Arytmetyka komputerowa cd.

1. Treści zadań

1.1 Zadanie pierwsze

Napisać algorytm do obliczenia funkcji wykładniczej e^x przy pomocy nieskończonych szeregów $e^x = 1 + x + x^2/2! + x^3/3! + ...$

- (1a) Wykonując sumowanie w naturalnej kolejności, jakie kryterium zakończenia obliczeń przyjmiesz?
- (1b) Proszę przetestować algorytm dla x=+-1, +-5, +-10 i porównać wyniki z wynikami wykonania standardowej funkcji exp(x)
- (1c) Czy można posłużyć się szeregami w tej postaci do uzyskania dokładnych wyników dla x < 0?
- (1d) Czy możesz zmienić wygląd szeregu lub w jakiś sposób przegrupować składowe żeby uzyskać dokładniejsze wyniki dla x < 0?

1.2 Zadanie drugie

Które z dwóch matematycznie ekwiwalentnych wyrażeń $x^**2 - y^**2$ oraz $(x-y)^*(x+y)$ może być obliczone dokładniej w arytmetyce zmienno-przecinkowej? Dlaczego?

1.3 Zadanie trzecie

Dla jakich wartości x i y, względem siebie, istnieje wyraźna różnica w dokładności dwóch wyrażeń?

Zakładamy, że rozwiązujemy równanie kwadratowe ax**2 + bx + c = 0, z a = 1.22, b = 3.34 i c = 2.28, wykorzystując znormalizowany system zmienno-przecinkowy z podstawa beta = 10 i dokładnością p = 3.

- (a), ile wyniesie obliczona wartość b**2 4ac?
- (b) jaka jest dokładna wartość wyróżnika w rzeczywistej (dokładnej) arytmetyce?
- (c) jaki jest względny błąd w obliczonej wartości wyróżnika?

2. Rozwiązania zadań

2.1 Algorytm do obliczenia funkcji wykładniczej e^x przy pomocy nieskończonych szeregów

```
def calculate_exponential(x, epsilon=1e-10):
    sum = 1.0
    factorial = 1.0
    power_of_x = 1.0
    i = 1
    term = power_of_x

while term > epsilon:
        factorial *= i
        power_of_x *= x
        term = power_of_x / factorial
        sum += term
        i += 1

    return sum

x = -10
print(calculate_exponential(x))
```

Rys.1

2.1.1 Kryterium zakończenia

Obliczenia zatrzymują się, gdy bezwzględna wartość kolejnego wyrazu szeregu jest mniejsza niż zadany próg ϵ . To podejście jest szczególnie przydatne, gdy chcemy zapewnić, że każdy dodany wyraz wnosi znaczący wkład do sumy końcowej.

 $|an|<\epsilon$

Gdzie an to n-ty wyraz szeregu, a ϵ to zadana wartość progowa.

W moim przypadku $\epsilon = 10^{-10}$.

2.1.2 Testowanie algorytmu i porównanie wyników z wynikami wykonania standardowej funkcji exp(x)

	calculate_exponential(x)	math.exp(x)	Różnica
-1	0.36787944117144245	0.36787944117144233	1.1102230246251565e-16
1	2.7182818284590455	2.718281828459045	4.440892098500626e-16
-5	0.006737946999084638	0.006737946999085467	1.439820215169138e-15
5	148.41315910257657	148.4131591025766	2.842170943040401e-14
-10	4.539992967040021e-05	4.5399929762484854e-05	3.288713675966502e-13
10	22026.465794806714	22026.465794806718	7.275957614183426e-12

Tabela 1

2.1.3 Czy można posłużyć się szeregami w tej postaci do uzyskania dokładnych wyników dla x < 0?

Szereg Maclaurina dla e^x jest zbieżny dla wszystkich wartości x, zarówno dodatnich, jak i ujemnych. Oznacza to, że niezależnie od wartości x, sumowanie odpowiednio dużej liczby wyrazów szeregu pozwoli na osiągnięcie dowolnie wysokiej dokładności przybliżenia wartości e^x .

W przypadku ujemnych wartości x, szereg nadal skutecznie zbiega do wartości e^{x} , ale wyrazy szeregu zmieniają znaki na przemian, co jest wynikiem podnoszenia ujemnego x do potęgi.

