Problem H. Matrices and Sums

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 mebibytes

Given a positive integer n, you should construct an $n \times n$ integer matrix M satisfying the following conditions:

- For all elements $M_{i,j}$ $(1 \le i, j \le n)$, the absolute value $|M_{i,j}| \le 1$.
- The row and column sums $R_1, R_2, \ldots, R_n, C_1, C_2, \ldots, C_n$ are pairwise distinct, where $R_x = \sum_{i=1}^n M_{x,i}$ and $C_x = \sum_{i=1}^n M_{i,x}$.

There may exist multiple solutions or no solution.

Input

The first line contains a single integer n ($1 \le n \le 1000$).

Output

The first line must contain one string "Yes" (without quotes) if a solution exists, or "No" (without quotes) if there is no solution.

When a solution exists, print n more lines, each containing n integers, denoting the matrix M you construct

If multiple solutions exist, print any one of them.

Examples

standard input	standard output
2	Yes
	1 0
	1 -1
1	No

Note

- In the first example, $R_1 = 1$, $R_2 = 0$, $C_1 = 2$, and $C_2 = -1$ are all distinct.
- In the second example, $R_1 = C_1$ always holds, so no solution exists.

Problem H Page 13 of 20