Mecanique

David Wiedemann

Table des matières

1	Physique	3
	1.1 Exemple de loi physique : l'addition des vitesse	3
	1.2 Lois de conservation	4
	1.3 Invariance par changement de referentiel	4
2	La mecanique classique	5
3	Objectifs du cours de mecanique generale	5
4	Le modele du "point materiel"	5
5	Mouvement Rectiligne Uniforme	6
6	Mouvement rectiligne uniformement accelere	6
7	Lois de newton	6
8	Force de pesanteur et chute des corps	6
9	Oscillateurs Harmoniques	7
	9.1 Modelisation de la force d'un ressort	7
	9.2 Oscillateurs harmoniques a une dimension	8
	9.3 Oscillateur harmonique amorti	11
	9.4 Oscillateur force	12
	9.5 Phenomes de resonnance	12
10	Dynamique du point materiel	12
	10.1 Produit scaleaire	13
	10.2 Projections et composantes d'un vecteur	14
	10.3 Repere direct	15
	10.4 Produit vectoriel	15
	10.5 Mouvement avec vitesse scalaire constante	18
	10.6 Systeme de coordonnees	19

11 De	scription des rotations spatiales	19
11.	1 Interprétation du vecteur ω	21
	11.1.1 Cas particulier	21
11.	2 Vitesse et accélération en coordonnées cylindriques	21
11.	3 Pendule Mathématique	21
11.	4 Coordonnées sphériques	22
11.	5 Bille en équilibre dans un anneau en rotation	23
12 Tra	avail, énergie, forces conservatives	23
12.	1 Forces de Frottement	23
12.	2 Forces de frottement sec	24
12.	3 Coefficients de frottement	24
12.	4 Impulsion et quantité de mouvement	24
12.	5 Travail et énérgie cinétique	25
	of Theorems	
1	Definition (Point materiel)	5
2	Definition (Referentiel)	13
3	Definition (Repere)	13
4	Definition (Produit scalaire)	13
5	Definition (Produit vectoriel)	15
6	Definition (Produit Mixte)	16
7	Definition (Double produit vectoriel)	16
8	Definition (Systeme de coordonnees)	19
4	Theorème	19
5	Theorème (Formule de Poisson)	20
6	Theorème	22

Lecture 1: Cours de Physique Generale

Wed 16 Sep

1 Physique

- Science dont le but est d'etudier et de comprendre les composants de la matiere et leurs interactions mutuelles.
- Sur la base des proprietes observees de la matiere et des interactions, le physicien tente d'expliquer les phenomenes naturels observables.
- Les "explications" sont données sous forme de lois aussi fondamentales que possible : elles resument notre comprehension des phenomenes physiques.
- Les maths sont le language qu'on utilise pour decrire ces phenomenes.

Exemple

Une particule se deplace sur un axe droit.

Au temps t_1 position $x_1 = x(t_1)$. Au temps t_2 position $x_2 = x(t_2)$. $\Delta x = x_2 - x_1$ et $\Delta t = t_2 - t_1$

Donc la vitesse moyenne

$$v_{moyenne} = \frac{\Delta x}{\Delta t}$$

Mais on peut faire diminuer Δt , pour connaître la vitesse moyenne sur un temps infinitesimal :

$$v = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx(t)}{dt} = \dot{x}(t)$$

Donc la vitesse instantanee est la derivee de la fonction x(t) par rapport a t.

On peut faire la meme chose avec l'acceleration

Au temps t_1 , vitesse $v_1 = v(t_1)$.

Au temps t_2 , vitesse $v_2 = v(t_2)$.

Donc l'acceleration moyenne est

$$a_{moyenne} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

Et donc par le meme raisonnement, l'acceleration instantanee est

$$a = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv(t)}{dt} := \dot{v}(t) = \ddot{x}(t)$$

1.1 Exemple de loi physique : l'addition des vitesse

Si je marche a la vitesse v_{marche} sur un tapis , alors la vitesse par rapport au sol est

$$V = v_{marche} + v_{tapis}$$

C'est la loi d'addition des vitesses de galilee. Ici, c'est une addition <u>vectorielle</u> qu'il faut faire.

Cette loi est

- independante des vitesses
- independante des objets en presence
- independante du temps (hier, aujourd'hui, demain)
- etc...

1.2 Lois de conservation

Ce sont les lois les plus fondamentales.

- Conservation de l'energie
- Conservation de la quantite de mouvement
- Conservation du moment cinetique

Ces lois sont valables dans toutes les situations (classiques, relativistes ou quantiques) .

Ne peuvent pas etre formulees mathematiquement de facon unique.

