

#### BÁO CÁO KHÓA LUẬN TỐT NGHIỆP

### KHUYẾN NGHỊ CỘNG TÁC DỰA TRÊN TIẾP CẬN HỌC SÂU

**GVHD** : TS.Huỳnh Ngọc Tín

Sinh viên thực hiện : Nguyễn Hữu Đạt

#### **NỘI DUNG**

- 1. Đặt vấn đề
- 2. Phát biểu bài toán
- 3. Node2Vec
- 4. Thực nghiệm, đánh giá
- 5. Kết luận
- 6. Tài liệu tham khảo chính

# 1. Đặt vấn đề

# 1.1. Lợi ích cộng tác nghiên cứu khoa học



Lợi ích cộng tác trong nghiên cứu khoa học: Thời gian, vốn đầu tư và nhiều chuyên gia (Minh họa)

#### 1.2. Khó khăn

- Số lượng bài báo tăng đột biến
- Số lượng bài báo khổng lồ



Công trình khoa học

Sự gia tăng của kho dữ liệu khoa học dựa trên Cơ sở dữ liệu khoa học DBLP (Nguồn: DBLP, truy cập lần cuối 13/05/2020)

### 2. Phát biểu bài toán

## 2.1. Khuyến nghị cộng tác





Tập bài báo

# **Output** Khuyến nghị *Topk* nghiên cứu viên → mỗi nghiên cứu viên

### 2. Phát biểu bài toán

### 2.2. Khó khăn, thách thức các tiếp cận phổ biến

#### 2.2.1 Tiếp cận lọc dựa trên nội dung



- Tăng số lượng dữ liệu cần xử lý
- × Chỉ có thể xử lý với đối tượng dạng văn bản

#### 2.2.3 Tương tự đỉnh

Mạng đồng tác giả



#### 2.2.2 Tiếp cận lọc cộng tác



Ma trận đánh giá thưa

- Không uyển chuyển với mạng đồng tác giả
- Chỉ dựa trên nguyên tác liên kết: <u>homophily</u>



### 2. I Hat Dieu Dai toan





- ✓ Uyển chuyển trong nắm bắt nguyên tắc liên kết
- ✓ Dựa trên 2 nguyên tắc liên kết trong mạng
- ✓ Không cần dữ liệu văn bản
- ✓ Không cần ma trận đánh giá

### 2. Phát biểu bài toán

### 2.4. Node2vec khởi xướng xu hướng 2.5. Node2vec là xu hướng



#### 3. Node2Vec

#### 3.1. Định nghĩa

"In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes."

Mục tiêu: 2 nguyên tắc liên kết

– phần Abstract, tài liệu [1]

#### 3.2. Assumption

#### Skip-gram model

"..., it tries to maximize classification of a word based on another word in the same sentence" – trang 4, tài liệu [2]

#### Tài liệu:

[1] Aditya Grover, Jure Leskovec, node2vec: Scalable Feature Learning for Networks [nguồn][mã nguồn], Hội nghị KDD, 2016.

[2] Thomas Mikolov và cộng sự, Efficient Estimation of Word Representations in Vector Space [nguồn][mã nguồn], International Conference on Learning Representations, 2013.

# Skip-gram

#### 3. Node2Vec

#### 3.3. Thuật toán

#### **Output:**

 $\forall u \in U$ , khuyến nghị **Topk** nghiên cứu viên cho u

#### **Input**:

- Mạng đồng tác giả G = (U, E)
- d: Số chiều của đặc trưng muốn tạo.
- l: số bước thực hiện Biased Random-walk
- window\_size: số nghiên cứu viên lân cận khi thực hiện Biased Random-walk
- p, q: Tham số thay đổi probability transition khi thực hiện <u>Biased Random-walk</u> (bước tiếp, trở về) Trong đó:
  - $\boldsymbol{U} = \{u_1, u_2, \dots, u_N\}$ : Tập nghiên cứu viên.
  - E =tập liên kết cộng tác

### Tìm liên kết của mạng khi bước từ mọi nút

 $\forall u \in U, Step_l(u) = \text{Tập các nghiên cứu viên bước từ } u \text{ trong mạng đồng tác giả} = \frac{RiasedRandomWalk}{RandomWalk}(u, p, q)$ 

Ánh xạ từng nút sang không gian đặc trưng

 $\forall u \in U, N_{\mathbf{S}}(u) = \text{Tập các nghiên cứu viên tương đồng với } u.$  •  $\Pr(N_{\mathbf{S}}(u)|f(u)) = \prod_{u' \in N_{\mathbf{S}}(u)} \Pr(u'|f(u))$ Khởi tạo  $f: U \to \mathbb{R}^{d}$ .

