Ateneo de Manila University					1
ANGER		3.8.2. Hopcroft-Karp Algorithm	8	5.13. Linear Diophantine	16
AdMUProgvar		3.8.3. Minimum Vertex Cover in Bipartite Graphs	8	5.14. Chinese Remainder Theorem	16
${\it Team\ Notebook}$		3.9. Maximum Flow	8	5.14.1. Super Chinese Remainder	16
		3.9.1. Edmonds-Karp	8	5.15. Primitive Root	16 16
18/04/2020		3.9.2. Dinic	9	5.16. Josephus	
10/04/2020		3.10. Minimum Cost Maximum Flow	9	5.17. Number of Integer Points under a Lines	16
Contents		3.11. All-pairs Maximum Flow	10	6. Algebra 6.1. Fast Fourier Transform	16
1. Code Templates	2	3.11.1. Gomory-Hu	10		16 17
2. Data Structures	$\frac{2}{2}$			6.2. FFT Polynomial Multiplication 6.3. Number Theoretic Transform	17 17
2.1. Union Find	$\frac{2}{2}$	3.12. Minimum Arborescence	10		17
2.2. Fenwick Tree	2	3.13. Blossom algorithm	10	6.4. Polynomial Long Division 6.5. Matrix Multiplication	17
2.2.1. Fenwick Tree w/ Point Queries	2	3.14. Maximum Density Subgraph	11	6.6. Matrix Power	17
2.2.2. Fenwick Tree w/ Max Queries	2	3.15. Maximum-Weight Closure	11	6.7. Fibonacci Matrix	17
2.3. Segment Tree	2	3.16. Maximum Weighted Ind. Set in a Bipartite Graph	11	6.8. Gauss-Jordan/Matrix Determinant	17
2.3.1. Recursive, Point-update Segment Tree	2	3.17. Synchronizing word problem	11	7. Combinatorics	17
2.3.2. Iterative, Point-update Segment Tree	3	3.18. Max flow with lower bounds on edges	11	7.1. Lucas Theorem	17
2.3.3. Pointer-based, Range-update Segment Tree	3	3.19. Tutte matrix for general matching	11	7.2. Granville's Theorem	18
2.3.4. Array-based, Range-update Segment Tree	3	3.20. Heavy Light Decomposition	11	7.3. Derangements	18
2.3.5. 2D Segment Tree	3	3.21. Centroid Decomposition	11	7.4. Factoradics	18
2.3.6. Persistent Segment Tree	4	3.22. Least Common Ancestor	12	7.5. kth Permutation	18
2.4. Leq Counter	4	3.22.1. Binary Lifting	12	7.6. Catalan Numbers	18
2.5. Treap	4	3.22.2. Euler Tour Sparse Table	12	7.7. Stirling Numbers	18
2.5.1. Implicit Treap	4	3.22.3. Tarjan Off-line LCA	12	7.8. Partition Function	18
2.5.2. Persistent Treap	4	3.23. Counting Spanning Trees	12	8. Geometry	18
	_	3.24. Erdős-Gallai Theorem	12	8.1. Dots and Cross Products	18
2.6. Splay Tree	5	3.25. Tree Isomorphism	12	8.2. Angles and Rotations	18
2.7. Ordered Statistics Tree	5	4. Strings	13	8.3. Spherical Coordinates	18
2.8. Sparse Table	5			8.4. Point Projection	18
2.8.1. 1D Sparse Table	5	4.1. Knuth-Morris-Pratt 4.2. Trie	13 13	8.5. Great Circle Distance	19
2.8.2. 2D Sparse Table	5	4.2.1 Persistent Trie	13 13	8.6. Point/Line/Plane Distances	19
2.9. Misof Tree	5	4.2.1. Persistent Trie 4.3. Suffix Array	13 13	8.7. Intersections	19
3. Graphs	6		10	8.7.1. Line-Segment Intersection	19
3.1. Single-Source Shortest Paths	6	4.4. Longest Common Prefix	14	8.7.2. Circle-Line Intersection	19
3.1.1. Dijkstra	6	4.5. Aho-Corasick Trie	14	8.7.3. Circle-Circle Intersection	19
3.1.2. Bellman-Ford	6	4.6. Palimdromes	14	8.8. Polygon Areas	19
3.1.3. Shortest Path Faster Algorithm	6	4.6.1. Palindromic Tree	14	8.8.1. Triangle Area	19
3.2. All-Pairs Shortest Paths	6	4.6.2. Eert ree	14	Cyclic Quadrilateral Area	19
3.2.1. Floyd-Washall	6	4.7. Z Algorithm	15	8.9. Polygon Centroid	19
3.3. Strongly Connected Components	6	A.O. Desthie Michael Chaire a Detation	1 5	8.10. Convex Hull	19
3.3.1. Kosaraju	6	4.8. Booth's Minimum String Rotation	15	8.11. Point in Polygon	20
3.3.2. Tarjan's Offline Algorithm	7	4.9. Hashing	15	8.12. Cut Polygon by a Line	20
	-	4.9.1. Rolling Hash	15	8.13. Triangle Centers	20
3.4. Minimum Mean Weight Cycle	<i>(</i>	5. Number Theory	15	8.14. Convex Polygon Intersection	20
3.5. Biconnected Components	7	5.1. Eratosthenes Prime Sieve	15	8.15. Pick's Theorem for Lattice Points	20
3.5.1. Cut Points, Bridges, and Block-Cut Tree	7	5.2. Divisor Sieve	15	8.16. Minimum Enclosing Circle	20
3.5.2. Bridge Tree	7	5.3. Number/Sum of Divisors	15	8.17. Shamos Algorithm	20
3.6. Minimum Spanning Tree	7	5.4. Möbius Sieve	15 15	8.18. kD Tree	20
3.6.1. Kruskal	(5.5. Möbius Inversion	15 15	8.19. Line Sweep (Closest Pair)	21
3.6.2. Prim	(5.6. GCD Subset Counting 5.7. Euler Totient	15 15	8.20. Line upper/lower envelope	21
3.7. Euler Path/Cycle	8	5.7. Euler Totient 5.8. Euler Phi Sieve	$\frac{15}{16}$	8.21. Formulas	21
3.7.1. Euler Path/Cycle in a Directed Graph	8			9. Other Algorithms	21
	o	5.9. Extended Euclidean 5.10. Modular Exponentiation	16 16	9.1. 2SAT	21
3.7.2. Euler Path/Cycle in an Undirected Graph	8	5.10. Modular Exponentiation 5.11. Modular Inverse	16 16	9.2. DPLL Algorithm	21
3.8. Bipartite Matching	8	5.11. Modular inverse 5.12. Modulo Solver	16 16	9.3. Dynamic Convex Hull Trick	21
3.8.1. Alternating Paths Algorithm	8	5,12, MOdulo Bolvel	10	9.4. Stable Marriage	22

```
Ateneo de Manila University
```

```
9.5. Algorithm X
9.6. Matroid Intersection
                   9.7. nth Permutation
                  9.8. Cycle-Finding
                   9.9. Longest Increasing Subsequence
                   }: ------
                                      --- for (: i < ar.size(): i |= i+1) ------
9.10. Dates
9.11. Simulated Annealing
                                      ---- ar[i] = std::max(ar[i], v): -----
                   2.2. Fenwick Tree.
                                      - } ------
9.12. Simplex
                                      - // max[0..i] -----
9.13. Fast Square Testing
                   2.2.1. Fenwick Tree w/ Point Queries.
                                      - int max(int i) { ------
9.14. Fast Input Reading
                   --- int res = -INF; -----
9.15. 128-bit Integer
                   - vi ar; -----
                                      --- for (; i \ge 0; i = (i \& (i+1)) - 1) -----
9.16. Bit Hacks
                   - fenwick(vi &_ar) : ar(_ar.size(), 0) { ------
10. Other Combinatorics Stuff
                                      ---- res = std::max(res. ar[i]): -----
                   --- for (int i = 0; i < ar.size(); ++i) { -------
                                      --- return res: -----
10.1. The Twelvefold Way
                   ---- ar[i] += _ar[i]; -----
11. Misc
                   ---- int j = i | (i+1); -----
11.1. Debugging Tips
                                      1: -----
                   ---- if (j < ar.size()) -----
11.2. Solution Ideas
                   ----- ar[j] += ar[i]; -----
12. Formulas
                   ---}
                                     2.3. Segment Tree.
12.1. Physics
                   - } ------
12.2. Markov Chains
                   - int sum(int i) { ------
12.3. Burnside's Lemma
                                      2.3.1. Recursive, Point-update Segment Tree.
                   --- int res = 0; -----
12.4. Bézout's identity
                                      --- for (; i \ge 0; i = (i \& (i+1)) - 1) -----
12.5. Misc
                   12.5.1. Determinants and PM
                   12.5.2. BEST Theorem
                   - } ------- - seqtree(vi &ar, int _i, int _j) : i(_i), j(_j) { -------
12.5.3. Primitive Roots
                   - int sum(int i, int j) { return sum(j) - sum(i-1); } ----- if (i == j) { ------
12.5.4. Sum of primes
                   12.5.5. Floor
                   1. Code Templates
                   #include <bits/stdc++.h> ------
                   typedef long long ll; ------
                   typedef unsigned long long ull; ------
                   typedef std::pair<int, int> ii; ------
                   typedef std::pair<int, ii> iii; -------
                   --- return res: ----- val += _val; -----
typedef std::vector<int> vi; ------
                   typedef std::vector<vi> vvi; ------
                   typedef std::vector<ii> vii; ------
                   typedef std::vector<iii> viii; ------
                   const int INF = ~(1<<31);</pre>
                   const ll LINF = (1LL << 60);</pre>
                   --- add(j+1, -val); ------ val = l->val + r->val; ------
const int MAXN = 1e5+1;
                   const double EPS = 1e-9; ------
                   const double pi = acos(-1); ------
                   2. Data Structures
                                      ---- return val; ------
2.1. Union Find.
                   2.2.2. Fenwick Tree w/ Max Queries.
                                      --- } else if (_j < i or j < _i) { -------
struct union_find { ------ return 0; ----- struct fenwick { -------
- int find(int x) { return p[x] < 0 ? x : p[x] = find(p[x]); } - fenwick(vi δ_ar) : ar(_ar.size(), 0) { ------- return l->query(_i, _j) + r->query(_i, _j); --------
--- if (xp == yp)
```

```
2.3.2. Iterative, Point-update Segment Tree.
             ---- // do nothing ------ deltas[p] += v: -----
struct segtree { ------
             - int n: -----
             - int *vals; -----
             ---- r->increase(_i, _j, _inc); ----- // do nothing -----
- segtree(vi &ar, int n) { ------
             --- this->n = n; -----
             ... } ..... int k = (i + j) / 2; .....
--- vals = new int[2*n]; -----
             --- for (int i = 0; i < n; ++i) -----
             ----- vals[i+n] = ar[i]; ------
             --- for (int i = n-1; i > 0; --i) ------
             ----- vals[i] = vals[i<<1] + vals[i<<1|1]; ------
             _ } ------
             - void update(int i, int v) { ------
             ---- return 0; ----- int p, int i, int j) { ------
--- for (vals[i += n] += v; i > 1; i >>= 1) ------
             ----- vals[i>>1] = vals[i] + vals[i^1]; ------
             - } ------
             --- } ----- return vals[p]; -----
--- int res = 0: ------
             }; ------ return 0; -----
--- for (l += n, r += n+1; l < r; l >>= 1, r >>= 1) { ------
                          --- } else { ------
---- if (l&1) res += vals[l++]; -----
                          ---- int k = (i + j) / 2; -----
---- if (r&1) res += vals[--r]; -----
             2.3.4. Array-based, Range-update Segment Tree.
                          ----- return query(_i, _j, p<<1, i, k) + ------
--- } -------
             ----- query(_i, _j, p<<1|1, k+1, j); -----
--- return res; -----
             - int n, *vals, *deltas; ------
                          ---}
- segtree(vi &ar) { ------
                          - } ------
--- n = ar.size(); -----
                          }; ------
             --- vals = new int[4*n]; ------
2.3.3. Pointer-based, Range-update Segment Tree.
             --- deltas = new int[4*n]; -----
struct segtree { ------
             --- build(ar, 1, 0, n-1); ------
                          2.3.5. 2D Segment Tree.
- int i, j, val, temp_val = 0; ------
             . } ------
- seatree *l. *r: ------
             - void build(vi &ar, int p, int i, int j) { ------
                          --- deltas[p] = 0; -----
                          - int n, m, **ar; ------
- segtree(vi &ar, int _i, int _j) : i(_i), j(_j) { ------
--- if (i == j) { ------
             --- if (i == j) -----
                          ---- val = ar[i]; -----
             ----- vals[p] = ar[i]; ------
                          --- this->n = n; this->m = m; ------
r = new \ seqtree(ar, \ k+1, \ j); r = new \ seqtree(ar, \ k+1, \ j); r = new \ seqtree(ar, \ k+1, \ j); r = new \ seqtree(ar, \ k+1, \ j);
------ l->temp_val += temp_val; ------- vals[p] += (j - i + 1) * deltas[p]; ------- ar[i][j>>1] = min(ar[i][j], ar[i][j^1]); -------
```

```
Ateneo de Manila University
}; ------
                       } }: ------
2.3.6. Persistent Segment Tree.
struct seatree { ------
                      2.5. Treap.
- int i, j, val; ------
                       2.5.1. Implicit Treap.
- segtree *1, *r; ------
                      - segtree(vi &ar, int _i, int _j) : i(_i), j(_j) { ------
                       - typedef struct _Node { ------
--- if (i == j) { ------
---- val = ar[i]; -----
                       --- int node_val, subtree_val, delta, prio, size; -------
                       --- _Node *l, *r; -----
---- l = r = NULL; -----
                       --- _Node(int val) : node_val(val), subtree_val(val), ------
--- } else { ------
---- int k = (i+j) >> 1; -----
                       ----- delta(0), prio((rand()<<16)^rand()), size(1), ------
----- l = new segtree(ar, i, k); ------
                       ----- l(NULL), r(NULL) {} ------
---- r = new segtree(ar, k+1, j); -----
                       --- ~_Node() { delete l; delete r; } ------
                       - } *Node; ------
---- val = l->val + r->val; -----
                       - } } ------
                       --- return v ? v->subtree_val : 0; } -----
- segtree(int i, int j, segtree *l, segtree *r, int val) : ---
                       - int get_size(Node v) { return v ? v->size : 0; } ---------
--- i(i), j(j), l(l), r(r), val(val) {} -----
                       --- if (!v) return; -----
--- if (i \le i \text{ and } j \le i) -----
                       --- v->delta += delta; -----
----- return new segtree(i, j, l, r, val + _val); ------
                       --- v->node_val += delta; ----
--- else if (_i < i or j < _i) ------
                       --- v->subtree_val += delta * get_size(v); ------
---- return this; -----
                       - } ------
--- else { ------
                       ----- segtree *nl = l->update(_i, _val); ------
                       --- if (!v) return; -----
----- segtree *nr = r->update(_i, _val); ------
---- return new segtree(i, j, nl, nr, nl->val + nr->val); ---
                       --- apply_delta(v->l, v->delta); ------
                       --- apply_delta(v->r, v->delta); -----
- } } ------
                       --- v->delta = 0; -----
- } ------
--- if (_i \le i \text{ and } j \le _j) -----
                       ---- return val: ------
                       --- if (!v) return; ------
--- else if (_j < i \text{ or } j < _i) -----
                       --- v->subtree_val = get_subtree_val(v->l) + v->node_val ----
---- return 0; ------
--- else -----
                       ----- + get_subtree_val(v->r); ------
                       --- v->size = qet_size(v->l) + 1 + <math>qet_size(v->r); ------
  return l->query(_i, _j) + r->query(_i, _j); ------
                       - } ------
} }; ------
                       - Node merge(Node l, Node r) { ------
2.4. Leg Counter.
                       --- std::vector<ii> nums; ---- return l; ----
---- neq_nums.insert(-ar[i]); ------ update(r); -----
--- } ----- return r; ------
----- prev = e.first; ------- if (!v) return; ------
--- auto it = neq_nums.lower_bound(-x); ----- r = v; -----
```

```
--- return roots[-*it]->qet(i, j); ------- split(v->r, key - qet_size(v->l) - 1, v->r, r); ------
                           --- } -------
                           --- update(v); ------
                           - } ------
                           - Node root: ------
                           public: -----
                           - ~cartree() { delete root; } ------
                           - int get(Node v, int key) { ------
                           --- push_delta(v); -----
                           --- if (key < get_size(v->l)) -----
                           ----- return get(v->l, key); -----
                           --- else if (key > get_size(v->l)) -----
                           ----- return get(v->r, key - get_size(v->l) - 1); ------
                           --- return v->node_val; ------
                           - } ------
                           - int get(int key) { return get(root, key); } ------
                           --- Node l, r; -----
                           --- split(root, key, l, r); -----
                           --- root = merge(merge(l, item), r); -----
                           - } ------
                           - void insert(int key, int val) { ------
                           --- insert(new _Node(val), key); ------
                           - } ------
                            - void erase(int key) { ------
                           --- Node l, m, r; -----
                           --- split(root, key + 1, m, r); -----
                           --- split(m, key, l, m); -----
                           --- delete m; ------
                           --- root = merge(l, r); -----
                           - } ------
                           - int query(int a, int b) { ------
                           --- Node l1, r1; -----
                           --- split(root, b+1, l1, r1); -----
                           --- Node l2. r2: ------
                           --- split(l1, a, l2, r2); -----
                           --- int res = get_subtree_val(r2); -----
                           --- l1 = merge(l2, r2); -----
                           --- root = merge(l1, r1); -----
                           --- return res; -----
                           - } ------
                           --- Node l1, r1; -----
                           --- split(root, b+1, l1, r1); -----
                           --- Node l2. r2: ------
                           --- split(l1, a, l2, r2); -----
                           --- apply_delta(r2, delta); -----
                           --- l1 = merge(l2, r2); -----
                           --- root = merge(l1, r1): -----
                           - } ------
                           2.5.2. Persistent Treap
```

```
2.6. Splay Tree
struct node *null; ------
struct node { -----
- node *left, *right, *parent; -----
- bool reverse; int size, value; -----
- node*& get(int d) {return d == 0 ? left : right;} ------
- node(int v=0): reverse(0), size(0), value(v) { ------
- left = right = parent = null ? null : this; --------
- }}; ------
- node *root: -----
- SplayTree(int arr[] = NULL, int n = 0) { ------
--- if (!null) null = new node(); -----
--- root = build(arr, n); -----
- } // build a splay tree based on array values ------
--- if (n == 0) return null; -----
--- int mid = n >> 1; ------
--- node *p = new node(arr ? arr[mid] : 0); ------
--- link(p, build(arr, mid), 0); ------
--- link(p, build(arr? arr+mid+1 : NULL, n-mid-1), 1); -----
--- pull(p); return p; ------
- } // pull information from children (editable) ------
--- p->size = p->left->size + p->right->size + 1; ------
- } // push down lazy flags to children (editable) ------
--- if (p != null && p->reverse) { ------
----- swap(p->left, p->right); ------
---- p->left->reverse ^= 1; -----
----- p->right->reverse ^= 1; ------
---- p->reverse ^= 1; ------
--- }} // assign son to be the new child of p -------
--- p->get(d) = son; -----
--- son->parent = p; } ------
--- return p->left == son ? 0 : 1;} -----
--- node *y = x->get(d), *z = x->parent; -----
--- link(x, y->get(d ^ 1), d); -----
--- link(y, x, d ^ 1); -----
--- link(z, y, dir(z, x)); -----
--- pull(x); pull(y);} -----
- node* splay(node *p) { // splay node p to root ------
--- while (p->parent != null) { ------
```

```
----- if (k < p->left->size) p = p->left; -----
----- else k -= p->left->size + 1, p = p->right; -----
} ----}
--- return p == null ? null : splay(p); -----
- } // keep the first k nodes, the rest in r ------
- void split(node *&r, int k) { ------
--- if (k == 0) {r = root; root = null; return;} ------
--- r = get(k - 1)->right; -----
--- root->right = r->parent = null; ------
--- pull(root); } ------
- void merge(node *r) { //merge current tree with r ------
--- if (root == null) {root = r; return;} -----
--- link(get(root->size - 1), r, 1); ------
--- pull(root); } -----
- void assign(int k, int val) { // assign arr[k]= val ------
--- get(k)->value = val; pull(root); } ------
- void reverse(int L, int R) {// reverse arr[L...R] ------
--- node *m, *r; split(r, R + 1); split(m, L); ------
--- m->reverse ^= 1; push(m); merge(m); merge(r); -----
- } // insert a new node before the node at index k ------
--- node *r; split(r, k); ------
--- node *p = new node(v); p->size = 1; -----
--- link(root, p, 1); merge(r); -----
--- return p; } ------
- void erase(int k) { // erase node at index k ------
--- node *r, *m; ------
--- split(r, k + 1); split(m, k); -----
--- merge(r); delete m;} -----
2.7. Ordered Statistics Tree.
#include <ext/pb_ds/assoc_container.hpp> ------
#include <ext/pb_ds/tree_policy.hpp> ------
using namespace __gnu_pbds; ------
template <typename T> -----
using indexed_set = std::tree<T, null_type, less<T>, ------
splay_tree_tag, tree_order_statistics_node_update>; ------
// indexed_set<int> t; t.insert(...); ------
// t.find_by_order(index); // 0-based ------
// t.order_of_key(key); ------
2.8. Sparse Table.
2.8.1. 1D Sparse Table.
int lg[MAXN+1], spt[20][MAXN]; ------
```

```
2.8.2. 2D Sparse Table
                                                          const int N = 100, LGN = 20; ------
                                                          void build(int n, int m) { ------
                                                          - for(int k=2; k<=std::max(n,m); ++k) lg[k] = lg[k>>1]+1; ----
                                                          - for(int i = 0; i < n; ++i) -----
                                                          --- for(int i = 0: i < m: ++i) ------
                                                          ---- st[0][0][i][j] = A[i][j]; -----
                                                          - for(int bj = 0; (2 << bj) <= m; ++bj) -----
                                                          --- for(int j = 0; j + (2 << bj) <= m; ++j) -----
                                                          ---- for(int i = 0; i < n; ++i) -----
                                                          ----- st[0][bj+1][i][j] = -----
                                                          ----- std::max(st[0][bj][i][j], ------
                                                          ----- st[0][bj][i][j + (1 << bj)]); -----
                                                          - for(int bi = 0; (2 << bi) <= n; ++bi) -----
                                                          --- for(int i = 0; i + (2 << bi) <= n; ++i) -----
                                                          ---- for(int j = 0; j < m; ++j) -----
                                                          ----- st[bi+1][0][i][i] = -----
                                                          ----- std::max(st[bi][0][i][j], -----
                                                          ----- st[bi][0][i + (1 << bi)][j]); -----
                                                          - for(int bi = 0; (2 << bi) <= n; ++bi) -----
                                                          --- for(int i = 0; i + (2 << bi) <= n; ++i) -----
                                                          ---- for(int bj = 0; (2 \ll bj) \ll m; ++bj) -----
                                                          ----- for(int j = 0; j + (2 << bj) <= m; ++j) { ------
                                                          ----- int ik = i + (1 << bi): -----
                                                          ----- int jk = j + (1 << bj); -----
                                                          ----- st[bi+1][bj+1][i][j] = -----
                                                          ----- std::max(std::max(st[bi][bj][i][j], ------
                                                          ----- st[bi][bj][ik][j]), -----
                                                          ----- std::max(st[bi][bj][i][jk], ------
                                                          ----- st[bi][bj][ik][jk])); ------
                                                          }
                                                          int query(int x1, int x2, int y1, int y2) { ------
                                                          - int kx = lg[x2 - x1 + 1], ky = lg[y2 - y1 + 1];
                                                          - int x12 = x2 - (1 << kx) + 1, y12 = y2 - (1 << ky) + 1; ------
                                                          ----- st[kx][ky][x1][y12]), -----
                                                          ----- std::max(st[kx][ky][x12][y1], -----
                                                          ----- st[kx][ky][x12][y12])); -----
                                                          } ------
                                                          2.9. Misof Tree. A simple tree data structure for inserting, erasing,
                                                          and querying the nth largest element.
                             ---- int dm = dir(m, p), dq = dir(q, m); ----- for (int j = 0; (2 << j) <= n; ++j) ----- misof_tree() { memset(cnt, 0, sizeof(cnt)); } ------
---- else if (dm == dq) rotate(q, dq), rotate(m, dm); ----- spt[j+1][i] = std::min(spt[j][i], spt[j][i+(1<<j)]); --- --- for (int i = 0; i < BITS; cnt[i++][x]++, x >>= 1); } ----
```

```
----- if (cnt[i][res <<= 1] <= n) n -= cnt[i][res], res |= 1;
                      --- return res; } }; ------
                      - while (!pq.empty()) { ----- dist[u] = -INF, has_negative_cycle = true; -----
                      3. Graphs
                      --- pq.pop(); ------ dist[v] = dist[u] + c; ------
 Using adjacency list:
                      struct graph { ------
                      ---- continue; ----- q.push(v); -----
- int n, *dist; -----
                      --- dist[u] = d; ------ in_queue[v] = 1; ------
- vii *adj; -----
                      - graph(int n) { ------
                      ---- int v = e.first: ------ } ------
--- this->n = n; -----
                      ---- int w = e.second; ----- }
--- adj = new vii[n]; ------
                      --- dist = new int[n]; -----
                      - } ------
                      ----- pq.push({dist[v], v}); -----
3.2. All-Pairs Shortest Paths.
                      ···· }
--- adj[u].push_back({v, w}); ------
                      --- } ------
                                           3.2.1. Floyd-Washall.
--- // adi[v].push_back({u, w}); ------
                      - } ------
                                            #include "graph_template_adjmat.cpp" ------
- } ------
                      } ------
}; ------
                                            // insert inside graph; needs n and mat[][] ------
                                            void floyd_warshall() { ------
                      3.1.2. Bellman-Ford.
 Using adjacency matrix:
                                            - for (int k = 0; k < n; ++k) -----
struct graph { ------
                      #include "graph_template_adjlist.cpp" ------
                                            --- for (int i = 0; i < n; ++i) -----
- int n, **mat; -----
                      // insert inside graph; needs n, dist[], and adj[] -----
                                            ---- for (int j = 0; j < n; ++j) -----
- graph(int n) { ------
                      void bellman_ford(int s) { ------
                                            ----- if (mat[i][k] + mat[k][j] < mat[i][j]) ------
--- this->n = n; -----
                      - for (int u = 0; u < n; ++u) -----
                                            ----- mat[i][j] = mat[i][k] + mat[k][j]; -----
--- mat = new int*[n]; -----
                      --- dist[u] = INF; -----
                                            }
                      - dist[s] = 0; -----
--- for (int i = 0; i < n; ++i) { ------
                      - for (int i = 0; i < n-1; ++i) -----
---- mat[i] = new int[n]; -----
                                           3.3. Strongly Connected Components.
---- for (int j = 0; j < n; ++j) -----
                      --- for (int u = 0; u < n; ++u) -----
                                            3.3.1. Kosaraju.
----- mat[i][j] = INF; -----
                     ----- for (auto &e : adj[u]) ------
                                            struct kosaraju_graph { ------
---- mat[i][i] = 0; -----
                      ----- if (dist[u] + e.second < dist[e.first]) ------
                                            - int n: -----
                     ----- dist[e.first] = dist[u] + e.second; -----
--- } -------
                                            - int *vis; -----
- vi **adj; -----
// you can call this after running bellman_ford() ------
                                            - std::vector<vi> sccs; -----
--- mat[u][v] = std::min(mat[u][v], w); -----
                      bool has_neq_cycle() { -------
                                            - kosaraju_graph(int n) { ------
                      - for (int u = 0; u < n; ++u) -----
--- // mat[v][u] = std::min(mat[v][u], w); -----
                                            --- this->n = n; -----
                      --- for (auto &e : adj[u]) -----
- } ------
                                            --- vis = new int[n]; ------
                      ---- if (dist[e.first] > dist[u] + e.second) -----
}: ------
                                            --- adj = new vi*[2]; -----
                      ----- return true; -----
 Using edge list:
                                            --- for (int dir = 0; dir < 2; ++dir) -----
                      - return false; -----
struct graph { ------
                                            ---- adj[dir] = new vi[n]; -----
                      }
- int n; -----
                                            - } ------
- std::vector<iii> edges; -----
                      3.1.3. Shortest Path Faster Algorithm.
                                            - graph(int n) : n(n) {} ------
                                            --- adj[0][u].push_back(v); -----
                      #include "graph_template_adjlist.cpp" ------
// insert inside graph; -----
                                            --- adj[1][v].push_back(u); ------
--- edges.push_back({w, {u, v}}); ------
                      - } ------
                      3.1. Single-Source Shortest Paths.
                      3.1.1. Dijkstra.
                      --- num_vis[u] = 0; ------- dfs(v, u, dir, topo); ------
                      #include "graph_template_adjlist.cpp" -----
- std::priority_queue<ii, vii, std::greater<ii>> pq; ------ int u = q.front(); q.pop(); in_queue[u] = 0; ----- if (!vis[u]) ----- if (!vis[u]) ------
```

```
Ateneo de Manila University
```

```
----- dfs(u, -1, 0, topo); -----
                            3.5.1. Cut Points, Bridges, and Block-Cut Tree.
--- for (int u = 0: u < n: ++u) vis[u] = 0: ------
                            struct graph { ------
--- for (int i = n-1; i >= 0; --i) { ------
                            - int n, *disc, *low, TIME; -----
---- if (!vis[topo[i]]) { -----
                            - vi *adj, stk, articulation_points; ------
----- sccs.push_back({}); -----
                            - vii bridges; -----
----- dfs(topo[i], -1, 1, sccs.back()); -----
                            - vvi comps; ------
- graph (int n) { ------
--- } -------
                            --- this->n = n: -----
- } ------
                            --- adj = new vi[n]; -----
}; ------
                            --- disc = new int[n]; -----
                            --- low = new int[n]; -----
3.3.2. Tarjan's Offline Algorithm
                            int n, id[N], low[N], st[N], in[N], TOP, ID; ------
                            --- adj[u].push_back(v); ------
int scc[N], SCC_SIZE; // 0 <= scc[u] < SCC_SIZE ------</pre>
                            --- adj[v].push_back(u); -----
vector<int> adj[N]; // 0-based adjlist -----
                            - } ------
void dfs(int u) { ------
                            - void _bridges_artics(int u, int p) { ------
--- id[u] = low[u] = ID++; ------
                            --- disc[u] = low[u] = TIME++; ------
--- st[TOP++] = u; in[u] = 1; -----
                            --- stk.push_back(u); ------
--- for (int v : adj[u]) { ------
                            --- int children = 0; -----
----- if (id[v] == -1) { ------
                            --- bool has_low_child = false; -----
----- dfs(v);
                            --- for (int v : adj[u]) { -----
----- low[u] = min(low[u], low[v]); -----
                            ---- if (disc[v] == -1) { ------
----- _bridges_artics(v, u); -----
----- low[u] = min(low[u], id[v]); -----
                            ----- children++;
----- if (disc[u] < low[v]) ------
--- if (id[u] == low[u]) { ------
                            ----- bridges.push_back({u, v}); -----
----- int sid = SCC_SIZE++; -----
                            ----- if (disc[u] <= low[v]) { ------
----- do { ------
                            ----- has_low_child = true; -----
----- int v = st[--TOP]; -----
                            ----- comps.push_back({u}); -----
----- in[v] = 0; scc[v] = sid; -----
                            ----- while (comps.back().back() != v and !stk.empty()) {
-----} while (st[TOP] != u); -------
                            ----- comps.back().push_back(stk.back()); ------
--- }}
                            ----- stk.pop_back(); -----
void tarjan() { // call tarjan() to load SCC ------
                            --- memset(id, -1, sizeof(int) * n); -----
                            .....}
--- SCC_SIZE = ID = TOP = 0; -----
                            ----- low[u] = std::min(low[u], low[v]); -----
--- for (int i = 0; i < n; ++i) -----
                            ----- } else if (v != p) -------
----- if (id[i] == -1) dfs(i); } ------
                            ----- low[u] = std::min(low[u], disc[v]); -----
                            3.4. Minimum Mean Weight Cycle. Run this for each strongly
                            --- if ((p == -1 && children >= 2) || -----
                            ----- (p != -1 && has_low_child)) -----
connected component
                            ---- articulation_points.push_back(u); -----
double min_mean_cycle(vector<vector<pair<int,double>>> adj){
                            - } ------
- void bridges_artics(int root) { ------
- vector<vector<double> > arr(n+1, vector<double>(n, mn)); ---
                            --- for (int u = 0; u < n; ++u) -----
- arr[0][0] = 0; ------
                            - rep(k,1,n+1) rep(j,0,n) iter(it,adj[j]) ------
                            --- arr[k][it->first] = min(arr[k][it->first], ------
                            ----- it->second + arr[k-1][j]); -----
                            - rep(k,0,n) { ------
                            --- double mx = -INFINITY: ------
                            --- rep(i,0,n) mx = max(mx, (arr[n][i]-arr[k][i])/(n-k)); ----
                            --- mn = min(mn, mx); } -----
                            - } ..... if (vis[v]) continue; .....
- return mn; } ------
                            --- int bct_n = articulation_points.size() + comps.size(); --- pq.push({w, v}); ------
3.5. Biconnected Components.
```

```
--- graph tree(bct_n); ------
                                    --- for (int i = 0; i < articulation_points.size(); ++i) { ---
                                    ----- block_id[articulation_points[i]] = i; ------
                                    ---- is_art[articulation_points[i]] = 1; -----
                                    --- } ------
                                    --- for (int i = 0; i < comps.size(); ++i) { ------
                                    ---- int id = i + articulation_points.size(): ------
                                    ----- for (int u : comps[i]) ------
                                    ----- if (is_art[u]) ------
                                    ----- tree.add_edge(block_id[u], id); -----
                                    ----- else -----
                                    ----- block_id[u] = id; -----
                                    ---}
                                    --- return tree: ------
                                    - } ------
                                    }; ------
                                   3.5.2. Bridge Tree. Run the bridge finding algorithm first, burn the
                                   bridges, compress the remaining biconnected components, and then con-
                                    nect them using the bridges.
                                    3.6. Minimum Spanning Tree.
                                   3.6.1. Kruskal.
                                    #include "graph_template_edgelist.cpp" ------
                                    #include "union_find.cpp" -----
                                    // insert inside graph; needs n, and edges -----
                                    void kruskal(viii &res) { ------
                                    - viii().swap(res); // or use res.clear(); ------
                                    - std::priority_queue<iii, viii, std::greater<iii>> pq; -----
                                    - for (auto &edge : edges) -----
                                    --- pg.push(edge); -----
                                    - union_find uf(n); ------
                                    - while (!pq.empty()) { -----
                                    --- auto node = pq.top(); pq.pop(); -----
                                    --- int u = node.second.first; -----
                                    --- int v = node.second.second; -----
                                    --- if (uf.unite(u, v)) ------
                                    ---- res.push_back(node); -----
                                    - } ------
                                    } ------
                                   3.6.2. Prim.
                                    #include "graph_template_adjlist.cpp" -----
                                   // insert inside graph; needs n, vis[], and adj[] ------
                                   - viii().swap(res); // or use res.clear(); ------
```

```
Ateneo de Manila University
```

```
3.7. Euler Path/Cycle
   Euler Path/Cycle in a Directed Graph
#define MAXV 1000 ------
#define MAXE 5000 ------
vi adj[MAXV]; -----
int n, m, indeg[MAXV], outdeg[MAXV], res[MAXE + 1]; ------
- int start = -1, end = -1, any = 0, c = 0; -----
- rep(i,0,n) { ------
--- if (outdeg[i] > 0) any = i; ------
--- if (indeg[i] + 1 == outdeg[i]) start = i, c++; ------
--- else if (indeg[i] == outdeg[i] + 1) end = i, c++; ------
--- else if (indeq[i] != outdeq[i]) return ii(-1,-1); } -----
- if ((start == -1) != (end == -1) || (c != 2 && c != 0)) ----
--- return ii(-1,-1); ------
- if (start == -1) start = end = any; -----
- return ii(start, end); } ------
bool euler_path() { ------
- ii se = start_end(): -----
- int cur = se.first, at = m + 1; ------
- if (cur == -1) return false; -----
- stack<int> s; -----
--- if (outdeg[cur] == 0) { ------
----- res[--at] = cur; -----
- return at == 0; } -----
   Euler Path/Cycle in an Undirected Graph
multiset<int> adj[1010]; ------
list<int> L; -----
list<int>::iterator euler(int at, int to, -----
--- list<<u>int</u>>::iterator it) { ------
- if (at == to) return it; -----
- L.insert(it, at), --it; -----
- while (!adj[at].empty()) { ------
--- int nxt = *adj[at].begin(); -----
--- adj[at].erase(adj[at].find(nxt)); -----
--- adj[nxt].erase(adj[nxt].find(at)); -----
--- if (to == -1) { ------
---- it = euler(nxt, at, it); -----
----- L.insert(it, at); ------
---- --it: ------
--- } else { -------
---- it = euler(nxt, to, it); -----
---- to = -1; } } -----
- return it; } ------
// euler(0,-1,L.begin()) ------
```

```
Alternating Paths Algorithm
vi* adi: ------
bool* done; -----
int* owner; ------
- if (done[left]) return 0; -----
 done[left] = true;
 rep(i,0,size(adj[left])) { ------
--- int right = adj[left][i]; -----
--- if (owner[right] == -1 || -----
----- alternating_path(owner[right])) { ------
----- owner[right] = left; return 1; } } -----
 return 0; } -----
3.8.2. Hopcroft-Karp Algorithm
#define MAXN 5000 -----
int dist[MAXN+1], q[MAXN+1]; ------
#define dist(v) dist[v == -1 ? MAXN : v] ------
struct bipartite_graph { ------
- int N, M, *L, *R; vi *adj; -----
- bipartite_graph(int _N, int _M) : N(_N), M(_M), ---------
--- L(new int[N]), R(new int[M]), adj(new vi[N]) {} -----
- ~bipartite_graph() { delete[] adj; delete[] L; delete[] R; }
- bool bfs() { -----
--- int l = 0, r = 0; ------
--- rep(v,0,N) if(L[v] == -1) dist(v) = 0, q[r++] = v; -----
--- dist(-1) = INF; -----
--- while(l < r) { ------
----- dist(R[*u]) = dist(v) + 1, q[r++] = R[*u];  } -----
--- return dist(-1) != INF; } -----
- bool dfs(int v) { ------
--- if(v != -1) { ------
---- iter(u, adj[v]) -----
----- if(dist(R[*u]) == dist(v) + 1) ------
----- if(dfs(R[*u])) { -----
----- R[*u] = v, L[v] = *u; ------
----- return true; } -----
---- dist(v) = INF; -----
----- return false; } ------
--- return true; } ------
- void add_edge(int i, int j) { adj[i].push_back(j); } ------
- int maximum_matching() { ------
--- int matching = 0; -----
--- memset(L, -1, sizeof(int) * N); -----
--- memset(R, -1, sizeof(int) * M); -----
--- while(bfs()) rep(i,0,N) -----
---- matching += L[i] == -1 && dfs(i); ------
--- return matching; } }; -----
3.8.3.
    Minimum Vertex Cover in Bipartite Graphs
#include "hopcroft_karp.cpp" ------
```

