Gestión de Infraestructuras Tema 1: Representación en el dominio temporal Ejercicios

1. Resumen:

Constante
$$x(t) = A$$

Escalón unidad
$$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t > 0 \end{cases}$$

Pulso rectangular
$$p_1(t) = \begin{cases} 1 & 0 < t < T \\ 0 & \text{resto} \end{cases}$$

Señal signo
$$\operatorname{sgn}(t) = \begin{cases} -1 & t < 0 \\ 1 & t > 0 \end{cases}$$

Señal rampa
$$r(t) = \left\{ \begin{array}{ll} 0 & t < 0 \\ t & t > 0 \end{array} \right.$$

Delta de Dirac
$$1 \wedge \delta(t)$$

Cosenos
$$x(t) = A\cos(2\pi f t + \phi)$$

$$x(t - t_0) = A\cos(\omega(t - t_0))$$

$$= A\cos(\omega t - \omega t_0)$$

$$= A\cos(\omega t + \phi)$$

$$\phi = -\omega t_0 = -2\pi \frac{t_0}{T_0}$$

Sinc
$$x(t) = \operatorname{sinc}(t) = \frac{\sin \pi t}{\pi t}$$

2. Ejercicio de clase:

Demuestre que la señal senoidal $x(t) = A\cos(2\pi f t + \phi)$ es periódica de periodo T = 1/f.

Resultados:

Una señal es periódica con periodo T cuando x(t) = x(t-T).

Determinamos $x(t-T) = A\cos(2\pi f(t-T) + \phi) = A\cos(2\pi ft - 2\pi fT + \phi).$

Como f = 1/T, obtenemos $x(t - T) = A\cos(2\pi ft - 2\pi + \phi)$.

Utilizando $cos(\alpha \pm 2\pi) = cos(\alpha)$, permite transformar la expresión anterior en $x(t-T) = A\cos(2\pi ft + \phi)$, que es igual a x(t).

3. Ejercicio de clase:

Determine el desfase de $x(t) = A\cos(2\pi ft)$ para los retardos $t_0 = T/4$, $t_0 = -T/4$, $t_0 = T/2$ y $t_0 = -T/2$.

Resultados: $\phi = -90^{\circ}$, $\phi = 90^{\circ}$, $\phi = -180^{\circ}$ y $\phi = 180^{\circ}$.

Desarrollo:

Partimos de la expresión de una señal coseno con retardo t_0 :

$$x(t - t_0) = A\cos(\omega(t - t_0)) = A\cos(\omega t - \omega t_0) = A\cos(\omega t + \phi)$$

Es decir, un desplazamiento en el tiempo t_0 se traduce en una fase $\phi = -\omega t_0 = -2\pi f t_0 = -2\pi \frac{t_0}{T}$.

Para $t_0 = T/4$, obtenemos $\phi = -2\pi \frac{t_0}{T} = -2\pi \frac{T}{4T} = -\frac{\pi}{2}$ rad. Lo que equivale a $\phi = \frac{-\pi 180^{\circ}}{2\pi} = -90^{\circ}$.

Para $t_0=-T/4$, obtenemos $\phi=-2\pi\frac{t_0}{T}=2\pi\frac{T}{4T}=\frac{\pi}{2}$ rad. Lo que equivale a $\phi=\frac{\pi 180^{\circ}}{2\pi}=90^{\circ}$.

Para $t_0=T/2$, obtenemos $\phi=-2\pi\frac{t_0}{T}=-2\pi\frac{T}{2T}=-\pi$ rad. Lo que equivale a $\phi=\frac{-\pi 180^\circ}{\pi}=-180^\circ$.

Para $t_0=-T/2$, obtenemos $\phi=-2\pi\frac{t_0}{T}=2\pi\frac{T}{2T}=\pi$ rad. Lo que equivale a $\phi=\frac{\pi 180^\circ}{\pi}=180^\circ$.

4. Ejercicio de clase:

Considere la señal senoidal $x(t) = 170\cos(120\pi t - 60^{\circ})$

- a) Determine la amplitud de x(t).
- b) Determine la frecuencia en Hz y en rad/s.
- c) Determine el periodo en ms.
- d) Determine la fase en grados y en radianes.
- e) Determine el desplazamiento de la señal en tiempo.
- f) Dibuje x(t) entre t = 0 ms y t = 50 ms.

Resultados:

- a) A = 170;
- $b)~f=60~\mathrm{Hz}$ y $\omega=120\pi~\mathrm{rad/s}$
- c) T = 16,66 ms;
- d) $\phi = -60^{\circ} \text{ y } \phi = -\pi/3;$
- $e) t_0 = 2.77 \text{ ms.}$

f)

Desarrollo:

Partimos de la ecuación general de una señal senoidal,

$$x(t) = A\cos(2\pi f t + \phi)$$

- a) Como sabemos que la señal coseno tiene amplitud 1, la señal x(t) tendrá amplitud A=170.
- b) Comparando la expresión general con la que nos dan en el problema, es inmediato obtener que f=60 Hz. Además, $\omega=2\pi f=2\pi 60=120\pi$ rad/s. Realmente, el valor de ω se podría haber deducido directamente de la expresión general.
- c) El periodo es la inversa de la frecuencia, T = 1/f = 1/60 = 0.016667 = 16.667 ms.
- d) La fase, expresada en grados, se obtiene directamente de la expresión: $\phi = -60^{\circ}$.
 - La fase en rad se obtiene como $\phi = \frac{\pi}{180^{\circ}} \phi = \frac{\pi}{180^{\circ}} (-60^{\circ}) = -\frac{\pi}{3}$ rad.
- e) Para determinar el desplazamiento hay que recordar que un desplazamiento en tiempo equivale a un cambio de fase. La expresión es $\phi = -2\pi f t_0$ donde la fase está expresada en rad. En nuestro caso, $t_0 = \frac{\pi}{3} = \frac{1}{120\pi} = 0.0027778 = 2.77$ ms. Observemos que una fase negativa da como resultado $t_0 > 0$, por lo que el desplazamiento es hacia la derecha, $t_0 = 2.77$ ms.
- f) Para dibujar la señal, podemos dibujar primero el coseno sin desplazar y después desplazarlo a la derecha.

