APPENDIX

 \mathbf{A}

DATA SHEETS FOR IEEE 14 BUS SYSTEM

The IEEE 14 bus system is shown in figure 3.1. The system data is taken from [9]. The data given in the following tables is on 100MVA base. The minimum and maximum limits of voltage magnitude and phase angle are considered to be 0.95p.u. to 1.05p.u. and -45° to $+45^{\circ}$ respectively.

Table A.1: Line data – IEEE 14 bus system

Line	From	То	Line imped	ance $(p.u.)$	Half line charging	MVA
number	bus	bus	Resistance	Reactance	susceptance $(p.u.)$	rating
1	1	2	0.01938	0.05917	0.02640	120
2	1	5	0.05403	0.22304	0.02190	65
3	2	3	0.04699	0.19797	0.01870	36
4	2	4	0.05811	0.17632	0.02460	65
5	2	5	0.05695	0.17388	0.01700	50
6	3	4	0.06701	0.17103	0.01730	65
7	4	5	0.01335	0.04211	0.00640	45
8	4	7	0	0.20912	0	55
9	4	9	0	0.55618	0	32
10	5	6	0	0.25202	0	45
11	6	11	0.09498	0.1989	0	18
12	6	12	0.12291	0.25581	0	32
13	6	13	0.06615	0.13027	0	32
14	7	8	0	0.17615	0	32
15	7	9	0	0.11001	0	32
16	9	10	0.03181	0.0845	0	32
17	9	14	0.12711	0.27038	0	32
18	10	11	0.08205	0.19207	0	12
19	12	13	0.22092	0.19988	0	12
20	13	14	0.17093	0.34802	0	12

Table A.2: Capacity and cost coefficients – IEEE 14 bus system

Generator	P_i^{\min}	P_i^{\max}	a_i	b_i	c_i
number	(MW)	(MW)	$(\$/(MWhr)^2)$	(\$/MWhr)	$(\$/\mathrm{hr})$
G_1	10	160	0.005	2.450	105.000
G_2	20	80	0.005	3.510	44.100
G_3	20	50	0.005	3.890	40.600

Table A.3: Transformer tap setting data – IEEE 14 bus system

From bus	To bus	Tap setting value $(p.u.)$
4	7	0.978
4	9	0.969
5	6	0.932

Table A.4: Bus data – IEEE 14 bus system

Reactive	power	limits	$Q_{\rm max}~(MVAR.)$	10	50.0	40.0	I	I	I		I		1	I		ı	
Read	vod	lim	$Q_{\min} (MVAR) \mid Q_{\max} (MVAR.)$	0	-42.0	23.4	I	I	I	ı	I	ı	ı	ı	ı	ı	-
Load	Reactive	power	(MVAR)	0	12.7	19.1	-3.9	1.6	7.5	0	0	16.6	5.8	1.8	1.6	5.8	5.0
À	Real	power	(MW)	0	21.7	94.2	47.8	9.2	11.2	0	0	29.5	0.6	3.5	6.1	13.8	14.9
Generation	Reactive	power	(MVAR)	-16.9	0	0	0	0	0	0	0	0	0	0	0	0	0
Gene	Real	power	(MW)	114.17	40.00	0	0	0	0	0	0	0	0	0	0	0	0
tage	Phase	angle	(degree)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bus voltage		Magnitude	(p.u.)	1.060	1.045	1.010	1	-	-	1	-	1	7		1		1
		Bus	number	П	2	3	4	ರ	9	2	∞	6	10	11	12	13	14

Table A.5: Shunt capacitor data – IEEE 14 bus system

Susceptance $(p.u.)$	0.19
Bus number	6

APPENDIX

 \mathbf{B}

DATA SHEETS FOR IEEE 30 BUS SYSTEM

he IEEE 30 bus system is shown in figure 3.3. The system data is taken from [47]. The data given in the following tables is on 100MVA base. The minimum and maximum limits of voltage magnitude and phase angle are considered to be 0.95p.u. to 1.05p.u. and -45° to $+45^{\circ}$ respectively.

