Neural Representation Learning in Natural Language Processing

Pengfei Liu pfliu.com

Neural Representation Learning for NLP

Neural Representation Learning for NLP

Neural Representation Learning for NLP

Part-I: Word Representation

What is the "word representation"?

a vector

apple

[0.1, 0.3.0, 4]

Why should we learn "word representation"?

- Easy to make mathematical calculation
 - What if you want to know the meaning of "red apple"

Why should we learn "word representation"?

Easy to make mathematical calculation

Vectorizing discrete signals makes things easier.

How can we get word representations?

A lot of approaches!

Let's try to cluster them!

Symbolic or Distributed?

- Symbolic
 - One-hot vector
- Distributed
 - Real-valued vector

Supervised or Unsupervised?

- Supervised
 - labeled data
- Unsupervised
 - unlabeled data
- Semi-supervised
 - Pre-trained + fine-tuned

Contextualized or not?

- Non-contextualized
 - Word vector is context-independent
- Contextualized
 - Word vector is context-dependent

Non-contextualized

Count-based or Prediction-based?

- Count-based
 - **Count** the number of co-occurrences of word/context, with rows as word, columns as contexts
 - Maybe weight with pointwise mutual information
 - Maybe reduce dimensions using SVD
- Prediction-based
 - try to predict the words within a neural network

Strong connection between countbased methods and predictionbased methods (Levy and Goldberg 2014)

Year	Conf. \$	Concept \$	Cited •	Paper	
2014	nips	none	19365	Distributed Representations of Words and Phrases and their Compositionality Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean	word2vec
2013	arxiv	none	15383	Efficient Estimation of Word Representations in Vector Space Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean	word2vec
2014	emnlp	none	13069	Glove: Global Vectors for Word Representation Jeffrey Pennington, Richard Socher, Christopher Manning GloVe	e
2003	jmlr	none	6074	A Neural probabilistic language model Yoshua Bengio, Rejean Ducharme, Pascal Vincent	<u>/</u>
2019	naacl	none	5292	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova	BERT
2018	naacl	none	2913	Deep Contextualized Word Representations Matthew Peters, Mark Neumann, Mohit lyyer, Matt Gardner, Christopher Clark, Kenton	
2013	naacl	none	2578	Linguistic Regularities in Continuous Space Word Representations Tomas Mikolov, Wen-tau Yih, Geoffrey Zweig	
2012	acl	none	1079	Improving Word Representations via Global Context and Multiple Word Prototypes Eric Huang, Richard Socher, Christopher Manning, Andrew Ng	
2014	arxiv	none	971	word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method Yoav Goldberg and Omer Levy	
2015	tacl	none	903	Improving Distributional Similarity with Lessons Learned from Word Embedding Omer Levy, Yoav Goldberg, Ido Dagan	s

Case Study: NNLM

2003 jmlr none 6074 A Neural probabilistic language model Yoshua Bengio, Rejean Ducharme, Pascal Vincent

- One of the earliest work on neural word representation
- How to neutralize language model task
- Word embedding is a byproduct
- Slow!!!

Case Study: word2vec

2014	nips	none	19365	Distributed Representations of Words and Phrases and their Compositionality Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean
2013	arxiv	none	15383	Efficient Estimation of Word Representations in Vector Space Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean

- Two specific models
- Word embedding is our focus
- Efficient to train

Case Study: GloVe

2014	emnlp	none	13069	Glove: Global Vectors for Word Representation
				Jeffrey Pennington, Richard Socher, Christopher Manning

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$
$$f(x) = \begin{cases} 100 & 3/4 \\ (x/x_{\text{max}})^{\alpha} & \text{if } x < x_{\text{max}} \\ 1 & \text{otherwise} \end{cases}$$

- The dot product of two word embeddings <-> co-ocurrence
- https://nlp.stanford.edu/projec ts/glove/

Case Study: BERT

2019 naacl none 5292 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova

Masked Word Prediction (BERT)

(Devlin et al. 2018)

 Model: Multi-layer self-attention. Input sentence or pair, w/ [CLS] token, subword representation

- Objective: Masked word prediction + nextsentence prediction
- Data: BooksCorpus + English Wikipedia

Software? Training corpus?