vector
bool> alt; -----

```
void dfs(bipartite_graph &g, int at) { ------
- alt[at] = true; ------
- iter(it,g.adj[at]) { ------
--- alt[*it + g.N] = true; -----
--- if (g.R[*it] != -1 && !alt[g.R[*it]]) ------
----- dfs(g, g.R[*it]); } } -----
vi mvc_bipartite(bipartite_graph \&g) { ------
- vi res; g.maximum_matchinq(); ------
- alt.assign(g.N + g.M, false); ------
- rep(i,0,g.N) if (g.L[i] == -1) dfs(g, i); -----
- rep(i,0,g.N) if (!alt[i]) res.push_back(i); -----
- \operatorname{rep}(i,0,g.M) if (\operatorname{alt}[g.N + i]) res.push_back(g.N + i); -----
- return res; } ------
3.9. Maximum Flow.
3.9.1.\ Edmonds-Karp.
- int n, s, t, *par, **c, **f; ------
- vi *adj; ------
- flow_network(int n, int s, int t) : n(n), s(s), t(t) { -----
--- adj = new std::vector<int>[n]; -----
--- par = new int[n]; ------
--- c = new int*[n]; -----
--- f = new int*[n]; -----
--- for (int i = 0; i < n; ++i) { ------
---- c[i] = new int[n]; -----
----- f[i] = new int[n]; ------
---- for (int j = 0; j < n; ++j) -----
----- c[i][j] = f[i][j] = 0; -----
- } } ------
--- adj[u].push_back(v); -----
--- adj[v].push_back(u); -----
--- c[u][v] += w; -----
- } ------
- int res(int i, int j) { return c[i][j] - f[i][j]; } ------
- bool bfs() { -----
--- std::queue<<u>int</u>> q; -----
--- q.push(this->s); -----
--- while (!q.empty()) { -----
---- int u = q.front(); q.pop(); -----
---- for (int v : adj[u]) { -----
----- if (res(u, v) > 0 and par[v] == -1) { ------
----- par[v] = u; -----
----- if (v == this->t) -----
----- return true; -----
----- q.push(v); -----
--- } } } ------
--- return false; ------
- } ------
- bool aug_path() { ------
--- for (int u = 0; u < n; ++u) -----
---- par[u] = -1; -----
--- par[s] = s: -----
--- return bfs(); -----
- } ------
```

```
Ateneo de Manila University
3.9.2. Dinic.
- int n, s, t, *adj_ptr, *par; ------
- ll *dist, **c, **f; ------
- std::vector<int> *adj; ------
- flow_network(int n, int s, int t) : n(n), s(s), t(t) { -----
--- adj = new std::vector<int>[n]; ------
--- adj_ptr = new int[n]; -----
--- par = new int[n]; -----
--- dist = new ll[n]; -----
--- c = new ll*[n]; -----
--- f = new ll*[n]; -----
--- for (int u = 0; u < n; ++u) { ------
---- c[u] = new ll[n]; -----
----- f[u] = new ll[n]; ------
---- for (int v = 0; v < n; ++v) -----
----- c[u][v] = f[u][v] = 0; -----
- } } ------
- void add_edge(int u, int v, ll cap, bool bi=false) { ------
--- adi[u].push_back(v): ------
--- adj[v].push_back(u); -----
--- dist[s] = 0; ------ flow_network(int n, int s, int t) : n(n), s(s), t(t) { -----
- } ------ adj[u].push_back(edges.size()); ------
- } ------ edges.push_back(edge(v, u, -cost, OLL, OLL)); ------
```

```
3.10. Minimum Cost Maximum Flow.
struct edge { -----
- int u. v: -----
- ll cost, cap, flow; ------
--- u(u), v(v), cost(cost), cap(cap), flow(flow) {} ------
```

```
--- while (aug_path()) { ----- if (is_next(u, v) and res(u, v) > 0 and dfs(v)) { ----- pot[s] = 0: -----
---- int flow = INF; ----- for (int it = 0; it < n-1; ++it) ------
---- for (int u = t; u != s; u = par[u]) ------ return true; ------ for (auto e : edges) -------
--- ll total_flow = 0; ----- continue; -----
                ---- for (int u = 0; u < n; ++u) adj_ptr[u] = 0; ----- for (int i : adj[u]) { -------
                ----- ll flow = INF; ------- if (res(e) <= 0) continue; ------
                ----- for (int u = t; u != s; u = par[u]) ------- ll nd = dist[u] + e.cost + pot[u] - pot[e.v]; ------
                ----- for (int u = t; u != s; u = par[u]) ------- dist[e.v] = nd; ------
                --- return dist[t] != INF; -----
                                 - } ------
                                 - bool aug_path() { ------
                                 --- for (int u = 0; u < n; ++u) { ------
                                 ---- par[u] = -1; -----
                                 ---- in_queue[u] = 0; -----
                                 ---- num_vis[u] = 0; -----
                                 ---- dist[u] = INF; -----
                                 ...}
                                 --- dist[s] = 0; -----
                                 --- in_aueue[s] = 1: -----
                                 --- return spfa(); -----
                                 - } ------
                                 - pll calc_max_flow(bool do_bellman_ford=false) { ------
                                 --- ll total_cost = 0, total_flow = 0; -----
                                 --- if (do_bellman_ford) -----
                                 ---- bellman_ford(); -----
                                 --- while (aug_path()) { -----
                                 ----- ll f = INF; ------
                                 ----- for (int i = par[t]; i != -1; i = par[edges[i].u]) -----
                                 ----- f = std::min(f, res(edges[i])): -----
                                 ---- for (int i = par[t]; i != -1; i = par[edges[i].u]) { ---
                                 ----- edges[i].flow += f; -----
                                 ------ edges[i^1].flow -= f: ------
                                 ···· } ·····
                                 ----- total_cost += f * (dist[t] + pot[t] - pot[s]); ------
                                 ----- total_flow += f: ------
                                 ---- for (int u = 0; u < n; ++u) -----
                                 ----- if (par[u] != -1) -----
```

```
Ateneo de Manila University
```

```
All-pairs Maximum Flow.
3.11.1. Gomory-Hu
#define MAXV 2000 ------
int q[MAXV], d[MAXV]; ------
struct flow_network { ------
- struct edge { int v, nxt, cap; -----
--- edge(int _v, int _cap, int _nxt) ------
----: v(_v), nxt(_nxt), cap(_cap) { } }; ------
- int n, *head, *curh; vector<edge> e, e_store; ------
--- curh = new int[n]; ------
--- memset(head = new int[n], -1, n*sizeof(int)); } ------
- void add_edge(int u, int v, int uv, int vu=0) { ------
--- e.push_back(edge(v,uv,head[u])); head[u]=(int)size(e)-1; -
--- e.push_back(edge(u,vu,head[v])); head[v]=(int)size(e)-1;}
--- if (v == t) return f; -----
--- for (int &i = curh[v], ret; i != -1; i = e[i].nxt) ------
---- if (e[i].cap > 0 \&\& d[e[i].v] + 1 == d[v]) -----
----- if ((ret = augment(e[i].v, t, min(f, e[i].cap))) > 0)
----- return (e[i].cap -= ret, e[i^1].cap += ret, ret); --
--- return 0; } ------
--- e_store = e; -----
--- int l, r, f = 0, x; -----
--- while (true) { ------
-\cdots | = r = 0, d[q[r++] = t] = 0; ------ vi vis(n,-1), mn(n,INF); vii par(n); ------ while (w != -1) q.push_back(w), w = par[w]; ------
---- if (d[s] == -1) break; ----- vis[at] = i; ------ vis[at] = i; ------
---- memcpy(curh, head, n * sizeof(int)); ------ iter(it,adj[at]) if (it->second < mn[at] &\delta ------ while (c != -1) b.push_back(c), c = par[c]; ------
---- while ((x = augment(s, t, INF)) != 0) f += x; } ------ uf.find(it->first.first) != at) ------ while (!a.empty()\&\&!b.empty()\&\&.a.back()==b.back()) -
--- return f; \}; ------ memset(marked,0,sizeof(marked)); ------ if (par[at] == ii(0,0)) return vii(); ------- memset(marked,0,sizeof(marked)); -------
- int n = q.n. v: ------ par[c] = s = 1; ------ union_find tmp = uf: vi seq: ------ par[c] = s = 1; ------
--- par[s].second = g.max_flow(s. par[s].first, false): ---- int c = uf.find(seg[0]): ------ if (par[*it] == 0) continue: -------int
--- d[g[r++] = s] = 1; ------- adj2[par[i]].push_back(par[*it]); -------
```

```
--- int mn = INF, cur = i; ------
--- while (true) { ------
---- cap[cur][i] = mn; -----
---- if (cur == 0) break; -----
----- mn = min(mn, par[curl.second), cur = par[curl.first; } }
int compute_max_flow(int s, int t, const pair<vii, vvi> &qh) {
- int cur = INF, at = s; -----
- while (gh.second[at][t] == -1) ------
--- cur = min(cur, gh.first[at].second), -----
--- at = gh.first[at].first; -----
- return min(cur, gh.second[at][t]); } ------
3.12. Minimum Arborescence. Given a weighted directed graph,
finds a subset of edges of minimum total weight so that there is a unique
path from the root r to each vertex. Returns a vector of size n, where
the ith element is the edge for the ith vertex. The answer for the root is
undefined!
```

```
---- if (par[i].first == par[s].first && same[i]) ------ iter(it,seg) if (*it != at) ------
----- par[i].first = s: ------- rest[*it] = par[*it]: ------
3.13. Blossom algorithm. Finds a maximum matching in an arbi-
                        trary graph in O(|V|^4) time. Be vary of loop edges.
                        #define MAXV 300 ------
                        bool marked[MAXV], emarked[MAXV][MAXV]; ------
                        int S[MAXV];
                        vi find_augmenting_path(const vector<vi> &adi,const vi &m){ --
                        - int n = size(adj), s = 0; ------
                        - vi par(n,-1), height(n), root(n,-1), q, a, b; ------
                        - memset(marked,0,sizeof(marked)); ------
                        - memset(emarked,0,sizeof(emarked)); ------
                        - rep(i,0,n) if (m[i] >= 0) emarked[i][m[i]] = true; ------
                        ----- else root[i] = i, S[s++] = i; ------
                        - while (s) { ------
                        --- int v = S[--s]; -----
                        --- iter(wt,adj[v]) { ------
                        ---- int w = *wt; -----
                        ---- if (emarked[v][w]) continue; -----
- int n; union_find uf; ------ par[w]=v, root[w]=root[v], height[w]=height[v]+1; ----
```

```
-----} else adj2[par[i]].push_back(par[*it]); } ------
----- vi m2(s. -1): ------
----- if (m[c] != -1) m2[m2[par[m[c]]] = 0] = par[m[c]]; -
---- rep(i,0,n) if(par[i]!=0&&m[i]!=-1&&par[m[i]]!=0) ---
----- m2[par[i]] = par[m[i]]; -----
----- vi p = find_augmenting_path(adj2, m2); ------
----- int t = 0; ------
----- while (t < size(p) && p[t]) t++; -----
----- if (t == size(p)) { ------
----- rep(i,0,size(p)) p[i] = root[p[i]]; -----
----- return p; } -----
----- if (!p[0] \mid | (m[c] != -1 \&\& p[t+1] != par[m[c]])) --
----- reverse(p.begin(), p.end()), t=(int)size(p)-t-1; -
----- rep(i,0,t) q.push_back(root[p[i]]); ------
----- iter(it,adj[root[p[t-1]]]) { ------
----- if (par[*it] != (s = 0)) continue; -----
----- a.push_back(c), reverse(a.begin(), a.end()); -----
----- iter(jt,b) a.push_back(*jt); ------
----- while (a[s] != *it) s++; -----
----- if((height[*it]&1)^(s<(int)size(a)-(int)size(b)))
----- reverse(a.begin(),a.end()), s=(int)size(a)-s-1;
----- while(a[s]!=c)q.push_back(a[s]),s=(s+1)%size(a); -
----- q.push_back(c); ------
----- rep(i,t+1,size(p)) q.push_back(root[p[i]]); -----
----- return q; } } -----
----- emarked[v][w] = emarked[w][v] = true; } ------
--- marked[v] = true; } return q; } -----
vii max_matching(const vector<vi> &adj) { ------
- rep(i,0,size(adj)) iter(it,adj[i]) es.emplace_back(i,*it); -
- iter(it,es) if (m[it->first] == -1 \&\& m[it->second] == -1) -
--- m[it->first] = it->second, m[it->second] = it->first; ----
- do { ap = find_augmenting_path(adj, m); ------
----- rep(i,0,size(ap)) m[m[ap[i^1]] = ap[i]] = ap[i^1]; ----
- } while (!ap.empty()); -----
- rep(i,0,size(m)) if (i < m[i]) res.emplace_back(i, m[i]); --</pre>
- return res; } ------
```

