Ciência da Computação

REDE NEURAIS

Semestre: 2010/1 AULA 04

Max Pereira

http://paginas.unisul.br/max.pereira

Conteúdo

- Introdução ao MatLab
- Exercícios

MATLAB

- MatLab (Matrix Laboratory) é um software para computação numérica.
- Os elementos básicos são matrizes.
- Possui uma família de aplicativos específicos (toolboxes) que são coleções de funções usadas para resolver problemas tais como: otimização, manipulação algébrica, redes neurais, processamento de sinais, simulação de sistemas dinâmicos, entre outros.

Variáveis

 O MatLab trabalha essencialmente com um tipo de variável: uma matriz contendo números, complexos ou não (um escalar é uma matriz 1 x 1).

Variáveis

Entrando com Valores

- No MatLab não é necessário que sejam declaradas as variáveis para iniciá-las. Ao colocar dados em uma variável, o programa aloca memória automaticamente.
- Envolver os elementos com colchetes, []
- Separar cada elemento com espaço ou vírgulas
- Usar ponto-e-vírgula (;) para indicar fim da linha.

Entrando com Valores

Por exemplo, para entrar com a matriz abaixo na memória do computador, e guardá-la na variável A:

A =
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}$$

Basta digitar:

$$\Rightarrow$$
 A=[1 2 3;4 5 6; 7 8 9]

Que a saída será:

Redes Neurais

Variáveis permanentes

ans	Resposta mais recente, que não	flops	Contador	de	operações
	foi atribuída a nenhuma variável.		matemáticas		
eps	Precisão da máquina.	NaN	Not a Numb	er (inde	eterminação)
realmax	Maior número de ponto flutuante.	inf	Infinito.		
realmin	Menor número de ponto flutuante.	computer	Tipo de com	putado	r.
pi	3,14159265358979	why	Resposta su	ıcinta.	
i, j	Unidade imaginária	version	Versão do N	/IATLAE	3.

Expressões e Comandos Básicos

 MatLab é uma linguagem de expressão.
 Ela interpreta e avalia expressões digitadas, que são geralmente na forma:

Variável = expressão

Os números são em notação decimal.
 Alguns exemplos de números permitidos:

1/3, -99, .0001, 9.63973, 1.602E-20, 3+2i

Expressões e Comandos Básicos

Pode-se construir expressões com os operadores aritméticos usuais:

+	adição	/ e \	divisão
_	subtração	^	potenciação
*	multiplicação	,	matriz transposta

O MATLAB possui uma vasta gama de funções matemáticas elementares, com seno (sin), tangente (tan), logaritmo (log10), etc. Por exemplo, para calcular o seno de 5 e guardar na variável x:

```
\gg x = \sin(5)
```

Subtraindo matrizes:

```
» A=[1 2 3;4 5 6;7 8 9];
» B=[4 5 6;1 2 3;8 7 6];
» C=A'-B
```

Comando mais Importante

 O comando mais importante no MatLab é o help, que fornece ajunda on-line sobre qualquer outro comando.

```
» help who
WHO List current variables.
WHO lists the variables in the current workspace.
WHOS lists more information about each variable.
WHO GLOBAL and WHOS GLOBAL list the variables in the global workspace.
```

Workspace

- Ao sair do MatLab (quit ou exit) todas as variáveis são perdidas, a menos que sejam gravadas com o comando save.
- As variáveis são gravadas em um arquivo chamado matlab.mat.
- O comando save nome_do_arquivo grava as variáveis no arquivo.
- O comando save nome_do_arquivo nome_da(s)_variável(is), grava somente as variáveis especificadas.
- O comando load carrega as informações gravadas
- O comando clear nome_da_variável apaga a variável do workspace

Matrizes

 Elementos de uma matriz podem ser qualquer expressão do MatLab. Por exemplo:

$$x=[-1.3 \log(4.23^3) (1+2+3)/4*5]$$

Resulta em:

```
x = -1.3000 4.3266 7.5000
```

Matrizes

 Elementos individuais de uma matriz podem ser referenciados com seus respectivos índices entre parênteses.

```
» x=[1 2 3;4 5 6;7 8 9]
x =

1          2     3
4          5     6
7          8     9

» x(2,3)
ans =
6
```

Gerando Vetores

 Os dois pontos (:) é um caracter importante no MatLab

```
 x = 1:8
```

Cria um vetor cujo primeiro elemento é 1, o último é 8 e o passo 1.

x =

1

2

3

4

5

6

7

8

Matrizes dentro de matrizes

• É possível construir matrizes maiores a partir de matrizes menores.

```
» A=[1 2 3;4 5 6;7 8 9];
» r=[13 32 5];
» A=[A;r]
A =

1     2     3
4     5     6
7     8     9
13 32 5
```

Matrizes dentro de matrizes

A =
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 14 & 83 & 23 & 0 \end{bmatrix}$$