Resultent des principes "d'invariance" (ou de symmetrie) tres generaux.

1.3 Invariance par changement de referentiel

- Changement de referentiel (ou d'observateur) : Referentiel O'x'y'z' en mouvement par rapport au referentiel Oxyz
- Les lois de la physque sont-elles invariantes par rapport a n'importe quel changement de referentiel?
 - Autrement dit, si les observateurs O et O' font la meme experience, obtiendront-ils le meme resultat?
- Principe de Galilee :

Les lois de la physique sont les memes (i.e. invariantes) pour deux observateurs en mouvement rectiligne uniforme l'un par rapport a l'autre.

2 La mecanique classique

1. Mecanique:

science du mouvement (ou du repos) de systemes materiels caracterises par des variables d'espace et de temps.

2. Cinematique:

Description du mouvement.

3. Dynamique:

Etude de la relation entre le mouvement et les causes de sa variation(forces, lois de Newton, th. du moment cinetique).

4. Statique:

Etude et description de l'equilibre.

3 Objectifs du cours de mecanique generale

- \bullet Apprendre a mettre sous forme mathematique un probleme, une situation physique :
 - Definir le probleme, le modeliser
 - Choisir une description mathematique
 - Poser les equations regissant la physique du probleme
 - Resoudre et/ou discuter la solution
- Developper un "savoir-faire" pratique, mais egalement un esprit scientifique :
 - Reperer le sens physique derrière les equations
 - Savoir formaliser mathematiquement la donnée d'un probleme physique.

4 Le modele du "point materiel"

Definition 1 (Point materiel)

un systeme est assimile a un point geometrique auquel on attribue toute la masse de ce systeme, et dont l'état est decrit en tout temps par une (seule) position et une (seule) vitesse.

• Notion introduite par Newton.

On approxime un systeme a quelque chose de plus simple, le point peut etre "gros" (exemple : la terre, le soleil).

Pas applicable dans toutes les situations; le modele a des limites..

5 Mouvement Rectiligne Uniforme

Mouvement d'un point materiel se deplacant en ligne droite a vitesse constante. On definit un axe x associe a la trajectoire rectiligne, avec une origine O.

$$v(t) := \frac{dx(t)}{dt} = \dot{x}(t) = v_0 = \text{constante}$$

La solution s'obtient en integrant le dessus : $x(t) = v_0 t + x_0$, ou $x_0 = \text{constante}$. On appelle le resultat de cette integration l'equation horaire.

6 Mouvement rectiligne uniformement accelere

Ici

$$a(t) := \frac{d^2x(t)}{dt^2} = \ddot{x}(t) = a_0 = constante$$

C'est une equadiff d'ordre 2 faisant intervenir la derivee seconde de x(t). Solution

$$x(t) = a_0 \frac{t^2}{2} + v_0 t + x_0$$

$$v(t) = \frac{dx}{dt} = a_0 t + v_0$$

ou x_0 et v_0 sont des constantes.

7 Lois de newton

— mouvement rectiligne uniforme $\Rightarrow \overrightarrow{F} = \overrightarrow{0}$

$$--\overrightarrow{F}=m\overrightarrow{a}$$

— Action reaction $\overrightarrow{F} = -\overrightarrow{F}$

8 Force de pesanteur et chute des corps

 \bullet L'attraction terrestre donne lieu a une force verticale (le poids) proportionelle a la masse m :

$$F = mq$$

 $g \approx 9.8 \frac{m}{s^2}$

• Application de la 2eme loi de Newton :

Si le poids est la seule force appliquee a un point materiel

$$F = ma \Rightarrow a = g = constante$$

Dans le vide, les corps ont un mouvement uniformement accelere

Lecture 3: Oscillateurs Harmoniques

Wed 23 Sep

9 Oscillateurs Harmoniques

Considerer des systemes ayant des mouvements oscillatoires.

Exemples:

- masse pendue a un ressort.
- pendule simple, pendule de torsion.
- vibrations.
- Resonateurs quartz (montres)
- oscillations du champ
- etc...

Remarque

Un mouvement oscillatoire permet de mesurer un intervalle de temps.

9.1 Modelisation de la force d'un ressort

La force exercee par un ressort est proportionelle a son deplacement par rapport a sa position de repos.

Force de rappel :

$$\overrightarrow{F} = -k\overrightarrow{\Delta x}$$

 $k={\rm constante}$ elastique du ressort [N/m]

Figure 1 - ressort

Remarque

Ce modele n'est que valable pour des petits allongements

9.2 Oscillateurs harmoniques a une dimension

 ${\tt FIGURE} \ 2 - Ressort \ plan \ horizontal$

Loi de Hooke $F_x = -kx$ 2
eme loi de Newton F = ma On arrive a

$$m\ddot{x} = -kx$$

But : connaissant k, m et les conditions initiales, determiner x(t) pour tout temps t.

