = EV/AC
 - 30% Earned Value / 33% Actual Cost
 - CPI = 0.91
 - Less money spent than planned but also less value achieved
 - More money used that planned

Key Figures - SPI

- Schedule Performance Index = EV/PV
 - 30% Earned Value / 36% Planned Value
 - SPI = 0,83
 - Project is behind schedule!
 - More time needed that planned to get the achieved value

Forecast with EVM (1)

- Estimate At Completion (EAC)
 - $EAC_OPT = AC + (BAC EV) / 1$
 - EAC REAL = AC + (BAC EV) / CPI
 - $EAC_PESS = AC + (BAC EV) / (CPI \times SPI)$

Budget At Completion (BAC)

- Example (BAC = 1.115.000 €)
 - EAC_OPT = 1.146.000 €
 - EAC REAL = 1.219.000 €
 - EAC_PESS = 1.390.000 €

Forecast with EVM (2)

BAC	1.114.978,48€	1.114.978,48€	1.114.978,48€	1.114.978,48€
Planned Cost (PC)	405.852,17€	405.852,17€	405.852,17€	405.852,17€
Actual Cost (AC)	365.676,25€	365.676,25€	365.676,25€	365.676,25€
Planned Value (PV)	405.852,17€	405.852,17€	405.852,17€	405.852,17€
Earned Value(EV)	334.500,00€	300.000,00€	200.000,00€	450.000,00€
СРІ	0,91	0,82	0,55	1,23
CPI SPI	0,91 0,82	0,82 0,74	0,55 0,49	1,23 1,11
	·	,	,	·
SPI	0,82	0,74	0,49	1,11

Accuracy of the evaluated earned value is

extremely important for the correctness of the forecast

Part 2

Key Figures

Budget At Completion (BAC)

- How much was originally planned for this project to cost
- Is the total budget for the project

Planned Value (PV)

- How much work should have been completed at a point in time based on the plan
- Derived by measuring planned work completed at a point in time
- PV = BAC * Planned%Completed

Earned Value (EV)

- How much work was actually completed during a given period of time
- Derived by measuring actual work completed at a point in the schedule
- EV = BAC * Actual%Completed

Actual Cost (AC)

- Money spent during a given period of time
- Sum of the costs for the given period of time

Cost Variance (CV)

- Difference between what we expected to spend and what we actually spent
- CV = EV AC

Schedule Variance (SV)

- Difference between where we planned to be in the schedule and where we are in the schedule
- SV = EV PV

Cost Performance Index (CPI)

- Rate at which the project performance is meeting cost expectations during a given period of time
- CPI = EV / AC
- Higher index is good (>1)

Schedule Performance Index (SPI)

- Rate at which the project performance is meeting schedule expectations up to a point in time
- SPI = EV / PV
- Higher index is good (>1)

Estimate At Completion (EAC)

- Projecting the total cost at completion based on project performance up to a point in time
- EAC = AC + BAC EV (opt.)
- EAC = BAC / CPI^c (real.)
- EAC = AC + [(BAC EC) / SPI^c] (pess.)

Estimate To Completion (ETC)

- Projecting how much more will be spent on the project, based on past performance
- ETC = EAC AC

Variance At Completion (VAC)

- The difference between what was budgeted and what will actually be spent
- VAC = BAC EAC

To-Complete Performance Index (TCPI)

- Performance that must be achieved in order to meet financial or schedule goals
- TCPI = (BAC EV) / RemainingFunds= (BAC EV) / (BAC AC)
- Lower index is good

EVM – Example 1

You are the project manager of the construction of 20 miles of sidewalk.

According to your plan, the cost of construction will be \$ 15,000 per mile and will take 8 weeks to complete.

2 weeks into the project, you have spent \$55,000, and completed 4 miles of sidewalk, and you have to report performance and determine how much time and cost remain.

EVM – Example 1

You are the project manager of the construction of 20 miles of sidewalk.

According to your plan, the cost of construction will be \$ 15,000 per mile and will take 8 weeks to complete.

2 weeks into the project, you have spent \$55,000, and completed 4 miles of sidewalk, and you have to report performance and determine how much time and cost remain.

Metric	Formula	Value	Calculation
BAC			
PV			
EV			
AC			
CV			
SV			
СРІ			
SPI			
EAC			
ETC			
VAC			
TCPI			

Part 3

About EVM

What is EVM about?

- Comparison of planned and actual cost not significant
 - 10% behind plan
 - 39% work completed
 - still 132.587€ budget available
- What performance was achieved till now compared to the plan?
- What are the actual costs for the currently achieved result?

What is the benefit of EVM?

- Assessment of project status
- Forecast of remaining project costs and duration
- Statement about efficiency

What is EVM doing?

- Examination of reference date
- Proportion of
 - Effort (costs) to
 - Earning (progress of result achievement)
- Key figures
 - Progress according to plan (planned value)
 - Actual progress (earned value)
 - Costs (actual costs)
- Forecast figures

EVM Problems

- Inconsistent wording
- Several variations
- Determination of the earned value

EVM Preconditions

- Work is planned
- Work is broken down into work packages
- Progress of achieved work performance, costs, and milestones is measurable
- All actual costs are known
- Deviations are rated
- Changes of the base plan are managed

Part 4

Example

EVM – Example 2

- Horticultural Show:
 - 3 ha area to be cultivated
 - 3 workers á 100 € per person and hour
 - project start: Monday

EVM – Example 2

- Plan:
 - 3 days work → finished by Wednesday evening
 - 3 x 8 h. x 3 workers x 100 € = 7.200 €

EVM – Example 2

- Monday, day 1
 - 1 ha (33% work) finished
 - Expenses so far: 2.400 € of 7.200 €

EVM – Example 2

- Tuesday, day 2
 - 1,5 ha (50 % work) finished (longer distances)
 - 1 worker: drop-out after 4 h
 - Expenses so far: 4.400 € of 7.200 €

EVM – Example 2

- Wednesday, day 3
 - Machine for 300 € / h executes 0,5 ha/h
 - 3h work: 900 € machine, 600 € workers
 - 3 ha (100% work) finished

- PV = BAC * Planned%Completed
- EV = BAC * Actual%Completed
- CV = EV AC
- SV = EV PV
- CPI = EV / AC
- SPI = EV / PV
- EAC = BAC / CPI (real.)
- VAC = BAC EAC
- TCPI = (BAC EV) / (BAC AC)