MSE160: Equation Sheet

Stress & Strain:

$$\sigma = \frac{F}{A_0} \mid \varepsilon = \frac{\Delta l}{l_0}$$

Stress & Strain Relationship:

$$\sigma = E\varepsilon$$

Young's Modulus Proportionality:

$$E \left. \alpha \frac{dF}{dr} \right|_{r=r_0}$$

Poisson's Ratio:

$$v = -\frac{\varepsilon_R}{\varepsilon_Z} = -\frac{\varepsilon_X}{\varepsilon_Z} = -\frac{\varepsilon_y}{\varepsilon_Z} w$$

Shear Stress:

$$\tau = \frac{F}{A_0}$$

Shear Strain:

$$\gamma = \frac{\Delta l}{l_0}$$

Young's Modulus & Shear's Modulus Relationship:

$$E = 2G(1 + v)$$

Shear Stress & Strain Relationship:

$$\tau = G\gamma$$

3-Point Stress for Ceramics:

$$\sigma_{3-pt} = \frac{3FL}{2wh^2}$$

The Mass of All the Atoms in the Unit Cell:

$$m = n \cdot \frac{A}{N_A}$$

Theoretical Density of a Crystalline Solid:

$$\rho = \frac{n \cdot A}{V_c \cdot N_A}$$

Where A is the molar mass, n is the # of atoms in a unit cell, V_C is the volume of a unit cell, and N_A is the Avagadro's Number.

Density:

$$\rho = \frac{m}{V}$$

Atomic Packing Factor:

$$APF_{FCC} = \frac{\textit{Volume}_{\textit{Spheres}}}{\textit{Volume}_{\textit{Unit Cell}}}$$

Bragg's Law:

$$n\lambda = 2d_{hkl}sin(\theta)$$

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

- n is the order of reflection
- λ is the wavelength.
- d_{hkl} is the interplanar spacing between the planes, where h,k, and l refer to the Miller indices in the x,y, and z positions.

Theoretical Density of Ceramics:

$$\rho = \frac{n_c A_c + n_A A_A}{V_c N_A}$$

- $n_A = 4$ and $n_C = 4$
- A_c and A_A are molar masses of the cation and anion.
- V_c is the volume of the unit cell.

Vacancy Population:

$$\frac{N_{V}}{N} = exp(\frac{-Q_{v}}{kT})$$

- N_V is the number of vacancies
- ullet Q_v is the energy to form vacancy
- k is Boltzmann's Constant
- T is the temperature in Kelvin
- N is the number of lattice sites.

True Stress/Strain

Type	Equation	Meaning	
True Stress	$\sigma_T = \frac{F}{A_i}$	 A_i is the instantaneous cross-sectional area. Works for all points. 	
	$\sigma_T = \sigma(1 + \epsilon)$	Works prior to necking.	
True Strain	$\epsilon_{_{T}}=lnrac{l_{_{i}}}{l_{_{0}}}$	 l_i is the instantaneous length. l₀ is the original length. Works for all points 	
	$\epsilon_T = ln(1 + \epsilon)$	Works prior to necking.	

Strain
Hardening
Equation

$$\sigma_T = K \varepsilon_T^n$$

- K is strain hardening coefficient (MPa).
- N is a strain hardening exponent (Dimensionless).

Polymer Average:

Туре	Equation	Meaning
Number Average Molecular Weight	$\overline{M}_{number} = \sum_{n=1}^{i} M_n x_n$	 i is the number of groups M_n is the molecular weight of the nth group. x_n is the number fraction of the nth group (number of molecules in that group, divided by the total number of molecules).
Weight Average Molecular Weight	$\overline{M}_{weight} = \sum_{n=1}^{i} M_n w_n$	 i is the number of groups M_n is the molecular weight of the nth group. W_n is the weight fraction of the nth group (combined mass of molecules in that group, divided by the total mass of all molecules).
Dispersity		

Relaxation Modulus:

$$E_{R} = \frac{\sigma(t)}{\varepsilon_{0}}$$

- $\sigma(t)$ is the stress relaxing with time. 1 temp. = more rapid stress relaxation
- ullet E_R always decreases with time.

