

# UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE CIENCIAS Y SISTEMAS MODELACION Y SIMULACION 2 ESCUELA DE VACACIONES SEGUNDO SEMESTRE 2022

### PROYECTO NO. 01

| GRETHEL MINERVA VILCHEZ SUAREZ  | 201700499 |
|---------------------------------|-----------|
| KEILA AVRIL VILCHEZ SUAREZ      | 201700569 |
| AUDRIE ANNELISSE DEL CID OCHOA  | 201801263 |
| EVELYN ALEJANDRA NAVARRO OZORIO | 201902046 |
| GRUPO NO#09                     |           |

**GUATEMALA 29 DE DICIEMBRE DEL 2022** 

## ÍNDICE

| ANALISIS DEL ENUNCIADO         | 3  |
|--------------------------------|----|
| OBJETIVOS                      |    |
| IDENTIFICAR EL PROBLEMA        |    |
| DATOS Y COMPARATIVOS           |    |
| ESTADÍSTICOS                   |    |
| ELECCIÓN DE LA RUTA MÁS OPTIMA | 12 |
| DISCUSIÓN DE RESULTADOS        | 19 |
| CONCLUSIONES                   | 21 |
| ANEXOS                         | 22 |

## ANALISIS DEL ENUNCIADO

Simio Supply Logistics (SSL) es una organización que fleta embarcaciones en alta mar hacia y desde varios lugares de perforación en alta mar. SSL puede elegir entre una variedad de embarcaciones para alquilar mensualmente. La colección de buques de suministro de plataforma (PSV) se selecciona y despacha fuera de los puertos. Estos buques dan servicio a cuatro plataformas de aguas profundas. El sistema se encuentra actualmente bajo escrutinio debido a los altos costos, la demanda insatisfecha y el tiempo de espera excesivo. A la gerencia de SSL le gustaría que su equipo mejorará la programación de embarcaciones y determinará una mejor manera de satisfacer las demandas de la empresa de perforación y minimizar los costos incurrido.

Se solicito diagnosticar, diseñar e implementar la ruta óptima para la distribución de las embarcaciones en alta mar y lograr minimizar los tiempos y distancias entregadas para reducir los costos que la misma con lleva. Se plantearon las soluciones previamente estudiadas a este problema con las diferentes estadísticas a realizar y finalmente se muestra y aplica la ruta diseñada para optimizar el reparto según lo requerido, todo eso previo a la comparación del antes y después de las rutas de distribuciones, donde se analizó cuan optima fue la ruta diseñada con respecto al modelo existente realizado.

SSL consiste en mejorar el sistema de gestión de embarcaciones, para ello se conocerá y diagnosticará el sistema las rutas que se pueden utilizar, posteriormente se plantearan los distintos factores con tiempo, distancia, barcos que entran y que salen, el tiempo que pasa en cola, el tiempo que pasa en el sistema, los porcentaje de utilización, se creó la ruta creada con los conceptos y análisis mencionados, que permita realizar una comparación con las rutas diferentes a considerar y cuál es la ideal para el proceso según sea la necesidad. Para la implementación de este proyecto se tuvieron 4 rutas de distribución.

## **OBJETIVOS**

- o Describir el funcionamiento, flujo de información y comportamiento del sistema.
- Permitir estudiar los resultados de las diferentes interacciones y eventos que puedan ocurrir dentro del sistema.
- Presentarlos resultados en animaciones 3D para los diferentes informes con estadísticas del funcionamiento del sistema tales como su utilización, tamaño en colas, tiempo de espera entre otros.
- Mejorar la capacidad del negocio para agilizar procesos, optimizar recursos para lograr maximizar ganancias.
- Mejorar la distribución de carga en las embarcaciones.
- o Minimizar el tiempo muerto que existe entre la entrega del pedido al sistema.
- Minimizar los errores en las entregas.
- Establecer costos asociados al comercio y para el rendimiento deficiente del sistema.
- Determinar la efectividad del modelo, a través de una comparación entre los resultados obtenidos de las diferentes rutas y la situación inicial del proceso.

## IDENTIFICAR EL PROBLEMA

Para resolver un análisis de ruta puede significar encontrar la ruta más rápida, más corta, esta variante va dependiendo de la necesidad que se tenga, si el atributo es el tiempo podríamos mencionar ver la ruta donde el tráfico sea menor por cuestiones de fechas y horas específicas. Po lo tanto si la mejor ruta se define como la ruta que tenga la impedancia más baja o el menor coste, podemos decir que la mejor ruta es aquella donde nos genere menos costos.

Nuestro análisis trazado optimo evaluara las variables con más reducciones posibles y que sean las más optimas a realizar entre dos puntos durante el desplazamiento en cualquiera de los sentidos tomados. Para poder llevar a cabo nuestro análisis deberemos partir de la base de los diferentes datos estadísticos realizados ya sea sobre las potenciales direcciones de desplazamiento y los esfuerzos generados sobre él.

Este análisis de coste y distancia parte de la creación desde la entrada del sistema. Para luego conforme nos vamos desplazando desde el punto inicial el tiempo acumulado que pasa cada barco en el puerto, a medida que esto va sucediendo los costes aumentarán a medidas que nos movilizamos del mapa. Además de ellos se permitirá identificar la movilización potencial a favor de un menor coste.

Nuestra necesidad es satisfacer las expectativas de los clientes, este es un reto que cada vez es mayor; sin embargo, dichas expectativas no abarcan solamente el precio y la calidad de las embarcaciones, sino también la rapidez y eficacia en la entrega de los mismos. Es por esto que el proceso de distribución depende de los diferentes factores a consideran en el sistema y la optimización de sus rutas en el reparto.

Una vez implementadas las rutas diseñadas y analizados los datos recolectados en los nuevos recorridos, se logra identificar que los diseños realizados con sus respectivas rutas son los más óptimos debido a que representa una disminución en el tiempo total que pasa en el sistema, una disminución en la demanda

insatisfecha por paquetes perdidos, generación de más ganancias aumentadas en totalidad con las rutas desplazadas.

## DATOS Y COMPARATIVOS

Para determinar el comportamiento correcto de los barcos como de todo el sistema se tienen datos brindados por medio de un excel, a partir de estos datos se realizó el siguiente análisis.

