Trigonométrie

Maxime Forriez^{1,2,a}

¹ Sorbonne université, 2, rue Francis de Croisset, 75 018 Paris ² Institut de géographie, 191, rue Saint-Jacques, Bureau 105, 75 005 Paris,

^amaxime.forriez@sorbonne-universite.fr

19 octobre 2025

1 Le triangle rectangle

FIGURE 1 – Le triangle rectangle

1.0.1 Théorème de Pythagore

Théorème Dans un triangle rectangle le carré de l'hypoténuse, c'est-à-dire le côté le plus long, est égal à la somme des carrés des deux autres côtés (Fig. 2). Si on prend la figure 1, on obtient :

Pythagore (vers 580vers

$$AB^2 = AC^2 + BC^2$$
 (1) 495
a.-C.)

FIGURE 2 – Théorème de Pythagore

Réciproque du théorème Si, dans un triangle, le carré d'un côté est égal à la somme des carrés des deux autres côtés, alors le triangle est rectangle.

1.0.2 La propriété de la médiane

Propriété Dans un triangle rectangle, la médiane relative à l'hypoténuse mesure la moitié de celui-ci. D'après la figure 1, on obtient :

$$CI = \frac{1}{2}AB\tag{2}$$

Réciproque de la propriété Si, dans un triangle, la médiane relative à un côté mesure la moitié de ce côté, alors ce triangle est rectangle.

1.0.3 Propriété du cercle circonscrit

Propriété Le cercle circonscrit à un triangle rectangle a pour diamètre l'hypoténuse.

Réciproque de la propriété Si un triangle est inscrit dans un cercle et a un côté diamètre de ce cercle, alors ce triangle est rectangle.

1.0.4 Lignes trigonométriques dans un triangle rectangle

Les lignes trigonométriques sont présentées à partir de la figure 1.

1. Le cosinus des angles aigus du triangle est noté cos. Il faut le rapport entre le côté adjacent et l'hypoténuse.

$$\cos \hat{A} = \frac{AC}{AB} \tag{3}$$

et

$$\cos \hat{B} = \frac{BC}{AB} \tag{4}$$

2. Le sinus des angles aigus du triangle est noté sin. Il faut le rapport entre le côté opposé et l'hypoténuse.

$$\sin \hat{A} = \frac{BC}{AB} \tag{5}$$

et

$$\sin \hat{B} = \frac{AC}{AB} \tag{6}$$

On remarque que:

$$\cos \hat{A} = \sin \hat{B}$$

$$\cos \hat{B} = \sin \hat{A}$$
(7)

3. La tangente est le rapport entre le côté opposé et le côté adjacent.

$$\tan \hat{A} = \frac{BC}{AC} \tag{8}$$

et

$$\tan \hat{B} = \frac{AC}{BC} \tag{9}$$

On remarque que:

$$\tan \hat{A} = \frac{BC}{AC} = \frac{BC}{AC} \times \frac{AB}{AC} = \frac{\frac{BC}{AC}}{\frac{AC}{AB}} = \frac{\sin hat A}{\cos hat A}$$
 (10)

et

$$\tan \hat{B} = \frac{AC}{BC} = \frac{AC}{AB} \times \frac{AB}{BC} = \frac{\frac{AC}{AB}}{\frac{BC}{AB}} = \frac{\sin hatB}{\cos hatB}$$
 (11)

4.

$$\cot \hat{A} = \frac{AC}{BC} \tag{12}$$

et

$$\cot \hat{B} = \frac{BC}{AC} \tag{13}$$

On remarque que:

$$\tan \hat{A} = \cot \hat{B}$$

$$\tan \hat{B} = \cot \hat{A}$$
(14)

- 5. $\cos^2 \hat{A} + \sin^2 \hat{A} = \left(\frac{AC}{AB}\right)^2 + \left(\frac{BC}{AB}\right)^2 = \frac{AC^2 + BC^2}{AB^2} = \frac{AB^2}{AB^2} = 1$. De même, $\cos^2 \hat{B} + \sin^2 \hat{B} = 1$.
- $\begin{aligned} &6. \ \left(\sin\!\hat{A} + \cos\!\hat{A} \right)^2 + \left(\sin\!\hat{A} \cos\!\hat{A} \right)^2 \\ &= \sin^2\!\hat{A} + 2\!\sin\!\hat{A}\!\cos\!\hat{A} + \cos^2\!\hat{A} + \\ &\sin^2\!\hat{A} 2\!\sin\!\hat{A}\!\cos\!\hat{A} + \cos^2\!\hat{A} \\ &= 2\!\sin^2\!\hat{A} + 2\!\cos^2\!\hat{A} \\ &= 2\left(\sin^2\!\hat{A} + \cos^2\!\right) \\ &= 2. \end{aligned}$ De même, $\left(\sin\!\hat{B} + \cos\!\hat{B} \right)^2 + \left(\sin\!\hat{B} \cos\!\hat{B} \right)^2 \\ &= 2.$

