Effiziente Algorithmen 1 - Zusammenfassung

Patrick Dammann

21.05.2017

1 Probleme und Algorithmen

Lineares kombinatorisches Optimierungsproblem

Gegeben sind eine endliche Menge E, ein System von Teilmengen $\mathcal{I} \subseteq 2^E$ (zulässige Lösungen) und eine Funktion $c: E \to \mathbb{R}$. Es ist eine Menge $I^* \in \mathcal{I}$ zu bestimmen, so dass $c(I^*) = \sum_{e \in I^*} c(e)$ minimal bzw. maximal ist.

Euklidisches Traveling-Salesman-Problem

Gegeben sind n Punkte in der Euklidischen Ebene. Zu bestimmen ist eine geschlossene Tour, die jeden Punkt genau einmal besucht und möglichst kurz ist.

E = Menge der Kanten

 \mathcal{I} = Alle Mengen von Kanten, die eine Tour bilden

Euklidisches Matching-Problem

Gegeben sind n Punkte in der Euklidischen Ebene (n gerade). Zu bestimmen sind $\frac{n}{2}$ Linien, so dass jeder Punkt Endpunkt genau einer Linie ist und die Summe der Linienlängen so klein wie möglich ist.

E = Menge der Kanten

 $\mathcal{I}=$ Alle Mengen von Kanten mit der Eigenschaft, dass jeder Knoten zu genau einer der Kanten gehört.

Einheitskosten-Modell Es werden nur die Schritte des Algorithmus gezählt, die Zahlengrößen bleiben unberücksichtigt.

Bit-Modell Die Laufzeit für eine arithmetische Operation ist M, wobei M die größte Kodierungslänge einer an dieser Operation beteiligten Zahl ist.

Definition 1.1. Die Laufzeitfunktion $f_A : \mathbb{N} \to \mathbb{N}$ ist in $\mathcal{O}(g)$ für eine Funktion $g : \mathbb{N} \to \mathbb{N}$ falls es eine Konstante c > 0 und $n_o \in \mathbb{N}$ gibt, so dass $f_A \leq c \cdot g(n)$ für alle $n \geq n_o$.

Definition 1.2. Ein Algorithmus heißt **effizient** bzw. **polynomialer Algorithmus**, wenn seine Laufzeit in $\mathcal{O}(n^k)$ liegt.

Ein Problem, das mit einem polynomialen Algorithmus gelöst werden kann, heißt **polynomiales Problem**.

Definition. Ein Graph G ist ein Tupel $G = (V, E)^1$ bestehend aus einer nicht-leeren Knotenmenge V und einer Kantenmenge E.

Ein Graph heißt endlich, wenn V und E eindlich sind.

Wenn $e = \{u, v\} \in E$ und $u, v \in V$, dann sind u und v Nachbarn bzw. adjazent, sind Endknoten von e und werden von e verbunden.

Eine Kante $E \ni e = \{u, u\}$ heißt Schleife.

Kanten mit $E \ni e = \{u, v\} = f \in E$ heißen parallel oder mehrfach.

Ein Graph ohne Mehrfachkanten heißt einfach.

¹In der Vorlesung werden primär endliche, einfache, schleifenfreie Graphen behandelt, die der einfachheit halber eine Notation ohne Inzendenzfunktion nutzen können.