Week 1: Pandas Tutorial for Data Wrangling

Team DSS: Kevin Miao, Youngli Hong, Sandeep Sainath, Amanda Ma

Agenda

- 1. Introduction & Goals
- 2. Data Structures
- 3. Data Selection
- 4. Applying Functions
- 5. Reshaping Data
- 6. Merging Data
- 7. Data Wrangling in Practice

Introduction & Goals

Introduction & Goals

Why Pandas?

- The Python ecosystem is universally popular in practical machine learning applications
- Pandas is the **most popular choice** for data wrangling

After this module, you will be able to:

- be able to import and clean raw data in CSV, Excel, or JSON formats.
- be familiar with the basic data structures in Pandas such as DataFrames and Series.
- be familiar with the basics of data manipulation in Pandas such as subsetting, selecting, filtering data.
- be able to perform complex data operations such as groupbys, pivots, and joins and understand the intuition behind them.
- be able to draw on common use cases of Pandas in the context of practical machine learning
- in general, be very comfortable with the **fundamentals** of Pandas for data wrangling.

We assume the following prerequisite knowledge:

- CS61A and CS61B or any similar programming experience
 - Object-Oriented Programming
 - Data Structures
 - Proficiency in Python
- Recommended: Introductory machine learning knowledge

Data Structures

Data Structures

DataFrames:

analog of tabular datasets in Pandas

2-dimensional data structure with rows and columns

To create your own DataFrame, use the pd.DataFrame() method to pass in dict-like data

<u>Series:</u>

analog of columns of data in Pandas

array-like operations are element-wise

To create your own Series, use the pd.Series() method

	Area Abbreviation	Area Code	Area	Item	Item	Element Code	Element	Unit	latitude	longitude	 Y2004	Y2005	Y2006	Y2007	Y2008	Y2009
C	AF	2	Afghanistan	2511	Wheat and products	5142	Food	1000 tonnes	33.94	67.71	 3249.0	3486.0	3704.0	4164.0	4252.0	4538.0
1	AF	2	Afghanistan	2805	Rice (Milled Equivalent)	5142	Food	1000 tonnes	33.94	67.71	 419.0	445.0	546.0	455.0	490.0	415.
2	AF	2	Afghanistan	2513	Barley and products	5521	Feed	1000 tonnes	33.94	67.71	 58.0	236.0	262.0	263.0	230.0	379.
3	AF	2	Afghanistan	2513	Barley and products	5142	Food	1000 tonnes	33.94	67.71	 185.0	43.0	44.0	48.0	62.0	55.
4	AF	2	Afghanistan	2514	Maize and products	5521	Feed	1000 tonnes	33.94	67.71	 120.0	208.0	233.0	249.0	247.0	195.
5	AF	2	Afghanistan	2514	Maize and products	5142	Food	1000 tonnes	33.94	67.71	 231.0	67.0	82.0	67.0	69.0	71
6	AF	2	Afghanistan	2517	Millet and products	5142	Food	1000 tonnes	33.94	67.71	 15.0	21.0	11.0	19.0	21.0	18
7	AF	2	Afghanistan	2520	Cereals, Other	5142	Food	1000 tonnes	33.94	67.71	 2.0	1.0	1.0	0.0	0.0	0
8	AF	2	Afghanistan	2531	Potatoes and products	5142	Food	1000 tonnes	33.94	67.71	 276.0	294.0	294.0	260.0	242.0	250
9	AF	2	Afghanistan	2536	Sugar cane	5521	Feed	1000 tonnes	33.94	67.71	 50.0	29.0	61.0	65.0	54.0	114
10	AF	2	Afghanistan	2537	Sugar beet	5521	Feed	1000 tonnes	33.94	67.71	 0.0	0.0	0.0	0.0	0.0	0

Example of a DataFrame with several columns as Series

Data Selection

Data Selection - Indexing, Subsetting

Indexing: .loc() vs. iloc()

.loc() function is used to access a group of rows
and columns by label

iloc function is used to access the same by **position**

Object Type	Indexers
Series	s.loc[indexer]
DataFrame	df.loc[row_indexer,column_indexer]

