Младшая лига. Схемы оценивания.

Задание 1. Простая задача про простые механизмы (8 баллов)

Нум	ерация	Критерии		баллы	
П	пп	критерии	П	ПП	
1	1111	Ворот	1	1111	квант
		Φ ормула $F_0 l = mgh$			0,5
		Φ ормула $m = \frac{F_0}{g} \frac{R_1}{R_2}$			0,5
2		Полиспаст	2		
		Φ ормула $m_0 g l = \left(M + \frac{m_1}{2}\right) g h$		1	
		$\mathit{Maкcumanbhas}$ сила тяги $\mathit{m_0gl}$			0,3
		Число подвижных блоков - 4			0,2
		Равенство работ			0,5
		Формула $M=8m_0-\frac{m_1}{2}$		1	
3		Сделай сам	3		
		Любая схема с блоками, удовлетворяющая условию			3
4		Лебедка	2		
		Геометрическое соотношение $h = r\phi_5 = r\frac{1}{16}\frac{2\pi}{n_1}$		1	
		Удвоение силы на каждой шестерне			0,2
		Один оборот рукояти – сдвиг на один зуб			0,3
		Получена формула			0,5
		«Золотое правило» $F_0L = mgh$		0,5	
		Формула $m = 16n_1 \frac{l}{r} \frac{F_0}{g}$		0,5	
		ВСЕГО	8		

Задание 2. Системы единиц. (12 баллов)

Нумераци	я Критерии		баллы	
п пп		П	ПП	квант
Часть 1.	Система СИ.			
	Іаскаль	2		
1.1.1	Размерность		1	
	$[p] = \frac{[F]}{[S]} = \frac{H}{M^2} = \frac{\kappa \mathcal{E} \cdot M}{c^2 \cdot M^2} = \frac{\kappa \mathcal{E}}{c^2 \cdot M}$			
	$\begin{bmatrix} C & C & C \end{bmatrix} = \begin{bmatrix} M^2 & C^2 \cdot M^2 & C^2 \cdot M \end{bmatrix}$			
	Формула для давления			0,2
	Размерность Ньютона			0,3
	Размерность ускорения			0,2 0,3
	Окончательный результат			
1 2 1	Остались производные единицы		1	(0)
1.2.1	Результат		1	
	1 " дюйм" = $3,26 \cdot 10^3 \Pi a$			0.2
	Φ ормула $P = \rho g h$			0,3
	Численный результат			0,7
	Погрешность больше, чем 0,2 кПа		1	(0)
1.2	Не правильное округление	2		-0,1
1.2.1	Трамериост	2	1	
1.4.1	Размерность		1	
	$\mathcal{A}\mathcal{H} = H \cdot M = \frac{\kappa 2 \cdot M}{c^2} \cdot M = \frac{\kappa 2 \cdot M^2}{c^2}$			
	C C			0.5
	Формула для работы Результат			0,5
	Остались производные единицы			(0)
1.2.2	Формула		1	(0)
1.2.2				
	$1 \phi \cdot \phi = 450 \cdot 10^{-3} \kappa \varepsilon \cdot 9,81 \frac{M}{c^2} \cdot 30,5 \cdot 10^{-2} M = 1,35 \text{ Дэк}$			
	Φ ормула $A=mgh$			0,3
	Численное значение			0,7
	Погрешность больше, чем 0,2 Дж			(0)
	Не правильное округление			-0,1
1.3 (Эм	2		
1.3.1	Размерность		1	
	$O_{N} = \mathcal{A} \mathcal{H} = \kappa_{\mathcal{E}} \cdot M^2 = \kappa_{\mathcal{E}} \cdot M^2$			
	$O_{\mathcal{M}} = \frac{\mathcal{J}_{\mathcal{H}}}{A^2 \cdot c} = \frac{\kappa_{\mathcal{E}} \cdot M^2}{c^2 \cdot A^2 \cdot c} = \frac{\kappa_{\mathcal{E}} \cdot M^2}{c^3 \cdot A^2}$			
	σ_{onigned} and σ_{onigned} σ_{onigned} σ_{onigned} σ_{onigned} σ_{onigned}			0,3
	Φ ормула для сопротивления $R = \frac{U}{I} = \frac{A}{It} \cdot \frac{1}{I}$			
	Закон Джоуля –Ленца равносильно		<u> </u>	<u> </u>
	Размерность Джоуля			0,2
	Окончательный результат.			0,2 0,5
	Остались производные единицы			(0)
1.3.2	Численное значение		1	
	$1OM = 6,00 \cdot 10^3$ " CM "			
	Φ ормула $R = \rho \frac{l}{a}$			0,3
	Φορмулα κ - ρ - S			
	Численное значение			0,7
	Погрешность больше, чем 2 м			(0)
	Не правильное округление			-0,1

