# CPSC 340: Machine Learning and Data Mining

Linear Least Squares

#### Admin

- Assignment 2 is due Sunday:
  - You should already be started!
- Regarding GitHub
  - I got a comment about late days:
  - We use push timestamps not commit timestamps



Row Xi gives all items bought by user 'i'. By convention, Xi is a dx1 column vector.

# Clustering User-Product Matrix

Normally think of clustering by rows (users):



We also find outliers by rows.

# Clustering User-Product Matrix

We could cluster by columns (products):

Apply clustering to X<sup>T</sup>.

products are cluster "1"

#### **Association Rules**

Association rules (S => T): all '1' in cluster S => all '1' in cluster T.



#### **Amazon Product Recommendation**

- Amazon product recommendation works by columns:
  - Conceptually, you take the user-product matrix:

— And transpose it to make a product-user matrix:

- Find similar products as nearest neighbours among products.
  - Cosine similarity used as "distance".

# End of Part 2: Key Concepts

- We focused on 3 unsupervised learning tasks:
  - Clustering.
    - K-means algorithm (and using it for vector quantization).
    - Density-based clustering (and region-based pruning for finding close points).
    - Hierarchical clustering (and agglomerative algorithm for constructing trees).
  - Outlier Detection.
    - Surveyed common approaches (and said that problem is ill-defined).
  - Association rules.
    - A priori algorithm (for finding rules with high support and confidence).
    - Amazon product recommendation (for huge datasets).

# Supervised Learning Round 2: Regression

We're going to revisit supervised learning:

- Previously, we considered classification:
  - We assumed  $y_i$  was discrete:  $y_i$  = 'spam' or  $y_i$  = 'not spam'.
- Now we're going to consider regression:
  - We allow  $y_i$  to be numerical:  $y_i = 10.34$ cm.

# Example: Dependent vs. Explanatory Variables

- We want to discover relationship between numerical variables:
  - Does number of lung cancer deaths change with number of cigarettes?
  - Does number of skin cancer deaths change with latitude?



# Example: Dependent vs. Explanatory Variables

- We want to discover relationship between numerical variables:
  - Does number of lung cancer deaths change with number of cigarettes?
  - Does number of skin cancer deaths change with latitude?
  - Does number of gun deaths change with gun ownership?



## Handling Numerical Labels

- One way to handle numerical y<sub>i</sub>: discretize.
  - E.g., for 'age' could we use {'age ≤ 20', '20 < age ≤ <math>30', 'age > 30'}.
  - Now we can apply methods for classification to do regression.
  - But coarse discretization loses resolution.
  - And fine discretization requires lots of data.
  - We also discard ordering information.
- We could make regression versions of classification methods:
  - Next time: regression trees, generative models, non-parametric models.
- Today: one of oldest, but still most popular/important methods:
  - Linear regression based on squared error.
  - Very interpretable and the building block for more-complex methods.

## Linear Regression in 1 Dimension

- Assume we only have 1 feature (d = 1):
  - E.g.,  $x_i$  is number of cigarettes and  $y_i$  is number of lung cancer deaths.
- Linear regression models  $y_i$  is a linear function of  $x_i$ :

$$y_i = w x_i$$

- The parameter 'w' is the weight or regression coefficient of  $x_i$ .
- As x<sub>i</sub> changes, slope 'w' affects the rate that y<sub>i</sub> increases/decreases:
  - Positive 'w':  $y_i$  increase as  $x_i$  increases.
  - Negative 'w': y<sub>i</sub> decreases as x<sub>i</sub> increases.

# Linear Regression in 1 Dimension



# Aside: terminology woes

- Different fields use different terminology and symbols.
  - "data points" = "objects" = "examples" = "rows"
  - "inputs" = "predictors" = "features" = "explanatory variables" =
    "regressors" = "independent variables" = "covariates" = "columns"
  - "outputs" = "outcomes" = "targets" = "response variables" = "dependent variables" (also called a "label" if it's categorical)
  - "regression coefficients" = "weights" = "parameters"
- With linear regression, the symbols are inconsistent too
  - In ML, the data is X and the weights are w
  - In Statistics, the data is X and the weights are  $\beta$
  - In optimization, the data is A and the weights are x

Our linear model is given by:

$$y_i = w x_i$$

So we make predictions for a new example by using:

$$\gamma_i = w \hat{x}_i$$

• But we can't use the same error as before:

- Even if data comes from a linear model but has noise, we can have 
$$\hat{y_i} \neq y_i$$
 for all training examples 'i' for the "best" model

- We need a way to evaluate numerical error.
- Classic way to set slope 'w' is minimizing sum of squared errors:



- There are some justifications for this choice.
  - Assuming errors are Gaussian and finding w by maximum likelihood.
- But usually, it is done because it is easy to minimize.