Dzięki alternującym się znakom, każdy dodatni wyraz szeregu jest częściowo anulowany przez następny, ujemny wyraz, co prowadzi do zbieżności szeregu. Jednakże, w praktycznym użyciu algorytmu dla x<0, szczególnie dla dużych wartości |x|, konieczne może być użycie większej liczby wyrazów szeregu w celu osiągnięcia pożądanej dokładności. To dlatego, że początkowe wyrazy mogą mieć duże wartości bezwzględne, zanim szereg zacznie skutecznie konwergować.

Należy także zauważyć, że dla bardzo małych wartości x (bliskich zero) szereg szybko zbiega do e^x, i niewiele wyrazów jest potrzebnych do osiągnięcia wysokiej dokładności.

2.1.4 Czy możesz zmienić wygląd szeregu lub w jakiś sposób przegrupować składowe żeby uzyskać dokładniejsze wyniki dla x < 0 ?

Dla ujemnych wartości x, zwłaszcza gdy |x| jest duże, bezpośrednie stosowanie szeregu Maclaurina dla $e^{\Lambda}x$ może wymagać dużej liczby wyrazów do osiągnięcia wysokiej dokładności ze względu na wolną konwergencję. Aby poprawić dokładność i szybkość konwergencji dla x<0, można zastosować kilka technik. Jedną z nich jest przekształcenie pierwotnego szeregu do postaci bardziej przyjaznej dla ujemnych x. Dla ujemnych x, szczególnie skuteczne może być wykorzystanie własności funkcji wykładniczej, tj. $e^{-x}=\frac{1}{e^{x}}$, co pozwala na sumowanie szeregu dla wartości dodatniej x i następnie odwrócenie wyniku. To

zmniejsza problem dużych ujemnych wartości x do problemu obliczania e^x dla x dodatnich, gdzie szereg zbiega szybciej.

2.2 Wyrażenie obliczone bardziej dokładnie w arytmetyce zmiennoprzecinkowej

Wyrażenia matematyczne x^2-y^2 oraz $(x-y)^*(x+y)$ są ekwiwalentne. W przypadku pierwszego wyrażenia, x^2-y^2 obliczenia polegają na wykonaniu dwóch operacji potęgowania, a następnie odejmowaniu wyników. Każda z tych operacji może wprowadzić błąd zaokrąglenia, zwłaszcza jeśli wartości x^2 i y^2 są bliskie sobie. Odejmowanie dwóch bliskich wartości może prowadzić do znaczącej utraty precyzji ze względu katastrofalną cancelację". W przypadku drugiego wyrażenia, $(x-y)\cdot(x+y)$, wykonuje się jedno odejmowanie i jedno dodawanie, a następnie mnoży się wyniki. To podejście zmniejsza ryzyko katastrofalnej cancelacji, ponieważ mnożenie zwykle nie prowadzi do tak znacznej utraty precyzji, jak odejmowanie. W szczególności, jeśli x i y są bliskie sobie, różnica x-y będzie mała, ale mnożenie małej różnicy przez sumę x+y jest mniej podatne na problemy z precyzją niż odejmowanie dwóch dużych, bliskich sobie wartości.

2.3 Różnica w dokładności

$$ax^{2} + bx + c = 0$$

 $a = 1.22$
 $b = 3.34$
 $c = 2.28$
 $\beta = 10$
 $p = 3$

2.3.1 Wartość obliczona

Przy tych założeniach obliczam wartość wyrażenia.

$$b^{2} - 4ac = ?$$

 $b^{2} = 3.34 * 3.34 = 11,1556 = 11.2$
 $4ac = 4 * 1.22 * 2.28 = 11.1264 = 11.1$
 $b^{2} - 4ac = 11.2 - 11.1 = 0.1$

2.3.2 Dokładna wartość wyróżnika w rzeczywistej arytmetyce

$$b^2 - 4ac = 11,1556 - 11.1264 = 0.0292$$

2.3.3 Błąd względny

Błąd względny =
$$\frac{0.1 - 0.0292}{0.1} \approx 2.42466$$

3. Bibliografia

- 1. Wykład
- 2. https://en.wikipedia.org/wiki/Catastrophic cancellation