- 3.14. Maximum Density Subgraph. Given (weighted) undirected graph G. Binary search density. If g is current density, construct flow network: (S, u, m), $(u, T, m + 2g - d_u)$, (u, v, 1), where m is a large constant (larger than sum of edge weights). Run floating-point max-flow. If minimum cut has empty S-component, then maximum density is smaller than q, otherwise it's larger. Distance between valid densities is at least 1/(n(n-1)). Edge case when density is 0. This also works for weighted graphs by replacing d_u by the weighted degree, and doing more iterations (if weights are not integers).
- 3.15. Maximum-Weight Closure. Given a vertex-weighted directed graph G. Turn the graph into a flow network, adding weight ∞ to each edge. Add vertices S, T. For each vertex v of weight w, add edge (S, v, w)if w > 0, or edge (v, T, -w) if w < 0. Sum of positive weights minus minimum S-T cut is the answer. Vertices reachable from S are in the closure. The maximum-weight closure is the same as the complement of the minimum-weight closure on the graph with edges reversed.

- 3.16. Maximum Weighted Ind. Set in a Bipartite Graph. This is the same as the minimum weighted vertex cover. Solve this by constructing a flow network with edges (S, u, w(u)) for $u \in L$, (v, T, w(v)) for $v \in R$ and (u, v, ∞) for $(u, v) \in E$. The minimum S, T-cut is the answer. Vertices adjacent to a cut edge are in the vertex cover.
- 3.17. Synchronizing word problem. A DFA has a synchronizing word (an input sequence that moves all states to the same state) iff. each pair of states has a synchronizing word. That can be checked using reverse DFS over pairs of states. Finding the shortest synchronizing word is NP-complete.
- 3.18. Max flow with lower bounds on edges. Change edge $(u, v, l \le l)$ $f \leq c$) to $(u, v, f \leq c - l)$. Add edge (t, s, ∞) . Create super-nodes S, T. Let $M(u) = \sum_{v} l(v, u) - \sum_{v} l(u, v)$. If M(u) < 0, add edge (u,T,-M(u)), else add edge (S,u,M(u)). Max flow from S to T. If all edges from S are saturated, then we have a feasible flow. Continue running max flow from s to t in original graph.
- 3.19. Tutte matrix for general matching. Create an $n \times n$ matrix A. For each edge (i,j), i < j, let $A_{ij} = x_{ij}$ and $A_{ji} = -x_{ij}$. All other entries are 0. The determinant of A is zero iff. the graph has a perfect matching. A randomized algorithm uses the Schwartz-Zippel lemma to check if it is zero.

