Anti-Distillation: Knowledge Transfer from a Simple Model to the Complex One

Kseniia Petrushina

Moscow Institute of Physics and Technology

Coauthors: Oleg Bakhteev, Andrey Grabovoy, Vadim Strijov

2022

Motivation

Goal: Adapting the *student* model to more complex data using information from *teacher* model.

Challenge: Existing teacher model can be not suitable for new data.

Solution: Extend the *teacher* model to get better initialization of the new model (*Anti-Distillation*¹).

¹Distillation - process of transferring knowledge from a complex model to the simple model

Distillation

Anti-Distillation

Problem statement

Consider two datasets

$$\mathfrak{D}_1 = \{(\mathbf{x}_i, y_i)\}_{i=1}^{m_1}, \ \mathbf{x}_i \in \mathbb{R}^n, \ y_i \in C_1 = \{1, \dots, c_1\},\$$

$$\mathfrak{D}_2 = \{(\mathbf{x}_i, y_i)\}_{i=1}^{m_2}, \ \mathbf{x}_i \in \mathbb{R}^n, \ y_i \in C_2 = \{1, \dots, c_2\}.$$

 \mathfrak{D}_2 is more complex than \mathfrak{D}_1 .

Optimal parameters $\hat{\mathbf{u}}$ of the teacher model g on \mathfrak{D}_1 dataset are obtained from

$$\hat{\textbf{u}} = \mathop{\mathsf{arg\,min}}_{\textbf{u}} \, \mathcal{L}_{\mathsf{ce}}(\textbf{u}, \mathfrak{D}_1),$$

 $\mathcal{L}_{\text{ce}}(\textbf{u},\mathfrak{D}_1)$ - cross-entropy loss on $\mathfrak{D}_1.$

Problem statement

Student model is

$$\mathbf{f}_{\mathsf{st}}: \mathbb{R}^n o \Delta^{c_2}, \quad \mathbf{f}_{\mathsf{st}}(\mathbf{x}) = \mathbf{f}(\mathbf{x}, \hat{\mathbf{w}}),$$

Optimization problem:

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{arg \, min}} \ \mathcal{L}_{ce}(\mathbf{w}, \mathfrak{D}_2^{val}),$$

Function

$$oldsymbol{arphi}: \mathbb{R}^{oldsymbol{\mathcal{N}}_{\mathsf{tr}}}
ightarrow \mathbb{R}^{oldsymbol{\mathcal{N}}_{\mathsf{st}}}$$

maps the teacher model parameters to student initial parameters $\mathbf{w} = \boldsymbol{arphi}(\hat{\mathbf{u}}).$

Hypothesis

The student models initialized by the result of applying the function φ to the parameters of the pre-trained teacher model is more persistent and achieve higher accuracy than models with default parameters.

Problem solution

Function for weights initialization:

$$\begin{split} \varphi(\mathbf{u}) &= \underset{\mathbf{w}}{\text{arg min}} \ \mathcal{L}(\mathbf{w}), \\ \mathcal{L}(\mathbf{w}) &= \lambda_1 \mathcal{L}_{\text{ce}}(\mathbf{w}, \mathfrak{D}_1) + \lambda_2 \mathcal{L}_2(\mathbf{w}, \mathbf{u}) + \lambda_3 \mathcal{L}_3^{\delta}(\mathbf{w}, \mathfrak{D}_1) + \lambda_4 \mathcal{L}_4 \left(\frac{\partial^2 \mathcal{L}_{\text{ce}}}{\partial \mathbf{w}^2} \right) \end{split}$$

- ▶ $\mathcal{L}_2(\mathbf{w}, \mathbf{u}) = \|\mathbf{u} \mathbf{Pr}[\mathbf{w}]\|_2^2$ small difference between common weights in student and teacher.
- $\mathcal{L}_3^{\delta}(\mathbf{w},\mathfrak{D}_1) = \sum_{(\mathbf{x},y)\in\mathfrak{D}_1} \mathbb{E}_{\mathbf{x}'\in U_{\delta}(\mathbf{x})} \mathcal{L}_{\mathsf{ce}}(\mathbf{w},(\mathbf{x}',y)) \mathsf{robustness} \ \mathsf{to} \ \mathsf{noise} \ \mathsf{with} \ \mathsf{respect} \ \mathsf{to}$ input data.
- $\mathcal{L}_4\left(\frac{\partial^2 \mathcal{L}_{ce}}{\partial \mathbf{w}^2}\right) = \operatorname{tr}\left(\frac{\partial^2 \mathcal{L}_{ce}}{\partial \mathbf{w}^2}\right) \text{ robustness to noise with respect to model parameters.}$

Computational experiments

Data: Fashion-MNIST dataset

Model: Multilayer perceptron **Baselines**:

- Xavier initialization
- ► Transfer Learning
- Net2Net

Quality criteria

- Accuracy on validation set.
- Accuracy on validation set corrupted by FSGM-attack.
- Accuracy on validation set, provided that the model parameters are corrupted with noise: $\mathbf{w}_{\varepsilon} = \mathbf{w} + \varepsilon \boldsymbol{\xi}$, where $\boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

Hyperparameter optimization

Accuracy on validation set

Anti-Distillation outperformes other methods.

Xavier	Zero	Uniform	Transfer
0.68	0.86	0.85	0.74

	Net2Net	Noise	AD, $\lambda_4=0$	AD
)	0.85	0.81	0.86	0.86

Robustness to FSGM-attack

Anti-Distillation outperformes other methods.

Xavier	Zero	Uniform	Transfer
0.42	0.50	0.52	0.50

Net2Net	Noise	AD, $\lambda_4=0$	AD
0.51	0.51	0.53	0.57

Robustness to noise in model parameters

Anti-Distillation outperformes other methods.

Xavier	Zero	Uniform	Transfer
0.58	0.71	0.73	0.53

Net2Net	Noise	AD, $\lambda_4=0$	AD
0.70	0.70	0.73	0.67

Conclusion

We:

- considered the problem of the model extension to a new dataset.
- proposed the method for knowledge transfer from a simple model to a more complex model.

Anti-Distillation:

- achieved higher accuracy on more complex dataset.
- showed robustness of the Anti-Distillation to adversarial noise in input data and normal noise in model parameters.

Next: other datasets, other neural network architectures.

Literature

- ► Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.
- ➤ Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed- forward neural networks, 2010.
- ▶ Tianqi Chen, Ian Goodfellow, Jonathon Shlens. Net2Net: Accelerating Learning via Knowledge Transfer, 2015.