2 Le radian

Le radian permet de mesurer un angle à partir d'un cercle;

$$1 \text{ rad} = \frac{180}{\pi} \tag{15}$$

et

$$1^{\circ} = \frac{\pi}{180} \tag{16}$$

Degré	0°	15°	30°	45°	60°	90°	180°	360°
Radian	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	2π

TABLE 1 – Conversion entre les degrés et les radians

La mesure de l'angle en radians correspond à la longueur de l'arc de cercle formée par l'angle sur le cercle de centre O et de rayon 1.

Le radian permet d'orienter un angle.

- Si on l'oriente dans le sens inverse des aiguilles d'une montre, alors l'angle a un sens positif ou direct.
- Dans le cas contraire, le sens est négatif ou indirect.

Tout couple de vecteurs $\alpha = \left(\vec{OM}, \vec{ON} \right)$ détermine un angle orienté.

$$\left| \left| \vec{OM} \right| \right| = \left| \left| \vec{ON} \right| \right| = 1 \tag{17}$$

$$\left(\vec{OM}, \vec{ON}\right) = -\left(\vec{ON}, \vec{OM}\right) \tag{18}$$

L'ensemble des mesures de l'angle α est $\alpha + 2k\pi$ avec $k \in \mathbb{Z}$. Tous les angles sont égaux à 2π près.

La **mesure principale** d'un angle orienté est comprise entre $-\pi$ et π : $]-\pi,\pi$] par convention.

3 Le cercle trigonométrique

Soient $\left(O,\vec{i},\vec{j}\right)$ un repère orthonormé tel que $\left(\vec{i},\vec{j}\right)=\frac{\pi}{2}+2k\pi$ avec $k\in\mathbb{Z}$, \mathcal{C} le cercle trigonométrique, et $\left|\left|\vec{i}\right|\right|=\left|\left|\vec{j}\right|\right|=1$, alors l'unité u de longueur est le rayon r du cercle \mathcal{C} (Fig. 3). Le périmètre p du cercle vaut $p=2\pi r$. Comme r=1 u, $p=2\pi$ u ou $p=2\pi$. On enroule une droite réelle (D) sur le cercle \mathcal{C} . On définit une fonction $\mathbb{R}\to\mathcal{C}$. Un réel est associé à un point M sur le cercle \mathcal{C} .

$$\begin{cases}
\mathbb{R} \to \mathcal{C} \\
x \mapsto M
\end{cases}$$
(19)

x a pour image M. La fonction associe des nombres réels et des points. Chaque point M a une infinité d'antécédents. Une infinité de valeur X a pour image le même point M du cercle. Chacun d'eux s'appelle une mesure de l'arc orienté \hat{AM} .

$$\hat{AM} = x + 2k\pi \tag{20}$$

FIGURE 3 – Cercle trigonométrique

avec $k \in \mathbb{Z}$. L'arc orienté est une unité de longueur. L'écart est un multiple de 2π . x est une mesure en radians de l'angle orienté $\left(\vec{OA}, \vec{OM}\right)$.

D'après le théorème de Pythagore (Fig.4) :

$$\left\| \vec{OM} \right\|^2 = \cos^2(x) + \sin^2(x)$$
 (21)

or $\left| \left| \vec{OM} \right| \right| = 1$, donc :

$$\cos^2(x) + \sin^2(x) = 1 \tag{22}$$

D'après le théorème de Thalès (Fig.4):

 $\frac{\cos(x)}{OM} = \frac{\sin(x)}{\tan(x)} \Leftrightarrow \cos(x) = \frac{\sin(x)}{\tan(x)} \Leftrightarrow \tan(x) = \frac{\sin(x)}{\cos(x)}$ (vers 625-620 vers 548-

545 a.-C.)