Tìm f sao cho  $\max_{f} \sum_{u \in V} \log(\Pr(N_{\mathbf{S}}(u)|f(u)))$ 

#### Trong đó:

- $Pr(\mathbf{u}'|f(\mathbf{u}) =$  $\exp(likelihood(u',u))/\sum_{u,v\in V}\exp(likelihood(u'',u))$
- $likelihood(u'', u) = f(\mathbf{u}'') f(u)$

#### Khuyến nghị Topk nút có độ tương tự lớn nhất với từng nút trong mạng

- $\forall u \in U, \forall u' \in U, \text{ tính độ tương tự theo } cosine(f(u), f(u')).$
- Thực hiện khuyến nghị TopK



#### 4.1. Dữ liệu thực nghiệm





Mạng huấn luyện  $CoNet_1 = (U_1, Co_1)$ 

•  $|Co_1|$ : 1,042,092 liên kết cộng tác



(từ **319,247** nghiên cứu viên)

84,340

Bài báo 2016

Mạng đánh giá  $CoNet_2 = (U_2, Co_2)$ 

• |*Co*<sub>2</sub>|: 290,502 liên kết cộng tác giữa nghiên cứu viên trong  $U_2$ .





#### 4.3. Phương pháp đánh giá

Độ đo phổ biến trong truy vấn thông tin:

- Độ chính xác: Precision =  $P = \frac{tp}{tp+fp}$
- Độ bao phủ: Recall =  $R = \frac{tp}{tp+fn}$
- Độ chính xác trung bình:  $F Measure = 2 * \frac{P*R}{P+R}$

Trong đó,

tp (true positive): số khuyến nghị đúng.

fp (true positive): số khuyến nghị sai.

fn (false negative): số chưa được khuyến nghị nhưng đúng

### 4.4. Kết quả đánh giá

| STT | Cách tiếp cận                                 | Precision | Recall | F-Measure |
|-----|-----------------------------------------------|-----------|--------|-----------|
| 1   | Tiếp cận lọc trên nội dung  - dựa trên bộ nhớ | 0.36      | 0.35   | 0.33      |
| 2   | Common Neighbors                              | 0.19      | 0.33   | 0.24      |
| 3   | Adamic Adar                                   | 0.2       | 0.35   | 0.25      |
| 4   | Jaccard Coefficient                           | 0.17      | 0.29   | 0.21      |
|     | Node2vec                                      |           |        |           |
| 5   | (p=1.5, q=0.5,d=128, num_walks=10,            | 0.17      | 0.35   | 0.23      |
|     | l=80, k=50)                                   |           |        |           |

#### Mã nguồn:

Cấu hình máy: Máy chủ UIT; RAM: 32G; Cores: 32 - intel(r) xeon(r) cpu e5-2690 v4 @ 2.90ghz

Bộ nhớ: 300G; Hệ điều hành: Windows Server 2008 R2

## 5. Kết luận



### Vượt trội

- Uyển chuyển và nắm bắt tốt nguyên tắc liên kết trong mạng.
- Tự động ánh xạ vào không gian vectơ.
- Không cần nội dung bài báo như tiếp cận lọc nội dung.
- **Không cần** <del>ma trận đánh giá</del> như tiếp cận lọc cộng tác tận dụng hướng mạng xã hội.

#### Thách thức

- Vẫn dựa trên toàn bộ bộ nhớ không thể tiên đoán nghiên cứu viên chưa được học trước.
- Nắm bắt cấu trúc của mạng hỗn hợp.
- Kết quả tiên đoán chưa đạt được như mong đợi.

### 6. Tài liệu tham khảo chính



- Aditya Grover, Jure Leskovec. node2vec: Scalable Feature Learning for Networks. Stanford university, 2016.
- T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, 'Distributed Representations of Words and Phrases and their Compositionality', arXiv:1310.4546 [cs, stat], Oct. 2013, Accessed: May 26, 2020. [Online]. Available: <a href="http://arxiv.org/abs/1310.4546">http://arxiv.org/abs/1310.4546</a>.
- T. Mikolov, K. Chen, G. Corrado, and J. Dean, 'Efficient Estimation of Word Representations in Vector Space', arXiv:1301.3781 [cs], Sep. 2013, Accessed: May 26, 2020. [Online]. Available: <a href="http://arxiv.org/abs/1301.3781">http://arxiv.org/abs/1301.3781</a>.



# CÁM ƠN THẦY, CÔ HỘI ĐỒNG ĐÃ LẮNG NGHE BÀI TRÌNH BÀY CỦA EM

#### **NỘI DUNG**

- Đặt vấn đề
  - Tại sao cần khuyến nghị cộng tác?
- Phát biểu bài toán
  - Khuyến nghị cộng tác là gì?
  - Khó khăn, thách thức của một số phương pháp phổ biến?
  - Vì sao dùng Node2vec?
- Tiếp cận Node2Vec
  - Node2Vec là gì ? Khái niệm liên quan ? Assumption ? (1-2 slides)
  - Chi tiết thuật toán như thế nào ?
- Thực nghiệm, Đánh giá
- Kết luận
- Tài liệu tham khảo chính

