N94-27479 197575 HEME* P-10

A MULTIGRID ALGORITHM FOR THE CELL-CENTERED FINITE DIFFERENCE SCHEME*

Richard E. Ewing and Jian Shen Institute for Scientific Computation Texas A&M University College Station, Texas

SUMMARY

In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.

INTRODUCTION

In the simulation of incompressible fluid flow in porous media, we have to solve at least one second-order elliptic equation per each time step. A very important quantity is the Darcy velocity, defined by

 $\mathbf{u} = -\mathcal{K}\nabla p \tag{1}$

where p is the pressure of the fluid and \mathcal{K} is the conductivity. \mathcal{K} can be written by $\mathcal{K} = \frac{k}{\mu}$, where k is a tensor representing the permeability of the medium which can be discontinuous in general, and μ represents the viscosity of the fluid. μ is a continuous function of both time and space variables, but may have a very sharp frontal change of values. In other words, μ can change rapidly inside the interesting domain and the region of rapid change may move as time changes. According to the conservation law of mass balance, the Darcy velocity \mathbf{u} must be continuous along the normal direction at an element or domain boundary, no matter whether \mathcal{K} is discontinuous or not.

Now, we consider the following simple second-order elliptic equation in mixed form. Find a pair (p, \mathbf{u}) such that

$$\mathbf{u} = -\mathcal{K}\nabla p, \quad \text{in } \Omega = (0, 1)^2 \subset \mathbb{R}^2,$$

$$\nabla \cdot \mathbf{u} = f, \quad \text{in } \Omega,$$

$$p = 0, \quad \text{on } \partial\Omega,$$
(2)

^{*}This work was supported in part by the Department of Energy under Contract No. DE-FG05-92ER25143. The authors would also like to thank Joe Pasciak for valuable discussions about this work.

where the conductivity $\mathcal{K}(x,y) = \text{diag}(a,b)$ is positive and uniformly bounded above and below.

Because of the discontinuity of K, the classical solution of p in (2) may not exist. Let (\cdot, \cdot) denote $L^2(\Omega)$ or $(L^2(\Omega))^2$ inner product and $H(\operatorname{div};\Omega) \equiv \{\mathbf{u} \in (L^2(\Omega))^2 \mid \nabla \cdot \mathbf{u} \in L^2(\Omega)\}$. We seek the solution pair $(p,\mathbf{u}) \in H^1(\Omega) \times H(\operatorname{div};\Omega)$, such that

$$(\mathcal{K}^{-1}\mathbf{u}, \mathbf{v}) = (p, \nabla \mathbf{v}), \quad \forall \ \mathbf{v} \in H(\operatorname{div}, \Omega),$$

$$(\nabla \cdot \mathbf{u}, w) = (f, w), \quad w \in L^{2}(\Omega).$$
(3)

In [5], error estimates for solving (3) by the cell-centered finite difference scheme are studied, with the following results:

$$||P - \mathcal{P}p||_{L^2} + ||\mathbf{U} - \pi \mathbf{u}||_{L^2} \le ch^s ||p||_{1+s,\Omega \setminus \Gamma}, \qquad s = 1, 2,$$
 (4)

where $\mathcal{P} \times \pi$ is the Raviart-Thomas projection, Γ are the lines of discontinuity which coincide with the grid lines, and (P, \mathbf{U}) is the numerical solution of the cell-centered finite difference to approximate (3)[5]. Actually, we view the cell-centered finite difference method as a special numerical integration of the Raviart-Thomas mixed finite element method [4–6]. For s=2, (4) is the superconvergence error estimate.

From the point of view of mass balance and accuracy, the cell-centered finite difference scheme is one of the best numerical schemes to fulfill our goal. In this article, we investigate the efficiency of the multigrid algorithm based on the cell-centered finite difference scheme introduced in [5].