Probabilidad que salgan Rutas disponibles:

|         | Probabil    |               |             |       |       |
|---------|-------------|---------------|-------------|-------|-------|
|         |             |               | Origen      |       |       |
|         |             | RotterdamPort | HamburgPort | Vacío |       |
|         | AlphaRig    | 928           | 0           | 6     |       |
| Destino | BetaRig     | 1488          | 0           | 4     | 2426  |
| Des     | CharlieRig  | 0             | 1312        | 91    |       |
|         | DeltaRig    | 0             | 1151        | 98    | 2652  |
|         |             | Probabilid    | lad         |       |       |
|         | Total: 5078 |               |             |       |       |
|         | TULAI. 50/6 | RotterdamPort | HamburgPort | Vacío |       |
|         | AlphaRig    | 18.27         | 0           | 0.12  | 18.39 |
| Destino | BetaRig     | 29.30         | 0           | 0.08  | 29.38 |
| Des     | CharlieRig  | 0             | 25.84       | 1.79  | 27.63 |
|         | DeltaRig    | 0             | 22.67       | 1.93  | 24.60 |
|         |             | Probabilida   | ad2         |       |       |
|         | Total: 5078 |               | Origen      |       |       |
|         | TULAI. 50/6 | RotterdamPort | HamburgPort |       |       |
| _       | AlphaRig    | 38.50         | 0           |       |       |
| Destino | BetaRig     | 61.50         | 0           |       |       |
| Des     | CharlieRig  | 0             | 52.90       |       |       |
|         | DeltaRig    | 0             | 47.10       |       |       |

En la primera tabla se tiene la cantidad como parámetro, en la segunda tabla se tiene la probabilidad de cada una, haciendo una regla de tres con la cantidad de cada ruta dividido el total por cien; en la tercera tabla se tiene la probabilidad tomando como parámetros a Alpharig con BetaRig y a CharlieRig con DeltaRig.

Con esto tenemos a AlphaRig con BetaRig cumpliendo el 100% y a CharlieRig con

DeltaRig cumpliendo el 100%.

Se puede observar que de Charlie y DeltaRig hay más vacíos que en AlphaRig y BetaRig, esto sugiere tener mayor enfoque a las plataformas CharlieRig y DeltaRig para aumentar la satisfacción del cliente con recibir el material solicitado.

Luego de un análisis muy extenso sobre cada ruta y la cantidad de cada barco que sale de ella se obtienen las probabilidades de cada barco en las rutas especificadas desde el inicio:

