Teoreeme diferentseeruvate funktsioonide kohta

Tutvume kõigepealt teoreemiga, mis iseloomustab funktsiooni statsionaarset punkti. Rolle'i teoreem: Kui lõigus [a; b] pideva ja vahemikus (a; b) diferentseeruva funktsiooni f väärtused otspunktides a ja b on võrdsed, siis vahemikus (a; b) leidub vähemalt üks funktsiooni f tuletise nullkoht.

<u>Märkus</u> Kui funktsioonil f(x) vahemiku (a; b) mõnes punktis tuletist ei ole, siis ei tarvitse teoreemi väide olla õige. Näiteks funktsioon $y = \sqrt{\left(1 - x^{\frac{2}{3}}\right)^3}$ on pidev lõigus [-1; 1] ja muutub nulliks lõigu otspunktides, tuletis $y' = -\frac{\sqrt{1 - x^{\frac{2}{3}}}}{\sqrt[3]{x}}$ aga ei muutu nulliks selle lõigu üheski punktis. See on tingitud sellest, et lõigus leidub punkt x = 0, milles funktsioonil tuletist ei ole (tuletis kasvab lõpmatult).

Cauchy teoreem ja L'Hospitali reegel

Diferentsiaalarvutus annab üldise meetodi (L'Hospitali reegli) funktsiooni piirväärtuse arvutamiseks juhul, kui põhiteoreemid piirväärtustest pole rakendatavad. Selle meetodi teoreetiliseks aluseks on alljärgnev Cauchy keskväärtusteoreem.

<u>Cauchy teoreem</u>: Kui funktsioonid f(x) ja g(x) on pidevad lõigus [a; b] ja diferentseeruvad vahemikus (a; b), kusjuures $g'(x) \neq 0$, siis vahemikus (a; b) leidub vähemalt üks punkt c, mille puhul

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}.$$

<u>L'Hospitali reegel:</u> Kui $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ või $\lim_{x \to a} |f(x)| = \lim_{x \to a} |g(x)| = \infty$ ja eksisteerib

piirväärtus $\lim_{x\to a} \frac{f'(x)}{g'(x)}$, siis

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

L'Hospitali reegel taandab funktsioonide suhte piirväärtuse arvutamise nende funktsioonide tuletiste suhte piirväärtuse arvutamisele. Viimase piirväärtuse arvutamine osutub sageli lihtsamaks, nagu see ilmneb alljärgnevatest näidetest.

Näide. Arvutada piirväärtus $\lim_{x\to 0} \frac{\tan(x/2)}{\ln(x+1)}$ L'Hospitali reegli abil.

$$\lim_{x \to 0} \frac{\tan(x/2)}{\ln(x+1)} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0} \frac{\left[\tan(x/2)\right]'}{\left[\ln(x+1)\right]'} = \lim_{x \to 0} \frac{\frac{1}{\cos^2(x/2)} \cdot \frac{1}{2}}{\frac{1}{x+1}} = \frac{1}{2}$$

Näide. Arvutada piirväärtus $\lim_{x\to 0} \frac{1-\cos x}{x^2}$ L'Hospitali reegli abil.

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0} \frac{(1 - \cos x)'}{(x^2)'} = \lim_{x \to 0} \frac{\sin x}{2x} \stackrel{\frac{0}{0}}{=} \lim_{x \to 0} \frac{(\sin x)'}{(2x)'} = \lim_{x \to 0} \frac{\cos x}{2} = \frac{1}{2}$$