430.457

Introduction to Intelligent Systems

Prof. Songhwai Oh ECE, SNU

LINEAR CLASSIFICATION

Linear Classifiers

- Example
 - Classes: Earthquakes (0), Underground nuclear explosions (1)
 - Input values: Body wave magnitudes, Surface wave magnitudes
- Decision boundary: a line separating two classes.

 $h_{\mathbf{w}}(\mathbf{x}) = 1$ if $\mathbf{w} \cdot \mathbf{x} \ge 0$ and 0 otherwise.

Perceptron Learning Rule

 $h_{\mathbf{w}}(\mathbf{x}) = Threshold(\mathbf{w} \cdot \mathbf{x})$ where Threshold(z) = 1 if $z \geq 0$ and 0 otherwise.

Threshold function

Update rule: $w_i \leftarrow w_i + \alpha \left(y - h_{\mathbf{w}}(\mathbf{x})\right) \times x_i$ (converges if the problem is linearly separable.)

- If the output is correct, i.e., $y = h_{\mathbf{w}}(\mathbf{x})$, then the weights are not changed.
- If y is 1 but $h_{\mathbf{w}}(\mathbf{x})$ is 0, then w_i is *increased* when the corresponding input x_i is positive and *decreased* when x_i is negative. This makes sense, because we want to make $\mathbf{w} \cdot \mathbf{x}$ bigger so that $h_{\mathbf{w}}(\mathbf{x})$ outputs a 1.
- If y is 0 but $h_{\mathbf{w}}(\mathbf{x})$ is 1, then w_i is *decreased* when the corresponding input x_i is positive and *increased* when x_i is negative. This makes sense, because we want to make $\mathbf{w} \cdot \mathbf{x}$ smaller so that $h_{\mathbf{w}}(\mathbf{x})$ outputs a 0.

Learning Curve

Separable case

Learning curve

Non-separable case

Learning curve (constant learning rate)

Learning curve (decreasing learning rate)

Logistic Regression

Soft thresholding

$$h_{\mathbf{w}}(\mathbf{x}) = Logistic(\mathbf{w} \cdot \mathbf{x})$$

Logistic regression

$$h_{\mathbf{w}}(\mathbf{x}) = Logistic(\mathbf{w} \cdot \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{x}}}$$

$$\frac{\partial}{\partial w_i} Loss(\mathbf{w}) = \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(\mathbf{x}))^2$$
$$= 2(y - h_{\mathbf{w}}(\mathbf{x})) \times \frac{\partial}{\partial w_i} (y - h_{\mathbf{w}}(\mathbf{x}))$$

(chain rule)
$$= -2(y - h_{\mathbf{w}}(\mathbf{x})) \times g'(\mathbf{w} \cdot \mathbf{x}) \times \frac{\partial}{\partial w_i} \mathbf{w} \cdot \mathbf{x}$$
$$= -2(y - h_{\mathbf{w}}(\mathbf{x})) \times g'(\mathbf{w} \cdot \mathbf{x}) \times x_i.$$

If g is a logistic function, then

$$g'(z) = \frac{dg}{dz}(z) = g(z)(1 - g(z)).$$

$$g'(\mathbf{w} \cdot \mathbf{x}) = g(\mathbf{w} \cdot \mathbf{x})(1 - g(\mathbf{w} \cdot \mathbf{x})) = h_{\mathbf{w}}(\mathbf{x})(1 - h_{\mathbf{w}}(\mathbf{x}))$$

$$w_i \leftarrow w_i + \alpha (y - h_{\mathbf{w}}(\mathbf{x})) \times h_{\mathbf{w}}(\mathbf{x}) (1 - h_{\mathbf{w}}(\mathbf{x})) \times x_i$$

Separable case

Learning curve

Non-separable case

Learning curve (constant learning rate)

Learning curve (decreasing learning rate)