Exemple

Posons $m = 1kg, k = 1\frac{N}{m} = 1\frac{kg}{s^2}$ Conditions initiales : $x(0) = 1m, v(0) = 0\frac{m}{s}$

$$\Rightarrow a(0) = \frac{F(0)}{m} = k \frac{x(0)}{m} = -1 \frac{m}{s^2}$$

Accroissement de v entre t et $t + \Delta t$: $\Delta v = a(t)\Delta t$ car a(t) = dv(t)/dt

$$\Rightarrow v(t + \Delta t) = v(t) + a(t)\Delta t$$

Accroissement de x entre t et $t + \Delta t$:

$$\Rightarrow x(t + \Delta t) = x(t) + v(t)\Delta t$$

Verification analytique:

On pose $x(t) = \cos(\omega_0 t) \Rightarrow x(0) = 1$

$$\begin{split} v(t) &= \frac{dx}{dt} = -\omega_0 \sin(\omega_0 t) \Rightarrow v(0) = 0. \\ a(t) &= \frac{dv}{dt} - \omega_0^2 \cos(\omega_0 t) = -\omega_0^2 x(t) \\ Comme \ a(t) &= -\frac{k}{m} x(t), \ on \ doit \ avoir : \end{split}$$

$$a(t) = \frac{dv}{dt} - \omega_0^2 \cos(\omega_0 t) = -\omega_0^2 x(t)$$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

C'est la pulsation propre de l'oscillateur libre.

Solution generale et dependance par rapport aux conditions initiales

Periode:

$$T = \frac{2\pi}{\omega_0}$$

Frequence

$$\nu = \frac{1}{T} = \frac{\omega_0}{2\pi}$$

Solution generale de $\ddot{x} = \omega_0^2 x = 0$:

$$x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

ou

$$x(t) = C\sin(\omega_0 t + D)$$

Deux constantes d'integration a determiner en utilisant les conditions initiales

$$A = x_0$$

 et

$$B = \frac{v_0}{\omega_0}$$

ou bien $x_0^2=x_0^2+(\frac{v_0}{\omega_0})^2$ et $\tan(D)=\omega_0\frac{x_0}{v_0}$ Resolution de l'equation differentielle :

$$x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

$$x(0) = A \cdot 1 + B \cdot 0 = A = x_0$$

$$\dot{x}(0) = -A\omega_0 \sin(0) + B\omega_0 \cos(0)$$

$$= B\omega_0 = v_0 \Rightarrow B = \frac{v_0}{\omega_0}$$

$$x(t) = C\sin(\omega_0 t + D), x_0, v_0$$

$$x(0) = C\sin(D) = x_0$$

$$\dot{x}(0) = C\omega_0 \cos(D) = v_0$$

$$\frac{1}{\omega_0} \tan(D) = \frac{x_0}{v_0}$$

$$\Rightarrow \tan(D) = \omega_0 \frac{x_0}{v_0}$$

$$C^2(\sin^2(D) + \cos^2(D)) = x_0^2 + \frac{v_0^2}{\omega_0^2}$$

$$\Rightarrow C = \sqrt{x_0^2 + \frac{v_0^2}{\omega_0^2}}$$

9.3 Oscillateur harmonique amorti

 ${\tt Figure~3-oscillateur~amorti}$

Par b on definira la force de frottement.

Deuxieme loi de Newton : $F + F_{frot} = ma$, alors

$$m\ddot{x} = -kx - b\dot{x}$$

Resolution

$$m\ddot{x} = -kx - b\dot{x} \Rightarrow \ddot{x} + 2\gamma\dot{x} + \omega_0^2 = 0$$
 avec $\gamma = \frac{b}{2m}$ et $\omega_0 = \sqrt{\frac{k}{m}}$

Ammortissement sous-critique
$$\begin{array}{c} \gamma < \omega_0 & x(t) = e^{-\gamma t} [A\cos(\omega_1 t) + B\sin(\omega_1 t)] \\ \text{avec } \omega_1 = \sqrt{\omega_0^2 - \gamma_2} \omega_0 \\ \\ \text{Ammortissement critique} & \gamma = \omega_0 & x(t) = e^{-\gamma t} [A + Bt] \\ \\ \text{Ammortissement sur-critique} & \gamma > \omega_0 & x(t) = e^{\gamma t} [A\exp(\omega_2 t) + B\exp(-\omega_2 t)] \\ \\ \text{avec } \omega_2 = \sqrt{\gamma^2 - \omega_0^2} \\ \end{array}$$

FIGURE 4 – types d'ammortissement

9.4 Oscillateur force

En pratique tout oscillateur s'amortit, mais on peut entretenir les oscillations a l'aide d'une force exterieure.

