Algorithm Design and Analysis

วิชาบังคับก่อน: 204251 หรือ 204252; และ 206183 หรือ 206281

ผู้สอน: ตอน 1 ผศ. เบญจมาศ ปัญญางาม

ตอน 2 ผศ. ดร. จักริน ชวชาติ

วันสอบปลายภาค : วันพฤหัสบดี ที่ 26 ต.ค. 66

เวลา 12:00 - 15:00 น. (ตามประกาศมหาวิทยาลัย)

บทที่ 12

ออโตมาตา (Automata)

Part I

Automata

คำว่า Automata มาคำในจากภาษากรีก αὐτόματα ซึ่งหมายความว่า ทำงาน ได้ด้วยตัวเอง

Automaton (เอกพจน์, Automata พหูพจน์) หมายถึงรูปแบบนามธรรมของ อุปกรณ์คำนวณที่ทำงานแบบอัตโนมัติตามลำดับของการดำเนินการที่กำหนดไว้ก่อน

□ Automaton ที่มีจำนวนสถานะ (State) จำกัดจะเรียกว่า Finite Automaton(FA) หรือ Finite State Machine(FSM)

Finite automata

- Finite automata เป็นโมเดลที่ดีสำหรับคอมพิวเตอร์ที่มีหน่วยความจำที่จำกัด
- 🔲 คำถามคือ computer ที่มีหน่วยความจำน้อยมากๆ ทำอะไรได้บ้าง?
- 🔲 ในชีวิตประจำวัน เราได้ใช้คอมพิวเตอร์แบบนี้อยู่ตลอด
 - เช่น เครื่องใช้ไฟฟ้า ตัวควบคุมประตูอัตโนมัติ(เป็นบานพับ)

ประตูอัตโนมัติ : หลักการทำงาน

"ประตูจะเปิดเมื่อมันตรวจพบว่ามีคนยืนอยู่"

Front pad
Rear pad
Door

ประตูอัตโนมัติจะมีอุปกรณ์<u>ด้านหน้า</u>เพื่อตรวจว่ามีคนเดินผ่านมาทางเข้า และจะมี
 อุปกรณ์อีกอันอยู่<u>ด้านหลัง</u>ทางเข้าเพื่อที่ตัวควบคุมจะเปิดประตูค้างไว้นานพอที่คนจะผ่านไปได้ และไม่ชนคนหากมีคนยืนด้านหลังถ้ามันเปิด

State Diagram สำหรับตัวควบคุมประตูอัตโนมัติ

ตัวควบคุมจะอยู่ใน สถานะ (state) "OPEN" หรือ "CLOSED"

พบว่ามี<u>ข้อมูลเข้า(input)</u> ที่เป็นไปได้ 4 อย่าง

FRONT : หมายถึง คนยืนหนึ่งคนที่ Front pad

REAR : หมายถึง คนยืนหนึ่งที่ Rear pad

BOTH : หมายถึง คนยืนที่ pad ทั้งสอง

NEITHER : หมายถึง ไม่มีใครยืนที่ pad ใดเลย

State transition table ของตัวควบคุมประตูอัตโนมัติ

Input signal

state

	NEITHER	FRONT	REAR	вотн
CLOSED	CLOSED	OPEN	CLOSED	CLOSED
OPEN	CLOSED	OPEN	OPEN	OPEN

state ของตัวควบคุม จะเปลี่ยน (หรือเหมือนเดิม) หลังจากได้รับ input

- เมื่อประตูอยู่ใน<u>สถานะ OPEN</u>
 - หากได้รับ input เป็น FRONT REAR หรือ BOTH ประตูยังคงเปิดเหมือนเดิม
 - แต่เมื่อได้รับ input เป็น NEITHER จะเปลี่ยนเป็นสถานะเป็น CLOSED

State transition table ของตัวควบคุมประตูอัตโนมัติ

Input signal

state

	NEITHER	FRONT	REAR	вотн
CLOSED	CLOSED	OPEN	CLOSED	CLOSED
OPEN	CLOSED	OPEN	OPEN	OPEN

state ของตัวควบคุม จะเปลี่ยน (หรือเหมือนเดิม) หลังจากได้รับ input

- เมื่อประตูอยู่ใน<u>สถานะ CLOSED</u>
 - หลังได้รับ input เป็น NEITHER หรือ REAR มันจะยังคงอยู่ในสถานะ CLOSED
 - หาก input เป็น BOTH มันจะยังคง CLOSED เพราะว่าการเปิดประตูเสี่ยงที่จะไปชน คนที่ยืนอยู่ที่ Rear pad
 - แต่หาก input เป็น FRONT มันจะย้ายสถานะเป็น OPEN

