Introduction

When constructing electrical circuits for home use or in building equipment, we often have to use large numbers of devices like lamps, resistors, and capacitors. When using these devices, we commonly have to combine them in special ways. The purpose of this lab is to explore how we combine resistors and how do those combinations affect currents and voltages in simple circuits.

Resistors Combinations

Resistors are usually combined in one of two ways, parallel or series. Both are depicted in Figures 1 and 2. In the simplest of cases, when connected in parallel, both ends of the resistors are connected to each other, when in series only one end is connected. For more complicated cases, we can use the following rule:

Series and Parallel Rule

- Resistors (or any other device) R₁ and R₂ are in series if and only if every loop that contains R₁ also contains R₂
- Resistors (or any other device) R₁ and R₂ are in parallel if and only
 if you can find a loop that has ONLY R₁ and R₂

Fig. 1: Parallel

Fig. 2: Series

Series and Parallel Example

Consider the circuit in Figure 3 for example. The only resistors that are in series are R_1 and R_6 . Every loop that you can trace around the circuit includes both of them. As an example loop, you can think of a loop starting at E_1 and going clockwise through R_1 , E_3 , R_4 , R_5 , R_6 and ending back at E_1 . A second loop can start at E_1 and going clockwise through R_1 , R_2 , E_2 , R_6 and ending back at E_1 . It is worth noting that R_5 is in series with the combination of R_3 and R_4 but not in series with either one of them.

The only resistors that are in parallel are R₃ and R₄.

Fig. 3: Example of a complicated circuit

Use of Meters Reminder

We usually use an Ammeter to measure current and a Voltmeter to measure voltage. When drawing a schematic of a circuit, we usually label the Ammeter as "A" and the voltmeter with "V". An example schematic is shown in Figure 4. Along with the ammeter and the voltmeter, the schematic includes 4 other devices: a power supply designated by E, and three resistors designated by R.

When measuring current with an ammeter, the ammeter should be placed in series with the device we want to

Fig. 4: Use of an ammeter and a voltmeter

measure the current through. For example, as shown in the Figure, if we want to measure the current through R_1 , we place the ammeter in series with R_1 . The same current should flow through both R_1 and the ammeter.

On the other hand, if we want to measure voltage, we have to connect the voltmeter in parallel with the device you want to measure the voltage across. For example, as shown in the Figure, if we want to measure the voltage across R_3 , we place the voltmeter in parallel with R_3 . Both R_3 and the voltmeter are subject to the same voltage.

Use of a Voltmeter to Measure Currents

As we have learned from previous labs, resistors obey ohms law. This means that we have a simple relationship between the voltage across a resistor and the current flowing through it: V= R I In cases where it is more convenient to use a voltmeter than an ammeter, this relationship can be used to find the current.

Theory and Model

In a series circuit (see Figure 5), since there is no branching in the circuit, the current going through each resistor is the same. By using Ohm's law (V = IR) we can find the voltage across each of the resistors. The source voltage is then given by:

$$V = V_1 + V_2 + V_3 = IR_1 + IR_2 + IR_3 = I(R_1 + R_2 + R_3)$$

This means that we can draw the same current from the source if we replace the resistors by an "equivalent" resistor given by:

$$R_{\text{equivalent}} = (R_1 + R_2 + R_3)$$

In a parallel circuit, the current through the resistors is related to the current through the source by:

$$| = | |_1 + |_2 + |_3$$

But they are subject to the same voltage:

$$V = I_1R_1 = I_2R_2 = I_3R_3$$

The equivalent resistance is in this case given by:

$$1/R_{\text{equivalent}} = 1/R_1 + 1/R_2 + 1/R_3$$

We will now verify the two relations for series and parallel resistors.

Procedure

Please make sure that you do not add or remove items to the lab box. Broken items will be replaced by your teachers. Additionally, please do not remove the cables that are connected to the power supply.

For this experiment, we are going to verify the equations for resistors in series and in parallel. We will need a power supply, six resistors, wires for connecting the parts and a multimeter to use for measuring voltages.

You are provided with 6 resistors but only 3 different value resistance. Use the multimeter to measure each of the resistances. If you need information on how to measure resistance, follow the tutorial at http://physci.kennesaw.edu/physlets/dig/ You can also figure out the resistance by using the resistance color codes. This utility can help guide you with that: http://physci.kennesaw.edu/physlets/dig/resistors.htm

2. In the sake of clarity, we will refer to the smallest value resistance as R_S , the middle value as R_M and the large value as R_L .

Fig. 5: Resistors in series

Fig. 6: Resistors in parallel

Resistors in Series

- Wire the circuit as shown in Figure 7. Use two identical resistors (R_s).
- 2. With the power supply still off, turn both current knobs fully **clockwise** and both voltage knobs fully **counterclockwise**.
- GET THE TEACHER TO VERIFY YOUR CIRCUIT before you turn on the Power Supply!
- 4. Gradually adjust the voltage knobs of the power supply until you get a 3.0 volt output. That is the voltage we will use throughout the lab..

Fig. 7: Resistors in series

5. Use the multimeter to measure the voltage across each of the resistors (V_1 and V_2), the voltage across the power supply, and use ohm's law to calculate the current through each of the resistors (I_1 and I_2).

Remember that since for measuring current, if we use an ammeter, we need to first break the circuit then add the ammeter in series in the branch where we want to measure current, and since we are using only resistors and we know that resistors obey Ohm's law, we can forego measuring current directly and use the voltmeter readings to deduce the current values.