Exemples

- Balancoire pousse par un enfant.
- Voiture (avec suspension) passant sur des bosses
- Atome (electron lie) recevant un rayonnement electromagnetique

On ajoute une force periodique \overrightarrow{F}_{ext} Par exemple $F_{ext} = f \sin(\omega t)$ avec f = 1N

$$m\ddot{x} = -kx - b\dot{x} + F_{ext}$$

$$\ddot{x} + 2\gamma\dot{x} + \omega_0^2 = a_0\sin(\omega t) \text{ avec } \gamma = \frac{b}{2m}, \omega_0 = \sqrt{\frac{k}{m}}$$

Solution:

$$x(t) = x_{transitoire}(t) + \rho \sin(\omega t - \Phi)$$

avec

$$\rho = \frac{a_0}{\sqrt{(\omega_0^2 - \omega_2)^2 + 4\gamma^2 \omega^2}}$$

et

$$\tan(\Phi) = 2\gamma \frac{\omega}{\omega_0^2 - \omega^2}$$

9.5 Phenomes de resonnance

Resonnances desirables

- Circuitselectriques dans un tuner
- Tuyaux d'orgue
- Balancoire de jardin
- Amortisseurs d'une voiture
- Suspension du tambour d'une essoreuse a linge
- Structure de genie civil

Lecture 4: Dynamique du point materiel

Wed 30 Sep

10 Dynamique du point materiel

Notions abordees :

- reperes, rappels d'analyse vectorielle
- referentiel, position, vitesse, acceleration normale et tangentielle
- rotations, repere en rotation, mouvement circulaire uniforme
- vitesse et acceleration en coordonnees cylindriques et spheriques
- contraintes et forces de liaison

Definition 2 (Referentiel)

Un ensemble de N points $(N \ge 4)$, non coplanaires, immobiles les uns par rapport aux autres.

- La description du mouvement d'un systeme se fait toujours par rapport a un certain referentiel.
- L'observateur et les appareils de mesure sont immobiles par rapport au referentiel (ils "font partie" du referentiel)
- Le choice du referentie du referentiel est arbitraire

Definition 3 (Repere)

Origine O et trois axes orthogonaux definis par des vecteurs de longueur unite

Figure 5 – reperes

Vecteurs unitaires

$$|\hat{x}_1| = |\hat{x}_2| = |\hat{x}_3| = 1$$

Vecteurs orthonormaux

$$\hat{x}_1 \cdot \hat{x}_2 = \hat{x}_2 \cdot \hat{x}_3 = \hat{x}_3 \cdot \hat{x}_1 = 0$$

Base orthonormee

$$\hat{x}_i \cdot \hat{x}_j = \delta_{ij} = \begin{cases} 1 \text{ si } i = j \\ 0 \text{ si } i \neq j \end{cases}$$

10.1 Produit scaleaire

Definition 4 (Produit scalaire)

$$\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| \left| \overrightarrow{b} \right| \cos \theta$$

FIGURE 6 – produit scalaire

 $En\ composantes$

$$\overrightarrow{a} \cdot \overrightarrow{b} = (a_1 \hat{x}_1 + a_2 \hat{x}_2 + a_3 \hat{x}_3) \cdot \ldots = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Proprietes

- $\ \ Commutativite$
- Distributivite
- __

10.2 Projections et composantes d'un vecteur

Projection de \overrightarrow{OP} sur l'axe u :

$$\overrightarrow{OP} \cdot \hat{u} = \left| \overrightarrow{OP} \right| \left| \overrightarrow{u} \right| \cos \theta = OP \cos \theta = OP'$$

$$\overrightarrow{OP} = \overrightarrow{OP'}\hat{u} + \overrightarrow{OP''}\overrightarrow{v} = \overrightarrow{OP} \cdot \hat{u}\hat{u} + \overrightarrow{OP}\hat{v}\hat{v}$$

Coordonnees cartesiennes du point P ou composantes du vecteur \overrightarrow{OP}

$$\begin{cases} x = \overrightarrow{OP} \cdot \hat{x} \\ y = \overrightarrow{OP} \cdot \hat{y} \\ z = \overrightarrow{OP} \cdot \hat{z} \end{cases}$$

Donc

$$\overrightarrow{OP} = x\hat{x} + y\hat{y} + z\hat{z}$$

10.3 Repere direct

Par convention, on n'utilise que des reperes dont la chiralite est definie par la "regle du tire bouchon" ou la "la regle de la main droite" .