### 7.1. Mạng đồng tác giả









Tập nghiên cứu viên









Tập bài báo

2014-2015





### 7.2. Kế thừa Skip-gram, Word2vec

**Output:** 

•  $\forall u \in U, f: U \to \mathbb{R}^d$ 

#### **Input:**

- *U* là tập nghiên cứu viên
- $\forall u \in U, Step_l(u)$  tập bước Biased Random-walk từ nút u với l là kích thước tập  $Step_l(u)$ .
- window\_size.
- d: số chiều của vecto đặc trưng.
  - Khởi tạo  $\forall u \in U$ , khởi tạo giá trị bất kì cho vectơ đặc trưng f(u)
  - Xây dựng Neuron Network  $u \in U$ ,  $\forall u' \in Step_l(u)$ , lấy xây dựng tập nghiên cứu viên lân cận  $N_S(u)$  và xây dựng Neuron Network
    - Cập nhật giá trị của từng vectơ đặc trưng Sử dụng Lan truyền ngược cập nhật vectơ đặc trưng f(u)



### 7.3. Lan truyền ngược – Neuron Network

**Output layer Round truth Error** 

**Output layer** 

 $\overrightarrow{x}$ 

**Hidden layer** 

 $\overrightarrow{h} = W^{N \times d^T} \overrightarrow{x}$ 

$$(\mathbf{y_{11}}) = softmax(\overrightarrow{w'_1}^T \overrightarrow{h})$$

















$$W_{delta} = \vec{x}(W_{d \times N} \vec{e})^{T}$$

$$W_{N \times d} = W_{N \times d} - W_{delta}$$











 $\boldsymbol{W}_{d\times N} = \begin{bmatrix} \overrightarrow{w'}_1 \\ \dots \\ \vdots \\ \vdots \\ \ddots \end{bmatrix}$ 

































 $N \times 1$  dim







### 7.4. Nguyên tắc liên kết

#### Homophily

Những nút liên kết trực tiếp với nhau

⇔ gần nhau không gian vectơ

#### • Structural equivalence

Những nút tương đương cấu trúc

⇔ gần nhau không gian vectơ



#### 7.5. Biased Random-walk

#### Lý do

Vì bước đi để tìm lân cận theo 2 định nghĩa: Homophily và Structural equivalence

#### Thực hiện

- Tại mỗi nút, lưu trữ <u>bảng random-walk</u> tới những nút liền kề với nút đó.
- $\begin{array}{c} \textbf{l} \in \mathbb{N}, \textit{Step}_l(u) = \{\textbf{u}\} \ \text{While} \ |\textit{Step}_l(u)| < \textbf{l}, \textit{Step}_l(u) = \textit{RandomWalk}(u, \textit{Step}_l(u)[-1]) \\ \cap \textit{Step}_l(u) \end{array}$
- $(3) |N_S(u)| = k, k < l$



$$egin{aligned} rac{1}{p} & ext{N\'eu} \ d_{u,x} = \mathbf{0} \ a_{u,x} = \mathbf{1} & ext{N\'eu} \ d_{u,x} = \mathbf{1} \ rac{1}{q} & ext{N\'eu} \ d_{u,x} = \mathbf{2} \end{aligned}$$

### 7.6. Bảng random-walk truyền thống:



Random generate



| Giả | sử: |  |
|-----|-----|--|

|       | u   |
|-------|-----|
| $s_2$ | 0.2 |
| $s_3$ | 0.6 |
| $S_4$ | 0.7 |
| $s_5$ | 1   |





Randomly pick = 0.65



0.2 < 0.5 < 0.6

 $\rightarrow$  Stay at  $s_3$ 

Độ phức tạp mỗi walk= O(|U|-1)

#### Nguồn:

- [1] <a href="https://lips.cs.princeton.edu/the-alias-method-efficient-sampling-with-many-discrete-outcomes/">https://lips.cs.princeton.edu/the-alias-method-efficient-sampling-with-many-discrete-outcomes/</a>
- [2] <a href="http://cgi.cs.mcgill.ca/~enewel3/posts/alias-method/index.html">http://cgi.cs.mcgill.ca/~enewel3/posts/alias-method/index.html</a>

### 7.6. Bảng random-walk cải tiến:

|       | u   |
|-------|-----|
| $s_1$ | 0.2 |
| $s_2$ | 0.1 |
| $s_3$ | 0.4 |
| $S_4$ | 0.3 |

| walk |      |                     |                     |
|------|------|---------------------|---------------------|
| 1    | 0.25 | $s_1 0.20$          | s <sub>4</sub> 0.05 |
| 2    | 0.50 | s <sub>2</sub> 0.10 | s <sub>3</sub> 0.15 |
| 3    | 0.75 | s <sub>3</sub> 0.25 | $s_1 0$             |
| 4    | 1    | s <sub>4</sub> 0.25 | $s_1 0$             |