Table B.1: Line data – IEEE 30 bus system

Annual cost	$(\times 10^3 \$/\mathrm{hr})$	216.6125	307.2875	509.9500	721.5250	168.1750	700.000	474.3000	554.1250	62.2000	130.2000	104.6250	306.9000	20.9250	210.800	54.250	83.7000	927.6750	117.8000	167.4000	160.4250	195.3000	Continued on next page
MVA	rating	130	130	65	130	65	130	06	65	20	130	32	65	32	32	32	65	65	32	32	32	32	ntinued
Half line charging	susceptance $(p.u.)$	0.03	0.02	0.02	0	0.02	0	0	0	0.01	0	0	0	0	0.01	0.02	0	0	0	0	0	0	°Co
ance $(p.u.)$	Reactance	90.0	0.20	0.18	0.02	0.18	0.04	0.04	0.23	0.12	0.08	0.09	0.21	0.56	90.0	0.20	0.21	0.11	0.21	0.09	0.08	0.15	
Line impedance $(p.u.)$	Resistance	0.02	0.05	90.0	0.05	90.0	0.01	0.01	0	0.05	0.03	0.01	0	0	0.07	90.0	0	0	0.09	0.03	0.03	0.07	
To	snq	2	3	4	2	9	4	9	12	7	7	∞	6	10	28	28	11	10	20	17	21	22	
From	pns	1	П	2	2	2	3	4	4	5	9	9	9	9	9	∞	6	6	10	10	10	10	
Line	number	\vdash	2	3	4	ರ	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	

Table B.1 – continued from previous page

Annual cost	$(\times 10^3 \$/\mathrm{hr})$	15.1125	30.2250	97.6250	179.0250	124.7750	80.6000	100.7500	146.4750	235.6000	186.000	166.2375	40.3000	65.1000	210.8000	204.600	83.7000	160.4250	90.6750	223.2000	216.6125
$MVA \mid A_1$		65	32	32	32	16	16	16	16	16	32	32	16	16	16	16	16	16	16	65	16
Table D.1 - Confident Holf previous page inc impedance (n n) Half line charging		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ange (n ")	Reactance	0.14	0.26	0.13	0.12	0.12	0.22	0.21	0.19	0.13	0.07	0.22	0.18	0.27	0.33	0.38	0.21	0.4	09.0	0.4	0.45
Tine impedance (n, u)	Resistance	0	0.12	0.07	0.01	0.22	0.11	0.10	80.0	90.0	0.03	0.01	0.11	0.13	0.19	0.25	0.11	0.22	0.32	0	0.24
E	and	13	14	15	16	15	18	23	17	19	20	22	24	24	25	56	27	29	30	27	30
From	snq	12	12	12	12	14	15	15	16	18	19	21	22	23	24	25	25	27	27	28	29
Anil	number	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41

Table B.2: Bus data – IEEE 30 bus system

							_	_	_		_		_	_		_		_			_		_
Reactive	power	its	$Q_{ m max} \ (MVAR)$	150	09	0	0	0	0	0	0	0	0	0	0	44.7	0	0	0	0	0	0	Continued on next page
Read	bov	lim	$Q_{\min} \; (MVAR) \; \;$	-20	-20	0	0	0	0	0	0	0	0	0	0	-15	0	0	0	0	0	0	Continue
Load	Reactive	power	(MVAR)	-4.638	27.677	0	0	0	0	0	0	0	0	0	0	13.949	0	0	0	0	0	0	
П	Real	power	(MW)	24.963	26.09	0	0	0	0	0	0	0	0	0	0	37	0	0	0	0	0	0	
Generation	Reactive	power	(MVAR)	0	12.7	1.2	1.6	0	0	10.9	30	0	2	0	7.5	0	1.6	2.5	1.8	5.8	6.0	3.4	
Gene	Real	power	(MW)	0	21.7	2.4	9.7	0	0	22.8	30	0	5.919	0	11.2	0	6.2	8.2	3.5	6	3.2	9.5	
tage	Phase	angle	(degree)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bus voltage		Magnitude	(p.u.)	П	1	1	1	1	1	1	1	1	1	1	1	-	1	1	-	1	1		
		Bus	number	П	2	3	4	ಬ	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	