Figure 7 - repere droit

10.4 Produit vectoriel

Figure 8 – produit vectoriel

Definition 5 (Produit vectoriel)

En composantes

$$\overrightarrow{a} \wedge \overrightarrow{b} = \begin{pmatrix} a_2b_3 = a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Proprieteres

Definition 6 (Produit Mixte)

$$(\overrightarrow{a} \wedge \overrightarrow{b}) \cdot \overrightarrow{c} = \det(\overrightarrow{c}, \overrightarrow{a}, \overrightarrow{b})$$

Proprietes:

$$(\overrightarrow{a}\wedge\overrightarrow{b})\cdot\overrightarrow{c}=(\overrightarrow{c}\wedge\overrightarrow{a})\cdot\overrightarrow{b}=(\overrightarrow{b}\wedge\overrightarrow{c})\cdot\overrightarrow{a}$$

$$(\overrightarrow{a}\wedge\overrightarrow{b})\cdot\overrightarrow{c}=0\iff\overrightarrow{a},\overrightarrow{b}\text{ et }\overrightarrow{c}\text{ coplanaires (dans le meme plan)}$$

Definition 7 (Double produit vectoriel)

$$\overrightarrow{a} \wedge (\overrightarrow{b} \wedge \overrightarrow{c}) = (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{b} = (\overrightarrow{a} \cdot \overrightarrow{b}) \overrightarrow{c}$$

FIGURE 9 - trajectoire

Figure 10 – curviligne

 $FIGURE\ 11-curviligne 2$

Donc

$$\hat{\tau} \cdot \frac{d\hat{\tau}}{dt} = \frac{1}{2} \frac{d}{dt} (\hat{\tau}^2) = 0 \text{ car } \tau^2 = 1 \forall t$$

On peut approximer le mouvement localement par un cercle

Figure 12 – mouvement approxime par cercle

$$\overrightarrow{d}_n(t) = v(t)\frac{d\tau}{dt} = v(t)\frac{d\tau}{ds} \cdot \frac{ds}{dt} = v(t)^2 \cdot \frac{d\tau}{ds}$$

On peut calculer la norme de a_n

$$|\overrightarrow{a}_n(t)| = a_n(t) = v^2 \left| \frac{d\tau}{ds} \right|$$

$$= v^2 \frac{d\theta}{R(t)d\theta}$$

$$= \frac{v^2(t)}{R(t)}$$

10.5 Mouvement avec vitesse scalaire constante

Considerons un point materiel avec une vitesse scalaire $v=\frac{ds}{dt}$ constante non nulle

un vecteur vitesse qui change de direction au cours du temps

Acceleration

$$\overrightarrow{d} \cdot \overrightarrow{v} = \frac{d\overrightarrow{v}}{dt} \cdot \overrightarrow{v} = \frac{1}{2} \frac{d}{dt} (\overrightarrow{v}^2) = 0$$

pas de composante tangentielle : $a_t = \frac{dv}{dt} = 0$ Donc a est toujours perpendiculaire a v.

Force $\overrightarrow{F} = m\overrightarrow{a}$

Donc

$$F = ma = m\frac{v^2}{R}$$

force centripete

10.6 Systeme de coordonnees

Definition 8 (Systeme de coordonnees)

Parametrisation, a un certain temps t, de la position des points du referentiel au mouen de trois nombres reels.

Pour un referentiel donne il e xiste une infinite de systemes de coordonnes Exemples

- Coordonnes cartesiennes (x, y, z)
- Coordonnees cylindriques (ρ, ϕ, z)
- Coordonnes spheriques (r, Θ, ϕ)

Chaque vecteur du repere est parallele a la variation de la position due a une modification de la variable correspondante

Lecture 5: mercredi

Wed 07 Oct

11 Description des rotations spatiales

Une rotation spatiale est caractérisée par un axe de rotation (dans l'espace), un sens de rotation et un angle de rotation.

Deux points de vue

- Rotation dûn systeme physique dans un repère fixe
- Système physique décrit dans un repère en rotation

Theorème 4

Soit deux repères orthonormés droits de même origine, il existe toujours une rotation qui amène le premier sur le deuxième.