| $\left(s_{1}\right)$  |                           | 881           |
|-----------------------|---------------------------|---------------|
|                       | 0.2                       | Randomly walk |
| $(s_2)$               | $u \xrightarrow{0.3} S_4$ | ???           |
|                       |                           |               |
|                       | 0.4                       |               |
| $\langle s_3 \rangle$ | )                         | k=2           |



| walk |      |                    |                         |
|------|------|--------------------|-------------------------|
| 1    | 0.25 | $s_1 \ 0.8$        | s <sub>4</sub> 1        |
| 2    | 0.50 | s <sub>2</sub> 0.4 | s <sub>3</sub> 1        |
| 3    | 0.75 | s <sub>3</sub> 1   | <b>s</b> <sub>1</sub> 0 |
| 4    | 1    | s <sub>4</sub> 1   | <b>s</b> <sub>1</sub> 0 |



Randomly pick = 0.5



Độ phức tạp mỗi walk= O(1)

Nguồn:

[2] http://cgi.cs.mcgill.ca/~enewel3/posts/alias-method/index.html

<sup>[1]</sup> https://lips.cs.princeton.edu/the-alias-method-efficient-sampling-with-many-discrete-outcomes/

# 8. Thiết lập

#### 8.1. Sơ đồ triển khai



# 8. Phương pháp phổ biến

#### 8.2. Lọc dựa trên nội dung

Input: U: Tập nghiên cứu viên, P: Tập bài báo

 $(1) \quad Content(p) = \overrightarrow{w'}_p = (w_1, w_2, \dots, w_V)$ 

**Output:** 

 $\forall u \in U$ , danh sách TopK nghiên cứu viên dựa trên giá trị hàm hữu ích f



 $p_v$ 

$$\overrightarrow{\boldsymbol{w_p}} = (w_1, w_2, \dots, w_V)$$







Nghiên cứu viên







Bài báo công bố







4  $\forall u \in U$ , khuyến nghị TopK nghiên cứu viên dựa trên giá trị hàm hữu ích f

# 8. Phương pháp phổ biến

#### 8.2. Tương tự đỉnh

Input: CoNet: Mang đồng tác giả

- $(1) \forall u \in U, \forall u' \in U, f(u', u) =$ 
  - Common Neighbors:  $|U_u \cap U_{u'}|$
  - Jaccard Coefficient:  $\frac{|U_u \cap U_{u'}|}{|U_u \cup U_{u'}|}$
  - Adamic Adar:  $|U_u \cap U_{u'}|$

2  $\forall u \in U$ , khuyến nghị TopK nghiên cứu viên dựa trên giá trị hàm hữu ích f



 $\forall u \in U$ , danh sách TopK nghiên cứu viên dựa trên giá trị hàm hữu ích f

## 9. Ví dụ Node2vec

#### 9.1. Giả thiết:



10 nghiên cứu viên

#### Liên kết cộng tác viết báo khoa học

| start:ID | end:ID |
|----------|--------|
| 5        | 1      |
| 2        | 3      |
| 10       | 6      |
| 5        | 2      |
| 3        | 4      |
| 2        | 9      |
| 8        | 7      |
| 6        | 7      |
| 7        | 9      |

| start:ID | end:ID |
|----------|--------|
| 5        | 2      |
| 5        | 8      |
| 2        | 7      |
| 2        | 9      |
| 3        | 6      |
| 4        | 10     |
| 6        | 10     |



[2014-2015]

[2016-2017]

## 9. Ví dụ Node2vec

### 9.2. Mạng đồng tác giả:









:Liên kết cộng tác viết báo khoa học

 $\left(10\right)$ 

:Nghiên cứu viên





10 nghiên cứu viên



[2014-2015]

[2016-2017]

### 9. Ví dụ Node2vec

#### 9.3. Yêu cầu:

Sử dụng Node2vec học cấu trúc mạng đồng tác giả 2014-2015 phục vụ tiên đoán liên kết 2016-2017.





[2014-2015]

[2016-2017]

### 9. Ví du Node2vec

#### 9.4. Bài toán:



[2014-2015]

#### Đầu vào:

- Mạng đồng tác giả:  $CoNet = (U, Co_1)$
- Số chiều muốn biểu diễn: d = 5
- Số bước từ mọi nút trong mạng: l=4
- Số nghiên cứu viên tương đồng lấy từ tập bước: k = 2 (l < k)
- Tham số xác định khả năng trở về của mỗi bước: p = 0.6
- Tham số xác định khả năng bước tiếp tại mỗi bước: q = 1.3

#### Đầu ra:

 $\forall u \in U$ , khuyến nghị n nghiên cứu viên có khả năng liên kết cộng tác với u trong 2016-2017.

### 9. Ví du Node2vec

#### 9.5. Giải:



[2014-2015]

**Bước 1:** Tạo bảng random-walk cho nút theo tham số q và p

Bước 2: Tìm cấu trúc liên kết của mạng theo bảng random-walk

**Bước 3:** Tìm biểu diễn thỏa sự tương đồng giữa nút với tập lân cận của nút đó trong mạng

Bước 4: Tiên đoán liên kết và khuyến nghị.

