

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Институт информационных систем и технологий

Кафедра прикладной математики

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ № 2

по дисциплине

«ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА»

СТУДЕНТА	2 КУРСА <u>бакалавриата</u> (уровень профессионального образования)	ГРУППЫ	<u>ИДБ-22-05</u>
	Моряков Антон		
	НА ТЕМУ		
	Интерполирование кубическим сплайног	м дефекта вари	ант №13
Направление:			
Профиль подгот	овки:		
Отчет сдан «»	<u>2024</u> Γ.		
Оценка			
Проверил:	преподаватель Стихова О.В.		
	(Ф.И.О., должность, степень, звание)		(подпись)

Оглавление

Изучение метода интерполяции кубическим сплайном дефекта 1	. 3
Табличное задание функции f(x)	. 4
Код программы на ЭВМ	5
Блок схема метода прогонки	9
Γ рафики исходной функциональной зависимости $F(x)$ и матрица коэффициентов	10
Вывод	11

Изучение метода интерполяции кубическим сплайном дефекта 1

Дано:
$$y(x) \in [a,b]; \ y(n+1) = x_i, \ i = \overline{0,n}; x_i = a+ih, h = \frac{b-a}{n}; x_0 = a; x_n = b$$

Найти: Для каждых двух соседних точек $x_i, \ x_{i+1}, i = \overline{0,n-1}$

данного отрезка кубический полином, аппроксимирующий данную функцию в каждой точке интервала (x_i, x_{i+1}) , значения которого совпадают со значениями функции на концах интервала.

Решение:

Введем общее обозначение для такого полинома на каждом таком интервале $(x_i, x_{i+1}), i = 0, n-1$ через f(x). Его коэффициенты определяются из условия сопряжения в узлах:

$$f_i = y_i,$$

$$f'(x_i - 0) = f'(x_i + 0),$$

$$f''(x_i - 0) = f''(x_i + 0), i = \overline{1, n - 1}$$

Кроме того, на границах при $x = x_0, x = x_n$, ставятся условия:

$$f''(x_0) = f''(x_n) = 0,(1)$$

Кубический полином ищется в виде:

$$f(x) = a_i + b_i(x - x_{i-1}) + c_i(x - x_{i-1})^2 + d_i(x - x_{i-1})^3, x \in [x_i, x_{i+1}]. (2)$$

Из условия $f_i = y_i$ следует:

$$f(x_{i-1}) = a_i = y_{i-1},$$

$$f(x_i) = a_i + b_i h_i + c_i h_i^2 + d_i h_i^3 = y_i (3), h_i = x_i - x_{i-1}, i = \overline{1, n-1}$$

Вычислим производные:

$$f'(x) = b_i + 2c_i(x - x_{i-1}) + 3d_i(x - x_{i-1})^2,$$

$$f''(x) = 2c_i + 6d_i(x - x_{i-1}), \quad x \in [x_i, x_{i+1}],$$

И потребуем их непрерывности при $x = x_i$:

$$\begin{cases} b_{i+1} = b_i + 2c_i h_i + 3d_i h_i^2 \\ c_{i+1} = c_i + 3d_i h_i, i = 1, n-1 \end{cases} (4)$$

Общее число неизвестных коэффициентов равно 4n, число уравнений (3) и (4) равно 4n-2. Недостающие два уравнения получаются из условий (1) при $x = x_0$ и $x = x_n$:

$$c_1 = 0, c_n + 3d_n h_n = 0.$$

Выражая из (4) $d_i = \frac{c_{i+1}-c_i}{3h_i}$, подставляя это выражение в (3) и исключая $a_i = y_{i-1}$, получим

$$b_{i} = \left[\frac{y_{i} - y_{i-1}}{h_{i}}\right] - \frac{1}{3}h_{i}(c_{i+1} + 2c_{i}), i = \overline{1, n-1},$$

$$b_{n} = \left[\frac{y_{n} - y_{n-1}}{h_{n}}\right] - \frac{2}{3}h_{n}c_{n}.$$

Подставив теперь выражения для b_i , b_{i+1} и d_i в первую формулу (4), после несложных преобразований получаем для c_i разностное уравнение второго порядка

$$h_i c_i + 2(h_i + h_{i+1})c_{i+1} + h_{i+1}c_{i+2} = 3\left(\frac{y_{i+1} - y_i}{h_{i+1}} - \frac{y_i - y_{i-1}}{h_i}\right), \quad i = \overline{1, n-1}, (5)$$

С краевыми условиями

$$c_1 = c_{n+1} = 0$$
 (6)

Условие $c_1 = c_{n+1} = 0$ эквивалентно условию $c_1 + 3d_n h_n = 0$ и уравнению $c_i + 3d_i h_i$. Разностное уравнение (9) с условиями (6) решается методом прогонки.