Figure 13 – repere

$$\hat{e_1} = \frac{d\hat{e_1}(t)}{dt} = E_{11}\hat{e}_1 + E_{21}\hat{e}_2 + E_{31}\hat{e}_3$$

$$\hat{e_2} = \frac{d\hat{e_2}(t)}{dt} = E_{12}\hat{e}_1 + E_{22}\hat{e}_2 + E_{32}\hat{e}_3$$

$$\hat{e_3} = \frac{d\hat{e_2}(t)}{dt} = E_{13}\hat{e}_1 + E_{23}\hat{e}_2 + E_{33}\hat{e}_3$$

est équivalent à dire

$$\dot{\hat{e}}_i = \frac{d\hat{e}_i}{dt} = \sum_{i=1}^3 E_{JI}\hat{e}_j$$

C'est une écriture presque matricielle. On peut écrire

$$\dot{\hat{e}}_i = E\hat{e}_i$$
 avec

$$\begin{pmatrix} E_{11} & E_{12} & E_{13} \\ E_{21} & E_{22} & E_{23} \\ E_{31} & E_{32} & E_{33} \end{pmatrix}$$

On a un repère orthonormé $\Rightarrow \hat{e}_i \cdot \hat{e}_j = \delta_{ij}$

$$\frac{d}{dt}\delta_{ij} = 0 = \frac{d}{dt}(\hat{e}_i \cdot \hat{e}_j) = \dot{\hat{e}}_i \cdot \hat{e}_j + \hat{e}_i \cdot \dot{\hat{e}}_j = (E\hat{e}_i) \cdot \hat{e}_j + \hat{e}_i(E\hat{e}_j)$$

$$= (E_{1i}\hat{e}_i + E_{2i}\hat{e}_2 + E_{3i}\hat{e}_3) \cdot \hat{e}_j + \hat{e}_i(E_{1j}\hat{e}_i + E_{2j}\hat{e}_2 + E_{3j}\hat{e}_3) = E_{ji} + E_{ij}$$

On a donc 6 contraintes (ij=11,12,13,22,23,33)

Donc

$$\begin{pmatrix} 0 & E_{12} & E_{13} \\ -E_{12} & 0 & E_{23} \\ -E_{13} & -E_{23} & 0 \end{pmatrix} = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix}$$

Pour un vecteur quelconque $\overrightarrow{r}(t)$.

$$\frac{d\overrightarrow{r'}}{dt} = E\overrightarrow{r'} \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{pmatrix} \wedge \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix}$$

On a donc

Theorème 5 (Formule de Poisson)

$$\frac{d\hat{e}_i}{dt} = \overrightarrow{\omega} \wedge \hat{e}_i$$

11.1 Interprétation du vecteur ω

Si \overrightarrow{r} collinéaire à $\overrightarrow{\omega}$ alors $\frac{d\overrightarrow{r}}{dt}=0$, donc \overrightarrow{r} ne bouge pas. Donc $\overrightarrow{\omega}$ définit l'axe de rotation au temps t. Sens de $\overrightarrow{\omega}=$ sens de rotation

$$|d\overrightarrow{r}| = |\overrightarrow{\omega} \wedge \overrightarrow{r}|dt = |\overrightarrow{\omega}|dt|\overrightarrow{r}|\sin\theta$$

Mais $|d\overrightarrow{r}| = |\overrightarrow{r}| \sin \theta$

La norme de $\overrightarrow{\omega}$ est la vitesse angulaire de rotation.

11.1.1 Cas particulier

 $\overrightarrow{\omega} = \text{constante}$

Alors

$$\overrightarrow{v} = \frac{d\overrightarrow{r}}{dt} = \overrightarrow{\omega} \wedge \overrightarrow{r}$$

et

$$\overrightarrow{d} = \frac{d\overrightarrow{v}}{dt} = \frac{d}{dt}(\overrightarrow{\omega} \wedge \overrightarrow{r}) = \overrightarrow{\omega} \wedge \frac{d\overrightarrow{r}}{dt} = \overrightarrow{\omega} \wedge (\overrightarrow{\omega} \wedge \overrightarrow{r})$$

11.2 Vitesse et accélération en coordonnées cylindriques

Vitesse angulaire de rotation du repère

$$\overrightarrow{\omega} = \frac{d\phi}{dt}\hat{z} = \dot{\phi}\hat{z}$$

$$\overrightarrow{r} = \overrightarrow{OP} = \rho \hat{e}_{\rho} + z \hat{e}_{z}$$

$$\overrightarrow{v} = \dot{\overrightarrow{r}} = \dot{\rho} \hat{e}_{\rho} + \rho \dot{\hat{e}}_{\rho} + \dot{z} \hat{e}_{z} + z \dot{\hat{e}}_{z}$$

