PUNE INSTITUTE OF COMPUTER TECHNOLOGY DHANKAWADI, PUNE – 43.

Department of Computer Engineering

Academic Year: 2019-20 (Semester-I)

UNIT TEST I

Year: SE

Subject: Discrete Mathematics

Time: - 1 Hour Max. Marks: - 30

Instructions to the candidates:-

1. All questions are compulsory.

Q. No.	Sub. Q. No.	Question	Marks	Unit No.		CO Mapping
1	A	Draw the Hasse diagram representing the	5	2	CO1, CO3	2,1
		partial ordering {(a,b) a divides b} on				
		{1,2,3,4,6,8,12}				
		i. Find the minimal and Maximal				
		elements				
		ii. Find two examples of chain and				
		antichain				
		iii. Is Poset a Lattice ?				
1	В	Let R be the relation on the set A={a,b,c,d,e,f} and R={(a,c),(b,d),(c,a),(c,e),(d,b),(d,f),(e,c),(f,d)}. Find the transitive closure of R using Warshalls algorithm.	5	2	CO3	2
2	A	Show that	4	1	CO2	1
		$\begin{vmatrix} 1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + \dots + n)^2 & \text{for every natural no n.} \end{vmatrix}$				
2	В	Let $A=\{\Phi,b\}$ Construct the following sets i) $A-\Phi$	3	1	CO1	2

		ii) {Φ}-Aiii) AU P(A)Where P(A) is a power set.				
2	С	Represent the arguments using quantifiers and finds its correctness: All students in this class understand logic. Ganesh is a student in the class. Therefore Ganesh understands logic.	3	1	CO2	3
3	A	Prove that the set of rational numbers is countably infinite.	4	1	CO1	3
3	В	Let R and S be the relations on a set A. If R and S are antisymmetric, Prove or disprove that $R \cap S$ and RUS are antisymmetric.	3	2	CO3	3
3	С	Let A={1,2,3,4,5}. Define the following relation R on A a R b if and only if a Find: R in Roster form Domain and Range of R. Digraph of R 	3	2	CO3	2