CANS2D モデルパッケージ md_mhdcloud

等温 MHD ガスの自己重力収縮

2006. 1. 12.

1 はじめに

このモデルパッケージは、2次元平面内での等温 MHD ガスの自己重力収縮問題を解くためのものである。

2 仮定と基礎方程式

流体は非粘性・等温ガスとする。計算領域は 2 次元デカルト座標 (xy 平面) で $\partial/\partial z=0$ 、 $V_z=0$ 、 $B_z=0$ と仮定する。解くのは、 密度 ρ 、速度 V_x 、 V_y 、磁場 B_x 、 B_y についての 2 次元 等温 MHD 方程式

$$\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho V_x) + \frac{\partial}{\partial y}(\rho V_y) = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\rho V_x) + \frac{\partial}{\partial x}\left(\rho V_x^2 + p + \frac{B^2}{8\pi} - \frac{B_x^2}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_x V_y - \frac{B_x B_y}{4\pi}\right) = -\rho \frac{\partial \phi_g}{\partial x} \tag{2}$$

$$\frac{\partial}{\partial t}(\rho V_y) + \frac{\partial}{\partial x}\left(\rho V_x V_y - \frac{B_x B_y}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_y^2 + p + \frac{B^2}{8\pi} - \frac{B_y^2}{4\pi}\right) = -\rho \frac{\partial \phi_g}{\partial y}$$
(3)

$$\frac{\partial}{\partial t}(B_x) + \frac{\partial}{\partial u}(E_z) = 0 \tag{4}$$

$$\frac{\partial}{\partial t}(B_y) - \frac{\partial}{\partial x}(E_z) = 0 \tag{5}$$

$$\nabla^2 \phi_a = 4\pi G \rho \tag{6}$$

$$p = \frac{k_{\rm B}}{m} \rho T \tag{7}$$

$$E_z = -V_x B_y + V_y B_x \tag{8}$$

である。ここで、T はガスの温度で定数。

3 無次元化

計算コードの中では、変数は以下のように無次元化して扱われる(表 1 参照)。長さ、速度、時間の単位はそれぞれ L_0 、 $C_{\rm S0}$ 、 $L_0/C_{\rm S0}$ 。ここで、 L_0 は Jeans 長、 $C_{\rm S0}$ はガスの音速。密度は ρ_0 で無次元化する。以下、無次元化した変数を使う。

変数	規格化単位	
x, y	L_0	
V_x, V_y	$C_{ m S0}$	
t	$L_0/C_{\rm S0}$	
ρ	ρ_0	

表 1: 変数と規格化単位

4 パラメータ・初期条件・計算条件・境界条件

 $0 < x < \lambda$ 、 $0 < y < \lambda$ の領域を解く。初期状態は以下のようなもの。サブルーチン model で設定する。

$$\rho = \rho_0 [1 + a * \sin(2\pi x/\lambda) \sin 2\pi y/\lambda)]$$

$$V_x = V_y = 0$$

$$B_x = 0$$

$$B_y = \sqrt{4\pi \rho_0 \alpha_0}$$

パラメータ	値	コード中での変数名	設定サブルーチン名
初期プラズマベータの逆数 $lpha_0$	0.1	betai	model
擾乱の波長 λ	10	rlambda	model
擾乱の振幅 a	0.1	amp	model

表 2: おもなパラメータ

境界条件は、すべて周期境界条件。サブルーチン bnd で設定する。 計算パラメータは以下の通り(表3参照)。

パラメータ	値	コード中での変数名	設定サブルーチン名
グリッド数	$2^7 + 3$	ix, jx	main
マージン	4	margin	main
終了時刻	4	tend	main
出力時間間隔	0.5	dtout	main
CFL 数	0.4	safety	main
進行時刻下限値	10^{-10}	dtmin	main

表 3: おもな数値計算パラメータ。マージンとは、境界の値を格納するための配列の「そで」部分の幅のこと。進行時刻下限値とは、各計算ステップの Δt の値がこの値を下回ったときに計算を強制終了するための臨界値。