Software, Model, Corpus

GloVe

- Code & Off-the-shelf model: https://github.com/stanfordnlp/GloVe
- Training corpus:
 - Wikipedia-2014: https://en.wikipedia.org/wiki/
 - Gigaword 5: https://catalog.ldc.upenn.edu/LDC2011T07

Word2vec

- Code: https://www.tensorflow.org/tutorials/text/word_embeddings
- Off-the-shelf model: <u>https://drive.google.com/file/d/0B7XkCwpI5KDYNINUTTISS21pQmM/edit</u>
- Training corpus:
 - Google News dataset

BERT

- Code & Off-the-shelf model: https://github.com/google-research/bert
- Training corpus:
 - Wikipedia: https://en.wikipedia.org/wiki/
 - BookCorpus: https://yknzhu.wixsite.com/mbweb

Which one should I choose?

No pretraining when ...

language modeling, machine translation

Using non-contextualized when ...

(e.g, word2vec, glove)

- ✓ Limited computation resources
- ✓ Fast training/quickly evaluate your models
- ✓ No off-the-shelf BERT models
- ✓ Hugh Domain shift
- ✓ Best of both worlds

Using contextualized when ...

(e.g, BERT, BART)

- ✓ Rich in GPUs
- ✓ Care the SOTA result
- ✓ Don't care the training time
- ✓ Off-the-shelf BERT models
- ✓ Few training samples/Low-resource

Part-II: Sentence Representation

What is the "sentence representation"?

Why do we need "sentence representation"?

- It is a fundamental step!
 - Sentiment classification
 - Semantic matching
 - Text Summarization
 - Machine Translation

How can we learn sentence representations?

A lot of approaches!

Again, let's try to cluster them!

Supervised or Unsupervised?

- Supervised
 - labeled data
- Unsupervised
 - unlabeled data

Different Structural Biases

- Structural Bias: a set of prior knowledge incorporated into your model design
 - Connection ways
 - Topological structures

Two perspectives

Different Structural Biases

Connection ways

Different Structural Biases

Topological structure

Along what structure are sentences modeled

Connection ways

Local

Non-local

Topological Structure

Seq.

Tree

Graph

RNN

LSTM

GRU

CNN

Connection ways

Local

Non-local

Topological Structure

Seq.

Tree

Graph

Connection ways

Local

Non-local

Topological Structure

Seq.

Tree

Graph

Graph Neural Nets

Connection ways

Local

Non-local

Topological Structure

Seq.

Tree

Graph

Attention LSTM

Connection ways

Local

Non-local

Topological Structure

Seq.

Tree

Graph

Case Study: Must-know Points about RNN

- You can get word-level and sentence-level representations
- Vanilla RNNs are not good at dealing with long sentences
- There are at least 100 RNN variants ... (LSTM, GRU)
- Gating mechanism

$$\mathbf{h}_t = \begin{cases} 0 & t = 0\\ f(\mathbf{h}_{t-1}, \mathbf{x}_t) & \text{otherwise} \end{cases}$$

Case Study: Must-know Points about CNN

CNN: 1d and 2d Convolution

CNN: Narrow/Equal/Wide Convolution

CNN: Multiple Filter Convolution

CNN: Pooling

Max pooling:

Mean pooling:

K-max pooling

8

0

Dynamic pooling:

Case Study: Must-know Points about Transformer

- It's a composite module
- No CNN! No RNN! Only Attention
- Fast and parallel training (BERT)
- Lack of local bias, require more data

Case Study: Must-know Points about GNNs

- Help us introduce relational bias
- Transformer is a fully-connected graph
- Not very efficient to train

Which one should I choose?

Transformer is suggested when...

- ✓ Machine translation
- ✓ If you have more training data
- Extremely deep neural nets
- ✓ Best of both worlds

LSTM is suggested when...

- ✓ In most cases ...
- ✓ Modestly-sized data (tagging)
- ✓ Best of both worlds

Graph Neural Net is suggested when ...

- ✓ More complicated relational biases
 - QA: entity
 - Summarization: structure of doc.
- ✓ Modestly-sized data
- ✓ Best of both worlds

CNN is suggested when ...

- ✓ Word encoder
- **√** ...

Task-wisely, if you can use BERT...

Tagging, Text Classification

Note:

- 1) BERT should be fine-tuned
- 2) For tagging tasks, FLAIR performs better than BERT

Task-wisely, if you can use BERT...

