Mining Frequent Subgraphs

CS 145

Fall 2015

Overview

Introduction

- Finding recurring subgraphs from graph databases.
- FSG
- gSpan
- FFSM

Labeled Graph

- We define a <u>labeled graph</u> G as a five element tuple $G = \{V, E, \sum_{V}, \sum_{E}, \delta\}$ where
 - V is the set of vertices of G,
 - $E \subseteq V \times V$ is a set of undirected edges of G,
 - $\sum_{V} (\sum_{E})$ are set of vertex (edge) labels,
 - δ is the labeling function: $V \to \sum_V$ and $E \to \sum_E$ that maps vertices and edges to their labels.

3

Frequent Subgraph Mining

Input: A set GD of labeled undirected graphs

Output: All frequent subgraphs (w. r. t. σ) from *GD*.

4

Finding Frequent Subgraphs

- Given a graph database GD = $\{G_0, G_1, ..., G_n\}$, find all subgraphs appearing in at least σ graphs.
 - Isomorphic subgraphs are considered the same subgraph.
- Apriori approaches
 - Generation of subgraph candidates is complicated and expensive.
 - Subgraph isomorphism is an NP-complete problem, so pruning is expensive.

Apriori-Based, Breadth-First Search

Methodology: breadth-search, joining two graphs

- AGM (Inokuchi, et al. PKDD'00)
 - generates new graphs with one more node

- FSG (Kuramochi and Karypis ICDM'01)
 - generates new graphs with one more edge

FSG Algorithm

- **K** = 1
- F_1 = all frequent edges
- Repeat
 - K = K + 1
 - $C_K = join(F_{K-1})$
 - F_K = frequent patterns in C_K
 - Until F_K is empty

Join: Key Operation

- Join(L) = \cup join(P, Q) for all P, Q \in L
- Join(P, Q) = $\{G \mid P, Q, \subset G, |G| = |P| + 1, |P| = |Q|\}$
- Two graphs P and Q are joinable if the join of the two graphs produces an non-empty set
- Theorem: two graphs P and Q are joinable if P ∩ Q is a graph with size |P| -1 or share a common "core" with size P-1

Multiplicity of Candidates

Case 1: identical vertex labels

Multiplicity of Candidates

Case 2: Core contains identical labels

Multiplicity of Candidates

Case 3: Core multiplicity

PATH

- Apriori-based approach
- Building blocks: edge-disjoint path
- Identify all frequent paths
- Construct frequent graphs with 2 edge-disjoint paths
- Construct graphs with k+1 edge-disjoint paths from graphs with k edge-disjoint paths
- Repeat

A graph with 3 edge-disjoint paths

PATH Algorithm

- **K** = 1
- \mathbf{F}_1 = all frequent paths
- Repeat
 - K = K + 1
 - $C_K = join(F_{K-1})$
 - F_K = frequent patterns in C_K
 - Until F_K is empty

Challenges

- Graph isomorphism
 - Two graphs may have the same topology though their layouts are different
- Subgraph isomorphism
 - How to compute the support value of a pattern

Graph Isomorphism

A graph is isomorphic if it is topologically equivalent to another graph

Why Redundant Candidates?

All the algorithms may propose the same candidate several times.

- We need to keep track of the identical candidates to
 - Avoid redundancy in results
 - Avoid redundant search

gSpan

- DFS without candidate generation
 - Relabels graph representation to support DFS.
 - Discovers all frequent subgraphs without candidate generation or pruning.
- DFS Representation
 - Map each graph to a DFS code (sequence).
 - Lexicographically order the codes.
 - Construct a search tree based on the lexicographic order.

Depth-First Search Tree

DFS Codes

■Given $e_i = (i_1, j_1)$, $e_2 = (i_2, j_2)$: $e_1 < e_2$ if: $\sim i_1 = i_2 \&\& j_1 < j_2$ $\sim i_1 < j_1 \&\& j_1 = i_2$ ■ $code(G, T) = edge sequence of <math>e_i < e_i$

+1

edge	(b)	(c)	(d)
0	(0,1,X,a,Y)	(0,1,Y,a,X)	(0,1,X,a,X)
1	(1,2,Y,b,X)	(1,2,X,a,X)	(1,2,X,a,Y)
2	(2,0,X,a,X)	(2,0,X,b,Y)	(2,0,Y,b,X)
3	(2,3,X,c,Z)	(2,3,X,c,Z)	(2,3,Y,b,Z)
4	(3,1,Z,b,Y)	(3,0,Z,b,Y)	(3,0,Z,c,X)
5	(1,4,Y,d,Z)	(0,4,Y,d,Z)	(2,4,Y,d,Z)

DFS Lexicographic Order

- Given lexicographic ordering of label set L, \prec_L
- Given graphs G_{α} , G_{β} (equivalent label sets).
- Given DFS codes
 - $-\alpha = \operatorname{code}(G_{\alpha}, T_{\alpha}) = (a_0, a_1, \dots, a_m)$
 - $-\beta = \operatorname{code}(G_{\beta}, T_{\beta}) = (b_0, b_1, ..., b_n)$
 - (assume n ≥ m)
- $\alpha \leq \beta$ iff either of the following are true:
 - $-\exists t, 0 \le t \le \min(n, m)$ such that
 - $a_k = b_k$ for k < t and
 - $a_t \prec_e b_t$
 - $a_k = b_k$ for $0 \le k \le m$

