Искусственные нейронные сети

Жорникова Полина, 622 гр.

2017г.

Задача аппроксимации с особым классом функций

X — множество объектов, Y — множество ответов; $(f_1(x),\dots,f_p(x))$ — признаки объекта $x\in X$, $f:X\to \mathbb{R}; x^j:=f_j(x);$ $X^n=(x_i,y_i)_{j=1}^n$ — обучающая выборка.

Рассмотрим стандартную задачу построения предсказывающей модели:

$$Q(a,X^n) = \frac{1}{n} \sum_{j=1}^n \mathscr{L}(a,x_j,y_j) \to \min_w,$$

где алгоритм а задаётся следующим образом:

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{p} w_j f_j(x) - w_0\right),$$

где $w_j \in \mathbb{R}$, $j=0,\ldots,p$; $\sigma:\mathbb{R} \to \mathbb{R}$ — функция активации (например, sign).

Преимущества особого класса функций

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{p} w_j f_j(x) - w_0\right).$$

- Биологическая интерпретация.
- Способность аппроксимировать широкий класс предсказательных функций.
- Расширяемость класса.
- Возможность построения эффективных алгоритмов оптимизации (BackProp).

Интерпретация. Модель нейрона МакКаллока-Питса

$$a(x, w) = \sigma(\langle w, x \rangle) = \sigma\left(\sum_{j=1}^{p} w_j f_j(x) - w_0\right),$$

- \bullet $f_i(x), x^j := f_i(x), j = 1, \ldots, p,$ числовые признаки, входы;
- ullet $w_j \in \mathbb{R}$, $j=1,\ldots,p$ весовые коэффициенты;
- $\sigma(z)$ функция активации (например, sign);
- w₀ порог активации.

Способность аппроксимировать. Модель нейрона для задач машинного обучения

Задача регрессии: $Y = \mathbb{R}$, $a(x_j, w) = \sigma(\langle w, x_j \rangle)$,

$$Q(w;X^n) = \sum_{j=1}^n \mathscr{L}(\langle w, x_j \rangle, y_j) = \sum_{j=1}^n (\sigma(\langle w, x_j \rangle) - y_j)^2 \to \min_w.$$

При $\sigma(z)=z$ получаем многомерную линейную регрессию.

Задача классификации: $Y=\{\pm 1\}$, $a(x_j,w)=\operatorname{sign}\langle w,x_j\rangle$,

$$Q(w;X^n) = \sum_{j=1}^n \mathscr{L}(\langle w, x_j \rangle, y_j) = \sum_{j=1}^n [y_j \langle w, x_j \rangle < 0] \to \min_w.$$

Нейронная сеть — суперпозиция нейронов.

Насколько богатый класс функций реализуется нейроном? А сетью?

Способность аппроксимировать. Нейронная реализация логических функций

Функции И, ИЛИ, НЕ от бинарных переменных x^1 и x^2 :

$$x^{1} \wedge x^{2} = \left[x^{1} + x^{2} - \frac{3}{2} > 0 \right];$$

$$x^{1} \vee x^{2} = \left[x^{1} + x^{2} - \frac{1}{2} > 0 \right];$$

$$\neg x^{1} = \left[-x^{1} - \frac{1}{2} > 0 \right].$$

Способность аппроксимировать. Функция ХОР

 $x^{1} \oplus x^{2} = [x^{1} \neq x^{2}]$ не реализуема одним нейроном. 2 варианта реализации:

1. добавление нелинейного признака:

$$x^1 \oplus x^2 = \left[x^1 + x^2 - \frac{2x^1x^2}{2} - \frac{1}{2} > 0 \right];$$

2. двухслойной нейронной сетью (суперпозицией) функций И, ИЛИ, НЕ:

$$x^1 \oplus x^2 = \left[\neg \left(x^1 \wedge x^2 - x^1 \vee x^2\right) > 0\right].$$

Способность аппроксимировать. Можно ли любую функцию представить нейросетью?

Универсальная теорема аппроксимации (Цыбенко, 1989)

Пусть $\sigma(x)$ — непостоянная, ограниченная и монотонно возрастающая непрерывная функция;

 $I_{p_0} - p_0$ -мерный единичный гиперкуб;

 $C(I_{p_0})$ — множество непрерывных функций на I_{p_0} .