Par Poisson

$$\dot{\hat{e}}_{\rho} = \overrightarrow{\omega} \wedge \hat{e}_{rho} = \dot{\phi}\hat{e}_{z} \wedge \hat{e}_{\rho} = \dot{\phi}\hat{e}_{\phi}
\dot{\hat{e}}_{\phi} = \overrightarrow{\omega} \wedge \hat{e}_{\phi} = \dot{\phi}\hat{e}_{z} \wedge \hat{e}_{\phi} = -\dot{\phi}\hat{e}_{\rho}$$

Donc

$$\overrightarrow{v} = \dot{\overrightarrow{r}} = \dot{\rho}\hat{e}_{\rho} + \rho\dot{\hat{e}}_{\rho} + \dot{z}\hat{e}_{z} + z\dot{\hat{e}}_{z} = \dot{\rho}\hat{e}_{\rho} + \rho\dot{\phi}\hat{e}_{\phi} + \dot{z}\hat{e}_{z}$$

Donc

$$\overrightarrow{a} = \ddot{\overrightarrow{r}} = (\ddot{\rho} - \rho \dot{\phi}^2) \hat{e}_{\rho} + (\rho \ddot{\phi} + 2 \dot{\rho} \dot{\phi} \hat{e}_{\phi} + \ddot{z} \hat{e}_z)$$

11.3 Pendule Mathématique

Contraintes

$$\begin{cases} \rho = L = \text{ connstante } \Rightarrow \dot{\rho} = 0, \ddot{\rho} = 0 \\ z = 0, \dot{z} = 0, \ddot{z} = 0 \end{cases}$$

Donc l'accélération est

$$\overrightarrow{a} = -L\dot{\phi}^2 \hat{e}_{\rho} + L\ddot{\phi}\hat{e}_{\phi}$$

On a aussi

$$m\overrightarrow{a} = \overrightarrow{F} + \overrightarrow{T}$$

Donc

$$\begin{cases} -mL\dot{\phi}^2 = F\cos\phi - T \sin \hat{e}_{\rho} \\ mL\ddot{\phi} = -F\sin\phi \sin \hat{e}_{\phi} \end{cases}$$

Donc

$$\ddot{\phi} = -\frac{F}{mL}\sin\phi = -\frac{g}{L}\sin\phi$$

Si les oscillations sont faibles, on a

$$\sin \phi \simeq \phi \Rightarrow \ddot{\phi} \simeq -\frac{g}{L}\phi$$

Theorème 6

La force de liaison = force exercée sur le point matériel pour qu il obéisse a une contrainte géométrique

- Toujours perp. à la courbe ou à la surfacce
- jamais de composante tangente à la courbe ou la surface (cad dans une direction ou le pout matériel peut bouger)
- La force de liaision devient nulle \iff la contrainte disparait.

Lecture 6: mercredi

Wed 14 Oct

11.4 Coordonnées sphériques

On a

$$\overrightarrow{\omega} = \dot{\phi}\hat{z} + \dot{\theta}\hat{e}_{\phi}$$

Derivees des vecteurs de base

$$\dot{e}_r = \overrightarrow{\omega} \wedge e_r = \dot{\theta}e_{\theta} + \dot{\phi}\sin\theta e_{\phi}$$
$$\dot{e}_{\theta} = \overrightarrow{\omega} \wedge e_{\theta} = -\dot{\theta}e_r + \dot{\phi}\cos\theta e_{\phi}$$
$$\dot{e}_{\phi} = \overrightarrow{\omega} \wedge e_{\phi} = -\dot{\phi}e_r - \dot{\phi}\cos\theta e_{\phi}$$

Position vitese et acceleration dans ce repère

$$\overrightarrow{r} = \overrightarrow{OP} = re_r$$

11.5 Bille en équilibre dans un anneau en rotation

Referentiel = le laboratoire

Repere lié au référentiel : Oxyz

Vitesse angulaire de l'anneauè $\overrightarrow{\omega} = \omega \hat{z}$

Coordonnées sphériques : r, θ, ϕ

Contrainte : la bille reste sur l'anneau

$$\begin{cases} r = R, \dot{r} = 0, \ddot{r} = 0 \\ \dot{\phi} = \omega, \ddot{\phi} = 0 \end{cases}$$

Si bille en équilibre : $\dot{\theta} = 0, \ddot{\theta} = 0$

Forces s'exercant sur la bille

$$\begin{cases} \text{ poids de la bille} : m\overrightarrow{g} = -mg\dot{z} \\ \text{ force de liaison } \overrightarrow{N}. \overrightarrow{N}e_{\theta} = 0 \end{cases}$$

