

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 30 de julio de 2019

Nombre y apellido:	Padrón:
e-mail:	Cuatrimestre de cursada:

- Para aprobar deben contestarse bien 6 puntos del total.
- Cada pregunta otorga una cantidad de puntos especificada entre corchetes sobre el margen izquierdo.
- Si la pregunta es respondida correctamente suma el puntaje especificado.
- Si la pregunta tiene opciones y es respondida incorrectamente resta el puntaje especificado.
- Si la pregunta no es respondida no se asignan puntos.
- Considerar $V_{th} = 26 \,\mathrm{mV}$.
- [1 pt.] 1) Una muestra de Silicio de largo $L=1\,\mu\mathrm{m}$ está homogeneamente dopada con átomos aceptores con una concentración $N_1=10^{14}\,\mathrm{at/cm^3}$. Luego, se realiza un segundo dopaje con aceptores sobre toda la muestra, pero ahora con una concetración no uniforme que sigue la ley $N_A(x)=10^{17}\,\mathrm{at/cm^3}\cdot\exp\left(-\left(\frac{x}{\lambda}\right)^2\right)$ con x en metros y $\lambda=L/5$. Calcular la diferencia de potencial entre los extremos de un bloque de silicio $(\phi_B\,[\mathrm{mV}]=\phi(0)-\phi(L))$.
- [½ pt.] 2) Un diodo PN tiene dopajes $N_A = 10^{17} \text{at/cm}^3 \text{ y } N_D = 10^{16} \text{at/cm}^3$. Indicar cuánto vale aproximadamente la movilidad de los portadores mayoritarios en el lado menos dopado.
- [1 pt.] 3) Calcular el campo eléctrico aplicado en el óxido $(E_{ox} [V/cm])$ de una juntura MOS fabricada con polysilicio dopado tipo P y sustrato dopado con $N_D = 10^{16} \text{ cm}^{-3}$, $C'_{ox} = 4.06 \times 10^{-8} \text{ F/cm}^2$, $\gamma^2 = 2.01 \text{ V}^{-1}$, $V_T = -1 \text{ V}$ cuando se aplica $V_{GB} = 1.5 \text{ V}$.
- [1 pt.] 4) Un diodo ideal P⁺N con dopajes $N_A = 10^{19} \text{at/cm}^3$ y $N_D = 10^{16} \text{at/cm}^3$, corriente de saturación inversa $I_o = 1,25 \cdot 10^{-13}$ A y área $A = 0,1 \text{ mm}^2$ está polarizado en directa con corriente I = 1 mA. Calcular la capacidad de difusión $(C_{dif}[F])$.
- [1 pt.] 5) Un JFET de canal N está conectado de la siguiente forma: el drain conectado a una fuente de alimentación de 3 V, el source conectado al cátodo de un diodo zener, y el gate del JFET conectado a una fuente de tensión (V_G) que controla la corriente de drain. Los parámetros del transistor son $I_{DSS} = 5 \,\text{mA}$ y $V_P = -1 \,\text{V}$. El ánodo del diodo zener está conectado a tierra, y sus parámetros son $V_Z = 1,2 \,\text{V}$, $I_{min} = 0,5 \,\text{mA}$ y $I_{max} = 10 \,\text{mA}$. Calcular los valores extremos de V_G ($V_{G,min}$ y $V_{G,max}$) para que el diodo funcione en la región de zener.
- [½ pt.] 6) ¿Cuál de los siguientes parámetros limita el mínimo valor del tiempo de propagación (t_p) que se puede obtener en un inversor CMOS fabricado en un proceso estándar?
- [1 pt.] 7) Realizar el corte lateral de un MOSFET de canal N fabricado en un proceso CMOS estándar de sustrato tipo P. Indique claramente cada uno de los materiales, dopajes, y terminales del dispositivo.
- [½ pt.] 8) Se diseña un amplificador emisor común sin realimentación y sin carga, polarizado con una única R_B y una única R_C . A la entrada, la fuente de señal presenta una tensión v_s pico y una resistencia serie R_s no nula. Al implementar el amplificador, el transistor utilizado tiene un β considerablemente mayor que lo estimado en la etapa de diseño. ¿Qué consecuencias tendrá esto sobre el desempeño del amplificador?
- [1 pt.] 9) Se implementa un amplificador emisor común sin realimentación con un transistor PNP con parámetros $\beta=200$ y $V_A=20\,\mathrm{V}$. La tensión de alimentación es $V_{CC}=5\,\mathrm{V}$, y el transistor está polarizado con una resistencia de base $R_B=39\,\mathrm{k}\Omega$ entre la base del transistor y tierra, y una resistencia de colector, $R_C=100\,\Omega$ conectada a tierra. A la entrada del amplificador, se conecta una señal (v_s) con resistencia serie $R_s=1\,\mathrm{k}\Omega$ a través de un capacitor de desacople de valor adecuado. Calcular $A_{vo},\,R_{IN}$ y R_{OUT} .

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 30 de julio de 2019

- [1 pt.] 10) Un amplificador source común alimentado con $V_{DD}=3\,\mathrm{V}$ está polarizado con dos resistencias de gate de valor elevado (orden de magnitud: $10\,\mathrm{k}\Omega$), y resistencia de drain $R_D=470\,\Omega$. Los parámetros del transistor son μ $C'_{OX}=100\,\mu\mathrm{A}/\mathrm{V}^2$, $W=600\,\mu\mathrm{m}$, $L=5\,\mu\mathrm{m}$, $V_T=0.75\,\mathrm{V}$ y se puede considerar $\lambda=0$. A la entrada, se conecta una fuente de señal senoidal con tensión pico $v_s=150\,\mathrm{mV}$ y resistencia serie $R_s=50\,\Omega$. ¿Cuál es la mínima corriente de polarización I_{DQ} con la que se puede polarizar el transistor para evitar la distorsión por alimealidad?
- [1 pt.] 11) Se implementa un rectificador de onda completa utilizando un puente de diodos discreto, donde cada diodo tiene parámetros $V_{AK,ON}=1.2\,\mathrm{V},~\theta_{jc}=1.5^{\circ}\mathrm{C/W}~\mathrm{y}~\theta_{ja}=5^{\circ}\mathrm{C/W}.$ A la entrada del puente, se conecta una señal cuadrada con valor alto $V^{+}=+200\,\mathrm{V}$ y valor bajo $V^{-}=-200\,\mathrm{V},$ simétrica y con frecuencia $f=50\,\mathrm{Hz}.$ La carga del rectificador puede representarse como resistencia de $5\,\Omega$. Considerando que la temepratura del ambiente de operación puede alcanzar los $T_a=50^{\circ}\mathrm{C},$ y que a cada diodo se adosa un disipador con resistencia térmica $\theta_{dis}=7^{\circ}\mathrm{C/W},$ calcular la temperatura de juntura de los diodos $(T_j\,[^{\circ}\mathrm{C}]).$
- $[\frac{1}{2}$ pt.] 12) Diodos de potencia: ¿Qué consideraciones constructivas se tienen en cuenta al fabricar un diodo PN de potencia?