|                           |        |          |             |          |             |          |             |          |             | p        | robabilida  | d de que sa | ilga este bar | n según ri   | rta.        |          |             |          |             |          |             |          |             |          |             |       |
|---------------------------|--------|----------|-------------|----------|-------------|----------|-------------|----------|-------------|----------|-------------|-------------|---------------|--------------|-------------|----------|-------------|----------|-------------|----------|-------------|----------|-------------|----------|-------------|-------|
|                           |        |          |             |          |             |          |             |          |             |          | Obabilida   |             |               | to seguii it |             |          |             |          |             |          |             |          |             |          |             |       |
| Ruta                      | Barcos | Cantidad | Probabilida | Cantidad | Probabilida | Cantidad | Probabilida | Centidad | Probabilida | Cantidad | Probabilida | Cantidad    | Probabilida   | Cantidad     | Probabilida | Cantidad | Probabilida | Cantidad | Probabilida | Cantidad | Probabilida | Cantidad | Probabilida | Cantidad | Probabilida | Media |
|                           | 150A   | 28       | 35.44       | 16       | 22.54       |          | 10.13       | 11       | 14.10       | 21       | 26.92       | 14          | 17.72         | 26           | 32.50       | 28       | 35.90       | 15       | 19.23       | 15       | 18.99       | 14       | 18.67       | 23       | 34.85       | 23.92 |
| RotterdamPort - AlphaRi   | 1508   | 24       | 30.38       | 12       | 16.90       | 15       | 18.99       | 33       | 42.31       | 9        | 11.54       | 31          | 39.24         | 0            | 0.00        | 13       | 16.67       | 18       | 23.08       | 18       | 22.78       | 13       | 16.00       | 16       | 24.24       | 21.84 |
| notificallinate - Alphani | 150C   | 13       | 16.46       | 21       | 29.58       | 24       | 30.38       | 26       | 33.33       | 32       | 41.03       | 13          | 15.46         | 31           | 38.75       | 16       | 20.51       | 18       | 23.08       | 34       | 43.04       | 26       | 34.67       | 16       | 24.24       | 29.29 |
|                           | 1500   | 14       | 17.72       | 22       | 30.99       | 32       | 40.51       | 8        | 10.26       | 16       | 20.51       | 21          | 26.58         | 23           | 28.75       | 21       | 26.92       | 27       | 34.62       | 12       | 15.19       | 21       | 30.67       | 11       | 16.67       | 24.95 |
| Total                     |        | 79       | 100.00      | 71       | 100.00      | 79       | 100.00      | 78       | 100.00      | 78       | 100.00      | 75          | 100.00        | 80           | 100.00      | 78       | 100.00      | 78       | 100.00      | 79       | 100.00      | 75       | 100.00      | 66       | 100.00      | _     |
|                           | 150A   | 29       | 22.66       | 33       | 29.46       | 34       | 26.56       | 44       | 35.77       | 32       | 25.40       | 38          | 30.40         | 22           | 17.32       | 31       | 25.00       | 33       | 26.40       | 39       | 30.95       | 35       | 32.50       | 20       | 18.87       | 26.77 |
| RotterdamPort - BetaRii   | 1508   | 37       | 28.91       | 26       | 23.21       | 31       | 24.22       | 14       | 11.38       | 32       | 25.40       | 21          | 18.40         | 41           | 32.28       | 29       | 23.39       | 36       | 28.80       | 27       | 21.43       | 34       | 28.33       | 25       | 23.58       | 24.11 |
| Nottergamport - betany    | 150C   | 28       | 21.88       | 33       | 29.46       | 38       | 29.69       | 18       | 14.63       | 25       | 19.84       | 41          | 32.80         | 30           | 23.62       | 33       | 26.61       | 33       | 26.40       | 16       | 12.70       | 24       | 20.00       | 24       | 22.64       | 23.36 |
|                           | 1500   | 34       | 26.56       | 20       | 17.86       | 25       | 19.53       | 47       | 38.21       | 37       | 29.37       | 21          | 18.40         | 34           | 26.77       | 31       | 25.00       | 23       | 18.40       | 44       | 34.92       | 21       | 19.17       | 37       | 34.91       | 25.76 |
| Total                     |        | 128      | 100         | 112      | 100         | 128      | 100         | 123      | 100         | 126      | 100         | 125         | 100           | 127          | 100         | 124      | 100         | 125      | 100         | 126      | 100         | 120      | 100         | 106      | 100         | _     |
|                           | 150E   | 34       | 11.07       | 7        | 6.54        | 25       | 21.01       | 20       | 16.95       | 22       | 19.13       | 20          | 17.09         | 28           | 23.33       | 15       | 12.93       | 13       | 11.21       | 18       | 14.63       | 27       | 27.27       | 11       | 29.73       | 17.58 |
|                           | 150F   | 1 18     | 5.86        | 2 24     | 22.43       | 3 12     | 10.08       | 25       | 21.19       | 27       | 23.48       | 6 3:        | 26.50         | 43           | 35.83       | 36       | 31.03       | 9 30     | 25.86       | 11       | 8.94        | 11       | 15.15       | 5        | 13.51       | 19.99 |
| HamburgPort - CharlieRi   | 150G   | 6        | 1.95        | 33       | 30.84       | 14       | 11.76       | 20       | 16.95       | 16       | 13.91       | 33          | 27.35         | 23           | 19.17       | 17       | 14.66       | 17       | 14.66       | 17       | 13.82       | 12       | 12.12       | 8        | 21.62       | 16.57 |
| namourgrort - Charlies    | 150H   | 46       | 14.98       | 18       | 16.82       | 4        | 3.36        | 0        | 0.00        | 9        | 7.83        | 1           | 0.85          | 9            | 7.50        | 21       | 18.10       | 8        | 6.90        | 7        | 5.69        | 21       | 25.25       | 11       | 29.73       | 11.42 |
|                           | 1501   | 15       | 4.89        | 25       | 23.36       | 32       | 26.89       | 28       | 23.73       | 41       | 35.65       | 27          | 14.53         | 3            | 2.50        | 17       | 14.66       | 22       | 18.97       | 30       | 24.39       | 11       | 12.12       | 0        | 0.00        | 16.81 |
|                           | 150J   | 188      | 61.24       | 0        | 0.00        | 32       | 26.89       | 25       | 21.19       | 0        | 0.00        | 16          | 13.68         | 14           | 11.67       | 10       | 8.62        | 26       | 22,41       | 40       | 32.52       |          | 8.08        | 2        | 5.41        | 17.64 |
| Total                     |        | 307      | 100.00      | 107      | 100.00      | 119      | 100.00      | 118      | 100.00      | 115      | 100.00      | 117         | 100.00        | 120          | 100.00      | 116      | 100.00      | 116      | 100.00      | 123      | 100.00      | 91       | 100.00      | 37       | 100.00      | _     |
|                           | 150E   | 7        | 6.48        | 22       | 23.91       | 18       | 16.67       | 18       | 17.48       | 15       | 14.42       | 20          | 19.05         | 20           | 19.05       | 23       | 22.12       | 23       | 22.12       | 23       | 21.50       |          | 9.30        | 2        | 15.38       | 17.29 |
|                           | 150F   | 34       | 31.48       | 11       | 11.96       | 20       | 18.52       | 9        | 8.74        | 18       | 17.31       | 9           | 8.57          | 9            | 8.57        | 10       | 9.62        | 19       | 18.27       | 20       | 18.69       | 17       | 19.77       | 2        | 15.38       | 15.57 |
| HamburgPort - DeltaRis    | 150G   | 22       | 20.37       | 6        | 6.52        | 16       | 14.81       | 16       | 15.53       | 14       | 13.46       | 16          | 15.24         | 16           | 15.24       | 15       | 14.42       | 19       | 18.27       | 19       | 17.76       | 15       | 17.44       | 2        | 15.38       | 15.37 |
| namourgront - Destants    | 150H   | 29       | 26.85       | 9        | 9.78        | 27       | 25.00       | 33       | 32.04       | 22       | 21.15       | 33          | 30.48         | 32           | 30.48       | 17       | 16.35       | 26       | 25.00       | 20       | 18.69       | 15       | 17.44       | 0        | 0.00        | 21.10 |
|                           | 1501   | 0        | 0.00        | 16       | 17.39       | 14       | 12.96       | 15       | 14.56       | 1        | 0.96        | 23          | 21.90         | 23           | 21.90       | 23       | 22.12       | 13       | 12.50       | 12       | 11.21       | 13       | 15.12       | 4        | 30.77       | 15.12 |
|                           | 150J   | 16       | 14.81       | 28       | 30.43       | 13       | 12.04       | 12       | 11.65       | 34       | 32.69       |             | 4.76          | 5            | 4.76        | 16       | 15.38       | 4        | 3.85        | 13       | 12.15       | 11       | 20.93       | 3        | 23.08       | 15.55 |
| Total                     |        | 108      | 100.00      | 92       | 100.00      | 108      | 100.00      | 103      | 100.00      | 104      | 100.00      | 109         | 100.00        | 105          | 100.00      | 104      | 100.00      | 104      | 100.00      | 107      | 100.00      | 84       | 100.00      | 13       | 100.00      |       |

La probabilidad de cada barco según la ruta

| Probabilidad de q        | ue salga est | e barco se | gún ruta     |
|--------------------------|--------------|------------|--------------|
| Ruta                     | Barcos       | Cantidad   | Probabilidad |
|                          | 150A         | 227        | 24.46        |
| RotterdamPort - AlphaRig | 150B         | 201        | 21.66        |
| NotterdamPort - Alphanig | 150C         | 270        | 29.09        |
|                          | 150D         | 230        | 24.78        |
| Total                    |              | 928        | 100.00       |
|                          | 150A         | 364        | 24.46        |
| RotterdamPort - BetaRig  | 150B         | 352        | 23.66        |
| Notterdamport - betanig  | 150C         | 378        | 25.40        |
|                          | 150D         | 394        | 26.48        |
| Total                    |              | 1488       | 100          |
|                          | 150E         | 240        | 18.38        |
|                          | 150F         | 253        | 19.37        |
| HamburgPort - CharlieRig | 150G         | 229        | 17.53        |
| namburgPort - Chamenig   | 150H         | 123        | 9.42         |
|                          | 1501         | 273        | 20.90        |
|                          | 150J         | 188        | 14.40        |
| Total                    |              | 1306       | 100.00       |
|                          | 150E         | 187        | 16.25        |
|                          | 150F         | 173        | 15.03        |
| HamburgPort - DeltaRig   | 150G         | 174        | 15.12        |
| mamburg-ort - Dertakig   | 150H         | 249        | 21.63        |
|                          | 1501         | 177        | 15.38        |
|                          | 150J         | 191        | 16.59        |
| Total                    |              | 1151       | 100.00       |

