Pracownia 1

Analiza Numeryczna (M) Prowadzący: Witold Karczewski Zadanie P1.3

Wojciech Adamiec, 310064

5 listopada 2019

Spis treści

1	Wstęp	1
	1.1 Treść Zadania	1
	1.2 Plan Działania	1
	1.3 Sprawy Techniczne	2
	Rozwiązanie Zadania2.1 Znalezienie szukanych wartości n2.2 Dodatkowe spostrzeżenia	
3	Podsumowanie	3

1 Wstęp

1.1 Treść Zadania

Obliczać z pojedynczą, a następnie podwójną precyzją, kolejne wyrazy ciągów:

$$S_n = \sum_{k=0}^{n} (-1)^k k!^{-2} \tag{1}$$

$$T_n = \sum_{k=0}^{n} k!^{-2} \tag{2}$$

Do chwili, gdy dwa kolejne wyrazy będą sobie równe w odpowiedniej arytmetyce maszynowej - to jest ustalenie dla jakiej najmniejszej wartości n: $S_n = S_{n+1}$ (analogicznie $T_n = T_{n+1}$).

1.2 Plan Działania

Będziemy chcieli wykonać zadanie dla obu ciągów i obu precyzji w kilku wariantach. Rozpatrzymy dwie kolejności dodawania do siebie kolejnych składników sumy - w jednej wersji będziemy dodawać składniki malejąco (zgodnie z naturalną interpretacją wzoru), a w drugiej rosnąco (ostatnim składnikiem będzie 1 : dla k=0). Dodatkowo rozpatrzymy dwie kolejności wykonywania operacji na składnikach - w jednej wersji będziemy najpierw wykonywać podnoszenie do kwadratu, a potem odwracanie, a w drugiej wersji będziemy najpierw odwracali liczbę, a potem podnosili ją do kwadratu.

1.3 Sprawy Techniczne

Wszystkie obliczenia numeryczne zostały wykonane w języku Julia w wersji v1.2.0. Za pojedynczą precyzję przyjmujemy binary32, a za podwójną binary64 zgodnie ze standardem IEEE 754, którego opis można znaleźć np. tu: https://en.wikipedia.org/wiki/IEEE_754.

2 Rozwiązanie Zadania

2.1 Znalezienie szukanych wartości n

Szukamy najmniejszych n, takich że: $S_n = S_{n+1}$ (analogicznie $T_n = T_{n+1}$). Zauważmy, że rozróżniamy:

- Ciagi S_n i T_n
- Pojedynczą i podwójną precyzję
- Kolejność sumowania wyrazów (rosnąco lub malejąco)
- Kolejność wykonywania operacji Podniesienie do kwadratu i Odwrócenie liczby

Daje nam to w sumie 16 różnych problemów, a co za tym idzie, 16 różnych wartości n do znalezienia. W poniższej tabeli znajdują się szukane wartości n dla tych 16 wariantów. (Wartości n obliczone zostały za pomocą programu dołączonego do rozwiązania)

Ciąg	Precyzja	Kol. wyrazów	Kol. operacji	$\mid n \mid$
T_n	32	malejąco	kwadrat	7
$\parallel T_n$	32	malejąco	odwrócenie	7
T_n	32	rosnaco	kwadrat	6
T_n	32	rosnąco	odwrócenie	6
T_n	64	malejąco	kwadrat	12
$\parallel T_n$	64	malejąco	odwrócenie	12
T_n	64	rosnąco	kwadrat	11
T_n	64	rosnąco	odwrócenie	11
S_n	32	malejąco	kwadrat	8
S_n	32	malejąco	odwrócenie	8
S_n	32	rosnaco	kwadrat	6
S_n	32	rosnąco	odwrócenie	6
S_n	64	malejąco	kwadrat	12
S_n	64	malejąco	odwrócenie	12
S_n	64	rosnaco	kwadrat	11
S_n	64	rosnąco	odwrócenie	11

Analizując tabelę wyników można od razu odnotować kilka obserwacji:

- Kolejność wykonywania operacji ($Podniesienie\ do\ kwadratu$ i $Odwrócenie\ liczby$) nie ma wpływu na wartość szukanego n. Co więcej, z dokładnych wartości kolejnych wyrazów ciągów S_n i T_n możemy łatwo wywnioskować, że na potrzeby naszego zadania możemy całkowicie zaniedbać kolejność wykonywania tych operacji, gdyż otrzymywane wartości sa identyczne.
- Dla podwójnej precyzji wartości n są zauważalnie wyższe niż dla precyzji pojedynczej. Oczywistym powodem tego zjawiska jest większa ilość bitów poświęconych na mantysę liczb maszynowych co od razu przekłada się na zwiększenie dokładności.

- Dla ciągu S_n jesteśmy w stanie minimalnie dokładniej wyznaczać kolejne wyrazy niż dla ciągu T_n . Różnica ta jest widoczna przy pojedynczej precyzji i sumowaniu w kolejności malejącej, jednak jest tak niewielka, że zanika przy większej precyzji (i lepszym sposobie sumowania).
- Bardziej dokładnym sposobem sumowania okazuje się sumowanie liczb w kolejności malejącej. Na pierwszą myśl wydaje się to sprzeczne z intuicjami, gdyż większe błędy dodawania przypadają wówczas na większe liczby. Okazuje się jednak, że owe błędy nie mają kluczowego znaczenia dla dokładności metody.

2.2 Dodatkowe spostrzeżenia

Ze względu na sposób rozwiązania zadania liczyliśmy T_n i S_n dla n większych niż, te których szukamy. W kilku miejscach zdarzyła się sytuacja taka, że $T_n = T_{n+1}$, ale jednocześnie $T_n \neq T_{n+2}$ lub $T_n \neq T_{n+3}$. Taka anomalia jest wynikiem szukania odwrotności liczb maszynowych w zbiorze liczb maszynowych.

3 Podsumowanie

???