Тогда для любой $f \in C(I_{p_0})$ и $\varepsilon > 0$ существуют $p_1 \in \mathbb{Z}$ и α_i , b_i , $w_{ij} \in \mathbb{R}$, $i = 1, \ldots, p_1, \ j = 1, \ldots, p_0$, такие что функция

$$F(x^1,\ldots,x^{p_0})=\sum_{i=1}^{p_1}\alpha_i\,\sigma\left(\sum_{i=1}^{p_0}w_{ij}x^j+b_i\right),\,$$

аппроксимирует функцию f с точностью ε :

$$|F(x^1,\ldots,x^{p_0})-f(x^1,\ldots,x^{p_0})|<\varepsilon$$

для любого $x = (x^1, \dots, x^{p_0}) \in I_{p_0}$.

Способность аппроксимировать. Можно ли любую функцию представить нейросетью?

$$F(x^1,\ldots,x^{p_0})=\sum_{i=1}^{p_1}\alpha_i\,\sigma\left(\sum_{j=1}^{p_0}w_{ij}x^j+b_i\right),\,$$

Нейросеть, выход которой, соответствует F:

сеть с p_0 входными узлами, одним скрытым слоем с p_1 узлами и функцией активации $\sigma(z)$.

Выводы:

- Любую непрерывную функцию можно приблизить нейросетью с любой заранее заданной точностью.
- Для этой нейросети нужна одна нелинейная функция активации и один скрытый слой.

Расширяемость. Многослойная нейронная сеть

Пусть для общности $Y=\mathbb{R}^M$ и слоёв для простоты только два.

Вектор параметров $w \equiv (w_{jh}, w_{hm}) = (\{w_{jh}\}_{j,h=0}^{p,H}, \{w_{hm}\}_{h,m=0}^{H,M}) \in \mathbb{R}^{H(p+M+1)+M}$.

Расширяемость. Многослойная нейронная сеть. Функция активации

- логистическая функция: $\sigma(z)=rac{1}{1+e^{-sz}}$, $a\in\mathbb{R}$;
- гиперболический тангенс: $\sigma(z) = \frac{e^{az} e^{-az}}{e^{az} + e^{-az}}, \ a \in \mathbb{R};$
- rectifier: $f(z) = \max(0, x) \approx \ln(1 + e^z)$.

Рис.: График функции $\frac{1}{1+e^{-z}}$.

BackProp. Напоминание: алгоритм Stochastic Gradient

Идея: на каждом шаге учитывать только одно наблюдение.

Алгоритм:

• Инициализация вектора параметров $w^{(0)}$, выбор скорости обучения η , темп забывания λ , начальная оценка функционала

$$\overline{Q}(w_0) = \frac{1}{n}Q(w_0) = \frac{1}{n}\sum_{i=1}^n \mathcal{L}(w_0, x_i, y_i).$$

- Случайный выбор элемента из выборки x_i и вычисление функции потерь $\mathcal{L}_i := \mathcal{L}(w, x_i, y_i).$
- Обновление вектора параметров $w := w \eta \nabla \mathscr{L}(w, x_i, y_i)$.
- ullet Оценка функционала $Q:=(1-\lambda)Q+\lambda\mathscr{L}_i.$
- Повторять до сходимости Q или w.

BackProp. Дифференцирование суперпозиции функций

Выходные значения сети $a^m(x_i)$, $m=1,\ldots,M$ на объекте x_i :

$$a^m(x_i) = \sigma_m \left(\sum_{h=0}^H w_{hm} u^h(x_i) \right); \qquad u^h(x_i) = \sigma_h \left(\sum_{j=0}^p w_{jh} f_j(x_i) \right).$$

Пусть для конкретности $\mathscr{L}_i(w)$ — средний квадрат ошибки:

$$\mathcal{L}_i(w) = \frac{1}{2} \sum_{m=1}^{M} (a^m(x_i) - y_i^m)^2.$$

Промежуточная задача: найти частые производные

$$\frac{\partial \mathcal{L}_i(w)}{\partial a^m}$$
; $\frac{\partial \mathcal{L}_i(w)}{\partial u^h}$.

BackProp. Быстрое вычисление градиента

Промежуточная задача: частая производная

$$\frac{\partial \mathcal{L}_i(w)}{\partial a^m} = a^m(x_i) - y_i^m = \varepsilon_i^m$$

— это ошибка на выходном слое.

$$\frac{\partial \mathscr{L}_i(w)}{\partial u^h} = \sum_{m=1}^M (a^m(x_i) - y_i^m) \sigma'_m w_{hm} = \sum_{m=1}^M \varepsilon_i^m \sigma'_m w_{hm} = \varepsilon_i^h$$

— назовём это ошибкой на скрытом слое.

