Abstract Algebra (Math 6302), Fall 2024 Homework Assignment 2

Due at 9:59pm on Wednesday, September 11. Turn in your completed assignment (single .pdf file) on Canvas. For full credit, show your work and justify your answers.

- (1) Give an example of a binary relation on \mathbb{Z} which is reflexive and symmetric, but not transitive.
- (2) Define a relation \sim on the set $\{(a,b) \in \mathbb{Z}^2 : b \neq 0\}$ by the rule that $(a,b) \sim (c,d)$ if and only if ad bc = 0. Prove that \sim is an equivalence relation.
- (3) Determine which of the following groups are cyclic (justify your answers). For the ones that are cyclic, find a generator.

(a) $C_2 \times C_5$

(e) $\mathbb{Z} \times \mathbb{Z}$

(b) $C_4 \times C_4$

(f) $(\mathbb{Z}/18\mathbb{Z})^{\times}$

(c) \mathbb{Z}

(g) $(\mathbb{Z}/36\mathbb{Z})^{\times}$

(d) \mathbb{Q}

- (h) $(\mathcal{P}(S), \triangle)$, where S is a set with $n \geq 2$ elements
- (4) Prove that $(\mathcal{P}(\{1,2\}), \triangle)$ is isomorphic to V_4 .
- (5) Suppose that G_1, \ldots, G_n are groups. Prove that the direct product $G_1 \times \cdots \times G_n$ is Abelian if and only if G_i is Abelian, for all $1 \le i \le n$.
- (6) Let $d, n \in \mathbb{N}$ and suppose that d|n. Write $C_n = \langle x \rangle$ and let $H \subseteq C_n$ be defined by $H = \{x^d, x^{2d}, x^{3d}, \dots, x^n\}$.

Define a relation \sim on C_n by $g \sim h$ if and only if $g^{-1}h \in H$. Prove that \sim is an equivalence relation.

- (7) Let $G = (\mathbb{Z}/900\mathbb{Z})^{\times}$.
 - (a) Compute |G|.
 - (b) Find a representative $0 \le a < 900$ with $a = 11^{-1}$ in G.
- (8) Find the set of all integer solutions x to the equation $5457x = 3317 \mod 5885$.
- (9) Find all integers x satisfying the system of equations

 $x = 43 \mod 101,$

 $x = 10 \mod 103$, and

 $x = 96 \mod 107$.

- (10) Given that 10 is a primitive root modulo 313, find all residue classes x mod 313 which satisfy $x^3 = 1 \mod 313$.
- (11) What is the ones digit of the number 7^{7^7} ?
- (12) Find the smallest positive integer which is equivalent modulo 211 to 8^{1074} .
- (13) Let $n \in \mathbb{N}$. Prove that for all $a \in \mathbb{Z}$, the residue class \overline{a} is a generator for $\mathbb{Z}/n\mathbb{Z}$ if and only if (a, n) = 1.
- (14) How many elements of the group $(\mathbb{Z}/103\mathbb{Z})^{\times}$ are generators for the group?
- (15) Let g be Graham's number (see lecture 13). Find the smallest positive integer x satisfying $x = g \mod 121$.
- (16) Given that 5 is a primitive root modulo 97, find all residue classes $x \mod 9797$ which satisfy $x^3 = 1 \mod 9797$.