Y por último se detallan las probabilidades finales para las probabilidades de cada barco, esto es escencial para tener un modelo más real.

| F            | RotterdamPor            | t                    |  |  |  |  |
|--------------|-------------------------|----------------------|--|--|--|--|
| Barco        | Probab                  | oilidad              |  |  |  |  |
| 150A         | 24.46                   | 11.68                |  |  |  |  |
| 150B         | 22.66                   | 10.82                |  |  |  |  |
| 150C         | 27.25                   | 13.17                |  |  |  |  |
| 150D         | 25.63                   | 12.24                |  |  |  |  |
|              | HamburgPort             |                      |  |  |  |  |
| Barco        | Probabilidad            |                      |  |  |  |  |
|              |                         | лпиau                |  |  |  |  |
| 150E         | 17.31                   | 9.04                 |  |  |  |  |
| 150E<br>150F |                         |                      |  |  |  |  |
|              | 17.31                   | 9.04                 |  |  |  |  |
| 150F         | 17.31<br>17.20          | 9.04<br>8.98         |  |  |  |  |
| 150F<br>150G | 17.31<br>17.20<br>16.33 | 9.04<br>8.98<br>8.52 |  |  |  |  |

Se determina el puerto de a HamburgPort como source y a RotterdamPort como sink.

Sobre los materiales, tenemos 6 tipos, de los cuales se analizan según el barco que los ha transportado

RotterdamPort - AlphaRig y RotterdamPort - BetaRig

|        |            |               |        |              |             | Probal      | bilidad de que salg | a este | barco        | según ru | uta          |             |             |                   |      |
|--------|------------|---------------|--------|--------------|-------------|-------------|---------------------|--------|--------------|----------|--------------|-------------|-------------|-------------------|------|
| Barcos | Material   | Ruta1         | #Veces | Probabilidad | Min Enviado | Max Enviado | Tiempo PROM (MIN)   | Días   | Ruta1        | #Veces   | Probabilidad | Min Enviado | Max Enviado | Tiempo PROM (MIN) | Días |
|        | Casing     |               | 42     | 18.50        | 9           | 20          | 6523.17             | 4.5    |              | 61       | 16.76        | 9           | 20          | 8226.59           | 5.7  |
|        | DeckCargo  |               | 24     | 10.57        | 5           | 32          | 4761.75             | 3.3    |              | 55       | 15.11        | 1           | 32          | 5674.98           | 3.9  |
| 150A   | DyBulk     |               | 41     | 18.06        | 1600        | 3400        | 6566.17             | 4.6    |              | 86       | 23.63        | 1600        | 3400        | 7904.83           | 5.5  |
| 130A   | Fuel       |               | 26     | 11.45        | 1300        | 8900        | 5706.04             | 4.0    |              | 56       | 15.38        | 1200        | 9500        | 7715.48           | 5.4  |
|        | LiquidBulk |               | 43     | 18.94        | 1000        | 4200        | 6113.02             | 4.2    |              | 72       | 19.78        | 1100        | 4500        | 6951.80           | 4.8  |
|        | Pipe       |               | 43     | 18.94        | 5           | 60          | 6887.28             | 4.8    |              | 64       | 17.58        | 5           | 60          | 8315.73           | 5.8  |
|        | Casing     |               | 44     | 21.89        | 9           | 20          | 6461.36             | 4.5    |              | 51       | 14.49        | 9           | 20          | 7817.56           | 5.4  |
|        | DeckCargo  |               | 17     | 8.46         | 1           | 14          | 4152.35             | 2.9    |              | 54       | 15.34        | 1           | 32          | 5646.72           | 3.9  |
| 150B   | DyBulk     | .ee           | 32     | 15.92        | 1900        | 3400        | 6381.62             | 4.4    | <u>.00</u>   | 72       | 20.45        | 1600        | 3400        | 8941.94           | 6.2  |
| 1306   | Fuel       | AlphaRig      | 32     | 15.92        | 1400        | 9500        | 6200.50             | 4.3    | BetaRig      | 57       | 16.19        | 1500        | 9600        | 8284.08           | 5.8  |
|        | LiquidBulk | Αp            | 31     | 15.42        | 1200        | 4800        | 6521.77             | 4.5    | - Be         | 58       | 16.48        | 1000        | 4400        | 7363.02           | 5.1  |
|        | Pipe       | 늄             | 45     | 22.39        | 5           | 60          | 6751.11             | 4.7    | Į,           | 63       | 17.90        | 5           | 60          | 9127.95           | 6.3  |
|        | Casing     | RotterdamPort | 54     | 20           | 9           | 20          | 6623.57             | 4.6    | otterdamPort | 51       | 13.49        | 9           | 20          | 8090.55           | 5.6  |
|        | DeckCargo  | rda           | 30     | 11.11        | 1           | 32          | 4900.40             | 3.4    | erde         | 62       | 16.40        | 1           | 32          | 5855.55           | 4.1  |
| 150C   | DyBulk     | ofte          | 45     | 16.67        | 1800        | 3300        | 6258.04             | 4.3    | ŧ            | 69       | 18.25        | 1700        | 3200        | 7966.18           | 5.5  |
| 1300   | Fuel       | ž             | 34     | 12.59        | 1000        | 8800        | 6387.44             | 4.4    | æ            | 47       | 12.43        | 1200        | 9800        | 7478.21           | 5.2  |
|        | LiquidBulk |               | 49     | 18.15        | 1100        | 4900        | 5300.89             | 3.7    |              | 54       | 14.29        | 1000        | 4200        | 7212.33           | 5.0  |
|        | Pipe       |               | 58     | 21.48        | 5           | 60          | 8083.14             | 5.6    |              | 60       | 15.87        | 5           | 60          | 7745.23           | 5.4  |
|        | Casing     |               | 44     | 19.13        | 9           | 20          | 5921.68             | 4.1    |              | 44       | 11.17        | 9           | 20          | 8174.00           | 5.7  |
|        | DeckCargo  |               | 29     | 12.61        | 1           | 32          | 4890.03             | 3.4    |              | 76       | 19.29        | 1           | 32          | 6013.67           | 4.2  |
| 150D   | DyBulk     |               | 31     | 13.48        | 1800        | 3100        | 6075.74             | 4.2    |              | 68       | 17.26        | 1700        | 3400        | 8123.45           | 5.6  |
| 1300   | Fuel       |               | 29     | 12.61        | 1400        | 9500        | 6586.79             | 4.6    |              | 71       | 18.02        | 1300        | 9600        | 7620.40           | 5.3  |
|        | LiquidBulk |               | 48     | 20.87        | 1200        | 4500        | 5705.89             | 4.0    |              | 61       | 15.48        | 1200        | 4700        | 6633.60           | 4.6  |
|        | Pipe       |               | 49     | 21.30        | 5           | 60          | 6849.29             | 4.8    |              | 58       | 14.72        | 5           | 60          | 8061.27           | 5.6  |