Table B.2 – continued from previous page

	Reactive	power	limits	$Q_{\max} (MVAR)$	0	0	62.5	40	0	0	0	48.7	0	0	0
e	Rea	od	lin	$Q_{\min} \; (MVAR) \; \;$	0	0	-15	-10	0	0	0	-15	0	0	0
table D. 2 – confinited from previous page	Load	Reactive	power	(MVAR)	0	0	40.34	8.13	0	0	0	10.97	0	0	0
а пош р	Т	Real	power	(MW)	0	0	31.59	22.2	0	0	0	28.91	0	0	0
. — сопипие	Generation	Reactive	power	(MVAR)	0.7	11.20	0	1.6	6.70	0.00	2.30	0	0	0.90	1.90
table D.2	Gene	Real	power	(MW)	2.2	19.669	0	3.2	15	1.00	3.50	0	0	3.659	12.00
	voltage	Phase	angle	(degree)	0	0	0	0	0	0	0	0	0	0	0
	Bus vo		Magnitude	(p.u.)	1		П	П			1		П	1	1
			Bus	number	20	21	22	23	24	25	26	27	28	29	30

 P_i^{\min} P_i^{\max} b_i Generator a_i C_i $(\$/(MW hr)^2)$ number (MW)(MW)(\$/MWhr)(\$/hr) 0.00375 $\overline{G_1}$ 0 2.0000 0.0000 80 0.01750 1.7500 0.0000 0 G_2 80 0.06250 1.0000 0.0000 G_3 0 50 3.2500 0.0000 0 0.00834 G_4 55 $\overline{G_5}$ 0.02500 3.0000 0.0000 0 30 0 3.0000 0.0000 $\overline{G_6}$ 40 0.02500

Table B.3: Capacity and cost coefficients – IEEE 30 bus system

Table B.4: Transformer tap setting data – IEEE 30 bus system

From bus	To bus	Tap setting value $(p.u.)$
6	9	1.0155
6	10	0.9629
4	12	1.0129
28	27	0.9581

Table B.5: Shunt capacitor data – IEEE 30 bus system

Bus number	Susceptance $(p.u.)$
10	19
24	4

APPENDIX

 \mathbf{C}

DATA SHEETS FOR INDIAN UTILITY 62 BUS SYSTEM

Indian utility 62 bus system is shown in figure 6.1. The system data is taken from [154]. The data given in the following tables is on 100MVA base. The minimum and maximum limits of voltage magnitude and phase angle are considered to be 0.95p.u. to 1.1p.u. and -45° to $+45^{\circ}$ respectively.

Table C.1: Line data – Indian utility 62 bus system

Annual cost	$(\times 10^5 $ \frac{1}{2} /yr)	541	522	321	812	489	256	375	584	489	494	201	628	478	630	929	229	512	579	499	146	582	Continued on next page
MVA	rating	150	100	150	150	180	300	180	150	150	180	180	180	180	180	180	06	100	180	150	180	180	ntinued
Half line charging	susceptance $(p.u.)$	0.01445	0.03397	0.01951	0.01084	0.07443	0.10392	0.01373	0.00795	0.01807	0.03397	0.01951	0.01951	0.00309	0.00309	0.00578	0.08612	0.03252	0.06670	0.09033	0.07292	0.09395	Co
ance $(p.u.)$	Reactance	0.01565	0.03678	0.02113	0.01174	0.08061	0.02813	0.01487	0.00861	0.01957	0.03678	0.02113	0.02113	0.01478	0.01478	0.00157	0.00168	0.03522	0.07223	0.09783	0.07897	0.10174	
Line impedance $(p.u.)$	Resistance	0.00305	0.00716	0.00411	0.00229	0.01569	0.00548	0.00289	0.00168	0.00381	0.00716	0.00411	0.00411	0.00575	0.00575	0.00030	0.00049	0.00686	0.01406	0.01905	0.01537	0.01981	
To	pns	2	4	9	6	10	14	3	9	4	ಬ	14	15	9	∞	7	∞	10	16	11	13	20	
From	pns		П	П	1	П	П	2	2	3	4	4	4	ಬ	ಬ	9	7	11	11	12	12	12	
Line	number	П	2	3	4	ರ	9	2	∞	6	10	11	12	13	14	15	16	17	18	19	20	21	

