UNIVERSITÉ DE TECHNOLOGIE DE TROYES

Approche de type filtre particulaire pour le problème d'estimation de la vie résiduelle (RUL)

Stagiaire NGUYEN Trung Duong

Directeurs Antoine GRALL

Anne BARROSOS

Durée Février 2013 – Juillet 2013

Lieu LM2S - ICD - UTT

Laboratoire de Modélisation et Sûreté des Systèmes Institut de Charles Delaunay

Plan

1. Problématique

2. SIS filtre particulaire

- Modèle de dégradation
- Algorithme et visualisation

3. SISR filtre particulaire avec redistribution d'adaptation

- Mécanisme de redistribution
- o Algorithme
- 4. Estimation de la RUL et résultats de simulation
- 5. Conclusions et perspectives

1. Problématique

Durée de vie résiduelle (RUL)

Temps de fonctionnement restant d'un système avant la date de défaillance.

→ Importance dans les stratégies de maintenance.

Estimation de la RUL

- Diagnostic: Trouver le niveau de dégradation actuel en s'appuyant sur des données d'observations.
- Prognostic: Prévoir l'évolution dans le futur de l'état de dégradation.

1. Problématique

Filtre particulaire

Implémentation de l'estimation Bayésienne récursive en utilisant la méthode de Monte Carlo séquentielle

Notations

$$X_t = \{x_0, x_1, ..., x_t\}$$
 ensemble des états réels (cachés) du processus de dégradation jusqu'à l'instant (t) $Y_t = \{y_1, ..., y_t\}$ ensemble des valeurs de mesures correspondantes

$$Y_t = \{ y_1, ..., y_t \}$$
 ensemble des valeurs de mesures correspondantes

Procédures

- i. Approcher à chaque instant (t) la distribution "marginale" a posteriori $p(x_t|Y_t)$ par un ensemble de particules $\{x_t^i, W_t^i\}_{i=1}^{N_s}$
- ii. Estimer le niveau de dégradation (x_i)
- iii. Calculer la RUL par la simulation

Modèle d'espace d'état

$$\begin{cases} x_{t} = f(x_{t-1}, v_{t}) \\ y_{t} = h(x_{t}, \varepsilon_{t}) \end{cases}$$

Hypothèse

$$p\left(x_{t} \mid X_{t-1}\right) = p\left(x_{t} \mid X_{t-1}\right) \leftrightarrow f\left(x_{t} \mid X_{t-1}\right)$$

: noyau de transition

$$p(y_t | Y_{t-1}, X_{t-1}) = p(y_t | x_t) \leftrightarrow h(y_t | x_t)$$

: fonction de vraisemblance

Processus Gamma

$$\begin{cases} x_{t} = x_{t-1} + v_{t} \\ y_{t} = x_{t} + \varepsilon_{t} \end{cases} avec \begin{cases} v_{t} : \Gamma(k, \theta) \\ \varepsilon_{t} : N(0, \sigma_{\varepsilon}^{2}) \end{cases}$$

 $\begin{pmatrix} v_t \end{pmatrix}$ v.a représente l'incrément du processus Gamma \leftrightarrow bruit de processus

$$p(x_0) = N(0, \sigma_0^2)$$
 : loi initiale

$$p(x_{t-1} | Y_{t-1}) \xrightarrow{\text{Prédiction}} p(x_t | Y_{t-1}) \xrightarrow{\text{(avec } y_t)} p(x_t | Y_t)$$

$$p(x_t | x_{t-1}) \qquad p(y_t | x_t)$$

Estimation Bayésienne

$$p\left(x_{t} | Y_{t}\right) = \frac{p\left(y_{t} | x_{t}\right) \times p\left(x_{t} | Y_{t-1}\right)}{p\left(y_{t} | X_{t}\right) \times p\left(x_{t} | Y_{t-1}\right)}$$

$$= \frac{p\left(y_{t} | x_{t}\right) \times p\left(x_{t} | Y_{t-1}\right)}{\int p\left(y_{t} | x_{t}\right) \times p\left(x_{t} | Y_{t-1}\right) dx_{t}}$$

où

$$p(x_{t}|Y_{t-1}) = \int p(x_{t}|x_{t-1}) \times p(x_{t-1}|Y_{t-1}) dx_{t-1}$$
$$x_{MMSE} = \int x_{t} \times p(x_{t}|Y_{t}) dx_{t}$$