3.20. Heavy Light Decomposition.

```
#include "segment_tree.cpp" ------
- int n: -----
std::vector<int> *adj; -----
segtree *segment_tree;
- int *par, *heavy, *dep, *path_root, *pos; -------
--- this->n = n; -----
--- this->adi = new std::vector<int>[n]: ------
--- segment_tree = new segtree(0, n-1); -----
--- par = new int[n]; ------
--- heavy = new int[n]; ------
--- dep = new int[n]; -----
--- path_root = new int[n]: ------
--- pos = new int[n]; -----
- } ------
- void add_edge(int u, int v) { -------
--- adj[u].push_back(v); -----
--- adj[v].push_back(u); -----
- } ------
- void build(int root) { ------
--- for (int u = 0; u < n; ++u) -----
----- heavy[u] = -1; ------
--- par[root] = root; -----
--- dep[root] = 0; -----
--- dfs(root); -----
--- for (int u = 0, p = 0; u < n; ++u) { ------
```

```
....}
                            ...}
                            . } ------
                            - int dfs(int u) { ------
                            --- int sz = 1: -----
                            --- int max_subtree_sz = 0; -----
                            --- for (int v : adj[u]) { -----
                            ---- if (v != par[u]) { -----
                            ----- par[v] = u: -----
                            ----- dep[v] = dep[u] + 1; -----
                            ----- int subtree_sz = dfs(v); -----
                            ----- if (max_subtree_sz < subtree_sz) { ------
                            ----- max_subtree_sz = subtree_sz; ------
                            ----- heavy[u] = v; -----
                            .....}
                            ----- sz += subtree_sz; -----
                            ...}
                            --- return sz: ------
                            . } -----
                            --- int res = 0; -----
                            --- while (path_root[u] != path_root[v]) { ------
                            ---- if (dep[path_root[u]] > dep[path_root[v]]) -----
                            ----- std::swap(u, v); ------
                            ---- res += segment_tree->sum(pos[path_root[v]], pos[v]); ---
                            ---- v = par[path_root[v]]; -----
                            ___}
                            --- res += segment_tree->sum(pos[u], pos[v]); ------
                            --- return res;
                            - } ------
                            - void update(int u, int v, int c) { ------
                            --- for (; path_root[u] != path_root[v]; -----
                            ----- v = par[path_root[v]]) { ------
                            ---- if (dep[path_root[u]] > dep[path_root[v]]) ------
                            ----- std::swap(u, v); -----
                            ---- segment_tree->increase(pos[path_root[v]], pos[v], c); --
                            --- } -------
                            --- segment_tree->increase(pos[u], pos[v], c); ------
                            _ } ______
                            3.21. Centroid Decomposition.
                            #define MAXV 100100 ------
                            #define LGMAXV 20 ------
                            int jmp[MAXV][LGMAXV], ------
                            - path[MAXV][LGMAXV], ------
                            - sz[MAXV], seph[MAXV], ------
                            - shortest[MAXV]; ------
                            struct centroid_decomposition { ------
                            - int n; vvi adi; -----
---- if (par[u] == -1 \text{ or heavy[par[u]]} != u) { ------- - centroid decomposition(int_n) : n(_n), adi(n) { } ------
```

```
u = par[u][k]; ..... for (int i = 0; i + (1 << (k-1)) < en; ++i) .....
---- swap(adj[u][bad], adj[u].back()), adj[u].pop_back(); } - ---- } ----- swap(adj[u][bad], adj[u].back()), adj[u].pop_back(); } - ---- }
----- path[u][h]); } ------ for (int k = 1; k < logn; ++k) ------
--- return mn; } }; ------
3.22. Least Common Ancestor.
3.22.1. Binary Lifting.
- int n: ------ vi *adi, euler: ------
- int logn; ------ graph(int n, int logn=20) : n(n), logn(logn) { -------
--- par[u][0] = p; ----- --- g[tail++] = u; vis[u] = true; pre[u] = -1; -------
---- if (v != p) ----- u = g[head]: if (++head == N) head = 0: ------
----- dfs(v, u, d+1); ------ for (int i = 0; i < adj[u].size(); ++i) { -------
```

```
3.22.2. Euler Tour Sparse Table.
                                struct graph { -----
                                - int n, logn, *ar, *dep, *first, *lg; ------
---- if (k & (1 << i)) ------ q[tail++] = v; if (tail == N) tail = 0; -----
```

3.22.3. Tarjan Off-line LCA

- 3.23. Counting Spanning Trees. Kirchoff's Theorem: The number of spanning trees of any graph is the determinant of any cofactor of the Laplacian matrix in $O(n^3)$.
 - (1) Let A be the adjacency matrix.
 - (2) Let D be the degree matrix (matrix with vertex degrees on the
 - (3) Get D-A and delete exactly one row and column. Any row and column will do. This will be the cofactor matrix.
 - (4) Get the determinant of this cofactor matrix using Gauss-Jordan.
 - (5) Spanning Trees = $|\operatorname{cofactor}(D A)|$

3.24. Erdős-Gallai Theorem. A sequence of non-negative integers $d_1 > \cdots > d_n$ can be represented as the degree sequence of finite simple graph on n vertices if and only if $d_1 + \cdots + d_n$ is even and the following holds for $1 \le k \le n$:

$$\sum_{i=1}^{n} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k)$$

3.25. Tree Isomorphism

```
// REQUIREMENT: list of primes pr[], see prime sieve ------
typedef long long LL; ------
int pre[N], q[N], path[N]; bool vis[N]; -----
```

```
Ateneo de Manila University
```

```
--- int size = 0; -----
--- for (int u=bfs(bfs(r, adj), adj); u!=-1; u=pre[u]) ------
----- path[size++] = u; -----
--- vector<int> med(1, path[size/2]); -----
--- if (size % 2 == 0) med.push_back(path[size/2-1]); ------
--- return med; -----
} // returns "unique hashcode" for tree with root u ------
LL rootcode(int u, vector<int> adj[], int p=-1, int d=15){ ---
--- vector<LL> k; int nd = (d + 1) % primes; ------
--- for (int i = 0; i < adj[u].size(); ++i) ------
----- if (adj[u][i] != p) -----
----- k.push_back(rootcode(adj[u][i], adj, u, nd)); ----
--- sort(k.begin(), k.end()); -----
--- LL h = k.size() + 1; -----
--- for (int i = 0; i < k.size(); ++i) -----
----- h = h * pr[d] + k[i]; -----
--- return h; ------
} // returns "unique hashcode" for the whole tree ------
LL treecode(int root, vector<int> adj[]) { ------
--- vector<int> c = tree_centers(root, adj); ------
--- if (c.size()==1) ------
----- return (rootcode(c[0], adj) << 1) | 1; -----
--- return (rootcode(c[0],adj)*rootcode(c[1],adj))<<1; -----
} // checks if two trees are isomorphic ------
bool isomorphic(int r1, vector<int> adj1[], int r2, ------
----- vector<int> adj2[], bool rooted = false) { ---
--- if (rooted) ------
----- return rootcode(r1, adj1) == rootcode(r2, adj2); -----
--- return treecode(r1, adj1) == treecode(r2, adj2); ------
} ------
                 4. Strings
4.1. Knuth-Morris-Pratt . Count and find all matches of string f in
string s in O(n) time.
int par[N]; // parent table -----
void buildKMP(string& f) { ------
--- par[0] = -1, par[1] = 0; -----
--- int i = 2, j = 0; ------
--- while (i <= f.length()) { ------
----- if (f[i-1] == f[i]) par[i++] = ++i; ------
----- else if (j > 0) j = par[j]; -----
----- else par[i++] = 0; }} ------
vector<int> KMP(string& s, string& f) { ------
--- buildKMP(f): // call once if f is the same ------
--- int i = 0, j = 0; vector<int> ans; ------
--- while (i + j < s.length()) { ------
----- if (s[i + j] == f[j]) { ------
----- if (++j == f.length()) { -----
----- ans.push_back(i); -----
----- i += j - par[i]; -----
----- if (j > 0) j = par[j]; -----
```

} // returns the list of tree centers -----

```
--- return u; ------- i += j - par[j]; ------
                               ----- if (j > 0) j = par[j]: -----
--- } return ans; } ------
                                4.2. Trie.
                                template <class T> -----
                                - struct node { ------
                                --- map<T, node*> children; -----
                                --- int prefixes, words; -----
                                --- node() { prefixes = words = 0; } }; -----
                                - node* root; -----
                                - trie() : root(new node()) { } ------
                                - template <class I> -----
                                - void insert(I begin, I end) { ------
                                --- node* cur = root: ------
                                --- while (true) { ------
                                ---- cur->prefixes++;
                                ---- if (begin == end) { cur->words++; break; } -----
                                ----- else { -----
                                ----- T head = *begin; -----
                                ----- typename map<T, node*>::const_iterator it; ------
                                ----- it = cur->children.find(head); ------
                                ----- if (it == cur->children.end()) { ------
                                ----- pair<T, node*> nw(head, new node()); ------
                                ----- it = cur->children.insert(nw).first; ------
                                ----- } begin++, cur = it->second; } } } ------
                                - template<class I> ------
                                --- node* cur = root; ------
                                --- while (true) { ------
                                ---- if (begin == end) return cur->words; -----
                                ----- T head = *begin: -----
                                ----- typename map<T, node*>::const_iterator it; ------
                                ----- it = cur->children.find(head); -----
                                ----- if (it == cur->children.end()) return 0; -----
                                ----- begin++, cur = it->second; } } } -----
                                - template<class I> ------
                                - int countPrefixes(I begin, I end) { ------
                                --- node* cur = root; -----
                                --- while (true) { ------
                                ---- if (begin == end) return cur->prefixes; -----
                                ----- else { ------
                                ----- T head = *begin; -----
                                ----- typename map<T, node*>::const_iterator it; ------
                                ----- it = cur->children.find(head); ------
                                ----- if (it == cur->children.end()) return 0; -----
                                ------ begin++, cur = it->second; } } }; ------
                                4.2.1. Persistent Trie.
                                const int MAX_KIDS = 2; ------
```

```
- trie () : val(-1), cnt(0), kids(MAX_KIDS, NULL) {} ------
                                       - trie (int val) : val(val), cnt(0), kids(MAX_KIDS, NULL) {} -
                                       - trie (int val, int cnt, std::vector<trie*> n_kids) : ------
                                       --- val(val), cnt(cnt), kids(n_kids) {} -----------------
                                       - trie *insert(std::string &s, int i, int n) { -------
                                       --- trie *n_node = new trie(val, cnt+1, kids); ------
                                       --- if (i == n) return n_node; -----
                                       --- if (!n_node->kids[s[i]-BASE]) -----
                                       ----- n_node->kids[s[i]-BASE] = new trie(s[i]); ------
                                       --- n_node->kids[s[i]-BASE] = -----
                                       ----- n_node->kids[s[i]-BASE]->insert(s, i+1, n); ------
                                       --- return n_node: ------
                                       - } ------
                                       }; ------
                                       // max xor on a binary trie from version a+1 to b (b > a):
                                       - int ans = 0; -----
                                       - for (int i = MAX_BITS; i >= 0; --i) { ------
                                       --- // don't flip the bit for min xor -----
                                       --- int u = ((x \& (1 << i)) > 0) ^ 1; -----
                                       --- int res_cnt = (b and b->kids[u] ? b->kids[u]->cnt : 0) - -
                                       ----- (a and a->kids[u] ? a->kids[u]->cnt : 0); --
                                       --- if (res_cnt == 0) u ^= 1; -----
                                       --- ans ^= (u << i); -----
                                       --- if (a) a = a->kids[u]; -----
                                       --- if (b) b = b->kids[u]; -----
                                       - } ------
                                       - return ans; -----
                                        ______
                                       4.3. Suffix Array. Construct a sorted catalog of all substrings of s in
                                       O(n \log n) time using counting sort.
                                       // sa[i]: ith smallest substring at s[sa[i]:] ------
                                       // pos[i]: position of s[i:] in suffix array ------
                                       bool cmp(int i, int j) // reverse stable sort -----
                                       --- {return pos[i]!=pos[i] ? pos[i] < pos[i] : i < i;} ------
                                       bool equal(int i, int j) ------
                                       --- {return pos[i] == pos[j] && i + qap < n && ------
                                       ----- pos[i + gap / 2] == pos[j + gap / 2]; -----
                                       void buildSA(string s) { ------
                                       --- s += '$'; n = s.length(); -----
                                       --- for (int i = 0; i < n; i++){sa[i]=i; pos[i]=s[i];} ------
                                       --- sort (sa, sa + n, cmp); -----
                                       --- for (gap = 1; gap < n * 2; gap <<= 1) { ------
                                       ----- va[sa[0]] = 0; -----
                                       ----- for (int i = 1; i < n; i++) { -------
                                       ----- int prev = sa[i - 1], next = sa[i]; -----
                                       ----- va[next] = equal(prev, next) ? va[prev] : i; -----
                                       ----- for (int i = 0; i < n; ++i) -----
struct trie { ------- for (int i = 0; i < n; i++) { -------
- int val, cnt; ------ int id = va[i] - qap; ------
```

```
Ateneo de Manila University
--- private Node get(char c) { return next.get(c); } ---- --- cnt[par[i]] += cnt[i]; // update parent count -----
4.4. Longest Common Prefix. Find the length of the longest com-
                 mon prefix for every substring in O(n).
                 ----- return next.containsKev(c): ------- int countUniquePalindromes(char s[]) ------
int lcp[N]; // lcp[i] = LCP(s[sa[i]:], s[sa[i+1]:]) ------
                 }} // Usage: Node trie = new Node(); -----
                                   --- {manachers(s); return size;} ------
void buildLCP(string s) {// build suffix array first ------
                 // for (String s : dictionary) trie.add(s); -----
                                   --- for (int i = 0, k = 0; i < n; i++) { ------
                 // trie.prepare(); BigInteger m = trie.search(str); ------
                                   --- manachers(s); int total = 0; -----
----- if (pos[i] != n - 1) { ------
                                   --- for (int i = 0; i < size; i++) total += cnt[i]; -----
----- for(int i = sa[pos[i]+1]: s[i+k]==s[i+k]:k++): ---
                 4.6. Palimdromes.
                                   --- return total;} ------
----- lcp[pos[i]] = k; if (k > 0) k--; ------
                                   // longest palindrome substring of s -----
--- } else { lcp[pos[i]] = 0; }}} ------
                 4.6.1. Palindromic Tree. Find lengths and frequencies of all palin-
                                   string longestPalindrome(char s[]) { ------
                 dromic substrings of a string in O(n) time.
                                   --- manachers(s); -----
4.5. Aho-Corasick Trie . Find all multiple pattern matches in O(n)
                  Theorem: there can only be up to n unique palindromic substrings for
                                   --- int n = strlen(s), cn = n * 2 + 1, mx = 0; -----
time. This is KMP for multiple strings.
                 any string.
                                   --- for (int i = 1; i < cn; i++) -----
class Node { ------
                 int par[N*2+1], child[N*2+1][128]; ------
                                   ----- if (len[node[mx]] < len[node[i]]) -----
--- HashMap<Character, Node> next = new HashMap<>(): ------
                 int len[N*2+1], node[N*2+1], cs[N*2+1], size; --------------
                                   ----- mx = i; -----
--- int pos = (mx - len[node[mx]]) / 2; -----
--- return string(s + pos, s + pos + len[node[mx]]); } ------
--- public void add(String s) { // adds string to trie ----- cnt[size] = 0; par[size] = p; -------------------
4.6.2. Eertree.
----- for (char c : s.toCharArray()) { ------- memset(child[size], -1, sizeof child[size]); ------
----- if (!node.contains(c)) ----- return size++: -----
                                   struct node { -----
------ node.next.put(c, new Node()); ------}
                                   - int start, end, len, back_edge, *adj; ------
- node() { -----
-----// prepares fail links of Aho-Corasick Trie ------}
------ Node root = this; root.fail = null; ------- void manachers(char s[]) { -------- - node(int start, int end, int len, int back_edge) : -------
------ Queue<Node> q = new ArrayDeque<Node>(); -------- int n = strlen(s), cn = n * 2 + 1; ------- start(start), end(end), len(len), back_edge(back_edge) {
--- public BigInteger search(String s) { ------- node[i] = par[node[i]]: ----- // don't return immediately if you want to ------
```

```
Ateneo de Manila University
```

```
...}
--- ptr++: ------
--- tree[temp].adj[s[i] - 'a'] = ptr; ------
--- int len = tree[temp].len + 2: ------
--- tree.push_back(node(i-len+1, i, len, 0)); ------
--- temp = tree[temp].back_edge; -----
--- cur_node = ptr; ------
--- if (tree[cur_node].len == 1) { ------
----- tree[cur_node].back_edge = 2; ------
---- return: ------
--- temp = qet_link(temp, s, i); ------
--- tree[cur_node].back_edge = tree[temp].adj[s[i]-'a']; ----
- } ------
- void insert(std::string &s) { ------
--- for (int i = 0; i < s.size(); ++i) -----
---- insert(s, i); -----
- } ------
}; ------
4.7. Z Algorithm . Find the longest common prefix of all substrings
```

of s with itself in O(n) time.

```
int z[N]; // z[i] = lcp(s, s[i:]) ------
void computeZ(string s) { ------
--- int n = s.length(), L = 0, R = 0; z[0] = n; ------
--- for (int i = 1; i < n; i++) { ------
----- if (i > R) { ------
----- L = R = i; -----
----- while (R < n \&\& s[R - L] == s[R]) R++;
----- z[i] = R - L; R--; -----
-----} else { -------
----- int k = i - L; -----
----- if (z[k] < R - i + 1) z[i] = z[k]; -----
----- else { ------
-----L = i; ------
----- while (R < n \&\& s[R - L] == s[R]) R++;
----- z[i] = R - L; R--; -----
```

4.8. Booth's Minimum String Rotation. Booth's Algo: Find the index of the lexicographically least string rotation in O(n) time.

```
int f[N * 2]; -----
int booth(string S) { ------
--- S.append(S); // concatenate itself -----
--- int n = S.length(), i, j, k = 0; -----
--- memset(f, -1, sizeof(int) * n); -----
--- for (j = 1; j < n; j++) { ------
----- i = f[j-k-1]; -----
----- while (i != -1 && S[i] != S[k + i + 1]) { ------
----- if (S[j] < S[k+i+1]) k = j - i - 1; ------
----- i = f[i]; -----
```

4.9. Hashing.

```
4.9.1. Rolling Hash.
```

```
int MAXN = 1e5+1, MOD = 1e9+7; -----
struct hasher { ------
- int n: -----
 std::vector<ll> *p_pow; ------
 std::vector<ll> *h_ans; ------
- hash(vi &s. vi primes) { ------
--- n = primes.size(); -----
--- p_pow = new std::vector<ll>[n]; ------
--- h_ans = new std::vector<ll>[n]; ------
--- for (int i = 0; i < n; ++i) { ------
----- p_pow[i] = std::vector<ll>(MAXN); ------
---- p_pow[i][0] = 1; -----
---- for (int j = 0; j+1 < MAXN; ++j) -----
----- p_pow[i][j+1] = (p_pow[i][j] * primes[i]) % MOD; ----
---- h_ans[i] = std::vector<ll>(MAXN); -----
---- h_ans[i][0] = 0; -----
---- for (int j = 0; j < s.size(); ++j) -----
------ h_ans[i][j+1] = (h_ans[i][j] + -----
----- s[j] * p_pow[i][j]) % MOD; -----
··· } ·····
- } ------
```

5. Number Theory

5.1. Eratosthenes Prime Sieve.

```
bitset<N> is; // #include <bitset> -----
int pr[N], primes = 0;
void sieve() { ------
--- is[2] = true; pr[primes++] = 2; -----
--- for (int i = 3; i < N; i += 2) is[i] = 1; -----
--- for (int i = 3; i*i < N; i += 2) -----
----- if (is[i]) -----
----- for (int j = i*i; j < N; j += i) -----
-----is[j]= 0; -----
--- for (int i = 3; i < N; i += 2) -----
----- if (is[i]) -----
----- pr[primes++] = i;} -----
```

5.2. Divisor Sieve.

```
void divisorSieve() { prime to n in O(\sqrt{n}) time.
----- for (int j = i; j < N; j += i) ------ --- if (n <= 1) return 1; -----
```

sors while σ_1 is the sum of divisors:

$$\sum_{d|n} d^k = \sigma_k(n) = \prod \frac{p_i^{k(e_i)+1} - 1}{p_i - 1}$$

Product:
$$\prod_{d|n} d = n^{\frac{\sigma_1(n)}{2}}$$

5.4. Möbius Sieve. The Möbius function μ is the Möbius inverse of e such that $e(n) = \sum_{d|n} \mu(d)$.

```
bitset<N> is; int mu[N]; -----
--- for (int i = 1: i < N: ++i) mu[i] = 1: ------
--- for (int i = 2; i < N; ++i) if (!is[i]) { ------
----- for (int j = i; j < N; j += i){ ------
----- is[i] = 1; ------
----- mu[i] *= -1: ------
----- for (long long j = 1 LL*i*i; j < N; j += i*i) ------
----- mu[j] = 0;} -----
```

5.5. **Möbius Inversion.** Given arithmetic functions f and g:

$$g(n) = \sum_{d|n} f(d) \quad \Leftrightarrow \quad f(n) = \sum_{d|n} \mu(d) \ g\left(\frac{n}{d}\right)$$

