HAI722I — **TD**s

Ivan Lejeune

11 septembre 2025

Table des matières

TD1		
1.1	Convexité : ensembles et fonctions	

TD1

1.1 Convexité : ensembles et fonctions

Exercice 1.1 Convexité. Exercise 1 content

Solution. Exercice solution

Exercice 1.2 Combinaison convexe. Exercise 2 content

Solution. Exercice solution

Exercice 1.3 Ensembles convexe. Montrer qu'étant donné un sous-ensemble convexe C et deux réels positifs α et β alors on a

$$\alpha C + \beta C = (\alpha + \beta)C$$
.

Solution. Commencons par montrer l'inclusion $(\alpha + \beta) C \subset \alpha C + \beta C$. Soit $x \in (\alpha + \beta) C$. Alors, il existe $x_0 \in C$ tel que

$$x = (\alpha + \beta) x_0 = \alpha x_0 + \beta x_0.$$

Donc $x \in \alpha C + \beta C$.

Montrons maintenant l'inclusion $\alpha C + \beta C \subset (\alpha + \beta) C$.

Soit $x \in \alpha C + \beta C$. Alors, il existe $x_1, x_2 \in C$ tels que

$$x = \alpha x_1 + \beta x_2 = (\alpha + \beta) \left(\frac{\alpha}{\alpha + \beta} x_1 + \frac{\beta}{\alpha + \beta} x_2 \right).$$

Exercice 1.4 Ensembles convexes. Soit $S \subset \mathbb{R}^n$ vérifiant la propriété de demi-somme suivante :

$$\forall x, y \in S, \quad \frac{x+y}{2} \in S.$$

- 1. S est-il convexe?
- 2. Même question si on suppose que S est fermé.

Solution.

1. Non. Par exemple, le sous-ensemble S suivant :

$$S = \left\{ x \in [0, 1] \mid x = \sum_{i=1}^{n} \frac{1}{2^i} \right\} = \left\{ 0, \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \dots \right\}$$

vérifie la propriété de demi-somme mais n'est pas convexe, car par exemple $\sqrt{2}/2 \in [0,1] \notin S$.

Exercise 1.5 Ensembles convexes. Exercise 2 content

Solution. Exercice solution

Exercise 1.6 Ensembles convexes. Exercise 2 content

Solution. Exercice solution

Exercice 1.7 Fonction convexe.

- 1. Est-ce qu'une combinaison linéaire à coefficients positifs de fonctions convexes est convexe ?
- 2. Est-ce que le produit de deux fonctions convexes est convexe?
- 3. Si f_1 et f_2 sont deux fonctions convexes, est-ce que max (f_1, f_2) est convexe?

4. Montrer que la fonction $f: x \mapsto x^2$ est une fonction convexe sur \mathbb{R} .

Solution.

1. Oui. On pose $g(x) = \sum_{i \in I} \alpha_i f_i(x)$. Alors

$$g(\lambda x + (1 - \lambda)y) = \sum_{i \in I} \alpha_i f_i(\lambda x + (1 - \lambda)y)$$

$$\leq \sum_{i \in I} \alpha_i (\lambda f_i(x) + (1 - \lambda)f_i(y))$$

$$= \lambda g(x) + (1 - \lambda)g(y).$$

- 2. Non. Par exemple, $f_1(x) = x$ et $f_2(x) = x^2$ sont convexes mais $f_1(x)f_2(x) = x^3$ n'est pas convexe
- 3. Oui. On pose $g(x) = \max(f_1(x), f_2(x))$. Alors

$$g(\lambda x + (1 - \lambda)y) = \max (f_1(\lambda x + (1 - \lambda)y), f_2(\lambda x + (1 - \lambda)y))$$

$$\leq \max (\lambda f_1(x) + (1 - \lambda)f_1(y), \lambda f_2(x) + (1 - \lambda)f_2(y))$$

$$\leq \lambda \max (f_1(x), f_2(x)) + (1 - \lambda) \max (f_1(y), f_2(y))$$

$$= \lambda g(x) + (1 - \lambda)g(y).$$

4. Soit $x, y \in \mathbb{R}$ et $\lambda \in [0, 1]$. Alors

$$f(\lambda x + (1 - \lambda)y) = (\lambda x + (1 - \lambda)y)^{2}$$

$$= \lambda^{2}x^{2} + (1 - \lambda)^{2}y^{2} + 2\lambda(1 - \lambda)xy$$

$$\leq \lambda^{2}x^{2} + (1 - \lambda)^{2}y^{2} + \lambda(1 - \lambda)(x^{2} + y^{2})$$

$$= \lambda x^{2} + (1 - \lambda)y^{2}$$

$$= \lambda f(x) + (1 - \lambda)f(y).$$

Exercise 1.8 Optional title 2. Exercise 2 content

Solution. Exercice solution