SIMPLEKS METOD ZA TRAŽENJE TEŽINSKOG VEKTORA

Prije nego što se predloži postupak za traženje težinskog vektora \vec{w} , razmotrit ćemo dataset sastavljen od 30 instanci, koji služi da se validira logistička regresija u kontekstu predviđanja da li će određeni pacijent sa nekim procentom bubrežnog oboljenja preživjeti ili ne. Dakle, dataset D ovako izgleda

$$D = \{(\vec{x}_i, y_i) : y_i \in \{0,1\}, i = \overline{1,30}\},\$$

pri čemu $\vec{x}_i = (x_1^i \ x_2^i \ x_3^i)$. Oznaka $y_i = 0$ znači pacijent je preživio, dok oznaka $y_i = 1$ implicira da pacijent nije preživio. Atributi vektora \vec{x}_i imaju sljedeća značenja:

- atribut x_1^i označava godine *i*-tog pacijenta;
- atribut x_2^i označava spol i-tog pacijenta, pri čemu -1 označava muški spol, dok +1 ženski spol;
- atribut x_3^i označava stepen bubrežnog oboljenja *i*-tog pacijenta.

Na primjer, instanca $\vec{x}_1 = (48\ 1\ 4.40)$ sa oznakom $y_1 = 0$ predstavlja ženskog pacijenta odnosno ženu koja je preživjela zbog ne velikog stepena bubrežnog oboljenja (4.40), što će kasnije biti pokazano kada se bude radila predikcija. S druge strane, instanca odnosno primjer $\vec{x}_2 = (60\ -1\ 7.89)$ sa oznakom $y_2 = 1$, predstavlja muškog pacijenta odnosno muškarca koji nažalost zbog svog stepena bubrežnog oboljenja od 7.89 nije uspio preživjeti. Od ranije znamo da se linearna regresija u oznaci $h_{LinR}(\vec{x};\vec{w})$ ovako zadaje

$$h_{LinR}(\vec{x}; \vec{w}) = \vec{w}^T \vec{x}.$$

Važno je prisjetiti se da bi se omogućilo skalarno množenje vektora $\vec{x} = [x_1 \ x_2 \ x_3]$ i $\vec{w} = [w_0 \ w_1 \ w_2 \ w_3]$, neophodno je vektor \vec{x} proširiti sa još jednim atributom (obično je to **lažna** varijabla (eng. *dummy variable*), koja se obično postavlja na vrijednost jedan, pa se u skladu sa tim vektor \vec{x} zapisuje u ovoj formi $\vec{x} = [1 \ x_1 \ x_2 \ x_3]$.

Također, znamo da se logistička regresija gradi pomoću linearne regresije djelovanjem sigmoidne funkcije δ na nju, tj. logistička regresija u oznaci $h_{LogR}(\vec{x}; \vec{w})$ ovako se zadaje

$$h_{LogR}(\vec{x}; \vec{w}) = \delta(\vec{w}^T \cdot \vec{x}) = \frac{1}{1 + e^{-\vec{w}^T \cdot \vec{x}}}.$$

Da bi se radila klasifikacija logističkom regresijom obično se instanca \vec{x} za koju vrijedi $h_{LogR}(\vec{x};\vec{w}) \geq 0.5$ klasificira u pozitivnu klasu, tj. klasu sa oznakom y=1, dok ukoliko vrijedi $h_{LogR}(\vec{x};\vec{w}) < 0.5$, onda se instanca klasificira u negativnu klasu, tj. klasu sa oznakom y=0 ili y=-1 u zavisnosti od toga koja oznaka više odgovara.

Primjer 1. Neka je za pacijenta $\vec{x_1} = \begin{bmatrix} 1 & 50 & -1 & 6 \end{bmatrix}$ pronađen ovakav težinski vektor $\vec{w} = \begin{bmatrix} w_0 & w_1 & w_2 & w_4 \end{bmatrix} = \begin{bmatrix} -7.5 & 0.11 & -0.22 & 0.33 \end{bmatrix}$. Odredite da li će pacijent preživjeti ili ne.