Табличное задание функции f(x)

Функция:

$$f(x) = e^{-\frac{(x-\frac{N}{N-5})^2}{2}}$$

```
x 0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35

y(x) 0.06, 0.19, 0.26, 0.27, 0.26, 0.24, 0.20, 0.15
```

Код программы на ЭВМ

Результат работы программы по поиску коэффициентов

Рис 1. Результаты работы программы по нахождению коэффициентов

```
using System;
using System.Collections.Generic;
using System.Globalization;
using System.IO;
using System.Ling;
class Program
{
    static void Main(string[] args)
        // Точки данных
        List<double> x = new List<double> { 0.21, 0.23, 0.25, 0.27, 0.29, 0.31, 0.33, 0.35,
0.37, 0.39 };
        List<double> y = new List<double> { 0.06, 0.19, 0.26, 0.27, 0.26, 0.24, 0.20, 0.15,
0.10, 0.06 };
        // Вычисление коэффициентов сплайна
        ComputeSplineCoefficients(x, y);
    }
    // Функция для печати вектора
    static void PrintVector(List<double> v)
        foreach (var el in v)
            Console.Write(el + " ");
        Console.WriteLine();
    }
    // Функция Гаусса для решения системы уравнений
    static List<double> Gauss(List<List<double>> matrix)
        int n = matrix.Count;
        List<double> x = new List<double>(new double[n]);
        for (int i = 0; i < n; ++i)</pre>
            // Поиск максимального элемента в текущем столбце
            double maxEl = Math.Abs(matrix[i][i]);
            int maxRow = i;
            for (int k = i + 1; k < n; ++k)
                if (Math.Abs(matrix[k][i]) > maxEl)
                    maxEl = Math.Abs(matrix[k][i]);
                    maxRow = k;
                }
            }
            // Перестановка строк
            for (int k = i; k < n + 1; ++k)
                var temp = matrix[maxRow][k];
                matrix[maxRow][k] = matrix[i][k];
                matrix[i][k] = temp;
            }
            // Обнуление элементов ниже диагонали
            for (int k = i + 1; k < n; ++k)
```

```
double c = -matrix[k][i] / matrix[i][i];
                for (int j = i; j < n + 1; ++j)
                    if (i == j)
                    {
                        matrix[k][j] = 0;
                    }
                    else
                    {
                        matrix[k][j] += c * matrix[i][j];
                }
            }
        }
        // Обратный ход
        for (int i = n - 1; i \ge 0; --i)
            x[i] = matrix[i][n] / matrix[i][i];
            for (int k = i - 1; k \ge 0; --k)
                matrix[k][n] -= matrix[k][i] * x[i];
            }
        }
        return x;
    }
    // Функция для сохранения матрицы в CSV файл
    static void SaveMatrixToCSV(List<List<double>> matrix, List<string> headers, string file-
name)
    {
        using (StreamWriter file = new StreamWriter(filename))
        {
            // Записываем заголовки столбцов
            file.WriteLine(string.Join(";", headers));
            foreach (var row in matrix)
                file.WriteLine(string.Join(";", row.Select(e => e.ToString(CultureInfo.Invari-
antCulture))));
            }
        }
    }
    static bool GetUserConsent(string message)
        Console.Write(message + " (y/n): ");
        char response = Console.ReadKey().KeyChar;
        Console.WriteLine();
        return response == 'y' || response == 'Y';