Classic way to set slope 'w' is minimizing sum of squared errors:



Classic way to set slope 'w' is minimizing sum of squared errors:

$$f(w) = \sum_{i=1}^{n} (wx_i - y_i)^2$$



# Minimizing a differentiable function

- Math 101 approach to minimizing a differentiable function 'f':
  - 1. Take the derivative of 'f'.
  - 2. Find points 'w' where the derivative f'(w) is equal to 0.
  - 3. Choose the smallest one (but check that f''(w) is positive).



# Terminology (Take 2)

- "Minimum": the value of f when f(x) is minimized
  - written as min f(x)
- "Minimizer": the value of x when f(x) is minimized
  - written as arg min f(x)
- "Minima": plural of minimum
- And vice versa...
  - Maximum, maximizer, maxima

# Finding Least Squares Solution

• Finding 'w' that minimizes sum of squared errors:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w x_i - y_i)^2 = \frac{1}{2} (w x_i - y_i)^2 + \frac{1}{2} (w x_2 - y_2)^2 + \cdots + \frac{1}{2} (w x_n - y_n)^2$$

$$f'(w) = \sum_{i=1}^{n} (w x_i - y_i) x_i = (w y_i - y_i) x_i + (w x_2 - y_2) x_2 + \cdots + (w y_n - y_n) x_n$$

$$Set f'(w) = 0; \sum_{i=1}^{n} (w x_i - y_i) x_i = 0 \quad \text{or} \quad \sum_{i=1}^{n} [w x_i^2 - y_i x_i] = 0$$

$$T_s \text{ this a } \underbrace{\min_{i=1}^{n} x_i^2}_{j=1} x_i^2$$

$$f''(w) = \sum_{i=1}^{n} x_i^2$$

$$f''(w) = \sum_{i=1}^{n} x_i^2$$

$$Since (anything)^2 \text{ is } non - negative, f''(w) > 0 \quad \text{or} \quad \sum_{i=1}^{n} y_i x_i$$

$$This is a \min_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i x_i$$

$$f_{his is a minimizer}$$

$$So \quad w = \sum_{i=1}^{n} y_i x_i$$

# Multiple Explanatory Variables

- Smoking is not the only contributor to lung cancer.
  - For example, environmental factors like exposure to asbestos.
- How can we model the combined effect of smoking and asbestos?
- A simple way is with a 2-dimensional linear function:

We have a weight w<sub>1</sub> for feature '1' and w<sub>2</sub> for feature '2'.

# Least Squares in 2-Dimensions



# Least Squares in 2-Dimensions



# Least Squares in d-Dimensions

If we have 'd' features, the d-dimensional linear model is:

$$y_i = w_i x_{i1} + w_2 x_{i2} + w_3 x_{i3} + \cdots + w_d x_{id}$$

• We can re-write this in summation notation:

$$y_i = \sum_{j=1}^d w_j x_{ij}$$

We can also re-write this in vector notation:

e-write this in vector notation:
$$y_{i} = w_{i}^{T} x_{i}$$

$$y_{i} = w$$

# Notation Alert (again)

In this course, all vectors are assumed to be column-vectors:

$$W = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$$

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

$$X_i = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{id} \end{bmatrix}$$

So rows of 'X' are actually transpose of column-vector x<sub>i</sub>:

$$\chi = \begin{bmatrix} -x_1 \\ -x_2 \end{bmatrix}$$

## Least Squares in d-Dimensions

The linear least squares model in d-dimensions minimizes:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2}$$

$$\int_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2}$$

$$\int$$

- How do we find the best vector 'w'?
  - Set the derivative of each variable ("partial derivative") to 0?

