

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

SISTEMI ENERGETICI PER INGEGNERIA FISICA

18/02/2019

Allievi fisici

Tempo a disposizione: 2 ore 30 minuti		
NOME E COGNOME		
Allegare alle soluzioni il presente testo indicando (in STAMPATELLO):		

Leggere attentamente le avvertenze: Indicare chiaramente nome e cognome su <u>tutti</u> i fogli da consegnare. Rispondere <u>brevemente</u> ma <u>con chiarezza solamente ai quesiti posti, evidenziando le necessarie unità di misura</u>. Calcoli e spiegazioni - pur corretti in sé - che non rispondono ai quesiti posti <u>non saranno considerati ai fini della valutazione del compito.</u> Nel caso sia richiesta una <u>soluzione grafica</u> indicare con chiarezza sui grafici allegati la soluzione proposta.

Tenere spenti i telefoni cellulari, non usare appunti, dispense, etc. Riportare i risultati richiesti su questo foglio e procedimento/calcoli intermedi sul foglio a quadretti.

Punteggio: Punteggio totale pari a 35. Il docente si riserva di normalizzare i risultati in trentesimi con coefficienti correttivi in base all'esito medio delle risposte date.

Dati per la risoluzione dei quesiti

Costante universale dei gas $\Re = 8314 \text{ J/(kmol\cdot K)}$

□ ESERCIZIO 2 (punti 4)

Una portata di Kripton (massa molare 83.798 kg/kmol) viene compressa isotermicamente in modo reversibile dalle condizioni 1 (P1=5 bar e T1=50°C) fino alla pressione P2 (45 bar). Successivamente, il gas viene riscaldato lungo un'isobara fino alla temperatura T3 pari a 350°C. Infine, il gas viene laminato adiabaticamente fino alla pressione P1. Sapendo che la potenza termica netta entrante nel fluido è pari a 400 kW, e che il Kripton può essere trattato come gas perfetto monoatomico, si chiede di:

- Rappresentare sul piano T-s i punti delle trasformazioni (s1=0 J/kg/K)
- Calcolare la portata volumetrica all'aspirazione del compressore
- Calcolare la potenza meccanica netta del sistema

□ ESERCIZIO 3 (punti 5)

Una turbina a gas opera secondo un ciclo Joule-Brayton aperto. Il compressore aspira una portata di aria pari a 6.44 kg/s. La potenza termica in ingresso è 4.9 MW e viene fornita dalla combustione di 0.1 kg/s di gas naturale. Il rendimento netto della turbina a gas è 24.3%. La temperatura massima del ciclo è 1100°C, il rapporto di espansione è pari a 6.7 e il rendimento isoentropico dell'espansione è pari a 0.88.

I gas di scarico vengono utilizzati per produrre 1 kg/s vapore saturo alla pressione di 15 bar a partire da liquido saturo alla stessa pressione.

Assumendo i gas combusti come gas perfetto con calore specifico a pressione costante pari a 1.08 [kJ/kg/K] (indipendente da T) e massa molare pari a 27.7 kg/kmol, si chiede di:

- Calcolare la potenza elettrica netta della turbina a gas
- Calcolare la portata massica e la temperatura dei gas di scarico della turbina a gas

- Calcolare la temperatura dei fumi a valle del recupero termico
- Assumendo una temperatura ambiente di 30°C:
 - Quale sarebbe la potenza elettrica prodotta da un ciclo termodinamico con rendimento di secondo principio pari a 0.6 che utilizzi il vapore prodotto come sorgente termica?

□ ESERCIZIO 1 (punti 6)

Sono dati due serbatoi A e B (approssimabili come infiniti) contenenti acqua a temperatura differente (T_A=20°C e T_B=25°C). Inizialmente si mantiene completamente chiusa la valvola e si inizia a riempire il contenitore cilindrico E di altezza (h) 500 mm e diametro 250 mm.

Dopo 10 secondi si apre completamente la valvola e le due portate provenienti da A e B si miscelano prima di entrare nel tratto C-D e continuare a riempire il recipiente E. Tutti i tratti di tubo hanno stesso diametro (15 mm) e stesso coefficiente di attrito f pari a 0.01. I tratti A-C e B-C hanno la stessa lunghezza (3 m) mentre il tratto C-D è lungo 1 m. Sapendo che la differenza di quota ΔZ_{AD} è pari a 2 m e che la pressione in D è 1 atm, si chiede di calcolare:

- La massa di acqua contenuta in E dopo 10 s
- Il tempo di riempimento del serbatoio E
- La T finale dell'acqua in E (assunto adiabatico)

Proprietà acqua indipendenti da T: ρ=1000 kg/m³, c= 4.2 kJ/kg/K

□ ESERCIZIO 4 (punti 5)

Un misuratore di temperatura è costituito da una sonda sferica metallica (k=100 W/m/K, ρ =7800 kg/m³, c=400J/kg/K) di diametro pari a 1 mm. Con tale sonda si vuole misurare la

temperatura di una corrente d'aria circolante in un tubo di $_{Aria}$ diametro pari a 100 mm. La sonda è inizialmente in equilibrio $_{T_{\infty}}$ termico con l'aria $T_{\infty 1}$.

Ci si vuole accertare che la sonda sia in grado di misurare lo 0.5% del gradino di temperatura $(T_{\infty 1}$ - $T_{\infty 2})$ con un tempo di risposta non superiore a 10 ms.