Rješenje. Kako za pacijenta $\overrightarrow{x_1}$ važi $h_{LinR}(\overrightarrow{x_1}; \overrightarrow{w}) = \overrightarrow{w}^T \cdot \overrightarrow{x}_1 = -7.5 + 0.11 \cdot 50 + 0.22 + 6 \cdot 0.33 = 0.20$, to je onda vrijednost logističke regresije jednaka

$$h_{LogR}(\overrightarrow{x_1}; \overrightarrow{w}) = \frac{1}{1 + e^{-h_{LinR}(\overrightarrow{x_1}; \overrightarrow{w})}} = \frac{1}{1 + e^{-0.20}} = 0.5498.$$

Kako je $h_{LogR}(\overrightarrow{x_1}; \overrightarrow{w}) \ge 0.5$, slijedi da pacijent $\overrightarrow{x_1}$ nažalost neće preživjeti. Ovaj rezulatat se sa vjerovatnosnog aspekta može ovako intrepretirati: V jerovatnoća da će pacijent $\overrightarrow{x_1}$ završiti u pozitivnoj klasi y=1 jednaka je 0.5498, dok je vjerovatnoća da ista ta instanca bude klasificirana u klasi sa oznakom y=0 jednaka je 1-0.5498=0.4502. Drugim riječima, ako se ovo izrazi u procentima, slijedi da mogućnost da pacijent $\overrightarrow{x_1}$ završi u klasi y=1 iznosi 54.98%, a u klasi y=0 samo 45.02%.

Prije nego što se predloži algoritam baziran na Simpleks metodi za traženje težinskog vektora \vec{w} , kod logističke regresije u najvećem broju slučajeva radi se Gausova normalizacija podataka (u slobodno vrijeme pročitajte nešto o Carl Friedrich Gaussu, ostavio je dubok trag u nauci).

Gausova normalizacija podataka

Neka je zadat dataset D ovako $D = \{(\vec{x}_i, y_i) : i = \overline{1,p}\}$, pri čemu je p ukupan broj instanci tog dataseta. Normalizacija ovog dataseta obavlja se tako što se svaka instanca \vec{x}_i normalizira preko standardne Gausove distribucije. Da bi se instanca normalizirala, neophodno je da se svaka kolona x_i^j $(j = 1, 2, \dots, n)$ te instance normalizira na sljedeći način

$$x_i^j = (x_i^j - m_j)/SD_j,$$

pri čemu n ukupan broj kolona instance \vec{x}_i , m_j je srednja vrijednost kolone x_i^j cijelog dataseta D, a SD_i je standardna devijacija te kolone u odnosu na D. Ona se ovako računa

$$SD_{j} = \sqrt{\frac{1}{p-1}\sum_{i=1}^{p}(x_{i}^{j} - m_{j})^{2}}$$
 (\forall j).

Srednja vrijednost m_j kolone x_i^j računa se kao

$$m_j = \frac{1}{p} \sum_{i=1}^p x_i^j \quad (\forall j).$$

Primjer 2. Neka je dat dataset $D = \{(\vec{x}_i, y_i) : i = \overline{1,4}\}$, tako da su starosne godine za pacijente $\overline{x_1}$, $\overline{x_2}$, $\overline{x_3}$ i $\overline{x_4}$ redom date sa 25, 36, 40 i 23. Pomoću standardne Gausove distribucije, normalizirajte samo prvu kolonu pacijenta $\overline{x_1}$.

Rješenje. Prvo se izračuna srednja vrijednost m_1 , a potom standardna devijacija SD_1 :

$$m_1 = \frac{1}{4}(25 + 36 + 40 + 23) = 31.0,$$

$$SD_1 = \sqrt{[(25 - 31)^2 + (36 - 31)^2 + (40 - 31)^2 + (23 - 31)^2]/3} = 8.29.$$

Dakle, prva kolona pacijenta $\overrightarrow{x_1}$ nakon normalizacije jednaka je $x_1^1 = \frac{25-31}{8.29} = -0.72$.

Simpleks optimizacijja

U ovoj se sekciji daje pseudokod za traženje težinskog vektora \vec{w} kod logističke regresije koji je baziran na paradigmi Simpleksa.

Pseudokod se sastoji od tri koraka:

Korak 1. Sasvim slučajno kreirati tri rješenja R1, R2 i R3.

Korak 2. Iterirati određen broj iteracija ili dok neka unaprijed zadata vrijednost ϵ nije postignuta.