NUMERICAL SCHEME IN MULTIGRID SETTING

Let us use the Laplacian operator, $-\Delta$, to explain the cell-centered finite difference scheme stencil. For an interior node, the stencil for $-\Delta$ is (a) in Figure 1. For a corner node, the stencil for $-\Delta$ is (b) in Figure 1. For other boundary nodes, the stencil for $-\Delta$ is (c) in Figure 1. For discontinuous conductivity, see [5] for details. Now, we consider the uniform grid only. Let \mathcal{M}_k denote the piecewise constant Raviart-Thomas rectangular pressure space defined on Ω with mesh size $h_k = 2^{-(k+1)}$, $k = 0, 1, 2, 3, \ldots, J$. It is clear that

$$\mathcal{M}_0 \subset \mathcal{M}_1 \subset \mathcal{M}_2 \subset \ldots \subset \mathcal{M}_{J-1} \subset \mathcal{M}_J \subset L^2(\Omega).$$
 (5)

With an abuse of notation, for $u \in \mathcal{M}_k$, u is either a piecewise function or a vector with its nodal values as its entries. On \mathcal{M}_k , the cell-centered finite difference approximation is to find $P \in \mathcal{M}_k$, such that

$$\tilde{A}_k P = F_k \equiv \mathcal{P}_k f, \quad k = 0, 1, 2, \dots, J.$$
 (6)

Here $\mathcal{P}_k:L^2 o\mathcal{M}_k$ is the L^2 -projection into \mathcal{M}_k defined by

$$(f, w) = (\mathcal{P}_k f, w), \quad \forall \ w \in \mathcal{M}_k,$$
 (7)

and f is the load function of (2). The corresponding stencil of \tilde{A}_k is shown in Figure 1. Our goal is to find $P \in \mathcal{M}_J$, such that

$$\bar{A}_J P = F_J = \mathcal{P}_J f. \tag{8}$$

FIGURE 1. Stencils for the Laplacian operator.

The discrete L^2 -inner product and associated norm on \mathcal{M}_k are denoted by

$$(u, v)_k = h_k^2 v^T u$$
 and $||u||_k^2 = (u, u)_k$, $u, v \in \mathcal{M}_k$, (9)

where $v^T u$ is the usual algebraic inner product. Let $A_J = \tilde{A}_J$ define an associated bilinear form A_J on \mathcal{M}_J by

$$(A_J w, \phi)_J = A_J(w, \phi), \quad \forall \ w, \phi \in \mathcal{M}_J. \tag{10}$$

Before we define A_k for $0 \le k < J$, we first define the prolongation operator I_k and the restriction operator P_{k-1}^0 . Let $I_k : \mathcal{M}_{k-1} \to \mathcal{M}_k$, k = 1, 2, ..., J be the natural imbedding from \mathcal{M}_{k-1} to \mathcal{M}_k . Thus $P_{k-1}^0 : \mathcal{M}_k \to \mathcal{M}_{k-1}$, the adjoint of I_k in $(\cdot, \cdot)_k$, is defined by

$$(P_{k-1}^{0}w,\phi)_{k-1} = (w,I_{k}\phi)_{k}, \quad w \in \mathcal{M}_{k}, \ \phi \in \mathcal{M}_{k-1}.$$
(11)

From (9) and $h_{k-1} = 2h_k$, it is clear that $P_{k-1}^0 = \frac{1}{4}I_k^T$ in matrix form. Now, we define the bilinear form $A_{k-1}(\cdot,\cdot)$ and the matrix A_{k-1} on \mathcal{M}_{k-1} for $k=J,J-1,\ldots,2,1$, by

$$2A_{k-1}(u,v) = A_k(I_k u, I_k v), \quad \forall \ u, v \in \mathcal{M}_{k-1}, \tag{12}$$

and the corresponding matrix relation is

$$A_{k-1} = \frac{1}{8} I_k^T A_k I_k = \frac{1}{2} P_{k-1}^0 A_k I_k.$$
 (12')