	page
•	previous
٠	trom
_	d
•	continue
ζ	:
-	Lable (

	Annual cost	$(\times 10^5 $ ₹/yr)	300	282	454	225	489	919	295	184	266	398	390	693	403	714	231	998	309	631	569	895	563	939	Continued on next page
	MVA	rating	180	150	150	100	180	300	180	180	180	180	150	300	180	180	100	100	180	150	06	06	06	100	ntinued
lable C.1 – continued from previous page	Half line charging	susceptance $(p.u.)$	0.06237	0.07415	0.02464	0.01879	0.02558	0.03353	0.06504	0.08816	0.09684	0.06504	0.07516	0.01445	0.00600	0.07371	0.05781	0.04459	0.05565	0.05037	0.02529	0.09763	0.04705	0.08477	Co
- continued I	ance $(p.u.)$	Reactance	0.06754	0.08030	0.02669	0.02035	0.00693	0.03631	0.01761	0.09548	0.10487	0.07043	0.02035	0.01565	0.00650	0.07993	0.06261	0.04828	0.06026	0.05554	0.02739	0.10573	0.05095	0.09180	
Table C.1	Line impedance $(p.u.)$	Resistance	0.01315	0.01563	0.00520	0.00396	0.00135	0.00707	0.00343	0.01850	0.02042	0.01371	0.00396	0.00305	0.00126	0.01554	0.01219	0.00941	0.01173	0.01062	0.00533	0.02058	0.00992	0.01787	
•	$_{\rm Io}$	pns	14	17	15	16	18	19	17	21	23	22	23	24	25	41	45	56	27	28	29	30	31	31	
	From	pns	13	13	14	14	14	14	16	17	20	21	22	23	23	24	24	25	25	25	27	29	30	32	
	Line	number	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	

	page)
•	previous	
٠	trom	
	d	
•	continue	
ζ		
-		

	Annual cost	$(\times 10^5 $ ₹/yr)	183	741	318	786	197	126	40	419	899	645	414	516	54	55	374	558	101	417	696	163	432	612	Continued on next page
	MVA	rating	100	180	06	06	06	06	06	100	180	180	180	300	100	180	180	180	100	150	300	100	06	100	ntinued
Table $C.1 - continued$ from previous page	Half line charging	susceptance $(p.u.)$	0.07516	0.01445	0.10435	0.09937	0.07949	0.08258	0.03324	0.09438	0.00679	0.08672	0.01980	0.05102	0.04950	0.01084	0.03252	0.03397	0.02891	0.01445	0.01590	0.04336	0.06721	0.04191	Co
- continued t	ance $(p.u.)$	Reactance	0.02035	0.01565	0.11301	0.10761	0.08609	0.08922	0.02600	0.01022	0.00184	0.09391	0.00536	0.05525	0.05361	0.01174	0.03522	0.03678	0.03130	0.00391	0.01712	0.04696	0.07278	0.04539	
Table C.1	Line impedance $(p.u.)$	Resistance	0.00396	0.00305	0.02200	0.02095	0.01676	0.01737	0.00701	0.01990	0.00036	0.01828	0.00104	0.01076	0.01044	0.00229	0.00686	0.00716	60900.0	0.00076	0.00335	0.00914	0.01417	0.00884	
	$ m L_{0}$	pns	34	36	37	46	32	33	35	37	32	46	46	34	37	37	42	30	41	42	45	43	44	59	
	From	pns	32	32	32	32	33	34	34	34	35	36	37	38	38	39	39	40	40	41	41	42	42	44	
	Line	number	44	45	46	47	48	49	20	51	52	53	54	55	26	22	28	59	09	61	62	63	64	65	