5. Ejercicio:

Una señal senoidal tiene una amplitud de 20 y un periodo de 1 ms. Su valor en el instante t=0 es de 10.

- a) Determine la frecuencia en Hz y en rad/s.
- b) Determine la representación trigonométrica. Exprese la fase ϕ en grados.

Resultados:

- a) $f = 1 \text{ kHz y } \omega = 2000\pi \text{ rad/s}$
- b) $x(t) = 20\cos(2000\pi t \pm 60^{\circ})$

Desarrollo:

La expresión general de una señal senoidal es $x(t) = A\cos(2\pi f t + \phi)$

- a) Dado que el periodo es T=1 ms, la frecuencia será f=1/T=1000 Hz y $\omega=2\pi f=2000\pi$ rad/s.
- b) Del enunciado sabemos que A=20 y antes hemos calculado f=2000 Hz. Para calcularla, evaluamos la expresión general en t=0 y resulta

$$x(0) = 20\cos(\phi)$$

Por otro lado, el enunciado indica que t = 0 vale x(0) = 10. Igualando, tenemos

$$10 = 20\cos(\phi)$$

Despejando, obtenemos $\cos(\phi) = 1/2$ que equivale a $\phi = \pm 60^{\circ}$. Dado que la señal coseno es simétrica, podemos tomar desplazamiento hacia la izquierda o hacia la derecha. Por ejemplo, si tomamos un desplazamiento hacia la izquieda (es decir, $t_0 < 0$), la fase sería positiva. Esto quiere decir que $\phi = 60^{\circ}$.

Sustituyendo todos los valores en la expresión general, obtenemos

$$x(t) = 20\cos(120\pi ft + 60^{\circ})$$

.

6. Ejercicio:

Considere la señal senoidal $x(t) = 300 \cos(120\pi t + 30^{\circ})$.

- a) Determine la frecuencia en Hz.
- b) Determine el periodo.
- c) Dibuje un ciclo de la señal senoidal.
- d) Exprese la señal x(t) en función de la señal seno.

Resultados:

- a) f = 60 Hz;
- b) $T = \frac{1}{60}$ s;

Desarrollo:

c)

La expresión general de una señal senoidal es $x(t) = A\cos(2\pi f t + \phi)$

- a) Comparando la expresión de x(t) con la general, obtemos A=300.
- b) El periodo es T = 1/f = 1/60 s.

d) $x(t) = 300 \operatorname{sen}(120\pi t + 120^{\circ}).$

- c) Para dibujar la señal, primero podemos dibujar el coseno sin desplazar y después desplazarlo $t_0=-\frac{\phi}{2\pi f}=-\frac{\pi/6}{-120\pi}=-1.399$ ms.
- d) Dado que $cos(\alpha) = sen(\alpha + \pi/2)$, obtenemos $x(t) = 300 cos(120\pi t + 30^{\circ} + 90^{\circ}) = 300 sen(120\pi t + 120^{\circ})$.

7. Ejercicio con ordenador:

Utilizando Octave, represente las siguientes señales superponiendo la señal en tiempo continuo (rojo) y la señal en tiempo discreto (azul). Para definir señales en tiempo discreto, considere un paso de tamaño 1 (por ejemplo, n = -10:10) y para señales "en tiempo continuo" utilice un paso más pequeño (por ejemplo, t = -10:0.01:10).

- a) Escalón: x(t) = 2u(t) y x(n) = 2u(n).
- b) Pulso:

$$p(t) = \begin{cases} A & 0 < t < T \\ 0 & resto \end{cases} \quad p(n) = \begin{cases} A & 0 \le n < N \\ 0 & N \le n \end{cases} \quad \text{con } T = N = 4; A = 3.$$

- c) Señal rampa: $r(t) = \begin{cases} 0 & t < 0 \\ t & t > 0 \end{cases}$ $r(n) = \begin{cases} 0 & n \le 0 \\ n & n > 0 \end{cases}$
- d) Exponencial unilateral: $x(t) = \begin{cases} 0 & t < 0 \\ e^{-at} & t > 0 \end{cases}$ $x(n) = \begin{cases} 0 & n < 0 \\ e^{-an} & n \ge 0 \end{cases}$ con a = 1 y a = -1.

Resultados:

8. Ejercicio con ordenador:

Utilizando Octave, represente las siguientes señales superponiendo la señal en tiempo continuo (rojo) y la señal en tiempo discreto (azul).

a)
$$x(t) = \cos(2\pi f t)$$
 y $x(n) = \cos(2\pi f n)$ con $f = 20$ Hz con

$$t = 0: 0.001: 0.1; n = 0: 0.001: 0.1$$

b)
$$x(t) = sinc(t) = \frac{sen(\pi t)}{\pi t}$$
 y $x(n) = sinc(n) = \frac{sen(\pi n)}{\pi n}$ con

$$t = -10:0.1:10; n = -10:0.1:10.$$

Recuerde que debe calcular y asignar en valor x(0) = sinc(0).

Resultados:

