AgaogluC 01112024-160458

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.513	-108.7	25.561	111.9	0.025	52.0	0.545	-53.3
2.1	0.472	-152.3	13.427	85.6	0.036	51.1	0.328	-74.6
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
4.3	0.489	171.0	6.548	58.2	0.061	51.1	0.242	-103.9
5.4	0.497	160.1	5.133	47.1	0.076	48.8	0.217	-114.1
6.5	0.513	147.3	4.281	35.9	0.090	43.4	0.191	-129.5
8.6	0.595	128.1	3.105	14.9	0.118	33.0	0.136	167.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 1), который может обеспечить согласование со стороны плеча 1 на частоте 2.1 $\Gamma\Gamma$ ц.

Рисунок 1 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\scriptscriptstyle \rm H}=3.3~\Gamma\Gamma$ ц и $f_{\scriptscriptstyle \rm B}=4~\Gamma\Gamma$ ц, используя рисунок 2.

Рисунок 2 – Частотная характеристика усиления

- 1) 0.7 дБ
- 2) 1.4 дБ
- 3) 0.1 дБ
- 4) 0.7 дБ

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 3) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 3 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 4 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Рисунок 4 — Различные реализаци и Γ -образной цепи согласования

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.520	-110.9	25.458	110.7	0.026	52.1	0.535	-56.9

Требуется выбрать согласованный аттенюатор с минимальным затуханием, подключения которого будет достаточно, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 3.2 дБ, подключённый к плечу 2;
- 2) аттенюатор с затуханием 2.8 дБ, подключённый к плечу 2;
- 3) аттенюатор с затуханием 3.2 дБ, подключённый к плечу 2;
- 4) аттенюатор с затуханием 3.8 дБ, подключённый к плечу 1.

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -5$ дБ.

Ко входу этой цепи подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью $1.6~\mathrm{дБм}.$

Какая мощность рассеивается внутри цепи коррекции?

- 1) 1 мВт
- 2) 0.5 MBT
- $3)~0.5~\mathrm{mBt}$
- 4) 0.5 MBT

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11} = -0.61 + 0.17$ i.

Найти модуль (в дБ) коэффициента передачи s_{21} .

- 1) -2.2 дБ
- 2) -4.5 дБ
- 3) -1.6 дБ
- 4) -0.6 дБ