Definition

Given a vector

$$X = \left[\begin{array}{c} x_1 \\ \vdots \\ x_N \end{array} \right] \in \mathbb{R}^N$$

the mean of X is the number

$$m_X = \frac{x_1 + \ldots + x_N}{N}$$

Notation. For a vector $X \in \mathbb{R}^N$ as above, by \widetilde{X} we will denote the vector

$$\widetilde{X} = \begin{bmatrix} x_1 - m_X \\ \vdots \\ x_N - m_X \end{bmatrix}$$

We will say that \widetilde{X} is the *demeaning* of X.

Note. $m_{\widetilde{\chi}} = 0$.

Example.

$$X = \begin{bmatrix} 62 & 90 & 79 & 70 & 55 \end{bmatrix}^T$$
, $m_X = 71$

$$\widetilde{X} = \begin{bmatrix} -9 & 19 & 8 & -1 & -16 \end{bmatrix}^T$$
, $m_{\widetilde{\chi}} = 0$

Definition

Given a vector

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N$$

the variance of X is the number

$$Var(X) = \frac{1}{N} \sum_{i=1}^{N} (x_i - m_X)^2$$

Note. $Var(X) = \frac{1}{N}\widetilde{X}^T\widetilde{X}$.

Proposition

For a vector

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \in \mathbb{R}^N$$

we have

$$Var(X) = \frac{1}{2N^2} \sum_{i,j} (x_i - x_j)^2$$

Definition

Given vectors

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}, \quad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \in \mathbb{R}^N$$

the *covariance* of X and Y is the number

Cov(X, Y) =
$$\frac{1}{N} \sum_{i=1}^{N} (x_i - m_X)(y_i - m_Y)$$

Note.

1)
$$Cov(X, Y) = \frac{1}{N}\widetilde{X}^T\widetilde{Y}$$

2)
$$Var(X) = Cov(X, X)$$

Proposition

For vectors

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}, \quad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} \in \mathbb{R}^N$$

we have

Cov(X, Y) =
$$\frac{1}{2N^2} \sum_{i,j} (x_i - x_j)(y_i - y_j)$$

Example.