	page)
•	previous	
٠	trom	
	d	
•	continue	
ζ		
-		

•	Annual cost	$(\times 10^5 \mathbf{\xi}/\mathrm{yr})$	13	932	96	751	226	206	87	832	557	292	588	560	481	099	913	501	89	292	62	411	431	373	Continued on next page
1717	MVA	rating	300	06	400	400	400	300	300	180	400	400	300	150	06	06	180	400	400	400	400	180	300	300	ntinued
Table C.1 = continued from previous page	Half line charging	susceptance $(p.u.)$	0.07949	0.03758	0.06504	0.01242	0.05948	0.06938	0.03180	0.05644	0.01930	0.06721	0.05369	0.05348	0.03180	0.01229	0.00723	0.00867	0.05745	0.01951	0.06359	0.04372	0.06475	0.04625	CC
- continued L	ance $(p.u.)$	Reactance	0.08609	0.04070	0.07043	0.00337	0.06441	0.01878	0.03443	0.06112	0.02090	0.07278	0.05815	0.05791	0.03443	0.01330	0.00783	0.00939	0.06222	0.02113	0.01722	0.04735	0.07012	0.01252	
Table C.1	Line impedance $(p.u.)$	Resistance	0.01676	0.00792	0.01371	0.00066	0.01254	0.00366	0.00670	0.01190	0.00407	0.01417	0.01132	0.01127	0.00670	0.00259	0.00152	0.00183	0.01211	0.00411	0.00335	0.00922	0.01365	0.00244	
[Ţο	snq	44	46	48	20	54	48	20	53	54	55	53	61	58	58	56	58	12	09	61	61	12	61	
Ĺ	From	snq	46	47	47	48	48	49	49	51	51	51	52	52	22	99	22	22	58	28	58	59	09	09	
	Line	number	99	29	89	69	20	71	72	73	74	75	92	22	282	26	80	81	85	83	84	85	98	87	

Table C.1 - continued from previous page

Annual cost	$(\times 10^5 \mathbf{\xi}/\mathrm{yr})$	475	643
MVA	rating	300	150
Half line charging	susceptance $(p.u.)$	0.07111	0.06562
ance $(p.u.)$	Reactance	0.07701	0.07106
Line impedance (Resistance	0.01499	0.01383
To	bus	62	25
From	snq	61	62
Line	number	88	89

Table C.2: Bus data – Indian utility 62 bus system

_																	
Shunt	capacitor	data $(MVAR)$	Susceptance	0	0	0	0	0	0	0	0	0	0	0	0	0	Continued on next page
Reactive	power	limits $(MVAR)$	$Q_{ m max}$	450	130	ಬ	0	255	0	0	0	100	0	0	0	0	Continue
Rea	bc	\lim	Q_{\min}	0	0	0	0	0	0	0	0	0	0	0	0	0	
Load	Reactive	power	(MVAR)	23.554	0	0	0	0	0	0	0	1.218	0	0	0	0	
Lc	Real	power	(MW)	192.649	190.581	0	0	255.687	0	0	0	78.202	0	0	0	0	•
Generation	Reactive	power	(MVAR)	0	0	10	0	0	0	0	28	23	10	93	79	46	
Gene	Real	power	(MW)	0	0	40	0	0	0	0	109	99	40	161	155	132	
tage	Phase	angle	(degree)	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bus voltage		Magnitude	(p.u.)	1.05	1.05	П	1	1.05	П	1	П	1.05	1	1	1	П	
		Bus	number	\vdash	2	3	4	5	9	7	~	6	10	11	12	13	

Table C.2 – continued from previous page

	Shunt	capacitor	data $(MVAR)$	Susceptance	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Continued on next page
•	Reactive $ $	power	$\lim_{N \to \infty} (MVAR)$	$Q_{ m max}$	200	0	0	0	0	0	0	0	0	340	0	395	0	0	0	0	0	0	400	30	Continue
	Rea	b(limits	Q_{\min}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-100	0	
table C.2 − confilmed from previous page	Load	Reactive	power	(MVAR)	233.905	0	0	0	0	0	0	0	0	147.932	0	86.526	0	0	0	0	0	0	0	0	
ea iroin pr	$\Gamma_{ m c}$	Real	power	(MW)	171.083	0	0	190.612	0	0	0	0	20	151.842	0	250.249	0	0	0	0	0	0	106.624	62.380	
z – continu	Generation	Reactive	power	(MVAR)	0	63	0	0	46	70	20	0	64	0	34	0	52	35	∞	0	41	25	0	25	
Table C.,	Gene	Real	power	(MW)	0	155	0	0	121	130	81	0	0	0	28	0	116	85	63	0	2.2	51	0	46	
	tage	Phase	angle	(degree)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Bus voltage		Magnitude	(p.u.)	1.05	-	1	1.05	1	1	1	1.05	-	1.05	1	1.05		1	1	1			1.05	1.05	
			Bus	number	14	15	16	17	18	19	20	21	22	23	24	22	26	27	28	29	30	31	32	33	