Remark 1. It is shown in [5] that for piecewise smooth conductivity tensor K, as long as the discontinuities coincide with the coarser grid lines

$$A_{k-1} = (1 + O(h_k^2)) \tilde{A}_{k-1}. \tag{13}$$

In (13) $O(h_k^2) = Ch_k^2$. C depends on the local smoothness of K but is independent of the jumps. Since I_k is a simple operator, it is much easier to generate A_{k-1} by (12') than by (6) directly. Of course, A_k , $k = 0, 1, 2, \ldots, J-1$, are all positive definite since A_J is, and the spaces are nested. Because of (12), our multigrid algorithm can be considered as a black box solver once I_k has been defined. We mention that (12) holds for three-dimensional problems of $-\nabla \cdot (K\nabla u)$, with (12') being changed to

$$A_{k-1} = \frac{1}{16} I_k^T A_k I_k = \frac{1}{2} P_{k-1}^0 A_k I_k.$$

We also define the adjoint of I_k in $A_k(\cdot,\cdot)$, $P_{k-1}:\mathcal{M}_k\to\mathcal{M}_{k-1}$ by

$$A_{k-1}(P_{k-1}u, v) = A_k(u, I_k v), \quad u \in \mathcal{M}_k, \quad v \in \mathcal{M}_{k-1}.$$
 (14)

To define the smoothing process, we require linear operators $R_k: \mathcal{M}_k \to \mathcal{M}_k$ for $k = 1, 2, \ldots, J$. These operators may or may not be symmetric with respect to the inner product $(\cdot, \cdot)_k$. Let $A_k = D_k + L_k + L_k^T$, D_k be the diagonal part of A_k , and L_k be the lower triangular part of A_k . The linear smoothers we have tried are the following relaxation schemes. For $0 < \omega < 2$,

(a) Gauss-Seidel:
$$R_k = \left(\frac{D_k}{\omega} + L_k\right)^{-1}$$
 and R_k^T ,
(b) Jacobi: $R_k = \omega D_k^{-1}$,
(c) Richardson: $R_k = \frac{\omega}{\lambda_k} I$,

where I is the identity operator on \mathcal{M}_k and λ_k is the spectral radius of A_k . We allow the relaxation parameter ω to be different for pre-smoothing and post-smoothing processes in the following definition.

Following [1] the multigrid operator $B_k : \mathcal{M}_k \to \mathcal{M}_k$ is defined by induction and is given as follows. The pre-smoother is denoted by R_k and the post-smoother by \bar{R}_k .

V-Cycle Multigrid Algorithm:

Set $B_0 = A_0^{-1}$. Assume that B_{k-1} has been defined and define $B_k g$ for $g \in \mathcal{M}_k$ as follows:

- 1. Set $x^0 = 0$.
- 2. Define x^{ℓ} for $\ell = 1, 2, ..., m(k)$ by $x^{\ell} = x^{\ell-1} + R_k(g A_k x^{\ell-1})$.
- 3. Set $y^0 = x^{m(k)} + I_k B_{k-1} P_{k-1}^0 \left(g A_k x^{m(k)} \right)$
- 4. Define y^{ℓ} for $\ell = 1, 2, ..., m(k)$ by $y^{\ell} = y^{\ell-1} + \bar{R}_k(g A_k y^{\ell-1})$.
- 5. Set $B_k g = y^{m(k)}$.

Remark 2. Since equation (12) holds for all levels, this multigrid algorithm is non-variational according to [1], but the approximation property (4) is valid for each level as long as the non-variational relation (12) is satisfied. In this algorithm m(k) is a positive integer which may vary from level to level. In general this multigrid algorithm is not symmetric in $(\cdot, \cdot)_k$ except for $\bar{R}_k = R_k^T$.

Setting $K_k = I - R_k A_k$ and $\bar{K}_k = I - \bar{R}_k A_k$, it is straightforward to check that

$$I - B_k A_k = \bar{K}_k^{m_2(k)} [I - I_k B_{k-1} P_{k-1}^0 A_k] K_k^{m_k(k)}$$

$$= \bar{K}_k^{m_2(k)} [I - I_k B_{k-1} A_{k-1} P_{k-1}] K_k^{m_1(k)}.$$
(16)

Equation (16) gives a fundamental recurrence relation for the multigrid operator B_k .

COMPUTATIONAL EXPERIMENTS

We have tested the multigrid algorithm described in Section 2. We use a power method to compute the largest and the smallest eigenvalues of $B_J A_J$.