On obtient que

$$m \overrightarrow{g} = -mg \cos \theta e_r + mg \sin \theta e_\theta$$

$$\overrightarrow{N} = N_r e_r + N_\phi e_\phi$$

2
eme loi de newton : $\overrightarrow{N} + m \overrightarrow{g} = m \overrightarrow{d}$

$$\begin{cases} \operatorname{sur} e_r : N_r - mg \cos \theta = -mR\omega^2 \sin^2 \theta \\ \operatorname{sur} e_\theta : mg \sin \theta = -mR\omega^2 \sin \theta \cos \theta \\ \operatorname{sur} e_\phi : N_\phi = 0 \end{cases}$$

Pour la deuxieme equation, on a

soit $\sin \theta = 0 (\Rightarrow \theta = 0 \text{ ou } \pi)$

ou $\cos\theta = \frac{-g}{R\omega^2}$ (seulement si $|\omega| \geq \sqrt{\frac{g}{R}})$

12 Travail, énergie, forces conservatives

12.1 Forces de Frottement

- Forces exercees sur un corps par le fluide dans lequel il se déplace
- Ces forces s'opposent au mouvement du corps

$$\overrightarrow{F}_{frot} = -f(v)\hat{v}, f(v) > 0$$

- Elles résultent d'un grand nombre de phénomènes microscopiques, complexes à décrire
- On décrit donc les forces de frottement par des lois empiriques $\,$

Tirées de l'expérience

Non-fondamentales

Approximatives

12.2 Forces de frottement sec

- \bullet Force F exercée par une surface sur un solide :
- composant normale à la surface N = force de liaison
- composante tangente à la surface $F_{frot}=$ force de frottement sec Lois de Coulomb :

si
$$v = 0$$
: $F_{frot} \le F_{frot}^{max} = \mu_s N$
si $v \ne =$: $\overrightarrow{F}_{frot} = -\mu_c N \frac{\overrightarrow{v}}{v}$

12.3 Coefficients de frottement

- Dépendent de
 - Natures des surfaces
 - Etat des surfaces
 - Température
- En général

$$\mu_c < \mu_s$$

- En premiere approximation ne dependent pas de
 - la vitesse (si $v \neq 0$)
 - la dimension des surfaces de contact (surfaces planes)

Ne dépendent pas de la dimension de la surface de contac

- Sirface pas parfaitement plane
- Surface de contact véritable proportionnelle à la charge

12.4 Impulsion et quantité de mouvement

- Point matériel de masse m soumis à une force F entre les points 1 et 2.
- Definition

$$d\overrightarrow{I} = \overrightarrow{F}dt \Rightarrow \overrightarrow{I}_{12} = \int_{1}^{2} d\overrightarrow{I} = \int_{t_{1}}^{t_{2}} \overrightarrow{F}dt$$

— Si F est la résultante des forces s'appliquant sur le point matériel

$$\overrightarrow{F} = m \overrightarrow{d} \Rightarrow \overrightarrow{I}_{12} = \int_{1}^{2} m \overrightarrow{d} dt = \int_{1}^{2} m d\overrightarrow{v}$$
$$= \int_{1}^{2} d(m \overrightarrow{v}) = m \overrightarrow{v}_{2} - m \overrightarrow{v}_{1} = \overrightarrow{p}_{2} - \overrightarrow{p}_{1}$$

ou on a défini

$$\overrightarrow{p} = m\overrightarrow{v}$$

La variation de la quantité de mouvement est égale à l'impilsion de la somme des forces. Donc, si m est constante, on a

$$\overrightarrow{F} = m \overrightarrow{a} \iff \overrightarrow{F} = \frac{d \overrightarrow{p}}{dt}$$

12.5 Travail et énérgie cinétique

Définition:

$$\delta W = \overrightarrow{F} \cdot d\overrightarrow{r} \Rightarrow W_{12} = \int_{1}^{2} \delta W = \int_{1}^{2} \overrightarrow{F} \cdot d\overrightarrow{r}$$

Si F est la résultante des forces s'appliquant sur le point matériel (et si m constante)

$$W_{12} = \int_{1}^{2} m \overrightarrow{d} d\overrightarrow{r} = \int_{1}^{2} m \frac{d\overrightarrow{v}}{dt} \cdot \overrightarrow{v} dt$$
$$= \int_{1}^{2} \frac{d}{dt} (\frac{1}{2} m \overrightarrow{v}^{2}) dt = K_{2} - K_{1}$$

où on a défini $K=\frac{1}{2}m\overrightarrow{v}^2$