Thalès

FIGURE 4 – Cercle trigonométrique avec la totalité des lignes trigonométriques

De même, pour la cotangente (Fig.4):

$$\frac{\sin(x)}{OM} = \frac{\cos(x)}{\cot(x)} \Leftrightarrow \sin(x) = \frac{\cos(x)}{\cot(x)} \Leftrightarrow \cot(x) = \frac{\cos(x)}{\sin(x)}$$
(24)

or $tan(x) = \frac{\sin(x)}{\cos(x)}$, donc:

$$\cot\left(x\right) = \frac{1}{\tan\left(x\right)}\tag{25}$$

ce qui explique que la cotangente soit peu utilisée.

La sécante est l'intersection entre la tangente en x et l'axe des abscisses (Fig.4).

$$\sec\left(x\right) = \frac{1}{\cos\left(x\right)}\tag{26}$$

La cosécante est l'intersection entre la tangente en x et l'axe des ordonnées (Fig.4).

$$\csc\left(x\right) = \frac{1}{\sin\left(x\right)}\tag{27}$$

On emploie peu la sécante et la cosécante pour les mêmes raisons que la cotangente.

Les lignes trigonométriques sont des fonctions (Fig. 4), dont les domaines de définition sont :

- pour $f(x) = \cos(x)$, $D_f = \mathbb{R}$;
- pour $f(x) = \sin(x)$, $D_f = \mathbb{R}$;
- pour $f(x) = \tan(x)$, $D_f = \mathbb{R} \{k\pi\}$ avec $k \in \mathbb{Z}$;
- pour $f(x) = \cot(x)$, $D_f = \mathbb{R} \{k\pi\}$ avec $k \in \mathbb{Z}$;
- pour $f(x) = \sec(x)$, $D_f = \mathbb{R} \left\{\frac{\pi}{2} + k\pi\right\}$ avec $k \in \mathbb{Z}$;
- pour $f(x) = \csc(x)$, $D_f = \mathbb{R} \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$.

Les lignes trigonométriques sont périodiques :

— pour $f(x) = \cos(x), T = 2\pi$;

$$\cos\left(x\right) = x_M + 2k\pi\tag{28}$$

avec $k \in \mathbb{Z}$.

— pour $f(x) = \sin(x), T = 2\pi$;

$$\sin\left(x\right) = y_M + 2k\pi\tag{29}$$

avec $k \in \mathbb{Z}$.

— pour $f(x) = \tan(x), T = \pi$;

$$\tan\left(x\right) = t + k\pi\tag{30}$$

avec $k \in \mathbb{Z}$.

— pour $f(x) = \cot(x), T = \pi$;

$$\cot\left(x\right) = c + k\pi\tag{31}$$

avec $k \in \mathbb{Z}$.

— pour $f(x) = \sec(x), T = \pi$;

$$\sec\left(x\right) = s + k\pi\tag{32}$$

avec $k \in \mathbb{Z}$.

— pour $f(x) = \csc(x)$, $T = \pi$.

$$\csc\left(x\right) = c' + k\pi\tag{33}$$

avec $k \in \mathbb{Z}$.

4 L'algèbre trigonométrique

```
\cos^2(x) + \sin^2(x) = 1
\tan\left(x\right) = \frac{\sin(x)}{\cos(x)}
\cos\left(-x\right) = \cos\left(x\right)
\sin\left(-x\right) = -\sin\left(x\right)
\tan\left(-x\right) = -\tan\left(x\right)
\cos\left(\pi + x\right) = -\cos\left(x\right)
\sin\left(\pi + x\right) = -\sin\left(x\right)
\tan(\pi + x) = \tan(x)
\cos\left(\pi - x\right) = -\cos\left(x\right)
\sin\left(\pi - x\right) = \sin\left(x\right)
\tan\left(\pi - x\right) = -\tan\left(x\right)
\cos\left(\frac{\pi}{2} + x\right) = -\sin\left(x\right)
\sin\left(\frac{\pi}{2} + x\right) = \cos\left(x\right)
\tan\left(\frac{\pi}{2} + x\right) = -\frac{1}{\tan(x)} = -\cot\left(x\right)
\cos\left(\frac{\pi}{2} - x\right) = \sin\left(x\right)
\sin\left(\frac{\pi}{2} - x\right) = \cos\left(x\right)
\tan\left(\frac{\pi}{2} - x\right) = \frac{1}{\tan(x)} = \cot\left(x\right)
\cos^{2}\left(x\right) = \frac{1}{1 + \tan^{2}\left(x\right)}
\sin^2(x) = \frac{\tan^2(x)}{1 + \tan^2(x)}
\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)
\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)
\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)
\sin(a-b) = \sin(a)\cos(b) - \sin(b)\cos(a)
\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}
\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}
\cos(2x) = 1 - 2\sin^2(x) = 2\cos^2(x) - 1 = \cos^2(x) - \sin^2(x)
\sin(2x) = 2\sin(x)\cos(x)
\cos(2x) = \frac{1-\tan^2(x)}{1+\tan^2(x)}
\sin(2x) = \frac{2\tan(x)}{1-\tan^2(x)}\tan(2x) = \frac{2\tan(x)}{1+\tan^2(x)}
\cos(3x) = \cos(x)\left(\cos^2(x) - 3\sin^2(x)\right)
\sin(3x) = \sin(x) \left(3\cos^2(x) - \sin^2(x)\right)
```