5.6. **GCD Subset Counting.** Count number of subsets $S \subseteq A$ such that gcd(S) = g (modifiable).

```
int f[MX+1]; // MX is maximum number of array -----
long long qcnt[MX+1]; // qcnt[G]: answer when qcd==G ------
long long C(int f) {return (1ll << f) - 1;} ------</pre>
// f: frequency count -----
// C(f): # of subsets of f elements (YOU CAN EDIT) ------
void gcd_counter(int a[], int n) { ------
--- memset(f, 0, sizeof f); -----
--- memset(gcnt, 0, sizeof gcnt); -----
--- int mx = 0: -----
--- for (int i = 0; i < n; ++i) { ------
----- f[a[i]] += 1; -----
----- mx = max(mx, a[i]); -----
--- } ------
--- for (int i = mx; i >= 1; --i) { -------
----- int add = f[i]; -----
----- long long sub = 0: -----
----- for (int j = 2*i; j <= mx; j += i) { ------
----- add += f[j]; -----
----- sub += gcnt[j]; -----
····· } ······
----- gcnt[i] = C(add) - sub; -----
--- }} // Usage: int subsets_with_gcd_1 = gcnt[1]; ------
```

```
--- for (int i = 2; i * i <= n; i++) { -------
----- if (n % i == 0) tot -= tot / i; -----
----- while (n % i == 0) n /= i: -----
--- if (n > 1) tot -= tot / n; -----
--- return tot; } -----
5.8. Euler Phi Sieve. Sieve version of Euler totient, runs in O(N \log N)
```

time. Note that $n = \sum_{d|n} \varphi(d)$.

```
bitset<N> is; int phi[N]; -----
void phiSieve() { ------
--- for (int i = 1; i < N; ++i) phi[i] = i; -----
--- for (int i = 2; i < N; ++i) if (!is[i]) { -------
----- phi[i] -= phi[i] / i; -----
----- is[j] = true; -----
----- }}} -------
```

5.9. Extended Euclidean. Assigns x, y such that $ax + by = \gcd(a, b)$ and returns gcd(a, b).

```
typedef long long LL; ------
typedef pair<LL, LL> PAIR; -----
LL mod(LL x, LL m) { // use this instead of x % m ------
--- if (m == 0) return 0: -----
--- if (m < 0) m *= -1: ------
--- return (x%m + m) % m; // always nonnegative ------
} ------
LL extended_euclid(LL a, LL b, LL &x, LL &y) { ------
--- if (b==0) {x = 1; y = 0; return a;} -----
--- LL q = extended_euclid(b, a%b, x, y); ------
--- LL z = x - a/b*y; ------
--- x = y; y = z; return q; -----
} ------
```

5.10. Modular Exponentiation. Find $b^e \pmod{m}$ in O(loge) time.

```
template <class T> -----
T mod_pow(T b, T e, T m) { ------
- T res = T(1); -----
- while (e) { -----
--- if (e & T(1)) res = smod(res * b, m); ------
- return res; } ------
```

5.11. Modular Inverse. Find unique x such that $ax \equiv$ $1 \pmod{m}$. Returns 0 if no unique solution is found. Please use modulo solver for the non-unique case.

```
LL modinv(LL a, LL m) { ------
--- LL x, y; LL g = extended_euclid(a, m, x, y); ------
--- if (q == 1 \mid | q == -1) return mod(x * q, m); -----
--- return 0; // 0 if invalid -----
} ------
```

5.12. **Modulo Solver.** Solve for values of x for $ax \equiv b \pmod{m}$. Returns (-1, -1) if there is no solution. Returns a pair (x, M) where solution is $x \mod M$.

```
5.13. Linear Diophantine. Computes integers x and y
such that ax + by = c, returns (-1, -1) if no solution.
Tries to return positive integer answers for x and y if possible.
PAIR null(-1, -1); // needs extended euclidean ------
PAIR diophantine(LL a, LL b, LL c) { ------
--- if (!a && !b) return c ? null : PAIR(0, 0); ------
--- if (!a) return c % b ? null : PAIR(0, c / b); -----
--- if (!b) return c % a ? null : PAIR(c / a, 0); -----
--- LL x, y; LL q = extended_euclid(a, b, x, y); ------
--- if (c % g) return null; -----
--- y = mod(y * (c/g), a/g); -----
--- if (y == 0) y += abs(a/g); // prefer positive sol. -----
--- return PAIR((c - b*y)/a, y); -----
} -----
5.14. Chinese Remainder Theorem. Solves linear congruence x \equiv b_i
(\text{mod } m_i). Returns (-1,-1) if there is no solution. Returns a pair (x,M)
where solution is x \mod M.
PAIR chinese(LL b1, LL m1, LL b2, LL m2) { ------
--- LL x, y; LL g = extended_euclid(m1, m2, x, y); ------
--- if (b1 % q != b2 % q) return PAIR(-1, -1); ------
--- LL M = abs(m1 / g * m2); -----
--- return PAIR(mod(mod(x*b2*m1+y*b1*m2, M*q)/q,M),M); -----
PAIR chinese_remainder(LL b[], LL m[], int n) { ------
--- PAIR ans(0. 1): ------
--- for (int i = 0; i < n; ++i) { ------
----- ans = chinese(b[i],m[i],ans.first,ans.second); -----
----- if (ans.second == -1) break; -----
.....}
--- return ans;
} ------
5.14.1. Super Chinese Remainder. Solves linear congruence a_i x \equiv b_i
\pmod{m_i}. Returns (-1, -1) if there is no solution.
PAIR super_chinese(LL a[], LL b[], LL m[], int n) { ------
--- PAIR ans(0, 1); -----
--- for (int i = 0; i < n; ++i) { ------
------ PAIR two = modsolver(a[i], b[i], m[i]); ------
----- if (two.second == -1) return two; -----
----- ans = chinese(ans.first. ans.second. -----
----- two.first, two.second); -----
```

5.15. Primitive Root.

```
- rep(x,2,m) { ------
                                    --- bool ok = true; -----
                                   --- iter(it.div) if (mod_pow<ll>(x. *it. m) == 1) { -------
                                   ---- ok = false; break; } -----
                                    --- if (ok) return x; } ------
                                   - return -1: } ------
                                   5.16. Josephus. Last man standing out of n if every kth is killed. Zero-
                                   based, and does not kill 0 on first pass.
                                   int J(int n, int k) { ------
                                   - if (n == 1) return 0: -----
                                   - if (k == 1) return n-1; -----
                                    - if (n < k) return (J(n-1,k)+k)%n; ------
                                    - int np = n - n/k; -----
                                    - return k*((J(np,k)+np-n%k%np)%np) / (k-1); } ------
                                   5.17. Number of Integer Points under a Lines. Count the num-
                                   ber of integer solutions to Ax + By < C, 0 < x < n, 0 < y. In other
                                   words, evaluate the sum \sum_{x=0}^{n} \left| \frac{C - Ax}{B} + 1 \right|. To count all solutions, let
                                   n = \begin{bmatrix} \frac{c}{a} \end{bmatrix}. In any case, it must hold that C - nA \ge 0. Be very careful
                                   about overflows.
                                                  6. Algebra
                                   6.1. Fast Fourier Transform. Compute the Discrete Fourier Trans-
                                   form (DFT) of a polynomial in O(n \log n) time.
                                   struct poly { ------
                                    --- double a, b; -----
                                    --- poly(double a=0, double b=0): a(a), b(b) {} ------
                                    --- poly operator+(const poly& p) const { ------
                                    ----- return poly(a + p.a, b + p.b);} -----
                                    --- poly operator-(const poly& p) const { ------
                                    ----- return poly(a - p.a, b - p.b);} -----
                                    --- poly operator*(const poly& p) const { ------
                                   ----- return poly(a*p.a - b*p.b, a*p.b + b*p.a);} ------
                                   }; ------
                                   --- if (n < 1) return; -----
                                    --- if (n == 1) {p[0] = in[0]; return;} ------
                                   --- n >>= 1: fft(in, p, n, s << 1): ------
                                   --- fft(in + s, p + n, n, s << 1); -----
                                   --- poly w(1), wn(cos(M_PI/n), sin(M_PI/n)); ------
                                   --- for (int i = 0; i < n; ++i) { ------
----- if (ans.second == -1) break; ------ poly even = p[i], odd = p[i + n]; ------
--- return ans: ------ p[i + n] = even - w * odd; -------
} ------ w = w * wn; -------
                                    --- } ------
#include "mod_pow.cpp" -----
```

```
Ateneo de Manila University
```

```
void inverse_fft(poly p[], int n) { ------
6.2. FFT Polynomial Multiplication. Multiply integer polynomials
a, b of size an, bn using FFT in O(n \log n). Stores answer in an array c,
rounded to the nearest integer (or double).
// note: c[] should have size of at least (an+bn) ------
--- int n. degree = an + bn - 1: ------
--- for (n = 1; n < degree; n <<= 1); // power of 2 -----
--- poly *A = new poly[n], *B = new poly[n]; -----
--- copy(a, a + an, A); fill(A + an, A + n, 0); ------
--- copy(b, b + bn, B); fill(B + bn, B + n, 0); ------
--- fft(A, n); fft(B, n); ------
--- for (int i = 0; i < n; i++) A[i] = A[i] * B[i]; ------
--- inverse_fft(A, n); ------
--- for (int i = 0; i < degree; i++) -----
----- c[i] = int(A[i].a + 0.5); // same as round(A[i].a) ---
--- delete[] A. B: return degree: -----
} ------
6.3. Number Theoretic Transform. Other possible moduli:
2113929217(2^{25}), 2013265920268435457(2^{28}, with q = 5)
#include "../mathematics/primitive_root.cpp" ------
int mod = 998244353, g = primitive_root(mod), ------
- inv2 = mod_pow<ll>(2, mod-2, mod); ------
#define MAXN (1<<22) -----
struct Num { ------
- int x; -----
- Num operator +(const Num &b) { return x + b.x; } -----
- Num operator - (const Num &b) const { return x - b.x; } ----
- Num operator *(const Num &b) const { return (ll)x * b.x; } -
- Num operator /(const Num &b) const { ------
--- return (ll)x * b.inv().x; } ------
- Num inv() const { return mod_pow<ll>((ll)x, mod-2, mod); } -
- Num pow(int p) const { return mod_pow<ll>((ll)x, p, mod); }
} T1[MAXN], T2[MAXN]; ------
void ntt(Num x[], int n, bool inv = false) { ------
- Num z = inv ? ginv : g; -----
- z = z.pow((mod - 1) / n); -----
- for (ll i = 0, j = 0; i < n; i++) { ------
--- if (i < j) swap(x[i], x[j]); -----
--- ll k = n>>1; -----
--- j += k; } -----
- for (int mx = 1, p = n/2; mx < n; mx <<= 1, p >>= 1) { -----
--- Num wp = z.pow(p), w = 1; -----
```

```
--- Num ni = Num(n).inv(); -----
- if (l == 1) { y[0] = x[0].inv(); return; } ------
- inv(x, y, l>>1); -----
- // NOTE: maybe l<<2 instead of l<<1 -----
- rep(i,l>>1,l<<1) T1[i] = y[i] = 0; ------
- rep(i,0,l) T1[i] = x[i]; -----
- ntt(T1, l<<1); ntt(y, l<<1); -----
- rep(i,0,1<<1) v[i] = v[i]*2 - T1[i] * v[i] * v[i]; ------
- ntt(y, l<<1, true); } ------
void sqrt(Num x[], Num y[], int l) { ------
- if (l == 1) { assert(x[0].x == 1); y[0] = 1; return; } -----
 sqrt(x, y, l>>1); -----
- inv(y, T2, l>>1); -----
 rep(i,l>>1,l<<1) T1[i] = T2[i] = 0; -----
 rep(i,0,l) T1[i] = x[i]; -----
- ntt(T2, l<<1); ntt(T1, l<<1); -----
 rep(i,0,l<<1) T2[i] = T1[i] * T2[i]; ------
- ntt(T2, l<<1, true); -----
 6.4. Polynomial Long Division. Divide two polynomials A and B to
get Q and R, where \frac{A}{B} = Q + \frac{R}{B}.
----- for (int i = 0; i < As; i++) ------
----- A[i] -= part[i] * scale; -----
--- } R = A; trim(Q); } ------
6.5. Matrix Multiplication. Multiplies matrices A_{p\times q} and B_{q\times r} in
O(n^3) time, modulo MOD.
```

```
----- (AB[i][k] += A[i][j] * B[j][k]) %= MOD; ------
                                           --- return AB; } ------
                                           6.6. Matrix Power. Computes for B^e in O(n^3 \log e) time. Refer to
                                           Matrix Multiplication.
                                           long[][] power(long B[][], long e) { ------
                                           --- int n = B.length; -----
                                           --- long ans[][]= new long[n][n]; -----
                                           --- while (e > 0) { ------
                                           ----- if (e % 2 == 1) ans = multiply(ans, b); ------
                                           ----- b = multiply(b, b); e /= 2; ------
                                           --- } return ans;} ------
                                           6.7. Fibonacci Matrix. Fast computation for nth Fibonacci
                                           \{F_1, F_2, \dots, F_n\} in O(\log n):
                                                  \begin{bmatrix} F_n \\ F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \times \begin{bmatrix} F_2 \\ F_1 \end{bmatrix}
                                           6.8. Gauss-Jordan/Matrix Determinant. Row reduce matrix A in
                                           O(n^3) time. Returns true if a solution exists.
                                           boolean gaussJordan(double A[][]) { ------
                                           --- int n = A.length, m = A[0].length; -----
                                           --- boolean singular = false; -----
                                           --- // double determinant = 1; ------
                                           --- for (int i=0, p=0; i<n && p<m; i++, p++) { -------
                     typedef vector<double> Poly; ------ for (int k = i + 1; k < n; k++) { -------
                     void divide(Poly A, Poly B) { ------}
                     --- Poly part; ----- for (int j = m-1; j >= p; i--) A[i][i]/= A[i][p]; ----
                     ----- int As = A.size(), Bs = B.size(); ------ if (i == k) continue; ------
                     ----- for (int i = 0; i < Bs; i++) -------- A[k][j] -= A[k][p] * A[i][j]; ----------
                     7. Combinatorics
                     trim(A); O(p + \log_p n) time, where
                                           p is a prime.
                                           LL f[P], lid; // P: biggest prime -----
                                           LL lucas(LL n, LL k, int p) { ------
                                           --- if (k == 0) return 1; -----
                     ------ x[i + mx] = x[i] - t; ------- return f[n] * modpow(f[n-k]*f[k]%p, p-2, p) % p;} ----
```

```
O(m^2 \log^2 n) time.
def fprime(n, p): -----
--- # counts the number of prime divisors of n! ------
--- pk, ans = p, 0 -----
--- while pk <= n: -----
----- ans += n // pk -----
----- pk *= p -----
--- return ans -----
def granville(n, k, p, E): ------
--- # n choose k (mod p^E) ------
--- prime_pow = fprime(n,p)-fprime(k,p)-fprime(n-k,p) ------
--- if prime_pow >= E: return 0 -----
--- e = E - prime_pow ------
--- pe = p ** e ------
--- r, f = n - k, [1]*pe -----
--- for i in range(1, pe): -----
----- x = i ------
----- if x % p == 0: -----
----- f[i] = f[i-1] * x % pe -----
--- numer, denom, negate, ptr = 1, 1, 0, 0 -----
--- while n: -----
----- if f[-1] != 1 and ptr >= e: -----
----- negate ^= (n&1) ^ (k&1) ^ (r&1) -----
----- numer = numer * f[n%pe] % pe -----
----- denom = denom * f[k%pe] % pe * f[r%pe] % pe ------
----- ptr += 1 ------
--- ans = numer * modinv(denom, pe) % pe -----
--- if negate and (p != 2 or e < 3): -----
----- ans = (pe - ans) % pe -----
--- return mod(ans * p**prime_pow, p**E) ------
def choose(n, k, m): # generalized (n choose k) mod m ------
--- factors, x, p = [], m, 2 -----
--- while p*p <= x: -----
e = 0
----- while x % p == 0: -----
e += 1 -----
----- x //= p -----
----- if e: factors.append((p, e)) -----
----- p += 1 ------
--- if x > 1: factors.append((x, 1)) -----
--- crt_array = [granville(n,k,p,e) for p, e in factors] -----
--- mod_array = [p**e for p. e in factors] -----
--- return chinese_remainder(crt_array, mod_array)[0] ------
```

7.3. **Derangements.** Compute the number of permutations with n elesubsets ments such that no element is at their original position:

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n$$

7.4. Factoradics. Convert a permutation of n items to factoradics and vice versa in $O(n \log n)$.

```
// use fenwick tree add, sum, and low code -----
typedef long long LL; ------
void factoradic(int arr[], int n) { // 0 to n-1 ------
```

```
--- for (int i = 1: i < n: i++) add(i, 1): ------
--- for (int i = 0; i < n; i++) { ------
--- int s = sum(arr[i]); -----
--- add(arr[i], -1); arr[i] = s; ------
void permute(int arr[], int n) { // factoradic to perm ------
--- for (int i = 0; i <=n; i++) fen[i] = 0; ------
--- for (int i = 1; i < n; i++) add(i, 1); ------
--- for (int i = 0; i < n; i++) { ------
--- arr[i] = low(arr[i] - 1); ------
--- add(arr[i], -1); -----
--- }}
```

7.5. kth Permutation. Get the next kth permutation of n items, if exists, using factoradics. All values should be from 0 to n-1. Use factoradics methods as discussed above.

```
bool kth_permutation(int arr[], int n, LL k) { -------
--- factoradic(arr. n): // values from 0 to n-1 ------
--- for (int i = n-1; i >= 0 \&\& k > 0; --i){ ------
----- LL temp = arr[i] + k; -----
------ arr[i] = temp % (n - i): ------
----- k = temp / (n - i); -----
--- permute(arr, n); ------
--- return k == 0; } -----
```

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1}$$

- (1) The number of non-crossing partitions of an n-element set
- (2) The number of expressions with n pairs of parentheses
- (3) The number of ways n+1 factors can be parenthesized
- (4) The number of full binary trees with n+1 leaves
- (5) The number of monotonic lattice paths of an $n \times n$ grid (5-SAT) problem)
- (6) The number of triangulations of a convex polygon with n+2sides (non-rotational)
- (7) The number of permutations $\{1, \ldots, n\}$ without a 3-term increasing subsequence
- (8) The number of ways to form a mountain range with n ups and n downs

7.7. Stirling Numbers. s_1 : Count the number of permutations of n elements with k disjoint cycles

 s_2 : Count the ways to partition a set of n elements into k nonempty

$$s_1(n,k) = \begin{cases} 1 & n = k = 0 \\ s_1(n-1,k-1) - (n-1)s_1(n-1,k) & n,k > 0 \\ 0 & \text{elsewhere} \end{cases}$$

$$s_2(n,k) = \begin{cases} 1 & n = k = 0 \\ s_2(n-1,k-1) + ks_2(n-1,k) & n,k > 0 \\ 0 & \text{elsewhere} \end{cases}$$

itive integer n with n positive addends.