Méthode Monte Carlo séquentielle

$$\begin{split} & \boldsymbol{\omega_{t}^{i}} = \boldsymbol{\omega_{t-1}^{i}} \times \frac{p\left(\boldsymbol{y}_{t} \left| \boldsymbol{x}_{t}^{i} \right) \times p\left(\boldsymbol{x}_{t}^{i} \left| \boldsymbol{x}_{t-1}^{i} \right) \right)}{q\left(\boldsymbol{x}_{t}^{i} \left| \boldsymbol{x}_{t-1}^{i} \right, \boldsymbol{y}_{t} \right)}, i = 1:N_{s} \\ & p\left(\boldsymbol{x}_{t} \left| \boldsymbol{Y}_{t} \right) \approx \sum_{i=1}^{N_{s}} \mathbf{W}_{t}^{i} \times \delta\left(\boldsymbol{x}_{t} - \boldsymbol{x}_{t}^{i} \right) \\ & \text{où} & \mathbf{W}_{t}^{i} = \frac{\boldsymbol{\omega}_{t}^{i}}{\sum_{i=1}^{N_{s}} \boldsymbol{\omega_{t}^{i}}} \\ & \boldsymbol{x}_{MMSE} \approx \sum_{i=1}^{N_{s}} \boldsymbol{x}_{t} \times \left(\mathbf{W}_{t}^{i} \times \delta\left(\boldsymbol{x}_{t} - \boldsymbol{x}_{t}^{i} \right)\right) \approx \sum_{i=1}^{N_{s}} \mathbf{W}_{t}^{i} \times \boldsymbol{x}_{t}^{i} \end{split}$$

- Algorithme: de type génétique, un ensemble de particules est propagé avec le temps.
- Il est nécessaire de savoir:
- \circ Simuler selon la loi initiale $\mathit{p}\left(\mathit{x}_{0}
 ight)$
- o Simuler selon la loi d'importance $q\left(x_{t}^{i}\left|x_{t-1}^{i},y_{t}\right.\right)$
- o Calculer la vraisemblance $p(y_t|x_t)$ pour tout (x_t) à l'acquisition de (y_t)

- À l'instant (t = 0)
- o Initialisation:

$$\begin{cases} x_0^i : p(x_0) \\ \omega_0^i = \frac{1}{N_s} \end{cases}, i = 1 : N_s$$

- À partir de l'instant (t ≥ 1)
- Échantillonnage d'importance:

$$x_t^i: q(x_t^i | x_{t-1}^i, y_t)$$

$$p(y | x^i) \times p(x^i)$$

$$\omega_t^i = \omega_{t-1}^i \times \frac{p\left(y_t \left| x_t^i \right) \times p\left(x_t^i \left| x_{t-1}^i \right)\right.\right)}{q\left(x_t^i \left| x_{t-1}^i , y_t \right.\right)}$$

Normalisaton:

$$\mathbf{W}_{t}^{i} = \frac{\omega_{t}^{i}}{\sum_{i=1}^{N_{s}} \omega_{t}^{i}}$$

Estimation du niveau de dégradation:

$$x_{MMSE} \approx \sum_{t=1}^{N_s} W_t^i \times x_t^i$$

Loi d'importance populaire:

$$q\left(x_{t}^{i}\left|x_{t-1}^{i},y_{t}\right.\right)=p\left(x_{t}^{i}\left|x_{t-1}^{i}\right.\right)$$

$$\omega_{t}^{i} = \omega_{t-1}^{i} \times \frac{p\left(y_{t} \left| x_{t}^{i} \right) \times p\left(x_{t}^{i} \left| x_{t-1}^{i} \right)\right)}{q\left(x_{t}^{i} \left| x_{t-1}^{i} \right, y_{t} \right)} = \omega_{t-1}^{i} \times p\left(y_{t} \left| x_{t}^{i} \right)\right)$$

Donc:

$$\omega_{t}^{i} = \omega_{t-1}^{i} \times \frac{p\left(y_{t} \middle| x_{t}^{i}\right) \times p\left(x_{t}^{i} \middle| x_{t-1}^{i}\right)}{q\left(x_{t}^{i} \middle| x_{t-1}^{i}, y_{t}\right)} = \omega_{t-1}^{i} \times p\left(y_{t} \middle| x_{t}^{i}\right)$$

$$y_{t} : N\left(x_{t}, \sigma_{\varepsilon}^{2}\right) \Rightarrow p\left(y_{t} \middle| x_{t}^{i}\right) = \frac{1}{\sigma_{\varepsilon} \sqrt{2\pi}} \times \exp\left(-\frac{\left(x_{t}^{i} - y_{t}\right)^{2}}{2\sigma_{\varepsilon}^{2}}\right)$$

- **Avantage** Simple
- Inconvénient

Sensible avec des observations bruitées → pauvre qualité

Phénomène de dégénérescence de poids

Distribution des états estimés

3. SISR filtre particulaire avec redistribution d'adaptation

Mécanisme de redistribution

Pourtant,

- Engendre des "bruits" additionnels
- Dégénérescence des positions:
 Réduction de la diversité des particules

