12. Intro to Neural Networks

Elliott Ash

Text Data Course, Bocconi 2018

"Neural Networks"

- "Neural":
 - nothing like brains
- "Networks":
 - ▶ nothing to do with "networks" as normally understood in particular, nothing to do with network theory in social science.

Recent History

- ▶ NNs frequently outperform other ML techniques on very large and complex problems.
- Increase in computing power makes them computationally tractable, graphical processing units (GPUs, designed for video games) give you over 100x performance gain over CPUs.
- Training algorithms have improved small tweaks have made a huge impact.
- Some theoretical limitations of ANNs have turned out to be benign in practice – for example, they work well on non-convex functions.

Will it last?

► Three key principles of deep learning will persist:

Simplicity

- feature engineering is obsolete
- complex, brittle, engineering-heavy pipelines replaced with simple, end-to-end trainable models, composed of 5-6 tensor operations.

Scalability

- amenable to parallelization on GPUs or TPUs (tensor processing units)
- trained on batches of data, so can be scaled to datasets of arbitrary size.

Versatility and reusability

- can be trained on additional data without restarting from scratch, therefore amenable for continuous online learning.
- deep-learning models are repurposable and thus reusable

Perceptron LTU

 In a perceptron, an individual neuron (called an LTU, or linear threshold unit) is defined by

$$h(\mathbf{x}) = \operatorname{step}(\omega' \mathbf{x})$$

where $step(\cdot)$ is the step function.

The neuron computes a linear combination of the inputs; if result exceeds threshold, output positive class, otherwise negative class.

Perceptron

▶ A perceptron is an array of LTUs in parallel:

▶ This basic perceptron is similar to a logistic regression model.

In Notation

► The simplest perceptron is a linear combination of the inputs, the same as a linear regression:

$$y = \alpha + x'\omega$$

where x is a vector of inputs and ω is the vector of weights (or a matrix for a multi-class outcome).

Hidden Layers ↔ "Deep Learning"

► The predictive performance of perceptrons improved substantially by stacking them into multiple layers:

- ▶ Input variables are connected to multiple neurons in the hidden layer(s), which in turn are connected to the output layer.
 - This is called a multi-layer perceptron or a feed forward neural network; with enough neurons, it can approximate any continuous function

DNN Notation

An DNN with a single hidden layer can be written as

$$y = \alpha_2 + g(\alpha_1 + x'\omega_1)'\omega_2$$

- α_1 and ω_1 , the intercept and coefficients in the input layer
 - ω_1 is a $d_0 \times d_1$ matrix, where d_0 is the dimension of the input and d_1 is the number of neurons in the hidden layer.
- \triangleright $g(\cdot)$, the non-linear activation function.
 - without this, the DNN could only represent linear transformations of the input.
- α_2 and ω_2 , the intercept and coefficients in the hidden layer.
 - ω_2 is a $d_1 \times d_2$ matrix, where d_2 is the dimensionality of the output.

DNN Notation: two hidden layers

► Similarly, with two hidden layers we have

$$y = \alpha_3 + g_2(\alpha_2 + g_1(\alpha_1 + x'\omega_1)'\omega_2)'\omega_3$$

- $g_1(\cdot)$ and $g_2(\cdot)$, activation functions for the first and second layers.
- α_3 and ω_3 , intercepts and coefficients for the second hidden layer.

Constructing the Last Layer

- MLPs will output a probability distribution across output classes
 - can also output a real number, which would make a regression model.

Modern MLPs: New activation functions

- ▶ logistic function: $\sigma(z) = \frac{1}{1 + \exp(-z)}$
- ▶ hyperbolic tangent function: $tanh(z) = 2\sigma(2z) 1$
 - ranges between -1 and 1 (rather than between 0 and 1, as the case with the logistic)
 - centered on zero, can speed up convergence
- ► ReLU (rectified linear unit) function: max{0, z},
 - deceptively simple, fast to compute, and very effective in practice
 - gradient does not saturate to zero for large values (but is flat below zero)

Google Developers Advice: MLP baseline for Text Classification

- 1. Calculate the number of samples/number of words per sample ratio.
- 2. If this ratio is less than 1500, tokenize the text as n-grams and use a simple multi-layer perceptron (MLP) model to classify them.
 - In the case of N-grams models, Google testers found that MLPs tended to out-perform logistic regression and gradient boosting machines.

Setting up a model

- "Dense" layer is the DNN baseline means that all neurons are connected.
- Output layer:
 - for binary classification, use activation='sigmoid'
 - for regression, do not use an activation function
 - for multi-class classification, use activation=softmax'

Visualize a model

Compile the model

- Loss function:
 - for binary classification, use binary_crossentropy
 - for regression, use mean_squared_error
 - for multi-class classification, use sparse_categorical_crossentropy
- Optimizer:
 - use adam
- Metrics:
 - for classification, use accuracy
 - for regression, you have to define a custom metric (see accompanying code)

Fit a model

```
model. fit (X, Y,
          epochs=5.
           validation split = .2)
model.get weights()
# Plot performance by epoch
plt.plot(model info.epoch, model info.history['acc'])
plt.plot(model_info.epoch, model_info.history['val_acc'])
plt.legend(['train', 'val'], loc='best')
# make predictions
ypred = model.predict(X)
```

Saving and Loading Models

```
# Save a model
model.save('keras-clf.pkl')

# load model
from keras.models import load_model
model = load_model('keras-clf.pkl')
```