**Bước 1:** Tạo bảng random-walk cho nút theo tham số q và p

#### **Probability transition**





**Bước 1:** Tạo bảng random-walk cho nút theo tham số q và p

| k | Probability transition |                            |
|---|------------------------|----------------------------|
| 1 | $u_1 \ 0.25$           |                            |
| 2 | $u_9 \ 0.22$           | $u_1 \ 0.03$               |
| 3 | $u_3 \ 0.11$           | <i>u</i> <sub>1</sub> 0.14 |
| 4 | $u_5 \ 0.11$           | <i>u</i> <sub>1</sub> 0.14 |

| k | Probabi                    | lity walk                  |
|---|----------------------------|----------------------------|
| 1 | <i>u</i> <sub>1</sub> 100% |                            |
| 2 | u <sub>9</sub> 44%         | <i>u</i> <sub>1</sub> 100% |
| 3 | u <sub>3</sub> 88%         | <i>u</i> <sub>1</sub> 100% |
| 4 | u <sub>5</sub> 44%         | <i>u</i> <sub>1</sub> 100% |





**Bước 1:** Tạo bảng random-walk cho nút theo tham số q và p

| k | Probability transition |          |
|---|------------------------|----------|
| 1 |                        |          |
| 2 |                        |          |
| 3 |                        |          |
| 4 |                        | 2        |
| k | Probability walk       |          |
| 1 |                        |          |
| 2 |                        |          |
| 3 |                        |          |
|   |                        | $\smile$ |

**Bước 2:** Tìm cấu trúc liên kết của mạng Steps= $[Step_l(u)]$ ,  $\forall u \in U$  theo bảng random-walk

```
V \'oi \ u \in U, Step(u) = \textbf{BiasedRandomWalk}(u) \text{:}
Step(u) = \{u\}
while(|Step(u)| < l) \text{:}
if(|Step(u)| == 1) \text{:}
neighbor = RandomWalk(u)
else \text{:}
last = Step(u)[-1]
edge = (Step(u)[-2], last)
neighbor = RandomWalk(last, edge)
Step(u) = \{u, neighbor\}
```





**Bước 2:** Tìm cấu trúc liên kết của mạng Steps= $[Step_l(\mathbf{u})]$ ,  $\forall \mathbf{u} \in \mathbf{U}$  theo bảng random-walk

## RandomWalk(u)

RandomWalk(last, edge) Twong tw

| k | Probabil                   | ity walk                   |
|---|----------------------------|----------------------------|
| 1 | <i>u</i> <sub>1</sub> 100% |                            |
| 2 | u <sub>9</sub> 44%         | <i>u</i> <sub>1</sub> 100% |
| 3 | u <sub>3</sub> 88%         | <i>u</i> <sub>1</sub> 100% |
| 4 | <i>u</i> <sub>5</sub> 44%  | <i>u</i> <sub>1</sub> 100% |







Randomly pick = 0.35 < 0.88

 $\rightarrow$ Stay at  $u_9$ 





# Bước 3: Tìm biểu diễn thỏa sự tương đồng giữa nút với tập lân cận của nút đó trong mạng

```
f = \mathbf{Word2vec}(
corpus = Steps,
dimension = d = 5,
window_{size} = k = 2,
skip\_gram = true // Dùng mô hình Skip-gram
)
```

 $f: U \to \mathbb{R}^d$  là ma trận gồm các vectơ ánh xạ những nghiên cứu viên sang không gian vectơ.

Giả định kết quả bước 2:  $Steps = [..., \{u_2, u_9, u_7, u_6\}, ...]$ 

Bước 3: Tìm biểu diễn thỏa sự tương đồng giữa nút với tập lân cận của nút đó trong mạng3.1 Tìm nghiên cứu viên lân cận

| Д1   | "2"                              | "9"                              | ''7''          | "6"    |
|------|----------------------------------|----------------------------------|----------------|--------|
| #1   | Xk                               | <b>Y</b> ( <b>c</b> = <b>1</b> ) | Y(c=2)         |        |
| #2   | "2"                              | "9"                              | ''7''          | ''6''  |
| #2   | Y(c=1)                           | Xk                               | Y(c=2)         | Y(c=3) |
| що   | "2"                              | ''9''                            | ''7''          | ''6''  |
| #3   | <b>Y</b> ( <b>c</b> = <b>1</b> ) | Xk                               | Y(c=2)         | Y(c=3) |
| 44.4 | "2"                              | ''9''                            | ''7''          | "6"    |
| #4   | Y(c=1)                           | Xk                               | <b>Y</b> (c=2) | Y(c=3) |

Bước 3: Tìm biểu diễn thỏa sự tương đồng giữa nút với tập lân cận của nút đó trong mạng