Часть	2. Планковская система единиц			
	Размерность скорости света $[c] = \frac{M}{c}$		0,1	
	Размерность гравитационной постоянной		0,2	
	$[G] = \frac{[F] \cdot [R^2]}{[m^2]} = \frac{\kappa_2 \cdot M \cdot M^2}{c^2 \cdot \kappa_2^2} = \frac{M^3}{c^2 \cdot \kappa_2}$			
	$[G] = \frac{c}{m^2} = \frac{c}{c^2 \cdot \kappa c^2} = \frac{c}{c^2 \cdot \kappa c}$			
	Φ ормула $F = G \frac{m_1 m_2}{R^2}$			0,1
	Результат			0,1
	Остались производные единицы		0,2	(0)
	Размерность постоянной Планка $[E]$		0,2	
	$[h] = \frac{[E]}{[v]} = \mathcal{A} \varkappa \cdot c = \frac{\kappa \varkappa \cdot M^2}{c^2} \cdot c = \frac{\kappa \varkappa \cdot M^2}{c}$			
	$[v]$ c c Φ ормула $E=hv$			0,1
	Результат			0,1
	Остались производные единицы			(0)
2.	Планковская длина			
2.	Φ ормула $l_P = \sqrt{\frac{Gh}{c^3}}$		1,4	
	Идея: уравнения размерностей			0,4
	Система уравнений			0,07
	Значения степеней			3x0,1
2.	1.2 Численное значение		0,7	
	$l_P = \sqrt{\frac{Gh}{c^3}} = 4,05 \cdot 10^{-35} M$			
	Ошибка больше, чем 10%			(0)
	Не правильное округление			-0,1
2.	· —		1	
2.	Φ ормула $t_P = \frac{l_P}{c} = \sqrt{\frac{Gh}{c^5}}$		1	
	Система уравнений размерностей			0,7
	Значения степеней		0.7	3x0,1
2	Численное значение $t_P = \sqrt{\frac{Gh}{c^5}} = 1,35 \cdot 10^{-43} c$		0,7	
	Ошибка больше, чем 10%			(0)
	Не правильное округление			-0,1
2.			1	
2	Φ ормула $m_{\scriptscriptstyle P} = \sqrt{rac{hc}{G}}$		1	
	Система уравнений размерностей			0,7
	Значения степеней			3x0,1
	Численное значение $m_P = \sqrt{\frac{hc}{G}} = 5,46 \cdot 10^{-8} \text{к2}$			
	Ошибка больше, чем 10%			(0)
	Не правильное округление			-0,1
	ВСЕГО за Задание	12		

Задание 3. Приключения Гулливера (10 баллов)

Нум	перация	Критерии		баллы	
П	ПП		П	ПП	квант
	1.1. Ma	ссы тел	1		
		$Macca m = m_0 \lambda^3$			0,4
		Масса лилипута (точно)			0,3
		Масса великана (точно)			0,3
	1.2. Пе	ревозка Гулливера	2		
		Формула $F_0 = \frac{\mu}{R_0} m_0 g$		0,5	
		Уравнение $NF_0\lambda^2 = \frac{\mu}{\lambda R_0}m_0g$		0,7	
		C ила пропорциональна λ^2			0,3
		Радиус колеса пропорционален λ			0,1
		формула			0,3
		Формула $N = \frac{1}{\lambda^3} = n^3 = 1000$		0,5	
		Число (точно)		0,3	
	1.3.Прі	ыжки в высоту	3		
		Уравнение сохранения энергии $F_0 b_0 = m_0 g(b_0 + h_0)$		0,5	
		Уравнение $(\lambda^2 F_0)(\lambda b_0) = \lambda^3 m_0 g(\lambda b_0 + h)$		1,0	
		Сила пропорциональна λ^2			0,2
		M асса пропорциональна λ^3			0,2
		Высота разгона пропорциональна λ			0,3
		Полное уравнение			0,3
		Формула $h = h_0 + (1 - \lambda)b_0$		0,5	
		Численное значение высоты лилипута		0,3	
		Великан не подпрыгнет		0,7	
		Указано, что не хватит силы			0,2
	2. Tep _M	10ДИНАМИК А	2		
		Уравнение теплового баланса $wm_0 = \beta S_0(t_0 - t_{air})$		0,6	
		Выделение теплоты пропорционально массе			0,1
		Потери теплоты пропорциональны площади			0,1
		Есть разность температур			0,2
		Уравнение «с пропорциями» $w\lambda^3 m_0 = \beta \lambda^2 S_0 \big(t - t_{air}\big)$		0,6	
		M асса пропорциональна λ^3			0,2
		Π лощадь пропорциональна λ^2			0,2
		Итоговая формула		0,4	
		$t = t_{air} + \lambda \left(t_0 - t_{air} \right)$			
		Численное значение температуры лилипута $t \approx 22^{\circ}$		0,2	
		Численное значение температуры великана		0,2	
		<i>t</i> ≈ 190°		1	
	3. Опті		2		
		Указано, что в законы геометрической оптики все геометрические размеры входят линейно		1,0	

	Формула для фокусного расстояния линзы			0,4
	Формула линзы			0,4
	Расстояние наилучшего зрения пропорционально λ		0,4	
	Численное значение расстояния лилипута		0,3	
	Численное значение расстояния великана		0,3	
	ВСЕГО за задачу	10	_	

Старшая лига. Задание 1. Легкая разминка (10 баллов)

Нум	ерация	Критерии		баллы	
П	пп	<u> </u>	П	ПП	квант
	Задача	1.1. Столкновение	3		
		Основная идея – движение центра масс		1	
		Далее:			
		Формулы не в векторной форме не оцениваются!			
		радиус-вектор центра масс		0,3	
		$\vec{R}_{C0} = \frac{m_2}{m_1 + m_2} \vec{r}_0;$			
		$m_1 + m_2$			
		Скорость центра масс		0,5	
		$\vec{V}_{-} = \frac{m_1}{\vec{V}_{-}} \vec{V}_{-}$			
		$ec{V}_{C} = rac{m_{1}}{m_{1} + m_{2}} ec{V}_{0} .$			
		Закон движения центра масс:		0,5	
		$\vec{R} - \frac{m_2}{\vec{r}} \vec{r} + \frac{m_1}{\vec{V}} \vec{V} t$			
		$\vec{R}_C = \frac{m_2}{m_1 + m_2} \vec{r}_0 + \frac{m_1}{m_1 + m_2} \vec{V}_0 t ;$			
		формула для центра масс		0,2	
		$\vec{R}_C = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2},$			
		Результат		0,5	
				- ,-	
		$\vec{r}_2 = \vec{r}_0 + \frac{m_1}{m_2} \vec{V}_0 t - \frac{m_1 \vec{r}_1}{m_2}$			
	Задача	1.2. Тепловой подъемник	4		
		Основная идея – это цикл Карно		1,5	
		Кипение и конденсация – изотермические процессы			1
		Соединены «быстрыми» адиабатами			0,5
		График процесса		1	
		Оси подписаны			0,2
		Две горизонтальные изотермы			0,4
		Две кривые – адиабаты			0,4
		КПД цикла (допустимая погрешность 10%)		1,5	0.5
		Φ ормула Карно $\eta = rac{T_1 - T_2}{T_1}$			0,5
		•			
		Давление			0,2
		$P_1 = P_0 + \frac{(M+m)g}{S} \approx 1.3 \cdot 10^5 \Pi a$			0,2
		5			
		Температура кипения (численно)			
		$t_1 = \frac{P_1 + b}{a} = \frac{130 + 384}{4,85} \approx 106^{\circ}C = 379 K$			
		¹ a 4,85			
		Температура конденсации (численно)			0,4
		Давление			0,2 0,2
		Численное значение КПД $\eta = \frac{T_1 - T_2}{T_1} = \frac{4.2}{379} = 1.1\%$			0,2
		$T_1 = 379^{-13.77}$			