    }
    static void ComputeSplineCoefficients(List<double> x, List<double> y)
        int n = x.Count - 1;
        List<List<double>> matrix = new List<List<double>>();
        for (int i = 0; i < n - 1; i++)
            List<double> line = new List<double>(new double[4 * n + 1]);
            line[i * 4] = 1;
            line[4 * n] = y[i];
            matrix.Add(line);
            if (i == 0)
```

```
line = new List<double>(new double[4 * n + 1]);
        line[i * 4 + 2] = 2;
        matrix.Add(line);
    }
    line = new List<double>(new double[4 * n + 1]);
    line[i * 4] = 1;
line[i * 4 + 1] = x[i + 1] - x[i];
    line[i * 4 + 2] = Math.Pow(x[i + 1] - x[i], 2);
    line[i * 4 + 3] = Math.Pow(x[i + 1] - x[i], 3);
    line[4 * n] = y[i + 1];
    matrix.Add(line);
    line = new List<double>(new double[4 * n + 1]);
    line[i * 4 + 1] = 1;
    line[i * 4 + 2] = 2 * (x[i + 1] - x[i]);
    line[i * 4 + 3] = 3 * Math.Pow(x[i + 1] - x[i], 2);
    line[(i + 1) * 4] = -1;
    matrix.Add(line);
    line = new List<double>(new double[4 * n + 1]);
    line[i * 4 + 2] = 2;
    line[i * 4 + 3] = 6 * (x[i + 1] - x[i]);
    line[(i + 1) * 4 + 1] = -2;
    matrix.Add(line);
}
List<double> lastLine = new List<double>(new double[4 * n + 1]);
lastLine[(n-1) * 4] = 1;
lastLine[4 * n] = y[y.Count - 2];
matrix.Add(lastLine);
lastLine = new List<double>(new double[4 * n + 1]);
lastLine[(n - 1) * 4] = 1;
lastLine[(n - 1) * 4 + 1] = x[x.Count - 1] - x[x.Count - 2];
lastLine[(n - 1) * 4 + 2] = Math.Pow(x[x.Count - 1] - x[x.Count - 2], 2);
lastLine[(n - 1) * 4 + 3] = Math.Pow(x[x.Count - 1] - x[x.Count - 2], 3);
lastLine[4 * n] = y[n];
matrix.Add(lastLine);
lastLine = new List<double>(new double[4 * n + 1]);
lastLine[(n - 1) * 4 + 2] = 2;
lastLine[(n - 1) * 4 + 3] = 6 * (x[x.Count - 1] - x[x.Count - 2]);
matrix.Add(lastLine);
List<string> headers = new List<string>();
for (int i = 0; i < n; i++)</pre>
    headers.Add($"a_{i}");
    headers.Add($"b_{i}");
    headers.Add($"c_{i}");
    headers.Add($"d_{i}");
headers.Add("=");
if (GetUserConsent("Сохранить систему неравенств в файл matrix.csv?"))
    SaveMatrixToCSV(matrix, headers, "matrix.csv");
}
List<double> solution = Gauss(matrix);
List<List<double>> sol = new List<List<double>> { solution };
if (GetUserConsent("Сохранить найденные коэффициенты в файл coeff.csv?"))
{
    SaveMatrixToCSV(sol, headers, "coeff.csv");
}
```

```
List<List<double>> tests = new List<List<double>>();
        for (int i = 0; i < x.Count - 1; i++)</pre>
             for (double j = x[i]; j \le x[i + 1]; j += (x[i + 1] - x[i]) / 10)
                 tests.Add(new List<double>
                      solution[i * 4] +
                      solution[i * 4 + 1] * (j - x[i]) +
                      solution[i * 4 + 2] * Math.Pow(j - x[i], 2) + solution[i * 4 + 3] * Math.Pow(j - x[i], 3)
                 });
             }
        }
        if (GetUserConsent("Сохранить найденные тестовые точки в файл testPoints.csv?"))
             SaveMatrixToCSV(tests, new List<string> { "x", "y" }, "testPoints.csv");
        }
        if (GetUserConsent("Вывести найденные тестовые точки в терминал?"))
             foreach (var point in tests)
                 Console.WriteLine($"( {point[0]}, {point[1]} )");
             }
        }
    }
}
```