The linear smoothers we have tried are the following. Let m be a positive integer. m(k) = m for all k,

$$S_1(m): \quad R_k = \frac{1}{\lambda_k} I, \quad \bar{R}_k = R_k,$$

$$S_2(m): \quad R_k = rac{1}{\lambda_k} I, \quad ar{R}_k = 2R_k, \quad ext{where λ_k is the largest eigenvalue of A_k,}$$

$$S_3(m): R_k = (D_k + L_k)^{-1}, \bar{R}_k = R_k^T,$$

$$S_4(m): R_k = 1.35 D_k^{-1}, \bar{R}_k = \frac{1}{2} R_k,$$

$$S_5(m): R_k = \left(\frac{D_k}{1.35} + L_k\right)^{-1}, \quad \bar{R}_k = \left(\frac{D_k}{0.675} + L_k^T\right)^{-1},$$

$$S_6(m): R_k = \left(\frac{2}{3}D_k + L_k\right)^{-1}, \quad \bar{R}_k = (2D_k + L_k^T)^{-1}.$$

Note that only $S_1(m)$ and $S_3(m)$ make B_JA_j $A_J(\cdot,\cdot)$ symmetric. The rest are neither symmetric nor $A_J(\cdot,\cdot)$ symmetric. We also have tried nonlinear smoothers, conjugate gradient, and diagonally preconditioned conjugate gradient algorithms. We shall use N(m) to represent our nonlinear multigrid by diagonally preconditioned conjugate gradient smoothers. The reason we choose different relaxation numbers comes from the suggestion [3] for an algebraic multigrid algorithm, and from our computational experiments.

We list our test results in Tables 1-9 at the end of this paper for the following problems:

Ex. 1. Poisson problem: $K \equiv 1$ in (2).

Ex. 2. Isotropic problem with nearly singular piecewise smooth conductivity:

$$\mathcal{K} = \left[0.001 + 11.1 \left(1 + \cos(3.561\pi x)\sin(3.001\pi y)\right)\right] q,$$

$$q = \begin{cases} 10^{-4}, & \text{if } x \ge \frac{1}{2} \text{ and } y \ge \frac{1}{2}, \\ 1, & \text{otherwise.} \end{cases}$$

Ex. 3. Same kind of problems as Ex. 2:

$$\mathcal{K} = \left[0.001 + 45.1 \left(1 + \cos(9.431\pi x)\sin(3.001\pi y)\right)\right] q,$$

$$q = \begin{cases} 10^4, & \text{if } x \ge \frac{1}{2} \text{ and } y \ge \frac{1}{2}, \\ 1, & \text{otherwise.} \end{cases}$$

Ex. 4. Anisotropic problem with smooth conductivity:

$$\mathcal{K} = \operatorname{diag}(a, b),$$

$$a = 0.001 + 45.1 (1 + \cos(9.431\pi x)\sin(9.431\pi y)),$$

$$b = 0.001 + 45.1 (1 + \sin(9.431\pi x)\cos(9.431\pi y)).$$

Note that all the solutions of our examples have the superconvergence results proved in [5], i.e., satisfying (4) with s = 2.

In Tables 1 and 6, for example, the second row of Table 1 means J+1=3 level multigrid with $h_J=\frac{1}{8},\,\lambda_m,\,S_1(1)$ means $\lambda_m=\min\lambda(B_JA_J)$ by $S_1(1)$ smoothers, and $\lambda_M,\,S_1(1)$ means $\lambda_M=\max\lambda(B_JA_J)$ by $S_1(1)$ smoothers. From Table 1, we can see that even when $I-B_JA_J$ fails to be a reducer, B_J may still be a good preconditioner. In Tables 5–7, it is interesting to see the relations of the number of V-cycles (#V), average contraction numbers (avc) and the time spent on the machine (cpu in seconds) when solving a fixed problem on a fixed grid by using different multilevels. In Tables 3–5, and 7–9, avc is defined by

$$\operatorname{avc} = \frac{1}{n} \sum_{j=1}^{n} \frac{\|r_j\|_J^2}{\|r_{j-1}\|_y^2},$$

where n = #V is the total number of V-cycles and $||r_j||_J$ is the discrete L^2 -norm of the residual after the jth V-cycle. The stop tolerance for all the iterative algorithms is $||r_n||_J^2 \le \epsilon = 10^{-14}$. Our coarsest grid solver is a diagonal preconditioned conjugate gradient solver with tolerance $\epsilon_0 = 10^{-19}$. In Tables 7–9, "cg" means the standard conjugate gradient algorithm, its corresponding "#V" means the total iteration steps, when $||r_n||_J^2 \le \epsilon = 10^{-14}$, and "bpcg" means the incomplete factorization preconditioned conjugate gradient algorithm [2].