DFS Lexicographic Order

Given DFS codes

- $-\alpha = \operatorname{code}(G_{\alpha}, T_{\alpha}) = (a_0, a_1, \dots, a_m)$ $-\beta = \operatorname{code}(G_{\beta}, T_{\beta}) = (b_0, b_1, ..., b_n)$ - (assume n ≥ m)
- Given t such that $a_k = b_k$ for k < t
- Given $a_t = (i_a, j_a, L_{i_a}, L_{i_a, j_a}, L_{j_a}),$ $b_t = (i_b, j_b, L_{i_b}, L_{i_b, i_b}, L_{j_b}),$
- $a_t <_e b_t$ if one of the following cases

Case 1:

Both forward edges, AND...

Case 3: a_t back, b_t forward \rightarrow $a_t \prec_e b_t$

Case 2:

Both back edges, AND...

DFS Lexicographic Order (Case 1)

Both forward edges, AND one of the following:

- $i_b < i_a$ (edge starts from a *later* visited vertex)
 - Why is this (think about DFS process)?
- $i_a = i_b$ AND labels of a lexicographically less than labels of b, in order of tuple.
 - Ex: Labels are strings, $a_t = (_, _, m, e, x), b_t = (_, _, m, u, x)$ - $m = m, e < u \rightarrow a_t <_e b_t$
- Note: if both forward edges, then $j_a = j_b$
 - Reasoning: all previous edges equal, target vertex discovery times are the same

DFS Lexicographic Order (Case 2)

Both back edges, AND one of the following:

- $j_a < j_b$ (edge refers to earlier vertex)
- $j_a = j_b$ AND edge label of a lexicographically less than b
 - Note: given that all previous edges equal, vertex labels must also be equal
- Note: if both back edges, then $i_a = i_b$
 - Reasoning: all previous edges equal, source vertex discovery times are the same.

If X<Y<Z and a<b<c, then code C<A<B

If X=Y=Z and a=b=c, then code C<A<B

DFS Lexicographic Order

- Minimum DFS code
 - The minimum DFS code min(G), in DFS lexicographic order, is the canonical label of graph G.
 - Graphs A and B are isomorphic if min(A) = min(B).

DFS Codes: Parents and Children

- If $\partial = (a_0, a_1, ..., a_m)$ and $\mathcal{S} = (a_0, a_1, ..., a_m, b)$:
 - \blacksquare ß is the child of ∂ .
 - \bullet ∂ is the parent of \mathcal{B} .
- A valid DFS code requires that b grows from a vertex on the rightmost path.
 - Rightmost vertex: v_n
 - Rightmost path: shortest path from v₀ to v_n using only forward edges

DFS code extension

Forward edge extensions to a DFS code must occur from a vertex on the rightmost path!

DFS code extension

Back edge extensions must occur from the rightmost vertex!

DFS code extension

- if a vertex not on rightmost path, then it has been fully processed by DFS.
- previous last DFS edge tuple < new tuple, if</p>
 - new edge is forward, extended from a vertex on rightmost path, OR
 - new edge is backward, extended from rightmost vertex

DFS Code Trees

- Organize DFS code nodes as parent-child.
- Pre-order traversal follows DFS lexicographic order.
- If s and s' are the same graph with different DFS codes, s' is not the minimum and can be pruned.

Example

 $Min_support = 3$

gSpan

- D is the set of all graphs.
- S is the result set.

```
Algorithm 1: GraphSet Projection(D,S)
                                                        Subprocedure I: Subgraph Mining(D,S,s)
1:
           sort labels in D by frequency
                                                        1:
                                                                    if s != min(s)
           remove infrequent vertices and edges
2:
                                                        2:
                                                                     return
                                                                    S = S \cup \{s\}
3:
           relabel remaining vertices and edges
                                                         3:
4:
           S' = all frequent I-edge graphs in D
                                                                    s' = +I-edge children of s in s.D
5:
           sort S' in DFS lexicographic order
                                                         5:
                                                                    foreach child c of s' do
6:
           S = S'
                                                        6:
                                                                     if support(c) ≥ minSup
7:
                                                        7:
           foreach edge e in S' do
                                                                                 Subgraph_Mining(D_s,S,c)
8:
            s = graph defined by e
9:
            s.D = subgraphs in D containing e
10:
            Subgraph Mining(D,S,s)
11:
            D = D - e
12:
            if |D| < minSup
13:
                         break
```

Runtime: Synthetic

Runtime: Chemical

gSpan Advantages

- Lower memory requirements.
- Faster than naïve FSG by an order of magnitude.
- No candidate generation.
- Lexicographic ordering minimizes search tree.
- False positives pruning.
- Any disadvantage?