 ⇔ bruit de processus

Initialisation
$$\begin{cases} x_0^i: \ p(x_0) \\ \omega_0^i = \frac{1}{N_s}, i = 1: N_s \end{cases}$$

$$= (t \ge 1)$$

$$\text{Échantillonnage d'importance} \begin{cases} x_t^i: \ p\left(x_t^i \middle| x_{t-1}^i\right) \\ \omega_t^i = \omega_{t-1}^i \times p\left(y_t \middle| x_t^i\right) \end{cases}$$

Normalisation $W_t^i = \frac{\omega_t^i}{\sum_{i=1}^{N_s} \omega_t^i}$

Estimer le niveau de dégradation $\chi_{MMSE} \approx \sum_{i=1}^{N_s} W_t^i \times \chi_t^i$

Si
$$\left(N_{eff} = \frac{1}{\sum_{i=1}^{N_s} \left(\mathbf{W}_t^i \right)^2} \right) \leq N_{thresh} \left(= \frac{N_s}{2} \right)$$

$$x_t^{i*} = redistribution \left(x_t^i, \mathbf{W}_t^i \right)$$

$$\left\{ x_t^i = x_t^{i*}, \omega_t^i = \frac{1}{N_s} \right\}$$

3. SISR filtre particulaire avec redistribution d'adaptation

Effets de l'étape de redistribution

- Éviter l'accumulation des erreurs avec le temps
- Rendre l'estimation plus stable

$$RMSE_{t} = \sqrt{\frac{1}{300} \times \sum_{k=1}^{300} \left(\left(x_{MMSE} \right)_{t}^{k} - x_{t} \right)^{2}}$$

Supposer que la date de défaillance réelle est:
$$T_{def} = 600 \rightarrow \begin{cases} S_{def} = 347.4 \\ S_{def} = 424.5 \end{cases}$$

$$\begin{cases}
\Gamma\left(k_1 = 1, \theta_1 = \frac{2}{3}\right) \\
\Gamma\left(k_2 = \frac{1}{9}, \theta_2 = 6\right)
\end{cases}$$

$$RMSE_{globale}^{k} = \sqrt{\frac{1}{T} \times \sum_{t=1}^{T} \left(\left(x_{MMSE} \right)_{t}^{k} - x_{t} \right)^{2}}, T = 500$$

$$RUL_{re'lle} = T_{def} - 500 = 600 - 500 = 100$$

$$RMSE_{RUL} = \sqrt{\frac{1}{300} \times \sum_{k=1}^{300} ((RUL)_k - 100)^2}$$

$$\Gamma\left(k_1=1,\theta_1=\frac{2}{3}\right) \rightarrow \boxed{1}$$

$$\Gamma\left(k_2 = \frac{1}{9}, \theta_2 = 6\right) \rightarrow 2$$

Quand le nombre de particules (N_s) augmente

SIS filtre particulaire

- N_s grand, $RMSE_{globale}$ décroit.

$$\begin{cases} RMSE_{globale} \\ RMSE_{t=500} \\ RMSE_{RUL} \end{cases}$$
 de ② plus grands que de ①.

N s grand, valeurs estimées plus robuste

SISR filtre particulaire avec redistribution d'adaptation

- $\mathit{RMSE}_{\mathit{globale}}$ beaucoup plus petite, stable.

- La différence
$$\textcircled{1} \leftrightarrow \textcircled{2}$$

$$\begin{cases} \textit{RMSE}_{\textit{globale}} \\ \textit{RMSE}_{\textit{t=500}} \end{cases}$$

 $RMSE_{RUL}$ (1) \leftrightarrow (2) encore différé (bon diagnostic n'assure pas bon prognostic)

Meilleur diagnostic et prognostic.

• Quand l'écart-type (σ_{ε}) du bruit de mesures varie

- Qualité de l'estimation instable (choisir la loi d'importance sans tenant compte des observations).
- \circ Si la variance de l'incrément $\Gamma(k,\theta)$ suffisamment petite.
 - ightarrow Capable d'obtenir un bon diagnostic même si (σ_{ε}) est grand, et au contraire.

- Loi du temps d'atteinte (FHT)
- L'instant où le niveau de dégradation dépasse le seuil de défaillance.
- La densité de probabilité plus étroite en approchant la date de défaillance $T_{def} = 600$ \rightarrow Estimation de FHT plus exacte.

5. Conclusions et perspectives

Conclusion

- Modéliser la dégradation par un processus Gamma.
- o Étudier la construction et le principe d'un filtre particulaire.
- o Comparer la performance du filtre particulaire lors de la variation des paramètres.
- Vérifier les algorithmes par la simulation en Matlab.

Perspectives

- o D'autres techniques pour améliorer la performance.
- Politiques d'inspections.