

MATHAGO

Schularbeit

Integralrechnung

Die Mathago Schularbeit besteht aus 6 kurzen Aufgaben (Ankreuzaufgaben, Grundkompetenzen, etc.) und 2 bis 3 längeren Textaufgaben. Diese stammen aus dem Aufgabenpool und den Kompensationsprüfungen des BMBWF. Die Punkteverteilung sieht wie folgt aus:

22 – 24 Punkte	Sehr Gut
19 – 21 Punkte	Gut
16 – 18 Punkte	Befriedigend
12 – 15 Punkte	Genügend
0 – 11 Punkte	Nicht Genügend

Aufgabe 1 (2 Punkte)

Die unten stehende Abbildung zeigt den Entwurf für das Logo eines Fischzüchters.

Die Abbildung des Logos ist symmetrisch bezüglich der x-Achse. Die obere Begrenzungslinie des Logos wird durch die Graphen der linearen Funktion g und der Polynomfunktion g. Grades f beschrieben.

x, f(x), g(x) ... Koordinaten in cm

1)	Erstellen Sie mithilfe von x_1, x_2, x_3, f und g eine Formel zur Berechnung des Inhalts A de	er
	grau markierten Fläche dieses Logos.	

•

Aufgabe 2 (2 Punkte)

Die nachstehende modellhafte Abbildung zeigt die zur y-Achse symmetrische Sitzfläche eines Kinderhockers in der Ansicht von oben.

Die rechte Begrenzungslinie der Sitzfläche wird durch die lineare Funktion h beschrieben. Sie verläuft durch den Punkt P = (15|17) und hat bei x = 9,5 eine Nullstelle.

Clemens möchte den Flächeninhalt der Sitzfläche berechnen.

1) Kreuzen Sie den zutreffenden Ausdruck für diese Berechnung an. [1 aus 5]

$2 \cdot \int_0^{15} g(x) dx - \int_0^{9.5} f(x) dx - 17 \cdot 5.5$	
$2 \cdot \left(\int_0^{15} g(x) dx - \int_0^{9.5} f(x) dx - 17 \cdot 5.5 \right)$	
$2 \cdot \left(\int_0^{15} g(x) dx - \int_0^{9.5} f(x) dx - \frac{17 \cdot 5.5}{2} \right)$	
$2 \cdot \int_0^{15} (g(x) - f(x)) dx - 17 \cdot 5,5$	
$2 \cdot \int_0^{15} (g(x) - f(x)) dx - \frac{17 \cdot 5,5}{2}$	

Aufgabe 3 (2 Punkte)

Lärmschutzwand

In der nebenstehenden Abbildung ist der Querschnitt einer Lärmschutzwand modellhaft in einem Koordinatensystem dargestellt.

Die Graphen der Funktionen g und f bilden die linke und rechte Begrenzungslinie des Querschnitts.

Es soll der Inhalt A der grau markierten Querschnittsfläche ermittelt werden.

1) Tragen Sie die fehlenden Ausdrücke in die dafür vorgesehenen Kästchen ein.

Aufgabe 4 (2 Punkte)

In der nebenstehenden Abbildung ist das Modell *Buche* in der Ansicht von vorne dargestellt. Die obere Begrenzungslinie kann durch den Graphen der Funktion *f* beschrieben werden.

Der Graph von *f* ist symmetrisch zur senkrechten Achse.

1) Stellen Sie eine Formel zur Berechnung des Inhalts A der grau markierten Fläche auf.

A =			

Aufgabe 5 (2 Punkte)

Für eine Polynomfunktion f gilt:

X	f(x)	f'(x)	f''(x)
0	-4	0	-10
1	- 8	-6	2

– Geben Sie den Wert des bestimmten Integrals $\int_0^1 f'(x) dx$ an.

Aufgabe 6 (2 Punkte)

Betrachtet wird eine lineare (nicht konstante) Funktion f, für die $\int_0^3 f(x) dx = 0$ gilt.

– Geben Sie die Nullstelle von \emph{f} an und begründen Sie Ihre Entscheidung.

Aufgabe 7 (2 Punkte)

Die Fenster des Baumhauses sollen eine spezielle Form haben (siehe grau markierte Fläche in der nachstehenden Abbildung).

Die obere Begrenzungslinie des Fensters kann näherungsweise durch den Graphen der Funktion *f* beschrieben werden.

$$f(x) = -0.003 \cdot x^3 + 0.164 \cdot x^2 - 2.25 \cdot x + 40$$
 mit $0 \le x \le 40$ $x, f(x)$... Koordinaten in cm

1) Berechnen Sie, um wie viel Prozent die Fensterfläche in der dargestellten Form kleiner als die Fensterfläche eines quadratischen Fensters mit der Seitenlänge 40 cm ist.

Aufgabe 8 (4 Punkte)

c) Während eines Nachmittags, an dem es ein Gewitter gab, wurde die Veränderung der Temperatur ermittelt. Die Funktion T' beschreibt die momentane Änderungsrate der Temperatur in Abhängigkeit von der Zeit t (siehe nachstehende Abbildung).

t ... Zeit seit Beginn der Messung in h

T'(t) ... momentane Änderungsrate der Temperatur zur Zeit t in °C/h

Die Funktion T^\prime hat an der Stelle $t_{\rm o}$ eine Nullstelle (siehe obige Abbildung).

1) Kreuzen Sie die zutreffende Aussage an. [1 aus 5]

Jede Stammfunktion von T' hat an der Stelle t_0 eine Maximumstelle.	
Jede Stammfunktion von T' hat an der Stelle t_0 eine Minimumstelle.	
Jede Stammfunktion von T' hat an der Stelle t_0 eine Nullstelle.	
Jede Stammfunktion von T' hat an der Stelle t_0 eine Wendestelle.	
Jede Stammfunktion von T' hat an der Stelle t_0 eine positive Steigung.	

Die absolute Temperaturänderung in einem Zeitintervall $[t_1;t_2]$ kann durch das Integral $\int_0^{t_2} T'(t) \, \mathrm{d}t$ berechnet werden.

 Bestimmen Sie mithilfe der obigen Abbildung n\u00e4herungsweise die absolute Temperatur-\u00e4nderung im Zeitintervall [1,25; 1,5].

Aufgabe 9 (6 Punkte)

Ein anderes dreieckiges Grundstück wird erweitert.

Die neue Grenze soll nun nicht mehr direkt vom Koordinatenursprung zum Punkt C verlaufen, sondern über die beiden markierten Punkte P_1 und P_2 (siehe nachstehende Abbildung).

Der Verlauf dieser neuen Grenze soll durch den Graphen einer Polynomfunktion f mit $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$ beschrieben werden.

- 1) Erstellen Sie ein Gleichungssystem zur Berechnung der Koeffizienten von f.
- 2) Berechnen Sie die Koeffizienten von f.
- 3) Berechnen Sie, um wie viele Quadratmeter der Flächeninhalt des Grundstücks durch die Erweiterung zunimmt.