REFERENCES

- Bramble, J. H, Pasciak, J. E., and Xu, J.: The Analysis of Multigrid Algorithm with Nonnested Spaces or Noninherited Quadratic Forms. Math. Comp., vol. 56, 1991, pp. 1–34.
- 2. Concus, P., Golub, G. H., and Meurant, G.: Block Preconditioning for the Conjugate Gradient Method. SIAM J. Sci. Stat. Comput., vol. 6, 1985, pp. 220-252.
- 3. McCormick, S. F., ed.: Multigrid Methods. SIAM, Philadelphia, Pennsylvania, 1987.

- 4. Russell, T.F. and Wheeler, M.F.: Finite Element and Finite Difference Methods for Continuous Flows in Porous Media. *The Mathematics of Reservoir Simulation* (R. E. Ewing, ed.). SIAM, Philadelphia, Pennsylvania, 1983.
- 5. Shen, J.: Mixed Finite Element Methods: Analysis and Computational Aspects. Ph.D. Thesis, University of Wyoming, 1992.
- 6. Weiser, A. and Wheeler, M.F.: On the Convergence of Block-Centered Finite Differences for Elliptic Problems. SIAM J. Numer. Anal., vol. 25, 1988, pp. 351–375.

Table 1. For Ex. 1

GRID	J	$\lambda_m, S_1(1)$	$\lambda_M, S_1(1)$	$\lambda_m, S_1(2)$	$\lambda_M, S_1(2)$
42	1	0.548	1.351	0.788	1.134
8 ²	2	0.446	1.804	0.704	1.297
16 ²	3	0.397	2.394	0.663	1.470
32 ²	4	0.367	3.128	0.639	1.633
64^{2}	5	0.345	4.023	0.623	1.783
128^{2}	6	0.325	5.106	0.609	1.924
256^{2}	7	0.299	6.417	0.592	2.059

Table 2. For Ex. 1

GRID	J	$\lambda_m, S_3(1)$	$\lambda_M, S_3(1)$	$\lambda_m, S_3(2)$	$\lambda_M, S_3(2)$
42	1	0.858	1.142	0.971	1.037
8 ²	2	0.812	1.239	0.960	1.062
16 ²	3	0.794	1.344	0.954	1.089
32 ²	4	0.785	1.445	0.951	1.112
64 ²	5	0.784	1.535	0.950	1.131
128^{2}	6	0.784	1.614	0.949	1.146
256 ²	7	0.783	1.685	0.949	1.159

Table 3. For Ex. 1 by $B_J(S_2(1))$

GR	.ID	J=1	J=2	J=3	J=4	J=5	J=6	J = 7	J=8
	#V	23	34	45	48	50	50		
64^2	avc	0.121	0.243	0.349	0.374	0.389	0.389		
	cpu	4.4	2.1	1.7	1.7	1.7	1.7		
	$\overline{\#V}$	24	38	52	62	69	71	71	
128 ²	avc	0.126	0.266	0.384	0.468	0.489	0.500	0.500	
	cpu	35	11.5	7.1	7.0	7.0	7.0	7.0	
	$-\frac{\cdot}{\#V}$	26	40	57	75	92	97	99	99
256 ²	avc	0.129	0.27	0.405	0.502	0.572	0.584	0.586	0.586
	cpu	248.0	75.2	35.2	34.3	35.3	35.1	35.1	35.2