#### HamburgPort – CharlieRig y HamburgPort - DeltaRig

|      | Casing     |               | 37    | 15.42 | 9    | 20       | 22523.89 | 15.6 |               | 28    | 14.97 | 9    | 20       | 30794.35 | -    |
|------|------------|---------------|-------|-------|------|----------|----------|------|---------------|-------|-------|------|----------|----------|------|
|      | DeckCargo  |               | 53    | 22.08 | 1    | 23       | 14935.90 | 10.4 |               | 42    | 22.46 | 1    | 32       | 19898.73 | 13.8 |
| 150E | DyBulk     |               | 38    | 15.83 | 1700 | 3300     | 25443.36 | 17.7 |               | 27    | 14.44 | 1900 | 3300     | 29427.55 | 20.4 |
| 1502 | Fuel       |               | 36    | 15    | 1300 | 9300     | 19614.47 | 13.6 |               | 24    | 12.83 | 1300 | 8700     | 32131.08 | 22.3 |
|      | LiquidBulk |               | 46    | 19.17 | 1100 | 4400     | 20421.30 | 14.2 |               | 37    | 19.79 | 1200 | 4800     | 25689.35 | 17.8 |
|      | Pipe       |               | 30    | 12.5  | 5    | 60       | 31022.76 | 21.5 |               | 29    | 15.51 | 5    | 60       | 28357.48 | 19.7 |
|      | Casing     |               | 46    | 18.18 | 9    | 20       | 27960.33 | 19.4 |               | 23    | 13.29 | 9    | 20       | 32625.17 | 22.7 |
|      | DeckCargo  |               | 53    | 20.95 | 1    | 32       | 14078.47 | 9.8  |               | 33    | 19.08 | 1    | 32       | 14936.69 | 10.4 |
| 150F | DyBulk     |               | 42    | 16.60 | 1700 | 3400     | 27028.57 | 18.8 |               | 27    | 15.61 | 1800 | 3300     | 30392.70 | 21.1 |
| 1501 | Fuel       |               | 33    | 13.04 | 1200 | 9400     | 25137.03 | 17.5 |               | 24    | 13.87 | 1400 | 9300     | 29588.50 | 20.5 |
|      | LiquidBulk |               | 48    | 18.97 | 1000 | 4800     | 24815.87 | 17.2 |               | 30    | 17.34 | 1100 | 4100     | 26868.56 | 18.7 |
|      | Pipe       |               | 37    | 14.62 | 5    | 60       | 25649.08 | 17.8 |               | 36    | 20.81 | 5    | 60       | 25854.85 | 18.0 |
|      | Casing     |               | 35    | 15.28 | 9    | 20       | 23161.80 | 16.1 |               | 27    | 15.52 | 9    | 20       | 32612.44 | 22.6 |
|      | DeckCargo  |               | 54    | 23.58 | 1    | 32       | 12126.74 | 8.4  |               | 33    | 18.97 | 1    | 32       | 16289.24 | 11.3 |
| 150G | DyBulk     | <u>.00</u>    | 38    | 16.59 | 1600 | 3200     | 22562.28 | 15.7 | .00           | 35    | 20.11 | 1600 | 3400     | 29489.80 | 20.5 |
| 1300 | Fuel       | ie ii         | 21    | 9.17  | 1900 | 8600     | 29276.52 | 20.3 | DeltaRig      | 27    | 15.52 | 1700 | 9600     | 32784.62 | 22.8 |
|      | LiquidBulk | CharlieRig    | 39    | 17.03 | 1200 | 4300     | 21177.46 | 14.7 | Def           | 28    | 16.09 | 1200 | 4400     | 24366.57 | 16.9 |
|      | Pipe       |               | 17.47 | 5     | 60   | 24452.17 | 17.0     | ė    | 24            | 13.79 | 5     | 60   | 30038.00 | 20.9     |      |
|      | Casing     | HamburgPort - | 20    | 16.26 | 9    | 20       | 34904.80 | 24.2 | HamburgPort - | 37    | 14.86 | 9    | 20       | 26637.78 | 18.5 |
|      | DeckCargo  | E E           | 29    | 23.58 | 1    | 32       | 13642.48 | 9.5  | Ē             | 52    | 20.88 | 1    | 32       | 15082.11 | 10.5 |
| 150H | DyBulk     | 턡             | 16    | 13.01 | 1900 | 3100     | 26855.56 | 18.6 | a m           | 39    | 15.66 | 1700 | 3300     | 25992.41 | 18.1 |
| 130H | Fuel       | Ÿ             | 18    | 14.63 | 1600 | 9600     | 26898.50 | 18.7 | _             | 36    | 14.46 | 1300 | 9000     | 27912.77 | 19.4 |
|      | LiquidBulk |               | 20    | 16.26 | 1100 | 4900     | 27526.40 | 19.1 |               | 40    | 16.06 | 1100 | 4600     | 22708.97 | 15.8 |
|      | Pipe       |               | 16    | 13.01 | 12   | 60       | 32326.93 | 22.4 |               | 45    | 18.07 | 5    | 60       | 30968.95 | 21.5 |
|      | Casing     |               | 53    | 19.41 | 9    | 20       | 22237.83 | 15.4 |               | 34    | 19.21 | 9    | 20       | 33219.94 | 23.1 |
|      | DeckCargo  |               | 52    | 19.05 | 1    | 32       | 11198.13 | 7.8  |               | 24    | 13.56 | 1    | 32       | 19167.25 | 13.3 |
| 1501 | DyBulk     |               | 43    | 15.75 | 1700 | 3200     | 23012.27 | 16.0 |               | 30    | 16.95 | 1700 | 3200     | 33117.33 | 23.0 |
| 1301 | Fuel       |               | 35    | 12.82 | 1200 | 8300     | 20868.68 | 14.5 |               | 34    | 19.21 | 1100 | 9500     | 29880.00 | 20.8 |
|      | LiquidBulk |               | 53    | 19.41 | 1100 | 4200     | 23508.52 | 16.3 |               | 25    | 14.12 | 1200 | 4500     | 34215.16 | 23.8 |
|      | Pipe       |               | 37    | 13.55 | 5    | 50       | 23116.37 | 16.1 |               | 20    | 11.30 | 5    | 40       | 38433.85 | 26.7 |
|      | Casing     |               | 26    | 13.83 | 9    | 20       | 26637.46 | 18.5 |               | 33    | 17.28 | 9    | 20       | 25685.12 | 17.8 |
|      | DeckCargo  |               | 36    | 19.15 | 1    | 32       | 11151.80 | 7.7  |               | 28    | 14.66 | 1    | 32       | 14358.42 | 10.0 |
| 1501 | DyBulk     |               | 36    | 19.15 | 1700 | 3300     | 32973.30 | 22.9 |               | 34    | 17.80 | 1600 | 3500     | 27885.26 | 19.4 |
| 150J | Fuel       |               | 30    | 15.96 | 1600 | 9100     | 25199.23 | 17.5 |               | 25    | 13.09 | 1700 | 9100     | 31068.12 | 21.6 |
|      | LiquidBulk |               | 27    | 14.36 | 1100 | 4800     | 24213.70 | 16.8 |               | 33    | 17.28 | 1100 | 3800     | 23656.42 | 16.4 |
|      | Pipe       |               | 33    | 17.55 | 5    | 60       | 30188.69 | 21.0 |               | 38    | 19.90 | 5    | 60       | 27061.02 | 18.8 |

