Motivation for Back Propagation

A Santosh Kumar

Reference: Prof Andrew Ng DeepLearning.ai @ Coursera

X 4

y 3

7 2

Let say we have three variables, {x,y,z} which determine the value of a function J.

Now, lets find value of function J using { x, y, z}

$$J = 3 (x + yz)$$

Now, lets find how J varies with a infinitesimally small changes in { x, y, z }

i.e $\frac{\partial J}{\partial x}$, $\frac{\partial J}{\partial y}$ and $\frac{\partial J}{\partial z}$

To find $\frac{\partial J}{\partial x}$, $\frac{\partial J}{\partial y}$ and $\frac{\partial J}{\partial z}$

Let start with finding $\frac{\partial J}{\partial v}$

So, $\frac{\partial J}{\partial V} = 3$ implies, change in J is three times the change in V.

Now lets find $\frac{\partial v}{\partial x}$

Now, we know
$$\frac{\partial J}{\partial v} = 3$$
 and $\frac{\partial v}{\partial x} = 1$

By using chain rule
$$\frac{\partial J}{\partial X} = \frac{\partial J}{\partial V} * \frac{\partial V}{\partial X} = 3*1 = 3$$

Now lets find $\frac{\partial v}{\partial u}$

so, we found
$$\frac{\partial J}{\partial v} = 3$$
 and $\frac{\partial v}{\partial u} = 1$

Again, by using chain rule
$$\frac{\partial J}{\partial u} = \frac{\partial J}{\partial v} * \frac{\partial V}{\partial u} = 3*1 = 3$$

Now lets find $\frac{\partial u}{\partial y}$

so,
$$\frac{\partial J}{\partial v} = 3$$
, $\frac{\partial v}{\partial u} = 1$ and $\frac{\partial U}{\partial y} = z$

Again, by using chain rule $\frac{\partial J}{\partial y} = \frac{\partial J}{\partial V} * \frac{\partial V}{\partial u} * \frac{\partial u}{\partial y} = 3*1*z = 3z$

Now lets find $\frac{\partial u}{\partial z}$

so,
$$\frac{\partial J}{\partial v} = 3$$
, $\frac{\partial v}{\partial u} = 1$ and $\frac{\partial U}{\partial z} = y$

Again, by using chain rule $\frac{\partial J}{\partial z} = \frac{\partial J}{\partial V} * \frac{\partial V}{\partial u} * \frac{\partial u}{\partial z} = 3*1*y = y$

so, we found how J varies w.r.t each of variable { x, y, z} as

$$\frac{\partial J}{\partial x} = 3$$
, $\frac{\partial v}{\partial y} = z$ and $\frac{\partial J}{\partial z} = y$

Now, let arrange $\frac{\partial J}{\partial x} = 3$, $\frac{\partial v}{\partial y} = z$ and $\frac{\partial J}{\partial z} = y$ in a vector format

$$\begin{bmatrix} \frac{\partial J}{\partial x}, & \frac{\partial v}{\partial y}, & \frac{\partial J}{\partial z} \end{bmatrix}$$

This is called gradient of function J.

Denoted as
$$\nabla J = \begin{bmatrix} \frac{\partial J}{\partial x}, & \frac{\partial v}{\partial y}, & \frac{\partial J}{\partial z} \end{bmatrix}$$

Gradient helps in finding out maxima or minima of function w.r.t variables.

In our example maxima or minima of J w.r.t x, y and z.

This quantity is very often used in various optimization techniques.

lets consider a network where each training point has two features x1 and x2.

For ex. Lets consider digital AND gate

x1	x2	у
0	0	0
0	1	0
1	0	0
1	1	1

Here we have n=4 training points, each having two features x1 and x2 with label y

Lets say, for given training point i the output of network is y_i .

How well the neural network has done the job in predicting correctly? For that we need loss function.

Here, L is loss function, let us define for n training points L = $(y_i - y_{pi})^2$

lets consider a network where each training point has two features x1 and x2.

considering all the training points

$$L = \sum_{i=0}^{n} (y_{i} - y_{pi})_{2}$$

our objective is to make this loss minimum. i.e optimize L.

Note: we have to optimize L w.r.t weights w1, w2 and b. i.e we have to find set of { w1, w2, b} such that our neural network has minimum loss.

So, we have to find gradient and for that we need $\left[\frac{\partial L}{\partial w_1}, -\frac{\partial L}{\partial w_2}, -\frac{\partial L}{\partial b}\right]$

lets consider a network where each training point has two features x1 and x2.

lets consider a network where each training point has two features x1 and x2.

lets consider a network where each training point has two features x1 and x2.

lets consider a network where each training point has two features x1 and x2.

Now lets find $\frac{\partial L}{\partial w_1}$

$$\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial a} * \frac{\partial a}{\partial z} * \frac{\partial z}{\partial p} * \frac{\partial p}{\partial w_1}$$

Similarly

$$\frac{\partial L}{\partial w_2} = \frac{\partial L}{\partial a} * \frac{\partial a}{\partial z} * \frac{\partial z}{\partial p} * \frac{\partial p}{\partial w_2}$$

So, that is how we find $\left[\frac{\partial L}{\partial w_1}, \frac{\partial L}{\partial w_2}, \frac{\partial L}{\partial b}\right]$ Just, look at the arrows for finding each of these terms.

Since, they start from output and move back towards input. It is called back propagation method.

Once we get $\left[\frac{\partial L}{\partial w_1}, \frac{\partial L}{\partial w_2}, \frac{\partial L}{\partial b}\right]$, gradient is known. This can be used by an

optimization method to find minima or maxima