Блок схема метода прогонки

Ввод
$$n$$
, $\{a_i\}$, $\{b_i\}$, $\{c_i\}$, $\{d_i\}$

$$A_1 = -\frac{c_1}{b_1}, \quad B_1 = \frac{d_1}{b_1}$$
для i от 2

$$c = a_i A_{i-1} + b_i, \quad A_i = -\frac{c_i}{e}, \quad B_i = \frac{d_i - a_i B_{i-1}}{e}$$
до $n-1$

$$x_n = \frac{d_n - a_n B_{n-1}}{b_n + a_n A_{n-1}}$$
для i от $n-1$

$$x_i = A_i x_{i+1} + B_i$$
до 1 с шагом -1
Вывод $\{x_i\}$

Рис 2. Блок -схема к методу прогонки

Графики исходной функциональной зависимости F(x) и матрица

Рис 3. График функции и

0	b_0	c_0	d_0	a_1	b_1	c_1	d_1	a_2	b_2	c_2	d_2	a_3	b_3	c_3	d_3	a_4	b_4	c_4	d_4	a_5	b_5	c_5	d_5	a_6	b_6	c_6	d_6	=
06	9.65499	999	0 -7887.499	0.19	-473.24	499: 47836.	.999 -1199974	.50.26	-24161.4	9:2416211	4 -60405	574 0.27	-1208122	2.512081221	1-302030	43 0.26	-6040604	48 60406047	3-1510151	1 0.24	-30203	022 30203022	27-75507556	5 0.2	-151015	511 113261	1335-18876	8891846874.
0	b 0	c 0	d 0	a 1	b 1	c 1	d 1	a 2	b 2	c 2	d 2	a 3	b 3	c 3	d 3	a 4	b 4	c 4	d 4	a 5	b 5	c 5	d 5	a 6	b 6	c 6	d 6	-
	1	0	0 0		0	0	0	0	0	0	0	0	0	0) _	0	0	0 (, _	0	0	0	0 0	,	0	0	0	0 0.06
	0	0	2 0		0	0	0	0	0	0	0	0	0	0)	0	0	0 ()	0	0	0	0 0)	0	0	0	0
	1 0.02000	000 0.0004	0000000.8 000		0	0	0	0	0	0	0	0	0	0)	0	0	0 ()	0	0	0	0 0)	0	0	0	0 0.19
	0	1 0.0400	000 0.0012000		-1	0	0	0	0	0	0	0	0	0)	0	0	0 ()	0	0	0	0 0)	0	0	0	0
	0	0	2 0.1200000		0	-2	0	0	0	0	0	0	0	0)	0	0	0 ()	0	0	0	0 0)	0	0	0	0
	0	0	0 0		1	0	0	0	0	0	0	0	0	0	0	0	0	0 ()	0	0	0	0 0)	0	0	0	0 0.19
	0	0	0 0		1 0.0199	999 0.0003	3999 7.999999	9	0	0	0	0	0	0)	0	0	0 ()	0	0	0	0 0)	0	0	0	0 0.26
	0	0	0 0		0	1 0.0399	9999 0.001199	9 .	1	0	0	0	0	0)	0	0	0 ()	0	0	0	0 0)	0	0	0	0
	0	0	0 0		0	0	2 0.119999	9	0 -	2	0	0	0	0)	0	0	0 ()	0	0	0	0 0)	0	0	0	0
	0	0	0 0		0	0	0		1	0	0	0	0	0)	0	0	0 ()	0	0	0	0 0)	0	0	0	0 0.26
	0	0	0 0		0	0	0	0	1 0.020000	0.000400	00000.8	000	0	0)	0	0	0 ()	0	0	0	0 0)	0	0	0	0 0.27
	0	0	0 0		0	0	0	0	0	1 0.040000			-1	0)	0	0	0 ()	0	0	0	0 0)	0	0	0	0
	0	0	0 0		0	0	0	0	0	0	2 0.12000	000	0 -	-2	0	0	0	0 ()	0	0	0	0 0)	0	0	0	0
	0	0	0 0		0	0	0	0	0	0	0	0	-	•)	0	0	0 ()	0	0	0	0 0)	0	0	0	0 0.27
	0	0	0 0		0	0	0	0	0	0	0	0	1 0.019999				0	0 ()	0	0	0	0 0)	0	0	0	0 0.26
	0	0	0 0		0	0	-	-	0	0	0	0	0	1 0.039999			-1	0 (0	0	-	0 0)	0	0	0	0
	0	0	0 0		0	0	0	0	0	0	0	0	0	0	0.11999	99	0 -	-2 ()	0	0	0	0 0)	0	0	0	0
	0	0	0 0		0	0	0	0	0	0	0	0	0	0)	0	1	0 (•	0	0	0	0 0)	0	0	0	0 0.26
	0	0	0 0		0	0		0	0	0	0	0	0	0)	0		00 0.0004000			0		0 0		0	0	0	0 0.24
	0	0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	1 0.040000			-1	0	0 0)	0	0	0	0
	0	0	0 0		0	0	-	-	0	0	0	0	0	0)	0	0	0 2	0.120000	0	0	_	0 0)	0	0	0	0
	0	0	0 0		0	0	0		0	0	0	0	0	0)	0	0	0 (0	1		0 0)	0	0	0	0 0.24
	0	0	0 0		0	0	-	0	0	0	0	0	0	0)	0	0	0 (0	1 0.0200	000 0.000400			0	0	0	0 0.2
	0	0	0 0		0	0			0	0	0	0	0	0)	0	0	0 (0	0	1 0.040000			-1	0	0	0
	0	0	0 0		0	0	-	-	0	0	0	0	0	0	0	0	0	0 (0	0		2 0.1200000		0	-2	0	0
	0	0	0 0		0	0			0	0	0	0	0	0)	0	0	0 (0	0	0	0 0		1	0	0	0 0.2
	0	0	0 0		0	0	-	0	0	0	0	0	0	-)	0	0	0 ()	0	0	-	0 0)	1 0.01999	999 0.0003	999 7.9999	
	0	0	0 0		0	0	0	0	0	0	0	0	0	0)	0	0	0 ()	0	0	0	0 0)	0	0	2 0.1199	999

Рис 4. Таблица кубического сплайна и погрешности

Вывод

Преимуществом сплайнов перед обычной интерполяцией является их сходимость и устойчивость процесса вычислений, обеспечивающие достаточную точность построения графиков.