Chapter 9 Equations:

Type	Equation	Meaning
------	----------	---------

Energy in a Quanta of Radiation	$E = \frac{hc}{\lambda} = \frac{h}{\nu}$	 h is Planck's constant (6.626 × 10⁻³⁴ J·s) c is the speed of light in a vacuum (3 × 10⁸ m/s) λ is the wavelength of the light in m/s ν is the frequency of light, in Hertz (ν = c/λ [1/s])
eV⇔J:	$E[eV] = \frac{E[J]}{1.602 \times 10^{-19} \left[\frac{J}{eV}\right]}$	
Conductivity of Intrinsic Semiconductor	$\sigma = nq(\mu_n + \mu_p)$	 σ is the conductivity [Ω⁻¹m⁻¹] n is the number of electrons [#/m³] q is the fundamental charge [C] μ_n is the electron mobility [m²/V·s] μ_p is the hole mobility [m²/V·s]
Conductivity of n-Type Semiconductor	$\sigma_{n-type} = nq\mu_n$	 σ is the conductivity [Ω⁻¹m⁻¹] n is the number of electrons [#/m³] q is the fundamental charge [C] μ_n is the electron mobility [m²/V·s]
Conductivity of p-Type Semiconductor	$\sigma_{p-type} = nq\mu_p$	 σ is the conductivity [Ω⁻¹m⁻¹] n is the number of electrons [#/m³] q is the fundamental charge [C] μ_p is the electron mobility [m²/V·s]

Relationship
Between
Conductivity and
Temperature

$$\sigma = \sigma_0 e^{\frac{-E_g}{2K_b T}}$$

- K_b is Boltzmann's constant
- E_g is band gap energy.
- T is temperature in Kelvin.

Chapter 10 Equations:

Magnetic Field	$H = \frac{NI}{L}$	 H is the magnetic field N is the number of turns of the wire I is the current L is the length of solenoid
Flux Density in a Vacuum	$B_0 = \mu_0 H$	• μ_0 is the permeability of vacuum $= 4\pi \times 10^{-7} \left[\frac{N}{A^2}\right]$
Magnetization	$M = \chi_m H$	 M is magnetization [A/m] H is magnetic field [A/m] χ_m is the magnetic susceptibility
Total Flux Density in the Material	$B = \mu_0 H + \mu_0 M$ $= (1 + \chi_m) \mu_0 H$	• χ_m is the magnetic susceptibility (measure of the materials response to the applied magnetic field, H).
Bohr Magneton (Unit of Atomic Magnetic Dipole Moment)	$\mu_{B} = \frac{eh}{2m_{e}} = \beta$ $\mu_{B} = 1\beta = 9.27 \times 10^{-24} Am^{2}$	
Magnetic Saturation	$M_{sat} = M \times N$	 M is the magnetization N is the number of atoms/volume

Chapter 11 Equations:

Entropy	$\Delta S = \frac{q_{reversible}}{T}$	 ΔS is entropy. q_{rev} is the heat transferred. T is the thermodynamic temperature (K)
2nd Law of Thermodynamics	$\Delta S_{universe} = \Delta S_{system} + \Delta S_{system}$	$\Delta S_{surroundings} > 0$
1st Law of Thermodynamics	Isolated System: $\Delta U = 0$ Closed System: $\Delta U = q + w$	 q is heat transferring into the system (+ve) w is work done on the system (+ve)
Enthalpy	H = U + PV	
Change in Enthalpy	$\Delta H = \Delta U + P \Delta V$	• Constant pressure
Internal Energy	$\Delta U = \Delta H -$	$P\Delta V$
Gibb's Energy	G = H - TS	
Change in Gibbs Energy (Restatement of 2nd Law)	$\Delta G = \Delta H_{sys} - T\Delta S_{sys} < 0, spontaneous$ $\Delta G = -T\Delta S_{universe}$	• Constant T
Molar Heat	$q = nC_p \Delta T$	 n is # of moles C_p is molar heat capacity [J / mol·K] ΔT is change in temperature

Specific Heat	$q = mc\Delta T$	• m is mass • c is specific heat $\left[\frac{J}{g \cdot K}\right]$

Chapter 12 Equations:

Lever Rule	Weight fraction of a phase $=\frac{Opposite \ side \ of \ lever}{Total \ length \ of \ lever}$	
	$W_L = \frac{C_s - C_0}{C_s - C_l} \text{ for a liquid}$	
Concentration	$C_i = \frac{m_x}{m_x + m_y}$	