Lecture Summary 10

In this lecture we will formally look at the Gibbs sampler, though we have already come across it. Suppose f(x) is the target density with dimension d for x, so $x = (x_1, \ldots, x_d)$.

Consider the d conditional densities given by

$$f_j(x_j|x_1,\ldots,x_{j-1},x_{j+1},\ldots,x_d)$$

as the full conditional density for x_j given x_{-j} ; shortened to $f_j(x_j|x_{-j})$. We will look at examples of how to get these in class.

Then define the transition density as

$$p(x'|x) = \prod_{j=1}^{d} f_j(x_j|x'_1, \dots, x'_{j-1}, x_{j+1}, \dots, x_d).$$

It can be shown (exercise) that

$$f(x') = \int p(x'|x) f(x) dx.$$

The transition density can be sampled easily as long as each full conditional can be sampled easily. We take x_1' from $f_1(\cdot|x_{-1})$ and so on up to taking x_d' from $f_d(\cdot|x_{-d}')$.

So suppose we have a two dimensional density f(x,y) (i.e. $x_1 = x$ and $x_2 = y$ to avoid overuse of notation) and we have $f_1(x|y)$ and $f_2(y|x)$. Starting at say y_0 we take x_1 from $f_1(\cdot|y_0)$ and y_1 from $f_2(\cdot|x_1)$ to complete an iteration. Then we get x_2 from $f_1(\cdot|y_1)$ and y_2 from $f_2(\cdot|x_2)$ to complete another iteration.

After running for N iterations we will have

$$(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N).$$

As N gets bigger so (x_N, y_N) become more as if they came from f(x, y); this is the stationary condition. Moreover, for any function l,

$$\lim_{N \to \infty} N^{-1} \sum_{n=1}^{N} l(x_n, y_n) = \int l(x, y) f(x, y) dx dy, \quad \text{a.s.}$$