Pegar os elementos da 2ª linha e 3ª e 4ª colunas:

```
» A=[1 2 3 4; 5 6 7 8; 9 10 11 12; 14 83 23 0]
A =

1     2     3     4
5     6     7     8
9     10     11     12
14     83     23     0

» A(2,[3 4])
ans =

7     8
```

Matrizes dentro de matrizes

A =
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 14 & 83 & 23 & 0 \end{bmatrix}$$

ou ainda um comando equivalente:

Operações elemento-por-elemento

```
» [1 2 3;4 5 6;7 8 9] * [1 2 3;4 5 6;7 8 9]
ans =
   30 36 42
   66 81 96
  102 126 150
» [1 2 3;4 5 6;7 8 9] .* [1 2 3;4 5 6;7 8 9]
ans =
    1
       4 9
   16 25 36
   49 64 81
```

Operações elemento-por-elemento

Símbolo	Operação		
.*	multiplicação		
./ ou .\	divisão		
.^	potenciação		

RELACIONAIS

Símbolo	Operador		
<	menor que		
<=	menor ou igual que		
>	maior que		
>=	maior ou igual que		
==	igual		
~=	não igual		

LÓGICOS

Símbolo	Operador		
&	е		
	ou		
~	não		

Existem ainda algumas funções que são úteis com os operadores lógicos, com any ou all.

$$x = [1 \ 2 \ 3 \ 4 \ 5 \ 6]$$

 $x = [1 \ 2 \ 3 \ 4 \ 5 \ 6]$

Funções

Alguns exemplos de funções básicas no MatLab.
 Qualquer dúvida basta user o comando help.

exp	е	poly	polinômio característico
log	logaritmo natural	det	determinante
log10	logaritmo base 10	abs	módulo
find	índice de matriz	sqrt	raiz quadrada
max	máximo valor	real	parte real de número complexo
min	mínimo valor	imag	parte imaginária de número complexo
mean	média aritmética	conj	conjunto de número complexo
std	desvio padrão	round	arredondar

- O MatLab proporciona técnicas sofisticadas para visualização de dados.
- Gráficos 2-D: a função básica para desenhar gráficos em duas dimensões é a função plot.
- A função recebe um conjunto de ponto X e
 Y e desenha-os em um plano cartesiano.

```
» x=[0 1 2 3 4 5];
» y=x.^2;
» plot(x,y)
```


Parâmetros para construção dos gráficos

У	amarelo	W	branco	+	cruz
m	roxo	k	preto	_	sólida
С	azul claro		tracejada	*	estrela
r	vermelho		ponto	:	pontilhada
a	verde	0	círculo		traço ponto
b	azul	Х	Х		

Parâmetros para construção dos gráficos

title	título do gráfico	xlabel	nome do eixo x
text	escreve no local especificado	ylabel	nome do eixo y
gtext	escreve texto no usando mouse	grid	desenha linhas de grade
semilogx	gráfico mono-log em x	semilogy	gráfico mono-log em y
loglog	gráfico di-log	axis	intervalo dos eixos no gráfico

```
» x=[0:0.1:exp(1)*pi];
» y=exp(-x).*sin(x);
» plot(x,y,'--b');
» title('gráfico f(x)=exp(-x)*sin(x)');
» xlabel('eixo x');
» ylabel('eixo y');
» gtext('ponto de máximo local');
```

Gráficos 3-D

 O MatLab cria uma variedade de funções para gráficos em 3 dimensões

Gráficos 3-D

```
» t=0:pi/50:10*pi;
» plot3(sin(t),cos(t),t);
```

MESHGRID

 O MatLab define uma superfície do tipo mesh (rede) pelas coordenadas Z sobre um plano x-y. Superfícies do tipo mesh são úteis para visualizar matrizes grandes, cuja visualização na forma numérica torna-se inviável.

```
» subplot(221)
» mesh(X,Y,Z)
» title('Sombrero')
» subplot(222)
» plot3(sin(t),cos(t),t);
» title('Hélice')
» subplot(223)
» mesh(X,Y,3*sqrt(X.^2+Y.^2))
» title('Cone')
```

Programação

Controladores de fluxo:

```
» for i = 1:10
v(i)=3*i;
end
```

```
>> n=1;
>> while prod(1:n)<1.e100
n=n+1;
end
>> n
n = 70
```

Programação

```
» a=round(10*rand(1));
» if a>5
b=3*a;
elseif a<5;
b=a/3;
else
b=a;
end</pre>
```

Programação

- break termina um laço
- input recebe dados através do teclado
- Pause pausa na execução do programa, pause(n)

Arquivos M

- É possível executar seqüências de comandos, que podem ser guardados em arquivos.
- Arquivos que contém comandos do MatLab são chamados arquivos M porque possuem extensão .m

Arquivos M

```
% Arquivo M que calcula os primeiros
% números de Fibonacci
f = [1 1];
i=1;
while f(i) + f(i+1) < 1000
        f(i+2) = f(i) + f(i+1)
        i=i+1;
end
plot(f)</pre>
```

Exercícios