

Statistika dan Probabilitas

Materi 3:

Peluang Bersyarat dan Teorema Bayes

Dosen pengampu:

Restu Rakhmawati, S.Kom., M.Kom.

PRODI TEKNOLOGI INFORMASI JURUSAN TEKNOLOGI INFORMASI, MEKATRONIKA, DAN INFORMASI FAKULTAS TEKNIK UNIVERSITAS TIDAR

PROBABILITAS DAN STATISTIKA

Capaian Pembelajaran Probabilitas dan Statistika:

CPMK 01 Mahasiswa mampu mengetahui dan menjelaskan konsep probabilitas dalam permasalahan sehari-hari

POKOK BAHASAN

- 1. Peluang Bersyarat
- 2. Teorema Bayes

PELUANG BERSYARAT

PELUANG BERSYARAT

- Peluang terjadinya suatu kejadian bila diketahui kejadian lain
- P (B|A) dibaca Peluang B jika diketahui kejadian A

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \text{ Jika } P(A) > 0$$

PELUANG BERSYARAT

Jika sebuah dadu dilempar satu kali, berapakah peluang muncul angka kurang dari 4 jika hasil lemparan tersebut menghasilkan angka GANJIL?

Jawab:

- Hitung peluang muncul kejadian angka kurang dari 4 = P(B) = $\frac{3}{6}$
- Hitung peluang muncul kejadian angka GANJIL P(A) = $\frac{3}{6}$
- Hitung peluang muncul kejadian angka GANJIL kurang dari 4

P (A \cap B) =
$$\frac{2}{6}$$

Maka P(B | A) = $\frac{P(A \cap B)}{P(A)} = \frac{\frac{2}{6}}{\frac{3}{6}} = \frac{2}{3}$

KEJADIAN BEBAS

- Jika kejadian A dan kejadian B tidak saling mempengaruhi maka disebut sebagai kejadian bebas
- Syarat kejadian bebas:

P(B|A) = P(B) dan P(A|B) = P(A)

KEJADIAN BEBAS

Contoh:

Dua buah kartu remi diambil secara berurutan dari tumpukan kartu dengan pengembalian. Misalkan A adalah kejadian kartu pertama yang terambil adalah kartu scoop dan B adalah peluang kejadian kartu kedua yang terambil adalah kartu wajik.

Maka P(B) =
$$13/52 = \frac{1}{4}$$

P(B|A) = $13/52 = \frac{1}{4}$

P(B) = P(B|A) maka dapat dikatakan bahwa kejadian A dan B bebas

ATURAN PERKALIAN

Bila kejadian A dan B dapat terjadi pada suatu percobaan

$$P(A \cap B) = P(A) P(B|A)$$

 Tidak ada aturan khusus mana yang menjadi kejadian A dan mana yang menjadi kejadian B

ATURAN PERKALIAN

Contoh:

Misalkan dalam sebuah kotak berisi 20 sekering, 5 diantaranya cacat. Bila dikeluarkan 2 sekring dari dalam kotak satu per satu secara acak tanpa mengembalikan yang pertama ke dalam kotak. Berapakah peluang kedua sekering yang dikeluarkan tersebut cacat?

ATURAN PERKALIAN

Jawab:

Misalkan:

A = kejadian sekering pertama cacat = $5/20 = \frac{1}{4}$

B = kejadian sekering yang kedua cacat = 4/19

(A∩B) sebagai kejadian A terjadi, kemudian B terjadi setelah A terjadi

Maka P $(A \cap B) = P(A) P(B|A) = (\frac{1}{4})(\frac{4}{19}) = \frac{1}{19}$

Dua kartu diambil dari setumpuk kartu remi yang telah diacak. Tentukan peluang kedua kartu yang diambil adalah kartu as jika:

- a. Kartu pertama dikembalikan
- b. Kartu pertama tidak dikembalikan

Sebuah kota kecil mempunyai satu mobil pemadam kebakaran dan satu ambulans. Peluang mobil pemadam kebakaran siap waktu diperlukan 0.98 peluang ambulans siap waktu diperlukan 0.92

Berapa peluang keduanya siap Ketika terjadi kebakaran?

Dua dadu dilantunkan dua kali. Berapa peluangnya mendapat jumlah 7 dan 11 dalam dua kali lantunan?

- Misalkan B_1 , B_2 , B_3 ,.... B_n adalah kejadian terpisah pada ruang sampel S. Salah satu dari kejadian tersebut harus terjadi.
- Jika A adalah kejadian sembarang dalam S dengan peluang A != 0, maka:

$$P(B_r \mid A) = \frac{P(B_r \cap A)}{\sum_{i=1}^{n} P(B_i \cap A)} = \frac{P(B_r)P(A \mid B_r)}{\sum_{i=1}^{n} P(A_i)P(A \mid B_i)}$$

Contoh:

Tiga anggota koperasi dicalonkan menjadi ketua. Peluang kandidat A terpilih 0.3, peluang kandidat B terpilih 0.5, peluang kandidat C 0.2.

Jika kandidat A terpilih, maka peluang kenaikan iuran koperasi adalah 0.8

Jika kandidat B atau kandidat C terpilih maka peluang kenaikan iuran adalah masing-masing 0.1 dan 0.4

Berapakah peluang kandidat C akan terpilih?

Jawab:

A: orang yang terpilih menaikkan iuran

B₁: kandidat A yang terpilih

B₂: kandidat B yang terpilih

B₃: kandidat C yang terpilih

Jawab:

$$P(B_3|A) = \frac{P(B_3)P(A|B_3)}{P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)}$$

$$P(B_1 \cap A) = P(B_1)P(A|B_1) = (0.3)(0.8) = 0.24$$

 $P(B_2 \cap A) = P(B_2)P(A|B_2) = (0.5)(0.1) = 0.05$
 $P(B_3 \cap A) = P(B_3)P(A|B_3) = (0.2)(0.4) = 0.08$

Jawab:

$$P(B_3|A) = \frac{P(B_3)P(A|B_3)}{P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)}$$

$$= \frac{0.08}{0.24 + 0.05 + 0.08} = \frac{8}{37} = 0.21612$$

- a. Berapa peluang kandidat A yang terpilih?
- b. Berapa peluang kandidat B yang terpilih?