Задача 1.3. Кольцевой магнит	3		
Поле магнита – поле поверхностных токов		0,5	
Индукция поля кольца $B_0 = k \frac{I}{R}$		0,8	
Пропорциональна силе тока			0,4
Обратно пропорциональна радиусу			0,4
Сила поверхностных токов в кольце одинакова		0,5	
Индукция поля вырезанной части $2\vec{B}_0$		0,4	
$egin{aligned} ext{Pезультат} & ec{B}_1 = -ec{B}_0 \end{aligned}$		0,8	
Направление противоположное			0,5
Модуль тот же			0,3
ВСЕГО	10	_	

Задание 2. Оптический пинцет (10 баллов)

Нум	ерация	Критерии		баллы	
П	ПП		П	ПП	квант
	Часть	1. Продольная сила светового давления	2		
	1.1	Черная пластинка	0,5		
	1.1	$\Phi_{\text{ODMY/I}} = E - \frac{\Delta P}{\Delta P} - \frac{IS\cos\theta}{I}$		0,3	
		Формула $F = \frac{\Delta P}{\Delta t} = \frac{IS\cos\theta}{c}$			
		Зависимость от интенсивности			0,1
		Зависимость от скорости света			0,1
		Зависимость от угла			0,1
		Правильно указано направление силы		0,2	
	1.2	Зеркальная пластинка	0,5		
	1.2	Формула $F == 2 \frac{IS \cos^2 \theta}{c}$		0,4	
		С			
		Зависимость от интенсивности			0,1
		Зависимость от скорости света			0,1
		Зависимость от угла			0,1
		Есть коэффициент 2		0 :	0,1
		Правильно указано направление силы		0,1	
	1.3	Давление на линзу	1,5		
		Правильно построен ход лучей		0,1	
		Мощность, попадающая на		0,2	
		линзу $P_1 = \frac{W_0}{4\pi R^2} \cdot 2\pi R (R - F) = \frac{W_0}{2} \left(1 - \frac{F}{\sqrt{F^2 + r^2}} \right)$			
		Не верно найдена площадь волнового фронта			-0,1
		Импульс света после линзы $p_1 = \frac{W_0}{2c} \left(1 - \frac{F}{\sqrt{F^2 + r^2}} \right)$		0,1	
		Проекция импульса света до преломления		0,2	
		$p_0 = \frac{W_0}{4\pi R^2 c} \cdot \pi r^2 = \frac{W_0}{4c} \frac{r^2}{F^2 + r^2}$			
		Сила есть разность этих импульсов $f = p_1 - p_0$		0,1	
		Результат $f = p_1 - p_0 = \frac{W_0}{4c} \left(1 - \frac{F}{\sqrt{F^2 + r^2}} \right)^2$		0,3	
		Правильно указано направление силы		0,5	
	Часть 2	2. Поперечная сила светового давления	5		
	2.1.1	Бипризма		1	
		3 акон преломления $n \sin \theta = \sin \beta \implies \beta \approx n\theta$			0,1
		Приближение малого угла			0,1
		$У$ гол отклонения $\gamma=eta- heta=(n-1) heta$			0,1
		Проекция импульса для тонкого слоя			0,2
		$\Delta p_z = \frac{I(z)b\Delta z}{c}\sin\gamma \approx \frac{I(z)b\Delta z}{c}\gamma$			
		$I\left(\frac{a}{a}\right)_{ba}$ $I\left(\frac{a}{a}\right)_{ba}$			0,1
		V среднение $F_{(+)}=rac{Iigg(rac{a}{2}igg)ba}{c}\gamma=rac{Iigg(rac{a}{2}igg)ba}{c}(n-1) heta$			0,1

