Exercise Sheet 01

Foundations of Information Retrival

Jonathan Heinz (3431767), Felix Viola (3125695) s6jthein@uni-bonn.de, s6feviol@uni-bonn.de

April 21, 2023

1. Preprocessing

- 1. Only syntactical information is important and should be extracted. Formatting, punctuation and stop words do not add significant value.
- 2. Applied pre-processing steps: Tokenizing, linguistic token preprocessing, stop word removal,:
 - [my, favorite, fruit, be, apple]
 - [what, be, your, name]
 - [how, excit]
 - [today, be, monday, we, be, not, in, house]
- 3. Both approaches are used to reduce inflectional forms of words, however their approaches differ:

Stemming: finds the common word stem of different words with the same (family of) meaning by removing the last letters. For example *horse*, *horse's*, *horses* and *horses'* get reduced to their stem *horse*

Lemmatization: reduces words to their dictionary form (so called lemma). For example am, are, is get reduced to be.

2. Posting List, Inverted Index and Boolean Retrival Model

D1: [My, favorite, fruit, is, apple]

D2: [I, like, playing, sports]

D3: [I, don't, enjoy, sports]

 $\mathrm{D}4$: [My, mother, is, working]

Inverted Index:

- My \rightarrow D1, D4
- favorite \rightarrow D1

- fruit \rightarrow D1
- is \rightarrow D1, D4
- apple \rightarrow D1
- $I \rightarrow D2, D3$
- like \rightarrow D2
- playing \rightarrow D2
- sports \rightarrow D2, D3
- $\bullet \ don't \to D3$
- enjoy \rightarrow D3
- mother \rightarrow D4
- working \rightarrow D4

Boolean queries:

- My AND apple \Rightarrow D1
- My $AND NOT I \Rightarrow D1, D4$
- I AND sports OR don't \Rightarrow D2, D3

3. Term-Document Matrix

D1: [my, favorite, fruit, is, apple]

D2: [i, like, playing, sports]

D3: [i, don't, enjoy, sports]

D4: [my, mother, is, working]

Term-Document-Matrix:

	D1	D2	D3	D4
my	1	0	1	0
favorite	1	0	0	0
fruit	1	0	0	0
is	1	0	0	1
apple	1	0	0	0
i	0	1	1	0
like	0	1	0	0
playing	0	1	0	0
sports	0	1	1	0
don't	0	0	1	0
enjoy	0	0	1	0
mother	0	0	0	1
working	0	0	0	1

4. TF*IDF

In this corpus, the term frequency $\operatorname{tf}_{t,d}$ is $1 + \log_{10}(1) = 1$ for $t \in d$ and 0 otherwise (since any term is at most once present per document).

In this corpus, the inverse document frequency depending on a terms document frequency $df_t \in \{1, 2\}$ is

$$\log_{10}\left(\frac{4}{1}\right) = 0.6 \text{ or } \log_{10}\left(\frac{4}{2}\right) = 0.3$$

TF*IDF weighted matrix:

	D1	D2	D3	D4
my	0.3	0	0.3	0
favorite	0.6	0	0	0
fruit	0.6	0	0	0
is	0.3	0	0	0.3
apple	0.6	0	0	0
i	0	0.3	0.3	0
like	0	0.6	0	0
playing	0	0.6	0	0
sports	0	0.3	0.3	0
don't	0	0	0.6	0
enjoy	0	0	0.6	0
mother	0	0	0	0.6
working	0	0	0	0.6

5. Similarity Computation

With u = (0, 0, 0, 0, 0, 0.3, 0.6, 0.6, 0.3, 0, 0, 0, 0) and v = (0.3, 0, 0, 0, 0, 0.3, 0, 0, 0.3, 0.6, 0.6, 0, 0) cosine similarity is given by:

$$coscos(u, v) = \frac{u \times v}{||u|| \times ||v||} = \frac{0.18}{0.9439} = 0.19$$

6. Miscellaneous

- Euclidian distance measure takes the length of the vectors into account while cosine similarity does not. This is useful when comparing documents since the length of the vectors is unimportant.
- Stop words are very common in documents and therefor have a low TF*IDF value. Depending on the corpus this value might even go to zero, effectively gaining the same result as stop word removal.
- IDF is zero, if a term occurs exacly as often as there are documents. IDF is infite, if a term is very rare in a corpus.