Example of indexing with .loc

Subsetting Data:

all rows in a DataFrame with a numerical value of a particular column greater than 10 AND string value of a particular column equal to "Hello":

df[(df['column_1'] > 10) & (df['column_2'] == "Hello")]

```
In [27]: s[:5]
Out[27]:
2000-01-01
               0.469112
2000-01-02
              1,212112
2000-01-03
              -0.861849
2000-01-04
               0.721555
2000-01-05
             -0.424972
Freq: D, Name: A, dtype: float64
In [28]: s[::2]
Out[28]:
2000-01-01
               0.469112
2000-01-03
              -0.861849
2000-01-05
              -0.424972
2000-01-07
               0.404705
Freq: 2D, Name: A, dtype: float64
In [29]: s[::-1]
Out[29]:
2000-01-08
              -0.370647
2000-01-07
               0.404705
2000-01-06
             -0.673690
2000-01-05
              -0.424972
2000-01-04
               0.721555
2000-01-03
              -0.861849
2000-01-02
              1.212112
2000-01-01
               0.469112
Freq: -1D, Name: A, dtype: float64
```

Example of indexing a Series by slicing

Data Selection - Columns, Sorting

<u>Creating/Dropping/Renaming Columns:</u>

df['new_column_name'] = Series_or_list_of_data

Dropping: df.drop('column_name', axis=1)

The *axis=1* parameter indicates that we want to drop a column, not a row (to drop rows, use axis=0).

Renaming: df.rename(columns={'old1':'new1', 'old2':'new2'})

Sorting:

Values in a DataFrame and Series can be sorted in any order using the **sort_values()** method.

Sort the "order_number" column in descending order:

df["number"].sort_values(axis=0, ascending=False)

Applying Functions

Applying Functions

The .apply() function allows you to pass in any function, built-in or custom, to apply along any axis of a DataFrame

- the "axis" parameter in df.apply() with value 0 corresponds to applying a function over its rows, while value 1 corresponds to columns.
- using the NumPy function **"np.sum"** aggregation function to calculate the arithmetic sum in .apply() will return one value, aka the sum of the specified Series.
- using a custom function such as "lambda x: x + 2", which adds 2 to every row, will return a DataFrame/Series with the column modified appropriately.

Reshaping Data

Reshaping Data - Groupbys

Groupby operations involve some combination of splitting the object, applying a function, and combining the results

df.groupby() function enables this functionality. The function returns a
 DataFrameGroupBy object, a special class in Pandas.

Aggregation functions can take the form of both built-in functions and custom functions.

Common built-in functions include .mean(), .max(), .min(), .sum(), and .count().

For custom functions, the **.agg()** function takes in any lambda or pre-defined function and applies to a DataFrameGroupBy object.

Reshaping Data - Pivots, Melts

Pivots:

- a rotational transformation of a DataFrame
- reorganizes a DataFrame such that the table is indexed by one or more of its columns
- df.pivot() method takes in three main parameters: "index", "columns", and "values"

Melts:

- involves "unpivoting" columns over columns that are identifier variables.
- df.melt() function specifies this with the"id_vars" parameter through a list

Reshaping Data - Stacking, Unstacking

Stacking:

involves adding a column as the next additional level to a DataFrame

Unstacking:

removing a column from the index of a DataFrame and reverting it to a column

Merging Data

Pandas has extensive functionality to perform traditional database-style joins. These include inner joins, left joins, right joins, and outer joins.

- pd.merge() function enables this functionality.

<- Visual example of an outer join

Syntax for pd.merge()

Visual example of a basic inner join

Data Wrangling in Practice

Data Wrangling in Practice

Data wrangling is messy and comes in many different forms!

Missing value imputation:

- Detecting missing values: is.na(), not.na() methods
- Method of imputation: Context is everything!
- Filling in missing values: .fillna() method

Iteration: .apply() is extremely computationally efficient. Use over for-loops and .iterrows() unless absolutely necessary.

Time series data:

Concept	Scalar Class	Array Class	pandas Data Type	Primary Creation Method
Date times	Timestamp	DatetimeIndex	datetime64[ns] or datetime64[ns, tz]	to_datetime or date_range
Time deltas	Timedelta	TimedeltaIndex	timedelta64[ns]	to_timedelta or timedelta_range