Computability

Rasmus Guldborg Pedersen

January 2015

Regular and Non-regular Languages

How can a language be shown to be regular? How can a language be shown to be not regular? Is the language $\{a^nb^n|n>0\}$ regular? Explain and justify your answer.

Regular Languages

If Σ is an alphabet, then the set of regular languages is defined as: \mathcal{R} :

- ② For every $a \in \Sigma$, $\{a\} \in \mathcal{R}$
- 3 For any L_1 and L_2 in \mathcal{R} ,

$$L_1 \cup L_2 \in \mathcal{R}$$

$$L_1L_2\in\mathcal{R}$$

$$L_1^* \in \mathcal{R}$$

Pumping Lemma

$$L \subseteq \Sigma^*$$

$$M = (Q, \Sigma, q_0, A, \delta)$$

$$n = |Q|$$

For every $x \in L$ where $|x| \ge n$, x = uvw and

- $|v| > 0 \text{ (or } v \neq \Lambda),$
- $\exists \forall_{i\geq 0}|uv^iw\in L$

must be true.

A not regular language

 $\{a^nb^n|n>0\}$ is not regular.

Proof:

Assume a FA M with n = |Q|, $x = a^n b^n$ and $|x| \ge n$. There should be a u, v and w such that x = uvw.

- $|uv| \leq n$
- 2 |v| > 0, $v = a^k$ where k > 0
- ③ With i > 1 then $uv^i w \in L \to a^{i+k} b^i \in L$ is a contradiction because $i + k \neq i$.

The End

The End