การเปลี่ยน state ของตัวควบคุมประตูอัตโนมัติ

จาก Input ที่กำหนดให้ จะมีการเปลี่ยนแปลงค่า State ของตัวควบคุมอย่างไร

Input	สถานะ
เริ่มต้น	CLOSED
FRONT	OPEN
REAR	OPEN
NEITHER	CLOSED
FRONT	OPEN
вотн	OPEN
NEITHER	CLOSED
REAR	CLOSED
NEITHER	CLOSED

การเปลี่ยน state ของตัวควบคุมประตูอัตโนมัติ

ประตูอัตโนมัตินี้เป็น Finite automata โดยมีตัวควบคุมเป็น computer ที่มีหน่วยความจำ 1 bit สามารถจดจำสถานะของตัว ควบคุมได้ 2 สถานะ

- ตัวควบคุมอาจมีหน่วยความจำหลาย bit ในการเก็บข้อมูลก็ได้
 ตัวอย่าง computer ที่มีหน่วยความจำจำกัดอุปกรณ์อื่น เช่น ลิฟต์
 เครื่องล้างจาน เครื่องซักผ้า เครื่องขายอัตโนมัติ เป็นต้น
 - ตัวควบคุมของลิฟต์ อาจต้องเก็บสถานะที่หมายถึงชั้นที่ลิฟต์อยู่และ input อาจจะเป็นสัญญาณจากปุ่มกด

Finite automata

ในมุมมองทางคณิตศาสตร์ อาจให้นิยามที่ชัดเจนของ finite automata และคำศัพท์ต่างๆ ที่เกี่ยวข้องสำหรับอธิบายการดำเนินการ ของ finite automata

ตัวอย่าง Finite automaton ชื่อ M₁ ประกอบด้วย 3 state

State diagram

- •start state เป็น state ที่มีลูกศรชี้เข้าที่ไม่มีต้นทาง
- •accept state เป็น state ที่มีวงสองวงซ้อนกัน
- •ลูกศรที่ชี้จาก state หนึ่งไปอีก state หนึ่ง เรียกว่า transitions

จากรูปตัวอย่าง M_1 ที่มี 3 state ชื่อ q_1 , q_2 , q_3 โดยมี q_1 เป็น start state และ q_2 เป็น accept state

FA จะดำเนินการตาม input string ที่ได้รับ และจะให้ output เป็นได้ accept หรือ reject

- 🔲 เริ่มจาก start state
- 🗆 รับ symbols จาก input string ที่ละตัวจากซ้ายไปขวา
- แต่ละ symbol ที่รับเข้ามา FA จะย้ายจาก state หนึ่งไปอีก state หนึ่งตาม transition ที่ตรงกับ symbol
- □หลังรับ symbol ตัวสุดท้าย FA จะให้ output เป็น accept output หากหยุดที่ accept state นอกนั้น reject

ตัวอย่างการทำงานของ M₁ เมื่อรับ input string เป็น 1101

- 1. เริ่มที่ q_1
- 2. อ่าน 1, เปลี่ยน transition จาก q_1 ไป q_2
- 3. อ่าน 1, เปลี่ยน transition จาก q_2 ไป q_2
- f 4. อ่าน 0, เปลี่ยน transition จาก $f q_2$ ไป $f q_3$
- 5. อ่าน 1, เปลี่ยน transition จาก q_3 ไป q_2
- 6. Accept เพราะว่า M_1 อยู่ใน accept state q_2 เมื่อ input หมด

ทดลองกับ machine นี้ ด้วย input ต่อไปนี้

1, 01, 11, 010101010101

00, 10, 110, 11000

100, 1100, 110000

- 1) เป็น accept เมื่อ Input string
- ลงท้ายด้วย 1 หรือ
- ลงท้ายด้วย 0 เป็นจำนวนคู่แบบมี 1 นำหน้าอย่างน้อย 1 ตัว
- บใน reject เมื่อรับ string อื่นๆ เช่น 0, 10, 101000
 จะอธิบายนิยามภาษาที่ M₁ นี้ accept ว่าอย่างไรดี

Formal Definition of a Finite Automata

A finite automata is a 5-tuple($Q, \Sigma, \delta, q_0, F$), where

- $oldsymbol{Q}$ is a finite set called the states,
- Σ is a finite set called the alphabet,
- 3. $\delta:Q\times\Sigma$ is the transition function,
- 4. $q_0 \in Q$ is the start state, and
- 5. $F \subseteq Q$ is the set of accept states.