## 3.2 Biểu diễn one-hot vecto

| 0  | 0      | 0      |
|----|--------|--------|
| 1  | 0      | 0      |
| 0  | 0      | 0      |
| 0  | 0      | 0      |
| 0  | 0      | 0      |
| 0  | 0      | 0      |
| 0  | 0      | 1      |
| 0  | 0      | 0      |
| 0  | 1      | 0      |
| 0  | 0      | 0      |
| Xk | Y(c=1) | Y(c=2) |

## $3.3 \, \mathrm{Sử} \, \mathrm{dụng} \, \mathrm{Skip}\text{-}\mathrm{gram} \, \mathrm{tìm} \, \mathrm{biểu} \, \mathrm{diễn} \, f \, \mathrm{thỏa} \, \mathrm{sự} \, \mathrm{tương} \, \mathrm{đồng} \, \mathrm{với} \, \mathrm{nút} \, \mathrm{lân} \, \mathrm{cận}$





# $3.3 \, \mathrm{Sử} \, \mathrm{dụng} \, \mathrm{Skip}\text{-}\mathrm{gram} \, \mathrm{tìm} \, \mathrm{biểu} \, \mathrm{diễn} \, f \, \mathrm{thỏa} \, \mathrm{sự} \, \mathrm{tương} \, \mathrm{đồng} \, \mathrm{với} \, \mathrm{nút} \, \mathrm{lân} \, \mathrm{cận}$

**3.3.1**  $f: W \to \mathbb{R}^{d}$ .

| Input layer |        | Ma trận trọng số | - W1   |        |        |        |   |                     |
|-------------|--------|------------------|--------|--------|--------|--------|---|---------------------|
| 0           |        | 0.236            | -0.962 | 0.686  | 0.785  | -0.454 |   |                     |
| 1           |        | -0.907           | 0.894  | 0.225  | 0.673  | -0.579 |   | Hidden layer<br>- h |
| 0           |        | -0.576           | 0.658  | -0.582 | -0.112 | 0.662  |   | -0.907              |
| 0           |        | 0.517            | 0.436  | 0.092  | -0.835 | -0.444 |   | 0.894               |
| 0           |        | 0.859            | -0.89  | 0.651  | 0.185  | -0.511 |   | 0.225               |
| 0           | np.dot | 0.368            | -0.867 | -0.301 | -0.222 | 0.63   | = | 0.673               |
| 0           |        | 0.728            | 0.277  | 0.439  | 0.138  | -0.943 |   | -0.579              |
| 0           |        | 0.593            | -0.699 | 0.02   | 0.142  | -0.638 |   | 1 x 5               |
| 0           |        | 0.447            | -0.81  | -0.061 | -0.495 | 0.794  |   |                     |
| 0           |        | -0.744           | 0.685  | -0.833 | -0.428 | 0.051  |   |                     |
| 1 x 10      |        | 10 x 5           |        |        |        |        |   |                     |



|                            |            |                               |        |        |                  |             |        |        |        |   | Output layer -<br>no softmax<br>-0.146<br>0.093 | Output layer - softmax 0.07 0.094 |
|----------------------------|------------|-------------------------------|--------|--------|------------------|-------------|--------|--------|--------|---|-------------------------------------------------|-----------------------------------|
| II: 11 1 b                 |            | Ma trận                       |        |        |                  |             |        |        |        |   | -0.712                                          | 0.042                             |
| Hidden layer - h<br>-0.907 | ,<br> <br> | <u>trọng số - W2</u><br>0.859 | -0.89  | 0.651  | 0.185 -0.511 -0. | 456 0.377   | -0.274 | 0.182  | -0.237 | 1 | 0.046                                           | 0.09                              |
| 0.894                      |            | 0.368                         | -0.867 | -0.301 |                  | 808 0.088   | -0.902 | -0.45  | -0.408 |   | -0.07                                           | 0.08                              |
| 0.225                      | np.dot     | 0.728                         | 0.277  | 0.439  | 0.138 -0.943 -0. |             | -0.215 | -0.807 | 0.612  | = | 0.65                                            | 0.16                              |
| 0.673                      |            | 0.593                         | -0.699 | 0.02   | 0.142 -0.638 -0. | .633 0.344  | 0.868  | 0.913  | 0.429  |   | 0.59                                            | 0.15                              |
| -0.579                     | J [        | 0.447                         | -0.81  | -0.061 | -0.495 0.794 -0. | .064 -0.817 | -0.408 | -0.286 | 0.149  |   | 0.21                                            | 0.1                               |
| 1 x 5                      | :          | 5 x 10                        |        |        |                  |             |        |        |        |   | 0.03                                            | 0.088                             |
|                            |            |                               |        |        |                  |             |        |        |        |   | 0.19                                            | 0.1                               |
|                            |            |                               |        |        |                  |             |        |        |        |   | 1 x 10                                          | 1 x 10                            |