Con este análisis de rutas se puede determinar la probabilidad de cada puerto, el cual es un dato importante ya que podemos conocer que material se ha transportado más, por lo que se debe presentar mayor atención a este material para mejorar los procesos de transportación como de control de los materiales para no generar pérdidas.

| Rotterdan  | nPort |
|------------|-------|
| Casing     | 16.93 |
| DeckCargo  | 13.61 |
| DyBulk     | 17.97 |
| Fuel       | 14.33 |
| LiquidBulk | 17.43 |
| Pipe       | 18.77 |
| Hamburg    | Port  |
| Casing     | 16.13 |
| DeckCargo  | 19.83 |
| DyBulk     | 16.46 |
| Fuel       | 14.13 |
| LiquidBulk | 17.16 |
| Pipe       | 15.67 |

Según los datos brindados se ha observado que la cantidad solicitada es la cantidad

entregada, por lo que las mejoras al sistema deben ser orientadas a los tiempos de rutas para seleccionar la más óptima.

Como se pudo observar en cada tabla, los días que tardan desde HamburgPort son mucho mayores a los que salen de RotterdamPort.

## **ESTADÍSTICOS**

#### ELECCIÓN DE LA RUTA MÁS OPTIMA

Para poder escoger la ruta más optima nos basamos en el puerto hamburgo esto debido a que este puerto envía todos los materiales y la llegada es mucho más alta. Teniendo en cuenta esta información se clasificaron 4 rutas para escoger la ruta más optima.

#### Ruta 0:

| Ubicación Inicial | Ubicación Final | Secuencia                                                                                    |
|-------------------|-----------------|----------------------------------------------------------------------------------------------|
|                   |                 |                                                                                              |
| HamburgoPuerto    | RoterdamPuerto  | Echo-Foxtrot-India-BetaRig-Juliett-Kilo-DeltaRig-Kilo-Juliett-CharlieRig-AlphaRig-Hotel-Golf |

#### Ruta 1:

| Ubicación Inicial | Ubicación Final | Secuencia                                                                                 |
|-------------------|-----------------|-------------------------------------------------------------------------------------------|
|                   |                 |                                                                                           |
| HamburgoPuerto    | RoterdamPuerto  | Echo-lima-CharlieRig-Juliett-Kilo-DeltaRig-Kilo-Juliett-BetaRig-India-AlphaRig-Hotel-Golf |

#### Ruta 2:

| Ubicación Inicial | Ubicación Final | Secuencia                                                                                    |
|-------------------|-----------------|----------------------------------------------------------------------------------------------|
|                   |                 |                                                                                              |
| HamburgoPuerto    | RoterdamPuerto  | Echo-Foxtrot-AlphaRig-India-BetaRig-CharlieRig-Juliett-Kilo-DeltaRig-Kilo-Juliett-Hotel-Golf |

#### Ruta 3:

| Ubicación Inicial | Ubicación Final | Secuencia                                                                                    |
|-------------------|-----------------|----------------------------------------------------------------------------------------------|
|                   |                 |                                                                                              |
| HamburgoPuerto    | RoterdamPuerto  | Echo-Foxtrot-AlphaRig-India-BetaRig-Juliett-Kilo-DeltaRig-Kilo-Juliett-CharlieRig-Hotel-Golf |

Teniendo ya clasificadas las rutas se hizo una comparación de la información de cada ruta, es decir, tiempo que pasa en el sistema, de los barcos que entran y salen de cada plataforma, de las ganancias, el tiempo promedio en cola, y del porcentaje de utilización de cada server, tomando en cuenta esto se consideró que la ruta más optima fue la que su tiempo en el sistema fue disminuido, su demanda insatisfecha por paquetes perdidos disminuyo, sus ganancias fueron aumentada, el

tiempo excesivo en colas disminuido y el porcentaje de utilización tuvo el más optimo.

En la siguiente tabla podemos observar el tiempo que pasa en el sistema cada barco, y las entradas que tiene cada sistema, los datos que están de color rojo se consideraron muy altos y los que están de color verde se consideraron aptos.

Podemos observar que la ruta 3, entran muchos más barcos que en las otras rutas, y se puede observar que su tiempo en el sistema por cada barco este promedio.

| RUTA | Entradas en<br>el sistema |       |       | Tier | npo qu | e pasa | en el s | sistema |       |      |      |
|------|---------------------------|-------|-------|------|--------|--------|---------|---------|-------|------|------|
|      |                           | 150A  | 150B  | 150C | 150D   | 150E   | 150F    | 150G    | 150H  | 1501 | 150J |
| 0    | 5669                      | 12.61 | 13.51 | 13.1 | 13.3   | 12.6   | 13.68   | 12.05   | 12.38 | 12.7 | 12.3 |
| 1    | 5623                      | 10.99 | 12.69 | 14.3 | 13.2   | 11     | 10.31   | 12.43   | 12.59 | 13.6 | 13.9 |
| 2    | 5656                      | 11.25 | 13.99 | 11   | 15.8   | 12.9   | 12.02   | 12.38   | 10.85 | 11.9 | 12.7 |
| 3    | 5708                      | 11.41 | 12.15 | 13.1 | 15.1   | 12.6   | 12.28   | 12.22   | 11.03 | 13.6 | 11.5 |

En la gráfica se puede observar que la diferencia de tiempo disminuido entre rutas no es excesiva, pero la más optima fue la 3 aunque no por mucha diferencia.