ทำไมต้องมี Formal definition

- •เพื่อความถูกต้อง (precision)
- •เพื่อเป็น Notation

Transition Function

- Transition Function เรียกว่ากฎในการย้ายสถานะ
- lacksquare กำหนดให้ $oldsymbol{\delta}$ เป็น<mark>ฟังก์ชัน</mark>จากเซตของ state และ เซตของ input ที่เป็นไปได้ ไปยังเซตของ state
- \Box เช่น δ (q, 1) = p
 - ทากอยู่ในสถานะ q เมื่อ input ที่รับเข้ามาเป็นค่า 1 จะย้ายไปสถานะ p

Formal Definition of a Finite Automata

ตัวอย่างการอธิบายการทำงานของ M_1 โดยที่

$$M_1 = (Q, \Sigma, \delta, q_1, F)$$
 เมื่อ

เซตของ state $Q = \{q_1, q_2, q_3\}$

เซตของ input $\Sigma = \{0, 1\}$

 δ คือ transition function q_1 เป็น start state เซตของ Final state $F=\{q_2\}$

	J	_
q_{1}	q_{1}	q_2
q_2	q_3	q_2
q_3	q_2	q_2

The language of a finite automaton

"is the set of strings that it accepts"

ถ้า A เป็นเซตของ string ทั้งหมดที่ machine M accept เราจะเรียกว่า A เป็น language of machine M เขียนได้เป็น

$$L(M) = A$$

- 🕨 หรือกล่าวได้ว่า M recognizes A หรือ M accepts A
- 🔲 Machine สามารถ <u>accept ได้หลาย string</u>
 - แต่จะ recognizes ได้เพียงหนึ่ง language
- ถ้า machine accept no strings มันจะ recognize อยู่หนึ่ง language ที่
 ชื่อว่า empty language → Ø

Language of machine

- $A=\{W|W \text{ contains at least one 1 and an even number of 0s follow the last 1}$
- □ จะได้ว่า L(M₁) = A หรือ M₁ recognizes A

ตัวอย่าง state diagram ของ machine M_2

 $lue{}$ จงเขียน formal description ของ machine M_2

•ภาษาที่ M_2 นี้ accept คือ ?

 $L(M_2) = \{ w \mid w \text{ ends with } 1 \}$

"M, accept string ที่ลงท้ายด้วย 1"

ตัวอย่าง state diagram ของ machine M_3

"M₃ มี 2 accept state คือ q1 และ r1"

$$M_3 = (Q, \Sigma, \delta, s, F)$$
 เมื่อ

เซตของ state Q = $\{s, q_1, q_2, r_1, r_2\}$

เซตของ input $\Sigma = \{a, b\}$

 δ คือ transition function

s เป็น start state

เซตของ Final state $F = \{q_1, r_1\}$

ผศ. ดร.จักริน ชวชาติ ผศ. เบญจมาศ ปัญญางาม

	q1	q2	r1	r2
S	а	•	b	•
q1	а	b	-	-
q2	а	b	-	-
q1 q2 r1	-	-	b	a
r2	_	_	b	а

ตัวอย่าง state diagram ของ machine M_3

•ภาษาที่ M_3 นี้ accept คือ ?

ลองแทนค่าข้อมูลนำเข้า พบว่า

M₃ accept string

a, b, aa, bb, aba

แต่ reject string

ab, ba, baa

 $L(M_3) = \{ w \mid w \text{ starts and ends with same symbol} \}$

" accepts ทุก string ที่เริ่มต้นและลงท้ายด้วยอักขระตัวเดียวกัน "

Assignment#9

□ Machine ต่อไปนี้ recognize ภาษา ?