Text Generation

BART + Seq2Seq

Task-wisely, if you can't use BERT...

Tagging, Text Classification

Note:

- Glove can be replaced with word2vec, and should be fine-tuned
- 2) For tagging tasks, replace MLP with CRF layer

Year: N	othing selected	Conferen	ce: Nothir	ng selected ▼ Concept: Nothing selected ▼			
Year ♦	Conf.	Concept	Cited •	Paper			
2014	nips	none	19365	Distributed Representations of Words and Phrases and their Compositionality Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, Jeffrey Dean			
2013	arxiv	none	15383	Efficient Estimation of Word Representations in Vector Space Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean			
2014	emnlp	none	13069	Glove: Global Vectors for Word Representation Jeffrey Pennington, Richard Socher, Christopher Manning			
2003	jmlr	none	6074	A Neural probabilistic language model Yoshua Bengio, Rejean Ducharme, Pascal Vincent			
2019	naacl	none	5292	BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova			
2018	naacl	none	2913	Deep Contextualized Word Representations Matthew Peters, Mark Neumann, Mohit lyyer, Matt Gardner, Christopher Clark, Kenton Lee, Luke Zettlemoyer			
2013	naacl	none	2578	Linguistic Regularities in Continuous Space Word Representations Tomas Mikolov, Wen-tau Yih, Geoffrey Zweig			
2012	acl	none	1079	Improving Word Representations via Global Context and Multiple Word Prototypes Eric Huang, Richard Socher, Christopher Manning, Andrew Ng			
2014	arxiv	none	971	word2vec Explained: Deriving Mikolov et al.'s Negative-Sampling Word-Embedding Method Yoav Goldberg and Omer Levy			
2015	tacl	none	903	Improving Distributional Similarity with Lessons Learned from Word Embeddings Omer Levy, Yoav Goldberg, Ido Dagan			
2014	acl	none	862	Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification			

ear:	Nothing selected •		Conference: Nothin			ng selected • Concept	Nothing selected ▼			
Year	Conf.		Concept	\$	Cited _▼	Paper	All None setting			
2009	acl		setting-crossLingual		486	Co-Training for Cross-Lingual Sentimer Xiaojun Wan	setting-crossLingual setting-endangered setting-lowResource			
2007	acl		setting-crossLingual		436	Learning Multilingual Subjective Langua Rada Mihalcea, Carmen Banea, Janyo				
2006	cl		setting-crossLingual		378	Unsupervised Multilingual Sentence Boundary Detection Tibor Kiss, Jan Strunk				
2013	acl		setting-crossLingual		369	Universal Dependency Annotation for Multilingual Parsing Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-Brundage, Yoav Goldberg, Dipanjan Das, Kuzr				
2008	emnlp		setting-crossLingual		265	Multilingual Subjectivity Analysis Using Machine Translation Carmen Banea, Rada Mihalcea, Janyce Wiebe, Samer Hassan				
2014	acl		setting-crossLingual		252	Multilingual Models for Compositional D Karl Moritz Hermann, Phil Blunsom	Distributed Semantics			
2016	emnlp		setting-lowResource		234	Transfer Learning for Low-Resource Ne Barret Zoph, Deniz Yuret, Jonathan Ma				
1997	cl		setting-crossLingual		228	Adaptive Multilingual Sentence Bounda David D. Palmer, Marti A. Hearst	Disambiguation			
2013	acl		setting-crossLingual		221	Linking and Extending an Open Multilin Francis Bond, Ryan Foster	al Wordnet			
2016	acl		setting-crossLingual		215	Multilingual Part-of-Speech Tagging with Bidirectional Long Short-Term Memory Models and Auxilia Barbara Plank, Anders Søgaard, Yoav Goldberg				
2004	naacl		setting-crossLingual		208	A Statistical Model for Multilingual Entity Detection and Tracking R. Florian, H. Hassan, A. Ittycheriah, H. Jing, N. Kambhatla, X. Luo, N. Nicolov, S. Roukos				
1994	coling		setting-crossLingual		186	MULTEXT: Multilingual Text Tools and C Nancy Ide, Jean Veronis	Corpora			

http://pfliu.com/paperlist/lowsource.html

