

Vandana M L

Department of Computer Science and Engineering

Singly Linked List

Vandana M L

Department of Computer Science and Engineering

Singly Linked List: Node Structure

link

expo

Defining node structure

```
struct node
int data;
struct node *link;
};
typedef struct node NODE;
            link
  data
```

```
struct polydata
 int coeff;
 int expo;
typedef struct node
polydata data;
struct node *link;
}polynode;
```

coef

Singly Linked List Operations

Creating a node

- ➤ Allocate memory for the node dynamically
- ➤ If the memory is allocated successfully set the data part to user defined value set the link part to NULL

20	NULL
data	link

Singly Linked List operations

Inserting a node

There are 3 cases

- Insertion at the beginning
- Insertion at the end
- Insertion at a given position

Singly Linked List operations

Insertion at the beginning

- Create a node
 If the list is empty
- make the head pointer point towards the new node;Else
- Make the next pointer of the node point towards the first node of the list
- Make the head pointer point towards this new node

Singly Linked List operations

PES

Insertion at the beginning

Singly Linked List operations

Insertion at the beginning

Singly Linked List operations

PES

Insertion at the end of the

- Create a node
 If the list is empty
- make the head pointer point towards the new node;Else
- > Traverse the linked list to find out the last node
- Make the link pointer of the last node to point to the new node

Singly Linked List operations

Insertion at the end of the

Singly Linked List operations

Insertion at the given position

Create a node

If the list is empty or if insertion is to be done at first position

Same steps as insert front

Else

- Traverse the linked list to reach given position
- Keep track of the previous node
 If it is an intermediate position
 - Change previous node link to point to the newnode
 - Newnode to point to the next node

Else

If it is last position

Same steps as insert at end

Else

Print "Invalid position"

Singly Linked List operations

Insertion at the given position

Lecture Summary

Singly Linked List insert operation

Apply the concepts to implement following operations on a circular singly linked list

- Count number of nodes
- Concatenate two lists
- Sum of all the node values in the list

Multiple-Choice-Questions (MCQ's)

- 1. What is the correct sequence of steps to create a new node and insert it at the beginning of an SLL?
- a) Allocate memory → Set first node to new node→ Set data → Update head
- b) Set data → Allocate memory → Set new node's next to head → Update head
- c) Allocate memory → Set data → Set new node's next to head → Update head
- d) Update head → Set data → Allocate memory

Multiple-Choice-Questions (MCQ's)

- 1. What is the correct sequence of steps to create a new node and insert it at the beginning of an SLL?
- a) Allocate memory → Set first node to new node→ Set data → Update head
- b) Set data → Allocate memory → Set new node's next to head → Update head
- c) Allocate memory → Set data → Set new node's next to head → Update head
- d) Update head → Set data → Allocate memory

Multiple-Choice-Questions (MCQ's)

2. When inserting a new node at the head of a singly linked list, what is the correct sequence of operations?

- a) new->next = head; head = new;
- b) head = new; new->next = head;
- c) new->next = NULL; head = new;
- d) new->next = head->next; head = new;

Multiple-Choice-Questions (MCQ's)

2. When inserting a new node at the head of a singly linked list, what is the correct sequence of operations?

- a) new->next = head; head = new;
- b) head = new; new->next = head;
- c) new->next = NULL; head = new;
- d) new->next = head->next; head = new;

Multiple-Choice-Questions (MCQ's)

3. To insert a new node after a given node p in an SLL, which step is incorrect?

- a) Allocate memory for the new node.
- b) new->next = p->next;
- c) p->next = new;
- d) new->next = p_i

Multiple-Choice-Questions (MCQ's)

3. To insert a new node after a given node p in an SLL, which step is incorrect?

- a) Allocate memory for the new node.
- b) new->next = p->next;
- c) p->next = new;
- d) $\frac{\text{new->next} = p_{i}}{\text{new}}$

Multiple-Choice-Questions (MCQ's)

4. What happens when you insert a node at the end of an empty SLL without checking if head == NULL?

- a) Segmentation fault due to NULL->next access.
- b) Node is automatically added as head.
- c) Compiler error occurs.
- d) It works if malloc is used.

Multiple-Choice-Questions (MCQ's)

- 4. What happens when you insert a node at the end of an empty SLL without checking if head == NULL?
- a) Segmentation fault due to NULL->next access.
- b) Node is automatically added as head.
- c) Compiler error occurs.
- d) It works if malloc is used.

Multiple-Choice-Questions (MCQ's)

5. Which of the following correctly inserts a node at position n (1-based indexing) in an SLL?

- a) Traverse n-1 nodes and then insert.
- b) Traverse n nodes and then insert.
- c) Always insert at head if n > 1.
- d) Insert by swapping data of nodes.

Multiple-Choice-Questions (MCQ's)

5. Which of the following correctly inserts a node at position n (1-based indexing) in an SLL?

- a) Traverse n-1 nodes and then insert.
- b) Traverse n nodes and then insert.
- c) Always insert at head if n > 1.
- d) Insert by swapping data of nodes.

Multiple-Choice-Questions (MCQ's)

6. In a singly linked list, inserting a new node before a given node p (not head) requires:

- a) Directly linking new->next = p and updating prev->next = new, where prev is the previous node of p.
- b) Simply new->next = p without finding prev.
- c) Swapping data between p and the new node (without using prev).
- d) It is not possible to insert before a given node in an SLL.

Multiple-Choice-Questions (MCQ's)

6. In a singly linked list, inserting a new node before a given node p (not head) requires:

- a) Directly linking new->next = p and updating prev->next = new, where prev is the previous node of p.
- b) Simply new->next = p without finding prev.
- c) Swapping data between p and the new node (without using prev).
- d) It is not possible to insert before a given node in an SLL.

Multiple-Choice-Questions (MCQ's)

7. If an SLL has n nodes, how many pointer changes are required to insert a new node after the k-th node $(1 \le k \le n)$?

- a) 1
- b) 2
- c) k
- d) n

Multiple-Choice-Questions (MCQ's)

7. If an SLL has n nodes, how many pointer changes are required to insert a new node after the k-th node $(1 \le k \le n)$?

- a) 1
- b) 2
- c) k
- d) n

THANK YOU

Vandana M L

Department of Computer Science & Engineering

vandanamd@pes.edu