Похоже, что ε_i^h вычисляется по ε_i^m , если запустить сеть «задом наперёд»:

BackProp. Быстрое вычисление градиента

Теперь, имея частные производные $\mathcal{L}_i(w)$ по a^m и u^h , легко выписать градиент $\mathcal{L}_i(w)$ по весам w:

$$\begin{split} \frac{\partial \mathscr{L}_{i}(w)}{\partial w_{hm}} &= \frac{\partial \mathscr{L}_{i}(w)}{\partial a^{m}} \frac{\partial a^{m}}{\partial w_{hm}} = \varepsilon_{i}^{m} \sigma_{m}^{'} u^{h}(x_{i}), \quad h = 0, \dots, H, \quad m = 1, \dots, M; \\ \frac{\partial \mathscr{L}_{i}(w)}{\partial w_{jh}} &= \frac{\partial \mathscr{L}_{i}(w)}{\partial u^{h}} \frac{\partial u^{h}}{\partial w_{jh}} = \varepsilon_{i}^{h} \sigma_{h}^{'} f_{j}(x_{i}), \quad j = 0, \dots, p, \quad h = 1, \dots, H. \end{split}$$

Под $\sigma_m^{'}$ всегда будет подразумеваться производная в точке $\sum_{h=0}^{H}w_{hm}u^h(x_i)$. Аналогично, под $\sigma_h^{'}$ всегда будет подразумеваться производная в точке $\sum_{j=0}^{p}w_{jh}f_j(x_i)$.

BackProp. Алгоритм

```
Вход: X^n = (x_i, y_i)_{i=1}^n \subset \mathbb{R}^p \times \mathbb{R}^M; параметры H, \lambda, \eta.
Выход: веса W_{ih}, W_{hm}.
1:инициализировать веса w_{ih}, w_{hm};
2:повторять
3:
          случайно выбрать элемент x_i из выборки X^n;
4:
        прямой ход:
         u_i^h := \sigma_h \left( \sum_{j=0}^p w_{jh} x_i^j \right), \ h = 1, \dots, H;
         a_i^m := \sigma_m \left( \sum_{h=0}^H w_{hm} u_i^h \right), \ \varepsilon_i^m := a_i^m - y_{im}, \ m = 1, \dots, M;
         \mathscr{L}_i := \sum_{m=1}^M (\varepsilon_i^m)^2, вычисление производных \sigma_m', \sigma_h';
        обратный ход:
         \varepsilon_{i}^{h} := \sum_{m=1}^{M} \varepsilon_{i}^{m} \sigma' w_{hm}, h = 1, \dots, H,
6:
        градиентный шаг:
         w_{hm} := w_{hm} - \eta \varepsilon_{i}^{m} \sigma_{m}^{\prime} u_{i}^{h}, h = 0, \dots, H, m = 1, \dots, M;
         w_{ib} := w_{ib} - n\varepsilon_i^h \sigma_b^i x_i^j, i = 0, \dots, p, h = 1, \dots, H:
7: Q := (1 - \lambda)Q + \lambda \mathcal{L}_i:
8:пока: Q не сойдется.
```

BackProp. Преимущества и недостатки

Преимущества:

- быстрое вычисление градиента;
- ullet метод легко обобщается на любые σ , \mathscr{L} ;
- возможно динамическое (потокое) обучение;
- на сверхбольших выборках не обязательно брать все x_i ;
- возможность распараллеливания.

Недостатки (есть все те же, что и у SG):

- возможна медленная сходимость;
- застревание в локальных минимумах;
- проблема «паралича» сети (горизонтальные асимптоты σ);
- проблема переобучения;
- сложно подбирать эвристики.

BackProp. Эвристики

Применимы все те же эвристики, что и в обычном SG:

- инициализация весов;
- порядок предъявления объектов;
- оптимизация величины градиентного шага;
- регуляризация (сокращение весов).

И появляются новые эвристики для улучшения сходимости, специфичные для нейросети.

Эвристики для нейросети. Начальное приближение

Более тщательный подбор начального приближения.

Нейроны первого слоя настраиваются как H отдельных однослойных сетей:

- ullet либо по случайной подвыборке $X^{'}\subseteq X^{n}$;
- либо по случайному подмножеству входов;
- либо из различных случайных начальных приближений;

тем самым обеспечивается различность нейронов.

Затем по отдельности настраиваются нейроны второго слоя, которым на вход подается вектор выходных значений первого.

Эвристики для нейросети. Выбор градиентного метода

1. **Адаптивный градиентный шаг** (метод скорейшего спуска). Ищем η_* :

$$\mathscr{L}_i(w - \nabla \mathscr{L}_i(w)) \to \min_{\eta}$$
.

2. Диагональный метод Левенберга-Марквардта.