$$p(n,k) = \begin{cases} 1 & n=k=0 \\ 0 & n < k \\ p(n-1,k-1) + p(n-k,k) & n \ge k \end{cases}$$

8. Geometry

```
#include <complex> ------
#define x real() ------
#define v imag() ------
typedef std::complex<double> point; // 2D point only -----
const double PI = acos(-1.0), EPS = 1e-7; ------
```

8.1. Dots and Cross Products.

```
double dot(point a, point b) ------
- {return a.x * b.x + a.y * b.y;} // + a.z * b.z; ------
double cross(point a, point b) ------
- {return a.x * b.y - a.y * b.x;} ------
- {return cross(a, b) + cross(b, c) + cross(c, a);} ------
double cross3D(point a, point b) { ------
----- a.z*b.y, a.z*b.x - a.x*b.z);} -----
```

8.2. Angles and Rotations.

```
- // angle formed by abc in radians: PI < x <= PI -----
- return abs(remainder(arg(a-b) - arg(c-b), 2*PI));} ------
point rotate(point p, point a, double d) { ------
- //rotate point a about pivot p CCW at d radians ------
- return p + (a - p) * point(cos(d), sin(d));} -------
```

8.3. Spherical Coordinates.

```
x = r\cos\theta\cos\phi  r = \sqrt{x^2 + y^2 + z^2}
                                \theta = \cos^{-1} x/r
y = r \cos \theta \sin \phi
                                \phi = \operatorname{atan2}(u, x)
    z = r \sin \theta
```

8.4. Point Projection.

```
point proj(point p, point v) { ------
- // project point p onto a vector v (2D & 3D) ------
- return dot(p, v) / norm(v) * v;} ------
point projLine(point p, point a, point b) { -------
- // project point p onto line ab (2D & 3D) ------
point projSeg(point p, point a, point b) { ------
- // project point p onto segment ab (2D & 3D) ------
point projPlane(point p, double a, double b, ------
----- double c, double d) { ------
- // proiect p onto plane ax+bv+cz+d=0 (3D) ------
- // same as: o + p - project(p - o, n): ------
- double k = -d / (a*a + b*b + c*c); -----
- point o(a*k, b*k, c*k), n(a, b, c); -----
- point v(p.x-o.x, p.y-o.y, p.z-o.z); ------
```

- double s = dot(v, n) / dot(n, n); ------

```
----- p.y +s * n.y, o.z + p.z + s * n.z);} -----
8.5. Great Circle Distance.
double greatCircleDist(double lat1, double long1, ------
--- double lat2, double long2, double R) { -----
- long1 *= PI / 180; lat1 *= PI / 180; // to radians ------
- long2 *= PI / 180; lat2 *= PI / 180; -----
----- cos(lat1)*cos(lat2)*cos(abs(long1 - long2))); -----
} ------
// another version, using actual (x, y, z) ------
double greatCircleDist(point a, point b) { -------
- return atan2(abs(cross3D(a, b)), dot3D(a, b)); ------
} ------
8.6. Point/Line/Plane Distances.
--- double c) { ------
- // dist from point p to line ax+by+c=0 -----
- return abs(a*p.x + b*p.y + c) / sqrt(a*a + b*b);} --------
double distPtLine(point p, point a, point b) { ------
- // dist from point p to line ab -----
- return abs((a.y - b.y) * (p.x - a.x) + ------
----- (b.x - a.x) * (p.y - a.y)) / -----
----- hypot(a.x - b.x, a.y - b.y);} ------
double distPtPlane(point p, double a, double b, ------
----- double c, double d) { ------
- // distance to 3D plane ax + by + cz + d = 0 -----
} /*! // distance between 3D lines AB & CD (untested) ------
double distLine3D(point A, point B, point C, point D) { ------
- point u = B - A, v = D - C, w = A - C; ------
- double a = dot(u, u), b = dot(u, v);
- double c = dot(v, v), d = dot(u, w); -----
- double e = dot(v, w), det = a*c - b*b; -----
- double s = det < EPS ? 0.0 : (b*e - c*d) / det; -----
- double t = det < EPS -----
--- ? (b > c ? d/b : e/c) // parallel -----
--- : (a*e - b*d) / det; -----
- point top = A + u * s, bot = w - A - v * t; ------
- return dist(top, bot); ------
} // dist<EPS: intersection */ ------
8.7. Intersections.
8.7.1. Line-Segment Intersection. Get intersection points of 2D --- if (abs(r1-r2) < EPS); // inf intersections -----
lines/segments \overline{ab} and \overline{cd}.
point null(HUGE_VAL, HUGE_VAL); ------
```

```
---- point p[] = {a, b, c, d}; -----
---- sort(p, p + 4, [](point a, point b) { ------
----- return a.x < b.x-EPS || -----
----- (dist(a,b) < EPS && a.y < b.y-EPS); ------
---- return dist(p[1], p[2]) < EPS ? p[1] : null; ------
...}
--- return null: ------
- }
- double s = Ds / D, t = Dt / D; ------
- if (seg && (min(s,t)<-EPS||max(s,t)>1+EPS)) ------
--- return null; -----
}/* double A = cross(d-a, b-a), B = cross(c-a, b-a); ------
return (B*d - A*c)/(B - A); */ -----
8.7.2. Circle-Line Intersection. Get intersection points of circle at center
c. radius r. and line \overline{ab}.
std::vector<point> CL_inter(point c, double r, ------
--- point a, point b) { -----
- point p = projLine(c, a, b); ------
- double d = abs(c - p); vector<point> ans; -----
- if (d > r + EPS); // none -----
- else if (d > r - EPS) ans.push_back(p); // tangent ------
- else if (d < EPS) { // diameter ------</pre>
--- point v = r * (b - a) / abs(b - a); -----
--- ans.push_back(c + v); -----
--- ans.push_back(c - v); ------
- } else { ------
--- double t = acos(d / r): ------
--- p = c + (p - c) * r / d;
--- ans.push_back(rotate(c, p, t)); -----
--- ans.push_back(rotate(c, p, -t)); -----
- } return ans; ------
} ------
8.7.3. Circle-Circle Intersection.
std::vector<point> CC_intersection(point c1, ------
--- double r1, point c2, double r2) { ------
- double d = dist(c1, c2); ------
- vector<point> ans; -----
- if (d < EPS) { -----
- } else if (r1 < EPS) { ------
```

```
8.8. Polygon Areas. Find the area of any 2D polygon given as points
                                                               double area(point p[], int n) { ------
                                                               - double a = 0; ------
                                                               - for (int i = 0, j = n - 1; i < n; j = i++) ------
                                                               --- a += cross(p[i], p[j]); -----
                                                               - return abs(a) / 2; } ------
                                                               8.8.1. Triangle Area. Find the area of a triangle using only their lengths.
                                                               Lengths must be valid.
                                                               double area(double a, double b, double c) { ------
                                                               - double s = (a + b + c) / 2; -----
                                                               Cyclic Quadrilateral Area. Find the area of a cyclic quadrilateral using
                                                               only their lengths. A quadrilateral is cyclic if its inner angles sum up to
                                                               double area(double a, double b, double c, double d) { ------
                                                               - double s = (a + b + c + d) / 2; ------
                                                               - return sqrt((s-a)*(s-b)*(s-c)*(s-d)); } ------
                                                               8.9. Polygon Centroid. Get the centroid/center of mass of a polygon
                                                               in O(m).
                                                               - point ans(0, 0); -----
                                                               - double z = 0; ------
                                                               --- double cp = cross(p[i], p[i]); -----
                                                               --- ans += (p[j] + p[i]) * cp; -----
                                                               --- z += cp; -----
                                                               - } return ans / (3 * z); } ------
                                                               8.10. Convex Hull. Get the convex hull of a set of points using Graham-
                                                               Andrew's scan. This sorts the points at O(n \log n), then performs the
                                                               Monotonic Chain Algorithm at O(n).
                                                               // counterclockwise hull in p[], returns size of hull ------
                                                               bool xcmp(const point a, const point b) ------
                                                               - {return a.x < b.x | | (a.x == b.x && a.v < b.v);} ------
```

```
Ateneo de Manila University
```

```
return barv(A,B,C,c/b*a,a/c*b,b/a*c); // CCW ------- radius = dist(center, p[i]); -------
border) of a polygon in O(n).
                         bool inPolygon(point q, point p[], int n) { ------
                         - bool in = false; -----
                         - for (int i = 0, i = n - 1; i < n; i = i++) ------
                         - return bary(A,B,C,norm(B-C),norm(C-A),norm(A-B));} ------
--- in \hat{} (((p[i].y > q.y) != (p[j].y > q.y)) && ------
---- q.x < (p[j].x - p[i].x) * (q.y - p[i].y) / -----
                         8.14. Convex Polygon Intersection. Get the intersection of two con-
---- (p[j].y - p[i].y) + p[i].x); -----
                         vex polygons in O(n^2).
- return in; } ------
                         std::vector<point> convex_polygon_inter(point a[], ------
bool onPolygon(point q, point p[], int n) { ------
                          --- int an, point b[], int bn) { -----
- for (int i = 0, j = n - 1; i < n; i = i++) ------
                         - point ans[an + bn + an*bn]; -----
- if (abs(dist(p[i], q) + dist(p[i], q) - -----
                         - int size = 0; -----
----- dist(p[i], p[j])) < EPS) -----
                          - for (int i = 0; i < an; ++i) -----
--- return true; -----
                         --- if (inPolygon(a[i].b.bn) || onPolygon(a[i].b.bn)) ------
- return false: } ------
                          ----- ans[size++] = a[i]; -----
O(n), such that \angle abp is counter-clockwise.
                         --- if (inPolygon(b[i],a,an) || onPolygon(b[i],a,an)) ------
                         ---- ans[size++] = b[i]; -----
vector<point> cut(point p[], int n, point a, point b) { ------
- vector<point> poly; ------
                         - for (int i = 0, I = an - 1; i < an; I = i++) -----
--- if (c1 > -EPS) poly.push_back(p[i]); ------- ans[size++] = p; -------
- size = convex_hull(ans, size); ------
- } return poly; } ------
                          - return vector<point>(ans, ans + size); ------
8.13. Triangle Centers.
                         } ------
point bary(point A, point B, point C, ------
----- double a, double b, double c) { ------
                         8.15. Pick's Theorem for Lattice Points. Count points with integer
- return (A*a + B*b + C*c) / (a + b + c);} ------
                         coordinates inside and on the boundary of a polygon in O(n) using Pick's
point trilinear(point A, point B, point C, ------
                         theorem: Area = I + B/2 - 1.
----- double a, double b, double c) { ------
                         int interior(point p[], int n) ------
- return bary(A,B,C,abs(B-C)*a, -----
                         - {return area(p,n) - boundary(p,n) / 2 + 1;} ------
----- abs(C-A)*b,abs(A-B)*c);} -----
                         int boundary(point p[], int n) { ------
point centroid(point A, point B, point C) { ------
                          int ans = 0; -----
                          - for (int i = 0, j = n - 1; i < n; j = i++) -----
point circumcenter(point A, point B, point C) { ------
                         --- ans += gcd(p[i].x - p[j].x, p[i].y - p[j].y); -----
- double a=norm(B-C), b=norm(C-A), c=norm(A-B); ------
                          return ans;} ------
- return bary(A,B,C,a*(b+c-a),b*(c+a-b),c*(a+b-c));} ------
                         8.16. Minimum Enclosing Circle. Get the minimum bounding ball
point orthocenter(point A, point B, point C) { ------
                         that encloses a set of points (2D or 3D) in \Theta n.
- return bary(A,B,C, tan(angle(B,A,C)), ------
                         ----- tan(angle(A,B,C)), tan(angle(A,C,B)));} -----
point incenter(point A, point B, point C) { ------
                         - return bary(A,B,C,abs(B-C),abs(A-C),abs(A-B));} ------
// incircle radius given the side lengths a, b, c ------
                         - double a = abs(B-C), b = abs(C-A), c = abs(A-B); ------ center.x = (p[i].x + p[i].x) / 2; ------ - // returns k nearest neighbors of (x, y) in tree ------
```

```
8.17. Shamos Algorithm. Solve for the polygon diameter in O(n \log n).
double shamos(point p[], int n) { ------
- point *h = new point[n+1]; copy(p, p + n, h); ------
- int k = convex_hull(h, n); if (k <= 2) return 0; ----------</pre>
- h[k] = h[0]; double d = HUGE_VAL; -----
- for (int i = 0, j = 1; i < k; ++i) { ------
--- while (distPtLine(h[j+1], h[i], h[i+1]) >= -----
----- distPtLine(h[j], h[i], h[i+1])) { ------
i = (i + 1) % k:
...}
--- d = min(d, distPtLine(h[j], h[i], h[i+1])); -----
- } return d: } ------
8.18. k\mathbf{D} Tree. Get the k-nearest neighbors of a point within pruned
radius in O(k \log k \log n).
#define cpoint const point& -----
bool cmpx(cpoint a, cpoint b) {return a.x < b.x;} ------</pre>
bool cmpy(cpoint a, cpoint b) {return a.y < b.y;} ------</pre>
- KDTree(point p[], int n): p(p), n(n) {build(0,n);} -----
- priority_queue< pair<double, point*> > pq; -------
- point *p; int n, k; double qx, qy, prune; ------
- void build(int L, int R, bool dvx=false) { ------
--- if (L >= R) return; -----
--- int M = (L + R) / 2; -----
--- nth_element(p + L, p + M, p + R, dvx?cmpx:cmpy); -----
--- build(L, M, !dvx); build(M + 1, R, !dvx); -----
_ } ------
- void dfs(int L, int R, bool dvx) { ------
--- if (L >= R) return; -----
--- int M = (L + R) / 2; -----
--- double dx = qx - p[M].x, dy = qy - p[M].y; -----
--- double delta = dvx ? dx : dy; -----
--- double D = dx * dx + dy * dy; -----
--- if(D<=prune && (pq.size()<k||D<pq.top().first)){ ------
---- pq.push(make_pair(D, &p[M])); ------
---- if (pq.size() > k) pq.pop(); -----
```

```
--- while (!pq.empty()) { -----
---- v.push_back(*pq.top().second); ------
---- pq.pop(); ------
--- } reverse(v.begin(), v.end()); ------
--- return v; ------
}; ------
```

set of points in $O(n \log n)$ by sweeping a line and keeping a bounded rectangle. Modifiable for other metrics such as Minkowski and Manhattan distance. For external point queries, see kD Tree.

```
bool cmpy(const point a, const point b) ------
- {return a.y < b.y;} ------
double closest_pair_sweep(point p[], int n) { ------
- if (n <= 1) return HUGE_VAL; ------</pre>
- sort(p, p + n, cmpy); -----
- set<point> box; box.insert(p[0]); ------
- double best = 1e13; // infinity, but not HUGE_VAL -----
--- while(L < i && p[i].y - p[L].y > best) -----
---- box.erase(p[L++]); -----
--- point bound(p[i].x - best, p[i].y - best); -----
--- set<point>::iterator it= box.lower_bound(bound); ------
--- while (it != box.end() && p[i].x+best >= it->x){ ------
----- double dx = p[i].x - it->x; ------
----- double dy = p[i].y - it->y; ------
---- best = min(best. sart(dx*dx + dv*dv)): -----
---- ++it; -----
--- box.insert(p[i]); -----
- } return best; ------
}
```

of a collection of lines $a_i + b_i x$, plot the points (b_i, a_i) , add the point the convex hull.

8.21. Formulas. Let $a = (a_x, a_y)$ and $b = (b_x, b_y)$ be two-dimensional

- $a \cdot b = |a||b|\cos\theta$, where θ is the angle between a and b.
- $a \times b = |a||b|\sin\theta$, where θ is the signed angle between a and b.
- $a \times b$ is equal to the area of the parallelogram with two of its sides formed by a and b. Half of that is the area of the triangle formed by a and b.
- The line going through a and b is Ax+By=C where $A=b_y-a_y$, $B = a_x - b_x$, $C = Aa_x + Ba_y$.
- Two lines $A_1x + B_1y = C_1$, $A_2x + B_2y = C_2$ are parallel iff. $D = A_1B_2 - A_2B_1$ is zero. Otherwise their unique intersection is $(B_2C_1 - B_1C_2, A_1C_2 - A_2C_1)/D$.
- Euler's formula: V E + F = 2
- Side lengths a, b, c can form a triangle iff. a + b > c, b + c > aand a+c>b.
- Sum of internal angles of a regular convex n-gon is $(n-2)\pi$.
- Law of sines: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ Law of cosines: $b^2 = a^2 + c^2 2ac\cos B$

```
• Internal tangents of circles (c_1, r_1), (c_2, r_2) intersect at (c_1 r_2 +
                                               (c_2r_1)/(r_1+r_2), external intersect at (c_1r_2-c_2r_1)/(r_1+r_2).
                                                         9. Other Algorithms
                                           9.1. 2SAT. A fast 2SAT solver.
                                          struct { vi adj; int val, num, lo; bool done; } V[2*1000+100];
                                           struct TwoSat { ------
- TwoSat(int _n) : n(_n) { ------
```

```
--- rep(i,0,2*n+1) ------
                                    ----- V[i].adj.clear(), ------
                                    ----- V[i].val = V[i].num = -1, V[i].done = false; } ------
                                    - bool put(int x, int v) { ------
                                    --- return (V[n+x].val &= v) != (V[n-x].val &= 1-v); } ------
                                    --- V[n-x].adj.push_back(n+y), V[n-y].adj.push_back(n+x); } --
                                    - int dfs(int u) { -----
                                    --- int br = 2, res; -----
                                    --- S.push_back(u), V[u].num = V[u].lo = at++; ------
                                    --- iter(v,V[u].adj) { ------
                                    ---- if (V[*v].num == -1) { ------
                                    ----- if (!(res = dfs(*v))) return 0; -----
                                    ----- br |= res, V[u].lo = min(V[u].lo, V[*v].lo); ------
                                    ----- } else if (!V[*v].done) ------
                                    ----- V[u].lo = min(V[u].lo, V[*v].num); ------
                                    ----- br |= !V[*v].val: } -----
                                    --- res = br - 3; -----
                                    --- if (V[u].num == V[u].lo) rep(i,res+1,2) { ------
                                    ---- for (int j = (int)size(S)-1; ; j--) { -------
                                    ----- int v = S[j]; -----
                                    ----- if (i) { ------
                                    ----- if (!put(v-n, res)) return 0; -----
                                    ----- V[v].done = true, S.pop_back(); -----
----- if (v == u) break: } -----
                                    --- return br | !res; } ------
                                    - bool sat() { ------
                                    --- rep(i,0,2*n+1) ------
                                    ---- if (i != n && V[i].num == -1 && !dfs(i)) return false; -
                                    --- return true: } }: ------
```