	$I\left(-\frac{a}{2}\right)ba$			
	$F_{(-)} = \frac{(2)}{(n-1)\theta}$			
	<i>C</i>			0,3
	$F_{(-)}=rac{Iigg(-rac{a}{2}igg)ba}{c}(n-1) heta$ Результат $F=grac{ba^2}{c}(n-1) heta$			0,5
2.2	Прозрачный диск	2		
2.2.1	Угол отклонения $\gamma = 2(\alpha - \beta) = 2 \frac{n-1}{n} \alpha$		0,5	
2.2.2	выделение малого участка		0.3	
2.2.2	Поперечное значение импульса		0.3	
	· · · · · · · · · · · · · · · · · · ·		0.2	
	$dp_z = \frac{I(z)hdz}{c}\sin\gamma$			
	Интегрирование		1	
	n n			
	$F_{z} = \int_{-R}^{+R} \frac{I(z)h}{c} \sin \gamma dz \approx \int_{-R}^{+R} \frac{(I_{0} + gz)h}{c} 2 \frac{n-1}{n} \frac{z}{R} dz = \frac{4}{3} \frac{n-1}{n} hR^{2} \frac{g}{c}$			
	Другой коэффициент пропорциональности			-0,5
2.3	Прозрачный шарик	2		
	Построение хода лучей (в плоскости луча и центра		0,5	
	шарика)			
	Проекция импульса на малой площадке		0,3	
	Интегрирование		0,5	
	$F_{Z} = \int_{0}^{2\pi} d\phi \int_{0}^{R} \frac{I_{0} + gr\cos\phi}{c} \cdot 2\frac{n-1}{n} \frac{r}{R}\cos\phi \cdot rdr = \frac{3}{8} \frac{n-1}{n} V \frac{1}{c} \frac{dI}{dz}$			
	Значение коэффициента $\beta = \frac{3}{8}$		0,7	
Часть 3	3. Перемещение	2,5		
	Идея: надо искать максимальный градиент		0,5	
3.1	Вычисление градиента интенсивности		0,1	
	$g = \frac{dI}{dr} = -\frac{P}{\pi a^2} \frac{2r}{a^2} \exp\left(-\frac{r^2}{a^2}\right)$			
	Максимальный градиент при $r = \frac{a}{\sqrt{2}}$		0,2	
3.2	Максимальное значение градиента $ g_{\text{max}} = \frac{\sqrt{2}P}{\pi a^3} \exp(-0.5)$		0,2	
	Уравнение $\frac{3}{8} \frac{n-1}{n} V \frac{1}{c} g_{\text{max}} = 6\pi \eta R v$		0,5	
	Формула $v_{\text{max}} = \frac{1}{12} \frac{n-1}{n} \frac{R^2}{\eta c} g_{\text{max}} = \frac{\sqrt{2}}{12e^{0.5}} \frac{n-1}{n} \frac{R^2}{\eta c} \frac{P}{\pi a^3}$		0,3	
	Использование относительного коэффициента		0,2	
	преломления $n = \frac{1,5}{1,33} = 1,13$			
	Численный результат $v_{\text{max}} \approx 9.8 \frac{M \kappa M}{c}$		0,5	
	ВСЕГО	10		
	DCEI U	10		