En la siguiente tabla podemos observar el total de barcos que entran y salen en cada plataforma.

| RUTA | BARCOS QUE ENTRAN EN CADA PLATAFORMA |          |         |            | BARCOS QUE SALEN EN CADA PLATAFORMA |          |         |            |
|------|--------------------------------------|----------|---------|------------|-------------------------------------|----------|---------|------------|
| KUIA | DELTARIG                             | ALPHARIG | BETARIG | CHARLIERIG | DELTARIG                            | ALPHARIG | BETARIG | CHARLIERIG |
| 0    | 570                                  | 371      | 764     | 372        | 390                                 | 371      | 592     | 371        |
| 1    | 522                                  | 386      | 388     | 1050       | 405                                 | 386      | 388     | 543        |
| 2    | 383                                  | 641      | 390     | 388        | 339                                 | 641      | 388     | 387        |
| 3    | 378                                  | 642      | 387     | 367        | 375                                 | 640      | 381     | 365        |

En la siguiente tabla se hizo la diferencia de total de barcos que entran y salen, podemos observar que a pesar de que en la ruta 0 se tienen más barcos entrantes el total que sale es muy bajo lo que quiere decir que hay bastante demanda insatisfecha en el transcurso, sin embargo, la ruta 3 el total de barcos entrantes es baja pero la diferencia es mínima por lo que qué se logra una demanda insatisfecha disminuida.

| Total de barcos que salen | Total de barcos que<br>entran | Diferencia |
|---------------------------|-------------------------------|------------|
| 1724                      | 2077                          | 353        |
| 1722                      | 2346                          | 624        |
| 1755                      | 1802                          | 47         |
| 1761                      | 1774                          | 13         |



En la siguiente tabla podemos ver la ganancia que se generaron, los de color rojo significa que esa ruta en ese server genero poca ganancia y la verde mayor a comparación de las otras.

|        | GANANCIAS     |         |         |         |         |  |  |  |  |
|--------|---------------|---------|---------|---------|---------|--|--|--|--|
|        | RUTA          | 0       | 1       | 2       | 3       |  |  |  |  |
|        | HAMBURGPORT   | 1133800 | 1124600 | 1131200 | 1141600 |  |  |  |  |
|        | ROTTERDAMPORT | 54400   | 74800   | 64400   | 71200   |  |  |  |  |
|        | ALPHARIG      | 9275    | 9650    | 16025   | 16050   |  |  |  |  |
|        | BETARIG       | 19100   | 9700    | 9750    | 9675    |  |  |  |  |
|        | CHARLIERIG    | 9300    | 26250   | 9700    | 9175    |  |  |  |  |
| ~      | DELTARIG      | 14250   | 13050   | 9575    | 9450    |  |  |  |  |
| WE     | ECHO          | 28345   | 25605   | 28280   | 28540   |  |  |  |  |
| SERVER | FOXTROT       | 7015    | 0       | 8410    | 8450    |  |  |  |  |
| ,      | GOLF          | 1375    | 1900    | 1630    | 1805    |  |  |  |  |
|        | HOTEL         | 1385    | 1905    | 1640    | 1825    |  |  |  |  |
|        | INDIA         | 3855    | 1940    | 1975    | 1945    |  |  |  |  |
|        | JULIETT       | 4875    | 4695    | 3605    | 3770    |  |  |  |  |
|        | KILO          | 4865    | 4675    | 3620    | 3780    |  |  |  |  |
|        | LIMA          | 0       | 7715    | 0       | 0       |  |  |  |  |

Haciendo las comparaciones de ganancias generadas en cada ruta, por 780 la ruta 3 es la que logra tener mayor ganancia.

| 1        |         |         |         |         |
|----------|---------|---------|---------|---------|
|          | Ruta 0  | Ruta 1  | Ruta 2  | Ruta 3  |
| GANANCIA | 1291840 | 1306485 | 1289810 | 1307265 |



En la siguiente tabla podemos observar el tiempo de espera en cola de cada server.

| Г        | RUTA       | 0     | 1        | 2        | 3        |
|----------|------------|-------|----------|----------|----------|
| Г        | ALPHARIG   | 0.002 | 0.002245 | 0.003623 | 0.003906 |
|          | BETARIG    | 3.21  | 0.043616 | 0.036487 | 0.057494 |
| Cola     | CHARLIERIG | 0.06  | 5.981146 | 0.085041 | 0.086316 |
|          | DELTARIG   | 3.67  | 2.877215 | 1.488458 | 0.26243  |
| o en     | ECHO       | 9.82  | 9.435389 | 9.74042  | 9.77495  |
| Promedio | FOXTROT    | 2.6   |          | 4.567926 | 4.663807 |
| io<br>Io | GOLF       | 0     | 0.000032 | 0        | 0.000029 |
|          | HOTEL      | 0     | 0.000025 | 0        | 0.000051 |
| empo     | INDIA      | 0.002 | 0.000001 | 0        | 0        |
| F        | JULIETT    | 0.21  | 0.096799 | 0.010926 | 0.0095   |
|          | KILO       | 0.07  | 0.067607 | 0.012533 | 0.009003 |
|          | LIMA       | -     | 3.924778 | _        | _        |

Observando nuevamente, se observa que la ruta 3 tiene tiempo excesivo en colas disminuido.

|        | Ruta 0 | Ruta 1    | Ruta 2    | Ruta 3    |  |
|--------|--------|-----------|-----------|-----------|--|
| Tiempo | 19.644 | 22.428853 | 15.945414 | 14.867486 |  |



En la siguiente table se puede observar el porcentaje de utilización de cada server, rojo significa que el server tiene una utilización muy alta, y el verde baja.