9.2. DPLL Algorithm. A SAT solver that can solve a random 1000variable SAT instance within a second.

```
struct SAT { -----
- int n: -----
- vi cl. head. tail. val: ------
- vii log; vvi w, loc; ------
- SAT() : n(0) { } ------
```

```
--- iter(it,seen) cl.push_back(*it); -----
--- tail.push_back((int)cl.size() - 2); } ------
- bool assume(int x) { ------
--- if (val[x^1]) return false; -----
--- if (val[x]) return true; -----
--- val[x] = true; log.push_back(ii(-1, x)); ------
--- rep(i,0,w[x^1].size()) { ------
----- int at = w[x^1][i], h = head[at], t = tail[at]; ------
----- log.push_back(ii(at, h)); ------
----- if (cl[t+1] != (x^1)) swap(cl[t], cl[t+1]); ------
----- while (h < t && val[cl[h]^1]) h++; ------
---- if ((head[at] = h) < t) { ------
------ w[cl[h]].push_back(w[x^1][i]); ------
----- swap(w[x^1][i--], w[x^1].back()); -----
----- w[x^1].pop_back(); -----
----- swap(cl[head[at]++], cl[t+1]); -----
----- } else if (!assume(cl[t])) return false; } ------
--- return true; } ------
- bool bt() { -----
--- int v = log.size(), x; ll b = -1; ------
--- rep(i,0,n) if (val[2*i] == val[2*i+1]) { ------
----- ll s = 0, t = 0; ------
---- rep(j,0,2) { iter(it,loc[2*i+j]) -----
----- s+=1LL<<max(0,40-tail[*it]+head[*it]); swap(s,t); } --
---- if (\max(s,t) >= b) b = \max(s,t), x = 2*i + (t>=s); } ---
--- if (b == -1 || (assume(x) && bt())) return true; ------
--- while (log.size() != v) { ------
----- int p = log.back().first, q = log.back().second; -----
----- if (p == -1) val[q] = false; else head[p] = q; ------
----- log.pop_back(); } ------
--- return assume(x^1) && bt(); } -----
- bool solve() { ------
--- val.assign(2*n+1, false); ------
--- w.assign(2*n+1, vi()); loc.assign(2*n+1, vi()); ------
--- rep(i,0,head.size()) { ------
---- if (head[i] == tail[i]+2) return false; -----
---- rep(at,head[i],tail[i]+2) loc[cl[at]].push_back(i); } --
--- rep(i,0,head.size()) if (head[i] < tail[i]+1) rep(t,0,2) -
----- w[cl[tail[i]+t]].push_back(i); ------
--- rep(i,0,head.size()) if (head[i] == tail[i]+1) ------
---- if (!assume(cl[head[i]])) return false; -----
--- return bt(); } ------
9.3. Dynamic Convex Hull Trick.
```

```
// USAGE: hull.insert_line(m, b); hull.gety(x); ------
                   typedef long long ll; -----
                   bool UPPER_HULL = true; // you can edit this -----
                   bool IS_QUERY = false, SPECIAL = false; ------
                   struct line { ------
---- seen.insert(IDX(*it)); } ------ if (!IS_QUERY) return m < k.m; ------
```

```
Ateneo de Manila University
```

```
----- ll n1 = y - b, d1 = m; ------
----- if (d1 < 0) n1 *= -1. d1 *= -1: -----
----- if (d2 < 0) n2 *= -1, d2 *= -1; ------
----- return (n1) * d2 > (n2) * d1; -----
-----}}}; ------
--- bool bad(iterator y) { ------
----- iterator z = next(y); -----
----- if (y == begin()) { ------
----- if (z == end()) return 0; -----
----- return y->m == z->m && y->b <= z->b; -----
----- iterator x = prev(y); -----
----- if (z == end()) -----
----- return y->m == x->m && y->b <= x->b; -----
----- return (x->b - y->b)*(z->m - y->m)>= ------
----- (y->b - z->b)*(y->m - x->m);
---}
--- iterator next(iterator y) {return ++y;} ------
--- iterator prev(iterator y) {return --y;} ------
--- void insert_line(ll m, ll b) { ------
----- IS_QUERY = false; -----
----- if (!UPPER_HULL) m *= -1; ------
----- iterator y = insert(line(m, b)); ------
----- y->it = y; if (bad(y)) {erase(y); return;} ------
----- while (next(y) != end() && bad(next(y))) ------
----- erase(next(y)); -----
----- while (y != begin() && bad(prev(y))) ------
----- erase(prev(y)); ------
---}
--- ll gety(ll x) { ------
----- IS_QUERY = true; SPECIAL = false; -----
----- const line& L = *lower_bound(line(x, 0)); ------
----- ll y = (L.m) * x + L.b; -----
----- return UPPER_HULL ? y : -y; ------
--- } ------
--- ll getx(ll y) { ------
----- const line& l = *lower_bound(line(y, 0)); ------
----- return /*floor*/ ((y - l.b + l.m - 1) / l.m); ------
---}
} hull; ------
const line* line::see(multiset<line>::iterator it) ---------
const {return ++it == hull.end() ? NULL : &*it;} ------
9.4. Stable Marriage. The Gale-Shapley algorithm for solving the sta-
```

```
ble marriage problem.
```

```
- queue<int> q; -----
```

dancing links. Solves the Exact Cover problem. bool handle_solution(vi rows) { return false; } ------

```
- struct node { -----
--- node *l, *r, *u, *d, *p; ------
--- int row, col, size; -----
--- node(int _row, int _col) : row(_row), col(_col) { ------
----- size = 0; l = r = u = d = p = NULL; } }; ------
- int rows, cols, *sol; ------
- bool **arr; ------
- node *head; ------
- exact_cover(int _rows, int _cols) ------
---: rows(_rows), cols(_cols), head(NULL) { -------
--- arr = new bool*[rows]; -----
--- sol = new int[rows]; -----
--- rep(i,0,rows) ------
---- arr[i] = new bool[cols], memset(arr[i], 0, cols); } ----
- void set_value(int row, int col, bool val = true) { ------
--- arr[row][col] = val; } -----
--- node ***ptr = new node**[rows + 1]; ------
--- rep(i,0,rows+1) { ------
----- ptr[i] = new node*[cols]; -----
---- rep(j,0,cols) -----
----- if (i == rows || arr[i][j]) ptr[i][j] = new node(i,j);
----- else ptr[i][j] = NULL; } ------
--- rep(i,0,rows+1) { ------
---- rep(j,0,cols) { ------
----- if (!ptr[i][j]) continue; -----
----- int ni = i + 1, nj = j + 1; -----
----- while (true) { ------
----- if (ni == rows + 1) ni = 0: -----
----- if (ni == rows || arr[ni][j]) break; -----
-----+ni; } -----
----- ptr[i][j]->d = ptr[ni][j]; -----
----- ptr[ni][j]->u = ptr[i][j]; ------
```

----- while (true) { ------

----- **if** (nj == cols) nj = 0; -----

----- if (i == rows || arr[i][ni]) break: -----

----- ptr[i][j]->r = ptr[i][nj]; -----

-----+nj; } -----

```
----- else if (inv[curw][curm] < inv[curw][eng[curw]]) ------ rep(i.0.rows+1) ------
- #define COVER(c, i, j) \\ ------
 --- for (node *i = c->d; i != c; i = i->d) \[ \bigc\] ------
                                                                            ---- for (node *j = i->r; j != i; j = j->r) \[ \] -----
                                                                            ----- j->d->u = j->u, j->u->d = j->d, j->p->size--; ------
                                                                            - #define UNCOVER(c, i, j) \ ------
                                                                            --- for (node *i = c->u; i != c; i = i->u) \ ------
                                                                            ------ j->p->size++, j->d->u = j->u->d = j; \sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}} \simptintite{\seth}\sinthintity}}}} \end{\sqrt{\sqrt{\sint{\sint{\sint{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}} \end{\sqrt{\sqrt{\sq}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sint{\sq}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sq}}}}}}} \end{\sqrt{\sq}
                                                                            --- c->r->l = c->l->r = c: ------
                                                                            - bool search(int k = 0) { ------
                                                                            --- if (head == head->r) { -----
                                                                            ---- vi res(k); -----
                                                                            ---- rep(i,0,k) res[i] = sol[i]; -----
                                                                            ---- sort(res.begin(), res.end()); -----
                                                                            ----- return handle_solution(res): } ------
                                                                            --- node *c = head->r, *tmp = head->r; -----
                                                                            --- for ( ; tmp != head; tmp = tmp->r) -----
                                                                            ---- if (tmp->size < c->size) c = tmp; -----
                                                                            --- if (c == c->d) return false; -----
                                                                            --- COVER(c, i, j); -----
                                                                            --- bool found = false; -----
                                                                            --- for (node *r = c->d; !found && r != c; r = r->d) { ------
                                                                            ---- sol[k] = r->row; -----
                                                                            ----- for (node *j = r->r; j != r; j = j->r) { -------
                                                                            ----- COVER(j->p, a, b); } -----
                                                                            ---- found = search(k + 1); -----
                                                                            ----- UNCOVER(j->p, a, b); } ------
                                                                            --- UNCOVER(c, i, j); ------
                                                                            --- return found: } }: -------
```

9.6. Matroid Intersection. Computes the maximum weight and cardinality intersection of two matroids, specified by implementing the required abstract methods, in $O(n^3(M_1 + M_2))$.

```
struct MatroidIntersection { ------
- virtual void add(int element) = 0; ------
- virtual void remove(int element) = 0; ------
- virtual bool valid1(int element) = 0; ------
- virtual bool valid2(int element) = 0; ------
- int n, found; vi arr; vector<ll> ws; ll weight; ------
- MatroidIntersection(vector<ll> weights) ------
```

```
---- rep(i,0,n) arr.push_back(i); } ------ int res = 0, lo = 1, hi = size(seg); ------ --- // random mutation ------
--- vector<tuple<int,int,ll>> es; ---- '/ compute delta for mutation ---- '/ compute delta for mutation ----
----- remove(arr[cur]); ------
                             - while (at !=-1) ans.push_back(at), at = back[at]; ------- if (delta >= 0 || randfloat(rng) < exp(delta / temp)) { --
---- rep(nxt, found, n) { -----
                             ----- if (valid1(arr[nxt])) -----
                             - return ans; } ------ score += delta; -----
----- es.emplace_back(cur, nxt, -ws[arr[nxt]]); ------
                                                           ----- // if (score >= target) return; -----
                             9.10. Dates. Functions to simplify date calculations.
----- if (valid2(arr[nxt])) ------
                                                           --- }
                             ----- es.emplace_back(nxt, cur, ws[arr[cur]]); } ------
                                                           --- iters++; } ------
                             ---- add(arr[cur]); } ------
                                                           - return score: } ------
--- do { ch = false; -----
                             - return 1461 * (y + 4800 + (m - 14) / 12) / 4 + ------
                             --- 367 * (m - 2 - (m - 14) / 12 * 12) / 12 - -----
---- for (auto [u,v,c] : es) { ------
                                                           9.12. Simplex.
                             --- 3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 + ------
----- pair<ll, int > nd(d[u].first + c, d[u].second + 1); ----
                                                           typedef long double DOUBLE; ------
                             --- d - 32075; } ------
----- if (p[u] != -1 && nd < d[v]) ------
                                                           typedef vector<DOUBLE> VD; ------
                             void intToDate(int jd, int &y, int &m, int &d) { ------
----- d[v] = nd, p[v] = u, ch = true; } } while (ch); ----
                                                           typedef vector<VD> VVD; -----
                             - int x, n, i, j; -----
--- if (p[n] == -1) return false; -----
                                                           typedef vector<int> VI; -----
                             - x = jd + 68569; -----
--- int cur = p[n]; ------
                                                           const DOUBLE EPS = 1e-9; ------
                             - n = 4 * x / 146097; -----
--- while(p[cur]!=cur)a.push_back(cur),a.swap(r),cur=p[cur]; -
                                                           - x -= (146097 * n + 3) / 4; ------
--- a.push_back(cur); ------
                                                            int m, n; -----
                             -i = (4000 * (x + 1)) / 1461001;
--- sort(a.begin(), a.end()); sort(r.rbegin(), r.rend()); ----
                                                            VI B, N; -----
                             - x -= 1461 * i / 4 - 31; -----
--- iter(it,r)remove(arr[*it]),swap(arr[--found],arr[*it]); --
                                                            VVD D; -----
                             - j = 80 * x / 2447; -----
--- iter(it,a)add(arr[*it]),swap(arr[found++],arr[*it]); -----
                             - d = x - 2447 * j / 80; -----
                                                            LPSolver(const VVD &A, const VD &b, const VD &c) : -----
--- weight -= d[n].first; return true; } }; ------
                                                           - m(b.size()), n(c.size()), -----
                             - x = j / 11; -----
                                                           - N(n + 1), B(m), D(m + 2, VD(n + 2)) { ------
9.7. nth Permutation. A very fast algorithm for computing the nth _ m = j + 2 - 12 * x;
permutation of the list \{0, 1, \dots, k-1\}.
                                                           - for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) ----
                             --- D[i][j] = A[i][i]; -----
vector<int> nth_permutation(int cnt, int n) { -------
                             9.11. Simulated Annealing. An example use of Simulated Annealing
                                                           - for (int i = 0; i < m; i++) { B[i] = n + i; D[i][n] = -1; --
- vector<int> idx(cnt), per(cnt), fac(cnt); ------
                             to find a permutation of length n that maximizes \sum_{i=1}^{n-1} |p_i - p_{i+1}|.
                                                           --- D[i][n + 1] = b[i]; } -----
- rep(i,0,cnt) idx[i] = i; -----
                             double curtime() { ------
                                                           - for (int j = 0; j < n; j++) { N[j] = j; D[m][j] = -c[j]; } -
- rep(i,1,cnt+1) fac[i - 1] = n % i, n /= i; ------
                                                           - N[n] = -1; D[m + 1][n] = 1; } ------
                             - return static_cast<double>(clock()) / CLOCKS_PER_SEC; } ----
- for (int i = cnt - 1; i >= 0; i--) ------
                             int simulated_annealing(int n, double seconds) { ------
                                                            void Pivot(int r, int s) { ------
--- per[cnt - i - 1] = idx[fac[i]], -----
                             - default_random_engine rnq; -----
                                                           - double inv = 1.0 / D[r][s]; ------
--- idx.erase(idx.begin() + fac[i]); ------
                             - uniform_real_distribution<double> randfloat(0.0, 1.0); -----
                                                           - for (int i = 0; i < m + 2; i++) if (i != r) ------
- return per; } ------
                             - uniform_int_distribution<int> randint(0, n - 2); -------
                                                           -- for (int j = 0; j < n + 2; j++) if (j != s) ------
                             - // random initial solution -----
9.8. Cycle-Finding. An implementation of Floyd's Cycle-Finding algo-
                                                           --- D[i][j] -= D[r][j] * D[i][s] * inv; -----
                             - vi sol(n); -----
rithm.
                                                           - for (int j = 0; j < n + 2; j++) if (j != s) D[r][j] *= inv;
- int t = f(x0), h = f(t), mu = 0, lam = 1; -----
                             - // initialize score ------ - swap(B[r], N[s]); } ------
- while (t != h) t = f(t), h = f(f(h)); -----
                             - int score = 0; -----
                                                           bool Simplex(int phase) { ------
- h = x0; -----
                             - while (t != h) t = f(t), h = f(h), mu++; -----
                             - h = f(t); -----
                             - while (t != h) h = f(h), lam++; -----
                             ---- progress = 0, temp = T0, ----- -- for (int j = 0; j <= n; j++) { ------
- return ii(mu, lam); } ------
                             ---- starttime = curtime(); ------ if (phase == 2 && N[j] == -1) continue; ------
9.9. Longest Increasing Subsequence.
                             vi lis(vi arr) { ------ D[x][s] \& N[i] < N[s] s = i; } ------
- if (arr.empty()) return vi(); ------ progress = (curtime() - starttime) / seconds; ----- --- if (D[x][s] > -EPS) return true; ------
```

```
Ateneo de Manila University
```

```
24
```

```
-- for (int i = 0; i < m; i++) { ------
                                         DOUBLE _b[m] = \{ 10, -4, 5, -5 \}; ------
--- if (D[i][s] < EPS) continue; -----
                                         DOUBLE _{c[n]} = \{ 1, -1, 0 \};
--- if (r == -1 \mid | D[i][n + 1] / D[i][s] < D[r][n + 1] / ----
                                         VVD A(m): -----
                                         VD b(_b, _b + m); -----
----- D[r][s] \mid | (D[i][n + 1] / D[i][s]) == (D[r][n + 1] / -
                                         VD c(_c, _c + n); -----
-- if (r == -1) return false; -----
                                         for (int i = 0; i < m; i++) A[i] = VD(_A[i], _A[i] + n);
-- Pivot(r, s); } } ------
                                         LPSolver solver(A, b, c): ------
                                         VD x; -----
DOUBLE Solve(VD &x) { ------
- int r = 0: ------
                                         DOUBLE value = solver.Solve(x); ------
- for (int i = 1; i < m; i++) if (D[i][n + 1] < D[r][n + 1]) -
                                         cerr << "VALUE: " << value << endl; // VALUE: 1.29032 ---
--- r = i: ------
                                         cerr << "SOLUTION:"; // SOLUTION: 1.74194 0.451613 1 ----
- if (D[r][n + 1] < -EPS) { ------
                                         for (size_t i = 0; i < x.size(); i++) cerr << " " << x[i];
-- Pivot(r, n); -----
                                         cerr << endl: -----
                                         return 0: -----
-- if (!Simplex(1) || D[m + 1][n + 1] < -EPS) ------
---- return -numeric_limits<DOUBLE>::infinity(); ------
-- for (int i = 0; i < m; i++) if (B[i] == -1) { ------
                                      9.13. Fast Square Testing. An optimized test for square integers.
--- int s = -1; -----
                                      long long M; ------
--- for (int j = 0; j <= n; j++) -----
                                      ---- if (s == -1 || D[i][j] < D[i][s] || ------
                                      - rep(i,0,64) M |= 1ULL << (63-(i*i)%64); } -----
----- D[i][j] == D[i][s] \&\& N[j] < N[s]) ------
                                      inline bool is_square(ll x) { ------
----- s = j; ------
                                      - if (x == 0) return true; // XXX ------
--- Pivot(i, s); } } -----
                                      - if ((M << x) >= 0) return false; -----
- if (!Simplex(2)) return numeric_limits<DOUBLE>::infinitv():
                                      - int c = __builtin_ctz(x); ------
- x = VD(n); -----
                                      - if (c & 1) return false; -----
- for (int i = 0; i < m; i++) if (B[i] < n) ------
                                      - X >>= C: -----
--- x[B[i]] = D[i][n + 1]; ------
                                      - if ((x&7) - 1) return false; -----
- ll r = sqrt(x); -----
// Two-phase simplex algorithm for solving linear programs --
                                      - return r*r == x; } ------
// of the form ------
            c^T x -----
                                      9.14. Fast Input Reading. If input or output is huge, sometimes it
           Ax <= b -----
                                      is beneficial to optimize the input reading/output writing. This can be
            x >= 0 -----
                                      achieved by reading all input in at once (using fread), and then parsing
// INPUT: A -- an m x n matrix -----
                                      it manually. Output can also be stored in an output buffer and then
      b -- an m-dimensional vector ------
                                      dumped once in the end (using fwrite). A simpler, but still effective, way
      c -- an n-dimensional vector -----
                                      to achieve speed is to use the following input reading method.
      x -- a vector where the optimal solution will be ---
                                      void readn(register int *n) { ------
         stored -----
                                      - int sign = 1; -----
// OUTPUT: value of the optimal solution (infinity if ------
                                      - register char c; ------
            unbounded above, nan if infeasible) -----
                                      -*n = 0:
// To use this code, create an LPSolver object with A, b, ----
                                      // and c as arguments. Then, call Solve(x). ------
                                      --- switch(c) { ------
// #include <iostream> ------
                                      ---- case '-': sign = -1; break; -----
// #include <iomanip> ------
                                      ----- case ' ': goto hell; ------
// #include <vector> -----
                                      ---- case '\n': goto hell; -----
// #include <cmath> -----
                                      ----- default: *n *= 10: *n += c - '0': break: } } -----
// #include <limits> -----
                                      hell: -----
// using namespace std; -----
                                      - *n *= sign; } ------
// int main() { ------
   const int m = 4; -----
                                      9.15. 128-bit Integer. GCC has a 128-bit integer data type named
   const int n = 3; -----
                                      __int128. Useful if doing multiplication of 64-bit integers, or something
  DOUBLE _A[m][n] = { ------
                                      needing a little more than 64-bits to represent. There's also __float128.
    { 6, -1, 0 }, ------
                                      9.16. Bit Hacks.
    { -1, -5, 0 }, -----
                                      { 1, 5, 1 }, ------
                                      - int y = x & -x, z = x + y; ------
    { -1, -5, -1 } ------
                                      - return z | ((x ^ z) >> 2) / y; } ------
  }: ------
```