| Output layer - softmax |   | Diff  | Output layer - softmax |   | Diff  |       |
|------------------------|---|-------|------------------------|---|-------|-------|
| 0.07                   | 0 | 0.07  | 0.07                   | 0 | 0.07  | 0.14  |
| 0.094                  | 0 | 0.094 | 0.094                  | 0 | 0.094 | 0.188 |
| 0.042                  | 0 | 0.042 | 0.042                  | 0 | 0.042 | 0.084 |
| 0.09                   | 0 | 0.09  | 0.09                   | 0 | 0.09  | 0.18  |
| 0.08                   | 0 | 0.08  | 0.08                   | 0 | 0.08  | 0.16  |
| 0.16                   | 0 | 0.16  | 0.16                   | 0 | 0.16  | 0.32  |
| 0.15                   | 0 | 0.15  | 0.15                   | 1 | -0.85 | -0.7  |
| 0.1                    | 0 | 0.1   | 0.1                    | 0 | 0.1   | 0.2   |
| 0.088                  | 1 | 0.912 | 0.088                  | 0 | 0.088 | 1     |
| 0.1                    | 0 | 0.1   | 0.1                    | 0 | 0.1   | 0.2   |

## Input layer





1 x 10 10 x 5

#### Hidden layer



1 x 5







**Output layer** 



























1 x 10







| W2     |        |        |        |        |        |        |        |        |        |        | error  |   |               |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---|---------------|
| 0.859  | -0.89  | 0.651  | 0.185  | -0.511 | -0.456 | 0.377  | -0.274 | 0.182  | -0.237 |        | 0.14   |   | np.dot(W2,EI) |
| 0.368  | -0.867 | -0.301 | -0.222 | 0.63   | 0.808  | 0.088  | -0.902 | -0.45  | -0.408 |        | 0.188  |   | -0.37         |
| 0.728  | 0.277  | 0.439  | 0.138  | -0.943 | -0.409 | 0.687  | -0.215 | -0.807 | 0.612  | np.dot | 0.084  |   | -0.59         |
| 0.593  | -0.699 | 0.02   | 0.142  | -0.638 | -0.633 | 0.344  | 0.868  | 0.913  | 0.429  |        | 0.18   | = | -1.27         |
| 0.447  | -0.81  | -0.061 | -0.495 | 0.794  | -0.064 | -0.817 | -0.408 | -0.286 | 0.149  |        | 0.16   |   | 0.6           |
| 5 x 10 |        |        |        |        |        |        |        |        |        |        | 0.32   |   | 0.16          |
|        |        |        |        |        |        |        |        |        |        |        | -0.7   |   | 5 x 1         |
|        |        |        |        |        |        |        |        |        |        |        | 0.2    |   |               |
|        |        |        |        |        |        |        |        |        |        |        | 1      |   |               |
|        |        |        |        |        |        |        |        |        |        |        | 0.2    |   |               |
|        |        |        |        |        |        |        |        |        |        | '      | 10 x 1 |   |               |

| Input layer | _        |               |   | Delta cho W1 |       |       |     |      |
|-------------|----------|---------------|---|--------------|-------|-------|-----|------|
| 0           |          |               |   | 0            | 0     | 0     | 0   | 0    |
| 1           |          | np.dot(W2,EI) |   | -0.37        | -0.59 | -1.27 | 0.6 | 0.16 |
| 0           |          | -0.37         |   | 0            | 0     | 0     | 0   | 0    |
| 0           |          | -0.59         |   | 0            | 0     | 0     | 0   | 0    |
| 0           | np.outer | -1.27         | = | 0            | 0     | 0     | 0   | 0    |
| 0           |          | 0.6           |   | 0            | 0     | 0     | 0   | 0    |
| 0           |          | 0.16          |   | 0            | 0     | 0     | 0   | 0    |
| 0           |          | 5 x 1         |   | 0            | 0     | 0     | 0   | 0    |
| 0           |          |               |   | 0            | 0     | 0     | 0   | 0    |
| 0           |          |               |   | 0            | 0     | 0     | 0   | 0    |
| 1 x 10      | _        |               |   | 10 x 5       |       |       |     |      |







