Homework

Up-Sampling and Composite Convolution

CMPE 258

1. Given a feature layer below, use bi-linear technique to perform up-sampling.

1. Given a rea	ature layer below, use bi-linear technique to perform up-sampling.
	Sol. Stepl, Map the Anchor Step 2. Apply Linear Interpolation
	Points to 4x4 feature map Egn (PP.55, Lecture Notes)
	Prims and a segament of the se
1	7
2	1
	Where (A) (1)
	$(x_{3},y_{3}) = \frac{1}{(x_{4},y_{1})} = \frac{1}{(x_{2}-x_{1})} = \frac{1}{(x_{2}-x_{1})} = \frac{1}{(x_{3},y_{3})} = \frac{1}{(x_{1},y_{1})} = \frac{1}{(x_{2}-x_{1})} = \frac{1}$
	$(x_2, y_2) = (0, 1)$, so $\alpha = \frac{1-7}{0-3} = Z$ and $b = -\frac{y_2 - y_1}{x_2 - x_1} \times + y_1$
	$\frac{1}{2} \frac{1}{2} \frac{1}$

2. Given a feature layer below $b=-\frac{1-7}{9-3}\cdot 3+7=-\frac{b}{3}\cdot 3+7=1$, Here, the 1st interpolation

(2.1) compute max pooling;

y= ax+b= Zx+1 ...(4) Then for (2.1) then, using the result in (2.1) to compute max-unpooling.

1	7	1	7
3	7	1	4
1	9	1	7
2	7	1	9

Point (1,0), the feature Value y=Zx+1 =Z.1+1=3. Similarly, you can feature Values at (Z,0) on the 1st Row; for (1,3) (2,3) on the Last ROW, use the Same Process to find New a and to for the interpolation Equation of=coxtb. Step3. for the 1st Column, Use Egn (1)-(3), With X replaced by y Coordinate find:

Veprence $\frac{\sqrt{3} - \sqrt{3}}{\sqrt{2} - \sqrt{3}} = \frac{\text{feature (a)}(0,3) - \text{feature (a)}(0,0)}{\text{Tridp. Variable}} = \frac{7 - 1}{3 - 0}$ $\sqrt{3} = \frac{\sqrt{3} - \sqrt{3}}{\sqrt{3}} = \frac{7 - 1}{\sqrt{3}}$ $\sqrt{3} = \frac{\sqrt{3} - \sqrt{3}}{\sqrt{3}} = \frac{7 - 1}{\sqrt{3}}$

 $b = -\frac{4z-41}{2z-41} \times 1 + 41 = -\frac{2-1}{3-0} \cdot 0 + \text{feature}(a)(0,0) = 1$

Trave $y = \frac{1}{3}y_{2} | y_{3} = \frac{1}{3} = \frac{4}{3} = \frac{1}{3} = \frac{3}{3}$ Similarly, for the feature value at (0,2)on the Left Col.

Step4. Use the Same Plotess as in Step3. find the Interpolation Equation with New a and b for the Last Col. (Right (۱۱مر)

$$a = \frac{V_{2} - V_{1}}{X_{2} - X_{1}} = \frac{\text{feature}(a)(3,3) - \text{feature}(a)(3,0)}{\text{Indp.Variable}} = \frac{1-7}{3-0}$$

$$v_{1}(a)(3,3) - v_{2}(a)(3,0) = -2$$

$$b = -\frac{V_{2} - V_{1}}{X_{2} - X_{1}} X_{1} + V_{1} = \frac{Indp. Var; able}{X @. (3,1)} - \frac{Indp. Var; able}{X @. (0,1)} = \frac{5 - 1.33}{0 - 3} = 3.51/3 = 1.223$$

$$= -\frac{\text{feature } @. (3,3) - \text{feature } @. (3,0)}{\text{Indp. Var; able}} \left(\frac{\text{Indp. Var; able}}{\text{Indp. Var; able}} \right) + \frac{5 - 1.33}{0 - 3} = 3.51/3 = 1.223$$

$$= -\frac{1.223 \cdot 0 + 1.33 = 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}} \left(\frac{3,0}{3,0} \right) + \frac{1.33 - 0.107}{\text{Indp. Var; able}$$

=
$$-2.0+7=7$$

50, Feature Value (a) (3,1): $y=-2y+7$ | $y=1$

Page 1-b Now, we have all feature values on the Boundary e.g., The First and the Last Row, And the first and the Last col. Counting from the left. Step 5. Find the Interior feature values By Using the Interpolation either from the one along each vow or the one along each col.

For Example using the one along the rows

, Г.	<u>~</u> ×	•		(X ₁	(الا،
y ↓ (x2,y2)	I			7	
(X2, y2)	1,33	F		5	
	1.67	7		3	
	2			1] .
(X3, Y3)	_	_	(X4	(<i>1</i> /2,

Feature Value (2)(1,1)

Pick the 2nd Row, So $\alpha = \frac{\text{feature}(0)(3,1) - \text{feature}(0)(0,1)}{\text{Indp.Var:able}}$ $\times (0,1) - \frac{1}{2} \times (0,1)$ $=\frac{5-1.33}{9-3}=3.57/3=1.223$

y=1.223x 1+0/07=2.3, EDD

3. Convert your answer sheet to pdf file using any online tool; then use the similar naming convention used before in this class, and submit your work to CANVAS.

hw_upsampling_cmpe258_First_last_name_SID

Q2.1:501: Max Pooling. Nate. Register Location for the Next Step (END)

Max-Unpubling.

Note: For This Pattern, You Can Pick Any one of the Two 7's. As Long as

7	7
9	9

You are Consistent

QZ.Z. Sol: Compute Max-un-proling

Given the Feature Map (Computed from QZ.1). Below (left), we have the Result Below

	_	
7		٢
9		
		9

/)