# **Partial Derivatives**



#### Partial Derivatives



# Least Squares in d-Dimensions

The linear least squares model in d-dimensions minimizes:

$$f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^{T}x_{i} - y_{i})^{2}$$

$$\begin{cases} w^{T}x_{i} = w_{i}x_{i1} + w_{2}x_{i2} + \cdots + w_{k}x_{i} \\ dw_{i}(w^{T}x_{i}) = x_{i1} + 0 + \cdots + 0 \end{cases}$$

• Computing the partial derivative:

$$\frac{\partial}{\partial w_i} \left[ \frac{1}{2} \sum_{i=1}^{n} (w^7 x_i - y_i)^2 \right] = \frac{1}{2} \sum_{i=1}^{n} \frac{\partial}{\partial w_i} \left[ (w^7 x_i - y_i)^2 \right]$$

$$= \frac{1}{2} \sum_{i=1}^{n} 2 (w^7 x_i - y_i) \frac{\partial}{\partial w_i} \left[ w^7 x_i \right]$$

Problem: I can't just set to 0 and solve because it depends

$$=\sum_{i=1}^{n}\left(w^{7}x_{i}-y_{i}\right)x_{i1}$$

 $= \sum_{i=1}^{n} (w^{7}x_{i} - y_{i}) \times_{i1}$  What is the derivative of  $w^{7}x_{i}$  with respect to  $w_{i}$ ?

#### Gradient and Critical Points in d-Dimensions

- Generalizing "set the derivative to 0 and solve" in d-dimensions:
  - Find 'w' where the gradient vector equals the zero vector.
- Gradient is vector with partial derivative 'j' in position 'j':



#### Gradient and Critical Points in d-Dimensions

- Generalizing "set the derivative to 0 and solve" in d-dimensions:
  - Find 'w' where the gradient vector equals the zero vector.
- Gradient is vector with partial derivative 'j' in position 'j':

$$\Delta t(m) = \begin{bmatrix} 3m^1 \\ 5t \\ 3t \\ 3t \\ 3t \end{bmatrix}$$

For linear least squares:
$$\widehat{\Sigma}(w^7x_i - y_i) \times iI$$

$$\widehat{\nabla}f(w) = \widehat{\Sigma}(w^7x_i - y_i) \times iZ$$

$$\widehat{\Sigma}(w^7x_i - y_i) \times iZ$$

$$\widehat{\Sigma}(w^7x_i - y_i) \times iZ$$

• Gradient is vector.

For linear least squares:  $\nabla f(w) = \begin{cases}
2f \\
3w_1 \\
2f \\
2w_2 \\
\vdots \\
2f \\
2w_1
\end{cases}$   $\nabla f(w) = \begin{cases}
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i1} \\
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i2} \\
\vdots \\
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i3}
\end{cases}$   $\nabla f(w) = \begin{cases}
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i1} \\
\vdots \\
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i3}
\end{cases}$   $\nabla f(w) = \begin{cases}
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i3} \\
\vdots \\
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4}
\end{cases}$   $\nabla f(w) = \begin{cases}
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4} \\
\vdots \\
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4}
\end{cases}$   $\nabla f(w) = \begin{cases}
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4} \\
\vdots \\
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4}
\end{cases}$   $\nabla f(w) = \begin{cases}
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4} \\
\vdots \\
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4}
\end{cases}$   $\nabla f(w) = \begin{cases}
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4} \\
\vdots \\
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4}
\end{cases}$   $\nabla f(w) = \begin{cases}
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4} \\
\vdots \\
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4}
\end{cases}$   $\nabla f(w) = \begin{cases}
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4} \\
\vdots \\
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4}
\end{cases}$   $\nabla f(w) = \begin{cases}
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4} \\
\vdots \\
\sum_{i=1}^{n} (w^7 x_i - y_i) x_{i4}
\end{cases}$ 

# There is a lot more to linear regression

- You can take an entire statistics course in linear regression
- Additional topics include
  - "interaction terms"
  - Feature selection
  - Model diagnostics (training/test error?)
  - Robust regression
  - Missing data
  - Multicollinearity
  - Computational issues
  - Connection to classification
- We will cover some of the above topics later in the course.

#### Summary

- Regression considers the case of a numerical y<sub>i</sub>.
- Least squares is a classic method for fitting linear models.
  - With 1 feature, it has a simple closed-form solution.
- Gradient is vector containing partial derivatives of all variables.
- Linear system of equations gives least squares with 'd' features.

• Next time: *non-linear* regression.