- A) Sortirati rješenja R1, R2 i R3 u odnosu na vrijednost funkcije cilja h_{LogR} , čime se dobijaju sljedeća rješenja: NAJGORE RJEŠENJE (**WS**), NAJBOLJE RJEŠENJE (**BS**), DRUGO RJEŠENJE (**OS**).
- B) Pronaći PROŠIRENO RJEŠENJE (**ES**). Ukoliko je ES bolje od WS u odnosu na vrijednost funkcije cilja $h_{Log_R}(ES) < h_{Log_R}(WS)$, tada zamijeniti WS sa ES, i vratiti se na korak 2.
- C) Pronaći REFLEKTOVANO RJEŠENJE (**RS**). Ukoliko je RS bolje od WS, tada zamijeniti WS sa RS, tj. WS postaviti na RS i vratiti se na korak 2.
- D) Pronaći KONTRAKTOVANO RJEŠENJE (**CS**). Ako je CS bolje od WS, tada WS postaviti na CS i vratiti se na korak 2.
- E) Pronaći RANDOM RJEŠENJE (**RR**). Ako je RR bolje od WS, tada WS postaviti na RR i vratiti se na korak 2.
- F) Obaviti operaciju "SHRINKING", kod koje se rješenja **WS** i **OS** ažuriraju na ovaj način:

$$WS = 0.5(WS + BS)$$
; $OS = 0.5(OS + BS)$.

Potom se vratiti se na korak 2.

Korak 3. Odštampati težinski vektor \vec{w} .

Opis nalaženja rješenja CS, RS i ES

Rješenja CS, RS i ES se nalaze na osnovu trougla, čija su tjemena zapravo rješenja OS, WS i BS, koja se u *xy* ravni sasvim slučajno inicijalno kreiraju. Jedan primjer zadavanja ovih rješenja grafički je ispod prikazan.

Sa gornje slike, nije teško uočiti da rješenje Centroid je zapravo središte duži \overline{OSBS} , pa se nalazi ovako

$$Centroid = 0.5(OS + BS).$$

Također, **rješenje CS** se može odrediti da bude središte duži $\overline{WSCentroid}$, ali gotovo uvijek u praksi ovakav izbor rješenja neće voditi ka najboljem odabiru težinskog vektora \overline{w} . Prema tome, budući da rješenje CS generalno ne mora biti središte spomenute duži, ono se gotovo uvijek nalazi na općenitiji način, kao što je ispod urađeno

$$CS = Centroid - \beta(Centroid - WS),$$

pri čemu je β hiperparametar iz intervala (0,1). Ukoliko je $\beta = 0$ ili $\beta = 1$, tada CS=Centroid ili CS=WS, što nema smisla, pa se ove kombinacije za parameter β zabranjuju. Za $\beta = 0.5$, slijedi da je CS središte duži $\overline{WSCentroid}$.

Rješenje RS se nalazi ovako

$$RS = Centroid + \alpha(Centroid - WS),$$

pri čemu se hiperparametar α uzima iz intervala (0,1).

Rješenje ES može se ovako odrediti

$$ES = Centroid + \gamma(Centroid - WS),$$

pri čemu se hiperparametar γ uzima iz intervala (0,3).

Iako su jednačine za traženje rješenja RS i ES veoma slične (razlika je u parametrima β i γ), obično se vrijednosti za ove parametre u implementaciji uzimaju da budu različite, npr. $\beta = 0.5$ i $\gamma = 2$, ili ako se radi tuniranje ovih parametara preko neke metode (npr. metoda mreže), tada ta metoda pronađe vrijednosti za koje vrijedi $\beta < \gamma$.

Važno je uočiti da rješenja CS, RS i ES zapravo rade "lokalnu pretragu", dok rješenje RR radi "globalnu pretragu" prostora pretrage. Prema tome, itekako je važno što postoji korak D), jer on u najvećem broju slučajeva ne dopušta da se algoritam "zaglavi" u nekom od lokalnih optimuma.

Operacija SHRINKING

Nije teško primijetiti na osnovu drugog koraka gornjeg pseudokoda (pod koraci A), B), C) i D)) da ukoliko nijedno od rješenja ES, RS, CS i RR nije bolje od rješenja WS, tada početni trougao (vidi gore sliku) Δ*OSWSBS* treba skalirati odnosno treba se istom smanjiti površina, jer se ne radi uspješna pretraga 2D prostora. Drugim riječima, treba se pojačati lokalna pretraga, pa se zbog toga rješenja WS i OS trebaju ažurirati. Njihovo ažuriranje se treba obavljajti u pravcu najboljeg rješenja BS, tj. stara rješenja WS i OS redom se mijenjaju sa novim rješenjima 0.5(WS+BS) i 0.5(OS+BS), što je urađeno na slici ispod.

Napomena: Do boljeg razumijevanja izložene Simpleks metode za traženje težinskog vektora \vec{w} kod logističke regresije možete doći tako što ćete analizirati implementaciju ove metode izvedenu u programskom jeziku C#, koju je autor ovih materijala detaljno opisao i veoma pažljivo izabrao strukture podataka, vodeći pri tome računa o optimalnom korištenju resursa, kao što je memorija računara.