Table 4. For Ex. 1 by $B_J(S_3(1))$

GRID		J=1	J=2	J=3	J=4	J=5	J=6	J=7	J=8
	#V	16	22	28	33	34			
64^{2}	avc	0.050	0.118	0.185	0.256	0.256			
	cpu	4.0	1.7	1.5	1.5	1.5			
	#V	17	24	31	38	43	46	46	
128 ²	avc	0.053	0.129	0.204	0.275	0.325	0.345	0.345	
	cpu	33.0	8.5	7.0	6.0	6.1	6.4	6.4	
	#V	18	26	34	42	51	58	61	61
256 ²	avc	0.054	0.136	0.219	0.296	0.367	0.417	0.436	0.436
	cpu	252.0	61.0	27.0	24.0	28.0	31.0	32.0	32.0

Table 5. For Ex. 1 by $B_J(S_3(2))$

GR	.ID	J=1	J=2	J=3	J=4	J=5	J=6	J=7	J = 8
	#V	9	10	11	11	11	11		
64 ²	avc	0.0055	0.0092	0.011	0.012	0.0121	0.0121		
	cpu	3.3	2.0	1.5	1.0	1.0	1.0		
	#V	10	11	12	12	12	12	12	
128 ²	avc	0.0066	0.011	0.0136	0.015	0.0155	0.0156	0.0156	
	cpu	17.0	5.3	3.8	3.0	3.0	3.2	3.2	
	#V	10	12	12	13	13	13	13	13
256 ²	avc	0.0067	0.015	0.015	0.018	0.019	0.0191	0.0191	0.0191
	cpu	152.0	34.0	17.0	16.0	15.0	15.3	15.3	15.3

Table 6. For Ex. 2

GRID	J	$\lambda_m, S_3(1)$	$\lambda_M, S_3(1)$
42	1	0.772	1.090
8 ²	2	0.687	1.208
16 ²	3	0.718	1.329
32 ²	4	0.737	1.442
64 ²	5	0.751	1.541
128 ²	6	0.759	1.626
256 ²	7	0.762	1.699

Table 7. For Ex. 3

GRID	J		N(1)	$S_3(1)$	$S_5(1)$	$S_4(1)$	cg	$ r_0 _J^2$
		#V	25	33	25	34	17,445	
64 ²	5	avc	0.164	0.255	0.157	0.276		1.4×10^6
		cpu	2.3	0.6	0.3	0.6	143.0	!
		#V	29	45	29	35	55,647	
128^{2}	6	avc	0.195	0.35	0.202	0.258		1×10^7
		cpu	12.5	4.5	3.5	4.5	1,835.0	
		#V	31	61	33	38	142,610	
256 ²	7	avc	0.213	0.449	0.270	0.071		8.2×10^7
		cpu	53.5	27.5	15.5	19.5	17,003.0	

Table 8. For Ex. 3

GRID	J		N(2)	$S_{3}(2)$	$S_{5}(2)$	$S_{6}(2)$	$S_4(2)$	bpcg
		#V	12	11	11	15	17	26
64 ²	5	avc	0.028	0.016	0.011	0.047	0.071	
		cpu	2.3	1.0	1.0	1.0	1.0	1.2
		#V	14	12	11	17	17	41
128 ²	6	avc	0.034	0.020	0.012	0.053	0.061	
		cpu	9.0	1.8	1.6	2.5	3.5	5.5
		#V	14	13	13	18	19	63
256 ²	7	avc	0.035	0.023	0.017	0.056	0.071	
		cpu	36.5	11.5	11.5	14.5	17.5	33.5

Table 9. For Ex. 4

GRID	J		N(3)	$S_{6}(2)$	$S_4(3)$	bpcg	cg	$\ r_0\ _J^2$
		#V	13	18	21	27	313	
64 ²	5	avc	0.012	0.042	0.084			1.2×10^{10}
		cpu	32.0	0.5	1.5	1.3	2.3	
		#V	16	19	31	40	651	
128 ²	6	avc	0.031	0.048	0.181			9.1×10^{10}
		cpu	13.0	2.5	12.0	5.5	23.0	
		#V	21	25	57	62	1,329	
256 ²	7	avc	0.07	0.091	0.374			7.2×10^{11}
		cpu	68.0	18.0	64.0	34.0	161.0	