Introduction to statistical inference 2

Lauri Mehtätalo University of Eastern Finland School of Computing

April 17, 2018

Contents

1	Recap from "Introduction to statistical inference 1"		
	1.1	Random variable	1
	1.2	Transformations of random variable	2
	1.3	Expected values	3
	1.4	Variance	3
	1.5	Bivariate random variables	3
	1.6	Independence	4
	1.7	Covariance	4

IV CONTENTS

Chapter 1

Recap from "Introduction to statistical inference 1"

1.1 Random variable

• Random variable is a function from sample space S of an experiment to sample space of the random variable X, which is set of real numbers.

$$X: \mathcal{S} \to \mathcal{X}$$

- The sample space is a set of all possible values random variable can get.
- \mathcal{X} can be
 - an interval of real axis (continuous random variable).

$$\mathcal{X} = [0, 10), \ \mathcal{X} = [0, 10], \ \mathcal{X} = (0, 10)$$

- An uncountable set of integers (discrete random variable)

$$\mathcal{X} = \{0, 1, 2, \ldots\}$$

- A countable set of integers or real numbers (discrete random variable)

$$\mathcal{X} = \{0, 1\}, \ \mathcal{X} = \{0, 0.5, 1\}, \ \mathcal{X} = \{0, 1, \dots, 10\}$$

• Probabilities associated with each value of X are defined by the cumulative distribution function (cdf for short).

$$F_X(x) = P(X \le x)$$
, where $-\infty < x < \infty$

Note: $F_X(x)$ is a step function if X is discrete.

2CHAPTER 1. RECAP FROM "INTRODUCTION TO STATISTICAL INFERENCE 1"

Note: $F_X(x)$ is a continuous function if X is continuous.

- $F_X(x)$ or F(x) is cdf, if
 - 1) $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to\infty} F(x) = 1$
 - 2) F(x) is non-decreasing
 - 3) F(x) is right-continuous
- Cdf is useful in calculation of any probabilities; for example

$$P(a < X \le b) = F(b) - F(a)$$

Note: Be careful with < and \le when working with discreate random variables.

• The probability density function (pdf for short) is defined for continuous random variable as

$$f_X(x) = F'(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}, -\infty < x < \infty$$

and

$$\int_{-\infty}^{x} f_X(t) \, \mathrm{d}t = F_X(x)$$

 The probability mass function (pmf for short) is defined for discrete random variables as

$$f_X(x) = P(X = x)$$

$$F_X(x) = \sum_{k=1}^{x} f_X(k)$$

1.2 Transformations of random variable

- Consider a monotonic function $g: \mathcal{X} \to \mathcal{Y}$
- Y = g(X) is also a random variable; function g is called an transformation (muunnos).
- If g(x) is a increasing function of x, then

$$F_Y(y) = F_X(g^{-1}(y))$$

• If g(x) is a decreasing function of x, then

$$F_Y(y) = 1 - F_X(g^{-1}(y))$$

 \bullet The pdf of continuous Y is

$$f_Y(y) = F_Y'(y)$$

1.3 Expected values

$$E(X) = \mu_X = \begin{cases} \int_{-\infty}^{\infty} x f(x) \, \mathrm{d}x & \text{if } X \text{ is continuous} \\ \sum_{x \in \mathcal{X}} x f(x) & \text{if } X \text{ is discrete} \end{cases}$$

$$E(g(X)) = \begin{cases} \int_{-\infty}^{\infty} g(x) f(x) \, \mathrm{d}x & \text{if } X \text{ is continuous} \\ \sum_{x \in \mathcal{X}} g(x) f(x) & \text{if } X \text{ is discrete} \end{cases}$$

1.4 Variance

$$\begin{split} \sigma_X^2 &= Var(X) &= E(X - \mu_X)^2 \\ &= E(X^2 - 2X\mu_X + \mu_X^2) \\ &= E(X^2) - E(2X\mu_X) + E(\mu_X^2) \\ &= E(X^2) - 2\mu_X \underbrace{E(X)}_{\mu_X} + E(\mu_X^2) \\ &= E(X^2) - \mu_X^2 \\ &= E(X^2) - \mu_X^2 \\ sd(X) &= \sqrt{Var(X)} = \sigma_X \end{split}$$

1.5 Bivariate random variables

• For two discrete random variables, the joint pmf is defined as

$$f_{X,Y}(x,y) = P(X=x,Y=y)$$

• For two continuous random variables, we define the joint pdf $f_{X,Y}(x,y)$ as

$$P((X,Y) \in A) = \iint_A f(x,y) dx dy$$

• The expected value for transformation $g(X,Y): \mathbb{R}^2 \to \mathbb{R}$ (for example, g(X,Y)=XY or $g(X,Y)=\frac{X}{V}$) is

$$(X, Y) = XY \text{ or } g(X, Y) = \frac{22}{Y} \text{) is}$$

$$E(g(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

if (X, Y) is continuous, and

$$E(g(X,Y)) = \sum_{x,y \in \mathbb{R}^2} g(x,y) f(x,y)$$

if (X, Y) is discrete.

4CHAPTER 1. RECAP FROM "INTRODUCTION TO STATISTICAL INFERENCE 1"

• The marginal pmf / pdf for X are

$$f_X(x) = \sum_{y \in \mathbb{R}} f_{X,Y}(x,y)$$
 (pmf)
 $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, \mathrm{d}y$ (pdf)

and correspondingly for Y.

• The conditional pmf / pdf are both defined as

 $f(y\mid x) = \frac{f_{X,Y}(x,y)}{f_X(x)} \quad \text{(for both doscrete and continuous random variables)}$ and correspondingly for $x\mid y$.

1.6 Independence

• Random variables are said to be independent $(X \perp\!\!\!\perp Y)$ if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$

ullet For independent random variables, conditional distribution $y\mid x$ is

$$f(y \mid x) = f_u(y)$$

regardless of the value of x.

1.7 Covariance

 $\bullet\,$ Covariance measures the linear association between two random variables X and Y

$$\begin{split} cov(X,Y) &= E((X-\mu_X)(Y-\mu_Y)) \\ &= E(XY) - \mu_X \mu_Y \\ cov(X,Y) &= cov(Y,X) \\ corr(X,Y) &= \rho_{XY} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} \qquad \text{where } -1 \leq \rho_{XY} \leq 1 \end{split}$$

Note: cov(X, X) = Var(X)

Note: If $X \perp\!\!\!\perp Y$, then cov(X,Y) = 0, but if cov(X,Y) = 0, it does not mean X and Y are necessarily independent.