Qualitative Chemistry

Angular Momentum of Electron,

$$mvr = \frac{nh}{2\pi}$$

m=mass of electron v=linear velocity of electron r=radius of orbit n=number of orbit h=Plank's Constant =6.626 × 10⁻³⁴ Js =6.626 × 10⁻²⁷ erg sec

If an electron travels from one orbit to another orbit , electron either consumes or leaves energy.

If electron is traveling from an orbit having energy of \mathbf{E}_1 to \mathbf{E}_2 then the consumed or left energy of electron is ,

$$\Delta \mathbf{E} = \mathbf{E}_2 - \mathbf{E}_1 = \mathbf{h} \mathbf{v}$$

h=Planks constant v= frequency of the energy consumed or left my electron

Energy of Hydrogen's n-th orbit:

$$E_n = \frac{-2\pi^2 me^4}{n^2 h}$$

Radius of power shells:

$$r_n = \frac{n^2 h^2}{4 \pi^2 m Z e^2}$$

Velocity of Electron,

$$v = \frac{nh}{2\pi mr}$$

m = mass of electron = $9.109 \times 10^{-31} \, kg$

 $= 9.109 \times 10^{-28} \text{ g}$

e = charge of electron = 1.602×10^{-19} C

 $= 4.8 \times 10^{-10} \text{ esu}$ c = speed of light = $3 \times 10^8 \text{ ms}^{-1}$

h = Plank's Constant

n = number of shell

Z = Atomic number

Equation of de-Broglie:

$$\lambda = \frac{h}{mv}$$

Common terms about waves:

$$c = v\lambda$$

$$\bar{v} = \frac{v}{c} = \frac{1}{\lambda}$$

Here, $c = \text{speed of light , } \nu = \text{wave number,}$ $\nu = \text{frequency, } \lambda = \text{wave length}$ $\stackrel{-}{v}$ =wave number n_1 or n_2 is the number of orbital from where and to where the electron travels..

Tip: always n_1 is the higher orbit number and n_2 is always lower, because the value of \overline{v} always has to be positive

R_H = **Rydberg Constant** = 1.097 × 10⁷ m⁻¹

$$\bar{v} = R_H (\frac{1}{n_1^2} - \frac{1}{n_2^2})$$

Solubility:

$$S = \frac{Moles of Solute}{Volume of Solvent} ; Unit: mole/L or M$$

$$S = \frac{100 \times Mass of solute in grams}{Mass of solvent in gram}$$

Effect of Pressure in Solubility (Henry's Law):

If applied pressure in a Gaseous Solute solution is *P*

$$S \propto P \\
S = K_H \times P$$

$$\frac{S_1}{P_1} = \frac{S_2}{P_2} = \frac{S_3}{P_3} = \dots$$

K_H = Henry's Proportional Constant = S/P

Unit of K_H in SI standard is: M atm⁻¹

Solubility Product (K_{sp} and K_{ip}):

Suppose, MgCl₂ is dissolved in water. Hence the ionic equation as follow-

$$MgCl_2 \rightleftharpoons = Mg^{2^+} + 2Cl^{-1}$$

 $K_{sp} = [Mg^{2^+}] + [Cl^{-1}]^2$

**Note: In IUPAC standard the Solubility of a solution with a specific solute and solvent is measured I mole/Liter which essentially means the Molarity of the solution. So K_{sp} is the Ionic Product of the product ion. For example: in the example above shows how to find Ksp of a Solution. Which needs the molarity of Mg^{2+} and Cl^{-} . But because solubility is the molarity of the solution so we can say $[Mg^{2+}] = [Cl^{-}] = Solubility$ or S

 K_{sp} in the above reaction is, $K_{sp} = S \times S^2 = S^3$

**In order to use this equation the given Solubility must be converted to mole L^- or M. For example if the Given solubility is : $5x10^{-4}$ g/L we have to covert g/L to mole/L. In order to convert g/L to mole/L we have to divide the g/L by the Molar mass of solute

**** The equation of K_{ip} and K_{sp} is the same . Difference between K_{ip} and K_{sp} is K_{sp} is the constant Ionic product for a solution in saturated state. It means we can identify K_{sp} only for saturated solutions. And it's value is constant in a specific solution and at a specific Temperature. But K_{ip} is essentially the ionic product of solute . K_{ip} can be changed if the Concentration of the solution is changed . Also K_{ip} can be calculated at any solution (saturated , unsaturated or oversaturated).

Relation between K_{sp} and K_{ip} :

if, $K_{ip} = K_{sp}$: The solution is saturated

if, $K_{ip} > K_{sp}$: The solution is over-saturated .

if, $K_{ip} \le K_{sp}$: The solution is unsaturated.

UNIT CONVERSION REQUIRED FOR THIS CHAPTER

Name	SI	CGS
Length	meter(m)	Centimeter (cm)
Mass	kilogram(kg)	dyne
Energy	joule(J)	erg
Charge	Coulomb(C)	esu
Time	sec	sec

Unit Conversions:

 $1 \text{mm} = 10^{-3} \text{ m}$

 $1\mu m = 10^{-6} m$

 $1 \text{nm} = 10^{-9} \text{ m}$

 $1\text{\AA} = 10^{-10} \text{ m}$

 $1J = 10^7 \, erg$