Метод Ньютона-Рафсона (второго порядка):

$$w:=w-\eta(\mathcal{L}_{i}^{''}(w))^{-1}\mathcal{L}_{i}^{'}(w),$$

где
$$\mathscr{L}_{i}^{''}(w)=\left(rac{\partial^{2}\mathscr{L}_{i}(w)}{\partial w_{jh}\partial w_{j'h'}}
ight)$$
 — гессиан размера $(H(p+M+1)+M)^{2}$.

Эвристика. Считаем, что гессиан диагонален:

$$w_{jh} := w_{jh} - \eta \left(\frac{\partial^2 \mathcal{L}_i(w)}{\partial w_{jh}^2} + \mu \right)^{-1} \frac{\partial \mathcal{L}_i(w)}{\partial w_{jh}},$$

 η — темп обучения,

 μ — параметр, предотвращающий обнуление элемента.

Построение нейросети

Выбор числа скрытых слоёв. Двух-трёх слоёв достаточно для очень широкого класса задач. Если знаем, что классы линейно разделимы, то достаточно одного слоя.

Выбор числа нейронов в скрытом слое Н.

- Визуальный способ (для задач с небольшим числом признаков). Если граница классов (или кривая регрессии) слишком сглажена размер слоя нужно увеличить, а если есть резкие колебания, то, наоборот, уменьшить.
- По внешнему критерию.
 - Средняя ошибка на тестовой выборке.
 - CV (главный недостаток высокая трудоёмкость).

Построение нейросети. Динамическое наращивание сети

- ① Обучение при заведомо недостаточном числе нейронов $H \ll n$ до тех пор, пока ошибка не перестаёт убывать.
- ② Добавление нового нейрона и инициализация его связей небольшими случайными весами или путем обучения
 - lacktriangle либо по случайной подвыборке $X^{'}\subseteq X^n$;
 - ▶ либо по объектам с наибольшими значениями потерь;
 - либо по случайному подмножеству входов;
 - либо из различных случайных начальных приближений.

Веса старых связей не меняются.

Снова итерации BrackPop.

Полезно наблюдать за внешним критерием. Например, прохождение $Q(X^k)$ через минимум — надежный критерий остановки.

Эмпирический опыт: Общее время обучения обычно лишь в 1.5–2 раза больше, чем если бы в сети сразу было нужное количество нейронов. Полезная информация, накопленная сетью, не теряется при добавлении новых нейронов.

Построение нейросети. Удаление избыточных связей. Optimal Brain Damage (OBD)

Пусть w — локальный минимум Q(w), тогда Q(w) можно аппроксимировать квадратичной формой:

$$Q(w+\delta) = Q(w) + \frac{1}{2}\delta^{\mathrm{T}}Q^{''}(w)\delta + o(\|\delta\|^2),$$

где
$$Q^{''}(w)=rac{\partial^2 Q(w)}{\partial w_{jh}\partial w_{,'h'}}$$
 — гессиан размера $(H(p+M+1)+M)^2.$

Эвристика. Пусть гессиан диагонален, тогда

$$\delta^{\mathrm{T}} Q''(w) \delta = \sum_{j=0}^{p} \sum_{h=0}^{H} \delta_{jh}^{2} \frac{\partial^{2} Q(w)}{\partial w_{jh}^{2}} + \sum_{h=0}^{H} \sum_{m=0}^{M} \delta_{hm}^{2} \frac{\partial^{2} Q(w)}{\partial w_{hm}^{2}}.$$

Хотим обнулить вес: $w_{jh}+\delta_{jh}=0$. Как изменится Q(w)?

Определение. Значимость веса w_{jh} — это изменение функционала Q(w) при его обнулении: $S_{jh} = w_{jh}^2 \frac{\partial^2 Q(w)}{\partial w_{jh}^2}$.

Построение нейросети. Удаление избыточных связей. Optimal Brain Damage (OBD)

- $lacksymbol{0}$ В BackProp вычислять вторые производные $rac{\partial^2 Q(w)}{\partial w_{jh}^2}$, $rac{\partial^2 Q(w)}{\partial w_{hm}^2}$.
- $oldsymbol{\circ}$ Если процесс минимизации Q(w) пришел в минимум, то
 - ightharpoonup упорядочить веса по убыванию S_{jh} ;
 - ▶ удалить d связей с наименьшей значимостью;
 - снова запустить BackProp.
- ullet Если $Q(w,X^n)$ или $Q(w,X^k)$ существенно ухудшился, то вернуть последние удаленные связи и выйти.

Аналогично, OBD можно использовать для **отбора признаков**. Суммарная значимость признака: $S_j = \sum_{h=1}^H S_{jh}$.

Эмпирический опыт: сеть, построенная с помощью OBD, меньше переобучается, чем сеть сразу построенная по полученной структуре (со случайно инициализированными весами).