| Ma trận trọng số -<br>W1 |        |        |        |        |               | Delta cho<br>W1 | •     |       |     |      |
|--------------------------|--------|--------|--------|--------|---------------|-----------------|-------|-------|-----|------|
| 0.236                    | -0.962 | 0.686  | 0.785  | -0.454 | Learning Rate | 0               | 0     | 0     | 0   | 0    |
| -0.907                   | 0.894  | 0.225  | 0.673  | -0.579 | - 0.1         | -0.37           | -0.59 | -1.27 | 0.6 | 0.16 |
| -0.576                   | 0.658  | -0.582 | -0.112 | 0.662  |               | 0               | 0     | 0     | 0   | 0    |
| 0.517                    | 0.436  | 0.092  | -0.835 | -0.444 |               | 0               | 0     | 0     | 0   | 0    |
| 0.859                    | -0.89  | 0.651  | 0.185  | -0.511 |               | 0               | 0     | 0     | 0   | 0    |
| 0.368                    | -0.867 | -0.301 | -0.222 | 0.63   |               | 0               | 0     | 0     | 0   | 0    |
| 0.728                    | 0.277  | 0.439  | 0.138  | -0.943 |               | 0               | 0     | 0     | 0   | 0    |
| 0.593                    | -0.699 | 0.02   | 0.142  | -0.638 |               | 0               | 0     | 0     | 0   | 0    |
| 0.447                    | -0.81  | -0.061 | -0.495 | 0.794  |               | 0               | 0     | 0     | 0   | 0    |
| -0.744                   | 0.685  | -0.833 | -0.428 | 0.051  |               | 0               | 0     | 0     | 0   | 0    |
| 10 x 5                   |        |        |        |        | _             | 10 x 5          |       |       |     |      |

| Ma trận trọng số cậ | ìp nhật - W1 |        |        |        |
|---------------------|--------------|--------|--------|--------|
| 0.236               | -0.962       | 0.686  | 0.785  | -0.454 |
| -0.87               | 0.953        | 0.352  | 0.613  | -0.595 |
| -0.576              | 0.658        | -0.582 | -0.112 | 0.662  |
| 0.517               | 0.436        | 0.092  | -0.835 | -0.444 |
| 0.859               | -0.89        | 0.651  | 0.185  | -0.511 |
| 0.368               | -0.867       | -0.301 | -0.222 | 0.63   |
| 0.728               | 0.277        | 0.439  | 0.138  | -0.943 |
| 0.593               | -0.699       | 0.02   | 0.142  | -0.638 |
| 0.447               | -0.81        | -0.061 | -0.495 | 0.794  |
| -0.744              | 0.685        | -0.833 | -0.428 | 0.051  |
| 10 x 5              |              |        |        |        |

| Ma trận trọng số - W2 | 2      |        |        |        |        |        |        |        |        |
|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.859                 | -0.89  | 0.651  | 0.185  | -0.511 | -0.456 | 0.377  | -0.274 | 0.182  | -0.237 |
| 0.368                 | -0.867 | -0.301 | -0.222 | 0.63   | 0.808  | 0.088  | -0.902 | -0.45  | -0.408 |
| 0.728                 | 0.277  | 0.439  | 0.138  | -0.943 | -0.409 | 0.687  | -0.215 | -0.807 | 0.612  |
| 0.593                 | -0.699 | 0.02   | 0.142  | -0.638 | -0.633 | 0.344  | 0.868  | 0.913  | 0.429  |
| 0.447                 | -0.81  | -0.061 | -0.495 | 0.794  | -0.064 | -0.817 | -0.408 | -0.286 | 0.149  |

5 x 10



| Delta cho W2 |          |          |          |          |         |         |               |           |
|--------------|----------|----------|----------|----------|---------|---------|---------------|-----------|
| -0.12698     | -0.16326 | -0.07256 | -0.16326 | -0.14512 | -0.2902 | 0.6349  | -0.1814 -0.90 | 7 -0.1814 |
| 0.12516      | 0.16092  | 0.07152  | 0.16092  | 0.14304  | 0.2861  | -0.6258 | 0.1788 0.89   | 4 0.1788  |
| 0.0315       | 0.0405   | 0.018    | 0.0405   | 0.036    | 0.072   | -0.1575 | 0.045 0.22    | 5 0.045   |
| 0.09422      | 0.12114  | 0.05384  | 0.12114  | 0.10768  | 0.2154  | -0.4711 | 0.1346 0.67   | 3 0.1346  |
| -0.08106     | -0.10422 | -0.04632 | -0.10422 | -0.09264 | -0.1853 | 0.4053  | -0.1158 -0.57 | 9 -0.1158 |

5 x 10

| Ma trận trọng số cập nhật W2 |         |         |         |         |         |         |         |         |         |
|------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.8717                       | -0.8737 | 0.6583  | 0.2013  | -0.4965 | -0.427  | 0.3135  | -0.2559 | 0.2727  | -0.2189 |
| 0.35548                      | -0.8831 | -0.3082 | -0.2381 | 0.6157  | 0.7794  | 0.1506  | -0.9199 | -0.5394 | -0.4259 |
| 0.72485                      | 0.273   | 0.4372  | 0.134   | -0.9466 | -0.4162 | 0.7028  | -0.2195 | -0.8295 | 0.6075  |
| 0.58358                      | -0.7111 | 0.0146  | 0.1299  | -0.6488 | -0.6545 | 0.3911  | 0.8545  | 0.8457  | 0.4155  |
| 0.45511                      | -0.7996 | -0.0564 | -0.4846 | 0.8033  | -0.0455 | -0.8575 | -0.3964 | -0.2281 | 0.1606  |

Bước 4: Tiên đoán liên kết và khuyến nghị.

