ISR Gen-Level Check 13 TeV LQv7-6-6.5

2016.10.25

MG & aMC@NLO

- For 8 TeV Study, we used MG samples.
- aMC@NLO is used for 13 TeV
- NLO effect must have been considered before checking reco. level
- using StatusFlag()

What to consider

- LO vs. NLO
- include OR exclude FSR momentum

pair production

μμ	MG	aMC@NLO
Slope	4.44±0.08	4.29±0.03
intercept	-21.5±0.8	-19.1±0.2

ee	MG	aMC@NLO
Slope	4.24±0.09	4.26±0.03
intercept	-19.7±0.8	-18.8±0.02

include FSR mom.

μμ	MG	aMC@NLO
Slope	3.95±0.08	3.86±0.03
intercept	-17.1±0.8	-15.1±0.2

ee	MG	aMC@NLO
Slope	3.63±0.09	3.67±0.03
intercept	-14.1±0.8	-13.4±0.03

w/o FSR mom.

Gen-Level No FSR vs FSR, Madgraph 13TeV

Gen-Level No FSR vs FSR, Madgraph 13TeV

μμ	w/o FSR	+ FSR
Slope	3.95±0.08	4.44±0.08
intercept	-17.1±0.8	-21.5±0.8

ee	w/o FSR	+ FSR
Slope	3.63±0.09	4.24±0.09
intercept	-14.1±0.8	-19.7±0.8

MG

Why PT(II+FSR) < PT(II)?? Does it make sense?

Gen-Level No FSR vs FSR, aMC@NLO 13TeV

Gen-Level No FSR vs FSR, aMC@NLO 13TeV

μμ	w/o FSR	+ FSR
Slope	3.86±0.03	4.29±0.03
intercept	-15.1±0.2	-19.1±0.2

ee	w/o FSR	+FSR
Slope	3.67±0.03	4.26±0.03
intercept	-13.4±0.03	-18.8±0.02

aMC@NLO

Why PT(II+FSR) < PT(II)??
Does it make sense?

200~350 GeV MG

aMC@NLO

 $P_T(\mu\mu)$ pre-FSR vs post-FSR, 200 < M[GeV] < 350

 $P_{\tau}(ee)$ pre-FSR vs post-FSR, 200 < M[GeV] < 350

 P_{τ} (ee) pre-FSR vs post-FSR, 200 < M[GeV] < 350

40~60 GeV MG

$P_T(\mu\mu)$ pre-FSR vs post-FSR, 40 < M[GeV] < 60

 P_T (ee) pre-FSR vs post-FSR, 40 < M[GeV] < 60

aMC@NLO

$P_{\tau}(\mu\mu)$ pre-FSR vs post-FSR, 40 < M[GeV] < 60

 P_{τ} (ee) pre-FSR vs post-FSR, 40 < M[GeV] < 60

80~100 GeV MG

aMC@NLO

 $P_T(\mu\mu)$ pre-FSR vs post-FSR, 80 < M[GeV] < 100

 $P_T(\mu\mu)$ pre-FSR vs post-FSR, 80 < M[GeV] < 100

 P_{T} (ee) pre-FSR vs post-FSR, 80 < M[GeV] < 100

 P_T (ee) pre-FSR vs post-FSR, 80 < M[GeV] < 100

100~200 GeV MG

aMC@NLO

 $P_T(\mu\mu)$ pre-FSR vs post-FSR, 100 < M[GeV] < 200

 $P_{\tau}(ee)$ pre-FSR vs post-FSR, 100 < M[GeV] < 200

 $P_T(\mu\mu)$ pre-FSR vs post-FSR, 100 < M[GeV] < 200

 P_{τ} (ee) pre-FSR vs post-FSR, 100 < M[GeV] < 200

w/o FSR mom. MG

aMC@NLO

$P_T(\mu\mu)$ At each mass region

$P_T(\mu\mu)$ At each mass region

P_T(ee) At each mass region

P_T(ee) At each mass region

include FSR

500

20

10

MG

aMC@NLO

 $P_T(\mu\mu + QED FSR)$ At each mass region

P_T(μμ + QED FSR) At each mass region

P_T(ee + QED FSR) At each mass region

Transverse Momentum [GeV]

P_T(ee + QED FSR) At each mass region

MG mumu channel seems weird a little

Generally slope values are similar between ee & mum

Need to check 8 TeV gen-level

Why PT(II+FSR) < PT(II)??

- Considering
- $\Delta R(\mu$ -, FSR from μ -)
- $\Delta R(\mu+, FSR \text{ from } \mu+)$

- Most of them should be ~zero?
- But most FSR vectors have ΔR with