Задание 3. Молекулярный вибратор, управляемый электрическим полем

Нум	иерация	Критерии		баллы	
П	пп		П	ПП	квант
	Часть	1. Силы упругости	1		
	1.1	Точное выражение для силы упругости		0,6	
		$F = 4F_1 \sin \alpha = 4k \left(\sqrt{l^2 + x^2} - l \right) \frac{x}{\sqrt{l^2 + x^2}}$			
		Закон Гука			0,1
		Удлинение пружины			0.2
		Проецирование			0,2
		4 пружины			0,1
	1.2	Разложение до 3 порядка		0,4	5,1
		$F \approx \frac{2k}{l^2} x^3$			
		Не верный коэффициент			-0,2
	Часть 2	2. Электрическое поле и электрические силы.	5		
	2.1	Напряженность электрического поля			
		Формула		0,6	
		$q = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \qquad q = h^2 + x^2$			
		$E(x) = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{(h-x)^2} + \frac{1}{(h+x)^2} \right) = \frac{q}{2\pi\varepsilon_0} \frac{h^2 + x^2}{(h^2 - x^2)^2}$			
		Закон Кулона			0,1
		Окончательная формула			0,1
		График		0,4	0,5
		Оси подписаны		0,4	0,1
		Симметрично относительно оси			0,1
		В «нуле нуль»			0,1
		Уходит в бесконечность			0,1
	2.2	Разложение в ряд		1	
		Формула $E(z) = \frac{q}{2\pi\epsilon_0 h^2} \frac{1+z^2}{\left(1-z^2\right)^2} \approx \frac{q}{2\pi\epsilon_0 h^2} \left(1+3z^2+5z^4\right)$			
		Разложение до 4 порядка			0,3
		3 начение $E_0 = \frac{q}{2\pi\varepsilon_0 h^2}$			0,2
		За каждый коэффициент			5x0,1
	2.3	Выражение для силы		0,5	
		$G(x) = p \frac{dE}{dx} = \alpha \varepsilon_0 E \frac{dE}{dx} = \frac{\alpha \varepsilon_0}{h} E \frac{dE}{dz}$			
	2.4	Разложение в ряд		2	
	2.7	Формула			
		$G(x) = \frac{\alpha \varepsilon_0}{h} E_0^2 \left(1 + 3z^2 + 5z^4 \right) \left(6z + 20z^3 \right) = \frac{\alpha \varepsilon_0}{h} E_0^2 \left(6z + 38z^3 \right)$			
		Разложение до 3 порядка		1	0,6
		3 начение коэ ϕ фициента $\dfrac{lpha arepsilon_0^2}{\hbar} E_0^2$			0,6
		значение коэффициента h За каждый коэффициент			4x0,2
				0,5	120,2
		Значение $G_1=44rac{lpha arepsilon_0}{h}E_0^2$		- ,-	
				<u> </u>	

Часть	3. Колебания шарика.	4		
3.1	Формула $F = \frac{2k}{l^2} x^3 = \frac{2kh^3}{l^2} z^3$		0,5	
3.2	Положение равновесия		1	
	Уравнение $G_1\left(\frac{3}{22}z + \frac{19}{22}z^3\right) = F_1z^3$			0,7
	Уравнение $G_1 \left(\frac{3}{22} z + \frac{19}{22} z^3 \right) = F_1 z^3$ $Peшение \ z_0 = \pm \sqrt{\frac{3G_1}{22F_1 - 19G_1}}$			0,3
3.3	Максимальная напряженность			
	Φ ормула $E_0 < \sqrt{rac{kh^4}{19lphaarepsilon_0 l^2}}$		0,5	
3.4	Период колебаний		2	
	Разложение возле нового положения равновесия $m\ddot{x} = mh\ddot{z} = G(z_0 + \delta) - F(z_0 + \delta)$			0,5
	Разложение силы $G(z) := \frac{G_1}{22} \left(3(z_0 + \delta) + 19(z_0 + \delta)^3 \right) = \frac{G_1}{22} \left(3z_0 + 19z_0^3 \right) + \frac{1}{22} G_1 \left(3 + 57z_0^2 \right) \delta$			0,3
	Разложение силы $F(z) = \frac{2k}{l^2} x^3 = F_1 (z_0 + \delta)^3 \approx F_1 z_0^3 + 3F_1 z_0^2 \delta$			0,3
	Уравнение гармонических колебаний $\ddot{\mathcal{S}} = -\frac{3F_1z_0^2 - \frac{1}{22}G_1\big(3 + 57z_0^2\big)}{mh}\mathcal{S}$			0,4
	Формула для частоты $\nu=\frac{1}{2\pi}\sqrt{\frac{3F_1z_0^2-\frac{1}{22}G_1\left(3+57z_0^2\right)}{mh}}$			0,5
	ВСЕГО	10		