page
previous
${\rm from}$
7
continued
C.2
Table

			Table C.	Table C.2 – continued		from previous page	Ф		
	Bus voltage	ltage	Gene	Generation	Ľ	Load	Re	Reactive	Shunt
		Phase	Real	Reactive	Real	Reactive	ď	power	capacitor
Bus	Magnitude	angle	power	power	power	power	limits	limits $(MVAR)$	data $(MVAR)$
number	(p.u.)	(degree)	(MM)	(MVAR)	(MW)	(MVAR)	$Q_{ m min}$	$Q_{ m max}$	Susceptance
34	1	0	100	20	134.508	41	0	41	0
35	1	0	107	33	0	0	0	0	0
36	1	0	20	ಬ	0	0	0	0	0
37	1.05	0	0	0	78.533	0	0	87	0
38	1	0	166	22	0	0	0	0	0
39	1	0	30	ಬ	0	0	0	0	0
40	1	0	25	ಬ	0	0	0	0	0
41	1	0	92	91	0	0	0	0	0
42	1	0	35	25	0	0	0	0	0
43	1	0	20	ಬ	0	0	0	0	0
44	П	0	109	17	0	0	0	0	0
45	1	0	20	4	0	0	0	0	0
46	1	0	0	0	0	0	0	0	0
47	1	0	0	0	0	0	0	0	0
48	П	0	0	0	0	0	0	0	0
49	1.05	0	0	0	213.957	0	0	80	0
20	1.05	0	0	0	92.784	0	0	200	0
51	1.05	0	0	0	82.957	41.542	0	245	0
52	1.05	0	0	0	24.608	35	0	35	0
53	1	0	248	28	0	0	0.0	0	0
								Continue	Continued on next page

0	page
	previous
f., 52	ILOIII
-	ರ
o continue	continue
ς ζ	?
17.1	Table

Table C.2 – continued from previous page	Shunt	capacitor	data $(MVAR)$	Susceptance	0	0	0	0	0	0	0	0	0
	Reactive	power	limits $(MVAR)$	$Q_{ m max}$	100	0	0	20	420	0	0	0	0
			\lim	$Q_{ m min}$	0	0	0	0	100	0	0	0	0
	Load	Reactive	power	(MVAR)	0	0	0	0	100	0	0	0	0
		Real	power	(MW)	72.633	0	0	219.441	339.708	0	0	0	0
	Generation	Reactive	power	(MVAR)	0	29	0	0	0	0	0	0	23
		Real	power	MW	0	94	0	0	0	0	0	0	63
	Bus voltage	Phase	angle	(degree)	0	0	0	0	0	0	0	0	0
			Magnitude	(p.u.)	1.05	П	1.05	1.05	1.05	Τ	1	Τ	1
			Bus	number	54	55	26	22	58	29	09	61	62

Table C.3: Capacity and cost coefficients – Indian utility 62 bus system

Generator	P_i^{\min}	P_i^{\max}	a_i	b_i	c_i
number	(MW)	(MW)	$(7/(MW\mathrm{hr})^2)$	$(7/MW\mathrm{hr})$	(₹ /hr)
G_1	50	300	0.0070	6.80	95
G_2	50	450	0.0055	4.00	30
G_3	50	450	0.0055	4.00	45
G_4	0	150	0.0025	0.85	10
G_5	50	300	0.0060	4.60	20
G_6	50	450	0.0055	4.00	90
G_7	50	200	0.0065	4.70	42
G_8	50	500	0.0075	5.00	46
G_9	0	600	0.0085	6.00	55
G_{10}	0	100	0.0020	0.50	58
G_{11}	50	150	0.0045	1.60	65
G_{12}	0	100	0.0025	0.85	78
G_{13}	50	300	0.0050	1.80	75
G_{14}	0	150	0.0045	1.60	85
G_{15}	0	500	0.0065	4.70	80
G_{16}	50	150	0.0045	1.40	90
G_{17}	0	100	0.0025	0.85	10
G_{18}	50	300	0.0045	1.60	25
G_{19}	100	600	0.0080	5.50	90

Table C.4: Transformer tap setting data – Indian utility 62 bus system

From bus	To bus	Tap setting value $(p.u.)$
1	14	0.9639
14	15	0.9539
4	14	1.0158
13	14	1.0124
12	13	0.9621
14	19	0.9630
14	18	1.0121
14	16	1.0135
48	50	0.9630
49	50	1.0132
47	18	0.9630