Assumendo le proprietà dell'aria costanti, si chiede di:

- Giustificare l'approccio modellistico utilizzato
- Determinare la minima portata massica di aria circolante che permetta di soddisfare le specifiche di misura richieste

<u>Correlazioni per geometria Sferica</u> (Dim. caratteristica → D_{SFERA})

Convezione Forzata	Proprietà a	ria
Nu=2+0.47*Re ^{0.5} Pr ^{0.36}	c _p [J/kg/K]	1006
	μ [10 ⁻⁶ Pa*s]	17.95
	k [10 ⁻³ W/m/K]	25.04
	ρ [kg/m³]	1.21

□ QUESITO 5 (Rispondere ad una sola delle due domande) (punteggio 7.5)

- 1- Ricavare l'equazione caratteristica dell'aletta e il profilo di temperatura nel caso di aletta infinita (con temperatura alla base imposta). Definire l'efficienza e l'efficacia dell'aletta.
- 2- Descrivere un ciclo Rankine saturo ideale e discutere la pratica della rigenerazione ideale.

□ QUESITO 6 (DOMANDE A RISPOSTA GUIDATA) (punteggio 7.5)

Rispondere alle seguenti 15 domande a risposta guidata. Segnare la casella relativa alla **sola risposta corretta** (0.5 punto per risposta corretta, -0.125 punti se sbagliata).

sola risposta corretta (0.5 punto per	risposta corretta, -0.125 punti se spagilata).
·	□ La pot. termica scambiata dipende dalla cond.termica
di potenza volumica costante. Una	$T(x=0)=T_{MAX}$
faccia (x=0 m) è adiabatica e l'altra	□ Il profilo di T è indipendente dalla cond.termica
(x=L) è T imposta (cond.staz.):	Nessuna delle precedenti
In un ciclo Joule-Brayton reale (a	□ η↑ se T _{MAX} ↑
pari β):	□ Lavoro specifico è indipendente da T _{MAX}
	□ Cessione del calore può avvenire solo in scambiatore
	□ La compressione e l'espansione sono isoentropiche
La relazione u=h-pv è valida:	□ Per gas perfetti
	□ Mai
	□ Solo in fase gas
	Sempre
Un gas reale viene laminato in una	□ 0
valvola, la differenza di temperatura	□ >0
a cavallo della valvola è:	□ <0
	Dati insufficienti
50 m ³ /h di acqua viene elaborata da	□ La potenza richiesta è 4166.7 kW
pompa che fornisce $\Delta P=3$ bar. Se	
η _{idr} =0.88: (Trascurare contributo	□ Potenza ideale>Potenza reale
cinetico e geodetico a cavallo della	Nessuna delle precedenti
pompa)	
L'aumento della pressione massima	□ A pari T _{MAX} , il titolo di vapore aumenta
di un ciclo Rankine:	Implica un aumento del rendimento
	□ E' limitato al valore della pressione critica del fluido
	Nessuna delle precedenti
2 tubi in parallelo identici sono	□ la portata si ripartirebbe in modo diseguale nei 2 tubi
	□ La caduta di pressione complessiva raddoppierebbe
	□ II numero di Re nei due tubi rimarrebbe invariato
kg/s (regime turbolento e f cost):	□ la potenza della pompa aumenterebbe di 8 volte
In un recipiente di volume 1 dm ³ è	
presente 1 mol di gas perfetto a	
	□ P _{gas perfetto} = P _{gas reale} poiché entrambi i fluidi sono gas
riempito da 1 mole di gas reale con	Nessuna delle precedenti
Z=1.1 alla stessa T:	
Date due sorgenti di temperature T _A	□ Se il ciclo è internamente rev. allora il lav.spec. è max
e T _B tra cui lavora un ciclo	□ ηciclo-irreversibile Sempre < ηciclo-internamente-revers.
termodinamico:	□ ηciclo-irreversibile può essere > ηciclo-internamente-revers.
	Nessuna delle precedenti
2 sfere (A e B) generano potenza (q	 Il valore di ε non influisce su T (temp.esterna)
[W/kg]). Le superfici esterne sono	□ Se ρ _A >ρ _B allora Q _A <q<sub>B [W] (stesso diametro D)</q<sub>
grigie (ϵ <1) e T _{amb} =25°C (amb.	Se D _A =2D _B allora T _A <2T _B (stesso materiale)
corpo nero). (cond.staz.)	Nessuna delle precedenti
Dato un tubo di Dext=5 cm e	□ Non è determinabile
spessore 2 mm (k=5 W/m/K), la	□ Aumenta all'aumentare della densità del materiale
resistenza termica conduttiva:	■ E' 0.00265 mK/W
	□ E' circa 376 mK/W
Per un ciclo Rankine saturo ideale:	□ η=1-T _{MIN} /T _{MAX}
	□ η _{II} è sempre < 1 a causa del preriscaldo del liquido
	□ Il fluido di lavoro può essere solo acqua

In un piano h-s	 □ Le isotermobariche sono segmenti rettilinei □ Il punto critico coincide con il massimo della campana □ L'area racchiusa da un ciclo rappresenta il lavoro □ Nessuna delle precedenti
In un ciclo combinato: ηcc→ rendimento ciclo combinato ητσ→rendimento turbina a gas η∨ΑΡ→rendimento ciclo a vapore Se si ricopre un conduttore a sez. circolare di diametro D (in cui circola corrente elettrica) con uno strato di isolante (spessore s):	 ηcc= ητσ+ηνΑΡ Sempre ηcc> ητσ ηcc>(1-ΤΑΜΒ/ΤΜΑΧ,ΤG) Nessuna delle precedenti La pot. termica dissipata diminuisce Se D < 2 k/h, la pot.termica dissipata ↑ per qualsiasi s Se D > 2 k/h, la pot.termica dissipata ↓ per qualsiasi s Nessuna delle precedenti