| % DE UTILIZACIÓN DE CADA SERVER |       |         |       |       |  |  |  |
|---------------------------------|-------|---------|-------|-------|--|--|--|
| RUTA                            | 0     | 1       | 2     | 3     |  |  |  |
| ALPHARIG                        | 18.45 | 18.6848 | 30.48 | 32.88 |  |  |  |
| BETARIG                         | 97.8  | 60.2425 | 64.48 | 69.73 |  |  |  |
| CHARLIERIG                      | 62.29 | 98.9076 | 65.24 | 65.62 |  |  |  |
| DELTARIG                        | 96.3  | 97.5574 | 94.18 | 85.73 |  |  |  |
| ECHO                            | 99.92 | 99.9256 | 99.93 | 99.93 |  |  |  |
| FOXTROT                         | 98.96 | -       | 99.15 | 99.15 |  |  |  |
| GOLF                            | 26.15 | 36.2024 | 30.97 | 34.57 |  |  |  |
| HOTEL                           | 26.39 | 36.5123 | 31.1  | 34.27 |  |  |  |
| INDIA                           | 72.18 | 36.6268 | 37.25 | 36.89 |  |  |  |
| JULIETT                         | 91.56 | 88.0916 | 68.39 | 72.6  |  |  |  |
| KILO                            | 92.07 | 87.3467 | 68.54 | 71.59 |  |  |  |
| LIMA                            |       | 99.5408 |       |       |  |  |  |

Se observa, que en esta situación la ruta 2 es el que tiene porcentaje de utilización más optimo sin embargo la diferencia entre la ruta 3 y 2 no es muy alta.

|             | Ruta 0 | Ruta 1   | Ruta 2 | Ruta 3 |
|-------------|--------|----------|--------|--------|
| Utilizacion | 782.07 | 759.6385 | 689.71 | 702.96 |



## DISCUSIÓN DE RESULTADOS

El análisis que se realizó a los datos brindados en Excel fue utilizado para la simulación, directamente para el comportamiento de las entidades (barcos).

Luego de la simulación de las 4 rutas se revisaron los objetivos iniciales y primordiales para la toma de decisión:

#### Mejorar la demanda:

Se analizaron cada una de las plataformas, de las cuales se ha observado que de las 4 rutas la Ruta 1 presenta problemas debido a que entran 2346 barcos, de los cuales solo siguen su ruta 1722, dejando a 624 barcos parados causando entregas insatisfechas a los clientes.

Así mismo se observa que la Ruta 3 presenta un alto funcionamiento, entrando 1774 barcos y quedandose parados solamente 13, esto revela que esta ruta tiene los menores desperfectos para poder atender adecuadamente a los clientes.

#### Mejorar el tiempo de espera:

Se observa que en la Ruta 3 se tienen 5708 entradas en el sistema, de los cuales el barco 150B presenta un tiempo de espera de 12.15 h y el barco 150J 11.50 h, al realizar la suma de los tiempos de cada barco se tiene un tiempo total en de espera de 124.87 h el cual a comparación de las demás rutas es menor, teniendo la Ruta 0 un tiempo total de 128.18 h, la Ruta 1 de 124.92 h y la Ruta 2 de 124.9 h.

#### Obtener más ganancias netas:

Según el realizar ganancias por cada servidor se tiene el total del sistema, luego de la comparación de datos se obtiene que la Ruta 3 obtiene más ganancias que las otras, con un total de 1,307,265.00, con estas ganancias se puede invertir más en reforzar, mejorar y ampliar esta ruta para tener mucha más satisfacción organizacional como para el cliente.

Mejorar el tiempo en colas:

Para este resultado se analizó el tiempo en cola que pasa cada barco en los servers, de esta forma se tiene una idea más clara sobre los servers que estén presentando dificultades para atender satisfactoriamente las necesidades de la empresa.

Se realiza una suma del tiempo de todos los servidores que son utilizados en cada ruta y se obtiene a la Ruta 3 con el mejor tiempo, con un total de 14.867486 h. Teniendo este tiempo identificado se conoce que los servidores deben mejorarse tanto en maquinaría como personal para tener un tiempo menor y poder atender a más barcos sin poner en riesgo (por deterioro) la entrega de los materiales.

Por último, se analizaron los porcentajes de utilización, de esta forma con guía en los demás resultados se puede conocer si los servidores están cumpliendo su función, si no son utilizados o están siendo saturados.

Para esto se obtiene que la Ruta 2 tiene en promedio un porcentaje de utilización de sus servidores de 62.70090909, sin embargo, se observó que los puntos DELTARIG, ECHO y FOXTROT tienen un porcentaje de 94.18, 99.93 y 99.15 respectivamente, lo cual indica que estos servers están siendo saturados mientras que en otros los recursos están siendo desaprovechados.

Por esto se analizaron las demás rutas y la segunda mejor es la Ruta 3 con un porcentaje de 63.90545455, teniendo solamente dos servers con porcentajes mayores a 90.

Por cada uno de los resultados obtenidos y analizados se determina que la Ruta 3 es la ruta más óptima para realizar el trabajo al que está destinado.

## **CONCLUSIONES**

Luego de realizar el diagnóstico previo, se concluyó que los principales atributos para determinar la mejor ruta del sistema fueron: el tiempo de duración en el sistema, la demanda insatisfecha por paquetes perdidos dentro del sistema, las ganancias aumentadas, el tiempo excesivo en la cola, puesto que no hubo un estudio previo para la creación de ellas si no que fueron acorde con el conocimiento de las distribuciones implementadas.

La ruta implementada mediante el modelo diseñado, resulto positivo, ya que se logró reducir el tiempo excesivo en las colas, la demanda insatisfecha por paquetes perdidos y el tiempo que pasa en el sistema, consiguiendo así una disminución significativa en el costo de operaciones. La disminución proyectada se puede evidenciar a mayor escala en los resultados de la ruta más optima.

En cuanto al estado de los resultados se concluye que las ganancias generadas, constituyen de mayor representatividad para la ruta no. 03. En referencia a las ganancias de las otras rutas se tiene una discrepancia bastante razonable y efectiva para determinar que la ruta 03 genera más ganancias.

Al analizar los indicadores de utilización se observaron valores variantes debido al margen que se tienen de utilidad, esta representa cifras mínimas lo que significa que la ruta no. 02 genero poca utilidad en sus servidores a diferencia de nuestra ruta optimiza que genera un poco más de utilizada, sin embarga nuestra ruta optima se encuentra más eficiente en otros aspectos mencionados.

## **ANEXOS**

#### Anexo 1



#### Anexo 2.



#### Anexo 3



Anexo 4.

