Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

1 Input Parameters

Moc	dule			Fin Plate
MainModule			Shear Connection	
Connectivity			Column flange-Beam web	
	(kN)*			10.0
	· /	Supporting Se	ection	
	Supporti	ng Section		HB 200
		erial *		E 250 (Fe 410 W)A
т		ngth, fu (MPa)		410
		th , fy (MPa)		250
α	Mass	37.3	Iz(cm4)	36000000.0
ZZ D	Area(cm2) -	4750.0	Iy(cm4)	9670000.0
	D(mm)	200.0	rz(cm)	87.10000000000001
R ₁	B(mm)	200.0	ry(cm)	45.09999999999994
R ₂	t(mm)	6.1	Zz(cm3)	361000.0
В	T(mm)	9	Zy(cm3)	96700.0
'	FlangeSlope	94	Zpz(cm3)	389800.0
	R1(mm)	9.0	Zpy(cm3)	96700.0
	R2(mm)	4.5		
		Supported Se	ection	
	Supporte	ed Section		JB 225
V	Mate	erial *	E 250 (Fe 410 W)A	
т т	Ultimate stre	ngth, fu (MPa)	410	
	Yield Streng	th , fy (MPa)		250
$B-t)$ α	Mass	12.8	Iz(cm4)	13100000.0
ZZ D	Area(cm2) - A	1630.0	Iy(cm4)	405000.0
	D(mm)	225.0	rz(cm)	89.7
-R ₂	B(mm)	80.0	ry(cm)	15.8
В	t(mm)	3.7	Zz(cm3)	116000.0
Y	T(mm)	5.0	Zy(cm3)	10100.0
	FlangeSlope	91.5	Zpz(cm3)	129300.00000000001
	R1(mm)	6.5	Zpy(cm3)	10100.0
	R2(mm)	1.5		
		Bolt Deta		
	r (mm)*		,	2.0, 16.0, 20.0, 24.0, 30.0, 36.0]
	do *		[3.6, 4.6]	, 4.8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9
Gra			[0.0,0	
Tyl	pe *		[510, 210,	Bearing Bolt Standard

Slip factor (μ_f)

Type of edges

0.3

a - Sheared or hand flame cut

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Plate Det	ails
Thickness(mm)*	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0, 20.0]
Material *	E 250 (Fe 410 W)A
Ultimate strength, fu (MPa)	410
Yield Strength , fy (MPa)	250
Weld Det	ails
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Diameter (mm)*		12.0	
Grade *		3.6	
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{300.0 * 1 * 84.3}{\sqrt{3} * 1.25}$ $= 11.68$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.52 * 12.0 * 3.7 * 410}{1.25}$ $= 18.93$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (11.68, 18.93)$ = 11.68	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{10.0^{2} + 1.0^{2}}}{11.68}$ $= 1$	2	
No of Columns		1	
No of Rows		2	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * \ 3.7, \ 300 \ mm)$ $= 300$	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ $= 2.5 * 12.0 = 30.0$	85	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * \ 3.7, \ 300 \ mm)$ = 300	85	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *4.0 * \sqrt{\frac{250}{250}}$ $= 48.0$	25	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Min. Edge Distance (mm)	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$	25	Pass
Min. Eage Distance (min)	= 1.7 * 13.0 = 22.1	20	1 6655
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *4.0 * \sqrt{\frac{250}{250}}$ $= 48.0$	25	Pass
Capacity (kN)	6.81	18.93	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 225.0 = 135.0$	135	Pass
	$d_b - 2(t_{bf} + r_{b1} + gap)$		_
Max. Plate Height (mm)	= 225.0 - 2 * (5.0 + 6.5 + 10)	135	Pass
	=202.0		
M: D1 ()	$2 * e_{min} + (n \ c - 1) * p_{min}$	co o	D
Min. Plate Length (mm)	= 2 * 22.1 + (1 - 1) * 30.0	60.0	Pass
Min.Plate Thickness	=54.2	4.0	Pass
(mm)	$t_w = 3.7$	4.0	rass
()		$V = A_v * f_y$	
		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
Shear yielding Capacity		$= \frac{135 * 4.0 * 250}{\sqrt{3} * 1.1}$	
(V_dy) (kN)		$\sqrt{3} * 1.1$	
		= 70.86	
		$= 70.86$ $V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$	
Shear Rupture Capacity		= 1 * (135 - (2 * 13.0)) * 4.0 * 410	<u> </u>
(V_dn) (kN)		= 134.07	
Block Shear Capacity in		79.58	
Shear (V_db) (kN)		10.30	
		$V_d = Min(V_{dy}, V_{dn}, V_{db})$	
Shear Capacity (V_d)	10.0	= Min(70.86, 134.07, 79.58)	Pass
(kN)		=70.86	
		$T_{dg} = \frac{l * t_p * f_y}{\gamma_{mo}}$	
Tongion Violding Conneity		γ_{mo} 135 * 4.0 * 250	
Tension Yielding Capacity (kN)		$=\frac{135*4.0*250}{1.1}$	
		= 122.73	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Tension Rupture Capacity		$= \frac{0.9 * (135 - 2 * 13.0) * 4.0 * 410}{1.25}$	0
(kN)		= 144.06	
Block Shear Capacity in		88.3	
Tension (T_db) (kN)			
		$T_d = Min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity (kN)	1.0	= Min(122.73, 144.06, 88.3)	Pass
		= 88.3	
Moment Capacity (kN-m)	0.35	4.14	Pass
Interaction Ratio	≤ 1	$\frac{0.35}{4.14} + \frac{1.0}{88.3} = 0.1$	Pass
		4.14 88.3	

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	18 /05 /2020	Client	LoremIpsum

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness of Thicker part$ $= max(9, 4.0)$ $= 9$ $IS800: 2007 cl.10.5.2.3 Table 21,$ $t_{w_{min}} = 3$	3	Pass
Max Weld Size (mm)	$Thickness of Thinner part$ $= Min(9, 4.0) = 4.0$ $t_{w_{max}} = 4.0$	3	Pass
Weld Strength (kN/mm)	$R_w = \sqrt{(T_{wh} + A_{wh})^2 + (T_{wv} + V_{wv})^2}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{350000.0 * 64.5}{357781.5}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{350000.0 * 0.0}{357781.5}$ $V_{wv} = \frac{V}{l_w} = \frac{10000.0}{258}$ $A_{wh} = \frac{A}{l_w} = \frac{1000.0}{258}$ $R_w = \sqrt{(63.1 + 3.88)^2 + (0.0 + 38.76)^2}$ $= 101.93$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{3 * 410}{\sqrt{3} * 1.25}$ $= 568.11$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	18 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View