V ₁	V_2	I ₁	I_2	V

- 6. What do you conclude?
 - How does I₁ compare to I₂?
 - How do you think I₁ and I₂ compare to I, the current through the power supply? How does that
 value compare to the current readout of the supply?
 - How does V₁ compare to V₂?
 - How do V₁ and V₂ compare to V? Is there a relationship between all three?
- 7. Disconnect the supply, remove both resistors and replace them by one resistor R_M.
- 8. Reconnect the supply and measure V, V_M (voltage across R_M) and I_M . Be smart, don't repeat measurements that are obviously the same.
- 9. What do you conclude?
 - How does R_M relate to R₁ and R₂?
 - How do I₁ in the first circuit compare to I_M in the second?
 - How does V in the first circuit compare to V in the second circuit?
 - Explain your observations?

- 10. Wire the circuit as shown in Figure 5. Use three different resistors.
- 11. Use the multimeter to measure the voltage across each of the resistors (V₁, V₂ and V₃), the voltage across the power supply (V) and calculate the current through each of the resistors (I₁, I₂ and I₃).

	V ₁	V_2	V_3	I ₁	l ₃	V
L						

- 12. What do you conclude?
 - How do I₁, I₂ and I₃ compare?
 - How do I₁, I₂ and I₃ relate to I the current through the power supply?
 - How do V₁, V₂ and V₃ relate to V?
 - What would be the equivalent resistance for all three resistances?
- 13. Disconnect R₃ by just un-connecting one of its ends while keeping it in the circuit (Fig. 8). Repeat the following measurements:

V ₁	V_2	V_3	I ₁	l ₃	V

- 14. What do you conclude?
 - What is the effect of disconnecting one end of R₃ or any other resistor on the rest of the circuit?

Fig. 8: Disconnecting R₃

Resistors in Parallel

- 1. Wire the circuit as shown in Figure 9. Use two identical resistors (R_M) for R_1 and R_2 .
- 2. GET THE TEACHER TO VERIFY YOUR CIRCUIT!
- 3. Use the multimeter to measure the voltage across each of the resistors (V_1 and V_2), and the voltage across the power supply.
- 4. Calculate the current through each of the resistors (I_1 and I_2).
- 5. Use the power supply current readout to read the current through the power supply..
- 6. Connect the supply and get your current reading.

Fig. 9: Resistors in Parallel

V_1	V_2	I ₁	V	I

- 7. What do you conclude?
 - How does I₁ compare to I₂?
 - How do I₁ and I₂ relate to I?
 - How does V₁ compare to V₂?
 - How do V₁ and V₂ relate to V?
- 8. Disconnect supply, remove both resistors and replace them by one resistor R_s.
- 9. Turn on the supply, measure V and deduce I.
- 10. What do you conclude?
 - How does I in the first circuit compare to I in the second circuit?
 - How does V in the first circuit compare to V in the second circuit?
 - Explain your observations? How does R_S compare to R₁ and R₂?
- 11. Wire the circuit as shown in Figure 6. Use three different resistors.
- 12. Use the multimeter to measure the voltage across each of the resistors (V₁, V₂ and V₃), and the voltage across the power supply.
- 13. Calculate the current through each of the resistors (I₁, I₂ and I₃).
- 14. Measure the current through the power supply (I)

V ₁	V_2	V_3	I ₁	l ₃	V	I

- 15. What do you conclude?
 - How do I₁, I₂ and I₃ compare?
 - How do I₁, I₂ and I₃ relate to I?
 - How do V₁, V₂ and V₃ compare?
 - How do V₁, V₂ and V₃ relate to V?
 - What would be the equivalent resistance for all three resistances?

16. Disconnect R₂ by just un-connecting one of its ends while keeping it in the circuit (Fig. 10). Repeat the following measurements:

V ₁	V_2	V_3	I ₁	l ₂	l ₃	V	I

- 17. What do you conclude?
 - How do I₁, I₂ and I₃ compare to the values you have measured before disconnecting R₂?

Fig. 10: Disconnecting R₂

- What is the effect of disconnecting R₂ on the rest of the circuit?
- Would the effect on the circuit have been different if we disconnected R₃ or R₁ instead?
- Explain your observations?

Combination Circuit

- 18. Wire the circuit as shown in Figure 11. Use R_S for R_1 and R_2 , R_M for R_3 and R_5 and R_L for R_4 .
- 19. Before making any measurement, what are the resistors, if any, that are in series in this circuit?

20. Again before making any measurement, what are the resistors, if any, that are in parallel in this circuit?

Fig. 11: A combination circuit

- 21. How many different current values you expect to find in this circuit?
- 22. Measure the voltage across each of the resistors (V₁, ...), the voltage across the power supply (V), and calculate the current through each of the resistors (I₁, ...), and deduce the current through the power supply (I).

V ₁	V_2	V_3	V_4	V_5	V	I
				_		
I ₁	I_2	I_3	I_4	l ₅		

- 23. Based on the data, what are the resistors, if any, that are in series in this circuit?
 - Consider the voltage and the current through each of the resistors that you think are in series.
 - Also apply the rule as stated in the introduction: if and only if every loop that contains R₁ also contains R₂
- 24. Based on the data, what are the resistors, if any, that are in parallel in this circuit?
 - Consider the voltage and the current through each of the resistors that you think are in parallel.
 - Also apply the rule as stated in the introduction: if and only if you can $\frac{\text{find a loop that has}}{\text{ONLY } R_1 \text{ and } R_2}$
- 25. What do you conclude?
 - How do the various currents that you have measured relate?
 - How do the various voltages that you have measured relate?
 - What would be the equivalent resistance for all five resistances?

26. Shut off power supply and return all equipment where it was found.

Please make sure that you do not add or remove items to the lab box. Broken items will be replaced by your teachers. Additionally, please do not remove the cables that are connected to the power supply.

27. A good resource for learning about circuit and trying different configurations virtually (with the use of a simulation) is available at the following site: http://phet.colorado.edu/sims/cck/cck-ac.jnlp