5 Les valeurs exactes

Il est utile de connaître quelques valeurs exactes des lignes trigonométriques (Tab. 2; Tab. 3; Fig. 5; Fig. 6).

Valeur	0 0	$\frac{\pi}{6} - \frac{11\pi}{6}$	$\frac{\pi}{4}$ $-\frac{7\pi}{4}$	$\frac{\pi}{3}$ $-\frac{5\pi}{3}$	$\frac{\pi}{2}$ $-\frac{3\pi}{2}$	$\left \frac{2\pi}{3} \right - \frac{4\pi}{3}$	$\frac{3\pi}{4}$ $-\frac{5\pi}{4}$	$\left \frac{5\pi}{6} \right - \frac{7\pi}{6}$
Cosinus	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$
Sinus	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
Tangente	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$

Table 2 – Valeurs exactes des lignes trigonométriques de 0 à $\frac{5\pi}{6}$

Valeur	π $-\pi$	$\frac{7\pi}{6}$ $\frac{-5\pi}{6}$	$\frac{5\pi}{4}$ $-\frac{3\pi}{4}$	$\frac{4\pi}{4}$ $-\frac{2\pi}{3}$	$\frac{3\pi}{2}$ $-\frac{\pi}{2}$	$\frac{5\pi}{3}$ $-\frac{\pi}{3}$	$\frac{7\pi}{4}$ $-\frac{\pi}{4}$	$\frac{11\pi}{6}$ $-\frac{\pi}{6}$
Cosinus	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$				
Sinus	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$
Tangente	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$

Table 3 – Valeurs exactes des lignes trigonométriques de π à $\frac{11\pi}{6}$

FIGURE 5 – Cercle trigonométrique de 0 à 2π

FIGURE 6 – Cercle trigonométrique de 0 à -2π

6 Les équations trigonométriques

La trigonométrie permet de définir des équations trigonométriques avec $k \in \mathbb{Z}$.

$$\sin\left(x\right) = 0 \Leftrightarrow x = k\pi \tag{34}$$

$$\sin\left(x\right) = 1 \Leftrightarrow x = \frac{\pi}{2} + 2k\pi\tag{35}$$

$$\sin(x) = -1 \Leftrightarrow x = -\frac{\pi}{2} + 2k\pi \tag{36}$$

$$\cos(x) = 0 \Leftrightarrow x = \frac{\pi}{2} + k\pi \tag{37}$$

$$\cos\left(x\right) = 1 \Leftrightarrow x = 2k\pi\tag{38}$$

$$\cos(x) = -1 \Leftrightarrow x = \pi + 2k\pi \tag{39}$$

$$\sin(x) = \sin(a) \Leftrightarrow \begin{cases} x = a + 2k\pi \\ \text{ou} \\ x = (\pi - a) + 2k\pi \end{cases}$$
(40)

$$\cos(x) = \cos(a) \Leftrightarrow \begin{cases} x = a + 2k\pi \\ \text{ou} \\ x = -a + 2k\pi \end{cases}$$
 (41)

$$\sin(x) = \sin(a) \Leftrightarrow \begin{cases} x = a + 2k\pi \\ \text{ou} \\ x = (\pi - a) + 2k\pi \end{cases}$$

$$\cos(x) = \cos(a) \Leftrightarrow \begin{cases} x = a + 2k\pi \\ \text{ou} \\ x = -a + 2k\pi \end{cases}$$

$$\tan(x) = \tan(a) \Leftrightarrow \begin{cases} x = a + k\pi \\ \text{ou} \\ x = (\pi + a) + 2k\pi \end{cases}$$

$$(40)$$

avec $\cos{(x)} \neq 0$ et $\cos{(a)} \neq 0$, c'est-à-dire $x \neq \frac{\pi}{2} + k\pi$ et $a \neq \frac{\pi}{2} + k\pi$.