10. Other Combinatorics Stuff

Catalan	$C_0 = 1, C_n = \frac{1}{n+1} {2n \choose n} = \sum_{i=0}^{n-1} C_i C_{n-i-1} = \frac{4n-2}{n+1} C_{n-1}$	
Stirling 1st kind	$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1, \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ n \end{bmatrix} = 0, \begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$	#perms of n objs with exactly k cycles
Stirling 2nd kind	$\begin{Bmatrix} {n \atop 1} \end{Bmatrix} = \begin{Bmatrix} {n \atop n} \end{Bmatrix} = 1, \begin{Bmatrix} {n \atop k} \end{Bmatrix} = k \begin{Bmatrix} {n-1 \atop k} \end{Bmatrix} + \begin{Bmatrix} {n-1 \atop k-1} \end{Bmatrix}$	#ways to partition n objs into k nonempty sets
Euler	$\left \left\langle {n \atop 0} \right\rangle = \left\langle {n \atop n-1} \right\rangle = 1, \left\langle {n \atop k} \right\rangle = (k+1) \left\langle {n-1 \atop k} \right\rangle + (n-k) \left\langle {n-1 \atop k-1} \right\rangle$	#perms of n objs with exactly k ascents
Euler 2nd Order		#perms of $1, 1, 2, 2,, n, n$ with exactly k ascents
Bell	$B_1 = 1, B_n = \sum_{k=0}^{n-1} {\binom{n}{k}} {\binom{n-1}{k}} = \sum_{k=0}^{n} {\binom{n}{k}}$	#partitions of $1n$ (Stirling 2nd, no limit on k)

#labeled rooted trees	n^{n-1}
#labeled unrooted trees	n^{n-2}
#forests of k rooted trees	$\frac{k}{n} \binom{n}{k} n^{n-k}$
$\sum_{i=1}^{n} i^2 = n(n+1)(2n+1)/6$	$\sum_{i=1}^{n} i^3 = n^2(n+1)^2/4$
$!n = n \times !(n-1) + (-1)^n$!n = (n-1)(!(n-1)+!(n-2))
$\sum_{i=1}^{n} \binom{n}{i} F_i = F_{2n}$	$\sum_{i} \binom{n-i}{i} = F_{n+1}$
$\sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}$	$x^{k} = \sum_{i=0}^{k} i! \begin{Bmatrix} k \\ i \end{Bmatrix} \binom{x}{i} = \sum_{i=0}^{k} \begin{Bmatrix} k \\ i \end{Bmatrix} \binom{x+i}{k}$
$a \equiv b \pmod{x,y} \Rightarrow a \equiv b \pmod{\operatorname{lcm}(x,y)}$	$\sum_{d n} \phi(d) = n$
$ac \equiv bc \pmod{m} \Rightarrow a \equiv b \pmod{\frac{m}{\gcd(c,m)}}$	$(\sum_{d n} \sigma_0(d))^2 = \sum_{d n} \sigma_0(d)^3$
$p \text{ prime } \Leftrightarrow (p-1)! \equiv -1 \pmod{p}$	$\gcd(n^a - 1, n^b - 1) = n^{\gcd(a,b)} - 1$
$\sigma_x(n) = \prod_{i=0}^r rac{p_i^{(a_i+1)x} - 1}{p_i^x - 1}$	$\sigma_0(n) = \prod_{i=0}^r (a_i + 1)$
$\sum_{k=0}^{m} (-1)^k \binom{n}{k} = (-1)^m \binom{n-1}{m}$	
$2^{\omega(n)} = O(\sqrt{n})$	$\sum_{i=1}^{n} 2^{\omega(i)} = O(n \log n)$
$d = v_i t + \frac{1}{2} a t^2$	$\overline{v_f^2} = v_i^2 + 2ad$
$v_f = v_i + at$	$d = \frac{v_i + v_f}{2}t$

10.1. The Twelvefold Way. Putting n balls into k boxes.

	$_{\mathrm{Balls}}$	$_{ m same}$	distinct	$_{ m same}$	distinct	
	Boxes	same	same	distinct	distinct	Remarks
	-	$p_k(n)$	$\sum_{i=0}^{k} {n \brace i}$	$\binom{n+k-1}{k-1}$	k^n	$p_k(n)$: #partitions of n into $\leq k$ positive parts
5	size ≥ 1	p(n,k)	$\binom{n}{k}$	$\binom{n-1}{k-1}$	$k!\binom{n}{k}$	p(n,k): #partitions of n into k positive parts
8	size ≤ 1	$[n \le k]$	$[n \le k]$	$\binom{k}{n}$	$n!\binom{k}{n}$	[cond]: 1 if $cond = true$, else 0

11. Misc

11.1. Debugging Tips.

- Stack overflow? Recursive DFS on tree that is actually a long path?
- Floating-point numbers
 - Getting NaN? Make sure acos etc. are not getting values out of their range (perhaps 1+eps).
 - Rounding negative numbers?
 - Outputting in scientific notation?
- Wrong Answer?
 - Read the problem statement again!
 - Are multiple test cases being handled correctly? Try repeating the same test case many times.
 - Integer overflow?
 - Think very carefully about boundaries of all input parameters
 - Try out possible edge cases:
 - * $n = 0, n = -1, n = 1, n = 2^{31} 1$ or $n = -2^{31}$
 - * List is empty, or contains a single element
 - * n is even, n is odd
 - * Graph is empty, or contains a single vertex
 - * Graph is a multigraph (loops or multiple edges)
 - * Polygon is concave or non-simple
 - Is initial condition wrong for small cases?
 - Are you sure the algorithm is correct?
 - Explain your solution to someone.
 - Are you using any functions that you don't completely understand? Maybe STL functions?
 - Maybe you (or someone else) should rewrite the solution?
 - Can the input line be empty?
- Run-Time Error?
 - Is it actually Memory Limit Exceeded?

11.2. Solution Ideas.

- Dynamic Programming
 - Parsing CFGs: CYK Algorithm
 - Drop a parameter, recover from others
 - Swap answer and a parameter
 - When grouping: try splitting in two
 - 2^k trick
 - When optimizing
 - * Convex hull optimization
 - $\cdot \operatorname{dp}[i] = \min_{i < i} \{\operatorname{dp}[j] + b[j] \times a[i]\}$
 - $b[j] \geq b[j+1]$
 - · optionally $a[i] \leq a[i+1]$
 - $O(n^2)$ to O(n)
 - * Divide and conquer optimization
 - $dp[i][j] = \min_{k < j} \{dp[i-1][k] + C[k][j]\}$
 - $A[i][j] \leq A[i][j+1]$
 - · $O(kn^2)$ to $O(kn\log n)$
 - · sufficient: $C[a][c] + C[b][d] \le C[a][d] + C[b][c]$, $a \le b \le c \le d$ (QI)
 - * Knuth optimization
 - $dp[i][j] = \min_{i < k < j} \{dp[i][k] + dp[k][j] + C[i][j]\}$
 - $A[i][j-1] \le A[i][j] \le A[i+1][j]$
 - · $O(n^3)$ to $O(n^2)$
 - · sufficient: QI and $C[b][c] \leq C[a][d], a \leq b \leq c \leq d$

- Randomized
- Optimizations
 - Use bitset (/64)
 - Switch order of loops (cache locality)
- Process queries offline
 - Mo's algorithm
- Square-root decomposition
- Precomputation
- Efficient simulation
 - Mo's algorithm
 - Sqrt decomposition
 - Store 2^k jump pointers
- Data structure techniques
 - Sqrt buckets
 - Store 2^k jump pointers
 - -2^k merging trick
- Counting
 - Inclusion-exclusion principle
 - Generating functions
- Graphs
 - Can we model the problem as a graph?
 - Can we use any properties of the graph?
 - Strongly connected components
 - Cycles (or odd cycles)
 - Bipartite (no odd cycles)
 - * Bipartite matching
 - * Hall's marriage theorem
 - * Stable Marriage
 - Cut vertex/bridge
 - Biconnected components
 - Degrees of vertices (odd/even)
 - Trees
 - * Heavy-light decomposition
 - * Centroid decomposition
 - * Least common ancestor
 - * Centers of the tree
 - Eulerian path/circuit
 - Chinese postman problem
 - Topological sort
 - (Min-Cost) Max Flow
 - Min Cut
 - * Maximum Density Subgraph
 - Huffman Coding
 - Min-Cost Arborescence
 - Steiner Tree
 - Kirchoff's matrix tree theorem
 - Prüfer sequences
 - Lovász Toggle
 - Look at the DFS tree (which has no cross-edges)
 - Is the graph a DFA or NFA?
 - * Is it the Synchronizing word problem?
- Mathematics
 - Is the function multiplicative?
 - Look for a pattern
 - Permutations
 - * Consider the cycles of the permutation

- Functions
 - * Sum of piecewise-linear functions is a piecewise-linear function
 - * Sum of convex (concave) functions is convex (concave)
- Modular arithmetic
 - * Chinese Remainder Theorem
 - * Linear Congruence
- Sieve
- System of linear equations
- Values too big to represent?
 - * Compute using the logarithm
 - * Divide everything by some large value
- Linear programming
 - * Is the dual problem easier to solve?
- Can the problem be modeled as a different combinatorial problem? Does that simplify calculations?
- Logic
 - 2-SAT
 - XOR-SAT (Gauss elimination or Bipartite matching)
- Meet in the middle
- Only work with the smaller half $(\log(n))$
- Strings
 - Trie (maybe over something weird, like bits)
 - Suffix array
 - Suffix automaton (+DP?)
 - Aho-Corasick
 - eerTree
 - Work with S + S
- Hashing
- Euler tour, tree to array
- Segment trees
 - Lazy propagation
 - PersistentImplicit
 - Segment tree of X
- Geometry
 - Minkowski sum (of convex sets)
 - Rotating calipers
 - Sweep line (horizontally or vertically?)
 - Sweep angle
 - Convex hull
- Fix a parameter (possibly the answer).
- Are there few distinct values?
- Binary search
- Sliding Window (+ Monotonic Queue)
- Computing a Convolution? Fast Fourier Transform
- Computing a 2D Convolution? FFT on each row, and then on each column
- Exact Cover (+ Algorithm X)
- Cycle-Finding
- What is the smallest set of values that identify the solution? The cycle structure of the permutation? The powers of primes in the factorization?
- Look at the complement problem
 - Minimize something instead of maximizing

• Greedy

- Immediately enforce necessary conditions. (All values greater than 0? Initialize them all to 1)
- Add large constant to negative numbers to make them positive
- Counting/Bucket sort

12. Formulas

- Legendre symbol: $(\frac{a}{t}) = a^{(b-1)/2} \pmod{b}$, b odd prime.
- Heron's formula: A triangle with side lengths a, b, c has area $\sqrt{s(s-a)(s-b)(s-c)}$ where $s=\frac{a+b+c}{2}$.
- Pick's theorem: A polygon on an integer grid strictly containing i lattice points and having b lattice points on the boundary has area $i + \frac{b}{3} - 1$. (Nothing similar in higher dimensions)
- Euler's totient: The number of integers less than n that are coprime to n are $n \prod_{p|n} \left(1 - \frac{1}{p}\right)$ where each p is a distinct prime factor of n.
- König's theorem: In any bipartite graph $G = (L \cup R, E)$, the number of edges in a maximum matching is equal to the number of vertices in a minimum vertex cover. Let U be the set of unmatched vertices in L, and Z be the set of vertices that are either in U or are connected to Uby an alternating path. Then $K = (L \setminus Z) \cup (R \cap Z)$ is the minimum
- A minumum Steiner tree for n vertices requires at most n-2 additional
- The number of vertices of a graph is equal to its minimum vertex cover number plus the size of a maximum independent set.
- Lagrange polynomial through points $(x_0, y_0), \dots, (x_k, y_k)$ is L(x) = $\sum_{j=0}^{k} y_j \prod_{\substack{0 \le m \le k \\ m \ne j}} \frac{x - x_m}{x_j - x_m}$
- Hook length formula: If λ is a Young diagram and $h_{\lambda}(i,j)$ is the hook-length of cell (i, j), then then the number of Young tableux $d_{\lambda} = n! / \prod h_{\lambda}(i, j)$
- ullet Möbius inversion formula: If $f(n) = \sum_{d|n} g(d)$, then $g(n) = \sum_{d|n} g(d)$ $\sum_{d|n} \mu(d) f(n/d)$. If $f(n) = \sum_{m=1}^{n} g(\lfloor n/m \rfloor)$, then $g(n) = \sum_{m=1}^{n} g(\lfloor n/m \rfloor)$ $\sum_{m=1}^{n} \mu(m) f(\lfloor \frac{n}{m} \rfloor).$
- #primitive pythagorean triples with hypotenuse < n approx $n/(2\pi)$.
- Frobenius Number: largest number which can't be expressed as a linear combination of numbers a_1, \ldots, a_n with non-negative coefficients. $g(a_1, a_2) = a_1 a_2 - a_1 - a_2$, $N(a_1, a_2) = (a_1 - 1)(a_2 - 1)/2$. $g(d \cdot a_1, d \cdot a_2, a_3) = d \cdot g(a_1, a_2, a_3) + a_3(d-1)$. An integer $x > (\max_i a_i)^2$ can be expressed in such a way iff. $x \mid \gcd(a_1, \ldots, a_n)$.

12.1. Physics.

- Snell's law: $\frac{\sin \theta_1}{v_1} = \frac{\sin \theta_2}{v_2}$
- 12.2. Markov Chains. A Markov Chain can be represented as a weighted directed graph of states, where the weight of an edge represents the probability of transitioning over that edge in one timestep. Let $P^{(m)} = (p_{ij}^{(m)})$ be the probability matrix of transitioning from state i to state j in m timesteps, and note that $P^{(1)}$ is the adjacency matrix of the graph. Chapman-Kolmogorov: $p_{ij}^{(m+n)} = \sum_k p_{ik}^{(m)} p_{kj}^{(n)}$. It follows that $P^{(m+n)} = P^{(m)}P^{(n)}$ and $P^{(m)} = P^m$. If $p^{(0)}$ is the initial probability distribution (a vector), then $p^{(0)}P^{(m)}$ is the probability distribution

The return times of a state i is $R_i = \{m \mid p_{ii}^{(m)} > 0\}$, and i is aperiodic if $gcd(R_i) = 1$. A MC is aperiodic if any of its vertices is aperiodic. A MC is *irreducible* if the corresponding graph is strongly connected.

A distribution π is stationary if $\pi P = \pi$. If MC is irreducible then $\pi_i = 1/\mathbb{E}[T_i]$, where T_i is the expected time between two visits at i. π_i/π_i is the expected number of visits at j in between two consecutive visits at i. A MC is ergodic if $\lim_{m\to\infty} p^{(0)}P^m = \pi$. A MC is ergodic iff. it is 12.5.5. Floor. irreducible and aperiodic.

A MC for a random walk in an undirected weighted graph (unweighted graph can be made weighted by adding 1-weights) has $p_{uv} = w_{uv} / \sum_{x} w_{ux}$. If the graph is connected, then $\pi_u =$ $\sum_{x} w_{ux} / \sum_{v} \sum_{x} w_{vx}$. Such a random walk is aperiodic iff. the graph is not bipartite.

An absorbing MC is of the form $P = \begin{pmatrix} Q & R \\ 0 & I_r \end{pmatrix}$. Let N = $\sum_{m=0}^{\infty} Q^m = (I_t - Q)^{-1}$. Then, if starting in state i, the expected number of steps till absorption is the i-th entry in N1. If starting in state i, the probability of being absorbed in state j is the (i, j)-th entry of NR.

Many problems on MC can be formulated in terms of a system of recurrence relations, and then solved using Gaussian elimination.

12.3. Burnside's Lemma. Let G be a finite group that acts on a set X. For each q in G let X^g denote the set of elements in X that are fixed by q. Then the number of orbits

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

$$Z(S_n) = \frac{1}{n} \sum_{l=1}^{n} a_l Z(S_{n-l})$$

12.4. **Bézout's identity.** If (x,y) is any solution to ax + by = d (e.g. found by the Extended Euclidean Algorithm), then all solutions are given

$$\left(x + k \frac{b}{\gcd(a,b)}, y - k \frac{a}{\gcd(a,b)}\right)$$

12.5. **Misc.**

12.5.1. Determinants and PM.

$$\begin{split} \det(A) &= \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)} \\ perm(A) &= \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)} \\ pf(A) &= \frac{1}{2^n n!} \sum_{\sigma \in S_{2n}} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{\sigma(2i-1),\sigma(2i)} \\ &= \sum_{M \in \operatorname{PM}(n)} \operatorname{sgn}(M) \prod_{(i,j) \in M} a_{i,j} \end{split}$$

12.5.2. BEST Theorem. Count directed Eulerian cycles. Number of OST given by Kirchoff's Theorem (remove r/c with root) #OST(G,r). $\prod_{v} (d_v - 1)!$

12.5.3. Primitive Roots. Only exists when n is $2, 4, p^k, 2p^k$, where p odd prime. Assume n prime. Number of primitive roots $\phi(\phi(n))$ Let q be primitive root. All primitive roots are of the form q^k where $k, \phi(p)$ are k-roots: $q^{i \cdot \phi(n)/k}$ for $0 \le i \le k$

12.5.4. Sum of primes. For any multiplicative f:

$$S(n,p) = S(n,p-1) - f(p) \cdot (S(n/p,p-1) - S(p-1,p-1))$$

$$\lfloor \lfloor x/y \rfloor / z \rfloor = \lfloor x/(yz) \rfloor$$
$$x\%y = x - y |x/y|$$